### Supplementary Material for

FP-ADMET: A Compendium of Fingerprint-based ADMET Prediction Models

Vishwesh Venkatraman

Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

# 1 ADMET Properties Studied

The following sections briefly describe the different ADMET endpoints studied. For details on the experimental protocols, values and units, and data preparation please see the cited articles and the references therein.

## 1.1 Anticommensal effect on the human gut microbiota (HGM)

Some of the existing drugs that are designed to target human cells can notably alter the composition of the human gut microbiota. This anticommensal effect of the drugs should therefore be avoided. Anticommensal compounds are defined those that can inhibit at least one bacterial strain in the human gut, while a commensal compound is assumed if this compound cannot suppress any one of the 40 typical bacterial strains in their experimental assays. Compounds with anticommensal or commensal effects on human gut microbiota (in vitro) are taken from the work of ?. Zheng et al. [2018] have examined the use of ECFP based approaches to predict the anticommensal effect with a machine-learning based consensus classification model yielding accuracies of 80% or more.

## 1.2 Blood Brain Barrier Permeability

Diffusion of drugs across blood brain barrier (endothelium separating the blood from the central nervous system) is quite restrictive. Early assessment of BBB permeation is therefore of great importance, not only for CNS-active agents, but also for drugs that must be forbidden entry into the CNS (to prevent harmful side effects). Conventional in vitro experiments such as Caco-2 permeability assays, transepithelial electrical resistance (TEER) assays, Madindarby canine kidney (MDCK) and parallel artificial membrane permeability assays (PAMPA) are used to evaluate BBB permeability. Each compound in the dataset taken from Shaker et al. [2020] and Sushko et al. [2011] has a BBB permeability class (given as "No" and "Yes" for BBB- and BBB+, respectively). Accuracies of around 89% have been achieved using 1D/2D descriptors based on a Light Gradient Boosting Machine learning modelShaker et al. [2020].

### 1.3 Breast Cancer Resistance Protein Inhibition

The Breast Cancer Resistance Protein (BCRP) is seen to responsible for the multidrug resistance phenomenon observed in some cancers and is also involved in drug-drug interactions in the liver. Here, the dataset used by Jiang et al. [2020] that contains a structurally diverse set of 1098 BCRP inhibitors and 1701 non-inhibitors (based on cell-based assays) has been used for modelling (see also Montanari and Ecker [2014]). In their study, the SVM classifier yielded the best predictions (MCC = 0.812 and AUC = 0.958 for the test set).

# 1.4 Human Oral Bioavailability

Oral bioavailability (an important pharmacokinetic property F) measures the extent to which the active moiety is absorbed and becomes available in the systemic circulation. Since most drugs

are administered orally, bioavailability decreases and methods that can differentiate between high  $(F \ge 50\%)$  and low (F < 50%) bioavailability can help reduce undesirable attrition (see Varma et al. [2010] for experimental details). For a set of 1448 molecules, models based on 2D descriptors yielded accuracies of around 80% for both training and test setsFalcón-Cano et al. [2020].

### 1.5 CYP450 Metabolism

The cytochrome P450 superfamily oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds. Adverse side effects of drug-drug interactions induced by human CYP450 inhibition is a major cause for concern. Here, the models predict inhibition of major CYP450 isoforms, namely, 1A2, 2C9, 2C19, 2D6, 2C8, and 3A4. A major data source is the study by Veith et al. [2009] wherein the authors employed a Cytochrome panel assay (https://pubchem.ncbi.nlm.nih.gov/bioassay/1851) that used various human CYP450 isozymes to measure the dealkylation of various pro-luciferin substrates to luciferin. Here the compounds labeled "active" are regarded as inhibitors and "inactive" as noninhibitors. Additional data for CYP2C8 inhibition was taken from Zhang et al. [2021], wherein the authors developed fingerprint based classification models achieving AUCs of 0.85 and above.

### 1.6 DMSO Solubility

Solubility of drug candidates or chemical probes is an important parameter considered by pharmaceutical companies. Insoluble compounds cannot be used in an automatized high-throughput screening (HTS) and therefore experimental measurements cannot be obtained for such compounds. Earlier Tetko et al. [2013] employed machine learning methods for the prediction of solubility in DMSO (solubility in 100% DMSO). The dataset is highly imbalanced with around 1.7–5.8% insoluble compounds. Using different kinds of descriptors balanced accuracies of around 70% were achieved.

# 1.7 Solubility in phosphate buffer

Data for solubility was obtained from PUBCHEM bioassay database (https://pubchem.ncbi.nlm.nih.gov/bioassay/1996) where over 50000 compounds were tested for their solubility in an aqueous buffer (Phosphate Buffered Saline, pH 7.4). The compounds were provided as DMSO stocks and the solubility was measured using quantitative chemiluminescent nitrogen detection. In the assay, compounds with a mean solubility in aqueous buffer  $> 10 \ \mu g/mL$  at pH 7.4 are considered as active (moderate/high solubility). For this dataset, a Bayesian model using 8 physicochemical descriptors and the FCFP\_6 fingerprint achieved an AUC of around 0.84Perryman et al. [2020].

# 1.8 Fraction Unbound in Human Plasma/Brain

The fraction unbound in plasma is an important determinant of drug efficacy in pharmacokinetic and pharmacodynamic studies. Knowing the value of the unbound drug fraction in the brain is essential for estimating its effects and toxicity on the central nervous system. For a set of 253 measurements  $(f_{u,brain})$  taken from literature, Esaki et al. [2019] achieved  $R^2 \sim 0.60$  using 2D descriptors. For

the prediction of the fraction unbound in human plasma  $(f_{u,plasma})$  a data set of 2738 experimental values was taken from Watanabe et al. [2018]. While Watanabe et al. [2018] focus on classification models (accuracies of 0.80), Yun et al. [2021] focus on regression models obtaining a mean absolute error (MAE) of 6.7% on a subset of the Watanabe dataset.

### 1.9 Human Intestinal Absorption

Human intestinal absorption (HIA) is an alternative indicator for oral bioavailability to some extent and thus plays an important role in pre-clinical drug evaluation. Experimental data have relied on *In vitro* human colon adenocarcinoma (Caco-2) cell lines and parallel artificial membrane permeability assays. Data from Sushko et al. [2011] and Wang et al. [2017] were merged to yield a set of 1516 compounds. A HIA value of 30% was used as the criterion to divide chemical agents into the good absorption (positive) and the poor-absorption (negative) classes. In their study, models based on 2D descriptors were found to yield AUCs > 0.84 for both training and validation sets.

### 1.10 Human Liver Microsomal Clearance

Microsomal lability assays are widely employed in drug discovery to identify compounds that will have desirable pharmacokinetics in humans. Here, models have been established to predict the microsomal lability in different species: rat, mouse and humans. The regression models proposed here are based on public data from ChEMBL (in vitro) and have been studied by Wenzel et al. [2019]. The authors made use of atom pairs and pharmacophoric donor-acceptor pairs as descriptors and trained deep learning models to achieve  $R^2$  of 0.59, 0.71 and 0.49 for the human, rat and mouse datasets respectively.

# 1.11 Human Liver Microsomal Stability

The human liver microsomal (HLM) stability assay is commonly used for assessing clearance of chemicals by the human liver. The dataset collated by Liu et al. [2015] contains compound stability data as measured by  $T_{1/2}$ , against phase I metabolism in human liver microsomes. Here, a threshold value of 30 min was used to categorize a compound as stable ( $T_{\frac{1}{2}} > 30$  min) or unstable ( $T_{\frac{1}{2}} \le 30$  min) in an HLM (in vitro) assay.

# 1.12 Hepatocellular organic anion transporting polypeptide Inhibition

Hepatocellular organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1) are important for liver function and the regulation of the drug elimination process. OATP1B inhibition or induction may be the underlying mechanism of clinically relevant drug-drug interactions and have been linked with hyperbilirubinemia. Bioactivity measurements ( $K_m$  and  $IC_{50}$  data) were compiled from multiple databases (ChEMBL, the UCSF-FDA TransPortal database, DrugBank, Metrabase and IUPHAR) and other literature sourcesTürková et al. [2018]. A compound was defined as active if the bioactivity was <10  $\mu$ M.

### 1.13 Drug affinity to Human Serum Albumin

Human serum albumin (HSA) is the most abundant protein in human blood plasma. Binding of drugs to HSA strongly influences their pharmacokinetic behaviour and is associated with drug-drug interactions and drug safety. The model predicts  $\log K_{HSA}$ : the binding constant obtained from the retention time on an immobilized HSA column using affinity chromatographySerra et al. [2019], Ciura et al. [2020].

### 1.14 Drug Interactions With the Human Bile Salt Export Pump

Drug-induced liver injury is frequently associated with inhibition of bile salt transporters such as the bile salt export pump (BSEP) which is mainly expressed in the liver. In the dataset taken from McLoughlin et al. [2021] compounds were categorized as BSEP inhibitors if their IC<sub>50</sub>s (in vitro assays) were  $\leq 10 \ \mu \text{M}$  and as non-inhibitors if IC<sub>50</sub>  $> 50 \ \mu \text{MMcLoughlin}$  et al. [2021].

### 1.15 Drug transport across the human placenta barrier

The human placental barrier permeability of drugs is essential for drug safety during pregnancy. The regression model predicts placental transfer expressed as clearance index values that are measured using *ex vivo* human placental perfusion methodGiaginis et al. [2009].

### 1.16 in Vivo Intrinsic Clearance

Hepatic metabolism is a key determinant for drug clearance. Predicting the intrinsic metabolic clearance  $CL_{int}$  would go a long way in assessing drug safety and pharmacodynamics. The  $CL_{int}$  data were negative-log transformed prior to modeling. Data Analysis was conducted on the  $CL_{int}$  values obtained from an extensive pharmacokinetic data set compiled by Varma et al. [2010]. To distinguish drug metabolic stability, i.e., those with  $CL_{int} < 1500$  mL/min were considered stableHsiao et al. [2013].

# $1.17 \log D$

The lipophilicity at pH = 7.4 (the physiological pH of blood serum), is a major determinant of various ADMET parameters of drug candidates. It is said to be a better descriptor of the lipophilicity of a molecule. Relevant data was taken from Fu et al. [2019], Sushko et al. [2011] whose XGBoost model yielded  $R^2$  of 0.90.

# 1.18 logS

The aqueous solubility of compounds has a key role in various domains. The database AqSolDB-Sorkun et al. [2019] contains experimental solubility values that were all standardized to the LogS units. Compounds can be classified according to solubility values (LogS):

1. Compounds with 0 and higher solubility values are highly soluble

- 2. Those in the range of 0 to -2 are soluble
- 3. Those in the range of -2 to -4 are slightly soluble
- 4. Insoluble if less than -4

# 1.19 CACO-2 Permeability/Madin-Darby canine kidney cell line permeability

The absorption of oral drugs occurs in the small intestine where the drug has to traverse the semipermeable intestinal columnar epithelial cells. In vitro permeability assays mimic the oral absorption process. Examples include Caco-2 (human colon adenocarcinoma), MDCK (Madin-Darby canine kidney). For MDCK, the model predicts MDCK permeability coefficientsSushko et al. [2011] (apparent permeability,  $P_{app}$ ). A second regression model proposed here is based on public data containing the apparent permeability coefficient  $(P_{app})$  from ChEMBL  $(in\ vitro)$  and has been previously studied by Wenzel et al. [2019]. Prior to modelling, the  $P_{app}$  values were log transformed.

### 1.20 Metabolic Intrinsic Clearance

A key consideration at the screening stages of drug discovery is in vitro metabolic stability, often measured in human liver microsomes. The intrinsic clearance ( $CL_{int}$ ) measurements for over 5000 compounds were obtained from ChEMBL. Only those data that were measured at 37 degrees and pH 7.4, in the absence of inhibitors, and in the presence of reduced NADPH as a cofactor were retainedEsaki et al. [2018]. Classification models were created for  $CL_{int}$  based on:

- 1. stable if  $CL_{int} < 20 \text{ mL/min/mg}$
- 2. moderate if  $20 < CL_{int} < 300 \text{ mL/min/mg}$
- 3. unstable if  $CL_{int} \ge 300 \text{ mL/min/mg}$

# 1.21 Multidrug and Toxin Extrusion Transporter 1 Inhibition

The human multidrug and toxin extrusion (MATE) transporter 1 contributes to the tissue distribution and excretion of many drugs. Inhibition of MATE1 can impact potential drug-drug interactions and cause alterations in drug exposure and accumulation in various tissues. Data for MATE1 inhibitors was compiled based on high-throughput screen using a fluorescent probe ASP+. Compounds that exhibited 50% or more inhibition of ASP+ uptake at 20  $\mu$ M were considered as strong inhibitors (hits) of MATE1Wittwer et al. [2013].

# 1.22 Organic Cation Transporter 2 inhibition

The kidney represents an important site for drug-drug interactions. Most registered drugs are eliminated via the kidneys. Hepatic metabolism is usually followed by renal excretion of the formed

metabolites. Consequently, inhibition of renal drug transport can result in significantly altered systemic levels of the parent drug molecule and of potentially active metabolites, with ultimate effects on the drug's pharmacological and toxicological profile. Here, the data was taken from Kido et al. [2011], who screened a library of 910 prescription drugs and drug-like compounds using a high-throughput assay of renal organic cation transport. Compounds that decreased ASP+ transport or more at 20  $\mu$ M were considered as OCT2 inhibitors.

# 1.23 Substrates/inhibitors of P-glycoprotein

P-glycoprotein (P-gp) has significant impact on the multidrug resistance and pharmacokinetics of drugsChen et al. [2012]. Compounds actively transported by P-gp are classified as substrates, whereas those that compromise the transporting function of P-gp are classified as inhibitors. Data was sourced from Sushko et al. [2011] and the compounds were divided into substrates ("P") and non-substrates ("N") based on the work byEsposito et al. [2020]: compounds with an efflux ratio  $ER \geq 5$  were classified as substrates while compounds with an efflux ratio  $ER \leq 1$  were classified as non-substrates. To distinguish between P-gp substrate or inhibitor, a second dataset was again compiled from Sushko et al. [2011] and Wang et al. [2019]. Here, the collected data refer to the inhibition of transport of an ABCB1 probe substrate in a cell line expressing PgpBroccatelli et al. [2011], Rautio et al. [2006]. Compounds with IC50 value higher than 100  $\mu$ M are considered noninhibitors.

# 1.24 Prediction of $pK_a$

The acid-base dissociation constant,  $pK_a$ , is a key parameter to define the ionization state of a compound and directly affects its biopharmaceutical profile.  $pK_a$  values were taken from Mansouri et al. [2019] and Sushko et al. [2011].

# 1.25 Human plasma protein binding

Plasma protein binding (PPB) is a key player of drug ADME. Drugs with high PPB, especially those with a narrow therapeutic window, tend to be associated with safety issues and adverse effects. In order to determine the extent of PPB of new drug candidates, the data Sushko et al. [2011], Yuan et al. [2020] was divided into three sets of:

- 1. high binding level (PPB>0.8)
- 2. moderate binding level (PPB = 0.4-0.8)
- 3. low binding level (PPB<0.4)

### 1.26 Human Renal Clearance

Renal clearance (CLr) plays an important role in the elimination of drugs. The dataset includes 636 compounds where the CLr was determined as the ratio of the unchanged amount excreted in urine to the area under the plasma concentration-time curve following intravenous or oral administration

of the compounds. While the paper by Chen et al. [2020], focuses more on a classification model, we have retained the regression approach.

### 1.27 Skin Sensitization

For regulatory acceptance of industrial chemicals, the potential for substances to cause skin sensitization needs to assessed. The skin permeability of an active ingredient for instance, can be impacted by its ionization in a dose solution. Models have been developed with *in vitro*, *in chemico*, mice and human *in vivo* data, to predict human effects. Here, different models were developed for

- 1. the direct peptide reactivity assay (DPRA)
- 2. KeratinoSens
- 3. human cell line activation (h-CLAT)
- 4. mouse local lymph node assay (LLNA)
- 5. human repeat insult patch test (HRIPT)

Borba et al. [2020] developed a consensus naive Bayes model that predicts human effects using in vitro, in chemico, and mice and human in vivo data. Other skin related parameters include experimentally derived permeability data (obtained through in vitro diffusion studies of excised human skin) on diverse compounds taken from Lindh et al. [2017] and Baba et al. [2017]. The model predicts the rate of transdermal delivery i.e. the permeation rate (log  $K_p$ ) of chemical compounds through human skin.

# 1.28 Cancer potency/Carcinogenicity

To assess the cancer potency of genotoxic impurities in drug substances, Bercu et al. [2010] compiled  $TD_{50}$  data of rats and mice. The  $TD_{50}$  values in mg/kg/day were converted to logarithmic form  $(pTD_{50})$ . Here,  $pTD_{50} > 4.53$  are considered to be potent. A second dataset taken from Zhang et al. [2017], contains compounds that are divided into carcinogens and non-carcinogens. This data was originally extracted from the Carcinogenic Potency Database(https://www.nlm.nih.gov/databases/download/cpdb.html) and includes chronic, long-term animal cancer tests (both positive and negative for carcinogenicity).

# 1.29 Steady state volume distribution

The steady state volume of distribution  $(VD_{ss})$ , is a pharmacokinetic parameter representing an individual drug's propensity to either remain in the plasma or redistribute to other tissue compartments. 1. High  $VD_{ss}$ : More distribution to other tissue 2. Low  $VD_{ss}$ : Less distribution to other tissues. Data for human  $VD_{ss}$  (from IV administration) was obtained from Sushko et al. [2011], Lombardo and Jing [2016], Simeon et al. [2019].

### 1.30 $LD_{50}$ rat acute oral toxicity

The median lethal dose for rodent oral acute toxicity  $(LD_{50})$  is required to categorize chemicals in terms of the potential hazard posed to human health after acute exposure. The data containing a large list of rat acute oral LD50 measurements on  $\sim 12000$  chemicals is sourced from the U.S. Environmental Protection Agency (EPA) National Center for Computational Toxicology (NCCT)Sushko et al. [2011], Kleinstreuer et al. [2018], Gadaleta et al. [2019]. Here, we use the EPA hazard classification EPA's 4-category hazard classification:

- 1. Category I  $(LD_{50} \leq 50 \text{ mg/kg})$  is the highest toxicity category
- 2. Category II (moderately toxic) includes chemicals with  $50 < LD_{50} \le 500 \text{ mg/kg}$
- 3. Category III (slightly toxic) includes chemicals with  $500 < LD_{50} \le 5000 \text{ mg/kg}$
- 4. Safe chemicals  $LD_{50} > 5000 \text{ mg/kg}$  are included in Category IV

### 1.31 AMES mutagenecity

Mutagenecity is a prime indicator of toxicity that can cause mutations in the DNA of the test organism. The Ames test (Salmonella/Microsome test) has been employed as an indicator of the carcinogenic potential in mammals. Mutagenecity data for over 9000 compounds were collated by combining data from Sushko et al. [2011] and Xu et al. [2012]. The classification model predicts whether the given compound is mutagenic.

## 1.32 Cytotoxicity

Cytotoxicity is the degree to which a compound causes damage to cells. Chemical-induced cytotoxicityLee et al. [2019], Sun et al. [2020] was experimentally determined using the CellTiter-Glo (CTG) technology on four different cell lines:

- 1. Human embryonic kidney 293 cell (HEK 293)
- 2. NIH/3T3 (3-day transfer, inoculum 3  $\times$  10<sup>5</sup> cells)
- 3. CRL-7250
- 4. HaCat (Cultured Human Keratinocyte cells)

Active and inactive compounds were identified according to their curve classes and measured  $AC_{50}$  values. Additional data of *in vitro* toxicity against HepG2 cells was taken from the ChEMBL bioactivity database?. Here, compounds with  $IC_{50} < 10\mu\text{M}$  in the assay were considered as cytotoxic (positive class) and non-toxic compounds as negatives.

## 1.33 Drug induced Liver injury (DILI)

Early stage discovery of DILI is much desired and can be divided into 3 main classes:. hepatocellular, mixed, and cholestatic liver injury. Experimental data is largely based on *in vitro* models ranging from simple plate-based methods such as the B-CLEAR transporter assay, or microscope imaging-based assays to those using multiple parameters to characterise the various facets of DILI. The classification model focuses on distinguishing between DILI-positive (drugs with adverse hepatic effects) and DILI-negative compounds. DILI has several manifestations:

- **Drug-induced Choleostasis** Cholestatic liver injury i.e. cholestasis, is the disruption of the bile flow. In the study by Kotsampasakou and Ecker [2017], any compound that was negative for DILI was also considered negative for choleostasis (since choleastasis is a possible manifestation for DILI).
- Myopathy Drug-induced toxic myopathy (rare adverse drug reaction) can cause skeletal muscle damage and pain. The Hazardous Substances Data Bank and DrugBank were used as primary sources for identifying compounds known to demonstrate adverse effect of toxic myopathyHu and Yan [2011]. Another related muscle related issue is that of drug-induced rhabdomyolysis which causes death of muscle fibers and release of their contents into the bloodstream. Approved drugs in DrugBank were used as negative data, while data on rhabdomyolysis-inducing drugs were collated from multiple studies (see Cui et al. [2019]).
- Hemolytic Toxicity This form of toxicity can cause lysis of the erythrocyte membrane and subsequent release of hemoglobin into blood plasma, leading to multiple acute and chronic adverse effects. Two models have been proposed (i) Prediction of hemolytic toxicity of small molecules with experimental values of  $HD_{50}$ Zheng et al. [2020] (dose causing 50% of maximum hemolysis experimentally measured on erythrocytes in hemolytic assays). log  $HD_{50}$  was treated as a response variable. (ii) hemolytic toxicity of saponinsZheng et al. [2019] (compounds bearing a hydrophobic steroid/triterpenoid moiety and hydrophilic carbohydrate branches). The compounds however can have deleterious toxicity that impedes their further applications in medicine. Hemolytic saponins were identified as those with  $HD_{50} < 200 \ \mu M$ .
- Myelotoxicity This form of toxicity usually leads to decrease in the production of platelets, red cells, and white cells. In the study by Zhang et al. [2015], non-myelotoxic agents were defined as those that were (1) widely used in the clinic, (2) had no toxicity warnings from the U.S. Food and Drug Administration, and (3) had no adverse effect on hematopoiesis.
- Mitochondrial Toxicity Mitochondria play a central role in maintaining cellular homeostasis. A side effect of certain antiretroviral drugs causes the mitochondria of a body's cells to become damaged or decline significantly in number. Hemmerich et al. [2020] compiled data from the ChEMBL release 22 merged with a confirmatory assay from the Tox21 dataset for mitochondrial membrane potential disruption (AID=720637). Balanced accuracies of 0.89 were obtained with a deep learning model.
- **Drug-induced Ototoxicity** Some drugs currently in clinical use can cause cellular degeneration of cochlear and/or vestibular system, leading to temporary or permanent hearing loss or other

ear problems. The naive Bayes model proposed by Zhang et al. [2020] was based on the 7 molecular descriptors and ECFP fingerprints produced 90.2% overall prediction accuracy.

- Respiratory Toxicity Drug-induced respiratory toxicity can cause significant toxicological issues. Clinical symptoms mainly include wheezing, bronchoconstriction, asthmatic attacks and pulmonary eosinophilia. Zhang et al. [2018] compiled the dataset by merging in vitrodata from Pneumotox, (http://www.pneumotox.com) and Dik et al. [2015, 2014] (using bronchial epithelial cell line 16HBE140-). the chemicals are classified as either respiratory sensitizers or non-sensitizers (respiratory irritants + non-sensitizers).
- **Drug Phototoxicity** Photosensitization is a significant safety concern for drug development in certain chronic disease indications where patients are exposed to sunlight. Drug photosensitization (photoirritation/photoallergy) can result in side effects such as rashes or dermatitis. Here we focus on two models: 1. *in vitro* phototoxicity (3T3 NRU phototoxicity reports) 2. human photosensitization (clinical photosensitization alerts) Schmidt et al. [2019].
- Urinary tract toxicity Nephrotoxicity is the poisonous effect of some substances, both toxic chemicals and medications, on kidney function. According to the regulations of the U.S. Environmental Protection Agency, compounds were categorized into two classes: 1. Compounds with LD50 ≤ 500 mg/kg were defined as urinary tract toxicants 2. Compounds with LD50 > 500 mg/kg were set as urinary tract non-toxicantsLei et al. [2017]
- **Phospholipidosis** The drug-induced accumulation of phospholipids in lysosomes of various tissues is predominantly observed after prolonged exposure. Fusani et al. [2017] provide a dataset combining compounds screened *in vitro* with additional data set described in Orogo et al. [2012].
- **Hepatic Steatosis** Fatty liver also known as hepatic steatosis, occurs when fat builds up in the liver. It is a rare form of DILI. Data contains 1041 compounds for which *in vivo* rodent studies with repeated oral exposure has been carried outJain et al. [2020].

# 1.34 hERG-induced cardiotoxicity/hERG liability

Blockade of the human ether-á-go-go-related gene (hERG) channel by small molecules leads to fatal cardiotoxicity. For the assessment of hERG liabilities, a little over 9000 compounds was compiled by integrating the hERG bioactivity data from the ChEMBL database and additional data obtained by high-throughput thallium flux assay (that detects inhibition of the hERG channel by measuring the flow of thallium)Siramshetty et al. [2020]. A second dataset was used for the prediction of hERG blockersCai et al. [2019] wherein experimental hERG blockage bioactivities were collated from (i) patch-clamp measurements from ChEMBL bioactivity database; (ii) radioligand binding measurements on mammalian and nonmammalian cell lines; (iii) hERG K+ channel binding affinity, and (iv) literature-derived data. The compounds whose  $IC_{50} \leq 10\mu$ M were regarded as hERG blockers.



Figure S1: Plot shows the prediction intervals and the original response values. We see that for most of the models, a majority of the samples lie within the 95% prediction interval. For ease of comparison, the data has been center such that the mean of the prediction interval is at 0.0.



Figure S2: For the test sets corresponding to the different endpoints, each prediction was accompanied by a confidence and credibility. Applying different thresholds, the top ranked compounds are assessed in terms of the error rate (figure on the left). Correspondingly on the right, we see the reduction in the number of compounds that are excluded from further testing. As the cutoff is lowered the errors increase.

Table S1: Performance of classification models in training and validation sets.

| Endpoint          | FP               |                |                |                |                | libratio       |                |                |                |                |                |                |                | idation        |                |                |                |
|-------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                   |                  | κ              | BACC           | ACC            | Se             | Sp             | Precision      | Recall         | AUC            | κ              | BACC           | ACC            | Se             | Sp             | Precision      | Recall         | AUC            |
|                   | 2PPHAR<br>3PPHAR | 0.11<br>0.15   | $0.55 \\ 0.56$ | 0.66<br>0.68   | 0.87<br>0.91   | $0.22 \\ 0.22$ | 0.69<br>0.70   | 0.87<br>0.91   | 0.57<br>0.63   | 0.04           | 0.52<br>0.54   | 0.63<br>0.67   | $0.85 \\ 0.93$ | 0.18<br>0.15   | 0.68<br>0.69   | 0.85<br>0.93   | $0.52 \\ 0.62$ |
|                   | AP2D             | 0.13           | 0.69           | 0.03           | 0.84           | 0.55           | 0.79           | 0.84           | 0.76           | 0.44           | 0.71           | 0.77           | 0.88           | 0.13           | 0.79           | 0.88           | 0.80           |
|                   | ASP              | 0.48           | 0.74           | 0.76           | 0.80           | 0.68           | 0.84           | 0.80           | 0.82           | 0.53           | 0.76           | 0.80           | 0.88           | 0.64           | 0.83           | 0.88           | 0.84           |
|                   | AT2D             | 0.48           | 0.74           | 0.76           | 0.80           | 0.69           | 0.84           | 0.80           | 0.80           | 0.47           | 0.74           | 0.76           | 0.81           | 0.66           | 0.83           | 0.81           | 0.81           |
|                   | DFS              | 0.44           | 0.73           | 0.75           | 0.80           | 0.65           | 0.82           | 0.80           | 0.80           | 0.52           | 0.76           | 0.79           | 0.84           | 0.68           | 0.84           | 0.84           | 0.82           |
|                   | ECFP0            | 0.36           | 0.68           | 0.71           | 0.75           | 0.62           | 0.80           | 0.75           | 0.74           | 0.39           | 0.70           | 0.72           | 0.77           | 0.64           | 0.81           | 0.77           | 0.76           |
|                   | ECFP2            | 0.48           | 0.73           | 0.77           | 0.85           | 0.61           | 0.82           | 0.85           | 0.80           | 0.40           | 0.69           | 0.75           | 0.87           | 0.50           | 0.78           | 0.87           | 0.80           |
|                   | ECFP4            | 0.44           | 0.71           | 0.76           | 0.87           | 0.56           | 0.80           | 0.87           | 0.80           | 0.47           | 0.72           | 0.78           | 0.90           | 0.55           | 0.80           | 0.90           | 0.80           |
| Anticommensal     | ECFP6            | 0.45           | 0.71           | 0.77           | 0.88           | 0.54           | 0.80           | 0.88           | 0.79           | 0.45           | 0.70           | 0.78           | 0.92           | 0.49           | 0.79           | 0.92           | 0.79           |
| Effect            | ESTATE<br>FCFP0  | $0.38 \\ 0.11$ | $0.70 \\ 0.55$ | $0.71 \\ 0.63$ | $0.72 \\ 0.79$ | $0.68 \\ 0.31$ | $0.82 \\ 0.70$ | $0.72 \\ 0.79$ | $0.76 \\ 0.58$ | $0.33 \\ 0.09$ | $0.68 \\ 0.54$ | $0.69 \\ 0.65$ | $0.71 \\ 0.87$ | $0.64 \\ 0.21$ | $0.80 \\ 0.69$ | $0.71 \\ 0.87$ | $0.76 \\ 0.59$ |
|                   | FCFP2            | 0.11           | 0.72           | 0.76           | 0.13           | 0.62           | 0.82           | 0.13           | 0.80           | 0.40           | 0.69           | 0.75           | 0.85           | 0.54           | 0.09           | 0.85           | 0.76           |
|                   | FCFP4            | 0.47           | 0.73           | 0.77           | 0.85           | 0.60           | 0.81           | 0.85           | 0.80           | 0.42           | 0.70           | 0.76           | 0.88           | 0.51           | 0.79           | 0.88           | 0.80           |
|                   | FCFP6            | 0.46           | 0.72           | 0.78           | 0.89           | 0.55           | 0.80           | 0.89           | 0.79           | 0.45           | 0.72           | 0.77           | 0.87           | 0.56           | 0.80           | 0.87           | 0.80           |
|                   | KR               | 0.43           | 0.70           | 0.76           | 0.86           | 0.54           | 0.79           | 0.86           | 0.78           | 0.38           | 0.68           | 0.74           | 0.86           | 0.49           | 0.78           | 0.86           | 0.78           |
|                   | LSTAR            | 0.46           | 0.72           | 0.77           | 0.86           | 0.58           | 0.81           | 0.86           | 0.79           | 0.45           | 0.71           | 0.78           | 0.91           | 0.50           | 0.79           | 0.91           | 0.80           |
|                   | MACCS            | 0.45           | 0.72           | 0.76           | 0.83           | 0.62           | 0.81           | 0.83           | 0.79           | 0.44           | 0.72           | 0.76           | 0.85           | 0.58           | 0.80           | 0.85           | 0.81           |
|                   | PUBCHEM          | 0.53           | 0.76           | 0.79           | 0.86           | 0.66           | 0.84           | 0.86           | 0.82           | 0.50           | 0.74           | 0.78           | 0.86           | 0.62           | 0.82           | 0.86           | 0.81           |
|                   | RAD2D            | 0.48           | 0.73           | 0.78           | 0.88           | 0.58           | 0.81           | 0.88           | 0.81           | 0.49           | 0.73           | 0.79           | 0.89           | 0.58           | 0.81           | 0.89           | 0.83           |
|                   | 2PPHAR           | 0.18           | 0.61           | 0.59           | 0.66           | 0.55           | 0.39           | 0.66           | 0.64           | 0.06           | 0.54           | 0.59           | 0.31           | 0.77           | 0.21           | 0.31           | 0.63           |
|                   | 3PPHAR           | 0.33           | 0.65           | 0.70           | 0.41           | 0.89           | 0.71           | 0.41           | 0.80           | 0.33           | 0.65           | 0.70           | 0.43           | 0.87           | 0.69           | 0.43           | 0.79           |
|                   | $_{ m AP2D}$ ASP | $0.62 \\ 0.77$ | $0.81 \\ 0.88$ | $0.82 \\ 0.89$ | $0.80 \\ 0.84$ | $0.83 \\ 0.93$ | $0.76 \\ 0.88$ | $0.80 \\ 0.84$ | $0.89 \\ 0.94$ | $0.65 \\ 0.77$ | $0.83 \\ 0.88$ | $0.83 \\ 0.89$ | $0.81 \\ 0.83$ | $0.85 \\ 0.93$ | $0.77 \\ 0.89$ | $0.81 \\ 0.83$ | $0.90 \\ 0.95$ |
|                   | AT2D             | 0.76           | 0.88           | 0.88           | 0.86           | 0.93           | 0.85           | 0.86           | 0.94           | 0.77           | 0.88           | 0.89           | 0.85           | $0.93 \\ 0.92$ | 0.87           | 0.85           | 0.93           |
|                   | DFS              | 0.76           | 0.88           | 0.89           | 0.84           | 0.92           | 0.87           | 0.84           | 0.93           | 0.79           | 0.89           | 0.90           | 0.84           | 0.93           | 0.89           | 0.84           | 0.95           |
|                   | ECFP0            | 0.59           | 0.80           | 0.80           | 0.81           | 0.79           | 0.72           | 0.81           | 0.88           | 0.58           | 0.80           | 0.80           | 0.80           | 0.79           | 0.71           | 0.80           | 0.88           |
|                   | ECFP2            | 0.75           | 0.87           | 0.88           | 0.85           | 0.90           | 0.85           | 0.85           | 0.94           | 0.73           | 0.86           | 0.87           | 0.81           | 0.91           | 0.86           | 0.81           | 0.95           |
|                   | ECFP4            | 0.76           | 0.88           | 0.89           | 0.84           | 0.92           | 0.87           | 0.84           | 0.94           | 0.74           | 0.86           | 0.88           | 0.81           | 0.92           | 0.87           | 0.81           | 0.93           |
| BCRP Inhibition   | ECFP6            | 0.77           | 0.88           | 0.89           | 0.82           | 0.94           | 0.89           | 0.82           | 0.94           | 0.78           | 0.88           | 0.90           | 0.82           | 0.95           | 0.91           | 0.82           | 0.95           |
| DORF IIIIIDITIOII | ESTATE           | 0.60           | 0.81           | 0.80           | 0.81           | 0.80           | 0.72           | 0.81           | 0.88           | 0.59           | 0.80           | 0.80           | 0.82           | 0.78           | 0.71           | 0.82           | 0.88           |
|                   | FCFP0            | 0.16           | 0.58           | 0.62           | 0.38           | 0.77           | 0.52           | 0.38           | 0.62           | 0.12           | 0.56           | 0.60           | 0.36           | 0.76           | 0.49           | 0.36           | 0.58           |
|                   | FCFP2            | 0.70           | 0.85           | 0.86           | 0.83           | 0.88           | 0.81           | 0.83           | 0.92           | 0.71           | 0.85           | 0.86           | 0.80           | 0.90           | 0.84           | 0.80           | 0.94           |
|                   | FCFP4<br>FCFP6   | 0.78           | 0.89           | 0.89           | 0.85           | 0.92           | 0.87           | 0.85           | 0.95           | 0.81           | $0.90 \\ 0.88$ | 0.91           | 0.88           | $0.93 \\ 0.94$ | 0.89           | 0.88           | 0.96           |
|                   | KR               | $0.78 \\ 0.72$ | $0.88 \\ 0.86$ | $0.89 \\ 0.87$ | $0.84 \\ 0.81$ | $0.93 \\ 0.91$ | $0.88 \\ 0.85$ | $0.84 \\ 0.81$ | $0.94 \\ 0.93$ | $0.78 \\ 0.77$ | 0.88           | $0.90 \\ 0.89$ | $0.83 \\ 0.84$ | $0.94 \\ 0.92$ | $0.90 \\ 0.87$ | $0.83 \\ 0.84$ | $0.94 \\ 0.94$ |
|                   | LSTAR            | 0.74           | 0.86           | 0.88           | 0.81           | 0.91           | 0.89           | 0.79           | 0.93           | 0.76           | 0.87           | 0.89           | 0.84           | 0.94           | 0.90           | 0.84           | 0.94           |
|                   | MACCS            | 0.69           | 0.85           | 0.85           | 0.83           | 0.86           | 0.80           | 0.83           | 0.93           | 0.71           | 0.86           | 0.86           | 0.84           | 0.88           | 0.82           | 0.84           | 0.94           |
|                   | PUBCHEM          | 0.75           | 0.87           | 0.88           | 0.85           | 0.90           | 0.85           | 0.85           | 0.94           | 0.76           | 0.88           | 0.89           | 0.83           | 0.92           | 0.87           | 0.83           | 0.94           |
|                   | RAD2D            | 0.76           | 0.88           | 0.89           | 0.83           | 0.92           | 0.87           | 0.83           | 0.94           | 0.78           | 0.89           | 0.90           | 0.86           | 0.93           | 0.88           | 0.86           | 0.95           |
|                   | 2PPHAR           | 0.01           | 0.50           | 0.53           | 0.93           | 0.08           | 0.53           | 0.93           | 0.50           | -0.03          | 0.48           | 0.51           | 0.93           | 0.04           | 0.52           | 0.93           | 0.49           |
|                   | 3PPHAR           | 0.14           | 0.57           | 0.58           | 0.85           | 0.28           | 0.57           | 0.85           | 0.63           | 0.17           | 0.58           | 0.60           | 0.86           | 0.30           | 0.58           | 0.86           | 0.67           |
|                   | AP2D             | 0.35           | 0.68           | 0.68           | 0.70           | 0.65           | 0.69           | 0.70           | 0.73           | 0.34           | 0.67           | 0.67           | 0.76           | 0.58           | 0.67           | 0.76           | 0.75           |
|                   | ASP              | 0.37           | 0.69           | 0.69           | 0.69           | 0.68           | 0.71           | 0.69           | 0.76           | 0.43           | 0.71           | 0.72           | 0.73           | 0.69           | 0.73           | 0.73           | 0.79           |
|                   | AT2D             | 0.34           | 0.67           | 0.67           | 0.61           | 0.72           | 0.72           | 0.61           | 0.75           | 0.33           | 0.67           | 0.67           | 0.63           | 0.71           | 0.71           | 0.63           | 0.75           |
|                   | $_{ m DFS}$      | $0.36 \\ 0.30$ | $0.68 \\ 0.65$ | $0.68 \\ 0.65$ | $0.71 \\ 0.63$ | $0.66 \\ 0.67$ | $0.70 \\ 0.68$ | $0.71 \\ 0.63$ | $0.75 \\ 0.71$ | $0.38 \\ 0.35$ | $0.68 \\ 0.67$ | $0.69 \\ 0.67$ | $0.83 \\ 0.64$ | $0.54 \\ 0.71$ | $0.67 \\ 0.71$ | $0.83 \\ 0.64$ | $0.76 \\ 0.74$ |
|                   | ECFP2            | 0.40           | 0.70           | 0.70           | 0.03           | 0.62           | 0.70           | 0.77           | 0.76           | 0.43           | 0.71           | 0.72           | 0.80           | 0.63           | 0.71           | 0.80           | 0.74           |
|                   | ECFP4            | 0.40           | 0.70           | 0.70           | 0.72           | 0.68           | 0.72           | 0.72           | 0.77           | 0.38           | 0.69           | 0.69           | 0.73           | 0.66           | 0.70           | 0.73           | 0.76           |
| Oral              | ECFP6            | 0.39           | 0.70           | 0.70           | 0.76           | 0.63           | 0.70           | 0.76           | 0.76           | 0.37           | 0.68           | 0.69           | 0.78           | 0.58           | 0.68           | 0.78           | 0.76           |
| Bioavailability   | ESTATE           | 0.29           | 0.64           | 0.64           | 0.65           | 0.63           | 0.67           | 0.65           | 0.70           | 0.26           | 0.63           | 0.63           | 0.65           | 0.61           | 0.65           | 0.65           | 0.69           |
| v                 | FCFP0            | 0.11           | 0.55           | 0.57           | 0.79           | 0.32           | 0.57           | 0.79           | 0.62           | 0.11           | 0.55           | 0.57           | 0.79           | 0.32           | 0.57           | 0.79           | 0.63           |
|                   | FCFP2            | 0.39           | 0.69           | 0.70           | 0.74           | 0.65           | 0.70           | 0.74           | 0.76           | 0.37           | 0.68           | 0.69           | 0.79           | 0.58           | 0.68           | 0.79           | 0.76           |
|                   | FCFP4            | 0.39           | 0.69           | 0.70           | 0.77           | 0.62           | 0.70           | 0.77           | 0.76           | 0.37           | 0.68           | 0.69           | 0.79           | 0.57           | 0.68           | 0.79           | 0.76           |
|                   | FCFP6            | 0.41           | 0.70           | 0.70           | 0.75           | 0.65           | 0.71           | 0.75           | 0.77           | 0.36           | 0.68           | 0.68           | 0.74           | 0.61           | 0.68           | 0.74           | 0.75           |
|                   | KR               | 0.39           | 0.69           | 0.70           | 0.78           | 0.61           | 0.69           | 0.78           | 0.76           | 0.43           | 0.71           | 0.72           | 0.79           | 0.64           | 0.71           | 0.79           | 0.79           |
|                   | LSTAR            | 0.39           | 0.69           | 0.70           | 0.74           | 0.64           | 0.70           | 0.74           | 0.76           | 0.47           | 0.73           | 0.74           | 0.80           | 0.67           | 0.73           | 0.80           | 0.78           |
|                   | MACCS<br>PUBCHEM | $0.40 \\ 0.42$ | $0.70 \\ 0.71$ | $0.70 \\ 0.71$ | $0.72 \\ 0.76$ | $0.67 \\ 0.67$ | $0.71 \\ 0.72$ | $0.72 \\ 0.76$ | $0.77 \\ 0.77$ | $0.38 \\ 0.42$ | $0.69 \\ 0.71$ | $0.69 \\ 0.71$ | $0.74 \\ 0.78$ | $0.64 \\ 0.64$ | $0.70 \\ 0.71$ | $0.74 \\ 0.78$ | $0.76 \\ 0.78$ |
|                   | RAD2D            | 0.42           | 0.71           | 0.71           | 0.76           | 0.59           | 0.72           | 0.76           | 0.77           | 0.42           | 0.71           | 0.71           | 0.78           | 0.64           | 0.71           | 0.78           | 0.78           |
|                   | 2PPHAR           | 0.40           | 0.79           | 0.70           | 0.85           | 0.72           | 0.81           | 0.85           | 0.17           | 0.48           | 0.74           | 0.75           | 0.73           | 0.65           | 0.77           | 0.73           | 0.77           |
|                   | 3PPHAR           | 0.55           | 0.78           | 0.30           | 0.83           | 0.72           | 0.81           | 0.83           | 0.86           | 0.45           | 0.77           | 0.78           | 0.85           | 0.68           | 0.79           | 0.85           | 0.86           |
|                   | AP2D             | 0.46           | 0.73           | 0.75           | 0.86           | 0.59           | 0.75           | 0.86           | 0.82           | 0.46           | 0.72           | 0.75           | 0.85           | 0.59           | 0.75           | 0.85           | 0.82           |
|                   | ASP              | 0.56           | 0.78           | 0.79           | 0.88           | 0.67           | 0.79           | 0.88           | 0.87           | 0.57           | 0.77           | 0.80           | 0.90           | 0.65           | 0.78           | 0.90           | 0.90           |
|                   | AT2D             | 0.51           | 0.74           | 0.77           | 0.88           | 0.61           | 0.76           | 0.88           | 0.86           | 0.46           | 0.72           | 0.75           | 0.87           | 0.58           | 0.75           | 0.87           | 0.86           |
|                   | DFS              | 0.54           | 0.76           | 0.79           | 0.89           | 0.63           | 0.78           | 0.89           | 0.86           | 0.57           | 0.78           | 0.80           | 0.89           | 0.67           | 0.79           | 0.89           | 0.86           |
|                   | ECFP0            | 0.47           | 0.73           | 0.74           | 0.80           | 0.66           | 0.77           | 0.80           | 0.82           | 0.37           | 0.69           | 0.70           | 0.74           | 0.63           | 0.74           | 0.74           | 0.78           |

Table S1 - Continued from previous page

|            |                |                |                |                | Ca             | Table S1       |                | ued from       | previous p     | age            |                |                | Val            | idation        |                |                |                |
|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Endpoint   | $\mathbf{FP}$  | κ              | BACC           | ACC            | Se             |                | AUC            | κ              | BACC           | ACC            | Se             | Sp             | AUC            | Idation        |                |                |                |
|            | ECFP2          | 0.58           | 0.79           | 0.80           | 0.86           | Sp<br>0.72     | 0.82           | 0.86           | 0.87           | 0.53           | 0.77           | 0.77           | 0.81           | 0.72           | 0.80           | 0.81           | 0.87           |
|            | ECFP4          | 0.57           | 0.78           | 0.80           | 0.88           | 0.68           | 0.80           | 0.88           | 0.88           | 0.58           | 0.78           | 0.80           | 0.88           | 0.69           | 0.80           | 0.88           | 0.90           |
|            | ECFP6          | 0.57           | 0.78           | 0.80           | 0.89           | 0.66           | 0.79           | 0.89           | 0.89           | 0.61           | 0.80           | 0.81           | 0.91           | 0.68           | 0.80           | 0.91           | 0.91           |
|            | ESTATE         | 0.42           | 0.71           | 0.72           | 0.80           | 0.62           | 0.75           | 0.80           | 0.81           | 0.38           | 0.69           | 0.70           | 0.77           | 0.61           | 0.73           | 0.77           | 0.79           |
|            | FCFP0          | 0.41           | 0.70           | 0.72           | 0.82           | 0.58           | 0.74           | 0.82           | 0.74           | 0.44           | 0.71           | 0.74           | 0.88           | 0.55           | 0.73           | 0.88           | 0.77           |
|            | FCFP2          | 0.55           | 0.77           | 0.79           | 0.87           | 0.66           | 0.79           | 0.87           | 0.86           | 0.61           | 0.80           | 0.81           | 0.88           | 0.73           | 0.82           | 0.88           | 0.90           |
|            | FCFP4          | 0.56           | 0.77           | 0.79           | 0.87           | 0.68           | 0.80           | 0.87           | 0.88           | 0.55           | 0.77           | 0.79           | 0.88           | 0.65           | 0.78           | 0.88           | 0.88           |
|            | FCFP6          | 0.55           | 0.77           | 0.79           | 0.87           | 0.66           | 0.79           | 0.87           | 0.88           | 0.64           | 0.81           | 0.83           | 0.93           | 0.69           | 0.81           | 0.93           | 0.92           |
|            | $_{ m KR}$     | $0.51 \\ 0.55$ | $0.75 \\ 0.77$ | $0.76 \\ 0.79$ | $0.83 \\ 0.88$ | $0.67 \\ 0.66$ | $0.78 \\ 0.79$ | $0.83 \\ 0.88$ | $0.84 \\ 0.86$ | $0.48 \\ 0.63$ | $0.74 \\ 0.81$ | $0.75 \\ 0.82$ | $0.81 \\ 0.90$ | $0.67 \\ 0.71$ | $0.77 \\ 0.82$ | $0.81 \\ 0.90$ | $0.82 \\ 0.91$ |
|            | MACCS          | 0.56           | 0.77           | 0.79           | 0.84           | 0.66           | 0.79           | 0.84           | 0.86           | 0.63           | 0.81           | 0.82           | 0.80           | 0.71           | 0.82           | 0.80           | 0.86           |
|            | PUBCHEM        | 0.59           | 0.79           | 0.75           | 0.87           | 0.71           | 0.81           | 0.87           | 0.89           | 0.56           | 0.73           | 0.79           | 0.87           | 0.68           | 0.32           | 0.87           | 0.90           |
|            | RAD2D          | 0.56           | 0.77           | 0.79           | 0.89           | 0.66           | 0.79           | 0.89           | 0.87           | 0.56           | 0.77           | 0.80           | 0.92           | 0.62           | 0.78           | 0.92           | 0.87           |
|            | 2PPHAR         | 0.12           | 0.56           | 0.58           | 0.33           | 0.79           | 0.57           | 0.33           | 0.62           | 0.11           | 0.55           | 0.58           | 0.28           | 0.82           | 0.57           | 0.28           | 0.63           |
|            | 3PPHAR         | 0.33           | 0.67           | 0.66           | 0.72           | 0.62           | 0.61           | 0.72           | 0.72           | 0.32           | 0.66           | 0.66           | 0.73           | 0.60           | 0.60           | 0.73           | 0.71           |
|            | AP2D           | 0.56           | 0.78           | 0.78           | 0.73           | 0.82           | 0.78           | 0.73           | 0.86           | 0.57           | 0.78           | 0.79           | 0.73           | 0.84           | 0.79           | 0.73           | 0.87           |
|            | ASP            | 0.69           | 0.84           | 0.85           | 0.80           | 0.88           | 0.85           | 0.80           | 0.92           | 0.70           | 0.85           | 0.85           | 0.81           | 0.89           | 0.86           | 0.81           | 0.93           |
|            | AT2D           | 0.66           | 0.83           | 0.83           | 0.78           | 0.87           | 0.84           | 0.78           | 0.91           | 0.67           | 0.83           | 0.84           | 0.79           | 0.88           | 0.84           | 0.79           | 0.92           |
|            | DFS            | 0.68           | 0.84           | 0.84           | 0.80           | 0.87           | 0.84           | 0.80           | 0.92           | 0.68           | 0.84           | 0.84           | 0.81           | 0.86           | 0.83           | 0.81           | 0.92           |
|            | ECFP0          | 0.59           | 0.79           | 0.80           | 0.77           | 0.82           | 0.78           | 0.77           | 0.87           | 0.58           | 0.79           | 0.79           | 0.76           | 0.82           | 0.78           | 0.76           | 0.87           |
|            | ECFP2          | 0.68           | 0.84           | 0.84           | 0.82           | 0.87           | 0.83           | 0.82           | 0.92           | 0.70           | 0.85           | 0.85           | 0.83           | 0.87           | 0.84           | 0.83           | 0.92           |
|            | ECFP4          | 0.69           | 0.84           | 0.84           | 0.81           | 0.87           | 0.84           | 0.81           | 0.92           | 0.68           | 0.84           | 0.84           | 0.81           | 0.87           | 0.84           | 0.81           | 0.92           |
| CYP1A2     | ECFP6          | 0.68           | 0.84           | 0.84           | 0.80           | 0.87           | 0.84           | 0.80           | 0.92           | 0.67           | 0.83           | 0.84           | 0.79           | 0.87           | 0.84           | 0.79           | 0.92           |
| Inhibition | ESTATE         | 0.58           | 0.79           | 0.79           | 0.76           | 0.82           | 0.78           | 0.76           | 0.87           | 0.59           | 0.80           | 0.80           | 0.75           | 0.84           | 0.79           | 0.75           | 0.88           |
|            | FCFP0          | 0.37           | 0.69           | 0.69           | 0.67           | 0.70           | 0.65           | 0.67           | 0.76           | 0.37           | 0.69           | 0.69           | 0.67           | 0.70           | 0.65           | 0.67           | 0.76           |
|            | FCFP2          | 0.66           | 0.83           | 0.83           | 0.82           | 0.84           | 0.81           | 0.82           | 0.91           | 0.67           | 0.84           | 0.84           | 0.82           | 0.85           | 0.82           | 0.82           | 0.92           |
|            | FCFP4<br>FCFP6 | $0.68 \\ 0.68$ | 0.84<br>0.84   | $0.84 \\ 0.84$ | $0.82 \\ 0.80$ | $0.86 \\ 0.87$ | $0.82 \\ 0.84$ | $0.82 \\ 0.80$ | $0.92 \\ 0.92$ | $0.69 \\ 0.68$ | $0.85 \\ 0.84$ | $0.85 \\ 0.84$ | $0.83 \\ 0.80$ | $0.86 \\ 0.87$ | $0.83 \\ 0.84$ | $0.83 \\ 0.80$ | $0.93 \\ 0.92$ |
|            | KR             | 0.66           | 0.83           | 0.83           | 0.80           | 0.86           | 0.82           | 0.80           | 0.92           | 0.66           | 0.83           | 0.83           | 0.81           | 0.85           | 0.84           | 0.81           | 0.92           |
|            | LSTAR          | 0.66           | 0.83           | 0.83           | 0.80           | 0.88           | 0.84           | 0.80           | 0.91           | 0.67           | 0.83           | 0.84           | 0.78           | 0.88           | 0.85           | 0.78           | 0.91           |
|            | MACCS          | 0.67           | 0.83           | 0.84           | 0.80           | 0.87           | 0.84           | 0.80           | 0.91           | 0.67           | 0.83           | 0.84           | 0.81           | 0.86           | 0.83           | 0.73           | 0.92           |
|            | PUBCHEM        | 0.69           | 0.85           | 0.85           | 0.82           | 0.87           | 0.84           | 0.82           | 0.93           | 0.70           | 0.85           | 0.85           | 0.82           | 0.88           | 0.85           | 0.82           | 0.93           |
|            | RAD2D          | 0.65           | 0.82           | 0.83           | 0.78           | 0.87           | 0.83           | 0.78           | 0.91           | 0.66           | 0.83           | 0.84           | 0.79           | 0.87           | 0.84           | 0.79           | 0.92           |
|            | 2PPHAR         | 0.02           | 0.51           | 0.68           | 0.03           | 0.98           | 0.44           | 0.03           | 0.65           | 0.01           | 0.51           | 0.68           | 0.03           | 0.98           | 0.43           | 0.03           | 0.64           |
|            | 3PPHAR         | 0.16           | 0.56           | 0.70           | 0.20           | 0.93           | 0.57           | 0.20           | 0.68           | 0.14           | 0.56           | 0.70           | 0.17           | 0.94           | 0.59           | 0.17           | 0.69           |
|            | AP2D           | 0.44           | 0.71           | 0.76           | 0.57           | 0.85           | 0.65           | 0.57           | 0.82           | 0.46           | 0.72           | 0.78           | 0.56           | 0.88           | 0.69           | 0.56           | 0.83           |
|            | ASP            | 0.57           | 0.78           | 0.82           | 0.66           | 0.89           | 0.74           | 0.66           | 0.88           | 0.58           | 0.78           | 0.82           | 0.66           | 0.90           | 0.76           | 0.66           | 0.89           |
|            | AT2D           | 0.54           | 0.76           | 0.81           | 0.60           | 0.91           | 0.76           | 0.60           | 0.87           | 0.57           | 0.77           | 0.82           | 0.64           | 0.91           | 0.77           | 0.64           | 0.88           |
|            | DFS            | 0.55           | 0.76           | 0.81           | 0.62           | 0.90           | 0.74           | 0.62           | 0.87           | 0.58           | 0.78           | 0.82           | 0.66           | 0.90           | 0.76           | 0.66           | 0.89           |
|            | ECFP0          | 0.42           | 0.70           | 0.76           | 0.52           | 0.88           | 0.67           | 0.52           | 0.82           | 0.42           | 0.70           | 0.76           | 0.52           | 0.88           | 0.67           | 0.52           | 0.83           |
|            | ECFP2          | 0.54           | 0.77           | 0.81           | 0.65           | 0.88           | 0.72           | 0.65           | 0.87           | 0.56           | 0.77           | 0.82           | 0.65           | 0.89           | 0.74           | 0.65           | 0.88           |
| arma aa    | ECFP4          | 0.55           | 0.77           | 0.81           | 0.64           | 0.89           | 0.74           | 0.64           | 0.87           | 0.58           | 0.78           | 0.82           | 0.66           | 0.90           | 0.76           | 0.66           | 0.88           |
| CYP2C9     | ECFP6          | 0.54           | 0.76           | 0.81           | 0.62           | 0.90           | 0.74           | 0.62           | 0.87           | 0.56           | 0.76           | 0.82           | 0.62           | 0.91           | 0.77           | 0.62           | 0.88           |
| Inhibition | ESTATE         | 0.41           | 0.70           | 0.76           | 0.53           | 0.86           | 0.64           | 0.53           | 0.81           | 0.42           | 0.70           | 0.76           | 0.53           | 0.87           | 0.65           | 0.53           | 0.82           |
|            | FCFP0 $FCFP2$  | $0.26 \\ 0.55$ | $0.62 \\ 0.77$ | 0.71           | $0.35 \\ 0.67$ | $0.89 \\ 0.88$ | $0.59 \\ 0.72$ | 0.35           | $0.75 \\ 0.87$ | 0.27           | $0.62 \\ 0.77$ | 0.72           | $0.35 \\ 0.67$ | $0.89 \\ 0.88$ | $0.60 \\ 0.72$ | $0.35 \\ 0.67$ | 0.75           |
|            | FCFP4          | 0.55           | 0.77           | $0.81 \\ 0.82$ | 0.66           | 0.89           | 0.72           | $0.67 \\ 0.66$ | 0.88           | $0.56 \\ 0.58$ | 0.77           | $0.81 \\ 0.83$ | 0.66           | 0.90           | 0.72           | 0.66           | $0.87 \\ 0.89$ |
|            | FCFP6          | 0.56           | 0.77           | 0.82           | 0.65           | 0.89           | 0.74           | 0.65           | 0.88           | 0.56           | 0.73           | 0.83           | 0.65           | 0.89           | 0.74           | 0.65           | 0.88           |
|            | KR             | 0.54           | 0.76           | 0.81           | 0.63           | 0.89           | 0.73           | 0.63           | 0.87           | 0.57           | 0.77           | 0.82           | 0.65           | 0.90           | 0.75           | 0.65           | 0.88           |
|            | LSTAR          | 0.53           | 0.75           | 0.81           | 0.58           | 0.91           | 0.76           | 0.58           | 0.87           | 0.56           | 0.76           | 0.82           | 0.60           | 0.92           | 0.78           | 0.60           | 0.89           |
|            | MACCS          | 0.54           | 0.77           | 0.80           | 0.66           | 0.87           | 0.71           | 0.66           | 0.86           | 0.54           | 0.76           | 0.80           | 0.65           | 0.87           | 0.70           | 0.65           | 0.86           |
|            | PUBCHEM        | 0.57           | 0.78           | 0.82           | 0.68           | 0.89           | 0.73           | 0.68           | 0.88           | 0.59           | 0.79           | 0.82           | 0.69           | 0.89           | 0.74           | 0.69           | 0.89           |
|            | RAD2D          | 0.53           | 0.75           | 0.81           | 0.60           | 0.91           | 0.75           | 0.60           | 0.88           | 0.55           | 0.76           | 0.82           | 0.62           | 0.91           | 0.76           | 0.62           | 0.89           |
|            | 2PPHAR         | 0.26           | 0.63           | 0.62           | 0.71           | 0.56           | 0.56           | 0.71           | 0.66           | 0.27           | 0.64           | 0.63           | 0.72           | 0.56           | 0.56           | 0.72           | 0.67           |
|            | 3PPHAR         | 0.28           | 0.64           | 0.64           | 0.62           | 0.66           | 0.59           | 0.62           | 0.71           | 0.29           | 0.64           | 0.65           | 0.61           | 0.68           | 0.60           | 0.61           | 0.71           |
|            | AP2D           | 0.51           | 0.75           | 0.76           | 0.73           | 0.78           | 0.72           | 0.73           | 0.83           | 0.52           | 0.76           | 0.76           | 0.74           | 0.78           | 0.72           | 0.74           | 0.84           |
|            | ASP            | 0.61           | 0.80           | 0.80           | 0.80           | 0.80           | 0.76           | 0.80           | 0.88           | 0.62           | 0.81           | 0.81           | 0.82           | 0.81           | 0.77           | 0.82           | 0.88           |
|            | AT2D           | 0.59           | 0.80           | 0.80           | 0.79           | 0.81           | 0.76           | 0.79           | 0.87           | 0.59           | 0.80           | 0.80           | 0.79           | 0.80           | 0.76           | 0.79           | 0.87           |
|            | DFS            | 0.59           | 0.80           | 0.80           | 0.81           | 0.79           | 0.75           | 0.81           | 0.87           | 0.60           | 0.80           | 0.80           | 0.82           | 0.78           | 0.75           | 0.82           | 0.87           |
|            | ECFP0          | 0.51           | 0.75           | 0.76           | 0.72           | 0.79           | 0.73           | 0.72           | 0.83           | 0.51           | 0.76           | 0.76           | 0.73           | 0.79           | 0.73           | 0.73           | 0.83           |
|            | ECFP2          | 0.61           | 0.81           | 0.81           | 0.80           | 0.81           | 0.77           | 0.80           | 0.88           | 0.62           | 0.81           | 0.81           | 0.80           | 0.82           | 0.77           | 0.80           | 0.89           |
| ermae:-    | ECFP4          | 0.61           | 0.81           | 0.81           | 0.80           | 0.81           | 0.77           | 0.80           | 0.88           | 0.62           | 0.81           | 0.81           | 0.81           | 0.81           | 0.77           | 0.81           | 0.89           |
| CYP2C19    | ECFP6          | 0.60           | 0.80           | 0.80           | 0.80           | 0.81           | 0.76           | 0.80           | 0.88           | 0.62           | 0.81           | 0.81           | 0.79           | 0.83           | 0.78           | 0.79           | 0.89           |
| Inhibition | ESTATE         | 0.49           | 0.74           | 0.75           | 0.71           | 0.78           | 0.72           | 0.71           | 0.82           | 0.51           | 0.76           | 0.76           | 0.72           | 0.79           | 0.73           | 0.72           | 0.83           |
|            | FCFP0          | 0.38           | 0.69           | 0.68           | 0.80           | 0.59           | 0.61           | 0.80           | 0.75           | 0.39           | 0.70           | 0.69           | 0.79           | 0.61           | 0.61           | 0.79           | 0.76           |
|            | FCFP2          | 0.59           | 0.80           | 0.80           | 0.79           | 0.80           | 0.76           | 0.79           | 0.87           | 0.60           | 0.80           | 0.80           | 0.79           | 0.81           | 0.76           | 0.79           | 0.87           |
|            | FCFP4          | 0.61           | 0.81           | 0.81           | 0.81           | 0.81           | 0.77           | 0.81           | 0.88           | 0.62           | 0.81           | 0.81           | 0.81           | 0.82           | 0.78           | 0.81           | 0.89           |
|            | FCFP6          | $0.61 \\ 0.60$ | $0.81 \\ 0.80$ | $0.81 \\ 0.80$ | $0.80 \\ 0.80$ | $0.82 \\ 0.80$ | $0.77 \\ 0.76$ | $0.80 \\ 0.80$ | $0.88 \\ 0.88$ | $0.62 \\ 0.61$ | $0.81 \\ 0.80$ | $0.81 \\ 0.81$ | $0.80 \\ 0.79$ | $0.82 \\ 0.81$ | $0.77 \\ 0.77$ | $0.80 \\ 0.79$ | $0.89 \\ 0.88$ |
|            | KR             | 0.60           | 0.80           | 0.80           | 0.80           | 0.80           | 0.76           | 0.80           | 0.88           | 0.61           | 0.80           | 0.81           | 0.79           | 0.81           | 0.77           | 0.79           | 0.88           |

Table S1 - Continued from previous page

| Endpoint     | FP               |                | D. A.C.C.      | 1.00           |                | libration      |                |                | DAGG           | 1.00           |                |                |                | idation        |                |                |            |
|--------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|
|              | LSTAR            | κ 0.00         | BACC           | ACC<br>0.80    | Se             | Sp             | AUC            | κ 0.00         | BACC           | ACC<br>0.61    | Se<br>0.80     | Sp<br>0.81     | AUC            | 0.00           | 0.77           | 0.70           | 0.88       |
|              | MACCS            | 0.60<br>0.59   | 0.80<br>0.80   | 0.80           | 0.80<br>0.78   | 0.80<br>0.81   | 0.76<br>0.77   | 0.80<br>0.78   | 0.87<br>0.87   | 0.60           | 0.80           | 0.81           | 0.79<br>0.79   | 0.82<br>0.81   | 0.77<br>0.77   | 0.79<br>0.79   | 0.87       |
|              | PUBCHEM          | 0.60           | 0.80           | 0.80           | 0.79           | 0.81           | 0.77           | 0.79           | 0.87           | 0.59           | 0.80           | 0.80           | 0.79           | 0.81           | 0.77           | 0.79           | 0.88       |
|              | RAD2D            | 0.60           | 0.80           | 0.80           | 0.78           | 0.82           | 0.77           | 0.78           | 0.88           | 0.62           | 0.81           | 0.81           | 0.80           | 0.82           | 0.78           | 0.80           | 0.88       |
|              | 2PPHAR           | 0.01           | 0.50           | 0.80           | 0.01           | 1.00           | 0.62           | 0.01           | 0.64           | 0.02           | 0.51           | 0.80           | 0.01           | 1.00           | 0.76           | 0.01           | 0.6        |
|              | 3PPHAR           | 0.10           | 0.53           | 0.80           | 0.10           | 0.97           | 0.46           | 0.10           | 0.67           | 0.10           | 0.53           | 0.80           | 0.09           | 0.98           | 0.51           | 0.09           | 0.6        |
|              | AP2D             | 0.42           | 0.69           | 0.84           | 0.43           | 0.94           | 0.63           | 0.43           | 0.80           | 0.44           | 0.69           | 0.85           | 0.42           | 0.95           | 0.69           | 0.42           | 0.8        |
|              | ASP              | 0.50           | 0.71           | 0.86           | 0.46           | 0.96           | 0.77           | 0.46           | 0.84           | 0.51           | 0.72           | 0.87           | 0.46           | 0.97           | 0.78           | 0.46           | 0.8        |
|              | AT2D             | 0.47           | 0.69           | 0.86           | 0.41           | 0.97           | 0.78           | 0.41           | 0.83           | 0.50           | 0.71           | 0.87           | 0.44           | 0.97           | 0.81           | 0.44           | 0.8        |
|              | DFS              | 0.49           | 0.71           | 0.86           | 0.46           | 0.96           | 0.75           | 0.46           | 0.84           | 0.46           | 0.69           | 0.86           | 0.42           | 0.97           | 0.75           | 0.42           | 0.8        |
|              | ECFP0            | 0.39           | 0.68           | 0.82           | 0.43           | 0.92           | 0.58           | 0.43           | 0.78           | 0.40           | 0.67           | 0.84           | 0.37           | 0.96           | 0.69           | 0.37           | 0.8        |
|              | ECFP2            | 0.51           | 0.73           | 0.86           | 0.50           | 0.95           | 0.73           | 0.50           | 0.85           | 0.51           | 0.72           | 0.86           | 0.48           | 0.96           | 0.75           | 0.48           | 0.8        |
|              | ECFP4            | 0.50           | 0.71           | 0.86           | 0.46           | 0.96           | 0.75           | 0.46           | 0.85           | 0.52           | 0.72           | 0.87           | 0.47           | 0.97           | 0.80           | 0.47           | 0.8        |
| CYP2D6       | ECFP6            | 0.48           | 0.70           | 0.86           | 0.43           | 0.97           | 0.77           | 0.43           | 0.84           | 0.50           | 0.71           | 0.87           | 0.44           | 0.97           | 0.81           | 0.44           | 0.8        |
| Inhibition   | ESTATE           | 0.37           | 0.67           | 0.82           | 0.41           | 0.92           | 0.57           | 0.41           | 0.77           | 0.39           | 0.66           | 0.84           | 0.37           | 0.96           | 0.69           | 0.37           | 0.8        |
|              | FCFP0            | 0.28           | 0.61           | 0.82           | 0.27           | 0.96           | 0.60           | 0.27           | 0.74           | 0.28           | 0.61           | 0.82           | 0.27           | 0.95           | 0.59           | 0.27           | 0.7        |
|              | FCFP2            | 0.51           | 0.73           | 0.86           | 0.51           | 0.95           | 0.71           | 0.51           | 0.85           | 0.55           | 0.74           | 0.87           | 0.53           | 0.96           | 0.76           | 0.53           | 0.8        |
|              | FCFP4            | 0.53           | 0.73           | 0.87           | 0.51           | 0.96           | 0.76           | 0.51           | 0.86           | 0.54           | 0.73           | 0.88           | 0.49           | 0.97           | 0.80           | 0.49           | 0.8        |
|              | FCFP6            | 0.53           | 0.72           | 0.87           | 0.48           | 0.97           | 0.79           | 0.48           | 0.86           | 0.54           | 0.73           | 0.87           | 0.50           | 0.97           | 0.80           | 0.50           | 0.8        |
|              | $_{ m KR}$ LSTAR | 0.50           | $0.72 \\ 0.70$ | $0.86 \\ 0.86$ | 0.50           | $0.95 \\ 0.96$ | 0.71           | 0.50           | $0.85 \\ 0.84$ | $0.50 \\ 0.48$ | 0.72           | $0.86 \\ 0.86$ | 0.48           | $0.96 \\ 0.97$ | 0.75           | $0.48 \\ 0.42$ | 0.80       |
|              | MACCS            | $0.47 \\ 0.51$ | $0.70 \\ 0.72$ | 0.86           | $0.44 \\ 0.48$ | 0.96           | $0.74 \\ 0.74$ | $0.44 \\ 0.48$ | 0.84 $0.85$    | $0.48 \\ 0.52$ | $0.70 \\ 0.73$ | 0.86           | $0.42 \\ 0.49$ | 0.97           | $0.79 \\ 0.75$ | 0.42           | 0.8        |
|              | PUBCHEM          | $0.51 \\ 0.51$ | $0.72 \\ 0.72$ | 0.86           | 0.48           | 0.96           | 0.74           | 0.48           | 0.86           | $0.52 \\ 0.52$ | 0.73           | 0.87           | 0.49<br>0.49   | 0.96           | 0.75           | 0.49           | 0.8        |
|              | RAD2D            | 0.50           | 0.72           | 0.87           | 0.46           | 0.97           | 0.78           | 0.46           | 0.85           | 0.53           | 0.73           | 0.87           | 0.45           | 0.97           | 0.70           | 0.45           | 0.8        |
|              | 2PPHAR           | 0.29           | 0.65           | 0.64           | 0.40           | 0.63           | 0.55           | 0.40           | 0.70           | 0.27           | 0.64           | 0.64           | 0.67           | 0.61           | 0.54           | 0.67           | 0.6        |
|              | 3PPHAR           | 0.31           | 0.66           | 0.67           | 0.59           | 0.72           | 0.59           | 0.59           | 0.73           | 0.31           | 0.65           | 0.67           | 0.59           | 0.72           | 0.59           | 0.59           | 0.7        |
|              | AP2D             | 0.47           | 0.73           | 0.75           | 0.66           | 0.81           | 0.70           | 0.66           | 0.82           | 0.49           | 0.74           | 0.76           | 0.68           | 0.81           | 0.71           | 0.68           | 0.8        |
|              | ASP              | 0.60           | 0.80           | 0.81           | 0.75           | 0.84           | 0.77           | 0.75           | 0.89           | 0.62           | 0.80           | 0.82           | 0.73           | 0.88           | 0.80           | 0.73           | 0.9        |
|              | AT2D             | 0.58           | 0.79           | 0.80           | 0.70           | 0.87           | 0.79           | 0.70           | 0.88           | 0.59           | 0.79           | 0.81           | 0.69           | 0.88           | 0.80           | 0.69           | 0.8        |
|              | DFS              | 0.60           | 0.80           | 0.81           | 0.73           | 0.86           | 0.78           | 0.73           | 0.89           | 0.61           | 0.80           | 0.81           | 0.75           | 0.86           | 0.78           | 0.75           | 0.8        |
|              | ECFP0            | 0.44           | 0.72           | 0.73           | 0.62           | 0.81           | 0.69           | 0.62           | 0.81           | 0.43           | 0.71           | 0.73           | 0.60           | 0.81           | 0.69           | 0.60           | 0.8        |
|              | ECFP2            | 0.59           | 0.79           | 0.80           | 0.72           | 0.86           | 0.78           | 0.72           | 0.89           | 0.59           | 0.79           | 0.81           | 0.70           | 0.88           | 0.80           | 0.70           | 0.8        |
|              | ECFP4            | 0.60           | 0.80           | 0.81           | 0.73           | 0.87           | 0.79           | 0.73           | 0.89           | 0.61           | 0.80           | 0.82           | 0.70           | 0.90           | 0.82           | 0.70           | 0.90       |
| CYP3A4       | ECFP6            | 0.59           | 0.79           | 0.81           | 0.73           | 0.86           | 0.78           | 0.73           | 0.89           | 0.59           | 0.79           | 0.80           | 0.69           | 0.88           | 0.80           | 0.69           | 0.89       |
| Inhibition   | ESTATE           | 0.43           | 0.71           | 0.73           | 0.62           | 0.80           | 0.68           | 0.62           | 0.80           | 0.43           | 0.71           | 0.73           | 0.63           | 0.80           | 0.68           | 0.63           | 0.80       |
|              | FCFP0            | 0.32           | 0.67           | 0.65           | 0.77           | 0.57           | 0.55           | 0.77           | 0.72           | 0.32           | 0.67           | 0.65           | 0.81           | 0.53           | 0.54           | 0.81           | 0.7        |
|              | FCFP2<br>FCFP4   | 0.55           | 0.77           | $0.79 \\ 0.80$ | 0.71           | $0.84 \\ 0.85$ | 0.75           | 0.71           | $0.87 \\ 0.89$ | $0.56 \\ 0.62$ | 0.77           | $0.79 \\ 0.82$ | 0.70           | $0.85 \\ 0.88$ | $0.76 \\ 0.80$ | 0.70           | 0.8        |
|              | FCFP6            | $0.59 \\ 0.60$ | $0.79 \\ 0.80$ | 0.80           | $0.73 \\ 0.74$ | 0.86           | $0.77 \\ 0.78$ | $0.73 \\ 0.74$ | 0.89           | 0.62           | $0.81 \\ 0.80$ | 0.82           | $0.74 \\ 0.74$ | 0.86           | 0.78           | $0.74 \\ 0.74$ | 0.9        |
|              | KR               | 0.57           | 0.80           | 0.81           | 0.74           | 0.85           | 0.78           | 0.74           | 0.88           | 0.56           | 0.80           | 0.79           | 0.68           | 0.87           | 0.78           | 0.68           | 0.88       |
|              | LSTAR            | 0.59           | 0.79           | 0.80           | 0.71           | 0.85           | 0.77           | 0.74           | 0.88           | 0.60           | 0.80           | 0.73           | 0.03           | 0.87           | 0.78           | 0.03           | 0.8        |
|              | MACCS            | 0.54           | 0.77           | 0.78           | 0.70           | 0.84           | 0.75           | 0.70           | 0.87           | 0.57           | 0.78           | 0.79           | 0.71           | 0.85           | 0.76           | 0.71           | 0.8        |
|              | PUBCHEM          | 0.59           | 0.79           | 0.80           | 0.74           | 0.84           | 0.76           | 0.74           | 0.89           | 0.60           | 0.80           | 0.81           | 0.75           | 0.85           | 0.77           | 0.75           | 0.89       |
|              | RAD2D            | 0.58           | 0.78           | 0.80           | 0.69           | 0.88           | 0.79           | 0.69           | 0.89           | 0.58           | 0.78           | 0.80           | 0.67           | 0.89           | 0.81           | 0.67           | 0.89       |
|              | 2PPHAR           | 0.10           | 0.55           | 0.72           | 0.83           | 0.27           | 0.83           | 0.83           | 0.57           | 0.06           | 0.53           | 0.73           | 0.85           | 0.21           | 0.82           | 0.85           | 0.5        |
|              | 3PPHAR           | 0.15           | 0.56           | 0.77           | 0.90           | 0.22           | 0.83           | 0.90           | 0.61           | 0.12           | 0.55           | 0.77           | 0.90           | 0.20           | 0.83           | 0.90           | 0.6        |
|              | AP2D             | 0.25           | 0.64           | 0.74           | 0.80           | 0.49           | 0.87           | 0.80           | 0.71           | 0.27           | 0.64           | 0.76           | 0.83           | 0.46           | 0.87           | 0.83           | 0.7        |
|              | ASP              | 0.31           | 0.66           | 0.78           | 0.86           | 0.46           | 0.87           | 0.86           | 0.72           | 0.28           | 0.62           | 0.80           | 0.91           | 0.33           | 0.86           | 0.91           | 0.7        |
|              | AT2D             | 0.32           | 0.66           | 0.79           | 0.86           | 0.46           | 0.87           | 0.86           | 0.73           | 0.32           | 0.67           | 0.78           | 0.85           | 0.48           | 0.88           | 0.85           | 0.7        |
|              | DFS              | 0.30           | 0.66           | 0.78           | 0.85           | 0.47           | 0.87           | 0.85           | 0.72           | 0.35           | 0.65           | 0.83           | 0.94           | 0.37           | 0.87           | 0.94           | 0.7        |
|              | ECFP0            | 0.20           | 0.62           | 0.72           | 0.78           | 0.45           | 0.86           | 0.78           | 0.67           | 0.15           | 0.57           | 0.78           | 0.91           | 0.23           | 0.84           | 0.91           | 0.6        |
|              | ECFP2            | 0.27           | 0.64           | 0.77           | 0.85           | 0.42           | 0.87           | 0.85           | 0.70           | 0.29           | 0.64           | 0.79           | 0.88           | 0.39           | 0.86           | 0.88           | 0.7        |
|              | ECFP4            | 0.28           | 0.65           | 0.76           | 0.83           | 0.48           | 0.87           | 0.83           | 0.71           | 0.27           | 0.62           | 0.80           | 0.90           | 0.35           | 0.86           | 0.90           | 0.7        |
| Drug Induced | ECFP6            | 0.32           | 0.64           | 0.81           | 0.92           | 0.37           | 0.86           | 0.92           | 0.71           | 0.35           | 0.65           | 0.83           | 0.93           | 0.37           | 0.86           | 0.93           | 0.7        |
| Choleostasis | ESTATE           | 0.20           | 0.62           | 0.71           | 0.76           | 0.49           | 0.86           | 0.76           | 0.68           | 0.15           | 0.59           | 0.69           | 0.75           | 0.43           | 0.85           | 0.75           | 0.6        |
|              | FCFP0            | 0.10           | 0.56           | 0.68           | 0.75           | 0.36           | 0.84           | 0.75           | 0.59           | 0.03           | 0.52           | 0.69           | 0.79           | 0.25           | 0.82           | 0.79           | 0.5        |
|              | FCFP2<br>FCFP4   | $0.29 \\ 0.31$ | $0.65 \\ 0.65$ | $0.79 \\ 0.79$ | $0.87 \\ 0.87$ | 0.42           | $0.87 \\ 0.87$ | $0.87 \\ 0.87$ | $0.71 \\ 0.72$ | $0.29 \\ 0.29$ | 0.64           | $0.80 \\ 0.80$ | $0.89 \\ 0.91$ | $0.38 \\ 0.36$ | 0.86<br>0.86   | $0.89 \\ 0.91$ | 0.6<br>0.7 |
|              | FCFP4<br>FCFP6   | $0.31 \\ 0.30$ | $0.65 \\ 0.65$ | 0.79           | 0.87           | 0.44<br>0.44   | 0.87           | 0.87           | $0.72 \\ 0.70$ | $0.29 \\ 0.38$ | $0.63 \\ 0.67$ | $0.80 \\ 0.83$ | $0.91 \\ 0.92$ | 0.36           | 0.86           | $0.91 \\ 0.92$ | 0.7        |
|              | KR               | 0.30           | $0.65 \\ 0.67$ | 0.78           | 0.86           | 0.44           | 0.87           | 0.86           | 0.70           | $0.38 \\ 0.32$ | 0.65           | 0.83           | 0.92           | 0.43           | 0.87           | 0.92           | 0.7        |
|              | LSTAR            | 0.33<br>0.26   | 0.64           | 0.79           | 0.87           | 0.45           | 0.87           | 0.87           | 0.73           | $0.32 \\ 0.29$ | 0.62           | $0.80 \\ 0.82$ | 0.89           | 0.41           | 0.87           | 0.89           | 0.7        |
|              | MACCS            | 0.20           | 0.66           | 0.76           | 0.84           | 0.48           | 0.87           | 0.84           | $0.70 \\ 0.72$ | 0.29           | 0.64           | 0.82           | 0.95 $0.85$    | 0.31           | 0.87           | 0.95           | 0.7        |
|              | PUBCHEM          | 0.29           | 0.65           | 0.77           | 0.86           | 0.43           | 0.87           | 0.86           | 0.72           | 0.28           | 0.66           | 0.80           | 0.89           | 0.44           | 0.87           | 0.89           | 0.7        |
|              | RAD2D            | 0.23           | 0.67           | 0.79           | 0.86           | 0.48           | 0.88           | 0.86           | 0.73           | 0.36           | 0.66           | 0.82           | 0.91           | 0.43           | 0.87           | 0.85           | 0.7        |
|              | 2PPHAR           | 0.13           | 0.59           | 0.76           | 0.81           | 0.38           | 0.91           | 0.81           | 0.60           | 0.19           | 0.64           | 0.78           | 0.81           | 0.47           | 0.93           | 0.81           | 0.6        |
|              | 3PPHAR           | 0.18           | 0.60           | 0.83           | 0.89           | 0.31           | 0.91           | 0.89           | 0.67           | 0.18           | 0.60           | 0.83           | 0.90           | 0.30           | 0.91           | 0.90           | 0.7        |
|              |                  |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |            |
|              | AP2D             | 0.27           | 0.68           | 0.80           | 0.84           | 0.53           | 0.94           | 0.84           | 0.76           | 0.23           | 0.63           | 0.84           | 0.89           | 0.36           | 0.92           | 0.89           | 0.7'       |
|              |                  |                | $0.68 \\ 0.67$ | $0.80 \\ 0.85$ | $0.84 \\ 0.90$ | $0.53 \\ 0.44$ | $0.94 \\ 0.93$ | $0.84 \\ 0.90$ | $0.76 \\ 0.75$ | $0.23 \\ 0.26$ | $0.63 \\ 0.63$ | $0.84 \\ 0.86$ | $0.89 \\ 0.93$ | $0.36 \\ 0.33$ | $0.92 \\ 0.92$ | $0.89 \\ 0.93$ | 0.7        |

Table S1 - Continued from previous page

| Endpoint                       | FP                      |                |                |                |                | libratio       | n              | aca jioni      | previous p     |                |                |                |                | idation        |                |                |                |
|--------------------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Endpoint                       |                         | κ              | BACC           | ACC            | Se             | Sp             | AUC            | κ              | BACC           | ACC            | Se             | Sp             | AUC            |                |                |                |                |
|                                | DFS<br>ECFP0            | 0.26           | 0.65<br>0.69   | 0.83<br>0.75   | 0.88           | 0.41           | 0.92           | 0.88           | 0.72           | 0.23           | 0.62           | 0.85           | 0.91<br>0.75   | 0.33<br>0.57   | 0.92           | 0.91           | 0.73           |
|                                | ECFP0                   | $0.23 \\ 0.28$ | 0.68           | 0.75           | $0.77 \\ 0.86$ | $0.62 \\ 0.50$ | $0.94 \\ 0.93$ | $0.77 \\ 0.86$ | $0.75 \\ 0.77$ | $0.19 \\ 0.25$ | $0.66 \\ 0.66$ | $0.73 \\ 0.82$ | 0.75           | 0.57           | $0.94 \\ 0.93$ | $0.75 \\ 0.86$ | $0.74 \\ 0.77$ |
|                                | ECFP4                   | 0.26           | 0.64           | 0.84           | 0.89           | 0.40           | 0.93           | 0.89           | 0.74           | 0.32           | 0.67           | 0.86           | 0.91           | 0.44           | 0.93           | 0.91           | 0.80           |
|                                | ECFP6                   | 0.23           | 0.66           | 0.80           | 0.84           | 0.48           | 0.93           | 0.84           | 0.71           | 0.14           | 0.58           | 0.83           | 0.90           | 0.26           | 0.91           | 0.90           | 0.71           |
|                                | ESTATE                  | 0.21           | 0.68           | 0.74           | 0.75           | 0.61           | 0.94           | 0.75           | 0.75           | 0.20           | 0.68           | 0.73           | 0.75           | 0.60           | 0.94           | 0.75           | 0.74           |
|                                | FCFP0                   | 0.20           | 0.63           | 0.80           | 0.84           | 0.42           | 0.92           | 0.84           | 0.69           | 0.16           | 0.60           | 0.80           | 0.85           | 0.34           | 0.92           | 0.85           | 0.69           |
|                                | FCFP2<br>FCFP4          | $0.28 \\ 0.30$ | $0.69 \\ 0.68$ | $0.81 \\ 0.84$ | $0.85 \\ 0.88$ | $0.53 \\ 0.48$ | $0.94 \\ 0.93$ | $0.85 \\ 0.88$ | $0.76 \\ 0.77$ | $0.24 \\ 0.26$ | $0.66 \\ 0.64$ | $0.81 \\ 0.85$ | $0.85 \\ 0.90$ | $0.47 \\ 0.39$ | $0.93 \\ 0.92$ | $0.85 \\ 0.90$ | $0.76 \\ 0.74$ |
|                                | FCFP6                   | 0.30           | 0.66           | 0.81           | 0.86           | 0.46           | 0.93           | 0.86           | 0.74           | 0.29           | 0.67           | 0.84           | 0.88           | 0.46           | 0.92           | 0.88           | 0.75           |
|                                | KR                      | 0.28           | 0.67           | 0.83           | 0.88           | 0.46           | 0.93           | 0.88           | 0.77           | 0.31           | 0.69           | 0.84           | 0.88           | 0.50           | 0.94           | 0.88           | 0.78           |
|                                | LSTAR                   | 0.17           | 0.59           | 0.81           | 0.88           | 0.31           | 0.91           | 0.88           | 0.66           | 0.29           | 0.63           | 0.87           | 0.94           | 0.32           | 0.92           | 0.94           | 0.76           |
|                                | MACCS                   | 0.32           | 0.71           | 0.82           | 0.85           | 0.58           | 0.94           | 0.85           | 0.80           | 0.27           | 0.70           | 0.81           | 0.84           | 0.55           | 0.94           | 0.84           | 0.83           |
|                                | PUBCHEM<br>RAD2D        | $0.29 \\ 0.25$ | $0.67 \\ 0.63$ | 0.83           | 0.88           | 0.47           | $0.93 \\ 0.92$ | $0.88 \\ 0.91$ | $0.76 \\ 0.72$ | 0.35           | 0.72           | 0.85           | 0.89           | 0.54           | 0.94           | $0.89 \\ 0.94$ | $0.82 \\ 0.78$ |
|                                | 2PPHAR                  | 0.23           | 0.52           | 0.85           | 0.91           | 0.34           | 0.50           | 0.91           | 0.72           | 0.34           | 0.66           | 0.88           | 0.94           | 0.38           | 0.93           | 0.94           | 0.78           |
|                                | 3PPHAR                  | 0.19           | 0.58           | 0.66           | 0.26           | 0.91           | 0.65           | 0.26           | 0.68           | 0.16           | 0.57           | 0.65           | 0.24           | 0.91           | 0.60           | 0.24           | 0.68           |
|                                | AP2D                    | 0.50           | 0.75           | 0.77           | 0.66           | 0.83           | 0.71           | 0.66           | 0.84           | 0.46           | 0.73           | 0.75           | 0.65           | 0.81           | 0.68           | 0.65           | 0.82           |
|                                | ASP                     | 0.57           | 0.78           | 0.80           | 0.74           | 0.83           | 0.73           | 0.74           | 0.87           | 0.57           | 0.78           | 0.80           | 0.70           | 0.86           | 0.75           | 0.70           | 0.87           |
|                                | AT2D                    | 0.55           | 0.78           | 0.79           | 0.74           | 0.81           | 0.71           | 0.74           | 0.86           | 0.64           | 0.82           | 0.83           | 0.79           | 0.86           | 0.77           | 0.79           | 0.89           |
|                                | $_{ m DFS}$             | $0.54 \\ 0.45$ | $0.77 \\ 0.73$ | $0.78 \\ 0.74$ | $0.73 \\ 0.70$ | $0.82 \\ 0.76$ | 0.71<br>0.64   | $0.73 \\ 0.70$ | $0.86 \\ 0.81$ | $0.57 \\ 0.52$ | $0.78 \\ 0.76$ | $0.80 \\ 0.78$ | $0.70 \\ 0.71$ | $0.86 \\ 0.81$ | $0.75 \\ 0.70$ | $0.70 \\ 0.71$ | 0.86<br>0.84   |
|                                | ECFP2                   | 0.58           | 0.78           | 0.74           | 0.70           | 0.70           | 0.77           | 0.70           | 0.86           | 0.57           | 0.78           | 0.18           | 0.68           | 0.88           | 0.77           | 0.68           | 0.87           |
|                                | ECFP4                   | 0.54           | 0.77           | 0.79           | 0.69           | 0.84           | 0.73           | 0.69           | 0.85           | 0.59           | 0.79           | 0.81           | 0.69           | 0.89           | 0.79           | 0.69           | 0.86           |
| Drug Induced                   | ECFP6                   | 0.49           | 0.74           | 0.77           | 0.61           | 0.87           | 0.74           | 0.61           | 0.82           | 0.54           | 0.76           | 0.79           | 0.63           | 0.89           | 0.77           | 0.63           | 0.84           |
| Liver Injury                   | ESTATE                  | 0.42           | 0.71           | 0.73           | 0.63           | 0.78           | 0.64           | 0.63           | 0.79           | 0.43           | 0.72           | 0.73           | 0.64           | 0.79           | 0.65           | 0.64           | 0.80           |
|                                | FCFP0 $FCFP2$           | 0.20           | $0.60 \\ 0.76$ | 0.64           | 0.43           | 0.76           | $0.53 \\ 0.72$ | 0.43           | 0.64           | 0.19           | $0.59 \\ 0.79$ | 0.64           | 0.37           | 0.81           | $0.54 \\ 0.76$ | $0.37 \\ 0.71$ | $0.63 \\ 0.87$ |
|                                | FCFP4                   | $0.53 \\ 0.54$ | 0.76           | $0.78 \\ 0.79$ | $0.69 \\ 0.67$ | $0.83 \\ 0.86$ | 0.75           | $0.69 \\ 0.67$ | $0.84 \\ 0.85$ | $0.58 \\ 0.59$ | 0.79           | $0.81 \\ 0.81$ | $0.71 \\ 0.70$ | $0.86 \\ 0.88$ | 0.76           | 0.71           | 0.88           |
|                                | FCFP6                   | 0.53           | 0.76           | 0.78           | 0.70           | 0.84           | 0.72           | 0.70           | 0.84           | 0.59           | 0.78           | 0.81           | 0.66           | 0.91           | 0.81           | 0.66           | 0.87           |
|                                | KR                      | 0.56           | 0.78           | 0.80           | 0.68           | 0.87           | 0.76           | 0.68           | 0.86           | 0.56           | 0.78           | 0.80           | 0.69           | 0.86           | 0.76           | 0.69           | 0.87           |
|                                | LSTAR                   | 0.53           | 0.76           | 0.78           | 0.69           | 0.84           | 0.73           | 0.69           | 0.85           | 0.58           | 0.78           | 0.81           | 0.64           | 0.92           | 0.83           | 0.64           | 0.87           |
|                                | MACCS                   | 0.55           | 0.77           | 0.79           | 0.73           | 0.82           | 0.71           | 0.73           | 0.86           | 0.63           | 0.82           | 0.82           | 0.79           | 0.84           | 0.76           | 0.79           | 0.89           |
|                                | PUBCHEM<br>RAD2D        | $0.57 \\ 0.56$ | $0.78 \\ 0.77$ | $0.80 \\ 0.80$ | $0.71 \\ 0.66$ | $0.86 \\ 0.88$ | $0.75 \\ 0.77$ | $0.71 \\ 0.66$ | $0.86 \\ 0.86$ | $0.58 \\ 0.59$ | $0.79 \\ 0.79$ | 0.81<br>0.81   | $0.69 \\ 0.68$ | $0.88 \\ 0.89$ | $0.78 \\ 0.79$ | $0.69 \\ 0.68$ | 0.88<br>0.88   |
|                                | 2PPHAR                  | 0.17           | 0.61           | 0.77           | 0.81           | 0.40           | 0.91           | 0.81           | 0.64           | 0.09           | 0.55           | 0.79           | 0.86           | 0.25           | 0.90           | 0.86           | 0.59           |
|                                | 3PPHAR                  | 0.05           | 0.54           | 0.80           | 0.88           | 0.19           | 0.89           | 0.88           | 0.54           | -0.06          | 0.47           | 0.81           | 0.91           | 0.03           | 0.88           | 0.91           | 0.38           |
|                                | AP2D                    | 0.13           | 0.58           | 0.77           | 0.82           | 0.34           | 0.90           | 0.82           | 0.60           | 0.19           | 0.62           | 0.78           | 0.83           | 0.42           | 0.92           | 0.83           | 0.76           |
|                                | ASP                     | 0.17           | 0.59           | 0.81           | 0.88           | 0.30           | 0.90           | 0.88           | 0.63           | 0.21           | 0.60           | 0.83           | 0.90           | 0.31           | 0.91           | 0.90           | 0.66           |
|                                | ${ m AT2D} \\ { m DFS}$ | $0.19 \\ 0.14$ | $0.61 \\ 0.60$ | $0.79 \\ 0.74$ | $0.84 \\ 0.79$ | $0.39 \\ 0.42$ | $0.91 \\ 0.91$ | $0.84 \\ 0.79$ | $0.65 \\ 0.62$ | $0.18 \\ 0.13$ | $0.60 \\ 0.57$ | $0.80 \\ 0.80$ | $0.86 \\ 0.87$ | $0.33 \\ 0.28$ | $0.91 \\ 0.90$ | $0.86 \\ 0.87$ | $0.58 \\ 0.62$ |
|                                | ECFP0                   | 0.17           | 0.62           | 0.74           | 0.78           | 0.47           | 0.92           | 0.78           | 0.67           | 0.16           | 0.56           | 0.86           | 0.95           | 0.17           | 0.89           | 0.95           | 0.59           |
|                                | ECFP2                   | 0.20           | 0.62           | 0.81           | 0.87           | 0.36           | 0.91           | 0.87           | 0.66           | 0.20           | 0.60           | 0.81           | 0.87           | 0.33           | 0.91           | 0.87           | 0.63           |
|                                | ECFP4                   | 0.15           | 0.58           | 0.81           | 0.88           | 0.28           | 0.90           | 0.88           | 0.63           | 0.11           | 0.55           | 0.81           | 0.90           | 0.19           | 0.89           | 0.90           | 0.57           |
| Hepatic Steatosis              | ECFP6                   | 0.12           | 0.57           | 0.78           | $0.84 \\ 0.75$ | 0.30           | $0.90 \\ 0.91$ | 0.84           | 0.62           | 0.22           | 0.61           | 0.85           | 0.92           | 0.31           | $0.91 \\ 0.91$ | 0.92           | 0.64           |
|                                | ESTATE<br>FCFP0         | $0.14 \\ 0.09$ | $0.61 \\ 0.58$ | $0.72 \\ 0.69$ | $0.75 \\ 0.73$ | $0.47 \\ 0.43$ | $0.91 \\ 0.91$ | $0.75 \\ 0.73$ | $0.65 \\ 0.60$ | $0.11 \\ 0.01$ | $0.59 \\ 0.51$ | $0.70 \\ 0.70$ | $0.73 \\ 0.75$ | $0.44 \\ 0.28$ | 0.91           | $0.73 \\ 0.75$ | $0.62 \\ 0.62$ |
|                                | FCFP2                   | 0.16           | 0.60           | 0.78           | 0.83           | 0.38           | 0.91           | 0.83           | 0.66           | 0.07           | 0.55           | 0.80           | 0.87           | 0.22           | 0.89           | 0.87           | 0.58           |
|                                | FCFP4                   | 0.18           | 0.61           | 0.80           | 0.86           | 0.36           | 0.91           | 0.86           | 0.66           | 0.15           | 0.58           | 0.82           | 0.90           | 0.25           | 0.90           | 0.90           | 0.60           |
|                                | FCFP6                   | 0.15           | 0.58           | 0.81           | 0.89           | 0.28           | 0.90           | 0.89           | 0.61           | 0.14           | 0.58           | 0.80           | 0.87           | 0.28           | 0.90           | 0.87           | 0.66           |
|                                | KR                      | 0.15           | 0.58           | 0.81           | 0.88           | 0.29           | 0.90           | 0.88           | 0.62           | 0.15           | 0.57           | 0.82           | 0.90           | 0.25           | 0.90           | 0.90           | 0.70           |
|                                | LSTAR<br>MACCS          | $0.16 \\ 0.25$ | $0.58 \\ 0.63$ | $0.87 \\ 0.84$ | $0.95 \\ 0.90$ | $0.20 \\ 0.35$ | $0.90 \\ 0.91$ | $0.95 \\ 0.90$ | $0.59 \\ 0.67$ | $0.05 \\ 0.18$ | $0.52 \\ 0.59$ | $0.83 \\ 0.83$ | $0.93 \\ 0.91$ | $0.11 \\ 0.28$ | $0.89 \\ 0.90$ | $0.93 \\ 0.91$ | 0.61<br>0.68   |
|                                | PUBCHEM                 | 0.18           | 0.60           | 0.81           | 0.87           | 0.33           | 0.91           | 0.87           | 0.63           | 0.13           | 0.55           | 0.83           | 0.91           | 0.19           | 0.89           | 0.91           | 0.65           |
|                                | RAD2D                   | 0.18           | 0.58           | 0.86           | 0.94           | 0.21           | 0.90           | 0.94           | 0.64           | 0.17           | 0.57           | 0.86           | 0.94           | 0.19           | 0.90           | 0.94           | 0.61           |
|                                | 2PPHAR                  | 0.37           | 0.70           | 0.81           | 0.53           | 0.86           | 0.46           | 0.53           | 0.75           | 0.41           | 0.71           | 0.82           | 0.55           | 0.87           | 0.49           | 0.55           | 0.78           |
|                                | 3PPHAR                  | 0.38           | 0.70           | 0.80           | 0.55           | 0.86           | 0.45           | 0.55           | 0.76           | 0.43           | 0.73           | 0.83           | 0.57           | 0.89           | 0.51           | 0.57           | 0.78           |
|                                | AP2D<br>ASP             | $0.49 \\ 0.62$ | $0.75 \\ 0.82$ | $0.85 \\ 0.89$ | $0.61 \\ 0.71$ | $0.90 \\ 0.93$ | $0.57 \\ 0.67$ | $0.61 \\ 0.71$ | $0.83 \\ 0.88$ | $0.54 \\ 0.64$ | $0.77 \\ 0.80$ | $0.87 \\ 0.90$ | $0.62 \\ 0.65$ | $0.92 \\ 0.95$ | $0.62 \\ 0.75$ | $0.62 \\ 0.65$ | $0.84 \\ 0.88$ |
|                                | AT2D                    | 0.62           | 0.82           | 0.88           | 0.71           | 0.93           | 0.64           | 0.71           | 0.87           | 0.62           | 0.80           | 0.89           | 0.03           | 0.93           | 0.73           | 0.03           | 0.86           |
|                                | DFS                     | 0.59           | 0.79           | 0.88           | 0.65           | 0.93           | 0.68           | 0.65           | 0.86           | 0.66           | 0.82           | 0.90           | 0.70           | 0.95           | 0.74           | 0.70           | 0.88           |
|                                | ECFP0                   | 0.55           | 0.81           | 0.85           | 0.75           | 0.87           | 0.57           | 0.75           | 0.87           | 0.66           | 0.87           | 0.89           | 0.83           | 0.90           | 0.64           | 0.83           | 0.92           |
|                                | ECFP2                   | 0.63           | 0.83           | 0.89           | 0.74           | 0.92           | 0.67           | 0.74           | 0.90           | 0.65           | 0.82           | 0.90           | 0.70           | 0.94           | 0.72           | 0.70           | 0.89           |
| Human J-44:- 1                 | ECFP4<br>ECFP6          | 0.57           | $0.79 \\ 0.78$ | 0.87           | 0.68           | $0.91 \\ 0.93$ | 0.63           | $0.68 \\ 0.63$ | 0.86           | $0.67 \\ 0.59$ | $0.84 \\ 0.79$ | $0.90 \\ 0.88$ | $0.74 \\ 0.65$ | 0.94           | 0.72           | $0.74 \\ 0.65$ | $0.91 \\ 0.89$ |
| Human Intestinal<br>Absorption | ECFP6<br>ESTATE         | $0.56 \\ 0.56$ | $0.78 \\ 0.81$ | $0.87 \\ 0.86$ | $0.63 \\ 0.74$ | 0.93 $0.88$    | $0.66 \\ 0.58$ | $0.63 \\ 0.74$ | $0.86 \\ 0.87$ | $0.59 \\ 0.52$ | $0.79 \\ 0.79$ | $0.88 \\ 0.84$ | $0.65 \\ 0.70$ | $0.93 \\ 0.88$ | $0.67 \\ 0.54$ | $0.65 \\ 0.70$ | 0.89<br>0.86   |
| .15501 p 11011                 | FCFP0                   | 0.31           | 0.68           | 0.76           | 0.56           | 0.80           | 0.38           | 0.74           | 0.74           | 0.32           | 0.66           | 0.76           | 0.52           | 0.81           | 0.37           | 0.52           | 0.30           |
|                                | FCFP2                   | 0.60           | 0.81           | 0.88           | 0.71           | 0.92           | 0.65           | 0.71           | 0.88           | 0.62           | 0.81           | 0.89           | 0.68           | 0.94           | 0.70           | 0.68           | 0.89           |
|                                | FCFP4                   | 0.59           | 0.80           | 0.88           | 0.69           | 0.92           | 0.65           | 0.69           | 0.88           | 0.62           | 0.82           | 0.88           | 0.72           | 0.92           | 0.66           | 0.72           | 0.88           |

Table S1 - Continued from previous page

| Endpoint                | FP               |                       | DAGG                | 100            |                | libration      |                |                | DAGG           | 100            |                |                |                | idation        |                |                |              |
|-------------------------|------------------|-----------------------|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|
| <del>-</del>            | FCFP6            | $\frac{\kappa}{0.57}$ | BACC<br>0.79        | ACC<br>0.87    | Se<br>0.66     | Sp<br>0.92     | AU C<br>0.64   | $\kappa$ 0.66  | BACC<br>0.86   | ACC<br>0.60    | Se<br>0.79     | Sp<br>0.89     | AUC<br>0.63    | 0.95           | 0.72           | 0.63           | 0.88         |
|                         | KR               | 0.57                  | 0.79                | 0.88           | 0.63           | 0.92           | 0.67           | 0.63           | 0.87           | 0.63           | 0.79           | 0.89           | 0.68           | 0.93           | 0.72           | 0.68           | 0.88         |
|                         | LSTAR            | 0.59                  | 0.73                | 0.87           | 0.71           | 0.93           | 0.63           | 0.03           | 0.87           | 0.56           | 0.31           | 0.88           | 0.60           | 0.94           | 0.66           | 0.60           | 0.85         |
|                         | MACCS            | 0.64                  | 0.84                | 0.89           | 0.77           | 0.91           | 0.66           | 0.77           | 0.89           | 0.63           | 0.83           | 0.89           | 0.74           | 0.92           | 0.66           | 0.74           | 0.89         |
|                         | PUBCHEM          | 0.58                  | 0.80                | 0.87           | 0.68           | 0.91           | 0.63           | 0.68           | 0.87           | 0.60           | 0.81           | 0.88           | 0.70           | 0.92           | 0.65           | 0.70           | 0.87         |
|                         | RAD2D            | 0.62                  | 0.83                | 0.88           | 0.74           | 0.92           | 0.66           | 0.74           | 0.89           | 0.62           | 0.80           | 0.89           | 0.67           | 0.94           | 0.70           | 0.67           | 0.86         |
|                         | 2PPHAR           | 0.01                  | 0.50                | 0.62           | 0.94           | 0.07           | 0.63           | 0.94           | 0.51           | 0.00           | 0.50           | 0.62           | 0.95           | 0.05           | 0.63           | 0.95           | 0.50         |
|                         | 3PPHAR           | 0.22                  | 0.60                | 0.68           | 0.92           | 0.27           | 0.69           | 0.92           | 0.69           | 0.19           | 0.58           | 0.67           | 0.93           | 0.24           | 0.68           | 0.93           | 0.68         |
|                         | AP2D             | 0.42                  | 0.70                | 0.73           | 0.82           | 0.59           | 0.78           | 0.82           | 0.78           | 0.44           | 0.71           | 0.75           | 0.84           | 0.59           | 0.78           | 0.84           | 0.80         |
|                         | ASP              | 0.52                  | 0.75                | 0.78           | 0.88           | 0.63           | 0.80           | 0.88           | 0.83           | 0.54           | 0.76           | 0.79           | 0.87           | 0.65           | 0.81           | 0.87           | 0.85         |
|                         | AT2D             | 0.55                  | 0.77                | 0.79           | 0.84           | 0.71           | 0.83           | 0.84           | 0.83           | 0.53           | 0.77           | 0.78           | 0.84           | 0.69           | 0.83           | 0.84           | 0.84         |
|                         | DFS              | 0.52                  | 0.75                | 0.78           | 0.86           | 0.64           | 0.81           | 0.86           | 0.82           | 0.55           | 0.77           | 0.79           | 0.87           | 0.67           | 0.82           | 0.87           | 0.8          |
|                         | ECFP0            | 0.42                  | 0.71                | 0.73           | 0.79           | 0.63           | 0.78           | 0.79           | 0.78           | 0.45           | 0.72           | 0.74           | 0.80           | 0.64           | 0.80           | 0.80           | 0.80         |
|                         | ECFP2            | 0.53                  | 0.76                | 0.79           | 0.88           | 0.63           | 0.80           | 0.88           | 0.84           | 0.57           | 0.78           | 0.81           | 0.90           | 0.65           | 0.82           | 0.90           | 0.87         |
| Human Liver             | ECFP4            | $0.52 \\ 0.51$        | 0.76                | $0.79 \\ 0.78$ | $0.87 \\ 0.89$ | $0.64 \\ 0.60$ | $0.81 \\ 0.79$ | $0.87 \\ 0.89$ | 0.84           | 0.54           | 0.76           | $0.79 \\ 0.79$ | $0.87 \\ 0.91$ | $0.65 \\ 0.59$ | $0.81 \\ 0.79$ | 0.87           | 0.86         |
| Microsomal              | ECFP6<br>ESTATE  | $0.51 \\ 0.40$        | $0.75 \\ 0.70$      | $0.78 \\ 0.72$ | 0.89           | $0.60 \\ 0.62$ | 0.79           | 0.89           | $0.83 \\ 0.77$ | $0.52 \\ 0.42$ | $0.75 \\ 0.71$ | $0.79 \\ 0.73$ | 0.91           | 0.59           | 0.79           | $0.91 \\ 0.78$ | 0.85<br>0.78 |
| Stability               | FCFP0            | 0.40                  | 0.76                | 0.72           | 0.77           | 0.35           | 0.78           | 0.77           | 0.64           | 0.42           | 0.71           | 0.73           | 0.78           | 0.04           | 0.79           | 0.78           | 0.76         |
|                         | FCFP2            | 0.52                  | 0.75                | 0.78           | 0.86           | 0.65           | 0.81           | 0.86           | 0.83           | 0.55           | 0.77           | 0.80           | 0.88           | 0.65           | 0.81           | 0.88           | 0.85         |
|                         | FCFP4            | 0.54                  | 0.76                | 0.80           | 0.88           | 0.64           | 0.81           | 0.88           | 0.84           | 0.55           | 0.77           | 0.80           | 0.88           | 0.65           | 0.81           | 0.88           | 0.85         |
|                         | FCFP6            | 0.51                  | 0.75                | 0.78           | 0.88           | 0.61           | 0.80           | 0.88           | 0.84           | 0.52           | 0.75           | 0.79           | 0.91           | 0.58           | 0.79           | 0.91           | 0.88         |
|                         | KR               | 0.51                  | 0.75                | 0.78           | 0.87           | 0.63           | 0.80           | 0.87           | 0.83           | 0.46           | 0.72           | 0.76           | 0.87           | 0.57           | 0.78           | 0.87           | 0.83         |
|                         | LSTAR            | 0.51                  | 0.74                | 0.79           | 0.92           | 0.56           | 0.78           | 0.92           | 0.83           | 0.48           | 0.72           | 0.77           | 0.91           | 0.54           | 0.77           | 0.91           | 0.82         |
|                         | MACCS            | 0.52                  | 0.76                | 0.78           | 0.84           | 0.67           | 0.82           | 0.84           | 0.83           | 0.52           | 0.76           | 0.78           | 0.84           | 0.67           | 0.82           | 0.84           | 0.84         |
|                         | PUBCHEM          | 0.51                  | 0.75                | 0.78           | 0.85           | 0.64           | 0.80           | 0.85           | 0.83           | 0.50           | 0.74           | 0.77           | 0.86           | 0.63           | 0.80           | 0.86           | 0.83         |
|                         | RAD2D            | 0.54                  | 0.76                | 0.79           | 0.90           | 0.61           | 0.80           | 0.90           | 0.84           | 0.50           | 0.74           | 0.78           | 0.91           | 0.56           | 0.78           | 0.91           | 0.84         |
|                         | 2PPHAR           | 0.18                  | 0.61                | 0.59           | 0.66           | 0.55           | 0.39           | 0.66           | 0.64           | 0.06           | 0.54           | 0.59           | 0.31           | 0.77           | 0.21           | 0.31           | 0.63         |
|                         | 3PPHAR           | 0.33                  | 0.65                | 0.70           | 0.41           | 0.89           | 0.71           | 0.41           | 0.80           | 0.33           | 0.65           | 0.70           | 0.43           | 0.87           | 0.69           | 0.43           | 0.79         |
|                         | AP2D             | 0.62                  | 0.81                | 0.82           | 0.80           | 0.83           | 0.76           | 0.80           | 0.89           | 0.65           | 0.83           | 0.83           | 0.81           | 0.85           | 0.77           | 0.81           | 0.90         |
|                         | ASP              | 0.77                  | 0.88                | 0.89           | 0.84           | 0.93           | 0.88           | 0.84           | 0.94           | 0.77           | 0.88           | 0.89           | 0.83           | 0.93           | 0.89           | 0.83           | 0.95         |
|                         | AT2D             | 0.76                  | $0.88 \\ 0.88$      | 0.88           | 0.86           | 0.90           | 0.85           | 0.86           | 0.94           | 0.77           | 0.88           | 0.89           | 0.85           | 0.92           | 0.87           | 0.85           | 0.94<br>0.95 |
|                         | $_{ m DFS}$      | $0.76 \\ 0.59$        | 0.80                | $0.89 \\ 0.80$ | $0.84 \\ 0.81$ | $0.92 \\ 0.79$ | $0.87 \\ 0.72$ | $0.84 \\ 0.81$ | $0.93 \\ 0.88$ | $0.79 \\ 0.58$ | $0.89 \\ 0.80$ | $0.90 \\ 0.80$ | $0.84 \\ 0.80$ | $0.93 \\ 0.79$ | $0.89 \\ 0.71$ | $0.84 \\ 0.80$ | 0.98         |
|                         | ECFF0            | 0.75                  | 0.87                | 0.88           | 0.85           | 0.19           | 0.72           | 0.85           | 0.94           | 0.73           | 0.86           | 0.87           | 0.81           | 0.75           | 0.71           | 0.81           | 0.95         |
|                         | ECFP4            | 0.76                  | 0.88                | 0.89           | 0.84           | 0.92           | 0.87           | 0.84           | 0.94           | 0.74           | 0.86           | 0.88           | 0.81           | 0.92           | 0.87           | 0.81           | 0.93         |
| Breast cancer           | ECFP6            | 0.77                  | 0.88                | 0.89           | 0.82           | 0.94           | 0.89           | 0.82           | 0.94           | 0.78           | 0.88           | 0.90           | 0.82           | 0.95           | 0.91           | 0.82           | 0.95         |
| resistance protein      | ESTATE           | 0.60                  | 0.81                | 0.80           | 0.81           | 0.80           | 0.72           | 0.81           | 0.88           | 0.59           | 0.80           | 0.80           | 0.82           | 0.78           | 0.71           | 0.82           | 0.88         |
| inhibition              | FCFP0            | 0.16                  | 0.58                | 0.62           | 0.38           | 0.77           | 0.52           | 0.38           | 0.62           | 0.12           | 0.56           | 0.60           | 0.36           | 0.76           | 0.49           | 0.36           | 0.58         |
|                         | FCFP2            | 0.70                  | 0.85                | 0.86           | 0.83           | 0.88           | 0.81           | 0.83           | 0.92           | 0.71           | 0.85           | 0.86           | 0.80           | 0.90           | 0.84           | 0.80           | 0.94         |
|                         | FCFP4            | 0.78                  | 0.89                | 0.89           | 0.85           | 0.92           | 0.87           | 0.85           | 0.95           | 0.81           | 0.90           | 0.91           | 0.88           | 0.93           | 0.89           | 0.88           | 0.96         |
|                         | FCFP6            | 0.78                  | 0.88                | 0.89           | 0.84           | 0.93           | 0.88           | 0.84           | 0.94           | 0.78           | 0.88           | 0.90           | 0.83           | 0.94           | 0.90           | 0.83           | 0.94         |
|                         | KR               | 0.72                  | 0.86                | 0.87           | 0.81           | 0.91           | 0.85           | 0.81           | 0.93           | 0.77           | 0.88           | 0.89           | 0.84           | 0.92           | 0.87           | 0.84           | 0.94         |
|                         | LSTAR            | 0.74                  | 0.86                | 0.88           | 0.79           | 0.93           | 0.89           | 0.79           | 0.93           | 0.76           | 0.87           | 0.89           | 0.80           | 0.94           | 0.90           | 0.80           | 0.93         |
|                         | MACCS            | 0.69                  | 0.85                | 0.85           | 0.83           | 0.86           | 0.80           | 0.83           | 0.93           | 0.71           | 0.86           | 0.86           | 0.84           | 0.88           | 0.82           | 0.84           | 0.94         |
|                         | PUBCHEM          | 0.75                  | 0.87                | 0.88           | 0.85           | 0.90           | 0.85           | 0.85           | 0.94           | 0.76           | 0.88           | 0.89           | 0.83           | 0.92           | 0.87           | 0.83           | 0.94         |
|                         | RAD2D            | 0.76                  | 0.88                | 0.89           | 0.83           | 0.92           | 0.87           | 0.83           | 0.94           | 0.78           | 0.89           | 0.90           | 0.86           | 0.93           | 0.88           | 0.86           | 0.95         |
|                         | 2PPHAR<br>3PPHAR | $0.31 \\ 0.32$        | 0.64<br>0.64        | 0.76<br>0.78   | 0.42<br>0.39   | 0.87<br>0.90   | $0.52 \\ 0.56$ | $0.42 \\ 0.39$ | 0.70<br>0.76   | $0.30 \\ 0.32$ | 0.63<br>0.64   | 0.77<br>0.77   | $0.38 \\ 0.39$ | 0.89<br>0.90   | $0.52 \\ 0.55$ | 0.38<br>0.39   | 0.70<br>0.76 |
|                         | AP2D             | 0.32 $0.64$           | 0.64                | 0.78           | 0.39           | 0.90           | 0.56           | 0.39           | 0.76           | $0.32 \\ 0.64$ | $0.64 \\ 0.81$ | 0.77           | 0.39 $0.68$    | 0.90           | $0.55 \\ 0.78$ | 0.39           | 0.76         |
|                         | ASP              | 0.66                  | 0.81                | 0.88           | 0.09           | $0.93 \\ 0.92$ | 0.74           | 0.09           | 0.90           | 0.66           | 0.83           | 0.88           | 0.08           | $0.94 \\ 0.92$ | 0.76           | 0.08           | 0.90         |
|                         | AT2D             | 0.61                  | 0.81                | 0.85           | 0.74           | 0.89           | 0.68           | 0.74           | 0.89           | 0.62           | 0.81           | 0.86           | 0.73           | 0.92           | 0.70           | 0.73           | 0.89         |
|                         | DFS              | 0.63                  | 0.82                | 0.86           | 0.75           | 0.90           | 0.70           | 0.75           | 0.89           | 0.67           | 0.82           | 0.88           | 0.71           | 0.94           | 0.79           | 0.71           | 0.90         |
|                         | ECFP0            | 0.60                  | 0.81                | 0.85           | 0.75           | 0.88           | 0.66           | 0.75           | 0.89           | 0.61           | 0.81           | 0.86           | 0.71           | 0.90           | 0.70           | 0.71           | 0.90         |
|                         | ECFP2            | 0.65                  | 0.82                | 0.87           | 0.73           | 0.92           | 0.74           | 0.73           | 0.91           | 0.65           | 0.82           | 0.87           | 0.73           | 0.92           | 0.74           | 0.73           | 0.92         |
| Blood Brain             | ECFP4            | 0.65                  | 0.81                | 0.88           | 0.69           | 0.93           | 0.76           | 0.69           | 0.89           | 0.67           | 0.80           | 0.89           | 0.64           | 0.97           | 0.87           | 0.64           | 0.9          |
| Barrier                 | ECFP6            | 0.62                  | 0.80                | 0.87           | 0.67           | 0.93           | 0.76           | 0.67           | 0.88           | 0.66           | 0.80           | 0.89           | 0.63           | 0.97           | 0.87           | 0.63           | 0.9          |
| Barrier<br>Permeability | ESTATE           | 0.60                  | 0.81                | 0.85           | 0.73           | 0.89           | 0.68           | 0.73           | 0.89           | 0.57           | 0.78           | 0.84           | 0.67           | 0.90           | 0.67           | 0.67           | 0.8          |
| y                       | FCFP0            | 0.37                  | 0.70                | 0.75           | 0.60           | 0.80           | 0.49           | 0.60           | 0.78           | 0.36           | 0.69           | 0.76           | 0.56           | 0.82           | 0.50           | 0.56           | 0.70         |
|                         | FCFP2            | 0.64                  | 0.82                | 0.87           | 0.73           | 0.91           | 0.73           | 0.73           | 0.91           | 0.64           | 0.81           | 0.87           | 0.69           | 0.93           | 0.76           | 0.69           | 0.9          |
|                         | FCFP4            | 0.66                  | 0.83                | 0.88           | 0.74           | 0.92           | 0.74           | 0.74           | 0.91           | 0.67           | 0.84           | 0.88           | 0.76           | 0.92           | 0.74           | 0.76           | 0.9          |
|                         | FCFP6            | 0.66                  | 0.81                | 0.88           | 0.68           | 0.95           | 0.80           | 0.68           | 0.90           | 0.71           | 0.84           | 0.90           | 0.73           | 0.95           | 0.83           | 0.73           | 0.9          |
|                         | KR               | 0.64                  | $\frac{0.82}{0.82}$ | 0.87           | 0.73           | $0.91 \\ 0.91$ | 0.73           | 0.73           | 0.91           | $0.65 \\ 0.62$ | 0.83           | $0.87 \\ 0.86$ | 0.74           | $0.91 \\ 0.91$ | 0.73           | 0.74           | 0.9<br>0.8   |
|                         | LSTAR<br>MACCS   | 0.64<br>0.66          | $0.82 \\ 0.83$      | $0.86 \\ 0.87$ | $0.74 \\ 0.75$ | $0.91 \\ 0.91$ | $0.71 \\ 0.73$ | $0.74 \\ 0.75$ | $0.88 \\ 0.91$ | $0.62 \\ 0.64$ | $0.81 \\ 0.81$ | $0.86 \\ 0.87$ | $0.70 \\ 0.69$ | $0.91 \\ 0.93$ | $0.72 \\ 0.77$ | $0.70 \\ 0.69$ | 0.8          |
|                         | PUBCHEM          | 0.66                  | 0.83                | 0.87           | $0.75 \\ 0.71$ | 0.91           | 0.73           | $0.75 \\ 0.71$ | 0.91           | 0.64           | 0.81           | 0.87           | 0.69           | 0.93           | 0.77           | 0.69           | 0.9          |
|                         | RAD2D            | 0.66                  | $0.82 \\ 0.82$      | 0.88           | $0.71 \\ 0.72$ | 0.93           | 0.76           | $0.71 \\ 0.72$ | 0.90           | $0.64 \\ 0.62$ | 0.81           | 0.86           | 0.69           | $0.93 \\ 0.92$ | 0.76           | 0.69           | 0.92         |
|                         |                  |                       | 0.02                | 0.00           |                |                |                |                |                |                |                |                |                |                |                |                |              |
|                         |                  | 0.19                  | 0.62                | 0.58           | 0.52           | 0.71           | 0.81           | 0.52           | 0.65           | 0.18           | 0.61           | 0.58           | 0.53           | 0.70           | 0.80           | 0.53           | 0.65         |
|                         | 2PPHAR<br>3PPHAR | 0.19<br>0.18          | 0.62<br>0.60        | 0.58<br>0.59   | 0.52<br>0.57   | 0.71<br>0.64   | 0.81<br>0.78   | 0.52<br>0.57   | 0.65<br>0.64   | 0.18<br>0.17   | 0.61<br>0.60   | 0.58<br>0.59   | $0.53 \\ 0.56$ | 0.70<br>0.65   | 0.80<br>0.78   | 0.53<br>0.56   | 0.65<br>0.65 |

Table S1 - Continued from previous page

|                 |                                                         |                |                |                | Ca             | Table S1       |                | ued from       | previous p     | oage           |                |                | Val            | idation        |                |                |                |
|-----------------|---------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Endpoint        | FP                                                      | κ              | BACC           | ACC            | Se             | Sp             | AUC            | κ              | BACC           | ACC            | Se             | Sp             | AUC            | Idanon         |                |                |                |
|                 | ASP                                                     | 0.51           | 0.78           | 0.77           | 0.77           | 0.78           | 0.89           | 0.77           | 0.85           | 0.52           | 0.78           | 0.78           | 0.78           | 0.78           | 0.89           | 0.78           | 0.86           |
|                 | AT2D                                                    | 0.48           | 0.76           | 0.76           | 0.77           | 0.76           | 0.88           | 0.77           | 0.84           | 0.50           | 0.77           | 0.77           | 0.77           | 0.76           | 0.88           | 0.77           | 0.84           |
|                 | DFS                                                     | 0.49           | 0.77           | 0.76           | 0.75           | 0.78           | 0.89           | 0.75           | 0.84           | 0.50           | 0.77           | 0.77           | 0.76           | 0.79           | 0.89           | 0.76           | 0.85           |
|                 | ECFP0                                                   | 0.27           | 0.65           | 0.65           | 0.64           | 0.66           | 0.81           | 0.64           | 0.70           | 0.29           | 0.66           | 0.66           | 0.65           | 0.68           | 0.82           | 0.65           | 0.72           |
|                 | ECFP2<br>ECFP4                                          | $0.50 \\ 0.51$ | $0.78 \\ 0.78$ | $0.77 \\ 0.77$ | $0.76 \\ 0.76$ | $0.79 \\ 0.79$ | $0.89 \\ 0.90$ | $0.76 \\ 0.76$ | $0.86 \\ 0.86$ | $0.52 \\ 0.52$ | $0.78 \\ 0.78$ | $0.78 \\ 0.78$ | $0.76 \\ 0.77$ | $0.81 \\ 0.80$ | 0.90<br>0.90   | $0.76 \\ 0.77$ | $0.87 \\ 0.87$ |
|                 | ECFP6                                                   | 0.51           | 0.77           | 0.77           | 0.76           | 0.79           | 0.89           | 0.76           | 0.85           | 0.52           | 0.78           | 0.77           | 0.77           | 0.80           | 0.90           | 0.77           | 0.86           |
|                 | ESTATE                                                  | 0.31           | 0.67           | 0.68           | 0.78           | 0.67           | 0.83           | 0.68           | 0.73           | 0.33           | 0.68           | 0.68           | 0.69           | 0.68           | 0.83           | 0.69           | 0.74           |
|                 | FCFP0                                                   | 0.16           | 0.61           | 0.50           | 0.33           | 0.89           | 0.88           | 0.33           | 0.64           | 0.16           | 0.61           | 0.52           | 0.39           | 0.83           | 0.84           | 0.39           | 0.64           |
|                 | FCFP2                                                   | 0.46           | 0.76           | 0.74           | 0.72           | 0.79           | 0.89           | 0.72           | 0.84           | 0.45           | 0.75           | 0.74           | 0.71           | 0.80           | 0.89           | 0.71           | 0.84           |
|                 | FCFP4                                                   | 0.50           | 0.78           | 0.77           | 0.76           | 0.80           | 0.90           | 0.76           | 0.86           | 0.51           | 0.78           | 0.78           | 0.77           | 0.79           | 0.90           | 0.77           | 0.86           |
|                 | FCFP6                                                   | 0.50           | 0.77           | 0.76           | 0.75           | 0.80           | 0.89           | 0.75           | 0.85           | 0.52           | 0.78           | 0.78           | 0.76           | 0.80           | 0.90           | 0.76           | 0.86           |
|                 | KR                                                      | 0.47           | 0.76           | 0.75           | 0.74           | 0.79           | 0.89           | 0.74           | 0.84           | 0.48           | 0.76           | 0.75           | 0.74           | 0.79           | 0.89           | 0.74           | 0.84           |
|                 | LSTAR                                                   | 0.48           | 0.76           | 0.76           | 0.74           | 0.78           | 0.89           | 0.74           | 0.84           | 0.49           | 0.77           | 0.77           | 0.76           | 0.78           | 0.89           | 0.76           | 0.85           |
|                 | MACCS                                                   | 0.49           | 0.77           | 0.76           | 0.76           | 0.78           | 0.89           | 0.76           | 0.85           | 0.50           | 0.77           | 0.77           | 0.77           | 0.78           | 0.89           | 0.77           | 0.86           |
|                 | PUBCHEM                                                 | 0.53           | 0.79           | 0.78           | 0.78           | 0.80           | 0.90           | 0.78           | 0.87           | 0.54           | 0.79           | 0.79           | 0.79           | 0.80           | 0.90           | 0.79           | 0.87           |
|                 | RAD2D                                                   | 0.49           | 0.77           | 0.76           | 0.75           | 0.78           | 0.89           | 0.75           | 0.85           | 0.50           | 0.77           | 0.77           | 0.76           | 0.78           | 0.89           | 0.76           | 0.85           |
|                 | 2PPHAR                                                  | 0.02           | 0.55           | 0.46           | 0.66           | 0.45           | 0.06           | 0.66           | 0.57           | 0.02           | 0.55           | 0.45           | 0.65           | 0.44           | 0.06           | 0.65           | 0.56           |
|                 | 3PPHAR<br>AP2D                                          | $0.03 \\ 0.07$ | $0.56 \\ 0.63$ | $0.55 \\ 0.63$ | $0.57 \\ 0.64$ | $0.55 \\ 0.63$ | $0.07 \\ 0.09$ | $0.57 \\ 0.64$ | $0.58 \\ 0.68$ | $0.02 \\ 0.07$ | $0.55 \\ 0.64$ | $0.58 \\ 0.63$ | $0.51 \\ 0.65$ | $0.59 \\ 0.62$ | 0.06<br>0.09   | $0.51 \\ 0.65$ | $0.57 \\ 0.69$ |
|                 | ASP                                                     | 0.07           | 0.63           | 0.03 $0.74$    | 0.64           | 0.63           | 0.09           | 0.64           | 0.68           | 0.07           | 0.64           | 0.63           | 0.63           | 0.62           | 0.09           | 0.65           | 0.69           |
|                 | AT2D                                                    | 0.14           | 0.71           | 0.74           | 0.69           | 0.74           | 0.13           | 0.69           | 0.76           | 0.14           | 0.70           | 0.73           | 0.70           | 0.73           | 0.13           | 0.70           | 0.78           |
|                 | DFS                                                     | 0.12           | 0.72           | 0.71           | 0.72           | 0.71           | 0.12           | 0.72           | 0.77           | 0.14           | 0.71           | 0.74           | 0.67           | 0.75           | 0.13           | 0.67           | 0.77           |
|                 | ECFP0                                                   | 0.09           | 0.66           | 0.66           | 0.66           | 0.66           | 0.10           | 0.66           | 0.72           | 0.09           | 0.66           | 0.67           | 0.65           | 0.67           | 0.10           | 0.65           | 0.72           |
|                 | ECFP2                                                   | 0.14           | 0.72           | 0.72           | 0.71           | 0.72           | 0.12           | 0.71           | 0.78           | 0.15           | 0.73           | 0.73           | 0.74           | 0.73           | 0.13           | 0.74           | 0.80           |
|                 | ECFP4                                                   | 0.14           | 0.72           | 0.74           | 0.70           | 0.74           | 0.13           | 0.70           | 0.78           | 0.14           | 0.71           | 0.74           | 0.68           | 0.74           | 0.13           | 0.68           | 0.78           |
| DMSO Solubility | ECFP6                                                   | 0.13           | 0.72           | 0.72           | 0.72           | 0.72           | 0.12           | 0.72           | 0.78           | 0.15           | 0.73           | 0.75           | 0.71           | 0.75           | 0.14           | 0.71           | 0.80           |
| DMSO Solubility | ESTATE                                                  | 0.09           | 0.67           | 0.66           | 0.67           | 0.66           | 0.10           | 0.67           | 0.72           | 0.09           | 0.67           | 0.67           | 0.68           | 0.67           | 0.10           | 0.68           | 0.73           |
|                 | FCFP0                                                   | 0.06           | 0.62           | 0.60           | 0.64           | 0.60           | 0.08           | 0.64           | 0.65           | 0.05           | 0.62           | 0.60           | 0.64           | 0.59           | 0.08           | 0.64           | 0.64           |
|                 | FCFP2                                                   | 0.11           | 0.69           | 0.69           | 0.68           | 0.69           | 0.11           | 0.68           | 0.75           | 0.10           | 0.69           | 0.68           | 0.69           | 0.68           | 0.11           | 0.69           | 0.76           |
|                 | FCFP4                                                   | 0.13           | 0.71           | 0.72           | 0.69           | 0.72           | 0.12           | 0.69           | 0.78           | 0.12           | 0.70           | 0.72           | 0.68           | 0.72           | 0.12           | 0.68           | 0.77           |
|                 | $_{ m KR}^{ m FCFP6}$                                   | $0.14 \\ 0.12$ | $0.72 \\ 0.71$ | $0.74 \\ 0.71$ | $0.69 \\ 0.70$ | $0.74 \\ 0.71$ | $0.13 \\ 0.12$ | $0.69 \\ 0.70$ | $0.78 \\ 0.77$ | $0.14 \\ 0.13$ | $0.71 \\ 0.70$ | $0.74 \\ 0.73$ | $0.67 \\ 0.67$ | $0.75 \\ 0.73$ | $0.13 \\ 0.12$ | $0.67 \\ 0.67$ | $0.78 \\ 0.76$ |
|                 | LSTAR                                                   | 0.12           | 0.69           | 0.71           | 0.68           | 0.71           | 0.12           | 0.68           | 0.76           | 0.13           | 0.70           | 0.73           | 0.66           | 0.74           | 0.12           | 0.66           | 0.76           |
|                 | MACCS                                                   | 0.11           | 0.71           | 0.72           | 0.70           | 0.72           | 0.11           | 0.70           | 0.78           | 0.13           | 0.71           | 0.72           | 0.70           | 0.72           | 0.12           | 0.70           | 0.77           |
|                 | PUBCHEM                                                 | 0.13           | 0.71           | 0.72           | 0.70           | 0.72           | 0.12           | 0.70           | 0.78           | 0.14           | 0.73           | 0.73           | 0.73           | 0.73           | 0.13           | 0.73           | 0.80           |
|                 | RAD2D                                                   | 0.13           | 0.71           | 0.73           | 0.68           | 0.73           | 0.12           | 0.68           | 0.77           | 0.14           | 0.72           | 0.74           | 0.70           | 0.74           | 0.13           | 0.70           | 0.79           |
|                 | 2PPHAR                                                  | 0.02           | 0.52           | 0.76           | 0.24           | 0.81           | NaN            | 0.24           | 0.59           | 0.02           | 0.53           | 0.76           | 0.25           | 0.82           | NΑ             | 0.25           | 0.65           |
|                 | 3PPHAR                                                  | 0.09           | 0.56           | 0.81           | 0.24           | 0.87           | 0.16           | 0.24           | 0.57           | 0.12           | 0.57           | 0.81           | 0.27           | 0.87           | 0.18           | 0.27           | 0.56           |
|                 | AP2D                                                    | 0.16           | 0.61           | 0.80           | 0.37           | 0.85           | 0.21           | 0.37           | 0.64           | 0.14           | 0.59           | 0.81           | 0.31           | 0.86           | 0.19           | 0.31           | 0.69           |
|                 | ASP                                                     | 0.16           | 0.61           | 0.80           | 0.38           | 0.84           | 0.21           | 0.38           | 0.67           | 0.12           | 0.56           | 0.82           | 0.23           | 0.89           | 0.27           | 0.23           | 0.67           |
|                 | AT2D                                                    | 0.17           | 0.60           | 0.85           | 0.28           | 0.91           | 0.24           | 0.28           | 0.67           | 0.05           | 0.52           | 0.83           | 0.15           | 0.90           | 0.14           | 0.15           | 0.63           |
|                 | DFS                                                     | 0.18           | 0.64           | 0.77           | 0.48           | 0.80           | 0.21           | 0.48           | 0.67           | 0.19           | 0.65           | 0.80           | 0.46           | 0.83           | 0.22           | 0.46           | 0.65           |
|                 | $\begin{array}{c} { m ECFP0} \\ { m ECFP2} \end{array}$ | $0.07 \\ 0.24$ | $0.56 \\ 0.64$ | $0.74 \\ 0.84$ | $0.33 \\ 0.38$ | $0.78 \\ 0.89$ | $0.14 \\ 0.29$ | $0.33 \\ 0.38$ | $0.58 \\ 0.69$ | $0.15 \\ 0.10$ | $0.62 \\ 0.56$ | $0.74 \\ 0.80$ | $0.48 \\ 0.27$ | $0.77 \\ 0.86$ | 0.18<br>0.17   | $0.48 \\ 0.27$ | $0.65 \\ 0.64$ |
| Multidrug Toxin | ECFP4                                                   | $0.24 \\ 0.17$ | 0.60           | 0.82           | 0.33           | 0.88           | $0.29 \\ 0.23$ | 0.33           | 0.69           | 0.10           | $0.50 \\ 0.52$ | 0.88           | 0.27           | 0.86           | N A            | 0.27           | 0.65           |
| Extrusion       | ECFP6                                                   | 0.18           | 0.61           | 0.82           | 0.35           | 0.87           | 0.23           | 0.35           | 0.69           | 0.03           | 0.52           | 0.76           | 0.23           | 0.81           | 0.11           | 0.23           | 0.66           |
| Transporter 1   | ESTATE                                                  | 0.13           | 0.62           | 0.73           | 0.48           | 0.76           | 0.17           | 0.48           | 0.64           | 0.09           | 0.59           | 0.70           | 0.46           | 0.73           | 0.14           | 0.46           | 0.62           |
| Inhibition      | FCFP0                                                   | 0.09           | 0.60           | 0.68           | 0.49           | 0.70           | 0.15           | 0.49           | 0.65           | 0.06           | 0.56           | 0.69           | 0.40           | 0.72           | 0.13           | 0.40           | 0.58           |
|                 | FCFP2                                                   | 0.17           | 0.62           | 0.81           | 0.38           | 0.85           | 0.21           | 0.38           | 0.70           | 0.27           | 0.68           | 0.83           | 0.50           | 0.87           | 0.28           | 0.50           | 0.76           |
|                 | FCFP4                                                   | 0.12           | 0.57           | 0.83           | 0.25           | 0.89           | 0.20           | 0.25           | 0.65           | 0.14           | 0.57           | 0.85           | 0.23           | 0.92           | 0.31           | 0.23           | 0.68           |
|                 | FCFP6                                                   | 0.14           | 0.59           | 0.79           | 0.35           | 0.84           | 0.20           | 0.35           | 0.63           | 0.04           | 0.51           | 0.81           | 0.15           | 0.88           | 0.23           | 0.15           | 0.65           |
|                 | KR                                                      | 0.17           | 0.60           | 0.83           | 0.31           | 0.89           | 0.23           | 0.31           | 0.67           | 0.00           | 0.50           | 0.83           | 0.10           | 0.90           | 0.08           | 0.10           | 0.54           |
|                 | LSTAR                                                   | 0.14           | 0.59           | 0.82           | 0.30           | 0.88           | 0.21           | 0.30           | 0.67           | 0.09           | 0.56           | 0.84           | 0.21           | 0.91           | N A            | 0.21           | 0.62           |
|                 | MACCS                                                   | 0.18           | 0.61           | 0.82           | 0.36           | 0.86           | 0.23           | 0.36           | 0.66           | 0.18           | 0.62           | 0.81           | 0.40           | 0.85           | 0.22           | 0.40           | 0.75           |
|                 | PUBCHEM<br>RAD2D                                        | $0.20 \\ 0.17$ | $0.62 \\ 0.60$ | $0.82 \\ 0.83$ | $0.38 \\ 0.32$ | $0.87 \\ 0.88$ | $0.24 \\ 0.23$ | $0.38 \\ 0.32$ | $0.68 \\ 0.68$ | $0.11 \\ 0.20$ | $0.57 \\ 0.61$ | $0.80 \\ 0.85$ | $0.29 \\ 0.31$ | $0.85 \\ 0.91$ | $0.17 \\ 0.26$ | $0.29 \\ 0.31$ | $0.64 \\ 0.70$ |
|                 | 2PPHAR                                                  | 0.17           | 0.58           | 0.60           | 0.32           | 0.88           | 0.23           | 0.32           | 0.68           | 0.20           | 0.58           | 0.85           | 0.31           | 0.91           | 0.26           | 0.31           | 0.70           |
|                 | 3PPHAR                                                  | 0.18           | 0.60           | 0.62           | 0.24<br>0.32   | 0.93           | 0.76           | 0.24           | 0.68           | 0.17           | 0.58           | 0.63           | 0.24 $0.32$    | $0.93 \\ 0.92$ | 0.75           | 0.24           | 0.70           |
|                 | AP2D                                                    | 0.51           | 0.75           | 0.76           | 0.69           | 0.82           | 0.77           | 0.69           | 0.83           | 0.56           | 0.78           | 0.78           | 0.32           | 0.85           | 0.77           | 0.32           | 0.70           |
|                 | ASP                                                     | 0.60           | 0.73           | 0.70           | 0.85           | 0.32           | 0.75           | 0.85           | 0.87           | 0.60           | 0.80           | 0.18           | 0.81           | 0.33           | 0.31           | 0.71           | 0.88           |
|                 | AT2D                                                    | 0.59           | 0.80           | 0.79           | 0.85           | 0.74           | 0.75           | 0.85           | 0.87           | 0.57           | 0.79           | 0.79           | 0.82           | 0.76           | 0.75           | 0.82           | 0.86           |
|                 | DFS                                                     | 0.58           | 0.79           | 0.79           | 0.85           | 0.73           | 0.74           | 0.85           | 0.87           | 0.54           | 0.77           | 0.77           | 0.86           | 0.69           | 0.71           | 0.86           | 0.85           |
|                 | ECFP0                                                   | 0.53           | 0.76           | 0.77           | 0.71           | 0.81           | 0.77           | 0.71           | 0.84           | 0.51           | 0.75           | 0.76           | 0.70           | 0.81           | 0.77           | 0.70           | 0.85           |
|                 | ECFP2                                                   | 0.58           | 0.79           | 0.79           | 0.75           | 0.83           | 0.80           | 0.75           | 0.87           | 0.61           | 0.80           | 0.81           | 0.78           | 0.83           | 0.81           | 0.78           | 0.89           |
|                 | ECFP4                                                   | 0.58           | 0.79           | 0.79           | 0.77           | 0.81           | 0.78           | 0.77           | 0.87           | 0.57           | 0.78           | 0.78           | 0.76           | 0.80           | 0.78           | 0.76           | 0.87           |
| P-glycoprotein  | ECFP6                                                   | 0.54           | 0.77           | 0.77           | 0.78           | 0.76           | 0.74           | 0.78           | 0.85           | 0.61           | 0.80           | 0.80           | 0.82           | 0.78           | 0.78           | 0.82           | 0.88           |
| Substrate       | ESTATE                                                  | 0.51           | 0.75           | 0.75           | 0.71           | 0.80           | 0.76           | 0.71           | 0.82           | 0.54           | 0.77           | 0.77           | 0.73           | 0.80           | 0.77           | 0.73           | 0.85           |
|                 | FCFP0                                                   | 0.22           | 0.61           | 0.62           | 0.34           | 0.87           | 0.70           | 0.34           | 0.69           | 0.24           | 0.62           | 0.63           | 0.35           | 0.88           | 0.72           | 0.35           | 0.70           |

Table S1 - Continued from previous page

| Endpoint         | FP              |                |                |                |                | libration      |                |                |                |                |                |                |                | idation        |                |                |                |
|------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Enapoint         |                 | κ              | BACC           | ACC            | Se             | Sp             | AUC            | $\kappa$       | BACC           | ACC            | Se             | Sp             | AUC            |                |                |                |                |
|                  | FCFP2           | 0.59           | 0.79           | 0.80           | 0.75           | 0.84           | 0.80           | 0.75           | 0.88           | 0.57           | 0.78           | 0.78           | 0.72           | 0.84           | 0.80           | 0.72           | 0.86           |
|                  | FCFP4<br>FCFP6  | $0.59 \\ 0.59$ | $0.79 \\ 0.79$ | $0.80 \\ 0.79$ | $0.76 \\ 0.82$ | $0.83 \\ 0.77$ | $0.80 \\ 0.76$ | $0.76 \\ 0.82$ | $0.87 \\ 0.86$ | $0.61 \\ 0.62$ | $0.80 \\ 0.81$ | $0.81 \\ 0.81$ | $0.79 \\ 0.85$ | $0.82 \\ 0.77$ | 0.80<br>0.77   | $0.79 \\ 0.85$ | $0.89 \\ 0.88$ |
|                  | KR              | 0.59           | 0.79           | 0.79           | 0.82           | 0.85           | 0.76           | 0.82 $0.72$    | 0.86           | 0.59           | 0.79           | 0.80           | 0.83           | 0.77           | 0.77           | 0.83           | 0.89           |
|                  | LSTAR           | 0.56           | 0.78           | 0.78           | 0.72           | 0.33           | 0.76           | 0.72           | 0.85           | 0.57           | 0.79           | 0.79           | 0.73           | 0.33           | 0.32           | 0.73           | 0.87           |
|                  | MACCS           | 0.60           | 0.80           | 0.80           | 0.78           | 0.82           | 0.79           | 0.78           | 0.87           | 0.58           | 0.79           | 0.79           | 0.76           | 0.82           | 0.79           | 0.76           | 0.87           |
|                  | PUBCHEM         | 0.57           | 0.78           | 0.79           | 0.74           | 0.82           | 0.79           | 0.74           | 0.86           | 0.58           | 0.79           | 0.79           | 0.77           | 0.82           | 0.79           | 0.77           | 0.88           |
|                  | RAD2D           | 0.57           | 0.79           | 0.79           | 0.73           | 0.84           | 0.80           | 0.73           | 0.87           | 0.57           | 0.79           | 0.79           | 0.75           | 0.82           | 0.79           | 0.75           | 0.87           |
|                  | 2PPHAR          | 0.30           | 0.64           | 0.68           | 0.40           | 0.89           | 0.72           | 0.40           | 0.70           | 0.27           | 0.63           | 0.66           | 0.36           | 0.89           | 0.71           | 0.36           | 0.69           |
|                  | 3PPHAR          | 0.32           | 0.65           | 0.69           | 0.39           | 0.91           | 0.76           | 0.39           | 0.72           | 0.29           | 0.64           | 0.68           | 0.34           | 0.93           | 0.78           | 0.34           | 0.73           |
|                  | AP2D            | 0.54           | 0.77           | 0.78           | 0.72           | 0.82           | 0.75           | 0.72           | 0.85           | 0.58           | 0.79           | 0.80           | 0.76           | 0.83           | 0.76           | 0.76           | 0.86           |
|                  | ASP             | 0.64           | 0.82           | 0.82           | 0.83           | 0.82           | 0.77           | 0.83           | 0.90           | 0.65           | 0.83           | 0.83           | 0.85           | 0.81           | 0.77           | 0.85           | 0.91           |
|                  | AT2D            | 0.64           | 0.83           | 0.82           | 0.85           | 0.81           | 0.77           | 0.85           | 0.90           | 0.68           | 0.84           | 0.84           | 0.86           | 0.83           | 0.79           | 0.86           | 0.91           |
|                  | DFS             | 0.63           | 0.82           | 0.82           | 0.83           | 0.81           | 0.76           | 0.83           | 0.89           | 0.63           | 0.82           | 0.82           | 0.83           | 0.81           | 0.76           | 0.83           | 0.90           |
|                  | ECFP0           | 0.51           | 0.76           | 0.76           | 0.76           | 0.76           | 0.70           | 0.76           | 0.83           | 0.53           | 0.77           | 0.77           | 0.74           | 0.80           | 0.73           | 0.74           | 0.84           |
|                  | ECFP2           | 0.62           | 0.81           | 0.81           | 0.77           | 0.85           | 0.79           | 0.77           | 0.90           | 0.64           | 0.82           | 0.82           | 0.78           | 0.85           | 0.80           | 0.78           | 0.91           |
| D 1              | ECFP4           | 0.61           | 0.80           | 0.81           | 0.77           | 0.84           | 0.78           | 0.77           | 0.89           | 0.62           | 0.81           | 0.82           | 0.75           | 0.86           | 0.80           | 0.75           | 0.90           |
| P-glycoprotein   | ECFP6           | 0.57           | 0.78           | 0.79           | 0.75           | 0.82           | 0.75           | 0.75           | 0.87           | 0.60           | 0.80           | 0.81           | 0.76           | 0.84           | 0.78           | 0.76           | 0.89           |
| Inhibitor        | ESTATE<br>FCFP0 | $0.44 \\ 0.26$ | $0.72 \\ 0.63$ | 0.73           | 0.66           | 0.78           | 0.69           | 0.66           | 0.80           | 0.44           | 0.72           | 0.73           | 0.61           | $0.82 \\ 0.83$ | 0.72           | 0.61           | 0.81           |
|                  | FCFP0<br>FCFP2  | $0.26 \\ 0.59$ | $0.63 \\ 0.80$ | $0.66 \\ 0.80$ | $0.41 \\ 0.77$ | $0.84 \\ 0.82$ | $0.66 \\ 0.76$ | $0.41 \\ 0.77$ | $0.67 \\ 0.88$ | $0.23 \\ 0.59$ | $0.61 \\ 0.80$ | $0.64 \\ 0.80$ | $0.38 \\ 0.77$ | $0.83 \\ 0.82$ | $0.64 \\ 0.76$ | $0.38 \\ 0.77$ | $0.67 \\ 0.89$ |
|                  | FCFP4           | 0.62           | 0.80           | 0.80           | 0.77           | 0.85           | 0.79           | 0.77           | 0.90           | 0.59           | 0.83           | 0.84           | 0.81           | 0.85           | 0.76           | 0.77           | 0.89           |
|                  | FCFP6           | 0.58           | 0.31           | 0.79           | 0.76           | 0.82           | 0.76           | 0.76           | 0.88           | 0.61           | 0.80           | 0.81           | 0.75           | 0.85           | 0.79           | 0.75           | 0.89           |
|                  | KR              | 0.62           | 0.81           | 0.81           | 0.77           | 0.85           | 0.79           | 0.77           | 0.89           | 0.65           | 0.83           | 0.83           | 0.81           | 0.84           | 0.79           | 0.81           | 0.90           |
|                  | LSTAR           | 0.60           | 0.80           | 0.81           | 0.76           | 0.84           | 0.78           | 0.76           | 0.89           | 0.63           | 0.81           | 0.82           | 0.78           | 0.85           | 0.79           | 0.78           | 0.89           |
|                  | MACCS           | 0.64           | 0.82           | 0.82           | 0.83           | 0.82           | 0.77           | 0.83           | 0.90           | 0.67           | 0.84           | 0.84           | 0.86           | 0.82           | 0.78           | 0.86           | 0.91           |
|                  | PUBCHEM         | 0.67           | 0.84           | 0.84           | 0.83           | 0.85           | 0.80           | 0.83           | 0.91           | 0.69           | 0.85           | 0.85           | 0.83           | 0.86           | 0.82           | 0.83           | 0.92           |
|                  | RAD2D           | 0.65           | 0.82           | 0.83           | 0.79           | 0.86           | 0.81           | 0.79           | 0.90           | 0.68           | 0.84           | 0.84           | 0.82           | 0.85           | 0.81           | 0.82           | 0.91           |
|                  | 2PPHAR          | 0.27           | 0.67           | 0.63           | 0.57           | 0.77           | 0.86           | 0.57           | 0.70           | 0.25           | 0.66           | 0.61           | 0.53           | 0.79           | 0.86           | 0.53           | 0.69           |
|                  | 3PPHAR          | 0.19           | 0.60           | 0.66           | 0.74           | 0.46           | 0.77           | 0.74           | 0.68           | 0.20           | 0.60           | 0.67           | 0.76           | 0.44           | 0.77           | 0.76           | 0.69           |
|                  | AP2D            | 0.43           | 0.72           | 0.76           | 0.81           | 0.64           | 0.85           | 0.81           | 0.80           | 0.45           | 0.73           | 0.77           | 0.83           | 0.62           | 0.84           | 0.83           | 0.82           |
|                  | ASP             | 0.52           | 0.76           | 0.80           | 0.86           | 0.65           | 0.86           | 0.86           | 0.84           | 0.54           | 0.77           | 0.81           | 0.87           | 0.66           | 0.86           | 0.87           | 0.85           |
|                  | AT2D            | 0.47           | 0.73           | 0.78           | 0.85           | 0.62           | 0.85           | 0.85           | 0.81           | 0.53           | 0.76           | 0.81           | 0.88           | 0.64           | 0.86           | 0.88           | 0.84           |
|                  | DFS             | 0.51           | 0.76           | 0.79           | 0.84           | 0.69           | 0.87           | 0.84           | 0.84           | 0.52           | 0.77           | 0.80           | 0.83           | 0.70           | 0.87           | 0.83           | 0.85           |
|                  | ECFP0           | 0.44           | 0.73           | 0.76           | $0.82 \\ 0.88$ | 0.63           | 0.85           | 0.82           | 0.80           | 0.49           | 0.75           | 0.79           | $0.83 \\ 0.88$ | 0.67           | 0.86           | 0.83           | 0.84           |
|                  | ECFP2<br>ECFP4  | $0.52 \\ 0.50$ | $0.76 \\ 0.74$ | $0.81 \\ 0.80$ | 0.88           | $0.63 \\ 0.61$ | $0.86 \\ 0.85$ | $0.88 \\ 0.88$ | $0.84 \\ 0.84$ | $0.51 \\ 0.58$ | $0.75 \\ 0.79$ | $0.81 \\ 0.83$ | 0.88           | $0.62 \\ 0.69$ | $0.85 \\ 0.88$ | $0.88 \\ 0.89$ | $0.84 \\ 0.87$ |
|                  | ECFP6           | 0.50           | 0.74           | 0.80           | 0.87           | 0.62           | 0.85           | 0.87           | 0.83           | 0.52           | 0.79           | 0.81           | 0.89           | 0.58           | 0.84           | 0.89           | 0.85           |
| Phospholipidosis | ESTATE          | 0.43           | 0.73           | 0.76           | 0.81           | 0.64           | 0.85           | 0.81           | 0.80           | 0.32           | 0.74           | 0.31           | 0.82           | 0.66           | 0.86           | 0.82           | 0.81           |
|                  | FCFP0           | 0.46           | 0.74           | 0.77           | 0.81           | 0.67           | 0.86           | 0.81           | 0.79           | 0.46           | 0.74           | 0.77           | 0.82           | 0.66           | 0.86           | 0.82           | 0.80           |
|                  | FCFP2           | 0.56           | 0.78           | 0.81           | 0.86           | 0.71           | 0.88           | 0.86           | 0.86           | 0.54           | 0.77           | 0.81           | 0.87           | 0.68           | 0.87           | 0.87           | 0.88           |
|                  | FCFP4           | 0.55           | 0.78           | 0.81           | 0.86           | 0.69           | 0.87           | 0.86           | 0.86           | 0.51           | 0.75           | 0.80           | 0.87           | 0.64           | 0.86           | 0.87           | 0.85           |
|                  | FCFP6           | 0.56           | 0.78           | 0.82           | 0.87           | 0.69           | 0.87           | 0.87           | 0.86           | 0.55           | 0.77           | 0.82           | 0.89           | 0.65           | 0.86           | 0.89           | 0.86           |
|                  | KR              | 0.52           | 0.76           | 0.80           | 0.87           | 0.64           | 0.86           | 0.87           | 0.84           | 0.52           | 0.75           | 0.81           | 0.90           | 0.60           | 0.84           | 0.90           | 0.85           |
|                  | LSTAR           | 0.49           | 0.74           | 0.79           | 0.87           | 0.62           | 0.85           | 0.87           | 0.83           | 0.51           | 0.74           | 0.81           | 0.89           | 0.60           | 0.85           | 0.89           | 0.85           |
|                  | MACCS           | 0.53           | 0.77           | 0.81           | 0.85           | 0.68           | 0.87           | 0.85           | 0.85           | 0.50           | 0.76           | 0.79           | 0.84           | 0.68           | 0.87           | 0.84           | 0.86           |
|                  | PUBCHEM         | 0.52           | 0.75           | 0.80           | 0.87           | 0.64           | 0.86           | 0.87           | 0.84           | 0.50           | 0.74           | 0.80           | 0.89           | 0.60           | 0.84           | 0.89           | 0.84           |
|                  | RAD2D           | 0.53           | 0.76           | 0.81           | 0.88           | 0.63           | 0.85           | 0.88           | 0.85           | 0.49           | 0.73           | 0.81           | 0.92           | 0.53           | 0.83           | 0.92           | 0.84           |
|                  | 2PPHAR          | 0.22           | 0.61           | 0.71           | 0.82           | 0.40           | 0.82           | 0.82           | 0.73           | 0.23           | 0.60           | 0.75           | 0.91           | 0.29           | 0.80           | 0.91           | 0.72           |
|                  | 3PPHAR          | 0.27           | 0.63           | 0.74           | 0.84           | 0.43           | 0.82           | 0.84           | 0.72           | 0.25           | 0.62           | 0.74           | 0.85           | 0.39           | 0.81           | 0.85           | 0.72           |
|                  | AP2D            | 0.36           | 0.69           | 0.75           | 0.82           | 0.55           | 0.85           | 0.82           | 0.77           | 0.27           | 0.63           | 0.74           | 0.85           | 0.40           | 0.81           | 0.85           | 0.74           |
|                  | ASP<br>AT2D     | $0.44 \\ 0.45$ | $0.73 \\ 0.74$ | $0.78 \\ 0.78$ | $0.83 \\ 0.82$ | $0.63 \\ 0.66$ | $0.87 \\ 0.88$ | $0.83 \\ 0.82$ | $0.80 \\ 0.80$ | $0.48 \\ 0.44$ | $0.73 \\ 0.74$ | $0.82 \\ 0.77$ | $0.91 \\ 0.81$ | $0.54 \\ 0.66$ | $0.86 \\ 0.88$ | $0.91 \\ 0.81$ | $0.81 \\ 0.80$ |
|                  | DFS             | $0.45 \\ 0.42$ | $0.74 \\ 0.72$ | 0.78           | 0.82 $0.84$    | 0.59           | 0.88           | 0.82 $0.84$    | 0.80           | $0.44 \\ 0.43$ | $0.74 \\ 0.72$ | 0.77           | 0.81 $0.84$    | 0.66           | 0.88           | 0.81 $0.84$    | $0.80 \\ 0.82$ |
|                  | ECFP0           | 0.42           | 0.72           | 0.73           | 0.78           | 0.60           | 0.86           | 0.54           | 0.79           | 0.43           | 0.72           | 0.78           | 0.76           | 0.59           | 0.85           | 0.54           | 0.82           |
|                  | ECFP2           | 0.34           | 0.09           | 0.79           | 0.78           | 0.56           | 0.86           | 0.78           | 0.76           | $0.31 \\ 0.43$ | 0.70           | 0.72           | 0.76           | 0.39           | 0.84           | 0.76           | 0.70           |
|                  | ECFP4           | 0.44           | 0.71           | 0.19           | 0.88           | 0.55           | 0.86           | 0.88           | 0.79           | 0.43           | 0.70           | 0.80           | 0.90           | 0.52           | 0.85           | 0.91           | 0.80           |
| OATP1B1          | ECFP6           | 0.46           | 0.72           | 0.80           | 0.89           | 0.55           | 0.86           | 0.89           | 0.80           | 0.50           | 0.73           | 0.83           | 0.93           | 0.53           | 0.86           | 0.93           | 0.82           |
| inhibition       | ESTATE          | 0.31           | 0.67           | 0.72           | 0.77           | 0.57           | 0.84           | 0.77           | 0.73           | 0.31           | 0.67           | 0.73           | 0.79           | 0.54           | 0.84           | 0.79           | 0.72           |
|                  | FCFP0           | 0.13           | 0.58           | 0.63           | 0.67           | 0.48           | 0.80           | 0.67           | 0.63           | 0.13           | 0.57           | 0.65           | 0.73           | 0.40           | 0.79           | 0.73           | 0.66           |
|                  | FCFP2           | 0.43           | 0.71           | 0.79           | 0.86           | 0.56           | 0.86           | 0.86           | 0.79           | 0.42           | 0.70           | 0.79           | 0.88           | 0.52           | 0.85           | 0.88           | 0.79           |
|                  | FCFP4           | 0.43           | 0.71           | 0.79           | 0.88           | 0.54           | 0.85           | 0.88           | 0.79           | 0.46           | 0.71           | 0.82           | 0.93           | 0.48           | 0.84           | 0.93           | 0.81           |
|                  | FCFP6           | 0.43           | 0.71           | 0.79           | 0.86           | 0.56           | 0.86           | 0.86           | 0.78           | 0.47           | 0.72           | 0.82           | 0.92           | 0.52           | 0.85           | 0.92           | 0.83           |
|                  | KR              | 0.44           | 0.71           | 0.80           | 0.88           | 0.55           | 0.86           | 0.88           | 0.80           | 0.33           | 0.65           | 0.76           | 0.87           | 0.43           | 0.82           | 0.87           | 0.76           |
|                  | LSTAR           | 0.43           | 0.71           | 0.79           | 0.87           | 0.55           | 0.86           | 0.87           | 0.79           | 0.49           | 0.73           | 0.82           | 0.91           | 0.55           | 0.86           | 0.91           | 0.80           |
|                  | MACCS           | 0.46           | 0.74           | 0.79           | 0.84           | 0.64           | 0.88           | 0.84           | 0.80           | 0.39           | 0.71           | 0.76           | 0.82           | 0.60           | 0.86           | 0.82           | 0.77           |
|                  | PUBCHEM         | 0.45           | 0.73           | 0.80           | 0.86           | 0.59           | 0.86           | 0.86           | 0.80           | 0.50           | 0.75           | 0.81           | 0.87           | 0.64           | 0.88           | 0.87           | 0.84           |
|                  | RAD2D           | 0.44           | 0.71           | 0.81           | 0.90           | 0.51           | 0.85           | 0.90           | 0.81           | 0.45           | 0.70           | 0.82           | 0.93           | 0.47           | 0.84           | 0.93           | 0.83           |
|                  | 2PPHAR          | 0.28           | 0.63           | 0.72           | 0.83           | 0.44           | 0.81           | 0.83           | 0.71           | 0.23           | 0.60           | 0.75           | 0.92           | 0.28           | 0.78           | 0.92           | 0.73           |

Table S1 - Continued from previous page

| Endpoint                       | FP                                                                                   |                                |                                |                              | Са                     | libratio               |                        |                        | precious p             |                        |                        |                        | Val                    | idation                |                        |                        |                      |
|--------------------------------|--------------------------------------------------------------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------|
| Enapoint                       |                                                                                      | κ                              | BACC                           | ACC                          | Se                     | Sp                     | AUC                    | κ                      | BACC                   | ACC                    | Se                     | Sp                     | AUC                    |                        |                        |                        |                      |
|                                | 3PPHAR                                                                               | 0.15                           | 0.57                           | 0.68                         | 0.81                   | 0.33                   | 0.77                   | 0.81                   | 0.59                   | 0.09                   | 0.54                   | 0.66                   | 0.80                   | 0.28                   | 0.75                   | 0.80                   | 0.62                 |
|                                | AP2D                                                                                 | 0.22                           | 0.62                           | 0.68                         | 0.75                   | 0.49                   | 0.80                   | 0.75                   | 0.68                   | 0.09                   | 0.54                   | 0.65                   | 0.78                   | 0.31                   | 0.76                   | 0.78                   | 0.58                 |
|                                | ASP                                                                                  | 0.31                           | 0.66                           | 0.72                         | 0.79                   | 0.53                   | 0.82                   | 0.79                   | 0.71                   | 0.20                   | 0.60                   | 0.67                   | 0.76                   | 0.44                   | 0.79                   | 0.76                   | 0.68                 |
|                                | AT2D                                                                                 | 0.32                           | 0.67                           | 0.72                         | 0.79                   | 0.54                   | 0.83                   | 0.79                   | 0.69                   | 0.20                   | 0.59                   | 0.71                   | 0.85                   | 0.33                   | 0.78                   | 0.85                   | 0.62                 |
|                                | DFS                                                                                  | $0.30 \\ 0.28$                 | 0.67                           | 0.69                         | 0.72                   | 0.62                   | $0.84 \\ 0.82$         | 0.72                   | $0.69 \\ 0.70$         | 0.22                   | 0.62                   | 0.67                   | $0.74 \\ 0.83$         | 0.50                   | $0.80 \\ 0.79$         | 0.74                   | 0.66                 |
|                                | ECFP0<br>ECFP2                                                                       | 0.28 $0.32$                    | $0.65 \\ 0.65$                 | $0.71 \\ 0.74$               | $0.77 \\ 0.84$         | $0.53 \\ 0.47$         | 0.82                   | $0.77 \\ 0.84$         | 0.70                   | $0.23 \\ 0.22$         | $0.61 \\ 0.61$         | $0.71 \\ 0.71$         | 0.83                   | $0.39 \\ 0.39$         | 0.79                   | $0.83 \\ 0.83$         | $0.63 \\ 0.57$       |
|                                | ECFP4                                                                                | 0.32<br>0.32                   | $0.65 \\ 0.65$                 | $0.74 \\ 0.75$               | 0.84                   | 0.47                   | 0.81                   | 0.84                   | 0.74                   | 0.22                   | $0.61 \\ 0.72$         | 0.71                   | 0.83                   | 0.59                   | 0.79                   | 0.83                   | 0.76                 |
|                                | ECFP6                                                                                | 0.35                           | 0.67                           | 0.76                         | 0.86                   | 0.48                   | 0.81                   | 0.86                   | 0.70                   | 0.40                   | 0.64                   | 0.73                   | 0.82                   | 0.47                   | 0.81                   | 0.82                   | 0.70                 |
|                                | ESTATE                                                                               | 0.25                           | 0.64                           | 0.68                         | 0.73                   | 0.55                   | 0.82                   | 0.73                   | 0.68                   | 0.32                   | 0.68                   | 0.73                   | 0.77                   | 0.58                   | 0.84                   | 0.77                   | 0.74                 |
|                                | FCFP0                                                                                | 0.20                           | 0.60                           | 0.69                         | 0.79                   | 0.41                   | 0.79                   | 0.79                   | 0.64                   | 0.09                   | 0.55                   | 0.64                   | 0.76                   | 0.33                   | 0.76                   | 0.76                   | 0.59                 |
|                                | FCFP2                                                                                | 0.27                           | 0.63                           | 0.73                         | 0.84                   | 0.43                   | 0.80                   | 0.84                   | 0.70                   | 0.21                   | 0.59                   | 0.71                   | 0.85                   | 0.33                   | 0.78                   | 0.85                   | 0.70                 |
|                                | FCFP4                                                                                | 0.26                           | 0.62                           | 0.73                         | 0.85                   | 0.39                   | 0.79                   | 0.85                   | 0.68                   | 0.34                   | 0.67                   | 0.75                   | 0.84                   | 0.50                   | 0.83                   | 0.84                   | 0.77                 |
|                                | FCFP6                                                                                | 0.32                           | 0.66                           | 0.74                         | 0.83                   | 0.48                   | 0.81                   | 0.83                   | 0.73                   | 0.10                   | 0.55                   | 0.69                   | 0.85                   | 0.25                   | 0.76                   | 0.85                   | 0.64                 |
|                                | KR                                                                                   | 0.29                           | 0.64                           | 0.75                         | 0.88                   | 0.39                   | 0.80                   | 0.88                   | 0.71                   | 0.24                   | 0.61                   | 0.73                   | 0.86                   | 0.36                   | 0.79                   | 0.86                   | 0.65                 |
|                                | LSTAR                                                                                | 0.29                           | 0.63                           | 0.74                         | 0.88                   | 0.39                   | 0.79                   | 0.88                   | 0.72                   | 0.34                   | 0.65                   | 0.77                   | 0.91                   | 0.39                   | 0.80                   | 0.91                   | 0.81                 |
|                                | MACCS                                                                                | 0.28                           | 0.64                           | 0.70                         | 0.78                   | 0.51                   | 0.81                   | 0.78                   | 0.68                   | 0.25                   | 0.63                   | 0.70                   | 0.79                   | 0.47                   | 0.81                   | 0.79                   | 0.69                 |
|                                | PUBCHEM                                                                              | 0.29                           | 0.64                           | 0.72                         | 0.81                   | 0.47                   | 0.81                   | 0.81                   | 0.70                   | 0.27                   | 0.63                   | 0.72                   | 0.82                   | 0.44                   | 0.80                   | 0.82                   | 0.66                 |
|                                | RAD2D                                                                                | 0.23                           | 0.60                           | 0.73                         | 0.87                   | 0.33                   | 0.78                   | 0.87                   | 0.62                   | 0.17                   | 0.58                   | 0.74                   | 0.93                   | 0.22                   | 0.77                   | 0.93                   | 0.61                 |
|                                | 2PPHAR                                                                               | 0.23                           | 0.71                           | 0.62                         | 0.58                   | 0.84                   | 0.95                   | 0.58                   | 0.74                   | 0.22                   | 0.69                   | 0.63                   | 0.60                   | 0.79                   | 0.94                   | 0.60                   | 0.75                 |
|                                | 3PPHAR                                                                               | 0.30                           | 0.70                           | 0.75                         | 0.78                   | 0.62                   | 0.92                   | 0.78                   | 0.78                   | 0.25                   | 0.65                   | 0.76                   | 0.81                   | 0.50                   | 0.90                   | 0.81                   | 0.71                 |
|                                | $^{\rm AP2D}_{\rm ASP}$                                                              | 0.29                           | 0.68                           | 0.77                         | 0.81                   | 0.55                   | 0.90                   | 0.81                   | 0.75                   | 0.32                   | 0.69                   | 0.79                   | 0.84                   | 0.54                   | $0.91 \\ 0.92$         | 0.84                   | 0.80                 |
|                                | ASP<br>AT2D                                                                          | $0.40 \\ 0.42$                 | $0.72 \\ 0.74$                 | $0.82 \\ 0.82$               | $0.87 \\ 0.86$         | $0.57 \\ 0.63$         | $0.91 \\ 0.92$         | $0.87 \\ 0.86$         | $0.80 \\ 0.81$         | $0.41 \\ 0.25$         | $0.72 \\ 0.64$         | $0.83 \\ 0.79$         | $0.88 \\ 0.85$         | $0.56 \\ 0.42$         | 0.92                   | $0.88 \\ 0.85$         | $0.81 \\ 0.74$       |
|                                | DFS                                                                                  | 0.42                           | 0.74                           | 0.82                         | 0.88                   | 0.63 $0.51$            | 0.92                   | 0.88                   | 0.81                   | $0.25 \\ 0.32$         | 0.64                   | 0.79                   | 0.85                   | 0.42                   | 0.89                   | 0.85                   | 0.74                 |
|                                | ECFP0                                                                                | 0.38                           | 0.70                           | 0.83                         | 0.88                   | 0.51                   | 0.91                   | 0.55                   | 0.79                   | 0.32                   | 0.08                   | 0.76                   | 0.83                   | 0.62                   | 0.90                   | 0.83                   | 0.75                 |
|                                | ECFP2                                                                                | 0.40                           | 0.70                           | 0.83                         | 0.89                   | 0.52                   | 0.91                   | 0.89                   | 0.80                   | 0.33                   | 0.67                   | 0.82                   | 0.89                   | 0.44                   | 0.90                   | 0.89                   | 0.82                 |
|                                | ECFP4                                                                                | 0.40                           | 0.70                           | 0.83                         | 0.89                   | 0.52                   | 0.91                   | 0.89                   | 0.80                   | 0.33                   | 0.67                   | 0.82                   | 0.88                   | 0.47                   | 0.90                   | 0.88                   | 0.79                 |
| OATP1B3                        | ECFP6                                                                                | 0.36                           | 0.70                           | 0.81                         | 0.86                   | 0.53                   | 0.91                   | 0.86                   | 0.79                   | 0.42                   | 0.69                   | 0.86                   | 0.93                   | 0.46                   | 0.90                   | 0.93                   | 0.86                 |
| inhibition                     | ESTATE                                                                               | 0.25                           | 0.66                           | 0.74                         | 0.78                   | 0.55                   | 0.90                   | 0.78                   | 0.71                   | 0.26                   | 0.66                   | 0.75                   | 0.78                   | 0.55                   | 0.90                   | 0.78                   | 0.71                 |
|                                | FCFP0                                                                                | 0.10                           | 0.57                           | 0.67                         | 0.72                   | 0.42                   | 0.87                   | 0.72                   | 0.63                   | 0.07                   | 0.53                   | 0.74                   | 0.83                   | 0.24                   | 0.85                   | 0.83                   | 0.63                 |
|                                | FCFP2                                                                                | 0.36                           | 0.70                           | 0.81                         | 0.86                   | 0.54                   | 0.91                   | 0.86                   | 0.78                   | 0.42                   | 0.74                   | 0.83                   | 0.87                   | 0.60                   | 0.92                   | 0.87                   | 0.83                 |
|                                | FCFP4                                                                                | 0.40                           | 0.70                           | 0.84                         | 0.90                   | 0.51                   | 0.91                   | 0.90                   | 0.80                   | 0.37                   | 0.69                   | 0.83                   | 0.89                   | 0.48                   | 0.90                   | 0.89                   | 0.80                 |
|                                | FCFP6                                                                                | 0.40                           | 0.72                           | 0.83                         | 0.88                   | 0.56                   | 0.91                   | 0.88                   | 0.80                   | 0.31                   | 0.66                   | 0.81                   | 0.87                   | 0.45                   | 0.90                   | 0.87                   | 0.77                 |
|                                | KR                                                                                   | 0.39                           | 0.71                           | 0.83                         | 0.89                   | 0.53                   | 0.91                   | 0.89                   | 0.80                   | 0.36                   | 0.69                   | 0.82                   | 0.88                   | 0.50                   | 0.91                   | 0.88                   | 0.79                 |
|                                | LSTAR                                                                                | 0.36                           | 0.69                           | 0.82                         | 0.87                   | 0.51                   | 0.91                   | 0.87                   | 0.78                   | 0.37                   | 0.68                   | 0.84                   | 0.91                   | 0.45                   | 0.90                   | 0.91                   | 0.81                 |
|                                | MACCS                                                                                | 0.40                           | 0.72                           | 0.82                         | 0.86                   | 0.59                   | 0.92                   | 0.86                   | 0.81                   | 0.40                   | 0.74                   | 0.82                   | 0.86                   | 0.62                   | 0.92                   | 0.86                   | 0.81                 |
|                                | PUBCHEM                                                                              | 0.45                           | 0.74                           | 0.84                         | 0.89                   | 0.59                   | 0.92                   | 0.89                   | 0.83                   | 0.48                   | 0.77                   | 0.85                   | 0.88                   | 0.66                   | 0.93                   | 0.88                   | 0.86                 |
|                                | RAD2D                                                                                | 0.42                           | 0.71                           | 0.84                         | 0.91                   | 0.51                   | 0.91                   | 0.91                   | 0.80                   | 0.39                   | 0.68                   | 0.85                   | 0.92                   | 0.44                   | 0.90                   | 0.92                   | 0.80                 |
|                                | 2PPHAR<br>3PPHAR                                                                     | 0.38<br>0.41                   | 0.70<br>0.70                   | $0.70 \\ 0.72$               | $0.69 \\ 0.62$         | 0.70<br>0.78           | 0.61                   | $0.69 \\ 0.62$         | 0.76                   | 0.41<br>0.46           | 0.71<br>0.73           | 0.71                   | $0.68 \\ 0.65$         | 0.74<br>0.81           | 0.64<br>0.70           | 0.68                   | $0.78 \\ 0.82$       |
|                                | AP2D                                                                                 | 0.41                           | 0.70                           | 0.72                         | 0.02                   | 0.78                   | $0.67 \\ 0.79$         | 0.02                   | $0.80 \\ 0.89$         | 0.40                   | 0.73                   | $0.74 \\ 0.83$         | 0.82                   | 0.83                   | 0.70                   | $0.65 \\ 0.82$         | 0.82                 |
|                                | ASP                                                                                  | 0.68                           | 0.84                           | 0.85                         | 0.78                   | 0.89                   | 0.79                   | 0.78                   | $0.89 \\ 0.92$         | 0.03                   | 0.86                   | 0.86                   | 0.85                   | 0.87                   | 0.77                   | 0.85                   | 0.91                 |
|                                | AT2D                                                                                 | 0.71                           | 0.85                           | 0.86                         | 0.10                   | 0.90                   | 0.84                   | 0.81                   | 0.93                   | 0.69                   | 0.84                   | 0.85                   | 0.79                   | 0.89                   | 0.83                   | 0.79                   | 0.93                 |
|                                | DFS                                                                                  | 0.68                           | 0.84                           | 0.85                         | 0.79                   | 0.88                   | 0.82                   | 0.79                   | 0.92                   | 0.74                   | 0.86                   | 0.88                   | 0.80                   | 0.93                   | 0.88                   | 0.80                   | 0.94                 |
|                                | ECFP0                                                                                | 0.63                           | 0.81                           | 0.82                         | 0.75                   | 0.87                   | 0.80                   | 0.75                   | 0.88                   | 0.62                   | 0.81                   | 0.82                   | 0.75                   | 0.86                   | 0.79                   | 0.75                   | 0.87                 |
|                                | ECFP2                                                                                | 0.69                           | 0.84                           | 0.85                         | 0.77                   | 0.91                   | 0.85                   | 0.77                   | 0.92                   | 0.77                   | 0.88                   | 0.89                   | 0.82                   | 0.93                   | 0.90                   | 0.82                   | 0.95                 |
| H D'' C''                      | ECFP4                                                                                | 0.72                           | 0.85                           | 0.86                         | 0.80                   | 0.91                   | 0.86                   | 0.80                   | 0.93                   | 0.76                   | 0.88                   | 0.89                   | 0.82                   | 0.94                   | 0.90                   | 0.82                   | 0.95                 |
| Human Bile Salt<br>Export Pump | ECFP6                                                                                | 0.70                           | 0.85                           | 0.85                         | 0.80                   | 0.89                   | 0.83                   | 0.80                   | 0.93                   | 0.72                   | 0.85                   | 0.87                   | 0.79                   | 0.91                   | 0.86                   | 0.79                   | 0.95                 |
| Inhibition                     | ESTATE                                                                               | 0.59                           | 0.79                           | 0.80                         | 0.74                   | 0.85                   | 0.77                   | 0.74                   | 0.86                   | 0.67                   | 0.83                   | 0.84                   | 0.79                   | 0.87                   | 0.81                   | 0.79                   | 0.90                 |
| 1111111111111                  | FCFP0                                                                                | 0.26                           | 0.62                           | 0.66                         | 0.44                   | 0.80                   | 0.60                   | 0.44                   | 0.69                   | 0.22                   | 0.60                   | 0.65                   | 0.38                   | 0.82                   | 0.61                   | 0.38                   | 0.67                 |
|                                | FCFP2                                                                                | 0.64                           | 0.82                           | 0.83                         | 0.74                   | 0.89                   | 0.82                   | 0.74                   | 0.90                   | 0.69                   | 0.84                   | 0.85                   | 0.78                   | 0.90                   | 0.85                   | 0.78                   | 0.92                 |
|                                | FCFP4                                                                                | 0.68                           | 0.84                           | 0.85                         | 0.76                   | 0.91                   | 0.85                   | 0.76                   | 0.92                   | 0.72                   | 0.85                   | 0.87                   | 0.76                   | 0.94                   | 0.90                   | 0.76                   | 0.93                 |
|                                | FCFP6                                                                                | 0.68                           | 0.84                           | 0.85                         | 0.78                   | 0.90                   | 0.84                   | 0.78                   | 0.93                   | 0.76                   | 0.88                   | 0.89                   | 0.83                   | 0.92                   | 0.88                   | 0.83                   | 0.95                 |
|                                | KR                                                                                   | 0.65                           | 0.82                           | 0.84                         | 0.75                   | 0.89                   | 0.83                   | 0.75                   | 0.91                   | 0.76                   | 0.87                   | 0.88                   | 0.82                   | 0.93                   | 0.89                   | 0.82                   | 0.95                 |
|                                | LSTAR<br>MACCS                                                                       | $0.68 \\ 0.69$                 | 0.84<br>0.84                   | $0.85 \\ 0.85$               | $0.80 \\ 0.78$         | $0.88 \\ 0.90$         | 0.81<br>0.84           | $0.80 \\ 0.78$         | $0.92 \\ 0.91$         | $0.72 \\ 0.73$         | $0.86 \\ 0.86$         | $0.87 \\ 0.87$         | $0.84 \\ 0.82$         | $0.88 \\ 0.91$         | $0.83 \\ 0.86$         | $0.84 \\ 0.82$         | $0.94 \\ 0.94$       |
|                                | PUBCHEM                                                                              | 0.69                           | $0.84 \\ 0.85$                 | $0.85 \\ 0.85$               | 0.78                   | 0.90                   | 0.84                   | 0.78                   | $0.91 \\ 0.92$         | 0.73                   | 0.86 $0.84$            | 0.87                   | 0.82                   | 0.91                   | 0.86                   | 0.82                   | $0.94 \\ 0.93$       |
|                                | RAD2D                                                                                | 0.76                           | 0.83                           | 0.84                         | 0.80                   | 0.89 $0.92$            | 0.86                   | 0.80                   | 0.92                   | 0.69                   | 0.84                   | 0.86                   | 0.75                   | 0.91                   | 0.87                   | 0.75                   | 0.93                 |
|                                | 2PPHAR                                                                               | 0.00                           | 0.63                           | 0.63                         | 0.73                   | 0.63                   | 0.38                   | 0.73                   | 0.92                   | 0.09                   | 0.68                   | 0.63                   | 0.78                   | 0.58                   | 0.40                   | 0.78                   | 0.68                 |
|                                | 3PPHAR                                                                               | 0.20                           | 0.59                           | 0.66                         | 0.62                   | 0.03                   | 0.39                   | 0.62                   | 0.66                   | 0.27                   | 0.56                   | 0.68                   | 0.78                   | 0.80                   | 0.40                   | 0.78                   | 0.66                 |
|                                | AP2D                                                                                 | 0.37                           | 0.69                           | 0.74                         | 0.59                   | 0.80                   | 0.53                   | 0.59                   | 0.76                   | 0.19                   | 0.71                   | 0.75                   | 0.61                   | 0.80                   | 0.53                   | 0.61                   | 0.78                 |
|                                |                                                                                      |                                | 0.69                           | 0.74                         | 0.59                   | 0.80                   | 0.52                   | 0.59                   | 0.76                   | 0.36                   | 0.67                   | 0.76                   | 0.48                   | 0.86                   | 0.56                   | 0.48                   | 0.79                 |
|                                | ASP                                                                                  | 0.37                           |                                |                              |                        |                        |                        | 0.60                   | 0.78                   | 0.44                   | 0.72                   | 0.78                   | 0.60                   | 0.85                   | 0.58                   | 0.60                   | 0.81                 |
|                                | $^{\rm ASP}_{\rm AT2D}$                                                              | $0.37 \\ 0.41$                 |                                | 0.76                         | 0.60                   | 0.82                   | 0.56                   | 0.00                   | 0.10                   | 0.44                   |                        |                        |                        | 0.00                   | 0.00                   | 0.00                   |                      |
|                                | $\begin{array}{c} {\rm ASP} \\ {\rm AT2D} \\ {\rm DFS} \end{array}$                  |                                | 0.71<br>0.69                   |                              |                        | $0.82 \\ 0.79$         | 0.56                   | 0.59                   | 0.74                   | 0.44                   | 0.69                   | 0.76                   | 0.56                   | 0.83                   | 0.55                   | 0.56                   |                      |
|                                | AT2D                                                                                 | 0.41                           | 0.71                           | 0.76                         | 0.60<br>0.59<br>0.64   | $0.82 \\ 0.79 \\ 0.76$ |                        |                        |                        |                        |                        |                        |                        |                        |                        |                        | 0.76<br>0.80         |
|                                | $\begin{array}{c} {\rm AT2D} \\ {\rm DFS} \\ {\rm ECFP0} \\ {\rm ECFP2} \end{array}$ | $0.41 \\ 0.35 \\ 0.37 \\ 0.42$ | $0.71 \\ 0.69 \\ 0.70 \\ 0.71$ | 0.76<br>0.73<br>0.73<br>0.77 | $0.59 \\ 0.64 \\ 0.58$ | $0.79 \\ 0.76 \\ 0.84$ | $0.50 \\ 0.50 \\ 0.58$ | $0.59 \\ 0.64 \\ 0.58$ | $0.74 \\ 0.77 \\ 0.78$ | $0.38 \\ 0.40 \\ 0.47$ | $0.69 \\ 0.71 \\ 0.73$ | $0.76 \\ 0.75 \\ 0.79$ | $0.56 \\ 0.65 \\ 0.60$ | $0.83 \\ 0.78 \\ 0.86$ | $0.55 \\ 0.52 \\ 0.61$ | $0.56 \\ 0.65 \\ 0.60$ | 0.76<br>0.80<br>0.81 |
| Organic Cation                 | $\begin{array}{c} {\rm AT2D} \\ {\rm DFS} \\ {\rm ECFP0} \end{array}$                | $0.41 \\ 0.35 \\ 0.37$         | $0.71 \\ 0.69 \\ 0.70$         | $0.76 \\ 0.73 \\ 0.73$       | $0.59 \\ 0.64$         | $0.79 \\ 0.76$         | $0.50 \\ 0.50$         | $0.59 \\ 0.64$         | $0.74 \\ 0.77$         | $0.38 \\ 0.40$         | $0.69 \\ 0.71$         | $0.76 \\ 0.75$         | $0.56 \\ 0.65$         | $0.83 \\ 0.78$         | $0.55 \\ 0.52$         | $0.56 \\ 0.65$         | $0.76 \\ 0.80$       |

Transporte Inhibition

Table S1 - Continued from previous page

|               |                                                         |                |                |                |                |                  |                | ued from       | previous p     | page            |                |                | ***            |                |                |                |                |
|---------------|---------------------------------------------------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Endpoint      | $\mathbf{FP}$                                           | <u>κ</u>       | BACC           | ACC            | Se Se          | alibration<br>Sp | AUC            | κ              | BACC           | ACC             | Se             | Sp             | AUC            | idation        |                |                |                |
|               | ESTATE                                                  | 0.38           | 0.71           | 0.74           | 0.63           | 0.78             | 0.51           | 0.63           | 0.77           | 0.41            | 0.73           | 0.74           | 0.69           | 0.76           | 0.51           | 0.69           | 0.81           |
|               | FCFP0                                                   | 0.33           | 0.67           | 0.72           | 0.56           | 0.78             | 0.49           | 0.56           | 0.70           | 0.36            | 0.69           | 0.74           | 0.58           | 0.80           | 0.52           | 0.58           | 0.73           |
|               | FCFP2                                                   | 0.44           | 0.72           | 0.77           | 0.60           | 0.84             | 0.58           | 0.60           | 0.80           | 0.37            | 0.68           | 0.76           | 0.53           | 0.84           | 0.55           | 0.53           | 0.79           |
|               | FCFP4                                                   | 0.43           | 0.71           | 0.78           | 0.56           | 0.86             | 0.60           | 0.56           | 0.79           | 0.52            | 0.75           | 0.82           | 0.60           | 0.89           | 0.69           | 0.60           | 0.82           |
|               | $\begin{array}{c} { m FCFP6} \\ { m KR} \end{array}$    | 0.42           | $0.71 \\ 0.72$ | $0.77 \\ 0.78$ | 0.56           | $0.85 \\ 0.86$   | $0.59 \\ 0.61$ | $0.56 \\ 0.58$ | $0.78 \\ 0.81$ | $0.42 \\ 0.53$  | $0.69 \\ 0.76$ | $0.79 \\ 0.82$ | $0.49 \\ 0.63$ | 0.90           | 0.64           | 0.49           | $0.80 \\ 0.84$ |
|               | LSTAR                                                   | $0.44 \\ 0.33$ | 0.72           | 0.78           | $0.58 \\ 0.57$ | 0.86             | 0.61           | 0.58<br>0.57   | 0.81           | 0.33            | 0.76           | 0.82 $0.74$    | 0.63           | $0.89 \\ 0.82$ | $0.67 \\ 0.53$ | $0.63 \\ 0.50$ | 0.84           |
|               | MACCS                                                   | 0.33           | 0.75           | 0.72           | 0.66           | 0.83             | 0.49           | 0.66           | 0.82           | 0.32            | 0.70           | 0.74           | 0.56           | 0.83           | 0.55           | 0.56           | 0.77           |
|               | PUBCHEM                                                 | 0.46           | 0.73           | 0.79           | 0.61           | 0.85             | 0.62           | 0.61           | 0.81           | 0.44            | 0.73           | 0.77           | 0.63           | 0.83           | 0.57           | 0.63           | 0.79           |
|               | RAD2D                                                   | 0.45           | 0.72           | 0.78           | 0.59           | 0.85             | 0.60           | 0.59           | 0.80           | 0.39            | 0.69           | 0.77           | 0.53           | 0.86           | 0.57           | 0.53           | 0.80           |
|               | 2PPHAR                                                  | 0.12           | 0.56           | 0.61           | 0.32           | 0.79             | 0.48           | 0.32           | 0.51           | -0.07           | 0.47           | 0.53           | 0.24           | 0.69           | 0.29           | 0.24           | 0.47           |
|               | 3PPHAR                                                  | 0.13           | 0.56           | 0.63           | 0.26           | 0.86             | 0.54           | 0.26           | 0.58           | 0.08            | 0.54           | 0.61           | 0.29           | 0.79           | 0.43           | 0.29           | 0.57           |
|               | AP2D                                                    | 0.11           | 0.55           | 0.58           | 0.44           | 0.67             | 0.44           | 0.44           | 0.54           | 0.13            | 0.56           | 0.61           | 0.40           | 0.72           | 0.48           | 0.40           | 0.61           |
|               | ASP<br>AT2D                                             | $0.23 \\ 0.24$ | $0.61 \\ 0.62$ | $0.65 \\ 0.64$ | $0.46 \\ 0.52$ | $0.77 \\ 0.72$   | $0.56 \\ 0.54$ | $0.46 \\ 0.52$ | $0.62 \\ 0.62$ | $0.28 \\ 0.28$  | $0.62 \\ 0.65$ | $0.70 \\ 0.63$ | $0.33 \\ 0.71$ | $0.92 \\ 0.58$ | $0.74 \\ 0.51$ | $0.33 \\ 0.71$ | $0.65 \\ 0.68$ |
|               | DFS                                                     | $0.24 \\ 0.17$ | 0.58           | 0.62           | 0.32           | 0.72             | 0.54           | $0.32 \\ 0.43$ | 0.62           | 0.25            | 0.62           | 0.68           | 0.41           | 0.83           | 0.51           | 0.41           | 0.69           |
|               | ECFP0                                                   | 0.23           | 0.62           | 0.63           | 0.59           | 0.65             | 0.51           | 0.59           | 0.62           | 0.37            | 0.70           | 0.68           | 0.76           | 0.64           | 0.55           | 0.76           | 0.73           |
|               | ECFP2                                                   | 0.27           | 0.64           | 0.65           | 0.56           | 0.71             | 0.55           | 0.56           | 0.65           | 0.31            | 0.66           | 0.68           | 0.55           | 0.76           | 0.56           | 0.55           | 0.66           |
| Skin          | ECFP4                                                   | 0.26           | 0.62           | 0.66           | 0.48           | 0.77             | 0.56           | 0.48           | 0.67           | 0.16            | 0.58           | 0.61           | 0.45           | 0.71           | 0.47           | 0.45           | 0.61           |
| Sensitization | ECFP6                                                   | 0.24           | 0.62           | 0.65           | 0.49           | 0.75             | 0.54           | 0.49           | 0.64           | 0.23            | 0.61           | 0.66           | 0.43           | 0.79           | 0.55           | 0.43           | 0.69           |
| (DPRA)        | ESTATE                                                  | 0.25           | 0.63           | 0.63           | 0.60           | 0.65             | 0.52           | 0.60           | 0.61           | 0.03            | 0.52           | 0.54           | 0.45           | 0.58           | 0.38           | 0.45           | 0.54           |
| ,             | FCFP0 $FCFP2$                                           | $0.22 \\ 0.27$ | $0.61 \\ 0.64$ | $0.66 \\ 0.66$ | $0.38 \\ 0.54$ | $0.83 \\ 0.74$   | $0.59 \\ 0.56$ | $0.38 \\ 0.54$ | $0.67 \\ 0.65$ | $0.04 \\ 0.20$  | $0.52 \\ 0.60$ | $0.60 \\ 0.63$ | $0.21 \\ 0.48$ | $0.82 \\ 0.72$ | $0.42 \\ 0.50$ | $0.21 \\ 0.48$ | $0.61 \\ 0.67$ |
|               | FCFP4                                                   | 0.37           | 0.68           | 0.71           | 0.57           | 0.79             | 0.64           | 0.57           | 0.72           | 0.35            | 0.68           | 0.69           | 0.62           | 0.74           | 0.57           | 0.62           | 0.72           |
|               | FCFP6                                                   | 0.32           | 0.66           | 0.69           | 0.56           | 0.76             | 0.59           | 0.56           | 0.73           | 0.37            | 0.68           | 0.71           | 0.57           | 0.79           | 0.62           | 0.57           | 0.70           |
|               | KR                                                      | 0.30           | 0.65           | 0.68           | 0.51           | 0.79             | 0.61           | 0.51           | 0.66           | 0.04            | 0.52           | 0.55           | 0.40           | 0.64           | 0.40           | 0.40           | 0.55           |
|               | LSTAR                                                   | 0.25           | 0.62           | 0.68           | 0.36           | 0.87             | 0.65           | 0.36           | 0.62           | 0.16            | 0.58           | 0.66           | 0.26           | 0.89           | 0.52           | 0.26           | 0.60           |
|               | MACCS                                                   | 0.24           | 0.62           | 0.64           | 0.56           | 0.69             | 0.53           | 0.56           | 0.62           | 0.20            | 0.60           | 0.63           | 0.50           | 0.71           | 0.49           | 0.50           | 0.65           |
|               | PUBCHEM                                                 | 0.21           | 0.60           | 0.62           | 0.55           | 0.66             | 0.51           | 0.55           | 0.62           | 0.15            | 0.58           | 0.59           | 0.55           | 0.61           | 0.45           | 0.55           | 0.61           |
|               | RAD2D<br>2PPHAR                                         | 0.15           | 0.57<br>0.54   | 0.62           | 0.38           | 0.76             | 0.52           | 0.38           | 0.59<br>0.58   | 0.22            | 0.60           | 0.66           | 0.40           | 0.81           | 0.56           | 0.40           | 0.61           |
|               | 3PPHAR                                                  | 0.08           | 0.54           | 0.55           | 0.76           | 0.32             | 0.54           | 0.78           | 0.60           | 0.11            | $0.50 \\ 0.52$ | 0.54           | 0.79           | 0.35           | 0.53           | 0.79           | 0.60           |
|               | AP2D                                                    | 0.20           | 0.60           | 0.60           | 0.68           | 0.52             | 0.60           | 0.68           | 0.64           | 0.23            | 0.61           | 0.61           | 0.68           | 0.55           | 0.62           | 0.68           | 0.67           |
|               | ASP                                                     | 0.32           | 0.66           | 0.66           | 0.80           | 0.52             | 0.64           | 0.80           | 0.73           | 0.29            | 0.64           | 0.65           | 0.78           | 0.51           | 0.63           | 0.78           | 0.72           |
|               | AT2D                                                    | 0.28           | 0.64           | 0.64           | 0.58           | 0.70             | 0.68           | 0.58           | 0.69           | 0.26            | 0.63           | 0.63           | 0.53           | 0.73           | 0.68           | 0.53           | 0.66           |
|               | DFS                                                     | 0.29           | 0.65           | 0.65           | 0.71           | 0.58             | 0.65           | 0.71           | 0.72           | 0.29            | 0.64           | 0.65           | 0.73           | 0.55           | 0.64           | 0.73           | 0.73           |
|               | $\begin{array}{c} { m ECFP0} \\ { m ECFP2} \end{array}$ | $0.30 \\ 0.35$ | $0.65 \\ 0.67$ | $0.65 \\ 0.68$ | $0.68 \\ 0.74$ | $0.63 \\ 0.61$   | $0.66 \\ 0.67$ | $0.68 \\ 0.74$ | $0.70 \\ 0.74$ | 0.34            | $0.67 \\ 0.70$ | $0.67 \\ 0.70$ | $0.74 \\ 0.76$ | $0.60 \\ 0.64$ | 0.66<br>0.69   | $0.74 \\ 0.76$ | $0.74 \\ 0.76$ |
|               | ECFP4                                                   | $0.33 \\ 0.27$ | 0.63           | 0.64           | 0.74           | 0.53             | 0.63           | 0.74           | 0.74           | $0.40 \\ 0.32$  | 0.76           | 0.76           | 0.76           | 0.52           | 0.69           | 0.70           | 0.78           |
| Skin          | ECFP6                                                   | 0.28           | 0.64           | 0.64           | 0.76           | 0.52             | 0.63           | 0.76           | 0.71           | 0.32            | 0.66           | 0.66           | 0.75           | 0.57           | 0.65           | 0.75           | 0.70           |
| Sensitization | ESTATE                                                  | 0.32           | 0.66           | 0.66           | 0.68           | 0.64             | 0.68           | 0.68           | 0.72           | 0.32            | 0.66           | 0.66           | 0.70           | 0.62           | 0.66           | 0.70           | 0.72           |
| (LLNA)        | FCFP0                                                   | 0.13           | 0.56           | 0.57           | 0.83           | 0.30             | 0.56           | 0.83           | 0.63           | 0.15            | 0.57           | 0.59           | 0.95           | 0.20           | 0.56           | 0.95           | 0.67           |
|               | FCFP2                                                   | 0.37           | 0.69           | 0.69           | 0.72           | 0.65             | 0.69           | 0.72           | 0.74           | 0.29            | 0.64           | 0.65           | 0.71           | 0.58           | 0.65           | 0.71           | 0.70           |
|               | FCFP4                                                   | 0.32           | 0.66           | 0.66           | 0.76           | 0.56             | 0.65           | 0.76           | 0.73           | 0.33            | 0.66           | 0.67           | 0.78           | 0.55           | 0.65           | 0.78           | 0.73           |
|               | $\begin{array}{c} { m FCFP6} \\ { m KR} \end{array}$    | $0.36 \\ 0.32$ | $0.68 \\ 0.66$ | $0.68 \\ 0.67$ | $0.75 \\ 0.76$ | $0.61 \\ 0.56$   | $0.68 \\ 0.65$ | $0.75 \\ 0.76$ | $0.74 \\ 0.74$ | $0.34 \\ 0.29$  | $0.67 \\ 0.64$ | $0.67 \\ 0.64$ | $0.73 \\ 0.73$ | $0.61 \\ 0.56$ | $0.67 \\ 0.64$ | $0.73 \\ 0.73$ | $0.72 \\ 0.73$ |
|               | LSTAR                                                   | 0.32           | 0.60           | 0.61           | 0.70           | 0.49             | 0.60           | 0.71           | 0.66           | 0.25            | 0.63           | 0.63           | 0.73           | 0.54           | 0.62           | 0.73           | 0.70           |
|               | MACCS                                                   | 0.35           | 0.67           | 0.67           | 0.69           | 0.65             | 0.69           | 0.69           | 0.73           | 0.37            | 0.69           | 0.69           | 0.69           | 0.68           | 0.70           | 0.69           | 0.74           |
|               | PUBCHEM                                                 | 0.39           | 0.69           | 0.70           | 0.74           | 0.65             | 0.69           | 0.74           | 0.76           | 0.33            | 0.67           | 0.67           | 0.71           | 0.62           | 0.67           | 0.71           | 0.74           |
|               | RAD2D                                                   | 0.23           | 0.61           | 0.62           | 0.78           | 0.45             | 0.60           | 0.78           | 0.68           | 0.32            | 0.66           | 0.66           | 0.79           | 0.53           | 0.64           | 0.79           | 0.70           |
|               | 2PPHAR                                                  | 0.17           | 0.57           | 0.68           | 0.23           | 0.92             | 0.67           | 0.23           | 0.61           | 0.14            | 0.56           | 0.69           | 0.17           | 0.95           | 0.78           | 0.17           | 0.52           |
|               | 3PPHAR<br>AP2D                                          | $0.17 \\ 0.25$ | $0.57 \\ 0.62$ | $0.69 \\ 0.67$ | $0.20 \\ 0.49$ | $0.94 \\ 0.75$   | $0.67 \\ 0.51$ | $0.20 \\ 0.49$ | $0.59 \\ 0.64$ | $0.16 \\ 0.05$  | $0.56 \\ 0.53$ | $0.69 \\ 0.59$ | $0.19 \\ 0.33$ | $0.93 \\ 0.72$ | $0.67 \\ 0.36$ | $0.19 \\ 0.33$ | $0.61 \\ 0.57$ |
|               | ASP                                                     | $0.25 \\ 0.19$ | 0.62           | 0.69           | $0.49 \\ 0.26$ | 0.75             | 0.64           | 0.49           | 0.64           | $0.05 \\ 0.23$  | 0.60           | 0.68           | 0.33           | 0.72           | 0.66           | 0.33           | 0.64           |
|               | AT2D                                                    | 0.18           | 0.58           | 0.64           | 0.42           | 0.75             | 0.48           | 0.42           | 0.59           | 0.23            | 0.57           | 0.66           | 0.31           | 0.83           | 0.63           | 0.31           | 0.60           |
|               | DFS                                                     | 0.22           | 0.60           | 0.67           | 0.40           | 0.81             | 0.51           | 0.40           | 0.61           | 0.10            | 0.55           | 0.63           | 0.31           | 0.79           | 0.41           | 0.31           | 0.67           |
|               | ECFP0                                                   | 0.17           | 0.59           | 0.60           | 0.53           | 0.64             | 0.44           | 0.53           | 0.61           | -0.06           | 0.47           | 0.54           | 0.28           | 0.67           | 0.27           | 0.28           | 0.54           |
|               | ECFP2                                                   | 0.20           | 0.60           | 0.64           | 0.46           | 0.74             | 0.48           | 0.46           | 0.62           | 0.15            | 0.56           | 0.68           | 0.25           | 0.88           | 0.54           | 0.25           | 0.59           |
| Skin          | ECFP4                                                   | 0.22           | 0.61           | 0.67           | 0.42           | 0.79             | 0.53           | 0.42           | 0.64           | 0.28            | 0.63           | 0.71           | 0.39           | 0.87           | 0.58           | 0.39           | 0.68           |
| Sensitization | ECFP6                                                   | 0.23           | 0.61           | 0.67           | 0.41           | 0.80             | 0.56           | 0.41           | 0.65           | -0.02           | 0.49           | 0.57           | 0.25           | 0.72           | 0.36           | 0.25           | 0.57           |
| (KeratinSens) | ESTATE<br>FCFP0                                         | $0.22 \\ 0.19$ | $0.62 \\ 0.59$ | $0.62 \\ 0.65$ | $0.62 \\ 0.43$ | $0.62 \\ 0.76$   | $0.46 \\ 0.50$ | $0.62 \\ 0.43$ | $0.66 \\ 0.59$ | $-0.05 \\ 0.18$ | $0.47 \\ 0.58$ | $0.50 \\ 0.70$ | $0.39 \\ 0.22$ | $0.56 \\ 0.93$ | $0.29 \\ 0.72$ | $0.39 \\ 0.22$ | $0.54 \\ 0.57$ |
| ,             | FCFP0<br>FCFP2                                          | $0.19 \\ 0.25$ | $0.59 \\ 0.62$ | 0.68           | $0.43 \\ 0.44$ | 0.76             | 0.50           | $0.43 \\ 0.44$ | $0.59 \\ 0.64$ | $0.18 \\ 0.36$  | $0.58 \\ 0.66$ | $0.70 \\ 0.75$ | $0.22 \\ 0.42$ | 0.93           | $0.72 \\ 0.70$ | $0.22 \\ 0.42$ | $0.57 \\ 0.72$ |
|               | FCFP4                                                   | 0.24           | 0.62           | 0.67           | 0.46           | 0.78             | 0.53           | 0.46           | 0.63           | 0.35            | 0.68           | 0.71           | 0.58           | 0.77           | 0.55           | 0.58           | 0.75           |
|               | FCFP6                                                   | 0.28           | 0.63           | 0.71           | 0.38           | 0.88             | 0.63           | 0.38           | 0.66           | 0.12            | 0.55           | 0.66           | 0.25           | 0.85           | 0.45           | 0.25           | 0.66           |
|               | KR                                                      | 0.25           | 0.63           | 0.67           | 0.49           | 0.77             | 0.52           | 0.49           | 0.68           | 0.24            | 0.62           | 0.67           | 0.50           | 0.75           | 0.49           | 0.50           | 0.64           |
|               | LSTAR                                                   | 0.30           | 0.64           | 0.72           | 0.39           | 0.89             | 0.68           | 0.39           | 0.65           | 0.15            | 0.57           | 0.67           | 0.28           | 0.85           | 0.49           | 0.28           | 0.60           |
|               | MACCS                                                   | 0.18           | 0.59           | 0.62           | 0.51           | 0.67             | 0.46           | 0.51           | 0.63           | 0.09            | 0.55           | 0.60           | 0.39           | 0.71           | 0.39           | 0.39           | 0.61           |
|               | PUBCHEM                                                 | 0.27           | 0.63           | 0.67           | 0.51           | 0.75             | 0.53           | 0.51           | 0.68           | 0.30            | 0.65           | 0.69           | 0.53           | 0.77           | 0.53           | 0.53           | 0.72           |

Table S1 - Continued from previous page

| Endpoint      | FP               |                |                |                | Са             | Table Si<br>libration | 1              | , , , , , , ,  | previous p     |                 |                |                |                | idation        |                |                |                |
|---------------|------------------|----------------|----------------|----------------|----------------|-----------------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Enapoint      |                  | κ              | BACC           | ACC            | Se             | $_{\mathrm{Sp}}$      | AUC            | $\kappa$       | BACC           | ACC             | Se             | Sp             | AUC            |                |                |                |                |
|               | RAD2D            | 0.27           | 0.62           | 0.70           | 0.40           | 0.85                  | 0.61           | 0.40           | 0.65           | 0.11            | 0.55           | 0.62           | 0.33           | 0.76           | 0.44           | 0.33           | 0.61           |
|               | 2PPHAR<br>3PPHAR | $0.12 \\ 0.18$ | 0.56<br>0.58   | 0.62<br>0.66   | $0.32 \\ 0.31$ | 0.79<br>0.86          | 0.50<br>0.58   | $0.32 \\ 0.31$ | $0.56 \\ 0.62$ | $0.12 \\ 0.23$  | 0.56<br>0.60   | 0.59<br>0.67   | 0.43<br>0.37   | 0.69<br>0.84   | 0.45<br>0.60   | 0.43<br>0.37   | $0.51 \\ 0.53$ |
|               | AP2D             | 0.16           | 0.53           | 0.57           | 0.31           | 0.66                  | 0.33           | 0.40           | 0.52           | 0.23            | 0.57           | 0.62           | 0.37           | 0.76           | 0.44           | 0.37           | 0.61           |
|               | ASP              | 0.23           | 0.61           | 0.67           | 0.39           | 0.83                  | 0.58           | 0.39           | 0.61           | 0.16            | 0.58           | 0.62           | 0.43           | 0.73           | 0.49           | 0.43           | 0.68           |
|               | AT2D             | 0.29           | 0.64           | 0.67           | 0.56           | 0.73                  | 0.55           | 0.56           | 0.67           | 0.13            | 0.57           | 0.59           | 0.47           | 0.67           | 0.47           | 0.47           | 0.59           |
|               | DFS              | 0.20           | 0.59           | 0.65           | 0.39           | 0.80                  | 0.53           | 0.39           | 0.62           | 0.07            | 0.53           | 0.59           | 0.30           | 0.76           | 0.46           | 0.30           | 0.52           |
|               | ECFP0            | 0.38           | 0.70           | 0.70           | 0.67           | 0.72                  | 0.60           | 0.67           | 0.74           | 0.33            | 0.67           | 0.67           | 0.70           | 0.65           | 0.55           | 0.70           | 0.72           |
|               | ECFP2            | 0.38           | 0.70           | 0.70           | 0.68           | 0.72                  | 0.58           | 0.68           | 0.73           | 0.18            | 0.59           | 0.59           | 0.60           | 0.59           | 0.46           | 0.60           | 0.65           |
| Skin          | ECFP4            | 0.26           | 0.63           | 0.67           | 0.49           | 0.76                  | 0.56           | 0.49           | 0.67           | 0.03            | 0.51           | 0.56           | 0.33           | 0.69           | 0.40           | 0.33           | 0.66           |
| Sensitization | ECFP6            | 0.19           | 0.59           | 0.65           | 0.40           | 0.78                  | 0.52           | 0.40           | 0.60           | 0.28            | 0.64           | 0.68           | 0.47           | 0.80           | 0.60           | 0.47           | 0.63           |
| (HRIPT)       | ESTATE           | 0.33           | 0.67           | 0.67           | 0.66           | 0.68                  | 0.56           | $0.66 \\ 0.26$ | 0.72           | 0.26            | 0.64           | 0.62           | 0.73           | 0.55           | 0.49           | 0.73           | $0.60 \\ 0.59$ |
|               | FCFP0<br>FCFP2   | $0.13 \\ 0.30$ | $0.56 \\ 0.65$ | $0.65 \\ 0.68$ | $0.26 \\ 0.53$ | $0.86 \\ 0.76$        | $0.57 \\ 0.56$ | 0.26           | $0.54 \\ 0.71$ | $0.12 \\ 0.22$  | $0.55 \\ 0.62$ | $0.64 \\ 0.62$ | $0.20 \\ 0.63$ | $0.90 \\ 0.61$ | $0.56 \\ 0.48$ | $0.20 \\ 0.63$ | 0.63           |
|               | FCFP4            | 0.36           | 0.63           | 0.66           | 0.52           | 0.73                  | 0.56           | 0.53           | 0.64           | 0.22            | 0.66           | 0.70           | 0.50           | 0.82           | 0.45           | 0.50           | 0.71           |
|               | FCFP6            | 0.17           | 0.58           | 0.64           | 0.38           | 0.78                  | 0.51           | 0.38           | 0.59           | 0.43            | 0.72           | 0.73           | 0.70           | 0.75           | 0.62           | 0.70           | 0.75           |
|               | KR               | 0.23           | 0.61           | 0.66           | 0.46           | 0.77                  | 0.52           | 0.46           | 0.63           | 0.31            | 0.65           | 0.69           | 0.50           | 0.80           | 0.60           | 0.50           | 0.74           |
|               | LSTAR            | 0.16           | 0.57           | 0.66           | 0.27           | 0.88                  | 0.55           | 0.27           | 0.65           | 0.25            | 0.61           | 0.68           | 0.37           | 0.86           | 0.61           | 0.37           | 0.67           |
|               | MACCS            | 0.27           | 0.64           | 0.65           | 0.59           | 0.69                  | 0.52           | 0.59           | 0.66           | 0.33            | 0.66           | 0.69           | 0.53           | 0.78           | 0.69           | 0.53           | 0.75           |
|               | PUBCHEM          | 0.27           | 0.63           | 0.65           | 0.56           | 0.71                  | 0.54           | 0.56           | 0.64           | 0.13            | 0.56           | 0.61           | 0.40           | 0.73           | 0.47           | 0.40           | 0.59           |
|               | RAD2D            | 0.26           | 0.62           | 0.68           | 0.43           | 0.82                  | 0.58           | 0.43           | 0.68           | 0.14            | 0.56           | 0.63           | 0.30           | 0.82           | 0.59           | 0.30           | 0.61           |
|               | 2PPHAR<br>3PPHAR | 0.05<br>0.03   | $0.53 \\ 0.51$ | 0.63<br>0.66   | 0.22<br>0.07   | 0.83<br>0.96          | NaN<br>NaN     | $0.22 \\ 0.07$ | 0.59           | -0.05<br>0.00   | 0.48<br>0.50   | 0.61<br>0.68   | 0.10<br>0.00   | 0.86<br>1.00   | N A            | 0.10<br>0.00   | 0.47           |
|               | AP2D             | 0.03           | $0.51 \\ 0.57$ | 0.66           | 0.07           | 0.96                  | N aN<br>0.41   | 0.07           | $0.51 \\ 0.57$ | 0.00            | 0.50           | 0.60           | 0.50           | 0.65           | N A<br>0.43    | 0.50           | $0.38 \\ 0.57$ |
|               | ASP              | 0.14           | $0.57 \\ 0.59$ | 0.61           | 0.46           | 0.86                  | 0.41           | 0.46           | 0.63           | $0.15 \\ 0.17$  | 0.58           | 0.68           | 0.30           | 0.86           | $0.43 \\ 0.52$ | 0.30           | 0.68           |
|               | AT2D             | 0.26           | 0.62           | 0.68           | 0.46           | 0.79                  | 0.55           | 0.46           | 0.63           | -0.02           | 0.49           | 0.57           | 0.27           | 0.71           | 0.31           | 0.27           | 0.49           |
|               | DFS              | 0.20           | 0.60           | 0.67           | 0.38           | 0.81                  | 0.51           | 0.38           | 0.63           | 0.19            | 0.60           | 0.66           | 0.43           | 0.76           | 0.45           | 0.43           | 0.67           |
|               | ECFP0            | 0.21           | 0.62           | 0.62           | 0.60           | 0.63                  | 0.45           | 0.60           | 0.63           | 0.08            | 0.54           | 0.66           | 0.20           | 0.87           | NΑ             | 0.20           | 0.57           |
|               | ECFP2            | 0.15           | 0.57           | 0.63           | 0.39           | 0.76                  | 0.47           | 0.39           | 0.60           | 0.24            | 0.61           | 0.68           | 0.43           | 0.79           | 0.53           | 0.43           | 0.59           |
| Skin          | ECFP4            | 0.20           | 0.60           | 0.66           | 0.40           | 0.80                  | 0.53           | 0.40           | 0.60           | 0.21            | 0.60           | 0.68           | 0.37           | 0.83           | 0.51           | 0.37           | 0.62           |
| Sensitization | ECFP6            | 0.25           | 0.62           | 0.69           | 0.39           | 0.85                  | 0.58           | 0.39           | 0.67           | 0.03            | 0.51           | 0.61           | 0.23           | 0.79           | 0.33           | 0.23           | 0.51           |
| (h-CLAT)      | ESTATE           | 0.22           | 0.62           | 0.62           | 0.61           | 0.63                  | 0.46           | 0.61           | 0.59           | 0.09            | 0.55           | 0.57           | 0.50           | 0.60           | 0.37           | 0.50           | 0.51           |
| ,             | FCFP0<br>FCFP2   | $0.03 \\ 0.26$ | $0.51 \\ 0.63$ | $0.61 \\ 0.68$ | $0.23 \\ 0.47$ | $0.79 \\ 0.78$        | $0.41 \\ 0.52$ | $0.23 \\ 0.47$ | $0.54 \\ 0.69$ | $-0.23 \\ 0.08$ | $0.39 \\ 0.54$ | $0.51 \\ 0.62$ | $0.07 \\ 0.30$ | $0.71 \\ 0.78$ | $0.06 \\ 0.38$ | $0.07 \\ 0.30$ | $0.42 \\ 0.62$ |
|               | FCFP4            | $0.20 \\ 0.27$ | 0.63           | 0.08           | 0.41           | 0.78                  | 0.52           | 0.41           | 0.69           | $0.08 \\ 0.22$  | 0.54 $0.61$    | 0.62           | 0.43           | 0.78           | 0.50           | 0.43           | 0.64           |
|               | FCFP6            | 0.25           | 0.62           | 0.69           | 0.41           | 0.82                  | 0.54           | 0.41           | 0.66           | 0.40            | 0.69           | 0.75           | 0.50           | 0.87           | 0.68           | 0.50           | 0.68           |
|               | KR               | 0.27           | 0.63           | 0.69           | 0.44           | 0.82                  | 0.57           | 0.44           | 0.68           | 0.35            | 0.66           | 0.74           | 0.43           | 0.89           | 0.67           | 0.43           | 0.70           |
|               | LSTAR            | 0.17           | 0.58           | 0.68           | 0.26           | 0.89                  | 0.50           | 0.26           | 0.59           | 0.19            | 0.59           | 0.68           | 0.33           | 0.84           | 0.50           | 0.33           | 0.60           |
|               | MACCS            | 0.28           | 0.65           | 0.66           | 0.61           | 0.69                  | 0.50           | 0.61           | 0.70           | 0.21            | 0.61           | 0.64           | 0.50           | 0.71           | 0.45           | 0.50           | 0.68           |
|               | PUBCHEM          | 0.30           | 0.65           | 0.68           | 0.57           | 0.74                  | 0.54           | 0.57           | 0.71           | 0.14            | 0.58           | 0.60           | 0.50           | 0.65           | 0.41           | 0.50           | 0.65           |
|               | RAD2D            | 0.14           | 0.56           | 0.64           | 0.32           | 0.81                  | 0.50           | 0.32           | 0.60           | 0.47            | 0.72           | 0.78           | 0.53           | 0.90           | 0.76           | 0.53           | 0.75           |
|               | 2PPHAR<br>3PPHAR | 0.11<br>0.19   | 0.56<br>0.60   | 0.54<br>0.59   | $0.75 \\ 0.63$ | $0.37 \\ 0.56$        | 0.51<br>0.56   | 0.75<br>0.63   | 0.59<br>0.64   | 0.09<br>0.19    | 0.55<br>0.59   | $0.52 \\ 0.59$ | 0.92<br>0.64   | 0.17<br>0.54   | 0.49<br>0.55   | 0.92<br>0.64   | 0.60<br>0.65   |
|               | AP2D             | 0.15           | 0.73           | 0.73           | 0.71           | 0.75                  | 0.71           | 0.71           | 0.80           | 0.13            | 0.74           | 0.74           | 0.71           | 0.76           | 0.33           | 0.71           | 0.80           |
|               | ASP              | 0.57           | 0.78           | 0.79           | 0.75           | 0.82                  | 0.78           | 0.75           | 0.85           | 0.58            | 0.79           | 0.79           | 0.75           | 0.82           | 0.79           | 0.75           | 0.86           |
|               | AT2D             | 0.56           | 0.78           | 0.78           | 0.74           | 0.81                  | 0.78           | 0.74           | 0.84           | 0.55            | 0.77           | 0.78           | 0.75           | 0.80           | 0.76           | 0.75           | 0.84           |
|               | DFS              | 0.56           | 0.78           | 0.78           | 0.75           | 0.81                  | 0.78           | 0.75           | 0.85           | 0.59            | 0.79           | 0.80           | 0.76           | 0.82           | 0.79           | 0.76           | 0.86           |
|               | ECFP0            | 0.47           | 0.74           | 0.74           | 0.72           | 0.75                  | 0.72           | 0.72           | 0.81           | 0.48            | 0.74           | 0.74           | 0.72           | 0.76           | 0.72           | 0.72           | 0.81           |
|               | ECFP2            | 0.56           | 0.78           | 0.78           | 0.76           | 0.80                  | 0.77           | 0.76           | 0.85           | 0.59            | 0.80           | 0.80           | 0.77           | 0.82           | 0.79           | 0.77           | 0.87           |
| AMEC          | ECFP4            | 0.57           | 0.79           | 0.79           | 0.75           | 0.82                  | 0.79           | 0.75           | 0.86           | 0.58            | 0.79           | 0.79           | 0.76           | 0.82           | 0.78           | 0.76           | 0.86           |
| AMES          | ECFP6<br>ESTATE  | $0.55 \\ 0.47$ | $0.78 \\ 0.73$ | $0.78 \\ 0.73$ | $0.74 \\ 0.72$ | $0.81 \\ 0.75$        | $0.77 \\ 0.71$ | $0.74 \\ 0.72$ | $0.84 \\ 0.81$ | $0.58 \\ 0.47$  | $0.79 \\ 0.73$ | $0.79 \\ 0.74$ | $0.76 \\ 0.71$ | $0.82 \\ 0.76$ | $0.79 \\ 0.72$ | $0.76 \\ 0.71$ | $0.86 \\ 0.81$ |
| Mutagenecity  | FCFP0            | $0.47 \\ 0.24$ | 0.73           | 0.73           | 0.72           | 0.75                  | 0.71           | 0.72           | 0.66           | $0.47 \\ 0.24$  | 0.73           | 0.74           | 0.71           | 0.76           | 0.72           | 0.71           | 0.81           |
|               | FCFP2            | 0.52           | 0.76           | 0.76           | 0.74           | 0.79                  | 0.75           | 0.74           | 0.83           | 0.52            | 0.76           | 0.76           | 0.73           | 0.79           | 0.75           | 0.73           | 0.83           |
|               | FCFP4            | 0.55           | 0.77           | 0.77           | 0.74           | 0.80                  | 0.77           | 0.74           | 0.85           | 0.54            | 0.77           | 0.77           | 0.74           | 0.80           | 0.76           | 0.74           | 0.85           |
|               | FCFP6            | 0.55           | 0.77           | 0.78           | 0.74           | 0.81                  | 0.77           | 0.74           | 0.84           | 0.55            | 0.78           | 0.78           | 0.75           | 0.80           | 0.76           | 0.75           | 0.85           |
|               | KR               | 0.56           | 0.78           | 0.78           | 0.77           | 0.79                  | 0.76           | 0.77           | 0.85           | 0.60            | 0.80           | 0.80           | 0.79           | 0.82           | 0.79           | 0.79           | 0.87           |
|               | LSTAR            | 0.54           | 0.77           | 0.77           | 0.76           | 0.77                  | 0.75           | 0.76           | 0.84           | 0.56            | 0.78           | 0.78           | 0.77           | 0.80           | 0.77           | 0.77           | 0.85           |
|               | MACCS            | 0.58           | 0.79           | 0.79           | 0.76           | 0.82                  | 0.78           | 0.76           | 0.85           | 0.58            | 0.79           | 0.79           | 0.75           | 0.83           | 0.79           | 0.75           | 0.86           |
|               | PUBCHEM          | 0.59           | 0.79           | 0.79           | $0.77 \\ 0.76$ | 0.82                  | $0.79 \\ 0.78$ | 0.77           | 0.86           | $0.58 \\ 0.58$  | 0.79           | $0.79 \\ 0.79$ | 0.76           | 0.83           | $0.79 \\ 0.79$ | 0.76           | 0.87           |
|               | RAD2D<br>2PPHAR  | 0.57           | 0.78           | 0.79           | 0.76           | 0.81                  | 0.78           | 0.76           | 0.86           | 0.58            | 0.79           | 0.79           | 0.76           | 0.82           | 0.79           | 0.76           | 0.86           |
|               | 3PPHAR           | $0.10 \\ 0.21$ | $0.54 \\ 0.59$ | $0.70 \\ 0.75$ | $0.19 \\ 0.24$ | $0.89 \\ 0.93$        | 0.47           | $0.19 \\ 0.24$ | $0.59 \\ 0.68$ | $0.00 \\ 0.29$  | 0.62           | $0.72 \\ 0.77$ | $0.03 \\ 0.29$ | $0.97 \\ 0.94$ | 0.17           | $0.03 \\ 0.29$ | $0.56 \\ 0.71$ |
|               | AP2D             | $0.21 \\ 0.29$ | 0.62           | 0.73           | 0.24           | 0.93                  | 0.64           | 0.24           | 0.67           | 0.29 $0.15$     | 0.56           | 0.77           | 0.29           | 0.94           | 0.52           | 0.29           | 0.71           |
|               | ASP              | 0.62           | 0.81           | 0.85           | 0.71           | 0.90                  | 0.74           | 0.71           | 0.88           | 0.69            | 0.84           | 0.88           | 0.75           | 0.93           | 0.80           | 0.75           | 0.90           |
|               | AT2D             | 0.65           | 0.82           | 0.86           | 0.74           | 0.91                  | 0.76           | 0.74           | 0.89           | 0.60            | 0.80           | 0.84           | 0.71           | 0.89           | 0.71           | 0.71           | 0.85           |
|               | DFS              | 0.66           | 0.83           | 0.87           | 0.74           | 0.92                  | 0.77           | 0.74           | 0.88           | 0.64            | 0.81           | 0.87           | 0.68           | 0.93           | 0.80           | 0.68           | 0.88           |
|               | ECFP0            | 0.26           | 0.62           | 0.73           | 0.40           | 0.85                  | 0.50           | 0.40           | 0.71           | 0.34            | 0.66           | 0.75           | 0.47           | 0.85           | 0.54           | 0.47           | 0.75           |
|               | ECFP2            | 0.65           | 0.82           | 0.86           | 0.74           | 0.91                  | 0.76           | 0.74           | 0.87           | 0.73            | 0.86           | 0.90           | 0.79           | 0.93           | 0.82           | 0.79           | 0.92           |
| Hamalytic     | -                |                |                |                |                |                       |                |                |                |                 |                |                |                |                | Contin         | ued on ne:     | rt page        |

Hemolytic Toxicity (saponins)

Table S1 - Continued from previous page

| Fig.   Fig.   Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                |      |      |      | C    | Table Si |      | ued from | previous p | page |      |      | Val  | idation |      |      |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|------|------|------|------|----------|------|----------|------------|------|------|------|------|---------|------|------|------|
| Fig.    | Endpoint       | FP             | κ    | BACC | ACC  |      |          |      | κ        | BACC       | ACC  | Se   | Sp   |      | Idation |      |      |      |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |      |      |      | 0.71 | 0.92     | 0.77 | 0.71     |            |      | 0.80 | 0.86 |      |         |      |      |      |
| Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Performance    |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Record   R |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      | 0.86 |
| PLINCIENE   0.45   0.72   0.76   0.56   0.57   0.36   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0.56   0. |                | LSTAR          | 0.64 | 0.82 | 0.86 | 0.72 | 0.91     | 0.76 |          |            |      | 0.79 |      | 0.68 | 0.90    | 0.72 | 0.68 | 0.88 |
| Performance    |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Perform   Perf |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| A PAPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| A. Separation   A. Separatio |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| A 1720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| PSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Becomp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| BERG   BEGFF   0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| BRIG   BCFP   0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Separate   Separate  | 1.00.0         |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| FCPP0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| FCFP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cardiotoxicity |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| FGFP4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| RR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| LSTAR   0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | FCFP6          |      | 0.79 |      | 0.78 | 0.80     |      | 0.78     | 0.86       | 0.60 | 0.80 | 0.80 | 0.79 |         |      |      | 0.88 |
| MACCS   0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| PUBCHEM   0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| RADZD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| PHARK   0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| SPHAR   1940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | AP2D           |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| ECFP   P.   P.   P.   P.   P.   P.   P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| ECFP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Herg Liability   ECPP6   0.50   0.75   0.87   0.93   0.56   0.91   0.93   0.85   0.56   0.50   0.75   0.88   0.95   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.56   0.91   0.95   0.88   0.76   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.88   0.75   0.95   0.95   0.88   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.95   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.88   0.75   0.8 |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| Herg Liability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ECFP2<br>ECFP4 |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| PERG   Percent   Percent |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hERG Liability |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| FCFP4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                | 0.19 | 0.62 | 0.71 | 0.76 |          |      | 0.76     | 0.67       | 0.20 | 0.63 | 0.71 | 0.75 | 0.51    |      | 0.75 |      |
| FCFP6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| KR   0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| LSTAR   0.49   0.73   0.86   0.94   0.51   0.90   0.94   0.83   0.50   0.72   0.88   0.96   0.47   0.90   0.96   0.85     MACCS   0.51   0.76   0.85   0.90   0.62   0.92   0.90   0.86   0.52   0.77   0.86   0.90   0.64   0.92   0.90   0.87     PUBCHEM   0.52   0.76   0.86   0.92   0.60   0.92   0.92   0.87   0.54   0.76   0.87   0.93   0.57   0.93   0.59   0.92   0.93   0.88     RAD2D   0.52   0.76   0.86   0.92   0.59   0.92   0.92   0.85   0.53   0.75   0.87   0.93   0.57   0.91   0.93   0.87     SPHAR   0.17   0.66   0.61   0.72   0.59   0.23   0.72   0.68   0.19   0.68   0.63   0.75   0.61   0.24   0.75   0.68     AP2D   0.33   0.68   0.82   0.48   0.87   0.39   0.49   0.72   0.23   0.64   0.77   0.45   0.83   0.30   0.45   0.72     AP2D   0.33   0.68   0.65   0.65   0.89   0.51   0.65   0.87   0.54   0.76   0.88   0.63   0.93   0.59   0.63   0.89     AT2D   0.46   0.76   0.85   0.62   0.89   0.49   0.62   0.85   0.87   0.54   0.76   0.86   0.58   0.63   0.93   0.59   0.63   0.89     AT2D   0.46   0.76   0.85   0.62   0.89   0.49   0.62   0.85   0.46   0.74   0.86   0.58   0.63   0.93   0.59   0.63   0.89     ECFP0   0.34   0.72   0.80   0.61   0.83   0.37   0.61   0.80   0.35   0.75   0.86   0.65   0.59   0.90   0.50   0.86   0.86   0.46   0.75   0.86   0.65   0.90   0.50   0.60   0.86     ECFP2   0.46   0.75   0.85   0.60   0.90   0.49   0.60   0.85   0.48   0.75   0.87   0.87   0.59   0.91   0.54   0.59   0.87     Mitochondrial   ECFP6   0.45   0.74   0.85   0.53   0.91   0.49   0.53   0.83   0.44   0.70   0.87   0.57   0.80   0.61   0.83   0.37   0.61   0.81     FCFP0   0.27   0.69   0.74   0.62   0.76   0.31   0.62   0.75   0.88   0.63   0.78   0.57   0.87   0.57   0.94   0.57   0.86   0.58   0.60   0.90   0.50   0.86   0.86   0.58   0.48   0.78   0.54   0.55   0.53   0.91   0.54   0.58   0.87   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58   0.58  |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| MACCS   0.51   0.76   0.85   0.90   0.62   0.92   0.90   0.86   0.52   0.77   0.86   0.90   0.64   0.92   0.90   0.87   0.88   0.88   0.90   0.64   0.92   0.90   0.88   0.90   0.86   0.92   0.92   0.92   0.92   0.93   0.88   0.90   0.87   0.94   0.75   0.86   0.92   0.92   0.93   0.88   0.90   0.87   0.94   0.92   0.94   0.92   0.94   0.92   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   0.94   |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| PUB CHEM         0.52         0.76         0.86         0.92         0.60         0.92         0.92         0.87         0.54         0.76         0.87         0.92         0.93         0.78         0.93         0.59         0.92         0.93         0.88           2PPHAR         0.17         0.66         0.61         0.72         0.59         0.23         0.72         0.68         0.19         0.68         0.63         0.75         0.81         0.24         0.75         0.68           3PPHAR         0.23         0.65         0.76         0.49         0.81         0.30         0.49         0.72         0.68         0.19         0.68         0.63         0.75         0.61         0.24         0.75         0.68           AP2D         0.33         0.68         0.85         0.48         0.87         0.39         0.48         0.79         0.36         0.69         0.84         0.48         0.89         0.43         0.78         0.80         0.65         0.65         0.87         0.54         0.78         0.88         0.69         0.83         0.69         0.84         0.89         0.48         0.78         0.61         0.89         0.61         0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| RAD2D   0.52   0.76   0.86   0.92   0.59   0.92   0.92   0.85   0.53   0.75   0.87   0.93   0.57   0.91   0.93   0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                | 0.52 | 0.76 | 0.86 | 0.92 | 0.59     | 0.92 | 0.92     | 0.85       | 0.53 | 0.75 | 0.87 | 0.93 | 0.57    | 0.91 | 0.93 | 0.87 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | ECFP4          |      | 0.74 |      |      | 0.90     |      |          |            |      | 0.74 |      |      |         |      |      | 0.87 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | ECFP6          | 0.42 | 0.72 | 0.85 | 0.53 | 0.91     | 0.49 | 0.53     | 0.83       | 0.44 | 0.70 | 0.87 | 0.47 | 0.94    | 0.57 | 0.47 | 0.84 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Toxicity       |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
| m KR = 0.48 = 0.74 = 0.87 = 0.57 = 0.92 = 0.55 = 0.57 = 0.86 = 0.45 = 0.72 = 0.86 = 0.53 = 0.92 = 0.53 = 0.86 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.51 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 = 0.86 =  |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |      |      |      |      |          |      |          |            |      |      |      |      |         |      |      |      |

0.57 0.50 0.86 Continued on next page

Table S1 - Continued from previous page

| Endpoint       | FP                      |                |                |                |                | libratio       |                |                |                |                |                |                |                | idation        |                |                |            |
|----------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------|
| zna point      |                         | κ              | BACC           | ACC            | Se             | $_{ m Sp}$     | AUC            | $\kappa$       | BACC           | ACC            | Se             | Sp             | AUC            |                |                |                |            |
|                | MACCS                   | 0.49           | 0.77           | 0.86           | 0.63           | 0.90           | 0.52           | 0.63           | 0.87           | 0.54           | 0.80           | 0.88           | 0.69           | 0.91           | 0.55           | 0.69           | 0.90       |
|                | PUBCHEM                 | 0.54           | 0.79           | 0.88           | 0.66           | 0.91           | 0.56           | 0.66           | 0.90           | 0.51           | 0.77           | 0.87           | 0.63           | 0.91           | 0.55           | 0.63           | 0.90       |
|                | RAD2D                   | 0.46           | 0.74           | 0.86           | 0.58           | 0.91           | 0.52           | 0.58           | 0.86           | 0.43           | 0.73           | 0.85           | 0.56           | 0.90           | 0.48           | 0.56           | 0.86       |
|                | 2PPHAR                  | 0.26           | 0.63           | 0.65           | 0.51           | 0.75           | 0.58           | 0.51           | 0.70           | 0.30           | 0.65           | 0.67           | 0.57           | 0.73           | 0.59           | 0.57           | 0.72       |
|                | 3PPHAR                  | 0.26           | 0.63           | 0.64           | 0.58           | 0.68           | 0.55           | 0.58           | 0.68           | 0.30           | 0.66           | 0.66           | 0.66           | 0.65           | 0.57           | 0.66           | 0.67       |
|                | AP2D                    | 0.62           | 0.80           | 0.82           | 0.74           | 0.87           | 0.79           | 0.74           | 0.87           | 0.59           | 0.79           | 0.80           | 0.72           | 0.86           | 0.78           | 0.72           | 0.87       |
|                | ASP                     | 0.65           | 0.83           | 0.83           | 0.79           | 0.86           | 0.80           | 0.79           | 0.89           | 0.62           | 0.81           | 0.82           | 0.76           | 0.85           | 0.78           | 0.76           | 0.87       |
|                | AT2D                    | 0.62           | 0.81           | 0.81           | 0.80           | 0.82           | 0.76           | 0.80           | 0.87           | 0.64           | 0.83           | 0.82           | 0.84           | 0.81           | 0.76           | 0.84           | 0.88       |
|                | DFS                     | 0.64           | 0.82           | 0.82           | 0.77           | 0.86           | 0.79           | 0.77           | 0.88           | 0.65           | 0.82           | 0.83           | 0.79           | 0.86           | 0.79           | 0.79           | 0.89       |
|                | ECFP0                   | 0.60           | 0.80           | 0.80           | 0.77           | 0.83           | 0.75           | 0.77           | 0.87           | 0.52           | 0.75           | 0.77           | 0.68           | 0.83           | 0.73           | 0.68           | 0.83       |
|                | ECFP2                   | 0.65           | 0.82           | 0.83           | 0.78           | 0.86           | 0.80           | 0.78           | 0.89           | 0.65           | 0.82           | 0.84           | 0.77           | 0.88           | 0.81           | 0.77           | 0.90       |
| <b>.</b>       | ECFP4                   | 0.64           | 0.82           | 0.83           | 0.76           | 0.88           | 0.81           | 0.76           | 0.89           | 0.64           | 0.82           | 0.83           | 0.76           | 0.88           | 0.81           | 0.76           | 0.88       |
| Respiratory    | ECFP6                   | 0.63           | 0.81           | 0.82           | 0.76           | 0.87           | 0.80           | 0.76           | 0.88           | 0.66           | 0.83           | 0.84           | 0.76           | 0.90           | 0.83           | 0.76           | 0.90       |
| Γoxicity       | ESTATE                  | 0.56           | 0.78           | 0.79           | 0.76           | 0.81           | 0.73           | 0.76           | 0.84           | 0.60           | 0.80           | 0.80           | 0.80           | 0.81           | 0.74           | 0.80           | 0.8        |
|                | FCFP0                   | 0.50           | 0.75           | 0.76           | 0.73           | 0.78           | 0.69           | 0.73           | 0.82           | 0.52           | 0.76           | 0.76           | 0.75           | 0.77           | 0.69           | 0.75           | 0.83       |
|                | FCFP2                   | 0.61           | 0.80           | 0.81           | 0.76           | 0.86           | 0.78           | 0.76           | 0.87           | 0.60           | 0.80           | 0.81           | 0.77           | 0.83           | 0.76           | 0.77           | 0.88       |
|                | FCFP4                   | 0.61           | 0.81           | 0.81           | 0.76           | 0.85           | 0.78           | 0.76           | 0.89           | 0.65           | 0.82           | 0.83           | 0.79           | 0.86           | 0.79           | 0.79           | 0.89       |
|                | FCFP6                   | 0.63           | 0.81           | 0.82           | 0.76           | 0.86           | 0.79           | 0.76           | 0.89           | 0.62           | 0.81           | 0.82           | 0.77           | 0.85           | 0.78           | 0.77           | 0.89       |
|                | KR                      | 0.61           | 0.80           | 0.81           | 0.75           | 0.85           | 0.78           | 0.75           | 0.86           | 0.58           | 0.78           | 0.80           | 0.69           | 0.87           | 0.79           | 0.69           | 0.8        |
|                | LSTAR                   | 0.61           | 0.80           | 0.81           | 0.73           | 0.87           | 0.79           | 0.73           | 0.86           | 0.57           | 0.78           | 0.80           | 0.70           | 0.86           | 0.78           | 0.70           | 0.8        |
|                | MACCS                   | 0.65           | 0.82           | 0.83           | 0.78           | 0.87           | 0.81           | 0.78           | 0.88           | 0.64           | 0.82           | 0.83           | 0.77           | 0.86           | 0.80           | 0.77           | 0.88       |
|                | PUBCHEM                 | 0.65           | 0.82           | 0.83           | 0.78           | 0.87           | 0.80           | 0.78           | 0.89           | 0.69           | 0.84           | 0.85           | 0.80           | 0.88           | 0.82           | 0.80           | 0.9        |
|                | RAD2D                   | 0.67           | 0.83           | 0.84           | 0.79           | 0.88           | 0.81           | 0.79           | 0.89           | 0.62           | 0.80           | 0.82           | 0.71           | 0.90           | 0.83           | 0.71           | 0.89       |
|                | 2PPHAR                  | 0.06           | 0.52           | 0.65           | 0.15           | 0.89           | 0.41           | 0.15           | 0.51           | 0.11           | 0.55           | 0.67           | 0.19           | 0.91           | 0.53           | 0.19           | 0.5        |
|                | 3PPHAR                  | 0.07           | 0.53           | 0.64           | 0.21           | 0.86           | 0.43           | 0.21           | 0.56           | -0.05          | 0.48           | 0.61           | 0.09           | 0.87           | 0.18           | 0.09           | 0.5        |
|                | AP2D                    | 0.24           | 0.61           | 0.67           | 0.43           | 0.80           | 0.54           | 0.43           | 0.66           | 0.18           | 0.58           | 0.65           | 0.38           | 0.79           | 0.49           | 0.38           | 0.6        |
|                | ASP                     | 0.33           | 0.66           | 0.71           | 0.51           | 0.81           | 0.60           | 0.51           | 0.71           | 0.20           | 0.60           | 0.66           | 0.42           | 0.78           | 0.49           | 0.42           | 0.73       |
|                | AT2D                    | 0.30           | 0.65           | 0.68           | 0.59           | 0.72           | 0.52           | 0.59           | 0.70           | 0.32           | 0.66           | 0.70           | 0.52           | 0.79           | 0.57           | 0.52           | 0.7        |
|                | DFS                     | 0.35           | 0.68           | 0.70           | 0.64           | 0.73           | 0.55           | 0.64           | 0.74           | 0.25           | 0.63           | 0.67           | 0.51           | 0.75           | 0.51           | 0.51           | 0.7        |
|                | ECFP0                   | 0.24           | 0.61           | 0.70           | 0.34           | 0.88           | 0.61           | 0.34           | 0.62           | 0.18           | 0.58           | 0.69           | 0.26           | 0.90           | 0.56           | 0.26           | 0.6        |
|                | ECFP2                   | 0.24           | 0.62           | 0.67           | 0.44           | 0.79           | 0.52           | 0.44           | 0.65           | 0.25           | 0.62           | 0.67           | 0.46           | 0.78           | 0.53           | 0.46           | 0.70       |
|                | ECFP4                   | 0.28           | 0.64           | 0.69           | 0.47           | 0.80           | 0.55           | 0.47           | 0.71           | 0.27           | 0.62           | 0.71           | 0.36           | 0.88           | 0.63           | 0.36           | 0.70       |
| Toxic Myopathy | ECFP6                   | 0.29           | 0.65           | 0.68           | 0.54           | 0.76           | 0.53           | 0.54           | 0.70           | 0.20           | 0.60           | 0.64           | 0.46           | 0.73           | 0.46           | 0.46           | 0.66       |
| J 1 J          | ESTATE                  | 0.23           | 0.62           | 0.65           | 0.52           | 0.71           | 0.48           | 0.52           | 0.63           | 0.23           | 0.62           | 0.66           | 0.49           | 0.74           | 0.49           | 0.49           | 0.70       |
|                | FCFP0                   | 0.22           | 0.60           | 0.67           | 0.42           | 0.79           | 0.51           | 0.42           | 0.64           | 0.12           | 0.56           | 0.65           | 0.28           | 0.84           | 0.34           | 0.28           | 0.58       |
|                | FCFP2                   | 0.33           | 0.66           | 0.71           | 0.51           | 0.81           | 0.58           | 0.51           | 0.69           | 0.21           | 0.60           | 0.65           | 0.45           | 0.75           | 0.48           | 0.45           | 0.68       |
|                | FCFP4                   | 0.33           | 0.66           | 0.71           | 0.51           | 0.81           | 0.59           | 0.51           | 0.72           | 0.31           | 0.66           | 0.70           | 0.54           | 0.78           | 0.54           | 0.54           | 0.69       |
|                | FCFP6                   | 0.27           | 0.63           | 0.69           | 0.46           | 0.80           | 0.56           | 0.46           | 0.70           | 0.33           | 0.66           | 0.71           | 0.51           | 0.81           | 0.57           | 0.51           | 0.7        |
|                | KR                      | 0.27           | 0.63           | 0.70           | 0.42           | 0.84           | 0.57           | 0.42           | 0.67           | 0.10           | 0.55           | 0.65           | 0.25           | 0.85           | 0.44           | 0.25           | 0.6        |
|                | LSTAR                   | 0.27           | 0.63           | 0.69           | 0.44           | 0.81           | 0.56           | 0.44           | 0.70           | 0.25           | 0.62           | 0.68           | 0.44           | 0.80           | 0.52           | 0.44           | 0.70       |
|                | MACCS                   | 0.23           | 0.61           | 0.66           | 0.46           | 0.76           | 0.50           | 0.46           | 0.66           | 0.18           | 0.59           | 0.61           | 0.52           | 0.66           | 0.45           | 0.52           | 0.6        |
|                | PUBCHEM                 | 0.19           | 0.59           | 0.65           | 0.43           | 0.76           | 0.47           | 0.43           | 0.67           | 0.04           | 0.51           | 0.61           | 0.22           | 0.81           | 0.45           | 0.22           | 0.6        |
|                | RAD2D                   | 0.25           | 0.62           | 0.69           | 0.37           | 0.86           | 0.57           | 0.37           | 0.67           | 0.28           | 0.62           | 0.72           | 0.35           | 0.90           | 0.65           | 0.35           | 0.69       |
|                | 2PPHAR                  | 0.17           | 0.58           | 0.70           | 0.83           | 0.33           | 0.77           | 0.83           | 0.61           | 0.08           | 0.54           | 0.66           | 0.81           | 0.26           | 0.75           | 0.81           | 0.57       |
|                | 3PPHAR                  | 0.14           | 0.56           | 0.72           | 0.89           | 0.23           | 0.76           | 0.89           | 0.66           | 0.11           | 0.55           | 0.69           | 0.86           | 0.24           | 0.76           | 0.86           | 0.6        |
|                | AP2D                    | 0.34           | 0.68           | 0.73           | 0.80           | 0.56           | 0.83           | 0.80           | 0.75           | 0.37           | 0.68           | 0.76           | 0.84           | 0.52           | 0.83           | 0.84           | 0.7        |
|                | $^{\rm ASP}_{\rm AT2D}$ | 0.40           | $0.70 \\ 0.72$ | $0.77 \\ 0.77$ | $0.84 \\ 0.82$ | $0.56 \\ 0.62$ | $0.84 \\ 0.86$ | $0.84 \\ 0.82$ | $0.75 \\ 0.78$ | $0.25 \\ 0.52$ | $0.61 \\ 0.77$ | $0.76 \\ 0.81$ | 0.93           | $0.28 \\ 0.69$ | 0.78           | $0.93 \\ 0.85$ | 0.75       |
|                | DFS                     | 0.43           |                |                |                |                |                |                |                |                |                |                | 0.85           |                | 0.88           |                |            |
|                | ECFP0                   | 0.35           | 0.68           | 0.74           | 0.82           | 0.53           | 0.83           | 0.82           | 0.75           | 0.34           | 0.65           | 0.77           | 0.91           | 0.39           | 0.81           | 0.91           | 0.78       |
|                | ECFP0<br>ECFP2          | $0.34 \\ 0.38$ | $0.68 \\ 0.68$ | $0.73 \\ 0.77$ | $0.79 \\ 0.86$ | $0.57 \\ 0.51$ | $0.84 \\ 0.83$ | $0.79 \\ 0.86$ | $0.74 \\ 0.77$ | $0.47 \\ 0.39$ | $0.74 \\ 0.68$ | $0.78 \\ 0.79$ | $0.83 \\ 0.92$ | $0.65 \\ 0.43$ | $0.87 \\ 0.82$ | $0.83 \\ 0.92$ | 0.7        |
|                | ECFP2<br>ECFP4          | 0.38           | 0.68           | 0.77           | 0.86           | $0.51 \\ 0.47$ | 0.83           | 0.86           | 0.77           | 0.39           | 0.68           | $0.79 \\ 0.82$ | $0.92 \\ 0.92$ |                | 0.82           | $0.92 \\ 0.92$ |            |
|                |                         | $0.40 \\ 0.40$ | 0.68           | 0.79           | 0.90           | 0.47           | 0.82           |                | 0.78           | $0.51 \\ 0.39$ | 0.73           | $0.82 \\ 0.78$ | $0.92 \\ 0.90$ | 0.54           | $0.85 \\ 0.82$ | $0.92 \\ 0.90$ | 0.8        |
| Myelotoxicity  | ECFP6<br>ESTATE         | $0.40 \\ 0.29$ | 0.69           | $0.78 \\ 0.70$ | 0.88 $0.74$    |                | 0.83           | $0.88 \\ 0.74$ | $0.78 \\ 0.72$ | $0.39 \\ 0.29$ | 0.68           | $0.78 \\ 0.69$ | 0.90           | $0.45 \\ 0.61$ | 0.82           | $0.90 \\ 0.71$ | 0.7<br>0.7 |
|                | FCFP0                   | 0.29 $0.17$    |                | 0.70           | $0.74 \\ 0.82$ | $0.58 \\ 0.35$ | 0.83           | $0.74 \\ 0.82$ | $0.72 \\ 0.61$ | $0.29 \\ 0.19$ | 0.58           | $0.69 \\ 0.73$ | $0.71 \\ 0.90$ | $0.61 \\ 0.26$ | 0.84           | $0.71 \\ 0.90$ |            |
|                | FCFP0<br>FCFP2          | $0.17 \\ 0.41$ | $0.58 \\ 0.71$ | $0.69 \\ 0.77$ | $0.82 \\ 0.84$ | $0.35 \\ 0.58$ | $0.78 \\ 0.85$ | $0.82 \\ 0.84$ | $0.61 \\ 0.77$ | $0.19 \\ 0.50$ | $0.58 \\ 0.75$ | $0.73 \\ 0.80$ | $0.90 \\ 0.86$ | $0.26 \\ 0.64$ | 0.77           |                | 0.6        |
|                | FCFP2<br>FCFP4          |                |                |                | $0.84 \\ 0.85$ |                |                |                |                |                |                |                |                |                |                | 0.86           |            |
|                | FCFP4<br>FCFP6          | 0.44           | $0.72 \\ 0.71$ | $0.78 \\ 0.77$ | $0.85 \\ 0.83$ | $0.58 \\ 0.60$ | $0.85 \\ 0.85$ | $0.85 \\ 0.83$ | $0.79 \\ 0.77$ | $0.44 \\ 0.49$ | $0.71 \\ 0.73$ | $0.79 \\ 0.82$ | $0.88 \\ 0.91$ | $0.54 \\ 0.54$ | $0.84 \\ 0.85$ | $0.88 \\ 0.91$ | 0.8<br>0.8 |
|                |                         | 0.41           |                | 0.77 $0.78$    | 0.83           |                |                |                |                | $0.49 \\ 0.37$ | 0.73           | $0.82 \\ 0.76$ | 0.91 $0.86$    |                |                |                | 0.8        |
|                | KR                      | 0.42           | 0.71           |                |                | 0.56           | 0.85           | 0.86           | 0.79           |                |                |                |                | 0.50           | 0.83           | 0.86           |            |
|                | LSTAR                   | 0.36           | 0.67           | 0.77           | 0.88           | 0.45           | 0.82           | 0.88           | 0.72           | 0.34           | 0.65           | 0.78           | 0.93           | 0.37           | 0.80           | 0.93           | 0.7        |
|                | MACCS                   | 0.43           | 0.73           | 0.77           | 0.82           | 0.63           | 0.86           | 0.82           | 0.80           | 0.50           | 0.76           | 0.80           | 0.84           | 0.67           | 0.88           | 0.84           | 0.8        |
|                | PUBCHEM                 | 0.42           | 0.70           | 0.78           | 0.86           | 0.55           | 0.84           | 0.86           | 0.78           | 0.45           | 0.72           | 0.79           | 0.87           | 0.56           | 0.85           | 0.87           | 0.8        |
|                | RAD2D                   | 0.39           | 0.68           | 0.77           | 0.87           | 0.49           | 0.83           | 0.87           | 0.76           | 0.43           | 0.70           | 0.80           | 0.92           | 0.47           | 0.83           | 0.92           | 0.8        |
|                | 2PPHAR                  | 0.09           | 0.54           | 0.60           | 0.86           | 0.22           | 0.61           | 0.86           | 0.58           | 0.07           | 0.53           | 0.58           | 0.84           | 0.23           | 0.61           | 0.84           | 0.5        |
|                | 3PPHAR                  | 0.22           | 0.60           | 0.65           | 0.90           | 0.30           | 0.65           | 0.90           | 0.67           | 0.20           | 0.59           | 0.64           | 0.89           | 0.29           | 0.64           | 0.89           | 0.6        |
|                | AP2D                    | 0.29           | 0.65           | 0.66           | 0.70           | 0.59           | 0.71           | 0.70           | 0.70           | 0.31           | 0.65           | 0.67           | 0.74           | 0.57           | 0.71           | 0.74           | 0.75       |
|                | ASP                     | 0.36           | 0.68           | 0.69           | 0.74           | 0.62           | 0.73           | 0.74           | 0.74           | 0.36           | 0.68           | 0.69           | 0.74           | 0.62           | 0.73           | 0.74           | 0.73       |
|                | AT2D                    | 0.32           | 0.66           | 0.66           | 0.64           | 0.69           | 0.75           | 0.64           | 0.73           | 0.33           | 0.67           | 0.67           | 0.66           | 0.68           | 0.75           | 0.66           | 0.74       |
|                | DFS                     | 0.35           | 0.67           | 0.68           | 0.73           | 0.62           | 0.74           | 0.73           | 0.74           | 0.33           | 0.66           | 0.68           | 0.79           | 0.53           | 0.72           | 0.79           | 0.78       |

Table S1 - Continued from previous page

|                                |                                     |                |                |                |                |                  | - Contin       | ued from       | previous p     | age            |                |                | 37.1           | . 1 4.         |                |                |                |
|--------------------------------|-------------------------------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Endpoint                       | FP                                  | <u>κ</u>       | BACC           | ACC            | Se Se          | llibration<br>Sp | AUC            | κ              | BACC           | ACC            | Se             | Sp             | AUC            | idation        |                |                |                |
|                                | ECFP0                               | 0.27           | 0.64           | 0.64           | 0.64           | 0.63             | 0.71           | 0.64           | 0.68           | 0.29           | 0.65           | 0.65           | 0.69           | 0.61           | 0.72           | 0.69           | 0.68           |
|                                | ECFP2                               | 0.34           | 0.67           | 0.68           | 0.75           | 0.59             | 0.72           | 0.75           | 0.72           | 0.29           | 0.64           | 0.66           | 0.74           | 0.54           | 0.70           | 0.74           | 0.72           |
|                                | ECFP4                               | 0.33           | 0.66           | 0.68           | 0.77           | 0.56             | 0.71           | 0.77           | 0.72           | 0.41           | 0.70           | 0.72           | 0.82           | 0.58           | 0.73           | 0.82           | 0.76           |
|                                | ECFP6                               | 0.31           | 0.65           | 0.67           | 0.76           | 0.55             | 0.70           | 0.76           | 0.70           | 0.31           | 0.65           | 0.67           | 0.79           | 0.51           | 0.70           | 0.79           | 0.72           |
|                                | ESTATE                              | 0.27           | 0.64           | 0.64           | 0.64           | 0.63             | 0.71           | 0.64           | 0.68           | 0.29           | 0.65           | 0.65           | 0.64           | 0.65           | 0.72           | 0.64           | 0.69           |
|                                | FCFP0 $FCFP2$                       | $0.19 \\ 0.36$ | $0.59 \\ 0.68$ | $0.61 \\ 0.69$ | $0.72 \\ 0.75$ | $0.47 \\ 0.61$   | $0.66 \\ 0.73$ | $0.72 \\ 0.75$ | $0.62 \\ 0.74$ | $0.17 \\ 0.35$ | $0.59 \\ 0.68$ | $0.60 \\ 0.68$ | $0.68 \\ 0.72$ | $0.49 \\ 0.63$ | $0.66 \\ 0.73$ | $0.68 \\ 0.72$ | $0.62 \\ 0.72$ |
|                                | FCFP4                               | $0.36 \\ 0.37$ | 0.68           | 0.69           | 0.75           | 0.54             | $0.73 \\ 0.72$ | 0.75           | 0.74 $0.74$    | $0.35 \\ 0.36$ | 0.68           | 0.08           | 0.72           | 0.63           | 0.73           | 0.72           | 0.72           |
|                                | FCFP6                               | 0.36           | 0.68           | 0.69           | 0.73           | 0.62             | 0.73           | 0.73           | 0.74           | 0.42           | 0.71           | 0.72           | 0.79           | 0.63           | 0.75           | 0.79           | 0.78           |
|                                | KR                                  | 0.36           | 0.68           | 0.70           | 0.82           | 0.53             | 0.71           | 0.82           | 0.74           | 0.36           | 0.68           | 0.70           | 0.80           | 0.55           | 0.72           | 0.80           | 0.75           |
|                                | LSTAR                               | 0.31           | 0.65           | 0.67           | 0.75           | 0.56             | 0.71           | 0.75           | 0.72           | 0.31           | 0.65           | 0.67           | 0.75           | 0.56           | 0.71           | 0.75           | 0.71           |
|                                | MACCS                               | 0.35           | 0.68           | 0.69           | 0.75           | 0.61             | 0.73           | 0.75           | 0.73           | 0.34           | 0.67           | 0.69           | 0.76           | 0.58           | 0.72           | 0.76           | 0.76           |
|                                | PUBCHEM                             | 0.38           | 0.69           | 0.70           | 0.76           | 0.62             | 0.74           | 0.76           | 0.75           | 0.34           | 0.67           | 0.68           | 0.76           | 0.58           | 0.72           | 0.76           | 0.75           |
|                                | RAD2D                               | 0.33           | 0.66           | 0.68           | 0.80           | 0.52             | 0.70           | 0.80           | 0.71           | 0.42           | 0.70           | 0.73           | 0.88           | 0.52           | 0.72           | 0.88           | 0.76           |
|                                | 2PPHAR                              | 0.11           | 0.55           | 0.60           | 0.89           | 0.21             | 0.60           | 0.89           | 0.60           | 0.05           | 0.52           | 0.58           | 0.90           | 0.15           | 0.59           | 0.90           | 0.64           |
|                                | 3PPHAR<br>AP2D                      | $0.17 \\ 0.27$ | $0.58 \\ 0.64$ | $0.60 \\ 0.64$ | $0.72 \\ 0.67$ | $0.44 \\ 0.60$   | $0.64 \\ 0.70$ | $0.72 \\ 0.67$ | $0.64 \\ 0.68$ | $0.11 \\ 0.19$ | $0.55 \\ 0.60$ | $0.58 \\ 0.60$ | $0.72 \\ 0.65$ | $0.39 \\ 0.54$ | 0.61<br>0.66   | $0.72 \\ 0.65$ | $0.62 \\ 0.67$ |
|                                | ASP                                 | 0.35           | 0.68           | 0.68           | 0.68           | 0.68             | 0.74           | 0.68           | $0.08 \\ 0.72$ | 0.19           | 0.69           | 0.69           | 0.69           | 0.70           | 0.75           | 0.69           | 0.07           |
|                                | AT2D                                | 0.31           | 0.66           | 0.65           | 0.60           | 0.71             | 0.74           | 0.60           | 0.74           | 0.21           | 0.61           | 0.60           | 0.58           | 0.63           | 0.68           | 0.58           | 0.69           |
|                                | DFS                                 | 0.30           | 0.65           | 0.65           | 0.66           | 0.65             | 0.72           | 0.66           | 0.72           | 0.42           | 0.71           | 0.71           | 0.70           | 0.73           | 0.78           | 0.70           | 0.76           |
|                                | ECFP0                               | 0.35           | 0.68           | 0.68           | 0.69           | 0.67             | 0.74           | 0.69           | 0.73           | 0.13           | 0.57           | 0.57           | 0.61           | 0.53           | 0.63           | 0.61           | 0.65           |
|                                | ECFP2                               | 0.33           | 0.66           | 0.68           | 0.75           | 0.58             | 0.71           | 0.75           | 0.74           | 0.40           | 0.70           | 0.71           | 0.78           | 0.61           | 0.73           | 0.78           | 0.79           |
|                                | ECFP4                               | 0.38           | 0.69           | 0.69           | 0.73           | 0.65             | 0.74           | 0.73           | 0.75           | 0.35           | 0.68           | 0.68           | 0.67           | 0.69           | 0.75           | 0.67           | 0.77           |
| Phototoxicity in               | ECFP6                               | 0.37           | 0.69           | 0.69           | 0.69           | 0.69             | 0.75           | 0.69           | 0.75           | 0.31           | 0.65           | 0.66           | 0.69           | 0.62           | 0.71           | 0.69           | 0.71           |
| vitro                          | ESTATE<br>FCFP0                     | $0.38 \\ 0.19$ | $0.69 \\ 0.59$ | $0.70 \\ 0.61$ | $0.76 \\ 0.70$ | $0.62 \\ 0.49$   | $0.73 \\ 0.65$ | $0.76 \\ 0.70$ | $0.74 \\ 0.62$ | $0.31 \\ 0.09$ | $0.65 \\ 0.54$ | $0.67 \\ 0.57$ | $0.74 \\ 0.71$ | $0.56 \\ 0.38$ | $0.70 \\ 0.61$ | $0.74 \\ 0.71$ | $0.72 \\ 0.57$ |
|                                | FCFP2                               | 0.13           | 0.69           | 0.69           | 0.72           | 0.66             | 0.74           | 0.72           | 0.74           | 0.40           | 0.70           | 0.70           | 0.73           | 0.67           | 0.74           | 0.73           | 0.79           |
|                                | FCFP4                               | 0.35           | 0.67           | 0.69           | 0.77           | 0.58             | 0.71           | 0.77           | 0.74           | 0.36           | 0.68           | 0.69           | 0.75           | 0.61           | 0.72           | 0.75           | 0.74           |
|                                | FCFP6                               | 0.28           | 0.63           | 0.65           | 0.76           | 0.51             | 0.68           | 0.76           | 0.71           | 0.28           | 0.64           | 0.66           | 0.75           | 0.53           | 0.68           | 0.75           | 0.70           |
|                                | KR                                  | 0.42           | 0.70           | 0.72           | 0.82           | 0.59             | 0.73           | 0.82           | 0.76           | 0.39           | 0.69           | 0.71           | 0.80           | 0.59           | 0.72           | 0.80           | 0.80           |
|                                | LSTAR                               | 0.29           | 0.65           | 0.66           | 0.72           | 0.57             | 0.70           | 0.72           | 0.72           | 0.26           | 0.63           | 0.64           | 0.69           | 0.57           | 0.68           | 0.69           | 0.67           |
|                                | MACCS                               | 0.41           | 0.71           | 0.71           | 0.71           | 0.71             | 0.77           | 0.71           | 0.78           | 0.27           | 0.63           | 0.64           | 0.67           | 0.60           | 0.69           | 0.67           | 0.72           |
|                                | PUBCHEM                             | $0.38 \\ 0.30$ | $0.69 \\ 0.64$ | $0.70 \\ 0.67$ | 0.74           | 0.65             | 0.74           | 0.74           | $0.78 \\ 0.70$ | $0.44 \\ 0.29$ | 0.72           | $0.73 \\ 0.68$ | $0.78 \\ 0.92$ | 0.65           | 0.75           | $0.78 \\ 0.92$ | 0.82           |
|                                | RAD2D<br>2PPHAR                     | 0.30           | 0.64           | 0.64           | 0.81           | 0.48             | 0.68           | 0.81           | 0.70           | 0.29           | 0.64           | 0.64           | 0.92           | 0.36           | 0.66           | 0.92           | 0.76           |
|                                | 3PPHAR                              | 0.18           | 0.57           | 0.71           | 0.96           | 0.12             | 0.71           | 0.96           | 0.66           | 0.18           | 0.57           | 0.71           | 0.96           | 0.03           | 0.03           | 0.96           | 0.67           |
|                                | AP2D                                | 0.39           | 0.68           | 0.75           | 0.87           | 0.50             | 0.78           | 0.87           | 0.77           | 0.39           | 0.68           | 0.75           | 0.88           | 0.48           | 0.78           | 0.88           | 0.78           |
|                                | ASP                                 | 0.57           | 0.78           | 0.82           | 0.89           | 0.67             | 0.85           | 0.89           | 0.86           | 0.58           | 0.78           | 0.82           | 0.90           | 0.66           | 0.85           | 0.90           | 0.87           |
|                                | AT2D                                | 0.56           | 0.78           | 0.81           | 0.86           | 0.69             | 0.85           | 0.86           | 0.85           | 0.56           | 0.78           | 0.81           | 0.86           | 0.71           | 0.86           | 0.86           | 0.85           |
|                                | DFS                                 | 0.55           | 0.77           | 0.81           | 0.86           | 0.68             | 0.85           | 0.86           | 0.85           | 0.56           | 0.77           | 0.81           | 0.88           | 0.67           | 0.85           | 0.88           | 0.87           |
|                                | ECFP0                               | 0.39           | 0.69           | 0.74           | 0.82           | 0.57             | 0.80           | 0.82           | 0.77           | 0.41           | 0.69           | 0.75           | 0.85           | 0.54           | 0.79           | 0.85           | 0.78           |
|                                | $\frac{\text{ECFP2}}{\text{ECFP4}}$ | $0.57 \\ 0.55$ | $0.78 \\ 0.76$ | $0.81 \\ 0.81$ | $0.89 \\ 0.91$ | $0.67 \\ 0.62$   | $0.85 \\ 0.83$ | $0.89 \\ 0.91$ | $0.86 \\ 0.86$ | $0.57 \\ 0.61$ | $0.78 \\ 0.79$ | $0.82 \\ 0.84$ | $0.89 \\ 0.92$ | $0.66 \\ 0.66$ | $0.85 \\ 0.85$ | $0.89 \\ 0.92$ | $0.87 \\ 0.89$ |
| Cytotoxicity                   | ECFP6                               | 0.55           | 0.76           | 0.81           | 0.90           | 0.63             | 0.84           | 0.90           | 0.86           | 0.58           | 0.78           | 0.83           | 0.92           | 0.63           | 0.84           | 0.92           | 0.87           |
| (HepG2)                        | ESTATE                              | 0.39           | 0.69           | 0.74           | 0.82           | 0.56             | 0.80           | 0.82           | 0.76           | 0.40           | 0.69           | 0.74           | 0.84           | 0.55           | 0.80           | 0.84           | 0.78           |
| (P)                            | FCFP0                               | 0.01           | 0.50           | 0.67           | 0.97           | 0.04             | 0.68           | 0.97           | 0.52           | 0.01           | 0.51           | 0.67           | 0.98           | 0.03           | 0.68           | 0.98           | 0.50           |
|                                | FCFP2                               | 0.53           | 0.76           | 0.80           | 0.87           | 0.65             | 0.84           | 0.87           | 0.84           | 0.55           | 0.77           | 0.81           | 0.87           | 0.68           | 0.85           | 0.87           | 0.86           |
|                                | FCFP4                               | 0.56           | 0.77           | 0.81           | 0.88           | 0.67             | 0.85           | 0.88           | 0.86           | 0.59           | 0.78           | 0.83           | 0.91           | 0.65           | 0.85           | 0.91           | 0.88           |
|                                | FCFP6                               | 0.57           | 0.78           | 0.82           | 0.90           | 0.66             | 0.85           | 0.90           | 0.86           | 0.55           | 0.77           | 0.81           | 0.89           | 0.65           | 0.84           | 0.89           | 0.87           |
|                                | KR<br>LSTAR                         | $0.54 \\ 0.53$ | $0.76 \\ 0.74$ | $0.81 \\ 0.81$ | $0.89 \\ 0.93$ | $0.64 \\ 0.55$   | $0.84 \\ 0.81$ | $0.89 \\ 0.93$ | $0.84 \\ 0.85$ | $0.55 \\ 0.55$ | $0.77 \\ 0.75$ | $0.81 \\ 0.82$ | $0.89 \\ 0.94$ | $0.64 \\ 0.56$ | $0.84 \\ 0.82$ | $0.89 \\ 0.94$ | $0.87 \\ 0.86$ |
|                                | MACCS                               | $0.53 \\ 0.52$ | 0.74           | 0.81           | 0.93           | 0.55             | 0.81           | 0.93 $0.87$    | 0.85           | $0.55 \\ 0.55$ | 0.75           | 0.82           | 0.94           | 0.65           | 0.82           | 0.94           | 0.85           |
|                                | PUBCHEM                             | 0.54           | 0.76           | 0.80           | 0.87           | 0.65             | 0.84           | 0.87           | 0.85           | 0.58           | 0.78           | 0.82           | 0.89           | 0.67           | 0.85           | 0.89           | 0.87           |
|                                | RAD2D                               | 0.56           | 0.77           | 0.81           | 0.89           | 0.66             | 0.84           | 0.89           | 0.86           | 0.57           | 0.77           | 0.82           | 0.92           | 0.62           | 0.83           | 0.92           | 0.87           |
|                                | 2PPHAR                              | 0.12           | 0.65           | 0.57           | 0.75           | 0.55             | 0.17           | 0.75           | 0.67           | 0.11           | 0.64           | 0.57           | 0.72           | 0.56           | 0.16           | 0.72           | 0.65           |
|                                | 3PPHAR                              | 0.15           | 0.58           | 0.83           | 0.25           | 0.90             | 0.24           | 0.25           | 0.68           | 0.14           | 0.57           | 0.84           | 0.22           | 0.92           | 0.24           | 0.22           | 0.66           |
|                                | AP2D                                | 0.31           | 0.70           | 0.83           | 0.54           | 0.86             | 0.32           | 0.54           | 0.78           | 0.36           | 0.71           | 0.86           | 0.52           | 0.90           | 0.38           | 0.52           | 0.80           |
|                                | ASP<br>AT2D                         | $0.54 \\ 0.49$ | $0.78 \\ 0.79$ | $0.91 \\ 0.88$ | $0.62 \\ 0.67$ | $0.94 \\ 0.91$   | $0.57 \\ 0.47$ | $0.62 \\ 0.67$ | $0.88 \\ 0.87$ | $0.58 \\ 0.48$ | $0.78 \\ 0.78$ | $0.92 \\ 0.88$ | $0.60 \\ 0.65$ | $0.96 \\ 0.91$ | 0.64<br>0.47   | $0.60 \\ 0.65$ | $0.89 \\ 0.86$ |
|                                | DFS                                 | $0.49 \\ 0.50$ | 0.79           | 0.88           | 0.67           | 0.91             | 0.47           | 0.67           | 0.87           | $0.48 \\ 0.51$ | 0.78           | 0.88           | 0.58           | $0.91 \\ 0.94$ | 0.47           | $0.65 \\ 0.58$ | 0.86           |
|                                | ECFP0                               | 0.30           | 0.78           | 0.90           | 0.59           | 0.93             | 0.30           | 0.59           | 0.88           | $0.31 \\ 0.32$ | 0.76           | 0.83           | 0.56           | 0.86           | $0.37 \\ 0.32$ | 0.56           | 0.87           |
|                                | ECFP2                               | 0.51           | 0.78           | 0.90           | 0.63           | 0.93             | 0.51           | 0.63           | 0.87           | 0.55           | 0.79           | 0.91           | 0.63           | 0.95           | 0.58           | 0.63           | 0.89           |
| 0 1 1 1 11                     | ECFP4                               | 0.51           | 0.77           | 0.90           | 0.59           | 0.94             | 0.55           | 0.59           | 0.87           | 0.55           | 0.74           | 0.92           | 0.52           | 0.97           | 0.68           | 0.52           | 0.87           |
| Cytotoxicity<br>(CRL-7250 cell | ECFP6                               | 0.47           | 0.74           | 0.90           | 0.53           | 0.94             | 0.53           | 0.53           | 0.86           | 0.47           | 0.72           | 0.91           | 0.48           | 0.96           | 0.57           | 0.48           | 0.85           |
| line)                          | ESTATE                              | 0.26           | 0.68           | 0.80           | 0.52           | 0.84             | 0.28           | 0.52           | 0.76           | 0.23           | 0.65           | 0.81           | 0.44           | 0.86           | 0.27           | 0.44           | 0.74           |
| ()                             | FCFP0                               | 0.21           | 0.64           | 0.80           | 0.42           | 0.85             | 0.26           | 0.42           | 0.69           | 0.21           | 0.63           | 0.81           | 0.40           | 0.86           | 0.26           | 0.40           | 0.69           |
|                                | FCFP2                               | 0.44           | 0.75           | $0.88 \\ 0.89$ | 0.60           | 0.91             | 0.44           | 0.60           | 0.84           | 0.48           | 0.77           | $0.89 \\ 0.92$ | 0.61           | $0.92 \\ 0.96$ | 0.49           | 0.61           | 0.86           |
|                                | FCFP4<br>FCFP6                      | $0.48 \\ 0.49$ | $0.76 \\ 0.74$ | $0.89 \\ 0.90$ | $0.60 \\ 0.55$ | $0.93 \\ 0.94$   | $0.50 \\ 0.54$ | $0.60 \\ 0.55$ | $0.86 \\ 0.86$ | $0.55 \\ 0.48$ | $0.76 \\ 0.71$ | $0.92 \\ 0.91$ | $0.55 \\ 0.46$ | $0.96 \\ 0.97$ | $0.64 \\ 0.62$ | $0.55 \\ 0.46$ | $0.89 \\ 0.87$ |
|                                | FOFFU                               | 0.49           | 0.74           | 0.90           | 0.00           | 0.34             | 0.04           | 0.00           | 0.00           | 0.40           | 0.71           | 0.91           | 0.40           | 0.91           | 0.02           | 0.40           | 0.01           |

Table S1 - Continued from previous page

| Endpoint        | FP                                                      | κ              | BACC           | ACC                 | C -            |                |                |                |                |                |                |                |                |                |                |                |                |
|-----------------|---------------------------------------------------------|----------------|----------------|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                 |                                                         | 0.40           |                |                     | Se             | Sp             | AUC            | κ              | BACC           | ACC            | Se             | Sp             | AUC            | 0.04           | 0.50           | 0.00           | 0.00           |
|                 | KR<br>LSTAR                                             | 0.49<br>0.49   | 0.76<br>0.73   | 0.89<br>0.91        | 0.59<br>0.51   | 0.93<br>0.96   | 0.51<br>0.59   | 0.59<br>0.51   | 0.86           | 0.50<br>0.50   | 0.77<br>0.70   | 0.90<br>0.92   | 0.60<br>0.42   | 0.94<br>0.98   | 0.53<br>0.74   | 0.60<br>0.42   | 0.86<br>0.86   |
|                 | MACCS                                                   | 0.49           | 0.73           | 0.87                | 0.64           | 0.90           | 0.39           | 0.64           | $0.85 \\ 0.87$ | 0.46           | 0.70           | 0.88           | $0.42 \\ 0.65$ | 0.90           | 0.45           | 0.42           | 0.88           |
|                 | PUBCHEM                                                 | 0.47           | 0.78           | 0.88                | 0.66           | 0.91           | 0.46           | 0.66           | 0.88           | 0.50           | 0.81           | 0.88           | 0.73           | 0.90           | 0.47           | 0.73           | 0.90           |
|                 | RAD2D                                                   | 0.49           | 0.76           | 0.90                | 0.59           | 0.93           | 0.52           | 0.59           | 0.86           | 0.55           | 0.77           | 0.92           | 0.58           | 0.96           | 0.62           | 0.58           | 0.88           |
|                 | 2PPHAR                                                  | 0.11           | 0.63           | 0.60                | 0.67           | 0.60           | 0.16           | 0.67           | 0.65           | 0.12           | 0.64           | 0.58           | 0.72           | 0.56           | 0.17           | 0.72           | 0.65           |
|                 | 3PPHAR                                                  | 0.16           | 0.59           | 0.82                | 0.29           | 0.88           | 0.24           | 0.29           | 0.65           | 0.16           | 0.58           | 0.83           | 0.25           | 0.91           | 0.24           | 0.25           | 0.65           |
|                 | AP2D                                                    | 0.32           | 0.71           | 0.83                | 0.55           | 0.86           | 0.33           | 0.55           | 0.79           | 0.34           | 0.70           | 0.85           | 0.52           | 0.89           | 0.36           | 0.52           | 0.78           |
|                 | ASP                                                     | 0.53           | 0.77           | 0.91                | 0.59           | 0.95           | 0.58           | 0.59           | 0.87           | 0.55           | 0.75           | 0.92           | 0.54           | 0.96           | 0.66           | 0.54           | 0.86           |
|                 | AT2D                                                    | 0.45           | 0.77           | 0.87                | 0.65           | 0.90           | 0.44           | 0.65           | 0.85           | 0.44           | 0.77           | 0.87           | 0.64           | 0.90           | 0.43           | 0.64           | 0.85           |
|                 | DFS                                                     | 0.50           | 0.76           | 0.90                | 0.58           | 0.94           | 0.53           | 0.58           | 0.85           | 0.49           | 0.77           | 0.89           | 0.61           | 0.93           | 0.51           | 0.61           | 0.86           |
|                 | $\begin{array}{c} { m ECFP0} \\ { m ECFP2} \end{array}$ | $0.31 \\ 0.47$ | $0.71 \\ 0.77$ | $0.82 \\ 0.88$      | $0.56 \\ 0.63$ | $0.85 \\ 0.91$ | $0.31 \\ 0.47$ | $0.56 \\ 0.63$ | $0.78 \\ 0.84$ | $0.34 \\ 0.50$ | $0.73 \\ 0.75$ | $0.83 \\ 0.90$ | $0.59 \\ 0.56$ | $0.86 \\ 0.95$ | $0.34 \\ 0.56$ | $0.59 \\ 0.56$ | $0.79 \\ 0.86$ |
|                 | ECFP4                                                   | 0.47           | 0.76           | 0.88                | 0.58           | 0.91           | 0.47           | 0.58           | 0.85           | 0.49           | $0.73 \\ 0.72$ | 0.90           | 0.30           | 0.93           | 0.63           | 0.30           | 0.84           |
| Cytotoxicity    | ECFP6                                                   | 0.48           | 0.70           | 0.91                | 0.49           | 0.96           | 0.59           | 0.49           | 0.84           | 0.43           | 0.72           | 0.90           | 0.44           | 0.95           | 0.54           | 0.44           | 0.83           |
| (HACAT cell     | ESTATE                                                  | 0.26           | 0.68           | 0.80                | 0.52           | 0.84           | 0.28           | 0.52           | 0.75           | 0.26           | 0.68           | 0.81           | 0.50           | 0.85           | 0.29           | 0.50           | 0.75           |
| line)           | FCFP0                                                   | 0.26           | 0.65           | 0.84                | 0.41           | 0.89           | 0.32           | 0.41           | 0.69           | 0.27           | 0.65           | 0.84           | 0.41           | 0.90           | 0.32           | 0.41           | 0.71           |
|                 | FCFP2                                                   | 0.43           | 0.75           | 0.87                | 0.61           | 0.90           | 0.43           | 0.61           | 0.84           | 0.42           | 0.74           | 0.87           | 0.58           | 0.91           | 0.44           | 0.58           | 0.83           |
|                 | FCFP4                                                   | 0.51           | 0.76           | 0.90                | 0.57           | 0.94           | 0.56           | 0.57           | 0.85           | 0.52           | 0.73           | 0.92           | 0.49           | 0.97           | 0.66           | 0.49           | 0.85           |
|                 | FCFP6                                                   | 0.46           | 0.74           | 0.89                | 0.55           | 0.93           | 0.50           | 0.55           | 0.83           | 0.50           | 0.72           | 0.92           | 0.46           | 0.97           | 0.68           | 0.46           | 0.84           |
|                 | KR                                                      | 0.46           | 0.75           | 0.89                | 0.58           | 0.92           | 0.48           | 0.58           | 0.83           | 0.50           | 0.75           | 0.90           | 0.56           | 0.94           | 0.55           | 0.56           | 0.85           |
|                 | LSTAR                                                   | 0.46           | 0.72           | 0.90                | 0.48           | 0.95           | 0.56           | 0.48           | 0.83           | 0.50           | 0.70           | 0.92           | 0.43           | 0.98           | 0.73           | 0.43           | 0.84           |
|                 | MACCS<br>PUBCHEM                                        | 0.43           | $0.76 \\ 0.77$ | $0.87 \\ 0.88$      | $0.62 \\ 0.63$ | $0.90 \\ 0.91$ | 0.42           | $0.62 \\ 0.63$ | $0.84 \\ 0.86$ | $0.45 \\ 0.47$ | $0.77 \\ 0.76$ | $0.87 \\ 0.89$ | $0.65 \\ 0.59$ | $0.90 \\ 0.92$ | 0.44<br>0.49   | $0.65 \\ 0.59$ | $0.88 \\ 0.85$ |
|                 | RAD2D                                                   | $0.47 \\ 0.50$ | 0.77           | 0.88                | 0.58           | $0.91 \\ 0.94$ | $0.46 \\ 0.54$ | 0.53           | 0.86 $0.85$    | $0.47 \\ 0.53$ | 0.76           | 0.89           | $0.59 \\ 0.57$ | 0.92           | 0.49           | $0.59 \\ 0.57$ | $0.85 \\ 0.87$ |
|                 | 2PPHAR                                                  | 0.30           | 0.65           | 0.59                | 0.74           | 0.56           | 0.34           | 0.38           | 0.66           | 0.14           | 0.76           | 0.59           | 0.71           | 0.57           | 0.39           | 0.57           | 0.65           |
|                 | 3PPHAR                                                  | 0.16           | 0.57           | 0.81                | 0.14           | 0.91           | 0.29           | 0.24           | 0.66           | 0.15           | 0.57           | 0.83           | 0.21           | 0.93           | 0.31           | 0.21           | 0.67           |
|                 | AP2D                                                    | 0.35           | 0.70           | 0.83                | 0.51           | 0.88           | 0.40           | 0.51           | 0.78           | 0.37           | 0.70           | 0.83           | 0.52           | 0.88           | 0.42           | 0.52           | 0.79           |
|                 | ASP                                                     | 0.51           | 0.75           | 0.88                | 0.58           | 0.93           | 0.58           | 0.58           | 0.85           | 0.57           | 0.78           | 0.90           | 0.60           | 0.95           | 0.65           | 0.60           | 0.88           |
|                 | AT2D                                                    | 0.46           | 0.75           | 0.85                | 0.62           | 0.89           | 0.48           | 0.62           | 0.84           | 0.51           | 0.78           | 0.87           | 0.66           | 0.91           | 0.53           | 0.66           | 0.86           |
|                 | DFS                                                     | 0.47           | 0.75           | 0.87                | 0.59           | 0.91           | 0.52           | 0.59           | 0.84           | 0.50           | 0.75           | 0.88           | 0.57           | 0.93           | 0.59           | 0.57           | 0.86           |
|                 | ECFP0                                                   | 0.30           | 0.69           | 0.79                | 0.55           | 0.83           | 0.34           | 0.55           | 0.77           | 0.32           | 0.69           | 0.80           | 0.54           | 0.84           | 0.36           | 0.54           | 0.77           |
|                 | ECFP2                                                   | 0.48           | 0.75           | 0.87                | 0.59           | 0.91           | 0.52           | 0.59           | 0.84           | 0.52           | 0.76           | 0.89           | 0.58           | 0.94           | 0.60           | 0.58           | 0.86           |
|                 | ECFP4                                                   | 0.50           | 0.74           | 0.88                | 0.54           | 0.94           | 0.59           | 0.54           | 0.85           | 0.49           | 0.71           | 0.90           | 0.45           | 0.97           | 0.71           | 0.45           | 0.85           |
| Cytotoxicity    | ECFP6<br>ESTATE                                         | $0.46 \\ 0.28$ | $0.72 \\ 0.68$ | $0.87 \\ 0.78$      | $0.51 \\ 0.53$ | $0.93 \\ 0.82$ | $0.56 \\ 0.33$ | $0.51 \\ 0.53$ | $0.83 \\ 0.75$ | $0.45 \\ 0.24$ | $0.70 \\ 0.65$ | $0.88 \\ 0.78$ | $0.45 \\ 0.48$ | $0.95 \\ 0.83$ | $0.60 \\ 0.31$ | $0.45 \\ 0.48$ | $0.83 \\ 0.73$ |
| (HEK cell line) | FCFP0                                                   | 0.28 $0.24$    | 0.63           | 0.78                | 0.38           | 0.82           | 0.33           | 0.38           | 0.73           | 0.24           | 0.62           | 0.78           | 0.46           | 0.88           | $0.31 \\ 0.32$ | 0.46           | 0.73           |
|                 | FCFP2                                                   | 0.44           | 0.74           | 0.86                | 0.57           | 0.90           | 0.49           | 0.57           | 0.83           | 0.43           | 0.02           | 0.86           | 0.52           | 0.92           | 0.52           | 0.52           | 0.82           |
|                 | FCFP4                                                   | 0.48           | 0.74           | 0.88                | 0.55           | 0.93           | 0.56           | 0.55           | 0.85           | 0.49           | 0.73           | 0.88           | 0.52           | 0.94           | 0.60           | 0.52           | 0.85           |
|                 | FCFP6                                                   | 0.43           | 0.71           | 0.87                | 0.48           | 0.93           | 0.54           | 0.48           | 0.82           | 0.49           | 0.70           | 0.90           | 0.43           | 0.97           | 0.72           | 0.43           | 0.86           |
|                 | KR                                                      | 0.45           | 0.73           | 0.87                | 0.53           | 0.92           | 0.53           | 0.53           | 0.83           | 0.48           | 0.73           | 0.88           | 0.52           | 0.94           | 0.59           | 0.52           | 0.85           |
|                 | LSTAR                                                   | 0.44           | 0.70           | 0.88                | 0.46           | 0.94           | 0.58           | 0.46           | 0.82           | 0.51           | 0.72           | 0.90           | 0.46           | 0.97           | 0.73           | 0.46           | 0.87           |
|                 | MACCS                                                   | 0.46           | 0.76           | 0.85                | 0.62           | 0.89           | 0.49           | 0.62           | 0.85           | 0.50           | 0.77           | 0.87           | 0.63           | 0.91           | 0.53           | 0.63           | 0.87           |
|                 | PUBCHEM                                                 | 0.50           | 0.77           | 0.87                | 0.62           | 0.91           | 0.54           | 0.62           | 0.86           | 0.49           | 0.76           | 0.87           | 0.62           | 0.91           | 0.52           | 0.62           | 0.86           |
|                 | RAD2D                                                   | 0.47           | 0.73           | 0.87                | 0.55           | 0.92           | 0.54           | 0.55           | 0.84           | 0.49           | 0.72           | 0.89           | 0.48           | 0.96           | 0.65           | 0.48           | 0.86           |
|                 | 2PPHAR                                                  | 0.10<br>0.16   | 0.63<br>0.59   | 0.58                | 0.69<br>0.31   | 0.57 $0.88$    | 0.16<br>0.23   | 0.69<br>0.31   | 0.64<br>0.67   | 0.11           | $0.64 \\ 0.58$ | 0.57<br>0.83   | 0.74<br>0.26   | 0.55<br>0.90   | 0.16<br>0.25   | $0.74 \\ 0.26$ | $0.66 \\ 0.67$ |
|                 | 3PPHAR<br>AP2D                                          | $0.16 \\ 0.37$ | $0.59 \\ 0.74$ | $\frac{0.82}{0.85}$ | $0.31 \\ 0.59$ | 0.88           | $0.23 \\ 0.37$ | $0.31 \\ 0.59$ | $0.67 \\ 0.82$ | $0.15 \\ 0.40$ | $0.58 \\ 0.74$ | 0.83           | $0.26 \\ 0.60$ | 0.90           | $0.25 \\ 0.40$ | 0.26           | $0.67 \\ 0.82$ |
|                 | ASP                                                     | 0.49           | 0.74           | 0.83                | 0.59           | 0.88           | 0.51           | 0.59           | 0.82           | 0.40           | 0.74           | 0.80           | 0.55           | 0.89           | 0.40           | 0.55           | 0.82           |
|                 | AT2D                                                    | 0.45           | 0.78           | 0.87                | 0.66           | 0.90           | 0.43           | 0.66           | 0.86           | 0.49           | 0.81           | 0.88           | 0.72           | 0.90           | 0.45           | 0.72           | 0.90           |
|                 | DFS                                                     | 0.49           | 0.77           | 0.89                | 0.61           | 0.93           | 0.50           | 0.61           | 0.87           | 0.48           | 0.74           | 0.90           | 0.55           | 0.94           | 0.53           | 0.55           | 0.86           |
|                 | ECFP0                                                   | 0.30           | 0.72           | 0.80                | 0.62           | 0.82           | 0.30           | 0.62           | 0.79           | 0.35           | 0.73           | 0.84           | 0.60           | 0.87           | 0.35           | 0.60           | 0.82           |
|                 | ECFP2                                                   | 0.50           | 0.78           | 0.89                | 0.64           | 0.92           | 0.50           | 0.64           | 0.88           | 0.53           | 0.78           | 0.91           | 0.61           | 0.94           | 0.55           | 0.61           | 0.87           |
|                 | ECFP4                                                   | 0.52           | 0.76           | 0.91                | 0.57           | 0.95           | 0.57           | 0.57           | 0.87           | 0.54           | 0.75           | 0.92           | 0.53           | 0.97           | 0.65           | 0.53           | 0.90           |
| Cytotoxicity    | ECFP6                                                   | 0.44           | 0.73           | 0.88                | 0.53           | 0.93           | 0.48           | 0.53           | 0.84           | 0.50           | 0.73           | 0.91           | 0.50           | 0.96           | 0.62           | 0.50           | 0.87           |
| (NIK cell line) | ESTATE                                                  | 0.29           | 0.71           | 0.81                | 0.57           | 0.84           | 0.30           | 0.57           | 0.77           | 0.31           | 0.71           | 0.82           | 0.57           | 0.85           | 0.31           | 0.57           | 0.80           |
|                 | FCFP0 $FCFP2$                                           | 0.23           | $0.66 \\ 0.76$ | $0.79 \\ 0.87$      | $0.49 \\ 0.61$ | $0.83 \\ 0.90$ | $0.26 \\ 0.42$ | $0.49 \\ 0.61$ | $0.72 \\ 0.85$ | $0.29 \\ 0.49$ | $0.67 \\ 0.78$ | $0.84 \\ 0.89$ | $0.47 \\ 0.65$ | $0.88 \\ 0.92$ | 0.31           | $0.47 \\ 0.65$ | $0.74 \\ 0.87$ |
|                 | FCFP4                                                   | $0.43 \\ 0.45$ | $0.76 \\ 0.76$ | 0.87                | $0.61 \\ 0.61$ | 0.90           | $0.42 \\ 0.45$ | 0.61           | 0.85 $0.85$    | $0.49 \\ 0.55$ | 0.78           | $0.89 \\ 0.92$ | 0.56           | 0.92           | $0.49 \\ 0.64$ | 0.56           | 0.87           |
|                 | FCFP6                                                   | 0.45           | 0.76           | 0.88                | 0.53           | 0.91           | $0.45 \\ 0.52$ | 0.53           | 0.85           | 0.50           | 0.76           | 0.92 $0.92$    | 0.56           | 0.98           | 0.64           | 0.43           | 0.86           |
|                 | KR                                                      | 0.48           | 0.76           | 0.89                | 0.59           | 0.94           | 0.32           | $0.55 \\ 0.59$ | 0.86           | 0.48           | 0.71           | 0.92           | 0.43           | 0.94           | 0.71           | 0.43           | 0.86           |
|                 | LSTAR                                                   | 0.44           | 0.72           | 0.89                | 0.50           | 0.94           | 0.51           | 0.50           | 0.85           | 0.45           | 0.67           | 0.92           | 0.36           | 0.99           | 0.81           | 0.36           | 0.85           |
|                 | MACCS                                                   | 0.44           | 0.77           | 0.87                | 0.64           | 0.90           | 0.43           | 0.64           | 0.86           | 0.48           | 0.77           | 0.89           | 0.62           | 0.92           | 0.48           | 0.62           | 0.87           |
|                 | PUBCHEM                                                 | 0.47           | 0.78           | 0.88                | 0.66           | 0.91           | 0.46           | 0.66           | 0.87           | 0.49           | 0.78           | 0.89           | 0.64           | 0.92           | 0.49           | 0.64           | 0.87           |
|                 | RAD2D                                                   | 0.48           | 0.76           | 0.89                | 0.60           | 0.93           | 0.49           | 0.60           | 0.86           | 0.51           | 0.76           | 0.91           | 0.57           | 0.95           | 0.56           | 0.57           | 0.87           |
|                 | 2PPHAR                                                  | 0.05           | 0.52           | 0.53                | 0.19           | 0.86           | 0.59           | 0.19           | 0.58           | -0.04          | 0.48           | 0.49           | 0.07           | 0.89           | 0.37           | 0.07           | 0.48           |
|                 | 3PPHAR                                                  | 0.02           | 0.51           | 0.52                | 0.11           | 0.91           | 0.54           | 0.11           | 0.56           | 0.02           | 0.51           | 0.52           | 0.12           | 0.90           | 0.53           | 0.12           | 0.56           |
|                 |                                                         |                |                |                     |                |                |                |                |                | 0.55           | 0.62           | 0.62           | 0.40           | 0.74           | 0.65           | 0.49           | 0.66           |
|                 | AP2D<br>ASP                                             | $0.26 \\ 0.28$ | $0.63 \\ 0.64$ | 0.63<br>0.64        | $0.54 \\ 0.50$ | $0.72 \\ 0.78$ | 0.66<br>0.69   | $0.54 \\ 0.50$ | $0.66 \\ 0.69$ | $0.23 \\ 0.28$ | 0.64           | 0.64           | $0.49 \\ 0.50$ | 0.74           | 0.68           | 0.49           | $0.66 \\ 0.68$ |

Table S1 - Continued from previous page

|                 |                         |                |                |                |                |                 | - Contin       | ued from       | previous p     | age            |                |                | 37.1           | . 1 4.         |                |                |                |
|-----------------|-------------------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Endpoint        | FP                      | κ              | BACC           | ACC            | Se Se          | libration<br>Sp | AUC            | κ              | BACC           | ACC            | Se             | Sp             | AUC            | idation        |                |                |                |
|                 | AT2D                    | 0.26           | 0.63           | 0.63           | 0.70           | 0.56            | 0.61           | 0.70           | 0.69           | 0.18           | 0.59           | 0.59           | 0.64           | 0.55           | 0.58           | 0.64           | 0.66           |
|                 | DFS                     | 0.27           | 0.64           | 0.64           | 0.59           | 0.68            | 0.64           | 0.59           | 0.68           | 0.20           | 0.60           | 0.60           | 0.41           | 0.78           | 0.65           | 0.41           | 0.67           |
|                 | ECFP0                   | 0.28           | 0.64           | 0.64           | 0.59           | 0.69            | 0.65           | 0.59           | 0.69           | 0.28           | 0.64           | 0.64           | 0.59           | 0.69           | 0.64           | 0.59           | 0.67           |
|                 | ECFP2                   | 0.30           | 0.65           | 0.65           | 0.57           | 0.73            | 0.68           | 0.57           | 0.69           | 0.25           | 0.62           | 0.63           | 0.40           | 0.84           | 0.71           | 0.40           | 0.69           |
|                 | ECFP4                   | 0.28           | 0.64           | 0.64           | 0.53           | 0.75            | 0.68           | 0.53           | 0.68           | 0.32           | 0.66           | 0.66           | 0.51           | 0.81           | 0.73           | 0.51           | 0.71           |
|                 | ECFP6                   | 0.27           | 0.64           | 0.64           | 0.53           | 0.74            | 0.67           | 0.53           | 0.68           | 0.26           | 0.63           | 0.63           | 0.53           | 0.73           | 0.66           | 0.53           | 0.67           |
|                 | ESTATE<br>FCFP0         | $0.26 \\ 0.16$ | $0.63 \\ 0.58$ | $0.63 \\ 0.58$ | $0.63 \\ 0.62$ | $0.63 \\ 0.54$  | $0.63 \\ 0.56$ | $0.63 \\ 0.62$ | $0.67 \\ 0.59$ | $0.27 \\ 0.14$ | $0.64 \\ 0.57$ | $0.64 \\ 0.57$ | $0.62 \\ 0.59$ | $0.65 \\ 0.55$ | $0.64 \\ 0.57$ | $0.62 \\ 0.59$ | $0.68 \\ 0.60$ |
|                 | FCFP2                   | 0.10           | 0.64           | 0.58           | 0.02           | 0.34            | 0.30           | 0.62           | 0.59           | 0.14           | 0.66           | 0.66           | 0.59           | 0.81           | $0.37 \\ 0.72$ | 0.59           | 0.00           |
|                 | FCFP4                   | 0.31           | 0.66           | 0.66           | 0.54           | 0.77            | 0.70           | 0.54           | 0.71           | 0.31           | 0.65           | 0.65           | 0.51           | 0.79           | 0.71           | 0.51           | 0.71           |
|                 | FCFP6                   | 0.31           | 0.65           | 0.66           | 0.52           | 0.79            | 0.71           | 0.52           | 0.69           | 0.29           | 0.65           | 0.65           | 0.50           | 0.79           | 0.70           | 0.50           | 0.68           |
|                 | KR                      | 0.32           | 0.66           | 0.66           | 0.54           | 0.78            | 0.70           | 0.54           | 0.70           | 0.29           | 0.64           | 0.64           | 0.53           | 0.75           | 0.68           | 0.53           | 0.70           |
|                 | LSTAR                   | 0.27           | 0.63           | 0.64           | 0.53           | 0.74            | 0.67           | 0.53           | 0.66           | 0.28           | 0.64           | 0.64           | 0.58           | 0.69           | 0.65           | 0.58           | 0.68           |
|                 | MACCS                   | 0.33           | 0.67           | 0.67           | 0.66           | 0.68            | 0.66           | 0.66           | 0.71           | 0.32           | 0.66           | 0.66           | 0.49           | 0.83           | 0.74           | 0.49           | 0.70           |
|                 | PUBCHEM                 | 0.34           | 0.67           | 0.67           | 0.58           | 0.76            | 0.70           | 0.58           | 0.71           | 0.36           | 0.68           | 0.68           | 0.56           | 0.80           | 0.73           | 0.56           | 0.75           |
|                 | RAD2D                   | 0.29           | 0.64           | 0.65           | 0.52           | 0.77            | 0.70           | 0.52           | 0.68           | 0.29           | 0.65           | 0.65           | 0.45           | 0.84           | 0.76           | 0.45           | 0.72           |
|                 | 2PPHAR                  | 0.10           | 0.54           | 0.66           | 0.91           | 0.17            | 0.68           | 0.91           | 0.57           | 0.06           | 0.52           | 0.64           | 0.90           | 0.15           | 0.67           | 0.90           | 0.55           |
|                 | 3PPHAR                  | 0.13           | 0.55           | 0.67           | 0.91           | 0.20            | 0.68           | 0.91           | 0.60           | 0.06           | 0.52           | 0.66           | 0.95           | 0.10           | 0.67           | 0.95           | 0.56           |
|                 | AP2D<br>ASP             | $0.29 \\ 0.38$ | 0.64<br>0.68   | $0.69 \\ 0.73$ | $0.81 \\ 0.85$ | $0.47 \\ 0.51$  | $0.75 \\ 0.77$ | $0.81 \\ 0.85$ | $0.69 \\ 0.71$ | $0.31 \\ 0.39$ | $0.64 \\ 0.69$ | $0.72 \\ 0.74$ | $0.90 \\ 0.85$ | $0.38 \\ 0.52$ | $0.74 \\ 0.77$ | $0.90 \\ 0.85$ | $0.71 \\ 0.73$ |
|                 | ASP<br>AT2D             | 0.38           | 0.68           | 0.73           | 0.83           | 0.51            | 0.77           | 0.83           | 0.71           | 0.39           | 0.66           | 0.74           | 0.85           | 0.52 $0.51$    | 0.77           | 0.85           | 0.73           |
|                 | DFS                     | 0.38           | 0.68           | 0.73           | 0.85           | 0.53            | 0.77           | 0.85           | 0.73           | 0.35           | 0.67           | 0.71           | 0.86           | 0.48           | 0.76           | 0.86           | 0.71           |
|                 | ECFP0                   | 0.31           | 0.65           | 0.71           | 0.83           | 0.46            | 0.75           | 0.83           | 0.69           | 0.37           | 0.68           | 0.73           | 0.85           | 0.51           | 0.77           | 0.85           | 0.72           |
|                 | ECFP2                   | 0.37           | 0.67           | 0.74           | 0.90           | 0.44            | 0.75           | 0.90           | 0.74           | 0.40           | 0.68           | 0.75           | 0.91           | 0.45           | 0.76           | 0.91           | 0.76           |
|                 | ECFP4                   | 0.36           | 0.67           | 0.73           | 0.85           | 0.48            | 0.76           | 0.85           | 0.73           | 0.37           | 0.66           | 0.75           | 0.96           | 0.36           | 0.74           | 0.96           | 0.75           |
| Ototoxicity     | ECFP6                   | 0.38           | 0.68           | 0.73           | 0.85           | 0.51            | 0.77           | 0.85           | 0.73           | 0.40           | 0.68           | 0.76           | 0.92           | 0.44           | 0.76           | 0.92           | 0.73           |
| Ototoxicity     | ESTATE                  | 0.27           | 0.63           | 0.68           | 0.77           | 0.49            | 0.74           | 0.77           | 0.68           | 0.30           | 0.64           | 0.70           | 0.84           | 0.44           | 0.74           | 0.84           | 0.69           |
|                 | FCFP0                   | 0.16           | 0.57           | 0.66           | 0.85           | 0.29            | 0.70           | 0.85           | 0.61           | 0.14           | 0.56           | 0.66           | 0.87           | 0.25           | 0.69           | 0.87           | 0.61           |
|                 | FCFP2                   | 0.33           | 0.65           | 0.71           | 0.84           | 0.46            | 0.75           | 0.84           | 0.71           | 0.36           | 0.66           | 0.74           | 0.89           | 0.44           | 0.75           | 0.89           | 0.75           |
|                 | FCFP4<br>FCFP6          | $0.36 \\ 0.37$ | $0.66 \\ 0.68$ | $0.73 \\ 0.73$ | $0.89 \\ 0.86$ | $0.44 \\ 0.50$  | $0.75 \\ 0.77$ | $0.89 \\ 0.86$ | $0.73 \\ 0.73$ | $0.36 \\ 0.36$ | $0.66 \\ 0.66$ | $0.74 \\ 0.74$ | $0.91 \\ 0.93$ | $0.41 \\ 0.39$ | $0.75 \\ 0.74$ | $0.91 \\ 0.93$ | $0.72 \\ 0.73$ |
|                 | KR                      | 0.33           | 0.65           | 0.73           | 0.84           | 0.30            | 0.75           | 0.84           | 0.73           | 0.33           | 0.65           | 0.74           | 0.93           | 0.36           | 0.74           | 0.93           | $0.73 \\ 0.72$ |
|                 | LSTAR                   | 0.35           | 0.66           | 0.73           | 0.87           | 0.46            | 0.75           | 0.87           | 0.72           | 0.33           | 0.65           | 0.73           | 0.91           | 0.38           | 0.74           | 0.91           | 0.72           |
|                 | MACCS                   | 0.35           | 0.67           | 0.72           | 0.82           | 0.52            | 0.77           | 0.82           | 0.71           | 0.27           | 0.61           | 0.72           | 0.94           | 0.29           | 0.72           | 0.94           | 0.69           |
|                 | PUBCHEM                 | 0.40           | 0.69           | 0.74           | 0.86           | 0.52            | 0.77           | 0.86           | 0.74           | 0.36           | 0.67           | 0.73           | 0.86           | 0.48           | 0.76           | 0.86           | 0.72           |
|                 | RAD2D                   | 0.33           | 0.65           | 0.72           | 0.86           | 0.45            | 0.75           | 0.86           | 0.71           | 0.34           | 0.65           | 0.74           | 0.94           | 0.36           | 0.74           | 0.94           | 0.71           |
|                 | 2PPHAR                  | 0.09           | 0.54           | 0.59           | 0.33           | 0.76            | 0.46           | 0.33           | 0.57           | 0.13           | 0.56           | 0.64           | 0.17           | 0.95           | NΑ             | 0.17           | 0.54           |
|                 | 3PPHAR                  | 0.04           | 0.52           | 0.58           | 0.26           | 0.78            | 0.43           | 0.26           | 0.51           | -0.02          | 0.49           | 0.54           | 0.25           | 0.73           | 0.38           | 0.25           | 0.51           |
|                 | AP2D                    | 0.26           | 0.63           | 0.65           | 0.52           | 0.74            | 0.56           | 0.52           | 0.68           | 0.12           | 0.56           | 0.59           | 0.44           | 0.68           | 0.47           | 0.44           | 0.66           |
|                 | $^{\rm ASP}_{\rm AT2D}$ | $0.38 \\ 0.34$ | $0.69 \\ 0.68$ | $0.71 \\ 0.67$ | $0.62 \\ 0.70$ | $0.77 \\ 0.65$  | $0.62 \\ 0.57$ | $0.62 \\ 0.70$ | 0.75           | $0.19 \\ 0.21$ | $0.59 \\ 0.61$ | $0.61 \\ 0.63$ | $0.52 \\ 0.52$ | $0.67 \\ 0.69$ | $0.50 \\ 0.52$ | $0.52 \\ 0.52$ | $0.71 \\ 0.69$ |
|                 | DFS                     | 0.34           | 0.68           | 0.69           | 0.76           | 0.03            | 0.60           | 0.76           | $0.74 \\ 0.74$ | 0.41           | 0.70           | 0.03           | 0.52 $0.65$    | 0.76           | 0.65           | 0.65           | 0.09           |
|                 | ECFP0                   | 0.16           | 0.58           | 0.59           | 0.54           | 0.62            | 0.48           | 0.54           | 0.61           | 0.26           | 0.63           | 0.65           | 0.52           | 0.73           | 0.56           | 0.52           | 0.72           |
|                 | ECFP2                   | 0.32           | 0.66           | 0.68           | 0.57           | 0.75            | 0.60           | 0.57           | 0.71           | 0.40           | 0.69           | 0.72           | 0.54           | 0.84           | 0.69           | 0.54           | 0.75           |
|                 | ECFP4                   | 0.28           | 0.64           | 0.66           | 0.55           | 0.73            | 0.57           | 0.55           | 0.70           | 0.28           | 0.64           | 0.66           | 0.54           | 0.73           | 0.57           | 0.54           | 0.74           |
| Urinary Tract   | ECFP6                   | 0.26           | 0.63           | 0.65           | 0.53           | 0.73            | 0.55           | 0.53           | 0.69           | 0.36           | 0.68           | 0.69           | 0.65           | 0.72           | 0.59           | 0.65           | 0.76           |
| toxicity        | ESTATE                  | 0.24           | 0.62           | 0.63           | 0.60           | 0.65            | 0.53           | 0.60           | 0.65           | 0.23           | 0.61           | 0.63           | 0.52           | 0.71           | 0.54           | 0.52           | 0.63           |
|                 | FCFP0                   | 0.24           | 0.62           | 0.62           | 0.62           | 0.62            | 0.51           | 0.62           | 0.65           | 0.29           | 0.64           | 0.66           | 0.58           | 0.71           | 0.57           | 0.58           | 0.69           |
|                 | FCFP2                   | 0.34           | 0.67           | 0.69           | 0.58           | 0.76            | 0.61           | 0.58           | 0.71           | 0.38           | 0.69           | 0.71           | 0.62           | 0.76           | 0.62           | 0.62           | 0.81           |
|                 | FCFP4<br>FCFP6          | $0.41 \\ 0.39$ | $0.71 \\ 0.70$ | $0.72 \\ 0.71$ | $0.66 \\ 0.62$ | $0.75 \\ 0.77$  | 0.64<br>0.64   | $0.66 \\ 0.62$ | $0.77 \\ 0.78$ | $0.38 \\ 0.30$ | $0.70 \\ 0.65$ | $0.69 \\ 0.67$ | $0.75 \\ 0.52$ | $0.65 \\ 0.77$ | $0.59 \\ 0.60$ | $0.75 \\ 0.52$ | $0.73 \\ 0.74$ |
|                 | KR                      | 0.39           | 0.70           | 0.71           | 0.62 $0.54$    | 0.77            | 0.64           | 0.54           | 0.78           | $0.30 \\ 0.41$ | 0.65           | $0.67 \\ 0.72$ | 0.52 $0.58$    | 0.77           | 0.80           | $0.52 \\ 0.58$ | 0.74           |
|                 | LSTAR                   | 0.34           | 0.66           | 0.71           | 0.54           | 0.82            | 0.64           | 0.54           | 0.75           | 0.41           | 0.73           | 0.74           | 0.71           | 0.76           | 0.63           | 0.71           | 0.78           |
|                 | MACCS                   | 0.42           | 0.71           | 0.72           | 0.64           | 0.77            | 0.65           | 0.64           | 0.76           | 0.24           | 0.62           | 0.63           | 0.54           | 0.69           | 0.54           | 0.54           | 0.71           |
|                 | PUBCHEM                 | 0.38           | 0.69           | 0.70           | 0.61           | 0.76            | 0.63           | 0.61           | 0.74           | 0.32           | 0.65           | 0.70           | 0.44           | 0.87           | 0.68           | 0.44           | 0.73           |
|                 | RAD2D                   | 0.33           | 0.66           | 0.69           | 0.55           | 0.78            | 0.63           | 0.55           | 0.74           | 0.32           | 0.66           | 0.69           | 0.50           | 0.81           | 0.63           | 0.50           | 0.78           |
|                 | 2PPHAR                  | 0.08           | 0.56           | 0.38           | 0.35           | 0.77            | 0.33           | 0.35           | 0.59           | 0.09           | 0.56           | 0.39           | 0.34           | 0.77           | 0.36           | 0.34           | 0.61           |
|                 | 3PPHAR                  | 0.10           | 0.56           | 0.41           | 0.35           | 0.78            | 0.34           | 0.35           | 0.60           | 0.13           | 0.58           | 0.42           | 0.38           | 0.78           | 0.38           | 0.38           | 0.64           |
|                 | AP2D                    | 0.27           | 0.66           | 0.52           | 0.50           | 0.81            | 0.47           | 0.50           | 0.73           | 0.26           | 0.65           | 0.52           | 0.49           | 0.81           | 0.47           | 0.49           | 0.76           |
|                 | $^{\rm ASP}_{\rm AT2D}$ | 0.29           | 0.66           | 0.55           | $0.51 \\ 0.50$ | 0.82            | 0.52           | 0.51           | 0.75           | $0.31 \\ 0.31$ | 0.67           | 0.56           | 0.52           | 0.82           | 0.53           | 0.52           | 0.79           |
|                 | AT2D<br>DFS             | $0.29 \\ 0.29$ | $0.66 \\ 0.66$ | $0.56 \\ 0.55$ | $0.50 \\ 0.50$ | $0.82 \\ 0.82$  | $0.53 \\ 0.52$ | $0.50 \\ 0.50$ | $0.75 \\ 0.75$ | $0.31 \\ 0.32$ | $0.67 \\ 0.67$ | $0.57 \\ 0.57$ | $0.52 \\ 0.52$ | $0.82 \\ 0.82$ | $0.53 \\ 0.55$ | $0.52 \\ 0.52$ | $0.78 \\ 0.79$ |
|                 | ECFP0                   | $0.29 \\ 0.25$ | 0.65           | $0.55 \\ 0.49$ | $0.50 \\ 0.49$ | 0.82            | $0.52 \\ 0.45$ | $0.50 \\ 0.49$ | $0.75 \\ 0.72$ | $0.32 \\ 0.25$ | $0.67 \\ 0.65$ | $0.57 \\ 0.49$ | $0.52 \\ 0.49$ | 0.82           | $0.55 \\ 0.44$ | $0.52 \\ 0.49$ | $0.79 \\ 0.75$ |
|                 | ECFP2                   | 0.23           | 0.67           | 0.45           | 0.52           | 0.82            | 0.43           | 0.52           | 0.72           | 0.23           | 0.68           | 0.49           | 0.53           | 0.83           | 0.53           | 0.53           | 0.79           |
|                 | ECFP4                   | 0.29           | 0.66           | 0.55           | 0.50           | 0.82            | 0.52           | 0.50           | 0.75           | 0.31           | 0.67           | 0.56           | 0.52           | 0.82           | 0.54           | 0.52           | 0.80           |
| Rat acute oral  | ECFP6                   | 0.28           | 0.66           | 0.55           | 0.49           | 0.82            | 0.54           | 0.49           | 0.74           | 0.31           | 0.67           | 0.57           | 0.52           | 0.82           | 0.55           | 0.52           | 0.79           |
| toxicity (LD50) | ESTATE                  | 0.24           | 0.65           | 0.49           | 0.48           | 0.81            | 0.44           | 0.48           | 0.73           | 0.20           | 0.62           | 0.45           | 0.45           | 0.80           | 0.41           | 0.45           | 0.74           |
| - ' '           | FCFP0                   | 0.08           | 0.56           | 0.29           | 0.34           | 0.77            | 0.41           | 0.34           | 0.62           | 0.10           | 0.57           | 0.32           | 0.36           | 0.78           | 0.43           | 0.36           | 0.65           |
|                 | FCFP2                   | 0.29           | 0.66           | 0.54           | 0.50           | 0.82            | 0.50           | 0.50           | 0.76           | 0.28           | 0.66           | 0.54           | 0.51           | 0.81           | 0.51           | 0.51           | 0.78           |

Table S1 - Continued from previous page

| D-1:-+           | ED               |                |                |                | Са             | libration      |                |                | previous p     |                |                |                | Val            | idation        |                |                |                |
|------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Endpoint         | FP               | $\kappa$       | BACC           | ACC            | Se             | Sp             | AUC            | κ              | BACC           | ACC            | Se             | Sp             | AUC            |                |                |                |                |
|                  | FCFP4            | 0.29           | 0.66           | 0.55           | 0.51           | 0.82           | 0.51           | 0.51           | 0.76           | 0.31           | 0.67           | 0.56           | 0.52           | 0.82           | 0.52           | 0.52           | 0.78           |
|                  | FCFP6            | 0.29           | 0.66           | 0.56           | 0.50           | 0.82           | 0.55           | 0.50           | 0.76           | 0.27           | 0.66           | 0.54           | 0.50           | 0.81           | 0.52           | 0.50           | 0.80           |
|                  | KR               | 0.32           | 0.67           | 0.56           | 0.52           | 0.83           | 0.52           | 0.52           | 0.76           | 0.28           | 0.66           | 0.54           | 0.50           | 0.81           | 0.50           | 0.50           | 0.78           |
|                  | LSTAR            | 0.27           | 0.65           | 0.55           | 0.48           | 0.81           | 0.53           | 0.48           | 0.74           | 0.29           | 0.66           | 0.55           | 0.51           | 0.82           | 0.53           | 0.51           | 0.78           |
|                  | MACCS<br>PUBCHEM | $0.32 \\ 0.34$ | $0.68 \\ 0.69$ | $0.56 \\ 0.58$ | $0.53 \\ 0.54$ | $0.83 \\ 0.83$ | $0.52 \\ 0.54$ | $0.53 \\ 0.54$ | 0.77           | $0.34 \\ 0.32$ | $0.69 \\ 0.68$ | $0.57 \\ 0.56$ | 0.55           | $0.83 \\ 0.83$ | $0.53 \\ 0.52$ | $0.55 \\ 0.54$ | $0.81 \\ 0.81$ |
|                  |                  | 0.34           | 0.69           | 0.58           | 0.34           | 0.83           | 0.54           | 0.46           | 0.78           | 0.32           | 0.59           | 0.56           | 0.54           | 0.83           | 0.52           | 0.54           | 0.81           |
|                  | 2PPHAR<br>3PPHAR | $0.24 \\ 0.32$ | 0.64           | 0.67           | $0.46 \\ 0.51$ | 0.73           | 0.58           | $0.46 \\ 0.51$ | 0.68           | $0.24 \\ 0.32$ | 0.59 $0.64$    | 0.68           | $0.45 \\ 0.52$ | 0.73           | 0.58           | $0.45 \\ 0.52$ | 0.67           |
|                  | AP2D             | 0.63           | 0.80           | 0.81           | 0.72           | 0.70           | 0.77           | 0.72           | 0.74           | 0.65           | 0.81           | 0.82           | 0.73           | 0.88           | 0.35           | 0.32           | 0.73           |
|                  | ASP              | 0.68           | 0.82           | 0.84           | 0.75           | 0.89           | 0.81           | 0.75           | 0.91           | 0.71           | 0.84           | 0.85           | 0.78           | 0.90           | 0.83           | 0.78           | 0.91           |
|                  | AT2D             | 0.68           | 0.82           | 0.84           | 0.75           | 0.88           | 0.82           | 0.75           | 0.92           | 0.73           | 0.84           | 0.86           | 0.78           | 0.90           | 0.85           | 0.78           | 0.93           |
|                  | DFS              | 0.68           | 0.81           | 0.84           | 0.75           | 0.88           | 0.81           | 0.75           | 0.91           | 0.72           | 0.84           | 0.85           | 0.78           | 0.90           | 0.84           | 0.78           | 0.92           |
|                  | ECFP0            | 0.54           | 0.75           | 0.76           | 0.66           | 0.84           | 0.70           | 0.66           | 0.85           | 0.57           | 0.77           | 0.77           | 0.69           | 0.86           | 0.72           | 0.69           | 0.85           |
|                  | ECFP2            | 0.63           | 0.79           | 0.81           | 0.72           | 0.87           | 0.79           | 0.72           | 0.90           | 0.66           | 0.81           | 0.82           | 0.73           | 0.88           | 0.79           | 0.73           | 0.90           |
|                  | ECFP4            | 0.62           | 0.78           | 0.81           | 0.71           | 0.86           | 0.79           | 0.71           | 0.89           | 0.64           | 0.80           | 0.82           | 0.72           | 0.87           | 0.80           | 0.72           | 0.89           |
| Human Plasma     | ECFP6            | 0.59           | 0.77           | 0.80           | 0.69           | 0.85           | 0.77           | 0.69           | 0.88           | 0.63           | 0.79           | 0.82           | 0.71           | 0.87           | 0.79           | 0.71           | 0.88           |
| Protein Binding  | ESTATE           | 0.51           | 0.74           | 0.74           | 0.65           | 0.84           | 0.68           | 0.65           | 0.84           | 0.53           | 0.75           | 0.76           | 0.66           | 0.84           | 0.69           | 0.66           | 0.84           |
|                  | FCFP0            | 0.24           | 0.60           | 0.66           | 0.45           | 0.74           | 0.54           | 0.45           | 0.73           | 0.25           | 0.60           | 0.66           | 0.46           | 0.74           | 0.54           | 0.46           | 0.71           |
|                  | FCFP2            | 0.62           | 0.79           | 0.80           | 0.71           | 0.87           | 0.76           | 0.71           | 0.88           | 0.62           | 0.80           | 0.81           | 0.72           | 0.87           | 0.76           | 0.72           | 0.88           |
|                  | FCFP4            | 0.62           | 0.78           | 0.81           | 0.71           | 0.86           | 0.77           | 0.71           | 0.89           | 0.64           | 0.80           | 0.82           | 0.73           | 0.87           | 0.79           | 0.73           | 0.89           |
|                  | FCFP6            | 0.60           | 0.77           | 0.80           | 0.69           | 0.86           | 0.76           | 0.69           | 0.88           | 0.66           | 0.80           | 0.83           | 0.73           | 0.88           | 0.80           | 0.73           | 0.89           |
|                  | $_{ m KR}$       | 0.64<br>0.66   | $0.80 \\ 0.81$ | $0.81 \\ 0.83$ | $0.72 \\ 0.73$ | $0.87 \\ 0.88$ | $0.78 \\ 0.82$ | $0.72 \\ 0.73$ | $0.90 \\ 0.90$ | $0.67 \\ 0.71$ | $0.82 \\ 0.83$ | $0.83 \\ 0.85$ | $0.75 \\ 0.77$ | $0.88 \\ 0.89$ | $0.80 \\ 0.85$ | $0.75 \\ 0.77$ | $0.90 \\ 0.92$ |
|                  | MACCS            | 0.65           | 0.81           | 0.83           | $0.73 \\ 0.73$ | 0.88           | 0.82           | 0.73           | 0.90           | 0.71           | 0.83 $0.82$    | $0.85 \\ 0.84$ | 0.77           | 0.89           | 0.85           | 0.77           | 0.92 $0.91$    |
|                  | PUBCHEM          | 0.68           | $0.81 \\ 0.82$ | 0.83           | 0.75           | 0.89           | 0.79           | 0.76           | 0.90           | 0.08           | 0.84           | 0.85           | 0.78           | 0.89           | 0.80           | 0.78           | 0.91           |
|                  | RAD2D            | 0.68           | 0.82           | 0.84           | 0.75           | 0.88           | 0.82           | 0.75           | 0.91           | 0.71           | 0.83           | 0.85           | 0.77           | 0.89           | 0.84           | 0.77           | 0.92           |
|                  | 2PPHAR           | 0.07           | 0.53           | 0.48           | 0.37           | 0.69           | 0.56           | 0.37           | 0.56           | 0.08           | 0.53           | 0.48           | 0.37           | 0.69           | 0.53           | 0.37           | 0.57           |
|                  | 3PPHAR           | 0.31           | 0.63           | 0.60           | 0.50           | 0.77           | 0.54           | 0.50           | 0.73           | 0.28           | 0.62           | 0.59           | 0.48           | 0.76           | 0.55           | 0.48           | 0.72           |
|                  | AP2D             | 0.44           | 0.71           | 0.67           | 0.61           | 0.81           | 0.64           | 0.61           | 0.83           | 0.46           | 0.72           | 0.68           | 0.62           | 0.82           | 0.64           | 0.62           | 0.84           |
|                  | ASP              | 0.51           | 0.75           | 0.71           | 0.66           | 0.84           | 0.69           | 0.66           | 0.86           | 0.54           | 0.76           | 0.73           | 0.67           | 0.84           | 0.72           | 0.67           | 0.88           |
|                  | AT2D             | 0.52           | 0.75           | 0.72           | 0.65           | 0.84           | 0.70           | 0.65           | 0.86           | 0.50           | 0.74           | 0.71           | 0.65           | 0.83           | 0.69           | 0.65           | 0.87           |
|                  | DFS              | 0.51           | 0.74           | 0.71           | 0.66           | 0.83           | 0.69           | 0.66           | 0.85           | 0.51           | 0.75           | 0.71           | 0.66           | 0.84           | 0.68           | 0.66           | 0.85           |
|                  | ECFP0            | 0.42           | 0.70           | 0.66           | 0.59           | 0.81           | 0.63           | 0.59           | 0.81           | 0.46           | 0.72           | 0.68           | 0.62           | 0.82           | 0.66           | 0.62           | 0.83           |
|                  | ECFP2            | 0.52           | 0.75           | 0.72           | 0.65           | 0.84           | 0.70           | 0.65           | 0.87           | 0.53           | 0.75           | 0.72           | 0.66           | 0.84           | 0.69           | 0.66           | 0.87           |
| <b>B</b> 11 1 11 | ECFP4            | 0.51           | 0.74           | 0.71           | 0.65           | 0.83           | 0.69           | 0.65           | 0.86           | 0.53           | 0.75           | 0.72           | 0.66           | 0.84           | 0.71           | 0.66           | 0.87           |
| Elimination      | ECFP6            | 0.51           | 0.74           | 0.71           | $0.65 \\ 0.59$ | 0.84           | 0.71           | 0.65           | 0.86           | 0.49           | 0.73           | 0.70           | 0.64           | 0.83           | $0.67 \\ 0.65$ | 0.64           | 0.84           |
| half-life Human  | ESTATE<br>FCFP0  | $0.41 \\ 0.18$ | $0.70 \\ 0.58$ | $0.65 \\ 0.53$ | 0.59           | $0.80 \\ 0.73$ | $0.64 \\ 0.49$ | $0.59 \\ 0.44$ | $0.82 \\ 0.68$ | $0.41 \\ 0.18$ | $0.70 \\ 0.58$ | $0.65 \\ 0.53$ | $0.59 \\ 0.44$ | $0.80 \\ 0.73$ | $0.65 \\ 0.52$ | $0.59 \\ 0.44$ | $0.83 \\ 0.68$ |
|                  | FCFP2            | 0.18           | 0.74           | 0.70           | 0.64           | 0.73           | 0.45           | 0.64           | 0.85           | 0.13           | 0.75           | 0.33           | 0.66           | 0.73           | 0.68           | 0.44           | 0.85           |
|                  | FCFP4            | 0.50           | 0.74           | 0.71           | 0.64           | 0.83           | 0.68           | 0.64           | 0.86           | 0.53           | 0.76           | 0.72           | 0.68           | 0.84           | 0.71           | 0.68           | 0.88           |
|                  | FCFP6            | 0.49           | 0.73           | 0.70           | 0.64           | 0.83           | 0.68           | 0.64           | 0.85           | 0.51           | 0.75           | 0.71           | 0.66           | 0.83           | 0.70           | 0.66           | 0.87           |
|                  | KR               | 0.52           | 0.75           | 0.72           | 0.66           | 0.84           | 0.70           | 0.66           | 0.86           | 0.50           | 0.74           | 0.70           | 0.64           | 0.83           | 0.68           | 0.64           | 0.86           |
|                  | LSTAR            | 0.47           | 0.72           | 0.69           | 0.62           | 0.82           | 0.68           | 0.62           | 0.85           | 0.50           | 0.73           | 0.71           | 0.63           | 0.83           | 0.68           | 0.63           | 0.85           |
|                  | MACCS            | 0.49           | 0.73           | 0.70           | 0.64           | 0.83           | 0.68           | 0.64           | 0.86           | 0.53           | 0.76           | 0.72           | 0.68           | 0.84           | 0.71           | 0.68           | 0.87           |
|                  | PUBCHEM          | 0.51           | 0.75           | 0.71           | 0.66           | 0.83           | 0.69           | 0.66           | 0.86           | 0.50           | 0.74           | 0.70           | 0.65           | 0.83           | 0.67           | 0.65           | 0.86           |
|                  | RAD2D            | 0.52           | 0.75           | 0.72           | 0.65           | 0.84           | 0.70           | 0.65           | 0.86           | 0.50           | 0.74           | 0.70           | 0.65           | 0.83           | 0.69           | 0.65           | 0.86           |
|                  | 2PPHAR           | 0.10           | 0.55           | 0.61           | 0.40           | 0.70           | 0.56           | 0.40           | 0.60           | 0.17           | 0.57           | 0.64           | 0.42           | 0.72           | 0.65           | 0.42           | 0.61           |
|                  | 3PPHAR           | 0.34           | 0.65           | 0.67           | 0.52           | 0.78           | 0.59           | 0.52           | 0.75           | 0.33           | 0.64           | 0.66           | 0.51           | 0.78           | 0.54           | 0.51           | 0.73           |
|                  | AP2D             | 0.45           | 0.70           | 0.72           | 0.60           | 0.81           | 0.69           | 0.60           | 0.84           | 0.45           | 0.72           | 0.73           | 0.62           | 0.81           | 0.67           | 0.62           | 0.85           |
|                  | ASP              | 0.49           | 0.72           | 0.74           | 0.62           | 0.82           | 0.71           | 0.62           | 0.86           | 0.46           | 0.70           | 0.73           | 0.59           | 0.81           | 0.67           | 0.59           | 0.83           |
|                  | AT2D             | 0.46           | 0.71           | 0.73           | 0.61           | 0.81           | 0.69           | 0.61           | 0.86           | 0.47           | 0.71           | 0.73           | 0.60           | 0.82           | 0.66           | 0.60           | 0.82           |
|                  | $_{ m DFS}$      | $0.49 \\ 0.44$ | $0.72 \\ 0.70$ | $0.74 \\ 0.71$ | $0.62 \\ 0.60$ | $0.83 \\ 0.81$ | $0.69 \\ 0.64$ | $0.62 \\ 0.60$ | $0.85 \\ 0.83$ | $0.48 \\ 0.43$ | $0.73 \\ 0.71$ | $0.73 \\ 0.71$ | $0.63 \\ 0.61$ | $0.83 \\ 0.81$ | $0.68 \\ 0.64$ | $0.63 \\ 0.61$ | $0.86 \\ 0.82$ |
|                  | ECFP2            | 0.44           | 0.70           | 0.71           | 0.60           | 0.81 $0.84$    | 0.64           | 0.64           | 0.83           | 0.43           | $0.71 \\ 0.72$ | $0.71 \\ 0.74$ | $0.61 \\ 0.62$ | $0.81 \\ 0.82$ | 0.69           | $0.61 \\ 0.62$ | 0.82           |
|                  | ECFP4            | 0.53           | 0.74           | 0.76           | 0.62           | 0.84           | 0.73           | 0.62           | 0.86           | 0.49           | 0.74           | 0.74           | 0.66           | 0.82           | 0.09           | 0.66           | 0.85           |
| Elimination      | ECFP6            | 0.50           | $0.73 \\ 0.72$ | 0.75           | 0.60           | 0.83           | 0.68           | 0.60           | 0.85           | 0.52           | 0.74           | 0.74           | 0.64           | 0.84           | 0.74           | 0.64           | 0.86           |
| half-life Mouse  | ESTATE           | 0.45           | 0.71           | 0.72           | 0.60           | 0.81           | 0.66           | 0.60           | 0.83           | 0.48           | 0.71           | 0.74           | 0.60           | 0.82           | 0.71           | 0.60           | 0.84           |
|                  | FCFP0            | 0.18           | 0.57           | 0.63           | 0.42           | 0.72           | 0.50           | 0.42           | 0.64           | 0.15           | 0.55           | 0.63           | 0.40           | 0.71           | 0.52           | 0.40           | 0.65           |
|                  | FCFP2            | 0.47           | 0.71           | 0.73           | 0.60           | 0.82           | 0.67           | 0.60           | 0.86           | 0.42           | 0.68           | 0.71           | 0.57           | 0.80           | 0.62           | 0.57           | 0.84           |
|                  | FCFP4            | 0.48           | 0.71           | 0.74           | 0.59           | 0.82           | 0.67           | 0.59           | 0.85           | 0.52           | 0.73           | 0.76           | 0.63           | 0.84           | 0.68           | 0.63           | 0.88           |
|                  | FCFP6            | 0.50           | 0.72           | 0.75           | 0.62           | 0.83           | 0.72           | 0.62           | 0.86           | 0.48           | 0.71           | 0.74           | 0.59           | 0.82           | 0.67           | 0.59           | 0.86           |
|                  | KR               | 0.51           | 0.73           | 0.75           | 0.63           | 0.83           | 0.71           | 0.63           | 0.85           | 0.48           | 0.72           | 0.73           | 0.62           | 0.82           | 0.66           | 0.62           | 0.85           |
|                  | LSTAR            | 0.45           | 0.70           | 0.72           | 0.59           | 0.81           | 0.68           | 0.59           | 0.82           | 0.47           | 0.72           | 0.73           | 0.62           | 0.82           | 0.68           | 0.62           | 0.81           |
|                  | MACCS            | 0.46           | 0.71           | 0.73           | 0.61           | 0.82           | 0.66           | 0.61           | 0.85           | 0.47           | 0.70           | 0.73           | 0.58           | 0.83           | 0.65           | 0.58           | 0.83           |
|                  | PUBCHEM          | 0.50           | 0.72           | 0.74           | 0.61           | 0.83           | 0.68           | 0.61           | 0.86           | 0.46           | 0.71           | 0.72           | 0.60           | 0.82           | 0.65           | 0.60           | 0.85           |
|                  | RAD2D            | 0.48           | 0.71           | 0.74           | 0.60           | 0.82           | 0.70           | 0.60           | 0.86           | 0.47           | 0.72           | 0.73           | 0.63           | 0.82           | 0.67           | 0.63           | 0.87           |
|                  | 2PPHAR           | 0.13           | 0.55           | 0.64           | 0.40           | 0.70           | 0.56           | 0.40           | 0.59           | 0.15           | 0.56           | 0.65           | 0.40           | 0.71           | 0.56           | 0.40           | 0.59           |
|                  | 3PPHAR           | 0.31           | 0.62           | 0.69           | 0.49           | 0.76           | 0.62           | 0.49           | 0.75           | 0.32           | 0.64           | 0.70           | 0.51           | 0.77           | 0.68           | 0.51           | 0.74           |
|                  | AP2D             | 0.42           | 0.68           | 0.72           | 0.56           | 0.81           | 0.61           | 0.56           | 0.82           | 0.48           | 0.71           | 0.74           | 0.59           | 0.83           | 0.68           | 0.59           | 0.83           |

Table S1 - Continued from previous page

| Endpoint | FP      |      |      |      | Ca   | libratio: | n    |      |      |      |      |      | Val  | idation |      |      |      |
|----------|---------|------|------|------|------|-----------|------|------|------|------|------|------|------|---------|------|------|------|
| Enapoint | rr      | κ    | BACC | ACC  | Se   | Sp        | AUC  | κ    | BACC | ACC  | Se   | Sp   | AUC  |         |      |      |      |
|          | ASP     | 0.50 | 0.72 | 0.75 | 0.60 | 0.84      | 0.68 | 0.60 | 0.86 | 0.54 | 0.74 | 0.77 | 0.63 | 0.85    | 0.67 | 0.63 | 0.86 |
|          | AT2D    | 0.49 | 0.72 | 0.75 | 0.60 | 0.83      | 0.67 | 0.60 | 0.87 | 0.43 | 0.69 | 0.72 | 0.57 | 0.81    | 0.62 | 0.57 | 0.81 |
|          | DFS     | 0.49 | 0.71 | 0.75 | 0.59 | 0.83      | 0.66 | 0.59 | 0.86 | 0.52 | 0.73 | 0.77 | 0.61 | 0.84    | 0.67 | 0.61 | 0.84 |
|          | ECFP0   | 0.44 | 0.70 | 0.72 | 0.58 | 0.82      | 0.63 | 0.58 | 0.82 | 0.48 | 0.72 | 0.74 | 0.62 | 0.83    | 0.66 | 0.62 | 0.83 |
|          | ECFP2   | 0.50 | 0.73 | 0.76 | 0.62 | 0.83      | 0.68 | 0.62 | 0.86 | 0.54 | 0.73 | 0.77 | 0.60 | 0.85    | 0.71 | 0.60 | 0.84 |
|          | ECFP4   | 0.49 | 0.72 | 0.75 | 0.60 | 0.83      | 0.69 | 0.60 | 0.86 | 0.53 | 0.74 | 0.77 | 0.63 | 0.85    | 0.67 | 0.63 | 0.85 |
|          | ECFP6   | 0.49 | 0.71 | 0.75 | 0.59 | 0.83      | 0.68 | 0.59 | 0.87 | 0.53 | 0.73 | 0.77 | 0.61 | 0.84    | 0.68 | 0.61 | 0.84 |
|          | ESTATE  | 0.45 | 0.70 | 0.73 | 0.59 | 0.82      | 0.64 | 0.59 | 0.84 | 0.50 | 0.72 | 0.75 | 0.61 | 0.83    | 0.65 | 0.61 | 0.82 |
|          | FCFP0   | 0.14 | 0.55 | 0.64 | 0.40 | 0.71      | 0.52 | 0.40 | 0.65 | 0.10 | 0.54 | 0.62 | 0.38 | 0.70    | 0.47 | 0.38 | 0.62 |
|          | FCFP2   | 0.52 | 0.73 | 0.76 | 0.62 | 0.84      | 0.67 | 0.62 | 0.87 | 0.57 | 0.75 | 0.78 | 0.64 | 0.86    | 0.69 | 0.64 | 0.86 |
|          | FCFP4   | 0.52 | 0.73 | 0.76 | 0.61 | 0.84      | 0.67 | 0.61 | 0.87 | 0.52 | 0.73 | 0.77 | 0.61 | 0.84    | 0.69 | 0.61 | 0.83 |
|          | FCFP6   | 0.50 | 0.72 | 0.75 | 0.60 | 0.84      | 0.68 | 0.60 | 0.85 | 0.52 | 0.73 | 0.77 | 0.62 | 0.84    | 0.67 | 0.62 | 0.83 |
|          | KR      | 0.53 | 0.74 | 0.77 | 0.62 | 0.85      | 0.69 | 0.62 | 0.86 | 0.53 | 0.74 | 0.77 | 0.63 | 0.85    | 0.67 | 0.63 | 0.83 |
|          | LSTAR   | 0.48 | 0.70 | 0.74 | 0.57 | 0.83      | 0.63 | 0.57 | 0.84 | 0.49 | 0.71 | 0.75 | 0.59 | 0.83    | 0.65 | 0.59 | 0.83 |
|          | MACCS   | 0.50 | 0.73 | 0.75 | 0.61 | 0.84      | 0.67 | 0.61 | 0.85 | 0.52 | 0.73 | 0.76 | 0.61 | 0.85    | 0.67 | 0.61 | 0.84 |
|          | PUBCHEM | 0.50 | 0.72 | 0.75 | 0.61 | 0.83      | 0.68 | 0.61 | 0.87 | 0.54 | 0.74 | 0.77 | 0.63 | 0.85    | 0.68 | 0.63 | 0.85 |
|          | RAD2D   | 0.50 | 0.71 | 0.76 | 0.60 | 0.83      | 0.69 | 0.60 | 0.86 | 0.46 | 0.69 | 0.74 | 0.56 | 0.82    | 0.66 | 0.56 | 0.83 |

Table S2: Performance of classification models in training and validation sets.

| Endpoint          | FP             |       | Calibrati |      |                | Valid at io    |                |
|-------------------|----------------|-------|-----------|------|----------------|----------------|----------------|
|                   |                | $R^2$ | RMSE      | MAE  | $R^2$          | RMSE           | MAE            |
|                   | 2PPH AR        | 0.07  | 0.86      | 0.66 | 0.06           | 0.94           | 0.70           |
|                   | 3PPH AR        | 0.13  | 0.84      | 0.64 | 0.12           | 0.86           | 0.65           |
|                   | AP2D           | 0.33  | 0.74      | 0.52 | 0.31           | 0.76           | 0.51           |
|                   | ASP            | 0.40  | 0.70      | 0.48 | 0.35           | 0.74           | 0.48           |
|                   | AT2D           | 0.38  | 0.71      | 0.50 | 0.36           | 0.75           | 0.50           |
|                   | DFS            | 0.40  | 0.70      | 0.48 | 0.36           | 0.72           | 0.48           |
|                   | ECFP0          | 0.33  | 0.74      | 0.52 | 0.34           | 0.75           | 0.52           |
|                   | ECFP2          | 0.41  | 0.70      | 0.47 | 0.45           | 0.66           | 0.45           |
|                   | ECFP4          | 0.39  | 0.71      | 0.48 | 0.47           | 0.68           | 0.46           |
| CACO2             | ECFP6          | 0.39  | 0.71      | 0.49 | 0.44           | 0.70           | 0.48           |
| Permeability      | ESTATE         | 0.30  | 0.75      | 0.53 | 0.39           | 0.72           | 0.51           |
|                   | FCFP0          | 0.08  | 0.87      | 0.66 | 0.08           | 0.88           | 0.66           |
|                   | FCFP2          | 0.40  | 0.70      | 0.48 | 0.47           | 0.67           | 0.46           |
|                   | FCFP4          | 0.44  | 0.68      | 0.46 | 0.42           | 0.69           | 0.46           |
|                   | FCFP6          | 0.39  | 0.71      | 0.48 | 0.46           | 0.64           | 0.46           |
|                   | KR             | 0.41  | 0.69      | 0.47 | 0.37           | 0.74           | 0.49           |
|                   | LSTAR          | 0.36  | 0.73      | 0.50 | 0.37           | 0.72           | 0.49           |
|                   | MACCS          | 0.40  | 0.70      | 0.48 | 0.42           | 0.70           | 0.48           |
|                   | PUBCHEM        | 0.41  | 0.70      | 0.47 | 0.45           | 0.67           | 0.45           |
|                   | RAD2D          | 0.40  | 0.69      | 0.47 | 0.40           | 0.73           | 0.48           |
|                   | 2PPH AR        | 0.27  | 2.03      | 1.56 | 0.27           | 2.02           | 1.56           |
|                   | 3PPH AR        | 0.27  | 2.03      | 1.56 | 0.25           | 2.05           | 1.57           |
|                   | AP2D           | 0.64  | 1.41      | 1.03 | 0.66           | 1.39           | 1.02           |
|                   | ASP            | 0.67  | 1.37      | 0.98 | 0.68           | 1.34           | 0.93           |
|                   | AT2D           | 0.66  | 1.40      | 1.01 | 0.67           | 1.35           | 0.98           |
|                   |                | 0.69  | 1.34      | 0.96 | 0.71           | 1.29           | 0.93           |
|                   | $_{ m DFS}$    | 0.59  | 1.65      | 1.24 | 0.71           | 1.62           | 1.22           |
|                   | ECFP0<br>ECFP2 | 0.52  | 1.05      | 0.99 | 0.53 $0.67$    | 1.02           | 0.97           |
|                   |                |       |           |      |                |                |                |
| ٨                 | ECFP4          | 0.67  | 1.38      | 1.00 | 0.68           | 1.33           | 0.96           |
| Aqueous           | ECFP6          | 0.66  | 1.40      | 1.02 | 0.68           | 1.35           | 0.99           |
| solubility (logS) | ESTATE         | 0.49  | 1.70      | 1.27 | 0.50           | 1.67           | 1.26           |
|                   | FCFP0          | 0.34  | 1.93      | 1.50 | 0.33           | 1.94           | 1.52           |
|                   | FCFP2          | 0.62  | 1.47      | 1.08 | 0.64           | 1.43           | 1.05           |
|                   | FCFP4          | 0.68  | 1.35      | 0.97 | 0.69           | 1.31           | 0.93           |
|                   | FCFP6          | 0.68  | 1.35      | 0.97 | 0.69           | 1.31           | 0.93           |
|                   | KR             | 0.67  | 1.36      | 0.99 | 0.69           | 1.33           | 0.96           |
|                   | LSTAR          | 0.66  | 1.39      | 1.00 | 0.69           | 1.35           | 0.97           |
|                   | MACCS          | 0.72  | 1.25      | 0.90 | 0.74           | 1.20           | 0.85           |
|                   | PUBCHEM        | 0.77  | 1.15      | 0.81 | 0.78           | 1.12           | 0.78           |
|                   | RAD2D          | 0.66  | 1.40      | 1.00 | 0.66           | 1.37           | 0.97           |
|                   | 2PPH AR        | 0.25  | 0.99      | 0.79 | 0.15           | 1.11           | 0.90           |
|                   | 3PPHAR         | 0.29  | 0.96      | 0.76 | 0.12           | 1.12           | 0.92           |
|                   | AP2D           | 0.25  | 0.99      | 0.79 | 0.26           | 1.01           | 0.80           |
|                   | ASP            | 0.40  | 0.90      | 0.71 | 0.35           | 0.97           | 0.74           |
|                   | AT2D           | 0.42  | 0.88      | 0.70 | 0.33           | 1.00           | 0.78           |
|                   | DFS            | 0.39  | 0.90      | 0.70 | 0.37           | 0.98           | 0.76           |
|                   | ECFP0          | 0.30  | 0.95      | 0.78 | 0.28           | 1.03           | 0.82           |
|                   | ECFP2          | 0.43  | 0.87      | 0.68 | 0.41           | 0.92           | 0.72           |
| <b>.</b>          | ECFP4          | 0.45  | 0.86      | 0.68 | 0.35           | 0.98           | 0.76           |
| Intrinsic         | ECFP6          | 0.40  | 0.90      | 0.71 | 0.42           | 0.97           | 0.75           |
| Clearance         | ESTATE         | 0.28  | 0.97      | 0.79 | 0.22           | 1.05           | 0.81           |
| $(CL_{int})$      | FCFP0          | 0.14  | 1.06      | 0.86 | 0.16           | 1.11           | 0.89           |
|                   | FCFP2          | 0.31  | 0.95      | 0.76 | 0.30           | 1.00           | 0.78           |
|                   | FCFP4          | 0.36  | 0.91      | 0.72 | 0.31           | 0.99           | 0.77           |
|                   | FCFP6          | 0.35  | 0.93      | 0.72 | 0.31           | 1.00           | 0.77           |
|                   | KR             | 0.39  | 0.90      | 0.73 | 0.32           | 0.98           | 0.76           |
|                   |                |       |           |      |                | 1.00           |                |
|                   | LSTAR          | 0.39  | 0.91      | 0.72 | 0.32           |                | 0.78           |
|                   | MACCS          | 0.38  | 0.90      | 0.72 | 0.27           | 1.03           | 0.78           |
|                   | PUBCHEM        | 0.41  | 0.87      | 0.70 | 0.28           | 1.01           | 0.80           |
|                   | RAD2D          | 0.49  | 0.83      | 0.65 | 0.34           | 0.98           | 0.77           |
|                   | 2PPH AR        | 0.12  | 1.08      | 0.86 | 0.17           | 1.02           | 0.82           |
|                   | 3PPHAR         | 0.22  | 0.99      | 0.78 | 0.34           | 1.01           | 0.79           |
|                   |                | 0.59  | 0.73      | 0.58 | 0.63           | 0.70           | 0.54           |
|                   | AP2D           |       |           |      |                |                |                |
|                   | ASP            | 0.58  | 0.73      | 0.59 | 0.60           | 0.77           | 0.61           |
|                   |                |       |           |      | $0.60 \\ 0.66$ | $0.77 \\ 0.65$ | $0.61 \\ 0.51$ |
|                   | ASP            | 0.58  | 0.73      | 0.59 |                |                |                |

Table S2 - Continued from previous page

|                              | Table S2 - 0     |                |                |                |                | 37 10 1        |                |
|------------------------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Endpoint                     | $\mathbf{FP}$    | - D2           | Calibratio     |                | - P2           | Validatio      |                |
|                              | EGEDA            | $R^2$          | RMSE           | MAE            | $R^2$          | RMSE           | MAE            |
|                              | ECFP2            | 0.59           | 0.73           | 0.60           | 0.64           | 0.71           | 0.57           |
|                              | ECFP4<br>ECFP6   | $0.62 \\ 0.55$ | $0.71 \\ 0.76$ | $0.58 \\ 0.62$ | $0.62 \\ 0.68$ | $0.70 \\ 0.71$ | $0.55 \\ 0.57$ |
|                              |                  |                |                |                |                |                |                |
|                              | ESTATE           | $0.51 \\ 0.45$ | 0.79           | 0.64           | 0.50           | 0.81           | 0.64           |
|                              | FCFP0 $FCFP2$    | 0.43           | $0.84 \\ 0.71$ | $0.67 \\ 0.56$ | $0.47 \\ 0.70$ | $0.85 \\ 0.65$ | $0.67 \\ 0.50$ |
|                              | FCFP4            | 0.67           | 0.68           | 0.54           | 0.73           | 0.61           | 0.48           |
|                              | FCFP6            | 0.66           | 0.67           | 0.54           | 0.68           | 0.69           | 0.45           |
|                              | KR               | 0.64           | 0.68           | 0.55           | 0.67           | 0.65           | 0.52           |
|                              | LSTAR            | 0.55           | 0.78           | 0.64           | 0.57           | 0.76           | 0.62           |
|                              | MACCS            | 0.73           | 0.59           | 0.46           | 0.75           | 0.59           | 0.45           |
|                              | PUBCHEM          | 0.71           | 0.62           | 0.49           | 0.74           | 0.57           | 0.42           |
|                              | RAD2D            | 0.63           | 0.71           | 0.57           | 0.64           | 0.67           | 0.52           |
|                              | 2PPH AR          | 0.37           | 0.50           | 0.38           | 0.35           | 0.49           | 0.37           |
|                              | 3PPH AR          | 0.49           | 0.45           | 0.33           | 0.51           | 0.43           | 0.31           |
|                              | AP2D             | 0.71           | 0.33           | 0.23           | 0.70           | 0.39           | 0.25           |
|                              | ASP              | 0.71           | 0.35           | 0.23           | 0.79           | 0.30           | 0.20           |
|                              | AT2D             | 0.73           | 0.35           | 0.23           | 0.85           | 0.22           | 0.16           |
|                              | DFS              | 0.69           | 0.37           | 0.24           | 0.74           | 0.29           | 0.21           |
|                              | ECFP0            | 0.61           | 0.40           | 0.28           | 0.60           | 0.41           | 0.26           |
|                              | ECFP2            | 0.67           | 0.37           | 0.26           | 0.62           | 0.38           | 0.24           |
|                              | ECFP4            | 0.66           | 0.37           | 0.27           | 0.64           | 0.43           | 0.27           |
| Human Serum                  | ECFP6            | 0.60           | 0.41           | 0.29           | 0.71           | 0.36           | 0.26           |
| Albumin                      | ESTATE           | 0.62           | 0.39           | 0.27           | 0.71           | 0.34           | 0.23           |
|                              | FCFP0            | 0.31           | 0.52           | 0.37           | 0.39           | 0.52           | 0.37           |
|                              | FCFP2            | 0.62           | 0.39           | 0.27           | 0.70           | 0.32           | 0.23           |
|                              | FCFP4            | 0.67           | 0.37           | 0.26           | 0.72           | 0.36           | 0.24           |
|                              | FCFP6            | 0.65           | 0.39           | 0.28           | 0.74           | 0.30           | 0.22           |
|                              | $_{\mathrm{KR}}$ | 0.71           | 0.34           | 0.22           | 0.78           | 0.31           | 0.21           |
|                              | LSTAR            | 0.67           | 0.38           | 0.25           | 0.72           | 0.35           | 0.23           |
|                              | MACCS            | 0.74           | 0.33           | 0.22           | 0.65           | 0.36           | 0.24           |
|                              | PUBCHEM          | 0.73           | 0.34           | 0.23           | 0.79           | 0.27           | 0.19           |
|                              | RAD2D            | 0.73           | 0.34           | 0.22           | 0.84           | 0.25           | 0.17           |
|                              | 2PPH AR          | 0.14           | 0.30           | 0.25           | 0.10           | 0.28           | 0.25           |
|                              | 3PPHAR           | 0.15           | 0.30           | 0.24           | 0.11           | 0.27           | 0.23           |
|                              | AP2D             | 0.29           | 0.27           | 0.22           | 0.30           | 0.25           | 0.22           |
|                              | ASP              | 0.30           | 0.28           | 0.23           | 0.36           | 0.24           | 0.20           |
|                              | AT2D             | 0.21           | 0.29           | 0.24           | 0.40           | 0.23           | 0.19           |
|                              | DFS              | 0.23           | 0.28           | 0.24           | 0.43           | 0.24           | 0.20           |
|                              | ECFP0            | 0.28           | 0.27           | 0.22           | 0.32           | 0.27           | 0.21           |
|                              | ECFP2            | 0.46           | 0.25           | 0.20           | 0.33           | 0.27           | 0.20           |
| Human Placenta               | ECFP4            | 0.38           | 0.25           | 0.21           | 0.38           | 0.28           | 0.22           |
| Barrier                      | ECFP6            | 0.33           | 0.27           | 0.22           | 0.26           | 0.27           | 0.23           |
| (clearance index)            | ESTATE           | 0.29           | 0.27           | 0.22           | 0.31           | 0.24           | 0.21           |
| . ,                          | FCFP0            | 0.30           | 0.26           | 0.21           | 0.18           | 0.33           | 0.25           |
|                              | FCFP2            | 0.29           | 0.26           | 0.20           | 0.45           | 0.24           | 0.20           |
|                              | FCFP4            | 0.42           | 0.24           | 0.19           | 0.16           | 0.32           | 0.23           |
|                              | FCFP6 $KR$       | $0.38 \\ 0.41$ | $0.24 \\ 0.24$ | $0.19 \\ 0.20$ | $0.22 \\ 0.24$ | $0.32 \\ 0.32$ | $0.23 \\ 0.22$ |
|                              | LSTAR            | $0.41 \\ 0.31$ | $0.24 \\ 0.27$ | $0.20 \\ 0.22$ | $0.24 \\ 0.20$ | $0.32 \\ 0.27$ | 0.22           |
|                              | MACCS            | $0.31 \\ 0.40$ | $0.27 \\ 0.25$ | 0.22           | 0.20           | 0.27           | 0.23           |
|                              | PUBCHEM          | $0.40 \\ 0.32$ | 0.26           | 0.20           | 0.41           | 0.25 $0.26$    | 0.19 $0.22$    |
|                              | RAD2D            | 0.32 $0.21$    | 0.28           | 0.20           | 0.50           | 0.23           | 0.22           |
|                              | 2PPHAR           | 0.21           | 1.14           | 0.23           | 0.02           | 1.21           | 0.19           |
|                              | 3PPH AR          | 0.03           | 1.14           | 0.88           | 0.02           | 1.11           | 0.88           |
|                              | AP2D             | 0.16           | 1.13 $1.02$    | 0.88           | 0.08           | 1.11           | 0.79           |
|                              | ASP              | 0.27           | 1.02           | 0.77           | 0.25           | 0.98           | 0.75           |
|                              | AT2D             | 0.33           | 0.98           | 0.75           | 0.23           | 0.96           | 0.73           |
|                              | DFS              | 0.33           | 0.98           | 0.74           | 0.29           | 0.98           | 0.72           |
|                              | ECFP0            | 0.16           | 1.07           | 0.80           | 0.22           | 1.04           | 0.82           |
|                              | ECFP2            | 0.10           | 1.05           | 0.80           | 0.25           | 0.98           | 0.77           |
|                              | ECFP4            | 0.22           | 1.06           | 0.81           | 0.27           | 0.96           | 0.71           |
| Cancer potency               | ECFP6            | 0.23           | 1.00           | 0.77           | 0.17           | 1.21           | 0.84           |
| in mouse (TD <sub>50</sub> ) | ESTATE           | 0.15           | 1.09           | 0.84           | 0.15           | 1.07           | 0.79           |
| (11200)                      | FCFP0            | 0.13           | 1.15           | 0.91           | 0.02           | 1.18           | 0.92           |
|                              | FCFP2            | 0.24           | 1.03           | 0.78           | 0.25           | 0.98           | 0.74           |
|                              | FCFP4            | 0.27           | 1.03           | 0.78           | 0.25           | 0.95           | 0.74           |
|                              | FCFP6            | 0.31           | 0.99           | 0.76           | 0.23           | 1.04           | 0.77           |
|                              | KR               | 0.27           | 1.01           | 0.77           | 0.18           | 1.04           | 0.84           |
|                              | 1210             | 0.41           | 1.01           | 0.11           | 0.10           | 1.00           | 5.04           |

Table S2 - Continued from previous page

|                            | Table S2 - C     |                |              |      |                | (7-1:.1 ±1   |             |
|----------------------------|------------------|----------------|--------------|------|----------------|--------------|-------------|
| Endpoint                   | $\mathbf{FP}$    | ${R^2}$        | Calibration  |      | $R^2$          | Validatio    |             |
|                            | LSTAR            | 0.22           | RMSE<br>1.07 | 0.80 | 0.14           | RMSE<br>1.02 | MAE<br>0.81 |
|                            | MACCS            | 0.22           | 0.99         | 0.30 | $0.14 \\ 0.24$ | 1.02         | 0.81        |
|                            | PUBCHEM          | 0.23           | 0.97         | 0.74 | 0.24           | 1.06         | 0.30        |
|                            | RAD2D            | $0.31 \\ 0.27$ | 1.00         | 0.74 | 0.23           | 1.07         | 0.79        |
|                            | 2PPHAR           | 0.05           | 1.36         | 1.11 | 0.23           | 1.39         | 1.13        |
|                            | 3PPH AR          | 0.10           | 1.33         | 1.07 | 0.05           | 1.39         | 1.14        |
|                            | AP2D             | 0.32           | 1.15         | 0.89 | 0.35           | 1.12         | 0.87        |
|                            | ASP              | 0.37           | 1.12         | 0.85 | 0.44           | 1.00         | 0.78        |
|                            | AT2D             | 0.41           | 1.08         | 0.83 | 0.35           | 1.14         | 0.87        |
|                            | DFS              | 0.36           | 1.12         | 0.86 | 0.41           | 1.05         | 0.81        |
|                            | ECFP0            | 0.29           | 1.19         | 0.92 | 0.32           | 1.13         | 0.85        |
|                            | ECFP2            | 0.38           | 1.11         | 0.86 | 0.34           | 1.13         | 0.88        |
|                            | ECFP4            | 0.34           | 1.14         | 0.88 | 0.44           | 1.05         | 0.82        |
| Cancer potency             | ECFP6            | 0.34           | 1.16         | 0.90 | 0.45           | 1.00         | 0.78        |
| in rat (TD <sub>50</sub> ) | ESTATE           | 0.33           | 1.16         | 0.90 | 0.27           | 1.14         | 0.89        |
| ( 00)                      | FCFP0            | 0.08           | 1.35         | 1.09 | 0.09           | 1.34         | 1.11        |
|                            | FCFP2            | 0.35           | 1.14         | 0.88 | 0.32           | 1.09         | 0.86        |
|                            | FCFP4            | 0.38           | 1.11         | 0.86 | 0.38           | 1.09         | 0.81        |
|                            | FCFP6            | 0.36           | 1.13         | 0.86 | 0.45           | 1.01         | 0.81        |
|                            | $_{\mathrm{KR}}$ | 0.34           | 1.14         | 0.88 | 0.37           | 1.06         | 0.82        |
|                            | LSTAR            | 0.32           | 1.16         | 0.89 | 0.34           | 1.12         | 0.86        |
|                            | MACCS            | 0.39           | 1.08         | 0.84 | 0.33           | 1.17         | 0.88        |
|                            | PUBCHEM          | 0.40           | 1.09         | 0.85 | 0.35           | 1.09         | 0.84        |
|                            | RAD2D            | 0.40           | 1.08         | 0.82 | 0.40           | 1.15         | 0.86        |
|                            | 2PPH AR          | 0.16           | 0.61         | 0.47 | 0.11           | 0.65         | 0.50        |
|                            | 3PPHAR           | 0.17           | 0.61         | 0.48 | 0.17           | 0.63         | 0.49        |
|                            | AP2D             | 0.48           | 0.48         | 0.33 | 0.40           | 0.54         | 0.36        |
|                            | ASP              | 0.57           | 0.44         | 0.28 | 0.45           | 0.51         | 0.32        |
|                            | AT2D             | 0.57           | 0.44         | 0.28 | 0.46           | 0.51         | 0.32        |
|                            | AVALON           | 0.50           | 0.47         | 0.33 | 0.43           | 0.52         | 0.34        |
|                            | DFS              | 0.55           | 0.45         | 0.29 | 0.45           | 0.51         | 0.32        |
|                            | ECFP0            | 0.48           | 0.48         | 0.35 | 0.44           | 0.52         | 0.37        |
| Steady state               | ECFP2            | 0.56           | 0.45         | 0.32 | 0.48           | 0.50         | 0.33        |
| volume                     | ECFP4            | 0.47           | 0.49         | 0.36 | 0.42           | 0.52         | 0.36        |
| distribution               | ECFP6            | 0.46           | 0.50         | 0.37 | 0.37           | 0.54         | 0.38        |
| $(VD_{ss})$                | ESTATE           | 0.43           | 0.51         | 0.37 | 0.42           | 0.53         | 0.37        |
|                            | FCFP0            | 0.34           | 0.54         | 0.41 | 0.31           | 0.57         | 0.42        |
|                            | FCFP2            | 0.54           | 0.45         | 0.32 | 0.47           | 0.50         | 0.33        |
|                            | FCFP4            | 0.56           | 0.44         | 0.32 | 0.47           | 0.50         | 0.34        |
|                            | FCFP6            | 0.47           | 0.49         | 0.36 | 0.44           | 0.52         | 0.36        |
|                            | KR               | 0.56           | 0.44         | 0.30 | 0.47           | 0.50         | 0.33        |
|                            | LSTAR            | 0.57           | 0.44         | 0.29 | 0.43           | 0.52         | 0.33        |
|                            | MACCS            | 0.54           | 0.45         | 0.30 | 0.47           | 0.50         | 0.32        |
|                            | MAP4             | 0.48           | 0.49         | 0.35 | 0.39           | 0.54         | 0.38        |
|                            | PUBCHEM          | 0.54           | 0.46         | 0.30 | 0.46           | 0.51         | 0.33        |
|                            | RAD2D            | 0.57           | 0.44         | 0.28 | 0.46           | 0.51         | 0.31        |
|                            | 2PPH AR          | 0.20           | 1.32         | 1.04 | 0.22           | 1.30         | 1.03        |
|                            | 3PPHAR           | 0.30           | 1.24         | 0.96 | 0.30           | 1.22         | 0.96        |
|                            | AP2D             | 0.66           | 0.87         | 0.62 | 0.68           | 0.84         | 0.59        |
|                            | ASP              | 0.74           | 0.77         | 0.55 | 0.76           | 0.74         | 0.52        |
|                            | AT2D             | 0.73           | 0.79         | 0.56 | 0.77           | 0.75         | 0.51        |
|                            | DFS              | 0.73           | 0.79         | 0.56 | 0.75           | 0.75         | 0.52        |
|                            | ECFP0            | 0.56           | 0.98         | 0.75 | 0.60           | 0.94         | 0.72        |
|                            | ECFP2            | 0.72           | 0.80         | 0.59 | 0.74           | 0.77         | 0.57        |
| Distribution               | ECFP4            | 0.70           | 0.83         | 0.62 | 0.73           | 0.79         | 0.58        |
| coefficient (log           | ECFP6            | 0.67           | 0.87         | 0.65 | 0.70           | 0.84         | 0.63        |
| D)                         | ESTATE           | 0.53           | 1.01         | 0.77 | 0.57           | 0.98         | 0.75        |
| -,                         | FCFP0            | 0.37           | 1.16         | 0.91 | 0.39           | 1.16         | 0.92        |
|                            | FCFP2            | 0.70           | 0.82         | 0.61 | 0.72           | 0.79         | 0.58        |
|                            | FCFP4            | 0.70           | 0.81         | 0.59 | 0.72           | 0.79         | 0.57        |
|                            | FCFP6            | 0.69           | 0.83         | 0.61 | 0.70           | 0.82         | 0.59        |
|                            | KR               | 0.71           | 0.80         | 0.59 | 0.74           | 0.76         | 0.55        |
|                            | LSTAR            | 0.71           | 0.81         | 0.58 | 0.75           | 0.77         | 0.54        |
|                            | MACCS            | 0.73           | 0.78         | 0.58 | 0.74           | 0.75         | 0.55        |
|                            | PUBCHEM          | 0.76           | 0.73         | 0.53 | 0.77           | 0.71         | 0.50        |
|                            | RAD2D            | 0.75           | 0.76         | 0.53 | 0.78           | 0.70         | 0.48        |
|                            | 2PPH AR          | 0.20           | 0.64         | 0.52 | 0.15           | 0.65         | 0.53        |
|                            | 3PPHAR           | 0.22           | 0.63         | 0.51 | 0.18           | 0.65         | 0.51        |
|                            | AP2D             | 0.44           | 0.54         | 0.42 | 0.44           | 0.53         | 0.41        |

Table S2 - Continued from previous page

|                | Table S2 -    |                |                |                | age            | 37 11 1 / |              |
|----------------|---------------|----------------|----------------|----------------|----------------|-----------|--------------|
| Endpoint       | $\mathbf{FP}$ | - D2           | Calibration    |                | - D2           | Validatio |              |
|                | ACD           | $R^2 = 0.57$   | 0.47           | 0.37           | $R^2 = 0.60$   | 0.45      | MAE<br>0.34  |
|                | ASP           | 0.57           | 0.48           | 0.37           | 0.56           | 0.43      | 0.34         |
|                | AT2D          |                | 0.48           | 0.37           |                | 0.47      | 0.35         |
|                | DFS<br>ECFP0  | 0.56           |                |                | 0.58           | 0.46      |              |
|                | ECFP2         | $0.41 \\ 0.57$ | $0.55 \\ 0.47$ | $0.44 \\ 0.37$ | $0.40 \\ 0.60$ | 0.35      | 0.43<br>0.34 |
|                | ECFP4         | 0.51           | 0.47           | 0.40           | 0.52           | 0.49      | 0.34         |
|                | ECFP6         | 0.51           | 0.51           | 0.40           | 0.53           | 0.49      | 0.38         |
|                | ESTATE        | 0.40           | 0.56           | 0.44           | 0.43           | 0.54      | 0.42         |
|                | FCFP0         | 0.22           | 0.64           | 0.51           | 0.21           | 0.63      | 0.42         |
|                | FCFP2         | 0.54           | 0.49           | 0.38           | 0.54           | 0.48      | 0.37         |
|                | FCFP4         | 0.59           | 0.46           | 0.36           | 0.58           | 0.46      | 0.35         |
|                | FCFP6         | 0.53           | 0.50           | 0.40           | 0.53           | 0.49      | 0.38         |
|                | KR            | 0.58           | 0.47           | 0.36           | 0.60           | 0.45      | 0.35         |
|                | LSTAR         | 0.55           | 0.49           | 0.39           | 0.54           | 0.48      | 0.38         |
|                | MACCS         | 0.56           | 0.48           | 0.37           | 0.58           | 0.46      | 0.35         |
|                | MAP4          | 0.53           | 0.50           | 0.40           | 0.52           | 0.50      | 0.39         |
|                | PUBCHEM       | 0.60           | 0.46           | 0.35           | 0.63           | 0.43      | 0.33         |
|                | RAD2D         | 0.58           | 0.47           | 0.36           | 0.61           | 0.44      | 0.34         |
|                | 2PPHAR        | 0.26           | 0.69           | 0.55           | 0.27           | 0.71      | 0.56         |
|                | 3PPH AR       | 0.24           | 0.69           | 0.56           | 0.31           | 0.68      | 0.52         |
|                | AP2D          | 0.31           | 0.67           | 0.52           | 0.27           | 0.66      | 0.51         |
|                | ASP           | 0.38           | 0.63           | 0.50           | 0.38           | 0.65      | 0.52         |
|                | AT2D          | 0.32           | 0.67           | 0.53           | 0.38           | 0.63      | 0.52         |
|                | DFS           | 0.35           | 0.65           | 0.52           | 0.41           | 0.63      | 0.49         |
|                | ECFP0         | 0.24           | 0.69           | 0.55           | 0.26           | 0.73      | 0.57         |
|                | ECFP2         | 0.36           | 0.63           | 0.49           | 0.43           | 0.64      | 0.48         |
|                | ECFP4         | 0.39           | 0.64           | 0.50           | 0.41           | 0.63      | 0.49         |
| Fraction       | ECFP6         | 0.36           | 0.64           | 0.50           | 0.39           | 0.66      | 0.50         |
| Unbound in the | ESTATE        | 0.22           | 0.71           | 0.56           | 0.24           | 0.70      | 0.55         |
| Brain          | FCFP0         | 0.15           | 0.74           | 0.60           | 0.19           | 0.73      | 0.60         |
|                | FCFP2         | 0.31           | 0.67           | 0.53           | 0.28           | 0.65      | 0.51         |
|                | FCFP4         | 0.39           | 0.63           | 0.50           | 0.35           | 0.64      | 0.50         |
|                | FCFP6         | 0.40           | 0.63           | 0.49           | 0.30           | 0.65      | 0.51         |
|                | KR            | 0.34           | 0.65           | 0.52           | 0.44           | 0.60      | 0.47         |
|                | LSTAR         | 0.34           | 0.67           | 0.53           | 0.28           | 0.68      | 0.54         |
|                | MACCS         | 0.38           | 0.63           | 0.50           | 0.44           | 0.61      | 0.47         |
|                | PUBCHEM       | 0.48           | 0.58           | 0.46           | 0.54           | 0.56      | 0.44         |
|                | RAD2D         | 0.39           | 0.63           | 0.50           | 0.42           | 0.62      | 0.48         |
|                | 2PPH AR       | 0.07           | 1.49           | 1.19           | 0.06           | 1.52      | 1.21         |
|                | 3PPH AR       | 0.16           | 1.42           | 1.11           | 0.20           | 1.41      | 1.11         |
|                | AP2D          | 0.33           | 1.26           | 0.96           | 0.40           | 1.22      | 0.94         |
|                | ASP           | 0.51           | 1.08           | 0.81           | 0.57           | 1.04      | 0.79         |
|                | AT2D          | 0.48           | 1.13           | 0.86           | 0.55           | 1.08      | 0.84         |
|                | DFS           | 0.49           | 1.11           | 0.84           | 0.56           | 1.06      | 0.81         |
|                | ECFP0         | 0.37           | 1.23           | 0.93           | 0.39           | 1.23      | 0.93         |
|                | ECFP2         | 0.50           | 1.09           | 0.82           | 0.58           | 1.02      | 0.78         |
|                | ECFP4         | 0.50           | 1.09           | 0.83           | 0.56           | 1.05      | 0.80         |
| Human Liver    | ECFP6         | 0.49           | 1.12           | 0.85           | 0.56           | 1.07      | 0.82         |
| Microsomal     | ESTATE        | 0.34           | 1.25           | 0.95           | 0.36           | 1.26      | 0.96         |
| Clearance      | FCFP0         | 0.09           | 1.48           | 1.17           | 0.09           | 1.50      | 1.19         |
|                | FCFP2         | 0.50           | 1.10           | 0.82           | 0.55           | 1.06      | 0.81         |
|                | FCFP4         | 0.51           | 1.08           | 0.81           | 0.56           | 1.05      | 0.80         |
|                | FCFP6         | 0.50           | 1.10           | 0.82           | 0.56           | 1.06      | 0.81         |
|                | KR            | 0.51           | 1.08           | 0.80           | 0.56           | 1.05      | 0.79         |
|                | LSTAR         | 0.46           | 1.15           | 0.88           | 0.53           | 1.11      | 0.85         |
|                | MACCS         | 0.47           | 1.12           | 0.84           | 0.53           | 1.08      | 0.82         |
|                | PUBCHEM       | 0.49           | 1.10           | 0.83           | 0.56           | 1.05      | 0.80         |
|                | RAD2D         | 0.50           | 1.10           | 0.83           | 0.56           | 1.06      | 0.81         |
|                | 2PPHAR        | 0.06           | 1.73           | 1.36           | 0.03           | 1.80      | 1.42         |
|                | 3PPH AR       | 0.23           | 1.56           | 1.22           | 0.24           | 1.56      | 1.22         |
|                | AP2D          | 0.53           | 1.23           | 0.93           | 0.57           | 1.19      | 0.89         |
|                | ASP           | 0.63           | 1.10           | 0.84           | 0.62           | 1.09      | 0.84         |
|                | AT2D          | 0.61           | 1.14           | 0.88           | 0.64           | 1.09      | 0.84         |
|                | DFS           | 0.62           | 1.12           | 0.86           | 0.62           | 1.08      | 0.83         |
|                | ECFP0         | 0.02           | 1.34           | 1.01           | 0.49           | 1.24      | 0.94         |
|                | ECFP2         | 0.64           | 1.08           | 0.82           | 0.70           | 0.98      | 0.74         |
|                | ECFP4         | 0.63           | 1.10           | 0.84           | 0.66           | 1.08      | 0.80         |
| Rat Liver      | ECFP6         | 0.63           | 1.15           | 0.88           | 0.63           | 1.08      | 0.84         |
| Microsomal     | ESTATE        | 0.43           | 1.35           | 1.03           | 0.45           | 1.32      | 0.99         |
|                |               |                |                |                |                |           |              |

Table S2 - Continued from previous page

|              | Table S2 - C     |       | Calibratio          |      | uye   | Valid at io         | n    |
|--------------|------------------|-------|---------------------|------|-------|---------------------|------|
| Endpoint     | FP               | $R^2$ | RMSE                | MAE  | $R^2$ | RMSE                | MAI  |
|              | FCFP0            | 0.12  | 1.68                | 1.32 | 0.10  | 1.69                | 1.34 |
|              | FCFP2            | 0.62  | 1.11                | 0.85 | 0.62  | 1.12                | 0.84 |
|              | FCFP4            | 0.64  | 1.07                | 0.81 | 0.66  | 1.05                | 0.79 |
|              | FCFP6            | 0.64  | 1.10                | 0.84 | 0.62  | 1.08                | 0.82 |
|              | KR               | 0.64  | 1.08                | 0.83 | 0.67  | 1.01                | 0.76 |
|              | LSTAR            | 0.57  | 1.19                | 0.91 | 0.61  | 1.16                | 0.89 |
|              | MACCS            | 0.60  | 1.14                | 0.87 | 0.61  | 1.13                | 0.86 |
|              | PUBCHEM          | 0.63  | 1.09                | 0.83 | 0.65  | 1.06                | 0.80 |
|              | RAD2D            | 0.62  | 1.11                | 0.85 | 0.66  | 1.05                | 0.81 |
|              | 2PPH AR          | 0.02  | 1.73                | 1.39 | 0.03  | 1.73                | 1.39 |
|              | 3PPH AR          | 0.20  | 1.56                | 1.22 | 0.20  | 1.57                | 1.23 |
|              | AP2D             | 0.49  | 1.25                | 0.95 | 0.41  | 1.34                | 1.01 |
|              | ASP              | 0.52  | 1.21                | 0.92 | 0.52  | 1.20                | 0.90 |
|              | AT2D             | 0.52  | 1.21                | 0.92 | 0.53  | 1.16                | 0.88 |
|              | DFS              | 0.50  | 1.24                | 0.95 | 0.53  | 1.16                | 0.89 |
|              | ECFP0            | 0.44  | 1.31                | 1.00 | 0.47  | 1.26                | 0.96 |
|              | ECFP2            | 0.51  | 1.21                | 0.91 | 0.48  | 1.27                | 0.93 |
|              | ECFP4            | 0.49  | 1.24                | 0.94 | 0.56  | 1.15                | 0.86 |
| Mouse Liver  | ECFP6            | 0.48  | 1.24                | 0.94 | 0.53  | 1.13                | 0.95 |
| Microsomal   | ESTATE           | 0.46  | 1.24                | 1.00 | 0.33  | 1.30                | 0.99 |
| Clearance    | FCFP0            | 0.44  | $\frac{1.31}{1.73}$ |      | 0.43  | 1.70                | 1.36 |
|              |                  |       |                     | 1.38 |       |                     |      |
|              | FCFP2            | 0.48  | 1.25                | 0.94 | 0.54  | 1.20                | 0.93 |
|              | FCFP4            | 0.51  | 1.22                | 0.93 | 0.50  | 1.26                | 0.98 |
|              | FCFP6            | 0.50  | 1.25                | 0.96 | 0.56  | 1.13                | 0.85 |
|              | KR               | 0.50  | 1.23                | 0.93 | 0.48  | 1.28                | 0.94 |
|              | LSTAR            | 0.49  | 1.26                | 0.98 | 0.48  | 1.23                | 0.94 |
|              | MACCS            | 0.47  | 1.25                | 0.96 | 0.52  | 1.26                | 0.92 |
|              | PUBCHEM          | 0.50  | 1.22                | 0.91 | 0.61  | 1.12                | 0.85 |
|              | RAD2D            | 0.52  | 1.21                | 0.91 | 0.53  | 1.19                | 0.89 |
|              | 2PPHAR           | 0.10  | 1.09                | 0.89 | 0.09  | 1.09                | 0.89 |
|              | 3PPHAR           | 0.16  | 1.05                | 0.85 | 0.30  | 0.95                | 0.75 |
|              | AP2D             | 0.49  | 0.81                | 0.66 | 0.50  | 0.78                | 0.60 |
|              | ASP              | 0.53  | 0.78                | 0.63 | 0.56  | 0.77                | 0.61 |
|              | AT2D             | 0.49  | 0.82                | 0.67 | 0.50  | 0.79                | 0.63 |
|              | DFS              | 0.52  | 0.79                | 0.63 | 0.58  | 0.73                | 0.59 |
|              | ECFP0            | 0.47  | 0.83                | 0.66 | 0.56  | 0.76                | 0.62 |
|              | ECFP2            | 0.51  | 0.79                | 0.64 | 0.53  | 0.79                | 0.63 |
|              | ECFP4            | 0.50  | 0.80                | 0.65 | 0.61  | 0.73                | 0.59 |
| Skin         | ECFP6            | 0.49  | 0.82                | 0.66 | 0.52  | 0.80                | 0.68 |
| Permeability | ESTATE           | 0.47  | 0.82                | 0.66 | 0.45  | 0.84                | 0.66 |
| •            | FCFP0            | 0.36  | 0.92                | 0.74 | 0.35  | 0.89                | 0.71 |
|              | FCFP2            | 0.52  | 0.78                | 0.62 | 0.57  | 0.77                | 0.62 |
|              | FCFP4            | 0.52  | 0.79                | 0.63 | 0.53  | 0.77                | 0.60 |
|              | FCFP6            | 0.55  | 0.77                | 0.62 | 0.50  | 0.81                | 0.64 |
|              | KR               | 0.55  | 0.76                | 0.61 | 0.51  | 0.80                | 0.63 |
|              | LSTAR            | 0.48  | 0.82                | 0.66 | 0.47  | 0.84                | 0.68 |
|              | MACCS            | 0.58  | 0.73                | 0.58 | 0.62  | 0.71                | 0.57 |
|              | PUBCHEM          | 0.60  | 0.73                | 0.57 | 0.50  | 0.77                | 0.63 |
|              | RAD2D            | 0.53  | 0.78                | 0.63 | 0.58  | 0.75                | 0.60 |
|              | 2PPH AR          | 0.13  | 3.18                | 2.46 | 0.14  | 3.14                | 2.43 |
|              | 3PPH AR          | 0.15  | 3.14                | 2.45 | 0.15  | 3.13                | 2.43 |
|              | AP2D             | 0.30  | 2.87                | 2.13 | 0.28  | 2.89                | 2.13 |
|              | ASP              | 0.40  | 2.64                | 1.88 | 0.42  | 2.60                | 1.85 |
|              | AT2D             | 0.30  | 2.85                | 2.06 | 0.42  | 2.92                | 2.10 |
|              | DFS              | 0.38  | 2.68                | 1.87 | 0.40  | 2.68                | 1.86 |
|              | ECFP0            | 0.59  | $\frac{2.08}{2.19}$ | 1.52 | 0.40  | $\frac{2.08}{2.17}$ | 1.49 |
|              | ECFP2            | 0.33  | 1.85                | 1.15 | 0.74  | 1.78                | 1.11 |
|              |                  |       |                     |      |       |                     |      |
|              | ECFP4            | 0.68  | 1.97                | 1.25 | 0.72  | 1.81                | 1.16 |
| $pK_a$       | ECFP6            | 0.67  | 2.01                | 1.32 | 0.66  | 2.04                | 1.30 |
|              | ESTATE           | 0.48  | 2.46                | 1.74 | 0.50  | 2.40                | 1.69 |
|              | FCFP0            | 0.39  | 2.66                | 1.94 | 0.38  | 2.72                | 1.96 |
|              | FCFP2            | 0.63  | 2.08                | 1.36 | 0.65  | 2.02                | 1.32 |
|              | FCFP4            | 0.61  | 2.13                | 1.38 | 0.63  | 2.07                | 1.32 |
|              | FCFP6            | 0.59  | 2.20                | 1.43 | 0.61  | 2.11                | 1.37 |
|              | KR               | 0.58  | 2.20                | 1.42 | 0.63  | 2.10                | 1.34 |
|              | LSTAR            | 0.33  | 2.80                | 1.99 | 0.35  | 2.78                | 1.96 |
|              | MACICIC          | 0.69  | 1.92                | 1.19 | 0.72  | 1.79                | 1.11 |
|              | MACCS<br>PUBCHEM | 0.58  | 2.20                | 1,10 | 0.60  | 1.10                | 1.11 |

Table S2 - Continued from previous page

|                    | Table S2 - C                                                                                                        |                                                                                              |                                                                                                                                     |                                                                                              |                                                                                      |                                                                                                                                     |                                                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Endpoint           | $\mathbf{FP}$                                                                                                       |                                                                                              | Calibratio                                                                                                                          |                                                                                              |                                                                                      | Valid at io                                                                                                                         |                                                                                      |
|                    |                                                                                                                     | $R^2$                                                                                        | RMSE                                                                                                                                | MAE                                                                                          | $R^2$                                                                                | RMSE                                                                                                                                | MAE                                                                                  |
|                    | RAD2D                                                                                                               | 0.34                                                                                         | 2.76                                                                                                                                | 2.00                                                                                         | 0.35                                                                                 | 2.74                                                                                                                                | 1.97                                                                                 |
|                    | 2PPH AR                                                                                                             | 0.29                                                                                         | 0.84                                                                                                                                | 0.69                                                                                         | 0.29                                                                                 | 0.82                                                                                                                                | 0.68                                                                                 |
|                    | 3PPH AR                                                                                                             | 0.36                                                                                         | 0.79                                                                                                                                | 0.62                                                                                         | 0.46                                                                                 | 0.73                                                                                                                                | 0.57                                                                                 |
|                    | AP2D                                                                                                                | 0.59                                                                                         | 0.63                                                                                                                                | 0.46                                                                                         | 0.63                                                                                 | 0.61                                                                                                                                | 0.42                                                                                 |
|                    | ASP                                                                                                                 | 0.59                                                                                         | 0.63                                                                                                                                | 0.45                                                                                         | 0.66                                                                                 | 0.59                                                                                                                                | 0.42                                                                                 |
|                    | AT2D                                                                                                                | 0.57                                                                                         | 0.65                                                                                                                                | 0.48                                                                                         | 0.66                                                                                 | 0.57                                                                                                                                | 0.41                                                                                 |
|                    | DFS                                                                                                                 | 0.59                                                                                         | 0.62                                                                                                                                | 0.45                                                                                         | 0.67                                                                                 | 0.60                                                                                                                                | 0.42                                                                                 |
|                    | ECFP0                                                                                                               | 0.61                                                                                         | 0.61                                                                                                                                | 0.45                                                                                         | 0.61                                                                                 | 0.62                                                                                                                                | 0.44                                                                                 |
|                    | ECFP2                                                                                                               | 0.63                                                                                         | 0.61                                                                                                                                | 0.43                                                                                         | 0.59                                                                                 | 0.62                                                                                                                                | 0.45                                                                                 |
| MDCIZ II II        | ECFP4                                                                                                               | 0.62                                                                                         | 0.61                                                                                                                                | 0.44                                                                                         | 0.68                                                                                 | 0.56                                                                                                                                | 0.39                                                                                 |
| MDCK cell line     | ECFP6                                                                                                               | 0.60                                                                                         | 0.62                                                                                                                                | 0.45                                                                                         | 0.68                                                                                 | 0.56                                                                                                                                | 0.39                                                                                 |
| permeability       | ESTATE                                                                                                              | 0.57                                                                                         | 0.65                                                                                                                                | 0.47                                                                                         | 0.58                                                                                 | 0.63                                                                                                                                | 0.46                                                                                 |
|                    | FCFP0                                                                                                               | 0.35                                                                                         | 0.80                                                                                                                                | 0.63                                                                                         | 0.41                                                                                 | 0.74                                                                                                                                | 0.61                                                                                 |
|                    | FCFP2<br>FCFP4                                                                                                      | $0.59 \\ 0.59$                                                                               | $0.63 \\ 0.63$                                                                                                                      | $0.45 \\ 0.46$                                                                               | $0.66 \\ 0.66$                                                                       | $0.60 \\ 0.56$                                                                                                                      | $0.43 \\ 0.39$                                                                       |
|                    | FCFP6                                                                                                               | 0.62                                                                                         | 0.63                                                                                                                                | 0.44                                                                                         | 0.65                                                                                 | 0.59                                                                                                                                | 0.39                                                                                 |
|                    | KR                                                                                                                  | 0.58                                                                                         | 0.63                                                                                                                                | 0.44                                                                                         | 0.70                                                                                 | 0.56                                                                                                                                | 0.42                                                                                 |
|                    | LSTAR                                                                                                               | 0.60                                                                                         | 0.63                                                                                                                                | 0.47                                                                                         | 0.70                                                                                 | 0.61                                                                                                                                | 0.40                                                                                 |
|                    | MACCS                                                                                                               | 0.60                                                                                         | 0.62                                                                                                                                | 0.43                                                                                         | $0.61 \\ 0.62$                                                                       | 0.61                                                                                                                                | 0.43                                                                                 |
|                    | PUBCHEM                                                                                                             | 0.61                                                                                         | 0.62                                                                                                                                | 0.43                                                                                         | 0.62                                                                                 | 0.62                                                                                                                                | 0.43                                                                                 |
|                    | RAD2D                                                                                                               | 0.61                                                                                         | 0.62                                                                                                                                | 0.43                                                                                         | 0.58                                                                                 | 0.63                                                                                                                                | 0.43                                                                                 |
|                    | 2PPHAR                                                                                                              | 0.01                                                                                         | 0.59                                                                                                                                | 0.48                                                                                         | 0.13                                                                                 | 0.57                                                                                                                                | 0.44                                                                                 |
|                    | 3PPHAR                                                                                                              | $0.13 \\ 0.14$                                                                               | 0.59                                                                                                                                | 0.48                                                                                         | 0.13                                                                                 | 0.56                                                                                                                                | 0.46                                                                                 |
|                    | AP2D                                                                                                                | 0.14                                                                                         | 0.58                                                                                                                                | 0.47                                                                                         | 0.14                                                                                 | 0.55                                                                                                                                | 0.44                                                                                 |
|                    | ASP                                                                                                                 | 0.20                                                                                         | 0.56                                                                                                                                | 0.46                                                                                         | 0.19                                                                                 | 0.57                                                                                                                                | 0.47                                                                                 |
|                    | AT2D                                                                                                                | 0.23                                                                                         | 0.55                                                                                                                                | 0.45                                                                                         | 0.17                                                                                 | 0.56                                                                                                                                | 0.45                                                                                 |
|                    | DFS                                                                                                                 | 0.20                                                                                         | 0.57                                                                                                                                | 0.46                                                                                         | 0.20                                                                                 | 0.57                                                                                                                                | 0.46                                                                                 |
|                    | ECFP0                                                                                                               | 0.14                                                                                         | 0.57                                                                                                                                | 0.45                                                                                         | 0.19                                                                                 | 0.60                                                                                                                                | 0.47                                                                                 |
|                    | ECFP2                                                                                                               | 0.25                                                                                         | 0.54                                                                                                                                | 0.42                                                                                         | 0.23                                                                                 | 0.55                                                                                                                                | 0.42                                                                                 |
|                    | ECFP4                                                                                                               | 0.22                                                                                         | 0.55                                                                                                                                | 0.43                                                                                         | 0.21                                                                                 | 0.57                                                                                                                                | 0.43                                                                                 |
| Human Renal        | ECFP6                                                                                                               | 0.19                                                                                         | 0.57                                                                                                                                | 0.45                                                                                         | 0.23                                                                                 | 0.55                                                                                                                                | 0.44                                                                                 |
| Clearance $(CL_r)$ | ESTATE                                                                                                              | 0.15                                                                                         | 0.57                                                                                                                                | 0.45                                                                                         | 0.14                                                                                 | 0.58                                                                                                                                | 0.46                                                                                 |
| ,                  | FCFP0                                                                                                               | 0.11                                                                                         | 0.60                                                                                                                                | 0.49                                                                                         | 0.12                                                                                 | 0.59                                                                                                                                | 0.48                                                                                 |
|                    | FCFP2                                                                                                               | 0.23                                                                                         | 0.54                                                                                                                                | 0.42                                                                                         | 0.24                                                                                 | 0.55                                                                                                                                | 0.43                                                                                 |
|                    | FCFP4                                                                                                               | 0.24                                                                                         | 0.55                                                                                                                                | 0.43                                                                                         | 0.22                                                                                 | 0.54                                                                                                                                | 0.42                                                                                 |
|                    | FCFP6                                                                                                               | 0.21                                                                                         | 0.56                                                                                                                                | 0.44                                                                                         | 0.19                                                                                 | 0.56                                                                                                                                | 0.44                                                                                 |
|                    | KR                                                                                                                  | 0.22                                                                                         | 0.56                                                                                                                                | 0.43                                                                                         | 0.20                                                                                 | 0.53                                                                                                                                | 0.42                                                                                 |
|                    | LSTAR                                                                                                               | 0.15                                                                                         | 0.58                                                                                                                                | 0.47                                                                                         | 0.14                                                                                 | 0.60                                                                                                                                | 0.47                                                                                 |
|                    | MACCS                                                                                                               | 0.25                                                                                         | 0.54                                                                                                                                | 0.43                                                                                         | 0.27                                                                                 | 0.53                                                                                                                                | 0.42                                                                                 |
|                    | PUBCHEM                                                                                                             | 0.23                                                                                         | 0.55                                                                                                                                | 0.43                                                                                         | 0.25                                                                                 | 0.55                                                                                                                                | 0.43                                                                                 |
|                    | RAD2D                                                                                                               | 0.23                                                                                         | 0.54                                                                                                                                | 0.42                                                                                         | 0.18                                                                                 | 0.60                                                                                                                                | 0.45                                                                                 |
|                    | 2PPH AR                                                                                                             | 0.17                                                                                         | 0.75                                                                                                                                | 0.57                                                                                         | 0.17                                                                                 | 0.75                                                                                                                                | 0.56                                                                                 |
|                    | 3PPH AR                                                                                                             | 0.45                                                                                         | 0.61                                                                                                                                | 0.47                                                                                         | 0.49                                                                                 | 0.58                                                                                                                                | 0.43                                                                                 |
|                    | AP2D                                                                                                                | 0.51                                                                                         | 0.58                                                                                                                                | 0.45                                                                                         | 0.47                                                                                 | 0.58                                                                                                                                | 0.45                                                                                 |
|                    |                                                                                                                     |                                                                                              |                                                                                                                                     |                                                                                              | 0.68                                                                                 | 0.44                                                                                                                                | 0.34                                                                                 |
|                    | ASP                                                                                                                 | 0.68                                                                                         | 0.47                                                                                                                                | 0.35                                                                                         |                                                                                      |                                                                                                                                     |                                                                                      |
|                    | AT2D                                                                                                                | 0.67                                                                                         | 0.48                                                                                                                                | 0.36                                                                                         | 0.68                                                                                 | 0.46                                                                                                                                | 0.36                                                                                 |
|                    | $_{ m DFS}^{ m AT2D}$                                                                                               | $0.67 \\ 0.68$                                                                               | $0.48 \\ 0.47$                                                                                                                      | $0.36 \\ 0.35$                                                                               | $0.68 \\ 0.67$                                                                       | $0.46 \\ 0.47$                                                                                                                      | $0.36 \\ 0.35$                                                                       |
|                    | $\begin{array}{c} \rm AT2D \\ \rm DFS \\ \rm ECFP0 \end{array}$                                                     | $0.67 \\ 0.68 \\ 0.54$                                                                       | 0.48<br>0.47<br>0.56                                                                                                                | $0.36 \\ 0.35 \\ 0.42$                                                                       | $0.68 \\ 0.67 \\ 0.57$                                                               | 0.46<br>0.47<br>0.57                                                                                                                | $0.36 \\ 0.35 \\ 0.42$                                                               |
|                    | $\begin{array}{c} AT2D \\ DFS \\ ECFP0 \\ ECFP2 \end{array}$                                                        | $0.67 \\ 0.68 \\ 0.54 \\ 0.64$                                                               | 0.48<br>0.47<br>0.56<br>0.49                                                                                                        | $0.36 \\ 0.35 \\ 0.42 \\ 0.37$                                                               | 0.68<br>0.67<br>0.57<br>0.65                                                         | $0.46 \\ 0.47 \\ 0.57 \\ 0.52$                                                                                                      | $0.36 \\ 0.35 \\ 0.42 \\ 0.38$                                                       |
| Hemolytic          | AT2D<br>DFS<br>ECFP0<br>ECFP2<br>ECFP4                                                                              | 0.67<br>0.68<br>0.54<br>0.64<br>0.65                                                         | 0.48 $0.47$ $0.56$ $0.49$ $0.48$                                                                                                    | $0.36 \\ 0.35 \\ 0.42 \\ 0.37 \\ 0.36$                                                       | 0.68<br>0.67<br>0.57<br>0.65<br>0.68                                                 | 0.46 $0.47$ $0.57$ $0.52$ $0.48$                                                                                                    | $0.36 \\ 0.35 \\ 0.42 \\ 0.38 \\ 0.35$                                               |
| Hemolytic toxicity | $\begin{array}{c} AT2D \\ DFS \\ ECFP0 \\ ECFP2 \\ ECFP4 \\ ECFP6 \end{array}$                                      | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65                                                 | 0.48 $0.47$ $0.56$ $0.49$ $0.48$ $0.49$                                                                                             | $0.36 \\ 0.35 \\ 0.42 \\ 0.37 \\ 0.36 \\ 0.36$                                               | 0.68 $0.67$ $0.57$ $0.65$ $0.68$ $0.65$                                              | 0.46 $0.47$ $0.57$ $0.52$ $0.48$ $0.50$                                                                                             | $0.36 \\ 0.35 \\ 0.42 \\ 0.38 \\ 0.35 \\ 0.37$                                       |
|                    | $\begin{array}{c} AT2D \\ DFS \\ ECFP0 \\ ECFP2 \\ ECFP4 \\ ECFP6 \\ ESTATE \end{array}$                            | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65<br>0.48                                         | 0.48<br>0.47<br>0.56<br>0.49<br>0.48<br>0.49                                                                                        | 0.36 $0.35$ $0.42$ $0.37$ $0.36$ $0.36$                                                      | 0.68<br>0.67<br>0.57<br>0.65<br>0.68<br>0.65<br>0.56                                 | $\begin{array}{c} 0.46 \\ 0.47 \\ 0.57 \\ 0.52 \\ 0.48 \\ 0.50 \\ 0.54 \end{array}$                                                 | 0.36 $0.35$ $0.42$ $0.38$ $0.35$ $0.42$                                              |
| toxicity           | $\begin{array}{c} AT2D \\ DFS \\ ECFP0 \\ ECFP2 \\ ECFP4 \\ ECFP6 \\ ESTATE \\ FCFP0 \end{array}$                   | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65<br>0.48<br>0.26                                 | 0.48 $0.47$ $0.56$ $0.49$ $0.48$ $0.49$ $0.60$ $0.71$                                                                               | 0.36 $0.35$ $0.42$ $0.37$ $0.36$ $0.36$ $0.45$ $0.54$                                        | 0.68<br>0.67<br>0.57<br>0.65<br>0.68<br>0.65<br>0.56<br>0.28                         | 0.46 $0.47$ $0.57$ $0.52$ $0.48$ $0.50$ $0.54$                                                                                      | 0.36<br>0.35<br>0.42<br>0.38<br>0.35<br>0.37<br>0.42<br>0.53                         |
| toxicity           | $\begin{array}{c} AT2D \\ DFS \\ ECFP0 \\ ECFP2 \\ ECFP4 \\ ECFP6 \\ ESTATE \\ FCFP0 \\ FCFP2 \end{array}$          | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65<br>0.48<br>0.26<br>0.61                         | 0.48 $0.47$ $0.56$ $0.49$ $0.48$ $0.49$ $0.60$ $0.71$ $0.51$                                                                        | 0.36<br>0.35<br>0.42<br>0.37<br>0.36<br>0.36<br>0.45<br>0.54<br>0.39                         | 0.68<br>0.67<br>0.57<br>0.65<br>0.68<br>0.65<br>0.56<br>0.28<br>0.66                 | 0.46 $0.47$ $0.57$ $0.52$ $0.48$ $0.50$ $0.54$ $0.70$ $0.48$                                                                        | 0.36<br>0.35<br>0.42<br>0.38<br>0.35<br>0.37<br>0.42<br>0.53<br>0.37                 |
| toxicity           | $\begin{array}{c} AT2D \\ DFS \\ ECFP0 \\ ECFP2 \\ ECFP4 \\ ECFP6 \\ ESTATE \\ FCFP0 \\ FCFP2 \\ FCFP4 \end{array}$ | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65<br>0.48<br>0.26<br>0.61<br>0.64                 | 0.48 $0.47$ $0.56$ $0.49$ $0.48$ $0.49$ $0.60$ $0.71$ $0.51$                                                                        | 0.36<br>0.35<br>0.42<br>0.37<br>0.36<br>0.36<br>0.45<br>0.54<br>0.39                         | 0.68<br>0.67<br>0.57<br>0.65<br>0.68<br>0.65<br>0.56<br>0.28<br>0.66                 | $\begin{array}{c} 0.46 \\ 0.47 \\ 0.57 \\ 0.52 \\ 0.48 \\ 0.50 \\ 0.54 \\ 0.70 \\ 0.48 \\ 0.46 \end{array}$                         | 0.36<br>0.35<br>0.42<br>0.38<br>0.35<br>0.37<br>0.42<br>0.53<br>0.37                 |
| toxicity           | AT2D DFS ECFP0 ECFP2 ECFP4 ECFP6 ESTATE FCFP0 FCFP2 FCFP4 FCFP6                                                     | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65<br>0.48<br>0.26<br>0.61<br>0.64                 | $\begin{array}{c} 0.48 \\ 0.47 \\ 0.56 \\ 0.49 \\ 0.48 \\ 0.49 \\ 0.60 \\ 0.71 \\ 0.51 \\ 0.50 \\ 0.47 \end{array}$                 | 0.36<br>0.35<br>0.42<br>0.37<br>0.36<br>0.36<br>0.45<br>0.54<br>0.39<br>0.37                 | 0.68<br>0.67<br>0.57<br>0.65<br>0.68<br>0.65<br>0.56<br>0.28<br>0.66<br>0.69         | $\begin{array}{c} 0.46 \\ 0.47 \\ 0.57 \\ 0.52 \\ 0.48 \\ 0.50 \\ 0.54 \\ 0.70 \\ 0.48 \\ 0.46 \\ 0.50 \\ \end{array}$              | 0.36<br>0.35<br>0.42<br>0.38<br>0.35<br>0.37<br>0.42<br>0.53<br>0.37<br>0.34         |
| toxicity           | AT2D DFS ECFP0 ECFP2 ECFP4 ECFP6 ESTATE FCFP0 FCFP2 FCFP4 FCFP6 KR                                                  | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65<br>0.48<br>0.26<br>0.61<br>0.64<br>0.67         | $\begin{array}{c} 0.48 \\ 0.47 \\ 0.56 \\ 0.49 \\ 0.48 \\ 0.49 \\ 0.60 \\ 0.71 \\ 0.51 \\ 0.50 \\ 0.47 \\ 0.48 \end{array}$         | 0.36<br>0.35<br>0.42<br>0.37<br>0.36<br>0.36<br>0.45<br>0.54<br>0.39<br>0.37<br>0.36<br>0.37 | 0.68<br>0.67<br>0.57<br>0.65<br>0.68<br>0.65<br>0.56<br>0.69<br>0.63<br>0.65         | $\begin{array}{c} 0.46 \\ 0.47 \\ 0.57 \\ 0.52 \\ 0.48 \\ 0.50 \\ 0.54 \\ 0.70 \\ 0.48 \\ 0.46 \\ 0.50 \\ 0.50 \\ \end{array}$      | 0.36<br>0.35<br>0.42<br>0.38<br>0.35<br>0.37<br>0.42<br>0.53<br>0.37<br>0.34<br>0.37 |
| toxicity           | AT2D DFS ECFP0 ECFP2 ECFP4 ECFP6 ESTATE FCFP0 FCFP2 FCFP4 FCFP6 KR LSTAR                                            | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65<br>0.48<br>0.26<br>0.61<br>0.64<br>0.67<br>0.65 | $\begin{array}{c} 0.48 \\ 0.47 \\ 0.56 \\ 0.49 \\ 0.48 \\ 0.49 \\ 0.60 \\ 0.71 \\ 0.51 \\ 0.50 \\ 0.47 \\ 0.48 \\ 0.49 \end{array}$ | 0.36<br>0.35<br>0.42<br>0.37<br>0.36<br>0.36<br>0.45<br>0.54<br>0.39<br>0.37<br>0.36         | 0.68<br>0.67<br>0.57<br>0.65<br>0.68<br>0.65<br>0.28<br>0.66<br>0.69<br>0.63<br>0.65 | $\begin{array}{c} 0.46 \\ 0.47 \\ 0.57 \\ 0.52 \\ 0.48 \\ 0.50 \\ 0.54 \\ 0.70 \\ 0.48 \\ 0.46 \\ 0.50 \\ 0.50 \\ 0.47 \end{array}$ | 0.36<br>0.35<br>0.42<br>0.38<br>0.35<br>0.37<br>0.42<br>0.53<br>0.37<br>0.34<br>0.37 |
| toxicity           | AT2D DFS ECFP0 ECFP2 ECFP4 ECFP6 ESTATE FCFP0 FCFP2 FCFP4 FCFP6 KR                                                  | 0.67<br>0.68<br>0.54<br>0.64<br>0.65<br>0.65<br>0.48<br>0.26<br>0.61<br>0.64<br>0.67         | $\begin{array}{c} 0.48 \\ 0.47 \\ 0.56 \\ 0.49 \\ 0.48 \\ 0.49 \\ 0.60 \\ 0.71 \\ 0.51 \\ 0.50 \\ 0.47 \\ 0.48 \end{array}$         | 0.36<br>0.35<br>0.42<br>0.37<br>0.36<br>0.36<br>0.45<br>0.54<br>0.39<br>0.37<br>0.36<br>0.37 | 0.68<br>0.67<br>0.57<br>0.65<br>0.68<br>0.65<br>0.56<br>0.69<br>0.63<br>0.65         | $\begin{array}{c} 0.46 \\ 0.47 \\ 0.57 \\ 0.52 \\ 0.48 \\ 0.50 \\ 0.54 \\ 0.70 \\ 0.48 \\ 0.46 \\ 0.50 \\ 0.50 \\ \end{array}$      | 0.36<br>0.35<br>0.42<br>0.38<br>0.35<br>0.37<br>0.42<br>0.53<br>0.37<br>0.34<br>0.37 |

## References

- H. Baba, Y. Ueno, M. Hashida, and F. Yamashita. Quantitative prediction of ionization effect on human skin permeability. *Int. J. Pharm.*, 522(1-2):222–233, 2017. doi: 10.1016/j.ijpharm.2017.03.009.
- J. P. Bercu, S. M. Morton, J. T. Deahl, V. K. Gombar, C. M. Callis, and R. B. van Lier. In silico approaches to predicting cancer potency for risk assessment of genotoxic impurities in drug substances. *Regul. Toxicol. Pharmacol.*, 57(2):300–306, 2010. doi: https://doi.org/10.1016/j.yrtph. 2010.03.010.
- J. V. B. Borba, R. C. Braga, V. M. Alves, E. N. Muratov, N. Kleinstreuer, A. Tropsha, and C. H. Andrade. Pred-skin: A web portal for accurate prediction of human skin sensitizers. *Chemical Research in Toxicology*, 34(2):258–267, 2020. doi: 10.1021/acs.chemrestox.0c00186.
- F. Broccatelli, E. Carosati, A. Neri, M. Frosini, L. Goracci, T. I. Oprea, and G. Cruciani. A novel approach for predicting p-glycoprotein (ABCB1) inhibition using molecular interaction fields. *Journal of Medicinal Chemistry*, 54(6):1740–1751, Feb. 2011. doi: 10.1021/jm101421d. URL https://doi.org/10.1021/jm101421d.
- C. Cai, P. Guo, Y. Zhou, J. Zhou, Q. Wang, F. Zhang, J. Fang, and F. Cheng. Deep learning-based prediction of drug-induced cardiotoxicity. *J Chem. Inf. Model.*, 59(3):1073–1084, 2019. doi: 10.1021/acs.jcim.8b00769.
- J. Chen, H. Yang, L. Zhu, Z. Wu, W. Li, Y. Tang, and G. Liu. In silico prediction of human renal clearance of compounds using quantitative structure-pharmacokinetic relationship models. *Chemical Research in Toxicology*, 33(2):640–650, 2020. doi: 10.1021/acs.chemrestox.9b00447.
- L. Chen, Y. Li, H. Yu, L. Zhang, and T. Hou. Computational models for predicting substrates or inhibitors of p-glycoprotein. *Drug Discovery Today*, 17(7-8):343–351, 2012. doi: 10.1016/j.drudis. 2011.11.003.
- K. Ciura, S. Ulenberg, H. Kapica, P. Kawczak, M. Belka, and T. Bączek. Drug affinity to human serum albumin prediction by retention of cetyltrimethylammonium bromide pseudostationary phase in micellar electrokinetic chromatography and chemically advanced template search descriptors. J. Pharm. Biomed., 188:113423, 2020. doi: 10.1016/j.jpba.2020.113423.
- X. Cui, J. Liu, J. Zhang, Q. Wu, and X. Li. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts. *J. Appl. Toxicol.*, 39(8):1224–1232, 2019. doi: 10.1002/jat.3808.
- S. Dik, J. Ezendam, A. R. Cunningham, C. A. Carrasquer, H. van Loveren, and E. Rorije. Evaluation of In SilicoModels for the identification of respiratory sensitizers. *Toxicological Sciences*, 142(2): 385–394, 2014. doi: 10.1093/toxsci/kfu188.

- S. Dik, J. L. Pennings, H. van Loveren, and J. Ezendam. Development of an in vitro test to identify respiratory sensitizers in bronchial epithelial cells using gene expression profiling. *Toxicology in Vitro*, 30(1):274–280, 2015. doi: 10.1016/j.tiv.2015.10.010.
- T. Esaki, R. Watanabe, H. Kawashima, R. Ohashi, Y. Natsume-Kitatani, C. Nagao, and K. Mizuguchi. Data curation can improve the prediction accuracy of metabolic intrinsic clearance. *Mol. Inf.*, 38(1-2):1800086, 2018. doi: 10.1002/minf.201800086.
- T. Esaki, R. Ohashi, R. Watanabe, Y. Natsume-Kitatani, H. Kawashima, C. Nagao, and K. Mizuguchi. Computational model to predict the fraction of unbound drug in the brain. *J Chem. Inf. Model.*, 59(7):3251–3261, 2019. doi: 10.1021/acs.jcim.9b00180.
- C. Esposito, S. Wang, U. E. W. Lange, F. Oellien, and S. Riniker. Combining machine learning and molecular dynamics to predict p-glycoprotein substrates. *Journal of Chemical Information and Modeling*, 60(10):4730-4749, Aug. 2020. doi: 10.1021/acs.jcim.0c00525. URL https://doi.org/10.1021/acs.jcim.0c00525.
- G. Falcón-Cano, C. Molina, and M. Á. Cabrera-Pérez. ADME prediction with KNIME: Development and validation of a publicly available workflow for the prediction of human oral bioavailability. *Journal of Chemical Information and Modeling*, 60(6):2660-2667, 2020. doi: 10.1021/acs.jcim. 0c00019. URL https://doi.org/10.1021/acs.jcim.0c00019.
- L. Fu, L. Liu, Z.-J. Yang, P. Li, J.-J. Ding, Y.-H. Yun, A.-P. Lu, T.-J. Hou, and D.-S. Cao. Systematic modeling of log d7.4 based on ensemble mach. learn., group contribution, and matched molecular pair analysis. J Chem. Inf. Model., 60(1):63–76, 2019. doi: 10.1021/acs.jcim.9b00718.
- L. Fusani, M. Brown, H. Chen, E. Ahlberg, and T. Noeske. Predicting the risk of phospholipidosis with in silico models and an image-based in vitro screen. *Mol. Pharm.*, 14(12):4346–4352, 2017. doi: 10.1021/acs.molpharmaceut.7b00388.
- D. Gadaleta, K. Vuković, C. Toma, G. J. Lavado, A. L. Karmaus, K. Mansouri, N. C. Kleinstreuer, E. Benfenati, and A. Roncaglioni. SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. *J Cheminf.*, 11(1), 2019. doi: 10.1186/s13321-019-0383-2.
- C. Giaginis, A. Zira, S. Theocharis, and A. Tsantili-Kakoulidou. Application of quantitative structure activity relationships for modeling drug and chemical transport across the human placenta barrier: a multivariate data analysis approach. *J. Appl. Toxicol.*, 29(8):724–733, 2009. doi: 10.1002/jat. 1466.
- J. Hemmerich, F. Troger, B. Füzi, and G. F.Ecker. Using mach. learn. methods and structural alerts for prediction of mitochondrial toxicity. *Mol. Inf.*, 39(5):2000005, 2020. doi: 10.1002/minf. 202000005.
- Y.-W. Hsiao, U. Fagerholm, and U. Norinder. In SilicoCategorization of VivoIntrinsic clearance using mach. learn. *Mol. Pharm.*, 10(4):1318–1321, 2013. doi: 10.1021/mp300484r.

- X. Hu and A. Yan. In silico models to discriminate compounds inducing and noninducing toxic myopathy. *Mol. Inf.*, 31(1):27–39, 2011. doi: 10.1002/minf.201100067.
- S. Jain, U. Norinder, S. E. Escher, and B. Zdrazil. Combining in vivo data with in silico predictions for modeling hepatic steatosis by using stratified bagging and conformal prediction. *Chem. Res. Toxicol.*, 34(2), 2020. doi: 10.1021/acs.chemrestox.0c00511.
- D. Jiang, T. Lei, Z. Wang, C. Shen, D. Cao, and T. Hou. ADMET evaluation in drug discovery. 20. prediction of breast cancer resistance protein inhibition through mach. learn. *J Cheminf.*, 12(1), 2020. doi: 10.1186/s13321-020-00421-y.
- Y. Kido, P. Matsson, and K. M. Giacomini. Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. J. Med. Chem., 54(13): 4548–4558, 2011. doi: 10.1021/jm2001629.
- N. C. Kleinstreuer, A. L. Karmaus, K. Mansouri, D. G. Allen, J. M. Fitzpatrick, and G. Patlewicz. Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation. *Computational Toxicology*, 8:21–24, 2018. doi: 10.1016/j.comtox.2018.08.002.
- E. Kotsampasakou and G. F. Ecker. Predicting drug-induced cholestasis with the help of hepatic transporters—an in silico modeling approach. *J Chem. Inf. Model.*, 57(3):608–615, 2017. doi: 10.1021/acs.jcim.6b00518.
- O. W. Lee, S. Austin, M. Gamma, D. M. Cheff, T. D. Lee, K. M. Wilson, J. Johnson, J. Travers, J. C. Braisted, R. Guha, C. Klumpp-Thomas, M. Shen, and M. D. Hall. Cytotoxic profiling of annotated and diverse chemical libraries using quantitative high-throughput screening. *SLAS DISCOVERY:* Advancing the Science of Drug Discovery, 25(1):9–20, 2019. doi: 10.1177/2472555219873068.
- T. Lei, H. Sun, Y. Kang, F. Zhu, H. Liu, W. Zhou, Z. Wang, D. Li, Y. Li, and T. Hou. ADMET evaluation in drug discovery. 18. reliable prediction of chemical-induced urinary tract toxicity by boosting mach. learn. approaches. *Mol. Pharm.*, 14(11):3935–3953, 2017. doi: 10.1021/acs. molpharmaceut.7b00631.
- M. Lindh, A. Karlén, and U. Norinder. Predicting the rate of skin penetration using an aggregated conformal prediction framework. *Mol. Pharm.*, 14(5):1571-1576, 2017. doi: 10.1021/acs. molpharmaceut.7b00007. URL https://doi.org/10.1021/acs.molpharmaceut.7b00007.
- R. Liu, P. Schyman, and A. Wallqvist. Critically assessing the predictive power of QSAR models for human liver microsomal stability. *J Chem. Inf. Model.*, 55(8):1566–1575, 2015. doi: 10.1021/acs. jcim.5b00255.
- F. Lombardo and Y. Jing. In silico prediction of volume of distribution in humans. extensive data set and the exploration of linear and nonlinear methods coupled with molecular interaction fields descriptors. *J Chem. Inf. Model.*, 56(10):2042–2052, 2016. doi: 10.1021/acs.jcim.6b00044.

- K. Mansouri, N. F. Cariello, A. Korotcov, V. Tkachenko, C. M. Grulke, C. S. Sprankle, D. Allen, W. M. Casey, N. C. Kleinstreuer, and A. J. Williams. Open-source QSAR models for pKa prediction using multiple mach. learn. approaches. *J Cheminf.*, 11(1), 2019. doi: 10.1186/s13321-019-0384-1.
- K. S. McLoughlin, C. G. Jeong, T. D. Sweitzer, A. J. Minnich, M. J. Tse, B. J. Bennion, J. E. Allen, S. Calad-Thomson, T. S. Rush, and J. M. Brase. Machine learning models to predict inhibition of the bile salt export pump. *J Chem. Inf. Model.*, 61(2):587–602, 2021. doi: 10.1021/acs.jcim. 0c00950.
- F. Montanari and G. F. Ecker. BCRP inhibition: from data collection to ligand-based modeling. *Molecular Informatics*, 33(5):322–331, 2014. doi: 10.1002/minf.201400012.
- A. M. Orogo, S. S. Choi, B. L. Minnier, and N. L. Kruhlak. Construction and consensus performance of (q)SAR models for predicting phospholipidosis using a dataset of 743 compounds. *Molecular Informatics*, 31(10):725–739, 2012. doi: 10.1002/minf.201200048.
- A. L. Perryman, D. Inoyama, J. S. Patel, S. Ekins, and J. S. Freundlich. Pruned machine learning models to predict aqueous solubility. *ACS Omega*, 5(27):16562-16567, July 2020. doi: 10.1021/acsomega.0c01251. URL https://doi.org/10.1021/acsomega.0c01251.
- J. Rautio, J. E. Humphreys, L. O. Webster, A. Balakrishnan, J. P. Keogh, J. R. Kunta, C. J. Serabjit-Singh, and J. W. Polli. IN VITRO p-GLYCOPROTEIN INHIBITION ASSAYS FOR ASSESS-MENT OF CLINICAL DRUG INTERACTION POTENTIAL OF NEW DRUG CANDIDATES: A RECOMMENDATION FOR PROBE SUBSTRATES. *Drug Metabolism and Disposition*, 34(5): 786–792, 2006. doi: 10.1124/dmd.105.008615.
- F. Schmidt, J. Wenzel, N. Halland, S. Güssregen, L. Delafoy, and A. Czich. Computational investigation of drug phototoxicity: Photosafety assessment, photo-toxophore identification, and mach. learn. *Chem. Res. Toxicol.*, 32(11):2338–2352, 2019. doi: 10.1021/acs.chemrestox.9b00338.
- A. Serra, S. Önlü, P. Coretto, and D. Greco. An integrated quantitative structure and mechanism of action-activity relationship model of human serum albumin binding. *J Cheminf.*, 11(1), 2019. doi: 10.1186/s13321-019-0359-2.
- B. Shaker, M.-S. Yu, J. S. Song, S. Ahn, J. Y. Ryu, K.-S. Oh, and D. Na. LightBBB: computational prediction model of blood-brain-barrier penetration based on LightGBM. *Bioinformatics*, 2020. doi: 10.1093/bioinformatics/btaa918. URL https://doi.org/10.1093/bioinformatics/btaa918.
- S. Simeon, D. Montanari, and M. P. Gleeson. Investigation of factors affecting the performance of in silico volume distribution QSAR models for human, rat, mouse, dog & monkey. *Mol. Inf.*, 38(10): 1900059, 2019. doi: 10.1002/minf.201900059. URL https://doi.org/10.1002/minf.201900059.
- V. B. Siramshetty, D.-T. Nguyen, N. J. Martinez, N. T. Southall, A. Simeonov, and A. V. Zakharov. Critical assessment of artificial intelligence methods for prediction of hERG channel inhibition in the "big data" era. *J Chem. Inf. Model.*, 60(12):6007–6019, 2020. doi: 10.1021/acs.jcim.0c00884.

- M. C. Sorkun, A. Khetan, and S. Er. AqSolDB, a curated reference set of aqueous solubility and 2d descriptors for a diverse set of compounds. *Sci. Data*, 6(1), 2019. doi: 10.1038/s41597-019-0151-1.
- H. Sun, Y. Wang, D. M. Cheff, M. D. Hall, and M. Shen. Predictive models for estimating cytotoxicity on the basis of chemical structures. *Bioorganic & Medicinal Chemistry*, 28(10):115422, 2020. doi: 10.1016/j.bmc.2020.115422.
- I. Sushko, S. Novotarskyi, R. Körner, A. K. Pandey, M. Rupp, W. Teetz, S. Brandmaier, A. Abdelaziz, V. V. Prokopenko, V. Y. Tanchuk, R. Todeschini, A. Varnek, G. Marcou, P. Ertl, V. Potemkin, M. Grishina, J. Gasteiger, C. Schwab, I. I. Baskin, V. A. Palyulin, E. V. Radchenko, W. J. Welsh, V. Kholodovych, D. Chekmarev, A. Cherkasov, J. A. de Sousa, Q.-Y. Zhang, A. Bender, F. Nigsch, L. Patiny, A. Williams, V. Tkachenko, and I. V. Tetko. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J Comp-Aided Mol. Des., 25(6):533-554, 2011. doi: 10.1007/s10822-011-9440-2.
- I. V. Tetko, S. Novotarskyi, I. Sushko, V. Ivanov, A. E. Petrenko, R. Dieden, F. Lebon, and B. Mathieu. Development of dimethyl sulfoxide solubility models using 163 000 molecules: Using a domain applicability metric to select more reliable predictions. *J Chem. Inf. Model.*, 53(8):1990–2000, 2013. doi: 10.1021/ci400213d.
- A. Türková, S. Jain, and B. Zdrazil. Integrative data mining, scaffold analysis, and sequential binary classification models for exploring ligand profiles of hepatic organic anion transporting polypeptides. *J Chem. Inf. Model.*, 59(5):1811–1825, 2018. doi: 10.1021/acs.jcim.8b00466.
- M. V. S. Varma, R. S. Obach, C. Rotter, H. R. Miller, G. Chang, S. J. Steyn, A. El-Kattan, and M. D. Troutman. Physicochemical space for optimum oral bioavailability: Contribution of human intestinal absorption and first-pass elimination. *Journal of Medicinal Chemistry*, 53(3):1098–1108, 2010. doi: 10.1021/jm901371v.
- H. Veith, N. Southall, R. Huang, T. James, D. Fayne, N. Artemenko, M. Shen, J. Inglese, C. P. Austin, D. G. Lloyd, and D. S. Auld. Comprehensive characterization of cytochrome p450 isozyme selectivity across chemical libraries. *Nat. Biotechnol.*, 27(11):1050–1055, 2009. doi: 10.1038/nbt. 1581.
- N.-N. Wang, C. Huang, J. Dong, Z.-J. Yao, M.-F. Zhu, Z.-K. Deng, B. Lv, A.-P. Lu, A. F. Chen, and D.-S. Cao. Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. *RSC Adv.*, 7(31):19007–19018, 2017. doi: 10.1039/c6ra28442f.
- P.-H. Wang, Y.-S. Tu, and Y. J. Tseng. PgpRules: a decision tree based prediction server for p-glycoprotein substrates and inhibitors. *Bioinformatics*, 35(20):4193-4195, 2019. doi: 10.1093/bioinformatics/btz213.
- R. Watanabe, T. Esaki, H. Kawashima, Y. Natsume-Kitatani, C. Nagao, R. Ohashi, and K. Mizuguchi. Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. *Mol. Pharm.*, 15(11):5302–5311, 2018. doi: 10.1021/acs.molpharmaceut.8b00785.

- J. Wenzel, H. Matter, and F. Schmidt. Predictive multitask deep neural network models for ADME-tox properties: Learning from large data sets. *Journal of Chemical Information and Modeling*, 59 (3):1253–1268, 2019. doi: 10.1021/acs.jcim.8b00785.
- M. B. Wittwer, A. A. Zur, N. Khuri, Y. Kido, A. Kosaka, X. Zhang, K. M. Morrissey, A. Sali, Y. Huang, and K. M. Giacomini. Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47a1) inhibitors through prescription drug profiling and computational modeling. J. Med. Chem., 56(3):781–795, 2013. doi: 10.1021/jm301302s.
- C. Xu, F. Cheng, L. Chen, Z. Du, W. Li, G. Liu, P. W. Lee, and Y. Tang. In silico prediction of chemical ames mutagenicity. *J Chem. Inf. Model.*, 52(11):2840–2847, 2012. doi: 10.1021/ci300400a.
- Y. Yuan, S. Chang, Z. Zhang, Z. Li, S. Li, P. Xie, W.-P. Yau, H. Lin, W. Cai, Y. Zhang, and X. Xiang. A novel strategy for prediction of human plasma protein binding using mach. learn. techniques. *Chemom. Intell. Lab. Syst.*, 199:103962, 2020. doi: 10.1016/j.chemolab.2020.103962.
- Y. E. Yun, R. Tornero-Velez, S. T. Purucker, D. T. Chang, and A. N. Edginton. Evaluation of quantitative structure property relationship algorithms for predicting plasma protein binding in humans. *Computational Toxicology*, 17:100142, Feb. 2021. doi: 10.1016/j.comtox.2020.100142. URL https://doi.org/10.1016/j.comtox.2020.100142.
- H. Zhang, P. Yu, T.-G. Zhang, Y.-L. Kang, X. Zhao, Y.-Y. Li, J.-H. He, and J. Zhang. In silico prediction of drug-induced myelotoxicity by using naïve bayes method. *Mol. Divers*, 19(4):945–953, 2015. doi: 10.1007/s11030-015-9613-3.
- H. Zhang, J.-X. Ma, C.-T. Liu, J.-X. Ren, and L. Ding. Development and evaluation of in silico prediction model for drug-induced respiratory toxicity by using naïve bayes classifier method. *Food Chem. Toxicol.*, 121:593–603, 2018. doi: 10.1016/j.fct.2018.09.051.
- H. Zhang, C.-T. Liu, J. Mao, C. Shen, R.-L. Xie, and B. Mu. Development of novel in silico prediction model for drug-induced ototoxicity by using naïve bayes classifier approach. *Toxicol. In Vitro*, 65: 104812, 2020. doi: 10.1016/j.tiv.2020.104812.
- L. Zhang, H. Ai, W. Chen, Z. Yin, H. Hu, J. Zhu, J. Zhao, Q. Zhao, and H. Liu. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. *Sci. Rep.*, 7(1), 2017. doi: 10.1038/s41598-017-02365-0.
- X. Zhang, P. Zhao, Z. Wang, X. Xu, G. Liu, Y. Tang, and W. Li. In silico prediction of CYP2c8 inhibition with machine-learning methods. *Chem. Res. Toxicol*, 34(8):1850–1859, 2021. doi: 10.1021/acs.chemrestox.1c00078.
- S. Zheng, W. Chang, W. Liu, G. Liang, Y. Xu, and F. Lin. Computational prediction of a new ADMET endpoint for small molecules: Anticommensal effect on human gut microbiota. *J Chem. Inf. Model.*, 59(3):1215–1220, 2018. doi: 10.1021/acs.jcim.8b00600.

- S. Zheng, Y. Wang, W. Liu, W. Chang, G. Liang, Y. Xu, and F. Lin. In silico prediction of hemolytic toxicity on the human erythrocytes for small molecules by machine-learning and genetic algorithm. J. Med. Chem., 63(12):6499-6512, 2019. doi: 10.1021/acs.jmedchem.9b00853.
- S. Zheng, J. Xiong, Y. Wang, G. Liang, Y. Xu, and F. Lin. Quantitative prediction of hemolytic toxicity for small molecules and their potential hemolytic fragments by mach. learn. and recursive fragmentation methods. *J Chem. Inf. Model.*, 60(6):3231–3245, 2020. doi: 10.1021/acs.jcim. 0c00102.