

## **Description**

#### **Features**

- $V_{DS}$ =650V,  $I_D$ =11A  $R_{DS(ON)}$  <0.42Ω @ VGS =10V
- Multi-Epi process SJ-MOSFET
- Smart design in high voltage technology
- Ultra lower on-resistance
- Fast switching
- Ultra low gate charge
- Low reverse recovery charge

#### **Application**

- Power factor correction ( PFC)
- Switched mode power supplies (SMPS)
- Uninterruptible power supply (UPS)

100% UIS 100% ΔVds







Schematic Diagram

## **Package Marking and Ordering Information**

| Device Marking | Device   | OUTLINE | Device Package | Reel Size | Reel<br>(PCS) | Per Carton<br>(PCS) |
|----------------|----------|---------|----------------|-----------|---------------|---------------------|
| VSM11N65-T2    | VSM11N65 | TAPING  | TO-252         | 13inch    | 2500          | 25000               |

## **Absolute Maximum Ratings** (T<sub>C</sub>=25 ℃ unless otherwise specified)

| Symbol           | Parameter                               |                        | Max.        | Units        |  |
|------------------|-----------------------------------------|------------------------|-------------|--------------|--|
| V <sub>DSS</sub> | Drain-Source Voltage                    |                        | 650         | V            |  |
| $V_{GSS}$        | Gate-Source Voltage                     |                        | ±30         | V            |  |
| I <sub>D</sub>   | Continuous Drain Current                | T <sub>C</sub> = 25°C  | 11          | Α            |  |
|                  |                                         | T <sub>C</sub> = 100°C | 7.2         |              |  |
| I <sub>DM</sub>  | Pulsed Drain Current note1              |                        | 44          | Α            |  |
| E <sub>AS</sub>  | Single Pulsed Avalanche Energy note2    |                        | 54.5        | mJ           |  |
| $P_D$            | Power Dissipation                       | T <sub>C</sub> = 25°C  | 118         | W            |  |
| Rejc             | Thermal Resistance, Junction to Case    |                        | 1.06        | °C/W         |  |
| $R_{\theta JA}$  | Thermal Resistance, Junction to Ambient |                        | 62          | °C/W         |  |
| $T_{J}, T_{STG}$ | Operating and Storage Temperature Range |                        | -55 to +150 | $^{\circ}$ C |  |



## **Electrical Characteristics** (T<sub>J</sub>=25°C unless otherwise specified)

| Off Characteristic   V(BRI)DSS   Drain-Source Breakdown Voltage   VGS=0V, Ib=250µA   650   -   -   V   VDS=650V, VGS=0V, Ib=250µA   For incomplete   VDS=650V, VGS=0V, Ib=250µA   For incomplete   VDS=650V, VGS=0V, Ib=250µA   VDS=650V, VGS=10V, Ib=250µA   VDS=650V, VGS=0V, Ib=250µA   VDS=650V, Ib=25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Symbol               | Parameter                           | Test Condition                                            | Min. | Тур. | Max. | Units |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|-----------------------------------------------------------|------|------|------|-------|
| Vos =650V, Vos = 0V,   Vos =650V, Vos = 10V,   Vos =650V,   Vos =650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Off Charac           | cteristic                           |                                                           |      |      |      |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>(BR)DSS</sub> | Drain-Source Breakdown Voltage      | V <sub>GS</sub> =0V, I <sub>D</sub> =250μA                | 650  | -    | -    | V     |
| V <sub>DS</sub> = 650V, V <sub>GS</sub> = 0V, T <sub>J</sub> = 125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 7 0 1 1/1 5 1 0 1                   |                                                           | -    | -    | 1    | μA    |
| $ \begin{array}{ c c c c c } \hline \textbf{On Characteristics} \\ \hline \textbf{V}_{GS(th)} & \textbf{Gate Threshold Voltage} & \textbf{V}_{DS} = \textbf{V}_{GS}, \ \textbf{I}_{D} = 250 \mu A & 2.0 & 3.0 & 4.0 & V \\ \hline \textbf{R}_{DS(on)} & \textbf{Static Drain-Source on-Resistance} & \textbf{V}_{GS} = 10 V, \ \textbf{I}_{D} = 5.5 A & - & 0.36 & 0.42 & \Omega \\ \hline \hline \textbf{Dynamic Characteristics} \\ \hline \textbf{C}_{iss} & \textbf{Input Capacitance} & \textbf{V}_{DS} = 50 V, \ \textbf{V}_{GS} = 0 V, \\ \hline \textbf{C}_{Oss} & \textbf{Output Capacitance} & \textbf{V}_{DS} = 50 V, \ \textbf{V}_{GS} = 0 V, \\ \hline \textbf{C}_{rss} & \textbf{Reverse Transfer Capacitance} & \textbf{V}_{DS} = 480 V, \ \textbf{I}_{D} = 11 A, \\ \hline \textbf{Q}_{gs} & \textbf{Gate-Source Charge} & \textbf{V}_{DS} = 480 V, \ \textbf{I}_{D} = 11 A, \\ \hline \textbf{Q}_{gd} & \textbf{Gate-Drain("Miller") Charge} & \textbf{V}_{DS} = 380 V, \ \textbf{I}_{D} = 5.5 A, \\ \hline \textbf{V}_{gs} = 10 V & \textbf{V}_{gs} = 10$ |                      | Zero Gate Voltage Drain Current     |                                                           | -    | -    | 100  | μA    |
| $\begin{array}{ c c c c }\hline V_{GS(Ih)} & Gate Threshold Voltage \\ R_{DS(on)} & Static Drain-Source on-Resistance \\ notes & V_{GS} = 10V, \ I_{D} = 5.5A \\ \hline \\ Dynamic Characteristics \\ \hline \\ C_{Iss} & Input Capacitance \\ C_{Oss} & Output Capacitance \\ C_{Trss} & Reverse Transfer Capacitance \\ Q_{g} & Total Gate Charge \\ Q_{gd} & Gate-Source Charge \\ Q_{gd} & Gate-Drain("Miller") Charge \\ \hline \\ t_{I} & Turn-on Delay Time \\ t_{I} & Turn-on Rise Time \\ t_{I} & Turn-off Fall Time \\ \hline \\ Is & Maximum Continuous Drain to Source Diode Forward Current \\ Is & Maximum Pulsed Drain to Source Diode Forward VGS = 0V, I_{S} = 11A \\ V_{GS} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>GSS</sub>     | Gate to Body Leakage Current        | $V_{DS} = 0V, V_{GS} = \pm 30V$                           | -    | -    | ±100 | nA    |
| Static Drain-Source on-Resistance   Nose = 10V, Ib = 5.5A   -     0.36     0.42     Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | On Charac            | teristics                           |                                                           |      |      |      |       |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>GS(th)</sub>  | Gate Threshold Voltage              | V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> =250μA | 2.0  | 3.0  | 4.0  | V     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R <sub>DS(on)</sub>  |                                     | V <sub>GS</sub> =10V, I <sub>D</sub> =5.5A                | -    | 0.36 | 0.42 | Ω     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dynamic C            | Characteristics                     |                                                           |      |      |      |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>iss</sub>     | Input Capacitance                   | ., 50,/.), 0,/                                            | -    | 710  | _    | pF    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coss                 | Output Capacitance                  | , - ,                                                     | -    | 41   | -    | pF    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>rss</sub>     | Reverse Transfer Capacitance        | 7 T = 1.UMHZ                                              | -    | 4.5  | -    | pF    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Qg                   | Total Gate Charge                   | ., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                   | -    | 39   | -    | nC    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Q_{gs}$             | Gate-Source Charge                  | · · · · · ·                                               | -    | 4    | -    | nC    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Q_{gd}$             | Gate-Drain("Miller") Charge         | VGS - 10 V                                                | ı    | 20   | -    | nC    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Switching            | Characteristics                     |                                                           |      |      |      |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t <sub>d(on)</sub>   | Turn-on Delay Time                  |                                                           | -    | 10   | -    | ns    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>r</sub>       | Turn-on Rise Time                   | $V_{DS} = 380V, I_{D} = 5.5A,$                            | -    | 7    | -    | ns    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t <sub>d(off)</sub>  | Turn-off Delay Time                 | $V_{GS}$ =10V, $R_{G}$ =6.8 $\Omega$                      | -    | 57   | -    | ns    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t <sub>f</sub>       | Turn-off Fall Time                  |                                                           | -    | 8    | _    | ns    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drain-Sou            | rce Diode Characteristics and Maxim | um Ratings                                                |      |      |      |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Is                   |                                     |                                                           |      | -    | 11   | А     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I <sub>SM</sub>      |                                     |                                                           |      | -    | 44   | Α     |
| trr Reverse Recovery Time V <sub>GS</sub> =0V, I <sub>S</sub> =5.5A, - 280 - ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | $V_{CS} = 0$ $V_{CS} = 11$ A        |                                                           | -    | -    | 1.2  | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trr                  |                                     | V <sub>GS</sub> =0V, I <sub>S</sub> =5.5A.                | -    | 280  | -    | ns    |
| QII   INCOCIOCINOCOVOIY OHAIQO   QII/QI   TOUZ/MO   -   Z.O   -   LIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Qrr                  | Reverse Recovery Charge             | di/dt=100A/µs                                             | -    | 2.8  | -    | μC    |

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition:  $T_J$  = 25°C,  $V_{DD}$  = 50V,  $V_G$ =10V, L=10mH,  $I_{AS}$  =3.3A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%



# **Typical Performance Characteristics**



Figure1:Gate Charge Test Circuit & Waveform



Figure 2: Resistive Switching Test Circuit & Waveforms



Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms