A. Two distinct points

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given two segments $[l_1;r_1]$ and $[l_2;r_2]$ on the x-axis. It is guaranteed that $l_1 < r_1$ and $l_2 < r_2$. Segments **may intersect, overlap or even coincide with each other**.

example of two segments on the x-axis.

Your problem is to find two **integers** a and b such that $l_1 \le a \le r_1$, $l_2 \le b \le r_2$ and $a \ne b$. In other words, you have to choose two **distinct** integer points in such a way that the first point belongs to the segment $[l_1;r_1]$ and the second one belongs to the segment $[l_2;r_2]$.

It is guaranteed that **the answer exists**. If there are multiple answers, you can print **any** of them.

You have to answer q independent queries.

Input

The first line of the input contains one integer q ($1 \le q \le 500$) — the number of queries.

Each of the next q lines contains four

integers l_{1i}, r_{1i}, l_{2i} and r_{2i} ($1 \le l_{1i}, r_{1i}, l_{2i}, r_{2i} \le 109, l_{1i} < r_{1i}, l_{2i} < r_{2i}$) — the ends of the segments in the i-th query.

Output

Print 2q integers. For the i-th query print two integers a_i and b_i — such numbers that $l_{1i} \le a_i \le r_{1i}$, $l_{2i} \le b_i \le r_{2i}$ and $a_i \ne b_i$. Queries are numbered in order of the input.

It is guaranteed that **the answer exists**. If there are multiple answers, you can print **any**.

Example

input

Copy		
5		
1 2 1 2		
2 6 3 4		
2 4 1 3		
1 2 1 3		
1 4 5 8		

output

Copy

2 1

3 4

3 2

1 2

3 7