

SEQUENCE LISTING

O-12 E 4/11
MAY 14 2009
PATENT & TRADEMARK OFFICE

<110> LUKYANOV, Sergei Anatolievich
 SHAGIN, Dmitry Alexeevich
 YANUSHEVICH, Yury Grigorievich

<120> FLUORESCENT PROTEINS AND CHROMOPROTEINS FROM NON-AEQUOREA HYDROZOA SPECIES AND METHODS FOR USING SAME

<130> U 015745-9

<140> 10/532, 681

<141> 2005-04-26

<160> 22

<170> PatentIn version 3.1

<210> 1

<211> 784

<212> DNA

<213> Phialidium sp.

<400> 1

```

gaactgataa aagaaatcat catcatgtct agtggagcac tggtttcca cggaaagatc      60
ccatatgttg ttgagatgga gggaaatgtt gatggacaca cattctccat tagaggtaaa    120
ggttatggag atgcaggatgt tggttaaagt gatgcccaat tcatctgcac aactggagat    180
gtaccaggatc catggtaaac ttttagtaaca acacttactt atggtgacaca atgcttcgccc 240
aaatatggtc cagaattaaaa ggatttctac aagagttgca tgcctgaagg ctatgtgcag 300
gagcgtacaa tcacatttga aggggacgga gtatttaaaa ctcgcgtga agttacattt    360
gaaaacggat ctgtttataa ccgagtcaaa cttaatggac aaggatttaa gaaagacgga    420
catgtgctt gaaagaatct tgaattcaat ttcacaccc attgtcttta catttgggga    480
gatcaggcta atcatggttt gaagtctgct ttcaaaaatta tgcattgagat tactggatca 540
aaagaagact tcattgttgc agaccacacc caaatgaaca cacccattgg tggtggacca 600
gtccatgtcc ctgaataccca tcataataaca taccatgtca ctctcagcaa agatgttact 660
gatcacaggg ataacatgag cttgggtgaa accgtacggg ctgtggattt cagaaaaaaca 720
tatctttaaa ttgtaaattt attttagtt gaaaacctt tgtcacgata tataccttta    780
ttat                                784

```

<210> 2

<211> 234

<212> PRT

<213> Phialidium sp.

<400> 2

Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val

Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys
 20 25 30
 Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys
 35 40 45
 Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu
 50 55 60
 Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp
 65 70 75 80
 Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile
 85 90 95
 Thr Phe Glu Gly Asp Gly Val Phe Lys Thr Arg Ala Glu Val Thr Phe
 100 105 110
 Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe
 115 120 125
 Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr
 130 135 140
 Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys
 145 150 155 160
 Ser Ala Phe Lys Ile Met His Glu Ile Thr Gly Ser Lys Glu Asp Phe
 165 170 175
 Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
 180 185 190
 Val His Val Pro Glu Tyr His His Ile Thr Tyr His Val Thr Leu Ser
 195 200 205
 Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Val Glu Thr Val
 210 215 220
 Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu
 225 230

<210> 3
 <211> 705
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> phiYFP-Y1 mutant of the phiYFP
 <400> 3

atgcctagtg gagcactgtt gttccacgga aagatcccat atgttggta gatggaggga	60
aatgtttagt gacacacatt ctccattaga ggtaaagggtt atggagatgc aagtgttgtt	120
aaagtttagt cccaattcat ctgcacaact ggagatgtac cagttccatg gtcaacttta	180
gtaacaacac ttacttatgg tgcacaatgc ttgccaaata atggtccaga attaaaggat	240

ttctacaaga gttgcatgcc tgaaggctat gtgcaggagc gtacaatcac atttgaaggg	300
gacggaggtat ttaaaaactcg cgctgaagtt acatttggaaa acggatctgt ttataaccga	360
gtcaaactta atggacaagg atttaagaaa gacggacatg tgcttgaaa gaatcttgaa	420
ttcaatttca cacctcatttgc tctttacatt tggggagatc aggctaattca tggtttgaag	480
tctgcttc aaattatgca tgagattact ggatcaaaag gagacttcat tggtgcagac	540
cacacccaaa tgaacacacc cattgggtt ggaccagtcc atgtccctga ataccatcat	600
atgacatacc atgtcactct cagcaaagat gttactgatc acagggataa catgagcttg	660
gttgaaaccg tacggctgt ggattgcaga aaaacatatac tttaa	705

<210> 4
 <211> 234
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> phiYFP-Y1 mutant of the phiYFP
 <400> 4

Met Pro Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val			
1	5	10	15
Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys			
20	25	30	
Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys			
35	40	45	
Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu			
50	55	60	
Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp			
65	70	75	80
Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile			
85	90	95	
Thr Phe Glu Gly Asp Gly Val Phe Lys Thr Arg Ala Glu Val Thr Phe			
100	105	110	
Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe			
115	120	125	
Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr			
130	135	140	
Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys			
145	150	155	160
Ser Ala Phe Lys Ile Met His Glu Ile Thr Gly Ser Lys Gly Asp Phe			
165	170	175	
Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro			
180	185	190	

Val His Val Pro Glu Tyr His His Met Thr Tyr His Val Thr Leu Ser		
195	200	205
Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Val Glu Thr Val		
210	215	220
Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu		
225	230	

<210> 5
<211> 705
<212> DNA
<213> Artificial sequence
<220>
<223> phiYFP-M0 mutant of the phiYFP
<400> 5

atgcctagtg gagcactgtt gttccacgga aagatcccat atgttgttga gatggaggga	60
aatgtttagt gacacacatt ctccattaga ggtaaagggtt atggagatgc aagtgttgtt	120
aaagtttagt cccaattcat ctgcacaact ggagatgtac cagttccatg gtcaacttta	180
gtacaacac ttacttatgg tgcacaatgc ttgccaaata atggtccaga attaaaggat	240
ttctacaaga gttgcattgcc tgaaggctat gtgcaggagc gtacaatcac atttgaaggg	300
gacggaaact ttaaaactcg cgctgaagtt acatttggaaa acggatctgt ttataaccga	360
gtcaaactta atggacaagg atttaagaaa gacggacatg tgcttggaaa gaatcttgaa	420
ttcaatttca cacctcatttgc tcttacatt tggggagatc aggctaata tggtttgaag	480
tctgcatttca aaattcgcca tgagattact ggtcaaaaag gagacttcat tggttgcagac	540
cacacccaaa tgaacacacc cattgggtgtt ggaccagtcc atgtccctga aaaccatcat	600
atgagctacc atgtcaagct cagcaaagat gttactgatc acagggataa catgagcttgc	660
aaggaaaccg tacgggctgt ggattgcaga aaaacatatac tttaa	705

<210> 6
<211> 234
<212> PRT
<213> Artificial sequence
<220>
<223> phiYFP-M0 mutant of the phiYFP
<400> 6

Met Pro Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val			
1	5	10	15
Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys			
20	25	30	

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys
 35 40 45
 Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu
 50 55 60
 Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp
 65 70 75 80
 Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile
 85 90 95
 Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe
 100 105 110
 Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe
 115 120 125
 Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr
 130 135 140
 Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys
 145 150 155 160
 Ser Ala Phe Lys Ile Arg His Glu Ile Thr Gly Ser Lys Gly Asp Phe
 165 170 175
 Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
 180 185 190
 Val His Val Pro Glu Asn His His Met Ser Tyr His Val Lys Leu Ser
 195 200 205
 Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val
 210 215 220
 Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu
 225 230

<210> 7
 <211> 705
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> phiYFP-M1 mutant of the phiYFP
 <400> 7

atgtctagtg gagcactgtt gttccacgga aagatcccat atgttgtga gatggaggga	60
aatgttgatg gacacacatt ctccattttaga gttaaagggtt atggagatgc aagtgttggt	120
aaagtttgatg cccaattcat ctgcacaact ggagatgtac cagttccatg gtcaacttta	180
gtacaacaac ttacttatgg tgcacaatgc ttgccaaataatggccaga attaaaggat	240
ttctacaaga gttgcattgcc tgatggctat gtgcaggagc gtacaatcac atttgaaggg	300
gacggaaact ttaaaaactcg cgctgaagtt acatttgaaa acggatctgt ttataaccga	360

gtcaaactta atggacaagg atttaagaaa gacggacatg tgcttgaaa gaatcttga	420
ttcaatttca cacctcattt tctttacatt tggggagatc aggctaatac tggtttgaag	480
tctgcttc aatattgc aatggattact gcatcaaaag gagacttcat tggccatc	540
cacacc aatggatc cattgttgtt ggaccagtcc atgtccctga ataccatcat	600
atgagctacc atgtcaagct cagcaaagat gttactgatc acagggataa catgagcttg	660
aaggaaaccg tacgggctgt ggattgcaga aaaacatatac tttaa	705

<210> 8
<211> 234
<212> PRT
<213> Artificial sequence
<220>
<223> phiYFP-M1 mutant of the phiYFP
<400> 8

Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val			
1	5	10	15
Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys			
20	25	30	
Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys			
35	40	45	
Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu			
50	55	60	
Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp			
65	70	75	80
Phe Tyr Lys Ser Cys Met Pro Asp Gly Tyr Val Gln Glu Arg Thr Ile			
85	90	95	
Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe			
100	105	110	
Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe			
115	120	125	
Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr			
130	135	140	
Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys			
145	150	155	160
Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe			
165	170	175	
Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro			
180	185	190	
Val His Val Pro Glu Tyr His His Met Ser Tyr His Val Lys Leu Ser			
195	200	205	

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val
 210 215 220
 Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu
 225 230

<210> 9
 <211> 705
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> humanized version of the phiYFP-M1
 <400> 9

atgagcagcg	gcgcctgct	gttccacggc	aagatcccct	acgtggtgga	gatggaggc	60
aatgtggatg	gccacacctt	cagcatccgc	ggcaagggct	acggcgatgc	cagcgtggc	120
aagggtggatg	cccagttcat	ctgcaccacc	ggcgatgtgc	ccgtgcctg	gagcacccctg	180
gtgaccaccc	tgacctacgg	cgcccagtgc	ttcgccaagt	acggccccga	gctgaaggat	240
ttctacaaga	gctgcatgcc	cgatggctac	gtgcaggagc	gcaccatcac	cttcgaggc	300
gatggcaatt	tcaagacccg	cgccgaggtg	accttcgaga	atggcagcgt	gtacaatcgc	360
gtgaagctga	atggccaggg	cttcaagaag	gatggccacg	tgctggcaa	gaatctggag	420
ttcaatttca	ccccccactg	cctgtacatc	tggggcgatc	aggccaatca	cggcctgaag	480
agcgccttca	agatctgcca	cgagatcacc	ggcagcaagg	gcgatttcat	cgtggccgat	540
cacacccaga	tgaataacccc	catcggcgcc	ggccccgtgc	acgtgcccga	gtaccaccac	600
atgagctacc	acgtgaagct	gagcaaggat	gtgaccgatc	accgcgataa	tatgagcctg	660
aaggagaccg	tgcgcgcccgt	ggattgcccgc	aagacctacc	tgtga		705

<210> 10
 <211> 234
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> humanized version of the phiYFP-M1
 <400> 10

Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val
 1 5 10 15
 Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys
 20 25 30
 Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys
 35 40 45

Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu
 50 55 60
 Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp
 65 70 75 80
 Phe Tyr Lys Ser Cys Met Pro Asp Gly Tyr Val Gln Glu Arg Thr Ile
 85 90 95
 Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe
 100 105 110
 Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe
 115 120 125
 Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr
 130 135 140
 Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys
 145 150 155 160
 Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe
 165 170 175
 Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
 180 185 190
 Val His Val Pro Glu Tyr His His Met Ser Tyr His Val Lys Leu Ser
 195 200 205
 Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val
 210 215 220
 Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu
 225 230

<210> 11
 <211> 1047
 <212> DNA
 <213> hydromedusa 1 from sub-order Anthomedusae
 <400> 11

cttttcttaa	aaaagaattca	aaaaggacgg	tttactagac	atacttatac	agctttactt	60
ataaaaggaag	aaatgaatgt	gatgcgttac	aacagaggat	tctgcagagt	tttgcaaaat	120
ggtgtcaaaa	atttacgttc	tagaaattgc	agtacggaag	aaaaaccgt	catacttggt	180
gcaatgacag	aaacatttca	aaaaaaatttgc	ccatataagt	tagaatttgg	tggagatgtt	240
gatggcggaaa	catttaaggt	tattggtgag	ggcggtgggg	atgcaccac	tggtgtaatt	300
gaaggaaaat	atgtttgtac	agaaggagaa	gttccttattt	catgggtttc	gctcatcacc	360
tcattaagtt	atgggtcgaa	atgtttgtt	cgatatccaa	atgaaataaaa	tgattttttc	420
aaaagtactt	ttccttctgg	atatcatcaa	gaaagaaaaaa	ttacatatga	aatgatggt	480
gttttagaaa	cagcagctaa	aattactatg	gaaagtggtg	caatagtgaa	tagaataat	540
gtgaaaggca	caggcttcga	taaagatggt	catgtatgcc	aaaaaaatct	tgaatcctcc	600

cctccttcga caacatatgt tgccccgag ggagaaggta ttcaatcat ctatagaaac	660
atctatccaa caaaagatgg tcactatgtt gttgccaca cacagcaagt aaatcgacca	720
attagagcac aaggaacatc agctatccca acatatcatc acattaaatc gaaagttgat	780
cttcaacag atccagaaga aaataaagat catattatca tcaaagaaac caactgcgca	840
tttgacgctg attttctta agattccga tttgcatcaa gattaaaaaa ctaaataaag	900
atagtaaaa aaaatatgtc tttgatgtt catacagtat tgatataagc ttcaaagaaa	960
tatatttca aataaactt ataaaattag gaatcttga atatataaac taaaccttt	1020
atttgttagaa taaaaataat taaagac	1047

<210> 12
<211> 262
<212> PRT
<213> hydromedusa 1 from sub-order Anthomedusae
<400> 12

Met Asn Val Met Arg Tyr Asn Arg Gly Phe Cys Arg Val Leu Gln Asn			
1	5	10	15
Gly Val Lys Asn Leu Arg Ser Arg Asn Cys Ser Thr Glu Glu Lys Pro			
20	25	30	
Val Ile Leu Gly Ala Met Thr Glu Thr Phe Gln Lys Lys Leu Pro Tyr			
35	40	45	
Lys Leu Glu Leu Asp Gly Asp Val Asp Gly Gln Thr Phe Lys Val Ile			
50	55	60	
Gly Glu Gly Val Gly Asp Ala Thr Thr Gly Val Ile Glu Gly Lys Tyr			
65	70	75	80
Val Cys Thr Glu Gly Glu Val Pro Ile Ser Trp Val Ser Leu Ile Thr			
85	90	95	
Ser Leu Ser Tyr Gly Ala Lys Cys Phe Val Arg Tyr Pro Asn Glu Ile			
100	105	110	
Asn Asp Phe Phe Lys Ser Thr Phe Pro Ser Gly Tyr His Gln Glu Arg			
115	120	125	
Lys Ile Thr Tyr Glu Asn Asp Gly Val Leu Glu Thr Ala Ala Lys Ile			
130	135	140	
Thr Met Glu Ser Gly Ala Ile Val Asn Arg Ile Asn Val Lys Gly Thr			
145	150	155	160
Gly Phe Asp Lys Asp Gly His Val Cys Gln Lys Asn Leu Glu Ser Ser			
165	170	175	
Pro Pro Ser Thr Thr Tyr Val Val Pro Glu Gly Glu Gly Ile Arg Ile			
180	185	190	
Ile Tyr Arg Asn Ile Tyr Pro Thr Lys Asp Gly His Tyr Val Val Ala			
195	200	205	

Asp Thr Gln Gln Val Asn Arg Pro Ile Arg Ala Gln Gly Thr Ser Ala
 210 215 220
 Ile Pro Thr Tyr His His Ile Lys Ser Lys Val Asp Leu Ser Thr Asp
 225 230 235 240
 Pro Glu Glu Asn Lys Asp His Ile Ile Ile Lys Glu Thr Asn Cys Ala
 245 250 255
 Phe Asp Ala Asp Phe Ser
 260

<210> 13
 <211> 1089
 <212> DNA
 <213> hydromedusa 2 from sub-order Anthomedusae
 <400> 13

atcattcgct gatacgaagt gaaagtagcg tttgctgaaa gcttcctgga attgctccta 60
 cgtatcttga aagttgctcc tacgctccaa cttgtttgtt caaaatggaa ggtggtccag 120
 cattatttca atccgatatacg acattcaaga tcttcatcga tggagtggtg aatgatcaga 180
 aattcacgat aatcgccagat ggatcggtcca aattccccca tggtgacttc aacgtgcattg 240
 ctgtgtgcga aaccgggaaa ctcccaatgt catggaaacc tatttgtcac cttatccaat 300
 acggggagcc attctttgca aaatatccccca atggcatcag ccattttgca caggagtgct 360
 ttccagaagg attaacaatt gatcgaacag tcagattcga aaatgacggc actatgacgt 420
 ctcaccacac ctatgagttg gacggcacct gtgtcatttc caggataacc gttaattgtg 480
 acggatttca acctgatgga ccaatcatga aagaccagct tggatgtcac ctgccaactg 540
 agacacatat gttccctcat gggtccaatg ctgtcagaca attgtgctac attggcttca 600
 cgacagctga tgggtgtctc atgatgtcac attttgattc gaaattgaca ttcaatggtt 660
 cgagagcaat caagattcct ggacctcatt tcgttactgt gataatcaaa cagatgaaag 720
 atacaagcga caagcgtgat catgtgtgtc aacgtgaagt cacctacgct cactcagttc 780
 cacgcacatcac ttctgctatc taaacatcat tcttaaaagg ggaacatgca catcatactt 840
 cagtggtgagg gtcagtgtga gggcttttag atgtcaattt gtgcagggtg tcacacggcg 900
 tcgttttagat gttgaaggac gaaatgcgac aaagagatta atagagactc atattttat 960
 gtagaatcga ttcatcagc ccattggtaa cctttttgtt attttatcat cttattattg 1020
 tattggact ttgttatat tttgtatgtt atgtgtaaac aattgttgaa aatacatgtc 1080
 aagaacttg 1089

<210> 14
 <211> 232
 <212> PRT
 <213> hydromedusa 2 from sub-order Anthomedusae
 <400> 14

Met Glu Gly Gly Pro Ala Leu Phe Gln Ser Asp Met Thr Phe Lys Ile
 1 5 10 15
 Phe Ile Asp Gly Val Val Asn Asp Gln Lys Phe Thr Ile Ile Ala Asp
 20 25 30
 Gly Ser Ser Lys Phe Pro His Gly Asp Phe Asn Val His Ala Val Cys
 35 40 45
 Glu Thr Gly Lys Leu Pro Met Ser Trp Lys Pro Ile Cys His Leu Ile
 50 55 60
 Gln Tyr Gly Glu Pro Phe Phe Ala Lys Tyr Pro Asn Gly Ile Ser His
 65 70 75 80
 Phe Ala Gln Glu Cys Phe Pro Glu Gly Leu Thr Ile Asp Arg Thr Val
 85 90 95
 Arg Phe Glu Asn Asp Gly Thr Met Thr Ser His His Thr Tyr Glu Leu
 100 105 110
 Asp Gly Thr Cys Val Ile Ser Arg Ile Thr Val Asn Cys Asp Gly Phe
 115 120 125
 Gln Pro Asp Gly Pro Ile Met Lys Asp Gln Leu Val Asp Ile Leu Pro
 130 135 140
 Thr Glu Thr His Met Phe Pro His Gly Ser Asn Ala Val Arg Gln Leu
 145 150 155 160
 Cys Tyr Ile Gly Phe Thr Thr Ala Asp Gly Gly Leu Met Met Ser His
 165 170 175
 Phe Asp Ser Lys Leu Thr Phe Asn Gly Ser Arg Ala Ile Lys Ile Pro
 180 185 190
 Gly Pro His Phe Val Thr Val Ile Ile Lys Gln Met Lys Asp Thr Ser
 195 200 205
 Asp Lys Arg Asp His Val Cys Gln Arg Glu Val Thr Tyr Ala His Ser
 210 215 220
 Val Pro Arg Ile Thr Ser Ala Ile
 225 230

<210> 15
 <211> 699
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> S3-2 mutant of the hm2CP
 <400> 15

atggaaggtg gtccagcatt atttcaatcc gacatgacat tcaagatctt catcgatgg 60
 gtggtaatg gtcagaaatt cacgatagtc gcagatggat cgtccaaatt cccccatgg 120

gacttcaacg tacatgctgt	gtgcgaaacc	ggaaaactcc	caatgtcatg	gaaaccatt	180
tgtcaccta tccaatacgg	ggagccattc	tttgcagat	atcccaacgg	catcagccat	240
tttgcacagg agtgcttc	agaaggatta	tcaattgatc	gaacagtcag	attcgaaaat	300
gacggcacta tgacgtctca	ccacacctat	gagttggacg	gcacctgtgt	cgttccagg	360
ataaccgtta attgtgacgg	atttcaacct	gatggacca	tcatgagaga	ccagcttgtt	420
gatatcctgc caaacgagac	acatatgttc	cctcatggac	ccaatgctgt	cagacaattg	480
gcttcatag gcttcacgac	agctgatggt	ggtctcatga	tgtcacattt	tgattcgaaa	540
atgacattca atggttcgag	agcaatcaag	attcctggac	ctcatttcgt	cactaccata	600
accaaacaga taaaaagatac	aagcgacaag	cgtgatcatg	tgtgtcagcg	ggaagtccacc	660
tacgctcact cagttccacg	catcacttct	gctatctaa			699

<210> 16
<211> 232
<212> PRT
<213> Artificial sequence
<220>
<223> S3-2 mutant of the hm2CP
<400> 16

Met	Glu	Gly	Gly	Pro	Ala	Leu	Phe	Gln	Ser	Asp	Met	Thr	Phe	Lys	Ile
1															15
Phe	Ile	Asp	Gly	Val	Val	Asn	Gly	Gln	Lys	Phe	Thr	Ile	Val	Ala	Asp
				20					25						30
Gly	Ser	Ser	Lys	Phe	Pro	His	Gly	Asp	Phe	Asn	Val	His	Ala	Val	Cys
				35				40							45
Glu	Thr	Gly	Lys	Leu	Pro	Met	Ser	Trp	Lys	Pro	Ile	Cys	His	Leu	Ile
				50				55							60
Gln	Tyr	Gly	Glu	Pro	Phe	Phe	Ala	Arg	Tyr	Pro	Asn	Gly	Ile	Ser	His
				65				70							80
Phe	Ala	Gln	Glu	Cys	Phe	Pro	Glu	Gly	Leu	Ser	Ile	Asp	Arg	Thr	Val
				85					90						95
Arg	Phe	Glu	Asn	Asp	Gly	Thr	Met	Thr	Ser	His	His	Thr	Tyr	Glu	Leu
				100				105							110
Asp	Gly	Thr	Cys	Val	Val	Ser	Arg	Ile	Thr	Val	Asn	Cys	Asp	Gly	Phe
				115				120							125
Gln	Pro	Asp	Gly	Pro	Ile	Met	Arg	Asp	Gln	Leu	Val	Asp	Ile	Leu	Pro
				130				135							140
Asn	Glu	Thr	His	Met	Phe	Pro	His	Gly	Pro	Asn	Ala	Val	Arg	Gln	Leu
				145				150							160
Ala	Phe	Ile	Gly	Phe	Thr	Thr	Ala	Asp	Gly	Gly	Leu	Met	Met	Ser	His
				165				170							175

Phe Asp Ser Lys Met Thr Phe Asn Gly Ser Arg Ala Ile Lys Ile Pro
 180 185 190
 Gly Pro His Phe Val Thr Thr Ile Thr Lys Gln Met Lys Asp Thr Ser
 195 200 205
 Asp Lys Arg Asp His Val Cys Gln Arg Glu Val Thr Tyr Ala His Ser
 210 215 220
 Val Pro Arg Ile Thr Ser Ala Ile
 225 230

<210> 17
<211> 705
<212> DNA
<213> Artificial sequence
<220>
<223> phiYFP-M1G1 mutant, derived from humanized version of the phiYFP-
M1
<400> 17

atgtccagcg	gcgcctgct	gttccacggc	aagatcccct	acgtggtgga	gatggagggc	60
aatgtggatg	gccacacctt	cagcatccgc	ggcaagggct	acggcgatgc	cagcgtggc	120
aaggtggatg	cccagttcat	ctgcaccacc	ggcgatgtgc	ccgtgccctg	gagcacccctg	180
gtgaccaccc	tgtcctacgg	cgcccagtgc	ttcgccaagt	acggcccccga	gctgaaggat	240
ttctacaaga	gctgcatgcc	cgatggctac	gtgcaggagc	gcaccatcac	cttcgagggc	300
gatggcaatt	tcaagacccg	cgccgaggtg	accttcgaga	atggcagcgt	gtacaatcgc	360
gtgaagctga	atggccaggg	cttcaagaag	gatggccacg	tgctggcaa	gaatctggag	420
ttcaatttca	ccccccactg	ccagtagatc	tggggcgatc	aggccaatca	cggcctgaag	480
agcgccttca	agatctgcca	cgagatcacc	ggcagcaagg	gcgatttcat	cgtggccgat	540
cacaccaga	tgaatacccc	catcgccggc	ggccccgtgc	acgtgcccga	gtaccaccac	600
atgagcaccc	acgtgaagct	gagcaaggat	gtgaccgatc	accgcgataa	tatgagcctg	660
aaggagaccc	tgcgcgccgt	ggattgccga	acagcctacc	tgtga	.	705

<210> 18
<211> 234
<212> PRT
<213> Artificial sequence
<220>
<223> phiYFP-M1G1 mutant, derived from humanized version of the phiYFP-
M1
<400> 18

Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val
 1 5 10 15
 Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys
 20 25 30
 Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys
 35 40 45
 Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu
 50 55 60
 Ser Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp
 65 70 75 80
 Phe Tyr Lys Ser Cys Met Pro Asp Gly Tyr Val Gln Glu Arg Thr Ile
 85 90 95
 Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe
 100 105 110
 Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gln Gly Phe
 115 120 125
 Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr
 130 135 140
 Pro His Cys Gln Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys
 145 150 155 160
 Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe
 165 170 175
 Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
 180 185 190
 Val His Val Pro Glu Tyr His His Met Ser Thr His Val Lys Leu Ser
 195 200 205
 Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val
 210 215 220
 Arg Ala Val Asp Cys Arg Thr Ala Tyr Leu
 225 230

<210> 19
 <211> 705
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> phiYFP-M1C1 mutant, derived from humanized version of the phiYFP-
 M1
 <400> 19

aatgtggatg gccacacacctt cagcatccgc ggcaagggct acggcgatgc cagcgtggc 120
aagggtggatg cccagttcat ctgcaccacc ggcgatgtgc ccgtgccctg gagcacccctg 180
gtgaccaccc tgtcctgggg cgccccagtgc ttcgccaagt acggccccga gctgaaggat 240
ttctacaaga gctgcatgcc cgatggctac gtgcaggagc gcaccatcac cttcgaggc 300
gatggcaatt tcaagaccccg cgccgaggtg accttcgaga atggcagcgt gtacaatcgc 360
gtgaagctga aaggccaggg cttcaagaag gatggccacg tgctggcaa gaatctggag 420
ttcaatttca ccccccacta ccagtacatc tggggcgatc aggccaatca cggcctgaag 480
agcgccctca agatctgcca cgagatcacc ggcagtaagg gcgatttcat cgtggccgat 540
cacacccaga tgaatacccc catcgccggc ggccccgtgc acgtgcccga gtaccaccac 600
atgagcaccc acgtgaagct gagcaaggat gtgaccgatc accgcgataa tatgagcctg 660
aaggagacct tgcgcccggt ggattgcccgc aagacacctacc tgtga 705

<210> 20
<211> 234
<212> PRT
<213> Artificial sequence
<220>
<223> phiYFP-M1C1 mutant, derived from humanized version of the phiYFP-
M1
<400> 20

Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe
 165 170 175
 Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Gly Pro
 180 185 190
 Val His Val Pro Glu Tyr His His Met Ser Thr His Val Lys Leu Ser
 195 200 205
 Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Leu
 210 215 220
 Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu
 225 230

<210> 21
 <211> 699
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> humanized version of the S3-2 mutant
 <400> 21

atggaggcg gccccgcctt	gttccagagc gacatgacct	tcaaaatctt catcgacggc	60
gtggtaacg gccagaagtt	caccatcggt gccgacggca	gcagcaagtt ccccccacggc	120
gacttcaacg tgcacgcccgt	gtgcgagacc ggcaagctgc	ccatgagctg gaagcccatc	180
tgccacctga tccagtacgg	cgagcccttc ttgcggcgct	accccaacgg catcagccac	240
ttcgccagg agtgcttccc	cgagggcctg agcatcgacc	gcaccgtgcg ctgcgagaac	300
gacggcacca tgaccagcca	ccacacctac gagctggacg	gcacctgcgt ggtgagccgc	360
atcaccgtga actgcgacgg	cttccagccc gacggccca	tcatgcgcga ccagctggtg	420
gacatcctgc ccaacgagac	ccacatgttc cccacggcc	ccaacgcccgt gcgccagctg	480
gccttcatcg gtttaccac	cgccgacggc ggcctgatga	tgagccactt cgacagcaag	540
atgacattca acggcagccg	cgccatcaag atccccggcc	cccacttcgt gaccaccatc	600
accaagcaga tgaaggacac	cagcgacaag cgcgaccacg	tgtgccagcg cgaggtgacc	660
tacgcccaca gcgtgccccg	catcaccagc gccatctga		699

<210> 22
 <211> 232
 <212> PRT
 <213> Artificial sequence
 <220>
 <223> humanized S3-2 mutant
 <400> 22

Met Glu Gly Gly Pro Ala Leu Phe Gln Ser Asp Met Thr Phe Lys Ile
 1 5 10 15
 Phe Ile Asp Gly Val Val Asn Gly Gln Lys Phe Thr Ile Val Ala Asp
 20 25 30
 Gly Ser Ser Lys Phe Pro His Gly Asp Phe Asn Val His Ala Val Cys
 35 40 45
 Glu Thr Gly Lys Leu Pro Met Ser Trp Lys Pro Ile Cys His Leu Ile
 50 55 60
 Gln Tyr Gly Glu Pro Phe Phe Ala Arg Tyr Pro Asn Gly Ile Ser His
 65 70 75 80
 Phe Ala Gln Glu Cys Phe Pro Glu Gly Leu Ser Ile Asp Arg Thr Val
 85 90 95
 Arg Phe Glu Asn Asp Gly Thr Met Thr Ser His His Thr Tyr Glu Leu
 100 105 110
 Asp Gly Thr Cys Val Val Ser Arg Ile Thr Val Asn Cys Asp Gly Phe
 115 120 125
 Gln Pro Asp Gly Pro Ile Met Arg Asp Gln Leu Val Asp Ile Leu Pro
 130 135 140
 Asn Glu Thr His Met Phe Pro His Gly Pro Asn Ala Val Arg Gln Leu
 145 150 155 160
 Ala Phe Ile Gly Phe Thr Thr Ala Asp Gly Gly Leu Met Met Ser His
 165 170 175
 Phe Asp Ser Lys Met Thr Phe Asn Gly Ser Arg Ala Ile Lys Ile Pro
 180 185 190
 Gly Pro His Phe Val Thr Thr Ile Thr Lys Gln Met Lys Asp Thr Ser
 195 200 205
 Asp Lys Arg Asp His Val Cys Gln Arg Glu Val Thr Tyr Ala His Ser
 210 215 220
 Val Pro Arg Ile Thr Ser Ala Ile
 225 230

<210> 23
 <211> 238
 <212> PRT
 <213> A. victoria
 <400> 23

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val
 1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
20 25 30
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
35 40 45
Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe
50 55 60
Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln
65 70 75 80
His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg
85 90 95
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
100 105 110
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
115 120 125
Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
130 135 140
Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly
145 150 155 160
Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val
165 170 175
Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
180 185 190
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser
195 200 205
Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
210 215 220
Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys
225 230 235