RÉPUBLIQUE ISLAMIQUE DE MAURITANIE MINISTÈRE DE L'ÉDUCATION NATIONALE DIRECTION DES EXAMENS ET DE L'ÉVALUATION SERVICE DES EXAMENS

Série : Sciences de la nature Épreuve : Mathématiques

Durée : 4heures Coefficient : 6

Baccalauréat 2010 session Complémentaire

Exercice 1 (3 points)

pour chaque question ci-après, une seule réponse est exacte

N°	Question	Réponse A	Réponse B	Réponse C	
1	(U_n) est une suite arithmétique de raison $r=3$ et telle que $U_5=17$ alors :	U ₁₀ =34	U ₁₀ =32	U ₁₀ =85	
2	(U_n) est une suite arithmétique de raison $r=10 \text{ et de premier terme } U_0=\frac{11}{2}$ si $U_0+U_1+\cdots +U_n=2010 \text{ alors :}$	n = 19	n = 20	n = 21	
3	Si $S_n = 1 + 2 + 2^2 + \dots + 2^n$ alors :	$s_n = 1 - 2^n$	$s_n = 2^{n+1} - 1$	$s_n = 2^n - 1$	
4	La suite de terme général $U_n = \frac{(-1)^n}{(-1)^n + n^2}$	Converge vers 1	Ne converge pas	Converge vers 0	
5	La suite de terme général $U_n = \frac{10^n}{n!}$	Croissante	Décroissante	Non monotone	
6	Sooient (U_n) et (U_n) deux suite numériques telles que $U_n \le v_n$. Si (U_n) est croissante	(U _n) est bornée	(V _n) est bornée		

Recopie sur la feuille et complète le tableau suivant en choisissant la bonne réponse.

recopie sur la realité et comprete le tubieur survaint en choisissant la sonne reponse.											
Question	1	2			3			4		5	6
Réponse											

Exercice 2 (4 points)

- 1. Résoudre dans C l'ensemble des nombres complexes l'équation : $z^2 4z + 13 = 0$ et soient z_1 et z_2 ses solutions telles que $I_m(z_1) > 0$.
- 2. On considère dans le plan complexe les points A et B d'affixes respectives :
- $z_A=1+z_1$ et $z_B=i+z_2$
- a) Écrire les nombres z_A et z_B sous forme algébrique et trigonométrique
- b) Représenter dans le repère $(0; \vec{1}, \vec{j})$, les points A et B. Déterminer la nature du triangle OAB.
- c) Déterminer et placer le point C tel que le quadrilatère OACB soit un parallélogramme.
- d) Déterminer et construire l'ensemble Γ des points M du plan d'affixe z tel que le complexe $\frac{z-2+2i}{z-3-3i}$ soit imaginaire.

Exercice 3 (6 points)

On considère la fonction f définie sur]0, $+\infty$ [par $f(x) = \frac{1}{x} + \ln x$

Soit (C) sa courbe représentative dans un repère orthonormé $(0; \vec{\iota}, \vec{\jmath})$ d'unité 1cm .

- 1a) Calculer $\lim_{x\to 0^+} f(x)$ et interpréter graphiquement
- b) Calculer $\lim_{x\to +\infty} f(x) et \lim_{x\to +\infty} (f(x) \ln x)$ et interpréter graphiquement

- 2a) Calculer f'(x) où f' est la dérivée de la fonction f
- b) Dresser le tableau de variation de f
- 3a) Dresser le tableau de variation de $\ln :(x \rightarrow lnx)$
- b) Tracer les courbes (C) et Γ représentative de f et ln dans le repère $(0; \vec{i}, \vec{j})$
- 4. Soit h la restriction de f sur $I =]1, +\infty[$
- a)Montrer que h réalise une bijection de I sur un intervalle J que l'on déterminera.
- b) Soit C' la courbe de représentative de h^{-1} dans le repère $(0; \vec{i}, \vec{j})$. Etudier la position de (C')avec sa tangente au point d'abscisse $x_0 = 1$
- c) Construire (C') repère($0; \vec{i}, \vec{j}$)
- 5a) Calculer $A = \int_1^e \ln x dx$ (on pourra utiliser une intégration par parties)
- b) En déduire l'aire S du domaine plan limité par la courbe (C), l'axe des abscisse et les droites d'équations respectives x = 1 et x = e

Exercice 4 (7 points)

On considère la fonction numérique f définie \Box * par : $f(x) = \frac{e^x}{e^x - 1}$. Soit (C) sa courbe représentative dans un repère orthonormé (0; 1, 1) d'unité 1cm

- 1a) Calculer $\lim_{x\to 0^+} f(x)$, $\lim_{x\to \infty} f(x)$, $\lim_{x\to \infty} f(x)$ et $\lim_{x\to +\infty} f(x)$ b) En déduire que la courbe (C) possède trois asymptotes dont on donnera des équations
- 2a) Calculer la dérivée de la fonction f et vérifier que pour tout x non nul : $f'(x) = -\frac{f(x)}{a^x 1}$
- b) Dresser le tableau de variation de f
- 3a) Montrer que la fonction g restriction de f sur $I =]0, +\infty[$ réalise une bijection de I sur un intervalle J que l'on déterminera.
- b) Déterminer l'expression de la réciproque g⁻¹ de g
- 4a) Montrer que la courbe (C) possède le point $\Omega\left(0,\frac{1}{2}\right)$ comme centre de symétrie
- b) Construire les courbes (C) et (C') représentatives des fonctions f et g⁻¹ dans le repère($0:\vec{1},\vec{1})$
- 5a) Déterminer une primitive F de f sur $I = [0, +\infty]$
- b) Soit n un entier naturel, $n \ge 1$, U_n l'aire du domaine plan limité par la courbe (C), l'axe des abscisses et les droites d'équations respectives $x = \frac{1}{n}$ et x = 1 calculer U_n en fonction de n
- c) Calculer et interpréter graphiquement lim U_n

Fin