Fall 2024 Due: 9/8/2024

Problem 1. Verify that the set of complex numbers described in Example 4 is a subfield of C.

Example 4. The set of all complex numbers of the form $x + y\sqrt{2}$, where x and y are rational, is a subfield of C. We leave it to the reader to verify this.

1. (+) Commutativity:

For any two elements $a = x_1 + y_1\sqrt{2}$ and $b = x_2 + y_2\sqrt{2} \in F$:

$$a + b = (x_1 + y_1\sqrt{2}) + (x_2 + y_2\sqrt{2}) = (x_1 + x_2) + (y_1 + y_2)\sqrt{2}$$

Since $x_1 + x_2 = x_2 + x_1$ and $y_1 + y_2 = y_2 + y_1$ (commutativity in \mathbb{Q}), addition in F is commutative.

2. (+) Associativity:

For any three elements $a = x_1 + y_1\sqrt{2}$, $b = x_2 + y_2\sqrt{2}$, and $c = x_3 + y_3\sqrt{2} \in F$:

$$(a+b) + c = ((x_1 + y_1\sqrt{2}) + (x_2 + y_2\sqrt{2})) + (x_3 + y_3\sqrt{2})$$
$$= (x_1 + x_2 + x_3) + (y_1 + y_2 + y_3)\sqrt{2}$$

Similarly:

$$a + (b + c) = (x_1 + (x_2 + x_3)) + (y_1 + (y_2 + y_3))\sqrt{2}$$

Since addition is associative in \mathbb{Q} , addition in F is also associative.

3. (+) There is a unique element 0 element $\in \mathbb{F}$:

The element $0 + 0\sqrt{2} = 0$ is the additive identity in F, and it satisfies:

$$a + 0 = (x + y\sqrt{2}) + 0 = x + y\sqrt{2}$$

Thus, 0 is the unique additive identity.

4. (+) To each $x \in \mathbb{F}$ there corresponds a unique element $(-x) \in \mathbb{F}$ such that x + (-x) = 0: For any element $a = x + y\sqrt{2} \in F$, the element $-a = -x - y\sqrt{2} \in F$ satisfies:

$$a + (-a) = (x + y\sqrt{2}) + (-x - y\sqrt{2}) = (x - x) + (y - y)\sqrt{2} = 0$$

Thus, $-a \in F$ is the unique additive inverse of a.

5. (·) Multiplication is Commutative:

For any two elements $a = x_1 + y_1\sqrt{2}$ and $b = x_2 + y_2\sqrt{2} \in F$:

$$a \cdot b = (x_1 + y_1\sqrt{2})(x_2 + y_2\sqrt{2}) = x_1x_2 + (x_1y_2 + y_1x_2)\sqrt{2} + 2y_1y_2$$
$$= (x_1x_2 + 2y_1y_2) + (x_1y_2 + y_1x_2)\sqrt{2}$$

Multiplication in \mathbb{Q} is commutative, so multiplication in F is also commutative.

6. (\cdot) Multiplication is Associative:

For any three elements $a=x_1+y_1\sqrt{2}$, $b=x_2+y_2\sqrt{2}$, and $c=x_3+y_3\sqrt{2}$ in F:

$$(a \cdot b) \cdot c = ((x_1 + y_1\sqrt{2})(x_2 + y_2\sqrt{2})) \cdot (x_3 + y_3\sqrt{2})$$

The result will simplify similarly to the earlier case, and because multiplication is associative in \mathbb{Q} , it is associative in F.

7. (·) There is a unique non-zero element $1 \in \mathbb{F}$ such that x1 = x, for every $x \in \mathbb{F}$: The element $1 + 0\sqrt{2} = 1$ is the multiplicative identity in F, and it satisfies:

$$a \cdot 1 = (x + y\sqrt{2})(1 + 0\sqrt{2}) = x + y\sqrt{2}$$

Thus, 1 is the unique multiplicative identity.

8. (·) To each non-zero $x \in \mathbb{F}$ there corresponds a unique element $x^{-1} \in \mathbb{F}$ such that $xx^{-1} = 1$: Let $a = x + y\sqrt{2} \in F$, where $a \neq 0$. To find a^{-1} , multiply by the conjugate:

$$a^{-1} = \frac{1}{a} = \frac{1}{x + y\sqrt{2}} \cdot \frac{x - y\sqrt{2}}{x - y\sqrt{2}} = \frac{x - y\sqrt{2}}{x^2 - 2y^2}$$

Since $x^2 - 2y^2 \neq 0$ (because $a \neq 0$) and both the numerator and denominator are in F, we conclude that $a^{-1} \in F$. Thus, every non-zero element has a unique multiplicative inverse in F.

9. $(\cdot, +)$ Multiplication distributes over Addition:

For any $a = x_1 + y_1\sqrt{2}$, $b = x_2 + y_2\sqrt{2}$, and $c = x_3 + y_3\sqrt{2}$ in F:

$$a \cdot (b+c) = (x_1 + y_1\sqrt{2}) \cdot ((x_2 + y_2\sqrt{2}) + (x_3 + y_3\sqrt{2}))$$
$$= (x_1 + y_1\sqrt{2}) \cdot (x_2 + x_3 + (y_2 + y_3)\sqrt{2})$$

Expanding this confirms that multiplication distributes over addition, just like in Q.

Conclusion: Since all the required properties hold, the set $F = \{x + y\sqrt{2} \mid x, y \in \mathbb{Q}\}$ satisfies the field axioms and is therefore a subfield of \mathbb{C} .

Problem 2 (Problem 1 from Extra Problems). The smallest subfield of a field \mathbb{F} is called the prime subfield of \mathbb{F} .

(a) Show that the prime subfield of \mathbb{F} consists of all elements which can be written as ab^{-1} , where a and $b \neq 0$ are multiples of 1, i.e. elements of the form $n \cdot 1 = 1 + 1 + \ldots + 1$ (n times).

Consider the set of all elements in \mathbb{F} that can be written as ab^{-1} , where a and b are integer multiples of the multiplicative identity 1 in \mathbb{F} . Explicitly, these elements are of the form $n \cdot 1$, where n is an integer, and can be expressed as sums or differences of 1 in \mathbb{F} . Such elements include $1, -1, 0, 2, -2, \ldots$, forming a copy of the integers within \mathbb{F} .

The inverses of non-zero elements of this form, consider the element $b=n\cdot 1$, where $n\neq 0$. The inverse b^{-1} must also exist in \mathbb{F} . Therefore, any element of the form ab^{-1} ,

where $a=m\cdot 1$ and $b=n\cdot 1$, will be a rational number, i.e., an element of \mathbb{Q} , the field of rational numbers.

The prime subfield must be the smallest subfield of \mathbb{F} that contains 1 and is closed under addition, multiplication, and the axioms for a Field. The set of all elements of the form ab^{-1} , where $a,b\in\mathbb{Z}$ and $b\neq 0$, corresponds to the field of rational numbers \mathbb{Q} in characteristic 0, or the finite field \mathbb{Z}/\mathbb{Z}_p in characteristic p. These are the smallest subfields that exist within \mathbb{F} , thus forming the prime subfield.

Therefore, the prime subfield of \mathbb{F} consists of all elements of the form ab^{-1} , where a and $b \neq 0$ are integer multiples of 1.

(b) Show that any prime subfield is isomorphic to either \mathbb{Q} or \mathbb{F}_p .

Two cases arise based on the characteristic of the field \mathbb{F} :

Case 1: The characteristic of \mathbb{F} is 0.

The additive structure of the prime subfield is isomorphic to the integers \mathbb{Z} , and since the prime subfield must also include the multiplicative inverses of non-zero elements, we obtain the field of rational numbers \mathbb{Q} . Therefore, if \mathbb{F} has characteristic 0, its prime subfield is isomorphic to \mathbb{Q} .

Case 2: The characteristic of \mathbb{F} is p > 0.

 $p \cdot 1 = 0$ for some prime p. Thus, the additive structure of the prime subfield is isomorphic to \mathbb{Z}/\mathbb{Z}_p , as shown in part (a). Since the prime subfield is closed under addition, multiplication, and inverses, this subfield must be isomorphic to the finite field $\mathbb{F}_p = \mathbb{Z}/\mathbb{Z}_p$.

Thus, any prime subfield is either isomorphic to \mathbb{Q} if the characteristic of the field is 0, or isomorphic to \mathbb{F}_p if the characteristic of the field is p > 0. These are the only possible prime subfields.

Problem 3 (Problem 2 from Extra Problems). (Fields)

(a) Let $\mathbb{Q}[\sqrt[3]{2}]$ denote the minimal subfield of \mathbb{C} which contains $\sqrt[3]{2}$. Give an explicit description of this field (as a set) and show directly that it is a field.

The field $\mathbb{Q}[\sqrt[3]{2}]$ is the smallest subfield of \mathbb{C} that contains both the rationals \mathbb{Q} and the element $\sqrt[3]{2}$. Therefore, it consists of all elements of the form:

$$\mathbb{Q}[\sqrt[3]{2}] = \left\{ a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q} \right\}$$

where a, b, c are rational numbers and $\sqrt[3]{2}$ is a root of the polynomial $x^3 - 2 = 0$.

Now, verifying that $\mathbb{Q}[\sqrt[3]{2}]$ is a field:

1. (+) Commutativity:

For any
$$f = a_1 + b_1\sqrt[3]{2} + c_1\sqrt[3]{4}$$
 and $g = a_2 + b_2\sqrt[3]{2} + c_2\sqrt[3]{4}$,

$$f + g = (a_1 + a_2) + (b_1 + b_2)\sqrt[3]{2} + (c_1 + c_2)\sqrt[3]{4}$$

is the same as g + f, so addition is commutative.

2. (+) Associativity:

For any three elements $f = a_1 + b_1\sqrt[3]{2} + c_1\sqrt[3]{4}$, $g = a_2 + b_2\sqrt[3]{2} + c_2\sqrt[3]{4}$, and $h = a_3 + b_3\sqrt[3]{2} + c_3\sqrt[3]{4}$,

$$(f+g) + h = f + (g+h)$$

holds by the associativity of addition in \mathbb{Q} .

3. (+) There is a unique element 0 element $\in \mathbb{F}$:

The element $0 = 0 + 0\sqrt[3]{2} + 0\sqrt[3]{4}$ is the additive identity since for any element $f = a + b\sqrt[3]{2} + c\sqrt[3]{4}$,

$$f + 0 = f$$

and 0 + f = f.

4. (+) To each $x \in \mathbb{F}$ there corresponds a unique element $(-x) \in \mathbb{F}$ such that x + (-x) = 0: For any $f = a + b\sqrt[3]{2} + c\sqrt[3]{4}$, the additive inverse is $-f = -a - b\sqrt[3]{2} - c\sqrt[3]{4}$, such that

$$f + (-f) = 0.$$

5. (·) Multiplication is Commutative:

For any $f = a_1 + b_1\sqrt[3]{2} + c_1\sqrt[3]{4}$ and $g = a_2 + b_2\sqrt[3]{2} + c_2\sqrt[3]{4}$,

$$f \cdot g = g \cdot f$$

holds by the commutativity of multiplication in \mathbb{Q} .

6. (\cdot) Multiplication is Associative:

The associativity of multiplication in $\mathbb Q$ ensures that

$$(f \cdot g) \cdot h = f \cdot (g \cdot h)$$

for any $f, g, h \in \mathbb{Q}[\sqrt[3]{2}]$.

7. (·) There is a unique non-zero element $1 \in \mathbb{F}$ such that x1 = x, for every $x \in \mathbb{F}$: The element $1 = 1 + 0\sqrt[3]{2} + 0\sqrt[3]{4}$ is the multiplicative identity since for any element $f = a + b\sqrt[3]{2} + c\sqrt[3]{4}$,

$$f \cdot 1 = f$$

and $1 \cdot f = f$.

8. (·) To each non-zero $x \in \mathbb{F}$ there corresponds a unique element $x^{-1} \in \mathbb{F}$ such that $xx^{-1} = 1$:

For any non-zero element $f=a+b\sqrt[3]{2}+c\sqrt[3]{4}$, the inverse $f^{-1}\in\mathbb{Q}[\sqrt[3]{2}]$ exists (it can be computed by multiplying by conjugates and rationalizing the denominator, as done with similar algebraic numbers).

9. (\cdot , +) Multiplication distributes over Addition:

$$f \cdot (g+h) = f \cdot g + f \cdot h$$

4

holds by distributivity in Q.

Since $\mathbb{Q}[\sqrt[3]{2}]$ satisfies all the field axioms, it is a field.

(b) Let $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ denote the minimal subfield of \mathbb{C} which contains $\sqrt{2}$ and $\sqrt{3}$. Give an explicit description of this field (as a set) and show directly that it is a field.

1. (+) Commutativity:

Let
$$f = a_1 + b_1\sqrt{2} + c_1\sqrt{3} + d_1\sqrt{6}$$
 and $g = a_2 + b_2\sqrt{2} + c_2\sqrt{3} + d_2\sqrt{6}$. Then:

$$f + g = (a_1 + a_2) + (b_1 + b_2)\sqrt{2} + (c_1 + c_2)\sqrt{3} + (d_1 + d_2)\sqrt{6}.$$

Since addition in \mathbb{Q} is commutative, we have:

$$f + g = g + f.$$

Hence, addition is commutative.

2. (+) Associativity:

Let $f = a_1 + b_1\sqrt{2} + c_1\sqrt{3} + d_1\sqrt{6}$, $g = a_2 + b_2\sqrt{2} + c_2\sqrt{3} + d_2\sqrt{6}$, and $h = a_3 + b_3\sqrt{2} + c_3\sqrt{3} + d_3\sqrt{6}$. Then:

$$(f+g)+h = \left((a_1+a_2)+(b_1+b_2)\sqrt{2}+(c_1+c_2)\sqrt{3}+(d_1+d_2)\sqrt{6}\right)+(a_3+b_3\sqrt{2}+c_3\sqrt{3}+d_3\sqrt{6})$$

Simplifying:

$$(f+q)+h=(a_1+a_2+a_3)+(b_1+b_2+b_3)\sqrt{2}+(c_1+c_2+c_3)\sqrt{3}+(d_1+d_2+d_3)\sqrt{6}.$$

Similarly:

$$f + (g+h) = a_1 + (a_2 + a_3) + b_1 \sqrt{2} + (b_2 + b_3) \sqrt{2} + c_1 \sqrt{3} + (c_2 + c_3) \sqrt{3} + d_1 \sqrt{6} + (d_2 + d_3) \sqrt{6}.$$

Therefore, (f + g) + h = f + (g + h), so addition is associative.

3. (+) There is a unique element 0 element $\in \mathbb{F}$:

The element $0 = 0 + 0\sqrt{2} + 0\sqrt{3} + 0\sqrt{6}$ is the additive identity. For any element $f = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$, we have:

$$f + 0 = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}.$$

Thus, 0 is the additive identity.

4. (+) To each $x \in \mathbb{F}$ there corresponds a unique element $(-x) \in \mathbb{F}$ such that x + (-x) = 0: For any element $f = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$, the additive inverse is $-f = -a - b\sqrt{2} - c\sqrt{3} - d\sqrt{6}$. We check:

$$f + (-f) = (a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) + (-a - b\sqrt{2} - c\sqrt{3} - d\sqrt{6}) = 0.$$

Hence, every element has an additive inverse.

5. (·) Multiplication is Commutative:

Let $f = a_1 + b_1\sqrt{2} + c_1\sqrt{3} + d_1\sqrt{6}$ and $g = a_2 + b_2\sqrt{2} + c_2\sqrt{3} + d_2\sqrt{6}$. Then the product $f \cdot g$ is:

$$f \cdot g = (a_1 + b_1\sqrt{2} + c_1\sqrt{3} + d_1\sqrt{6}) \cdot (a_2 + b_2\sqrt{2} + c_2\sqrt{3} + d_2\sqrt{6}).$$

Expanding this expression:

 $f \cdot g = a_1 a_2 + b_1 b_2 \cdot 2 + c_1 c_2 \cdot 3 + d_1 d_2 \cdot 6 +$ other terms involving cross-products.

Since multiplication in \mathbb{Q} is commutative, we conclude that $f \cdot g = g \cdot f$.

6. (·) Multiplication is Associative:

For any three elements $f,g,h\in\mathbb{Q}[\sqrt{2},\sqrt{3}]$, the product $f\cdot(g\cdot h)=(f\cdot g)\cdot h$ follows by the associativity of multiplication in \mathbb{Q} and the rules of multiplying algebraic terms.

7. (·) There is a unique non-zero element $1 \in \mathbb{F}$ such that x1 = x, for every $x \in \mathbb{F}$: The element $1 = 1 + 0\sqrt{2} + 0\sqrt{3} + 0\sqrt{6}$ is the multiplicative identity. For any $f = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$, we have:

$$f \cdot 1 = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$$
.

Therefore, 1 is the multiplicative identity.

8. (·) To each non-zero $x \in \mathbb{F}$ there corresponds a unique element $x^{-1} \in \mathbb{F}$ such that $xx^{-1} = 1$:

For any non-zero element $f=a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}$, there exists an inverse $f^{-1}\in\mathbb{Q}[\sqrt{2},\sqrt{3}]$. For example, for $\sqrt{2}$, the inverse is $\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$, and similar procedures can be applied to compute the inverses of other elements in $\mathbb{Q}[\sqrt{2},\sqrt{3}]$.

9. $(\cdot, +)$ Multiplication distributes over Addition:

For any $f, g, h \in \mathbb{Q}[\sqrt{2}, \sqrt{3}]$, we verify that multiplication distributes over addition:

$$f \cdot (g+h) = f \cdot g + f \cdot h.$$

This holds by expanding both sides and applying the distributive property in \mathbb{Q} .

Hence, $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ satisfies all the field axioms and is indeed a field.

Problem 4 (Problem 3 from Extra Problems). Show that there exist fields of 9 and 25 elements. Can you show that any two fields with 9 elements are isomorphic? (Hint: Use an element which behaves like $\sqrt{2}$).

Showing existence of a field with 9 elements:

The number of elements in a finite field is always a power of a prime. To find a field with 9 elements, we note that $9 = 3^2$. Hence, we need to construct a finite field \mathbb{F}_{3^2} , a field with $3^2 = 9$ elements.

One way to construct a finite field of size p^n is to start with the prime field \mathbb{F}_p , where p is a prime, and then find an irreducible polynomial of degree n over \mathbb{F}_p .

The elements of \mathbb{F}_3 are $\{0,1,2\}$, and we need to find a polynomial of degree 2 over \mathbb{F}_3 . One such polynomial is $f(x)=x^2+1$, which is irreducible over \mathbb{F}_3 because it has no roots in \mathbb{F}_3 . That is, none of the elements 0,1,2 satisfy $x^2+1=0$.

Therefore, we can construct the field \mathbb{F}_9 as $\mathbb{F}_3[x]/(x^2+1)$. The elements of this field are of the form a+bx, where $a,b\in\mathbb{F}_3$, and $x^2=-1$ (which is equivalent to $x^2=2$ in \mathbb{F}_3).

Thus, the elements of \mathbb{F}_9 are $\{0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2\}$.

Now showing existence of a field with 25 elements:

Similarly, 25 is 5^2 , so we are looking for a finite field with 25 elements, $\mathbb{F}_{25} = \mathbb{F}_{5^2}$. The elements of the prime field \mathbb{F}_5 are $\{0, 1, 2, 3, 4\}$, and we need to find an irreducible polynomial of degree 2 over \mathbb{F}_5 .

One such polynomial is $f(x) = x^2 + 2$, which is irreducible over \mathbb{F}_5 because it has no roots in \mathbb{F}_5 . Thus, we can construct \mathbb{F}_{25} as $\mathbb{F}_5[x]/(x^2+2)$.

Any two fields with 9 elements are isomorphic:

It is true that any two finite fields of the same size are isomorphic. Consider the field $\mathbb{F}_9 = \mathbb{F}_3[x]/(x^2+1)$. The element x in this field satisfies $x^2=-1$, which corresponds to $x^2=2$ in \mathbb{F}_3 . This element x behaves like $\sqrt{2}$ in the sense that its square gives 2. Therefore, any other field of 9 elements will have an element that satisfies the same relation, and this gives a way to construct an isomorphism between any two fields of 9 elements by mapping the corresponding elements that satisfy $x^2=2$.

Thus, any two fields with 9 elements are isomorphic.

Problem 5. Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.

(Hw)	Equivalently, interchange of any two ares in any matrix can be accomplished by a finite chain of EROs of type 1 & 2.
	Proof (A)
	Wife $A = \left(\begin{array}{c} \vdots \end{array}\right) \in \mathbb{M}_{m \in n}(\mathbb{T})$ $A : \left(\begin{array}{c} A_1 \\ \vdots \\ A_m \end{array}\right) \xrightarrow{\text{add } R \ge 10 \ R1} \left(\begin{array}{c} A_1 + A_2 \\ A_2 \end{array}\right) \xrightarrow{\text{add } -R_1} \left(\begin{array}{c} A_1 + A_2 \\ A_3 \end{array}\right) \xrightarrow{\text{add } -R_1} \left(\begin{array}{c} A_1 + A_2 \\ A_3 \end{array}\right)$
	$(A_{m})_{add} R2 to R1 $ A_{m}
	add R2 to Riggin Am CIR2 Am

Problem 6. Let

$$\begin{bmatrix} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{bmatrix}$$

For which (y_1, y_2, y_3, y_4) does the system of equations AX = Y have a solution?

To find the values of (y_1, y_2, y_3, y_4) for which the system AX = Y has a solution, we need to check the consistency of the augmented matrix [A|Y].

$$\begin{bmatrix}
3 & -6 & 2 & -1 & y_1 \\
-2 & 4 & 1 & 3 & y_2 \\
0 & 0 & 1 & 1 & y_3 \\
1 & -2 & 1 & 0 & y_4
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & \frac{2}{3} & -\frac{1}{3} & \frac{y_1}{3} \\ -2 & 4 & 1 & 3 & y_2 \\ 0 & 0 & 1 & 1 & y_3 \\ 1 & -2 & 1 & 0 & y_4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & \frac{2}{3} & -\frac{1}{3} & \frac{y_1}{3} \\ 0 & 0 & \frac{7}{3} & \frac{7}{3} & \frac{3y_1+y_2}{3} \\ 0 & 0 & 1 & 1 & y_3 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{y_4-y_1}{3} \end{bmatrix}$$

Therefore, the system has a solution if and only if the right-hand side (y_1, y_2, y_3, y_4) satisfies the consistency conditions that come from the row reduction. This will result in specific relations between y_1, y_2, y_3, y_4 .

Problem 7. Let

$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & c_{22} \end{bmatrix}$$

be a 2 \times 2 matrix. We inquire when it is possible to find 2 \times 2 matrices A and B such that C = AB - BA. Prove that such matrices can be found if and only if $C_{11} + C_{22} = 0$.

Let $A=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}$ and $B=\begin{bmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{bmatrix}$ be 2×2 matrices. We want to find conditions on C such that there exist A and B satisfying

$$C = AB - BA$$
.

First, compute the matrix product AB:

$$AB = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}.$$

Now compute BA:

$$BA = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\ b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22} \end{bmatrix}.$$

The commutator AB - BA is then:

$$AB - BA = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} - (b_{11}a_{11} + b_{12}a_{21}) & a_{11}b_{12} + a_{12}b_{22} - (b_{11}a_{12} + b_{12}a_{22}) \\ a_{21}b_{11} + a_{22}b_{21} - (b_{21}a_{11} + b_{22}a_{21}) & a_{21}b_{12} + a_{22}b_{22} - (b_{21}a_{12} + b_{22}a_{22}) \end{bmatrix}.$$

Simplifying the components:

$$AB - BA = \begin{bmatrix} (a_{12}b_{21} - a_{21}b_{12}) & (a_{11}b_{12} - a_{12}b_{11} + a_{12}b_{22} - a_{22}b_{12}) \\ (a_{21}b_{11} - a_{11}b_{21} + a_{22}b_{21} - a_{21}b_{22}) & (a_{21}b_{12} - a_{12}b_{21}) \end{bmatrix}.$$

For AB - BA = C, the following conditions must hold:

$$C_{11} = a_{12}b_{21} - a_{21}b_{12}, \quad C_{12} = a_{11}b_{12} - a_{12}b_{11} + a_{12}b_{22} - a_{22}b_{12},$$

$$C_{21} = a_{21}b_{11} - a_{11}b_{21} + a_{22}b_{21} - a_{21}b_{22}, \quad C_{22} = a_{21}b_{12} - a_{12}b_{21}.$$

Notice that $C_{11} + C_{22} = (a_{12}b_{21} - a_{21}b_{12}) + (a_{21}b_{12} - a_{12}b_{21}) = 0$. Thus, for the commutator to produce a matrix C, it must be true that

$$C_{11} + C_{22} = 0.$$

If $C_{11} + C_{22} = 0$, we need to show that there exist matrices A and B such that C = AB - BA

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} C_{11} & 0 \\ C_{21} & C_{22} \end{bmatrix}.$$

Then,

$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} C_{11} & 0 \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} C_{21} & C_{22} \\ 0 & 0 \end{bmatrix},$$

and

$$BA = \begin{bmatrix} C_{11} & 0 \\ C_{21} & C_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & C_{11} \\ 0 & C_{21} \end{bmatrix}.$$

Therefore,

$$AB - BA = \begin{bmatrix} C_{21} & C_{22} \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & C_{11} \\ 0 & C_{21} \end{bmatrix} = \begin{bmatrix} C_{21} & C_{22} - C_{11} \\ 0 & -C_{21} \end{bmatrix}.$$

Since $C_{11} + C_{22} = 0$, this simplifies to

$$AB - BA = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = C.$$

Thus, such matrices A and B can be found if and only if $C_{11} + C_{22} = 0$.

Problem 8. Let A be an $n \times n$ (square) matrix. Prove the following two statements:

(a) If A is invertible and AB = 0 for some $n \times n$ matrix B, then B = 0.

Since A is invertible, there exists an inverse matrix A^{-1} such that $A^{-1}A = I$, where I is the identity matrix. Given that AB = 0, we can multiply both sides of this equation on the left by A^{-1} :

$$A^{-1}(AB) = A^{-1}0.$$

Using the associative property of matrix multiplication, this simplifies to:

$$(A^{-1}A)B = 0,$$
$$IB = 0.$$

$$B=0$$
.

Therefore, if A is invertible and AB = 0, then B = 0.

(b) If A is not invertible, then there exists an $n \times n$ matrix B such that AB = 0 but $B \neq 0$.

If A is not invertible, then there exists a nonzero vector $\mathbf{v} \in \mathbb{R}^n$ such that:

$$A\mathbf{v} = 0.$$

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be the standard basis vectors of \mathbb{R}^n . We can define the matrix B by taking its columns to be multiples of the vector \mathbf{v} . For instance, let:

$$B = \begin{bmatrix} \mathbf{v} & 0 & \dots & 0 \end{bmatrix}$$
.

This matrix is nonzero (since $\mathbf{v} \neq 0$), and the claim is that AB = 0, we have:

$$AB = A \begin{bmatrix} \mathbf{v} & 0 & \dots & 0 \end{bmatrix} = \begin{bmatrix} A\mathbf{v} & A0 & \dots & A0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix} = 0.$$

Therefore, AB = 0 and $B \neq 0$.

Problem 9. An $n \times n$ matrix A is called **upper triangular** if $A_{ij} = 0$ for i > j, that is, if every entry below the main diagonal is 0. Prove that an upper-triangular (square) matrix is invertible if and only if every entry on its main diagonal is different from 0.

Let A be an $n \times n$ upper-triangular matrix. We aim to show that A is invertible if and only if all diagonal entries $A_{ij} \neq 0$ (where i = j).

$$(\Longrightarrow)$$

Suppose every diagonal entry of A is nonzero, i.e., $A_{ii} \neq 0$ for all i. To show that A is invertible, we can compute its determinant.

The determinant of an upper-triangular matrix is the product of its diagonal entries. That is,

$$\det(A) = A_{11}A_{22}\cdots A_{nn}.$$

Since each $A_{ii} \neq 0$, we have $\det(A) \neq 0$. A square matrix is invertible if and only if its determinant is nonzero. Therefore, A is invertible.

$$(\Longleftrightarrow)$$

Now, suppose that A is invertible. Then $det(A) \neq 0$, and since the determinant of an upper-triangular matrix is the product of its diagonal entries, we have:

$$\det(A) = A_{11}A_{22}\cdots A_{nn}.$$

For this product to be nonzero, each diagonal entry A_{ii} must be nonzero. Therefore, $A_{ii} \neq 0$ for all i = 1, 2, ..., n.

Hence, an upper-triangular matrix is invertible if and only if all of its diagonal entries are nonzero.

Problem 10. Prove the following generalization of Exerice 6. If A is an $m \times n$ matrix, then AB is not invertible.

Exercise 6: Suppose A is a 2×1 matrix and that B is a 1×2 matrix. Prove that C = AB is not invertible.

Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. We want to prove that the matrix AB, where AB is an $m \times p$ matrix, is not invertible.

Dimensions of the matrix:

The matrix product AB has dimensions $m \times p$. For AB to be invertible, it must be a square matrix, meaning m = p.

Invertibility Conditions:

A matrix M is invertible if and only if it is a square matrix and its determinant is non-zero.

Case 1: $m \neq p$:

If $m \neq p$, then AB is not a square matrix, and hence cannot be invertible.

Case 2: m=p

If m=p, then AB is a square matrix of dimensions $m\times m$. We need further analysis to determine invertibility in this case.

Rank:

The rank of the matrix product AB is constrained by the ranks of A and B:

$$rank(AB) \le min(rank(A), rank(B)).$$

Since A is $m \times n$, the rank of A is at most $\min(m, n)$.

Since B is $n \times p$, the rank of B is at most $\min(n, p)$.

If either A or B has rank less than $\min(m, p)$, then $\operatorname{rank}(AB)$ will be less than m (which is the dimension of the square matrix AB).

No Invertibility:

If A has rank less than n (which is possible if A is not of full column rank), then rank(AB) is less than $\min(m, n)$. Similarly, if B has rank less than n (which is possible if B is not of full row rank), then rank(AB) is less than $\min(n, p)$.

In either case, if either A or B does not have full rank, AB will not have full rank. Since AB must have full rank to be invertible (in the case where m=p), it follows that AB cannot be invertible if either A or B lacks full rank.

Problem 11. Let A be an $m \times n$ matrix. Show that by means of a finite number of elementary row and/or column operations one can pass from A to a matrix R which is both 'row-reduced echelon' and 'column-reduced echelon,' i.e., $R_{ij} = 0$ if $i \neq j$, $R_{ii} = 1$, $1 \leq i \leq r$, $R_{ii} = 0$ if i > r. Show that R = PAQ, where P is an invertible $m \times m$ matrix and Q is an invertible $n \times n$ matrix.

Start with the matrix A. Apply elementary row operations to convert A into its row-reduced echelon form (RREF), denoted as A'. This process can be represented by left-multiplying A by an invertible matrix P, so:

$$A' = PA$$

where P is the matrix of row operations.

Next, apply elementary column operations to A' to achieve column-reduced echelon form (CREF), denoted as R. This can be represented by right-multiplying A' by an invertible matrix Q, so:

$$R = A'Q$$

where Q is the matrix of column operations.

Combining these transformations, we have:

$$R = (PA)Q = PAQ$$

Thus, R = PAQ, where P and Q are invertible matrices representing the row and column operations, respectively. This confirms that any matrix A can be transformed into a matrix R that is both row-reduced echelon form and column-reduced echelon form using a finite number of elementary operations.