Announcements

- Homework 3 was due today.
- Homework 4 has been posted.
- Solutions to HW1 have been posted; more coming soon.
- Grader contact information is in the course syllabus, posted in "Overview" section on D2L.

Today's Lecture

- Feasibility of learning (part 1)
 - Understanding ML and its feasibility
 - Generalization error
 - Marbles and bins
 - Hoeffding inequality

FEASIBILITY OF LEARNING (part 1)
WHAT CAN MAKE A ML PRUBLEM FEASIBLE? (DERS) - IF TRAINING DATA IS CINEARLY SEPARABLE
DER - IF TRAINING DATA IS CINEARLY SEPARABLE
- IF WE CAN CONSTRUCT A SUITABLE
OBJECTIVE FCN.
- IF WE MAKE ASSUMPTION (S) ON THE
PROBLEM OR DATA.
P.g.: ##BLACK SQUARES IS SIGNIFICAN
OR, 3 SOME UNDERLYING CONCEPT THAT

DEFINES CLASS LABELS.
CONCEPT LEARNING EXAMPLE:
- ASSUMPTION: 3 A SIMPLE UNDERLYING
CONCEPT THAT DEFINES THE CORRECT
HYPOTHESIS. (e.g., POWERS OF 4).
PULLNOWIAL CURVE FIT EXAMPLE:
77.
- LIMIT THE COMPLEXITY OF X
THE MODEL. [eg.: BY d SMALL ENOUGH;

A Learning puzzle

$$f = -1$$

$$f = +1$$

$$\dot{z} = \dot{z}$$

SUMMARY:
TECHNIQUES THAT MIGHT ENABLE LEARNING
- USING A MODEL
- EMPOSING OUR OWN BIAS OR PRIOR KNOWLEDGE
- MAKING OTHER ASSUMPTIONS.
(e.g., TYPE OF CONCEPT THAT IS LIKERY;
OR DOMAIN OF PROBLEM (eg., MATH
OR ENGINEERING NS. ART FOR NUMBER
GAME).

IN M L TERMS, WE CAN DOTHIS BY: — CHOICE OF HYPOTHESIS SET 24.
- USE OF BAYESIAN PRIORS.
- DESIGN OF FEATURE SET, OR DESIGNING
THE ALGORITHM THAT LEADING THE SET OF
PEATURES.

GENERALIZATION ERROR LET $E_{in}(h) = IN-SAMPLE ERROR$ (ERROR ON TRAINING DATA DT) $= \frac{1}{N} \sum_{n=1}^{N} \left[h(x_n) + f(x_n) \right]$ hypoth. True TARGET (e.g., $f(x_n) = y_n$. or $\hat{y}(x_n)$)

$$E_{OUT}(h) = OUT-OF-SAMPLE ERROR
(ERROR ON UNKNOWNS)
= P[h(x) \div f(x)]

Etest(h) = ERROR ON TEST SET Dest
= \lambda \sum \left[h(x) \div f(x)]

Test \lambda \left[EATest]

WE CAN MERSURE Ein AND ETEST; WE WANT
TO KNOW EDUT.$$

MARBLES AND BINS, M AND V

10001	PICK A MARBLE
0006	LET M= P(red)
U D &	THEN I- M= P (green)
	M IS UNKNOWN TO US.

DRAW N DATA POINTS INDEPENDENTLY (WITH REPLACEMENT) Zi, i=1, d, ..., N.

EST.
$$M = \frac{\# RED MARBUES}{N} \stackrel{\triangle}{=} V$$

HOW ACCURATE IS OUR ESTIMATE?

E IS OUR "TO LERANCE"

V IS THE ONLY RANDOM QUANTITY.

HOEFFOING INEQ. AN	ID FEAS. OF LEARNING
CONSIDER: C=2	cuass problem.
FOR A HUPOTHESIS	1 (e.g., h(x) = sgn {w Tz}}
	WITH W SPECIFIED).
0000	
0	
MARBLE	M.L.
BIN SCENARIO	SCENARIO
MORTHMAN MR VILLE BOOK AND	

ENTIRE SETS OF	SAMPLES FROM ALL PEATURE SPACE
MARBLES IN BIN	X, DRAWN ACCORDING
	to p(x).
cowr of Marble:	
GREEN	$h(x_i) = f(x_i)$ (CORRECT)
RED	$(x_i) \neq f(x_i)$ (ERROR)
	(ERROR)
SET OF MARBLES DRA	WN (TRAINING) DATASET (DTr., DTest, Dvalid)
	(DTr. Drest, Dvalid)

D = 90 OF MARBLES DRAWN Ein(h), OR THAT ARE RED ETEST(h),
M=P[marble is red] Eout(h)
NOTE THAT THE MARBLE'S COLOR DEPENDS ON h.
HOEFFOING INEQ.:
P[IM-V >E] < 2e-2E°N FOR ANY E?
P[Eout(h)-Ein(h) >E] < 2e FOR AME>
$P[E_{out}(h) - E_{in}(h) > \epsilon] \leq 2e^{-2\epsilon^2N}$ For AM ϵ ?
P[Eout (h) - Ein (h) > E] \leq 2e2N FOR AME > NOTE: DATASET & (TRAINING, TEST, ETC.), DRAWN
NOTE: DATASET & (TRAINING, TEST, ETC.), DRAWN
NOTE: DATASET & (TRAINING, TEST, ETC.), DRAWN

0,

· · · · · · · · · · · · · · · · · · ·
PROCEDURE FOR HOEFFDING (NED. TO BE VALID: 1. Specify h. (=), with p(x), petermin 2. DRAW & THE BIN OF MARBLESS 3. GET BOUNDS ON EOUT (N), GIVEN ED (N)
ML PARADIGM => [. COLLECT DATASET & 2. CONSTRUCT HUPOTHESIS SET 24 = \[\frac{2}{2} \hm_{\text{m}} \\ \frac{3}{m} \] 3. TRAIN TO FIND hy (best hypothesis).
4. CALCULATE Ein (hg) OR ETEST (hg). 5. WOULD REALLY WANT TO KNOW: FOUT (hg