Fundamentos de Redes de Computadores

Tema 6 – Meios de Transmissão Prof. Fernando W Cruz

Overview

- Guiados uso de cabos
- Não guiados meio livre (wireless)
- Características e qualidade determinadas pelo meio e pelo sinal que trafega no meio
- Para meios guiados, o meio é o mais importante
- Para meios não guiados, a largura de banda produzida pela antena é mais importante
- As questões-chave relacionam-se à taxa de dados desejada e a distância que se quer alcançar

Questões de Projeto

- Largura de Banda (Bandwidth)
 - —Quanto maior a largura de banda, maior a taxa de dados
- Deve-se considerar as imperfeições na tranmissão
 - —Atenuação
- Interferências
- Número de receptores
 - —No meio guiado
 - -Mais receptores (multi-point) introduzem mais atenuação

Espectro Electromagnético

ELF = Extremely low frequency
VF = Voice frequency

VLF = Very low frequency

F = Low frequency

MF = Medium frequency
HF = High frequency

VHF = Very high frequency

UHF = Ultrahigh frequency

SHF = Superhigh frequency

EHF = Extremely high frequency

Meios de Transmissão Guiados

- Par Trançado
- Cabo Coaxial
- Fibra Ótica

Características de Transmissão de Meios Guiados

	Frequency Range	Typical Attenuation	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 dB/km @ 1 kHz	50 μs/km	2 km
Twisted pairs (multi-pair cables)	0 to 1 MHz	0.7 dB/km @ 1 kHz	5 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	186 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km

Twisted Pair

- -Separately insulated
- -Twisted together
- —Often "bundled" into cables
- Usually installed in building during construction

(a) Twisted pair

Par Trançado - Aplicações

- Meio mais comum
- Usado na rede de telefonia
 - Entre a residência e o escritório da operadora (loop local)
- Dentro de prédios
 - Para ligar ramais a centrais de PBX (private branch exchange)
- Em redes locais (LAN's)
 - —Aqui taxas de 10Mbps, 100Mbps e acima (gigabit Ethernet por exemplo)

Par Trançado - Prós e Contras

- Barato
- Fácil de trabalhar
- Baixa taxa de dados (dependendo do contexto)
- Usado em distâncias curtas

Par Trançado – Características de Transmissão

- Analógico
 - —Amplificadores a cada 5km ou 6km
- Digital
 - Uso de sinais analógicos ou sinais digitais
 - —Repetidores a cada 2 ou 3km
- Distância limitada
- Largura de banda limitada (1MHz)
- Taxa de dados limitada (depende da categoria)
- Suscetível a interferências e ruídos

Unshielded and Shielded TP

- Unshielded Twisted Pair (UTP)
 - —Cabo de telefone simples
 - —Mais barato
 - —Fácil de instalar
 - —Sofre de interferências externas
- Shielded Twisted Pair (STP)
 - —Proteção que reduz a interferência (Metal braid or sheathing)
 - —Mais caro
 - —Mais difícil de manusear (mais denso, peso maior)

UTP Categorias

- Cat 3
 - Vai até 16MHz
 - Linhas de voz encontrada em escritórios de um modo geral
 - Comprimento do trançado entre 7.5 cm e 10 cm
- Cat 4
 - Limite de 20 MHz
- Cat 5
 - Limite de 100MHz
 - Comumente pre-instalado em prédios mais novos
 - Comprimento do trançado entre 0.6 cm e 0.85 cm
- Cat 5E (Enhanced) see tables (Stallings)
- Cat 6
- Cat 7

Tipos de Par Trançado

- (a) Categoria 3 UTP.
- (b) Categoria 5 UTP.

Obs.: Uso de conector RJ-11 em telefonia e RJ-45 em LAN's

Cabo Coaxial

- -Outer conductor is braided shield
- -Inner conductor is solid metal
- -Separated by insulating material
- -Covered by padding

Aplicações de Cabo Coaxial

- Meio mais versátil
- Distribuição de sinais de Televisão
- Transmissão de telefonia em enlaces de longa distância
 - —Pode carregar 10.000 chamadas de voz simultaneamente
 - -Obs.: Esses enlaces têm sido trocados por fibra ótica
- Em distâncias curtas, interliga computadores (LAN's)

Cabo Coaxial – Características de Transmissão

- Analógico
 - —Amplificadores a cada poucos kilômetros (4/5 Km)
 - —Bom para frequências altas
 - -Largura de banda na faixa dos 500MHz
- Digital
 - -Repetidores a cada 1km
 - —Bom para altas taxas de dados

Visão interna de um Cabo Coaxial

- •Em redes de TV a cabo, terminadores de 75 OHM's
- •Em redes locais, cabo com terminação 50 OHM's

Obs.: Uso de conectores BNC em redes locais

Community Antenna Television

Uso de Cabo Coaxial 75 Ohms para distribuição de sinais de TV. Obs.: Para Internet, necessidade de amplificadores bidirecionais para garantir tráfego up/down

Cabeamento em Redes Locais Ethernet e Fast Ethernet

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Cabeamento em LAN's Ethernet (2)

Três tipos de cabeamento mais comuns

(a) 10Base5, (b) 10Base2, (c) 10Base-T.

Cabeamento em LAN's Gigabit Ethernet (2)

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Cabeamento em LAN's (Gigabit Ethernet) feito com uso de par trançado e fibra ótica (visto mais adiante)

Cabeamento Estruturado em LAN's

- Estratégia para facilitar a manutenção da estrutura de ligação das estações
 - Em princípio, assume-se uma capilarização de cabos com tomadas distribuídas em pontos estratégicos do prédio.
 - Normalmente esses cabos convergem para um patch panel instalado em um rack que facilita a codificação/organização dos cabos e tomadas de rede
 - Existem recomendações específicas para instalação de cabos

Optical Fiber

Optical Fiber - Benefits

- Greater capacity
 - —Data rates of hundreds of Gbps
- Smaller size & weight
- Lower attenuation
- Electromagnetic isolation
- Greater repeater spacing
 - —10s of km at least

Optical Fiber - Applications

- Long-haul trunks
- Metropolitan trunks
- Rural exchange trunks
- Subscriber loops
- LANs

Optical Fiber - Transmission Characteristics

- Act as wave guide for 10¹⁴ to 10¹⁵ Hz
 - —Portions of infrared and visible spectrum
- Light Emitting Diode (LED)
 - —Cheaper
 - —Wider operating temp range
 - —Last longer
- Injection Laser Diode (ILD)
 - —More efficient
 - —Greater data rate
- Wavelength Division Multiplexing

Optical Fiber Transmission Modes

(c) Single mode

(a) Twisted pair (based on [REEV95])

(b) Coaxial cable (based on [BELL90])

(c) Optical fiber (based on [FREE02])

(d) Composite graph

Wireless Transmission Frequencies

- 2GHz to 40GHz
 - —Microwave
 - —Highly directional
 - —Point to point
 - —Satellite
- 30MHz to 1GHz
 - —Omnidirectional
 - —Broadcast radio
- 3 x 10¹¹ to 2 x 10¹⁴
 - —Infrared
 - —Local

Antennas

- Electrical conductor (or system of..) used to radiate electromagnetic energy or collect electromagnetic energy
- Transmission
 - Radio frequency energy from transmitter
 - Converted to electromagnetic energy
 - By antenna
 - Radiated into surrounding environment
- Reception
 - Electromagnetic energy impinging on antenna
 - Converted to radio frequency electrical energy
 - Fed to receiver
- Same antenna often used for both

Radiation Pattern

- Power radiated in all directions
- Not same performance in all directions
- Isotropic antenna is (theoretical) point in space
 - —Radiates in all directions equally
 - —Gives spherical radiation pattern

Parabolic Reflective Antenna

- Used for terrestrial and satellite microwave
- Parabola is locus of point equidistant from a line and a point not on that line
 - Fixed point is focus
 - Line is directrix
- Revolve parabola about axis to get paraboloid
 - Cross section parallel to axis gives parabola
 - Cross section perpendicular to axis gives circle
- Source placed at focus will produce waves reflected from parabola in parallel to axis
 - Creates (theoretical) parallel beam of light/sound/radio
- On reception, signal is concentrated at focus, where detector is placed

Parabolic Reflective Antenna

(b) Cross-section of parabolic antenna showing reflective property

Antenna Gain

- Measure of directionality of antenna
- Power output in particular direction compared with that produced by isotropic antenna
- Measured in decibels (dB)
- Results in loss in power in another direction
- Effective area relates to size and shape
 - —Related to gain

Terrestrial Microwave

- Parabolic dish
- Focused beam
- Line of sight
- Long haul telecommunications
- Higher frequencies give higher data rates

Satellite Microwave

- Satellite is relay station
- Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency
- Requires geo-stationary orbit
 - —Height of 35,784km
- Television
- Long distance telephone
- Private business networks

Satellite Point to Point Link

(a) Point-to-point link

Satellite Broadcast Link

Broadcast Radio

- Omnidirectional
- FM radio
- UHF and VHF television
- Line of sight
- Suffers from multipath interference
 - -Reflections

Infrared

- Modulate noncoherent infrared light
- Line of sight (or reflection)
- Blocked by walls
- e.g. TV remote control, IRD port

Wireless Propagation

- Signal travels along three routes
 - Ground wave
 - Follows contour of earth
 - Up to 2MHz
 - AM radio
 - —Sky wave
 - Amateur radio, BBC world service, Voice of America
 - Signal reflected from ionosphere layer of upper atmosphere
 - (Actually refracted)
 - Line of sight
 - Above 30Mhz
 - May be further than optical line of sight due to refraction
 - More later...

Ground Wave Propagation

(a) Ground-wave propagation (below 2 MHz)

Sky Wave Propagation

(b) Sky-wave propagation (2 to 30 MHz)

Line of Sight Propagation

(c) Line-of-sight (LOS) propagation (above 30 MHz)

Refraction

- Velocity of electromagnetic wave is a function of density of material
 - $-\sim 3 \times 10^8$ m/s in vacuum, less in anything else
- As wave moves from one medium to another, its speed changes
 - Causes bending of direction of wave at boundary
 - Towards more dense medium
- Index of refraction (refractive index) is
 - Sin(angle of incidence)/sin(angle of refraction)
 - Varies with wavelength
- May cause sudden change of direction at transition between media
- May cause gradual bending if medium density is varying
 - Density of atmosphere decreases with height
 - Results in bending towards earth of radio waves

Optical and Radio Horizons

Line of Sight Transmission

- Free space loss
 - Signal disperses with distance
 - Greater for lower frequencies (longer wavelengths)
- Atmospheric Absorption
 - Water vapour and oxygen absorb radio signals
 - Water greatest at 22GHz, less below 15GHz
 - Oxygen greater at 60GHz, less below 30GHz
 - Rain and fog scatter radio waves
- Multipath
 - Better to get line of sight if possible
 - Signal can be reflected causing multiple copies to be received
 - May be no direct signal at all
 - May reinforce or cancel direct signal
- Refraction
 - May result in partial or total loss of signal at receiver

Multipath Interference

(a) Microwave line of sight

(b) Mobile radio

Required Reading

Stallings Chapter 4