

#### Sistemas Distribuídos

INF2545

Noemi Rodriguez noemi@inf.puc-rio.br





#### Sistemas Distribuídos

- o que são: "coleção de máquinas independentes que aparecem para o usuário como um único sistema coerente"
  - que tipo de usuário?
    - » programador é usuário?
  - o que é "coerente"?
    - » o conceito de transparência
- um sistema distribuído é uma coleção de máquinas independentes que são usadas em conjunto para executar uma tarefa ou prover um serviço.





#### mensagem circulada no DEC SRC em 1987:

Received: by jumbo.dec.com (5.54.3/4.7.34)

id AA09105; Thu, 28 May 87 12:23:29 PDT

Date: Thu, 28 May 87 12:23:29 PDT

From: lamport (Leslie Lamport)

To: src-t

Subject: distribution

There has been considerable debate over the years about what constitutes a distributed system. It would appear that the following

definition has been adopted at SRC:

A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable.

. . .





### para que queremos SDs?

- custo e desempenho
  - mais explorado em "programação concorrente e paralela" mas tb aqui
- escalabilidade
  - facilidade de aumentar recursos
- distribuição inerente
  - dispersão geográfica e social
  - compartilhamento de recursos
- confiabilidade
  - redundância





#### ... mas...

- rede tem que ser levada em consideração
  - desempenho e falhas
- segurança
  - distribuição introduz problemas inexistentes em sistemas centralizados
- complexidade de software





# arquiteturas de interesse

- multicomputadores: cada um com sua memória e processadores, interligados por redes
  - construção de aplicação distribuída sobre recursos de redes de SO pode ser árdua







#### middleware

 serviços e abstrações que facilitam o desenvolvimento de aplicações distribuídas







# outros cenários







# IoT: arquiteturas



- interesse como sistema distribuído:
  - limitação de recursos traz "mistura de camadas"
  - insegurança
  - falhas





#### estudo de sistemas distribuídos

- livros clássicos de sistemas distribuídos
  - comunicação entre processos
  - sincronização e coordenação
  - replicação
  - sistemas de arquivos
  - segurança
  - confiabilidade

 nesse curso, ênfase também na programação de SDs e em graus de acoplamento distintos





## programação

- requisitos de diferentes ambientes
  - redes locais e geográficas
  - baixo e alto acoplamento
    - linguagens e bibliotecas
    - protocolos abertos
- facilidades de programação importantes para diferentes classes de aplicações
  - ou mesmo para diferentes interações dentro da mesma aplicação
- necessidades
  - modelos de programação suportados:
    - » cliente-servidor, p2p, computação móvel, ...
  - · comportamento diante de falhas
  - escala e acoplamento





#### programa do curso

- Comunicação: troca de mensagens. chamada remota de procedimentos e métodos. publish/subscribe. filas de mensagens. comunicação em grupo.
- Arquiteturas: clliente-servidor, p2p, eventos.
  - arquitetura interna: concorrência, threads e eventos
- Sincronização e Coordenação: relógios lógicos. ordenação de eventos, exclusão mútua. roteamento
- Replicação e consistência
- Tolerância a Falhas: comunicação confiável. recuperação de falhas. redundância.
- Outros:
  - localização
  - segurança
  - arquivos





#### discussão

- facilidade de desenvolvimento
- desempenho
- transparência
- escalabilidade
- flexibilidade





# avaliação

- 4 trabalhos (implementação) grupo ou individual
  - RPC
  - replicação (Raft)
  - roteamento/coordenação
  - integração de diferentes plataformas
- 4 resumos e críticas de artigos individuais
- sobre prazos de entrega:
  - Cada aluno terá direito a 8 dias de atraso por semestre.





## Bibliografia

- livros SDs:
  - M. van Steen e A. Tanenbaum. Distributed Systems. 2017. <a href="www.distributed-systems.net">www.distributed-systems.net</a>. [REQUISITAR CÓPIA DIGITAL]
  - Keong Lua, Heather Yu, John Buford, 2009. P2P Networking and Applications.
    Morgan Kaufmann.
  - Rachid Guerraoui, Luis Rodrigues. 2006. Introduction to Reliable Dist. Programming. Springer.
- surveys e artigos
  - alguns "clássicos":
    - » Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, and Philip S. Yu. 2002. The state of the art in locally distributed Web-server systems. *ACM Computing Surveys*, 34(2), jun 2002.
    - » Amir Yahyavi and Bettina Kemme. 2013. Peer-to-peer architectures for massively multiplayer online games: A Survey. *ACM Computing Surveys* 46, 1, Article 9 (July 2013)
    - » outros...





# introdução

• processos e comunicação

