Serial No. 09/546,399

Attorney Docket No.: 105456-101US1

## **Amendments to the Claims**:

BI

- 1. (Currently Amended). A method for calculating the similarity of at least one chemical compound to at least one chemical probe, the at least one chemical probe including at least another chemical compound, the method comprising the steps of:
  - (a) <u>creating utilizing</u> at least one chemical descriptor for each <u>compound in of</u> a <u>collection</u> <u>plurality</u> of compounds, <u>each descriptor comprising a row of a molecule-descriptor matrix X</u>;
  - (b) representing at least one chemical descriptor for each compound as at least one a column vector comprising of the at least one molecule-descriptor frequencies matrix, the entries of the molecule-descriptor matrix comprising a mathematical function of the weighting of each descriptor for each compound;
  - (c) representing the collection of compound the at least one vector as a first vector of a molecule descriptor matrix;
  - (d) performing a singular value decomposition (SVD) of the molecule-descriptor matrix to produce at least one singular matrix resultant matrices;
  - (e) (d) generating at least one creating a chemical probe descriptor vector for the at least one chemical probe, the entries of the chemical probe descriptor vector comprising a mathematical function of the weighting of each descriptor for each chemical probe;
  - (f) (e) using the at least one singular matrix of the resultant matrices to transform calculate the at least one chemical probe descriptor of the at least one chemical probe into a first coordinate system at least substantially similar to a second coordinate system of the at least one compound; similarity between the at least one chemical probe and at least one compound of the molecule descriptor matrix; and
    - (g) calculating the similarity of transformed probes to the compounds in the collection, and
  - (h) (f) outputting a list of at least a subset of compounds in the collection ranked in order of providing an output indicating the similarity to between the at least one chemical probe and the at least one probe compound.

Serial No. 09/546,399

Attorney Docket No.: 105456-101US1

2. (Currently Amended). The method as recited in claim 1, wherein said step of creating each of the at least one descriptor includes generating chemical descriptors comprise at least one of an atom pair descriptor and a topological torsion descriptors from chemical connection tables of the collection of compounds descriptor.

## 3. (Canceled).

4. (Currently Amended). The method as recited in claim 1, wherein said molecule descriptor matrix is denoted as X, wherein said step of performing singular value decomposition includes step comprises the steps of:

generating singular resultant matrices as  $[[X = P\Sigma Q^T]]$  of rank r P,  $\Sigma$  and  $Q^T$ , such that molecule-descriptor matrix  $X = P\Sigma Q^T$ , wherein

 $\underline{P}$  is a  $m \times r$  matrix, called the left singular matrix (r is the rank of X), and its columns are the eigenvectors of  $XX^T$  corresponding to nonzero eigenvalues;

Q is a  $n \times r$  matrix, called the right singular matrix, whose columns are the eigenvectors of  $X^T X$  corresponding to nonzero eigenvalues; and

 $\Sigma$  is a rxr diagonal matrix whose nonzero elements,  $\sigma_1, \sigma_2, ..., \sigma_r$  called singular values, are the square roots of the eigenvalues and have the property that  $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r$ , and

a reduced dimension approximation of  $X_1$  defined as  $X_k = P_k \Sigma_k Q^T_k$  k << r, where, P and Q are the left and right singular matrices representing correlations among descriptors and compounds respectively, and  $\Sigma$  represents the singular values,

wherein the at least one produced singular matrix includes a pseudo object denoted as  $O_F$  and is calculated from a probe F by  $O_F = F^T P_k \Sigma^{-1}_k$ , and



Serial No. 09/546,399

Attorney Docket No.: 105456-101US1

wherein said step of calculating the similarity between the pseudo-object  $O_F$  and the compounds in collection is computed by taking a dot product of a normalized vector of  $O_F$ , with each normalized row of  $[[P_k]]$ .

5. (Currently Amended). The method as recited to claim 4, wherein said similarity ealculating step includes calculating cosine between each pair of vectors between the at least one chemical probe and at least one compound of the molecule descriptor matrix is computed in accordance with the following steps:

generating a reduced dimension approximation of X, defined as  $X_k = P_k \Sigma_k Q^T_k$ , k < r; generating a pseudo-object, denoted as  $O_F$ , where  $O_F = F^T P_k \Sigma^{-1}_k$ , and where F is a molecule-descriptor vector for the at least one chemical probe; and

taking a dot product of  $O_E$  with one or more columns of  $O_k^T$  respectively corresponding to the at least one compound.

- 6. (Currently Amended). The method as recited in claim [4]  $\underline{5}$ , wherein said step of performing singular value decomposition includes deriving the reduced dimensional approximation of X by setting the k+1 through r singular values of [[ $\Sigma$ ]]  $\underline{\sigma}_{k+1}$  to  $\underline{\sigma}_r$  are equal to zero for  $\underline{\Sigma}_k$ .
- 7. (Currently Amended). The method as recited in claim [4]  $\underline{5}$ , wherein similarities of the pseudo object to compounds in the collection is calculated by setting the first k singular values of  $[\underline{\Sigma}]$   $\underline{\sigma}_l$  to  $\underline{\sigma}_k$  are equal to one for  $\underline{\Sigma}_k$ .
- 8. (Currently Amended). The method as recited in claim 7, wherein  $\underline{\Sigma}_k$  said setting step includes using comprises an identity matrix I.
  - 9. 21. (Canceled).

Attorney Docket No.: 105456-101US1

- 22. (New). The method according to claim 1, wherein in said representing step the weighting comprises a frequency.
- 23. (New). The method according to claim 22, wherein in said creating step the weighting comprises a frequency.
  - 24. (New). The method according to claim 5, wherein  $X_k$  is the least squared closest to X.
- 25. (New). A method for calculating the similarity between two chemical descriptors represented in a molecule-descriptor matrix X, comprising the steps of:
  - (a) utilizing at least one chemical descriptor for each of a plurality of compounds, each descriptor comprising a row of the molecule-descriptor matrix X;
  - (b) representing each compound as a column of the molecule-descriptor matrix, the entries of the molecule-descriptor matrix comprising a mathematical function of the weighting of each descriptor for each compound;
  - (c) performing a partial singular value decomposition (SVD) of the molecule-descriptor matrix to produce resultant matrices  $P_k$ ,  $\Sigma_k$ , and  $Q_k$ , such that partial matrix  $X_k = P_k \Sigma_k Q^T_k$ , is the least squares closest approximation of X for any given k, k < r, where r is the rank of the matrix X;
  - (d) calculating the similarity between two chemical descriptors i and j by computing the dot product between row i and row j of the matrix  $P_k$ ; and
    - (e) providing an output indicating the similarity between the two descriptors.

Serial No. 09/546,399

Attorney Docket No.: 105456-101US1

- 26. (New). A method for calculating the similarity of at least one chemical descriptor and at least one chemical probe, comprising the steps of:
  - (a) utilizing at least one chemical descriptor for each of a plurality of compounds, each descriptor comprising a row of a molecule-descriptor matrix X;
  - (b) representing each compound as a column of the molecule-descriptor matrix, the entries of the molecule-descriptor matrix comprising a mathematical function of the weighting of each descriptor for each compound;
  - (c) performing a partial singular value decomposition (SVD) of the molecule-descriptor matrix to produce resultant matrices  $P_k$ ,  $\Sigma_k$ , and  $Q_k$ , such that partial matrix  $X_k = P_k \Sigma_k Q^T_k$ , is the least squares closest approximation of X for any given k, k < r, where r is the rank of the matrix X;
  - (d) creating a chemical probe descriptor vector,  $F_1$ , for the at least one chemical probe, the entries of the chemical probe descriptor vector comprising a mathematical function of the weighting of each descriptor for each chemical probe;
    - (e) creating a pseudo-object  $O_{F1}$ , where  $O_{F1} = F_1^T P_k \Sigma^{-1}_k$ ;
  - (f) calculating the similarity between  $O_{F1}$  and at least one chemical descriptor i by computing the dot product between row i of matrix  $P_k$  and  $O_{F1}$ ; and
  - (g) providing an output indicating the similarity between the chemical probe and the at least one chemical descriptor.



Serial No. 09/546,399

Attorney Docket No.: 105456-101US1

- 27. (New). A method for calculating the similarity of at least one chemical probe,  $F_1$ , and at least one other chemical probe,  $F_2$ , comprising the steps of:
  - (a) utilizing at least one chemical descriptor for each of a plurality of compounds, each descriptor comprising a row of a molecule-descriptor matrix X;
  - (b) representing each compound as a column of the molecule-descriptor matrix, the entries of the molecule-descriptor matrix comprising a mathematical function of the weighting of each descriptor for each compound;
  - (c) performing a partial singular value decomposition (SVD) of the molecule-descriptor matrix to produce resultant matrices  $P_k$ ,  $\Sigma_k$ , and  $Q_k$ , such that partial matrix  $X_k = P_k \Sigma_k Q^T_k$ , is the least squares closest approximation of X for any given k, k < r, where r is the rank of the matrix X;
  - (d) creating a chemical probe descriptor vector for at least one chemical probe,  $F_1$ , the entries of the chemical probe descriptor vector comprising a mathematical function of the weighting of each descriptor for each chemical probe;
    - (e) creating a pseudo-object  $O_{F1}$ , where  $O_{F1} = F_1^T P_k \Sigma^{-1}_k$ ;
    - (f) creating a pseudo-object  $O_{F2}$ , where  $O_{F2} = F_2^T P_k \Sigma^{-1}_k$ ;
  - (g) calculating the similarity between the chemical probe descriptor vector  $F_1$  and the other chemical descriptor probe  $F_2$  by computing the dot product between  $O_{F1}$  and  $O_{F2}$ ; and
  - (h) providing an output indicating the similarity between the chemical probe,  $F_1$ , and chemical probe,  $F_2$ .

7

Serial No. 09/546,399

Attorney Docket No.: 105456-101US1

- 28. (New). A method for calculating the similarity of at least one chemical compound to at least one chemical probe, comprising the steps of:
  - (a) creating at least one descriptor for each compound in a text source;
- (b) representing each compound in the text source as at least one mathematical function of the weighting of each descriptor for each compound;
- (c) creating a chemical probe descriptor for the at least one chemical probe, the entries of the chemical probe descriptor comprising a mathematical function of the weighting of each descriptor for each chemical probe;
- (d) using the text source and the chemical probe descriptor for the at least one chemical probe to calculate a mathematical similarity between the text source and the chemical descriptor for the at least one chemical probe; and
- (e) providing an output indicating the similarity between the at least one chemical probe and the at least one chemical compound.
- 29. The method as recited in claim 2, wherein each of the at least one chemical descriptors further comprise at least one of a charge pair descriptor, a hydrophobic pair descriptor, an inherent atom property descriptor, and a geometry descriptor.

