ARITHMETIC

Chapther 19 Session I

POTENCIACIÓN EN N

$$a^n = \underline{a.a.a.....}$$

POTENCIACIÓN

Sea

Donde:

P: potencia

k:base

n: exponente

∀ n ∈ **Z**⁺

Criterios de inclusión y exclusión

Según su ultima cifra

k	0	1	2	3	4	5	6	7	8	9
k ²	0	1	4	9	6	5	6	9	4	1
k ³	0	1	8	7	4	5	6	3	2	9

Por su descomposición canónica

Cuadrado perfecto k ²	Cubo perfecto k ³
14400 = 2 ⁶ .3 ² .5 ²	27000 = 2 ³ .3 ³ .5 ³
765625 = 5 ⁶ .7 ²	91125 = 3 ⁶ .5 ³

Por su terminación en cifra 0

Ejm

Cuadrado perfecto	Cubo perfecto
k ²	k ³
14400 = ₂ 6. ₃ 2. ₅ 2	27000 = 2 ³ .3 ³ .5 ³
14400	27000
n ² 2β ceros	n ³ 3β ceros

Por su terminación en cifra 5

Ejm

1. Calcule la suma de los 5 RESOLUCION primeros cuadrados perfectos positivos.

Sumar los 5 primeros cuadrados perfectos positivos

RPTA:

2. Calcule la suma de todos RESOLUCION los cubos perfectos de dos cifras.

$$10 \le k^3 < 100$$

$$k^3 = 3^3; 4^3$$

$$k^3 = 27;64$$

RPTA:

HELICO PRACTICE

3. ¿Cuántos cuadrados perfectos hay entre 49 y 324?

RESOLUCION

$$49 < k^2 < 324$$

$$7^2 < k^2 < 18^2$$

$$k^2 = 8^2; 9^2; 10^2; ...; 17^2$$

cuadrados perfectos:

$$17 - 8 + 1 =$$

4. ¿Cuántos cubos perfectos hay desde 64 hasta 729?

RESOLUCION

$$64 \le k^3 \le 729$$

$$4^3 \le k^3 \le 9^3$$

$$k^3 = 4^3; 5^3; 6^3; ...; 9^3$$

cubos perfectos:

তিয়

HELICO PRACTICE

5. Si a4 es un cuadrado perfecto y 12b es un cubo perfecto, calcule a+b.

RESOLUCION

Del dato:

$$\overline{a4} = k^2$$

Como termina en 4, podemos decir:

$$8^2 = 64 = \overline{a^4} \implies a = 6$$

Del dato:

$$\overline{12b} = n^3$$

Como empieza con 12, podemos decir:

$$n = 5$$
 $5^3 = 125$ $= \overline{12b}$ $b = 5$

Nos piden:

$$a+b = 6 + 5 =$$

RPTA: 11

HELICO PRACTICE

En el conflicto militar ruso - ucraniano se observó que se desplazó $2^4 \times 5^2$ soldados ucranianos para patrullar una pequeña área de la frontera entre ambos países, pero debido a la tensa situación que se vive se decidió aumentar las tropas. ¿Cuál es el menor número entero por el que se debería multiplicar a dicho número de soldados para

convertirlo en un cubo perfecto? $M = 2^4 \times 5^2 \times N$

Si:

$$\mathbf{A} = \alpha^a.\beta^b.\gamma^c \Rightarrow \begin{array}{c} \mathbf{CUBO} \\ \mathbf{PERFECTO} \end{array}$$

Entonces:

a, b y c deben ser múltiplos de 3

RESOLUCION

$$M = 2^4 \times 5^2 \times 2^2 \times 5$$

$$M = 2^6 \times 5^3$$

$$CUBO$$
PERFECTO

$$N = 2^2 \times 5 = 20$$

7. En un desfile por fiestas RESOLUCION **Patrias** los alumnos forman un batallón de tal manera que la cantidad de filas y columnas son iguales. Si la cantidad de alumnos está entre 110 y 130; ¿cuántos alumnos faltan para que haya una fila y una columna más en el batallón?

Se cumple:

N° de alumnos formados

El único cuadrado que cumple es:

$$a^2 = 11^2 = 121$$
 alumnos

Se aumentar 1 fila y 1 columna,

$$(a+1)^2 = 12^2 = 144$$
 alumnos

