GEOMETRÍA I.

Relación de problemas 2: ESPACIOS VECTORIALES

Doble Grado Ing. Informática y Matemáticas

1. En \mathbb{R}^3 se considera la suma de elementos coordenada a coordenada y el producto por escalares reales dado por:

$$a \star (x, y, z) = (a \cdot x, a^2 y, a^3 \cdot z),$$

para todo $a \in \mathbb{R}$ y $(x,y,z) \in \mathbb{R}^3$. Determínese si \mathbb{R}^3 con estas operaciones satisface las propiedades de un espacio vectorial real.

2. Sea X un conjunto no vacío y V un espacio vectorial sobre un cuerpo K. Denotamos por F(X,V) al conjunto de las aplicaciones $f:X\to V$. En F(X,V) se definen la suma y el producto por elementos de K siguientes:

$$\begin{split} (f+g)(x) &= f(x) + g(x), & \forall x \in X, & \forall f,g \in F(X,V), \\ (a \cdot f)(x) &= a \cdot f(x), & \forall x \in X, & \forall a \in K, & \forall f \in F(X,V). \end{split}$$

Demostrar que, con estas operaciones, F(X,V) es un espacio vectorial sobre K.

- 3. Sean V_1 y V_2 dos espacios vectoriales sobre un mismo cuerpo K.
 - a) Demostrar que el conjunto $V_1 \times V_2 = \{(v_1, v_2) | v_1 \in V_1, v_2 \in V_2\}$ es un espacio vectorial sobre K cuando definimos la suma y el producto por elementos de K como:

$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2),$$

 $a \cdot (v_1, v_2) = (a \cdot v_1, a \cdot v_2).$

- b) Supongamos que U_i es un subespacio vectorial de V_i para cada i=1,2. Demostrar que $U_1 \times U_2$ es un subespacio vectorial de $V_1 \times V_2$. ¿Es todo subespacio vectorial de $V_1 \times V_2$ de la forma $U_1 \times U_2$ donde cada U_i es un subespacio vectorial de V_i ?
- 4. En cada uno de los siguientes casos estudiar si U es o no un subespacio vectorial de V:

a)
$$V = \mathbb{R}^2$$
, $U = \{(x, y) \in \mathbb{R}^2 | x = y^2 \}$.

b)
$$V = \mathbb{R}^2$$
, $U = \{(1,0), (0,0)\}$.

c)
$$V = M_2(\mathbb{R}), \quad U = \left\{ \begin{pmatrix} a & b \\ -b & c \end{pmatrix} | a, b, c \in \mathbb{R} \right\}.$$

d)
$$V = K[x], \quad U_n = \{p(x) \in K[x] | \operatorname{grado}(p(x)) = n\} \cup \{0\} \ (n \in \mathbb{N}).$$

e)
$$V = \mathbb{R}^4$$
, $U = \{(x, y, z, t) \in \mathbb{R}^4 | 2x - y = 3\}$.

$$f) \ V = \mathbb{R}^n, \quad U = \mathbb{Q}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n | x_1, \dots, x_n \in \mathbb{Q}\}.$$

g)
$$V = \mathbb{R}^5$$
, $U = \{(x, y, z, t, s) \in \mathbb{R}^5 \mid -y = 2x + z\}$.

h)
$$V = \mathbb{R}^3$$
, $U = \{(x, y, z) \in \mathbb{R}^3 | x^2 yz = 0\}$.

i)
$$V = \mathbb{R}^3$$
, $U = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z \ge 0\}$.

$$j) V = \mathbb{R}^3, \quad U = \{(x, y, z) \in \mathbb{R}^3 | x = y = z\}.$$

k)
$$V = \mathbb{R}^5$$
, $U = \{(0,0,1,-1,2), (3,2,\sqrt{5},-8,32)\}.$

l)
$$V = \mathbb{R}^5$$
, $U = L((0,0,1,-1,2),(3,2,\sqrt{5},-8,32))$.

$$m)\ V = M_2(\mathbb{R}), \quad U = \left\{ \left(egin{array}{cc} a & 1+a \\ 0 & 0 \end{array} \right) / \ a \in \mathbb{R} \right\}.$$

n)
$$V = F(\mathbb{R}, \mathbb{R}), \quad U = \{ f \in F(\mathbb{R}, \mathbb{R}) \mid f''(x) + f(x) = 0, \forall x \in \mathbb{R} \}.$$

$$\tilde{n}$$
) $V = M_n(K)$, $U = \{A \in M_n(K) | A \text{ es diagonal} \}$.

o)
$$V = M_n(K)$$
, $U = \{A \in M_n(K) | A \text{ es triangular superior} \}$ (una matriz $A = (a_{ij})$ en $M_n(K)$ es triangular superior si $a_{ij} = 0$ siempre que $i > j$).

5. En cada uno de los siguientes casos decidir si el vector v del espacio vectorial V pertenece o no al subespacio L(S) y, en caso afirmativo, expresar v como combinación lineal de S:

a)
$$V = \mathbb{R}^3$$
, $v = (0, 2, -5)$, $S = \{(1, -3, 2), (2, -4, -1), (1, -5, 7)\}$.

b)
$$V = \mathbb{R}^4$$
, $v = (9, -17, 10, -5)$, $S = \{(2, -1, 0, 0), (-1, 3, -2, 1)\}$.

c)
$$V = \mathbb{R}^4$$
, $v = (5,7,a,6)$, $S = \{(1,2,3,0), (1,1,1,2)\}.$

d)
$$V = M_2(\mathbb{C}), \quad v = \begin{pmatrix} i & 0 \\ 1 & -i \end{pmatrix}, \quad S = \left\{ \begin{pmatrix} 0 & 1 \\ i & 2i \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

e)
$$V = \mathbb{R}[x]$$
, $v = x^2 + x + 1$, $S = \{-x, x^2 + 1, x^3\}$.

6. Sea V un espacio vectorial sobre un cuerpo K. Demostrar los siguientes hechos:

- a) si $S \vee S'$ son subconjuntos no vacíos de V con $S \subseteq S'$ entonces $L(S) \subseteq L(S')$,
- b) L(S) = S si y sólo si S es un subespacio vectorial de V,
- c) si $U_i = L(S_i)$ para cada i = 1, ..., m, entonces $\sum_{i=1}^m U_i = L(\bigcup_{i=1}^m S_i)$.

Supongamos que $U_i = L(S_i)$, para cada i = 1, ..., m. ¿Es cierto que $\bigcap_{i=1}^m U_i = L(\bigcap_{i=1}^m S_i)$?

7. ¿Qué se puede decir sobre dos subespacios vectoriales de \mathbb{R}^n cuya suma es $\{0\}$? ¿Y cuya intersección es \mathbb{R}^n ?

- 8. En cada uno de los siguientes casos demostrar que U_1 y U_2 son subespacios vectoriales de V. Estudiar también si se cumple $V = U_1 \oplus U_2$.
 - a) $V = \mathbb{R}^3$, $U_1 = \{(x, y, z) \in \mathbb{R}^3 | x = z\}$, $U_2 = L((3, 0, 2))$.
 - b) $V = F(\mathbb{R}, \mathbb{R}), \quad U_1 = \{ f \in F(\mathbb{R}, \mathbb{R}) \mid f(-x) = f(x), \forall x \in \mathbb{R} \},$ $U_2 = \{ f \in F(\mathbb{R}, \mathbb{R}) \mid f(-x) = -f(x), \forall x \in \mathbb{R} \}.$
 - c) $V = \mathbb{R}_n[x]$, $U_1 = \{p(x) \in \mathbb{R}_n[x]/p(1) + p'(1) = 0\}$, $U_2 = \{p(x) \in \mathbb{R}_n[x] | p(0) + p''(0) = 0\}$ $(n \in \mathbb{N} \text{ y las primas ' y '' son derivadas})$.
 - d) $V = \mathbb{R}^3$, $U_1 = L((1,0,-1),(0,1,-1))$, $U_2 = \{(x,y,z) \in \mathbb{R}^3 \mid z = 0\}$. ¿De cuántas formas podemos escribir $v = u_1 + u_2$ con $v \in \mathbb{R}^3$, $u_1 \in U_1$ y $u_2 \in U_2$?
- 9. Consideremos en \mathbb{R}^4 los siguientes subespacios vectoriales:

$$U_1 = \{(x, y, z, t) \in \mathbb{R}^4 | x - y = 0, z - t = 0\},$$

$$U_2 = L((0, 1, 1, 0)),$$

$$U_3 = \{(x, y, z, t) \in \mathbb{R}^4 | x - y + z - t = 0\}.$$

Probar que $U_1 + U_2 = U_3$. ¿Se cumple que $U_3 = U_1 \oplus U_2$?

- 10. Sea $V = F(\mathbb{R}, \mathbb{R})$ el espacio vectorial real de las funciones $f : \mathbb{R} \to \mathbb{R}$. Analizar si la familia $S = \{f, g, h\}$ es linealmente independiente, donde $f(x) = x^2 + 1$, g(x) = 2x y $h(x) = e^x$.
- 11. Sea V un espacio vectorial sobre un cuerpo infinito K. Tomemos $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de V y $\{a_1, \dots, a_n\}$ una familia en K con $a_i \neq 0$ para cada $i = 1, \dots, n$. Demostrar que $\mathcal{B}' = \{a_1 \cdot v_1, \dots, a_n \cdot v_n\}$ es una base de V. Concluir que V tiene infinitas bases.
- 12. Sean V_1 y V_2 espacios vectoriales finitamente generados sobre un cuerpo K. Demostrar que el espacio vectorial producto $V_1 \times V_2$ definido en el ejercicio 3 es finitamente generado. Construir una base de $V_1 \times V_2$ a partir de bases de V_1 y de V_2 . Calcular $\dim_K(V_1 \times V_2)$.
- 13. Sea V un espacio vectorial complejo con $\dim_{\mathbb{C}}(V) = n$. Demostrar que V es un espacio vectorial real con $\dim_{\mathbb{R}}(V) = 2n$.
- 14. Sea V un espacio vectorial sobre un cuerpo K. Supongamos que $S = \{v_1, \dots, v_m\}$ es una familia de vectores de V. Demostrar que:
 - a) Si S es sistema de generadores de V y cumple la propiedad de que cuando se elimina cualquier vector de S la familia resultante no es un sistema de generadores de V, entonces S es una base de V.
 - b) Si *S* es linealmente independiente y cumple la propiedad de que cuando se añade a *S* cualquier vector de *V* la familia resultante es linealmente dependiente, entonces *S* es una base de *V*.

- 15. Describir todos los subespacios vectoriales de \mathbb{R}^2 y de \mathbb{R}^3 .
- 16. En \mathbb{R}^3 se consideran los subespacios vectoriales dados por:

$$U_1 = L((1, 1 - \alpha^2, 2), (1 + \alpha, 1 - \alpha, -2)),$$

$$U_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$$

Calcular todos los valores de $\alpha \in \mathbb{R}$ para los que $U_1 = U_2$.

- 17. Calcular una base y la dimensión de los subespacios vectoriales que aparecen en los apartados c), g) y \tilde{n}) del ejercicio 4.
- 18. Para cada uno de los subespacios vectoriales U del espacio vectorial V que aparecen a continuación calcular una base, la dimensión y un subespacio complementario:

a)
$$U = L((1, -2, 1, 0), (2, 3, -2, 1), (4, -1, 0, 1)), V = \mathbb{R}^4$$
.

b)
$$U = \{(x, y, z, t) \in \mathbb{R}^4 | x - 2y + z = 0, x + y + z + t = 0\}, \quad V = \mathbb{R}^4.$$

c)
$$U = \{p(x) \in \mathbb{R}_3[x] \mid p'(1) = 0\}, \quad V = \mathbb{R}_3[x] \quad (p'(1) \text{ es la derivada de } p(x) \text{ en } x = 1).$$

d)
$$U = \left\{ p(x) \in \mathbb{R}_2[x] \mid \int_0^1 p(x) \, dx = 0 \right\}, \quad V = \mathbb{R}_2[x].$$

- 19. Sea K un cuerpo en el que $2 \neq 0$. Calcular una base y la dimensión de los subespacios de matrices $S_n(K)$ y $A_n(K)$ (estudiar primero los casos particulares n = 2 y n = 3).
- 20. Sea K un cuerpo. Demostrar que si S es una familia de K[x] que no contiene dos polinomios con el mismo grado, entonces S es linealmente independiente. Deducir que si $\mathcal{B} = \{p_0(x), \dots, p_n(x)\}$ es una familia de K[x] de forma que $\operatorname{grado}(p_i(x)) = i$, para cada $i = 0, \dots, n$, entonces \mathcal{B} es una base de $K_n[x]$.
- 21. Encontrar bases \mathcal{B} y \mathcal{B}' del espacio vectorial $\mathbb{R}_2[x]$ en las que el polinomio p(x) = x + 1 cumpla que $p(x)_{\mathcal{B}} = (1,0,0)^t$ y $p(x)_{\mathcal{B}'} = (1,1,0)^t$.
- 22. En el espacio vectorial $V = \mathbb{R}_2[x]$ se consideran las bases $\mathcal{B} = (1, 1+x, 1+x+x^2)$ y $\mathcal{B}' = (1, x, x^2)$. ¿Qué relación existe entre las coordenadas de un polinomio $p(x) \in \mathbb{R}_2[x]$ con respecto a \mathcal{B} y \mathcal{B}' ? Encontrar $p(x) \in \mathbb{R}_2[x]$ tal que $p(x)_{\mathcal{B}} = (1, -2, 4)^t$.
- 23. En el espacio vectorial $M_2(\mathbb{C})$ se consideran las matrices:

$$A = \begin{pmatrix} i & 0 \\ 1 & -i \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -i \\ 1 & 2i \end{pmatrix}, \quad C = \begin{pmatrix} \alpha & 0 \\ 1 & -i \end{pmatrix}.$$

¿Para qué números $\alpha \in \mathbb{C}$ el subespacio U = L(A, B, C) de $M_2(\mathbb{C})$ tiene dimensión 2? Para tales valores calcular una base de U y las coordenadas de la matriz

$$v = \left(\begin{array}{cc} 2i - 1 & -i \\ 3 & 0 \end{array}\right)$$

con respecto a dicha base.

24. Se consideran los subespacios vectoriales de \mathbb{R}^4 dados por:

$$U_1 = L((3,6,1,0), (1,0,-1,2), (2,3,0,1)), \quad U_2 = L((2,0,-1,3), (3,3,-2,4)),$$

$$U_3 = \{(x,y,z,t) \in \mathbb{R}^4 \mid x-z=0\}, \quad U_4 = \{(x,y,z,t) \in \mathbb{R}^4 \mid x-2y+t=0, \ 3x+y+6z=0\}.$$

- a) Calcular una base y la dimensión de U_i , para cada i = 1, 2, 3, 4.
- b) Calcular una base y la dimensión de $U_1 \cap U_2$, $U_2 \cap U_4$ y $U_3 \cap U_4$.
- c) Calcular una base y la dimensión de $U_1 + U_2$, $U_2 + U_4$ y $U_3 + U_4$.
- 25. Sea $A = (a_{ij})$ una matriz en $M_n(\mathbb{R})$. Se define la *traza* de A como:

$$\operatorname{tr}(A) = a_{11} + a_{22} + \ldots + a_{nn} = \sum_{i=1}^{n} a_{ii}.$$

Para cada $n \in \mathbb{N}$, sea $U_n = \{A \in M_n(\mathbb{R}) \mid \operatorname{tr}(A) = 0\}$. Se pide lo siguiente:

- *a*) Demostrar que U_n es un subespacio vectorial de $M_n(\mathbb{R})$.
- b) Calcular una base y la dimensión de U_n cuando n = 2, 3.
- c) Calcular $U_2 \cap S_2(\mathbb{R})$ y $U_2 + S_2(\mathbb{R})$. ¿Es cierto que $M_2(\mathbb{R}) = U_2 \oplus S_2(\mathbb{R})$?
- 26. Decidir de forma razonada si las siguientes afirmaciones son verdaderas o falsas:
 - a) Existe en \mathbb{R} una estructura de espacio vectorial complejo.
 - b) Si U es un subespacio vectorial de V, entonces el conjunto $V U = \{v \in V \mid v \notin U\}$ es un subespacio vectorial de V.
 - c) Si K es un cuerpo, entonces los únicos subespacios vectoriales de K (como espacio vectorial sobre sí mismo) son los impropios.
 - d) En un espacio vectorial V, si dos planos vectoriales no son iguales entonces su intersección es una recta o el vector nulo.
 - e) En un espacio vectorial V la suma de dos rectas vectoriales es un plano vectorial.
 - f) Si V es un espacio vectorial y U es un subespacio vectorial suyo, entonces U + U = U.
 - g) El espacio vectorial real $F(\mathbb{R}, \mathbb{R})$ es finitamente generado.
 - h) \mathbb{R} no es finitamente generado como espacio vectorial sobre \mathbb{Q} .
 - i) Si V es un espacio vectorial sobre un cuerpo K y $S = \{v_1, \dots, v_m\}$ es un sistema de generadores de V, entonces todo vector $v \in V$ se expresa de forma única como combinación lineal de S.

- *j*) En un espacio vectorial V los vectores $\{u, v, w\}$ son linealmente independientes si y sólo si los vectores $\{u, u + v, u + v w\}$ también lo son.
- k) En \mathbb{R}^3 el subconjunto $U = \{(x, y, z) \in \mathbb{R}^3 | x 2y = 0\}$ es un plano vectorial. Además, la familia $\mathcal{B}_U = \{(0, 0, 2), (1, 1, 0)\}$ es una base de U.
- *l*) Sea V un espacio vectorial de dimensión finita con $V = U_1 \oplus U_2$. Si \mathcal{B}_1 y \mathcal{B}_2 son bases de U_1 y U_2 , entonces $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ es una base de V.
- m) Existe un subespacio U de \mathbb{R}^{12} con $\dim_{\mathbb{R}}(U) = 14$.
- n) Si U es un subespacio de K^n con $\dim_K(U) = 5$, entonces los vectores de U tienen por lo menos cinco coordenadas.
- \tilde{n}) Si V es un espacio vectorial sobre K con $\dim_K(V) = 7$, entonces cada sistema de generadores de V tiene por lo menos siete vectores.
- o) Existe un subespacio $U = L(v_1, v_2)$ de K^4 tal que $\dim_K(U) = 3$.
- p) Existe un subespacio U de \mathbb{R}^n que es solución de un sistema de ecuaciones lineales homogéneo con cuatro incógnitas y tal que $\dim_{\mathbb{R}}(U) = 5$.
- q) Si U_1 y U_2 son dos hiperplanos de V, entonces $U_1 = U_2$ o bien $U_1 + U_2 = V$.
- r) Sea V un espacio vectorial con $\dim_K(V) = n \ge 2$. Dado $v \in V$ con $v \ne 0$, y escalares $\{a_1, \ldots, a_n\}$ de K no todos nulos, existe al menos una base \mathcal{B} de V tal que las coordenadas de v en \mathcal{B} coinciden con los escalares dados.
- 27. Dado $k \in \mathbb{R}$, consideramos en \mathbb{R}^4 el subespacio:

$$U_k = L\{(0, -1, k, 3), (0, k, -2 - k, 3), (k - 2, -1, -2, 3)\}.$$

- a) Calcular $\dim_{\mathbb{R}}(U_k)$ en función de k. Determinar una base y unas ecuaciones cartesianas de U_k para cada $k \in \mathbb{R}$.
- b) Para k con $\dim_{\mathbb{R}}(U_k) = 2$, encontrar un subespacio W de \mathbb{R}^4 tal que $\mathbb{R}^4 = U_k \oplus W$. Determinar unas ecuaciones cartesianas para W.