Plot Graphs using python by Abul Hassan

· Bar chart using matplotlib library

```
In [4]: import matplotlib.pyplot as plt

# Data
x = ['Apples', 'Bananas', 'Oranges', 'Ananas', 'Mangoes']
y = [15,12,20,4,6]

# Create a bar chart
plt.bar(x, y)

# Add LabeLs and title
plt.xlabel('Fruit')
plt.ylabel('Quantity')
plt.title('Fruit Quantity Chart')

# Show the chart
plt.show()
```


Box Plot

```
In [15]: import matplotlib.pyplot as plt
```

```
# Data to plot
labels = ['Apples', 'Oranges', 'Bananas', 'Pears']
sizes = [30, 25, 20, 19]
colors = ['red', 'orange', 'yellow', 'green']

# Plot
plt.pie(sizes, labels=labels, colors=colors, startangle=90, autopct='%1.1f%%')
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.title('Fruit Distribution')
plt.show()
```

Fruit Distribution

• Box plot

```
import matplotlib.pyplot as plt
import numpy as np

# Generate some random data
data = np.random.normal(size=100)

# Create a figure and axis object
fig, ax = plt.subplots()

# Create the boxplot
ax.boxplot(data)

# Set the title and axis labels
ax.set_title('Boxplot Example')
ax.set_xlabel('Data')
ax.set_ylabel('Values')
```

```
# Show the plot plt.show()
```



```
In [19]: import numpy as np

# Define two matrices
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])

# Perform matrix multiplication
C = np.dot(A, B)

# Print the result
print(C)

[[19 22]
[43 50]]
```

• This code imports the numpy library using the import statement and then defines two matrices A and B using the np.array() function. The np.dot() function is then used to perform matrix multiplication between the two matrices and the result is stored in C. Finally, the result C is printed using the print() function.

```
import seaborn as sns
import matplotlib.pyplot as plt

boat = sns.load_dataset("titanic")
```

```
boat
sns.barplot(x="who",y="alone" , hue="sex", data=boat)
plt.title('TITANIC GRAPH')
plt.show()
```



```
In [18]: import seaborn as sns
import matplotlib.pyplot as plt

boat = sns.load_dataset("titanic")
boat
```

Out[18]:

		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	d
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	N
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	٨
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	٨
	86	0	2	male	27.0	0	0	13.0000	S	Second	man	True	٨
	87	1	1	female	19.0	0	0	30.0000	S	First	woman	False	
8	88	0	3	female	NaN	1	2	23.4500	S	Third	woman	False	٨
8	89	1	1	male	26.0	0	0	30.0000	С	First	man	True	
8	90	0	3	male	32.0	0	0	7.7500	Q	Third	man	True	Ν

891 rows × 15 columns

```
In [24]: import seaborn as sns
import matplotlib.pyplot as plt

boat = sns.load_dataset("titanic")
boat
sns.barplot(x="class",y="fare" , hue="sex", data=boat)
plt.title('TITANIC GRAPH')
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

boat = sns.load_dataset("titanic")
boat
sns.barplot(x="who",y="alone" , hue="sex", data=boat)
plt.title('TITANIC GRAPH')
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

boat = sns.load_dataset("titanic")
boat
sns.barplot(x="sex",y="alone" , hue="who", data=boat,ci=None)
plt.title('TITANIC GRAPH')
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

boat = sns.load_dataset("titanic")
boat
sns.barplot(x="sex",y="alone" , hue="who", data=boat ,order=["female","male"],color="r
# ci = confindence interval
plt.title('TITANIC GRAPH')
plt.show()
```


We can use colors of our own choice from seaborn library and check codes from google:

• color codes like: PRGn Reds PRGn RdBu Set1 Set2 Set3

Box Plot

```
import seaborn as sns
#from numpy import median
import matplotlib.pyplot as plt
import numpy
sns.set(style='whitegrid')
boat = sns.load_dataset("titanic")
boat
sns.boxplot(x="class",y="fare" ,data=boat)

# ci = confindence interval
plt.title('TITANIC GRAPH')
plt.show()
```



```
In [87]: import seaborn as sns
    sns.set(style='whitegrid')

tip = sns.load_dataset("tips")
tip
```

ut[87]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4
	•••				•••			
	239	29.03	5.92	Male	No	Sat	Dinner	3
	240	27.18	2.00	Female	Yes	Sat	Dinner	2
	241	22.67	2.00	Male	Yes	Sat	Dinner	2
	242	17.82	1.75	Male	No	Sat	Dinner	2
	243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [92]: import seaborn as sns
sns.set(style='whitegrid')

tip = sns.load_dataset("tips")
tip
sns.boxplot(x='day',y='tip',data=tip ,saturation=2)
```

Out[92]: <AxesSubplot:xlabel='day', ylabel='tip'>


```
In [100... # Catagorical variable draw on x-asis or write in hue=
import seaborn as sns
import pandas as pf
import numpy as np

tip = sns.load_dataset("tips")
tip
```

Out[100]:		total_bill	tip	sex	smoker	day	time	size
	0	16.99	1.01	Female	No	Sun	Dinner	2
	1	10.34	1.66	Male	No	Sun	Dinner	3
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4
	•••							
	239	29.03	5.92	Male	No	Sat	Dinner	3
	240	27.18	2.00	Female	Yes	Sat	Dinner	2
	241	22.67	2.00	Male	Yes	Sat	Dinner	2
	242	17.82	1.75	Male	No	Sat	Dinner	2
	243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [99]: # Numric variables draw on y-asis
import seaborn as sns
import pandas as pf
import numpy as np

tip = sns.load_dataset("tips")
tip.describe()
```

```
Out[99]:
                    total_bill
                                      tip
                                                 size
           count 244.000000 244.000000 244.000000
           mean
                   19.785943
                                2.998279
                                             2.569672
             std
                    8.902412
                                1.383638
                                             0.951100
             min
                    3.070000
                                1.000000
                                             1.000000
            25%
                                2.000000
                                             2.000000
                   13.347500
                                2.900000
                                             2.000000
            50%
                   17.795000
            75%
                   24.127500
                                3.562500
                                             3.000000
                   50.810000
                                10.000000
                                             6.000000
            max
```

file:///C:/Users/MEGA COMPUTER/Downloads/Bar_Pi_Box_Plots .html


```
import seaborn as sns
#sns.set(style='whitegrid')
tip=sns.load_dataset("tips")

sns.boxplot(y = tip['total_bill'])
sns.boxplot(x="day" ,y = "tip",data=tip)
```

Out[128]: <AxesSubplot:xlabel='day', ylabel='tip'>


```
In [143... #we can also use color picker from hex color
    import seaborn as sns
    #sns.set(style='whitegrid')
    tip=sns.load_dataset("tips")

    sns.boxplot(y = tip['total_bill'])
    sns.boxplot(x="tip" ,y = "day",hue='smoker',palette='Set3',dodge='true',color="blue",

Out[143]: <AxesSubplot:xlabel='tip', ylabel='day'>
```



```
In [169...
           import seaborn as sns
           import pandas as pf
           import numpy as np
           import matplotlib.pyplot as plt
           boat = sns.load_dataset("titanic")
           boat.head()
           sns.boxplot(x ="survived",
                       y ="age",
                       showmeans=True,
                       meanprops={"marker":"+",
                                 "markersize":"12",
                                 "markeredgecolor":"red"},
                       data=boat )
           # ci = confindence interval
           plt.title('TITANIC GRAPH')
           plt.show ()
```



```
import seaborn as sns
In [181...
          import pandas as pf
          import numpy as np
          import matplotlib.pyplot as plt
          sns.boxplot(x ="survived",
                       y ="age" ,
                       showmeans=True,
                       meanprops={"marker":"*",
                                 "markersize":"12",
                                 "markeredgecolor":"red"},
                       data=boat )
          #show labels
          plt.xlabel("How many survived"),
          plt.ylabel("Age(years)"),
          plt.title("Box plot of how many survived and how many died"),
          plt.show ()
```

