I Questions de cours

- 1 Exercice 31 banque CCINP:
- a) Déterminer une primitive de $x \mapsto \cos^4(x)$.
- b) Résoudre sur \mathbb{R} l'équation différentielle : $y''' + y = \cos^3(x)$ en utilisant la méthode de variation des constantes.
 - 2 Exercice 42 banque CCINP :

On considère les deux équations différentielles suivantes :

$$2xy' - 3y = 0 \quad (H)$$

$$2xy' - 3y = \sqrt{x} \quad (E)$$

- a) Résoudre l'équation (H) sur l'intervalle $]0; +\infty[$.
- b) Résoudre l'équation (E) sur l'intervalle $]0; +\infty[$.
- c) L'équation (E) admet-elle des solutions sur l'intervalle $[0; +\infty[$?
- 3 Exercice 75 banque CCINP :

On considère la matrice $A = \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$.

- a) Démontrer que A n'est pas diagonalisable.
- b) On note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A.

Trouver une base (v_1, v_2) de \mathbb{R}^2 dans laquelle la matrice de f est de la forme $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$. On donnera explicitement les valeurs de a, b et c.

c) En déduire la résolution du système différentiel

$$\begin{cases} x' = -x - 4y \\ y' = x + 3y \end{cases}$$

II Exercices

Exercice 1:

On cherche les fonctions $x:t\longmapsto x(t)$ solutions de l'équation différentielle :

$$4tx'' + 2x' - x = 0 \quad (*)$$

- 1 Vérifier que $s: t \longrightarrow \operatorname{sh}(\sqrt{t})$ est solution sur $]0; +\infty[$ de (*).
- 2 Déterminer les éventuelles solutions de (\ast) qui sont développables en série entière au voisinage de 0.
- 3 En déduire les solutions sur $]0; +\infty[$ de (*).

Exercice 2:

En formant une équation différentielle vérifiée par f, calculer la valeur de

$$f(x) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} e^{itx} dt.$$

On rappelle que $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$.

Exercice 3:

On considère l'équation différentielle :

$$(t^{2} + t)y'' + (3t + 1)y' + y = 0 \quad (E)$$

- 1 Déterminer la dimension de l'ensemble des solutions.
- 2 Chercher des solutions sous forme de série entière et donner la dimension de cet espace.

On considère la fonction f_0 définie sur $]-\infty;-1[\cup]-1;+\infty[$ par $f_0(t)=\frac{a_0}{1+t}$.

3 - On considère une fonction z et on pose $y = f_0 z$.

Montrer que z vérifie une équation différentielle d'ordre 2 et en déduire une expression.

4 - En déduire la structure de l'ensemble des solutions de E.

Soit
$$A = \begin{pmatrix} -1 & 0 & 2 \\ 3 & 4 & -3 \end{pmatrix}$$

On s'intéresse au système différentielle (S): X' = AX.

- 1 Montrer que $A I_3$ est nilpotente.
- 2 Calculer, pour tout $t \in \mathbb{R}$, $\exp(tA)$.
- 3 Résoudre (S) avec la condition initiale $X(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

$\underline{Exercice \ 5:}$

Pour $x \in \mathbb{R}$, on note sous réserve de convergence :

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!}$$

- 1 Montrer que f est définie sur \mathbb{R} .
- 2 Pour $x \in \mathbb{R}$, calculer f''(x) + f'(x) + f(x).
- 3 En déduire f(x) pour tout $x \in \mathbb{R}$.