

Schémas de subdivision uniformes

CALCUL DIRECT DE LA SURFACE LIMITE

L. Morlet, M. Neveu, S. Lanquetin, et C. Gentil LE2I - Université de Bourgogne Franche-Comté Jeudi 27 octobre 2017

- 1 Introduction
- 2 Patchs réguliers
- Patchs irréguliers
- A Résultats
- 6 Conclusion

LES SURFACES DE SUBDIVISION

© Digital Human Research Center

Définition

Outil de construction itérative de surfaces à partir :

- d'un maillage de contrôle;
- d'un schéma de subdivision.

Lucas MORLET 26 octobre 2017 2 / 25

CAS D'UTILISATION

Animation / jeu vidéo

© Pixar : Geri's Game

- très utilisées;
- faciles à modéliser;
- faciles à animer.

Conception par ordinateur

© Autodesk : 3DS Max

- peu utilisées;
- problème de maillage;
- problème d'intégration.

LA SURFACE LIMITE

ÉTAT DE L'ART SUR LE CALCUL DE LA SURFACE LIMITE (1/2)

1993 - Halstead

Calcul de la position d'un sommet du maillage sur la surface limite

1998 - Stam

Paramétrisation d'un morceau de la surface limite par la création de carreaux B-Splines bicubiques uniformes

ÉTAT DE L'ART SUR LE CALCUL DE LA SURFACE LIMITE (2/2)

2016 - Brainerd

Utilisation de la méthode de Stam avec des quad-trees adaptatifs pour l'utilisation dans le jeu vidéo

2017 - Notre méthode

Calcul direct d'une tesselation de la surface limite grâce au formalisme des Systèmes Itérés de Fonctions (IFS)

Lucas MORLET 26 octobre 2017 6 / 25

LES PATCHS

Définition

Ensemble de sommets formant un voisinage nécessaire et suffisant pour calculer un morceau de la surface limite.

Lucas MORLET 26 octobre 2017 7 / 25

PATCHS RÉGULIERS

- 1 Introduction
- 2 Patchs réguliers
- Patchs irréguliers
- A Résultats
- **6** Conclusion

Lucas MORLET 26 octobre 2017 8 / 25

LES SOUS-PATCHS RÉGULIERS

Lucas MORLET 26 octobre 2017 9 / 25

PATCHS RÉGULIERS

EXEMPLE DE MATRICE DE SUBDIVISION

$M_0 = \frac{1}{2}$	V B	ЕВ	F C	E C	E C	F C								F	Е	F
	A B	A C	A C	A B										С	С	
	В	С			В	С									С	С
	Α	Α			Α	Α										
	С	В			С	В	С	С								
	E	V	Ε	F	F	Ε	F	Ε	F							
	С	В	В	С				С	С							
	F	Ε	V	Ε				F	Е	F	Ε	F				
	С	С	В	В							С	С				
	E	F	Ε	V							F	Ε	F	Ε	F	
	С			В								С	С	В	С	
	A			Α										Α	Α	
	В			С	С									С	В	c
	\ A				Α										Α	A /

$$A = \frac{1}{4}$$

$$B = \frac{3}{8}$$

$$C = \frac{1}{16}$$

$$V = \frac{9}{16}$$

$$E = \frac{1}{16}$$

$$F = \frac{1}{64}$$

PATCHS RÉGULIERS

COMBINAISONS BARYCENTRIQUES

Les transformations étant contractantes, elles admettent un point-fixe.

Ce point fixe peut être calculé en appliquant une combinaison barycentrique sur le patch.

Cette combinaison barycentrique est le vecteur propre associé à la valeur propre 1.

$$\textit{B}_0 = \big(\tfrac{4}{9}, \tfrac{1}{9}, \tfrac{1}{36}, \tfrac{1}{9}, \tfrac{1}{9}, \tfrac{1}{36}, 0 \cdots 0, \tfrac{1}{36}, \tfrac{1}{9}, \tfrac{1}{36}\big)$$

AUTOMATE

EQUIVALENCE ENTRE LES ESPACES

Lucas MORLET 26 octobre 2017 13 / 25

ESPACE PARAMÉTRIQUE (CATMULL-CLARK)

Lucas MORLET 26 octobre 2017 14 / 25

ESPACE PARAMÉTRIQUE (LOOP)

Lucas MORLET 26 octobre 2017 15 / 25

- Introduction
- 2 Patchs réguliers
- Patchs irréguliers
- A Résultats
- Conclusion

Lucas MORLET 26 octobre 2017 16 / 25

LES SOUS-PATCHS IRRÉGULIERS

AUTOMATE COMPLET

- 1 Introduction
- 2 Patchs réguliers
- Patchs irréguliers
- 4 Résultats
- 6 Conclusion

SCHÉMAS QUADRILATÉRAUX

RÉSULTATS

RESTRICTION DE L'ESPACE PARAMÉTRIQUE

Catmull-Clark

Doo-Sabin

SCHÉMA DE LOOP

Sans restriction

Avec restriction

- Introduction
- 2 Patchs réguliers
- Patchs irréguliers
- A Résultats
- **6** Conclusion

Méthode actuelle

- gère de la même manière tous les schémas de subdivision classique;
- calcule directement la surface limite pour un niveau de détails choisi.

Futures extensions

- Schémas hybrides;
- Schémas de haut degré;
- Schémas non-uniformes :
- Schémas de type NURBS;
- Systèmes Itérés de Fonctions.

DES QUESTIONS?

© Pixar : Geri's Game