Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: José Samper

Curso: Álgebra II

Fecha: 13 de agosto de 2025

Ayudante: José Cuevas Barrientos

Sigla: MPG3201

Extensiones algebraicas

A lo largo de las ayudantías trataré de incluír comentarios o problemas especiales. Los problemas difíciles tendrán ojos asustados ••, los comentarios que son opcionales u omitibles tendrán ojos hastiados •• y los comentarios **importantes** tendrán ojos interesados ••.

1. General

- 1. Sea $k \supseteq \mathbb{F}_p$ una extensión algebraica (posiblemente infinita). Pruebe que todo elemento siempre de k tiene raíz p-ésima.
- 2. Sea \mathbb{F}_q un cuerpo con $q < \infty$ elementos.
 - a) Sea $f(x) \in \mathbb{F}_q[x]$ es irreducible. Pruebe que $f(x) \mid x^{q^n} x$ syss deg $f \mid n$.
 - b) Sea $\psi(d)$ la cantidad de polinomios irreducibles de grado d en $\mathbb{F}_q[x]$. Pruebe que

$$n\psi(n) = \sum_{d|n} \mu(d)q^{n/d},$$

donde $\mu(d)$ es la función de Möbius que vale 0 si $p^2 \mid d$ para algún primo p y vale $(-1)^m$ si $d = p_1 \cdot p_m$, donde p_j son primos distintos.

PISTA: Para el problema podría necesitar de la fórmula de inversión de Möbius.

2. Grados de extensiones

3. Sea Ω/k una extensión de cuerpos con extensiones intermedias $k \subseteq K, L \subseteq \Omega$. Pruebe que

$$[KL:k] \le [K:k][L:k],$$

y que se alcanza igualdad cuando [K:k] y [L:k] son coprimos.

4. Sea $f(x) \in k[x]$ un polinomio de grado n, sea K su cuerpo de escisión. Pruebe que $[K:k] \mid n!$

3. Extensiones (in)separables

Como se vio en clases, las extensiones en característica cero son todas separables, por lo que en esta sección k será un cuerpo de car k = p > 0.

- 5. Sea K/k una extensión algebraica con $p := \operatorname{car} k > 0$ y sea $\alpha \in K$.
 - a) Pruebe que si α es inseparable, entonces su polinomio minimal $f(x) \in k[x]$ satisface que $f(x) = g(x^p)$ para todo $g(x) \in k[x]$.
 - b) Pruebe que α es separable syss $k(\alpha) = k(\alpha^p)$.
- 6. Pruebe que si $f(x) \in k[x]$ es irreducible, entonces todas sus raíces (en su cuerpo de escisión) tienen la misma multiplicidad y esta es una potencia de p.
- 7. Sea K/k una extensión algebraica de cuerpos. Un elemento $\alpha \in K$ se dice **puramente inseparable** si su polinomio minimal $f(x) \in k[x]$ es una potencia del monomio $x \alpha$.
 - a) Empleando el ejercicio anterior pruebe que $\alpha \in K$ es puramente inseparable syss $\alpha^{p^e} \in k$ para algún $e \geq 1$.
 - b) Pruebe que si $a \in k \setminus k^p$, entonces el polinomio $x^{p^e} a$ es irreducible para $e \in \mathbb{N}$.
 - c) Pruebe que

 \odot

 $K_{\text{ins}} = \{ \alpha \in K : \alpha \text{ es puramente inseparable} \}$

es un subcuerpo de K.

Referencias

1. Lang, S. *Algebra* (Springer-Verlag New York, 2002). *Correo electrónico*: josecuevasbtos@uc.cl