Szervomotorok

Agócs Norbert és Nagy Dániel

2020. szeptember 8.

Tartalom

- Ismétlés
- Ismétlő feladatok
- 3 Programozás alapok: A for ciklus
- Feladatok
- 5 Arduino alapok: SG90 Micro Servo
- 6 Szótár

Tartalom

- Ismétlés
- Ismétlő feladatok
- ③ Programozás alapok: A for ciklus
- 4 Feladatok
- 5 Arduino alapok: SG90 Micro Servo
- 6 Szótár

Mit tanultunk eddig?

Hardware:

- Arduino alaplap
- Breadboard
- LED
- Ellenállás
- Gomb
- Ultrahang szenzor

Software

- Változó létrehozása
- Alapműveletek (=, +, -, /, *)
- Alapvető parancsok
 - Serial.begin(9600)
 - Serial.println(" ")
 - pinMode()
 - digitalWrite()
 - delay()
 - digitalRead()
 - pulseIn()
- Elágazás: If()...else

Ismétlő teszt

Hány állítás igaz?

- A LED-eket közvetlenül az Arduinoba köthetjük
- Az ellenállások méretét a színeik alapján lehet eldönteni
- Az ultrahangos szenzoron TRIGGER a kimenet és ECHO a bemenet
- A gombok lenyomását a digitalWrite() függvénnyel érzékeltük
- Az int egész számokat, a float tört számokat tárol.

Ismétlő teszt

Hány állítás igaz?

- x A LED-eket közvetlenül nem köthetjük az Arduinoba, kell hozzá ellenállás is
- Az ellenállások méretét a színeik alapján lehet eldönteni
- Az ultrahangos szenzoron TRIGGER a kimenet és ECHO a bemenet.
- x A gombok lenyomását a digitalRead() (digitalWrite()) függvénnyel érzékeltük
- Az int egész számokat, a float tört számokat tárol.
- 3 igaz

Tartalom

- Ismétlés
- 2 Ismétlő feladatok
- ③ Programozás alapok: A for ciklus
- 4 Feladatok
- 5 Arduino alapok: SG90 Micro Servo
- 6 Szótár

Feladat I

Mit ír ki a kód?

```
void setup() {
    Serial.begin(9600);
}

void loop()
{
    int a = 5;
    Serial.println("a");
    Serial.println(a);
}
```

Feladat I

Mit ír ki a kód?

```
void setup() {
    Serial.begin(9600);
}

void loop()
{
    int a = 5;
    Serial.println("a");
    Serial.println(a);
}
```

Megoldás:

- Serial.println("a"); az "a" karektert írja ki
- Serial.println(a); az a változó értékét írja ki

Feladat II

Mit ír ki a kód?

```
void setup() {
 Serial.begin (9600);
void loop() {
 int alma = 10;
 int korte = -10;
 int eper = 5;
 if(alma < korte){
   Serial.print("eper");
 else{
   Serial.print(eper);
```

Feladat II

Mit ír ki a kód?

```
void setup() {
 Serial.begin (9600);
void loop() {
 int alma = 10:
 int korte = -10;
 int eper = 5;
 if(alma < korte){
   Serial.print("eper");
 else{
   Serial.print(eper);
```

Megoldás: A feltétel alma < korte hamis, ezért az else-be írt rész fut le. Az eper válozó értéke 5, tehát a megoldás 5.

Feladat III

Mit csinálhat a kód?

```
int LED = 2;
int GOMB = 3;
void setup() {
 pinMode (LED, OUTPUT);
 pinMode (GOMB, INPUT);
void loop() {
 int GOMB_ALLAPOT = digitalRead(GOMB);
 if (GOMB_ALLAPOT == HIGH) {
   digitalWrite(LED, HIGH);
 else{
   digitalWrite(LED, LOW);
```

Feladat III

Mit csinálhat a kód?

```
int LED = 2:
int GOMB = 3;
void setup() {
 pinMode (LED, OUTPUT);
 pinMode (GOMB, INPUT);
void loop() {
 int GOMB_ALLAPOT = digitalRead(GOMB);
 if (GOMB ALLAPOT == HIGH) {
   digitalWrite(LED, HIGH);
 else{
   digitalWrite(LED, LOW);
```

Megoldás: Ha lenyomjuk a 3-as PIN-re kapcsolt gombot, akkor felvillan a 2-es PIN-re kapcsolt LED.

Feladat IV

Mit csinálhat a kód?

```
int LED = 2;
int GOMB = 3;
void setup() {
   pinMode(LED,OUTPUT);
   pinMode(GOMB,INPUT);
}

void loop() {
   int GOMB_ALLAPOT = digitalRead(GOMB);
   digitalWrite(LED,GOMB_ALLAPOT);
}
```

Feladat IV

Mit csinálhat a kód?

```
int LED = 2;
int GOMB = 3;
void setup() {
   pinMode(LED,OUTPUT);
   pinMode(GOMB,INPUT);
}

void loop() {
   int GOMB_ALLAPOT = digitalRead(GOMB);
   digitalWrite(LED,GOMB_ALLAPOT);
}
```

Megoldás: Ha lenyomjuk a 3-as PIN-re kapcsolt gombot, akkor felvillan a 2-es PIN-re kapcsolt LED.

Tartalom

- Ismétlés
- Ismétlő feladatok
- 3 Programozás alapok: A for ciklus
- 4 Feladatok
- 5 Arduino alapok: SG90 Micro Servo
- 6 Szótái

for loop/ciklus

Mikor használjuk?

Akkor használjuk ha egy utasítást egy előre ismert alkalommal szeretnénk hogy lefusson.

Példák

- Az első 25 szám kijírása
- Az első 10 prímszám megkeresése
- 1500 darab mérés elvégzése
- 1500 adat kiátlagolása

Példa

Az első 25 szám kiiratása

```
void setup() {
    Serial.begin(9600);
}

void loop() {
    for(int i = 1; i < 25; i = i + 1)
    {
        Serial.println(i);
    }
}</pre>
```

Magyarázat: Az int i = 1 a kezdeti érték, i < 25 a végső érték vagy kilépési feltétel, i = i + 1 az i érték növelése.

Példa

1000 mérés elvégzése

```
int SenzorPin = 3;
void setup() {
    Serial.begin (9600);
    pinMode (SenzorPin, INPUT);
void loop() {
 for(int meresSzam = 0; meresSzam < 1000; meresSzam =</pre>
     meresSzam + 1)
   int adat = digitalRead(SenzorPin)
```

```
Magyarázat: Az int meresszam = 0 a kezdeti értéke a számlálónak,
meresszam < 1000 a végső érték eddig megyünk, aztán a
meresszam = meresszam + 1 megnöveli a meresszam-ot, miután
elvégeztünk egy mérést
```

Létrehozás

for (kezdeti érték; feltétel; számlálónövelés)

Létrehozás

```
for (kezdeti érték; feltétel; számlálónövelés)
```

kezdeti érték

A ciklusváltozó első értéke. pl: int i = 1 vagy int meresSzam = 0

Létrehozás

```
for (kezdeti érték; feltétel; számlálónövelés)
```

kezdeti érték

A ciklusváltozó első értéke. pl: int i = 1 vagy int meresSzam = 0

feltétel

A ciklus addig tart amíg ez a feltétel teljesül. pl: i < 25 vagy meresSzam < 1000

Létrehozás

```
for (kezdeti érték; feltétel; számlálónövelés)
```

kezdeti érték

A ciklusváltozó első értéke. pl: int i = 1 vagy int meresSzam = 0

feltétel

A ciklus addig tart amíg ez a feltétel teljesül. pl: i < 25 vagy

számláló növelés

A ciklusváltozó értékét változtatjuk, ez kell ahhoz hogy a ciklus egyszer véget érjen. pl: i = i+1 vagy meresSzam = meresSzam + 1

For ciklus

Létrehozása: for(kezdeti érték; feltétel; számláló növelés)

- Kezdeti érték: A ciklusváltozó első értéke.
 - 1. argumentum
 - Példa: int i = 1 vagy int meresSzam = 0
- Feltétel: A ciklus addig tart amíg ez a feltétel teljesül.
 - 2. argumentum
 - Példa: i < 25 vagy int meresSzam = 1000
- Számláló növelése: A ciklusváltozó értékét változtatjuk, ez kell ahhoz hogy a ciklus egyszer véget érjen.
 - 3. argumentum
 - Példa: i = i+1 vagy meresSzam = meresSzam + 1

Tartalom

- Ismétlés
- Ismétlő feladatok
- 3 Programozás alapok: A for ciklus
- 4 Feladatok
- 5 Arduino alapok: SG90 Micro Servo
- 6 Szótár

Feladat I

Mit ír ki a kód?

```
void setup() {
    Serial.begin(9600);
}

void loop() {
    for(int j = 10; j < 20; j = j + 2)
    {
        Serial.println(j);
    }
}</pre>
```

Feladat I

Mit ír ki a kód?

```
void setup() {
    Serial.begin(9600);
}

void loop() {
    for(int j = 10; j < 20; j = j + 2)
    {
        Serial.println(j);
    }
}</pre>
```

Megoldás: 10 12 14 16 18, 10-nél kezdődik hiszen int j = 10 a kezdeti érték, a számlálót mindig 2-vel növeljük (j = j +2) és a 20 már nincsen benne hiszen 20 < 20 már hamis.

Feladat II

Mit ír ki a kód?

```
void setup() {
    Serial.begin(9600);
}

void loop() {
    for(long j = 1; j <= 128; j = j * 2)
    {
        Serial.println(j);
    }
}</pre>
```

Feladat II

Mit ír ki a kód?

```
void setup() {
    Serial.begin(9600);
}

void loop() {
    for(long j = 1; j <= 128; j = j * 2)
    {
        Serial.println(j);
    }
}</pre>
```

Megoldás: 1 2 4 8 16 32 64 128, 1-nél kezdődik hiszen int j = 1 a kezdeti érték, a számlálót mindig megkétszerezzük (j = j * 2) és a 128 még benne van hiszen 128 <= 128 még igaz.

Feladat III

Mit ír ki a kód?

```
void setup() {
    Serial.begin(9600);
}

void loop() {
    int lepesKoz = 5;
    for(int v = 20; v >= -2; v = v - lepesKoz)
    {
        Serial.println(v);
    }
}
```

Feladat III

Mit ír ki a kód?

```
void setup() {
    Serial.begin(9600);
}

void loop() {
    int lepesKoz = 5;
    for(int v = 20; v >= -2; v = v - lepesKoz)
    {
        Serial.println(v);
    }
}
```

Megoldás: 20 15 10 5 0, 20-nál kezdődik hiszen int v = 20 a kezdeti érték, a számlálóból mindig lépésköznyit vonunk ki, ami éppen 5 tehát v = v - 5) és a 0 még benne van hiszen 0 >= -2 még igaz viszont utána -5 >= -2 már nem igaz.

Tartalom

- Ismétlés
- Ismétlő feladatok
- ③ Programozás alapok: A for ciklus
- 4 Feladatok
- 5 Arduino alapok: SG90 Micro Servo
- 6 Szótár

SG90 Micro Servo

Alapok

A szervomotor előnyei:

- Olcsó (kb. 500 ft)
- Egyszerű használni
 - Mindössze 3 kimenet
 - Közvetlenül Arduinora köthető
- ±5° pontosság

SG90 Micro Servo

Bekötés

Bekötés:

- Piros 5V
- Fekete/Barna GND
- Narancssárga PWM PIN, most 3 de lehet 3,5,6,9,10,11 bármelyike

Függvények

Servo myservo;

A szervomotort kezelő objektum létrehozása myservo néven. Innentől minden függvény elé a myservo szót kell írni.

myservo.attach(PIN);

A szervomotor inicializálása, ezzel kell megadni hogy melyik PIN-re kötöttük be a Servot.

```
myservo.write(szög);
```

A szervomotor elfordítása a megadott szöghöz.

myservo.detach();

A szervomotor lecsatlakoztatása

Figyelem a myservo az objektum neve, ha máshogy nevezzük el, akkor más nevet kell a helyére. A Servo.h egy úgynevezett könyvtár.

Függvények

A szervo irányításához szükséges függvények:

- Servo myservo: A szervomotort kezelő objektum létrehozása myservo néven.
 - Innentől minden függvény elé a myservo szót kell írni.
 - Példa: myservo.függvény()
- myservo.attach (PIN): A szervomotor inicializálása, ezzel kell megadni hogy melyik PIN-re kötöttük be a Servot.
- myservo.write (szög): A szervomotor elfordítása a megadott szöghöz.
- myservo.detach(): A szervomotor lecsatlakoztatása

Figyelem a myservo az objektum neve, ha máshogy nevezzük el, akkor más nevet kell a helyére. A Servo.h egy úgynevezett könyvtár.

A szervomotor programozása

Középre állítás

```
#include <Servo.h>
int ServoPin = 3;
Servo motor1;

void setup() {
  motor1.attach(ServoPin);
}

void loop() {
  motor1.write(90);
}
```

Könyvtár beimportálása:

• Az első sorban az include azért kell, hogy a szervomotor működéséhez szükséges függvényeket elérjük.

Feladat: Írjuk át a 90-et és próbáljunk ki más szögeket.

A szervomotor forgatása oda-vissza

```
#include <Servo.h>
int ServoPin = 3;
Servo motor1;
void setup() {
 motor1.attach(ServoPin);
void loop() {
 motor1.write(0);
 delay(2000);
 motor1.write(180);
 delay(2000);
```

A szervomotor forgatása oda-vissza for ciklussal

```
#include <Servo.h>
int ServoPin = 3;
int ido = 5000; //ennyi ms legyen a teljes fordulat
Servo motor1:
void setup() {
 motor1.attach(ServoPin);
void loop() {
 for (int szog = 0; szog < 180; szog = szog + 1)
   motor1.write(szog);
   delay(ido/180); //minden lépés után ido/180 várakozás,
       összes így pont ido-nyi várakozás lesz
```

Feladat

Oda vissza forgás megadott idő alatt

Feladat

Oda vissza forgás megadott idő alatt

```
#include <Servo.h>
int ServoPin = 3:
int ido = 6000; //ennyi ms legyen a teljes fordulat
Servo motor1;
void setup() {
 motor1.attach(ServoPin);
void loop() {
 for (int szog = 0; szog < 180; szog = szog + 1) {
   motor1.write(szog);
   delay(ido/360);
 for (int szog = 180; szog > 0; szog = szog - 1) {
   motor1.write(szog);
   delay(ido/360);
```

Tartalom

- Ismétlés
- Ismétlő feladatok
- ③ Programozás alapok: A for ciklus
- 4 Feladatok
- 5 Arduino alapok: SG90 Micro Servo
- 6 Szótár

Szavak I

```
r Sensor /-en
r Aufnehmer /-
s Gerät /-e
messen +Akk.
s Signal /-e
r Thermistor /-en
e Temperatur
r Fotowiderstand /-widerstände
e Lichtstärke /-n
r Schall /e Schälle
r Ultraschall
r Ultraschallsensor
e Entfernung /-en
e Welle
s. verbreiten in+A
```

```
szenzor
érzékelő
eszköz, berendezés
vmit mérni
jel
termisztor
hőmérséklet
fotorezisztor
fényerősség
hang
ultrahang
ultrahangszenzor
távolság
hullám
vmiben terjedni
```

Szavak II

periodisch e Veränderung /-en s Licht e Größe /-n e Ausbreitungsgeschwindigkeit e Frequenz e Wellenlänge vermeiden + Akk. emittieren + Akk. aufnehmen +Akk. e Reflexion berechnen + Akk. e Stromversorgung e Einparkhilfe

periódikus megváltozás fény fizikai mennyiség terjedési sebesség frekvencia hullámhossz vmit elkeriilni vmit kibocsátani vmit érzékelni visszaverődés kiszámolni vmit áramellátás tolatóradar