

Aims

- When and Why do we Use Logistic Regression?
 - Binary
 - Multinomial
- Theory Behind Logistic Regression
 - Assessing the Model
 - Assessing predictors
 - $-% \frac{1}{2}\left(-\right) =-\left(-\right) \left(-\right) =-\left(-\right) \left(-\right)$
- Interpreting Logistic Regression

Slide 3

Methods of Regression

- Blocks should be based on past research, or theory being tested. Good Method.
- Stepwise: Variables entered on the basis of statistical criteria (i.e. relative contribution to predicting outcome).
 - Should be used only for exploratory analysis.

Slide 4

Which method

With One Predictor

$$P(Y) = \frac{1}{1+e^{-(b_0+b_1X_1+s_7)}}$$

- Outcome
 - We predict the *probability* of the outcome occurring
- b_o and b_o
 - Can be thought of in much the same way as multiple regression
 - Note the normal regression equation forms part of the logistic regression equation

Slide 5

With Several Predictor

$$P(Y) = \frac{1}{1+e^{-(b_0+b_1X_1+b_2X_2+...+b_nX_n+c_i)}}$$

- Outcome
 - We still predict the *probability* of the outcome occurring
- Differences
 - Note the multiple regression equation forms part of the logistic regression equation
 - This part of the equation expands to accommodate additional predictors

Slide 6

Binary classification performance metrics

- Confusion matrix
- Accuracy

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

Accuracy, Precision , Recall,F1 Score

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

$$P = \frac{TP}{TP + FF}$$

$$R = \frac{TP}{TP + FN}$$

$$F1 = 2\frac{PR}{P+R}$$