Estacionariedad de procesos

Cecilia Galarza

Procesos Estocásticos Facultad de Ingeniería, Universidad de Buenos Aires

2do cuatrimestre 2024

Ejemplo: Ruido blanco

Vimos que el ruido blanco es un proceso aleatorio descripto por

$$X(n) \sim \mathcal{N}(0,1)$$
 $X(n)$ i.i.d.

Como la cdf $F_{X(n)}(x) = \Phi(x)$ no depende de n, entonces $\forall k$ y $\forall \tau$,

$$F_{X(n_1),...,X(n_k)}(x_1,...,x_k) = \prod_{i=1}^k \Phi(x_i) = F_{X(n_1+\tau),...,X(n_k+\tau)}(x_1,...,x_k)$$

El ruido blanco es un proceso estacionario.

Procesos estacionarios en sentido estricto (ESE)

Un Proceso Estocástico es *Estacionario en Sentido Estricto* si sus distribuciones son invariantes en el tiempo. Es decir, si para cualquier k, cualquier conjunto $\{t_1, \dots t_k\}$ y cualquier τ :

$$X(t_1),\ldots,X(t_k)\sim X(t_1+\tau),\ldots,X(t_k+\tau)$$

O sea, $\forall t_1, \ldots, t_k, k, \tau$

$$F_{X(t_1),...,X(t_k)}(x_1,...x_k) = F_{X(t_1+\tau),...,X(t_k+\tau)}(x_1,...x_k).$$

Procesos estacionarios en sentido estricto (ESE)

- Las distribuciones no dependen de los instantes particulares t_1, \ldots, t_k sino de la relación entre ellos.
- Por ejemplo, si $\tau = -t_1$, la CDF depende de las diferencias $t_2 t_1, \dots, t_k t_1$.

$$F_{X(t_1),...,X(t_k)} = F_{X(t_1+\tau),...,X(t_k+\tau)} = F_{X(0),...,X(t_k-t_1)}.$$

 Si un proceso es ESE, su distribución no depende de cuándo se comienza a contar el tiempo.

Procesos estacionarios de primer y segundo orden

- La definición de proceso ESE es muy exigente, y requiere conocer todas las distribuciones finito dimensionales
- Podemos hacer definiciones menos ambiciosas que resultan útiles al momento de solucionar los problemas

Procesos estacionarios de primer orden

Un proceso X(t) es estacionario de primer orden si:

$$F_{X(t)}(x) = F_{X(0)}(x) = F_X(x), \quad \forall t \in \mathcal{T}.$$

Luego, las probabilidades de eventos que involucren solamente a X(t) tampoco dependen del tiempo:

$$\mathbb{P}[X(t) \in A] = \text{constante}, \qquad \mathbb{E}[g(X(t))] = \text{constante}.$$

Procesos estacionarios de segundo orden

Un proceso X(t) es estacionario de segundo orden si $\forall t_1, t_2 \in \mathcal{T}$

$$F_{X(t_1),X(t_2)}(x_1,x_2) = F_{X(0),X(t_2-t_1)}(x_1,x_2) = F_{X(t_1-t_2),X(0)}(x_1,x_2).$$

Luego $F_{X(t_1),X(t_2)}$ depende solamente de $|t_2-t_1|$, así como las probabilidades de eventos que involucren a $X(t_1)$ y $X(t_2)$:

$$\mathbb{E}[g(X(t_1),X(t_2))] = \text{función de } |t_2-t_1|$$

Procesos estacionarios de primer y segundo orden

En particular, si X(t) es un proceso con estacionariedad de primer y segundo orden, tenemos que

- $\mu_X(t) = \mathbb{E}[X(t)] = \text{constante}.$
- $R_X(t_1, t_2) = \text{función de } |t_2 t_1|.$
- $C_X(t_1, t_2) = \text{función de } |t_2 t_1|.$

Al analizar ciertos problemas, sobretodo aquellos que involucren sistemas dinámicos LTI, estas dos condiciones son muy convenientes. Para poder incorporar una mayor cantidad de procesos en el análisis se relaja la definición de estacionariedad.

Procesos Estacionarios en Sentido Amplio

Procesos estacionarios en sentido amplio (ESA)

Definición (Proceso ESA)

Un proceso X(t) es Estacionario en Sentido Amplio si

$$\mathbb{E}[X(t)] = \mu_X(t) = \mu_X$$

$$R_X(t, t + \tau) = \mathbb{E}[X(t)X(t + \tau)] = f(\tau) = R_X(\tau).$$

Claramente, todo proceso ESE es ESA, pero no al revés.

Procesos estacionarios en sentido amplio (ESA)

• Si X es ESA, C_X es función sólo de τ :

$$C_X(t, t+\tau) = R_X(t, t+\tau) - \mu_X(t)\mu_X(t+\tau) = R_X(\tau) - \mu_X^2 = C_X(\tau).$$

En particular, la varianza del proceso es constante:

$$\sigma_X^2(t) = C_X(t,t) = C_X(0) = R_X(0) - \mu_X^2 = cte.$$

Procesos ESA: Abuso de notación

Por definición la función de autocorrelación del proceso X(t) es una función de 2 variables, t_1 y t_2 .

$$R_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)].$$

Cuando el proceso es ESA, la función de autocorrelación sólo depende de 1 variable, la diferencia entre t_2 y t_1 , $|t_2-t_1|=\tau$. Haciendo un abuso de notación, seguimos llamando esa función $R_X(\tau)$. Entonces, la función de autocorrelación de un proceso ESA resulta

$$R_X(\tau) = \mathbb{E}[X(t)X(t+\tau)] = \mathbb{E}[X(t-\tau)X(t)] = \mathbb{E}[X(0)X(\tau)].$$

Ejemplo: senoidal con amplitud aleatoria

$$X(t) = A\cos(\omega_0 t)$$
 , $A \sim \mathcal{N}(\mu_A, \sigma_A^2)$.

$$\bullet \ \mathbb{E}[X(t)] = \mu_X(t) = \mu_A \cos(\omega_0 t) = \mu_X(t+T) \quad , \quad T = \frac{2\pi}{\omega_0}.$$

- $R_X(t, t + \tau) = \mathbb{E}[A^2] \cos(\omega_0 t) \cos(\omega_0 (t + \tau))$ Es claro que $R_X(t, t + \tau) = R_X(t + T, t + T + \tau)$.
- \Rightarrow X(t) NO es ESA, X es cicloestacionario en sentido amplio.

Ejemplo: senoidal con amplitud y fase aleatoria

$$X(t) = A\cos(\omega t + \Phi)$$
 , $A \sim \mathcal{N}(\mu_A, \sigma_A^2)$, $\Phi \sim \mathcal{U}(0, 2\pi)$ independientes.

•
$$\mathbb{E}[X(t)] = \mathbb{E}[A\cos(\omega t + \Phi)] = \mu_A \underbrace{\mathbb{E}[\cos(\omega t + \Phi)]}_{=0} = 0.$$

0

$$R_X(t, t + \tau) = \mathbb{E}[X(t)X(t + \tau)] = \mathbb{E}[A^2 \cos(\omega t + \Phi)\cos(\omega(t + \tau) + \Phi)]$$

$$= \frac{\mathbb{E}[A^2]}{2} \left\{ \mathbb{E}[\cos(\omega \tau)] + \underbrace{\mathbb{E}[\cos(\omega(2t + \tau) + 2\Phi)]}_{=0} \right\}$$

$$= \frac{\mathbb{E}[A^2]}{2} \cos(\omega \tau).$$

 \Rightarrow X(t) es un proceso ESA.

Realizaciones para los dos ejemplos anteriores

Amplitud aleatoria:

 $R_X(t_1, t_2)$ para cualquier t_1 y t_2 depende de $|t_1 - t_2|$ módulo T.

Amplitud y fase aleatorias:

Como la fase de cada realización es aleatoria, dos puntos t_1 y t_2 ven todos los posibles puntos de la senoidal al observar todas las realizaciones

Ejemplo: suma de exponenciales complejas

Generalizamos el ejemplo anterior

$$X(t) = \sum_{k=1}^{p} A_k e^{j(\omega_k t + \Theta_k)} = \sum_{k=1}^{p} B_k e^{j\omega_k t}, \qquad B_k = A_k e^{j\Theta_k} \text{ VAs complejas}$$

$$\mathbb{E}[X(t)] = \mathbb{E}\left[\sum_{k=1}^{p} B_k e^{j\omega_k t}\right] = \sum_{k=1}^{p} \mathbb{E}[B_k] e^{j\omega_k t}.$$

$$egin{aligned} R_X(t,t+ au) &= \mathbb{E}[X(t)X^*(t+ au)] = \mathbb{E}\left[\sum_{k=1}^{
ho} B_k \mathrm{e}^{\jmath\omega_k t} \sum_{l=1}^{
ho} B_l^* \mathrm{e}^{-\jmath\omega_l(t+ au)}
ight] \ &= \sum_{k=1}^{
ho} \sum_{l=1}^{
ho} \mathbb{E}[B_k B_l^*] \mathrm{e}^{-\jmath\omega_l(t+ au)} \mathrm{e}^{\jmath\omega_k t}. \end{aligned}$$

X no es necesariamente ESA.

Ejemplo: suma de exponenciales complejas (cont.)

• Si $\mathbb{E}[B_k] = 0$ (e.g., $\Phi_k \sim \mathcal{U}[0, 2\pi]$ independiente de A_k),

$$\mathbb{E}[X(t)] = \sum_{k=1}^{p} \mathbb{E}[B_k] e^{j\omega_k t} = 0.$$

• Si B_k descorrelacionadas entre sí, y $\sigma_k^2 = \mathbb{E}[|B_k|^2]$,

$$R_X(t,t+\tau) = \sum_{k=1}^p \sum_{l=1}^p \mathbb{E}[B_k B_l^*] e^{-\jmath \omega_l(t+\tau)} e^{\jmath \omega_k t} = \sum_{k=1}^p \sigma_k^2 e^{\jmath \omega_k \tau} = R_X(\tau),$$

Entonces, X(t) es ESA.

Propiedades de procesos ESA

$R_X(\tau)$ y $C_X(\tau)$ para procesos ESA

- Ambas son función de una sola variable
- Son no negativas en $\tau = 0$:

$$R_X(0) = \mathbb{E}[|X(t)|^2] \ge 0, \qquad C_X(0) = \mathbb{V}(X(t)) \ge 0.$$

• Obtienen su máximo en $\tau = 0$.

$$egin{aligned} R_X(au)^2&=\mathbb{E}[X(t)X^*(t+ au)]^2\ &\leq \mathbb{E}[|X(t)|^2]\mathbb{E}[|X(t+ au)|^2]=R_X^2(0) \end{aligned}$$
 Cauchy-Schwarz $C_X(au)=R_X(au)-\mu_X^2\leq R_X(0)-\mu_X^2=C_X(0)$

$R_X(\tau)$ y $C_X(\tau)$ para procesos ESA

Son funciones pares:

$$R_X(\tau) = \mathbb{E}[X(t)X(t+\tau)] = \mathbb{E}[X(t'-\tau)X(t')] = R_X(-\tau)$$

 $C_X(\tau) = R_X(\tau) - \mu_X^2 = R_X(-\tau) - \mu_X^2 = C_X(-\tau)$

 En el caso de procesos complejos, hablamos de simetría hermítica:

$$R_X(\tau) = \mathbb{E}[X(t)X^*(t+\tau)] = \mathbb{E}[X(t'-\tau)X^*(t')] = R_X^*(-\tau)$$

 $C_X(\tau) = R_X(\tau) - \mu_X^2 = R_X^*(-\tau) - \mu_X^2 = C_X^*(-\tau)$

• La correlación entre las muestras decae a cero cuando $\tau \to \infty$,

$$C_X(\tau) \to 0, \qquad R_X(\tau) \to \mu_X^2.$$

$R_X(\tau)$ y $C_X(\tau)$ para procesos ESA

 $R_X(\tau)$ es una medida de la velocidad de cambio del proceso.

$$\begin{split} \mathbb{P}\left[X(t+\tau) - \ X(t) \geq \epsilon\right] &= \mathbb{P}\left\{\left[X(t+\tau) - X(t)\right]^2 \geq \epsilon^2\right\} \\ &\leq \frac{\mathbb{E}\left\{\left[X(t+\tau) - X(t)\right]^2\right\}}{\epsilon^2} \quad \text{Desigualdad de Markov} \\ &= \frac{\mathbb{E}[X^2(t+\tau)] + \mathbb{E}[X^2(t)] - 2\mathbb{E}[X(t+\tau)X(t)]}{\epsilon^2} \\ &= \frac{2\left[R_X(0) - R_X(\tau)\right]}{\epsilon^2} \end{split}$$

Si la diferencia $R_X(0) - R_X(\tau)$ es pequeña, entonces la probabilidad de que $X(t+\tau)$ difiera de X(t) por más de ϵ es baja. Es decir, el proceso no varía mucho en promedio.

Densidad espectral de potencia

Densidad espectral de potencia (PSD)

Vimos que la velocidad de cambio de X(n) está relacionado con la variaciones de $R_X(k)$ con respecto a k. Un modo de analizar estas variaciones es utilizando el análisis de Fourier. Consideremos primero la potencia de una sola realización x(n) en función de la frecuencia. 1

$$p(\omega) = \frac{1}{2N+1} \left| \sum_{n=-N}^{N} x(n) e^{-j\omega n} \right|^2 \qquad -\frac{\pi}{2} \le \omega \le \frac{\pi}{2}$$

Observaciones:

- $\sum_{n=-N}^{N} x(n)e^{-j\omega n}$ es la transformada de Fourier de tiempo discreto de la señal x(n). El cuadrado del módulo es la energía de la señal
- Se obtiene la potencia al dividir por la cantidad de muestras 2N + 1.
- $p(\omega)$ es la potencia contenida en el intervalo $[\omega, \omega + d\omega]$. Por eso se llama *densidad de potencia*.

¹Por simplicidad, vamos a trabajar primero con procesos en tiempo discreto.

Densidad espectral de potencia (PSD)

- El valor de $p(\omega)$ depende de la realización observada.
- Para caracterizar el proceso en su conjunto, se promedia $p(\omega)$ entre todas las realizaciones posibles.
- Para tener una definición más sólida, se necesita imponer cierto nivel de estacionariedad

Definición (PSD)

La Densidad espectral de potencia (PSD, Power Spectral Density) de un proceso ESA X(n) es

$$S_X(\omega) = \lim_{N \to \infty} \mathbb{E} \left[\frac{1}{2N+1} \left| \sum_{n=-N}^N X(n) e^{-j\omega n} \right|^2 \right] - \frac{\pi}{2} \le \omega \le \frac{\pi}{2}$$

Teorema de Wiener-Khinchin

Teorema

La PSD de un proceso ESA X coincide con la transformada de Fourier de su función de autocorrelación:

$$S_X(\omega) = \mathcal{F}\{R_X\} = \sum_{n=0}^{+\infty} R_X(\tau)e^{-\jmath\omega\tau}.$$

Teorema de Wiener-Khinchin

Este teorema provee una herramienta sencilla para computar la PSD de cualquier proceso ESA. Por otro lado, tenemos

$$R_X(au) = \mathcal{F}^{-1}\{S_X\} = rac{1}{2\pi} \int_{\mathbb{R}} S_X(\omega) e^{\jmath\omega au} d\omega.$$

Teorema de Wiener-Khinchin: Demostración

$$S_X(\omega) = \lim_{N \to \infty} \frac{1}{2N+1} \mathbb{E} \left[\sum_{n=-N}^N X(n) e^{j\omega n} \sum_{n'=-N}^N X(n') e^{-j\omega n'} \right]$$
$$= \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^N \sum_{n'=-N}^N R_X(n'-n) e^{-j\omega(n'-n)}$$

A lo largo de las diagonales, k = n' - n es constante.

- Para cada k, se suman 2N + 1 |k| términos.
- k puede variar entre −2N y 2N.

Teorema de Wiener-Khinchin: Demostración (cont.)

$$S_X(\omega) = \lim_{N \to \infty} \sum_{k=-2N}^{2N} \frac{2N+1-|k|}{2N+1} R_X(k) e^{-\jmath \omega k}$$
$$= \lim_{N \to \infty} \sum_{k=-2N}^{2N} \left[1 - \frac{|k|}{2N+1} \right] R_X(k) e^{-\jmath \omega k} \to \mathcal{F}\{R_X\}$$

El término $\left[1-\frac{|k|}{2N+1}\right]$ es la ventana triangular de la figura. A medida que N crece, la ventana se ensancha, y para $N\to\infty$, la ventana tiende a 1.

PSD de procesos en tiempo continuo

Sea X(t) un proceso ESA en tiempo continuo.

• Truncamos X(t) a una ventana finita $\left\{-\frac{T}{2} \le t \le \frac{T}{2}\right\}$ y hallamos su transformada: $\tilde{X}_T(\omega) = \int_{-T/2}^{T/2} X(t) e^{-j\omega t} dt$. La densidad de potencia de la señal truncada es

$$\mathcal{S}_{X_{\mathcal{T}}}(\omega) = rac{1}{\mathcal{T}}\mathbb{E}\left[\left| ilde{X}_{\mathcal{T}}(\omega)
ight|^2
ight].$$

Definimos la PSD en tiempo continuo extendiendo la ventana a infinito

$$S_{X}(\omega) = \lim_{T o \infty} rac{1}{T} \mathbb{E} \left[\left| ilde{X}_{T}(\omega)
ight|^{2}
ight] \quad , \quad \omega \in \mathbb{R}.$$

El teorema de Wiener-Kinchin se verifica y establece que

$$S_X(\omega) = \mathcal{F}\{R_X\} = \int_{\mathbb{R}} R_X(\tau) e^{-\jmath \omega \tau} d\tau$$

Propiedades de la PSD

- S_X(ω) ≥ 0
 La definición plantea la PSD como la distribución en frecuencia de la potencia, magnitud siempre positiva.
- $S_X(\omega) \in \mathbb{R}$ para todo ω Por Wiener-Kinchin, $S_X(\omega) = \mathcal{F}(R_X)$, siendo $R_X(k)$ una función con simetría hermítica. Luego, $S_X(\omega)$ es real.
- Si $\forall k, \ R_X(k) \in \mathbb{R}$ entonces $S_X(\omega) = S_X(-\omega)$ Nuevamente, utilizamos propiedades de Fourier y $S_X(\omega) = \mathcal{F}(R_X)$.
- $S_X(\omega)$ se construye a partir de $|X(\omega)|^2$, no tiene información de fase.

Ejemplo: ruido blanco en tiempo discreto

El proceso de ruido blanco es un PE ESA de media nula, varianza σ^2 y cuyas muestras están descorrelacionadas.

R_X

$$R_X(k) = \mathbb{E}[X(n)X(n+k)] = egin{cases} \mathbb{E}[X(n)]\mathbb{E}[X(n+k)], & ext{si } k
eq 0 \\ \mathbb{E}[X^2(n)], & ext{si } k = 0 \end{cases}$$

$$= \sigma^2 \delta(k) = C_X(k).$$

 \circ S_X

$$S_X(\omega) = \mathcal{F}\{R_X\}(\omega) = \sigma^2, \qquad -\pi \le \omega < \pi.$$

Potencia media del proceso

$$rac{1}{2\pi}\int_{-\pi}^{\pi}S_X(\omega)d\omega=R_X(0)=\sigma^2.$$

Ejemplo: ruido blanco en tiempo continuo

 Podemos extender la idea de ruido blanco a tiempo continuo asumiendo que tenemos un proceso X ESA con PSD constante:

$$S_X(\omega) = \alpha, \qquad \omega \in \mathbb{R}.$$

• Esto implica que la autocorrelación de X(t) es

$$R_X(au) = rac{1}{2\pi} \int_{\mathbb{R}} \alpha \ e^{j\omega au} d\omega = \alpha \ \delta(au).$$

Ejemplo: ruido blanco en tiempo continuo

Qué implica la definición anterior de ruido blanco?

- La media de X(t) es nula .
- Por otro lado, la potencia media del proceso es infinita!

$$\frac{1}{2\pi}\int_{\mathbb{R}}S_X(\omega)d\omega=R_X(0)=\infty.$$

 El ruido blanco en tiempo continuo es un modelo matemático que no representa un proceso físico. En la práctica siempre consideramos un ancho de banda finito y en ese caso es posible suponer que la PSD es constante en dicho rango de frecuencias.

Muestreo de procesos ESA

 $S_X(\omega)$ está relacionado con el contenido frecuencial del proceso aleatorio, es decir, cómo es, en promedio, la distribución en frecuencia de las realizaciones de X(t). Luego, es razonable definir el ancho de banda del proceso en función del ancho de banda de $S_X(\omega)$.

Definición (Proceso de banda acotada)

Sea X(t) un proceso ESA. Decimos que el ancho de banda de X(t) es igual a W si

$$S_X(\omega) = 0 \quad |\omega| > W.$$

Muestreo de procesos ESA

Teorema (Teorema de muestreo)

Sea X(t) un proceso ESA con banda acotada W y $0 < T < \frac{1}{2W}$ el período de muestreo . Luego, el proceso

$$\hat{X}_N(t) = \sum_{n=-N}^N X(nT) p(t-nT)$$
 donde $p(t) = \frac{\sin(\pi t/T)}{\pi t/T}$

converge a X(t) en el siguiente sentido

$$\lim_{N \to \infty} \mathbb{E}\left[\left(\hat{X}_N(t) - X(t)\right)^2\right] = 0$$

Muestreo de ruido blanco

Vimos que el modelo de ruido blanco en tiempo continuo es en realidad un modelo teórico. Lo que en realidad sucede es que el proceso de ruido tiene un ancho de banda acotado, pero que es mucho más grande que el ancho de banda del sistema a analizar.

Antes de muestrear una señal, hay que limitarla en banda. Luego, el ancho de banda de la señal ruidosa va a estar dado por el filtro antialiasing.

Muestreo de ruido blanco

Sea W dicho ancho de banda y T=1/2W el período de muestreo. Luego, la autocorrelación de la señal muestreada es

$$\mathbb{E}[X(nT)X(nT+kT)] = R_X(kT).$$

Como estamos considerando que la señal ruidosa tiene PSD constante en todo el ancho de banda igual a $N_0/2$, entonces,

$$R_X(au) = \mathcal{F}^{-1}\left(rac{N_0}{2}
ight) = N_0 W rac{\sin(2\pi W au)}{2\pi W au}$$

Muestreo de ruido blanco

En el gráfico, los puntos rojos corresponden a los puntos $\tau = kT$. El muestreo del ruido de banda limitada en la frecuencia de Nyquist resulta en una señal con autocorrelación

$$R_X(k) = \frac{N_0}{2}\delta(k).$$

Sin embargo, muestrear más rápido puede correlacionar la señal.

Procesos vectoriales

Función de correlación cruzada entre procesos

En muchos análisis es interesante entender cómo se comportan dos o más procesos en forma conjunta.

Definición (CCF, Cross-Correlation Function)

Dados dos procesos escalares X(t) y Y(t), la función de correlación cruzada es

$$R_{X,Y}(t_1,t_2) = \mathbb{E}[X(t_1)Y^*(t_2)].$$

Procesos conjuntamente ESA (CESA)

Al considerar dos procesos, podemos analizar su estacionariedad en forma conjunta también. Para ello, extendemos el concepto de ESA del siguiente modo:

Definición (Procesos Conjuntamente ESA)

Sean X(t), Y(t) dos procesos ESA. Decimos que son Conjuntamente Estacionarios en Sentido Amplio (CESA) si

$$R_{X,Y}(t, t + \tau) = f(\tau).$$

Procesos CESA

Sean X, Y dos procesos CESA, $\mathbb{E}[X(t)Y^*(t+\tau)] = R_{X,Y}(\tau)$.

- Si $R_{X,Y}(\tau) = 0$ para todo τ , X e Y son procesos *ortogonales*.
- Si X e Y son independientes entonces $R_{X,Y}(\tau) = \mu_X \mu_Y$ para todo τ .
- $R_{X,Y}(\tau) = R_{Y,X}^*(-\tau)$.

Por definición,
$$R_{X,Y}(\tau) = \mathbb{E}[X(t)Y^*(t+\tau)] = \mathbb{E}[Y^*(t+\tau)X(t)] = \mathbb{E}[Y^*(t')X(t'-\tau)] = R^*_{Y,X}(-\tau) \neq R^*_{X,Y}(-\tau).$$

 $R_{X,Y}(\tau)$ puede NO ser par, a diferencia de $R_X(\tau)$ y $R_Y(\tau)$.

• $|R_{X,Y}(\tau)|^2 \le R_X(0)R_Y(0)$. Es una consecuencia directa de la desigualdad de Cauchy-Schwarz.

Ejemplo: dos procesos senoidales

$$X_1(t)=A_1\cos(\omega_1 t+\Theta_1), \qquad X_2(t)=A_2\cos(\omega_2 t+\Theta_2), \qquad t\in\mathbb{R},$$
 donde $A_1,A_2\sim\mathcal{N}(0,1),\,\Theta_1,\Theta_2\sim\mathcal{U}(0,2\pi)$ independientes.

- Vimos que $\mu_{X_i} = 0$ y $R_{X_i}(\tau) = \frac{1}{2}\cos(\omega_i \tau)$, i = 1, 2.
- Con argumentos similares, tenemos que

$$R_{X_1,X_2}(t,t+\tau) = \mathbb{E}[X_1(t)X_2(t+\tau)]$$

= $\mathbb{E}[A_1]\mathbb{E}[\cos(\omega_1 t + \Theta_1)]\mathbb{E}[A_2]\mathbb{E}[\cos(\omega_2 (t+\tau) + \Theta_2)] = 0,$

que no depende de t. Por lo tanto, X_1 y X_2 son PE CESA.

Ejemplo: dos procesos de tiempo discreto CESA

Consideremos los procesos

$$X_1(n) = W(n), \qquad X_2(n) = W(n) + 2W(n-1), \qquad n \in \mathbb{Z},$$

donde W es ruido blanco de media nula y varianza unitaria.

• Por construcción, $\mu_{X_1} = 0$ y $R_{X_1}(k) = \delta(k)$. Para el proceso X_2 tenemos que

$$\mathbb{E}[X_2(n)] = \mathbb{E}[W(n)] + 2\mathbb{E}[W(n-1)] = 0$$

$$\mathbb{E}[X_2(n)X_2(n+k)] = \mathbb{E}\{[W(n) + 2W(n-1)][W(n+k) + 2W(n+k-1)]\}$$

= $5\delta(k) + 2\delta(k-1) + 2\delta(k+1).$

Entonces X_1 y X_2 son ESA.

La función de correlación cruzada entre X₁ y X₂ es

$$R_{X_1,X_2}(n,n+k) = \mathbb{E}[X_1(n)X_2(n+k)] = \delta(k) + 2\delta(k-1),$$

que no depende de n. Del mismo modo, $R_{X_2,X_1}(n,n+k)=\delta(k)+2\delta(k+1)$. Por lo tanto, X_1 y X_2 son PEs CESA.

Densidad espectral de potencia cruzada

 La densidad espectral de potencia cruzada caracteriza la relación entre procesos CESA en el dominio de la frecuencia

$$S_{X,Y}(\omega) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[\left(\int_{-T/2}^{T/2} X(t) e^{-j\omega t} dt \right) \left(\int_{-T/2}^{T/2} Y(t) e^{-j\omega t} dt \right)^* \right].$$

 Se extiende el teorema de Wiener-Khinchin a este caso resultando

$$S_{X,Y}(\omega) = \mathcal{F}\{R_{X,Y}\}(\omega) = \int_{\mathbb{R}} R_{X,Y}(\tau) e^{-j\omega\tau} d\tau.$$

De forma similar, en tiempo discreto tenemos que

$$S_{X,Y}(\omega) = \mathcal{F}\{R_{X,Y}\}(\omega) = \sum_{k \in \mathbb{Z}} R_{X,Y}(k)e^{-j\omega k}.$$

Propiedades de la PSD cruzada

• En general, la PSD cruzada no es real porque $R_{X,Y}$ no es una función par. Sin embargo, satisface

$$S_{X,Y}^*(\omega) = S_{Y,X}(\omega).$$

Por otro lado, si $R_{X,Y}$ es una función real, la PSD cruzada es hermítica:

$$S_{X,Y}^*(-\omega) = S_{X,Y}(\omega).$$

Ejemplos

- Si X e Y son ortogonales, $R_{X,Y}(\tau) = 0$ y entonces $S_{X,Y}(\omega) = 0$.
- Sea X un proceso ESA. Armamos el proceso Y como

$$Y(t) = X(t - t_0), \qquad t \in \mathbb{R},$$

donde $t_0 \in \mathbb{R}$ es un parámetro. Vemos que

$$R_X(\tau) = R_Y(\tau), \qquad R_{X,Y}(\tau) = R_X(\tau - t_0).$$

Por lo tanto,

$$S_X(\omega) = S_Y(\omega), \qquad S_{X,Y}(\omega) = e^{-j\omega t_0} S_X(\omega).$$

Procesos estocásticos vectoriales

Al considerar varios procesos en forma conjunta, es interesante plantear procesos de tipo vectorial.

Decimos que $\mathbf{X}(\xi, t)$ es un PE vectorial (PEV) si

$$\mathbf{X}(\xi,t) = \begin{bmatrix} X_1(\xi,t) \\ \vdots \\ X_n(\xi,t) \end{bmatrix},$$

donde cada componente es un PE escalar.

Observen que el experimento aleatorio asociado, ξ , es el mismo para todos los componentes del vector.

Caracterización de PEs vectoriales

Definimos la media y la función de autocorrelación del PEV como

$$\boldsymbol{\mu}_{\boldsymbol{X}}(t) = \mathbb{E}[\boldsymbol{X}(t)] = \begin{bmatrix} \mathbb{E}[X_1(t)] \\ \vdots \\ \mathbb{E}[X_n(t)] \end{bmatrix} = \begin{bmatrix} \mu_{X_1}(t) \\ \vdots \\ \mu_{X_n}(t) \end{bmatrix},$$

$$\mathbf{R}_{\mathbf{X}}(t,t+\tau) = \mathbb{E}[\mathbf{X}(t)\mathbf{X}^*(t+\tau)]$$

$$= \begin{bmatrix} R_{X_1,X_1}(t,t+\tau) & \cdots & R_{X_1,X_n}(t,t+\tau) \\ \vdots & \ddots & \vdots \\ R_{X_n,X_1}(t,t+\tau) & \cdots & R_{X_n,X_n}(t,t+\tau) \end{bmatrix}.$$

Proceso vectorial ESA

Definición (Proceso vectorial ESA)

Un proceso aleatorio vectorial $\mathbf{X}(t) \in \mathbb{C}^n$ es ESA si:

$$\mathbb{E}[\boldsymbol{X}(t)] = \boldsymbol{\mu}_{\boldsymbol{X}}(t) = \boldsymbol{\mu}_{\boldsymbol{X}}$$

$$\mathbf{R}_{\mathbf{X}}(t, t+\tau) = \mathbb{E}[\mathbf{X}(t)\mathbf{X}^*(t+\tau)] = \mathbf{R}_{\mathbf{X}}(\tau).$$

Las condiciones de estacionariedad requieren que:

Cada componente del PEV sea ESA, de modo que

$$\mathbb{E}[X_i] = \mu_i$$
 y $R_{X_i,X_i}(t,t+\tau) = R_{X_i}(\tau)$ $\forall i = 1,\cdots,n$.

Las componentes sean CESA entre sí, de modo que

$$R_{X_i,X_i}(t,t+\tau) = R_{X_i,X_i}(\tau), \quad \forall i \neq j.$$

$$X(t)$$
 es ESA \iff $X_1(t), \dots, X_n(t)$ son CESA.

Ejemplo: Ruido blanco vectorial

Sean X_i , $i=1,\ldots,n$, procesos de ruido blanco con $\mathbb{E}[X_i]=0$ y $\mathbb{R}_{X_i}(\tau)=\alpha_i\delta(k)$ independientes entre sí. Definimos el ruido blanco vectorial como

$$m{X}(t) = egin{bmatrix} m{X}_1(t) \ dots \ m{X}_n(t) \end{bmatrix}, \qquad t \in \mathbb{R}.$$

 $\bullet \ \mathbb{E}[\boldsymbol{X}(t)] = \boldsymbol{\mu}_{\boldsymbol{X}}(t) = \boldsymbol{0}, \qquad \forall t \in \mathbb{R}.$

$$\bullet \mathbf{R}_{\mathbf{X}}(t,t+\tau) = \mathbf{R}_{\mathbf{X}}(\tau) = \begin{bmatrix} \alpha_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \alpha_n \end{bmatrix} \delta(\tau).$$

Procesos CESA

Considere dos procesos X(n) y W(n), ambos de media nula tal que:

- Los dos procesos son independientes
- $R_X(n, n+k) = e^{-2|k|}$
- $R_W(n, n+k) = \delta(k)$
- Determinar si los procesos son conjuntamente ESA
- Obtener la autocorrelación del proceso

$$Y(n) = \sum_{k=0}^{2} \frac{1}{2^{k}} X(n-k) + W(n)$$

Calcule la densidad espectral de potencia $S_Y(\omega)$.

Estimadores de la correlación

Procesos ergódicos: un tema para pensar

En muchas aplicaciones, sólo tenemos acceso a realizaciones del proceso y no a una descripción analítica de su estadística. Es utilizando sólo estas observaciones que hay que estimar μ_X o R_X .

$$\mu_X(t) = \mathbb{E}[X(\xi,t)] \simeq rac{1}{L} \sum_{l=1}^L X(\xi_l,t) \qquad \xi_l \in \Xi \quad , \quad L ext{ grande}$$

Repitiendo el experimento un número grande de veces y promediando las realizaciones, nos estaremos acercando a la media como dice la Ley de Grandes Números.

Procesos ergódicos: un tema para pensar

Sin embargo, no siempre es posible repetir el experimento y es importante buscar condiciones bajo las cuales el promedio temporal de una única realización permita obtener la media del proceso. O sea, si ξ_o identifica a la realización particular registrada, buscamos condiciones bajo las cuales

$$\mu_{X}\simeq \left\langle X(t)
ight
angle _{T}=rac{1}{T}\int_{0}^{T}X(\xi _{o},t)dt, \qquad ext{ en tiempo continuo}$$

$$\mu_X \simeq \left\langle X(n) \right\rangle_N = \frac{1}{N} \sum_{n=0}^N X(\xi_o, n),$$
 en tiempo discreto

En ese caso se dice que el proceso es ergódico en la media.

Procesos ergódicos

Teorema (Ergodicidad en la media)

Un proceso ESA X(t) es ergódico en la media, es decir

$$\lim_{T\to\infty}\mathbb{E}\left\{\left[\left\langle X(t)\right\rangle_T-\mu_X\right]^2\right\}=0$$

si y sólo si

$$\lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} \left(1 - \frac{|u|}{T} \right) C_X(u) du = 0$$
 en tiempo continuo

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k=-(N-1)}^{N-1}\left(1-\frac{|k|}{N}\right)C_X(k)=0 \qquad \textit{en tiempo discreto}$$

Esta condición pide que C_X decaiga a 0 rápidamente, de modo que las muestras resulten descorrelacionadas rápidamente. Así, al observar una realización suficientemente larga, estamos circulando por muchas realizaciones del ensamble.

Estimación de los indicadores de procesos ESA

Vamos a utilizar los conceptos de ergodicidad para estimar la R_X de un proceso ESA. Supongamos que sólo tenemos acceso a realizaciones del proceso y no una descripción analítica de su estadística. Sin embargo, podemos concluir, a partir de observaciones adicionales, que el proceso es ESA y ergódico. En ese caso, queremos estimar las funciones $R_X(k)$ y/o $S_X(\omega)$.

Estimador de R_X

Sea X(n) un proceso ESA en tiempo discreto. Recordemos que

$$R_X(k) = \mathbb{E}[X(n)X(n+k)].$$

Si no tenemos una descripción analítica de $F_{X(n)X(n+k)}(u, v)$ cómo hacemos para estimar $R_X(k)$?

Como el proceso es ergódico, una idea es utilizar las *N* muestras de una realización

$$\{x(n), n = 0, ... N - 1\}.$$

Estimadores de la correlación: estimador insesgado

Definición (Estimador insesgado de la correlación)

El estimador insesgado de $R_X(k)$ es

$$\hat{R}_X(k) = \frac{1}{N-k} \sum_{n=0}^{N-k-1} x(n) x^*(n+k), \quad 0 \le k \le N-1$$

$$\hat{R}_X(-k) = \hat{R}_X(k)$$

Por cada valor de k hay (N - k) productos que promediar.

Estimadores de la correlación: estimador insesgado

$$\hat{R}_X(k) = \frac{1}{N-k} \sum_{n=0}^{N-k-1} x(n)x^*(n+k)$$
, $k = 0, \dots, N-1$.

Depende de la realización observada. Calculamos su esperanza.

$$\mathbb{E}[\hat{R}_X(k)] = \frac{1}{N-k} \sum_{n=0}^{N-k-1} \underbrace{\mathbb{E}[X(n)X^*(n+k)]}_{R_X(k)}$$
$$= \frac{1}{N-k} (N-k)R_X(k) = R_X(k)$$

Dado que $\forall k$, $\mathbb{E}[\hat{R}_X(k)] = R_X(k)$, entonces el estimador es *insesgado*.

Problema: Cuando $k \simeq N$, la estimación promedia pocos valores, lo que conduce en general a valores más erráticos.

Estimadores de la correlación: estimador sesgado

Definición (Estimador sesgado de la correlación)

El estimador sesgado de $R_X(k)$ es

$$\hat{R}_X(k) = \frac{1}{N} \sum_{n=0}^{N-k-1} x(n) x^*(n+k), \quad 0 \le k \le N-1$$

$$\hat{R_X}(-k) = \hat{R_X}(k)$$

Estimador sesgado: Análisis del sesgo

En este caso, la esperanza es

$$\mathbb{E}[\hat{R}_X(k)] = \frac{1}{N} \sum_{n=0}^{N-k-1} \mathbb{E}[X(n)X^*(n+k)]$$

$$= \frac{N-k}{N} R_X(k) = \left(1 - \frac{k}{N}\right) R_X(k) , \quad 0 \le k \le N-1$$

Recordando que $R_X(k) = R_X^*(-k)$, tenemos

$$\mathbb{E}[\hat{R}_X(k)] = \underbrace{\left(1 - \frac{|k|}{N}\right)}_{v(k)} R_X(k) \quad , \quad -N+1 \le k \le N-1$$

Estimador sesgado: Análisis del sesgo

- $\mathbb{E}[\hat{R_Y}(k)] \neq R_Y(k)$, entonces el estimador es *sesgado*.
- $v(k) = \left(1 \frac{|k|}{N}\right)$ es una ventana triangular (ventana de Barlett) que se anula en |k| = N.
- De este modo, se mejora la performance para k grande.

Estimador sesgado e insesgado de $R_X(k)$

- Curva azul: $R_X(k)$ calculada utilizando la estadística de X(n)
- Curva roja: $\hat{R}_X(k)$ con el estimador sesgado
- Curva naranja: $\hat{R}_X(k)$ con el estimador insesgado

Estimador de la densidad espectral

Definición (Periodograma)

Sea $\hat{R_X}(k)$ el estimador sesgado de la autocorrelación. Luego, el periodograma es

$$\hat{S}_X(\omega) = \sum_{k=-N+1}^{N-1} \hat{R}_X(k) e^{-\jmath \omega k}.$$

El periodograma es un estimador de la densidad espectral de potencia. Veremos su comportamiento estadístico.

Sesgo del periodograma

Considerando la esperanza del estimador sesgado, tenemos: Esperanza del periodograma:

$$\mathbb{E}\left[\hat{S_X}(\omega)\right] = \sum_{k=-(N-1)}^{N-1} \mathbb{E}\left[\hat{R_X}(k)\right] e^{-\jmath \omega k}$$
$$= \sum_{k=-(N-1)}^{N-1} v(k) R_X(k) e^{-\jmath \omega k}.$$

Sea $V(\omega) = \mathcal{F}(v)$. Utilizando las propiedades de Fourier,

$$\mathbb{E}\left[\hat{S_X}(\omega)\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_X(\omega) V(\omega - \psi) d\psi \quad , \quad V(\omega) = \frac{1}{N} \left[\frac{\sin(N\omega/2)}{\sin(\omega/2)}\right]^2$$

Cuando N crece, la ventana se angosta en frecuencia y el sesgo tiende a cero. Decimos que $\hat{S}_X(\omega)$ es asintóticamente insesgado.

Sesgo del periodograma

Ejemplo: Análisis de una suma de dos senoides

 $V(\omega)$: DTFT de la ventana de Barlett Ancho lóbulo principal: $8\pi/N$

 $S(\omega)$: Densidad espectral de potencia

Sesgo del periodograma

En líneas generales, el ventaneo introduce los siguientes fenómenos:

- Los lóbulos secundarios producen un escurrimiento o leakage de potencia.
- El lóbulo principal suaviza o produce smearing (borroneado) del espectro.
- El lóbulo principal de Barlett decrece a la mitad en 1/N. Luego, f_1 , f_2 van a quedar confundidas bajo el mismo lóbulo principal si

$$|f_2 - f_1| \lesssim 1/N$$
,

 La resolución del períodograma es del orden de 1/N (frecuencia discreta).

Ejemplo: resolución del periodograma (I)

Consideremos el siguiente modelo

$$Y(n) = \sin \left[\omega_0 n\right] + \sin \left[2\pi \left(f_0 + \frac{\alpha}{N}\right)n\right], \quad n = 1, \dots, N$$

 α es la diferencia de frecuencia entre las senoides.

 Consideramos N = 256, de modo que la resolución debería ser, aprox:

$$1/N = 0.0039.$$

Ejemplo: resolución del periodograma (II)

Figura: Espectro para $\alpha = 1$. $\frac{\alpha}{N} = 0,039$. FFT de 8192 puntos

Figura: Espectro para $\alpha = 0.75$. $\frac{\alpha}{N} = 0.029 < 0.039$. FFT de 8192 puntos

Ejemplo: resolución del periodograma (III)

Observaciones:

- La resolución se ve afectada también por la fase relativa de las señales.
- Si las señales tienen diferente amplitud, una puede enmascarar a la otra.

Respuesta de un sistema LTI

Respuesta de un sistema LTI

 Sea un sistema LTI con respuesta impulsiva h cuya entrada es un proceso estocástico X que asumimos es ESA.

$$X(n) \longrightarrow h \longrightarrow Y(n)$$

Relación entre la salida y la entrada

$$Y(n) = (h * X)(n) = \sum_{m=-\infty}^{\infty} h(m)X(n-m)$$
 en tiempo discreto

La salida Y(n) es un nuevo proceso estocástico.

Respuesta de un sistema LTI

- Sea y(n) la realización de la salida cuando x(n) es la realización de la entrada al sistema.
- Usando las propiedades de Fourier, vemos que para cada realización de la entrada X(n), se cumple que

$$\mathfrak{F}(y)=H(e^{\jmath\omega})\mathfrak{F}(x).$$

- donde $H(e^{j\omega})$ es la transformada de la respuesta impulsiva o transferencia del sistema LTI.
- Esto es cierto para cada realizacion particular, pero cómo podemos caracterizar el proceso de salida en su conjunto?

Pregunta

Si la entrada de un sistema LTI es ESA, ¿la salida también lo es?

Calculo media y autocorrelación de la salida.

$$\mathbb{E}[Y(n)] = \mathbb{E}\left[\sum_{m=-\infty}^{\infty} h(m)X(n-m)\right]$$

$$= \sum_{m=-\infty}^{\infty} h(m)\mathbb{E}[X(n-m)]$$

$$= \mu_X \sum_{m=-\infty}^{\infty} h(m) = \mu_X H(e^{j0}) = \text{cte.}$$

La media es constante si el sistema es estable, es decir, si $|\sum_{m=-\infty}^{\infty} h(m)|$ está acotado.

Proceso de salida: $Y(n) = \sum_{m=-\infty}^{\infty} h(m)X(n-m)$.

$$R_{Y}(n, n-k) = \mathbb{E} [Y(n)Y^{*}(n-k)]$$

$$= \mathbb{E} \left[\sum_{m=-\infty}^{\infty} h(m)X(n-m) \sum_{p=-\infty}^{\infty} h^{*}(p)X^{*}(n-k-p) \right]$$

$$= \sum_{m} \sum_{p} h(m)h^{*}(p)\mathbb{E} [X(n-m)X^{*}(n-k-p)]$$

$$= \sum_{m} \sum_{p} h(m)h^{*}(p)R_{X}(k+p-m).$$

 $R_Y(n, n-k) = R_Y(k)$, y $\mathbb{E}[Y(n)]$ constante, Y(n) es ESA.

Dado un sistema LTI en reposo. Si

- La entrada X(n) es ESA
- El sistema h(n) es estable.

Entonces la salida Y(n) es un proceso ESA.

Analicemos
$$R_Y(n, n - k) = \sum_m \sum_p h(m)h^*(p)R_X(k + p - m).$$

Sea $h_b(n) = h^*(-n)$
 $R_Y(n, n - k) = \sum_m h(m) \sum_p h^*(-(-p))R_X((k - m) - (-p))$
 $= \sum_m h(m) \sum_l h^*(-l)R_X((k - m) - l)$
 $= \sum_m h(m) \sum_l h_b(l)R_X((k - m) - l)$

$$=\sum_m h(m)g(k-m)=h(k)*g(k)$$

 $q(k-m)=(h_b*R_X)(k-m)$

$$= (h * h_b * R_X)(k).$$

Recap

Si el sistema LTI es estable y la entrada es ESA, la salida es ESA:

• En tiempo discreto:

$$\mu_Y = \mu_X \sum_{m=-\infty}^{\infty} h(m)$$

$$R_Y(k) = (h * h_b * R_X)(k), \qquad h_b(k) = h^*(-k).$$

En tiempo continuo:

$$\mu_Y = \mu_X \int_{-\infty}^{\infty} h(t)dt = \mu_X H(0)$$

$$R_Y(\tau) = (h * h_b * R_X)(\tau), \qquad h_b(\tau) = h^*(-\tau).$$

PSD a la salida de un sistema LTI con entrada ESA

- A partir del teorema de Wiener-Khinchin, obtenemos $S_Y(\omega)$ como la transformada de $R_Y(\tau)$.
- Recordando las propiedades de la transformada de Fourier,

$$\begin{split} S_{Y}(\omega) &= \mathcal{F}(h*h_{b}*R_{X}) \\ &= \mathcal{F}(h)\mathcal{F}(h_{b})\mathcal{F}(R_{X}) \\ &= H(e^{j\omega})H_{b}(e^{j\omega})S_{X}(\omega) \qquad h_{b}(n) = h^{*}(-n) \\ &= H(e^{j\omega})H^{*}(e^{j\omega})S_{X}(\omega) = |H(e^{j\omega})|^{2}S_{X}(\omega) \end{split}$$

PSD a la salida de un sistema LTI con entrada ESA

Conclusión

La PSD a la salida de un sistema LTI con entrada X es:

• En tiempo discreto:

$$S_Y(\omega) = |H(e^{j\omega})|^2 S_X(\omega).$$

• En tiempo continuo:

$$S_Y(\omega) = |H(\omega)|^2 S_X(\omega).$$

Ambas expresiones son equivalentes, en una se usa la transformada de Fourier en tiempo continuo y en la otra en tiempo discreto.

Transferencia de un sistema LTI en tiempo discreto

 Cualquier sistema LTI con entrada X y salida Y puede representarse mediante una ecuación en diferencias:

$$Y(k) + \sum_{p=1}^{n} a_p Y(k-p) = X(k) + \sum_{q=1}^{m} b_q X(k-q).$$

lineal a coeficientes constantes (a_p y b_q son constantes).

• En el campo transformado, la PSD de la salida resulta

$$S_Y(\omega) = \underbrace{\left|rac{1+\sum_{q=1}^m b_q e^{-j\omega q}}{1+\sum_{p=1}^n a_p e^{-j\omega p}}
ight|^2}_{|H(e^{j\omega})|^2} S_X(\omega).$$

Ejemplo: ruido blanco excitando un sistema LTI

$$S_Y(\omega) = \left| \frac{1 + \sum_{q=1}^m b_q e^{-j\omega q}}{1 + \sum_{p=1}^n a_p e^{-j\omega p}} \right|^2 S_X(\omega).$$

- Si el ruido es blanco, $S_X(\omega) = \sigma_X^2$, $\forall \omega$.
- Por lo tanto, la PSD de la salida es simplemente:

$$S_Y(\omega) = \sigma_X^2 \left| \frac{1 + \sum_{q=1}^m b_q e^{-j\omega q}}{1 + \sum_{p=1}^n a_p e^{-j\omega p}} \right|^2 = \sigma_X^2 |H(e^{j\omega})|^2.$$

La PSD de la salida sigue la respuesta del sistema LTI.

• Si se desea identificar la transferencia del sistema, se excita con ruido blanco y se obtiene $|H(e^{j\omega})|$.

Procesos AR y MA

Ecuación en diferencias

 Volvamos a revisar la ecuación en diferencias que representa la salida de un sistema

$$y(k) + \sum_{i=1}^{n} a_i y(k-i) = \sum_{j=0}^{m} b_j x(k-j),$$

donde y es la salida y x es la entrada.

• Supongamos que la entrada X es un proceso de ruido blanco (media nula, varianza σ^2).

$$y(k) + \sum_{i=1}^{n} a_i y(k-i) = \sum_{j=0}^{m} b_j x(k-j)$$

MA-m

Si los coeficientes *a_i* son nulos, la salida se expresa únicamente en términos de una combinación lineal finita de entradas pasadas:

$$Y(k) = \sum_{j=0}^{m} b_j X(k-j).$$

Se dice que Y es un proceso moving average de orden m (MA-m).

Procesos MA

Este proceso es la salida de un sistema LTI FIR

Respuesta impulsiva

$$h(n) = \sum_{l=0}^{m} b_l \delta(n-l)$$

Respuesta en frecuencia

$$H(e^{j\omega}) = \sum_{l=0}^{m} b_l e^{-j\omega l}$$

 $H(z) = \sum_{l=0}^{m} b_l z^{-l}$: sistema con todos sus polos en z = 0.

Procesos MA: R_Y , S_Y

Recordemos que X es ruido blanco de varianza σ^2 , entonces

$$R_X(k) = \sigma^2 \delta(k), S_X(\omega) = \sigma^2.$$

Autocorrelación

$$R_Y(k) = \sigma^2 h(h) * h(-k)$$

Densidad espectral de potencia

$$S_Y(\omega) = \sigma^2 |H(e^{j\omega})|^2$$

El proceso Y(n) no tiene componentes en altas frecuencias.

Ejemplo: filtro promediador

Supongamos que X es ruido blanco de media nula y varianza unitaria y consideramos el proceso. Un caso particular de MA es el siguiente filtro promediador

$$Y(n) = \frac{1}{M+1} \sum_{k=0}^{M} X(n-k).$$

En este caso, $h(n) = \frac{1}{M+1}$ para $0 \le n \le M$. Luego,

$$R_Y(k) = \frac{1}{M+1} \left\{ \delta(k) + \sum_{m=1}^M \left[1 - \frac{m}{(M+1)} \right] \left[\delta(k-m) + \delta(k+m) \right] \right\}.$$

$$S_{Y}(\omega) = \frac{1}{M+1} \left\{ 1 + 2 \sum_{m=1}^{M} \left[1 - \frac{m}{(M+1)} \right] \cos(\omega m) \right\}.$$

$$y(k) + \sum_{i=1}^{n} a_i y(k-i) = \sum_{j=0}^{m} b_j x(k-j)$$

AR-m

Si los coeficientes b_i son nulos, la salida se expresa únicamente en términos de una combinación lineal finita de entradas pasadas:

$$Y(k) + \sum_{i=1}^{n} a_i Y(k-i) = X(k).$$

Se dice que Y es un proceso *autoregresivo* de orden *n* (AR-*n*).

Proceso AR

En este caso, el proceso es la salida de un sistema LTI con respuesta impulsiva de largo infinito (IIR). Su respuesta en frecuencia es

$$H(e^{j\omega}) = \frac{1}{1 + \sum_{k=1}^{n} a_k e^{-j\omega k}}.$$

Los polos del sistema son z_i , $i=1,\cdots,n$ y se obtienen como las raíces del polinomio

$$D(z) = 1 + \sum_{k=1}^{n} a_k z^{-k}.$$

Si el sistema es causal, luego se requiere que $|z_i| < 1$.

Procesos AR-1

Un proceso AR muy sencillo es el de primer orden.

Ecuación en diferencias,

$$Y(k) + aY(k-1) = X(k) \longrightarrow Y(k) = \underbrace{\alpha}_{=-a} Y(k-1) + X(k).$$

• Para obtener R_Y , multiplicamos ambos miembros por Y(k-n) y tomamos esperanza:

$$\mathbb{E}[Y(k)Y(k-n)] = \alpha \mathbb{E}[Y(k-1)Y(k-n)] + \mathbb{E}[X(k)Y(k-n)].$$

$$R_Y(n) = \alpha R_Y(n-1) + \mathbb{E}[X(k)Y(k-n)].$$

• Analicemos cuánto vale $\mathbb{E}[X(k)Y(k-n)]$.

$\mathbb{E}[X(k)Y(k-n)]$

• n > 0: Y(k - n) es función de X(k - n), X(k - n - 1), ... que son muestras en tiempos anteriores a X(k). Como X(k) es un ruido blanco, está descorrelacionado con su pasado. Por lo que tanto:

$$\mathbb{E}[X(k)Y(k-n)]=0 \quad \text{ si } n>0.$$

•
$$n = 0$$
: Como $Y(k) = \alpha Y(k-1) + X(k)$,

$$\mathbb{E}[X(k)Y(k)] = \mathbb{E}\left[X(k)\left(\alpha Y(k-1) + X(k)\right)\right]$$
$$= \alpha \underbrace{\mathbb{E}[X(k)Y(k-1)]}_{=0} + \mathbb{E}[X^{2}(k)]$$
$$= \mathbb{E}[X^{2}(k)] = \sigma_{Y}^{2}.$$

n < 0: Por propiedades de la autocorrelación

$$R_Y(n) = R_Y(-n).$$

Procesos AR-1

Con el desarrollo anterior, tenemos

$$R_Y(n) = \alpha R_Y(n-1) + \sigma_X^2 \delta(n)$$

- ullet Ésta es una ecuación en diferencias en R_Y
- Su solución es

$$R_Y(k) = \frac{\sigma_X^2}{1 - \alpha^2} \alpha^{|k|}$$

Transformando por Fourier

$$S_Y(e^{j\omega}) = rac{\sigma_X^2}{|1 - lpha e^{j\omega}|^2} = rac{\sigma_X^2}{1 + lpha^2 - 2lpha\cos(\omega)}$$

Ejemplos de AR1

Entrada al sistema AR-1: Ruido blanco de varianza $\sigma_X^2 = 4$. El sistema asociado al proceso AR1 tiene su polo en $z = \alpha$.

Generamos dos procesos AR-1: $\alpha = 0.7 > 0$ y $\alpha = -0.7 < 0$

Ejemplos de AR1

Cuando α < 0, la función $R_Y(k)$ oscila a máxima frecuencia porque cambia de signo para cada k.

Ejemplos de AR1

Cuando α < 0, el proceso AR1 tiene principalmente contenido de alta frecuencia.

Autocorrelación del AR-m

Para el caso general, procedemos como para el AR-1, partiendo de la ecuación en diferencias:

$$Y(k) + \sum_{i=1}^{m} a_i Y(k-i) = X(k),$$

$$\mathbb{E}[Y(k)Y(k-n)] + \sum_{i=1}^{m} a_i \mathbb{E}[Y(k-i)Y(k-n)] = \mathbb{E}[X(k)Y(k-n)].$$

$$R_Y(n) + \sum_{i=1}^m a_i R_Y(n-i) = \mathbb{E}[X(k)Y(k-n)].$$

Analizando como antes el término $\mathbb{E}[X(k)Y(k-n)]$, obtenemos las ecuaciones de Yule-Walker.

Autocorrelación del AR-m: ecuaciones de Yule-Walker

Ecuaciones de Yule-Walker [Y 1927; W 1931]

$$R_Y(n) + \sum_{i=1}^m a_i R_Y(n-i) = \sigma_X^2 \delta_{n,0} \quad (n \ge 0)$$

 $R_Y(n) = R_Y(-n) \quad (n < 0)$

Importancia de las ecuaciones de Yule-Walker

- La autocorrelación satisface una ecuación en diferencias similar a la del proceso.
- Son de interés por dos razones:
 - Si conocemos los coeficientes a_1, \ldots, a_m nos permiten hallar la autocorrelación R_Y .
 - Si conocemos la autocorrelación de un proceso AR-m, nos permiten obtener los coeficientes a_1, \ldots, a_m .

Solución de las ecuaciones de Yule-Walker para R_Y

 Un modo de calcular R_Y(k) es resolviendo las ecuaciones Y-W partiendo de la ecuación característica

$$z^m + \sum_{i=1}^m a_i z^{m-i} = 0.$$

• Ejemplo: Sean p_i , $i=1,\cdots,n_2$ raíces reales y distintas, y $\rho_i e^{\pm i\theta_i}$, $i=1,\cdots,n_1$ los pares de raíces complejas conjugadas $(m=2n_1+n_2)$, entonces:

$$R_Y(n) = \sum_{i=1}^{n_1} \rho_i^{|n|} \left[C_i \cos(|n|\theta_i) + D_i \sin(|n|\theta_i) \right] + \sum_{i=1}^{n_2} A_i \rho_i^{|n|},$$

donde las constantes A_i , C_i , D_i se obtienen a partir de

$$R_Y(n) + \sum_{i=1}^m a_i R_Y(n-i) = \sigma_X^2 \delta_{n,0}$$
 y $R_Y(n) = R_Y(-n)$.

Observaciones

$$R_{Y}(n) = \sum_{i=1}^{n_{1}} \rho_{i}^{|n|} \left[C_{i} \cos(|n|\theta_{i}) + D_{i} \sin(|n|\theta_{i}) \right] + \sum_{i=1}^{n_{2}} A_{i} \rho_{i}^{|n|},$$

- La autocorrelación de la salida $R_Y(n)$ tiene soporte infinito (nunca se hace cero).
- La autocorrelación de la salida $R_Y(n)$ decae exponencialmente si $|p_i| < 1$.
- De otro modo la correlación diverge.
- Si hay raíces complejas, $R_Y(n)$ tiene comportamiento oscilatorio.

Procesos gaussianos

Procesos gaussianos

Al estudiar VA, la distribución gausiana mostró propiedades atractivas. Al ser una distribución límite de sumas de VA, por el TCL, es ubicua en la naturaleza. Al estudiar procesos aleatorios, es interesante entonces considerar procesos en los cuales $X(\omega,t)$ son VA gaussianas.

• Ruido Blanco Gaussiano (WGN, White Gaussian Noise): X(t) es un proceso formado por muestras i.i.d. distribuidas de acuerdo a $\mathcal{N}(0, \sigma^2)$.

$$egin{aligned} \mathbb{E}[X] &= 0 \ \mathbb{E}[X(t)X(t+ au)] &= \sigma^2\delta(au) \end{aligned} iggr\} \Rightarrow X ext{ ESA}$$

Movimiento browniano: X(n) es WGN con varianza σ^2 . Definimos

$$Y(n) = \sum_{l=0}^{n} X(l).$$

$$\mathbb{E}[Y] = 0$$

 $\mathbb{E}[Y^2(n)] = \sigma^2(n+1)$ $\Rightarrow X \text{ NO ESA}$

Procesos gaussianos

- Un proceso gaussiano ESA también es ESE, pero no todos los procesos gaussianos son ESA!!!!!
- En general, si X(n) es la salida de un sistema lineal exitado por un proceso gaussiano, entonces X(n) es gaussiano.
- Por ser gaussiano, el proceso queda definido por su media y la función de autocorrelación

$$\mathbb{E}[X(n)]$$
 $R_X(n, k+n)$

Ejemplo: ruido blanco promediado

Ejercicio

Sea H un sistema promediador en tiempo continuo que es alimentado con ruido blanco gaussiano W cuya PSD es $S_W(\omega) = N_0/2$ W/(rad/s):

$$W(t) \longrightarrow \boxed{\frac{1}{T} \int_{t-T}^{t}} \longrightarrow Y(t)$$

Hallar
$$S_Y(\omega)$$
 y $R_Y(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_Y(\omega) d\omega$.

A cada instante, la salida del sistema es:

$$Y(t) = \frac{1}{T} \int_{t-T}^{t} W(t) dt,$$

a respuesta impulsiva del promediador es:

$$h(t) = rac{1}{T}\mathrm{rect}\left(rac{t}{T} - rac{1}{2}
ight) \qquad \mathrm{rect}(t) = \mathbb{1}\{|t| < 1/2\}.$$

Ejemplo: ruido blanco promediado

La transferencia del sistema es:

$$egin{aligned} H(\omega) &= rac{1}{T} \mathfrak{F} \left(\operatorname{rect} \left(rac{t}{T} - rac{1}{2}
ight)
ight) \ &= rac{1}{T} e^{-j\omega/2} \mathfrak{F} \left(\operatorname{rect} \left(rac{t}{T}
ight)
ight) \ &= e^{-j\omega/2} \mathrm{sinc} \left(rac{\omega T}{2\pi}
ight). \end{aligned}$$

donde usamos que:

$$\mathfrak{F}\left(\operatorname{rect}\left(\frac{t}{T}\right)\right) = T \operatorname{sinc}\left(\frac{\omega T}{2\pi}\right).$$

Por lo tanto la PSD del ruido filtrado es:

$$\mathcal{S}_{Y}(\omega) = |\mathcal{H}(\omega)|^{2} \mathcal{S}_{W}(\omega) = rac{\mathit{N}_{0}}{2} \mathrm{sinc}^{2} \left(rac{\omega \mathit{T}}{2\pi}
ight).$$

Ejemplo: ruido blanco promediado

• $R_Y(0)$ representa la potencia total del proceso.

$$\mathbb{E}[|Y(t)|^2] = R_Y(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_Y(\omega) d\omega.$$

Usando que:

$$\mathfrak{F}^{-1}\left(T\mathrm{sinc}^2\left(\frac{\omega\,T}{2\pi}\right)\right)=\mathrm{tri}\left(\frac{t}{T}\right),$$

donde tri(t) = máx(1 - |t|, 0) es la función triángulo, se tiene que:

$$R_{Y}(au) = rac{N_{0}}{2T} \mathfrak{F}^{-1} \left(T \operatorname{sinc}^{2} \left(rac{\omega T}{2\pi}
ight)
ight).$$

y por lo tanto:

$$\mathbb{E}[|Y(t)|^2] = \frac{N_0}{2T}$$
 (en unidades de potencia).