Package 'L0TFinv'

June 10, 2025

Type	Package
Title .	A Splicing Approach to the Inverse Problem of L0 Trend Filtering
Versio	on 0.1.0
Date 2	2025-5-25
; ; ;	iption Trend filtering is a widely used nonparametric method for knot detection. This package provides an efficient solution for L0 trend filtering, avoiding the traditional methods of using Lagrange duality or Alternating Direction Method of Multipliers algorithms. It employ a splicing approach that minimizes L0-regularized sparse approximation by transforming the L0 trend filtering problem. The package excels in both efficiency and accuracy of trend estimation and changepoint detection in segmented functions. References: Wen et al. (2020) <doi:10.18637 jss.v094.i04="">; Zhu et al. (2020) <doi:10.1073 pnas.2014241117="">; Wen et al. (2023)</doi:10.1073></doi:10.18637>
Licens	se GPL (>= 3)
Roxyg	genNote 7.3.2
Encod	ling UTF-8
Impor	rts ggplot2, Matrix, stats
Sugge	sts knitr, rmarkdown, testthat
Vignet	tteBuilder knitr
URL	https://github.com/C2S2-HF/InverseL0TF
Needs	Compilation no
	r Tianhao Wang [aut, cre], Canhong Wen [aut]
Maint	ainer Tianhao Wang <tianhaowang@mail.ustc.edu.cn></tianhaowang@mail.ustc.edu.cn>
Repos	itory CRAN
Date/I	Publication 2025-06-10 09:10:11 UTC
Con	tents
	L0TFinv-package

2 LOTFinv-package

LOTFinv.fix	5
LOTFinv.opt	5
plot.LOTFinvfix	3
print.LOTFinvfix)
SimuBlocksInv)
SimuWaveInv	Ĺ
solMat	2
TFmetrics	3
XMat	ŀ
10	í

L0TFinv-package

A package for L0-regularized sparse approximation

Description

Index

Trend filtering is a typical method for nonparametric regression. The commonly used trend filtering models is the L1 trend filtering model (a) based on the difference matrix $D^{(q+1)}$, as illustrated below.

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{D}^{(q+1)} \boldsymbol{\alpha}\|_{\ell_1}, \quad q = 0, 1, 2, \dots \quad (a)$$

L0 trend filtering (b) has a advantage over other trend filtering methods, especially in the detection of change points. The expression for L0 trend filtering is as follows:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{D}^{(q+1)} \boldsymbol{\alpha}\|_{\ell_0}. \quad (b)$$

We explore transforming the problem (b) into a L0-regularized sparse format (c) by introducing an artificial design matrix $\mathbf{X}^{(q+1)}$ that corresponds to the difference matrix, thereby reformulating the L0 trend filtering problem into the following format.

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^n} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X}^{(q+1)} \boldsymbol{\beta} \|_2^2 + \lambda \sum_{i=n+2}^n |\boldsymbol{\beta}_i|_{\ell_0}. \quad (c)$$

In our practical approach, we consider the maximum number of change points k_{max} as a constraint, transforming the aforementioned L0 penalty problem (c) into the following L0 constraint problem.

$$\text{minimize } \frac{1}{2}\|\boldsymbol{y} - \boldsymbol{X}^{(q+1)}\boldsymbol{\beta}\|_2^2, \quad \text{ subject to } \sum_{i=q+2}^n |\boldsymbol{\beta}_i|_{\ell_0} \leq k_{\max}. \quad (d)$$

For such L0 constraint problems (d), we employ a splicing-based approach to design algorithms for processing. This package has the following seven main methods:

matrix with special structure Generate $X^{(q+1)}$ or $D^{(q+1)}$ matrix.

inverse of the crossprod matrix Simplify the calculation of the inverse matrix of $(X_A^{(q+1)})^T X_A^{(q+1)}$ for the cases where q=0 or q=1, which is frequently used in splicing algorithms.

coef.L0TFinvfix 3

inverse L0 trend filtering with fixed change points Fit a piecewise constant or piecewise linear estimated trend with a given number of change points.

inverse L0 trend filtering with optimal change points Fit a piecewise constant or piecewise linear estimated trend with a maximum number of change points, and select the optimal estimated trend using appropriate information criteria.

simulated data Generate piecewise constant or piecewise linear data.

print/coef Print a summary of the trend estimation results.

plot Plot a summary of the trend estimation results.

Details

PACKAGE

- In previous studies, algorithms solving trend filtering problems (a) necessitate the computation of $((\mathbf{D}^{(q+1)})^T \mathbf{D}^{(q+1)})^{-1}$. When n is large, just fitting the matrix into memory becomes an issue.
- In L0 trend filtering (b), the positions of non-zero elements in the L0 norm correspond with the locations of change points. We consider two subsets: the active set A for non-zero elements and the inactive set I for zero elements. Despite this, computing $((D_I^{(q+1)})^T D_I^{(q+1)})^{-1}$ remains a task involving a substantial matrix.
- Due to the connection between L0 constraint problems and L0 penalty problems, and considering that the sparsity of β is is more meaningful in practical applications than the selection of the hyperparameter λ . We focus on the constraint that reflects our aim to achieve an estimated trend with a given number of change points. So we transform the L0 penalty problem (c) into the L0 constraint problem (d).

References

Kim SJ, Koh K, Boyd SP and Gorinevsky DM. L1 Trend Filtering. Society for Industrial and Applied Mathematics (2009).

Wen C, Wang X and Zhang A. L0 Trend Filtering. INFORMS Journal on Computing (2023).

coef.L0TFinvfix

Extract estimated trends

Description

Extract the coefficients of the estimated trends under the constraint of a given number of change points.

Usage

```
## S3 method for class 'L0TFinvfix'
coef(object, k = NULL, ...)
## S3 method for class 'L0TFinvopt'
coef(object, k = NULL, ...)
```

4 DiffMat

Arguments

object The output of LOTFinvfix or LOTFinvopt

k The given number of change points

.. ignore

Value

Estimated parameters and trends for L0TFinvfix or L0TFinvopt models with specified numbers of change points

See Also

```
print.L0TFinvfix
```

DiffMat

Generate a difference matrix

Description

This function generates a matrix for computing differences of a certain order, useful in numerical methods and for creating specific matrix patterns.

Usage

```
DiffMat(n, q)
```

Arguments

n The number of data points

q The order of the difference

Value

A matrix with dimensions n-q-1 by n, whose elements correspond to the combinatorial values of q.

See Also

XMat

LOTFinv.fix 5

Examples

```
Mat1 <- DiffMat(n = 10, q = 0)
print(Mat1)

Mat2 <- DiffMat(n = 15, q = 1)
print(Mat2)

Mat3 <- DiffMat(n = 15, q = 2)
print(Mat3)</pre>
```

L0TFinv.fix

The inverse L0 trend filtering with fixed change points

Description

Fit the input data points to a piecewise constant or piecewise linear trend with a given number of change points.

Usage

```
LOTFinv.fix(y = y, k = k, q = q, first = 0, last = 1)
```

Arguments

У	The input data points
k	The given number of change points
q	0 or 1. Correspond to a piecewise constant or piecewise linear trend
first	The value ranges from 0 to 1. Represent the minimum percentile point where a change point may occur. If 'first' = 0.01 , it means that change points cannot appear in the first 1% of the data points. If 'first' = 0 , there is no constraint on the position of the change point.
last	The value ranges from 0 to 1. Represent the maximum percentile point where a change point may occur. If 'last' = 0.99, it means that change points cannot appear in the last 1% of the data points. If 'last' = 1, there is no constraint on the position of the change point.

Value

An S3 object of type "L0TFinvfix". A list containing the fitted trend results:

sic	Information criterion value with a penalty term of $2\log(\log(n)) \times \log(n)$
bic	Information criterion value with a penalty term of $2 \times \log(n)$
mse	The mean square error between the fitted trend and the input data
у	The input data points

6 LOTFinv.opt

betak	The fitted $\hat{\beta}$ coefficients with the number of change points being k
yk	The fitted trend with the number of change points being k
Ak	The set of position indicators of the fitted change points with the number of change points being \boldsymbol{k}
beta.all	A data frame with dimensions $n \times k$, where each column represents the fitted $\hat{\beta}$ coefficients corresponding to a given number of change points
y.all	A data frame with dimensions $n \times k$, where each column represents the fitted estimated trend corresponding to a given number of change points
A.all	A list of length k , where each element corresponds to the set of position indicators of change points under a given number

See Also

```
L0TFinv.opt
```

Examples

```
tau = c(0.1, 0.3, 0.4, 0.7, 0.85)
h = c(-1, 5, 3, 0, -1, 2)
BlocksData <- SimuBlocksInv(n = 350, sigma = 0.2, seed = 50, tau = tau ,h = h)
res <- L0TFinv.fix(y=BlocksData$y, k=5, q=0, first=0.01, last=1)
print(res$Ak)
print(BlocksData$setA)
plot(BlocksData$x, BlocksData$y, xlab="", ylab="")
lines(BlocksData$x, BlocksData$y0, col = "red")
lines(BlocksData$x, res$yk, col = "lightgreen")
tau1 = c(0.1, 0.3, 0.4, 0.7, 0.85)
h1 = c(-1, 5, 3, 0, -1, 2)
a0 = -10
WaveData \leftarrow SimuWaveInv(n = 2000, sigma = 0.1, seed = 50, tau = tau1, h = h1, a0 = a0)
res1 <- L0TFinv.fix(y=WaveData$y, k=5, q=1, first=0, last=0.99)
print(res1$Ak)
print(WaveData$setA)
plot(WaveData$x, WaveData$y, xlab="", ylab="")
lines(WaveData$x, WaveData$y0, col = "red")
lines(WaveData$x, res1$yk, col = "lightgreen")
```

L0TFinv.opt

The inverse L0 trend filtering with optimal change points

Description

Fit the input data points to a piecewise constant or piecewise linear trend with optimal change points.

L0TFinv.opt 7

Usage

Arguments

y The input data points

kmax The maximum number of change points

q 0 or 1. Correspond to a piecewise constant or piecewise linear trend

first The value ranges from 0 to 1. Represent the minimum percentile point where

a change point may occur. If 'first' = 0.01, it means that change points cannot appear in the first 1% of the data points. If 'first' = 0, there is no constraint on

the position of the change point.

1ast The value ranges from 0 to 1. Represent the maximum percentile point where

a change point may occur. If 'last' = 0.99, it means that change points cannot appear in the last 1% of the data points. If 'last' = 1, there is no constraint on

the position of the change point.

penalty 'sic' or 'bic' penalty

Details

Let the fitted trend be denoted as \hat{y} , then

 $\operatorname{sic} = n \times \log(\frac{1}{n} \|\boldsymbol{y} - \hat{\boldsymbol{y}}\|_{2}^{2}) + 2\log(\log(n)) \times \log(n) \times \operatorname{df}(\hat{\boldsymbol{y}})$

and

$$\mathrm{bic} = n \times \log(\frac{1}{n} \|\boldsymbol{y} - \hat{\boldsymbol{y}}\|_2^2) + 2 \times \log(n) \times \mathrm{df}(\hat{\boldsymbol{y}}).$$

The term $df(\hat{y})$ represents the degrees of freedom for the estimated trend, where $df(\hat{y}) = k + q + 1$. Here, k refers to the number of change points in the estimated trend.

Value

An S3 object of type "L0TFinvopt". A list containing the fitted trend results:

sic Information criterion value with a penalty term of $2 \log(\log(n)) \times \log(n)$

bic Information criterion value with a penalty term of $2 \times \log(n)$ mse The mean square error between the fitted trend and the input data

y The input data points

betaopt The fitted $\hat{\beta}$ coefficients with optimal change points

yopt The fitted trend with optimal change points

Aopt The set of position indicators of the fitted change points with optimal change

points

kopt Optimal number of change points

beta.all A data frame with dimensions $n \times k_{\text{max}}$, where each column represents the fitted

 $\hat{\boldsymbol{\beta}}$ coefficients corresponding to a given number of change points

8 plot.LOTFinvfix

y.all A data frame with dimensions $n \times k_{\max}$, where each column represents the fitted estimated trend corresponding to a given number of change points

A.all A list of length k_{max} , where each element corresponds to the set of position indicators of change points under a given number

Examples

```
tau = c(0.1, 0.3, 0.4, 0.7, 0.85)
h = c(-1, 5, 3, 0, -1, 2)
BlocksData <- SimuBlocksInv(n = 500, sigma = 0.2, seed = 50, tau = tau ,h = h)
res <- L0TFinv.opt(y=BlocksData$y, kmax=20, q=0, first=0.01, last=1, penalty="bic")
print(res$Aopt)
print(BlocksData$setA)
plot(BlocksData$x, BlocksData$y, xlab="", ylab="")
lines(BlocksData$x, BlocksData$y0, col = "red")
lines(BlocksData$x, res$yopt, col = "lightgreen")
tau1 = c(0.4, 0.6, 0.7)
h1 = c(-3, 5, -4, 6)
a0 = -10
WaveData \leftarrow SimuWaveInv(n = 500, sigma = 0.1, seed = 50, tau = tau1, h = h1, a0 = a0)
res1 <- L0TFinv.opt(y=WaveData$y, kmax=10, q=1, first=0, last=0.99, penalty="sic")
print(res1$Aopt)
print(WaveData$setA)
plot(WaveData$x, WaveData$y, xlab="", ylab="")
lines(WaveData$x, WaveData$y0, col = "red")
lines(WaveData$x, res1$yopt, col = "lightgreen")
```

plot.L0TFinvfix

Plot LOTFinvfix or LOTFinvopt object

Description

Plots a summary of L0TFinvfix or L0TFinvopt

Usage

```
## S3 method for class 'LOTFinvfix'
plot(x, type = NULL, k = NULL, ...)
## S3 method for class 'LOTFinvopt'
plot(x, type = "mse", k = NULL, ...)
```

Arguments

Χ

The output of LOTFinvfix or LOTFinvopt

print.L0TFinvfix 9

type	The values are taken as $c("mse", "sic", "bic", "yhat")$. If $type$ is " mse ", plot the mse as it changes with change points. The same applies to " sic " and " bic ". If $type$ is " $yhat$ ", plot the trend of the estimated values against the input data.
k	Only used for $type = "yhat"$. The given number of change points. By default, the LOTFinvfix object outputs the estimated trend that corresponds to the fixed number of change points within the model. Conversely, the LOTFinvopt object provides the estimated trend based on the optimal change points.
	ignore

Value

Plot the information criteria for L0TFinvfix and L0TFinvopt across an increasing number of change points or display the estimated trend with a selected change point

See Also

```
print.L0TFinvfix
```

print.L0TFinvfix

Print LOTFinvfix or LOTFinvopt object

Description

Prints a summary of L0TFinvfix or L0TFinvopt

Usage

```
## S3 method for class 'L0TFinvfix'
print(x, ...)
## S3 method for class 'L0TFinvopt'
print(x, ...)
```

Arguments

```
x The output of L0TFinvfix or L0TFinvopt
... ignore
```

Value

Estimated parameters and information criteria for L0TFinvfix and L0TFinvopt across an increasing number of change points

10 SimuBlocksInv

Examples

```
library(ggplot2)
tau = c(0.1, 0.3, 0.4, 0.7, 0.85)
h = c(-1, 5, 3, 0, -1, 2)
BlocksData <- SimuBlocksInv(n = 500, sigma = 0.2, seed = 50, tau = tau ,h = h)
res <- L0TFinv.opt(y=BlocksData$y, kmax=10, q=0, first=0.01, last=1, penalty="bic")
print(res)
coef(res,k=res$kopt)
plot(res,type="yhat")
plot(res,type="bic")
tau1 = c(0.1, 0.3, 0.4, 0.7, 0.85)
h1 = c(-1, 5, 3, 0, -1, 2)
a0 = -10
WaveData <- SimuWaveInv(n = 2000, sigma = 0.1, seed = 50, tau = tau1, h = h1, a0 = a0)
res1 <- L0TFinv.fix(y=WaveData$y, k=20, q=1, first=0, last=0.99)
print(res1)
coef(res1,k=5)
plot(res1, type="yhat", k=5)
plot(res1, type="mse")
```

SimuBlocksInv

Simulate Blocks Data

Description

This function generates data points of piecewise constant trends.

Usage

```
SimuBlocksInv(n, sigma, seed = NA, tau, h)
```

Arguments

n	Number of data points
sigma	Standard deviation of the noise added to the signal
seed	An optional seed for random number generation to make results reproducible
tau	The locations of change points in the underlying trend
h	The constant values of the $length(tau) + 1$ segments of the underlying trend

Details

- To simplify the analysis, normalize the change point positions to a range between 0 and 1. Require that all elements of the input tau are within this range. Consequently, the change point positions in simulated data forms a subset of the set $\{\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, 1\}$.
- In fact, length(tau) change points can divide the interval into length(tau) + 1 segments of constant function values. Therefore, ensure that the length of vector h is length(tau) + 1.

SimuWaveInv 11

Value

A list containing the piecewise constant simulated data and the underlying trend:

Χ	The set $\{\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, 1\}$
у	The piecewise constant simulated data of length n

The underlying trend of length ny0

The set of position indicators of change points in the simulated data setA

The locations of change points in the underlying trend tau

Examples

```
tau = c(0.1, 0.3, 0.4, 0.7, 0.85)
h = c(-1, 5, 3, 0, -1, 2)
BlocksData <- SimuBlocksInv(n = 350, sigma = 0.1, seed = 50, tau = tau ,h = h)
plot(BlocksData$x, BlocksData$y, xlab="", ylab="")
lines(BlocksData$x, BlocksData$y0, col = "red")
print(BlocksData$setA)
print(BlocksData$tau)
```

SimuWaveInv

Simulate Wave Data

Description

This function generates data points of piecewise linear trends.

Usage

```
SimuWaveInv(n, sigma, seed = NA, tau, h, a0 = 0)
```

Arguments

n	Number of data points
sigma	Standard deviation of the noise added to the signal
seed	An optional seed for random number generation to make results reproducible
tau	The locations of change points in the underlying trend
h	The slope of the $length(tau) + 1$ segments of the underlying trend
a0	The initial point value

Value

A list containing the piecewise linear simulated data and the underlying trend:

X	The set $\{\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, 1\}$
У	The piecewise linear simulated data of length n
y0	The underlying trend of length n
setA	The set of position indicators of change points in the simulated data
tau	The locations of change points in the underlying trend

12 solMat

See Also

SimuBlocksInv

Examples

```
 tau = c(0.1, 0.3, 0.4, 0.7, 0.85) \\ h = c(-1, 5, 3, 0, -1, 2) \\ a0 = -10 \\ WaveData <- SimuWaveInv(n = 650, sigma = 0.1, seed = 50, tau = tau, h = h, a0 = a0) \\ plot(WaveData$x, WaveData$y, xlab="", ylab="") \\ lines(WaveData$x, WaveData$y0, col = "red") \\ print(WaveData$setA) \\ print(WaveData$tau)
```

solMat

Generate the inverse of the crossprod matrix

Description

Generate the inverse matrix of $(X_A^{(q+1)})^T X_A^{(q+1)}$ for the cases where q=0 or q=1, commonly employed in splicing algorithms. Note that an explicit solution exists for the inverse when q=0, but not when q=1.

Usage

```
solMat(n, q, A)
```

Arguments

```
n The number of data points  \mbox{\bf q} \qquad \mbox{The order of the difference, 0 or 1}  A The set of indicators, a subset of \{1,2,3,\ldots,n\}
```

Value

The inverse matrix of $(\boldsymbol{X}_A^{(q+1)})^T\boldsymbol{X}_A^{(q+1)}$ for the cases where q=0 or 1.

Examples

```
Mat1 <- XMat(n = 10, q = 0)
A1 = c(1,2,5,8)
mat1 = as.matrix(Mat1[,A1])
S1 <- solMat(n = 10, q = 0, A = A1)
print(S1)
print(round(S1%*%t(mat1)%*%mat1,10))
Mat2 <- XMat(n = 15, q = 1)
A2 = c(1,3,8,10,15)</pre>
```

TFmetrics 13

```
mat2 = as.matrix(Mat2[,A2])
S2 <- solMat(n = 15, q = 1, A = A2)
print(S2)
print(round(S2%*%t(mat2)%*%mat2,10))</pre>
```

TFmetrics

Print four metrics about change point detection results

Description

Prints four metrics to compare the quality of change point detection results.

Usage

```
TFmetrics(y0, tau = NULL, yhat, cpts = NULL)
```

Arguments

y0	The underlying trend
tau	The locations of change points in the underlying trend
yhat	The fitted trend
cpts	The positions of the fitted change points

Details

 $\hat{\tau}$ represents the estimated change point positions, while τ denotes the locations of change points in the underlying trend.

$$d_H = \frac{1}{n} \max\{ \max_k \min_j |\tau_j - \hat{\tau}_k|, \max_j \min_k |\tau_j - \hat{\tau}_k| \}.$$

Note that the number of $\hat{\tau}$ and τ does not need to be the same.

Value

MSE	The mean square error between the fitted trend and the underlying trend
MAD	The median absolute deviation between the fitted trend and the underlying trend
dH	Hausdorff Distance (dH) measures the accuracy of the estimated change points
nknot	The number of detected change points

14 XMat

Examples

```
tau = c(0.1, 0.3, 0.4, 0.7, 0.85)

h = c(-1, 5, 3, 0, -1, 2)

n = 500

BlocksData <- SimuBlocksInv(n = n, sigma = 0.2, seed = 50, tau = tau ,h = h)

res <- L0TFinv.opt(y=BlocksData$y, kmax=10, q=0, first=0.01, last=1, penalty="bic")

metrics <- TFmetrics(BlocksData$y0,BlocksData$tau,res$yopt,res$Aopt/n)

print(metrics)

tau1 = c(0.1, 0.3, 0.4, 0.7, 0.85)

h1 = c(-1, 5, 3, 0, -1, 2)

a0 = -10

n1 = 2000

WaveData <- SimuWaveInv(n = n1, sigma = 0.1, seed = 50, tau = tau1, h = h1, a0 = a0)

res1 <- L0TFinv.fix(y=WaveData$y, k=20, q=1, first=0, last=0.99)

metrics1 <- TFmetrics(WaveData$y0,WaveData$tau,res1$y.all[,5],res1$A.all[[5]]/n1)

print(metrics1)
```

XMat

Generate an artificial design matrix

Description

This matrix corresponds to the difference matrix, transforming the L0 trend filtering model into an inverse statistical problem.

Usage

```
XMat(n, q)
```

Arguments

n The number of data points

q The order of the difference

Details

Noticing the correspondence between $D^{(q+1)}$ and $X^{(q+1)}$, the result of their matrix multiplication is a combination of a zero matrix and an identity matrix. Expressed as $D^{(q+1)}X^{(q+1)} = (O_{(n-q-1)\times(q+1)}, \quad I_{(n-q-1)\times(n-q-1)})$. The result is advantageous for the invertible processing of the original L0 trend filtering problem.

Value

A matrix with dimensions n by n, whose elements correspond to the difference matrix.

XMat 15

Examples

```
mat1 <- XMat(n = 10, q = 0)
print(mat1)

mat2 <- XMat(n = 15, q = 1)
print(mat2)

mat3 <- XMat(n = 15, q = 2)
print(mat3)

Mat1 <- DiffMat(n = 10, q = 0)
Mat2 <- DiffMat(n = 15, q = 1)
Mat3 <- DiffMat(n = 15, q = 2)
print(Mat1%*%mat1)
print(Mat2%*%mat2)
print(Mat3%*%mat3)</pre>
```

Index

```
coef.L0TFinvfix, 3
coef.L0TFinvopt (coef.L0TFinvfix), 3

DiffMat, 4

L0TFinv-package, 2
L0TFinv.fix, 5
L0TFinv.opt, 6, 6

plot.L0TFinvfix, 8
plot.L0TFinvopt (plot.L0TFinvfix), 8
print.L0TFinvopt (print.L0TFinvfix), 9

SimuBlocksInv, 10, 12
SimuWaveInv, 11
solMat, 12

TFmetrics, 13

XMat, 4, 14
```