

Arduino-basic [wk12]

Analog Input II.

Learn how to code Arduino from scratch

Comsi, INJE University

2nd semester, 2019

Email: chaos21c@gmail.com

My ID (ARnn)

AR01	염현제
AR02	강민수
AR03	구병준
AR04	김종민
AR05	박성철
AR06	이승현
AR07	이창호
AR08	변성연
AR09	손성빈
AR10	안예찬
AR11	유종인
AR12	이석민
AR13	이주원
AR14	정재영
AR15	차유신

AR16	아태성
AR17	강현이
AR18	신종원
AR19	최진솔
AR20	김경미
AR21	김경영
AR22	김규년
AR23	김민재
AR24	김영록
AR25	송다은
AR26	정지환
AR27	김종건

Arduino team project

- · 2명/팀
- 구상 소개 (12.05, 12.10), ppt준비
- 부품은 수업 세트 기준
- 팀당 발표 자료 준비
- · 발표: 12월12일(목)
 - ✓ PPT 발표 및 시연 (동영상도 가능)

- 참고
- 추가 부품은 조별로 개별 조달.

[Review]

- ◆ [wk11]
- Arduino : Analog input I.
- Complete your project
- Submit folder : Arnn_Rpt07

6. 아날로그 신호 입력

- 6.1 포텐쇼미터 입력 (가변저항기)
- 6.2 빛 입력 (CdS, LDR)
- 6.3 온도 측정 (LM35, TMP36)
- 6.4 수위 측정
- 6.5 아날로그 조이스틱
- 6.6 소리 입력

wk11: Practice-07: ARnn_Rpt07

- [Target of this week]
 - Complete your works
 - Save your outcomes
 - Upload all in github.

제출폴더명: ARnn_Rpt07

- 제출할 파일들
 - ① ARnn_pwm.png
 - 2 ARnn_cds.png
 - 3 ARnn_cds_project.ino
 - 4 ARnn_cds_lm35.ino
 - 5 ARnn_cds_lm35.png
 - 6 *.ino

6. Analog input

6. 아날로그 신호 입력

- 6.1 포텐쇼미터 입력 (가변저항기)
- 6.2 빛입력 (CdS, LDR)
- 6.3 온도 측정 (LM35, TMP36)
- 6.4 수위 측정
- 6.5 아날로그 조이스틱
- 6.6 소리 입력

6.1 potentiometer 가변저항기

6.1.5 포텐쇼미터 (가변저항 조절) - DIY

DIY 응용 문제

- 1. delay함수를 사용하지 말고 4.2절의 예제를 참고하여 PWM 단자를 이용하여 LED의 밝기를 조절해 보자.
- PWM을 지원하는 디지털 3 번 핀에 단색 LED를 연결. (330 ohm 저항 연결)

6.1.6 포텐쇼미터 (DIY: code-2, pwm)

```
6 // 0번 아날로그핀을 포텐쇼미터 입력으로 설정한다.
7 const int potentioMeterPin = 0;
8
9 //13번 핀에 연결되어 있는 내장 LED를 출력으로 사용한다.
10 const int ledPin = 13;
11
12 // #3 pin is defined to PWM output pin
13 const int pwmOutputPin = 3;
14
15 void setup() {
16 // 13번 핀을 출력으로 설정한다.
17 pinMode(ledPin, OUTPUT);
18 // 시리얼 통신을 설정한다.
19 Serial.begin(9600);
20 }
```

```
ADC Value: 1023, Duty cycle: 100%, pwm: 255
ADC Value: 1022, Duty cycle: 99%, pwm: 254
ADC Value: 1023, Duty cycle: 100%, pwm: 255
```

```
22 void loop(){
    int adcValue; // 실제 센서로부터 읽은 값 (0~1023)
   int duty; // LED 점멸 주기 (0~100%)
25 int pwm;
             // pwm 출력용
26
27 // 포텐쇼미터 값을 읽는다.
    adcValue = analogRead(potentioMeterPin);
29 // 포텐쇼미터 값을 0~100의 범위로 변경한다.
    duty = map(adcValue, 0, 1023, 0, 100);
31
32]// LED를 duty ms 만큼 점등한다.
    digitalWrite(ledPin, HIGH);
    delay(duty);
341
35 // 나머지 시간에는 소등시킨다.
    digitalWrite(ledPin, LOW);
36
    delay(100-duty);
37
38
39 // pwmOutputPin Led ON
40. pwm = map(adcValue, 0, 1023, 0, 255);
41 analogWrite(pwmOutputPin,pwm);
42 // 시리얼 통신으로 ADC 값과 Duty를 출력한다.
    Serial.print("ADC Value: ");
43
44
    Serial.print(adcValue);
    Serial.print(". Duty cycle: ");
45
    Serial.print(duty);
46
    Serial.println("%");
47 l
48 }
```


6.2 CdS, LDR

조도센서

6.2 조도 센서 (빛의 밝기 측정)

CdS 센서

- ✓ CdS 분말을 세라믹 기판 위에 압축하여 제작
- ✓ 빛이 강할 수록 저항 값이 감소 → 광 가변저항
- ✓ ADC를 이용하여 변화된 저항에 전압을 인가하여전압의 변화를 감지
- ✓ 자동 조명장치, 조도 측정 등에 사용

럭스

럭스(lux, 기호 lx)는 빛의 조명도를 나타내는 SI 단위이다. 럭스는 루멘에서 유도 $1 lx = 1 lm/m^2 = 1 cd \cdot sr \cdot m^{-2}$

럭스의 예 _[편집]

I밝기차	예
10 ⁻⁵ lux	가장 밝은 별(시리우스)의 빛 ^[1]
10 ⁻⁴ lux	하늘을 덮은 완전한 별빛[1]
0.002 lux	대기광이 있는 달 없는 맑은 밤 하늘 $^{[1]}$
0.01 lux	초승달
0.27 lux	맑은 밤의 보름달 ^{[1][2]}
1 lux	열대 위도를 덮은 보름달 ^[3]
3.4 lux	맑은 하늘 아래의 어두운 황혼 ^[4]
50 lux	거실 ^[5]
80 lux	복도/화장실 ^[6]
100 lux	매우 어두운 낮 ^[1]
320 lux	권장 오피스 조명 (오스트레일리아) ^[7]
400 lux	맑은 날의 해돋이 또는 해넘이
1000 lux	인공 조명 ^[1] ; 일반적인 TV 스튜디오 조명
10,000-25,000 lux	낮 (직사광선이 없을 때) ^[1]
32,000–130,000 lux	직사광선

6.2.1 조도 센서 (빛의 밝기 측정)

EX 6.2 및 입력 (1/3)

실습목표 CdS 셀을 이용하여 조도를 측정해 보자.

- 1. CdS 셀로 측정된 조도를 아날로그 핀을 통하여 0~1023 범위로 읽는다.
- 2. ADC 값을 LCD 모듈로 0~100%의 범위로 출력한다.

Hardware

- 1. CdS셀과 1kΩ저항을 연결한 뒤 저항의 한쪽 끝은 5V에 CdS셀의 한쪽 끝은 GND에 연결한다.
- 2. 저항과 CdS셀 사이를 아날로그입력핀 A0에 연결한다.
- 3. I2C LCD 모듈의 Vcc, GND를 Arduino의 5V, GND에 연결한다.
- 4. I2C LCD 모듈의 SDA는 A4에 SCL은 A5에 연결한다.

6.2.4 조도 센서 (빛의 밝기 측정): code-2

```
41 void loop(){
42
   int adcValue; // 실제 센서로부터 읽은 값 (0~1023)
   int illuminance; // 현재의 밝기. 0~100%
44
45
46
   // CdS cell을 통하여 입력되는 전압을 읽는다.
   adcValue = analogRead(CdSPin);
   // 아날로그 입력 값을 0~100의 범위로 변경한다.
48
   illuminance = map(adcValue, 0, 1023, 100, 0);
   // 전에 표시했던 내용을 지우고
   // LCD에 ADC 값과 밝기를 출력한다.
   // 지우지 않으면 이전에 표시했던 값이 남게 된다.
54
```

```
ADC: 803
Illuminance: 22 %
```

ARnn_cds.png ^{로 저장}...

```
// 전에 표시했던 내용을 지운다.
56 | | lcd.setCursor(9,0);
57 | Icd.print(" ");
   // ADC 값을 표시한다
   lcd.setCursor(9,0);
   lcd.print(adcValue);
   -// 전에 표시했던 내용을 지운다.
63 | lcd.setCursor(13,1);
64 | Icd.print(" ");
   // 밝기를 표시한다
65 l
   lcd.setCursor(12.1);
66
   lcd.print(illuminance);
68
   delay(1000);
70|}
```


6.3 LM35, TMP36

온도센서

6.3 온도 센서 (주변 온도측정)

LM35 온도-전압 특성

LM35

- Three-Pin
 - TO-92 Package
 - Easy to Use
 - 4V-20V Operating Range
 - 60µA Max Current Draw
- Analog Output
 - 0.5°C Accuracy at 25°C
 - Easily read by Arduino
 - Highly Linear Transfer Function
 - 10 (mV/_℃) Slope

✓ 전원과 접지를 연결하면 Vout에 0~500 °C 까지 0.01V 단위로 전압 출력(0~5000mV)이 발생

6.3.5 온도 센서 (주변 온도측정)

DIY

예제 6.2를 참고하여 LCD에 현재 온도, 조도를 함께 표시해 보자.

응용 문제

아두이노 코드를 완성하시오.

→ ARnn_cds_lm35.ino 로 저장하고 제출

→ ARnn_cds_lm35.png 로 저장하고 제출

6.4

수위센서

6.4 수위 센서 (수위 측정)

그림 6. 5 디지털 신호 수위센서와(a) 실험에 사용할 아날로그 신호 수위센서(b)

- ✓ 디지털 센서는 만수를 감지
- ✓ 아날로그 센서는 수위를 측정
- ✓ 디지털 입력핀 혹은 아날로그 입력핀을 이용하여 측정

6.4.1 수위 센서 (수위 측정)

수위 측정 (1/2) **EX 6.4**

- 실습목표 1. 수위 센서로부터 컵 안의 물의 수위를 측정한다.
 - 2. 아날로그 입력값과 % 값을 함께 출력한다.
 - 3. 센서마다 만수 시 출력값이 틀릴 수 있다. ADC 값을 확인 한 후 상수를 변경하자.

Hardware

- 1. 수위센서의 Vs(+)와 G(-) 핀을 Arduino의 5V와 GND에 연결한다.
- 2. 수위센서의 Vout을 아날로그입력핀 A0에 연결한다.
- 3. I2C LCD 모듈의 Vcc, GND를 Arduino의 5V, GND에 연결한다.
- 4. I2C LCD 모듈의 SDA는 A4에 SCL은 A5에 연결한다.

6.4.2 수위 센서 (수위 측정)

EX 6.4 수위 측정 (2/2)

- Sketch 구성
- 1. I2C LCD 모듈을 설정한다.
- 2. Water sensor로부터 ADC 값을 읽는다.
- 3. ADC 값을 만수일 때 ADC 값과 비교하여 %로 수위를 계산한다.
- 4. LCD에 ADC 값과 수위를 표시한다.

실습 결과

ADC 값과 Water level 값이 출력된다.

ADC: 600

Water level: 100 %

6.4.3 수위 센서 (수위 측정) : code-1

```
ex_6_4
 1 /*
 2 예제 6.4
 3 수위 센서 입력
 4 */
 6 // 12C 통신 라이브러리 설정
 7 #include <Wire.h>
 8 // I2C LCD 라리브러리 설정
9 #include <LiquidCrystal 12C.h>
10
11 // LOD I2C address 설정 PCF8574:0x27, PCF8574A:0x3F
12 LiquidCrystal_I2C lcd(0x27,16,2); // L0D address:0x27, 16X2 L0D
13
14 // 0번 아날로그핀을 WaterLevel Sensor 입력으로 설정한다.
15 const int waterLevelPin = 0;
17// 센서마다 만수시 ADC 값이 틀리므로 만수 시 ADC 값을 참고하여 설정한다
18 const int waterFullAdcValue = 798;
```

```
20 void setup() {
21
   lcd.init(); // LCD 설정
   Icd.backlight(); // 백라이트를 켠다.
24
   // 메세지를 표시한다.
   lcd.print("ex 6.4");
27
   lcd.setCursor(0.1);
   lcd.print("Water Level");
   // 3초동안 메세지를 표시한다.
30
    delay(3000);
31
32
   // 모든 메세지를 삭제한 뒤
33
   // 숫자를 제외한 부분들을 미리 출력시킨다
34
   lcd.clear();
35
   lcd.setCursor(0.0);
36
    lcd.print("ADC : ");
37
    lcd.setCursor(0,1);
38
   lcd.print("Water Level:");
   lcd.setCursor(15.1);
   lcd.print("%");
401
41 }
```


6.4.3 수위 센서 (수위 측정): code-2

```
43 void loop(){
44
    int adcValue; // 실제 센서로부터 읽은 값 (0~1023)
45
    int waterLevel; // 수위 0~100%
46
47
   // 수위 센서를 통하여 입력되는 전압을 읽는다.
48
   adcValue = analogRead(waterLevelPin);
50
   // 아날로그 입력 값을 0~100의 범위로 변경한다.
51
   waterLevel = map(adcValue, 0, waterFullAdcValue, 0, 100);
53
   // 전에 표시했던 내용을 지우고
   // LCD에 ADC 값과 수위를 출력한다.
56
   // 지우지 않으면 이전에 표시했던 값이 남게 된다.
57
58
   // 전에 표시했던 내용을 지운다.
59
    lcd.setCursor(9.0);
    lcd.print(" ");
60
   // ADC 값을 표시한다
61
62
    lcd.setCursor(9.0);
    lcd.print(adcValue);
```

```
65  // 전에 표시했던 내용을 지운다.
66  lcd.setCursor(13,1);
67  lcd.print(" ");
68  // 주위를 표시한다
69  lcd.setCursor(12,1);
70  lcd.print(waterLevel);
71
72  delay(1000);
73 }
```


6.4.4 수위 센서 (수위 측정) - DIY

DIY

응용 문제

1. 사전에 설정한 수위에서 LED를 점등 시키는 회로를 구성하고 동작시키는 스케치를 작성해 보자.

→ 점등 사진은 ARnn_waterlevel.png

→ **아두이노 코드는 ARnn_waterlevel.ino** 로 저장하고

제출

6.5

아날로그 조이스틱

6.5 아날로그 조이스틱

아날로그 조이스틱

그림 6. 6 실험에 사용할 아날로그 조이스틱 모듈

- ✓ X, Y 축의 움직임은 포텐쇼미터로 감지
- ✓ Z 축으로의 움직임은 디지털 스위치 입력

6.5.1 아날로그 조이스틱

EX 6.5 아날로그 조이스틱 (1/2)

- 실습목표 1. 아날로그 조이스틱을 이용하여 X, Y 축으로 변하는 아날로그 값을 입력 받아 LCD에 출력한다.
 - 2. Z 축 입력에 대해서는 백라이트를 점멸시킨다.

Hardware

- 1. 조이스틱의 5V와 G 핀을 Arduino의 5V와 GND에 연결한다.
- 2. X축 각도인 VRX는 아날로그입력 A0핀에, Y축 각도인 VRY는 아날로그입력 A1핀에 연결한다.
- 3. Z축 입력인 SW는 디지털입출력핀 2번에 연결한다.
- 4. I2C LCD 모듈의 Vcc, GND를 Arduino의 5V, GND에 연결한다.
- 5. I2C LCD 모듈의 SDA는 A4에 SCL은 A5에 연결한다.
- 6. A0핀으로부터 X축의 아날로그 변위와 A1핀으로부터 Y축의 아날로그변위를 ADC로 입력받는다.
- 7. Z축 입력은 스위치 입력으로 디지털입출력핀 2번은 반드시 풀업 설정을 해줘야 한다.

6.5.1 아날로그 조이스틱

EX 6.5

아날로그 조이스틱 (1/3)

X축 각도인 VRX는 아날로그입력 A0핀에, Y축 각도인 VRY는 아날로그입력 A1핀에 연결.

Z축 입력인 SW는 디지털입출력핀 2번에 연결 (INPUT_PULLUP)

6.5.2 아날로그 조이스틱

EX 6.5 아날로그 조이스틱 (2/2)

- Sketch 구성 1. X, Y축의 움직임에 대하여 아날로그 입력핀 0번과 1번에서 아날로그 입력을 받는다.
 - 2. 디지털입력핀 2번에서 Z축으로의 디지털 입력을 받는다.
 - 3. X, Y축의 움직임을 LCD에 그래프로 나타내고 ADC 값도 함께 나타내 준다.
 - 4. Z축 디지털 입력이 발생했을 경우 백라이트를 점멸시킨다.
 - 실습 결과 X, Y 축의 아날로그값과 그래프가 출력된다. 조이스틱을 누르면 백라이트가 점멸한다.

X:512 Y:512

6.5.3 아날로그 조이스틱: code-1

```
ex_6_5
 2 예제 6.5
 3 조이스틱 입력
 6 // 12C 통신 라이브러리 설정
 7 #include <Wire.h>
 8 // I2C LCD 라리브러리 설정
 9 #include <LiquidCrystal 12C.h>
11 // LCD I2C address 설정 PCF8574:0x27, PCF8574A:0x3F
12 LiquidCrystal 12C lcd(0x27,16,2); // LCD address:0x27, 16X2 LCD
14 // 0번 아날로그핀을 X 축 입력으로 설정
15 const int xAxisPin = 0:
16 // 1번 아날로그핀을 Y 축 입력으로 설정
17 const int vAxisPin = 1;
▶18 // 2번 디지털 입력 핀을 Z 축 입력으로 설정
19 const int zAxisPin = 2;
```

```
21 void setup() {
22
   <u>// Z 축 입력은 디지털 입력으로</u> 설정한다
  ipinMode(zAxisPin,INPUT_PULLUP);
    Icd.init(); // LCD 설정
    Icd.backlight(); // 백라이트를 켠다.
28
    // 메세지를 표시한다.
30
    lcd.print("ex 6.5");
    lcd.setCursor(0,1);
31
    lcd.print("Joystick");
33
   // 3초동안 메세지를 표시한다.
34
    delay(3000);
35
   // 모든 메세지를 삭체한 뒤
36
   // X축 Y축 문자를 출력한다.
37
38
    lcd.clear();
    lcd.setCursor(0.0);
    lcd.print("X:");
40.
    lcd.setCursor(0.1);
    lcd.print("Y:");
    lcd.setCursor(15.1);
44|}
```


6.5.3 아날로그 조이스틱: code-2

```
46 void loop(){
47
48 // X, Y, Z 축 값을 읽는다.
  int xValue = analogRead(xAxisPin);
   int yValue = analogRead(yAxisPin);
   int zValue = digitalRead(zAxisPin);
51
52
53
   // 그래프를 그리기 위해서 X, Y 값을 조절한다.
54
    int xDisplay = map(xValue,0,1023,6,15);
    int yDisplay = map(yValue,0,1023,6,15);
55
56
57 l
   // 첫 째 줄에 전에 표시했던 내용을 지운다.
    lcd.setCursor(2,0);
58
    lcd.print("
               "); // 14칸 공백
591
   // X 축의 ADC 값을 출력한다.
601
   lcd.setCursor(2.0);
   lcd.print(xValue);
621
   -// 조이스틱의 X 값에 따라 그래프를 출력한다
631
   !lcd.setCursor(xDisplay,0);
  lcd.print("|");
```

```
// 둘째 줄에 전에 표시했던 내용을 지운다.
68
    lcd.setCursor(2,1);
    lcd.print(" "); // 14칸 공백
69
70
    // Y 축의 ADC 값을 출력한다.
    lcd.setCursor(2,1);
    lcd.print(vValue);
    <u>// 조이스틱의 Y 값에 따라 그</u>래프를 출력한다
   !lcd.setCursor(yDisplay,1);
75
   ilcd.print("|");
76
   // Z 방향으로 눌렸을 때 백라이트를 점멸한다.
   if(zValue == LOW){
79
  lcd.noBacklight();
80 ! delay(300);
81 | Icd.backlight();
    delay(100);
831
84 }
```


6.5.4 아날로그 조이스틱 - DIY (참고)

DIY

1. 5개의 LED를 브레드보드에 '+' 모양으로 배치시킨다.

응용 문제

2. 조이스틱의 방향에 따라 해당하는 LED를 점등시키는 스케치를 작성해 보자.

6.5.4 아날로그 조이스틱 - DIY

DIY

1. 5개의 LED를 브레드보드에 '+' 모양으로 배치시킨다.

응용 문제

2. 조이스틱의 방향에 따라 해당하는 LED를 점등시키는 스케치를 작성해 보자.

→ ARnn_joystick.ino 로 저장하고 제출

```
21 // LED
                                             32
                                                 // LED
                                                 pinMode(wShoot,OUTPUT);
22 const int wShoot = 3; // white Shoot
                                             341
                                                 pinMode(rStop,OUTPUT);
23 const int rStop = 5; // red Stop
                                                pinMode(bGo,OUTPUT);
24 const int bGo = 6; // blue Go
                                             361
                                                pinMode(yRight,OUTPUT);
25 const int yRight = 9; // yellow Right
                                                 pinMode(yLeft,OUTPUT);
                                             371
26 const int yLeft = 10; // yellow Left
```

동작 중 사진을 ARnn_joystick.png ^{로 저}장...

6.6

마이크로폰 모듈

6.6 마이크로폰 모듈

마이크로폰 모듈

그림 6. 7 마이크로폰 모듈

- √ 입력되는 소리 신호와 비례하여 아날로그 신호 출력
- ✓ 디지털 출력으로 사용할 때는 내장된 포텐쇼미터로 임계값 조절

6.6.1 마이크로폰 모듈

EX 6.6 소리 입력 (1/3)

실습목표

- 1. 마이크로폰 모듈을 이용하여 소리를 아날로그 신호로 입력 받는다.
 - 2. 소리의 크기에 따라 8개의 LED로 그래프 바를 만들어 보자.

Hardware

- 1. LED 바를 만들기위해 2~9번핀에 8개의 LED를 연결한다. Anode를 Arduino의 핀에 연결하고 Cathode에 330Ω 저항을 연결하여 GND에 연결한다.
- 2. 마이크로폰 모듈의 +와 G를 Arduino의 5V와 GND에 연결한다.
- 3. 마이크로폰 모듈의 AO핀을 Arduino의 아날로그 입력핀 A0에 연결한다.
- 4. 입력되는 소리의 크기를 ADC로 읽어 LED바를 동작하는데 참고한다.

6.6.1 마이크로폰 모듈

EX 6.6 소리 입력 (1/3)

6.6.2 마이크로폰 모듈

소리 입력 (2/3)

Commands

- analogRead(아날로그 핀번호)
- 아날로그핀에서 아날로그 값을 읽는다. 0~5V사이의 전압을 0~1023사이의 값으로 표현한다.
- map(변수명, 범위1 최소값, 범위1 최대값, 범위2 최소값, 범위2 최대값) 변수명의 변수의 범위1의 범위와 범위2의 범위에 매칭시킨다. 즉 변수가 0~100의 범위를 갖고 이를 50~200의 범위로 매칭하려면 'map(변수명, 0, 100, 50, 200)'의 명령어로 매칭시킬 수 있다.
- for(변수=시작 값 ; 조건 ; 변수의 증분){ } 변수의 시작 값부터 조건이 만족하는 경우 '{ }' 내의 명령을 수행한다. '변수의 증분'에서는 1회 명령이 수행될 때 마다 변수를 증가 혹은 감소시킨다.

- Sketch 구성 1. MIC 모듈에서 출력되는 아날로그 신호를 아날로그 입력핀 0번에서 입력받는다.
 - 2. 디지털 출력 2~9번핀에 LED를 입력된 아날로그 값과 대응하여 단계별로 출력하다.
 - 3. 아날로그 신호가 클수록 많은 수의 LED를 켠다.

6.6.2 마이크로폰 모듈 – code

```
ex 6 6
1 /*
2 예제 6.6
  소리 입력
4 */
61// A0번 핀에서 사운드 입력을 받는다
7 char soundInputPin = 0;
9<u>// 그래프 바 LED 출력핀을 level 변수에 저장</u>
10 char ledLevel[8] = {2, 3, 4, 5, 6, 7, 8, 9};
12 void setup() {
   // 그래프 바 LED 핀을 출력으로 설정
   for(int i=0 ; i<=7 ; i++){
     pinMode(ledLevel[i].OUTPUT);
16
17|}
```

```
19 void loop(){
   // AO번 핀에서 사운드 입력을 받는다
   int soundInput = analogRead(soundInputPin);
   // 노이즈부분을 제외한 50~900의 범위로 입력받은 사운드 크기를
   // 0~7단계로 변경한다.
   int soundLevel = map(soundInput,50,900,0,7);
   _//_전체_LED를_소등한다.
29 for(int i = 0; i \le 7; i++){
    digitalWrite(ledLevel[i],LOW);
30
31 ! }
   // 0~7 단계 중 입력보다 작은 레벨의 LED는 점등한다.
34 for(int i = 0 ; i <= soundLevel ; i++){
     digitalWrite(ledLevel[i],HIGH);
36
```


6.6.3 마이크로폰 모듈

EX 6.6 소리 입력 (3/3)

- Sketch 구성
- 1. MIC 모듈에서 출력되는 아날로그 신호를 아날로그 입력핀 0번에서 입력받는다.
- 2. 디지털 출력 2~9번핀에 LED를 입력된 아날로그 값과 대응하여 단계별로 출력한다.
- 3. 아날로그 신호가 클수록 많은 수의 LED를 켠다.

실습 결과 소리의 크기에 따라서 LED 바가 점등된다.

사진을 ARnn sound bar.png 로 저장...

DIY

응용 문제

시리얼 통신을 통하여 소리의 크기를 PC 모니터에 출력해 보자.

© COM11 (Arduino/Genuino Uno)

Sound Input: 34, Sound Tevel: 0

Sound Input: 267, Sound Tevel: 1

Sound Input: 1021, Sound Tevel: 7

Sound Input: 1021, Sound Tevel: 7

지렬모니터 출력화면을
ARnn_sound monitor.png
로 저장...

[Practice]

- **♦** [wk12]
- Arduino : Analog input II
- Complete your project
- Submit folder : ARnn_Rpt08

wk12: Practice-08: ARnn_Rpt08

- [Target of this week]
 - Complete your works
 - Save your outcomes
 - Upload all in github.

제출폴더명: ARnn_Rpt08

- 제출할 파일들
 - ① ARnn_waterlevel.png
 - 2 ARnn_waterlevel.ino
 - 3 ARnn_joystick.ino
 - 4 ARnn_joystick.png
 - **5** ARnn_sound_bar.png
 - **6** ARnn_sound_monitor.png
 - **7** *.ino

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.github.com GitHub
- http://www.google.com Googling
- ✓ https://www.youtube.com Youtube

Github.com/Redwoods/Arduino

Github.com/Redwoods/Arduino

주교재

Uno team

아두이노 키트(Kit)

http://arduinostory.com/goods/goods_view.php?goodsNo=1000000306

<u>아두이노 키트(Kit): Part-1</u>

아두이노 키트(Kit): Part-2

