Diskrete Mathematik Solution 4

4.1 Case Distinction with Any Number of Sets

We define the predicate *P* by

$$P(k) = 1 \iff (A_1 \vee \cdots \vee A_k) \wedge (A_1 \to B) \wedge \cdots \wedge (A_k \to B) \models B.$$

We want to prove that P(k) = 1 for all $k \ge 1$. We proceed by induction.

Basis Step. The statement P(1) is proven to be true in Lemma 2.7.

Induction Step. Assume that P(k) = 1. We want to show that P(k+1) = 1.

Suppose that a certain truth assignment of the propositional symbols A_1, \ldots, A_{k+1}, B makes the formula

$$(A_1 \vee \cdots \vee A_{k+1}) \wedge (A_1 \to B) \wedge \cdots \wedge (A_{k+1} \to B)$$

true. This means that $(A_i \to B)$ is true for all $i \in \{1, \dots, k+1\}$ and $(A_0 \lor \dots \lor A_{k+1})$ is true. Since $(A_1 \lor \dots \lor A_{k+1})$ is true, then A_i must be true for some $i \in \{1, \dots, k+1\}$. We distinguish two cases:

- Case 1: A_{k+1} is true. Since $A_{k+1} \to B$ is true, then B must be true under the given truth assignment (modus ponens).
- Case 2: A_{k+1} is false. Since $(A_1 \vee \cdots \vee A_{k+1})$ is true, then A_i must be true for some $i \in \{1, \ldots, k\}$. Since by induction hypothesis we know that P(k) = 1, this means that B is true under the given truth assignment.

The case distinction is sound because under a given truth assignment A_{k+1} is true or false. This shows that $P(k) = 1 \Rightarrow P(k+1) = 1$ for all $k \ge 1$. By induction, we conclude that P(k) = 1 for all $k \ge 1$.

4.2 Element or Subset

- i) $A \in B$ and $A \not\subseteq B$ ii) $A \in B$ and $A \subseteq B$
- iii) $A \notin B$ and $A \subseteq B$ iv) $A \in B$ and $A \subseteq B$

4.3 Operations on Sets

The following sets fulfill the conditions:

a) $A = \{\emptyset\}$

For $x = \emptyset$ we have $x \in A$. Also, the empty set is the subset of any other set, so $x \subseteq A$. This is not the only solution. For example, $A = \{7, \{7\}\}$ also fulfills the given condition.

- **b)** $A = \{\emptyset, 1\}$ We have $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\emptyset, 1\}\}$. Since $1 \notin \mathcal{P}(A)$, it holds that $A \not\subseteq \mathcal{P}(A)$. Also, for $x = \emptyset$ we have $x \in A$ and $x \subseteq \mathcal{P}(A)$ (since the empty set is the subset of any set).
- c) $A=\varnothing$ We have $\varnothing\subseteq\mathcal{P}(A)$. The second requirement is trivially fulfilled, since A has no elements.

4.4 Cardinality

First, notice that $A = \{\emptyset, \{\emptyset\}\}$. With that said, we give the solutions to individual subtasks:

i)
$$A \cup B = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, |A \cup B| = 4\}$$

ii)
$$A \cap B = \{\{\emptyset\}\}, |A \cap B| = 1$$

iii)
$$\varnothing \times A = \varnothing$$
, $|\varnothing \times A| = 0$

iv)
$$\{0\} \times \{3,1\} = \{(0,3),(0,1)\}, |\{0\} \times \{3,1\}| = 2$$

v)
$$\{\{1,2\}\} \times \{3\} = \{(\{1,2\},3)\}, |\{\{1,2\}\} \times \{3\}| = 1$$

vi)
$$\mathcal{P}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\}, |\mathcal{P}(\{\varnothing\})| = 2$$

4.5 Proving/Disproving Set Properties

a) We show both inclusions at once.

$$x \in A \setminus (B \setminus C)$$

$$\iff x \in A \land \neg (x \in B \setminus C) \qquad \text{(Definition of } X \setminus Y)$$

$$\iff x \in A \land \neg (x \in B \land \neg (x \in C)) \qquad \text{(Definition of } X \setminus Y)$$

$$\iff x \in A \land (\neg (x \in B) \lor \neg \neg (x \in C)) \qquad \text{(De Morgan's rule)}$$

$$\iff x \in A \land (\neg (x \in B) \lor x \in C) \qquad \text{(Double Negation)}$$

$$\iff (x \in A \land \neg (x \in B)) \lor (x \in A \land x \in C) \qquad \text{(Distributivity)}$$

$$\iff (x \in A \land B) \lor (x \in A \land x \in C) \qquad \text{(Definition of } X \setminus Y)$$

$$\iff (x \in A \setminus B) \lor (x \in A \cap C) \qquad \text{(Definition of } \cap)$$

$$\iff x \in (A \setminus B) \cup (A \cap C) \qquad \text{(Definition of } \cup)$$

b) We have

$$\begin{aligned} 2 &= |\mathcal{P}(A) \cap \mathcal{P}(B)| & \text{(Assumption)} \\ &= |\mathcal{P}(A \cap B)| & \text{(Proof as in Exercise 4.6 a))} \\ &= 2^{|A \cap B|} & \text{(Lecture Notes 3.2.8)} \end{aligned}$$

Therefore $2 = 2^{|A \cap B|} \stackrel{\cdot}{\Longleftrightarrow} |A \cap B| = 1$.

c) We disprove the statement by providing a counterexample. Let $A = \{1, 2\}$, let $B = \{1\}$, and let $C = \{1, 3\}$. We have $B \subseteq A$ because $1 \in A$. Furthermore $B \cap C = \{1\} \neq \emptyset$. However, $C \nsubseteq A$ because $3 \in C$ but $3 \notin A$.

4.6 Relating Two Power Sets

a) For any C, we have

$$C \in \mathcal{P}(A \cap B)$$

$$\Leftrightarrow C \subseteq A \cap B \qquad \text{(definition of } \mathcal{P})$$

$$\Leftrightarrow \forall c \ (c \in C \rightarrow c \in A \cap B) \qquad \text{(definition of } \subseteq)$$

$$\Leftrightarrow \forall c \ (c \in C \rightarrow (c \in A \land c \in B)) \qquad \text{(definition of } \cap)$$

$$\Leftrightarrow \forall c \ ((c \in C \rightarrow c \in A) \land (c \in C \rightarrow c \in B)) \qquad (*)$$

$$\Leftrightarrow \forall c \ (c \in C \rightarrow c \in A) \land \forall c \ (c \in C \rightarrow c \in B) \qquad (**)$$

$$\Leftrightarrow C \subseteq A \land C \subseteq B \qquad \text{(definition of } \subseteq)$$

$$\Leftrightarrow C \in \mathcal{P}(A) \land C \in \mathcal{P}(B) \qquad \text{(definition of } \mathcal{P})$$

$$\Leftrightarrow C \in \mathcal{P}(A) \cap \mathcal{P}(B) \qquad \text{(definition of } \cap)$$

- (*) We use the fact that for any formulas A_1 , A_2 and A_3 , we have $A_1 \to (A_2 \land A_3) \equiv \neg A_1 \lor (A_2 \land A_3) \equiv (\neg A_1 \lor A_2) \land (\neg A_1 \lor A_3) \equiv (A_1 \to A_2) \land (A_1 \to A_3)$. (This follows from Lemma 2.1.)
- (**) We use the fact that $\forall x P(x) \land \forall x Q(x) \equiv \forall x (P(x) \land Q(x))$ for any predicates P and Q (see Chapter 2.4.8 of the lecture notes).
- **b)** To prove that the statement is false, we show a counterexample. Let $A = \{1\}$ and $B = \{2\}$. We have $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}\} \cup \{\emptyset, \{2\}\} = \{\emptyset, \{1\}, \{2\}\}\}$. On the other hand, $\mathcal{P}(A \cup B) = \mathcal{P}(\{1, 2\}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.
- c) We will prove the implication in both directions separately.
 - $A\subseteq B\Longrightarrow \mathcal{P}(A)\subseteq \mathcal{P}(B)$: Let B be any set and let A be any subset of B. What we have to show is that each element of $\mathcal{P}(A)$ is also an element of $\mathcal{P}(B)$. Let S be any element of $\mathcal{P}(A)$. Then, by Definition 3.7, $S\subseteq A$. By the assumption that $A\subseteq B$ and by the transitivity of \subseteq , it follows that $S\subseteq B$. This means that S is an element of $\mathcal{P}(B)$.
 - $\mathcal{P}(A) \subseteq \mathcal{P}(B) \implies A \subseteq B$: Let A, B be any sets and assume that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Since $A \in \mathcal{P}(A)$ (which holds for any set A) and, by assumption, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, we have that $A \in \mathcal{P}(B)$. By Definition 3.7, this means that $A \subseteq B$.

4.7 Special Families of Sets

a) We prove that the statement is true by checking that all the required properties hold for $A = \mathcal{P}(X)$.

- $\mathcal{P}(X) \subseteq \mathcal{P}(X)$ trivially holds.
- Since $X \neq \emptyset$ then $\mathcal{P}(X) \neq \emptyset$.
- Let $A, B \in \mathcal{P}(X)$. We have

$$A \cup B \in \mathcal{P}(X)$$

$$\iff A \cup B \subseteq X \qquad \qquad \text{(Definition of } \mathcal{P})$$

$$\iff \forall x \ (x \in A \cup B \to x \in X) \qquad \qquad \text{(Definition of } \subseteq)$$

$$\iff \forall x \ ((x \in A \lor x \in B) \to x \in X) \qquad \qquad \text{(Definition of } \cup)$$

$$\iff \forall x \ ((x \in A \to x \in X) \land (x \in B \to x \in X)) \qquad (*)$$

$$\iff \forall x \ (x \in A \to x \in X) \land \forall x \ (x \in B \to x \in X) \qquad (**)$$

$$\iff A \subseteq X \land B \subseteq X \qquad \qquad \text{(Definition of } \subseteq \text{twice)}$$

$$\iff \top \qquad \qquad \text{(By Assumption)}$$

- (*) We use the fact that $(F \vee G) \to H \equiv \neg (F \vee G) \vee H \equiv (\neg F \wedge \neg G) \vee H \equiv (\neg F \vee H) \wedge (\neg G \vee H) \equiv (F \to H) \wedge (G \to H)$. See Lemma 2.1.
- (**) We use the fact that $\forall x P(x) \land \forall x Q(x) \equiv \forall x (P(x) \land Q(x))$ for any predicates P and Q (see Chapter 2.4.8 of the lecture notes).
- Let $A, B \in \mathcal{P}(X)$, that is $A, B \subseteq X$. We have

$$x \in A \cap B \iff x \in A \land x \in B \quad \text{(Definition of } \cap \text{)}$$

$$\implies x \in X \land x \in X \quad \text{(Definition of } \subseteq \text{twice)}$$

$$\implies x \in X \qquad \qquad (A \land A \equiv A)$$

• Let $A \in \mathcal{P}(X)$, that is $A \subseteq X$. We have

$$x \in X \setminus A \iff x \in X \land x \notin A \implies x \in X$$

which shows that $X \setminus A \subseteq X$, that is $X \setminus A \in \mathcal{P}(X)$.

- **b)** The statement is false. Notice that $X \in \{X\}$, but $X \setminus X = \emptyset \notin \{X\}$. Therefore, the last property does not hold, and $Q_X(\{X\}) = 0$.
- c) The statement is true. Suppose that $Q_X(\mathcal{A}) = 1$. This means (by the second property) that $\mathcal{A} \neq \emptyset$. Let $A \in \mathcal{A}$. We have (by the last property) that $X \setminus A \in \mathcal{A}$. Therefore (by the third property) we have $X = (X \setminus A) \cup A \in \mathcal{A}$.
- **d)** The statement is false: we provide a counterexample. Let $X = \{1, 2, 3, 4\}$. Let $\mathcal{A} = \{\varnothing, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ and let $\mathcal{B} = \{\varnothing, \{1, 3\}, \{2, 4\}, \{1, 2, 3, 4\}\}$. It is straightforward to check that all the properties of Q_X hold for \mathcal{A} and \mathcal{B} , so that $Q_X(\mathcal{A}) = 1$ and $Q_X(\mathcal{B}) = 1$. However, consider $\mathcal{A} \cup \mathcal{B} = \{\varnothing, \{1, 2\}, \{1, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3, 4\}\}$. While $\{1, 2\}, \{1, 3\} \in \mathcal{A} \cup \mathcal{B}$, we have $\{1, 2, 3\} = \{1, 2\} \cup \{1, 3\} \notin \mathcal{A} \cup \mathcal{B}$. This shows $Q_X(\mathcal{A} \cup \mathcal{B}) = 0$, because the third property does not hold.
- e) We prove that the statement is true by checking all the properties of Q_X hold for $A \cap B$.

• For the first property, we have

$$\begin{array}{ll} A\in\mathcal{A}\cap\mathcal{B}\\ & \stackrel{\cdot}{\Longleftrightarrow} A\in\mathcal{A}\wedge A\in\mathcal{B}\\ & \stackrel{\cdot}{\Longleftrightarrow} A\in\mathcal{P}(X)\wedge A\in\mathcal{P}(X) & (Q_X(\mathcal{A})=1 \text{ and } Q_X(\mathcal{B})=1, \text{ Property 1})\\ & \stackrel{\cdot}{\Longleftrightarrow} A\in\mathcal{P}(X) & (A\wedge A\equiv A) \end{array}$$

- To prove the second property, we remember that from above, we know $X \in \mathcal{A}$ and $X \in \mathcal{B}$ so that $X \in \mathcal{A} \cap \mathcal{B}$. This shows the intersection is not empty.
- Let $A, B \in \mathcal{A} \cap \mathcal{B}$. Then $A, B \in \mathcal{A}$ and $A, B \in \mathcal{B}$ by definition of intersection. Since $Q_X(\mathcal{A}) = 1$ and $Q_X(\mathcal{B}) = 1$, using property 3 we conclude that $A \cup B \in \mathcal{A}$ and $A \cup B \in \mathcal{B}$. By definition of intersection we get $A \cup B \in \mathcal{A} \cap \mathcal{B}$. This proves property 3.
- Let $A, B \in \mathcal{A} \cap \mathcal{B}$. Then $A, B \in \mathcal{A}$ and $A, B \in \mathcal{B}$ by definition of intersection. Since $Q_X(\mathcal{A}) = 1$ and $Q_X(\mathcal{B}) = 1$, using property 4 we conclude that $A \cap B \in \mathcal{A}$ and $A \cap B \in \mathcal{B}$. By definition of intersection we get $A \cap B \in \mathcal{A} \cap \mathcal{B}$. This proves property 4.
- Let $A \in \mathcal{A} \cap \mathcal{B}$. Then $A \in \mathcal{A}$ and $A \in \mathcal{B}$ by definition of intersection. Since $Q_X(\mathcal{A}) = 1$ and $Q_X(\mathcal{B}) = 1$, using property 5 we conclude that $X \setminus A \in \mathcal{A}$ and $X \setminus A \in \mathcal{B}$. By definition of intersection we get $X \setminus A \in \mathcal{A} \cap \mathcal{B}$. This proves property 5.