برقى ومقناطيسيات

خالد خان بوسفز کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالو جی،اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

•		<u> </u>	•
1	مقداری اور سمتیه	1.1	
2	سمتي الجبرا	1.2	
3	كارتيسي محدد	1.3	
5	اكائبي سمتيات	1.4	
9	ميداني سمتيم	1.5	
9	سمتى رقبہ	1.6	
10	غیر سمتی ضرب	1.7	
14	سمتی ضرب یا صلیبی ضرب	1.8	
17	گول نلكى محدد	1.9	
20	1.9.1 نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کے ساتھ غیر سمتی ضرب		
20	1.9.2 نلکی اور کارتیسی اکائی سمتیات کا تعلق		
25	1.9.3 نلكي لامحدود سطحين		
27	کروی محدد	1.10	
37	کا قانون	كولومب	2
37	قوت کشش یا دفع	2.1	
41	برقی میدان کی شدت	2.2	
44	یکسان چارج بردار سیدهی لامحدود لکیر کا برقی میدان	2.3	
49	يكسان چارج بردار بموار لامحدود سطح	2.4	
53	چارج بردار حجم	2.5	
54	مزید مثال	2.6	
61	برقی میدان کے سمت بہاو خط	2.7	
63	سوالات	2.8	

iv		عنمان

65																																													بلاو	. پھي	اور	ون	کا قان	س ک	گاؤ.	3
65																																														رج	چار	کن .	ساك		3.1	
65				•																																					•				جربہ	ا تج	5	<u>ا</u> کے	فيراة		3.2	
66						•																		•				٠					•												زن	قانو	کا	س	گاؤ		3.3	
68																																									ل	مما	است	کا	نون	ے قا	کے	س	گاؤ		3.4	
68																		•	•										•								•	•					رج	چا	قطہ	i		3.4	1.1			
70																		•																	i	طح	سبا	وی	کرو	ٔ ر	بردا	ج	چار	اں	بکس	ي		3.4	1.2			
70																																بر	لكي	ود	حد	زم	ی ا	لھے	سيا	ار ،	بردا	ج	چار	اں	بکس	ی		3.4	1.3			
71																																													ر	، تار	ری	محو	بم ,		3.5	
73																																					لح	سط	د	بدو	مح	Υ_	موا	ار ۽	ا برد	ارج	چ	ساں	یک		3.6	
73																												•					(للاق	اط	کا	ون	قان	ے	5	ىس	گاؤ	ا پر	ج	ے ح	و ڻو	چ	ائى	انتم		3.7	
76																																																دو	پهيا		3.8	
78																												•										ن	وان	ساو	مہ	کی	لاو	پهي	میں	دد د	حا	ی م	نلك		3.9	
80																												•														ات	ساو	ے م	مومي	، ع	کی	(و َ	پهيا	3	.10	
				_																																											٨. ٨	ئلہ د		2	11	
82	•			•	•	•	•	•	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠										•	•	٠	•	•	•	•		•	•		•	•	دو	-6.		مسن	3	. 1 1	
	•			-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•							
85	•				•	•	•	•	•	•	•	•	•	•	•																															و	دبار	قى	ور بر	ئی ا	تواناة	4
85 85	•																																												م	و ِ کا	دبار اور	قى ائى	ور بر توانا	ئی ا	تواناة 4.1	4
85 85 86																																													٦	و کاا ملہ	دبار اور تک	ئى رى	ور بر توانا لکی	ئی ا	تواناة 4.1 4.2	4
85 85 86 91		•		•																															•						•				۴.	و كا مله	دبار اور تک	ری ری دب	ۇر بر توانا لكىي برقىي	ئی ا	تواناة 4.1	4
85 85 86 91																											 												دبا		برق			۔	ُم قطہ	و كاد مله	دبار اور تک	قى ئى رى دى دى	ور بر توانا لکیر برقی	ئی ا	تواناة 4.1 4.2	4
85 85 86 91 92																											 							٠ د د		٠.	٠ .	بے	. دبا		برق	. كا	 چار		م قطہ کیر	و كا مله ن	دباه اور تک	قى ئى دىرى 4.3	ور بر توانا لکیہ برقح 3.1	ئی ا	تواناة 4.1 4.2	4
85 85 86 91 92 93																											 							٠ .		٠. ي	پيد او	بے دبا	دبا قى	ن نت برة	برق کثاف	کا تار		ی د	م كير: م م	و کاد ملہ دملہ د	دبا. اور تک	قی ائی ری دبری 4.3	ور بر توانا لکیہ برقح 3.1	ئی ارا	تواناة 4.1 4.2 4.3	4
85 85 86 91 92																											 							٠ .		٠. ي	پيد او	بے دبا	دبا قى	ن نت برة	برق کثاف	کا تار		ی د	م كير: م م	و کاد ملہ دملہ د	دبا. اور تک	قی ائی ری دبری 4.3	ور بر توانا لکیہ برقح 3.1	ئی ارا	تواناة 4.1 4.2 4.3	4
85 85 86 91 92 93			•																														٠	٠		٠. ي	پيد او	بے دبا	او	نی نت برز	برق کثاف	کا تار		ی حور	م تقطم حکیر جارج	و مله مله ن	دبا اور تک	ائی ری دبری 4.3 4.3	ور بر توانا لکیہ برقی 3.1 3.2	ئی اہ	4.1 4.2 4.3	4
85 85 86 91 92 93 94																																	٠	٠	٠	٠. ي	بيد	سے دبا	دبا قى او	نی برز	كثافة كا	کا تار ، بر		ی چا حور حوں لموان	م م كير م م جارج خدر	و کاللہ ممللہ د کی	دبار اور تک باو	قى ئى دې 4.3 4.3 د د د د د د د د د د د د د د د د د د د	ور بر توانا لکی برقی متعا برقی	ئی اہ	4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98																																	٠		٠	٠	پيد	بے دبا	د دبا ماو	نی برهٔ درد	کثاف	. کا تار ، می		ی . یی . یوں یوں لوان	م تقطه عارج عارج للكي	و کاا ملہ نہ چ	دبا اور تک باو		ور بر توانا برقی 3.1 3.2 متعا	ئی اہ	4.1 4.2 4.3	4
85 85 86 91 92 93 94 94 98																																	٠		٠	ا بر	بيد	بے دیا ن	. دبا درا درا درا درا درا درا درا درا درا در	ئى د دىد د دە	كثاف كثاف	. کا تار ، می			م م حصر کیر از	و کا	دبا اور تک او	ائی ری 4.3 4.3 4.3 4.3	ور بر توانا برقع 3.1 متعا برقع متعا	ئی اہ	4.1 4.2 4.3 4.4	4
85 85 86 91 92 93 94 94 98 102			-																															· · · · · · · · · · · · · · · · · · ·	٠	ا بر	٠			ئى دىدىدىد دەدەد	كا كا كا كا يس	کا تار کا تار ، بر بر ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،			م محير . حم م بارج بارج کروء کروء	و كا. مالم	اور دبااور تک تک تک تک تک اور دبااو اور دبااو اور دبااو اور تک	قى ائى دب 4.3 4.3 4.3 4.3 4.3	ور بر توانا برقنی 3.1 3.3 برقنی متعا	ئی اہ	4.1 4.2 4.3 4.4	4

v عنوان

115	، ذو برق اور کپیسٹر	موصل،	5
115	برقمی رو اور کتافت برقمی رو	5.1	
117	استمراری مساوات	5.2	
119	موصل	5.3	
124	موصل کے خصوصیات اور سرحدی شرائط	5.4	
127	عکس کی ترکیب	5.5	
130	نيم موصل	5.6	
131	خو برق	5.7	
136	کامل ذو برق کے سرحد پر برقی شرائط	5.8	
140	موصل اور ذو برقی کے سرحدی شرائط	5.9	
140		5.10	
142	5.10.1 متوازی چادر کپیسٹر		
143	5.10.2 بم محوری کپیسٹر		
143	5.10.3 بم کوه کپیسٹر		
145	سلسلہ وار اور متوازی جڑے کپیسٹر	5.11	
146	دو متوازی تاروں کا کپیسٹنس	5.12	
155	اور لاپلاس مساوات	پوئسن	6
157	مسئلہ یکتائی	6.1	
	۔ لاپلاس مساوات خطی ہے	6.2	
	نلکی اور کروی محدد میں لاپلاس کی مساوات	6.3	
160	۔ لاپلاس مساوات کے حل	6.4	
	پوئسن مساوات کر حل کی مثال	6.5	
	بر ق مر عے ق ق لاپلاس مساوات کا ضربی حل	6.6	
	پ س رسی می اور سری می می می می در می می می در می	6.7	
	- 2		

vi

183	اطيسي ميدان	أ ساكن مقا
183	ايوڻ-سيوارث کا قانون	7.1
187	يمپيئر کا دوری قانون	7.2
191	گردش	7.3
198	7.3.1 نلكى محدد ميں گردش	
204	7.3.2 عمومی محدد میں گردش کی مساوات	
205	7.3.3 کروی محدد میں گردش کی مساوات	
206	ىسئلہ سٹوکس	7.4
210	ىقناطىسى بىهاو اوركثافت مقناطىسى بىهاو	7.5
216	گیر سمتی اور سمتی مقناطیسی دباو 	7.6
221	ساکن مقناطیسی میدان کرے قوانین کا حصول	7.7
222	7.7.1 سمتی مقناطیسی دباو	
	. 7.7.2 ایمپیئر کا دوری قانون	
223		
223		
227		} مقناطيسي
227 227	قوتیں، مقناطیسی مادیے اور امالہ	8 مقناطیس <u>ی</u> 8.1
227227228	قوتیں، مقناطیسی مادے اور امالہ بتحرک چارج پر قوت	8 مقناطیسی 8.1 8.2
227227228231	قوتیں، مقناطیسی مادے اور امالہ بتحرک چارج پر قوت	8.1 8.2 8.3
227227228231232	قوتیں، مقناطیسی مادیے اور امالہ شحرک چارج پر قوت	8.1 8.2 8.3 8.4
227 227 228 231 232 237	قوتیں، مقناطیسی مادیے اور امالہ بتحرک چارج پر قوت	8.1 8.2 8.3 8.4 8.5
227 227 228 231 232 237 238	قوتیں، مقناطیسی مادیے اور امالہ تحرک چارج پر قوت فرقی چارج پر قوت رقی رو گزارتے تفرقی تاروں کے مابین قوت وت اور مروڑ	8.1 8.2 8.3 8.4 8.5 8.6
227 227 228 231 232 237 238 241	قوتیں، مقناطیسی ماد ہے اور امالہ تتحرک چارج پر قوت مُرقی چارج پر قوت رقی رو گزارتے تفرقی تاروں کے مابین قوت وت اور مروڑ	8.1 8.2 8.3 8.4 8.5 8.6 8.7
227 227 228 231 232 237 238 241 242	قوتیں، مقناطیسی مادے اور امالہ متحرک چارج پر قوت مقرقی چارج پر قوت رقی رو گزارتے تفرقی تاروں کے مابین قوت وت اور مروڑ ولادی مقناطیسی اشیاء اور مقناطیسی خطے مقناطیسیت اور مقناطیسی مستقل مناطیسی سرحدی شرائط	8.1 8.2 8.3 8.4 8.5 8.6 8.7
227 228 231 232 237 238 241 242 245	قوتیں، مقناطیسی مادیے اور امالہ تحرک چارج پر قوت مرقی چارج پر قوت رقی رو گوارتے تفرقی تاروں کے مابین قوت وت اور مروژ ولادی مقناطیسی اشیاء اور مقناطیسی خطے قناطیسیت اور مقناطیسی مستقل قناطیسی سرحدی شرائط	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9

253	تھ بدلتے میدان اور میکس ویل کے مساوات	وقت کے سا	, 9
253	ڈے کا قانون	9.1 فيراد	
259	الى برقى رو	9.2 انتقا	
263	ئس ویل مساوات کی نقطہ شکل	9.3 میک	1
264	ئس ویل مساوات کی تکمل شکل	9.4 میک	•
266	يرى دباو	9.5 تاخب	i
271	نيسي امواج	برقی و مقناط	10
271	ی خلاء میں برقمی و مقناطیسی امواج	10.1 خالې	
272	ی و مقناطیسی امواج	10.2 برق _ى	,
279	10.2 خالی خلاء میں امواج	2.1	
281	10.2 خالص يا كامل ذو برق ميں امواج	2.2	
283	10.2 ناقص يا غير كامل ذو برقى ميں امواج	2.3	
286	ئنگ سمتیہ	10.3 پوئٹ	'
289	سل ميں امواج	10.4 موص	
295		سوالات	11

عنوان عنوان

وقت کے ساتھ بدلتے میدان اور میکس ویل کے مساوات

گزشتہ بابوں میں وقت کے ساتھ تبدیل نہ ہونے والے میدان یعنی میدانوں پر غور کیا گیا۔ یہاں سے آگے اس کتاب میں وقت کے ساتھ تبدیل ہوتے میدانوں پر غور کیا جائے گا۔

دونے اصول پر غور کیاجائے گا۔ پہلااصول مانگل فیراڈے نے تجرباتی طور پر ثابت کیا جس کے تحت وقت کے ساتھ بدلتا مقناطیسی میدان، برتی میدان کو جنم دیتا ہے۔ دوسرا قانون جیمس کلارک میکس ویل کے کاوشوں سے حاصل ہوا جس کے تحت وقت کے ساتھ بدلتا برتی میدان، مقناطیسی میدان کو جنم دیتا ہے۔اس باب میں برقی ومقناطیسیات کے چارا یسے مساوات پیش کئے جائیں گے جو میکس ویل کے نام سے منسوب ہیں۔

9.1 فیراڈے کا قانون

جناب مائکل فیراڈے نے تجرباتی طور پر ثابت کیا کہ وقت کے ساتھ بدلتا مقناطیسی میدان، برقی میدان پیدا کرتاہے۔ قانون فیراڈے اکو مندر جہ ذیل مساوات پیش کرتی ہے۔

$$(9.1)$$
 محری برقی دباو $=-rac{{
m d}\Phi}{{
m d}t}$

اس قانون کے تحت کسی بھی بندراہ سے گزرتی مقناطیس بہاومیں تبدیلی اس راہ پر برتی د باوپیدا کرتی ہے۔الیی برتی د باور واپی طور پر محرک برتی د باو² پکاری جاتی ہے۔ محرک برتی د باو³ کی اکائی وولٹ ۷ ہے۔ضرور می نہیں کہ بند راہ موصل مادے کی ہی ہو، بیہ فرضی بند کلیر بھی ہو سکتی ہے۔

محرک برقی دباو مکمل برقی دور میں برقی رو پیدا کرنے کی صلاحیت رکھتا ہے۔ محرک برقی دباوسے پیدا برقی رو، بند راہ میں مقناطیسی بہاہ پیدا کرے گی جس کی سمت، راہ میں پہلے سے موجود مقناطیسی بہاہ کے سمت، کی الٹ ہوتی ہے۔ مساوات 9.1 میں منفی کی علامت اسی اصول کو بیان کرتی ہے کہ بند راہ میں محرک برقی دباوسے پیدا برقی روابیا مقناطیسی بہاہ پیدا کرتی ہے جو پہلے سے موجود مقناطیسی بہاہ کے الٹ سمت رکھتی ہے۔اس اصول کو لینز 54کا اصول کہا جاتا ہے۔

کسی بھی بند راہ سے گزرتی کل مقناطیسی بہاو میں تبدیلی مندرجہ ذیل وجوہات کی بنا ممکن ہے۔

Faraday's law¹

electromotive force, emf²

electromotive force, emi مختلف و المحتوية و المحتوية المحتوى المحتوى المحتوى المحتوى المحتوية المحتوي

⁴ مانون 1834 میں جناب لینز نے پیش کیا۔

- وقت کے ساتھ تبدیل ہوتی کثافت مقناطیسی بہاوجو ساکن بندراہ سے گزرتی ہو۔
 - ساکن مقناطیسی میدان اور بند راه کا آپس میں اضافی حرکت۔
 - مندرجه بالا دونول وجوبات_

ا گر بند راہ N چکر کے کیھے پر مشتمل ہو جہاں ہر چکر میں سے Φ مقناطیسی بہاو گزرتی ہو تب فیراڈے کے قانون کو

$$(9.2)$$
 محری برقی دباو $=-Nrac{{
m d}\Phi}{{
m d}t}$

لکھا جا سکتا ہے۔

برقی د باو کے طرز پر محرک برقی د باو کی تعریف

$$(9.3)$$
 محرک برقمی دباو $E\cdot \mathrm{d} L$

کسی جاتی ہے جہاں تکمل پورے بند راہ پر لینالازم ہے۔ برقی دباو کے تعریف کے ساتھ موازنہ کرتے ایبا معلوم ہوتا ہے جیسے ہم مندرجہ بالا مساوات میں منفی کی علامت (–) لگانا بھول گئے ہیں۔ایبا بالکل نہیں ہے اور اس کی وضاحت جلد شکل 9.2 کی مدد سے کر دی جائے گی۔ محرک برقی دباو بند راہ پر بیان کی جاتی ہے۔صفحہ 97 پر مساوات 4.28 کے تحت ساکن برقی میدان میں کسی بھی بند دائرے پر E کا لکیری تکمل صفر کے برابر ہوتا ہے۔مساوات 9.3 کہتا ہے کہ غیر ساکن مقناطیسی میدان میں ایبا نہیں ہوتا اور کسی بھی بند دائرے پر E کا لکیری تکمل اس راہ پر پیدا محرک برقی دباو دیتا ہے۔

مساوات 9.1 اور مساوات 9.3 سے

$$(9.4)$$
 محری برقی دباو $\mathbf{E}\cdot\mathrm{d}\mathbf{L}=-rac{\mathrm{d}}{\mathrm{d}t}\int_{\mathcal{S}}\mathbf{B}\cdot\mathrm{d}\mathbf{S}$

 $egin{align} egin{align} e$

اگر بند راہ کو دائیں ہاتھ میں یوں پکڑا جائے کہ انگلیاں راہ پر چکنی کی سمت میں ہوں تب انگوٹھاراہ سے گھیرے سمتی سطح کی سمت میں ہو گا۔مندرجہ بالا مساوات کہتا ہے کہ کسی بھی سمتی سطح سے گزرتی مقناطیسی بہاوا گر بڑھ رہی ہو تب محرک برقی دباو سطح کے سرحد پر مثبت سمت کے الٹ جانب برقی رو پیدا کرے گا۔مساوات 9.4استعال کرتے ہوئے دائیں ہاتھ کے اس قانون کو یاد رکھیں۔

آئیں وقت کے ساتھ تبدیل ہوتے مقناطیسی میدان کی وجہ سے پیدا ساکن بند راہ میں محرک برقی دباوپر پہلے غور کریں اور بعد میں ساکن مقناطیسی میدان میں حرکت کرتے راہ کی وجہ سے پیدا محرک برقی دباوپر غور کریں۔

ساکن راہ کی صورت میں مساوات 9.4 میں دائیں ہاتھ پر B ہی وقت کے ساتھ تبدیل ہو رہی ہے یوں اس مساوات میں تفرق کے عمل کو تکمل کے اندر لے جایا جا سکتا ہے یعنی

$$(9.5)$$
 محرک برقی دباو $E\cdot \mathrm{d}m{L} = -\int_S rac{\partial m{B}}{\partial t}\cdot \mathrm{d}m{S}$

آگے بڑھنے سے پہلے اس مساوات کی نقطہ شکل حاصل کرتے ہیں۔مساوات کے بائیں ہاتھ پر مسلمہ سٹوکس کے اطلاق سے

$$\int_{\mathcal{S}} (\nabla \times \boldsymbol{E}) \cdot d\boldsymbol{S} = - \int_{\mathcal{S}} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{S}$$

9.1. فيراذِّ ے كا قانون

حاصل ہوتا ہے۔ یاد رہے کہ سطح 8 الی کوئی بھی سطح ہو سکتی ہے جس کا سرحد بند راہ ہو۔ یوں ہم دونوں جانب مختلف سطحیں لے سکتے ہیں جب تک دونوں سطحوں کے سرحد یہی بند راہ ہو۔ اسی طرح ہم ایک ہی سطح کو دونوں جانب تکمل میں استعال کر سکتے ہیں۔ یہ مساوات کسی بھی سطح کے لئے درست ہے لہٰذا یہ تفر تی سطح کے لئے اسے یوں لہٰذا یہ تفر تی سطح کے لئے اسے یوں

$$(\nabla \times \boldsymbol{E}) \cdot \mathrm{d}\boldsymbol{S} = -\frac{\partial \boldsymbol{B}}{\partial t} \cdot \mathrm{d}\boldsymbol{S}$$

لعيني

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

لکھا جا سکتا ہے۔

مساوات 9.6 میکس ویل کے چار مساواتوں میں سے پہلی مساوات ہے۔ یہ میکس ویل کے پہلی مساوات کی نقطہ شکل ہے۔اس مساوات کی نقطہ شکل ہی عموماً استعال ہوتی ہے۔ میکس ویل کے پہلی مساوات کی تکمل شکل مساوات 9.5 بیان کرتی ہے۔وقت کے ساتھ نہ تبدیل ہوتے مقناطیسی میدان کی صورت میں مساوات 9.6 اور مساوات 9.5 ساکن میدان کے مساوات کی صورت اختیار کرتے ہیں یعنی

$$\oint \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{L} = 0$$
 (برقی سکون)

اور

$$abla imes oldsymbol{E} = 0$$
 (برقی سکون)

آئیں مساوات 9.5 اور مساوات 9.6 کو استعمال کر کے دیکھیں۔تصور کریں کہ $ho <
ho_2$ نگلی خطے میں وقت کے ساتھ مسلسل بڑھتی $m{B} = B_0 e^{kt} m{a}_{Z}$ (9.8)

کافت مقناطیسی بہاو پائی جاتی ہے جہاں B_0 ایک مستقل ہے۔ ہم z=0 سطے پر ho_1 رداس کی گول راہ لیتے ہیں۔مثابہت سے ہم کہہ سکتے ہیں کہ اس پورے راہ پر E_0 کی قیمت تبدیل نہیں ہو سکتی للذا مساوات 9.5 سے

محری برقی دباو
$$=2\pi
ho_1 E_\phi=-kB_0 e^{kt}\pi
ho_1^2$$

حاصل ہوتا ہے۔ یوں کسی بھی رداس پر برقی میدان کی شدت

$$(9.9) E = -\frac{1}{2}kB_0e^{kt}\rho a_{\phi}$$

لکھی جاسکتی ہے۔

آئیں اب یہی جواب مساوات 9.6 سے حاصل کریں۔ چونکہ اس مساوات کے دائیں جانب صرف a_Z جزو پایا جاتا ہے لہذا بائیں ہاتھ بھی صرف یہی جزو ہو گالہذا اس مساوات سے

$$\frac{1}{\rho} \frac{\partial (\rho E_{\phi})}{\partial \rho} = -k B_0 e^{kt}$$

کھا جا سکتا ہے۔ دونوں اطراف کو hoسے ضرب دیتے ہوئے hoتا ho کمل لے کر

$$\rho E_{\phi} = -kB_0 e^{kt} \frac{\rho^2}{2}$$

شکل 9.1: وقت کے ساتھ نہ تبدیل ہوتے یکساں مقناطیسی میدان میں حرکت کرتے موصل سلاخ پر محرک برقی دباو پیدا ہوتی ہے۔

لعيني

$$(9.10) E = -\frac{1}{2}kB_0e^{kt}\rho a_{\phi}$$

ہی دوبارہ حاصل ہوتا ہے جہاں رداسی تکمل میں t مستقل کا کر دار ادا کرتا ہے۔

مثبت B_0 کی صورت میں اس راہ پر a_{ϕ} کی الٹ ست میں برقی رو گزرے گی جو a_{z} کی الٹ سمت میں کثافت مقناطیسی بہاو پیدا کرتے ہوئے پہلے سے موجود مقناطیسی میدان میں تبدیلی کوروکنے کی کوشش کرتی ہے۔

اس مثال کے آخر میں یہ بتلانا ضروری ہے کہ مساوات 9.8 میں دیا گیا میدان غیر حقیقی ہے چونکہ یہ میکس ویل کے دیگر مساوات پر پورانہیں اترتا۔

آئیں اب ایسی مثال دیمیں جس میں وقت کے ساتھ تبدیل نہ ہونے والے مقناطیسی میدان میں بند راہ حرکت کر رہی ہو۔ شکل 9.1 میں ایسی صورت حال دکھائی گئی ہے۔ اس شکل میں v سمتی رفتار کو جبکہ V برقی دباو ناپنے کی آلہ v یعنی پیا برقی دباو v وظاہر کرتی ہے۔ اس شکل میں ووفقی اور دو متوازی موسل سلاخ بند راہ یا بند دور بناتے ہیں۔ متوازی افقی سلاخوں کو بائیں طرف عمودی سلاخ سے جوڑا گیا ہے جس میں قابل نظر انداز جسامت اور لا محدود مزاحمت والا پیا برقی دباو نسب ہے، جبکہ دائیں جانب انہیں v سمتی رفتار سے حرکت کرتے عمودی سلاخ سے جوڑا گیا ہے۔ وقت کے ساتھ نہ تبدیل ہوتا اور ہر جگہ کیساں کثافت مقناطیسی بہاو v بند راہ کی گھیرے سطح کے عمودی ہے۔

مثبت B کی صورت میں B کی سمت ہی بند راہ سے گھیری گئی سطح کی سمت ہو گی اور بند راہ کی سمت گھڑی کے الٹ ہو گی۔ یوں راہ کے مثبت سمت میں دائیں ہاتھ کی انگلیاں رکھتے ہوئے گھیری سطح کی سمت انگوٹھے سے حاصل کی جاتی ہے۔

t کسی بھی لمجہ t پر حرکت کرتے سلاخ کے مقام کو y ہے ظاہر کرتے ہوئے ہم y=vt کھھ سکتے ہیں جہاں v سلاخ کے رفتار کی قیمت ہے۔ یوں لمحہ t پر بند دور کا ارتباط بہاو

$$\Phi = Bdy = Bdvt$$

ہو گا جو مساوات 9.1 کے تحت بند دور میں

$$e = -\frac{d\Phi}{dt} = -Bdv$$

محرک برقی د ہاو e پیدا کرے گا۔

9.1. فيراذُ ے كا قانون

اب محرک برقی دباو d و کہتے ہیں لہذا مندر جہ بالا جواب راہ پر گھڑی کے الٹ سمت میں اس بند کلیری تکمل سے بھی حاصل ہونا چا ہے۔ ہم دکھے چکے ہیں کہ برقی سکون کی صورت میں موصل کی سطح پر سطح کے متوازی E صفر رہتی ہے۔ ہم آگے دیکھیں گے کہ وقت کے ساتھ تبدیل ہوتے برقی میدان میں بھی موصل کی سطح پر متوازی E صفر ہی رہتی ہے۔ یوں شکل 9.1 پر گھڑی کے الٹ چلتے ہوئے تمام سلاخوں پر تکمل کی قیمت صفر کے برابر ہو گل میں موصل کی سطح پر متوازی E صفر ہی رہتی ہوئے بیا برقی دباو پر مندرجہ بالا قیمت کے برابر ہونا ہو گا۔ گھڑی کی الٹ سمت چلتے ہوئے بیا برقی دباو کی لمبائی کو E کی الٹ سمت چلتے ہوئے ہیا برقی دباو کی لمبائی کو E کی سمت ہیا کے دوسرے سرے سے پہلے سرے کی جانب ہے اور بیا پر برقی دباو کا مثبت سرا بیا کا دوسرا سرا ہے۔ ہوگا۔ یوگ دبار پیا برقی دباو کی طبت سرا بیا کا دوسرا سرا ہے۔

پیا کی جگہ مزاحمت جوڑنے سے دور میں گھڑی کے الٹ برقی رو گزرے گی جو a_z کے الٹ سمت میں مقناطیسی بہاو پیدا کرے گی۔ یہ لور نز کے قانون کے عین مطابق ہے۔

آئیں اب اس شکل میں دئے مسکلے کو حرکی برقی دباو تصور کرتے ہوئے حل کریں۔مقناطیسی میدان میں 8 سمتی رفتار سے حرکت کرتے ہوئے چارج Q پر قوت

$$\boldsymbol{F} = Q\boldsymbol{v} \times \boldsymbol{B}$$

 $oldsymbol{E}_{\scriptscriptstyle \mathcal{S}_{\scriptscriptstyle \mathcal{S}}}$ يا حركى شدت

(9.11)
$$oldsymbol{E}_{\mathcal{S}_{\mathcal{F}}} = rac{oldsymbol{F}}{O} = oldsymbol{v} imes oldsymbol{B}$$

عمل کرتی ہے۔ حرکی شدت a_X سمت میں ہے۔ حرکت کرتے سلاخ میں ساکن مثبت ایٹم اور آزاد منفی الیکٹران پائے جاتے ہیں۔ ان تمام چارجوں پر الیک قوت پائی جائے گی البتہ ساکن ایٹم مقید ہونے کی بنا حرکت نہیں کریں گے۔ اگر محرک سلاخ کو متوازی سلاخوں سے اٹھایا جائے تو اس میں آزاد الیکٹران پر a_X کے الٹ جانب قوت انہیں سلاخ کے پرلے سرے پر انبار کر ناشر وع کر دے گی۔ الیکٹر انوں کا انبار سلاخ میں a_X جانب برتی میدان کی شدت سفر ہو جائے a_X پیدا کرے گا۔ الیکٹران کا انبار بڑھتارہے گا حتی کہ جری a_X اور a_X برابر ہو جائیں۔ ایسا ہوتے ہی سلاخ میں کل برقی میدان کی شدت صفر ہو جائے گی اور اس میں چارج کا حرکت رک جائے گا۔

يوں حر کی برقی د باو

رو.12) محری برقی دباو
$$\mathbf{E}_{\sim}\cdot\mathrm{d}\mathbf{L}=\oint\left(\mathbf{v} imes\mathbf{B}
ight)\cdot\mathrm{d}\mathbf{L}$$

سے حاصل ہو گی۔مساوات کے دائیں ہاتھ بند راہ کے ساکن حصوں پر تکمل کی قیمت صفر ہو گی للذا محرک برقی دباو صرف حرکت کرتے حصوں کی وجہ سے پیدا ہو گی۔یوں حرکت کرتے سلاخ پر گھڑی کے الٹ چلتے ہوئے تکمل سے

$$\oint (\boldsymbol{v} \times \boldsymbol{B}) \cdot d\boldsymbol{L} = \int_d^0 v B \, dx = -Bv d$$

حاصل ہوتا ہے۔ چونکہ B اذ خود وقت کے ساتھ تبدیل نہیں ہو رہا للذا یہی کل محرک برقی دباو ہو گا۔

یوں وقت کے ساتھ تبدیل نہ ہوتے مقناطیسی میدان میں حرکت کرتے بند راہ میں محرک برقی دباو حاصل کرتے وقت حرکت کرتے حصوں پر حرکی شدت _{حرک}ے کے استعال سے محرک برقی دباو بوں

(9.13) محری برقی دبار
$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligne$$

شكل 9.2: محرك برقى دباو اور برقى دباو كا موازنه.

حاصل کی جاسکتی ہے۔البتہ وقت کے ساتھ بدلتی مقناطیسی میدان میں محرک برقی دباو کے حصول میں مساوات 9.5 کا حصہ شامل کرنا ضروری ہے یوں محرک برقی دباو

$$(9.14)$$
 محرک برقی دباو $\mathbf{E}\cdot\mathrm{d}\mathbf{L}=-\int_{S}rac{\partial \mathbf{B}}{\partial t}\cdot\mathrm{d}\mathbf{S}+\oint\left(\mathbf{v} imes\mathbf{B}
ight)\cdot\mathrm{d}\mathbf{L}$

سے حاصل ہو گی۔ یہ مساوات دراصل مساوات 9.1

محرک برقی دباو
$$=-rac{{
m d}\Phi}{{
m d}t}$$

ئی ہے۔

آئیں شکل 9.1 میں پیابر تی دباد کی جگہ مزاحمت نسب کرتے ہوئے اس کی مدد سے مساوات 9.3 جو محرک برتی دباد کی تعریف بیان کرتا ہے پر دوبارہ غور کریں۔ نئی شکل کو شکل 9.2 میں دکھایا گیا ہے۔مساوات 9.11 محرک سلاخ پر پیدا _{جس} کا دیتا ہے جو سلاخ میں مثبت چارج کو سلاخ کے اُرلے سرے کی طرف دھکیلے گا۔اس کے برعکس مزاحمت پر برتی دباو _{VR} پایا جاتا ہے جس کی وجہ سے اس میں برتی میدان کی شدت کے پائی جائے گی جو مزاحمت میں مثبت چارج کو مزاحمت کے پرلے سرے کی جانب دھکیلے گی۔

$$v_R$$
 آپ شکل کو دیکھ کر تسلی کر لیں کہ مزاحمت پر میدان کی شکت $E=-Ea_{
m X}$ جسے برتی دباو v_R یوں $v_R=-\int_0^{d_1} m{E}\cdot dm{L}=\int_0^{d_1} E\, dx=Ed_1$

حاصل ہوتی ہے جبکہ متحرک سلاخ پر حرکی شدت $a_{\mathrm{X}}=E_{_{<>>}}$ ہے حرکی دباوe یوں

$$(9.16) e = \oint \mathbf{E}_{\mathcal{S}_{\mathcal{F}}} \cdot d\mathbf{L} = \int_0^d \mathbf{E}_{\mathcal{S}_{\mathcal{F}}} \cdot d\mathbf{L} = \int_0^d \mathbf{E}_{\mathcal{S}_{\mathcal{F}}} dx = \mathbf{E}_{\mathcal{S}_{\mathcal{F}}} dx$$

حاصل ہوتی ہے۔ شکل میں دوافقی موصل سلاخوں کے مابین برقی دباو کو سلاخوں کے بائیں سروں پر v_R جبکہ ان کے دائیں سروں پر e کہا گیا ہے لہذا v_R اور e دونوں مثبت اور برابر قیمت رکھتے ہیں۔ یہاں ضرورت اس بات کی ہے کہ آپ دیکھ سکیں کہ v_R کی مثبت قیمت حاصل کرنے کے لئے ضروری ہے کہ مساوات میں منفی کی علامت استعال کی جائے جبکہ e کے مثبت قیمت کے حصول کے لئے ضروری ہے کہ مساوات میں جمع کی علامت استعال کی جائے۔ حرکی دباو کے بند تکمل میں راہ کے بقایااطراف پر تکمل کی قیمت صفر ہونے کے ناطے صرف متحرک سلاخ پر تکمل لیا گیا ہے۔

9.2. انتقالي برقي رو

شکل 9.3: محرک برقی دباو یا تا وقت کے ساتھ بدلتی مقناطیسی میدان اور یا حرکت کرتے بند راہ سے ہی پیدا ہو سکتی ہے۔

اگرچہ مساوات 1.1 انتہائی سادہ شکل رکھتی ہے لیکن اس کا استعال کبھی کبھار مشکل ہو جاتا ہے۔اییااس وقت ہوتا ہے جب دور کے کسی جھے کو تبدیل کرتے ہوئے دوسرا حصہ نسب کیا جائے۔یہ بات شکل 9.3 پر غور کرنے سے بہتر سمجھ آئے گی۔اس شکل میں نا تو وقت کے ساتھ تبدیل ہوتا مقناطیسی میدان ہے اور نا بی بند راہ کا کوئی حصہ متحرک ہے۔البتہ شکل میں دکھائے سونچ کو چالو یا غیر چالو کرتے ہوئے بند راہ میں مقناطیسی بہاو کم اور زیادہ کیا جا سکتا ہے۔یہاں بغیر سوچے مساوات 9.1 استعال کرتے ہوئے غلط نتائج حاصل ہوتے ہیں۔ یاد رہے کہ برقی دہاویا تو وقت کے ساتھ بدلتے مقناطیسی میدان ادر یا پھر بند راہ کے کسی جھے کے حرکت سے بی پیدا ہوگا۔

t=15مثق 9.1 شکل 9.3 میں $y=0.5a_{
m Z}$ ٹسلا، رفتار y=100 میٹر فی سیکنڈ جبکہ t=0.5 میٹر ہے۔ اگر $y=0.5a_{
m Z}$ ٹسلا، رفتار وقتار y=15 میٹر جبکہ 9.5 میٹر ہے۔ اگر $y=0.5a_{
m Z}$ میٹر ہو تب کا میٹر پر مندر جبہ ذیل حاصل کریں۔

- سلاخ کی رفتار،
- محرك برقى د باو _{V21}،
- پیا برتی د باو کی اندرونی مزاحت دس میگااو بهم کی صورت میں دور میں برتی رو۔

 $10 \, \mu A \, \cdot 100 \, V \, \cdot 4.017 \, \frac{m}{s}$ جوابات:

9.2 انتقالي برقي رو

فیراڈے کے تجرباتی نتیج سے میکس ویل کی پہلی مساوات

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

حاصل ہوئی جو کہتا ہے کہ بدلتی مقاطیسی میدان پیدا کرتا ہے برقی دباو۔ گردش کے عمل کو مد نظر رکھتے ہوئے ہم دیکھتے ہیں ایسے پیدا کردہ برقی دباو کا بند کلیری تکمل صفر کے برابر نہیں ہوتا۔ آئیں اب وقت کے ساتھ تبدیل ہوتے برقی میدان پر غور کریں۔

ایمبیئر کے دوری قانون کی نقطہ شکل

$$\nabla \times \boldsymbol{H} = \boldsymbol{J}$$

ساکن مقناطیسی میدان پر لا گو ہوتی ہے۔اس مساوات کی پھیلاو

$$\nabla \cdot \nabla \times \boldsymbol{H} = 0 = \nabla \cdot \boldsymbol{J}$$

لیتے ہوئے ہم دیکھتے ہیں کہ گردش کی پھیلاو ہر صورت صفر کے برابر ہوتی ہے للذا مندرجہ بالا مساوات کا بایاں ہاتھ ہر صورت صفر دے گااور یوں اگریہ مساوات درست ہوتب اس کا دایاں ہاتھ بھی ہر صورت صفر ہونا چاہیے۔ گر ہم استمراری مساوات سے جانتے ہیں کہ

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t}$$

ہوتا ہے۔اس سے ثابت ہوتا ہے کہ مساوات 9.18 صرف اس صورت درست ہو گا جب $\frac{\partial \rho}{\partial t}$ ہو۔یہ ایک غیر ضروری اور غیر حقیقی شرط ہے لہذا وقت کے ساتھ تبدیل ہوتے برقی میدان پر استعال کے قابل بنانے کی خاطر مساوات 9.18 کو تبدیل کرنا لازم ہے۔تصور کریں کہ مساوات 9.18 میں نا معلوم جزو G کی شمولیت سے یہ مساوات وقت کے ساتھ تبدیل ہوتے برقی میدان پر بھی لاگو کرنے کے قابل ہو جاتا ہے۔الی صورت میں مساوات 9.18 یوں

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \boldsymbol{G}$$

ککھی جائے گی۔ آئیں دوبارہ اس کی پھیلاو حاصل کریں جس سے

$$0 = \nabla \cdot \boldsymbol{J} + \nabla \cdot \boldsymbol{G}$$

یا

$$abla \cdot \boldsymbol{G} = rac{\partial
ho}{\partial t}$$

ablaحاصل ہوتا ہے جہاں استمراری مساوات کا سہارالیا گیا۔اس مساوات میں ho کی جگہ $abla\cdot D$ پر کرنے سے

$$abla \cdot \boldsymbol{G} = \frac{\partial \left(
abla \cdot \boldsymbol{D} \right)}{\partial t} =
abla \cdot \frac{\partial \boldsymbol{D}}{\partial t}$$

لعيني

$$G = \frac{\partial D}{\partial t}$$

حاصل ہوتا ہے۔ یوں ایمپیئر کے دوری قانون کی درست شکل

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$

ہے۔ مندرجہ بالا مساوات برقی و مقناطیسیات کے اب تک تمام دریافت کردہ اصولوں پر پورااتر تی آئی ہے۔جب تک یہ غلط ثابت نہ ہو جائے، ہم اسے درست ہی نصور کریں گے۔

مساوات 9,20 میکس ویل کے مساوات میں سے ایک مساوات ہے۔اس مساوات میں $\frac{\partial D}{\partial t}$ کی بُعد ایمپیئر فی مربع میٹر حاصل ہوتی ہے جو کثافت برقی روکا بُعد ہے۔میکس ویل نے اس مساوات میں دائیں ہاتھ نئے جزو کو کثافت انتقالی رو 8 کا نام دیا اور J_a سے ظاہر کیا یعنی

$$abla imes oldsymbol{H} = oldsymbol{J} + oldsymbol{J}_d \ = rac{\partial oldsymbol{D}}{\partial t}$$

9.2. انتقالي برقي رو

شکل 9.4: موصل تار میں ایصالی رو کپیسٹر کرے چادروں کے درمیان انتقالی رو کرے برابر ہے۔

ہم تین اقسام کے کثافت رود کیم چکے جن میں کثافت انقالی رو کے علاوہ غیر چارج شدہ خطے میں عموماً الیکٹران کے حرکت سے پیدا کثافت ایصالی رو $J = \sigma E$

اور چارج کے جم کے حرکت سے پیدا کثافت اتصالی رو

$$(9.22) J = \rho_h v$$

شامل ہیں۔ مساوات 9.20 میں J سے مراد ایصالی اور اتصالی رو کے کثافتوں کا مجموعہ ہے جبکہ مقید چارج H کا حصہ ہیں۔ غیر موصل خطے میں جہاں کثافت چارج پائی ہی نہیں جاتی J=0 ہوتا ہے لہذا غیر موصل میں

(9.23)
$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} \qquad (\boldsymbol{J} = 0)$$

ہو گا۔ مساوات 9.23 اور مساوات 9.17 میں مشابہت دیکھیں۔

$$abla imes oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$$

مقناطیسی شدت H اور برقی شدت E کافی مشابهت رکھتے ہیں۔اسی طرح کثافت رو D اور کثافت بہاو B بھی کافی مشابهت رکھتے ہیں۔اس مشابهت کو نہیں تک رکھیں چونکہ جیسے ہی میدان میں چارج پر قوت کی بات کی جائے، دونوں اقسام کے میدان بالکل مختلف طریقوں سے عمل کرتے ہیں۔

کسی بھی سطح سے کل انتقالی رو سطحی تکمل

$$I_d = \int_S \boldsymbol{J}_d \cdot \mathrm{d}\boldsymbol{S} = \int_S \frac{\partial \boldsymbol{D}}{\partial t} \cdot \mathrm{d}\boldsymbol{S}$$

سے حاصل ہو گی۔مساوات 9.20 کے سطحی تکمل

$$\int_{S} (\nabla \times \boldsymbol{H}) \cdot d\boldsymbol{S} = \int_{S} \boldsymbol{J} \cdot d\boldsymbol{S} + \int_{S} \frac{\partial \boldsymbol{D}}{\partial t} \cdot d\boldsymbol{S}$$

پر مسکلہ سٹوکس کے اطلاق سے

(9.25)
$$\oint \mathbf{H} \cdot d\mathbf{L} = I + I_d = I + \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S}$$

وقت کے ساتھ تبدیل ہوتے ایمپیئر کے دوری قانون کی نقطہ شکل حاصل ہوتی ہے۔

انتقالی رو کو شکل 9.4 کی مدد سے سمجھتے ہیں جہاں موصل تار سے کیبیسٹر C کے دو سرے جوڑتے ہوئے بند دور بنایا گیا ہے جس میں وقت کے ساتھ بدلتی سائن نما مقناطیسی میدان B محرک برقی دباو پیدا کرتی ہے۔ یہ سادہ برقی دور ہے جس میں مزاحمت اور امالہ کو نظر انداز کرتے ہوئے برقی رو

$$i = -\omega C V_0 \sin \omega t$$
$$= -\omega \frac{\epsilon S}{d} V_0 \sin \omega t$$

ککھی جاسکتی ہے جہاں €، S اور d کپیسٹر سے متعلق ہیں۔آئیں انتقالی رو کو نظرانداز کرتے ہوئے تار کے گرد بند راہ k پر ایمپیسٹر کا دور کی قانون لا گو کریں۔

$$\oint_{k} \boldsymbol{H} \cdot d\boldsymbol{L} = I_{k}$$

اب بند راہ k اور اس راہ پر H حقیقی مقدار ہیں اور تکمل سے حاصل رو I_k اس راہ سے گیرے کسی بھی سطح سے گزرتی رو کو ظاہر کرتی ہے۔اگر ہم k کو سیدھی سطح کا سرحد تصور کریں تب موصل تار اس سطح کو چھیدتا ہوا گزرے گا۔یوں اس سطح سے I رو ہی گزرے گی جو ایصالی رو ہے۔اس کے بر عکس اگر ہم k کو تھلیے کا منہ تصور کریں جیسے شکل میں دکھایا گیا ہے تب ایصالی روائی سطح سے نہیں گزرتی چو نکہ تھیلا کپیسٹر کے دو چادروں کے در میان سے گزرتی ایصالی رو صفر کے برابر ہے۔الیی صورت میں ہمیں انتقالی رو کا سہارا لینا ہو گا۔کپیسٹر کے چادروں کے در میان

$$D = \epsilon E = \epsilon \left(\frac{V_0}{d} \cos \omega t \right)$$

ہے للذا

$$J_d = \frac{\partial D}{\partial t} = -\omega \epsilon \frac{V_0}{d} \sin \omega t$$

اور يول

$$I_d = SJ_d = -\omega \frac{\epsilon S}{d} V_0 \sin \omega t$$

ہو گی۔

یہ وہی جواب ہے جو ایصالی روسے حاصل ہوا تھا۔اس مثال سے آپ دیکھ سکتے ہیں کہ ایمپیئر کے دوری قانون کو استعال کرتے ہوئے سطح سے گزرتی ایصالی رواور انقالی رو دونوں کا خیال رکھنا ہو گا۔ کہیں پر سطح سے صرف ایصالی رو گزرے گی تو کہیں اس سے صرف انتقالی رو گزرے گی اور کبھی کبھار دونوں کا مجموعہ۔

انقالی رووقت کے ساتھ بدلتے برقی میدان سے پیدا ہوتے ہیں للذایہ ایسے تمام غیر موصل یا نیم موصل خطوں میں پائی جاتی ہے جہاں وقت کے ساتھ تبدیل ہوتی ایصالی روپائی جاتی ہے۔ اس کی قیت ساتھ تبدیل ہوتی جائے۔ اگرچہ موصل خطے میں مجی انقالی روپائی جاتی ہے۔ لیکن، جیسے آپ مندرجہ ذیل مثق میں دیکھیں گے، اس کی قیت ایصالی رو تجرباتی طور دریافت نہیں کی گئی بلکہ اس تک منطق کے ذریعہ سے پہنچا گیا۔

مشق 9.2: کھوس تانبے کی تار میں سائن نما، بچاس ہر ٹز کی ایصالی رو I₀ cos ωt گزر رہی ہے۔اس میں انتقالی رو حاصل کریں۔ بچاس ہر ٹز رو کی صورت میں ایصالی اور انتقالی رو کے موثر قیمت کی شرح حاصل کریں۔

$$I_d=rac{\sigma}{\omega\epsilon_0}=2.08 imes10^{16}$$
 کی شرح $I_d=-rac{\omega\epsilon_0}{\sigma}I_0\sin\omega t$: حل

9.3 میکس ویل مساوات کی نقطہ شکل

ہم وقت کے ساتھ تبدیل ہوتے میدانوں میں میکس ویل کے دو مساوات کے نقطہ اشکال

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

اور

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$

حاصل کر چکے ہیں۔میکس ویل کے بقایادو مساوات وقت کے ساتھ تبدیل ہوتے میدان میں بھی جول کے تول

$$\nabla \cdot \boldsymbol{D} = \rho_h$$

$$(9.29) \nabla \cdot \boldsymbol{B} = 0$$

رہتے ہیں۔

مساوات 9.28 کہتا ہے کہ کثافت برتی رو کا منبع کثافت چارج ہے۔وقت کے ساتھ بدلتے مقناطیسی میدان میں برقی میدان پیدا ہوتا ہے جو بند راہ پر چپتا ہے۔ایسے برقی میدان کا ناتو کسی چارج سے اخراج ہوتا ہے اور ناہی میہ کسی چارج پر ختم ہوتا ہے۔اس کے برعکس ہر مثبت چارج سے اس کے برابر برقی بہاو کا اخراج ہوتا ہے اور ہر منفی چارج پر اس کے برابر برقی بہاو کا اختتام ہوتا ہے۔

مساوات 9.29 کہتا ہے کہ کسی بھی نقطے سے کل مقناطیسی بہاو کا اخراج صفر ہے یعنی مقناطیسی بہاو نا تو کسی نقطے سے خارج ہوتا ہے اور نا ہی یہ کسی نقطے پر اختتام پذیر ہوتا ہے۔ سادہ زبان میں اس کا مطلب ہے کہ مقناطیس کا یک قطب ممکن نہیں جس سے مقناطیسی بہاو کا اخراج ہویا اس پر مقناطیسی بہاو اختتام ہو۔

مندرجہ بالا چار مساوات پر برقی و مقناطیسیات کی بنیاد کھڑی ہے جنہیں استعال کرنے کی خاطر چار معاون مساوات

$$(9.30) D = \epsilon E$$

$$(9.31) B = \mu H$$

$$(9.32) J = \sigma E$$

$$(9.33) J = \rho_h v$$

بھی در کار ہوتے ہیں۔

ایسے ذو برق اور مقناطیسی اشیاء جن میں متغیرات سادہ تعلق نہ رکھتے ہوں، ان میں مساوات 9.30 اور مساوات 9.31 کی جگہ

$$(9.34) D = \epsilon_0 E + P$$

$$(9.35) B = \mu_0 \left(\mathbf{H} + \mathbf{M} \right)$$

استعال ہوتے ہیں۔خطی اشیاء میں

$$(9.36) P = \chi_e E$$

اور

$$(9.37) M = \chi_m H$$

لکھا جا سکتا ہے۔

آخر میں لور نز قوت کی مساوات

$$(9.38) F = \rho_h \left(E + v \times B \right)$$

بھی شامل کرتے ہیں۔

غیر سمتی مقناطیسی د باو V اور سمتی مقناطیسی د باو A انتهائی اہم ہیں البتہ ان کی شمولیت لازم نہیں۔

شکل 9.5: وقت کے ساتھ بدلتے میدان کے سرحدی شرائط۔

9.4 میکس ویل مساوات کی تکمل شکل

مساوات 9.26 کے سطحی کلمل پر مسلم سٹوکس کا اطلاق کرتے ہوئے فیراڈے کا قانون

(9.39)
$$\oint \boldsymbol{E} \cdot d\boldsymbol{L} = -\int_{S} \frac{\partial \boldsymbol{B}}{\partial t} \cdot \boldsymbol{S}$$

حاصل ہوتا ہے۔اسی طرح مساوات 9.27 اسی طریقہ کارسے ایمپیئر کا دوری قانون

(9.40)
$$\oint \mathbf{H} \cdot d\mathbf{L} = I + \int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{S}$$

حاصل ہوتا ہے۔

برقی اور مقناطیسی میدان کے لئے گاؤس کے قوانین مساوات 9.28 اور مساوات 9.29 کے تمام حجم پر محجمی تکمل اور مسئلہ پھیلاو کی مدد سے

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{h} \rho_{h} \, dh$$

اور

$$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = 0$$

حاصل ہوتے ہیں۔

مندرجہ بالا چار مساوات سے D ، H ، E اور B کے سرحدی شرائط حاصل ہوتے ہیں جن سے میکس ویل کے جزوی تفرقی مساوات کے مستقل حاصل کئے جاتے ہیں۔وقت کے ساتھ تبدیل ہوتے میدان کے سرحدی شرائط عموماً ساکن میدان کے سرحدی شرائط ہی ہوتے ہیں لہذا ساکن میدان کے طریقہ کارسے وقت کے ساتھ بدلتے میدان کے سرحدی شرائط بھی حاصل کئے جا سکتے ہیں۔

آئیں شکل 9.5 کی مدد سے سر حد کے متوازی برقی اور مقناطیسی شر ائط حاصل کریں۔ شکل میں مستطیل راہ پر مساوات 9.39 کے اطلاق سے $(E_{m1}-E_{m2})\,\Delta w = -rac{\partial B_n}{\partial t}\Delta w \Delta h$

لکھا جا سکتا ہے جہاں $\frac{\partial B_n}{\partial t}$ سے مراد راہ کے گیرے سطے سے گزرتی مجموعی میدان کی تبدیلی ہے جس کا کچھ حصہ خطہ 1 اور کچھ حصہ خطہ 2 سے گزرتا ہے۔ اس مساوات کے دائیں ہاتھ کی قیمت $\Delta h \to 0$ کرتے ہوئے صفر کے قریب ترکی جا سکتی ہے۔الیی صورت میں دائیں ہاتھ کو صفر ہی تصور کرتے ہوئے

$$(9.43) E_{m1} = E_{m2}$$

لعيني

(9.44)
$$a_N \times (E_1 - E_2) = 0$$

حاصل ہوتا ہے۔

سرحد پر انتہائی کم موٹائی کے خطے میں کثافت برتی رو K تصور کرتے ہوئے کسی بھی چھوٹی لمبائی d پر برتی رو کو $I = K \cdot d$ کسی جاسکتی ہے۔ یوں شکل 5.5 میں مستطیل راہ پر مساوات 9.41 کے اطلاق سے

$$(H_{m1} - H_{m2}) \Delta w = K_{\perp} \Delta w + \frac{\partial D}{\partial t} \Delta w \Delta h$$

حاصل ہوتا ہے جہاں K_{\perp} سے مراد K کا وہ حصہ ہے جو H_{m1} اور H_{m2} عمود کی ہے۔دائیں ہاتھ دوسرے جزو کی قیمت $\Delta h o \Delta h$ کرتے ہوئے صفر کے قریب ترکی جاسکتی ہے لہٰذااس جزو کو نظرانداز کرتے ہوئے

$$(9.45) H_{m1} - H_{m2} = K_{\perp}$$

حاصل ہوتا ہے جسے بول

$$a_N \times (H_1 - H_2) = K_\perp$$

بھی لکھا جا سکتا ہے۔

کسی بھی حقیقی دو مختلف اشیاء کے سرحد، مثلاً سمندر کے پانی اور ہوا کے سرحد یا ہوااور دیوار کے سرحد، پر کثافت برقی رو K صفر ہوتی ہے۔لمذا حقیقی مسائل میں K=0 کی بنایر

$$(9.47) H_{m1} = H_{m2}$$

ہو گا۔ صفحہ 241 پر شکل 8.8 میں سطحی کثافت برقی رو K دکھائی گئی ہے جبکہ یہاں شکل 9.5 میں اسے صفر تصور کرتے ہوئے نہیں دکھایا گیا۔

مساوات 9.41 اور مساوات 9.42 سے سر حدی عمودی شر اکط

$$(9.48) a_N \cdot (D_1 - D_2) = \rho_S$$

اور

$$(9.49) a_N \cdot (B_1 - B_2) = 0$$

حاصل ہوتے ہیں۔

موصل کو ایباکامل موصل نصور کرتے ہوئے جس کی موصلیت لا محدود مگر آ محدود ہوسے موصل کے اندر اوہم کے قانون سے

$$(9.50) E = 0$$

اور یول فیراڈے کے قانون کی نقطہ شکل ہے، وقت کے ساتھ تبدیل ہوتے میدان کی صورت میں

$$(9.51) H = 0$$

حاصل ہوتے ہیں۔اس طرح ایمپیئر کے دوری قانون کی نقطہ شکل سے محدود J کی قیمت

$$(9.52) \boldsymbol{J} = 0$$

حاصل ہوتی ہے لہذا برقی رو صرف موصل کی سطح پر بطور سطحی کثافت رو K ممکن ہے۔یوں اگر خطہ 2 کامل موصل ہو تب مساوات 9.43 تا مساوات 9.49 میں 9.49 سے

$$(9.53) E_{m1} = 0$$

$$(9.54) H_{m1} = 0$$

$$(9.55) D_{n1} = \rho_S$$

$$(9.56) B_{n1} = 0$$

حاصل ہوتے ہیں۔ یاد رہے کہ سطحی کثافت چارج کی موجود گی ذو برق، کامل موصل اور غیر کامل موصل تمام پر ممکن ہے جبکہ سطحی کثافت رو K صرف کامل موصل کی صورت میں ممکن ہے۔

مندرجہ بالا سرحدی شرائط میس ویل کے مساوات کے حل کے لئے لازم ہیں۔ حقیقت میں پیش آنے والے تمام مسائل میں مختلف اشیاء کے سرحدیں پائی جاتی ہیں اور ایسے ہر سرحد کے دونوں اطراف پر مختلف متغیرات کے تعلق سرحدی شرائط سے ہی حاصل کرنا ممکن ہے۔کامل موصل کی صورت میں موصل کے اندر، وقت کے ساتھ بدلتے، تمام متغیرات صفر ہوتے ہیں البتہ ایسی صورت میں مساوات 5.5 تا مساوات 9.56 میں دیے شرائط کا اطلاق نہایت مشکل ہوتا ہے۔

متحرک اہروں کے چند بنیادی خاصیت بغیر سرحد کے خطے میں اہر کی حرکت پر غور سے واضح ہوتے ہیں۔اگلا باب انہیں متحرک اہروں پر ہے۔میکس ویل مساوات کا بہ سب سے آسان استعال ہے چونکہ ان میں کسی قسم کے سرحدی شرائط لاگو نہیں ہوتے۔

9.5 تاخيري دباو

وقت کے ساتھ بدلتے دباو، جنہیں تاخیری دباو⁹ کہا جاتا ہے، اشعاعی اخراج 10 کے مسائل حل کرنے میں نہایت اہم ثابت ہوتے ہیں۔آپ کو یاد ہو گا کہ غیر سمتی مقناطیسی دباو V کو خطے میں تقسیم ساکن جارج کی صورت

$$V = \int_h rac{
ho_h \, \mathrm{d}h}{4\pi\epsilon R}$$
 (برفی سکون)

میں لکھا جا سکتا ہے۔اسی طرح سمتی مقناطیسی دباو A کو وقت کے ساتھ نہ بدلتے یعنی یک سمتی برقی رو کے تقسیم کی صورت

(9.58)
$$A = \int_{h} \frac{\mu J \, \mathrm{d}h}{4\pi R} \qquad (پک سمتی رو)$$

میں لکھا جا سکتا ہے۔انہیں مساوات کے نقطہ اشکال بالترتیب

$$\nabla^2 V = -\frac{\rho_h}{\epsilon} \qquad (برفی سکون)$$

أور

$$abla^2 A = -\mu J$$
 (یک سمتی رو)

ہیں۔

9.5. تاخیری دباو

غیر سمتی اور سمتی مقناطیسی د باو کے حصول کے بعد میدان کے بنیادی متغیرات ڈھلوان

$$E = -\nabla V$$
 (برقی سکون) (9.61)

اور گردش

$$(9.62)$$
 $B = \nabla \times A$ (پک سمتی رو)

کی مدد سے حاصل ہوتے ہیں۔

آئیں اب ساکن چارج اور یک سمتی رو سے متعلق، وقت کے ساتھ تبدیل ہوتے ایسے دباو حاصل کریں جو مندرجہ بالا مساوات پر پورااترتے ہوں۔

میکس ویل کے مساوات کے تحت B=0 ہو گا۔ صفحہ 209 پر مساوات 7.62 کے تحت گردش کی پھیلاو لازماً صفر ہوتی ہے لہذا مساوات 9.62 میکس ویل کی مساوات B=0 پر پورااترتی ہے۔ یوں ہم مساوات 9.62 کو بدلتے میدان کے لئے بھی درست تصور کرتے ہیں۔

صفحہ 218 پر مثق 7.7 میں آپ نے ثابت کیا کہ ڈھلوان کی گردش لازماً صفر ہوتی ہے یوں مساوات 9.61 کی گردش لینے سے دایاں ہاتھ صفر حاصل ہوتا ہے جبکہ بایاں ہاتھ کا ∞ × کھ حاصل ہوتا ہے جو مساوات 9.26 کے تحت صفر نہیں ہے۔یوں صاف ظاہر ہے کہ مساوات 9.61 وقت کے ساتھ بدلتے میدان کے لئے درست نہیں ہے۔آئیں اس توقع سے مساوات 9.61 کے دائیں جانب متغیرہ N جمع کریں

$$\boldsymbol{E} = -\nabla V + \boldsymbol{N}$$

کہ وقت کے ساتھ برلتے میدان کے لئے ایس مساوات درست ثابت ہو گی۔ فی الحال ۸ ایک نامعلوم متغیرہ ہے۔ گردش لینے سے

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} = -\nabla \times (\nabla V) + \nabla \times \boldsymbol{N}$$
$$= 0 + \nabla \times \boldsymbol{N}$$

لعيني

$$abla imes oldsymbol{N} = -rac{\partial oldsymbol{B}}{\partial t}$$

حاصل ہوتا ہے۔مساوات 9.62 کے استعال سے بول

$$abla imes oldsymbol{N} = -rac{\partial}{\partial t} \left(
abla imes oldsymbol{A}
ight)$$

يا

$$abla imes oldsymbol{N} = -
abla imes \left(rac{\partial oldsymbol{A}}{\partial t}
ight)$$

حاصل ہوتا ہے جس کا سادہ ترین حل

$$N = -\frac{\partial A}{\partial t}$$

ہے للذااب ہم

$$(9.63) E = -\nabla V - \frac{\partial A}{\partial t}$$

(9.64)

(9.65)

لکھ سکتے ہیں۔

جمیں اب بھی دیکھنا ہوگا کہ آیا مساوات 9.62 اور مساوات 9.63 میکس ویل کے بقایا دو مساوات یعنی مساوات 9.27

$$abla imes oldsymbol{H} = oldsymbol{J} + rac{\partial oldsymbol{D}}{\partial t}$$

اور مساوات 9.28

$$\nabla \cdot \boldsymbol{D} = \rho_h$$

پر کورااترتے ہیں کہ نہیں۔ یہال پہلی مساوات میں $m{H}=rac{1}{\mu}
abla imes m{A}$ اور $m{D}=m{\epsilon}m{E}$

$$egin{aligned}
abla imes
abla imes$$

 $\nabla \left(\nabla \cdot \mathbf{A}\right) - \nabla^2 \mathbf{A} = \mu \mathbf{J} - \mu \epsilon \left(\nabla \frac{\partial V}{\partial t} + \frac{\partial^2 \mathbf{A}}{\partial t^2}\right)$

لکھا جا سکتا ہے جہاں مساوات 63.63 کا سہارالیا گیا۔اسی طرح مساوات 9.28 سے

$$\epsilon \left(-\nabla \cdot \nabla V - \frac{\partial}{\partial t} \nabla \cdot \mathbf{A} \right) = \rho_h$$

 $\nabla^2 V + \frac{\partial}{\partial t} \left(\nabla \cdot \boldsymbol{A} \right) = -\frac{\rho_h}{\epsilon}$

حاصل ہوتا ہے۔

مساوات 9.64 اور مساوات 9.65 میں کوئی تضاد نہیں پایا جاتا۔ ساکن یا یک سمتی حالات میں $\nabla \cdot A = 0$ کی وجہ سے مساوات 9.65 اور مساوات 9.65 ویا ہوتے ہیں۔ یوں ہم فرض کر سکتے ہیں کہ وقت کے ساتھ بدلتے دباو کی تعریف یوں کی جاسکتی ہے بالترتیب مساوات 9.60 اور مساوات 9.62 واصل ہوتے ہیں۔ یوں ہم فرض کر سکتے ہیں کہ وقت کے ساتھ بدلتے دباو کی تعریف یوں کی جاسکتی ہوں۔ البتہ A اور V کو مساوات 9.62 اور مساوات 9.63 واصل شراکط ہیں جن پر A اور V کا پورا اتر ناظر ور کی ہے۔ آئیں ایک مثال سے اس حقیقت کو سمجھیں۔

تصور کریں کہ ہمارے پاس سادہ سمتی مقناطیسی دباو ہے جس کے A_y اور A_z اجزاء صفر کے برابر ہیں۔ یوں مساوات 9.62 کی مدد سے ہم لکھ سکتے ہیں۔

$$B_x a_x + B_y a_y + B_z a_z = 0 a_x + \frac{\partial A_x}{\partial z} a_y - \frac{\partial A_x}{\partial y} a_z$$

اس سے ظاہر ہے کہ x محدد کے ساتھ A_x کے تبدیلی کے بارے میں کچھ اخذ کرنا ممکن نہیں ہے۔ یہ مساوات $\frac{\partial A_x}{\partial x}$ کا ذکر تک نہیں کرتا۔ ہاں اگر ہمیں A_x فاہر ہے کہ x محدد کے ساتھ A_x کے تبدیل کے بارے میں کچھ کہنا ممکن ہوتا چونکہ دئے گئے سمتی دباو

$$\nabla \cdot \mathbf{A} = \frac{\partial A_{x}}{\partial x}$$

9.5. تاخیری دباو

کھا جا سکتا ہے۔ آخر میں یہ بھی بتانا ضروری ہے کہ A کے بارے میں ہماری تمام معلومات جزوی تفرقی مساوات کی صورت میں ہیں جن سے A کے حصول کے وقت تکمل کا مستقل شامل کرنا ضروری ہے۔ کسی بھی حقیقی مسئلہ جس میں مکمل خلاء کے لئے حل درکار ہو میں ایسا مستقل صفر کے برابر ہوگا چونکہ کوئی بھی میدان لا محدود فاصلے پر صفر ہی ہوگا۔

اس مثال سے ہم کہہ سکتے ہیں کہ اگر ہمیں لا محدود خلاء میں کسی بھی نقطے پر سمتی میدان کی قیمت معلوم ہو تب اس سمتی میدان کو تمام خلاء میں میدان کے گردش اور پھیلاوسے حاصل کیا جا سکتا ہے۔ ہمیں مکمل آزادی ہے کہ جیسے چاہیں A کی پھیلاو بیان کریں۔ ہم مساوات 64.9اور مساوات 5.65 کو مد نظر رکھتے ہوئے یوں A کے پھیلاو کے لئے سادہ ترین تفاعل

$$\nabla \cdot \mathbf{A} = -\mu \epsilon \frac{\partial V}{\partial t}$$

لکھتے ہیں جس سے مساوات 9.64

(9.67)
$$\nabla^2 \mathbf{A} = -\mu \mathbf{J} + \mu \epsilon \frac{\partial^2 \mathbf{A}}{\partial t^2}$$

صورت اختیار کر لے گی جبکہ مساوات 9.65

$$\nabla^2 V = -\frac{\rho_h}{\epsilon} + \mu \epsilon \frac{\partial^2 V}{\partial t^2}$$

صورت اختیار کر لے گی۔

مندرجہ بالا دو مساوات متحرک امواج سے متعلق ہیں جن پر اگلے باب میں غور کیا جائے گا۔ان مساوات کی مشابہت بھی حیرت انگیز ہے۔باب کے اس جھے میں، وقت کے ساتھ بدلتے میدان کے لئے، حاصل کئے گئے نتائج یہاں دوبارہ پیش کرتے ہیں۔

$$(9.69) B = \nabla \times A$$

$$\nabla \cdot \mathbf{A} = -\mu \epsilon \frac{\partial V}{\partial t}$$

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$$

ا گلے باب میں متحرک امواج پر غور کیا جائے گا۔ آپ دیکھیں گے کہ وقت کے ساتھ بدلتے برتی و مقناطیسی میدان متحرک امواج پیدا کرتے ہیں جن کی رفتار ہ

$$v = \frac{1}{\sqrt{\mu\epsilon}}$$

کے برابر ہوتی ہے۔خالی خلاء میں یہ رفتار تقریباً $\frac{m}{s}$ $10^8 \times 10^8 \times 10^8$ ہوتی ہے جو خالی خلاء میں روشنی کی رفتار ہے۔اس سے اخذ کیا جا سکتا ہے کہ نقطہ N_1 پر کثافت چارج سے دور کسی نقطے N_2 پر دباو کی قیمت اس لمحے کثافت چارج کے قیمت پر منحصر نہیں ہوتی بلکہ کچھ دیر قبل کے کثافت چارج پر منحصر ہوتی ہے۔ کثافت چارج میں تبدیلی کی خبر N_1 تک رفتار N_2 کا کہ رفتان نقطوں کے در میان فاصلہ N_3 ہونے کی صورت میں یہ خبر N_3 سینڈ تاخیر سے پہنچ گی۔اس طرح وقت کے ساتھ بدلتی صورت میں مساوات 9.57 کی نئی شکل

$$(9.73) V = \int_{h} \frac{[\rho_{h}]}{4\pi\epsilon R} \, \mathrm{d}h$$

ہو گی جہاں $[
ho_h]$ سے مرادیہ ہے کہ مساوات میں وقت t کی جگہ تاخیری وقت t' استعال کیا جائے یعنی

$$t' = t - \frac{R}{v}$$

يوں اگر خلاء ميں كثافت چارج

$$\rho_h = e^{-r} \cos \omega t$$

ہو تب

$$[\rho_h] = e^{-r} \cos \left[\omega \left(t - \frac{R}{v} \right) \right]$$

ہو گا جہاں R تفرقی چارج سے اس نقطے تک فاصلہ ہے جہاں اس تفرقی چارج سے پیداد باو کا حصول در کار ہو۔

اسی طرح وقت کے ساتھ بدلتی صورت میں مساوات 9.58 کی نئی شکل یعنی تاخیر ی سمتی مقناطیسی دباو کی مساوات

$$\mathbf{A} = \int_{h} \frac{\mu[\mathbf{J}]}{4\pi R} \, \mathrm{d}h$$

ہو گی۔

تاخیری وقت کے استعال کی بناپر ایسے دباو کو تاخیری دباوا اکہا جاتا ہے۔

تاخیری برقی اور تاخیری مقناطیسی دباو کے استعال سے برقی و مقناطیسی مسئلے نسبتاً زیادہ آسانی سے حل ہوتے ہیں۔یوں اگر ہمیں م اور J معلوم ہوں تب ہم مساوات 9.73 اور J میں اور J ماسل کر سکتے ہیں جن سے مقناطیسی میدان بذریعہ مساوات 9.79 اور J میں اور J ماسل کر سکتے ہیں جن سے مقناطیسی میدان بذریعہ مساوات 9.71 حاصل کئے جا سکتے ہیں۔اگر ہمیں م اور J کی قیمتیں معلوم نہ ہوں اور ناہی ان کے قیمتوں کا اندازہ لگانا ممکن ہوتب تاخیری دباو، مکیس ویل مساوات کے حل سے زیادہ، مددگار ثابت نہیں ہوتے۔

باب 10

برقى و مقناطيسى امواج

لا محدود خطہ جس کا کوئی سر حدنہ ہو میں میکس ویل مساوات کا حل سادہ ترین مسکہ ہے البتہ اس سے حاصل نتائج انتہائی دلچسپ اور معلوماتی ثابت ہوتے ہیں۔آپ دیکھیں گے کہ وقت کے ساتھ بدلتا مقناطیسی میدان کو جنم دیتا ہے جبکہ وقت کے ساتھ بدلتا مقناطیسی میدان ، وقت کے ساتھ بدلتا مقناطیسی میدان ، وقت کے ساتھ بدلتا مقناطیسی میدان ، وقت کے ساتھ بدلتا ہوئی روکی بدولت ہے لہذا چارج یا رومیں کسی بھی تبدیل سے باہمی تعاون سے بدلتا برقی اور بدلتا مقناطیسی میدان یعنی برقی و مقناطیسی اموج پیدا ہوتی ہے۔ایسے امواج کی تعدد کی سائن نما موج چارج یارو (یا دونوں) میں تبدیلی کی شرح پر منحصر ہے۔یوں سی زاویائی تعدد آپر سائن نما شکل میں ارتعاش کرتا چارج سی زاویائی تعدد کی سائن نما موج ہی پیدا کرتی ہے۔ برقی و مقناطیسی امواج دیکھنے کی صلاحیت رکھتی ہی پیدا کرتی ہے۔ برقی و مقناطیسی امواج دیکھنے کی صلاحیت رکھتی ہی ہیں۔ برقی و مقناطیسی امواج کے تعدد کی وہ پٹی جو ہمیں نظر آتی ہیں روشن 4 کہلاتی ہے۔سائن نما موج کو اس کی تعدد کی یادوری عرصے کرجی برقی و مقناطیسی امواج کے دور کی عرصے کرتی و مقناطیسی امواج دیکھنے گا صلاحیت رکھتی سکتے ہیں۔

دواشیاء کے سرحد پر برقی و مقناطیسی موج پر غور کرنے سے شعاعی انعکاس⁶، شعاعی انحراف⁷اور انکسار امواج [®] کے حقائق دریافت ہوتے ہیں۔ مختصراً شعاع کے تمام خصوصیات میکس ویل کے مساوات سے حاصل کرنا ممکن ہے۔

10.1 خالی خلاء میں برقی و مقناطیسی امواج

جیسا کہ آپ جانتے ہیں کہ کسی بھی جسم کے اندر کسی بھی طرح پہنچایا گیا اضافی چارج باہمی قوت دفع سے آخر کار حجم کے سطح پر پہنچ جاتا ہے۔ا گران لمحات کو نظر انداز کیا جائے جتنی دیر آزاد چارج سطح تک پہنچا ہے تو جسم کے حجم میں $\rho_h=0$ تصور کیا جا سکتا ہے۔اس کتاب میں $\rho_h=0$ ہی تصور کرتے

electromagnetic

frequency²

light⁴

reflection⁶

refraction⁷ diffraction⁸ ہوئے برتی و مقناطیسی امواج پر غور کیا جائے گاللذا ایسا ہی تصور کرتے ہوئے صفحہ 263 پر دئے گئے میکس ویل مساوات یہاں دوبارہ پیش کرتے ہیں

$$\nabla \times \boldsymbol{E} = -\mu \frac{\partial \boldsymbol{H}}{\partial t}$$

(10.2)
$$\nabla \times \boldsymbol{H} = \sigma \boldsymbol{E} + \epsilon \frac{\partial \boldsymbol{E}}{\partial t}$$

$$\nabla \cdot \boldsymbol{E} = 0$$

$$\nabla \cdot \boldsymbol{H} = 0$$

جہاں $D=\epsilon E$ اور $B=\mu H$ کے علاوہ قانون او ہم کی نقطہ شکل $J=\sigma E$ کے استعمال سے تمام مساوات صرف دو متغیرات E اور H کی صورت میں لکھے گئے ہیں۔

10.2 برقى و مقناطيسى امواج

میس ویل مساوات کے حل دوری سمتیات ⁹ کی مدد سے نہایت آسان ہو جاتے ہیں للذا پہلے دوری سمتیر پر غور کرتے ہیں جو آپ نے برقی ادوار حل کرتے وقت ضرور استعال کئے ہوں گے۔

سائن نمالهر کی عمومی شکل

$$(10.5) E_y = E_{xyz}\cos(\omega t + \psi)$$

ہے جہاں

$$(10.6) \omega = 2\pi f$$

زاویائی تعدد 10 اور ϕ زاویائی فاصله 11 بین جبکه E_{xyz} از خود 2 اور 2 اور 2 تابع تفاعل 12 هو سکتا ہے۔ تعدد 2 کی اکائی ہر ٹر 13 ہے۔ یہاں دھیان رہے کہ E_{xyz} وقت 2 کا تابع نہیں ہے۔ E_{xyz}

phasor

angular frequency¹⁰

phase angle¹¹

dependent function¹²

Hertz¹³

10.2. برقى و مقناطيسى امواج

 $\omega t + \psi$ کسی بھی متغیرہ $j = \sqrt{-1}$ خیالی عدد j^{-15} کسا جاتا ہے جہاں $j = \sqrt{-1}$ خیالی عدد j^{-15} کسا جاتا ہے جہاں $j = \sqrt{-1}$ خیالی عدد j^{-15} کسا جاتا ہے جہاں $j = \sqrt{-1}$ کسا جاتا ہے جہاں $j = \sqrt{-1}$ کسا جاتا ہے جہاں کے پولر مماثل

$$e^{j(\omega t + \psi)} = \cos(\omega t + \psi) + j\sin(\omega t + \psi)$$

 $\sqrt{2}$ کا حقیقی 16 اور خیالی 17 اجزاء پر مشتمل مخلوط نفاعل 18 ہے۔ یوں $\sqrt{2}\cos(\omega t + \psi)$ کو حقیقی 16 اور خیالی 17 اجزاء پر مشتمل مخلوط نفاعل 18 ہے۔ اس طرح

$$E_y = E_{xyz}\cos(\omega t + \psi) = \left[E_{xyz}e^{j(\omega t + \psi)}\right]_{\text{cit.}} = \left[E_{xyz}e^{j\omega t}e^{j\psi}\right]_{\text{cit.}}$$

کھا جا سکتا ہے جہال زیر نوشت میں حقیقی لکھنے سے مرادیہ ہے کہ پورے نفاعل کا حقیقی جزو لیا جائے۔مندرجہ بالا مساوات کو بطور دوری سمتیہ یوں

$$E_{ys} = E_{xyz}e^{j\psi}$$

 E_{ys} کھا جاتا ہے جہاں $e^{i\omega t}$ اور زیر نوشت میں حقیقی کو پوشیدہ رکھا جاتا ہے۔ اس مساوات کے بائیں ہاتھ E_{ys} کھتے ہوئے زیر نوشت میں $e^{i\omega t}$ یا جاتا ہے اور پورے نفاعل کا صرف حقیقی جزو ہی لیا جائے۔ نفاعل مساوات دوری سمتیہ کی شکل میں کھی گئی ہے لہذا یاد رہے کہ اصل نفاعل میں $e^{i\omega t}$ پایا جاتا ہے اور پورے نفاعل کا صرف حقیق جزو ہی لیا جائے۔ نفاعل $e^{i\omega t}$ مساوات دوری سمتیہ کی شکل میں $e^{i\omega t}$ کہ اس نفاعل کا آزاد متغیرہ، مخلوط تعدد $e^{i\omega t}$ ہے۔ ہمارے استعمال میں $e^{i\omega t}$ عدد $e^{i\omega t}$ میں $e^{i\omega t}$ میں $e^{i\omega t}$ کے دیر نوشت میں $e^{i\omega t}$ دیا میں $e^{i\omega t}$ کہ اس نفاعل کا آزاد متغیرہ، مخلوط تعدد $e^{i\omega t}$ ہے۔ ہمارے استعمال میں $e^{i\omega t}$ کی عدد $e^{i\omega t}$ کے دیر نوشت میں $e^{i\omega t}$ دیر نوشت میں $e^{i\omega t}$ کہ نام کی از در نوشت میں $e^{i\omega t}$ کے نام کرتی ہے کہ اس نفاعل کا آزاد متغیرہ، مخلوط تعدد $e^{i\omega t}$ کے دیر نوشت میں $e^{i\omega t}$ کے دیر نوشت میں $e^{i\omega t}$ کے نام کی نام کی کے دیر نوشت میں $e^{i\omega t}$ کے نام کی کہ نام کی کروز نوشت میں $e^{i\omega t}$ کے نام کی کرونے کے دیر نوشت میں $e^{i\omega t}$ کی نوشت میں ویور کے نام کی کو نوٹر کی کے دیر نوشت میں $e^{i\omega t}$ کے نام کرونے کے نام کرونے کی کرونے کے دیر نوشت میں ویور کے نام کی کرونے کے نام کی کرونے کے نام کرونے کے نام کرونے کی کرونے کی کرونے کی کرونے کے نام کرونے کے نام کرونے کے نام کرونے کی کرونے کی کرونے کی کرونے کے نام کرونے کی کرونے کی کرونے کے نام کرونے کے نام کرونے کرونے کرونے کی کرونے کو کرونے کی کرونے کی کرونے کی کرونے کے کرونے کرونے کی کرونے کے کرونے کی کرونے کی کرونے کرنے کرونے کو کرونے کرونے کی کرونے کرونے کرونے کی کرونے کی کرونے کرونے کی کرونے کرونے کرونے کی کرونے کر کرونے کی کرونے کرونے کرونے کرونے کرونے کرونے کی کرونے کرونے کرونے کرونے کرونے کرونے کرونے کی کرونے ک

اب $E_y = 10.5\cos(10^6t - 0.35z)$ کو دوری سمتیہ کی شکل میں کھنے کی خاطر اسے یولر مماثل کے حقیقی جزو $E_y = \left[10.5e^{j(10^6t - 0.35z)}\right]_{aut}$

لکھنے کے بعد ei106t اور زیر نوشت میں حقیقی کو پوشیدہ رکھتے ہوئے یول

$$E_{ys} = 10.5e^{-j0.35z}$$

کھا جائے گا جہاں بائیں ہاتھ E_{ys} میں زیر نوشت میں s کا اضافہ کیا گیا۔ یاد رہے کہ E_{ys} حقیقی تفاعل ہے جبکہ E_{ys} عموماً مخلوط تفاعل ہوتا ہے۔

دوری سمتیہ سے اصل تفاعل حاصل کرنے کی خاطر اسے ejwt سے ضرب دیتے ہوئے حاصل جواب کا حقیقی جزو لیا جاتا ہے۔

مساوات 10.5 کا وقت کے ساتھ جزوی تفرق

$$\frac{\partial E_y}{\partial t} = \frac{\partial}{\partial t} [E_{xyz} \cos(\omega t + \psi)] = -\omega E_{xyz} \sin(\omega t + \psi)$$
$$= \left[j\omega E_{xyz} e^{j(\omega t + \psi)} \right]_{\text{dist}}$$

کے برابر ہے۔ یہ عمومی نتیجہ ہے جس کے تحت وقت کے ساتھ تفاعل کا تفرق، دوری سمتیہ کو jw سے ضرب دینے کے مترادف ہے۔ یوں مثال کے طور پر اگر

$$\frac{\partial E_x}{\partial t} = -\frac{1}{\epsilon_0} \frac{\partial H_y}{\partial z}$$

Euler's identity¹⁴

imaginary number¹⁵

. rear

imaginary¹⁷

complex function¹⁸

complex frequency¹⁹

ہوتب اسی کی دوری سمتیہ شکل

274

$$j\omega E_{xs} = -\frac{1}{\epsilon_0} \frac{\partial H_y}{\partial z}$$

ہو گی۔اس طرح سائن نمامیدان کے لئے میکس ویل کے مساوات بھی باآسانی دوری سمتیہ کی شکل میں لکھے جا سکتے ہیں للذا

$$\nabla \times \boldsymbol{E} = -\mu \frac{\partial \boldsymbol{H}}{\partial t}$$

کو دوری سمتیه کی صورت میں

$$\nabla \times \mathbf{E}_{s} = -j\omega \mu \mathbf{H}_{s}$$

لکھا جائے گا۔میکس ویل کے بقایا مساوات کو بھی دوری سمتیہ کی صورت میں لکھتے ہیں۔

(10.8)
$$\nabla \times \boldsymbol{H}_{s} = (\sigma + j\omega\epsilon) \boldsymbol{E}_{s}$$

$$(10.9) \nabla \cdot \boldsymbol{E}_{\scriptscriptstyle S} = 0$$

$$\nabla \cdot \boldsymbol{H}_{s} = 0$$

آئیں ان مساوات سے امواج کی مساوات حاصل کریں۔اییا کرنے کی خاطر مساوات کی گردشabla imes
abla imes

میں مساوات 10.8 اور مساوات 10.9 پر کرنے سے

(10.11)
$$\nabla^2 \mathbf{E}_s = j\omega\mu \left(\sigma + j\omega\epsilon\right)\mathbf{E}_s = \gamma^2 \mathbf{E}_s$$

حاصل ہوتا ہے جہاں

(10.12)
$$\gamma = \mp \sqrt{j\omega\mu \left(\sigma + j\omega\epsilon\right)}$$

حرکی مستقل 20 کہلاتا ہے۔ چو نکہ $j\omega\mu(\sigma+j\omega\epsilon)$ مخلوط عدد ہے لہذا اس کا جزر γ بھی مخلوط عدد ہو گا جے

$$\gamma = \alpha + j\beta$$

کھا جا سکتا ہے جہاں α اور β مثبت اور حقیقی اعداد ہیں۔مساوات 10.12 کو یوں بھی لکھا جا سکتا ہے

$$\gamma = j\omega\sqrt{\mu\epsilon}\sqrt{1 - j\frac{\sigma}{\omega\epsilon}}$$

جہال کسی وجہ سے صرف مثبت قیمت لی گئی ہے۔ یہ وجہ آپ کو جلد بتلادی جائے گی۔

مساوات 10.11 سمتی ہلم ہولٹز مساوات ^{22 21} کہلاتی ہے۔کار تیسی محدد میں بھی سمتی ہلم ہولٹز مساوات کی بڑی شکل کافی خوفناک نظر آتی ہے چونکہ اس سے چار چار اجزاء پر مشتمل تین عدد مساوات ن<u>کلتے ہیں</u>۔کار تیسی محدد میں اس کی x مساوات

$$\nabla^2 E_{xs} = \gamma^2 E_{xs}$$

propagation constant²⁰ vector Helmholtz equation²¹

²² ہرمن لڈوگ فرڈینانڈ ون ہلم ہولٹز جرمنی کے عالم طبیعیات تھے۔

لعيني

$$\frac{\partial^2 E_{xs}}{\partial x^2} + \frac{\partial^2 E_{xs}}{\partial y^2} + \frac{\partial^2 E_{xs}}{\partial z^2} = \gamma^2 E_{xs}$$

 $\frac{\partial^2 E_{xs}}{\partial x^2} = 0$ اور ناہی y کے ساتھ میدان تبدیل ہوتے ہیں۔الی صورت میں ناتو x اور ناہی y کے ساتھ میدان تبدیل ہوتے ہیں۔الی صورت میں ان میں ناتو x اور y کے ساتھ میدان تبدیل ہوتے ہیں۔الی صورت میں اور $\frac{\partial^2 E_{xs}}{\partial u^2} = 0$

$$\frac{\partial^2 E_{xs}}{\partial z^2} = \gamma^2 E_{xs}$$

صورت اختیار کرلے گی۔اس طرح کے دو درجی تفرقی مساوات آپ نے پڑھے ہوں گاللذامیں توقع رکھتا ہوں کہ آپ اس کے حل

$$(10.18) E_{xs} = Ae^{-\gamma z}$$

اور

$$(10.19) E_{xs} = Be^{\gamma z}$$

لكھ سكتے ہيں۔

 $e^{j\omega t}$ آئیں $\gamma=lpha+j$ پر کرتے ہوئے ان جوابات میں سے مساوات 10.18 پر غور کریں۔مساوات 10.18 در حقیقت دوری سمتیہ ہے لہذا اسے $\gamma=\alpha+j$ سے ضرب دے کر

$$E_x = \left[A e^{j\omega t} e^{-(\alpha + j\beta)z}
ight]_{\omega}$$

= $\left[A e^{-\alpha z} e^{j(\omega t - \beta z)}
ight]_{\omega}$

حقيقى جزو

$$E_x = Ae^{-\alpha z}\cos(\omega t - \beta z)$$

لیتے ہیں۔مساوات کے مستقل A کی جگہہ t=0 اور z=z پر میدان کی قیت E_0 پر کرتے ہوئے اصل حل

$$(10.20) E_x = E_0 e^{-\alpha z} \cos(\omega t - \beta z)$$

لکھا جا سکتا ہے۔ یہ موج کی وہ مساوات ہے جس کی تلاش میں ہم نکلے تھے۔اگر ہم مساوات 10.19 کو لے کر آگے بڑھتے تو مساوات 10.20 کی جگہ موج کی مساوات

$$(10.21) E_x = E_0 e^{\alpha z} \cos(\omega t + \beta z)$$

حاصل ہوتی۔

مساوات 10.18 میں $A = E_0$ پر کرتے ہوئے اس کی سمتیہ شکل

$$(10.22) \boldsymbol{E}_{s} = E_{0}e^{-\gamma z}\boldsymbol{a}_{X}$$

کسی جا سکتی ہے جو صرف $a_{
m X}$ جزو پر مشتمل ہے۔ آئیں مساوات 10.20 میں دیے متحرک موج 23 پر اب غور کریں۔

مساوات 10.20 کہتی ہے کہ برقی میدان ہر نقطے پر x محدد کے متوازی ہے۔اگر یکی قیمت تبدیل نہ کی جائے تب x اور y تبدیل کرنے سے میدان تبدیل نہیں ہوتا۔

باب 10. برقي و مقناطيسي امواج

شكل 10.1: وقت t=0 اور $t=t_1$ پر خلاء ميں موج كا مقام۔

مساوات 10.20 میں z بڑھانے سے α کی وجہ سے موج کی چوٹی گھٹی ہے للذا α تقلیلی مستقل 24 کہلاتا ہے۔ تقلیلی مستقل کو نیپر 25 فی میٹر Np میں ناپا 26 جاتا ہے۔ یوں مساوات میں g کی طاقت یعنی g ہے بعد g مقدار نیپر g میں g میں ہوگی۔ موج کے مساوات میں g کی طاقت یعن g کی طاقت ہے جسے ریڈیئن میٹر g میٹر ناپا جاتا ہے للذا g زاویائی مستقل g کہلاتا ہے جبکہ اس کی اکائی ریڈیئن فی میٹر g میٹر نیپا جاتا ہے للذا g زاویائی مستقل g کہلاتا ہے جبکہ اس کی اکائی ریڈیئن فی میٹر g

zموج کی مساوات میں $\alpha=0$ تصور کرتے ہوئے اسے وقت t=0 پر شکل 10.1 میں ہلکی سیاہی سے دکھایا گیا ہے۔ یہاں دھیان رہے کہ شکل میں z محدد کو افقی دکھایا گیا ہے۔ جیسے آپ دکھ سکتے ہیں t=0 پر موج کی دو آپس میں قریبی چوٹیاں t=0 اور t=0 پر پائی جاتی ہیں۔دو آپس میں قریبی چوٹیوں کے در میان فاصلے کو طول موج t=0 پکارا اور t=0 سے ظاہر کیا جاتا ہے۔ یوں اس موج کی طول موج

$$\lambda = \frac{2\pi}{\beta}$$

ہے جس سے

$$\beta = \frac{2\pi}{\lambda}$$

لکھا جا سکتا ہے جو انتہائی اہم نتیجہ ہے۔

موج کی مساوات ہی کو وقت $t=\Delta t_1$ پر شکل 10.1 میں دوبارہ گاڑ تھی سیاہی میں بھی دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ اس دورانے میں موج نے دائیں جانب یعنی z بڑھنے کی طرف حرکت کی ہے۔یوں صاف ظاہر ہے کہ یہ موج وقت کے ساتھ مثبت z جانب حرکت کر رہی ہے۔ دورانیہ Δt_1 میں موج کی چوٹی نے $\frac{\omega \Delta t_1}{\beta}$ فاصلہ طے کیا ہے للذا موج کے رفتار کو

$$v = \frac{\Delta z}{\Delta t} = \frac{\omega \Delta t_1}{\beta} \frac{1}{\Delta t_1} = \frac{\omega}{\beta}$$

لکھا جا سکتا ہے۔

مساوات 10.24 کو مساوات 10.25 میں پر کرنے سے

$$(10.26) v = f\lambda$$

حاصل ہوتا ہے جو λ طول موج اور f تعدد رکھنے والے موج کی رفتار σ دیتی ہے۔

attenuation constant²⁴

neper

تقلیلی مستقل کی اکائی جان نیپر کے نام سے منسوب ہے۔ 26

dimensionless²⁷ phase constant²⁸

wavelength²⁹

شکل 10.2: موج چلتے ہوئے آہستہ آہستہ کمزور ہوتی رہتی ہے۔

مساوات 10.20 میں مساوات 10.25 استعال کرتے ہوئے

(10.27)
$$E_x = E_0 e^{-\alpha z} \cos \left[\omega \left(t - \frac{z}{v} \right) \right]$$

حاصل ہوتا ہے جسے مساوات 10.25 اور مساوات 10.24 کی مرد سے

$$(10.28) E_x = E_0 e^{-\alpha z} \cos\left(\omega t - \frac{2\pi z}{\lambda}\right)$$

بھی لکھا جا سکتا ہے۔

موج کی رفتار کو مساوات 10.20 سے دوبارہ حاصل کرتے ہیں۔اس مساوات کے تحت کسی بھی کھے t پر موج کی چوٹی اس مقام پر ہوگی جہال $\omega t - \beta z = 0$

ہو۔ چونکہ رفتار $\frac{\mathrm{d}z}{\mathrm{d}t}$ کو کہتے ہیں للمذااس مساوات کے تفرق

 $\omega \, \mathrm{d}t - \beta \, \mathrm{d}z = 0$

ہے ر فتار

یا

$$v = \frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\omega}{\beta}$$

حاصل ہوتی ہے۔

 $lpha=0.001~rac{ ext{Np}}{ ext{m}}$ کو صفر تصور نہیں کیا گیا ہے۔ جیسا کہ آپ دیکھ سکتے ہیں، ایسی صورت میں موج کی چوٹی، z ساتھ بتدر سج گھٹتی ہے لہذا $rac{ ext{Np}}{ ext{m}}$ کی صورت میں z=1 فاصلے پر موج کی چوٹی، ابتدائی چوٹی کے z=0 نارہ گئی ہوگی جہاں ابتدائی چوٹی کے z=1 کی صورت میں z=1 کہ ابتدائی جوٹی ہوگی ہے۔

10.7 سے مساوات $E_{
m S}$

$$\nabla \times \boldsymbol{E}_{s} = -j\omega \mu \boldsymbol{H}_{s}$$

کی مدد سے مقناطیسی موج با آسانی حاصل ہوتی ہے۔مساوات 10.22 استعمال کرتے ہوئے مندرجہ بالا مساوات سے $-\gamma E_0 e^{-\gamma z} a_y = -j\omega \mu H_s$

$$\boldsymbol{H}_{s} = \frac{\gamma}{i\omega\mu} E_{0}e^{-\gamma z}\boldsymbol{a}_{y}$$

278 برقي و مقناطيسي امواج

حاصل ہوتا ہے جس میں مساوات $10.12 سے مثبت <math>\gamma$ کی قیمت پر کرنے سے

(10.30)
$$\begin{aligned} \boldsymbol{H}_{s} &= \sqrt{\frac{\sigma + j\omega\epsilon}{j\omega\mu}} E_{0}e^{-\gamma z}\boldsymbol{a}_{\mathbf{y}} \\ &= \frac{E_{0}}{\eta}e^{-\gamma z}\boldsymbol{a}_{\mathbf{y}} \end{aligned}$$

ملتاہے جہاں دوسرے قدم پر

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}$$

لکھی³⁰ گئی³¹ ہے۔اس مساوات کو

$$\eta = \sqrt{\frac{\mu}{\epsilon}} \frac{1}{\sqrt{1 - j\frac{\sigma}{\omega \epsilon}}}$$

بھی لکھا جا سکتا ہے۔

مساوات 10.22 کی غیر سمتی صورت لیعنی $E_{xs} = E_0 e^{-\gamma z}$ کو مساوات 10.30 کے غیر سمتی صورت لیعنی $E_{xs} = E_0 e^{-\gamma z}$ کے فیر سمتی صورت لیعنی $E_{xs} = E_0 e^{-\gamma z}$ کے فیر سمتی صورت لیعنی عرب کے انسان مساوات 10.30 کے غیر سمتی صورت لیعنی عرب کے انسان مساوات 10.30 کے فیر سمتی صورت لیعنی عرب کے انسان مساوات 10.30 کے فیر سمتی صورت لیعنی عرب کے انسان مساوات 10.30 کے فیر سمتی صورت لیعنی عرب کے انسان مساوات 10.30 کے فیر سمتی صورت لیعنی عرب کے انسان مساوات 10.30 کے فیر سمتی صورت لیعنی عرب کے انسان مساوات 10.30 کے فیر سمتی صورت لیعنی عرب کے انسان کے انسان کے انسان کے انسان کی مساوات 10.30 کے فیر سمتی صورت لیعنی عرب کے انسان کے

$$\frac{E_{xs}}{H_{ys}} = \eta$$

ملتا ہے۔

یباں ذرہ رک کر ایک برقی دور پر غور کرتے ہیں۔ منبع برقی دباو $V_0e^{-j\psi}$ جسے دوری سمتیہ $V_0e^{-j\psi}$ ککھا جا سکتا ہے کے ساتھ سلسلہ وار مزاحمت R، امالہ L اور کپییسٹر C جڑے ہیں جن کی رکاوٹ C

$$Z = R + j\left(\omega L - \frac{1}{\omega C}\right) = R + jX = |Z|e^{j\theta_Z} = |Z|\underline{\theta_Z}$$

کاسی جاسکتی ہے جہاں $\frac{1}{\omega C}$ کی صورت میں X مثبت ہو گا جبکہ $\frac{1}{\omega C}$ کی صورت میں یہ منفی ہو گا۔ مزید $\omega L > \frac{1}{\omega C}$ کی صورت میں جہاں ور خالص مزاحمتی رکاوٹ پیش کرے گا اور $\theta_Z = 0$ ہو گا۔ اس دور میں برقی رو دور کی سمتیہ کی مدد سے

$$I_s = \frac{V_s}{Z_s} = \frac{V_0 e^{-j\psi}}{|Z| e^{j\theta_Z}} = \frac{V_0}{|Z|} e^{-j(\psi + \theta_Z)}$$

حاصل ہوتا ہے جس سے

$$i = \frac{V_0}{|Z|}\cos\left(\omega t - \psi - \theta_Z\right)$$

ککھا جا سکتا ہے۔ برقی دباواور برقی روایک ہی تعدد رکھتے ہیں البتہ ان میں زاویائی فاصلہ $heta_Z$ پایا جاتا ہے۔ مثبت X کی صورت میں برقی رواس زاویائی فاصلے کے برابر برقی دباو کے ہیچے رہتی ہے۔ ہم دیکھتے ہیں کہ برقی دباو کے ہیچے رہتی ہے۔ ہم دیکھتے ہیں کہ برقی دباوار برقی دولی شرح دباواور برقی روکی شرح

$$\frac{V_s}{I_s} = |Z| e^{j\theta_Z} = Z$$

کے برابر ہے جسے رکاوٹ کہتے ہیں۔

آئیں اب دوبارہ امواج کی بات کریں۔ برتی موج کو اس مثال کے برتی دباو کی جگہ اور مقناطیسی موج کو مثال کے رو کی جگہ رکھتے ہوئے آپ دیکھیں گے کہ دونوں مسائل ہو بہو کیساں ہیں۔ اس وجہ سے برتی موج E_{xs} اور مقناطیسی موج H_{ys} کی شرح η ، قدرتی رکاوٹ حقیقی یا خیالی اور یا مخلوط عدد ہو سکتا ہے۔ قدرتی رکاوٹ کی اکائی او ہم Ω ہے۔

مساوات 10.30 سے مقناطیسی موج

(10.34)
$$H_y = \frac{E_0 e^{-\alpha z}}{|\eta|} \cos\left(\omega t - \beta z - \theta_\eta\right)$$

لکھی جائے گی جہاں قدرتی رکاوٹ کو

$$\eta = |\eta| e^{j\theta_{\eta}}$$

لكھا گيا۔

مساوات 10.20 کے تحت برقی میدان x محدد کے متوازی ہے جبکہ مساوات 10.34 کے تحت مقناطیسی میدان y محدد کے متوازی ہے لہذا یہ میدان x آپس میں ہر وقت عمودی رہتے ہیں۔اس کے علاوہ دونوں امواج x سمت میں حرکت کر رہے ہیں۔یوں میدان کی سمت اور حرکت کی سمت بھی آپس میں عمودی ہیں۔اییاں میدان کی سمت اور حرکت کی سمت عمودی ہوں عرضی امواج x تعلیم میدان کی سمت بھی عرضی امواج ہوتے x ہیں۔ایس میدان کی سمت ہوئے اسے جھکے سے ہلانے سے رسی میں عرضی موج پیدا ہوتی ہے۔

آئيں اب چند مخصوص صور تول ميں ان مساوات كو استعال كرنا سيكھيں۔

10.2.1 خالى خلاء ميں امواج

خالی خلاء میں $\sigma=0$ ، $\sigma=1$ اور $\sigma=0$ بین للذا مساوات 10.12 سے مثبت حرکی مستقل $\gamma=\sqrt{j\omega\mu_R\mu_0\left(\sigma+j\omega\epsilon_R\epsilon_0
ight)}=j\omega\sqrt{\mu_0\epsilon_0}$

حاصل ہوتاہے جس سے

$$\alpha = 0$$
$$\beta = \omega \sqrt{\mu_0 \epsilon_0}$$

حاصل ہوتے ہیں۔ یوں خالی خلاء میں برقی و مقناطیسی امواج کی رفتار، جسے روایتی طور پر c سے ظاہر کیا جاتا ہے، مساوات 10.25 سے

$$c = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

باب 10. برقی و مقناطیسی امواج

(10.37)

حاصل ہوتی ہے جس کی قیت

$$c = \frac{1}{\sqrt{4 \times \pi \times 10^{-7} \times 8.854 \times 10^{-12}}} = 2.99 \times 10^8 \frac{\text{m}}{\text{s}}$$
$$\approx 3 \times 10^8 \frac{\text{m}}{\text{s}}$$

ہے۔

مساوات 10.31 سے خالی خلاء کی قدرتی رکاوٹ

$$\eta=\sqrt{rac{j\omega\mu_R\mu_0}{\sigma+j\omega\epsilon_R\epsilon_0}}=\sqrt{rac{\mu_0}{\epsilon_0}}$$
 $=\sqrt{rac{\mu_0}{\epsilon_0}}$ $=\sqrt{2}$ ماصل ہوتی ہے۔ قدرتی رکاوٹ کی قیمت حاصل کرنے کی خاطر ہم $\eta=120\pipprox377\,\Omega$

حاصل کرتے ہیں۔یوں خالی خلاء میں کسی بھی لمحے، کسی بھی نقطے پر برقی میدان کی قیمت اس نقطے پر مقناطیسی میدان کے 377 گنا ہو گ۔

حرکی مستقل اور قدرتی رکاوٹ کی قیمتیں استعال کرتے ہوئے خالی خلاء میں متحرک موج کے میدان

$$E_x = E_0 \cos \left[\omega \left(t - \frac{z}{c} \right) \right]$$

$$H_y = \frac{E_0}{120\pi} \cos \left[\omega \left(t - \frac{z}{c} \right) \right]$$

لکھے جائیں گے۔ آپ دکھ سکتے ہیں کہ دونوں میدان ہم زاویہ ہیں۔ یوں کسی بھی نقطے پر بڑھتے برقی میدان کی صورت میں اس نقطے پر مقناطیسی میدان کھے جائیں گے۔ آپ دکھے میں اس نقطے پر مقناطیسی میدان کھی بڑھتا ہے۔ ان مساوات کے تحت امواج بالکل سیدھے حرکت کرتے ہیں اور ناوقت اور ناہی فاصلے کے ساتھ ان کی طاقت میں کسی قسم کی کی رونما ہوتی ہے۔ یہی وجہ ہے کہ کا کنات کے دور ترین کہکٹاوں سے ہم تک برقی و مقناطیسی امواج پہنچتی ہیں اور ہمیں رات کے جیکتے اور خوبصورت تارے نظر آتے ہیں۔

مثق 10.1: ہے تار ذرائع ابلاغ میں 4000 km کی اونچائی پر پرواز کرتے مصنوعی سیارے اہم کردار ادا کرتے ہیں۔ یہ سیارے زمین کے اوپر ایک ہی نقطے پر آو برناں نظر آتے ہیں۔ان سیاروں سے زمین کے قریبی نقطے تک برقی اشارہ کتنی دیر میں پہنچے گا۔

جواب: 0.12 s

10.2.2 خالص يا كامل ذو برق ميں امواج

$$\gamma = j\omega\sqrt{\mu\epsilon}$$

حاصل ہوتا ہے جس سے

$$\alpha = 0$$
$$\beta = \omega \sqrt{\mu \epsilon}$$

حاصل ہوتے ہیں۔ یوں خالی خلاء میں برقی و مقناطیسی امواج کی رفتار مساوات 10.25 سے

(10.38)
$$v = \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu_R \mu_0 \epsilon_R \epsilon_0}} = \frac{c}{\sqrt{\mu_R \epsilon_R}}$$

حاصل ہوتی ہے جہاں $rac{1}{\sqrt{\mu_0 \epsilon_0}}$ کو خالی خلاء میں روشنی کی رفتار σ کھا گیا ہے۔ چونکہ ذو برق میں 1 $\mu_R \epsilon_R > 1$ ہے لہذا ذو برق میں روشنی کی رفتار خالی خلاء میں روشنی کی رفتار اس کی زیادہ سے زیادہ رفتار ہے۔

موج کی ر فتار اور تعدد سے طول موج

(10.39)
$$\lambda = \frac{v}{f} = \frac{c}{f\sqrt{\mu_R \epsilon_R}} = \frac{\lambda_0}{\sqrt{\mu_R \epsilon_R}}$$

حاصل ہوتی ہے جہاں خالی خلاء کے طول موج کو λ_0 کھا گیا ہے۔اس مساوات سے ذو برق میں روشنی کی رفتار کم ہونے کی وجہ سامنے آتی ہے۔چونکہ $\mu_R \epsilon_R > 1$

مساوات 10.31 سے ذو برقی کی قدرتی رکاوٹ

$$\eta = \sqrt{\frac{\mu}{\epsilon}} = \sqrt{\frac{\mu_0}{\epsilon_0}} \sqrt{\frac{\mu_R}{\epsilon_R}} = \eta_0 \sqrt{\frac{\mu_R}{\epsilon_R}}$$

 η_0 عاصل ہوتی ہے جہاں خالی خلاء کی قدرتی رکاوٹ کو

یوں ذو برق میں امواج کے مساوات

$$(10.40) E_x = E_0 \cos(\omega t - \beta z)$$

$$H_y = \frac{E_0}{\eta} \cos(\omega t - \beta z)$$

ہیں۔

مثال 10.1: پانی کے لئے $\mu_R=1$ وہ $\epsilon_R=80$ اور $\sigma=0$ لیتے ہوئے 300 MHz قعدد کے برقی و مقناطیسی امواج کی رفتار، طول موج اور قدرتی رکاوٹ حاصل کریں۔ برقی میدان $\frac{mV}{m}$ 50 ہونے کی صورت میں برقی اور مقناطیسی امواج کے مساوات کھیں۔ ہم $\sigma=0$ لیتے ہوئے در حقیقت یانی میں توانائی کے ضیاع کو نظرانداز کر رہے ہیں۔

عل:

$$v = \frac{c}{\sqrt{\mu_R \epsilon_R}} = \frac{3 \times 10^8}{\sqrt{80}} = 0.3354 \times 10^8 \frac{\text{m}}{\text{s}}$$
$$\lambda = \frac{v}{f} = \frac{0.3354 \times 10^8}{300 \times 10^6} = 11.18 \,\text{cm}$$

ہیں جبکہ خالی خلاء میں $\lambda=1$ سے۔بقایا مستقل

$$\beta = \frac{2\pi}{\lambda} = 56.2 \frac{\text{rad}}{\text{m}}$$

اور

$$\eta = \eta_0 \sqrt{\frac{\mu_R}{\epsilon_R}} = \frac{377}{80} = 42.15 \,\Omega$$

ہیں۔امواج کے مساوات

$$E_x = 0.05\cos(6\pi 10^8 t - 56.2z)$$

$$H_y = \frac{0.05}{42.15}\cos(6\pi 10^8 t - 56.2z) = 0.00119\cos(6\pi 10^8 t - 56.2z)$$

ہیں۔

مثق 10.2: کتاب کے آخر میں مخلف اشاء کے مستقل دے گئے ہیں۔انہیں استعال کرتے ہوئے ابرق میں، طاقت کے ضیاع کو نظرانداز کرتے ہوئے، 5.6 GHz اور ﷺ 10 حیطے کی مقناطیسی میدان پر مندرجہ ذیل حاصل کریں۔

- موج کی رفتار،
 - طول موج،
- زاویائی مستقل،
- قدرتی رکاوٹ،
- برقی میدان کا حیطه۔

 $1.62 \frac{V}{m}$ وابات: $\frac{m}{s}$ ،23 cm ،1.29 \times 108 $\frac{m}{s}$ ،26 اور جوابات:

10.2.3 ناقص يا غير كامل ذو برقى ميں امواج

کامل ذو برق میں امواج پر غور کے بعد فطری طور ناقص ذو برق پر بات کرناضروری ہے للذامقطر پانی کو مثال بناتے ہوئے Hz 10 تعدد پر ایسا ہی کرتے ہیں۔

اس تعدویر مقطر پانی کے مستقل
$$\sigma=20$$
 ہیں۔ یوں $\epsilon_R=53$ اور $\sigma=20$ ہیں۔ یوں $\sigma=0.678$

اور

$$\gamma = j2 \times \pi \times 10 \times 10^{9} \times \frac{\sqrt{1 \times 53}}{3 \times 10^{8}} \sqrt{1 - j0.678}$$

$$= 1842.386 / 72.932^{\circ}$$

$$= 540.8 + j1761 \quad \text{m}^{-1}$$

حاصل ہوتے ہیں۔یوں پانی کا تقلیلی مستقل

$$\alpha = 540.8 \, \frac{\text{Np}}{\text{m}}$$

ہے جس کا مطلب ہے کہ پانی میں ہر 1.8 mm میٹر یعنی mm 1.8 فاصلہ طے کرنے پر برتی اور مقناطیسی امواج 0.368 گنا گھٹے گیں۔ آپ دیکھ سکتے ہیں ریڈار ³⁴ پانی میں کیوں کام نہیں کرتا۔ اسی طرح بارش کی صورت میں بھی ریڈار کی کار کردگی بری طرح متاثر ہوتی ہے۔ پانی میں دیکھنے کی خاطر موج آواز استعمال کی جاتی ہیں۔

زاويائی مستقل

$$\beta = 1761 \, \frac{\text{rad}}{\text{m}}$$

ہے جو $\sigma=0$ کی صورت میں $\sigma=1525$ حاصل ہوتا ہے لہذا پانی کے موصلیت سے زاویائی مستقل زیادہ متاثر نہیں ہوا۔ اس تعدد پر خالی خلاء میں طول موج $\sigma=3.57$ mm کوج $\alpha=3.57$ mm کے خبکہ پانی میں $\alpha=3.57$ سے طول موج علی موج کے سے طول موج علی موج کے سے طول موج علی موج علی موج کے سے طول موج علی موج علی موج کے سے طول موج علی موج علی موج علی موج کے سے طول موج علی موج علی

قدرتی رکاوٹ

$$\eta = \frac{377}{\sqrt{53}} \frac{1}{\sqrt{1 - j0.678}} = 42.9/17.1^{\circ} = 41 + j12.6 \quad \Omega$$

ے لہذا E_x المذا E_x ہے۔

میکس ویل کے مساوات

$$abla imes oldsymbol{H}_s = (\sigma + j\omega \epsilon) oldsymbol{E}_s = oldsymbol{J}_{\sigma s} + oldsymbol{J}_{ds}$$

میں ایصالی اور انتقالی کثافت برقی رو کے سمتی مجموعے کو شکل 10.3 میں بطور مجموعی کثافت رو کا دکھایا گیا ہے۔ایصالی رواور انتقالی روآ پس میں °90 در جے کا زاویہ بناتے ہیں۔انتقالی رو °90 آگے رہتا ہے۔یہ بالکل متوازی جڑے مزاحمت اور کیبیسٹر کے روکی طرح صورت حال ہے۔کیبیسٹر کی رو، مزاحمت کی

باب 10. برقى و مقناطيسي امواج

شکل 10.3: طاقت کے ضیاع کا تکون.

روسے °90 آگے رہتی ہے۔مزید یہ کہ مزاحمت کی روسے برقی طاقت کا ضیاع پیدا ہوتا ہے جبکہ کپیسٹر کی روسے ایسا نہیں ہوتا۔ان حقائق کو مد نظر رکھتے ہوئے شکل 10.3 میں زاویہ ھ (جس کا کروی محد د کے زاویہ 6 کے ساتھ کسی قشم کا کوئی تعلق نہیں ہے) کو دیکھیں جس کے لئے

$$\tan \theta = \frac{\sigma}{\omega \epsilon}$$

کھا جا سکتا ہے۔ یوں اس تکون کو طاقت کے ضیاع کا تکون پکارا جاتا ہے اور $\frac{\sigma}{\omega \epsilon}$ کی شرح کو ضیاعی ٹمینجنٹ 35 یا مماس ضیاع کہا جاتا ہے۔

مساوات 10.14 اور مساوات 10.32 کو $\frac{\sigma}{\omega e}$ استعال کرتے ہوئے کھھا گیا۔ کسی ذو برق کے کامل یا غیر کامل ہونے کا فیصلہ اس کے مماس ضیاع کی قیمت کو دیکھ کر کیا جاتا ہے۔ اگر اس شرح کی قیمت اکائی کے قریب ہو تب ذو برق غیر کامل قرار دیا جاتا ہے جبکہ 1 $\propto \frac{\sigma}{\omega e}$ کی صورت میں ذو برق کو کامل تصور کیا جاتا ہے۔

کم مماس ضیاع کی صورت میں حرکی مستقل اور قدرتی رکاوٹ کے کارآمد مساوات حاصل کئے جا سکتے ہیں۔ حرکی مستقل $\gamma = j\omega\sqrt{\mu\epsilon}\sqrt{1-j\frac{\sigma}{\omega\epsilon}}$

كو مسكله ثنائي³⁶

$$(1+x)^n = 1 + \frac{n}{1!}x + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$$

جہاں |x|<1 ہے، کی مدو سے تسلسل کی شکل میں لکھ سکتے ہیں۔اگر ہم $x=-rac{\sigma}{\omega\epsilon}$ اور x=1 لیں تو حرکی مستقل

$$\gamma = j\omega\sqrt{\mu\epsilon} \left[1 - j\frac{\sigma}{2\omega\epsilon} + \frac{1}{8} \left(\frac{\sigma}{\omega\epsilon} \right)^2 + \cdots \right]$$

لکھا جا سکتا ہے جس سے

$$\alpha \doteq j\omega\sqrt{\mu\epsilon}\left(-j\frac{\sigma}{2\omega\epsilon}\right) = \frac{\sigma}{2}\sqrt{\frac{\mu}{\epsilon}}$$

أور

$$\beta \doteq \omega \sqrt{\mu \epsilon} \left[1 + \frac{1}{8} \left(\frac{\sigma}{\omega \epsilon} \right)^2 \right]$$

loss tangent³⁵ binomial theorem³⁶

 $rac{\sigma}{\omega}$ ماصل ہوتے ہیں۔اگر

$$\beta \doteq \omega \sqrt{\mu \epsilon}$$

بھی لکھا جا سکتا ہے۔ بالکل اسی طرح قدرتی رکاوٹ کو

(10.46)
$$\eta \doteq \sqrt{\frac{\mu}{\epsilon}} \left[1 - \frac{3}{8} \left(\frac{\sigma}{\omega \epsilon} \right)^2 + j \frac{\sigma}{2\omega \epsilon} \right]$$

١

$$\eta \doteq \sqrt{\frac{\mu}{\epsilon}} \left(1 + j \frac{\sigma}{2\omega\epsilon} \right)$$

لکھا جا سکتا ہے۔

آئیں دیکھیں کہ ان مساوات سے حاصل جواب اصل مساوات کے جوابات کے کتنے قریب ہیں۔اییا مقطر پانی کی مثال کو دوبارہ حل کر کے دیکھتے ہیں۔ مقطر پانی کے مشتقل 0 = 10.43 تعدد پر 0 = 10.43 اور 0 = 10.43 ہیں۔ مقطر پانی کے مشتقل 0 = 10.43 تعدد پر 0 = 10.43 اور 0 = 10.43 ہیں۔ مقطر پانی کے مشتقل 0 = 10.43 تعدد پر 0 = 10.43 اور 0 = 10.43 ہیں۔ مقطر پانی کے مشتقل 0 = 10.43 ہیں المدا مساوات 0 = 10.43 ہیں۔

$$\alpha = 517.5 \, \frac{\text{Np}}{\text{m}}$$

حاصل ہوتا ہے جو گزشتہ حاصل کردہ قیمت $\frac{Np}{m}$ 540.8 کے کافی قریب ہے۔مساوات 10.44 سے

$$\beta = 1613 \frac{\text{rad}}{\text{m}}$$

حاصل ہوتا ہے جو گزشتہ جواب $rac{\mathrm{rad}}{\mathrm{m}}$ 1761 کے بہت قریب ہے۔مساوات 10.45 سے حاصل جواب

$$\beta = 1526 \, \frac{\text{rad}}{\text{m}}$$

نسبتاً زیادہ مختلف جواب ہے۔قدرتی رکاوٹ مساوات 10.46 سے

$$\eta = 42.82 + j17.54$$

حاصل ہوتا ہے جو 41 + j12.6 کے بہت قریب ہے البتہ مساوات 10.47 سے حاصل جواب

$$\eta = 51.75 + j17.55$$

قدر مختلف ہے۔مقطر پانی کی اس مثال میں مماس ضیاع 0.678 ہے جو اکائی سے بہت کم نہیں ہے،اسی لئے جوابات پہلے سے قدر مختلف حاصل ہوئے۔ چونکہ موصلیت اور برقی مستقل کی بالکل درست قیمتیں عموماً ہمیں معلوم نہیں ہوتیں للذا سادہ مساوات سے حاصل جوابات کے اس فرق کو زیادہ اہمیت نہیں دینی چاہئے۔ بہتریہی ہوتا ہے کہ 0.1 کی صورت میں سادہ مساوات حاصل کئے جائیں۔

عموماً ذو برق کی موصلیت تعدد بڑھانے سے غیر خطی طور پر بڑھتی ہے جبکہ ہے کے قیمت میں تبدیلی نسبتاً کم ہوتی ہے۔ یہی وجہ مماس ضیاع کی اہمیت کاراز ہے۔ یاد رہے کہ مختلف تعدد پر موصلیت، برتی مستقل اور مماس ضیاع نہایت تیزی سے تبدیل ہو سکتے ہیں۔اییا عموماً نظر آنے والی روشنی سے قدر کم یا قدر زیادہ تعدد پر ہوتا ہے۔ 286 باب 10. برقى و مقناطيسى امواج

مثق 10.3: ایک مادے کے مستقل 1 MHz تعدد پر $\mu_R=2.8$ ور $\sigma=10$ اور $\sigma=10$ بیں۔ اس مادے کے مماس ضیاع، تقلیلی مستقل اور زاویائی مستقل حاصل کریں۔

مثق 10.4: ایک غیر مقناطیسی مادے کا مماس ضیاع 0.07 جبکه 4.7 $\mu_R=4.7$ بیں۔ان قیمتوں کو MHz تا 80 MHz تعدد کے در میان اٹل تصور کیا جا سکتا ہے۔اس کا تقلیلی مستقل اور مادے میں طول موج 20 MHz اور 4.7 60 تعدد پر حاصل کریں۔

 $2.3\,\mathrm{m}$ ، $0.095\,\frac{\mathrm{Np}}{\mathrm{m}}$ ، $6.9\,\mathrm{m}$ ، $0.031\,\frac{\mathrm{Np}}{\mathrm{m}}$: \$1,40%.

10.3 يوئنٹنگ سمتيہ

امواج کی طاقت جاننے کے لئے مسلہ یو تنگنگ 37 در کار ہو گا للذا پہلے اسے 38 حاصل کرتے ہیں۔

میکس ویل کے مساوات

$$abla imes oldsymbol{H} = oldsymbol{J} + rac{\partial oldsymbol{D}}{\partial t}$$

کا *E* کے ساتھ غیر سمتی ضرب

$$m{E} \cdot
abla imes m{H} = m{E} \cdot m{J} + m{E} \cdot \frac{\partial m{D}}{\partial t}$$

لیتے ہوئے سمتی مماثل (جے آپ باآسانی کارتیسی محدد میں ثابت کر سکتے ہیں)

$$\nabla \cdot (\boldsymbol{E} \times \boldsymbol{H}) = -\boldsymbol{E} \cdot \nabla \times \boldsymbol{H} + \boldsymbol{H} \cdot \nabla \times \boldsymbol{E}$$

کے ذریعہ

$$\boldsymbol{H} \cdot \nabla \times \boldsymbol{E} - \nabla \left(\boldsymbol{E} \times \boldsymbol{H} \right) = \boldsymbol{E} \cdot \boldsymbol{J} + \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t}$$

$$abla$$
 عاصل ہوتا ہے۔اس میں $abla imes E = -rac{\partial B}{\partial t}$ عاصل ہوتا ہے۔

$$-\boldsymbol{H}\cdot\frac{\partial\boldsymbol{B}}{\partial t}-\nabla\left(\boldsymbol{E}\times\boldsymbol{H}\right)=\boldsymbol{E}\cdot\boldsymbol{J}+\boldsymbol{E}\cdot\frac{\partial\boldsymbol{D}}{\partial t}$$

Poynting theorem³⁷

³⁸جان بینری پوئنٹنگ نر 1884 میں پہلی بار اس مسئلر کو پیش کیا۔

10.3. پوئنٹنگ سمتیہ

یا

$$-\nabla \left(\boldsymbol{E} \times \boldsymbol{H} \right) = \boldsymbol{E} \cdot \boldsymbol{J} + \epsilon \boldsymbol{E} \cdot \frac{\partial \boldsymbol{E}}{\partial t} + \mu \boldsymbol{H} \cdot \frac{\partial \boldsymbol{H}}{\partial t}$$

حاصل ہوتا ہے۔اب

$$\epsilon \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} = \frac{\epsilon}{2} \frac{\partial E^2}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\epsilon E^2}{2} \right)$$

/ 41

$$\mu \boldsymbol{H} \cdot \frac{\partial \boldsymbol{H}}{\partial t} = \frac{\mu}{2} \frac{\partial H^2}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\mu H^2}{2} \right)$$

لکھے جا سکتے ہیں للذا

$$-\nabla \left(\boldsymbol{E} \times \boldsymbol{H}\right) = \boldsymbol{E} \cdot \boldsymbol{J} + \frac{\partial}{\partial t} \left(\frac{\epsilon E^2}{2} + \frac{\mu H^2}{2}\right)$$

کھا جا سکتا ہے۔اس کے حجمی تکمل

$$-\int_{h} \nabla \cdot (\boldsymbol{E} \times \boldsymbol{H}) \, \mathrm{d}h = \int_{h} \boldsymbol{E} \cdot \boldsymbol{J} \, \mathrm{d}h + \frac{\partial}{\partial t} \int_{h} \left(\frac{\epsilon E^{2}}{2} + \frac{\mu H^{2}}{2} \right) \mathrm{d}h$$

پر مسکلہ کھیلاو کے اطلاق سے

(10.48)
$$-\oint_{S} (\mathbf{E} \times \mathbf{H}) \cdot d\mathbf{S} = \int_{h} \mathbf{E} \cdot \mathbf{J} \, dh + \frac{\partial}{\partial t} \int_{h} \left(\frac{\epsilon E^{2}}{2} + \frac{\mu H^{2}}{2} \right) dh$$

حاصل ہوتا ہے۔

اس مساوات کے دائیں ہاتھ پہلے جزو کی بات کرتے ہیں۔اگر پورے جم میں کہیں پر بھی منبع طاقت موجود نہ ہوتب یہ تکمل جم میں کل کھاتی مزاحمتی طاقت کا ضیاع دیتا ہے۔اگر جم میں منبع طاقت پایا جاتا ہوتب ان منبع کے جم پر تکمل کی قیت مثبت ہوگی اگر منبع کو طاقت فراہم کی جارہی ہو اور یہ تکمل منفی ہوگا اگر منبع طاقت فراہم کر رہا ہو۔

مساوات کے دائیں ہاتھ دوسرا تکمل جم میں توانائی کا کل ذخیرہ دیتا ہے جس کا وقت کے ساتھ تفرق جم میں ذخیرہ توانائی میں لمحاتی تبدیل یعنی طاقت دیتا ہے۔اس طرح مندرجہ بالا مساوات کا دایاں ہاتھ جم میں داخل ہوتا کل طاقت دیتا ہے۔یوں جم سے کل خارجی طاقت

$$\oint_{S} (\boldsymbol{E} \times \boldsymbol{H}) \cdot \boldsymbol{S}$$

ہو گا جہاں جم گھیرتی سطح پر تکمل لیا گیا ہے۔ سمتی ضرب E imes H پوئٹنگ سمتیہ 39 پکارا جاتا ہے

$$\mathscr{P} = \mathbf{E} \times \mathbf{H}$$

جس سے مراد کھاتی طاقت کی کثافت لی جاتی ہے جو واٹ فی مربع میٹر $\frac{W}{m^2}$ میں ناپی جاتی ہے۔ یہاں بھی برتی میدان میں کثافت توانائی $E \cdot E$ واٹ فی مربع میٹر $E \cdot E$ میں ناپی جاتی ہے۔ یہاں بھی برتی میدان میں کثافت توانائی $E \cdot E$ استعال کی طرح یاد رہے کہ پوئٹنگ سمتیہ کا بند سطح پر تکمل ہی حقیقی معنی رکھتا ہے اور ایسا تکمل سطح سے خارج ہوتا کل طاقت و یتا ہے۔ کسی بھی نقطے پر موسی کی سمت اس نقطے پر کھاتی طاقت کے بہاد کی سمت دیتا ہے۔

چونکہ تھو برتی میدان اور متناطیسی میدان دونوں کے عمودی ہے المذا طاقت کی بہاو بھی دونوں میدان کے عمودی ست میں ہوگی۔ہم نے برقی و مقناطیسی امواج پر تبھرے کے دوران دیکھا کہ امواج کے حرکت کی سمت E اور H کے عمودی ہوتی ہے للذا تھو کی سمت ہمارے توقع کے عین مطابق ہے۔مزید کامل ذو برق میں

$$E_x = E_0 \cos(\omega t - \beta z)$$

$$H_y = \frac{E_0}{\eta} \cos(\omega t - \beta z)$$

سے کمحاتی کثافت سطحی بہاو طاقت

$$E_{x}a_{x} \times H_{y}a_{y} = \frac{E_{0}^{2}}{\eta}\cos^{2}(\omega t - \beta z)a_{z} = \mathscr{P}a_{z}$$

حاصل ہوتی ہے۔اوسط کثافت طاقت حاصل کرنے کی خاطر ہم ایک پھیرے یعنی $T=rac{1}{f}$ دورانے کا تکمل لیتے ہوئے دوری عرصہ Tپر تقسیم

$$\begin{split} \mathscr{P}_{\mathsf{l}\!\omega,\mathsf{l}} &= f \int_0^{\frac{1}{f}} \frac{E_0^2}{\eta} \cos^2(\omega t - \beta z) \, \mathrm{d}t \\ &= \frac{f}{2} \frac{E_0^2}{\eta} \int_0^{\frac{1}{f}} \left[1 + \cos(2\omega t - 2\beta z) \right] \, \mathrm{d}t \\ &= \frac{f}{2} \frac{E_0^2}{\eta} \left[t + \frac{1}{2\omega} \sin(2\omega t - 2\beta z) \right]_0^{\frac{1}{f}} \end{split}$$

کرتے ہوئے

$$\mathscr{P}_{\mathsf{braj}} = \frac{1}{2} \frac{E_0^2}{\eta} \quad \frac{\mathsf{W}}{\mathsf{m}^2}$$

حاصل کرتے ہیں جو z ست میں کثافت طاقت کی بہاو دیتا ہے۔اگر میدان کی چوٹی E_0 کی جگہ اس کی موثر قیمت موڑ استعال کی جائے تب مندرجہ بالا مساوات میں $\frac{1}{2}$ کا جزو ضربی نہیں کھا جائے گا۔

موج کی سمت کے عمودی سطح کا سے یوں

$$P_{z,oldsymbol{b}} = rac{1}{2} rac{E_0^2}{\eta} S$$
 W

طاقت گزرے گی۔

غیر کامل ذو برق کی صورت میں

(10.51)
$$\mathscr{P}_{\underline{\mathsf{L}},\underline{\mathsf{J}}} = \frac{1}{2} \frac{E_0^2}{|\eta|} e^{-2\alpha z} \cos(\theta_{\eta})$$

حاصل ہوتا ہے جہاں

$$\eta = |\eta| e^{j\theta_{\eta}}$$

ليا گيا ہے۔

10.4. موصل میں امواج

بوابات: 24.31 W ،23.7 W ،12.48 W ،24.7 W ،26.4 W ،27.1 W

10.4 موصل میں امواج

موصل میں امواج پر غور کی خاطر ہم تصور کرتے ہیں کہ موصل سے جڑے ذو برق میں امواج پیدا کئے جاتے ہیں۔ہم جاننا چاہتے ہیں کہ ایسے موج ذو برق اور موصل کے سرحد پر موصل میں کیسے داخل ہوتے ہیں اور موصل میں ان کی کیا کار کردگی ہوتی ہے۔

$$\gamma = j\omega\sqrt{\mu\epsilon}\sqrt{1 - j\frac{\sigma}{\omega\epsilon}}$$

کو 1 $\ll rac{\sigma}{\omega \epsilon}$ کی بناپر

$$\gamma = j\omega\sqrt{\mu\epsilon}\sqrt{-j\frac{\sigma}{\omega\epsilon}}$$

یا

$$\gamma = j\sqrt{-j\omega\mu\sigma}$$

لکھا جا سکتا ہے۔اب

$$-j = 1/-90^{\circ}$$

کے برابر ہے جس کا جزر

$$\sqrt{1/-90^{\circ}} = 1/-45^{\circ} = \frac{1}{\sqrt{2}} - j\frac{1}{\sqrt{2}}$$

ہے للذا

$$\gamma = j \left(\frac{1}{\sqrt{2}} - j \frac{1}{\sqrt{2}} \right) \sqrt{\omega \mu \sigma}$$

١

$$\gamma = (j+1)\sqrt{\pi f \mu \sigma}$$

باب 10. برقی و مقناطیسی امواج

حاصل ہوتا ہے جس سے

$$\alpha = \beta = \sqrt{\pi f \mu \sigma}$$

ملتا ہے۔

ان معلومات کے بعد کہا جا سکتا ہے کہ کسی بھی µاور σ مستقل رکھنے والے موصل کے α اور β ہر تعدد پر برابر ہی رہتے ہیں۔ یوں 2 سمت میں دوبارہ امواج فرض کرتے ہوئے موصل میں برقی میدان کی موج کو

(10.54)
$$E_x = E_0 e^{-z\sqrt{\pi f \mu \sigma}} \cos(\omega t - z\sqrt{\pi f \mu \sigma})$$

کھا جا سکتا ہے۔اگرz < 0 کامل ذو برق اور z > 0 موصل خطے ہوں تب ان کے سرحد z = 0 پر برتی سرحدی شر ائط کے مطابق متوازی برتی میدان سرحد کے دونوں اطراف پر برابر ہوں گے۔مساوات 10.54 کے تحت سرحد پر موصل میں

$$(10.55) E_x = E_0 \cos \omega t (z=0)$$

ہو گا اور یوں سرحد پر ذو برق میں بھی برقی میدان یہی ہو گا۔اب اسی حقیقت کو یوں بھی دیکھا جا سکتا ہے کہ سرحد پر ذو برق میں برقی میدان مساوات 10.55 دیتا ہے جو موصل میں سرحد پر اسی قیمت کا میدان پیدا کرتا ہے۔ایسا تصور کرنے کا مطلب بیہ ہے کہ ہم ذو برق میں میدان کو منبع میدان تصور کرتے ہیں جو موصل میں مساوات 10.54 میں دی موج پیدا کرتا ہے۔موصل میں 1 $\ll \frac{\sigma}{\omega e}$ کی بنا پر انتقالی رو کو نظر انداز کرتے ہوئے

$$(10.56) J = \sigma E$$

لکھا جا سکتا ہے للذا موصل میں ہر نقطے پر کثافت رواور برقی میدان راہ تناسب کا تعلق رکھتے ہیں اور یوں موصل میں

(10.57)
$$J_x = \sigma E_0 e^{-z\sqrt{\pi f \mu \sigma}} \cos(\omega t - z\sqrt{\pi f \mu \sigma})$$

کھا جا سکتا ہے۔شکل 10.4 میں J_x و کھایا گیا ہے جہال عین سرحد تعنی z=0 پر کثافت رو کے قیمت σE_0 کو J_0 کھا گیا ہے۔

 $e^0=1$ مساوات 10.54 اور مساوات 10.57 میں بہت معلومات پائی جاتی ہے۔پہلے ان مساوات میں $e^{2\sqrt{\pi f \mu \sigma}}$ جزوپر غور کریں۔سرحد پر اس کی قیمت 1 $e^0=1$ جو سرحد سے

$$z = \frac{1}{\sqrt{\pi f \mu \sigma}}$$

 $e^{-1}=0.368$ فاصلے پر $e^{-1}=0.368$ رہ جاتی ہے۔یہ فاصلہ گہرائی جلد کہایا اور $e^{-1}=0.368$

$$\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$$

بوں موصل میں

$$\alpha = \beta = \frac{1}{\delta}$$

ہو گا۔ اس طرح سر حدسے 26 فاصلے پر میدان $e^{-2}=0.135$ اور 4δ فاصلے پر میدان $e^{-4}=0.018$ بینی صرف $e^{-2}=0.135$ اور $e^{-2}=0.018$ بات

تانيج کی $\frac{\rm S}{\rm m} \approx 5.8 \times 10^7$ تانيج کی جلد

$$\delta_{\mathbf{x}^{\mathsf{i}}\mathbf{F}} = \frac{1}{\sqrt{\pi \times f \times 4 \times \pi \times 10^{-7} \times 5.8 \times 10^7}} = \frac{0.0661}{\sqrt{f}}$$

10.4. موصل میں امواج

میٹر کے برابر ہے۔ یوں Hz 50 کا میدان سر حدسے mm 9.35 mm فاصلے پر کم ہو کر صرف 0.368 گنارہ جائے گا۔ برقی ادوار میں مزاحمت میں طاقت کا ضیاع رو کے مرابع کے راست تناسب ہوتا ہے لہذا ہر ایک گہرائی جلد کے فاصلے پر کثافت طاقت 0.135 = 0.368 گنا کم ہو گی۔ خردامواج ⁴² کا ضیاع رو کے مربع کے راست تناسب ہوتا ہے لہذا ہر ایک گہرائی جلد سے اللہ میں مقطر آنے والے روشنی کے طول کے آٹھویں جھے کے برابر ہے۔

ان تعدد پر کسی بھی موصل مثلاً تانبے میں سرحدسے چند ہی گہرائی جلد کے فاصلے پر تمام میدان تقریباً صفر کے برابر ہوتے ہیں۔موصل کے سرحد پر پیدا کئے گئے برقی میدان یا کثافت رو، سرحدسے دوری کے ساتھ تیزی سے کم ہوتے ہیں۔ برقی و مقناطیسی طاقت موصل کے اندر نہیں بلکہ اس کے بہر صفر کرتی ہے۔موصل کا کام صرف اتنا ہے کہ یہ ان امواج کو راستہ دکھاتی ہے۔موصل کے سرحد پر پیدا کثافت رو، موصل میں موج کے حرکت کے عمودی سمت میں داخل ہوتی ہے جس سے موصل میں مزاحمتی ضیاع پیدا ہوتا ہے۔یوں موصل بطور راہ گیر کردار ادا کرتے ہوئے مزاحمتی ضیاع بطور اجرت حاصل کرتا ہے۔

اگر آپ کسی بجلی گھر میں Hz کے برقی رو کو منتقل کرنے کی خاطر پانچے سنٹی میٹر رداس کے تانبے کی ٹھوس تار استعال کر رہے ہوں تو بیہ سراسر تانبہ ضائع کرنا ہو گا چونکہ کثافت رو تابل نظرانداز ہو گی لہذااس سے بہتر ہو گا کہ زیادہ رداس کی نکلی نما تار استعال کی جائے جس کی موٹائی تقریباً 1.4 cm ہو۔اگرچہ بیہ فیصلہ لامحدود جسامت کے سرحد کے نتائج پر بنیاد ہے، حقیقت میں محدود سرحد پر بھی میدان اسی نسبت سے گھٹے ہیں۔

باند تعدد پر گہرائی جلد کا فاصلہ اتنا کم ہوتا ہے کہ راہ گیر موصل کی سطحی تہہ ہی اہمیت رکھتی ہے۔ یوں خرد موج کی منتقلی کے لئے شیشے پر سے 0.661 موٹی چاندی کی تہہ کافی ہے۔

آئیں اب موصل میں طول موج اور رفتار موج کے مساوات حاصل کریں۔ ہم

$$\beta = \frac{2\pi}{\lambda}$$

سے شروع کرتے ہوئے مساوات 10.59 استعال کرتے ہوئے

$$\lambda = 2\pi\delta$$

لكھ سكتے ہیں۔اسی طرح مساوات 10.25

$$v = \frac{\omega}{\beta}$$

 $(10.60) v = \omega c$

ملتا ہے۔

تا نب میں 50 Hz پر $\lambda=5.8~\mathrm{cm}$ اور $\frac{\mathrm{m}}{\mathrm{s}}$ و یا $v=2.94~\mathrm{m}$ ماں ہوتے ہیں۔ میں نقریباً $\frac{\mathrm{km}}{\mathrm{h}}$ کی رفتار سے چاتا ہوں۔ یوں آپ در کچھ سکتے ہیں کہ تانبے میں برقی و مقناطیسی امواج انتہائی آہتہ چلتے ہیں۔ یاد رہے کہ اس 50 Hz کے موج کی خالی خلاء میں $\lambda=6000~\mathrm{km}$ اور رفتار $\lambda=000~\mathrm{km}$ کہ وگے۔ $\lambda=000~\mathrm{km}$ کہ وگے۔

موصل میں H_y کی مساوات لکھنے کی خاطر موصل کی قدرتی رکاوٹ درکار ہو گی۔مساوات 10.31

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}$$

شکل 10.4: موصل میں طاقت کے ضیاع اور گہرائی جلد۔

کو 1 $\ll rac{\sigma}{\omega \epsilon}$ کی وجہ سے

١

یا

$$\eta = \sqrt{\frac{j\omega\mu}{\sigma}}$$

(10.61) $\eta = \frac{\sqrt{2/45^{\circ}}}{\sigma \delta} = \frac{1}{\sigma \delta} + j \frac{1}{\sigma \delta}$

لکھا جا سکتا ہے۔ یوں مساوات 10.55 کو گہر ائی جلد کی صورت

$$(10.62) E_x = E_0 e^{-\frac{z}{\delta}} \cos\left(\omega t - \frac{z}{\delta}\right)$$

میں لکھتے ہوئے مقناطیسی موج کو

(10.63)
$$H_{y} = \frac{\sigma \delta E_{0}}{\sqrt{2}} e^{-\frac{z}{\delta}} \cos \left(\omega t - \frac{z}{\delta} - \frac{\pi}{4}\right)$$

کھا جا سکتا ہے جہاں سے آپ دیکھ سکتے ہیں کہ مقناطیسی موج، برقی موج سے پھیرے کے آٹھویں جھے پیچھے ہے۔

مندرجہ بالا دو مساوات کی مدد سے پوئنٹنگ مساوات

$$\mathscr{P}_{\mathsf{b}}, = \frac{1}{2} \frac{\sigma \delta E_0^2}{\sqrt{2}} e^{-\frac{2z}{\delta}} \cos \frac{\pi}{4}$$

 $\mathscr{P}_{\text{begl}} = \frac{\sigma \delta E_0^2}{4} e^{-\frac{2z}{\delta}}$

ویتا ہے۔ آپ دوبارہ دیکھ سکتے ہیں کہ ایک گہرائی جلد کی گہرائی پر کثافت طاقت، سرحد کے کثافت طاقت کے $e^{-2}=0.135$ کنارہ گئی ہے۔

شکل 10.4 پر دوبارہ نظر ڈالیں۔مسکد پوئٹنگ کہتا ہے کہ سرحد پر L اور b اطراف کے مستطیل میں جتنی برتی و مقناطیسی طاقت داخل ہوتی ہے، وہ تمام کی تمام موصل میں ضائع ہو جاتی ہے۔یہ طاقت

$$P_{L,k,s} = \int_0^b \int_0^L \mathcal{P}_{k,s}|_{z=0} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_0^b \int_0^L \frac{\sigma \delta E_0^2}{4} e^{-\frac{2z}{\delta}} \Big|_{z=0} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \frac{\sigma \delta b L E_0^2}{4}$$

293

کے برابر ہے۔سرحدی کثافت رو

 $J_0 = \sigma E_0$

کی صورت میں اسے

(10.64)

$$P_{L,$$
اوسط J_0^2

لکھا جا سکتا ہے۔

باب 11 سوالات

باب 11. سوالات

 σ :11.1 جدول

$\sigma, \frac{S}{m}$	چیر	$\sigma, \frac{S}{m}$	چيز
7×10^{4}	گريفائك	6.17×10^{7}	چاندى
1200	سليكان	5.80×10^{7}	تانبا
100	فيرائك (عمومي قيمت)	4.10×10^{7}	سونا
5	سمندری پانی	3.82×10^{7}	المونيم
10^{-2}	چهونا پتهر	1.82×10^{7}	ٹنگسٹن
5×10^{-3}	چکنی مٹنی	1.67×10^{7}	جست
10^{-3}	تازه پانی	1.50×10^{7}	بيتل
10^{-4}	تقطیر شده پانی	1.45×10^{7}	نکل
10^{-5}	ریتیلی مٹی	1.03×10^{7}	لوہا
10^{-8}	سنگ مرمر	0.70×10^{7}	قلعى
10^{-9}	بيك لائث	0.60×10^{7}	كاربن سٹيل
10^{-10}	چینی مٹی	0.227×10^{7}	مینگنین
2×10^{-13}	ا بيرا	0.22×10^{7}	جرمينيم
10^{-16}	پولیسٹرین پلاسٹک	0.11×10^{7}	سٹینلس سٹیل
10^{-17}	كوارائس	0.10×10^{7}	نائيكروم

998 باب 11. سوالات

 $\sigma/\omega\epsilon$ and ϵ_R :11.2 جدول

$\sigma/\omega\epsilon$	ϵ_R	چير
	1	خالى خلاء
	1.0006	ہوا
0.0006	8.8	المونيم اكسائدٌ
0.002	2.7	عنبر
0.022	4.74	بیک لائٹ
	1.001	كاربن ڈائى آكسائڈ
	16	جرمينيم
0.001	7تا 4	شیشہ
0.1	4.2	برف
0.0006	5.4	ابرق
0.02	3.5	نائلون
0.008	3	كاغذ
0.04	3.45	پلیکسی گلاس
0.0002	2.26	پلاسٹک (تھیلا بنانے والا)
0.00005	2.55	پولیسٹرین
0.014	6	چینی مٹی
0.0006	4	پائریکس شیشہ (برتن بنانے والا)
0.00075	3.8	كوارٹس
0.002	2.5 تا 3	 ری ز
0.00075	3.8	SiO ₂ سلیکا
	11.8	سليكان
0.5	3.3	قدرتی برف
0.0001	5.9	کھانے کا نمک
0.07	2.8	خشک مثلی
0.0001	1.03	سثائروفوم
0.0003	2.1	ٹیفلان
0.0015	100	ٹائٹینیم ڈائی آکسائڈ
0.04	80	مقطر پانی
4		سمندرى پانى
0.01	4 تا 1.5	خشک لکڑی

μ_R :11.3 جدول

μ_R	چيز
0.999 998 6	بسمت
0.999 999 42	پيرافين
0.999 999 5	لکڑی
0.999 999 81	چاندى
1.00000065	المونيم
1.00000079	بيريليم
50	نکل
60	ڈھلواں لوہا
300	مشين سٹيل
1000	فيرائك (عمومي قيمت)
2500	پرم بھرت (permalloy)
3000	ٹرانسفارمر پتری
3500	سيلكان لوبا
4000	خالص لوبا
20 000	میو میٹل (mumetal)
30 000	سنڈسٹ (sendust)
100 000	سوپرم بهرت (supermalloy)

جدول 11.4: اہم مستقل

قيمت	علامت	چیر
$(1.6021892 \mp 0.0000046) \times 10^{-19} \mathrm{C}$	e	اليكثران چارج
$(9.109534 \mp 0.000047) \times 10^{-31} \mathrm{kg}$	m	اليكثران كميت
$(8.854187818 \mp 0.000000071) \times 10^{-12}\frac{F}{m}$	ϵ_0	برقی مستقل (خالی خلاء)
$4\pi 10^{-7} rac{ ext{H}}{ ext{m}}$	μ_0	مقناطیسی مستقل (خالی خلاء)
$(2.997924574 \mp 0.000000011) \times 10^8 \frac{\text{m}}{\text{s}}$	c	روشنی کی رفتار (خالی خلاء)

باب 11. سوالات