

VIETNAM NATIONAL UNIVERSITY **UNIVERSITY OF TECHNOLOGY** FACULTY OF COMPUTER SCIENCE AND ENGINEERING

Diffusion Model for Conformer Generation

CAPSTONE PROJECT REPORT

Instructor: Assoc. Prof Quan Thanh Tho, PhD

Introduction

: Dang Cao Cuong

: Drug Discovery - AI4Science

Demo

Group

Student

Personal Info

A conformer is a 3D structure of a molecule and conformer generation is the process of predicting or generating the three-dimensional structure of molecules given their graph, including graph structure, node type, and edge type. Graph structure is the connectivity between nodes of a molecule. Node types and edge types are labeled based on the types of atoms and bonds in a molecule. For example, the image on the left shows that a conformer of the acetic acid molecule is formed given its graph.

Problem Statement/Challenges

- Conformer generation: an important task in several scientific fields, such as bioinformatics, pharmacology, etc.
- Biocomputational method: accurate but time-consuming when dealing with large molecular graphs
- ML methods: difficult to find a suitable GNN architecture for spatiotemporal data commonly used to model 3D structures of molecules in space
- → A stable, fast, diverse, and accurate method is critical

Research Method

- Design ML method to learn the probability distribution of conformers given their graphs
- Propose a score-based diffusion model (SDM) which utilizes the score-based function to approximate small trajectories mapping from a tractable distribution, such as a Gaussian distribution, to the distribution of conformers
- Advantage: small mapping trajectories > easier for GNN to learn the trajectories
- Baseline: two SOTA methods, GeoDiff (ML method) & RDKit (biocomputational method)

Metrics

- RMSD: Root mean square deviation
- $\{C_l^*\}_{l \in [1,L]}$: set of groundtruth conformers
- $\{C_k\}_{k\in[1,K]}$: set of

generated conformers

δ: threshold

Training & Sampling

Algorithm Training procedure **Require:** molecules with graphs $[\mathcal{G}_0, ..., \mathcal{G}_N]$ each with true conformers $[\mathcal{C}_{\mathcal{G},1},...,\mathcal{C}_{\mathcal{G},K_{\mathcal{G}}}]$, learning rate α 1: for $epoch \leftarrow 1$ to $epoch_{max}$ do for \mathcal{G} in $[\mathcal{G}_0,...,\mathcal{G}_N]$ do Sample $t \in [0, 1]$ and $C \in [C_{\mathcal{G},1}, ..., C_{\mathcal{G},K_{\mathcal{G}}}]$ Sample $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ $\sigma_t \leftarrow e^t$ Update $\theta \leftarrow \theta - \alpha \nabla_{\theta} ||\mathbf{z} + \mathbf{s}_{\theta} (\mathcal{C}^0 + \sigma_t \epsilon, \mathcal{G}, t)||^2$ end for 8: end for 9: **return** trained score model \mathbf{s}_{θ}

Algorithm Sampling procedure

10: end for

Require: molecular graph \mathcal{G} , noise levels $\{\sigma_i\}_{i=1}^T$, the small step size ϵ , the small step size ϵ , the learned score model s_{θ} , and the number of steps per noise level L.

1: Sample a conformer
$$C^T \sim p(C^T) = \mathcal{N}(0, \mathbf{I})$$

2: for $t \leftarrow T$ to 1 do
3: Shift C^t to zero CoM
4: $\alpha_t \leftarrow \epsilon \cdot \sigma_t^2 / \sigma_T^2$
5: for $i \leftarrow 1$ to L do
6: Draw $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I})$
7: $C^t \leftarrow C^t + \alpha_t \mathbf{s}_\theta (\mathcal{G}, C^t, t) + \sqrt{2\alpha_t} \mathbf{z}_i$
8: end for
9: $C^{t-1} \leftarrow C^t$

Figure: Generation procedure of the system via Langevin dynamics.

GNN Architecture

- h, x: Node & coordinate embedding
- e, d: edge type and edge length
- c: node coordinate
- Φ: MLP layers

$$\mathbf{m}_{ij} = \Phi_m \left(\mathbf{h}_i^l, \mathbf{h}_j^l, ||\mathbf{x}_i^l - \mathbf{x}_j^l||^2, e_{ij}, t; \theta_m \right)$$

$$\mathbf{h}_{i}^{l+1} = \Phi_{h} \left(\mathbf{h}_{i}^{l}, \sum_{j \in \mathcal{N}(i)} \mathbf{m}_{ij}; \theta_{h} \right)$$

$$\mathbf{x}_{i}^{l+1} = \sum_{j \in \mathcal{N}(i)} \frac{1}{d_{ij}} \left(\mathbf{c}_{i} - \mathbf{c}_{j} \right) \Phi_{x} \left(\mathbf{m}_{ij}; \theta_{x} \right)$$

Dataset

- **GEOM** dataset: 37 million conformers
- 133,000 species from QM9 and 317,000 species with experimental data related to biophysics, physiology, and physical chemistry
- Focus on GEOM-QM9, a medium part of GEOM
- Total size: 3.65GB with 133,254 files

Conclusion

The DSM method gives better results than the DDPM method used in GeoDiff in terms of both metrics, COV-R and COV-P. In terms of mean, the DSM method gives about 25% better results on the COV-R metric and 6.8 times better on the COV-P metric with a threshold of 1.65. Although RDKit biocomputational method has slightly better results than DSM, in practice RDKit method skips 5/200 conformers due to failure to generate a conformer. In brief, the proposed method is the most appropriate one for tasks in the drug discovery industry such as creating a large number of conformers which requires fast, stable, diverse, and accurate conformer generation.

$COV - R := \frac{1}{L} |\{l \in [1..L] : \exists k \in [1..K], RMSD(C_k, C_l^*) < \delta|\}$ Results

Models	Theshold	COV-R(%)			COV-P(%)		
		Mean ↑	Median ↑	$\operatorname{Std} \downarrow$	Mean ↑	Median ↑	$\operatorname{Std} \downarrow$
DSM	1.00	0.42	0	4.00	0.07	0	0.65
	1.65	85.79	100	25.11	31.15	31.21	15.64
	1.70	89.49	100	22.05	39.21	40.17	17.38
	1.80	94.79	100	15.83	56.47	59.12	19.45
DDPM(GeoDiff)	1.00	0.50	0	6.03	0.01	0	0.09
	1.65	68.33	76.77	29.19	4.54	4.17	3.13
	1.70	78.86	90.69	25.19	6.09	5.44	3.80
	1.80	93.33	100	15.86	10.30	9.81	5.19
RDKit	1.00	28.4	0	39.44	26.08	0	39.43
	1.65	96.20	100	15.67	92.77	100	20.83
	1.70	97.23	100	13.18	94.32	100	18.88
	1.80	98.31	100	10.65	96.22	100	15.38

Table: The results of conformer generation when applying RDKit, DSM, and DDPM with thresholds of 1.0, 1.65, 1.7 and 1.8

Future Work

- Apply a new generative model
- Use more expressive GNNs •
- Inspect the latent space
- Replace GNNs with LLMs
- Generate rotatable bonds