PHYS1901 Thermal physics

Lecture 1

A/Prof Boris Kuhlmey School of Physics

My research:

Photonics and Metamaterials - structured matter for artificial properties, by design

- Designer electromagnetic properties
- Invisibility
- lenses for the invisible
- Fabrication using drawing techniques (lots of thermal physics there!)
- Applications in photonics on a chip (CUDOS)

A/Prof Boris Kuhlmey boris.kuhlmey@sydney.edu.au Room 317

- Irreversibility
- Joining microscopic and macrosopic

Resources and format

- > Textbook: Young & Friedman
- > Lectures: Mon, Wed, Thu 2pm, Messel, 18 April 8 June 2017

- Assignments due by 7pm Friday 26 May (#5) & 2 June (#6)
- Web Resources: see eLearning for links to PHYS1901
- Outline, Module Outline, Lecture Notes, Recordings, Muddiest Point
- Mastering Physics.

Thermal physics - outline

Lecture plan:

- > Text : Young & Freedman.
- > **Lec. 1.** Temperature and Heat Expansion: §17-1 §17-4
- Lec. 2. Heat: §17-5 §17-6
- > Lec. 3. Methods of Heat Transfer: §17-7
- ▶ Lec. 4. Thermal Properties of Matter: §18-1 §18-5
- ▶ Lec. 5. Work in Thermodynamics: §19-1 §19-3
- ▶ Lec. 6. 1st Law of Thermodynamics: §19-4 §19-6
- > Lec. 7. Thermodynamics of an Ideal Gas: §19-7 §19-8
- > Lec. 8. Engines: §20-1 §20-4
- ▶ Lec. 9. 2nd Law of Thermodynamics: §20-5 §20-6
- > **Lec. 10.** Entropy: §20-7 §20-8

How would you define the temperature?

Temperature, *T*, is a measure of how "hot" or "cold" something is; this *depends* on how much "microscopic energy" it contains.

(b) Changes in temperature cause the pressure of the gas to change.

- Any physical property that depends on T (e.g. L or p) can be used in a thermometer
- A thermometer measures its own temperature

- How would you define the temperature?
- What does it mean if two objects have the same temperature?

Thermal equilibrium

Two thermometers in contact
First – reading change (heat flows)
Eventually – readings stabilize
Thermal equilibrium is reached
(no more heat flow)

(b) Changes in temperature cause the pressure of the gas to change.

Thermal equilibrium

- (a) If systems A and B are each in
- thermal equilibrium with system C ...

(b) ... then systems A and B are in thermal equilibrium with each other.

"Zeroth law of thermodynamics"

Systems in thermal equilibrium have same temperature If $T_A = T_C$ and $T_B = T_C$ then $T_A = T_B$

How would you define the temperature?

Two systems having the same temperature = they are in thermal equilibrium A given temperature is a class of equivalence of objects in thermal equilibrium

How would you define a temperature scale?

Defining a temperature scale

(original) Celsius temperature scale

Defining temperature scales

Definition of temperature scale seems arbitrary – and thermometer dependent!

Constant volume gas thermometer

(a) A constant-volume gas thermometer

Absolute temperature scale

Gas thermometer:

$$p = aT + b$$

Slope a depends on details of the thermometer

Define new scale by

- 1. setting b = 0Now $T = \frac{p}{a}$ (but a still depends on thermometer)
- 2. With a single calibration point we define slope a to define full T scale

The extrapolated plots all reach zero pressure at the same temperature: -273.15° C.

The Kelvin scale

We define $T \equiv 273.16$ K at triple point of water $(T_{triple} \equiv 273.16 \text{K} = 0.01^{\circ} \text{C}$ $p_{triple} = 610$ Pa, 0.006 atm

Kelvin temperature scale:

$$T(K) = T(^{\circ}C) + 273.15 \text{ K}$$

0 K = absolute zero

Kelvin =SI unit of temperature

Kelvin vs Celsius scales

Temperature summary

Definition:

Two systems having the same temperature = they are in thermal equilibrium A given temperature is a class of equivalence of objects in thermal equilibrium

Scale:

A good standard thermometer: Constant volume gas thermometer

Absolute temperature: Kelvin scale for temperature:

T = 0 K at absolute zero

T = 273.16 K at water's triple point

Thermal expansion

(a) A bimetallic strip

(c) A bimetallic strip used in a thermometer

But why do liquids, metals expand?

Expansion

Higher temperature = more energy per atom

Energy of atom E=Potential spring energy U+
Kinetic energy K

$$E_1 > 0$$

$$E_2 > 0$$

Coefficient of linear expansion

(a) For moderate temperature changes, ΔL is directly proportional to ΔT .

(b) ΔL is also directly proportional to L_0 .

$$T_0$$
 $\longrightarrow 2L_0$ $\longrightarrow 2\Delta L$

$$\Delta L = \alpha L_0 \Delta T$$

 α coefficient of linear expansion

21

Linear expansion – holes?

Linear expansion in practice

Ex. 17.11,17.12 – Longest spanning Humber Bridge, UK (2220m) or tallest building Burj Khalifa, Dubai (828m), steel frames.

Volume expansion

$$\Delta V = \beta V_0 \Delta T$$

 β coefficient of volume expansion

 $\beta_{\text{liquids}} > \beta_{\text{solids}}$

Linear expansion and Volume expansion

$$\frac{\Delta V}{\Delta L} \simeq \frac{\partial V}{\partial L}$$

$$\Delta V = \beta V_0 \Delta T$$

$$\Delta L = \alpha L_0 \Delta T$$

$$V_0 = L_0^3 \quad S_0 \frac{\partial V}{\partial L} = \frac{2}{3} L_0^2$$

$$and \Delta V = \frac{\rho V_0}{3} \quad S_0$$

$$\Rightarrow \beta = 3 \times 2$$

Example of volume expansion

Table 17.2 Coefficients of Volume Expansion

Solids	$\beta \left[\mathrm{K}^{-1} \mathrm{or} \left(\mathrm{C}^{\circ} \right)^{-1} \right]$	Liquids	$\beta [K^{-1} or (C^{\circ})^{-1}]$
Aluminum	7.2×10^{-5}	Ethanol	75×10^{-5}
Brass	6.0×10^{-5}	Carbon disulfide	115×10^{-5}
Copper	5.1×10^{-5}	Glycerin	49×10^{-5}
Glass	$1.2-2.7 \times 10^{-5}$	Mercury	18×10^{-5}
Invar	0.27×10^{-5}		
Quartz (fused)	0.12×10^{-5}		
Steel Copyright © 2008 Pearson Education, Inc., public	$3.6 imes 10^{-5}$ shing as Pearson Addison-Wesley.		

Ex. 17.14: Aluminium rivets in aircraft construction are made larger than the rivet holes, cooled with "dry ice" (solid CO2) before insertion.