STA 103 Lecture 5: Covariance

Instructor: Wookyeong Song

Department of Statistics, University of California, Davis

Aug 12th, 2025

Computing $E\left(f(X,Y)\right)$

• Recall our shortcut for computing E(f(X)):

$$E(f(X)) = \sum_{x} f(x)p_X(x).$$

• A similar shortcut works with a joint PMF p(x,y) for two RVs X and Y:

$$E(f(X,Y)) = \sum_{(x,y)} f(x,y)p(x,y),$$

$$E(f(X)) = \sum_{(x,y)} f(x)p_X(x),$$

$$E(f(Y)) = \sum_{(x,y)} f(y)p_Y(y).$$

• Let (X,Y) have the joint PMF:

 joint .			
X^{Y}	0	1	
0	0.06	0.04	
1	0.54	0.36	
			1

• Question: Find E(X+Y), E(XY), and Var(XY).

Computing E(f(X,Y))Joint PMF

$$\begin{array}{c|ccccc} X^Y & 0 & 1 & \\ \hline 0 & 0.06 & 0.04 \\ 1 & 0.54 & 0.36 & \\ \hline & & & 1 & \\ \end{array}$$

Using our shortcut:

$$E(X+Y) = \sum_{(x,y)} (x+y)p(x,y)$$
$$= (0+0) \times 0.06 + (1+0) \times 0.54$$
$$+ (0+1) \times 0.04 + (1+1) \times 0.36.$$

Similarly,

$$E(XY) = \sum_{(x,y)} (xy)p(x,y)$$

= $(0 \cdot 0) \times 0.06 + (1 \cdot 0) \times 0.54$
+ $(0 \cdot 1) \times 0.04 + (1 \cdot 1) \times 0.36$.

Computing E(f(X,Y))

• We know that $Var(XY) = E(X^2Y^2) - (E(XY))^2$. Then,

$$\begin{split} E(X^2Y^2) &= \sum_{(x,y)} (x^2y^2) p(x,y) \\ &= (0^2 \cdot 0^2) \times 0.06 + (1^2 \cdot 0^2) \times 0.54 \\ &+ (0^2 \cdot 1^2) \times 0.04 + (1^2 \cdot 1^2) \times 0.36. \end{split}$$

Then,

$$Var(XY) = E(X^2Y^2) - (E(XY))^2.$$

• Revisit the joint PMF for (X, Y):

X^{Y}	0	1	$p_X(x)$
0	1/8	0	1/8
1	2/8	1/8	3/8
2	0	3/8	3/8
3	1/8	0	1/8
$p_Y(y)$	4/8	4/8	1

- For a given draw of (X,Y), suppose you told that $X \ge 1$ and Y=1 but not the exact values of X and Y.
- Question 2: Your best prediction for X given $X \ge 1$ and Y = 1, i.e., $E(X \mid X \ge 1 \text{ and } Y = 1)$?
- Question 3: Your typical prediction error for X given $X \ge 1$ and Y = 1, i.e., $\operatorname{sd}(X \mid X \ge 1 \text{ and } Y = 1)$?

The Joint PMF for $P\left(X=x,Y=y\mid X\geq 1\text{ and }Y=1\right)$

X^{Y}	0	1	$p_X\left(x\mid X\geq 1 \text{ and } Y=1\right)$
0	0	0	0 + 0 = 0
1	0	1/4	0 + 1/4 = 1/4
2	0	3/4	0 + 3/4 = 3/4
3	0	0	0 + 0 = 0
			1

Answer for Question 2: Using the shortcut

$$\begin{split} E(X\mid X\geq 1 \text{ and } Y=1) &= \sum_x x p_X(x\mid X\geq 1 \text{ and } Y=1).\\ &= (0\cdot 0) + (1\cdot 1/4) + (2\cdot 3/4) + (3\cdot 0)\\ &= 7/4. \end{split}$$

The Joint PMF for $P(X = x, Y = y \mid X \ge 1 \text{ and } Y = 1)$

X^{Y}	0	1	$p_X\left(x\mid X\geq 1 \text{ and } Y=1\right)$
0	0	0	0 + 0 = 0
1	0	1/4	0 + 1/4 = 1/4
2	0	3/4	0 + 3/4 = 3/4
3	0	0	0 + 0 = 0
			1

Answer for Question 3: Using the shortcut

$$\begin{split} &\operatorname{Var}(X\mid X\geq 1 \text{ and } Y=1)\\ &=E(X^2\mid X\geq 1 \text{ and } Y=1)-(E(X\mid X\geq 1 \text{ and } Y=1))^2\\ &=\sum_x x^2 p_X(x\mid X\geq 1 \text{ and } Y=1)-\left(\sum_x x p_X(x\mid X\geq 1 \text{ and } Y=1)\right)^2.\\ &=(0^2\cdot 0)+(1^2\cdot 1/4)+(2^2\cdot 3/4)+(3^2\cdot 0)-(7/4)^2\\ &=13/4-(7/4)^2=3/16. \end{split}$$

The Joint PMF for $P\left(X=x,Y=y\mid X\geq 1\text{ and }Y=1\right)$

X^{Y}	0	1	$p_X(x \mid X \ge 1 \text{ and } Y = 1)$
0	0	0	0 + 0 = 0
1	0	1/4	0 + 1/4 = 1/4
2	0	3/4	0 + 3/4 = 3/4
3	0	0	0 + 0 = 0
			1

Answer for Question 3 (Continue): Then we have

$$\begin{split} \operatorname{sd}(X\mid X\geq 1 \text{ and } Y=1) &= \sqrt{\operatorname{Var}(X\mid X\geq 1 \text{ and } Y=1)} \\ &= \sqrt{\frac{3}{16}} = \frac{\sqrt{3}}{4}. \end{split}$$

Covariance

- Motivation: If two RVs X and Y are not independent (i.e., they are dependent), there are many ways to summarize how dependent they are. The most common is with covariance.
- Definition: If X and Y are two RVs then the covariance between X and Y is defined as

$$\begin{aligned} &\operatorname{Cov}(X,Y) = E(XY) - E(X)E(Y) \quad \text{(easy to compute)}, \\ &\operatorname{Cov}(X,Y) = E\left((X - E(X))(Y - E(Y))\right) \quad \text{(easy to understand)}. \end{aligned}$$

• Interpretation: It measures how much X and Y "co-vary together."

Properties of Covariance

 We will see that Cov is very closely related to Var. Indeed notice the similarity of the definitions:

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

 $Var(X) = E(X \cdot X) - E(X)E(X) = E(X^{2}) - (E(X))^{2}.$

Notice therefore

$$Cov(X, X) = Var(X).$$

• If X and Y are independent, then

$$Cov(X, Y) = 0.$$

However, $\mathrm{Cov}(X,Y)=0$ does not imply the independence between X and Y.

Properties of Covariance

Formula:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y),$$

$$Var(X - Y) = Var(X) + Var(Y) - 2Cov(X, Y).$$

• If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y),$$

$$Var(X - Y) = Var(X) + Var(Y).$$

Recall the formula:

- E(X + Y) = E(X) + E(Y).
- E(aX + b) = aE(X) + b.
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).
- $Var(aX + b) = Var(aX) = a^2Var(X)$.
- $\operatorname{sd}(aX + b) = \sqrt{\operatorname{Var}(aX + b)} = \sqrt{a^2 \operatorname{Var}(X)} = |a| \operatorname{sd}(X).$

Suppose we have arbitrary RVs X_1 and X_2 . Then consequence of the formula,

- $E(X_1 + X_2) = E(X_1) + E(X_2)$.
- If X_1 and X_2 are independent then

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2).$$

• Example (Investment Portfolio Risk Hedging): We have two investments:

 $X_1 = \mbox{Profit}$ from first investment, $X_2 = \mbox{Profit}$ from second investment.

Example (Investment Portfolio Risk Hedging):

Total Profit
$$= X_1 + X_2$$
.

• Case 1:

Suppose we select

- What is expectation of total profit, $E(X_1 + X_2)$?
- What is volatility (variance) of total profit, $Var(X_1 + X_2)$?

Example (Investment Portfolio Risk Hedging):

Total Profit
$$= X_1 + X_2$$
.

• Case 2:

Suppose we select $\begin{vmatrix} X_1 \\ X_2 \end{vmatrix}$

- What is expectation of total profit, $E(X_1 + X_2)$?
- What is risk (variance) of total profit, $Var(X_1 + X_2)$?

• Example (Investment Portfolio Risk Hedging):

Total Profit
$$= X_1 + X_2$$
.

- **Results**: Expected profits $E(X_1+X_2)$ are the same in both Case 1 and 2. But, risk (variance) of profit $Var(X_1+X_2)$ in Case 2 is lower than that in Case 1.
- How to lower the risk (variance) of total profit X_1+X_2 ? We know that

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2).$$

The first and second term $Var(X_1)$ and $Var(X_2)$ are always ≥ 0 . However, the third covariance term $Cov(X_1, X_2)$ can be negative.

• If $Cov(X_1, X_2)$ is negative, it reduces the risk of total profit $X_1 + X_2$. If $Cov(X_1, X_2)$ is positive, it adds the risk of total profit $X_1 + X_2$.

• Example (Investment Portfolio Risk Hedging):

Total Profit
$$= X_1 + X_2$$
.

- Interpretation: Negative $\mathrm{Cov}(X_1,X_2)$ means that the direction of movement between X_1 and X_2 should be opposite (e.g., stock and bond). The negative dependence between X_1 and X_2 in Case 2 act like a hedge and reduce risk.
- Interpretation: Positive $\mathrm{Cov}(X_1,X_2)$ means that the direction of movement between X_1 and X_2 should be the same (e.g., Coin Base stock in NASDAQ and Bitcoin). The positive dependence between X_1 and X_2 in Case 2 is more aggressive portfolio with higher risk.
- Case 1 (HW): check $Cov(X_1, X_2) > 0$.
- Case 2 (HW): check $Cov(X_1, X_2) < 0$.