MA3105

Numerical Analysis

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	Tin	ne complexity	1		
	1.1	Runtime cost	1		
	1.2	Asymptotic growth	2		
2	2 Root finding methods				
	2.1	Tabulation method	4		
	2.2	Bisection method	5		
	2.3	Newton-Raphson method	5		
	2.4	Secant method	6		
	2.5	Fixed point method	6		

1 Time complexity

1.1 Runtime cost

When designing or implementing an algorithm, we care about its efficiency – both in terms of execution time, and the use of resources. This gives us a rough way of comparing two algorithms. However, such metrics are architecture and language dependent; different machines, or the same program implemented in different programming languages, may consume different amounts of time or resources while executing the same algorithm. Thus, we seek a way of measuring the 'cost' in time for a given algorithm.

For example, we may look at each statement in a program, and associate a cost c_i with each of them. Consider the following statements.

one =	1;	//	c_1
two =	2;	//	c_2
three	= 3;	//	c_3

The total cost of running these statements can be calculated as $T = c_1 + c_2 + c_3$, simply by adding up the cost of each statement. Similarly, consider the following loop construct.

The total cost can be shown to be $T(n) = c_1 + c_2(n+1) + c_3n$; this time, we must take into account the number of times a given statement is executed. Note that this is linear. Another example is as follows.

The total cost can be shown to be $T(n) = c_1 + c_2(n+1) + c_3n(n+1) + c_4n^2$. Note that this is quadratic. Finally, consider the following recursive call.

The cost can be shown to be $T(n) = c_5 + (c_1 + c_2)(n+1) + c_3 + c_4 n$. This turns out to be linear. In all these cases, we care about our total cost as a function of the input size n. Moreover, we are interested mostly in the *growth* of our total cost; as our input size grows, the total cost can often be compared with some simple function of n. Thus, we can classify our cost functions in terms of their asymptotic growths.

1.2 Asymptotic growth

Definition 1.1. The set O(g(n)) denotes the class of functions f which are asymptotically bounded above by g. In other words, $f(n) \in O(g(n))$ if there exists M > 0 and $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$|f(n)| \leq Mg(n)$$
.

This amounts to writing

$$\limsup_{n \to \infty} \frac{|f(n)|}{g(n)} < \infty.$$

Example. Consider a function defined by f(n) = an + b, where a > 0. Then, we can write $f(n) \in O(n)$. To see why, note that for all $n \ge 1$, we have

$$|f(n)| = |an + b| < an + |b| < (a + |b|)n.$$

Thus, setting M = a + |b| > 0 completes the proof.

Example. Consider a polynomial function defined by

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0,$$

with some non-zero coefficient. Then, we can write $f(n) \in O(n^k)$. Like before, note that for all $n \ge 1$, we have

$$|f(n)| \le \sum_{i=0}^k |a_i| n^i \le \sum_{i=0}^k |a_i| n^k = (|a_k| + |a_{k-1}| + \dots + |a_0|) n^k.$$

Thus, setting $M = |a_k| + \cdots + |a_0| > 0$ completes the proof.

Theorem 1.1. If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then

$$f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\}).$$

Definition 1.2. The set $\Omega(g(n))$ denotes the class of functions f are asymptotically bounded below by g. In other words, $f(n) \in \Omega(g(n))$ if there exists M > 0 and $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$|f(n)| \ge Mg(n)$$
.

This amounts to writing

$$\liminf_{n \to \infty} \frac{f(n)}{g(n)} > 0.$$

Definition 1.3. The set $\Theta(g(n))$ denotes the class of functions f which are asymptotically bounded both above and below by g. In other words, $f(n) \in \Theta(g(n))$ if there exist $M_1, M_2 > 0$ and $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$M_1g(n) \le |f(n)| \le M_2g(n)$$
.

This amounts to writing $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Another class of notation uses the idea of dominated growth.

Definition 1.4. The set o(g(n)) denotes the class of functions f which are asymptotically dominated by g. In other words, $f(n) \in o(g(n))$ if for all M > 0, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$|f(n)| < Mg(n)$$
.

This amounts to writing

$$\lim_{n \to \infty} \frac{|f(n)|}{g(n)} = 0.$$

Definition 1.5. The set $\omega(g(n))$ denotes the class of functions f which asymptotically dominate g. In other words, $f(n) \in \omega(g(n))$ if for all M > 0, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$|f(n)| > Mg(n)$$
.

This amounts to writing

$$\lim_{n \to \infty} \frac{|f(n)|}{g(n)} = \infty.$$

Definition 1.6. We say that $f(n) \sim g(n)$ if f is asymptotically equal to g. In other words, $f(n) \sim g(n)$ if for all $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$\left| \frac{f(n)}{g(n)} - 1 \right| < \epsilon.$$

This amounts to writing

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1.$$

We often abuse notation and treat the following as equivalent.

$$T(n) \in O(g(n)), \qquad T(n) = O(g(n)).$$

2 Root finding methods

Consider an equation of the form f(x) = 0, where $f: [a, b] \to \mathbb{R}$ is given. We wish to solve this equation, i.e. find the roots of f.

Note that for arbitrary functions, this task is impossible. To see this, consider a function f which assumes the value 1 on $[0,1] \setminus \{\alpha\}$ and $f(\alpha) = 0$, for some $\alpha \in [0,1]$. There is no way of pinpointing α without checking f at every point in [0,1]. Besides, a computer cannot reasonably store real numbers with arbitrary precision.

Thus, we direct our attention towards *continuous* functions f. We only seek sufficiently accurate approximations of its root $\alpha \in (a, b)$.

Theorem 2.1 (Intermediate Value Theorem). Let $f: [a,b] \to \mathbb{R}$ be continuous. If f(a)f(b) < 0, then there exists $\alpha \in (a,b)$ such that $f(\alpha) = 0$.

2.1 Tabulation method

To identify the location of a root of f on an interval I = [a, b], we subdivide I into n subintervals $[x_i, x_{i+1}]$ where $x_i = a + (b-a)i/n$. Now, we simply apply the Intermediate Value Theorem to f on each of these intervals. If $f(x_i)f(x_{i+1}) < 0$, then f has a root somewhere in (x_i, x_{i+1}) . Note that the error in our approximation is on the order of |b-a|/n. The precision of this method can be improved by increasing n.

To reach a degree of approximation ϵ , we must iterate n times, where

$$n > \frac{b-a}{\epsilon}$$
.

2.2 Bisection method

Here, we first verify that f(a)f(b) < 0, thus ensuring that f has a root within (a,b). Now, set $x_1 = a + (b-a)/2$ and apply the Intermediate Value Theorem on the subintervals $[a, x_1]$ and $[x_1, b]$. One of these must contain a root of f. Note that if $f(x_1) = 0$, we are done; otherwise, let $I_1 = [a_1, b_1]$ be the subinterval containing the root. Repeat the above process, obtaining successive subintervals I_n with lengths $|b-a|/2^n$. The error in our approximation is of this order, and can be controlled by stopping at appropriately large n.

The quantity $x_{n+1} = (a_n + b_n)/2$ is a good approximation for the actual root α since we know that $x_{n+1}, \alpha \in [a_n, b_n]$, so

$$|x_{n+1} - \alpha| \le |b_n - a_n| = 2^{-n}|b - a| \to 0.$$

To reach a degree of approximation ϵ , we must iterate n times, where

$$n > \log_2 \frac{b-a}{\epsilon}$$
.

2.3 Newton-Raphson method

Assuming that f is twice differentiable, use Taylor's theorem to write

$$f(x) = f(x_0) + f'(x)(x - x_0) + \frac{1}{2}f''(c)(x - x_0)^2$$

for all $x \in [a, b]$, where c is between x and x_0 . The first two terms represent the tangent line to f, drawn at $(x_0, f(x_0))$. Now, define

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Note that this is the point at which the tangent line to f at x_0 cuts the x-axis. We have implicitly assumed that $f'(x_0) \neq 0$. In this manner, create the sequence of points

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

We wish to show that $x_n \to \alpha$, under certain circumstances.

Definition 2.1 (Order of convergence). Let $x_n \to \alpha$. We say that this convergence is of order $p \ge 1$ if

$$\lim_{n \to \infty} \frac{|\alpha - x_{n+1}|}{|\alpha - x_n|^p} > 0.$$

Theorem 2.2. Let f be a real function on $[\alpha - \delta, \alpha + \delta]$ such that

- 1. $f(\alpha) = 0$.
- 2. f is twice differentiable, with non-zero derivatives.
- 3. f'' is continuous.
- 4. |f''(x)/f'(y)| < M for all x, y.

If $x_0 \in [\alpha - h, \alpha + h]$ where $h = \min\{\delta, 1/M\}$, then the Newton-Raphson sequence generated by x_0 converges to the root α quadratically.

Proof. Pick $x_n \in [\alpha - h, \alpha + h]$. Using Taylor's theorem,

$$f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + \frac{1}{2}f''(c)(\alpha - x_n)^2.$$

Also note that $f(\alpha) = 0$, and $x_n - x_{n+1} = f(x_n)/f'(x_n)$. Thus, dividing by $f'(x_n)$ and substituting gives

$$\alpha - x_{n+1} = -\frac{1}{2} \frac{f''(c)}{f'(x_n)} (\alpha - x_n)^2.$$

Using our estimates on $f''(c)/f'(x_n)$ and x_n along with $h \leq 1/M$, we see that

$$|\alpha - x_{n+1}| \le \frac{1}{2}Mh|\alpha - x_n| \le \frac{1}{2}|\alpha - x_n|.$$

Indeed, we have shown that

$$|\alpha - x_n| \le \frac{1}{2^n} |\alpha - x_0|,$$

which directly gives the convergence $x_n \to \alpha$. Furthermore, we have

$$\frac{|\alpha - x_{n+1}|}{|\alpha - x_n|^2} = \frac{1}{2} \left| \frac{f''(c)}{f'(x_n)} \right| \le \frac{1}{2} M,$$

hence taking the limit $n \to \infty$ proves that the convergence is quadratic.

Corollary 2.2.1. Suppose that f satisfies the conditions of the previous theorem, along with f' > 0 and f'' > 0 on some interval $[\alpha, x]$. Then, the Newton-Raphson sequence generated by $x_0 \in [\alpha, x]$ converges to the root α quadratically.

Remark. The convexity of f means that the tangent drawn at x_n lies below the curve, and hence cuts the x-axis between α and x_n .

Theorem 2.3. If α is a multiple root of f such that $f(\alpha) = 0$, $f'(\alpha) = 0$, $f''(\alpha) \neq 0$, then the Newton-Raphson sequence converges to α linearly under suitable conditions.

Proof. Use Rolle's Theorem to replace $f'(x_n) = f'(x_n) - f'(\alpha) = f''(a)(x_n - \alpha)$.

2.4 Secant method

2.5 Fixed point method