homework12

问题一

- 有一位教授想知道学生是否睡眠充足。每天,教授观察学生在课堂上是否睡觉,并观察他们是否有红眼。教授获得如下的领域知识:
 - □ 没有观察数据时, 学生睡眠充足的先验概率为0.7。
 - □ 给定学生前一天睡眠充足为条件,学生在晚上睡眠充足的概率 是0.8;如果前一天睡眠不充足,则是0.3。
 - □ 如果学生睡眠充足,则红眼的概率是0.2,否则是0.7。
 - □ 如果学生睡眠充足,则在课堂上睡觉的概率是0.1,否则是0.3。
- 将这些信息形式化为一个动态贝叶斯网络,使教授可以使用这个网络从观察序列中进行滤波和预测。然后再将其形式化为一个只有一个观察变量的隐马尔可夫模型。给出这个模型的完整的概率表。
 - 1. 首先, 我们定义变量:
 - 。 令(S)表示学生睡眠充足事件 · (\neq S)表示学生睡眠不充足事件。
 - 。 令(R)表示学生有红眼事件 · (\neg R)表示学生没有红眼事件。
 - 令(C)表示学生在课堂上睡觉事件 · (\neg C)表示学生在课堂上不睡觉事件。
 - 2. 根据题目中的条件概率:
 - (P(S) = 0.7) (没有观察数据时, 学生睡眠充足的先验概率)
 - (P(S|\text{前一天睡眠充足}) = 0.8), (P(S|\text{前一天睡眠不充足}) = 0.3)
 - \circ (P(R|S) = 0.2), (P(R|\neg S) = 0.7)
 - \circ (P(C|S) = 0.1), (P(C|\neg S) = 0.3)
 - 3. 我们要构建一个动态贝叶斯网络(DBN)·并将其转化为隐马尔可夫模型(HMM)。
 - 动态贝叶斯网络(DBN)是一种概率图模型,用于表示随时间变化的随机过程。在这个问题中,我们可以将每天学生的睡眠情况、红眼情况和课堂睡觉情况看作是一个时间序列。
 - 隐马尔可夫模型(HMM)由两个部分组成:隐藏状态(在这个问题中是学生的睡眠情况(S)) 和观察变量(在这个问题中是红眼情况(R)和课堂睡觉情况(C))。

4. 构建HMM的概率表:

- o 初始状态概率:
 - P(S) = 0.7
 - (P(neg S) = 1 0.7 = 0.3)
- o 状态转移概率:
 - (P(S_{t + 1}|S_t) = 0.8) (如果前一天睡眠充足,当天睡眠充足的概率)
 - (P(S_{t + 1}|\neg S_t) = 0.3) (如果前一天睡眠不充足·当天睡眠充足的概率)
 - $(P(\text{neg S}_{t + 1}|S_{t}) = 1 0.8 = 0.2)$
 - $(P(\ng S_{t + 1}|\ng S_{t}) = 1 0.3 = 0.7)$
- o 观察概率:
 - $(P(R|S) = 0.2), (P(R| \le S) = 0.7)$
 - $(P(C|S) = 0.1), (P(C| \le S) = 0.3)$

5. 完整的概率表如下:

o 初始状态概率:

状态	概率	
(S)	0.7	
(\neg S)	0.3	

o 状态转移概率:

从 / 到	(S)	(\neg S)
(S)	0.8	0.2
(\neg S)	0.3	0.7

o 观察概率:

状态	(R)	(\neg R)	(C)	(\neg C)
(S)	0.2	0.8	0.1	0.9
(\neg S)	0.7	0.3	0.3	0.7

通过这些概率表,教授可以使用隐马尔可夫模型对学生的睡眠情况进行滤波和预测。

问题二

■ 假定

- □ e₁=没有红眼,没有在课堂上睡觉
- □ e₂=有红眼,没有在课堂上睡觉
- □ e₃=有红眼,在课堂上睡觉。

■ 执行下面的计算:

- □ 状态估计: 针对每个t = 1,2,3, 计算 $P(EnoughSleep_t|e_{1:t})$
- □ 平滑: 针对每个t = 1,2,3, 计算 $P(EnoughSleep_t|e_{1:3})$
- □ 针对t = 1和t = 2, 比较滤波概率和平滑概率
- 1. 首先,我们回顾一下之前建立的隐马尔可夫模型(HMM)的概率表:
 - o 初始状态概率:

状态	概率
(S) (睡眠充足)	0.7
(\neg S) (睡眠不充足)	0.3

o 状态转移概率:

从 / 到	(S)	(\neg S)
(S)	0.8	0.2
(\neg S)	0.3	0.7

o 观察概率:

状态	(R)(有红 眼)	(\neg R)(无红 眼)	(C) (课堂睡 觉)	(\neg C)(课堂不睡 觉)
(S)	0.2	0.8	0.1	0.9
(\neg S)	0.7	0.3	0.3	0.7

- 2. 我们要根据给定的观察序列计算概率:
 - o 观察序列:
 - (e_1=)没有红眼,没有在课堂上睡觉

- (e_2=)有红眼,没有在课堂上睡觉
- (e 3=)有红眼,在课堂上睡觉

3. 计算状态估计 (P(\text{EnoughSleep}t|e{1:t})):

- 对于 (t = 1):
 - (e_1=)没有红眼,没有在课堂上睡觉
 - (P(\text{EnoughSleep}_1|e_1) =
 \frac{P(e_1|\text{EnoughSleep}_1)P(\text{EnoughSleep}_1)}{P(e_1)})
 - (P(e_1|\text{EnoughSleep}_1) = P(\neg R|\text{EnoughSleep}_1)P(\neg C|\text{EnoughSleep}_1) = 0.8\times0.9 = 0.72)
 - (P(e_1|\neg \text{EnoughSleep}_1) = P(\neg R|\neg \text{EnoughSleep}_1)P(\neg C|\neg \text{EnoughSleep}_1) = 0.3\times0.7 = 0.21)
 - $(P(\text{text}\{\text{EnoughSleep}\}_1|e_1) = \frac{0.72\times0.7}{0.72\times0.7} + 0.21\times0.3} = \frac{0.504}{0.504} = \frac{0.504}{$

○ 对于 (t = 2):

- (e_2=)有红眼,没有在课堂上睡觉
- (P(\text{EnoughSleep}2|e{1:2}) =
 \frac{P(e_2|\text{EnoughSleep}_2)P(\text{EnoughSleep}_2|e_1)P(\text{EnoughSleep} 1)}
 {P(e{1:2})})
- (P(e_2|\text{EnoughSleep}_2) = P(R|\text{EnoughSleep}_2)P(\neg C|\text{EnoughSleep}_2) = 0.2\times0.9 = 0.18)
- (P(e_2|\neg \text{EnoughSleep}_2) = P(R|\neg \text{EnoughSleep}_2)P(\neg C|\neg \text{EnoughSleep}_2) = 0.7\times0.7 = 0.49)
- 先计算 (P(e_{1:2}|\text{EnoughSleep}_2) = P(e_1|\text{EnoughSleep}_2)P(e_2|\text{EnoughSleep}_2) = 0.72\times0.18 = 0.1296)
- $(P(e_{1:2}|\neq \text{EnoughSleep}_2) = P(e_1|\neq \text{EnoughSleep}_2)P(e_2|\neq \text{EnoughSleep}_2) = 0.21\times0.49 = 0.1029)$
- $(P(\text{text}\{\text{EnoughSleep}\}2|e\{1:2\}) = \frac{0.1296\times0.7}{0.1296\times0.7} + 0.1029\times0.3\} = \frac{0.09072}{0.09072} + 0.03087\} = \frac{0.09072}{0.12159} \\ \text{approx 0.75}$

o 对于(t = 3):

- (e_3=)有红眼,在课堂上睡觉
- (P(\text{EnoughSleep}3|e{1:3}) =
 \frac{P(e_3|\text{EnoughSleep}_3)P(\text{EnoughSleep}3|e{1:2})P(\text{EnoughSleep}_2|e
 _1)P(\text{EnoughSleep} 1)}{P(e{1:3})})
- $(P(e_3|\text{EnoughSleep}_3) = P(R|\text{EnoughSleep}_3)P(C|\text{EnoughSleep}_3) = 0.2\times0.1 = 0.02)$
- $(P(e_3|\neq \text{EnoughSleep}_3) = P(R|\neq \text{EnoughSleep}_3)P(C|\neq \text{EnoughSleep}_3) = 0.7\times 0.21)$
- 先计算 (P(e_{1:3}|\text{EnoughSleep}_3) =
 P(e_1|\text{EnoughSleep}_3)P(e_2|\text{EnoughSleep}_3)P(e_3|\text{EnoughSleep}_3) =
 0.72\times0.18\times0.02 = 0.002592)

- $(P(e_{1:3}|\neq \text{EnoughSleep}_3) = P(e_1|\neq \text{EnoughSleep}_3)P(e_2|\neq \text{EnoughSleep}_3)P(e_3|\neq \text{EnoughSleep}_3) = 0.21\times0.21$
- (P(\text{EnoughSleep}3|e{1:3}) = \frac{0.002592\times0.7}{0.002592\times0.7 + 0.021609\times0.3} = \frac{0.0018144}{0.0018144 + 0.0064827} = \frac{0.0018144}{0.0082971} \approx 0.22)
- 4. 计算平滑 (P(\text{EnoughSleep}t|e{1:3})):
 - 对于 (t = 1):
 - (P(\text{EnoughSleep} $1|e\{1:3\}$) = \sum_{s_2,s_3}P(\text{EnoughSleep}_1|e_1)P(s_2|s_1)P(s_3|s_2)P(e_2|s_2)P(e_3|s_3))
 - 这里需要考虑所有可能的状态路径, 计算较为复杂, 但可以使用前向 后向算法来简化 计算。
 - o 对于(t = 2):
 - 同样需要使用前向 后向算法来计算 (P(\text{EnoughSleep}2|e{1:3}))。
 - o 对于(t = 3):
 - (P(\text{EnoughSleep}3|e{1:3}))已经在状态估计中计算过,约为0.22。
- 5. 比较滤波概率和平滑概率:
 - 对于 (t = 1):
 - 滤波概率 (P(\text{EnoughSleep}_1|e_1) \approx 0.89)
 - 平滑概率 (P(\text{EnoughSleep}1/e{1:3})) (需要使用前向 后向算法计算)
 - 对于 (t = 2):
 - 滤波概率 (P(\text{EnoughSleep}2|e{1:2}) \approx 0.75)
 - 平滑概率 (P(\text{EnoughSleep}2|e{1:3})) (需要使用前向 后向算法计算)
 - o 对于(t = 3):
 - 滤波概率 (P(\text{EnoughSleep}3|e{1:3}) \approx 0.22)
 - 平滑概率 (P(\text{EnoughSleep}3|e{1:3}) \approx 0.22) (已经计算过)

通过这些计算,教授可以根据观察到的学生表现来估计和预测学生的睡眠情况。

- 1. 计算平滑概率 (P(\text{EnoughSleep}t|e{1:3}))·对于 (t = 1) 和 (t=2)·我们使用前向 后向算法。
 - o 前向算法:
 - 定义前向变量 (\alpha_t(i))·表示在时刻 (t) 处于状态 (i) 且观察到序列 (e_{1:t}) 的概率。
 - 初始化:
 - 对于 (t = 1):

- (\alpha_1(S)=P(e_1|\text{EnoughSleep}_1)P(\text{EnoughSleep}_1)=0.72\ti mes0.7 = 0.504)
- (\alpha_1(\neg S)=P(e_1|\neg \text{EnoughSleep}_1)P(\neg \text{EnoughSleep}_1)=0.21\times0.3 = 0.063)

■ 归纳:

- 对于 (t = 2):
 - (\alpha_2(S)=\sum_{j} \alpha_1(j)P(S|j)P(e_2|S))
 - (\alpha_2(S)=\alpha_1(S)P(S|S)P(e_2|S)+\alpha_1(\neg S)P(S|\neg S)P(e_2|S))
 - (\alpha_2(S)=0.504\times0.8\times0.18 + 0.063\times0.3\times0.18)
 - (\alpha_2(S)=0.504\times0.8\times0.18+0.063\times0.3\times0.18 = 0.072576 + 0.003402=0.075978)
 - $(\alpha_2(\log S)=\sum_{j} \alpha_1(j)P(neg S|j)P(e_2|neg S))$
 - (\alpha_2(\neg S)=\alpha_1(S)P(\neg S|S)P(e_2|\neg S)+\alpha_1(\neg S)P(\neg S|\neg S)P(e_2|\neg S)
 - (\alpha_2(\negS)=0.504\times0.2\times0.49+0.063\times0.7\times0.49)
 - \blacksquare (\alpha_2(\neg S)=0.049392+0.021609 = 0.070999)

■ 对于 (t = 3):

- (\alpha_3(S)=\sum_{ij} \alpha_2(j)P(S|j)P(e_3|S))
 - (\alpha_3(S)=\alpha_2(S)P(S|S)P(e_3|S)+\alpha_2(\neg S)P(S|\neg S)P(e_3|S))
 - (\alpha_3(S)=0.075978\times0.8\times0.02+0.070999\times0.3\times0.02)
 - (\alpha_3(S)=0.001215648 + 0.000425994=0.001641642)
- - (\alpha_3(\neg S)=\alpha_2(S)P(\neg S|S)P(e_3|\neg S)+\alpha_2(\neg S)P(\neg S|\neg S)P(e_3|\neg S))
 - (\alpha_3(\neg S)=0.075978\times0.2\times0.21+0.070999\times0.7\times0.21)
 - \blacksquare (\alpha_3(\neq S)=0.003191076+0.010439833 = 0.013630909)

• 后向算法:

- 定义后向变量 (\beta_t(i)) · 表示在时刻 (t) 处于状态 (i) 且观察到序列 (e_{t + 1:3}) 的概率。
- 初始化:
 - 对于 (t = 3):
 - (\beta 3(S) = 1)
 - (\beta_3(\neg S)=1)
- 归纳:
 - 对于 (t = 2):

- (\beta_2(S)=\sum_{i}P(j|S)P(e_3|j)\beta_3(j))
 - (\beta_2(S)=P(S|S)P(e_3|S)\beta_3(S)+P(\neg S|S)P(e_3|\neg S)\beta_3(\neg S))
 - (\beta_2(S)=0.8\times0.02\times1 + 0.2\times0.21\times1=0.016 + 0.042 = 0.058)
- (\beta_2(\neg S)=\sum_{ij}P(j|\neg S)P(e_3|j)\beta_3(j))
 - (\beta_2(\neg S)=P(S|\neg S)P(e_3|S)\beta_3(S)+P(\neg S|\neg S)P(e_3|\neg S)\beta_3(\neg S)
 - (\beta_2(\neg S)=0.3\times0.02\times1+0.7\times0.21\times1 = 0.006+0.147 = 0.153)

■ 对于 (t = 1):

- (\beta_1(S)=\sum_{j}P(j|S)P(e_2|j)\beta_2(j))
 - (\beta_1(S)=P(S|S)P(e_2|S)\beta_2(S)+P(\neg S|S)P(e_2|\neg S)\beta_2(\neg S))
 - (\beta_1(S)=0.8\times0.18\times0.058+0.2\times0.49\times0.153)
 - (\beta_1(S)=0.008352+0.015042 = 0.023394)
- (\beta_1(\neg S)=\sum_{j}P(j|\neg S)P(e_2|j)\beta_2(j))
 - (\beta_1(\neg S)=P(S|\neg S)P(e_2|S)\beta_2(S)+P(\neg S|\neg S)P(e_2|\neg S)\beta_2(\neg S))
 - (\beta_1(\negS)=0.3\times0.18\times0.058+0.7\times0.49\times0.153)
 - (\beta_1(\neg S)=0.003132+0.052739 = 0.055871)

o 计算平滑概率:

■ 对于 (t = 1):

- (P(\text{EnoughSleep}1|e{1:3})=\frac{\alpha_1(S)\beta_1(S)} {\sum_{i}\alpha_1(i)\beta_1(i)})
- (P(\text{EnoughSleep}1|e{1:3})=\frac{0.504\times0.023394}{0.504\times0.023394} + 0.063\times0.055871})
- (P(\text{EnoughSleep}1|e{1:3})=\frac{0.011790776}{0.011790776+0.003520873})
- (P(\text{EnoughSleep}1|e{1:3})=\frac{0.011790776}{0.015311649}\approx0.77)

■ 对于 (t = 2):

- (P(\text{EnoughSleep}2|e{1:3})=\frac{\alpha_2(S)\beta_2(S)} {\sum_{i}\alpha_2(i)\beta_2(i)})
- (P(\text{EnoughSleep}2|e{1:3})=\frac{0.075978\times0.058} {0.075978\times0.058+0.070999\times0.153})
- (P(\text{EnoughSleep}2|e{1:3})=\frac{0.004406724}{0.004406724} + 0.010862847})
- (P(\text{EnoughSleep}2|e{1:3})=\frac{0.004406724}{0.015269571}\approx0.29)

通过上述详细计算,我们得到了 (t = 1) 和 (t = 2) 的平滑概率。