

Local Motif Clustering on Time-Evolving Graphs

Presenter: Dongqi Fu

Email: dongqif2@illinois.edu

Dongqi Fu (UIUC)

Dawei Zhou (UIUC)

Jingrui He (UIUC)

Roadmap

- Motivation
- Problem Definition
- Proposed L-MEGA Framework
- Experiments
- Conclusion

Graph Motifs

1st-order motif (e.g., node)

1

2nd-order motif (e.g., edge)

3rd-order motif (e.g., triangle)

4th-order motif (e.g., loop)

5th-order motif (e.g., star)

Motif Clustering

----- Edge-based (2nd-order motif

) Clustering

Triangle-based (3rd-order motif

) Clustering

Real-World Applications

 In the air traffic network, triangle motifs may identify frequent flight patterns.

Air Traffic Network

Triangle Motif

Real-World Applications

• In the online transaction network, **loop motifs** may be associated with the **money laundering activities**.

Online Transaction Network

Loop Motif

Real-World Applications

In the social network, star motifs may indicate personas.

Social Network

Star Motif

Existing Work

- Existing motif clustering algorithms
 - Local clustering algorithms: HOSPLOC [Zhou et al., 2017], MAPPR [Yin et al., 2017].
 - Spectral clustering algorithms: TSC [Benson et al., 2015], GTSC [Wu et al., 2016], MSC [Benson et al., 2016].
 - Embedding-based algorithms: MCN [Lee et al., 2019], HONE [Rossi et al., 2020].
- Major drawbacks of existing algorithms
 - Designed for static graphs and may not capture dynamic patterns.
 - Computationally prohibitive on large time-evolving graphs.

An Illustrative Example

Local motif clustering on a time-evolving graph

Preliminaries and Challenges

- Challenges (i.e., when the new graph arrives)
 - Challenge 1 (Transition tensor changes): how could we filter some unimportant updated edges before updating the transition tensor?
 - Challenge 2 (Multilinear PageRank vector changes): how could we track multilinear PageRank from last time instead of resolving it?
 - Challenge 3 (Local cluster changes): how could we identify the new local cluster efficiently by leveraging the previous local cluster?

Roadmap

- Motivation
- Problem Definition
- Proposed L-MEGA Framework
- Experiments
- Conclusion

Evaluation Metric

Motif conductance

$$\Phi(C,N) = \frac{cut(C,N)}{\min\{\mu(C,N),\mu(\bar{C},N)\}} \xrightarrow{N: \text{motif structure}} Cut(C,N): \# \text{ of motifs being cut}$$

→ N: motif structure

 $\rightarrow \mu(C, N)$: # of motif end points in C

 $\rightarrow cut(C, N): 1$

- $\rightarrow \mu(C,N)$: 17
- \rightarrow $\Phi(C, N): 1/17$

Problem Definition

Local motif clustering on time-evolving graphs

Given:

- A user-defined motif structure N;
- A sequence of snapshots of the time-evolving graph

$$\tilde{G} = \{G^{(0)}, G^{(0)}, \dots, G^{(T)}\};$$

- A seed node v; \bigcirc
- A motif conductance upperbound arphi .

Inserted Edges.....

Find:

■ A local cluster $C^{(t)}$ near seed node v such that $\Phi(C^{(t)}, N) \leq \varphi$ at each time stamp $t \in \{1, 2, ..., T\}$.

Original Graph

Deleted Edges

Roadmap

- Motivation
- Problem Definition
- Proposed L-MEGA Framework
- Experiments
- Conclusion

Overview of L-MEGA

- L-MEGA (<u>L</u>ocal <u>M</u>otif Clustering on Time-<u>E</u>volving <u>G</u>r<u>a</u>phs)
 - Identifies the evolution pattern of the local motif cluster effectively and efficiently.
- Key idea of L-MEGA
 - Tracks the local motif cluster via three speed-up techniques for three mentioned challenges.

- Edge filtering model
 - Intuition: Some "far-away" updated edges at time t will not influence the evolution of the previously identified local cluster at time t+1.
 - Solution: Identify "far-away" edge (v_1, v_2) , filter it out before updating the transition tensor, and save it for the future.

 $\pi(j+1)$: the node on $\overline{C}^{(t)}$ with the maximum probability mass

$$\text{Condition 1: } \frac{x^{(t)}(v_1)}{d^{(t)}(v_1)} < \frac{x^{(t)}(\pi(j+1))}{d^{(t)}(\pi(j+1))'}, \frac{x^{(t)}(v_2)}{d^{(t)}(v_2)} < \frac{x^{(t)}(\pi(j+1))}{d^{(t)}(\pi(j+1))}$$

"far-away" updated edge can only appear on the complement $\overline{\mathcal{C}}^{(t)}$

- Edge filtering model
 - Intuition: Some "far-away" updated edges at time t will not influence the evolution of the previously identified local cluster at time t+1.
 - Solution: Identify "far-away" edge (v_1, v_2) , filter it out before updating the transition tensor, and save it for the future.

 γ : the maximum probability mass contribution from updated edge (v_1,v_2) $\pi(j+1)$: the node on $\overline{C}^{(t)}$ with the maximum probability mass

Condition 2: $\frac{\gamma + x^{(t)}(\pi(j+1))}{d^{(t)}(\pi(j+1))} < \frac{x^{(t)}(\pi(j))}{d^{(t)}(\pi(j))}$

"far-away" updated edge cannot send node $\pi(j+1)$ to the local cluster at time t+1

- Edge filtering model
 - Intuition: Some "far-away" updated edges at time t will not influence the evolution of the previously identified local cluster at time t+1.
 - Solution: Identify "far-away" edge (v_1, v_2) , filter it out before updating the transition tensor, and save it for the future.

 D_{ist} denotes the shortest distance from v_1 to any node of $\mathcal{C}^{(t)}$

Condition 3:
$$D_{ist}(v_1, C^{(t)}) > k - 1, D_{ist}(v_2, C^{(t)}) > k - 1$$

"far-away" updated edge cannot induce any new motifs involved in the previous graph cut

- Edge filtering model
 - Intuition: Some "far-away" updated edges at time t will not influence the evolution of the previously identified local cluster at time t+1.
 - Solution: Identify "far-away" edge (v_1, v_2) , filter it out before updating the transition tensor, and save it for the future.
 - Time Complexity:

$$O(|V^{(t+1)}|^{k-2}) \xrightarrow{\text{reduced}} O(|V^{(t+1)}| + |E^{(t+1)}| \log |V^{(t+1)}|)$$

updating transition tensor for one updated edge

filtering one "far-away" updated edge

- Motif push operation
 - Intuition: Resolving multilinear PageRank is time-consuming, we may track it from last time instead of resolving it.
 - Solution: Track multilinear PageRank $x^{(t+1)}$ from $x^{(t)}$.

$$Appr(x^{(t+1)}) = x^{(t)}$$

moving the largest entry $m{r}^{(t+1)}(i)$ coordinately

$$r^{(t+1)}$$
: divergence between $Appr(x^{(t+1)})$ $r^{(t+1)}+Appr(x^{(t+1)})=x^{(t+1)}$ and $x^{(t+1)}$

adding back the additional divergence due to the moving

■ Time Complexity: $O(|V^{(t+1)}|^k)$ $\xrightarrow{\text{reduced}}$ $O(\frac{1}{\xi^k})$, where $\xi \propto \frac{1}{\log_2 \mu(V^{(t+1)})}$

- Incremental sweep cut
 - Intuition: If updated edge set only contains inserted edges on complement $\overline{C}^{(t)}$ after edge filtering and $\mu(C^{(t)}, N) < \mu(\overline{C}^{(t)}, N)$, then $|C^{(t+1)}| \ge |C^{(t)}|$.
 - Solution: Identify the shared sequence between two consecutive time permutations and start from the first different entry.

• Time Complexity: Reduces q iterations, each iteration costing $O(|V^{(t+1)}|^2)$.

Roadmap

- Motivation
- Problem Definition
- Proposed L-MEGA Framework
- Experiments
- Conclusion

Experimental Setup

- Comparison methods
 - Static edge-based clustering algorithms: Nibble [Spielman and Teng, 2013].
 - Dynamic edge-based clustering algorithms: ISC [Ning et al., 2010],
 TPPR[Ohsaka et al., 2015].
 - Static motif-based clustering algorithms: HOSPLOC [Zhou et al., 2017], MAPPR [Yin et al., 2017].
 - Dynamic motif-based clustering algorithms: Our L-MEGA, L-MEGA-1
 (without the edge filtering model), L-MEGA-2 (without the motif push operation), L-MEGA-3 (without the incremental sweep cut).

Dataset

Network	Category	V	E	Time Span
Alpha	Rating	3,783	14,124	62 months
OTC	Rating	5,881	21,492	62 months
Call	Communication	6,809	7,967	4 months
Contact	Interaction	10,972	44,517	3 months

Effectiveness Comparison

- L-MEGA outperforms baseline methods in terms of four metrics
 - Conductance (the lower the better).
 - Third-order conductance (the lower the better).
 - Triangle density (the higher the better).
 - Time consumption (the lower the better).

Methods	Alpha					
	conductance	third-order conductance	triangle density	time		
Nibble	0.4909 ± 0.0060	0.4555 ± 0.0454	0.2355 ± 0.1033	18.4073 ± 5.9853		
TPPR	0.4923 ± 0.0089	0.4994 ± 0.1188	0.1613 ± 0.0934	12.4094 ± 5.7653		
ISC	0.3334 ± 0.0000	1.0000 ± 0.0000	0.0000 ± 0.0000	56.6376 ± 0.0000		
MAPPR	0.4947 ± 0.0008	0.5852 ± 0.0104	0.0712 ± 0.0030	43.0597 ± 2.9107		
HOSPLOC	0.4915 ± 0.0080	0.4816 ± 0.0576	0.1891 ± 0.0859	237.6121 ± 12.5513		
L-MEGA	0.4712 ± 0.0586	0.4097 ± 0.0278	0.2561 ± 0.1008	8.2032 ± 4.8534		
L-MEGA-1	0.4728 ± 0.0102	0.4676 ± 0.0344	0.2490 ± 0.0736	241.4762 ± 13.3320		
L-MEGA-2	0.4944 ± 0.0036	0.4369 ± 0.0428	0.3819 ± 0.0737	14.8578 ± 4.0788		
L-MEGA-3	0.4712 ± 0.0586	0.4097 ± 0.0278	0.2561 ± 0.1008	11.4955 ± 4.2939		

Performance on Alpha Network at the Last Time Stamp

Effectiveness Comparison

Methods	Alpha				OTC			
Methods	conductance	third-order conductance	triangle density	time	conductance	third-order conductance	triangle density	time
Nibble	0.4909 ± 0.0060	0.4555 ± 0.0454	0.2355 ± 0.1033	18.4073 ± 5.9853	0.4963 ± 0.0045	0.5091 ± 0.0941	0.1582 ± 0.1076	63.1869 ± 34.2154
TPPR	0.4923 ± 0.0089	0.4994 ± 0.1188	0.1613 ± 0.0934	12.4094 ± 5.7652	श्	0.5751 ± 0.1106	0.1524 ± 0.1320	39.1307 ± 19.3550
ISC	0.3334 ± 0.0000	1.0000 ± 0.0000	0.0000 ± 0.0000	56.6376 ± 0.0	3.2032s	0.5656 ± 0.0000	0.1908 ± 0.0000	195.5490 ± 0.0000
MAPPR	0.4947 ± 0.0008	0.5852 ± 0.0104	0.0712 ± 0.0030	43.0597 ± 2.91		0.5404 ± 0.0023	0.0904 ± 0.0001	207.5004 ± 1.1757
HOSPLOC	0.4915 ± 0.0080	0.4816 ± 0.0576	0.1891 ± 0.0859	237.6121 ± 12.5513	1737 ± 0.0041	0.5080 ± 0.0722	0.2000 ± 0.1172	753.3742 ± 51.6812
L-MEGA	0.4712 ± 0.0586	0.4097 ± 0.0278	0.2561 ± 0.1008	8.2032 ± 4.8534	0.4652 ± 0.0074	0.4102 ± 0.0620	0.2946 ± 0.0719	32.4308 ± 46.8278
L-MEGA-1	0.4728 ± 0.0102	0.4676 ± 0.0344	0.2490 ± 0.0736	241.4762 ± 13.3320	0.4733 ± 0.0074	0.4622 ± 0.0547	0.2578 ± 0.0961	778.5583 ± 33.4156
L-MEGA-2	0.4944 ± 0.0036	0.4369 ± 0.0428	0.3819 ± 0.0737	14.8578 ± 4.0788	0.4860 ± 0.0013	0.4750 ± 0.0175	0.5318 ± 0.0141	32.6827 ± 1.6759
L-MEGA-3	0.4712 ± 0.0586	0.4097 ± 0.0278	0.2561 ± 0.1008	11.4955 ± 4.2939	0.4652 ± 0.0074	0.4102 ± 0.0620	0.2946 ± 0.0719	45.5937 ± 45.6706
Methods	Call			Contact				
Methods	conductance	third-order conductance	triangle density	time	conductance	third-order conductance	triangle density	time
Nibble	0.0792 ± 0.0309	0.5675 ± 0.4809	0.0249 ± 0.0384	13.5155 ± 2.7236	0.0504 . 0.0005	0.0000 . 0.4000		
TPPR		0.5075 ± 0.1007	0.0249 ± 0.0364	13.3133 ± 2.7230	0.3536 ± 0.0925	0.2878 ± 0.1857	0.0017 ± 0.0015	33.7139 ± 0.1147
ILLK	0.1910 ± 0.1399	0.5589 ± 0.4442	0.0249 ± 0.0384 0.0274 ± 0.0420	8.3268 ± 2.160	0.3536 ± 0.0925	0.2878 ± 0.1857 0.2221 ± 0.1382	0.0017 ± 0.0015 0.0025 ± 0.0023	33.7139 ± 0.1147 25.0759 ± 0.1416
ISC	0.1910 ± 0.1399 0.5893 ± 0.0000			8.3268 ± 2.160	223			
		0.5589 ± 0.4442	0.0274 ± 0.0420	8.3268 ± 2.160		0.2221 ± 0.1382	0.0025 ± 0.0023	25.0759 ± 0.1416
ISC	0.5893 ± 0.0000	0.5589 ± 0.4442 0.5270 ± 0.0000	0.0274 ± 0.0420 0.1700 ± 0.0000	8.3268 ± 2.160 27.3982 ± 0 1	223	0.2221 ± 0.1382 0.5252 ± 0.0000	0.0025 ± 0.0023 0.0035 ± 0.0000	25.0759 ± 0.1416 1351.1732 ± 0.0000
ISC MAPPR	0.5893 ± 0.0000 0.5957 ± 0.0042	0.5589 ± 0.4442 0.5270 ± 0.0000 0.4401 ± 0.0291	0.0274 ± 0.0420 0.1700 ± 0.0000 0.2219 ± 0.1869	8.3268 ± 2.160 27.3982 ± 0 2938.3853 ± 81	1316s	0.2221 ± 0.1382 0.5252 ± 0.0000 0.2790 ± 0.0753	0.0025 ± 0.0023 0.0035 ± 0.0000 0.0006 ± 0.0003	25.0759 ± 0.1416 1351.1732 ± 0.0000 88.6153 ± 0.2981
ISC MAPPR HOSPLOC	0.5893 ± 0.0000 0.5957 ± 0.0042 0.1652 ± 0.0485	0.5589 ± 0.4442 0.5270 ± 0.0000 0.4401 ± 0.0291 0.2981 ± 0.3721	0.0274 ± 0.0420 0.1700 ± 0.0000 0.2219 ± 0.1869 0.0296 ± 0.0416	8.3268 ± 2.160 27.3982 ± 0 2938.3853 ± 81 768.4879 ± 1.1554	1316s 2040 ± 0.1346	0.2221 ± 0.1382 0.5252 ± 0.0000 0.2790 ± 0.0753 0.2308 ± 0.1559	0.0025 ± 0.0023 0.0035 ± 0.0000 0.0006 ± 0.0003 0.0034 ± 0.0051	25.0759 ± 0.1416 1351.1732 ± 0.0000 88.6153 ± 0.2981 3443.8829 ± 0.2193
ISC MAPPR HOSPLOC L-MEGA	0.5893 ± 0.0000 0.5957 ± 0.0042 0.1652 ± 0.0485 0.1542 ± 0.0544	0.5589 ± 0.4442 0.5270 ± 0.0000 0.4401 ± 0.0291 0.2981 ± 0.3721 0.2866 ± 0.3823	0.0274 ± 0.0420 0.1700 ± 0.0000 0.2219 ± 0.1869 0.0296 ± 0.0416 0.0395 ± 0.0448	8.3268 ± 2.160 27.3982 ± 0 2938.3853 ± 81 768.4879 ± 1.1554 1.1316 ± 0.9816	.1316s .2040 ± 0.1346 0.2438 ± 0.1676	0.2221 ± 0.1382 0.5252 ± 0.0000 0.2790 ± 0.0753 0.2308 ± 0.1559 0.1614 ± 0.1443	0.0025 ± 0.0023 0.0035 ± 0.0000 0.0006 ± 0.0003 0.0034 ± 0.0051 0.0042 ± 0.0052	25.0759 ± 0.1416 1351.1732 ± 0.0000 88.6153 ± 0.2981 3443.8829 ± 0.2193 3.4496 ± 3.0660

Performance on Four Networks at the Last Time Stamp

Scalability Analysis

- Scalability of motif push operation
 - L-MEGA (motif push operation) is near constant with very slow increase.

Solve PageRank(Nibble)
Solve Multilinear PageRank(HOSPLOC)
Track Multilinear PageRank(L-MEGA)

5 5.5 6 6.5 7 7.5 8 8.5 9

(a) The number of vertices

(b) The edge density

Roadmap

- Motivation
- Problem Definition
- Proposed L-MEGA Framework
- Experiments
- Conclusion

Conclusion

- L-MEGA: A novel local motif clustering framework
 - Edge filtering model.
 - Motif push operation.
 - Incremental sweep cut.

L-MEGA Framework

- Results
 - L-MEGA outperforms baseline methods in finding dense motificular clusters and consuming less time on time-evolving graphs.

Methods	Alpha					
	conductance	third-order conductance	triangle density	time]	
Nibble	0.4909 ± 0.0060	0.4555 ± 0.0454	0.2355 ± 0.1033	18.4073 ± 5.9853	(5)	
TPPR	0.4923 ± 0.0089	0.4994 ± 0.1188	0.1613 ± 0.0934	12.4094 ± 5.7653	Ĭ.	
ISC	0.3334 ± 0.0000	1.0000 ± 0.0000	0.0000 ± 0.0000	56.6376 ± 0.0000	Running	
MAPPR	0.4947 ± 0.0008	0.5852 ± 0.0104	0.0712 ± 0.0030	43.0597 ± 2.9107	a a	
HOSPLOC	0.4915 ± 0.0080	0.4816 ± 0.0576	0.1891 ± 0.0859	237.6121 ± 12.5513		
L-MEGA	0.4712 ± 0.0586	0.4097 ± 0.0278	0.2561 ± 0.1008	8.2032 ± 4.8534	1	
L-MEGA-1	0.4728 ± 0.0102	0.4676 ± 0.0344	0.2490 ± 0.0736	241.4762 ± 13.3320		
L-MEGA-2	0.4944 ± 0.0036	0.4369 ± 0.0428	0.3819 ± 0.0737	14.8578 ± 4.0788		
L-MEGA-3	0.4712 ± 0.0586	0.4097 ± 0.0278	0.2561 ± 0.1008	11.4955 ± 4.2939		

Thanks!

Dongqi Fu (UIUC)

Dawei Zhou (UIUC)

Jingrui He (UIUC)

