Project 1a1 - Food Delivery System: The Hungry Wolf

List of Stakeholders

Core Stakeholders

- Customers individuals placing food orders.
- Restaurants/Food Vendors businesses that provide meals.
- Delivery Partners / Riders / Drivers people delivering food.
- Platform Admins manage the system, monitor activity.
- Investors / Shareholders interested in financial performance.

Extended Stakeholders

- Restaurant Staff chefs, kitchen workers, and order packers.
- Restaurant Managers / Owners oversee restaurant performance on the platform.
- Payment Service Providers banks, wallets, credit card companies, UPI, PayPal.
- Marketing & Sales Teams design promotions, campaigns, discounts.
- Technology Teams developers, designers, QA testers, data scientists.
- Customer Support Staff handle complaints, refunds, and order issues.

Indirect / Overlooked Stakeholders

- Food Packaging Suppliers provide containers, cutlery, and eco-friendly options.
- Insurance Providers cover drivers, accidents, and business liability.
- Regulators / Government Agencies driver safety, food safety, road laws, taxation.

Stakeholder biases

1. Customer vs. Delivery Partner

- Customers need fast delivery at the lowest possible fee.
- Delivery partners need fair compensation, safe working conditions, and manageable delivery times.
- Clash: Customers may expect 30-minute delivery guarantees, while drivers want enough time to deliver safely without penalties.

2. Restaurant vs. Platform Admin

- Restaurant needs: Higher margins, freedom to set prices, and visibility.
- Platform needs: Competitive pricing, commissions on sales, and control over promotions.

• Clash: Restaurants often feel platforms take excessive commissions, while platforms push discounts that reduce restaurant profits.

3. Customer vs. Restaurant Staff

- Customer need: Wide customization options (extra toppings, no onions, special diets).
- Restaurant staff need: Streamlined kitchen operations with minimal complexity.
- Clash: Excessive customization slows down the kitchen, increases errors, and frustrates staff.

4. Investors vs. Environmental Groups

- Investor needs: Rapid growth, market share, cost efficiency.
- Environmental need: Sustainable packaging, reduced carbon footprint.
- Clash: Cheap single-use plastics help cut costs and scale fast, but harm sustainability goals.

5. Regulators vs. Customers

- Regulator needs: Compliance with food safety, labor rights, and taxation laws.
- Customer needs: Convenience, lowest prices, quick delivery.
- Clash: Stricter labor regulations or food standards may increase costs, which ultimately raise customer prices or slow delivery.

Zero-Shot Prompting vs. Careful Prompting

Aspect	Zero-Shot Prompting	Careful Prompting
Definition	Giving the model a task without examples or detailed instructions relies on pretraining knowledge.	Providing detailed instructions, constraints, or examples to guide the model's response.
Example	"Translate this sentence into French: I love learning."	"Summarize the article in 3 bullet points, each under 15 words, focusing only on main arguments."
Strengths	Simple and fast to use- Flexible across many tasks- Useful for brainstorming, prototyping, and creative exploration	Reduces ambiguity- Produces consistent and structured outputs- Ensures accuracy, clarity, and control
Limitations	May produce inconsistent or ambiguous results- Outputs can vary	Requires more time and effort- Needs iteration and prompting skill- Overly rigid prompts may limit creativity

	in tone, detail, or structure- Less reliable for precise tasks	
Best Used For	Brainstorming ideas, Quick exploration, Early-stage prototyping	Technical writing- Legal/academic drafting- Coding or structured outputs
Overall Approach	Efficiency and exploration	Precision and control
Complementary Use	Start with zero-shot prompting to generate ideas, then refine using careful prompting for consistent results.	Works best when combined with zero-shot prompting as an initial stage.

Use Cases

Use Case 1: Customer Registration

Preconditions: Customer has internet access and opens the Hungry Wolf app/website.

Main Flow:

- 1. Customer selects "Sign Up."
- 2. Enter name, email, phone, and password.
- 3. System validates input.
- 4. An account is created, and confirmation is sent.

Subflows:

1a: Social login option (Google, NCSU email).

Alternative Flows:

- 3a: Invalid email/phone \rightarrow system shows error.
- 3b: Password too weak \rightarrow system prompts for a stronger password.

Use Case 2: Restaurant Registration

Preconditions: The Restaurant owner wants to join the platform.

Main Flow:

- 1. The restaurant selects "Register Restaurant."
- 2. Fills business details, menu, tax ID, and license info.
- 3. The system verifies documents.
- 4. Admin approves restaurant accounts.

Subflows:

2a: Upload menu as PDF or manual entry.

Alternative Flows:

3a: Missing documents → registration kept pending.

3b: Invalid license \rightarrow rejection notice sent.

Use Case 3: Browse Menu

Preconditions: Customer logged in.

Main Flow:

- 1. The customer searches for a restaurant or food item.
- 2. The menu displayed items, prices, and offers.
- 3. The customer selects the desired items.

Subflows:

1a: Apply filters (veg/non-veg, cuisine, price range).

1b: Sort by popularity or rating.

Alternative Flows:

1a: No results → show "No restaurants found" message.

Use Case 4: Place Order

Preconditions: The customer has items in their cart.

Main Flow:

- 1. Customer reviews cart.
- 2. Selects the delivery address and time.
- 3. Choose a payment method.
- 4. Confirms order.
- 5. The system sends orders to restaurants.

Subflows:

- 3a: Apply discount coupon.
- 3b: Use saved addresses.

Alternative Flows:

- 3a: Payment failure \rightarrow retry option
- 4a: Cart empty → system prevents checkout.

Use Case 5: Restaurant Accepts/Rejects Order

Preconditions: Order placed by customer.

Main Flow:

- 1. The restaurant receives an order notification.
- 2. Accepts the order.
- 3. Starts food preparation.

Subflows:

2a: Estimated preparation time sent to the customer.

Alternative Flows:

2b: Rejects order (due to unavailability).

2c: Restaurant delays confirmation \rightarrow system auto-cancels after set time.

Use Case 6: Assign Delivery Partner

Preconditions: The Restaurant accepts orders.

Main Flow:

- 1. The system finds nearby delivery partners.
- 2. Sends requests to the closest rider.
- 3. Rider accepts.
- 4. Customer notified with ETA and tracking link.

Subflows:

2a: Rider rejects \rightarrow system reassigns to next rider.

Alternative Flows:

2b: No rider available → system cancels order and refunds.

Use Case 7: Live Order Tracking

Preconditions: The Delivery partner accepted the assignment.

Main Flow:

- 1. Customer opens app \rightarrow sees real-time map.
- 2. System updates rider location.
- 3. Status changes (Picked Up \rightarrow On the Way \rightarrow Delivered).

Subflows:

2a: Push notifications at each stage.

Alternative Flows:

2b: GPS error → show "Unable to fetch location."

Use Case 8: Order Delivery & Confirmation

Preconditions: Rider arrives at the customer's address.

Main Flow:

- 1. Rider hands food to customers.
- 2. Customer confirms receipt (OTP/signature).
- 3. System marks the order as delivered.

Subflows:

1a: Contactless delivery option → rider drops at doorstep and sends photo.

Alternative Flows:

- 2a: Customer unavailable \rightarrow rider calls.
- 2b: No response \rightarrow order returned to restaurant.

Use Case 9: Customer Feedback & Rating

Preconditions: Order delivered.

Main Flow:

- 1. The system prompts customers for feedback.
- 2. Customer rates restaurant and delivery partner.
- 3. Feedback is stored for analytics.

Subflows:

2a: Option to leave comments/photos.

Alternative Flows:

1a: Customer skips feedback.

Use Case 10: Refund / Complaint Handling

Preconditions: Customer reports an issue.

Main Flow:

- 1. Customer selects "Help/Support Choose issue type (wrong item, late delivery, etc.).
- 2. The system checks order details.
- 3. Admin/Support review the news complaint.
- 4. Refund or compensation issued.

Subflows:

2a: Automated refund for common issues (late by >30 mins).

Alternative Flows:

4a: Complaint rejected → system explains reason.

