THE NATURAL CONTROL OF INSECTS IN PINEWOODS

I. FACTORS INFLUENCING THE INTENSITY OF PREDATION BY SONGBIRDS

by

L. TINBERGEN

(Zoological Laboratory of Groningen University, Haren (Gr.))

I. Introduction	266
II. The species studied	268
III. The area of the observations	269
IV. Methods	270
1. The measurement of the density of insects	270
2. The measurement of the density of birds	278
3. Observations on the food of the birds	278
V. The populations of the prey species	280
VI. The feeding behaviour of tits	283
VII. The records of the birds' food	285
VIII. The food of different species of tits	290
IX. The prey insects: the influence on predation of specific differences in risk	292
1. The influence on risk of prey size	294
2. The influence on risk of some other specific properties of the prey	296
3. The influence on risk of the density of a prey species	301
X. The prey insects: the influence on predation of general abundance of food	304
1. Year-to-year fluctuations	304
2. Seasonal fluctuations	306
XI. The role of specific characters of prey in the birds' hunting behaviour	307
1. The appearance of new species of prey	308
2. Short-term fluctuations in the composition of the food	317
3. Individual differences in food taken	318
XII. The relation between the density of different prey species and the com-	J
position of the tits' food	323
1. Expectation based on the probability of encounter hypothesis	323
2. Observed relations	327
3. The influence of D_o	329
	330
5. The low risk at low densities	331
	332
XIII. Discussion	332
713.7 C	334
XXX D C	335
Appendix by L. de Ruiter	333

I. INTRODUCTION

This paper is a contribution to the study of the natural control of animal populations. It deals with the role played by birds in regulating insect numbers.

Although it is obvious that the size of natural populations of animals is regulated, the mechanism of this process is poorly understood. It is evident that abnormally high densities in some way or another cause mortality and emigration to exceed reproduction and immigration. The reverse effect is found when the density falls exceptionally low. Hence, one or more of the factors just mentioned must vary in relation to population density, but precise information about this relation is still very scanty and there is a great need for detailed investigations.

Thus, a first approach to the problem is to measure the rates of mortality, emigration, reproduction and immigration at different densities, and to investigate the mechanisms involved. The mortality factor is complicated because it is the result of a number of different agents. Each of these may have a different relation to population density, and consequently needs to be studied separately. Moreover, the possibility of their interaction must be considered.

Such an analysis should be followed by a more synthetic approach. If all factors involved had been measured, it would be possible to give an exact quantitative description of the whole regulatory system. This, of course, is still far from being realised for populations under natural conditions. Some important questions, however, may be asked beforehand. For instance, it is known that the density of one species is often stabilised at different levels in different habitats. Further, the range of fluctuations is very different for different species and also for the same species in different habitats. These phenomena have important ecological implications. Hence, the question of their causation deserves every attention. The answer may increase our insight into the organisation of communities.

With these general views in mind, we studied the influence of birds on the populations of insects in pinewoods. As Varley (1953) has pointed out, woodland insects are favourable objects for the study of natural control, especially because human interference with their habitat is only slight. Moreover, forestry entomologists have accumulated much information about the life histories of tree insects and their parasites. Finally, work on pest control has yielded many data on the trends of population densities from year to year.

In spite of the occurrence of outbreaks, the populations of woodland insects show "restricted fluctuation" (LACK, 1954, see ch. II), which is the effect of a regulating mechanism. As they normally live in very