	 3. Exploratory Data Analysis 4. Data Preprocessing 5. Model Building A. Logistic Regression B. Random Forest Classifier C. Extreme Gradient Boosting Classifier D. K Nearest Neighbors Classifier E. Gradient Boosting Classifier 6. Model Saving 7. Model Evaluation 8. Voting Classifier
163	9. Conclusion 1. Importing the Libraries # Importing the libraries. import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler, MinMaxScaler
196	<pre>from sklearn.model_selection import train_test_split, StratifiedKFold, cross_val_score from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, fl_score from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from xgboost import XGBClassifier from sklearn.neighbors import KNeighborsClassifier from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler import warnings warnings.filterwarnings("ignore") plt.style.use("ggplot")</pre>
23]:	<pre># Features to be dropped DROP_ATTRIBUTES = ["date", "device", "attribute7"] # List of features to be scaled based on Standardization/Normalization STANDARD_SCALER_ATTRIBUTES = ["attribute2", "attribute3", "attribute4", "attribute5", "attribute8", "attribute6"] 2. Dataset Overview # Importing the dataset. failure_data = pd.read_csv("/data/predict_failure.csv") failure_data.head()</pre>
<pre>23]: [3]: [4]:</pre>	date device failure attribute1 attribute2 attribute4 attribute5 attribute6 attribute7 attribute9 0 2015-01-01 S1F01085 0 215630672 56 0 52 6 407438 0 0 0 7 1 2015-01-01 S1F0166B 0 61370680 0 3 0 6 403174 0 0 0 2 2015-01-01 S1F01E6V 0 173295968 0 0 0 12 237394 0 0 0 3 2015-01-01 S1F01E6V 0 79694024 0 0 0 6 410186 0 0 0 4 2015-01-01 S1F01R2B 0 135970480 0 0 0 15 313173 0 0 3 # Shape of the dataset. failure_data.info() failure_data.info() failure_data.info() failure_data.info() failure_data.info() <t< td=""></t<>
[5]:	# Checking for missing values print (failure_data ["date"] = pd.to_datetime(failure_data)*100) # Checking for missing values print (failure_data.isnull().sum()/len(failure_data)*100)
[7]: [7]:	<pre>date</pre>
[8]: [8]:	mean 0.000851 1.223868e+08 159.484762 9.940455 1.741120 14.222693 260172.858025 0.292528 0.2925 std 0.029167 7.045960e+07 2179.657730 185.747321 22.908507 15.943021 99151.009852 7.436924 7.436924 min 0.000000 0.000000 0.000000 0.000000 1.000000 8.000000 0.000000 0.00000 25% 0.000000 6.127675e+07 0.000000 0.000000 0.000000 8.000000 221452.000000 0.00000 50% 0.000000 1.227957e+08 0.000000 0.000000 0.000000 10.000000 249799.500000 0.00000 75% 0.000000 1.833084e+08 0.000000 0.000000 12.000000 310266.00000 0.00000 max 1.000000 2.441405e+08 64968.000000 24929.000000 1666.000000 98.000000 689161.000000 832.00000 d Checking for class imbalance based on target variable failure. failure_data["failure"] .value_counts() 0
[9]: [9]: 10]:	# Checking the unique number of devices in the dataset. failure_data["device"].nunique()
11]: 11]:	W1F0JNBT 304 W1F0JH87 304 W1F0G9T7 304 Name: device, dtype: int64 # Printing the correlation between attributes. failure_data.corr() failure 1.00000 0.001984 0.052902 -0.000948 0.067398 0.002270 -0.000550 0.119055 0.119055 0.001622 attribute1 0.001984 1.000000 -0.004248 0.003702 0.001837 -0.003370 -0.001516 0.000151 0.000151 0.001122 attribute2 0.052902 -0.004248 1.000000 -0.002617 0.146593 -0.013999 -0.026350 0.141367 0.141367 -0.002736 attribute3 -0.000948 0.003702 -0.002617 1.000000 0.097452 -0.006696 0.009027 -0.001884 -0.001884 0.532366
12]:	attribute4 0.067398 0.001837 0.146593 0.097452 1.000000 -0.009773 0.024870 0.045631 0.045631 0.036069 attribute5 0.002270 -0.003370 -0.013999 -0.006696 -0.009773 1.000000 -0.017051 -0.009384 -0.009384 0.005949 attribute6 -0.000550 -0.001516 -0.026350 0.009027 0.024870 -0.017051 1.000000 -0.012207 -0.012207 0.021152 attribute7 0.119055 0.000151 0.141367 -0.001884 0.045631 -0.009384 -0.012207 1.000000 1.000000 0.006861 attribute8 0.119055 0.000151 0.141367 -0.001884 0.045631 -0.009384 -0.012207 1.000000 1.000000 0.006861 attribute9 0.001622 0.001122 -0.002736 0.532366 0.036069 0.005949 0.021152 0.006861 0.006861 1.000000 # Visualizing the correlations between attributes using heatmap. plt.figure(figsize=(12, 8)) sns.heatmap(failure_data.corr(), cmap="Paired", annot=True, vmin=0, vmax=0.2, linewidths=1) plt.title("Heatmap for correlations between attributes") plt.show() Heatmap for correlations between attributes failure
	attribute1 - 0.002
13]:	attribute8 - 0.12 0.00015 0.14 0.0019 0.046 0.0094 0.012 1 1 0.0069 attribute9 - 0.0016 0.0011 0.0027 0.53 0.036 0.0059 0.021 0.0069 0.0069 1 failure attribute1 attribute2 attribute3 attribute4 attribute5 attribute6 attribute7 attribute8 attribute9 We can see from the correlation chart that attributes 7 and attribute have a correlation of 1 which means they are same. Also, there's not much correlation between the rest of them. # Looks like attribute 7 and attribute 8 are similar. Let's confirm the same. failure_data["attribute7"].equals(failure_data["attribute8"]) True
14]: 15]:	<pre># Creating a seperate dataframe for records when the device has failed. failures = failure_data[failure_data["failure"] == 1] # Plotting a distplot to see the distribution of attribute 1 and attribute 6. fig, axes = plt.subplots(2, 2, figsize=(12, 8), sharey=False, sharex=False) fig.suptitle('Probability Distributions of Attribute 1 and Atrribute 6 based on Failure status', fontsize=15 sns.distplot(ax=axes[0, 0], a=failure_data[failure_data["failure"] == 0]["attribute1"], color = "green") axes[0, 0].set_title("Failure: No") sns.distplot(ax=axes[0, 1], a=failure_data[failure_data["failure"] == 1]["attribute1"], color="red") axes[0, 1].set_title("Failure: Yes") sns.distplot(ax=axes[1, 0], a=failure_data[failure_data["failure"] == 0]["attribute6"], color = "blue") axes[1, 0].set_title("Failure: No") sns.distplot(ax=axes[1, 1], a=failure_data[failure_data["failure"] == 1]["attribute6"], color="orange") axes[1, 1].set_title("Failure: Yes")</pre>
	Probability Distributions of Attribute 1 and Atrribute 6 based on Failure status Failure: No Failure: Yes 1
	10 - Failure: No 1e-5 Failure: No 1e-6 Failure: Yes 7 6 - Jisu 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17]:	<pre># Checking probability distributions for attributes 2, 3, 4, 5, 8 and 9 when failure is 1. fig, axes = plt.subplots(2, 3, figsize=(15, 10), sharey=False, sharex=False) fig.suptitle('Frequency distribution of other attributes when the device failure status = 1', fontsize=15) sns.histplot(ax=axes[0, 0], data=failures, x="attribute2", kde=True, bins=15, color="yellow") axes[0, 0].set_title("Attribute 2") axes[0, 0].set_xlabel(None) sns.histplot(ax=axes[0, 1], data=failures, x="attribute3", kde=True, bins=15, color="violet") axes[0, 1].set_xlabel(None) sns.histplot(ax=axes[0, 2], data=failures, x="attribute4", kde=True, bins=15, color="red") axes[0, 2].set_xlabel(None) sns.histplot(ax=axes[1, 0], data=failures, x="attribute5", kde=True, bins=15, color="green") axes[1, 0].set_title("Attribute 5") axes[1, 0].set_title("Attribute 5") axes[1, 1].set_xlabel(None) sns.histplot(ax=axes[1, 1], data=failures, x="attribute8", kde=True, bins=15, color="orange") axes[1, 1].set_title("Attribute 8") axes[1, 1].set_title("Attribute 9") axes[1, 2].set_title("Attribute 9") axes[1, 2].set_title("Attribute 9") axes[1, 2].set_title("Attribute 9") axes[1, 2].set_xlabel(None) fig.tight_layout() plt.show()</pre>
	Frequency distribution of other attributes when the device failure status = 1 Attribute 2 Attribute 3 Attribute 4 80 40 20 20 40 40 40 40 40 40 4
	Attribute 5 Attribute 8 Attribute 9 Looks like only the attribute1 and attribute6 from our given dataset are normally distributed. But the rest of the attributes don't have a valid distribution as the data is skewed. But, if we take a look at the boxplot of these attributes to check for outliers, there are just too many for them to be removed. They could be useful features for detecting device failures, so we are just going to keep them all. Also, since all the
16]: 16]: 17]:	attributes are of different scales, we can fix that by performing Standardization and Normalization. # Let's check out the date column in more detail. failure_data["date"].nunique() 304 # Checking the earliest and latest date available in our dataset. print("Earliest date: ",failure_data["date"].min()) print("Latest date: ",failure_data["date"].max()) Earliest date: 2015-01-01 00:00:00 Latest date: 2015-11-02 00:00:00
25]:	# Assuming we have records of device from the day it was set up, creating a device uptime (in days) column. failure_data.sort_values(by=["device", "date"], inplace=True) failure_data["device_uptime"] = failure_data.groupby(by="device")["date"].rank(method="dense") # Checking the frequency of device failures based on their uptime plt.figure(figsize=(10, 6)) sns.lineplot(data=failure_data[failure_data["failure"] == 1], x="device_uptime", y="failure", marker="o", li plt.show() 104- 102- 9 100- 098-
<pre>26]:</pre> 26]:	# Locks like there is not much of correlation between the uptime and failure of devices. # Also, assuming here that devices are of the same type. # Dropping the non-required columns from our dataset. # Failure_data.drop(["attribute7", "device", "device_uptime", "date"], axis=1, inplace=True) ### Tribute1 attribute2 attribute3 attribute4 attribute5 attribute6 attribute8 attribute9 ### O 0 215630672 56 0 52 6 407438 0 7 ### 1163 0 1650864 56 0 52 6 407438 0 7 ### 2326 0 124017368 56 0 52 6 407438 0 7 ### 24651 0 97393448 56 0 52 6 407439 0 7 ### 4. Data Preprocessing ### Creating array of independent variables and target. X = failure_data.drop("failure", axis=1)
	<pre>print("Shape of X: ", X.shape) print("Shape of y: ", y.shape) Shape of X: (124494, 8) Shape of y: (124494,) # Splitting the dataset into training and testing sets. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=True, straprint(Counter(y_train)) print(Counter(y_test)) Counter({0: 99510, 1: 85}) Counter({0: 24878, 1: 21}) Our dataset is severely imbalanced and to tackle this issue, we'll be using SMOTE for oversampling followed by random undersampling to get the right amount of data for training our model.</pre>
30]: 31]:	<pre># Creating a SMOTE based sampler. smote = SMOTE(sampling_strategy=0.1) under = RandomUnderSampler(sampling_strategy=0.75) # Creating an imblearn pipeline to perform SMOTE followed by undersampling from imblearn.pipeline import Pipeline sampling pipeline = Pipeline({ ("smote", smote), ("under_sampling", under) } # Resampling the training dataset to tackle imbalance problem X_train_rs, y_train_rs = sampling_pipeline.fit_resample(X_train, y_train) print("Number of training samples before resampling: ", Counter(y_train)) print("Number of training samples after resampling: ", Counter(y_train_rs)) Number of training samples before resampling: Counter({0: 99510, 1: 85}) Number of training samples after resampling: Counter({0: 13268, 1: 9951}) # Making a list of attributes that needs to be scaled via normalization/standardization. std_attributes = ["attribute2", "attribute4", "attribute4", "attribute5", "attribute8", "attribute9"] min max attributes = ["attribute1", "attribute6"]</pre>
	# Building a columntransformer pipeline for data preprocessing preprocessing_pipeline = ColumnTransformer([
35]: 36]:	<pre>cv = StratifiedKFold(n_splits=10, random_state=42, shuffle=True) # Creating a function to display scores def display_scores(scores): print("ROC-AUC Scores: ", scores) print("ROC-AUC Mean: ", scores.mean()) print("ROC-AUC SD: ", scores.std()) # a function to print all metrics of results on test set def print_metrics(prediction): print("Accuracy: ", round(accuracy_score(y_test, prediction), 2)) print("ROC-AUC score: ", round(froc_auc_score(y_test, prediction), 2)) print("Fl-score: ", round(fl_score(y_test, prediction, average="macro"), 2)) print("Precision: ", round(precision_score(y_test, prediction, average="macro"), 2)) print("Recall: ", round(recall_score(y_test, prediction, average="macro"), 2)) print("</pre>
195	<pre># Net's Titst build a simple Logistic Tegression Model lr_pipeline = Pipeline([</pre>
41]: 41]:	<pre># creating a gitasearcher for hogistic Regression model lr_pipeline = Pipeline([</pre>
42]: 43]:	# Selecting the model with best parameters final_lr_model = grid_search.best_estimator_ # Checking the model performance on test data y_pred_lr = final_lr_model.predict(X_test) print_metrics(y_pred_lr) Accuracy: 0.97 ROC-AUC score: 0.8 Fl-score: 0.51 Precision: 0.51 Recall: 0.8
44]:	<pre>0 1.00 0.97 0.99 24878 1 0.02 0.62 0.04 21 accuracy</pre>
45]: 59]:	# Checking out the scores for our Random Forest Model display_scores(scores) ROC-AUC Scores: [0.99973113 0.99985421 0.99951945 0.99949029 0.99950393 0.9996713 0.9997815 0.99972621 0.99959226 0.99965135] ROC-AUC Mean: 0.9996521634588769 ROC-AUC SD: 0.00011790417941894849 # Create a param_grid with values for tuning hyperparameters rf_param_grid = [('rfcriterion': ["gini", "entropy"], 'rfn_estimators': [100, 200],
64]: 64]:	<pre>rf_pipeline = Pipeline([</pre>
65]: 66]:	# Selecting the model with best parameters final_rf_model = rf_grid_search.best_estimator_ # Checking the model performance on test data y_pred_rf = final_rf_model.predict(X_test) print_metrics(y_pred_rf) Accuracy: 0.98 ROC-AUC score: 0.63 F1-score: 0.51 Precision: 0.51 Recall: 0.63 [[24422 456] [15 6]] precision recall f1-score support 0 1.00 0.98 0.99 24878 1 0.01 0.29 0.02 21
110	<pre># Finally, Let's try out the xgboost classifier xgb_pipeline = Pipeline([</pre>
[]:	# Fitting the pipeline on the training data xgb_pipeline.fit(X_train_rs, y_train_rs) # Checking the model performance on test data y_pred_xgb = xgb_pipeline.predict(X_test) print_metrics(y_pred_xgb) Accuracy: 0.95 ROC-AUC score: 0.81 F1-score: 0.5 Precision: 0.51 Recall: 0.81
133	<pre>0 1.00 0.95 0.98 24878 1 0.01 0.67 0.02 21 accuracy</pre>
[]: 185	ROC-AUC Scores: [0.9868347 0.98860807 0.98805671 0.98654349 0.98698201 0.98775111 0.99105664 0.98736751 0.98685731 0.9864549] ROC-AUC Mean: 0.987651245894529 ROC-AUC SD: 0.001310359941735822 # Fitting the pipeline on the training data knn_pipeline.fit(X_train_rs, y_train_rs)
	0 1.00 0.94 0.97 24878 1 0.01 0.76 0.02 21 accuracy 0.94 24899 macro avg 0.51 0.85 0.50 24899 weighted avg 1.00 0.94 0.97 24899 5.5 Gradient Boosting Classifier
159	# Checking out the scores for our K Nearest Neighbors Model
159	<pre># Checking out the scores for our K Nearest Neighors Model display_scores(scores) ROC-AUC Scores: [0.96488244 0.95967744 0.96754685 0.95979786 0.95662449 0.95966949 0.96859315 0.96561368 0.95814745 0.96581171] ROC-AUC Mean: 0.9626364555141805 ROC-AUC SD: 0.0040681200111274 # Fitting the pipeline on the training data gb_pipeline.fit(X_train_rs, y_train_rs) # Checking the model performance on test data y_pred_gb = gb_pipeline.predict(X_test) print_metrics(y_pred_gb) Accuracy: 0.94 ROC-AUC score: 0.87 F1-score: 0.49 Precision: 0.51 Recall: 0.87</pre>
159 160	<pre># Checking out the scores for our K Nearest Neighors Model display_scores(scores) ROC-AUC Scores: [0.96488244 0.95967744 0.96754685 0.95979786 0.95662449 0.95966949 0.96859315 0.96561368 0.95814745 0.96581171] ROC-AUC Mean: 0.9626364555141805 ROC-AUC SD: 0.0040681200111274 # Fitting the pipeline on the training data gb_pipeline.fit(X_train_rs, y_train_rs) # Checking the model performance on test data y_pred_gb = gb_pipeline.predict(X_test) print_metrics(y_pred_gb) Accuracy: 0.94 ROC-AUC score: 0.87 Fl-score: 0.49 Precision: 0.51</pre>

True Positive Rate		LR (area = 0.80) RF (area = 0.63)
8. Voting Classifier Since the models trained by us are ensemble three of our top perform	ning models using a Voting	RF (area = 0.63) KNN (area = 0.85) GB (area = 0.87) XGB (area = 0.81) Base 0.8 1.0 ner TP or FP) when it comes to predicting the failure of devices, we will classifier. This will help us reduce the number of FP and increase the T
<pre>vc_pipeline = Pipeline([</pre>	<pre>cessing_pipeline), fier(estimators=[("gk</pre>	o", GradientBoostingClassifier(n_estimators=500, learning("knn", KNeighborsClassifier(n_neighbors=25)), ("lr", LogisticRegression(solver="saga", max_iter=1000,
print_metrics(y_pred_vc) Accuracy: 0.96 ROC-AUC score: 0.89 F1-score: 0.51 Precision: 0.51 Recall: 0.89	recall f1-score st	upport 24878 21
<pre># Computing the TPR and FP y_pred = vc_pipeline.pred fpr, tpr, thresholds = roc roc_auc = roc_auc_score(y_ # Plotting the ROC curve def plot_roc_curve (fpr, to plt.plot(fpr, tpr, lin plt.plot([0,1], [0,1], plt.xlabel("False Posi</pre>	<pre>dict_proba(X_test)[:, c_curve(y_test, y_pred) test, y_pred) tpr, label = None, tit newidth = 2, label= la 'k') # Dashed diag tive Rate")</pre>	24899 c curve 1] d) cle=None):
ROC-AUC for V	right")	<pre>roc_auc, "ROC-AUC for Voting Classifier")</pre>
# This looks great. We'll joblib.dump(vc_pipeline, "	VC (area = 0.90) 0.6 0.8 10 sitive Rate go ahead and save that/models/final_votir	s as our final model
	d an ensemble of trained N s using Voting Classifier to	fachine Learning models such as Logistic Regression, Gradient Boosting predict the probabilty of device failures given some input features. The on the unseen test data.