Chapter 5 [Data] Link Layer

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer
Networking: A
Top Down
Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Sicherungsschicht: Begriffe

Hosts und Router: nodes (Node, Knoten)

Kommunikationskanäle: links (Link)

- drahtgebunden
- drahtlos

Schicht-2 Paket: frame (Frame, "Rahmen")

Die Sicherungsschicht sorgt für die Übertragung eines Datenpakets von Knoten zu Knoten (direkte über einen Link verbundene "Nachbarn")

Dienste der Sicherungsschicht

- Erzeugen von Frames
 - Kapseln der Pakete der Vermittlungsschicht
 - Header & Trailer
- Medienzugriff
 - MAC: medium access control
 - MAC-Adressen im Header der Frames
- Fehlererkennung und -korrektur
 - Paritätsbit, CRC
- zuverlässige Zustellung (nicht Ethernet!)
- Flusskontrolle
- Duplex und Halbduplex

Wo ist die Sicherungsschicht implementiert?

- in jedem Knoten
- Netzwerkadapter = Netzwerkkarte (aka network interface card NIC)
 - Ethernet (802.3); WLAN/WiFi (802.11)
 - implementiert Sicherungs- und Bitübertragungsschicht
- Kombination aus Hardware, Software und **Firmware**

Adressen der Sicherungsschicht

- * MAC-Adresse, auch:
 - physische Adresse
 - Ethernet-Adresse
- Funktion:

Wird "lokal" benutzt, um den Frame von einer Schittstelle über eine physische Verbindung (drahtgebunden oder drahtlos) zur nächsten zu bringen.

- 48 Bit im ROM der NIC gespeichert
 - z.B.: 1A-2F-BB-76-09-AD Hexadecimal (jede "Ziffer" steht für 4 Bit)

MAC-Adressen

- weltweit eindeutig (aber manchmal per Software veränderbar!)
- verwaltet von der IEEE
- Hersteller kaufen Adressbereiche
- Analogie:
 - MAC-Adresse: wie Sozialversicherungsnummer
 - IP-Adresse: wie Postanschrift
- ♦ MAC-Adresse → portabel, wird mitgenommen
- ❖ IP-Adresse → nicht portabel
 - hängt IP-(Sub-)Netz ab, dem der Knoten angehört

Mehrfachzugriff

- Punkt-zu-Punkt-Links
 - Point-to-Point-Protocol (PPP) zum Einwählen in Netzwerk
 - auch in Ethernet zwischen Switch und Host
- Broadcast-Link (geteiltes Medium)
 - klassisches (nicht geswitchtes) Ethernet
 - 802.11 WLAN
 - Kollision: wenn 2 oder mehr Knoten gleichzeitig senden

geteiltes Kabel (z.B. klass. Ethernet)

geteilter Funkraum (z.B., 802.11 WiFi)

geteilter Funkraum (Satelliten)

geteilter Schallraum (z.B. Cocktail Party)

Protokolle für Mehrfachzugriff

- Kanalaufteilungsprotokolle
 - Kanal wird in kleine Teile "gestückelt"
 - TDMA, FDMA
- Protokolle mit wahlfreiem Zugriff (random access)
 - wenn 2 oder mehr Knoten gleichzeitig senden → Kollision
 - slotted ALOHA, ALOHA
 - CSMA: CSMA/CD (Ethernet), CSMA/CA (drahtlos)
- Protokolle mit abwechselndem Zugriff
 - Token-Passing
 - Bluetooth
 - FDDI

Kollisionen

- Kollisionen können immer auftreten
- komplette Übertragungszeit verschwendet

CSMA (carrier sense multiple access)

Kommunikationsregel:

Sei höflich und unterbrich deine Kommunikationspartner nicht!

also

CSMA

listen before transmit = erst hören, dann reden

- ist der Kanal frei: übertrage kompletten Frame
- ist der Kanal belegt: verschiebe Übertragung

CSMA/CD (Kabel)

- collision detection
- Übertragung abbrechen, wenn Kollision erkannt

CSMA/CA (drahtlos)

- collision avoidance
- Kollisionen von vornherein vermeiden

CSMA/CD (collision detection)

Token-Passing

- * Kontrol-Token wird von einem Knoten zum nächsten weitergereicht.
- Der Knoten, der das Token hält, darf Daten übertragen.

<u>Prüfsummen</u>

Paritätsbit:

erkennt einzelne Bitfehler

2-dimensionale Paritätsbits: erkennen und korrigieren Bitfehler

Cyclic Redundancy Check (CRC):

- sehr leistungsfähige Fehlererkennung
- sehr weit verbreitet (Ethernet, WiFi, ATM)

mathematical formula

Ethernet

- dominierende LAN-Technologie
- * kostengünstig und einfach (einfacher als Token-LANs)
- Übertragungsraten ständig weiterentwickelt (schneller)
- * verbindungslos und unzuverlässig
- nutzt CSMA/CD

Metcalfe's Ethernet sketch

Ethernet: physische Topologie

- * Bus: während der 90er
 - alle Knoten in einer Kollisionsdomäne
- * Stern: heute vorherrschend
 - Switches im Zentrum
 - jede Speiche (des Nabenrades = Hub) ist eine Punktzu-Punkt-Verbindung (keine Kollisionen)

Ethernet Frame: Aufbau

NIC kapselt IP-Paket (oder Paket eines anderen Protokolls der Vermittlungsschicht) in einer Ethernet Frame

Ethernet frame structure (more)

preamble

- 7 Bytes der Form 10101010 und 1 Byte der Form 10101011
- synchronisieren Sender und Empfänger

* addresses

6 Byte MAC-Adressen für Empfänger und Sender

* type

 das Protokoll der höheren Schicht (meistens IP, aber andere möglich, z.B., Novell IPX, AppleTalk)

* CRC

- Prüfsumme zum Erkennen von Bitfehlern
- Fehler erkannt: Frame wird verworfen

type

preamble	dest. address	source address	data (payload)	CRC
----------	------------------	-------------------	-------------------	-----

Ethernet Standards (IEEE 802.3)

- umfassen Spezifikationen der Sicherungs- und Bitübertragungsschicht
- * es gibt *viele* verschiedene Ethernet Standards
 - allen gemein ist: MAC-Protokoll und Aufbau der Frames
 - Übertragungsraten: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10Gbps
 - Medien: Glasfaser, Kupferkabel (Koaxial, Twisted-Pair)

