

ESTUDO DE PROCESSOS

FEVEREIRO DE 2024

EQUIPE DO PROJETO

Edson Gabriel Filho

🛭 Leonardo Oliveira η Consultor de Projetos

SUMÁRIO

Pré- processo	4
Higiene pessoal Higiene do ambiente Higiene das instalações, equipamentos e utensílios	6
Estudo de processo	9
Maquinários Manufaturados	10
Industriais	11
Pós processo	12
Embalagens	13
Ворр	13
Laminada	14
BEPD	15
Tabela de embalagens	13

1. Pré Processo

O pré-processo desempenha um papel fundamental no aumento do shelf life dos produtos, desempenhando um papel essencial na preservação da segurança, qualidade e aceitabilidade dos produtos ao longo do seu ciclo de vida, ajudando a garantir que permaneçam frescos e seguros para consumo por períodos mais longos.

1.1 Higiene Pessoal:

Sobre o processo de higiene pessoal, alguns passos devem ser seguidos a fim de reduzir a ocorrência de deteriorações durante a produção:
Uniforme adequado:

- Cores **claras**, preferencialmente **branco**;
- Estar em condições aceitáveis (limpo, sem furos, passados, etc);
- Devem ser preferencialmente de algodão, por se tratar de um material de maior duração e qualidade, além de possibilitar movimentação confortável e livre e prevenir contra eventuais acidentes;
- Devem ser trocados frequentemente;
- É necessário a utilização de sapatos fechados;
- É recomendável o uso de **aventais**;
- É necessário o uso de **toucas** durante todo o processo.

Figura 1: EPIs adequados para cozinha

Pessoas que entrarem em contato com os ingredientes na produção, devem:

- Estar com os cabelos **limpos** além de estarem cobertos com **touca**;
- Evitar o uso de barba;
- Retirar adornos como anéis, piercings, pulseiras, brincos e etc;
- Unhas aparadas e limpas, sem qualquer tipo de esmalte.

A lavagem das mãos deve ser realizada sempre que:

- Começar a trabalhar;
- Usar o banheiro;
- Lidar com **dejetos** (lixo);
- Realizar atividades com a mão não envolvendo a produção (comer, fumar, etc);
- Lidar com alimentos **não higienizados**;
- **Retornar** à área de trabalho após vir de algum outro local.

Figura 2: Forma correta de lavar as mãos

1.2.1 Higiene do Ambiente:

Primeiramente para evitar o risco de contaminação dos alimentos é preciso a higienização do local de produção, segue as instruções:

- Remoção de substâncias visíveis indesejadas (poeira, resto de comida e outras sujidades) com o uso de água potável e sabão;
- Sanitização com produtos químicos como cloro e álcool.

OBS: Realizar este procedimento no início do trabalho, depois de cada uso do espaço, quando começar o trabalho com outro tipo de alimento, em intervalos periódicos, se os utensílios estiverem em uso constante.

1.2.2 Higiene das Instalações, Equipamentos e Utensílios:

- Lavar com água e sabão e ou detergente e esfregar bem;
- Enxaguar para retirar todos os resíduos de sabão e sujidades;
- Secar paredes, bancadas e pias e puxar a água do piso com rodo;
- Desinfetar pisos e paredes com água sanitária (observar a diluição na embalagem) e álcool 70% em pias e bancadas, o que dispensa enxágue. Deixar secar naturalmente.

Paredes e tetos:

- -Frequência mais próxima da semanal:
 - Lavar até o teto com água, detergente e escova/vassoura específica;
 - Finalizar com pano e solução clorada (observar diluição do rótulo);
 - Fazer a desinfecção com água clorada, e esperar, no mínimo, 2 minutos para retirada do produto. Caso não seja possível realizar a desinfecção com água clorada, utilizar álcool 70%;
 - Deixar secar naturalmente.

Pisos e rodapés:

- Limpar uma ou mais vezes ao dia, de acordo com a necessidade;
- Recolher os resíduos;
- Lavar com água e detergente;
- Enxaguar bem com água corrente, preferencialmente quente;
- Fazer a desinfecção emergindo ou banhando por 15 minutos em água clorada ou álcool 70%;
- Deixar secar naturalmente.

Janelas, portas e telas

- Diariamente:

- Limpar e desinfetar as maçanetas das portas.
- Semanalmente:
 - Lavar com água e detergente;
 - Esfregar com escova, se necessário e enxaguar.

Parte elétrica (luminárias, interruptores, tomadas, etc.)

- Limpar com pano umedecido em água e detergente;
- Esfregar com escova quando necessário;
- Remover o detergente com pano umedecido e água;
- Secar.

Bancadas e Mesas de Apoio

- Lavar com detergente;
- Retirar o detergente das bancadas usando rodo exclusivo;
- Enxaguar bem em água corrente preferencialmente quente;
- Enxaguar as superfícies que entram em contato com os alimentos;
- Fazer a desinfecção emergindo ou banhando por 15 minutos em água clorada ou fazendo uso de álcool a 70%, e esperar 2 minutos para total evaporação;
- Deixar secar naturalmente e usar rodo.

Ralos

- Recolher os resíduos acumulados;
- Lavar com água e detergente;
- Enxaguar com solução clorada e esperar, ao menos, 2 minutos para utilizar o ralo novamente.

Utensílios

- Panelas antiaderentes;
- Talheres de silicone;
- Batedeiras com tigela de inox;
- Batedeiras e liquidificadores devem ser sempre desmontados e lavados após o uso;
- Em função da forma como é armazenado, é recomendado que se lave novamente antes de seu uso.

2. Processo

Figura 3: Fluxograma do processo.

Por ser um processo essencialmente simples, não existem muitas otimizações que podem ser feitas, além da adição de maquinários. Visando este fator elencamos um dosador a médio prazo que pode auxiliar na questão do preenchimento dos alfajores e um maquinário mais complexo que monta o alfajor como um todo a longo prazo.

Posteriormente, já que retornarão a produzir as próprias bolachas, podemos fazer um novo estudo dentro deste mesmo projeto para visualizar formas de otimizar a produção das mesmas.

3 MAQUINÁRIOS

3.1 Manufaturados

Porcionador de 10 mLs

Segundo os cálculos que fizemos com o doce de leite Tirol, que em teoria se aplica a todos os outros, os 28g utilizados na receita são preenchidos quase perfeitamente pelo dosador de 10 mLs, tendo que só realizar uma pequena correção para a formatação do doce como já é feito, assim evitando o uso da balança.

Como terão de manipular o doce de leite previamente em função dos aditivos, isso acaba facilitando a adição deles no alfajor, por só pressionar a alavanca uma vez e obter a quantidade adequada.

Figura 4: Porcionador de 10 mls.

Dosador	Site	Valor
Zahav	Maesttro profissional: https://www.maesttro.n et/porcionador- dosador-de- molhos-inox-10ml- zahav	R\$ 630,08

3.2 Industriais

No mercado, existem máquinas que fazem corte e dosagem de alfajores e que podem vir a ser alternativas para uma futura expansão do negócio.

A aquisição de uma máquina com sistema de corte a fio da massa do alfajor, que dosa e corta as "bolachinhas" e que recheia as massas, pode não só acelerar a produção, mas também otimizar o trabalho, além de evitar desperdícios. Outra vantagem do uso desse maquinário em uma produção de alfajor também é que será muito útil para a padronização do produto, o que tornará o trabalho ainda mais profissional e atrativo.

Figura 5: Máquina montadora de alfajores Bralyx

Figura 6: Montador de alfajor AFJ

Máquinas de alfajor	Site	Preço
Bralyx	Bralyx.com:https://bralyx. com/maquinas-para- confeitarias-e- biscoitos/dosadora- pingadeira-e-corta- fio/drop-top-400-450- plus/	R\$86.000,00
AFJ	Abrigadeirinha.com.br:ht tps://www.abrigadeirinha .com.br/montadora-de- alfajor-afj	R\$ 30.600,00

4. Pós Processo

4.1 EMBALAGENS:

4.1.1 BOPP

Figura 7: Embalagem Bopp

O polipropileno biorientado utilizado na composição da embalagem bopp é conhecido por desempenhar diversos parâmetros de resistência. A película revestida no material é indicada para indústrias alimentícias, bebidas, têxteis, entre outras. A sua estrutura pode ser metalizada totalmente ou só na parte interna.

A disposição da embalagem Bopp tem fácil personalização para a pigmentação de cores, imagens e rótulos. Esse modelo é muito utilizado para a comercialização de produtos que estarão expostos em locais como supermercados, lojas e estabelecimentos variados.

O Bopp é uma das embalagens mais maleáveis, flexíveis, ao mesmo tempo, resistente deste mercado, facilitando assim o seu manuseio, armazenagem e transporte. Além disso, por ser composta de um material metalizado, as embalagens Bopp agregam muito mais validade aos alimentos condicionados em seu interior, impedindo por exemplo, a passagem de luz, de ar e de outros elementos que poderiam contaminar ou modificar os aspectos do produto.

Por fim, é importante ressaltar ainda o excelente custo-benefício deste material em relação a outros insumos comuns utilizados na confecção de embalagens flexíveis, permitindo que empresas reduzam gastos e mantenham seus níveis de qualidade.

Porém é relevante ressaltar que esse tipo de embalagem não lida tão bem com trocas de temperatura, em especial para altas temperaturas.

4.2.2 LAMINADA

Figura 8: Embalagem Laminada

A embalagem de alumínio para alfajores traz uma série de benefícios significativos. Em primeiro lugar, a inclusão de abas adesivas simplifica o processo de fechamento do produto, dispensando a necessidade de seladoras. Além disso, ela oferece uma proteção eficaz contra luz, vapor d'água, gases e aromas, garantindo a frescura e a qualidade do alfajor por mais tempo. Sua resistência à gordura impede vazamentos indesejados, enquanto sua capacidade de suportar uma variedade de temperaturas, tanto quentes quanto frias, a torna extremamente versátil. A praticidade não para por aí: a embalagem permite uma abertura fácil para o consumidor final, graças aos pequenos rasgos integrados.

No entanto, é importante reconhecer os desafios associados a essa opção. O custo inicial é mais elevado, exigindo um investimento inicial mais substancial. Além disso, a reciclagem pode ser complicada, dada a dificuldade na separação do alumínio. E há também o risco de microfuros, que podem surgir durante a fabricação ou manuseio, comprometendo a integridade do produto.

Em suma, embora a embalagem de alumínio ofereça uma série de vantagens importantes, é essencial considerar cuidadosamente seus aspectos tanto positivos quanto desafiadores antes de tomar uma decisão final.

4.2.3 PEBD

O Polietileno de Baixa Densidade (PEBD) é um polímero derivado da polimerização do eteno, composto apenas por hidrogênio e carbono. É conhecido por ser o polímero mais simples e economicamente acessível, devido à sua ampla produção global.

Os filmes de Polietileno de Baixa Densidade são parcialmente cristalinos e flexíveis, apresentando pouca reatividade química frente à maioria dos produtos químicos comuns devido à sua natureza parafínica, alto peso molecular e estrutura cristalina parcial, o que o torna mais resistente à corrosão e deterioração química. São parcialmente solúveis em solventes quando expostos a temperaturas abaixo de 60°C e não apresentam toxicidade em condições normais, podendo entrar em contato com alimentos.

Estes filmes oferecem diversas vantagens, sendo altamente resistentes a cortes e atritos, tornando-os uma opção ideal para minimizar perdas durante o

transporte. Além disso, são altamente impermeáveis à água, mesmo em altas temperaturas, e não interagem com os alimentos armazenados, nem deixam odores.

No entanto, apresentam algumas desvantagens, como a susceptibilidade à degradação por agentes oxidantes em temperatura ambiente, e podem sofrer inchaço na presença de solventes aromáticos, solventes relacionados à limpeza e também os com presença de cloro. Também são pouco solúveis em solventes polares, como álcoois, ésteres e cetonas. Contudo, o contato entre o produto embalado e esses agentes é bastante raro quando o transporte é feito adequadamente.

4.1.2 Tabela de embalagens:

Para compor embalagens, é possível fazermos combinações entre materiais como o alumínio, BOPP, nylon, poli, PET, polietileno e polipropileno. E com a combinação certa, cada tipo de embalagem pode oferecer diferentes graus de qualidade nas seguintes características de proteção:

- Propriedades adequadas de selagem.
- Barreira à luz.
- Durabilidade em altas e baixas temperaturas.
- Resistência química e mecânica.
- Bloqueio de gases
- Bloqueio de umidade

Tabela de comparação

Material	Barreira à	Barreira a	Barreira à	Troca de	Custo
	luz	gases	umidade	calor	
PEBD	Ruim	Média	Boa	Ruim	Baixo
ВОРР	Boa	Boa	Boa	Média	Variável
Laminadas	Boa	Muito boa	Muito boa	Boa	Variável

Nossas recomendações se separam em duas partes:

Se preferem a que é a melhor embalagem, a laminada seria a melhor opção com certeza! Entretanto, se estiverem prezando pelo custo benefício como principal escolha, a BOPP pode desempenhar um desempenho muito próximo por um preço menor, porém não se iguala às qualidades da laminada.

