Einführung in Datenbanksysteme

Tutorium 05 Logischer Entwurf

Tutoren

Mit Folienmaterial aus der Vorlesung und anderen Quellen

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

QISPOS-Anmeldung bis 31.Mai

- Relationales Modell
- Vom EER zum Relationen Datenbank Schema
 - Entitytyp mit Attributten
 - Relationshiptyp
 - 1:1 Beziehungen
 - 1:n Beziehungen
 - m:n Beziehungen
 - Rekursive Beziehungen
 - Mehrstellige Beziehungen
 - Schwache Entitytypen
 - Generalisierung/Spezialisierung

Relationales Modell

- Was ist eine Relation?
 - Eine Tabelle, d.h.
 - Eine geordnete Menge an Attributen (Spalten) und
 - eine ungeordnete Menge an Tupel (Zeilen)

Film

Titel	Jahr	Länge	Тур
Basic Instinct	1992	127	Farbe
Total Recall	1990	113	Farbe
Dead Man	1995	121	s/w

Attribute: Titel Jahr Länge Typ

Tupel: z.B. (Basic Instinct, 1992, 127, Farbe)

Relationenname: Film

Relationenschema: Film (Title, Jahr, Länge, Typ)

Datenbankschema: mehrere Relationenschemata

Integritätsbedingungen

- Bedingungen, die von einer Datenbank zu jedem Zeitpunkt erfüllt sein müssen
- Einschränkungen der möglichen DB-Zustände (Ausprägungen der Relationen)
- IB werden überwacht von
 - DBMS
 - Anwendung
- Beispiele IB die von DBMS überwacht werden
 - Schlüsselattribut
 - UNIQUE Key
 - Fremdschlüssel
 - Trigger

Integritätsregeln

Primärschlüssel

- Ein Attribut oder eine Kombination mehrerer Attribute einer Relation, die die Eindeutigkeit der Tupel dieser Relation sicherstellen, ein Primärschlüssel soll minimal sein
- Es existieret ein Primärschlüssel und ggf. weitere Schlüsselkandidaten.

Unique Key

 Hat alle Eigenschaften vom Primärschlüssel, stellt aber lediglich die Eindeutigkeit sicher.

Fremdschlüssel

- Ein Attribut, das auf einen Tupel einer anderen Relation verweist.
- referentielle Integritätsbedingungen beim Ändern/Löschen eines Datensatzes in der Haupttabelle
 - restricted/no action(nicht zulässig)
 - cascade(weitergeben)
 - set null

Weitere Begriffe

- R(<u>a</u>,b)
 - a ist ein Schlüsselattribut
- Buch(<u>ISBN</u>, Titel)
 - ISBN ist ein eingebetteter Primärschlüssel
- Artikel(<u>ArtikelNr</u>, Bezeichnung)
 - ArtikelNr ist nicht eingebettet sondern ein künstlicher Schlüssel
- \blacksquare R(<u>a</u>,<u>b</u>)
 - a,b ist ein zusammengesetzter Schlüssel
- \blacksquare R(<u>A(x,y,z)</u>, c)
 - □ A(x,y,z) ist ein komplexer Schlüssel
- R(\underline{a} ,b->X) und X(\underline{b} ,c)
 - b ist ein Fremdschlüssel, zeigt auf den Primärschlüssel b der Relation X
 - b ist auch ein eingebetteter Fremdschlüssel, da er zum Datensatz gehört

Ziele der ER-Abbildung

- Darstellung aller Informationen des ER-Diagramms
- Exaktheit
 - Das Datenbankschema kann genauso viele Instanzen wie das ER-Diagramm darstellen.
 - Das Datenbankschema kann nicht mehr Instanzen als das ER-Diagramm darstellen.
- Erhaltung und Einhaltung der Informationskapazität!
 - Genau die gleichen Daten können abgespeichert werden
 - Nicht mehr, nicht weniger.

Grundalgorithmus

- 1. Wandle jeden Entitytypen in eine Relation mit den gleichen Attributen um.
- Wandle jeden Relationshiptypen in eine Relation um, deren Attribute die zugehörigen Attribute und die Schlüsselattribute der beteiligten Entitytypen sind.
- 3. Verfeinere den Entwurf
 - 1. Zusammenlegung von Relationen
 - 2. Normalisierung(nächste Woche)
- Ausnahmen
 - Schwache Entitytypen
 - vererbte Schlüssel einbeziehen
 - Relation zusammenlegen, wenn keine eigenen Attribute
 - IST Relationships

Beispiel

Mitarbeiter(<u>Mnr</u>, *AbtId->Abteilung*)
Abteilung(<u>AbtId</u>)

Kunde(<u>KundenNr</u>)
bestellt(<u>KundenNr</u>, <u>PNr</u>)
Produkt(<u>Pnr</u>)

Mitarbeiter(Mnr, Abtld)

Welche Attribute sind Fremdschlüsseln, welche Schlüssel? Warum haben wir bei 1:1 Beziehung nur eine Tabelle? Warum bei 1:n nur zwei Tabellen?

Beispiel Attribute von Relationshiptyp

Mitarbeiter(Mnr, Seit, AbtId->Abteilung)
Abteilung(AbtId)

Kunde(<u>KundenNr</u>)
bestellt(<u>KundenNr</u>, <u>PNr</u>, Anzahl)
Produkt(<u>Pnr</u>)

Mitarbeiter(Mnr, Abtld, Seit)

Schwache Entitytypen

 Die Relation eines schwachen Entitytypen muss nicht nur die eigenen Attribute, sondern auch die Schlüsselattribute aller Entitytypen, die über unterstützende Relationshiptypen erreicht werden, enthalten.

Gebäude(<u>Bezeichnung</u>)
Raum(<u>Nr</u>, <u>Bezeichnung-> Gebäude</u>)

Rekursive Beziehungen

 Rekursive Beziehungen können genauso wie vorher behandelt werden.

Vorlesung(<u>VorlNr</u>, Titel) Voraussetzen(<u>Vorgänger</u>, <u>Nachfolger</u>)

Voraussetzen

<u>Vorgänger</u>	<u>Nachfolger</u>
5001	5041
5001	5043
5041	5052
5043	5052

Wieviele Relationen bei rekursiver Beziehungen Bei 1:1, 1:n?

Übung Generalisierung/Spezialisierung

ER-Stil

 in den Relationenschemata der Spezialisierungen wird der Primärschlüssel der Generalisierung als Fremdschlüssel und zudem als Primärschlüssel aufgenommen

Welche Vorteile? Welche Nachteile?

Publikation

<u>ID</u>	Titel
1	Der Spiegel
2	Database systems

Buch	<u>ID</u>	Autor	
	2	Hector GM.	

Zeitschrift	<u>ID</u>	Ausgabe	
	1	Nr. 15 / 2.4.1	

Übung Generalisierung/Spezialisierung

Nullwerte

 alle Attribute der Spezialisierungen werden in das Relationenschema hinzugefügt – Nullwerte für die Instanzen, die zu einer Klasse gehören in denen die Attribute nicht vorhanden sind

Publikation

<u>ID</u>	Titel	Тур	Autor	Ausgabe
1	Der Spiegel	Zeitschrift	NULL	Nr. 15 / 2.4.1
2	Database systems	Buch	Hector GM.	NULL

Übung Generalisierung/Spezialisierung

- Objektorientierter Stil
 - Erzeuge Relation für jeden Teilbaum
 - Diese Relation repräsentiert die Entities, die genau diese Komponente der Hierarchie besitzen
 - Objekte gehören zu genau einer Klasse

Buch	<u>ID</u>	Titel	Autor	
	2	Database Systems	Hector GM.	

			_
7 -	••-	_ _	rift
/0	ITC	cn	ritt
	163	vı ı	

<u>ID</u>	Titel	Ausgabe
1	Der Spiegel	Nr. 15 / 2.4.1

Zusammenfassung Gen./Spez.

- ER Stil
 - Schlüsselattribute vererben
 - Relation für jede "Sorte"

- Objektorientierter Stil
 - Relation für jeden Teilbaum
 - Achtung bei overlapping: Alle Kombinationen berücksichtigen
- Mit Nullwerten
 - Ein ET der für "nicht Spezialfälle" NULL werte der Attribute speichert.

Vor-/Nachteil:

- Viele Tupel pro Entity (da Zusammensetzung über vererbte Schlüssel notwendig)
- n Relationen

Vor-/Nachteil:

- Minimaler Speicherbedarf (nur 1 Tupel pro Entity)
- Jeweils nur so viele Attribute wie nötig
- 2ⁿ Relationen!

Vor-/Nachteil:

- Nur eine Relation
- Lange Tupel
- viele NULL möglich

=> Die Wahl des Stils ist im Einzelfall zu entscheiden

Übung: Aggregation

Bildet das EER-Typ-Diagramm in ein relationales Schema ab.

Attribute übersichtshalber weggelassen

Übung: Aggregation

- Fahrrad (FNr)
- *Rahmen* (<u>RNr</u>, FNr)
- *Rad* (<u>RadNr</u>, FNr)
- Antriebseinheit (ANr, FNr)
- Vorbau_mit_Lenker (VmLNr, FNr)
- **Sattel** (SNr, FNr)
- Schaltung (SchNr, FNr)
- Beleuchtung (BNr, FNr)

Aufgabe 1

 Führen Sie den logischen Entwurf in Richtung einer relationalen Datenbank durch, d.h. bilden Sie das EER-Typ-Diagramm in ein relationales Schema ab.

Mögliche Lösung

- Customer (<u>CustomerID</u>, BirthDate, PersName (First, Middle, Last), InstName, Type)
- **Department** (<u>DeptID</u>)
- Order (<u>OrderNo</u>, OrderDate, ReceivingDeptID, SendingCustomerID)
- ForwardsTo (OrderNo, SendingDeptID, ReceivingDeptID)
- Item (<u>ItemID</u>, Name, Description)
- Product (<u>ItemID</u>, ProdNo)
- Service (<u>ItemID</u>, ServiceNo, Duration)
- Position (PosID, Amount, ItemID, OrderNo)