algoritmi e strutture di dati

m.patrignani

055-alberi-05

copyright @2014 patrignani@dia.uniroma3.it

nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

sommario

- alberi radicati
 - definizione e uso
- strutture di dati per rappresentare alberi
 - alberi binari, alberi di grado arbitrario
- visite di un albero
 - visita in postordine (postorder traversal)
 - visita in preordine (preorder traversal)
 - visita simmetrica di alberi binari (inorder traversal)
- esercizi sugli alberi

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

definizione di albero radicato (rooted tree)

- un *albero radicato* è un insieme di nodi, su cui è definita una relazione binaria "x è figlio di y" (oppure "y è genitore di x") tale che:
 - ogni nodo ha un solo genitore, con l'eccezione della radice che non ha genitori
 - 2. c'è un cammino diretto da ogni nodo alla radice
 - l'albero, cioè, è connesso

esempio di albero radicato

- un albero può essere costruito a partire dalla radice aggiungendo ogni volta un nodo x come figlio di un nodo y già esistente
 - ciò giustifica il fatto che, se l'albero ha *n* nodi, allora ci sono *n*-1 relazioni genitore/figlio

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

numerose applicazioni usano alberi

- i rapporti di ereditarietà determinano alberi
 - alberi genealogici o filogenetici
 - ereditarietà di classi nella programmazione ad oggetti
- i rapporti gerarchici sono alberi
 - gerarchie organizzative, di controllo, di responsabilità
- i rapporti di contenimento formano alberi
 - la classificazione scientifica degli organismi (tassonomie)
 - le directory del filesystem
 - i cammini minimi da una sorgente a tutti i nodi di una rete
- la struttura sintattica di una frase è un'albero
 - alberi sintattici
- •

alberi: definizioni

- due nodi che hanno lo stesso genitore si dicono fratelli
- il numero di figli di un nodo è il suo *grado*
- i nodi di grado zero sono *foglie*
- un nodo non foglia è detto nodo interno

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

tipi di alberi

- alberi binari
 - ogni nodo può avere solamente un figlio sinistro e un figlio destro
 - l'ordine dei figli è generalmente significativo
 - si distingue tra avere il solo figlio sinistro e avere il solo figlio destro
- alberi di grado arbitrario
 - non è noto a priori il numero massimo dei figli di un nodo
 - l'ordine dei figli generalmente non è significativo

- una sequenza di nodi tali che uno è il genitore del successivo è detta cammino
 - il cammino percorre gli archi alla rovescia rispetto alla figura qui sopra
- il numero degli archi di un cammino è la sua *lunghezza*
- la *profondità* di un nodo è la lunghezza del cammino dal nodo alla radice
- profondità del nodo più profondo è *l'altezza* dell'albero

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

- qualunque nodo x sul cammino (unico) dalla y alla radice è un antenato di y, mentre y è un discendente di x;
- l'insieme costituito da un nodo z e da tutti i suoi discendenti è il sottoalbero radicato a z

alberi: definizioni

albero binario albero binario completo

- un albero *ordinato* è un albero per il quale l'ordine dei figli di ogni nodo è significativo (non possono essere permutati)
- un albero binario è un albero ordinato in cui i nodi hanno grado al più due
- un albero binario è *completo* se ogni livello presenta tutti i nodi possibili

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

- un albero binario completo di altezza h
 - ha 2^h foglie, dunque $h = \log_2(\text{numero foglie})$
 - − ha 2^h-1 nodi interni
 - ha 2^{h+1} -1 nodi

il tipo astratto albero

- tipo astratto albero di interi
 - domini
 - il dominio di interesse è l'insieme degli alberi di interi
 - dominio di supporto: i riferimenti R che identificano le posizioni nell'albero
 - dominio di supporto: gli interi $Z = \{0, 1, -1, 2, -1, ...\}$
 - dominio di supporto: i booleani B = {true, false}
 - costanti
 - l'albero vuoto

copyright @2014 patrignani@dia.uniroma3.it

operazioni del tipo astratto albero

operazioni sugli alberi di interi

- ritorna il riferimento alla radice:

ritorna il riferimento al figlio sinistro:

ritorna il riferimento al figlio destro:

- ritorna l'intero nel nodo specificato:

verifica se un albero è vuoto:

aggiunge un nodo come radice:

aggiunge un nodo come figlio sinistro:

aggiunge un nodo come figlio destro:

- elimina una foglia:

cerca un nodo:

svuota l'albero:

- conta i nodi dell'albero:

ROOT: $T \rightarrow R$

LEFT: $T \times R \rightarrow R$

RIGHT: $T \times R \rightarrow R$

INFO: $T \times R \rightarrow Z$

IS-EMPTY: $T \rightarrow B$

ADD-ROOT: $T \times Z \rightarrow T$

ADD-LEFT: $T \times R \times Z \rightarrow T$

ADD-RIGHT: $T \times R \times Z \rightarrow T$

DELETE-LEAF: $L \times R \rightarrow L$

SEARCH: $T \times Z \rightarrow R$

EMPTY: $T \rightarrow T$

SIZE: $T \rightarrow Z$

rappresentazione di alberi binari

• analogamente alle liste, gli alberi binari possono essere rappresentati mediante oggetti e riferimenti

rappresentazione di alberi binari

- un nodo dell'albero binario è un oggetto con i quattro campi
 - parent: riferimento al nodo genitore
 - left: riferimento al figlio sinistro
 - right: riferimento al figlio destro
 - info: dati satellite

operazioni sugli alberi binari

- CREATE-TREE()
 - restituisce una struttura rappresentante l'albero vuoto
 - questa funzione rappresenta la costante
- IS-EMPTY(t)
 - restituisce TRUE se l'albero è vuoto
- ROOT(t)
 - restituisce il riferimento alla radice dell'albero (NULL se t è vuoto)
- LEFT(t,n)
 - restituisce il riferimento (può essere NULL) al figlio sinistro del nodo n
- RIGHT(t,n)
 - restituisce il riferimento (può essere NULL) al figlio destro del nodo n
- INFO(t,n)
 - restituisce le informazioni (dati satellite) memorizzate nel nodo *n*
- ..

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

esercizi sugli alberi binari

1. scrivi lo pseudocodice delle funzioni

```
CREATE-TREE()
IS-EMPTY(t)
ROOT(t)
LEFT(t,n)
RIGHT(t,n)
INFO(t,n)
```

descritte nella slide precedente

2. scrivi lo pseudocodice della funzione TWO_CHILDREN(n) che ritorna TRUE se il nodo n ha due figli, FALSE altrimenti

- 3. scrivi lo pseudocodice della procedura ADD-ROOT(t,z) che aggiunga il nodo radice con valore k all'albero binario t
 - assumi che t sia vuoto
- 4. scrivi lo pseudocodice delle procedure ADD-LEFT(t,n,z) e ADD-RIGHT(t,n,z) che aggiungono il figlio sinistro e destro al nodo n, contenente il valore z
- 5. scrivi lo pseudocodice della funzione ONLY LEFT(t) che restituisce TRUE se tutti i nodi dell'albero binario t hanno solamente il figlio sinistro (o nessun figlio), FALSE altrimenti
 - se l'albero è vuoto restituisci TRUE

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

rappresentazione di alberi di grado arbitrario

- per rappresentare alberi di grado arbitrario si possono utilizzare diverse strategie
 - uso di una lista per i figli di ogni nodo
 - poco usato perché molto prolisso
 - uso di una struttura detta "figlio-sinistro-fratellodestro"
 - più sintetico

struttura "figlio-sinistro-fratello-destro"

- i nodi hanno gli usuali campi parent, left, right e info
 - i campi parent e info hanno il significato usuale
 - il campo left è un riferimento al figlio di sinistra (cioè al primo figlio)
 - il campo right, invece di essere un riferimento al figlio destro, è un riferimento al prossimo fratello

11

operazioni sugli alberi qualsiasi

- CREATE-TREE()
 - restituisce una struttura rappresentante l'albero vuoto
- IS-EMPTY(t)
 - restituisce TRUE se l'albero è vuoto
- ROOT(t)
 - restituisce il riferimento alla radice dell'albero (NULL se t è vuoto)
- FIRST-CHILD(t,n)
 - restituisce il riferimento (può essere NULL) al figlio sinistro del nodo n
- NEXT-SIBLING(t,n)
 - restituisce il riferimento (può essere NULL) al fratello destro del nodo n
- INFO(t,n)
 - restituisce l'intero memorizzato nel nodo n
- •

esercizi sugli alberi qualsiasi

- 6. scrivi lo pseudocodice della procedura ADD-ROOT(t,z) che aggiunga un nodo radice con valore z all'albero t
 - supponi che l'albero t sia vuoto
- 7. scrivi lo pseudocodice della procedura
 ADD-SIBLING(t,n,z) che aggiunge al nodo
 n un figlio che contiene il valore z

055-alberi-05 cc

copyright @2014 patrignani@dia.uniroma3.it

visite di alberi

- un albero può essere visitato ricorsivamente con due opposte discipline
 - visita in preordine (preorder traversal)
 - dopo aver processato un nodo si procede a processare i suoi figli
 - · le operazioni sui nodi vengono effettuate top-down
 - visita in postordine (postorder traversal)
 - un nodo può essere processato solo quando i suoi figli sono stati processati
 - le operazioni sui nodi vengono effettuate bottom-up
- se l'albero è binario è possibile anche una strategia intermedia
 - visita simmetrica (inorder traversal)
 - si processa prima il figlio sinistro, poi il nodo stesso, poi il figlio destro

055-alberi-05

copyright ©2014 patrignani@dia.uniroma3.it

visita in preordine

I. entro nel generico nodo *n*

 ricevo dei parametri dalla procedura eseguita sul genitore

II. eseguo la computazione su *n*

 mi avvalgo dei valori già computati sul genitore

III.e IV. lancio la procedura sul figlio sinistro e destro

 passo dei parametri alle procedure eseguite sui figli

V. esco dal nodo n

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

visita in postordine

- I. entro nel generico nodo *n*
- II. e III: lancio la procedura sul figlio sinistro e destro
 - raccolgo gli output dalle procedure lanciate sui figli

IV.eseguo la computazione su *n*

 mi avvalgo dei valori computati sui figli

V. esco dal nodo n

 restituisco un output alla procedura lanciata sul genitore

visita simmetrica

- I. entro nel generico nodo *n*
 - ricevo parametri dalla procedura eseguita sul genitore
- II. lancio la procedura sul figlio sinistro
 - posso passare dei parametri e ricevere un output
- III. eseguo la computazione su n
 - posso avvalermi dei parametri passati dal genitore
 - posso avvalermi del valore computato sul solo figlio sinistro
- IV. lancio la procedura sul figlio destro
 - posso passare dei parametri e ricevere un output
- V. esco dal nodo n
 - posso resitituire un output alla procedura lanciata sul genitore

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

esercizi sugli alberi binari

- 8. scrivi la sequenza con cui i nodi vengono processati da una visita in preordine/postordine/simmetrica di questo albero binario
 - qual è la complessità asintotica delle tre visite?

 nota: la sequenza dei nodi visitati è sempre la stessa. Ciò che cambia è il momento in cui avvengono le computazioni sul nodo

- visita in preordine
 - appena arrivo su un nodo lo processo

- ordine di visita: 1, 2, 4, 8, 9, 5, 3, 6, 7
- complessità: Θ(n)

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

esercizi sugli alberi binari

- visita in postordine
 - processo un nodo prima di lasciarlo definitivamente

- ordine di visita: 8, 9, 4, 5, 2, 6, 7, 3, 1
- complessità: Θ(n)

- visita in simmetrica
 - processo il nodo dopo aver processato il figlio sinistro e prima di aver processato il figlio destro

- ordine di visita: 8, 4, 9, 2, 5, 1, 6, 3, 7
- complessità: Θ(n)

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

esercizi sugli alberi binari

- 9. scrivi lo pseudocodice della procedura CERCA(t,n) che ritorna TRUE se il valore n è presente nell'albero binario t
 - facendo uso di una visita in preordine
 - facendo uso di una visita in postordine
 - facendo uso di una visita simmetrica
- 10. scrivi lo pseudocodice della procedura CONTA-NODI(t) che ritorna il numero di nodi dell'albero binario t.
 - fai uso di una visita in postordine

- 11. scrivi lo pseudocodice della procedura CAMMINO(t) che verifica se un albero binario t è un cammino
 - cioè se tutti i nodi hanno grado uno con l'eccezione dell'unica foglia
 - assumi che un albero vuoto sia un cammino
- 12. scrivi lo pseudocodice della procedura HEIGHT(t) che calcola l'altezza di un albero binario t.
 - cioè il numero di archi del cammino che va dalla radice alla foglia più profonda

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

CERCA(t,v) in preordine

7. return n.info == v

CERCA(t,v) in postordine CERCA(t,v) 1. return CERCA-POSTORDINE(t.root,v) ▷ innesco CERCA-POSTORDINE(n,v) 1. if n == NULL 2. return FALSE 3. if CERCA-POSTORDINE(n.left) 4. return TRUE 5. if CERCA-POSTORDINE(n.right) 6. return TRUE

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

CERCA(t,v) con visita simmetrica CERCA(t,v) 1. return RICERCA-SIMMETRICA(t.root,v) ▷ innesco RICERCA-SIMMETRICA(n,v) 1. if n == NULL 2. return FALSE 3. if RICERCA-SIMMETRICA(n.left) 4. return TRUE 5. if n.info == v 6. return TRUE 7. return RICERCA-SIMMETRICA(n.right)

- 13. scrivi lo pseudocodice della procedura AVERAGE(t) che calcoli la media dei valori contenuti in un albero binario t
 - puoi far uso o meno di CONTA-NODI(t)
 - se l'albero è vuoto produci un errore
- 14. scrivi lo pseudocodice della procedura COMPLETO(t) che verifichi se un albero binario t è completo
 - puoi far uso o meno della procedura HEIGHT(t)
 - se l'albero è vuoto ritorna TRUE

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

altri esercizi sugli alberi binari

- 15. scrivi lo pseudocodice della procedura

 DEALLOCA(t) che rimuova (deallocandoli) tutti i
 nodi di un albero t
- 16. scrivi lo pseudocodice della procedura POTA(t,x) che elimini da un albero binario il sottoalbero radicato ad un nodo x specificato tramite riferimento
 - puoi omettere di deallocare i nodi potati
- 17. scrivi lo pseudocodice della procedura POTA(t,h) che poti un albero binario lasciando solamente i nodi a profondità minore di h
 - puoi fare uso o meno di POTA(t,x)

rappresentazioni testuali di alberi binari

- 18. scrivi lo pseudocodice della procedura PARENTETICA-SIMMETRICA(*t*) che stampi un albero binario *t* nella rappresentazione parentetica simmetrica
 - cioè nel formato:

```
"(" <sottoalbero-sx> <val-radice> <sottoalbero-dx> ")"
```

- esempio: ((()2())1(()3()))
- 19. scrivi lo pseudocodice della procedura PARENTETICA-PREORDINE(t) che stampi un albero binario *t* nella rappresentazione parentetica in preordine
 - cioè nel formato:

```
"(" <val-radice> <sottoalbero-sx> <sottoalbero-dx> ")"
```

- esempio: (1 (2 () ()) (3 () ()))

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

ancora sugli alberi binari

- 20. scrivi lo pseudocodice della procedura VALORE-NONNO(*t*) che calcoli il numero di nodi dell'albero binario *t* che hanno lo stesso valore del genitore del genitore (cioè del nonno)
- 21. scrivi lo pseudocodice della procedura DUE-FIGLI(*t*) che calcoli il numero di nodi nell'albero binario *t* che hanno esattamente due figli
- 22. scrivi lo pseudocodice della procedura QUATTRO-NIPOTI(*t*) che calcoli il numero di nodi dell'albero binario *t* che hanno quattro nipotini

ancora sugli alberi binari

- 23. scrivi la procedura CAMMINO(t,n) che ritorni una lista con gli identificatori dei nodi del cammino dalla radice fino al nodo n
 - puoi supporre che n appartenga all'albero
- 24. scrivi la procedura PARENTELA(n_1 , n_2) che calcoli il grado di parentela di due nodi n_1 ed n_2
 - il grado di parentela è definito come la lunghezza del cammino che unisce i due nodi
 - puoi supporre di avere a disposizione la procedura CAMMINO(t,n)
 - come potresti utilizzarla?

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

esercizi sugli alberi qualsiasi

- 25. scrivi lo pseudocodice della procedura CONTA-NODI(t) che ritorni il numero dei nodi di un albero t realizzato tramite una struttura di dati "figlio-sinistro-fratellodestro"
- 26. scrivi la procedura CERCA(t,k) che ritorni il riferimento al nodo che contiene il valore k in un albero t realizzato tramite una struttura di dati "figlio-sinistro-fratello-destro"

esercizi sugli alberi qualsiasi

- 27. scrivi la procedura BINARIO(t) che verifica se un albero t realizzato tramite una struttura di dati "figlio-sinistro-fratello-destro" sia in realtà un albero binario (in cui cioè i nodi hanno grado massimo due)
- 28. scrivi la procedura GRADO-MASSIMO(t) che ritorni il numero massimo dei figli dei nodi di un albero t realizzato tramite una struttura di dati "figlio-sinistro-fratello-destro"

055-alberi-05 copyright ©2014 patrignani@dia.uniroma3.it

esercizi sulla copia di alberi

- 29. scrivi lo pseudocodice della funzione

 COPIA_ALBERO(t) che accetti in input un
 albero binario t e restituisca in output una sua
 copia (senza modificare l'albero t)
 - supponi per semplicità che gli indici dei nodi dell'albero siano i primi interi da zero fino al numero dei nodi-1
- 30. scrivi lo pseudocodice della funzione analoga per alberi di grado arbitrario

soluzioni: COPIA ALBERO (1)

```
COPIA ALBERO(t)
   n = CONTA NODI(t.root)
   /* nuovonodo è un array di dimensione n, dove nuovonodo[i] è un
   riferimento al nodo del nuovo albero che rappresenta la copia del nodo
   dell'albero t con indice i */
   for i = 0 to nuovonodo.length
        /* creo un nuovo nodo nuovonodo[i] */
         nuovonodo[i].info = i
         nuovonodo[i].parent = NULL
         nuovonodo[i].left = NULL
         nuovonodo[i].right = NULL
   /* tout è un nuovo albero */
   tout.root = NULL
                          /* inizializzazione (non indispensabile) */
   if (t.root != NULL) tout.root = nuovonodo[t.root.info]
   COPIA(t.root, nuovonodo)
   return tout
                      055-alberi-05
                                 copyright @2014 patrignani@dia.uniroma3.it
```

soluzioni: COPIA_ALBERO (2)

```
CONTA_NODI(n)

if (n == NULL) return 0

return 1 + CONTA_NODI(n.right) + CONTA_NODI(n.left)

COPIA(n, nuovonodo)

if (n == NULL) return

if (n.parent != NULL)

nuovonodo[n.info].parent = nuovonodo[n.parent.info]

if (n.left != NULL)

nuovonodo[n.info].left = nuovonodo[n.left.info]

if (n.right != NULL)

nuovonodo[n.info].right = nuovonodo[n.right.info]

COPIA(n.left, nuovonodo)

COPIA(n.right, nuovonodo)
```

copyright @2014 patrignani@dia.uniroma3.it

055-alberi-05