Untitled

J Lacasa

2024-10-17

Libraries

```
library(tidyverse) # data wrangling, data viz
library(mgcv) # fitting generalized additive models
library(latex2exp) # math notation in plots
library(ggpubr) # plot aesthetics
```

Loading the data

```
# dd_finalproj <- read.csv("../classes/data/dd_finalproj.csv")
url <- "https://raw.githubusercontent.com/jlacasa/stat705_fall2024/main/classes/data/dd_finalproj.csv"
dd_finalproj <- read.csv(url)
dd_finalproj$doy_f <- factor(dd_finalproj$doy)</pre>
```

Exploratory Data Analysis

Model Fitting

Firstly, fit a simple model

$$y_{ijkl} \sim N(\mu_{ijk}, \sigma^2)$$

$$\mu_{ijk} = \beta_0 + \tau_i + \rho_j + \alpha_k + (\tau \rho)_{ij} + (\tau \alpha)_{ik} + (\rho \alpha)_{ik} + (\tau \rho \alpha)_{ijk},$$

where y_{ijkl} is the observation of aboveground biomass (in g) for the *i*th treatment, *j*th species, *k*th moment (i.e., time), and *l*th repetition, that arises from a Normal distribution with mean mu_{ijk} and variance $sigma^2$. The β_0 is the general intercept, τ_i is the effect of the *i*th treatment, ρ_j is the effect of the *j*th species, and $(\tau\rho)_{ij}$, $(\tau\alpha)_{ik}$, and $(\rho\alpha)_{ik}$ are the two-way interactions between the factors mentioned above, and $(\tau\rho\alpha)_{ijk}$ is the three-way interaction of the factors mentioned above. Note that there is a single variance for all observations.

Model diagnostics

Residuals versus fitted values

Constant variance

Note that the errors increase together with the means

```
lm(log(agb_g) ~ species*trt*doy_f, data = dd_finalproj)
##
  lm(formula = log(agb_g) ~ species * trt * doy_f, data = dd_finalproj)
   Coefficients:
##
##
                   (Intercept)
                                                    speciesB
##
                    -1.514e-01
                                                  -6.419e-02
##
                      speciesC
                                                    speciesD
##
                    -3.885e-02
                                                  -1.388e-01
                                                    trtflood
##
                      speciesE
                    -5.354e-01
                                                  8.716e-15
##
                      doy_f194
##
                                                    doy_f237
                                                  2.468e+00
##
                     1.194e+00
##
            speciesB:trtflood
                                          speciesC:trtflood
                    -9.031e-15
                                                  -9.126e-15
##
##
            speciesD:trtflood
                                          speciesE:trtflood
##
                    -5.422e-15
                                                  -9.659e-15
##
            speciesB:doy_f194
                                          speciesC:doy_f194
##
                    -1.057e-02
                                                  -1.565e-01
##
            speciesD:doy_f194
                                          speciesE:doy_f194
##
                    -1.646e-01
                                                   4.488e-01
##
            speciesB:doy_f237
                                          speciesC:doy_f237
##
                     5.510e-02
                                                   7.766e-02
```

```
##
            speciesD:doy_f237
                                          speciesE:doy_f237
                     1.135e-01
##
                                                  5.849e-01
                                          trtflood:doy f237
##
            trtflood:doy f194
                    6.994e-02
##
                                                 -2.364e-01
##
   speciesB:trtflood:doy_f194
                                speciesC:trtflood:doy_f194
                    -2.277e-03
                                                 -5.797e-02
##
##
   speciesD:trtflood:doy f194
                                speciesE:trtflood:doy f194
##
                    -2.403e-02
                                                  1.197e-01
   speciesB:trtflood:doy_f237
                                speciesC:trtflood:doy_f237
##
##
                    -2.553e-02
                                                  2.229e-02
##
  speciesD:trtflood:doy_f237
                                speciesE:trtflood:doy_f237
                     1.190e-01
##
                                                 -2.714e-01
```

Model fitting II

The first, simpler, model (i.e., m1) does not seem to have constant variance. We can follow two routes: (1) transform the response and keep the assumptions, or (2) keep the data as is and change our model assumptions.

Following the second option, we can model

$$y_{ijkl} \sim N(\mu_{ijk}, \sigma_k^2)$$
$$\mu_{ijk} = \beta_0 + \tau_i + \rho_j + \alpha_k + (\tau \rho)_{ij} + (\tau \alpha)_{ik} + (\rho \alpha)_{ik} + (\tau \rho \alpha)_{ijk},$$

where y_{ijkl} is the observation of aboveground biomass (in g) for the *i*th treatment, *j*th species, *k*th moment (i.e., time), and *l*th repetition, that arises from a Normal distribution with mean mu_{ijk} and variance at time k, $sigma_k^2$. The β_0 is the general intercept, τ_i is the effect of the *i*th treatment, ρ_j is the effect of the *j*th species, and $(\tau\rho)_{ij}$, $(\tau\alpha)_{ik}$, and $(\rho\alpha)_{ik}$ are the two-way interactions between the factors mentioned above, and $(\tau\rho\alpha)_{ijk}$ is the three-way interaction of the factors mentioned above. Note that the variance is a function of time.

Model diagnostics II

```
plot(m2_fitted, abs(m2_residuals),
    xlab = TeX("$\\hat{y}_i$"),
    ylab = TeX("$\\hat{\\epsilon}_i$"),
    main = "Residuals versus fitted values",
    sub = "The errors no longer increase together with the means,
    but there seems to be different dispersions for different species")
```

Residuals versus fitted values

The errors no longer increase together with the means, but there seems to be different dispersions for different species

Constant variance

Model fitting III

The second, model (i.e., m2) fixes the issue of constant variance. However, the variance seems to be different depending on the groups.

We can thus further model σ^2 :

$$y_{ijkl} \sim N(\mu_{ijk}, \sigma_{jk}^2)$$
$$\mu_{ijk} = \beta_0 + \tau_i + \rho_j + \alpha_k + (\tau \rho)_{ij} + (\tau \alpha)_{ik} + (\rho \alpha)_{ik} + (\tau \rho \alpha)_{ijk},$$

where y_{ijkl} is the observation of aboveground biomass (in g) for the *i*th treatment, *j*th species, *k*th moment (i.e., time), and *l*th repetition, that arises from a Normal distribution with mean mu_{ijk} and variance at time k for species j, $sigma_{jk}^2$. The β_0 is the general intercept, τ_i is the effect of the *i*th treatment, ρ_j is the effect of the *j*th species, and $(\tau \rho)_{ij}$, $(\tau \alpha)_{ik}$, and $(\rho \alpha)_{ik}$ are the two-way interactions between the factors mentioned above, and $(\tau \rho \alpha)_{ijk}$ is the three-way interaction of the factors mentioned above. Note that the variance is a function of time.

Model diagnostics III

```
plot(m3_fitted, abs(m3_residuals),
    xlab = TeX("$\\hat{y}_i$"),
    ylab = TeX("$\\hat{\\epsilon}_i$"),
    main = "Residuals versus fitted values",
    sub = "These look OK")
```

Residuals versus fitted values

Constant variance

```
car::qqPlot(m2_residuals)
```


Normal distribution

[1] 69 185

car::qqPlot(m3_residuals)

[1] 106 288

hist(m2_residuals)

Histogram of m2_residuals

hist(m3_residuals)

Histogram of m3_residuals

AIC, BIC

Other checks

```
gam.check(m3)
```

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values


```
##
## Method: REML Optimizer: outer newton
## Model required no smoothing parameter selectionModel rank = 36 / 36
```

Inference

summary(m3)

Summary

```
##
## Family: gaulss
## Link function: identity logb
##
## Formula:
## agb_g ~ species * trt * factor(doy)
## ~doy + species
##
## Parametric coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept)
## 8.900e-01 6.681e-02 13.321 < 2e-16 ***
## speciesB
## -3.767e-02 1.347e-01 -0.280 0.779799</pre>
```

```
## speciesC
                                  -3.053e-03 9.495e-02 -0.032 0.974351
                                  -1.224e-01 8.317e-02 -1.471 0.141218
## speciesD
## speciesE
                                  -3.361e-01 1.345e-01 -2.498 0.012475 *
## trtflood
                                   1.820e-17 9.448e-02 0.000 1.000000
                                   2.047e+00 1.549e-01 13.215 < 2e-16 ***
## factor(doy)194
## factor(doy)237
                                  9.608e+00 6.711e-01 14.316 < 2e-16 ***
## speciesB:trtflood
                                  4.215e-17 1.906e-01 0.000 1.000000
                                  -3.364e-18 1.343e-01 0.000 1.000000
## speciesC:trtflood
                                  -2.778e-17 1.176e-01 0.000 1.000000
## speciesD:trtflood
                                  -4.214e-17 1.902e-01 0.000 1.000000
## speciesE:trtflood
## speciesB:factor(doy)194
                                   7.061e-02 3.148e-01 0.224 0.822546
                                  -5.368e-01 2.201e-01 -2.439 0.014741 *
## speciesC:factor(doy)194
                                  -6.710e-01 1.922e-01 -3.490 0.000483 ***
## speciesD:factor(doy)194
## speciesE:factor(doy)194
                                   1.749e-01 2.828e-01 0.618 0.536332
## speciesB:factor(doy)237
                                   3.923e-01 1.371e+00 0.286 0.774820
                                   2.076e-01 9.540e-01 0.218 0.827742
## speciesC:factor(doy)237
## speciesD:factor(doy)237
                                  -2.978e-01 8.314e-01 -0.358 0.720210
## speciesE:factor(dov)237
                                   1.265e+00 1.199e+00 1.055 0.291202
## trtflood:factor(doy)194
                                   1.676e-01 2.598e-01 0.645 0.518822
## trtflood:factor(doy)237
                                  -2.228e+00 9.491e-01 -2.347 0.018906 *
## speciesB:trtflood:factor(doy)194 5.764e-02 5.194e-01 0.111 0.911626
## speciesC:trtflood:factor(doy)194 -1.499e-01 3.693e-01 -0.406 0.684691
## speciesD:trtflood:factor(doy)194 -5.262e-02 3.224e-01 -0.163 0.870349
## speciesE:trtflood:factor(doy)194 3.163e-01 4.710e-01 0.672 0.501862
## speciesB:trtflood:factor(doy)237 4.189e-01 1.939e+00 0.216 0.828968
## speciesC:trtflood:factor(doy)237 3.146e-01 1.349e+00 0.233 0.815607
## speciesD:trtflood:factor(doy)237 1.114e+00 1.176e+00 0.947 0.343525
## speciesE:trtflood:factor(doy)237 -2.449e+00 1.695e+00 -1.444 0.148625
## (Intercept).1
                                  -5.935e+00 2.492e-01 -23.814 < 2e-16 ***
## dov.1
                                   2.856e-02 1.201e-03 23.775 < 2e-16 ***
                                   5.797e-01 1.105e-01 5.248 1.53e-07 ***
## speciesB.1
## speciesC.1
                                   1.026e-02 1.129e-01 0.091 0.927546
## speciesD.1
                                  -3.148e-01 1.117e-01 -2.819 0.004813 **
                                   3.001e-01 1.195e-01 2.511 0.012040 *
## speciesE.1
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
## Deviance explained = 98.4%
## -REML = 512.5 Scale est. = 1
                                      n = 401
```

anova(m3)

ANOVA

```
##
## Family: gaulss
## Link function: identity logb
##
## Formula:
## agb_g ~ species * trt * factor(doy)
```

```
## ~doy + species
##
## Parametric Terms:
                         df Chi.sq p-value
##
## species
                          4 8.404 0.07785
## trt
                         1 0.000 1.00000
## factor(doy)
                         2 364.014 < 2e-16
                         4 0.000 1.00000
## species:trt
## species:factor(doy) 8 23.406 0.00288
                         2 6.044 0.04870
## trt:factor(doy)
## species:trt:factor(doy) 8 6.547 0.58619
                         1 565.269 < 2e-16
## doy.1
                          4 73.347 4.46e-15
## species.1
```

Means, Mean comparisons

```
##
                  SE emmean group lower.CL upper.CL
     species
           trt
## 10
        E ctrl 0.99 12.56 a
                                12.50
                                         12.62
## 2
         B ctrl 1.19 12.27
                            ab 12.19 12.34
         C ctrl 0.68 11.55
                            a 11.50
## 8
                                       11.59
                                11.29
                                        11.37
## 6
         A ctrl 0.67 11.33
                            ab
## 4
        D ctrl 0.50 10.60 abc 10.57
                                        10.63
## 7
        B flood 1.19 10.46 abcd 10.38 10.53
## 1
         C flood 0.68
                     9.63 bcd
                                 9.59
                                         9.68
                          cd
## 5
         D flood 0.50 9.48
                                 9.45
                                         9.51
## 3
         A flood 0.67
                      9.10
                            cd
                                  9.06
                                          9.15
## 9
         E flood 0.99 7.88
                                  7.82
                                          7.95
                             А
```

```
color = "Treatment",
    fill = "Treatment")+
theme(aspect.ratio = 1)
```

Treatment → ctrl → flood


```
plot_data <- expand.grid(doy = unique(dd_finalproj$doy),</pre>
                         species = c("A", "B", "C", "D", "E"),
                         trt = c("ctrl", "flood"))
plot_data <- bind_cols(plot_data,</pre>
                       predict(m3, newdata = plot_data, type = "link"))
## New names:
## * '' -> '...4'
## * '' -> '...5'
plot_data <- plot_data %>%
  rename(fitted = `...4`, sd = `...5`) %>%
  mutate(sd = .01 + exp(sd))
plot_data %>%
  ggplot(aes(doy, fitted))+
  geom_line(aes(color = trt))+
  geom_ribbon(aes(ymin = fitted-sd*1.96, ymax = fitted+sd*1.96, fill = trt), alpha = .4)+
  geom_point(aes(y = agb_g, color = trt), data = dd_finalproj, shape = 21, alpha = .3)+
```


Bonus: What if we hadn't changed our model?

This is just a demonstration of what happens when we design a model that does not describe our data generating process well. This does not necessarily have to go in your project.

