Distribution & Hypothesis Testing

Statistics Tutorial Day (3) + 4

Prabesh Dhakal 29 April 2019

REVIEW FROM LAST SESSION

1. Data types for statistics:

- Qualitative Data
 - Nominal, Ordinal, Binary
- Quantitative Data
 - Discrete: (interval)
 - Continuous: Ratio and Interval
- 2. Data types in R: character, numeric, integer, Boolean ...

Statistics Tutorial Day 3

WHAT ARE WE DOING TODAY?

1. Day 3 Summarized

- Data distribution
- Central tendencies and dispersion
- Box plots
- 2. Probability and Probability Distribution
- 3. Hypothesis Testing & Chi-squared (χ^2) Test

BEFORE WE START: WORKING DIRECTORIES

A directory is a fancy way of saying a folder

- In case of research projects, a **working directory** is the folder that you have created as your project folder.
- Simply put, a working directory contains your raw data and the outputs you save will be saved on the working directory.
- You set the working directory by using setwd() command
- You check what is set as your working directory by using getwd() command

(we will do this next week)

CLASS EXERCISE - 1

TASK:

Please identify the type of data each column from the data set on the left side contains:

id	start_reference	distance_km	mood	transport_medium
1	E	2	good	on foot
2	N	3	good	bike
3	N	3	okay	bike
4	N	2	good	bike
5	N	3	okay	bike
6	N	0	good	on foot
7	N	2	good	bike
8	N	2	good	other
9	E	2	good	bike
10	W	3	okay	on foot
11	N	3	good	bus
12	N	3.5	good	on fut
13	N	3	good	bus
14	S	3	good	bike train
15	N	55	okay	bike
16	N	2	okay	train
17	N	85	okay	bike
18	W	4	okay	car
19	N	40	okay	bike
20	N	3	good	bike

Data Distribution

- 1. How to check the distribution of data
- 2. Measures of central tendencies and dispersion
- 3. Box plots

DISTRIBUTION OF THE DATA

1. What?

 An arrangement of values of a variable showing their observed or theoretical frequency of occurrence

2. Why?

- Shows how frequent each value is in a given data set
- Enables us to get a better sense of the data than what just the numbers in the tables suggest

3. How?

- Discrete distribution: bar chart
- Continuous distribution: histogram

DISCRETE DISTRIBUTION

- Takes only certain values (discrete values)
- Are represented by bar charts
 - There are gaps between the bars

CONTINUOUS DISTRIBUTION

- Takes any value within some range
- Are represented by histograms
 - There are no gaps between the bars, and the distribution will look a little smoother.

BASIC PROPERTIES OF DISTRIBUTION

- All statistical distributions have inherent properties, the most basic of which are:
 - Mean
 - Median
 - Mode
 - Variance
 - Standard deviation

Good news: most of these concepts are intuitive to understand

MEASURES OF CENTRAL TENDENCIES

- Central tendencies signify the "average" of the data
 - Mode, mean, and median
- Mode = the most frequent number in the data
- Mean = arithmetic average of a set of numeric values

$$mean = \overline{x} = \frac{\sum(x)}{N}$$

where, x = each data point and

 $N = total\ number\ of\ data\ points$

MEDIAN (CENTRAL TENDENCY)

- The value whose occurrence lies in the middle of a set of observations (divides the data into two "equal" parts)
- Steps:
 - 1. Arrange the data in an ascending order
 - 2. If N is odd:

$$median = \left(\frac{N+1}{2}\right)^{th} item$$

- 3. If N is even:
 - Identify the middle two numbers and take their average

$$median = \frac{{\binom{N}{2}}^{th} item + {\binom{N}{2}} + 1)^{th} item}{2}$$

QUARTILE

- Quartiles divide the data into 4 "equal" parts
- Median is the second quartile
- 1st Quartile = lower quartile: $Q_1 = \left(\frac{N+1}{4}\right)^{th} term$
- 2nd Quartile = $Q_2 = \left(\frac{N+1}{2}\right)^{th} term = median$
- 3rd Quartile = upper quartile: $Q_3 = \left(\frac{3(N+1)}{4}\right)^{th} term$

MEASURES OF DISPERSION: RANGE & IQR

 Dispersion = measure of how much the data varies from the mean; e.g. range, variance, standard deviation, interquartile range

• Range = largest value - smallest value = L - S

• Interquartile range = the middle 50% of the data $IQR = Q_3 - Q_1$

MEASURES OF DISPERSION: VARIANCE

 Variance = a more robust, and widely accepted, measure of dispersion, and is defined as:

sample variance =
$$s^2 = \frac{\sum (x_i - \overline{x})^2}{N-1}$$

population variance = $\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{N}$

- Standard deviation (SD) = $\sqrt{variance} = \sigma$ or s
 - Measures the variability in the observations
 - Is easier to interpret because the values' unit is in the scale of the data points

BOX PLOTS

- Summarize many measures of central tendencies and dispersion
- Learn more:

http://www.physics.csbsju.edu/s tats/box2.html

- 1. Form groups
- 2. Draw a box plot from this data:

17, 12, 14, 7, 8, 19, 23, 19, 10, 7, 12, 7, 12

Probability and Probability Distribution

PROBABILITY (NAÏVE DEFINITION)

- The likelihood of an event occurring
- The value lies between 0 and 1 (inclusive)

Naïve definition of probability:

 If X is an event for an experiment with a finite sample space S, probability of the event X occurring is:

$$P(X) = \frac{number\ of\ outcomes\ favorable\ to\ X}{total\ number\ of\ outcomes\ in\ S}$$

Why naïve, though?

This definition requires equally likely outcomes and cannot handle infinite sample space

PROBABILITY (GENERAL DEFINITION)

General definition of probability:

Given a *probability space* consists of a sample space S, a probability function P takes an event $X \subseteq S$ as input and returns P(X), a real number between 0 and 1, as output. The function P must satisfy the following:

- 1. $P(\emptyset) = 0$; P(S) = 1
- 2. If $X_1, X_2, ...$ are mutually exclusive events, then:

$$P(all\ events\ X_i's\ occurring) = \sum_{j=1}^{\infty} P(X_j)$$

MAKING A PROBABILITY DISTRIBUTION

Source: https://www.youtube.com/watch?v=cqK3uRoPtk0&t=327s

SKEWED DISTRIBUTION

HYPOTHESIS TESTING: WHAT & WHY

- A hypothesis is a proposed explanation for a phenomenon
 - Null hypothesis $H_0 = a$ statement about a population parameter
 - Test the likelihood of this statement being true in order to decide whether to accept or reject the alternative hypothesis
 - Can include =, \leq , $or \geq$ sign.
 - Alternative hypothesis $H_1 = a$ statement that contradicts the null hypothesis
 - Only true when null hypothesis is rejected
 - Can include $a \neq , > , or < sign.$
- Why perform hypothesis tests?
 - → To determine whether there is enough statistical evidence in favor of a hypothesis

Hypothesis can only be rejected, they cannot be verified based on data.

UNCERTAINTY AND ERRORS IN HYPOTHESIS TESTING

		Actual Situation		
		H_0 True	H_0 False	
Experimenter's Decision	Reject H_0	Type I Error (reject incorrectly)	Correct	
	Retain H_0	Correct	Type II Error (accept incorrectly)	

χ² TEST VIDEO

Source: https://www.youtube.com/watch?v=WXPBoFDqNVk

χ² TEST (Chi-squared Test)

χ2 Test is used to test how likely is it that an observed distribution is due to chance/randomness.

Hypotheses:

- H_0 = features are stochastically independent (patterns are random)
- H_1 = there is a statistically significant relationship

Test:

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - Ei)^{2}}{E_{i}}$$

Chi-square Distribution Table									
d.f.	.995	.99	.975	.95	.9	.1	.05	.025	.01
1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	2 6.22
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57

Full table source: (*Click here*)

PLAN FOR NEXT WEEK

That's it for today! :-)

Next week, we are going to discuss:

- 1. More on hypothesis tests
- 2. Correlation

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de