@実用新案公報(Y2)

平3-14581

@Int. Cl. 3 F 16 D B 80 T

建別記号

庁内整理番号

80公告 平成3年(1991)4月2日

F 7526 - 3 J

B 60 T 11/18 7812-3D

Z (全3頁)

❷考案の名称

クラフチマスタシリンダ

约支 顧 昭60-172598

第 昭62-80027 含公

顧 昭60(1985)11月8日 金出

@昭62(1987)5月22日

② 等案者

中 受知集豊田市トヨタ町1番地 トヨタ自動車株式会社内

トロタ自動車株式会社内

孝 一 四考 案 者 永 . の出 頭 人 トヨタ自動軍株式会社 愛知県豊田市トヨタ町1番地 愛知県豊田市トロク町1番地

外2名

弁理士 岡田 英彦 必代 理 人

栄 童 審 査 官

の実用新変型銀球水の範囲

グラッチマスタシリンダのシリンダボディの下 部には、油圧の振動を吸収するための防擾部を一 体に付設し、かつ防製部の内部とクラッチマスタ シリンダ内の油圧室とを連絡口を介して連通する 5 とともに、この連絡口における防護部側の周縁部 を上向きのテーバー面としたことを特徴とするク ラツチマスタシリンダ。

考案の幹額な説明

(廃棄上の利用分野)

この考案は、クラッチマスタシリンダに関する ものである。

(従来の技術)

自動車のパワープラントの複動等に基いてクラ ツチベダルが振動したり、クラツチ操作時に異音 15 (作用) が生じるという現象は、よく知られるところであ る。これは、パワープラントの提動等がクラッチ の油圧系を通して伝達されるからである。したが って、上記の問題点を解決する一手段として、従 ば、クラッチマスタシリンダとレリーズシリンダ との間) にクラッチアキュームレータを組込むこ とがあつた。

(考案が解決しようとする問題点)

しかし、以下のような問題点がある。

(1) アキュームレータ本体にエアが混入した場合 に、その抜取りが面倒である。

(2) アキュームレータを組込む関係上、組込み位 何でクラッチ油圧配管が2分割されるため、核 造の複雑化を招く。また、組付け用プラケット を要する等、コスト的にも問題がある。

この考案は、こういつた問題点に触み、構成の 節奏化とユアー抜きの容易化を目的とする。

(問題点を解決するための手段)

上記の目的を達成するために、本者実はクラッ チマスタシリンダのシリンダポディの下部には、 10 油圧の脈動を吸収するための防振部を一体に付款 し、かつ防擾部の内部とクラツチマスタシリンダ 内の油圧室とを基路口を介して連過するととも に、この連絡口における防製部側の周縁部を上向 きのテーパー面とすることとしたのである。

したがつて、本考案は防御部をマスタシリング に一体に形成することで、構成の簡素化を図るも のである。また、連絡口を防髪部の上方に設け、 さらにその穴縁をテーパー面としたことにより、 来では、クラッチの油圧配答系の所定位置(例え 20 防振部にエアーが混入した場合でも、エアーは基 絡口へ確実に導かれるため、マスタシリングの油 圧室を通して簡単に抜き取ることができる。

(実施例)

以下、本考案を具体化した実施例を図面にした 25 がつて詳細に説明する。

図面において1はクランチマスタシリングのシ リンダボデイであり、ここには図示しないクラツ

チペダルに連結されたプッシュロッド2にて図面 の左右方向へ擅動する第1ピストン3が組込まれ ている。このピストン3の油圧室4個の蟾節から は軸方向に沿つで所定深さの挿通孔5が写孔され ており、ここへはリザーバタンク8からの給油ポ 5 ート7を閉塞するためのインレットパルプ8のパ ルプロッド8a個が抜け止め部材8を介したもと でスライド可能に押遣されている。また、インレ ツトパルプ8のパルプヘッド8 b個は有底的状の おり、かつ同パルブヘッドBbには前配給油ボー トフを寄封するためのシール部材11が窓着され ている。

パルプサポート 10と第1ビストン3との間に ルプサポート10を図示左方へ付勢している。ま た、パルプヘッド8bとの間には第1コニカルス プリング13が介在されて、インレットペルブ8 全体を図示左方へ付勢している。但し、リターン グー8のばね力よりも充分に大きく設定されてい る。また、図示はしないが、油圧室4にはレリー ズ系配管を通じてクラッチレリーズシリングに連 通するポートが聞口している。

の間であって、シリンダボディ1の真下位置に は、油圧の緊急を吸収するための防擾部人が設け られている。すなわち、防御部Aのケーシング↑ 4は下方へ開口する円筒状に形成されるととも に、シリンダボディ1の外壁から下向さにかつー 30 パタンクもから容易に抜き取られる。 体に形成されている。また、このケーシング14 の内部にはピストンカップ15が嵌着された第2 ピストン16がスライド可能に組込まれている。 また、この第2ピストン16はシリンダボディ1 にて図示下方へ付勢されている。一方、ケーシン グ14における第2ピストン18の下部開口側に は、弾性材17がプレート18、19により上下 から挟み付けられた状態で、ポルト28等を介し て結構されている。なお、防臓部Aにおいて発性 40 排出することができる。 材17に対する収納空間21には、弾性材17の 圧縮変形を許容するための充分なスペースが確保 されている。

ところで、防護部Aの上面には油圧の連絡口2

2が開口しており、防製部Aと油圧室4とを<u>達満</u> させている。また、この連絡口22における防機 部A側の周線には、上向きのナーバー面23が形 成されている。これは、防振郎A内に進入したエ アーを連絡口22に集めやすくするためである。

引き続き、上記のように形成された本例の作用 と効果を具体的に説明する。

パワープラントの援助が圧油に伝えられると、 第1ピストン3を経て最終的にクラッチペダルに パルプサポート10ヘスライド可能に貫通されて 10 伝達される。ところが、こういつた場合、油圧室 4内の油圧脈動を、防掘部Aにおける弾性材 17 がプレート18を介して受承し、弾性材17を収 約空間21内で弾性変形させることで、油圧脈動 を可及的に吸収することができる。こうして、パ はリターンスプリング12が介在されていて、パ 15 ワープラントの接動がクラッチペダルに伝えられ るのが抑制され、クラフチペダル上に発生する損。 動およびこれに付随する異音を低減させることが できるわけである。また、一般的にこういつた防 要機構は、マスタシリンダに近いほどその効果が スプリング12のばね力は第1コニカルスプリン 20 大きいが、この意味からすれば、本例のようにマ スタシリングに一体に組込んだものでは、構成の ~ 菌素化の効果に加えて防要・防音対策の上からも きわめて有効と言える。

さらに、防安部Aポマスタシリングの真下位置 さて、パルプサポート10と第1ピストン3と 25 に設けられ、かつ連絡口22の周録が上向きのテ ーパー面28とされていることから、防損部A内 に個人したエアーは浮力によつて上昇し、ここに 確実に集められる。そして、油圧空4へ導かれた もとで、適当なエアー抜き治異等によってリザー

(考案の効果)

以上説明したように、本考案によれば、防擾部 をマスタシリンダに一体に形成することで、構成 の簡素化を図ることができる。また、連絡口を防 との間に介在された第2コニカルスプリング17 35 接部の上方に設け、さらにその穴臓をテーパー面 としたことにより、防擾部にエアーが混入した場 合でも、エアーを連絡口へ確実に導いてこれを簡 単に抜き取ることができる。したがつて、防護部 におけるエアーを抜き残しなく、確実かつ容易に

図面の簡単な影明

西国は、本例クラツチマスタシリンダの新面図 を示すものである。

i……クラツチマスタシリンダのシリンダボデ

払口、23 ·····テーパー面、A·····防製部、

BEST AVAILABLE COPY