Foundations of Statistical Inference

J. Berestycki & D. Sejdinovic

Department of Statistics University of Oxford

MT 2019

Chapter 12: Bayesian Hypothesis Tests

The experiment: Schmidt, Jahn and Radin (1987) used electronic and quantum-mechanical random event generators with visual feedback. Subject with alleged ability tries to "influence" the generator.

- 1. Stream of particles arrive at 'quantum gate'; each goes on to either red or green light.
- 2. Quantum mechanics implies a 50/50 ratio.
- Subject tries to influence particles to go to red.

Model: X = # red particles. $X \sim \text{Bin}(n, \theta)$. n = 104, 490, 000. Observe x = 52, 263, 471.

Question: Has the subject influenced the particles?

 $H_0: \theta = 1/2 \text{ vs } H_1: \theta \neq 1/2$

The experiment: Schmidt, Jahn and Radin (1987) used electronic and quantum-mechanical random event generators with visual feedback. Subject with alleged ability tries to "influence" the generator.

- 1. Stream of particles arrive at 'quantum gate'; each goes on to either red or green light.
- 2. Quantum mechanics implies a 50/50 ratio.
- 3. Subject tries to *influence* particles to go to red.

Model: X = # red particles. $X \sim \text{Bin}(n, \theta)$. n = 104, 490, 000. Observe x = 52, 263, 471.

Question: Has the subject influenced the particles?

 $H_0: \theta = 1/2 \text{ vs } H_1: \theta \neq 1/2$

The experiment: Schmidt, Jahn and Radin (1987) used electronic and quantum-mechanical random event generators with visual feedback. Subject with alleged ability tries to "influence" the generator.

- 1. Stream of particles arrive at 'quantum gate'; each goes on to either red or green light.
- 2. Quantum mechanics implies a 50/50 ratio.
- 3. Subject tries to *influence* particles to go to red.

Model: X = # red particles. $X \sim \text{Bin}(n, \theta)$. n = 104, 490, 000. Observe x = 52, 263, 471.

Question: Has the subject influenced the particles?

 $H_0: \theta = 1/2 \text{ vs } H_1: \theta \neq 1/2$

The experiment: Schmidt, Jahn and Radin (1987) used electronic and quantum-mechanical random event generators with visual feedback. Subject with alleged ability tries to "influence" the generator.

- 1. Stream of particles arrive at 'quantum gate'; each goes on to either red or green light.
- 2. Quantum mechanics implies a 50/50 ratio.
- 3. Subject tries to influence particles to go to red.

Model: X=# red particles. $X\sim \text{Bin}(n,\theta).$ n=104,490,000. Observe x=52,263,471.

Question: Has the subject influenced the particles?

 $H_0: \theta = 1/2 \text{ vs } H_1: \theta \neq 1/2$

The experiment: Schmidt, Jahn and Radin (1987) used electronic and quantum-mechanical random event generators with visual feedback. Subject with alleged ability tries to "influence" the generator.

- 1. Stream of particles arrive at 'quantum gate'; each goes on to either red or green light.
- 2. Quantum mechanics implies a 50/50 ratio.
- 3. Subject tries to influence particles to go to red.

Model: X=# red particles. $X\sim \text{Bin}(n,\theta).$ n=104,490,000. Observe x=52,263,471.

Question: Has the subject influenced the particles?

 $H_0: \theta = 1/2 \text{ vs } H_1: \theta \neq 1/2$

The experiment: Schmidt, Jahn and Radin (1987) used electronic and quantum-mechanical random event generators with visual feedback. Subject with alleged ability tries to "influence" the generator.

- 1. Stream of particles arrive at 'quantum gate'; each goes on to either red or green light.
- 2. Quantum mechanics implies a 50/50 ratio.
- 3. Subject tries to *influence* particles to go to red.

Model: X=# red particles. $X\sim \text{Bin}(n,\theta).$ n=104,490,000. Observe x=52,263,471.

Question: Has the subject influenced the particles?

 $H_0: \theta = 1/2 \text{ vs } H_1: \theta \neq 1/2$

Bayesian tests

Model: $X|\theta \sim f_{\theta}(\cdot), \ \theta \in \Theta \sim \Pi$

Testing problem

$$H_0: \theta \in \Theta_0$$
, vs $H_1: \theta \in \Theta_1$, $\Theta_0 \cap \Theta_1 = \emptyset$

0-1 loss function $\delta \in \{0,1\}$

$$L(\theta, \delta) = \left\{ \begin{array}{ll} 1 & \text{if} & \mathbf{1}_{\theta \in \Theta_1} \neq \delta \\ 0 & \text{otherwise} \end{array} \right.$$

Bayesian test

$$\delta(X) = \left\{ \begin{array}{ll} 1 & \text{if} & \Pi(\Theta_0|X) \leq \Pi(\Theta_1|X) \\ 0 & \text{if} & \Pi(\Theta_0|X) > \Pi(\Theta_1|X) \end{array} \right.$$

[Proof: exercise]

Simple/composite hypotheses

Definition

- ▶ A hypothesis $H_j: \theta \in \Theta_j$ is called simple iff Θ_j is a singleton.
- ▶ A hypothesis $H_j: \theta \in \Theta_j$ is called composite iff Θ_j is NOT a singleton.

Psychokinesis example:

 $H_0: \theta = 1/2$ is simple, $H_1: \theta \neq 1/2$ is composite.

Construction of priors in the case of a simple hypothesis

We cannot use a continuous prior on Θ if Π has density (wrt Lebesgue) then

$$\Pi(\Theta_0) = \int_{\{\theta_0\}} \pi(\theta) d\theta = 0$$

We construct a prior as a mixture between a prior on Θ_0 and a prior on Θ_1 .

$$\Pi(d\theta) = p_0 \Pi_0(d\theta) + (1 - p_0) \Pi_1(d\theta)$$

where Π_0 is a probability distribution on Θ_0 and Π_1 is a probability distribution on Θ_1 .

$$p_0 = \Pi(\Theta_0)$$
 Then if $\Theta_1 = \{\theta \in \Theta, \theta \neq \theta_0\}$

$$\Pi = p_0 \delta_{(\theta_0)} + (1 - p_0) \Pi_1, \quad \Pi_1(\Theta_1) = 1.$$

Test in the case of a simple hypothesis

$$\Pi = p_0 \delta_{(\theta_0)} + (1 - p_0) \Pi_1, \quad \Pi_1(\Theta_1) = 1$$

Posterior

$$\Pi(\{\theta_0\}|X) = \frac{p_0 f_{\theta_0}(X)}{p_0 f_{\theta_0}(X) + (1 - p_0) \int_{\Theta_*} f_{\theta}(X) \pi_1(\theta) d\theta}.$$

Bayes test

$$\delta(X) = 1 \qquad \Leftrightarrow \qquad p_0 f_{\theta_0}(X) < (1 - p_0) \int_{\Theta_1} f_{\theta}(X) \pi_1(\theta) d\theta$$

$$\Leftrightarrow \qquad \underbrace{\frac{f_{\theta_0}(X)}{\int_{\Theta_1} f_{\theta}(X) \pi_1(\theta) d\theta}}_{\text{Bayes factor}} < \frac{1 - p_0}{p_0}.$$

Psychokinesis example cont'd

Recall

$$H_0:\left\{\theta=\frac{1}{2}\right\}\quad\text{vs}\quad H_1=\left\{\theta\neq\frac{1}{2}\right\}.$$

Let us chose $p_0=\Pi(H_0)=\frac{1}{2}$ and $\Pi_1=\mathcal{U}(0,1).$ Note that $\Pi_1(\{1/2\})=0$

Posterior probability of hypothesis H_0 :

$$\Pi(H_0|x) = \Pi(\{1/2\}|x) = \frac{p_0 f(x|\theta = \frac{1}{2})}{p_0 f(x|\theta = \frac{1}{2}) + (1 - p_0) \int_0^1 f_\theta(x) d\theta}$$
$$= \frac{\binom{n}{x} 2^{-n}}{\binom{n}{x} 2^{-n} + \frac{1}{n+1}}.$$

Direct calculation gives a very different conclusion from the one based on the p-value (recall $p \approx 0.0003$):

$$\Pi(H_0|x=52,263,471)\approx 0.92$$

Psychokinesis example cont'd

Recall

$$H_0:\left\{\theta=\frac{1}{2}\right\}\quad\text{vs}\quad H_1=\left\{\theta\neq\frac{1}{2}\right\}.$$

Let us chose $p_0=\Pi(H_0)=\frac{1}{2}$ and $\Pi_1=\mathcal{U}(0,1).$ Note that $\Pi_1(\{1/2\})=0$

Posterior probability of hypothesis H_0 :

$$\Pi(H_0|x) = \Pi(\{1/2\}|x) = \frac{p_0 f(x|\theta = \frac{1}{2})}{p_0 f(x|\theta = \frac{1}{2}) + (1 - p_0) \int_0^1 f_\theta(x) d\theta}$$
$$= \frac{\binom{n}{x} 2^{-n}}{\binom{n}{x} 2^{-n} + \frac{1}{n+1}}.$$

Direct calculation gives a very different conclusion from the one based on the p-value (recall $p \approx 0.0003$):

$$\Pi(H_0|x=52,263,471)\approx 0.92.$$

Point composite hypothesis

Example
$$X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2), \ \theta = (\mu, \sigma^2).$$

$$H_0: \mu = 0, \quad \text{vs} \quad H_1: \mu \neq 0 \quad \Theta_0 = \{0\} \times \mathbb{R}_{+*}$$

Same approach as for simple hypothesis But

- ▶ Π_0 is defined as $\delta_{(0)} \otimes \Pi_\sigma$ where Π_σ is the prior distribution on σ with density π_σ
- ▶ Π_1 has density (wrt Lebesgue) on $\mathbb{R} \times \mathbb{R}_{+*}$, e.g.

$$\pi_1(\mu, \sigma^2) = \frac{\varphi\left(\frac{\mu - \mu_0}{\sigma \tau}\right)}{\sigma \tau} \times (\sigma^2)^{-a - 1} e^{-b/\sigma^2} \frac{b^a}{\Gamma(a)}$$

i.e . hierarchical prior : under H_1

$$\mu | \sigma \sim \mathcal{N}(\mu_0, \sigma^2 \tau^2), \quad \sigma^2 \sim \mathsf{IGamma}(a, b)$$

Posterior calculations

$$\Pi(\Theta_0|x) = \frac{p_0 m_0(x)}{p_0 m_0(x) + (1 - p_0) m_1(x)}$$

$$m_0(x) = \int_0^\infty f(x|\mu=0,\sigma^2)\pi_\sigma(\sigma)d\sigma$$

marginal likelihood under H_0

$$m_1(x) = \int_{\mathbb{D}} \int_0^{\infty} f(x|\mu, \sigma^2) \pi(\mu|\sigma^2,) \pi_{\sigma}(\sigma) d\sigma d\mu$$

marginal likelihood under H_1

Posterior calculations

Generally speaking one can write the posterior probability of Θ_0 as

$$\Pi(\Theta_0|X) = \frac{p_0 m_0(X)}{p_0 m_0(X) + (1 - p_0) m_1(X)}$$

where

$$m_0(X) = \int_{\Theta_0} f_{\theta}(X) \Pi_0(d\theta)$$

marginal likelihood under H_0

$$m_1(X) = \int_{\Theta_1} f_{\theta}(X) \Pi_1(d\theta)$$

marginal likelihood under H_1

Bayes factor

Definition (Bayes factor)

The Bayes factor of H_0 over H_1 is given by

$$B_{0/1}(X) = \frac{m_0(X)}{m_1(X)}.$$

The Bayes test associated to the 0-1 loss function verifies

$$\delta(X) = 1 \quad \Leftrightarrow B_{0/1}(X) < \frac{1 - p_0}{p_0}$$

$$ightharpoonup H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$$

$$B_{0/1} = \frac{f_{\theta_0}(X)}{\int_{\Omega} f_{\theta}(X)\pi(\theta)d\theta}$$

Interpreting Bayes Factors

Adrian Raftery gives this table (values are approximate, and adapted from a table due to Jeffreys) interpreting B.

$P(H_0 x)$	В	$2\log(B)$	evidence for H_0
< 0.5	< 1	< 0	negative (supports H_1)
0.5 to 0.75	1 to 3	0 to 2	barely worth mentioning
0.75 to 0.92	3 to 12	2 to 5	positive
0.92 to 0.99	12 to 150	5 to 10	strong
> 0.99	> 150	> 10	very strong

 $2\log(B)$ sometimes reported because it is on the same scale as the familiar deviance and likelihood ratio test statistic.

In Psychokinesis example B=12, corresponding to positive-to-strong evidence in favour of H_0 (no paranormal ability).

Interpreting Bayes Factors

Adrian Raftery gives this table (values are approximate, and adapted from a table due to Jeffreys) interpreting B.

$P(H_0 x)'$	В	$2\log(B)$	evidence for H_0
< 0.5	< 1	< 0	negative (supports H_1)
0.5 to 0.75	1 to 3	0 to 2	barely worth mentioning
0.75 to 0.92	3 to 12	2 to 5	positive
0.92 to 0.99	12 to 150	5 to 10	strong
> 0.99	> 150	> 10	very strong

 $2\log(B)$ sometimes reported because it is on the same scale as the familiar deviance and likelihood ratio test statistic.

In Psychokinesis example B=12, corresponding to positive-to-strong evidence in favour of H_0 (no paranormal ability).

The Bayes factor is the ratio of marginal likelihoods

Continuous case
$$m_j(X)=P(x|H_j)=\int_{\Theta_j}L(\theta;x)\pi(\theta|H_j)d\theta,$$
 Discrete case $m_j(X)=P(x|H_j)=\sum_{\theta\in\Theta_j}L(\theta;x)\pi(\theta|H_j),$ Simple hyp. case $m_j(X)=P(x|H_j)=L(\theta_0;x).$

The Bayes factor is the ratio of marginal likelihoods

Continuous case
$$m_j(X)=P(x|H_j)=\int_{\Theta_j}L(\theta;x)\pi(\theta|H_j)d\theta,$$
 Discrete case $m_j(X)=P(x|H_j)=\sum_{\theta\in\Theta_j}L(\theta;x)\pi(\theta|H_j),$ Simple hyp. case $m_j(X)=P(x|H_j)=L(\theta_0;x).$

Example

In a quality inspection program components are selected at random from a batch and tested. Let θ denote the failure probability. Suppose that we want to test for $H_0: \theta \leq 0.2$ against $H_1: \theta > 0.2$.

$$\pi(\theta) = 30\theta(1-\theta)^4, \ 0 < \theta < 1.$$

And this implies $p_0=p(H_0)=\pi(\theta\in\Theta_0)$ then $p(H_0)=\int_0^{0.2}30\theta(1-\theta)^4d\theta$ so that $p(H_0)\simeq0.345$ and $p(H_1)\simeq1-0.345$.

Example

Thus

$$\pi(\theta|H_0) = \frac{30\theta(1-\theta)^4}{p(H_0)}, \ 0 < \theta \le 0.2$$

and

$$\pi(\theta|H_1) = \frac{30\theta(1-\theta)^4}{n(H_1)}, \ 0.2 < \theta < 1$$

Example (cont)

In the quality inspection program suppose n components are selected for independent testing. The number X that fail is $X \sim \mathsf{Binomial}(n, \theta)$.

The marginal likelihood for H_0 is

$$m_0(x) = \int_{\Theta_0} L(\theta; x) \pi(\theta | H_0) d\theta$$
$$= {5 \choose x} \int_0^{0.2} \theta^x (1 - \theta)^{n-x} \frac{30\theta (1 - \theta)^4}{\pi (H_0)} d\theta$$

For one batch of size n=5, X=0 is observed. Recall that $pH_0)\simeq 0.345$. Then

$$m_0(x) = {5 \choose 0} \int_0^{0.2} \frac{30\theta (1-\theta)^9}{p(H_0)} d\theta$$

 $\simeq 0.185/0.345 = 0.536.$

Similarly, for $H_1: \theta \sim \text{Beta}(2,5)|\theta > 0.2$ $m_1(x) = {5 \choose 0} \int_{0.2}^1 \frac{30\theta (1-\theta)^9}{n(H_1)} d\theta$

$$m_1(x) = {0 \choose 0} \int_{0.2} \frac{\cot(1-t)}{p(H_1)}$$
$$\simeq 0.134.$$

$$\Pi(H_0|x) = \frac{P(x|H_0)p_0}{m(x)}$$

$$p_0 = \frac{P(\theta \in \Theta_0)}{(P(\theta \in \Theta_0) + P(\theta \in \Theta_1))} = \pi(H_0)$$

$$m_0(x)p_0 \simeq 0.185$$

 $m_1(x)(1-p_0) \simeq 0.088$

$$m(x) \simeq m_0(x)p_0 + m_1(x)(1-p_0) \simeq 0.273$$

 $\Pi(H_0|x) \simeq 0.185/0.273 = 0.678 \quad \Pi(H_1|x) \simeq 0.322$

 $B = rac{m_0(x)}{m_1(x)} \simeq 0.536/0.134 = 4$ SB2.1. MT 2019. J. Berestycki & D. Sejdinovic. 18 / 21

Example

 X_1, \ldots, X_n are iid $N(\theta, \sigma^2)$, with σ^2 known.

 $H_0: \theta=0,\ H_1: \theta|H_1\sim N(\mu, au^2).$ Bayes factor is m_0/m_1 , where

$$m_0 = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum x_i^2\right)$$

$$m_1 = (2\pi\sigma^2)^{-n/2} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2} \sum (x_i - \theta)^2\right)$$

$$\times (2\pi\tau^2)^{-1/2} \exp\left(-\frac{(\theta - \mu)^2}{2\tau^2}\right) d\theta.$$

Completing the square in m_1 and integrating $d\theta$,

$$m_1 = (2\pi\sigma^2)^{-n/2} \left(\frac{\sigma^2}{n\tau^2 + \sigma^2}\right)^{1/2} \times \exp\left[-\frac{1}{2} \left\{ \frac{n}{n\tau^2 + \sigma^2} (\bar{x} - \mu)^2 + \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right\} \right]$$

$$B = \left(1 + \frac{n\tau^2}{\sigma^2}\right)^{1/2} \exp\left[-\frac{1}{2} \left\{ \frac{n\bar{x}^2}{\sigma^2} - \frac{n}{n\tau^2 + \sigma^2} (\bar{x} - \mu)^2 \right\} \right]$$

Defining $t=\sqrt{n}\bar{x}/\sigma, \eta=-\mu/\tau, \rho=\sigma/(\tau\sqrt{n})$, this can be written as

$$B = \left(1 + \frac{1}{\rho^2}\right)^{1/2} \exp\left[-\frac{1}{2}\left\{\frac{(t - \rho\eta)^2}{1 + \rho^2} - \eta^2\right\}\right]$$

This example illustrates a problem choosing the prior. If we take a diffuse prior under H_1 : i.e. $\tau \to +\infty$, then $B \to \infty$ whatever x, giving overwelming support for H_0 .

This is an instance of Lindley's paradox

$$B = \left(1 + \frac{n\tau^2}{\sigma^2}\right)^{1/2} \exp\left[-\frac{1}{2} \left\{ \frac{n\bar{x}^2}{\sigma^2} - \frac{n}{n\tau^2 + \sigma^2} (\bar{x} - \mu)^2 \right\} \right]$$

Defining $t=\sqrt{n}\bar{x}/\sigma, \eta=-\mu/\tau, \rho=\sigma/(\tau\sqrt{n})$, this can be written as

$$B = \left(1 + \frac{1}{\rho^2}\right)^{1/2} \exp\left[-\frac{1}{2}\left\{\frac{(t - \rho\eta)^2}{1 + \rho^2} - \eta^2\right\}\right]$$

This example illustrates a problem choosing the prior. If we take a diffuse prior under H_1 : i.e. $\tau \to +\infty$, then $B \to \infty$ whatever x, giving overwelming support for H_0 .

This is an instance of Lindley's paradox.

$$B = \left(1 + \frac{n\tau^2}{\sigma^2}\right)^{1/2} \exp\left[-\frac{1}{2} \left\{ \frac{n\bar{x}^2}{\sigma^2} - \frac{n}{n\tau^2 + \sigma^2} (\bar{x} - \mu)^2 \right\} \right]$$

Defining $t=\sqrt{n}\bar{x}/\sigma, \eta=-\mu/\tau, \rho=\sigma/(\tau\sqrt{n})$, this can be written as

$$B = \left(1 + \frac{1}{\rho^2}\right)^{1/2} \exp\left[-\frac{1}{2}\left\{\frac{(t - \rho\eta)^2}{1 + \rho^2} - \eta^2\right\}\right]$$

This example illustrates a problem choosing the prior. If we take a diffuse prior under H_1 : i.e. $\tau \to +\infty$, then $B \to \infty$ whatever x, giving overwelming support for H_0 .

This is an instance of Lindley's paradox.

$$B = \left(1 + \frac{n\tau^2}{\sigma^2}\right)^{1/2} \exp\left[-\frac{1}{2} \left\{ \frac{n\bar{x}^2}{\sigma^2} - \frac{n}{n\tau^2 + \sigma^2} (\bar{x} - \mu)^2 \right\} \right]$$

Defining $t=\sqrt{n}\bar{x}/\sigma, \eta=-\mu/\tau, \rho=\sigma/(\tau\sqrt{n})$, this can be written as

$$B = \left(1 + \frac{1}{\rho^2}\right)^{1/2} \exp\left[-\frac{1}{2}\left\{\frac{(t - \rho\eta)^2}{1 + \rho^2} - \eta^2\right\}\right]$$

This example illustrates a problem choosing the prior. If we take a diffuse prior under H_1 : i.e. $\tau \to +\infty$, then $B \to \infty$ whatever x, giving overwelming support for H_0 .

This is an instance of Lindley's paradox.

Framework for Bayesian Model selection

- ▶ $X \sim f_i(x; \theta_i)$ where θ_i unknown parameter.
- ▶ Prior for θ_i is $\pi_i(\theta)$.
- ▶ Prior probability $P(\mathfrak{M}_i)$ (= 1/k in the uniform prior case)
- ▶ Marginal density of X is $m_i(x) = m(x|\mathfrak{M}_i) = \int f_i(x|\theta_i)\pi_i(\theta_i)d\theta_i$.
- 1. Posterior density $\pi_i(\theta_i|x) = f_i(x|\theta_i)\pi_i(\theta_i)/m(x|\mathfrak{M}_i)$.
- 2. Bayes factor of \mathfrak{M}_i to \mathfrak{M}_i is $B_{ii} = m(x|\mathfrak{M}_i)/m(x|\mathfrak{M}_i)$.
- 3. Posterior

$$\Pi(\mathfrak{M}_i|x) = \frac{(\mathfrak{M}_i)m(x|\mathfrak{M}_i)}{\sum_j \Pi(\mathfrak{M}_j)m(x|\mathfrak{M}_j)} = \left[\sum_j \frac{\Pi(\mathfrak{M}_j)}{\Pi(\mathfrak{M}_i)}B_{ji}\right]^{-1}.$$

Framework for Bayesian Model selection

- ▶ $X \sim f_i(x; \theta_i)$ where θ_i unknown parameter.
- ▶ Prior for θ_i is $\pi_i(\theta)$.
- ▶ Prior probability $P(\mathfrak{M}_i)$ (= 1/k in the uniform prior case)
- ▶ Marginal density of X is $m_i(x) = m(x|\mathfrak{M}_i) = \int f_i(x|\theta_i)\pi_i(\theta_i)d\theta_i$.
- 1. Posterior density $\pi_i(\theta_i|x) = f_i(x|\theta_i)\pi_i(\theta_i)/m(x|\mathfrak{M}_i)$.
- 2. Bayes factor of \mathfrak{M}_j to \mathfrak{M}_i is $B_{ji} = m(x|\mathfrak{M}_j)/m(x|\mathfrak{M}_i)$.
- 3. Posterior

$$\Pi(\mathfrak{M}_i|x) = \frac{(\mathfrak{M}_i)m(x|\mathfrak{M}_i)}{\sum_j \Pi(\mathfrak{M}_j)m(x|\mathfrak{M}_j)} = \left[\sum_j \frac{\Pi(\mathfrak{M}_j)}{\Pi(\mathfrak{M}_i)}B_{ji}\right]^{-1}.$$

Framework for Bayesian Model selection

- ▶ $X \sim f_i(x; \theta_i)$ where θ_i unknown parameter.
- ▶ Prior for θ_i is $\pi_i(\theta)$.
- ▶ Prior probability $P(\mathfrak{M}_i)$ (= 1/k in the uniform prior case)
- ▶ Marginal density of X is $m_i(x) = m(x|\mathfrak{M}_i) = \int f_i(x|\theta_i)\pi_i(\theta_i)d\theta_i$.
- 1. Posterior density $\pi_i(\theta_i|x) = f_i(x|\theta_i)\pi_i(\theta_i)/m(x|\mathfrak{M}_i)$.
- 2. Bayes factor of \mathfrak{M}_j to \mathfrak{M}_i is $B_{ji} = m(x|\mathfrak{M}_j)/m(x|\mathfrak{M}_i)$.
- 3. Posterior

$$\Pi(\mathfrak{M}_i|x) = \frac{(\mathfrak{M}_i)m(x|\mathfrak{M}_i)}{\sum_j \Pi(\mathfrak{M}_j)m(x|\mathfrak{M}_j)} = \left[\sum_j \frac{\Pi(\mathfrak{M}_j)}{\Pi(\mathfrak{M}_i)}B_{ji}\right]^{-1}.$$

Framework for Bayesian Model selection

- ▶ $X \sim f_i(x; \theta_i)$ where θ_i unknown parameter.
- ▶ Prior for θ_i is $\pi_i(\theta)$.
- ▶ Prior probability $P(\mathfrak{M}_i)$ (= 1/k in the uniform prior case)
- ▶ Marginal density of X is $m_i(x) = m(x|\mathfrak{M}_i) = \int f_i(x|\theta_i)\pi_i(\theta_i)d\theta_i$.
- 1. Posterior density $\pi_i(\theta_i|x) = f_i(x|\theta_i)\pi_i(\theta_i)/m(x|\mathfrak{M}_i)$.
- 2. Bayes factor of \mathfrak{M}_i to \mathfrak{M}_i is $B_{ii} = m(x|\mathfrak{M}_i)/m(x|\mathfrak{M}_i)$.
- 3. Posterior

$$\Pi(\mathfrak{M}_i|x) = \frac{(\mathfrak{M}_i)m(x|\mathfrak{M}_i)}{\sum_j \Pi(\mathfrak{M}_j)m(x|\mathfrak{M}_j)} = \left[\sum_j \frac{\Pi(\mathfrak{M}_j)}{\Pi(\mathfrak{M}_i)}B_{ji}\right]^{-1}.$$

Framework for Bayesian Model selection

- ▶ $X \sim f_i(x; \theta_i)$ where θ_i unknown parameter.
- ▶ Prior for θ_i is $\pi_i(\theta)$.
- ▶ Prior probability $P(\mathfrak{M}_i)$ (= 1/k in the uniform prior case)
- ▶ Marginal density of X is $m_i(x) = m(x|\mathfrak{M}_i) = \int f_i(x|\theta_i)\pi_i(\theta_i)d\theta_i$.
- 1. Posterior density $\pi_i(\theta_i|x) = f_i(x|\theta_i)\pi_i(\theta_i)/m(x|\mathfrak{M}_i)$.
- 2. Bayes factor of \mathfrak{M}_i to \mathfrak{M}_i is $B_{ii} = m(x|\mathfrak{M}_i)/m(x|\mathfrak{M}_i)$.
- 3. Posterior

$$\Pi(\mathfrak{M}_i|x) = \frac{(\mathfrak{M}_i)m(x|\mathfrak{M}_i)}{\sum_j \Pi(\mathfrak{M}_j)m(x|\mathfrak{M}_j)} = \left[\sum_j \frac{\Pi(\mathfrak{M}_j)}{\Pi(\mathfrak{M}_i)}B_{ji}\right]^{-1}.$$

Framework for Bayesian Model selection

- ▶ $X \sim f_i(x; \theta_i)$ where θ_i unknown parameter.
- ▶ Prior for θ_i is $\pi_i(\theta)$.
- ▶ Prior probability $P(\mathfrak{M}_i)$ (= 1/k in the uniform prior case)
- ▶ Marginal density of X is $m_i(x) = m(x|\mathfrak{M}_i) = \int f_i(x|\theta_i)\pi_i(\theta_i)d\theta_i$.
- 1. Posterior density $\pi_i(\theta_i|x) = f_i(x|\theta_i)\pi_i(\theta_i)/m(x|\mathfrak{M}_i)$.
- 2. Bayes factor of \mathfrak{M}_i to \mathfrak{M}_i is $B_{ii} = m(x|\mathfrak{M}_i)/m(x|\mathfrak{M}_i)$.
- 3. Posterior

$$\Pi(\mathfrak{M}_i|x) = \frac{(\mathfrak{M}_i)m(x|\mathfrak{M}_i)}{\sum_j \Pi(\mathfrak{M}_j)m(x|\mathfrak{M}_j)} = \left[\sum_j \frac{\Pi(\mathfrak{M}_j)}{\Pi(\mathfrak{M}_i)}B_{ji}\right]^{-1}.$$

Framework for Bayesian Model selection

- ▶ $X \sim f_i(x; \theta_i)$ where θ_i unknown parameter.
- ▶ Prior for θ_i is $\pi_i(\theta)$.
- ▶ Prior probability $P(\mathfrak{M}_i)$ (= 1/k in the uniform prior case)
- ▶ Marginal density of X is $m_i(x) = m(x|\mathfrak{M}_i) = \int f_i(x|\theta_i)\pi_i(\theta_i)d\theta_i$.
- 1. Posterior density $\pi_i(\theta_i|x) = f_i(x|\theta_i)\pi_i(\theta_i)/m(x|\mathfrak{M}_i)$.
- 2. Bayes factor of \mathfrak{M}_j to \mathfrak{M}_i is $B_{ji} = m(x|\mathfrak{M}_j)/m(x|\mathfrak{M}_i)$.
- 3. Posterior

$$\Pi(\mathfrak{M}_i|x) = \frac{(\mathfrak{M}_i)m(x|\mathfrak{M}_i)}{\sum_j \Pi(\mathfrak{M}_j)m(x|\mathfrak{M}_j)} = \left[\sum_j \frac{\Pi(\mathfrak{M}_j)}{\Pi(\mathfrak{M}_i)}B_{ji}\right]^{-1}.$$

Framework for Bayesian Model selection

- ▶ $X \sim f_i(x; \theta_i)$ where θ_i unknown parameter.
- ▶ Prior for θ_i is $\pi_i(\theta)$.
- ▶ Prior probability $P(\mathfrak{M}_i)$ (= 1/k in the uniform prior case)
- ▶ Marginal density of X is $m_i(x) = m(x|\mathfrak{M}_i) = \int f_i(x|\theta_i)\pi_i(\theta_i)d\theta_i$.
- 1. Posterior density $\pi_i(\theta_i|x) = f_i(x|\theta_i)\pi_i(\theta_i)/m(x|\mathfrak{M}_i)$.
- 2. Bayes factor of \mathfrak{M}_i to \mathfrak{M}_i is $B_{ii} = m(x|\mathfrak{M}_i)/m(x|\mathfrak{M}_i)$.
- 3. Posterior

$$\Pi(\mathfrak{M}_i|x) = \frac{(\mathfrak{M}_i)m(x|\mathfrak{M}_i)}{\sum_j \Pi(\mathfrak{M}_j)m(x|\mathfrak{M}_j)} = \left[\sum_j \frac{\Pi(\mathfrak{M}_j)}{\Pi(\mathfrak{M}_i)}B_{ji}\right]^{-1}.$$