Un bref corrigé pour le devoir n° 9

On donne une grammaire sous forme normale de Greibach (modifiée) qui engendre l'ensemble des mots de longueur paire qui ne sont pas des palindromes (cf. TD n° 8, exo 2.b) sur l'alphabet {1,2,3,4}. Dans toute la suite

- x désigne un chiffre quelconque de {1,2,3,4}
- y désigne une lettre quelconque de {U,D,T,Q}
- Prem(1)=U; Prem(2)=D; Prem(3)=T; Prem(4)=Q

Les productions de la grammaire G sont :

 $S \rightarrow x \ S \ Prem(x)$ (4 productions) $S \rightarrow x \ R \ Y \ avec \ Y \neq Prem(x)$ (12 productions) $R \rightarrow x \ R \ Y$ (16 productions) $R \rightarrow \varepsilon$ $Prem(x) \rightarrow x$ (4 productions)

Un automate déterministe non complet qui reconnaît l'ensemble des mots ne contenant pas le facteur 1234 est A, l'automate suivant ayant 4 états qui sont tous gagnants :

La grammaire H sous FNG donne un automate à pile à un seul état. En faisant le produit de cet automate à pile à un état avec l'automate fini A, on obtient un automate à pile à quatre états dont les transitions sont données par :

• pour toute transition $q' \in \delta(q,a)$ de A on obtient 9 transitions

état	lecture	pile	n. état	empiler	
q	X	S	q'	S Prem(x)	
q	X	S	q'	RY	avec $Y \neq Prem(x)$
q	X	R	q'	RY	
q	X	Prem(x)	q'	3	

• pour tout état q de A on a la transition

• on ajoute la production initiale

• on ajoute les quatre productions « de reconnaissance » pour tout état de A

où 4 est un nouvel état.

On obtient un automate à pile qui reconnaît à la fois par pile vide et par état final (état 4) le langage cherché.