Chapter 3: Facts about Common Statistical Models *

3 Facts about common statistical models

3.1 Bayes Models

• Probability Model on Data We have distributions $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\}$ for X on $(\mathcal{X}, \mathcal{B})$, where $\mathcal{P} \ll \mu$ (σ – finite measure) and R -N derivatives

$$\frac{dP_{\theta}}{d\mu}(x) = f_{\theta}(x)$$

• Prior on Parameter We now add an assumption of a distribution G on (Θ, \mathcal{C}) with $G \ll \nu(\sigma)$ -finite measure) and R-N derivative

$$\frac{dG}{d\nu}(\theta) = g(\theta)$$

• Joint Distribution for (X, θ) : Here we consider $f_{\theta}(x)$ as a function of both x and θ (i.e., measurable in (x, θ)). If $f_{\theta}(x)$ is $\mathcal{B} \times \mathcal{C}$ -measurable, then there exists a joint probability distribution for (X, θ) on $(\mathcal{X} \times \Theta, \mathcal{B} \times \mathcal{C})$ defined, for $A \in \mathcal{B} \times \mathcal{C}$, by

$$\pi^{X,\theta}(A) \equiv P((X,\theta) \in A) = \int_A f_{\theta}(x) d(\mu \times G)(x,\theta) = \int f_{\theta}(x) g(\theta) d(\mu \times \nu)(x,\theta)$$

where

$$\frac{d\pi^{X,\theta}}{d(\mu \times G)} \equiv f_{\theta}(x), \quad \frac{d\pi^{X,\theta}}{d(\mu \times \nu)} \equiv f_{\theta}(x)g(\theta)$$

- Marginal Distributions
 - for X $(B \in \mathcal{B})$

$$\pi^{X}(B) \equiv P(X \in B) = \pi^{X,\theta}(B \times \Theta) = \int_{B \times \Theta} f_{\theta}(x) d(\mu \times G)(x,\theta) \stackrel{Fubini}{=} \int_{B} \left[\int_{\Theta} f_{\theta}(x) dG(\theta) \right] d\mu(x)$$
$$= \int_{B} \left[\int_{\Theta} f_{\theta}(x) g(\theta) d\nu \right] d\mu(x)$$
$$0 \le d\pi^{X}(x) - \int_{C} f_{\theta}(x) dG(\theta) - \int_{C} f_{\theta}(x) g(\theta)$$

$$0 \le \frac{d\pi^X(x)}{d\mu} = \int_{\Theta} f_{\theta}(x) dG(\theta) = \int_{\Theta} f_{\theta}(x) g(\theta)$$

- for θ $(C \in \mathcal{C})$

$$\pi^{\theta}(C) \equiv P(\theta \in C) = \pi^{X,\theta}(\mathcal{X} \times C) = \int_{\mathcal{X} \times C} f_{\theta}(x) d(\mu \times G)(x,\theta) = \int_{C} \left[\int_{\mathcal{X}} f_{\theta}(x) d\mu(x) \right] dG(\theta) = G(C)$$

Marginal distribution of θ is prior distribution G.

- Conditional distributions
 - for $X \mid \theta$

$$\pi^{X\mid\theta}(B\mid\theta)\equiv P_{X\mid\theta}(X\in B\mid\theta)=\int_B f_{\theta}(x)d\mu(x)=P_{\theta}(B),\quad B\in\mathcal{B}$$

$$\frac{d\pi^{X|\theta}(x)}{d\mu} = \frac{dP_{\theta}(x)}{d\mu} = f_{\theta}$$

^{*}STA643: Advanced Theory of Statistical Inference. Instructed by Dr. Daniel Nordman. Arranged by Zhiling Gu

- for $\theta \mid X$

$$\pi^{\theta \mid X}(C \mid x) \equiv P_{\theta \mid X}(\theta \in C \mid X = x) = \int_{C} \left[\frac{f_{\theta}(x)}{\int_{\Theta} f_{\theta}(x) dG(\theta)} \right] dG(\theta) = \int_{C} \frac{f_{\theta}(x)g(\theta)}{\int_{\Theta} f_{\theta}(x)g(\theta) d\nu(\theta)} d\nu(\theta)$$

$$\frac{d\pi^{\theta|X}(\theta)}{dG} = \frac{f_{\theta}(x)g(\theta)}{\int_{\Theta} f_{\theta}(x)dG(\theta)}, \quad \frac{d\pi^{\theta|X}(\theta)}{d\nu} = \frac{f_{\theta}(x)g(\theta)}{\int_{\Theta} f_{\theta}(x)g(\theta)d\nu(\theta)}, G \ll \nu$$

Note priors does not necessarily have a density, i.e. G is not necessarily dominated by some ν . But you can always write the density of posterior with respect to G.

3.2 Exponential Family of Distributions

• Exponential family: Definition 16 : $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\} \ll \mu(\sigma \text{ -finite measure })$ is an exponential family if, for some $h(x) \geq 0$, it holds that

$$f_{\theta}(x) \equiv \frac{dP_{\theta}}{d\mu}(x) = \exp\left(\alpha(\theta) + \sum_{i=1}^{k} \eta_i(\theta) T_i(x)\right) h(x), \quad x \in \mathcal{X}$$

for any $\theta \in \Theta$

- Identifiable: Definition 17: A family of distributions, $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\}$ is identifiable if $\theta_1 \neq \theta_2$ implies $P_{\theta_1} \neq P_{\theta_2}$
- Natural parameter space: Let $\eta = (\eta_1, \dots, \eta_k) \in \mathbb{R}^k$ and let

$$\Gamma \equiv \left\{ \boldsymbol{\eta} \in \mathbb{R}^k : \int_{\mathcal{X}} h(x) \exp\left(\sum_{i=1}^k \eta_i T_i(x)\right) d\mu(x) < \infty \right\}$$

note: this kernel with linear combinations of $T_i(X)$ using real numbers $\eta_i, i = 1, ..., k$. Define a new distributional family

$$\mathcal{P}^* \equiv \left\{ P_{\eta} \text{ has R-N derivative as } f_{\eta}(x) \equiv \frac{dP_{\eta}}{d\mu}(x) = K(\boldsymbol{\eta})h(x) \exp\left(\sum_{i=1}^k \eta_i T_i(x)\right) : \boldsymbol{\eta} \in \Gamma \right\}$$

- $-\mathcal{P}\subset\mathcal{P}^*$
- Γ is called the natural parameter space for \mathcal{P}^* and Γ is a convex subset of \mathbb{R}^k
- If Γ lies in a subspace of dimension less than k, then $f_{\eta}(x)$ (and $f_{\theta}(x)$) can be rewritten in a form involving fewer than k statistics $T_i(x)$. (We'll assume Γ to be fully k-dimensional.)
- $-\mathcal{P}$ may be a proper subset of \mathcal{P}^* or

$$\Gamma_{\theta} \equiv \left\{ (\eta_1(\theta), \eta_2(\theta), \dots, \eta_k(\theta)) \in \mathbb{R}^k : \theta \in \Theta \right\}$$

can be a proper subset of Γ .

* For example, for $f_{\theta} \propto \exp(\theta, -\theta^2)$,

$$\Gamma_{\theta} = \{(\theta, -\theta^2) : \theta \in \mathbb{R}\} \subset \Gamma \equiv \{(\eta_1, \eta_2) : \eta \in \mathcal{T}, \eta_2 < 0\}$$

- * The most useful results/theorems about the η -parameterization are the ones where Γ contains an open set, i.e. Γ is rich/big enough.
- * If we want to translate results about the η -parameterization to θ , then we want Γ_{θ} to contain an open set in \mathbb{R}^k .
- * To use the θ -parameterization, we must want $\eta(\cdot)$ to be 1-to-1 on Θ .
- Claim 19: The support of P_{θ} is

$$\{x \in \mathcal{X} : f_{\theta}(x) > 0\} = \{x \in \mathcal{X} : h(x) > 0\}$$

The distributions in $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\}$ are mutually absolutely continuous.

- Claim 20: The statistic $T = (T_1, \ldots, T_k)$ is sufficient for the exponential family \mathcal{P} .
- Claim 21: $T = (T_1, \dots, T_k)$ has induced distributions $\{P_{\theta}^T : \theta \in \Theta\}$, where

$$P_{\theta}^{T}(B) = P_{\theta}(T \in B), \quad B \in \mathcal{B}\left(\mathbb{R}^{k}\right)$$

which is also an exponential family.

- Claim 22: If Γ_{θ} contains an open rectangle in \mathbb{R}^k , then $T = (T_1, \ldots, T_k)$ is complete for the exponential family \mathcal{P} .
- Claim 23: If Γ_{θ} contains an open rectangle in \mathbb{R}^k (or under a much weaker assumption by Lehmann (1983)), then $T = (T_1, \ldots, T_k)$ is minimal sufficient for \mathcal{P} .

Lehmann's Geometric Condition: If there exists k+1 points $v_0, \ldots, v_k \in \Gamma_\theta \subset \mathbb{R}^k$ convex hull

$$\left\{ \sum_{i=0}^{k} p_i v_i, v_i \in \mathbb{R}^k, p_i \ge 0, \sum_{i=0}^{k} p_i = 1 \right\}$$

contains an open set in \mathbb{R}^k then T is minimally sufficient.

- Claim 24: If $g: \mathcal{X} \to \mathbb{R}$ is a measurable real-valued function with $E_{\eta}|g(X)| < \infty$ then

$$E_{\eta}g(X) = \int_{\mathcal{X}} g(x) f_{\eta}(x) d\mu(x)$$

is continuous on Γ and has continuous partial derivatives of all orders on the interior of Γ . Also,

$$\frac{\partial^{\alpha_1 + \alpha_2 + \dots + \alpha_k}}{\partial \eta_1^{\alpha_1} \partial \eta_2^{\alpha_2} \cdots \partial \eta_k^{\alpha_k}} \mathbf{E}_{\boldsymbol{\eta}} g(X) = \int_{\mathcal{X}} g(x) \frac{\partial^{\alpha_1 + \alpha_2 + \dots + \alpha_k}}{\partial \eta_1^{\alpha_1} \partial \eta_2^{\alpha_2} \cdots \partial \eta_k^{\alpha_k}} f_{\boldsymbol{\eta}}(x) d\mu(x)$$

holds for $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{Z}_+ \equiv \{0, 1, 2, \dots\}$

It is okay to swap partials and expectations.

- Claim 25: Recall the exponential form $f_{\eta}(x) = K(\eta) \exp\left(\sum_{i=1}^{k} \eta_{i} T_{i}(x)\right) h(x)$ of densities in \mathcal{P}^{*} where $K(\eta)$ is normalizing constant. If $\eta_{0}, \eta_{0} + \mathbf{u} \in \Gamma$ for $\mathbf{u} = (u_{1}, \dots, u_{k})$, then the moment generating function of statistic T(X) is

$$E_{\boldsymbol{\eta}_0} \exp \left[u_1 T_1(X) + \dots + u_k T_k(X) \right] = \frac{K(\boldsymbol{\eta}_0)}{K(\boldsymbol{\eta}_0 + \boldsymbol{u})}$$

and the moments can be calculated by taking derivatives wrt u evaluated at u = 0.

$$\mathrm{E}_{\boldsymbol{\eta}_0}\left[T_1^{\alpha_1}(X)T_2^{\alpha_2}(X)\cdots T_k^{\alpha_k}(X)\right] = \left.K\left(\boldsymbol{\eta}_0\right)\frac{\partial^{\alpha_1+\alpha_2+\cdots+\alpha_k}}{\partial \eta_1^{\alpha_1}\partial \eta_2^{\alpha_2}\cdots \partial \eta_k^{\alpha_k}}\frac{1}{K(\boldsymbol{\eta})}\right|_{\boldsymbol{\eta}=\boldsymbol{\eta}_0}$$

- Claim 26: If $X = (X_1, ..., X_n)$ with n iid components is such that $X_i \sim P_{\theta}$ (an exponential family distribution with k-dimensional statistic $T(X_i)$), then X generates a k-dimensional exponential family, say $\mathcal{P}^n \equiv \{P_{\theta}^n : \theta \in \Theta\}$ on $(\mathcal{X}^n, \mathcal{B}^n)$ with respect to μ^n . The k-dimensional statistic

$$\sum_{i=1}^{n} T(X_i), \quad T(X_i) = (T_1(X_i), T_2(X_i), \dots, T_k(X_i))$$

is sufficient for this family \mathcal{P}^n . And $\sum_{i=1}^n T(X_i)$ is also complete if Γ_{θ} contains an open rectangle. Here Γ_{θ} is the parameter space with respect to P_{θ} .

- Example:
 - 1. $\mathcal{X} = \mathbb{R}$ and $f_{\eta}(x) \propto \exp(\eta_1 x \eta_2 x^2)$ for $\eta = (\eta_1, \eta_2) \in \mathbb{R} \times (0, \infty)$
 - 2. $\mathcal{X} = \mathbb{R}$ and $f_{\theta}(x) \propto \exp\left(\theta x \theta x^2\right) \exp(\theta T_1(x) + \theta T_2(x))$ for $\boldsymbol{\theta} \in (0, \infty)$, where $T_1(x_1) = x, T_2(x) = -x^2$. Remark: $\Gamma_{\theta} = \{(\theta, \theta) : \theta > 0\}$ contains no open sets and we cannot expect to apply results for $\{P_{\eta} : \eta \in \Gamma\}$ to $\{f_{\theta}\}_{\theta>0}$. This can be fixed by using another parameterization $f_{\eta}(x) \propto \exp(\eta_1 T_1(x)), T_1(x) = x x^2, \eta > 0$, then $\Gamma = (0, \infty), \Gamma_{\theta} = (0, \infty)$ for f_{θ} as above.
 - 3. $\mathcal{X} = \mathbb{R}$ and $f_{\theta}(x) \propto \exp\left(\theta x \theta^2 x^2\right) = \exp(\theta T_1(x) + \theta^2 T_2(x))$ for $\boldsymbol{\theta} \in (0, \infty)$, where $T_1(x_1) = x, T_2(x) = -x^2$. Here $\Gamma_{\theta}\{(\theta, \theta^2) : \theta \neq 0\} \subset \mathbb{R}^2$ does not contain an open set in \mathbb{R}^2 . In other words, we cannot find $f_{\eta}(x)$ having the same dimension as $f_{\theta}(x)$, i.e. k = 2 parametric functions (θ, θ^2) larger than k = 1 for $\theta \in \mathbb{R} \setminus \{0\}$.
- Curved Exponential Family: when the dimension of the parameterization is less than the dimension of natural parameter space. (need special theory).

3.3 Measures of Statistical Information

• Fisher Information Regularization Conditions: Definition 27 : $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\} \ll \mu(\sigma - \text{finite})$ is **FI** regular at $\theta_0 \in \Theta \subset \mathbb{R}^k$ if there is an open neighborhood of θ_0 , say O, such that

- (Support) $f_{\theta}(x) > 0$ for all $x \in \mathcal{X}$ and $\theta \in O$, where \mathcal{X} is all the possible value X can take. We can use support $\{x \in \mathcal{X} : f_{\theta}(x) > 0\}$ by redefining $\mathcal{X} \equiv$ support.
- (Smoothness) for all $x, f_{\theta}(x)$ has first-order partial derivatives at θ_0 ; and
- (Local property: swapping condition) $1 = \int_{\mathcal{X}} f_{\theta}(x) d\mu(x)$ can be differentiated with respect to each component θ_i at θ_0 so that

$$0 = \int_{\mathcal{X}} \frac{\partial f_{\theta}(x)}{\partial \theta_{i}} \bigg|_{\theta_{0}} d\mu(x), \quad i = 1, \dots, k$$

• Score function: The random function of θ given by

$$\left(\frac{\partial \log f_{\theta}(X)}{\partial \theta_1}, \frac{\partial \log f_{\theta}(X)}{\partial \theta_2}, \dots, \frac{\partial \log f_{\theta}(X)}{\partial \theta_k}\right)$$

is called the score function. Note score function always has mean zero.

$$E_{\theta_0}(\frac{\partial \log f_{\theta}(x)}{\partial \theta_i}|_{\theta_0}) = E_{\theta_0}(\frac{1}{f_{\theta_0}(x)}\frac{\partial f_{\theta}(x)}{\partial \theta_i}|_{\theta_0}) = \int_{\mathcal{X}} \frac{1}{f_{\theta_0}(x)}\frac{\partial f_{\theta}(x)}{\partial \theta_i}f_{\theta_0}(x)d\mu(x) = 0$$

by the third condition of Fisher Information.

• Fisher Information about θ contained in X at θ_0 : Definition 28: If $\mathcal{P} \equiv \{P_\theta : \theta \in \Theta\} \ll \mu(\sigma - \text{finite})$ is FI regular at $\theta_0 \in \Theta \subset \mathbb{R}^k$ and

$$\mathrm{E}_{\theta_0} \left(\left. \frac{\partial \log f_{\theta}(X)}{\partial \theta_i} \right|_{\theta_0} \right)^2 < \infty, \quad i = 1, \dots, k$$

then the $k \times k$ matrix

$$I(\theta_0) = \left[\mathbb{E}_{\theta_0} \left(\left. \frac{\partial \log f_{\theta}(X)}{\partial \theta_i} \right|_{\theta_0} \cdot \left. \frac{\partial \log f_{\theta}(X)}{\partial \theta_j} \right|_{\theta_0} \right) \right]_{i,j}, \quad i, j = 1, \dots, k$$

is called the Fisher information about θ contained in X at θ_0 .

- Claim 29:
 - * Fisher information does not depend on the dominating measure μ . Suppose that $\mathcal{P} \ll \mu(\sigma \text{-finite})$ and $\mu \ll \nu$.

$$\frac{dP_{\theta}}{d\nu} = \frac{dP_{\theta}}{d\mu} \frac{d\mu}{d\nu} = f_{\theta}(x) \frac{d\mu(x)}{d\nu} \implies \frac{\partial \log(\frac{dP_{\theta}(x)}{d\nu})}{\partial \theta_i} = \frac{\partial \log f_{\theta}(x)}{\partial \theta_i} + \frac{\partial \log(\frac{d\mu_{\theta}(x)}{d\nu})}{\partial \theta_i}$$

where the second part does not depend on θ_0 and thus equals to zero.

* Fisher Information $I(\theta_0)$ does depend on the parameterization. Suppose $\mathcal{P} \ll \mu(\sigma)$ -finite) is FI regular at $\theta_0 \in \mathbb{R}$ and let $\eta = h(\theta)$ for 1-to-1 and differentiable function $h: \Theta \to \mathbb{R}$ (so $\theta = h^{-1}(\eta)$). Define distributions $Q_{\eta} \equiv P_{h^{-1}(\eta)} = P_{\theta} \ll \mu$ (for η in the range of h) so that we have distributions/densities

$$\begin{array}{ll} P_{\theta} & Q_{\eta} = P_{h^{-1}(\eta)} = P_{\theta} \\ f_{\theta} = \frac{dP_{\theta}}{d\mu} & g_{\eta} = \frac{dQ_{\eta}}{d\mu} = \frac{dP_{h^{-1}(\eta)}}{d\mu} = f_{h^{-1}(\eta)} = f_{\theta} \end{array}$$

Then, we can compute the Fisher information in X about η at η_0 as

$$I\left(\eta_{0}\right) = \left(\frac{1}{h'\left(h^{-1}\left(\eta_{0}\right)\right)}\right)^{2} J\left(h^{-1}\left(\eta_{0}\right)\right) = \left(\frac{1}{h'\left(\theta_{0}\right)}\right)^{2} J\left(\theta_{0}\right)$$

using the first order derivative h' and the Fisher information $J\left(h^{-1}\left(\eta_{0}\right)\right)=J\left(\theta_{0}\right)$ in X about θ at $\theta_{0}=h^{-1}\left(\eta_{0}\right)$

- Theorem 30: Suppose $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\} \ll \mu(\sigma - \text{finite})$ is FI regular at $\theta_0 \in \Theta \subset \mathbb{R}^k$ using an open neighborhood O around θ_0 . In addition, suppose $f_{\theta}(x)$ has continuous second order partial derivatives with respect to θ in the neighborhood O for all $x \in \mathcal{X}$ with

$$0 = \int_{\mathcal{X}} \frac{\partial f_{\theta}(x)}{\partial \theta_{i}} \bigg|_{\theta_{0}} d\mu(x), \quad i = 1, \dots, k$$

and

$$0 = \int_{\mathcal{X}} \frac{\partial^2 f_{\theta}(x)}{\partial \theta_i \partial \theta_j} \bigg|_{\theta_0} d\mu(x), \quad i, j = 1, \dots, k$$

Then, it holds that

$$I(\theta_0) = -\left[\mathbb{E}_{\theta_0} \left(\left. \frac{\partial^2 \log f_{\theta}(X)}{\partial \theta_i \partial \theta_i} \right|_{\theta_0} \right) \right]_{i,j}, \quad i, j = 1, \dots, k$$

Note: For k = 1, the above says that

$$I(\theta_0) = E_{\theta_0} \left(\frac{d \log f_{\theta}(X)}{d \theta} \bigg|_{\theta_0} \right)^2 = -E_{\theta_0} \left(\frac{d^2 \log f_{\theta}(X)}{d \theta^2} \bigg|_{\theta_0} \right)$$

- Proposition 31: If X_1, \ldots, X_n are independent with $X_i \sim P_{i,\theta}$, then $X = (X_1, \ldots, X_n)$ carries the Fisher information

$$I(\theta) = \sum_{i=1}^{n} I_i(\theta)$$

where $I_i(\theta)$ is the Fisher information carried by $X_i, i = 1, ..., n$. Note

$$I(\theta) = Var\left(\frac{\partial \log f_{\theta}(x)}{\partial \theta}\right) = Var\left(\frac{\sum_{i} \partial \log f_{\theta}(x_{i})}{\partial \theta}\right) = \sum_{i} Var\left(\frac{\partial \log f_{\theta_{i}}(x)}{\partial \theta}\right) = \sum_{i} I_{i}(\theta)$$

- Proposition 32: Suppose $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\} \ll \mu(\sigma \text{finite}) \text{ is } FI \text{ regular at } \theta_0 \in \Theta \subset \mathbb{R}^k$. If the function $T(\text{ from } (\mathcal{X}, \mathcal{B}) \text{ to } (\mathcal{T}, \mathcal{F})) \text{ is } \mathbf{1-to-1} \text{ then the Fisher information in } T(X) \text{ is the same as the Fisher information in } X : I_{T(X)}(\theta_0) = I_X(\theta_0)$
- Proposition 33: Suppose $\mathcal{P} \equiv \{P_{\theta} : \theta \in \Theta\} \ll \mu(\sigma \text{-finite})$ is FI regular at $\theta_0 \in \Theta \subset \mathbb{R}^k$ and that $\mathcal{P}^T \equiv \{P_{\theta}^T : \theta \in \Theta\}$ (the set of distributions induced by a statistic T(X)) is FI regular at θ_0 . Then, the $k \times k$ matrix

$$I_X(\theta_0) - I_{T(X)}(\theta_0)$$

is non-negative definite. Furthermore, if T(X) is sufficient, then

$$I_X(\theta_0) = I_{T(X)}(\theta_0)$$

holds. Also, $I_X(\theta_0) = I_{T(X)}(\theta_0)$ holding for all θ_0 implies that T(X) is sufficient. Note: The proof of this result is really hard and can be found with Theorem 2.86 of Schervish.

- Proposition 34: For an exponential family of distributions as in Claim 28 (i.e., exponential families in natural parameter space), it holds that

$$I(\eta_0) = \operatorname{Var}_{\eta_0}(T(X)) = \left[\left. \frac{\partial^2(-\log K(\eta))}{\partial \eta_i \partial \eta_j} \right|_{\eta_0} \right]_{i,j}, \quad i, j = 1, \dots, k$$

where $T(X) = (T_1(X), ..., T_K(X))$ and

$$f_{\eta}(x) \equiv \frac{dP_{\eta}}{d\mu}(x) = K(\eta)h(x) \exp\left(\sum_{i=1}^{k} \eta_i T_i(x)\right)$$

Proof: Note that $\log f_{\eta}(x) = \log K(\eta) + \sum_{i=1}^{k} \eta_i T_i(x) + \log h(x)$. and that

$$\frac{\partial \log f_{\eta}(x)}{\partial \eta_{i}} = \frac{\partial \log K(\eta)}{\partial \eta_{i}} + T_{i}(x) \stackrel{\text{Claim 25}}{=} -E_{\eta}T_{i}(X) + T_{i}(X)$$

• Kullback-Leibler Informaion Definition 35: If P and Q are probability measures on $(\mathcal{X}, \mathcal{B})$ with R -N derivatives p and q with respect to a dominating σ -finite measure μ , then the Kullback-Leibler information (KL divergence of Q from P) is the P -expected log-likelihood ratio

$$I(P,Q) = E_P \log \left(\frac{p(X)}{q(X)}\right) = \int_{\mathcal{X}} \log \left(\frac{p(x)}{q(x)}\right) p(x) d\mu(x)$$

- The choice of μ is immaterial. One could use $\mu = P + Q$
- Non-support sets $N_{0,P} = \{x \in \mathcal{X} : p(x) = 0\} \& N_{0,Q} = \{x \in \mathcal{X} : q(x) = 0\}$ do not impact I(P,Q) above; one can compute $I(P,Q) = \int_{\mathcal{X}^*} \log\left(\frac{p(x)}{q(x)}\right) p(x) d\mu(x)$ using $\mathcal{X}^* \equiv \{x \in \mathcal{X} : p(x) > 0, q(x) > 0\}$ for which $p(x)/q(x) \in (0,\infty)$ holds.
- Claim 36: In general, $I(P,Q) \neq I(Q,P)$ holds.

- Claim $37: I(P,Q) \ge 0$ holds where I(P,Q) = 0 if and only if P = Q
- Claim 38: Suppose that P and Q are two probability measures on $(\mathcal{X}, \mathcal{B})$ with R-N derivatives p and q with respect to a dominating σ -finite measure μ . Assume $P_P(q(X) = 0) = 0$ and suppose further that $C: (0, \infty) \to \mathbb{R}$ is convex and that $\mathbb{E}_P C^-\left(\frac{q(X)}{p(X)}\right) < \infty$. Then $\mathbb{E}_P C\left(\frac{q(X)}{p(X)}\right) \geq C(m)$, $m \equiv \mathbb{E}_P\left(\frac{q(X)}{p(X)}\right) = \int_{\{x \in \mathcal{X}: p(x) > 0, q(x) > 0\}} q(x) d\mu(x) \in (0, 1]$ If C is strictly convex, then equality holds above if and only if q(X)/p(X) is degenerate under P (or equivalently q(X)/p(X) = m holds a.s. P). Prove by Jensen's Inequality.
- Theorem 39: Suppose $X = (X_1, X_2)$ and that, under both distributions P^X and Q^X for X, it holds that X_1 and X_2 are independent. Then,

$$I_X(P^X, Q^X) = I_{X_1}(P^{X_1}, Q^{X_1}) + I_{X_2}(P^{X_2}, Q^{X_2})$$

where P^{X_i} and Q^{X_i} denote the marginal distributions of X_i (i = 1, 2) under P^X and Q^X , respectively.

– Theorem 40: Suppose that P and Q are probability measures for X on $(\mathcal{X}, \mathcal{B})$ and that $P^{T(X)}$ and $Q^{T(X)}$ are the induced probability measures for T(X). Then,

$$I_X\left(P^X, Q^X\right) \ge I_{T(X)}\left(P^{T(X)}, Q^{T(X)}\right)$$

and there is equality if and only if T(X) is sufficient for $\{P,Q\}$.

- Theorem 41: Under the Fisher Information RCs, if

$$\frac{\partial^2}{\partial \theta_i \theta_j} E_{\theta_0} \log f_{\theta}(X)|_{\theta = \theta_0} = E_{\theta_0} \left(\frac{\partial^2}{\partial \theta_i \theta_j} \log f_{\theta}(X)|_{\theta = \theta_0} \right)$$

then

$$\left(\frac{\partial^2}{\partial \theta_i \partial \theta_j} I(P_{\theta_0}, P_{\theta})|_{\theta = \theta_0}\right)_{i, j = 1, \dots, k} = I(\theta_0)$$

Note: Fisher's Information is a special form of the curvature of the Kullback-Leibler Information.