Data Science Journey of SpaceX

Zixuan Yi 04.02.2024

Executive Summary

- Methodologies
 - Data Collection with web scraping and API
 - Data wrangling
 - Data Analysis
 - Data visualization
 - Machine Learning prediction
- Summary
 - We collect the dataset from the open source dataset and analyze it insightful
 - We applied several machine learning methods on dataset to see the relationship among features

Introduction

We aim to learn how SpaceX be successful on both launch successfully and budget control

- If we can determine if the first stage will land, we can determine the cost of a launch
- We can use this information if an alternate company wants to big against SpaceX for a rocket launch

Data Collection

- We collect data from Web scraping and SpaceX API
 - Web scraping (https://en.wikipedia.org/wiki/List_of_Falcon/_9/ _and_Falcon_Heavy_launches)
 - SpaceX API ((https://api.spacexdata.com/v4/rockets/))

Data Wrangling

After analyzing features, we create labels for original data

EDA with SQL

- Limit, order condition to limit the output of data and Rank the dataset in specific order
- The function as count(), sum() etc to calculate columns value
- The window operator as groupby to analyze the data between categories or groups

EDA with Data visualization

- To deep in the data, we use scatter plots, barplot and line plot to display the relationship between features
- Example below is the pay load Mass and flight number relationship for different classes.

Interactive visual analytics

- Create Interactive visual with folium package
- Use Markers to mark launch sites
- Marker cluster can mark multi marks on the map to show the different event
- Lines represent the distance between two destinations
- Using Plotly Dash to build a Dashboard
- Callback decorator to automatically aligned with changes

Predictive Analysis

- Using logistic regression and svm to do classification
- Search the parameters show the best scores
- Analyze the result with confusion matrix

EDA visualization result

EDA visualization result

EDA SQL Result

Launch_Site
CCAFS LC-40
CCAFS SLC-40
KSC LC-39A
VAFB SLC-4E

[10]:	Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012-10- 08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

TOTAL_	_PAYLOAD
	111268

AVG_PAYLOAD
2928.4

first_success_gp
2015-12-22

F9 FT B1021.2
F9 FT B1031.2
F9 FT B1022
F9 FT B1026

Mission_Outcome QTY

Failure (in flight) 1

Success 98

Success 1

Success (payload status unclear) 1

F9 B5 B1048.4
F9 B5 B1048.5
F9 B5 B1049.4
F9 B5 B1049.5

F9 B5 B1051.3 F9 B5 B1051.4 F9 B5 B1051.6

F9 B5 B1049.7

F9 B5 B1056.4 F9 B5 B1058.3 F9 B5 B1060.2

F9 B5 B1060.3

booster_version	launch_site
F9 v1.1 B1012	CCAFS LC-40
F9 v1.1 B1015	CCAFS LC-40

qty	landingoutcome
10	No attempt
5	Failure (drone ship)
5	Success (drone ship)
3	Controlled (ocean)
3	Success (ground pad)
2	Failure (parachute)
2	Uncontrolled (ocean)
1	Precluded (drone ship)

Interactive map result

Result with interactive dashboard

SpaceX Launch Records Dashboard

SpaceX Launch Records Dashboard

Payload Mass (kg)

Result with predictive analysis

