

1

Optimal Minimal Cost Due Date Crashing

CPM heuristic does not guarantee optimal solution
Optimal solution requires linear programming
LP formulation is based on Activity on Arc (AOA) network

2 PM - Cost-time trade-off LP

A simple AOA network

Act Prev A - B - C AB D B - C AB D B E C,D F E

L 8

Difficulties in drawing an AOA

AOA: many representations possible, depending on the number of dummies

With AON: always just one representation

Objective: use as few dummies as possible

Trick: look at the overlap in the clusters of precedence constraints to determine the number of dummies needed

9 PM - Cost-time trade-off LP

TU/e

9

Notations in AOA

Activity A is an arc between nodes i and j with duration T_{ij} The earliest start time from node i is x_i and from node j is x_j

11 PM - Cost-time trade-off LP

TU/e

11

Basic Linear Programming formulation

Given a network G(V,A), find values for the start times x_i at each node i such that

Is minimized, subject to

 $\triangleright \forall (i,j) \in A: \quad x_i + T_{ij} \leq x_j$

 $\triangleright \forall i \in V$:

 $x_i \ge 0$

 $\Rightarrow x_i - x_j \le -T_{ij}$ $\Rightarrow -x_i + x_j \ge T$

Earliest Start Time

Problem

12 PM - Cost-time trade-off LP

TU/e

Basic Linear Programming formulation

Given a network G(V,A), find values for the start times x_i at each node i such that

$$\sum_{i=1}^{m} x_i$$

Is minimized, subject to

Canonical notation (constant RHS = Right Hand Side)

$$\forall (i,j) \in A: \quad x_j - x_i \ge T_{ij}$$

 $\forall i \in V: \quad x_i \ge 0$

13 PM - Cost-time trade-off LP

TU/e

13

Basic Linear Programming formulation

Given a network G(V,A), find values for the start times x_i at each node i such that

$$m \cdot x_m - \sum_{i=1}^{m-1} x_i$$

Is minimized, subject to

Latest Start Time Problem

$$\forall (i,j) \in A: \quad x_j - x_i \ge T_{ij}$$

 $\forall i \in V: \quad x_i \ge 0$

14 PM - Cost-time trade-off LP

TU/e

Additional parameters for crashing

Due date **DD**

Indirect costs $C^{Indirect}$ on total project duration (= x_m)

For each activity $(i, j) \in A$:

- Nominal duration N_{ii}
- Full crash duration M_{ii}
- Cost/time slope $C_{ij}^{Direct} = \frac{Crash \, cost \, Normal \, cost}{N_{ij} M_{ij}}$
- Upper bound on time reduction: $oldsymbol{U}_{ij} = oldsymbol{N}_{ij} oldsymbol{M}_{ij}$

TU/

15

LP formulation due date crashing

Given a network G(V,A), find values for the start times x_i at each node i and crash activity times t_{ij} such that

$$C^{Indirect}x_m + \sum_{(i,j)\in A}^m C_{ij}^{Direct}t_{ij}$$

Is minimized, subject to

$$\forall (i,j) \in A: \quad x_j - x_i + t_{ij} \ge N_{ij}$$

$$x_m \le DD$$

$$\forall (i,j) \in A: \quad 0 \le t_{ij} \le U_{ij}$$

$$\forall i \in V: \quad x_i \ge 0$$

This formulation differs from Nahmias & Olsen (2015)

16 PM - Cost-time trade-off LP

LP formulation due date crashing + delay

 $\forall i \in V$:

Given a network G(V,A), find values for the start times x_i at each node i and crash activity times t_{ij} such that

$$C^{Indirect}x_m + \sum_{(i,j)\in A}^m C^{Direct}_{ij} t_{ij} + Fd$$

Is minimized, subject to

 $\forall (i,j) \in A: \quad x_j - x_i + t_{ij} \ge N_{ij}$

 $x_m - d \leq DD$

 $x_m - d \le DD$ $\forall (i,j) \in A: \qquad 0 \le t_{ij} \le U_{ij}$

 $x_i \geq 0$

PM - Cost-time trade-off LP

Allowing a delay d

17

Summary of topics covered

Convert a WBS into a AON or AOA network

Calculate the critical path using CPM

Resource loading, leveling and scheduling

Cost-time trade-off for crashing using heuristic

LP formulation for optimal due date crashing

PM - Cost-time trade-off LP