Automates, algèbre, applications - AAA CM 3

Uli Fahrenberg Sven Dziadek Philipp Schlehuber Adrien Pommellet Etienne Renault

EPITA

S6 2022

Program of the course

	CM 1 : Weighted automata	5 M	ay
2	TD : Weighted automata	12 M	ay
3	CM 2 : LTL model checking	12 M	ay
4	CM 3 : ω -Automata	19 M	ay
5	DM (noté)		
6	$TP:\omega ext{-}Automata$	2 Ju	ne
	CM 4 : Automata learning	16 Ju	ne

Program of the course

	CM 1 : Weighted automata	5 May
2	TD : Weighted automata	12 May
3	CM 2 : LTL model checking	12 May
4	CM 3 : ω -Automata	19 May
5	DM (noté)	
6	$TP:\omega ext{-}Automata$	2 June
	CM 4 : Automata learning	16 June

CM 3 : ω -Automata

- Büchi Automata
 - Definition
 - Properties
- Muller Automata
 - Büchi vs. Muller
- From Büchi to Spot
 - Transition-Based Generalized Büchi Automata
 - Emerson-Lei Automata
- 4 Summary: Expressive Power

Sources:

- Farwer, B, ω -automata. In: Automata, Logics, and Infinite Games (pp. 3-21), Springer, 2002.
- https://spot.lrde.epita.fr/concepts.html

Model Checking

Recall

Model checking translates LTL to automata and checks for emptiness of intersection of model and specification.

Model Checking

Recall

Model checking translates LTL to automata and checks for emptiness of intersection of model and specification.

Goal of this lecture

Understand ω -automata

Ordinal Numbers

```
\begin{array}{lll} 0 & & & \\ 1 & & & \\ 2 & & & \\ \vdots & & & \\ n & & \vdots & \\ \omega & \text{order type of } \mathbb{N} \\ \vdots & & & \end{array}
```


specify indices in ordered sequences

ω -Words

Foreword

 Σ : finite alphabet, $n \in \mathbb{N} \cup \{\omega\}$: ordinal number.

Definition

An *n*-word w over Σ is a sequence of length n, i.e., a function $w: [0, n] \to \Sigma$.

ω -Words

Foreword

 Σ : finite alphabet, $n \in \mathbb{N} \cup \{\omega\}$: ordinal number.

Definition

An *n*-word w over Σ is a sequence of length n, i.e., a function $w: [0, n[\to \Sigma.$

Notations:

 $\sum_{n=1}^{\infty}$ set of *n*-words,

 Σ^* set of finite words $(n < \omega)$,

 Σ^{ω} set of ω -words $(n = \omega)$,

 $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$ set of all words $(n \leq \omega)$,

ω -Rational Expressions

Foreword

Definition (ω -Rational Expressions)

 ω -languages are called ω -regular if they are of the form:

Above: L is a regular language (of finite words) K, K_1, K_2 are ω -regular languages

ω -Rational Expressions

Foreword

Definition (ω -Rational Expressions)

 ω -languages are called ω -regular if they are of the form:

- \bullet $K_1 \cup K_2$,
- $LK = \{vw \mid v \in L, w \in K\},\$
- $L^{\omega} = \{w_0 w_1 w_2 \cdots \mid w_i \in L\}$ for $\{\varepsilon\} \notin L$,

Above: L is a regular language (of finite words) K, K_1, K_2 are ω -regular languages

Foreword

Which words are accepted?

Foreword

Which words are accepted?

$$(c^*ad^*b)^*c^*$$

Which words are accepted?

$$(c^*ad^*b)^*c^*$$

Which ω -paths exist?

Foreword

Which words are accepted?

$$(c^*ad^*b)^*c^*$$

Which ω -paths exist?

$$(c^*ad^*b)^{\omega} + (c^*ad^*b)^*c^{\omega} + (c^*ad^*b)^*c^*ad^{\omega}$$

Infinite Sequences

Definition

Foreword

$$Inf((q_i)_{i>0}) = \{q \mid q = q_i \text{ for infinitely many } i \geq 0\}$$

Example

$$Inf(0,1,2,3,4,5,\ldots) = \emptyset$$

$$Inf(0,1,2,3,3,3,\ldots) = \{3\}$$

$$Inf(0,1,2,3,2,3,2,3,\ldots) = \{2,3\}$$

Büchi Automata: Definition

Definition (Büchi Automaton)

 $\mathcal{A} = (\textit{Q},\textit{I},\textit{T},\textit{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $F \subseteq Q$: Büchi-accepting states.

Büchi Automata: Definition

Definition (Büchi Automaton)

 $\mathcal{A} = (\textit{Q},\textit{I},\textit{T},\textit{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $F \subseteq Q$: Büchi-accepting states.

Run of \mathcal{A} on $w \in \Sigma^{\omega}$:

$$\rho = (q_i)_{i>0}$$
 with

- $q_0 \in I$,
- for all $i \ge 0$: $q_i \xrightarrow{w_i} q_{i+1} \in T$

Büchi Automata: Definition

Definition (Büchi Automaton)

 $\mathcal{A} = (\textit{Q},\textit{I},\textit{T},\textit{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $F \subseteq Q$: Büchi-accepting states.

Run of \mathcal{A} on $w \in \Sigma^{\omega}$:

$$\rho = (q_i)_{i>0}$$
 with

- $q_0 \in I$,
- for all $i \ge 0$: $q_i \xrightarrow{w_i} q_{i+1} \in T$

Run ρ Büchi-accepted if an accepting state occurs infinitely often,

Büchi Automata: Definition

Definition (Büchi Automaton)

 $\mathcal{A} = (Q, I, T, F)$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $F \subseteq Q$: Büchi-accepting states.

Run of \mathcal{A} on $w \in \Sigma^{\omega}$:

$$\rho = (q_i)_{i>0}$$
 with

- $q_0 \in I$,
- for all $i \ge 0$: $q_i \xrightarrow{w_i} q_{i+1} \in T$

Run ρ Büchi-accepted if an accepting state occurs infinitely often, i.e., $Inf(\rho) \cap F \neq \emptyset$.

Büchi Automata: Definition 2

The language recognized by a Büchi Automaton A:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^{\omega} \mid \exists \text{ B\"{u}chi-accepted run of } \mathcal{A} \text{ on } w \}$$

A language recognized by Büchi Automata is called Büchi-recognizable.

$$F = \{q_1\}$$

$$(Inf(\rho) \cap F \neq \emptyset)$$

Foreword

$$F = \{q_1\}$$

$$(\mathsf{Inf}(\rho) \cap F \neq \emptyset)$$

$$(c^*ad^*b)^\omega + (c^*ad^*b)^*c^\omega$$

Foreword

$$F = \{q_1\}$$

$$(c^*ad^*b)^{\omega} + (c^*ad^*b)^*c^{\omega}$$

$$F = \{q_2\}$$

$$(Inf(\rho) \cap F \neq \emptyset)$$

 $F = \{q_1\}$

$$(c^*ad^*b)^{\omega} + (c^*ad^*b)^*c^{\omega}$$

$$c \stackrel{\downarrow}{\bigcirc} q_1 \stackrel{a}{\bigcirc} q_2 \stackrel{\downarrow}{\bigcirc} c$$

$$F = \{q_2\}$$

$$(\operatorname{Inf}(\rho) \cap F \neq \emptyset)$$

$$(c^*ad^*b)^{\omega}+(c^*ad^*b)^*c^*ad^{\omega}$$

Büchi Automata: Example

$$F = \{q_1\}$$

$$(c^*ad^*b)^\omega + (c^*ad^*b)^*c^\omega$$
 $F = \{q_1, q_2\} \Rightarrow$

$$c \stackrel{\downarrow}{\bigcirc} q_1 \stackrel{a}{\bigcirc} q_2 \stackrel{\downarrow}{\bigcirc} q_2$$

$$F = \{q_2\}$$

$$(\operatorname{Inf}(\rho) \cap F \neq \emptyset)$$

$$(c^*ad^*b)^\omega + (c^*ad^*b)^*c^*ad^\omega$$

Foreword

$$(\mathsf{Inf}(\rho) \cap F \neq \emptyset)$$

$$(c^*ad^*b)^{\omega} + (c^*ad^*b)^*c^{\omega}$$
 $(c^*ad^*b)^{\omega} + (c^*ad^*b)^*c^*ad^{\omega}$

$$F = \{q_1, q_2\} \Rightarrow \mathcal{L}(\mathcal{A}) = (c^*ad^*b)^{\omega} + (c^*ad^*b)^*c^{\omega} + (c^*ad^*b)^*c^*ad^{\omega}$$

Emptiness is Decidable

Foreword

Büchi automaton: A = (Q, I, T, F)

- Interpret A as graph (Q, T)
- Check reachability of states in F from states in I (Floyd-Warshall)
- For every reachable accepting state f:
 Check (non-trivial) path from f to f.

Expressive Power

Emptiness is Decidable

Foreword

Büchi automaton: A = (Q, I, T, F)

- Interpret A as graph (Q, T)
- Check reachability of states in F from states in I (Floyd-Warshall)
- For every reachable accepting state f:
 Check (non-trivial) path from f to f.
- ⇒ search for lassos

Emptiness is Decidable

Foreword

Büchi automaton: A = (Q, I, T, F)

- Interpret A as graph (Q, T)
- Check reachability of states in F from states in I (Floyd-Warshall)
- For every reachable accepting state f:
 Check (non-trivial) path from f to f.
- ⇒ search for lassos

Deterministic Büchi Automata

$$L:=\mathcal{L}(\mathcal{A})=(a+b)^*a^\omega$$

Deterministic Büchi Automata

$$L:=\mathcal{L}(\mathcal{A})=(a+b)^*a^{\omega}$$

Lemma

L is not accepted by any deterministic Büchi Automata

Deterministic Büchi Automata

$$L := \mathcal{L}(\mathcal{A}) = (a+b)^* a^{\omega}$$

Lemma

L is not accepted by any deterministic Büchi Automata

Proof.

Suppose: $\mathcal{B} = (Q, I, T, F)$ is a det. Büchi automaton recognizing L.

 \mathcal{B} accepts a^{ω} . After some finite prefix of a^{ω} , \mathcal{B} will visit some state in F say after i_0 letters

F, say after i_0 letters.

 ${\cal B}$ also accepts $a^{i_0}ba^\omega$. Therefore, for some i_1 , after the prefix $a^{i_0}ba^{i_1}$,

 ${\cal B}$ will visit some state in ${\cal F}$.

Continue: $a^{i_0}ba^{i_1}ba^{i_2}\cdots$ is recognized by $\mathcal B$ as states in F are visited infinitely often. But: $a^{i_0}ba^{i_1}ba^{i_2}\cdots\notin L$. $\mathcal I$

The class of languages accepted by Büchi automata is closed under:

union (easy)

The class of languages accepted by Büchi automata is closed under:

- union (easy)
- intersection (product construction, see slide 31)

The class of languages accepted by Büchi automata is closed under:

union (easy)

Foreword

- intersection (product construction, see slide 31)
- complement (hard) Büchi (1960): construction with $2^{2^{O(n)}}$ states, Klarlund (1991), Safra (1992): $2^{O(n \log n)}$

The class of languages accepted by Büchi automata is closed under:

union (easy)

Foreword

- intersection (product construction, see slide 31)
- complement (hard) $B\ddot{u}chi$ (1960): construction with $2^{2^{O(n)}}$ states, Klarlund (1991), Safra (1992): $2^{O(n\log n)}$

Emptiness is decidable

The class of languages accepted by Büchi automata is closed under:

union (easy)

Foreword

- intersection (product construction, see slide 31)
- complement (hard) $B\ddot{u}chi$ (1960): construction with $2^{2^{O(n)}}$ states, Klarlund (1991), Safra (1992): $2^{O(n\log n)}$

Emptiness is decidable

But: Büchi automata are not always determinisable.

 Foreword
 Introduction
 Büchi
 Muller
 From Büchi to Spot
 Expressive Power

 000
 000000
 000000
 00000000
 000000000
 000000000

Büchi vs. ω -Regular Expressions

Theorem

Büchi-recognizable languages are exactly the ω -regular languages

Büchi vs. ω -Regular Expressions

Theorem

Büchi-recognizable languages are exactly the ω -regular languages

Proof Sketch

 \leftarrow Büchi automata closed under operation for ω -regular expressions

Büchi vs. ω -Regular Expressions

Theorem

Foreword

Büchi-recognizable languages are exactly the ω -regular languages

Proof Sketch

- \leftarrow Büchi automata closed under operation for ω -regular expressions
- \Rightarrow Runs ρ in Büchi automata can be divided into two regular parts: prefix: $\rho_f = q_0 \to \ldots \to q_f$ for $q_0 \in I$ and $q_f \in F$

loop:
$$\rho_f' = q_f \to \ldots \to q_f$$

Büchi vs. ω -Regular Expressions

Theorem

Foreword

Büchi-recognizable languages are exactly the ω -regular languages

Proof Sketch

- \leftarrow Büchi automata closed under operation for ω -regular expressions
- \Rightarrow Runs ho in Büchi automata can be divided into two regular parts: prefix: $ho_f=q_0 \to \ldots \to q_f$ for $q_0 \in I$ and $q_f \in F$

loop: $\rho_f' = q_f \to \ldots \to q_f$

All possible runs: $\bigcup_{f \in F} \rho_f \rho_f^{\prime \omega}$ is an ω -regular expression

Foreword

Muller Automata

Muller Automata: Definition

Foreword

Definition (Muller Automaton)

 $\mathcal{A} = (Q, I, T, \mathcal{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $\mathcal{F} \subseteq 2^Q$: Muller-accepting state sets.

Muller Automata: Definition

Foreword

Definition (Muller Automaton)

 $\mathcal{A} = (Q, I, T, \mathcal{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $\mathcal{F} \subseteq 2^Q$: Muller-accepting state sets.

Muller Automata: Definition

Foreword

Definition (Muller Automaton)

 $\mathcal{A} = (Q, I, T, \mathcal{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $\mathcal{F} \subseteq 2^Q$: Muller-accepting state sets.

Run ρ Muller-accepted if there is $F \in \mathcal{F}$ so that

- we see states in F infinitely often and
- states not in F only finitely often,

Foreword

Muller Automata: Definition

Definition (Muller Automaton)

 $\mathcal{A} = (Q, I, T, \mathcal{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $\mathcal{F} \subseteq 2^Q$: Muller-accepting state sets.

Run ρ Muller-accepted if there is $F \in \mathcal{F}$ so that

- we see states in F infinitely often and
- states not in F only finitely often,

i.e., $Inf(\rho) \in \mathcal{F}$.

Foreword

$$\mathcal{F} = \{\{q_1\}\}$$

$$(\mathsf{Inf}(\rho) \in \mathcal{F})$$

Foreword

$$\mathcal{F} = \{\{q_1\}\}$$

$$(\mathsf{Inf}(
ho)\in\mathcal{F})$$

$$(c^*ad^*b)^*c^{\omega}$$

Foreword

$$\mathcal{F} = \{\{q_1\}\}$$

$$(c^*ad^*b)^*c^{\omega}$$

$$\mathcal{F} = \{\{q_2\}\}$$

$$(\mathsf{Inf}(\rho) \in \mathcal{F})$$

Foreword

$$\mathcal{F} = \{\{q_1\}\}$$

$$(c^*ad^*b)^*c^{\omega}$$

$$\mathcal{F} = \{\{q_2\}\}$$

$$(\mathsf{Inf}(\rho) \in \mathcal{F})$$

$$(c^*ad^*b)^*c^*ad^{\omega}$$

Which
$$\omega$$
-words are accepted?

$$(c^*ad^*b)^*c^{\omega}$$

$$\mathcal{F} = \{\{q_1\}, \{q_2\}\} \quad \Rightarrow \quad$$

$$c$$
 q_1 q_2 q_2 q_3 q_4 q_5 q_6 q_7 q_8 q_8

$$(\mathsf{Inf}(\rho) \in \mathcal{F})$$

$$(c^*ad^*b)^*c^*ad^{\omega}$$

Foreword

Which ω -words are accepted? $(Inf(\rho) \in \mathcal{F})$

$$(c^*ad^*b)^*c^\omega$$
 $(c^*ad^*b)^*c^*ad^\omega$ $\mathcal{F}=\{\{q_1\},\{q_2\}\}$ \Rightarrow $\mathcal{L}(\mathcal{A})=(c^*ad^*b)^*c^\omega+(c^*ad^*b)^*c^*ad^\omega$

Foreword

Which ω -words are accepted? $(Inf(\rho) \in \mathcal{F})$

$$(c^*ad^*b)^*c^\omega$$
 $(c^*ad^*b)^*c^*ad^\omega$ $\mathcal{F} = \{\{q_1\}, \{q_2\}\}$ \Rightarrow $\mathcal{L}(\mathcal{A}) = (c^*ad^*b)^*c^\omega + (c^*ad^*b)^*c^*ad^\omega$ $\mathcal{F} = \{\{q_1, q_2\}\}$ \Rightarrow

Foreword

Which ω -words are accepted? $(Inf(\rho) \in \mathcal{F})$

$$(c^*ad^*b)^*c^\omega$$
 $(c^*ad^*b)^*c^*ad^\omega$ $\mathcal{F} = \{\{q_1\}, \{q_2\}\}$ \Rightarrow $\mathcal{L}(\mathcal{A}) = (c^*ad^*b)^*c^\omega + (c^*ad^*b)^*c^*ad^\omega$ $\mathcal{F} = \{\{q_1, q_2\}\}$ \Rightarrow $\mathcal{L}(\mathcal{A}) = (c^*ad^*b)^\omega$

Conversion Büchi to Muller

Easy direction:

Foreword

Take Büchi automaton $\mathcal{B}=(Q,I,T,F)$ and transform it into Muller automaton $\mathcal{M}=(Q,I,T,\mathcal{F})$ with

$$\mathcal{F} = \{ S \subseteq Q \mid S \cap F \neq \emptyset \}$$

Recall: Acceptance condition for Büchi: $Inf(\rho) \cap F \neq \emptyset$

Conversion Muller to Büchi

Harder direction:

Foreword

Take Muller automaton $\mathcal{M} = (Q, I, T, \mathcal{F})$.

Note that Büchi automata are closed under union.

Thus, assume $\mathcal{F} = \{F\}$ a singleton.

Conversion Muller to Büchi

Harder direction:

Foreword

Take Muller automaton $\mathcal{M} = (Q, I, T, \mathcal{F})$.

Note that Büchi automata are closed under union.

Thus, assume $\mathcal{F} = \{F\}$ a singleton.

Transform \mathcal{M} into Büchi automaton $\mathcal{B} = (Q', I, T', F')$ with:

$$Q' = Q \cup (Q \times 2^{F})$$

$$T' = T$$

$$\cup \{(q, \sigma, (q', \{q'\})) \mid (q, \sigma, q') \in T, q' \in F\}$$

$$\cup \{((q, S), \sigma, (q', S \cup \{q'\})) \mid (q, \sigma, q') \in T, q, q' \in F, S \subsetneq F\}$$

$$\cup \{((q, F), \sigma, (q', \{q'\})) \mid (q, \sigma, q') \in T, q, q' \in F\}$$

$$F' = F \times \{F\}$$

$$\mathcal{F} = \{F\} = \{\{q_1\}\}$$

Conversion Muller to Büchi: Example

$$\mathcal{F} = \{F\} = \{\{q_1\}\}\$$

translates to

Foreword

Definition (Transition-Based Generalized Büchi Automata (TGBA))

 $\mathcal{A} = (Q, I, T, \mathcal{M})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,

Foreword

- $T \subseteq Q \times \Sigma \times 2^{\mathcal{M}} \times Q$: transitions,
- \mathcal{M} : finite set of acceptance conditions (colors).

Foreword

Definition (Transition-Based Generalized Büchi Automata (TGBA))

- $\mathcal{A} = (Q, I, T, \mathcal{M})$ over alphabet Σ where
 - Q: finite set of states.
 - $I \subseteq Q$: initial states.
 - $T \subseteq Q \times \Sigma \times 2^{\mathcal{M}} \times Q$: transitions,
 - \mathcal{M} : finite set of acceptance conditions (colors).

Foreword

Transition-Based Generalized Büchi Automata

Definition (Transition-Based Generalized Büchi Automata (TGBA))

 $\mathcal{A} = (Q, I, T, \mathcal{M})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times 2^{\mathcal{M}} \times Q$: transitions,
- \mathcal{M} : finite set of acceptance conditions (colors).

Run $\rho = q_0 \xrightarrow{w_0}_{M_0} q_1 \xrightarrow{w_1}_{M_1} q_2 \rightarrow \dots$ is TGBA-accepted if all colors are seen infinitely often i.e., $\forall m \in \mathcal{M}. \forall i \in \mathbb{N}. \exists j > i. m \in M_i$.

Automata Over Propositions

Foreword

The following can be done for any automaton:

Take a (finite) set of atomic propositions AP. Put $\Sigma = 2^{AP}$. Foreword

Expressive Power

Automata Over Propositions

The following can be done for any automaton:

Take a (finite) set of atomic propositions AP. Put $\Sigma = 2^{AP}$.

Note that we could interpret the set of minterms over AP as Σ .

Example

$$(a \wedge b \wedge \bar{c}); (a \wedge \bar{b} \wedge \bar{c}); (a \wedge \bar{b} \wedge c); \dots$$

Transition-Based Generalized Büchi Automata: Example

Foreword

Degeneralization

Lemma

TGBA can be degeneralized.

Construction is similar to Muller -> Büchi translation.

Product Construction

Foreword

Let $A_1 = (Q_1, I_1, T_1, \mathcal{M}_1)$ and $A_2 = (Q_2, I_2, T_2, \mathcal{M}_2)$ be two TGBA over the same set of propositions Σ .

The product construction of A_1 and A_2 is B = (Q, I, T, M) with

- $Q = Q_1 \times Q_2$
- $I = I_1 \times I_2$
- $T = \left\{ ((q_1, q_2), p_1 \cap p_2, M_1 \cup M_2, (q'_1, q'_2)) \mid (q_1, p_1, M_1, q'_1) \in T_1, (q_2, p_2, M_2, q'_2) \in T_2, p_1 \cap p_2 \neq \emptyset \right\}$
- $\mathcal{M} = \mathcal{M}_1 \uplus \mathcal{M}_2$ (disjoint union)

Expressive Power

Product Construction

Foreword

Let $A_1 = (Q_1, I_1, T_1, \mathcal{M}_1)$ and $A_2 = (Q_2, I_2, T_2, \mathcal{M}_2)$ be two TGBA over the same set of propositions Σ .

The product construction of A_1 and A_2 is B = (Q, I, T, M) with

- $Q = Q_1 \times Q_2$
- $I = I_1 \times I_2$
- $T = \left\{ ((q_1, q_2), p_1 \cap p_2, M_1 \cup M_2, (q'_1, q'_2)) \mid (q_1, p_1, M_1, q'_1) \in T_1, (q_2, p_2, M_2, q'_2) \in T_2, p_1 \cap p_2 \neq \emptyset \right\}$
- $\mathcal{M} = \mathcal{M}_1 \uplus \mathcal{M}_2$ (disjoint union)

We can show: $\mathcal{L}(B) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

Product Construction: Example

Product Construction: Example

Emerson-Lei Automata

Foreword

Description (Emerson-Lei Automaton)

- ullet contains set of colors ${\cal M}$ either states or transitions can be marked by colors
- acceptance condition: positive Boolean formula over the atoms
 - t or f: true and false
 - Fin(m): color m occurs finitely many times
 - Inf(m): color m occurs infinitely many times

Emerson-Lei Automata

Foreword

Description (Emerson-Lei Automaton)

- ullet contains set of colors ${\mathcal M}$ either states or transitions can be marked by colors
- acceptance condition: positive Boolean formula over the atoms
 - t or f: true and false
 - Fin(m): color m occurs finitely many times
 - Inf(m): color m occurs infinitely many times

Emerson-Lei implemented in Spot (see TP in two weeks!)

Example + Further Acceptance Conditions

Foreword

```
none
all
                 t.
Buchi
                 Inf(0)
gen.-Buchi
                 Inf(0) & Inf(1) & ...
co-Buchi
                 Fin(0)
gen.-co-Buchi
                 Fin(0) | Fin(1) | ...
Rabin
                 (Fin(0)&Inf(1)) | (Fin(2)&Inf(3)) | ...
Streett
                 (Fin(0)|Inf(1)) & (Fin(2)|Inf(3)) & ...
                 Fin(0)&(Inf(1)|(Fin(2)&(Inf(3)|Fin(4))))
parity min odd 5
```

Summary: Expressive Power

Foreword

Overview: Expressive Power in Σ^{ω}

- ω -rational expressions = ω -regular languages
- Büchi automata
- GBA

Foreword

- TGBA
- Muller automata
- Emerson-l ei automata

 Deterministic Büchi automata (incl. GBA, TGBA) • LTL

Backup

Notes

Generalized Büchi Automata

Definition (Generalized Büchi Automata (GBA))

 $\mathcal{A} = (Q, I, T, \mathcal{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $\mathcal{F} \subseteq 2^Q$: Büchi-accepting state sets.

Generalized Büchi Automata

Definition (Generalized Büchi Automata (GBA))

- $\mathcal{A} = (Q, I, T, \mathcal{F})$ over alphabet Σ where
 - Q: finite set of states,
 - $I \subseteq Q$: initial states,
 - $T \subseteq Q \times \Sigma \times Q$: transitions,
 - $\mathcal{F} \subseteq 2^Q$: Büchi-accepting state sets.

Generalized Büchi Automata

Definition (Generalized Büchi Automata (GBA))

 $\mathcal{A} = (Q, I, T, \mathcal{F})$ over alphabet Σ where

- Q: finite set of states,
- $I \subseteq Q$: initial states,
- $T \subseteq Q \times \Sigma \times Q$: transitions,
- $\mathcal{F} \subseteq 2^Q$: Büchi-accepting state sets.

Run ρ generalized-Büchi-accepted if for all $F \in \mathcal{F}$, ρ is Büchi-accepted, i.e., $\forall F \in \mathcal{F}$. Inf $(\rho) \cap F \neq \emptyset$.

Lemma

TGBA can be degeneralized.

Let
$$\mathcal{A} = (Q, I, T, \mathcal{M})$$
 be a TGBA with $\mathcal{M} = \{m_1, \dots, m_k\}$.
We construct $\bar{\mathcal{A}} = (Q \times \{1, \dots, k\}, I \times \{1\}, \bar{T}, \{\bar{m}\})$ with
$$\bar{T} = \{((q, i), \sigma, \emptyset, (q', i)) \mid (q, \sigma, M, q') \in T, m_i \notin M\}$$

$$\cup \{((q, i), \sigma, \emptyset, (q', i + 1)) \mid i \neq k, (q, \sigma, M, q') \in T, m_i \in M\}$$

$$\cup \{((q, k), \sigma, \{m_a\}, (q', 1)) \mid (q, \sigma, M, q') \in T, m_k \in M\}$$

Lemma

TGBA can be degeneralized.

Let
$$\mathcal{A} = (Q, I, T, \mathcal{M})$$
 be a TGBA with $\mathcal{M} = \{m_1, \dots, m_k\}$.
We construct $\bar{\mathcal{A}} = (Q \times \{1, \dots, k\}, I \times \{1\}, \bar{T}, \{\bar{m}\})$ with
$$\bar{T} = \{((q, i), \sigma, \emptyset, (q', i)) \mid (q, \sigma, M, q') \in T, m_i \notin M\}$$

$$\cup \{((q, i), \sigma, \emptyset, (q', i + 1)) \mid i \neq k, (q, \sigma, M, q') \in T, m_i \in M\}$$

$$\cup \{((q, k), \sigma, \{m_a\}, (q', 1)) \mid (q, \sigma, M, q') \in T, m_k \in M\}$$

Lemma

TGBA can be degeneralized.

Let
$$\mathcal{A} = (Q, I, T, \mathcal{M})$$
 be a TGBA with $\mathcal{M} = \{m_1, \dots, m_k\}$.
We construct $\bar{\mathcal{A}} = (Q \times \{1, \dots, k\}, I \times \{1\}, \bar{T}, \{\bar{m}\})$ with
$$\bar{T} = \{((q, i), \sigma, \emptyset, (q', i)) \mid (q, \sigma, M, q') \in T, m_i \notin M\}$$

$$\cup \{((q, i), \sigma, \emptyset, (q', i + 1)) \mid i \neq k, (q, \sigma, M, q') \in T, m_i \in M\}$$

$$\cup \{((q, k), \sigma, \{m_a\}, (q', 1)) \mid (q, \sigma, M, q') \in T, m_k \in M\}$$

Lemma

TGBA can be degeneralized.

Let
$$\mathcal{A} = (Q, I, T, \mathcal{M})$$
 be a TGBA with $\mathcal{M} = \{m_1, \dots, m_k\}$.
We construct $\bar{\mathcal{A}} = (Q \times \{1, \dots, k\}, I \times \{1\}, \bar{T}, \{\bar{m}\})$ with
$$\bar{T} = \{((q, i), \sigma, \emptyset, (q', i)) \mid (q, \sigma, M, q') \in T, m_i \notin M\}$$

$$\cup \{((q, i), \sigma, \emptyset, (q', i + 1)) \mid i \neq k, (q, \sigma, M, q') \in T, m_i \in M\}$$

$$\cup \{((q, k), \sigma, \{m_a\}, (q', 1)) \mid (q, \sigma, M, q') \in T, m_k \in M\}$$

Lemma

TGBA can be degeneralized.

Let
$$\mathcal{A} = (Q, I, T, \mathcal{M})$$
 be a TGBA with $\mathcal{M} = \{m_1, \dots, m_k\}$.
We construct $\bar{\mathcal{A}} = (Q \times \{1, \dots, k\}, I \times \{1\}, \bar{T}, \{\bar{m}\})$ with
$$\bar{T} = \{((q, i), \sigma, \emptyset, (q', i)) \mid (q, \sigma, M, q') \in T, m_i \notin M\}$$

$$\cup \{((q, i), \sigma, \emptyset, (q', i + 1)) \mid i \neq k, (q, \sigma, M, q') \in T, m_i \in M\}$$

$$\cup \{((q, k), \sigma, \{m_a\}, (q', 1)) \mid (q, \sigma, M, q') \in T, m_k \in M\}$$

Lemma

TGBA can be degeneralized.

Let
$$\mathcal{A} = (Q, I, T, \mathcal{M})$$
 be a TGBA with $\mathcal{M} = \{m_1, \dots, m_k\}$.
We construct $\bar{\mathcal{A}} = (Q \times \{1, \dots, k\}, I \times \{1\}, \bar{T}, \{\bar{m}\})$ with
$$\bar{T} = \{((q, i), \sigma, \emptyset, (q', i)) \mid (q, \sigma, M, q') \in T, m_i \notin M\}$$

$$\cup \{((q, i), \sigma, \emptyset, (q', i + 1)) \mid i \neq k, (q, \sigma, M, q') \in T, m_i \in M\}$$

$$\cup \{((q, k), \sigma, \{m_a\}, (q', 1)) \mid (q, \sigma, M, q') \in T, m_k \in M\}$$