# Hamilton Paths and Hamilton Cycles

### Overview

Visiting All the Vertices

Subgraph Test for Hamilton Paths and Cycles

The Path/Cycle Principle

### Outline

Visiting All the Vertices

Subgraph Test for Hamilton Paths and Cycles

The Path/Cycle Principle

### Hamilton's Game

William Rowan Hamilton invented the Icosian Game in 1857.



#### Hamilton's Problem

Is it possible to start at one of the 20 vertices, and, by following edges, visit every other vertex exactly once before returning to the starting point?

Equivalently: Is there a cycle through all the vertices?



### Hamiltonian Graphs

#### Definition

A Hamilton path in a graph G is a path that contains each vertex of G exactly once.

#### Definition

A Hamilton cycle in a graph G is a closed path that passes through each vertex exactly once and in which all the edges are distinct.

#### Definition

A Hamiltonian graph is a graph containing a Hamilton cycle.

Does this graph have a Hamilton cycle?



## Hamiltonian Complete Graphs

#### Theorem

 $K_n$  has a Hamilton cycle for  $n \geq 3$ .

Does this graph have a Hamilton cycle?



## Hamilton Cycles in Bipartite Graphs

#### **Theorem**

If a bipartite graph has a Hamilton cycle, then it must have an even number vertices.

## Hamilton Cycles in Bipartite Graphs

#### **Theorem**

If a bipartite graph has a Hamilton cycle, then it must have an even number vertices.

#### **Theorem**

 $K_{m,n}$  has a Hamilton cycle if and only if  $m = n \ge 2$ .

Does this graph have a Hamilton path?



Does this graph have a Hamilton path?



Note that this graph is bipartite with m=4 black and n=5 green vertices.



# Hamilton Paths in Bipartite Graphs

#### **Theorem**

Let G be a bipartite graph with m vertices of one color and n vertices of the other color. If  $|m-n| \geq 2$ , then G contains no Hamilton path.

Which graph has a Hamilton path?





### Outline

Visiting All the Vertices

Subgraph Test for Hamilton Paths and Cycles

The Path/Cycle Principle

## Number of Components After Removing Vertices

- ▶ If k vertices are removed from a graph that contains a Hamilton path, then the number of components in the resulting subgraph is at most k + 1.
- ▶ If *k* vertices are removed from a graph that contains a Hamilton cycle, then the number of components in the resulting subgraph is at most *k*.

## Subgraph Test for Hamilton Paths and Cycles

Let k be a positive integer and G a graph.

- 1. Suppose that G contains a set of k vertices such that when these vertices are removed, the resulting subgraph contains at least k+2 components. Then G contains no Hamilton path.
- 2. Suppose that G contains a set of k vertices such that when these vertices are removed, the resulting subgraph contains at least k+1 components. Then G contains no Hamilton cycle.

Apply the Subgraph Test to the graph.



Apply the Subgraph Test to the graph.



### Outline

Visiting All the Vertices

Subgraph Test for Hamilton Paths and Cycles

The Path/Cycle Principle

# The Path/Cycle Principle

#### **Theorem**

Let G be a simple graph with  $p \geq 3$  vertices. If G contains a Hamilton path whose endpoints (call them A and B) satisfy the condition  $\deg(A) + \deg(B) \geq p$ , then G contains a Hamilton cycle.

### An Obvious Hamilton Path

This graph has an obvious Hamilton path. Does it have a Hamilton cycle?



### Acknowledgements

Statements of results follow the notation and wording of Anderson's *First Course in Discrete Mathematics*.