Production Scheduling Optimization

Set:

P: $Set\ of\ products, p \in P$

T: Set of timeframes, $t \in T$

Parameters:

 COT_{pq} : Changeover time between product p and q where $p, q \in P$

 SS_{pt} : Safety stock of product p till time interval t where $t \in T$

 LR_p : Line Rate of product p where $p \in P$

 $BINV_p$: Begining Inventory of product p where $p \in P$

 PC_p : Penalty cost of not meeting inventory level of product p where $p \in P$

 IHC_p : Inventory holding cost of product p per unit of product per unit time where $p \in P$

 PM_p : Profit margin of product p where $p \in P$

 INV_CAP_{pt} : Inventory Capacity (~ mximum DOS) of product p till time interval t where $t \in T$

 OC_p : Penalty cost for overflow (more than maximum inventory) of product p where $p \in P$

Decision Variables:

 $x_{pt} = 1$ if product p is produced during time interval t, else 0

 $w_{pqt} = 1 \ if \ product \ p \ is \ changed \ over \ to \ product \ q \ after \ time \ interval \ t$

Auxiliary Variables:

 y_{pt}^+ : Excess product produced above target inventory level of product p after time t

 y_{pt}^+ : Gap between required inventory level and current inventory level of product p after time t

 of_{pt}^+ : Excess product produced above maximim inventory level of product p after time t

 of_{pt}^- : Gap between maximum inventory level and current inventory level of product p after time t

Objective Function (Minimize Total Cost):

$$\min \sum_{p} \sum_{q} \sum_{t} COT_{pq} * w_{pqt} * LR_{p} * PM_{p} + \sum_{p} \sum_{t} (IHC_{p} * y_{pt}^{+} + PC_{p} * y_{pt}^{-} + OC * of_{pt}^{+})$$

Constraints:

Logical relationship among decision variables

To make constraint (1) linear,

In a given time period only single product can run on a Line

Relationship among production, demand, inventory, safety stock, excess inventory and inventory shortage

Relationship among production, demand, inventory, overflow capacity & overflow inventory

$$\sum_{t=T_1}^{T_t} x_{pt} * LR_p + BINV_p - INV_CAP_p - \sum_{t=T_1}^{T_t} D_{p,t} = of_{pt}^+ - of_{pt}^- \forall p \in P \ and \ t \in T - - - - - - - - (4)$$

Alternate Solution

Set:

P: Set of products, $p \in P$

T: Set of timeframes, $t \in T$

Parameters:

 COT_{pq} : Changeover time between product p and q where $p, q \in P$

 DOS_{pt} : Days of Supply of product p till time interval t where $t \in T$

 OR_p : Outbound flow rate per day where $p \in P$

 LR_p : Line Rate of product p where $p \in P$

 $IDOS_p$: Line Rate of product p where $p \in P$

Decision Variables:

 $x_{pt} = 1$ if product p is produced during time interval t, else 0

 $w_{pqt} = 1 \ if \ product \ p \ is \ changed \ over \ to \ product \ q \ after \ time \ interval \ t$

Objective Function (Minimize total Changeover time):

$$\min \sum_{p} \sum_{q} \sum_{t} COT_{pq} * w_{pqt}$$

Constraints:

Logical Relationship among decision variables

To make constraint (1) linear,

In a given time period only single product can run on a Line

Days of supply to be maintained for all product in all time period