

# New Voter Insights and Analysis

Joshua Kurdys
<a href="mailto:github.com/jkurdys/new\_voter\_insights">github.com/jkurdys/new\_voter\_insights</a>
April 2, 2021

source

#### **About Me**

- This is my normal office attire and I don't know these people
- When I'm not doing data science, I enjoy cosplay with my family
- Prior to data sciencing, I repaired elevators and studied philosophy (in that order)



#### **Motivation**



Given the historic turnout of the 2020 General Election, I wanted to isolate the features of new voters so voter registration efforts might better understand the types of individuals who fit that profile.

Using inferential logistic regression on voter registration records, this project aimed to identify the features of voters that could confidently distinguish new voters from the rest of the electorate.

source

#### **EDA**

- Turnout up in recent elections at both national and state level
- Georgia is a suitable case study that mirrors national trends in turnout



#### **EDA**

- Trends for turnout rates approximate trends for ballots counted
- Georgia mirrors national trends with slight differences
- In the last four election cycles, higher than national average Georgia turnout corresponds to Democratic Presidential victories



#### Results

- Logistic regression analysis of the data shows no significance for the majority of features
- Predictably, voter status and age were significantly associated with voter registration
- Unfortunately, these trivial predictors contribute little to the model's predictive power

|                      | coef    | std err  | z         | P> z  | [0.025    | 0.975]   |
|----------------------|---------|----------|-----------|-------|-----------|----------|
| Intercept            | -4.3755 | 9.31e+04 | -4.7e-05  | 1.000 | -1.82e+05 | 1.82e+05 |
| C(voter_status)[T.1] | 5.5953  | 0.147    | 37.940    | 0.000 | 5.306     | 5.884    |
| C(AI)[T.1]           | -0.4067 | 6.13e+04 | -6.63e-06 | 1.000 | -1.2e+05  | 1.2e+05  |
| C(AP)[T.1]           | -0.1788 | 6.11e+04 | -2.92e-06 | 1.000 | -1.2e+05  | 1.2e+05  |
| C(BH)[T.1]           | -0.8289 | 6.24e+04 | -1.33e-05 | 1.000 | -1.22e+05 | 1.22e+05 |
| C(HP)[T.1]           | -0.4579 | 6.2e+04  | -7.39e-06 | 1.000 | -1.21e+05 | 1.21e+05 |
| C(OT)[T.1]           | -0.3711 | 6.22e+04 | -5.97e-06 | 1.000 | -1.22e+05 | 1.22e+05 |
| C(U)[T.1]            | -0.9155 | 6.16e+04 | -1.49e-05 | 1.000 | -1.21e+05 | 1.21e+05 |
| C(WH)[T.1]           | -0.8654 | 6.18e+04 | -1.4e-05  | 1.000 | -1.21e+05 | 1.21e+05 |
| C(F)[T.1]            | -0.8820 | 9.1e+04  | -9.69e-06 | 1.000 | -1.78e+05 | 1.78e+05 |
| C(M)[T.1]            | -0.7163 | 9.17e+04 | -7.81e-06 | 1.000 | -1.8e+05  | 1.8e+05  |
| C(O)[T.1]            | 0.7206  | 9.15e+04 | 7.88e-06  | 1.000 | -1.79e+05 | 1.79e+05 |
| C(rural)[T.1]        | -1.3781 | 1.48e+05 | -9.34e-06 | 1.000 | -2.89e+05 | 2.89e+05 |
| C(urban)[T.1]        | -1.4026 | 1.48e+05 | -9.5e-06  | 1.000 | -2.89e+05 | 2.89e+05 |
| C(military)[T.1]     | -1.1956 | 1.47e+05 | -8.11e-06 | 1.000 | -2.89e+05 | 2.89e+05 |

| 6181531     | No. Observations: | у                | Dep. Variable:   |
|-------------|-------------------|------------------|------------------|
| 6181500     | Df Residuals:     | Logit            | Model:           |
| 30          | Df Model:         | MLE              | Method:          |
| 0.04466     | Pseudo R-squ.:    | Thu, 01 Apr 2021 | Date:            |
| -8.9655e+05 | Log-Likelihood:   | 13:49:44         | Time:            |
| -9.3846e+05 | LL-Null:          | False            | converged:       |
| 0.000       | LLR p-value:      | nonrobust        | Covariance Type: |
|             | -                 |                  |                  |

#### Results

- Although selecting only the trivial features improved p-values, it had no impact on prediction
- Other reconfigurations of the feature set had little impact







## Conclusions and Next Steps

- Regression analysis failed to identify any connection between the geographic and demographic data found in Georgia Voter Registration Records
- No geographic or demographic features of this dataset seem to be overrepresented among new voters
- An expanded dataset of the entire voting age population may isolate the features of new voters from the general population
- Utilizing the .geojson files in the dataset could provide an avenue for utilizing more granular geographic data

#### Questions?

#### Joshua Kurdys



jkurdys@gmail.com

<u>LinkedIn</u> <u>Github</u>

#### Tech Stack:

- Python (Numpy, Pandas, Matplotlib, Scikit-learn)
- SQL (PostgreSQL)
- Linux (Terminal)
- Git (Github)

#### Before:

## Appendix

#### Data Preparation:

- Null values and missing data
- Uninterpretable "object" data types
- Redundant categories
- One-hot encoding

| #  | Column                     | Non-Null Count | Dtype   |
|----|----------------------------|----------------|---------|
| 1  | land_district              | 62601          | object  |
| 2  | land_lot                   | 62597          | object  |
| 3  | status_reason              | 59             | object  |
| 4  | county_districta_name      | 4906           | object  |
| 5  | county_districta_value     | 4906           | object  |
| 6  | county_districtb_name      | 26491          | object  |
| 7  | county_districtb_value     | 26491          | object  |
| 8  | city_school_district_name  | 24949          | object  |
| 9  | city_school_district_value | 24949          | object  |
| 10 | city_dista_name            | 0              | float64 |
| 11 | city_dista_value           | 0              | float64 |
| 12 | city_distb_name            | 0              | float64 |
| 13 | city_distb_value           | 0              | float64 |
| 14 | city_distc_name            | 0              | float64 |
| 15 | city_distc_value           | 0              | float64 |
| 16 | city_distd_name            | 0              | float64 |
| 17 | city_distd_value           | 0              | float64 |
| 18 | party_last_voted           | 1666           | object  |

#### After:

| #  | Column       | Non-Null Count | Dtype |
|----|--------------|----------------|-------|
| 1  | voter_status | 6183143        | int64 |
| 2  | Al           | 6183143        | int64 |
| 3  | AP           | 6183143        | int64 |
| 4  | ВН           | 6183143        | int64 |
| 5  | HP           | 6183143        | int64 |
| 6  | ОТ           | 6183143        | int64 |
| 7  | U            | 6183143        | int64 |
| 8  | WH           | 6183143        | int64 |
| 9  | F            | 6183143        | int64 |
| 10 | М            | 6183143        | int64 |
| 11 | 0            | 6183143        | int64 |
| 12 | rural        | 6183143        | int64 |
| 13 | urban        | 6183143        | int64 |
| 14 | military     | 6183143        | int64 |
| 15 | cd_1         | 6183143        | int64 |
|    | ***          |                | ***   |
| 29 | cd_99999     | 6183143        | int64 |
| 30 | age          | 6183143        | int64 |

# **Appendix**

# Assumptions of logistic regression

- Binary dependent variable
- Independent observation
- No collinearity
- Linearity of continuous independent variables
- Large sample size



