

Title: ...

Authors: Adam Willats, Matt O'Shaughnessy

Table of Contents

- Table of Contents
- · Table of Contents
- Abstract
- Introduction
 - Estimating causal interactions in the brain
 - Interventions in neuroscience & causal inference
 - · Representations & reachability
 - · Figure DEMO: Applying CLINC to distinguish a pair of circuits
- · Theory / Prediction
 - Computing reachability (theory)
 - Predicting correlation structure (theory)
- Simulation
- Network simulations (simulation)
- Implementing interventions (simulation)
- Extracting circuit estimates (empirical)
- · Information-theoretic measures of hypothesis ambiguity
- Results
- Impact of node, network parameters on estimation performance
- Impact of intervention & circuit structure
- Discussion
- References
- Supplement
- Supplement

Abstract

The necessity of intervention in inferring cause has long been understood in neuroscience. Recent work has highlighted the limitations of passive observation and single-site lesion studies in accurately recovering causal circuit structure. The advent of optogenetics has facilitated increasingly precise forms of intervention including closed-loop control which may help eliminate confounding influences. However, it is not yet clear how best to apply closed-loop control to leverage this increased inferential power. In this paper, we use tools from causal inference, control theory, and neuroscience to show when and how closed-loop interventions can more effectively reveal causal relationships. We also examine the performance of standard network inference procedures in simulated spiking networks under passive, open-loop and closed-loop conditions. We demonstrate a unique capacity of feedback control to distinguish competing circuit hypotheses by disrupting connections which would otherwise result in equivalent patterns of correlation. Our results build toward a practical framework to improve design of neuroscience experiments to answer causal questions about neural circuits.

Introduction

Estimating causal interactions in the brain

https://github.com/awillats/clinc/blob/main/figures/core_figure_sketches/figure1_sketch.png @ import "section_content/background_causal_network_id.md"

Interventions in neuroscience & causal inference

- @ import "section_content/background_intervention_neuro.md"
- @ import "section_content/background_intervention_causal_inf.md"

Representations & reachability

@ import "section_content/background_representation_reach.md"

https://github.com/awillats/clinc/blob/main/figures/misc_figure_sketches/two_circuit_case_study_mockup.png

Figure DEMO: Applying CLINC to distinguish a pair of circuits

Theory / Prediction

Computing reachability (theory)

Predicting correlation structure (theory)

https://github.com/awillats/clinc/blob/main/figures/misc_figure_sketches/intervention_identifiability_concept.png

Simulation

Network simulations (simulation)

@adam

Implementing interventions (simulation)

@adam

Extracting circuit estimates (empirical)

Information-theoretic measures of hypothesis ambiguity

Results

Impact of node, network parameters on estimation performance

Quantitative impact of parameters

https://github.com/awillats/clinc/blob/main/figures/misc_figure_sketches/quant_r2_prediction_common.png

Impact of intervention & circuit structure

https://github.com/awillats/clinc/blob/main/figures/misc_figure_sketches/circuit_intervention_entropy_mockup.png

Discussion

References

Supplement