SF016/2
Physics
Paper 2
Semester 1
Session 2011/2012
2½ hours

SF016/2 Fizik Kertas 2 Semester I Sesi 2011/2012 2½ jam

BAHAGIAN MATRIKULASI KEMENTERIAN PELAJARAN MALAYSIA

MATRICULATION DIVISION
MINISTRY OF EDUCATION MALAYSIA

PEPERIKSAAN SEMESTER PROGRAM MATRIKULASI MATRICULATION PROGRAMME EXAMINATION

FIZIK Kertas 2 2 jam 30 minit

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU. DO NOT OPEN THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

HI / WE

SF016/2

INSTRUCTIONS TO CANDIDATE:

This question paper consists of 8 questions.

Answer question 1 and any other five questions. Only the first six answers will be graded.

All answers must be written in the answer booklet provided. Use a new page for each question.

The use of electronic calculator is permitted.

SF016/2

List Of Selected Constant Values

	hist of science constant	
Speed of light in vacuum	c	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Permeability constant	μ_0	$= 4\pi \times 10^{-7} \text{ H m}^{-1}$
Permittivity constant	ϵ_0	$= 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
Elementary charge	e	$= 1.60 \times 10^{-19} \mathrm{C}$
Planck constant	h	$= 6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$
Electron mass	m_e	$= 9.11 \times 10^{-31} \text{ kg}$ $= 5.48 \times 10^{-4} \text{ u}$
Neutron mass	m_n	$= 1.67 \times 10^{-27} \text{ kg}$ $= 1.008665 \text{ u}$
Proton mass	m_p	$= 1.67 \times 10^{-27} \text{ kg}$ $= 1.007825 \text{ u}$
Deuteron mass	m_d	$= 3.34 \times 10^{-27} \text{ kg}$ $= 2.014102 \text{ u}$
Universal gas constant	R	$= 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Rydberg constant	R_H	= 109678 cm^{-1} = $1.097 \times 10^7 \text{ m}^{-1}$
Avogadro constant	N_A	$= 6.02 \times 10^{23} \text{ mol}^{-1}$
Boltzmann constant	k	$= 1.38 \times 10^{-23} \text{ J K}^{-1}$
Gravitational constant	\boldsymbol{G}	= $6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Free-fall acceleration	g	$= 9.81 \text{ m s}^{-2}$
Atomic mass unit	1 u	$= 1.66 \times 10^{-27} \text{ kg}$ $= 931.5 \frac{\text{MeV}}{c^2}$
Electron volt	eV	$= 1.6 \times 10^{-19} \mathrm{J}$
Constant of proportionality for Coulomb's law	$k = \frac{1}{4\pi\varepsilon_0}$	$= 9.0 \times 10^9 \mathrm{N}\mathrm{m}^2\mathrm{C}^{-2}$
Atmospheric pressure	atm	$= 1.013 \times 10^5 \text{ Pa}$
Density of water		$= 1000 \text{ kg m}^{-3}$

Answer question 1 and any other five questions.

A stone is released from various heights, h. The respective time taken, t to reach the ground is given in TABLE 1. The relationship between h and t is given by

$$h = \frac{1}{2}gt^2$$

where g is the acceleration due to gravity.

TABLE 1

h (m)	: / / / (s)	$2h(m)$ $r^2(s^2)$
2.00	0.60	
4.00	0.85	
6.00	1.14	
8.00	1.32	
10.00	1.40	
12.00	1.49	
14.00	1.71	

(a) Copy and complete TABLE 1.

[2 marks]

(b) Plot a graph of 2h against t^2 .

[7 marks]

(c) Determine the gradient of the graph.

[4 marks]

(d) From the graph, calculate the acceleration due to gravity, g.

[2 marks]

2 (a) A plane travels at three times the speed of sound. If the speed of sound in air is 343 m s⁻¹, how far it travels in 10 minutes?

[2 marks]

- (b) A ball is thrown vertically upwards. It reaches a maximum height and returns to its initial position.
 - (i) Is the acceleration of the ball zero at the maximum height? State the reason for your answer.
 - (ii) Sketch TWO graphs: displacement against time and velocity against time for the whole journey of the ball.

[6 marks]

(c)

FIGURE 1

FIGURE 1 shows a ball being thrown from the top of a building towards a wall 60 m away. The initial velocity of the ball is 20.0 m s⁻¹ at 40° to the horizontal.

- (i) How much time does it take to hit the wall?
- (ii) What is the distance between P and the position the ball strike the wall?
- (iii) What is the speed of the ball when it strikes the wall?

[7 marks]

3 (a)

FIGURE 2

FIGURE 2 shows a 0.4 kg block being pushed against a rough vertical wall by a force F at an angle 45° with respect to the horizontal. The block remains stationary.

- (i) Sketch a free body diagram of all the forces acting on the block.
- (ii) If the coefficient of static friction, $\mu_s = 0.20$, what is the magnitude of F?

[5 marks]

(b)

FIGURE 3

FIGURE 3 shows a 0.8 kg pendulum bob being released from rest at P. Calculate the

- (i) work done by gravity on the bob at R.
- (ii) speed of the bob at Q.

[4 marks]

- (c) An 8 g bullet moving at 50 m s⁻¹ strikes a wooden block. The bullet undergoes uniform deceleration and stopped 12 cm inside the block. Calculate the
 - time taken for the bullet to stop.
 - (ii) impulse on the block.
 - (iii) average force experienced by the block.

[6 marks]

- 4 (a) Name the force that is responsible for the following motion:
 - (i) A satellite orbiting the earth.
 - (ii) A ball attached to a string that swirls horizontally.

[2 marks]

- (b) A 3500 kg car enters a curve of radius 10 m on a flat road at 30 m s⁻¹.
 - (i) Calculate the net horizontal force required to keep the car moving around the curve without slipping.
 - State the force that enables the car to successfully negotiate the curve.

[3 marks]

- (c) A 1000 kg satellite is in an orbit 350 km above the earth surface. Calculate the
 - speed of the satellite.
 - (ii) period of the satellite.
 - (iii) radial acceleration of the satellite.

[6 marks]

(d)

FIGURE 4

FIGURE 4 shows a mass m_1 positioned between two masses, $m_2 = 40$ kg and $m_3 = 60$ kg. m_2 and m_3 are separated by 15 m. m_1 is placed at a distance x from m_2 .

- (i) Sketch and label the forces acting on mass m_1 due to m_2 and m_3 .
- (ii) Determine x when m_1 will experience zero net gravitational force.

[4 marks]

5 (a) State TWO factors that determine the moment of inertia of a body.

[2 marks]

(b)

FIGURE 5

FIGURE 5 shows a 1.5 kg block is hung by a light string which is wound around a pulley of radius 20.0 cm. The moment of inertia of the pulley is 2.0 kg m². When the mass is released from rest, calculate the

- torque exerted on the pulley.
- (ii) angular velocity of the pulley at t = 4.2 s.
- (iii) number of revolutions made by the pulley in 4.2 s.

[7 marks]

(c)

A solid sphere and a hollow sphere have the same mass, *m* and radius, *r*. **FIGURE 6** shows both spheres are released simultaneously from rest at P and roll down on an inclined plane. Which sphere will arrive first at Q? Show your answer.

(Moment of inertia of the spheres: $I_{\text{solid}} = \frac{2}{5}mr^2$ and $I_{\text{hollow}} = \frac{2}{3}mr^2$)
[6 marks]

6 (a) What is meant by simple harmonic motion?

[1 mark]

- (b) An object of mass 50 kg suspended from a spring undergoes a simple harmonic motion with a period of 6.0 s.
 - Calculate the angular velocity of the motion.
 - (ii) What additional mass should be added to the spring so that it oscillates with a period of 8.0 s?

[5 marks]

(c) A 200 g object is connected to a spring and moves along the x-axis in a simple harmonic motion about the origin. The position of the object is given by

$$x = 0.5 \cos (0.4\pi t - 0.25)$$

where x is in centimeter and t in seconds. Calculate the

- (i) frequency of the motion.
- (ii) velocity of the object at t = 2 s.
- (iii) acceleration of the object at t = 2 s.
- (iv) total energy of the system.

[9 marks]

- 7 (a) Describe
 - (i) transverse wave.
 - (ii) longitudinal wave.

[2 marks]

- (b) (i) Explain Doppler's effect for sound wave.
 - (ii) What frequency will be heard by a moving observer travelling at 25 m s⁻¹ towards a stationary siren that emits a sound of frequency 280 Hz?

(Velocity of sound in air = 343 m s⁻¹)

(iii) Sketch a graph of apparent frequency against distance travelled by an object.

[5 marks]

- (c) (i) Define stress and strain.
 - (ii) What is meant by plastic deformation?
 - (iii) Sketch a labelled graph of stress against strain showing the elastic and plastic deformation regions for a ductile metal under tension.

[6 marks]

(d) A 20.0 kg mass is hung from a 2.0 m long vertical wire. If the wire is elongated by 3.0 mm, calculate the strain energy stored in the wire.

[2 marks]

- 8 (a) (i) Define the coefficient of linear thermal expansion.
 - (ii) A pair of eyeglass frame is made of epoxy plastic. At 20 °C, the frame has circular lens holes of radius 2.20 cm. If the coefficient of linear expansion of the epoxy is 3×10^{-4} °C⁻¹, to what temperature must the frame be heated so that a lens of radius 2.21 cm fits the frame?

[4 marks]

- (b) An insulated spherical glass bulb of radius 2.5 cm, thickness 0.4 mm whose outer surface temperature is 30 °C dissipates 55 W of heat.
 - (i) Given the thermal conductivity of glass is 0.84 J s⁻¹ m⁻¹ °C⁻¹. Calculate the temperature of the inner surface of the bulb.
 - Sketch a labelled temperature against distance graph of the heat conduction through the bulb.

[5 marks]

- (c) (i) State the first law of thermodynamics.
 - (ii) If a system loses 1200 J of heat when 800 J of work done on it, what is the change in its internal energy?
 - (iii) Three moles of an ideal gas expands from 50 cm³ to 120 cm³ at a constant temperature of 30 °C. Calculate the heat transferred to the surroundings by this process.

[6 marks]

END OF QUESTION PAPER