Mesures et Opérateurs

22 décembre 2014

Table des matières

Opérateurs	2
Définitions et résultats préliminaires	2
Opérateurs non-bornés 2.1 Définitions et propositions	6 6
Topologie faible	7
Opérateurs compacts 4.1 Définitions	10 13
	Définitions et résultats préliminaires Opérateurs non-bornés 2.1 Définitions et propositions 2.2 Opérateurs bornés 2.2.1 Opérateurs à image fermée 2.2.2 Opérateurs bornés Topologie faible Opérateurs compacts 4.1 Définitions 4.2 Théorie de Riesz-Fredholm

Première partie

Opérateurs

1 Définitions et résultats préliminaires

⇒ Théorème: du graphe fermé

Soient E et F deux espaces de Banach. Soit T un opérateur linéaire de E dans F. On suppose que le graphe de T est fermé dans $E \times F$. Alors T est continue.

⇔ Lemme: de Baire

Soit X un espace métrique complet. Soit $(X_n)_{n\geq 1}$ une suite de fermés. On suppose que

$$\forall n \ge 1, \ \widehat{X_n} = \emptyset$$

Alors

$$\widehat{\bigcup_{i=1}^{\infty} X_i} = \emptyset$$

Démonstration:

On pose $O_n = X_n^C$ le complémentaire de X_n , de sorte que O_n est un ouvert dense. Il s'agit de montrer que $G = \bigcap_{i=1}^{\infty} O_i$ est dense dans X.

Soit ω un ouvert non vide de X. On va prouver que $\omega \cap G \neq \emptyset$.

On choisit $x_0 \in \omega$ et $r_0 > 0$ arbitraires tels que

$$\overline{B(x_0,r_0)}\subset\omega$$

On choisit ensuite $x_1 \in B(x_0, r_0) \cap O_1$ et $r_1 > 0$ tels que :

$$\left\{ \begin{array}{c} \overline{B(x_1,r_1)} \subset B(x_0,r_0) \cap O_1 \\ 0 < r_1 < \frac{r_0}{2} \end{array} \right.$$

Ceci est possible car O_1 est ouvert et dense. Ainsi de sute, on construit par récurrence deux suites (x_n) et (r_n) telles que :

$$\left\{\begin{array}{c} \overline{B(x_{n+1},r_{n+1})} \subset B(x_n,r_n) \cap O_{n+1} \\ 0 < r_{n+1} < \frac{r_n}{2} \end{array}\right.$$

Il en résulte que la suite (x_n) est de Cauchy. Soit $x_n \to l$. Comme $x_{n+p} \in B(x_n, r_n)$ pour tous $n, p \ge 0$, on obtient à la limite (quand $p \to +\infty$):

$$l \in \overline{B(x_n, r_n)} \ \forall n \ge 0$$

En particulier, $l \in \omega \cap G$.

🔩 Définition: Orthogonal d'un ev

Soit X un espace de Banach.

Si $M \subset X$ est un sev, on pose

$$M^{\perp} = f \in X'; \langle f, x \rangle = 0 \forall x \in M \}$$

$$N^{\perp}=x\in X; \langle f,x\rangle=0 \forall f\in N\}$$

 M^{\perp} (resp. N^{\perp}) est l'orthogonal de M (resp. N), qui est un sev fermé de X' (resp. X).

1 Proposition:

Soit $M \subset X$ un sev. On a alors

$$\left(M^{\perp}\right)^{\perp} = \overline{M} \tag{1}$$

Soit $N \subset X'$ un sev. On a alors

$$\left(N^{\perp}\right)^{\perp} \supset \overline{N} \tag{2}$$

1 Proposition:

Soient G et L deux sous-espaces fermés de X. On a :

$$G \cap L = (G^{\perp} + L^{\perp})^{\perp}$$

$$G^{\perp} \cap L^{\perp} = (G + L)^{\perp}$$
(3)

$$G^{\perp} \cap L^{\perp} = (G + L)^{\perp} \tag{4}$$

⇒ Théorème:

Soient G et L deux sous-espaces fermés de X. Les propriétés suivantes sont équivalentes :

$$G + L$$
 est fermé dans X (5)

$$G^{\perp} + L^{\perp}$$
 est fermé dans X (6)

$$G + L = \left(G^{\perp} + L^{\perp}\right)^{\perp} \tag{7}$$

$$G^{\perp} + L^{\perp} = (G \cap L)^{\perp} \tag{8}$$

2 Opérateurs non-bornés

2.1 Définitions et propositions

Soient E et F deux espaces de banach. On appelle opérateur linéaire non borné de E dans F toute application linéaire

$$A:D(A)\subset E\to F$$

définie sur un sous-espace vectoriel $D(A) \subset E$ à valeur dans F. D(A) est le domaine de A. On dit que A est borné s'il existe une constante $c \geq 0$ telle que

$$||Au|| \le c||u|| \ \forall u \in D(A)$$

(Oui, avec cette définition, un opérateur non borné peut être... Borné)

🔥 Définition: Graphe, Image et Noyau

On appelle Graphe de A l'ensemble

$$G(A) = \bigcup_{u \in D(A)} [u, Au] \subset E \times F$$

On appelle Image de A l'ensemble

$$R(A) = \bigcup_{u \in D(A)} Au \subset F$$

On appelle Noyau de A l'ensemble

$$N(A) = \{u \in D(A); Au = 0\} \subset E$$

🔩 Définition: fermé

On dit qu'un opérateur A est fermé si G(A) est fermé dans $E \times F$.

$\blacksquare Remarque:$

- 1. Pour prouver qu'un opérateur A est femré, on procède en général de la manière suivante : on prend une suite (u_n) dans D(A) telle que $u_n \to u$ dans E et $Au_n \to f$ dans F. Il s'agit ensuite de vérifier que
 - (a) $u \in D(A)$
 - (b) f = Au
- 2. Si A est fermé, alors N(A) est fermé.

🔩 Définition: Adjoint

Soit $A: D(A) \subset E \to F$ un opérateur linéaire à domaine dense. L'opérateur $A^*: D(A^*) \subset F' \to E'$, appelé adjoint de A, est l'unique opérateur vérifiant :

$$\langle v, Au \rangle_{F'F} = \langle A^*v, u \rangle_{E'E} \qquad \forall u \in D(A), \ v \in D(A^*)$$

L'existence et l'unicité de cet opérateur vient principalement du théorème de Hahn-Banach dans sa forme analytique. On pose:

$$D(A^*) = \{ v \in F'; \ \exists c \ge 0; |\langle v, Au \rangle| \le c ||u|| \ \forall u \in D(A) \}$$

Il est clair que $D(A^*)$ est un sous-espace vectoriel de F'. On va maintenant définir A^*v pour $v \in D(A^*)$. On considère l'application $g:D(A)\to\mathbb{R}$ définie pour $v\in D(A^*)$ par

$$g(u) = \langle v, Au \rangle_{F'F}$$

On a

$$|g(u)| \le c||u|| \forall u \in E$$

On peut alors appliquer le théorème de Hahn-Banach : on sait que g peut être prolongée en une application linéaire $f: E \to \mathbb{R}$ telle que

$$|f(u)| \le c||u|| \ \forall u \in E$$

Par suite, $f \in E'$. On remarquera que le prolongement de g est unique puisque f est continue sur E et que D(A)est dense. On pose enfin:

$$A^*v = f$$

1 Proposition:

Soit $A:D(A)\subset E\to F$ un opérateur non borné à domaine dense. Alors A^* est fermé.

Démonstration:

Soit $(v_n) \subset D(A^*)$ telle que $v_n \to v$ dans F' et $A^*v_n \to f$ dans E'. Il s'agit de prouver que $v \in D(A^*)$ et $A^*v = f$.

$$\langle v_n, Au \rangle = \langle A^*v_n, u \rangle \ \forall u \in D(A)$$

D'où à la limite, il vient :

$$\langle v, Au \rangle = \langle A^*v, u \rangle$$

Par conséquent, $v \in D(A^*)$ par définition du domaine et $A^*v = f$.

⇔ Corollaire:

Soit $A:D(A)\subset E\to F$ un opérateur non borné, fermé, avec $\overline{D(A)}=E$ (dense). Alors on a :

- 1. $N(A) = R(A^*)^{\perp}$ 2. $N(A^*) = R(A)^{\perp}$ 3. $N(A)^{\perp} \supset \overline{R(A^*)}$

Démonstration:

On peut très facilement vérifier les égalités suivantes :

$$N(A) \times \{0\} = G(A) \cap (E \times \{0\}) \tag{9}$$

$$E \times R(A) = G(A) + (E \times \{0\}) \tag{10}$$

$$\{0\} \times N(A^*) = G(A)^{\perp} \cap (E \times \{0\})^{\perp} \tag{11}$$

$$R(A^*) \times F' = G(A)^{\perp} + (E \times \{0\})^{\perp}$$
 (12)

En utilisant (3), on a donc directement:

$$R(A^*)^{\perp} \times \{0\} = (R(A^*) \times F')^{\perp}$$

$$= (G(A)^{\perp} + (E \times \{0\})^{\perp})^{\perp}$$

$$= G(A) \cap (E \times \{0\})$$

$$= N(A) \times \{0\}$$

D'où le premier résultat.

Pour le deuxième, on fait de même :

$$\{0\} \times R(A)^{\perp} = (G(A) + (E \times \{0\}))^{\perp}$$
$$= G(A)^{\perp} \cap (E \times \{0\})^{\perp}$$
$$= \{0\} \times N(A^*)$$

Pour les deux derniers résultats, on utilise les deux premiers avec (1) et (2).

2.2 Opérateurs bornés

2.2.1 Opérateurs à image fermée

⇔ Théorème:

Soit $A:D(A)\subset E\to F$ un opérateur non-borné, fermé, avec le support de A dense dans E. Les propriétés suivantes sont équivalentes :

- 1. R(A) est fermé
- 2. $R(A^*)$ est fermé
- 3. $R(A) = N(A^*)^{\perp}$
- 4. $R(A^*) = N(A)^{\perp}$

Démonstration:

- $(1) \Leftrightarrow G(A) + (E \times \{0\})$ fermé dans X (10)
- $(2) \Leftrightarrow G(A)^{\perp} + (E \times \{0\})^{\perp}$ fermé dans X' (12)
- (3) $\Leftrightarrow G(A) + (E \times \{0\}) = (G(A)^{\perp} \cap (E \times \{0\})^{\perp})^{\perp}$ (10) et (11)
- $(4) \Leftrightarrow (G(A) \cap (E \times \{0\})^{\perp} = G(A)^{\perp} + (E \times \{0\})^{\perp}$ (9) et (12)

La conclusion nous vient directement du théorème (5)-(8).

2.2.2 Opérateurs bornés

⇔ Théorème:

Soit $A:D(A)\subset E\to F$ un opérateur non-borné, fermé, avec son domaine dense dans E. Les propriétés suivantes sont équivalentes :

- 1. D(A) = E
- 2. A est borné
- 3. $D(A^*) = F'$
- 4. A^* est borné

Dans ces conditions, on a:

$$||A||_{\mathcal{L}(E,F)} = ||A^*||_{\mathcal{L}(F',E')}$$

Démonstration:

- $(1) \Rightarrow (2)$: il suffit d'applquer le théorème du graphe fermé.
- $(2) \Rightarrow (3)$: par définition de $D(A^*)$ donnée après la définition de A^*
- $(3) \Rightarrow (4)$: On applique la proposition précédente sur une caractérisation de A^* fermée et à l'aide du théorème du graphe fermé.
- $(4) \Rightarrow (1)$: Plus délicat. Notons d'abord que $D(A^*)$ est fermé. En effet, soit $(v_n) \subset D(A^*)$ avec $v_n \to v$ dans F'. On

$$||A^*(v_n - v_m)|| \le c||v_n - v_m||$$

Par conséquent, (A^*v_n) converge vers une limite f. Comme A^* est fermé, $v \in D(A^*)$ et $A^*v = f$. Dans l'espace $X = E \times F$, on considère les sous-espaces G = G(A) et $L = \{0\} \times F$ de sorte que

$$G + L = D(A) \times F$$
 et $G^{\perp} + L^{\perp} = E' \times D(A^*)$

Par conséquent, $G^{\perp} + L^{\perp}$ est fermé dans X'. Le théorème (5)-(8) permet de conclure que G + L est fermé, donc que D(A) est fermé. Comme $\overline{D(A)} = E$, on en déduite que D(A) = E.

Prouvons maintenant que $||A||_{\mathcal{L}(E,F)} = ||A^*||_{\mathcal{L}(F',E')}$. On a :

$$\langle v, Au \rangle = \langle A^*v, u \rangle \ \forall u \in E, \ \forall v \in F'$$

Donc

$$|\langle v, Au \rangle| \le ||A^*|| ||v|| ||u||$$

et

$$\|Au\|=\sup_{\|v\|\leq 1}|\langle v,Au\rangle|\leq \|A^*\|\|u\|$$

Par suite, $||A|| \le ||A^*||$. Inversement, on a :

$$||A^*v|| = \sup_{||u|| \le 1} |\langle A^*v, u \rangle| = \sup_{||u|| \le 1} |\langle v, Au \rangle| \le ||A|| ||v||$$

Par conséquent, $||A^*|| \le ||A||$.

Topologie faible 3

Soit E un espace de Banach, E' son dual. Pour $f \in E'$, on définit $\phi_f : E \to \mathbb{R}$ tel que $\phi_f(x) = \langle f, x \rangle$. On définit ainsi une famille $(\phi_f)_{f \in E'}$ d'applications de E dans \mathbb{R} .

La topologie faible $\sigma(E, E')$ sur E est la topologie la moins fine sur E rendant continues toutes les applications $(\phi_f)_{f\in E'}$ continues, ie la topologie sur E avec un nombre minimal d'ouvert rendant les ϕ_f continues. On note par \rightarrow la convergence pour la topologie faible.

1 Proposition:

- Soit $(x_n)_n$ une suite de E. On a : 1. $x_n \rightharpoonup x \Leftrightarrow \forall f \in E', \ \langle f, x_n \rangle \rightarrow \langle f, x \rangle$ 2. Si $x_n \rightarrow x$, alors $x_n \rightharpoonup x$
- 3. Si $x_n \rightharpoonup x$ alors $||x_n||$ est bornée et $||x|| \le \liminf ||x_n||$
- 4. Si $x_n \rightharpoonup x$ et si $f_n \to f$ dans E', alors $\langle f_n, x_n \rangle \to \langle f, x \rangle$.

Démonstration:

- 1. Admis
- 2. Résulte de (1), puisque $|\langle f, x_n \rangle \langle f, x \rangle| \le ||f|| ||x_n x||$
- 3. On utilise pour cela le corollaire du théorème de Banach-Steinhaus suivant :

Corollaire : Soit G un espace de Banach et soit B un sous-ensemble de G. On suppose que pour tout $f \in G'$, l'ensemble $f(B) = \bigcup_{x \in B} \langle f, x \rangle$ est borné. Alors B est borné. Il suffit donc de vérifier que pour chaque $f \in E'$, l'ensemble $(\langle f, x_n \rangle)_n$ est borné. Or, pour chaque $f \in E'$, la suite $\langle f, x_n \rangle$ converge vers $\langle f, x \rangle$ (en particulier, elle est bornée). Soit $f \in E'$, on a :

$$|\langle f, x_n \rangle \le ||f|| ||x_n||$$

et à la limite :

$$|\langle f, x \rangle \le ||f|| \liminf ||x_n||$$

Par conséquent :

$$\|x\|=\sup_{\|f\|\leq 1}|\langle f,x\rangle|\leq \liminf\|x_n\|$$

4. On a:

$$|\langle f_n, x_n \rangle - \langle f, x \rangle| \le |\langle f_n - f, x_n \rangle| + |\langle f, x_n - x \rangle| \le ||f_n - f|| ||x|| + |\langle f, x_n - x \rangle|$$

On conclut grâce à (1) et (3).

1 Proposition:

Lorsque E est de dimension finie, la topologie faible $\sigma(E, E')$ et la topologie usuelle conïncident. En particulier, une suite (x_n) converge faiblement si et seulement si elle converge fortement.

4 Opérateurs compacts

4.1 Définitions

Soient E et F deux espaces de Banach. On désigne par B_E la boule unité centrée à l'origine, ie

$$B_E = \{ x \in E; \ ||x|| \le 1 \}$$

et par $\mathcal{L}(E,F)$ l'espace des opérateurs linéaires continues de E dans F muni de la norme

$$\forall f \in \mathcal{L}(E, F), \ \|f\|_{\mathcal{L}(E, F)} = \sup_{\|x\| \neq 0} \frac{\|f(x)\|_F}{\|x\|_E}$$

♦ Définition: Opérateur compact

On dit qu'un opérateur $T \in \mathcal{L}(E, F)$ est compact si l'image de la boule unité par T est relativement compact pour la topologie forte, ie :

$$\overline{T\left(\left\{x\in E;\ \|x\|\leq 1\right\}\right)}\subset F\ \mathrm{compact}$$

On désigne par $\mathcal{H}(E,F)$ l'ensemble des opérateurs compacts de E dans F, et $\mathcal{H}(E)=\mathcal{H}(E,E)$.

⇔ Théorème:

 $\mathscr{H}(E,F)$ est un sous-espace vectoriel fermé de $\mathscr{L}(E,F)$ (pour la norme $\|\bullet\|_{\mathscr{L}(E,F)}$).

Démonstration:

Il est clair que la somme de deux opérateurs compacts est un opérateur compact.

Supposons que $(T_n) \subset \mathcal{H}(E,F)$, $T \in \mathcal{L}(E,F)$, et $||T_n - T||_{\mathcal{L}(E,F)} \to 0$. Montrons que $T \in \mathcal{H}(E,F)$. Comme F est complet, il suffit de vérifier que pour tout $\varepsilon > 0$, $T(B_E)$ peut être recouvert par un nombre fini de boules $B(f_i,\varepsilon)$ dans F.

Pour n assez grand, on a $||T_n - T||_{\mathcal{L}(E,F)} < \frac{\varepsilon}{2}$. Comme $T_n(B_E)$ est relativement compact, on a pour I fini

$$T_n(B_E) \subset \bigcup_{i \in I} B\left(f_i, \frac{\varepsilon}{2}\right)$$

Donc par force,

$$T(B_E) \subset \bigcup_{i \in I} B(f_i, \varepsilon)$$

🔩 Définition: Rang fini

On dit qu'un opérateur $T \in \mathcal{L}(E,F)$ est de rang fini si $R(T) < \infty$

Il est clair qu'un opérateur continu de rang fini est compact (car les compacts dans un espace de dimension finie sont les sous-espaces fermés bornés).

\Rightarrow Corollaire:

Soit (T_n) une suite d'opérateurs de rangs finis de E dans F et soit $T \in \mathcal{L}(E,F)$ tels que $||T_n - T||_{\mathcal{L}(E,F)} \to 0$. Alors $T \in \mathcal{H}(E,F)$.

1 Proposition:

Soient E, F et G trois espaces de Banach. Si $T \in \mathcal{L}(E,F)$ et $S \in \mathcal{H}(F,G)$ (ou $T \in \mathcal{H}(E,F)$ et $S \in \mathcal{L}(F,G)$), alors $S \circ T \in \mathcal{H}(E,G)$.

⇔ Théorème: Schauder

Si $T \in \mathcal{H}(E, F)$, alors $T^* \in \mathcal{H}(F', E')$, et réciproquement.

Démonstration:

On aura pour cela besoin du théorème d'Ascoli :

Théorème : Soit K un espace métrique compact et soit \mathcal{H} un sous-ensemble borné de $\mathcal{C}(K)$, l'ensemble des fonctions continues sur K.

On suppose que \mathcal{H} est uniformément équicontinu, ie :

$$\forall \varepsilon > 0, \exists \delta > 0; \ d(x_1, x_2) < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon \ \forall f \in \mathcal{H}$$

Alors \mathcal{H} est relativement compact dans $\mathcal{C}(K)$.

Montrons que $T^*(B_{F'})$ est relativement compact dans E'. Soit (v_n) une suite de $B_{F'}$. Montrons que l'on peut extraire une sous-suite telle que $T^*(v_{n_k})$ converge. Soit $K = \overline{T(B_E)}$ (métrique compact) et soit $\mathcal{H} \subset \mathcal{C}(K)$ défini par :

$$\mathcal{H} = \{ \phi_n : x \in K \to \langle v_n, x \rangle; \ n = 1, 2, \dots \}$$

Par le théorème d'Ascoli, on peut extraire une sous-suite notée ϕ_{n_k} qui converge dans $\mathcal{C}(K)$ vers une fonction $\phi \in \mathcal{C}(K)$. En particulier :

$$\sup_{u \in B_E} |\langle v_{n_k}, Tu \rangle - \phi(Tu)| \xrightarrow[k \to +\infty]{} 0$$

Donc

$$\sup_{u \in B_E} |\langle v_{n_k}, Tu \rangle - \langle v_{n_l}, Tu \rangle| \xrightarrow[k,l \to +\infty]{} 0$$

ie

$$||T^*v_{n_k} - T^*v_{n_l}||_{E'} \xrightarrow[k,l \to +\infty]{} 0$$

Par conséquent, $T^*v_{n_k}$ converge dans E'.

Réciproquement, supposons que $T^* \in \mathcal{H}(F', E')$. D'après ce qui précède, $T^{**} \in \mathcal{H}(E'', F'')$ et en particulier, $T^{**}(B_E)$ est relativement compact dans F''. Or, $T(B_E) = T^{**}(B_E)$ et F fermé dans F''. Par conséquent, $T(B_E)$ est relativement compact dans F.

4.2 Théorie de Riesz-Fredholm

⇔ Lemme: de Riesz

Soit E un e.v.n. et soit $M\subset E$ un sous-espace fermé tel que $M\neq E$. Alors

$$\forall \varepsilon > 0 \ \exists u \in E; \ \|u\| = 1 \ \text{et} \ d(u, M) \ge 1 - \varepsilon$$

Démonstration:

Soit $v \in E \setminus M$. Comme M est fermé, alors d = d(v, M) > 0. On choisit $m_0 \in M$ tel que

$$d \le ||v - m_0|| \le \frac{d}{1 - \varepsilon}$$

Alors

$$u = \frac{v - m_0}{\|v - m_0\|}$$

répond à la question. En effet, si $m \in M$, on a :

$$||u - m|| = \left| \frac{v - m_0}{||v - m_0||} - m \right| \ge 1 - \varepsilon$$

puisque

$$m_0 + ||v - m_0|| m \in M$$

⇔ Théorème: Riesz

Soit E un e.v.n. tel que B_E soit compact. Alors E est de dimension finie.

Démonstration:

Raisonnons par l'absurde. Si E est de dimension infinie, il existe une suite (E_n) de sous-espaces de dimension finie tels que $E_{n-1} \subsetneq E_n$. Grâce au lemme ptécédent, on peut construire une suite (u_n) avec $u_n \in E_n$, $||u_n|| = 1$ et $d(u_n, E_{n-1}) \ge \frac{1}{2}$. En particulier, $||u_n - u_m|| \ge \frac{1}{2}$ pour m < n. Donc la suite (u_n) n'admet aucune sous-suite convergente - ce qui est contraire à l'hypothèse B_E compact.

⇔ Théorème: Alternative de Fredholm

Soit $T \in \mathcal{H}(E)$. Alors :

- 1. N(I-T) est de dimension finie
- 2. R(I-T) est fermé, et plus précisément

$$R(I-T) = N(I-T^*)^{\perp}$$

- 3. $N(I-T) = \{0\} \Leftrightarrow R(I-T) = E$
- 4 dim $N(I-T) = \dim N(I-T^*)$

Démonstration : 1. Soit $E_1 = N(I-T)$. Alors $B_{E_1} \subset T(B_E)$ et donc B_{E_1} est compact. D'après le théorème de Riesz précédent, E_1 est de dimension finie.

2. Soit $f_n = u_n - Tu_n \to f$. Il faut montrer que $f \in R(I-T)$. Posons $d_n = d(u_n, N(I-T))$. Comme N(I-T) est de dimension finie, il existe $(v_n) \subset N(I-T)$ tel que $d_n = ||u_n - v_n||$. On a :

$$f_n = (u_n - v_n) - T(u_n - v_n) \tag{13}$$

Montrons que $||u_n - v_n||$ reste borné. Raisonnons par l'absurde et supposons qu'il existe une sous-suite telle que $||u_{n_k} - v_{n_k}|| \to \infty$. En posant

$$w_n = \frac{u_n - v_n}{\|u_n - v_n\|}$$

on aurait grâce à (13) $w_{n_k} - T(w_{n_k}) \to 0$. En extrayant une sous-sous-suite (encore notée (w_{n_k}) pour simplifier) on peut supposer que $Tw_{n_k} \to z$. Donc $w_{n_k} \to z$ et $z \in N(I-T)$. D'autre part :

$$d(w_n, N(I-T)) = \frac{d(u_n, N(I-T))}{\|u_n - v_n\|} = 1$$

puisque $v_n \in N(I-T)$. À la limite on obtient d(z, N(I-T)) = 1 - ce qui est absurde, vu que $z \in N(I-T)$. Par conséquent, $||u_n - v_n||$ reste borné et comme T est compact, on peut extraire une sous-suite telle que $T(u_{n_k} - v_{n_k}) \to l$.

On déduit de (13) que $u_{n_k} - v_{n_k} \to f + l$; posant g = f + l, on a g - Tg = f, ie $f \in R(I - T)$. On a donc montré que l'opérateur I - T est à image fermée. On peut alors appliquer un théorème précédent sur la fermeture de l'ensemble image, et en conclure :

$$R(I-T) = N(I-T^*)^{\perp}$$
 et $R(I-T^*) = N(I-T)^{\perp}$

3. Prouvons d'abord l'implication \Rightarrow .

Raisonnons par l'absurde et supposons que

$$E_1 = R(I - T) \neq E$$

 E_1 est un espace de Banach et $T(E_1) \subset E_1$. Donc $T_{|E_1} \in \mathcal{H}(E_1)$ et $E_2 = (I-T)(E_1)$ est un sous-espace fermé de E_1 . De plus, $E_2 \neq E_1$ (puisque (I-T) injectif). En posant $E_n = (I-T)^n(E)$, on obtient ainsi une suite strictement décroissant de sous-espaces fermés. D'après le lemme de Riesz, il existe une suite (u_n) telle que $u_n \in E_n$, $||u_n|| = 1$ et $d(u_n, E_{n+1}) \geq \frac{1}{2}$. On a :

$$Tu_n - Tu_m = -(u_n - Tu_n) + (u_m - Tu_m) + (u_n - u_m)$$

Notons que si n > m, $E_{n+1} \subset E_n \subset E_{m+1} \subset E_m$ et par conséquent :

$$-(u_n - Tu_n) + (u_m - Tu_m) + u_n \in E_{m+1}$$

Donc $||Tu_n - Tu_m|| \ge \frac{1}{2}$ - ce qui est absurde puisque T est compact. Donc R(I - T) = E.

Inversement, supposons que R(I-T)=E. Alors par corollaire précédent, $N(I-T^*)=R(I-T)^{\perp}=\{0\}$. Puisque $T^*\in \mathscr{H}(E')$, on peut appliquer ce qui précède à T^* et conclure que $R(I-T^*)=E'$. Or, par le même corollaire, $N(I-T)=R(I-T^*)^{\perp}=\{0\}$.

4. Soit $d = \dim N(I - T)$ et $d^* = \dim N(I - T^*)$. On va d'abord montrer que $d^* \le d$. Raisons par l'absurde et supposons que $d < d^*$. Comme N(I - T) est de dimension finie, il admet un supplémentaire topologique dans E; il exuste donc un projecteur continue P de E sur N(I - T).

D'autre part, $R(I-T) = N(I-T)^{\perp}$ est de codomension finie d^* et par conséquent, R(I-T) admet dans E un supplémentaire topologique, noté F de dimension d^* . Comme $d < d^*$, il existe une application linéaire $\Lambda: N(I-T) \to F$ qui est injective et non surjective. POsons $S = T + (\Lambda \circ P)$; alors $R \in \mathcal{H}(E)$ puisque $\Lambda \circ P$ est de rang fini.

Montrons que $N(I - S) = \{0\}$. En effet, si

$$0 = u - Su = (u - Tu) - (\Lambda \circ Pu)$$

alors

$$u - Tu = 0$$
 et $\Lambda \circ Pu = 0$

ie $u \in N(I-T)$ et $\Lambda u = 0$, donc u = 0

En appliquant (3) à l'opérateur S, on voit que R(I-S)=E. Ceci est absurde puisqu'uk existe $f\in F$, $f\notin R(\Lambda)$; l'équation u-Su=f n'admet pas de solution.

Par conséquent, on a prouvé que $d^* \leq d$. En appliquant ce résultat à T^* , on voit que

$$\dim N(I - T^{**}) \le \dim N(I - T^*) \le \dim N(I - T)$$

Or, $N(I-T^{**})\supset N(I-T)$ - ce qui permet de conclure que $d=d^*$.

iRemarque:

- 1. L'Alternative de Fredholm concerne la résulution de l'équation u Tu = f. Elle exprime que :
 - Ou bien pour tout $f \in E$, l'équation u Tu = f admet une solution unique
 - Ou bien l'équation homogène u Tu = 0 admet n solutions linéairement indépendantes et dans ce cas, l'équation non homogène u Tu = f est résoluble si et seulement si f vérifie n conditions d'orthogonalité (i.e. $f \in N(I T^*)^{\perp}$).
- 2. La propriété (3) est familière en dimension finie. Si dim $E < \infty$, un opérateur linéaire de E dans lui-même est injectif si et seulement s'il est surjectif.

4.3 Spectre d'un opérateur - Décomposition spéctrale

4.3.1 Spectre d'un opérateur compact

🛂 Définition: Ensemble résolvant, spectre, espace propre

Soit $T \in \mathcal{L}(E)$

L'ensemble résolvant est

$$\rho(T) = \{\lambda \in \mathbb{R}; (T - \lambda I) \text{ est bijectif de } E \text{ dans } E\}$$

Le spectre $\sigma(T)$ est le complémentaire de l'ensemble résolvant

$$\sigma(T) = \mathbb{R} \backslash \rho(T)$$

On dit que λ est valeur propre - et on note $\lambda \in VP(T)$ - si

$$N(T - \lambda I) \neq \{0\}$$

 $N(T - \lambda I)$ est l'espace propre associé à λ .

Remarque : Il est clair que $VP(T) \subset \sigma(T)$. En général, l'inclusion est stricte (sauf bien sûr en dimension finie). Il peut exister λ tel que

$$N(T - \lambda I) = \{0\} \text{ et } R(T - \lambda I) \neq E$$

(un tel λ appartient au spectre mais n'est pas valeur propre).

Par exemple, prenons dans $E = l^2$, $Tu = (0, u_1, u_2, ...)$ où $u = (u_1, u_2, ...)$ (T est appelé le shift à droite). Alors $0 \in \sigma(T)$ et $0 \notin VP(T)$.

i Proposition:

Le spectre $\sigma(T)$ est un ensemble compact et

$$\sigma(T) \subset [-\|T\|, +\|T\|]$$

 ${\bf D\'{e}monstration:}$