6. PRAKTIKA Monte Carlo-ren SIMULAZIOA

Gaur egun gai batzuei buruzko analisi kuantitatiboetarako ereduak errazten dituzten teoriak daude eta gehitu egiten dira egunero. Hala ere, eredu matematikoen prozesamendua sarritan oso zaila da eta kasu hauetan ikertzen den problemaren simulazioa erabiltzen da, hain zuzen Monte Carlo-rena. Metodo hau horrela deituta erruleta zorizko zenbakien sortzaile bezala kontsidera daitekeelako.

Simulazioaren praktikan, nahiz eta eragiketa matematikoak errazak izan, eragiketa kopuruak handiak dira eta ehun edo mila aldiz errepikatu behar dira konparatu nahi den hipotesi bakoitzerako. Ordenadoreen erabilerari esker Monte Carlo-ren metodoa errealitatea da, hau da, orain dela gutxi buruzko kalkuluaren bidezko problema batzuen ebazpenak ezinezkoak ziren eta gaur egun metodoa hau erabiliz, soluzioak lortu ahal dira.

Normalean, simulazioa zorizko ezaugarriak dituen problemetan erabiltzen da, hain zuzen, ikertzen duen sistema bat ekuazioen bidez deskribatzea zaila denean, baina baliteke probabilitate legeen bidez funtzionatzen den tresna bat diseinatzea eta probabilitate lege hauek ikertzen den sistemaren legeekin parekoak izatea. Simulazioaren abantailak nahi beste erabiltzea eta bere emaitzak taula batean jartzea dira.

Zailak ebazteko diren problema deterministetan ere aplika daitezke. Adibide gisa Buffon-en problema da, hau da, π zenbakiaren adierazpen hamartarrak lortzean datza, zuzen paraleloak dituen taulari orraz baten jaurtiketen bidez.

1. ADIBIDEA. Zorizko zenbakien sorkuntza

Sortu 10 zorizko zenbakiak ondoko kasuetan:

- a) Dado baten jaurtiketa (banaketa uniforme diskretua)
- b) [0,1] banaketa uniforme jarraitua.
- c) [50,200] banaketa uniforme jarraitua.
- d) N(3; 0.5) banaketa normala.
- e) $\lambda = \frac{1}{12}$ parametrodun banaketa esponentziala.

Banaketa normalerako ez dago formularik bere alderantziko funtzioa zuzenean lortzeko. Hala ere, ondoko irudian Excel kalkulu orrian erabiltzen da [0,1] banaketa uniformea abiapuntutik N(3,0.5) banaketa normaleko zorizko zenbakiak lortzeko.

	Α	В	С
1		1	2
2	a) Banaketa uniforme diskretua: Dadoaren jaurtiketa	=ALEATORIO.ENTRE(1;6)	=ALEATORIO.ENTRE(1;6)
3			
4			
5	b) [0,1] Banaketa uniforme jarraitua	=ALEATORIO()	=ALEATORIO()
6			
7			
8	c) [50,200] Banaketa uniforme jarraitua	=(200-50)*ALEATORIO()+50	=(200-50)*ALEATORIO()+50
9			
10			
11	d) N(3;0.5) Banaketa normala	=DISTR.NORM.INV(ALEATORIO();3;0,5)	=DISTR.NORM.INV(C5;3;0,5)
12			
13			
14	e) (1/1.2) parametrodun Banaketa esponentziala	=(-1/1,2)*LN(1-ALEATORIO())	=(-1/1,2)*LN(1-ALEATORIO())
15			

_							
	A	В	С	D	E	F	G
1		1	2	3	4	5	6
2	a) Banaketa uniforme diskretua: Dadoaren jaurtiketa	2	2	4	3	4	6
3							
4							
5	b) [0,1] Banaketa uniforme jarraitua	0,95901945	0,125645363	0,2504	0,488	0,6025	0,426
6							
7							
8	c) [50,200] Banaketa uniforme jarraitua	79,275969	179,2238453	181,18	82,63	147,92	106,8
9							
10							
11	d) N(3;0.5) Banaketa normala	3,24663981	2,426390022	2,6633	2,985	3,1299	2,907
12							
13							
14	e) (1/1.2) parametrodun Banaketa esponentziala	0,67882136	1,42733889	0,8755	3,14	0,1543	0,705
15							

NOLA SORTU DIRA ZORKIZKO ALDAGAIAK, EXCELEN BIDEZ

Banaketa uniforme diskretua: Dado baten jaurtiketa	=ALEATORIO.ENTRE(1;6)
[0,1] Banaketa uniforme jarraitua	=ALEATORIO()
[a,b] Banaketa uniforme jarraitua	=(b-a)*ALEATORIO()+a
Banaketa normala: batezbestekoa μ eta desbideratze tipikoa σ	=DISTR.NORM.INV(ALEATORIO(); μ ; σ)
λ parametrodun banaketa esponentziala	=- λ*LN(1-ALEATORIO())

2. ADIBIDEA. Batezbesteko balioen kalkulua

 $\lambda=12$ parametrodun banaketa esponentziala jarraitzen duten 100 zoriko balioak simulatu. Zin da lortutako balioen batezbestekoa?

4	Α	В
1		
2		
3		
4	1	=(-12)*LN(1-ALEATORIO())
5	2	=(-12)*LN(1-ALEATORIO())
6	3	=(-12)*LN(1-ALEATORIO())
7	4	=(-12)*LN(1-ALEATORIO())
8	5	=(-12)*LN(1-ALEATORIO())
9	6	=(-12)*LN(1-ALEATORIO())
10	7	=(-12)*LN(1-ALEATORIO())
11	8	=(-12)*LN(1-ALEATORIO())
12	9	=(-12)*LN(1-ALEATORIO())
13	10	=(-12)*LN(1-ALEATORIO())
14	11	=(-12)*LN(1-ALEATORIO())
15	12	=(-12)*LN(1-ALEATORIO())
16	13	=(-12)*LN(1-ALEATORIO())
17	14	=(-12)*LN(1-ALEATORIO())
18	15	=(-12)*LN(1-ALEATORIO())
19	16	=(-12)*LN(1-ALEATORIO())
20	17	=(-12)*LN(1-ALEATORIO())
21	18	=(-12)*LN(1-ALEATORIO())
22	19	=(-12)*LN(1-ALEATORIO())
23	20	=(-12)*LN(1-ALEATORIO())
24	21	=(-12)*LN(1-ALEATORIO())
25	22	=(-12)*LN(1-ALEATORIO())
26	23	=(-12)*LN(1-ALEATORIO())
27	24	=(-12)*LN(1-ALEATORIO())
28	25	=(-12)*LN(1-ALEATORIO())
29	26	=(-12)*LN(1-ALEATORIO())
30	27	=(-12)*LN(1-ALEATORIO())
31	28	=(-12)*LN(1-ALEATORIO())
32	29	=(-12)*LN(1-ALEATORIO())
33	30	=(-12)*LN(1-ALEATORIO())

83	80		=(-12)*LN(1-ALEATORIO())					
84	81		=(-12)*LN(1-ALEATORIO())					
85	82		=(-12	=(-12)*LN(1-ALEATORIO())					
86	83		=(-12)*LN(1-ALEATORIO())					
87	84		=(-12)*LN(1-ALEATORIO())					
88	85		=(-12)*LN(1-ALEATORIO())					
89	86		=(-12)*LN(1-ALEATORIO())					
90	87		=(-12)*LN(1-ALEATORIO())					
91	88		=(-12)*LN(1-ALEATORIO())					
92	89		=(-12)*LN(1-ALEATORIO())					
93	90		=(-12	=(-12)*LN(1-ALEATORIO())					
94	91		=(-12)*LN(1-ALEATORIO())						
95	92		=(-12)*LN(1-ALEATORIO())						
96	93		=(-12)*LN(1-ALEATORIO())						
97	94		=(-12)*LN(1-ALEATORIO())						
98	95		=(-12)*LN(1-ALEATORIO())					
99	96		=(-12)*LN(1-ALEATORIO())					
100	97		=(-12)*LN(1-ALEATORIO())					
101	98		=(-12)*LN(1-ALEATORIO())					
102	99		=(-12)*LN(1-ALEATORIO())					
103)*LN(1-ALEATORIO())					
104									
105			=PRC	MEDIO(B4:B103)					
		93	90	22,05520222					
		94	91	0,360286289					
		95	92	32,72869864					

93	90	22,05520222
94	91	0,360286289
95	92	32,72869864
96	93	27,84680676
97	94	22,2544028
98	95	8,214943675
99	96	16,87523928
100	97	9,927152486
101	98	27,34107762
102	99	21,32790101
103	100	13,31449596
104		
105		13,8206496

3. ADIBIDEA. Desbiderazio tipikoaren kalkulua

N(-4;3) banaketa normala jarraitzen duten 200 zorizko zenbakiak osatutako lagina sortu. Zein izango da lagin honen desbiderazio tipikoa?

4	Α	В
1	1	=DISTR.NORM.INV(ALEATORIO();-4;3)
2	2	=DISTR.NORM.INV(ALEATORIO();-4;3)
3	3	=DISTR.NORM.INV(ALEATORIO();-4;3)
4	4	=DISTR.NORM.INV(ALEATORIO();-4;3)
5	5	=DISTR.NORM.INV(ALEATORIO();-4;3)
6	6	=DISTR.NORM.INV(ALEATORIO();-4;3)
7	7	=DISTR.NORM.INV(ALEATORIO();-4;3)
8	8	=DISTR.NORM.INV(ALEATORIO();-4;3)
9	9	=DISTR.NORM.INV(ALEATORIO();-4;3)
10	10	=DISTR.NORM.INV(ALEATORIO();-4;3)
11	11	=DISTR.NORM.INV(ALEATORIO();-4;3)
12	12	=DISTR.NORM.INV(ALEATORIO();-4;3)
13	13	=DISTR.NORM.INV(ALEATORIO();-4;3)
14	14	=DISTR.NORM.INV(ALEATORIO();-4;3)
15	15	=DISTR.NORM.INV(ALEATORIO();-4;3)
16	16	=DISTR.NORM.INV(ALEATORIO();-4;3)
17	17	=DISTR.NORM.INV(ALEATORIO();-4;3)
18	18	=DISTR.NORM.INV(ALEATORIO();-4;3)
19	19	=DISTR.NORM.INV(ALEATORIO();-4;3)
20	20	=DISTR.NORM.INV(ALEATORIO();-4;3)
21	21	=DISTR.NORM.INV(ALEATORIO();-4;3)
22	22	=DISTR.NORM.INV(ALEATORIO();-4;3)
23	23	=DISTR.NORM.INV(ALEATORIO();-4;3)
24	24	=DISTR.NORM.INV(ALEATORIO();-4;3)
25	25	=DISTR.NORM.INV(ALEATORIO();-4;3)
26	26	=DISTR.NORM.INV(ALEATORIO();-4;3)
27	27	=DISTR.NORM.INV(ALEATORIO();-4;3)
28	28	=DISTR.NORM.INV(ALEATORIO();-4;3)
29	29	=DISTR.NORM.INV(ALEATORIO();-4;3)
30	30	=DISTR.NORM.INV(ALEATORIO();-4;3)

180	180	=DISTR.NORM.INV(ALEATORIO();-4;3)
181	181	=DISTR.NORM.INV(ALEATORIO();-4;3)
182	182	=DISTR.NORM.INV(ALEATORIO();-4;3)
183	183	=DISTR.NORM.INV(ALEATORIO();-4;3)
184	184	=DISTR.NORM.INV(ALEATORIO();-4;3)
185	185	=DISTR.NORM.INV(ALEATORIO();-4;3)
186	186	=DISTR.NORM.INV(ALEATORIO();-4;3)
187	187	=DISTR.NORM.INV(ALEATORIO();-4;3)
188	188	=DISTR.NORM.INV(ALEATORIO();-4;3)
189	189	=DISTR.NORM.INV(ALEATORIO();-4;3)
190	190	=DISTR.NORM.INV(ALEATORIO();-4;3)
191	191	=DISTR.NORM.INV(ALEATORIO();-4;3)
192	192	=DISTR.NORM.INV(ALEATORIO();-4;3)
193	193	=DISTR.NORM.INV(ALEATORIO();-4;3)
194	194	=DISTR.NORM.INV(ALEATORIO();-4;3)
195	195	=DISTR.NORM.INV(ALEATORIO();-4;3)
196	196	=DISTR.NORM.INV(ALEATORIO();-4;3)
197	197	=DISTR.NORM.INV(ALEATORIO();-4;3)
198	198	=DISTR.NORM.INV(ALEATORIO();-4;3)
199	199	=DISTR.NORM.INV(ALEATORIO();-4;3)
200	200	=DISTR.NORM.INV(ALEATORIO();-4;3)
201		
202		=DESVEST(B1:B200)

186	186	-0,874950785
187	187	-2,799380289
188	188	-5,283566381
189	189	-3,10253742
190	190	-3,198893934
191	191	1,779756826
192	192	-5,396418527
193	193	-7,42082869
194	194	-5,354474114
195	195	-0,988064574
196	196	-6,604961628
197	197	-7,128144829
198	198	0,280761089
199	199	-10,3371324
200	200	-6,312129492
201		
202		3,175400623

4. ADIBIDEA. Integral baten kalkulu hurbildua

Ondoko integral mugatuak berehalako jatorrizkoa ez duenez, bere balio hurbildua kalkulatu nahi da.

$$\int_{a}^{b} f(x)dx = \int_{0}^{2.5} e^{-x^{2}+1} dx = 2.40803$$

Simulazioaren metodoa "zorizko dardoak jaurtitzean" eta marradura duen eskualdearen barruan jausten den dardo kopurua zehaztean datza. Horretarako, grafikoko laukizuzenean dauden (x,y) zorizko balioak sortzen dira. Dardo baten jaurtiketa marradura duen eskualdean jausteko probabilitatea ondoko da:

$$p = \frac{\int_{a}^{b} f(x)dx}{\text{laukizuzenaren azalera}} = \frac{\int_{0}^{2.5} e^{-x^{2}+1}dx}{2.5 \times e} = \frac{n}{N}$$

non n marradura duen eskualdean jausten den dardo kopurua eta N jaurtiketa kopuru guztia diren..

Integrala bakandu ondoko geratzen da:

$$\int_{0}^{2.5} e^{-x^{2}+1} dx = \frac{n \times 2.5 \times e}{N}$$

Hurrengo irudietan Excel orriko kalkuluaren bidez egin beharko den prozedura erakusten da. Orokorrean, esperimentu batzuk egiten dira eta hauen batez besteko balioa integralaren balio hurbildua da.

<u>Ohar garrantzitsua</u>: Kalkulu orriaren bidez lortzen diren balioak zorizkoak dira, ondorioz, simulazioak beren artean ezberdinak dira.

4	Α	В	С	D	E	F	G
2							
3							
4			Integral baten kalkulu hurb	ildua Monte Carlo-ren i	<u>metodoa</u>		
5							
6	N	<u>x</u>	Υ	<u>f(x)</u>	<u>y<=f(x)</u>	Azalera	
7 1		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B7^2)+1)	=SI(C7<=D7;1;0)	=(E107/A106)*2,5*EXP(1)	2,24258250847871
8 2		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B8^2)+1)	=SI(C8<=D8;1;0)		1,76688318849838
9 3		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B9^2)+1)	=SI(C9<=D9;1;0)		2,65032478274757
10 4		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B10^2)+1)	=SI(C10<=D10;1;0)		3,46580933128528
11 5		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B11^2)+1)	=SI(C11<=D11;1;0)		1,90279727992133
12 6		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B12^2)+1)	=SI(C12<=D12;1;0)		1,83484023420986
13 7		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B13^2)+1)	=SI(C13<=D13;1;0)		2,44645364561314
14 8		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B14^2)+1)	=SI(C14<=D14;1;0)		2,51441069132462
15 9		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B15^2)+1)	=SI(C15<=D15;1;0)		2,37849659990166
16 10		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B16^2)+1)	=SI(C16<=D16;1;0)		2,37849659990166
17 11		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B17^2)+1)	=SI(C17<=D17;1;0)		=PROMEDIO(G7:G16)
18 12		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B18^2)+1)	=SI(C18<=D18;1;0)		
19 13		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B19^2)+1)	=SI(C19<=D19;1;0)		
20 14		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B20^2)+1)	=SI(C20<=D20;1;0)		
21 15		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B21^2)+1)	=SI(C21<=D21;1;0)		
22 16		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B22^2)+1)	=SI(C22<=D22;1;0)		
23 17		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B23^2)+1)	=SI(C23<=D23;1;0)		
24 18		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B24^2)+1)	=SI(C24<=D24;1;0)		
25 19		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B25^2)+1)	=SI(C25<=D25;1;0)		
26 20		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B26^2)+1)	=SI(C26<=D26;1;0)		
27 21		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B27^2)+1)	=SI(C27<=D27;1;0)		
28 22		=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B28^2)+1)	=SI(C28<=D28;1;0)		

	Α	В	С	D	E
86 8	80	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B86^2)+1)	=SI(C86<=D86;1;0)
87 8	31	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B87^2)+1)	=SI(C87<=D87;1;0)
88 8	32	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B88^2)+1)	=SI(C88<=D88;1;0)
89 8	3	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B89^2)+1)	=SI(C89<=D89;1;0)
90 8	34	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B90^2)+1)	=SI(C90<=D90;1;0)
91 8	35	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B91^2)+1)	=SI(C91<=D91;1;0)
92 8	86	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B92^2)+1)	=SI(C92<=D92;1;0)
93 8	37	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B93^2)+1)	=SI(C93<=D93;1;0)
94 8	88	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B94^2)+1)	=SI(C94<=D94;1;0)
95 8	89	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B95^2)+1)	=SI(C95<=D95;1;0)
96 9	90	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B96^2)+1)	=SI(C96<=D96;1;0)
97 9	91	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B97^2)+1)	=SI(C97<=D97;1;0)
98 9	2	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B98^2)+1)	=SI(C98<=D98;1;0)
99 9	3	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B99^2)+1)	=SI(C99<=D99;1;0)
100 9	94	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B100^2)+1)	=SI(C100<=D100;1;0)
101 9	95	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B101^2)+1)	=SI(C101<=D101;1;0)
102 9	96	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B102^2)+1)	=SI(C102<=D102;1;0)
103 9	7	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B103^2)+1)	=SI(C103<=D103;1;0)
104 9	8	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B104^2)+1)	=SI(C104<=D104;1;0)
105 9	9	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B105^2)+1)	=SI(C105<=D105;1;0)
106 1	00	=2,5*ALEATORIO()	=EXP(1)*ALEATORIO()	=EXP(-(B106^2)+1)	=SI(C106<=D106;1;0)
107					n= =SUMA(E7:E106)
108					

	Α	В	С	D	Е	F	G
1							
2							
3							
4		Integral baten k	alkulu hurbild	lua Monte Ca	arlo-ren meto	odoa	
5							
6	N	<u>X</u>	Y	<u>f(x)</u>	$y \le f(x)$	Azalera	
7	1	0,007385936	1,57007887	2,71813354	1	2,51441069	2,24258251
8	2	2,122105276	2,5262775	0,03009697	0		1,76688319
9	3	0,453247665	1,22805045	2,21348136	1		2,65032478
10	4	0,345953232	0,9014916	2,41166254	1		3,46580933
11	5	2,371092336	0,54225074	0,00983233	0		1,90279728
12	6	0,315460747	0,36375667	2,46079512	1		1,83484023
13	7	2,480883284	2,52783881	0,00577174	0		2,44645365
14	8	2,019098923	0,53704335	0,04610838	0		2,51441069
15	9	0,049463036	2,54939377	2,71163943	1		2,3784966
16	10	0,475377533	1,6557525	2,16845775	1		2,3784966
17	11	1,391784002	0,33775764	0,39177691	1		2,35810949
18	12	1,290617787	1,44633325	0,51391661	0		
19	13	0,617359896	1,76227894	1,85682262	1		
20	14	2,412342676	1,60425858	0,00807165	0		
21	15	1,035800232	1,58888218	0,92971042	0		
22	16	1,280706916	2,15737374	0,5271816	0		
23	17	1,997893854	0,15248485	0,05020805	0		
24	18	2,311441807	2,51780114	0,01300056	0		
25	19	1,143157921	2,04737246	0,73579036	0		
26	20	1,565643136	1,661311	0,23427997	0		
27	21	2,301543562	0,55679133	0,01360793	0		

85 79 0,057439706 1,64236322 2,70932813 1 86 80 0,269692765 2,67479114 2,52758882 0 87 81 1,766775308 0,46452988 0,11985232 0 88 82 1,935380136 0,26751586 0,06420358 0 89 83 1,801264563 0,96447477 0,10597479 0 90 84 1,552525433 1,32127896 0,24406146 0 91 85 0,482966398 0,51000462 2,15274433 1 92 86 0,3686866 0,83452048 2,37279881 1 93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126		٨	В	0	<u> </u>	Г
86 80 0,269692765 2,67479114 2,52758882 0 87 81 1,766775308 0,46452988 0,11985232 0 88 82 1,935380136 0,26751586 0,06420358 0 89 83 1,801264563 0,96447477 0,10597479 0 90 84 1,552525433 1,32127896 0,24406146 0 91 85 0,482966398 0,51000462 2,15274433 1 92 86 0,3686866 0,83452048 2,37279881 1 93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739	0.5	A 70	B	C	D 70000040	E
87 81 1,766775308 0,46452988 0,11985232 0 88 82 1,935380136 0,26751586 0,06420358 0 89 83 1,801264563 0,96447477 0,10597479 0 90 84 1,552525433 1,32127896 0,24406146 0 91 85 0,482966398 0,51000462 2,15274433 1 92 86 0,3686866 0,83452048 2,37279881 1 93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022						-
88 82 1,935380136 0,26751586 0,06420358 0 89 83 1,801264563 0,96447477 0,10597479 0 90 84 1,552525433 1,32127896 0,24406146 0 91 85 0,482966398 0,51000462 2,15274433 1 92 86 0,3686866 0,83452048 2,37279881 1 93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158						
89 83 1,801264563 0,96447477 0,10597479 0 90 84 1,552525433 1,32127896 0,24406146 0 91 85 0,482966398 0,51000462 2,15274433 1 92 86 0,3686866 0,83452048 2,37279881 1 93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>						_
90 84 1,552525433 1,32127896 0,24406146 0 91 85 0,482966398 0,51000462 2,15274433 1 92 86 0,3686866 0,83452048 2,37279881 1 93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 <						0
91 85 0,482966398 0,51000462 2,15274433 1 92 86 0,3686866 0,83452048 2,37279881 1 93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153	89	83	1,801264563	0,96447477	0,10597479	0
92 86 0,3686866 0,83452048 2,37279881 1 93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 <td>90</td> <td>84</td> <td>1,552525433</td> <td>1,32127896</td> <td>0,24406146</td> <td>0</td>	90	84	1,552525433	1,32127896	0,24406146	0
93 87 0,038285117 2,40066458 2,71430042 1 94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523<	91	85	0,482966398	0,51000462	2,15274433	1
94 88 0,435307536 1,73955897 2,24904875 1 95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	92	86	0,3686866	0,83452048	2,37279881	1
95 89 1,960056131 1,55437229 0,05831943 0 96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	93	87	0,038285117	2,40066458	2,71430042	1
96 90 0,194662366 1,53199669 2,61720398 1 97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	94	88	0,435307536	1,73955897	2,24904875	1
97 91 1,209446126 0,26005559 0,62954375 1 98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	95	89	1,960056131	1,55437229	0,05831943	0
98 92 0,819111739 1,26241479 1,38965562 1 99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	96	90	0,194662366	1,53199669	2,61720398	1
99 93 2,058968438 2,29043799 0,03918932 0 100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	97	91	1,209446126	0,26005559	0,62954375	1
100 94 1,626834022 2,54137057 0,19270612 0 101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	98	92	0,819111739	1,26241479	1,38965562	1
101 95 1,351198158 1,60984054 0,43791237 0 102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	99	93	2,058968438	2,29043799	0,03918932	0
102 96 1,495464558 2,31539377 0,29042374 0 103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	100	94	1,626834022	2,54137057	0,19270612	0
103 97 1,914342153 0,456056 0,06961983 0 104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	101	95	1,351198158	1,60984054	0,43791237	0
104 98 0,819616608 0,0399515 1,38850637 1 105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	102	96	1,495464558	2,31539377	0,29042374	0
105 99 0,389155943 0,47785649 2,3362747 1 106 100 0,856440523 0,64963073 1,30540016 1	103	97	1,914342153	0,456056	0,06961983	0
106 100 0,856440523 0,64963073 1,30540016 1	104	98	0,819616608	0,0399515	1,38850637	1
	105	99	0,389155943	0,47785649	2,3362747	1
107 n= 37	106	100	0,856440523	0,64963073	1,30540016	1
	107				n=	37

.