Math 21-236, Mathematical Studies Analysis II, Spring 2012 Assignment 3

The due date for this assignment is Monday February 13.

A set $E \subseteq \mathbb{R}^N$ is *convex* if $\theta \mathbf{x} + (1 - \theta) \mathbf{y}$ belongs to E for all $\mathbf{x}, \mathbf{y} \in E$ and all $\theta \in (0, 1)$. Given a convex set $E \subseteq \mathbb{R}^N$, a function $f : E \to \mathbb{R}$ is *convex* if

$$f(\theta \mathbf{x} + (1 - \theta) \mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta) f(\mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in E$ and all $\theta \in (0, 1)$.

- 1. Let $I \subseteq \mathbb{R}$ be an open interval and let $f: I \to \mathbb{R}$ be a convex function.
 - (a) Prove that for every $x \in I$ there exist the left and right derivatives $f'_{-}(x), f'_{+}(x)$.
 - (b) Prove that for every $x, y \in I$, with x < y,

$$f'_{-}(x) \le \frac{f(y) - f(x)}{y - x} \le f'_{-}(y) \le f'_{+}(y)$$
.

(c) Prove that

$$f\left(x\right) \ge f\left(y\right) + f'_{-}\left(x\right)\left(x - y\right)$$

for all $x, y \in I$.

(d) Let $U\subseteq\mathbb{R}^N$ be open and convex and let $g:U\to\mathbb{R}$ be a differentiable convex function. Prove that

$$g(\mathbf{x}) \ge g(\mathbf{y}) + \nabla g(\mathbf{y}) \cdot (\mathbf{x} - \mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in U$.

2. Assume that $g:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ is continuous and that all its partial derivatives exist and are continuous. Given the normed space $C^1\left([a,b]\right)$ with the norm

$$||f|| := \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|,$$

consider the functional $G: C^1([a,b]) \to \mathbb{R}$ defined by

$$G(f) := \int_{a}^{b} g(x, f(x), f'(x)) dx, \quad f \in C^{1}([a, b]).$$

(a) Given a function $h \in C([a, b])$ such that

$$\int_{a}^{b} h(x) v'(x) dx = 0$$

for all $v \in C^{1}([a,b])$ such that v(a) = v(b) = 0, prove that h is constant.

(b) Given two functions $p, q \in C([a, b])$ such that

$$\int_{a}^{b} [p(x) v(x) dx + q(x) v'(x)] dx = 0$$

for all $v \in C^1([a, b])$ such that v(a) = v(b) = 0, prove that q is of class $C^1([a, b])$ with q' = p.

(c) Given $\alpha, \beta \in \mathbb{R}$, let $X = \{f \in C^1([a, b]) : f(a) = \alpha, f(b) = \beta\}$. Prove that a necessary condition for $f_0 \in X$ to minimize G over X, that is,

$$\min_{f \in X} G\left(f\right) = G\left(f_0\right)$$

is that the function $q(x) := \frac{\partial g}{\partial z}(x, f_0(x), f'_0(x))$ is of class $C^1([a, b])$ with

$$\frac{d}{dx}\left(\frac{\partial g}{\partial z}\left(x, f_0\left(x\right), f_0'\left(x\right)\right)\right) = \frac{\partial g}{\partial y}\left(x, f_0\left(x\right), f_0'\left(x\right)\right). \tag{1}$$

- (d) Prove that if for every $(x,y) \in [a,b] \times \mathbb{R}$ the function $z \in \mathbb{R} \mapsto g(x,y,z)$ is convex and if $f_0 \in X$ satisfies (1), then f_0 is a minimizer of G over X.
- 3. Prove that the minimum of the following functionals does not exist.

(a)
$$G(f) = \int_0^1 e^{-(f'(x))^2} dx$$
, $X = \{ f \in C^1([0,1]) : f(0) = f(1) = 0 \}$,

(b)
$$G(f) = \int_0^1 \left[(f'(x))^2 - 1 \right]^2 dx, X = \left\{ f \in C^1([0,1]) : f(0) = f(1) = 0 \right\}$$

(c)
$$G(f) = \int_0^1 \left[x (f'(x))^2 \right] dx, X = \left\{ f \in C^1([0,1]) : f(0) = 1, f(1) = 0 \right\}.$$

4. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$, defined by

$$f(x,y) := \sum_{j=0}^{4} a_j \frac{x^j y^{4-j}}{x^2 + y^2} \quad \text{if } (x,y) \neq (0,0),$$
$$f(0,0) := 0,$$

where $a_0, a_1, a_2, a_3, a_4 \in \mathbb{R}$.

(a) Calculate the Hessian matrix

$$H_{f}(x,y) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x^{2}}(x,y) & \frac{\partial^{2} f}{\partial x \partial y}(x,y) \\ \frac{\partial^{2} f}{\partial y \partial x}(x,y) & \frac{\partial^{2} f}{\partial y^{2}}(x,y) \end{pmatrix}$$

for all $(x, y) \in \mathbb{R}^2$ and find a necessary and sufficient condition on a_0 , a_1, a_2, a_3, a_4 for H_f to be symmetric.

- (b) Find a necessary and sufficient condition on a_0 , a_1 , a_2 , a_3 , a_4 for ∇f to be everywhere differentiable.
- (c) Prove that if $n \in \mathbb{N}$ is sufficiently large, then the function

$$g\left(x,y\right):=f\left(x,y\right)+n\left(x^{2}+y^{2}\right)$$

is convex, but for appropriate values of a_{0} , a_{1} , a_{2} , a_{3} , a_{4} , $H_{g}\left(0,0\right)$ is not symmetric or ∇g is not everywhere differentiable.