Complex Analysis, final exam

Prof. Jinxin Xue

2023年6月12日

Problem1. $[\wp(z)]$

We know that Weierstrass \wp - function satisfies $(\wp')^2 = 4\wp^3 - g_2\wp - g_3$. Derive $\wp^{(4)}(z)$

Problem2. [Conformal mapping]

Derive the image of the upper half plane under the conformal mapping

$$F(Z) = \int_0^z \frac{d\zeta}{\sqrt{\zeta(\zeta - 1)(\zeta - \lambda)}}$$

for $\lambda \in \mathbb{R}$ and $\lambda \neq 1$

Problem3. [Liouville Theorem]

Suppose $f:\mathbb{C}\to\mathbb{C}$ is a holomorphic function such that the function g(z)=f(z)f(1/z) is bounded on \mathbb{C} {0} Show that

- (1) if $f(0) \neq 0$ then f is constant
- (2) if f(0)=0, then there exist $n\in\mathbb{N}$ and $a\in\mathbb{C}$ such that $f(z)=az^n$ for all $z\in\mathbb{C}$

Problem4. [Addition Formulae]

Consider the elliptic curve $y^2 = 4x^3 - 8x$, $(x,y) \in \mathbb{C} \times \mathbb{C}$, and two points $(x_1, y_1) = (2, 4)$ and $(x_2, y_2) = (-1, 2)$ on the elliptic curve. Let + be the addition. Find out (2, 4) + (-1, 2)

Problem5. [Differential Equation]

Consider equation $z^2(z+1)\omega'' - z\omega' + \frac{1}{4}\omega = 0$. It has two solutions $z^{\alpha_1}g_1(z)$ and $z^{\alpha_2}g_2(z)$ around z=0. Determine α_1 and α_2

Problem6. [Casorati-Weierstrass Theorem]

Let $g:\mathbb{C}\ \{0\}\to mathbb{C}\ \{0\}$ be an injective holomorphic function. Prove that g does not have a essential singularity at ∞

Problem7. [Representation of Elliptic Function]

For any given complex numbers a_k and b_k for k = 1, 2...n in the fundamental parallelogram satisfying $\sum_{i=0}^{n} a_i = \sum_{i=0}^{n} b_i mod(m2\pi + ni)$ for some $m, n \in \mathbb{Z}$, there exists an elliptic function f that has a_i as zeros and b_i as poles.

Problem8. [Zeros]

Let $\Omega = \mathbb{C} \ (-\infty, 0]$ and let $\log : \Omega \to \mathbb{C}$ be the branch of the complex logarithm on Ω that is real on the positive real axis. Show that for $0 < t < \infty$, the number of solutions $z \in \Omega$ to the equation

$$log z = \frac{t}{z}$$

is finite and independent of t .

Problem9. [Riemann Mapping Theorem]

Let $\Omega_1 \subseteq \Omega_2$ be two bounded simply-connected domains in \mathbb{C} . We also assume that $0 \in \Omega$ Now suppose $f_1 \mathbb{D} \to \Omega_1$ and $f_2 \mathbb{D} \to \Omega_2$ are Riemann mappings, satisfying $f_1(0) = f_2(0) = 0$.

Show that

$$|f_1'(0)| \le |f_2'(0)|$$

Problem10.

Evaluating Fresnel integral

$$\lim_{R \to \infty} \int_0^R \sin(t^2) dt$$