

CS2102 Database Systems

Lecture 11 – Boyce-Codd Normal Form

Roadmap

Roadmap

- We will do this step by step
 - Recap FD (with non-trivial & decomposed FD)

Define BCNF

Check BCNF

- Normalize to BCNF
- Show that we can reconstruct the original table

Algorithm Roadmap

Normal Form(s)

What is it?

- Conditions that a "good" table should satisfy
- Various NFs in increasing order of strictness

Easy to satisfy. May have high redundancy.

- 1. 1st NF
- 2. 2nd NF
- 3. 3rd NF (3NF)
- 4. Boyce-Codd NF (BCNF)

Very little redundancy. Not always possible to satisfy.

- 5. 4th NF
- 6. 5th NF
- 7. 6th NF

RECAP: FD

non-trivial and decomposed functional dependencies

Simplifying Discussion

- Non-trivial $\{A\} \rightarrow \{B\}$ where $\{B\} \nsubseteq \{A\}$ (literally, not trivial)
 Decomposed $\{A\} \rightarrow \{B\}$ where B is a single attribute (singular)
- A non-decomposed FD can always be transformed into the equivalent set of decomposed FD by decomposition rule
 - $\blacksquare \quad \{BC\} \to \{DE\} \iff \{BC\} \to \{D\} \text{ and } \{BC\} \to \{E\}$

Simplifying Discussion

- Non-trivial $\{A\} \rightarrow \{B\}$ where $\{B\} \nsubseteq \{A\}$ (literally, not trivial)
 Decomposed $\{A\} \rightarrow \{B\}$ where B is a single attribute (singular)
- A non-decomposed FD can always be transformed into the equivalent set of decomposed FD by decomposition rule
 - $\blacksquare \quad \{BC\} \to \{DE\} \iff \{BC\} \to \{D\} \text{ and } \{BC\} \to \{E\}$
- **Exercise:** Which of these are non-trivial decomposed FDs?

Why?

- We will check normal forms based on the non-trivial and decomposed FDs on a table
 - Trivial FDs are not interesting (i.e., trivial) because they convey no information
 - Decomposed FDs are easier to reason and they are still valid

Deriving Non-Trivial and Decomposed FD from a Table

- Closure! ... non-trivialize, then decompose ...
 - Consider all subset of attributes in R

(do we need to consider R?)

- 2. Compute the closure of each subset
- 3. Remove the "trivial" attributes
- 4. Derive the decomposed FD from each closure

Deriving Non-Trivial and Decomposed FD from a Table

- **Example:** R(A, B, C) with $\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{A\}$ and $\{B\} \rightarrow \{C\}$
 - 1. Consider all subset of attributes in R

```
{A} {B} {C} {AB} {AC} {BC} {ABC}
```

2. Compute the closure of each subset

```
{A}^{+} = {ABC} {B}^{+} = {ABC} {C}^{+} = {C} {AB}^{+} = {ABC} {AC}^{+} = {ABC} {BC}^{+} = {ABC}
```

3. Remove the "trivial" attributes

```
{A}^{+} = {ABC} {B}^{+} = {ABC} {C}^{+} = {C} {AB}^{+} = {ABC} {AC}^{+} = {ABC} {BC}^{+} = {ABC}
```

4. Derive the decomposed FD from each closure

```
\{A\} \ \rightarrow \ \{B\} \ \ \{A\} \ \rightarrow \ \{C\} \ \ \{B\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{A\} \ \ \ \{AB\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{A\} \ \ \ \{AB\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{C\} \ \ \{AC\} \ \rightarrow \ \{B\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{AB\} \ \rightarrow \ \{BB\} \ \ \{BC\} \ \rightarrow \ \{BC\} \ \rightarrow \ \{BC\} \ \ \ \{BC\} \ \rightarrow \ \{BC\} \
```

Deriving Non-Trivial and Decomposed FD from a Table

Exercise: R(A, B, C, D) with $\{AB\} \rightarrow \{C\}, \{C\} \rightarrow \{D\} \text{ and } \{D\} \rightarrow \{A\}$

$${A}^{+} = {A}$$
 ${B}^{+} = {B}$ ${C}^{+} = {ACD}$ ${D}^{+} = {AD}$
 ${AB}^{+} = {ABCD}$ ${AC}^{+} = {ACD}$ ${AD}^{+} = {AD}$
 ${BC}^{+} = {ABCD}$ ${BD}^{+} = {ABCD}$ ${CD}^{+} = {ACD}$
 ${ABC}^{+} = {ABCD}$ ${ABD}^{+} = {ABCD}$ ${ACD}^{+} = {ACD}$

Algorithm Roadmap

Boyce-Codd Normal Form

Definition

- A table R is in BCNF if every non-trivial and decomposed FD has a superkey as its left hand side
- **Example:** R(A, B, C) with $\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{A\}$ and $\{B\} \rightarrow \{C\}$
 - Key: {A} and {B}
 - Non-trivial and decomposed FDs on R:

- For each of the above FD, the left hand side is a superkey
 - ∴ R satisfies BCNF

Definition

- A table R is in BCNF if every non-trivial and decomposed FD has a superkey as its left hand side
- **Example:** R(A, B, C) with $\{A\} \rightarrow \{B\}$ and $\{B\} \rightarrow \{C\}$
 - Key: {A}
 - Non-trivial and decomposed FDs on R:

```
- \{A\} \rightarrow \{B\} - \{A\} \rightarrow \{C\} - \{B\} \rightarrow \{C\}
```

 $- \{AB\} \rightarrow \{C\} - \{AC\} \rightarrow \{B\}$

this is not a superkey as it does not contain a key

- B is **NOT** superkey in $\{B\} \rightarrow \{C\}$
 - ∴ R does NOT satisfy BCNF

Intuition

- A table R is in BCNF if every non-trivial and decomposed FD has a superkey as its left hand side
- In other words, any attribute B can depend only on superkeys
 - "In superkeys we trust"
 - Any dependency on non-superkeys is prohibited

■ Why?

- Suppose B depends on non-superkey $C_1C_2 ... C_n$
- Since $C_1C_2 \dots C_n$ is not a superkey, the same $C_1C_2 \dots C_n$ may appear multiple times in the table (why?)
- henever this happens, the same B would appear multiple times in the table

Table "Example"

C_1	C_2	 C_n	В
с1	c2	 cn	b
с1	c2	 cn	b

Intuition

- A table R is in BCNF if every non-trivial and decomposed FD has a superkey as its left hand side
- **Example:** The table shown on the right
 - Key: {NRIC, Phone}
 - FD that violates BCNF
 - $\{NRIC\} \rightarrow \{Name\}$
 - {NRIC} → {Address}
 - Since {NRIC} is not superkey, the same NRIC can appear multiple times in the table
 - Every time NRIC is repeated, the corresponding Name and Address are also repeated

Table "Student Data"

Name	NRIC	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83838484	Jurong East
Bob	5678	98765432	Pasir Ris

proving that it is a BCNF means that need to list down everything to prove

but to show violation just need 1 example

Checking BCNF

A table R is **NOT** in BCNF if there exists at least one non-trivial and decomposed FD such that its left hand side is NOT superkey

By Counterexample:

- Can be done at the same time. 1. Consider all non-trivial and decomposed FDs of R
- Generate + check! 2. For each non-trivial and decomposed FDs of R, check that the left hand side is superkey
 - If not, then we have a counterexample
 - If no counterexample found, then R satisfies BCNF

Checking BCNF

A table R is **NOT** in BCNF if there exists at least one non-trivial and decomposed FD such that its left hand side is NOT superkey

By Counterexample:

- Consider all subset of attributes of R
- 2. Compute the closure of each subset
- (closure $\neq R$)
- Non-trivial FD 4. Remove the "trivial" attributes

 5. If the resulting set is non-empty, we have a counterexample

```
More but NOT All
Alternatively, \{S\} \subset \{S\}^+ \subset R
The FD violating BCNF are \{S\} \rightarrow (\{S\}^+ - \{S\})
   and can be decomposed if needed
```

Checking BCNF

- A table R is **NOT** in BCNF if there exists at least one non-trivial and decomposed FD such that its left hand side is **NOT** superkey
- **Example:** R(A, B, C, D) with $\{AB\} \rightarrow \{C\}, \{C\} \rightarrow \{D\} \text{ and } \{D\} \rightarrow \{A\}$
 - Consider all subset of attributes of R
 - 2. Compute the closure of each subset
 - 3. Consider only the subset that are not superkey ($closure \neq R$)
 - 4. Remove the "trivial" attributes
 - 5. If the resulting set is non-empty, we have a counterexample

$${A}^{+} = {A}$$
 ${B}^{+} = {B}$ ${C}^{+} = {ACD}$ ${D}^{+} = {AD}$
 ${AB}^{+} = {ABCD}$ ${AC}^{+} = {ACD}$ ${AD}^{+} = {AD}$
 ${BC}^{+} = {ABCD}$ ${BD}^{+} = {ABCD}$ ${CD}^{+} = {ACD}$
 ${ABC}^{+} = {ABCD}$ ${ABD}^{+} = {ABCD}$ ${ACD}^{+} = {ACD}$

Checking BCNF

- A table R is NOT in BCNF if there exists at least one non-trivial and decomposed
 FD such that its left hand side is NOT superkey
- Exercise: R(A, B, C, D) with $\{B\} \rightarrow \{C\}$ and $\{B\} \rightarrow \{D\}$

$${A}^{+} = {A}$$
 ${B}^{+} = {BCD}$ ${C}^{+} = {C}$ ${D}^{+} = {D}$
 ${AB}^{+} = {ABCD}$ ${AC}^{+} = {AC}$ ${AD}^{+} = {AD}$
 ${BC}^{+} = {BCD}$ ${BD}^{+} = {BCD}$ ${CD}^{+} = {CD}$
 ${ABC}^{+} = {ABCD}$ ${ABD}^{+} = {ABCD}$ ${ACD}^{+} = {ACD}$ ${BCD}^{+} = {BCD}$

Checking BCNF

- A table R is NOT in BCNF if there exists at least one non-trivial and decomposed
 FD such that its left hand side is NOT superkey
- **Exercise:** R(A, B, C, D) with $\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{C\} \rightarrow \{D\} \text{ and } \{D\} \rightarrow \{A\}\}$

$${A}^{+} = {ABCD}$$
 ${B}^{+} = {ABCD}$ ${C}^{+} = {ABCD}$ ${D}^{+} = {ABCD}$ ${AB}^{+} = {ABCD}$ ${AC}^{+} = {ABCD}$ ${AD}^{+} = {ABCD}$ ${ABC}^{+} = {ABCD}$

Note

Whenever we have $\{A\} \to \{B\}$ and $\{B\} \to \{A\}$, we say that the attributes A and B are <u>functionally equivalent</u>. In such cases, we may actually remove either attribute A or attribute B (not the FD, but the attribute) from the database. For instance, eid and email in project. email can always be derived! Maybe as something like eid@company.name

Checking BCNF

- A table R is NOT in BCNF if there exists at least one non-trivial and decomposed
 FD such that its left hand side is NOT superkey
- **Exercise:** R(A, B, C, D) with $\{AB\} \rightarrow \{D\}, \{BD\} \rightarrow \{C\}, \{CD\} \rightarrow \{A\} \text{ and } \{AC\} \rightarrow \{B\}$

$${A}^{+} = {A}$$
 ${B}^{+} = {B}$ ${C}^{+} = {C}$ ${D}^{+} = {D}$
 ${AB}^{+} = {ABCD}$ ${AC}^{+} = {ABCD}$ ${AD}^{+} = {AD}$
 ${BC}^{+} = {BC}$ ${BD}^{+} = {ABCD}$ ${CD}^{+} = {ABCD}$
 ${ABC}^{+} = {ABCD}$ ${ABD}^{+} = {ABCD}$ ${ACD}^{+} = {ABCD}$ ${BCD}^{+} = {ABCD}$

Checking BCNF

- A table R is NOT in BCNF if there exists at least one non-trivial and decomposed
 FD such that its left hand side is NOT superkey
- **Exercise:** R(A, B, C, D, E) with {AB} \rightarrow {C}, {C} \rightarrow {E}, {E} \rightarrow {A} and {E} \rightarrow {D} $\{A\}^+ = \{A\}$ $\{B\}^+ = \{B\}$ $\{C\}^+ = \{ACDE\}$

Note

Remember the trick from before, we can always start from smallest subset. This way, the *chance* of the closure being non-trivial is greater.

Algorithm Roadmap

How to normalize a table to satisfy BCNF property

projection is just decomposition

Normalization

Table "Student_Data"

Name	NRIC	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83838484	Jurong East
Bob	5678	98765432	Pasir Ris

Table "Student_Info"

Name	NRIC	Address
Alice	1234	Jurong East
Bob	5678	Pasir Ris

Table "Student_Contact"

<u>NRIC</u>	<u>Phone</u>
1234	67899876
1234	83838484
5678	98765432

Idea:

- Decompose until all are in BCNF
 - Split the attributes into another table and remove any duplicates
 - The splitting need to ensure that BCNF violations are removed

Normalization

- Idea:
 - Decompose until all are in BCNF
 - Split the attributes into another table and remove any duplicates
 - The splitting need to ensure that BCNF violations are removed

Normalization

- Problem:
 - How to decompose such that we remove at least one BCNF violation?
- Idea:
 - Let's look at the violation again
 - Say $\{B\} \rightarrow \{CD\}$ violates BCNF property of R(A, B, C, D)
 - In what table does {B} → {CD} not violate BCNF property?
 - Make B a superkey!

- Input:
 - A table R
 - A set of FD F on R
- 1. For every $S \subseteq R$
- 2. C := closure(S)
- 3. If $(S \subset C \subset R)$
- 4. Return False
- 5. Return True

- R1(B, C, D)We need to re
- We need to return the *violation* and not just True/False

This is True/False, no information about violations

More but NOT All

Alternatively, $\{S\} \subset \{S\}^+ \subset R$

The FD violating BCNF are $\{S\} \rightarrow (\{S\}^+ - \{S\})$ but $\{S\} \rightarrow \{S\}^+$ is sufficient

Normalization Algorithm

- Input:
 - A table R
 - A set of FD F on R
 - 1. Check if R is in BCNF

- Input:
 - A table R
 - A set of FD F on R
- 1. For every $S \subseteq R$
- C := closure(S)
- 3. If $(S \subset C \subset R)$
- 4. Return $\{S\} \rightarrow C$
- 5. Return NULL

- a. If not, there is an FD $\{A\} \rightarrow \{A\}^+$ that violates it then R decompose into
 - i. $R1(everything in \{A\}^+)$
 - R2(everything in {A} as well as attributes in R but not in {A}⁺)
 - Recursively check R1 and R2
 - iv. Return the union of the result from recursive check
- b. Otherwise, stop
 - i. Return {R}

output will be schemas/relations {R1, R2, ...}

Normalization Algorithm

- Example:
 - Known FD:
 - {NRIC} → {Name, Address}

Steps:

- Check BCNF property
 - {NRIC} → {Name, NRIC, Address} violates BCNF property
 - a. Decompose Student_Data into two tables
 - i. Student_Info(Name, NRIC, Address) ({NRIC}+)
 - i. Student_Contact(NRIC, Phone) ({NRIC} and attributes not in {NRIC}+)
 - iii. Check if Student_Info(Name, NRIC, Address) and
 Student_Contact(NRIC, Phone) are in BCNF (they are...)

Table "Student_Data"

Name	NRIC	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83838484	Jurong East
Bob	5678	98765432	Pasir Ris

And that is how we got this decomposition

Table "Student_Data"

Name	NRIC	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83838484	Jurong East
Bob	5678	98765432	Pasir Ris

Table "Student_Info"

Name	<u>NRIC</u>	Address
Alice	1234	Jurong East
Bob	5678	Pasir Ris

Table "Student_Contact"

<u>NRIC</u>	<u>Phone</u>
1234	67899876
1234	83838484
5678	98765432

Collected Answers

1. R1(A, B, C) × 2. R2(A, D) ✓

- Normalization Algorithm
 - **Example:** R(A, B, C, D) with $\{A\} \rightarrow \{B\}$ and $\{B\} \rightarrow \{C\}$
 - Steps:
 - 1. Check BCNF property
 - $\{A\} \rightarrow \{A, B, C\}$ violates BCNF property
 - a. Decompose R into two tables
 - i. R1(A, B, C) $({A}^+)$
 - ii. R2(A, D) $(\{A\} \cup (R \{A\}^+))$
 - iii. Check if R1(A, B, C) and R2(A, D) are in BCNF

NO! YES!

Collected Answers 1. R1(A, B, C) a. R3(B, C) b. R4(A, B) ✓ 2. R2(A, D) ✓

Normalization Algorithm

- **Example:** R(A, B, C, D) with $\{A\} \rightarrow \{B\}$ and $\{B\} \rightarrow \{C\}$
- Steps:
 - 1. Check BCNF property of R1(A, B, C) with $\{A\} \rightarrow \{B\}$ and $\{B\} \rightarrow \{C\}$
 - $\{B\} \rightarrow \{B, C\}$ violates BCNF property
 - a. Decompose R1 into two tables

```
i. R3(B, C) ({B}^+)
```

ii. R4(A, B)
$$({B} \cup (R1 - {B}^+))$$

iii. Check if R3(B, C) and R4(A, B) are in BCNF

YES! YES!

- Normalization Algorithm
 - **Example:** R(A, B, C, D) with $\{A\} \rightarrow \{B\}$ and $\{B\} \rightarrow \{C\}$

Normalization Algorithm

Notes:

- The BCNF decomposition of a table may NOT be unique
 - Because any FD violating BCNF can be used for decomposition
- If a table only has two attributes, then it is in BCNF
 - Why?
 - No need to check tables with only two attributes

Issues:

- What happen if an FD has attributes across multiple tables?
- Compute closure!
 - Then remove attributes that are irrelevant to the current table
- Let's illustrate this with an example

Collected Answers

1. R1(A, B) 2. R2(A, C, D, E)?

- Normalization Algorithm
 - **Example:** R(A,B,C,D,E) with $\{A\} \rightarrow \{B\}$ and $\{BC\} \rightarrow \{D\}$
 - Steps:
 - Check BCNF property

thus there is a need to compute the closure

- $A \longrightarrow B$
 - Ac+ -> ABCD
 - : AC -> P

- {A} → {A, B} violates BCNF property
- Decompose R into two tables
 - R1(A, B)

- $(\{A\}^+)$
- ii. R2(A, C, D, E) $(\{A\} \cup (R \{A\}^+))$
- iii. Check if R1(A, B) and R2(A, C, D, E) are in BCNF

YES!

???

Do we even know what are the FDs that holds on R2?

 $\{A\} \rightarrow \{B\}$? But no B $\{BC\} \rightarrow \{D\}$? Also no B

Collected Answers

1. R1(A, B) ✓ 2. R2(A, C, D, E) ×

Normalization Algorithm

- **Example:** R(A,B,C,D,E) with $\{A\} \rightarrow \{B\}$ and $\{BC\} \rightarrow \{D\}$
- Steps:
 - 1. Check BCNF property of R2(A, C, D, E) with $\{A\} \rightarrow \{B\}$ and $\{BC\} \rightarrow \{D\}$
 - But all FD contains B and R2 has no attribute B
 - a. Compute closure of each subset of attributes
 - b. Remove attributes not in the current table (projection)
 - Now we can find the violation

$${A}^{+} = {AB}$$
 ${C}^{+} = {C}$ ${D}^{+} = {D}$ ${E}^{+} = {E}$ ${AC}^{+} = {ABCD}$ ${AD}^{+} = {ABD}$ ${AE}^{+} = {AE}$ ${CD}^{+} = {CD}$ ${CE}^{+} = {CE}$ ${DE}^{+} = {DE}$ ${ACD}^{+} = {ABCD}$ ${ACE}^{+} = {ABCDE}$ ${ADE}^{+} = {ABDE}$ ${CDE}^{+} = {CDE}$

Collected Answers 1. R1(A, B) 2. R2(A, C, D, E) a. R3(A, D, E) b. R4(A, C, E) ✓

Normalization Algorithm

- **Example:** R(A,B,C,D,E) with $\{A\} \rightarrow \{B\}$ and $\{BC\} \rightarrow \{D\}$
- Steps:
 - 1. Check BCNF property of R2(A, C, D, E) with $\{A\} \rightarrow \{B\}$ and $\{BC\} \rightarrow \{D\}$
 - $\{A, C\} \rightarrow \{A, C, D\}$ violates BCNF property
 - a. Decompose R2 into two tables

```
i. R3(A, C, D) ({AC}^+)
ii. R4(A, C, E) ({AC} \cup (R2 - {AC}^+))
```

iii. Check if R3(A, C, D) and R4(A, C, E) are in BCNF

YES! YES!

We used $\{A\} \rightarrow \{A, B\}$ as our FD violation. But we can also use $\{B, C\} \rightarrow \{B, C, D\}$ as our FD violation! Let's redo our normalization algorithm

Collected Answers

1. R1(B, C, D) ✓ 2. R2(A, B, C, E) ×

- Normalization Algorithm
 - **Example:** R(A,B,C,D,E) with $\{A\} \rightarrow \{B\}$ and $\{BC\} \rightarrow \{D\}$
 - Steps:
 - 1. Check BCNF property
 - $\{B, C\} \rightarrow \{B, C, D\}$ violates BCNF property
 - a. Decompose R into two tables

```
i. R1(B, C, D) (\{BC\}^+)
ii. R2(A, B, C, E) (\{BC\} \cup (R - \{BC\}^+))
```

iii. Check if R1(B, C, D) and R2(A, C, D, E) are in BCNF

YES! NO!

Collected Answers 1. R1(B, C, D) ✓ 2. R2(A, B, C, E) * a. R3(A, B) ✓ b. R4(A, C, E) ✓

Normalization Algorithm

- **Example:** R(A,B,C,D,E) with $\{A\} \rightarrow \{B\}$ and $\{BC\} \rightarrow \{D\}$
- Steps:
 - 1. Check BCNF property of R2(A, B, C, E) with $\{A\} \rightarrow \{B\}$ and $\{BC\} \rightarrow \{D\}$
 - {A} → {A, B} violates BCNF property
 - Decompose R2 into two tables
 - i. R3(A, B)

 $(\{A\}^+)$

- ii. R4(A, C, E) $(\{A\} \cup (R2 \{A\}^+))$
- iii. Check if R3(A, B) and R4(A, C, E) are in BCNF

YES!

YES!

```
Starting with \{B, C\} \rightarrow \{B, C, D\}
                                                  Starting with \{A\} \rightarrow \{A, B\}
1. R1(B, C, D)
                                                 1. R1(A, B)
                                  2. R3(A, D, E)
2. R3(A, B)
3. R4(A, C, E)
                                                 3. R4(A, C, E)
```

Algorithm Roadmap

• A set of attributes {A} ⊆ R

 $\theta := \theta \cup \{\{S\} \rightarrow (C \cap A)\}$

C := closure(S, F)

1. Initialize $\theta := \emptyset$

2. For every $S \subseteq R$

5. Return θ

1. f := BCNF Check(R, F)

 Return BCNF(R1({A}⁺)) ∪ BCNF(R2({A}+(R-{A}⁺)))

Return {R}

2. If (f = NULL)

4. $\{A\} \rightarrow \{A\}^+ := f$

42

Normalization Algorithm

- Why does the BCNF decomposition algorithm work?
 - In other words, how can it eliminate violations of BCNF?
- In general, each decomposition step removes at least one BCNF violation
 - Then we recursively removes all violation
 - How do we know it will not add new violations?
 - At the worst case, we have only two attributes ⇒ always BCNF

Simplified Algorithm

Find violation $\{A\} \rightarrow \{A\}^+$

- a. $R1({A}^+)$
- b. $R2({A} \cup (R-{A}+))$

Repeat with R1 and R2

Normalization Algorithm

Exercise: R(A, B, C, D) with $\{A\} \rightarrow \{B\}$ and $\{A\} \rightarrow \{C\}$

■ Steps:

Simplified Algorithm

Find violation $\{A\} \rightarrow \{A\}^+$

- a. $R1({A}^+)$
- b. $R2({A} \cup (R-{A}+))$

Repeat with R1 and R2

Normalization Algorithm

Exercise: R(A, B, C, D) with $\{BC\} \rightarrow \{D\}, \{D\} \rightarrow \{A\} \text{ and } \{A\} \rightarrow \{B\}$

Steps:

Properties of BCNF

- Good properties
 - No update or deletion or insertion anomalies
 - Small redundancies (very hard to completely remove redundancies)
 - The original table can always be reconstructed from the decomposed tables
 - How?

This is called - SELECT * FROM Student_Info, Student_Contact

"Lossless Join" WHERE Student_Info.NRIC = Student_Contact.NRIC

Table "Student_Data"

Name	NRIC	<u>Phone</u>	Address
Alice	1234	67899876	Jurong East
Alice	1234	83838484	Jurong East
Bob	5678	98765432	Pasir Ris

Table "Student Info"

Name	NRIC	Address
Alice	1234	Jurong East
Bob	5678	Pasir Ris

Table "Student_Contact"

<u>NRIC</u>	<u>Phone</u>
1234	67899876
1234	83838484
5678	98765432

$$R = \overline{\Pi_{R_1}}(R) \qquad R_2 = \overline{\Pi_{R_2}}(R)$$

$$R = R | \bowtie R_2$$

$$= \overline{\Pi}(R) \bowtie \overline{\Pi}(R)$$

Lossless Join Decomposition

- Say we decompose a table R into two tables R1 and R2
- The decomposition guarantees $\frac{1}{2}$ ssless join, whenever the $\frac{1}{2}$ common attributes in R1 and R2 constitute a $\frac{1}{2}$ of R1 or R2 $\frac{1}{2}$ $\frac{1$

Example:

- R(A, B, C) decomposed into R1(A, B) and R2(B, C) with B being a superkey of R2
- R(A, B, C, D) decomposed into R1(A, B, C) and R2(B, C, D) with BC being a superkey of R1

Lossless Join

The decomposition guarantees lossless join, whenever the *common attributes* in R1 and R2 constitute a superkey of R1 or R2

Lossless Join Decomposition of BCNF

- BCNF decomposition *guarantee* lossless join decomposition
- Why?
 - Consider a violation {A} → {A}⁺
 - Decomposed into R1($\{A\}+$) and R2($\{A\} \cup (R \{A\}^+)$)
 - Common attributes?

-
$$\{A\}^+ \cap (\{A\} + (R - \{A\}^+))$$

 $\Rightarrow \{A\}$

- But $\{A\} \rightarrow \{A\}^+$ and $R1(\{A\}+)$
 - So {A} is a superkey of R1
 - This decomposition guarantees lossless join decomposition

- Properties of BCNF
 - Good properties
 - No update or deletion or insertion anomalies
 - Small redundancies (very hard to completely remove redundancies)
 - The original table can always be reconstructed from the decomposed tables
 - Bad properties
 - Dependencies may not be preserved

- Topic for next week lecture

(non dependency-preserving decomposition)

QUESTION?