RSA_A_Working_Example

September 27, 2020

1. Choose two random prime numbers.

$$[1]: p = 61; q = 53;$$

2. Calculate their product.

$$[2]: n = p * q;$$

3. Compute the totient.

[3]:
$$phi_n = (p - 1) * (q - 1);$$

4. Choose a number e satisfying $1 < e < \phi(n)$ and e is coprime to $\phi(n)$.

$$[4]: e = 17;$$

5. Choose a number d satisfying $de \equiv 1 \pmod{\phi(n)}$.

[5]:
$$d = 2753$$
; out = $(d * e) \% phi_n$;

The expected value for out is 1. The calculated value for out as above is {{out}}.

The **public key** is $n = \{\{n\}\}, e = \{\{e\}\}.$

The procedure to encode a certain piece of message m becomes,

$$c = m^{17} \mod 3233.$$

The **private key** is $n = \{\{n\}\}, d = \{\{d\}\}.$

The procedure to decode a certain piece of encoded message c becomes,

$$m = c^{2753} \mod 3233.$$

[6]:
$$m = 123$$
; $c = m**e \% n$; print(c)

855

For example, if the message to send is m=123, the encoded message c is calculated, as shown above, to be,

$$c = 123^{17} \mod 3233 = 855$$

To decode the message, we calculate $m=855^{2753}\ mod\ 3233,$ which gives, as shown above, m = 123.