JNF

Евграфов Артём

3 Мая 2025

Содержание
1. Условие
2. Собственные и присоединенные вектора
3. Жорданова лестница

1. Условие

Вариант 17

$$\begin{pmatrix}
-7 & 0 & 4 & 1 & 3 & 1 \\
0 & -7 & -2 & 0 & -2 & -1 \\
0 & 0 & -7 & 0 & 1 & 2 \\
0 & 0 & 0 & -7 & 0 & 0 \\
0 & 0 & 0 & 0 & -7 & 0 \\
0 & 0 & 0 & 0 & 0 & -7
\end{pmatrix}$$

2. Собственные и присоединенные вектора

Так как матрица верхнетреугольная, то её характеристический многочлен имеет следующий вид: $\det(A - \lambda E_6) = (-7 - \lambda)^6$. У этого многочлена единственный корень $\lambda = -7$ кратности 6. Рассмотрим теперь матрицу $B = A - \lambda E_6$ и уравнение BX = 0:

Тогда базис W_1 состоит из следующих векторов:

$$\begin{pmatrix} 0 \\ 0 \\ 3 \\ -2 \\ -4 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Геометрическая кратность собственного значения равна 3, значит для построения жорданова базиса требуется еще три присоединённых вектора. Найдём их, решив уравнение $B^2X=0$:

Теперь дополним базис W_1 до базиса W_2 :

$$egin{pmatrix} 0 \ 0 \ 0 \ 0 \ -2 \ 1 \end{pmatrix} \quad egin{pmatrix} 0 \ 0 \ 1 \ 0 \ 0 \ 0 \end{pmatrix} \quad \cup W_1$$

Заметим, что $B^3 = 0$. Тогда в прошлой системе положим $x_5 = 1$ и определим базис W_3 :

$$egin{pmatrix} 0 \ 0 \ 0 \ 0 \ 1 \ 0 \end{pmatrix} \quad \cup W_2$$

3. Жорданова лестница

Высота лестницы - 3, $r_3 = 6 - 5 = 1$, $r_2 = 5 - 3 = 2$, $r_1 = 3$. Вид у жордановой лестницы будет вот такой:

$$\begin{array}{c|cccc}
f & g \\
Bf & g \\
B^2f & Bg & e
\end{array}$$

Верхнюю ступеньку займет $f = (0\ 0\ 0\ 1\ 0)^T$,

На второй ступени положим $g = (0\ 0\ 0\ 0\ -2\ 1)^T$,

На нижнюю ступень положим вектор $e = (0\ 0\ 3\ -2\ -4\ 2)^T$. Имеем следующий базис:

$$\begin{pmatrix} 4 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 3 \\ -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} -5 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 3 \\ -2 \\ -4 \\ 2 \end{pmatrix}$$

Имеем матрицу перехода Т:

$$\begin{pmatrix} 4 & 3 & 0 & -5 & 0 & 0 \\ -2 & -2 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & -2 & -4 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

Определитель этой матрицы равен -4, то есть вектора действительно ЛНЗ. Так как в лестнице 1 столбец высоты 3, один высоты 2 и один высоты 1, то имеем следующую ЖНФ:

$$J = \begin{pmatrix} -7 & 1 & 0 & 0 & 0 & 0 \\ 0 & -7 & 1 & 0 & 0 & 0 \\ 0 & 0 & -7 & 0 & 0 & 0 \\ 0 & 0 & 0 & -7 & 1 & 0 \\ 0 & 0 & 0 & 0 & -7 & 0 \\ 0 & 0 & 0 & 0 & 0 & -7 \end{pmatrix}.$$