Algebra 1 Nils Witt

Quizaufgabem

Nils Witt

Wintersemester 2020

Aufgabe 1. Sei k ein Körper, $f = X^n - a \in k[X]$ mit $a \neq 0$, dann gilt

- (i) f separabel genau dann, wenn $\operatorname{char}(k) \nmid n$
- (ii) Sind α, β Nullstellen von f, dann ist α/β eine n-te Einheitswurzel

Beweis. (i): Es gilt $X^n-1 \in k[X]$ separabel genau dann, wenn $\operatorname{char}(k) \nmid n$ und falls X^n-1 separabel, dann sind die Nullstellen von f gerade $\zeta_n^i \sqrt[n]{a} \in \overline{k}$ für $i=0,\ldots,n-1$ mit einer primitiven n-ten Einheitswurzel ζ_n . Diese sind dann paarweise verschieden. Angenommen $\operatorname{char}(k) \mid n$, dann sind die Merhfachnullstellen von f gerade die gemeinsamen Nullstellen von f und $f' = nX^{n-1} = 0$, das sind aber alle Nullstellen von f, also ist f nicht separabel. (ii): Seien α, β Nullstellen von $X^n - a$, dann gilt

$$\left(\frac{\alpha}{\beta}\right)^n - 1 = \frac{\alpha^n}{\beta^n} - 1 = \frac{a}{a} - 1 = 0$$

Aufgabe 2. Es gilt $[\mathbb{Q}(\sqrt[4]{6})/\mathbb{Q}(\sqrt{6})] = 2$.

Beweis. $\sqrt[4]{6}$ ist Nullstelle von $X^2 - \sqrt{6} \in \mathbb{Q}(\sqrt{6})[X]$, wäre $\sqrt[4]{6} \in \mathbb{Q}(\sqrt{6})$, dann gäbe es eine Darstellung mit $a, b \in \mathbb{Q}$, s.d.

$$(a+b\sqrt{6})^2 - \sqrt{6} = a^2 + \sqrt{6}(2ab-1) + 6b^2 = 0$$

gilt $2ab-1\neq 0$, dann können wir alles umschaffen und erhalten $\sqrt{6}\in\mathbb{Q}$. Widerpsruch. Wenn 2ab-1=0, dann ist $a^2+6b^2=0$ und daher $a^2=-6b^2$, aber es ist $a^2,b^2\geq 0$, also Widerpsruch.

Aufgabe 3. Behauptung: Die Körpererweiterungen $\mathbb{Q}(\sqrt[6]{2}, \sqrt{18})/\mathbb{Q}$, $\mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})/\mathbb{Q}$ und $\mathbb{Q}(\sqrt{2+\sqrt[3]{2}})$ sind alle vom Grad 6.

Beweis. (i) Es ist $[\mathbb{Q}(\sqrt[6]{2}):\mathbb{Q}] = 6$ (betrachte: $X^6 - 2 \in \mathbb{Q}[X]$ + Eisenstein) und wegen $\sqrt{18} = 3\sqrt{2}$ und $(\sqrt[6]{2})^3 = \sqrt{2}$ folgt die Behauptung.

Algebra 1 Nils Witt

(ii) Es ist $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3$ und $\mathbb{Q}(\sqrt[3]{2}) \subsetneq \mathbb{R}$ und $X^2 + X + 1 \in \mathbb{Q}[X]$ ist das Mipo von $e^{2\pi i/3}$ über \mathbb{Q} und alle Nullstellen davon sind komplex, daher $[\mathbb{Q}(e^{2\pi i/3},\sqrt[3]{2}):\mathbb{Q}(\sqrt[3]{2})] = 2$. Gradsatz liefert Behauptung.

(iii)
$$[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3$$
 und $(\sqrt{2+\sqrt[3]{2}})^2 - (2+\sqrt[3]{2}) = 0$.