Package 'siting class'

December 14, 2023

Type Package

Title Siting classification of Norwegian weather stations

version 0.1.0
Author Pierre-Marie Lefeuvre
Maintainer Pierre-Marie Lefeuvre <pre><pre>pierre.marie.lefeuvre@met.no></pre></pre>
Description The package sitingclass evaluates the exposure of weather stations for specific sensors from digital elevation models. The package is currently designed for Met usage only, due to data restrictions.
License GPL3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
R topics documented:
compute_horizon
compute_skyviewfactor
compute_sun_position
download_dem_kartverket
download_dem_kartverket_ogc
get_latlon_frost
get_tile_wms
load_data_ar5
plot_dem_rayshader
plot_station_horizon_sun
plot_station_siting_context
plot_tile_station
Index 1.

2 compute_horizon

compute_horizon

Horizon height at a station

Description

Compute horizon height in degrees from a station location in UTM 33

Usage

```
compute_horizon(
  centre = NULL,
  dem = NULL,
  level = 2,
  step = 10,
  f.plot.polygon = F
)
```

Arguments

centre An array of two coordinates in UTM 33 (epsg:25833)

dem A SpatRaster of a digital elevation/surface model in UTM 33 (epsg:25833)

level A height above the ground of the sensor in metres, level 0 is set to 2 metres

step An interval in degrees at which the horizon will be computed, default is every 10 deg.

f.plot.polygon A boolean setting boundary values to -20 deg to facilitate plotting as polygon

Value

A dataframe with 'horizon_height' in degrees and 'azimuth' angle in degrees at which the horizon is computed in degrees

References

```
https://grass.osgeo.org/grass83/manuals/r.horizon.html
```

Examples

compute_skyviewfactor 3

```
compute_horizon(stn.centre,dem)
compute_horizon(stn.centre,dem,level=stn.level,step=.01,f.plot.polygon=T)
```

compute_skyviewfactor Sky View Factor (SVF)

Description

Compute Sky View Factor from horizon data

Usage

```
compute_skyviewfactor(horizon = NULL)
```

Arguments

horizon

An array of horizon height in degrees from "compute_horizon"

Value

Estimated sky view factor, 1 defines an open sky view and 0 a totally obstructed sky view

References

```
https://github.com/OSGeo/grass-addons/blob/grass8/src/raster/r.skyview/r.skyview.
py
```

Examples

```
compute_skyviewfactor(horizon)
```

Description

Compute sun position in the sky from a station location in UTM 33

Usage

```
compute_sun_position(stn = NULL, f.hour = F)
```

Arguments

stn A SpatVector with station attributes from "get_latlon_frost"

f.hour A boolean value to compute sun position for hours if TRUE and for days if

FALSE

Value

dataframe with inclination of the sun position in the sky in degrees, azimuth in degrees and timestamp as factor

References

```
https://github.com/adokter/suntools/
```

Examples

```
compute_sun_position(stn, f.hour = TRUE)
compute_sun_position(stn, f.hour = FALSE)
```

download_dem_kartverket

Download digital elevation models from Kartverket's WCS API

Description

Define a GetCapabilities request URL using OSW4R and Kartverket's Web Coverage Service that downloads a DEM from a bounding box and a DEM type (i.e. "dom" or "dtm"). The bounding box is centered to a parsed location and a parsed radius set the extent. The downloaded DEM is a SpatRaster object. If the DEM file already exists, it is loaded by default unless f.overwrite is set to TRUE

Usage

```
download_dem_kartverket(
   stationid = NULL,
   centre = NULL,
   name = "dom",
   dx = 100,
   resx = dx/100,
   path = "data/dem",
   f.overwrite = FALSE
)
```

Arguments

stationid	A station ID used for the DEM file name
centre	A coordinate array (i.e. $c(x, y)$) of the station in UTM 33 (i.e. epsg:25833)
name	A name of the DEM to download, either "dtm" a terrain model or the default "dom" a surface model
dx	A distance in metre or radius defining the extent of the bounding box from the centre point, default '100' metres
resx	A horizontal resolution in metre, default is 'dx/100' if greater than '1' metre
path	A directory path defining where will be saved the data, default path is "data/dem"
f.overwrite	A boolean whether the DEM file should be overwritten, default 'FALSE'

Value

A Digital Elevation Model

References

```
https://kartkatalog.geonorge.no/metadata/nasjonal-hoeydemodell-digital-terrengmodell-25833-wcs/0f0a0f38-00c4-4213-a9e5-2d861dc4abb0
https://kartkatalog.geonorge.no/metadata/nasjonal-hoeydemodell-digital-overflatemodell-25833-wcs/e36ea427-13a1-4d7c-be82-977068dfc3e3
https://cran.r-project.org/web/packages/ows4R/vignettes/wcs.html
```

Examples

```
# Load data
stationid <- 18700
centre <- stn %>% st_coordinates
path <- "data/dem"
dem <- download_dem_kartverket(stationid,centre,name="dtm",dx=100,resx=1,path=path)
dsm <- download_dem_kartverket(stationid,centre,name="dom",dx=100,resx=1,path=path)
demkm <- download_dem_kartverket(stationid,centre,name="dtm",dx=20e3,resx=20,path=path)</pre>
```

```
download_dem_kartverket_ogc
```

Download DEM from Kartverket's NEWEST OGC API

Description

Download DEM from Kartverket's NEWEST OGC API

6 get_latlon_frost

Usage

```
download_dem_kartverket_ogc(
  stationid = 18703,
  centre,
 name = "dom",
 dx = 100,
  resx = 1,
  f.OGC = T
)
```

Arguments

stationid A station ID used for the DEM file name

A coordinate array (i.e. c(x, y)) of the station in UTM 33 (i.e. epsg:25833) centre A name of the DEM to download, either "dtm" a terrain model or the default name

"dom" a surface model

dx A distance in metre or radius defining the extent of the bounding box from the

centre point, default '100' metres

A horizontal resolution in metre, default is 'dx/100' if greater than '1' metre resx

f.OGC A boolean default is 'TRUE'

Value

A DEM

Examples

```
download_dem_kartverket_ogc()
```

get_latlon_frost

Get station and sensor metadata from Frost API

Description

Fetch station metadata based on station number and parameter id from Frost v1. The function gets station name, location and sensor details such as level, exposure and performance

Usage

```
get_latlon_frost(stationid = 18700, paramid = NULL)
```

Arguments

stationid A station number as integer and defined by met.no, default is 18700 - Blindern paramid

A parameter number as integer and defined by met.no, default is NULL, thus

getting all paramid available

get_tile_wms 7

Value

Station metadata

References

```
https://frost-beta.met.no/docs/codeexamples
```

Examples

```
get_latlon_frost(stationid=18700)
get_latlon_frost(stationid=18700,paramid=211)
```

get_tile_wms

Get Web Mapping Service data tiles

Description

Fetch map tiles from publicly available WMS released by Nibio

Usage

```
get_tile_wms(box = NULL, layer = "CORINE_Land_Cover_2012", px = 500)
```

Arguments

box A SpatExtent defining the area to plot

layer A name of a layer provided by WMS such as "ar5", "CORINE_Land_Cover_2012"

(default) and "Urban_Atlas_Lu_Lc_2012"

px A pixel number that defines the resolution of the image/tile, default is 500 px

Value

A map tile

References

https://nibio.no/tjenester/wms-tjenester

Examples

```
tile <- get_tile_wms(box, layer = "ar5")
tile <- get_tile_wms(box, layer = "CORINE_Land_Cover_2012" )
tile <- get_tile_wms(box, layer = "Urban_Atlas_Lu_Lc_2012" )</pre>
```

8 plot_dem_rayshader

download)	load_data_ar5	Load FKB-AR5 from vector files stored locally (restricted access to download)
-----------	---------------	---

Description

Load vector FKB-AR5 files to assess area type aka land cover, alternatively get WMS tile (deprecated, use "get_tile_wms")

Usage

```
load_data_ar5(box = NULL, f.wms = TRUE, layer = "Arealtype", px = 500)
```

Arguments

box	A SpatExtent defining the area to plot
f.wms	A boolean to switch to WMS image tile instead of loading file, default TRUE (deprecated)
layer	A name of a layer provided by WMS. For "ar5", it is "Arealtype" as default
рх	A pixel number that defines the resolution of the image/tile, default is 500 px

Value

A map tile

References

```
https://kartkatalog.geonorge.no/metadata/fkb-ar5/166382b4-82d6-4ea9-a68e-6fd0c87bf788
```

Examples

```
ar5 <- load_data_ar5(box,f.wms=F)</pre>
```

plot_dem_rayshader	Plot digital surface/elevation model in 3D with shadow rendering

Description

Use rayshader to plot surface elevation model near a weather station from four cardinal angles

Usage

```
plot_dem_rayshader(stn = NULL, dsm = NULL, path = NULL)
```

Arguments

stn	A SpatVector with	station attributes from	"get latlon frost"

dsm A SpatRaster of a digital surface model around the station, expected radius is

100 m

path A string path that defines where to save the plot, if NULL (default) the plot is

printed on-screen and not saved

Value

A rendered image

References

```
https://www.rayshader.com/
```

Examples

```
plot_dem_rayshader(stn,dsm, path='plot/dem3D')
```

```
plot_station_horizon_sun
```

Plot horizon with sun positions for a given station location

Description

Fetch station metadata based on station number and parameter id from Frost v1. The function gets station name, location and sensor details such as level, exposure and performance

Usage

```
plot_station_horizon_sun(
   stn = NULL,
   dem = NULL,
   dsm = NULL,
   demkm = NULL,
   path = NULL
)
```

Arguments

stn	A SpatVector with	station attributes from	"get_latlon_frost"
-----	-------------------	-------------------------	--------------------

dem A SpatRaster of a digital elevation/terrain model around the station, expected

radius is 100 m

dsm A SpatRaster of a digital surface model around the station, expected radius is

100 m

demkm A SpatRaster of a digital elevation/terrain model around the station, expected

radius is 20 km

path A directory path defining where will be saved the plots, if path is NULL the

plots are printed to the console

Value

Sun diagram with station metadata

References

```
https://frost-beta.met.no/docs/codeexamples
```

Examples

```
# Load data
stn <- get_latlon_frost(stationid=18700)
dem <- download_dem_kartverket(stationid,centre,name="dtm",dx=100,resx=1)
dsm <- download_dem_kartverket(stationid,centre,name="dom",dx=100,resx=1)
demkm <- download_dem_kartverket(stationid,centre,name="dtm",dx=20e3,resx=20)
path <- sprintf("station_location_files/output/%i",stn$id.stationid)
# path <- 'plot/horizon'
# Plot sun diagram
plot_station_horizon_sun(stn, dem, dsm, demkm, path=path)</pre>
```

```
plot_station_siting_context
```

Weather station context

Description

Plots weather station's sun diagram and background maps to assess the exposure of a station and to compute its WMO/met.no siting classification

Usage

```
plot_station_siting_context(
   stationid = 18700,
   paramid = 211,
   f.verbose = TRUE,
   f.pdf = FALSE
)
```

Arguments

stationid A station number as integer and defined by met.no

A parameter number as integer and defined by met.no

f.verbose A boolean string to print debug messages, default is TRUE

f.pdf A boolean string to combine all plots into a pdf file, default is FALSE

plot_tile_station 11

Value

None

References

https://community.wmo.int/en/activity-areas/imop/siting-classification#MembersTools

Examples

```
# Plot sun diagram and map infos for a weather station
plot_station_siting_context(stationid=18700)
plot_station_siting_context(stationid=18700,paramid=211,f.verbose=T)
```

plot_tile_station

Plot station location with background WMS tiles

Description

Plots publicly-available maps, atlas, land cover or satellite imagery near a weather station based on maptiles and custom-made "get_tile_wms"

Usage

```
plot_tile_station(
   stn = NULL,
   box = NULL,
   tile_name = "osm",
   dsm = NULL,
   path = NULL
)
```

Arguments

stn A SpatVector with station attributes from "get_latlon_frost"

box A SpatExtent defining the area to plot

tile_name A string defining the type of tile to plot among "osm" (map, default), "esri"

(satellite imagery), "ar5" (area type), "clc" (Corine land cover) and "urban" (ur-

ban atlas)

dsm A SpatRaster of a digital surface model around the station, expected radius is

100 m

path A string path that defines where to save the plot, if NULL (default) the plot is

printed on-screen and not saved

Value

A ggplot object

plot_tile_station

References

https://github.com/riatelab/maptiles

Examples

```
g <- plot_tile_station(stn, box, tile_name = "esri")
g
plot_tile_station(stn,box,tile_name="esri", path=path)
plot_tile_station(stn,box,tile_name="ar5", path=path)
plot_tile_station(stn,box,tile_name="clc", path=path)
plot_tile_station(stn,box,tile_name="urban", path=path)
plot_tile_station(stn,box,tile_name="urban", path=path)
plot_tile_station(stn,box,tile_name="osm",dsm=dsm, path="plot/map")</pre>
```

Index

```
compute_horizon, 2
compute_skyviewfactor, 3
compute_sun_position, 3

download_dem_kartverket, 4
download_dem_kartverket_ogc, 5

get_latlon_frost, 6
get_tile_wms, 7

load_data_ar5, 8

plot_dem_rayshader, 8
plot_station_horizon_sun, 9
plot_station_siting_context, 10
plot_tile_station, 11
```