Prvi međuispit (grupa A) – 24. ožujka 2011.

- 1. Totalna snaga vremenski kontinuiranog signala $x(t) = 2 + 4\sin(t)$ je:
 - **a**) 2
- **b**) 4
- **c**) 6
- **d**) 12
- **e**) 20
- **2.** Energija vremenski diskretnog signala $x(n) = \left(\frac{1}{5}\right)^{2n} \mu(n)$ je:

- b) $\frac{624}{625}$ c) $\frac{25}{24}$ d) $\frac{625}{624}$ e) $+\infty$
- **3.** Totalna snaga vremenski diskretnog signala $x(n) = 4 + 2\sin(\frac{\pi}{3}n)$ je:
 - a) 4
- **b**) 6
- **c**) 16
- **d**) 18
- **e**) 20
- 4. Koji od zadanih signala NIJE periodičan?
 - a) $\cos(\pi t)$
- **b)** $\cos(3\pi t) + \sin(5\pi t)$
- **c)** $\cos(3\pi t) + \sin(3t)$
 - **d)** $\cos(3t) + \cos(5t)$
- e) $\operatorname{tg}(\frac{\pi}{5}t)$
- 5. Samo jedna od navednih tvrdnji NE VRIJEDI za Diracovu distribuciju $\delta(t)$. Koja?
 - a) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $\int_{-\infty}^{+\infty} f(t) \, \delta(t) \, dt = f(0)$.
 - b) Diracova distribucija je parna distribucija.
 - c) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $\int_{-\infty}^{+\infty} f(t) \, \delta'(t) \, dt = -f'(0)$.
 - d) Generalizirana derivacija Heavisideove step funkcije je Diracova distribucija, odnosno $\mu'(t) = \delta(t)$.
 - e) Za glatku $f(t): \mathbb{R} \to \mathbb{R}$ vrijedi $f(t) \delta(t t_0) = f(t_0)$.
- **6.** Generalizirana derivacija signala $f(t) = \mu(4-t) + \mu(t) + (t-2)^2(\mu(t-2) \mu(t-4))$ je:

 - a) $-\delta(t-4) + \delta(t) + 2(t-2)(\mu(t-2) \mu(t-4)) 4$ b) $-5\delta(t-4) + \delta(t) + 2(t-2)(\mu(t-2) \mu(t-4))$ c) $-3\delta(t-4) + \delta(t) + 2(t-2)(\mu(t-2) \mu(t-4))$ d) $2(t-2)(\mu(t-2) \mu(t-4))$ e) $2(t-2)(\mu(t-2) \mu(t-4)) 4$

- Signal $f(t):[0,3]\to\mathbb{R}$ prikazujemo kao linearnu kombinaciju tri osnovna signala $b_1(t):[0,3]\to\mathbb{R},\ b_2(t):[0,3]\to\mathbb{R}$ i $b_3(t):[0,3]\to\mathbb{R}$. Kako glasi linearni rastav signala f(t) po osnovnim signalima?

 - a) (-1,2,1) b) (-2,2,1) c) (1,2,-1) d) (2,-1,-2) e) (-2,1,2)

- 8. Promatramo signal $x(t) = \sin(20\pi t) + \cos(40\pi t) + \sin(60\pi t)$. Kojim periodom očitanja T_S moramo očitati taj signal da ne dođe do preklapanja spektra?

- a) $T_S > 20$ b) $T_S > 60$ c) $T_S < 1/20$ d) $T_S < 1/60$ e) Ne postoji takav period $T_S!$
- 9. Zadan je signal $x(t) = 3\sin(2t) + 2\cos(3t + \frac{\pi}{3})$. Amplitudni i fazni spektar za k = 2 i k = -3 su:

 - a) $A_2 = \frac{3}{2}, \ \phi_2 = \frac{\pi}{2}, \ A_{-3} = 1, \ \phi_{-3} = \frac{\pi}{3}$ b) $A_2 = \frac{3}{2}, \ \phi_2 = -\frac{\pi}{2}, \ A_{-3} = 1, \ \phi_{-3} = -\frac{\pi}{3}$ c) $A_2 = \frac{3}{2}, \ \phi_2 = -\frac{\pi}{2}, \ A_{-3} = 1, \ \phi_{-3} = \frac{\pi}{3}$ d) $A_2 = 3, \ \phi_2 = \frac{\pi}{2}, \ A_{-3} = 2, \ \phi_{-3} = \frac{\pi}{3}$

- 10. Za vremenski kontinuirani i periodčan signal x(t) perioda 4 zadan slikom izračunaj NULTI i DRUGI član rastava u Fourierov red.
 - a) $(X_0, X_2) = (1, -\frac{2j}{\pi^2})$ e) $(X_0, X_2) = (1, \frac{2}{\pi^2})$
- **b)** $(X_0, X_2) = (0, -\frac{1}{2\pi})$ **c)** $(X_0, X_2) = (0, -\frac{j}{2\pi})$ **d)** $(X_0, X_2) = (0, -\frac{j}{2\pi})$

11.	Snaga	signala	iz	prethodnog	zadatka	je:
	O	O		1 0		J

a) 0 **b)**
$$\frac{1}{9}$$
 c) $\frac{1}{6}$ **d)** $\frac{2}{3}$ **e)** 1

b)
$$\frac{1}{9}$$

c)
$$\frac{1}{6}$$

d)
$$\frac{2}{3}$$

12. Izračunaj vremenski kontinuiranu Fourierovu transformaciju (CTFT) signala $f(t) = e^{-2t} \mu(t) + e^{3t} \mu(-t)$

$$\mathbf{a)} \ F(j\omega) = \frac{-5}{6 + \omega^2 + j\omega}$$

b)
$$F(j\omega) = \frac{5}{6 + \omega^2 - j\omega}$$

c)
$$F(j\omega) = \frac{5}{6 + \omega^2 + j\omega}$$

a)
$$F(j\omega) = \frac{-5}{6 + \omega^2 + j\omega}$$
 b) $F(j\omega) = \frac{5}{6 + \omega^2 - j\omega}$ **c)** $F(j\omega) = \frac{5}{6 + \omega^2 + j\omega}$ **d)** $F(j\omega) = \frac{5}{\sqrt{(6 + \omega)^2 + \omega^2}}$

$$e) F(j\omega) = \frac{1}{2+j\omega}$$

13. Zadan je spektar $X(j\omega) = 4(\mu(\omega + 2\pi) - \mu(\omega - 2\pi))$. Signal čiji je to spektar je:

a)
$$x(t) = \frac{8}{t} \sin(2\pi t)$$

b)
$$x(t) = -\frac{4}{\pi t} \sin(2\pi t)$$

c)
$$x(t) = \frac{4}{\pi t} \sin(2\pi t)$$

d)
$$x(t) = \frac{4}{\pi t} \cos(2\pi t)$$

a)
$$x(t) = \frac{8}{t}\sin(2\pi t)$$
 b) $x(t) = -\frac{4}{\pi t}\sin(2\pi t)$ c) $x(t) = \frac{4}{\pi t}\sin(2\pi t)$ d) $x(t) = \frac{4}{\pi t}\cos(2\pi t)$

14. Energija signala iz prethodnog zadatka je:

- **b**) 32
- c) 16π d) 64π
- e) $+\infty$

Zadan je vremenski diskretan periodičan signal $x(n) = \sin\left(\frac{\pi}{55}n\right)$. Temeljni period signala N i temeljni period spektra K

a)
$$(N, K) = (55, 55)$$

b)
$$(N, K) = (55, 110)$$

b)
$$(N, K) = (55, 110)$$
 c) $(N, K) = (110, 110)$ **d)** $(N, K) = (220, 110)$

d)
$$(N, K) = (220, 110)$$

e)
$$(N, K) = (110, 220)$$

Jedan period
 periodičnog signala perioda N=6 je $x(n)=\begin{cases} 2\sqrt{3}n, & n\in\{-2,-1,0,1,2\}\\ 6, & n=3 \end{cases}$. Prva dva člana spektra su: a) $X_0 = 0$, $X_1 = 6$ b) $X_0 = 1$, $X_1 = -1 - 3j$ c) $X_0 = 1$, $X_1 = -1 + 3j$ d) $X_0 = 1$, $X_1 = -1 + j$ e) $X_0 = 1$, $X_1 = -1 + j$

a)
$$X_0 = 0, X_1 = 6$$

b)
$$X_0 = 1, X_1 = -1 - 3$$

c)
$$X_0 = 1$$
, $X_1 = -1 + 3$

d)
$$X_0 = 1, X_1 = -1 + x_1$$

e)
$$X_0 = 1, X_1 = -1 - j$$

17. Zadan je vremenski diskretan periodički signal $x(n) = \cos(\frac{\pi}{12}n) - \sin(\frac{3\pi}{4}n)$. Petnaesti član spektra je:

a)
$$X_{15} = \frac{1}{2}e^{-j\pi/2}$$
 b) $X_{15} = \frac{1}{2}e^{j\pi/2}$ c) $X_{15} = 0$ d) $X_{15} = e^{j\pi/2}$ e) $X_{15} = e^{-j\pi/2}$

b)
$$X_{15} = \frac{1}{2}e^{j\pi/2}$$

c)
$$X_{15} =$$

d)
$$X_{15} = e^{j\pi/}$$

e)
$$X_{15} = e^{-j\pi/5}$$

18. Jedan period spektra vremenski diskretne Fourierove transformacije (DTFT) je $X(e^{j\Omega}) = \begin{cases} e^{-|\Omega|}, & \Omega \in [-a,a] \\ 0, & \Omega \in \langle -\pi, -a \rangle \cup \langle a,\pi] \end{cases}$. Signal čiji je to spektar jest:

a)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(n \sin(an) - \cos(an) \right) \right)$$

b)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - n \cos(an) \right) \right)$$

a)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(n \sin(an) - \cos(an) \right) \right)$$
 b) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - n \cos(an) \right) \right)$ c) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\sin(an) - \cos(an) \right) \right)$ d) $x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\cos(an) - \sin(an) \right) \right)$

d)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2} \left(1 + e^{-a} \left(\cos(an) - \sin(an) \right) \right)$$

e)
$$x(n) = \frac{1}{\pi} \frac{1}{1+n^2}$$

Promatramo vremenski diskretan signal čiji jedini uzorci različiti od nule su $\{1,3,4,3,1\}$ (podcrtani član je uzorak za korak n=0). Vremenski diskretna Fourierova transformacija zadanog signala je:

a)
$$X(e^{j\Omega}) = \frac{2}{\pi} + \frac{3}{\pi}\cos(\Omega) + \frac{1}{\pi}\cos(2\Omega)$$

b)
$$X(e^{j\Omega}) = 4 + 6\cos(\Omega) + 2\cos(2\Omega)$$

c)
$$X(e^{j\Omega}) = 4 + 6j\sin(\Omega) + 2j\sin(2\Omega)$$

a)
$$X(e^{j\Omega}) = \frac{2}{\pi} + \frac{3}{\pi}\cos(\Omega) + \frac{1}{\pi}\cos(2\Omega)$$

b) $X(e^{j\Omega}) = 4 + 6\cos(\Omega) + 2\cos(2\Omega)$
c) $X(e^{j\Omega}) = 4 + 6j\sin(\Omega) + 2j\sin(2\Omega)$
d) $X(e^{j\Omega}) = \frac{2}{\pi} + \frac{3j}{\pi}\cos(\Omega) + \frac{j}{\pi}\cos(2\Omega)$
e) $X(e^{j\Omega}) = 4 + 3\cos(\Omega) + \cos(2\Omega)$

e)
$$X(e^{j\Omega}) = 4 + 3\cos(\Omega) + \cos(2\Omega)$$

20. Zadan je vremenski diskretni signal $x(n) = 2^n \mu(-n)$. Vremenski diskretna Fourierova transformacija (DTFT) zadanog signala je:

a)
$$X(e^{j\Omega}) = \frac{1}{1 + 2e^{-j\Omega}}$$
 b) $X(e^{j\Omega}) = \frac{2}{2 + e^{-j\Omega}}$ **c)** $X(e^{j\Omega}) = \frac{2}{1 - e^{-j\Omega}}$ **d)** $X(e^{j\Omega}) = \frac{1}{1 - 2e^{j\Omega}}$

b)
$$X(e^{j\Omega}) = \frac{2}{2 + e^{-j\Omega}}$$

$$\mathbf{c)} \ X(e^{j\Omega}) = \frac{2}{1 - e^{-j\Omega}}$$

$$\mathbf{d)} \ X(e^{j\Omega}) \ = \ \frac{1}{1 - 2e^{j\Omega}}$$

e)
$$X(e^{j\Omega}) = \frac{2}{2 - e^{j\Omega}}$$