Assignment 2

T yashwanth Reddy 201402163

T. yashwanth - 201402163

$$P(\omega_i|x,D_i) = \frac{P(x|\omega_i,D_i) p(\omega_i)}{\sum_{j=1}^{k} P(x|\omega_j,D_j) P(\omega_j)}$$

Estimate p(0/0) using BPE, Let us identity the parameters unto a for the underlying gaussian determining p(U/0)

Lunivariate:

$$P(O|D) = \frac{1}{2} \left(\frac{\sum_{k=1}^{N} (M - N_k)^2 + (M - M_0)^2}{\sum_{k=1}^{N} (M - N_k)^2 + (M - M_0)^2} \right)$$

$$P(N) = \frac{1}{\sqrt{\sum_{k=1}^{N} (M - N_k)^2}} \exp\left(-\frac{1}{2} \left(\frac{M - M_0}{\sum_{k=1}^{N} (M - M_0)^2}\right)\right)$$

$$P(N) = \frac{1}{\sqrt{\sum_{k=1}^{N} (M - N_k)^2}} \exp\left(-\frac{1}{2} \left(\frac{M - M_0}{\sum_{k=1}^{N} (M - M_0)^2}\right)\right)$$

$$P(0|D) = P(M|D) = \omega^{\parallel} \exp\left(-\frac{1}{2}\left(\frac{\Omega}{C^2} + \frac{1}{C^2}\right)M^2\right)$$

$$2\left(\frac{1}{C^2}\sum_{k=1}^{\infty}\chi_{k} + \frac{M_0}{C^2}\right)M$$

: Comparing with $P(U|O) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{U-U_0}{n}\right)^2\right)$

$$\mu_{n} = \left(\frac{nc^{2}}{mc^{2}t^{2}}\right) = \frac{\pi}{2} + \frac{c^{2}}{nc^{2}t^{2}} = \frac{\pi}{2}$$

$$p(x|0) = \int p(x|0) \cdot p(0|0) \cdot d0$$

$$p(x|0) = \int \frac{1}{12\pi c} \exp\left(-\frac{1}{2} \left(\frac{x-u}{c}\right)^{2} \cdot \frac{1}{12\pi c} \exp\left(-\frac{1}{2} \left(\frac{y-u}{c}\right)^{2}\right) du$$

$$= \frac{1}{2\pi c} \int \exp\left(-\frac{1}{2} \left(\frac{x-u}{c}\right)^{2} - \frac{1}{2} \left(\frac{y+u}{c}\right)^{2}\right) du$$

$$= \frac{1}{2\pi r r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}} - \frac{2\mu x}{r^{2}} + \frac{\mu^{2}}{r^{2}} + \frac{\mu^{2}}{r^{2}} - \frac{2\mu \mu n}{r^{2}}\right)\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) + \frac{2\pi r_{n}^{2}}{r^{2}} + \frac{\mu^{2}}{r^{2}} + \frac{\mu^{2}}{r^{2}} - \frac{2\mu \mu n}{r^{2}}\right)\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) + \frac{2\pi r_{n}^{2}}{r^{2}} + \frac{\mu^{2}}{r^{2}} + \frac{\mu^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right)$$

$$= \frac{1}{2\pi r_{n}} \int exp\left(-\frac{1}{2}\left(\frac{x^{2}+\mu^{2}}{r^{2}}\right) - \frac{2\pi r_{n}^{2}}{r^{2}}\right) \int exp\left$$

Accuracy	Precision	Recall	F-Score	AUC	Average Log Loss	Training Log Loss
0.9544368	0.6982332	0.3613752	0.4762593	0.9361372	0.1308243	40.411469
02818083	15547703	74323336	39599904	08513201	05818383	8602503

Accuracy	Precision	Recall	F-Score	AUC	Average Log Loss	Training Log Loss
0.9025	0.8	0.1777777 77777778	0.2909090 90909091	0.8500156 49452269	0.3677266 55063227	-4.553795 57249289

After applying PCA and downscaling to 500 features

False Positive Rate

Scored dataset

Score Bin	Positive Examples	Negative Examples	Fraction Above Threshold	Accuracy	F1 Score	Precision	Recall	Negative Precision	Negative Recall	Cumulative AUC
(0.900,1.000]	0	0	0.000	0.887	0.000	1.000	0.000	0.887	1.000	0.000
(0.800,0.900]	0	0	0.000	0.887	0.000	1.000	0.000	0.887	1.000	0.000
(0.700,0.800]	2	0	0.005	0.892	0.085	1.000	0.044	0.892	1.000	0.000
(0.600,0.700]	0	0	0.005	0.892	0.085	1.000	0.044	0.892	1.000	0.000
(0.500,0.600]	6	2	0.025	0.902	0.291	0.800	0.178	0.905	0.994	0.001
(0.400,0.500]	12	17	0.098	0.890	0.476	0.513	0.444	0.931	0.946	0.019
(0.300,0.400]	17	86	0.355	0.718	0.396	0.261	0.822	0.969	0.704	0.187
(0.200,0.300]	6	126	0.685	0.417	0.270	0.157	0.956	0.984	0.349	0.506
(0.100,0.200]	2	113	0.973	0.140	0.207	0.116	1.000	1.000	0.031	0.819
(0.000,0.100]	0	11	1.000	0.113	0.202	0.113	1.000	1.000	0.000	0.850

Python code for PCA

```
import csv
import pandas as pd
from sklearn.decomposition import PCA
from numpy import zeros as np
file_=open('1train_dorothea.csv')
w_file=open('VV_train_dorothea.csv','w')
X=np((800,100000),dtype=int)
#print X[1]
row=0
```

```
for line in file_:
       line=line.strip()
       line_list=line.split(',')
       for count in line_list:
              count=int(count)
              X[row][count-1]=1
       row=row+1
#print X[0]
df = pd.DataFrame(data=X)
df = df.transpose()
pca = PCA(n_components=500)
pca.fit(df)
#print pca.components_
Y=pca.components_
Y=Y.transpose()
print X.shape,Y.shape
row =0
cloumn=0
while row < 800:
       cloumn=0
       while cloumn < 500:
              w_file.write(str(Y[row][cloumn]))
              if cloumn != 499:
                     w_file.write(",")
              cloumn=cloumn+1
       w_file.write("\n")
       row=row+1
```