Thermal Estimation of Power Electronic Converters

ECE 592 Final Project by Zack Miller, John McDonald and Elijah Bouma-Sims

Background and Motivating Problem

- **Power Electronic Converters** (PECs) are an integral part of the power grid
 - Also a large source of downtime/associated cost
 - Reliability of switching components is often dependent on thermal stress.
- Goal: Efficiently estimate mean/delta junction temperature of a PEC system using machine learning to create device control algorithms which maximize reliability.
- Extend prior work by looking at more models and comparing computational complexity and accuracy.
- Test on real data with Rainflow analysis

Describe the Data

Predicting T_mean & T_delta

- Mean junction temperature
- Change in junction temperature

We observe:

- Monotonic data
- Small amount of data
- More observations than predictors
- Shape: (371, 6)
- Discrete predictors, continuous resp.

	P_in	T_amb	V_dc	f_sw	T_mean	T_delta
0	10000.0	-10	450	3000	-5.928024	0.805927
1	1000.0	-10	450	3000	-1.246890	3.386914
2	3000.0	-10	450	3000	6.240659	7.289350
3	5000.0	-10	450	3000	16.497414	12.719379
4	7000.0	-10	450	3000	38.390845	24.692551

Methods of Analysis

Choosing model based on data set Feature selection / dimension reduction not necessary Just exploring data set

- Linear regression
- Bayesian Ridge
- SVM (better performance?)
- Decision tree
- Artificial Neural Network

Referenced images:

https://gdcoder.com/decision-tree-regressor-explained-in-depth/

https://towardsdatascience.com/choosing-a-scikit-learn-linear-regression-algorithm-dd96b4

https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-58ad3bd75223

Model Performance Comparison

- Decision tree lowest T_delta MSE. NN close second lowest
- Decision tree very poor for T_mean MSE, others perform similarly with bayesian ridge being best

Concerns:

- Potential overfitting

Computational Complexity

- Computational complexity for running the model is a particularly important consideration
 - We need control decisions to be made quickly; prediction complexity is key

Model	Training	Prediction
Linear Regression	O(p^2*n+p^3)	O(p)
Bayesian Ridge		O(p)
Decision Tree	O(n^2*p)	O(p)
SVM	O(n^2*p+n^3)	O(nsv*p)
Neural Network	Varies	O(p*nl1+nl1nl2+)

n the number of training sample

p the number of features

ntrees the number of trees (for methods based on various trees)

nsv, the number of support vectors

nli the number of neurons at layer i in a neural network

Rainflow Analysis

- Counting Algorithm that reduces a wide spectrum of data into equivalent cycle/half-cycles
- Enables a reasonable measure of fatigue or stress based on temperature variance
- Algorithm is initially applied to test data before mission profile data

Mission Profile Data

- Mission Profile defines the operating conditions a renewable system (such as a PV Plant) might experience in a given year
- Weather data sampled in 5 minute intervals from Aalborg,
 Denmark was used to approximate the mean number of cycles estimated with Rainflow Analysis

0

20000

40000

60000

80000

100000

Thermal Cycling

- Analysis applied assuming fixed voltage and switching frequency
- Models performed roughly the same
- Decision Tree resulted in the worst performance

Linear Regression	19964.5
Bayesian Ridge	20041.5
Decision Tree	3639.0
SVM	18552.5
DNN	19156.5

References

- [1] J. Zhang, "Power electronics in future electrical power grids," in 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–3, 2013
- [2] H. Wang, M. Liserre, F. Blaabjerg, P. de Place Rimmen, J. B. Jacobsen, T. Kvisgaard, and J. Landkildehus, "Transitioning to physics-of-failure as a reliability driver in power electronics," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 2, no. 1, pp. 97–114, 2014.
- [3] H. Lu, C. Bailey, and C. Yin, "Design for reliability of power electronics modules," Microelectronics Reliability, vol. 49, no. 9, pp. 1250 1255, 2009. 20th European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis.
- [4] T. Dragičević, P. Wheeler, and F. Blaabjerg, "Artificial intelligence aided automated design for reliability of power electronic systems," *IEEE Transactions on Power Electronics*, vol. 34, no. 8, pp. 7161–7171, 2019