Federico Ardila Caroline J. Klivans Vic Reiner Lauren Williams

XVI Coloquio Latinoamericano de Álgebra Colonia, Uruguay 2 de agosto de 2005

The plan to follow: (or not to follow)

- 1. Amoebas and the Bergman complex.
- 2. Review of matroids.
- 3. The Bergman complex of a matroid.
- 4. The space of phylogenetic trees.

(with Carly Klivans)

5. The positive Bergman complex of an oriented matroid.

(with Carly Klivans and Lauren Williams)

6. The Bergman complex of a root system.

(with Vic Reiner and Lauren Williams)

1. Amoebas and the Bergman complex

Consider a variety $X \subset \mathbb{C}^n$, described by a system of polynomial equations in $\mathbb{C}[z_1,\ldots,z_n]$:

$$f_1(z_1,\ldots,z_n) = \cdots = f_k(z_1,\ldots,z_n) = 0.$$

Question: Given $r_1, \ldots, r_n > 0$, is there a solution $z \in X$ with

$$|z_1|=r_1,\ldots,|z_n|=r_n?$$

The amoeba of X is

$$\mathcal{A}(X) = \text{Log } X = \{ (\log |z_1|, \dots, \log |z_n|) : z \in X \cap (\mathbb{C}^*)^n \}.$$

Example: $X = \{(w, z) \in \mathbb{C}^2 \mid 1 + w + z = 0\}$

There is a solution with given |w| and |z| if and only if

$$1 \le |w| + |z|, |w| \le 1 + |z|, |z| \le 1 + |w|.$$

In general, amoebas are very difficult to describe. Their "tentacles" are simpler:

The Bergman complex of X, $\mathcal{B}(X)$, is a subset of the sphere S^{n-1} . It is (roughly) the set of directions where $\mathcal{A}(X)$ goes to infinity.

The Bergman fan or tropical variety, $\widetilde{\mathcal{B}}(X)$, is the fan over the Bergman complex.

Some appearances: real algebraic geometry, dynamical systems, measure theory.

Theorem. (Bergman, '71; Bieri and Groves, '84)

If X is d-dimensional and irreducible, then $\mathcal{B}(X)$ is a pure (d-1)-dimensional polyhedral complex.

Let I be the ideal of X.

Let $\operatorname{in}_{\omega}(I)$ be the initial ideal w.r.t. $\omega \in \mathbb{R}^n$:

$$in_{(0,2,1)}(2xy^2 - x^3z + 3z^4) = 2xy^2 + 3z^4$$
0+4
0+1
4

$$\operatorname{in}_{\omega}(I) = < \operatorname{in}_{\omega}(f) \mid f \in I >$$

Theorem. (Kapranov, Sturmfels, '02)

 $\mathcal{B}(X) = \{ \omega \in S^{n-1} \mid \text{in}_{\omega}(I) \text{ contains no monomials} \}$

Corollary.

If V is a <u>linear subspace</u>, then $\omega \in \mathcal{B}(V)$ if and only if: for each equation $a_1x_{i_1} + \cdots + a_kx_{i_k} = 0$ satisfied by V,

the maximum weight of $\{x_{i_1}, \ldots, x_{i_k}\}$ is achieved twice.

2. Review of matroids

What combinatorial properties should a "good" notion of independence have?

Here is an answer, in terms of minimal dependent sets:

A matroid M on a finite ground set E is a collection \mathcal{C} of circuits (subsets of E) such that:

- C0. \emptyset is not a circuit.
- C1. No circuit properly contains another.
- C2. If C_1 and C_2 are circuits and $x \in C_1 \cap C_2$, then $C_1 \cup C_2 x$ contains a circuit.

Example:

$$E = \{1, 2, 3, 4, 5, 6\}$$

$$C = \{124, 135, 236, 456, 1256, 1346, 2345\}$$

Four sources of matroids:

• A graph.

E - the edges of a graph G.

 \mathcal{C} - the cycles of G.

• A collection of vectors.

E - the set of vectors.

 $\ensuremath{\mathcal{C}}$ - the minimal dependent subsets.

$$E = \{1, 2, 3, 4, 5, 6\}$$

 $C = \{124, 135, 236, 456, 1256, 1346, 2345\}$

• A subspace V of \mathbb{C}^n (with a given basis).

$$E - \{1, \ldots, n\}.$$

C - the minimal $\{i, \ldots, k\}$ such that an equation of the form $a_i x_i + \cdots + a_k x_k = 0$ holds in V.

$$V = \{(a-b, a-c, a-d, b-c, b-d, c-d) : a, b, c, d \in \mathbb{C}\}\$$

• A hyperplane arrangement.

E - the hyperplanes.

 \mathcal{C} - the minimal sets of k hyperplanes intersecting in codimension < k.

$$E = \{1, 2, 3, 4, 5, 6\}$$

 $C = \{124, 135, 236, 456, 1256, 1346, 2345\}$

3. The Bergman complex of a matroid

Definition. The Bergman complex of a matroid M on E is $\{\omega \in S^{E-2} : \text{ every circuit achieves its } \omega\text{-max more than once.}\}$

(Here
$$S^{E-2} = \{ \omega \in \mathbb{R}^E \mid \sum \omega_i^2 = 1, \sum \omega_i = 0 \}.$$
)

Example. $E = [6], \ \mathcal{C} = \{124, 135, 236, 456, 1256, 1346, 2345\}$

- $\omega = (0, 9, 7, 9, 7, 7)$ is **not** in $\mathcal{B}(M)$. (Problem: ω -max in 456.)
- $\omega = (0, 9, 7, 9, 7, 9)$ is in $\mathcal{B}(M)$.

Problem. (Sturmfels)

Describe $\mathcal{B}(M)$ topologically and combinatorially.

(Is it connected? Pure-dimensional? What is its homology?)

We need some definitions.

A subset $F \subseteq E$ is a flat (or closed) if $|F - C| \neq 1$ for all circuits C. (In a hyperplane arrangement, the flats are the intersections.)

The lattice of flats L_M is the poset of flats ordered by containment. It is a lattice. Let $\bar{L}_M = L_M \setminus \{\hat{0}, \hat{1}\}.$

123456

$$E = \{1, 2, 3, 4, 5, 6\}$$

 $\mathcal{C} = \{124, 135, 236, 456, 1256, 1346, 2345\}$

The order complex $\Delta(\bar{L}_M)$ of \bar{L}_M is the following simplicial complex:

- vertices: elements of \bar{L}_M
- faces: chains of \bar{L}_M

An example of a poset and its order complex:

Theorem. (Björner, 1980)

 $\Delta(\bar{L}_M)$ is a pure, shellable simplicial complex. It is homotopy equivalent to a wedge of $\hat{\mu}(L_M)$ (r-2)-dimensional spheres.

Theorem. (Ardila and Klivans, 2003)

Let M be a loopless matroid.

(A natural subdivision of) the Bergman complex of M is (a geometric realization of) $\Delta(\bar{L}_M)$.

Corollary.

The Bergman complex of M is a connected, puredimensional polyhedral complex. It is homotopy equivalent to a wedge of $\hat{\mu}(L_M)$ (r-2)-dimensional spheres.

Sketch of proof:

Two vectors $u, v \in S^{n-2}$ have the same order type when they have the same relative order.

An order type: $\omega_1 = \omega_4 < \omega_2 < \omega_3 = \omega_5$.

We denote it $\omega_{\emptyset \subset 14 \subset 124 \subset 12345}$.

- The condition $\omega \in \mathcal{B}(M)$ depends only on the order type of ω .
- The Bergman complex $\mathcal{B}(M)$ is a union of order types.
- The order type $\omega_{\emptyset \subset F_1 \subset \cdots \subset F_k \subset E}$ is in $\mathcal{B}(M)$ if and only if F_1, \ldots, F_k are flats.

4. The space of phylogenetic trees.

Consider $\mathbb{R}^{\binom{n}{2}} = \{(x_{12}, x_{13}, x_{23}, \dots, x_{n-1,n}) : x_{ij} \in \mathbb{R}\}.$

An ultrametric is a vector $\omega \in \mathbb{R}^{\binom{n}{2}}$ such that $\max\{\omega_{ij}, \omega_{jk}, \omega_{ik}\}$ is achieved twice for all i, j, k. (A weighting of the edges of K_n where in each triangle, the two heaviest edges have the same weight.)

One source of ultrametrics:

T = equidistant n- tree (rooted metric tree with n labelled leaves, where all the distances from the root to the leaves are equal.)

 $d_{ij} = \text{distance between leaves } i \text{ and } j$

In fact, that is the only source of ultrametrics!

Theorem. (Semple and Steel, 2003)

A vector $\delta \in \mathbb{R}^{\binom{n}{2}}$ is an ultrametric if and only if it is the distance function of an equidistant *n*-tree.

Theorem. (Ardila and Klivans, 2003)

A vector $\delta \in \mathbb{R}^{\binom{n}{2}}$ is an ultrametric if and only if it is in the Bergman fan $\widetilde{\mathcal{B}}(K_n)$.

(The two heaviest edges of each triangle are equal if and only if the two heaviest edges of each cycle are equal.)

Therefore, we can think of the Bergman fan $\widetilde{\mathcal{B}}(K_n)$ as a space of phylogenetic trees.

The space of phylogenetic trees \mathcal{T}_n .

(Vogtmann, 1990; Whitehouse, 1996; Billera, Holmes, V., 2001)

A binary n-tree T has n-2 internal edges. An orthant $\mathbb{R}^{n-2}_{\geq 0}$ parameterizes the possible equidistant n-trees of shape T.

When some edge lengths are 0, we get "degenerate" non-binary trees, which could come from different binary trees.

Glue the (n-2)-dimensional orthants where they agree.

 $T_n = \text{link of the origin in } T_n - \text{Whitehouse complex}$

Other appearances:

- homotopy theory
- moduli space of curves $\overline{M}_{0,n}$
- WDVV eqs. of string theory

Theorem. (Vogtmann, 1990; Robinson and Whitehouse, 1996; Trappmann and Ziegler, 1998; Wachs, 1998; Sundaram, 1999)

 T_n is a simplicial complex, homotopy equivalent to a wedge of (n-1)! (n-3)-dimensional spheres.

Same homotopy type as $\Delta(\bar{\Pi}_n)$, where Π_n is the partition lattice of [n] - the S_n -representations on their homology are also isomorphic!

What can we say about T_n ?

We have two different parameterizations of equidistant n-trees.

- \mathcal{T}_n : combinatorial type, internal edge lengths.
- $\widetilde{\mathcal{B}}(K_n)$: distances between leaves.

We get a bijection $f: \mathcal{T}_n \to \widetilde{\mathcal{B}}(K_n)$.

Theorem. (Ardila and Klivans, 2003)

The map f is a piecewise linear homeomorphism between the Bergman fan $\widetilde{\mathcal{B}}(K_n)$ and the space of phylogenetic trees \mathcal{T}_n .

Since $\Delta(\bar{\Pi}_n)$ is the subdivision of $\mathcal{B}(K_n)$ into order types,

Corollary.

The Whitehouse complex T_n is **homeomorphic** to $\Delta(\bar{\Pi}_n)$.

5. The positive part of $\mathcal{B}(M)$

Suppose M is an oriented matroid. We now define and study $\mathcal{B}^+(M)$, the positive part of $\mathcal{B}(M)$.

Motivation: (Speyer, Sturmfels, Williams)

Bergman complex $\mathcal{B}(M) \leftrightarrow \text{tropical variety}$.

Positive part $\mathcal{B}^+(M) \leftrightarrow \text{totally positive part.}$

Goal: To prove analogous results for $\mathcal{B}^+(M)$.

An oriented matroid is a collection of signed circuits (satisfying certain axioms).

Example.

$$E = [6]$$

$$C = \{1\overline{2}4, 1\overline{3}5, 2\overline{3}6, 4\overline{5}6, 1\overline{2}5\overline{6}, 1\overline{3}46, 2\overline{3}\overline{4}5, \overline{1}2\overline{4}, \overline{1}3\overline{5}, \overline{2}3\overline{6}, \overline{4}5\overline{6}, \overline{1}2\overline{5}6, \overline{1}3\overline{4}\overline{6}, \overline{2}34\overline{5}\}$$

Let M be an oriented matroid on [n], with signed circuits \mathcal{C} .

Definition.

The positive Bergman complex $\mathcal{B}^+(M)$ is

 $\{\omega \in S^{n-2} : \text{each } C \in \mathcal{C} \text{ achieves its max weight in } C^+ \text{ and } C^-\}.$

(Forgetting signs, each C achieves its max weight at least twice Therefore $\mathcal{B}^+(M) \subseteq \mathcal{B}(M)$.)

Example. $E = [6], \ \mathcal{C} = \{1\overline{2}4, 1\overline{3}5, 2\overline{3}6, 4\overline{5}6, 1\overline{2}5\overline{6}, 1\overline{3}46, 2\overline{3}\overline{4}5, \ldots\}$

- $\omega = (0, 9, 7, 9, 7, 9)$ is **not** in $\mathcal{B}(M)$. (Problem: ω -max in 456.)
- $\omega = (9, 9, 9, 7, 7, 0)$ is in $\mathcal{B}(M)$.

Let M be an acyclic oriented matroid. The Las Vergnas face lattice $\mathcal{F}_{\ell v}(M)$ is the lattice of "positive" flats of M, ordered by inclusion.

Example. $E = [6], \ \mathcal{C} = \{1\overline{2}4, 1\overline{3}5, 2\overline{3}6, 4\overline{5}6, 1\overline{2}5\overline{6}, 1\overline{3}46, 2\overline{3}\overline{4}5, \ldots\}$

Positive flats: \emptyset , 1, 4, 6, 124, 16, 456, 123456.

The topology of $\Delta(\bar{\mathcal{F}}_{\ell v}(M))$, the order complex of (the proper part of) the Las Vergnas face lattice of M, is also known:

Theorem.

 $\Delta(\bar{\mathcal{F}}_{\ell v}(M))$ is homotopy equivalent to a sphere.

We have:

Theorem. (Ardila, Klivans, Williams, 2004)

Let M be an acyclic oriented matroid.

(A subdivision of) the positive Bergman complex of M is (a realization of) $\Delta(\bar{\mathcal{F}}_{\ell v}(M))$.

Therefore, $\mathcal{B}^+(M)$ is one of the spheres in $\mathcal{B}(M)$.

For the oriented matroid of the complete graph K_n , we have:

Theorem. (Ardila, Klivans, Williams, 2004)

 $\mathcal{B}^+(K_n)$ is dual to the associahedron A_{n-2} .

The graph K_n has n! different acyclic orientations, which give rise to n! (almost) different "positive parts" of $\mathcal{B}(K_n)$.

In this way, we recover the known covering of the Whitehouse complex T_n with n! dual associahedra.

6. $\mathcal{B}(M)$ for Coxeter arrangements.

Let Φ be the root system of a Coxeter system (W, S).

Let M_{Φ} be the corresponding matroid.

Goal: To describe $\mathcal{B}^+(M_{\Phi}), \mathcal{B}(M_{\Phi})$ combinatorially.

Key ingredient: The Dynkin diagram of Φ .

First we describe $\mathcal{B}^+(M_{\Phi})$; we need an acyclic orientation of M_{Φ} .

We have a correspondence:

acyclic orientations of the matroid M_{Φ}

 \uparrow

regions of the real arrangement \mathcal{A}_{Φ}

 \uparrow

choices of simple roots of Φ .

A tube in a Dynkin diagram is a connected subgraph.

Two tubes t_1 and t_2 are compatible if

- $t_1 \subset t_2$, or
- t_1 and t_2 are disjoint and non-adjacent.

The two kinds of incompatible tubes:

A tubing is a collection of compatible tubes.

Poset of tubings:

Say $T_1 < T_2$ if T_2 can be obtained from T_1 by adding tubes.

The graph associahedron of type Φ is a polytope whose face poset is the poset of tubings of the Dynkin diagram of Φ .

It was discovered independently by Carr and Devadoss, Davis and Januszkiewicz, and Postnikov.

Theorem. (Ardila, Reiner, Williams, 2004)

 $\mathcal{B}^+(M_{\Phi})$ is dual to the graph associahedron of type Φ .

The wonderful model of a hyperplane arrangement \mathcal{A} blows up the non-normal crossings of \mathcal{A} without changing the topology of the complement. (de Concini and Procesi, 1995)

The nested set complex of \mathcal{A} encodes the combinatorics of this wonderful model.

Theorem. (Ardila, Reiner, Williams, 2004)

 $\mathcal{B}(M_{\Phi})$ equals the nested set complex of the Coxeter arrangement of type Φ .

This recovers Carr and Devadoss's tiling of the minimal blowup of a Coxeter complex by graph associahedra. Thank you.

The first two preprints and an extended abstract of the third are available at:

- www.math.washington.edu/∼federico
- arxiv:math.CO/0311370,0406116