DOTA2

Quick review

- Dataset: 50.000 games of Dota2, a competitive multiplayer online game
 - 18 different .csv files
 - Many different data types
- Results from the last presentation:
 - Leading in gold is highly relevant to win the game, but gets less relevant for very long games
 - Simple win-prediction only using the gold lead of a team
 - Word-clouds of the chat to investigate differences between winning and losing teams

Win-prediction by gold lead

Progress since

- Investigation of the teamfight data
 - Dota2 is a team game, and teamwork is very important for success
 - Teamfights should therefore be highly relevant for the outcome of a game
 - Teamfights get more important for the game outcome as the game progresses
 => Combine gold and teamfights to get better predictions
 - This leads to some questions:
 - Do winning teams win the last teamfight?

Answer: 88% of teams do.

- How relevant is this number, and how does it evolve over time?

Answer: Plot on the next slide

- Combine both gold and teamfights to predict games
 - Simple linear models on the gold and teamfight data
 - Combination of those predictions (currently the mean, but work in progress)
 - Result: Predictions for each minute of a game
 - Accuracy: 97.92%

Winning the game after winning a teamfight

Time difference between last teamfight and end of game

Further Progress

- Use better models than just linear regression
 - LSTM to keep game-history relevant ?
- Work on the general programm architecture
 - Is it feasible to combine all data in a large dataset? Only if discretizing times
 - Should I stay in this modularized form?
 - If yes, how do they communicate? So far by processing each independently
- Think about my data
 - Do I need to format the full dataset or am I fine with what I have?