1 MIP formulations

Problem (\mathcal{P}) is formulated as a Mixed Integer Programming (MIP) to be handled by the commercial solvers CPLEX, GUROBI and MOSEK. For the experiment of Section 4.1 where f and h are given by (18a)-(18b), we reformulate the problem as

$$\begin{cases}
\min & \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} \\
\text{s.t.} & -M \mathbf{z} \leq \mathbf{x} \leq M \mathbf{z} \\
& \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n}
\end{cases} \tag{1}$$

that only involves linear and quadratic expressions. It can thus be handled by any of the three MIP solvers considered. Besides, the table below provides the MIP formulation of problem (\mathcal{P}) corresponding to the instances involved in Section 4.2. We remind that since CPLEX and GUROBI can handle second-order expressions and constraints, they cannot address instances with the loss (20). Such instances can be handled using MOSEK via conic expressions.

	Penalty (22a)	Penalty (22b)
Loss (19)	$\begin{cases} & \min & \frac{1}{2} \ \mathbf{y} - \mathbf{A}\mathbf{x}\ _{2}^{2} + \lambda 1^{\mathrm{T}}\mathbf{z} + \alpha 1^{\mathrm{T}}\mathbf{s} \\ & \text{s.t.} & \mathbf{x} \geq -\mathbf{s} \\ & \mathbf{x} \leq \mathbf{s} \\ & \mathbf{x} \geq -M\mathbf{z} \\ & \mathbf{x} \leq M\mathbf{z} \\ & \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n}, \ \mathbf{s} \in \mathbf{R}^{n} \end{cases}$	$\left\{\begin{array}{ll} \min & \frac{1}{2} \ \mathbf{y} - \mathbf{A}\mathbf{x}\ _2^2 + \lambda 1^{\mathrm{T}}\mathbf{z} + \alpha 1^{\mathrm{T}}\mathbf{s} \\ \mathrm{s.t.} & \mathbf{x} \odot \mathbf{x} \leq \mathbf{s} \odot \mathbf{z} \\ & \mathbf{x} \geq -M\mathbf{z} \\ & \mathbf{x} \leq M\mathbf{z} \\ & \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0,1\}^n, \ \mathbf{s} \in \mathbf{R}^n \end{array}\right.$
Loss (20)	$\begin{cases} & \min 1^{\mathrm{T}}\mathbf{u} + \lambda 1^{\mathrm{T}}\mathbf{z} + \alpha 1^{\mathrm{T}}\mathbf{s} \\ & \mathrm{s.t.} 1 \geq \mathbf{v} + \mathbf{w} \\ & \mathbf{u} \geq -\log(\mathbf{v}) + \mathbf{y} \odot \mathbf{A}\mathbf{x} \\ & \mathbf{u} \geq -\log(\mathbf{w}) \\ & \mathbf{x} \geq -\mathbf{s} \\ & \mathbf{x} \leq \mathbf{s} \\ & \mathbf{x} \leq \mathbf{M}\mathbf{z} \\ & \mathbf{x} \leq M\mathbf{z} \\ & \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n}, \ \mathbf{s} \in \mathbf{R}^{n} \\ & \mathbf{u} \in \mathbf{R}^{m}, \ \mathbf{v} \in \mathbf{R}^{m}, \ \mathbf{w} \in \mathbf{R}^{m} \end{cases}$	$\begin{cases} & \min 1^{\mathrm{T}}\mathbf{u} + \lambda 1^{\mathrm{T}}\mathbf{z} + \alpha 1^{\mathrm{T}}\mathbf{s} \\ & \text{s.t.} \mathbf{v} + \mathbf{w} \leq 1 \\ & \mathbf{u} \geq -\log(\mathbf{v}) + \mathbf{y} \odot \mathbf{A}\mathbf{x} \\ & \mathbf{u} \geq -\log(\mathbf{w}) \\ & \mathbf{x} \odot \mathbf{x} \leq \mathbf{s} \odot \mathbf{z} \\ & -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ & \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0,1\}^n, \ \mathbf{s} \in \mathbf{R}^n \\ & \mathbf{u} \in \mathbf{R}^m, \ \mathbf{v} \in \mathbf{R}^m, \ \mathbf{w} \in \mathbf{R}^m \end{cases}$
Loss (21)	$\begin{cases} & \min & \ \mathbf{w}\ _2^2 + \lambda 1^{\mathrm{T}} \mathbf{z} + \alpha 1^{\mathrm{T}} \mathbf{s} \\ & \text{s.t.} & \mathbf{w} \geq 1 - \mathbf{y} \odot \mathbf{A} \mathbf{x} \\ & \mathbf{w} \geq 0 \\ & \mathbf{x} \geq -\mathbf{s} \\ & \mathbf{x} \leq \mathbf{s} \\ & \mathbf{x} \leq -M \mathbf{z} \\ & \mathbf{x} \leq M \mathbf{z} \\ & \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \{0, 1\}^n \\ & \mathbf{s} \in \mathbf{R}^n, \mathbf{w} \in \mathbf{R}^n \end{cases}$	$\begin{cases} & \min \ \mathbf{w}\ _{2}^{2} + \lambda 1^{\mathrm{T}}\mathbf{z} + \alpha 1^{\mathrm{T}}\mathbf{s} \\ & \text{s.t.} \mathbf{w} \geq 1 - \mathbf{y} \odot \mathbf{A}\mathbf{x} \\ & \mathbf{w} \geq 0 \\ & \mathbf{x} \odot \mathbf{x} \leq \mathbf{s} \odot \mathbf{z} \\ & \mathbf{x} \geq -M\mathbf{z} \\ & \mathbf{x} \leq M\mathbf{z} \\ & \mathbf{x} \in \mathbf{R}^{n}, \ \mathbf{z} \in \{0, 1\}^{n} \\ & \mathbf{s} \in \mathbf{R}^{n}, \mathbf{w} \in \mathbf{R}^{n} \end{cases}$

Table 1: MIP formulations used Section 4. The vectorial inequalities as well as the function "log" are taken component-wise and ⊙ denotes the Hadarmad product.