Formulaire: trigonométrie circulaire et hyperbolique

Propriétés trigonométriques : remplacer cos par ch et sin par i · sh.

$$\cos^2 x + \sin^2 x = 1$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$
$$\sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a$$
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$$

$$\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$

$$\sin(a-b) = \sin a \cdot \cos b - \sin b \cdot \cos a$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

$$\cos 2a = 2 \cos^2 a - 1$$
$$= 1 - 2 \sin^2 a$$
$$= \cos^2 a - \sin^2 a$$

 $\sin 2a = 2\sin a \cdot \cos a$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

$$\cos a \cdot \cos b = \frac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]$$
$$\sin a \cdot \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$
$$\sin a \cdot \cos b = \frac{1}{2} \left[\sin(a+b) + \sin(a-b) \right]$$

$$\begin{aligned} \cos p + \cos q &= 2 \cos \frac{p+q}{2} \cdot \cos \frac{p-q}{2} \\ \cos p - \cos q &= -2 \sin \frac{p+q}{2} \cdot \sin \frac{p-q}{2} \\ \sin p + \sin q &= 2 \sin \frac{p+q}{2} \cdot \cos \frac{p-q}{2} \\ \sin p - \sin q &= 2 \sin \frac{p-q}{2} \cdot \cos \frac{p+q}{2} \end{aligned}$$

Avec $t = \tan \frac{x}{2}$ on a

$$\begin{cases}
\cos x &= \frac{1-t^2}{1+t^2} \\
\sin x &= \frac{2t}{1+t^2} \\
\tan x &= \frac{2t}{1-t^2}
\end{cases}$$

$$\cos' x = -\sin x$$
$$\sin' x = \cos x$$
$$\tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

$$\arccos' x = \frac{-1}{\sqrt{1 - x^2}} \quad (|x| < 1)$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}} \quad (|x| < 1)$$

$$\arctan' x = \frac{1}{1 + x^2}$$

$$\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$$

$$ch(a+b) = ch a \cdot ch b + sh a \cdot sh b$$
$$sh(a+b) = sh a \cdot ch b + sh b \cdot ch a$$
$$th(a+b) = \frac{th a + th b}{1 + th a \cdot th b}$$

$$\operatorname{ch}(a-b) = \operatorname{ch} a \cdot \operatorname{ch} b - \operatorname{sh} a \cdot \operatorname{sh} b$$

$$\operatorname{sh}(a-b) = \operatorname{sh} a \cdot \operatorname{ch} b - \operatorname{sh} b \cdot \operatorname{ch} a$$

$$\operatorname{th}(a-b) = \frac{\operatorname{th} a - \operatorname{th} b}{1 - \operatorname{th} a \cdot \operatorname{th} b}$$

$$ch 2a = 2 ch2 a - 1$$

$$= 1 + 2 sh2 a$$

$$= ch2 a + sh2 a$$

$$sh 2a = 2 sh a \cdot ch a$$

$$th 2a = \frac{2 th a}{1 + th2 a}$$

$$\operatorname{ch} a \cdot \operatorname{ch} b = \frac{1}{2} \left[\operatorname{ch}(a+b) + \operatorname{ch}(a-b) \right]$$

$$\operatorname{sh} a \cdot \operatorname{sh} b = \frac{1}{2} \left[\operatorname{ch}(a+b) - \operatorname{ch}(a-b) \right]$$

$$\operatorname{sh} a \cdot \operatorname{ch} b = \frac{1}{2} \left[\operatorname{sh}(a+b) + \operatorname{sh}(a-b) \right]$$

$$\operatorname{ch} p + \operatorname{ch} q = 2 \operatorname{ch} \frac{p+q}{2} \cdot \operatorname{ch} \frac{p-q}{2}$$

$$\operatorname{ch} p - \operatorname{ch} q = 2 \operatorname{sh} \frac{p+q}{2} \cdot \operatorname{sh} \frac{p-q}{2}$$

$$\operatorname{sh} p + \operatorname{sh} q = 2 \operatorname{sh} \frac{p+q}{2} \cdot \operatorname{ch} \frac{p-q}{2}$$

$$\operatorname{sh} p - \operatorname{sh} q = 2 \operatorname{sh} \frac{p-q}{2} \cdot \operatorname{ch} \frac{p+q}{2}$$

Avec $t = th \frac{x}{2}$ on a

$$\begin{cases} \operatorname{ch} x &= \frac{1+t^2}{1-t^2} \\ \operatorname{sh} x &= \frac{2t}{1-t^2} \\ \operatorname{th} x &= \frac{2t}{1+t^2} \end{cases}$$

Dérivées : la multiplication par i n'est plus valable

$$ch' x = sh x$$

$$sh' x = ch x$$

$$th' x = 1 - th^{2} x = \frac{1}{ch^{2} x}$$

$$\label{eq:argch'} \begin{split} \operatorname{Argch'} x &= \frac{1}{\sqrt{x^2 - 1}} \quad (x > 1) \\ \operatorname{Argsh'} x &= \frac{1}{\sqrt{x^2 + 1}} \\ \operatorname{Argth'} x &= \frac{1}{1 - x^2} \quad (|x| < 1) \end{split}$$