پیش گزارش یکسوساز تمام موج ۳ فاز

محمد تقى زاده

810198373

معرفي

• در کاربردهای صنعتی که دسترسی به برق سه فاز وجود دارد، ترجیح داده میشود از یکسوکننده های سه فاز استفاده شود تا هارمونیک جریان کمتر، ریپل ولتاژ کوچک تر و قابلیت پردازش توان بیشتر حاصل شود.

- 🗸 در یکسوساز نشان داده شده، در هر لحظه از زمان، یک دیود از مجموعه دیودهای بالایی و یک دیود از مجموعه دیودهای پایینی شانس هدایت دارد.
- ✔ از دیودهای بالایی، دیودی شانس هدایت دارد که ولتاژ فاز آن بیشترین باشد و از دیودهای پایینی دیودی شانس هدایت دارد که ولتاژ فاز آن کمترین باشد.

$$v_{Pn} = \max(v_{an}, v_{bn}, v_{cn})$$
 ولتاژ يكسوساز $v_d = v_{Pn} - v_{Nn}$

 $v_{Nn} = \min(v_{an}, v_{bn}, v_{cn})$

$$\frac{\pi}{6} \le \omega t \le \frac{\pi}{2} : v_d = v_m \sin(\omega t) - v_m \sin(\omega t - \frac{2\pi}{3})$$

$$v_d = v_m \left[2 \times \sin\left(\frac{\pi}{3}\right) \times \cos\left(\omega t - \frac{\pi}{3}\right) \right] = \sqrt{3} v_m \cos(\omega t - \frac{\pi}{3})$$

$$\frac{\pi}{6} \le \omega t \le \frac{\pi}{2} : v_d = \sqrt{3} v_m \sin(\omega t + \frac{\pi}{6})$$

 \checkmark ملاحظه میشود که شکل موج v_d شامل $\ref{v_d}$ پالس در یک سیکل برق شهر است. از این رو به این یکسوساز، یکسوساز $\ref{v_d}$ پالسه نیز گفته میشود.

ست. داده شده که دامنه ولتاژ $v_{\rm d}$ با دامنه ولتاژ خط-به-خط برابر است.

$$\frac{\pi}{6} \le \omega t \le \frac{\pi}{2}$$
: $v_d = \sqrt{3}v_m \sin(\omega t + \frac{\pi}{6})$

 \checkmark هر دیود به میزان ۱۲۰ درجه هدایت میکند و کموتاسیون جریان میان دیودها آنی است چونکه $L_{\rm s}=0$ فرض شده است.

متوسط ولتاژ خروجی یکسوساز و تحلیل جریان فاز

برای محاسبه متوسط ولتاژ v_d ، صغر زمانی را در زاویه ۶۰ درجه انتخاب میکنیم و با توجه به اینکه دامنه ولتاژ v_d برابر با $\sqrt{3}v_m$ با توجه به اینکه دامنه ولتاژ و

با میدا:
$$v_d=\sqrt{3}v_m{\rm cos}(\omega t)$$
 , $-\frac{\pi}{6}\leq \omega t\leq \frac{\pi}{6}$

$$\begin{cases} \overline{v_d} = V_{do} = \frac{1}{\pi} \int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \sqrt{3} v_m \cos(\omega t) \ d(\omega t) = \frac{3\sqrt{3}}{\pi} v_m = \frac{3\sqrt{3}}{\pi} \frac{\sqrt{2} V_{LL}}{\sqrt{3}} \simeq 1.35 V_{LL} \end{cases}$$

پیک ولتاژ فاز و V_{LL} مقدار موثر ولتاژ خط-به-خط است.

$$i_a = \sum\nolimits_{n=(2k-1)} \frac{4}{n\pi} I_d \cos(n\frac{\pi}{6}) \sin(n\omega t)$$

$$i_{a1} = \frac{2\sqrt{3}}{\pi} I_d \sin(\omega t) \rightarrow I_{a1} = \frac{\sqrt{6}}{\pi} I_d$$

$$PF = \frac{I_{a1}}{I_a} \times DPF = \frac{3}{\pi} \approx 0.95$$

$$I_a = \begin{bmatrix} \frac{2}{3} I_d & & & \\ \frac{2}{3} I_d & & & \\ & &$$

$$i_{a1} = \frac{2\sqrt{3}}{\pi} I_d \sin(\omega t) \rightarrow I_{a1} = \frac{\sqrt{6}}{\pi} I_d$$

$$I_a = \sqrt{\frac{2}{3}} I_d$$

$$THD = \frac{1}{2} I_d$$

- ✓ هارمونیک های مضرب ۳ در جریان وجود ندارند.
 ✓ شکل موج ولتاژ ۷_۵ مستقل از بار یکسوساز است (بار منبع جریان و

طیف هارمونیکی جریان فاز در یکسوساز سه فاز

یکسوساز با بار منبع جریانی

تاثیر اندو کتانس سری L_S بر روی کموتاسیون جریان در دیودها

• در صورت حضور اندوکتانس سری با منبع، دیگر کموتاسیون جریان در دیودها آنی نمیباشد. — P

- ارا را در نظر گرفته و تحلیل میکنیم. لحظه D_1 با D_2 به D_3 را در نظر گرفته و تحلیل میکنیم. لحظه شروع کموتاسیون انتخاب میکنیم.
- حت این شرایط، قبل از شروع کموتاسیون، دیودهای D_6 و D_6 در حال هدایت

تحلیل کموتاسیون در یکسوساز دیودی سه فاز

در مدت کموتاسیون، هر دو دیود D_1 و D_5 در حالت وصل هستند.

$$i_a + i_c = I_d \rightarrow \frac{di_a}{dt} = -\frac{di_c}{dt}$$

$$v_{\rm d} \bigoplus_{\rm I_d} v_{La} = L_{\rm s} \frac{di_a}{dt}$$

$$v_{Lc} = L_s \frac{di_c}{dt} = -L_s \frac{di_a}{dt} = -v_{La}$$

✓ معادله KVL را برای حلقه بالایی در مدت کموتاسیون مینویسیم:

$$v_{an} - v_{cn} = v_{La} - v_{Lc} = 2L_s \frac{di_a}{dt}$$

$$\int\limits_{0}^{\omega t_c} L_s \frac{di_a}{dt} d(\omega t) = \int\limits_{0}^{\omega t_c} \frac{v_{an} - v_{cn}}{2} d(\omega t) \rightarrow \omega \int\limits_{0}^{I_d} L_s di_a = \int\limits_{0}^{\omega t_c} \frac{v_{an} - v_{cn}}{2} d(\omega t)$$

$$v_{an} - v_{cn} = \sqrt{3} v_m \sin(\omega t) = \sqrt{2} V_{LL} \sin(\omega t) \longrightarrow \omega L_s I_d = \frac{\sqrt{2}}{2} V_{LL} (1 - \cos(\omega t_c))$$

$$v_{an} - v_{cn} = \sqrt{3}v_m\sin(\omega t) = \sqrt{2}V_{LL}\sin(\omega t) \longrightarrow \omega L_s I_d = \frac{\sqrt{2}}{2}V_{LL}(1-\cos(\omega t_c))$$

تحلیل کموتاسیون در یکسوساز دیودی سه فاز

$$v_{Pn} = v_{an} - L_s \frac{di_a}{dt} = v_{an} - \frac{v_{an} - v_{cn}}{2} = \frac{v_{an} + v_{cn}}{2}$$

- ✓ در مدت کموتاسیون، ولتاژ نقطه P برابر با میانگین ولتاژ دو فاز میشود.
- L_a همچنین ملاحظه میشود که در مدت کموتاسیون، اختلاف ولتاژ v_{Pn} و v_{Pn} توسط سلف تحمل میشود. یعنی افت ولتاژ ناشی از کموتاسیون برابر با v_{La} میباشد.
- از نکته اخیر میتوان برای تعیین افت ولتاژ خروجی یکسوساز، یعنی سطح از دست رفته در شکل
 مقابل استفاده کرد

$$\overline{v_d} = V_d = V_{d0} - \Delta V_d$$

$$\Delta V_d = \frac{1}{\pi/3} \int_0^{\omega t_c} (v_{an} - v_{Pn}) d(\omega t) = \frac{1}{\pi/3} \int_0^{\omega t_c} v_{La} d(\omega t)$$

$$v_{an} - v_{Pn} = L_s \frac{di_a}{dt} \rightarrow \int_0^{\omega t_c} (v_{an} - v_{Pn}) d(\omega t) = L_s \int_0^{\omega t_c} \frac{di_a}{dt} d(\omega t) = \omega L_s I_d$$

$$\Delta V_d = \frac{\omega L_s I_d}{\pi/3} = \frac{3\omega L_s I_d}{\pi}$$

مقایسه یکسوساز تک فاز و سه فاز

✓ جریان فاز در یکسوساز سه فاز دارای اعوجاج کمتری است (THD تقریبا ۵۰ درصد کمتر است و جریان حاوی هارمونیک های مضرب ۳ نمیباشد).

 $v_d \stackrel{\downarrow}{ \oplus}_{I_d}$

- ✔ ضریب توان یکسوساز تک فاز حدود ۰/۹ و یکسوساز سه فاز ۰/۹۵ میباشد.
- ریپل ولتاژ در یکسوساز تک فاز به اندازه v_m و در یکسوساز سه فاز برابر با $\Delta v_d = \sqrt{3}v_m 1.5v_m \simeq 0.23v_m$ است (لذا سایز خازن فیلتر در یکسوساز سه فاز به ازای شرایط کاری یکسان کوچک تر است).

$$\frac{\pi}{6} \leq \omega t \leq \frac{\pi}{2} : v_d = \sqrt{3}v_m \sin(\omega t + \frac{\pi}{6}) = \sqrt{3}v_m \sin(\frac{\pi}{6} + \frac{\pi}{6}) = 1.5v_m$$