Lecture 9 - confirmatory factor analysis

Last time, we used *exploratory factor analysis* to explore potential factor structures from data:

- how many factors/dimensions?
- which items load onto the different factors?

This time, we will use *confirmatory factor analysis* to **test** these factor structures and **estimate** their components.

To do this, we need to talk about "measurement models" and "path diagrams"

How do we measure temperature? By looking at a thermometer!

- for this to make sense, we need to assume the following:
 - temperature *causes* the reading on the thermometer
 - the thermometer has relatively little measurement error

So we have a *causal* hypothesis, which we can instantiate as a *measurement* model:

- the sun is a *latent variable*
- the thermometer is a observed variable
 - also called an "indicator" of a latent variable
- unidirectional links = causal effects
- bidirectional links = (co)variances

Let's formalize this idea with a path diagram:

- circles = latent (unobserved) factors
- squares = observed variables
- y_1 is indicated by factor η_1

This diagram encodes a lot of information about the causal relationship between factor η_1 and observation y_1

- $y_1 = \lambda_{11}\eta_1 + \varepsilon_1$
 - $-\lambda_{11}$ is the **loading** of factor η_1 onto observation y_i , and ε_1 is the **measurement error**
- $\eta_1 \sim \mathcal{N}(0, \sqrt{\psi_{11}})$
 - $-\eta_1$ is assumed to be normally distributed with a mean of 0 and a variance of ψ_{11} (this is called the **factor variance**)
- $\varepsilon_1 \sim \mathcal{N}(0, \sqrt{\theta_{11}})$
 - $-\varepsilon_1$ is assumed to be normally distributed with a mean of 0 and a variance of θ_{11} (this is called the **residual variance**)

Goal: given observed data y_1 , we want to estimate the unknown parameters of the model:

- the factor loading(s) λ_{11}
- the factor variance(s) ψ_{11}
- the residual variance(s) θ_{11}

To fit data to one of these **structural equation models**, we must make sure that two conditions hold:

- 1. we must *scale* the factors, either by
 - setting one of the loadings from each factor equal to 1, or
 - setting the factor variances equal to 1 (JASP does this one by default)
- 2. we must make sure that the number of observations (observed variances and covariances) **exceeds** the number of parameters (factor loadings/variances + residual variances)
 - the amount by which observations exceeds parameters is called the degrees of freedom

If these two conditions hold, we say that the model is **identified**.

Let's do some examples

- Number of observations:
- Number of parameters:
- Degrees of freedom:

- Number of observations:
- Number of parameters:
- Degrees of freedom:

• Number of parameters:

• Number of parameters:

• Number of parameters:

• Number of parameters:

Let's try fitting a model in JASP.

Suppose we are measuring statistics anxiety with the SAQ-8 – an 8-item "statistics anxiety questionnaire". Each item is Likert scaled with 1 = strongly disagree and 5 = strongly agree.

Items:

- 1. Statistics makes me cry
- 2. My friends will think I'm stupid for not being able to use statistical software
- 3. Standard deviations excite me
- 4. I dream that Pearson is attacking me with correlation coefficients
- 5. I don't understand statistics
- 6. I have little experience with computers
- 7. All computers hate me
- 8. I have never been good at mathematics

From last we found the following (potential) factor structure:

- Factor 1: "statistics anxiety"
 - 1. Statistics makes me cry
 - 3. Standard deviations excite me
 - -4. I dream that Pearson is attacking me with correlation coefficients
 - 5. I don't understand statistics
 - 8. I have never been good at mathematics
- Factor 2: "computer self concept"
 - 6. I have little experience with computers
 - 7. All computers hate me

Let's draw a model:

So how does the model fit?

- \bullet JASP computes a fit statistic T
- If the model fits **exactly**, then T is distributed as a χ^2 distribution
- so, JASP reports a χ^2 test
 - if p < 0.05, we reject \mathcal{H}_0 , which implies the model does NOT fit
 - if p > 0.05, we accept \mathcal{H}_0 , which implies the model DOES fit

Some notes about χ^2 test:

- χ^2 is a measure of "exact fit" smaller is better
- for large N, the χ^2 test tend to reject models even when the fit is close (this is a problem!)

Alternative method of assessing fit - RMSEA

- "root mean squared error of approximation"
- it is a measure of "absolute fit" (i.e., there is no comparison model)
- smaller is better
- Guidelines:
 - < 0.05 = very good fit
 - -0.05 0.08 = good fit
 - ->0.08= unacceptable fit
- RMSEA is one of the only fit indices for which the sampling distribution is known. Thus, confidence intervals can be computed (and are reported in JASP)