

7 - Troposferik ve Stratosferik Ozon

Doç. Dr. Özgür ZEYDAN

https://ozgurzeydan.com.tr/

Ozon

- Oksijenin 3 atomlu allotropudur.
- Ozon molekülü keskin kokulu, oldukça reaktif, kararlı bir yapıya sahip bir moleküldür.

Ozonun Atmosferde Bulunması

https://scied.ucar.edu/learning-zone/atmosphere/ozone-layer

UV Absorpsiyonu

UV Işık Türü	Dalga boyu (nm)	Ozon Etkisi
UV A	320 – 400	Ozon tarafından absorbe edilmez.
UV B	280 – 320	Oldukça büyük bir kısmı ozon tarafından absorbe edilir.
UV C	< 280	Tamamı ozon tarafından absorbe edilir.

Stratosferik ve Troposferik Ozon

Troposferik Ozon

- > Troposferdeki O₃ konsantrasyonu: 20-100 ppb
- \triangleright Ozon öncüleri: azot oksitler (NOx = NO + NO₂) ve uçucu organik bileşiklerin (VOC) reaksiyonları sonucunda ikincil kirletici O₃ oluşmaktadır.
- \triangleright NO + HC + O₂ + güneş ışığı \rightarrow NO₂ + O₃
- ➤ Veya, NOx + VOC + güneş ışığı \rightarrow Fotokimyasal sis (O₃)
- > Troposferik ozonun canlılara ve çevreye olumsuz etkileri mevcut
- "Kötü ozon"

Troposferik Ozonun Etkileri

- İnsan sağlığına: gözleri, boğaz bölgesini ve solunum sistemini etkiler.
- > Hayvanlara: insanlardakine benzer etkiler görülür.
- Bitkilere: tarım ürünlerini ve ormanlık alanlardaki ağaçları etkiler.
- > Fotokimyasal sis: görüş seviyesinde azalmalar.
- \triangleright Sera etkisinin kuvvetlenmesi: O₃ kuvvetli bir sera gazıdır.

Troposferik Ozon Oluşumu ve Ozonun Öncü Gazları

- Ozon gazının troposferde oluşması:
- > NO₂ + hv (λ < 400 nm) \rightarrow NO + O (R1)
- $\triangleright O + O_2 + M \rightarrow O_3 + M$ (R2)

(M: üçüncü bir molekül, genelde N₂ veya O₂)

$$> NO + O_3 \rightarrow NO_2 + O_2$$
 (R3)

- Döngüsel olarak gerçekleşir.
- Eğer ortamda başka hiçbir madde yoksa üretilen net ozon miktarı sıfırdır.

Troposferik Ozon Oluşumu ve Ozonun Öncü Gazları

Ozonun üretilmesi için, NO'nun NO₂'e oksidasyonunu gerçekleştiren diğer bir serbest radikal veya uçucu organik bileşik ortamda bulunmalıdır.

$$> HO_2 + NO \rightarrow NO_2 + OH$$
 (R4)

$$> RO_2 + NO \rightarrow NO_2 + RO$$
 (R5)

- ➤ (R: Alkil grubu)
- Hidroperoksi radikalinin (HO_2) veya organik peroksi radikalinin (RO_2) azot monoksitle reaksiyonları ile ozon üretimi için gerekli olan azot dioksitin (NO_2) miktarının artması gerçekleşir.

Azot Oksitler ve Ozon Döngüsü

Atkinson R (2000) Atmospheric chemistry of VOCs and NOx, Atmospheric Environment, 34, 2063-2101

Karbon Monoksit (CO)'in Rolü

- Ortamda yüksek oranda azot oksitlerin (NOx) bulunması durumunda ozon üretilir:
- $ightharpoonup CO_2 + hv \rightarrow CO_2 + O_3$ (R6) (net yapım reaksiyonu)
- Ortamda düşük oranda azot oksitlerin bulunması durumunda da ozon yıkımı gerçekleşir:

Pik Ozon Oluşum İzopleti

Troposferik Ozonun Kontrolü

VOC / NOx oranı fonksiyonuna göre VOC ve NOx emisyon kontrolünün etkisi

Stratosferik Ozon Oluşumu

Chapman Döngüsü

$$\triangleright O_2 + hv \rightarrow O + O$$
 $(\lambda < 240 \text{ nm})$ (R1)
 $\triangleright O + O_2 + M \rightarrow O_3 + M^*$ (R2)
 $\triangleright O_3 + hv \rightarrow O_2 + O$ (R3)
 $\triangleright O_3 + O \rightarrow 2O_2$ (R4)

M: üçüncü bir molekül

Ozon Oluşumu ve Yıkımı

(R1) ve (R2) ile ozon oluşur

$$\triangleright$$
 O₂ + hv \rightarrow 2O

$$\geq 2x(O + O_2 + M \rightarrow O_3 + M)$$

$$> 30_2 + hv \rightarrow 20_3$$

(R3) ve (R4) ile ozon yıkılır

(R1)
$$\triangleright$$
 O₃ + hv \rightarrow O₂ + O (R3)

(Net)

(Net)
$$\geq 2O_3 + hv \rightarrow 3O_2$$

Null Cycle (R3) + (R2)

$$\triangleright O_3 + hv \rightarrow O_2 + O$$

$$\triangleright O + O_2 + M \rightarrow O_3 + M^*$$

$$\triangleright NULL$$
(R3)
(R2)

➤ Yüksek enerjili UV radyasyonu kinetik enerjiye ve ısıya dönüşür. Bu nedenle stratosfer boyunca sıcaklık artar.

Katalitik Ozon Yıkım Döngüleri

```
⇒ Hidrojen Oksit radikali (HOx) (HOx = OH + HO<sub>2</sub>)

⇒ HO<sub>2</sub> + O<sub>3</sub> → OH + 2O<sub>2</sub> (R5)

⇒ OH + O<sub>3</sub> → HO<sub>2</sub> + O<sub>2</sub> (R6)

⇒ 2O<sub>3</sub> → 3O<sub>2</sub> (Net)
```

$$\rightarrow HO_2 + O \rightarrow OH + O_2$$
 (R7)

$$\triangleright$$
 O + O₃ \rightarrow 2O₂ (Net)

Katalitik Ozon Yıkım Döngüleri

 \triangleright Azot Oksit Radikali (NOx) (NOx = NO + NO₂)

$$\triangleright$$
 NO + O₃ \rightarrow NO₂ + O₂ (R8)

$$\triangleright$$
 O + NO₂ \rightarrow NO + O₂ (R9)

$$\triangleright$$
 O + O₃ \rightarrow 2O₂ (Net)

ATMOSPHERIC CYCLING OF NO_x AND NO_y

by Daniel J. Jacob http://acmg.seas.harvard.edu/people/faculty/djj/book/powerpoints/index.html

Katalitik Ozon Yıkım Döngüleri

Klorine radikali (ClOx)

$$ightharpoonup CCl_2F_2 + hv \rightarrow CCl_2F_2 + Cl$$

$$ightharpoonup$$
 CCl₃F + hv \rightarrow CCl₂F + Cl

$$>$$
 Cl + O₃ \rightarrow ClO + O₂

$$>$$
 CIO + O \rightarrow CI + O₂

$$>$$
 O₃ + O \rightarrow 2O₂

(R10)

(R11)

(R12)

(R13)

(Net)

ATMOSPHERIC CYCLING OF CIO_x AND CI_y

by Daniel J. Jacob http://acmg.seas.harvard.edu/people/faculty/djj/book/powerpoints/index.html

Kutup Bölgelerinde Ozon İncelmesi

$$\gt$$
 CIO + CIO + M \rightarrow CIOOCI + M (R14)

$$ightharpoonup$$
 Cloocl + hv \rightarrow Cloo + Cl (R15)

$$ightharpoonup$$
 ClOO + M \rightarrow Cl + O₂ + M (R16)

$$\geq$$
 2 x (Cl + O₃ \rightarrow ClO + O₂) (R17)

$$> 2O_3 \rightarrow 3O_2$$
 (Net)

Total Ozone Columns (DU) 1996

Daha Fazla Bilgi İçin...

Atmospheric Environment 34 (2000) 2063-2101

www.elsevier

Atmospheric chemistry of VOCs and NO_x

Roger Atkinson*

Atmospheric Environment 35 (2001) 1155–1170

Millennial review

The atmospheric chemistry of sulphur and nitrogen in power station plumes

C.N. Hewitt*

Daha Fazla Bilgi İçin...

Atmosphere 2012, 3, 1-32; doi:10.3390/atmos3010001

ISSN 2073-4433

www.mdpi.com/journal/atmosphere

Review

A Review of Tropospheric Atmospheric Chemistry and Gas-Phase Chemical Mechanisms for Air Quality Modeling

William R. Stockwell 1,*, Charlene V. Lawson 1, Emily Saunders 1 and Wendy S. Goliff 2