```
In [1]:
         # impoting necessary libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt # visualizing data
         %matplotlib inline
         import seaborn as sns
In [2]: # importing the csv file
         df = pd.read_csv(r'C:\Users\hp\Desktop\bio Project\3 Phenolic.csv',encoding= 'unicode_escape')
In [3]: # checking for Content Loaded in Juypyter notebook
         df.head()
Out[3]:
            Days niger cells- CuS Che NPs niger cells- CuS Bio NPs niger cells- CuS Che NBs niger cells- CuS Bio NBs
         0 day 1
                                    3.60
                                                           2.90
                                                                                  6.47
                                                                                                         5.60
         1 day 2
                                    2.45
                                                           2.00
                                                                                  4.40
                                                                                                         3.76
         2 day 3
                                    1.80
                                                           1.44
                                                                                  3.40
                                                                                                         2.71
         3 day 4
                                    1.30
                                                           1.08
                                                                                  2.52
                                                                                                         2.09
         4 day 5
                                    1.04
                                                           0.84
                                                                                  2.00
                                                                                                         1.67
         # Statistics of the Loaded data
In [4]:
         df.describe()
```

| Out[4]: |       | niger cells- CuS Che NPs | niger cells-CuS Bio NPs | niger cells-CuS Che NBs | niger cells- CuS Bio NBs |
|---------|-------|--------------------------|-------------------------|-------------------------|--------------------------|
|         | count | 5.000000                 | 5.000000                | 5.000000                | 5.000000                 |
|         | mean  | 2.038000                 | 1.652000                | 3.758000                | 3.166000                 |
|         | std   | 1.025534                 | 0.823116                | 1.769073                | 1.571697                 |
|         | min   | 1.040000                 | 0.840000                | 2.000000                | 1.670000                 |
|         | 25%   | 1.300000                 | 1.080000                | 2.520000                | 2.090000                 |
|         | 50%   | 1.800000                 | 1.440000                | 3.400000                | 2.710000                 |
|         | 75%   | 2.450000                 | 2.000000                | 4.400000                | 3.760000                 |
|         | max   | 3.600000                 | 2.900000                | 6.470000                | 5.600000                 |

```
In [10]: # Drawing Linegrpah
    plt.figure(figsize=(10, 6))
    for column in df.columns[1:]:
        plt.plot(df['Days'], df[column], marker='o', label=column)
        plt.xlabel('Days')
    plt.ylabel('Values')
    plt.title('Line graph for Phenolic Quantum Efficiency')
    plt.legend()
    plt.grid(True)
    plt.show()
```

## Line graph for Phenolic Quantum Efficiency



```
In [6]: #Drawing clustered column chart
   plt.figure(figsize=(10, 6))
   num_columns = len(df.columns[1:])
   bar_width = 0.2
   index = np.arange(len(df['Days']))

for i, column in enumerate(df.columns[1:], start=1):
        plt.bar(index + i * bar_width, df[column], bar_width, label=column)
```

```
plt.xlabel('Days')
plt.ylabel('Values')
plt.title('Clustered Column Chart for Niger Cells Data')
plt.xticks(index + (num_columns / 2) * bar_width, df['Days']) # Aligning x-ticks with column groups
plt.legend()
plt.grid(True)
plt.tight_layout() # Adjust Layout to prevent clipping of labels
plt.show()
```

## Clustered Column Chart for Niger Cells Data



In [8]: # Drawing violingraph
sns.violinplot(data=df)

sns.set(rc={'figure.figsize':(11,5)})



```
In [9]: #Drawing scatteredgraph
sns.scatterplot(data=df)
sns.set(rc={'figure.figsize':(3,3)})
```



In [ ]: