Métodos Estadísticos Bayesianos con R

Distribuciones Iniciales y Funciones de Pérdida

Gibrán Peniche

v. 0.0.1

2020-07-21

jgpeniche

PenicheGibran

G jgpeniche@gmail.com

La sesión pasada...

Migramos de maximizar la utilidad u_0 a minimizar la pérdida \mathcal{L} , rescatando la noción de "distancia" del valor real θ

A partir de los Axiomas de Coherencia dedujimos un algoritmo de 3 pasos para nuestro problema de inferencia:

- 1. Definir una función de pérdida \mathcal{L} y cuantificar la incertidumbre asociada a θ con $f(\theta)$ a priori
 - 1.1. En caso de existir información adicional (datos verosimilitud) incorporarlos a través de Teorema de Bayes y obtener $P(\theta|X_{(n)})$
- 2. Minimzar la pérdida esperada $\int_{\Theta} \mathcal{L}(\theta, \hat{\theta}) P(\theta|X_{(n)})$ (en el caso **discreto**: $\sum_{\Theta} \mathcal{L}(\theta, \hat{\theta}) P(\theta|X_{(n)})$)
- 3. Escoger $d_{\hat{\theta}}$ que minimice dicha pérdida

Agenda

- 1. Entender las repercusiones de distintas funciones de pérdida
 - 1.1. Pérdida Cuadrática
 - 1.2. Pérdida Absoluta
 - 1.3. Pérdida (0,1)
- 2. Distribuciones iniciales

1 Funciones de Pérdida

Pérdida Cuadrática

Pérdida Cuadrática

Sea
$$\mathcal{L}(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$$

$$rg\min_{ heta} \quad \int_{\Theta} (\hat{ heta} - heta)^2 P(heta|X_{(\underline{n})}) d heta$$

Pero

$$\int_{\Theta} (\hat{ heta} - heta)^2 P(heta|X_{(ar{n})}) d heta = \hat{ heta}^2 \int_{\Theta} P(heta|X_{(ar{n})}) d heta - 2\hat{ heta} \int_{\Theta} heta P(heta|X_{(ar{n})}) d heta + \int_{\Theta} heta^2 P(heta|X_{(ar{n})}) d heta$$

Además sabemos que $\int_{\Theta} P(\theta|X_{(n)})d\theta=1$

Pérdida Cuadrática

Tomando la derivada con respecto de $\hat{\theta}$ e igualando a 0

$$rac{\partial}{\partial heta} = 2 \hat{ heta} - 2 \int_{\Theta} heta P(heta|X_{(\underline{n})}) d heta = 0$$

$$\hat{ heta} = \int_{\Theta} heta P(heta|X_{(ar{n})}) d heta = \mathbb{E}[heta|X_{(ar{n})}]$$

Pérdida Absoluta

Pérdida Absoluta

Sea
$$\mathcal{L}(\hat{\theta}, \theta) = |\hat{\theta} - \theta|$$

$$\mathop{rg\min}_{ heta} \quad \int_{\Theta} |\hat{ heta} - heta| P(heta|X_{(\underline{n})}) d heta$$

Pero

$$\int_{\Theta} |\hat{ heta} - heta| P(heta|X_{(ar{n})}) d heta = \int_{-\infty}^{ heta} (\hat{ heta} - heta) P(heta|X_{(ar{n})}) d heta + \int_{ heta}^{\infty} (heta - \hat{ heta}) P(heta|X_{(ar{n})}) d heta.$$

Pérdida Absoluta

Tomando la derivada con respecto a θ e igualando a 0

$$\int_{-\infty}^{\hat{ heta}} P(heta|X_{(ar{n})}) = \int_{\hat{ heta}}^{\infty} P(heta|X_{(ar{n})})$$

$$\hat{ heta} = mediana$$

Pérdida (0,1)

Pérdida (0,1)

Sea

$$\mathcal{L} = egin{cases} 1 & |\hat{ heta} - heta| > \epsilon \ 0 & |\hat{ heta} - heta| \leq \epsilon \end{cases} = 1 - \delta(\hat{ heta - heta})$$

Donde delta denota la delta de Dirc

$$\int_{\Theta} (1 - \delta(\hat{\theta} - \theta)) P(\theta|X_{(\underline{n})}) d\theta = 1 - \int_{\Theta} \delta(\hat{\theta} - \theta) P(\theta|X_{(\underline{n})}) d\theta = 1 - P(\theta|X_{(\underline{n})})$$

El problema de minimizar la función objetivo es equivalente a maximizar la densidad ::

$$\hat{ heta} = moda$$

2

Distribuciones Iniciales

¿Cómo funciona el proceso de inferencia Bayesiano?

• $P(\theta|X_{(\underline{n})}) \propto \mathbb{L}(\theta|X_{(\underline{n})}) \cdot P(\theta)$ es una manera conciliar nuestra **incertidumbre** sobre el parámetro de interés y la información que aportan los *datos*

Gráficamente tenemos lo siguiente

¿Cómo funciona el proceso de inferencia Bayesiano?

• $P(\theta|X_{(\underline{n})}) \propto \mathbb{L}(\theta|X_{(\underline{n})}) \cdot P(\theta)$ es una manera conciliar nuestra **incertidumbre** sobre el parámetro de interés y la información que aportan los *datos*

Gráficamente tenemos lo siguiente

¿Cómo funciona el proceso de inferencia Bayesiana?

• $P(\theta|X_{(\underline{n})}) \propto \mathbb{L}(\theta|X_{(\underline{n})}) \cdot P(\theta)$ es una manera conciliar nuestra **incertidumbre** sobre el parámetro de interés y la información que aportan los *datos*

Gráficamente tenemos lo siguiente

La pregunta es: ¿Cómo determinamos una $P(\theta)$ apropiada?

2

Distribuciones iniciales

Distribuciones iniciales

R: Depende...

- Recordemos que en el contexto del problema de inferencia $P(\theta)$ cuantifica nuestra incertidumbre alrededor del parámetro de interés
- En este sentido las preguntas que debe responder la elección de alguna distribución en particular debe responder al menos las siguientes preguntas:
 - 1. $P(\theta)$ es congruente con el espacio parametral Θ ?
 - 2. ¿Está centrada alrededor de algún valor?
 - 3. ¿Es simétrica?
 - 4. ¿Qué tanta variabilidad presenta? Ó en otras palabras ¿Cuál es mi nivel de certidumbre medido en términos (p.e.) de la desviación estándar?
- Dependiendo de estas características en particular de la distribución inicial y su interacción con la verosimilatud la distribución posterior tendrá diferentes caracterísitcas

Distribuciones iniciales

• De acuerdo al grado de "certeza" del conocimiento *a priori* sobre el paramtero historicamente se les ha clasificado como distribuciones **informatvas** o **no informativas** (ó distribuciones **de referencia** en literatura más reciente)

Distribuciones iniciales

• De acuerdo al grado de "certeza" del conocimiento *a priori* sobre el paramtero historicamente se les ha clasificado como distribuciones **informatvas** o **no informativas** (ó distribuciones **de referencia** en literatura más reciente)

Distribuciones Iniciales de Referencia

- Uno de los motivos por los cuales Ronald A. Fisher, criticaba a la escuela Bayesiana era precisamente este elemento subjetivo intrínseco en la asignación de probabilidades *a priori* (Recordemos que la escuela frecuentista parte de postivismo de Augusto Comte por lo cual la fuente última de conocmiento es la experiencia)
- Además la asignación de probabilidades a través de la distribución uniforme es dificil de manipular al realizar la multiplicación de $\mathbb{L}(\theta|X_{(n)})\cdot P(\theta)$
- Esto plantea un reto para la escuela bayesiana para encontrar un método de generar distribuciones de referencia. tales que se le diera "prioridad" a los datos y hacer la asignación *a priori* lo menos subjetiva posible

Pregunta: ¿Existe algún método para generar distribuciones de referencia que no sea la distribución uniforme?

Distribución Inicial de Jeffreys

- Sir Harold Jeffreys, fue un matemático, estadístico, geofísico y astrónomo británico es uno de los padres de la estadística Bayesiana
- Jeffreys concluyó que una opción posible para generar distribuciones de referencia para cualquier modelo es la siguiente:

$$P(heta) \propto I(heta)^{rac{1}{2}}$$

• $I(\theta)$ denota la **Información de Fisher**, es decir

$$I(heta) \propto -\mathbb{E}[rac{\partial^2}{\partial heta^2} lnf(x| heta)]$$

Resiliencia de la Verosimilitud

- A pesar de que parece que el investigador puede forzar cierta distribución *a- posteriori* a través de la distribución *a-priori*, existe un umbral a partir del cual la interacción con la verosimilitud se queda fija ante distribucione sinciales 'locas'
- Al análisis (que debe acompañar a cualquier análisis Bayesiano) del umbral dónde la distribución *a posteriori* deja de cambiar ante distribuciones iniciales "extremas" se le llama **resilencia de la verosismilitud** (Haro _ Peniche, 2020)
- Esto implica que hay un "seguro" sobre que tanto puede el investigador incorporar información *a-priori* al experimento

Ejemplo Práctico

• Sea $x_i \sim Bernoulli(\theta)$ y $\theta \sim U(0,1)$

Pregunta: ¿Cómo se distribuye $P(\theta|X_{(n)})$?

R: Sabemos que

$$P(\theta|X_{(n)}) \propto \mathbb{L}(\theta|X_{(n)})P(\theta)$$

Pero...

$$\mathbb{L}(heta|X_{(\underline{n})}) = \prod_{i=1}^n f(x_i| heta)$$

 $\mathsf{Como}\; x_i \sim Bernoulli(heta) \implies$

$$\mathbb{L}(heta|X_{(n)}) = heta^{\sum_I x_i} (1- heta)^{n-\sum_I x_i}$$

Ejemplo Práctico

$$p(heta|x(\underline{n})) \propto heta^{\sum_I x_i} (1- heta)^{n-\sum_{n-\sum I}} rac{1}{ heta} 1_{(0, heta)} 1_{(0,1)}$$

R: No hay respuesta cerrada

Ejemplo Práctico

• Sea $x_i \sim Bernoulli(\theta)$ y $\theta \sim \beta(2,2)$

$$egin{aligned} oldsymbol{\phi} p(heta|x(\underline{n})) \propto heta^{\sum_I x_i} (1- heta)^{n-\sum x_i} rac{ heta^{lpha-1} (1- heta)^{eta-1}}{B(lpha,eta)} \end{aligned}$$

• El operador \propto implica que todo lo que no se realacione con el parámetro θ puede ser tratado como una constante

$$p(heta|x(\underline{n})) \propto heta^{\sum_I x_i + lpha - 1} (1- heta)^{n-\sum x_i + eta - 1}$$

$$P(heta|X_{(\underline{n}))} \propto eta(heta|a = \sum_I x_i + lpha, b = n - \sum x_i + eta)$$

¿Qué elecciones de $P(\theta)$ y $x_i \sim f(x|\theta)$ resultan en una familia parametrica fácil de manipular?

¿Qué sigue?

1. Familias conjugadas