Unit-V

9,	a)	Obtain a reduction formula for $\int_{0}^{\frac{\pi}{2}} \sin^n x dx$ $(n > 0)$.			-	
We so	1.5		06	L1	5	•
	b)	Trace the curve $y^2(2a-x)=x^3$ (Cissoid).	07	L3	5	2
	c)	Find the area of the cardioid $r = a(1 + \cos \theta)$			E	2
	ST.	11 + COSO)	07	LZ	5	2
10	2	Evaluate (i) $\int_{0}^{\frac{\pi}{6}} \cos^4 3x \sin^3 6x dx$ (ii) $\int_{0}^{1} x^2 (1-x^2)^{\frac{3}{2}} dx$.				
	a)	Evaluate (i) $\cos^4 3x \sin^3 6x dx$ (ii) $\int x^2 (1-x^2)^{\frac{\pi}{2}} dx$.				
			06	L1	5	2
	b)	Trace the curve $r^2 = a^2 \cos 2\theta$ (Lemniscate of Bernoulli).	07	L3	5	2
	0)	Find the values of the	07	LJ	3	_
新发生	· · /	Find the volume of the spindle shaped solid generated by the revolution of the				
		asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about the x-axis.	07	12	5	2
		dout the x-dxis.	07	LZ	3	~

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

- 4. a) Examine the convergence of the series $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \cdots$
- 07 L2 2 2
- b) Find the nature of the series $\left(\frac{2^2}{1^2} \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} \frac{4}{3}\right)^{-3} + \cdots$
- 06 L1 2 2
- c) Expand $e^{\sin x}$ using Maclaurin's series expansion upto the term containing x^4 .
- 07 L2 2 1

Unit - III

- 5. a) Prove that the pair of curves $r=a(1+\cos\theta)$, $r=b(1-\cos\theta)$ intersect each other orthogonally.
- 06 L2 3
- b) Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ of the folium of De-Cartes $x^3 + y^3 = 3axy$.
- 07 L1 3 07 L2 3

c) State and prove Lagrange's mean value theorem.

- 06 L2 3 1
- a) With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$ b) If ρ be the radius of curvature at any point ρ on the parabola y²=4ax and S be

b(0 < a < b).

- 06 L2 3 i
- its fecus, then show ρ^2 varies as (sp)³
 c) Show that the constant c of Cauchy's mean value theorem for the functions $\frac{1}{r^2}$ and $\frac{1}{r}$ in the interval (a, b) is the harmonic mean between a and
- 07 L1 3 2

07

- Heit N
- 7. a) If $u = \sin^{-1}\left(\frac{x^2y^2}{x+y}\right)$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \tan u$.
- 06 L1 4 1
- b) In estimating the cost of a pile of bricks measured as $2m \times 15m \times 1.2m$, the tape is stretched 1% beyond the standard length. If the count is 450 bricks to 1 cu.m and bricks cost Rs. 530 per 1000, find the approximate error in the cost.
- 07 L1 4 2
- c) Expand $e' \log(1+y)$ in powers of x and y up to terms of third degree.
- 07 L2 4
- 8. a) If $u=x^2+y^2+z^2$, v=xy+yz+zx and w=x+y+z, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.
- 06 L1 4 1

b) If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.

07 L1 4 1

(c) If x+y+z=a, show that the maximum value of $x^m y^n z^p$ is $m_{S}^m n^n p_T^p \left(\frac{a}{m+n+p}\right)^{m+n+p}.$

07 L2 4 2

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi) First Semester B.E. (Credit System) Degree Examinations Make up Examinations - July - August 2021 20MA101 - ENGINEERING MATHEMATICS - I _{ration:} 3 Hours Note: Answer Five full questions choosing One full question from each Unit. Max. Marks! 100 Find the rank of the matrix a) using elementary row transformation. Apply the Gauss – Seidel iterative method to solve the system of equations L-1 06 2y+2y+10z=14. 10x+y+z=12Start with $x^{(0)}=y^{(0)}=z^{(0)}=0$ and carry out three iterations: L2 1 07 Reduce the matrix $\begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ to the diagonal form. 1 07 Show that the linear transformation $y_1 = x_1 + 2x_2 + 5x_3$, $y_2 = 2x_1 + 4x_2 + 11x_3$, $-x_2+2x_3$ is a regular linear transformation. Also, find the inverse of this 06 L2 transformation. the largest Eigen value and the corresponding Eigen vector of the matrix by Rayleigh's power method. 07 L1 1 luce the quadratic form $6x^2+3y^2+3z^2-4xy+4zx-2yz$ into canonical 07 L1 1 coalboring and or que (sp.c) os 410 Unit - II of for convergence the series $\frac{4}{3} + \frac{4 \cdot 7}{3 \cdot 5} + \frac{4 \cdot 7 \cdot 10}{3 \cdot 5 \cdot 7} + \cdots$ 2 L2 06 Obtain Taylor's series expansion of $\log(\cos x)$ about the point $x = \frac{\pi}{3}$ up to the 2 07 Using Maclaurin's series, prove that $\sqrt{1+\sin 2x} = 1+x-\frac{x^2}{2}-\frac{x^3}{6}+\frac{x^4}{24}+\cdots$. L2 2 07

Service Short with

20MA101

Supplementary - September 2021

10.

Evaluate the following integrals:

i) $\int_0^{\pi} \frac{\sin^4 \theta}{(1 + \cos \theta)^2} d\theta$ ii) $\int_0^2 \frac{x^4}{\sqrt{4 - x^2}} dx$ b) Trace the curve $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$.

c) Find the volume of the solid generated by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line. 1 5 L1 5 2 L3 5 2 12

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

MICE SOL	Suphra -	20.00	1000	
77				
20	N.	Λ1	NI	
MER	w	м	UI	3

Supplementary - September 2021

Using comparison test for convergence, test the convergence of the series:

ii)
$$\frac{1}{1 \cdot 2} + \frac{2}{3 \cdot 4} + \frac{3}{5 \cdot 6} + \frac{4}{7 \cdot 8} + \cdots \infty$$
,
ii) $\sum \frac{n^2 + 5}{4n^5 + 7}$

- State the Cauchy's root test for convergence of an infinite series. Test the convergence of the series: $\sum \left(\frac{n+2}{n+3}\right)^n x^n$;
- State the Taylor's theorem for a function of a single variable. Obtain the Taylor's expansion of $\log x$ about x = 1 up to the fourth-degree terms.
- State Cauchy's Mean value theorem. Verify Cauchy's mean value theorem for the pairs of functions:

$$f(x) = \sin x$$
, $g(x) = \cos x$ in $\left[0, \frac{\pi}{2}\right]$.

- b) Prove that the curves $r = \frac{a}{1 + \cos \theta}$ and $r = \frac{b}{1 \cos \theta}$ intersect each other orthogonally.
- c) With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$
- a) Find the angle between radius vector and the tangent for the curve: i) $r^2 \cos 2\theta = a^2$ ii) $r = a e^{\theta \cot \alpha}$
 - b) Show that the radius of curvature at any point of the cardioid $r = a(1 - \cos \theta)$ varies as \sqrt{r} .
 - c) State and prove the Lagrange's Mean value theorem.
- If u is a homogeneous function of degree n in x and y, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$.

Using this result show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$ $\log u = \frac{x^3 + y^3}{3x + 4y} .$

- b) If $x = r \cos \theta$ and $y = r \sin \theta$, find $J = \frac{\partial(x, y)}{\partial(r, \theta)}$ and $J' = \frac{\partial(x, y)}{\partial r}$ $\frac{\partial(r, \theta)}{\partial(x, y)}$. Hence prove that JJ' = 1.
- c) Find the extreme value of the function $2xy 5x^2 2y^2 + 4x + 4x$ 4y - 6.
- a) Expand the function $f(x,y) = e^{2x} \cos 3y$ as a Maclaurin's series up to second degree terms.
 - b) If $u = \int (y z, z x, x y)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
 - c) Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- Find the surface area of the solid generated by revolving the 9. a) asteroid $x = a \sin^3 t$, $y = a \cos^3 t$ about the x-axis.
 - Obtain the reduction formula for $\int \sin^n x \, dx$ where n is a positive integer. Hence evaluate $\int_0^{\frac{n}{2}} \sin^n x \ dx$. Trace the polar curve $r^2 = a^2 \cos 2\theta$.

2 1 7 L1

L2

L2

6

7

2

2

- 1 6 L1 3
 - L3 3 2
- L1 3 1
- L2 3 2
 - L2 7
- L1
- 6 L1 4
- 7 L2 2
 - 7 L3 2
 - 6 L2 1
 - 7 L2 2
 - 7 L3 4 2
- 7 L2 5 2
 - 1
 - 6 L1 L3 2

Max. Marks: 100

NMAM INSTITUTE OF TECHNOLOGY, NITTE (An Autonomous Institution affiliated to VTU, Belagavi)

First Semester B.E. (Credit System) Degree Examinations

Supplementary Examinations - September 2021

20MA101 - ENGINEERING MATHEMATICS - I

ation: 3	Hours &
WATAVA	

Note: Answer any Five full questions.

a)	Find the matrix of linear transformation that transforms (x_1, x_2, x_3) to $(x_1 + 2x_2 + 2x_3, 2x_1 + x_2 + 2x_2, 2x_1 + x_2 $	Marks	BT*	co.	PO'
b)	 ii) Is this transformation orthogonal? ii) What is the necessary condition for a system of linear equation given by AX = B to be consistent? iii) Check for consistency and because it is consistency. 	6	L•2	1	2
	x + 2y + 2z = 3 $2x - y + z = 5$ $3x - 2y - 2z = 1$ Gauss elimination method:	7	L2	1	1
c)	Using Gauss - Seidel method solve the given system of linear $12x + 3y - 5z = 1$ equations: $x + 5y + 3z = 28$, Take $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ as an initial $3x + 7y + 13z = 76$,	LZ	•	
	approximation and carry out three iterations.	7	L3	1	2
a)	Using the power method, find the dominant Eigen value and corresponding Eigen vector of the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ starting				
b)	with an initial approximation to the Eigen value as $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$. Perform 5 iterations. Find the Eigen values and its corresponding Eigen vectors of the	6	L1	1	1
	$ \text{matrix} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	7	7 L:	2 -	1 1
c)	$2r^2 + 2v^2 + 2^2 - 8xv$ Into	7	7 L	3	1 2
a) b)	i) Prove that if $\sum_{n=1}^{\infty} u_n$ is convergent then $\lim_{n\to\infty} u_n = 0$. ii) Is the converse true? Justify your answer with an example. State the D 'Alembert's ratio test for convergence of an infinite series. Test the convergence of the series: $\left(\frac{1}{3}\right)^2 + \left(\frac{1.2}{3.5}\right)^2 + \left$	•	6 L	.1	2 1
	$(1.23)^2$		7 l	.2	2 2
c)	Obtain the Maclaurin's Series expansion of the function $e^x \cos x$ Expand up to four non vanishing terms.				2 1