Projeto de Eletrotécnica Forno a Arco

Jéssica Monteiro Michele Guimarães Tatiane Suelen

22 de agosto de 2017

1 Indrodução

Nos dias atuais, vários tipos de fornos têm sido desenvolvidos utilizando a eletricidade como fonte de energia. Destes fornos, o a arco e o de indução são mais comuns. A aplicação da escória no forno de indução é difícil, pela dificuldade de aquecimento, portanto, esses fornos são mais empregados em fundições e praticamente toda a tonelagem produzida em aciarias elétricas provém de fornos a arco. O forno a arco é considerado o instrumento mais multifuncional na produção de aço e um dos mais eficientes. De acordo com Costa e Silva (2011), algumas das importantes vantagens do forno elétrico a arco são:

- -Tem alta eficiência energética.
- -Permite produzir praticamente qualquer tipo de aço, em função do controle do aquecimento virtualmente independente de reações químicas.
- -E um aparelho extremamente versátil, no que tange a carga, podendo ser operado com 100~% de carga sólida.
- -Permite operação intermitente e mudanças rápidas na produção, em escalas desde dezenas até centenas de toneladas.

A tendência de instalações de fornos a arco é cada vez maior, sendo implantados vários destes fornos na produção de aço mundial, mostrando assim a clara evidência da importância deste processo. No Brasil, os fornos elétricos a arco, são predominantemente de corrente alternada. Porém, cerca de 45% da capacidade instalada de fornos elétricos a arco, em siderurgia, é de corrente contínua. (COSTA&SILVA,2011)

2 Objetivo do Projeto

Projetar um sistema capaz de fundir um metal. Sistema no qual o calor é produzido pela passagem da corrente através do espaço compreendido entre as extremidades dos dois ou mais eletrodos, ou entre as extremidades do eletrodo e a carga.

3 Revisão Bibliográfica

3.1 Funcionamento de um Forno a Arco

O princípio de funcionamento de um forno a arco é eletricamente simples. Uma fonte energia alimenta eletrodos de grafite, a passagem de corrente através do espaço compreendido entre as extremidades dos eletrodos ou entre os eletrodos e carga, formam um arco elétrico que gera calor por efeito Joule. A transmissão do calor para a carga dá-se principalmente pela irradiação e uma pequena parte por convecção e condução. As características operativas básicas de um forno a arco são baixas tensões e altas correntes, que circulam pelos arcos voltaicos e transferem a energia elétrica para a carga metálica (Cândido, 2011).

3.2 Arco Elétrico

O arco elétrico, também conhecido como arco voltaico, pode ser definido como sendo um feixe de descargas elétricas formadas entre dois eletrodos e mantidas pela formação de um meio condutor gasoso denominado plasma. O arco é formado quando a corrente elétrica passa entre uma barra de metal (eletrodo) e que pode equivaler ao pólo negativo (catodo) e o metal da base, que pode corresponder ao pólo positivo (anodo) e forma um circuito elétrico. Esse circuito é fechado através do contato da peça (metal base) com o eletrodo. O arco formado é a parte onde o circuito possui maior resistência e onde se gera calor. A alta temperatura gerada permite a fusão do metal base. Este sistema é caracterizado pela sua versatilidade e economia. Para esse procedimento é comumente utilizado o gerador de corrente continua pois este está associado à uma melhor estabilidade do arco e qualidade de depósitos. (IFET, 2017).

A corrente elétrica é constituída por elétrons livres e estes percorrem o espaço de ar entre a peça e o eletrodo em uma velocidade suficiente para que haja um choque entre os elétrons e os íons. Este choque torna o ar ionizado, transformando-o m um condutor de corrente elétrica, facilitando a passagem desta e produzindo o arco elétrico. Para que se forme o arco, é necessário que haja uma ddp (diferença de potencial) entre o eletrodo e a peça (aproximadamente 50 a 60 volts). É importante, também, que o eletrodo toque rapidamente a peça para que a corrente possa fluir a primeiro instante e depois deve-se afastar. Após o arco ser firmado, há uma queda de tensão fazendo com que o arco possa ser mantido com uma tensão de 15 a 30 volts. (GOMES, 2008)

3.3 Tensões

Atualmente são utilizadas tensões de 900 V e potências de 45 MW em fornos de apenas 40 toneladas. Os fornos de grande capacidade (100 a 250 toneladas) atualmente operam com tensões de 900 a 1.300 V e transformadores de 100 a 170MVA. Entretanto, no caso destes fornos, hoje em dia prefere-se aumentar também as correntes, que podem chegar a 75 kA, para operar com menor comprimento de arco e menor irradiação de calor às paredes, como forma de atingir tempos de corrida próximos de 30 minutos, sem provocar aquecimento excessivo das paredes do forno (Jaccard, 2010).

3.4 Gerador de Corrente Contínua

A energia utilizada no forno à arco foi obtida através de um gerador elétrico. Também conhecidos como motores elétricos, os geradores são aparelhos utilizados para converter energia mecânica em elétrica, ou vice-versa e são classificados em dois tipos: de corrente contínua (CC) ou de corrente alternada (CA). Quando convertem energia mecânica em elétrica, são chamados geradores. Quando convertem energia elétrica em mecânica, são chamados motores. O princípio relacionado ao funcionamento dos geradores e motores é o princípio da indução, Lei de Faraday-Lenz. Segundo a lei de Faraday-Lenz, a força eletromotriz induzida (tensão) num circuito elétrico é igual à variação do fluxo magnético.

A magnitude dessa tensão induzida é diretamente proporcional à intensidade do fluxo magnético e à razão de sua variação (GODOIS, 2013). Num gerador, a energia mecânica é fornecida pela aplicação de um torque e da rotação do eixo da máquina. Essa energia produz um movimento relativo entre os condutores elétricos dos rolamentos de armadura e o campo magnético produzido pelo enrolamento de campo, sendo assim, provoca-se uma variação temporal da intensidade, e assim induz uma tensão entre os terminais do condutor. Lenz contribuiu fundamentalmente para explicar acerca do sinal negativo na fórmula (que indica à direção da força eletromotriz). A corrente induzida no circuito é gerada por um campo magnético e Lenz afirma que o sentido da corrente é oposto à variação do campo magnético que a gera. Ou seja, se o campo magnético ligado ao circuito está diminuindo, o campo magnético gerado pela corrente estará na mesma direção do campo original (opondo à diminuição), porém, se o campo magnético ligado ao circuito estiver aumentando, o campo magnético gerado irá na direção oposta ao original (opondo ao aumento). A equação 2 demonstra o que foi explicado acima:

$$E_{emf} = -N\frac{d\phi}{dt} \tag{1}$$

 \mathbf{E}_{emf} - força eletromotriz N - numero de espiras $\mathrm{d}\phi/\mathrm{d} t$ - variação do fluxo

De modo geral, ao girar o induzido (rotor) com uma certa velocidade (v) os condutores cortam as linhas de força magnética que forma o campo de excitação do gerador de corrente contínua. Nos condutores da armadura, aparece uma força eletromotriz induzida. (CARDOSO, 2006). Essa força depende da velocidade de rotação (v) e do número de linhas que os condutores irão cortar, ou do fluxo magnético Φ por pólo do gerador. Quando o gerador está em vazio têm –se a equação 2:

$$E_{\Phi} = k \times v \times \phi \tag{2}$$

 E_{Φ} - tensão induzida

k - constante que depende das características construtivas da máquina

v - velocidade da rotação

Abaixo estão listadas algumas vantagens e desvantagens do gerador de corrente contínua em relação aos de corrente alternada (SANTANA, 2017):

Vantagens:

- Facilidade para controlar a velocidade;
- Alto torque na partida em baixas rotações;
- Flexibilidade.

Desvantagens:

- Maiores e mais caros que os de Corrente Alternada;
- Maior manutenção;
- Arcos elétricos e faíscas (não pode ser usado perto de produtos inflamáveis).

As partes principais de um gerador de corrente continua são: O Rotor (armadura), Anel Comutador, Estator (parte fixa), Escovas. Como o gerador não é o foco principal desse estudo, não será detalhado todas suas peças e suas respectivas funções. Na figura 1 o têm-se uma breve introdução acerca dos componentes de um gerador de corrente contínua.

Figura 1 – Gerador de Corrente Contínua (Marques, 2010)

O estator é a parte fixa do gerador, montada em volta do rotor para que o mesmo possa girar internamente. Existem formas distintas de ligar a alimentação do estator e do rotor em geradores de corrente contínua. Essas diferentes ligações recebem o nome de excitação. O gerador utilizado no funcionamento do forno à arco neste estudo, foi o denominado Gerador Série Shunt. Nesse gerador, o indutor está em paralelo com o induzido, portanto não há necessidade de fonte externa. O enrolamento do induzido é ligado em paralelo com a armadura. Uma parte da corrente gerada na armadura (Ia) é designada à corrente de magnetização (Ie) para criar o fluxo. O enrolamento Shunt (paralelo) é formado por várias espiras de fio fino. Este, por sua vez, apresenta um valor de resistência alto. Alto valor de resistência sugere a baixa corrente. Baixa corrente com várias espiras simboliza alto valor de fluxo. Alto valor de fluxo têm-se alto valor de tensão gerada (PEREIRA, 2017). O gerador vazio (sem carga) gera tensões nominais. Porém, com carga, apresenta quedas internas, fazendo com que a tensão na carga reduza seu valor. A figura 2 ilustra uma curva do gerador Shunt. A medida que Ic aumenta, V cai. Isso é justificado pela redução do fluxo devido a reação do induzido; queda de tensão do induzido Ra Ia.A corrente de campo Ie é dada por V/Rs. Como Rs é constante, quando V cai, a corrente Ie cai diminuindo o fluxo e consequentemente diminuindo V.Quanto maior a carga em paralelo, menor a resistência equivalente de todas as cargas. Com baixa resistência e tensão V igual, têm-se um aumento na corrente Ic.

Figura 2 – Curva caracterítica de voltagem de um gerador "shunt" (Pereira, 2017)

Quando Ic for tal que V alcance o ponto "d" na figura 2, um aumento de Ic causa redução alta em V, de modo que a corrente Ie diminui a um ponto em que a corrente Ic cai abaixo de seu valor prévio. Se houver um curto circuito (baixa resistência e alta corrente) a tensão será quase nula. Isso determina uma proteção para o gerador, já que o aumento considerável na corrente de carga diminui a tensão e, por conseguinte, da corrente fornecida impedindo que o gerador queime. (PEREIRA, 2017)

4 Material Necessário

Os materiais utilizados para a produção do FEA serão:

- Um tijolo refratário;
- Motor de indução trifásico 220V/380V;
- Máquina de Corrente Contínua 115V;
- Limalha de alumínio.

5 Funcionamento do Protótipo

Através de um fio em curto circuito conectado a uma máquina CC ligada como gerado Shunt formou se o arco voltaico para se fundir as limalhas de alumínio.

Figura 3 – Motor de indução trifásico e Máquina de Corrente Contínua

6 Conclusão

Através deste projeto pode se aprender como é o funcionamento do forno a arco e o processo de formação do arco voltaico tanto por curto circuito, quanto por eletrodos que é o utilizado em usinas.

7 Referência

CÂNDIDO, M. R. Aplicação da transformada Wavelet na análise da qualidade de energia em fornos elétricos a arco. 2008. 113p. Tese (Doutorado em Engenharia) – Escola Politécnica da Universidade de São Paulo, São Paulo.

CARDOSO, M. C. F. Máquinas de Corrente Contínua. Disponível em: http://files.laboratoriointegrador.webnode.com.br/ 200000067-b3b8cb578d/MC3 A1quinas20ElC3A9tricas.pdf> Acesso em: 11 julho 2017.

COSTA E SILVA, A. L. V. Capitulo 7: Forno elétrico a arco. Disponível em: $< http://www.equilibriumtrix.net/refino/capitulos_acs_refino/Capitulo20720fea20rev$ 20220com20indice2028072013.pdf > .Acessoem: 22junhode2017.

GODOIS, U. Geradores CC. Disponível em: https://prezi.com/wig4hedlgcqt/geradores-cc/ Acesso em: 11 julho 2017.

GOMES, M. Processos de Soldagem. Disponível em:

https://professormarciogomes.files.wordpress.com/2008/09/aulas-14-e-15-sold-ao-arco-eletrico3.pdf Acesso em: 11 julho 2017.

IFET. Soldagem com eletrodo revestido. Disponível em:

 $< \\ http://joinville.ifsc.edu.br/valterv/Processos_de_Fabricacao/Aula20920Soldagem20Eletrodo20revestido.pdf > Acessoem: 11 julho2017.$

JACCARD, L.R. Parâmetros Elétricos de Operação do Forno a Arco. Disponível em:

< http://www.jaccard.com.br/informacoes.htm> Acesso em: 11 julho 2017.

$MARQUES, T.P. Gerador de Corrente Cont{\'i}nua. Dispon{\'i}velem:$

 $< http://www.ebah.com.br/content/ABAAAA3_wAB/gerador-corrente-continua> Acessoem: 10 julho 2017.$

PEREIRA, M.S. Gerador de Corrente Contínua. Disponível em:

<https://ensinandoeletrica.blogspot.com.br/2016/03/gerador-de-corrente-continua.html>. Acesso em: 10 julho 2017.

$SANTANA, A.C. Geradores CC\ ^\circ Parte 2. Dispon\'ive lem:$

 $< http://professor.ufop.br/sites/default/files/adrielle/files/aula_6.pdf > Acessoem: 11 julho 2017.$