

UTC UNISONIC TECHNOLOGIES CO., LTD

U74HC32 **CMOS IC**

OUADRUPLE 2-INPUT POSITIVE-OR GATES

DESCRIPTION

The UTC U74HC32 devices contain four independent 2-input OR gates. They perform the Boolean function $Y = \overline{A \cdot B}$ or Y = A + Bin positive logic.

FEATURES

- * Wide Operating Voltage Range of 1.0V ~ 7.0V
- * Low Power Consumption, 20µA Max I_{CC}
- * ±20mA Output Drive at 5V
- * Low Input Current of 1µA Max

*Pb-free plating product number: U74HC32L

ORDERING INFORMATION

Order I	Number	Dookogo	Dooking	
Normal Lead Free Plating		Package	Packing	
U74HC32-D14-T	U74HC32L-D14-T	DIP-14	Tube	
U74HC32-S14-T	U74HC32-S14-T U74HC32L-S14-T		Tube	
U74HC32-S14-R	U74HC32L-S14-R	SOP-14	Tape Reel	
U74HC32-P14-T	U74HC32L-P14-T	TSSOP-14	Tube	

www.unisonic.com.tw 1 of 5 QW-R502-075,B

■ PIN CONFIGURATION

■ LOGIC DIAGRAM (positive logic)

■ FUNCTION TABLE (each inverter)

INF	OUTPUT		
Α	В	Υ	
Н	X	Н	
X	Н	Н	
L	L	L	

■ ABSOLUTE MAXIMUM RATINGS (unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage Range	V_{CC}	1.0~7.0	V
Input Clamp Current	I_{IK} (V_{IN} < 0 or V_{IN} > V_{CC} (see Note 1)	±20	mA
Output Clamp Current	I_{OK} ($V_{OUT} < 0$ or $V_{OUT} > V_{CC}$ (see Note 1)	±20	mA
Continuous Output Current	$I_{O}(V_{OUT} = 0 \sim V_{CC})$	±25	mA
Continuous Current Through	V _{CC} or GND	±50	mA
Storage Temperature	T _{STG}	-65 ~ +150	

- Note: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
	SOP-14		86	/W
Thermal Resistance Junction Ambient	DIP-14	θја	80	/W
	TSSOP-14		113	/W

■ RECOMMENDED OPERATING CONDITIONS $(T_A = 25)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V_{CC}		2	4.5	6	V
		$V_{CC} = 2 V$	1.4			V
High-Level Input Voltage	V_{IH}	$V_{CC} = 4.5 \text{ V}$	3			V
		V _{CC} = 6 V 4.2			V	
		V _{CC} = 2 V			0.7	V
Low- Level Input Voltage	V_{IL}	$V_{CC} = 4.5 \text{ V}$			1.5	V
		V _{CC} = 6 V			2	V
Input Voltage	V_{IN}		0		V_{CC}	V
Output Voltage	V_{OUT}		0		V_{CC}	V
Input transition Rise/Fall Time	dt/dv	V _{CC} = 4.5 V			500	ns
Operating Free-Air Temperature	T_A		-40		85	

Note: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

■ ELECTRICAL CHARACTERISTICS (Ta=25 , unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
High Lovel Output Voltage	\/	V_{CC} =4.5V, V_{IN} = V_{IH} or V_{IL} , I_{OH} =-20 μ A	4.4	4.5		V	
High-Level Output Voltage	V _{OH}	V_{CC} =4.5V, V_{IN} = V_{IH} or V_{IL} , I_{OH} =-4mA	3.98	4.3		V	
Low level Input Voltage	Val	V_{CC} =4.5V, V_{IN} = V_{IH} or V_{IL} , I_{OL} =20 μ A		0.001	0.1	V	
Low-level Input Voltage		V_{CC} =4.5V, V_{IN} = V_{IH} or V_{IL} , I_{OL} =4mA		0.18	0.26	V	
Input Current	I _{IN}	V_{CC} =6V, V_{IN} = V_{CC} or 0		±0.1	±100	nA	
Quiescent Supply Current	Icc	V_{CC} =6V, V_{IN} = V_{CC} or 0, I_{OUT} =0			20	μΑ	
Operating Characteristics							
Power Dissipation Capacitance Per Gate	C_{pd}	No load		20		pF	

Note: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

SWITCHING CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Ta = 25 , C_L = 50 pF, unless otherwise specified)

PARAMETER	SYMBOL	FROM(INPUT)	TO(OUTPUT)	V _{CC}	MIN	TYP	MAX	UNIT
				2V			43	
Propagation Delay from A or B to Y	t _{pd}	A or B	Y	4.5V			18	ns
10 1				6V			15	
				2V			33	
Output Rise and Fall Time	t _T		Y	4.5V			19	ns
				6V			17	

■ TEST CIRCUIT AND WAVEFORMS

Note: C_L includes probe and jig capacitance.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.