CLASE PRÁCTICA 1

EJERCICIO 1.1 La trayectoria de una pelota se puede computar mediante

$$y(x) = (\tan \theta_0)x - \frac{g}{2v_0^2 \cos^2 \theta_0}x^2 + y_0$$

donde y = altura (m), θ_0 = ángulo inicial (rad), v_0 = velocidad inicial (m/s) y g = constante gravitacional = 9.81m/s^2 e y_0 = altura inicial (m).

Use el método de golden search para determinar la altura máxima dados $y_0 = 1$ m, $v_0 = 25$ m/s y $\theta_0 = 50^\circ$. Itere con una tolerancia del método de 10⁻² m en x. Compruebe los resultados gráficamente.

EJERCICIO 1.2 Considere la siguiente función:

$$f(x) = 2x + \frac{3}{x}$$

Utilice el algoritmo de interpolación parabólica para localizar el mínimo de f(x) entre (0.1, 5) con una tolerancia de 10⁻⁴.

¿Tiene algún problema de convergencia en el resultado? ¿Cómo lo resolvería? Compare con los resultados que se obtendrían con el método de golden search.

EJERCICIO 1.3 Una carga total Q está uniformemente distribuida a lo largo de un conductor con forma de anillo y radio a. Una carga q se encuentra a una distancia x desde el centro del anillo. La fuerza ejercida en la carga por el anillo está dada por

$$F = \frac{1}{4\pi\varepsilon_0} \frac{qQx}{(x^2 + a^2)^{3/2}}$$

con $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{Nm}^2)$, $q = Q = 2 \times 10^{-5} \text{ C}$ y a = 0.9 m. Determine la distancia x para la cual la fuerza es máxima.

EJERCICIO 1.4 Un cable que conduce corriente eléctrica está recubierto por un aislamiento de goma con radio externo r. La resistencia del cable genera calor, que es conducido por el aislante y convectado al aire circundante. La temperatura del cable se puede demostrar que es

$$T = \frac{q}{2\pi} \left(\frac{\ln(r/a)}{k} + \frac{1}{hr} \right) + T_{\infty}$$

donde q = tasa de generación de calor en el cable = 50W/m

a = radio del cable = 5mm

k = conductividad térmica de la goma = 0.16W/m·K

h = coeficiente convectivo de transferencia de calor = 20W/m²·k

 T_{∞} = temperatura ambiente = 280K

Determine el valor de r que minimiza T.

EJERCICIO 1.5 Las leyes de Kirchhoff aplicadas a las dos mallas del siguiente circuito eléctrico llevan a:

Encuentre el valor de la resistencia R que maximiza la potencia disipada por R.

Pista: Defina una función a parte para resolver las leyes de Kirchhoff definiendo matricialmente el sistema de ecuaciones. Determine de esta manera i_1 e i_2 y calcule la potencia disipada en la resistencia R como $(i_1-i_2)^2$ R.