LOMONOSOV MOSCOW STATE UNIVERSITY FACULTY OF MECHANICS AND MATHEMATICS CHAIRS OF HIGHER ALGEBRA

SPECIAL COURSE

ON

FINITE GROUP AND IT'S REPRESENTATION

Lector: I.A. Chubarov

02.2023

Contents

1	LECTURE 01 (22.02.2023)				
	1.1	Group, subgroups, cosets, etc	1		
		1.1.1 Two varieties of group actions	1		
	1.2	Double cosets	2		
	1.3	Homomorphism and automorphism	3		
		1.3.1 Normal and characteristic subgroups	3		
		1.3.2 Automorphism	3		
		1.3.3 Inner automorphism	4		
2	LEC	CTURE 02 (01.03.2023)	5		
	2.1	Characteristically simple group	5		
	2.2	Nilpotent group (vs. Solvable group)	6		
3	LEC	CTURE 03 (15.03.2023)	8		
	3.1	Nilpotent group	8		
		3.1.1 Lower central series	8		
		3.1.2 Upper central series	8		
4	LEC	CTURE 04 (22.03.2023)	1		
	4.1	Minimal non-nilpotent groups (Schmidt's groups)	. 1		
5	LEC	CTURE 05 (29.03.2023)	.3		
	5.1	Ph. Hall's theorems	3		
6	LEC	CTURE 06 (05.04.2023)	. 5		
	6.1	Linear representation	5		
		6.1.1 Linearization of a permutation representation	5		
		6.1.2 Subrepresentation	5		
		6.1.3 Factor subspace	6		
		6.1.4 Direct sum of representations	6		
		6.1.5 Homomorphism of two linear representations	6		
		6.1.6 Tensor product of linear representations	7		
7	LEC	CTURE 07 (12.04.2023)	.8		
	7.1	Schur's Lemma 1	8		
		7.1.1 Multiplicity	8		
		7.1.2 Regular representation of the group G	9		
	7.2	Character theory (over \mathbb{C})	20		
8	LEC	CTURE 08 (19.04.2023)	1		
	8.1	Consequences of Schur's Lemma	:1		
	8.2	Matrix Version of the Lemma	:1		
	8.3	Orthogonality relation of characters	:2		

9	LECTURE 9 (26.04.2023)	24
10	LECTURE 10 (03.05.2023)	25
A	Sylow Theorems	26
Re	Reference	

1 LECTURE 01 (22.02.2023)

1.1 Group, subgroups, cosets, etc

1.1.1 Two varieties of group actions

- I. First variety
 - (1) associativity
 - (2) $\exists e(left) \ s.t, \ \forall \ g \in G, \ eg = g \Rightarrow G \ is \ a \ group$
 - (3) $\forall g \in G, \exists g' \text{ inverse to } g, g'g = e$
- II. Second variety
 - (1) associativity
 - (2) $\exists e \ \forall g \in G, \ eg = g$
 - (3) $\exists q''(right), \forall q \in G, qq'' = e$
- **Pr.1** G is not necessarily a group
 - 1. Construct an example
 - 2. Decide such semigroups

If (H - subgroup of G), H < G, then

$$G = \bigsqcup_{t \in T} tH$$

tH -left cosets with representative t, T -left transversal.

$$G = \bigsqcup_{s \in S} Hs$$

Hs -right cosets with representative s, S -right transversal.

Pr.2 If $|G| < \infty$, then one may take S = T

Prop.1 Let A, B < G

(a)
$$A = \bigcup_{r \in R} r(A \cap B) \Rightarrow AB = \bigcup_{r \in R} B$$

(b) $AB \ is \ a \ subgroup \ of \ G \ \Leftrightarrow AB = BA$

(c)
$$|If |A| < \infty, |B| < \infty, then |AB| = \frac{|A||B|}{|A \cap B|}$$

(a)

$$AB = \bigcup_{r \in R} (A \cap B)B = \bigcup_{r \in R} B$$

suppose:

$$r_1B \cup r_2B \neq \emptyset$$

 $r_1(A \cup B) = r_2(A \cup B) \Rightarrow r_1 = r_2$

Proof. (\Leftarrow)

$$(a_1b_1)(a_2b_2) = a_1(b_1a_2)b_2 = a_1(a_2'b_1')b_2 = (a_1a_2')(b_1b_2')$$

 $(ab)^{-1} = b^{-1}a^{-1} = a'b' \in AB \implies AB - subgroup$

 (\Rightarrow)

$$(ab)^{-1} = b^{-1}a^{-1} \in BA \Rightarrow AB \subseteq BA$$
$$(AB)^{-1} = AB, (ba)^{-1} = a^{-1}b^{-1} \in AB \text{ is a subgroup}$$
$$(AB)^{-1} = AB \Rightarrow ba \in AB \Rightarrow BA \subseteq AB$$
$$\Rightarrow AB = BA$$

(b) From (a)

$$|R| = \frac{|A|}{|A \cap B|} = \frac{|AB|}{|B|}$$

Prop.2 Dedkind's identity

Let
$$A, B, C \subseteq G, A \leq C, C \leq AB$$
. Then $C = (AB) \cap C = A(B \cap C)$.

Proof.
$$\forall c \in C \text{ as } C \subseteq AB \Rightarrow \exists a \in A, \ b \in B$$

$$c = ab \Rightarrow b = a_{-1}c \in B \cap C$$

$$\Rightarrow c \in A(B \cap C) \Rightarrow C = A(B \cap C)$$

Exercise.3 Let
$$|G| < \infty$$
, $AB < G$, s.t. $(|G:A|, |G:B| = 1)$, (coprime = 1)
Prove that $G = AB$

1.2 Double cosets

Let A, B < G, take $g \in G$, the double coset defined by g with respect to A and B:

$$AgB = agb$$

Theorem 1.1.

$$G = \bigsqcup_{i \in I} Ag_i B$$

Proof.
$$\forall g \in G, g \in AgB$$
, If $Ag_1B \cap Ag_2B \neq \emptyset$,
 $a_1g_1b_1 = a_2g_2b_2 \Rightarrow (a_1g_1)B = (a_2g_2)B$
 $\Rightarrow (a_1g_2)^{-1}(a_2g_2) \in B \Rightarrow g_1 \in Ag_2B, \Rightarrow Ag_1B = Ag_2B$

Theorem 1.2.

$$|G| = < \infty, \Rightarrow |AgB| = \frac{|A||B|}{|A \cap B|}$$

Proof.

$$gg^{-1}|AgB| = |g(g^{-1}Ag)B| = |\underbrace{(g^{-1}Ag)}_{Ag}B|$$
$$= \frac{|g^{-1}Ag||B|}{|(g^{-1}Ag) \cap B|} = \frac{|A||B|}{|(g^{-1}Ag) \cap B|}$$

1.3 Homomorphism and automorphism

1.3.1 Normal and characteristic subgroups

Definition 1.1. H is characteristic in G (H char G) \Leftrightarrow H invariant under all $\alpha \in Aut(G)$.

Definition 1.2. G is called **simple**, if $N \triangleleft G \Rightarrow N = G$ or $N = \{e\}$.

Definition 1.3. G is called **characteristically simple** \Leftrightarrow H char $G \Rightarrow H = G$ or $H = \{e\}$.

Theorem 1.3 (Main Theorem). $\varphi: G \to H$ (not necessarily epimorphism)

$$Im\varphi = \varphi(G) \cong G/Ker\varphi$$

Corollary 1.3.1. (Correspondence of subgroups):

Let $\varphi:G\to H$ is surjective, hom = epimorphism. Then there are core bijections.

$$F \leqslant H \leftrightarrow \forall K \leqslant G | Ker \varphi \leqslant K$$

$$F \trianglelefteq H \leftrightarrow \forall K \trianglelefteq G | Ker \varphi$$

$$\varphi(k) := F \leqslant H$$

$$k \leqslant G$$

converse mapping: take any $F \leqslant H$, then, $k := \varphi^{-1}(F) = g \in G | \varphi(g) \in F$ $\varphi(\varphi^{-1}(F)) = F$, $\varphi^{-1}(\varphi(K)) = K$, iff $k \ni Ker\varphi$

1.3.2 Automorphism

Definition 1.4. α is an automorphism of the group G, if $\alpha: G \to G$ is isomorphism.

1.3.3 Inner automorphism

$$ig(x) = gxg_{-1}, \forall x \in G$$

 $Aut(G) \ge Int(G) \cong G/Z(G)$

 \star A long-standing problem: If G is a finite simple group \Rightarrow ? $^{Aut(G)}/Int(G)$ is solvable? (Solved module the classification of the Finite Simple Groups) $N \lhd G \Leftrightarrow N$ invariant under all ig.

2 LECTURE 02 (01.03.2023)

1. $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^*$

$$\alpha \in Aut(\mathbb{Z}_n), \alpha(k) = k \cdot \varphi(1), (k = \underbrace{1 + \dots + 1}_{k}) |k| = |\alpha(k)|. \alpha(1) \leftrightarrow m|(m, n) = 1$$

$$\beta(1) = l, (\beta\alpha)(1) = (lm) \cdot 1$$

Problem: Prove that if G is not cyclic, then Aut(G) is not Abelian.

2. G is elementary Abelian p-group. $G = \underbrace{\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p}_n = \mathbb{Z}_p^n$.

$$Aut(\mathbb{Z}_p^n) \cong GL(n,p)$$

 $\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$ is a vector space over the field \mathbb{Z}_p . Any automorphism is a \mathbb{Z}_p -linear operator. \mathbb{Z}_p is characteristically simple. (G is characteristically simple if H char $G \Rightarrow H = G$ and $H = \{u\}$)

Proof. \mathbb{Z}_p is characteristically simple.

Let H be subgroup of $G = \mathbb{Z}_p^n$, $H \triangleleft G$. If $H \neq \{0\}$

 \Rightarrow Take some $h \in H$, $\forall v \in G$, $\exists \alpha \in Aut(G)$, $v = \alpha(G)$

2.1 Characteristically simple group

Theorem 2.1. G is characteristically simple iff $G = H_1 \times \cdots \times H_r$, where $H_i \cong H_1$, $(i = 1, 2, 3, \ldots, r)$ is a simple group.

Proof. (\Rightarrow) G is characteristically simple $\Rightarrow G = H_1 \times \cdots \times H_r$, consider H -some minimal normal subgroup of G, (1 < H < G). The set of subgroup $\alpha(H)$, $\forall \alpha \in Aut(G)$

$$\{H_1 = H, H_1, \dots, H_r\}$$

 $M = \langle H_1, \dots, H_r \rangle$ is characteristically in G.

$$\beta(M) = \langle H_{i_1}, \dots, H_{i_r} \rangle = \langle H_1, \dots, H_r \rangle,$$

 $\beta \in Aut(G)$

G is characteristically simple $\Rightarrow M = G$, Show that $G = H_1 \times \cdots \times H_r$, $\forall i, H_i \triangleleft G$, H_i is a minimal subgroup of $G. \Rightarrow G' = H_1 H_2 \cdots H_r$

This product is direct:

$$\Leftrightarrow H_i \cap (\prod_{j \neq 1} H_j) = \{e\}$$

 H_i is minimal, $\prod H_i \triangleleft G \Rightarrow H_i \cap \prod H_j \unlhd G, \Rightarrow = \{e\}.$

 H_1 is simple if $N \subseteq H_1$, then $N \triangleleft G$. $g = h_1 \cdots h_r$, $gNg^{-1} = h_1N_{-1} = N$. (N and h_i , i > 1, commute elements).

- $\Rightarrow H_1$ is minimal normal of $G, \Rightarrow N = H$ or $N = \{e\}$.
- $\Rightarrow H_1$ is simple.

Proof. (\Leftarrow) If $G = H_1 \times \cdots \times H_r$, $H_i \cong H_1$ -simple, then G is characteristically simple. If we take some $e \neq N \leq G$, that N is not characteristically. Evidently,

$$N = \underset{i \in I}{\times} H_j, \ J \subset \{i, \dots, j, \dots, r\}$$

Where $J = \{j | N \cap H_j \neq \{e\}\}, \Rightarrow N > H_j$.

We can define such automorphism, that permutes these subgroups cyclic.

$$\{\underbrace{H_1,\ldots,H_s}_{H},H_{s+1},\ldots,H_r\}\Rightarrow\alpha(N)\neq N$$

2.2 Nilpotent group (vs. Solvable group)

Rem: A group is solvable iff $\exists n \in \mathbb{N}, G^n = \{e\}.$

It follows that G^n is an Abelian characteristic subgroup of a solvable group of G. Consequence of the Theorem: If $N \triangleleft G$ is a minimal normal subgroup of a solvable group G, then $N \cong \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$, (p is some prime number).

Proof. N is Abelian as N is minimal \Rightarrow N is characteristically simple. \Rightarrow N $\cong \mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p$.

Definition 2.1. Define subgroups of a group G: $G_0 = G_1$, $G_1 = [G, G] = G'$, $G_2 = [G_1, G]$, etc If G_2 is defined, then $G_{k+1} = [G_k, G]$, $G = G_0 \geqslant G_1 \geqslant G_2 \geqslant \cdots$. If $\exists m \in \mathbb{N}$, $G_m = \{e\}$, then G is called **nilpotent**.

 $ad_x(y) = [x, y]$, The Lie Ring is nilpotent, if $ad_x^m = 0$.

Question: Is it true that if G is nilpotent $\Rightarrow G$ is solvable?

* The converse is not true.

$$G = S_3 = \mathbb{Z}_3 \times \mathbb{Z}_2 \ Z(G) = \{e\}$$

Prop.1 If G is nilpotent, $G \neq \{e\}$, then $Z(G) \neq \{e\}$.

Prop.2 All G_k char G.

Prop.3
$$G_k/G_{k+1} \leq Z(G/G_{k+1})$$

It means that the series $G_0 \triangleright G \triangleright \cdots \triangleright G_m = e$ is a descending central series.

Proof. 1. If m=1, then G is Abelian $\Rightarrow Z(G)=G$, If m>1, then $G_{m-1}\leqslant Z(G)$, $G_m=[G_{m-1},\ G]=\{e\}$.

2. Induction on k:

$$G_1 = G' = \{ [g_1, h_1] \cdots [g_q, h_q] \}$$

 $\alpha \in Aut(G), \alpha[g_i, h_i] = ([\alpha(g_i), \alpha(h_i)]) \Rightarrow \alpha(G') = G'.$

If it is proved that G_k is characteristic in G,

$$\begin{split} G_{k+1} = <[g_k,\ g]|g_k \in G_k, g \in G> \\ \alpha(G_{k+1}) = <[\alpha(g_k),\ \alpha(g)]> = G_{k+1}.\ (\alpha(g_k) \in G_k \text{ -by induction hypothesis.}) \\ G_k/G_{k+1} \leqslant Z(G/G_{k+1}) \Leftrightarrow [G_k,G] \leqslant G_{k+1} \end{split}$$

Theorem 2.2. *The following conditions are equivalent:*

- 1. G is nilpotent.
- 2. If $H \leq G$, then $N_G(H) > H$ (Normalizer condition).
- 3. ($|G| < \infty$) $G = G_{p_1} \times G_{p_r}$, the direct product if its Sylow subgroups.

Proof.
$$(2\Rightarrow 3)$$
 Let $|G|=P_1^{k_1},\ldots,P_r^{k_r}$ and $|G_i|=P_i^{k_i}$
From the Sylow theorems, we know that $H=N_G(G_i)$.
As G has the normalizer properly, $\Rightarrow N_G(G_i)=G\Rightarrow G_i\lhd G\Rightarrow G=G_1\times\cdots\times G_r$

3 LECTURE 03 (15.03.2023)

G is characteristically simple, $H \triangleleft G$, H is a minimal normal subgroup of G, $\{H = H_1 = \alpha_1(H), H_2 = \alpha_2(H), \dots, H_r = \alpha_r(H)\}$ -all the images of H by Aut(G).

$$\{e\} \neq H = \langle H_1 \cdots H_r \rangle \ char \ G \Rightarrow G = \langle H_1, \dots, H_r \rangle$$

Consider $\{F = Hi_1 \times \cdots \times H_{i_k}\} \neq \emptyset$. Let M be the maximal among these subgroups.

- $\Rightarrow M = G$. If not, $\exists H_i \leq M, \ M \triangleleft G$, then $H_i \cap M = \{e\}$
- $\Rightarrow H_i \cdot M = H_i \times M$ -a larger subgroup which is direct product of some of those subgroups. This contradiction means that M = G

3.1 Nilpotent group

3.1.1 Lower central series

Definition 3.1. $G_0 = G \geqslant G_1 = G' \geqslant G_2 = [G_1, G] \geqslant \cdots \geqslant G_k \geqslant G_{k+1} = [G_k, G] \geqslant \cdots$ If $\exists n \in \mathbb{N} : G_n = e$, then G is called **nilpotent**, n is **nilpotency** class of G, if $G_{n-1} \neq \{e\}$. $\Rightarrow G_0 = G \rhd G_1 \rhd G_2 \rhd \cdots \rhd G_{n-1} \rhd G_n = \{0\}$ -the **lower descending normal series**. $G_k/G_{k+1} = Z(G/G_{k+1})$

3.1.2 Upper central series

Definition 3.2 (The upper central chain of G). $Z_0 = \{e\}$, $Z_1 = \{G\}$. Define that Z_2 such that, $Z_2/Z_1 = Z(G/Z_1)$ etc. If Z_i is defined, then Z_{i+1} , $Z_{i+1}/Z_i = Z(G/Z_i)$.

If $\exists H_0 = G \leqslant H_1 \leqslant \cdots \leqslant H_r$, some central chain $\Rightarrow H_i \leqslant Z_i$.

 $Z_0 \leqslant Z_1 \leqslant \cdots \leqslant Z_r \leqslant \cdots$ -upper central series.

Theorem 3.1. The following conditions are equivalent:

- 1. $\exists n \in \mathbb{N}, \text{ such that } G_n = \{e\}$
- 2. $\exists m \in \mathbb{N}, \text{ such that } Z_m = G$
- 3. $\forall H \leq G, \ H \leq N_G(H)$
- 4. $(|G| < \infty)$, G is the direct product of its Sylow subgroups.

Proof. $(1 \Leftrightarrow 2)$

Let n be minimal with condition $G_n = \{e\}, Z_m = G$.

For convenience write these series in such way:

$$\{e\} = Z_0 < Z_1 < \dots < Z_{m_1} < Z_m = G$$

$$\{e\} = G_n < G_{n-1} < \dots < G_1 < G_0 = G$$

Let $G_n = \{e\}$, $(1 \Rightarrow 2)$ Show that $\forall k = 0, 1, ..., G_{n-k} \leq Z_k(*) \Rightarrow (k = n)G_0 = G \leq Z_n \Rightarrow Z_n = G$

Use induction on k, for k = 0, $G_n = \{e\} = Z_0$ -true.

For $k \ge 1$, suppose (*) is true, and show that $G_{n-k-1} \le Z_{k+1}$

As $G \triangleright G_{n-k} \leq Z_k \triangleleft G$, \exists epimorphism:

$$G/G_{n-k} \xrightarrow{onto} G/Z_k$$

$$\Rightarrow (G_{n-k-1Z_k})/Z_k \leqslant Z(G/Z_k)$$

By construction of upper central series

 $G_{n-k-1} \cdot Z_k \leqslant Z_{k+1}, Z_k \leqslant Z_{k+1}.$ $G_{n-k-1} \leqslant Z_{k+1}$ -We proved. Conversely, $(2 \Rightarrow 1)$ Show that $\forall k = 0, 1, \dots G_k \leqslant Z_{m-k}(**).$

Induction on k, k = 0, $G_0 = Z_m = G$ -true.

If (**) is true for k, show that $G_{k+1} \leq Z_{m-k-1}$.

By definition, $G_{k+1} = [G_k, G] \leq [Z_{s-k}, G]$, but

 $Z_{m-k}/Z_{m-k-1} = Z(G/Z_{m-k-1}) \Rightarrow [Z_{m-k}, G] \leq Z_{m-k-1} \Rightarrow G_{k+} \leq Z_{m-k-1} \Rightarrow (**)$ is valid for all m, if $Z_m = G \Rightarrow (k = m), G_M \leq Z_0 = \{e\}.$

Proof. $(2 \Rightarrow 3)$

Let H be any proper subgroup of G and $Z_0 < Z_1 < \cdots < Z_m = G$ is the upper central series.

Evidently, if $Z(G) \leq H$, H < Z(G), $H \leq N_G(H)$.

Otherwise, $Z(G) \leq H$, we have $Z_1 \leq H$.

 $\Rightarrow \exists j \ Z_j \leqslant H \leqslant$, because H is proper.

 $\Rightarrow Zj + 1 \leq N_G(H)$, as $Z_{j-1}/Z_j = Z(G/Z_j)$

 $H < H \cdot Z_{j+1} \leq N_G(H)$, we have proved $2 \Rightarrow 3$.

Proof. $(3 \Rightarrow 4)$

Let $|G| < \infty$, $|G| = p_1^{n_1} \cdot \dots \cdot p_r^{n_r}$, $(p_i \text{ are primes, } p_i \neq p_j, i \neq j)$.

We know that (?), if P is some Sylow p-subgroup of G. $H = N_G(P) \Rightarrow N_G(P) = H$. (Lemma) Take some $a \in N_G(H) \Rightarrow aHa^{-1} \in H$.

 $P \leqslant H = N_G(P), \ P \in Syl_P(H), \ aPa^{-1}$ is another Sylow p-subgroup of H,

 \Rightarrow by the (2) Sylow Theorem, for H, $\exists h \in H$, $h^{-1}aPa^{-1} = hPh^{-1}h = H \Rightarrow P = (h^{-1}a)P(a^{-1}h) = h^{-1}a \in N_G(P) = H \Rightarrow a \in h \cdot H = H \Rightarrow N_G(H) = H$

If follows from Lemma, that $P \triangleleft G$, if $H = N_G(P) \triangleleft G$, then $N_G(H) > H$ -a contradiction. \Rightarrow all Sylow subgroups of G are normal in G.

$$G = P_1 \times \cdots \times P_s$$

Lemma 1. A p-subgroup is nilpotent.

Proof. Show that if P is a p-group that it has finite upper central series, $Z_m(P) = P$ for some $m \in \mathbb{N}$ IF P is Abelian $\Rightarrow P = Z(P) = Z_1$ -true.

Otherwise, consider $Z_1 = Z(P) > \{e\}$, use induction of |P|.

$$|nicefracPZ_1| = |P/Z(G)| < |P|, \overline{P} = P/Z(G) \Rightarrow \exists s, \overline{Z_S} = Z_S(\overline{P}) = (\overline{P}).$$

$$\pi: P \xrightarrow{canonical} \overline{P} = P/Z_1$$

$$\pi(Z_1) = \{e\}$$

$$\pi^{-1}(\overline{Z_s}) = P \Rightarrow \exists upper \ central \ series.$$

 $\Rightarrow Z_s = P$

Lemma 2. If the groups P_1, \ldots, P_s are nilpotents, then $P_1 \times \cdots \times P_s$ is nilpotent.

Proof. (Exercise)

$$Z(P_1 \times \cdots \times P_k) \stackrel{?!}{=} Z_k(P_1) \times \cdots \times Z_k(P_k)$$

Proof.
$$4 \Rightarrow 2$$
 ($|G| < \infty$) is evident.

4 LECTURE 04 (22.03.2023)

4.1 Minimal non-nilpotent groups (Schmidt's groups)

Definition 4.1. A group is **minimal non-nilpotent**, if G is non-nilpotent, but $\forall H < G$ is nilpotent.

Example 1 $G = \mathbb{Z}_p \times \mathbb{Z}_q$, p, q are primes, p > q, q | (p-1)

Example 2 $G = (\mathbb{Z}_p \leftthreetimes \mathbb{Z}_p) \leftthreetimes \mathbb{Z}_q$, if $Aut(\mathbb{Z}_p \leftthreetimes \mathbb{Z}_p)$ is divisible by $q(Aut(\mathbb{Z}_p \leftthreetimes \mathbb{Z}_p) | \vdots q)$, $Aut(\mathbb{Z}_p \leftthreetimes \mathbb{Z}_p) \cong GL(2,p)$

Theorem 4.1. Let G be a finite minimal non-nilpotent group, then

- 1. G is solvable.
- 2. $|G| = p^{\alpha}q^{\beta}$, (p, q are distinct primes).
- 3. $G = P \searrow Q$ ($P \triangleleft G$, $|P| = p^{\alpha}$, $|Q| = q^{\beta}$), Q is cyclic, $d(P) \leqslant 2$, and Q acts on P by automorphisms of order q.

Proof. (1)

By contradiction, let G be a contrary of minimal order, G is not solvable, but any group of order $\langle |G|$, that satisfies the contradiction of the theorem is solvable.

Suppose: $\exists 1 \neq N \lhd G$, $\Rightarrow N$ is nilpotent, and G/N satisfies the condition (every proper subgroup of G/N is nilpotent). N is nilpotent $\Rightarrow N$ is solvable, $|G/N| < |G| \Rightarrow G/N$ solvable, by minimality of G, $\Rightarrow G$ is solvable.

G/N solvable, by minimality of G, \Rightarrow G is solvable, -contradiction. \Rightarrow G is simple.

We claim that any two different maximal subgroup of G, have trivial intersection.

By contradiction, suppose that $\exists M_1 \neq M_2$, maximal subgroup of G, such that $H := M_1 \cap M_2 \neq \{1\}$. (Choose them in such a way that H have minimal possible order).

We have $H \leq M_1$, $H \leq M_2$, $M_1 \neq G \Rightarrow M_1$ is nilpotent.

By normalizer condition, $H < M_{M_1}(H) := H$.

 $N_{M_1}(H) = M_1 \cap H \leq G$, N is contained in some maximal subgroup M of G, and $H < M_1 \cap N \leq M_1 \cap M$. $|M_1 \cap M| > |H|$, -contradiction $\Rightarrow M_1 \cap M_2 = \{1\}$.

Final contradiction: $\forall g \in G, g$ is contained in some (and unique) maximal subgroup of $G, \langle g \rangle \leqslant m$

$$G = \bigsqcup_{k} (M_k - \{1\}) \cap \{1\}$$

Let G has s conjugate class of maximal subgroup (with representatives M_i . $1 \le i \le s$).

$$G = \bigsqcup_{i=1}^{s} (M - \{1\}), \ M \in \{e(M_i) \cup \{1\}\}\$$

Note that for any maximal subgroup M < G, $N_G(M) = M \Rightarrow$ the number of subgroups conjugated with M equals $\frac{|G|}{|N_G(M)|} = \frac{|G|}{|M|}$.

Let's denote that |G| = n, $|M_i| = m_i$. $\frac{|G|}{|M_i|} = k_i$,

$$n = |G| = i + \sum_{i=1}^{s} (|M_i| - 1) \cdot \frac{|G|}{|M_i|} = 1 + s|G| - \sum_{i=1}^{s} k_i$$
$$n = 1 + sn - \sum_{i=1}^{s} k_i \ge 2n - (k_1 + k_2)$$

Evidently, $s \ge 2$

Exercise: No finite group $G \neq \{1\}$ can't be covered with conjugates of a single H < G.

$$n < k_1 + k - 2/: n \Rightarrow \frac{1}{m_1} + \frac{1}{m_2} > 2$$

On the other hand: $m_i \geqslant 2, \ i=1, 2 \frac{1}{m_1} + \frac{1}{m_2} \leqslant \frac{1}{2} + \frac{1}{2} = 1$ -contradiction.

This contradiction shows that G is not simple $\Rightarrow G$ is solvable.

Proof. (2)

 $|G| = p^{\alpha}q^{\beta}$, $(p, q \text{ are different primes}, \alpha \ge 1, \beta \ge 2)$. In general,

$$n = |G| = \prod_{i=1}^{r} p_i^{\alpha_i}(p_i, \dots, p_r are \ distinct \ primes).$$

By contradiction: suppose that $r \ge 3$, As G is solvable, we can find a maximal normal subgroup M of a prime index (say. P_1).

Denote as P_i , -Sylow P_{π} subgroup of G. All P_i ($i=2,\ldots,r$), $P_i \leq M$, M is nilpotent.

$$M = P_2 \times \cdots \times P_r \times P_\pi \Rightarrow P_i \ char \ M \triangleleft G$$

$$P \triangleleft G, i = 2, \ldots, r$$

As r=3, then subgroup $P_1 \times P_2$, $P_1 \times P_3$ are proper subgroups of G, \Rightarrow all products are distinct \Rightarrow the elements of P_i commute with the elements of all P_i $(i \ge 2)$.

 $G = P_1 \times \cdots \times P_r \Rightarrow G$ is nilpotent. -Contradiction. $\Rightarrow r = 2$.

Proof. (3)

 $|G|=p^{\alpha}q^{\beta}.$ Denote P,Q -Sylow subgroups of G. We can choose a maximal normal subgroup M of index q.

M is nilpotent $\Rightarrow M = P \times Q \Rightarrow P \ char \ M \Rightarrow P \triangleleft G$.

Q is cyclic. If not $\forall g \in G, < g > < Q$

Consider $< g, P> = < g > P = < g > \times P \Rightarrow$ element $g \in G$ commutes with any $h \in P \Rightarrow G = p \times Q$ -nilpotent. -Contradiction.

Q is cyclic.

5 LECTURE 05 (29.03.2023)

5.1 Ph. Hall's theorems

Definition 5.1. Let G be a finite group |G| = n.

 $k \in \mathbb{N}$ is called a **Hall divisor** of n. If k|n, and $(k, \frac{n}{k}) = 1$, if G has a subgroup H < G, |H| < K, H Is called **Hall subgroup** of G. When $k = p_r$ (p is a prime), then H will be a Sylow p-subgroup of G.

Theorem 5.1. (Hall's Theorems) Let G be a finite solvable group. Then

- 1. $\forall k$ -Hall divisor of n = |G|, |G| has Hall's subgroups of order k, (Existence).
- 2. Any two subgroups of order k are conjugates in G (Conjugate).
- 3. If K is some subgroup of G of order $|K| \mid k$ is contained in some subgroup of order k (Inclusion).

Lemma 1. If G is a finite solvable group, N is a minimal subgroup of G, then N is elementary Abelian: $N \cong \underbrace{\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p}_{r \ times, \ r \geqslant 1} (p \ is \ some \ prime \ number).$

Proof. As N is a minimal normal subgroup M of G, if M were such a subgroup, then $M \triangleleft G$, $M \not\subseteq N$, but N is minimal normal subgroup.

 $\Rightarrow N$ is characteristically simple $\Rightarrow N$ is a direct product of some isomorphisms of some simple subgroups $\cong \mathbb{Z}_p$

Lemma 2. (Frattini-Argument)

Let
$$H \triangleleft G$$
. $p \mid |H|$, $P \in Syl_p(H)$. Then $G = H = N_G(P)$

Proof. Take any $g \in G$, and consider the subgroup $gPg^{-1} \leq H$, moreover this subgroup is Sylow in $H \Rightarrow$ by 2nd Sylow theorem applied to H. $\exists h \in H$, such that $gPg^{-1} = hPh^{-1}$.

$$\Rightarrow (h^{-1}g)P(h^{-1}g)^{-1} = P \Rightarrow h_{-1}g = n \in N_G(P) \Rightarrow g = hn$$

Proof. (of 1st Hall's theorem)

Use induction on n = |G|. (It's clear when G is Abelian)

n=1, it is trivial.

If n > 1 inductive hypothesis. **Th.1** is true for all solvable groups of order < n and Hall's divisor of their order.

If $A \triangleleft G$, A be a minimal normal subgroup of G. By L.1, $A \cong \mathbb{Z}_P^n$, $r \geqslant 1$.

There are two possibilities.

1. p|k, Consider $\overline{G} = G/A$, it is solvable of order $\frac{n}{p^r} < n \Rightarrow G$ has a subgroup $\overline{H} < \overline{G}$ of order $\frac{k}{n^r} = k'$.

$$H:=\pi^{-1}(\overline{H}),$$
 where $\pi:G o\overline{G}=rac{G}{A}$

$$\Rightarrow |H| = k.$$

2.
$$p \nmid k \Rightarrow (p, k) = r$$

Consider $D \triangleleft G$, of maximal order (|D|, k) = 1 (Set set of such subgroups is not empty:A)

Consider $\overline{\overline{G}} = G/D = \overline{e}$. $\overline{\overline{G}}$ is solvable. $\Rightarrow \exists$ a minimal normal subgroup. $\overline{\overline{b}} \triangleleft \overline{\overline{G}}$, a such $|B| = q^m$. $(q \text{ is a prime}, q \neq p, m > 1)$

$$\overline{\overline{B}}={}^{B\!/}{}^{D\!},$$
 $|B|=q^m\cdot|D|,$ $q|k,$ $(|D|,k)=1$

|B| < |Q|, Denote by Q, a Sylow q-subgroup of B.

(2a) $Q \triangleleft G$, then we could replace A with Q and p with Q and p with q, and get the designed subgroup in G as in 1.

(2b)
$$Q \not= G \Rightarrow N_G(Q) = B \cdot D \Rightarrow k|B|, |B| < |G| (|B| = q^m \cdot |D|, |G| = k \cdot k')$$

 \Rightarrow by induction B contains a subgroup of order k .

Note: Without the condition of solvability of G, neither of theorems 1 2 3 is true.

Example 1 Consider $G = A_5$ -the simple group $|A_5| = 60 = 2^3 \cdot 3 \cdot 5$. A_5 has no subgroup orders 20 and 15.

Any subgroup $H < A_5$, |H| = 15 would be cyclic, but A_5 contains no commuting elements of order 3 and 5.

Proposition If a group contains a subgroup H of index $|G:H| \leq 4$, Then G cannot be simple.

Idea Consider the action of G on X = G/H if left cosets by H by means of left multiplication \Rightarrow it gives a homomorphism.

$$\varphi: G \to S_n \ (n \geqslant 4, \ n = G/H)$$

 $S_3, \ S_4 \ is \ solvable$

 \Rightarrow It gives a non - trivial subgroup.

Example 2 The simple group $G = PSL(2, \mathbb{Z}_7) \cong GL(3, \mathbb{Z}_2)$ of order 168 has some subgroup of order 24, that are non-ismorphic. $H_1 \cong S_4$, $H_2 = SL(2, \mathbb{Z}_3)$.

Theorem 5.2. (Philip Hall, S.A. Chunikhin)

If
$$p \mid |G|$$
, $|G| = p_k \cdot m$ is solvable $\Rightarrow \exists H < H, |H| = m$ (Hall's p'-subgroups). If G has p '-Hall's subgroup for any $p \mid |G|$, then G is solvable.

Theorem 5.3. If G contains a nilpotent Hall subgroup of H, then all subgroups of G order H are conjugated.

6 LECTURE 06 (05.04.2023)

6.1 Linear representation

Let G be a group.

Definition 6.1. Linear representation of the group is some homomorphism:

$$\rho: G \to GL(V) \xrightarrow{\sim} GL(n, \mathbb{K}) = A_{n \times n} \mid |A| \neq 0, \ (\dim(V) = n)$$

(Invertible linear operators in a vector space V over some field \mathbb{K}) ρ -matrix representation corresponding to the operator.

Definition 6.2. $U \subset V$, U is $\rho(G)$ -invariant subspace (or invariant subspace) of the representation ρ , if $\forall u \in U, \forall g \in G, \rho(g)u \in U$.

As $\rho(g)$ are invertible $\Rightarrow \rho(g)V = U$

Definition 6.3. The representation is (G, V, ρ) .

It is **reducible**, if \exists some invariant subspace U, $0 \neq U \neq V$, otherwise it is called **irreducible**.

6.1.1 Linearization of a permutation representation

Let a group G acts on a finite set X, $X = \{x_1, \ldots, x_n\}$, consider a vector space $V_x = \langle e_x(basis) | x \in X \rangle_{\mathbb{K}}$, and define the action of G on V: $\rho(g)e_x = e_{g\cdot x}$ and then by linearity:

$$\rho(g) = \sum_{x \in X} \alpha_i e_x = \sum \alpha_x e_{g \cdot x}$$

Evidently, this is a linear representation of G.

Evidently, subspaces $V_1 = \langle e_q + \cdots + e_n \rangle = a$, $(e_i = e_{x_i})$. $\rho(g)$ permutes basic vectors. $\rho(g)a = a$.

$$V_0 = \{ \sum_{i=1}^n \alpha_i e_i | \sum_{i=1}^n \alpha_i = 0 \}, \ (V_0 \ is \ invariant.)$$

Let $\mathbb{K} = \mathbb{C}$, introduce the scalar product $((\alpha_i), (\beta_i)) = \sum \alpha_i \overline{\beta_i}$. $V_0 = V_1^{\perp}$ and $V = V_0 \oplus V_1, V_0$, V_1 are invariant.

When $char \mathbb{K} = p \mid n$, then $V_1 \subset V_0$, $V \neq V_0 \oplus V_1$.

Definition 6.4. The representation (G, V, ρ) is called **completely reducible** id for any invariant subspace $U \subset V$, there exists an invariant complement $W: V = U \oplus W$.

Theorem 6.1. If ρ (or V) is completely reducible, dim $V < \infty$, then $V = V_1 \oplus \cdots \oplus V_s$. V_i are invariant subspaces, minimal invariant, if $(U \subseteq V_i \Rightarrow U = \{0\})$ or $U = V_i$. $\rho(G)$ -invariant V_i .

6.1.2 Subrepresentation

Definition 6.5. If $U \subset V$, U is $\rho(G)$ -invariant, we can restrict all the operators $\rho(g)$ to U, $(\rho(g)|_U)$ and get a **subrepresentation** $(\rho|_{(U)}, G, U)$:

$$\rho|_U:G\to GL(U)$$

6.1.3 Factor subspace

Definition 6.6. U is $\rho(G)$ -invariant subspace of V, construct the **factor space**: $\overline{U} = V/U = \{v+U|v\in V\}$

$$\forall \lambda \in \mathbb{K}$$
, define $\lambda \cdot \overline{u} = \lambda v + U = \lambda \overline{v}$

In matrix form, if we choose a basis of V, in correspondence with U, e_1, \ldots, e_m -a basis of U, e_{m+1}, \ldots, e_n -some vectors that $\overline{e_{m+1}}, \ldots, \overline{e_n}$, constitute a basis of \overline{V} .

$$\forall g \in G, \ A_{\rho(g)} = \begin{pmatrix} A_{\rho(g)} \cdot t & C \\ 0 & B \end{pmatrix} \cdot B = A_{\overline{\rho}(g)}$$

$$\overline{\rho}(g)(v+U) = \rho(g)v + U$$

When ρ (or V) is decomposed into direct sum of minimal invariant subspaces $V = V_1 \oplus \cdots \oplus V_s \Rightarrow$

$$\Rightarrow A_{\rho(g)} = \begin{pmatrix} A_1 & 0 \\ & \ddots & \\ 0 & A_s \end{pmatrix}, \ A_i = A_{\rho(g)}|_{V_i}$$

6.1.4 Direct sum of representations

Definition 6.7. Internal: if $V = V_1 \oplus \cdots \oplus V_s$, where V_i are invariant subspaces, then $\rho = \rho_1 \oplus \cdots \oplus \rho_s$, where $\rho_i = \rho|_{V_i}$.

 ρ is the **direct sum** if subrepresentations.

Definition 6.8. External: Let W_1, \ldots, W_s are arbitrary spaces over the field \mathbb{K} , the same $W_1 \oplus \cdots \oplus w_1, \ldots, w_s W_s$ with evident linear operators if there are given linear representations:

$$\varphi_i: G \to GL(W_i)_j, \ (1 \leqslant i \leqslant s)$$

then we can define for any $g \in G$, the linear operator

$$\varphi(g)(w_i,\ldots,w_s)=\varphi_1(g)w_1,\ldots,\varphi_s(g)w_s$$

We get a representation

$$\varphi(G) \to GL(W)$$

Define $V_i = \{0, \dots, w_i, \dots, 0\}$ not only as vectors, but also linear representations.

6.1.5 Homomorphism of two linear representations

Definition 6.9. Let (ρ, G, V) and (φ, G, W) are linear representation.

A linear map: $f:V\to W$ is called **homomorphism** of representation ρ and φ , if the diagram is commutative i.e.

$$V \xrightarrow{f} W$$

$$\rho(g) \downarrow \qquad \qquad \downarrow \varphi(g)$$

$$V \xrightarrow{f} W$$

Where $\forall g \in G, \ \forall v \in V, \ f(\rho(g))v = \varphi(g)(f(v)), \ \text{or simply} \ f \circ \rho = \varphi \circ f.$

Representations ρ and φ (or V and W) are called **isomorphic**, if \exists a non-degenerated homomorphism: $f: V \to W$, f is called **isomorphism**.

If $\rho \cong \varphi$, then dim $V = \dim W$.

6.1.6 Tensor product of linear representations

Definition 6.10. Let V_1 , V_2 over two vector spaces of the same field \mathbb{K} , consider $V = \langle V_1 \times V_2 \rangle = \{\sum \alpha_{V_1,V_2}(V_1,V_2)\}$ with finite number of summerance:

$$U = \langle (v'_1 + v''_2, v_2) - (v'_1, v_2) - (v''_1, v_2),$$

$$(v_1, v'_2 + v''_2) - (v_1, v'_2) - (v_1, v''_2),$$

$$(\lambda v_1, v_2) - \lambda(v_1, v_2), (v_1, \lambda v_2) - \lambda(v_1, v_2) >$$

$$(1)$$

Call $V_1 \otimes V_2 = V/U = \langle v_1 \otimes v_2 | v_i \in V_i, i = 1, 2 \rangle$ the tensor product.

If (G, V_1, ρ_1) and (H, V_2, ρ_2) are linear representations, we define $(G \times H, V_1 \otimes V_2, \rho_1 \otimes \rho_2)$ namely $(\rho_1 \otimes \rho_2)(g \cdot h)(v_1 \otimes v_2) = (\rho_1(g)v_1) \otimes (\rho_2(h)v_2)$ as the **tensor product** of the two linear representations. If $\dim V_{1,2} < \infty$, then $\dim(V_1 \otimes V_2) = \dim V_1 + \dim V_2$.

LECTURE 07 (12.04.2023) 7

Schur's Lemma 7.1

Lemma 1. (Schur's Lemma) If $f:U\to W$ is a homomorphism of irreducible representations (G, ρ, V) and (G, ρ, W) , then f = 0, or f is an isomorphism.

Proof. Note that Kerf is $\rho(G)$ -invariant subspace of V. Take $v \in Kerf$, $g \in G$,

$$f(\rho(g)v) \stackrel{\text{def}}{=} \varphi(g)(f(v)) = 0$$

As V irreducible, there are two possibilities:

either
$$Ker f = V \Rightarrow f = 0$$

or $Kerf = \{0\} \Rightarrow f$ is monomorphism. (f is injective).

Note that Imf is $\varphi(G)$ -invariant subspace, take any $w \in W \Rightarrow \exists v \in V, f(v) = w, \forall g \in W$ $G, \varphi(g)w = \varphi(g)(f(v)) = f(\underbrace{\rho(g)v}_{\in V}) \in Kerf$ As W is irreducible, then either f(v) = g, that is not the case $\Rightarrow f(v) = w \Rightarrow f$ is isomorphism.

7.1.1 **Multiplicity**

Definition 7.1. If a representation V is completely reducible, then $V = V_1 \oplus \cdots \oplus V_r$ -direct sum of irreducible representations. Let U be irreducible representation of G. Say that U is a component of V, if $\exists i, 1 \leq i \leq r$; $U \cong V_i$

We can collect all the summons in V, isomorphic to U,

$$V = \underbrace{V_1 \oplus \cdots \oplus V_m}_{v_1, \dots, v_m \cong U} \oplus W$$

m is called **multiplicity** if U in V.

Lemma 2. m doesn't depend on the decomposition of V.

Proof. Consider $Hom_G(V, U) = Hom_G(V_1 \oplus \cdots \oplus V_m, U) \cong$

$$\cong \bigoplus_{i=1}^{r} HomG(V_i, U) \cong Hom_G(U, U)$$

By the Schur's Lemma:

$$Hom_G(V_i, U) = \begin{cases} 0, & \text{if } V_i \neq U \\ \cong Hom_G(U, U), & \text{if } V_i \cong U \end{cases}$$

 \Rightarrow dim $Hom_G(V_i, U) = m \cdot \dim End_G(G) \Rightarrow m$ is unique.

Take into account:

Theorem 7.1. (the Machket's Theorem)

Let V be a finite-dimensional representation of a finite group (G over a field \mathbb{K}). If $char\mathbb{K} = 0$ or $char\mathbb{K} = p \mid |G|$, then V is completely reducible.

Such a representation is called common of non-modular. Consider the following situation:

U and W are two representations of a finite group G, and M. Theorem is valid. Suppose we are given an epimorphism of representation:

$$f: V \to W$$
, then

$$V \cong W \oplus Kerf$$

Kerf is an invariant subspace if $V \Rightarrow \exists$ some invariant $W' \subset V$, such that $V = W \oplus Kerf$, but $W = Imf \cong V/Kerf \cong W'$.

7.1.2 Regular representation of the group G

Theorem 7.2. Every irreducible representation U of G is isomorphic with some invariant subspace of the regular representation of G, (i.e. U is a component of the regular representation with a positive multiplicity).

Let $G = g_1, \ldots, g_n, V_G = \langle e_g | g \in G \rangle$, $reg(g)(e_h) = e_{gh}$ (Linearization of the left regular representation).

 $V_1 = <\sum e_g>$, $reg_G|_{V_1}$ is one-dimensional identity if representation.

$$V_0 = \{v = \sum x_g e_g | \sum x_g = 0\} = V_1^{\perp}$$

We may make V_G to an algebra over \mathbb{K} . Define $e_g e_h = e_{gh}$

Identify V_G with the algebra $\mathbb{K}G = \{\sum x_g g\}$ with the evident multiplicity. We may consider the action of $\mathbb{K}G$ on itself by left multiplications and reg_G is the restriction of this action on G.

(Proof of the Theorem)

Construct an epimorphism of representations:

$$f: \mathbb{K}G \to U$$

Where U is irreducible representation of $G(G, \rho, U)$.

Pick certain vector $u \in U$, define

$$f(1) = u_0$$

$$f(g) = f(reg(g) = 1) := \rho(g)u_0 \in U$$

 $g: G \to \{\rho(g)u_0|g \in G\}$, and $f: \mathbb{K}G \to <\rho(g)u_0>\subseteq U$. Evidently, that this subspace is invariant in U. We have constructed an epimorphism f of representation.

$$\mathbb{K}G = (V_G, reg, G) \ onto \ (U, \rho, G)$$

In this situation, \exists some $E \in V_G$, reg(G)-invariant, such that $V_G = W \oplus \ker f \Rightarrow U \cong W$, and we are ready.

7.2 Character theory (over \mathbb{C})

Let G be a finite group, ρ : a certain representation.

Definition 7.2. The Character χ_{ρ} of the representation ρ , is the function:

$$\chi_{\rho}:G\to\mathbb{C}$$

$$\chi_{\rho}(G) = tr\rho(G) = trA_{\rho(G)} = \sum_{i=1}^{n} a_{ii}(g)$$

Some properties:

- 1. $\chi_{\rho}(1) = \dim(V)$.
- 2. $\forall g, h \in G, \chi_{\rho}(h) = \chi_{\rho}(g^{-1}h)g$.
- 3. If ρ and φ are two isomorphic representations, then $\chi_{\rho}(g) = \chi_{\varphi}(g)$.
- 4. If $\rho = \rho_1 \oplus \cdots \oplus \rho_s$,-direct sum of some (sub) representations, then $\chi_{\rho} = \sum \chi_{\rho_i}$
- 5. $\chi_{\rho \otimes \varphi}(g) = \chi_{\rho}(g) \cdot \chi_{\varphi}(g)$

Proof. 1. $\rho(1) = E_n$. (identical operator, $trE_n = n$)

- 3. $trA_{\rho(g)}=tr(C^{-1}A_{\rho(g)}C)=trA_{\rho(g)}$. (C-transition matrix to a new basis)
- 2. $\chi_{\rho}(g^{-1}hg) = trA_{\rho(g^{-1})\rho(h)\rho(g)} = trA_{\rho(g^{-1})}trA_{\rho(h)}trA_{\rho(g)} = trA_{\rho(h)}$.
- 4. $V = V_1 \oplus \cdots \oplus V_s$

In an appropriate basis:

$$A_{\rho}(g) = \begin{pmatrix} A_{\rho_1(g)} & 0 \\ & \ddots & \\ 0 & A_{\rho_s(g)} \end{pmatrix} \Rightarrow tr A_{\rho} = \sum_{i=1}^{s} tr A_{\rho(g)}$$

5. Let (ρ, V) , (φ, W) are representations of the groups G, H, $(\rho \otimes \varphi, V \otimes W, G \times H)$. $(\rho \otimes \varphi)(g, h)(v_i \otimes w_j) = (\rho(g)v_i) \otimes (\varphi(h)w_j)$. Note That for h = g, we get a representation of G, if:

$$A = A_{\rho(g)}, B = A_{\varphi(g)} \Rightarrow$$

$$A_{\rho \otimes \varphi(g)} = A \times B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{pmatrix}$$

$$tr(A \times B) = \sum_{i} tra_{ii}B = trA \cdot trB$$

8 LECTURE 08 (19.04.2023)

8.1 Consequences of Schur's Lemma

If φ is an irreducible representation of G (over \mathbb{C}), then its character χ_{φ} is an irreducible character. (It means that $\chi_{\varphi} \neq \eta + \theta$, where η, θ are characters.)

Lemma 1. Schur's Lemma

If $\varphi: G \to GL(V), \psi: G \to GL(W)$ are irreducible representations, and $f: V \to W$ is a homomorphism of these representations, then f = 0, (if $\varphi = \psi$), or f is isomorphic.

Consequence: If K is alg closed, $V \equiv W$, f is isomorphism $\Rightarrow f \lambda E, \lambda \in K$.

Proof. As K is alg closed, then $f:V\to V\equiv W$ has an eigenvector v with eigenvalue λ , then the subspace:

$$V_{\lambda} = \{ v \in V | f(v) = \lambda v \} \neq 0$$

is an invariant subspace of $V \Rightarrow V_{\lambda} = V \Rightarrow f = \lambda E$ is a scalar operator.

Lemma 2. $(K = \mathbb{C})$ In the condition of **Schur's Lemma**:

Let $f: V \to W$ be some linear mapping. Consider the average mapping:

$$\widetilde{f} := \frac{1}{|G|} \sum_{g \in G} \psi(g) f \varphi(g)^{-1} = \begin{cases} 0, \ if \ \varphi \neq \psi \\ \lambda, \ if \ V \equiv W, \ \varphi = \psi, \ where \ \lambda = \frac{trf}{\dim V} \end{cases}$$

Proof. It's evident that: $\widetilde{f}\varphi(h)=\psi(h)\widetilde{f}\Rightarrow$ by the Consequence (where $V=W,\,\varphi=\psi$), $\widetilde{f}=\lambda E$, calculate the trace of \widetilde{f} :

$$tr\widetilde{f} = trf = \lambda trE = \lambda \dim V$$

$$\lambda = \frac{trf}{\dim V}$$

8.2 Matrix Version of the Lemma

Choose bases in V and W:

$$\{v_i|i\in I\subset V\},\ \{w_i|j\in J\subset W\}$$

The matrices of operators are denoted with the same letters

$$\varphi(g) = (\varphi_{ii'}(g)), \ \psi(g) = (\psi_{jj'}(g))$$
$$f = (f_{ii}), \ \widetilde{f} = (\widetilde{f}_{ii})$$

By the definition of \widetilde{f} , we can write:

$$\widetilde{f}_{ji} = \frac{1}{|G|} \sum_{g,i',j'} \psi_{jj'}(g) f_{j'i'} \varphi_{i'i}(g^{-1})$$
(2)

If we take $f = E_{j_0 i_0}$, $(f_{j_0 i_0} = 1, f_{ji} = 0, if (j, i) \neq (j_0, i_0))$

1. if $\varphi \neq \psi$, then from (2) \Rightarrow

$$\frac{1}{|G|} \sum_{g \in G} \psi_{jj_0}(g) \varphi_{ij}(g') = 0, \forall i, j, i_0, j_0$$
(3)

2. when $V \equiv W$, $\varphi = \psi$, then

$$\widetilde{f} = \frac{trf}{\dim V} E$$

$$trf = \sum_{i} f_{ii} = \sum_{i,i'} \delta_{j'i} \cdot f'_{j'i} \implies$$

$$\frac{1}{|G|} \sum_{i} \varphi_{jj'}(g) \cdot f_{j'i} \cdot \varphi_{i'i}(g^{-1}) = \frac{\delta_{ji}}{\dim V} \sum_{j',i'} \delta_{j'i'} \cdot f_{j'i'}$$

Taking $f = E_{j_0 i_0}$, we got:

$$\frac{1}{|G|} \sum_{g \in G} \varphi_{jj_0}(g) \varphi_{i_0 i}(g^{-1}) = \begin{cases} \frac{\delta_{ji}}{\dim V}, & \text{if } i_0 = j_0, \\ 0, & \text{otherwise} \end{cases}$$

8.3 Orthogonality relation of characters

Definition 8.1. Define on the space F_G of all functions $f: G \to \mathbb{C}$, the Hermitian scalar product:

$$(f_1, f_2)_G := \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$$

If χ , θ are characters, then they are constant on conjugate classes, if $G = \bigcup_{i=1}^r K_i, (K_1 \dots K_r)$ are all conjugate classes, so

$$(\chi, \theta)_G = \frac{1}{|G|} \sum_{i=1}^r |K_i| \chi(g_i) \theta(g_i), \text{ when } g_i \in K_i$$

Theorem 8.1. (The first orthogonality relation) Let φ, ψ are irreducible Representations of G over $\mathbb C$

$$\frac{1}{|G|} \sum_{g \in G} \psi_{jj_0}(g) \varphi_{i_0 i}(g^{-1}) = 0, \ \forall i, j, i_0, j_0$$

then

$$(\chi_{\varphi}, \chi_{\psi}) = \delta_{\varphi, \psi} = \begin{cases} 1, & \text{if } \varphi \neq \psi, \\ 0, & \text{otherwise.} \end{cases}$$

Proof. $\chi_{\varphi(g)}=\sum_i \varphi_{ii}(g), \, \chi_{\psi(g)}=\sum_i \psi_{jj}(g).$ Put $i=i_0j=j_0$ and sum over all $i,j\Rightarrow 0$

$$\frac{1}{|G|} \sum_{g,i,j} \psi_{ij}(g) \varphi_{ji}(g^{-1}) = \frac{1}{|G|} \sum_{g \in G} \psi_{ij}(g) \varphi_{ji}(g^{-1}) = (\chi_{\psi}, \chi_{\varphi})_{G}$$

Consequence 1: The number s of all pairwise non-isomorphic irreducible complex representations of G, s=r -the number of conjugate classes of G.

Proof. The irreducible characters $\chi_1 \dots \chi_s$ are orthogonal \Rightarrow they are linearly independent, but dim ZF(G) (the space of central class) functions on G, which are constant on conjugate classes.

9 LECTURE 9 (26.04.2023)

10 LECTURE 10 (03.05.2023)

A Sylow Theorems

Sylow Theorems [1]

References

[1] James S. Milne. Group theory (v4.00), 2021. Available at www.jmilne.org/math/.