Analysis I

Thomas Fleming

October 19, 2021

Contents

1	Lebesque Integration	2
2	Simple Functions	5
3	Littlewood's 3 Principles	7

Lecture 16: Conclusion of Measure Theory and Lebesque Integration

Tue 19 Oct 2021 13:02

Recall. We stated the theorems behind littlewood's 3 principles, now we prove them.

Proof. 1. (2.2). Let J be the collection of all open intervals (a,b) with $a,b \in \mathbb{Q}$ and a < b. Since J is countable we can order the intervals $J = \{J_k : k \in \mathbb{N}\}$. Let $\varepsilon > 0$ and first we do the case S is bounded. For each $n \in \mathbb{N}$, there is a closed set $C_n \subseteq f^{-1}(J_n)$ and a $D_n = S \setminus f^{-1}(I_n)$ such that $\mu(S \setminus (C_n \cup D_n)) < \frac{\varepsilon}{2^n}$. Since S is bounded, C_n and D_n are compact. Let $K = \bigcap_{n \in \mathbb{N}} (C_n \cup D_n)$ and as $C_n, D_n \subseteq S$, we see $K \subseteq S$. Furthermore, K is compact and we find $\mu(S \setminus K) \le \sum_{i=1}^{\infty} \mu(S \setminus (C_n \cup D_n)) < \varepsilon$. Now, we show the restriction is continuous. Let $\varepsilon > 0$, then for $x \in K$ we find $a,b \in \mathbb{Q}$ such that a < f(x) < b and $b - a < \varepsilon$. Hence, there is $n \in \mathbb{N}$ such that $I_n = (a,b)$. Consequently, $x \in f^{-1}(I_n)$ and $x \notin S \setminus f^{-1}(I_n)$. So, $x \in (S \setminus f^{-1}(I_n))^c \subseteq D_n^c$. As D_n is closed, D_n^c is open, hence there is a $\delta > 0$ so that $(x - \delta, x + \delta) \subseteq D_n^c$. If $y \in K \cap D_n^c$, then $y \in C_n$, thus $y \in f^{-1}(I_n)$, hence a < f(y) < b. So, $|f(x) - f(y)| < b - a = \varepsilon$ for $y \in (x - \delta, x + \delta)$.

Now, we do the unbounded case. As S is unbounded and $\varepsilon>0$, we find $N\in N$ so that $S'=S\cap [-N,N]$ has the property $\mu(S\setminus S')<\frac{\varepsilon}{2}$, that is S is approximated by a bounded function arbitrarily well. Since S' is bounded, there is a compact set $K\subseteq S'\subset S$ so that $f\mid K$ is continuous and $\mu(S'\setminus K)<\frac{\varepsilon}{2}$. Then, $\mu(S\setminus K)=\mu(S\setminus S')+\mu(S'\setminus K)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

2. (2.4). Let E^* be the set of all $x \in S$ such that $(f_n(x))$ does not converge. By assumption, $\mu(E^*) = 0$. Since $f(x) = \lim_{n \to \infty} f_n(x) = \limsup_{n \to \infty} f_n(x)$ for all $x \in S \setminus E^*$, then f is measurable. For $k, \ell \in \mathbb{N}$, let $E_{k,\ell} = \{x \in S : |f_{\ell}(x) - f(x)| \ge \frac{1}{k}\}$. Then, $E_{k,\ell}$ is measurable. Fix k. If for each

 $n\in\mathbb{N}$ there is a $\ell\geq n$ so that $|f_{\ell}\left(x\right)-f\left(x\right)|\geq\frac{1}{k}$, then $x\in E^*$ as f does not converge at that point. Hence, $\bigcap_{n\in\mathbb{N}}\bigcup_{\ell=n}^{\infty}E_{k,\ell}\subseteq E^*$. Since $\mu\left(\bigcup_{\ell=1}^{\infty}E_{k,\ell}\right)\leq\mu\left(S\right)\leq\infty$, and the collection $\{\bigcup_{\ell=n}^{\infty}E_{k,\ell}\}$ is clearly descending. Hence, $\mu\left(\bigcap_{n\in\mathbb{N}}\bigcup_{k=n}^{\infty}E_{k,\ell}\right)=\lim_{n\to\infty}\mu\left(\bigcup_{\ell=n}^{\infty}E_{k,\ell}\right)\leq\mu\left(E^*\right)=0$. This holds for all $k\in\mathbb{N}$. So, for $\varepsilon>0$ and $k\in\mathbb{N}$, we have a $n_k\in\mathbb{N}$ such that $\mu\left(\bigcup_{\ell=n_k}^{\infty}E_{k,\ell}\right)<\frac{\varepsilon}{2^k}$. Thus, $E=\bigcup_{k\in\mathbb{N}}\bigcup_{\ell=n_k}^{\infty}E_{k,\ell}$ is measurable and $\mu\left(E\right)<\sum_{k=1}^{\infty}\bigcup_{\ell=n_k}^{\infty}E_{k,\ell}=\sum_{k=1}^{\infty}\frac{\varepsilon}{2^k}=\varepsilon$. If $x\in S\setminus E$, then $|f_n\left(x\right)-f\left(x\right)|<\frac{1}{k}$ for $k\in\mathbb{N}$ if $n\geq n_k$. So, (f_n) converges uniformly on $S\setminus E$.

This concludes measure theory.

1 Lebesque Integration

Definition 1.1 (Lebesque Integral: Nonnegative Simple Functions). Let s be a nonnegative simple function of the form $s = \sum_{k=1}^{K} a_k \chi_{S_k}$ where $\{S_k : 1 \leq k \leq K\}$ is a disjoint collection of measurable sets. Then, the **Lebesque Integral** of s is defined to be

$$\int s = \int s(x) dx = \int s d\mu = \sum_{k=1}^{K} a_k \mu(S_k).$$

Proposition 1.1. If s is nonnegative and simple with two representations, $s = \sum_{k=1}^{K} a_k \chi_{S_k} = \sum_{j=1}^{J} b_j \chi_{T_j}$ for disjoint collections of measurable sets $\{S_k : 1 \leq k \leq K\}$ and $\{T_j : 1 \leq j \leq J\}$. Then

$$\sum_{k=1}^{K} a_k \mu\left(S_k\right) = \sum_{j=1}^{J} b_j \mu\left(T_j\right).$$

In particular, $\int s$ is well defined.

The proof of this is trivial.

Lemma 1.1. Let s, t be nonnegative and simple and $\alpha \geq 0$. Then

$$\alpha \cdot \int s = \int \alpha \cdot s$$
 and $\int (s+t) = \int s + \int t$

.

Proof. Clearly, multiplying the sum times α yields $\alpha \sum_{k=1}^{K} a_k \mu\left(S_k\right) = \sum_{k=1}^{K} \alpha a_k \mu\left(S_k\right)$. For the second claim. Suppose $s = \sum_{k=1}^{K} a_k \chi_{S_k}$ and $g = \sum_{j=1}^{J} b_j \chi_{T_j}$ are canonical representations. Then, $s + t = \sum_{k=1}^{K} \sum_{j=1}^{J} \left(a_k + b_j\right) \chi_{S_k \cap T_j}$ with

 $\{S_k\cap T_j: 1\leq k\leq K, 1\leq j\leq J\}$ is a disjoint collection and

$$\int (s+t) = \sum_{k=1}^{K} \sum_{j=1}^{J} (a_k + b_j) \mu (S_k \cap T_j)$$

$$= \sum_{k=1}^{K} a_k \sum_{j=1}^{J} \mu (S_k \cap T_j) + \sum_{j=1}^{J} b_j \sum_{k=1}^{K} \mu (S_k \cap T_j)$$

$$= \sum_{k=1}^{K} a_k \mu (S_k) + \sum_{j=1}^{J} b_j \mu (T_j)$$

$$= \int s + \int t.$$

Lemma 1.2. Let s,t be nonnegative and simple such that $s \leq t$. Then, $\int s \leq \int t$.

Proof.

$$\int t = \int (t - s + s)$$

$$= \int \underbrace{(t - s)}_{\geq 0} + \int s$$

$$\geq \int s.$$

Definition 1.2. Let $f: S \to \overline{\mathbb{R}}$, then the **zero extension** of f to \mathbb{R} is

$$f^*: \mathbb{R} \longrightarrow \overline{\mathbb{R}}$$

$$x \longmapsto f^*(x) = \begin{cases} f(x), & x \in S \\ 0, & x \notin S \end{cases}.$$

Moreover, this function preserves measurability.

Definition 1.3 (Lebesque Integral of a General Nonnegative Function). Let $f: \mathbb{R} \to \overline{\mathbb{R}}$ be a nonnegative measurable function and $\mathscr{S}(f)$ be the collection of all nonnegative simple functions, s, such that $s \leq f$. Then, the **Lebesque Integral** of f over \mathbb{R} is defined to be

$$\int f = \int_{\mathbb{R}} f(x) dx = \sup \{ \int s : s \in \mathscr{S}(f) \}$$

If $f: S \to \overline{\mathbb{R}}$ is nonnegative and measurable, then

$$\int_{S} f = \int_{S} f(x) dx = \int_{\mathbb{R}} f^{*}$$

Theorem 1.1 (Chebyshev's Inequality). Let $f : \mathbb{R} \to \overline{\mathbb{R}}$ be nonnegative and measurable. Then, for any $\lambda \in (0, \infty)$, then

$$\mu\left(\left\{x \in \mathbb{R} : f\left(x\right) \ge \lambda\right\}\right) \le \frac{1}{\lambda} \int f.$$

Proof. Let $E = \{x \in \mathbb{R} : f(x) \ge \lambda\}$. This is the preimage of an extended borel set, hence measurable. Let $s = \lambda \chi_E$. Then, $s \in \mathscr{S}(f)$. Hence, $\int s = \lambda \mu(E) \le \int f$. Hence the inequality holds.

Theorem 1.2. Let $f: \mathbb{R} \to \overline{\mathbb{R}}$ be nonnegative ad measurable. Then $\int f = 0$ if and only if f(x) = 0 for almost every $x \in \mathbb{R}$.

Proof. Suppose $\int f = 0$, then by chebyshev

$$\mu\left(\left\{x \in \mathbb{R} : f\left(x\right) > 0\right\}\right) = \mu\left(\bigcup_{n \in \mathbb{N}} \left\{x \in \mathbb{R} : f\left(x \ge n\right)\right\}\right)$$

$$\leq \sum_{n=1}^{\infty} \mu\left(\left\{x \in \mathbb{R} : f\left(x\right) \ge \frac{1}{n}\right\}\right)$$

$$= \sum_{i=1}^{\infty} \int f$$

Conversely, if f(x) = 0 almost everywhere, then for every $s \in \mathcal{S}(f)$, we see s is zero almost everywhere, hence $\int s = 0$, so $\int f = \sup\{0 : s \in \mathcal{S}(f)\} = 0$. \square

Lecture 15: Measurable Functions (3) and Simple Functions

Thu 14 Oct 2021 13:01

Proposition 1.2. Let (f_n) be a sequence of measurable functions $f_n: S \to \overline{\mathbb{R}}$. Then, we define $f, g, F, G: S \to \overline{\mathbb{R}}$ with

- $f(x) = \sup\{f_n(x) : n \in \mathbb{N}\},\$
- $g(x) = \inf\{f_n(x) : n \in \mathbb{N}\},\$
- $F(x) = \lim \sup_{n \to \infty} f_n(x)$,
- $G(x) = \lim \inf_{n \to \infty} f_n(x)$

all being measurable.

Proof. • Note that $f\left(x\right)>c$ if and only if there is an n such that $f_{n}\left(x\right)>c$. Hence, $f^{-1}\left(\left(c,\infty\right]\right)=\bigcup_{n\in\mathbb{N}}f_{n}^{-1}\left(\left(c,\infty\right)\right)$ is measurable.

- It it clear $g(x) = -\sup\{-f_n(x) : n \in \mathbb{N}\}.$
- Next, note that $F(x) = \inf\{\sup\{f_k(x) : k \geq n\} : n \in \mathbb{N}\}$ and $G(x) = \sup\{\inf\{f_k(x) : k \geq n\} : n \in \mathbb{N}\}$, hence they are measurable by the first two theorems.

Remark. It is also true that for a measurable function $f:S\to\overline{\mathbb{R}}$ is measurable implies

$$f^{+}(x) = \sup\{f(x), 0\}$$

 $f^{-}(x) = \sup\{-f(x), 0\}$

are also measurable.

2 Simple Functions

Definition 2.1. Let $S \subseteq \mathbb{R}$. Then,

$$\chi S : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \chi_S(x) = \begin{cases} 1, & x \in S \\ 0, & x \notin S \end{cases}$$

is the characteristic function of ${\cal S}$.

A measurable function $s: \mathbb{R} \to \overline{\mathbb{R}}$ is a **simple functions** if $s(\mathbb{R})$ is finite.

Proposition 2.1. If s is a simple function. Then, there exists a finite, disjoint collection of measurable sets $\{S_k : 1 \leq k \leq K\}$ and a finite sequence of distinct real numbers $(a_k)_{1 \leq k \leq K}$ such that $\mathbb{R} = \bigcup_{k=1}^K S_k$ and $s = \sum_{k=1}^K a_k \chi_{S_k}$. Furthermore, this combination is unique up to permutation of the a_k, s_k . This representation is called the **canonical representation**.

Lemma 2.1. Let $f: \mathbb{R} \to \mathbb{R}$ be nonnegative and measurable with $f(\mathbb{R})$ being bounded, then for each $\varepsilon > 0$ there is a nonegative simple function s such that $f \geq s$ and $f(x) - s(x) < \varepsilon$ for all $x \in \mathbb{R}$.

Proof. There is a M > 0 such that $f(\mathbb{R}) \subseteq [0, M)$. Given ε , let $y_k = k\varepsilon$ for $k \in \mathbb{N}_0$. Since, $y_k - y_{k-1} = \varepsilon$, there is $N \in \mathbb{N}$ such that $[0, M] \subseteq \bigcup_{k \in \mathbb{N}} [y_{k-1}, y_k)$. Let $S_k = f^{-1}([y_{k-1}, y_k))$ for $1 \le k \le N$. Define $s = \sum_{k=1}^N y_{k-1} \chi_{S_k}$. Then, $s \ge 0$ and s is simple. Furthermore, for each $x \in \mathbb{R}$, there is a unique k, with $1 \le k \le N$ such that $f(x) \in [y_{k-1}, y_k)$. Consequently, $s(x) = y_{k-1} \le f(x) < y_k$. Hence, $f(x) - s(x) < y_k - y_{k-1} = \varepsilon$.

Theorem 2.1. $f: \mathbb{R} \to \overline{\mathbb{R}}$ is measurable if and only if there is a sequence of simple functions (s_n) a such that (s_n) converges pointwise to f and $|f| \ge |s_n|$ for all $n \in \mathbb{N}$.

Proof. Suppose the sequence (s_n) . Then, f is measurable as

$$f = \lim_{n \to \infty} s_n = \limsup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n.$$

Now, assume f is measurable. Then, $f=f^+-f^-$. Both f^+ and f^- are measurable and nonnegative. Since the difference of two simple functions is simples, it suffices to assume $f \geq 0$, that is $f^- = 0$. Let $B_n = \{x \in \mathbb{R} : f(x) \leq n\}$ and $g_n = f\chi_{B_n}$ for all $n \in \mathbb{N}$. Since $g_n(x) = \inf\{f(x), n\chi_{B_n}\}$. Then, we see g_n is measurable as f and the simple function $n\chi_{B_n}$ are measurable. Furthermore, g_n is bounded. Hence, there is a measurable simple function r_n such that $g_n \geq r_n$ and $g_n(x) - r_n(x) < \frac{1}{n}$ for all x. Finally, define

$$s_n = r_n + n\chi_{B_n^c}$$
.

Then, we find (s_n) is the sequence of functions desired.

Corollary 1. Let (f_n) be a sequence of nonnegative measurable functions $f_n : \mathbb{R} \to \overline{\mathbb{R}}$. Then, $x \mapsto \sum_{i=1}^{\infty} f_k(x)$ is measurable. In particular, if $f, g : \mathbb{R} \to \overline{\mathbb{R}}$ are nonnegative and measurable, then so is f + g.

Proof. For $N \in \mathbb{N}$, let $F_n = \sum_{k=1}^N f_k$. For each k there is sequence of simple functions $(s_{k,n})_n$ such that $(s_{k,n})_n$ converges pointwise to f_k and $f_k \geq s_{k,n} \geq 0$ for all n.

Hence, $\left(\sum_{k=1}^{N} s_{k,n}\right)_n$ is a sequence of nonnegative simple functions such that $F_N \leq \sum_{k=1}^{N} s_{k,n}$ for all n and

$$\lim_{n \to \infty} \sum_{k=1}^{N} s_{k,m} (x) = F_N (x)$$

for all $x \in \mathbb{R}$.

So, F_N is the limit of a sequence of measurable functions, so it is measurable. Furthermore, we have that for each $x \in \mathbb{R}$, $(F_{N(x)})_N$ is increasing, we find

$$\sum_{k=1}^{\infty} f_k = \limsup_{N \to \infty} F_N = \lim_{N \to \infty} F_N.$$

3 Littlewood's 3 Principles

Remark. 1. Every measurable set is "nearly" the union of a finite collection of intervals.

- 2. Every measurable function is "nearly" continuous.
- 3. Every pointwise convergent sequence of measurable functions is "nearly" uniformly continuous.

We state these princeiples rigorously in the following way:

Theorem 3.1. If S is measurable, with $\mu(S) < \infty$, then for each $\varepsilon > 0$ there is a finite disjoint collection of open intervals $\{I_k : 1 \le k \le n\}$ such that for $U = \bigcup_{k=1}^n I_k$ we find

$$\mu\left(S\triangle U\right)<\varepsilon.$$

Theorem 3.2 (Lucin's Theorem). Let $f: S \to \mathbb{R}$ be measurable with $\mu(S) < \infty$. Then, for each $\varepsilon > 0$ there is a compact $K \subseteq S$ such that $f|_K: K \to \mathbb{R}$ is continuous and $\mu(S \setminus K) < \varepsilon$.

Theorem 3.3 (Lucin's Theorem for functions on \mathbb{R}). Let $f: \mathbb{R} \to \mathbb{R}$ be measurable. Then, for all $\varepsilon > 0$ there is a continuous $g: \mathbb{R} \to \mathbb{R}$ and a closed set $E \subseteq \mathbb{R}$ such that f = g on E and $\mu(E^c) < \varepsilon$. Moreover, $\sup\{|g(x)|: x \in \mathbb{R}\} \le \sup\{|f(x)|: x \in \mathbb{R}\}$.

Theorem 3.4 (Egoroff's Theorem). Let S be measurable with $\mu(S) < \infty$. Suppose (f_n) is a sequence of measurable functions $f_n : S \to \mathbb{R}$ which converges pointwise almost everywhere to $f : S \to \mathbb{R}$. Then, for all $\varepsilon > 0$, there is a measurable $E \subseteq S$ such that $\mu(E) < \varepsilon$ and (f_n) converges uniformly to f on $S \setminus E$.