Math 295: Homework 9

Carter Rhea

March 31, 2014

- 1. Chapter 5.2 # 3 Which of the functions in exercise 3 of \S 5.1 are one-to-one and which are onto?
 - (a) Let $A = \{a, b, c, \}$ and $B = \{a, b\}$, and $\{(a, b), (b, b), (c, a)\}$. f is not one-to-one but it is onto.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by the formula $f(x) = x^2 2x$. f is both one-to-one and onto.
 - (c) Let $f = \{(x, n) \in \mathbb{R} \times \mathbb{Z} | n \le x < n + 1\}.$
- 2. Chapter 5.2 #6 Let $A = \mathcal{P}(\mathbb{R})$. Define $f : \mathbb{R} \to A$ by the formula $f(x) = \{y \in \mathbb{R} | y^2 < x\}$.
 - (a) Find f(2). $f(2) = y < \sqrt[2]{2}$
 - (b) Is f one-to-one? Is it onto? f is one-to-one, but f is not onto.
- 3. Chapter 5.2 # 8 Suppose $f: A \to B$ and $g: B \to C$.
 - (a) Prove that if $g \circ f$ is onto then g is onto. Proof: Assume $(g \circ f)(x)$ is onto. Thus, by the definition of compisition of g(f(x)). Since, g(f(x)) is onto, there exists some $a \in A$ such that g(f(x)) = c such that $c \in C$. Since a, c were arbitrary, we can find an $a \in A$, such that g(f(x)) = c. Thus $g(f(x)) = (g \circ f)(x)$ is onto.
 - (b) Prove that if $g \circ f$ is one-to-one then f is onto. Proof: Assume $(g \circ f)(x)$ is one-to-one. Thus g(f(x)) is one-to-one. Given $a_1, a_2 \in A$, by the definition of one-to-one $g(f(a_1)) = g(f(a_2)) \to a_1 = a_2$. Since $g(f(a_1)) = g(f(a_2))$ because $(g \circ f)(x)$ is one-to-one, $a_1 = a_2$. Thus $f(a_1) = f(a_2)$. Therefore, since $a_1 = a_2$, f is one-to-one.
- 4. Chapter 5.3 # 2
- 5. Chapter 5.3 # 6 Let $A = \mathbb{R} \setminus \{2\}$, and le f be the function with domain A defined by the formula

$$f(x) = \frac{3x}{x - 2}$$

(a) Show that f is a one-to-one, onto function from A to B for some set $B \subseteq \mathbb{R}$. What is the set B. One-to-one: According to the definition of f, we have

iff
$$f(a_1)=f(a_2)$$

$$\frac{3a_1}{a_1-2}=\frac{3a_2}{a_2-2}$$
 iff
$$3a_1(a_2-2)=3a_2(a_1-2)$$
 iff
$$3a_1a_2-6a_1=3a_1a_22-6a_2$$
 iff
$$-6a_1=-6a_2$$
 iff
$$a_1=a_2$$

Thus there can be no real numbers a_1 and a_2 for which $f(a_1) = f(a_2)$ and $a_1 \neq a_2$. Thus f is one-to-one.

Onto: Let y be an arbitrary real number. Let $x=\frac{-2x}{3-y}$. Then $g(x)=\frac{3x}{x-2}=\frac{3\frac{-2y}{3-y}}{\frac{-2y}{3-y}-2}=\frac{\frac{-6y}{3-y}}{\frac{-2y-6+2y}{3-y}}=\frac{-6y}{3-y}$. Thus $\forall y\in\mathbb{R}\exists x\in\mathbb{R}(g(x)=y)$. Therefore, f is an arbitrary function. The set $B=\mathbb{R}\setminus\{3\}$.

It has been shown that f is one-to-one and unto from A to B for some set $B \subseteq \mathbb{R}$.

(b) Find a formula for
$$f^{-1}(x)$$
.
$$f^{-1} = \frac{2x}{x-3}$$