

АЛГОРИТМЫ И СТРУКТУРЫ ДАННЫХ

Red-Black Trees Красно-Черные деревья

Paмон Антонио Родригес Залепинос <u>arodriges@hse.ru</u>

Структура курса АиСД2020

	Ng	2	Дата	Тема лекции	Краткое описание
Nº 1		1	08 сен	Введение	О курсе, пользе быстрых алгоритмов, литература
		2 15 сен Асимптотика		Асимптотика	Фундамент всех дальнейших тем: оценка сложности
		3	22 сен	Базовые структуры данных 1	Стек, разные виды списков, дек, очередь
Модуль		4	29 сен	Базовые структуры данных 2	Двоичные деревья поиска (база для всех деревьев)
Š		5	06 окт	Bitmaps	Быстро ∪, ∩ INT, large CPU caches, WAH, Concise, Roaring ●
		6	13 окт	Хеширование, хэш таблицы 1	Быстро найти кеу в множестве; хеш. цепочками, анализ
	Ng	2	Дата	Тема лекции	Краткое описание
	7	1	27 окт	Хеширование, хэш таблицы 2	Открытая адресация, кэш CPU, кукушкино хеширование
	8	2	03 ноя	Фильтры	Быстро проверить ∈ множеству; Ф. Блума, Кукушкин Ф.
No 2	9	3	10 ноя	СД для вторичной памяти	Все данные не помещаются в RAM, B-tree, efficient I/O
4	10	4	17 ноя	Пространственные СД	Помимо int,str ∃ другие типы; 80% геоданных; R-дерево
ДУ	11	5	24 ноя	Параллельные СД 1	Speedup за счет multicore CPU; повышение утилизации
N V	12	6	01 дек	Параллельные СД 2	Параллельный SkipList — понятен для бакалавриата
	13	7	08 дек	Деревья в оперативной памяти	Красно-черное, другие виды: сложнейшее в конец курса
	14	8	15 дек	Современные тренды	Резюме, machine learning в СД, распределенные системы
				СЕССИЯ с 21.12.2020	на чем основано

- понедельный календарный тематический план
- последовательное раскрытие материала
- лекции, семинары и ДЗ синхронизированы
- цель максимально дать знания и научить

Базовые структуры данных

Screenshot из Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн - Алгоритмы. Построение и анализ.

Часть III. Структуры данных 259

- Глава 10. Элементарные структуры данных 264
- Глава 11. Хеширование и хеш-таблицы 285
- Глава 12. Бинарные деревья поиска 319
- Глава 13. Красно-черные деревья 341
- Глава 14. Расширение структур данных 372

Часть IV. Усовершенствованные методы разработки и анализа 389

- **Мы прошли с Вами все базовые структуры данных** (красно-черное дерево в конце курса одна из самых сложных структур данных)
- Хеш-таблицы важнее, чем иногда кажется: не нужно их недооценивать; некоторые представления об эффективности СД развеяны: на семинаре вы собственноручно, на практике сравнили производительность красно-черных деревьев и хэш-таблиц (если не нужны next&prev)
- Хеш-таблицы, хеширование: **старая и активная область R&D** (редкое сочетание, recall Cuckoo)

Польза рассмотренных тем курса АиСД2020

	Nº	Тема лекции		Польза для будущей карьеры	
Модуль № 1	1	Введение		• Общие понятия о пользе быстрых структур данных	
	2	2 Асимптотика		• Теоретические основы всех тем по алгоритмам и СД	
	3 Базовые структуры данных 1			• Классические основные, базовые темы	
	4 Базовые структуры данных 2				
	5	Bitmaps		 INT – основной и часто встречающийся тип данных; bitmaps – самые быстрые СД над множествами из INT'ов для операций ∈, ∩ и ∪ ⇒ пригодятся в software 	
	6	Хеширование, хэш таблицы 1		• Хэш-таблица, классическая СД: самый быстрый способ	
	Тема лекции 7 Хеширование, хэш таблицы 2			найти объект по ключу (string, int,); если не нужны next/prev, хеш-т. быстрее trees: убедились на семинарах	
Модуль № 2		Фильтры		• Классическая СД: самый быстрый способ быстро, <i>но нечетко</i> , проверить ∈ ключа (string, int,) множеству	
	9	СД для вторичной памяти		• Как эффективно организовать хранение и доступ к данным во вторичной памяти, в том числе в облаке, если они не помещаются целиков в RAM?	
	10	Пространственные СД		• Вы познакомились с особенностями и сложностями пространственных СД; 80% данных имеют геопривязку; Apple, Yandex, Facebook, Amazon нужны соотв. кадры	
	11	Параллельные СД 1		• Благодаря простоте SkipList, Вы познакомились с	
	12 Параллельные СД 2			подходами ускорения СД на многоядерных СРU	
	13	Деревья в оперативной памяти		• Теоретически интерес представляют сложные деревья	
		Современные тренды		• Подведем итоги курса, посмотрим на новейшие темы: machine learning для СД и распределенные системы	
•	The inchange of the converge				

- І де используются изученные структуры данных? это универсальные структуры данных, не привязаны к конкретной сфере компьютерных наук
- Вспомним постановки задач из каждой лекции, напр. множество целых чисел (INT), тогда Вам нужны bitmaps для быстрых операций пересечения и объединения

Разносторонность тем курса АиСД2020

HORESS BROKENINGE VANEONE

N	№ Тема лекции	Польза для будущей карьеры		
1	. Введение	• Не всегда алгоритм с лучшей асимптотикой быстрее:		
	. Асимптотика	влияют паттерны доступа в RAM, кэш CPU, др. факторы		
S 3	В Базовые структуры данных 1	• Список с ограничителем, XOR список, Y-связный		
	Базовые структуры данных 2	список, проблемы с двоичным деревом поиска		
4 Mody/	Bitmaps	• Многие используют bitmaps: Yandex ClickHouse, Apache Spark, LinkedIn Pinot, Microsoft Visual Studio; высокая скорость за счет простых операций и кэшей CPU		
6	Хеширование, хэш таблицы 1	• Вероятностный анализ хеширования		
Тема лекции				
7	У Хеширование, хэш таблицы 2	• Кукушкино хеширование (2014 г.)		
8	Фильтры	 Фильтр Блума (1970 г.), Кукушкин Фильтр (2016 г.) 		
9	СД для вторичной памяти	 Особенности вторичной памяти: HDD, SSD, Облако В-дерево (1970 г.) 		
2	0 Пространственные СД	 Вдобавок к традиционным int & string Городское планирование, чрезвычайные ситуации, лесное хозяйство, качество воздуха, транспорт R-дерево (1984 г.) 		
2 1	1 Параллельные СД 1	• Многопоточное программирование, multicore CPU		
12	2 Параллельные СД 2	• ConcurrentSkipList (2006 г.): понятная версия для 2курса		
13	3 Деревья в оперативной памяти	• Красно-черные деревья (1972 г.)		
14	4 Современные тренды	• Machine learning для СД и распределенные системы		
		-)+ лет), хэширование (много лет), фильтры, R-tree, E зня компании; также надо строить эффективные сис		

только проходить собеседования
• Изученные СД применяются во многих областях и во многих программных системах, в том числе (но не только) в СУБД, компьютерных сетях, распределенных системах, ...

«Постановка задачи»

Входные данные

• Ключи $key \in K$ (может быть полезная нагрузка)

Цель – эффективное выполнение словарных операций

- По ключу
- Insert, delete, search, previous, next, ...

Проблемы с binary search tree

- сложность операций пропорциональна высоте дерева
- может выродиться в обычный список

2-3 деревья, 2-3-4 деревья

это В-деревья

• 2-3 деревья: от 2 до 3 детей

• 2-3-4 деревья: от 2 до 4 детей

link

Базовые операции	Худший случай
Занимаемое место	0 (n)
Поиск по ключу	O(log n)
Вставка по ключу	O(log n)
Удаление по ключу	O(log n)

Красно-черное дерево

Rudolf Bayer, 1972 г. Q: какие еще стр. данных разработал R.Bayer?

Вид сбалансированного дерева

- Хранит n элементов
- Каждый элемент имеет ключ key
- Для типа ключа определены операции сравнения, напр., <

Базовые операции	Худший случай
Занимаемое место	0 (n)
Поиск по ключу	O(log n)
Вставка по ключу	O(log n)
Удаление по ключу	O(log n)

Note: красно-черное дерево сложнее всех структур данных, которые мы с вами учили so far

Идеи устройства RB-tree

- 1. RB-tree бинарное (двоичное) дерево поиска
- 2. Каждый узел красный (RED) либо черный (BLACK)
- 3. Приближенно сбалансированное дерево длины любых двух простых путей от корня до листа отличаются не более в $2 \times$ раза
- 4. Каждый узел содержит атрибуты color, key, left, right и p(parent)
- 5. Используется ограничитель NIL для указателей (если нет дочернего либо родительского узла)

Идеи устройства RB-tree: ограничитель 41 2 NIL [1]

T.nil

Идеи устройства RB-tree: ограничитель

Поиск в RB-tree

Поскольку **RB-tree** обладает теми же свойствами, что и бинарное дерево поиска, алгоритм поиска аналогичен

TREE-SEARCH(x, k)

```
1if x == NIL or k == x.keyДавайте поищем2return xключи3if k < x.key354return Tree-Search(x.left, k)205else return Tree-Search(x.right, k)3
```


Определение RB-tree

Бинарное дерево поиска является **RB-tree** если оно удовлетворяет следующим **красно-черным свойствам**:

- 1. Каждый узел либо красный либо черный
- 2. Корень дерева черный
- 3. Каждый лист дерева (NIL) **черный**
- 4. Если узел красный, то оба дочерних узла черные
- 5. Для каждого узла все простые пути от него до листьев, являющихся потомками данного узла, содержат одно и то же количество **черных** узлов bh(x) черная

Почему красно-черное дерево является приближенно сбалансированным?

- Сложность операций пропорциональна высоте дерева
- Высота дерева может быть любой...
- Высота ветвей насколько высота одной ветви может отличаться от высоты другой ветви?

Лемма о высоте RB-Tree

Красно-черное дерево с n внутренними узлами имеет высоту, не превышающую $2\log(n+1)$

- Покажем по индукции, что поддерево любого узла x содержит минимум $2^{bh(x)}-1$ внутренних узлов
- Если высота x равна 0, то x лист (NIL) и $2^{bh(x)} 1 = 2^0 1 = 0$
- Если bh(x) > 0, то дочерний узел имеет высоту
 - bh(x) (потомок **красный**) либо
 - bh(x) 1 (потомок **черный**)
- Предположим по индукции, что в поддереве каждого потомка минимум $2^{bh(x)-1}-1$ узлов
- \Rightarrow дерево с корнем в x имеет минимум внутренних узлов $\left(2^{bh(x)-1}-1\right)+\left(2^{bh(x)-1}-1\right)+1=2^{bh(x)}-1$

Note: любой узел (кроме листа) всегда имеет 2 потомка

Лемма о высоте RB-Tree

Красно-черное дерево с n внутренними узлами имеет высоту, не превышающую $2\log(n+1)$

• \Rightarrow дерево с корнем в x имеет минимум внутренних узлов $\left(2^{bh(x)-1}-1\right)+\left(2^{bh(x)-1}-1\right)+1=2^{bh(x)}-1$

Пусть высота дерева равна h. Согласно свойству 4, по крайней мере половина узлов на любом простом пути от корня к листу (не считая корень), должны быть черными.

$$\Rightarrow bh(root)$$
 как минимум равна $=h/2$ $n \geq 2^{h/2}-1$ $\log(n+1) \geq h/2$ $2\log(n+1) \geq h$

Свойство 4.

Если узел **красный**, то оба дочерних узла — **черные** (т.е. красные узлы встречаются, но их число строго ограничено числом черных узлов)

«Трюки» красно-черных деревьев

- Сложность операций пропорциональна высоте дерева
- Высота дерева может быть любой...
- Высоты ветвей отличаются друг от друга не более чем в 2 раза
- Поиск, вставка, удаление за $O(\log n)$
 - Первый этап: принцип алгоритмов бинарных деревьев поиска за $O(\log n)$ может привести к нарушению красночерных свойств
 - Второй этап: восстановление красно-черных свойств тоже за $O(\log n)$ путем перекрашивания вершин и «трюков» с указателями (изменение их структур)

Поговорим о поворотах...

Повороты: левый и правый

- Локальные операции в дереве поиска, которые сохраняют свойство бинарного дерева поиска
- Работают за O(1)

 α β γ

[1]

 α β

Left-Rotate(T, x)

RIGHT-ROTATE(T, y)

 $y.left \neq NIL$

Вращаем вокруг связи x-y

 $x.right \neq NIL$

Центрированный обход: lpha, lpha, eta, eta, γ

Пример поворота

Вставка в RB-Tree

```
RB-INSERT(T, z)
   y = T.nil
   x = T.root
```

- while $x \neq T.nil$ y = x
- **if** z. key < x. keyx = x.left
- else x = x.right
- z.p = y
- if y == T.nil
- T.root = z10
- 11 elseif z.key < y.key
- 12 y.left = z
- 13 else y.right = z
- z.left = T.nil14
- 15 z.right = T.nil
- 16 z.color = RED
- 17 RB-INSERT-FIXUP(T, z)

- Вставляем новый узел будто в двоичное дерево поиска
- Окрашиваем новый узел в красный цвет
- Выполняем повороты для восстановления красно-черных свойств

Особенности:

- Ограничитель NIL, а не nullptr
- z.left = z.right = NIL
- Назначение цвета новому узлу
- Вызов RB-Insert-Fixup

[1]

Какие свойства RB-tree могут быть нарушены при вставке нового узла?

- 1. Каждый узел либо красный либо черный
- 2. Корень дерева **черный**
- 3. Каждый лист дерева (NIL) **черный**
- 4. Если узел красный, то оба дочерних узла черные
- 5. Для каждого узла все простые пути от него до листьев, являющихся потомками данного узла, содержат одно и то же количество **черных** узлов

Вставка в RB-Tree: RB-Insert-Fixup

```
RB-INSERT-FIXUP(T, z)
```

```
while z.p.color == RED
                                     if true\Rightarrow z. p. p всегда существует
        if z.p == z.p.p.left
                                                            За один вызов
             y = z.p.p.right
                                                            RB-Insert-Fixup
             if y.color == RED
                                                            выполняется
                 z.p.color = BLACK
                                                            максимум 2
                 y.color = BLACK
                                              Случай 1
                                                            поворота
                 z.p.p.color = RED
                                                            Случай 2
                 z = z.p.p
                                                            преобразовывает
 9
             else if z == z.p.right
                                                            в Случай 3
10
                     z = z.p
                                                            (выполняется
                                               Случай 2
11
                      LEFT-ROTATE (T, z)
                                                            всегда после
12
                 z.p.color = BLACK
                                                            Случая 2)
                 z.p.p.color = RED
13
                                               Случай 3
                 RIGHT-ROTATE(T, z.p.p)
14
15
         else (same as then clause
                                                    Еще три
                 with "right" and "left" exchanged)
```

16 T.root.color = BLACK [1]

симметричных случая

Вставка в RB-Tree: пример

Вставка в RB-Tree: пример

Вставка в RB-Tree: пример

Случай 1 (два симметричных случая)

Можем перекрасить родителя и дядю в черный цвет

Случаи 2 и 3

- Из случая 2 переходим в случай 3
- $\alpha, \beta, \gamma, \delta$ черные

Анимация

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Практическое применение

Библиотечные реализации в языках программирования

std::map

https://ru.cppreference.com/w/cpp/container/map

```
Определён в заголовочном файле <map>
template<
    class Key,
    class T,
    class Compare = std::less<Key>,
    class Allocator = std::allocator<std::pair<const Key, T> >
    class map;
```

std::map — отсортированный ассоциативный контейнер, который содержит пары ключ-значение с неповторяющимися ключами. Порядок ключей задаётся функцией сравнения Compare. Операции поиска, удаления и вставки имеют логарифмическую сложность. Данный тип, как правило, реализуется как красночёрное дерево ♂.

Java SE 12 & JDK 12

```
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, Serializable
```

A Red-Black tree based NavigableMap implementation. The map is sorted according to the natural ordering of its keys, or by a Comparator provided at map creation time, depending on which constructor is used.

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeMap.html

Список литературы

1. Т. *Кормен*, Ч. Лейзерсон, Р. Ривест, К. Штайн - *Алгоритмы*. Построение и анализ.

Некоторые рисунки в данной презентации из [1]

Благодарю за внимание!

Paмон Антонио Родригес Залепинос <u>arodriges@hse.ru</u>