Deep Learning with Structured Data

April 29, 2020

Mark Ryan

Data Science Manager, Intact Insurance

Agenda

- Background
- Why use deep learning for problems involving structured data?
- Walk through the end-to-end approach:
 - Data cleanup
 - Building & training the deep learning model (including bakeoff with XGBoost)
 - Deployment
- Organization of the code
- Potential future enhancements
- Resources for learning more on the topic

Background

- Comp Sci at University of Waterloo; MSc at University of Toronto
- > 30 years at the IBM Canada Lab, mostly working on Db2 relational database
- Since Oct 2019, Data Science Manager in the Data Lab at Intact Insurance

What Is Structured Data?

- For the purposes of this discussion, **structured data** is tabular data organized in rows and columns
- Contrast with non-tabular data:
 - Images
 - Audio
 - Free-form text
- ► This kind of data has a structure, but is not tabular
- By this definition, structured data includes:
 - tables that have columns containing unstructured data, such as columns with freeform text
 - Data whose native format is not tabular but can be directly transformed to a tabular representation, such as XML and JSON

Why Deep Learning with Structured Data?

- Deep learning is the rocket fuel of machine learning
- Most introductory deep learning examples are for applications that have nothing to do with everyday jobs
- People want to learn about deep learning, but their jobs are about tables, not recognizing pictures of cats

Deep Learning with Structured Data: Genesis of the Book

- Frustrated by lack of accessible examples of deep learning applied to problems I cared about
- Exercised a simple deep learning model on problems in the Db2 support lead role:
 - Predicting time to resolution of tickets
 - Predicting duty manager calls
- Blogs on Medium caught Manning Publication's attention
- Book is available in early release now at manning.com
- ▶ General release this summer

Deep Learning with Structured Data: What Are the Goals of the Book?

- Make an argument for deep learning as an option for solving problems involving structured data
- Show a simple, end-to-end solution built around a deep learning model, featuring:
 - 1. A real-world structured dataset
 - 2. An accessible but complete stack:
 - 1. Pandas for representing tables in Python
 - 2. Keras for deep learning framework functional model on top of TensorFlow 2
 - 3. Scikit-learn for pipelines
 - 4. Flask / Facebook Messenger + Rasa for deployment
 - 3. Useful coding ideas:
 - 1. Config files
 - 2. logging
 - 3. Keras callbacks

Image: brittanica.com

Objections to Deep Learning with Structured Data

Deep learning is more complicated

Structured datasets are too small

XGBoost wins Kaggle competitions; why mess with success?

A Problem to Tackle - Streetcar Delays

- Couldn't use IBM datasets from earlier deep learning experiments
- Found a <u>publically available streetcar delay dataset</u>

A Real-World Dataset

- ~80 K records all streetcar delays since Jan. 2014
- An XLS file / year; one tab / month
- Very messy

Report Date	Route	Time	Day	Location	Incident	Min Delay	Min Gap	Direction	Vehicle
2014-12-17	504	9:24:00 AM	Wednesday	Dundas West Stn	Mechanical	34	38	W	4055
2014-12-18	506	2:55:00 PM	Thursday	RUSSELL YARD	Mechanical	5	10	eb	4152
2014-12-19	505	10:08:00 AM	Friday	King and Shaw	Investigation	2	5	SW	4248

Report Date	Route	Time	Day	Location		Min Delay	Min Gap	Direction	Vehicle
01-Jul-18	301	12:06:00 AM	Sunday	Neville park	Held By	244	253	B/W	4030
01-Jul-18	301	4:05:00 AM	Sunday	Long branch loop	ng branch loop Mechanical		60	E/B	4165
01-Jul-18	501	6:03:00 AM	Sunday	Russell Yard	Late Leaving Garage	9	18	E/B	4067
Report Date	Route	Time	Day	Location	Incident ID Incident	Delay	Gap	Direction	Vehicle
01-Apr-19	512	4:26:00 AM	Monday	Roncesvalles Yard.	1 Mechanical	10	20	E/B	4460
01-Apr-19	501	4:27:00 AM	I Monday	Queen St. E and Woodfield Ave.	1Mechanical	17	17	E/B	4189
01-Apr-19	501	4:37:00 AM	i iviondav	Queen St. E at Greenwood Ave.	1 Mechanical	5	10	W/B	4012

Accessible but Complete Stack

Clean Up the Data

Explore the Data

Delay count trend

Delay duration trend

Clean Up the Data

	Report Date	Route	Time	Day	Location	Incident	Min Delay	Min Gap	Direction	Vehicle	Report Date Time	year	month	daym	hour	time_of_day
Report Date Time																
2016-01-01 00:00:00	2016-01-01	505	00:00:00	Friday	dundas west stationt to broadview station	General Delay	7.0	14.0	w	4028	2016-01-01 00:00:00	2016	1	1	0	overnight
2016-01-01 02:14:00	2016-01-01	511	02:14:00	Friday	fleet st. and strachan	Mechanical	10.0	20.0	е	4018	2016-01-01 02:14:00	2016	1	1	2	overnight
2016-01-01 02:22:00	2016-01-01	301	02:22:00	Friday	queen st. west and roncesvalles	Mechanical	9.0	18.0	w	4201	2016-01-01 02:22:00	2016	1	1	2	overnight
2016-01-01 03:28:00	2016-01-01	301	03:28:00	Friday	lake shore blvd. and superior st.	Mechanical	20.0	40.0	е	4251	2016-01-01 03:28:00	2016	1	1	3	overnight
2016-01-01 14:28:00	2016-01-01	501	14:28:00	Friday	roncesvalles to neville park	Mechanical	6.0	12.0	e	4242	2016-01-01 14:28:00	2016	1	1	14	midday

	Report Date	count	Route	Direction	hour	year	month	daym	day	Min Delay	target
0	2014-01-01	0	301	е	0	2014	1	1	2	0.0	0
1	2014-01-01	0	301	е	1	2014	1	1	2	0.0	0
2	2014-01-01	0	301	е	2	2014	1	1	2	0.0	0
3	2014-01-01	0	301	е	3	2014	1	1	2	0.0	0
4	2014-01-01	0	301	е	4	2014	1	1	2	0.0	0

Build and Train Model & Pipeline

Build Model: Keras Model Layers

Build Model: Code that Generates the Keras Model using Functional API

```
for col in collist:
     catinputs[col] = Input(shape=[1], name=col)
    inputlayerlist.append(catinputs[col])
     embeddings[col] = (Embedding(max dict[col], catemb) (catinputs[col]))
     # batchnorm all
     embeddings[col] = (BatchNormalization() (embeddings[col]))
     collistfix.append(embeddings[col])
# define layers for text columns
 if includetext:
     for col in textcols:
         print("col",col)
         textinputs[col] = Input(shape=[X train[col].shape[1]], name=col)
         print("text input shape", X train[col].shape[1])
         inputlayerlist.append(textinputs[col])
         textembeddings[col] = (Embedding(textmax,textemb) (textinputs[col]))
         textembeddings[col] = (BatchNormalization() (textembeddings[col]))
         textembeddings[col] = Dropout(dropout rate) ( GRU(16, kernel regularizer=12(12 lambda)) (textembeddings[col]))
         collistfix.append(textembeddings[col])
         print("max in the midst",np.max([np.max(train[col].max()), np.max(test[col].max())])+10)
     print("through loops for cols")
 # define layers for continuous columns
for col in continuouscols:
     continputs[col] = Input(shape=[1],name=col)
    inputlayerlist.append(continputs[col])
```

Build Model: Keras Model Layers

Train Pipeline

Raw input:

Cleaned up and refactored:

Report Date	count	Route	Direction	hour	year	month	daym	day	Min Delay	targ
2014-01-01	0	301	е	0	2014	1	1	2	0.0	0
2014-01-01	0	301	е	1	2014	1	1	2	0.0	0
2014-01-01	0	301	е	2	2014	1	1	2	0.0	0
2014-01-01	0	301	0	3	2014	1	1	2	0.0	0
2014-01-01	0	301	е	4	2014	1	1	2	0.0	0
	2014-01-01 2014-01-01 2014-01-01 2014-01-01	2014-01-01 0 2014-01-01 0 2014-01-01 0 2014-01-01 0	2014-01-01 0 301 2014-01-01 0 301 2014-01-01 0 301 2014-01-01 0 301	2014-01-01 0 301 e 2014-01-01 0 301 e 2014-01-01 0 301 e 2014-01-01 0 301 e	2014-01-01 0 301 e 0 2014-01-01 0 301 e 1 2014-01-01 0 301 e 2 2014-01-01 0 301 e 2 2014-01-01 0 301 e 3	2014-01-01 0 301 e 0 2014 2014-01-01 0 301 e 1 2014 2014-01-01 0 301 e 2 2014 2014-01-01 0 301 e 3 2014	2014-01-01 0 301 e 0 2014 1 2014-01-01 0 301 e 1 2014 1 2014-01-01 0 301 e 2 2014 1 2014-01-01 0 301 e 3 2014 1	2014-01-01 0 301 e 0 2014 1 1 2014-01-01 0 301 e 1 2014 1 1 2014-01-01 0 301 e 2 2014 1 1 2014-01-01 0 301 e 3 2014 1 1	2014-01-01 0 301 e 0 2014 1 1 2 2014-01-01 0 301 e 1 2014 1 1 2 2014-01-01 0 301 e 2 2014 1 1 2 2014-01-01 0 301 e 3 2014 1 1 2	2014-01-01 0 301 e 1 2014 1 1 2 0.0 2014-01-01 0 301 e 2 2014 1 1 2 0.0 2014-01-01 0 301 e 3 2014 1 1 2 0.0

Convert dataframe to list of np arrays

What the model expects:

Hour: 18Route: 0

• Day of the month: 21

Month: 0Year: 5

• Direction: 1

• Day of the week: 1

Train the Model using Keras Callbacks

Results of a Set of Training Experiments

Experiment Epochs		Early stop enabled?	Weight for "1" (delay)	Early stop controls		Terminal Validation	False negatives exercising model on	Recall on test set: true positive / (true
			values	monitor	mode	accuracy	test set	positive + false negative)
1	10	no	1.0	NA	NA	0.98	11,000	0
2	50	no	1.0	NA	NA	0.75	7,700	0.31
3	50	no	No delay / delay	NA	NA	0.8	4,600	0.59
4	50	yes	No delay / delay	Validation loss	min	0.69	2,600	0.76
5	50	yes	No delay / delay	Validation accuracy	max	0.72	2,300	0.79

Deep Learning vs. XGBoost

Deep Learning vs. XGBoost

Category	XGBoost	Keras Deep Learning	Winner?
Performance on test set			
Accuracy	80.1%	78.1%	
recall: true positive / (true positive + false negative)	0.89	0.68	XGBoost
false negatives	1,200	3,500	
Training time	1 minute 24 seconds	2 minutes – 3 minutes for experiment 5 depending on hw env and patience setting	Inconclusive – deep learning training time varies
Code complexity	 Extra steps required to transform data coming out of pipeline 1 line to build model 	Data from pipeline ready to train modelComplex model build	Inconclusive
Flexibility	Handles continuous & categorical columns	Handles continuous, categorical, text and BLOB columns	Deep learning

Web Deployment

Web Deployment: Step by Step

Web Deployment: Demo

Facebook Messenger Deployment

- Trained Keras model (h5 file)
- Custom pipeline classes (.py file)
- Pipeline (pkl file)

- Rasa model & actions (.py file)
- Facebook config settings

Facebook Messenger Deployment: Step by Step

Pipeline from Training Used in Deployment

What user expects to input:
Will Bathurst north be delayed?

Rasa/Python interprets input:

- Hour: 18
- Route: 501
- · Day of the month: 21
- · Month: January
- Year: 2019
- Direction: e
- Day of the week: Tuesday

Encode categorical values Convert dataframe to dict. of np arrays

What the model expects:

- Hour: 18
- Route: 0
- Day of the month: 21
- Month: 0
- Year: 5
- Direction: 1
- Day of the week: 1

Simple but end-to-end

Repo Code Structure

Code Flow 1: Raw Data to Trained Model

Code Flow 2: Trained Model to Deployment

Web deployment

flask server.py home.html show-prediction.html

actions.py

Delay prediction is: yes, delay

Useful Coding ideas

- Config files
- Logging
- Pickle files to serialize intermediate datasets

```
general:
   load_from_scratch: False
   save_transformed_dataframe: True
   remove_bad_values: True

file_names:
   pickled_input_dataframe: 2014_2019.pkl
   pickled_output_dataframe:
   2014_2019_df_cleaned_remove_bad_values_apr5_2020.pkl
```

Enhancements

- For the streetcar delay prediction problem:
 - Add geospatial data
 - Add weather data
 - Automate code flow
 - Incorporate Docker
- Apply the same approach to the subway delay dataset

Deep Learning with Structured Data: Resources

- ► Git repo accompanying the book: https://github.com/ryanmark1867/deep_learning_for_structured_data
- ► Book site: https://www.manning.com/books/deep-learning-with-structured-data
- ► RAPIDS: https://developer.nvidia.com/rapids
- fast.ai course: https://course.fast.ai/
- Connect with me:
 - Linkedln: https://www.linkedin.com/in/mark-ryan-31826743/
 - Medium: https://medium.com/@markryan_69718