Class Work: More Methods of Proof

1. Prove that for every positive real number x, if x is irrational, then \sqrt{x} is irrational. (*Hint*: What's the contrapositive of this statement? Also, make sure you know the precise definition of a rational number before you start proving anything.)

Proof. We will prove this statement by proving the contrapositive. That is, we will show that for every positive real number x, if \sqrt{x} is rational, then x is rational. To that end, suppose x is a positive real number such that \sqrt{x} is rational. Then by definition there exist integers a, b with $b \neq 0$ such that

$$\sqrt{x} = \frac{a}{b} \tag{1}$$

Squaring both sides of (1) gives

$$x = \frac{a^2}{h^2}$$

Since $a,b \in \mathbb{Z}$ with $b \neq 0$, we know by the closure of the set of integers under multiplication that $a^2,b^2 \in \mathbb{Z}$. We also know that $b^2 \neq 0$ since $b \neq 0$. Therefore x is rational, which is what we wanted to show.

2. Suppose we have a right triangle whose hypotenuse has length c, and the lengths of the other sides are a and b. Prove that this right triangle is isosceles if and only if its area equals $\frac{1}{4}c^2$.

Proof. First assume that the right triangle in question is isosceles. Then by definition, b=a. We want to show that the area of the triangle is $\frac{1}{4}c^2$. The area of the triangle is half the base times the height. In our case, the base and height are equal, so:

Area =
$$\frac{1}{2}ab = \frac{1}{2}a^2$$
 (2)

Since this triangle is a right triangle, we can use the Pythagorean Theorem to relate the hypotenuse and side lengths:

$$c^2 = a^2 + b^2 = a^2 + a^2 = 2a^2 (3)$$

Solving (3) for a^2 gives

$$a^2 = \frac{1}{2}c^2$$

Substituting this expression back into (2) gives:

Area =
$$\frac{1}{2}a^2 = \frac{1}{2}\left(\frac{1}{2}c^2\right) = \frac{1}{4}c^2$$

Therefore the area is $\frac{1}{4}c^2$, which is what we wanted to show.

For the converse, assume that the area of the right triangle is $\frac{1}{4}c^2$. We want to show that the triangle is isosceles, that is, that a=b. The area of the triangle is equal to half the base times the height, that is:

$$Area = \frac{1}{2}ab \tag{4}$$

Since we are assuming that this area also equals $\frac{1}{4}c^2$, we can set these two area expressions equal to each other:

$$\frac{1}{2}ab = \frac{1}{4}c^2$$

Therefore $c^2=2ab$ by multiplying both sides of this by 4.

The Pythagorean Theorem says that the hypotenuse and side lengths are related by:

$$c^2 = a^2 + b^2$$

Substituting $c^2 = 2ab$ into this and using algebra, we obtain:

$$a^{2} + b^{2} = 2ab$$
$$a^{2} - 2ab + b^{2} = 0$$
$$(a - b)^{2} = 0$$

Since $(a-b)^2=0$, it follows that a-b=0, from which we obtain a=b which is what we wanted.