

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019 Organisatorisches

Personen

Dozent: Prof. Dr. Bernhard Beckert

Vertretung: Dr. Mattias Ulbrich

Betreuung der Vorlesung: Mihai Herda

Organisatorisches

Übungen

► Große Übungen alle zwei Wochen freitags; erste Übung am Fr., 26.10.18

Übungsblätter

- Übungsaufgaben aus Aufgabensammlung (Bekanntgabe in Vorlesungen)
- ► Lösungen werden nicht korrigiert
- Erläuterung der Lösungen in den großen Übungen

Übungsschein

Übungsschein: Zwischentests und Praxisaufgaben

- ▶ ein Zwischentests (10 Punkte)
- ▶ drei Praxisaufgaben (je 10 Punkte)
- Teilnahme freiwillig
- Übungspunkte werden im Verhältnis 1:10 als Bonuspunkte auf die <u>bestandene</u> Abschlussklausur angerechnet (max. 4 Punkte, max. ein Notenschritt)

Zwischentest

Zwischentest

- ► "Leichtgewichtig"
- ► Am Anfang einer Übung, 15–20min
- ▶ Stoff aus der ersten Vorlesungshälfte
- ▶ Termin:

vermutlich Freitag, 14.12.18

Achtung:

Termin steht nicht endgültig fest, Webseite beachten!

Praxisaufgaben

Praxisaufgaben machen mit konkreten Systemen vertraut

▶ minisat

Ein System zu Erfüllbarkeitsprüfung aussagenlogischer Formeln (SAT Solver)

► z3

Ein System zu Erfüllbarkeitsprüfung prädikatenlogischer Formeln mit Theorien (SMT Solver)

KeY

Ein interaktives Beweissystem für Prädikatenund Programmlogik

Webseite

Webseite zur Vorlesung

http://formal.iti.kit.edu/teaching/ FormSysWS1819/

Enthält alle für die Vorlesung relevanten Informationen und Materialien:

- ▶ Termine, Ankündigungen
- Vorlesungsskriptum
- ▶ Folien
- ► Aufgabensammlung, Praxisaufgaben etc.

ILIAS

ILIAS-Kurs zur Vorlesung

- ► Link liegt auf der Seite zur Vorlesung.
- ► Ankündigungen
- ► Foren: Inhaltlich, Organisatorisch, ...
- Praxisaufgaben Abgabe und Bewertung

Klausuren

1. Klausurtermin

Freitag, 01.03.19, 11:00 Uhr

2. Klausurtermin

Nach dem Sommersemester 2019

Einführung

Eine sehr kurze Geschichte der Logik

Logik (!)

Was macht eine Logik aus?

1. Syntax

ergibt die Sprache der Aussagen der Logik

2. Semantik

Bedeutungsstrukturen und welche Strukturen machen welche Sätze wahr (Modelle)

3. Kalkül(e)

Regelsätze/Algorithmen, um den "Wahrheitsgehalt" eines Satzes zu prüfen (verschiedene Fragestellungen: Erfüllbarkeit,

Allgemeingültigkeit, ...)

Ihre Ziele

Kompetenzen (s. auch Modulhandbuch)

Nach erfolgreichem Abschluss des Moduls

- verstehen Sie logische Grundbegriffe anhand verschiedener Logiken,
- können Sie deutsche Sätze als logische Aussagen formulieren,
- können Sie logische Fragestellungen mittels der vorgestellten Lösungsverfahren lösen,
- können Programmeigenschaften in formalen Spezifikationssprachen formulieren und kleine Beispiele verifizieren,
- können Sie beurteilen, welcher logische Formalismus und welcher Kalkül sich zur Formalisierung und zum Beweis eines Sachverhalts eignet.

1. Block: Aussagenlogik

Logik über atomare Wahrheitsaussagen

- Syntax/Semantik der AL
- Hilbert: Theoretischer (mathematischer) Kalkül für Beweise über Logik
- SAT-Solver: erfolgreiches praktisches Entscheidungsverfahren

2. Block: Prädikatenlogik

Logik, die über "Objekte" spricht.

Nachts sind alle Katzen grau. Miez ist eine Katze.

Miez ist rot.

Es ist nicht nachts.

(Das konnten die alten Griechen schon.)

- Syntax/Semantik der PL
- ▶ Kalküle
- Gleichheit (Termersetzung)
- ► Prädikatenlogik über natürlichen Zahlen (Peano-Arithmetik)

3. Block: Formale Spezifikation

Anwendung der Prädikatenlogik um Eigenschaften von Programmen zu beweisen.

```
/** Der Rückgabewert von m ist eine Zahl, die
  * größer als die Eingabe x ist.
  */
/*@ ensures \result > x; */
public int m(int x) { ... }
```

- ▶ Java Modeling Language (Spezifikationssprache)
- ► KeY (Verifikationswerkzeug)

4. Block: Modale und Temporale Logik

Logik, die mehrere Zustände kennt

Beispiel

"Nachdem das Fenster geöffnet worden ist, ist die Heizung abgeschaltet."

- ► Syntax/Semantik Modallogik
- zeitlicher Verlauf: Temporallogik
- Erfüllt ein "Automat" eine temporale Spezifikation (Modellprüfung)?

Inhaltsübersicht

- Aussagenlogik: Syntax und Semantik
- Erfüllbarkeitstester (SAT Solver)
- Prädikatenlogik: Syntax und Semantik
- Kalküle Aussagenlogik + Prädikatenlogik
- Peano-Arithmetik
- ▶ Gleichheit
- Java Modeling Language (JML)
- Modale Aussagenlogik
- ▶ Temporale Logik (LTL)
- Endliche Automaten (Wiederholung)
- ▶ Büchi-Automaten
- ▶ Modellprüfung

Literatur

PETER H. SCHMITT: Formale Systeme. Skriptum zur Vorlesung.

MELVIN FITTING: First Order Logic and Automated Theorem Proving, 1990

U. SCHÖNING: Logik für Informatiker, 2000.

V. SPERSCHNEIDER/G. ANTONIOU: Logic: a Foundation for Computer Science, 1991.

ALONZO CHURCH: Introduction to Mathematical Logic, 1956.

EBBINGHAUS/FLUM/THOMAS: Mathematische Logik, 1992.

LOVELAND: Automated Theorem Proving: a Logical Basis, 1978.

SALLY POPKORN: First Steps in Modal Logic, 1994.

M. R. HUTH AND M. D. RYAN: Logic in Computer Science. Modelling and reasoning about systems, 2000.

Literatur

- J. E. HOPCROFT AND J. D. ULLMANN: Introduction to Automata Theory, 1979.
- JAN VAN LEEUWEN (ED.): Handbook of Theoretical Computer Science. Vol. B: Formal Models and Semantics, 1990.
- M. Huisman et al. Formal Specification with the Java Modeling Language, Chapter 7 in Deductive Software Verification—The KeY book. Springer, Ende 2016