Краткий конспект лекций по курсу «Игры среднего поля» Λ екция 11

Положим

$$Lu = \frac{1}{2}a^{ij}\partial_{x_i}\partial_{x_j}u + b^i\partial_{x_i}.$$

Семейство конечных неотрицательных мер $\{\mu_t\}_{t\in[0,T]}$ является решением задачи Коши

$$\partial_t \mu_t = L^* \mu_t, \quad \mu_0 = \nu,$$

если для всякого борелевского множества B функция $t \to \mu_t(B)$ измерима, функции a^{ij} , b^i локально интегрируемы по мере $\mu_t \, dt$ и для всякой функции $\varphi \in C_0^\infty(\mathbb{R}^d)$ равенство

$$\int \varphi \, d\mu_t - \int \varphi \, d\nu = \int_0^t \int L\varphi \, d\mu_\tau, d\tau$$

выполняется для почти всех $t\in[0,T]$. Полезно иметь ввиду, что для всякой функции $\varphi\in C^2([0,T]\times\mathbb{R}^d),\, \varphi(x,t)=0$ при |x|>R, равенство

$$\int \varphi(x,t) \, d\mu_t - \int \varphi(x,0) \, d\nu = \int_0^t \int \left[\partial_t \varphi + L\varphi \right] d\mu_\tau \, d\tau$$

выполняется для почти всех t. Если коэффициенты a^{ij}, b^i интегрируемы по мере $\mu_t \, dt$ на $[0,T] \times \mathbb{R}^d$, то последнее равенство выполняется для всех ограниченных дважды непрерывно дифференцируемых функций φ с ограниченными производными.

В случае, когда $0 \le \mu_t$ и $\mu_t(\mathbb{R}^d) \le 1$ для всех t, то говорят, что $\{\mu_t\}$ — субвероятностное решение, а если $0 \le \mu_t$ и $\mu_t(\mathbb{R}^d) = 1$, то говорят, что $\{\mu_t\}$ — вероятностное решение,

Уравнение теплопроводности

Пусть ν — вероятностная мера на \mathbb{R}^d .

Предложение 1. Семейство мер $\mu_t(dx) = \varrho(x,t) dx$, где

$$\varrho(x,t) = \frac{1}{(2\pi t)^{d/2}} \int e^{-\frac{|x-y|^2}{2t}} \nu(dy),$$

является вероятностным решением задачи Коши

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t, \quad \mu_0 = \nu.$$

Доказательство. Пусть $\varphi \in C_0^\infty(\mathbb{R}^d)$. Тогда

$$\int \varphi \, d\mu_t = \int u(y,t) \, \nu(dy),$$

где функция

$$u(y,t) = \frac{1}{(2\pi t)^{d/2}} \int e^{-\frac{|x-y|^2}{2t}} \varphi(x) dx$$

является гладким решение задачи Коши для уравнения $\partial_t u = \frac{1}{2} \Delta u, \ u(x,0) = \varphi(x)$. Кроме того, верно равенство

$$\Delta u(y,t) = \frac{1}{(2\pi t)^{d/2}} \int e^{-\frac{|x-y|^2}{2t}} \Delta \varphi(x) dx.$$

Следовательно, получаем

$$\frac{d}{dt} \int \varphi \, d\mu_t = \int \partial_t u \, d\nu = \int \frac{1}{2} \Delta \varphi \, dm u_t.$$

Предложение 2. В классе субвероятностных решений задача Коши

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t, \quad \mu_0 = \nu.$$

имеет не более одного решения.

Доказательство. Пусть μ_t^1 и μ_t^2 — два решения. Положим $\mu_t = \mu_t^1 - \mu_t^2$. Для всякой функции φ и всякого $\tau > 0$ функция

$$u(x,t) = \frac{1}{(2\pi(\tau - t))^{d/2}} \int e^{-\frac{|x-y|^2}{2(\tau - t)}} \varphi(x) dx$$

является гладким решением задачи Коши

$$\partial_t u + \frac{1}{2}\Delta u = 0, \quad u(x,\tau) = \varphi.$$

Подставляя u в равенство, определяющее решение, получаем

$$\int \varphi(x) d\mu_{\tau} = \int u(x,\tau) d\mu_{\tau} = \int u(x,0) d\mu_{0} = 0,$$

Следовательно, верно равенство $\mu_{\tau} = 0$.

Решение неоднородного уравнения теплопроводности

Пусть $f \in C_0^{\infty}((0,T) \times \mathbb{R}^d)$. Для построения решения

$$u_t + \frac{1}{2}\Delta u = f$$

применим метод Дюамеля. Пусть w(x,t, au) — решение задачи Коши

$$w_t + \frac{1}{2}\Delta w = 0$$
, $w(x, t, \tau) = f(x, \tau)$.

Проверим, что

$$u(x,t) = -\int_{t}^{T} w(x,t,\tau) d\tau$$

является решением $u_t + \frac{1}{2}\Delta u = f$. Имеем

$$u_t(x,t) = w(x,t,t) - \int_t^T w_t(x,t,\tau) \, d\tau = f(x,t) + \frac{1}{2} \int_t^T \Delta w(x,t,\tau) \, d\tau = f(x,t) - \frac{1}{2} \Delta u(x,t).$$

Так как

$$w(x,t,\tau) = \int f(y,\tau)K(x-y,\tau-t) \, dy, \quad K(x-y,\tau-t) = \frac{1}{(2\pi(\tau-t))^{d/2}} e^{\frac{|x-y|^2}{2(\tau-t)}},$$

то

$$u(x,t) = -\int_{t}^{T} \int f(y,\tau)K(x-y,\tau-t) \, dy \, d\tau.$$

Пусть $\gamma \geq 1$. Заметим, что

$$\int |K(x-y,\tau-t)|^{\gamma} dy = C_{\gamma}(\tau-t)^{d(1-\gamma)/2}, \quad \int |\nabla_x K(x-y,\tau-t)|^{\gamma} dy = C_{\gamma}'(\tau-t)^{(d(1-\gamma)-\gamma)/2}.$$

Если $\gamma < \frac{d+2}{d+1}$, то функции $K(x-y,\tau-t)$, $|\nabla_x K(x-y,\tau-t)|$ интегрируемы в степени γ по множеству $[t,T] \times \mathbb{R}^d$ и интегралы оцениваются константой, которая не зависит от t и x.

Предложение 3. Пусть p > d + 2. Для построенного выше решения и уравнения

$$u_t + \frac{1}{2}\Delta u = f$$

имеет место оценка

$$\sup |u| + \sup |\nabla_x u| \le C(p) ||f||_{L^p}.$$

Абсолютная непрерывность решений

Теорема 1. Если μ_t является субвероятностным решением уравнения

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}(b\mu_t)$$

и векторное поле b ограниченно на всяком множестве $[0,T] \times B(0,R),$ то

$$\mu_t(dx) dt = \varrho(x,t) dx dt, \quad \varrho \in L^p_{loc}((0,T) \times \mathbb{R}^d), 1$$

Доказательство. Пусть $\Pi = (t_1, t_2) \times B(0, R), \ 0 < t_1 < t_2 < T, \ R > 0,$ и функция $\zeta \in C_0^\infty((0, T) \times \mathbb{R}^d)$ равна единице на Π . Пусть $f \in C_0^\infty((0, T) \times \mathbb{R}^d)$ и u — построенное выше решение уравнения $u_t + \frac{1}{2}\Delta u = f$. Так как μ_t — решение, то верно равенство

$$\int_0^T \int \left(u_t + \frac{1}{2} \Delta u \right) \zeta \, d\mu_t \, dt =$$

$$= -\int_0^T \int \left(u\zeta_t + \langle \nabla u, \nabla \zeta \rangle + u\Delta \zeta + \langle b, \nabla \zeta \rangle u + \langle b, \nabla u \rangle \zeta \right) d\mu_t \, dt.$$

Следовательно, с q = p/(p-1) верна оценка

$$\iint_{\Pi} f \, d\mu_t \, dt \le C \left(\sup |u| + \sup |\nabla_x u| \right) \le C' \|f\|_{L^q(\Pi)}.$$

Линейный функционал

$$f \to \iint_{\Pi} f \, d\mu_t \, dt$$

продолжается до непрерывного линейного функционала на $L^q(\Pi)$ и по теореме Рисса имеет вид

$$\iint_{\Pi} f \, d\mu_t \, dt = \iint_{\Pi} f \varrho \, dx \, dt, \quad \varrho \in L^p(\Pi).$$

Существование решения

Теорема 2. Пусть b- борелевское векторное поле, ограниченное на $[0,T] \times B(0,R)$ для всякого R>0. Тогда для всякой вероятностной меры ν существует субвероятностное решение μ_t задачи Коши

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}(b\mu_t), \quad \mu_0 = \nu.$$

Доказательство. Пусть b_n — последовательность векторных полей класса C_0^∞ , которая сходится к b в $L^q(\Pi)$ для всякого $q \geq 1$ и всякого $\Pi = (t_1, t_2) \times B(0, R), \ 0 < t_1 < t_2 < T, R > 0$. В качестве решения μ_t^n задачи Коши

$$\partial_t \mu_t^n = \frac{1}{2} \Delta \mu_t^n - \operatorname{div}(b_n \mu_t^n), \quad \mu_0^n = \nu$$

можно взять распределение случайного процесса, который является решением соответствующего стохастического уравнения. Для всякой функции $\varphi \in C_0^\infty(\mathbb{R}^d)$ имеет место равенство

$$\int \varphi \, d\mu_t^n - \int \varphi \, d\nu = \int_0^t \int \left[\frac{1}{2} \Delta \varphi + \langle b_n, \nabla \varphi \rangle \right] \, d\mu_s^n \, ds.$$

По доказанному выше $\mu_t^n(dx)\,dt=\varrho_n(x,t)\,dx\,dt$ и для всякого $\Pi=(t_1,t_2)\times B(0,R),\,0< t_1< t_2< T,\,R>0$, существует числа $C(\Pi)$, которое не зависит от n и с которым верна оценка $\|\varrho_n\|_{L^p(\Pi)}\leq C(\Pi)$. Применяя диагональную процедуру и переходя к подпоследовательности можно считать, что ϱ_n сходится к некоторой функции ϱ слабо в $L^p(\Pi)$ для всякого цилиндра Π указанного вида. Заметим, что при $0<\delta< t< T$

$$\int_{\delta}^{t} \int \frac{1}{2} \Delta \varphi \varrho_{n} \, dx \, ds \to \int_{\delta}^{t} \int \frac{1}{2} \Delta \varphi \varrho \, dx \, ds,$$

$$\int_{\delta}^{t} \int \langle b_{n}, \nabla \varphi \rangle \varrho_{n} \, dx \, ds = \int_{\delta}^{t} \int \langle b_{n} - b, \nabla \varphi \rangle \varrho_{n} \, dx \, ds + \int_{\delta}^{t} \int \langle b, \nabla \varphi \rangle \varrho_{n} \, dx \, ds \to \int_{\delta}^{t} \int \langle b, \nabla \varphi \rangle \varrho \, dx \, ds.$$
 Более того,

$$\left| \int_0^{\delta} \int \left[\frac{1}{2} \Delta \varphi + \langle b_n, \nabla \varphi \rangle \right] d\mu_s^n ds \right| \le C(\varphi) \delta.$$

Положим $\mu_t(dx) = \varrho(x,t) dx$. Для каждого $t \in (0,T)$

$$\lim_{n \to \infty} \int_0^t \int \left[\frac{1}{2} \Delta \varphi + \langle b_n, \nabla \varphi \rangle \right] d\mu_s^n ds = \int_0^t \int \left[\frac{1}{2} \Delta \varphi + \langle b, \nabla \varphi \rangle \right] d\mu_s ds.$$

Следовательно, для всякого t и всякой функции $\varphi \in C_0^{\infty}(\mathbb{R}^d)$ существует предел

$$\lim_{n\to\infty} \int \varphi \, d\mu_t^n.$$

Пусть $\eta \in C_0^{\infty}((0,T))$. Имеем

$$\lim_{n \to \infty} \int_0^T \eta(t) \left(\int \varphi \, d\mu_t^n \right) dt = \int_0^T \eta(t) \left(\int \varphi \varrho \, dx \right) dt.$$

Следовательно, для почти всех t верно равенство

$$\lim_{n \to \infty} \int \varphi \, d\mu_t^n = \int \varphi(x) \varrho(x, t) \, dx,$$

из которого следует, что $\mu_t(dx) = \varrho(x,t) dx$ — субвероятностные меры. Таким образом, после перехода к пределу при $n \to \infty$ получаем для почти всех t равенство

$$\int \varphi \, d\mu_t - \int \varphi \, d\nu = \int_0^t \int \left[\frac{1}{2} \Delta \varphi + \langle b, \nabla \varphi \rangle \right] d\mu_s \, ds$$

и μ_t — искомое решение.

Отметим, что в условиях теоремы плотность ϱ имеет непрерывную строго положительную плотность, у которой по переменным x_i есть соболевские производные первого порядка. Далее мы считаем, что всегда выбрана именно эта версия плотности и соответствующие ей меры μ_t .

Функция Ляпунова и существование вероятностного решения

Положим

$$Lu = \frac{1}{2}\Delta u + \langle b, \nabla u \rangle.$$

Функцией Ляпунова V для оператора L называется такая функция $V \in C^2(\mathbb{R}^d)$, что

$$\lim_{|x| \to +\infty} V(x) = +\infty, \quad LV(x,t) \le C + CV(x).$$

Теорема 3. Если существует функция Ляпунова V и $V \in L^1(\nu)$, то всякое субвероятностное решение μ_t задачи Коши

$$\partial_t \mu_t = \frac{1}{2} \Delta \mu_t - \operatorname{div}(b\mu_t), \quad \mu_0 = \nu,$$

является вероятностным, т.е. $\mu_t(\mathbb{R}^d) = 1$. Более того,

$$\sup_{t \in [0,T]} \int V(x) \, d\mu_t < \infty$$

 $u\ t o \mu_t$ является непрерывной кривой в $\mathcal{P}(\mathbb{R}^d)$

Доказательство. Пусть $\zeta_N(z)=z$ при $z\leq N-1,\,\zeta_N(z)=N$ при $z>N+1,\,0\leq\zeta_N'\leq 1$ и $\zeta_N''\leq 0.$ По определению решения μ_t верно равенство

$$\int (\zeta_N(V) - N) d\mu_t = \int (\zeta_N(V) - N) d\nu + \int_0^t \int L(\zeta_N(V) - N) d\mu_s ds.$$

Заметим, что

$$L(\zeta_N(V) - N) = \zeta_N'(V)LV + \frac{1}{2}\zeta_N''(V)|\nabla V|^2 \le C + C\zeta_N'(V)V.$$

Так как $(z\zeta_N'(z)-\zeta_N(z))'=z\zeta_N''(z)\leq 0$, то $\zeta_N'(V)V\leq V$. Следовательно, приходим к оценке

$$\int \zeta_N(V) d\mu_t + (1 - \mu_t(\mathbb{R}^d))N \le \int \zeta_N(V) d\nu + CT + C \int_0^t \int \zeta_N(V) d\mu_s ds,$$

из которой немедленно следует ограниченность интегралов от V по мерам μ_t и равенство $\mu_t(\mathbb{R}^d)=1.$

Отметим, что в общем случае задача Коши для уравнения Фоккера–Планка–Колмогорова может иметь бесконечно много вероятностных решений.