Istituzioni e didattica della matematica

Marina Cazzola (marina.cazzola@unimib.it)

6 aprile 2016

Operazioni

Operazioni

Operazioni

Operazioni

Operazioni

Operazioni

Dato un insieme A, una operazione in A è una funzione che a ogni coppia di elementi di A associa uno e un solo elemento di A (il "risultato" dell'operazione).

Un insieme A in cui sia definita una operazione \cdot è chiamato $\operatorname{\mathbf{gruppo}}$ se

Un insieme A in cui sia definita una operazione \cdot è chiamato **gruppo** se

• è associativa: per ogni $a, b, c \in A$ si ha

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Un insieme A in cui sia definita una operazione \cdot è chiamato **gruppo** se

- è associativa: per ogni $a,b,c\in A$ si ha $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
- esiste un elemento neutro: esiste $e \in A$ tale che qualunque sia $a \in A$ si ha $a \cdot e = e \cdot a = a$

Un insieme A in cui sia definita una operazione \cdot è chiamato $\operatorname{\mathbf{gruppo}}$ se

- è associativa: per ogni $a,b,c\in A$ si ha $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
- esiste un elemento neutro: esiste $e \in A$ tale che qualunque sia $a \in A$ si ha $a \cdot e = e \cdot a = a$
- ogni elemento di A ha un inverso: per ogni $a \in A$ esiste $\bar{a} \in A$ tale che $a \cdot \bar{a} = \bar{a} \cdot a = e$

Operazioni

Operazioni

Esempi di gruppi:

$$(\mathbb{Z}, +, 0), (\mathbb{Q}^{\star}, \times, 1), (\mathbb{Z}_n, +, [0]_n),$$

 $(\mathbb{Z}_n^{\star}, \times, [1]_n)$

(cfr. Galleria di metamorfosi, p. 40)

Operazioni

Operazioni

Operazioni

Operazioni

L'insieme delle isometrie del piano è un gruppo rispetto alla composizione di isometrie.

o è associativa

Operazioni

Operazioni

- o è associativa
- id è l'elemento neutro di ∘

Operazioni

Operazioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

Operazioni

Operazioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

$$\Box (\sigma_r)^{-1} = \sigma_r$$

Operazioni

Operazioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

$$\Box (\sigma_r)^{-1} = \sigma_r$$

$$\Box (\rho_{O,\alpha})^{-1} = \rho_{O,-\alpha}$$

Operazioni

Operazioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

$$\Box (\sigma_r)^{-1} = \sigma_r$$

$$\Box (\rho_{O,\alpha})^{-1} = \rho_{O,-\alpha}$$

$$\Box (\tau_v)^{-1} = \tau_{-v}$$

Operazioni

Operazioni

- o è associativa
- id è l'elemento neutro di ∘
- ogni isometria ammette inverso, per es.

$$\Box (\sigma_r)^{-1} = \sigma_r$$

$$\Box (\rho_{O,\alpha})^{-1} = \rho_{O,-\alpha}$$

$$\Box (\tau_v)^{-1} = \tau_{-v}$$

$$\Box (\sigma_r \circ \tau_v)^{-1} = \sigma_r \circ \tau_{-v} \text{ (r e v paralleli)}$$