3 Wednesday, February 9, 2011

3.1 Curves in \mathbb{P}^2

Curves in \mathbb{P}^2 are defined by homogeneous irreducible polynomials f: C = V(f).

e.g., the line containing a pair of points $(p,q) \in \mathbb{P}^2$ is the set of points up + vq for $(u,v) \neq (0,0)$. It's equation Ax = 0 is obtained by solving Ap = Aq = 0. (Think of A = (a,b,c), $P = (x_1,y_1,z_1)$,

$$q = (x_2, y_2, z_2)$$
. Then $ax_1 + by_1 + cz_1 = 0$, $ax_2 + by_2 + cz_2 = 0$. Then $\begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. i.e.,

[a, b, c] is the kernel of the 2×3 matrix, which has rank 2.)

The restriction of a homogeneous polynomial f(x, y, z) to a line $\ell = \{up + vq\}$ is obtained by substitution f(up + vq). This is a homogeneous polynomial in u, v of degree $= \deg(f)$. Over \mathbb{C} , any such polynomial can be factored into linear factors $(up_i + vq_i)$. These are the points of ℓ (not necessarily distinct) that lie on V(f). Thus, a plane polynomial curve of degree d meets a line in d points, counted with multiplicity.

Let f be a homogeneous polynomial of degree d in x_1, x_2, x_2 , and let C = V(f). Let f_i denote $\frac{\partial f}{\partial x_i}$ and let $f_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$. Then the Hessian Matrix is the 3×3 symmetric matrix

$$H(f) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{ij}.$$

Proposition (Euler's Formula). Let f, $d = \deg(f)$, f_i be as above. Then $\sum_{i=1}^3 f_i x_i = f \deg(f)$.

Proof. Check it for monomials, since it's additive. (CHECK NOT INCLUDED)

This works for polynomials in n variables.

Now consider the Taylor expansion of the restriction of f to $\ell = \{up + vq\}$. Setting u = 1 (v = 0 is p, so looking near the point p):

$$f(p+vq) = f(p) + \left(\sum f_i(p)q_i\right)v + \frac{1}{2}\left(\sum f_{ij}q_iq_j\right)v^2 + \mathcal{O}(v^3)$$

with $q = (q_1, q_2, ...)$.

Proposition. 1. If p is a point of C, then f(p) = 0.

- 2. Suppose $p \in C$, and $f_i(p)$ are not all 0. Then the equation of the tangent line T to C a t p is $\sum f_i(p)q_i = 0$.
- 3. Let h be the Hessian of f at p. Then $\det h = 0$ iff p is a flex point C (i.e., a restriction of f to the tangent line at p has a zero of order ≥ 3 at p

Proof. 1. By definition.

- 2. Tangent line: if the restriction of f to T has at least a second order 0 (by definition). So looking at the coefficient of v, this is clear.
- 3. Exercise: Check that the restriction of the quadratic term to the tangent line is 0 iff det h = 0.

Definition 1. If all the f_i vanish at p, then p is called a *singular* point of C = V(f). Otherwise, say that C is *non-singular* at p. Say that C is a *non-singular curve* if it has no singular points.

3.1.1 Nonsingular curves

e.g. 1, an irreducible conic is always non-singular

Proof. Convert to $x^2 - yz = 0$. $f_x = 2x$, $f_y = -z$, $f_z = -y$. Since $(x, y, z) \in \mathbb{P}^2$, not all these can be zero, so it's nonsinular

18.721 Notes

e.g. 2, An irreducible plane cubic can have at most one singular point (exercise)

e.g. 3, The curve $x^d + y^d + z^d = 0$ is non-singular (smooth) for $d \ge 1$. (Fermat polynomial of degree d).

The partial derivatives are dx^{d-1} , dy^{d-1} , dz^{d-1} , not all zero (in \mathbb{P}^2)

e.g. 4, The curve $x^3 + y^2 - xyz = 0$ is singular at the point (0:0:1).

Proposition. For most values of the coefficients of a polynomial of degree d, the curve $C = V(f) \subseteq \mathbb{P}^2$ is smooth.

Proof. See two proofs, each of which depends on some theorem which will be proved later.

Setup: Order the monomials of degree d in x, y, z arbitrarily m_1, m_2, \ldots, m_N . (Note: $N = \binom{d+k-1}{k-1}$ for k variables.)

An arbitrary polynomial of degree d is a linear combination of the monomials m_{ν} with some coefficients z_{ν} . Think of z_{ν} as variables and let

$$F = \sum_{\nu=1}^{N} z_{\nu} m_{\nu} \in \mathbb{C}[x, y, z, \{z_{\nu}\}].$$

Then F=0 defines a subvariety \mathcal{C} of the product $\mathbb{P}^2 \times \mathbb{Z}$, where \mathbb{Z} is \mathbb{A}^N with coordinates \mathbb{Z}_{ν} .

The fiber $C^0 = \pi^{-1}(z^0)$ of C over a point $z^0 \in Z$ is the curve whose equation is the polynomial obtained.

by substituting z_{ν}^{0} for z_{ν} . The 3 partial derivatives F_{x} , F_{y} , F_{z} are polynomials in x, y, z, $\{z_{\nu}\}$ linear in z_{ν} and homogeneous of degree d-1 in x, y, z. They define some subvariety of $\mathbb{P}^{2} \times Z$. Let S be the variety $\{F_{1} = F_{2} = F_{3} = 0\}$. Note that $S \subset \mathcal{C}$ (by Euler).

The fiber \mathcal{C}^0 over a point z^0 of Z is smooth if and only if \mathcal{C}^0 doesn't meet S.

We can construct $\Sigma = \pi(S)$ the image of S via a polynomial $\mathbb{P}^2 \times Z \to Z$. Later we'll prove that the image of the projection of any Zariski closed subvariety of $\mathbb{P}^2 \times Z$ to Z is also Zariski closed.

So the set Σ is closed in the affine space Z. But Σ is not all of Z (because the Fermat curve is smooth). So $\Sigma \subset Z$ is a proper closed subvariety. So the set of z^0 for which \mathcal{C}^0 is smooth is a Zariski open subset of \mathbb{A}^N .