Multileave Gradient Descent for Fast Online Learning to Rank

Anne Schuth, Harrie Oosterhuis, Shimon Whiteson, Maarten de Rijke

- Search engines are complex machines
 - Combining hundreds of ranking signals

- Search engines are complex machines
 - Combining hundreds of ranking signals
- Learning to rank
 - Learning how to combine features

- Search engines are complex machines
 - Combining hundreds of ranking signals
- Learning to rank
 - Learning how to combine features
- Offline
 - Using (labeled) static datasets

- Search engines are complex machines
 - Combining hundreds of ranking signals
- Learning to rank
 - Learning how to combine features
- Offline
 - Using (labeled) static datasets
- Online
 - Directly from users

- Updates after exploring a single direction
- Exploring multiple directions before updating would be beneficial
 - Fewer updates would lead to a better ranker
- But would be expensive when interleaving was used
 - All directions require pairwise comparisons
- Multileaved comparisons come to the rescue

Winner takes all (MGD-W)

PageRank

Winner takes all (MGD-W)

PageRank

Winner takes all (MGD-W)

PageRank

Winner takes all (MGD-W)

Winner takes all (MGD-W)

Winner takes all (MGD-W)

rayer

Winner takes all (MGD-W)

- Pick one of the winners
- Update with an alpha step

Mean winner (MGD-M)

Winner takes all (MGD-W)

PageRank

- Pick one of the winners
- Update with an alpha step

Winner takes all (MGD-W)

- Pick one of the winners
- Update with an alpha step

Mean winner (MGD-M)

Winner takes all (MGD-W)

- Pick one of the winners
- Update with an alpha step

Mean winner (MGD-M)

Winner takes all (MGD-W)

- Pick one of the winners
- Update with an alpha step

Winner takes all (MGD-W)

- Pick one of the winners
- Update with an alpha step

- Compute the mean of the winners
- Update with an alpha step

Winner takes all (MGD-W)

- Pick one of the winners
- Update with an alpha step

- Compute the mean of the winners
- Update with an alpha step

Experimental run

- Experimental run
 - queries sampled from L2R dataset

- Experimental run
 - queries sampled from L2R dataset
 - clicks generated by cascade click model conditioned on relevance assessments

- Experimental run
 - queries sampled from L2R dataset
 - clicks generated by cascade click model conditioned on relevance assessments
 - 25 repetitions * 5 folds

- Experimental run
 - queries sampled from L2R dataset
 - clicks generated by cascade click model conditioned on relevance assessments
 - 25 repetitions * 5 folds
- 9 Datasets

- Experimental run
 - queries sampled from L2R dataset
 - clicks generated by cascade click model conditioned on relevance assessments
 - 25 repetitions * 5 folds
- 9 Datasets
- **❖** NDCG

Results - MGD-M vs MGD-W

Results - Long Run

MGD is an extension of DBGD

- MGD is an extension of DBGD
- Multileaving instead of Interleaving

- MGD is an extension of DBGD
- Multileaving instead of Interleaving
- Two update methods MGD-M and MGD-W

- MGD is an extension of DBGD
- Multileaving instead of Interleaving
- Two update methods MGD-M and MGD-W
- Experimental validation
 - Large improvements over baseline
 - Especially with noise in feedback

- MGD is an extension of DBGD
- Multileaving instead of Interleaving
- Two update methods MGD-M and MGD-W
- Experimental validation
 - Large improvements over baseline
 - Especially with noise in feedback
- Implication
 - Orders of magnitude less interaction data required with MGD
 - Search engines can adapt much faster

Thank you