Sheet 6

Alexander Bigalke, Arthur Heimbrecht, Robin Rombach July 4, 2018

 $\Rightarrow \text{Solutions starting next page...}$

Exercise 1

Exercise 1

Let's first make up some arbitrarily chosen probabilities. We chose:

$$\rho(C=0) = 0.7$$
, $\rho(C=A) = 0.3$
 $\rho(A=0|C=0) = 0.4$, $\rho(A=A|C=0) = 0.6$
 $\rho(b=0|C=0) = 0.67$, $\rho(b=A|C=0) = 0.13$
 $\rho(A=0|C=A) = 0.5$, $\rho(A=A|C=A) = 0.5$
 $\rho(b=0|C=A) = 0.2$, $\rho(b-A|C=A) = 0.8$

each line sums up to 1 as required by normalization

based on these probabilities, we can now create 2 tables for the conditional probability $\rho(A,B|C)$ for C=0 and C=1. Assuming $A\perp B\mid C$, we can use $\rho(A,B\mid C)=\rho(A\mid C)\cdot\rho(B\mid C)$

to obtain

C=0

C=1

0 0.11-7	Pulley	pla,61C)
0 0,5	012 .	0,1
1 0,5	08	0,4
0 0,5	012	0,1
1 0,5	08	0,4

Now, we can marginalize over C to compute

$$p(A) = p(A \mid C=0) \cdot p(C=0) + p(A \mid C=1) \cdot p(C=A)$$
 (analogously for p(6) and

p(A,6) = p(A,61C=0) + p(A,61C-1) + p(C=1)

*>	A	B	p(A)	plb)	PLA.B)		PLA). PLB)
	0	0	0,43	0,55	0,26	4	0,2365
	O	1	0,43	0,45	0,204	4	0,1335
	1	0	0,57	0.55	0,324	#	0,3135
	1	1	0,57	0,45	0,246	#	0,2565

As one can see, $p(A,B) \neq p(A) \cdot p(B)$ in all 4 cases and thus An and 6 are not independent $(A \times B)$ although $A \perp B \mid C$ holds

Exercise 2

2.1

2.2

 \Rightarrow see the attached file boys.html or boys.ipynb.

The graph required for exercise *b*)

Exercise 3 - Weather Forecast using a Markov Chain

In [1]: import numpy as np

The task is to classify the weather on an arbitrary day n, where the weather is specified by $t_n \in \{rainy, cloudy, sunny\}$.

a) The transition probabilities from day n-1 to day n are given as follows:

$$p_{r,r} = 0.2$$
; $p_{c,r} = 0.7$; $p_{s,r} = 0.1$
 $p_{r,c} = 0.2$; $p_{c,c} = 0.3$; $p_{s,c} = 0.5$
 $p_{r,s} = 0.4$; $p_{c,s} = 0.3$; $p_{s,s} = 0.3$

where we introduced the shorthand-notation $p_{i,j} := p(t_n = i \mid t_{n-1} = j)$ and the abbreviations r = rainy, s = sunny and c = cloudy.

The missing conditional probabilities were computed by using the condition:

$$\sum_{i} p_{i,j} = 1$$

- **b)** see Figure 1.
- c) Consider a given probability vector

$$\mathbf{p}(t_0) = \begin{pmatrix} p(t_0 = r) \\ p(t_0 = c) \\ p(t_0 = s) \end{pmatrix}$$

The probabilities after one day, i.e. $\mathbf{p}(t_0)$ are then given by

$$p(t_1 = j) = \sum_{i} p_{j,i} \cdot p(t_0 = i)$$

d) The above formula can be cast into matrix form:

$$\mathbf{p}(t_1) = \mathcal{P}^{\mathrm{T}} \mathbf{p}(t_0) \equiv \mathbf{M} \mathbf{p}(t_0)$$

by defining the transition matrix

$$\mathcal{P} = \begin{pmatrix} p_{r,r} & p_{c,r} & p_{s,r} \\ p_{r,c} & p_{c,c} & p_{s,c} \\ p_{r,s} & p_{c,s} & p_{s,s} \end{pmatrix} = \begin{pmatrix} 0.2 & 0.7 & 0.1 \\ 0.2 & 0.3 & 0.5 \\ 0.4 & 0.3 & 0.3 \end{pmatrix}$$

The numerical computation for $\mathbf{p}(t_0) = (0.5, 0.25, 0.25)^{\mathrm{T}}$ is demonstrated below.

```
In [2]: # numerical computation:
    P = np.array([[0.2, 0.7, 0.1], [0.2, 0.3, 0.5], [0.4, 0.3, 0.3]])
    p0 = np.array([0.5, 0.25, 0.25])
    M = P.T
    print('p1: ', M@p0)
p1: [ 0.25  0.5  0.25]
```

Hence, $\mathbf{p}(t_1) = \mathcal{P}^{T} \mathbf{p}(t_0) = (0.25, 0.5, 0.25)^{T}$.

e) The above formula can be easily generalized to arbitrary times:

$$\mathbf{p}(t_n) = \mathbf{M}^n \, \mathbf{p}(t_0)$$

with $n \ge 1$.

```
In [5]: print('p100: ', np.linalg.matrix_power(P.T, 100) @ p0)
p100: [ 0.265625  0.40625   0.328125]
```

Hence,
$$\mathbf{p}(t_{100}) = \mathcal{P}^{T} \mathbf{p}(t_{0}) \approx (0.26, 0.41, 0.33)^{T}$$
.

f) The steady state $\mathbf{s} = \lim_{n \to \infty} \mathbf{p}(t_n)$ of the system is given by

$$s = M s$$

hence, it can be calculated by solving the homogenous equation

$$0 = (\mathbf{M} - \mathbb{I}) \mathbf{s}$$

and using the fact that $\sum_i s_i = 1$, i.e. **s** is a probability vector; or, alternatively, compute the eigenvector for the eigenvalue problem

$$\det \mathbf{M} - \lambda \cdot \mathbb{I} = 0$$

for $\lambda = 1$.

```
In [4]: # use the fact that the abs. max. eigenvalue is 1.0
    s = np.linalg.eig(M)[1][:, np.argmax(np.absolute(np.linalg.eig(M)[0]))]
    # rescale
    s = (1./(np.sum(s))) * s
    print('steady state: ', s)

steady state: [ 0.265625+0.j  0.406250+0.j  0.328125+0.j]
```

Hence, the (rounded) steady state is given by

$$\mathbf{s} \approx \begin{pmatrix} 0.26 \\ 0.41 \\ 0.33 \end{pmatrix} = \begin{pmatrix} s_r \\ s_c \\ s_s \end{pmatrix}$$

in accordance with exercise *e*) and such that $\sum_{i} s_{i} = 1$.