

FCC PART 22 TEST REPORT

FCC Part 22

yuchao.wang

Report Reference No.....: MWR150600502 FCC ID.....: 2AFAP0AX1

Compiled by

(position+printed name+signature)... File administrators Martin Ao

Supervised by

(position+printed name+signature)... Test Engineer Yuchao Wang

Approved by

(position+printed name+signature)... Manager Dixon Hao

Representative Laboratory Name .: Maxwell International Co., Ltd.

Testing Laboratory Name Shenzhen CTL Testing Technology Co., Ltd.

Address...... Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road,

Nanshan, Shenzhen, China

Applicant's name...... ALPHA EXPORT AND IMPORT CO.,LIMITED

China

Test specification:

Standard FCC Part 22: PUBLIC MOBILE SERVICES

TRF Originator...... Maxwell International Co., Ltd.

Maxwell International Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material. Maxwell International Co., Ltd. takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Mobile Phone

Trade Mark ALPHARD

Manufacturer...... ALPHA EXPORT AND IMPORT CO.,LIMITED

Model/Type reference..... AX1

Listed Models AX2, AX3, AX4, AX5, AX6, AX7, AX8, AX9, AX10

Ratings...... DC 3.70V

Modulation QPSK

Hardware version S9 V2.3

Frequency...... UMTS Band V

Result..... PASS

Page 2 of 25 Report No.: MWR150600502

TEST REPORT

Test Report No. :	MWR150600502	July 07, 2015
	IVIVVR 150600502	Date of issue

Equipment under Test : Mobile Phone

Model /Type : AX1

Listed Models : AX2, AX3, AX4, AX5, AX6, AX7, AX8, AX9, AX10

Applicant : ALPHA EXPORT AND IMPORT CO.,LIMITED

Address : Room 4d, Huashang Block, NO.3, Biezhan Road,

Shenzhen, China

Manufacturer : ALPHA EXPORT AND IMPORT CO.,LIMITED

Address : Room 4d, Huashang Block, NO.3, Biezhan Road,

Shenzhen, China

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: MWR150600502

Contents

<u>1. TES</u>		
		_
<u>2. SUI</u>	M M A R Y	5
2.1. Gene	eral Remarks	5
	pment under Test	6
	rt description of the Equipment under Test (EUT)	6
	nal Identification of AE used during the test	7
2.5. Norn	nal Accessory setting	7
2.6. EUT	configuration	7
2.7. Rela	ted Submittal(s) / Grant (s)	7
	ifications	7
	eral Test Conditions/Configurations	7
2.10. Note		8
3. <u>TE</u> S	ST ENVIRONMENT	9
3.1. Addr	ress of the test laboratory	9
	Facility	9
3.3. Envi	ronmental conditions	9
	Description	9
3.5. Equi	pments Used during the Test	10
4. <u>TES</u>	ST CONDITIONS AND RESULTS	. 11
	out Power	11
	ated Spurious Emission	14 17
	upied Bandwidth and Emission Bandwidth d Edge Compliance	17
	rious Emission on Antenna Port	20
	uency Stability Test	23
7.0. 11 0 4	deficy stability rest	23
5. <u>TE</u> S	ST SETUP PHOTOS OF THE EUT	. 25
6. <u>EX</u>	TERNAL PHOTOS OF THE EUT	25
- 		
7. INT	ERNAL PHOTOS OF THE EUT	. 25

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22 (10-1-12 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

<u>TIA/EIA 603 D June 2010:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

ANSI C63.4:2009: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

KDB 971168 D01 Power Mesa License Digital Systems v02r02: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample		Jun 18, 2015
Testing commenced on	:	Jun 20,2015
Testing concluded on	:	July 07 ,2015

The **ALPHA EXPORT AND IMPORT CO.**, **LIMITED's** Model: AX1 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone
Model Number	AX1
Serial Number	AX8745B485
Markline True	GMSK for GSM/GPRS, 8-PSK for EDGE
Modilation Type	QPSK for UMTS
Antenna Type	Internal
UMTS Operation Frequency Band	Device supported UMTS Band I/UMTS Band V
	IEEE 802.11b:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11g:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11n HT20:2412-2462MHz
	IEEE 802.11n HT40:2422-2452MHz
BT FCC Operation frequency	2402MHz-2480MHz
HSDPA Release Version:	Release 7, CAT14
HSUPA Release Version:	Release 6, CAT6
DC-HSUPA Release Version	Not Supported
WCDMA Release Version	R99
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
WEART OO Woodidion Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
BT Modulation Type	GFSK (BT 4.0)/GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)
Hardware version	S9_V2.3
Software version	S9_72KK_KK_3G_EMMC_32_4_XX_ZXMD_20150604- 114737
GPS function	Supported
WLAN	Supported 802.11b/802.11g/802.11n
Bluetooth	Supported BT 4.0/BT 3.0+EDR
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/PCS1900:Power Class 1
GSM/EDGE/GPRS Operation Frequency	GSM850 :824.2MHz-848.8MHz
	PCS1900:1850.2MHz-1909.8MHz
GSM/EDGE/GPRS Operation Frequency	GSM850/PCS1900/GPRS850/
Band	GPRS1900/EDGE850/EDGE1900
GSM Release Version	R99
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.00VDC to 4.35VDC (nominal: 3.70VDC)
GPRS operation mode	Class B

Page 6 of 25 Report No.: MWR150600502

2.2. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC 3.70V

Test frequency list

Test Mode	TX/RX	RF Channel				
rest wode	IA/KA	Low(L)	Middle (M)	High (H)		
	TX	Channel 128	Channel 190	Channel 251		
GSM850	IA	824.2 MHz	836.6 MHz	848.8 MHz		
GSIVIOSO	RX	Channel 128	Channel 190	Channel 251		
	ĽΛ	869.2 MHz	881.6 MHz	893.8 MHz		
Test Mode	TX/RX		RF Channel			
i est ivioue	IA/KA	Low(L)	Middle (M)	High (H)		
	TX	Channel 512	Channel 661	Channel 810		
GSM1900		1850.2 MHz	1880.0 MHz	1909.8 MHz		
	RX	Channel 512	Channel 661	Channel 810		
		1930.2 MHz	1960.0 MHz	1989.8 MHz		
Test Mode	TX/RX	RF Channel				
rest wode	IA/NA	Low(L)	Middle (M)	High (H)		
	TX	Channel 4132	Channel 4182	Channel 4233		
UMTS Band V	IA	826.4 MHz	836.4 MHz	846.6 MHz		
OIVITS DATIU V	RX	Channel 4357	Channel 4407	Channel 4458		
	ΓΛ	871.4 MHz	881.4 MHz	891.6 MHz		

2.3. Short description of the Equipment under Test (EUT)

2.4.1 General Description

AX1 is subscriber equipment in the UMTS/GSM system. Support HSPA/UMTS frequency band I and band V, only UMTS band V used in USA; The GSM/GPRS/EDGE frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.4.2 Technical Specification

Characteristics	Description		
Radio System Type	⊠GSM/⊠UMTS		
	GSM850/UMTS Band V	Transmission(TX): 824 to 849MHz	
Supported Frequency Range		Receiving(RX): 869 to 894MHz	
Supported Frequency Range	GSM1900	Transmission(TX): 1850 to 1910MHz	
	GSW1900	Receiving(RX): 1930 to 1990MHz	
TX and RX Antenna Ports	TX& RX port:	1	
Supported Channel Bandwidth Designation of Emissions	GSM system:	200 kHz	
	UMTS system:	5 MHz	
	GSM850:	245KGXW	
(Note: the necessary bandwidth of which is the worst value from the measured	EGPRS 850	248KG7W	
occupied bandwidths for each type of	GSM1900:	247KGXW	
channel bandwidth configuration.)	EGPRS 1900	245KG7W	
channer bandwidth conliguration.)	UMTS 850:	4M18F9W	

2.4. Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1

Model: ETA-U90JWE

INPUT:100-240V 50/60Hz 0.35A

OUTPUT: DC 5.0V,2 A

2.5. Normal Accessory setting

Fully charged battery was used during the test.

2.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

0	Power Cable	Length (m):	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer:	1
		Model No.:	1

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AFAP0AX1** filling to comply with FCC Part 22 and Part 24 Rules

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. General Test Conditions/Configurations

2.10.1 Test Modes

NOTE: The test mode(s) are selected according to relevant radio technology specifications.

Test Mode	Test Modes Description
UMTS/TM1	WCDMA system, QPSK modulation
UMTS/TM2	HSDPA system, QPSK modulation
UMTS/TM3	HSUPA system, QPSK modulation

Note

- 1. This EUT owns two SIM cards, after we perform the pretest for these two SIM cards; we found the SIM 1 is the worst case, so its result is recorded in this report.
- WCDMA, HSDPA and HSUPA with the same emission designator, test result recorded in this report at the worst case UMTS/TM1 only.

2.10.2 Test Environment

Environment Parameter	Selected Values During Tests			
Relative Humidity	Ambient			
Temperature	TN	Ambient		
	VL	3.00V		
Voltage	VN	3.70V		
	VH	4.35V		

NOTE: VL=lower extreme test voltage VN=nominal voltage VH=upper extreme test voltage TN=normal temperature

2.10. Note

1. The EUT is a Mobile Phone with UMTS/GSM/GPRS/EDGE, WiFi and Bluetooth function, The functions of the EUT listed as below:

	Test Standards	Reference Report
GSM/GPRS/EDGE	FCC Part 22/FCC Part 24	MWR150600501
WCDMA	FCC Part 22	MWR150600502
Bluetooth	FCC Part 15 C 15.247	MWR150600503
BLE	FCC Part 15 C 15.247	MWR150600504
WiFi	FCC Part 15 C 15.247	MWR150600505
USB Port	FCC Part 15 B	MWR150600506
SAR	FCC Part 2 §2.1093	MWR150600507

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, Dec 19, 2013

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

3.4.1 Cellular Band (824-849MHz paired with 869-894MHz)

Test Item	FCC Rule No.	Requirements	Verdict
RFOutput Power	§2.1046, §22.913	FCC: ERP ≤ 7W.	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §22.917	≤-13dBm/1%*EBW, in 1MHz bands immediately outside and adjacent to The frequency block.	Pass
Spurious Emission at Antenna Terminals	§2.1051, §22.917	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §22.917	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Pass

3.5. Equipments Used during the Test

Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance & Conducted Spurious Emission No. Equipment Manufacturer Model No. Serial No. Last Cal. Radio Communication Tester CMU200 2015/05/22 R&S 115419 2 R&S FSU26 103710 Spectrum Analyzer 2015/06/02 3 Splitter Mini-Circuit ZAPD-4 400059 2015/06/02 RF cable 1 MURATA 4 MXHS83QE3000 1420355 2015/05/21 5 RF cable 2 MURATA MXHS83QE3000 1420356 2015/05/21

Frequency Stability									
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.				
1	Radio Communication Tester	R&S	CMU200	115419	2015/05/22				
2	Spectrum Analyzer	R&S	FSU26	103710	2015/06/02				
3	Splitter	Mini-Circuit	ZAPD-4	400059	2015/06/02				
4	RF cable 1	MURATA	MXHS83QE3000	1420355	2015/05/21				
5	RF cable 2	MURATA	MXHS83QE3000	1420356	2015/05/21				
6	Climate Chamber	ESPEC	EL-10KA	A20120523	2015/05/20				

Outp	Output Power (Radiated) & Radiated Spurious Emission								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.				
1	Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02				
2	Bilog Antenna	Sunol Sciences Corp.	JB1	A061714	2015/06/02				
3	EMI TEST Receivcer	Rohde&Schwarz	ESCI	103710	2015/06/02				
4	EMI TEST Software	Audix	E3	N/A	N/A				
5	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A				
6	HORN ANTENNA	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19				
7	HORN ANTENNA	Sunol Sciences Corp.	DRH-118	A062014	2015/05/19				
8	Amplifer	HP	8349B	3008A02306	2015/05/19				
9	Preamplifier	HP	8447D	2944A10176	2015/05/19				
10	Loop Antenna	Daze	ZN30900A	N/A	2015/05/19				
11	Horn Antenna	ShwarzBeck	BBHA9170	25841	2015/05/19				
12	Horn Antenna	ShwarzBeck	BBHA9170	25842	2015/05/19				
13	Radio Communication Tester	R&S	CMU200	115419	2015/05/22				
14	Splitter	Mini-Circuit	ZAPD-4	400059	2015/06/02				
15	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	2015/05/21				
16	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2015/05/21				
17	Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21				
18	SIGNAL GENERATOR	Agilent	E4421B	US40051744	2015/05/20				

The calibration interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (CMU200) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RFoutput of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Set Spectrum Analyzer RBW=10MHz, VBW=10MHz, Dector: Peak; read peak values.

TEST RESULTS

UMTS/TM1/Band V							
Channel Frequency (MHz) Output Power(dBm)							
4132	826.40	22.30					
4183	836.60	22.55					
4233	846.60	22.08					

Report No.: MWR150600502

4.1.2. Radiated Output Power

TEST DESCRIPTION

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.8m meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 0.8m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=10MHz,VBW=10MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver

- reach the previously recorded (P_r) . The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Aq}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)= P_{Mea} - P_{Ag} - P_{cl} + G_a

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below:

Power(EIRP)= P_{Mea} - P_{cl} + G_a

- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Note: We test the H direction and V direction and V direction is worse.

	UMTS/TM1/ Band V									
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization	
826.40	-21.69	2.42	8.45	2.15	36.82	19.01	38.45	19.44	V	
836.60	-21.44	2.46	8.45	2.15	36.82	19.22	38.45	19.23	V	
846.60	-21.15	2.53	8.36	2.15	36.82	19.35	38.45	19.10	V	

Report No.: MWR150600502

4.2. Radiated Spurious Emission

TEST APPLICABLE

According to the TIA/EIA 603D:2010 test method, The Receiver or Spectrum was scanned from 9 KHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz The resolution bandwidth is set as outlined in Part 24.238 and Part 22.917. The spectrum is scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 0.8m meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 0.8m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).

Report No.: MWR150600502

- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: $Power(EIRP) = P_{Mea} P_{Ag} P_{cl} + G_a$
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
UMTS/TM1/	0.03~1	100KHz	300KHz	10
Band V	1~2	1 MHz	3 MHz	2
Dallu V	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3

TEST LIMITS

According to 24.238 and 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dR

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz-10GHz	PASS
UMTS/TM1/Band V	Middle	9KHz -10GHz	PASS
	High	9KHz -10GHz	PASS

Page 16 of 25

UMTS/TM1/ Band V								
Channel Number: 4132				Test Frequ	iency: 826.40 M	1Hz		
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Peak EIRP(dBm)	Limit (dBm)	Polarization		
1652.80	-40.25	4.32	6.77	-37.80	-13.00	Н		
2479.20					-13.00	Н		
1652.80	-36.22	4.32	6.77	-33.77	-13.00	V		
2479.20					-13.00	V		

Report No.: MWR150600502

UMTS/TM1/Band V								
	Channel Numb	er: 4183		Test Frequency: 836.60 MHz				
Frequency (MHz)	P _{Mea} (dBm)	Path Loss	Antenna Gain	Peak EIRP(dBm)	Limit (dBm)	Polarization		
1673.20	-41.25	4.55	6.77	-39.03	-13.00	Н		
2509.80					-13.00	Н		
1673.20	-32.65	4.55	6.77	-30.43	-13.00	V		
2509.80					-13.00	V		

	UMTS/TM1/Band V							
	Channel Numb	er: 4233		Test Frequency: 846.60 MHz				
Frequency (MHz)	P _{Mea} (dBm)	Path Antenna Loss Gain			Peak EIRP (dBm)	Limit (dBm)	Polarization	
1693.20	-44.36	4.29	6.83	3	-41.82	-13.00	Н	
2539.80						-13.00	Н	
1693.20	-39.65	4.29	6.83	3	-37.11	-13.00	V	
2539.80						-13.00	V	

Note:

- In general, the worse case attenuation requirement shown above was applied.
 *** means that the emission level is too low to be measured or at least 20 dB down than the limit.

4.3. Occupied Bandwidth and Emission Bandwidth

TEST APPLICABLE

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of WCDMA band V. The table below lists the measured 99% Bandwidth and -26dBc Bandwidth.

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The Occupied bandwidth and Emission Bandwidth were measured with Spectrum Analyzer FSU26(peak);
- 3. Set RBW=50 KHz,VBW=300 KHz,Span=10MHz:
- 4. Set SPA Max hold and View, Set 99% Occupied Bandwidth/ Set -26dBc Occupied Bandwidth
- 5. These measurements were done at 3 frequencies, the lower, middle and higher of operational frequency range.

TEST RESULTS

UMTS/TM1/ Band V							
Channel Number	Frequency (MHz)	Occupied Bandwidth (99% BW) (kHz)	Emission Bandwidth (26 dBc BW) (kHz)	Verdict			
4132	826.40	4.17	4.65	PASS			
4183	836.60	4.18	4.68	PASS			
4233	846.60	4.17	4.68	PASS			

4.4. Band Edge Compliance

TEST APPLICABLE

During the process of testing, the EUT was controlled via Aglient Digital Radio Communication tester (CMU200) to ensure max power transmission and proper modulation.

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. The power was measured with Spectrum Analyzer FSU26;
- 3. Set RBW=50 KHz, VBW=100 KHz, Span=2MHz:, Dector: Peak;
- 4. These measurements were done at 3 frequencies, the lower, middle and higher of operational frequency range.

TEST RESULTS

4.5. Spurious Emission on Antenna Port

TEST APPLICABLE

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.
- 2. The sweep time is set automatically by instrument itself. That should be the optimal sweep time for the span and the RBW. If the sweep time is too short, that is sweep is too fast, the sweep result is not accurate; if the sweep time is too long, that is sweep is too low, some frequency components may be lost. The instrument will give an optimal sweep time according the selected span and RBW.
- 3. The procedure to get the conducted spurious emission is as follows:
 - The trace mode is set to MaxHold to get the highest signal at each frequency; Wait 25 seconds:
 - Get the result.
- 4. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The EUT was set up for the max output power with pseudo random data modulation;
- 2. These measurements were done at 3 frequencies, the lower, middle and higher of operational frequency range.
- 3. Set RBW=1 MHz, VBW=3 MHz, Dector: Peak;

TEST LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST RESULTS

Remark:

1. We tested conducted spurious from 9KHz to 10th harmonic of the carrier frequency, and only recorded from 30MHz to 10th harmonic of the carrier frequency.

4.6. Frequency Stability Test

TEST APPLICABLE

- 1. According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30℃ to +50℃ centigrade.
- 2. According to FCC Part 2 Section 2.1055 (E) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.

TEST PROCEDURE

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature;
- Subject the EUT to overnight soak at -30°C;
- 3. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on middle channel of PCS 1900 and GSM850, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 4. Repeat the above measurements at 10℃ increments from -30℃ to +50℃. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 0.5 hours unpowered, to allow any self-heating to stabilize, before continuing;
- 6. Subject the EUT to overnight soak at +50°C;
- 7. With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming;
- 8. Repeat the above measurements at 10°C increments from +50°C to -30°C. Allow at least 0.5 hours at each temperature, unpowered, before making measurements;
- 9. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure;

TEST CONFIGURATION

TEST LIMITS

For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the

Page 24 of 25 Report No.: MWR150600502

manufacturer. This transceiver is specified to operate with an input voltage of between 3.00VDC and 4.35VDC, with a nominal voltage of 3.70DC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies..

TEST RESULTS

UMTS/TM1/ Band V							
DC Power	Temperature (°C)	Frequency error (Hz)	Frequency error (ppm)	Limit (ppm)	Verdict		
3.00(end point)	25	28	0.03	2.50	PASS		
3.70	25	35	0.04	2.50	PASS		
4.35	25	37	0.04	2.50	PASS		
3.70	-30	41	0.05	2.50	PASS		
3.70	-20	44	0.05	2.50	PASS		
3.70	-10	35	0.04	2.50	PASS		
3.70	0	26	0.03	2.50	PASS		
3.70	10	30	0.04	2.50	PASS		
3.70	20	31	0.04	2.50	PASS		
3.70	30	35	0.04	2.50	PASS		
3.70	40	34	0.04	2.50	PASS		
3.70	50	36	0.04	2.50	PASS		

Report No.: MWR150600502

5. Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

6. External Photos of the EUT

Please refer to separated files for External Photos of the EUT.

7. Internal Photos of the EUT

End of Report	
Please refer to separated files for Internal Photos of the EUT.	