Prof. Grit Behrens

gbehrens@fh-bielefeld.de

Name leserlich : Patrick Hintelmann

Unterschrift: Parish Hickory

Einführung in die Informatik WS 2020/21

Abgabe in ILIAS bis 15.12.2020 20:00 Uhr

Übungsblatt 6

Speicherung und Interpretation von Information

Aufgabe 6.1:

Wandeln Sie die beiden nachfolgenden echt gebrochenen Zahlen in Dezimaldarstellung in ihre Darstellung im Oktalsystem um! Berechnen Sie maximal 10 Stellen nach dem Komma.

(a)
$$(0.125)_{10} = (...?..)_8$$

Lösung:

(b) $(0.256)_{10} = (...?...)_8$

0,50,0:0,0:0,2030446722

Aufgabe 6.2:

Betrachten Sie das Horner Schema für die Umwandlung von Positionsystemdarstellungen mit beliebiger Basis in das Dezimalsystem.

(a) Schreiben Sie die in der Vorlesung eingeführte Formel auf!

$$V = \sum_{i=0}^{N} p_i \cdot \beta_i$$

Berechnen Sie die Dezimaldarstellung der folgenden beiden Zahlen:

(b)
$$(3726)8 = (...?..)_{10}$$

 $((3.8+7) \cdot 8+2) \cdot 8+6$
 $= (31 \cdot 8+2) \cdot 8+6$
 $= (3006)$
 $= (3006)$
 $= (33112)_4 = (...?..)_{10}$
 $((((1.4+3) \cdot 4+3) \cdot 4+1) \cdot 4+1) \cdot 4+2$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+1) \cdot 4+1) \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1 \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1 \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+3) \cdot 4+1 \cdot 4+1) \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+1) \cdot 4+1 \cdot 4+1 \cdot 4+1 \cdot 4+1$
 $= ((31 \cdot 4+1) \cdot 4+1 \cdot 4$

1.4 +3 = 4+3 = 7 7.4 +3 = 28 +3 = 31 31.4 +1 = 124+1=125 125.441-500 +1=501

3.8+7=24+7=31 31.8+2=248+2=25.0

133 1124 - 006/10

Aufgabe 6.3

Lösen Sie die folgende Aufgabe, indem Sie die Dezimalzahlen zuerst in das Dualsystem umwandeln und dann im Dualsystem die Addition durchführen: $(123)_{10} + (201)_{10} = !$ Führen Sie auch die Probe in Dezimaldarstellung durch!

Aufgabe 6.4

Betrachtet werde die Repräsentierung ganzer Zahlen in 9-er-Komplement-Darstellung für 8-stellige Dezimalzahlen. Bestimmen Sie in dieser Darstellung –(14790)₁₀+ (27282)₁₀.

Aufgabe 6.5

0001 0011

Betrachtet werde die Repräsentierung ganzer Zahlen in 2-er-Komplement-Darstellung in 8-Bit-Maschinenwörtern. Stellen Sie die folgenden ganzen Zahlen, falls möglich, in 2-er-Komplement-Darstellung dar: -29, 108, -108, 232, 19, -132

28:2=14R1 14:2=7R0 7:2=3R1 3:2=1R1 1:2=0R1 0001 1101 V1-er 1110 0010	108:7 = 54 RO 54:7 = 77 RO 27:7 = 13 R1 13:7 = 6 R1 6:7 = 3 RO 3:7 = 1 R1 1:2 = 0 R1 0110 1100 Ver 0110 1100	108 ₁₀ = 110 1100 ₂ 0110 1100 V1-er 1001 0011 1001 0011 1001 0100	58:2: 14:1: 7:1: 3:1: 1:1:	58 RO 29 RO 14 R1 7 RO 3 R1 1 R1 0 R1
13:2 = 9 R1 9:2 = 4 R1 4:2 = 2 R0 2:2 = 1 R0 1.2 = 0 R1 0001 0011	132:2=66 R 66:2=33 R 33:2=16 R 16:2=8 R 8:2-4 R 4:2=2 R	0 1000 0 => Daryt	0100	hraly & Sit hraly & Sit hraly & Sit Af moglicly 7 Bit