$11a_{231} \ (K11a_{231})$

Ideals for irreducible components² of X_{par}

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

```
I_1^u = \langle 49503754u^{16} - 103286795u^{15} + \dots + 3447876362d - 235456666 \rangle
              58457271u^{16} - 270451180u^{15} + \dots + 13791505448c - 14346071104
              31318034u^{16} - 423514703u^{15} + \dots + 6895752724b - 2520805844
              630201461u^{16} - 1197766854u^{15} + \cdots + 13791505448a - 18642484192, u^{17} - 2u^{16} + \cdots + 4u^{2} + 8
I_2^u = \langle 4u^6a + 14u^5a - 3u^6 + 26u^4a - 3u^5 + 26u^3a - 2u^4 + 8u^2a + 3u^3 - 12au + 9u^2 + 10d - 14a + 9u + 8u^2a + 3u^3 - 12au + 9u^2 + 10d - 14a + 9u + 8u^2a + 3u^3 - 12au + 9u^2 + 10d - 14a + 9u + 8u^2a + 10d - 14a + 10d - 14
              3u^6a + 3u^5a - u^6 + 2u^4a + 4u^5 - 3u^3a + 11u^4 - 9u^2a + 21u^3 - 9au + 18u^2 + 10c - 8a + 8u + 1
                -u^5 - 2u^4 - 3u^3 + au - 2u^2 + b - u.
                -4u^{6} - 2u^{4}a - 9u^{5} - 4u^{3}a - 15u^{4} - 6u^{2}a - 10u^{3} + 2a^{2} - 4au - 3u^{2} - 2a + 7u + 7
              u^7 + 3u^6 + 6u^5 + 7u^4 + 5u^3 + u^2 - 2u - 2
I_2^u = \langle u^3 + d + u, c + u, u^4 - 2u^2a - u^3 + au + u^2 + b - 2a - 1.
                -u^4a + 2u^3a - 3u^2a + u^3 + a^2 + 2au - u^2 - a + 2u - 1, \ u^5 - u^4 + 2u^3 - u^2 + u - 1
I_{\perp}^{u} = \langle -6u^{4}a + u^{3}a + 2u^{4} - 15u^{2}a - 8u^{3} + 5au + 5u^{2} + 23d + 2a - 17u + 7.
                -2u^4a - 15u^3a - 7u^4 - 5u^2a + 5u^3 - 6au - 6u^2 + 23c - 7a - 21u + 10
                -4u^4a + 16u^3a + 9u^4 - 10u^2a - 13u^3 + 11au + 11u^2 + 23b - 14a + 4u - 3
                -u^4a + 2u^4 - u^2a + u^3 + a^2 - 2au + u^2 - a + 4u + 1, \ u^5 - u^4 + 2u^3 - u^2 + u - 1
I_5^u = \langle u^3 + d + u, c + u, -u^4 + u^3 - u^2 + b - 1, -u^4 - u^2 + a - 1, u^5 - u^4 + 2u^3 - u^2 + u - 1 \rangle
I_1^v = \langle a, d+1, c+a, b-1, v+1 \rangle
I_2^v = \langle a, d, c-1, b+1, v-1 \rangle
I_3^v = \langle a, \ d+1, \ c+a-1, \ b-1, \ v-1 \rangle
I_4^v = \langle c, d+1, cb+a-1, cv+av-c-v, bv-v+1 \rangle
```

^{* 8} irreducible components of $\dim_{\mathbb{C}} = 0$, with total 59 representations.

^{* 1} irreducible components of $\dim_{\mathbb{C}} = 1$

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle 4.95 \times 10^7 u^{16} - 1.03 \times 10^8 u^{15} + \dots + 3.45 \times 10^9 d - 2.35 \times 10^8, \ 5.85 \times 10^7 u^{16} - 2.70 \times 10^8 u^{15} + \dots + 1.38 \times 10^{10} c - 1.43 \times 10^{10}, \ 3.13 \times 10^7 u^{16} - 4.24 \times 10^8 u^{15} + \dots + 6.90 \times 10^9 b - 2.52 \times 10^9, \ 6.30 \times 10^8 u^{16} - 1.20 \times 10^9 u^{15} + \dots + 1.38 \times 10^{10} a - 1.86 \times 10^{10}, \ u^{17} - 2u^{16} + \dots - 4u^2 + 8 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0456949u^{16} + 0.0868482u^{15} + \dots + 0.0108537u + 1.35174 \\ -0.00454164u^{16} + 0.0614167u^{15} + \dots + 1.35174u + 0.365559 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.00423864u^{16} + 0.0196100u^{15} + \dots - 0.366884u + 1.04021 \\ -0.0143578u^{16} + 0.0299566u^{15} + \dots - 0.201558u + 0.0682903 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.00853629u^{16} - 0.00271483u^{15} + \dots - 0.843158u + 0.201558 \\ -0.0111327u^{16} + 0.00527464u^{15} + \dots - 1.04021u - 0.0339091 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0196690u^{16} - 0.00798947u^{15} + \dots + 0.197053u + 0.235467 \\ 0.00442501u^{16} + 0.0219877u^{15} + \dots + 0.882859u - 0.216879 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0101191u^{16} - 0.0103467u^{15} + \dots - 0.165326u + 0.971920 \\ -0.0143578u^{16} + 0.0299566u^{15} + \dots - 0.201558u + 0.0682903 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0101191u^{16} - 0.0103467u^{15} + \dots - 0.165326u + 0.971920 \\ 0.0191724u^{16} - 0.013467u^{15} + \dots - 0.165326u + 0.971920 \\ 0.0191724u^{16} - 0.0450506u^{15} + \dots + 0.128762u + 0.147423 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0184279u^{16} - 0.0176833u^{15} + \dots + 0.128762u + 0.120605 \\ 0.00318587u^{16} - 0.0118199u^{15} + \dots + 0.824498u - 0.234332 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0184279u^{16} - 0.0176833u^{15} + \dots + 0.128762u + 0.120605 \\ 0.00318587u^{16} - 0.0118199u^{15} + \dots + 0.824498u - 0.234332 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{975451789}{3447876362}u^{16} - \frac{210120269}{3447876362}u^{15} + \dots + \frac{8037027246}{1723938181}u - \frac{2146878348}{1723938181}u - \frac{214687848}{1723938181}u - \frac{214687848}{1723938181}u - \frac{214687848}{1723938181}u - \frac{214687848}{1723938181}u - \frac{214687848}{1723938181}u - \frac{214687848}{1723938180}u - \frac{214687848}{1723938181}u - \frac{214687848}{1723938180}u - \frac{21468784848}{1723938180}u - \frac{214687848}{1723938180}u - \frac{21468784848}{1723938180}u - \frac{214687848}{1723938180}u - \frac{21468784848}{1723938180}u - \frac{21468784848}{172398180}u - \frac{21468784848}{17239818000000000000000000000000$$

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{17} - 2u^{16} + \dots - 8u + 4$
c_2	$u^{17} + 6u^{16} + \dots + 88u + 16$
c_3, c_5, c_6 c_8, c_{10}, c_{11}	$u^{17} + 2u^{16} + \dots + 3u + 1$
c_4, c_9	$u^{17} - 2u^{16} + \dots - 4u^2 + 8$

Crossings	Riley Polynomials at each crossing
c_{1}, c_{7}	$y^{17} - 6y^{16} + \dots + 88y - 16$
c_2	$y^{17} + 10y^{16} + \dots + 288y - 256$
c_3, c_5, c_6 c_8, c_{10}, c_{11}	$y^{17} - 20y^{16} + \dots + 27y - 1$
c_4, c_9	$y^{17} + 6y^{16} + \dots + 64y - 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.679716 + 0.561358I		
a = 0.75464 + 1.62593I		
b = -0.39979 + 1.52879I	-3.14388 + 1.09865I	-5.52136 - 1.09882I
c = 0.849883 + 1.063640I		
d = 0.073472 + 0.578699I		
u = 0.679716 - 0.561358I		
a = 0.75464 - 1.62593I		
b = -0.39979 - 1.52879I	-3.14388 - 1.09865I	-5.52136 + 1.09882I
c = 0.849883 - 1.063640I		
d = 0.073472 - 0.578699I		
u = 0.555749 + 1.023030I		
a = -1.22318 - 0.96405I		
b = 0.30647 - 1.78712I	-1.71782 - 5.90288I	-0.75718 + 7.23695I
c = 0.306715 + 1.153640I		
d = -0.260592 + 0.795594I		
u = 0.555749 - 1.023030I		
a = -1.22318 + 0.96405I		
b = 0.30647 + 1.78712I	-1.71782 + 5.90288I	-0.75718 - 7.23695I
c = 0.306715 - 1.153640I		
d = -0.260592 - 0.795594I		
u = -1.247530 + 0.318357I		
a = -0.254428 + 0.248211I		
b = 0.238386 - 0.390648I	8.60033 - 1.91429I	8.38805 + 0.33236I
c = -1.033850 + 0.177824I		
d = -1.44180 + 0.15237I		
u = -1.247530 - 0.318357I		
a = -0.254428 - 0.248211I		
b = 0.238386 + 0.390648I	8.60033 + 1.91429I	8.38805 - 0.33236I
c = -1.033850 - 0.177824I		
d = -1.44180 - 0.15237I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.022849 + 0.695780I		
a = 0.596447 - 0.521515I		
b = 0.349231 + 0.426912I	0.88275 + 1.29794I	5.86581 - 6.22804I
c = 0.070481 - 0.342332I		
d = -0.556553 - 0.244029I		
u = -0.022849 - 0.695780I		
a = 0.596447 + 0.521515I		
b = 0.349231 - 0.426912I	0.88275 - 1.29794I	5.86581 + 6.22804I
c = 0.070481 + 0.342332I		
d = -0.556553 + 0.244029I		
u = 1.235140 + 0.560024I		
a = -1.37636 - 0.88777I		
b = -1.20283 - 1.86731I	6.85439 + 7.49245I	6.04980 - 5.00652I
c = -1.030900 - 0.315398I		
d = -1.43635 - 0.27040I		
u = 1.235140 - 0.560024I		
a = -1.37636 + 0.88777I		
b = -1.20283 + 1.86731I	6.85439 - 7.49245I	6.04980 + 5.00652I
c = -1.030900 + 0.315398I		
d = -1.43635 + 0.27040I		
u = -0.66454 + 1.33308I		
a = -0.189517 - 0.255094I	11 0401 . 0 05507	0.00007 4.000007
b = 0.466001 - 0.083122I	11.9481 + 8.6770I	9.06927 - 4.38269I
c = 0.052946 + 1.267480I		
$\frac{d = 1.48587 + 0.32095I}{u = -0.66454 - 1.33308I}$		-
a = -0.189517 + 0.255094I	11 0401 0 07707	0.00007 + 4.900007
b = 0.466001 + 0.083122I	11.9481 - 8.6770I	9.06927 + 4.38269I
c = 0.052946 - 1.267480I		
d = 1.48587 - 0.32095I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.79652 + 1.26851I		
a = 0.52130 + 1.70360I		
b = -1.74580 + 2.01822I	9.1924 - 14.7354I	6.16899 + 8.15927I
c = 0.18365 - 1.46954I		
d = 1.45618 - 0.38779I		
u = 0.79652 - 1.26851I		
a = 0.52130 - 1.70360I		
b = -1.74580 - 2.01822I	9.1924 + 14.7354I	6.16899 - 8.15927I
c = 0.18365 + 1.46954I		
d = 1.45618 + 0.38779I		
u = -0.11728 + 1.54547I		
a = -0.380984 + 0.529958I		
b = -0.774348 - 0.650953I	15.7365 + 3.2760I	10.07807 - 2.58290I
c = -0.113527 + 0.217154I		
d = 1.58385 + 0.05558I		
u = -0.11728 - 1.54547I		
a = -0.380984 - 0.529958I		
b = -0.774348 + 0.650953I	15.7365 - 3.2760I	10.07807 + 2.58290I
c = -0.113527 - 0.217154I		
d = 1.58385 - 0.05558I		
u = -0.429856		
a = 1.10419		
b = -0.474641	-1.29941	-8.68290
c = 1.42921		
d = 0.191836		

II.
$$I_2^u = \langle 4u^6a - 3u^6 + \dots - 14a + 8, \ 3u^6a - u^6 + \dots - 8a + 1, \ -u^5 - 2u^4 + \dots + b - u, \ -4u^6 - 9u^5 + \dots - 2a + 7, \ u^7 + 3u^6 + \dots - 2u - 2 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} + 2u^{4} + 3u^{3} - au + 2u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{3}{10}u^{6}a + \frac{1}{10}u^{6} + \dots + \frac{4}{5}a - \frac{1}{10} \\ -\frac{2}{5}u^{6}a + \frac{3}{10}u^{6} + \dots + \frac{7}{5}a - \frac{4}{5} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{7}{10}u^{6}a + \frac{1}{10}u^{6} + \dots - \frac{1}{5}a - \frac{1}{10} \\ \frac{3}{5}u^{6}a + \frac{3}{10}u^{6} + \dots - \frac{3}{5}a - \frac{4}{5} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{10}u^{6}a - \frac{1}{5}u^{6} + \dots + \frac{2}{5}a + \frac{7}{10} \\ -\frac{1}{5}u^{6}a - \frac{1}{10}u^{6} + \dots + \frac{7}{5}a - \frac{3}{5} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{10}u^{6}a - \frac{1}{5}u^{6} + \dots - \frac{3}{5}a + \frac{7}{10} \\ -\frac{2}{5}u^{6}a + \frac{3}{10}u^{6} + \dots + \frac{7}{5}a - \frac{4}{5} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{10}u^{6}a - \frac{1}{5}u^{6} + \dots - \frac{3}{5}a + \frac{7}{10} \\ -\frac{1}{5}u^{6}a - \frac{1}{10}u^{6} + \dots + \frac{1}{5}a + \frac{3}{5} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{10}u^{6}a + \frac{1}{5}u^{6} + \dots - \frac{2}{5}a - \frac{7}{10} \\ -\frac{1}{5}u^{6}a - \frac{1}{10}u^{6} + \dots + \frac{1}{5}a - \frac{2}{5} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{10}u^{6}a + \frac{1}{5}u^{6} + \dots - \frac{2}{5}a - \frac{7}{10} \\ -\frac{1}{5}u^{6}a - \frac{1}{10}u^{6} + \dots + \frac{1}{5}a - \frac{2}{5} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^6 + 8u^5 + 10u^4 + 10u^3 4u$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^7 - u^6 - u^5 + 2u^4 + u^3 - 2u^2 + u + 1)^2$
c_2	$(u^7 + 3u^6 + 7u^5 + 8u^4 + 9u^3 + 6u^2 + 5u + 1)^2$
c_3, c_5, c_6 c_8, c_{10}, c_{11}	$u^{14} + u^{13} + \dots - 4u - 4$
c_4, c_9	$(u^7 + 3u^6 + 6u^5 + 7u^4 + 5u^3 + u^2 - 2u - 2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^7 - 3y^6 + 7y^5 - 8y^4 + 9y^3 - 6y^2 + 5y - 1)^2$
c_2	$(y^7 + 5y^6 + 19y^5 + 36y^4 + 49y^3 + 38y^2 + 13y - 1)^2$
c_3, c_5, c_6 c_8, c_{10}, c_{11}	$y^{14} - 11y^{13} + \dots - 40y + 16$
c_4, c_9	$(y^7 + 3y^6 + 4y^5 + y^4 - y^3 + 7y^2 + 8y - 4)^2$

Solutions to I_2^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.984140 + 0.426152I		
a = -0.84548 + 1.17216I		
b = -0.51690 + 2.36796I	1.19445 - 3.93070I	1.74059 + 4.87230I
c = -0.883662 + 0.240859I		
d = -1.312740 + 0.203166I		
u = -0.984140 + 0.426152I		
a = 1.31968 - 1.83467I		
b = 0.33256 - 1.51387I	1.19445 - 3.93070I	1.74059 + 4.87230I
c = 1.03098 - 1.45195I		
d = 0.327402 - 0.709633I		
u = -0.984140 - 0.426152I		
a = -0.84548 - 1.17216I		
b = -0.51690 - 2.36796I	1.19445 + 3.93070I	1.74059 - 4.87230I
c = -0.883662 - 0.240859I		
d = -1.312740 - 0.203166I		
u = -0.984140 - 0.426152I		
a = 1.31968 + 1.83467I		
b = 0.33256 + 1.51387I	1.19445 + 3.93070I	1.74059 - 4.87230I
c = 1.03098 + 1.45195I		
d = 0.327402 + 0.709633I		
u = -0.167785 + 1.218780I		
a = -0.774541 - 0.827762I		
b = 0.139458 + 0.651897I	7.14223 - 0.95540I	8.68929 + 2.37083I
c = -0.828730 + 0.501700I		
d = 1.42814 + 0.08000I		
u = -0.167785 + 1.218780I		
a = 0.509470 - 0.184562I		
b = 1.138810 - 0.805107I	7.14223 - 0.95540I	8.68929 + 2.37083I
c = -0.353234 + 0.874846I		
d = -0.830837 + 0.693845I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.167785 - 1.218780I		
a = -0.774541 + 0.827762I		
b = 0.139458 - 0.651897I	7.14223 + 0.95540I	8.68929 - 2.37083I
c = -0.828730 - 0.501700I		
d = 1.42814 - 0.08000I		
u = -0.167785 - 1.218780I		
a = 0.509470 + 0.184562I		
b = 1.138810 + 0.805107I	7.14223 + 0.95540I	8.68929 - 2.37083I
c = -0.353234 - 0.874846I		
d = -0.830837 - 0.693845I		
u = -0.654547 + 1.202470I		
a = 1.13788 - 1.10109I		
b = -1.38518 - 2.03898I	3.65356 + 9.93065I	3.53972 - 7.33664I
c = -0.09289 + 1.46019I		
d = 1.42086 + 0.31765I		
u = -0.654547 + 1.202470I		
a = -0.82436 + 1.60067I		
b = 0.57924 + 2.08898I	3.65356 + 9.93065I	3.53972 - 7.33664I
c = 0.223021 - 1.320930I		
d = -0.281398 - 0.947821I		
u = -0.654547 - 1.202470I		
a = 1.13788 + 1.10109I		
b = -1.38518 + 2.03898I	3.65356 - 9.93065I	3.53972 + 7.33664I
c = -0.09289 - 1.46019I		
d = 1.42086 - 0.31765I		
u = -0.654547 - 1.202470I		
a = -0.82436 - 1.60067I		
b = 0.57924 - 2.08898I	3.65356 - 9.93065I	3.53972 + 7.33664I
c = 0.223021 + 1.320930I		
d = -0.281398 + 0.947821I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.612945		
a = 0.738956		
b = 1.97108	2.33847	2.06080
c = -0.686858		
d = -1.15162		
u = 0.612945		
a = 3.21576		
b = 0.452939	2.33847	2.06080
c = 3.49590		
d = 0.648769		

III. $I_3^u = \langle u^3+d+u,\ c+u,\ u^4-u^3+\cdots-2a-1,\ -u^4a+2u^3a+\cdots-a-1,\ u^5-u^4+2u^3-u^2+u-1 \rangle$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{4} + 2u^{2}a + u^{3} - au - u^{2} + 2a + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - u^{2}a - u^{3} + au + u^{2} - a - 1 \\ -u^{4}a + u^{3}a - 2u^{2}a + au - u^{2} - 2a + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4}a - u^{3}a + u^{4} + u^{2}a - u^{3} + 2u^{2} + a - u \\ 2u^{2}a + 2a + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ -u^{3} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} \\ u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} + 2u^{2}a + u^{3} - au - u^{2} + 2a + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{4} + 2u^{2}a + u^{3} - au - u^{2} + 2a + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 + 4u^2 4u + 6$

Crossings	u-Polynomials at each crossing
$c_1, c_7, c_8 \\ c_{10}, c_{11}$	$u^{10} - u^9 - 2u^8 + 4u^7 - 4u^5 + 3u^4 + u^3 - 2u^2 + 1$
c_2	$u^{10} + 5u^9 + \dots + 4u + 1$
c_3, c_5, c_6	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$
c_4, c_9	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_8 c_{10}, c_{11}	$y^{10} - 5y^9 + \dots - 4y + 1$
c_2	$y^{10} - y^9 - 6y^7 + 22y^6 + 6y^5 + 45y^4 + 15y^3 + 22y^2 + 4y + 1$
c_3, c_5, c_6	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$
c_4, c_9	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.339110 + 0.822375I		
a = -1.058210 - 0.418624I		
b = 0.107804 + 1.200570I	0.32910 + 1.53058I	2.51511 - 4.43065I
c = 0.339110 - 0.822375I		
d = -0.309916 - 0.549911I		
u = -0.339110 + 0.822375I		
a = -0.24156 - 1.72831I		
b = -1.43677 - 1.97522I	0.32910 + 1.53058I	2.51511 - 4.43065I
c = 0.339110 - 0.822375I		
d = -0.309916 - 0.549911I		
u = -0.339110 - 0.822375I		
a = -1.058210 + 0.418624I		
b = 0.107804 - 1.200570I	0.32910 - 1.53058I	2.51511 + 4.43065I
c = 0.339110 + 0.822375I		
d = -0.309916 + 0.549911I		
u = -0.339110 - 0.822375I		
a = -0.24156 + 1.72831I		
b = -1.43677 + 1.97522I	0.32910 - 1.53058I	2.51511 + 4.43065I
c = 0.339110 + 0.822375I		
d = -0.309916 + 0.549911I		
u = 0.766826		
a = 0.337181 + 0.531835I		
b = 1.32946 + 1.28131I	2.40108	3.48110
c = -0.766826		
d = -1.21774		
u = 0.766826		
a = 0.337181 - 0.531835I		
b = 1.32946 - 1.28131I	2.40108	3.48110
c = -0.766826		
d = -1.21774		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.455697 + 1.200150I $a = 1.128480 - 0.089327I$ $b = -0.91615 + 1.81852I$	5.87256 - 4.40083I	6.74431 + 3.49859I
c = -0.455697 - 1.200150I $d = 1.41878 - 0.21917I$		
u = 0.455697 + 1.200150I $a = -0.665888 + 0.235737I$ $b = 0.415657 - 0.252788I$ $c = -0.455697 - 1.200150I$ $d = 1.41878 - 0.21017I$	5.87256 - 4.40083I	6.74431 + 3.49859I
$\begin{array}{l} d = 1.41878 - 0.21917I \\ \hline u = 0.455697 - 1.200150I \\ a = 1.128480 + 0.089327I \\ b = -0.91615 - 1.81852I \\ c = -0.455697 + 1.200150I \\ d = 1.41878 + 0.21917I \end{array}$	5.87256 + 4.40083I	6.74431 - 3.49859I
u = 0.455697 - 1.200150I $a = -0.665888 - 0.235737I$ $b = 0.415657 + 0.252788I$ $c = -0.455697 + 1.200150I$ $d = 1.41878 + 0.21917I$	5.87256 + 4.40083I	6.74431 - 3.49859I

IV.
$$I_4^u = \langle -6u^4a + 2u^4 + \dots + 2a + 7, -2u^4a - 7u^4 + \dots - 7a + 10, -4u^4a + 9u^4 + \dots - 14a - 3, -u^4a + 2u^4 + \dots - a + 1, u^5 - u^4 + 2u^3 - u^2 + u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.173913au^{4} - 0.391304u^{4} + \dots + 0.608696a + 0.130435 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0869565au^{4} + 0.304348u^{4} + \dots + 0.304348a - 0.434783 \\ 0.260870au^{4} - 0.0869565u^{4} + \dots - 0.0869565a - 0.304348 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.173913au^{4} + 0.391304u^{4} + \dots + 0.391304a - 0.130435 \\ 0.260870au^{4} - 0.0869565u^{4} + \dots - 0.0869565a - 0.304348 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.173913au^{4} + 0.391304u^{4} + \dots + 0.391304a - 0.130435 \\ 0.173913au^{4} - 0.391304u^{4} + \dots + 0.608696a + 0.130435 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 + 4u^2 4u + 6$

Crossings	u-Polynomials at each crossing		
$c_1, c_3, c_5 \ c_6, c_7$	$u^{10} - u^9 - 2u^8 + 4u^7 - 4u^5 + 3u^4 + u^3 - 2u^2 + 1$		
c_2	$u^{10} + 5u^9 + \dots + 4u + 1$		
c_4, c_9	$(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$		
c_8, c_{10}, c_{11}	$(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$		

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_5 \ c_6, c_7$	$y^{10} - 5y^9 + \dots - 4y + 1$
c_2	$y^{10} - y^9 - 6y^7 + 22y^6 + 6y^5 + 45y^4 + 15y^3 + 22y^2 + 4y + 1$
c_4, c_9	$(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$
c_8, c_{10}, c_{11}	$(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.339110 + 0.822375I		
a = 1.201520 - 0.626542I		
b = 0.703115 - 0.728284I	0.32910 + 1.53058I	2.51511 - 4.43065I
c = -0.427719 + 0.494930I		
d = -0.926127 + 0.393188I		
u = -0.339110 + 0.822375I		
a = -1.43707 + 2.33968I		
b = 1.50324 + 0.38743I	0.32910 + 1.53058I	2.51511 - 4.43065I
c = -1.70427 + 2.10897I		
d = 1.236040 + 0.156723I		
u = -0.339110 - 0.822375I		
a = 1.201520 + 0.626542I		
b = 0.703115 + 0.728284I	0.32910 - 1.53058I	2.51511 + 4.43065I
c = -0.427719 - 0.494930I		
d = -0.926127 - 0.393188I		
u = -0.339110 - 0.822375I		
a = -1.43707 - 2.33968I		
b = 1.50324 - 0.38743I	0.32910 - 1.53058I	2.51511 + 4.43065I
c = -1.70427 - 2.10897I		
d = 1.236040 - 0.156723I		
u = 0.766826		
a = 1.73372 + 1.67092I		
b = 0.258559 + 0.407825I	2.40108	3.48110
c = 2.08403 + 1.59800I		
d = 0.608868 + 0.334904I		
u = 0.766826		
a = 1.73372 - 1.67092I		
b = 0.258559 - 0.407825I	2.40108	3.48110
c = 2.08403 - 1.59800I		
d = 0.608868 - 0.334904I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.455697 + 1.200150I		
a = 1.07098 + 1.17002I		
b = 0.62145 + 1.31364I	5.87256 - 4.40083I	6.74431 + 3.49859I
c = -0.568964 - 0.788513I		
d = -1.018500 - 0.644891I		
u = 0.455697 + 1.200150I		
a = -0.069156 - 0.372595I		
b = -0.586363 - 0.691742I	5.87256 - 4.40083I	6.74431 + 3.49859I
c = 0.116920 + 1.183200I		
d = -0.400287 + 0.864056I		
u = 0.455697 - 1.200150I		
a = 1.07098 - 1.17002I		
b = 0.62145 - 1.31364I	5.87256 + 4.40083I	6.74431 - 3.49859I
c = -0.568964 + 0.788513I		
d = -1.018500 + 0.644891I		
u = 0.455697 - 1.200150I		
a = -0.069156 + 0.372595I		
b = -0.586363 + 0.691742I	5.87256 + 4.40083I	6.74431 - 3.49859I
c = 0.116920 - 1.183200I		
d = -0.400287 - 0.864056I		

$$\text{V. } I_5^u = \\ \langle u^3 + d + u, \ c + u, \ -u^4 + u^3 - u^2 + b - 1, \ -u^4 - u^2 + a - 1, \ u^5 - u^4 + 2u^3 - u^2 + u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} + 1\\u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u\\-u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3}\\-u^{3} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + u^{2} + 1\\u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + u^{2} + 1\\u^{4} - u^{3} + u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 + 4u^2 4u + 6$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_6, c_7, c_8 c_{10}, c_{11}	$u^5 + u^4 - 2u^3 - u^2 + u - 1$
c_2	$u^5 + 5u^4 + 8u^3 + 3u^2 - u + 1$
c_4, c_9	$u^5 - u^4 + 2u^3 - u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_6, c_7, c_8 c_{10}, c_{11}	$y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1$
c_2	$y^5 - 9y^4 + 32y^3 - 35y^2 - 5y - 1$
c_4, c_9	$y^5 + 3y^4 + 4y^3 + y^2 - y - 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.339110 + 0.822375I		
a = 0.442672 + 0.068387I		
b = -0.206354 + 0.340852I	0.32910 + 1.53058I	2.51511 - 4.43065I
c = 0.339110 - 0.822375I		
d = -0.309916 - 0.549911I		
u = -0.339110 - 0.822375I		
a = 0.442672 - 0.068387I		
b = -0.206354 - 0.340852I	0.32910 - 1.53058I	2.51511 + 4.43065I
c = 0.339110 + 0.822375I		
d = -0.309916 + 0.549911I		
u = 0.766826		
a = 1.93379		
b = 1.48288	2.40108	3.48110
c = -0.766826		
d = -1.21774		
u = 0.455697 + 1.200150I		
a = 0.09043 - 1.60288I		
b = 1.96491 - 0.62190I	5.87256 - 4.40083I	6.74431 + 3.49859I
c = -0.455697 - 1.200150I		
d = 1.41878 - 0.21917I		
u = 0.455697 - 1.200150I		
a = 0.09043 + 1.60288I		
b = 1.96491 + 0.62190I	5.87256 + 4.40083I	6.74431 - 3.49859I
c = -0.455697 + 1.200150I		
d = 1.41878 + 0.21917I		

VI.
$$I_1^v=\langle a,\ d+1,\ c+a,\ b-1,\ v+1\rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_4 c_7, c_9	u		
c_3, c_8	u+1		
c_5, c_6, c_{10} c_{11}	u-1		

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_7, c_9	y
c_3, c_5, c_6 c_8, c_{10}, c_{11}	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0		
b = 1.00000	3.28987	12.0000
c = 0		
d = -1.00000		

VII.
$$I_2^v = \langle a, \ d, \ c-1, \ b+1, \ v-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11}	u-1
c_2, c_7, c_8	u+1
c_3, c_4, c_5 c_6, c_9	u

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_7 \\ c_8, c_{10}, c_{11}$	y-1
c_3, c_4, c_5 c_6, c_9	y

Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0		
b = -1.00000	0	0
c = 1.00000		
d = 0		

VIII.
$$I_3^v = \langle a, \ d+1, \ c+a-1, \ b-1, \ v-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	u+1
$c_4, c_8, c_9 \\ c_{10}, c_{11}$	u
c_5, c_6, c_7	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6, c_7	y-1
c_4, c_8, c_9 c_{10}, c_{11}	y

Solutions to I_3^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0		
b = 1.00000	0	0
c = 1.00000		
d = -1.00000		

IX. $I_4^v = \langle c, d+1, cb+a-1, cv+av-c-v, bv-v+1 \rangle$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ b-1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ b-1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v+1 \\ b-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v+1 \\ b-1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $b^2 + v^2 2b + 5$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_4^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$v = \cdots$		
$a = \cdots$		
$b = \cdots$	1.64493	3.74053 + 0.27852I
$c = \cdots$		
$d = \cdots$		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u(u-1)(u+1)(u^{5} + u^{4} - 2u^{3} - u^{2} + u - 1)$ $\cdot (u^{7} - u^{6} - u^{5} + 2u^{4} + u^{3} - 2u^{2} + u + 1)^{2}$
	$ (u^{10} - u^9 - 2u^8 + 4u^7 - 4u^5 + 3u^4 + u^3 - 2u^2 + 1)^2 $ $ (u^{17} - 2u^{16} + \dots - 8u + 4) $
c_2	$u(u+1)^2(u^5+5u^4+8u^3+3u^2-u+1)$
C_2	$(u^7 + 3u^6 + 7u^5 + 8u^4 + 9u^3 + 6u^2 + 5u + 1)^2$
	$((u^{10} + 5u^9 + \dots + 4u + 1)^2)(u^{17} + 6u^{16} + \dots + 88u + 16)$
	$u(u+1)^{2}(u^{5}+u^{4}-2u^{3}-u^{2}+u-1)^{3}$
c_3, c_8	$\begin{pmatrix} u(u+1) & (u+1) & 2u & u+1 & 1 \\ (u^{10} - u^9 - 2u^8 + 4u^7 - 4u^5 + 3u^4 + u^3 - 2u^2 + 1) \end{pmatrix}$
	$(u^{14} + u^{13} + \dots - 4u - 4)(u^{17} + 2u^{16} + \dots + 3u + 1)$
c_4, c_9	$u^{3}(u^{5} - u^{4} + 2u^{3} - u^{2} + u - 1)^{5}$
	$((u^7 + 3u^6 + \dots - 2u - 2)^2)(u^{17} - 2u^{16} + \dots - 4u^2 + 8)$
c_5, c_6, c_{10}	$u(u-1)^{2}(u^{5}+u^{4}-2u^{3}-u^{2}+u-1)^{3}$
c_{11}	$ (u^{10} - u^9 - 2u^8 + 4u^7 - 4u^5 + 3u^4 + u^3 - 2u^2 + 1) $
	$(u^{14} + u^{13} + \dots - 4u - 4)(u^{17} + 2u^{16} + \dots + 3u + 1)$

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y(y-1)^{2}(y^{5} - 5y^{4} + 8y^{3} - 3y^{2} - y - 1)$ $\cdot (y^{7} - 3y^{6} + 7y^{5} - 8y^{4} + 9y^{3} - 6y^{2} + 5y - 1)^{2}$ $\cdot ((y^{10} - 5y^{9} + \dots - 4y + 1)^{2})(y^{17} - 6y^{16} + \dots + 88y - 16)$
c_2	$y(y-1)^{2}(y^{5} - 9y^{4} + 32y^{3} - 35y^{2} - 5y - 1)$ $\cdot (y^{7} + 5y^{6} + 19y^{5} + 36y^{4} + 49y^{3} + 38y^{2} + 13y - 1)^{2}$ $\cdot (y^{10} - y^{9} - 6y^{7} + 22y^{6} + 6y^{5} + 45y^{4} + 15y^{3} + 22y^{2} + 4y + 1)^{2}$ $\cdot (y^{17} + 10y^{16} + \dots + 288y - 256)$
c_3, c_5, c_6 c_8, c_{10}, c_{11}	$y(y-1)^{2}(y^{5} - 5y^{4} + \dots - y - 1)^{3}(y^{10} - 5y^{9} + \dots - 4y + 1)$ $\cdot (y^{14} - 11y^{13} + \dots - 40y + 16)(y^{17} - 20y^{16} + \dots + 27y - 1)$
c_4, c_9	$y^{3}(y^{5} + 3y^{4} + 4y^{3} + y^{2} - y - 1)^{5}$ $\cdot (y^{7} + 3y^{6} + 4y^{5} + y^{4} - y^{3} + 7y^{2} + 8y - 4)^{2}$ $\cdot (y^{17} + 6y^{16} + \dots + 64y - 64)$