Цель работы

Выполнение упражнения по ознакомлению с программой хсоз.

Задание

Построим с помощью хсоз фигуру Лиссажу со следующими параметрами:

- 1. A = B = 1, a = 2, b = 2, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;
- 2. A = B = 1, a = 2, b = 4, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;
- 3. A = B = 1, a = 2, b = 6, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;
- 4. A = B = 1, a = 2, b = 3, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π .

Выполнение лабораторной работы

Математическое выражение для кривой Лиссажу $\ \$ \begin{cases} $x(t) = A \sin(at + \beta), \ y(t) = B \sin(bt), \ \$ $\Delta = A, B - \Delta = A, B - \Delta = A$ для колебаний, $\Delta = A, B - \Delta = A$ для фаз.

- CLOCK_c запуск часов модельного времени;
- GENSIN_f блок генератора синусоидального сигнала;
- CANIMXY анимированное регистрирующее устройство для построения графика
- TEXT_f задаёт текст примечаний

Кликнув правой кнопкой мыши по генератору синусоидальных колебаний, откройте вкладку параметров для редактирования и введите необходимые данные, и введем параметры в регистрирующее устройство.

~	Ввод значений			×
	Установите параметры бло			
	Генератор синусоидальных колебаний			
	Абсолютная величина	1		
	Частота (рад/с)	2		
	Фаза (рад)	o		
		ОК	менит	ь

~	Ввод значений	+ ×
	Set Scope parameters	
	Number of Curves	1
	color (>0) or mark (<0)	10
	line or mark size	4
	Output window number (-1 for automatic)	-1
	Output window position	
	Output window sizes	[600;400]
	Xmin	-1
	Xmax	1
	Ymin	-1
	Ymax	1
	Buffer size	2
		ОК Отменить

Выполним моделирование по параметрам A = B = 1, a = 2, b = 2, δ = 0, Меняющаяся фаза в первом генераторе $\pi/4$; $\pi/2$; $3\pi/4$; π .

• Меняем параметр частоты на втором генераторе: A = B = 1, a = 2, b = 4, $\delta = 0$

 $\pi/4$; $\pi/2$; $3\pi/4$; π ;

Выполним моделирование по параметрам A = B = 1, a = 2, b = 6, δ = 0, Меняющаяся фаза в первом генераторе $\pi/4$; $\pi/2$; $3\pi/4$; π .

• Меняем параметр частоты на втором генераторе: A = B = 1, a = 2, b = 3, δ = 0; Меняющаяся фаза в первом генераторе $\pi/4$; $\pi/2$; $3\pi/4$; π .

Выводы

В процессе выполнения данной лабораторной работы я я выполнила упражнение по ознакомлению с программой xcos.

Список литературы{.unnumbered}

::: {#refs}

:::