Вычислительная математика.

Методы приближения функций, основанные на минимизации нормы.

МФТИ

- Интерполяция: $\phi(x_k) = f(x_k)$
 - Интерполяция многочленами
 - Сплайн-интерполяция

- Интерполяция: $\phi(x_k) = f(x_k)$
 - Интерполяция многочленами
 - Сплайн-интерполяция
- Минимизация нормы $\|\phi f\| \to \min$

- Интерполяция: $\phi(x_k) = f(x_k)$
 - Интерполяция многочленами
 - Сплайн-интерполяция
- ullet Минимизация нормы $\|\phi f\| o \min$
 - ▶ Равномерное приближение $\|f\|_C = \sup_x |f(x)|$

- Интерполяция: $\phi(x_k) = f(x_k)$
 - Интерполяция многочленами
 - Сплайн-интерполяция
- Минимизация нормы $\|\phi f\| \to \min$
 - ▶ Равномерное приближение $\|f\|_C = \sup_x |f(x)|$
 - Приближение в гильбертовом пространстве $\|f\| = (f,f)^{1/2}$, например

$$||f|| = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$$

Равномерное приближение, альтернанс

Равномерное приближение, альтернанс

Определение Альтернанс (equioscillation)

Альтернансом $g \in C[a,b]$ называется множество точек $a \leq x_1 < x_2 < \ldots < x_N \leq b$, такое что

- ② $g(x_k)g(x_{k+1}) < 0$ (знаки чередуются)

Теорема Теорема об альтернансе

Для $f \in C[-1,1]$ существует единственное наилучшее приближение $p^* \in \mathcal{P}_n$.

 $p \in \mathcal{P}_n$ является многочленом наилучшего приближения тогда и только тогда, когда f-p имеет не меньше n+2 точек альтернанса на [-1,1].

Теорема Теорема об альтернансе

Для $f \in C[-1,1]$ существует единственное наилучшее приближение $p^* \in \mathcal{P}_n$.

 $p \in \mathcal{P}_n$ является многочленом наилучшего приближения тогда и только тогда, когда f-p имеет не меньше n+2 точек альтернанса на [-1,1].

Теорема Теорема об альтернансе

Для $f \in C[-1,1]$ существует единственное наилучшее приближение $p^* \in \mathcal{P}_n$.

 $p \in \mathcal{P}_n$ является многочленом наилучшего приближения тогда и только тогда, когда f-p имеет не меньше n+2 точек альтернанса на [-1,1].

Существование:

ullet $\|f-p\|$ – непрерывный функционал от p

- ullet $\|f-p\|$ непрерывный функционал от p
- Наилучшее приближение лежит в шаре $\{p \in \mathcal{P}_n : \|f-p\| \leq \|f\|\}$

- ullet $\|f-p\|$ непрерывный функционал от p
- Наилучшее приближение лежит в шаре $\{p \in \mathcal{P}_n: \|f-p\| \leq \|f\|\}$
- По теореме Больцано-Вейерштрасса функционал достигает минимума

- ullet $\|f-p\|$ непрерывный функционал от p
- Наилучшее приближение лежит в шаре $\{p \in \mathcal{P}_n: \|f-p\| \leq \|f\|\}$
- По теореме Больцано-Вейерштрасса функционал достигает минимума
 - ⇐ (из альтернанса следует оптимальность)

- ullet $\|f-p\|$ непрерывный функционал от p
- Наилучшее приближение лежит в шаре $\{p \in \mathcal{P}_n: \|f-p\| \leq \|f\|\}$
- По теореме Больцано-Вейерштрасса функционал достигает минимума
 - \leftarrow (из альтернанса следует оптимальность)
- ullet Допустим что $\|f-q\|<\|f-p\|$

- ullet $\|f-p\|$ непрерывный функционал от p
- Наилучшее приближение лежит в шаре $\{p \in \mathcal{P}_n: \|f-p\| \leq \|f\|\}$
- По теореме Больцано-Вейерштрасса функционал достигает минимума
 - ← (из альтернанса следует оптимальность)
- Допустим что $\|f q\| < \|f p\|$
- Тогда p-q принимает чередующиеся по знаку ненулевые значения в x_0,\dots,x_{n+1}

- ullet $\|f-p\|$ непрерывный функционал от p
- Наилучшее приближение лежит в шаре $\{p \in \mathcal{P}_n: \|f-p\| \leq \|f\|\}$
- По теореме Больцано-Вейерштрасса функционал достигает минимума
 - ← (из альтернанса следует оптимальность)
- Допустим что ||f q|| < ||f p||
- Тогда p-q принимает чередующиеся по знаку ненулевые значения в x_0,\dots,x_{n+1}
- ullet $\Rightarrow p-q$ имеет хотя бы n+1 ноль $\Rightarrow p-q=0$ $\ \square$

 \Rightarrow (из оптимальности следует альтернанс)

- ⇒ (из оптимальности следует альтернанс)
- Предположим, что точек альтернанса $\leq n+1$, $E = \|f-p\|$

- ⇒ (из оптимальности следует альтернанс)
- ullet Предположим, что точек альтернанса $\leq n+1$, $E=\|f-p\|$
- ullet Пусть самый левый экстремум -E

- \Rightarrow (из оптимальности следует альтернанс)
- ullet Предположим, что точек альтернанса $\leq n+1$, $E=\|f-p\|$
- ullet Пусть самый левый экстремум -E
- ullet Тогда можно выбрать $-1 < x_1 < \ldots < x_k < 1$, $k \le n$, такие что:

$$(f-p)(x) < E$$
 при $x \in [-1,x_1] \cup [x_2,x_3] \cup [x_4,x_5] \dots$ $(f-p)(x) > -E$ при $x \in [x_1,x_2] \cup [x_3,x_4] \cup \dots$

- \Rightarrow (из оптимальности следует альтернанс)
- ullet Предположим, что точек альтернанса $\leq n+1$, $E=\|f-p\|$
- ullet Пусть самый левый экстремум -E
- Тогда можно выбрать $-1 < x_1 < \ldots < x_k < 1$, $k \le n$, такие что:

$$(f-p)(x) < E$$
 при $x \in [-1,x_1] \cup [x_2,x_3] \cup [x_4,x_5] \dots$ $(f-p)(x) > -E$ при $x \in [x_1,x_2] \cup [x_3,x_4] \cup \dots$

•
$$\delta p(x) = (x_1 - x)(x_2 - x) \cdots (x_k - x)$$

- \Rightarrow (из оптимальности следует альтернанс)
- ullet Предположим, что точек альтернанса $\leq n+1$, $E=\|f-p\|$
- ullet Пусть самый левый экстремум -E
- ullet Тогда можно выбрать $-1 < x_1 < \ldots < x_k < 1$, $k \le n$, такие что:

$$(f-p)(x) < E$$
 при $x \in [-1,x_1] \cup [x_2,x_3] \cup [x_4,x_5] \dots$ $(f-p)(x) > -E$ при $x \in [x_1,x_2] \cup [x_3,x_4] \cup \dots$

- $\delta p(x) = (x_1 x)(x_2 x) \cdots (x_k x)$
- $(p-\epsilon\delta p)(x)$ будет лучшим приближением при достаточно малом ϵ

ullet Пусть p – н. п., x_0, x_1, \dots, x_{n+1} – точки альтернанса

- ullet Пусть p н. п., x_0, x_1, \dots, x_{n+1} точки альтернанса
- $\|f-q\| \le \|f-p\|, \ q \in \mathcal{P}_n$

- ullet Пусть p н. п., x_0, x_1, \dots, x_{n+1} точки альтернанса
- $\|f-q\| \le \|f-p\|, \ q \in \mathcal{P}_n$
- $(p-q)(x) \le 0$ b x_0, x_2, x_4, \dots u ≥ 0 b x_1, x_3, \dots

- ullet Пусть p н. п., x_0, x_1, \dots, x_{n+1} точки альтернанса
- $||f q|| \le ||f p||, q \in \mathcal{P}_n$
- ullet $(p-q)(x) \leq 0$ в x_0, x_2, x_4, \ldots и ≥ 0 в x_1, x_3, \ldots
- ullet \Rightarrow (p-q) имеет корни в каждом из n+1 отрезков $[x_0,x_1],[x_1,x_2],\ldots,[x_n,x_{n+1}]$

- ullet Пусть p н. п., x_0, x_1, \dots, x_{n+1} точки альтернанса
- $||f q|| \le ||f p||, q \in \mathcal{P}_n$
- $(p-q)(x) \le 0$ b x_0, x_2, x_4, \dots u ≥ 0 b x_1, x_3, \dots
- ullet \Rightarrow (p-q) имеет корни в каждом из n+1 отрезков $[x_0,x_1],[x_1,x_2],\ldots,[x_n,x_{n+1}]$
- ullet Докажем, что p-q имеет $\geq k$ корней на $[x_0,x_k]$

- ullet Пусть p н. п., x_0, x_1, \dots, x_{n+1} точки альтернанса
- ullet $(p-q)(x) \leq 0$ в x_0, x_2, x_4, \ldots и ≥ 0 в x_1, x_3, \ldots
- ullet \Rightarrow (p-q) имеет корни в каждом из n+1 отрезков $[x_0,x_1],[x_1,x_2],\ldots,[x_n,x_{n+1}]$
- ullet Докажем, что p-q имеет $\geq k$ корней на $[x_0,x_k]$
- Допустим, p-q имеет j корней на $[x_0,x_j]$, $j \leq k-1$, но только k-1 корень на $[x_0,x_k]$

- ullet Пусть p н. п., x_0, x_1, \dots, x_{n+1} точки альтернанса
- $||f q|| \le ||f p||, q \in \mathcal{P}_n$
- ullet $(p-q)(x) \leq 0$ в x_0, x_2, x_4, \ldots и ≥ 0 в x_1, x_3, \ldots
- ullet \Rightarrow (p-q) имеет корни в каждом из n+1 отрезков $[x_0,x_1],[x_1,x_2],\ldots,[x_n,x_{n+1}]$
- ullet Докажем, что p-q имеет $\geq k$ корней на $[x_0,x_k]$
- Допустим, p-q имеет j корней на $[x_0,x_j]$, $j \leq k-1$, но только k-1 корень на $[x_0,x_k]$
- ullet $\Rightarrow x_{k-1}$ простой корень $\Rightarrow x_{k-2}, \dots x_1$ п.к.

- ullet Пусть p н. п., x_0, x_1, \dots, x_{n+1} точки альтернанса
- $||f q|| \le ||f p||, q \in \mathcal{P}_n$
- $(p-q)(x) \le 0$ в x_0, x_2, x_4, \dots и ≥ 0 в x_1, x_3, \dots
- ullet $\Rightarrow (p-q)$ имеет корни в каждом из n+1 отрезков $[x_0,x_1],[x_1,x_2],\ldots,[x_n,x_{n+1}]$
- ullet Докажем, что p-q имеет $\geq k$ корней на $[x_0,x_k]$
- ullet Допустим, p-q имеет j корней на $[x_0,x_j]$, $j\leq k-1$, но только k-1 корень на $[x_0,x_k]$
- ullet $\Rightarrow x_{k-1}$ простой корень $\Rightarrow x_{k-2}, \dots x_1$ п.к.
- $p-q \neq 0$ в x_0, x_k , знаки совпадают для нечетных k, и отличаются для четных: противоречит условию альтернанса

Многочлены наименее отклоняющиеся от нуля

Определение Определение

Определение Определение

•
$$||q_n(x)||_{C[a,b]} \le ||x^n - p_{n-1}(x)||_{C[a,b]} \, \forall p_{n-1} \in \mathcal{P}_{n-1}$$

Определение Определение

- $||q_n(x)||_{C[a,b]} \le ||x^n p_{n-1}(x)||_{C[a,b]} \, \forall p_{n-1} \in \mathcal{P}_{n-1}$
- $\bullet \Rightarrow x^n q_n(x)$ наилучшее приближение к x^n

Определение Определение

- $||q_n(x)||_{C[a,b]} \le ||x^n p_{n-1}(x)||_{C[a,b]} \, \forall p_{n-1} \in \mathcal{P}_{n-1}$
- $\bullet \Rightarrow x^n q_n(x)$ наилучшее приближение к x^n
- По теореме об альтернансе: q_n наименее отклоняется от нуля $\iff E=q_n$ имеет (n-1)+2=n+1 точку альтернанса на [a,b]

•
$$T_0(x) = 1$$
, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}$

- $T_0(x) = 1$, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) T_{n-1}$
- $T_n(x) = \cos(n\arccos(x)), x \in [-1, 1]$

- $T_0(x) = 1$, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) T_{n-1}$
- $T_n(x) = \cos(n\arccos(x)), x \in [-1, 1]$
- T_n имеет n+1 точку альтернанса:

$$x_k = \cos(k\pi/n), \ k = 0, \dots, n$$

- $T_0(x) = 1$, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) T_{n-1}$
- $T_n(x) = \cos(n\arccos(x)), x \in [-1, 1]$
- T_n имеет n+1 точку альтернанса:

$$x_k = \cos(k\pi/n), \ k = 0, \dots, n$$

ullet $\Rightarrow T_n/2^{n-1}$ — наименее уклоняющийся от нуля многочлен с $a_n=1$

- $T_0(x) = 1$, $T_1(x) = x$, $T_{n+1}(x) = 2xT_n(x) T_{n-1}$
- $T_n(x) = \cos(n\arccos(x)), x \in [-1, 1]$
- T_n имеет n+1 точку альтернанса:

$$x_k = \cos(k\pi/n), \ k = 0, \dots, n$$

- ullet $\Rightarrow T_n/2^{n-1}$ наименее уклоняющийся от нуля многочлен с $a_n=1$
- ullet На произвольном отрезке [a,b] с помощью замены

$$x = \frac{a+b}{2} + t\frac{b-a}{2}, \ t = \frac{2x-a-b}{b-a}$$

Получаем многочлен

$$Q_n(x) = 2^{1-2n}(b-a)^n T_n\left(\frac{2x-a-b}{b-a}\right)$$

Теорема Теорема

Пусть
$$f\in C[-1,1]$$
, $E_n(f)=\min_{\phi\in\mathcal{P}_n}\|f-\phi\|_{C[-1,1]}$. Тогда:
$$\|f-L_n\|_C\le (1+\|P_n\|)E_n(f)$$

Теорема Теорема

Пусть
$$f\in C[-1,1]$$
, $E_n(f)=\min_{\phi\in\mathcal{P}_n}\|f-\phi\|_{C[-1,1]}$. Тогда: $\|f-L_n\|_C\le (1+\|P_n\|)E_n(f)$

•
$$P_n \phi_n = \phi_n$$

$$||f - L_n|| \le ||f - \phi_n|| + ||P_n \phi_n - P_n f|| =$$

$$E_n(f) + ||P_n (\phi_n - f)|| \le (1 + ||P_n||) E_n(f) \quad \Box$$

Теорема Теорема

Пусть
$$f\in C[-1,1]$$
, $E_n(f)=\min_{\phi\in\mathcal{P}_n}\|f-\phi\|_{C[-1,1]}$. Тогда: $\|f-L_n\|_C\le (1+\|P_n\|)E_n(f)$

•
$$P_n \phi_n = \phi_n$$

$$||f - L_n|| \le ||f - \phi_n|| + ||P_n \phi_n - P_n f|| =$$

$$E_n(f) + ||P_n (\phi_n - f)|| \le (1 + ||P_n||) E_n(f) \quad \Box$$

ullet Для чебышёвских сеток: $\|f - L_n\| \le (1 + c \ln n) E_n(f)$

Возьмем n+2 точки x_1, \dots, x_{n+2}

Возьмем
$$n+2$$
 точки x_1, \ldots, x_{n+2}

• Решаем линейную систему:

$$c_0+c_1x_i+\dots c_nx_i^n+(-1)^iE=f(x_i),\ i=1,2,\dots,n+2$$
 относительно неизвестных c_0,\dots,c_n,E .

Возьмем n+2 точки x_1, \ldots, x_{n+2}

• Решаем линейную систему:

$$c_0 + c_1 x_i + \dots + c_n x_i^n + (-1)^i E = f(x_i), \ i = 1, 2, \dots, n+2$$

относительно неизвестных c_0, \ldots, c_n, E .

② Находим точки локального максимума ошибки $|f(x)-p_n|$, $p_n=c_0+c_1x+\ldots+c_nx^n$. Если условие альтернанса выполнено с заданной точностью - останавливаемся, иначе

Возьмем n+2 точки x_1, \dots, x_{n+2}

• Решаем линейную систему:

$$c_0 + c_1 x_i + \dots + c_n x_i^n + (-1)^i E = f(x_i), \ i = 1, 2, \dots, n+2$$

относительно неизвестных c_0, \dots, c_n, E .

- ② Находим точки локального максимума ошибки $|f(x)-p_n|$, $p_n=c_0+c_1x+\ldots+c_nx^n$. Если условие альтернанса выполнено с заданной точностью останавливаемся, иначе
- ③ Заменяем часть точек на точки локального максимума, так чтобы знак $f-p_n$ чередовался. Переходим к (1)

Пример: аппроксимация |x|

• Для гладких функций интерполяция по чебышёвским узлам даёт близкую точность

- Для гладких функций интерполяция по чебышёвским узлам даёт близкую точность
- Примеры использования равномерного приближения:
 - Аппроксимация специальных функций
 - Построение цифровых фильтров в обработке сигналов

- Для гладких функций интерполяция по чебышёвским узлам даёт близкую точность
- Примеры использования равномерного приближения:
 - Аппроксимация специальных функций
 - Построение цифровых фильтров в обработке сигналов
- Свойство альтернанса используется для приближения рациональными функциями $\dfrac{p_n(x)}{q_m(x)}$

Приближение в гильбертовом пространстве

Приближение в гильбертовом пространстве

• $\forall f$ в гильбертовом пространстве F и любого замкнутого подпространства Φ существует единственное разложение:

$$f = u + \phi, \ \phi \in \Phi, \ u \perp \Phi$$

Приближение в гильбертовом пространстве

• $\forall f$ в гильбертовом пространстве F и любого замкнутого подпространства Φ существует единственное разложение:

$$f = u + \phi, \ \phi \in \Phi, \ u \perp \Phi$$

• $\Phi = \text{span}\{v_1, \dots, v_n\}, \ \phi = c_1v_1 + \dots + c_nv_n$:

$$\begin{bmatrix} (v_1, v_1) & \dots & (v_1, v_n) \\ \dots & \dots & \dots \\ (v_n, v_1) & \dots & (v_n, v_n) \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} (v_1, f) \\ \vdots \\ (v_n, f) \end{bmatrix}$$

• Для любой неотрицательной функции w с положительным интегралом по [a,b] можно ввести:

$$(f,g) = \int_a^b f(x)g(x)w(x) dx$$

• Для любой неотрицательной функции w с положительным интегралом по [a,b] можно ввести:

$$(f,g) = \int_a^b f(x)g(x)w(x) dx$$

• Можно взять $\Phi = \mathcal{P}^n$ и провести ортогонализацию Грамма-Шмидта:

$$(L_i, L_j) = \delta_{ij}$$

• Для любой неотрицательной функции w с положительным интегралом по [a,b] можно ввести:

$$(f,g) = \int_a^b f(x)g(x)w(x) dx$$

• Можно взять $\Phi = \mathcal{P}^n$ и провести ортогонализацию Грамма-Шмидта:

$$(L_i, L_j) = \delta_{ij}$$

• Скалярное произведение определяет набор *ортогональных* многочленов с точностью до множителя ± 1

Теорема Теорема

Для любых ортогональных многочленов верно трехчленное рекуррентное соотношение:

$$xL_n(x) = \beta_{n-1}L_{n-1}(x) + \alpha_nL_n(x) + \beta_nL_{n+1}(x), \ n = 0, 1, \dots$$

Теорема Теорема

Для любых ортогональных многочленов верно трехчленное рекуррентное соотношение:

$$xL_n(x) = \beta_{n-1}L_{n-1}(x) + \alpha_nL_n(x) + \beta_nL_{n+1}(x), \ n = 0, 1, \dots$$

• Разложим многочлен xL_n по базису:

$$xL_n(x) = s_{n0}L_0(x) + \ldots + s_{nn}L_n(x) + s_{nn+1}L_{n+1}(x)$$

Теорема Теорема

Для любых ортогональных многочленов верно трехчленное рекуррентное соотношение:

$$xL_n(x) = \beta_{n-1}L_{n-1}(x) + \alpha_n L_n(x) + \beta_n L_{n+1}(x), \ n = 0, 1, \dots$$

• Разложим многочлен xL_n по базису:

$$xL_n(x) = s_{n0}L_0(x) + \ldots + s_{nn}L_n(x) + s_{nn+1}L_{n+1}(x)$$

• $s_{nj} = (xL_n, L_j) = (L_n, xL_j) = 0$, при $j \le n-2$

Теорема Теорема

Для любых ортогональных многочленов верно трехчленное рекуррентное соотношение:

$$xL_n(x) = \beta_{n-1}L_{n-1}(x) + \alpha_n L_n(x) + \beta_n L_{n+1}(x), \ n = 0, 1, \dots$$

• Разложим многочлен xL_n по базису:

$$xL_n(x) = s_{n0}L_0(x) + \ldots + s_{nn}L_n(x) + s_{nn+1}L_{n+1}(x)$$

- $s_{nj} = (xL_n, L_j) = (L_n, xL_j) = 0,$ при $j \le n-2$
- Обозначим $\alpha_n = s_{nn}, \beta_n = s_{n,n+1} = (xL_n, L_{n+1})$

Трехчленное рекуррентное соотношение

Теорема Теорема

Для любых ортогональных многочленов верно трехчленное рекуррентное соотношение:

$$xL_n(x) = \beta_{n-1}L_{n-1}(x) + \alpha_n L_n(x) + \beta_n L_{n+1}(x), \ n = 0, 1, \dots$$

• Разложим многочлен xL_n по базису:

$$xL_n(x) = s_{n0}L_0(x) + \ldots + s_{nn}L_n(x) + s_{nn+1}L_{n+1}(x)$$

- ullet $s_{nj}=(xL_n,L_j)=(L_n,xL_j)=0,$ при $j\leq n-2$
- Обозначим $\alpha_n = s_{nn}, \beta_n = s_{n,n+1} = (xL_n, L_{n+1})$
- $s_{n,n-1} = (xL_n, L_{n-1}) = (xL_{n-1}, L_n) = \beta_{n-1}$

Следствия

Следствия

$$x \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{ \begin{bmatrix} \alpha_{0} & \beta_{1} & & \\ \beta_{1} & \alpha_{1} & \beta_{2} & \\ & \ddots & \ddots & \ddots \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix}}_{T_{n}} \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_{n}L_{n}(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Следствия

$$x \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{\begin{bmatrix} \alpha_{0} & \beta_{1} & & & \\ \beta_{1} & \alpha_{1} & \beta_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix}}_{T} \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_{n} L_{n}(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Теорема Теорема

 L_n имеет n простых вещественных корней x_1, \dots, x_n , которые являются собственными числами матрицы T_n с собственными векторами:

$$[L_0(x_j), \dots, L_{n-1}(x_j)]^T, \ 1 \le j \le n$$

$$x \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{ \begin{bmatrix} \alpha_{0} & \beta_{1} & & & \\ \beta_{1} & \alpha_{1} & \beta_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix} }_{T_{n}} \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_{n}L_{n}(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$x \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{ \begin{bmatrix} \alpha_{0} & \beta_{1} & & & \\ \beta_{1} & \alpha_{1} & \beta_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix} }_{T_{n}} \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_{n}L_{n}(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$ullet$$
 Если $L_n(\lambda)=0$ — то λ - с.ч. T_n $\left(L_0(x)
eq 0
ight)$

$$x \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{ \begin{bmatrix} \alpha_{0} & \beta_{1} & & & \\ \beta_{1} & \alpha_{1} & \beta_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix} }_{T_{n}} \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_{n}L_{n}(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

- ullet Если $L_n(\lambda)=0$ то λ с.ч. T_n $\left(L_0(x)
 eq 0
 ight)$
- Допустим, что λ кратный корень: $L'_n(\lambda) = 0$:

$$T_n L'(\lambda) = \lambda L'(\lambda) + L(\lambda), \ T_n L(\lambda) = \lambda L(\lambda)$$

$$x \begin{bmatrix} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{ \begin{bmatrix} \alpha_0 & \beta_1 & & & \\ \beta_1 & \alpha_1 & \beta_2 & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix} }_{T_n} \begin{bmatrix} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_n L_n(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

- ullet Если $L_n(\lambda)=0$ то λ с.ч. T_n $\left(L_0(x)
 eq 0
 ight)$
- ullet Допустим, что λ кратный корень: $L_n'(\lambda)=0$:

$$T_n L'(\lambda) = \lambda L'(\lambda) + L(\lambda), \ T_n L(\lambda) = \lambda L(\lambda)$$

•
$$(T_n - \lambda I)L' = L$$
, $(T_n - \lambda I)^2 L' = (T_n - \lambda I)L = 0$

$$x \begin{bmatrix} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{ \begin{bmatrix} \alpha_0 & \beta_1 \\ \beta_1 & \alpha_1 & \beta_2 \\ & \ddots & \ddots & \ddots \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix} }_{T_n} \begin{bmatrix} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_n L_n(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

- ullet Если $L_n(\lambda)=0$ то λ с.ч. T_n $\left(L_0(x)
 eq 0
 ight)$
- ullet Допустим, что λ кратный корень: $L_n'(\lambda)=0$:

$$T_n L'(\lambda) = \lambda L'(\lambda) + L(\lambda), \ T_n L(\lambda) = \lambda L(\lambda)$$

•
$$(T_n - \lambda I)L' = L$$
, $(T_n - \lambda I)^2 L' = (T_n - \lambda I)L = 0$

$$ullet$$
 $\Rightarrow L' \in ker(T_n - \lambda I)^2 = ker(T_n - \lambda I)$ (т.к. T_n - эрмитова \Rightarrow нормальная)

$$x \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{ \begin{bmatrix} \alpha_{0} & \beta_{1} & & & \\ \beta_{1} & \alpha_{1} & \beta_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix} }_{T_{n}} \begin{bmatrix} L_{0}(x) \\ L_{1}(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_{n}L_{n}(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

$$x \begin{bmatrix} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} = \underbrace{ \begin{bmatrix} \alpha_0 & \beta_1 & & & \\ \beta_1 & \alpha_1 & \beta_2 & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{bmatrix}}_{T_n} \begin{bmatrix} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{bmatrix} + \beta_n L_n(x) \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

• $\beta_i \neq 0, \Rightarrow T_n - \lambda I$ имеет отличный от нуля минор порядка n-1 (в котором β_i – на диагонали)

$$x \left[\begin{array}{c} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{array} \right] = \underbrace{ \left[\begin{array}{ccc} \alpha_0 & \beta_1 & & & \\ \beta_1 & \alpha_1 & \beta_2 & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{array} \right] }_{T_n} \left[\begin{array}{c} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{array} \right] + \beta_n L_n(x) \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array} \right]$$

- $m{\bullet}$ $eta_i
 eq 0, \Rightarrow T_n \lambda I$ имеет отличный от нуля минор порядка n-1 (в котором eta_i на диагонали)
- dim $ker(T_n \lambda I) = 1$, \Rightarrow для некоторого a

$$\begin{bmatrix} L'_0(\lambda) \\ L'_1(\lambda) \\ \vdots \\ L'_{n-1}(\lambda) \end{bmatrix} = a \begin{bmatrix} L_0(\lambda) \\ L_1(\lambda) \\ \vdots \\ L_{n-1}(\lambda) \end{bmatrix}$$

$$x \left[\begin{array}{c} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{array} \right] = \underbrace{ \left[\begin{array}{ccc} \alpha_0 & \beta_1 & & & \\ \beta_1 & \alpha_1 & \beta_2 & & \\ & \ddots & \ddots & \ddots & \\ & & \beta_{n-1} & \alpha_{n-1} \end{array} \right] }_{T_n} \left[\begin{array}{c} L_0(x) \\ L_1(x) \\ \vdots \\ L_{n-1}(x) \end{array} \right] + \beta_n L_n(x) \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array} \right]$$

- $m{\bullet}$ $eta_i
 eq 0, \Rightarrow T_n \lambda I$ имеет отличный от нуля минор порядка n-1 (в котором eta_i на диагонали)
- dim $ker(T_n \lambda I) = 1$, \Rightarrow для некоторого a

$$\begin{bmatrix} L'_0(\lambda) \\ L'_1(\lambda) \\ \vdots \\ L'_{n-1}(\lambda) \end{bmatrix} = a \begin{bmatrix} L_0(\lambda) \\ L_1(\lambda) \\ \vdots \\ L_{n-1}(\lambda) \end{bmatrix}$$

• $L_0'(\lambda) = 0 \Rightarrow a = 0$, противоречие с $L_1'(\lambda) \neq 0$

Теорема Теорема

При $n\geq 1$ все корни L_n вещественны, попарно различны и расположены внутри отрезка [a,b]

Теорема Теорема

При $n\geq 1$ все корни L_n вещественны, попарно различны и расположены внутри отрезка [a,b]

ullet Пусть z_1,\ldots,z_m - корни полинома L_n внутри [a,b]

Теорема Теорема

При $n\geq 1$ все корни L_n вещественны, попарно различны и расположены внутри отрезка [a,b]

- ullet Пусть z_1,\ldots,z_m корни полинома L_n внутри [a,b]
- $L_n(x) = (x z_1) \cdots (x z_m) p_{n-m}(x)$

Теорема Теорема

При $n \geq 1$ все корни L_n вещественны, попарно различны и расположены внутри отрезка [a,b]

- ullet Пусть z_1,\ldots,z_m корни полинома L_n внутри [a,b]
- $L_n(x) = (x z_1) \cdots (x z_m) p_{n-m}(x)$
- ullet $p_{n-m}(x)$ имеет один и тот же знак на [a,b]

Теорема Теорема

При $n\geq 1$ все корни L_n вещественны, попарно различны и расположены внутри отрезка [a,b]

- ullet Пусть z_1,\ldots,z_m корни полинома L_n внутри [a,b]
- $L_n(x) = (x z_1) \cdots (x z_m) p_{n-m}(x)$
- ullet $p_{n-m}(x)$ имеет один и тот же знак на [a,b]
- Если m < n, то $L_n \perp \prod_{k=1}^m (x z_k)$:

$$\int_{a}^{b} (x-z_1)^2 \cdots (x-z_m)^2 p_{n-m}(x) w(x) dx = 0$$

Теорема Теорема

При $n\geq 1$ все корни L_n вещественны, попарно различны и расположены внутри отрезка [a,b]

- ullet Пусть z_1,\ldots,z_m корни полинома L_n внутри [a,b]
- $L_n(x) = (x z_1) \cdots (x z_m) p_{n-m}(x)$
- ullet $p_{n-m}(x)$ имеет один и тот же знак на [a,b]
- Если m < n, то $L_n \perp \prod_{k=1}^m (x z_k)$:

$$\int_{a}^{b} (x-z_{1})^{2} \cdots (x-z_{m})^{2} p_{n-m}(x) w(x) dx = 0$$

• Противоречие: $w(x) \ge 0$, p_{n-m} не меняет знак

Разложение интерполяционного многочлена

Теорема

 x_1,\ldots,x_n - корни ортогонального многочлена L_n . Тогда матрица

$$Q_n = \begin{bmatrix} L_0(x_1) & \cdots & L_{n-1}(x_1) \\ \cdots & \cdots & \cdots \\ L_0(x_n) & \cdots & L_{n-1}(x_n) \end{bmatrix}$$

имеет ортогональные строки, а матрица $D_n^{-1}Q_n$

$$D_n = \text{diag } (d_1, \dots, d_n), \ d_j = ||Q_n(j, :)||_2$$

является ортогональной.

Разложение интерполяционного многочлена (2)

Теорема

Интерполяционный многочлен p_{n-1} , построенный по корням x_1,\ldots,x_n ортогонального многочлена L_n и значениям f_1,\ldots,f_n , представляется в виде

$$p_{n-1}(x) = c_1 L_0(x) + \dots + c_n L_{n-1}(x)$$

$$\begin{bmatrix} c_1 \\ \cdots \\ c_n \end{bmatrix} = Q_n^T D_n^{-2} \begin{bmatrix} f_1 \\ \cdots \\ f_n \end{bmatrix}$$

Разложение интерполяционного многочлена (2)

Теорема

Интерполяционный многочлен p_{n-1} , построенный по корням x_1,\ldots,x_n ортогонального многочлена L_n и значениям f_1,\ldots,f_n , представляется в виде

$$p_{n-1}(x) = c_1 L_0(x) + \dots + c_n L_{n-1}(x)$$

$$\begin{bmatrix} c_1 \\ \cdots \\ c_n \end{bmatrix} = Q_n^T D_n^{-2} \begin{bmatrix} f_1 \\ \cdots \\ f_n \end{bmatrix}$$

$$Q_{n}c = f \Rightarrow D_{n}(D_{n}^{-1}Q_{n})c = f \Rightarrow c = (D_{n}^{-1}Q_{n})^{T}D_{n}^{-1}f = Q_{n}^{T}D_{n}^{-2}f \quad \Box$$

$$\underbrace{\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_n(x_1) \\ \dots & \dots & \ddots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_n(x_n) \end{bmatrix}}_{c_n} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_n(x_1) \\ \dots & \dots & \ddots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_n(x_n) \end{bmatrix}}_{A} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_n(x_1) \\ \dots & \dots & \dots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_n(x_n) \end{bmatrix}}_{A} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

- ullet $\phi_k(x)=x^k$: A матрица Вандермонда

$$\underbrace{\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_n(x_1) \\ \dots & \dots & \dots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_n(x_n) \end{bmatrix}}_{A} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

- $\phi_k(x) = l_k(x)$: A = I
- $1, (x-x_0), (x-x_0)(x-x_1), \ldots : A$ нижнетреугольная

$$\underbrace{\begin{bmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_n(x_0) \\ \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_n(x_1) \\ \dots & \dots & \ddots & \dots \\ \phi_0(x_n) & \phi_1(x_n) & \dots & \phi_n(x_n) \end{bmatrix}}_{A} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}$$

- $\phi_k(x) = l_k(x)$: A = I
- $1, (x-x_0), (x-x_0)(x-x_1), \ldots : A$ нижнетреугольная
- $\phi_k(x) = L_k(x), L_{n+1}(x_i) = 0$: A ортогональная

Примеры

• Многочлены Лежандра (w(x) = 1)

$$L_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

ullet Многочлены Чебышёва $\left(w(x)=rac{1}{\sqrt{1-x^2}}
ight)$

$$L_n(x) = \cos(n \arccos x)$$

ullet Многочлены Эрмита $\left(w(x)=e^{-x^2}
ight)$

$$L_n(x) = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \frac{n!}{j!(n-2j)!} (2x)^{n-2j}$$

Примеры

ullet Наилучшее приближение в C[a,b]

- Наилучшее приближение в C[a,b]
- Условие альтернанса

- Наилучшее приближение в C[a,b]
- Условие альтернанса
- Приближение в гильбертовом пространстве $(L_2[a,b])$

- Наилучшее приближение в C[a,b]
- Условие альтернанса
- Приближение в гильбертовом пространстве $(L_2[a,b])$
- Ортогональные многочлены