COMP2610 / COMP6261 Information Theory Lecture 5: Bernoulli, Binomial, Maximum Likelihood and MAP

Thushara Abhayapala

Audio & Acoustic Signal Processing Group School of Engineering, College of Engineering & Computer Science The Australian National University, Canberra, Australia.

Announcements

Assignment 1

- Will be released this week
- Worth 10% of Course total
- Due Friday 26 August 2022, 5:00 pm

Last time

- Examples of application of Bayes' rule
 - Formalizing problems in language of probability
 - Eating hamburgers, detecting terrorists, ...
- Frequentist vs Bayesian probabilities

The Bayesian Inference Framework

Bayesian Inference

Bayesian inference provides us with a a mathematical framework explaining how to change our (prior) beliefs in the light of new evidence.

$$\underbrace{\frac{p(Z|X)}{posterior}} = \underbrace{\frac{p(X|Z)p(Z)}{p(X)}}_{\text{evidence}}$$

$$= \underbrace{\frac{p(X|Z)p(Z)}{p(X|Z)p(Z)}}_{\sum_{Z'} p(X|Z')p(Z')}$$

Prior: Belief that someone is sick

Likelihood: Probability of testing positive given someone is sick

Posterior: Probability of being sick given someone tests positive

This time

 The Bernoulli and binomial distribution (we will make much use of this henceforth in studying binary channels)

Estimating probabilities from data

Bayesian inference for parameter estimation

Outline

- The Bernoulli Distribution
- The Binomial Distribution
- Parameter Estimation
- Bayesian Parameter Estimation
- Wrapping up

- The Bernoulli Distribution
- The Binomial Distribution
- Parameter Estimation
- Bayesian Parameter Estimation
- Wrapping up

Introduction

Consider a binary variable $X \in \{0, 1\}$. It could represent many things:

- Whether a coin lands heads or tails
- The presence/absence of a word in a document
- A transmitted bit in a message
- The success of a medical trial

Often, these outcomes (0 or 1) are not equally likely

What is a general way to model such an X?

Definition

The variable *X* takes on the outcomes

$$X = \begin{cases} 1 & \text{probability } \theta \\ 0 & \text{probability } 1 - \theta \end{cases}$$

Here, $0 \le \theta \le 1$ is a parameter representing the probability of success

For higher values of θ , it is more likely to see 1 than 0

e.g. a biased coin

Definition

By definition,

$$p(X = 1|\theta) = \theta$$
$$p(X = 0|\theta) = 1 - \theta$$

More succinctly,

$$p(X = x | \theta) = \theta^{x} (1 - \theta)^{1 - x}$$

Definition

By definition,

$$p(X = 1|\theta) = \theta$$
$$p(X = 0|\theta) = 1 - \theta$$

More succinctly,

$$p(X = x | \theta) = \theta^{x} (1 - \theta)^{1 - x}$$

This is known as a Bernoulli distribution over binary outcomes:

$$p(X = x|\theta) = Bern(x|\theta) = \theta^{x}(1-\theta)^{1-x}$$

Note the use of the conditioning symbol for θ ; will revisit later

Mean and Variance

The expected value (or mean) is given by:

$$\mathbb{E}[X|\theta] = \sum_{x \in \{0,1\}} x \cdot p(x|\theta)$$
$$= 1 \cdot p(X = 1|\theta) + 0 \cdot p(X = 0|\theta)$$
$$= \theta.$$

The variance (or squared standard deviation) is given by:

$$V[X|\theta] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$= \mathbb{E}[(X - \theta)^2]$$

$$= (0 - \theta)^2 \cdot p(X = 0|\theta) + (1 - \theta)^2 \cdot p(X = 1|\theta)$$

$$= \theta(1 - \theta).$$

Example: Binary Symmetric Channel

Suppose a sender transmits messages s that are sequences of bits

The receiver sees the bit sequence (message) r

Due to noise in the channel, the message is flipped with probability $0 \le f \le 1$

Example: Binary Symmetric Channel

We can think of r as the outcome of a random variable, with conditional distribution given by:

If E denotes whether an error occurred, clearly

$$p(E = e) = Bern(e|f), e \in \{0, 1\}.$$

Example: Binary Symmetric Channel

We can think of r as the outcome of a random variable, with conditional distribution given by:

If E denotes whether an error occurred, clearly

$$p(E = e) = Bern(e|f), e \in \{0, 1\}.$$

Why?
$$p(E=e)=p(r=1,s=0)+p(r=0,s=1)$$
 (mutually exclusive) So $p(E=e)=p(r=1|s=0)p(s=0)+p(r=0|s=1)p(s=1)$ This equals f regardless of the value of $p(s=0)$.

- The Bernoulli Distribution
- The Binomial Distribution
- Parameter Estimation
- Bayesian Parameter Estimation
- Wrapping up

The Binomial Distribution

Introduction

Suppose we perform N independent Bernoulli trials

- e.g. we toss a coin N times
- e.g. we transmit a sequence of N bits across a noisy channel

Each trial has probability θ of success

What is the distribution of the number of times (*m*) that X = 1?

- e.g. the number of times we obtained *m* heads
- e.g. the number of errors in the transmitted sequence

The Binomial Distribution

Definition

Let

$$Y = \sum_{i=1}^{N} X_i$$

where $X_i \sim \text{Bern}(\theta)$.

Then *Y* has a binomial distribution with parameters N, θ :

$$p(Y = m) = Bin(m|N, \theta) = {N \choose m} \theta^m (1 - \theta)^{N-m}$$

for $m \in \{0, 1, ..., N\}$. Here

$$\binom{N}{m} = \frac{N!}{(N-m)!m!}$$

is the # of ways we can we obtain m heads out of N coin flips

The Binomial Distribution:

Mean and Variance

It is easy to show that:

$$\mathbb{E}[Y] = \sum_{m=0}^{N} m \cdot \text{Bin}(m|N,\theta) = N\theta$$

$$\mathbb{V}[Y] = \sum_{m=0}^{N} (m - \mathbb{E}[m])^{2} \cdot \text{Bin}(m|N,\theta) = N\theta(1 - \theta)$$

Follows from linearity of mean and variance

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \mathbb{E}[X_i] = N\theta$$

$$\mathbb{V}[Y] = \mathbb{V}\left[\sum_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \mathbb{V}[X_i] = N\theta(1-\theta)$$

The Binomial Distribution:

Example

Ashton is an excellent off spinner. The probability of him getting a wicket during a cricket match is $\frac{1}{4}$. (That is, on each attempt, there is a 1/4 chance he will get a wicket.)

His coach commands him to make 10 attempts of wickets in a particular game.

- What is the probability that he will get exactly three wickets? Bin(3|10, 0.25)
- ② What is the expected number of wickets he will get? $\mathbb{E}[Y]$, where $Y \sim \text{Bin}(\cdot|10, 0.25)$.
- What is the probability that he will get at least one wicket? $\sum_{m=1}^{10} \text{Bin}(m|N=10, \theta=0.25) = 1 \text{Bin}(m=0|N=10, \theta=0.25)$

The Binomial Distribution:

Example: Distribution of the Number of Wickets

Histogram of the binomial distribution with N=10 and $\theta=0.25$. From Bishop (PRML, 2006)

(A plot of the function $m \mapsto \text{Bin}(m|N=10, \theta=0.25)$, for $m \in \{0, \dots, 10\}$)

- The Bernoulli Distribution
- 2 The Binomial Distribution
- Parameter Estimation
- Bayesian Parameter Estimation
- Wrapping up

Consider the set of observations $\mathcal{D} = \{x_1, \dots, x_N\}$ with $x_i \in \{0, 1\}$:

• The outcomes of a sequence of coin flips

Whether or not there are errors in a transmitted bit string

Each observation is the outcome of a random variable *X*, with distribution

$$p(X = x) = Bern(x|\theta) = \theta^{x}(1-\theta)^{1-x}$$

for some parameter θ

We know that

$$X \sim \text{Bern}(x|\theta) = \theta^x (1-\theta)^{1-x}$$

But often, we don't know what the value of θ is

• The probability of a coin toss resulting in heads

 The probability of the word defence appearing in a document about sports

What would be a reasonable estimate for θ from \mathcal{D} ?

Maximum Likelihood

Say that we observe

$$\mathcal{D} = \{0, 0, 0, 1, 0, 0, 1, 0, 0, 0\}$$

Intuitively, which seems more plausible: $\theta = \frac{1}{2}$? $\theta = \frac{1}{5}$?

Maximum Likelihood

Say that we observe

$$\mathcal{D} = \{0, 0, 0, 1, 0, 0, 1, 0, 0, 0\}$$

If it were true that $\theta = \frac{1}{2}$, then the probability of this sequence would be

$$p(\mathcal{D}|\theta) = \prod_{i=1}^{10} p(x_i|\theta)$$
$$= \prod_{i=1}^{10} \frac{1}{2}$$
$$= \frac{1}{2^{10}}$$
$$\approx 0.001.$$

Maximum Likelihood

Say that we observe

$$\mathcal{D} = \{0, 0, 0, 1, 0, 0, 1, 0, 0, 0\}$$

If it were true that $\theta = \frac{1}{5}$, then the probability of this sequence would be

$$p(\mathcal{D}|\theta) = \prod_{i=1}^{10} p(x_i|\theta)$$
$$= \left(\frac{1}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^8$$
$$\approx 0.007.$$

Maximum Likelihood

We can write down how likely $\ensuremath{\mathcal{D}}$ is under the Bernoulli model. Assuming independent observations:

$$p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta^{x_i} (1-\theta)^{1-x_i}$$

We call $L(\theta) = p(\mathcal{D}|\theta)$ the likelihood function

Maximum Likelihood

We can write down how likely $\ensuremath{\mathcal{D}}$ is under the Bernoulli model. Assuming independent observations:

$$p(\mathcal{D}|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \theta^{x_i} (1-\theta)^{1-x_i}$$

We call $L(\theta) = p(\mathcal{D}|\theta)$ the likelihood function

Maximum likelihood principle: We want to maximize this function wrt θ

The parameter for which the observed sequence has the highest probability

Maximum Likelihood

Maximising $p(\mathcal{D}|\theta)$ is equivalent to maximising $\mathcal{L}(\theta) = \log p(\mathcal{D}|\theta)$

$$\mathcal{L}(\theta) = \log p(\mathcal{D}|\theta) = \sum_{i=1}^{N} \log p(x_i|\theta) = \sum_{i=1}^{N} \left[x_i \log \theta + (1-x_i) \log(1-\theta) \right]$$

Maximum Likelihood

Maximising $p(\mathcal{D}|\theta)$ is equivalent to maximising $\mathcal{L}(\theta) = \log p(\mathcal{D}|\theta)$

$$\mathcal{L}(\theta) = \log p(\mathcal{D}|\theta) = \sum_{i=1}^{N} \log p(x_i|\theta) = \sum_{i=1}^{N} \left[x_i \log \theta + (1-x_i) \log(1-\theta) \right]$$

Setting $\frac{d\mathcal{L}}{d\theta} = 0$ we obtain:

$$\theta_{\mathsf{ML}} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Maximum Likelihood

Maximising $p(\mathcal{D}|\theta)$ is equivalent to maximising $\mathcal{L}(\theta) = \log p(\mathcal{D}|\theta)$

$$\mathcal{L}(\theta) = \log p(\mathcal{D}|\theta) = \sum_{i=1}^{N} \log p(x_i|\theta) = \sum_{i=1}^{N} \left[x_i \log \theta + (1-x_i) \log(1-\theta) \right]$$

Setting $\frac{d\mathcal{L}}{d\theta} = 0$ we obtain:

$$\theta_{\mathsf{ML}} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

The proportion of times x = 1 in the dataset \mathcal{D} !

Parameter Estimation — Issues with Maximum Likelihood

Consider the following scenarios:

- After N = 3 coin flips we obtained 3 'tails'
 - What is the estimate of the probability of a coin flip resulting in 'heads'?
- In a small set of documents about sports, the words defence never appeared.
 - What are the consequences when predicting whether a document is about sports (using Bayes' rule)?

Parameter Estimation — Issues with Maximum Likelihood

Consider the following scenarios:

- After N = 3 coin flips we obtained 3 'tails'
 - What is the estimate of the probability of a coin flip resulting in 'heads'?
- In a small set of documents about sports, the words defence never appeared.
 - What are the consequences when predicting whether a document is about sports (using Bayes' rule)?

These issues are usually referred to as overfitting

- Need to "smooth" out our parameter estimates
- Alternatively, we can do Bayesian inference by considering priors over the parameters

- The Bernoulli Distribution
- 2 The Binomial Distribution
- Parameter Estimation
- Bayesian Parameter Estimation
- Wrapping up

Parameter Estimation: Bayesian Inference

Recall:

$$\underbrace{p(\theta|X)}_{\text{posterior}} = \underbrace{\frac{p(X|\theta)p(\theta)}{p(X)}}_{\substack{\text{evidence}}}$$

If we treat θ as a random variable, we may have some prior belief $p(\theta)$ about its value

• e.g. we believe θ is probably close to 0.5

Our prior on θ quantifies what we believe θ is likely to be, before looking at the data

Our posterior on θ quantifies what we believe θ is likely to be, after looking at the data

Parameter Estimation: Bayesian Inference

The likelihood of X given θ is

$$Bern(x|\theta) = \theta^x (1-\theta)^{1-x}$$

For the prior, it is mathematically convenient to express it as a Beta distribution:

Beta
$$(\theta|a,b) = \frac{1}{Z(a,b)} \theta^{a-1} (1-\theta)^{b-1},$$

where Z(a,b) is a suitable normaliser

We can tune a, b to reflect our belief in the range of likely values of θ

Beta Prior

Examples

Beta Posterior Distribution

Recall that for $\mathcal{D} = \{x_1, \dots, x_N\}$, the likelihood under a Bernoulli model is:

$$p(\mathcal{D}|\theta) = \theta^m (1-\theta)^{\ell},$$

where
$$m = \sharp(x = 1)$$
 and $\ell \stackrel{\text{def}}{=} N - m = \sharp(x = 0)$.

Beta Posterior Distribution

Recall that for $\mathcal{D} = \{x_1, \dots, x_N\}$, the likelihood under a Bernoulli model is:

$$p(\mathcal{D}|\theta) = \theta^m (1-\theta)^{\ell},$$

where $m = \sharp (x = 1)$ and $\ell \stackrel{\text{def}}{=} N - m = \sharp (x = 0)$.

For the prior $p(\theta|a,b) = \text{Beta}(\theta|a,b)$ we can obtain the posterior:

$$p(\theta|\mathcal{D}, a, b) = \frac{p(\mathcal{D}|\theta)p(\theta|a, b)}{p(\mathcal{D}|a, b)}$$
$$= \frac{p(\mathcal{D}|\theta)p(\theta|a, b)}{\int_0^1 p(\mathcal{D}|\theta)p(\theta|a, b)d\theta}$$
$$= \text{Beta}(\theta|m+a, \ell+b).$$

Beta Posterior Distribution

Recall that for $\mathcal{D} = \{x_1, \dots, x_N\}$, the likelihood under a Bernoulli model is:

$$p(\mathcal{D}|\theta) = \theta^m (1 - \theta)^{\ell},$$

where $m = \sharp(x = 1)$ and $\ell \stackrel{\text{def}}{=} N - m = \sharp(x = 0)$.

For the prior $p(\theta|a,b) = \text{Beta}(\theta|a,b)$ we can obtain the posterior:

$$p(\theta|\mathcal{D}, a, b) = \frac{p(\mathcal{D}|\theta)p(\theta|a, b)}{p(\mathcal{D}|a, b)}$$

$$= \frac{p(\mathcal{D}|\theta)p(\theta|a, b)}{\int_0^1 p(\mathcal{D}|\theta)p(\theta|a, b)d\theta}$$

$$= \text{Beta}(\theta|m + a, \ell + b).$$

Can use this as our new prior if we see more data!

Beta Posterior Distribution

Now suppose we choose θ_{MAP} to maximise $p(\theta|\mathcal{D})$ (MAP= Maximum *A Posteriori*)

One can show that

$$\theta_{\mathsf{MAP}} = \frac{m+a-1}{N+a+b-2}$$

cf. the estimate that did not use any prior,

$$\theta_{\mathsf{ML}} = \frac{m}{\mathsf{N}}$$

The prior parameters *a* and *b* can be seen as adding some "fake" trials!

What values of a and b ensure $\theta_{MAP} = \theta_{ML}$? a = b = 1. Make sense? (Note that the choice of the beta distribution was not accidental here — it is the "conjugate prior" for the binomial distribution.)

- The Bernoulli Distribution
- The Binomial Distribution
- Parameter Estimation
- Bayesian Parameter Estimation
- Wrapping up

Summary

- Distributions involving binary random variables
 - Bernoulli distribution

- Binomial distribution
- Bayesian inference: Full posterior on the parameters
 - ▶ Beta prior and binomial likelihood → Beta posterior
- Reading: Mackay §23.1 and §23.5; Bishop §2.1 and §2.2

Next time

Entropy

Acknowledgement

These slides were originally developed by Professor Robert C. Williamson.