

Universidade Eduardo Mondlane

Faculdade de Ciências Departamento de Física

FÍSICA - II: (Cursos de Licenciatura em Engenharia Mecânica, Eléctrica, Electrónica, Química, Ambiente, Civil e G. Industrial)

Regente: Luís Consolo Chea

Assistentes: Marcelino Macome; Bartolomeu Ubisse; Belarmino Matsinhe; Graça

Massimbe & Valdemiro Sultane

2019-AP # 06 - Força electromotriz e circuítos eléctricos.

1. Enuncie as leis de Kirchhoff e dê os seus significados físicos.

- 2. Deduza a expressão para a força electromotriz efectiva ϵ e a resistência interna r para uma associação em série de n fontes de tensão (baterias) iguais.
- 3. Duas pilhas com fem $\epsilon_1 = 2V$ ($r_1 = 1\Omega$) e $\epsilon_2 = 1V$ ($r_2 = 1\Omega$), estão associados à resistência $R = 5\Omega$ de acordo com o circuito da figura 1. Determine as correntes que passam pelas pilhas (ϵ_1 e ϵ_2) e pelo resistor R.
- 4. (**H&R Cap 27, 87**) Pretende-se dissipar uma potência de 10 W num resistor de $0,10\Omega$, ligando o resistor à uma fonte cuja força electromotriz é de 1.5 V. (a) Qual deve ser a diferença de potencial aplicada ao resistor? (b) Qual deve ser a resistência interna da fonte?
- 5. No circuíto apresentado na figura 2, tem-se que $\epsilon_1 = 10V$, $\epsilon_2 = 4V$, $R_1 = R_4 = 2\Omega$ e $R_2 = R_3 = 4\Omega$. Determine as correntes que atravessam os resistores R_2 e R_3 . Considere que as fem são ideais.
- 6. Determine a diferença de potencial entre os pontos A e B da figura 3. Estando os pontos A e B ligados, determine a corrente que atravessa a fem ϵ_1 , sabendo que: $\epsilon_1=12V$, $\epsilon_2=10V$, $\epsilon_3=8V$; $R_1=2\Omega$, $R_2=1\Omega$, $R_3=2\Omega$, $R_4=2\Omega$ e $r_1=r_2=r_3=1\Omega$.
- 7. O circuito ramificado apresentado na figura 4, tem as seguintes caracteriísticas: $\epsilon_1 = 6V$, $\epsilon_2 = 5V$, $\epsilon_3 = 4V$, $R_1 = 100\Omega$ e $R_2 = 50\Omega$. Determine as correntes que passam pelos resistores R_1 e R_2 e a diferença de potencial entre os pontos A e B (todas as fem consideram-se ideais).

- 8. Determine a variação da tensão no capacitor depois de fechar o interruptor no circuito mostrado na figura 5.
- 9. (**H&R Cap 27, 97**) No circuito ilustrado na figura 6, a força electromotriz da fonte ideal é $\epsilon = 30V$, as resistências são $R_1 = 20k\Omega$ e $R_2 = 10k\Omega$ e o capacitor está completamente descarregado. (a) Quando o interruptor é fechado no instante t=0s, determine a corrente que passa em cada resistor. (b) Depois de transcorrido um longo período, qual é a corrente no resistor R_2 ?

Figuras

