CS7015-Deep Learning **Programming Assignment** 4

Jeshuren Chelladurai (CS17M017) Ajith Kumar M (CS17M009)

April 22, 2018

1. Mathematical Formulation for Basic Model without attention:

Consider W_{ei} to be the word embedding matrices.

Encoder:

$$\begin{aligned} & \underline{x_{it}} = \underbrace{W_e w_{it}, t \in [1, T]}_{h_{it}} = \underbrace{LSTM}_{LSTM}(x_{it}), t \in [1, T] \\ & h_{it} = \underbrace{LSTM}_{h_{it}}(x_{it}), t \in [1, T] \\ & h_{it} = [\overleftarrow{h_{it}}, \overleftarrow{h_{it}}] \end{aligned}$$

Decoder:

$$\begin{split} z_{it} &= W_{e2} h_{it}, t = 0 \\ z_{it} &= W_{e2} y_{it-1}, t \in [1, T'] \\ (y_i, s_i) &= softmax(LSTM(z_{it-1}, s_{it-1})), t \in [1, T'] \end{split}$$

Mathematical Formulation for Hierarchical Model without attention:

Encoder:

for j = 1 to len(fieldWords)

1)
$$x_{it} = W_e w_{it}, t \in [1, T_f]$$

2)
$$\overrightarrow{h}_{it} = \overrightarrow{LSTM}(x_{it}), t \in [1, T_f]$$

3)
$$\overleftarrow{h_{it}} = \overleftarrow{LSTM}(x_{it}), t \in [1, T_f]$$

4)
$$h_{it} = [\overrightarrow{h_{it}}, \overleftarrow{h_{it}}]$$

5)
$$emb_{it} = [h_{it}, W_e w_{it}^j]$$

$$g_{it} = LSTM_2(emb_{it}, S_{it-1}), t \in [1, T_{fw}]$$

Decoder:

$$\begin{split} z_{it} &= W_{e2}g_{it}, t = 0 \\ z_{it} &= W_{e2}y_{it-1}, t \in [1, T'] \\ (y_i, s_i) &= softmax(LSTM(z_{it-1}, s_{it-1})), t \in [1, T'] \end{split}$$

2. Learning curve for Basic encoder-decoder model:

Figure 1: Learning curve for Basic model.

3. Learning curve for Hierarchical encoder-decoder model: The architecture was,

(a) Encoder embedding size: 256

(b) Level 1 bidirectional LSTM encoder: 512 units

(c) Dropout with 0.5 probability

(d) Level 2 bidirectional LSTM encoder: 512 units

(e) LSTM Decoder: 1024 units(f) Encoder embedding size: 256

(g) Dense Layer: Decoder Vocabulary Size

(h) Batch Size: 250(i) Optimizer: Adam(j) Learning Rate: 0.001

(k) Epochs: 20

We also tried adding attention on top of the level 2 encoder. We were able to get a BLEU score of 0.8 on the test data

Figure 2: Learning curve (Training data) for Hierarchical Model with and without Attention Mechanism.

4. Learning curve for Basic encoder-decoder model with attention:

Figure 3: Learning curve for Basic Model with Attention Mechanism.

5. BLEU scores on test data

Table 1: BLEU scores of different models on test data

Model	Without Attention	With Attention
Basic	0.7066	0.7356
Heirarchical	0.836	0.7915

Table 2: Summaries generated by different models

Input	Basic Model	Basic Model	Hierarchical	Hierarchical
		w/attention	Model	Model
				w/attention
Sequence	Mostly cloudy ,	Mostly cloudy ,	Mostly cloudy ,	Mostly cloudy ,
16	with a low around	with a low around	with a low around	with a low around
	44 . West wind	46 . South wind	45 . South wind	44 . East wind
	around 6 mph be-	between 3 and 6	around 6 mph be-	around 5 mph be-
	coming calm.	mph.	coming calm.	coming calm.
Sequence	Snow . Low	Flurries . Mostly	Snow . Low	Flurries . Cloudy ,
7	around 39 . South	cloudy , with a	around 38 . West	with a low around
	southwest wind	low around -21	southwest wind 5	-21 . Wind chill
	between 7 and 10	. Wind chill val-	to 8 mph becom-	values as low as -
	mph . Chance of	ues as low as -40	ing east . Chance	40 . West wind
	precipitation is	. West southwest	of precipitation is	between 5 and 8
	90 % . New snow	wind between 6	100 % . New snow	mph.
	accumulation	and 8 mph .	accumulation	
	of 2 to 4 inches		of 1 to 3 inches	
	possible .		possible .	
Sequence	A chance of rain,	A chance of show-	A 50 percent	A chance of show-
502	mainly after noon	ers , mainly after	chance of showers	ers , mainly after
	. Cloudy , with	1pm . Cloudy	. Mostly cloudy,	1pm . Cloudy
	a high near 54 .	, with a high	with a high near	, with a high
	Calm wind becom-	near 54 . Calm	53 . East wind	near 53 . Calm
	ing south between	wind becoming	around 6 mph	wind becoming
	4 and 7 mph.	south around 6	becoming calm .	south around 6
	Chance of precipi-	mph . Chance of		mph . Chance of
	tation is 40 % .	precipitation is 30		precipitation is 30
		% . amounts of		%.
		less than a tenth		
		of an inch possible		
		. amounts than a		
		tenth and quarter		
		of an inch possible		
		•		

6. **Best Results - Parameter Setting:** The model which gave the best results for us was a hierarchical encoder + decoder model. The architecture was,

(a) Encoder embedding size: 256

(b) Level 1 bidirectional LSTM encoder: 512 units

(c) Dropout with 0.5 probability

(d) Level 2 bidirectional LSTM encoder: 512 units

(e) LSTM Decoder: 1024 units(f) Encoder embedding size: 256

(g) Dense Layer: Decoder Vocabulary Size

(h) Batch Size: 250(i) Optimizer: Adam(j) Learning Rate: 0.001

(k) Epochs: 35

7. Dimensions at each layer:

Table 3: Dimensions at each layer

Layer	Input Dimension	Output Dimension	
INEMBED	batchSize x maxSequenceLength	batchSize x maxSequenceLength x 256	
ENCODER	batchSize x maxSequenceLength x 256	batchSize x 1024	
ATTENTION	batchSize x maxSequence x 1024	batchSize x maxDecoderSequence x 1024	
OUTEMBED	batchSize x maxDecoderSeqLength	batchSize x	
		maxDecoderSeqLength x 256	
	s0: batchSize x 1024		
DECODER	s1: batchSize x	batchSize x maxDecoderSeqLength x 1024	
	maxDecoderSeqLength x 256		
SOFTMAX	batchSize x maxDecoderSeqLength x 1024	batchSize x maxDecoderSeqLength x decoderVocabSize	

8. **Unidirectional v/s Bidirectional LSTM- Better?** As can be seen from the learning curve, and also the BLEU scores, bidirectional LSTM was better for the task.

Figure 4: Learning curve for Unidirectional vs Bidirectional LSTM Encoder model.

9. **Basic v/s Hierarchical - Better?** Hierarchical model as described in (4), gave the best results.

Figure 5: Learning curve for Basic Model vs Hierarchical Model

10. **Effect of attention** In case of basic model, the addition of attention provided to be beneficial. Whereas in the case of adding attention only on the last layer of the hierarchical encoder was not useful.

Figure 6: Learning curve Attention vs No Attention on basic model.

11. **Formulation of Attention Mechanism - Hierarchical:** Attention can be formulated in two stages, with the first level attention focusing on important words in the fields and the second level focusing on important fields in the sentence.

Encoder:

Layer 1:

 $\overline{\text{for } j = 1}$ to len(fieldWords)

1)
$$x_{it} = W_e w_{it}, t \in [1, T_f]$$

2)
$$\overrightarrow{h_{it}} = \overrightarrow{LSTM}(x_{it}), t \in [1, T_f]$$

3)
$$\overleftarrow{h_{it}} = \overleftarrow{LSTM}(x_{it}), t \in [1, T_f]$$

4)
$$h_{it} = [\overrightarrow{h_{it}}, \overleftarrow{h_{it}}]$$

5)
$$emb_{it} = [h_{it}, W_e w_{it}^j]$$

$$\begin{aligned} u_{it} &= \tanh(W_w emb_{it} + b_w) \\ \alpha_{it} &= \frac{\exp(u_{it}u_w)}{\sum_t exp(u_{it}u_w)} \\ v_{it} &= \sum_t \alpha_{it}h_{it} \end{aligned}$$

Layer 2:

$$\begin{split} g_{it} &= LSTM_2(v_{it}, S_{it-1}), t \in [1, T_{fw}] \\ c_{it} &= \tanh(W1_w g_{it} + b1_w), t \in [1, T_{fw}] \end{split}$$

$$\begin{aligned} \beta_{it} &= \frac{\exp(u_{it}u_w)}{\sum_t exp(u_{it}u_w)}, t \in [1, T_{fw}] \\ d_{it} &= \sum_t \beta_{it} h_{it}, t \in [1, T_{fw}] \end{aligned}$$

Decoder:

$$\begin{split} z_{it} &= W_{e2}d_{it}, t = 0 \\ z_{it} &= W_{e2}y_{it-1}, t \in [1, T'] \\ (y_i, s_i) &= softmax(LSTM(z_{it-1}, s_{it-1})), t \in [1, T'] \end{split}$$

12. **Visualisation of Attention Layer**: After visualizing the attention weights,it was observed that the alignments were "one to many". We also see non-contiguous alignments.

Figure 7: Visualisation of Attention layer for a training sequence

Figure 8: Visualisation of Attention layer for a validation sequence

13. Effect of drop-out

Figure 9: Learning curve Dropout vs No Dropout on basic model.

14. **Early stopping**: As could be seen from the learning curves, there was a steady decrease in the validation losses and early stopping was not necessary in many cases.

15. **Validation BLEU - Early stopping:** We implemented early stopping using Validation BLEU as well, but the scores kept on increasing at regular intervals as could be seen in the plot.

Figure 10: BLEU score vs Epochs

- 16. **Gradient Clipping :** We also tried clipping the gradients by a maximum gradient norm of 5. We were able to get a BLEU score of 0.827 on the test data.
- 17. **MultiLayer LSTM**: We tried creating a multilayer LSTM encoder with 2 layers and 256 units per layer. The encoder outputs were concatenated and fed to the decoder with architecture of the basic model. We were able to get a BLEU score of 0.6297 on the validation data.

18. Beam Search

Table 4: BLEU Scores of Greedy Decoder vs Beam Search Decoder on Validation data.

Model	BLEU Scores
Greedy Decoder	0.7037
Beam Search Decoder , N=5	0.7269

19. Effect of Beam Width - Beam Search

Table 5: Effect of Different Beam Width on a basic model with 128 units LSTM Cell.

Beam width	BLEU Scores
N=3	0.4339
N=5	0.4439
N=8	0.4725

Table 6: Effect of Different Beam Width on a Hierarchical model

Beam width	BLEU Scores
N=1	0.8299
N=3	0.8326
N=5	0.8315
N=9	0.8315

Table 7: Summaries generated by different beam widths

Input	Beam Width = 1	Beam Width = 3	Beam Width = 5
Sequence	Mostly cloudy, with a low	Mostly cloudy, with a low	Mostly cloudy, with a low
16	around 45. South wind be-	around 45. South wind be-	around 47 . Calm wind becom-
	tween 3 and 7 mph .	tween 3 and 7 mph .	ing south southeast around 6
			mph .
Sequence	Snow and areas before 10pm	Flurries . Low around 7 . West	Snow, mainly before 10pm.
7	, then snow showers . Low	wind 5 to 10 mph becoming	Low around 49. West wind
	around 8. South southwest	south.	around 7 mph . Chance of pre-
	wind between 5 and 10 mph.		cipitation is 90 % . New rain-
	Chance of precipitation is $80~\%$		fall amounts between a quar-
	. New snow accumulation of 1		ter and half of an inch possible
	to 3 inches possible.		
Sequence	A chance of showers , mainly	A chance of showers , mainly	A chance of showers , mainly
502	after 1pm . Cloudy , with a	after 1pm . Cloudy , with a	after 1pm . Cloudy , with a
	high near 53 . Calm wind be-	high near 53 . Calm wind be-	high near 53 . Calm wind be-
	coming south around 6 mph.	coming south around 6 mph.	coming south around 6 mph.
	Chance of precipitation is 30 $\%$	Chance of precipitation is 30 %	Chance of precipitation is 30 %
	•		

EXTRA WORK DONE

- Hierarchical Encoder
- Beam Search
- MultiLayer LSTM
- Gradient Clipping
- Hierarchical Encoder + Attention