Perceptron Convergence Theorem

David Helmbold

University of California, Santa Cruz dph@soe.ucsc.edu

Fall '13 Modified W'14, Sp '15

Problem

Given a sequence of labeled examples, $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \ldots$ where each $\mathbf{x}_i \in \Re^d$ and each $y_i \in \{+1, -1\}$, find a weight vector \mathbf{w} and intercept b such that $\operatorname{sign}(\mathbf{w} \cdot \mathbf{x}_i + b) = y_i$ for all i.

Perceptron Algorithm (ignoring b):

- 1 initially w all zero's
- ② for each (\mathbf{x}_i, y_i) example in turn, if $\operatorname{sign}(\mathbf{w} \cdot \mathbf{x}_i) \neq y_i$ (a mistake) then $\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} + \eta y_i \mathbf{x}_i$.
- repeat step 2 until convergence

(η is a learning rate, here $\eta = 1$ so $\eta y \mathbf{x}_i$ adds/subtracts \mathbf{x}_i)

Theorem: If the data is linearly separable then the Perceptron Algorithm converges to some hyperplane $\mathbf{w} \cdot \mathbf{x} + b$ that separates the positive and negative examples.

Proof Outline

- Simplify,
- Simplify,
- Simplify,
- Look at cosine between w and a good vector u. Bound numerator and denominator in terms of # of mistakes and then solve for # of mistakes.

Simplification 1

Eliminate intercept b. Use the "add-a-dimension" trick, and solve the find a \mathbf{w} such that $\operatorname{sign}(\mathbf{w} \cdot \mathbf{x}) = y$ problem.

Simplification 2

Avoid negative examples. Replace each $(\mathbf{x}, -1)$ example with $(-\mathbf{x}, +1)$.

from "Pattern Classification and Scene Analysis"', Duda and Hart, 1973

Simplification 3

Normalize lengths of x's.

Rescale instances to have length 1, so $\mathbf{x} \cdot \mathbf{x} = 1$ for all instances. (note: rescaling \mathbf{x} doesn't change sign of $\mathbf{w} \cdot \mathbf{x}$, does change x_0 's)

Not done by Ng – he uses upper bound D on instance lengths in ...notes6.pdf

With simplifications and setting $\eta = 1$, algorithm becomes:

- initially w all zero's
- predict with $sign(\mathbf{w} \cdot \mathbf{x})$
- if $\mathbf{w} \cdot \mathbf{x} \leq 0$ (a mistake made) then $\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} + \mathbf{x}$.

Analysis Setup

- Let **u** be any good (correct) weight vector with $||\mathbf{u}||_2 = 1$.
- Define the gap δ be min_i $\mathbf{u} \cdot \mathbf{x}_i$. (after rescaling \mathbf{x} 's; "better" \mathbf{u} have bigger gaps)
- Since **u** correct, $\delta > 0$.
- Consider $cos(\mathbf{u}, \mathbf{w}) = \frac{\mathbf{u} \cdot \mathbf{w}}{||\mathbf{w}||_2}$.
- Cosine always < 1.
- Each mistake, $\mathbf{w}_{\text{new}} := \mathbf{w}_{\text{old}} + \mathbf{x}$.
- Note $\mathbf{u} \cdot \mathbf{w}_{\text{new}} = \mathbf{u} \cdot (\mathbf{w}_{\text{old}} + \mathbf{x}) \ge \mathbf{u} \cdot \mathbf{w}_{\text{old}} + \delta$,
- so $\mathbf{u} \cdot \mathbf{w}_{\text{new}} \ge \delta \times (\# \text{ mistakes so far})$.

• Now bound $||\mathbf{w}||_2$ by considering $||\mathbf{w}||_2^2$ on a mistake,

$$||\mathbf{w}_{\text{new}}||_2^2 = \mathbf{w}_{\text{new}} \cdot \mathbf{w}_{\text{new}} \tag{1}$$

$$= (\mathbf{w}_{\text{old}} + \mathbf{x}) \cdot (\mathbf{w}_{\text{old}} + \mathbf{x}) \tag{2}$$

$$= \mathbf{w}_{\text{old}} \cdot \mathbf{w}_{\text{old}} + \underbrace{\mathbf{x} \cdot \mathbf{x}}_{=1} + 2 \underbrace{\mathbf{w}_{\text{old}} \cdot \mathbf{x}}_{\text{negative}}$$
(3)

$$\leq ||\mathbf{w}_{\text{old}}||_2^2 + 1 \tag{4}$$

• Therefore, $||\mathbf{w}_{\mathrm{new}}||_2^2 \leq (\# \text{ mistakes})$, and

$$||\mathbf{w}_{\mathrm{new}}||_2 \leq \sqrt{(\# \mathsf{mistakes})}$$

Finishing up

Thus we always have the inequalities:

$$1 \geq rac{\mathbf{u} \cdot \mathbf{w}}{||\mathbf{w}||_2} \geq rac{\delta(\# ext{ mistakes})}{\sqrt{(\# ext{ mistakes})}}$$

and solving for (# mistakes) gives

$$(\# \text{ mistakes}) \leq \frac{1}{\delta^2}$$

Why does it work?

FIGURE 5.9. Finding a solution region by a gradient search.

from "Pattern Classification and Scene Analysis", Duda and Hart, 1973