Classifiers: NYC Poverty Status

A Data Science Project (in the making)

Project Overview

Aim: To identify classifier models to predict whether an individual <u>is</u> or <u>is not</u> officially in poverty according to NYC government terms.

- Citywide poverty rate fell to 19% in 2017 from 20.6% in 2014...but
- 839,705 city students (74% of total student population) qualify for free or reduced-priced lunches, a common poverty marker and the highest percentage in over five years.
- One reason: new classification practices that have improved the ability to identify low-income kids.
- One of a growing class of city-wide datasets (via NYC OpenData)

Starting off: 68,094 total samples (55,985 vs. 12,109)

- Calculation: Whether
 "Income" <>
 "Poverty Threshold"
 (National index adjusted
 NYC cost of living/housing)
- Sample scales to
 entire NYC
 population
 Multiplied by specific weights
 (Individual/Household)

Sources & Tools

- From:
 - NYC Open Data ("NYCgov_PovertyStatus_2017")
 - (to join with) City-wide Demographic, Income data (over time)
- Used:
 - Models:
 - Logistic Classifier
 - KNN
 - Decision Tree
 - Random Forest
 - Adaboost & XGboost
 - Tools: SMOTE, PCA, GridSearchCV

Dirty Data!

 Holes/Inconsistencies, Outliers, and Multi-indexed variables

Issues with Logistic Regression, KNN Models

- Feature Selection (Extreme Under- / Over- Fits)
- Confounding & Multicollinearity Concerns
- Class Imbalance (below)
- Need/Opportunities for much more investigating/tuning

Decision Tree: Hyper-Parameters

Choosing the Best Features for each Model

Final Metrics

		Predicted		
ı	Logistic Regression	Negative	Positive	
Actual	Negative	105	2,912	
Act	Positive	91	13,916	

		Predicted		
ec	ision Tree	Negative	Positive	
P.	Negative	1,873	4,078	
3	Positive	4,429	23,667	

Daniel Lake of

		Predicted			
ADABOOST		Negative	Positive		
E .	Negative	670	2,288		
ĭ	Positive	494	13,572		

606

365

XGBOOST Negative

Negative

Predicted

Positive

2,352

13,701

KINI	N INEBative	POSITIVE
Negative	2,981	36
Positive	19	13,988

Predicted

		Predicted		
Random Forest		Negative	Positive	
tual	Negative Positive	1,377	5,109	
Ad	Positive	3,398	24,163	

	Prec	Recall	Acc	F1
Dummy Classifier	0.82	1	0.82	0.90
Logistic Regression Training	0.82	0.99	0.82	0.90
Testing	0.82	0.99	0.82	0.90
KNN Training	0.81	0.95	0.80	0.89
Testing	0.78	0.97	0.78	0.89
Decision Tree Training	0.97	0.98	0.95	0.97
Testing	0.85	0.84	0.75	0.85
Random Forest Training	0.82	1.00	0.92	0.90
Testing	0.83	1.00	0.82	0.90
Adaboost Training	0.85	0.96	0.83	0.90
Testing	0.86	0.96	0.84	0.91
Xgboost Training	0.86	0.97	0.84	0.91

0.85

Testing

0.97

0.84

0.91

- Currently, Inconclusive Results
 Cross Validation metrics were okay, but
 not much better than Dummy Classifier
 - To be continued:
 - (even) deeper dive into data
 - Many more iterations of tuning hyper-parameters

Conclusions

- Much, Much Room for Improvement
 - For me: more to come!
 - Maximize Precision or Recall?
 (which is more tolerable- FP or FN?)
 - For NYC's system:
 - Slim down + Optimize bureaucracy-laden data structure
 - Potential as Keystone / Connector Data
 - Predictive Power, Systemic "Nudges"

Any Questions?