

Security Assessment

Carrieverse - audit

CertiK Verified on Oct 28th, 2022

CertiK Verified on Oct 28th, 2022

Carrieverse - audit

The security assessment was prepared by CertiK, the leader in Web3.0 security.

Executive Summary

TYPES ECOSYSTEM METHODS

ERC-20 EVM Compatible Manual Review, Static Analysis

LANGUAGE TIMELINE KEY COMPONENTS

Solidity Delivered on 10/28/2022 N/A

CODEBASE

https://github.com/imantisco/CarrieVerseToken

...View All

COMMITS

166629c54fcb0987a5c00c57748c71aefb650aee ca991c39ca1b255cec9f6a9a286f494bcf7f7717

...View All

Vulnerability Summary

6 Total Findings	4 Resolved	O Mitigated	O Partially Resolved	2 Acknowledged	O Declined	O Unresolved
■ 0 Critical				Critical risks are those a platform and must be should not invest in an risks.	addressed before	launch. Users
2 Major	2 Acknowledged		-	Major risks can include errors. Under specific of can lead to loss of fund	circumstances, the	se major risks
0 Medium				Medium risks may not but they can affect the		
1 Minor	1 Resolved			Minor risks can be any scale. They generally of integrity of the project, other solutions.	do not compromise	the overall
■ 3 Informational	3 Resolved			Informational errors are improve the style of the within industry best protection the overall functioning	e code or certain op actices. They usual	perations to fall

TABLE OF CONTENTS CARRIEVERSE - AUDIT

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

CVC-01: Initial Token Distribution

CVT-01 : Centralization Risks

CVT-02: Check Effect Interaction Pattern Violated

CVT-04: Missing Zero Address Validation

CVT-05: Missing Error Messages

CVT-06: Lack of Input Validation

Optimizations

CVT-03: Variables That Could Be Declared as Immutable

Formal Verification

Considered Functions And Scope

Verification Results

- Appendix
- <u>Disclaimer</u>

CODEBASE | CARRIEVERSE - AUDIT

Repository

https://github.com/imantisco/CarrieVerseToken

Commit

166629c54fcb0987a5c00c57748c71aefb650aee

ca991c39ca1b255cec9f6a9a286f494bcf7f7717

AUDIT SCOPE | CARRIEVERSE - AUDIT

11 files audited • 4 files with Acknowledged findings • 7 files without findings

ID	File	SHA256 Checksum
• OCV	contracts/access/Ownable.sol	96a3b09372173d7174fcb0080a97c0cd9abb51cd31e71ecd 597d62e0942cb7c4
• CVC	contracts/CarrieVerseToken.sol	cfa67d111944f3d36363d47ee7797637b2f669a36f880e1ae 568f6330ab9decb
• ETL	a contracts/EmployeeTokenLock.sol	b311a631bb03636f36a12dbff27a77821ebbf6e616c6d8e99 d8b26d605f844e6
• TLC	contracts/TokenLock.sol	ca9540453634d1fce9ef120b6c9f2a44ba89b6726619c7dc9 eb809a0db2debb0
• IER	contracts/interfaces/IERC20.sol	96a25403069ea471908ea170788dda67c756a240d8e75d5 d48351f6bc20e3d0d
• IEM	contracts/token/ERC20/extensions/IERC 20Metadata.sol	af5c8a77965cc82c33b7ff844deb9826166689e55dc037a7f2 f790d057811990
• SER	contracts/token/ERC20/utils/SafeERC2 0.sol	b5a1340c5232f387b15592574f27eef78f6017bdc66542a1c ea512ad4f78a0d2
• ERE	contracts/token/ERC20/ERC20.sol	94eae31eacf3fadc080674b151d99a86c74edcbcf84a4627c 4ef88cc4aa3f4b3
• IEC	contracts/token/ERC20/IERC20.sol	94f23e4af51a18c2269b355b8c7cf4db8003d075c9c541019 eb8dcf4122864d5
• ACV	contracts/utils/Address.sol	aafa8f3e41700a8353aabcdf020e06735753e6bc4b615279b 43de53cfbb4f2cd
• CCV	contracts/utils/Context.sol	1458c260d010a08e4c20a4a517882259a23a4baa0b5bd9a dd9fb6d6a1549814a

APPROACH & METHODS | CARRIEVERSE - AUDIT

This report has been prepared for Carrieverse to discover issues and vulnerabilities in the source code of the Carrieverse - audit project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

- Testing the smart contracts against both common and uncommon attack vectors.
- Assessing the codebase to ensure compliance with current best practices and industry standards.
- Ensuring contract logic meets the specifications and intentions of the client.
- Cross referencing contract structure and implementation against similar smart contracts produced by industry leaders.
- Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better serve the project from the security perspective:

- Testing the smart contracts against both common and uncommon attack vectors;
- Enhance general coding practices for better structures of source codes;
- Add enough unit tests to cover the possible use cases;
- Provide more comments per each function for readability, especially contracts that are verified in public;
- Provide more transparency on privileged activities once the protocol is live.

FINDINGS CARRIEVERSE - AUDIT

This report has been prepared to discover issues and vulnerabilities for Carrieverse - audit. Through this audit, we have uncovered 6 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID	Title	Category	Severity	Status
CVC-01	Initial Token Distribution	Centralization / Privilege	Major	Acknowledged
<u>CVT-01</u>	Centralization Risks	Centralization <i>l</i> Privilege	Major	Acknowledged
<u>CVT-02</u>	Check Effect Interaction Pattern Violated	Logical Issue	Minor	Resolved
<u>CVT-04</u>	Missing Zero Address Validation	Volatile Code	Informational	Resolved
<u>CVT-05</u>	Missing Error Messages	Coding Style	Informational	Resolved
<u>CVT-06</u>	Lack Of Input Validation	Volatile Code	Informational	Resolved

CVC-01 INITIAL TOKEN DISTRIBUTION

Category	Severity	Location	Status
Centralization / Privilege	Major	contracts/CarrieVerseToken.sol: 14	Acknowledged

Description

All of the CVTX tokens are sent to the contract deployer when deploying the contract. This could be a centralization risk as the deployer can distribute these tokens without obtaining the consensus of the community.

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the team shall make enough efforts to restrict the access of the private key.

Alleviation

Carrieverse team: CVTX token is not being stored in early version of token contract. Tokens have been distributed to separate cold wallet according to token distribution plan. Team portion of CVTX is locked up and under vesting for long term success.

CVT-01 CENTRALIZATION RISKS

Category	Severity	Location	Status
Centralization / Privilege	Major	contracts/CarrieVerseToken.sol: 17; contracts/EmployeeT okenLock.sol: 67, 93, 119, 144, 167, 185, 201, 212; contract s/TokenLock.sol: 62, 86, 110, 149, 167, 177; contracts/acce ss/Ownable.sol: 61, 69	Acknowledged

Description

In the contract <code>EmployeeTokenLock</code> the role <code>admin</code> has authority over the functions shown in the diagram below. Any compromise to the <code>admin</code> account may allow the hacker to take advantage of this authority and distribute tokens, sweep out locked tokens, or get all locked tokens' information.

In the contract TokenLock the role admin has authority over the functions shown in the diagram below. Any compromise to the admin account may allow the hacker to take advantage of this authority and distribute tokens, sweep out locked tokens, or get all lockups information.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign ($\frac{2}{3}$, $\frac{3}{5}$) combination *mitigate* by delaying the sensitive operation and avoiding a single point of key management failure.

- Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;
 AND
- Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key compromised;

AND

 A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, *mitigate* by applying decentralization and transparency.

- Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;
 AND
- Introduction of a DAO/governance/voting module to increase transparency and user involvement.
 AND
- A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered *fully resolved*.

- Renounce the ownership and never claim back the privileged roles.
 OR
- · Remove the risky functionality.

Alleviation

Carrieverse Team: Admin account verification and authentication are under corporate process for operation and maintenance according to team wallet management process.

CVT-02 CHECK EFFECT INTERACTION PATTERN VIOLATED

Category	Severity	Location	Status
Logical Issue	Minor	contracts/EmployeeTokenLock.sol: 253, 291; contracts/TokenLock.sol: 2 18, 256	Resolved

Description

In the function <code>EmployeeTokenLock.withdraw()</code>, <code>lockupInfo[_lockupIndex]</code> is deleted after transferring the tokens, which violates the check-effect-interaction pattern. If the token has a hook, it can reenter the same function and drain token balance.

Functions [EmployeeTokenLock.withdraws()], [TokenLock.withdraw()], and [TokenLock.withdraws()] share the same issue.

```
function withdraw(uint256 _lockupIndex) public onlyLock(_lockupIndex)
returns(uint256 withdrawBalance){
             uint256 balance = getBalance(_lockupIndex);
             require(balance > 0, "EmployeeTokenLock: NOT_AMOUNT");
             require(IERC20(token).transferFrom(address(this), msg.sender,
balance));
             delete lockupInfo[_lockupIndex];
             uint256 index = 0;
             for( index; index < accountToLockupIndex[msg.sender].length; index++ ){</pre>
                 if( accountToLockupIndex[msg.sender][index] == _lockupIndex ){
                     break;
                 }
             if( accountToLockupIndex[msg.sender].length > 0 ){
                 accountToLockupIndex[msg.sender][index] =
accountToLockupIndex[msg.sender][accountToLockupIndex[msg.sender].length-1];
                 accountToLockupIndex[msg.sender].pop();
             totalAmount -= balance;
             lockupCount - -;
271
             withdrawBalance = balance;
             emit withdrawEvent(msg.sender, _lockupIndex, balance);
```


Recommendation

We recommend using the <u>Checks-Effects-Interactions Pattern</u> to avoid the risk of unexpected errors and reentrancy.

Alleviation

CVT-04 MISSING ZERO ADDRESS VALIDATION

Category	Severity	Location	Status
Volatile Code	 Informational 	contracts/EmployeeTokenLock.sol: 49, 50; contracts/TokenLock.s ol: 44, 45	Resolved

Description

The following addresses should be checked before assignment to make sure they are not zero addresses.

In contract EmployeeTokenLock:

```
49 admin = _admin;
50 token = _token;

In contract TokenLock:

44 admin = _admin;
45 token = _token;
```

Recommendation

We advise adding zero-checks for the passed-in address values to prevent unexpected errors.

Alleviation

CVT-05 MISSING ERROR MESSAGES

Category	Severity	Location	Status
Coding Style	Informational	contracts/EmployeeTokenLock.sol: 253, 291; contracts/TokenLock.sol: 218, 256	Resolved

Description

The **require** can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

CVT-06 LACK OF INPUT VALIDATION

Category	Severity	Location	Status
Volatile Code	Informational	contracts/EmployeeTokenLock.sol: 67; contracts/TokenLock.sol: 62	Resolved

Description

In contract TokenLock, the setLockup() function checks for address, amount and duration as following, but the setLockups() function does not contain these checks.

```
require( _account != address(0), "TokenLock: NOT_ADDRESS");
require( _amount > 0, "TokenLock: NOT_AMOUNT");
require( _duration > 0, "TokenLock: NOT_DURATION");
```

This also applies to contract EmployeeTokenLock.

Recommendation

We recommend including the checks in functions [EmployeeTokenLock.setLockups()] and [TokenLock.setLockups()].

Alleviation

OPTIMIZATIONS | CARRIEVERSE - AUDIT

ID	Title	Category	Severity	Status
CVT-03	Variables That Could Be Declared As Immutable	Gas Optimization	Optimization	Resolved

CVT-03 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category	Severity	Location	Status
Gas Optimization	Optimization	contracts/EmployeeTokenLock.sol: 7, 8; contracts/TokenLock. sol: 7, 8	Resolved

Description

The linked variables assigned in the constructor can be declared as <code>immutable</code>. Immutable state variables can be assigned during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in storage.

Recommendation

We recommend declaring these variables as immutable.

Alleviation

FORMAL VERIFICATION CARRIEVERSE - AUDIT

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected behavior.

Considered Functions And Scope

Verification of ERC-20 compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

- Functions transfer and transferFrom that are widely used for token transfers,
- functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens to another account (i.e. to grant an allowance), and
- the functions balanceOf and totalSupply, which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name	Title
erc20-transfer-revert-zero	Function transfer Prevents Transfers to the Zero Address
erc20-transfer-correct-amount	Function [transfer] Transfers the Correct Amount in Non-self Transfers
erc20-transfer-succeed-normal	Function transfer Succeeds on Admissible Non-self Transfers
erc20-transfer-succeed-self	Function transfer Succeeds on Admissible Self Transfers
erc20-transfer-correct-amount-self	Function transfer Transfers the Correct Amount in Self Transfers
erc20-transfer-exceed-balance	Function transfer Fails if Requested Amount Exceeds Available Balance
erc20-transfer-recipient-overflow	Function [transfer] Prevents Overflows in the Recipient's Balance
erc20-transfer-change-state	Function transfer Has No Unexpected State Changes
erc20-transfer-never-return-false	Function [transfer] Never Returns [false]
erc20-transfer-false	If Function transfer Returns false, the Contract State Has Not Been Changed

Property Name	Title
erc20-transferfrom-revert-from-zero	Function transferFrom Fails for Transfers From the Zero Address
erc20-transferfrom-revert-to-zero	Function [transferFrom] Fails for Transfers To the Zero Address
erc20-transferfrom-correct-amount	Function transferFrom Transfers the Correct Amount in Non-self Transfers
erc20-transferfrom-correct-amount-self	Function [transferFrom] Performs Self Transfers Correctly
erc20-transferfrom-succeed-normal	Function transferFrom Succeeds on Admissible Non-self Transfers
erc20-transferfrom-succeed-self	Function transferFrom Succeeds on Admissible Self Transfers
erc20-transferfrom-fail-exceed-balance	Function transferFrom Fails if the Requested Amount Exceeds the Available Balance
erc20-transferfrom-correct-allowance	Function transferFrom Updated the Allowance Correctly
erc20-transferfrom-change-state	Function transferFrom Has No Unexpected State Changes
erc20-transferfrom-fail-exceed-allowance	Function transferFrom Fails if the Requested Amount Exceeds the Available Allowance
erc20-transferfrom-false	If Function transferFrom Returns false, the Contract's State Has Not Been Changed
erc20-totalsupply-succeed-always	Function totalSupply Always Succeeds
erc20-totalsupply-correct-value	Function totalSupply Returns the Value of the Corresponding State Variable
erc20-transferfrom-never-return-false	Function [transferFrom Never Returns [false]
erc20-transferfrom-fail-recipient-overflow	Function [transferFrom] Prevents Overflows in the Recipient's Balance
erc20-totalsupply-change-state	Function totalSupply Does Not Change the Contract's State
erc20-balanceof-succeed-always	Function [balance0f] Always Succeeds
erc20-balanceof-correct-value	Function [balance0f] Returns the Correct Value
erc20-balanceof-change-state	Function balance0f Does Not Change the Contract's State
erc20-allowance-succeed-always	Function allowance Always Succeeds
erc20-allowance-correct-value	Function allowance Returns Correct Value

Property Name	Title
erc20-allowance-change-state	Function allowance Does Not Change the Contract's State
erc20-approve-revert-zero	Function approve Prevents Giving Approvals For the Zero Address
erc20-approve-correct-amount	Function approve Updates the Approval Mapping Correctly
erc20-approve-succeed-normal	Function approve Succeeds for Admissible Inputs
erc20-approve-change-state	Function approve Has No Unexpected State Changes
erc20-approve-false	If Function approve Returns false, the Contract's State Has Not Been Changed
erc20-approve-never-return-false	Function approve Never Returns false

I Verification Results

For the following contracts, model checking established that each of the 38 properties that were in scope of this audit (see scope) are valid:

Contract CarrieVerseToken (Source File contracts/CarrieVerseToken.sol)

Detailed results for function transfer

Property Name	Final Result	Remarks
erc20-transfer-revert-zero	• True	
erc20-transfer-correct-amount	• True	
erc20-transfer-succeed-normal	• True	
erc20-transfer-succeed-self	• True	
erc20-transfer-correct-amount-self	• True	
erc20-transfer-exceed-balance	• True	
erc20-transfer-recipient-overflow	• True	
erc20-transfer-change-state	• True	
erc20-transfer-never-return-false	• True	
erc20-transfer-false	• True	

Detailed results for function transferFrom

Property Name	Final Result Remarks
erc20-transferfrom-revert-from-zero	• True
erc20-transferfrom-revert-to-zero	• True
erc20-transferfrom-correct-amount	• True
erc20-transferfrom-correct-amount-self	• True
erc20-transferfrom-succeed-normal	• True
erc20-transferfrom-succeed-self	• True
erc20-transferfrom-fail-exceed-balance	• True
erc20-transferfrom-correct-allowance	• True
erc20-transferfrom-change-state	• True
erc20-transferfrom-fail-exceed-allowance	• True
erc20-transferfrom-false	• True
erc20-transferfrom-never-return-false	• True
erc20-transferfrom-fail-recipient-overflow	• True

Detailed results for function totalSupply

Property Name	Final Result	Remarks
erc20-totalsupply-succeed-always	• True	
erc20-totalsupply-correct-value	True	
erc20-totalsupply-change-state	True	

Detailed results for function balanceOf

Property Name	Final Result	Remarks
erc20-balanceof-succeed-always	True	
erc20-balanceof-correct-value	True	
erc20-balanceof-change-state	True	

Detailed results for function allowance

Final Result	Remarks
• True	
• True	
• True	
	TrueTrue

Detailed results for function approve

Property Name	Final Result Remarks
erc20-approve-revert-zero	• True
erc20-approve-correct-amount	• True
erc20-approve-succeed-normal	• True
erc20-approve-change-state	• True
erc20-approve-false	• True
erc20-approve-never-return-false	• True

Contract ERC20 (Source File contracts/token/ERC20/ERC20.sol)

Detailed results for function transfer

Final Result Remarks
• True

Detailed results for function transferFrom

Property Name	Final Result Remarks
erc20-transferfrom-revert-from-zero	True
erc20-transferfrom-revert-to-zero	• True
erc20-transferfrom-correct-amount	• True
erc20-transferfrom-correct-amount-self	• True
erc20-transferfrom-succeed-normal	• True
erc20-transferfrom-succeed-self	• True
erc20-transferfrom-fail-exceed-balance	• True
erc20-transferfrom-correct-allowance	• True
erc20-transferfrom-change-state	• True
erc20-transferfrom-fail-exceed-allowance	• True
erc20-transferfrom-false	• True
erc20-transferfrom-fail-recipient-overflow	• True
erc20-transferfrom-never-return-false	• True

Detailed results for function totalSupply

Property Name	Final Result	Remarks
erc20-totalsupply-succeed-always	• True	
erc20-totalsupply-correct-value	• True	
erc20-totalsupply-change-state	• True	

Detailed results for function balanceOf

Property Name	Final Result	Remarks
erc20-balanceof-succeed-always	True	
erc20-balanceof-correct-value	True	
erc20-balanceof-change-state	True	

Detailed results for function allowance

Property Name	Final Result	Remarks
erc20-allowance-succeed-always	True	
erc20-allowance-change-state	True	
erc20-allowance-correct-value	True	

Detailed results for function approve

Property Name	Final Result Remarks
erc20-approve-revert-zero	• True
erc20-approve-succeed-normal	• True
erc20-approve-correct-amount	• True
erc20-approve-change-state	• True
erc20-approve-false	• True
erc20-approve-never-return-false	• True

APPENDIX | CARRIEVERSE - AUDIT

I Finding Categories

Categories	Description
Centralization / Privilege	Centralization / Privilege findings refer to either feature logic or implementation of components that act against the nature of decentralization, such as explicit ownership or specialized access roles in combination with a mechanism to relocate funds.
Gas Optimization	Gas Optimization findings do not affect the functionality of the code but generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.
Logical Issue	Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how block.timestamp works.
Volatile Code	Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a vulnerability.
Coding Style	Coding Style findings usually do not affect the generated byte-code but rather comment on how to make the codebase more legible and, as a result, easily maintainable.

I Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions provided to you ("Customer" or the "Company") in connection with the Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK's prior written consent in each instance.

This report is not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. This report is not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team or project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies proprietors, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project. This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report represents an extensive assessing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK's position is that each company and individual are responsible for their own due diligence and continuous security. CertiK's goal is to help reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED "AS IS" AND "AS AVAILABLE" AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER'S OR ANY OTHER PERSON'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER'S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK'S AGENTS MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER'S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED "AS IS" AND ANY REPRESENTATION OR WARRANTY OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT CERTIK'S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech, we're able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all throughout all facets of blockchain.

