ORIGINAL CONTRIBUTION

Recognition and Segmentation of Connected Characters With Selective Attention

KUNIHIKO FUKUSHIMA AND TARO IMAGAWA*

Osaka University

(Received 16 January 1992; revised and accepted 8 May 1992)

Abstract—We have modified the original model of selective attention, which was previously proposed by Fukushima, and extended its ability to recognize and segment connected characters in cursive handwriting. Although the original model of selective attention already had the ability to recognize and segment patterns, it did not always work well when too many patterns were presented simultaneously. In order to restrict the number of patterns to be processed simultaneously, a search controller has been added to the original model. The new model mainly processes the patterns contained in a small "search area," which is moved by the search controller. A preliminary experiment with computer simulation has shown that this approach is promising. The recognition and segmentation of characters can be successful even though each character in a handwritten word changes its shape by the effect of the characters before and behind.

Keywords—Neural network, Selective attention, Visual pattern recognition, Character recognition, Segmentation, Recognition of connected characters, Cursive handwriting.

1. INTRODUCTION

Machine recognition of connected characters in cursive handwriting of English words is a difficult problem. It cannot be successfully performed by a simple pattern matching method because each character changes its shape by the effect of the characters before and behind. In other words, the same character can be written differently when it appears in different words in order to be connected smoothly with the characters in front and in the rear.

Fukushima (1986, 1987, 1988a) previously proposed a "selective attention model," which has the ability to segment patterns, as well as the function of recognizing them. When a composite stimulus consisting of two patterns or more is presented, the model focuses its attention selectively to one of them, segments

it from the rest, and recognizes it. After that, the model switches its attention to recognize another pattern. The model also has the function of associative memory and can restore imperfect patterns. These functions can be successfully performed even for deformed versions of training patterns, which have not been presented during the learning process.

However, the model does not always work well when too many patterns are presented simultaneously. The model has been modified and extended to be able to recognize connected characters in cursive handwriting (Imagawa & Fukushima, 1990, 1991). A search controller has been added to the original model in order to restrict the number of patterns to be processed simultaneously. The new model processes the patterns contained in a small "search area," which is moved by the search controller. The positional control of the search area does not need to be accurate, as the original model, by itself, has the ability to segment and recognize patterns, provided the number of patterns present is small.

In the recognition of cursive handwriting, the information of the height or vertical position of characters sometimes becomes important. For instance, character " ℓ " in script style can be interpreted as a deformed version of character " ϵ ." They differ only in their heights. Since our selective attention model has the ability of deformation-resistant pattern recognition,

Requests for reprints should be sent to Prof. Kunihiko Fukushima, Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan.

^{*} T. Imagawa is currently with the Intelligent Electronics Laboratory, Matsushita Electric Industrial Co. Ltd., Moriguchi, Osaka 570, Japan.

Acknowledgements: This work was supported in part by Grantin-Aid #02402035 for Scientific Research (A), and #03251106 for Scientific Research on Priority Areas on "Higher-Order Brain Functions," both from the Ministry of Education, Science and Culture of Japan.

both of them might be recognized as the same character. In order to discriminate between them, we have introduced a mechanism to measure the height of the character which is recognized and segmented.

2. STRUCTURE AND BEHAVIOR OF THE MODEL

The model is a hierarchical multilayered network and consists of a cascade of many layers of neuron-like cells. The cells are of the analog type: their inputs and outputs take non-negative analog values. Figure 1 illustrates the multilayered structure of the hierarchical network. Each rectangle in the figure represents a group of cells arranged in a two-dimensional array.

The network has backward as well as forward connections between cells. Figure 2 shows how the different kinds of cells, such as u_S , u_C , w_S , and w_C , are interconnected in the network. Each circle in the figure represents a cell. Letters u and w indicate the cells in the forward paths and backward paths, respectively. Although the figure shows only one of each kind of cell in each stage, numerous cells actually exist arranged in a two-dimensional array, as shown in Figure 1. We will use notation u_{CI} , for example, to denote a u_C -cell in the I-th stage, and U_{CI} to denote the layer of u_{CI} -cells. The highest stage of the network is the I-th stage (I=4).

A more detailed diagram illustrating spatial interconnections between neighboring cells appears in Figure 3.

2.1. Forward Paths

The signals through forward paths manage the function of pattern recognition. If we consider the forward paths only, the model has almost the same structure and function as the "neocognitron" model (Fukushima, 1980, 1988b), which can recognize input patterns robustly, with little effect from deformation, changes in size, or shifts in position.

Cells u_S are feature-extracting cells. They correspond to S-cells in the neocognitron. With the aid of subsidiary inhibitory cell u_{SV} , they extract features from the stimulus pattern. The u_S -cells of the first stage have fixed input connections and extract line components of various orientations. In all other stages higher than the first, u_S -cells have variable input connections, which are reinforced by unsupervised learning.

The u_C -cells, which correspond to C-cells of the neocognitron, are inserted in the network to allow for positional errors in the features of the stimulus. Each u_C -cell has fixed excitatory connections from a group of u_S -cells which extract the same feature, but from slightly different positions. Thus, the u_C -cell's response is less sensitive to shifts in position of the stimulus patterns.

FIGURE 1. Multilayered structure of the hierarchical network.

FIGURE 2. Hierarchical network structure illustrating the interconnections between different kind of cells.

The processes of feature-extraction by u_S -cells and toleration of positional shift by u_C -cells are repeated in the hierarchical network. During this process, local features extracted in a lower stage are gradually integrated into more global features. This structure is effective for endowing the network with robustness against deformation in pattern recognition.

The layer of u_C -cells at the highest stage, that is, layer U_{CL} , works as the recognition layer. The response of the cells of this layer shows the final result of pattern recognition. Even when two patterns or more are simultaneously presented to the input layer U_{C0} , usually only one cell, corresponding to the category of one of the stimulus patterns, is activated in the recognition layer U_{CL} . This is partly because of the competition between u_S -cells by lateral inhibition, and also because of the attention focusing by gain control signals from the backward paths, which will be discussed below.

Mathematically, the output of the cells in the forward paths are calculated as follows in the computer simulation. In the mathematical descriptions below, the output of a u_{Cl} -cell, for example, is denoted by

FIGURE 3. Detailed diagram illustrating spatial interconnections between neighboring cells (Fukushima, 1986).

 $u_{Cl}'(n, k)$, where n is a two-dimensional set of coordinates indicating the position of the cell's receptive-field center in the input layer U_{C0} , and k (=1, 2, ..., K_l) is a serial number indicating the type of feature which the cell responds. In other words, k is a serial number of the cell-plane defined in connection with the neocognitron. Variable l represents the time elapsed after the presentation of stimulus pattern and takes a discrete integer value. Sometimes in such expressions, k is abbreviated for stage U_{C0} in which we have $K_0 = 1$, and n is omitted for the highest stage which has only one u_{C} -cell for each value of k.

Among u_s -cells, there is a mechanism of backward lateral inhibition. Since the calculation of backward lateral inhibition is time-consuming in computer simulation, the computation of the output of a u_s -cell is divided into two steps. More specifically, before calculating the final output of a feature-extracting cell u_s , a temporary output \tilde{u}_{sl} , in which the effect of lateral inhibition is ignored, is calculated first:

$$\tilde{u}_{Sl}^{l}(\boldsymbol{n}, k) = r_{l}^{l}(\boldsymbol{n}, k)$$

$$\times \varphi \left[\frac{\sigma_{l} + \sum_{\kappa=1}^{K_{l-1}} \sum_{\nu \in A_{l}} a_{l}(\nu, \kappa, k) \cdot u_{Cl-1}^{l}(\boldsymbol{n} + \nu, \kappa)}{\sigma_{l} + \frac{r_{l}^{l}(\boldsymbol{n}, k)}{1 + r_{l}^{l}(\boldsymbol{n}, k)} \cdot b_{l}(k) \cdot u_{SVI}^{l}(\boldsymbol{n})} - 1 \right].$$
(1)

where $\varphi[x] = \max(x, 0)$. The output of subsidiary cell u_{SU} , which sends inhibitory signal to this u_S -cell, is given by

$$u'_{SVI}(n) = \sqrt{\sum_{\kappa=1}^{K_{I-1}} \sum_{\nu \in A_I} c_I(\nu) \cdot \{u'_{CI-1}(n+\nu, \kappa)\}^2}.$$
 (2)

Incidentally, this is equal to the root-mean-square of the responses of the u_C -cells. Parameter σ_l is a positive constant determining the level at which saturation starts in the input-to-output characteristic of the u_S -cell. $a_l(\nu, \kappa, k)$ is the strength of the excitatory input connection coming from cell $u_{Cl-1}(\mathbf{n} + \nu, \kappa)$ in the preceding stage U_{l-1} , and A_l denotes the summation range of ν , that

is, the size of the spatial spread of the input connections to one u_{Sl} -cell. $b_l(k)$ (≥ 0) is the strength of the inhibitory input connection coming from subsidiary cell $u_{SII}^l(n)$. $c_l(\nu)$ represents the strength of the fixed excitatory connections, and is a monotonically decreasing function of $|\nu|$. The positive variable $r_l^l(n, k)$, which will be given by eqn (9), determines the efficiency of the inhibitory input to the u_s -cell.

From the above temporary output $\tilde{u}'_{Sl}(n, k)$, in which the effect of lateral inhibition is ignored, the final output of the u_S -cell is calculated. The calculation is made approximately, however, for the sake of economy of the computation time: The final output of the u_S -cell is calculated by applying the following recursive equation twice, beginning with $u'_{Sl}(n, k) = \tilde{u}'_{Sl}(n, k)$:

$$u'_{Sl}(\boldsymbol{n}, k) := \varphi \left[u'_{Sl}(\boldsymbol{n}, k) - \sum_{\boldsymbol{\nu} \in E_l} e_l(\boldsymbol{\nu}) \cdot u'_{Sl}(\boldsymbol{n} + \boldsymbol{\nu}, k) - \sum_{\boldsymbol{\kappa} \in E_l} \sum_{\boldsymbol{\nu} \in E_l} \bar{e}_l(\boldsymbol{\nu}) \cdot u'_{Sl}(\boldsymbol{n} + \boldsymbol{\nu}, \kappa) \right], \quad (3)$$

where $e_l(v)$ and $\bar{e}_l(v)$ are the strength of the connections for lateral inhibition, and E_l denotes the size of the spatial spread of these connections. The notation := is used in the sense of recursive call in computer languages (for example, ALGOL). This means that lateral inhibition works quickly compared with other time delays in the network.

The input connections $a_l(\nu, \kappa, k)$ and $b_l(k)$ are fixed for the first stage (l = 1). They are adjusted in such a way that the u_S cell can extract line components of a particular orientation. In the computer simulation discussed later, each u_S cell has 3×3 excitatory input connections, which have spatial distribution as illustrated in Figure 4.

In all other stages higher than the first, the input connections of u_s -cells are variable and reinforced by means of an algorithm similar to that used for the unsupervised learning in the neocognitron (Fukushima, 1980, 1988b) when all backward signal flow is stopped. Thus, each u_s -cell comes to respond selectively to a particular feature of the stimuli presented during the learning phase.

The output of a u_C -cell is given by

$$u_{Cl}^{t}(\boldsymbol{n},k) = g_{l}^{t}(\boldsymbol{n},k) \cdot \psi \left[\sum_{\boldsymbol{v} \in D_{l}} d_{l}(\boldsymbol{v}) \cdot u_{Sl}^{t}(\boldsymbol{n}+\boldsymbol{v},k) \right], \quad (4)$$

where $\psi[x] = \varphi[x]/(1 + \varphi[x])$. Parameter $d_l(v)$ denotes the strength of the fixed excitatory connections

FIGURE 4. Spatial distribution of the excitatory input connections $a_1(\nu, \kappa, k)$ of line detecting u_s -cells of the first stage (Imagawa & Fukushima, 1990).

and is a monotonically decreasing function of |v|. The size of the spatial spread of these connections is D_I . The variable $g'_I(n, k)$ denotes the gain of the u_C -cell, and its value is controlled by the signal from the w_C -cell in the backward path and also from the search controller as discussed in Sections 2.4 and 2.5.

The input layer U_{C0} receives not only the input pattern p but also positive feedback signals from the recall layer W_{C0} , as in Figure 2. Hence u_C -cells of the input layer are different in nature from those of other stages. Expressed mathematically,

$$u_{C0}^{t}(\mathbf{n}) = g_{0}^{t}(\mathbf{n}) \cdot \max[p(\mathbf{n}), w_{C0}^{t-1}(\mathbf{n})].$$
 (5)

The gain $g'_0(n)$ is given by eqn (13) in the same manner as for the intermediate stages. The output of a w_{C0} -cell will be given by eqn (6), and its value at t < 0 is zero.

2.2. Backward Paths

The signals through backward paths manage the function of selective attention and associative recall. The cells in the backward paths are arranged in the network in a mirror image of the cells in the forward paths. The forward and the backward connections also make a mirror image to each other but the directions of signal flow through the connections are opposite.

The output signal of the recognition layer U_{CL} is sent to lower stages through the backward paths and reaches the recall layer W_{C0} at the lowest stage of the backward paths. The backward signals are transmitted retracing the same route as the forward signals. The route control of the backward signals is made by the gate signals from the cells of the forward paths. More specifically, from among many possible backward paths diverging from a w_C -cell, only the ones to the w_S -cells which are receiving gate signals from the corresponding u_S -cells are chosen (Fukushima, 1986, 1987, 1988a) (Figure 3). Guided by the gate signals from the forward paths, the backward signals reach exactly the same positions at which the input pattern is presented.

As mentioned before, usually only one cell is activated in the recognition layer U_{CL} , even when two or more patterns are presented to the input layer U_{C0} . Since the backward signals are sent only from the activated recognition cell, only the signal components corresponding to the recognized pattern reach the recall layer, W_{C0} . Therefore, the output of the recall layer can also be interpreted as the result of segmentation, where only components relevant to a single pattern are selected from the stimulus. Even if the stimulus pattern which is now recognized is a deformed version of a training pattern, the deformed pattern is segmented and emerges with its deformed shape.

The following is a more detailed description of the response of the cells. Mathematically, the output of a w_C -cell and the subsidiary cell w_{SV} in the backward paths is given by

$$w_{Cl}^{t}(\mathbf{n}, k) = \psi \left[\alpha_{l} \cdot \left\{ \sum_{\kappa=1}^{K_{l+1}} \sum_{\nu \in A_{l+1}} a_{l+1}(\nu, \kappa, k) \cdot w_{Sl+1}^{t}(\mathbf{n} - \nu, \kappa) - \sum_{\nu \in A_{l+1}} c_{l}(\nu) \cdot w_{Sl+1}^{t}(\mathbf{n} - \nu) \right\} \right], \quad (6)$$

$$w'_{SFl+1}(\boldsymbol{n}) = \frac{r_{l+1}^0}{1 + r_{l+1}^0} \cdot \sum_{\kappa=1}^{K_{l+1}} b_{l+1}(\kappa) \cdot w'_{Sl+1}(\boldsymbol{n}, \kappa), \quad (7)$$

where α_l in eqn (6) is a positive constant determining the degree of saturation of the w_C -cell. The parameter r_{l+1}^0 in eqn (7) is the initial value of the variable $r_l^1(\boldsymbol{n}, k)$ in eqn (1) and will be discussed in connection with eqn (9).

As seen in eqns (6) and (7), the backward connections diverging from a w_S -cell have a strength proportional to the forward connections converging to the feature-extracting u_S -cell, which makes a pair with the w_S -cell (Figure 3). Hence, the backward signals from layer W_{Sl+1} to layer W_{Cl} , a part of which is transmitted through inhibitory connections via subsidiary w_{Sl} -cells, can retrace the same route as the forward signals from layer U_{Cl} to layer U_{Sl+1} . The backward signals simply flow through the paths with strong connections. No control signals from the forward paths are required to guide the backward signal flow between these layers.

To control the route of the backward signal flow from layer W_{Cl} to layer W_{Sl} , however, some control signals from the forward paths are necessary. Corresponding to the fixed forward connections which converge to a u_{C} -cell from a number of u_{S} -cells, many backward connections diverge from a w_C -cell towards w_S -cells (Figure 3). It is not desirable, however, for all the w_s cells which receive excitatory backward signals from the w_C -cell to be activated. The reason is as follows: To activate a u_C -cell in the forward path, the activation of at least one preceding u_S -cell is enough, and usually only a small number of preceding u_S -cells are actually activated. To elicit a similar response from the w_s -cells in the backward paths, the network is synthesized so that each w_S -cell receives not only excitatory backward signals from w_C -cells but also a gate signal from the corresponding u_S -cell, and the w_S -cell is activated only when it receives a signal from both u_S - and w_C -cells. Quantitatively, the output of a w_S -cell is given by

$$w'_{Sl}(\boldsymbol{n}, k) = \min \left[u'_{Sl}(\boldsymbol{n}, k), \quad \alpha'_{l} \cdot \sum_{\boldsymbol{\nu} \in D_{l}} d_{l}(\boldsymbol{\nu}) \cdot w'_{Cl}(\boldsymbol{n} - \boldsymbol{\nu}, k) \right], (8)$$

where α'_{l} is a positive constant.

In the highest stage, where no w_C -cell exists, the same equation (8) can be applied if we put $w'_{CL}(n, k) = u'_{CL}(n, k)$. In other words, the output of u_C -cells are sent directly back to w_C -cells through backward paths.

2.3. Threshold Control

Take, for example, a case in which the stimulus contains a number of incomplete patterns which are contaminated with noise and have several parts missing. Even when the pattern recognition in the forward path is successful and only one cell is activated in the recognition layer U_{CL} , it does not necessarily mean that the segmentation of the pattern is also completed in the recall layer W_{C0} .

When some part of the input pattern is missing and the feature which is supposed to exist there fails to be extracted in the forward paths, the backward signal flow is interrupted at that point and cannot proceed any further because no gate signals are received from the forward cells. In such a case, the threshold for extracting features is automatically lowered around that area and the model tries to extract even vague traces of the undetected feature. More specifically, the fact that a feature has failed to be extracted is detected by w_{CX} -cells from the condition that a w_C -cell in the backward paths is active but that feature-extracting u_s -cells around it are all silent (Figures 2 and 3). The signal from w_{CX} -cells weakens the efficiency of inhibition by u_{SV} -cells, and virtually lowers the threshold for feature extraction by the u_s -cells. Thus, u_s -cells are made to respond even to incomplete features, to which, in the normal state, no u_S -cell would respond.

Thus, once a feature is extracted in the forward paths, the backward signal can then be further transmitted to lower stages through the path unlocked by the gate signal from the newly activated forward cell. Hence, a complete pattern, in which defective parts are interpolated, emerges in the recall layer W_{C0} . Even if the stimulus pattern which is now recognized is a deformed version of a training pattern, interpolation is performed, not for the training pattern, but for the deformed stimulus pattern. From this restored pattern, noise and blemishes have been eliminated because no backward signals are returned for components of noise or blemishes in the stimulus. Thus, the segmentation of patterns can be successful, even if the input patterns are incomplete and contaminated with noise. Components of other patterns which are not recognized at this time are also treated as noise.

A threshold-control signal is also sent from the noresponse detector shown at far right in Figure 2. When all of the recognition cells are silent, the no-response detector sends the threshold-control signal to the u_s -cells in all stages through path x shown in Figure 2, and lowers their threshold for feature extraction until at least one recognition cell becomes activated.

Mathematically, the efficiency of inhibition to a u_s -cell is determined by r/(n, k) in eqn (1), and its value is controlled by two kinds of threshold-control signals, x_s and x_s , as follows:

$$r_I'(n,k) = \frac{r_I^0}{1 + x_{XI}'(n,k) + x_{XI}'},$$
 (9)

where the values of x_S and x_X are regulated by corresponding w_{CX} -cell and the no-response detector, respectively. Positive constant r_I^0 is the initial value of $r_I^i(\mathbf{n}, k)$. Equation (9) can be applied to the highest stage U_L , in which no x_S -signal is supplied to u_S -cells, if x_S is assumed to be zero.

The threshold-control signal x_S is regulated by the w_{CX} -cell as follows:

$$x_{Sl}^{t}(\mathbf{n}, k) = \beta_{l} \cdot x_{Sl}^{t-1}(\mathbf{n}, k) + \beta_{l}^{t} \cdot \sum_{\nu \in D_{l}} d_{l}(\nu) \cdot w_{CXl}^{t-1}(\mathbf{n} - \nu, k), \quad (10)$$

where β_l and β'_l are positive constants. In other words, x_S increases by an amount proportional to the output of the w_{CX} -cells, but, at the same time, decreases with an attenuation constant β_l ($0 < \beta_l \le 1$).

A w_{CX} -cell, which monitors the failure of extracting a feature in the forward paths, receives an excitatory connection from a w_{CI} -cell and inhibitory connections $d'_I(v)$ from u_{SI} -cells around it in the forward paths. Its output is given by

$$w_{CXI}^t(\boldsymbol{n}, k)$$

$$= \varphi \left[w_{Cl}^{i}(\boldsymbol{n}, k) - \sum_{\boldsymbol{\nu} \in D_{i}^{i}} d_{l}^{i}(\boldsymbol{\nu}) \cdot u_{Sl}^{i}(\boldsymbol{n} + \boldsymbol{\nu}, k) \right]. \quad (11)$$

The size of the area D_I' , from which the inhibitory signals from the preceding u_{SI} -cells are gathered, is a little wider than the spread of D_I , from which a u_C -cell receives input signals in the forward paths (c.f. eqn (4)). This difference in size is effective in preventing a spurious output from w_{CX} -cells even when a stimulus pattern is a slightly deformed version of a learned pattern.

The other threshold-control signal x_X is generated by the no-response detector. The no-response detector monitors the response of the u_{CL} -cells and increases the level of x_X , if all the u_{CL} -cells are silent. The level of x_X supplied to the l-th stage is

$$x_{XI}^{t} = \begin{cases} x_{XI}^{t-1} + \beta_{XI} & \text{if } u_{CL}^{t-1}(\kappa) = 0 & \text{for all } \kappa \\ \beta_{XI}^{t} \cdot x_{XI}^{t-1} & \text{else.} \end{cases}$$
(12)

In other words, x_{XI} is increased by a constant amount β_{XI} if all the u_{CL} -cells in the recognition layer are silent. The increase of the level of x_X is continued until at least one u_{SL} -cell, and consequently one u_{CL} -cell, is activated. Once at least one u_{CL} -cell is activated, the increase in x_X stops and begins to decay with an attenuation ratio β'_{XI} .

2.4. Gain Control

The gains of u_C -cells in the forward paths are variable and controlled by two kinds of gain-control signals: one from the corresponding backward cells w_C , and the other from the search controller (Figure 2). Mathematically, gain g'(n, k) in eqns (4) and (5) is given by

$$g_{SI}^t(\boldsymbol{n}, k) = g_{BI}^t(\boldsymbol{n}, k) \cdot g_{SI}^t(\boldsymbol{n}), \tag{13}$$

where $g'_{Bl}(n, k)$ (>0) is controlled by the signal from the backward cell $w_{Cl}(n, k)$, and $g'_{Sl}(n)$ (>0) is controlled by the signal from the search controller. This section discusses the former and the latter will be discussed in Section 2.5.

When a w_C -cell is activated, it sends a gain control signal to the corresponding u_C -cell and increases the gain between the inputs and the output of the u_C -cell. Thus, only the forward signal flow in the paths in which backward signals are flowing is facilitated. (This method of gain control is somewhat different from that in the original model (Fukushima, 1987, 1988a), in which the gain of a u_C -cell is decreased when the corresponding w_C -cell is not activated.)

Since the backward signals are usually sent from only one activated recognition cell, only the forward paths relevant to the pattern which is now recognized are facilitated. This means that attention is selectively focused on only one of the patterns in the stimulus.

A u_C -cell is fatigued if it receives a strong gain control signal. It can maintain high gain only when it is receiving a large gain-control signal. Once the gain control signal disappears, the gain of the u_C -cell drops rather rapidly and cannot recover for a long time. This fatigue is effectively used for switching attention to another pattern. It prevents the model from recognizing the same character twice.

Mathematically, $g'_{Bl}(\mathbf{n})$ in eqn (13) consists of two components: $g'_{B1l}(\mathbf{n}, k)$ (≥ 0) and $g'_{B2l}(\mathbf{n}, k)$ (≥ 0). They represent the effect of facilitation and fatigue, respectively.

$$g_{Bl}^{t}(\mathbf{n}, k) = 1 + \alpha_{B1l} \cdot g_{B1l}^{t}(\mathbf{n}, k) - g_{B2l}^{t}(\mathbf{n}, k),$$
 (14)

where $\alpha_{B1I}(>1)$ is a constant determining the degree of facilitation.

The values of g_{B1} and g_{B2} vary as follows: If $w'_{Cl}(n, k) > 0$:

$$g_{B1l}^{i}(\mathbf{n}, k) = \gamma_{l} \cdot g_{B1l}^{i-1}(\mathbf{n}, k) + (1 - \gamma_{l}) \cdot w_{Cl}^{i-1}(\mathbf{n}, k), \quad (15)$$

$$g_{B2l}^{t}(\boldsymbol{n}, k) = \gamma_{l} \cdot g_{B2l}^{t-1}(\boldsymbol{n}, k) + (1 - \gamma_{l}) \cdot w_{Cl}^{t-1}(\boldsymbol{n}, k).$$
 (16)

If $w_{Cl}^{t}(n, k) = 0$:

$$g_{BII}^{t}(\mathbf{n}, k) = \gamma_{II} \cdot g_{BII}^{t-1}(\mathbf{n}, k),$$
 (17)

$$g'_{B2l}(\mathbf{n}, k) = \gamma_{2l} \cdot g'_{B2l}(\mathbf{n}, k),$$
 (18)

where γ_l , γ_{1l} and γ_{2l} are positive constants (<1) determining the speed of build-up and decay of the gain. The values of γ_l and γ_{1l} are determined to be small. The value of γ_{2l} is much larger: It is nearly equal to 1 for small l, but somewhat smaller for larger l. The initial values of g_{B1} and g_{B2} are zero, that is, $g_{B1l}^0(\boldsymbol{n}, k) = 0$ and $g_{B2l}^0(\boldsymbol{n}, k) = 0$.

Therefore, the values of g_{B1} and g_{B2} increase very rapidly with the same time constant, when the corresponding backward cell w_C is active. Since we have $\alpha_{B1l} > 1$ in eqn (14), the value of g_B , and consequently the gain of the u_C -cell, are increased very fast.

When the w_C -cell becomes silent, however, the values

of g_{B1} and g_{B2} decrease with different time constants. The value of g_{B1} , which controls the degree of facilitation, decreases very rapidly, while the value of g_{B2} , which causes the effect of fatigue, does not decay for a long time, unless the corresponding w_C -cell is activated again. Hence, the effect of fatigue remains in the u_C -cell and does not recover for a long time. Quantitatively, this tendency is stronger for a lower stage, but somewhat weaker for a higher stage. This difference in time constant is effective in making the network easily process an input string which contains two or more characters of the same category. It is a matter of course that cells u_C are not fatigued at all, if they have not been facilitated before.

2.5. Search Area

Although the original model of selective attention already has the ability to recognize and segment patterns, it does not always work well when too many patterns are presented simultaneously. In order to restrict the number of patterns to be processed simultaneously, a search controller is introduced into the new model. The new model mainly processes the patterns contained in a small "search area," which is moved by the search controller. The search area has a size somewhat larger than the size of one character.

It is not necessary to control the position and the size of the search area accurately because the original selective attention model, by itself, has the ability to segment and recognize patterns, provided the number of patterns present is small. It does not matter even if two or three characters are contained in the area. Also, it does not matter if the center of the area happens to be placed between two characters, provided that at least one complete character is contained in the area.

The search controller sends a gain-control signal to u_C -cells in all stages except U_{CL} . The signal decreases the gain of the u_C -cells situated outside of the search area. The effect of this signal is represented by $g'_{Sl}(\mathbf{n})$ in eqn (13).

It should be noted that the process of controlling the search area in our model is not identical to a simple process of limiting visual field or gating input signals by a "searchlight" mechanism (Crick, 1984). The search controller controls the gain of the u_C -cells, not only in the input layer U_{C0} , but also in all other U_C -layers except U_{CL} . The size of the search area is controlled to be larger at a higher stage than in a lower stage.

The position of the search area is shifted to the place in which a larger number of line-extracting cells are activated. To be more specific, the output of layer U_{C1} is filtered by a spatial filter with Gaussian distribution, and the place of maximal activity is detected. The center of the search area is moved to this place.

The boundary of the search area is not sharply re-

stricted: The gain of the u_C -cells are controlled to decrease gradually around the boundary. Since the present model has been designed to recognize a character string written in a single line only, the spatial distribution of the gain is controlled to be Gaussian in the horizontal direction, but is uniform in the vertical direction.

Mathematically, $g_{Sl}^{t}(\mathbf{n})$ in eqn (13) is given by

$$g'_{SI}(n) = \exp\left(-\frac{(n_x - \mu)^2}{2\sigma_{SI}^2}\right),$$
 (19)

where n_x represents the x coordinate of n, that is, $n = (n_x, n_y)$. The x coordinate of the center of the search area is represented by μ . The positive parameter σ_{Sl} is set to be larger for larger l, and we have $g_{SL}^l = 1$.

2.6. Switching Attention

Once a character has been recognized and segmented, the attention is switched to recognize another pattern. To be more exact, there is a detector in the network which determines the timing of attention switching. The detector monitors the following two conditions: whether the number of activated recognition cells u_{CL} is only one, and whether the total activity of layer U_{CL-1} has nearly reached a steady state. When both of these conditions are simultaneously satisfied, the detector sends a command to switch attention.

The fatigue of the cells is effectively used in the model for switching attention to another pattern. Once a command to switch attention is given to the network, the backward signal flow is cut off for a short period. Since the gain control signals from w_C -cells disappear, the gain of u_C -cells falls to the level determined by the degree of fatigue of the cells. The stronger the facilitation has been before switching attention, the smaller the gain of the cell becomes after switching attention. The effect of the threshold control signal is also reset at this moment.

Because of this method of controlling the gain of the u_C -cells, signals corresponding to the previous pattern have difficulty flowing through the forward paths. Usually another recognition cell u_{CL} , hitherto silent, will be activated. If no u_{CL} -cell is activated, the noresponse detector works until at least one u_{CL} -cell is activated.

In order to find a new position to which the search area is to be moved, the output of layer U_{C1} is filtered by a spatial filter with Gaussian distribution again, and the place of maximal activity is sought. The gain control signal from the search controller is extinguished during this process. Once the place of maximum activity is detected, the search area is moved to the place, and the process of recognition and segmentation is restarted.

If the level of the maximum activity is less than a certain threshold, however, the model stops working, assuming that all characters in the input string have already been processed, and that no more characters are left unrecognized.

3. COMPUTER SIMULATION

A preliminary experiment was performed with computer simulation to check the ability of the model. The input layer of the model has a rectangular shape, and consists of 57×19 cells.

In this experiment, the model was taught only a small number of characters, instead of the whole set of 26 alphabetical characters. The network was trained with unsupervised learning in a similar way as for the original model (Fukushima, 1987, 1988a). The five training patterns shown in Figure 5 were repeatedly presented to the network during the training phase. The size of each training pattern was a 19×19 pixel array. These training patterns were presented only in this shape, and anything like a deformed version of them was not presented during the training.

The connecting strokes between characters change their shapes considerably, depending on the combination of characters. Sometimes, when a character is placed in front of or at the end of a character string, a connecting stroke might disappear there. In order to decrease the effect of such deformation, the tail ends of the connecting strokes of each training pattern are made to fade away as shown in Figure 5, rather than chopped off abruptly.

In this experiment, the same pattern "e," shown in Figure 5, is used not only as the training pattern for "e" but also the training pattern for " ℓ ." It should be noted that both "e" and " ℓ " have almost the same shape when written in script style, and the only difference between them resides in their heights. After finishing the training, the same recognition cell in layer U_{CL} comes to be activated by both "e" and " ℓ ," because our selective attention model can recognize the shape of patterns robustly, with little effect from deformation. The two characters can easily be discriminated, however, by comparing the heights of the segmented patterns, which appear in layer W_{C0} . Hence we can say that, in this experiment, our model has been taught to recognize, not five, but six characters.

Figure 6 shows how the response of layer W_{C0} , in which the result of segmentation appears, changed with time when a handwritten character string " $\ell\alpha\ell$," shown at the top of the figure, was presented to the input layer U_{C0} . Time t after the first presentation of the character

FIGURE 5. Training patterns used for learning (Imagawa & Fukushima, 1990). The same pattern "e" is used as the training pattern for both "e" and " ℓ ."

FIGURE 6. Time course of the response of layer W_{c0} , in which the result of segmentation appears. A character string presented to the input layer is shown at the top.

string is indicated in the figure. The mark $^{\vee}$ indicates the position where the center of the search area is moved. It can be seen from this figure that character " ℓ " was recognized first and segmented, then followed by " ℓ ," " α ," and " ϵ ." Attention was switched just after t=3, 8, and 12. The model stopped working just after t=21, when all the characters in the input string had

FIGURE 7. Some examples of input character strings which have been successfully recognized and segmented (Imagawa & Fukushima, 1990).

been completely recognized and segmented. Although the characters in the input string are different in shape from the training characters shown in Figure 5, recognition and segmentation of the characters have been successfully performed.

Figure 7 shows some examples of input character strings which have been successfully recognized and segmented. It can be seen from the figure that input strings ("act") are processed correctly, even if the spacing between the characters changes. Recognition and segmentation can be successful even if input strings ("text") are contaminated with noise or have some missing parts. A string ("text"), which contains two of the same character with somewhat different shapes, can also be processed successfully.

4. DISCUSSION

We have modified the original model of selective attention and extended its ability to be able to recognize connected characters in cursive handwriting.

A preliminary experiment with computer simulation, in which only a small number of characters have been taught to the model, has shown that this approach is promising. The recognition and segmentation of characters can be successful even though each character in a handwritten word changes its shape by the effect of the characters before and behind.

However, some problems still remain to be solved. For example, when characters in a word are deformed too much, a connecting part of two adjacent characters sometimes has a shape similar to a local feature of a different character. In such a case, there is a possibility of failure in recognition and segmentation. This tendency might probably increase when the characters to be recognized are increased in number. It is a future goal to test the performance of the model with a larger number of training patterns, and to fix the problems which might arise. However, we expect that these problems can be settled with some modification of the model. We believe that the use of selective attention is a correct approach for connected character recognition of cursive handwriting.

REFERENCES

Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. *Proceedings of the National Academy of Sciences U.S.A.*, 81, 4586–4590.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological Cybernetics*, **36**(4), 193–202.

Fukushima, K. (1986). A neural network model for selective attention in visual pattern recognition. *Biological Cybernetics*, **55**(1), 5–15

Fukushima, K. (1987). A neural network model for selective attention in visual pattern recognition and associative recall. Applied Optics, 26(23), 4985-4992.

Fukushima, K. (1988a, March). A neural network for visual pattern recognition. Computer (IEEE Computer Society), 21(3), 65-75.

Fukushima, K. (1988b). Neocognitron: A hierarchical neural network capable of visual pattern recognition. *Neural Networks*, 1(2), 119– 130.

Imagawa, T., & Fukushima, K. (1990). Character recognition in cursive handwriting with the mechanism of selective attention. (in Japanese). *Technical Report*, *IEICE*, No. NC90, 51.

Imagawa, T., & Fukushima, K. (1991). Character recognition in cursive handwriting with the mechanism of selective attention. (in Japanese). Transactions of the Institute of Electronics, Information and Communication Engineers, J74-D-II(12), 1768-1775.