Tutorial-6 CZ1104 2020-2021

Presented by: Svetlana (Lana) Obraztsova

Required:

Find orthogonal basis of A from the 3 vectors below:

$$oldsymbol{x}_1 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}, oldsymbol{x}_2 = egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}, oldsymbol{x}_3 = egin{bmatrix} 0 \ 0 \ 1 \ 1 \end{bmatrix}.$$

Solution:

- 1. First vector $\mathbf{v}_1 = \mathbf{x}_1$. $Span\{\mathbf{v}_1\} = Span\{\mathbf{x}_1\}$
- 2. Second vector \mathbf{v}_2 should be: $\mathbf{v}_2 \perp \mathbf{v}_1$ and $\underline{Span}\{\mathbf{v}_1, \mathbf{v}_2\} = Span\{\underline{x}_1, x_2\}$.

$$\mathbf{v}_{2} = \mathbf{x}_{2} - Proj_{\mathbf{v}_{1}}\mathbf{x}_{2} = \mathbf{x}_{2} - \frac{\mathbf{v}_{1} \bullet \mathbf{x}_{2}}{\|\mathbf{v}_{1}\|^{2}}\mathbf{v}_{1} = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} - \frac{0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1}{1^{2} + 1^{2} + 1^{2} + 1^{2}} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{4}\\\frac{1}{4}\\\frac{1}{4}\\\frac{1}{4}\\\frac{1}{4} \end{bmatrix}$$

Required:

Find orthogonal basis of A from the 3 vectors below:

$$oldsymbol{x}_1 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}, oldsymbol{x}_2 = egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}, oldsymbol{x}_3 = egin{bmatrix} 0 \ 0 \ 1 \ 1 \end{bmatrix}.$$

Solution:

3. Third vector v_3 should be: $\mathbf{v}_3 \perp \mathbf{v}_1$, $\mathbf{v}_3 \perp \mathbf{v}_2$ and $Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = Span\{x_1, x_2, x_3\}$.

$$\mathbf{v}_3 = x_3 - Proj_{\mathbf{v}_1} x_3 - Proj_{\mathbf{v}_2} x_3 = x_3 - \frac{\mathbf{v}_1 \bullet x_3}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\mathbf{v}_2 \bullet x_3}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 =$$

$$= \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \frac{0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1}{1^2 + 1^2 + 1^2 + 1^2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{0 \cdot (-\frac{3}{4}) + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4}}{\frac{1}{4}^2 + \frac{1}{4}^2 + \frac{1}{4}^2} \begin{bmatrix} -\frac{3}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} -\frac{36}{84} \\ \frac{14}{84} \\ \frac{20}{84} \\ \frac{36}{84} \end{bmatrix}$$

$$Span\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}=Span\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{x}_3\}=Span\{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3\}.$$

Required:

Find orthogonal basis of A from the 3 vectors below:

$$m{x}_1 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}, m{x}_2 = egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}, m{x}_3 = egin{bmatrix} 0 \ 0 \ 1 \ 1 \end{bmatrix}.$$

Solution:

- 1. First vector $\mathbf{v}_1 = \mathbf{x}_1$. $Span\{\mathbf{v}_1\} = Span\{\mathbf{x}_1\}$
- 2. Second vector \mathbf{v}_2 should be: $\mathbf{v}_2 \perp \mathbf{v}_1$ and $Span\{\mathbf{v}_1, \mathbf{v}_2\} = Span\{\mathbf{x}_1, \mathbf{x}_2\}$.

$$\mathbf{v}_{2} = 4(\boldsymbol{x}_{2} - Proj_{\mathbf{v}_{1}}\boldsymbol{x}_{2}) = 4(\boldsymbol{x}_{2} - \frac{\mathbf{v}_{1} \bullet \boldsymbol{x}_{2}}{\|\mathbf{v}_{1}\|^{2}}\mathbf{v}_{1}) = 4\begin{pmatrix} 0\\1\\1\\1 \end{pmatrix} - \frac{0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1}{1^{2} + 1^{2} + 1^{2} + 1^{2}} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix}$$

Required:

Find orthogonal basis of A from the 3 vectors below:

$$m{x}_1 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}, m{x}_2 = egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix}, m{x}_3 = egin{bmatrix} 0 \ 0 \ 1 \ 1 \end{bmatrix}.$$

Solution:

3. Third vector v_3 should be: $\mathbf{v}_3 \perp \mathbf{v}_1$, $\mathbf{v}_3 \perp \mathbf{v}_2$ and $Span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = Span\{x_1, x_2, x_3\}$.

$$\mathbf{v}_{3} = x_{3} - Proj_{\mathbf{v}_{1}} x_{3} - Proj_{\mathbf{v}_{2}} x_{3} = x_{3} - \frac{\mathbf{v}_{1} \bullet x_{3}}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\mathbf{v}_{2} \bullet x_{3}}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} =$$

$$= \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \frac{0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1}{1^2 + 1^2 + 1^2 + 1^2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{0 \cdot (-3) + 0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1}{3^2 + 1^2 + 1^2 + 1^2} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

Required:

Form matrix A with 3 column vectors x_1, x_2 and x_3 in Problem-1. Find its QR factorization.

Solution:

1. Gram-Schmidt process for x_1, x_2 and x_3 . Almost done in Problem-1. To finalize:

We have:
$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0\\-\frac{2}{3}\\\frac{1}{3}\\\frac{1}{3} \end{bmatrix}$.

To simplify calculations:
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 1 \end{bmatrix}.$$

Normalize vectors and put them into matrix Q.

$$Q = \begin{bmatrix} \frac{1}{2} & \frac{-3}{\sqrt{12}} & 0\\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{-2}{\sqrt{6}}\\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}}\\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

Required:

Form matrix A with 3 column vectors x_1, x_2 and x_3 in Problem-1. Find its QR factorization.

Solution:

2. By theorem 12 (see lecture slides) $Q^T Q = I$. Thus,

$$Q^T A = Q^T (QR) = (Q^T Q)R = IR = R$$

$$R = Q^{T} A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-3}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} \\ 0 & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & \frac{3}{2} & 1 \\ 0 & \frac{3}{\sqrt{12}} & \frac{2}{\sqrt{6}} \\ 0 & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$$

Required:

Find a least-squares solution of
$$Ax = \mathbf{b}$$
. $A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}$, $b = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$

Solution:

Columns (\mathbf{c}_1 and \mathbf{c}_2) of A are orthogonal ($\mathbf{c}_1 \cdot \mathbf{c}_2 = 1 \cdot (-6) + 1 \cdot (-2) + 1 \cdot 1 + 7 \cdot 7$.) Thus,

$$\widehat{\mathbf{b}} = Proj_{Col\ A}\mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{c}_1}{\mathbf{c}_1 \cdot \mathbf{c}_1}\mathbf{c}_1 + \frac{\mathbf{b} \cdot \mathbf{c}_2}{\mathbf{c}_2 \cdot \mathbf{c}_2}\mathbf{c}_2 = \frac{8}{4}\mathbf{c}_1 + \frac{45}{90}\mathbf{c}_2 = \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix} + \begin{bmatrix} -3\\-1\\\frac{1}{2}\\\frac{7}{2} \end{bmatrix} = \begin{bmatrix} -1\\1\\\frac{5}{2}\\\frac{1}{2}\\\frac{1}{2} \end{bmatrix}$$

Now, we need to solve $A\widehat{x}=\widehat{\mathbf{b}}$. It is trivial, because of the way of finding $\widehat{\mathbf{b}}$:

$$A \begin{bmatrix} 2 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ \frac{5}{2} \\ \frac{11}{2} \end{bmatrix}.$$

That is $\widehat{x} = \begin{bmatrix} 2 \\ \frac{1}{2} \end{bmatrix}$.

Required:

Let
$$A = \begin{bmatrix} 2 & 1 \\ -3 & -4 \\ 3 & 2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 5 \\ 4 \\ 4 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 4 \\ -5 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$. Compute $A\mathbf{u}$

and $A\mathbf{v}$, and compare them with \mathbf{b} . Is it possible that at least one of \mathbf{u} or \mathbf{v} could be a least-squares solution of $A\mathbf{x} = \mathbf{b}$?

Solution:

$$A\mathbf{u} = \begin{bmatrix} 3 \\ 8 \\ 2 \end{bmatrix}$$
 and $A\mathbf{v} = \begin{bmatrix} 7 \\ 2 \\ 8 \end{bmatrix}$.

So,
$$\mathbf{b} - A\mathbf{u} = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$$
 and $\mathbf{b} - A\mathbf{v} = \begin{bmatrix} -2 \\ 2 \\ -4 \end{bmatrix}$.

Therefore, $\|\mathbf{b} - A\mathbf{u}\| = \|\mathbf{b} - A\mathbf{v}\| = \sqrt{24}$.

Orthogonal projection is unique closest point in $Col\ A$ to $\mathbf{b} \Rightarrow$ neither \mathbf{u} nor \mathbf{v} can be a least squares solutions of $Ax = \mathbf{b}$.

Required:

Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fit the given data points:(1,0),(2,1),(4,2),(5,3).

Solution:

Construct matrix of the system:
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 5 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$ (y is a number

and \mathbf{y} is a vector.)

A is constructed such that $A(\beta_0, \beta_1)^T = \mathbf{y}$ if we put all equations together.

Required:

Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fit the given data points:(1,0),(2,1),(4,2),(5,3).

Solution:

To solve problem: Step 1. $A^T A(\beta_0, \beta_1)^T = A^T \mathbf{y}$.

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 12 \\ 12 & 46 \end{bmatrix}$$

$$A^{T}\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 25 \end{bmatrix}.$$

$$A^T A(\beta_0, \beta_1)^T = A^T \mathbf{y} \Leftrightarrow \begin{bmatrix} 4 & 12 \\ 12 & 46 \end{bmatrix} (\beta_0, \beta_1)^T = \begin{bmatrix} 6 \\ 25 \end{bmatrix}.$$

Required:

Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fit the given data points:(1,0),(2,1),(4,2),(5,3).

Solution:

Normal equation:
$$A^T A(\beta_0, \beta_1)^T = A^T \mathbf{y} \Leftrightarrow \begin{bmatrix} 4 & 12 \\ 12 & 46 \end{bmatrix} (\beta_0, \beta_1)^T = \begin{bmatrix} 6 \\ 25 \end{bmatrix}$$
.

$$det(A) \neq 0 \quad \Rightarrow \quad \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 4 & 12 \\ 12 & 46 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 25 \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 46 & -12 \\ -12 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 25 \end{bmatrix} = = \begin{bmatrix} 6 \\ 25 \end{bmatrix}$$

$$\frac{1}{40} \begin{bmatrix} -24\\28 \end{bmatrix}$$

Best line: y = -0.6 + 0.7x.