Computational Photography Assignment 5 - Hough Transform

Aloysius Tan 05/02/2024

1. Theory Question

- 1. Given:
 - Width (w) = 200 pixels
 - Height (h) = 100 pixels

Compute the diagonal (d) of the image:

$$d = \sqrt{w^2 + h^2} = \sqrt{200^2 + 100^2} = \sqrt{40000 + 10000} = \sqrt{50000} \approx 223.61$$
 pixels

For the Hough Transform:

- The range of θ is $0 \le \theta < 360^{\circ}$, providing 360 bins for θ .
- The range of r is $0 < r \le d$, where d is the diagonal length of the image, resulting in d bins for r.

Total number of bins = $d \times 360 \approx 223.61 \times 360 \approx 224 \times 360 \approx \boxed{80499}$

- 2. Given:
 - Probability (p) that an edge pixel is on the object = 0.2
 - Desired model accuracy (P) = 0.99
 - Number of points (D) needed to define a line = 2

Calculate the number of required RANSAC iterations (N):

$$N = \frac{\log(1-P)}{\log(1-p^D)} = \frac{\log(1-0.99)}{\log(1-0.2^2)} = \frac{\log(0.01)}{\log(0.96)} \approx 112.811$$

Round up to the nearest whole number:

$$N \approx \boxed{113}$$

2. Generate Fake Data

Generated Binary Image with Line and Circle

Figure 1: Generated binary image

3. Hough Transform for a Line

The value of (θ, ρ) that corresponds to the maximum value in the Hough Transform:

$$(\theta, r) = (315^{\circ}, 71)$$

The corresponding values for (m, b) where m is the slope and b is the y-intercept:

$$(m,b) = (1.00, -100.41)$$

The formulas used to compute (m, b) from (θ, r) :

$$m = -\cot \theta = -\cot 315^{\circ} = 1.00$$

$$b = \frac{\rho}{\sin \theta} = \frac{71}{\sin 315^{\circ}} \approx -100.41$$

Figure 2: Hough Transform for a Line

4. Hough Transform for Circle

The value of (x_0, y_0, r) that corresponds to the maximum value in the Hough Transform:

 $(x_0, y_0, r) = (100, 200, 50)$

Figure 3: Hough Transform for a Circle

5. Apply to a Real Image

Parameters Used: Radius Min: 76 Radius Max: 120

The value of (x_0, y_0, r) that corresponds to the maximum value in the Hough Transform:

$$(x_0, y_0, r) = (185, 143, 82)$$

Figure 4: Circle Found!