Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Artem Gorodilov Naměřeno: 2. listopadu 2023

Obor: Astrofyzika **Skupina:** Čt 8:00 **Testováno:**

Úloha č. 7:

Odraz a lom světla. Fresnelovy vztahy, Snellův zákon

 $T=21.4~^{\circ}\mathrm{C}$

p = 979 hPa

 $\varphi = 46 \%$

1. Zadání

Změřit odraz S a P polarizovaného světla od dielektrika.

Zjistit Brüstedův úhel a použít jej k určení indexu lomu a porovnat naměřenou závislost na úhlu dopadu paprsku s vypočtenými hodnotami.

Změřit posun paprsku při průchodu rovinnou deskou a ze závislosti posunu na úhlu dopadu určit index lomu desky.

2. Teorie

2.1. Odraz a lom světla

V této úloze zkoumáme závislost složek polarizovaného světla S a P na úhlu dopadu. Během měření úzký svazek paprsků prochází polarizátorem. Otáčením polarizátoru můžeme měnit světlo na S a P složky. P složka má kmitovou rovinu rovnoběžnou s rovinou dopadu, zatímco při kolmé kmitové rovině hovoříme o polarizaci S. Měření probíhá ve stolové soustavě, která obsahuje otáčivý stoleček kolem svislé osy, umožňující měření úhlu dopadu polarizovaného světla na dielektrikum. Po odrazu dopadá polarizované světlo na detektor, který též rotuje kolem svislé osy. Detektor měří foto-napětí, převádějící intenzitu dopadajícího světla na napětí. Fotonapětí U_{s0} a U_{v0} zjistíme, ponecháme-li polarizované světlo přímo dopadnout na detektor a zaznamenáme hodnoty napětí, které přímo odpovídají intenzitám I_s^0 a I_p^0 .

Reflexe pro S a P složky amplitudy polarizovaného světla spočítáme pomocí vzorců:

$$R_s = \frac{I_s^R}{I_s^0}$$
 (1) $R_p = \frac{I_p^R}{I_p^0}$ (2)

kde R_s a R_p jsou odrazivosti v rovinách S a P resp., I_s^R a I_p^R jsou intenzity odrazu světla v rovinách S a P resp. a I_s^0 a I_p^0 jsou již zmíněné veličiny.

Intenzitu nepolarizovaného světla zjistíme podle vzorce:

$$I = \frac{I_s^R + I_p^R}{2} \tag{3}$$

Odrazivost nepolarizovaného světla lze zjistit podle vzorce:

$$R = \frac{R_s + R_p}{2} \tag{4}$$

Určuje se tzv. Brewstedův úhel φ_B , který představuje polarizační úhel dopadu. Při dosažení tohoto úhlu dochází k odrazu pouze s polarizovanými složkami světla. S narůstajícím úhlem dopadu φ klesá hodnota I_p^R na nulu, až dosáhne nuly právě v okamžiku φ_B . Po překročení úhlu φ_B začíná I_p^R opět stoupat. Naopak I_s^R monotónně roste s rostoucím úhlem φ .

Index lomu dielektrika *n* lze vypočítat pomocí Brewsterova úhlu prostřednictvím uvedeného vztahu:

$$n = tan\varphi_B$$
 , pokud $n_0 = 1$ (5)

kde n_0 je intenzita okolního světla.

Index lomu dielektrika lze také vypočítat z úhlu kolem Brewsterova úhlu:

$$n = \sqrt{\frac{(1+\sqrt{R_s})(1+\sqrt{R_p})}{(1-\sqrt{R_s})(1-\sqrt{R_p})}} \ , \ pro \ \varphi < \varphi_B \ (6)$$

$$n = \sqrt{\frac{(1+\sqrt{R_s})(1-\sqrt{R_p})}{(1-\sqrt{R_s})(1+\sqrt{R_p})}} , pro \varphi > \varphi_B$$
 (7)

Určit hodnotu odrazivosti, vypočítat ze vzorce pro Fresnerovy amplitudy:

$$R_s = \left| -\frac{\sin(\varphi_0 - \varphi_1)}{\sin(\varphi_0 + \varphi_1)} \right|^2 \tag{8}$$

$$R_p = \left| -\frac{\tan(\varphi_0 - \varphi_1)}{\tan(\varphi_0 + \varphi_1)} \right|^2 \tag{9}$$

kde φ_0 je úhel dopadu a φ_1 je úhel odrazu, který se zjistí ze Snellova vztahu:

$$\sin\varphi_1 = \frac{n_0 \sin\varphi_0}{n_1} \tag{10}$$

2.2. Průchod světla plexisklem a sklem

Při průchodu světla sklem či plexisklem dochází k odchylce vstupujícího paprsku ve srovnání s paprskem dopadajícím. Pozorujeme úhlovou odchylku vstupujícího a vystupujícího paprsku, na základě které můžeme stanovit index lomu skla nebo plexiskla v prostředí s indexem lomu n_0 .

Tuto situaci popisuje obrázek (1).

Obrázek (1) Průchod světla planparalelní deskou.

Poté, co paprsek vstoupí do rovinné vrstvy, jak je znázorněno na obrázku, platí zákon lomu:

$$n_0 sin\alpha = n sin\beta$$
 , na prvním rozhraní (11)

$$nsin\beta = n_0 sin\alpha$$
 , na druhém rozhraní (12)

kde n_0 je index lomu prostředí, n je index lomu desky, $\alpha = \alpha_1 = \alpha_2$ jsou úhly dopadu a $\beta = \beta_1 = \beta_2$ jsou úhly lomu.

Délku dráhy paprsku mezi body AB určíme podle vzorce:

$$|AB| = \frac{d}{\cos\beta} \tag{13}$$

kde d je tloušťka desky.

Průhyb vstupujícího a vystupujícího paprsku x se zjistí ze vzorce:

$$x = |BC| = |AB|sin(\alpha - \beta) \tag{14}$$

Po aplikaci trigonometrických vztahů získáme vztahy pro úhel odchylky vstupujícího a vystupujícího paprsku x a poté odvodíme vztah pro index lomu n:

$$x = \left(1 - \frac{n_0 \cos\alpha}{\sqrt{n^2 - n_0^2 \sin^2\alpha}}\right) d\sin\alpha \qquad (15)$$

$$n = n_0 \sqrt{\sin^2 \alpha + \left(1 - \frac{x}{d \sin \alpha}\right)^{-2} \cos^2 \alpha}$$
 (16)

3. Měření

3.1. Odraz a lom světla

Začneme určením fotonapětí U_{s0} a U_{p0} na detektoru při přesném dopadu laseru. Poté umístíme dielektrikum do goniometru zarovnaného kolmo k laseru a zaznamenáme napětí v odraženém světle pro polarizace S a P v pětistupňových krocích až do úhlu 80^o . V intervalu, kdy se polarizace P blíží k nule, zvýšíme citlivost detektoru na maximum a záznamem napětí v jednom stupni po druhém určíme Brewsterův úhel φ_B .

Z měření byly získány následující hodnoty intenzity paprsku I_s^0 a I_p^0 pro polarizaci S a P resp.:

$$I_s^0 = 2.188 \text{ [V]}$$

 $I_n^0 = 3.788 \text{ [V]}$

Intenzity odrazu světla v rovinách S a P pro různé hodnoty úhlu φ jsou následující:

φ [o]	$I_s^R [\mathrm{mV}]$	$I_p^R [\mathrm{mV}]$
35	114.22	53.33
40	135.87	34.01
45	165.11	14.68
50	201.5	1.01
55	257.1	1.06
60	328.5	0.95
65	430.3	38.4
70	583.7	146.48
75	791.7	378.7
80	1069.2	825.1

Tabulka (1) Intenzity odrazu světla v rovinách S a P prorůzné hodnoty úhlu φ .

Dále podle vzorců (3), (1), (2) a (4) zjistíme hodnoty intenzity nepolarizovaného světla I, amplitud polarizovaného světla R_s a R_p , a odrazivosti nepolarizovaného světla R resp.:

φ [o]	I [mV]	R_s	R_p	R
35	83.775	0.052	0.014	0.033
40	84.940	0.062	0.0089	0.036
45	89.895	0.075	0.0038	0.040
50	101.255	0.092	0.00027	0.046
55	129.080	0.118	0.00028	0.059
60	164.725	0.150	0.00025	0.075
65	234.350	0.197	0.010	0.103
70	365.090	0.267	0.039	0.153
75	585.200	0.362	0.100	0.231
80	947.150	0.489	0.218	0.353

Tabulka (2) Hodnoty intenzity nepolarizovaného světla I, amplitud polarizovaného světla R_s a R_p , a odrazivosti nepolarizovaného světla R

Z těchto hodnot byla vynesena závislost amplitud polarizovaného světla $R_s,\,R_p$ a R na úhlu lomu φ :

Obrázek (2) Závislost amplitud polarizovaného světla $R_s,$ R_p a R na úhlu lomu $\varphi.$

Pro zjištění Brewsterova úhlu byla provedena měření intenzit I_s^R a I_p^R v okolí φ_0 , v němž bylo změřeno minimum amplitudy polarizovaného světla R_p . Údaje z měření jsou uvedeny v tabulce (3).

Odtud je patrné, že minimum vyzařování nastává pod úhlem φ_B :

$$\varphi_B = 56.0(1)^o$$

Pak podle vzorce (5) zjistíme index lomu n:

$$n = 1.483(2)$$

φ [o]	I_s^R [V]	I_p^R [V]
60	8.713	0.219
59	8.282	0.131
58	7.876	0.071
57	7.451	0.028
56	7.109	0.014
55	6.778	0.017
54	6.398	0.039
53	6.179	0.070
52	5.871	0.122
51	5.675	0.172
50	5.431	0.242

Tabulka (3) Intenzity I_s^R a I_p^R v okolí φ_0 .

Ze vzorců (6) a (7) můžeme zjistit hodnoty indexu lomu pro úhly blízké Brewsterovu uhlu:

φ [o]	R_s	R_p	n
45	0.075462	0.003875	1.410969
50	0.092093	0.000267	1.390504
55	0.117505	0.000280	1.453508
60	0.150137	0.000251	1.481401
65	0.196664	0.010137	1.455738
70	0.266773	0.038669	1.451090

Tabulka (4) Hodnoty intenzity nepolarizovaného světla I, amplitud polarizovaného světla R_s a R_p , a odrazivosti nepolarizovaného světla R

Odtud získáme průměrnou hodnotu n:

$$n = 1.42(3)$$

Budeme uvažovat index lomu n_0 rovný dříve získané hodnotě n=1.42(3). Pak podle vzorce (10) zjistíme hodnotu úhlu odrazu φ_1 a podle vzorců (8) a (9) zjistíme teoretické hodnoty hodnot odrazivosti R_s a R_p :

φ_0 [°]	φ_1 [°]	$R_{s,teor}$	$R_{p,teor}$	R_{teor}
35	22.761	0.063	0.019	0.041
40	25.694	0.074	0.013	0.043
45	28.486	0.088	0.008	0.048
50	31.111	0.107	0.003	0.055
55	33.540	0.134	0.000	0.067
60	35.742	0.170	0.002	0.086
65	37.684	0.221	0.014	0.117
70	39.333	0.292	0.043	0.168
75	40.657	0.392	0.108	0.250
80	41.626	0.532	0.238	0.385

Tabulka (5) Hodnoty intenzity nepolarizovaného světla I, amplitud polarizovaného světla $R_{s,teor}$, $R_{p,teor}$ a odrazivosti nepolarizovaného světla R_{teor} .

Získáme tedy graf závislosti teoreticky vypočtených hodnot amplitud intenzit a porovnáme je s naměřenými hodnotami:

Obrázek (3) Závislost teoreticky vypočtených $R_{s,teor}$, $R_{p,teor}$ a R_{teor} na úhlu lomu φ .

3.2. Průchod světla plexisklem a sklem

Dále jsme změřili rozměry paralelní desky, úhel dopadu α a výchylky detektoru x. Z výpočtů vyplývá:

$$d = 10.19(8)$$
 [mm]

Dále jsme vypočítali index lomu n podle vzorce (16) a vypočítali teoretickou hodnotu výchylky detektoru x_{teor} podle vzorce (16). Výsledky výpočtů jsou uvedeny v tabulce (6):

α [o]	x [mm]	n	x_{teor} [mm]
5	0.31	1.533(6)	0.26(1)
10	0.61	1.513(6)	0.53(2)
15	0.90	1.489(6)	0.81(4)
20	1.24	1.498(6)	1.11(5)
25	1.59	1.497(6)	1.42(6)
30	1.96	1.493(6)	1.77(7)
35	2.36	1.489(7)	2.15(8)
40	2.84	1.497(7)	2.58(9)
45	3.34	1.495(8)	3.06(1)
50	3.95	1.510(9)	3.60(1)
53	4.27	1.497(9)	3.96(1)

Tabulka (6) Úhel dopadu α , výchylka detektoru x, index lomu n a výchylka detektoru x_{teor}

Z toho vyplývá, že hodnota indexu lomu n bude rovna:

$$n_{teor} = 1.501(7)$$

Získané hodnoty x a x_{teor} jsou vyneseny v závislosti na úhlu dopadu α , což je vidět na obrázku (4).

Obrázek (4) Závislost x a x_{teor} na úhlu dopadu α .

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python: pypi.org/project/uncertainties. Kód je přiložen k protokolu.

4. Závěr

4.1. Odraz a lom světla

Z výpočtů vyplynula následující hodnota Brewsterova úhlu $\varphi_B = 56.0(1)^o$. Poté jsme získali hodnoty indexu lomu n = 1.483(2) z minima intenzity v P filtru a teoreticky vypočtené hodnoty indexu lomu v blízkosti Brewsterova úhlu n = 1.42(3). Hodnoty se sbíhají ve dvou řádech, což může svědčit o přijatelné přesnosti měření.

4.2. Průchod světla plexisklem a sklem

Index lomu získaný teoretickými výpočty z úhlu dopadu $n_{teor} = 1.501(7)$ se rovněž shoduje s dříve získanými výsledky n = 1.483(2) a n = 1.42(3). Naměřené hodnoty výchylky detektoru x a jejich teoretické protějšky x_{teor} se rovněž sbližují, jak je patrné z grafu na obrázku (4).

K výpočtu chyb byl použit následující kód:

```
#Importing the libraries
 import matplotlib.pyplot as plt
 import numpy as np
import pandas as pd
 from scipy import stats
from scipy.optimize import curve_fit
 import uncertainties as u
 from uncertainties import ufloat
 from uncertainties.umath import
 from uncertainties import unumpy
 # Constants, values and formulas for transformations
I_0_s = 2.188*10**(3) \#mV

I_0_p = 3.788*10**(3) \#mV
 d = ufloat(10.193, 0.0785854100114435) #m
 \begin{array}{ll} {\rm radians} \; = \; {\rm np.\,pi} \, / 180 \\ {\rm degrees} \; = \; 180 / {\rm np.\,pi} \end{array}
 #Reading data
 data = pd.read_excel('data.xlsx')
 # Calculation
 data['I_s'] = data['I_s']
data['I_p'] = data['I_p']
 data['I_mean'] = (data['I_s'] + data['I_p']) / 2
data['R_s'] = data['I_s'] / I_0_s
data['R_p'] = data['I_p'] / I_0_p
 {\tt data['R\_mean']} \; = \; (\; {\tt data['R\_s']} \; + \; {\tt data['R\_p']}) \;\; / \;\; 2
 {\tt phi\_b} \; = \; {\tt ufloat} \, (\, {\tt data} \, [\, \, {\tt 'phi\_min} \, {\tt '} \, ] \, [\, 4\, ] \, \, , \quad 0\,.\,1)
 n = ufloat(np.tan(np.radians(phi-b.nominal-value)), np.tan(np.radians(phi-b.std-dev)))
 print('n-=', n)
data['n_under'] = np.sqrt(((1+np.sqrt(data['R_s'][2:5]))*(1+np.sqrt(data['R_p'][2:5])))/((1-np.sqrt(data['R_s'][2:5])))/((1-np.sqrt(data['R_p'][2:5]))))
data['n_up'] = np.sqrt(((1+np.sqrt(data['R_s'][5:8]))*(1-np.sqrt(data['R_p'][5:8])))/((1-np.sqrt(data['R_s'][5:8])))
n_mean = ufloat(np.mean(np.array(data['n_under'][2:5],data['n_up'][5:8])), np.std(np.array(data['n_under'][2:5],data['n_up'][5:8])))
 print('n_mean = ', n_mean)
phi_1 = []
for ii,ID in enumerate(data['phi']):
    phi_1.append(degrees *(asin(sin(radians * (data['phi'][ii]))/n_mean)))
data['phi_1'] = phi_1
 R_s_1 = []
for ii ,ID in enumerate(data['phi']):
R_s_1.append(np.abs(-1*sin(radians * (data['phi'][ii]-data['phi_1'][ii])) / sin(radians * (data['phi'][ii]+data['phi_1'][ii])) **2) data['R_s_1'] = R_s_1
{\rm data}\,[\;{\rm `R\_mean\_1\;'}]\;=\;(\;{\rm data}\,[\;{\rm `R\_s\_1\;'}]\;+\;{\rm data}\,[\;{\rm `R\_p\_1\;'}])\;\;/\;\;2
n_2.append(sqrt(sin(radians*np.array(data['alpha'][ii]))**2 + (1 - (data['x_1'][ii] / (d*sin(radians*data['alpha'][ii]))))**(-2)*np.cos(radians*data['alpha'][ii])**2))
 {\rm data}\,[\ {}^{,}\,{\rm n}_{-}2\ {}^{,}\,]\ =\ {\rm n}_{-}2
x_teor = []
for ii ,ID in enumerate(data['alpha']):
    # x_teor.append((1 - np.cos(np.radians(data['alpha'][ii])) / sqrt(n**2 - np.sin(np.radians(data['alpha'][ii])) /
    # x_teor.append((1 - np.cos(np.radians(data['alpha'][ii])))
    # x_teor.append((1 - np.cos(np.radians(data['alpha'][ii])) / sqrt(n_mean**2 - np.sin(np.radians(data['alpha'][ii])))
    x_teor.append((1 - np.cos(np.radians(data['alpha'][ii]))) / sqrt(n_mean**2 - np.sin(np.radians(data['alpha'][ii])))
    data['alpha'][ii]))**2)) * d * np.sin(np.radians(data['alpha'][ii])))
data['x_teor'] = x_teor
 n_2val = []

n_2err = []
 for ii ,ID in enumerate(data['n_2']):
    n_2_val.append(data['n_2'][ii].nominal_value)
    n_2_err.append(data['n_2'][ii].std_dev)
 \begin{array}{lll} n\_2\_mean &=& ufloat (np.mean (np.array (n\_2\_val)) \,, & np.sqrt (np.std (np.array (n\_2\_err)) **2 + np.mean (np.array (n_2\_erray (n_2
 print('n_2_mean =', n_2_mean)
 # print(data)
```