perpendicular

THEORETICAL PART:

Theorem (Slopes of Parallel Lines): \\"- powollel

Two nonvertical lines with slopes m_1 and m_2 are parallel if and only if $m_1 = m_2$. Also, two vertical lines are always parallel to each other.

Theorem (Slopes of Perpendicular Lines):

Suppose m_1 and m_2 represent the slopes of two lines, neither of which is vertical. The two lines are perpendicular if and only if

$$m_1 = -\frac{1}{m_2}$$
 or $m_2 = -\frac{1}{m_1}$ or $m_1 m_2 = -1$.

If one of two perpendicular lines is vertical, the other is horizontal, and their slopes are, respectively, undefined and zero.

PRACTICAL PART:

1. Find equations for two lines parallel to each of the given lines:

(b)
$$10x - 2y = 14$$

(a) $l_1: y = -\frac{2}{3}x + 4$ (b) lox - 2y = 14 -2y = 14 - 10x $m_1 = -\frac{2}{3}x + 4$ (c) $l_1: y = \frac{5}{5}x - 7$ $l_2: y = -\frac{2}{3}x + 10$ $l_3: y = \frac{5}{5}x - 1000$ $l_4: y = \frac{2}{3}x + 4$ (b) lox - 2y = 14 $l_5: y = \frac{5}{5}x - 1000$

2. Find the equation, in slope-intercept form, for the line that is parallel to the line 3x + 5y = 23 and passes through the point (-2, 1).

Slope-intercept form: y = mx + b l_1 : $y = m_1x + b$ l_2 : $3x + 5y = 23 \Rightarrow y = -\frac{3}{5}x + \frac{23}{5}$ $m_2 = -\frac{2}{5}$ $l_1(1)$ $l_2 = l_1(1)$ $l_3 = l_2(1)$ $l_4 = l_3(1)$ $l_4 = l_4(1)$ $l_5 = l_5(1)$ $l_6 = l_6(1)$ l_6

Thus,
$$w_1 = -\frac{3}{5}$$
.
 $l_1: y = -\frac{3}{5}x + b$
 $(-2,1)$ belongs to l_1 . Therefore,
 $1 = -\frac{3}{5}(-2) + b$
 $1 = \frac{6}{5} + b = b = -\frac{1}{5}$

Honce,

$$\ell_2: y = -\frac{3}{5}x - \frac{1}{5}$$

- 3. For each line given, find the equation of a perpendicular line:
 - $y = -\frac{4}{9}x + 2$.
 - The line passing through the points (-1, 3) and (4, 1).

4. Find the equation, in standard form, of the line that passes through the point (-3, 13) and is perpendicular to the line y = -7.

Stan. form: a set by = c

y=-7

We see that a line

L to y=-7 is a vertical

line. Since it also

passes through (-3,13)

we see that this

- 5. For each pair of lines, determine if the lines are parallel, perpendicular, or neither:
 - 3x 7y = 12 and 14x + 6y = -5
 - $y = \frac{3}{4}x + 1$ and $y = \frac{4}{3}x 5$

•
$$3x - 7y = 12$$
 $-7y = 12 - 3x$
 $6y = -5 - 14x$
 $y = \frac{3}{4}x - \frac{12}{3}$
 $y = -\frac{14}{5}x + \frac{5}{6}$
 $y = -\frac{7}{3}x + \frac{5}{6}$
 $y = -\frac{7}{3}x + \frac{5}{6}$

Wherefore, two lines are perpendicular

• $y = \frac{2}{4}x + 1$
 $y = \frac{1}{3}x - 5$
 $y = \frac{1}{3}x - 1$
 y