21 . Thurston the fellowing marring technique yead for eache manning		
31. a. Explain the following mapping technique used for cache mapping.	Reg	. No.
(i) Direct mapping cache (ii) Associative mapping cache	• • • • • • • • • • • • • • • • • • •	
(ii) Associative mapping cache (iii) Block set associative mapping cache	D To all D	
(III) Block set associative mapping cache	B. I ecn. D	EGREE EXAMINATION, NOVEMBE 3 rd to 7 th Semester
(OR)		3" to 7" Semester
b. What is virtual memory? With the help of neat sketch explain the method of virtual to	1509203	B - COMPUTER SYSTEM ARCHITECT
physical address translation.		s admitted during the academic year 2015-2016
	Note:	danimod am ing ine deducine your 2010 2010
32. a. Describe the data transfer method using DMA.		vered in OMR sheet within first 45 minutes and
	over to hall invigilator at	
(OR)	(ii) Part - B and Part - C sh	ould be answered in answer booklet.
b. What is the importance of I/O interface? Compare the features of SCSI and PCI interfaces.	TP: Tr II.	•
	Time: Three Hours	
		$PART - A (20 \times 1 = 20 Marks)$
* * * * * *		Answer ALL Questions
		· •
		of a program, which gets initialized first?
	(A) MDR	(B) IR
	(C) PC	(D) MAR
	2. The control unit control	le other units by consenting
	(A) Control signals	ols other units by generating (B) Timing signals
	(C) Transfer signals	(D) Command signal
	(C) Hansier signals	(D) Command sign
	3 In multiple bus organiz	zation, the registers are collectively placed
	(A) Set registers	(B) Register file
	(C) Register block	(D) Map registers
	(=) ===================================	× / 1
	4. In the following inde	exed addressing mode instruction, MOV
	address is	
	(A) $EA = 5 + R_1$	(B) $EA = R_1$
	(C) $EA = [R_1]$	(D) $EA = 5 + [R_1]$

				.,		_			,	·		,		,				
			Reg. No.															
																•	1	
		В.Т	ech. DEGRE				ATI(VEN	MBE	ER 2	2018	3				
			5CS203 — CC ndidates admiti											7-201	(8)			
ı	over	to hall invig	be answered in ilator at the end t - C should be	l of 4:	5 th m	inute	: .			ninut	tes ar	nd O	MR	shee	t sho	uld	be ha	nded
: T	hree I	Iours													Max.	. Ma	arks:	100
		•	PA		•		: 1 = L Qu			ks)			•					
1.	Duri	ng the exec	ution of a pro	gram	ı, wł	nich	gets	initi	alize	d fii	st?							
	• •	MDR					` '						-					
	(C)	PC					(D)) , N	IAR									
2.	The	control unit	t controls other	r uni	ts by	y gei	nerat	ing										
		Control sig	•				, ,		imin									
	(C)	Transfer s	ignals				(D)) C	omn	and	sigr	nals						
3.	In m	ultiple bus	organization,	the r	egist	ters	are c	olle	ctive	ly pl	laced	l and	d re	ferre	d as			
		Set registe							egist									
	(C)	Register b	lock				(D)) N	lap r	egist	ters							
4.			ng indexed a	ddres	sing	g mo	ode i	insti	uctio	on, I	MO	V 5	(R ₁)), L(OC t	he	effe	ctive
	(A)	ess is $EA = 5 + 1$	R_1				(B)											
	(C)	$EA = [R_1]$		•			(D)) E	A =	5+	$[R_1]$							
5.	For	the addition	of large integ	zers.	mos	t of	the s	yste	ms n	nake	use	of						
		Fast adder		•			-		ull a									
	(C)	Carry-lool	c ahead adder	S			(D)) P	arall	el ad	lders	1						
6	We ·	make use o	f circui	ts to	imp	leme	ent m	ulti	plica	tion								
٠.		Flip flops			1				omb			l	-					
	(C)	Fast adder	•						erial									

(B) 0 -1 +1 -10

(D) -2 -2

(B) 3 (D) 5

(C) Fast adder

(A) 0 -1 -2

(C) -2 -10

(A) 2 (C) 4

7. The multiplier -6(11010) is recorded as

8. How many main approaches are available to algorithm for division?

9.			a con	aputer are combined into a single unit, it is
	know	•	(D)	Memory unit
	` '			Operating unit
	(C) 1	I/O unit	(1)	operating and
10	The n	ipelining process is also called as		
10.		Super scalar operation	(B)	Assembly line operation
		Von Neumann cycle	. ,	Field lining
	(-)		` '	
11.	Proce	ssor without structural hazard is		·
	(A)	Faster	. ,	Slower
	(C)	Have longer clock cycle	(D)	Have larger clock rate
				•
12.		lisadvantages of the hardwired approach	2h 1s 1	that
	. ,	It is less flexible		It cannot be used for complex instructions Less flexible and cannot be used for
	(C)	It is costly	(D)	complex instructions
				complex insudenons
13	Нож	many address lines are needed to add	ress i	each memory location in a 2048× 4 memory
15.	chip?		1000	out indicate and a second
	(A)		(B)	10
•,	(C)		(D)	
	` ,			
14.	A hai	rd disk with 20 surfaces will have	he	ads.
	(A)		(B)	
	(C)	1	(D)	20
1 "	anı	The second of the second by		
15.		contents of the EPROM are erased by	(D)	Exposing the chip to UV rays
		Overcharging the chip	` ′	Discharging the chip
	(C)	Exposing the chip to IR rays	(בני)	Discharging the chip
16	MEC	is used to		•
		Issue a read signal	(B)	Signal to the device that the memory read
	()		(")	operation is complete
	(C)	Signal the processor that the memory	(D)	Assign a device to perform the read
		operation is complete		operations
			_	
17.				the I/O device and the processor we use
		Buffer spaces	, ,	Status flags
	(C)	Interrupt signals	(D)	Exceptions
10	0.00	the bug is growted to a device it	•	
10.		the bus is granted to a device it Activates the bus busy line	 (B)	Performs the required operation
		Raises an interrupt		Bus ready line is activated
	(0)	Raises an interrupt	(D)	Dus roady fillo is abtivated
19.	The	device connected to USB is assigned a	n	address.
		9 bit		16 bit
		4 bit	(D)	
20	D/AT	-4 3- - 6-		
∠0.		stands for	(D)	Derinheral computer internet
		Peripheral component interconnect Processor computer interconnect		Peripheral computer internet Processor cable interconnect
	(U)	r rocessor computer interconnect	(U)	Processor Capie Interconnect

$PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Define the term
 - Computer architecture (i)
 - Multiprocessing (ii)
- 22. Write down the steps for restoring division and non-restoring division.
- 23. What is known as multiphase clocking? Mention the drawback of assigning one bit position to each control signal.
- 24. Calculate the maximum size of the memory that can be used in a 16-bit computer and 32 bit
- 25. Differentiate between static RAM and dynamic RAM.
- 26. State the differences between memory mapped I/O and I/O mapped I/O.
- 27. Why is program controlled I/O unsuitable for high speed data transfer?

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a.i. Mention the factors influencing performance of a system.

(4 Marks)

- ii. Assume a two address format specified as source, destination. Examine the following sequence of instructions and explain the addressing modes used and operation done in every instruction
 - Move $(R_5)+R_0$
 - Move 16(R₅), R₃
 - Add # 40, R₅
 - MVI # 5, R₁

(8 Marks)

(OR)

- b. Illustrate one, two, three and zero address instruction formats with example.
- 29. a. Show the step by step multiplication process using Booth algorithm when the following binary numbers are multiplied (-15)*(-13). Assume 5 bit registers that hold signed numbers.

(OR)

- b. Add the numbers 0.510 and -0.4375 using binary floating point addition algorithm.
- 30. a. List and explain the steps involved in the execution of complete instruction.

b. What is data hazard? How do you overcome it? Discuss its side effects.

20NF3-7/15CS203