MANCHESTER

Cluster Validation

Ke Chen

Outline

- Motivation and Background
- Internal index
 - Motivation and general ideas
 - Variance-based internal indexes
 - Application: finding the "proper" cluster number
- External index
 - Motivation and general ideas
 - Rand Index
- Application: Weighted clustering ensemble
- Summary

The University

Motivation and Background

Motivation

Supervised classification

- Class labels known for ground truth
- Accuracy: based on labels given

Clustering analysis

- No class labels
- Evaluation still demanded

Validation needs to

- Compare clustering algorithms
- Solve the number of clusters
- Avoid finding patterns in noise
- Find the "best" clusters from data

The University

Motivation and Background

• Illustrative Example: which one is the "best"?

Motivation and Background

- Cluster validation refers to procedures that evaluate the results of clustering in a quantitative and objective fashion.
 - How to be "quantitative": To employ the measures.
 - How to be "objective": To validate the measures!

Motivation and Background

- Internal Criteria (Indexes)
- Validate without external information
- With different number of clusters
- Solve the number of clusters

- External Criteria (Indexes)
- Validate against "ground truth"
- Compare two partitions: (how similar)

- Ground truth is unavailable but unsupervised validation must be done with "common sense" or "a priori knowledge".
- There are a variety of internal indexes:
 - Variances-based methods
 - > Rate-distortion methods
 - ➤ Davies-Bouldin index (DBI)
 - ➤ Bayesian Information Criterion (BIC)
 - Silhouette Coefficient
 - ➤ Minimum description principle (MDL)
 - > Stochastic complexity (SC)
 - Modified Huber's Γ (MHΓ) index

- Variances-based methods
 - Minimise within cluster variance (SSW)
 - Maximise between cluster variance (SSB)

Internal Index

- Variances-based methods (cont.)
 - Assume an algorithm leads to a partition of K clusters where cluster i has n_i data points and c_i is its centroid. d(.,.) is a distance used in this algorithm.
 - Within cluster variance (SSW)

$$SSW(K) = \sum_{i=1}^{K} \sum_{j=1}^{n_i} d^2(\mathbf{x}_{ij}, \mathbf{c}_i)$$

Between cluster variance (SSB)

$$SSB(K) = \sum_{i=1}^{K} n_i d^2(\mathbf{c}_i, \mathbf{c})$$

where c is the mean (centroid) of the whole data set.

- Variance based F-ratio index
 - Measures ratio of between-cluster variance against the withincluster variance (original F-test)
 - F-ratio index (W-B index) for a partition of K clusters

$$F(K) = \frac{K * SSW(K)}{SSB(K)} = \frac{K \sum_{i=1}^{K} \sum_{j=1}^{n_i} d^2(\mathbf{x}_{ij}, \mathbf{c}_i)}{\sum_{i=1}^{K} n_i d^2(\mathbf{c}_i, \mathbf{c})}$$

where \mathbf{x}_{ij} is the *j*th data point in cluster \mathbf{c}_i n_i is the number of data points in cluster \mathbf{c}_i

Application: finding the "proper" cluster number

Application: finding the "proper" cluster number

External Index

- "Ground truth" is available but an clustering algorithm doesn't use such information during unsupervised learning.
- There are a variety of external indexes:
 - > Rand Index
 - ➤ Adjusted Rand Index
 - ➤ Pair counting index
 - > Information theoretic index
 - Set matching index
 - > DVI index
 - ➤ Normalised mutual information (NMI) index

External Index

Main issues

- If the "ground truth" is known, the validity of a clustering can be verified by comparing the class or clustering labels.
- However, this is much more complicated than in supervised classification (where labels used in training)
 - ➤ The cluster IDs in a partition resulting from clustering have been assigned *arbitrarily* due to unsupervised learning permutation.
 - ➤ The number of clusters may be different from the number of classes (the "ground truth") inconsistence.
 - ➤ The most important problem in external indexes would be how to find all possible correspondences between the "ground truth" and a partition (or two candidate partitions in the case of comparison).

External Index

Rand Index

- This is the first external index proposed by Rand (1971) to address the "correspondence" problem.
- Basic idea: considering all pairs in the data set by looking into both agreement and disagreement against the "ground truth"
- The index defined as RI (X, Y) = (a+d)/(a+b+c+d)

X/Y	Y: Pairs in the same class	Y: Pairs in different classes
X: Pairs in the same cluster	a	b
X: Pairs in different clusters	C	d

External Index

- Rand Index (cont.)
 - Example: for a 5-point data set, we have

	1	2	3	4	5
X	i	ii	ii	i	i
Υ	q	p	q	p	q

 To calculate a, b, c and d, we have to list all possible pairs (excluding any data point to itself)

External Index

- Rand Index (cont.)
 - Example: for a 5-point data set, we have

	1	2	3	4	5
X	İ	ii	ii	İ	i
Υ	q	p	q	p	q

Initialisation: a, b, c, $d \leftarrow 0$

For data point pair [1, 2], we have

X: [1, 2] assigned to (i, ii) -> in different clusters

Y: [1, 2] labelled by $(q, p) \rightarrow in different classes$

Thus, $d \leftarrow d + 1 = 1$

External Index

- Rand Index (cont.)
 - Example: for a 5-point data set, we have

	1	2	3	4	5
X	j	ii	ii	i	i
Υ	q	р	q	р	q

Current Status: a=0, b=0, c=0, d=1

For data point pair [1, 3], we have

X: [1, 3] assigned to (i, ii) -> in different clusters

Y: [1, 3] labelled by $(q, q) \rightarrow$ in the same class

Thus, $c \leftarrow c + 1 = 1$

External Index

- Rand Index (cont.)
 - Example: for a 5-point data set, we have

	1	2	3	4	5
X	İ	ii	ii	i	i
Υ	q	р	q	p	q

Current Status: a=0, b=0, c=1, d=1

For data point pair [1, 4], we have

X: [1, 4] assigned to (i, i) -> in the same cluster

Y: [1, 4] labelled by $(q, p) \rightarrow in different classes$

Thus, $b \leftarrow b + 1 = 1$

External Index

- Rand Index (cont.)
 - Example: for a 5-point data set, we have

	1	2	3	4	5
X	İ	ii	ii	i	i
Υ	q	р	q	p	q

Current Status: a=0, b=1, c=1, d=1

For data point pair [1, 5], we have

X: [1, 5] assigned to (i, i) -> in the same cluster

Y: [1, 5] labelled by $(q, q) \rightarrow$ in the same class

Thus, $a \leftarrow a + 1 = 1$

External Index

- Rand Index (cont.)
 - Example: for a 5-point data set, we have

	1	2	3	4	5	
X	i	ii	ii	i	i	
Υ	q	р	q	р	q	

Current Status: a=1, b=1, c=1, d=1

On-class Exercise: continuing until have the final value of *a*, *b*, *c* and *d*.

External Index

- Rand Index: Contingency Table
 - In general, a, b, c and d are calculated from a contingency table

Assume there are k clusters in \mathbf{X} and l classes in \mathbf{Y} n_{ij} : the number of points in both cluster i and class j

External Index

- Rand Index: Contingency Table (cont.)
 - Example: for a 5-point data set, we have

	1	2	3	4	5
X	i	ii	ii	İ	i
Υ	q	p	q	p	q

Contingency table

	р	q	
i	1	2	3
ii	1	1	2
	2	3	5

External Index

Rand Index: measure the number of pairs in

Same cluster/class in X and Y

$$a = \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij} (n_{ij} - 1)$$

Same cluster in X / different classes in Y

$$b = \frac{1}{2} \left(\sum_{j=1}^{l} n_{.j}^{2} - \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij}^{2} \right)$$

Different clusters in X / same class in Y

$$c = \frac{1}{2} \left(\sum_{i=1}^{k} n_{i.}^{2} - \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij}^{2} \right)$$

Different clusters/classes in X and Y

$$d = \frac{1}{2}(N^2 + \sum_{i=1}^k \sum_{j=1}^l n_{ij}^2 - (\sum_{i=1}^k n_{i.}^2 + \sum_{j=1}^l n_{.j}^2))$$

Ex. 4

Weighted Clustering Ensemble

Yun Yang and Ke Chen, "Temporal data clustering via weighted clustering ensemble with different representations," *IEEE Transactions on Knowledge and Data Engineering* **23**(2), pp. 307-320, 2011.

Evidence Collection

"Distance" Matrix from the clustering result

Cluster 2 (C2)

"distance" Matrix

$$D_{1} = \begin{vmatrix} 0 & 0 & 1 & 1 & | A \\ 0 & 0 & 1 & 1 & | B \\ 1 & 1 & 0 & 0 & | C \\ 1 & 1 & 0 & 0 & | D \end{vmatrix}$$

Evidence Collection

"Distance" Matrix from the clustering result

"distance Matrix"

$$D_2 = \begin{vmatrix} 0 & 0 & 1 & 1 & | A \\ 0 & 0 & 1 & 1 & | B \\ 1 & 1 & 0 & 1 & | C \\ 1 & 1 & 1 & 0 & | C \end{vmatrix}$$

Optimal Agreement

Ensembled "distance" Matrix (evidence-accumulation)

$$D_{1} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \qquad D_{2} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$D_{E} = \frac{1}{3} [(w_{M1} + w_{D1} + w_{N1})D_{1} + (w_{M2} + w_{D2} + w_{N2})D_{2}] = \begin{bmatrix} 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \\ 2 & 2 & 0 & 1 \\ 2 & 2 & 1 & 0 \end{bmatrix}$$

when
$$w_{M1} = w_{M2} = 1$$
, $w_{D1} = w_{D2} = 1$, $w_{N1} = w_{N2} = 1$.

Application

■ Application to "non-convex" dataset

- Data set of 400 data points (shown below, also used in last lecture)
- Initial clustering analysis: K-mean (k=2,...,15), 3 initial settings \rightarrow 42 partitions
- Converting clustering results to "distance" matrices to achieve the ensembled "distance matrix" without weighting (setting all weights to be one).
- Applying the Agglomerative algorithm to the ensemble "distance matrix"
- Cut the dendrogram tree with the maximum K-cluster life time to decide K

Application

☐ Clustering analysis on CAVIAR database

- annotated video sequences of pedestrians, a set of 222 highquality moving trajectories
- clustering analysis of trajectories is useful for many applications

Experimental setting

- Representations: PCF, DCF, PLS and PDWT
- Initial clustering analysis: K-mean algorithm (4<K<20), 5 initial settings
- Ensemble: 300 partitions totally (75 partitions/representation)

The University

Application

☐ Clustering result on CAVIAR database

The University

Application

Application: UCR time series benchmarks

Data Set	Number of Class K^*	Size of Data Set (Training+Testing)	Length
Synthetic Control	6	300+300	60
Gun-Point	2	50+150	150
CBF	3	30+900	128
Face (all)	14	560+1,690	131
OSU Leaf	6	200+242	427
Swedish Leaf	15	500+625	128
50Words	50	450+455	270
Trace	4	100+100	275
Two Patterns	4	1,000+4000	128
Wafer	2	1,000+6,174	152
Face (four)	4	24+88	350
Lightning-2	2	60+61	637
Lightning-7	7	70+73	319
ECG	2	100 + 100	96
Adiac	37	390+391	176
Yoga	2	300+3,000	426

Application

• Application: RI(%) values of clustering ensembles (Yang & Chen 2011)

Data Cat	CE	HDCE	CDD CE	WCE
Data Set	CE	HBGF	SDP-CE	WCE
Syn Control	68.8 + 2.1	74.8 ± 2.2	82.1+1.9	86.1 ± 2.5*
Gun-Point	51.8 + 1.4	53.8 ± 2.0	50.0±0.9	54.1 ± 1.8*
CBF	53.8 + 2.4	66.0 <u>+</u> 1.9	66.3 ± 2.1	$63.9 \pm 2.1*$
Face (all)	35.1 + 1.9	44.8 <u>+</u> 2.5	50.5 ± 1.2	51.9 ± 1.4*
OSU Leaf	35.2 + 1.7	48.1 <u>+</u> 2.9	46.9 <u>+</u> 2.1	$45.5 \pm 3.5*$
Swedish Leaf	41.2 + 0.8	52.8 <u>+</u> 2.3	62.6 ± 1.8	$59.8 \pm 2.1*$
50Words	39.6 + 1.6	39.1 <u>+</u> 2.1	38.9 ± 1.9	37.2 ± 2.7
Trace	50.5 + 2.0	45.6 <u>+</u> 2.2	55.1±1.9	57.2 ± 2.3*
Two Patterns	33.1 + 1.8	33.0 ± 1.9	36.9 ± 2.3	$37.7 \pm 2.5*$
Wafer	62.1 + 1.9	72.8 ± 2.6	70.0 ± 2.4	$71.7 \pm 2.4*$
Face (four)	65.2 + 2.1	72.1 ± 3.1	71.8 ± 3.5	78.9 ± 3.0*
Lightning-2	60.1 + 1.3	59.3 ± 2.1	66.2 ± 1.6	77.9 <u>+</u> 1.8*
Lightning-7	53.1 + 2.1	55.6 <u>+</u> 3.0	57.9 ± 2.4	58.7 ± 3.4*
ECG	65.2 + 1.6	68.7 <u>+</u> 2.0	69.2 ± 1.7	$69.0 \pm 1.7*$
Adiac	36.2 + 2.3	41.4 <u>+</u> 2.5	45.9 ± 1.9	36.8 ± 2.5
Yoga	50.6 + 2.3	60.0 <u>+</u> 2.2	68.2 ± 2.2	62.6 ± 2.0 *

Summary

- Cluster validation is a process that evaluate clustering results with a pre-defined criterion.
- Two different types of cluster validation methods
 - Internal indexes
 - no "ground truth" available
 - defined based on "common sense" or "a priori knowledge"
 - Application: finding the "proper" number of clusters, ...
 - External indexes
 - "ground truth" known or reference given ("relative index")
 - Application: performance evaluation of clustering, ...
- Still an active area in clustering analysis researches

K. Wang et al, "CVAP: Validation for cluster analysis," Data Science Journal, vol. 8, May 2009. [Code online available: http://www.mathworks.com/matlabcentral/fileexchange/authors/24811]