

Proposed linked data platform for organising data resources for urban energy modelling

James Allan and James O'Donnell

Motivation

- Many heterogeneous datasets used by multiple researchers on many different projects
- Traceability from the results of their studies can be a challenge
- It is a challenge to control who has access to what data and the usage restrictions of using that data
- Attended the Linked Data in Construction and Architecture and there is a lot of work to apply semantic technologies to the data
- Not much work related to urban scale and stock modelling. Mainly associated with BIM. product and GIS data.

Linked Data Platform - Stages

Generation
Collection
Pre-processing
Storage
Simulation
Analysis

What is linked data?

Semantic linked data to W3 standards is stored in an RDF triples store

Each node contains a unique reference identified (URI) that provides additional information about its context

Source: Building performance optimization using cross-domain scenario modeling, linked data, and complex event processing – O'Donnell 2013

Linked Data Technologies

 Neo4j is a labelled property graph that enables more efficient representation of the data by allowing the nodes to have properties

 Neo4j is a labelled property graph that enables more efficient representation of the data by allowing the nodes to have properties

Envisaged Usage Scenarios

- 1. Support development of decision support at district scale where information has various levels of granularity;
- 2. Provide a standards based, flexible, decoupled architecture;
- 3. Be cheap to use in terms of hardware, expertise, implementation.

Where does this work fit in

Data Exchange Problem...

And issues from the real world...

Cost and Regulatory

Loosely Bound (data oriented)

Linked Data

Common Data Store

Monolithic Application

Tightly Bound (system oriented)

9

The DDIM Server

- The server acts as a data registry implemented through DCAT and an ontology that provides a common context for entries in the registry;
- Common context associates information with time and place;
- Providers of information must express their contribution in this context.

Hoare, Cathal, Usman Ali, and James O'Donnell. 'Dynamic District Information Server: On the Use of W3C Linked Data Standards to Unify Construction Data'. In *Test Proceedings Title*, 1:265–73. European Conferences on Computing in Construction. Chania, Crete: Publisher EC3, 2019.

https://doi.org/10.35490/EC3.2019.185.

Core Context Ontology

"what were the humidity readings in all zones when the external humidity was at level n:"

Initializing the Project

1

Server Summary

 Third-parties expose their data repositories as RDF endpoints and register these with the server;

- These endpoints express their information in the common context;
- The Server supports federated queries across these endpoints;

Examples cases of linked urban data

Producing Linked Data for Smart Cities: The Case of Catania - Consoli et al. 2017

- Comprehensive data model for smart cities that integrates:
 - Geo-referenced data, public transport, urban fault reporting, road maintenance and waste.
 - Feed-back from users

Useful Ontologies: BOT

 The Building Topology Ontology (BOT) is a minimal ontology for describing the core topological concepts of a building.

Figure 1 Classes and relationships involved in Zones

 Useful for general envelope simulation, but there is no property for results

Useful Ontologies: DCAT

DCAT ontology – For managing our datasets within the lab. This could tell us the origin of a given set of results and the usage restrictions of that data. https://www.w3.org/TR/vocab-dcat/. This could then be expanded to international and cross department datasets.

High Level District Energy Management (EM-KPI) Ontology

Reusing existing ontologies in the EM-KPI ontolgy

Table 3Ontologies selected for the development of the EM-KPI ontology.

Ontology	Namespace	Prefix	Example of term
DUL ontology	http://www.ontologydesignpatterns.org/ont/dul/DUL.owl	dul	PhysicalObject, hasLocation, isLocationOf
Dublin core ontology	http://purl.org/dc/terms/	dct	identifier, title, description, type, Location
WGS84 geo positioning ontology	http://www.w3.org/2003/01/geo/wgs84_pos#	geo	Point, lat, long, alt
schema.org	http://schema.org/	schema	Event, Postal Address
gbBuilding information ontology	https://www.auto.tuwien.ac.at/downloads/thinkhome/	bio	Building, Building Element, Zone, containsArea, Area,
	ontology/building/1_10/gbBuildingOntology.owl		containsVolume, Volume, BuildingStorey, Weather
Energy resource ontology	https://www.auto.tuwien.ac.at/downloads/thinkhome/	ero	EnergyFacility, Equipment, Appliance, consumesEnergy,
	ontology/EnergyResourceOntology.owl		producesEnergy, EnergySupply, EnergyDemand, EnergyType
Weather ontology	https://www.auto.tuwien.ac.at/downloads/thinkhome/	wo	WeatherCondition, WeatherPhenomenon, Humidity, SolarIrradiance
	ontology/WeatherOntology.owl		
User behavior and building	https://www.auto.tuwien.ac.at/downloads/thinkhome/	po	OccupancyParameter, hasInfluenceOn
process information	ontology/ProcessOntology.owl		
Semantic sensor network ontology	http://purl.oclc.org/NET/ssnx/ssn	ssn	Observation, ObservationValue, observedProperty, Property,
(SSN)			observationSamplingTime, observationResult
Ontology of units of measure	http://www.wurvoc.org/vocabularies/om-1.8/	om	Unit_of_measure, Compound_unit, Singular_Unit, Unit_multiplication
(OM)			
OWL-time ontology	http://www.w3.org/2006/time#	time	Interval, hasEnd, hasBeginning, Instant
Mathematical modelling ontology	http://identifiers.org/mamo/	mamo	Mathematical_model, Variable, Independent_variable, Dependent_variable

Li, Yehong, Raúl García-Castro, Nandana Mihindukulasooriya, James O'Donnell, and Sergio Vega-Sánchez. 'Enhancing Energy Management at District and Building Levels via an EM-KPI Ontology'. *Automation in Construction* 99 (1 March 2019): 152–67.

https://doi.org/10.1016/j.autcon.2018.12.010.

Draft Objectives

- Develop a procedure to link and extend data for urban modelling across the available datasets for each country*
 - Collect sample datasets from project partners.
 - Convert the data into linked data format (rdf)
 - Store the data onto DDIS platform
- 2. Query the linked data and generate the file formats (EnergyADE) required for simulation or data enrichment stage
- 3. Link the results from the simulation back to the building record so that all assumptions can be traced

*If the data cannot be shared/linked then placeholder data with the same variable names/type can be supplied. The objective here is to demonstrate the process

Open Questions

- What is the best graph technology to represent the data used in urban energy modelling?
- How to manage the complexity of the data models? Data models get complicated very quickly but how much information is enough?
- How much maintenance is required for the platform?
- How much work is required to update and link the data?
- Can we convert existing datasets into rdf or is it best to preserve their native format?
- Which ontologies can be used to represent data for urban energy modelling?
- How can the data be linked across the working groups?