mon	day 2.10
Cano	thy sequence
? H	ow to prove that a sequence (sn) ER converge wlo knowing its limit?
	monutone & bdd > converges
	limints, = limsups, EIR = converges
	converges = Cauchy
idea:	if limsn=s, then for all suff large n, Sn is close to s, & hence for all suff large
	m, n, sm & sn are close to each other
det	a sequence (sn) in a metric space (Mrd) is a Cauchy sequence if for each E>0
	there exists NeW st d $(s_n, s_m) < \varepsilon$ for all $m, n > N$
	$[m, N > N \Rightarrow d(s_n, s_m) \in \mathcal{E}]$
	note. Suffices to consider m>n
thun!	every convergent seq in a metric space is a Cauchy seq
	led (sn) be a convergent seq in (M,d)
	let s=lims. Let E>O. Since sn >s, there exists NEN st Vn>N, d(sn,s)<\frac{\xi}{2}
	Then for all $m_1 n > N$ we have $d(s_n, s_m) \le d(s_n, s) + d(s_n, s) < \frac{\varepsilon}{4} - \frac{\varepsilon}{4} = \varepsilon$ Thus (s_n) is a Cauchy sequence
	every Cauchy sequence EIR converges
	let (s_n) be a lauchy sequence $\in \mathbb{R}$ Let $\in >0$. Then there exists NEIN such that $ s_n-s_m < \varepsilon$ $\forall m,n > N$
	Then for all $n>N$, $ s_n-s_{N+1} <\varepsilon$ and s_0 $s_{N+1}-\varepsilon< s_n< s_{N+1}+\varepsilon$
	Then for all $j>N$, $u_j=inf\{s_n: n>N\} \ge s_{N+1}-\epsilon$ and $v_j=s_{N}\{s_n: n>N\} \le s_{N+1}+\epsilon$
	$S_{N+1} - E \le \liminf_{n \to \infty} S_n \le S_{N+1} + E$
	Hence, liminfs, & limsups, are finite
	also, for any $\varepsilon > 0$, $0 \le \lim_{n \to \infty} \sup_{n \to \infty} -\lim_{n \to \infty} \inf_{n \to \infty} \le \partial \varepsilon$
	Honce limsups = liminfs n
	It follows that (Sn) converges 17

oroll	ary	a	sequ	me	in	r	CONV	ergs	y j	f a	nd c	nly	if i	t is	(a	uchu)		
		Sin		Sir	12		Siv	าท											
7	Sn	د ع	7	Sir	2 1		้ลง	1											
	is it	(auch	y?															
	first.	for	any i	n, s,	, ₊₁ - 5	n) =	1 2	g n+	<u> =</u>	2n	+1								
				1 5,															
							- Sh	+2 +	+ 3,	n-, -	s _m)								
												+	15	_ ,		- 7	ले। +		++ 3
	0000	M .		1/2=	- n - +	/23 4		= 1	- "	2			m	1	m) -	- a		a	
	new			+ a															
		7	d'''	+ a	MAS	т		' d											
		<u>L</u> .	上	4		_ ,													
							~												
	50	for o	ing	m>	1,	Isr	, - S	m) ≤	1/2n										
	let	٤>	0,	let 1	N be	Suc	h th	at	an	33									
	Thu	n fo	ran	, m	>V >	Ŋ													
	ı	s _n -	Sml :	≤ ¼n	< 1/a	N < 8	3												
	∴ 0	ur	Seq	en ce	is	Cauc	hu	8	hence	it	conve	v qes							
				n fo								U							
				,,		י טיי													
1	Jv		1000	ho'.	C- 4			(0	ucla				Joo.						
1											quev	ıæ	orves	WUI	yų	ردی	aviig	COV	nverge
(!									netri (
	b										IK =	≥ 15	lau	chy	in R	=> is	lau	ichy	on (0,ì
		put	dog	es not	ha	ve li	mit	in	(0,1)										
	(2) (onsid	w	Q u	vith	sto	molaq	l w	utric										
		let	(sn) be	a se	aum	e o	f 1a	tional	#5	that	u	nverg	y to	12	e-ir			