

Tartalom

- Programozási tételek a <u>lényeg</u>
- Sorozatszámítás összegzés…
- Megszámolás
- <u>Maximum-kiválasztás</u>
- > Eldöntés
- Kiválasztás
- > Keresés
- Programozás tételek visszatekintés

Programozási tételek (PrT) lényege

Célja:

Bizonyíthatóan helyes sablon, amelyre magasabb szinten lehet építeni a megoldást. (A fejlesztés gyorsabb és biztonságosabb.)

Szerkezete:

- 1. absztrakt feladat specifikáció
- 2. absztrakt algoritmus

Egy fontos előzetes megjegyzés:

A bemenet legalább egy sorozat...

Programozási tételek (PrT) lényege

Felhasználásának menete:

- 1. a konkrét feladat specifikálása
- 2. a specifikációban a PrT-ek megsejtése
- 3. a konkrét feladat és az absztrakt feladat paramétereinek egymáshoz rendelése
- 4. a konkrét algoritmus "generálása" a megsejtett PrT-ek absztrakt algoritmusok alapján, 3. szerint átparaméterezve
- 5. hatékonyítás programtranszformációkkal

Programozási tételek

Mi az, hogy programozási tétel? Típusfeladat általános megoldása.

- >Sorozat → érték
- \triangleright Sorozat \rightarrow sorozat
- \triangleright Sorozat \rightarrow sorozatok
- ➤ Sorozatok → sorozat

Programozási tételek

Mi az, hogy programozási tétel? Típusfeladat általános megoldása.

- > Sorozat → érték
- \triangleright Sorozat \rightarrow sorozat
- \triangleright Sorozat \rightarrow sorozatok
- ➤ Sorozatok → sorozat

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére **mennyi**vel nőtt a vagyona!
- 2. Ismerjük egy autóversenyző körönkénti idejét. Adjuk meg az **átlag**körének idejét!
- 3. Adjuk meg az N számhoz az N **faktoriális** értékét!
- 4. Ismerjük egy iskola szakköreire járó tanulóit, szakkörönként. Adjuk meg, kik járnak szakkörre!
- 5. Ismerünk N szót. Adjuk meg a belőlük összeállított mondatot!

Csoportosítsunk:

- Számok összege: "vagyon", "köridők"
- Számok szorzata: "faktoriális"
- Halmazok uniója: "szakkörök"
- Szavak egymásutánja: "szavak"

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére mennyivel nőtt a vagyona!
- Ismerjük egy autóversenyző körönkénti idejét. Adjuk meg az átlagkörének idejét!
- Adjuk meg az N számhoz az N faktoriális értékét!
- Ismerjük egy iskola szakköreire járók tanúlóit, szakkörönként. Adjuk meg a szakkörre járó tanulókat!
- Ismerünk N szót. Adjuk meg a belőlük összeállított mondatot!

Csoportosítsunk:

- Számok összege: "vagyon", "köridők"
- Számok szorzata: "faktoriális"
- Halmazok uniója: "szakkörök"
- Szavak egymásutánja: "szavak"

Mi bennük a közös?

N "valamiből" kell kiszámolni "kumuláltan" egy "valamit"!

Pl. Σ – vagyon/köridők; Π – faktoriális; \cup – szakkörök; & – szavak

Pl. Σ – bevétel/köridő; Π – faktoriális;

∪ – szakkörös; & – szó

1. Sorozatszámítás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^{\mathbb{N}}$

H: tetszőleges halmaz;

$$\mathbb{H}^{N} = \{(h_1, ..., h_N) \mid h_i \in \mathbb{H}\}$$

Pl. Σ – bevétel/köridő; Π – faktoriális;

∪ – szakkörös; & – szó

1. Sorozatszámítás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^{N}$

 \triangleright Kimenet: $S \in H$

H: tetszőleges halmaz;

 $\mathbb{H}^{N} = \{(h_1, ..., h_N) \mid h_i \in \mathbb{H}\}$

Pl. Σ – bevétel/köridő; Π – faktoriális;

∪ – szakkörös; & – szó

1. Sorozatszámítás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in HV$

 \succ Kimenet: $S \in H$

➤ Előfeltétel: –

H: tetszőleges halmaz;

$$\mathbb{H}^{N} = \{(h_1, ..., h_N) \mid h_i \in \mathbb{H}\}$$

Pl. Σ – bevétel/köridő; Π – faktoriális;

∪ – szakkörös; & – szó

1. Sorozatszámítás

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H$

> Kimenet: S∈H

➤ Előfeltétel: –

➤ Utófeltétel: S=F(X_{1 N})

 $F: \mathbb{H}^{\mathbb{N}} \to \mathbb{H}$

 Σ – N tagú összeg;

 Π – N tényezős szorzat;

∪ – N halmaz uniója;

& – N szöveg konkatenációja ...

H: tetszőleges halmaz;

 $H^{N} = \{(h_{1},...,h_{N}) \mid h_{i} \in H\}$

 $(X_1,...,X_N)$ sorozat

H*: H iterált halmaza

1. Sorozatszámítás

> Probléma:

F: N paraméteres művelet, ahol az N változó.

> Megoldás:

Visszavezetjük 2-paraméteres műveletre (pl. Σ helyett +) és egy neutrális elemre (+ esetén a 0).

$$F(X_{1..N}) = f(F(X_{1..N-1}), X_N)$$

$$F(-)=F_0$$

, egyébként

, ha N>0

Tehát: $F:H^* \rightarrow H$, $F_0 \in H$,

Gondolja meg a többi esetén mi az f/F_0 ?

$$\Pi = \frac{?}{?} \cup \frac{?}{?} & = \frac{?}{?}$$

Specifikáció (a végleges):

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

 \triangleright Kimenet: $S \in H$

➤ Előfeltétel: –

 \gt Utófeltétel: S=F(X_{1..N})

> Definíció:

$$F:H^* \rightarrow H$$

$$F(X_{1..N}) := \begin{cases} F_0 &, N = 0 \\ f(F(X_{1..N-1}), X_N) &, N > 0 \end{cases}$$

Sorozatszámítás – összegzés

Specifikáció (összegzés):

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$

 \succ Kimenet: $S \in H$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: $S = \sum_{i=1}^{N} X_i$

H: Z vagy R

Sorozatszámítás – összegzés

Specifikáció (összegzés):

 \triangleright Bemenet: $N \in \mathbb{N}$,

$$X \in H^N$$

> Kimenet: S∈H

> Előfeltétel: –

➤ Utófeltétel: $S = \sum_{i=1}^{IN} X_i$

> A definíció nyilvánvalóan teljesül, azaz:

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0, & N = 0 \\ \left(\sum_{i=1}^{N-1} X_{i}\right) + X_{N}, & N > 0 \end{cases}$$

H: Z vagy R

Programparaméterek deklarálása

Algoritmus:

Változó

N:Egész

Konstans

maxN:Egész(???)

Változó

 $X:T\ddot{o}mb[1..maxN:TH]$

S:TH

Programparaméterek deklarálása

Algoritmus:

Változó

→N:Egész

Konstans

maxN:Egész(???)

Változó

 $X:T\ddot{o}mb[1..maxN:TH]$

S:TH

Programparaméterek deklarálása

Algoritmus:

Változó

→N:Egész

Konstans

maxN:Egész(???)

Változó

X:Tömb[1..maxN:TH]

S:TH

maxN: a tömb maximális mérete

TH: a H halmaznak megfelelő típus

Programparaméterek deklarálása

Algoritmus:

Változó

→N:Egész

Konstans

maxN:Egész(???)

Változó

X:Tömb[1..maxN:TH]

S:TH

maxN: a tömb maximális mérete

TH: a H halmaznak megfelelő típus

Programparaméterek deklarálása

Algoritmus:

Változó

→N:Egész

Konstans

maxN:Egész(???)

Változó

X:Tömb[1..maxN:TH]

S:TH

maxN: a tömb maximális mérete

TH: a H halmaznak megfelelő típus

Változó N:Egész Konstans maxN:Egész(???) Változó X:Tömb[1..maxN:TH] S:TH

Specifikáció (a végleges):

Utófeltétel: S=F(X_{1.N})

 $X \in H^N$

> Bemenet: N∈N,

> Kimenet: S∈H

> Előfeltétel: -

Definíció:

1. Sorozatszámítás

Algoritmus (általánosan):

 $S:=F_0$ i=1..N S:=f(S,X[i])

```
Változó

=F<sub>0</sub>

Változó
```


Változó N:Egész Konstans maxN:Egész(???) Változó X:Tömb[1..maxN:TH] S:TH

1. Sorozatszámítás

Változó

Változó

i:Egész

Algoritmus (általánosan):

$S:=F_0$	i:Egész
i=1N	
$S:=\mathbf{f}(S,X[i])$	

Specifikáció (a végleges):

- ➤ Kimenet: S∈H
- Előfeltétel: –
- Utófeltétel: S=F(X_{1..N})
- Definíció:

$$F(X_{1..N})\!:=\!\begin{cases} F_0 & \text{, } N=0\\ f(F(X_{1..N\cdot 1}),X_N) & \text{, } N>0 \end{cases}$$

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0 & \text{, } N = 0 \\ \sum_{i=1}^{N-1} X_{i} + X_{N} & \text{, } N > 0 \end{cases}$$

 Σ (összegzés) esetén:

$$S:=0$$
 $i=1..N$
 $S:=S+X[i]$

1. Sorozatszámítás példa

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Be, $Ki \in \mathbb{Z}^N$

1. Sorozatszámítás példa

> Bemenet: $N \in \mathbb{N}$,

Be, $Ki \in \mathbb{Z}^N$

1. Sorozatszámítás példa

→ Be,Ki \in Z^N

1. Sorozatszámítás példa

> Bemenet: $N \in \mathbb{N}$,

Be,Ki \in Z^N

 \triangleright Kimenet: $S \in \mathbb{Z}$

1. Sorozatszámítás példa

ightharpoonupBe,Ki \in \mathbb{Z}^{N}

 \rightarrow Kimenet: \rightarrow S \in Z

1. Sorozatszámítás példa

> Bemenet: $N \in \mathbb{N}$,

→Be,Ki∈Z^N

 \rightarrow Kimenet: \rightarrow S \in Z

> Előfeltétel: ∀i (1≤i≤N): Be;,Ki;≥0

1. Sorozatszámítás példa

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 \rightarrow Kimenet: \rightarrow S \in Z

> Előfeltétel: ∀i (1≤i≤N): Be_i,Ki_i≥0

> Utófeltétel: $S = \sum_{i=1}^{N} Be_i - Ki_i$

Specifikáció (összegzés):

 $X \in H^N$

 \triangleright Bemenet: $N \in \mathbb{N}$.

1. Sorozatszámítás példa

> Bemenet: $N \in \mathbb{N}$,

 \rightarrow Kimenet: \rightarrow S \in Z

> Előfeltétel: ∀i (1≤i≤N): Be_i,Ki_i≥0

 \rightarrow Utófeltétel: $S = \sum_{i=1}^{n} Be_i - Ki_i$

1. Sorozatszámítás példa

- \triangleright Bemenet: \rightarrow N \in N,
 - \rightarrow Be,Ki \in \mathbb{Z}^{N}
- \rightarrow Kimenet: \rightarrow S \in \mathbb{Z}
- > Előfeltétel: ∀i (1≤i≤N): Be_i,Ki_i≥0
- ➤ Utófeltétel: $S = \sum_{i=1}^{n} Be_i Ki_i$

Algoritmus:

S:=0 i=1..N S:=S+Be[i]-Ki[i]

S:=S+X[i]

i=1..N

Specifikáció (összegzés):

X∈HN

Bemenet: $N \in \mathbb{N}$

> Kimenet: S∈H•

Előfeltétel: –Utófeltétel: S=

S := 0

Változó

i:Egész

1. Sorozatszámítás példa

- \triangleright Bemenet: \rightarrow N \in N,
 - →Be,Ki∈Z^N
- \rightarrow Kimenet: \rightarrow S \in Z
- > Előfeltétel: ∀i (1≤i≤N): Be_i,Ki_i≥0
- ➤ Utófeltétel: $S = \sum_{i=1}^{n} Be_i Ki_i$

Algoritmus:

S:=0 i=1..N S:=S+Be[i]-Ki[i]

i=1..N

S:=S+X[i]

Specifikáció (összegzés):

X∈HN

Bemenet: $N \in \mathbb{N}$

> Kimenet: S∈H•

Előfeltétel: –Utófeltétel: S=

S := 0

Változó

i:Egész

2. Megszámolás

Feladatok:

- I. Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy **hány** hónapban nőtt a vagyona!
- Adjuk meg egy természetes szám osztói számát!
- 3. Adjuk meg egy ember nevében levő "a" betűk **számá**t!
- 4. Adjunk meg az éves statisztika alapján, hogy hány napon fagyott!
- 5. Adjuk meg N születési hónap alapján, hogy közöttük **hány**an születtek télen!

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy hány hónapban nőtt gszámolás a vagyona!
- Adjuk meg egy természetes szám osztói számát!
- Adjuk meg egy ember nevében levő "a" betűk számát!
- Adjunk meg az éves statisztika alapján, hogy hány napon fagyott!
- Adjuk meg N születési hónap alapján, hogy közöttük hányan születtek télen!

Mi bennük a közös?

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy hány hónapban nőtt gszámolás a vagyona!
- Adjuk meg egy természetes szám osztói számát!
- Adjuk meg egy ember nevében levő "a" betűk számát!
- Adjunk meg az éves statisztika alapján, hogy hány napon fagyott!
- Adjuk meg N születési hónap alapján, hogy közöttük hányan születtek télen!

Mi bennük a közös?

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

Z. Megszámolás

Specifikáció:

> Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

T:H-

H: tetszőleges halmaz

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

2. Megszámolás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

T:H-

 \triangleright Kimenet: $Db \in \mathbb{N}$

H: tetszőleges halmaz

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

Z. Megszámolás

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

T:H-L

 \triangleright Kimenet: $Db \in \mathbb{N}$

➤ Előfeltétel: –

H: tetszőleges halmaz

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

2. Megszámolás

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

T:H-L

> Kimenet: Db∈N

➤ Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$

 $T(X_i)$

H: tetszőleges halmaz

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

z. Megszámolás

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

T:H-

 \triangleright Kimenet: $Db \in \mathbb{N}$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: Db= $\sum_{i=1}^{N} 1$

 $T(X_i)$

Megjegyzés:

A T tulajdonság egy logikai függvényként adható meg. X (sőt H) minden elemről megvizsgálható, hogy rendelkezik-e az adott tulajdonsággal vagy sem.

H: tetszőleges halmaz

2. Megszámolás

Algoritmus:

Változó i:Egész

Z. Megszámolás példa

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó∈NN,

Téli?:N→L,

Téli?(x):=x=1 vagy x=2 vagy x=12

Z. Megszámolás példa

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó∈NN,

Téli?:N→L,

Téli?(x):=x=1 vagy x=2 vagy x=12

 \triangleright Kimenet: $Db \in \mathbb{N}$

Z. Megszámolás példa

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó∈NN,

Téli?:N→L,

Téli?(x):=x=1 vagy x=2 vagy x=12

 \triangleright Kimenet: $Db \in \mathbb{N}$

► Előfeltétel: $\forall i \ (1 \le i \le N)$: $H\acute{o}_i \in [1..12]$

Z. Megszámolás példa

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó∈NN,

Téli?:N→L,

Téli?(x):=x < 3 vagy x = 12

 \triangleright Kimenet: $Db \in \mathbb{N}$

► Előfeltétel: $\forall i \ (1 \le i \le N)$: $H \acute{o}_i \in [1..12]$

Z. Megszámolás példa

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Téli?:N→L,

Téli?(x):=x < 3 vagy x = 12

- \triangleright Kimenet: $Db \in \mathbb{N}$
- ► Előfeltétel: $\forall i \ (1 \le i \le N)$: $H \acute{o}_i \in [1..12]$

➤ Utófeltétel: Db=
$$\sum_{i=1}^{N} 1$$
Hó; <3 vagy Hó; =12

Specifikáció: ➤ Bemenet: N∈N,

> Kimenet: Db∈N > Előfeltétel: –

➤ Utófeltétel: Db= ∑

X∈H^N, T:H→L

Z. Megszámolás példa

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó∈NN,

Téli?:N→L,

Téli?(x):=x < 3 vagy x = 12

- \succ Kimenet: $Db \in \mathbb{N}$
- ► Előfeltétel: $\forall i \ (1 \le i \le N)$: $H \acute{o}_i \in [1..12]$
- $ightharpoonup Utófeltétel: Db = \sum_{i=1}^{N} 1$

Specifikáció: ➤ Bemenet: N∈N,

> Kimenet: Db∈N > Előfeltétel: –

 \rightarrow Utófeltétel: Db= \sum

X∈H^N, T:H→L

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}^{\mathbb{N}}$
 - $T:H \rightarrow L$

Db:=0

i=1..N

Db:=Db+1

T(X[i])

- ➤ Kimenet: Db∈N
- ➤ Előfeltétel: –

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

> Kimenet: Db∈N

Hó∈NN,

Téli?:N→L,

► Előfeltétel: $\forall i \ (1 \le i \le N)$: $H \acute{o}_i \in [1..12]$

Téli?(x):=x < 3 vagy x = 12

 \rightarrow Utófeltétel: Db= $\sum_{i=1}$

2. Megszámolás példa

Algoritmus:

Kérdés:

Mi lenne, ha az előfeltétel

 $(\forall i \ (1 \le i \le N): H\acute{o}_i \in [1..12])$

nem teljesülne?

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt **leg**jobban a vagyona!
- 2. Adjuk meg N ember közül az ábécében **utol- só**t!
- 3. Adjuk meg N ember közül azt, aki a **leg**több ételt szereti!
- 4. Adjunk meg az éves statisztika alapján a **leg**-melegebb napot!
- 5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt imum-kiválasztás legjobban a vagyona!
 - Adjuk meg N ember közül az ábécében utolsót!
 - Adjuk meg N ember közül azt, aki a legtöbb ételt szereti!
- 4. Adjunk meg az éves statisztika alapján a legmelegebb napot!
 - 5. Adjuk meg N születésnap alapján azt, akinek idén először van születésnapja!

Mi bennük a közös?

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt imum-kiválasztás legjobban a vagyona!
 - 2. Adjuk meg N ember közül az ábécében utolsót!
 - Adjuk meg N ember közül azt, aki a legtöbb ételt szereti!
- 4. Adjunk meg az éves statisztika alapján a legmelegebb napot!
 - 5. Adjuk meg N születésnap alapján azt, akinek idén először van születésnapja!

Mi bennük a közös?

N darab "valami" közül kell megadni a legnagyobbat (vagy a legkisebbet).

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt imum-kiválasztás legjobban a vagyona!
 - 2. Adjuk meg N ember közül az ábécében utolsót!
 - Adjuk meg N ember közül azt, aki a legtöbb ételt szereti!
- 4. Adjunk meg az éves statisztika alapján a legmelegebb napot!
 - 5. Adjuk meg N születésnap alapján azt, akinek idén először van születésnapja!

Mi bennük a közös?

N darab "valami" közül kell megadni a legnagyobbat (vagy a legkisebbet).

Fontos:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt imum-kiválasztás legjobban a vagyona!
- 2. Adjuk meg N ember közül az ábécében utolsót!
- Adjuk meg N ember közül azt, aki a legtöbb ételt szereti!
- 4. Adjunk meg az éves statisztika alapján a legmelegebb napot!
 - 5. Adjuk meg N születésnap alapján azt, akinek idén először van születésnapja!

Mi bennük a közös?

N darab "valami" közül kell megadni a legnagyobbat (vagy a legkisebbet).

Fontos:

A "valamik" között értelmezhető egy rendezési reláció.

Ha legalább 1, "valamink" van, akkor legnagyobb (legkisebb) is biztosan van közöttük!

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

 \triangleright Kimenet: Max \in N

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

 \triangleright Kimenet: Max \in N

➤ Előfeltétel: N>0

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

 \triangleright Kimenet: Max \in N

➤ Előfeltétel: N>0

➤ Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

3. Maximum-kiválasztás

A cél egy szummával azonos "tömörségű" operátorral kifejezni.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$

 \rightarrow Kimenet: Max \in N

➤ Előfeltétel: N>0

➤ Utófeltétel: 1≤Max≤N és

$$\forall i \ (1 \le i \le N): X_{\text{Max}} \ge X_i$$

másképp:
$$Max = MaxInd X_i$$

- ▶ Léteznie kell a ≥:H×H→L rendezési relációnak.
- A sorszám sorozatok esetén általánosabb, mint az érték, ezért legtöbbször a sorszámot adjuk meg.

Változó

Algoritmus:

i:Egész Max = 1i=2...NX[i]>X[Max]

- $X \in H^N$
- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és $\forall i \ (1 \leq\!\! i \leq\!\! N) \colon X_{Max} \!\! \geq \!\! X_i$

Megjegyzés:

Többlet tudás: ha több maximális érték is van, akkor közülük az elsőt kapjuk meg.

Max:=i

Változó

i:Egész

- \triangleright Bemenet: $N \in \mathbb{N}$, X∈H^N
- > Kimenet: Max∈N
- '> Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Algoritmus:

Megjegyzés:

Többlet tudás: ha több maximális érték is van, akkor közülük az elsőt kapjuk meg.

Kérdések:

Hogyan lesz belőle utolsó maximális? Hogyan lesz belőle (első) minimális?

(maximális értékkel)

Specifikáció:

➤ Kimenet: MaxÉrt∈H

➤ Utófeltétel: ∃i (1≤i≤N): MaxÉrt=X; és

 $\forall i \ (1 \le i \le N): Max \acute{E}rt \ge X_i$

(maximális értékkel)

Specifikáció:

➤ Kimenet: MaxÉrt∈H

➤ Utófeltétel: MaxÉrt∈X és

 $\forall i \ (1 \leq i \leq N): Max \acute{E}rt \geq X_i$

(maximális értékkel)

Specifikáció:

➤ Kimenet: MaxÉrt∈H

➤ Utófeltétel: MaxÉrt∈X és

 $\forall i \ (1 \le i \le N): Max \acute{E}rt \ge X_i$

másképp:
$$Max \acute{E}rt = Max \acute{E}rt X_i$$

(maximális értékkel)

Specifikáció:

➤ Kimenet: MaxÉrt∈H

➤ Utófeltétel: MaxÉrt∈X és

 $\forall i \ (1 \le i \le N): Max \stackrel{\text{\'e}rt}{\ge} X_i$

másképp:
$$Max$$
Ért $=$ Max Ért X_i

A két változatot össze is vonhatjuk:

(nd, Ért
$$= M_{i-1}^{N} X_{i}$$

(maximális értékkel)

Algoritmus:

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

mum-kiválasztás példa

> Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

> Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és ∀i (1≤i≤N): X_{Max}≥X_i

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó,Nap∈ $\mathbb{N}^{\mathbb{N}}$

Kimenet: Első∈N

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

mum-kiválasztás példa

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

> Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó,Nap∈ $\mathbb{N}^{\mathbb{N}}$

Kimenet: Első∈N

> Előfeltétel: N>0 és

 $\forall i(1 \le i \le N): (H\acute{o}_i \in [1..12] \acute{e}s$

 $Nap_i \in [1..31]$

5. Adjuk meg N születésnap alapján azt, akinek idén először van születésnapja!

mum-kiválasztás példa

 \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^N$

> Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó,Nap∈ $\mathbb{N}^{\mathbb{N}}$

Kimenet: Első∈N

> Előfeltétel: N>0 és

 $\forall i(1 \le i \le N)$: (H $\phi_i \in [1..12]$ és

 $Nap_i \in [1..31]$

> Utófeltétel: 1≤Első≤N és

 $\forall i(1 \le i \le N): (H\acute{o}_{Els\acute{o}} \le H\acute{o}_i \text{ vagy})$

Hó_{Első}=Hó; és

Nap_{Flső} \leq Nap_i)

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

mum-kiválasztás példa

> Bemenet: N∈N, X∈H^N

> Kimenet: Max∈N

➤ Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Specifikáció (másképp):

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó, Nap \in N^N

Kimenet: Első∈N

> Előfeltétel: N>0 és

 $\forall i(1 \le i \le N): (H\acute{o}_i \in [1..12] \acute{e}s$

 $Nap_i \in [1..31]$

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

mum-kiválasztás példa

- > Bemenet: N∈N, X∈H^N
- \triangleright Kimenet: Max \in N
- ➤ Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

Specifikáció (másképp):

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $H\acute{o},Nap\in\mathbb{N}^N$

Kimenet: Első∈N

> Előfeltétel: N>0 és

 $\forall i(1 \le i \le N): (H \acute{o}_i \in [1..12] \acute{e}s$

 $Nap_i \in [1..31]$

➤ Utófeltétel: Első=MaxInd (Hó_i,Nap_i)

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

mum-kiválasztás példa

- > Bemenet: N∈N, X∈H^N
- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és ∀i (1≤i≤N): X_{Max}≥X_i

Specifikáció (másképp):

 \triangleright Bemenet: $N \in \mathbb{N}$,

Hó,Nap∈ $\mathbb{N}^{\mathbb{N}}$

Kimenet: Első∈N

> Előfeltétel: N>0 és

 $\forall i(1 \le i \le N): (H \acute{o}_i \in [1..12] \acute{e}s$

 $Nap_i \in [1..31]$

➤ Utófeltétel: Első=MaxInd (Hó_i,Nap_i)

▶ Definíció: (Hó_i,Nap_i)≤(Hó_i,Nap_i) ↔

Hó_i<Hó_i vagy

Hó_i=Hó_j és Nap_i≤Nap_j

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

mum-kiválasztás példa

Algoritmus:

Változó i:Egész

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Specifikáció:

> Bemenet: N∈N, Hó,Nap∈N^N

> Utófeltétel: 1≤Max≤N és

Kimenet: Első∈Ñ

> Előfeltétel: N>0 és

 $\forall i (1 \le i \le N)$: $(H \circ_i \in [1..12] \text{ és}$

 $Nap_i \in [1..31]$

> Utófeltétel: 1≤Első≤N és

 $\forall i (1 \le i \le N)$: $(H \acute{o}_{Els\~{o}} \le H \acute{o}_i \text{ vagy}$

Hó_{Első}=Hó_i és

Nap_{Első}≤Nap_i)

Feladatok:

- Egy természetes számról **döntsük el**, hogy prímszám**-e**!
- 2. Egy szóról **mondjuk meg**, hogy egy hónapnak a neve**-e**!
- 3. Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!
- 4. Egy szóról adjuk meg, hogy van-e benne magánhangzó!
- 5. Egy számsorozatról **döntsük el**, hogy monoton növekvő**-e**!
- 6. Egy tanuló év végi jegyei alapján adjuk meg, hogy kitűnő-e!

Feladatok:

- Egy természetes számról döntsük el, hogy prímszám-e!
- Egy szóról mondjuk meg, hogy egy hónapnak a neve-e!
- Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!
- Egy szóról adjuk meg, hogy van-e benne magánhangzó!
- Egy számsorozatról döntsük el, hogy monoton növekvő-e!
- Egy tanuló év végi jegyei alapján adjuk meg, hogy kitűnő-e!

4. Eldöntés

Mi bennük a közös?

Feladatok:

- Egy természetes számról döntsük el, hogy prímszám-e!
- Egy szóról mondjuk meg, hogy egy hónapnak a neve-e!
- Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!
- Egy szóról adjuk meg, hogy van-e benne magánhangzó!
- Egy számsorozatról döntsük el, hogy monoton növekvő-e!
- Egy tanuló év végi jegyei alapján adjuk meg, hogy kitűnő-e!

4. Eldöntés

Mi bennük a közös?

Döntsük el, hogy N "valami" között van-e adott tulajdonsággal rendelkező elem!

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$,

 $T:H \rightarrow L$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$,

 $T:H \rightarrow L$

> Kimenet: Van∈L

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$,

 $T:H \rightarrow L$

> Kimenet: Van∈L

➤ Előfeltétel: –

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$,

 $T:H\rightarrow L$

> Kimenet: Van∈L

➤ Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

4. Eldöntés

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$,

 $T:H\rightarrow L$

➤ Kimenet: Van∈L

➤ Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

N

másképp: Van= $\exists T(X_i)$

i=1

Specifikáció:

4. Eldöntés

Algoritmus:

Változó i:Egész

> Bemenet: $N \in \mathbb{N}$, $X \in H^N$,

 $T:H\rightarrow L$

- ⊳ Kimenet: Van∈L
- > Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N): T(X;)

i:=1]
	i≤N és nem T(X[i])	
	i:=i+1	
Van:=i≤N		Ī

Feladatvariáns:

... az összes elem olyan-e ...

Feladatvariáns:

... az összes elem olyan-e ...

Specifikáció (csak a különbség):

> Kimenet: Mind∈L

 \rightarrow Utófeltétel: Mind= \forall i(1 \leq i \leq N): T(X_i)

Feladatvariáns:

... az összes elem olyan-e ...

Specifikáció (csak a különbség):

➤ Kimenet: Mind ∈ L

 \triangleright Utofeltétel: Mind= \forall i(1 \leq i \leq N): T(X_i)

Feladatvariáns:

... az összes elem olyan-e ...

Specifikáció (csak a különbség):

➤ Kimenet: Mind ∈ L

 \rightarrow Utofeltétel: Mind= \forall i(1 \leq i \leq N): T(X_i)

Specifikáció: > Bemenet: $N \in \mathbb{N}$, $X \in H^N$, T:H→L Kimenet: VareL > Előfeltétel: – > Utófeltétel: Van=∃i(1≤i≤N): $T(X_i)$

4. Eldöntés

Feladatvariáns:

... az összes elem olyan-e ...

Specifikáció (csak a különbség):

> Kimenet: → Mind ∈ L

ightharpoonuptofeltétel: Mind=ightharpoonupi(1 \leq i \leq N): T(X_i)

másképp: Mind= $\forall T(X_i)$

Feladatvariáns:

... az összes elem olyan-e ...

Algoritmus:

Változó i:Egész i:=1 i≤N és nem T(X[i]) i = i + 1Mind:=i>N

- ➤ Előfeltétel: –
- > Utófeltétel: Mind=∀i(1≤i≤N): T(X_i)

 Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!

Specifikáció:

> Bemenet: N∈N, X∈H^N,

 $T:H\rightarrow L$

> Kimenet: Van∈L

> Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): T(X;)

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $Jegy \in \mathbb{N}^{\mathbb{N}}$

> Kimenet: Bukott∈L

> Előfeltétel: ∀i (1≤i≤N): Jegy; ∈ [1..5]

➤ Utófeltétel: Bukott=∃i (1≤i≤N): Jegy;=1

3. Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!

4. Eldöntés példa

T: tulajdonságfüggvény

Változó

i:Egész

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$, $Jegy \in \mathbb{N}^N$
- > Kimenet: Bukott∈L
- > Előfeltétel: $\forall i (1 \le i \le N)$: Jegy; ∈ [1..5]
- ➤ Utófeltétel: Bukott=∃i (1≤i≤N): Jegy; —1

Algoritmus:

```
i = 1
     i≤N és Jegy[i]≠1
    i = i + 1
Bukott:=i≤N
```

i:=i+1

Van:= i≤N

5. Kiválasztás

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. **Adjunk meg egy** hónapot, amikor nőtt a vagyona!
 - 2. Adjuk meg egy természetes szám egytől küllönböző legkisebb osztóját!
 - 3. Adjuk meg egy magyar szó egy magánhangzóját!
 - 4. Adjuk meg egy hónapnévről a sorszámát!

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadá-sait. Év végére nőtt a vagyona. Adjunk meg választás egy hónapot, amikor nőtt a vagyona!
- Adjuk meg egy természetes szám egytől különböző legkisebb osztóját!
- Adjuk meg egy magyar szó egy magánhangzóját!

Adjuk meg egy hónapnévről a sorszámát!

Mi bennük a közös?

Feladatok:

- Ismerjük egy ember havi bevételeit és kiadá-sait. Év végére nőtt a vagyona. Adjunk meg választás egy hónapot, amikor nőtt a vagyona!
- Adjuk meg egy természetes szám egytől különböző legkisebb osztóját!
- Adjuk meg egy magyar szó egy magánhangzóját!

Adjuk meg egy hónapnévről a sorszámát!

Mi bennük a közös?

N "valami" közül kell megadni egy adott tulajdonságút, ha tudjuk, hogy ilyen elem biztosan van.

5. Kiválasztás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$,

 $T:H \rightarrow L$

5. Kiválasztás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$,

 $T:H\rightarrow L$

➤ Kimenet: Ind∈N

5. Kiválasztás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$,

 $T:H\rightarrow L$

> Kimenet: Ind∈N

 \gt Előfeltétel: N>0 és $\exists i \ (1 \le i \le N)$: $T(X_i)$

5. Kiválasztás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$,

 $T:H\rightarrow L$

➤ Kimenet: Ind∈N

 \gt Előfeltétel: N>0 és $\exists i \ (1 \le i \le N)$: $T(X_i)$

> Utófeltétel: 1≤Ind≤N és T(X_{Ind})

5. Kiválasztás

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$,

 $T:H \rightarrow L$

➤ Kimenet: Ind∈N

 \gt Előfeltétel: N>0 és $\exists i \ (1 \le i \le N)$: $T(X_i)$

➤ Utófeltétel: 1≤Ind≤N és T(X_{Ind})

N

másképp: Ind=Kiválaszt i

i=1 $T(X_i)$

5. Kiválasztás

Algoritmus:

```
Ind:=1

nem T(X[Ind])

Ind:=Ind+1
```

Specifikáció:

- > Bemenet: N∈N, X∈H^N, T:H→L
- > Kimenet: Ind∈N
- ► Előfeltétel: N>0 és $\exists i \ (1 \le i \le N)$: $T(X_i)$
- ➤ Utófeltétel: 1≤Ind≤N és T(X_{Ind})

Megjegyzés:

Többlet tudás: a megoldás az első adott tulajdonságú elemet adja meg – a program tudhat többet annál, mint amit várunk tőle.

Hogy kellene az utolsót megadni?

 Adjuk meg egy magyar szó egy magánhangzóját!

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^N$ T:H→L

➤ Kimenet: Ind∈N

► Előfeltétel: N>0 és $\exists i \ (1 \le i \le N)$: $T(X_i)$

> Utófeltétel: 1≤Ind≤N és T(X_{Ind})

5. Kiválasztás példa

Specifikáció:

▶ Bemenet: Szó∈S

 \triangleright Kimenet: MH \in N

➤ Előfeltétel: hossz(Szó)>0 és

∃i (1≤i≤hossz(szó)):

magánhangzóE(Szó;)

➤ Utófeltétel: 1≤MH≤hossz(Szó) és

magánhangzóE(Szó_{MH})

T: tulajdonság-

függvény

 Adjuk meg egy magyar szó egy magánhangzóját!

Specifikáció:

▶ Bemenet: N∈N, X∈H^N.

T:H→L

> Kimenet: Ind∈N

> Előfeltétel: N>0 és ∃i (1≤i≤N): T(X_i)

> Utófeltétel: 1≤Ind≤N és T(X_{Ind})

5. Kiválasztás példa

Specifikáció:

▶ Bemenet: Szó∈S

 \triangleright Kimenet: MH \in N

➤ Előfeltétel: hossz(Szó)>0 és

∃i (1≤i≤hossz(√zó)):

magánhangzóE(Szó_i)

➤ Utófeltétel: 1≤MH≤hossz(Szó) és

 $magánhangzóE(Szó_{MH})$

➤ Definíció: magánhangzóE:K→L

magánhangzóE(c):=

nagybetű(c) $\in \{'A', ..., '\tilde{U}'\}$

T: tulajdonság-

függvény

 Adjuk meg egy magyar szó egy magánhangzóját!

5. Kiválasztás példa

> Előfeltétel: N>0 és ∃i (1≤i≤N): T(X_i) Algoritmus:

```
➤ Utófeltétel: 1 \le Ind \le N és T(X_{Ind})
                           Ind:=1
                                 nem T(X[Ind])
                                Ind:=Ind+1
```

```
MH:=1
nem magánhangzóE(SzóMH)
   MH:=MH+1
```


Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

> Kimenet: Ind∈N

Specifikáció:

 $X \in H^N$ $T:H\rightarrow L$

> Utófeltétel: 1≤MH≤hossz(Szó) és magánhangzóE(Szó_{MH})

Megjegyzés:

a kódoláskor a nagybetűsítő toupper függvénynél ügyelni kell az ékezetes betűkre!

6. Keresés

Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. **Adjunk meg egy** hónapot, amikor **nem** nőtt a vagyona!
 - 2. Adjuk meg egy természetes szám egy 1-től és önmagától különböző osztóját!
 - 3. Adjuk meg egy ember nevében egy "a" betű helyét!
 - 4. Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!
 - 5. Adjuk meg egy számsorozat olyan elemét, amely nagyobb az előzőnél!

6. Keresés

Mi bennük a közös?

 Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. Adjunk meg Keresés egy hónapot, amikor nem nőtt a vagyona!

- Adjuk meg egy természetes szám egy 1-től és önmagától különböző osztóját!
- . Adjuk meg egy ember nevében egy a-betű helyét!
- Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!
- Adjuk meg egy számsorozat olyan elemét, amely nagyobb az előzőnél!

Mi bennük a közös?

N darab "valami" közül kell megadni egy adott tulajdonságút, ha nem tudjuk, hogy ilyen elem van-e.

N darab "valami" közül kell megadni egy adott tulajdonságút, ha nem tudjuk, hogy ilyen elem van-e.

6. Keresés

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

6. Keresés

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Van \in L$, $Ind \in N$

6. Keresés

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Van \in L$, $Ind \in N$

➤ Előfeltétel: –

6. Keresés

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Van \in L$, $Ind \in N$

➤ Előfeltétel: –

➤ Utófeltétel: Van=∃i (1≤i≤N): T(X;) és

 $Van \rightarrow 1 \leq Ind \leq N \text{ \'es } T(X_{Ind})$

6. Keresés

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Van \in L$, $Ind \in N$

➤ Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X;) és

 $Van \rightarrow 1 \leq Ind \leq N \text{ \'es } T(X_{Ind})$

N

másképp: (Van,Ind)= Keres i i=1

 $T(X_i)$

6. Keresés

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \gt Kimenet: $Van \in L$, $Ind \in N$

➤ Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X;) és

 $Van \rightarrow 1 \leq Ind \leq N \text{ \'es } T(X_{Ind})$

N

másképp: (Van,Ind)= Keres i $_{i=1}^{i=1}$ $_{T(X_i)}$

Tehát a feladat "egyik fele" az eldöntésből, a "másik fele" a kiválasztásból jön.

6. Keresés

Algoritmus₁:

Változó i:Egész

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- ➤ Kimenet: Van ∈ L, Ind ∈ N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és $Van \rightarrow 1 \leq Ind \leq N \text{ és } T(X_{Ind})$

i:=1				
	i≤N és nem T(X[i])			
	i:=i+1			
Van:=i≤N				
Van			/ N	
Ind	:=i			

Megjegyzés:

Többlet tudás: a megoldás az első adott tulajdonságú elemet adja meg.

4. Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!

6. Keresés példa

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- ➤ Kimenet: Van∈L, Ind∈N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $Jegy \in \mathbb{N}^N$

 \triangleright Kimenet: Bukott \in L, TI \in N

 $Van \rightarrow 1 \leq Ind \leq N \text{ és } T(X_{Ind}) > Előfeltétel: <math>\forall i (1 \leq i \leq N): Jegy_i \in [1..5]$

➤ Utófeltétel: Bukott=∃i (1≤i≤N): Jegy;=1 és

Bukott→1≤TI≤N és Jegy_{TT}=1

 Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!

6. Keresés példa

T: tulajdonságfüggvény

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $Jegy \in \mathbb{N}^{\mathbb{N}}$

 \gt Kimenet: Bukott \in L, TI \in N

 $Van \rightarrow 1 \leq Ind \leq N \text{ és } T(X_{Ind}) > Előfeltétel: <math>\forall i \ (1 \leq i \leq N): Jegy_i \in [1...5]$

> Utófeltétel: Bukott=∃i (1≤i≤N): Jegy_i -1 és

Bukott→1≤TI≤N és Jegy_{TI}=1

azaz (Bukott,TI)=Keres i
i=1
Jegy;=1

Specifikáció:

- > Bemenet: N∈N, X∈H^N
- > Kimenet: Van∈L, Ind∈N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

6. Keresés példa

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- > Kimenet: Van∈L, Ind∈N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

Specifikáció:

- > Bemenet: N∈N, Jegy∈ $\mathbb{N}^{\mathbb{N}}$
- > Kimenet: Bukott \in L, TI \in N
- > Előfeltétel: $\forall i (1 \le i \le N)$: Jegy_i∈[1..5]
- > Utófeltétel: Bukott=∃i (1≤i≤N): Jegy_i=1 és Bukott→1≤TI≤N és Jegy_{TI}=1

Algoritmus:		<u> </u>	
			Változó
	i:=1		i:Egész
	1. 1		


```
i:=1
i \le N \text{ \'es Jegy[i]} \neq 1
i:=i+1
Bukott:=i \le N
TI:=i
TI:=i
```


Programozási tételek – visszatekintés

1. <u>Sorozatszámítás</u> (összegzés)

szummás feladat

2. <u>Megszámolás</u>

számlálós ciklus

- 3. <u>Maximum-kiválasztás</u>
- 4. <u>Eldöntés</u>

kvantoros feladat

5. <u>Kiválasztás</u>

feltételes ciklus

6. Keresés

Programozási tételek – visszatekintés

1. Sorozatszámítás (összegzés)

N≥0

- 2. <u>Megszámolás</u>
- 3. <u>Maximum-kiválasztás</u>
- 4. <u>Eldöntés</u>

N≥0

- 5. <u>Kiválasztás</u>
- 6. <u>Keresés</u>

 $N \ge 0$

+1. Madártávlatból újra...

Programozási tételek – visszatekintés

1. Sorozatszámítás (összegzés)

N > 0

2. <u>Megszámolás</u>

3. Maximum-kiválasztás

N>0

4. Eldöntés

N≥0

5. <u>Kiválasztás</u>

N>0

6. <u>Keresés</u>

N≥0

+1. Madártávlatból újra...

Programozási alapismeretek 4. előadás vége