DS 4400

Machine Learning and Data Mining I Spring 2024

David Liu
Khoury College of Computer Science
Northeastern University

Today's Outline

- Gradient descent
 - General optimization algorithm
 - Instantiation for linear regression
 - Issues with gradient descent
 - Comparison with closed-form solution
- Non-linear regression
 - Polynomial regression
 - Cubic, spline regression

Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N}\sum (\theta^T x_i - y_i)^2$$
 Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Closed-form optimum solution for linear regression

Recap Linear Regression

- Optimal solution to min MSE
 - Use vectorization for compact representation
- Advantages of linear regression
 - Simplicity and interpretability
 - Closed-form optimal solution (depends uniquely on training data)
- Limitations of linear regression
 - Small capacity in number of parameters (d+1)
 - Does not fit well non-linear data
- Practical issues
 - Feature standardization
 - Outliers
 - Categorical features

Practical issues: Categorical features

- Predict credit card balance
 - Age
 - Income
 - Number of cards
 - Credit limit
 - Credit rating
- Categorical variables
 - Student (Yes/No)
 - State (50 different levels)

How to generate numerical representations of these?

Indicator Variables

- One-hot encoding
- Binary (two-level) variable
 - Add new feature $x_i = 1$ if student and 0 otherwise
- Multi-level variable
 - State: 50 values
 - $-x_{MA} = 1$ if State = MA and 0, otherwise
 - $-x_{NY} = 1$ if State = NY and 0, otherwise
 - **—** ...
 - How many indicator variables are needed?
- Disadvantages: data becomes too sparse for large number of levels
 - Will discuss feature selection later in class

Training phase of most ML

- Input: labeled data
- Define objective / loss metric
 - MSE for regression
 - Specific loss functions for classification
- Run an optimization procedure to minimize loss (error) on training data
- Output: trained model that best fits the training data

How to optimize loss functions?

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$
- $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\theta^{T} x_{i} y_{i})^{2}$ Loss / cost for regression
- General method to optimize a multi-variate function
 - Practical and efficient
 - Generally applicable to different loss functions
 - Convergence guarantees for certain loss functions (e.g., convex)

What Strategy to Use?

Follow the Slope

Follow the direction of steepest descent!

How to optimize $J(\theta)$?

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$

- If θ is on the left of minimum, slope is negative
- Increase value of heta

- If θ is on the right of minimum, slope is positive
- Decrease value of θ

In both cases θ gets closer to minimum

Stopping Condition

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$

When should the algorithm stop?

GD Convergence Issues

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$

• What happens when θ reaches a local minimum?

Complex loss function

- Convex loss functions only have global minimum, no local minima
- Complex loss functions are more difficult to optimize as they have multiple local optima

Possible Solution

Adjusting Learning Rate

α too small α too large

Choosing Learning Rate

α too large

- May overshoot the minimum
- May fail to converge
- May even diverge

To see if gradient descent is working, print out $J(\theta)$ each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α

Adaptive step size

- Start with large step size and reduce over time, adaptively
- Line search method
- Measure how objective decreases

Feature Scaling

Idea: Ensure that feature have similar scales

Makes gradient descent converge much faster

Multiple Linear Regression

- Dataset: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{N}\sum (h_{\theta}(x_i) - y_i)^2$$
 Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

MSE is a strictly convex function and has unique minimum

GD for Multiple Linear Regression

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

GD for Linear Regression

Initialize θ

$$||\theta_{new} - \theta_{old}|| < \epsilon$$
 or

 $||\theta_{new} - \theta_{old}|| < \epsilon$ or Repeat until convergence iterations == MAX_ITER

$$\theta \leftarrow \theta - \alpha \frac{2}{N} (X\theta - y)^T X$$

Equivalent

$$\theta_j \leftarrow \theta_j - \alpha \frac{2}{N} \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i) x_{ij}, j = 0, ..., d$$

• Assume convergence when $\|m{ heta}_{new} - m{ heta}_{old}\|_2 < \epsilon$

$$\| \boldsymbol{v} \|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{|v|}^2}$$

Gradient Descent in Practice

- Asymptotic complexity
 - -O(NTd), N is size of training data, d is feature dimension, and T is number of iterations
- Most popular optimization algorithm in use today
- At the basis of training
 - Linear Regression
 - Logistic regression
 - SVM
 - Neural networks and Deep learning
 - Stochastic Gradient Descent variants

Gradient Descent vs Closed Form

Gradient Descent

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

Closed form solution for LR

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Gradient Descent

Closed Form

Gradient Descent vs Closed Form

Gradient Descent

- Initialize θ
- · Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for i = 0 ... d

Closed form

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

- Gradient Descent
- + Linear increase in d and N
- + Generally applicable
- Need to choose α and stopping conditions
- Might get stuck in local optima

- Closed Form
- + No parameter tuning
- + Gives the global optimum
- Not generally applicable
- Slow computation: $O(d^3)$

Issues with Gradient Descent

- Might get stuck in local optimum and not converge to global optimum
 - Restart from multiple initial points
- Only works with differentiable loss functions
- Small or large gradients
 - Feature scaling helps
- Tune learning rate
 - Can use line search for determining optimal learning rate

Review Gradient Descent

- Gradient descent is an efficient algorithm for optimization and training ML models
 - The most widely used algorithm in ML!
 - Faster than using closed-form solution for linear regression
 - Main issues with Gradient Descent is convergence and getting stuck in local optima (for neural networks)
- Gradient descent is guaranteed to converge to optimum for strictly convex functions if run long enough

Polynomial Regression

Polynomial function on single feature

$$-h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_p x^p$$

Polynomial Regression

Polynomial Regression

• Typically to avoid overfitting $d \leq 4$

Polynomial Regression Training

- Simple Linear Regression
- $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_p x^p$
- How to train model?

Piecewise Polynomial

- Divide the space into regions
- Polynomial regression on each region
 - Linear piecewise (degree 1), quadratic piecewise
 (degree 2), cubic piecewise (degree 3)

Piecewise and spline regression

Piecewise polynomial vs Regression spline

1 break at Age = 50

1 knot at Age = 50

Definition: Cubic spline

A cubic spline with knots at x-values ξ_1, \ldots, ξ_K is a continuous piecewise cubic polynomial with continuous derivates and continuous second derivatives at each knot.

Cubic splines

- Turns out, cubic splines are sufficiently flexible to consistently estimate smooth regression functions f
- You can use higher-degree splines, but there's no need to
- To fit a cubic spline, we just need to pick the knots

A cubic spline with K knots has K+4 parameters

Additive Models

Multiple Linear Regression Model

$$-y_i = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d$$

Additive Models

$$-y_i = \theta_0 + f_1(x_1) + \dots + f_d(x_d)$$

- Can instantiate functions f with:
 - Linear functions: $f_i(x_i) = \theta_i x_i$
 - Quadratic: $f_i(x_i) = \theta_i^1 x_i + \theta_i^2 x_i^2$
 - Cubic: $f_i(x_i) = \theta_i^1 x_i + \theta_i^2 x_i^2 + \theta_i^3 x_i^3$

Generalization in ML

- Goal is to generalize well on new testing data
- Risk of overfitting to training data

Bias-Variance Tradeoff

- Bias = Difference between estimated and true models
- Variance = Model difference on different training sets
 MSE is proportional to Bias + Variance

Regularization

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_i
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Reduce model complexity Reduce model variance