Math 357 Long quiz 04B

2024-02-26 (M)

Your name:	

Let **Q** denote the field of rational numbers; given a prime $p \in \mathbf{Z}_{>0}$, let $\mathbf{F}_p \cong \mathbf{Z}/(p)$ denote the finite field with p elements; and let t be an indeterminate. For each of the quotient rings below, characterize its algebraic structure as "field", "integral domain but not field", or "ring but not integral domain". Justify your characterization.

$$\begin{split} R_1 &= \textbf{F}_3[t]/(t^4+t^3+t^2+1) \\ R_2 &= \textbf{Q}[t]/(3t^3-6t^2+7t+8) \\ R_3 &= \textbf{Q}[t]/(t^4-4t^3+6t^2-t+28) \end{split}$$

Hint: If you feel inclined to do a lot of computation, then I invite you to first check with me.

Solution: R_1 : Field. Let $f_1 = t^4 + t^3 + t^2 + 1$. Direct computation shows that f_1 has no zeros in F_3 . It remains to check for factors of degree 2. Without loss of generality, we may restrict our attention to monic irreducible factors of degree 2 (why?). A polynomial of degree 2 is reducible if and only if it has a linear factor, so by taking all possible products of the three linear polynomials in $F_3[t]$, we may enumerate the reducible monic polynomials in $F_3[t]$. These are

$$t^2 + t + 1, t^2 - t, t^2 - 1, t^2, t^2 + t, t^2 - t + 1$$

Removing these from the list of the nine monic polynomials of degree 2 in $F_3[t]$, we are left with

$$t^2 - t - 1$$
, $t^2 + 1$, $t^2 + t - 1$

For each of these three polynomials g, we perform polynomial division in $\mathbf{F}_3[t]$ on f_1 by g. In each case, we obtain a nonzero remainder, so we conclude that f_1 is irreducible. Hence $R_1 = \mathbf{F}_3[t]/(f_1)$ is a field.

 $R_2:$ Field. Let $f_2=3t^3-6t^2+7t+8\in \mathbf{Q}[t]$. Analyze $f_3\in \mathbf{R}[t];$ $f_2(-1)=-1<0$ and $f_2(0)=8>0$, so f_2 has a zero in \mathbf{R} in the interval [-1,0]. Analyze the first derivative: For all $t\in \mathbf{R}$, $f_2'(t)>0$, thus [-1,0] is the only interval in which a rational zero can possibly occur. Check the rational zeros in this interval consistent with the divisibility conditions implied by the coefficients of $f_2:-\frac{2}{3},-\frac{1}{3}$. Neither is a zero of f_2 , so f_2 is irreducible. Hence $\mathbf{Q}[t]/(f_2)$ is a field.

 R_3 : Field. Let $f_3=t^4-4t^3+6t^2-t+28\in \mathbf{Q}[t]$. Apply the Eistenstein–Schönemann criterion with $\mathfrak{p}=3$ to $f_3(t+1)=t^4+3t+30$ to conclude that f_3 is irreducible. Hence $\mathbf{Q}[t]/(f_3)$ is a field.