

CONTENT COVERED

- Data Science
 - The Definition of Data Science
 - The Role of a Data Scientist in a Project
 - The Jobs Available, Salary and Skills Required for Data Scientist
 - The Flow of a Data Science Project
- Machine Learning (ML)
 - The Definition of ML
 - The Differences between Artificial Intelligence (AI), ML and Deep Learning (DL)
 - The Types of ML and its Applications and Algorithm
 - The Introduction of Instance Space, Label Space and Hypothesis Space of ML model
 - The flow of creating ML model
 - The metric evaluation of ML classification model
 - Generalization, Underfitting and Overfitting

THE DEFINITION OF DATA SCIENCE

Data Science Is Multidisciplinary

THE DEFINITION OF DATA SCIENCE

THE DEFINITION OF DATA SCIENCE

Key Roles for a Successful Analytic Project

THE ROLE OF A DATA SCIENTIST IN A PROJECT

THE JOBS AVAILABLE, SALARY AND SKILLS REQUIRED FOR DATA SCIENTIST

• https://www.facebook.com/drhanlau/photos/a.2097466600312043/2097466646978705/?type=3&theater

THE JOBS AVAILABLE, SALARY AND SKILLS REQUIRED FOR DATA SCIENTIST

Debasis Nayak, lives in Malaysia (2017-present) Updated Oct 15

It depends from which background and what kind of experience you have.

If you are a fresher then it's very hard to find a job in Data scientist role.

If you are experienced like 1–3 year then min salary will be 6000–9000 RM.

Then if you have more experience, then you can understand. (10000+)

It also depends from which country you are from , if you are from Japan/India then you will get handsome salary, also nearly same for local Malaysian but you have to be very talented, because you will get very tough competition from foreigner Indians.

Minimum Salary (MYR)

A global financial institution has newly established an Analytics Centre of Excellence in Kuala Lumpur, Malaysia. They are looking for a senior...

16 hours ago . more .

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of 21th century requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modeling
- ☆ Experiment design
- Supervised learning: decision trees, random forests, logistic regression
- Unsupervised learning: clustering, dimensionality reduction
- Optimization: gradient descent and variants

DOMAIN KNOWLEDGE & SOFT SKILLS

- Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- Strategic, proactive, creative, innovative and collaborative

PROGRAMMING & DATABASE

- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Python
- □ Databases SQL and NoSQL
- ☆ Relational algebra
- Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers
- ★ Experience with xaaS like AWS

COMMUNICATION & VISUALIZATION

- Able to engage with senior management
- ☆ Story telling skills
- Translate data-driven insights into decisions and actions
- ☆ Visual art design
- R packages like goplot or lattice
- Knowledge of any of visualization tools e.g. Flare, D3.js, Tableau

THE JOBS AVAILABLE, SALARY AND SKILLS REQUIRED FOR DATA SCIENTIST

https://pbs.twimg.com/media/DVfEQJHWsAA_vst

THE FLOW OF A DATA SCIENCE PROJECT

http://www.rosebt.com/uploads/8/1/8/1/81 81762/142692.png?1344373798

THE DEFINITION OF MACHINE LEARNING

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data THE DIFFERENCES BETWEEN ARTIFICIAL INTELLIGENCE (AI), ML AND DEEP LEARNING (DL)

https://cdn-images-1.medium.com/max/1200/1*TiORvHgrJP me_lEiX3olVA.png

THE TYPES OF ML AND ITS APPLICATIONS AND ALGORITHMS

Supervised Learning

- Makes machine Learn explicitly
- Data with clearly defined output is given
- Direct feedback is given
- Predicts outcome/future
- Resolves classification and regression problems

Unsupervised Learning

- Machine understands the data (Identifies patterns/structures)
- Evaluation is qualitative or indirect
- Does not predict/find anything specific

Reinforcement Learning

- · An approach to Al
- Reward based learning
- Learning form +ve &
- +ve reinforcement
- *Machine Learns how to act in a certain environment
- To maximize rewards

THE TYPES OF ML AND ITS APPLICATIONS AND ALGORITHMS

THE TYPES OF ML AND ITS APPLICATIONS AND ALGORITHMS

The Car Searching

Name	Label
Ferrari	=
Mazda 8	+
Mazda CX5	=
Buggati Chiron	2
Honda City	=
Toyota Vios	=
Toyota Avanza	+
Toyota Vellfire	+
Honda Odyssey	+
Mini Cooper R53	_
Kia Carnival	+

Searching for a family car

Trom Examples

How are the labels generated?

The Car Searching

Name	Label
Ferrari	(5 <u>2</u>)
Mazda 8	+
Mazda CX5	-
Buggati Chiron	11-1
Honda City	-
Toyota Vios	1, - 1
Toyota Avanza	+
Toyota Vellfire	+
Honda Odyssey	+
Mini Cooper R53	14-7
Kia Carnival	+

trom Examples

What is the label for "Hyundai Startex"?

What about the label for "Honda Accord"?

The Car Searching

from Examp

Name	Label
Ferrari	-
Mazda 8	+
Mazda CX5	-
Buggati Chiron	-
Honda City	-
Toyota Vios	-
Toyota Avanza	+
Toyota Vellfire	+
Honda Odyssey	+
Mini Cooper R53	-
Kia Carnival	+

How are the labels generated?

Is it depends on the price and engine power?

 x_1 : price, x_2 : engine power

The Car Searching

- Class C of a "family car"
 - Prediction: Is car x a family car?
 - Knowledge extraction:
 - What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Input representation:

 x_1 : price, x_2 : engine power

Example: The set of all possible documents, names, sentences, images, emails, etc.

INSTANCE SPACE — INPUTS

Instances x ∈ X are defined by features/attributes

The choice of features is crucial to how well a task can be learned.

What are other possible features in the Car Searching?

- Number of seats?
- The look?
- The comfortable level?
- ??

LABEL SPACE — OUTPUTS

- Determines what kind of supervised learning task we are dealing with
- Classification: Output is categorical
 - Binary classification: Two possible labels, y ∈ {-1, 1} (e.g., [Yes, No], [Sick, Not Sick])
 - Multi-class classification: More than two possible labels [Like, Dislike, Neutral]
- Regression: Output is numerical (real numbers)

HYPOTHESIS SPACE – ALGORITHM

X: Instance Space

The set of examples that need to be classified

Y: Label Space

The set of all possible labels

The goal of learning: Find this target function

Learning is search over functions

The **hypothesis space** is the set of functions we consider for this search

HYPOTHESIS SPACE – ALGORITHM

INSTANCES, LABELS AND ALGORITHMS

- What is our instance space?
 - What are the inputs to the problem? What are the features?
- What is our label space?
 - What is the predictive task?
- What is our hypothesis space?
 - What functions should the learning algorithm search over?

THE FLOW OF CREATING ML MODEL

THE FLOW OF CREATING ML MODEL

THE METRIC EVALUATION OF CLASSIFICATION MODEL

1. Confusion Matrix

THE METRIC EVALUATION OF CLASSIFICATION MODEL

2. Precision, Recall and F1 Score

EXAMPLE

predicted labels

(made by the classifier)

true labels (given in the testing data)

face

place

regular ("overall") accuracy

$$\frac{9+8}{9+1+2+8} = 0.85$$

balanced accuracy

$$\frac{9}{9+1} + \frac{8}{2+8} / 2 = 0.85$$

EXAMPLE

Classifier	Precision	Recall	F1 Score	Accuracy
GaussianNB	0.35556	0.80000	0.49321	0.76429
DecisionTree	0.60000	0.60000	0.60000	0.88571
SVC (kernel='linear')	0.71429	0.25000	0.37037	0.87857
KMeans (n_clusters=2)	0.12500	0.25000	0.16667	0.64286

EXAMPLE

Methods	Accuracy	Precision	Recall	F1-score
K-Nearest Neighbours	0.952	0.074	0.268	0.116
Linear SVM	0.968	0.721	0.385	0.502
Decision Tree	0.951	0.250	0.385	0.303
Random Forests	0.958	0.320	0.315	0.317
Adaboost	0.960	0.230	0.567	0.327
Naive Bayesian	0.801	0.527	0.183	0.111
Variance of Laplacian	0.958	0.113	0.161	0.133
NIQE [9]	0.958	0.210	0.248	0.227
CNN-no augmentation [14]	0.968	0.700	0.466	0.560
CNN-translational augmentation	0.974	0.750	0.600	0.667
CNN-k-space augmentation	0.977	0.779	0.642	0.704
CNN with k-space+translational augmentation	0.982	0.809	0.652	0.722

https://www.researchgate.net/profile/Ilkay_Oksuz/publication/327050195/figure/tbl1/AS:667871336226818@1536244343080/Mean-accuracy-precision-recall-and-F1-score-results-of-image-classification-for-motion.png

GENERALIZATION

- How well a model trained on the training set predicts the right output for new instances.

UNDERFITTING AND OVERFITTING

Overfitting

- Refers to a model that models the training data too well.
 - when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data.
- Overfitting is more likely with nonparametric and nonlinear models that have more flexibility when learning a target function.

Underfitting

- Refers to a model that can neither model the training data nor generalize to new data.
- An underfit machine learning model is not a suitable model and will be obvious as it will have poor performance on the training data.
- Often not discussed as it is easy to detect given a good performance metric.

UNDERFITTING AND OVERFITTING

Example: Classification

Under-fitting

(too simple to explain the variance)

Appropriate-fitting

Over-fitting

(forcefitting -- too good to be true) May be caused by noise (unwanted anomaly in the data)

SUMMARY

- Data Science
 - The Definition of Data Science
 - The Role of a Data Scientist in a Project
 - The Jobs Available, Salary and Skills Required for Data Scientist
 - The Flow of a Data Science Project
- Machine Learning (ML)
 - The Definition of ML
 - The Differences between Artificial Intelligence (AI), ML and Deep Learning (DL)
 - The Types of ML and its Applications and Algorithm
 - The Introduction of Instance Space, Label Space and Hypothesis Space of ML model
 - The flow of creating ML model
 - The metric evaluation of ML classification model
 - Generalization, Underfitting and Overfitting

