MATH 644

Chapter 3

Section 3.3: Growth On $\mathbb C$ and $\mathbb D$

Contents

Liouiville's Theorem	2
Schwarz's Lemma Invariant Form of Schwarz's Lemma	3 5
Factorization Of Analytic Functions Growth Rate	7

Created by: Pierre-Olivier Parisé Spring 2023 A first consequence of the maximum principle is the famous Liouville's Theorem.

THEOREM 1. If f is analytic in \mathbb{C} and bounded, then f is constant.

Suppose that
$$|f| \in M < \infty$$
.

Let $g(z) = \begin{cases} \frac{f(z) - f(0)}{z}, z \neq 0 \\ f'|_{0} \end{cases}$, $z \neq 0$

Then g is analytic.

If $|z| = R$, then

 $|g(z)| \le \frac{2H}{R}$

By the max principle

Sup $|g(z)| \le \frac{2H}{R}$

where $|g(z)| \le \frac{2H}{R}$

where $|g(z)| \le \frac{2H}{R}$
 $|g(z)| = 0$

So, $|g| = 0$ and so $|f(z)| = |f(0)|$.

Schwarz's Lemma

A second consequence of the maximum principle is the Schwarz's Lemma.

THEOREM 2. Suppose f is analytic in \mathbb{D} and suppose $|f(z)| \leq 1$ and f(0) = 0. Then

$$|f(z)| \le |z|,\tag{1}$$

for all $z \in \mathbb{D}$, and

$$|f'(0)| \le 1. \tag{2}$$

Moreover, if equality holds in (1) for some $z \neq 0$ or if equality holds in (2), then f(z) = cz, where c is a constant with |c| = 1.

Note: - A bounded analytic function in $\mathbb D$ can't grow too fast in the disk.

Invariant Form of Schwarz's Lemma

THEOREM 3. Suppose f is analytic in $\mathbb D$ and suppose |f(z)| < 1. If $z, a \in \mathbb D$, then

$$\left| \frac{f(z) - f(a)}{1 - \overline{f(a)}f(z)} \right| \le \left| \frac{z - a}{1 - \overline{a}z} \right|$$

and

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

FACTORIZATION OF ANALYTIC FUNCTIONS

THEOREM 4. If f is analytic in \mathbb{D} , $|f| \leq 1$ and $f(z_j) = 0$, for $j = 0, 1, \ldots, n$, then

$$f(z) = \prod_{j=1}^{n} \left(\frac{z - z_j}{1 - \overline{z}_j z}\right) g(z),$$

where g is analytic in $\mathbb D$ and $|g(z)| \leq 1$ in $\mathbb D$.

Growth Rate

COROLLARY 5. If f is non-constant, bounded, and analytic in \mathbb{D} , and if z_j $(j \geq 1)$ are the zeros of f (repeated according to their multiplicity), then

$$\sum_{j=1}^{\infty} (1 - |z_j|) < \infty.$$