Analyse Numérique Exercices – Série 14

20 février 2019 Questions marquées de \star à rendre le 27 février 2019

1. (Unicité de la décomposition QR)

Soit $A \in \mathbb{R}^{n \times n}$ une matrice inversible. On étudie actuellement en cours la décomposition A = QR, où Q est orthogonale et R est triangulaire supérieure.

- (a) (0.75 points) Montrer qu'on peut choisir R tel que tous les éléments sur la diagonale soient positifs, c.-à-d. diag(R) > 0.
- (b) En supposant cette condition supplémentaire, on va montrer ensuite que cette décomposition est unique. Supposons qu'on ait deux décompositions A = QR = Q'R'. On va suivre les étapes suivants pour démontrer l'unicité.
 - i. (0.25 points) Soit $U = Q^{\prime T}Q$. Montrer que U est aussi égale à $U = R^{\prime}R^{-1}$.
 - ii. (0.25 points) Demontrer que U est orthogonale et triangulaire supérieure.
 - iii. (0.25 points) Déduire des remarques précédentes que U doit être nécessairement diagonale.
 - iv. (0.25 points) À l'aide de l'hypothèse diag(R) > 0, déduire que U = I.
 - v. (0.25 points) Montrer l'unicité.

2. (Polynôme adapté aux données)

Considérons les données (x_i, y_i) , $i = 1 \dots m$. On voudrait trouver les coefficients c_0, c_1, \dots, c_{n-1} tel que

$$y_i \approx c_0 + c_1 x_i + c_2 x_i^2 + \dots + c_{n-1} x_i^{n-1} \quad i = 1, \dots, m.$$
 (1)

- (a) Ecrire le système matriciel pour ce problème.
- (b) Considérons les données (0,0),(1,0),(2,1). En utilisant l'équations normale, trouver $y=c_0+c_1x$ qui approche les données.
- (c) Trouver le polynôme quadratique $y = c_0 + c_1 x + c_2 x^2$ pour les données de partie (b).

3. (Décomposition LDL^T et décomposition de Cholesky)

- (a) Soit $A \in \mathbb{R}^{n \times n}$ une matrice symétrique définie positive. A partir de la factorisation LDL^T (série 12, exercice 2), comment retrouve-t-on la factorisation de Cholesky de la matrice A? $Rappel: D = \operatorname{diag}(a_{11}^0, a_{22}^1, \dots, a_{nn}^{n-1})$
- (b) Touver la décomposition LDL^T et la décomposition de Cholesky de la matrice

$$\begin{bmatrix} 4 & 8 & 12 \\ 8 & 20 & 36 \\ 12 & 36 & 73 \end{bmatrix}.$$