

The dataset contains customer-related attributes such as account length, call usage, service plans, and customer service interactions. Various machine learning models were tested, with Random Forest and

Decision Tree classifiers performing best after hyperparameter tuning.

Business Understanding

Business Problem

Customer churn negatively impacts revenue and increases acquisition costs. By predicting churn, the company can implement data-driven retention strategies.

Project Objectives

- 1. Predict churn using classification models to identify high-risk customers.
- 2. Determine key churn drivers like service plans and customer service interactions.
- 3. Implement data-driven retention strategies based on model insights.
- 4. **Improve customer service** by analyzing the impact of service interactions on churn.
- 5. Enhance loyalty and marketing strategies through targeted offers.

Research Questions

- 1. What are the most significant factors influencing customer churn?
- 2. Does frequent customer service interaction indicate a higher risk of churn?
- 3. Do customers with an international plan have a higher churn rate?
- 4. Can a machine learning model accurately predict churn using available features?

Data Overview

- Dataset Name: Churn_tel_data.csv
- Records: 3,333 rows
- Features: 21 (including account length, total call minutes, international plan, etc.)
- Target Variable: Churn (Binary: 0 = No, 1 = Yes)

Data Preprocessing

1. Data Cleaning

- Converted Churn from boolean to integer.
- Encoded categorical variables (international plan, voice mail plan).
- o Dropped irrelevant columns (e.g., phone number, area code).

2. Outlier Detection & Handling

- Used **Z-score** to detect extreme values.
- Applied log transformation to normalize skewed features.

3. Feature Engineering & Selection

- Created new variables (e.g., total charge derived from minutes).
- o Used correlation analysis & Chi-square tests to remove redundant features.

4. Handling Missing Values

• No missing values detected in the dataset.

Exploratory Data Analysis (EDA)

Key Insights

- High churn rates among customers with frequent customer service calls.
- Customers with international plans tend to churn more.
- Night call duration is a significant churn predictor.
- Churn rate varies by state but not by area code.

Machine Learning Models

Model	Accuracy	Recall	Precision	F1-Score
Logistic Regression	84.7%	5.1%	55.6%	9.3%
Decision Tree (Tuned)	92%	69%	79%	74%
Random Forest (Tuned)	93%	59%	91%	72%
K-Nearest Neighbors	82.9%	2%	14.2%	3.5%

Best Model: Decision Tree (Tuned)

Accuracy: 92%Recall: 69%Precision: 79%F1-Score: 74%

Hyperparameter Tuning

- Used GridSearchCV to optimize:
 - o max_depth
 - o min_samples_split
 - o min_samples_leaf
- Applied Class Weighting to handle class imbalance.

Tableau Visualizations

Created an interactive dashboard to visualize: Churn Rate by State & Area Code Customer Service Call Analysis Churn Trends Based on Call Minutes & Charges Demographic Insights on Churn Behavior

Conclusion & Recommendations

Key Findings

Customers with high service calls have increased churn risk. International plan users show higher churn rates. Night call duration is a significant churn predictor.

Business Recommendations

Improve Customer Support: Reduce complaints with better service. Targeted Retention Offers: Provide discounts to high-risk customers. Optimize Service Plans: Create flexible plans for international callers. Monitor Key Metrics: Regular churn analysis for proactive decision-making.

References

- Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques.
- Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.
- Towards Data Science. (2023). Customer Churn Prediction: Best Practices in Machine Learning.

Future Improvements

Test deep learning models like Neural Networks. Deploy as a real-time churn prediction API. Improve class balance techniques for better recall.

Releases

No releases published Create a new release

Packages

No packages published Publish your first package

Languages

Jupyter Notebook 98.9%

• Python 1.1%

Suggested workflows

Based on your tech stack

Python package

Configure

Create and test a Python package on multiple Python versions.

Python application

Configure

Create and test a Python application.

Publish Python Package

Configure

Publish a Python Package to PyPI on release.

More workflows

Dismiss suggestions