Московский физико-технический институт

Лабораторная работа 1.3.3 ИЗМЕРЕНИЕ ВЯЗКОСТИ ВОЗДУХА ПО ТЕЧЕНИЮ В ТОНКИХ ТРУБКАХ

Отчёт студента группы Б02-303 Долговой Екатерины

Лабораторная работа 2.4.1

Измерение вязкости воздуха по течению в тонких трубках

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

Теоретические сведения

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку. В частности, если жидкость течёт вдоль оси x, а скорость течения $v_x(y)$ зависит от координаты y, в каждом слое возникает направленное по x касательное напряжение

$$\tau_{xy} = -\eta \frac{\partial v_x}{\partial y},\tag{1}$$

где η — коэффициент динамической вязкости.

Характер течения в трубе может быть **ламинарным** либо **турбулентным**. При ламинарном течении поле скоростей u(r) образует набор непрерывных линий тока, а слои жидкости не перемешиваются между собой. Турбулентное течение характеризуется образованием вихрей и активным перемешиванием слоев, при этом даже в стационарном течении в каждой точке имеют место существенные флуктуации скорости течения и давления.

Характер течения определяется безразмерным параметром задачи — числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta},\tag{2}$$

где ρ — плотность среды, u — характерная скорость потока, a — характерный размер системы (размер, на котором существенно меняется скорость течения).

Это число имеет смысл отношения кинетической энергии движения элемента объёма жидкости к потерям энергии из-за трения в нём $Re \sim K/A_{\rm kp}$. При достаточно малых Re в потоке доминируют вязкие силы трения и течение, как правило, является ламинарным. С ростом числа Рейнольдса может быть достигнуто его критическое значение $Re_{\rm kp}$, при котором характер течения сменяется с ламинарного на турбулентный.

В целях упрощения теоретической модели течение газа в условиях эксперимента можно считать несжимаемым, то есть принять плотность среды постоянной: $\rho = \text{const.}$

Для ламинарного течения в опыте будем применять формулу Пуазейля:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l},\tag{3}$$

где Q — объемный расход газа, R — радиус трубы, ΔP — перепад давления на участке, l — длина данного участка. Этой формулой будем пользоваться в работе как основной.

Эмпирически установленная формула для $l_{\rm ycr}$ — длины трубы от входа трубы, далее которой наблюдается установившееся течение:

$$l_{\text{ycr}} \approx 0, 2R \cdot Re.$$
 (4)

Экспериментальная установка

Рис. 1: Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 1. Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками.

Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (~ 30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора.

Ход работы

- 1. Подготовим установку к работе, ознакомившись с устройством и характеристиками приборов.
- 2. Проведем предварительный запуск установки и убедимся в ее работоспособности.
- 3. Измерим параметры окружающей среды: температуру и атмосферное давление.

$$T = 299 \text{ K}, \quad p = 100330 \text{ \Pia}.$$

Запишем диаметры трубок:

$$d_1 = (5,05 \pm 0,05)$$
 mm $d_2 = (3,0 \pm 0,1)$ mm $d_3 = (3,95 \pm 0,05)$ mm

4. Проведем предварительные расчеты. Для этого сначала оценим $Q_{\rm kp}$, приняв $Re_{\rm kp} \approx 10^3, \, \eta \approx 2 \cdot 10^{-5} \, \, {\rm Ha \cdot c}, \, u = \frac{4Q}{\pi d^2}$:

$$Re_{\mathrm{Kp}} = \frac{\rho u d}{2\eta} \longrightarrow Q_{\mathrm{Kp}} = \frac{Re_{\mathrm{Kp}}RT\pi d\eta}{2p\mu}$$

С помощью формулы Пуазейля (3) рассчитаем критический перепад давлений для выбранных участков, ответ выразим в делениях микроманометра (рассчетная формула: $P=9,80667\cdot 0,2\cdot 0,991\cdot h$, где h — число делений)

$$\Delta P_{\rm kp} = \frac{128Q_{\rm kp}\eta l}{\pi d^4}$$

Также из соотношения (4) получим l_{vcr} .

Все результаты подсчетов занесем в таблицу 1.

d, mm	$Q_{\rm Kp}, \frac{\pi}{4}$	$\Delta P_{\mathrm{\kappa p}}$, дел	$l_{\rm yct},~{ m cm}$
3,95	381	91	39,5
3,00	290	83	30,0
5,05	488	44	50,5

Таблица 1: Предварительные расчеты

- 5. Меняя расход воздуха краном K и наблюдая за столбиком спирта в микроманометре, визуально определите границу перехода $\Delta P_{\rm kp}$ от ламинарного течения к турбулентному. Видим, что значения предварительных расчетов слегка превышают визуальную оценку.
- 6. Чтобы относительная погрешность измерения расхода оказалась не более 1%, будем измерять расход не менее, чем за 20 секунд.
- 7. Измерим зависимости перепада давления ΔP на выбранном участке трубки диаметром d_1 от расхода газа Q. Результаты занесем в таблицу 2.
- 8. Измерим распределение давления газа вдоль трубки P(x). Установите поток воздуха через трубку, близкий к критическому, но всё ещё сохраняющий ламинарность. Данные занесем в таблицу 3.
- 9. Повторим вычисления пп. 7-8 на трубках других диаметров.
 - Для трубки диаметром $d_2 = (3, 0 \pm 0, 1)$ мм:
 - Для трубки диаметром $d_3 = (5,05 \pm 0,05)$ мм:
- 10. Измерим зависимость расхода от радиуса трубы при заданном градиенте давления. градиент: $0.2~\mathrm{mm/cm}$.
- 11. По результатам измерений п.7 построим графики зависимостей перепада давления от расхода $\Delta P(Q)$.

h, MM	ΔP , Πa	$Q_{ m cp}, \pi/$ ч
7	13,6	24,8
17	33,0	72,4
26	50,5	115,9
36	70,0	160,2
46	89,4	205,2
61	118,6	271,4
71	138,0	316,2
75	145,8	331,6
78	151,6	335,5
80	155,5	339,6
82	159,4	340,5
90	174,9	351,7
97	188,5	362,2
101	196,3	368,3

Таблица 2: $\Delta P(Q)$ для трубки 3,95 мм и участка 50 см

h, MM	ΔP , Πa	x, cm
3	5,8	11,5
18	35,0	30,0
23	44,7	41,5
39	75,8	70,0
46	89,4	81,5
74	143,8	131,5

Таблица 3: P(x) для трубки 3,95 мм при 125,2 л/ч

h, MM	ΔP , Πa	$Q_{ m cp},$ л/ч
5	9,7	30,2
10	19,4	79,2
13	25,3	92,5
16	31,1	117,6
20	38,9	142,1
25	48,6	171,2
30	58,3	196,9
35	68,0	217,3
40	77,7	237,4
45	87,5	263,1
50	97,2	282,7
55	106,9	300,7
60	116,6	317,7
65	126,3	332,0

Таблица 4: $\Delta P(Q)$ для трубки 3,0 мм и участка 20 см

Видим, что на всех трех графиках, начиная с какого-то момента начинается излом. Это означает смену ламинарного течения на турбулентное, когда перепад давлений начинает резко возрастать при увеличении расхода.

Также заметим, что до излома графиков $\Delta P(Q)$ точки отлично ложатся на прямую,

h, MM	ΔP , Πa	x, cm
8	15,5	11,5
26	50,5	30,0
36	70,0	41,5
60	116,6	70,0
70	136,1	81,5
112	217,7	131,5

Таблица 5: P(x) для трубки 3,0 мм при 118,3 л/ч

h, MM	ΔP , Πa	$Q_{ m cp},$ л/ч
5	9,7	44,7
10	19,4	122,0
13	25,3	161,8
15	29,2	195,4
17	33,0	234,1
20	38,9	266,7
25	48,6	347,1
28	54,4	383,2
32	62,2	417,4
35	68,0	446,2
40	77,7	473,9
45	87,5	507,6
50	97,2	529,6
56	108,8	548,7
62	120,5	566,4

Таблица 6: $\Delta P(Q)$ для трубки 5,05 мм и участка 50 см

h, мм	ΔP , Πa	x, cm
3	5,8	11,5
5	9,7	30,0
7	13,6	41,5
13	25,3	70,0
15	29,2	81,5
24	46,6	131,5

Таблица 7: P(x) для трубки 5,05 мм при 120,5 л/ч

1	
d, mm	$Q_{ m cp}, { m {\it I}}/{ m {\it Y}}$
5,05	229,6
3,85	75,3
3,00	27,4

Таблица 8: Q(d) для градиента давления 0,2 мм/см

соответствующую ламинарному течению.

Воспользуемся формулой Пуазейля (3) для расчета вязкости воздуха

$$\begin{split} k &= \frac{128\eta l}{\pi d^4} \quad \rightarrow \eta = k \frac{\pi d^4}{128l} \\ \varepsilon_k &= \sqrt{(\varepsilon_k^{\rm MHK})^2 + (\varepsilon_k^{\rm kocb})^2} = \sqrt{(\varepsilon_k^{\rm MHK})^2 + (\varepsilon_{\Delta P})^2 + (\varepsilon_Q)^2} \\ \varepsilon_\eta &= \sqrt{(\varepsilon_k)^2 + (4\varepsilon_d)^2 + (\varepsilon_l)^2} \end{split}$$

Для d_1 :

$$η = 1,52 \cdot 10^{-5} \text{ Πa} \cdot \text{c}$$

$$ε_η = 0,09$$

$$σ_η = 0,14 \cdot 10^{-5} \text{ Πa} \cdot \text{c}$$

Для d_2 :

$$η = 1, 21 \cdot 10^{-5} \text{ Πa} \cdot \text{c}$$

$$ε_η = 0, 15$$

$$σ_η = 0, 18 \cdot 10^{-5} \text{ Πa} \cdot \text{c}$$

Для d_3 :

$$η = 1,66 \cdot 10^{-5} \text{ Πa} \cdot \text{c}$$

$$ε_η = 0,09$$

$$σ_η = 0,15 \cdot 10^{-5} \text{ Πa} \cdot \text{c}$$

Видим, что для трубки меньшего диаметра значение получилось заниженным, остальные два вполне похожи на правду (при табличном значении для заданных параметров среды $1.85 \cdot 10^{-5} \ \Pi a \cdot c$).

Итого имеем значение для вязкости $\eta = (1, 6 \pm 0, 2) \; \Pi a \cdot c.$

Рассчитаем критическое число Рейнольдса $Re_{\rm kp} = \frac{2p\mu Q_{\rm kp}}{RT\pi dn}$

$$\varepsilon_{Re} = \sqrt{(\varepsilon_p)^2 + (\varepsilon_Q)^2 + (\varepsilon_T)^2 + (\varepsilon_d)^2 + (\varepsilon_\eta)^2}$$

Для d_1 , d_2 и d_3 критическое число Рейнольдса составило (1130 ± 140), (940 ± 120) и (1220 ± 150). Т.е. получили значения около 1000, что довольно хорошо.

- 12. По результатам измерений п. 8 построим графики P(x) зависимостей давления P от координаты вдоль трубы x. Видим, что в трех трубках диаметрами d_1 , d_2 , d_3 переходу от ламинарного участка к турбулентному происходит примерно на 40, 30, 70 см соответственно. Видим, что значения в целом не разнятся с предварительно рассчитанными.
- 13. Убедимся в пропорциональности $Q \propto R^4$ при ламинарном течении. Для этого для опытов в п.10 построим зависимости $\ln Q(\ln R)$ и найдем угловой коэффициент β .

$$\beta = (4, 2 \pm 0, 2)$$

Видим, что ожидаемое значение 4 принадлежит области значений β , т.е. результат будем считать достоверным.

Вывод

Мы экспериментально исследовали свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявили область применимости закона Пуазейля и с его помощью определили коэффициент вязкости воздуха.