Advanced Computer Graphics **Proseminar**

Univ.-Prof. Dr. Matthias Harders

Winter semester 2015

Announcement – Inaugural Lecture

Einladung

zur Antrittsvorlesung

Interaktive Simulation in der Medizin – von "Blood and Guts" zu "Bits and Bytes"

Univ.-Prof. Dr. Matthias Harders

Institut für Informatik

Mittwoch, 28. Oktober 2015, 18:00 c.t.

Großer Hörsaal der Fakultät für Technische Wissenschaften Technikerstraße 13b, 6020 Innsbruck

Advanced Computer Graphics Proseminar – WS2015

Exercise 1

• How many photons does a 100~W light bulb emit per second (assuming 2% efficiency and single emitted wavelength $\lambda = 500~nm$)?

universita

Advanced Computer Graphics Proseminar – WS2015

Exercise 1 - Solution

Energy of a photon

$$Q = \frac{h \cdot c}{\lambda}$$

Planck's constant

$$h \approx 6.62606957 \times 10^{-34} \text{ m}^2\text{kg/s} \approx 6.63 \times 10^{-34} \text{ m}^2\text{kg/s}$$

Speed of light propagation in air

$$c \approx 2.99702547 \times 10^8 \text{ m/s} \approx 3 \times 10^8 \text{ m/s}$$

Advanced Computer Graphics Proseminar – WS2015

Exercise 1 - Solution

$$Q = \frac{h \cdot c}{\lambda} \approx \frac{6.63 \times 10^{-34} \cdot 3 \times 10^{8}}{500 \times 10^{-9}} \frac{\text{m}^{2} \text{kg} \cdot \text{m}}{\text{s} \cdot \text{s} \cdot \text{m}}$$
$$= 3.978 \times 10^{-19} \text{ J}$$

100 W light bulb at 2% efficiency, emits 2 J/s

$$\frac{2}{3.978 \times 10^{-19}} \frac{J}{s \cdot J} \approx 5.027 \times 10^{20} \frac{1}{s}$$

Advanced Computer Graphics Proseminar - WS201

■ What is the solid angle of Austria on Earth? ■ What is the solid angle of Austria on Earth? ■ Under Street Vienna Street Vi

Exercise 2 - Solution

Solid angle of Austria

Area of Austria

 $A \approx 83879 \text{ km}^2$

Earth's radius

 $r \approx 6371 \,\mathrm{km}$

$$\Omega = \frac{A}{r^2} = \frac{83879 \text{ km}^2}{(6371 \text{ km})^2} \approx 0.002 \text{ (sr)}$$

Advanced Computer Graphics Proseminar – WS2015

universiti innsbruc

Exercise 3

• What is the irradiance due to an ideal point light source on a distant surface element?

Advanced Computer Graphics Proseminar - WS2015

MINISO

Exercise 3 – Solution

Irradiance due to ideal point light source

Irradiance

$$E = \frac{d\Phi}{dA}$$

$$I = \frac{d\Phi}{d\omega} \Rightarrow d\Phi = I \cdot d\omega$$

Advanced Computer Graphics Proseminar – WS2015

MAKEFÜLK

Exercise 3 – Solution

Irradiance due to ideal point light source

Irradiance

$$E = \frac{I \cdot d\omega}{dA}$$

Solid angle

$$d\omega = \frac{dA \cdot \cos \varphi}{\delta^2}$$

dvanced Computer Graphics Proseminar – WS2015

Exercise 3 – Solution

Irradiance due to ideal point light source

Irradiance

$$E = \frac{I \cdot \cos \varphi}{\delta^2}$$

For ideal point light sources

$$I = \frac{\Phi}{4\pi}$$

Advanced Computer Graphics Proseminar – WS2015

inns

Exercise 3 – Solution

Irradiance due to ideal point light source

Irradiance

$$E = \frac{\Phi \cdot \cos \varphi}{4\pi \cdot \delta^2}$$

Advanced Computer Graphics Proseminar – WS201

Exercise 4

Assume a small, flat, square plate placed on top of the Patscherkofel, with the normal pointing upwards. It is during the day and there are no artificial light sources. The sky is covered in clouds, exhibiting a uniform radiance of 1000 W/(sr·m²). What is the irradiance at the center of the plate?

[OE7AAI, Manfred]

@igs

Advanced Computer Graphics Proseminar – WS2015

12

Exercise 4 – Solution

Irradiance via integration of radiance

$$E = \int_{\Omega} L \cdot \cos \theta d\omega$$

$$L = 1000 \frac{W}{sr \cdot m^2}$$

ynixersita

Advanced Computer Graphics Proseminar - WS2015

Exercise 4 - Solution

Irradiance via integration of radiance

$$E = 1000 \int_{\Omega} \cos \theta d\omega$$

$$d\omega = \sin\theta \cdot d\theta \cdot d\varphi$$

Advanced Computer Graphics Proseminar - WS2015

univers innsbru

Exercise 4 – Solution

Irradiance via integration of radiance

$$E = 1000 \int_{0}^{2\pi/2} \cos \theta \sin \theta \cdot d\theta \cdot d\varphi$$

$$= 1000 \int_{0}^{2\pi} d\varphi \left[-\frac{1}{2} \cos^{2} \theta \right]_{0}^{\pi/2}$$

$$= 1000 \int_{0}^{2\pi} \frac{1}{2} d\varphi$$

$$= 1000 \left[\frac{1}{2} \varphi \right]_{0}^{2\pi} = 1000\pi \frac{W}{m^{2}}$$

Advanced Computer Graphics Proseminar – WS2015

Tasks for Next Time

- Download radiosity example from lecture webpage
- Compile, run program, view output
- Examine source code (detailed explanations next proseminar)

Advanced Computer Graphics Proseminar – WS2015

Proseminar Schedule

Date	Topic	Remark
12.10.	Introduction	
19.10.	Theory – Radiometry	Radiosity example code
26.10.	(no proseminar - Nationalfeiertag)	
2.11.	(no proseminar - Allerseelen)	
9.11.	Discussion of Radiosity code	Programming assignment 1
16.11.	Programming support and advice	
23.11.	Presentation of solutions	Path Tracer example
30.11.	Discussion of Path Tracer code	Programming assignment 2, Hand-in PA1
7.12.	Programming support and advice	
14.12.	Presentation of solutions	Project proposal (21.12. Hand-in PA2)
	Christmas	break
14.1.	Geometric Modelling	
21.1.	Procedural Modelling	
28.1.	Programming support and advice	
4.2.	Project presentation	Submission final project