Deep Learning

Lecture 3

Recall from last time: Challenges of recognition

Viewpoint

Illumination

This image is CC0 1.0 public domain

Deformation

This image by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Recall from last time: data-driven approach, kNN

Linear classification

Neural Network

This image is CC0 1.0 public domain

Linear

classifiers

Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Parametric Approach

Parametric Approach: Linear Classifier

Image
$$f(x,W) = Wx$$

$$f(x,W) = 10 \text{ numbers giving class scores}$$

Array of $32x32x3$ numbers (3072 numbers total)

$$W$$

parameters or weights

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat / dog / ship)

Example with an image with 4 pixels, and 3 classes (cat / dog / ship)

Algebraic Viewpoint

$$f(x,W) = Wx$$

Example with an image with 4 pixels, and 3 classes (cat / dog / ship)

$$f(x,W) = Wx$$

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Visual Viewpoint

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of 32x32x3 numbers (3072 numbers total)

Plot created using Wolfram Cloud

Cat image by Nikita is licensed under CC-BY 2.0

Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So far: Defined a (linear) score function f(x,W) = Wx + b

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

Cat image by Nikita is licensed under CC-BY 2.0
Car image is CC0 1.0 public domain
Frog image is in the public domain

-3.45	-0.51	3.42
-8.87	6.04	4.64
0.09	5.31	2.65
2.9	-4.22	5.1
4.48	-4.19	2.64
8.02	3.58	5.55
3.78	4.49	-4.34
1.06	-4.37	-1.5
-0.36	-2.09	-4.79
-0.72	-2.93	6.14
	-8.87 0.09 2.9 4.48 8.02 3.78 1.06 -0.36	-8.87 6.04 0.09 5.31 2.9 -4.22 4.48 -4.19 8.02 3.58 3.78 4.49 1.06 -4.37 -0.36 -2.09

Loss functions

With some W the scores
$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

With some W the scores f(x, W) = Wx are:

$$f(x, W) = Wx$$
 are

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.()

-3.1

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx are:

$$f(x, W) = Wx$$
 are

1.3

cat

car

3.2

5.1

-1.7

frog

4.9

2.0

2.2

2.5

-3.1

Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

car

frog

Losses:

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+\max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

car

5.1

frog

Losses:

3.2

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Multiclass SVM loss:

 (x_i,y_i) Given an example where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3 - 4.9 + 1)$

 $+\max(0, 2.0 - 4.9 + 1)$

 $= \max(0, -2.6) + \max(0, -1.9)$

= 0 + 0

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

2.5

car

5.1

4.9

-1.7 frog

2.0

Losses:

-3.1

Multiclass SVM loss:

 (x_i,y_i) Given an example where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$

 $+\max(0, 2.5 - (-3.1) + 1)$

 $= \max(0, 6.3) + \max(0, 6.6)$

= 6.3 + 6.6

= 12.9

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

$$= 5.27$$

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q1: What happens to the loss if car scores change a bit?

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: What is the min/max possible loss?

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: At initialization W is small so all $s \approx 0$. What is the loss?

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes? (including $j = y_i$)

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

With some W the scores

$$f(x, W) = Wx$$
 are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

$$f(x, W) = Wx$$
 are:

3.2 cat 5.1 car

1.3

2.2

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

$$= \max(0, 1.3 - 4.9 + 1)$$

$$+ \max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

$$= 0$$

With W twice as large:

$$= \max(0, 2.6 - 9.8 + 1)$$

$$+ \max(0, 4.0 - 9.8 + 1)$$

$$= \max(0, -6.2) + \max(0, -4.8)$$

$$= 0 + 0$$

$$= 0$$

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0! How do we choose between W and 2W?

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

Data loss: Model predictions should match training data

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

Elastic net (L1 + L2):
$$R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$$

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

Elastic net (L1 + L2):
$$R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$$
 Stochastic depth, fractional pooling, etc

More complex:

Dropout

Batch normalization

λ = regularization strength(hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Why regularize?

- Express preferences of weights
- Make the model *simple* so it generalizes to test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L2 regularization likes to "spread out" the weights

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data *too* well so we don't fit noise in the data

Want to interpret raw classifier scores as probabilities

cat

3.2

car

5.1

frog

-1.7

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$
 $P(Y = k|X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$

Softmax

Function

cat

3.2

car

5.1

frog

-1.7

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

Probabilities must be >= 0

cat 3.2 $\xrightarrow{\text{exp}}$ 164.0 frog -1.7 0.18

unnormalized probabilities

$$H(p) = -\sum_{i=1}^{n} p_i \log(p_i)$$

$$H(p) \ge 0 \ \forall p, \quad H(p) = 0 \iff p = \delta_k$$

 $\nabla H(p) \le 0 \ \forall p, \quad \nabla H = 0 \iff p_i = \frac{1}{n}$

Kullback-Leibler Divergence

$$D_{KL}(p||q) = \sum_{i=1}^{n} p_i \log\left(\frac{p_i}{q_i}\right)$$

$$D_{KL}\left(p \mid \mid q\right) = \sum_{i=1}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right) \qquad D_{KL}\left(p \mid \mid q\right) \geq 0 \ \forall p, q$$

$$D_{KL}\left(p \mid \mid q\right) = 0 \iff p = q \text{ a.e.}$$

$$\begin{split} H(p,q) &= -\sum_{i=1}^{n} p_i \log(q_i) = -\sum_{i=1}^{n} p_i \log(q_i) + \sum_{i=1}^{n} p_i \log(p_i) - \sum_{i=1}^{n} p_i \log(p_i) \\ &= -\sum_{i=1}^{n} p_i \log(p_i) + \sum_{i=1}^{n} p_i \log\left(\frac{p_i}{q_i}\right) = H(p) + D_{KL}\left(p \mid \mid q\right) \end{split}$$

$$H(p,q) \ge H(p) \ge 0 \ \forall p,q$$

$$H(S,q) - H(S) + D \quad (S \sqcup q) - 0 +$$

$$H(\delta_k, q) = H(\delta_k) + D_{KL}(\delta_k | | q) = 0 + \log\left(\frac{1}{q_k}\right) = -\log(q_k) \forall q$$

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$s=f(x_i;W)$$
 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i|X = x_i)$$

$$L_i = -\log P(Y = y_i | X = x_i)$$
 $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Soft

Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Q1: What is the min/max possible loss L i?

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Soft

Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i | X = x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

frog -1.7

Q1: What is the min/max possible loss L_i?

A: min 0, max infinity

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Soft

Softmax Function

Maximize probability of correct class

Putting it all together:

 $L_i = -\log(\frac{e^{sy_i}}{\sum_i e^{s_j}})$

Q2: At initialization all s will be approximately equal; what is the loss?

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

5.1 car

-1.7 frog

$$L_i = -\log P(Y = y_i | X = x_i)$$
 $L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$ Q2: At initialization all s will be approximately equal; what is the loss?

A: log(C), $eg log(10) \approx 2.3$

Softmax vs. SVM hinge loss (SVM) -2.85 matrix multiply + bias offset $\max(0, -2.85 - 0.28 + 1) +$ 0.86 max(0, 0.86 - 0.28 + 1)0.01 -0.05 0.05 0.1 -15 0.0 1.58 0.28 0.7 0.2 0.05 0.16 22 0.2 cross-entropy loss (Softmax) 0.0 -0.45-0.2 0.03 -0.3-44 -2.85 0.058 0.016 W56 normalize exp $-\log(0.353)$ 0.86 2.36 0.631 x_i (to sum 0.452 to one) 0.28 1.32 0.353

Softmax vs. SVM

$$L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and
$$y_i = 0$$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a score function:
- We have a loss function :

$$s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W)$$
 Full loss

