25**X**1

Sanitized Copy Approved for Release 2010/06/25 : CIA-RDP80T00246A040500800001-3

Next 1 Page(s) In Document Denied

INFORMATION REPORT INFORMATION REPORT

CENTRAL INTELLIGENCE AGENCY

This material contains information affecting the National Defense of the United States within the meaning of the Espionage Laws, T = 18, U.S.C. Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by li

	Con On House I - Da	L -W-T-T-i-L		25 X 1
COUNTRY	Y Hungary	REPORT	,	
UBJECT	Incandescent and Radio Tubes	DATE DISTR.	4 MAR 1939	
	(specifications)	NO. PAGES	1	1
		REFERENCES	RD	
ATE OF				25 X 1
LACE &	0			05.
AIL AC	SOURCE EVALUATIONS ARE DEFINITIVE	E. APPRAISAL OF CONTEN	IT IS TENTATIVE.	25X
	pages) on radio tubes, and the produced by the United Incandes	two Tungsram cat other (5 pages) on i	ncandescent tube	s, reportedly
[2. The catalogues are believed to cover, they may be regarded as	be in commercial use		
À.	2. The catalogues are believed to	be in commercial use		
à.	2. The catalogues are believed to	be in commercial use		
2	2. The catalogues are believed to	be in commercial use		from this
2	2. The catalogues are believed to	be in commercial use		from this
;	2. The catalogues are believed to	be in commercial use		from this
	2. The catalogues are believed to cover, they may be regarded as	be in commercial use unclassified.		from this

INFORMATION REPORT INFORMATION REPORT

TUNGSRAM **GLIMMLAMPEN**

Die TimGSRAK Glimminn pen mind edelganget mite Gamienibet ienerchren /Entladungsrehren/. Ihre Lebenadauer int
bedeutend grönner als jene der Glühlampen. Der Verbrauch beträgt, je nach Type, 0,5 - 2 Watt. Die Glimmlampen mind für Wechsel- und Gleichstrom gleich wohl
verwendbar. Im ersteren Lalle glühen beide Elektroden,
während im zweiten Falle nur die negative Elektrode
leuchtet. Diese Eigenschaft ermöglicht verschiedene
nützliche praktische Anwendungen.

Das Anwendungsgebiet der TUNGSRAM Glimmlampen ist sehr ausgebreitet. Sie sind überall gut verwendbar, wo keine grosse Lichtstärke erforderlich ist, wie z.B.

fur Poleuchtungsswecke:

als Nachtbeleuchtung in Spitälern, Wohnungen als Richtungslicht:

für Theater- und sonstige Notausgunge als Signallampe:

in den verschiedensten Binrichtungen, Instrumenten, usw.

Die Verwendung der Glimmlampen ist auf sämtlichen Gebieten mit Rückeicht auf die Stromeraparnis äusserst vorteilhaft.

Bis zur zugelausenen Betriebsstrometärke sind Glimmlampen much als Spannungsstabilisatoren anwendtar. In verschiedenen Kunstschaltungen sind sie sogar als Ersatz für Instrumente geeignet.

Die viererlei Typer der TUNGSHAM Glimmlanpen /NG 1, NG 7, NG 4 und NG 5/ sind mit ihren technischen Angaben, Abmessungen usw. in der tieferstehenden Tabelle angeführt. Die für Normalspannungen vorgesehenen Typen /NG 4 und NG 5/ sind mit eingebautem Widerstand versehen.

Fur apesielle Verwendungen werden die Typen ohne Miderstand /NG 1 und NG 2/ empfohlen; auf Munsch kann
auch Type NG 1 ohne Miderstand ausgeführt werden. Die
Glimmlanpen ohne Miderstand werden in Binrichtungen
verwendet, wo der Widerstand bereits eingebaut ist.
Liese Typen durfen nicht unmittelbar an die Spannung
geschaltet werden, denn dies wurde die Glimmlampe ruinieren. Der erforderliche Widerstand, dessen Wert in
der Tabelle ebenfalls angegaben int, wird mit einem
lol des Lampensockels, mit der Lampe in Reihe geschaltet. Niedrigere Widerstandswerte verringern die Lebensdauer; hohere setzen die Lichtstärke herab.

	Zund- spannung V	Luge- lassener max. Betriets- strom ma	Abnessungen nax. mm Durch- Lange	Sockel	Binge- bauter Mider- stand	Empfohlener Widerstand ca. Ohm 110 W 220 V	Typen- No.	Att.
	87 - 95	2 - 3	17 52	EA 15 s	ohne	16000 34000	NG 1 B	1
	85 - 1CC	2 - 3	17 60	B 14	ohne	16000 34000		2
•	87 - 95	4 - 5	18 63	BA 15 s	ohne	900C 20CCC	NG 2 B	1
4	85 - 100	4 - 5	18 70	B 14	ohne	900°C 2000°C	NG 2	2
	85 - 100	2 - 3	16–17 54	B 14	mit		NG 4-110	3
	160 - 200	2 - 3	16-17 54	B 14	mit		NG 4-220	3
	85 - 100	15 - 20	55-60 105	E 27	mit		NG 5-110	4
ļ	160 - 200	15 - 20	55-60 105	B 27	mit		BG 5-220	4

Sanitized Copy Approved for Release 2010/06/25 : CIA-RDP80T00246A040500800001-3 Abb. 1 g g 15 - 20 15 - 20 Abb. 3 e5 - 100 160 - 200 Abb. 4 185/2690

Sanitized Copy Approved for Release 2010/06/25 : CIA-RDP80T00246A040500800001-3

Dieser Katalog enthalt eine Auswahl der meistgesuchten TUNGSRAM Radiorohren. Ausser den Empfangs-, Kraftverstärkerund Senderohren wurden einige Typen für andere als Rundfunkzwecke aufgenommen. Eine Vergleichstabelle erleichtert den Ersatz fremder Typen durch TUNGSRAM Röhren.

Es muss betont werden, dass die Aufnahme einiger älterer Röhrentypen nicht unbedingt bedeutet, dass dieselben erhältlich sind. Vielmehr wurden diese Typen aufgenommen, um einen Vergleich der Röhren beim Ersatz zu erleichtern.

Wir hoffen, mit diesem Katalog dem Techniker und dem Kunden dank der übersichtlichen Zusammenstellung der Daten gute Dienste zu leisten.

Tungsram

Tungssam

AGVAL-NERSE FER WECHNELHTROM

		Hele	,	n = d + n	Verban I	agetter.	Newry	18 80 2 -	litade	
T,p.	Vernendung	·p·m ·trus	4		Merrica	111100	∖ og epsamm.	u pilot stanoil	America.	offens
		Volt \mp	Volt	\	\ will	en \	\	‱ ‱	Vedt	mA
F. NRC 80 Prefacts Dinte-Trinde	FM oder AM FM Demodulator in UKW und Fernsehempfängern	63 / 0-45	250	1-0			з	3 %	/41 (101) /42 (101) /41 (101)	64) 75 75
F.MY 80 Puodiole- Pentode	11F, ZF Verstärker mit veränder- licher Steilheit	6-3 / 0-3	250	5-0	85250	1-75	2 41%	3	350 5	24
ECC 81 Doppel-Triode	TV Ovrillator Misch- und Verstärkerröhre	63 p 0-3 i 12-6 x 0-15	100 250		ŀ		1 2	1 %		
ECC #2 Doppel-Triode	NF Verstärker	63 p 0-3	11111	11-8			0	1 .,	•	
ECC BS	NF Verstärker,	12·6 × 0·15 6·3 p 0·3	250 100	10-5 0-5			н-5 1	2 %		
Doppel-Triode EGC 85	Phasenumkehrstufe HF Verstärker	12-6 a 0-15	250	1.2		·	2	1,		
Doppel-Triote	und Mischröhre	6-3 / 0-435	250	10		-	2.3	1		•
ECH #1 Criode Heptode	Oszillator		250	4.5				3		-
for FM, AM	Versiarkei	6-3 / 0-3	100 250	13:5 3:25	103	6.7	t-3 2			
Empfänger	Mischstufe NF und ZF Verstürker		250	6-5	250 100	3-8	28-5 = 2 42	3	i	
ECL 80 Triode-Pentode	NF Verstårker Oszillator	6-3 / 0-3	100	н			0	3 *)	~	
t time of fall todic	Endverstärker Synchr. Trennröhre	٠.	250	14		2.6	12-2	2 %	It _{es} = 4:7	kØ
EP 80 Pentode	HF, ZF oder Video-Ver- stärker oder Mischröhre in TV Empfängern	6-3 / 0-3	170 250	10 10	170 250	2·5 2·8	- 2 -3·5	1 9	i	
EF 85 Pentode	für regelbare HF-, ZP- Stufen Breitband-Verstärker	6-3 / 0-3	250	10	100	2.5	-2 35	3	i	
EF 86 Pentode	NF Vorverstärker	6-3 / 0-2	250	3	140	0-55	2	3		-
RP 89 Pentode	HF, ZF u. NF Verstärker	6-3 / 0-2	170	12	1(#)	4-1	. 1	3	•	.
KI. 84	Endver- Klasse A		250 250	9 49-2	85 250	3·2 11·6	1	1.5	V ₁ = 4.7 V	
Pentode	stärker Klasse 13.7)	6-3 / 0-76	250	2 × 37-5	250	2 < 7-5	11-6		V, = # V,	
RM 00 Abstimm- onzeiger	Abstimmanzeiger	6-3 / 0-3	250	0-370-01			1 14	3	Leuchtsch 250	1rm 241
F.Z. 86 Hechyakuum- Doppelweg- gleichrichter	Netzgleichrichter	63/66	2 × 250 2 × 350	\$M9	_	İ	C _{max,} ≈ 30 μ	,	#IRI	2-2

⁴⁾ Inversspannung, Scheitelweri

2) Triodenteil

^a) Mischsleitheit

*) Automatische Gittervorspannung

⁾ Scheitelwert der Stromstärk

Sanitized Copy Approved for Release 2010/06/25 : CIA-RDP80T00246A040500800001-3 1.2 54 * 295 100 41 1... MH 3-1 6-25 1200 17000 1-6 22 180 50 7.7 17 100 4700D 130 22 1-6 62-5 排件 15 6 % 57 1.5 2.5 22 50 106 | L_{et} + g₂ = 17 kΩ | L_{et} + g₃ = 200 μA 0-55 6.5 1-0 0-8 3-7 22 100 61 107 12:5 <0.01 1.7 20 47(HH) 20 0-9 150 81 100 25 17500 1.55 10 2.6 14 * <.0-2 3-5 1.2 50 <0.007 0-7 61 100 0-65 MD 0-5 MQ 2.5 150 61 100 -5 MU 0-2 100 61 110 10-5 2-25 0-45 23 117 8 (34) 19 133 5200 5-7 10 12 72 111 11 61 118 9 S. - 23 mA/V

Tungssam

NOVAL-MERIE PÜR GLESCH- URI

		11-	10.	١	1-4-	No hair	agsiter.	Meuro	til les-	lited	•••
Type	Verneadung		of team	spone,	· Ireas	·1	11 mage	restrans.	u sdry- sland		utrum
		Vedt	Amp.	\ -4 1	 .\	\ ~ 41	m-\	\-an	WELL	Viede	mA I
Pinneg-Horbspon mangs Impuls-Gil.	Gleichrichter	1-25 <i>d</i>	0-2			Max.	Inver	-demonstrated	15 AV		
PAIN: 80 Dreifach- Diode-Triode	Detektor NF Verslärker für FM, AM,FM und TV-Empfänger	9-5 /	6-3	250	1.0			3	3 '1	Va - 350 9 Va - 350 Va - 350	10 10
PCI: 84* Doppeltriode	TV-HF Eingangsverstar- ker bls 220 MHz	7 1	0-3	tma	12			1.5	0-5	-	
PIX: 85 Euppeltriode	TV-Eingangsoszillator und Mischröhre	9 i	0-3	· [10)	4:5 10			1·1 2·1	1		_
PCI. BI* Triode:	i Horizontal-Chzillator E oder Vorverstärker	12:6 <i>i</i>	0-3	2181	0-8			1.5			
Endpentode	* NF oder Bildablen- Lungs-Endverstärker	12-67	05	200	;p)	200	3-3	6-3	1.2		*
PI. 81* Pentode	l fortzontal-Zeilenablen- kungs-Endverstärker	21-5 /	0-3	170 200	45 40	170 200	3 2·8	22 - 28	-	$V_1 = 19$ $V_1 = 22 \sqrt{3}$	Van Van
PI, 83° Pentode	Vertikal-Hildahlen- kungs-Endverstärker	16-5 /	0.3	170 200	53 45	170	10 8-5	10-4 13-9	1 1)	H _{rs} ≈ G8	
Pl. 63* Pentode	Video-Endverstärker	15 4	0-3	170 200	36	170 200	5	- 2·3 - 3·5	1 1)	_	
PV 82 Einweg-Neta-til.	Netzgleichrichter	19 /	0-3	max.	max.			-3.3 C _{mat.} = 00	μР		_ }
PY 83 Einweg-Netz-Gil.	Netzgleichrichter	20 (0-3		Ma	x. Inve	rruspani Anoden	nung 5 kV gleichstron	1) 1)	<u></u>	\neg

¹⁾ Bel automatischer Gittervorspannung

40-ER SERIE FOR WECHSELSTROM

		Helz.	Anod	en.	Schiem	giller-	Stemory	itter-	Die	den.
Туре	Verwendung	sponn. strom	spana.	strom	spann.	strom	vorspann.	wider-	spann.	el russ
<u> </u>		Volt Amp.	Volt	mA	Volt	mΛ	Vati	mut. MQ	Velt	mA i
RAF 42 Diode-Pentode	HF, ZF und NF Verstärker mit veränderlicher Steilheit	6-3 / 1 0-2	250	50	85	1.50	-243	3	max.	max.
EDC 41 Trippetitisde- Trisde	Demodulator und NF Verstärker	6-3 / 0-23	250	,	_	-	-3	a	350 ') max.	5 max.
BIX: 40 Unppel-Triote	NF Verstärker Plasenumkehröhre und Endröhre	6-37 0-6	250	6		_	_		250	5
RRH 42 Triode-	Triode Oszillator	0-3 / 0-23	250	5-1		-	H _{er} = 22 4 J _{et} = 0-35 (7 kU	V	n v.
Hexade	texode Mischstufe		250	30	85124		-2 29			ت
Pentode	NF Verstärker	6·3 / 0·2	250	! 3-0	140	0-55	-2	2	_	-

•

¹⁾ Inversspannung, Scheitelwert

^{*)} S_s = 1·7 mA/V *) S_s = 2·3 mA/V

^{*} Die entsprechenden Typen der E-Serie in Vorbereitung

Tungstam

IO-ER KERIE FÜR WECHNELSTROM,

				10-4	1	: No Ballion	gil ter-	Struce	All pas-	1110	den-
Type	Verwendung	ърмал.	s) reco	spanu,	·1rum	drive	strum	· es openso.	u tekro- stand	4	strem.
		\ uii	\mp.	Vall	 \	Volt	m \	Vell	**************************************	Velt	m.\
837 48 Pentode	Verstårher mit veränder- licher Strilheit	6-3 7	0-2	250	60	100,250	1.70	2-5 39	. 3	-	
Fratode	Breitbandverstärker	6-3-7	0-33	250	100	250	2-4	2	•		
63. 41	Klasse A Endverstårker			250	36i	250	5-2		•		-
Pentode	Klasse Ali _i Gegentaktverstårker	6-3 /	0-71	250	2 - 36 2 - 39-5	250	2 - 5-2 2 - 8	-			-
AZ 41 Horhvakuum- Poppelweg-til,	Netzgleichrichter	1 4	0-72	2 - 500 2 - 300	660 70			(' _{mat} , = 50	4 μ	-	-
lichvakuum- Hoppelweg-Gl.	Netzgleichrichter	6-3 /	0-6	2 - 350 2 - 250	(M)		-	C	PμF		•

⁾ Schritelwei

40-ER NERIE PÜR GLEICH- UND

-								,			
		11 •	iz-	And	oden-	Schirm	gitter	Struerg	ptter-	Die	den-
Туре	Verwendung	spann.	strom	spann.	strom	spenn.	strem	verspann.	-		strem
		Volt	Amp.	Volt	mA	Velt	mA	Velt	man MD	Velt	mA
UAP 42	HF, ZF und NF Verstärker mit	12-6 /	0-1	100	2-80	R _{ep} = 5	6 k <i>Q</i>	-1-216	3	max.	max.
Diode-Pentode	veränderlicher Steitheit			200	5 0	R ₈₀ = 7	16 kg	-234	3	200	0-8
UBC 41 Doppeldlode-Triode	Demodulator und NF Verstärker	14 /	ó-ŋ	100 170	0-8 ! 1-5	_	-	-1.0 -1.55	3	max, 200	
UCH 42	E Chzillator	. ,			3-43-1 5-55-2	-	- ,	t _{et} = 23 t _{et} = 015 0 120 0	47 kØ 1mÅ) 1mÅ)	v{	4V _{ed} ⁸) 8V _{ed} ⁶)
Triode-lifexode	स् Mischstufe	14 /	0-1	100	1.20	4357	1-460	-1.,-134	3. 3	_	
UP 41 Pentode	丑 HF und ZF Verstärker mit veränderlicher Steilheit	12-6 <i>i</i>	0-1	200 100 200	30 3·30 7·20	85,119 60100 160200	30 10 2·10	-227:! -1:417 334	_	Res	40 140
Cil. 41	Klasse A Endverstårker			100 170	29 53	100 170	5-5 , 10	- 5-7 -10-4	1,	-	
Pentode	Klasse AB _l Gegentaktverstärker	45 í	0-1	100 170	2 × 24 2 × 27 2 × 44	100 170	2 × 4-6 2×6-8 2×8-8	-	1		
UY 41 Hachvakuum- Kinwag-Gi,	Netzgleichrichter	31 <i>i</i>	0-1	127 250	2 × 49 100 100		2 < 16-5 -	- C5	ا 9بر 0		*

¹⁾ Schritelwert

^{*)} S_{eff}

 $^{^{3}}$) $V_{a7} = 100 \text{ V}$

⁹ VAT = 200 V

⁷¹ See

V = 100 V

⁹ Var = 200 V

Kelle Irem m.t	den- uider- etand	Genetical ster Ben- strateri- developed	Max. Xuto- lebelus Watt	٠	and Attac	Meti- hett		Ver- star- kongs- taktor	Napari- tat en. tambr a taltter	Vat. Inn- drabr Inslung Watt	Mat. rhirm gitter bela- stong	Max Spams 10 has 10-de o 10-card 10-card	, ·	AL. revend	North-hetst- fung-outher-	
10	325	-	_	<u> </u>	_	2-2.,0-0;	1 10	1× 4)	- 0-002	2	0-3	1100	22	7.3	#11	40-er Serie
845. 25	-	-	-	T	-	9 -0	500	83 %	. (»-(nui	3/5	0.7	100	23	34	41	3 P
883. 55	170	7000	3-9	,	10		 .			ņ	3-3			4îP	42	
B#\.	85	7000	9-4		4:6	10	40	33 4)	- 1	19	7-3	ton	22	11,10	"	
	-	G	rsamte	Transf.	- Imped	ans pro	Anode 200	ν ν ^{min.}			-		22	74	43	. ĒĒ .
		G	ramte	Transf.	·Imped	ans pro	Anode 300.	<i>ω</i>				500 5	22	74	41	
E C' I	18 M E:	LXTR	•) • • • • • • • • • • • • • • • • • • •			TR	ingsfaktor : D 38 - 1 - 0 - 0) un A	. 0							
_	_							_		1	Man	Man.	V	83.	_	
Kath	mten-	tium- stigster fir- tastungs-	May. Note-	i F	810		Innerer	Ver-	Kapasi- thi sw.	Mas.	cition-	Spenn. rv. Ka-	Abun	esung	İt	
	wider- stand	tigeter fo- instungs- wider- stand	Sutz- let- stung	vemi- verse- rung	he	ii	Innerer Wider- stand	Ver- står- kungs- taktor	Anade w. Litter	Ann- deship matuma	Max. School Since Since Since Since	Spenn, rv. Ka- thode u. rteiziad.	Abes	LAnge		
	u ider-	tastungs- water-	Note:	MEDI-	mA/	voti	atand hOhm	Ver- står- kungs- faktor	Anade m.	Atto	gitter- gitter- beta- stung Watt	Spenn, rw. Ka-	Abes	resulting.		Ration of the last
n V	wider- stand	tigeter fo- instungs- wider- stand	Sutz- let- stung	vemi- verse- rung	mA/	Voti 0-017 4	stand	Vor- står- kungs- faktor	Anade w. Litter	Ann- deship matuma		Spenn, rv. Ka- thode u. rteiziad.	Abes	LAnge	30	190 mA Rébres est Substituected
m \ m \ max. 10	whier- stand thm	tigeter fo- instungs- wider- stand	Note- let- stung Watt	vemi- verse- rung	mA/	Voti Voti 0-017 ²) ((2 ⁰)	tend hOhm 0-85.,>10 b) 1>10 b)	-	Anada w. Cittee	Ann- denke- matuma Watt	Watt	Spenn, rw. Ka- thodo u. ptetzfad. Valt	22	Lânge IM	一	200 mA Ribro mil Bakelitestel
max. 10 max. 3	whier- stand thm	otigitar for- instangs- wider- stand Ohm	Note- let- stung Watt	vemi- verse- rung	mA/ 1-70 20- 1-1 1-1 0-7	Voti 0-017 *) ((2 *) 4 (5 , 0-62)	hOhm 0-85>10 b) 1>10 b) MO 50	18 *)	Anodo w. Gittor #P	Ane- denhe- natural Watt	Wati 0-3	Spenn, rw. Ka- thede - returned, Volt	22	t.Ange	36	
max. 10 max. 3 max. 18	wider- stand tihm	stigner for instange- wider, stand Ohm	Sinta- let- stung Watt	MEMI- VEYEST- FUING	mA/ 1-70 20-4 1-5 1-6 0-7	Voti -017 *) ((2 *) 1	685, >10 b) 1>10 b) MD 50 42 - >1>5	18 °) 70 22	Another House Park Colonia Col	Ane-denhe- matumpi Watt	0-3	Apons. rev. Ho. rev.	22	t.Ange	36	
max. 10 max. 3 max. '8	wider-stand tihm	otigitar for- instangs- wider- stand Ohm	Note- lel- olung Watt	MEMI- VEYEST- FUING	mA/ 1-70 20-1 1-3 1-0 0-7 0-85 0-75 (0-75	H1 (12 %) 4 (05) , (0-02) , (0-0053) , (0-00753)	otand h Ohm 0-85>10 *) 1>10 *) MO 50 42 - >1>5 1>5 MSP	18 °) 70 22	181 rw. Anado s. Anad	2 0-5 1-5 1-5	0-3 0-3 0-3	Apone. rev. Kd.,	22 22 22	53 - 53	36 87	290 mA Rétres mit Sub-efficacied
max. 10 max. 3 max. 7 max. 10	wider- stand 19hm (310)	otigitar for- instangs- wider- stand Ohm	Sinta- let- stung Watt	MEMI- VEYEST- FUING	mA/ 1-70 20-(1-3 1-(0-7 0-65	Note 1-017 *; (02 *) 4 (05 , 0-02) ,0-552) ,0-0053 ,0-0075	otand hOhm 0-85.,>10 b) 1>10 b) MQ 50 42 - >1>5 >1>5	18 °) 70 22	Another House Park Colonia Col	0-5 0-8 1-5 2	0-3 0-3 0-3	Apons. rev. Ho. rev.	22 22	Léngo nm 83	36 87	Spezialtypes
max. 10 max. 3 max. 7 max. 10	wider- stand 49hm 310 180 180	181818978- in-tungs where there there there there there 10000 22000 3000	Nintz- let- stung Watt 1:35 4:25	semi-verse-rung	1-70 20-(1-5 1-6.5 0-65 0-75 (0-75 1-90 2-3 8	Nati Nati (02.4) 4 (05. . (0-62) .(0-552) .(0-0053) .(0-0075. 1-010 0-(033)	**************************************	18 °) 70 22 18 °)	181 zw. Anado s. Anad	2 0-5 1-5 1-5	0-3 0-3 0-3	agenna rw. Na- thode u. Hetsrad. Vott 150 150 150	22 22 22 22	53 - 53 - 53	36 87 35	Spezialtypen
max. 7 max. 10 max. 7 max. 10 max. 73	# ider- stand #### #### #### #### #### #### #### #	15/15/19/The line tings with the stands with the stands of	Nintz- let- stung Watt 1:35 4:25 2:2	**************************************	1-70 20-(1-5 1-6.5 0-65 0-75 (0-75 1-90 2-3 8	Noti Noti 102 *) 1 05 . 0-67) .0-055) .0-0053 .0-0075	**************************************	18 °) 70 22	181 rw. Anado s. Anad	0-5 0-8 1-5 2	0-3 0-3 0-3	Apone. rev. Kd.,	22 22 22	53 - 53	36 87	Spezialtypen Statelitected
max. 10 max. 7 max. 7 max. 7 max. 7 max. 7 max. 7 max. 7 max. 7 max. 7 max. 7 max.	# ider-stand #### #### #### #### #### #### #### #	183189 Th- lin-tungs wider- stand (thm 10000 22000 	Ninta- led- stungt Watt 1-35 4-25 2-2		mA/ 1-70 20-(1-3 1-(0-7 0-65 0-53 0-75 1-90 2-3 8	Noti Noti 1-017 *) 4 65 . 0-03*) .0-0053 .0-0075 019 123 	**************************************	18 °) 70 22 18 °)	181 zw. Anado s. Anad	0-5 0-5 1-5 1-5 2	0-3 0-3 0-3 0-3	agenna rw. Na- thode u. Hetsrad. Vott 150 150 150	22 22 22 22 22	53 - 53 - 53	36 87 35	Specialtypes Statelitested
max. 10 max. 7 max. 10 max. 7 max. 10 max. 75	wide-stand (thm) (10) (10) (10) (10) (10) (10) (10)	152 M2 interface white stand of the stand of	Wati		mA/1-70 20-6 1-1-1-1-0 -6-5 0-65 0-75 1-19(0-75 1-19(0-75 1-19(0-75 2-3(0-75 1-19(0-75) 1-19(0-75) 1	Noti Noti 10-017 * 1 4 035 0-67 1 0-554 1 0-0073 0-0073 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	stand hOhm 0-85>10 b) 1>10 b) MD 50 42 >1>5 MSD 0-8>10 1>5 MSD 18 20 -	18 °) 70 22 18 °)	181 zw. Anado s. Anad	0-5 0-8 1-5 1-5 2	0-3 0-3 0-3 0-3 4	Spenn, To Ko- To Ko To	22 22 22 22 22	53 - 53 - 53 - 53	36 87 25 40	Specialtypes Statelitested
max. 10 max. 7 max. 10 max. 7 max. 10 max. 75	wide-stand (thm) (10) (10) (10) (10) (10) (10) (10)	181119 Th- lin-tungs where where stand 10000 22000 22000 4000 4000	Wati		mA/ 1-70 20-4 1-4 0-70-63 0-73 1-90 2-36 8 8	Noti Noti 10-017 * 1 4 035 0-67 1 0-554 1 0-0073 0-0073 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	stand hOhm 0-85>10 b) 1>10 b) MD 50 42 >1>5 MSD 0-8>10 1>5 MSD 18 20 -	18 °) 70 22 18 °)	181 zw. Anado s. Anad	0-5 0-8 1-5 1-5 2	0-3 0-3 0-3 0-3 4	Spenn, To Ko- To Ko To	22 22 22 22 22	53 - 53 - 53 - 53	36 87 25 40	Spezialtypes
max. 10 max. 7 max. 10 max. 7 max. 10 max. 75	wide-stand (thm) (10) (10) (10) (10) (10) (10) (10)	152 M2 interface white stand of the stand of	Wati		mA/1-70 20-6 1-1-1-1-0 -6-5 0-65 0-75 1-19(0-75 1-19(0-75 1-19(0-75 2-3(0-75 1-19(0-75) 1-19(0-75) 1	Noti Noti 10-017 * 1 4 035 0-67 1 0-554 1 0-0073 0-0073 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	stand hOhm 0-85>10 b) 1>10 b) MD 50 42 >1>5 MSD 0-8>10 1>5 MSD 18 20 -	18 °) 70 22 18 °)	181 zw. Anado s. Anad	0-5 0-8 1-5 1-5 2	0-3 0-3 0-3 0-3 4	Spenn, To Ko- To Ko To	22 22 22 22 22	53 - 53 - 53 - 53	36 87 25 40	Spezialtypen Statelitected
max. 10 max. 3 max. 7 max. 75	wide-stand (thm) (10) (10) (10) (10) (10) (10) (10)	181119 Th- lin-tungs where where stand 10000 22000 22000 4000 4000	Wati		mA/1-70 20-6 1-1-1-1-0 -6-5 0-65 0-75 1-19(0-75 1-19(0-75 1-19(0-75 2-3(0-75 1-19(0-75) 1-19(0-75) 1	Noti Noti 10-017 * 1 4 035 0-67 1 0-554 1 0-0073 0-0073 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	atand hOhm 0-85>10 b) 1>10 b) MD 50 42	18 °) 70 22 18 °)	181 zw. Anado s. Anad	0-5 0-8 1-5 1-5 2	0-3 0-3 0-3 0-3 4	Spenn, To Ko- To Ko To	22 22 22 22 22	53 - 53 - 53 - 53	36 87 25 40	Spezialtypen Statelitected

Tungstam

BATTERIE

		11-		A n		Schle	mgiller-	Strary	II les-	111-0	len-
7790	Vorwondung	spann.	stress	·pan.	strees	·pum.	.trum	rimum.	widor- stand	·punn.	ulrum
		Velt	Amp.	Vall	m.A	Vedt	m.\	Valt	m iis	V'm81	m.\
I RET Pontagrid	Mischstufe	1-1 4	0-025	65 67-5 90	0-51 1-37 0-68	45 67-5 45		0 9 0 14 0 9			
1841 Pentode	: Endverstärker	1·1 d	0-05	90 45 90	8+65 3+5 7+6	67-5 65 67-5	1-58 0-62 1-1	1·3 7·0	i		
INST Diede-Pentode	Detektor NF Verstärker	1:4 d	0-025	45 90	1-6	15 90	0-35	0	10-0 10-0	mas. W	max. 0°3
ITET Pentode	III Verstärker	1:4 d	0-025	45 (N)	1·7 3·7	45 67-5	0-0 1-1	0, 10 0, 16	-	-	••
266T Pentode	Endverstärker	-	0-025	45 90 45	3·4 7·1 4·2	67:5 63	0:64 1:4 0:8	4·5 7 · 4·5			
3V4	٠,	1-4 p 2-8 a		(M)	7·1	67:5 00	1·1 1·7	7 4-5			- - !
l'entode	Endverstärker	1-4 p		(90)	9-5	()()	2·1	- 4:5	-	-	-
INJ. 101	Klasse A (die beiden Systeme parallel)			45 90 135	9-2 12-4 16-8	40 55 67-5	2:66 3:4 3:6	2-2 5-2 -7-0		-	-!
Doppel-Pentode	(die beiden Systeme paratiel) Klasse H ₁ ((iegentakt)	1-1 d	(F)	45 90 135	1:74 3:92 1:00 10:52 3:6 11:44	67.5	0-38 1-9 19-83 3-98 19-65 2-95	- 7-0 12-0 13-0			-
IIA Pentode	HP Verstärker	1·1 d	0-05	90 90	2·9 4·5	67·5 90	1·2 2·0	0	· ·	-	-
i BS Pentagrid	Mischstufe	1·4 d	O-05	45 67-5 90 90	0+7 1+4 0+8 1+6	45 67-5 45 67-5	1·0 3·2 1·9 . 3·2	0 = 0 0 = 14 0 = 9 0 = 14		-	· -
ING Fratode	Endverstärker	1-1 4	0-1	45 67-5 90	3-8 7-2 7-4	45 67-5 67-5	0-8 1-5 1-4	4·5 7·0 7·0		-	-
185 Diode-Pentode	Detektör NF Verstärker	1-4 d	0405	45 90	1-6	45 90	0-4	0	10°0 10°0	88.0%. ()()	mex. 0:2
174 Pentode	HF Verstärker	1-4 d	0-05	45 67-5 100 90	1·7 3·1 1·8 3·5	45 67-5 45 67-5	0-7 1-5 0-65 1-1	0,10 0,10 0, 10 0, 16	•	-	-
1U4 Pentode	HF Verstärker	14 4	046	90	1-6	90	0-45	0	-	-	
2A4 Protodo	Endver-	1-1 p (2-8 s		135 150	14-8 13-3 18-3	90 90 135	2-6 2-2	7/3 8-1	-		-
2014		1·1 p	0-1	67-3 90	7-2 7-1	67-5 67-5	1:5 1:1	740 740	•		_
Pentode	Endverstärker	2-8 ,	0-05	67-5 90	6-0 6-1	67-5 67-5	1·2 1·1	7-0 7-0		_	- ;

) Spanningsversläckung der Widerslandsversläckerdall

	T .	1.4	, ·	Max. Katha dra- draa		iris Religi	h sport 2d ru Anadr und taller) i i olar Lungo Inklur	Immerer Waters stand	Medlett	tirental- terpri- rung	Max. Nats- Iristang	Geneligator Helestungs- widerstand	under- under- stand	Kath dram
	E September 2	- (#	8 19	240 345 242	Watt.	Watt	- 11-6		\$100 5000	mA/Vall 0-57,,,0-005 0-26,,,0-005	-1 mA -15 mA		ithm H _{el} → Q-1 N	(1844)	
				3.7					(Ma)	0-220-005 0-280-005	11 mA		MOUO	'	
1	410	4#	19	9-40 3-40			. 0-2	35 'c 46 'c	(MAN)	1:1	90 in MO	0-210	##00 1L 2:2 M		
·								\$6. YE	••••		10 MQ	Ø 1Ç = 1	R ₁₁ = 3-1 M	•	_
	47	48	10	3-5	•	-	- 0-01	٠ ا	100 350	0-65,,,0-01 0-75,,,0-01	-				
75 7	52	48	19						100	1:05 1:3	12	0:055 0:170	SON	. :	
all al				ŀ					100	1:45 1:1	12	0-050 0-210	MANN)	į	
	80	48	19	12		-	-	-	120	2-0	7	0-240	1(000)		
						-	-	100	100 50	2-15 2 -, 4-0	7	0-270 0-07	(1000) 4500		
				l			-	110 120	50 50	2 · 1·1 2 · 1·2	10 10	0-34 0-74	85ens Ganns		
	51	48	19	18-0	0-25	3-6	-	-	-	<u> </u>	10 10 4	0-087 - 0-52 0-8	20000 16000 22000		
· -	53	48	19	6-5	-	-	<0.008	-	600 350	0-025 1-025	-	-	•-		
	46	4#	10	5-5		1	< 0-4	43 ¹) 66 ¹ 1	600 500 600 600	0-235,0-005 0-280,0-005 0-250,0-005 0-300,0-005	►15 mA ►25 mA ►15 mA ►25 mA	ip i _n α¦	B ₀ = 0-1 3		
Fr. S	411	48	10	9-0	_	_	_		100 100	1·25 1·55	12	0-065	8000 5000		
								۱	100	1-575	iž	0-27	HOUN		-
1 1	40	414	10	3-0	-	-	. 0-2	43 ') 66 ')	600	0-625	1-0 M <i>Q</i> 1-0 M <i>Q</i>	Ω R _a σ Ω R _a σ	H _{er} ≈ 2·2 M H _{er} ≈ 3·1 M		
	47	48	10	5-5	-		<0-01	_	350 250 800 500	0-700,0-01 0-875,0-01 0-750,0-01 0-900,0-01	-	-	_ *	•	
F .	5.3	48	19	6-5		_	√9-00°	_	150	0-9		_	_	_	
	1			18-0			•	<u> </u>	90 100	1-0	5	0-6	8000		
T *	20	48	19	25-0	0-4	241	- 10-34	l -	100	1-9	6	0-7	8000 P ₂₁ = 0-2 M£/	·	
2 2	1		l					-	100	1:550	16	1·2 0·180	f" = 0.12mV		-
1 11 1	52	48	19	9-0	_	_	 		100	1.575	12	0-270	5000 8000	-	••
. 7	l			4-3				<u> </u>	tan tan	1-400 1-425	12 13	0-160 0-235	5000 8000	-	

MINIATUR-NERIE PCR

•		110	1.	\ n = 1	en	~ hu m	ugal terr	/lowerE1	lter-	1110	4
T100	Verwendung	, bresse	rirum	egunn	• f a color	drmu	strans	eferm.	u jder- stand	dens.	drem
	,	Vedt	\mp	\ 1	m \	N sadt	m \	\ mil	MAY.	1/41	m.\
E4: 92 Triode	Desillator, Mischröher, ader Verstärker für PM u. TV	6-3-7	0-150	100 250	3.0			1:0 2:0	1 2.		,
6A 6 5 Pentode	III Verstarker	6-3-7	0-175	120 150 180	7-5 7-0 7-7	120 140 120	2-5 2-2 2-4		•		
6ALS Doppel-Diode	Detektor für Fernsch- und FM Geräte	6-3 7	0-3	117	2 9						
6.505	End- ver-	6-3 (0-15	180 250	29-0 15-0	250	3-0 1-5	#-5 12-5	0:1-1		
iteabl-l'entode	star- Kinsse Ali, ker tiegentukt	"" '		250	70 79	250	5 13	•	(0-5) *(••
6 \T6 Dundjode-Triode	Detektor und NF Verstärker	6-3 /	0.3	100 250	0-8 1-0			3-0		(M)	0-3
6AU6 Pentode	NF Verstårker mit konstanter Steilheit	6-3 /	0-3	100 250 250	5·2 7·6 10·8	100 125 150	2-0 3-0 1-3	-1			es e
6.\\6 hundjude-Triode	Detektor und NF Verstärker	6-3 1	0.3	100 250	0·5 1·2			1 2			1-0
69 \6 Pentode	III- Verstarker	6-3 (0.3	100 250	10-8 11-0	100	4·4 1·2	1 2t 12t			•••
6886 Pentagrid	Mischstufe	6-3-4	0.3	100 250	2-6 2-9	100	7-0 6-8	1.5., 30 1.5., 30		.,.	•
616	Klasse A _i Verstärker	6.3 (0-15	100 200	$\begin{array}{c} 2 \times 8.5 \\ 2 \times 6 \end{array}$,	0.5	. 49	-
Doppel Triode	Mischstufe (bei einem System)	1	7.	150	4-8	-	_	-	0-5	-	-
6X4	Neta- Kaparith 4 HP Relect- 3 max, 10 HF	6-3 (0.6	2 × 325	70	-		Ausgangs		325	V
Vollweg- gleichrichter	gleich-	1	11-1)	2 × 450	70	-	G	leichspann	ung	450	V

¹⁾ Bei fester Gittervorspannung

MINIATUR-MERIE PCR GLESCH- UNI

		11,0	1 z ·	Áυο	den.	Schlen	ugiller-	Steuergi	11000	0100	4 e a -
Тур•	Verwendung	spann.	strom	spann.	of Fram	spann.	strees	verspann.	wider- stand	spann,	streen
		Vall	Amp.	Valt	mA	Velt	mA.	Veti	mas. M <i>U</i>	Vali	mA.
12AT6 Doppeldiode- Triode	Detektor und NF Verstürker	12-6 /	0-15	100 200 250	0-8 1-0 1-0			-1-0 - 2-3 - 3-0	***		4,
188AS Pentode	HF Verstärker	12-6 i	0-15	100 200 250	10-8 10-9 11-0	100 100 100	4:4 4:3 4:2	- 1 20 1 20 -1 20			-
12000 Pentagrid	Mischstufe	12-6 /	0-15	100 200 250	2-6 2-9 2-9	200) 200) 100)	7-0 6-85 6-8	- 1·5 30 - 1·5 30 1·5 30	1		-130
19J8 Doppel-Triode	Klasse A ₁ Verstärker Mischstufe	FR-10 #	(+15	*100 200 150	2 - 8-5 2 - 6-0 4-8				0-5		**
36W4 Einwag- glotchrichter	(bei einem System) Netzgleichrichter	35 /	0-15	117 220	100-0 100-0 , 90-0			Awagongs-G (G:: 40 //V)	0-5 Irich-pa		≫ V
Sees Straki-Pentedo	Endverstärker	50 /	0-15	110 200	. 49-0	110 160	4-0 2-7	7-5	1 (0.54		

¹⁾ Hel fester Gittervorspannung

¹⁾ Bei automatischer Gittervorspannung

¹⁾ Ohne Aussere Abschirmung

^{&#}x27;) Hei automatischer Gittervorspannun

¹ Ohne Suvere Abschirmung

	adra-	tionella- uter Hela- utungs-	Mas. Note-	torand- toran- rung	Meliketi	Innerve Wider- stand	Ver-	Kapardai 19	95 in the last of	Var. etern garer beta-	1 2 4 5	.\	at.	1	
	u mor- stand	u televi- u televi- viamel	bri- -lang	, ·			\ pr- slar- kongs- tok los	St. Namer II. Lastler		-tuma	Herselad.	ü	l.angr	Sectofecture temperorement	
ms.	(Phon	(Hom	Wall	 `	mA · Volt	£1 these	3.8	P *	Wall	Wall	1 mit	_		13%	
15	- 200				5-0 5-0	340	641	1.5	2.5	1	991	12	ŧĸ	1200	
mat. Is	330 200	1	ľ		1:3 3:1	420 690		. 0402 4	1.7	0-5	3960	19	38	33	
	Geran pro A		Imped 200	uns D min.	1		ł				330 4	110	nn.	63	
		5500 5000	2-0 1-5	, A	3-7 1-1	58 52			΄.						
		Links	10-0	5	3-75	60		0-35 %	1240	240	tMI	19	61	57	
					f:3 1:2	54 58	70	21 5		. 1	00	19	48	58	
					3-0 1-45	500 1500		<0+0035 %	3-0	0-65	1301	19	48	62	á s
				}	5-2	1000	100	_		1					₽
15-2	eks				1-60 4-3,,,0-04	62·5 250	100	3-0	0-5	٠,	90	10	48	-58 	
15-2 max.	1174	H _{e1} := 20	177		4-40-01	1000		<0-0035 *i	3-0	0-6	90	19	48	59	. 42 .
11.0	50	I ₁₁ = 0.3	mA	ļ	0-4550-01 0-4750-01	1000	-	<0-3 ⁴)	1-0	1-0	90	10	48	00	
	£1941				5-3 3-0	7·1 12·5	38	1-6 +)	1.5	-	100	19	48	61	
	810	V ~ 2	V _{eff}		1-9	10-2	-			i			1		e de la companie de l
I		te Transf,- t pro Anod		150 <i>Џ</i> min. 550 <i>Џ</i> min.	٠ ــ	-	-	-	-	_	450 4)	19	61	64	3
E C I	1 × E	LNTR		HEL	SATRO!	4 150	m A	Ų	Max	Max.					190 mA Rôbres mil Bakelitsacky
	weler- stand	tiunstig- ster Helastungs- widerstand	Max. Nuta- let- stung	tiousmt- versee- rung	Kteilbeit	Innerer Wider- stand	Ver- står- kungs-	Kapazitāt zw. Anodo u. Gittor	詽		Man. Apont. rv. Ka- rv. de u hetitad	Aban Ø	Lângr	1	* *
Kath strom m \	water.	ster Helastungs-	Max. Nuts- let- stung Watt	tionemt- versor- rung	m/Velt	kOhm	Ver- står- kungs- faktor	Kapazitāt gw. Anode u. Giltur pP	排標	etile- gitte star Watt	Spenn. tv. Ka- thode u. Heistad Vatt	Aban	I.Angr	1	Speciality Speciality
drom	weler- stand	ster Itelastungs- wklerstand	stung	verger- rung	m/Velt - :	kOhm 54 58	Ver- står- kungs- inktør	Anode u. Gillter	Watt	113	Sport. rv. Ka- hade v teislad	Aban	LAnge m 48	3	Bakelitsecke Spezialtypen
m \ m \	wider- stand Ohm	ster Itelastungs- wklerstand	stung	verger- rung	m/Velt - 1-3 1-2 1-2 1-2	\$4 58 58 58	70	Anodo u. Gitter pP	Watt	gitter- lede- ationg Watt	Spenn, rw. Ka- rhede u., Heistad Volt	Abmir Ø m	Långe a 45		•
m \ 15-2	weler- stand Ohm	ster Itelastungs- wklerstand	stung	verger- rung	m/Velt	84 58 58 58 250 1800 1800		Anode u. Giller pP	Watt	113	Spens. tw. Ka- thode u. Heistad Volt	About Ø	I Angr	56	
15-2 15-2 15-2 15-2	wider- stand Ohm	ster Jelastungs widerstand Chm	watt	verser- rung	m/Velt- 1:3 1:2 1:2 4:30-04 4:30-04	\$4 58 58 58 250 1500	70	Anodo u. Gitter pP	Watt	gitter- lede- ationg Watt	Spenn, rw. Ka- rhede u., Heistad Volt	Abmir Ø m	Långe a 45		Rohren mit Bahrlitrockel
m \	wider- stand Ohm	ster lelastungs widerstand Ohm	watt	verser- rung	m/Velt 1-3 1-2 1-2 1-2 4-30-04 4-40-04 0-4550-010	kOhm 54 58 58 58 250 1500 1500 400 1000	70 	21 9 <0-035 9	3-0	chrusting gitter bia drung Watt	Spenia, EV. Ka- thole v. Heistad. Vott	19 19	Lânge M 48 48	59 60	Robren mit Babrittschel
15-2 15-2 15-2 15-2	wider- stand Ohm	ster Itelastungs- widerstand 13hm	watt	versor- rung	m/Vell	84 58 58 58 250 1500 1500 400 1000 1000	70 - -	2-1 P)	Watt	etirus gittus stung watt	Spenn, sw. Ka- sw. Ka- thete a Vett 90	19 19	LAnge 48	59	Robren mit Babrittschel
15-2 15-2 15-2 15-2 15-2	wider-stand Ohm 68 68 68	islantings-widerstand (thm Reg. R	= 20 = 0-5	verse-rung	m/Velt 1:3 1:3 1:2 1:2 4:3.,,0-04 4:4.,,0-04 0-455.,,0-010 0-475.,,0-010 0-475.,0-010	\$4 58 88 250 1800 1800 1000 1000 1000 7-1 12-5	70	21 9 <0-035 9	3-0	chrusting gitter bia drung Watt	Spenia, EV. Ka- thole v. Heistad. Vott	19 19	Lânge M 48 48	59 60	Robren mit Bahrbitteckel
15-2 15-2 15-2 15-2 15-2	wider- cland Ohm GR GR GR GR GR GR GR	islantings-widerstand (thm Reg. R	watt = 20 = 0-5	verse-rung	m/Velt 1:3 1:3 1:2 1:2 4:3.,,0-04 4:4.,,0-04 0-455.,,0-010 0-475.,,0-010 0-475.,0-010	54 58 58 1500 1500 400 1000 7-1 12-5	70 38	21 9 <0-035 9	3-0 1-0	chrusting gitter bia drung Watt	Spens, sty. Kensel v. Hedra v. Hedrida, Vott 90 90 90	19 19 19	1.4mgr m 48 48 48	59 60 61	Robren mit Babrittschel

Tungstam

	_			10.	\ u u d		% har mætt	•	Menergy	l lee-	Die	len-
T, p.		Verwendung	symmer.	******	-4	vitan.	-trum	v11 vans	, us spanne.	wider- stand	Amour.	ultum
			Vull	Amp.	V-041	m١	Volt	\	\ ml1	Ui,	Velt	m.l
KMC. 21 Dappetdinde- Pentade		Detektor und Endverstärker	63.4	0-8	250	= ;	250	1:5 5:8	6 6-2	140	220 220	04.
	يد	Oszillator	ŀ		250	165					ł	
ECH 20	Tricate	NF Verstärker	63 /	0-33	250	2			2	3.0		٠
Triode-Heptode	ě	Mischstufe	1		250	:6	$H_{\rm eff} = 24~{\rm k}\Omega$	6.2	2, 21.5	3-0		
	Heptode	ZF Verstärker			250	5-3	18 ₆₂ - 45 kH	3/5	2 36	3-0		•
VV 99	l	HF, ZF Verstärker	1		250	ti	18 ₄₁ - 200 KD	1.7	2-5 58	3.0	1	
KF 22 Regelpentode		NF Verstärker	6-3 (0-2	250	0-87	R. 0 8 M	0-26		3-0	1	-
AZ 31 Hochvakuum- Doppelweg-Gl.		Netzgleichrichter		1-0	2 · 500 2 · 300			_	Cast, on t	10 µ17	Ŀ	-

NCHLONNELRÖHREN-NERIE FÖR GLEICH- UND

			110	iz-	Ano	den-	Schirma	ilter-	Struerg	11100-	Die	len-
Туре		Verwendung	spann.	41 rom	spana.	strom	spoon.	st prom	vorspann.	wider- stand	spann.	st rem
			Volt	Amp.	Volt	mA	Volt	m.V	Volt	Nik mm	Volt	пÅА
UM. 21 Doppeldiode- Pentode		Detektor und Endverstürker	55 <i>f</i>	0-1	100 180 200	32-5 61 55	100 180 200	5:5 10:0 9:5	5:3 10 13	1.0	1110X. 200	. m#x. 0-8
	ğ	Oszillator			100 200	1-9 4-1	-	-			-	
l.	Triode	NF Verstärker			100 200	0-68 1-5			1 2	3-0 2-0	-	-
(icii 31		Mischstufe	20 i	0-1	100	1.5	H _{ep} :	3-0	1 14	1 3-0		_
Triode-lieptode	Heptode	·			200	3-5	i5-5 kΩ'	6-5	2 2		ŀ	
	Įž	ZF Verstärker			100	2-6	R _{az} 30 kΩ	1.0	1 1	3-0		_
	l		1		200	5+2	.147 1637	3-5	2 2	N	l	
		HF, ZF Verstärker	İ		100	3-2	Res 3)	0-85	-1-3.,-2	3 3-0	_	
1:F 21 Regelpentode	Ì		12-6	i 0-1	200	6-0	GO KO,	1.7	2-5 6		Į.	
		NF Verstärker		′	100 200	0-00 0-60		0-0X 0-17		340	-	-
BY 21 E'nweg-til.		Netzgleichrichter	50 7	6-1	250	1 (0		-	fine. o	GO #1] -	-
UV 22 Filmweg-til.		Netzgleichrichter	26 <i>i</i>	0-1	110	631			C.,	الم عد	1 -	

^{†)} Schirmgitterverstärkungsfaktor ²) S_e (Mischsteilheit)

²) Gleifende Schirmgifterspannung ⁴) Scheifelnert

1-3 Sanitized

Kelb	E	Carte	Man.				T.	Nagari.	Mas.	V	1,:1	, <u>*</u>	las.	1.1	,
etrem	oridor- stand	det mage wider- stand	Note: let- olumn	tionant-	Strathett	Wider; stand	Ver- viar- Lung (a) in	,. u. taltter r	dra- berta- stump	gaterie- inclung		0	Lings		
mA 60	150 125	7000 5700	4-5 5-5	10	9 9-5	ECHan Ser	23	1-0	Watt	3-5	Vedt 50	29	20	*	
_		20000	11	50 kg 0-19 m/	1					Ve, - Ver	i				
mas.		100000	-	2-1	3-2		222	1-1	0-R	-	١			.	
15	150				0-750-0075			- 0-003	1.5	1.0	50	29	63	"	
					2-20-022	0-9 >1 MD 1-2>1	J				! ,				
812 4. 11)	325 1750	20000	_		2-20-0045	ΜÚ	"	. 0-002	2	0-3	50	29	.80	14	
		•		_		_		_	_	_	_	29	80	20	20 2
					<u> </u>	<u></u>	<u>i </u>		<u> </u>		L	Ц		<u> </u>	
															′
		LNT	Τ		EISSTR	OM 1	•• :	A (Max.	r · ·		_	ar.	•	hitelihecke
Kath	aden.	tiunstig- ster tietas tungswi-	Max. Nuts	tio- torzer-	Stellheit	Innerer Wider- stand	Ver	Kapazitāt sw. Anado	ĀRO	Max.	BEER	Ahm	aniung .	H	' B
.t rom	wieler.	derstand	stung	rung		stand	står-	zw. Anado und Gitter		gitterbe-		ا ا	Lines	Ш	2
drom m V	wider- stand Ohm	derstand Ohm	viung Watt	rung	mA/Velt	stand	star- kungs- fakter	und Gitter	Ano- don- hold- stung Watt	Matt	Ver	. 0	Lènge	1	-
m V	tand	derstand	viung	rung.	mA/Vett 7-5 9-0 8-0		kung-		1		•	29	Lènge 80	30	-
max.	140 140	derstand Ohm 3000 3000	1:35 4:80 4:80	10 50 kD	7-5 9-0 8-0	KUhm 25 22	hungs- fakter 0	oF <1·2	Watt	Watt	Velt		Långs nm 80	200	-
max.	140 140	3000 3000 3000 3500	1:35 4:80 4:80	rung %	7-5 9-0	KUhm 25 22	kungs- fakter	př	Watt	Watt	Velt		Lôngo 80	80	200 mA Rébres mit Rabeltache
max. 75	140 140	3000 3000 3000 3500 20000	1:35 4:80 4:80	10 50 kD	7-5 9-0 8-0	KUhm 25 22	hungs- fakter 0	oF <1·2	Watt	Watt	Velt		E-bage	30	200 mA Rébres mit Cabrillactus
max. 75	(Ohm 140 140 200	3000 3000 3500 20000 100000	1:35 4:80 4:80	10 50 kD	7-5 9-0 8-0 3-2 0-580-0058 ² 0-750-0075 2-00-02	25 22 25 25 	kungs- fnktor 0	pF <1·2 1·1	11 0-5	3-5 V ₆₀ — V ₆₇	Vett	29			200 mA Spezistypes the mile Spezistypes the Spezistypes to Spezist
max. 75 max. 15	Ches 140 140 200	40m 3000 3000 3000 3500 20000 100000	1:35 4:80 4:80	10 50 kD	7-5 9-0 8-0 3-2 1-580-0058 ² (0-750-0075	25 22 25 25 	hung- toktor 0	pF <1·2 1·1	11 0-5	3-5 V ₆₀ — V ₆₇	Vett	29			The na
max. 75	140 140 140 200	40m 3000 3000 3000 3500 20000 100000	1:35 4:80 4:80	10 50 kD	7-5 9-0 8-0 3-2 10-580-0068*(0-750-0075 2-00-02 2-20-022 2-00-005	25 22 25 1>10 MD	9 19 5	9F <1-2	Watt 11 0-5	Watt 3-5 V ₆₃ - V ₆₇ -	150	29	45	20	Edwinster Raben mit 200 m.A. Speziatypen Substituckel Substituckel
max. 75	tions 140 140 200 150	derstand Ohm 3000 3000 3500 20000 100000	Stung Watt 1:35 4:80 4:80 4:80 4:80 	10 50 kB/ 	7-5 9-0 8-0 3-2 10-580-0068*(0-750-0075 2-00-02 2-20-022 2-00-005	1>10 MD	9 19 5	9F <1-2	Watt 11 0-5	Watt 3-5 V ₆₃ - V ₆₇ -	150	29	45	20	Edwinster Raben mit 200 m.A. Speziatypen Substituckel Substituckel
max. 75	140 140 140 200 150	derstand Ohm 3000 3000 3500 20000 100000	Stung Watt 1:35 4:80 4:80 4:80 4:80 	10 50 kB/ 	7-5 9-0 8-0 3-2 10-580-00687 0-750-0075 2-00-02 2-20-02 2-20-025 2-20-0045	1>10 MD	9 19 5	9F <1-2	Watt 11 0-5	Watt 3-5 V ₆₃ - V ₆₇ -	150 150	29	65	23	200 mA Spezialtypes Sabrétteckel Gil Sabrétteckel

MAMRES WIT	MARKEL	.ITNO	TKEL.
------------	--------	-------	-------

		111.	.,	\	tra	\ harm,	111.1	Strangelli		l tea	tra-
Type	Lornoulung	spann	********	Aronn		denn	*111411	trenn	u nhu. Imate	Arma.	-trum
- , * ·		Voll	\mp.	Vidi	ın V	Volt	m V	Volt	, (IV	1 ml1	m l
film; 3 Lioppeldinte- Trinte	Detektor und NF Verstürker	10-1 1	0.2	100 200 250	. I .			2.1 1/3 5/3	1-55 1-65	11145. 330	H 61.
KMV 2 Poppeldiode- Fentode	Detektor und HF Verstarker	6:3-7	0-2	100 200 250	3	01 53 14 ₆₁ 001 53 115 54		2 165 2 325 2 38	3.0	max. 350	ma\. U-X
K 80. 0 Importdiade- Pentale	Detektor und Endverstärker	6-3-7	49-79	250	.10.	250	ı	11	1-11	100 X. (150)	11:A
em a	Uszillator	l	0.2	250	354						
Triode-Hexode	Nischstufe	6-3 4	11.2	200 200 250	1 3 3	.55 [00] [00]	1+1 3+0 3+0	1-25 13-5 2-0 23-5 2-0 23-5	300	ļ	
	Oszillator			250	155				***		
ECH 5 Criode Heptode		6-3 /	0-35	250 250	3	14,7	6-2	2 2 21:5	3:0		
,	Mischstufe Hif, ZF Verstärker			250	5-3	2i'k# K ₀ = 45'k#	3/5	2 36	340		
ECL 11	NF Verstürker			250	2		J	2:5	2-0		•
Triode: Pentode	ig Endverstärker	6-3 /	1.0	250	346	250		6	11.7		•
EF 3 Regelpentode	HF Verstärker	6-3 /	0.2	250	×	1(#)	2.5	3 50	2/5		
EF 6 Pentode	NF Verstärker	6-3 /	0-2	100 200 250	0-3 0-6 0-9	R _{ef} 0-4 MD	0-12 0-23 0-35		3-0	İ	
Pentine	HF Verstürker			100 250	3	100	0-8 0-8	2	3.0		
EF 9	NF Verstärker			100 200 250	0-33 0-65 0-87	1 132 777	0-08 0-17 0-20	1	340		•
Itegelpentode	III ^a Verstärker	6-3 /	0-2	100 200 250	6 6	0 / N ₀₃ c 60 ki 90 ki	1.7	2·5 10 2·5 30 2·5 10	3-0		
KI. 3 Protok	Endverstårker	6-3 /	0-83	250	36	250	4	65	1-0		
KI. G Pentode	Endverstårker	6-3 (1.2	250	72	250	×	7	1-0		
KL 11 Pentode	Endverstärker	6-3	((+X)	5 250	36	250	•	6	1-11		
Ki. 12 Pentode	Endverstårker	6-3	1-2	250	72	250	*	7	1-41		
KM 8 Abdimm- anseiger	Zweifacher Abstimmunzeiger	6-3	i #2	1400 2000 2500				0 2-5 0 1-2 12-5 0 5 16	9 20	1	1-4

EMPFÄNGERRÖHREN

MEISSPANNING 4:2 1

Keth etrum				(irtual- erarrung	Medical	Inneres Wilder- stand	tor- star- knougs- laktor	Brapa- ellat en tumbra tutter	Vat. Inder-	Vat Schum- giller- letering	Nos Span rong re Noth de s Herfoden	\temp		Sar Lotar hot- tungs numeror	
	(Mass		Wall	·		L4 Maren		μΙ	1111.77	Watt	\ ml1			<u>)!</u>	
10 10					1-6 2-0 2-0	19 15 15	30	164	165		:,	.02	***	3	
m#\$. [II	(84);				[-8.,,0-0\$8	0-4,,10 M£ 1-0,,10 M£ 1-3,,10 M£		04B)2	155	0-3	1:**	312	112	13	
mas. 33	150	7(NH)	4-5	110	υ	549	23 4	0-K	940	2:5	341	ţti	130	7	
mas.	215	(5000)	. بها ای	- 50 M2 - 0-3 mA	2-8		21	1-1	165		1000	.tai	95	2,	
15	•				0-45,,,0-00457 0-65,,,0-0045 0-65,,,0-0065	1-35 MD 1-31 MD 1-31 MD		. (6-00)(1-2	0-6	1040	.141	10,0	"	
max. 15			H,r Ior	50 kD 0:19 mA	3-7		72	24	0-8	V ₁₃ V ₄₇					
max,	150	,,,,,,,			o-75e-m75 ⁹	1+43 ME					50	:tat	95	22	9.
15					2-20-022	1-9to Mg/		0-002	1:5	141				3	dara a
max. 60		,			2-0	-	70	1-5	0-5	-	50	47	110	15 /	[*
max.		71881	3∙#	10	9-0	25 1-210	25 %	. 0-9	- ()-()	1-2					fe. f
15	5000 5000	200000			1·70·4102	MD	_	- 0-003	2-0	0-1	75	32	1149	3	
max. 6	Зиннь	•			1-8	1000 2500		04NF2	1-0	0-3	100	:12	(16)	5	!
mas.	2500 2500 1750	Зіниниі		-	-										Prince and Security pas
10	325			-	2·20·007 2·20·005 2·20·001	15-410 M£1 15-910 M£1 1-2810 M£1		- 0403	240	0-3	100	32	, (N)	h n	161,
max. 33	130	7(NH)	4-5	- 10	(9-4)	50	23 %	0-8	9-0	2.5	too	46	120	6	Andreas
mat. MI	(10)	3500	840	ţo.	15-0	20	20 %	0-7	1840	3-0	50	34	122	a	
max. 33	130	7(111)	4-5	10	, 19-49	50	25 4	R-43	9-0	2-5	50	141	110	27	
max. (M)	(M)	35000	H-41	10	15-0	25	183	11-7	1340	÷	50	51	117	27	* # # #
••		(mmmm)			-						1401	2n	78		

Tungstam

ROBERT MIT BAKELITHOUKEL

		He	٠.	.\m=	dra -	Schleng	il ter-	Steuregitt	4 .	l He	bu-
Type	Vernondung	spann.	ri Latir	spano.	streen	spants.	dress	/ er /penn.	widor- stand	den.	strem
•		Vedt	Amp.	Vedt	m.A	Vell	mA	Velt	W.	Velt	mA
EM 11 Abstimm- anzeiger	Zweifacher Abstimmanzeiger	6.3 /	0-2	\$00 200 250				0,,=2·5,, 8 ⁴) 0,,=4·2,, 12·5 0,, 5,, 16	2:5	100 200 250	0-4 1-4 3-0
EZ 8/3 Doppelweg- gleichrichter	Netzgleichrichter	6-3-4	0-65	2 - 500	100						
EZ 4 Doppelweg- gleichrichter	Netagleichrichter	6-3 /	0-9	2 - 100	175						
EBC 33 Doppeldlode- Triode	Detektor und NF Verstärker	6-3 /	0.2	100 200 250	2 4 5	<u> </u>	_	2:1 1:3 5:5	155 Yr 150 Yr	max. 350	mnu. (FA
EMP 38 Doppeldlode- Pentode	Detektor und ISP Verstärker	6-3 <i>i</i>	0-2	100 200 250	5 5 5	0 ££] (₁-0) k££ 95 k££	1-6	2 16:5 2 32 2 38	340	maz. 200	max. H-A
	Degillator			250	3.3	-	•				
ECH 33 Triode-Hexode	Mischstufe	6-3-7	0.2	100 200 250	1 3 3	55 100 100	1·1 3 3	1·25 13·5 223·5 2· 23·5	3.0		-
EF 36 Pentode	NF Verstårker	6-3 /	0-2	100 200 250	0-22 0-45 0-6	0-6 M£I R _{es} ::0-6 M£I 0-8 M£I	0-17		3-0		.4.
remode	HF Verstårker	l		100 250	3	100 100	R-() **	2 ′	3.0		- .
KF 39 Regelpentode	HF Verstärker	6-3 /	0-2	100 200 250	6 6	0 & 1t _{rs} =80 k£ 90 k£		- 2·5 19 - 2·5 39 - 2·5 49	3-0	-	1
RI. 33 Pentode	Endverstärker	6-3 /	0-85	250	36	250	4	6	1-0	-	·
EL 36 Pentode	Endverstärker	6-3 (1.2	250	72	250	×	7	1.0		·
EM 24	Zweifacher	1		100		Ī		0.,-2-5., -8 4		_	ehirm
Abstimm- anzeiger	Abstimmanzeiger	6.3 /	0-2	200 250		-		0.,-4·2.,—12·5 05·1 16		100 200 250	0·4 1·4 2·0

¹⁾ Hei automatischer Gittervorspannung 2) Hei fester Gittervorspannung

BARBER MARKET

Cl. 6 Pentode	Endverstärker	35 /	0-2	100 200	50 45	100 100	9-0 5-5	- 8-25 9-5	1-0	-
CY 2 Einweg- gleichzichter	, Net zgielchrich ter	30 (0-2	250	120					
CY 88 Einweg- gleichrichter	Netagleichrichter	30 /	0-2	250	120					-

³⁾ Schirmgitterverstärkungsf

EMPFÄNGERRÖHREN

HEIMPANNUNG 6-8 V

Kath	artra-	liments-	Mas. Nuls-	licani.		Innerer		Kapa-	May.	Mas.	2 5	\ <u>\</u>	int.	ŀ
el rum	u tder- eland	eland elder-	1	-	NiriBheti	Water- stand	olar- kungo-	\made u	ij	giller- larke-lang	Man Bean nung se Nashode b Hesstaden	٠,٠	1.Angr	
~ A	/ Ham	(Non	Wati	٠.	mA/Velt	kilhm	fab.lm	pa ^r	Watt	Wall	, <u></u>	,		ĺ
-	-	1 000 000	į	-							1:00	35	J (1)	ŀ
		-		-							500 %	35	ĸs	
				-							4	33	85	l
max, 10			-	-	1-6 2-0 2-0	19 15 15	30	1:3	1.5	-	75	32	H7 .	
max. 10	(100)				1-8,.,0-018	1-4to M£ 1-0to M£ 1-3to M£		< 0-002	1-5	0-3	£490	32	K7	
		45 000		- 50 k <i>Q</i> - 0-2 mA	2-8	-	21	≟1•6	1.5					١
15	215			-	0-45,,,0-08457 0-65,,,0-0065 0-65,,,0-0065	1-35 MD 9-9.2-6 MD 1-34 MD	-	- 0-003	1.2	0-6	100	34	110	I
max.	64 (18) 64 (18) 44 (18)	(tono com)		-	-	1	-	<0-003	1-0	0-3	100	32	N7	
					1-8	1000 2500	•							l
m#5. 10	325		-	<i>2.</i>	2:20-007 2:20-005 2:20-004	D-4.,10 M£ D-D.,10 M£ D-25.,10 M£	-	<0•003	2-0	0-3	100	72	87	
max. 55	150	7(MH)	4-5	10	940	80	23 4	0-8	D	2.5	100	46	112	l
maz. (N)	1140	3500	*	. 10	15-0	20	20	0-7	18	3	50	80	120	Ì
	_	1 000 000	1 ;	_	_	-	_	_	-	•	100	28	77	l

³⁾ He erate Zahl bedeutet die Steuergittervorspunnung hei welcher das empfindlichere, die zweite jene hei welcher das weniger empfindliche System schliesst.

MOCKEL MEISSTROM 200 mA

max. 70	140 190	2000 4500	2-2 4-0	10	8-5 8-0	12 22	-	<0-5	9	1-5	175	51	120	Ī
-	-	-	-	-	-	-			-	-	450 4	43	1111	٠.
-	-	-	-	-	-	-	-		-	-	350 1	13	\$100	1"

¹) Scheltelwert

17

⁹⁾ Kathode und Heizfaden verbunden

Tungstam

ANDORES WIT BIRCH TROCKEL

		11 -		\ 11.4	4	~ turn•	1111	×1.0.1.		1	Are-
Typ *	Vermendung	ofrens	ottven	drau	.1		.15.4011	e 14 elentes	a siler tenni	drawe	stress !
		\ adt	lmp	V mill	m \	V-01	\	\ rel	417	\ e tt	mA .
l'86, 1 Impektiate l'entate	Hetektor und Endverstärker	w.,	1	1000 1000 2000	74) 54 54	183 183 200		10 11 ·	t-u	18141. In	mer.
	theillator			şini Jini	1.9 (-1	ilge or by Jan 11 in t Jan 11 in t					• d
0.00	24. Jeniarker	2	1	2000	13			1 .	3.0		
Trinde-Heptode	l .			2001 2001	1+5 3+0	15.5 kg/	3 o 6 5	1 15 2 28	3-0		(
	E HF Verslarker			1481 2181	2·6 3·2	1844 340 MJ	365	1 . 45 2 . 28	3-0		4.4
ves. H	NF Verstärker	4ist 1	11-1	2(4)	2			2	1-0	•	(
Triode-Pentade	Endverstärker	''''	****	2191	15	200	•	8-3	11-7		en ; ! !
	NF Verstärker	12-6 /		100 200	0-33 0-65	Hes 0:8 Mg/	0-08		3-0		- 1
Hegelpentode	HF Verstarker		,,,	1(H) 2(H)	16	ir. 832	1:7	2·5 16 2·5 32	3-0	•	
UM 4 Abetimus enseiger	Zweifucher Abstimmanzeiger	12-6 f	0·1	100 200		-		0 25 N 0 42 125	3-0	100 200	33
UW 11 Abstimm- antriger	Zweifacher Abstimmanzeiger	12·6 i	o-t	100 200				0+ 238 0, 04·212·5	30	100 200	2
UV: IN Binweg-Gl.	Netzgleichrichter	50 7	0-1	250	1 10	1			-	-	- 1
UY 11 Rinweg-Gl.	Netzgleichrichter	30 i	0-1	250	140					+3	- 1

¹⁾ Scheitelwert

 ^{*)} S_r (Mischsteilheit)
 *) Schirmgitterverstärkungsfaktor

- 1		""	10-	Ano	den-	Schirm	ugitter-	Struerg	111070	Die	dra-
Type	Verwendung	spenn.	strom	spann,	s) rom	spann.	*trom	\or\pans.	wider- stand		. I street
		Volt	Amp.	Volt	m.\	Volt	mA	Velt	MAL)	Volt	
Ati 493 Triode	NF Verstärker	41	0-35	200	6			3-5	2-0		
P 419 Triode	NF Verstärker	1 4	0-25	teio	13	-		1-0	1-0	_	/_
P 430 Triode	NF Verstärker	2 4	0-25	Leiat	2.8						L
P 421 Triode	NF Verstärker	14	0-25	160	27	;	•	13			-
P 422 Triode	NF Verstärker	14	0-23	130	6-3			4-3			-
PTR II	NF Verstärker	1		210	13	210	٠ ,	""	- 3	"	•

EMPFÄNGERRÖHREN

MEISSTROM 100 mA

Keth		timette			T		T	hape.	w.,	445	441	Was	Т.:
4	u teler- stand			tioningt- tioning rang	31-113-11	Innere Wither stand	tore star- bungs babisa	titat tunk u tutter	dio dio to ty	Shrm- filter- two- stung	*person to be be-de on the stated	\tumerrad And	Ne hetertiel:
<u></u>	111	Ohm	Water	•	m (\m)	l. 19han		pi	u ,	W	¥41		3 5
70	145 140 173	3000 300 3300 .	2-0 1-40	6-8 10 10	7 8-8 8-5	25 23 20	11.5	()-N		23	150	· 60 1 80]-
		2(4HH)	- برا - برا	50 LD 0-1 mA 0-19 mA	3-2		22	24	0-3	\ ₀ \ ₀			
mas. 15		(UNICAD)									l	ta 98] ₃₁
•	150		1		0-60-008 (0-75,0-0075	110 MD	V ₆₃ - V ₆₁	(1-11-12)	14	[41	130	,ta 95	╽"
					2-0, 0-02 2-2 0-02	07 10 MD	۷ ۵ - م						
mas. 73		1(00000)			2-1	300	6.5	1-4	11-6		127	17 110	31
7.3		656H1	١.	to	16-10	18	11.5	4+10	9-41	153	l ' ' '		
max. 10	23(11)	24KHHH)			·	••		04012	241	0-3	130	302 181	31
•	325			•	2:20:0022 2:20:0022	4.50 EU							1
		BOUNDAN BOUNDAN									150	2N TA	ļ., ·
•		tannun Lannun		-		-					120	22 100	GM.
-			٠٠,	-		-	· -	4.0			Serv)	32 A3	69
		-		· -	-	<u>;-</u> -	-	-			MHP)	37 91	tn

⁴⁾ Die erste Zahl bedeutet die Steuergitterspannung, bei wescher das empfindlichere, die zweite jene, bei welcher das wenige empfindliche System schilesti

TYPES

Kati	hedra	Genetic ster Belo-	Maz. Nuts-	timent-	Steitheit	Innerer Widor	l'm-	Kapa- estat	Man. Ame	Man. Rehieu-	Mas. Spann.	Alem	ias.	Tŧ
•trem	wisher- stand	wither- stand	atump	14604		stand.	stär- kungs- faktor	Annels L. Giffer	真な	gitter beta- stung	ro . Ka thesir o Hetefad	ľ	Lânge	ł
mA.	Ohm	(Yen	Watt		mA:Velt	kithm		pР	Wati	Waji	Velt			Į
-	-	-	-		3-4	11-3	30	2-3	-	·	30	32	gn	ŀ
	-	-	_	-	1.0	4.3	8		,			41	100	Į,
_		-	_	_	1-0	42	42		2-3	-	f l		100	I,
· _	-			+	3-2	2	4		3-3				100	ĺ,
•									.		,		11-17	ľ
	-	-	-		\$-3	3-6	13		3-5		-	41	100	ľ
30	185	20000	-	-	10	3mm						ŀ		ı
30	130	13000	21:	<.20	11	230	**	. (141)(12	4.3	1.2	30	33	240	ŀ

Tungstan

MORRES WIT MAKELITHOUKEL

		11.	10.	100	1	S hat no	#1890 ·	Strurgi	100	1110	4++-	_
Typo	Verwendung	spann.	al prope	sponn	stranı	drum	strom	r ett e levenu	u selve stanul	upunn.	steren	
		Vedt	\mp.	V men	m \	Vodt	\	Volt	ma'uss	1 1011	m \	_
ABC 8 Imppeldiode- Triodo	Detektor und NF Verstärker	٠,	0.35	270	•			7	165	2191 2191	mas, IFR	_
ABL 1 Doppeldiode Pentode	Detektor und Endverstärker	1,	1-41	5,40	3106	270	•	4,	1-11	2000 2000	max, tek	
ACH I	Triode (Exillator	11	0-55	150	:				-			•
Triode-Hexode	Hexade Mischstufe			300	2:5 .:	70	2	2 29	3-0			•
AD 1 Triode	Endverstärker	1 4	0-95	250	450			15	0-7			
AF 3 Regelpentode	IIF Verstärker	1 1 1	0-35	250	8	[(#)	2-6	3 55	2:5		4	
AP 7	NF Verstärker	۱.,	0-35	250	63-59	Reg sign	0-35		1.5			
Pentode	HF Verstärker			259	3	1(#)	1-1	2	1/5			
AK I*	Oszillator		0-55	150	6						• •	
Oktode	Mischstufe			250	2.5	70	2	2 20	3:0			
AL 4 Pentode	Endverstärker	11	1.3	250	341	250	1	6	1.0			
AZ 1 Hoppelweg- gleichrichter	Netzgleichrichter	4 d	1-0	2 / 500 2 / 300		١.						
AZ 4 [loppelweg- gleichrichter	Netzgleichrichter	4 d	2-1	$\frac{2 \times 500}{2 \times 300}$,				
AZ 11 (Juppelveg- gleichrichter	Netzgleichrichter	4 1	140	2 / 5/8) 2 / 366				·				
AZ 18 Hoppelung- gleichrichter	· Netzgleichrichter	1 d	2.4	2 / 500 2 / 300	200							
AE 31 Importung- gleichrichter	Netagleichrichter	14	1-1	2 × 500 2 × 400 2 × 300	74 140							ģ
AZ 50 Importueg- gielekeichter	Netzgjeichrichter	'	3	2 - See 2 - See 2 - See	275			<u>.</u>				ř

^{†)} S. (Mischsteilheit) ²) Schirmgitterverstärkungsfaktor

Keth dram	***		Man. Note- te- stung	Greenst- verser- reng	Madhan	Innervy Widor- stand	Ver- stär- kungs-	Kapazitát zn. Anadr u. tátter		Yati Histori H	Man Span Note 10 Nothedra Heritadea	100	las. urmand	Let-Arthali Issapansange	
mA.	Ohm	Ohn	Watt	٠,	mA/Valt), i then	bak.t-	947	Wall	Watt	\ mft			1	
M81. (II		R,=01 MG I, =14 mA	-	-	2'	13-5	27	1-8	1:5		5en	312	7669	,	
mas. 35	250	7000	4-5	to	v	50		0-8	n	2-5	50	ţti	130	,	
m»\.		.	Hyp — Igy —	20 k# 0-75 mA	2	-	13	1-1	1-0						
13					0-750-002 * ₍	0-8 10 MQ	-		1:5	0-5	50	16	130	N,31	
11114. (H)		2300	1.3	5	đ	0-670	4		13			50	136	ŀ	
ma v. 15			,	-	1-8,0-002	1∙ 3 >10 MQ	-	- 0-003	2-0	0-1	ĶO	32	100	"	
max.	2500	3(NNNN)		-	(V _{e1} = -2 V (V _{e2} = 100 V)	-	~	<0.083	1-0	0-3	50	32	(90)	,,	
		·	•		2-1	2000	٠								
max.			H _{ft} o	20 kQ 0-75 mA	2-0	-	13	14	1-0	-	50	47	120	82	
15			-		0-750-001 3	0-8 10 M <i>Q</i>	-	-	1-5	0-3					
max. 55	150	7000	4-5	to	D	50	231)	<1.5	9	2-5	100	46	115	6	
	٠	-	-	-	-	-	-	C 60 µP	-	د	-	46	110	10	
		-	-		-	-	-	C _{max} = 60 µF	-	-	-	51	111	10	
	-	-		-	-	-	-	C	-	-	-	46	103	2A	
	-		-	-]		-	-	CP Ψ, εε	-		-	51	108	28	12
-	-	- [-	-	· -	-	-	C = 00 µP	-	_	-	46	106	100	
	-	-	-		Impedanz de Stromquelle	FR = 15	υ Ω • Ω	6487 	-	-	-	51	132	76	1 2 E
			ļ												
								• •							7 5
							;								
						21									

Tungstan

MITTLERER CX

		110	10.	Α,	-4	5.4	irmgilter-	Memoral lee-	Dinden	• ,
Type	Vernendung		-Arem	·	streen	spann.	otrum	tur- upbri- spann, stand	spane. stran	•
		Vall	Amp.	Velt	m.\	Vell	m.\	Valt max	\wit m.\	. !
ON 1 Pentode	Klasse All _i Endverstärker	0-3 <i>t</i>	1:33	dim	2 - 31 - 111	(Madf)	2 - 5 - 18	; ts		
(M 18/000 Pentade	Kinse All _i Endverstärker	6-3 /	1:35	47/80	2 - 22 - K2	111111	$2 \times 5 = 20$	37		
P 13/250 Triode	Klasse AH ₁ Endverstärker	1.4	(1-11.5 e	375	2 - 35 - 80			ж••		•
01.6 - G.A	Klasse A _t		O-19	250 350	72 70 54 66	250 250	5 7:3 2:5 7	1×		
l'entode mit Strahlbündelung	Klame All _i	6-3 /	•	360	88 140	270 270	. 5 15 5 11	22:5 22:5		_

Tungstam

MITTLERER UND

		H e	is-	Anodro-	Zulässiger gleichge-	Mns. Pilter-
Тур• ′	Verwendung	spann. V	strom l _f	V.,	eichteter Strom lat	kapazitāt Cust,
		Volt	Amp.	V-n	mA	μľ
PV 4100 Hochvakuum-Doppelweggieichrichter	Netzgleichrichter	4 d	1·1 0	2 - 300	100	(14)
PV 4200 Hochvakuum-Doppelweggleichrichter	Netzgleichrichter	4 d	2·3	2 - 500	120	(14)
PV 200/000 Hochvakuum-Doppelweggieichrichter	Netzgleichrichter	4 d	3-1 0	2 = 660 2 = 560	200 250	16
PV 300/1000 Hochvakuum-Doppelweggleichrichter	Netzgleichrichter	1 4	3·1	2 ≥ 1000 2 ≥ 500	200 260	4
Mti 230/2000 Quecksliberdampf-Ellaweggleichrichter	Gleichrichter	2·5 d	5 0	Зими	250	- '
IIG 1000/2000 Quecksliberdampf-Kinweggieichrichter	Gleichrichter	5 d	0+7 0	(30000)	1250	
GNG 4 Quecksilberdampf-Triode	Thyratron	5 1	10	3540	4000	
GBG 5 Queck-liberdampf-Tetrado	Thyratrontetrode	5 (10	1000	6400	'
QMQ 250/2000 Quecksiberdampi-Triede	Thyratron	2-5 ₫	5 •	2500	250	
40 005 Qurchsliberdampi-Rinweggleichrichter	Gleichrichter	2·5 d	4-8	3500	250	-
80 106 Qureksilberdnupf-Einweggleichrichter	Gleichrichter	5 4	. 6	42(N)	1500	-
V 100/25	Gleichrichter	5 4	6		100	÷·
Hachvakuum-Elaweggirichrichter	} fochspannungs-(il. Mmpfungsdiode***)	5-5 (max, 5-8) d		Minus		-
V 22/7000 Hachvakuum-Hinweggirichrichter	(ilelehelehter	6-3 <i>i</i>	0-68	74880	12	,
V 1908 D Huchvakssum-Einweggleicheichter	Gleicheichter	1.4	2-5		min. 70	2

. . Oxydkathadr

I -- Ilmeleri

KRAFTVERSTÄRKERRÖHREN

GROSSERER LEISTENG

)(ath		finalizate february valentizat	Man. Next bristing	(ioung)- toravrung	Medical	Inserver Water- stand	Ver star hongs taktor	Bragan strat s'm. Amady m Initiaty	91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Max. Telepon galler Lela: Slootel	Mai gann ga ba shebi s shebi sa	\ \	A. 	Appendix
, m A	Ohm	Films	Watt		mA/N=0	hi than	1	*	Wall	W-11	V-01		-	3
	-	FL., - 6000	940	3-5	6	;pn		0-5	25.		30	31	135	7:
mas. 120		ft, 10000	**	5-2	#-5	1885	111,	11-11	In.	100	;en	51	135	7
		FL, #0000	21 .	-	6	0-666	١,	20	15			544	136	7,
		2500	6-5	10	8(-1)	22-5								ı
	-	4200	10-8	15	5-2	3340			1	1				ł
		R = 6600	20-5	3				64-9	19	2.5		\$ 66	1963	\$40
	-	3800	184)	2	l -	-	l	1	ŀ	i i		Ī		i

GLEICHRICHTERRÖHREN

GRÖNNERER LEISTUNG

Minimale Impedans	i jörhet miländge Inversepannung	Splizmeptenung zwiechen Kathedo und Hetzinden	Max. Abm	*****	
iter Atromopielle II _{4 min} ,	V _{lue} .	und Hetzinden Va	٥	1.angr	Nerketschaftungs- nummer
1 thm	Volt	Volt			
dies	-	=	46	110	9
de		-	51	125	Ð .
ўня ўня	1700	-	50	117	76
\$180 1(81)	3000		51	133	73
i	10000	-	62	150 159	95•
	‡mono	-	58	212 231	UQ++
	10000	_	97	280	118,
-	25(x)		117	277	135
*-	5000	-	62	144	97
•	10000	-	50	. 117	Edison Normal E 27
. -	12000	-	GO	235	Edison Gollath E 40
-	40000	-	51	187	95
-	-	-			
_	3 0000	- ,	322	107	121
	400h	-	.33	135	120

^{*} Auch mit Sockel Edison Normal E 2

^{**} Auch mit Sarkel Edison Goliath E 40 *** Verwendung in Impulsmedulationserkaltunge

		ir	M·	100		See Bast see	gat be e -	\h*	methics.	1 *****	bra-
T , p .	Vernendung	·fram,	·11 mm	denner	·11wm	amay	** 1 metst	·formu / •••	u pirr stand	quann.	-11-000
		\ ult	\mp.	\ wh	\	\ ud1	\	\ - 41	mas. US	\ wit	m.\
	Klasse C Telegraphie			1500	1.15			1.40	L 18 m.\		
OUU 53/1500	Amstennostutiert	7/3 d	3	1200	A.s				l _e 9 mA		
I IIP-ITMMP	Gittermotaliert			1500	52			75	l _e t m.Š.		
	Klasse B			1250	to 320					ĺ	
HT 100	, Klasse G		3-25	1250	1:40			112	L 30 mA	İ	
UHF-Triode	Telegraphie		'	1000	160			195	l, 28 mA	į	
	Anodenmoduliert Klasse B	Į							1. 24 10.1	İ	•
	NF Verstärker				80 270			112		İ	•
HŲŲ 151 3000	létusse G Telegraphie	10-5 d	•	2500	220			170	1, 25 mA	,	
UHF-Triode	Anodenmoduliert		'	2(88)	285			115	t ₀ = 11 mA	į	
	Gittermeduliert			2500	N5			139			-
	Klasse II			ЗОНИ	100-750			70		-	
*OFF 500 CHIE-Triote	Klasse C Telegraphie	100 d	10 1	3000	115			200	I _a 55 mA		
	Anodenmoduliert	1		2500	335			300	l _g +75 mΛ	-	
1 44 Set See UEHF-Triode	Klasse C Telegraphie	23 d	16 #	3000	500			150	l _d →100 mA		
807	Klasse Ali			400	60-140			65			
Senderöhre mit Strahl-	Klasse C Télegraphie	6-3 /	(+!) 0	4(N) 6(N)	100 100	250 250	7·5 7·0	45 45	12800 <i>Q</i> 12800 <i>Q</i>	i _{et} = ca. i _{et} = ca.	,3-8mA ,3-8mA
bündelung	Anodenmoduliert	l		325 475	80 83	225 225	5 5	75 85	25000 () 21300 ()	l _{es} ⇔ cu, l _{es} ⇔ cu,	.3 mA .4 mA
ON 15 A Sendepentode	Klasse C Telegraphie oder Oszillato	12-67	0.5	400	36	210	3-5	12			
	Kinsse C Telegraphie			1(##)	177	250	28	120	Vo ov	les to	rs.
08-31 Sendepentode	Anoden- und Schirmgittermoduliert	12-67	1:35 o	8(#)	120	250	23	120	V ₆₂ 0 V	1 ₆₁ = 0 0-5	en.
	Fanggittermoduliert			E4MM)	72	150	21	5484	V ₆₃ 100 V	1,0°	rs. mA
iin es Tetrode	lmpul\modulatorröhre	26 d	1·25 •	2 (MMM)		110/sc spani 1200 1		GIN			ol four
	Klasse Ali _i			1750	50-218	750 V ₆₃ 60	0 63	120			
0) (0% 70/1730	Klasse C Telegraphie	100 4	3-25	1250	169	ton V _{es} 75	35 (a 22	95	1 _{gt}	1 -	
Sendepentade	Anodenmodulieri		'	[raan	135	(100) V ₆₄ 75	23 I _O 13	144	l _{e1} 10 mA		
	Gittermoduliert			1250	×s	\$1M7	نتي د ا _{ندا} د	1:0	l _a .		

Sanitized Copy Approved for Release 2010/06/25 : CIA-RDP80T00246A040500800001-3

SENDERÖHREN

-	Kelledo	diamete-						1	<u>.</u>	Was.	<i>i</i> , i ,		Sh.	-
			Mes. Nata- leletung	(jenni)-	Medibes	Material Water: Classic	Versian-		1919	rhipu giller- bela- slung	Man Span meng re. Nathode o. Mentiodes	.Nhora	reing Liner	
		Ohen	Watt		mA/Velt	h i Messe	hongs- lablar	14 2 4 -	Wall	wat	Val.		-	計
	Wes - 5-5 W	-	150	f		T		┢	-		, <u></u>	H		 •
	W ₆₁ = 1-5 W	_	43		2-2	19	20		33		İ	4:4:	164	1950
	W ₆₁ = 1·5 W	_	. 25										••	
	Wei - 1 W	R	250	-			i							1
	W ₀₁ = 6-5 W	i .	170	5 36 MHz		3-8	20	3	75			622	159	879
	W ₆₁ ~ 9 W	-	115	-				Ì	İ					
	$W_{es} > 3 \cdot W$	fl., 20000	430	-										
	W _{et} × N W		400	fee 60 MHz										
	W ₄₁ 2-5 W	ş -	190	-	3	4	18	7	150	-	-	73	250	47
	w _{at} iw	, -	70	_										
	W ₄₀ 20 V	H _{e s} = 9500	1630	_										
	W _{et} 20 V	·	1000	67 MHz		3-5	35	. 6-3	300	-		114	196	90
	W ₄₁ 30 V	·	635	· -	ĺ									
	W _O 50 V	3700	1000	l _{max} , = 67 MHz	ca, 4	-	ra. 36	<7.5	500	-	-	103	360	88
		R., -	cu. 15	э									٠.	
	W ₆₁ 0-2 W	1 -	25 40		6	-	g ₀ 8	<0-3	25	3-5	135	52	122	84
	W _{et} 0-25 W W _{et} ≥0-1 W	- ,	17·5 27·5	-										
	300	-	16	-	7	-	- ,	-	12	3		32	81	122
	W ₀₁ ⇔0-65 W	-	132				•							
	W _{et} = 0-0 W	-	75	-	6 (k		µ ₂ 6-7	0-1	45	7	100	49	99	125
	War=1•3 W	-	27	,	40 mA)									
ı	_	_	-		_	_	-	_	80	_	- ·	64	140	129
		R., 16300	300			·								
	W _m ->1 W	_	150	L 75 MHz										!
	Wm -21 W	_	ìoo	-	2-7	39-5	E6-2	9-67	70	16	-	20	181	92
	W _m = 2-5 W	_	*	_							ŀ			
4			1					`						

Tungstan

		11.	1,	١,,,,	den	Je pitranit	Hter-	``	mestifes.	-	
T, p.	\ er = emfung	spann.	stress	-termi	-17	sponn.	.12	drama ret-	u physiami	·pann.	strum
		Vidi	\mu_p	\a+	\	\ mil	\	\#	mas. WD	\ # 1	m.\
	felusse (; Telegruphie			Zemmi	170	\$100 V ₆₁ 15	1,41	1 cat	ξη 10 mA		
6% 123 2000 Sendepentode	Amelennuetulier 1	10-3	5 1	15480	1.15	V ₂₃ - 45	54	1191	L ₀₁ 111 m/s		
•	tillermolullert			2000	***	V _{er} to	18	5.5	L _{en} 2 m.\		•
	Klasse C Telegraphie			3000	550	3000	1181	74 M		l,	
5 % 045 T Sendepentode	Amodenmoduliert	12 d	8-5	2500 1660	225 680	5400 5400	(2100) (2100)	(910) 250	1 10 mA	ì	
	tiittermoduliert			30000 [8000	190 295	65490 65490	165 390	300 130	եր - 5 m/s եր 0 m/s		

o Oxydkathode I thoriert

Tungstam KATHODENSTRAHLRÖHREN

Туре	f.eucht- schirm				ek troden spa	nuungen	Kauplind	Kmpfindlichkeit		ritäten	Man.	Nachol-
	51 max. mm	ricktrost magn.	Volt j	Va, V	Va, V	Vg, 9	N ₄ V/mm	N, V/mm		n, Com		tungs- nummer
3KPI szilfographen- robre	78	elektrost.	6-3 <i>i</i> 0-6	2000	250 600	(10)	1.7	1:2	u '		298	127
SBP1 - A Sallingraphen- röhre	135	elektront.	6-3 / 0-6	2000	300 600	65	3-3	3-0	Đ	2 2	435	128
50Pl A Exillographen- rühre	135	elektrost.	6-3 / 0-6	1500 P	280 515	22-567-5	2:34,,,3:1-	6 1-972-7	*	2 2	435	139

Tungstam SPANNUNGS-STABILISATOREN

Type	Stronguellen- spannung Vs. V	tirundwert d. Stromes L _{are} mA	Umgrbungs- temperatur Tamb	Zünd- span- nung V _{ater} V	· · · · · · · · · · · · · · · · · · ·	Heirleba- atrom Laper mA	Spannangs- reprising Vision	Cirtha- ler Durch- means	Max. 1 Angr man	Narhol- schuli mys- nammer
VM 73 Stabilisatorrähre	min. 195	max, 10 min, 5	55 + 90	(100)	75	5 40	3 (5 - 30 mA) 5 (5 - 40 mA)	40	90-5	123
VR 163 Stabilisatorröhr	min, 133	max, to min, 5	55 90	115	105	3 10	1 (5 30 mA) 2 (5 40 mA)	40	5MF.5	123
VM 159 Stabilisatorröhre	mhı, 185	max. (0 min. 5	55 + 900	160	150	5 t o	2 (5 - 30 mA) F (5 - 10 mA)	1 40	5MF-5	123

SENDERÖHREN

Kathod strem *		limenta- ster firm- stangs- stand stand	Man. Nuts- brookung	tionsul- teratrums	Metiheti	laserere Vi sidere Tannel	Verstar- kongs Feblur	Rejaire estat pe vincipe u	Val Inden- Pris-	1 1 1 1 E	Nas Gan nang se harbade e Henriades	Max Shineswag Lange	1
mA 1		1 them	Watt	_ •	m 1. Valt	A.I Hom		pě	1147	Watt	\ will		13
W ₆₁ · · I ·	4 W		250	50 MHz									
W _{d1} = 1	0 W		150		1/3		g ₂ 10-5		125	35		61 221	14.1
W ₀ = 0	5 W		60										
W _{et} - 1	5 W		1200	l _{mas.} ⇔ 10 MHz									
	6 W 5 W		100 550 ⊗	L 10 MHz Jan 60 MHz	5-5			0-05				106 285	72 94
W _{ii} i	-7 W		200 80	L 10 MHz		l		İ			ŀ		1

Tungstam REFLEX-KLYSTRON

Lype	VIII)	Heizung V A		Kollektor- spannung max. V		Kathoden- strom mA	'/ makinuka-	firess- ter Durch- messer mm	Mas. LAngr mm	Mass-Skizeen- nummer
k II Polley klystron	1800 3750	6-3 0-7	280	300	max, 300	16 36	ca, 180	34	120	133, 133a

Tungstam VAKUUM-THERMORELAIS

Type	Heirung	Arhai-	Kontaki.	Spanning	Wider- stand d.	Max. Abmessangen		
	Volt Amp.	seil Sek.	strom m.\	het do m.S	Kontuki- krriers U	() finge oline Nittle nim		Herketerkeltungs- nummer
Vakuum- Thermorelais	l 1·3·1·7	50 NO	(34)	26	110	42	107	131

Tungeram. THERMISTOREN

T) p+	Verwendung	Wider- stand bri 30 C Uhm	Wider- stand bei 80 C' Okm	Wider stand Tempe- ratur- horffizient % C	Max, Hetriebs- tempera- tur (;*	Leistung im Arbeits- punkt mW	Emplied- lickett the aW	I ly sterrois "a	Max. relander Mram- alarke m.\	Mass-Milesen- manuscry
Thi to	Meaning der Mikrowellen- trictung	-	-	-	-	9 · Z2	ţo 30	5	15	131
ITT 18	Traperaturnes- suni, Kompra- salina	ir tono ir tono	120 120	min. 3·6	150	-	-		150	1 60
ITT 0-48	Trapresturare- mag. Kompre- vation	400 ±10°n	±22% 50	min. 3%	150				150	160

TYPENBEZEICHNUNGNNYNTEM

Die meisten europäischen Rohrenserien sind durch ein Typenbezeichnungssystem gekennzeichnet, das Aufschluss über elektrische Daten, Elektrodensystem und Rohrenserie bietet.

EMPFÄNGERRÖHREN

ERSTER BUCHSTABE (Heizspanning bezw. Heizstrom)

- A 1 Volt Parallelheizung
- C 200 mA Serienheizung
- D 1:25 Volt (1:4 Volt) Battericheizung
- E 6-3 Volt Parallelheizung
- P 300 mA Scrienheizung
- U 100 mA Serienheizung

ZWEITER UND EVTL. WEITERER BUCHSTABE (Elektrodensystem)

- A Diode
- B Duodiode (Doppeldiode)
- C. Triode (mit Ausnahme von Endverstärkerröhren und Röhren mit Gas- oder Quecksilberdampffullung)
- D Endverstärker-Triode
- E Tetrode (mit Ausnahme von Endverstärkerröhren)
- F Pentode (mit Ausnahme von Endverstärkerröhren)
- 11 Hexode oder Heptode
- K Oktode
- 1. Endverstärker-Pentode
- M Abstimmanzeiger
- Y Einweggleichrichter
- Z Zweiweggleichrichter

NUMMER (Röhrenserie)

- 1 9 Röhren mit Quetschfuss
- 12 Röhren mit €tahlröhrensockel
- 21 22 Schlüsselröhren
- 31 39 Röhren mit Oktalsockel
- 10 42 Röhren der 10-er Serie
- 80 89 Noval-Röhren

SENDERÖHREN

- P Sende- oder Kraftverstärkertriode OQQ oder OT Kurzwellen-Sendetriode
- OS Sendetetrode bezw. Sendepentode

GLEICHRICHTERRÖUREN

- V Einweggleichrichterröhre
- PV Zweiweggleichrichterröhre
- RG Gleichrichterröhre mit Quecksilberdampffüllung
- GRG Thyratron

BEICHENERKLÄRUNG DER TECHNISCHEN DATEN

Die Buchstaben, bezw. die Betriebswerte in den einzelnen katalogspalten haben folgende Bedeutung:

HEIZSPANNUNG

. . .

- i = indirekte Heizung
- d direkte Heizung
- p Parallelschaltung der Heizladen
- s : Reihenschaltung der Heizfäden

HEIZSTROM

Für Kraftverstärker und Gleichrichterrohren mittlerer und grosser Leistung und Senderöhren;

- o Oxydkathode
- t thorierte Wolframkathode
- W 🛥 Wolframkathode

ANODENSPANNUNG

Bei den Gleichrichterröhren bedeuten die angegebenen Werte den Effektivwert der maximalen Transformatorleerlanfspannungen.

ANODENSTROM and SCHIRMGITTERSTROM

In Gegentaktschaftung (Klasse AB, und B) bedeuten; der erste Wert den Ruhestrom, der zweite Wert den Strom in vollausgestenertem Zustande.

STEUERGITTERVORSPANNUNG

Im allgemeinen ist die Gittervorspannung angegeben. Bei Röhren, die als Widerstandsverstärker benutzt werden, ist der zu verwendende Kathodenwiderstand (R_k) angegeben. Bei Regelröhren sind stets die Daten für den nicht abgeregelten und voll abgeregelten Zustand angeführt, z.B.:

Der Grenzwert des Widerstandes bezieht sich bei direkt geheizten Röhren auf konstante Vorspannung, bei indirekt geheizten Röhren auf Anwendung eines Kathodenwiderstandes. Bei indirekt geheizten Röhren soll der Gitterwiderstand im Falle einer konstanten Vorspannung höchstens zwei Drittel des angegebenen Wertes betragen.

GÜNSTIGSTER BELASTUNGSWIDERSTAND

Bei Gegentaktschaltung ist der Widerstandswert von Anode zu Anode angegeben.

MAXIMALE NUTZLEISTUNG

"m" bedeutet, dass sich der angegebene Wert auf die nicht modulierte Trägerleistung bezieht.

STEHLHEIT

Bei Regelröhren sind die Daten für den nicht abgeregelten und voll abgeregelten Zustand angeführt, z.B.: $2\cdot 2\cdot \ldots 0\cdot 0\cdot 2\cdot 2$ mA/V. Bei Mischröhren beziehen sich die Steilheitsdaten auf die Mischsteilheit.

VERSTÄRKUNGSFAKTOR

Bei Trioden ist der Anodenverstärkungsfaktor, bei Pentoden der Schirmgitterverstärkungsfaktor angegeben.

ABMESSUNGEN

Die angegebene Länge ist ohne Stifte zu verstehen.

SCHWARZ GERÄNDERT

Betriebs-Einstelldaten

Bei Trioden-Hexoden- bzw. Trioden-Heptoden-Mischrohren gild. R_{c1} den im Gitterkreis der Triode eingeschafteten. Widerstand, R_{c1} den Gitterstrom des Oszillatorteils an. R_{c1} ist der Arbeitswiderstand im Anodenkreis des Triodenteils, V_{c1} die Gittervorspannung der Triode, V_{c2} die Spannung des dritten Gitters der Hexode bzw. Heptode.

Bei Widerstandsverstärkern bedeutet 1. den durch den Arbeitswickerstand R. durchfliessenden Anglenstrom.

In einzelnen Fällen ist der Wert \mathbf{R}_{r2} angegeben. In solchen Fällen ist, um die Schirmgitterspannung zu erhalten, der Spannungsabfall an diesem Widerstande von der Klemmenspannung der Anodenstromquelle abzuziehen.

SENDERÖHREN

Bei Betriebsverhältnissen, unter welchen die Spannung des Steuergitters für einen Bruchteil der Periode einen positiven Wert annimmt, bedeutet 1_{cl} den Gitterstrom, W_{cl} die Steuergitterleistung bei voller Aussteuerung.

f_{nat} bezeichnet die höchste Betriebsfrequenz, bei welcher die angeführten Maximalbelastungen noch zugelassen sind. Bei noch höheren Frequenzen darf die Röhre nur mit entsprechend verringerter Anodenspannung und Anodenverlustleistung belastet werden.

GRENZWERTE

Die Grenzwerte dürfen mit Rücksicht auf die Betriebssicherheit und die Lebensdauer der Röhre unter keinen Umständen überschritten werden.

Die Anodenspannungszuführung darf während des Betriebes nicht unterbrochen werden, da andernfalls das Schirmgitter überlastet werden kann.

Bei hochbelasteten Röhren, insbesondere bei den Endverstärkern und Gleichrichtern der 40-er, 80-er und Miniaturserien ist auf hinreichende Luftzirkulation zu achten, es sollen weiters keine wärmeentwickelnde Teile in der Nähe der Röhren angeordnet werden.

, ه

VERGLEICHSTABELLE

Diese Tabelle enthalt jene TUNGSRAM Expen, die anderen Erzeugnissen entsprechen oder ähnliche Eigenschaften aufweisen. Wunscht man eine treinde Röhre durch eine TUNGSRAM. Röhre zu ersetzen und oder wunscht man sich über diese zu informieren, dann ziehe man diesen Katalog zu Bate.

Type	TUNGSRAM Type	Lype	II NGSIIAM Ixpe	Lype	11 NGSRAM Type	Туре	TUNGSRAM Type
DAF 91	185	EF 95	6AK5	U 113	AZ 31	6 K 8 G	ECH 35
DAF 96	1857	EK 90	61006	U 150	EX 40	6 K 8 GT	ECH 35
DF 91	t'l' i	EJ. 50	OS 18 600	11 804	CY II	6 N 8	EBF 80
DF 92	11.1	EL 90	6AQ5	131.9	EZ 40	6 V 6 G	E1. 33
DF 96	TTT	EL 3 N	10. 3	W 142	CF II	7 G 5	El. 41
DF 901	11.1	EZ 90	6X4	W 143	EF 22	7 K 7	EBC 41
DH 112	UBC 11	E 121 N	AG 495	W 117	EF 39	12 AT 7	ECC 81
DH 117	EBC 33	111 200	000 151 3000	W 450	EF 0	12 AU 7	ECC 82
DH 150	EBC II	KT 61	EL 33	WD 142	UAF 12	211 V	AG 495
DK 91	113	N 117	EL 33	WD 150	EAF 42	677	GRG 4
HC 96	1115T	N 150	EL 11	X 61 M	ECH 35	828	OS 70,1750
11. 92	384	N 152	PL 81	X 65	ECH 35	833 A	OT 400
of. 93	3A1	OA 3	VIC 75	X 142	UCH 12	866 A	HG 250/300
DI. 94	3V1	OC 3	VR 105	X 143	EGH 21	872 A	110 1000/8000
M. 96	ISTT	OD 3	VR 150	N 117	ECH 35	1561	PV 4200
5AA 91	6AL5	OM 1	EBC 33	N 450	EGH 42	1805	PV 4100
CAF II	EAF 12	PE 0,6-40	08-1	Y 61	EM 34	4019° A	P 419
(B 91	6AL5	PE 1 100	OS 51	Y 62	EM 31	4020 A	P 420
(BC 90	6AT6	1000 7,5/0,6	BG 250 3000	Y 63	EM 31	1021 A	P 421
CC 91	6.16	RGQ 7,5/2,5	BG 1000,3000	1 1, 6	1165	1022 AR	P 422
CH 2	ECH 3	RK 28 A	OS 125 2000	3 B 4	3A4	4039 A	G11G 250/300
CH II	ECH 42	RS 329 G	OQQ-501,3000	6 AB 8	ECL, 80	1065 A	V 22/7000
F 2	EF 9	T 55	OQQ 55/1500	6 AG 6 G	E1, 33	4069 A	OS 125/2000
0F 5	EF 9	UAF II	UAF 12	6 BX 6	EF 80	1282 11	OS 70/1750
97 8	EF 9	uca a	UCH 12	6 C 10	ECH 12	5678	104
IF 38	EF 39	t. 18	PV 200-600	6E 8 G	ECH 35	8005	OT 100
F 93	6BA6	U 81	AZ 31	6 F 16	EF II	80720	V 100,25
JF 94	6AU6	U 101	UY 21	6.186	ECH 35	_	PTE II

1 % 10	 . TE 84	8' B:	SR 1/2	B: 6	4.88	SIN

Туре	Seite	Туре	Seite	Туре	Seite	Туре	Selte
ABC 1	20	EGL 80		OT 100	21	VR 75	26
ABL 1	20	EF 5	11	P 15/250	22	VR 105	26
ACH 1	20	EF 6	11	P 419	18	VR 150	26
AD 1	20	EF 9	11	P 420	18	VTR 70	27
AF 3	20	EF 22	12	P 421	18	11.4	8
AF 7	20	EF 36 ¹	16	P 422	18	Ht5	8
AG 195	18	EF 39	16	PABC 80	4	1R5T	8
AK 1°	20	EF 40	-1	PCC 84	-1	181	8
Al. 1	20	EF 41	6	PCC 85	4	184T	8
AZ 1	20	EF 42	6	PGL 81	4	185	8
AZ 1	20	EF 80 :	2	Pl. 81	4	185T	8
AZ 11	20	EF 85	2	PL 82	4	174	8
AZ 12	20	EF 86	2	PL 83	4	1T4T	8
AZ 21	12	EF 89	2	PTE 11	18	17T 0:4 B	27
AZ 31	20	EL 3	14	PV 200/600	22	ITTIB	27
AZ 41	6	EL 6	14	PV 200/1000 .1	22	104	8
AZ 50	20	EL 11	14	PV 4100	22	3A4	. B
CL 6	16	EL 12	14	PV 4200	22	3KP1	26
CY 2	16	EL 33	16	PY 82	4	384	8
CY 32	16	E1. 36	16	PY 83	4	384T	8
DLL 101	8	EL 41	6	RG 250/3000 .	22	3V4	8
DY 80	1	EL 84	2	RG 1000/3000	22	4Q 025	22
EABC 80	2	EM 4	14	TG 10	27	5BP1-A	26 26
EAF 12	1	EM 11	16	UAF 42	6	5CP1-A	26 22
EBC 3	11	EM 34	16	UBC 41	6	5Q 105	26
EBC 33	16	EM 80	2	UBL 1	18	5S 045 T	26 26
EBC 41		EZ 2/3	16	UBI. 21	12		10
EBF 2	11	EZ 4	16	UCH 4 UCH 21	18 12	6AK5	10
EBF 32	16	EZ 40	6 ·2	UCH 42	6	6AQ5	10
EBF 80	2	EZ 80	2 22	UCL 11	18	6AT6	10
EBL 1	11 12	GRG 4 GRG 5	22 22	UF 9	18	6AU6	10
EBI, 21	12	GRG 250/3000	22	UF 21	12	6AV6	10
EC 92	117	K 11	22 27	UF 41	6	6BA6	10
ECC 40	2	OQQ 55/1500	21	UL 41	6	6BE6	10
ECC 81	2	000 151/3000	21	UM 4	18	6.16	10
ECC 82	2	OQQ 501/3000	21	UM 11	18	61.6-GA	22
ECC 83	2	0S 1	22	UY IN	18	6X4	10
ECC 85	11	OS 16	21	UY II	18	12AT6	10
ECH 3	11	OS 18/600	22	UY 21	12	128A6	10
EGH 4i	11	OS 51	21	UY 22	12	12BE6	10
ECH 21	16	08 66	21	UY 41	6	19.16	10
ECH 35	4	OS 70/1750	21	V 22/7000	22	35W4	10
ECH 42	4 2	OS 125/2000 .	24 26	V 100/25	22	50R5	10
ECH 81	11	OT 100	24	V 1906 D	22	M17	24 \$
ECL 11	11	1 (A) 1(M)	2.1	1 1 13000 17	~~	# TETE	21)