

Résumé 04: Réduction d'endomorphismes

Dans tout ce chapitre, \mathbb{K} sera le corps \mathbb{R} ou \mathbb{C} , et E sera un espace vectoriel sur \mathbb{K} .

Nous avons vu en première année la simplification, dans l'étude des puissances d'une matrice M, que procure le fait de disposer d'une matrice diagonale (ou dans une moindre mesure triangulaire) D semblable à M. Toute la problématique de ce cours, reposant sur ce constat, se résume essentiellement en deux questions :

- Existe-t-il une matrice diagonale D semblable à M?
- Dans l'affirmative, quelle est-elle ? Et quelle est la matrice de passage sous-jacente ?

Dans tout ce cours E sera un $\mathbb{K}-$ espace vectoriel . Nous commencerons par un rappel sur ces deux relations d'équivalence.

I Préliminaires

§ 1. Les deux relations. – Définition I.1

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$.

- 1. A est dite équivalente à B lorsqu'il existe P et $Q \in GL_n(\mathbb{K})$ telles que $B = Q^{-1}AP$.
- 2. A est dite semblable à B lorsqu'il existe $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$.

REMARQUES:

- 1. Ces deux relations sont des relations d'équivalence sur $\mathcal{M}_n(\mathbb{K})$, ce qui signifie que A est semblable à ellemême, que si A est semblable à B, alors B est semblable à A et qu'enfin si A est semblable à B qui est elle-même semblable à C, alors A est semblable à C.
 - Evidemment, on peut remplacer toutes les occurrences du mot « semblable » dans cette phrase par « équivalente ».
- 2. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Si A est semblable à B, alors A est équivalente à B. La réciproque est fausse (connaître un contre-exemple).

La question de savoir si deux matrices sont équivalentes est simple : elle se réduit au calcul du rang :

Théorème I.2

```
Soient A, B \in \mathcal{M}_n(\mathbb{K}). A est équivalente à B si et seulement si elles ont même rang.
Ainsi, r = \text{Rang } A \iff P \text{ et } Q \in GL_n(\mathbb{K}) telles que B = Q^{-1}J_rP, où J_r = \text{Diag}(1, \dots, 1, 0 \dots, 0) \in \mathcal{M}_n(\mathbb{K}) est de rang r.
```

Tout ce cours vous convaincra que déterminer si deux matrices sont semblables est bien plus subtil. Nous verrons dans la propostion II.6 que deux matrices semblables partagent eaucoup de propriétés.

§ 2. Sous-espaces vectoriels stables par $u \in \mathcal{L}(E)$.— C'est une notion qui permet d'obtenir des matrices reprépsentant u avec des blocs de zéros.

Définition I.3 (sous-espace vectoriel stable)

Soit u un endomorphisme de E.

- 1. Un sous-espace vectoriel F de E est dit **stable** par u lorsque $u(F) \subset F$, i.e lorsque pour tout $x \in F, u(x) \in F$
- 2. Si F est stable par u, on note u_F l'endomorphisme induit par u sur F: $u_F \mid F \longrightarrow F$. u(x)

REMARQUES:

Si $F = \text{Vect } (e_1, \ldots, e_p)$,

F est stable par $u \iff$ pour tout $i \in [1, p], u(e_i)$ appartient à F.

 \iff la matrice de f dans une base (e_1,\ldots,e_n) <u>adaptée à F</u> est de la forme $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ où $A \in \mathcal{M}_p(\mathbb{K}), C \in \mathcal{M}_p(\mathbb{K})$

 $\mathcal{M}_{n-p}(\mathbb{K}), B \in \mathcal{M}_{p,n-p}(\mathbb{K})$

Le fait que Mat $_{\mathscr{B}}(u)$ soit diagonale ou triangulaire se traduit parfaitement en termes de stabilité :

Proposition I.4

Soit $u \in \mathcal{L}(E)$, et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Notons $M = \text{Mat }_{\mathscr{B}}(u) \in \mathscr{M}_n(\mathbb{K})$. Alors,

- 1. M est diagonale \iff pour tout $e_i \in [1, n]$, $u(e_i)$ est colinéaire à e_i .
- 2. M est triangulaire supérieure \iff pour tout $p \in [1, n]$, l'espace vectoriel $F_p = \text{Vect}(e_1, \dots, e_p)$ est stable par u.

Proposition I.5 (Somme directe de sous-espaces vectoriels stables)

Soit u un endomorphisme de E. On suppose que $E=E_1\oplus E_2\oplus \cdots \oplus E_p$ où les E_i sont des sous-espaces vectoriels de E. Soit $\mathscr{B}=\mathscr{B}_1\cup \mathscr{B}_2\cup \cdots \cup \mathscr{B}_p$ une base adaptée à cette décomposition de E.

Alors, tous les E_i sont stables par $u \iff$ la matrice de u dans la base \mathscr{B} est diagonale par blocs, i.e est de la

forme
$$\begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & A_p \end{pmatrix}$$
, où pour tout $i \in [\![1,p]\!]A_i \in \mathcal{M}_{k_i}(\mathbb{K})$, k_i étant la dimension de E_i .

II ELÉMENTS PROPRES D'UN ENDOMORPHISME

§ 1. **Définitions.**— Soit $u: E \to E$ un endomorphisme du \mathbb{K} —espace vectoriel E. Nous utiliserons intensivement que pour tout $x \in E$ et tout $\lambda \in \mathbb{K}$,

$$x \in \ker(u - \lambda \operatorname{Id}_E) \iff u(x) = \lambda x$$

et nous noterons, comme il est d'usage, $E_{\lambda}(u) = \ker(u - \lambda \mathrm{Id}_E)$.

Définition II.1 (Eléments propres d'un endomorphisme)

- 1. Soit λ un scalaire. λ est une valeur propre de l'endomorphisme u $\iff E_{\lambda}(u) \neq \{0_E\} \iff \dim E_{\lambda}(u) \geqslant 1 \iff \exists x \in E, \ x \neq 0_E / \ u(x) = \lambda x.$
- 2. Soit $x \in E$. x est un vecteur propre de $u \iff \begin{cases} x \neq 0_E \\ \exists \lambda \in \mathbb{K}, \ u(x) = \lambda x \end{cases}$.
- 3. Le **spectre** de u, (noté $Sp(u) \subset \mathbb{K}$) est l'ensemble des valeurs propres de u.
- 4. Si λ est une valeur propre de u, on dit que $E_{\lambda}(u)$ est le **sous espace propre** de u associé à λ . c'est donc l'ensemble constitué des vecteurs propres associés à la valeur propre λ et du vecteur nul.

REMARQUES:

- 1. 0 est une valeur propre de $u \iff u$ n'est pas injective, car alors l'espace propre associé est $E_0(u) = \ker u$.
- 2. Si p est un projecteur non trivial, $Sp(p) = \{0, 1\}$.
- 3. Si s est une symétrie non triviale, alors $Sp(s)=\{-1,1\}$. Tiens, d'ailleurs, quels sont les sous-espaces propres?

§ 2. Propriétés des éléments propres. - Les sous-espaces propres sont en somme directe :

Proposition II.2 (Espaces propres)

Soient $\lambda_1, \ldots, \lambda_p$ des valeurs propres deux à deux distinctes de u.

Les espaces propres $E_{\lambda_1},\ldots,E_{\lambda_p}$ sont en somme directe : $E_{\lambda_1}+\ldots+E_{\lambda_p}=E_{\lambda_1}\oplus\ldots\oplus E_{\lambda_p},$ ce qui signifie que pour tout $i\in [\![1,p]\!]$ et tout p-uplet $(x_1,\ldots,x_p)\in E_{\lambda_1}(u)\times\cdots\times E_{\lambda_p}(u)$, on a l'implication

si
$$\sum_{i=1}^{p} x_i = 0_E$$
, alors tous les x_i sont nuls.

Proposition II.3 (Stabilité et commutation)

Soit u et v deux endomorphismes de E tels que $u \circ v = v \circ u$. Alors pour tout $\lambda \in \mathbb{K}$, $E_{\lambda}(u)$ est stable par v. En particulier, les sous-espaces propres de u sont stables par u, et par tout polynôme en u.

REMARQUES:

- 1. En bon français, si deux endomorphismes commutent, les sous-espaces propres de l'un sont stables par
- 2. Sur $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$, la dérivation admet une infinité de valeurs propres (tous les réels en fait). Ceci n'est pas possible en dimension finie :

Corollaire II.4

Si E est de dimension n et $u \in \mathcal{L}(E)$, alors u possède au plus n valeurs propres distinctes.

§ 3. Expression matricielle. – de le diagonalisabilité.

Définition II.5

Soit $M \in \mathcal{M}_n(\mathbb{K})$ et $L_M \mid \mathbb{K}^n \longrightarrow \mathbb{K}^n$ l'endomorphisme canoniquement associé. Les vecteurs propres, $X \longmapsto MX$

valeurs propres et sous-espaces propres de M seront par définition ceux de L_M .

Dans la proposition suivante, nous anticipons sur la suite du cours, mais ceci n'est qu'un résumé....

Proposition II.6 (Spectre de matrices semblables)

Soient A et $B \in \mathcal{M}_n(\mathbb{K})$ deux matrices semblables. Alors

- $\blacktriangleright \chi_A = \chi_B$.
- ightharpoonup A et B ont même spectre, même trace, même déterminant, mêmes multiplicités.
- ▶ Pour toute valeur propre λ de A, dim $E_{\lambda}(A) = \dim E_{\lambda}(B)$.

REMARQUES:

- ▶ A nouveau, les matrices triangulaires nous dispensent de calculs fastidieux : Soit T une matrice triangulaire $\in \mathcal{M}_n(\mathbb{K})$. Alors le spectre de T est exactement l'ensemble des coefficients diagonaux de T.
- ▶ Pour les puristes, si $A = P^{-1}BP$, alors $P(E_{\lambda}(A)) = E_{\lambda}(B)$.

Heureusement, il y a coïncidence parfaite entre les éléments propres d'un endomorphisme et ceux de toute matrice le représentant :

Proposition II.7

Soit $u \in \mathcal{L}(E)$, \mathcal{B} une base de E, et $M = \text{Mat }_{\mathcal{B}}(u)$. Alors le spectre de M est égal à celui de u, et leurs sous-espaces propres ont même dimension.

§ 4. Endomorphisme diagonalisable. — On suppose ici que E est de dimension finie $n \ge 1$.

Définition II.8 (Diagonalisable)

Soit u un endomorphisme de E. On dit que u est diagonalisable lorsque l'une des propriétés équivalentes

- 1./ Il existe une base de E dans laquelle la matrice de u est diagonale.
- **2.**/ Il existe une base de E constituée de vecteurs propres de u.
- **3.**/ E est somme directe des espaces propres de u:E=

4./
$$\sum_{\lambda \in Sp(u)} \dim E_{\lambda}(u) = \dim E.$$

- 1. Les projecteurs et les symétries sont diagonalisables.
- 2. Aucune rotation de \mathbb{R}^2 autre que $\pm I_2$ n'est diagonalisable.

Définition II.9

Une matrice A est diagonalisable si et seulement si elle est semblable à une matrice diagonale, i.e si et seulement si il existe une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$.

Le lien entre les endomorphismes et leurs matrices est cohérent :

Proposition II.10

- ▶ Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est diagonalisable \Leftrightarrow l'endomorphisme $L_A \in \mathcal{L}(\mathbb{K}^n)$ qui lui est canoniquement associé est diagonalisable.
- Soit f un endomorphisme sur un \mathbb{K} espace vectoriel E de dimension finie n. Alors

il existe une base \mathcal{B} de E telle que $Mat_{\mathcal{B}}(f)$ est diagonale f est diagonalisable pour toute base \mathcal{B} de E, $Mat_{\mathcal{B}}(f)$ est diagonalisable.

On a ainsi heureusement l'équivalence entre la diagonalisabilité d'un endomorphisme $u \in \mathcal{L}(E)$ et celle de sa matrice dans n'importe quelle base.

EXEMPLES:

- 1. Toute matrice A qui vérifie $A^2 = A$ ou $A^2 = I_n$ est diagonalisable.
- $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ n'est pas diagonalisable.
- $egin{pmatrix} -1 \ 0 \end{pmatrix}$ n'est pas diagonalisable dans $\mathscr{M}_2(\mathbb{R})$, mais l'est dans $\mathscr{M}_2(\mathbb{C})$.
- 4. Si A n'admet qu'une seule valeur propre λ et qu'elle est diagonalisable, alors $A=\lambda I_n.$
- $\begin{pmatrix} 0 & 1 & c \\ 0 & 0 & 2 \end{pmatrix}$ est diagonalisable $\iff a = 0$.

Théorème II.11 (Une condition SUFFISANTE de diagonalisabilité)

Notons $n = \dim E$. Soit $u \in \mathcal{L}(E)$.

Si u admet n valeurs propres distinctes deux à deux, alors il est diagonalisable.

REMARQUES:

Cette condition n'est pas nécessaire, comme le prouve le contre-exemple d'une homothétie.

III POLYNÔME CARACTÉRISTIQUE

E est un $\mathbb{K}-$ espace vectoriel de dimension finie $n\in\mathbb{N}^*$ et u est ici un endomorphisme de E.

Définition III.1 (Polynôme caractéristique d'un endomorphisme)

Le polynôme caractéristique de u est défini par : $\chi_u(X) = \det(u - X \operatorname{Id}_E)$

- \blacktriangleright L'ensemble des racines de χ_u est égal à l'ensemble des valeurs propres de u.
- ▶ Pour toute valeur propre λ de u, on note $\operatorname{Mult}(\lambda)$ la multiplicité de λ en tant que racine de χ_u .

Proposition III.2 (Propriétés du polynôme caractéristique)

- 1. χ_u est un polynôme de dégré n unitaire.
- 2. $\chi_u(X) = X^n \text{Trace } (u)X^{n-1} + \ldots + (-1)^n \det u.$
- 3. Pour toute valeur propre λ de u, on a $1 \leq \dim(E_{\lambda}) \leq \text{Mult}(\lambda)$.

REMARQUES:

- 1. Si dim E=2, alors $\chi_u(X)=X^2-\operatorname{Trace}(u)X+\det u$.
- 2. Si u est un projecteur de rang r, alors $\chi_u(X) = (-1)^n (X-1)^r X^{n-r}$.
- 3. Il faudrait savoir calculer le polynôme caractéristique d'un matrice compagnon.

Théorème III.3 (Critère assurant qu'un endomorphisme est diagonalisable)

u est diagonalisable si et seulement si les deux propriétés suivantes sont vérifiées :

- 1. le polynôme caractéristique de u est scindé
- 2. $\forall \lambda \in Sp(u), Mult(\lambda) = \dim E_{\lambda}(u)$.

Proposition III.4 (Cas particuliers)

- 1. Si λ est une racine simple du polynôme caractéristique alors $\dim E_{\lambda} = 1$. Les racines simples ne nécessitent aucune vérification lorsque l'on souhaite s'assurer qu'un endomorphisme est diagonalisable.
- 2. **Si** le polynôme caractéristique est scindé et à racines simples **alors** u est diagonalisable et les espaces propres sont des droites.

Enfin, voici un théorème qui vous fait entrevoir un intérêt des sous-espaces vectoriels stables par u: en trouver permet de factoriser χ_u , donnant ainsi des informations essentielles pour réduire u. A noter que l'image de u est toujours un sous-espace vectoriel stable par u. Ainsi, si $\ker u \oplus \operatorname{Im} u = E^1$, et que le rang de u est petit, ça doit être bien utile.

Proposition III.5

Si $u \in \mathcal{L}(E)$ laisse stable le sous-espace vectoriel F de E, et si on note $u_{|F}$, alors le polynôme caractéristique de $u_{|F}$ divise celui de u.

IV TRIGONALISATION

Nous avons vu qu'une matrice n'est pas toujours diagonalisable, même dans $\mathcal{M}_n(\mathbb{C})$. Cependant, nous allons montrer qu'il existe dans la classe de similitude de toute matrice une matrice triangulaire, ce qui simplifie sensiblement les calculs.

E est un \mathbb{K} — espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

1. tiens, ça voudrait dire que cette égalité n'est pas toujours vraie??????

Définition IV.1

- ▶ Un endomorphisme $u \in \mathcal{L}(E)$ est dit **trigonalisable** lorsqu'il existe une base de E dans laquelle la matrice de u est triangulaire.
- Une matrice $M \in \mathcal{M}_n(\mathbb{K})$ est dite **trigonalisable** lorsqu'elle est semblable à une matrice triangulaire.

REMARQUES:

Vous commencez à être habitués : un endomorphisme est trigonalisable ← toute matrice le représentant dans une base de E est également trigonalisable.

Théorème IV.2

Si u a un polynôme caractéristique scindé, alors u est trigonalisable. En particulier, tout endomorphisme sur un \mathbb{C} — espace vectoriel est trigonalisable.

Corollaire IV.3

Si
$$\chi_u$$
 est scindé, et si on note $\lambda_1, \ldots, \lambda_n$ ses valeurs propres, alors
$$\begin{cases} \text{Trace } (u) = \sum_{i=1}^n \lambda_i, \\ \det(u) = \prod_{i=1}^n \lambda_i. \end{cases}$$
.

Définition IV.4

Soit E un \mathbb{K} - espace vectoriel de dimension quelconque.

Un endomorphisme $f \in \mathcal{L}(E)$ est dit nilpotent lorsqu'il existe un entier $k \in \mathbb{N}^*$ tel que $f^k = 0_{\mathcal{L}(E)}$. On appelle alors indice de nilpotence de f le plus petit entier $p \ge 1$ tel que f^p est nulle.

On définit de même la nilpotence des matrices, et on a un lien parfait entre ces deux notions.

SEXEMPLES:

- Toute matrice triangulaire de diagonale nulle est nilpotente. La réciproque est fausse : toute matrice nilpotente n'est pas triangulaire de diagonale nulle, mais semblable à une matrice triangulaire de diagonale
- ▶ Il faudrait connaitre les puissances de la matrice $J = \sum_{i=1}^{n-1} E_{i,i+1} \in \mathcal{M}_n(\mathbb{K})$.

Proposition IV.5

Soit E un $\mathbb{K}-$ espace vectoriel de dimension $n\in\mathbb{N}^*$, et $f\in\mathcal{L}(E)$ nilpotent d'indice $p\in\mathbb{N}^*$. Alors,

- ▶ $1 \leqslant p \leqslant n$.
- \blacktriangleright Le spectre de f est $\{0\}$.

Finissons par un critère de nilpotence :

Proposition IV.6

Soit E un \mathbb{K} — espace vectoriel de dimension n et $f \in \mathcal{L}(E)$. Alors,

$$f \in \mathcal{L}(E)$$
 est nilpotent $\iff \begin{cases} f \text{ est trigonalisable, et} \\ Sp(f) = \{0\} \end{cases}$ $\iff \chi_f(X) = X^n.$

ANNEXE

LES FIGURES IMPOSÉES

EXERCICES:

Soit la matrice $M = \begin{pmatrix} 0 & a & c \\ b & 0 & c \\ b & -a & 0 \end{pmatrix}$ où a,b,c sont des réels. M est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$? Dans $\mathcal{M}_3(\mathbb{C})$?

EXERCICES:

CCP-Algèbre 69 On considère la matrice $A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$, où a est un réel.

- 1. Déterminer la rang de A.
- 2. Pour quelles valeurs de a, la matrice A est-ell diagonalisable?

Exercices:

CCP Algèbre 72

Soit f un endomorphisme d'un espace vectoriel E de dimension n, et soit $\mathscr{B} = (e_1, \dots, e_n)$ une base de E. On suppose que $f(e_1) = f(e_2) = \cdots = f(e_n) = v$, où v est un vecteur donné de E.

- 1. Donner le rang de f.
- 2. f est-il diagonalisable (discuter en fonction de v)?

Exercices:

CCP-Algèbre 73 On pose
$$A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$$
.

- 1. Déterminer les valeurs propres et les vecteurs propres de A.
- 2. Déterminer toutes les matrices qui commutent avec la matrice $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$. En déduire que l'ensemble des matrices qui commutent avec A est $\operatorname{Vect}(I_2, A)$.