CS221: Digital Design

FSM State Encoding

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Encoding

- What is State encoding?
- Random Encoding
- Sequential Encoding
- Gray Encoding
- One Hot Encoding
- Output Oriented Encoding
- Heuristics for Encoding

State Encoding/Assignment

State assignment

- State encoding:
 - Assigning unique binary value to each state
 - So that we can implement FSM
- Since we don't care about the actual flip-flop values for each state
- We can assign each state to any binary number we like as long as
 - Each state is assigned a unique binary number

Example of FSM: 3 cycle Laser

- Require 4 States
- Assigning unique binary value/code to each state
- Options available: 4!

State Encoding Example

• Four state FSM: S0, S1, S2, S3 : 4! options

SL	S0	S1	S2	S3
1	00	01	10	11
2	00	01	11	10
3	00	10	01	11
4	00	10	11	01
5	00	11	01	10
6	00	11	10	01
7	01	00	11	10
8	01	00	10	11
9	01	10	11	00
10	01	10	00	11
11	01	11	10	00
12	01	11	00	11

SL	S0	S1	S2	S3
13	10	01	00	11
14	10	01	11	00
15	10	00	01	11
16	10	00	11	01
17	10	11	01	00
18	10	11	00	01
19	11	00	01	10
20	11	00	10	01
21	11	10	01	00
22	11	10	00	01
23	11	01	10	00
24	11	01	00	11

State assignment

- Since we don't care about the actual flip-flop values for each state we can assign each state to any binary number we like as long as each state is assigned a unique binary number
- Suppose a FSM have 6 states: Modulo 6 Counter
- If we use 3 bits to encode the 6 states, we have

Than encodings

State Encoding

- The cost & delay of FSM implementation depends on encoding of symbolic states.
 - e.g., 4 states can be encoded in 4! = 24 different ways
- There are more than n! different encodings for n states.
 - Exploration of all encodings is impossible, therefore heuristics are used
- Heuristics Used
 - One-hot encoding, Minimum-bit change,
 Prioritized adjacency

State assignment

state	Encoding 1 (binary)	Encoding 2 (Gray)	Encoding 3
a	000	000	000
b	001	001	100
C	010	011	010
d	011	010	101
e	100	110	011

State Encoding

- Binary and Gray encoding use the minimum number of bits for state register
- Gray and Johnson code: Two adjacent codes differ by only one bit
 - Reduce simultaneous switching
 - Reduce crosstalk, Reduce glitch

One-hot encoding

- One flip-flop per state encoding
- Leads to greater number of flip-flops than binary encoding but possibly to simpler logic

State Assignment Problem

- Some state assignments are better than others.
- The state assignment influences the complexity of the state machine.
 - The combinational logic required in the state machine design is dependent on the state assignment.
- Types of state assignment
 - Binary encoding: 2^N states \rightarrow N Flip-Flops
 - Gray-code encoding: 2^N states \rightarrow N Flip-Flops
 - One-hot encoding: N states → N Flip-Flops

Example

Design a FSM that detects a sequence of two or more consecutive ones on an input bit stream.

The FSM should output a 1 when the sequence is detected, and a 0 otherwise.

Input: 011101011011101...

Output: 001100001001100...

Present State	Next	Output	
	w = 0		
S ₀	S ₀	S ₁	0
S ₁	S ₀	S ₂	0
S ₂	S ₀	S ₂	1

State Table

State Assigned Table

Pre	sent S	tate	Next State					Output	
			$\mathbf{w} = 0$		$\mathbf{w} = 1$				
	Q	$Q_{\rm B}$		$\mathbf{Q}_{\mathbf{A}}^{+}$	Q_B^+		Q_A^+	Q_B^+	Z
S_0	0	0	S ₀	0	0	$\overline{S_1}$	0	1	0
S_1	0	1	S ₀	0	0	S_2	1	0	0
S ₂	1	0	S_0	0	0	$\overline{S_2}$	1	0	1
	1	1/		d	d		d	d	d

Using **Binary** Encoding for the State Assignment

$$D_{B}=wQ'_{A}Q_{B}'$$

$$D_{A}=w(Q_{A}+Q_{B})$$

$$Z=Q_{A}$$

State Assigned Table

Pre	sent S	tate	Next State					Output	
			$\mathbf{w} = 0$		$\mathbf{w} = 1$				
	Q	$Q_{\rm B}$		Q_A^+	Q_{B}^{+}		Q_A^+	Q_B^+	Z
S_0	0	0	S_0	0	0	S_1	0	1	0
S_1	0	1	S_0	0	0	$\overline{S_2}$	1	1	0
S_2	1	1 /	S_0	0	0	$\overline{S_2}$	1	1	1
_	1	0	V	d	d		d	d	d

Using <u>Gray-code</u> Encoding for the State Assignment

 $D_A = w.Q_B$ $D_B = W$ $Z = Q_A$

State Assigned Table

Pr	esen	t Sta	ate	Next State							
				$\mathbf{w} = 0$				w = 1			
	Q _A	Q_{B}	Q_{C}		$Q_A^+ Q_B^+ Q_C$				Q_A^+	$Q_{\rm B}^{+}$	Q_{C}
S_0	0	0	1	S_0	0	0	1	S_1	0	1	0
S_1	0	1	0	S_0	0	0	1	S_2	1	0	0
S_2	1	Q	0/	S_0	0	0	1	S_2	1	0	0

Using One-hot Encoding for the State Assignment
For each state only one flip-flop is set to 1.
The remaining combination of state variables are not used.

 $D_A=w.Q_c'$ $D_B=w.Q_C$ $D_C=w'$

State Encoding

#	Binary	Gray	Johnson	One-hot
0	000	000	0000	0000001
1	001	001	0001	0000010
2	010	011	0011	00000100
3	011	010	0111	00001000
4	100	110	1111	00010000
5	101	111	1110	00100000
6	110	101	1100	01000000
7	111	100	1000	10000000

Johnson Counter

State Encoding

- The cost & delay of FSM implementation depends on encoding of symbolic states.
 - e.g., 4 states can be encoded in 4! = 24 different ways
- There are more than n! different encodings for n states.
 - Exploration of all encodings is impossible, therefore heuristics are used
- Heuristics Used
 - One-hot encoding, Minimum-bit change,
 Prioritized adjacency

One-hot Encoding

- Uses redundant encoding in which one flip-flop is assigned to each state.
- Each state is distinguishable by its own flip-flop having a value of 1 while all others have a value of 0.

A: 001

B: 010

C: 100

Minimum-bit Change

- Assigns codes to states so that
 - —The total number of bit changes for all state transitions is minimized.
- In other words, if every arc in the state diagram has a weight
 - That is equal to the number of bits by which the source and destination encoding differ
 - This strategy would select the one that minimizes the sum of all these weights.

Minimum-bit Change

Encoding with 6 bit changes

Straight-forward sequential Encoding

Encoding with 4 bit changes

Minimum Bit Change Encoding

The Idea of Adjacency

- Inputs are A and B
- State variables are Y1 and Y2
- An output is F(A, B, Y1, Y2) or F(Y1,Y2)
- A next state function is G(A, B, Y1, Y2)

Karnaugh map of output function or next state function

Y1

Y1

Y1

Y1

Y2

- Larger clusters produce smaller logic function.
- Clustered minterms differ in one variable.

Size of an Implementation

- Number of product terms determines number of gates.
- Number of literals in a product term determines number of gate inputs, which is proportional to number of transistors.
- Hardware area proportional to total number of literals
- Examples of four minterm functions:
 - F1 = ABCD +A'B'C'D' +A'B'CD +A'B' CD has 16 literals
 - F2 = ABC +A'C'D has 6 literals

Rule 1 (Priority #1), Common Dest

States that have the same next state for some fixed input should be assigned logically adjacent codes.

Rule 1 (Priority #1), Common Dest

States that have the same next state for some fixed input should be assigned logically adjacent codes.

Rule #1: (S₁, S₂)

The input value of 0 will move both states into the same state $S_3 \rightarrow Adj (S_1, S_2)$

Rule 2 (Priority #2), A Common Source

States that are the next states of the same state under logically adjacent inputs, should be assigned logically adjacent codes.

Rule 2 (Priority #2), A Common Source

States that are the next states of the same state under logically adjacent inputs, should be assigned logically adjacent codes.

Rule #2: (S₁, S₂)

They are both next states of the state $S_0 \rightarrow Adj$ (S_1, S_2)

Rule 3 (Priority #3), A Common Output

States that have the same output value for the same input value, should be assigned logically adjacent codes.

Rule 3 (Priority #3), A Common Output

States that have the same output value for the same input value, should be assigned logically adjacent codes.

Rule #3: (S_0, S_1) : states S_0 and S_1 have the same output value 0 for the same input value 0 \rightarrow Adj (S_0, S_1)

Rule 3 (Priority #3), A Common Output

States that have the same output value for the same input value, should be assigned logically adjacent codes.

Rule #3: (S_2, S_3) , states S_2 and $_3$ have the same output value 1 for the same input value 0 \rightarrow Adj (S_2, S_3)

Applying Rules 1,2 and 3

- Rule 1: S1, S2 ==> HD(11, 10)=1
- Rule 2 : S1, S2
- Rule 3: S0, S1 and S2, S3
 - HD(S0,S1)=1
 - -HD(S2,S3)=1

- HD(S0,S2)=2
- HD(S1,S3)=2

Example of State Assignment

Rule 1: A and C goes to same next state D for same input 1

Rule 1: A and B goes to same next state C for same input 0

Example of State Assignment

Rule 2: C and D are next state of A for input 0 and 1

Rule 2: B and D are next state of C for input o and 1

Example of State Assignment

Verify that BC and AD are not adjacent.

State Assignment #1

A = 00, B = 01, C = 10, D = 11

Present state	Next state, output Y1*Y2*, Z			
Y1, Y2	Inp 0	out, X 1		
A = 00	10/0	11/0		
B = 01	10/0	00/0		
C = 10	01/0	11/0		
D = 11	00/1	01/1		

Input	Present state		Output		ext ate
X	Y1	Y2	Z	Y1*	Y2*
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	0	0
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	0	1	1
1	1	1	1	1	0

Logic Minimization for Optimum State Assignment

Using an Arbitrary State Assignment: A = 00, B = 01, C = 11, D = 10

Present state	Next state, output Y1*Y2*, Z Input, X 0 1			
Y1, Y2				
A = 00	11/0	10/0		
B = 01	11/0	00/0		
C = 11	01/0	10/0		
D = 10	00/1	01/1		

Input	Present state		Output		ext ate
X	Y1	Y2	Z	Y1*	Y2*
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	0	1	0

Logic Minimization for Arbitrary State Assignment

