COUNTING

Basic Combinatorial Results:

The number of **permutations** (arrangements) of n distinct items is n!, which we read as "n factorial".

For positive integers, $n! = n(n-1)(n-2)\dots(2)(1)$. Define 0! to be 1.

Example 1: The number of different ways to arrange 3 people for a photograph is 3! = 6.

The number of arrangements of r items taken from a collection of n distinct items is:

$$P(n,r) = {}_{n}P_{r} = n^{(r)} = \frac{n!}{(n-r)!}$$

Example 2: Suppose a class has 20 students. The number of ways we can **select and arrange** 4 of these students for a photograph is:

$$_{20}P_4 = \frac{20!}{16!} = 116280$$

The number of **combinations** (selections) of r items taken from a collection of n distinct items is:

$$C(n,r) = {}_{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!} = \frac{{}_{n}P_{r}}{r!}$$

Example 3: Suppose a class has 20 students. The number of ways we can **select**, **but not arrange**, 4 of these students is:

$$\binom{20}{4} = \frac{20!}{4!16!} = 4845$$

Example 4: A box contains slips of paper, numbered $1, 2, \dots, 30$. Three slips are selected at random without replacement. What is the probability that all three slips show a number which is 9 or less (event A)?

Set 11: Binomial Distribution

Bernoulli Process: An experiment consisting of one or more trials, each having the following properties.

- 1. Each trial has exactly two outcomes, which we call **success** and **failure**.
- 2. The trials are independent of each other.
- 3. For all trials, the probability of success, p, is constant.

A **binomial experiment** is a Bernoulli process where n, the number of trials, is fixed in advance.

Let X count the number of successes in a binomial experiment. Then X is a **binomial random variable**, and we write $X \sim Bin(n,p)$, where n is the number of trials, and p is the probability of successes. For a binomial random variable, n and p are its parameters.

Example 5: In a manufacturing process, each item has a probability of 0.05 of being defective, independent of all other items. Suppose 12 items are selected at random, and we let W denote the number of defective items.

Binomial Probability Distribution:

$$f(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 $x = 0, 1, 2, ..., n$

Example 6: On a multiple choice test, there are 10 questions, each
with 8 possible responses. The test taker completes the test by randomly
selecting answers. What is the probability that they will get (exactly) one
question correct?
Example 7: In the manufacture of lithium batteries, it is found that 7% of all batteries are defective. Suppose that we test 6 randomly selected batteries. What is the probability that at least two batteries are defective?

Expected Value and Variance: If $X \sim Bin(n, p)$, then:

$$E(X) = \mu = np \quad \text{ and } \quad V(X) = \sigma^2 = np(1-p)$$

Example 8: What is the expected number of defective lithium batteries per batch of 6? What is the variance?

Cumulative Distribution Tables: These tables give $P(X \le x)$ for "nice" values of n and p.

15 tablet computers at random.
What is the probability that no more than 6 tablets will need repairs to the touch-screen within the first two years of use?
Example 10: What is the probability that exactly 5 tablets will need touch-screen repairs?
Example 11: What is the probability that at least 2 tablets will need touch-screen repairs?

Example 9: It is known that 20% of all tablet computers will need the touch-screen repaired within the first two years of use. Suppose we select

Example 12: It is known that 30% of all laptops of a certain brand experience hard-drive failure within 3 years of purchase. Suppose that 20 laptops are selected at random. Let the random variable X denote the number of laptops which have experienced hard-drive failure within 3 years of purchase.

If it is known that at least 3 laptops experience hard-drive failure, what is the probability that no more than 6 laptops will experience hard-drive failure?

Set 12: Poisson Distribution

Poisson Process: Consider counting the number of successes or occurrences over an interval of time or space, or other appropriate intervals. In a Poisson process or experiment, we make the following assumptions:

- 1. The number of successes that occur in any interval is independent of the number of successes occurring in any other non-overlapping interval.
- 2. The probability of one success in a small interval is proportional to the size of the interval. The probability of having more than one success in this small interval is negligible.
- 3. If two non-overlapping intervals have the same size, then the probabilities of successes are the same for both intervals.

Poisson Random Variable: In a Poisson experiment, let X counts the number of successes that occur in *one* interval of time or space. Under this scenario, X is a Poisson random variable with parameter λ .

We write $X \sim Poisson(\lambda)$, where λ is the average number of successes **per interval or region**.

Note: Some textbooks will use μ rather than λ for the parameter of the Poisson random variable.

Example 13: At a bank, customers use the bank machine at an average
rate of 40 customers per hour. Let X count the number of customers that
use the machine in a 30-minute interval.
Example 14: At a busy intersection, it is noted that on average 5 cars
pass through the intersection per minute. Let X count the number of cars
which pass through the intersection in an hour.
Example 15: Suppose that a typist makes on average 10 errors while
typing 300 pages of text. Let X count the number of errors on one page
of text.
Example 16: We examine ten pages of text. Let Y count the number
of pages with at least one error. The random variable Y is not Poisson.
Why?
Why?
Why?

Probability mass function (pmf) for $X \sim Poisson(\lambda)$:

$$f(x) = P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 $x = 0, 1, 2, ...$

Expected Value and Variance: If $X \sim Poisson(\lambda)$, then:

$$E(X) = \mu = \lambda$$
 and $V(X) = \sigma^2 = \lambda$

Example 18: What is the expected number of defective items made by the machine in an hour? What is the variance?

Cumulative Distribution Tables: These tables give $P(X \le x)$ for "nice" values of $\lambda = \mu$.

Example 19:	Recall that the machine makes on average 5 defective
items per hour.	Suppose the machine is observed for three hours. What is
the probability	that it will make no more than 12 defective items?
	What is the probability that at least 6 defective items will
be made?	
Example 21:	What is the probability that exactly 13 defective items will
be made?	

Exan	nple	22:	Su	рро	se	tha	at a	ty	pist	ma	kes	or	ı av	⁄era	ge	of	2 6	error	s pei
page. proba																			

Poisson approximation to Binomial: If X is a binomial random variable where n is very large and p is very small then X can be approximated with a Poisson distribution with $\lambda=np$.

Rule of thumb for this course: If $n \geq 20$ and $p \leq 0.05$, then Poisson approximation to binomial is appropriate.

In practice, if $n \geq 100$ and $np \leq 10$, then the approximation will be quite good.

Example 23: Brugada syndrome is a rare disease which afflicts 0.02% of the population. Suppose 10,000 people are selected at random and tested for Brugada syndrome. What is the probability that no more than 3 of the tested people will have Brugada syndrome?

Sets 13 and 14: Continuous Random Variable

Continuous Random Variable: A random variable which can assume an uncountable number of values (here we will deal with intervals of real numbers only).

We can describe a continuous random variable with a **probability density** function (pdf) f(x) satisfying:

1. $f(x) \ge 0$ for all real number x; and

$$2. \int_{-\infty}^{\infty} f(x)dx = 1.$$

We define:

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

for any two numbers a and b (with $a \leq b$).

Note: Since a valid pdf must be non-negative, graphically $P(a \le X \le b)$ is just the area below f(x) and above the x-axis on the interval [a,b].

Uniform Probability Distribution: For a uniform probability distribution, the pdf is:

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

The graph of f(x) is a horizontal line segment from a to b with height 1/(b-a).

For $a \leq x_1 \leq x_2 \leq b$,

$$P(x_1 \le X \le x_2) = (height) \times (width) = \left(\frac{1}{b-a}\right)(x_2 - x_1)$$

Some further consequences for a valid pdf:

1. P(X = a) = 0 for any a.

.....

2. $P(X \ge a) = P(X > a)$ and $P(X \le a) = P(X < a)$

.....

.....

.....

3.	$P(X \ge a) = 1 -$	$P(X \le a)$			
4		D(V < 1) D(V			
4.	$P(a \le X \le b) =$		• • • • • • • • • • • • • • • • • • • •		
xa df:	mple 24: Suppo	se that the contin	uous r. v. X	has the follow	wing
	$f(x) = \begin{cases} \frac{4}{609}x^3\\ 0 \end{cases}$	$2 \le x \le 5$ otherwise			

Find $P(3 \le X \le 4)$.

Example 25: Find an expression for $P(X \leq b)$, where b is some number in [2,5].

Note: We can conclude that:

- $P(X \le x) = x^4/609 16/609$ for all x in the interval [2, 5].
- If x is less than 2, $P(X \le x) = 0$.
- If x is greater than 5, $P(X \le x) = 1$.

Using this, we can write the **cumulative distribution function**, F(x), for the given pdf.

$$F(x) = \begin{cases} 0, & x < 2\\ \frac{x^4}{609} - \frac{16}{609}, & 2 \le x \le 5\\ 1, & x > 5 \end{cases}$$

Note: The fundamental theorem of calculus tells us that for every x at which F'(x) exists, that F'(x) = f(x).

Example 26: Suppose the random variable X has the following cdf:

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{x}{x+1}, & x \ge 0 \end{cases}$$

Find	th	е	pd	f	fo	r	th	ie	r	ar	าด	lo	m	۱ ۱	٧a	ri	a	bl	е	Σ	ζ.										
		٠.																					 	 					 	 	

Let	p be a numb	er between	$0 \; and \; 1.$	The $100p^{th}$	percenti	l e or <mark>quantile</mark>
of a	continuous i	random var	iable is th	ne value ϵ si	uch that ${\cal F}$	$(\epsilon) = p.$

Example 27: For the random variable from the previous example, find the 90^{th} percentile.
Example 28: Suppose the random variable X has pdf
$f(x) = \begin{cases} 2e^{-2x} & 0 \le x < \infty \\ 0 & \text{otherwise} \end{cases}$
Find the median of the distribution.
Note: The median , $\stackrel{\sim}{\mu}$ of a continuous random variable is the 50^{th} percentile.
·
percentile.

The **expected value** or **mean** of a continuous random variable X with pdf f(x) is:

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$

(provided this integral converges)

The **variance** of a continuous random variable X with pdf f(x) is:

$$V(X) = \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

(provided this integral converges)

and the standard deviation, $\sigma = \sqrt{\sigma^2}$.

As with discrete random variables, we have the following:

- $V(X) = E(X^2) \mu^2$
- E(aX + b) = aE(X) + b
- $\bullet \ V(aX+b) = a^2V(X)$

Example 29: Suppose a random variable X is uniformly distributed over the interval [a, b]. Recall the pdf of X is:

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Find	the	mean	and	the	vari	anc	e.							

Differences between discrete and continuous RV's

Discrete	Continuous

Sets 15 and 16: The Normal Distribution

Normal Density Function: If X is normally distributed with mean μ and standard deviation σ , then we write $X \sim N(\mu, \sigma)$. The pdf of X is:

$$f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$

Properties of Normal Curves:

- All normal curves are defined on $(-\infty, \infty)$ and are bell-shaped.
- \bullet There is a single peak at $x=\mu$ and the curve is symmetric about this peak.
- ullet The mean, median, and mode are all μ ; the variance is σ^2 .
- \bullet There are points of inflection at $\mu-\sigma$ and $\mu+\sigma$
- As μ increases, the peak moves further to the right. As μ decreases, the peak moves further to the left. (μ is a **location parameter**)
- As σ increases, the peak becomes lower, and the curve becomes flatter. As σ decreases, the curve becomes more abruptly peaked, and the peak becomes taller. (σ is a **scale** parameter).

Note: All normal curves are bell-shaped. Not all bell-shaped curves are normal.

Standard Normal Distribution: The standard normal random variable has mean $\mu=0$ and standard deviation $\sigma=1$. We use the letter Z to denote the standard normal distribution.

$$f(z;0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

The standard normal curve is:

- has its peak at 0, and is symmetric about the y-axis
- has points of inflection at 1 and -1.

If our random variable is Z, then we denote the cdf $P(Z \leq z)$ by $\Phi(z)$, pronounced as capital phi of z.

Cumulative Distribution Tables: These tables give $P(Z \le z) = \Phi(z)$ for a range of -3.5 < z < 3.5.

Example 30:	Find $P(Z \le 2.56)$

Symmetry Property: Since the random variable Z is symmetric about Z=0, then for any α :

$$P(Z \le \alpha) = P(Z \ge -\alpha)$$

Note: This property works for any distribution that is symmetric about 0.

Example 31: Calculate $P(Z \ge 0.16)$.

Select the closest to your unrounded answer from the following:

Example 32: Calculate $P(-1.22 \le Z \le 1.73)$.

Select the closest to your unrounded answer from the following:

(A) 0.2 (B) 0.4 (C) 0.6 (D) 0.8

Notation : z_{α} is the number such that $P(Z>z_{\alpha})=\alpha$. Alternately, z_{α} is the $100(1-\alpha)$ percentile of the standard normal distribution.
Example 33: Find the 97.5^{th} percentile of the standard norma distribution.
Example 34: Find $z_{0.05}$.
Example 35: Find $z_{0.10}$.
Example 36: Find $z_{0.005}$.

Normal Random Variable $X \sim N(\mu, \sigma)$ with $\mu \neq 0$ and/or $\sigma \neq 1$

Example 37: Suppose that the heights of Andean flamingos are normally distributed with a mean of $105\ cm$ and a standard deviation of $2\ cm$. Let the random variable X denote the height of a randomly selected Andean flamingo.

What is the **median** Andean flamingo height?

Select the closest to your unrounded answer:

- (A) 105 cm
- (B) Not enough information to answer this question.

Example 38: Is $P(X \ge 100) = P(X \le -100)$?

- (A) Yes
- (B) No

General Symmetry Property: If a random variable X is symmetric about x=a, then for any real number k:

$$P(X \le a - k) = P(X \ge a + k)$$

Example 39: What is P(X = 105)?

Select the closest answer:

- (A) 0
- (B) 0.5
- (C) 1
- (D) Not enough information available.

Standardizing a Normal Random Variable

If X is normally distributed with mean μ and standard deviation σ , i.e., $X \sim N(\mu, \sigma)$, then:

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Example 40: The masses of a certain type of bolt is approximately normally distributed with $\mu=15$ g, and $\sigma=2$ g. What is the probability that a randomly selected bolt has a mass between 14.3 g and 17.1 g?

	What is the probability that at a randomly sele	ctea boii
will have a mass	s of at least 20 g?	
Example 42:	What is the minimum mass of the heaviest 5% of	of holte?
•		JI DUILS:
		JI DUILS:

The **empirical rule** states that if the distribution of a variable is **approximately normal**, then:

- 1. About 68% of values lie within σ of the mean.
- 2. About 95% of values lie within 2σ of the mean.
- 3. About 99.7% of values lie within 3σ of the mean.

From this, we can conclude that almost all bolts will have a mass within $6~{\rm g}$ of the mean 15 (i.e. about 99.7% will have a a mass between $9~{\rm g}$ and $21~{\rm g}$).

Approximating a Binomial Distribution with Normal Distribution:

Rule of Thumb: Suppose $X \sim Bin(n,p)$ where np and n(1-p) are both at least 5. Then $X \approx N(\mu = np, \sigma^2 = np(1-p))$. This means that:

$$P(X \le x) \approx P\left(Z \le \frac{x - np}{\sqrt{np(1 - p)}}\right)$$

Since we are using a continuous distribution to approximate a discrete one, this approximation will be slightly off. If we wish to get a better approximation, use the following, with a **continuity correction**:

$$P(X \le x) \approx P(X \le x + 0.5)$$

$$\approx P\left(Z \le \frac{x - np + 0.5}{\sqrt{np(1-p)}}\right)$$

Note: To compute other probabilities, always convert to the form involving $P(X \leq x)$ in the binomial distribution first, then add the continuing correction.

Example 43: Suppose it is known that 20% of batteries have a
lifespan shorter than the advertised lifespan. Suppose that $100\ \mathrm{batteries}$
are selected at random. What is the approximate probability (using the
continuity correction) that at least 10 batteries will have a short lifespan $$

voice-activated robot is normally distributed with $\mu=6.3$ microseconds, and $\sigma=2$ microseconds.
If one voice-activated robot is randomly selected, what is the probability that its reaction time is between $5\ \rm and\ 7$ microseconds? Report your answer to three decimal places.
Example 45: Suppose that five robots are tested. Assume the reaction time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal places.
time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal
time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal
time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal
time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal
time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal
time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal
time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal
time of each robot is independent of the other robot reaction-times. What is the probability that exactly three of the robots will have a reaction time between 5 and 7 microseconds? Report your answer to three decimal

Example 44: Suppose it is known that the reaction time of type of