Modelos de Computação CC1004

2015/2016

1° Teste – 30.03.2016

duração: 2h

N.º	Nome	
11.	Ttome	

1. Seja $A = (S, \{0, 1\}, \delta, s_0, F)$ o AFND representado pelo diagrama indicado à esquerda, sendo δ uma função de $S \times \{0, 1\}$ em 2^S .

a) Indique os valores de $\delta(s_0, 1)$, $\delta(s_2, 0)$ e $\delta(s_1, 0)$.

c) Diga, justificando, se 110100 $\in \mathcal{L}(A)$ e se 11001 $\in \mathcal{L}(A)$.

2. Seja M o AFND- ε representado pelo diagrama indicado à esquerda. Seja δ a sua função de transição e seja δ' a função de transição do AFD equivalente (segundo a construção dada).

- a) O estado inicial do AFD equivalente é
- **b)** Sendo E o estado inicial do AFD equivalente, o valor de $\delta'(E,1)$ é e valor de $\delta'(E,0)$ é .

(Continua)

1º Teste de Modelos de Computação CC1004

2015/2016

N.º		Nome	
a)	Determine o diagrama	a de transiçã	$(11))^*) + (00))$ sobre $\Sigma = \{0, 1\}$. ão do AFND- ε que resulta da aplicação do método de Thompson à rução dada nas aulas. Apresente os AFND- ε intermédios.
b)	Indique uma expressão	o regular nã	to abreviada equivalente a r , mas mais simples. Justifique.
c) l	Descreva informalmen	te a linguag	$\operatorname{gem} \mathcal{L}(r).$

1º Teste de Modelos de Computação CC1004

2015/2016

N.º	Nome
	Seja $L=\{x\mid x\in \Sigma^\star, x \text{ tem número ímpar de 1's e não termina em 11}\}, com \Sigma=\{0,1\}.$
	Determine o diagrama de transição de um autómato finito determinístico (AFD) que reconheça L e que a <i>interpretação</i> de cada estado (i.e., o que memoriza) e porque é que é <i>necessário</i> .
b)	Identifique as formas possíveis das palavras de L e determine uma expressão regular <i>abreviada</i> que
	creva a linguagem L. Apresente uma explicação sucinta.
	(Fim)