Problems: Simply Connected Regions

- 1. Is the paraboloid described by $z=x^2+y^2$ a simply connected surface? Why or why not?
- 2. Is the Möbius strip described in lecture a simply connected surface? Why or why not?

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problems: Surface Independence

Suppose that $\mathbf{F} = \nabla \times \mathbf{G}$, where the components of \mathbf{G} have continuous second partial derivatives. Suppose also that S is a closed, positively-oriented surface divided into two parts by a closed curve C. Apply Stokes' theorem to show that $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = 0$.

Answer: We start by drawing a picture.

By Stokes' theorem,
$$\oint_C \mathbf{G} \cdot d\mathbf{r} = \iint_{S_1} \operatorname{curl} \mathbf{G} \, dA = \iint_{S_1} \mathbf{F} \cdot \mathbf{n} \, dS$$
. Similarly,
$$\oint_{-C} \mathbf{G} \cdot d\mathbf{r} = \iint_{S_2} \mathbf{F} \cdot \mathbf{n} \, dS.$$

We sum the two results to get:

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{S_{1}} \mathbf{F} \cdot \mathbf{n} \, dS + \iint_{S_{2}} \mathbf{F} \cdot \mathbf{n} \, dS = \oint_{C} \mathbf{G} \cdot d\mathbf{r} + \oint_{-C} \mathbf{G} \cdot d\mathbf{r} = 0.$$

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problems: Surface Independence

Suppose that $\mathbf{F} = \mathbf{\nabla} \times \mathbf{G}$, where the components of \mathbf{G} have continuous second partial derivatives. Suppose also that S is a closed, positively-oriented surface divided into two parts by a closed curve C. Apply Stokes' theorem to show that $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = 0$.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.