

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia da Computação e Telecomunicações

BioGlove: Protótipo de um transdutor de flexão bioinspirado

Autor: Wederson Medeiros Silva

Orientador: Prof. Dr. Roberto Menezes Rodrigues

Coorientador: Prof. Dr. João Crisóstomo Weyl A. Costa

Tópicos

- Contextualização
- Referencial teórico
- Desenvolvimento do protótipo
- Resultados e análises
- Conclusão e trabalhos futuros

Contextualização

Introdução

• Biologia usada como inspiração

Archytas de Tarentum 400 a.C.

Leonardo da Vinci 1506

Mosca

Bardana

VELCRO®

Introdução

Anatomia humana usada como inspiração

Toyota T-HR3

Ferramentas de mão

Dispositivos móveis

Estado da arte

• Luvas sensorizadas (data gloves)

5DT Data Glove Ultra

Realidade virtual

Estado da arte

Luvas sensorizadas: aplicações

Linguagem de sinais

Reabilitação

Motivação e objetivos

- Apesar das possibilidades...
 - O custo é elevado
 - A plataforma é fechada
 - O Hardware é imutável

- Objetiva-se desenvolver:
 - Uma luva de uso genérico
 - Com um sistema de transdução de baixo custo
 - Software e hardware de código aberto

Referencial Teórico

Funcionamento genérico de data gloves

Funcionamento genérico de data gloves

• Lei de Ohm

V = Tensão

R = Resistência

I = Corrente

$$V = R . I$$

Lei de Ohm

V = Tensão

R = Resistência

I = Corrente

Se a corrente (I) for constante

$$V = R \cdot I$$

A tensão (**V**) varia de acordo com a variação da resistência (**R**)

Sensores (transdutores) resistivos

Potenciômetro Rotação

Sensores (transdutores) resistivos

LDR - Luz

Flexão

Potenciômetro Rotação

Potenciômetro e seu funcionamento

Microcontrolador

- Finalidade
 - Conversão de sinais A/D
 - Processamento de sinais
- Meios
 - Conexão e controle de periféricos
 - Programação via IDE

Placa Arduino Nano

Transmissão de sinal

- Conexão direta através de fios
- Sem fio
 - Wi-Fi
 - Bluetooth
 - Rádio frequência (RF)

Par de módulos RF 433MHz

Desenvolvimento do protótipo

- Inspirado na biomecânica
 - Músculo contrai
 - Tendão puxa
 - Dedo flexiona

- Teoria
 - O fio se desloca proporcionalmente ao movimento de flexão do dedo

- Teoria
 - o O fio se **desloca proporcionalmente** ao movimento de

- Baseado no deslocamento, a partir do uso de potenciômetros
- Instalar o sistema em uma luva
 - Proteção da pele
 - Conforto
 - Estabilidade
 - Uso facilitado
- Problema
 - Somente uma flexão

Adaptação da luva

• Uso de um componente elástico

Adaptação da luva

• Uso de um componente elástico

Adaptação da luva

- Resultado esperado
 - Polias guiando o fio
 - Potenciômetro na ponta
 - Elástico mantém a tensão

Digitalização do sinal

- Usando o microcontrolador
 - Sinal do transdutor
 - Originalmente analógico
 - Convertido para digital

- Requisitos
 - Organizar sinais para diferenciá-los entre si
 - Definir pontos máximo e mínimo de flexão para usar como referência

Digitalização do sinal

Padrões de referência

Numeração dos dedos

Calibração

 Operação para definir uma relação entre os valores de um equipamento (sensor) e uma referência (flexões extremas)

Motivações:

- Potenciômetros diferentes
 - Mesma posição = valores diferentes
- Giro parcial do cursor
- Instabilidade na leitura
- Dedos de tamanhos diferentes

Calibração

- Procedimento em <u>cada dedo:</u>
 - 1. Captura de valores nas posições A e B

2. Calcula o deslocamento:

$$\Delta Pos = PosB - PosA$$
 (3.1)

3. Calcula a resolução:

$$NPos = |\Delta Pos| + 1 \tag{3.2}$$

Calibração

Resolução máxima do protótipo:

Dedo	PosA	PosB	ΔPos	NPos
1	191	616	+425	426
2	140	609	+469	470
3	774	360	-414	415
4	728	475	-253	254
5	670	367	-303	304

Teste de caso (aplicação)

- Controle sem fio de um carrinho eletrônico
 - Protocolo de comunicação
 - Protocolo de controle
 - Software de recepção

Protocolo de comunicação

- Aplicação não exige alta resolução
 - Simplificado (5 dígitos)
 - 2 informações: número (qual o dedo) e valor (do dedo)
 - Variações positivas (+)
 - Intervalo de µs entre mensagens

Protocolo de comunicação

- Informação em apenas 1 dígito
 - Perda de resolução (não prejudica a aplicação)
 - Remapear (0 1023) para (0 9)

Protocolo de comunicação

- Função "nmap" remapeia e inverte saída
- Valores de A para B e seu remapeamentos (R)

Dedo	PosA (RA)	PosB (RB)	ΔPos (ΔR)	NPos (NR)
1	191 (1)	616 (5)	+425 (+4)	426 (5)
2	140 (1)	609 (5)	+469 (+4)	470 (5)
3	774 (3)	360 (6)	-414 (+3)	415 (4)
4	728 (3)	475 (5)	-253 (+2)	254 (3)
5	670 (4)	367 (6)	-303 (+2)	304 (3)

Transmissão, controle e recepção

Modelo

- Biblioteca VirtualWire necessária
- Modelo de transmissão e recepção da mensagem

Software de transmissão

- Embarcado na luva
- Fluxograma de transmissão

Protocolo de controle

- 5 gestos pré-definidos
- 5 comandos
- Correspondência gesto/comando *

Software de recepção

- Recupera a mensagem
- Processa e chama a função de movimento
- Fluxograma de recepção

Software de recepção

Comparação entre a Tabela 3 e a definição do protocolo

Dedo	Frente	Trás	Esquerda	Direita	Para
Mínimo - 1	< 2	< 2	< 2	> 1	-
Anelar - 2	> 1	< 2	< 2	< 2	-
Meio - 3	> 3	< 4	< 4	< 4	-
Indicador - 4	< 4	> 3	< 4	< 4	-
Polegar - 5	< 5	< 5	> 4	< 5	-

Software de recepção

Verificação de mensagem através da Tabela 3

Dedo	Frente	Trás	Esquerda	Direita	Para
Mínimo - 1	< 2	< 2	< 2	> 1	-
Anelar - 2	> 1	< 2	< 2	< 2	-
Meio - 3	> 3	< 4	< 4	< 4	-
Indicador - 4	< 4	> 3	< 4	< 4	-
Polegar - 5	< 5	< 5	> 4	< 5	-

Mensagem "Frente"

0 13422

OK

0 11422

X

Montagem do protótipo

Requisitos do sistema

- Móvel
- Leve
- Alimentado por bateria
- Caber no dorso da mão
- Menor custo
- Fácil reprodução
- Permitir adaptações

Transdutor de flexão

- Potenciômetro (posição estimada)
- Luva de algodão
- Polias plásticas costuradas
- Fio de náilon
- Elástico

Resultado esperado para um dos dedos

Componentes eletrônicos

- Requisitos do potenciômetro
 - Pequeno
 - Cursor de fácil giro
 - Maior variação de resistência/ângulo

Componentes eletrônicos

Componente	Características	Imagem
Potenciômetro	13mm x 13mm; Resistência de 5kΩ; 200° de giro máximo;	
Microcontrolador Arduino Nano	45mm x 17mm; Vasta documentação; Ampla disponibilidade;	O O I O BO BO ZO 90 GO LO BO ZO ONO LSUBXXX IXI
Módulo transmissor	Ampla disponibilidade; Baixo custo; Funciona na faixa de 433MHz;	FS1000A ANT C
Bateria	LiPo recarregável; 45mm x 12,5mm; Tensão de 7,4V; Capacidade de 300mAh;	TURNISY STOR 7.4V A J

Protótipo concluído

Resultados e análises

Aplicação

Controle remoto de um carrinho eletrônico

Correspondência entre gestos e ações

Análise realizada

- Sensibilidade do sensor
- Autonomia do sistema
- Alcance da transmissão sem fio

- Quesito a ser avaliado: Resolução do sensor (0° e 90°)
- Compara com sensor de (RAJAMOHAN; R.; M.;, 2013)

Sensor de flexão comercial

- 2 posições-padrão no teste
- Dedo polegar não é flexionado

Flexão de ~ 0°

 Os valores digitais das posições 0° e 90° apresentados em ambos os trabalhos entraram nas equações

$$\Delta Pos = Pos90 - Pos0 \tag{4.1}$$

$$NPos = |\Delta Pos| + 1 \tag{4.2}$$

 Dessa forma, foram obtidos os níveis de sensibilidade de cada sensor

A Tabela 4 reúne os valores obtidos e calculados

Docioãos	Comercial		Bioinspirado - BioGlove			
Posições	2,5"	4,5"	Mínimo	Anelar	Médio	Indicador
Pos0	748	350	206	142	771	746
Pos90	875	568	309	396	527	607
NPos	128	219	104	255	245	140

- BioGlove vs 4,5": Anelar, Médio, 4,5", Indicador, Mínimo
- BioGlove vs 2,5": Anelar, Médio, Indicador, 2,5", Mínimo

Autonomia do sistema

A Tabela 5 reúne o desempenho das 3 luvas

Luva	Alimentação	Capacidade	Duração
Luva sensorizada	1 bateria-botão 3V	1000 mAh	1 semana
Luva de baixo custo	2 pilhas AA 3V	5740 mAh	60 horas
BioGlove	1 LiPo 7,4V	300 mAh	10 horas

- BioGlove com menor duração
- Menor capacidade
- Melhor eficiência energética?

Alcance da comunicação sem fio

A Tabela 6 reúne o desempenho das 3 luvas

Luva	Tecnologia	Faixa	Alcance
Data Glove 5 Ultra	Bluetooth	2,4 GHz	20 metros
PERCRO Dataglove	Bluetooth	2,4 GHz	10 metros
BioGlove	Rádio frequência	433 MHz	7,5 metros

- BioGlove com menor alcance
- Tecnologia diferente
- Com Bluetooth seria melhor?

Conclusão e trabalhos futuros

Conclusão

- Aplicação funcional
- Seu hardware e software são abertos e adaptáveis
- Protocolos reutilizáveis
- Nos testes
 - O sensor bioinspirado se equiparou a um comercial
 - Passível de melhorias
 - A duração da bateria foi curta
 - Necessita de testes de eficiência energética
 - O alcance foi curto mas próximo ao de outra luva
 - Cabe investigação sobre potência e/ou tecnologia

Trabalhos futuros

- Investigar outros materiais para a luva
- Pesquisas focadas no desempenho mecânico
- Melhorias na eficiência energética (hardware e software)
- Desenvolver funções de calibração automática
- Aumentar taxa de transmissão para aplicações complexas
- Acrescentar transdutores visando novas funcionalidades

Agradecimentos

Laboratório de Eletromagnetismo Aplicado

Laboratório de Prototipagem, Robótica e Otimização