CSE 202: DIGTAL LOGIC DESIGN

Credit Hours: 3
Contact Hours: 3

Grading: As per UET Statues

1. COURSE OUTLINE

Digital vs Analog, Binary digits, Logic levels and digital waveforms, Logic operation and functions, Switches and relays, Fundamental logic gates, Boolean Algebra and logic simplification, Fundamental theorems of Boolean Algebra, Truth tables, Karnaugh Map, SOP and POS minimization, Combinational circuits, Number systems, operations and codes, Design of various logic functions, e.g. Adders, Comparators, Encoders/Decoders, Mux/DeMux, BCD-to-7-Segment Decoder, Implementation of combinational circuits using discrete chips and programmable logic devices, i.e. ROMs/PLAs, Speed and delays in logic circuits, Sequential circuits, Latches, Flip-Flops and their applications, 555 Timer, Sequential circuit applications, Asynchronous and synchronous counters, UP/DN counters, Shift registers, Semiconductor memories, RAM, ROM, PROM and EEPROM, Flash memories, Design of a simple processor.

2. WEEKLY PLAN

Week	Contents
Week 1	1. Digital vs. Analog
	2. Binary Logic, Digital Logic Gates, and Digital Waveforms
	3. Number Systems
	4. Binary Codes
Week 2	1. Boolean Algebra
	2. Fundamental Theorems of Boolean Algebra
Week 3	1. Digital Design Procedure
	i. Problem Statement
	ii. Input-Output Relationship
	2. Boolean Functions
	i. Truth Tables
	ii. Boolean Expression
	iii. Canonical Form
	iv. Standard Form
Week 4	1. Simplification Techniques
	i. Iterative Method
	ii. Karnaugh Map
Week 5	Common Logic Circuits Design Examples-I
	i. Code Converters (BCD-to-Excess-3, BCD-to-7-segment)
	ii. Odd-Prime Detector
	iii. Magnitude Comparator
	iv. Parity Generator and Checker

Week 6			
Week 7			
Week 8 1. Concept of Memory i. Read Only Memories (ROMs) ii. Programmable Logic Arrays (PLAs)			
Week 9 1. Sequential circuits 2. Latches			
Week 10			
Week 11 1. Edge Triggered vs. Level Sensitive i. JK Flip-Flop			
W1-10			
Week 12			
Week 13			
WEEK 13			
Week 14			
,, con 1 1			
Week 15			
,, JOH 10			
Week 13 Week 14 Week 15			

	•	Instruction Desistan			
	iv.	Instruction Register			
	v.	Arithmetic Logic Unit			
	vi.	Temporary Registers			
	vii.	Controller Sequencer			
	viii.	Introduction to Assembly Language Programming using			
		the Instruction Set of a Simple Microprocessor leading to			
		8085			
	ix.	Timing States & Instruction/Program Execution Time			
Week 16		Course Revision			
	Finalterm Examination				

3. CLOs AND ITS MAPPING WITH PLOS

CLO	CLO	Level of	PLOs
#		Learning	
CLO-	Understand different number systems,	Cog-3	PLO-1 (Engineering
1	binary addition and subtraction, 1's and	(Application)	Knowledge)
	2's complement representation, addition		
	and subtraction with these		
	representations, Boolean algebra		
	theorems and their applications to		
	combinational logic circuits		
CLO-	Translate descriptions of logical	Cog-4	PLO-2 (Problem Analysis)
2	problems to digital logic circuits and	(Analysis)	
	define the Karnaugh map to perform an		
	algorithmic reduction of logic circuits		
CLO-	Design and understand the following	Cog-5	PLO-3 (Design/Development
3	combinational and sequential circuits:	(Synthesis)	of Solutions)
	adders, subtractors, encoders, decoders,		
	multiplexers, (de)multiplexers, parity		
	generators, comparators, ROMs, PLAs,		
	latches, flip-flops, counters, and shift		
	registers; and to perform simple projects		
	with them		
CLO-	Integrate simple combinational and	Cog-5	PLO-3 (Design/Development
4	sequential circuits into a fairly large-	(Synthesis)	of Solutions)
	scale system to meet specified		
	requirements		

4. CLOs ASSESSMENT MECHANISIM

	CLOs			
Course Assessment	CLO-	CLO-	CLO-	CLO-
Tools	1	2	3	4
Assignments	√	√	√	√
Quizzes	√	√	√	√
Class participation	√	√	√	√
Midterm examination	√	√	√	
Finalterm examination		√	√	√

5. RESOURCES

- o TEXT BOOKS
 - Digital Logic Design by Morris Mano
 - Digital Computer Electronics by Malvino & Brown
- o REFERENCE BOOKS
 - Digital Fundamentals by Thomas L. Floyd