$$3 \sum_{k=1}^{\infty} \frac{4}{3^k} = \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots = \frac{4/3}{3} = \frac{4}{3} + \frac{1}{3} = 2$$

$$\sum_{k=1}^{\infty} \frac{4}{3^k} = \sum_{k=0}^{\infty} \frac{4}{3^{k+1}} = \sum_{k=0}^{\infty} \frac{4}{3} \left(\frac{1}{3}\right)^k$$

10.4: The Divergence and Integral Tests Harmonic Scries

4 2 3K

Theorem 10.9: Divergence Test

If $\sum a_k$ converges, then $\lim_{k\to\infty} a_k = 0$. Equivalently, if $\lim_{k\to\infty} a_k \neq 0$, then the series diverges.

Example. If $\lim_{k\to\infty} a_k = 1$, what can we conclude about $\sum_{k=1}^{\infty} a_k$?

Example. If $\sum_{k=1}^{\infty} a_k = 42$, what can we conclude about $\lim_{k \to \infty} a_k$?

Example. If $\lim_{k\to\infty} a_k = 0$, what can we conclude about $\sum_{k=1}^{\infty} a_k$?

Example. Determine which of the following series diverge by the divergence test.

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+1}}$$

$$\sum_{k=1}^{\infty} \frac{k^3 + 100}{3k^3 + k + 1}$$

$$\sum_{k=1}^{\infty} \frac{e^k}{k^2}$$

Table 1 Series Convergence				
Scenario	Sequence of Terms {a ₁ , a ₂ , a ₃ ,}	Sequence of Partial Sums $\{s_1, s_2, s_3,\}$	Series $\sum_{n=1}^{\infty} a_n$	Possible or Impossible?
A	Converges	Diverges	Diverges	
В	Converges	Diverges	Converges	
С	Converges	Converges	Diverges	
D	Converges	Converges	Converges	
E	Diverges	Converges	Diverges	
F	Diverges	Converges	Converges	
G	Diverges	Diverges	Diverges	
н	Diverges	Diverges	Converges	

Theorem 10.10: Harmonic Series
The harmonic series $\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$ diverges—even though the terms of the series approach zero.

Fall 2021

Theorem 10.11: Integral Test

Suppose f is a continuous, positive, decreasing function, for $x \ge 1$, and let $a_k = f(k)$, for $k = 1, 2, 3, \ldots$ Then

$$\sum_{k=1}^{\infty} a_k \text{ and } \int_1^{\infty} f(x) \, dx$$

either both converge or both diverge. In the case of convergence, the value of the integral is *not* equal to the value of the series.

Example. Which of the following series below satisfy all the conditions to use the Integral Test?

$$\sum_{k=1}^{\infty}\arctan(k)$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$$

$$\sum_{k=1}^{\infty} \frac{1}{e^k}$$

Example. Consider the series

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

Use the integral test to show that the Harmonic Series diverges. For what values of p does this series converge?

Theorem 10.12: Convergence of the p-series

The *p*-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for p > 1 and diverges for $p \le 1$.

Example. Determine if the following p-series converge or diverge.

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

$$\sum_{k=1}^{\infty} k^{-1/3}$$

$$\sum_{k=1}^{\infty} \frac{k^2}{k^{\pi}}$$

$$\sum_{k=1}^{\infty} \frac{2}{k}$$

$$\sum_{k=1}^{\infty} \frac{-3}{\sqrt[3]{k^4}}$$

$$\sum_{k=1}^{\infty} \frac{k^3 + 1}{k^5}$$

Example. Apply the Integral Test to determine if the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+1}}$ converges or diverges.

Theorem 10.13: Estimating Series with Positive Terms

Let f be a continuous, positive, decreasing function, for $x \ge 1$, and let $a_k = f(k)$, for $k = 1, 2, 3, \ldots$ Let $S = \sum_{k=1}^{\infty} a_k$ be a convergent series and let $S_n = \sum_{k=1}^{n} a_k$ be the sum of the first n terms of the series. The remainder $R_n = S - S_n$ satisfies

$$R_n < \int_n^\infty f(x) \, dx.$$

Furthermore, the exact value of the series is bounded as follows:

$$L_n = S_n + \int_{n+1}^{\infty} f(x) \, dx < \sum_{k=1}^{\infty} a_k < S_n + \int_{n}^{\infty} f(x) \, dx = U_n.$$

Example. How many terms of the convergent p-series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ must be summed to obtain an approximation that is within 10^{-3} of the exact value of the series?