### La couche physique



#### Plan du chapitre

- Nature et représentation de l'information à transmettre
- Principes de la Transmission
- Mode de transmission
- Caractéristiques des voies de communications
- Les supports de communications

#### Fonctionnalités couche 1

- Codage de l'information en signaux électromagnétiques
- des signaux (média) Description des supports physiques permettant l'émission
- Paramètres globaux :
- Sens de transmission
- Typologie des communications





communication de données (ETCD) Il est adapté au support utilisé entre les 2 équipements terminaux de

#### Modelisation du canal de Transmission



- Traitement du signal (J. Fourrier) Théorie du signal et du bruit Théorie de l'information (C. Shannon 1916-2001).
- Electromagnétisme

### Modes de transmission

#### Analogique

Le support propage directement l'onde de l'information analogique à transporter Exemple : la voix pour le téléphone à cadran (plages de fréquences entre 300 et 4000Hz)



#### Numérique

- sur les symboles en valeurs d'amplitude de l'onde. Le décodage est réalisé à l'aide de seuils pour Bande de base : après discrétisation de la source, les valeurs numériques sont codées directemen restituer des valeurs numériques. Par exemple 1 et 0 dans la figure ci-dessous.
- Modulation : L'information source est utilisée pour déterminer un symbole qui modifie (module) un o plusieurs des paramètres (amplitude, fréquence, phase) du signal sinusoïdal associé au canal, appelé o  $0\,1\,0\,0\,1\,1\,0\,1$

## La communication analogique

- Exemple le téléphone fixe des années 1930 à 2010
- Voix directement transformée en signal analogique
- Support paire de fils cuivre de bout en bout et commutateur
- Inconvénients
- Taux d'erreur important dans la réalité
- Multiplexage de plusieurs voies sur même support très compliqué et coûteux
- Coût des composants ...
- Avantages
- Proche du signal physique (en théorie)
- Sans perte ? Lorsque parfait !

## La communication numérique

- Exemple la visioconférence whatsapp
- Voix échantillonnée et codée numériquement
- Signaux représentent des groupes de bits
- Support : modulation sur n'importe quel média
- Avantage du numérique:
- Multiplexage facile
- Régénération parfaite des signaux
- Théorie du traitement du signal
- Traitements des données numériques facilité par IT
- Coût des composants numériques (processeur et mémoire) en baisse constante
- Inconvénients
- Discrétisation obligatoire
- Perte d'information? Mais connue précisément dès la conception ...

#### Vocabulaire

#### Types de transmission :

- Sens: Simplex: 1 seul sens; Half duplex: 2 sens en alternance; (Full) Duplex: 2 sens en même tempe Exercice: FO, UTP6, Coaxial, Radio
- Série: les signaux les uns après les autres sur 1 support, cf port série, USB
- Parallèle : plusieurs signaux en même temps sur plusieurs supports (sous-)canaux série souvent identiques. Exemple: imprimante port parallèle, bus d'un ordinateur, NoC.
- Relation en émetteur et récepteur :
- Synchrone: un symbole d'information / top d'horloge connu de l'émetteur et du récepteur
- Asynchrone: l'émetteur émet quand il veut mais il faut en général délimiter l'unité d'information (bi octet, trame) par une marque de début (et de fin).
- synchrone au niveau des symboles ou bits transmis grâce à un préambule de synchronisation placé juste avant le début de la trame et qui « cale » le récepteur sur l'émetteur. → Souvent une communication est asynchrone au niveau de son déclenchement dans le système et
- Affaiblissement du signal :
- dépend de la distance donc on n'a pas les mêmes caractéristiques suivant les distances de transmissic
- → il faut des répéteurs pour ré-amplifier le signal.

## Représentation de l'information

- Valence V d'une voie :
- transmis sur le média. repos, utilisés pour représenter l'information dans les symboles → nombre d'états logiques distincts, non compris l'état au

Exemple : 
$$V = 2$$
, Voie bivalente E E {e1, e2}  
\* 0 -> e1; 1-> e2

Exemple : 
$$V = 4$$
, Voie quadrivalente E E {e1, e2, e3, e4}   
  $00 \rightarrow e1$ ,  $01 \rightarrow e2$ ,  $10 \rightarrow e3$ ,  $11 \rightarrow e4$ 

## Performance de transmission

- Fréquence d'une ligne ou bande passante:
- En Baud: nombre d'échantillons distincts ou symboles émis par seconde et reconnus par le récepteur. La limite est la bande passante de la ligne.

### Débit binaire d'une ligne:

- En bits par seconde
- Dépend de la valence (nombre de bits par symboles) et de la fréquence de la ligne (nombre de symboles par seconde).
- Exercice : Si V=2 alors ...

Ex: V=2

Echantillons en amplitude e0, e1



Période = 1/F

On sait reconnaître les 1 et 0 en échantillonnant toutes les demi périodes



 $P\'{e}riode = 1/F$ 

On sait reconnaître les valeurs en échantillonnant toutes les demi périodes

# La transmission numérique en France

- Années 80 Réseau Numérique à Intégration de service RNIS (réseau numérique à intégration de service)
- Premier réseau numérique en France
- Réalisation France Télécom -> Numéris, basé sur le cablage téléphonique
- Services offerts:
- Accès de base:
- Deux canaux numériques à 64 kbit/s pour la voix numérisée ou les données (trame de 125 us),
- Un canal 16 ou 64 kbit/s pour la signalisation
- » Des canaux numériques modulés de débits 384, 1536, 1920 kbit/s
- transmission destiné à remplacer les lignes « Transfix » de débit garanti dans les 2 sens de Evolution rapide en 2000 vers la famille xDSL : ADSL1 – ADSL2 – SDSL (au départ
- Hautes fréquences sur le réseau téléphonique (1.1MHz)
- → mais atténuation=f(distance)
- → Débit max 8Mb/s à 19.4Mb/s
- initiale. modulations appropriées et dynamiquement adaptées lors de la synchronisation 255 sous canaux half duplex utilisés en simplex (cf. Assymétrique DSL) avec des

# Principes de transmission en bande de base

- On transmet directement le signal sur le canal porteur.
- Il y a un affaiblissement et une distorsion des signaux qui varient suivant le support, fréquence, la distance et l'environnement
- Au dessus d'une fréquence dite de coupure: on ne traite plus le signal (filtrage)
- Théorie du signal: courbe de variation de l'affaiblissement en fonction de la fréquenc
- Bande passante: plage de fréquence sans trop d'affaiblissement où l'on sait reconnaître les signaux contenant l'information que l'on a émise
- Utilisé pour les réseaux locaux (LAN) de type Ethernet filaire



#### numerique en bande de base Codage de l'information

- Nature de l'information à transmettre
- → suite d'éléments binaires codant l'information
- Transmission des informations
- → en modifiant l'état logique E de la voie au cours du temps
- Correspondance état logique / état physique A chaque état logique peut être associé
- une valeur, ou une plage de valeur de l'état physique
- une transition entre deux états physiques

Exemple: E dans {e1, e2}

$$e1 = 3,5 v \pm 0,5 v ; e2 = -3,5 \pm 0,5 v$$

$$\rightarrow$$
 e1 = 3,5 v -> - 3, 5 v ; e2 = -3, 5v -> 3, 5v

### Exemples de codage

Codage NRZ Non-Return to Zero: le plus simple



Inconvénients : suite de 1 ou 0 avec la même tension ! Surtout si plusieurs valeurs identiques consécutives Surtout si valeur au repos = valeur du 0 par exemple → problème de synchronisation émetteur /récepteur → problème de séparation des valeurs





Codage Biphase ou Manchester

→ codage avec le sens des fronts en milieu de periode

→ très robuste, utilisé dans Ethernet

# Synchronisation de la transmission

#### But

Assurer que le récepteur prélève l'information aux instants où le signal est significatif. Il s'agit donc gérer la référence de temps.

#### Méthode synchrone

- Emetteur et récepteur disposent d'un même référentiel temporel qui détermine les instants de dépôt et de prélèvement des bits.
- Le référentiel temporel appelé horloge est un signal de synchronisation le plus souvent fourni par l'émetteur grâce à la fréquence de la porteuse
- Exemple : à l'intérieur des puces électroniques

# Synchronisation de la transmission (2)

#### Méthode asynchrone

- Pas de référentiel temporel commun à l'émetteur et au récepteur
- Les horloges de l'émetteur et du récepteur ont ~ la même fréquence
- L'horloge bit du récepteur est définie et calée à partir du signal de début de bloc
- Attention: dérive d'horloge ...

#### Comparaison

- Le mode synchrone est utilisé pour des transmissions ultra rapides, à très courte distance et qui mettent en jeu de grandes quantités d'informations
- Le mode asynchrone est utilisé pour des liaisons à plus faible vitesse où la source de données produit des caractères à des instants aléatoires. Par à chaque début de transmission d'une unité de données exemple la liaison terminal ordinateur ou les LAN. On synchronise alors

## au niveau bit mais asynchrone au niveau trame Exemple de transmission synchronisée

#### **Ethernet:**

Asynchrone au niveau PDU (trame) et Synchrone au niveau bit

Préambule: 7 octets: 10101010

Codage Manchester : signal carré: synchronisation niveau bit

Fanion de début de trame: octet: 10101011

Séparation minimum des trames par des « silences » de 9,6 microsecondo

Fin de trame : violation du codage Manchester (par un symbole inexista

#### Principe de la transmission par modulation d'onde

Modem: modulateur/démodulateur

choisi pour être la mieux adaptée au support. Principe: L'information codée numériquement sert à modifier un ou plusieurs les paramètres d'un signal sinusoïdal, appelé onde porteuse,

- Paramètres de modulation :
- fréquence
- amplitude
- phase
- (Presque) Toutes les combinaisons sont possibles
- Exemple: combinaison de 4 phases et deux amplitudes
- → V=8 valeurs donc 3 bits codés par symbole
- Exemple: modem V34: 12 bits par symbole à 2400 bauds V=?; débit binaire maximum = ? bit/s

•Information binaire à émettre :



•Modulation d'amplitude



•Modulation de fréquence



•Modulation de phase



#### Exemples de transmissions par modulation d'onde

- 4G
- WiFi
- Radio FM
- → la plupart des transmissions sans fils ...
- ADSL

# Caractéristiques Physiques des canaux

- Taux d'erreur
- Nb bits erronés / nb bits corrects
- Probabilité de perte ou d'erreur d'une information élémentaire (BER)
- WAN an FORER 10-13

WAN par ligne télécoms BER  $\sim 10^{-3}$ ;

WAN en FO BER <10-13</li>

LAN: BER < 10-9

- − Bus machine : BER <10-12</p>
- Longueur élémentaire
- longueur maximale possible d'une ligne sans avoir de dispositif de réamplification ou de répétition ou à cause d'une hypothèse du protocole MAC
- Example LAN Ethernet 100m
- Exemple FOʻjusqu'à 100km

# Caractéristiques Physiques des canaux

#### Support métallique classique

- Paire de fils torsadés: (2\* 1 mm de cuivre isolé)
- → Torsadé: Résiste mieux à l'atténuation électromagnétique
- Utilisé en analogique (téléphone) et très répandu pour les LAN
- Unshielded Twisted Pair: UTP3 puis UTP5 puis UTP6 ...
- Paire non blindée
- en général 4 paires dans le même câble
- UTP5, cablâge le plus répendu pour Ethernet à 100 Mégabit/s
- Aujourd'hui UTP6-7, STP
- Actuellement le plus utilisé pour les réseaux locaux :
- Limites :  $100 \text{ m} \rightarrow 100 \text{ Mégabit/s}$
- **Exemple architecture Ethernet:**
- » (Hubs/concentrateurs)) + Switchs/commutateurs
- » Segment: 100m max
- » Prises: RJ45,
- » UTP avec 4 paires torsadées soit 8 fils (cable droit ou croisé)
- » Armoire/baie de brassage: simplifie la gestion du réseau



- d'un isolant (verre plus plastique) Fil en verre très fin (capilaire de taille < cheveu) recouvert d'une gaine réfléchissante et
- Fonctionnement en mode simplex (2 fibres pour assurer le full-duplex)
- Une longueur d'onde = un canal cf. Lasers / diode
- Pas de lumière : 0 logique, Impulsion lumineuse : 1 logique Utilisées en LAN (historiquement FDDI) et WAN, maintenant Ethernet Gbit/s et 10Gb/s
- Longueur élémentaire < 100km → 40 Gigabit/s
- Limitation due au passage de l'optique à l'électrique
- $^-$  Optique pure limite  $\sim\!\!50~000$  Gigabit/s par fibre
- Fort développement:
- Cables sous-marins
- Liaisons MAN et WAN
- Autoroute de l'info en France, objectif de cablage de toutes les agglomérations avant 2015
- France Télécom: 1,3 million de km de fibres dès 1996
- Etat actuel des opérateurs : augmentation permanente
- difficile à « écouter » (piratage)
- 1Mkm de cables sous marins ...

# Example de réseau FO (ILIAD ProXad)

64000km Fibres noires propriétaires ou louées.



### Les supports sans fil

#### **Ondes lumineuses:**

- Rayons infra rouges
- » Faible portée: télécommande TV, hifi, ...
- » Facile à mettre en oeuvre
- » Très peu pénétrant
- » Omnidirectionnelles
- » Peu utilisés pour la connexion d'ordinateurs (4 Mb/s max)
- Rayons lasers
- » Peu coûteux (économie et puissance)
- » Large bande passante
- » Très directif → pas d'interception, pointage
- » Sensible aux intempéries (chaleur, gouttes)
- **Lumiere visible directe** → **labo**

### Les supports sans fil

## Ondes radio (ou faisceaux hertziens)

- Grandes distances (>100 km)
- Débit dépend de la plage de fréquence utilisée
- Fréquence >100 Mhz jusqu'au GigaHertz
- Problème de l'allocation des plages de fréquences (normes, ARCEP)
- Très utilisé pour la radio (ex TV), des artères du téléphone, des réseaux privés
- Support à Diffusion → avantage de couverture mais problème de confidentialité (cryptage)
- Notion de cellule ou de faisceau
- Mise en place moins coûteuse que n'importe quel support matériel, dont fibre optique
- Tours Hertziennes: moins onéreux que de creuser une tranchée pour mettre une fibre optique
- Télécommunication locale et mobile, 2G, 3G, 4G, 5G
- Réseau locaux sans fil :
- WI-FI (Wireless Fidelity) norme IEEE 802.11x: au départ 4 Méga bit/s puis 11 Mégabit/s (802.11b) et jusqu'à 54Mégabit/s (802.11a), 100m
- » Bluetooth (1Mégabit/s), 10m
- Wimax : réseau dense de bornes réceptrices à haut débit
- » ZigBee norme 802.15.4, 250kb/s, 50m
- LPWAN dans les bandes ISM: SigFox, ultra narrow band (100Hz), LoRa, modulation à étalement de spectre (sur 125kHz), cellule de rayon 10km
- » LPWAN dans l'infrastructure télécom mobile : NB-IoT

### Les supports sans fil

## Réseau de Satellites géostationnaires (36 000 km)

- » 50 Mbit/s
- » Vitesse: 3.10° m/s, Temps de propagation de 300 ns à 0,27s (allerretour)
- » Utilisé pour les lignes du téléphone en mer
- » Problème du délai de transfert AR pour les applications interactives

#### Intérêt

- » pour la diffusion
- » pour point isolé, applications mobiles (iles, bateaux, ...)
- » pour accéder facilement (directement) à du haut débit descendant

#### Ethernet norme IEEE 802.3: Evolution Niveau physique

- câble 10base5 (coaxial épais) : 10 Mégabit/s 500m max
- Connexion prise vampire (problèmes de faux contacts)
- Vitesse de propagation : 230x10<sup>6</sup> m/s
- Câble fin 10base 2 : 10 Mégabit/s 200m max
- T et bouchon.
- Problème de la coupure du réseau
- Vitesse propagation: 230 10<sup>6</sup> m/s
- Transceiver + câble de connexion
- 1 seule carte pour différents cablages: coaxial, paire torsadée, fibre optique
- Aujourd'hui carte pour paires torsadées : prise RJ45 pour UTP5-6-7
- chipset dans carte mère : prise RJ45 pour UTP5-6-7
- Matériels FO pour Gb Ethernet.

#### Ethernet norme IEEE 802.3: Paramètres Niveau physique

- Débit nominal : 1 Mbits/s à 10Gbits/s
- Transmission en bande de base, codage Manchester différentiel (1 transition inverse; 0 transition idem)
- Niveau électrique haut 0, 85 volts, niveau bas 0, 85 volts, 0 volt au repos

#### support câble :

- Câble coaxial Ethernet épais 10Base5 prise vampire 500m -100 stations pour mémoire car obsoléte
- Câble coaxial Ethernet fin 10Base2 prise en T- 200 m 30 stationsprobleme de panne → pour mémoire car obsolète
- Paires torsadées 10BaseT, 100 BaseT, 1000 BaseT- concentrateur ou commutateur en plus - 100m - 1024 stations
- Fibre optique 100 BaseFX- 1000 BaseFX- 10000 BaseFX- Hub 2000m 102 stations - entre immeubles - pas de sensibilité électromagnétique

#### Performance Niveau physique Ethernet norme IEEE 802.3:

- Ethernet 100 Mégabit/s
- On garde taille minimale des trames 64 octets
- Tranche canal 5,12 microsecondes
- Réduction de la longueur du support (250 m ou 100m sans répéteur)

#### **Plusieurs Normes:**

- 100 base TX : 2 paires utilisées dans câble UTP5
- 100 base T4: 4 paires torsadées utilisées dans câble UTP5
- 100 base FX: 2 fibres optiques
- » Codage 4B5B et NRZI

#### Ethernet 1 gigabit/s

- Réduction à 2m50 si on veut garder la longueur minimale des trames à 64 octets
- On garde 250 m mais taille minimal des trames à 640 octets
- Utilisation de 10% pour des paquets de 64 octets de données
- Ethernet 10 gigabit/s sur Fibre optique et sur support cuivre specifique

## La couche liaison de données



#### Plan du chapitre

- Introduction
- Détermination de trame et transparence
- Contrôle d'erreur
- Les codes correcteurs
- → type d'erreur corrigées
- Les codes détecteurs
- -> pas de faux positif, demande de réémission possible

#### INTRODUCTION

- Niveau LLC Logical Link Control (exemple SNA d'IBM, Netbeui de Microsoft)
- Service fournis à la couche réseau
- Découpage en trame
- Transfert avec détection(/correction) d'erreurs bit
- Contrôle du flux des symboles binaires
- Niveau accès multiples à un support (fait par la sous couche MAC Medium Access Control ) : partage du média. Exemple le protocole Ethernet
- erreurs bit de type CRC. C'est un service sans connexion ni acquittement. Dans Ethernet, la couche liaison comprend la couche MAC avec accès au canal de type CSMA/CD, la délimitation des trames et la détection des