

COMPUTER VISION (21CD108)

FLOWER IMAGE CLASSIFICATION USING CNN

A Project report submitted in partial fulfillment of requirement for the award of degree

BACHELOR OF TECHNOLOGY

in

SCHOOL OF COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE

by

VELISHALA ABHIVARUN 2203A52062

Under the guidance of

Dr. Nafis Uddin Khan

Assistant Professor, School of CS&AI.

SR University, Ananthsagar, Warangal, Telagnana-506371

SR University

Ananthasagar, Warangal.

CERTIFICATE OF COMPLETION

This is to certify that **Velishala Abhivarun**, bearing Hall Ticket Number **2203A52062**, a student of **CSE-AIML**, **3rd Year – 2nd Semester** at **SR University**, has successfully completed the **Computer Vision** course.

As part of the coursework, the student submitted a project titled **Flower Image Classification**, which demonstrated a solid understanding of the fundamental concepts of computer vision and their practical application in real-world scenarios. The project met the required academic standards and learning objectives of the course.

Dr. Nafis Uddin Khan

Assistant Professor, SR University Anathasagar, Warangal

FLOWER IMAGE CLASSIFICATION USING CNN

Description of Project:

This project is a **Computer Vision-based multi-class image classification task** aimed at recognizing different types of flowers using a Convolutional Neural Network (CNN). The notebook is well-structured into logical sections, starting from dataset preparation to model evaluation.

Dataset Overview:

The dataset contains 5 flower classes—Lily, Lotus, Sunflower, Orchid, and Tulip—with 1000 images each, ensurin balance. It is stored in the "FLOWER IMAGES" folder after extraction from a zip file. The directory follows the flow from directory format with separate subfolders for each class.

Libraries and Tools Used:

- Python: Programming language for writing the code.
- **TensorFlow & Keras**: Libraries for building and training deep learning models.
- Matplotlib: Library for plotting graphs and visualizing results (like training accuracy, loss, etc.).
- NumPy: Library for numerical operations, like working with arrays.
- **Image Data Generator**: A tool for preprocessing and augmenting images to make the model more robust during training.

Model Architecture

The CNN model likely includes the following layers:

- Multiple Conv2D layers with ReLU activation to extract features.
- MaxPooling2D layers to reduce spatial dimensions and retain important information.
- **Flatten layer** to convert 2D features into a 1D vector.
- Dense layers, ending with a Softmax layer to classify the images into one of the 5 flower classes.
- Loss Function: categorical crossentropy
- Optimizer: Adam (efficient and widely used)
- **Metric**: Accuracy

TEST ACCURACY:

Test Accuracy: 81.58%

DETAILS OF DATASET:

Total training samples: 5000

Class labels: {'Lilly': 0, 'Lotus': 1, 'Orchid': 2, 'Sunflower': 3, 'Tulip': 4}

Batch size: 32

Sample images shape: (32, 150, 150, 3)

Sample labels shape: (32, 5)

TRAINING SET IMAGES

Tulip: 1000 images
Lotus: 1000 images
Sunflower: 1000 images
Lilly: 1000 images
Orchid: 1000 images

DISPLAY SOME IMAGES

DATASET SHAPE:

shape of image: (32, 180, 180, 3) shape of label: (32,)

FLOWER TYPES: ['Lilly', 'Lotus', 'Orchid', 'Sunflower', 'Tulip']

VISUALISATION OF IMAGE:

IMAGE DATA AUGMENTATION:

COUNT OF FLOWER SAMPLES:

Class Number Flower Name Number of Samples

0	Lily	821
1	Lotus	803
2	Orchid	800
3	Sunflower	791
4	Tulip	785

CLASSIFICATION REPORT:

	precision	recall	f1-score	support
Lilly Lotus Orchid Sunflower	0.59 0.85 0.82 0.96	0.84 0.83 0.74 0.92	0.69 0.84 0.78 0.94	178 197 200 209
Tulip	0.93	0.76	0.83	215
accuracy macro avg weighted avg	0.83 0.84	0.82	0.82 0.82 0.82	999 999 999

CNN MODEL BUILDING:

Layer (type)	Output Shape	Param #
sequential (Sequential)	(1, 180, 180, 3)	0
rescaling (Rescaling)	(1, 180, 180, 3)	0
conv2d (Conv2D)	(1, 180, 180, 16)	448
max_pooling2d (MaxPooling2D)	(1, 90, 90, 16)	0
conv2d_1 (Conv2D)	(1, 90, 90, 32)	4,640
<pre>max_pooling2d_1 (MaxPooling2D)</pre>	(1, 45, 45, 32)	0
conv2d_2 (Conv2D)	(1, 45, 45, 64)	18,496
max_pooling2d_2 (MaxPooling2D)	(1, 22, 22, 64)	0
dropout (Dropout)	(1, 22, 22, 64)	0
flatten (Flatten)	(1, 30976)	0
dense (Dense)	(1, 128)	3,965,056
dense_1 (Dense)	(1, 5)	645

Total params: 3,989,285 (15.22 MB)
Trainable params: 3,989,285 (15.22 MB)
Non-trainable params: 0 (0.00 B)

EPOCH: Epoch 48/65

125/125 ---- **9s** 75ms/step - accuracy: 0.8623 - loss: 0.4082 - val_accuracy: 0.8158

- val_loss: 0.6178

EVALUATION:

32/32 — 2s 51ms/step - accuracy: 0.8352 - loss:

0.5239

Validation Loss: 0.572620689868927 Validation Accuracy: 0.815815806388855

Model Prediction

Prediction vector: [[7.1037477e-01 5.9976440e-02 2.2765869e-01 1.4574826e-12

1.9901409e-03]]

Sum of probabilities: 1.0000001

Predicted class index: 0
Prediction: Lilly (71.04%)

Predicted: Lilly

