Subject Reduction for Synchronous MPST in Coq

Part II: Subject Reduction Proof

November 20, 2024

Outline

- 1 Types and Trees
- 2 Demo IV

3 A proof sketch

Theoren

Have

- ⊢ M: G
- $\mathcal{M} \to_{\beta}^{\star} \mathcal{M}'$

Then

 $\bullet \ \exists \, \mathsf{G}' \, \mathsf{such} \, \mathsf{that} \, \vdash \mathcal{M}' \colon \mathsf{G}' \, \mathsf{and} \, \mathsf{G} \Longrightarrow \mathsf{G}'$

Global Types

Global types are inductively generated by the following grammar.

```
egin{array}{lll} {\sf S} &::= & {\sf nat} & | & {\sf int} & | & {\sf bool} \ & & & & & & | & \mu {f t}. \mathbb{G} & | & {f t} & | \ & & & & | & p 
ightarrow {\sf q} : \{\ell_i({\sf S}_i). \mathbb{G}_i\}_{i \in I} \ \end{array}
```

Global Types

Global types are inductively generated by the following grammar.

Global Type Trees

Global type trees are coinductively generated by the following grammar.

Global Types ightarrow Global Type Trees

• Recursive unfoldings are mapped to the same tree

$$\frac{\forall i \in I, \quad \mathbb{G}_i \xrightarrow{\mathcal{G}} G_i}{\underset{p \to q}{\text{p} : \{\ell_i(S_i).\mathbb{G}_i\}_{i \in I}} \xrightarrow{\mathcal{G}} \underset{p \to q}{\text{p} : \{\ell_i(S_i).\mathbb{G}_i\}_{i \in I}}} [\text{gtrans-send}] \xrightarrow{\underset{end}{\underline{\mathcal{G}}} \text{end}} [\text{gtrans-end}]$$

$$\frac{\mu \mathbf{t}.\mathbb{G} \xrightarrow{\mathcal{G}} G}{\mathbb{G}[\mu \mathbf{t}.\mathbb{G}/\mathbf{t}] \xrightarrow{\mathcal{G}} G} [\text{gtrans-rec}]$$

Global Types \rightarrow Global Type Trees

• Recursive unfoldings are mapped to the same tree

$$\frac{\forall i \in I, \quad \mathbb{G}_i \xrightarrow{\mathcal{G}} \mathsf{G}_i}{ p \to q : \{\ell_i(\mathsf{S}_i).\mathbb{G}_i\}_{i \in I} \xrightarrow{\mathcal{G}} p \to q : \{\ell_i(\mathsf{S}_i).\mathsf{G}_i\}_{i \in I}} \text{ [gtrans-send]} \qquad \underbrace{\frac{\mathcal{G}}{\mathsf{end} \xrightarrow{\mathcal{G}}} \mathsf{end}}_{\text{end} \xrightarrow{\mathcal{G}} \mathsf{end}}$$

Example

$$\mathbb{G} = \mu \mathbf{t}.$$
p $ightarrow$ q $egin{cases} \ell_1(exttt{bool}).\mathbf{t} \ \ell_2(exttt{nat}).$ end

Global Types \rightarrow Global Type Trees

• Recursive unfoldings are mapped to the same tree

$$\frac{\forall i \in I, \quad \mathbb{G}_i \xrightarrow{\mathcal{G}} \mathsf{G}_i}{ p \to q : \{\ell_i(\mathsf{S}_i).\mathbb{G}_i\}_{i \in I} \xrightarrow{\mathcal{G}} p \to q : \{\ell_i(\mathsf{S}_i).\mathsf{G}_i\}_{i \in I}} \text{ [gtrans-send]} \qquad \underbrace{\frac{\mathcal{G}}{\mathsf{end} \xrightarrow{\mathcal{G}}} \mathsf{end}}_{\text{end} \xrightarrow{\mathcal{G}} \mathsf{end}}$$

Example

$$\mathbb{G} = \mu \mathbf{t}.\mathsf{p} o \mathsf{q} egin{cases} \ell_1(\mathsf{bool}).\mathbf{t} \ \ell_2(\mathsf{nat}).\mathsf{end} \end{cases}$$

Global Types → Global Type Trees 🧚

```
Inductive gttT (R : global \rightarrow gtt \rightarrow Prop) : global \rightarrow gtt \rightarrow Prop \triangleq | ... | gttT_rec: \forall G Q G', R Q G' \rightarrow subst_global 0 0 (g_rec G) G Q \rightarrow gttT R (g_rec G) G'.

Definition gttTC G G' \triangleq paco2 gttT bot2 G G'.
```

Local Types

Local types are inductively generated by the following grammar.

Local Types

Local types are inductively generated by the following grammar.

Local Type Trees

Local type trees are coinductively generated by the following grammar.

```
 \begin{array}{lll} T & ::= & \text{end} & | & \bigoplus_{i \in I} p! \ell_i(S_i).T_i & \text{ } \\ & & & & \{ S_{i \in I} p? \ell_i(S_i).T_i & & | & \text{ } \\ & & & \{ tt\_end : ltt \\ & | & ltt\_ecv: part \rightarrow list (option(sort*ltt)) \rightarrow ltt \\ & | & ltt\_send: part \rightarrow list (option(sort*ltt)) \rightarrow ltt. \end{array}
```

end

bool

Example (Local Types \rightarrow Local Type Trees) $\mathbb{T} = \mu \mathbf{t}. \underbrace{\mathbf{K}}_{\mathbf{p}} \mathsf{P}^{?} \begin{cases} \ell_{1}(\mathsf{bool}). \bigoplus_{q \in \mathcal{L}_{\mathbf{q}}} \mathsf{q}! \\ \ell_{2}(\mathsf{nat}).\mathsf{end} \end{cases} \underbrace{\ell_{3}(\mathsf{int}). \mathbf{t}}_{\mathbf{q}} \qquad \underbrace{\ell_{3}(\mathsf{int}). \mathbf{t}}_{\mathbf{q}} \qquad \underbrace{\ell_{4}(\mathsf{bool}).\mathsf{end}}_{\mathbf{q}} \qquad \underbrace{\ell_{3}(\mathsf{int}). \mathbf{t}}_{\mathbf{q}} \qquad \underbrace{\ell_{4}(\mathsf{bool}). \mathsf{end}}_{\mathbf{q}} \qquad \underbrace{\ell_{4}(\mathsf{boo$

Projection

$$\frac{\forall i \in I, C_i \upharpoonright_r T_i}{r \to q : \{\ell_i(S_i).C_i\}_{i \in I} \upharpoonright_r \bigoplus_{i \in I} q! \ell_i(S_i).T_i} \text{ [proj-send]} \qquad \frac{\forall i \in I, C_i \upharpoonright_r T_i}{p \to r : \{\ell_i(S_i).C_i\}_{i \in I} \upharpoonright_r \bigotimes_{i \in I} q? \ell_i(S_i).T_i} \text{ [proj-recv]}$$

$$\frac{r \notin \{p,q\} \quad \forall i \in I, r \in pt(G_i) \quad C_i \upharpoonright_r T}{p \to q : \{\ell_i(S_i).G_i\}_{i \in I} \upharpoonright_r T} \text{ [proj-cont]} \qquad \frac{r \notin pt(C)}{C \upharpoonright_r end} \text{ [proj-end]}$$

Projection

$$\frac{\forall i \in I, C_i \upharpoonright_r T_i}{r \to q : \{\ell_i(S_i).C_i\}_{i \in I} \upharpoonright_r \bigoplus_{i \in I} q! \ell_i(S_i).T_i} \text{ [proj-send]} \qquad \frac{\forall i \in I, C_i \upharpoonright_r T_i}{p \to r : \{\ell_i(S_i).C_i\}_{i \in I} \upharpoonright_r \bigotimes_{i \in I} q? \ell_i(S_i).T_i} \text{ [proj-recv]}$$

$$\frac{r \notin \{p,q\} \quad \forall i \in I, r \in pt(C_i) \quad C_i \upharpoonright_r T}{p \to q : \{\ell_i(S_i).C_i\}_{i \in I} \upharpoonright_r T} \text{ [proj-cont]} \qquad \frac{r \notin pt(C)}{C \upharpoonright_r end} \text{ [proj-end]}$$

In Coq 🥊 (Projection)

```
Variant projection (R: gtt → part → ltt → Prop): gtt → part → ltt → Prop ≜

| ...

| proj_cont: ∀ p q r xs ys t, p ≠ q → q ≠ r → p ≠ r →

(isgPartsC r (gtt_send p q xs)) →

List.Forall2 (fun u v ⇒ (u = None ∧ v = None) ∨ (∃ s g t, u = Some(s, g) ∧ v = Some t ∧ R g r t)) xs ys →

isMerge t ys →

projection R (gtt_send p q xs) r t.

Definition projectionC g r t ≜ paco3 projection bot3 g r t.
```

Step Relation

$$\begin{split} &\frac{\forall i \in I \quad \exists k \in I, \ell = \ell_k}{\left(p \to q : \{\ell_i(S_i).G_i\}_{i \in I}\right) \setminus p \xrightarrow{\ell} q \ G_k} \text{ [st-eq]} \\ &\frac{\{r,s\} \cap \{p,q\} = \varnothing \quad \forall i \in I, \{p,q\} \subseteq \text{pt}(G_i)}{\left(r \to s : \{\ell_i(S_i).G_i\}_{i \in I}\right) \setminus p \xrightarrow{\ell} q \ (r \to s : \{\ell_i(S_i).G_i \setminus p \xrightarrow{\ell} q\}_{i \in I})} \text{ [st-neq]} \end{split}$$

Step Relation

$$\begin{split} &\frac{\forall i \in I \quad \exists k \in I, \ell = \ell_k}{\left(p \to q : \{\ell_i(S_i).G_i\}_{i \in I}\right) \setminus p \xrightarrow{\ell} q \ G_k} \ [st\text{-eq}] \\ &\frac{\{r,s\} \cap \{p,q\} = \varnothing \quad \forall i \in I, \{p,q\} \subseteq pt(G_i)}{\left(r \to s : \{\ell_i(S_i).G_i\}_{i \in I}\right) \setminus p \xrightarrow{\ell} q \ (r \to s : \{\ell_i(S_i).G_i \setminus p \xrightarrow{\ell} q\}_{i \in I})} \ [st\text{-neq}] \end{split}$$

In Coq 🦩 (Step Relation)

```
Variant gttstep (R: gtt → gtt → part → part → nat → Prop): gtt → gtt → part → part → nat → Prop ≜
| ...
| stneq: ∀ p q r s xs ys n, p ≠ q → r ≠ s → r ≠ p → r ≠ q → s ≠ p → s ≠ q →
| Forall (fun u ⇒ u = None \/ (exists s g, u = Some(s, g) /\ isgPartsC p g /\ isgPartsC q g)\ xs →
| Forall2 (fun u v ⇒ (u = None ∧ v = None) ∨ (∃ s g g', u = Some(s, g) ∧ v = Some(s, g') ∧ R g g' p q n)) xs ys →
| gttstep R (gtt_send r s xs) (gtt_send r s ys) p q n.
| Definition gttstepC g1 g2 p q n ≜ paco5 gttstep bot5 g1 g2 p q n.
```

Subtyping

$$\frac{\forall i \in I, \quad S_i \leq : S_i' \quad T_i \leqslant T_i'}{\bigoplus_{i \in I} p! \ell_i(S_i). T_i \leqslant \bigoplus_{i \in I \cup J} p! \ell_i(S_i'). T_i'} \quad [\text{sub-out}]$$

$$\frac{\forall i \in I, \quad S_i' \leq : S_i \quad T_i \leqslant T_i'}{\bigotimes_{i \in I \cup J} p! \ell_i(S_i). T_i \leqslant \bigotimes_{i \in I} p! \ell_i(S_i'). T_i'} \quad [\text{sub-in}]$$

Subtyping

In Coq 🦩 (Subtyping)

```
Fixpoint wfrec (R1: sort → sort → Prop) (R2: ltt → ltt → Prop) (11 12: list (option(sort*ltt))): Prop ≜
  match (11.12) with
      (Datatypes.None::xs, Datatypes.None::vs)
                                                    ⇒ wfrec R1 R2 xs vs
      (Datatypes.Some (s',t')::xs, Datatypes.Some (s,t)::ys) ⇒ R1 s' s ∧ R2 t t' ∧ wfrec R1 R2 xs ys
    | (Datatypes.None::xs, Datatypes.Some(s,t)::vs)
                                                                 ⇒ wfrec R1 R2 xs vs
    | (nil, _)
                                                                 ⇒ True
                                                                 \Rightarrow False
  end.
Inductive subtype (R: ltt \rightarrow ltt \rightarrow Prop): ltt \rightarrow ltt \rightarrow Prop \triangleq
  | sub end: subtype R ltt end ltt end
  | sub in : ∀ p xs vs. wfrec subsort R vs xs → subtype R (ltt recy p xs) (ltt recy p vs)
  | sub_out: \forall p xs ys, wfsend subsort R xs ys \rightarrow subtype R (ltt_send p xs) (ltt_send p ys).
Definition subtypeC 11 12 \triangleq paco2 subtype bot2 11 12.
```

Outline

- 1 Types and Trees
- 2 Demo IV

3 A proof sketch

Let's 🦩 now... (Subtyping is transitive)

Lemma stTrans: \forall 11 12 13, subtypeC 11 12 \rightarrow subtypeC 12 13 \rightarrow subtypeC 11 13.

Outline

- 1 Types and Trees
- 2 Demo IV

3 A proof sketch

Balanced Global Types

G is balanced if, for every subtree G' of G,

- if $p \in pt(G')$, $\exists k \in \mathbb{N}$ such that
 - **1** For all paths γ length k from the root of G', $p \in \gamma$.
 - 2 For all paths γ from the root of G' that end at a leaf (end), $p \in \gamma$.

Balanced Global Types

G is balanced if, for every subtree G' of G,

- if $p \in pt(G')$, $\exists k \in \mathbb{N}$ such that
 - **1** For all paths γ length k from the root of G', $p \in \gamma$.
 - ② For all paths γ from the root of G' that end at a leaf (end), $p \in \gamma$.

Example (Unbalanced Global Tree)

Consider the tree of the type:

 $\mathbb{G} = \mu \mathbf{t}.\mathsf{p} \to \mathsf{q} : \{\ell(\mathtt{nat}).\mathsf{t}, \ell'(\mathtt{int}).\mathsf{q} \to \mathsf{r} : \{\ell''(\mathtt{int}).\mathtt{end}\}\}$

That is, a tree G such that $\mathbb{G} \xrightarrow{\mathcal{G}} G$.

Example (Unbalanced Global Tree)

Consider the tree of the type:

$$\mu \mathbf{t}.\mathbf{p} o \mathbf{q}: \{\ell(\mathtt{nat}).\mathbf{t}, \ell'(\mathtt{int}).\mathbf{q} o \mathbf{r}: \{\ell''(\mathtt{int}).\mathtt{end}\}\}$$

 \forall balanced G and p, if $p \in pt(G)$ then

- $\exists \Gamma_G$ and L such that
 - 1 $G = \Gamma_G[L]$ and $p \notin pt(\Gamma_G)$
 - 2 Each element that fills a hole in Γ_G from the list L is of one of the following forms:

$$\mathsf{p} \to \mathsf{q} : \{\ell_i(\mathsf{S}_i).\mathsf{g}_i\}_{i \in I} \quad \mathsf{q} \to \mathsf{p} : \{\ell_i(\mathsf{S}_i).\mathsf{g}_i\}_{i \in I} \quad \mathsf{end}$$

for some labels ℓ_i , sorts S_i , continuations g_i and participants q

Process Language and Sessions

P ::=
$$p!\ell(e).P \mid \sum_{i \in I} p?\ell_i(x_i).P_i \mid \text{if } e \text{ then Pelse P} \mid \mu \mathbf{X}.P \mid \mathbf{X} \mid \mathbf{0}$$

Type Checking

$$\frac{\Gamma \vdash_{P} \mathbf{0} \colon \text{end}}{\Gamma \vdash_{P} \mathbf{0} \colon \text{end}} [\text{tend}] \qquad \frac{\Gamma, \mathbf{X} \colon \mathsf{T} \vdash_{P} \mathsf{P} \colon \mathsf{T}}{\Gamma \vdash_{P} \mathsf{p} \colon \mathsf{T}} [\text{trec}]$$

$$\frac{\Gamma \vdash_{P} \mathsf{P} \colon \mathsf{T} \quad \mathsf{T} \leqslant \mathsf{T}'}{\Gamma \vdash_{P} \mathsf{P} \colon \mathsf{T}'} [\text{tsub}] \qquad \frac{\forall i \in I, \quad \Gamma, x_{i} \colon \mathsf{S}_{i} \vdash_{P} \mathsf{P}_{i} \colon \mathsf{T}_{i}}{\Gamma \vdash_{P} \sum_{i \in I} \mathsf{p} ? \ell_{i}(x_{i}) . \mathsf{P}_{i} \colon \bigotimes_{i \in I} \mathsf{p} ? \ell_{i}(\mathsf{S}_{i}) . \mathsf{T}_{i}} [\text{tin}] \qquad \frac{\Gamma \vdash_{S} e \colon \mathsf{S} \quad \Gamma \vdash_{P} \mathsf{P} \colon \mathsf{T}}{\Gamma \vdash_{P} \mathsf{p} \colon \mathsf{T}'} [\text{tout}]$$

$$\frac{\Gamma \vdash_{S} e \colon \mathsf{bool} \quad \Gamma \vdash_{P} \mathsf{P}_{1} \colon \mathsf{T} \quad \Gamma \vdash_{P} \mathsf{P}_{2} \colon \mathsf{T}}{\Gamma \vdash_{P} \mathsf{if} e \mathsf{then} \mathsf{P}_{1} \mathsf{else} \mathsf{P}_{2} \colon \mathsf{T}} [\text{tite}]$$

$$\frac{\forall i \in I, \quad \mathsf{G} \upharpoonright_{\mathsf{p}_{i}} \mathsf{T}_{i} \quad \vdash_{\mathsf{P}} \mathsf{P}_{i} \colon \mathsf{T}_{i} \quad \mathsf{pt}(\mathsf{G}) \subseteq \{\mathsf{p}_{i} \mid i \in I\}}{\vdash_{\mathcal{M}} \prod_{i \in I} \mathsf{p}_{i} \lhd \mathsf{P}_{i} \colon \mathsf{G}} [\text{tsess}]$$

$$\frac{\mathsf{P}_{\mathsf{M}} \prod_{i \in I} \mathsf{p}_{i} \lhd \mathsf{P}_{i} \colon \mathsf{G}}{\mathsf{P}_{\mathsf{M}} \sqcap_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \vdash_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \vdash_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \vdash_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \vdash_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \vdash_{\mathsf{M}} \mathsf{P}_{\mathsf{M}} \mathsf{P}_{\mathsf{M}}$$

Often, we want to prove statements like:

 $\forall n \in \mathbb{N}. P(n)$

which can be rewritten as

Types and Trees

$$\forall n \in \mathbb{N}.\, H(n) \to C(n)$$

Often, we want to prove statements like:

$$\forall n \in \mathbb{N}. P(n)$$

which can be rewritten as

$$\forall n \in \mathbb{N}. H(n) \rightarrow C(n)$$

Using induction on n, we can prove this by showing

- H(0) → C(0)
- $(H(n) \rightarrow C(n)) \rightarrow (H(n+1) \rightarrow C(n+1))$

Often, we want to prove statements like:

$$\forall n \in \mathbb{N}. P(n)$$

which can be rewritten as

$$\forall n \in \mathbb{N}. H(n) \rightarrow C(n)$$

Using induction on n, we can prove this by showing

- $H(0) \rightarrow C(0)$
- $H(n+1) \rightarrow H(n)$
- $C(n) \rightarrow C(n+1)$

Often, we want to prove statements like:

$$\forall n \in \mathbb{N}. P(n)$$

which can be rewritten as

$$\forall n \in \mathbb{N}. H(n) \rightarrow C(n)$$

Using induction on n, we can prove this by showing

- H(0) → C(0)
- $H(n+1) \rightarrow H(n)$
- $C(n) \rightarrow C(n+1)$

So often times we need to strengthen / weaken the statement to ensure we can deduce each of the implications, even if the original statement is true.

If $\Gamma \vdash_{P} \mu \mathbf{X}.P$: T then $\Gamma \vdash_{P} P\{\mu \mathbf{X}.P/\mathbf{X}\}$: T

If $\Gamma \vdash_{P} \mu \mathbf{X}.P$: T then $\Gamma \vdash_{P} P\{\mu \mathbf{X}.P/\mathbf{X}\}$: T

Lemma

(Substitution Lemma for Process Variables) : If Γ , X: $T \vdash_P P$: T' and $\Gamma \vdash_P Q$: T, then $\Gamma \vdash_P P Q \not X$: T'

If $\Gamma \vdash_{P} \mu \mathbf{X}.P$: T then $\Gamma \vdash_{P} P\{\mu \mathbf{X}.P/\mathbf{X}\}$: T

Lemm:

(Substitution Lemma for Process Variables): If Γ , \mathbf{X} : $\Gamma \vdash_P P$: Γ' and $\Gamma \vdash_P Q$: Γ , then $\Gamma \vdash_P P Q \not \subset \Gamma$, then $\Gamma \vdash_P P Q \not \subset \Gamma$.

In Coq 🧚 (De bruijn Indices)

• Notation where terms are invariant under α -conversion

If $\Gamma \vdash_{P} \mu \mathbf{X}.P$: T then $\Gamma \vdash_{P} P\{\mu \mathbf{X}.P/\mathbf{X}\}$: T

Lemm:

(Substitution Lemma for Process Variables): If Γ , \mathbf{X} : $\Gamma \vdash_P P$: Γ' and $\Gamma \vdash_P Q$: Γ , then $\Gamma \vdash_P P Q \not \subset \Gamma$, then $\Gamma \vdash_P P Q \not \subset \Gamma$.

In Coq 🦩 (De bruijn Indices)

- Notation where terms are invariant under α -conversion
- Use natural numbers that represent the number of binders in scope between occurence to its corresponding binding μ and Σ term

If $\Gamma \vdash_{P} \mu \mathbf{X}.P$: T then $\Gamma \vdash_{P} P\{\mu \mathbf{X}.P/\mathbf{X}\}$: T

Lemm:

(Substitution Lemma for Process Variables): If Γ , X: $\Gamma \vdash_P P$: Γ' and $\Gamma \vdash_P Q$: Γ , then $\Gamma \vdash_P P \{Q/X\}$: Γ'

In Coq 🦩 (De bruijn Indices)

- Notation where terms are invariant under α -conversion
- Use natural numbers that represent the number of binders in scope between occurence to its corresponding binding μ and Σ term

Example (In the context of Lambda Calculus)

• $\lambda x. \lambda y. x$ (K combinator)

If $\Gamma \vdash_{P} \mu \mathbf{X}.P$: T then $\Gamma \vdash_{P} P\{\mu \mathbf{X}.P/\mathbf{X}\}$: T

Lemm:

(Substitution Lemma for Process Variables): If Γ , X: $\Gamma \vdash_P P$: Γ' and $\Gamma \vdash_P Q$: Γ , then $\Gamma \vdash_P P \{Q/X\}$: Γ'

In Coq 🦩 (De bruijn Indices)

- Notation where terms are invariant under α -conversion
- Use natural numbers that represent the number of binders in scope between occurence to its corresponding binding μ and Σ term

Example (In the context of Lambda Calculus)

• $\lambda x. \lambda y. x$ (K combinator) $\rightarrow \lambda (\lambda 1)$

If $\Gamma \vdash_{P} \mu \mathbf{X}.P$: T then $\Gamma \vdash_{P} P\{\mu \mathbf{X}.P/\mathbf{X}\}$: T

Lemm:

(Substitution Lemma for Process Variables): If Γ , \mathbf{X} : $\Gamma \vdash_{P} P$: Γ' and $\Gamma \vdash_{P} Q$: Γ , then $\Gamma \vdash_{P} P Q \not \subset \Gamma$.

In Coq 🦩 (De bruijn Indices)

- Notation where terms are invariant under α -conversion
- Use natural numbers that represent the number of binders in scope between occurence to its corresponding binding μ and Σ term

Example (In the context of Lambda Calculus)

- $\lambda x. \lambda y. x$ (K combinator) $\rightarrow \lambda(\lambda 1)$
- $\lambda x. \lambda y. \lambda z. x z (y z)$ (S combinator)

If $\Gamma \vdash_{P} \mu \mathbf{X}.P$: T then $\Gamma \vdash_{P} P\{\mu \mathbf{X}.P/\mathbf{X}\}$: T

Lemm:

(Substitution Lemma for Process Variables): If Γ , \mathbf{X} : $\Gamma \vdash_{P} P$: Γ' and $\Gamma \vdash_{P} Q$: Γ , then $\Gamma \vdash_{P} P Q \not \subset \Gamma$.

In Coq 🦩 (De bruijn Indices)

- Notation where terms are invariant under α -conversion
- Use natural numbers that represent the number of binders in scope between occurence to its corresponding binding μ and Σ term

Example (In the context of Lambda Calculus)

- $\lambda x. \lambda y. x$ (K combinator) $\rightarrow \lambda(\lambda 1)$
- $\lambda x.\lambda y.\lambda z.xz(yz)$ (S combinator) $\rightarrow \lambda(\lambda(\lambda 2 0 (1 0)))$

Type Checking

$$\frac{\Gamma_{p}, \Gamma_{e} \vdash_{P} \mathbf{0} \colon \text{end}}{\Gamma_{p}, \Gamma_{e} \vdash_{P} \mathbf{N} \colon (\Gamma_{p})_{N}} [\text{tvar}] \qquad \frac{(T :: \Gamma_{p}), \Gamma_{e} \vdash_{P} P : T}{\Gamma_{p}, \Gamma_{e} \vdash_{P} \mu.P : T} [\text{trec}]$$

$$\frac{\Gamma_{p}, \Gamma_{e} \vdash_{P} P : T \quad T \leqslant T'}{\Gamma_{p}, \Gamma_{e} \vdash_{P} P : T'} [\text{tsub}] \qquad \frac{\forall i \in I, \quad \Gamma_{p}, (S_{i} :: \Gamma_{e}) \vdash_{P} P_{i} : T_{i}}{\Gamma \vdash_{P} \sum_{i \in I} p?\ell_{i}.P_{i} : \underbrace{S_{i \in I}}{S_{i \in I}} p?\ell_{i}(S_{i}).T_{i}} [\text{tin}]$$

$$\frac{\Gamma_{e} \vdash_{S} e : S \quad \Gamma_{p}, \Gamma_{e} \vdash_{P} P : T}{\Gamma_{p}, \Gamma_{e} \vdash_{P} p!\ell(e).P : \bigoplus p?\ell(S).T} [\text{tout}] \qquad \frac{\Gamma_{e} \vdash_{S} e : \text{bool} \quad \Gamma_{p}, \Gamma_{e} \vdash_{P} P_{1} : T \quad \Gamma_{p}, \Gamma_{e} \vdash_{P} P_{2} : T}{\Gamma_{p}, \Gamma_{e} \vdash_{P} p!\ell(e).P : \bigoplus p?\ell(S).T} [\text{tite}]$$

Type Checking

$$\frac{\Gamma_{p}, \Gamma_{e} \vdash_{P} \mathbf{0} : \text{ end}}{\Gamma_{p}, \Gamma_{e} \vdash_{P} \mathbf{N} : (\Gamma_{p})_{\mathbf{N}}} [\text{tvar}] \qquad \frac{(T :: \Gamma_{p}), \Gamma_{e} \vdash_{P} P : T}{\Gamma_{p}, \Gamma_{e} \vdash_{P} \mu.P : T} [\text{trec}]$$

$$\frac{\Gamma_{p}, \Gamma_{e} \vdash_{P} P : T \quad T \leqslant T'}{\Gamma_{p}, \Gamma_{e} \vdash_{P} P : T'} [\text{tsub}] \qquad \frac{\forall i \in I, \quad \Gamma_{p}, (S_{i} :: \Gamma_{e}) \vdash_{P} P_{i} : T_{i}}{\Gamma \vdash_{P} \sum_{i \in I} p?\ell_{i}.P_{i} : \underbrace{S_{i \in I}}{S_{i} \vdash_{P} P!} [\text{tin}]} [\text{tin}]$$

$$\frac{\Gamma_{e} \vdash_{S} e : S \quad \Gamma_{p}, \Gamma_{e} \vdash_{P} P : T}{\Gamma_{p}, \Gamma_{e} \vdash_{P} P!} [\text{tout}] \qquad \frac{\Gamma_{e} \vdash_{S} e : \text{bool} \quad \Gamma_{p}, \Gamma_{e} \vdash_{P} P_{1} : T \quad \Gamma_{p}, \Gamma_{e} \vdash_{P} P_{2} : T}{\Gamma_{p}, \Gamma_{e} \vdash_{P} p!\ell(e).P : \bigoplus p?\ell(S).T} [\text{tite}]$$

Lemm

(Substitution Lemma for Process Variables with De Bruijn Indices): If

- $(\Gamma_{p_1} + (T :: \Gamma_{p_2})), \Gamma_e \vdash_P P : T'$
- $(\Gamma_{p_1} + \!\!\!+ \Gamma_{p_2}), \Gamma_e \vdash_P Q_{\{m,n\}} : T$

then $(\Gamma_{p_1} + \!\!\!+ \Gamma_{p_2})$, $\Gamma_e \vdash_P P\{Q/||\Gamma_{p_1}||\}_{\{m,n\}} \colon T'$

Lemm:

 \forall balanced G and ℓ , if G $\upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i, G \upharpoonright_q S_{T_{j \in J}} q? \ell'_j(S'_j).T'_j$, and $\exists k_i \in I, k_j \in J$ such that $\ell = \ell_{k_i}$ and $\ell = \ell'_{k_j}$, then $\exists \Gamma_G$ and L such that

- $G = \Gamma_G[L]$
- $p, q \notin pt(\Gamma_G)$

Moreover, There is some K such that,

- $\forall G' \in L, G' = p \rightarrow q : \{\ell''_k(S''_k).g_{G'k}\}_{k \in K} \text{ for some } \{g_{G'k}\}_{G' \in L}\}_{k \in K}$
- $\exists k \in K$ such that
 - $1 \ell = \ell''_k$
 - 2 $S_k'' = S_{k_i} = S_{k_j}'$

 \forall balanced G and ℓ , if G \ p $\xrightarrow{\ell}$ q G', G \ \ p $\bigoplus_{i \in I}$ q! ℓ_i (S_i). T_i, G \ \ q $\bigoplus_{j \in J}$ q? ℓ'_j (S'_j). T'_j, and $\exists k_i \in I$, $k_j \in J$ such that $\ell = \ell_{k_i}$ and $\ell = \ell'_{k_i}$, then

- $G' \upharpoonright_{p} T_{k_{i}}$
- $G' \upharpoonright_{\mathbf{q}} \mathsf{T}'_{k_j}$
- if $G \upharpoonright_r T$, then $G' \upharpoonright_r T$

 $\forall \ \text{balanced} \ \mathsf{G} \ \text{and} \ \ell, \text{if} \ \mathsf{G} \setminus \mathsf{p} \xrightarrow{\ell} \mathsf{q} \ \mathsf{G}', \mathsf{G} \upharpoonright_{\mathsf{p}} \bigoplus_{i \in I} \mathsf{q}! \ell_i(\mathsf{S}_i).\mathsf{T}_i, \mathsf{G} \upharpoonright_{\mathsf{q}} \underbrace{\mathsf{q}}_{j \in J} \mathsf{q}? \ell_j'(\mathsf{S}_j').\mathsf{T}_j', \text{and} \ \exists \ k_i \in I, k_j \in J \ \text{such that} \\ \ell = \ell_{k_i} \ \text{and} \ \ell = \ell_{k_i}, \text{ then}$

- G' |_p T_{ki}
- $G' \upharpoonright_{\mathbf{q}} \mathsf{T}'_{k_j}$
- if G | T, then G' | T

In Coq 🦩 (First Bullet)

```
Lemma _3_19_1_helper : ∀ p q 1 G G' LP LQ S T S' T',
wfgC G →
projectionC G p (ltt_send q LP) →
onth 1 LP = Some(S, T) →
projectionC G q (ltt_recv p LQ) →
onth 1 LQ = Some(S', T') →
gttstepC G G' p q 1 →
projectionC G' p T.

Proof.
...
Qed.
```

Idea : induction on Γ_G for a corresponding L that satisfies the previous lemma.

Idea : induction on Γ_G for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = [\,]_k$

Idea : induction on Γ_{G} for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = []_k$

•
$$\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i), g_i\}_{i \in I}$$

$$\bullet \ G'=g_\ell$$

Idea : induction on Γ_G for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = []_k$

- $\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i).g_i\}_{i \in I}$
- $\bullet \ \mathsf{G}'=\mathsf{g}_\ell$
- $G \upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i$, where $\forall i \in I, g_i \upharpoonright_p T_i$

Idea : induction on Γ_{G} for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = []_k$

- $\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i).g_i\}_{i \in I}$
- $\bullet \ \mathsf{G}'=\mathsf{g}_\ell$
- $G \upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i$, where $\forall i \in I, g_i \upharpoonright_p T_i$
- $G' \upharpoonright_{p} T_{\ell}$

Idea : induction on Γ_G for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = []_k$

•
$$\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i).g_i\}_{i \in I}$$

$$\bullet \ \mathsf{G}'=\mathsf{g}_\ell$$

•
$$G \upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i$$
, where $\forall i \in I, g_i \upharpoonright_p T_i$

•
$$G' \upharpoonright_{p} T_{\ell}$$

Idea : induction on Γ_G for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_{\rm G} = []_k$

- $\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i).g_i\}_{i \in I}$
- $\bullet \ \mathsf{G}'=\mathsf{g}_\ell$
- $G \upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i$, where $\forall i \in I, g_i \upharpoonright_p T_i$
- G' ↑ T_ℓ

Inductive case : $\Gamma_G = s \to s' : \{\ell_i(S_i).\Gamma_{G_i}\}_{i \in I}, \{s,s'\} \cap \{p,q\} = \varnothing$

• $\Gamma_G[L] = G = s \rightarrow s' : \{\ell_i(S_i).g_i\}_{i \in I}$, where $\forall i \in I, \Gamma_{G_i}[L] = g_i$

Idea : induction on Γ_{G} for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = []_k$

- $\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i).g_i\}_{i \in I}$
- $\bullet \ \mathsf{G}'=\mathsf{g}_\ell$
- $G \upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i$, where $\forall i \in I, g_i \upharpoonright_p T_i$
- G' | T_ℓ

- $\Gamma_G[L] = G = s \rightarrow s' : \{\ell_i(S_i).g_i\}_{i \in I}$, where $\forall i \in I, \Gamma_{G_i}[L] = g_i$
- $G' = s \rightarrow s' : \{\ell_i(S_i).g_i'\}_{i \in I}$, where $g_i \setminus p \xrightarrow{\ell} q g_i'$

Idea : induction on Γ_G for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = []_k$

•
$$\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i), g_i\}_{i \in I}$$

•
$$G' = g_{\ell}$$

•
$$G \upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i$$
, where $\forall i \in I, g_i \upharpoonright_p T_i$

•
$$G' \upharpoonright_p T_\ell$$

•
$$\Gamma_G[L] = G = s \rightarrow s' : \{\ell_i(S_i).g_i\}_{i \in I}$$
, where $\forall i \in I, \Gamma_{G_i}[L] = g_i$

•
$$G' = s \rightarrow s' : \{\ell_i(S_i), g'_i\}_{i \in I}$$
, where $g_i \setminus p \xrightarrow{\ell} q g'_i$

•
$$G \upharpoonright_p \bigoplus_{i \in J} q! \ell_j(S_j).T_j$$
, where $\forall i \in I$, $g_i \upharpoonright_p \bigoplus_{j \in J} q! \ell_j(S_j).T_j^i$ and $T_j \sim T_j^i$

Idea : induction on Γ_{C} for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = []_k$

•
$$\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i), g_i\}_{i \in I}$$

- \bullet $G' = g_{\ell}$
- $G \upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i$, where $\forall i \in I, g_i \upharpoonright_p T_i$
- G' ↑ T_ℓ

- $\Gamma_G[L] = G = s \rightarrow s' : \{\ell_i(S_i).g_i\}_{i \in I}$, where $\forall i \in I, \Gamma_{G_i}[L] = g_i$
- $G' = s \rightarrow s' : \{\ell_i(S_i).g'_i\}_{i \in I}$, where $g_i \setminus p \xrightarrow{\ell} q g'_i$
- $G \upharpoonright_p \bigoplus_{i \in I} q! \ell_j(S_j).T_j$, where $\forall i \in I$, $g_i \upharpoonright_p \bigoplus_{i \in I} q! \ell_j(S_j).T_j^i$ and $T_j \sim T_j^i$
- $\forall i \in I, g'_i \upharpoonright_p T^i_\ell$

Idea : induction on Γ_{C} for a corresponding L that satisfies the previous lemma.

Base case : $\Gamma_G = []_k$

- $\Gamma_G[L] = G = p \rightarrow q : \{\ell_i(S_i).g_i\}_{i \in I}$
- ullet $G'=g_\ell$
- $G \upharpoonright_p \bigoplus_{i \in I} q! \ell_i(S_i).T_i$, where $\forall i \in I, g_i \upharpoonright_p T_i$
- G' ↑ T_ℓ

- $\Gamma_G[L] = G = s \rightarrow s' : \{\ell_i(S_i).g_i\}_{i \in I}$, where $\forall i \in I, \Gamma_{G_i}[L] = g_i$
- $G' = s \rightarrow s' : \{\ell_i(S_i), g'_i\}_{i \in I}$, where $g_i \setminus p \xrightarrow{\ell} q g'_i$
- $G \upharpoonright_p \bigoplus_{i \in I} q! \ell_j(S_j).T_j$, where $\forall i \in I$, $g_i \upharpoonright_p \bigoplus_{i \in I} q! \ell_j(S_j).T_j^i$ and $T_j \sim T_j^i$
- $\forall i \in I, g'_i \upharpoonright_p T^i_\ell$
- G' ↑ T_ℓ

If $\vdash \mathcal{M} \colon \mathsf{G} \, \mathsf{and} \, \mathcal{M} \to_{\beta} \mathcal{M}'$, then

• $\exists G'$ such that $\vdash \mathcal{M}' : G'$ and $G \to G'$

If $\vdash \mathcal{M}$: G and $\mathcal{M} \rightarrow_{\beta} \mathcal{M}'$, then

• $\exists G'$ such that $\vdash \mathcal{M}' : G'$ and $G \rightarrow G'$

Session Step

$$\frac{j \in I \quad e \downarrow \nu}{\mathsf{p} \triangleleft \sum_{i \in I} \mathsf{q}? \ell_i(x_i).\mathsf{P}_i \mid \mathsf{q} \triangleleft \mathsf{p}! \ell_j(e).\mathsf{Q} \mid \prod_{i \in J} \mathsf{M}_i \rightarrow_{\beta} \mathsf{p} \triangleleft \mathsf{P}_j \{\nu/x_j\} \mid \mathsf{q} \triangleleft \mathsf{Q} \mid \prod_{i \in J} \mathsf{M}_i} \quad [\mathsf{R}\text{-}\mathsf{COMM}]$$

$$\frac{e \downarrow \mathsf{true}}{\mathsf{p} \triangleleft \mathsf{if} e \mathsf{then} \, \mathsf{P} \, \mathsf{else} \, \mathsf{Q} \mid \prod_{i \in I} \mathsf{M}_i \rightarrow_{\beta} \mathsf{p} \triangleleft \mathsf{P} \mid \prod_{i \in I} \mathsf{M}_i} \quad [\mathsf{T}\text{-}\mathsf{COND}]$$

$$\frac{e \downarrow \mathsf{false}}{\mathsf{p} \triangleleft \mathsf{if} e \mathsf{then} \, \mathsf{P} \, \mathsf{else} \, \mathsf{Q} \mid \prod_{i \in I} \mathsf{M}_i \rightarrow_{\beta} \mathsf{p} \triangleleft \mathsf{Q} \mid \prod_{i \in I} \mathsf{M}_i} \quad [\mathsf{F}\text{-}\mathsf{COND}] \quad \frac{\mathsf{M}_1' \Rightarrow \mathsf{M}_1 \quad \mathsf{M}_1 \rightarrow_{\beta} \mathsf{M}_2 \quad \mathsf{M}_2 \Rightarrow \mathsf{M}_2'}{\mathsf{M}_1' \rightarrow_{\beta} \mathsf{M}_2'} \quad [\mathsf{R}\text{-}\mathsf{STRUCT}]$$

Demo IV

Theoren

If

- $\bullet \; \vdash \mathcal{M} \colon G$
- $\mathcal{M} \to_{\beta}^{\star} \mathcal{M}'$

Then

 $\bullet \ \exists \, \mathsf{G}' \, \mathsf{such} \, \mathsf{that} \, \vdash \, \mathcal{M}' \colon \mathsf{G}' \, \mathsf{and} \, \mathsf{G} \Longrightarrow \mathsf{G}'$

Thanks! & Questions?