Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem(CVPR 2019 Oral)

Juhyeong Kim

SKKU Visual Computing Lab wngud0811@naver.com

September 22, 2020

Overview

- Introduction
- 2 ReLU networks produce piecewise affine funtion
- Why ReLU networks produce high confidence predictions far away from the training data
- 4 Adversarial Confidence Enhanced Training
- 5 Experiments

- Introduction
- 2 ReLU networks produce piecewise affine funtion
- Why ReLU networks produce high confidence predictions far away from the training data
- 4 Adversarial Confidence Enhanced Training
- 5 Experiments

Problem

- For many popular deep learning models,
- High confidence output can be made for out-of-distribution data.
- Also, often produce over-confident predictions in original tasks.

Importantce of uncertainty Quantification

 Deep learning models may fail in the case of noisy data or out-of-distribution data.

Train time

rabbit: **0.8** / wolf: 0.2

rabbit: 0.3 / wolf: **0.7**

Test time

rabbit: 0.1 / wolf: **0.9**

Useful Solutions

- Dropout as a bayesian approximation: Representing model uncertainty in deep learning.(ICML 2016)
- On calibration of modern neural networks.(ICML 2017)
- Simple and scalable predictive uncertainty estimation using deep ensembles.(NIPS 2017)
- Also, there exist classifiers which is not being confident in areas where one has never seen data.(ex. RBF networks)

- 1 Introduction
- 2 ReLU networks produce piecewise affine funtion
- Why ReLU networks produce high confidence predictions far away from the training data
- 4 Adversarial Confidence Enhanced Training
- Experiments

Affine

- **①** For a function $f: U \to V$, we call it **linear** if,
 - f(x+y) = f(x) + f(y)
 - $\alpha f(x) = f(\alpha x)$
 - For $\forall x, y \in \mathcal{U}$
- **2** For a function $f: U \to V$, we call it **affine** if,
 - ullet $\exists b \in {\mathcal V}$ such that $f = \bar f + b$ and $\bar f$ is linear function.
- Linear function

 Affine function

Polytope

• Polygon in arbitary dimensional space.

Polytope

- Let each red line in figure is equal to $\mathbf{w}_{\cdot,i}^{\mathsf{T}}x + b_i = \mathbf{0}$ at first layer.
- If the red line is separation at first layer, seperation at second layer is like orange line.
- Each ReLU activation can be considered as dividing input space into two parts.

Piecewise Affine

• A function f is called **piecewise affine** if there exists finite set of polytopes $\{Q_r\}_{r=1}^M$ such that $\bigcup_{r=1}^M Q_r = \mathbb{R}^d$ and f is affine function in each Q_r , r = 1, 2, ..., M.

- Let $W^{(l)} \in \mathbb{R}^{n_l \times n_{l-1}}$ and $b^{(l)} \in \mathbb{R}^{n_l}$ for l = 1, 2, ..., L are parameters.
- Then, ReLU Network can be expressed as:

$$f^{(k)}(x) = W^{(k)} ReLU(f^{(k-1)}) + b^{(k)}, \quad k = 1, ..., L$$

Define a function

$$\Sigma^{(l)}(x)_{ij} = \begin{cases} 1 & \text{if } i = j \text{ and } f_i^{(l)}(x) > 0, \\ 0 & \text{else.} \end{cases}$$

$$\begin{aligned} \bullet \ f^{(k)}(x) &= \mathbf{W}^{(k)} \Sigma^{(k-1)}(x) \Big(\mathbf{W}^{(k-1)} \Sigma^{(k-2)}(x) \\ & \times \Big(\dots \Big(\mathbf{W}^{(1)} x + b^{(1)} \Big) \dots \Big) + b^{(k-1)} \Big) + b^{(k)} \\ &= \mathbf{V}^{(k)} \cdot x + a^{(k)} \\ & \text{for } k = 1, \dots, \mathbf{L} \quad \text{with} \quad \mathbf{V}^{(k)} \in \mathbb{R}^{n_k \times d} \quad \text{and} \quad a^{(k)} \in \mathbb{R}^{n_k} \end{aligned}$$

$$\begin{split} \bullet \ f^{(k)}(x) &= \mathbf{W}^{(k)} \Sigma^{(k-1)}(x) \Big(\mathbf{W}^{(k-1)} \Sigma^{(k-2)}(x) \\ & \quad \times \Big(\ldots \Big(\mathbf{W}^{(1)} x + b^{(1)} \Big) \ldots \Big) + b^{(k-1)} \Big) + b^{(k)} \\ &= \mathbf{V}^{(k)} \cdot x + a^{(k)} \\ & \quad \text{for } k = 1, \ldots, \mathbf{L} \quad \text{with} \quad \mathbf{V}^{(k)} \in \mathbb{R}^{n_k \times d} \quad \text{and} \quad a^{(k)} \in \mathbb{R}^{n_k} \end{split}$$

$$V^{(k)} = W^{(k)} \left(\prod_{l=1}^{k-1} \Sigma^{(k-l)}(x) W^{(k-l)} \right)$$
$$a^{(k)} = b^{(k)} + \sum_{l=1}^{k-1} \left(\prod_{m=1}^{k-l} W^{(k+1-m)} \Sigma^{(k-m)}(x) \right) b^{(l)}$$

Conclusion

- ReLU network = piecewise affine function + softmax.
- Similary, many activation functions, including leaky ReLU can be shown to be piecewise affine.
- Fully connected, Convolution with average/max pooling, Residual layers are included.

Implications

 Entire ReLU network is just simple softmax classifier when domain is restricted to each polytope.

- 1 Introduction
- 2 ReLU networks produce piecewise affine funtion
- Why ReLU networks produce high confidence predictions far away from the training data
- 4 Adversarial Confidence Enhanced Training
- 5 Experiments

Lemma 3.1

Let ReLU-classifier divide input space to set of linear regions $\{Q_l\}_{l=1}^R$. Then, any point $x\in\mathbb{R}^d$ in input space, there exist $a\in\mathbb{R}$ with a>0, such that $\beta x\in Q_t$ for all $\beta\geq a,\ t\in\{1,...,R\}$.

Theorem 3.1

If the softmax input of ReLU network is piecewise affine function, for almost any input x and any threshold level 0 < t < 1, there exists some constant $\alpha > 0$,

$$\frac{e^{f_k(\alpha x)}}{\sum_{r=1}^{K}e^{f_r(\alpha x)}} \geq t$$

Theorem 3.1

And also,
$$\lim_{lpha o\infty}rac{e^{f_k(lpha x)}}{\sum_{r=1}^{\mathrm{K}}e^{f_r(lpha x)}}=1$$

Limitation

- ullet Author assumed \mathbb{R}^d as input space, but many applications assume $[0,1]^d$ as input space.
- In these cases, theorem does not directly applied.
- But empirically, training in bounded domain shows same problems.

- 1 Introduction
- 2 ReLU networks produce piecewise affine funtion
- Why ReLU networks produce high confidence predictions far away from the training data
- Adversarial Confidence Enhanced Training
- 5 Experiments

- Author proposed two methods:
 - Confidence Enhancing Data Augmentation(CEDA)
 - Adversarial Confidence Enhanced Training(ACET)

Confidence Enhancing Data Augmentation(CEDA)

- In image classification problem:
 - **①** Assume the type of out-of-distribution data in domain. (For example, Uniform distribution on $[0,1]^{c \times w \times h}$)
 - 2 Sample random noise from distribution.
 - Forward noise image to model and get sofmax probabilities.
 - Minimize the maximum log sofmax value.

$$\Rightarrow \mathsf{Regularizer} \quad \lambda \,\, \mathbb{E} \left[\max_{l=1,\dots,K} \log \big(\frac{e^{f_l(z)}}{\sum_{k=1}^K e^{f_l(z)}} \big) \right]$$

Adversarial Confidence Enhanced Training(ACET)

- However, CEDA may need multiple sampling and forward which will yield high comutational costs.
- Inspired by adversarial training, author proposed more easier and more scalable method.
- $\bullet \ \ \mathsf{Modified \ regularizer} \quad \lambda \ \mathbb{E}\left[\max_{\|u-z\|_p \leq \epsilon} \max_{l=1,\dots,K} \log\big(\frac{e^{f_l(z)}}{\sum_{k=1}^K e^{f_l(z)}}\big)\right]$

- Introduction
- 2 ReLU networks produce piecewise affine funtion
- Why ReLU networks produce high confidence predictions far away from the training data
- 4 Adversarial Confidence Enhanced Training
- Experiments

Trained on	Plain (TE: 0.51%)			CEDA (TE: 0.74%)			ACET (TE: 0.66%)		
MNIST	MMC	AUROC	FPR@95	MMC	AUROC	FPR@95	MMC	AUROC	FPR@95
MNIST	0.991	-	-	0.987	-	-	0.986	-	-
FMNIST	0.654	0.972	0.121	0.373	0.994	0.027	0.239	0.998	0.003
EMNIST	0.821	0.883	0.374	0.787	0.895	0.358	0.752	0.912	0.313
grayCIFAR-10	0.492	0.996	0.003	0.105	1.000	0.000	0.101	1.000	0.000
Noise	0.463	0.998	0.000	0.100	1.000	0.000	0.100	1.000	0.000
Adv. Noise	1.000	0.031	1.000	0.102	0.998	0.002	0.162	0.992	0.042
Adv. Samples	0.999	0.358	0.992	0.987	0.549	0.953	0.854	0.692	0.782
Trained on	Plain (TE: 3.53%)			CEDA (TE: 3.50%)			ACET (TE: 3.52%)		
SVHN	MMC	AUROC	FPR@95	MMC	AUROC	FPR@95	MMC	AUROC	FPR@95
SVHN	0.980	_	-	0.977	-	-	0.978	-	-
CIFAR-10	0.732	0.938	0.348	0.551	0.960	0.209	0.435	0.973	0.140
CIFAR-100	0.730	0.935	0.350	0.527	0.959	0.205	0.414	0.971	0.139
LSUN CR	0.722	0.945	0.324	0.364	0.984	0.084	0.148	0.997	0.012
Imagenet-	0.725	0.939	0.340	0.574	0.955	0.232	0.368	0.977	0.113
Noise	0.720	0.943	0.325	0.100	1.000	0.000	0.100	1.000	0.000
Adv. Noise	1.000	0.004	1.000	0.946	0.062	0.940	0.101	1.000	0.000
Adv. Samples	1.000	0.004	1.000	0.995	0.009	0.994	0.369	0.778	0.279
Trained on	Plain (TE: 8.87%)			CEDA (TE: 8.87%)			ACET (TE: 8.44%)		
CIFAR-10	MMC	AUROC	FPR@95	MMC	AUROC	FPR@95	MMC	AUROC	FPR@95
CIFAR-10	0.949	-	-	0.946	-	-	0.948	-	-
SVHN	0.800	0.850	0.783	0.327	0.978	0.146	0.263	0.981	0.118
CIFAR-100	0.764	0.856	0.715	0.761	0.850	0.720	0.764	0.852	0.711
LSUN CR	0.738	0.872	0.667	0.735	0.864	0.680	0.745	0.858	0.677
Imagenet-	0.757	0.858	0.698	0.749	0.853	0.704	0.744	0.859	0.678
Noise	0.825	0.827	0.818	0.100	1.000	0.000	0.100	1.000	0.000
Adv. Noise	1.000	0.035	1.000	0.985	0.032	0.983	0.112	0.999	0.008
Adv. Samples	1.000	0.034	1.000	1.000	0.014	1.000	0.633	0.512	0.590
Trained on	Plain (TE: 31.97%)			CEDA (TE: 32.74%)			ACET (TE: 32.24%)		
CIFAR-100	MMC	AUROC	FPR@95	MMC	AUROC	FPR@95	MMC	AUROC	FPR@95
CIFAR-100	0.751	-	-	0.734	-	-	0.728	-	_
SVHN	0.570	0.710	0.865	0.290	0.874	0.410	0.234	0.912	0.345
CIFAR-10	0.560	0.718	0.856	0.547	0.711	0.855	0.530	0.720	0.860
LSUN CR	0.592	0.690	0.887	0.581	0.678	0.887	0.554	0.698	0.881
Imagenet-	0.531	0.744	0.827	0.504	0.749	0.808	0.492	0.752	0.819
Noise	0.614	0.672	0.928	0.010	1.000	0.000	0.010	1.000	0.000
Adv. Noise	1.000	0.000	1.000	0.985	0.015	0.985	0.013	0.998	0.003
Adv. Samples	0.999	0.010	1.000	0.999	0.012	1.000	0.863	0.267	0.975

Summary

- ReLU networks always make high confidence predictions far away from training data.
- Temperature rescaling and reject option does not help.
- Using modified training similar to adversarial training, we can reduce high confidence problem at out-of-distribution data.