

NEW SPECIMEN PAPERS PUBLISHED JUNE 2015

GCSE Mathematics Specification (8300/2H)

Paper 2 Higher tier

Date Morning 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer book.

Please write clearly, in block capita	als, to allow character computer recognition.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

Answer	all	questions	in	the s	naces	provided.
/ \li 13 \li Ci	an	questions	111	uic o	paoco	pioviaca.

1 Which sequence is a geometric progression? Circle your answer.

[1 mark]

1 2 3 4

1 2 4 7

1 2 4 8

1 2 3 5

2 Which of these is **not** used to prove that triangles are congruent? Circle your answer.

[1 mark]

- SSS
- SAS
- AAA
- RHS

3 Circle the expression that is equivalent to $2a + 5a \times 4a - a$

[1 mark]

$$a + 20a^2$$

$$21a^{2}$$

$$28a^2 - a$$

$$28a^2 - a$$
 $2a + 15a^2$

4	Circle the equation of a line that is parallel to	y = 5x - 2

[1 mark]

$$y = 2x - 5$$

$$y = 5x + 2$$

$$y = 3x - 2$$

$$y = 2x - 5$$
 $y = 5x + 2$ $y = 3x - 2$ $y = -\frac{1}{5}x - 2$

In a sale, the original price of a bag was reduced by $\frac{1}{5}$ 5 The sale price of the bag is £29.40

Work out the original price.

ΓO	marks]	ı
၂၁	IIIai No	ı

Answer f		

6 $\xi = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$

S = square numbers

E = even numbers

6 (a) Complete the Venn diagram.

[3 marks]

6 (b) One of the numbers is chosen at random.

Write down $P(S \cap E)$

[1 mark]

Answer

7 A coin is rolled onto a grid of squares.

It lands randomly on the grid.

Reason

To win, the coin must land completely within one of the squares.

Meera and John each roll the coin a number of times and record their results.

	Number of wins	Number of losses	
Meera	6	44	
John	28	72	

7 (a) Work out two different estimates for the probab	ility of winning
--	------------------

[2 marks]

Answer	and	
/ \l 13 W C1	ana	

7 (b) Which of your estimates is the better estimate for the probability of winning?
Give a reason for your answer.

[1 mark]

Answer								

8 Here is the graph of 4x - 3y = 12 for values of x from 0 to 4

By drawing a second graph on the grid, work out an approximate solution to the simultaneous equations

$$4x - 3y = 12$$
 and $3x + 2y = 6$

[3 marks]

Answer

9	Written as the product of its prime factors $672 = 2^5 \times 3 \times 7$	
9 (a)	Write 252 as the product of its prime factors.	[2 marks]
	Answer	
9 (b)	Work out the value of the highest common factor of 672 and 252	[1 mark]
	Answer	
	Turn over for the next question	

40	Λ 4	_	امما	
10	ΑI	а	SCI	าดด

number of boys: number of girls = 9:7

There are 116 **more** boys than girls.

Work out the total number of students at the school.

[3 marks]

Answer ____

11 Circle the equation with roots 4 and -8

[1 mark]

$$4x(x - 8) = 0$$

$$(x-4)(x+8)=0$$

$$x^2 - 32 = 0$$

$$(x+4)(x-8)=0$$

12	R =	_x 2
12	Λ	v

$$x = 3.6 \times 10^5$$

$$y = 7.5 \times 10^4$$

Work out the value of R.

Give your answer in standard form to an appropriate degree of accuracy.

[3 marks]

Answer

Two spheres have radii in the ratio 5:3

Circle the ratio of their volumes.

[1 mark]

5:3

15:9

25 : 9

125 : 27

Turn over for the next question

14 (a) A pattern is made from two **similar** trapeziums.

Not drawn accurately

Show that the shaded area is 294 $\,\mathrm{cm}^2$

[4 marks]

14 (b) The pattern has one line of symmetry.

Not drawn accurately

Work out the size of angle x.

-				-
[3	100		r 1,	
1.7		~	ıĸ	•

Answer	degrees

15	Ann picks a 4-digit number. The first digit is not zero. The 4-digit number is a multiple of 5	
	How many different 4-digit numbers could she pick?	[3 marks]
	Answer	
16	c is a positive integer.	
	Prove that $\frac{6c^3 + 30c}{3c^2 + 15}$ is an even number.	[3 marks]

17	The distance from the Earth to the Sun is 93 million miles. Assume it takes 365 days for the Earth to travel once around the Sun the Earth travels in a circle with the Sun at the centre.	
17 (a)	Work out the average speed of the Earth in miles per hour.	[4 marks]
	Answer miles per hou	r
17 (b)	It actually takes $365\frac{1}{4}$ days for the Earth to travel once around the Sun.	
	How does this affect your answer to part (a)?	[1 mark]

18	In the formula $T = (n-6)^2 + 1$ n is a positive integer.	
18 (a)	Kim says, "The value of T is always greater than 1 because $(n-6)^2$ is always greater than 0"	
	Comment on her statement.	[1 mark]
18 (b)	What is the only value of T that is a square number?	[1 mark]
	Answer	_

19	f(x)	=3x

Circle the expression for $f^{-1}(x)$

[1 mark]

$$\frac{3}{x}$$

$$\frac{1}{3x}$$

$$\frac{x}{3}$$

20 *y* is directly proportional to \sqrt{x}

x	36	а
y	2	5

Work out the value of *a*.

[4	ma	ırks]	
----	----	-------	--

Answer

Here	are two options for a special offer.		
]
	Option A	Option B	
	20% more cereal	Usual amount of cereal	
	Price remains the same	15% off the price	
Whic	h option is the better value for the c	istomer?	
	must show your working.	astorner:	_
			[
	Answer		

The histogram shows the ages, in years, of members of a chess club.

There are 22 members with ages in the range $40 \le age \le 65$

Work out the number of members with ages in the range $25 \le age \le 40$

[4	mark	s]
----	------	----

Answer			

A bowl is a hemisphere with radius 6 cm

Water fills two-fifths of the volume of the bowl.

The water is poured into a hollow cone.

The depth of the water in the cone is 12 cm

Work out the radius of	f the surface of the water in the cor	
		[4
	Answer	Cr

A Big Wheel is modelled as a circle with centre O and radius 15 metres.

The wheel turns in an anticlockwise direction.

The lowest point on the wheel is always 2 metres above horizontal ground.

24 (a) C is a point on the wheel, h metres above horizontal ground.

Angle $COB = x^{\circ}$

Show that $h = 17 - 15 \cos x^{\circ}$

Version 1.0 8300/2H

[2 marks]

24 (b) *D* is a point on the wheel.

Angle DOB = 120°	D	
		Not drawn accurately
	15 m	
	0 120°)	
	i I I	
	l n	

В

Work out the height of *D* above horizontal ground.

[2 marks]

Answer metres

24 (c) Here is a sketch of the graph $h = 17 - 15 \cos x^{\circ}$ for one **complete** turn of the wheel. P is the highest point on the graph.

Work out the coordinates of P.

[2 marks]

Answer (

Version 1.0

8300/2H

25	$2x^2 - 6x + 5$ can be written in the form where a , b and c are positive numbers.	$a(x-b)^2+c$	
25 (a)	Work out the values of a , b and c .		[3 marks]
		a =	-
		b =	-
		c =	-

25	(b)	Using your answer to part (a), or otherwise, solve	$2x^2 - 6x + 5 = 8.5$	[3 marks]
		Answer		
		Turn over for the next quest	ion	

Two boxes are ma				
The boxes are sim				
The smaller box ha	s height 32 cm			
32 cm				
		V	/	
It takes 44% more	card to make the	larger box.		
Work out the heigh	t h of the larger h	nov		
Work out the neigh	t, n, or the larger t	JOX.		[4 ma
	Answer			cm
	Answer _			cm
	Answer _			cm
	Answer _			cm
	Answer _			cm

Copyright @ 2015 AQA and its licensors. All rights reserved.

GCSE **MATHEMATICS**

New Specimen Papers published June 2015

Paper 2 Higher - Mark Scheme

8300/2H

Version 1.0

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aga.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could

lead to a correct answer.

A Accuracy marks are awarded when following on from a correct

method. It is not necessary to always see the method. This can

be implied.

B Marks awarded independent of method.

ft Follow through marks. Marks awarded for correct working

following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common

misinterpretation which has some mathematical worth.

M depA method mark dependent on a previous method mark being

awarded.

B dep A mark that can only be awarded if a previous independent mark

has been awarded.

oe Or equivalent. Accept answers that are equivalent.

eg accept 0.5 as well as $\frac{1}{2}$

[a, b] Accept values between a and b inclusive.

3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Page 2 Version 1.0

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

6(b)

Q	Answer	Mark	Comments
1	1 2 4 8	B1	
2	AAA	B1	
3	$a + 20a^2$	B1	
4	y = 5x + 2	B1	
	$\frac{4}{5}$ or 80% seen or used	M1	oe May be implied
5	$29.4(0) \times 5 \div 4$ or $147 \div 4$ or $29.4(0) \div 4 (\times 5)$ or $7.35 (\times 5)$ or $29.4(0) \div 0.8$	M1	oe
	36.75	A1	
6(a)	3 5 7 11 S 1 4 2 6 9 8 10 12	В3	B2 Any 2 or 3 of the 4 sections correct B1 Any 1 of the 4 sections correct

Page 4 Version 1.0

oe

ft their Venn diagram

B1ft

Q	Answer	Mark	Comments
7(a)	Two of $\frac{6}{50}$ $\frac{28}{100}$ $\frac{34}{150}$	B2	oe fraction, decimal, percentage B1 One of $\frac{6}{50}$ $\frac{28}{100}$ $\frac{34}{150}$ with at most one incorrect answer
7(b)	Chooses their probability from the larger number of trials and reason given that more trials are involved	B1ft	Must have two probabilities in (a)
8	Draws $3x + 2y = 6$	B2	B1 Works out or plots at least two points satisfying $3x + 2y = 6$ eg (2, 0) and (0, 3)
	x = 2.5 and $y = -0.7$	B1ft	ft their graph $\pm \frac{1}{2}$ square
9(a)	Correct product using at least one prime factor	M1	For example 2 (×) 126 or 3 (×) 84 or 7 (×) 36 or 2 (×) 2 (×) 63 or 2 (×) 3 (×) 42 May be implied eg in a factor tree or repeated division
	$2 \times 2 \times 3 \times 3 \times 7$ or $2^2 \times 3^2 \times 7$	A1	
9(b)	84	B1	

Q	Answer	Mark	Comments	
	Alternative method 1			
	2 parts → 116	M1	oe	
	116 ÷ 2 × 16	M1	oe	
	928	A1		
10	Alternative method 2			
	Writes at least 3 ratios or numbers of boys and girls equivalent to 9:7	M1	eg 18:14 and 180:140 and 360:280	
	522 and 406	M1		
	928	A1		
11	(x-4)(x+8)=0	B1		
	$1.7 \times 10^6 \text{ or } 2 \times 10^6$		B2 $1.72(8) \times 10^6$ or 1.73×10^6 or	
12		В3	1 700 000 or 2 000 000	
			B1 1 728 000 or 1 730 000	
13	125 : 27	B1		

Page 6 Version 1.0

Q	Answer	Mark	Comments
	Alternative method 1		
	$10 \div 4 \text{ or } 2.5$ or $4 \div 10 \text{ or } 0.4$ or $\frac{1}{2} \times (18 + 10) \times 25 \text{ or } 350$	M1	oe
	18 ÷ their 2.5 or 18 × their 0.4 or 7.2 or 25 ÷ their 2.5 or 25 × their 0.4 or 10	M1dep	oe
14(a)	$\frac{1}{2} \times (18 + 10) \times 25$ or 350 and $\frac{1}{2} \times (\text{their } 7.2 + 4) \times \text{their } 10$ or 56	M1dep	Must see working
	350 – 56 = 294	A1	Do not award without working seen
	Alternative method 2		
	10 ÷ 4 or 2.5 or 4 ÷ 10 or 0.4 or $\frac{1}{2}$ × (18 + 10) × 25 or 350	M1	oe
	(Area scale factor =) $(\text{their } 2.5)^2$ or $(\text{their } 0.4)^2$	M1dep	
	their 350 ÷ (their 2.5) ² or their 350 × (their 0.4) ² or 56	M1dep	Must see working
	350 – 56 = 294	A1	Do not award without working seen
	$\frac{18-10}{2}$ or 4	B1	
14(b)	$\tan x = \frac{25}{\text{their 4}}$	M1	
	[80.9, 81]	A1	

Q	Answer	Mark	Comments		
	Alternative method 1				
	1800		B2 a \times b \times c \times d with at least 3 correct from 9, 10, 10 and 2		
			B1 $a \times b \times c \times d$ with at least 2 correct from 9, 10, 10 and 2		
		B3	or		
			identifies 9 possibilities for first digit		
15			or		
			identifies 2 possibilities for final digit		
	Alternative method 2				
	9000	M1	The number of digits between 1000 and 9999 inclusive		
	their 9000 ÷ 5	M1dep			
	1800	A1			
	$6c(c^2+5)$ or $3(c^2+5)$	M1			
16	$\frac{6c(c^2+5)}{3(c^2+5)}$	M1	This mark implies first M1		
	2c and multiple of 2 so even	A1	oe statement Must see method		

Page 8 Version 1.0

Q	Answer	Mark	Comments		
	Alternative method 1				
	$93\ 000\ 000 \times 2\pi$ or $186\ 000\ 000\pi$ or $[584\ 000\ 000\ ,\ 584\ 412\ 000]$	M1	oe Allow working in millions		
	365 × 24 or 8760	M1			
	their 186 000 000 π ÷ their 8760	M1	oe Allow working in millions Only allow if first M1 gained or if their circumference is 93 000 000 \times π		
	$[6.6 \times 10^4, 6.7 \times 10^4]$	A1	oe		
17(a)	Alternative method 2				
	$93\ 000\ 000 \times 2\pi$ or $186\ 000\ 000\pi$ or $[584\ 000\ 000,\ 584\ 412\ 000]$	M1	oe Allow working in millions		
	their 186 000 000π ÷ 365 or [1 598 904, 1 600 033]	M1	oe Allow working in millions Only allow if M1 gained or if their circumference is $93000000\times\pi$ their 365.25 can be 365.25×24 or 365.25×60		
	their $[1.6 \times 10^6, 1.602 \times 10^6] \div 24$	M1			
	$[6.6 \times 10^4, 6.7 \times 10^4]$	A1	oe		
17(b)	The average speed would be (slightly) lower	B1	oe		

225

			T
Q	Answer	Mark	Comments
18(a)	$(n-6)^2$ could be zero (so she is wrong) or The sixth term is 1	B1	oe
18(b)	1	B1	
		1	
19	$\frac{x}{3}$	B1	
		•	
	Alternative method 1		
	$2 = k\sqrt{36}$ or $\sqrt{36} = 6$	M1	
	$(k =) 2 \div \text{their 6 or } \frac{1}{3}$	M1dep	
	5 ÷ their $\frac{1}{3}$ or 15 (\sqrt{a} =)	M1	oe
	225	A1	
	Alternative method 2		
	$2k = \sqrt{36}$ or $\sqrt{36} = 6$	M1	
20	(k =) their 6 ÷ 2 or 3	M1dep	
	$5 \times \text{their 3 or } 15 \ (\sqrt{a} =)$	M1	oe
	225	A1	
	Alternative method 3	<u> </u>	
	$2k = \sqrt{36}$ or $\sqrt{36} = 6$	M1	
	5 ÷ 2 or 2.5	M1	
	their 6 \times their 2.5 or 15 (\sqrt{a} =)	M1dep	dep on M1 M1

Page 10 Version 1.0

Α1

Q	Answer	Mark	Comments		
	Alternative method 1				
	1.2 or 0.85	M1			
	1 ÷ 0.85 or 1.1(7) or 1.18	M1			
	1.1(7) or 1.18 and 1.2 and (Option) A	A1			
	Alternative method 2	1			
	1.2 or 0.85	M1			
	1 ÷ 1.2 or 0.83()	M1			
	0.83() and 0.85 and (Option) A	A1			
	Alternative method 3				
21	450×1.2 or 540 or $x \times 0.85$ or $0.85x$	M1	x is the usual cost of the box and may be a numerical value		
	$x \div \text{ their 540 or their } 0.85x \div 450$	M1dep			
	0.00185()x and 0.00188()x and (Option) A	A1	oe		
	Alternative method 4				
	450×1.2 or 540 or $x \times 0.85$ or $0.85x$	M1	x is the usual cost of the box and may be a numerical value		
	their 540 ÷ x or 450 ÷ their 0.85 x	M1dep			
	$\frac{540}{x}$ and $\frac{529.()}{x}$ and (Option) A	A1	oe		

Alternative method 5 on next page

Q	Answer	Mark	Comments
	Alternative method 5		
	$\frac{1}{6}$ (free for A)	M1	oe fraction or decimal or percentage
21	$\frac{3}{18}$ (free for A) and $\frac{3}{20}$ (free for B)	M1	oe pairs of fractions or pairs of decimal or pairs of percentages
	$\frac{3}{18}$ (free for A) and $\frac{3}{20}$ (free for B)	A1	
	and (Option) A		
	Alternative method 1		
	25 × 11 or 275	M1	
	their 275 ÷ 22 or 12.5	M1dep	
	15 × 30 ÷ their 12.5	M1	
	36	A1	
	Alternative method 2		
	25 × 11 or 275	M1	
	15 × 30 ÷ their 275 or [1.6, 1.64]	M1dep	

22

their [1.6, 1.64] × 22	M1	
36	A1	
Alternative method 3	l	
11 squares		
or	M1	
275 squares		
22 ÷ 11 or 2		
or	M1dep	
22 ÷ 275 or 0.08		
their 2 × 18		
or	M1	
their 0.08 × 450		
36	A1	

Page 12 Version 1.0

Q	Answer	Mark	Comments		
	Alternative method 4				
	$\frac{15}{25}$ or $\frac{30}{11}$	M1			
	$\frac{15}{25} \times \frac{30}{11}$ or $\frac{18}{11}$	M1dep	oe fraction		
	their $\frac{18}{11} \times 22$	M1			
22	36	A1			
	Alternative method 5				
	$25 \times h = 22$ or $\frac{22}{25}$ or 0.88	M1	oe		
	0.88 ÷ 11 or 0.08	M1dep	oe eg frequency density axis labelled with correct scale		
	their $0.08 \times 30 \times 15$	M1			
	36	A1			
	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 6^3$ or 144π	M1	oe eg [452, 452.45]		
	$\frac{2}{5}$ × their $144\pi = \frac{1}{3} \times \pi \times x^2 \times 12$		oe eg [180.8, 181] = [12.5, 12.6] x^2		
	or 3	M1	Must equate two volumes in terms of π		
23	$57.6\pi = 4\pi x^2$				
	$3 \times \frac{2}{5} \times \text{their } 144\pi \div 12\pi \text{ or }$	M1dep	oe eg their [180.8, 181] ÷ their [12.5, 12.6] dep on 2nd M1		
	14.4		Correct working to isolate x^2		
	[3.79, 3.8]	A1			

Q	Answer	Mark	Comments
	$\cos x = \frac{OA}{15}$ or $OA = 15 \cos x$	M1	
	$OA = 15 \cos x$		
24(a)	and		
	OB = 15 + 2	A1	
	and		
	$h = OB - OA = 17 - 15 \cos x$		
	17 – 15 cos 120		
	or	M1	
24(b)	15 sin 30 or 7.5		
	24.5	A1	oe
24(-)	(180, 32)	DO	B1 one correct coordinate
24(c)		B2	SC1 (32, 180)

	Alternative method 1			
	$a = 2$ or $2(x^2 - 3x + 2.5)$ or $2(x^2 - 3x) + 5$	M1		
	$x^2 - 3x = (x - 1.5)^2 - 1.5^2$	M1dep	oe ft their $x^2 - 3x$	
	a = 2 and $b = 1.5$ and $c = 0.5$	A1	oe eg $2(x-1.5)^2+0.5$	
25(a)	Alternative method 2			
	a = 2	B1		
	$x^2 - bx - bx + b^2 \qquad \text{or}$		oe	
	$x^2 - 2bx + b^2 \qquad \text{or} \qquad$			
	-2ab = -6 or	M1		
	-ab = -3 or			
	b = 1.5			
	a = 2 and $b = 1.5$ and $c = 0.5$	A1	oe eg $2(x-1.5)^2+0.5$	

Page 14 Version 1.0

Q	Answer	Mark	Comments		
	Alternative method 1				
	their $2(x-1.5)^2 = 8.5$ – their 0.5	M1			
	their $(x - 1.5) = \pm \sqrt{\frac{8.5 - \text{their } 0.5}{2}}$	M1dep	oe		
	3.5 and -0.5	A1	oe		
	Alternative method 2				
25(b)	$2x^{2} - 6x - 3.5 (= 0)$ or $4x^{2} - 12x - 7 (= 0)$	M1	oe 3-term quadratic equation or expression		
	Correct use of quadratic formula $eg \frac{12 \pm \sqrt{(-12)^2 - 4 \times 4 \times -7}}{2 \times 4}$ or correct factorisation $eg (2x - 7)(2x + 1) = 0$	M1dep	oe		
	3.5 and -0.5	A1	oe		
		<u> </u>			
	144% or 1.44 seen	B1			
26	$\sqrt{1.44}$ or 1.2	M1	oe		
26	their 1.2 × 32	M1dep			
	38.4	A1			

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.