Subdivision Surfaces

Reading

• Stollnitz, DeRose, and Salesin. *Wavelets for Computer Graphics: Theory and Applications*, 1996, section 10.2 (available in library).

Subdivision curves

Idea:

repeatedly refine the control polygon

$$P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow \cdots$$

$$C = \lim_{i \to \infty} P_i$$

• curve is the limit of an infinite process:

Subdivision curves

Chaikin's algorithm

- Chaikin introduced the following "corner-cutting" scheme in 1974:
 - Start with a piecewise linear curve
 - Insert new vertices at the midpoints (the splitting step)
 - Average each vertex with the "next" neighbor (the average step)
 - Go to the splitting step

Averaging masks

- The limit curve is a quadratic B-spline!
- Instead of averaging with the nearest neighbor, we can generalize by applying an averaging mask during the averaging step:

$$r = (..., r_{-1}, r_0, r_1, ...)$$

In case of Chaikin's algorithm:

$$r = (0.5, 0.5)$$

DLG interpolating scheme (1987)

- Slight modification to algorithm:
 - splitting step introduces midpoints
 - averaging step only changes midpoints
- For DLG (Dyn-Levin-Gregory) use:

$$r = \frac{1}{16}(-2,6,10,6,-2)$$

 Since we are only changing the midpoints, the points are the averaging step do not move.

Building Complex Models

This simple idea can be extended to build subdivision surfaces.

Subdivision surfaces

- Chaikin's use of subdivision for curves inspired similar techniques for subdivision.
- Iteratively refine a **control polyhedron** (or **control mesh**) to produce the limit surface

using splitting and averaging $\sigma = \lim_{j \to \infty} M^j$

Vertex schemes

• A vertex surrounded by n faces is split into *n* subvertices, one for each face:

Doo-Sabin subdivision:

Face schemes

• Each quadrilateral face is split into four subfaces:

Catmull-Clark subdivision:

Face scheme, cont.

Each triangular face is split into four subfaces:

• Loop subdivision:

Averaging step

Once again we can use averaging masks for the averaging step:

Vertex labeling

Averaging mask

$$Q \leftarrow \frac{\alpha(n) + Q_1 + \dots + Q_n}{\alpha(n) + n}$$

where

$$\alpha(n) = \frac{n(1 - \beta(n))}{\beta(n)} \quad \beta(n) = \frac{5}{4} - \frac{(3 + 2\cos(2\pi/n))^2}{32}$$

(carefully chosen to ensure smoothness.)

Adding creases without trim curves

- Sometimes, particular feature such as a crease should be preserved. With B-spline surfaces, this required the use of trim curves.
- For subdivision surfaces, we just modify the subdivision mask:

This gives rise to G0 continuous surfaces.

Creases without trim curves

• Here's an example using Catmull-Clark surfaces:

