PSTAT 126

Regression Analysis

Laura Baracaldo & Rodrigo Targino

Lecture 8 & 9 Confidence intervals and Diagnostics

We consider the MLR model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$

Confidence intervals (CIs) provide an alternative way of expressing the uncertainty in the estimates of β . We construct confidence intervals based on a confidence level $(1-\alpha)*100\%$, which represents the proportion of intervals among all possible intervals that contain the true value of the unknown parameter.

We consider the MLR model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$

Confidence intervals (CIs) provide an alternative way of expressing the uncertainty in the estimates of β . We construct confidence intervals based on a confidence level $(1-\alpha)*100\%$, which represents the proportion of intervals among all possible intervals that contain the true value of the unknown parameter.

3/38

We consider the MLR model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$

Confidence intervals (CIs) provide an alternative way of expressing the uncertainty in the estimates of β . We construct confidence intervals based on a confidence level $(1-\alpha)*100\%$, which represents the proportion of intervals among all possible intervals that contain the true value of the unknown parameter.

4/38

We consider the MLR model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$

Confidence intervals (CIs) provide an alternative way of expressing the uncertainty in the estimates of β . We construct confidence intervals based on a confidence level $(1-\alpha)*100\%$, which represents the proportion of intervals among all possible intervals that contain the true value of the unknown parameter.

We consider the MLR model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$

Confidence intervals (CIs) provide an alternative way of expressing the uncertainty in the estimates of β . We construct confidence intervals based on a confidence level $(1-\alpha)*100\%$, which represents the proportion of intervals among all possible intervals that contain the true value of the unknown parameter.

We consider the MLR model: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$

Confidence intervals (CIs) provide an alternative way of expressing the uncertainty in the estimates of β . We construct confidence intervals based on a confidence level $(1-\alpha)*100\%$, which represents the proportion of intervals among all possible intervals that contain the true value of the unknown parameter.

Each data set will produce a different confidence interval. If we construct an infinite number of intervals based on an infinite number of data sets, approximately 95% of them will contain the true value of β_i .

CIs for individual parameters

For individual parameter β_i , the CI takes the form:

$$\hat{\beta}_j \pm t_{(1-\alpha/2;n-p^*)} SE(\hat{\beta}_j)$$

Where $SE = \hat{\sigma} \sqrt{(\boldsymbol{X}^T \boldsymbol{X})_{jj}^{-1}}$, is the standard error of $\hat{\beta}_j$.

Duality between CIs and hypothesis tests: For a significance level α , we can test the hypothesis: $H_0: \beta_j = 0 \quad vs \quad H_1: \beta_j \neq 0$, by using the CI with confidence level $(1-\alpha)$:

If the CI contains zero, we fail to reject $oldsymbol{H}_0$

8/38

CIs for Predictions

There are two kind of predictions made from regression models:

- Prediction of response mean: We want to predict $\mu_0 = E(y_0|x_0) = x_0^T \beta$, which represents the "average" response for a subject with characteristics x_0 .
- 2 Prediction of a future observation: We seek to predict $y_0 = \mu_0 + \epsilon_0 = x_0^T \beta + \epsilon_0$, which represents the response of a new observation with characteristics x_0 .

Point-wise Prediction: For a new set of predictors x_0 , the predicted response is $\hat{y}_0 = x_0^T \hat{\beta}$ for both cases 1 and 2.

PSTAT 126

CIs for Predictions

Interval Prediction: We need to assess the uncertainty of this prediction as decision makers need more than just a point estimate to make rational choices.

• $100*(1-\alpha)\%$ CI for the response mean:

$$\hat{y}_0 \pm t_{(1-\alpha/2;n-p^*)} \hat{\sigma} \sqrt{x_0^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} x_0}$$

② $100*(1-\alpha)\%$ CI for a single future observation:

$$\hat{y}_0 \pm t_{(1-\alpha/2;n-p^*)} \hat{\sigma} \sqrt{1 + x_0^T (\boldsymbol{X}^T \boldsymbol{X})^{-1} x_0}$$

Regression Diagnostics

Consider the MLR model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$$

Inference from this model depends on several assumptions, that should be checked by using *regression diagnostics* before using the model. Potential problems can be divided into three categories:

- Error: We have assumed $\epsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, which involves three assumptions on the errors: 1) Independence, 2) Constant variance and 3) Normality.
- Unusual observations There might be a few observations that do not fit the model.
- **Model structure**: We have assumed linearity of the response: $E(y) = X\beta$.

Note that errors ϵ are not observable, however we can examine the residuals $\hat{\epsilon}$ as proxies. Recall that:

$$\hat{\epsilon} = y - \hat{y} = (I - H)y$$

with $\boldsymbol{H}=\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T$. Although the errors and the residuals are not interchangeable in general (residuals have no constant variance, neither are they independent, since $Var(\hat{\boldsymbol{\epsilon}})=\sigma^2(\boldsymbol{I}-\boldsymbol{H})$), diagnostics can reasonably be applied to the residuals in order to check assumptions on the error.

12 / 38

Onstant Variance: The most useful diagnostic is the plot of the residuals $\hat{\epsilon}$ (vertical axis) against the fitted values \hat{y} (horizontal axis).

If $Var(\epsilon)=\sigma^2, \quad i=1,\ldots,n$, we should observe constant symetrical variation (Homoscedasticity) in the vertical direction.

- We mentioned that even when $Var(\epsilon) = \sigma^2 I$, the residuals do not have constant variance: $Var(\hat{\epsilon}) = \sigma^2 (I H)$.
- But it is easy to fix it! Just divide each $\hat{\epsilon}_i$ by its variance (using an estimator for σ^2):

$$r_i = \frac{\hat{\epsilon}_i}{\sqrt{\hat{\sigma}(1 - h_i i)}},$$

where $h_i i$ is the element in the *i*-th row, *i*-th column of \boldsymbol{H} .

- These are called the standardized residuals or "internally studentized residuals"
- See the function rstudent in R.
- Faraway's opinion: Some authors recommend using [internally] studentized rather than raw residuals in all diagnostic plots. However, in many cases, the [internally] studentized residuals are not effectively very different from the raw residuals. Only when there is unusually large leverage will the differences be noticeable.

- Normality: Recall all inference (hypotheses tests/Cls) is based on the assumption of normal errors.
 - The most commonly used diagnostic is the **Q-Q plot** , which compares the residuals to ideal normal distributions based on the quantiles. We plot the sorted residuals against $\phi^{-1}\left(\frac{i}{n+1}\right), \quad i=1,\dots,n.$
- A more formal way to test normality is by using the **Shapiro-Wilk** test, whose null hypothesis is H_0 : Residuals are normal.

- **1 Uncorrelated errors**: Difficult to check since there are too many possible patterns of correlation that may occur. Examples of correlated data: Temporal & Spatial: Variations are explained by structural dependencies in time and space.
 - In temporal data it would be useful to plot time against residuals. If the errors were uncorrelated, we would expect a random scatter of points above and bellow $\hat{\epsilon} = 0$.
 - Alternative plot: Plot successive pair of residuals $(\hat{\epsilon}_i, \hat{\epsilon}_{i+1})$. Any trend will mean correlation.
 - Durbin-Watson Test: The null hypothesis: H_0 : Uncorrelated errors. This test uses the statistic:

$$DW = \frac{\sum_{i=2}^{n} (\hat{\epsilon}_i - \hat{\epsilon}_{i-1})^2}{\sum_{i=1}^{n} \hat{\epsilon}_i^2}$$

Laura Baracaldo & Rodrigo Targino

16 / 38

Species Example: 95% Confidence Intervals

summary(fit1)\$coefficients Estimate Std. Error t value ## Pr(>|t|) ## (Intercept) 7.068220709 19.15419782 0.369016796 7.153508e-01 ## Area -0.023938338 0.02242235 -1.067610554 2.963180e-01 ## Elevation 0.319464761 0.05366280 5.953187968 3.823409e-06 ## Nearest 0.009143961 1.05413595 0.008674366 9.931506e-01 ## Scruz ## Adjacent -0.074804832 0.01770019 -4.226216850 2.970655e-04 CIs <- cbind(summary(fit1)\$coefficients[, 1]-gt(0.975, fit1\$df.residual)*summary(fit1)\$coefficients[, 2], summary(fit1)\$coefficients[, 1]+qt(0.975,fit1\$df.residual)*summary(fit1)\$coefficients[, 2]) CIs ## Using Formula Γ.17 Γ.21 ## (Intercept) -32.4641006 46.60054205 -0.0702158 0.02233912 ## Area ## Elevation 0.2087102 0.43021935 ## Nearest -2.1664857 2.18477363 -0.6850926 0.20404416 ## Scruz ## Adjacent -0.1113362 -0.03827344 confint(fit1) #Using Built in Function

Species Example: Prediction Interval

```
x0<- data.frame(Area=20.6, Elevation= 46, Nearest=1.9, Scruz=8.0, Adjacent=0.78)
pred.y0<-t(x0.vector)%*%fit1$coefficients; pred.y0
          Γ.17
## [1.] 19.3053
se2.betas<- t(x0.vector)%*%(solve(t(X)%*%X))%*%x0.vector
sigma <- sigma (fit1)
predmean.CI<- c(pred.y0 - sigma*qt(0.975,fit1$df.residual)*sqrt(se2.betas),
           pred.y0 + sigma* qt(0.975,fit1$df.residual)*sqrt(se2.betas)); predmean.CI #Using Formula
## [1] -16.42255 55.03315
predict(fit1, newdata = x0, interval = "confidence") #Using Built-in function
         fit
                  lwr
                            upr
## 1 19 3053 -16 42255 55 03315
pred.CI <- c(pred.y0 - sigma*qt(0.975,fit1$df.residual)*sqrt(1+se2.betas),
           pred.v0 + sigma* gt(0.975,fit1$df,residual)*sgrt(1+se2,betas)); pred.CI #Using Formula
## [1] -111.5146 150.1252
predict(fit1, newdata = x0, interval = "prediction") #Using Built-in function
         fit
## 1 19 3053 -111 5146 150 1252
```

18 / 38

Species Example: Checking Homoscedasticity

Species Example: Checking Normality

Species Example: Checking Normality

```
shapiro.test(residuals(fit1))

##

## Shapiro-Wilk normality test
```

data: residuals(fit1)

##

- ## W = 0.91351, p-value = 0.01826
 - H_0 : population is normally distributed.
 - ullet p value less than chosen $lpha\Rightarrow$ reject H_0 (data is not Gaussian)
 - If the sample size is sufficiently large this test may detect even trivial departures from the null hypothesis

Species Example: Checking Correlation

```
par(mar = c(5, 5, 1, 2))
plot(1:length(gala$Species), residuals(fit1), col="darkgreen", pch=18)
abline(h=0.,col="red")
title("Residuals vs Time order", cex.main=0.5)
```


Species Example: Checking Correlation

```
dwtest( Species ~ Area+Elevation+Nearest+ Scruz+ Adjacent, data=gala)
##
## Durbin-Watson test
##
## data: Species ~ Area + Elevation + Nearest + Scruz + Adjacent
## DW = 2.4759, p-value = 0.9017
## alternative hypothesis: true autocorrelation is greater than 0
```

• Null hypothesis: H_0 : Uncorrelated errors

PSTAT 126

Finding Unusual Observations

Consider the MLR model:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \qquad \boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \boldsymbol{I}_n)$$

Which fits observations $(y_1, X_1), (y_2, X_2), \dots, (y_n, X_n)$. However there may be three kind of observations that don't "agree" with this model.

- **High Leverage Points:** Data points that are extreme in the predictor space. (Extreme values X_i).
- **Outliers:** Extreme observations in the response given the predictors. (Unusual values y_i given X_i).
- Influential Observations: Data points that change the fit of the model substantially.

Leverage

Recall the hat matrix: $\boldsymbol{H} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T$. The *leverage score* for the i^{th} independent observation \boldsymbol{X}_i are given by the diagonal elements of \boldsymbol{H} : $h_i = [\boldsymbol{H}]_{ii}$.

Interpretation: The leverage score can be seen as the "weighted" distance between X_i and the average point of the X_i 's. It can also be interpreted as the degree by which y_i influences \hat{y}_i .

Properties:

- $0 \le h_{ii} \le 1 \forall i = 1, \dots, n.$
- $\sum_{i=1}^{n} h_{ii} = p^* = p+1$

Reminder: The trace of a square matrix is the sum of its diagonal elements

Leverage properties:

1 Proof: We use that the hat matrix is symmetric and idempotent:

$$\boldsymbol{H}^{2} = \boldsymbol{H} \Rightarrow [\boldsymbol{H}]_{ii}^{2} = [\boldsymbol{H}]_{ii}$$

$$\Rightarrow h_{ii} = h_{ii}^{2} + \sum_{j \neq i} h_{ij} h_{ji} = h_{ii}^{2} + \sum_{j \neq i} h_{ij}^{2} \ge 0$$

$$\sum_{j \neq i} h_{ij}^{2} \ge 0 \Rightarrow h_{ii} \ge h_{ii}^{2} \Rightarrow h_{ii} \le 1$$

$$\Rightarrow 0 \le h_{ii} \le 1$$

2 Proof: We use $Tr(\mathbf{A}^T\mathbf{B}) = Tr(\mathbf{A}\mathbf{B}^T)$

$$\sum_{i=1}^{n} h_{ii} = Tr(\boldsymbol{H}) = Tr(\boldsymbol{X}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T})$$
$$= Tr(\boldsymbol{X}^{T}\boldsymbol{X}(\boldsymbol{X}^{T}\boldsymbol{X})^{-1}) = Tr(\boldsymbol{I}_{p^{*}}) = p^{*} = p + 1$$

Effect on Residual Variance

Recall that $\hat{\epsilon} = (I - H)y \Rightarrow Var(\hat{\epsilon}) = \sigma^2(I - H)$. This implies:

$$Var(\hat{\epsilon}_i) = \sigma^2(1 - h_i)$$

This means that large leverage score h_i will make $Var(\hat{\epsilon}_i) = Var(y_i - \hat{y}_i)$ small, so that the regression line will be attracted toward y_i .

Extreme $oldsymbol{X}_i$'s \Rightarrow Large values of $h_i \Rightarrow$ Large influence of \hat{y}_i on y_i

Since $\sum_{i=1}^n h_{ii} = p^* \Rightarrow \bar{h} = \frac{p^*}{n}$. We should look at observations that greatly exceed \bar{h} . The Rule of thumb: We consider large leverage score $h^* > 2\bar{h}$.

High Leverage points - Savings data

Savings data: - sr: savings rate - pop15: % population under age 15 pop75: % population under age 75 - dpi: per-capita disposable income ddpi: percent growth rate of dpi library(faraway);data(savings) ## Warning: package 'faraway' was built under R version 4.1.3 lmod<- lm(sr ~ pop15 + pop75+ dpi+ ddpi, savings)</pre> X<- model.matrix(lmod) hatv <- diag(X%*%(solve(t(X)%*%X))%*%t(X)) #Using formula hatv2<- hatvalues(lmod) #Using built in formula all.equal(hatv, hatv2) ## [1] TRUE sum(hatv2) # sum h i = p+1## [1] 5

High Leverage points - Savings data

Outliers

We define the **outliers** as points that does not fit the model well, data point for which $y_i - \hat{y}_i$ is large. Outliers may be the result of wrong measurements, or true unusual observations. How do we identify outliers?

- Residuals vs fitted values plots
- We consider the **Standardized residuals**: $r_i = \frac{y_i \hat{y}_i}{\hat{\sigma}\sqrt{1-h_i}}$. We use the rule of thumb: Outliers $|r_i| \geq 3$

Outliers - Savings data

31 / 38

Influential Observations

An **influential point** is one whose removal from the data set would case a significant change in the model. It may or may not be an outlier and may or may not be a high leverage point. (They tend to have at least one of these two properties)

Cook's Distance

We use Cook Statistics for influence diagnostics, which is defined as:

$$D_i = \frac{(\hat{y} - \hat{y}_{(i)})^T (\hat{y} - \hat{y}_{(i)})}{p^* \hat{\sigma}^2} = \frac{1}{p^*} r_i^2 \frac{h_i}{1 - h_i}$$

Where $\hat{y}_{(i)}$ indicates the fit without case i, r_i is the standardized residual, h_i is the leverage score. The rule of thumb: $D_i > 4/n$

Influential Observations - Savings data

Unusual Observations in a single plot

What to do with Unusual Observations?

What should we do once we find such observations?

- Check if there is data-entry error
- Exclude the points
- Try re-including them later if the model is changed

Checking Model Structure

Diagnostics can be used to detect deviations to the linearity assumption $E(y) = X\beta$. **Residuals** can show any sign of systematic structure that deviates from the linear assumption.

- Residuals against fitted values
- Residuals against predictors

Model Structure - Savings data

```
par(mar = c(3, 2, 1.5, 0.5))
plot(lmod, cex.main=1, cex.lab=0.5, cex.axis=0.5, pch=20)
```

Residuals vs Fitted

