

Experiencia de laboratorio

LEY DE OHM

OBJETIVOS

- Mediante la ley de Ohm, estudiar la relación entre tensión y corriente en dos tipos de resistencias
- Contrastar el comportamiento de las representaciones gráficas que se obtienen
- Estudiar la relación entre la resistencia del filamento y la potencia disipada

Ley de Ohm

Material: Resistencias, lámpara incandescente, voltímetro, amperímetro, fuente de alimentación y cables.

1

Filamento de un bombilla

Tabla de medidas y cálculo de la resistencia y de la potencia con sus errores

$$R = \frac{V}{I}$$
 $P = IV$

$$R = R(I, V) \to \Delta R = \left| \frac{\partial R}{\partial I} \right| \Delta I + \left| \frac{\partial R}{\partial V} \right| \Delta V$$
$$\Delta R = \frac{V}{I^2} \Delta I + \frac{1}{I} \Delta V$$

$$P = P(I, V) \to \Delta P = \left| \frac{\partial P}{\partial I} \right| \Delta I + \left| \frac{\partial P}{\partial V} \right| \Delta V$$
$$\Delta P = V \Delta I + I \Delta V$$

$V\pm\Delta V$ (V)	I ±Δ I (A)	$R \pm \Delta R(\Omega)$	P±Δ P(W)

Ley de Ohm

Representaciones gráficas

Representar y comentar las gráficas teniendo en cuenta la ley de Ohm

Resistencia Óhmica

Tabla de medidas y cálculo de la resistencia y de la potencia con sus errores

$$R = \frac{V}{I}$$
 $P = IV$

$$R = R(I, V) \to \Delta R = \left| \frac{\partial R}{\partial I} \right| \Delta I + \left| \frac{\partial R}{\partial V} \right| \Delta V$$
$$\Delta R = \frac{V}{I^2} \Delta I + \frac{1}{I} \Delta V$$

$$P = P(I, V) \to \Delta P = \left| \frac{\partial P}{\partial I} \right| \Delta I + \left| \frac{\partial P}{\partial V} \right| \Delta V$$
$$\Delta P = V \Delta I + I \Delta V$$

V±ΔV (V)	I ±Δ I (A)	$R\pm\Delta R(\Omega)$	P ±Δ P(W)

Ley de Ohm

Representaciones gráficas

Representar y comentar las gráficas teniendo en cuenta la ley de Ohm

Obtener el valor de R mediante una **regresión** lineal

