Grupos e Corpos

Prof. Lucas Calixto

Aula 12 - Teoria de Galois

Extensões normais

Uma extensão $\mathbb{F} \subset \mathbb{E}$ é chamada de extensão normal se todo $f(x) \in \mathbb{F}[x]$ irredutível que tem pelo menos uma raiz em E tem todas as raízes em \mathbb{E} , ou seja, f(x) se decompõe como produto de fatores lineares em $\mathbb{E}[x]$

Teorema: Seja $\mathbb{F} \subset \mathbb{E}$. As seguintes afirmações são equivalentes:

- lacktriangle $\Bbb E$ é extensão finita, separável e normal de $\Bbb F$
- ${\color{red} 2} \ {\mathbb E}$ é o corpo de decomposição de um poli separável em ${\mathbb F}[x]$
- \bullet $\mathbb{F} = \mathbb{E}_G$ para algum subgrupo finito $G \leq \operatorname{Aut}(\mathbb{E})$

Prova: (1) \Rightarrow (2): Sabemos que $\mathbb{E} = \mathbb{F}(\alpha)$ para algum $\alpha \in \mathbb{E}$ (existência de elemento primitivo)

 $\mathbb{F}\subset\mathbb{E}$ separável $\Rightarrow m_{\alpha}(x)\in\mathbb{F}[x]$ é separável

 $\mathbb{F}\subset\mathbb{E}$ normal $\Rightarrow\mathbb{E}$ é corpo de decomposição de $m_{\alpha}(x)$

(2) \Rightarrow (3): Segue da aula passada que nesse caso $\mathbb{F}=\mathbb{E}_{G(\mathbb{E}/\mathbb{F})}$ (Teorema 23.17)

(3) \Rightarrow (1): Da aula passada, temos $[\mathbb{E}:\mathbb{F}] \leq |G| < \infty \Rightarrow \mathbb{F} \subset \mathbb{E}$ é extensão finita

Seja $f(x) \in \mathbb{F}[x]$ irredutível (monico) que tem uma raiz $\alpha \in \mathbb{E} \Rightarrow f(x) = m_{\alpha}(x)$

 $\Rightarrow \{\sigma(\alpha) \mid \sigma \in G\} = \{\alpha_1, \dots, \alpha_n\} \text{ também são raízes (todas distintas, pois } G \text{ \'e grupo) de } f(x). \text{ Seja } g(x) = (x - \alpha_1) \cdots (x - \alpha_n)$

Para todo $\sigma \in G$, temos $g^{\sigma}(x) = (x - \sigma(\alpha_1)) \cdots (x - \sigma(\alpha_n)) = g(x) \Rightarrow G$ fixa os coeficientes de $g(x) \Rightarrow g(x) \in \mathbb{F}[x]$ e $g(\alpha) = 0 \Rightarrow f(x) \mid g(x)$

 $\Rightarrow g(x)=f(x),$ já que $\operatorname{gr}(g(x))\leq \operatorname{gr}(f(x))$ e ambos não monicos. Assim, todas as raízes de f(x) vivem em $\mathbb{E}\Rightarrow \mathbb{F}\subset \mathbb{E}$ é normal

O fato de $[\mathbb{E}:\mathbb{F}]<\infty$ junto com a conta acima mostra que $\mathbb{F}\subset\mathbb{E}$ é separável (o poli $m_{\beta}(x)\in\mathbb{F}[x]$ será separável para todo $\beta\in\mathbb{E}$)

Corolário: Se $\mathbb{F} \subset \mathbb{E}$ é tal que $\mathbb{F} = \mathbb{E}_G$ para algum $G \leq \operatorname{Aut}(\mathbb{E})$, então $G = G(\mathbb{E}/\mathbb{F})$.

Prova: $\mathbb{F} = \mathbb{E}_G \Rightarrow G \leq G(\mathbb{E}/\mathbb{F})$ e $[\mathbb{E} : \mathbb{F}] = |G(\mathbb{E}/\mathbb{F})|$ pelo item (2) do teorema anterior e aula passada

Logo,
$$[\mathbb{E} : \mathbb{F}] \le |G| \le |G(\mathbb{E}/\mathbb{F})| = [\mathbb{E} : \mathbb{F}] \Rightarrow G = G(\mathbb{E}/\mathbb{F})$$

Uma extensão que satisfaz uma (e portanto todas) das condições do teorema é chamada uma extensão de Galois

Se $\mathbb{F} \subset \mathbb{E}$ é Galois e $\mathbb{F} \subset \mathbb{K} \subset \mathbb{E}$, então $\mathbb{K} \subset \mathbb{E}$ é Galois (pelo item 2)

Exemplo: Considere $\mathbb{Q}\subset\mathbb{Q}(\sqrt{3},\sqrt{5})$ como na aula passada. Temos a seguinte correspondência

subcorpos de $\mathbb{Q}(\sqrt{3}, \sqrt{5}) \leftrightarrow \text{subgrupos de } G(\mathbb{Q}(\sqrt{3}, \sqrt{5})/\mathbb{Q})$

Teorema fundamental da teoria de Galois (TFTG)

Teorema (TFTG): Seja \mathbb{F} um corpo finito ou de característica zero. Se $\mathbb{F} \subset \mathbb{E}$ é extensão de Galois, então as seguintes afirmações são verdadeiras:

Existe bijeção

$$\{ \mathbb{K} \mid \mathbb{F} \subset \mathbb{K} \subset \mathbb{E} \} \leftrightarrow \{ G \leq G(\mathbb{E}/\mathbb{F}) \}$$

$$\mathbb{K} \mapsto G(\mathbb{E}/\mathbb{K})$$

$$[\mathbb{E} : \mathbb{K}] = |G(\mathbb{E}/\mathbb{K})|$$
 e $[\mathbb{K} : \mathbb{F}] = [G(\mathbb{E}/\mathbb{F}) : G(\mathbb{E}/\mathbb{K})]$

8

$$\mathbb{F} \subset \mathbb{K} \subset \mathbb{L} \subset \mathbb{E} \Leftrightarrow \{\mathrm{id}\} = G(\mathbb{E}/\mathbb{E}) \subset G(\mathbb{E}/\mathbb{L}) \subset G(\mathbb{E}/\mathbb{K}) \subset G(\mathbb{E}/\mathbb{K}) \subset G(\mathbb{E}/\mathbb{F})$$

 $\ \, \bullet \, \, \mathbb{K}$ (subcorpo de $\mathbb{E})$ é extensão de Galois de \mathbb{F} se e só se $G(\mathbb{E}/\mathbb{K}) \lhd G(\mathbb{E}/\mathbb{F}).$ Nesse caso, temos

$$G(\mathbb{K}/\mathbb{F}) \cong G(\mathbb{E}/\mathbb{F})/G(\mathbb{E}/\mathbb{K})$$

Prova: (1): Suponha $H = G(\mathbb{E}/\mathbb{K}) = G(\mathbb{E}/\mathbb{L}) \le G = G(\mathbb{E}/\mathbb{F})$. Então, por ambos serem extenão de Galois, temos $\mathbb{K} = \mathbb{E}_H = \mathbb{L} \Rightarrow$ injetividade

Seja $G \leq G(\mathbb{E}/\mathbb{F})$ e considere $\mathbb{K} = \mathbb{E}_G \Rightarrow \mathbb{K} \subset \mathbb{E}$ é Galois (pelo item 3 do teorema anterior) e obviamente $\mathbb{F} \subset \mathbb{K}$

(2): Suponha $\mathbb{F} \subset \mathbb{K} \subset \mathbb{E}$

$$\mathbb{K} \subset \mathbb{E} \text{ Galois} \Rightarrow [\mathbb{E} : \mathbb{K}] = |G(\mathbb{E}/\mathbb{K})|. \text{ Como, } [\mathbb{E} : \mathbb{F}] = [\mathbb{E} : \mathbb{K}][\mathbb{K} : \mathbb{F}], \text{ temos}$$

$$[\mathbb{K}:\mathbb{F}] = [\mathbb{E}:\mathbb{F}]/[\mathbb{E}:\mathbb{K}] = |G(\mathbb{E}/\mathbb{F})|/|G(\mathbb{E}/\mathbb{K})| = [G(\mathbb{E}/\mathbb{F}):G(\mathbb{E}/\mathbb{K})]$$

(3): Segue do item (1). Isso é descrito pelo diagrama

(4): (\Rightarrow) Seja $\mathbb{F} \subset \mathbb{K} \subset \mathbb{E}$ tal que $\mathbb{F} \subset \mathbb{K}$ é Galois. Afirmamos que $G(\mathbb{E}/\mathbb{K}) \lhd G(\mathbb{E}/\mathbb{F})$

Tome $\sigma \in G(\mathbb{E}/\mathbb{F})$ e $\tau \in G(\mathbb{E}/\mathbb{K})$

Para $\alpha \in \mathbb{K}$, tome $f(x) \in \mathbb{F}[x]$ seu poli minimal

$$f(\alpha) = 0$$
 e $\sigma \in G(\mathbb{E}/\mathbb{F}) \Rightarrow f(\sigma(\alpha)) = 0 \Rightarrow \sigma(\alpha) \in \mathbb{K}$ pois $\mathbb{F} \subset \mathbb{K}$ é normal

Logo,
$$\sigma^{-1}\tau\sigma(\alpha) = \sigma^{-1}\sigma(\alpha) = \alpha \Rightarrow \sigma^{-1}\tau\sigma \in G(\mathbb{E}/\mathbb{K}) \Rightarrow G(\mathbb{E}/\mathbb{K}) \triangleleft G(\mathbb{E}/\mathbb{F})$$

(\Leftarrow) : Suponha $G(\mathbb{E}/\mathbb{K}) \triangleleft G(\mathbb{E}/\mathbb{F})$. Vamos ver que $\mathbb{F} = \mathbb{E}_{G(\mathbb{K}/\mathbb{F})}$ e portanto que $\mathbb{F} \subset \mathbb{K}$ é Galois

Se $\sigma \in G(\mathbb{E}/\mathbb{F})$, então $\sigma_{\mathbb{K}} : \sigma|_{\mathbb{K}} \in G(\mathbb{K}/\mathbb{F})$. De fato, basta provar que $\sigma_{\mathbb{K}} : \mathbb{K} \to \mathbb{K}$ faz sentido, ou seja, que $\sigma_{\mathbb{K}}(\mathbb{K}) \subset \mathbb{K}$ (pq?)

Seja $\tau \in G(\mathbb{E}/\mathbb{K})$

$$G(\mathbb{E}/\mathbb{K}) \lhd G(\mathbb{E}/\mathbb{F}) \Rightarrow \exists \tau' \in G(\mathbb{E}/\mathbb{K}) \text{ tal que } \tau\sigma = \sigma\tau'. \text{ Logo, se } \alpha \in \mathbb{K}, \text{ temos}$$

$$\tau(\sigma(\alpha)) = \sigma(\tau'(\alpha)) = \sigma(\alpha) \Rightarrow \sigma(\alpha) \subset \mathbb{E}_{G(\mathbb{E}/\mathbb{K})} = \mathbb{K}, \quad \text{pois } \mathbb{K} \subset \mathbb{E} \text{ \'e Galois}$$

$$\Rightarrow \sigma_{\mathbb{K}} \in G(\mathbb{K}/\mathbb{F})$$

Afirmamos que $\mathbb{F} = \mathbb{K}_{G(\mathbb{K}/\mathbb{F})}$. Óbvio que $\mathbb{F} \subset \mathbb{K}_{G(\mathbb{K}/\mathbb{F})}$. Por outro lado, se $\beta \in \mathbb{K}_{G(\mathbb{K}/\mathbb{F})}$

 $\Rightarrow \beta = \sigma_{\mathbb{K}}(\beta) = \sigma(\beta) \Rightarrow \beta \in \mathbb{E}_{G(\mathbb{E}/\mathbb{F})} = \mathbb{F} \Rightarrow \mathbb{F} = \mathbb{K}_{G(\mathbb{K}/\mathbb{F})} \Rightarrow \mathbb{F} \subset \mathbb{K} \text{ \'e Galois (pelo item 3 do teorema anterior)}$

Por fim, a função $\varphi:G(\mathbb{E}/\mathbb{F})\to G(\mathbb{K}/\mathbb{F}),\, \varphi(\sigma)=\sigma_{\mathbb{K}}$ define um homomorfismo de grupos (verifique)

Note:

$$\ker \varphi = \{ \sigma \in G(\mathbb{E}/\mathbb{F}) \mid \sigma_{\mathbb{K}} = \mathrm{id}_{\mathbb{K}} \} = G(\mathbb{E}/\mathbb{K})$$

Além disso, por 1° TI e por (2), temos

$$|\operatorname{im}\varphi|=|G(\mathbb{E}/\mathbb{F})/G(\mathbb{E}/\mathbb{K})|=[\mathbb{K}:\mathbb{F}]=|G(\mathbb{K}/\mathbb{F})|\quad \text{(pois $\mathbb{F}\subset\mathbb{E}$ \'e Galois)}$$

Logo, φ é sobrejetiva, e segue

$$G(\mathbb{E}/\mathbb{F})/G(\mathbb{E}/\mathbb{K}) \cong G(\mathbb{K}/\mathbb{F})$$

Exemplo: Tome $f(x) = x^4 - 2 \in \mathbb{Q}[x]$. O corpo de fatoração de f(x) é $\mathbb{Q}(\sqrt[4]{2}, i)$ (as raízes são $\pm \sqrt[4]{2}$ e $\pm i \sqrt[4]{2}$)

Como $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 4$ (raiz de $x^4 - 2$) e $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}(\sqrt[4]{2})] = 2$ (raiz de $x^2 + 1$), temos $[\mathbb{Q}(\sqrt[4]{2},i):\mathbb{Q}] = 8$. Sabemos que uma base de $\mathbb{Q}(\sqrt[4]{2},i)$ sobre \mathbb{Q} é

$$\{1,\sqrt[4]{2},(\sqrt[4]{2})^2,(\sqrt[4]{2})^3,i,i\sqrt[4]{2},i(\sqrt[4]{2})^2,i(\sqrt[4]{2})^3\}$$

Como a extensão $\mathbb{Q}\subset\mathbb{Q}(\sqrt[4]{2},i)$ é Galois, temos que $|G=G(\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q})|=8$

Vamos determinar G. Tome $\sigma \in G$ tal que $\sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$ e $\sigma(i) = i$

Tome também $\tau \in G$ tal que $\tau(i) = -i$

Veja que $G = \{ id, \sigma, \sigma^2, \sigma^3, \tau, \tau\sigma, \tau\sigma^2, \tau\sigma^3 \}$ (por quantidade de elementos)

Pelas relações ($\sigma^4 = id$, $\tau^2 = id$, $\tau \sigma \tau = \sigma^{-1}$), vemos que $G \cong D_4$

Os reticulados são:

Solubilidade por radicais

Assumiremos que os corpos são de característica zero \Rightarrow polis irredutíveis são separáveis

Votemos ao problema de dizer quando um poli é solúvel por radicais

Diremos que uma extensão $\mathbb{F}\subset\mathbb{E}$ é uma extensão por radicais se existe uma cadeia

$$\mathbb{F} = \mathbb{F}_0 \subset \mathbb{F}_1 \subset \cdots \subset \mathbb{F}_{n-1} \subset \mathbb{F}_n = \mathbb{E}$$

tal que $\mathbb{F}_i = \mathbb{F}_{i-1}(\alpha_i)$ e $\alpha_i^{n_i} \in \mathbb{F}_{i-1}$ para algum $n_i \in \mathbb{N}$

Um poli $f(x) \in \mathbb{F}[x]$ é solúvel por radicais se seu corpo de fatoração for uma extensão por radicais sobre \mathbb{F} . Pense por que essa definição é equivalente à do início

Exemplo: O poli $x^n-1\in\mathbb{Q}[x]$ é solúvel por radicais. De fato, as raízes desse poli são $1,w,w^2,\ldots,w^{n-1}$, onde $w=e^{\frac{2i\pi}{n}}$. Logo, o corpo de fatoração é $\mathbb{Q}(w)$ e $\mathbb{Q}\subset\mathbb{Q}(w)$ é extensão por radicais, já que $w^n\in\mathbb{Q}$

Lembre: um grupo G é solúvel se existe série subnormal

$$G = H_n \supset H_{n-1} \supset \cdots \supset H_1 \subset H_0 = \{e\}$$

tal que H_i/H_{i-1} é abeliano

Veremos que $f(x) \in \mathbb{F}[x]$ é solúvel por radicais se e só se seu grupo de Galois é solúvel

Lema 1: Se car $\mathbb{F}=0$ e \mathbb{E} é o corpo de fatoração de $x^n-a\in \mathbb{F}[x]$, então o grupo de Galois $G(\mathbb{E}/\mathbb{F})$ é solúvel

Lema 2: Suponha que $\operatorname{car} \mathbb{F} = 0$ e que

$$\mathbb{F} = \mathbb{F}_0 \subset \mathbb{F}_1 \subset \cdots \subset \mathbb{F}_{n-1} \subset \mathbb{F}_n = \mathbb{E}$$

é extensão por radicais. Então existe uma extensão de Galois por radicais

$$\mathbb{F} = \mathbb{K}_0 \subset \mathbb{K}_1 \subset \cdots \subset \mathbb{K}_{n-1} \subset \mathbb{K}_n = \mathbb{K}$$

tal que $\mathbb{E} \subset \mathbb{K}$ e cada \mathbb{K}_i é Galois sobre \mathbb{K}_{i-1}

Teorema: Seja $f(x) \in \mathbb{F}[x]$, onde car $\mathbb{F} = 0$. Se f(x) é solúvel por radicais, então seu grupo de Galois é solúvel

Prova: Tome \mathbb{E} o corpo de decomposição de f(x) e

$$\mathbb{F} = \mathbb{F}_0 \subset \mathbb{F}_1 \subset \cdots \subset \mathbb{F}_{n-1} \subset \mathbb{F}_n = \mathbb{E}$$

uma extensão por radicais, onde $\mathbb{F}_i = \mathbb{F}_{i-1}(\alpha_i)$ com $\alpha_i^{n_i} \in \mathbb{F}_{i-1}$. Lema $2 \Rightarrow$ podemos assumir que \mathbb{F}_i é Galois sobre \mathbb{F}_{i-1}

Pelo TFTG, temos uma série subnormal

$$G(\mathbb{E}/\mathbb{F}) \supset G(\mathbb{E}/\mathbb{F}_1) \supset \cdots \supset G(\mathbb{E}/\mathbb{F}_{n-1}) \supset G(\mathbb{E}/\mathbb{E}) = \{id\},\$$

onde $G(\mathbb{E}/\mathbb{F}_{i-1})/G(\mathbb{E}/\mathbb{F}_i) \cong G(\mathbb{F}_i/\mathbb{F}_{i-1})$

 \mathbb{F}_i é corpo de fatoração de $x-\alpha_i^{n_i}\in\mathbb{F}_{i-1}[x]\Rightarrow G(\mathbb{F}_{i-1}/\mathbb{F}_i)$ é solúvel, pelo Lema 2

Insolubilidade dos quinticos

Vamos ver que existem polis de grau 5 que não são solúveis por radicais

Lema: Se p é primo, então todo subgrupo de S_p que contem uma transposição e um ciclo de comprimento p deve ser igual a S_p

Exemplo: Vamos ver que $f(x) = x^5 - 6x^3 - 27x - 3 \in \mathbb{Q}[x]$ não é solúvel por radicais

Eisenstein $\Rightarrow f(x)$ é irredutível $\Rightarrow f(x)$ é separável, pois car $\mathbb{Q} = 0$

 $f'(x) = 5x^4 - 18x^2 - 27$. Logo, $f'(x) = 0 \Leftrightarrow x = \pm \sqrt{\frac{6\sqrt{6}+9}{5}} \Rightarrow f(x)$ possui no máximo um ponto de máximo e um ponto de mínimo

f(x) troca de sinal em [-3,-2], [-2,0], e em $[0,4] \Rightarrow$ os pontos críticos de f(x) estão nesses intervalos e portanto f(x) tem 3 raízes reais e 2 complexas (que são conjugadas uma da outra). Sejam elas $R = \{r_1, r_2, r_3, c_1, c_2\}$

Seja $\mathbb{E} = \mathbb{Q}(r_1, r_2, r_3, c_1, c_2) \subset \mathbb{C}$ o corpo de decomposição de f(x)

Lembrem: todo $\sigma \in G(\mathbb{E}/\mathbb{Q})$ é completamente determinado por sua restrição a $R \Rightarrow G(\mathbb{E}/\mathbb{Q}) \leq X_R = S_5$

Note que a função conjugação complexa $z=a+bi\mapsto \bar{z}=a-bi$ (na verdade sua restrição a \mathbb{E}) pertence a $G(\mathbb{E}/\mathbb{Q})\Rightarrow G(\mathbb{E}/\mathbb{Q})$ contem uma transposição

Por outro lado, $[\mathbb{Q}(r_1):\mathbb{Q}] = 5 \Rightarrow [\mathbb{E}:\mathbb{Q}]$ é divisível por 5, pois $\mathbb{Q} \subset \mathbb{Q}(r_1) \subset \mathbb{E}$

Como $|G(\mathbb{E}/\mathbb{Q})| = [\mathbb{E} : \mathbb{Q}]$ é divisível por 5, e $G(\mathbb{E}/\mathbb{Q}) \leq S_5$ ($|S_5| = 5!$) $\Rightarrow G(\mathbb{E}/\mathbb{Q})$ tem 5-subgrupo de Sylow de ordem $5 \Rightarrow G(\mathbb{E}/\mathbb{Q})$ tem subgrupo cíclico de ordem $5 \Rightarrow G(\mathbb{E}/\mathbb{Q})$ tem ciclo de comprimento 5 (lembrem: se $\tau = \tau_1 \cdots \tau_k$ é produto de cíclos disjuntos, então $|\tau| = mmc(|\tau_1|, \ldots, |\tau_k|)$. Em S_5 as únicas ordens possíveis de elementos são 1, 2, 3, 4, 5, 6, o último sendo produto de um 2-ciclo com um 3-ciclo)

Lema anterior $\Rightarrow G(\mathbb{E}/\mathbb{Q}) = S_5$, que não é solúvel (já vimos isso antes)

Logo, f(x) não é solúvel por radicais

Exercícios

 $\textbf{Cap. 23:}\ 6,\,7,\,8,\,9,\,10,\,12,\,13,\,15,\,17,\,18,\,20\ (\text{os seguintes n\~ao s\~ao prioridade:}\ 1,\,2,\,4)$