LA CITY WORKER COMPENSATION ANALYSIS

HUANG

LU

MUKHERJEE

WINARTO

GU

Agenda

Project Overview Exploratory Analysis Joining
Datasets &
Cleaning data

Model
Building &
Testing

Insights & Conclusions

Project Overview & Objective

Overview:

- 1. Dataset contains 3 years record of claimant of LA workers.
- 2. Entire Dataset contains 39 different Excel files.
- 3. Response Variable is the claim amount.

Objective:

- 1. Figure out high risk factors and their patterns.
- 2. Build a predictive model.

Histogram of Log Amount

Total Amount for each Fiscal Year

Average Payment Amount Group by Nature of Injury

Average Payment Amount Group by Claimant Cause

Average Payment Amount Group by Claimant Type

Joining Datasets

Joining Datasets

Datasets Joining

- Aggregate datasets to avoid one - many relationship

Payment_id	≎ claim_id	<pre>amount_billed</pre>	≎ billed	payment_amount
2189111	2 ¬	121.5	1	121.5
1874963	2	52.99	1	52.99
3970918	2	14.89	1	14.89
1770126	2	8.8	1	8.8
4495627	2	142.64	1	142.64
183153	3 —	148.55	1	148.55
498040	3	42.75	1	42.75
5956982	3	138.99	1	138.99
6167279	3	39.29	1	39.29
5957071	3	138.99	1	138.99
5746063	3	6.67	1	6.67
288665	3	6.67	1	6.67
1799068	6	61.38	0	61.38
5219360	6	30.34	1	30.34
2008709	6	61.38	0	61.38
1799085	6	61.38	0	61.38

Payment data is important to our analysis.

We combined the past 3 years payment data together to form a large data set.

For each claim, there might be several payment. But all other datasets we chose can all be uniquely identified by claim_id. So we aggregate payment information by claim_id so it can easily join with all other datasets.

This also reduce the number of the observations from 300K to 30K.

Creating New Variables

Incident Date

Incident Month

Incident Hour

Birth Date

Age

Incident Date - Hire Date

Hire Year

Data Cleaning

More than 100 variables:

Delete missing percent > 90%

More than 2400 levels:

- Reduce level

	≎ n.non.miss	≎ n.miss		→ n.unique
claim id	38712	0	0	38712
claimant_zip_code	38711	1	0	2462
organization_id	38711	1	0	1933
occupation_code	38712	0	0	640
org3_code	38332	380	0.98	623
claim_zip_code	31663	7049	18.21	323
org2_code	38711	1	0	176
claim_cause_code	38712	0	0	82
nature_of_injury_code	38712	0	0	54
body_part_code	38712	0	0	51
fiscal_year_desc	38710	2	0.01	48
org1_code	38711	1	0	45
incident_hour	38712	0	0	24
incident_month	38712	0	0	12
claim_cause_group	38712	0	0	10
employment_type	10909	27803	71.82	8
body_part_group_code	38712	0	0	6
claimant_type_code	38712	0	0	5
claimant_status_code	38712	0	0	3
sex_code	38712	0	0	3
work_schedule_fri	38711	1	0	3

Data Cleaning

Categorical Variables Level Reduction methodology:

- # 0% 20% 40% 60% 80% 100% # 1.000 370.474 1393.350 4972.160 23140.756 3747884.280 1. Zip Code
 - Splitted based on the quantile of claim amount, into 5 groups
 - Incident Hour
 Splitted every 4 hours into 5 groups
 "Midnight 5AM", "6AM 11AM", "Noon 5PM", 7PM Midnight"
 - Occupation group
 Splitted based on the quantile claim amount, into 5 groups
 - 4. Organization Code group

 Splitted based on the quantile claim amount, into 5 groups

Data Cleaning

	Class Level Information					
Class	Levels	Values				
litigated	2	0 1				
nature_of_injury_gro	3	Multiple Injuries Occ Disease or Cum Injury Specific Injury				
X.fiscalYearGroup	6	2010/2011 2011/2012 2012/2013 2013/2014 2014/2015 pre2010				
zipGroup	5	z1 z2 z3 z4 z5				
claimant_type	5	Error Claim Future Medical Incident Only Indemnity Medical Only				

Least Squares Model (No Selection)

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	16	72184	4511.48143	15309.6	<.0001			
Error	25583	7538.86375	0.29468					
Corrected Total	25599	79723						

Root MSE	0.54285		
Dependent Mean	7.26792		
R-Square	0.9054		
Adj R-Sq	0.9054		
AIC	-5660.53445		
AICC	-5660.50771		
SBC	-31124		

We split the dataset:

80 % training

20% testing

We integrate the levels of categorical variables

(litigated, nature of injury, fiscal year, zip code and claimant type)

The predictive model is significant

The Adjusted R-Squared is 0.9054

- All the levels of litigated, nature of injury, fiscal year and zip code group are significant
- Only part of the levels of claimant type are significant

Parameter Estimates							
Parameter	DF	Estimate	Standard Error	t Value	Pr > t		
Intercept	1	10.088614	0.021091	478.33	<.0001		
litigated 0	1	-0.119873	0.009601	-12.49	<.0001		
litigated 1	0	0	-	-	-		
nature_of_injury_gro Multiple Injuries	1	0.034685	0.009370	3.70	0.0002		
nature_of_injury_gro Occ Disease or Cum Injury	1	0.011677	0.011924	0.98	0.3275		
nature_of_injury_gro Specific Injury	0	0	-	-	-		
X.fiscalYearGroup 2010/2011	1	-0.034207	0.014676	-2.33	0.0198		
X.fiscalYearGroup 2011/2012	1	0.165375	0.011728	14.10	<.0001		
X.fiscalYearGroup 2012/2013	1	0.212269	0.011692	18.16	<.0001		
X.fiscalYearGroup 2013/2014	1	0.202276	0.012059	16.77	<.0001		
X.fiscalYearGroup 2014/2015	1	0.178403	0.018673	9.55	<.0001		
X.fiscalYearGroup pre2010	0	0	-	-	-		
zipGroup z1	1	-5.217934	0.019214	-271.57	<.0001		
zipGroup z2	1	-3.579806	0.018955	-188.86	<.0001		
zipGroup z3	1	-2.314464	0.018704	-123.74	<.0001		
zipGroup z4	1	-0.922768	0.018473	-49.95	<.0001		
zipGroup z5	0	0	-	-	-		
claimant_type Error Claim	1	-0.188751	0.171867	-1.10	0.2721		
claimant_type Future Medical	1	0.120457	0.012606	9.56	<.0001		
claimant_type Incident Only	1	-0.120265	0.313582	-0.38	0.7013		

Parameter Estimates

Parameter	DF	Estimate	Standard Error	t Value	Pr > t
claimant_type Indemnity	1	0.039629	0.008925	4.44	<.0001
claimant_type Medical Only	0	0	-		

Since the trend of many variables is seriously right-skewed, we do the log transformation for the dependent variable and fit the linear model

Model: MODEL1 Dependent Variable: logamount

Model: MODEL1 Dependent Variable: logamount

Log.Amount =

10.089 +

C1 x Litigated[0/1] +

C2 x Nature of Injury Group +

C3 x Fiscal Year Group +

C4 x Zip Group+

C5 x Claimant Type

Where:

C1 = [-.120, 0]

C2 = [.035,.012, 0]

C3 = [-.034, .165, .212, .202, .178, 0]

C4 = [-5.218, -3.580, -2.314, -.923, 0]

C5 = [-.189, .120, -.120]

Parameter	Estim	ates
Parameter	DF	Estimate
Intercept	1	10.088614
litigated 0	1	-0.119873
litigated 1	0	0
nature_of_injury_gro Multiple Injuries	- 1	0.034685
nature_of_injury_gro Occ Disease or Cum Injury	1	0.011677
nature_of_injury_gro Specific Injury	0	0
X.fiscalYearGroup 2010/2011	1	-0.034207
X.fiscalYearGroup 2011/2012	1	0.165375
X.fiscalYearGroup 2012/2013	1	0.212269
X.fiscalYearGroup 2013/2014	1	0.202276
X.fiscalYearGroup 2014/2015	1	0.178403
X.fiscalYearGroup pre2010	0	0
zipGroup z1	1	-5.217934
zipGroup z2	1	-3.579806
zipGroup z3	1	-2.314464
zipGroup z4	1	-0.922768
zipGroup z5	0	0
claimant_type Error Claim	1	-0.188751
claimant_type Future Medical	1	0.120457
claimant_type	1	-0.120265

Parameter Estimates

Parameter	DF	Estimate	Standard Error	t Value	Pr > t
claimant_type Indemnity	1	0.039629	0.008925	4.44	<.0001
claimant_type Medical Only	0	0			

Model Prediction

Predicted Amount 10000 20000 30000 **Actual Amount**

> THE MODEL WELL PREDICT THE TESTING DATA

> Most of our predicted results are off within 50% of the actual data, meaning that our model can capture the true values.

List of Importance (stepwise selection):

Zip Group Fiscal Year Group Litigated Claimant Type Nature of Injury Group

Business Insight - Zip Code

Zip Group is the most significant variable, we found out by applying stepwise regression methodology.

This finding is intuitively make sense, since some areas may have condition(eg. Road quality, rainfall intensity, average income) that increase chance of the worker getting injured (Based on the assumption that generally people tend to live close where they work).

Example of most freq in each zip group:

1 1	101					_	
Z1 = 91350 -> Santa Clarita		claimant_zip_code	count	zipGroup	z1	1	-5.217934
Z2 = 91342 -> Sylmar		•	(int)	zipGroup	z2	1	-3.579806
Z3 = 93065 -> Simi Valley	1	91350	120	zipGroup	z3	1	-2.314464
Z4 = 93551 -> Palmdale	2	91709	98	zipGroup	z4	1	-0.922768
Z5 = 91709 -> Chino hills	3	93065	95	zipGroup	z5	0	0

We should pay attention more on this area to reduce the claimant frequency in the future

Business Insight - Fiscal Year

Claims that happened in fiscal year 2012/2013 have the highest amount.

All those that happened before 2011 are lower than after 2011.

After 2013, the average amount per claim decreased. 2013-2014 fiscal year Is higher than 2014-2015 fiscal year.

X.fiscalYearGroup 2010/2011	1	-0.034207	0.014676	-2.33	0.0198
X.fiscalYearGroup 2011/2012	1	0.165375	0.011728	14.10	<.0001
X.fiscalYearGroup 2012/2013	1	0.212269	0.011692	18.16	<.0001
X.fiscalYearGroup 2013/2014	1	0.202276	0.012059	16.77	<.0001
X.fiscalYearGroup 2014/2015	1	0.178403	0.018673	9.55	<.0001
X.fiscalYearGroup pre2010	0	0			

Business Insight - Litigated

Claims that are litigated have higher amount than those that are not litigated.

Meaning that in order to cut cost, reduce the number of litigated claims would help.

litigated 0	1	-0.119873	0.009601	-12.49	<.0001
litigated 1	0	0			

Business Insight - Claimant Type

Error claims have the lowest amount, and future medical claims have the highest.

Incident only claims are lower than medical only.

In order to cut cost, special attention should be applied to future medical claims.

claimant_type	Indemnity	1	0.039629	0.008925	4.44	<.0001
claimant_type	Medical Only	0	0			
claimant_type	Error Claim	1	-0.188751	0.171867	-1.10	0.2721
claimant_type	Future Medical	1	0.120457	0.012606	9.56	<.0001
claimant_type	Incident Only	1	-0.120265	0.313582	-0.38	0.7013

Business Insight - Nature of Injury

Multiple injuries claims have the highest average amount, occ disease or cum injury comes next and the lowest is specific injury.

Cost could be reduced by paying attention to claims of multiple injuries.

nature_of_injury_gro Multiple Injuries		0.034685	0.009370	3.70	0.0002
nature_of_injury_gro Occ Disease or Cum Injury		0.011677	0.011924	0.98	0.3275
nature_of_injury_gro Specific Injury		0			

Suggestions & Takeaways

- 1. Since our model suggests that Zip Group, Fiscal Year Group ,Litigated ,Claimant Type, Nature of Injury Group are risky factors for claim amount. LA City could cut cost by focusing on these.
- 2. There are other variables that we considered to put into our model, but because of existence of missing values or wrong values, we excluded them from our model. If these variables are maintained better in the future, they can be contributed to the model. For example, employment type.
- 3. If LA City would like to obtain more accurate predictive results, we will recommend to gather more numerical data in the future.

THANK YOU & QUESTIONS ARE WELCOME

HUANG

LU

MUKHERJEE

GU