Platforma fotogrametryczna dla bezzałogowego statku powietrznego (UAV) do automatycznego mapowania przestrzennego obiektów

Wydział Elektrotechniki, Automatyki, Informatyki I Inżynierii Biomedycznej Katedra Automatyki I Robotyki

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Autor: Wojciech Zemlik

Opiekun pracy: dr inż. Łukasz Więckowski

Plan prezentacji

- » Wstęp
- » Cel pracy
- » Platforma sprzętowa
- » Tworzenie platformy fotogrametrycznej
- » Badania i testy
- » Podsumowanie

Wstęp

» Fotogrametria: dziedzina nauki zajmująca się odtwarzaniem kształtów, rozmiarów i położenia obiektów w przestrzeni na podstawie zdjęć oraz danych przestrzennych

https://sketchfab.com/blogs/community/wp-content/uploads/2017/05/rc-tut-featured.png

https://cdn.80.lv/80.lv/uploads/2017/07/fillIn1.jpg

Zastosowanie fotogrametrii

- » Kartografia
- » Archeologia (dokumentacja znalezisk)
- » Architektura (wizualizacje)
- » Rozrywka (CGI, gry komputerowe)

Google Maps

https://3dscanexpert.com/wp-content/uploads/star-wars-battlefront-3d-scanning-character-assets-768x431.png

Cel pracy

- » Stworzenie platformy fotogrametrycznej w oparciu o system Intel Aero Ready to Fly
- » Stworzenie algorytmu stabilizującego pojazd latający na zadanym obiekcie architektonicznym
- » Sprawdzenie dostępnego oprogramowania fotogrametrycznego

Platforma sprzętowa - dron

» Intel Aero Ready to Fly

- 1 Intel® Aero Compute Board
- Intel® Aero Flight Controller, preprogrammed with Dronecode* PX4* autopilot
- Intel® RealSense R200 Camera for 3D depth sensing
- 4 8 MP RGB camera (front-facing)
- VGA camera, global shutter, monochrome (down-facing) (not visible in photo)
- 6 GPS and Compass
- 7 Four ESCs, Motors, Propellers
- 8 Carbon Fiber Chassis (Fully Assembled)
- 9 Radio Control Transmitter and Reciever

https://www.intel.pl/content/dam/www/public/us/en/images/photography-consumer/16x9/drones/aero-platform-products.png

Dodatkowe czujniki

- » Garmin LIDAR-Lite v3
- » Scanse Sweep

https://cdn.sparkfun.com//assets/parts/1/2/0/0/3/14117-04a.jpg

Platforma pomocnicza

- » Ograniczony interfejs komunikacyjny
- » Wykorzystanie Raspberry Pi Zero W
- » Komunikacja WiFi

Algorytm stabilizujący

- » Wykorzystanie algorytmu śledzącego
- » Stabilizacja śledzonego obiektu w środkowym punkcie obrazu
- » Regulator PID

Algorytm stabilizujący

- » Aplikacja serwera dla komputera Intel Aero
- » Aplikacja klienta dla komputera PC

Sekwencja testowa

- » Brak sekwencji testowych, w których obiektem śledzenia jest budynek
- » Stworzono sekwencję na podstawie filmu z przelotu drona nad jednym z krakowskich osiedli
- » "Ground truth" zarówno dla faktycznego kształtu obiektu jak i prostokąta otaczającego obiekt

Sekwencja testowa

Oprogramowanie fotogrametryczne

- » Regard3D (open source)
- » 3DF Zephyr (oprogramowanie płatne)

Oprogramowanie fotogrametryczne

Oprogramowanie fotogrametryczne

Czujniki dokładność i zakres działania

Intel RealSense

www.agh.edu.pl

Platforma pomocnicza opóźnienia komunikacyjne

Różnica czasu pomiędzy otrzymaniem kolejnego skanu ze Scanse sweep

1920x1080

Porównanie algorytmów śledzących

MOSSE, CSRT, MedianFlow

Rozdzielczość

640x360

320x180

1366x768

Oprogramowanie fotogrametryczne Porównanie wydajności

	Regard3D	3DF Zephyr Lite
Tworzenie rzadkiej chmury punktów	03:39.60	03:20.93
Tworzenie gęstej chmury punktów	11:20.39	03:10.11
Tworzenie powierzchni	00:27.53	08:27.22
Tworzenie modelu z teksturą	04:24.08	04:09.63
Suma	19:51.60	19:09.09

Napotkane trudności

- » Ubogi interfejs komunikacyjny Intel Aero
- » Niska wytrzymałość elementów stworzonych techniką druku 3D
- » Dron może zostać łatwo uszkodzony błędnym działaniem algorytmu
- » Niepoprawne działanie drona w trybie autonomicznym

Podsumowanie

- » Połączenie wszystkich elementów stworzonych i wykorzystanych pracy tworzy kompletny system fotogrametryczny
- » Stworzono sekwencję testową, która może zostać wykorzystana w przyszłości
- » Sprawdzono dokładność czujników, działanie stworzonego algorytmu oraz oprogramowania fotogrametrycznego
- » Różnorodność czujników i wydajność komputera Intel Aero pozwala na zastosowanie w przyszłości bardziej złożonych algorytmów