COMS 331: Theory of Computing, Spring 2023 Homework Assignment 10

Due at 10:00PM, Wednesday, April 26, on Gradescope.

Problem 64. Let $q, r \in \mathbb{Q}$ be rational numbers with $0 \le q < r \le 1$. Prove that, for all sufficiently large $n \in \mathbb{N}$, there exists $x \in \{0, 1\}^n$ such that

$$qn < C(x) < rn$$
.

A <u>lossless data compression scheme</u> is a pair (f, g) of computable functions $f, g : \{0, 1\}^* \longrightarrow \{0, 1\}^*$ such that, for all $x \in \{0, 1\}^*$,

$$q(f(x)) = x.$$

(Intuitively, f is the "compressor", and g is the "decompressor" that recovers x from its compression f(x).)

Problem 65. Prove: For every lossless data compression scheme (f, g) and every $n \in \mathbb{N}$, there is a string $x \in \{0, 1\}^n$ such that $|f(x)| \ge |x|$.

Problem 66. Prove: For every lossless data compression scheme (f, g), there is a constant $c_{(f,g)} \in \mathbb{N}$ such that, for all $x \in \{0,1\}^*$,

$$C(x) \le |f(x)| + c_{(f,g)}.$$

Problem 67. Prove: For every lossless data compression scheme (f, g), there exist infinitely many strings $x \in \{0, 1\}^*$ such that

$$C(x) < |f(x)|$$
.

Recall the definitions related to graphs from the Homework 9.

A path in a graph G = (V, E) is a sequence $p = (v_0, v_1, ...v_\ell)$ of vertices $v_i \in V$ such that, for every $0 \le i < \ell$, $\{v_i, v_{i+1}\} \in E$. The <u>length</u> of this path p is

$$length(p) = \ell$$

Note that (v_0) is a path of length 0, (v_0, v_1) is a path of length 1, etc.

If G = (V, E) is a graph and $s, t \in V$, then a path from s to t in G is a path $p = (v_0, ..., v_\ell)$ in G such that $v_0 = s$ and $v_\ell = t$.

If G = (V, E) is a graph and $s, t \in V$, then the distance from s to t in G is

$$d_G(s,t) = \min\{ \operatorname{length}(p) \mid p \text{ is a path from } s \text{ to } t \text{ in } G \},$$

where min $\emptyset = \infty$, i.e., $d_G(s,t) = \infty$ if there is no path from s to t in G.

The diameter of a graph G = (V, E) is

$$diam(G) = \max\{d_G(s,t) \mid s,t \in V\}.$$

Problem 68. Prove that there is a constant $c \in \mathbb{N}$ such that, for every graph G = (V, E) with $\operatorname{diam}(G) > 2$,

$$C(x_G) \le \binom{n}{2} - (2 - \log 3)n + 8\log(n+1) + c.$$

Problem 69. Prove that, for all sufficiently large $n \in \mathbb{N}$, every graph $G = (V_n, E)$ with

$$C(x_G) \ge \binom{n}{2} - \frac{2}{5}n$$

has diameter 2.

Problem 70. For each $n \in \mathbb{N}$, suppose that we choose a graph $G = (V_n, E)$ at random by using independent tosses of a fair coin to decide whether each of $e_1, ... e_{\binom{n}{2}}$ is an element of E. Prove that, for all sufficiently large $n \in \mathbb{N}$,

Prob[diam(G) = 2] > 1 -
$$2^{-\frac{2}{5}n}$$
.