Introduction to Electrical Engineering

Course Code: EE 103

Department: Electrical Engineering

Instructor Name: B. G. Fernandes

E-mail id: bgf@ee.iitb.ac.in

Review:

$$\omega_{elec} = \frac{P}{2} \cdot 2\pi \cdot \omega_{mech} \text{(rotations per second)}$$

- If a conductor is rotated in a magnetic field, voltage induced in it is 'AC' (average value = 0)
- Flux in the coil is determined by the supply voltage alone, provided that the frequency is constant
- As the core permeability is very high, $\mu \to \infty \Rightarrow R_c \to 0$
- Thus, the entire MMF (NI_1) is applied across the \mathcal{R}_g , that is, the air gap

- Total flux produced by the coil =flux in the core + leakage flux
- Torque is produced by the tendency of two magnetic fields to align

$$T \propto F_s F_r \sin\left(\angle_{F_s}^{F_r}\right)$$
$$T \propto F_s F_r \sin(\delta)$$

• For steady torque, $F_s \& F_r$ should be stationary with respect to each other

Classification of Machines

DC machine \longrightarrow stator \rightarrow DC \longrightarrow rotor \longrightarrow 'I' flowing in the load OR from an external source is DC

AC machine

asynchronous machine

DC Machine

Stator:

- Field coils are mounted on the projected part & connected to a dc source
- Coil is stationary and I' is dc (can be replaced by PM)
- Time invariant field \rightarrow angular speed of $F_s = 0$

• In the airgap, either the conductor is rotated or external 'I' should be supplied.

Rotor:

- Rotor has slots at the outer periphery
- In addition, there is a commutator → it has large number of copper segments & these segments are insulated by mica
- Coils having desired number of turns are placed in these slots and two ends of the coil are connected to the copper strips
- Two carbon brushes are placed as shown on the copper commutator
- These carbon brushes are mounted on the commutator but fixed to the stator

Magnetic Equivalent circuit of DC Machine

$$\Phi_F \cong \frac{NI_F}{R_a}$$

$$2R_p + R_r \ll R_a$$

$$R_y \ll R_a$$

Equivalent circuit of a DC machine

• dc current (I_F) is flowing in the field coil

 $\rightarrow R_F \rightarrow$ field winding resistance

 $\rightarrow L_F \rightarrow$ field winding inductance

• At steady state $V_F = R_F I_F$

To improve the efficiency, field coil can be replaced by Permanent magnets

PMDC machine

- Armature is rotating in the magnetic field, voltage induced is $E \propto \phi \omega$, where ϕ flux setup by field, and ω is angular speed
- E can be represented by $E=K\phi\omega$
- In motoring mode, terminal voltage, V_t is given as: $V_t = E + I_a R_a$
- In this mode, I_a enters the armature from '+' terminal of supply, and 'E' opposes it. Hence, 'E' is also known as 'back-emf'.
- In generating mode: $V_t = E I_a R_a$
- In this mode, I_a leaves the armature from '+' terminal of V_t . Here, 'E' is known as 'induced emf'

Self Excitation in DC Generator

- Electromagnet retain same magnetism when the supply is switched off
- \rightarrow Residual Magnetism (B_r)
- \rightarrow Rotate the armature in the field created by B_r
- \rightarrow A small voltage $(E \propto \phi \omega)$ is induced in the armature
- \rightarrow If the circuit is complete small I_F will flow
- \rightarrow If ϕ produced by I_F aids the residual flux, net flux in the air-gap increases & hence $E \uparrow$

 B_r

Torque in DC machines

- Carbon brushes are stationary
- <u>Direction of 'I' reverses</u> when the coil crosses the brushes
- Conductors under one pole carry 'I' in one direction
- Armature MMF axis is fixed and it is along brush axis
- Angle between F_s and F_r is 90° and is fixed, this angle is independent of load

$$\delta = 90^{\circ} :: T \propto F_s \cdot F_r$$

 $F_r \propto I_a$ armature current (: no. of turns in armature is constant) Therefore, 'torque per ampere' is MAXIMUM in DC machines,

or, $\delta=90^\circ$ is the condition to get maximum 'torque per ampere'

Separately excited dc motor

Field is connected to a separate dc source

Terminal voltage:

$$V_t = E + I_a R_a : E = V_t - I_a R_a$$

$$EI_a = V_t I_a - I_a^2 R_a$$

 $V_t I_a \rightarrow$ Armature power input

 $I_a^2 R_a \rightarrow$ Loss in armature winding, since the winding is made up of copper wire, this loss is also known as armature copper loss

Power developed in the armature = Power available at the motor shaft EI_a

$$T = \frac{\text{Power available at shaft}}{\omega} = \frac{EI_a}{\omega} = \frac{(K\phi\omega)I_a}{\omega} = K\phi I_a$$

Recall,

$$T \propto F_s F_r \sin(\delta)$$

here, $F_S \rightarrow \text{stator}$ produces ' ϕ '

$$F_r \propto I_a$$
 and $\delta = \frac{\pi}{2}$

$$T \propto \phi I_a$$

Advantages of DC machines:

- The armature and field MMF can be controlled independently
- Torque control is simple
- 'Torque per ampere' is maximum

Limitations of DC machines:

- Commutator and brushes wear over time
 → require regular maintenance
- Short-circuiting commutator segments give rise to spark → can not be used in explosive environments

In DC machine → Stator field is 'time-invariant'
 → Stator winding is concentrated and connected to a DC supply

Wikipedia

^{*}Induction Motor Market Size, Share & Industry Analysis, https://www.fortunebusinessinsights.com/industry-reports/induction-motor-market-101639 Finduction Motor Market - Growth, Trends, and Forecast (2020 - 2025), https://www.mordorintelligence.com/industry-reports/induction-motor-market

