Задача №1

Рассчитать и построить ВАХ идеализированного кремниевого диода в пределахизменения напряжения от-5 до +0.7 В при T=300К и обратном токе насыщения, равном I_0 .Значение теплового потенциала $\varphi_T = \frac{kT}{q}$ при T=300К принять равным 0.026 В.

Определить дифференциальное $r_{
m dif}$ и статическое сопротивление d_0 диода для заданногозначения $U_{
m np}$

Исходные данные:

```
I_0 = 0.5e - 9A;
```

```
U_{\rm np} = 0.35 \, B;
```

```
I_0 = 0.5e-9; %A
U_pr1 = 0.35; %B
fi_T = 0.026; %B
I = @(U) I_0.*(exp(U./fi_T)-1);
```

Задаем вектор значений $U_{ m ofp}$

Расчитываем вектор значений I_{ofp} относительно U_{ofp}

Строим ВАХ обратной ветви

```
plot(U_obr,I(U_obr))
xlabel('U_ofp');
ylabel('I_ofp');
```


Задаем вектор значений U_{np}

```
U_pr = [0 .5 .55 .6 .62 .64 .66 .68 .7]

U_pr = 1x9
0 0.5000 0.5500 0.6000 0.6200 0.6400 0.6600 0.6800 ...
```

Расчитываем вектор значений I_{np} относительно U_{np}

Строим ВАХ прямой ветви

```
plot(U_pr,I(U_pr))
xlabel('U_ofp');
ylabel('I_ofp');
```


Расчитываем $R_{ m dif}$

 $R_{dif} = 74.0852$

Расчитываем R_0

 $R_0 = 997.3022$

Сравниваем $R_0 > R_{\rm dif}$

$$R_0 > R_dif$$

ans = logical
1

Получаем логическую единицу, что соответствует правильному ответу.

Задача №2

Стабилитрон подключен для стабилизации напряжения параллельно резистору нагрузки R_H . Параметры стабилитрона $U_{\rm cr}, I_{\rm cr.min}, I_{\rm cr.max}$ и сопротивление нагрузки R_H приведены в табл. 1.2.

Определите величину сопротивления ограничительного резистора $R_{\rm orp}$ если входное напряжение $U_{\rm BX}$ изменяется от $U_{\rm BX.min}$ = $20\,B_{\rm \ ДO}$ $U_{\rm BX.max}$ = $30\,B_{\rm \ }$. Будет ли обеспечена стабилизация во всем диапазоне изменения входного напряжения $U_{\rm BX}$?

Исходные данные:

 $I_{\text{cr.min}} = 5e - 3A;$ $I_{\text{cr.max}} = 25e - 3A;$ $R_H = 2e + 3 \text{ Om};$

 $U_{\rm cr} = 12 B$;


```
I_st_min=5e-3; %A
I_st_max=25e-3; %A
U_inp_min=20; %B
U_inp_max=30; %B
R_load = 2e+3; %OM
U_st = 20; %B
```

Выберем средний ток стабилитрона из условия

Необходимая величина входного напряжения

Ток нагрузки

$$I load = 0.0100$$

При этом необходимая величина входного напряжения будет равна

$$R_{\text{BX}} = U_{\text{CT}} + R_{\text{orp}}(I_H + I_{\text{CT}})$$

Отсюда можно найти необходимую величину ограничительного резистора:

$$R_{\rm orp} = \frac{(U_{\rm BX} - U_{\rm CT})}{I_{\rm H} + I_{\rm CT}}$$

$$R_lim = 200$$

Границы допустимого диапазона изменения входного напряжения определяем, пользуясьвыражениями

$$U_{\text{Bx.min}} = U_{\text{cT}} + (I_{\text{ct.min}} + I_H)R_{\text{orp}}$$

$$U_{\text{Bx.max}} = U_{\text{ct}} + (I_{\text{ct.max}} + I_H)R_{\text{orp}}$$

U inp min =
$$23$$

U inp
$$max = 27$$

Сравним с заданным диапазоном изменения входного напряжения. Вывод: стабилизация напряжения осуществляется во всем диапазоне изменения входногонапряжения.

Задача №3

Пользуясь справочными данными, приведите семейство входных ивыходных характеристик БТ с ОЭ. В качестве независимых переменных используйте входное и выходное напряжение. Тип транзистора выберите согласно табл. 1.3 в соответствии с шифром. Поясните поведение входных и выходных характеристик транзистора.

Тип транзистора: КТ351А

Цоколевка транзистора KT351A

По справочнику установите максимально допустимые параметры БТ: постоянный ток коллектора $I_{K.max}$; напряжение коллектор — эмиттер $U_{K9.max}$; мощность, рассеиваемую коллектором транзистора $P_{K,max}$. Насемейство выходных характеристик нанесите границы области допустимых режимов работы.

Задайтесь положением рабочей точки и. пользуясь характеристиками, рассчитайте для нее значения h-параметров БТ. На основании полученных числовых значений параметров рассчитайте параметры T-образной эквивалентной схемы транзистора и изобразите ее.

- Структура р-n-р
- Максимально допустимое (импульсное) напряжение коллектор-база 20 В
- Максимально допустимое (импульсное) напряжение коллектор-эмиттер 15 В
- Максимально допустимый постоянный (импульсный) ток коллектора (400) мА
- Максимально допустимая постоянная рассеиваемая мощность коллектора без теплоотвода (с теплоотводом) **0.3 Вт**
- Статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером 20-80
- Обратный ток коллектора <=1 мкА
- Граничная частота коэффициента передачи тока в схеме с общим эмиттером =>200 МГц

Задача №4

Усилительный каскад выполнен на ПТ КП302Б в схеме с ОИ.

Рабочая точка ПТ задается напряжением источника питания $U_{\rm ИП}$ = 10B и параметрами приведенными в табл. 1.4.

- 1. Нарисуйте принципиальную схему усилителя.
- 2. На семействе статических ВАХ транзистора постройте нагрузочную прямую и определите положение рабочей точки.
- 3. Для найденной рабочей точки определите сопротивление резистора в цепи истока R_{H} и малосигнальные параметры $S,\ R_{i}$ и μ .

4. Графоаналитическим методом определите параметры режима усиления K_U и $P_{\scriptscriptstyle \mathrm{BblX}}$ при амплитуде входного сигнала $U_{\scriptscriptstyle \mathrm{3H}.m}=0.25B$.

Исходные данные:

$$R_C = 0.5e + 3 \text{ Om};$$

$$I_c = \frac{U_{\text{MII}}}{R_C} = \frac{10B}{500} = 20 \text{mA}$$

$$U_{\text{3H0}} = -1.5 B;$$

1)

2)

□ КП302А1, КП302Б1, КП302В1, КП302Г1

Транзисторы кремниевые планарные с каналом п-типа, с диффузионным затвором, усилительные. Предназначены для применения в малошумящих каскадах усиления, в переключающих устройствах и в коммутаторах с высоким входным сопротивлением. Выпускаются в пластмассовом корпусе с жесткими выводами, тип корпуса КТ-26. Масса

5,2 корпусе с жесткими выводами, тип корпус транзистора не более 0,5 г.	ca K1-26. Mac
Электрические параме	тры
Крутизна характеристики при Ucu = 7 f = 5015000 Гц, не менее: T = +25°C:	В, Uзи = 0 В,
КПЗ02А1 КПЗ02Б1, КПЗ02Г1	
T = +100°C	
3 4 KII302A1	
КПЗ02Б1, КПЗ02Г1 Т = -60°С	
КПЗ02А1	
КПЗ02Б1, КПЗ02Г1	.7 мА/В
Напряжение отсечки при Ucu = 7 B, Ic = 10 мкA,	
T = +25°C, не более:	
КПЗ02А1	
КП302Б1, КП302Г1	
КП302В1	10 В
Коэффициент шума при Ucи = 8 B, f = 1 кГц, Rr = 1 кОм:	94 -F
КПЗ02А1	
Время выключения	
Начальный ток стока при T = +25°C:	55 HC
КПЗ02А1 при Ucи = 7 В, Uзи = 0 В	3 24 MA
КПЗ02Б1 при Ucи = 7 В, Uзи = 0 В	
КПЗ02В1 при Ucи = 10 В, Uзи = 0 В, не менее	
КПЗ02Г1 при Ucи = 7 В, Uзи = 0 В	
Ток утечки затвора при Изи = 10 В, не более:	
при T = +25°C и T = -60°C	10 нА
при T = +100°C	5 мкА
Обратный ток перехода затвор-сток при Uзс = 20 В,	
T = +25°C, не более	1 мкА
Сопротивление сток-исток при Ucи = 0,2 B, Uзи = 0 B, не более: $T = +25$ °C:	
КП302Б1, КП302Г1	
КП302В1	100 Ом
$T = +100^{\circ}C$:	
КП302В1	200 Ом
T = -60°C:	100.0
KII302B1	100 Ом
Входная смкость при Ucu = 10 B, T = +25°C, не более: КПЗ02A1 при Ic = 3 мA	20 m/b
КПЗ02Б1, КПЗ02Г1 при Ic = 18 мА	20 HQ
KII302B1, KII30211 fipu Ic = 18 MA KII302B1 fipu Ic = 33 MA	
Проходная емкость при Ucu = 10 B, T = +25°C, не более:	20 1140
КПЗ02A1 при Ic = 3 мA	8 ndb
КПЗ02Б1, КПЗ02Г1 при Іс = 18 мА	
remonent - 1 - 20 - 4	

КП302В1 при Іс = 33 мА 8 пФ

Предельные эксплуатационные данные Постоянное напряжение сток-исток 20 В Постоянное напряжение затвор-сток 20 В Постоянное напряжение затвор-исток: 10 В КПЗ02А1, КПЗ02Б1, КПЗ02Г1 10 В КПЗ02В1 12 В Постоянный ток стока: 24 мА КПЗ02А1 24 мА КПЗ02Б1 43 мА Постоянный ток затвора 6 мА Постоянная рассеиваемая мощность ' при т = −60...+25°C 300 мВт Температура окружающей среды −60°C...Т = +100°C 'При T = +25...+100°C постоянная рассеиваемая мощность определяется из выражения Рмакс = 300−2(T−25), мВт

Типовые выходные характеристики

Типовые выходные характеристики

Типовые выходные характеристики

Зависимость крутизны характеристики от напряжения сток-исток