שיעור 5 התזה של צרץ טיורינג ודקדוקים כלליים

5.1 היחס בין הכרעה וקבלה

משפט 5.1 כל שפה כריעה היא גם קבילה

כל שפה כריעה היא גם קבילה.

הוכחה: המכונה טיורינג שמכריעה את L גם מקבלת אותה.

נשאל שאלה. האם כל שפה קבילה היא גם כריעה? זאת שאלה שכרגע אין לנו מספיק כלים לענות עליה. נחזור לשאלה הזו בפרק הבא. לבינתיים נוכיח טענה חלשה יותר.

משפט 5.2

תהי $\,L$ שפה.

אם גם L וגם $ar{L}$ קבילות אזי L כריעה.

 $ar{L}$ את מ"ט שמקבלת את את A^L מ"ט שמקבלת את מ"ט אמקבלת את הוכחה: תהי A^L שמכריעה את D^L שמכריעה את D^L

?כיצד תעבוד המ"ט מכריעה כיצד חמכריעה

- $A^{ar{L}}$ ואת A^L ואת המקביל את יבמקביל
- .acc -אם אז נעבור את מקבלת את מקבלת A^L שם
- .rej -אם אז נעבור את מקבלת את מקבלת $A^{ar{L}}$ אם •

• הסימולציה מתבצעת ע"י סימלוץ צעד צעד.

- A^L צעד במכונה *
- $A^{ar{L}}$ צעד במכונה *
- ממטיך בסימולציה המקבילית עד שאחת המכונות מגיעה למצב acc.

- .acc \leftarrow מקבלת A^L אם *
- .rej ← מקבלת $A^{ar{L}}$ *
- $w\in ar{L}$ או $w\in L$ כי כל מחרוזת מצב או מגיעה לא מגיעה מהמכונות אחת מאם כי אף אחת אחת מצב או יכול להיות מצב או מגיעה לא מגיעה לא אחת מהמכונות אחת מהמכונות או יכול להיות מצב בי אף אחת מהמכונות לא

5.2 שקילות של מכונת טיורינג ותוכנית מחשב

- מכונת טיורינג היא מודל חישובי למחשב.
 - מחשב = תוכנית מחשב.
- תוכנית משחב כתובה בשפת תכנות, למשל
 - ג'אווה *
 - * פייתון
 - C *
 - SIMPLE *
 - המרכיבים של שפת תכנות הם
 - * משתנים
 - * פעולות
 - * תנאים
 - * זרימה

נוכיח כי מכונט טיורינג ותוכנית משחב שקולים חישובי.

SIMPLE 5.3

משתנים

:טבעיים

i, j, k,

מקבלים כערך מספר טבעי.

▶ אתחול: הקלט נמצא בתאים הראשונים של [] Aכל שאר המשתנים מאותחלים ל- 0.

פעולות

• השמה בקבוע:

i = 3, B[i] = "#"

• השמה בין משתנים:

• פעולות חשבון:

```
x = y + z, x = y - z, x = y \cdot z
```

תנאים

- .(מערכים) B[i]==A[j] •
- (משתנים טבעיים). $x >= y \bullet$

זרימה

- סדרה פקודות ממוספרות.
- egoto מותנה ולא מותנה. •
- עצירה עם ערך חזרה. stop •

```
one = 1
zero = 0
B[zero] = "0"
i = 0
j = i
if A[i] == B[zero] goto 9
i = j + one
goto 3
C[one] = A[j]
if C[one] == A[zero] goto 12
stop(0)
stop(1)
```

כעת נגדיר את מושגי הקבלה והדחייה של מילים בשפה SIMPLE, ונגדיר את מושגי הכרעה והקבלה של שפות בשפה SIMPLE.

הגדרה 5.1 קבלה ודחייה של מחרוזת בשפה SIMPLE

עבור קלט w ותוכנית P בשפת אומרים כי

- עוצרת עם ערך חזרה 1. w אם הריצה של P אם הריצה את w אם הריצה P
 - .0 אם הריצה של P על w עוצרת עם ערך חזרה P \bullet

הגדרה 5.2 הכרעה וקבלה של מחרוזת בשפה SIMPLE

עבור שפה L ותוכנית P בשפת L עבור שפה

- L -שכריעה את אלה שלא שב L מכריעה את המילים שב L מכריעה את ב P
 - L אם היא מקבלת את כל ורק המילים ב- L

5.3 משפט

המודלים של מכונת טיורינג ותוכניות SIMPLE שקולים.

הוכחה:

:כיוון ראשון

 $\forall M \exists P$ שקולה.

במילים, לכל מ"ט M קיימת תוכנית P שקולה. בצע סימולציה של מ"ט M במשחב P

בלי להכנס ,לפרטים די ברור שבשפה ,עילית כגון ג'אווה ,ניתן להגדיר מבני נתוניםעבור כל מרכיבי מכונת טיורינג:

- הסרט.
- המצבים.
- מיקום הראש.
- טבלת המעברים.

וברור שניתן לבצע סימולציה של פעילות המכונה.

ואם ניתן לעשות זאת בשפה עילית, ניתן לעשות זאת גם בשפת SIMPLE.

כיוון שני:

 $\forall P \exists M$ שקולה.

בשפה מ"ט שקולה. בשפה במילים, לכל תוכנית P בשפה לכל היימת מ"ט שקולה.

אנחנו צריכים להראות כיצד ניתן לממש את הרכיבים השונים של תוכניות SIMPLE במ"ט.

:הרכיבים הם

- משתנים.
- פעולות.
- תנאים.
- זרימה.

משתנים

לכל משתנה יהיה סרט משלו.

המספר שהמשתנה יחזיק ייוצג בבסיס אונרי.

בהתחלה הסרט יהיה רק עם רווחים ,זה מייצג את המספר אפס בבסיס אונרי.

לכל מערך יהיה סרט משלו.

בכל תא בסרט המערך תהיה אות.

בהתחלה כל המערכים יהיו מאופסים למעט הסרט הראשון ,שיחזיק את הקלט.

למשל ההשמה הבאה של משתים בשפה SIMPLE:

```
A[1] = a, A[2] = b, A[3] = b, A[4] = a

B[1] = b, B[2] = a

i = 3

j = 1

k = 2
```

ניתן לממש במ"ט על ידי לכתוב על סרטים, שרט אחד לכל משתנה:

A []			1	1		
A []	_	а	b	b	a	-
		1				
B[]		b	а	_	_	_
		1				
i		1	1	1	1	
		\uparrow				
j		1]			
		1				
k		1	1			
		\uparrow				

<u>פעולות</u>

כעת נניח שנשים

j = k

 $_{
m i}$ אפשר לממש את ההשמה הזאת על ידי להעתיק את תוכן הסרט של המשתנה א

כעת נניח שנשים [[i]=A, [i]=A, [i]=A, [i]=A ([i]=A) כעת נניח שנשים [i]=A ([i]=A) ממש זה במ"ט ע"י להעתיק את תוכן משבצת 2 בסרט של

שלב 1)

שלב 2)

שלב 3)

שלב 4)

נניח עכשיו שאנחנו רוצים לשים

ז"א

.k והסרט של B[] והסרט של ממש זה במ"ט ע"י על ידי הפעולות הבאות עם הסרט של

שלב 1)

שלב 2)

שלב 3)

שלב 4)

כעת נניח שאנחנו רוצים לשים

j = 2

אז נממש זה במ"ט עם הפעולות הבאות:

שלב 1)

שלב 2)

שלב 3)

שלב 4)

שלב 5)

שלב 6)

שלב 7)

תנאים

נניח שאנחנו רוצים לממש את התנאי

i >= k

ניתן לבדוק את התנאי במ"ט על ידי הפעולות הבאות:

שלב 1)

שלב 2)

שלב 3)

5.4 דקדוקים כלליים

הגדרה 5.3 דקדוקים חסרי קשר

דקדוק חסר קשר הוא קבוצה

$$(V, \Sigma, R, S)$$

כאשר

- אלפיבית. שמורכב מאותיות אדולות של אלפיבית. V
- . קבוצה סופית של **טרמינלים** שמורכב מאותיות קטנות וסימנים של אלפיבית Σ
 - מצורה של כללים. כל כלל הוא מצורה R

$$\gamma \to u$$

כאשר של משתנים וטרמינילים בצד מחרוזת $u \in (V \cup \Sigma)^*$ ווע בצד שמאל ימין משתנים כאשר $\gamma \in V$

המשתנה ההתחלתי. $S \in V$

דוגמה 5.1

נתון הדקדוק חסר קשר:

$$G_1 = (\{A, B\}, \{0, 1, \#\}, R, A)$$

ההתחלתי הוא $V=\{0,1,\#\}$, המשתנה ההתחלתי הוא און הקבוצת טרמינלים היא און הרא האחלתי ההתחלתי ההתחלתי הוא הדקדוק הם S=A

$$R = \left\{ \begin{array}{ll} A \to & 0A1 \\ A \to & B \\ B \to & \# \end{array} \right.$$

הגדרה 5.4 יצירה של מילה על ידי דקדוק חסר קשר

- S כתבו את המשתנה ההתחלתי (1
- 2) מצאו משתנה וכלל אשר מתחיל אם משתנה זה, והחליפו אותו עם המחרוזת בצד ימין של הכלל.
 - .V אף משתנים של 1 ו- 2 עד שלא נשאר אף משתנים של (3

דוגמה 5.2

:000#111 את המחרוזת G_1 יוצר את

$$A \xrightarrow{A \to 0A1} 0A1 \xrightarrow{A \to 0A1} 00A11 \xrightarrow{A \to 0A1} 000A111 \xrightarrow{A \to B} 00B11 \xrightarrow{B \to \#} 000\#111$$

דוגמה 5.3

נתון את הדקדוק

$$G_2 = (\{S, T, F\}, \{(,), +, \times, a\}, R, S)$$

כאשר הכללים הם

$$R = \begin{cases} S \to S + T \\ S \to T \\ T \to T \times F \\ T \to F \\ F \to (S) \\ F \to a \end{cases}$$

a+a יוצר את המילה: G_2

$$S \xrightarrow{S \to S + T} S + T \xrightarrow{SA \to T} T + T \xrightarrow{T \to F} F + F \xrightarrow{F \to a} a + a$$

בדקדוק כללי, גם בצד ימין וגם בצד שמאל יכולה להופיעמחרוזת של משתנים וטרמינליים. פורמלי:

הגדרה 5.5 דקדוקים כלליים

דקדוק חסר קשר הוא קבוצה

$$(V, \Sigma, R, S)$$

כאשר

- . קבוצה סופית של משתנים שמורכב מאותיות גדולות של אלפיבית V
- . קבוצה סופית של **טרמינלים** שמורכב מאותיות קטנות וסימנים של אלפיבית. Σ
 - הוא מצורה כל כללים. כל כלל הוא מצורה R

$$\gamma \to u$$

כאשר של משתנים וטרמינילים בצד ימין . $u \in (V \cup \Sigma)^*$, $\gamma \in (V \cup \Sigma)^+$ כאשר

המשתנה ההתחלתי. $S \in V$

דוגמה 5.4

נתון את הדקדוק

$$G = (\{\mathtt{S},\, [\,,\,]\,\}, \{\mathtt{a}\}, R, \mathtt{S})$$

שבו הקבוצת משתנים היא $\Sigma = \{ {
m a} \}$ הקבוצת טרמינליים היא $V = \{ {
m S}, \, [\, , \,] \, \}$ והכללים הם

$$R = \begin{cases} S \to [S] \\ S \to a \\ [a \to aa[] \\ [] \to \varepsilon. \end{cases}$$

:aaaa יוצר את המילה: G

דוגמה 5.5

נתון את הדקדוק

$$G = (\{S, [,]\}, \{a\}, R, S)$$

שבו היא $\Sigma = \{ {\bf a} \}$ היא טרמינליים היא אקבוצת , $V = \{ {\tt S}, \, [\, , \,] \, \}$ והכללים הם

$$R = \begin{cases} S \to [S] \\ S \to a \\ [a \to aa[\\ [] \to \varepsilon. \end{cases}$$

מהן המילים שניתן לצור בעזרת הדקדוק הזה, או במילים אחרות :מהי השפה של הדקדוק?

פתרון:

תשובה:

$$L\left(G\right)=\left\{\mathbf{a}^{n}\;\middle|\;n=2^{k}\;,\;k\geqslant1\right\}\;.$$

:הסבר

דוגמה 5.6

בנו דקדוק כללי אשר יוצר את הפשה

$$L = \{w \in \{a, b\}^* \mid \#a_w = \#b_w\}$$
.

פתרון:

$$G = (\{\mathtt{S}\}, \{\mathtt{a}, \mathtt{b}\}, R, \{\mathtt{S}\})$$

$$S \rightarrow abS$$
, (1)

$$ab \rightarrow ba$$
, (2)

$$ba \rightarrow ab$$
 . (3)

$$S \to \varepsilon$$
 . (4)

$$S \xrightarrow{1} abS \xrightarrow{1} ababS \xrightarrow{2} baabS \xrightarrow{4} baab$$

שימו לב: בדקדוק כללי אנו מאפשרים גם כללייצירה בהם בצד שמאל יש רק טרמינלים. לכן ,יתכן גם שנמשיך ונפתח מחרוזתשכולה טרמינליים. למשל

$$S \xrightarrow{1} abS \xrightarrow{1} ababS \xrightarrow{4} abab \xrightarrow{2} baab$$

נשאל שאלה כללית:

- אלו שפות ניתן לצור בעזרת דקדוק כללי?
- האם יש שפות שלא ניתן לצור בעזרת דקדוק כללי?
- האם יש מודל חישובי שמקבל שפות שנוצרות ע"י דקדוקים כלליים?

דוגמה 5.7

בנו דקדוק כללי שיוצר את השפה

$$w = \{w \in \{a, b, c\}^* \mid w = a^n b^n c^n\}$$

פתרון:

נראה דקדוק כללי עבור שפה זו.

שפה זו אינה חסרת הקשר.

לכן ,לא ניתן לבנות עבורה דקדוק חסר הקשר.

אנו נבנה לה דקדוק כלל.

יחד. a,b,c יחד.

נעשה זאת בצורה כזו שכדי לסיים את תהליך הגזירה יש לסדר את האותיות בסדר הרצוי:

,a תחילה

אחר כך d,

ובסוף c.

$$S \to S'$$
 (1)

$$S' \rightarrow aS'bC \mid \varepsilon$$
 (2)

$$Cb \rightarrow bC$$
 (3)

$$C] \rightarrow]C$$
 (4)

$$] \rightarrow \varepsilon$$
 (5)

S
$$\xrightarrow{1}$$
 S'] $\xrightarrow{2}$ aS'bC] $\xrightarrow{2}$ aaS'bCbC] $\xrightarrow{2}$ aaaS'bCbCbC] $\xrightarrow{3}$ aaaS'bbCCCC] $\xrightarrow{4}$ aaaS'bbbCC]c $\xrightarrow{4}$ aaaS'bbbC]cc $\xrightarrow{4}$ aaaS'bbbCcc $\xrightarrow{1}$ aaabbbccc

דוגמה 5.8

בנו דקדוק כללי אשר יוצר את שפת המילים

$$L = \{ \text{ uu } \mid \text{u} \in \{\text{a},\text{b}\}^* \}$$

2תרוו:

דוגמא זאת תמחיש ביצד דקדוק כללי יכול "לפעול בדומה" למכונת טיורינג.

בדקדוק נשתמש במשתנים וכללי גזירה שיאפשרו מעין תנועה על גבי המחרוזת הנגזרת, בדומה לתנועת הראש של מכונת טיורינג על גבי הסרט.

		=
S→[H{	כלל גזירה יחיד מהמשתנה ההתחלתי.	1
	המשתנה H ידמה את הראש של המ"ט ש"יזוז" מצד לצד על המחרוות הנגזרות. הסוגר	
	המרובע] מסמן את הקצה השמאלי של המילה השמאלית.	
	הסוגר המסולסל } מסמן את הקצה השמאלי של המילה הימינית.	
[H→[aH _a	כלל זה מאפשר הוספת אות a לקצה השמאלי של המילה השמאלית.	2
	. במחרוזת הימינית $_{ m H_a}$ מוחלף במשתנה $_{ m H_a}$ כדי "לזכור" שיש עכשיו להוסיף $_{ m H}$ גם במחרוזת הימינית.	
	(בדומה לזיכרונות של מ"ט).	
$H_aa \rightarrow aH_a$	כלל זה מאפשר לראש "לזוז" ימינה.	3
$H_a\{ \rightarrow H\{a$	כאשר המשתנה $_{\mathrm{a}}$ "יגיע" לסוגר המסולסל, הוא יגזור אות $_{\mathrm{a}}$ נוספת מימין לסוגר, שהוא	4
	הקצה השמאלי של המחרוזת הימינית.	
	כך אפשרנו להוסיף שתי אותיות a: אחת מימין לסוגר] ואחת תואם ימין לסוגר }.	
	כלומר אות a בקצה השמאלי של כל אחת המחרוזות.	
аН→На	.[כעת צריך לאפשר למשתנה H לחזור שמאלה על גבי האותיות שבין הסוגרים, עד הסוגר	5

ברגע "שהראש" ${\tt H}$ חזר לתחילת המחרוזת ועומד ליד הסוגר ${\tt I}$ עוברים על השלבים 2-5 שוב. בסבב הבא נחק ברגע "שהראש" ${\tt L}$ שוב. בסבב הבא נחק בחשבון גם יצירה של שתי אותיות ${\tt L}$

[H→[bH _b	כלל זה מאפשר הוספת אות b לקצה השמאלי של המילה השמאלית. b כלל זה מוחלף במשתנה d כדי "לזכור" שיש עכשיו להוסיף d גם במחרוזת הימינית.	′2
$H_aa \rightarrow aH_a$	כללים האלה מאפשרים לראש "לזוז" ימינה.	′3
$H_ab \rightarrow bH_a$		
$H_{b}a \rightarrow aH_{b}$		
$H_bb \rightarrow bH_b$		
H _b { → H { b	כאשר המשתנה ${ m H}_{ m b}$ יגיע" לסוגר המסולסל, הוא יגזור אות ${ m b}$ נוספת מימין לסוגר, שהוא	'4
	הקצה השמאלי של המחרוזת הימינית.	
	כך אפשרנו להוסיף שתי אותיות b: אחת מימין לסוגר] ואחת תואם ימין לסוגר }.	
	כלומר אות b בקצה השמאלי של כל אחת המחרוזות.	
bH→Hb	כעת צריך לאפשר למשתנה H לחזור שמאלה על גבי האותיות שבין הסוגרים, עד הסוגר].	'5

בכדי לסיים את הגזירה יש להפטר ממשתני העזר על ידי הכללים הבאים:

$H \rightarrow \varepsilon$	н, [, { הכללים האלה מאפשרים להעלים את המשתנים	6
$[\rightarrow \varepsilon$		
$\{ \rightarrow \varepsilon$		

5.5 דקדוקים כלליים ומכונת טיורינג

משפט 5.4 קדוקים כלליים ומכונת טיורינג

L(G)=L -שפה. L קבילה אם ורק אם קיים דקדוק כללי L כך ש- L

הוכחה: כיוון ראשון.

נוכיח שאם קיים דקדוק כללי G אז L(G) קבילה.

L(G) שמקבלת P שמקבלת תוכנית שקיימת תוכנית לידי להוכיח קבילה על L(G) עניח שקיים דקדוק כללי

L(G) את שמקבלת מחשב מחשב. נתון בקדוק כללי G. נבנה תוכנית מחשב את נתון בעלי $w\in L(G)$ יהי הקלט עומר w

- .u=S (1
- :repeat (2
- .xyz -b u פצל באופן לא דטרמיניסטי את •
- G של $\mathbf{t} \to \mathbf{v}$ אירה אירה דטרמיניסטי לא דטרמיניסטי
 - . אם $y \neq t$ אם
 - u=xvz ●
 - ש אם w==u קבל. •

כיוון שני.

L(G) נוכיח שאם עללי קבילה אז קיים דקדוק כללי

L(G)=L(M) כך ש- G כך שקיים דקדוק כללי C כן את השפה C נוכיח שקיים דקדוק כללי C כך ש- C מלומר השפה מתקבלת על ידי C היא השפה של דקדוק כללי C

. נתונה מ"ט M בעלת הטבלת המעברים להלן. נבנה דקדוק כללי שמממש אותם צעדים.

מצב	סימן	מצב חדש	כתיבה	תזוזה
q_0	а	q_0	a	R
q_0	b	q_1	a	R
q_0		acc	_	L
q_1	а	q_0	b	L
q_1	b,_	q_1	b	L

לפי הטבלת המעברים קיים הצעד

 $q q_0$ b a b \vdash_M aa q_1 ab

נניח שבדקדוק כללי G קיים אותו הצעד

$$q q_0 \text{ bab} \xrightarrow{G} \text{aa} q_1 \text{ ab}$$

ניתן לממש צעד זה על ידי הכלל

$$q_0 b \rightarrow a q_1$$

באופן כללי,

עבור כל פונקצית המעברים של M שגוררת תזוזה ימינה מצורה ullet

$$\delta\left(q,\sigma\right) = \left(p,\pi,R\right)$$

מצורה G מצורה על ידי כלל של מעבר הדקדוק

$$q\sigma \to \pi p$$
.

עבור כל פונקצית המעברים של M שגוררת תזוזה שמאלה מצורה ullet

$$\delta\left(q,\sigma\right) = \left(p,\pi,L\right)$$

אז לכל די הכלל מעבר הכלל G ב- $au \in \Gamma$ אז לכל

$$\tau q\sigma \to p\tau\pi$$
.

5.6 ההיררכיה של חומסקי

מודל חישובי	דקדוק	משפחת שפות
מכונת טיורינג	כללי	קבילות
אוטומט מחסנית	חסר הקשר	חסרות הקשר
אוטומט סופי	רגולרי	רגולריות

- היררכיה של חומסקי קושרת לנו בין משפחותשל ,שפות דקדוקים ומודלים חישוביים.
- בתחתית ההיררכיה נמצאות השפות הרגולריות שנוצרות על ידי דקדוקים רולריים ומתקבלות על ידי אוטומטים סופיים.
- מעליהן נמצאות השפות חסרות ההקשר שנוצרות על ידי דקדוקים חסרי הקשר ומתקבלות על ידי אוטומטי מחסנית.
 - ומעליהן נמצאות השפות הקבילות שנוצרותעל ידי דקדוקים כלליים ומתקבלותעל ידי מכונות טיורינג.
 - כל רמה בהיררכיה מכילה ממש את הרמה שמתחתיה.
 - * כל שפה רגולרית היא גם חסרתהקשר ,אבל יש שפות חסרות הקשרשאינן רגולריות.
 - * כל שפה חסרת הקשר היא קבילה, אבל יש שפות קבילות שאינן חסרות הקשר.

5.7 כל שפה חסרת הקשר הינה כריעה

לפי ההיררכיה של חומסקי אנחנו יודעים לקבוע שכל שפה חסרת הקשר היא קבילה.

האם כל שפה חסרת הקשר הינה כריעה?

משפט 5.5

יהי שעומקו w שעומקו עץ גזירה אזי קיים אזי הישר ו- $w \in L(G)$ דקדוק אירה של דקדוק $G = (V, \Sigma, S, R)$ יהי $(|V|+1)\,(|w|+1)$

w של עץ הגזירה הקטן ביותר (מבחינת מספר קדקודים) של T

.בשלילה נניח שב-T יש מסלול מהשורש לעלה שמכיל לפחות $(|V|+1)\,(|w|+1)$ קודקודים פנימיים.

נסמן מסלול זה ב-

$$p=(u_1,u_2,\ldots,u_m).$$

 u_i -שנוצרת מ- u_i את תת-המחרוזת של שנוצרת מ- u_i עבור קודקוד במסלול נסמן ב u_i

ממש את מכיל ממש את $s\left(u_{i}\right)$ היא משמעותי של $s\left(u_{i}\right)$. אומרים שקדקוד אומרים היא $s\left(u_{i+1}\right)$ היא מכיל ממש את מתקיים ש- $s\left(u_{i+1}\right)$

$oldsymbol{w}$ כל קודקוד משמעותי מוסיף לפחות אות אחת ל-

לכן, ישנם לכל היותר |w| קודקודים משמעותיים.

לכן, ברצף הקודקודים הפנימיים (u_1,u_2,\ldots,u_m) שאורכן לפחות (|V|+1), בהכרח ישנו תת רצף (|V|+1), ברצף הקודקודים הפנימיים (|V|+1), שבו כל הקודדוקים לא משמעותיים.

ברצף זה בהכרח ישנם שני קודקודים, נאמר j < k , u_i, u_k שמסומנים עם אותו משתנה.

לכן בעץ הגזירה, ניתן להחליף את הקודקוד u_j יחד עם כל תת העץ שמתחתיו- בקודקוד u_k , יחד עם כל תת העץ שמתחתיו.

כיוון שכל הקודקודים שבין u_i ל- u_i (כולל) הם לא משמעותיים, החלפה זו לא משנה את המחרוזת הנוצרת.

.w כלומר, העץ החדש גם הוא עץ הגזירה עבור

בסתירה להנחת המינימליות של העץ.

משפט 5.6

כל שפה חסרת הקשר היא כריעה.

AL(G) התוכנית הלא דטרמיניס הבאה מכריעה את הוכחה: בהינתן דקדוק חסר הקשר $G=(V,\Sigma,S,R)$

w קלט: מחרוזת

פלט: כן או לא.

- (|V|+1)(|w|+1) נחש עץ גזירה של הדקדוק G בעומק לכל נחש עץ גזירה (1
- ."איתר החזר "כן" איתר המחרוזת w. אם איתר החזר "כן" איתר החזר "לא".

 $w\in L(G)$ שני שלבי התוכנית בהכרח מסתיימים. לכן, זו תוכנית להכרעה. ישנו חישוב שמחזיר "כן" אם ורק אם L(G) לכן זו תוכנית שמכריעה את