COM307000 - Software

Dr. Anca Jurcut
E-mail: anca.jurcut@ucd.ie

School of Computer Science and Informatics University College Dublin, Ireland

Malware

Malicious Software

- Malware is not new...
 - Fred Cohen's initial virus work in 1980's
 - Cohen used viruses to break MLS systems
- Types of malware (no standard definition)
 - o Virus passive propagation
 - Worm active propagation
 - Trojan horse unexpected functionality
 - Trapdoor/backdoor unauthorized access
 - Rabbit exhaust system resources
 - Spyware steals info, such as passwords

Where do Viruses Live?

- □ They live just about anywhere, such as...
- □ Boot sector
 - o Take control before anything else
- Memory resident
 - Stays in memory
- Applications, macros, data, etc.
- Library routines
- Compilers, debuggers, virus checker, etc.
 - o These would be particularly nasty!

Malware Examples

- Brain virus (1986)
- □ Morris worm (1988)
- □ Code Red (2001)
- □ SQL Slammer (2004)
- □ Stuxnet (2010)
- Botnets (currently fashionable malware)
- □ Future of malware?

Brain

- First appeared in 1986
- More annoying than harmful
- A prototype for later viruses
- Not much reaction by users
- What it did
 - 1. Placed itself in boot sector (and other places)
 - 2. Screened disk calls to avoid detection
 - 3. Each disk read, checked boot sector to see if boot sector infected; if not, goto 1
- Brain did nothing really malicious

Morris Worm

- □ First appeared in 1988
- What it tried to do
 - o Determine where it could spread, then...
 - ...spread its infection and...
 - o ...remain undiscovered
- Morris claimed his worm had a bug!
 - It tried to re-infect infected systems
 - Led to resource exhaustion
 - o Effect was like a so-called rabbit

How Morris Worm Spread

- Obtained access to machines by...
 - o User account **password guessing**
 - o Exploit buffer overflow in fingerd
 - o Exploit trapdoor in sendmail
- Flaws in fingerd and sendmail were well-known, but not widely patched

Bootstrap Loader

- Once Morris worm got access...
- "Bootstrap loader" sent to victim99 lines of C code
- □ Victim compiled and executed code
- Bootstrap loader fetched the worm
- □ Victim authenticated sender
 - o Don't want user to get a bad worm...

How to Remain Undetected?

- ☐ If transmission interrupted, all code deleted
- Code encrypted when downloaded
- Code deleted after decrypt/compile
- When running, worm regularly changed name and process identifier (PID)

Morris Worm: Bottom Line

- □ Shock to the Internet community of 1988
 - o Internet of 1988 *much* different than today
- Internet designed to survive nuclear war
 - o Yet, brought down by one graduate student!
 - o At the time, Morris' father worked at NSA...
- Could have been much worse
- □ Result? CERT, more security awareness
- But should have been a wakeup call

Code Red Worm

- Appeared in July 2001
- □ Infected more than 250,000 systems in about 15 hours
- Eventually infected 750,000 out of about 6,000,000 vulnerable systems
- Exploited buffer overflow in Microsoft IIS server software
 - o Then monitor traffic on port 80, looking for other susceptible servers

Code Red: What it Did

- □ Day 1 to 19 of month: spread its infection
- Day 20 to 27: distributed denial of service attack (DDoS) on www.whitehouse.gov
- Later version (several variants)
 - Included trapdoor for remote access
 - o Rebooted to flush worm, leaving only trapdoor
- □ Some said it was "beta test for info warfare"
 - But, no evidence to support this

SQL Slammer

- □ Infected 75,000 systems in 10 minutes!
- At its peak, infections doubled every 8.5 seconds
- □ Spread "too fast"...
- ...so it "burned out" available bandwidth

Aggregate Scans/Second in the 12 Hours After the Initial Outbreak

Aggregate Scans/Second in the first 5 minutes based on Incoming Connections To the WAIL Tarpit

Why was Slammer Successful?

- □ Worm size: one 376-byte UDP packet
- □ Firewalls often let one packet thru
 - Then monitor ongoing "connections"
- Expectation was that much more data required for an attack
 - So no need to worry about 1 small packet
- □ Slammer defied "experts"

Stuxnet

- □ Malware for information warfare...
- □ Discovered in 2010
 - o Origins go back to 2008, or earlier
- Apparently, targeted Iranian nuclear processing facility
 - o Reprogrammed specific type of PLC
 - o Changed speed of centrifuges, causing damage to about 1000 of them

Stuxnet

- Many advanced features including...
 - Infect system via removable drives able to get behind "airgap" firewalls
 - Used 4 unpatched MS vulnerabilities
 - o Updates via P2P over a LAN
 - Contact C&C server for code/updates
 - o Includes a Windows rootkit for stealth
 - Significant exfiltration/recon capability
 - Used a compromised private key

Malware Related to Stuxnet

- □ Duqu (2011)
 - Likely that developers had access to Stuxnet source code
 - Apparently, used mostly for info stealing
- □ Flame (2012)
 - May be "most complex" malware ever
 - Very sophisticated spyware mechanisms

Trojan Horse Example

- □ Trojan: unexpected functionality
- Prototype trojan for the Mac
- □ File icon for freeMusic.mp3:

- □ For a real mp3, double click on icon
 - o iTunes opens
 - o Music in mp3 file plays
- □ But for freeMusic.mp3, unexpected results...

Mac Trojan

- □ Double click on freeMusic.mp3
 - o iTunes opens (expected)
 - o "Wild Laugh" (not expected)
 - Message box (not expected)

Trojan Example

- How does freeMusic.mp3 trojan work?
- □ This "mp3" is an application, not data

- □ This trojan is harmless, but...
- ...could have done anything user could do
 - o Delete files, download files, launch apps, etc.

Malware Detection

- □ Three common detection methods
 - Signature detection
 - Change detection
 - Anomaly detection
- We briefly discuss each of these
 - And consider advantages...
 - ...and disadvantages

Signature Detection

- □ A **signature** may be a string of bits in exe
 - o Might also use wildcards, hash values, etc.
- □ For example, W32/Beast virus has signature 83EB 0274 EB0E 740A 81EB 0301 0000
 - o That is, this string of bits appears in virus
- We can search for this signature in all files
- □ If string found, have we found W32/Beast?
 - Not necessarily string could be in normal code
 - o At random, chance is only $1/2^{112}$
 - But software is not random...

Signature Detection

- Advantages
 - Effective on "ordinary" malware
 - Minimal burden for users/administrators
- Disadvantages
 - o Signature file can be large (10s of thousands)...
 - ...making scanning slow
 - Signature files must be kept up to date
 - o Cannot detect unknown viruses
 - Cannot detect some advanced types of malware
- The most popular detection method

Change Detection

- □ Viruses must live somewhere
- ☐ If you detect a file has changed, it might have been infected
- How to detect changes?
 - o Hash files and (securely) store hash values
 - o Periodically re-compute hashes and compare
 - o If hash changes, file might be infected

Change Detection

- Advantages
 - Virtually no false negatives
 - Can even detect previously unknown malware
- Disadvantages
 - Many files change and often
 - Many false alarms (false positives)
 - Heavy burden on users/administrators
 - o If suspicious change detected, then what? Might fall back on signature detection

Anomaly Detection

- Monitor system for anything "unusual" or "virus-like" or "potentially malicious" or ...
- Examples of anomalous things
 - o Files change in some unexpected way
 - System misbehaves in some way
 - Unexpected network activity
 - o Unexpected file access, etc., etc., etc., etc.
- □ But, we must first define "normal"
 - And normal can (and must) change over time

Anomaly Detection

- Advantages
 - Chance of detecting unknown malware
- Disadvantages
 - No proven track record
 - Trudy can make abnormal look normal (go slow)
 - Must be combined with another method (e.g., signature detection)
- Also popular in intrusion detection (IDS)
- □ Difficult unsolved (unsolvable?) problem
 - o Reminds me of AI...

Next...Future of Malware

- Recent trends
 - o Encrypted, polymorphic, metamorphic malware
 - Fast replication/Warhol worms
 - o Flash worms, slow worms
 - o Botnets
- □ The future is bright for malware
 - Good news for the bad guys...
 - o ...bad news for the good guys
- □ Future of malware detection?