09. Operační systém

Program, který zabezpečuje komunikaci mezi technickým vybavením počítače a ve zjednodušené formě uživatelem.

Hlavní Úkoly OS

- Zajišťovat komunikaci mezi uživatelem a počítačem
- Vytvořit stabilní aplikační rozhraní (API) pro procesory
- Přidělovat procesorům systémové zdroje
- Provádět správu dat
- Provádět správu HW zdrojů (paměť, I/O zařízení...)

Vlastnosti OS

- Prostředí
- Kooperativní Multitasking
- Preemptivní multitasking

Služby OS

Procesy důležité pro běh operačního systému, které běží nezávisle na uživateli.

- Správa procesorů
- Správa procesů
- Správa paměti
- Správa souborů

Rozdělení OS

Podle prostředí

- Graphical User Interface (GUI)
- Text User Interface (TUI)
- Shell

- Správa vstupně/výstupního systému
- Sítě
- Systém ochran
- Interpret příkazů

Podle uživatelů

MonoUser

- Jednouživatelský systém
- o Předpokládá se, že s počítačem bude pracovat pouze jeden uživatel
- o Tento systém neobsahuje téměř žádný systém pro ochranu neoprávněného přístupu

MultiUser

- Víceuživatelský systém
- o Umožňuje uživatelům jak sdílet, tak ochraňovat svoje data
- Umožňuje současně používat programy
- Vhodný zejména pro síťově prostředí
- o Každý uživatel takového systému má svoje uživatelské jméno a heslo
- Seznam uživatelů, kteří mají k počítači přístup, sestavuje administrátor (superuživatel)

Podle zpracování procesů

MonoTask

MultiTask

- o Schopnost operačního systému provádět několik procesů současně
- Jádro operačního systému velmi rychle střídá na procesoru běžící procesy, takže uživatel počítače má dojem, že běží současně

Kooperativní Multitasking

- o Procesor je vždy přidělen právě jedné aplikaci.
- o Jednotlivé aplikace jsou zavedeny do paměti.
- o Aplikace pracuje do doby, než sama uvolní procesor pro jinou aplikaci.
- o Pád aplikace v tomto systému může vážné narušit chod jiných aplikací i operačního systému
- Výhodou je menší hardwarová náročnost než u preemptivního multitaskingu

• Preemptivní Multitasking

- o Pád jednoho programu nemůže ovlivnit chod jiných
- o To jak dlouho bude daný program pracovat, záleží pouze na operačním systému
- Nevýhodou je větší hardwarová náročnost

Multithreading

- o Jednotlivé procesy jsou rozděleny na vlákna
- o Jedna aplikace mívá hlavní řídící vlákno, z kterého se pak děli další
- o Procesorový čas je přidělován podle priorit jednotlivým vláknům

Registr příznaků

Velikost registru příznaků, počet, pozice i význam jednotlivých bitů závisí na typu procesoru (jeho architektuře). Architektura x86 měla původně registr příznaku **16bitový** a u procesorů typu **8086** byly ještě některé bity nevyužívané, ale od procesorů **80386** výš už byl **32bitový**.

Zero Flag

- Příznak vynulování
- Nastavován, je-li výsledkem operace nula

Carry Flag

- Příznak přenosu
- Nastavován například operacemi sčítání a odčítání, dojde-li k výpůjčce nebo k přenosu z nejvýznamnějšího bitu
- Také jej mohou nastavovat bitové operace

Overflow Flag

- Příznak přetečení
- Nastavován, pokud se výsledek operace nevejde do registru při počítání ve dvojkovém doplňku

Sign Flag

- Příznak znaménka
- Nastavován, je-li výsledek matematické operace záporný

Parity Flag

- Příznak parity
- Nastavován podle toho, je-li počet nastavených bitů výsledku poslední operace sudý či lichý

Vztahy OS a CPU

Vlastnosti operačního systému určují vlastnosti CPU

8086

- 16bit; x86 mikroprocesor
- 1978
- 1 MB adresovatelné paměti
- Reálný režim
- Dělí se na 2 jednotky:
 - o Bus Interface Unit (Sběrnicová)
 - Zajišťuje styk procesoru se sběrnicí a výpočet adres
 - Execution Unit (Vykonávací)
 - Vykonává vlastní instrukce

80286

- 1982
- 16 MB adresovatelné paměti
- Přinesl chráněný režim
 - o Oddělení jednotlivých procesů
 - o Předpoklad pro bezpečný multitasking

80386

- 1986
- Rozšířil chráněný režim
- Stránkování
 - o 4kB
 - o Odkládání operační paměti na výměnné medium
- V86
 - Virtuální izolované 8086
 - Vytvoření chráněné oblasti → v ní se vytvoří reálný režim

80486

- 1989
- Obsahuje interní cache
- Interní matematický koprocesor (verze DX)
- Zvýšen vnitřní kmitočet (interní násobič; až 2x)

PENTIUM

- 1993
- Superskalární architektura
 - Zvyšování výkonu CPU
 - Více výpočetních jednotek (ALU)
 - o Během jednoho strojového taktu zvládal provést 2 instrukce

PENTIUM 4

- 2000
- 2 vlákna
- Hyper-Threading
 - Vlastnost, která umožňovala procesoru tvářit se jako dva logické procesory

Windows

MS-DOS

• 1981

Windows 3.11

- 1993
- Nadstavba MS-DOS
- Adresace paměti nad 64kB

Windows NT 3.5

- 1994
- Souborový systém NTFS (možnost udělovat práva)
- Nové jádro OS
- Workstation | NT Server

Windows 95

- 1995
- 32bit
- Dlouhé názvy souborů, drag & drop, zařízení
 PnP
- Podpora práce v síti

Windows NT 4

- 1996
- Workstation | NT Server
- Nepodporuje FAT32 (Ize doinstalovat)

Windows 98

- 1998
- Vylepšení 95
- Více monitorů, integrovaný browser
- Grafické vylepšení
- DVD, USB, FireWire

Windows 2000 (Windows NT 5.0)

- 2000
- Workstation | NT Server
- Důraz na bezpečnost

Windows Me

- 2000
- Lepší podpora multimedií
- Vylepšení 98

Windows XP

- 2001
- Home | Professional
- Technologie NT
- Nové UI
- Integrovaný firewall
- I 64bit
- Nutná aktivace

Windows Vista

- 2006
- Starter | Home | Business | Enterprise |
 Ultimate
- Aero, IPv6, podpora RSS
- Malá kompatibilita

Windows 7

- 2009
- Plná kompatibilita se vším (prakticky)
- Starter | Home | Professional | Enterprise |
 Ultimate
- Více jádrové CPU, gadgety

Windows 8

- 2012
- Core | Pro | Enterprise | RT
- Metro, žádný start, správce úloh (nový)
- Nativní podpora USB 3.0

Windows 10

- 2015
- Home | Pro | Enterprise | Education | LTSB
- Sjednocení všech zařízení