CSC165H1 Problem Set 2

Make Zhang, RuiJian An, HaoRan Fang

Feb 15 2017

Q1.AND vs. IMPLIES

(a) Translate and Using Prove: $\forall x,y,z \in \mathbb{Z}, (x|y) \land (y|z) \Rightarrow x|z$ $\equiv \forall x,y,z \in \mathbb{Z}, (\exists k_1 \in \mathbb{Z}, y = k_1x) \land (\exists k_2 \in \mathbb{Z}, z = k_2 y) \Rightarrow (\exists k_3 \in \mathbb{Z}, z = k_3 x)$

Proof. Let $x,y,z \in \mathbb{Z}$, Assume $\exists k_1 \in \mathbb{Z}$, $y = k_1x$ and $\exists k_2 \in \mathbb{Z}$, $z = k_2y$. Want to prove $\exists k_3 \in \mathbb{Z}$, $z = k_3x$. Let $k_3 = k_1k_2$, $k_3 \in \mathbb{Z}$.

$$k_3x = k_1k_2x$$

 $k_3x = k_2y$ (Since, $y = k_1x$)
 $k_3x = z$ (Since, $z = k_2y$)

$$\forall x, y, z \in \mathbb{Z}, (x \mid y) \land (y \mid z) \Rightarrow x \mid z \text{ is True} \quad \Box$$

(b) **Using Disprove**: $\neg (\forall x,y,z \in \mathbb{Z}, (x|y) \land (y|z) \land (x|z))$ $\equiv \exists x,y,z \in \mathbb{Z}, (x\nmid y) \lor (y\nmid z) \lor (x\nmid z)$

Proof. Let
$$x = 3$$
, $y = 4$, $z = 5$, $x,y,z \in \mathbb{Z}$. $3 \nmid 4 \lor 4 \nmid 5 \lor 3 \nmid 5$ $x \nmid y \lor y \nmid z \lor x \nmid z$ $\forall x, y, z \in \mathbb{Z}, (x \mid y) \land (y \mid z) \land (x \mid z) \text{ is False } \square$

Q2. Alternating quantifiers and the floor function.

(a) Using Prove: $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, \forall x \in \mathbb{R}, \lfloor nx \rfloor - n \lfloor x \rfloor \leq k$

Proof. Let $n \in \mathbb{N}$, Let k = n, $k \in \mathbb{N}$, Let $x \in \mathbb{R}$.

$$\lfloor nx \rfloor - n \lfloor x \rfloor = (nx - \varepsilon_1) - n(x - \varepsilon_2) \quad (By \ property \ 1)$$

$$= nx - \varepsilon_1 - nx + n\varepsilon_2$$

$$= n\varepsilon_2 - \varepsilon_1$$

$$n\varepsilon_2 - \varepsilon_1 \le n\varepsilon_2 \quad (Since \ 0 \le \varepsilon_1 \le 1)$$

$$n\varepsilon_2 \le n \quad (Since \ 0 \le \varepsilon_2 \le 1)$$

$$n = k$$

$$\lfloor nx \rfloor - n \lfloor x \rfloor \le k$$

$$\forall$$
 n \in N, \exists k \in N, \forall x \in R, $|nx| - n |x| \le k$ is True

(b) Using Disprove: $\neg(\exists \ k \in \mathbb{N}, \ \forall \ n \in \mathbb{N}, \ \forall \ x \in \mathbb{R}, \ \lfloor nx \rfloor - n \ \lfloor x \rfloor \le k)$ $\equiv \forall \ k \in \mathbb{N}, \ \exists \ n \in \mathbb{N}, \ \exists \ x \in \mathbb{R}, \ \lfloor nx \rfloor - n \ \lfloor x \rfloor > k$

Proof. Let $k \in \mathbb{N}$, Let n = 2(k+1), $n \in \mathbb{N}$, x = k + 0.5, $x \in \mathbb{R}$.

$$\lfloor nx \rfloor - n \lfloor x \rfloor = \lfloor (n(k+0.5)) \rfloor - n \lfloor (k+0.5) \rfloor$$

$$= \lfloor nk + 0.5n \rfloor - n(k + \lfloor 0.5) \rfloor) \quad (By \ property \ 2)$$

$$= \lfloor nk + 0.5n \rfloor - nk$$

$$= \lfloor nk + 0.5 * 2(k+1) \rfloor - nk$$

$$= nk + k + 1 - nk \quad (By \ property \ 3, Since \ n, k \in \mathbb{N})$$

$$= k + 1$$

$$k + 1 > k$$

$$|nx| - n |x| > k$$

$$\forall \ \mathbf{k} \in \mathbf{N}, \ \exists \ \mathbf{n} \in \mathbb{N}, \ \exists \ \mathbf{x} \in \mathbb{R}, \ \lfloor nx \rfloor - n \ \lfloor x \rfloor > k \ \text{is True} \\ \exists \ \mathbf{k} \in \mathbf{N}, \ \forall \ \mathbf{n} \in \mathbb{N}, \ \forall \ \mathbf{x} \in \mathbb{R}, \ \lfloor nx \rfloor - n \ \lfloor x \rfloor \leq k \ \text{is False}.$$

Q3.More with primes.

- (a) Composite(n): $n > 1 \land (\neg Prime(n))$ $\equiv n > 1 \land (\exists d \in \mathbb{N}, d \mid n \land d \neq 1 \land d \neq n)$
- (b) **Prove by cases**: $\forall x \in \mathbb{N}$, Composite $(x^2 + 5x + 4)$ Let $x \in \mathbb{N}$.

Case
$$1: x = 0$$

Let $x = 0, x \in \mathbb{N}$
 $x^2 + 5x + 4 = 4$
Let $d = 2, d \in \mathbb{N}$
 $(4 > 1) \land (2 \mid 4) \land (2 \neq 1) \land (2 \neq 4)$
4 is a Composite.

Case 2:
$$x > 0$$

 $x^2 + 5x + 4 = (x + 1)(x + 4)$
Let $x > 0, x \in \mathbb{N}$, Let $d = (x + 4), d \in \mathbb{N}$.
 $x > 0$
 $x + 1 > 1$
 $x + 4 > 4$
 $(x + 1)(x + 4) > 4 > 1$

$$(x + 4) | (x + 1)(x + 4)$$

 $(x + 4) \neq 1$ (Since $x > 0$)
 $(x + 4) \neq (x + 1)(x + 4)$ (Since $x > 0$)
 $x^2 + 5x + 4$ is a Composite.

 $\forall x \in \mathbb{N}$, Composite $(x^2 + 5x + 4)$ is True. \square

(c)**Disprove** :¬ (
$$\forall$$
 x, y \in N, x > y \Rightarrow Composite(x² - y²))
 \equiv (\exists x, y \in N, x > y \land ¬ Composite(x² - y²))
 \equiv \exists x, y \in N, x > y \land (x² - y²) > 1 \land (\exists d \in N, d | (x² - y²) \land d \neq 1 \land d \neq (x² - y²))

Let
$$x = 1, y = 0, x, y \in \mathbb{N}$$
.
 $1 > 0$
 $x > y$
 $x^2 - y^2 = 1$

 $1 \not > 1$.

1 is not a Composite.

 $\begin{array}{l} \exists \ \mathbf{x}, \ \mathbf{y} \in \mathbb{N}, \ \mathbf{x} > \mathbf{y} \land \neg \ \mathrm{Composite}(\mathbf{x}^2 - y^2) \ is \ True. \\ \forall \ \mathbf{x}, \ \mathbf{y} \in \mathbb{N}, \ \mathbf{x} > \mathbf{y} \Rightarrow \mathrm{Composite}(\mathbf{x}^2 - y^2) \ is \ False. \square \end{array}$

Q4.Function growth.

(a) **Prove**: $\exists n_0 \in \mathbb{R}_{\geq 0}, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow n + 165 \leq n^2$. Let $n_0 = 165, n_0 \in \mathbb{R}_{\geq 0}$. Let $n \in \mathbb{N}$. Assume $n \geq 165$.

$$n \ge 165$$

$$n + n \ge 165 + n$$

$$2n \ge 165 + n$$

$$n \ge 2$$

$$n^2 \ge 2n$$

$$n^2 \ge 165 + n$$

 $\exists n_0 \in \mathbb{R}_{>0}, \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow n + 165 \leqslant n^2 \text{ is } True. \square$

(b) **Prove**: $\forall a, b \in \mathbb{R}_{\geq 0}, \exists n_0 \in \mathbb{R}_{\geq 0}, \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow an + b \leqslant n^2$. Let $a, b \in \mathbb{R}_{\geq 0}, Let \ n_0 = b + a + 1, n_0 \in \mathbb{R}_{\geq 0}$. Let $n \in \mathbb{N}$. Assume $n \geqslant b + a + 1$.

$$n = n$$

$$an = an$$

$$an + b \le an + n \quad (Since, \ n \ge b.)$$

$$an + b \le (a + 1)n$$

$$an + b \le n^2 \quad (Since, \ n \ge a + 1.)$$

$$\forall a, b \in \mathbb{R}_{\geq 0}, \exists n_0 \in \mathbb{R}_{\geq 0}, \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow an + b \leqslant n^2 \text{ is } True. \square$$