week6 exercise

Xiang Li

2023/11/1

Exercise 1

1

```
f1 = function (df){
  num_df = df[, sapply(df, is.numeric)]
  summary_df = data.frame(colname = colnames(num_df), mean = unname(sapply(num_df, mean)))
  result = list(dimensions = dim(df), names = colnames(df), summary = summary_df)
  return(result)
}
```

2

print(f1_result[[3]])

```
data(iris)
iris_df = as.data.frame(iris)
f1_result = f1(iris_df)
f1_result
## $dimensions
## [1] 150
##
## $names
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
## $summary
          colname
## 1 Sepal.Length 5.843333
## 2 Sepal.Width 3.057333
## 3 Petal.Length 3.758000
## 4 Petal.Width 1.199333
3
```

```
## colname mean
## 1 Sepal.Length 5.843333
## 2 Sepal.Width 3.057333
## 3 Petal.Length 3.758000
## 4 Petal.Width 1.199333

4

print(f1_result[[2]][1])

## [1] "Sepal.Length"
```

Exercise 2

```
library(brolgar)
data(heights)
heights_df = as.data.frame(heights)
```

```
height_scatter = function(country_name){
  coun_heights_df = heights_df[heights_df$country == country_name, ]
  plot(coun_heights_df$year, coun_heights_df$height_cm, type = 'p', xlab = 'year', ylab = 'height_cm')
}
height_scatter('China')
```



```
height_line = function(country_name){
  coun_heights_df = heights_df[heights_df$country == country_name, ]
  plot(coun_heights_df$year, coun_heights_df$height_cm, type = 'l', xlab = 'year', ylab = 'height_cm')
}
height_line('China')
```



```
height_scatter = function(country_name, shape = '.', col = 'blue'){
  coun_heights_df = heights_df[heights_df$country == country_name, ]
  plot(coun_heights_df$year, coun_heights_df$height_cm, type = 'p', xlab = 'year', ylab = 'height_cm',
}
height_scatter('China', shape = '+', col = 'red')
```



```
coun_v = c('Argentina', 'Brazil', 'Honduras', 'Nicaragua', 'Panama', 'Sri Lanka', 'Vietnam')
n = length(coun_v)
coun_heights_df = heights_df[(heights_df$country %in% coun_v) & (heights_df$year == 1990), ]
coun_heights_df = coun_heights_df[order(coun_heights_df$height_cm, decreasing = TRUE), ]
par(mar=c(3,5,3,2))
barplot(coun_heights_df$height_cm, names.arg = coun_heights_df$country, horiz = TRUE, xlab = 'height_cm
```



```
heights1950_df = heights_df[(heights_df$continent == 'Asia') & (heights_df$year == 1950), ]
heights1990_df = heights_df[(heights_df$continent == 'Asia') & (heights_df$year == 1990), ]
hist(heights1950_df$height_cm, xlab = 'height_cm', main = 'Histogram of Height in 1950 of Asia')
```

Histogram of Height in 1950 of Asia

plot(density(heights1950_df\$height_cm), main = 'Density of Height in 1950 of Asia')
polygon(density(heights1950_df\$height_cm), col = 'skyblue')

Density of Height in 1950 of Asia

hist(heights1990_df\$height_cm, xlab = 'height_cm', main = 'Histogram of Height in 1990 of Asia')

Histogram of Height in 1990 of Asia

plot(density(heights1990_df\$height_cm), main = 'Density of Height in 1990 of Asia')
polygon(density(heights1990_df\$height_cm), col = 'skyblue')

Density of Height in 1990 of Asia

Exercise 3

```
data_df = read.csv('data/data.csv', skip = 4)
```

```
data1990_df = data_df[order(data_df$X1990, decreasing = TRUE), ]
top20 = head(data1990_df$Country.Name, n = 20)
top20
```

```
##
    [1] "World"
    [2] "IDA & IBRD total"
##
    [3] "Low & middle income"
##
    [4]
       "Middle income"
##
    [5] "IBRD only"
##
##
   [6] "Upper middle income"
    [7] "Early-demographic dividend"
##
##
   [8] "Late-demographic dividend"
  [9] "Lower middle income"
## [10] "East Asia & Pacific"
```

```
## [11] "East Asia & Pacific (excluding high income)"
## [12] "East Asia & Pacific (IDA & IBRD countries)"
## [13] "South Asia"
## [14] "South Asia (IDA & IBRD)"
## [15] "China"
## [16] "OECD members"
## [17] "High income"
## [18] "Post-demographic dividend"
## [19] "India"
## [20] "IDA total"
```

 $\mathbf{2}$

```
top20_df = data_df[data_df$Country.Name %in% top20, ]
plot(top20_df$X1960, top20_df$X1970, type ='p', xlab = "1960's height", ylab = "1970's height", xlim =
```



```
plot(log(top20_df$X1960, base = 10), log(top20_df$X1970, base = 10), type ='p', xlab = "1960's height",
```


All of top20 countries experienced a population growth.

 $\mathbf{5}$

```
par(mfrow = c(2, 2))
plot(log(top20_df$X1960, base = 10), log(top20_df$X1980, base = 10), type ='p', xlab = "1960's height",
lines(x = seq(8, 10, 0.1), y = seq(8, 10, 0.1), col = 'red', type = 'l')
plot(log(top20_df$X1960, base = 10), log(top20_df$X2000, base = 10), type ='p', xlab = "1960's height",
lines(x = seq(8, 10, 0.1), y = seq(8, 10, 0.1), col = 'red', type = 'l')
plot(log(top20_df$X1960, base = 10), log(top20_df$X2010, base = 10), type ='p', xlab = "1960's height",
lines(x = seq(8, 10, 0.1), y = seq(8, 10, 0.1), col = 'red', type = 'l')
plot(log(top20_df$X1960, base = 10), log(top20_df$X2020, base = 10), type ='p', xlab = "1960's height",
lines(x = seq(8, 10, 0.1), y = seq(8, 10, 0.1), col = 'red', type = 'l')
```


Exercise 4

```
f = function (x){
    if (x <= -3){
        result = -5
}
else if((x > -3) & (x < 1)){
        result = log(x+5)
}
else if (x == 1){
        result = 2
}
else if ((x > 1) & (x <= 14)){
        result = (x+3)**0.5
}
else {
        result = log(x)
}
return(result)
}</pre>
```

```
x = seq(-5, 17, 0.1)
plot(x, sapply(x, f), type = 'l')
```


 $\mathbf{2}$

```
plot(x, sapply(x, f), type = 'l', col = 'blue', lwd = 2)
```



```
plot(x, sapply(x, f), type = 'l', col = 'blue', lwd = 2, ylab = expression(f[X](x)))
```


Exercise 5

1

```
splitiris = split(iris, iris$Species)
```

```
n = length(splitiris)
for (i in 1:n){
   i_df = splitiris[[i]]
   plot(x = i_df$Sepal.Length, y = i_df$Sepal.Width, xlab = 'Sepal Length', ylab = 'Sepal Widt', main = 'Sepal Length', ylab = 'Sepal Length', ylab = 'Sepal Widt', main = 'Sepal Length', ylab =
```

Scatter Plot of setosa

Scatter Plot of versicolor

Scatter Plot of virginica


```
n = length(splitiris)
for (i in 1:n){
   i_df = splitiris[[i]]
   plot(x = i_df$Sepal.Length, y = i_df$Sepal.Width, xlab = 'Sepal Length', ylab = 'Sepal Widt', main = points(x = mean(i_df$Sepal.Length), y = mean(i_df$Sepal.Width), pch = 24,col="black")
}
```

Scatter Plot of setosa

Scatter Plot of versicolor

Scatter Plot of virginica


```
splitiris1 = splitiris[-which(names(splitiris) == 'setosa')]
```