Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Chapter 11

Trees

Discrete Structures for Computing

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le Faculty of Computer Science and Engineering University of Technology - VNUHCM {htnguyen;trtanh}@hcmut.edu.vn

Contents

Trees Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning

Trees Prim's Algorithm

Kruskal's Algorithm

Introduction

Properties of Trees

2 Tree Traversal

3 Applications of Trees

Binary Search Trees **Decision Trees**

4 Spanning Trees

5 Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

BÓI HCMUT-CNCP

11.2

Course outcomes

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

	Course learning outcomes \(\(\Lambda \)
	KHOWACO
L.O.1	Understanding of logic and discrete structures
	L.O.1.1 – Describe definition of propositional and predicate logic
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs
	4
L.O.2	Represent and model practical problems with discrete structures
	L.O.2.1 – Logically describe some problems arising in Computing
	L.O.2.2 – Use proving methods: direct, contrapositive, induction
	L.O.2.3 – Explain problem modeling using discrete structures
L.O.3	Understanding of basic probability and random variables
	L.O.3.1 – Define basic probability theory
	L.O.3.2 – Explain discrete random variables
	ΤΔΙΤΙΕΙΙ SIFII ΤΔΡ
L.O.4	Compute quantities of discrete structures and probabilities
	L.O.4.1 – Operate (compute/ optimize) on discrete structures
	L.O.4.2 – Compute probabilities of various events, conditional
	ones, Bayes theorem

Introduction

Ngoc Le

 Very useful in computer science: search algorithm, game winning strategy, decision making, sorting, ...

 Other disciplines: chemical compounds, family trees, organizational tree, ...

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye

Contents

ntroduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

A tree $(c\hat{a}y)$ is a connected undirected graph with no simple circuits. Consequently, a tree must be a simple graph.

Definition

BỞI HCMUT-CNCP

Graphs containing no simple circuits that are not necessarily connected is forest $(r \grave{v} ng)$, in which each connected component is a tree.

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees
Spanning Trees

pulling frees

Minimum Spanning Trees Prim's Algorithm

Kruskal's Algorithm

Kruskai s Algorio

Rooted Trees

Definition

A rooted tree (cây có gốc) is a tree in which:

- One vertex has been designated as the root and
- Every edge is directed away from the root

BACHKHOACNCP.COM

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Terminology

Definition

- parent (cha) of v is the unique u such that there is a directed edge from u to v
- when u is the parent of v, v is called a child (con) of u
- vertices with the same parent are called siblings (anh em)
- the ancestors (tổ tiên) of a vertex are the vertices in the path from the root to this vertex (excluding the vertex itself)
- descendants ($con\ ch\acute{a}u$) of a vertex v are those vertices that have v as an ancestor

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyer Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Terminology

Definition

- a vertex of a tree is called a leaf (lá) if it has no children
- vertices that have children are called internal vertices (dinh trong)

BACHKHOACNCP.COM

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Terminology

Definition

If a is a vertex in a tree, the subtree ($c\hat{a}y$ con) with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendants.

BACHKHOACNCP.COM

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Definition

- m-ary tree (cây m-phân): at most m children on each internal vertex of a rooted tree. nhieu nhat
- full m-ary tree (cây m-phân đầy đủ): every internal vertex has exactly m children.
- An m-ary tree with m=2 is called a binary tree (cây nhị phân).

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Ordered Rooted Trees

Definition

- An ordered rooted tree (cây có gốc có thứ tự) is a rooted tree where the children of each internal vertex are ordered (e.g. in order from left to right).
- In an ordered binary tree (cây nhị phân có thứ tự), if an internal vertex has two children, the first child is called the left child (con bên trái) and the second is called the right child (con bên phải).

Left subtree of a

Right subtree of a

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Properties & Theorems

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

BACHKHOACNCP.COM

Theorem

A tree with n vertices has n-1 edges.

Theorem

A full m-ary tree

- **1** n vertices has (n-1)/m internal vertices and [(m-1)n+1]/m leaves
- $m{n}$ i internal vertices has n=mi+1 vertices and (m-1)i+1 leaves
- ℓ leaves has $n=(m\ell-1)/(m-1)$ vertices and $(\ell-1)/(m-1)$ internal vertices

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Example (Chain Letter Game)

- Each person who receives the letter is asked to send it on to four other peoples.
- Some peoples do this, but others do not send any letters.
- How many people have seen the letter, including the first person, if no one receives more than one letter and if the chain letter ends after there have been 100 people who read it but did not send it out?
- How many people sent out the letter?

BỞI HCMUT-CNCP

Level and Height

Definition

- The level (mức) of a vertex v in a rooted tree is the length of the unique path from the root to this vertex.
- The level of the root is defined to be zero.
- The height (độ cao) of a rooted tree is the maximum of the levels of vertices (i.e. the length of the longest path from the root to any vertex).

Example

• Level of root a=0, b, j, k=1 and $c, e, f, l=2 \dots$

level of any vertex is

4, this tree has height

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Balanced m-ary Trees

Definition

A rooted m-ary tree of height h is balanced ($c\hat{a}n$ $d\hat{o}i$) if all leaves are at levels h or h-1.

 T_2

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Balanced m-ary Tree

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

HOACNCA

Theorem

There are at most m^h leaves in an m-ary tree of height h.

It can be proved by using mathematical induction on the height.

Corollary

- If an m-ary tree of height h has ℓ leaves, then $h \geq \lceil \log_m \ell \rceil$.
- If the m-ary tree is full and balanced, then $h = \lceil \log_m \ell \rceil$.

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees
Tree Traversal

Applications of Trees

Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Kruskal's Algorithm

Exercise (Chess tournament)

Suppose 1000 people enter a chess tournament. Use a rooted tree model of the tournament to determine how many games must be played to determine a champion. If a player is eliminated after one loss and games are played until only one entrant has not lost. (Assume there are no ties)

Exercise (Isomorphic)

How many different isomers (đồng phân) do the following saturated hydrocarbons have ?

- C_3H_8
- C_5H_{12}

BổI HCMUT-CNCP

• C_6H_{14}

BACHKHOACNCP.COM

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning

Trees

Prim's Algorithm Kruskal's Algorithm

Exercise

- How many vertices and how many leaves does a complete *m*-ary tree of height *h* have?
- Show that a full m-ary balanced tree (cây m-phân hoàn hảo) of height h has more than m^{h-1} leaves.
- How many edges are there in a forest of t trees containing a total of n vertices?

BỞI HCMUT-CNCP

Labeling Ordered Rooted Trees

- Ordered rooted trees are often used to store information.
- Need a procedure for visiting each vertex of an ordered rooted tree to access data.
- Ordering and labeling the vertices is important to traverse them in any procedure
- Universal address system (hệ địa chỉ phổ dụng)
 0 < 1 < 1.1 < 1.1.1 < 1.2 < 1.3 < ... < 2 < 3 < 3.1 < ...

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Traversal Algorithms (Thuật toán duyệt cây)

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees
Spanning Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorith

Traversal Algorithms

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Inorder Traversal (Duyệt trung thứ tự - LNR)

Suppose a tree T with root r. If T consists only of r, then r is inorder traversal of T. Otherwise, suppose r has subtrees T_1 , T_2 ,

..., T_n from left to right, inorder traversal:

g a e c d BACHKHOACNCP.COM

Traversal Algorithms

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Infix, Prefix and Postfix Notations

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

• Infix (trung tố): $((x+y) \uparrow 2) + ((x-4)/3)$

• Prefix (tiền tố): $+ \uparrow + x y 2 / - x 4 3$

• Postfix (hậu tố): A = 1

BỞI HCMUT-CNCP

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

BK TP.HCM

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees Spanning Trees

Minimum Spanning

Trees

Prim's Algorithm

F

В

F

Exercise

Implement postorder, inorder and preorder traversal of the

following tree.

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Exercise

Find the ordered rooted tree representing

$$(\neg (p \land q) \lor (\neg q \land r)) \to (\neg p \lor \neg r)$$

Then use this rooted tree to find the prefix, postfix and infix forms of this expression

Solution

TÀI LIÊU SƯU TẬP BỞI HCMUT-CNCP

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Exercise

Determine postorder of a binary tree with inorder D B H E I A F C J G K and preorder A B D E H I C F G J K.

Solution

TÀI LIÊU SƯU TẬP BỞI HCMUT-CNCP

Binary Search Trees

Definition

Binary search tree (cây tìm kiếm nhị phân - BST) is a binary tree in which the assigned key of a vertex is:

- larger than the keys of all vertices in its left subtree, and
- smaller than the keys of all vertices in its right subtree.

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning

Trees

Prim's Algorithm

Adding and Locating an Item in BST

Example

Form a BST for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, *chemistry* using alphabetical order.

Complexity in searching

 $O(\log(n))$ vs. O(n) in linear list

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Decision Trees (Cây quyết định)

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees
Binary Search Trees
Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Example

There are seven coins, all with the same weight, and a counterfeit coin that weighs less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

TÀI LIỆU SƯU TẬP

BACHKHOACNCP.COM

Yet Another Application

Example

If we know that the probability that a person has tuberculosis

(TB) is
$$p(TB) = 0.0005$$
.

We also know
$$p(+|TB) = 0.999$$
 and $p(-|\overline{TB}) = 0.99$.

What is p(TB|+) and $p(\overline{TB}|-)$?

$$p(TB|+) = \frac{p(TB\cap +)}{p(+)} = \frac{0.0004995}{0.0004995 + 0.009995} \approx 0.0476$$

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Kruskai s Aigorii

Problem

Definition

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

• A spanning tree ($c\hat{a}y \ khung$) in a graph G is a subgraph of G

that is a tree which contains all vertices of G.

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

BACHKHOACNCP.COM

Depth-First Search (Tìm kiếm ưu tiên chiều sâu)

Property

LIÊU SƯU TAI

- Go deeper as you can
- Backtrack (quay lui) to possible branch when you are stuck.
- O(e) or $O(n^2)$

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

panning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Depth-First Search

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Algorithm

procedure DFS (G)

T :=tree consisting only vertex v_1 $visit(v_1)$

procedure visit(v: vertex of G) /* recursive */ **for** each vertex w adjacent to v and not in Tadd w and edge $\{v, w\}$ to Tvisit(w)

BỞI HCMUT-CNCP

Breadth-First Search (Tìm kiếm ưu tiên chiều rộng)

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction
Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Binary Search Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm Kruskal's Algorithm

Kruskal's Algorit

B A C H K H O A C N C P . C O M

Breadth-First Search

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

panning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Algorithm

procedure BFS (G)

 $T := \text{tree consisting only vertex } v_1$

 $L := \mathsf{empty} \mathsf{ list}$

put v_1 in the list L of unprocessed vertices

while L is not empty

remove the first vertex, v, from L

for each neighbor w of v

if w is not in L and not in T then add w to the end of the list L

add w and edge $\{v, w\}$ to T

BOT HCMUT-CNCP

Exercise

Find spanning tree in the following graphs.

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Minimum Spanning Trees

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning

Prim's Algorithm

Kruskal's Algorithm

Definition

• A minimum spanning tree (cây khung nhỏ nhất) in a connected weighted graph is a spanning tree that has the smallest possible sum of weights of its edges.

Prim's Algorithm (Nearest-Neighbor)

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Prim's Algorithm (1957)

procedure Prim(G)

T := a minimum-weight edge

for i := 1 to n - 2

e:= an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T

T := T with e added

return T

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Prim's Algorithm (Nearest-Neighbor)

- Pick a vertex to start from
- Iteratively absorb smallest edge possible

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees Binary Search Trees

Decision Trees

Spanning Trees

Minimum Spanning

Trees Prim's Algorithm

Kruskal's Algorithm (Lightest-Edge)

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Kruskal's Algorithm (1958)

procedure Kruskal(G)T := empty graph

for i := 1 to n-1

e:= any edge in G with smallest weight that does not form a simple circuit when added to T

T := T with e added

return T

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Kruskal's Algorithm (Lightest-Edge)

• Iteratively add smallest edge possible

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguyen Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning

Trees

Prim's Algorithm

Exercise

By using Prim's and Kruskal's algorithm, determine minimum spanning tree in the following graphs. (and maximum spanning tree (cây khung cực đại).

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Decision Trees

có bậc là n-1. Chiều cao của cây là

B n-1

 \bigcirc n 2

A 1

TÀI LIÊU SƯU TẬP

Cho một cây có gốc với n đỉnh. Giả thiết một đỉnh trong tập đỉnh

BỞI HCMUT-CNCP

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Xác định tiền tố (prefix) của cây nhị phân có gốc và có thứ tự (ordered rooted tree) dùng để biểu diễn

$$(\neg (p \land q) \lor (\neg q \land r)) \to (\neg p \lor \neg r)$$

- $\triangle \rightarrow \lor \neg \land p \ q \lor \neg q \ r \lor \neg p \ r$
- $p q \land \neg \lor q \neg r \land p \neg r \lor \rightarrow$
- $p \ q \neg \lor q \neg \land r \rightarrow p \neg \lor r$ | EU SUU TÂP

BÓI HCMUT-CNCP

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

MKHOACNCA

Có bao nhiều cây nhị phân có tiền tố (pre-order traversal) là ABC?

- **A** 1
- **B** 3
- **6** 5
- **D** 7

BỞI HCMUT-CNCP

BACHKHOACNCP.COM

Trees

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Hãy cho biết hậu tố (post-order traversal) của một cây nhị phân biết rằng tiền tố (pre-order traversal) là HBGFDECIA và trung tố (in-order traversal) là GBFHCEIDA.

- \triangle GFBCIEADH
- **B** BGFDECIAH
- GFBCIEJADH
- GFBHCIEADH

BỞI HCMUT-CNCP

Huynh Tuong Nguyen, Tran Tuan Anh, Nguye Ngoc Le

Trees

Introduction

Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Cho đồ thị như trong hình vẽ dưới.

Cây phủ tối thiểu có tổng trọng số là MUT-CNCP

- **A** 40
- **B** 60
- 84
- **100**

BACHKHOACNCP.COM

Trees

Huynh Tuong Nguyen Tran Tuan Anh, Nguye Ngoc Le

Contents

Introduction Properties of Trees

Tree Traversal

Applications of Trees

Binary Search Trees Decision Trees

Spanning Trees

Minimum Spanning Trees

Prim's Algorithm

Kruskal's Algorithm

Cho trước số tư nhiên a > 1, và xét đồ thị đầy đủ K_{2a+3} . Số lượng canh ta phải xóa khỏi đồ thị K_{2a+3} để thu được một cây phủ (cây khung hay bao trùm, spanning tree) của K_{2a+3} là bao nhiêu?

- $\triangle 2a + 2$
- $2a^2 + 3a 1$
- $a^2 + 3a + 1$
- $2a^2 + 3a + 1$

BỞI HCMUT-CNCP