Exercício: Considere a matriz

$$A = \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 4 & 2 & 6 & -4 \\ 0 & 2 & 1 & 3 & 0 \end{bmatrix}.$$

Determine uma matriz em escada equivalente à matriz A através do algoritmo 1.97obs .

Exercício

O objectivo deste exercício é transformar a matriz dada A numa matriz em escada que lhe seja equivalente. Para tal, vai-se recorrer ao algoritmo apresentado em 1.97obs da sebenta. Recorde-se que este algoritmo só considera operações sobre linhas e nunca sobre colunas e apenas faz troca de linhas quando é estritamente necessário. Neste caso, a troca é com a primeira linha possível.

Gaspar J. Machado (DMA, UM)

Transformação de uma matriz em escada

Fevereiro de 2010 (v2.0)

1 / 13

Passo 1 [inicializar o algoritmo]

$$i \leftarrow 1$$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz A

Passo 1 — inicializar o algoritmo

A variável i é inicializada com o valor 1 e a variável j é inicializada com o índice da coluna não-nula mais à esquerda da matriz A, ou seja, com o valor 2. O Passo 1 está terminado

Passo 2 [seleccionar elemento pivô]

se
$$a_{ii} = 0$$
 então

 $\ell_i \leftrightarrow \ell_k$, em que ℓ_k é a primeira linha abaixo da linha ℓ_i com um elemento diferente de zero na coluna c_i

fimse

$$\begin{bmatrix} i|1 \\ 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 4 & 2 & 6 & -4 \\ 0 & 2 & 1 & 3 & 0 \\ \end{bmatrix}$$

Passo 2 — seleccionar o elementos pivô

Como o elemento 12 é diferente de zero, então esse é o elemento pivô, não havendo, pois, necessidade de trocar linhas.

Gaspar J. Machado (DMA, UM)

Transformação de uma matriz em escada

Fevereiro de 2010 (v2.0)

3 / 13

Passo 3 [anular os elementos abaixo do pivô]

para
$$p \leftarrow i + 1$$
 até m fazer $\ell_p \leftarrow \ell_p - \frac{a_{pj}}{a_{ii}}\ell_i$

fimpara

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 4 & 2 & 6 & -4 \\ 0 & 2 & 1 & 3 & 0 \end{bmatrix} \leftarrow \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ \ell_3 \leftarrow \ell_3 - 2\ell_1 & 0 & 0 & 0 & 2 & 0 \\ \ell_4 \leftarrow \ell_4 - \ell_1 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Passo 3 — anular os elementos abaixo do pivô

Como as linhas do pivô e as que lhe estão acima ficam inalteradas, tem-se que ℓ_1 já não sofre alterações. Como o elemento 22 já é 0, ℓ_2 também não sofre alterações. Como o elemento 32 é diferente de 0, então ℓ_3 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o 4, a dividir pelo elemento pivô, ou seja, o 2, vezes a linha do pivô, ou seja, ℓ_1 . Tem-se então que fazer $\ell_3 - 2\ell_1$, vindo $0 - 2 \times 0$, que dá 0, $4 - 2 \times 2$, que dá 0, $2 - 2 \times 1$, que dá 0, $6 - 2 \times 2$, que dá 2, $(-4) - 2 \times (-2)$, que dá 0. A nova ℓ_3 está calculada. Como o elemento 42 é diferente de 0, então ℓ_4 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o 2, a dividir pelo elemento pivô, ou seja, o 2, vezes a linha do pivô, ou seja, ℓ_1 . Tem-se então que fazer ℓ_4 menos ℓ_1 , vindo 0 - 0, que dá 0, 2 - 2, que dá 0, 1 - 1, que dá 0, 3 - 2, que dá 1, e 0 - (-2), que dá 2. A nova ℓ_4 está calculada.

Passo 4 [terminar?]

se já se obteve uma matriz em escada então terminar

senão

$$i \leftarrow i + 1$$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas ℓ_1,\ldots,ℓ_{i-1} ir para o Passo 2

fimse

Passo 4 — terminar?

Como a matriz que se obteve ainda não é uma matriz em escada, o algoritmo não termina, incrementando-se o valor da variável i de uma unidade, ou seja, i passa a valer 2, e a variável j passa a ser o índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz todas as linhas desde ℓ_1 até ℓ_{i-1} , ou seja, neste caso, eliminando apenas ℓ_1 . j passa então a valer 4. O algoritmo continua no Passo 2.

Gaspar J. Machado (DMA, UM)

Transformação de uma matriz em escada

Fevereiro de 2010 (v2.0)

6 / 13

Passo 2 [seleccionar elemento pivô]

se
$$a_{ij} = 0$$
 então

 $\ell_i \leftrightarrow \ell_k$, em que ℓ_k é a primeira linha abaixo da linha ℓ_i com um elemento diferente de zero na coluna c_j

fimse

Passo 2 — seleccionar o elementos pivô

Como elemento 24, é igual a 0, é necessário trocar ℓ_i , ou seja, ℓ_2 , com a primeira linha abaixo desta cujo elemento em c_j , ou seja, em c_4 , seja diferente de 0. Neste caso, é ℓ_3 . Assim, ℓ_1 e ℓ_4 não sofrem alterações, ℓ_2 passa a ser a antiga ℓ_3 e ℓ_3 passa a ser a antiga ℓ_2 .

Passo 3 [anular os elementos abaixo do pivô]

para
$$p \leftarrow i + 1$$
 até m fazer $\ell_p \leftarrow \ell_p - \frac{a_{pj}}{a_{ii}} \ell_i$

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Passo 3 — anular os elementos abaixo do pivô

Como as linhas do pivô e as que lhe estão acima ficam inalteradas, tem-se que ℓ_1 e ℓ_2 já não sofrem alterações. Como o elemento 34 já é 0, ℓ_3 também não sofre alterações. Como o elemento 44 é diferente de 0, então ℓ_4 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o 1, a dividir pelo elemento pivô, ou seja, o 2, vezes a linha do pivô, ou seja, ℓ_2 . Tem-se então que fazer $\ell_4 - \frac{1}{2}\ell_2$, vindo $0 - \frac{1}{2} \times 0$, que dá 0, $0 - \frac{1}{2} \times 0$, que dá 0, $0 - \frac{1}{2} \times 0$, que dá 2. A nova ℓ_4 está calculada.

Gaspar J. Machado (DMA, UM)

Transformação de uma matriz em escada

Fevereiro de 2010 (v2.0)

8 / 13

Passo 4 [terminar?]

se já se obteve uma matriz em escada então terminar

senão

$$i \leftarrow i + 1$$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas $\ell_1, \ldots, \ell_{i-1}$ ir para o Passo 2

fimse

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Passo 4 — terminar?

Como a matriz que se obteve ainda não é uma matriz em escada, o algoritmo não termina, incrementando-se o valor da variável i de uma unidade, ou seja, i passa a valer 3, e a variável j passa a ser o índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz todas as linhas desde ℓ_1 até ℓ_{i-1} , ou seja, neste caso, eliminando ℓ_1 e ℓ_2 . j passa então a valer i0. O algoritmo continua no passo i2.

Passo 2 [seleccionar elemento pivô]

se
$$a_{ij} = 0$$
 então

 $\ell_i \leftrightarrow \ell_k$, em que ℓ_k é a primeira linha abaixo da linha ℓ_i com um elemento diferente de zero na coluna c_i

fimse

$$[i|3] \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Passo 2 — seleccionar o elementos pivô

Como o elemento 35 é diferente de 0, então esse é o elemento pivô, não havendo, pois, necessidade de trocar linhas.

Gaspar J. Machado (DMA, UM)

Transformação de uma matriz em escada

Fevereiro de 2010 (v2.0)

10 / 13

Passo 3 [anular os elementos abaixo do pivô]

para
$$p \leftarrow i + 1$$
 até m fazer

$$\ell_p \leftarrow \ell_p - \frac{a_{pj}}{a_{ij}} \ell_i$$

fimpara

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \xleftarrow{\ell_4 \leftarrow \ell_4 - 2\ell_3} \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 3 — anular os elementos abaixo do pivô

Como as linhas do pivô e as que lhe estão acima ficam inalteradas, tem-se que ℓ_1 , ℓ_2 e ℓ_3 já não sofrem alterações. Como o elemento 45 é diferente de zero, então ℓ_4 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o 2, a dividir pelo elemento pivô, ou seja, o 1, vezes a linha do pivô, ou seja, ℓ_3 . Tem-se então que fazer $\ell_4-2\ell_3$, vindo $0-2\times0$, que dá 00 $0-2\times0$ 0, que dá 00, $0-2\times0$ 0, que dá 00, $0-2\times0$ 0, que dá 00. A nova ℓ_4 está calculada.

Passo 4 [terminar?]

se já se obteve uma matriz em escada então terminar

senão

$$i \leftarrow i + 1$$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas ℓ_1,\ldots,ℓ_{i-1} ir para o Passo 2

fimse

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 4 — terminar?

Como a matriz que se obteve já é uma matriz em escada, o algoritmo termina.

Gaspar J. Machado (DMA, UM)

Transformação de uma matriz em escada

Fevereiro de 2010 (v2.0)

13 / 13