Математическая логика

Полнота и замкнутость систем логических функций

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
Π/Π	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизъюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
	предикатов	резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Определение функционально полной системы

Система функций $\{f_1, f_2, ..., f_n\}$ из P_2 называется функционально полной, если любая логическая функция может быть записана в виде формулы через функции этой системы.

Определение функционально полной системы

Примеры полных систем:

- а) P_2 полная система,
- б) система $\{\neg, \lor, \land\}$ полная система,
- в) {⊕, ∧,1} представление функции через Полином Жегалкина.

Система, состоящая из констант $\{0,1\}$ не является полной.

Теорема о двух полных системах функций

Пусть даны две системы функций из P_2 :

$$F = \{f_1, ..., f_n\}, G = \{g_1, ..., g_m\}.$$

Пусть система F — полна и каждая ее функция выражается в виде формулы через функции системы G . Тогда система G — полна.

Док-во. Пусть h —произвольная функция из P_2 . В силу полноты F ее можно представить в виде $h = u(f_1, ..., f_n)$. По условию $f_1 = u_1(g_1, ..., g_m)$; ...; $f_n = u_n(g_1, ..., g_m)$. Тогда $h = u(f_1, ..., f_n) = u(u_1(g_1, ..., g_m), ..., u_n(g_1, ..., g_m)) = u'(g_1, ..., g_m)$.

Маркова Екатерина Викторовна. Лк. 8 по МЛ. Полнота и замкнутость систем лог. функций

Следствия теоремы о двух полных системах функций

Следствие 1: Система $\{\neg, \land\}$ является полной, что следует из полноты системы $\{\neg, \lor, \land\}$ и равенства $x_1 \lor x_2 = \overline{\overline{x_1}} \overline{\overline{x_2}}$.

Следствие 2: Система $\{\neg,\lor\}$ является полной, что следует из полноты системы $\{\neg,\lor,\land\}$ и равенства $x_1 \cdot x_2 = \overline{\overline{x_1} \lor \overline{x_2}}$.

Замыкание

Пусть F — подмножество функций из P_2 .

Замыканием F называется множество всех логических функций, представляемых в виде формул через функции из F.

Замыкание множества F обозначается через [F].

Замыкание

Примеры замыканий:

- a) $[P_2] = P_2$;
- $\mathsf{G}) \left[\{1, \oplus, \wedge\} \right] = P_2;$
- B) $[\{1,\vee,\wedge\}] = P_2;$
- г) $[\{1,\oplus\}] = L$. Замыканием множества $\{1,\oplus\}$

будет класс L всех линейных функций, т.е. функций, имеющих вид

$$f(x_1,...,x_n) = \alpha_0 \oplus \alpha_1 x_1 \oplus ... \oplus \alpha_n x_n$$
, где $\alpha_i = \{0,1\}$, $i = \overline{0,n}$.

Функционально замкнутая система

Система F называется функционально замкнутой, если [F] = F.

Примеры функционально замкнутых классов:

- a) P_2 ;
- б) класс L замкнут, т.к. линейная комбинация линейных выражений является линейным выражением.

Определение полной системы в терминах полноты и замыкания

$$F$$
 – полная система, если $[F] = P_2$.

Тема следующей лекции:

«Замкнутые классы».