

TEST REPORT

FCC DTS Test for ADB11H6GG

Certification

APPLICANT HYUNDAI MOBIS CO., LTD

REPORT NO. HCT-RF-1911-FC027

DATE OF ISSUENovember 22, 2019

HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

REPORT NO. HCT-RF-1911-FC027

DATE OF ISSUE November 22, 2019

FCC ID TQ8-ADB11H6GG

Applicant

HYUNDAI MOBIS CO., LTD

203, Teheran-ro, Gangnam-gu, Seoul, 135-977, South Korea

Eut Type Model Name	Car Audio System ADB11H6GG	
Modulation type	CCK/DSSS/OFDM	
FCC Classification	Digital Transmission System(DTS)	
FCC Rule Part(s)	Part 15.247	

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test results were applied only to the test methods required by the standard.

Tested by Jung Ki Lim

Technical Manager Jong Seok Lee

HCT CO., LTD.

Chan Lee / Cl

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	November 22, 2019	Initial Release

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

F-TP22-03 (Rev. 01) Page 3 of 67

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY TEST OF RESULTS	24
9. TEST RESULT	25
9.1 DUTY CYCLE	25
9.2 6dB BANDWIDTH	28
9.3 OUTPUT POWER	31
9.4 POWER SPECTRAL DENSITY	37
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	40
9.6 RADIATED SPURIOUS EMISSIONS	51
9.7 RADIATED RESTRICTED BAND EDGES	61
10. LIST OF TEST EQUIPMENT	65
11. ANNEX A TEST SETUP PHOTO	67

1. EUT DESCRIPTION

Model	ADB11H6GG	ADB11H6GG		
Additional Model	ADB10H6GN, ADB10H	ADB10H6IG, ADB11H6IG, ADB10H6GG, ADB13H6GG, ADB12H6GG, ADB10H6GN, ADB10H6MG, ADB10H6EG, ADB10H6EP, ADB11H6EP, ADB12H6EP, ADB10H6GP, ADB14H6GG		
EUT Type	Car Audio System			
Power Supply	DC 14.4 V			
Frequency Range	2412 MHz - 2462 MHz	2412 MHz - 2462 MHz		
Max. RF Output Power	Peak Power	802.11b: 11.70 dBm 802.11g: 20.02 dBm 802.11n(HT20): 20.77 dBm		
Max. N. Output Fower	Average Power	802.11b: 8.33 dBm 802.11g: 8.78 dBm 802.11n(HT20): 8.67 dBm		
Modulation Type	DSSS/CCK: 802.11b / 0	DSSS/CCK: 802.11b / OFDM: 802.11g, 802.11n(HT20)		
Number of Channels	11 Channels	11 Channels		
Antenna Specification	Antenna type: Pattern Peak Gain: -0.01 dBi	Antenna type: Pattern Antenna Peak Gain: -0.01 dBi		
Date(s) of Tests	October 21, 2019 ~ No	October 21, 2019 ~ November 18, 2019		

F-TP22-03 (Rev. 01) Page 5 of 67

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version: 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpse of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

F-TP22-03 (Rev. 01) Page 6 of 67

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version: 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

F-TP22-03 (Rev. 01) Page 7 of 67

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of § 15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (\pm dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

F-TP22-03 (Rev. 01) Page 8 of 67

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to the zero-span measurement method.

The largest availble value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest availble value)
- 2. $VBW = 8 MHz (\ge RBW)$
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure Ttotal and Ton
- 8. Calculate Duty Cycle = Ton/ Ttotal and Duty Cycle Factor = 10log(1/Duty Cycle)

F-TP22-03 (Rev. 01) Page 9 of 67

7.2. 6dB Bandwidth

Limit

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 11.8.1 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Note: We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.

F-TP22-03 (Rev. 01) Page 10 of 67

7.3. Output Power

Limit

The maximum permissible conducted output power is 1 Watt.

Test Configuration

Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Reading Value + ATT loss + Cable loss + Duty Cycle Factor

F-TP22-03 (Rev. 01) Page 11 of 67

7.4. Power Spectral Density

Limit

The transmitter power density average over 1-second interval shall not be greater than 8dBm in any 3kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

The spectrum analyzer is set to:

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Span = 1.5 times the DTS channel bandwidth.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = peak
- 7) Trace Mode = max hold
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level within the RBW. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

Power Spectral Density = Reading Value + ATT loss + Cable loss

F-TP22-03 (Rev. 01) Page 12 of 67

7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

Limit

The maximum conducted (Average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 20 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\geq 2 \times \text{Span/RBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

F-TP22-03 (Rev. 01) Page 13 of 67

Factors for frequency

actors for frequency				
Freq(MHz)	Factor(dB)			
30	11.30			
100	9.83			
200	10.19			
300	10.13			
400	10.23			
500	10.25			
600	10.32			
700	10.35			
800	10.35			
900	10.34			
1000	10.39			
2000	10.64			
2400	10.65			
2500	10.67			
3000	10.68			
4000	10.89			
5000	11.07			
6000	11.06			
7000	11.35			
8000	11.32			
9000	11.48			
10000	11.56			
11000	11.56			
12000	11.68			
13000	11.83			
14000	11.90			
15000	11.98			
16000	12.04			
17000	12.02			
18000	12.08			
19000	12.07			
20000	12.14			
21000	12.17			
22000	12.31			
23000	12.60			
24000	12.34			
25000	12.53			
26000	11.07			
27000	11.30			

Note: 1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Attenuator loss + Cable loss

3. Additional cable loss is 0.5 dB.

F-TP22-03 (Rev. 01) Page 14 of 67

7.6. Radiated Test

Limit

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Configuration

Below 30 MHz

F-TP22-03 (Rev. 01) Page 15 of 67

30 MHz - 1 GHz

Above 1 GHz

F-TP22-03 (Rev. 01) Page 16 of 67

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = -80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = -40 dB Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

F-TP22-03 (Rev. 01) Page 17 of 67

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW ≥ 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz

In general, (1) is used mainly

- 6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)
- 7. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor (reference distance: 3 m).
 - ◆ Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

F-TP22-03 (Rev. 01) Page 18 of 67

- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Average): Duty cycle ≥ 98%
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (i.e., RMS)
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Total(Measurement Type : Peak)
 - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Total(Measurement Type : Average, Duty cycle ≥ 98%)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(G) + Distance Factor(D.F)

F-TP22-03 (Rev. 01) Page 19 of 67

Test Procedure of Radiated Restricted Band Edge

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 5. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor (reference distance: 3 m).
 - ◆ Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Average): Duty cycle ≥ 98%,
 - Measured Frequency Range: 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

F-TP22-03 (Rev. 01) Page 20 of 67


```
10. Total(Measurement Type: Peak)
```

```
= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) – AMP Gain (A.G) + Attenuator(ATT)
```

Total(Measurement Type : Average, Duty cycle ≥ 98%)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) – AMP Gain (A.G) + Attenuator(ATT)

Total(Measurement Type: Average, Duty cycle < 98%)

= Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F) – AMP Gain (A.G) + Attenuator(ATT) + Duty Cycle Factor

F-TP22-03 (Rev. 01) Page 21 of 67

7.7. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu\text{H}/50$ ohms line impedance stabilization network (LISN).

Fraguesey Dange (MUz)	Limits (dBμV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

⁽a) Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors: Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

F-TP22-03 (Rev. 01) Page 22 of 67

7.9. Worst case configuration and mode

Radiated test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode: Stand alone

2. EUT Axis

- Radiated Spurious Emissions : X

- Radiated Restricted Band Edge: X

- 3. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.
 - Position: Horizontal, Vertical, Parallel to the ground plane
- 4. ADB11H6GG, ADB10H6IG, ADB11H6IG, ADB10H6GG, ADB13H6GG, ADB12H6GG, ADB10H6GN, ADB10H6MG, ADB10H6EG, ADB10H6EP, ADB11H6EP, ADB12H6EP, ADB10H6GP, ADB14H6GG were tested and the worst case results are reported. (Worst case: ADB11H6GG)

AC Power line Conducted Emissions

1. We don't perform powerline conducted emission test. Because this EUT is used with vehicle.

Conducted test

- 1. The EUT was configured with data rate of highest power.
- 2. ADB11H6GG, ADB10H6IG, ADB11H6IG, ADB10H6GG, ADB13H6GG, ADB12H6GG, ADB10H6GN, ADB10H6MG, ADB10H6EG, ADB10H6EP, ADB11H6EP, ADB12H6EP, ADB10H6GP, ADB14H6GG were tested and the worst case results are reported. (Worst case: ADB11H6GG)

F-TP22-03 (Rev. 01) Page 23 of 67

8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7		N/A
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	D. Harad	PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

Note:

We don't perform AC Conducted Emissions test. Because this EUT is used with vehicle.

F-TP22-03 (Rev. 01) Page 24 of 67

9. TEST RESULT

9.1 DUTY CYCLE

Mada	Data Rate	Ton	T_{total}	Dutu Cuala	Duty Cycle Factor
Mode	(Mbps)	(ms)	(ms)	Duty Cycle	(dB)
	1	12.421	12.522	0.992	0.035
802.11b	2	6.211	6.302	0.986	0.063
002.110	5.5	2.321	2.412	0.962	0.167
	11	1.208	1.302	0.928	0.324
	6	2.064	2.166	0.953	0.211
	9	1.386	1.485	0.933	0.300
	12	1.041	1.143	0.911	0.406
802.11g	18	0.705	0.807	0.875	0.582
002.11g	24	0.533	0.633	0.842	0.747
	36	0.363	0.465	0.781	1.075
	48	0.276	0.378	0.730	1.366
	54	0.248	0.349	0.711	1.484
	6.5 (MCS0)	1.919	2.021	0.950	0.224
	13 (MCS1)	0.980	1.081	0.906	0.427
	19.5 (MCS2)	0.663	0.765	0.868	0.617
802.11n	26 (MCS3)	0.508	0.608	0.834	0.787
(HT20)	39 (MCS4)	0.352	0.454	0.776	1.101
	52 (MCS5)	0.272	0.374	0.728	1.378
	58.5 (MCS6)	0.248	0.349	0.711	1.481
	65 (MCS7)	0.228	0.329	0.693	1.590

F-TP22-03 (Rev. 01) Page 25 of 67

■ Test Plots

Duty cycle plot (802.11g(6Mbps))

F-TP22-03 (Rev. 01) Page 26 of 67

Duty cycle plot (802.11n(MCS0))

Note:

In order to simplify the report, attached plots were only the most lowest datarate.

F-TP22-03 (Rev. 01) Page 27 of 67

9.2 6dB BANDWIDTH

802.11	b Mode	Manager and Danedor in data [MIII-]	Minimum Danduidth [MIII]	
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	
2412	1	7.059	0.5	
2437	6	7.114	0.5	
2462	11	7.112	0.5	

802.11	g Mode	Manager and David dela [MIII-]	Minimum Danduridah [MIII]	
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	
2412	1	16.34	0.5	
2437	6	16.34	0.5	
2462	11	16.35	0.5	

802.11n Mode		Manager d Dansder dth [MIII]	Minimum Danduidth [MIIn]	
Frequency [MHz]	Channel No.	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	
2412	1	17.57	0.5	
2437	6	17.56	0.5	
2462	11	17.11	0.5	

F-TP22-03 (Rev. 01) Page 28 of 67

Test Plots

6dB Bandwidth plot (802.11b-CH 1)

6dB Bandwidth plot (802.11g-CH 6)

F-TP22-03 (Rev. 01) Page 29 of 67

6dB Bandwidth plot (802.11n_HT20-CH 11)

Note:

In order to simplify the report, attached plots were only the most narrow 6 dB BW channel.

F-TP22-03 (Rev. 01) Page 30 of 67

9.3 OUTPUT POWER

Peak Power

1. Power Meter offset = Attenuator loss + Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest twentieth dB.

So, 10.7 dB is offset for 2.4 GHz Band. And, additional cable loss is 0.5 dB.

802.11b Mode			Measured	Limit
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm)	(dBm)
	_	1	11.70	30
2412		2	11.33	30
2412	1	5.5	11.34	30
		11	11.37	30
		1	11.20	30
2427		2	11.05	30
2437	6	5.5	11.00	30
		11	11.09	30
		1	11.06	30
2462	11	2	10.67	30
	11	5.5	10.66	30
		11	10.78	30

F-TP22-03 (Rev. 01) Page 31 of 67

802.11g Mode			Measured	Limit	
Frequency[MHz]	Channel No.	Rate (Mbps)	Power(dBm)	(dBm)	
		6	20.02	30	
		9	19.87	30	
		12	19.38	30	
2412	1	18	18.64	30	
2412	1	24	18.42	30	
		36	18.31	30	
		48	19.45	30	
		54	18.23	30	
	6	6	19.24	30	
		9 19.07		30	
		12	18.51	30	
2437		18	18.31	30	
2431		24	17.72	30	
		36	17.51	30	
		48	19.05	30	
		54	17.02	30	
		6	19.42	30	
		9	19.30	30	
		12	18.68	30	
2462	11	18	18.47	30	
2402	11	24	17.62	30	
		36	17.53	30	
		48	19.17	30	
		54	17.11	30	

F-TP22-03 (Rev. 01) Page 32 of 67

802.11n(HT20)	Mode		Measured	Limit
Frequency[MHz]	Channel No.	MCS Index	Power(dBm)	(dBm)
		0	20.33	30
		1	19.11	30
		2	20.51	30
2412	1	3	20.10	30
2412	1	4	19.81	30
		5	20.77	30
		6	20.13	30
		7	19.88	30
		0	20.12	30
		1	20.22	30
		2	19.74	30
2437		3	19.39	30
2431	6	4	19.14	30
		5	20.30	30
		6	20.00	30
		7	18.86	30
		0	19.35	30
		1	19.66	30
		2	18.99	30
2462	11	3	19.39	30
2462	11	4	18.68	30
		5	19.99	30
		6	19.12	30
		7	19.15	30

F-TP22-03 (Rev. 01) Page 33 of 67

Average Power

- 1. Power Meter offset = Attenuator loss + Cable loss
- 2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest twentieth dB.
- So, 10.7 dB is offset for 2.4 GHz Band. And, additional cable loss is 0.5 dB.

802.11b Mode					Measured	
			Measured	Duty	Power(dBm)	Limit
Frequency	Channel	Rate (Mbps)	Power	Cycle	+	(dBm)
[MHz]	No.		(dBm)	Factor	Duty Cycle	(==::,
					Factor	
		1	8.30	0.035	8.33	30
2412	1	2	7.88	0.063	7.94	30
2412		5.5	7.71	0.167	7.88	30
		11	7.52	0.324	7.84	30
	6	1	7.64	0.035	7.67	30
2437		2	7.55	0.063	7.61	30
2431		5.5	7.43	0.167	7.60	30
		11	7.33	0.324	7.65	30
	11	1	7.58	0.035	7.61	30
2462		2	7.18	0.063	7.24	30
		5.5	7.05	0.167	7.22	30
		11	6.96	0.324	7.28	30

F-TP22-03 (Rev. 01) Page 34 of 67

802.11g Mode					Measured	
Frequency [MHz]	Channel No.	Rate (Mbps)	Measured Power (dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle	Limit (dBm)
					Factor	
		6	8.52	0.211	8.73	30
		9	8.42	0.300	8.72	30
		12	8.37	0.406	8.78	30
2412	1	18	7.40	0.582	7.98	30
2412	_	24	7.49	0.747	8.24	30
		36	7.22	1.075	8.30	30
		48	7.02	1.366	8.39	30
		54	6.84	1.484	8.32	30
	6	6	7.78	0.211	7.99	30
		9	7.66	0.300	7.96	30
		12	7.59	0.406	8.00	30
2437		18	7.00	0.582	7.58	30
2437		24	6.73	0.747	7.48	30
		36	6.47	1.075	7.55	30
		48	6.28	1.366	7.65	30
		54	6.07	1.484	7.55	30
	11	6	7.52	0.211	7.73	30
		9	7.42	0.300	7.72	30
		12	7.35	0.406	7.76	30
2462		18	7.00	0.582	7.58	30
2462		24	6.72	0.747	7.47	30
		36	6.42	1.075	7.50	30
		48	6.26	1.366	7.63	30
		54	6.02	1.484	7.50	30

F-TP22-03 (Rev. 01) Page 35 of 67

802.11n(HT20)	802.11n(HT20) Mode			_	Measured	
Frequency [MHz]	Channel No.	MCS Index	Measured Power (dBm)	Duty Cycle Factor	Power(dBm) + Duty Cycle Factor	Limit (dBm)
		0	7.74	0.224	7.96	30
		1	7.49	0.427	7.92	30
		2	7.32	0.617	7.94	30
2412	1	3	7.53	0.787	8.32	30
2412	1	4	7.26	1.101	8.36	30
		5	7.01	1.378	8.39	30
		6	7.19	1.481	8.67	30
		7	6.77	1.590	8.36	30
	6	0	7.39	0.224	7.61	30
		1	7.14	0.427	7.57	30
		2	6.98	0.617	7.60	30
2437		3	6.78	0.787	7.57	30
2431		4	6.51	1.101	7.61	30
		5	6.27	1.378	7.65	30
		6	6.77	1.481	8.25	30
		7	6.05	1.590	7.64	30
	11	0	7.06	0.224	7.28	30
		1	6.83	0.427	7.26	30
		2	6.67	0.617	7.29	30
2462		3	6.75	0.787	7.54	30
2402		4	6.48	1.101	7.58	30
		5	6.23	1.378	7.61	30
		6	6.38	1.481	7.86	30
		7	6.03	1.590	7.62	30

F-TP22-03 (Rev. 01) Page 36 of 67

9.4 POWER SPECTRAL DENSITY

			Test I	Result
Mode	Frequency (MHz)	Channel No.	Measured PSD (dBm)	Limit (dBm)
	2412	1	-12.428	
802.11b	2437	6	-12.935	
	2462	11	-12.839	
	2412	1	-13.167	
802.11g	2437	6	-13.895	8
	2462	11	-14.402	
	2412	1	-15.783	
802.11n(HT20)	2437	6	-15.432	
	2462	11	-15.952	

Note:

1. Spectrum reading values are not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. 10.7 dB is offset for 2.4 GHz Band. And, additional cable loss is 0.5 dB.

F-TP22-03 (Rev. 01) Page 37 of 67

■ Test Plots

Power Spectral Density (802.11b-CH 1)

Power Spectral Density (802.11g-CH 1)

F-TP22-03 (Rev. 01) Page 38 of 67

Power Spectral Density (802.11n_HT20 -CH 6)

Note:

In order to simplify the report, attached plots were only the worstcase PSD channel.

F-TP22-03 (Rev. 01) Page 39 of 67

9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

Test Result: please refer to the plot below.

In order to simplify the report, attached plots were only the worst case channel and data rate.

F-TP22-03 (Rev. 01) Page 40 of 67

■ Test Plots(BandEdge)

Band Edge (802.11b-CH1)

Band Edge (802.11b-CH11)

F-TP22-03 (Rev. 01) Page 41 of 67

Band Edge (802.11g-CH11)

F-TP22-03 (Rev. 01) Page 42 of 67

Band Edge (802.11n_HT20 -CH11)

F-TP22-03 (Rev. 01) Page 43 of 67

■ Test Plots(Conducted Spurious Emission)

30 MHz ~ 1 GHz

1 GHz ~ 3 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

F-TP22-03 (Rev. 01) Page 44 of 67

3 GHz ~ 5 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

5 GHz ~ 7 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

F-TP22-03 (Rev. 01) Page 45 of 67

7 GHz ~ 9 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

9 GHz ~ 11 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

F-TP22-03 (Rev. 01) Page 46 of 67

11 GHz ~ 13 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

13 GHz ~ 15 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

F-TP22-03 (Rev. 01) Page 47 of 67

15 GHz ~ 17 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

17 GHz ~ 19 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

F-TP22-03 (Rev. 01) Page 48 of 67

19 GHz ~ 21 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

21 GHz ~ 23 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

F-TP22-03 (Rev. 01) Page 49 of 67

23 GHz ~ 25 GHz

Conducted Spurious Emission (802.11n_HT20_Ch.1)

F-TP22-03 (Rev. 01) Page 50 of 67

9.6 RADIATED SPURIOUS EMISSIONS

Frequency Range: 9 kHz - 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

- 1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor

Frequency Range: Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB	
No Critical peaks found								

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.

F-TP22-03 (Rev. 01) Page 51 of 67

Frequency Range : Above 1 GHz

Operation Mode: 802.11b

Transfer Rate: 1 Mbps

Operating Frequency 2412

Channel No. 01 Ch

Frequency	Reading	A.F.+C.LA.G+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4824	48.43	0.25	V	48.68	73.98	25.30	PK
4824	36.69	0.25	V	36.94	53.98	17.04	AV
7236	48.40	8.63	V	57.03	73.98	16.96	PK
7236	39.45	8.63	V	48.08	53.98	5.90	AV
4824	47.68	0.25	Н	47.93	73.98	26.05	PK
4824	36.60	0.25	Н	36.85	53.98	17.13	AV
7236	46.89	8.63	Н	55.52	73.98	18.47	PK
7236	37.45	8.63	Н	46.08	53.98	7.90	AV

Operation Mode: 802.11b

Transfer Rate: 1 Mbps

Operating Frequency 2437

Channel No. 06 Ch

Frequency	Reading	A.F.+C.LA.G+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4874	46.74	0.13	V	46.87	73.98	27.12	PK
4874	35.17	0.13	V	35.30	53.98	18.69	AV
7311	48.59	8.70	V	57.29	73.98	16.69	PK
7311	39.40	8.70	V	48.10	53.98	5.88	AV
4874	46.49	0.13	Н	46.62	73.98	27.37	PK
4874	35.03	0.13	Н	35.16	53.98	18.83	AV
7311	48.03	8.70	Н	56.73	73.98	17.25	PK
7311	38.40	8.70	Н	47.10	53.98	6.88	AV

F-TP22-03 (Rev. 01) Page 52 of 67

Operation Mode: 802.11b

Transfer Rate: 1 Mbps

Operating Frequency 2462

Channel No. 11 Ch

Frequency	Reading	A.F.+C.LA.G+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4924	47.97	-0.45	V	47.52	73.98	26.46	PK
4924	36.45	-0.45	V	36.00	53.98	17.98	AV
7386	47.38	8.87	V	56.25	73.98	17.73	PK
7386	37.61	8.87	V	46.48	53.98	7.50	AV
4924	47.56	-0.45	Н	47.11	73.98	26.87	PK
4924	36.40	-0.45	Н	35.95	53.98	18.03	AV
7386	47.42	8.87	Н	56.29	73.98	17.69	PK
7386	36.84	8.87	Н	45.71	53.98	8.27	AV

F-TP22-03 (Rev. 01) Page 53 of 67

Operation Mode: 802.11g

Transfer Rate: 6 Mbps

Operating Frequency 2412

Channel No. 01 Ch

Frequenc y	Readin g	Duty Cycle Factor	A.F.+C.L. - A.G+D.F.	ANT. POL	Total	Limit	Margin [dB]	Measure ment Type
[MHz]	[dBuV]		[dB]	[H/V]	[dBuV/m]	[dBuV/m]		туре
4824	47.59	0.000	0.25	V	47.84	73.98	26.14	PK
4824	36.72	0.211	0.25	V	37.18	53.98	16.80	AV
7236	54.64	0.000	8.63	V	63.27	73.98	10.72	PK
7236	35.33	0.211	8.63	V	44.17	53.98	9.81	AV
4824	48.39	0.000	0.25	Н	48.64	73.98	25.34	PK
4824	36.65	0.211	0.25	Н	37.11	53.98	16.87	AV
7236	54.10	0.000	8.63	Н	62.73	73.98	11.26	PK
7236	35.19	0.211	8.63	Н	44.03	53.98	9.95	AV

Operation Mode: 802.11g

Transfer Rate: 6 Mbps

Operating Frequency 2437

Channel No. 06 Ch

Frequenc y	Readin g	Duty Cycle Factor	A.F.+C.L. - A.G+D.F.	ANT. POL	Total	Limit	Margin [dB]	Measure ment Type
[MHz]	[dBuV]		[dB]	[H/V]	[dBuV/m]	[dBuV/m]		Турс
4874	47.95	0.000	0.13	V	48.08	73.98	25.91	PK
4874	35.20	0.211	0.13	V	35.54	53.98	18.44	AV
7311	56.57	0.000	8.70	V	65.27	73.98	8.71	PK
7311	35.35	0.211	8.70	V	44.26	53.98	9.72	AV
4874	47.88	0.000	0.13	Н	48.01	73.98	25.98	PK
4874	35.17	0.211	0.13	Н	35.51	53.98	18.47	AV
7311	55.79	0.000	8.70	Н	64.49	73.98	9.49	PK
7311	35.21	0.211	8.70	Н	44.12	53.98	9.86	AV

F-TP22-03 (Rev. 01) Page 54 of 67

Operation Mode: 802.11g

Transfer Rate: 6 Mbps

Operating Frequency 2462

Channel No. 11 Ch

Frequenc y	Readin g	Duty Cycle Factor	A.F.+C.L. - A.G+D.F.	ANT. POL	Total	Limit	Margin [dB]	Measure ment Type
[MHz]	[dBuV]		[dB]	[H/V]	[dBuV/m]	[dBuV/m]		Турс
4924	48.24	0.000	-0.45	V	47.79	73.98	26.19	PK
4924	36.58	0.211	-0.45	V	36.34	53.98	17.64	AV
7386	54.07	0.000	8.87	V	62.94	73.98	11.04	PK
7386	34.75	0.211	8.87	V	43.83	53.98	10.15	AV
4924	47.18	0.000	-0.45	Н	46.73	73.98	27.25	PK
4924	36.50	0.211	-0.45	Н	36.26	53.98	17.72	AV
7386	51.98	0.000	8.87	Н	60.85	73.98	13.13	PK
7386	34.32	0.211	8.87	Н	43.40	53.98	10.58	AV

F-TP22-03 (Rev. 01) Page 55 of 67

Operation Mode: 802.11n (HT20)

Transfer MCS Index: 0

Operating Frequency 2412

Channel No. 01 Ch

Frequenc y	Readin g	Duty Cycle Factor	A.F.+C.L. - A.G+D.F.	ANT. POL	Total	Limit	Margin [dB]	Measure ment
[MHz]	[dBuV]		[dB]	[H/V]	[dBuV/m]	[dBuV/m]		Type
4824	47.99	0.000	0.25	V	48.24	73.98	25.74	PK
4824	36.55	0.224	0.25	V	37.02	53.98	16.96	AV
7236	57.70	0.000	8.63	V	66.33	73.98	7.66	PK
7236	34.85	0.224	8.63	V	43.70	53.98	10.28	AV
4824	48.15	0.000	0.25	Н	48.40	73.98	25.58	PK
4824	36.60	0.224	0.25	Н	37.07	53.98	16.91	AV
7236	55.94	0.000	8.63	Н	64.57	73.98	9.42	PK
7236	34.77	0.224	8.63	Н	43.62	53.98	10.36	AV

Operation Mode: 802.11n (HT20)

Transfer MCS Index: 0

Operating Frequency 2437

Channel No. 06 Ch

Frequenc y	Readin g	Duty Cycle Factor	A.F.+C.L. - A.G+D.F.	ANT. POL	Total	Limit	Margin [dB]	Measure ment Type
[MHz]	[dBuV]		[dB]	[H/V]	[dBuV/m]	[dBuV/m]		.,,,,,
4874	47.11	0.000	0.13	V	47.24	73.98	26.75	PK
4874	35.30	0.224	0.13	V	35.65	53.98	18.33	AV
7311	57.89	0.000	8.70	V	66.59	73.98	7.39	PK
7311	34.97	0.224	8.70	V	43.89	53.98	10.09	AV
4874	46.94	0.000	0.13	Н	47.07	73.98	26.92	PK
4874	35.43	0.224	0.13	Н	35.78	53.98	18.20	AV
7311	56.14	0.000	8.70	Н	64.84	73.98	9.14	PK
7311	34.88	0.224	8.70	Н	43.80	53.98	10.18	AV

F-TP22-03 (Rev. 01) Page 56 of 67

Operation Mode: 802.11n (HT20)

Transfer MCS Index: 0

Operating Frequency 2462

Channel No. 11 Ch

Frequenc y	Readin g	Duty Cycle Factor	A.F.+C.L. - A.G+D.F.	ANT. POL	Total	Limit	Margin [dB]	Measure ment Type
[MHz]	[dBuV]		[dB]	[H/V]	[dBuV/m]	[dBuV/m]		туре
4924	47.92	0.000	-0.45	V	47.47	73.98	26.51	PK
4924	36.51	0.224	-0.45	V	36.28	53.98	17.70	AV
7386	55.68	0.000	8.87	V	64.55	73.98	9.43	PK
7386	34.30	0.224	8.87	V	43.39	53.98	10.59	AV
4924	47.51	0.000	-0.45	Н	47.06	73.98	26.92	PK
4924	36.47	0.224	-0.45	Н	36.24	53.98	17.74	AV
7386	54.35	0.000	8.87	Н	63.22	73.98	10.76	PK
7386	33.79	0.224	8.87	Н	42.88	53.98	11.10	AV

F-TP22-03 (Rev. 01) Page 57 of 67

■ Test Plots (Worst case : X-V)

Radiated Spurious Emissions plot – Average Reading (802.11b, Ch.6 3rd Harmonic)

Date: 14.NOV.2019 09:57:36

Radiated Spurious Emissions plot - Peak Reading (802.11b, Ch.6 3rd Harmonic)

Date: 14.NOV.2019 09:58:16

F-TP22-03 (Rev. 01) Page 58 of 67

Radiated Spurious Emissions plot - Average Reading (802.11g, Ch.6 3rd Harmonic)

Radiated Spurious Emissions plot - Peak Reading (802.11g, Ch.6 3rd Harmonic)

Date: 14.NOV.2019 10:17:19

F-TP22-03 (Rev. 01) Page 59 of 67

Radiated Spurious Emissions plot - Peak Reading (802.11n (HT20), Ch.6 3rd Harmonic)

Note:

Plot of worst case are only reported.

F-TP22-03 (Rev. 01) Page 60 of 67

9.7 RADIATED RESTRICTED BAND EDGES

Operation Mode: 802.11b

Transfer Rate: 1 Mbps

Operating Frequency 2412 MHz, 2462 MHz

Channel No. 01 Ch, 11 Ch

		ı		1			
Frequency	Reading	A.F.+C.L.+D.F.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	-A.G+ATT [dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Type
2390.0	50.72	0.24	Н	50.96	73.98	23.02	PK
2390.0	39.89	0.24	Н	40.13	53.98	13.85	AV
2390.0	52.57	0.24	V	52.81	73.98	21.17	PK
2390.0	40.12	0.24	V	40.36	53.98	13.62	AV
2483.5	51.59	-0.64	Н	50.96	73.98	23.03	PK
2483.5	39.94	-0.64	Н	39.31	53.98	14.68	AV
2483.5	52.54	-0.64	٧	51.91	73.98	22.08	PK
2483.5	40.35	-0.64	V	39.72	53.98	14.27	AV

Operation Mode: 802.11g

Transfer Rate: 6 Mbps

Operating Frequency 2412 MHz, 2462 MHz

Channel No. 01 Ch, 11 Ch

		Duty	A.F.+C.L.+D.F					Management
Frequency	Reading	Cycle	-A.G+ATT.	ANT. POL	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	Factor	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Type
2390.0	57.61	0.000	0.24	Н	57.85	73.98	16.13	PK
2390.0	42.71	0.211	0.24	Н	43.16	53.98	10.82	AV
2390.0	58.25	0.000	0.24	V	58.49	73.98	15.49	PK
2390.0	44.35	0.211	0.24	V	44.80	53.98	9.18	AV
2483.5	52.02	0.000	-0.64	Н	51.39	73.98	22.60	PK
2483.5	40.00	0.211	-0.64	Н	39.58	53.98	14.40	AV
2483.5	57.63	0.000	-0.64	٧	57.00	73.98	16.99	PK
2483.5	43.65	0.211	-0.64	V	43.23	53.98	10.75	AV

F-TP22-03 (Rev. 01) Page 61 of 67

Operation Mode: 802.11n (HT20)

Transfer MCS Index: 0

Operating Frequency 2412 MHz, 2462 MHz

Channel No. 01 Ch, 11 Ch

Frequency [MHz]	Reading [dBuV]	Duty Cycle Factor	A.F.+C.L.+D.F -A.G+ATT. [dB]	ANT. POL	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	60.32	0.000	0.24	Н	60.56	73.98	13.42	PK
2390.0	44.18	0.224	0.24	Н	44.64	53.98	9.34	AV
2390.0	61.51	0.000	0.24	٧	61.75	73.98	12.23	PK
2390.0	45.06	0.224	0.24	V	45.52	53.98	8.46	AV
2483.5	60.89	0.000	-0.64	Н	60.26	73.98	13.73	PK
2483.5	41.10	0.224	-0.64	Н	40.69	53.98	13.29	AV
2483.5	63.74	0.000	-0.64	V	63.11	73.98	10.88	PK
2483.5	43.73	0.224	-0.64	V	43.32	53.98	10.66	AV

F-TP22-03 (Rev. 01) Page 62 of 67

■ Test Plots (Worst case : X-V)

Radiated Restricted Band Edges plot - Average Reading (802.11n(HT20), Ch.1)

Date: 25.OCT.2019 11:14:24

Radiated Restricted Band Edges plot - Peak Reading (802.11n(HT20), Ch.1)

Date: 25.0CT.2019 11:13:38

F-TP22-03 (Rev. 01) Page 63 of 67

Date: 25.0CT.2019 11:04:2

Radiated Restricted Band Edges plot - Peak Reading (802.11n(HT20), Ch.11)

Date: 25.OCT.2019 11:05:25

Note:

Plot of worst case are only reported.

F-TP22-03 (Rev. 01) Page 64 of 67

10. LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	12/12/2018	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/18/2019	Annual	100033
ESPAC	SU-642 /Temperature Chamber	03/12/2019	Annual	0093008124
Agilent	N9020A / Signal Analyzer	05/23/2019	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	01/10/2019	Annual	MY49431210
Rohde & Schwarz	OSP 120 / Power Measurement Set	07/24/2019	Annual	101231
Agilent	N1911A / Power Meter	04/10/2019	Annual	MY45100523
Agilent	N1921A / Power Sensor	04/10/2019	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/11/2019	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	05/24/2019	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/18/2019	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/02/2019	Annual	07560
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
HCT CO., LTD.	FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	N/A	N/A

Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

F-TP22-03 (Rev. 01) Page 65 of 67

Radiated Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	08/23/2018	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	03/22/2019	Biennial	760
Schwarzbeck	VULB 9160 / TRILOG Antenna	08/09/2018	Biennial	9160-3368
Schwarzbeck	BBHA 9120D / Horn Antenna	04/29/2019	Biennial	9120D-937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	12/04/2017	Biennial	BBHA9170541
Rohde & Schwarz	FSP(9 kHz ~ 30 GHz) / Spectrum Analyzer	05/09/2019	Annual	100854
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	09/26/2019	Annual	101068-SZ
Agilent	N9020A / Signal Analyzer	05/23/2019	Annual	MY51110085
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	05/23/2019	Annual	8
Wainwright Instruments	WHKX7.0/18G-8SS / High Pass Filter	05/03/2019	Annual	29
Wainwright Instruments	WRCJV2400/2483.5-2370/2520- 60/12SS / Band Reject Filter	06/19/2019	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/03/2019	Annual	2
Api tech.	18B-03 / Attenuator (3 dB)	06/04/2019	Annual	1
Agilent	8493C-10 / Attenuator(10 dB)	07/15/2019	Annual	08285
CERNEX	CBLU1183540 / Power Amplifier	07/01/2019	Annual	22964
CERNEX	CBL06185030 / Power Amplifier	07/01/2019	Annual	22965
CERNEX	CBL18265035 / Power Amplifier	01/03/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	06/18/2019	Annual	25956

Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

F-TP22-03 (Rev. 01) Page 66 of 67

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-1911-FC027-P

F-TP22-03 (Rev. 01) Page 67 of 67