CPE 381: Fundamentals of Signals and Systems for Computer Engineers

10 Z-transform

Rahul Bhadani

Electrical & Computer Engineering, The University of Alabama in Huntsville

CPE 381: Signals and Systems

Outline

- 1. Motivation
- 2. Two sided Z-transform
- 3. Discrete Transfer Function
- 4. One-Sided Z-transform Inverse
- 5. Solution of Difference Equations

Z-transform and Laplace Transform

The discrete equivalent of Laplace Transform that follows:

- If the sampled signal is: $x(t) = \sum x(nT_s)\delta(t nT_s)$ its Laplace transform is : $X(s) = \sum_n x(nT_s)\mathcal{L}[\delta(t nT_s)] = \sum_n x(nT_s) = e^{-nsT_s}$
- f By letting $z = e^{sT_s}$,

$$\mathcal{Z}[x(nT_s)] = \mathcal{L}[x_s(t)]|_{z=e^{sT_s}} = \sum_n x(nT_s)z^{-n}$$

which is called the **Z-transform** of the sampled signal.

Z-transform in Practice

Although Z-transform seems to be a discrete version of Laplace transform, the practical use doesn't necessarily bother to find the relationship between Laplace and Z-transform.

- Complex Z-plane is a polar form rather than a 2D cartesian plane.
- 7 Radius corresponds to the damping factor, and angle corresponds to the discrete frequency ω in radians.
- f Thus, the unit circle in the Z-plane is analogous to the $j\Omega$ -axis in the Laplace plane.
- f Inside of the unit circle is analogous to the left-hand s-plane.

CPE 381: Signals and Systems 10 Z-transform 5/112

See: Source:https://www.youtube.com/watch?v=acQecd6dmxw

Relationship between s-plane and z-plane

```
By letting z=e^{sT_s},  \begin{tabular}{l} \beg
```


Example

To see the possibility of infinite zeros and poles in the Laplace transform of a sampled signal, consider a pulse $x(t)=u(t)-u(t-T_0)$ sampled with a sampling period $T_s=\frac{T_0}{N}$, N being a positive integer.

Two-sided Z-transform

Two sided Z-transform

Given a discrete-time signal x[n], $-\infty < n < \infty$, its two-sided Z-transform is given by

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

defined in a region of convergence (ROC) on the Z-plane.

Remark on Z-transform

The two-sided Z-transform is not useful in solving difference equations with nonzero initial conditions, just as the two-sided Laplace transform was not useful either in solving ordinary differential equations with nonzero initial conditions.

Hence, we need to look at one-sided Z-transform.

One-sided Z-transform

Defined for causal signals, x[n] = 0 for n < 0

$$X_1(z) = \mathcal{Z}(x[n]u[n]) = \sum_{n=0}^{\infty} x[n]u[n]z^{-n}$$

The ROC for this z-transform is denoted by \mathcal{R}_1 .

Two-sided Z-transform as One-sided Z-transform

$$X(z) = \mathcal{Z}(x[n]u[n]) + \mathcal{Z}(x[-n]u[n])|_z - x[0].$$

The first z-transform has ROC \mathcal{R}_1 , and the second z-transform has ROC \mathcal{R}_2 . Proof:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} x[n]u[n]z^{-n} + \sum_{n=0}^{\infty} x[n]u[-n]z^{-n} - x[0]$$
$$= \mathcal{Z}(x[n]u[n]) + \sum_{m=0}^{\infty} x[-m]u[m]z^{m} - x[0]$$
$$= \mathcal{Z}(x[n]u[n]) + \mathcal{Z}(x[-n]u[n])|_{z} - x[0]$$

Region of Convergence for Z-transform

Infinite summation we see in the Z-transform has to converge under some conditions for it to be meaningful. It means

$$|X(z)| = \left| \sum_{n} x[n]z^{-n} \right| \le \sum_{n} |x[n]| |r^{-n}e^{j\omega n}| = \sum_{n} |x[n]|r^{-n} < \infty$$

We see that for a given discrete signal or sequence, the convergence depends on the value of r.

Poles and Zeros of Z-transform

The poles of a Z-transform X(z) are complex values $\{p_k\}$ such that

$$X(p_k) \to \infty$$

The zeros of X(z) are the complex values $\{z_k\}$ that make

$$X(z_k) = 0$$

Visualization of Z-transform

The magnitude |X(z)| of the z-transform represents a surface in the z-plane. There are two zeros at $z_1=0$, $z_2=1$ and two poles at $p_{1,2}=0.9e^{\pm j\pi/4}$.

Example

Find the poles and zeros of the following Z-transforms

$$Y_1(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$$

7 (ii)
$$X_2(z) = \frac{(z^{-1} - 1)(z^{-1} + 2)^2}{z^{-1}(z^{-2} + \sqrt{2}z^{-1} + 1)}$$

ROC of Finite-Support Signals

The region of convergence (ROC) of the Z-transform of a signal x[n] of a finite support $[N_0,N_1]$, where $-\infty < N_0 \le n \le N_1 < \infty$,

$$X(z) = \sum_{n=N_0}^{N_1} x[n]z^{-n}$$

is the whole Z-plane, excluding the origin z=0, and/or $z=\pm\infty$, depending on N_0 and N_1 .

Example

Find the Z-transform of a discrete-time pulse x[n] = u[n] - u[n-10]. Determine the region of convergence of X(z).

ROC of Infinite-Support Signals

Signals of infinite support are either causal, anticausal or a combination of these-noncausal. For the Z-transform of a causal signal $x_c[n]$, i.e., $x_c[n] = 0, n < 0$.

$$X_c(z) = \sum_{n=0}^{\infty} x_c[n] z^{-n} = \sum_{n=0}^{\infty} x_c[n] r^{-n} e^{-jn\omega}$$

to converge we need to determine appropriate values of r, the damping factor, as the frequency ω has no effect on the convergence.

ROC of Infinite-Support Signals for a Causal Signal

If R1 is the radius of the farthest out pole of $X_c(z)$, then there is an exponential $R_1^n u[n]$ such that $|x_c[n]| < MR_1^n$ for $n \ge 0$. Then, for X(z) to converge we need that

$$|X_c(z)| \le \sum_{n=0}^{\infty} |x_c[n]| r^{-n} < M \sum_{n=0}^{\infty} \left(\frac{R_1}{n}\right)^n < \infty$$

or that $\frac{R_1}{r} < 1$, which is equivalent to $|z| = r|R_1$. ROC is thus the outside of a circle containing all the poles of $X_c(z)$, i.e., it does not include any poles of $X_c(z)$.

CPE 381: Signals and Systems

ROC of Infinite-Support Signals for an Anti-causal Signal

Likewise, for an anti-causal signal $x_a[n]$ (i.e., $x_a[n] = 0$, for n > 0) if we choose a radius R_2 which is smaller than the radius of all the poles of $X_a(z)$, the region of convergence is $|z| = r < R_2$. This ROC is the inside of a circle that does not include any poles of $X_a(z)$.

ROC of Infinite-Support Signals for a Non-causal (Two-sided) Signal

If the signal x[n] is noncausal, it can be expressed as

$$x[n] = x_c[n] + x_a[n]$$

 $x_c[n]$ is causal whereas $x_a[n]$ is anti-causal.

The corresponding ROC of X(z) would be $0 < R_1 < |z| < R_2 < \infty$.

ROC Visually

(b)

(a)

Example 1: ROC

Consider the sequence $x[n] = a^n u[n]$, a is real, find the z-transform and sketch its ROC.

Example 2: ROC

Rahul Bhadani (UAH)

Consider the sequence $x[n] = -a^n u[-n-1]$, a is real, find the z-transform, and sketch its ROC.

Properties of ROC

- The ROC does not contain any poles.
- If x[n] is a finite sequence (that is, x[n] = 0 except in a finite interval $N_1 \le n \le N_2$, where N_1 , and N_2 , are finite) and X(z) converges for some value of z, then the ROC is the entire z-plane except possibly z = 0 or $z = \infty$.
- 7 If x[n] is a right-sided sequence (that is, x[n] = 0 for $n < N_1 < \infty$) and X(z) converges for some value of z, then the ROC is of the form

$$|z| > r_{max}$$
 or $\infty > |z| > r_{max}$

where r_{max} equals the largest magnitude of any of the poles of X(z). Thus, the ROC is the exterior of the circle $|z| = r_{max}$, in the z-plane with the possible exception of $z = \infty$.

Properties of ROC

If x[n] is a left-sided sequence (that is, x[n] = 0 for $n > N_2 > -\infty$) and X(z) converges for some value of z, then the ROC is of the form

$$|z| < r_{min}$$
 or $0 < |z| < r_{min}$

where r_{min} equals the smallest magnitude of any of the poles of X(z). Thus, the ROC is the interior of the circle $|z| = r_{min}$, in the z-plane with the possible exception of z = 0.

If x[n] is a two-sided sequence (that is, x[n] is an infinite-duration sequence that is neither right-sided nor left-sided) and X(z) converges for some value of z, then the ROC is of the form

$$r_1 < |z| < r_2$$

where r_1 and r_2 are the magnitudes of the two poles of X(z). Thus, the ROC is an annular ring in the z-plane between the circles $|z|=r_1$ and $|z|=r_2$ not containing any poles.

Example

The poles of X(z) are z=0.5 and z=2; find all the possible signals that can be associated with X(z) according to different regions of convergence.

Example

Find the regions of convergence of the Z-transforms of the following signals

$$x_1[n] = \left(\frac{1}{2}\right)^n u[n]$$

and

$$x_2[n] = -\left(\frac{1}{2}\right)^n u[-n-1]$$

Find then the Z-transform of $x_1[n] + x_2[n]$.

Rahul Bhadani (UAH)

Derivative Property

If
$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

its derivative with respective to z is

$$\frac{dX(z)}{dz} = \sum_{n=0}^{\infty} x[n] \frac{dz^{-n}}{dz} = -z^{-1} \sum_{n=0}^{\infty} nx[n] z^{-n}$$

or

$$nx[u]u[n] \longleftrightarrow -z \frac{dX(z)}{dz}$$

Discrete Transfer Function

Transfer Function in 7-domain

The output y[n] of a causal LTI system is calculated using the convolution sum

$$y[n] = [x * h][n] = \sum_{k=0}^{n} x[k]h[n-k] = \sum_{k=0}^{n} h[k]x[n-k]$$

where x[n] is a causal input and h[n] is the impulse response of the system. Z-transform of the y[n] is the product

$$Y(z) = \mathcal{Z}\{[x*h][n]\} = \mathcal{Z}\{x[n]\}\mathcal{Z}\{h[n]\} = X(z)H(z)$$

and thus the transfer function of a discrete system is defined as

$$H(z) = \frac{Y(z)}{X(z)}$$

Convolution Sum

Fun video: https://www.youtube.com/watch?v=KuXjwB4LzSA

What is convolution sum?

The convolution sum property can be seen as a way to obtain the coefficients of the product of two polynomials. s. Whenever we multiply two polynomials $X_1(z)$ and $X_2(z)$, of finite or infinite order, the coefficients of the resulting polynomial can be obtained using the convolution sum.

Example

Consider computing the output of an FIR filter

$$y[n] = \frac{1}{2}(x[n] + x[n-1] + x[n-2])$$

for an input x[n] = u[n] - u[n-4] using the convolution sum, analytically and graphically, and the Z-transform.

Example

Consider a discrete-time IIR system represented by the difference equation

$$y[n] = 0.5y[n-1] + x[n]$$

with x[n] as input and y[n]asoutput.Determine the transfer function of the system and from it find the impulse and the unit-step responses. Determine under what conditions the system is BIBO stable. If stable, determine the transient and steady-state responses of the system.

Interconnection of Discrete Systems

Connections of LTI systems: (A) cascade, (B) parallel, and (C) negative feedback.

Initial Value and Final Value Theorem for Z-transform

If X(z) is the Z-transform of a causal signal x[n] with an initial value x[0] and a final value $\lim_{n\to\infty}x[n]$ are obtained from X(z) according to

- f Initial value: $x[0]: \lim_{z\to\infty} X(z)$
- f Final value: $\lim_{n\to\infty} x[n] = \lim_{z\to 1} (z-1)X(z)$

Example

Consider a negative feedback connection of a plant given in the figure with a transfer function

$$G(z) = \frac{1}{1 - 0.5z^{-1}}$$

and a constant feedback gain of K.

If the reference signal is a unit-step, x[n] = u[n], determine the behavior of the error signal e[n]. What is the effect of the feedback, from the error point of view, on an unstable plant $G(z) = \frac{1}{1-z^{-1}}$

CPE 381: Signals and Systems

One-Sided Z-transform Inverse

Long Division Method

When a rational function X(z) = B(z)/A(z), having as ROC the outside of a circle of radius R (i.e., x[n] is causal), is expressed as

$$X(z) = x[0] + x[1]z^{-1} + x[2]^{-2} + \cdots$$

by dividing B(z) by A(z), then the inverse is the sequence $\{\cdots 0,0,x[0],x[1],x[2],\cdots\}$ or

$$x[n] = x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \cdots$$

Example

Find the inverse Z-transform of

$$X(z) = \frac{1}{1 + 2z^{-2}}, \quad |z| > \sqrt{2}$$

Partial Fraction Method with Example

Consider the non-proper rational function

$$X(z) = \frac{2 + z^{-2}}{1 + 2z^{-1} + z^{-2}}$$

(numerator and denominator of the same degree in powers of z^{-1}).

Determine how to obtain an X(z) expansion containing a proper rational term to find x[n].

CPE 381: Signals and Systems

Find the inverse Z-transform of

$$X(z) = \frac{1+z^{-1}}{(1+0.5z^{-1})(1-0.5z^{-1})} = \frac{z(z+1)}{(z+0.5)(z-0.5)}, \quad |z| > 0.5$$

by using the negative and the positive powers of z representations.

One-Sided Z-transforms Pair Table

Table 10.1 One-sided Z-transforms		
$\delta[n]$	1, whole z-plane	
u[n]	$\left \frac{1}{1 - z^{-1}}, \ z > 1 \right $	
nu[n]	$\frac{z^{-1}}{(1-z^{-1})^2}, z > 1$	
$n^2u[n]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}, z > 1$	
$\alpha^n u[n], \alpha < 1$	$\frac{1}{1-\alpha z^{-1}}, z > \alpha $	
$n\alpha^n u[n], \alpha < 1$	$\frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2}, z > \alpha $	
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}, z > 1$	
$\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}, z > 1$	
$\alpha^n \cos(\omega_0 n) u[n], \alpha < 1$	$\frac{1 - \alpha \cos(\omega_0) z^{-1}}{1 - 2\alpha \cos(\omega_0) z^{-1} + \alpha^2 z^{-2}}, z > \alpha $	
$\alpha^n \sin(\omega_0 n) u[n], \alpha < 1$	$\frac{\alpha \sin(\omega_0) z^{-1}}{1 - 2\alpha \cos(\omega_0) z^{-1} + \alpha^2 z^{-2}}, z > \alpha $	

CPE 381: Signals and Systems

Basic Properties of One-sided Z-transform

Table 10.2 Basic properties of one-sided Z-transform		
Causal signals	$\alpha x[n], \beta y[n]$	$\alpha X(z), \ \beta Y(z)$
Linearity	$\alpha x[n] + \beta y[n]$	$\alpha X(z) + \beta Y(z)$
Convolution sum	$\sum_{k} x[n]y[n-k]$	
Time-shifting	x[n-N], N>0	$z^{-N}X(z) + x[-1]z^{-N+1} + x[-2]z^{-N+2} + \dots + x[-N]$
		$+x[-2]z^{-N+2}+\cdots+x[-N]$
Time reversal	x[-n]	$X(z^{-1})$
Multiplication	n x[n]	$-z\frac{dX(z)}{dz}$
	$n^2 x[n]$	$z^2 \frac{d^2 X(z)}{dz^2} + z \frac{dX(z)}{dz}$
Finite difference	x[n] - x[n-1]	
Accumulation	$\sum_{k=0}^{n} x[k]$	$\frac{X(z)}{1-z^{-1}}$
Initial value	x[0]	$\lim_{z \to \infty} X(z)$
Final value	$\lim_{n\to\infty} x[n]$	$\lim_{z \to 1} (z - 1)X(z)$

Solution of Difference Equations

Example

The following first-order difference equation represents a discrete IIR system

$$y[n] = ay[n-1] + x[n], \quad n \ge 0$$

where x[n] is the system's input and y[n] its output. Discuss how to solve it using recursive methods and the Z-transform. Obtain a general form for the complete solution y[n] in terms of the impulse response h[n] of the system.

Example

Solve the difference equation

$$y[n] = y[n-1] - 0.25y[n-2] + x[n], \quad n \ge 0$$

with zero initial conditions and x[n] = u[n].

Approximate Solution of Ordinary Differential Equations

The solution of ordinary differential equations requires converting them into difference equations, which can then be solved in closed form by means of the Z-transform.

Example

Consider an RLC circuit represented by the second-order ordinary differential equation

$$\frac{d^2v_c(t)}{dt^2} + \frac{dv_c(t)}{dt} + v_c(t) = v_s(t)$$

where the voltage across the capacitor $v_c(t)$ is the output and the source $v_s(t) = u(t)$ is the input. Let the initial conditions be zero. Approximate the derivatives by their definition, find and solve the resulting difference equation.

