Linear regression

Overview

Overview

This assignment kit covers the following topics.

Section	See Page
Prerequisites	2
Requirements	3
Regression overview	5
Correlation overview	6
Calculating regression and correlation	8
An example	9
Assignment instructions	11
Guidelines and evaluation criteria	18

Prerequisites

Reading

•

Additional lecture

https://koldopina.com/regresion-lineal-simple/

Requirements

Program requirements

Using Matlab, write a program to

- calculate the linear regression parameters β_0 and β_1 and correlation coefficients $r_{x,y}$ and r^2 for a set of n pairs of data,
- given an estimate, x_k calculate an improved prediction, y_k where $y_k = \beta_0 + \beta_1 x_k$

Table 1 contains historical estimated and actual data for 10 programs. For program 11, the developer has estimated a proxy size of 386 LOC.

Thoroughly test the program. At a minimum, run the following four test cases.

- Test 1: Calculate the regression parameters and correlation coefficients between **estimated proxy size** and **actual added and modified size** in Table 1. Calculate plan added and modified size given an estimated proxy size of $x_k = 386$.
- Test 2: Calculate the regression parameters and correlation coefficients between estimated proxy size and actual development hours in Table 1. Calculate time estimate given an estimated proxy size of $x_k = 386$.
- Test 3: Calculate the regression parameters and correlation coefficients between plan added and modified size and actual added and modified size in Table 1. Calculate plan added and modified size given an estimated proxy size of $x_{\nu} = 386$.
- Test 4: Calculate the regression parameters and correlation coefficients between plan added and modified size and actual development hours in Table 1. Calculate time estimate given an estimated proxy size of $x_k = 386$.

Expected results are provided in Table 2.

Program Number	Estimated Proxy Size	Plan Added and Modified size	Actual Added and Modified	Actual Development
			Size	Hours
1	130	163	186	15.0
2	650	765	699	69.9
3	99	141	132	6.5
4	150	166	272	22.4
5	128	137	291	28.4
6	302	355	331	65.9
7	95	136	199	19.4
8	945	1206	1890	198.7
9	368	433	788	38.8
10	961	1130	1601	138.2

Table 1

Continued on next page

Program 3 requirements, Continued

Expected results

Test	Expected Values				Expected Values Actual Values					
	$oldsymbol{eta}_0$	$oldsymbol{eta}_1$	$r_{x,y}$	r^2	${\cal Y}_k$	$oldsymbol{eta}_0$	$oldsymbol{eta}_1$	$r_{x,y}$	r^2	${\cal Y}_k$
Test 1	-22.55	1.7279	0.9545	0.9111	644.429					
Test 2	-4.039	0.1681	0.9333	.8711	60.858					
Test 3	-23.92	1.43097	.9631	.9276	528.4294					
Test 4	-4.604	0.140164	.9480	.8988	49.4994					

Table 2

Regression

Overview

Linear regression is a way of optimally fitting a line to a set of data. The linear regression line is the line where the distance from all points to that line is minimized. The equation of a line can be written as

$$y = \beta_0 + \beta_1 x$$

In Figure 1, the best fit regression line has parameters of $\beta_0 = -4.0389$ and $\beta_1 = 0.1681$.

Figure 1

Correlation

Overview

The correlation calculation determines the relationship between two sets of numerical data.

The correlation $r_{x,y}$ can range from +1 to -1.

- Results near +1 imply a strong positive relationship; when x increases, so does y.
- Results near -1 imply a strong negative relationship; when x increases, y decreases.
- Results near 0 imply no relationship.

Using correlation

Correlation is used to judge the quality of the linear relation in various historical process data that are used for planning. For example, the relationships between estimated proxy size and actual time or plan added and modified size and actual time.

For this purpose, we examine the value of the relation r_{xy} squared, or r^2 .

If r^2 is	the relationship is
$.9 \le r^2$	predictive; use it with high confidence
$.7 \le r^2 < .9$	strong and can be used for planning
$.5 \le r^2 < .7$	adequate for planning but use with caution
$r^2 < .5$	not reliable for planning purposes

Limitations of correlation

Correlation doesn't imply cause and effect.

A strong correlation may be coincidental.

From 1840 to 1960, no U.S. president elected in a year ending in 0 survived his presidency. Coincidence or Correlation?

Many coincidental correlations may be found in historical process data.

To use a correlation, you must understand the cause-and-effect relationship in the process.

Calculating regression and correlation

Calculating regression and correlation

The formulas for calculating the regression parameters β_0 and β_1 are

$$\beta_{1} = \frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(n x_{avg} y_{avg}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(n x_{avg}^{2}\right)}$$

$$\beta_0 = y_{avg} - \beta_1 x_{avg}$$

The formulas for calculating the correlation coefficient $r_{x,y}$ and r^2 are

$$r_{x,y} = \frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{\sqrt{\left[n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \left[n\left(\sum_{i=1}^{n} y_{i}^{2}\right) - \left(\sum_{i=1}^{n} y_{i}\right)^{2}\right]}}$$

$$r^2 = r * r$$

where

- Σ is the symbol for summation
- *i* is an index to the *n* numbers
- x and y are the two paired sets of data
- *n* is the number of items in each set *x* and *y*
- x_{avg} is the average of the x values
- y_{avg} is the average of the y values

An example

An example

In this example, we will calculate the regression parameters (β_0 and β_1 values) and correlation coefficients $r_{x,y}$ and r^2 of the data in the Table 3.

n	x	y
1	130	186
2	650	699
3	99	132
4	150	272
5	128	291
6	302	331
7	95	199
8	945	1890
9	368	788
10	961	1601

Table 3

$$\beta_{1} = \frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(n x_{avg} y_{avg}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(n x_{avg}^{2}\right)}$$

- 1. In this example there are 10 items in each dataset and therefore we set n = 10.
- 2. We can now solve the summation items in the formulas.

n	X	y	X^2	<i>x</i> * <i>y</i>	y ²
1	130	186	16900	24180	34596
2	650	699	422500	454350	488601
3	99	132	9801	13068	17424
4	150	272	22500	40800	73984
5	128	291	16384	37248	84681
6	302	331	91204	99962	109561
7	95	199	9025	18905	39601
8	945	1890	893025	1786050	3572100
9	368	788	135424	289984	620944
10	961	1601	923521	1538561	2563201
Total	$\sum_{i=1}^{10} x_i = 3828$	$\sum_{i=1}^{10} y_i = 6389$	$\sum_{i=1}^{10} x_i^2 = 2540284$	$\sum_{i=1}^{10} x_i y_i = 4303108$	$\sum_{i=1}^{10} y_i^2 = 7604693$
	$x_{avg} = \frac{3828}{10} = 382.8$	$y_{avg} = \frac{6389}{10} = 638.9$			

Continued on next page

An example, Continued

An example, cont. 3. We can then substitute the values into the formulas

$$\beta_1 = \frac{\left(4303108\right) - \left(10*382.8*638.9\right)}{\left(2540284\right) - \left(10*382.8^2\right)}$$

$$\beta_1 = \frac{1857399}{1074926} = 1.727932$$

$$r_{x,y} = \frac{10(4303108) - (3828)(6389)}{\sqrt{10(2540284) - (3828)^2 \left[10(7604693) - (6389)^2\right]}}$$

$$r_{x,y} = \frac{18573988}{\sqrt{[10749256]35227609]}} \qquad r_{x,y} = \frac{18573988}{19459460.1}$$

$$r_{x,y} = 0.9545$$

$$r^2 = 0.9111$$

4. We can then substitute the values in the β_0 formula

$$\beta_0 = y_{avg} - \beta_1 x_{avg}$$

$$\beta_0 = 638.9 - 1.727932 * 382.8 = -22.5525$$

5. We now find y_k from the formula $y_k = \beta_0 + \beta_1 x_k$

$$y_k = -22.5525 + 1.727932 * 386 = 644.4294$$