# T-Fold Sequential Validation Technique for Out-Of-Distribution Generalization with Financial Time Series Data

Juan Francisco Muñoz-Elguezabal <sup>1</sup> Juan Diego Sánchez-Torres <sup>1</sup>

<sup>1</sup>Western Institute of Technology and Higher Education (ITESO)

#### **Presented Case Specifications**

Hipothesis: There exists a set of conditions under which a cross-validation process can be defined and conducted in order to achieve Out-Of-Sample and Out-Of-Distribution Generalization when performing a Predictive Modeling Process using Financial Time Series Data.

Dataset: Continuous futures prices of the UsdMxn (U.S. Dollar Vs Mexican Peso), extracted from CME group MP Future Contract. Prices are Open, High, Low, Close in intervals of 8 Hours, OHLC data. GMT timezone-based and a total of 66,500 from 2010-01-03 18:00:00 to 2021-06-14 16:00:00.

**Experiment:** A classification problem is formulated as to predict the target variable,  $CO_{t+1}$ , which is defined as the sign( $Close_{t+1} - Open_{t+1}$ ). For the explanatory variables, the base definition is to use only those of endogenous nature, that is, to create them using only **OHLC** values.

#### A discrete representation

Let  $V_t$  be the value of a financial asset at any given time t, and  $S_t$  as a discrete representation of  $V_t$  if there is an observable transaction  $Ts_t$ . Similarly, if there is a set of discrete  $Ts_t$  observed during an interval of time T of n = 1, 2, ..., n units of time,  $\{S_T\}_{T=1}^n$ , can be represented by  $OHLC_T$ :  $\{Open_t, High_t, Low_t, Close_t\}$ . The frequency of sampling T, can be arbitrarly defined.

#### OHLC data

Timestamp: The date and time for each interval.
Open: The first price of the interval.
High: The highest price during the interval.
Low: The lowest price during the interval.
Close: The last price of the interval

Intra-day micro-information: volatility:  $HL_t$ , price-change:  $CO_t$  uptrend:  $HO_t$ , downtrend:  $OL_t$ 

#### Candlestick Visual Representation (Figure 1)

The base calculations are:

 $HL_t = High_t - Low_t$   $OL_t = Open_t - Low_t$   $CO_t = Close_t - Open_t$  $HO_t = High_t - Open_t$ 



#### T-Fold-SV (Steps)

#### 1.- Folds Formation

Depends on labeling, can be calendar based.

- 2.- Target and Feature Engineering
  In-Fold exclusive or Global and then divide.
- 3.- Information Tensor

To asses information sparsity among Folds.

- 4.- Model Training
- Hyperparameter optimization Train-Val sets.
- 5.- Generalization Assesment
- Out-Of-Sample and/or Out-Of-Distribution.

#### 1: Folds Formation (Figure 2)



#### 2: Target Variable (labeling)

A continuous variable prediction (regression problem), into a discrete variable prediction (classification problem), a time-based labeling can be stated as:

$$\hat{y}_t = sign\left\{CO_t\right\}$$

#### 2: Feature Engineering

with  $\{OL\}_{t-k}$ ,  $\{HO\}_{t-k}$ ,  $\{HL\}_{t-k}$ ,  $\{CO\}_{t-k}$  for values of k=1,2,...K, with K as a proposed mem-ory parameter. Then perform some fundamental operations: Simple Moving Average  $SMA_t$ , lag:  $LAG_t$ , Standard Deviation:  $SD_t$  and Cumulative Sumation:  $CUMSUM_t$ .

#### 3.1: Information Representation and Sparsity Metric

A gamma distribution to fit the PDF of two set of variables, and the Kullback-Leibler Divergence to measure the similarity between the two:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \quad \text{for} \quad x > 0 \quad \alpha, \beta > 0$$
 (1)

 $\Gamma(\alpha)$ : The gamma function  $\forall \alpha \in \mathbb{Z}^+$  and the  $D_{KL}(P||Q)$ : Kullback-Liebler Divergence, which for unknown continuous random variables, P,Q, or for p,q as empirically adjusted Probability Density Functions (PDF) is denoted by:

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) dx \tag{2}$$

## 3.2: Information Tensor

3.3: Tensor Characterization

#### **Predictive Modeling: Part 1**

One common component of the predictive modeling process is binary-logloss cost function with *elasticnet* regularization:

$$J(w) = J(w) + C \frac{\lambda}{m} \sum_{j=1}^{n} \|w_j\|_1 + (1 - C) \frac{\lambda}{2m} \sum_{j=1}^{n} \|w_j\|_2^2$$

Where  $\Sigma_{j=1}^n ||w_j||_1 = L_1$  and  $\Sigma_{j=1}^n ||w_j||_2^2 = L_2$  are also known as *Lasso* and *Ridge* respectively, with C as the coefficient to regulate the effect between the two.

#### **Predictive Modeling: Part 2**

Two models were defined, Logistic-Regression and Multi-layer Feedforward Perceptron.

| Metric           | ann-mlp | logistic |
|------------------|---------|----------|
| acc-train        | 0.9155  | 0.8311   |
| acc-val          | 0.8245  | 0.7368   |
| acc-weighted     | 0.4486  | 0.4061   |
| acc-inv-weighted | 0.4213  | 0.3778   |
| auc-train        | 0.9924  | 0.9300   |
| auc-val          | 0.8401  | 0.8017   |
|                  |         |          |

| Metric               | ann-mlp | logistic |
|----------------------|---------|----------|
| auc-weighted         | 0.4810  | 0.4521   |
| auc-inv-weighted     | 0.4353  | 0.4137   |
| logloss-train        | 0.2290  | 5.8333   |
| logloss-val          | 6.0595  | 9.0892   |
| logloss-weighted     | 0.6975  | 3.2422   |
| logloss-inv-weighted | 2.4467  | 4.2190   |

## Repository

For more information about the code implementation, data, and file templates go to the GitHub repository for this work.

- github.com/IFFranciscoME/EcoSta2021

### References

- Lopez de Prado, Marcos M (2018), Advances in Financial Machine Learning, Wiley.
- Pezeshki et al (2020). *Gradient Starvation: A Learning Proclivity in Neural Networks*, Mohammad Pezeshki, Sekou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, Guillaume Lajoie, arXiv:2011.09468.
- Goddfellow et al (2017), *Deep Learning*, Ian Goodfellow, Yoshua Bengio, Aaron Courville, MIT Press

## Additional Row-Block

Additional content inside block