Способы учёта шума данных в модели нейронных дифференциальных уравнений

Владимиров Э.А.

Московский физико-технический институт

14 декабря 2022 г.

Удаление шума

Проблема

Удаления шума из временного ряда для стабилизации модели предсказания.

Задача

Внедрить методы фильтрации временных рядов в фреймворк Neural ODE

Решение

Использование фреймворка Neural SDE.

Методы фильтрации и Neural ODE

методы фильтрации врем. рядов

фреймворк Neural ODE

Neural ODE and Neural SDE

Модель Neural ODE аппроксимирует отображение х \to у путём обучения нейронной сети f_{θ} и линейных отображений $I_{\theta}^1,\ I_{\theta}^2.$

$$\mathsf{y} pprox \mathit{l}^2_{ heta}(\mathsf{h}_{\mathcal{T}}),$$
 где $\mathsf{h}_{\mathcal{T}} = \mathsf{h}_0 + \int_0^{\mathcal{T}} \mathit{f}_{ heta}(\mathsf{h}_t) dt$ и $\mathsf{h}_0 = \mathit{l}^1_{ heta}(\mathsf{x})$

Модель Neural SDE имеет следующий вид:

$$h_0 = \zeta_{\theta}(V), \quad dh_t = \mu_{\theta}(t, h_t)dt + \sigma_{\theta}(t, h_t) \circ dW_t, \quad \widehat{Y}_t = I_{\theta}(h_t),$$

где $\zeta_{\theta}, \mu_{\theta}, \sigma_{\theta}$ — нейронные сети, I_{θ} — линейное преобразование, $(W_t, t \in [0, T])$ — винеровский процесс и $V \sim \mathcal{N}(0, I_v)$ — стандартный гауссовский вектор. Решением SDE служит случайный процесс $(h_t, t \in [0, T])$.

² Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise. (2), 2019.

¹David Duvenaud, Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt Ordinary Differential Equations. UNITEXT - La Matematica per il 3 piu 2, 109(NeurIPS):31–60, 2018.

Вычислительный эксперимент

Цель

Показать, что качество модели Neural ODE уменьшается при наличии шума в данных.

Временной ряд "Спираль"

Зашумлённая спираль

Анализ ошибки

NODE на чистых данных

NODE на зашумлённых данных

Анализ ошибки

Функция потерь при обучении Neural ODE на незашумлённых и зашумлённых данных

Заключение

- 1. Предоставлена классификация методов фильтрации временных рядов
- 2. Показано, что модель Neural ODE работает хуже на зашумлённых данных