Data Structures & Programming

DPP: 2

CS & IT

Trees

- Q1 The minimum number of nodes in AVL tree of height 6 is _____.

 (Assume that the height of the root node is 1)
- **Q2** Consider the following statements:
 - **P:** An AVL tree is a height-balanced complete binary tree.
 - **Q:** A heap is necessarily a complete binary tree. Which of the following statement(s) is/are CORRECT?
 - (A) P only
 - (B) Q only
 - (C) Both P and Q
 - (D) Neither P nor Q
- Q3 The total number of ways in which a max-heap can be constructed with the keys-7, 6, 1, 4, 5, 2, 3 is _____.
- **Q4** Consider the following statements:
 - **P:** If the root node of a BST is deleted, it can be replaced by inorder predecessor.
 - **Q:** If the root node of a BST is deleted, it can be replaced by preorder successor.

Which of the following is/are CORRECT?

- (A) P only
- (B) Q only
- (C) Both P and Q
- (D) Neither P nor Q

Q5 Consider the following operations in a BST-INSERT(23), INSERT(17), INSERT(25), INSERT(4), INSERT(21), INSERT(1), INSERT(7), DELETE(17), DELETE(23).

The post-order traversal of the resultant BST is

- (A) 1, 7, 4, 21, 25
- (B) 1, 4, 7, 25, 21
- (C) 1, 4, 21, 7, 25
- (D) None of the above
- **Q6** Which of the following sequence(s) of array form a heap?
 - (A) 23, 17, 14, 6, 13, 10, 1, 12, 7, 5
 - (B) 1, 5, 10, 6, 7, 12, 13, 14, 17, 23
 - (C) 23, 17, 14, 7, 13, 10, 1, 5, 6, 12
 - (D) 1, 5, 10, 12, 13, 7, 14, 17, 23, 6
- Q7 Consider the following statements:
 - **P:** The accepted balanced factor in an AVL tree are -1, 0 and +1.
 - **Q:** The height of an AVL tree with n nodes is given as $ceil(log_2 n)$.

The number of INCORRECT statements is

Q8 Construct an AVL tree with the following keys: 12, 10, 15, 14, 13, 17, 8

The immediate left child key value of the root node of the AVL tree is _____.

Answer Key

(A, B, C)

(B, C)

Q1 20~20 Q5 (B) Q2 Q6

0~0 Q3 80~80 Q7

(A) Q4 Q8 12~12

Hints & Solutions

Q1 Text Solution:

The minimum number of nodes in an AVL tree of height 'h' is given by-

$$n(h) = n(h - 1) + n(h - 2) + 1$$

 $n(1) = 1$, $n(2) = 2$, $n(3) = 4$, $n(4) = 7$, $n(5) = 12$, $n(6) = 20$

Q2 Text Solution:

P: INCORRECT. An AVL tree is not necessarily a complete binary tree.

Q: CORRECT. A heap is necessarily a complete binary tree.

Q3 Text Solution:

$$T(n)=1*\left(\frac{n-1}{k}\right)*T(k)*T(b-k-1)$$
Here n = 7, k = 3
$$T(7)=1*\binom{6}{3}*T(3)*T(3)$$
Now, T(3) = 2
$$T(7)=1*\binom{6}{3}*2*2=80$$

Q4 Text Solution:

If the root node of a BST is deleted, it can be replaced by inorder predecessor/successor.

Q5 Text Solution:

post order traversal: - 1 7 4 21 25

Q6 Text Solution:

Not possible defies max-hap property (b)

Satisfies min-heap property

(c)

Satisfies max-heap property.

(d)

Not possible defies min-heap property

Q7 Text Solution:

P: The accepted balanced factor in an AVL tree are -1, 0 and +1.

Q: The height of an AVL tree with n nodes is given as $\operatorname{ceil}(\log_2 n)$.

Both the statement are CORRECT.

Q8 Text Solution:

Resultant AVL tree.

