(1) a)
$$(f+q)(x) = f(x) + q(x) = (x + x^2 - 1)$$

b) $D(f+q)(x) = \{x \in R\} = R$
 $(f+q)(x) = \{x \in R\} = R$
 $(f+q)(x) = \{x \in R\} = R$

b)
$$f+g=x+1$$
 = $\sqrt{x} \cdot x + 1$ D $(f+g)(x)=\{x \in |R| \times x > 0\}$
 $f=\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{x}}$ D $(f-g)(x)=\{x \in |R| \times x > 0\}$

$$\Im f = \sqrt{x-1} \longrightarrow O(f_g)(x) = \{x \in |R| \times 7/13\}$$

d)
$$f+q = 1+1 = (x-2)^2 \cdot 1+1 \rightarrow (x-2)^2 \neq 0$$

 $(x-2)^2 \qquad (x-2)^2 \qquad x^2-2 \cdot x-2+4 \neq 0$
 $\Rightarrow 0 (f+q)(x) = \{x \in (R | x \neq 2\} \ x^2-4x +4 \neq 0$
 $\Rightarrow (x+2) = (x+2) \Rightarrow (x+2) \Rightarrow$

$$\Re = 1$$
 $1 - 1$ $- D(F_q)(x) = 1$

e)
$$(|x|+|x-3|) \rightarrow P(f+g)(x) = \{x \in \mathbb{R}^3\}$$

(3) a) Q(t)=Qo.e-Kt	290=750.e-K-3=750.e-3K
L+ 750	$290 = 750.1$ ($e^{3K} = 7.5$)
	e ^{3K} 29)
3K. le = ln75-ln29	
3K= en 75-en 29	Q(5) = 750.e-(m75-m29).5
K= In 75 - In 29	
3	$y = 750$. 1 $e^{5(l_m 75 - l_m 2)}$
ln ($e^{\frac{5(\ln 75 - \ln 29)}{3}} \cdot y) = \ln 750$
5(lm75-lm29).lme + lmy=	= $\ln 750$ $\rightarrow 1. \ln (75) + \ln y = \ln (75)$
$-16(75^{\frac{3}{3}} \cdot y) = 16(7)$	50) y = 153,91 tandadas
b) e-0,2582.5 = 1	= 1
2	$e^{-0,2582-c}$ 2
$e^{+0,2582 \cdot t} = 2$	+0,2582·t = ln2
= 2,68 = 2,7 amos	
· 1	in a god
\triangle an PAR \rightarrow $f(x) = f(-x)$ $\int MPAR \rightarrow f(-x) = -f(x)$	f(1) = 2 - 3 + 1 = 07 Junião
	f(-1) = 2 - 3 + 1 = 0
b) $f(x) = 5x^3 - 7x$ $f(-x) = 5(-x)^3 - 7-x = -5$	2x3+7x
$f(x) = x^{6} - 1$ $f(-x) = (-x)^{6} - 1 = x^{6} - 1$	par (3
-	
$y^2 + 1$	$y = -y^3 + y = -y^3 + y$ nenhuma $(-y)^2 + 1$ $y^2 + 1$
e) $f(x) = \frac{x-1}{x+1}$	= -x-1 venhuma
V)	a delle men de dep proposition de

 $\Theta_{\text{a}} = 2 \cdot (1-x)^2 - 1 = 2 \cdot (1-2x+x^2) - 1 = 2-4x+2x^2 - 1 = 0$ b) $\sqrt{((x+3)^2+2)-1} = \sqrt{((x^2+6x+9)+2)-1} = \sqrt{x^2+6x+10}$ car (1x+3)+1 $9 = x^2 + 1 = (x)^{10}$ b) $q = \sqrt{x}$ f = xen(x)c) $q = x^2$ f = xx+4d) y = x + 3 f = 1/xe) y = co2(t) $f = \sqrt{x}$ F) ox = tan (t) f = (3) a) $\varphi(x) = \frac{1}{x}$ $\varphi(f(x)) = \frac{1}{x} = x$ $f(x) = \frac{1}{x}$ b) q(x) = x + 2 q(f(x)) = f(x) + 2 = xx + 1 f(x) + 1 $x \circ f(x) + x \circ 1 = f(x) + 2$ $x \cdot f(x) - f(x) = 2 - x$ f(x) = 2 - x f(x)(x - 1) = 2 - x x - 1 $q(x) = x^2$ $q(f(x)) = f(x)^2 = x$ **dh** $y(f(x)) = f(x)^2 - 2 \cdot f(x) = x$ $y = x^2 - 2x$ $x_{1,2} = +2 \pm \sqrt{(-2)^2 - 4.1.(-y)} = 2 \pm \sqrt{4 + 4y} = 2 \pm \sqrt{4 - (1+y)}$ $=2\pm2\sqrt{1+y}=2(1\pm\sqrt{1+y})=1\pm\sqrt{1+y}$ f(x)=1+\sqrt{1+x} tilibra l

c) D(f(x)) = {x \in 1 \text{R1 x > -3}}			
x+3>0	U		1.2
	ex = 6 m (2+3)	y = e'.	-3
$D(\rho^{-1}(x)) = R $	ex = 4+3	V	
d) D(f(x)) = {x ∈ R x ≠-3	123 F-1(x	() =	
a g	x = 4y - 1	ı	
	24+3	•	7
2y.x+	3x = 4y - 1	y = -3	3×-1
2 y.x-	3x = 4y - 1 4y = -1 - 3x	2	× =4
y (2x	-4) = -3x - 6	$O(r_{\alpha}) = r$	x = IR 1x +2
e) D(y) = {x < R x + 03			
$f^{-1}(x) \Rightarrow x = 1 + e^{i\gamma} \times 0$			
1-68	9 - 2	1 2	
, p. 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	-14 -		
\emptyset a) $2 ln(x) = 1 x^2 =$	e		
$lm(x^2) = 1 \qquad \times = 1$	Pe	e prince	
$e^{l_n(x^2)} = e^{1}$			
b) e2×+3 = 7 2>	(+3= lm7		ro E.
	Lx=2m7-3	, P.	
	x= lm7-3	2	<i>-</i>
	x=e-3-5		
			- e 3+5
$5-2x = e^{-3}$	$=-(e^{-3}-51)$	2	2
d) $lm(x) + lm(x-1) = 1$	$\Delta = A - A$	1e = 1+4e	
$l_n(x \cdot (x-1)) = 1$	X1,2=+1+	_	
$e^{\ln(x \cdot (x-1))} = e^{1}$	74,2	2	
x.(x-1) = e		$x = 1 + \sqrt{1+}$	 4e
$x^2-x=e$ x^2-x-	e = 0	2	
tilibra	7		

er 2 x-5 = 3				
log 2x-5 = log 3 x= log 3+5				
$\frac{x-5 \cdot \log_2 2^1}{2} = \log_2 3$				
$x-5 = lag_3$	<i>V</i>			
(1) ln (ln (x)) = 1	e mx =	e e e		
= = e1	$X = e^{e}$			
m(x) = e				
(11) a) 3-e2x >0	Im 37/2x	x < lm 3		
3 > e ^{2 ×}	lm37x	2		
en37 lme2x	2	Difini= ExEIRIXS Im3 }		
b) 2x-1>0				
2×>1	D(f(x1) = {x & R x>1/23			
x > 1/2				