Solutions to Euclidean Harmonic Analysis Assignment 2

Ashish Kujur — PHD231027

February 4, 2024

Contents

1	Question 1	2
2	Question 2	5
3	Question 3	6
4	Question 4	8

Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces, and let f be a product measurable function on $X \times Y$. If $f \geq 0$ and $1 \leq p < \infty$, then

$$\left[\int_X \left(\int_Y f(x, y) d\nu(y) \right)^p d\mu(x) \right]^{\frac{1}{p}} \le \int_Y \left[\int_X f(x, y)^p d\mu(x) \right]^{\frac{1}{p}} d\nu(y) \tag{1.1}$$

If $1 \le p \le \infty$, $f(\cdot, y) \in L^p(\mu)$ for a.e. y, and the function $y \to ||f(\cdot, y)||_p$ is in $L^1(\nu)$, then $f(x, \cdot) \in L^1(\nu)$ for a.e. x, the function $x \to \int f(x, y) d\nu(y)$ is in $L^p(\mu)$, and

$$\left| \left| \int f(\cdot, y) d\nu(y) \right| \right|_p \le \int ||f(\cdot, y)||_p d\nu(y).$$

To prove the above you can do it by the following steps.

- (a) Let $1 \leq p < \infty$ and $g \in L_p(X, \mathcal{M}, \mu)$. Then $||g||_p = \{ \int_X gh : ||h||_q = 1 \}$ where $\frac{1}{p} + \frac{1}{q} = 1$. (Hint: Use Hölder's inequality and then consider the function $h(x) = |g(x)|^{q-1} \frac{\operatorname{sgn} g(x)}{||g||_q^{q-1}}$ where $\operatorname{sgn} g(x) := \frac{g(x)}{|g(x)|}$ when $g(x) \neq 0$ and $\operatorname{sgn} g(x) = 0$ otherwise.)
- (b) For 1 , use (a) and Fubini's theorem to prove 1.

Solution. To prove this question, we use the following result due to Tonelli:

Proposition 1.1 (Tonelli). Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces, and let $f: X \times Y \to [0, +\infty]$ be $\mathcal{A} \times \mathcal{B}$ -measurable. Then

- (a) the function $x \mapsto \int_{Y} f(x, y) d\nu(y)$ is \mathscr{A} -measurable and the function $y \mapsto \int_{X} f(x, y) d\mu(x)$ is \mathscr{B} -measurable, and
- (b) f satisfies

$$\int_{X\times Y} fd\left(\mu \times \nu\right) = \int_{X} \left(\int_{Y} f\left(x,y\right) d\nu\left(y\right)\right) d\mu\left(x\right) = \int_{Y} \left(\int_{X} f\left(x,y\right) d\mu\left(x\right)\right) d\nu\left(y\right)$$

The statement and proof of the above proposition can be found in [2] in Chapter 5, Section 2.

Also, we appeal to the following result which can be found in Theorem 6.16. in [3] and also in the proof of duality of L^p in Proposition 3.5.5. in [2].

Theorem 1.2. Suppose $1 \leq p < \infty$, μ is a σ -finite positive measure on X and Φ is a bounded linear functional on $L^p(\mu)$. Then there is a unique $g \in L^q(\mu)$ where q is the conjugate exponent of p such that

$$\Phi(f) = \int_{X} fg \, d\mu \ (f \in L^{p}(\mu)).$$

Moreover, if Φ and g are related as in the previous equation then we have

$$\|\Phi\| = \|g\|_{q}$$
.

We can start the proof now. Let f be a measurable function on $X \times Y$. We first do it for the case where $f \geq 0$. For p = 1, we are done because then it is Proposition 1.1 in disguise. So, suppose that $1 . Also, we may assume <math>\int_X \left(\int_Y f(x,y)^p d\mu(x) \right)^{1/p} d\nu(y) < \infty$ for otherwise the inequality 1.1 is always true.

Now, define $F(x) = \int_Y f(x,y) d\nu(y)$. By Proposition 1.1, F is \mathcal{M} -measurable. Now, we define a linear functional $\Phi: L^q(\mu) \to \mathbb{C}$ by the following way:

$$\Phi(g) = \int_{Y} gF \ d\mu \ (g \in L^{q} \ (\mu))$$

We now show that Φ is bounded linear functional. To this end, let $g \in L^{q}(\mu)$ and consider the following:

$$\left| \int_{X} gFd\mu \right| \leq \int_{Y} |g(x)| |F(x)| d\mu(x)$$

$$\leq \int_{X} |g(x)| \left(\int_{Y} f(x,y) d\nu(y) \right) d\mu(x)$$

$$\leq \int_{X} \left(\int_{Y} f(x,y) |g(x)| d\nu(y) \right) d\mu(x)$$

$$\leq \int_{X} \left(\int_{Y} f(x,y) |g(x)| d\mu(x) \right) d\nu(y) \qquad \text{(Proposition 1.1)}$$

$$\leq \int_{X} \left(\int_{Y} f(x,y)^{p} d\mu(x) \right)^{1/p} \|g\|_{L^{q}(\mu)} d\nu(y) \qquad \text{(Holder's inquality)}$$

$$\leq \|g\|_{L^{q}(\mu)} \underbrace{\int_{X} \left(\int_{Y} f(x,y)^{p} d\mu(x) \right)^{1/p} d\nu(y)}_{\leq \infty \text{ by assumption}}.$$

By Theorem 1.1, we have that there is some unique $h \in L^p(\mu)$ such that $\Phi(g) = \int_X hgd\mu$ for each $g \in L^q(\mu)$.

By uniqueness, we also have that F=h μ -almost everywhere. Hence F is in $L^p(\mu)$. It follows that $\|F\|_{L^p(\mu)}=\left[\int_X\left(\int_Y f(x,y)d\nu(y)\right)^pd\mu(x)\right]^{\frac{1}{p}}\leq \int_X\left(\int_Y f(x,y)^pd\mu(x)\right)^{1/p}d\nu(y)$. Now, we proceed to complete the second part. Let f be a measurable function on $X\times Y$

Now, we proceed to complete the second part. Let f be a measurable function on $X \times Y$ such that $f(\cdot, y) \in L^p(\mu)$ for ν -almost every y and the function $y \mapsto \|f(\cdot, y)\|_p$ is in $L^1(\nu)$. First, consider the case where $1 \le p < \infty$.

Since the function $y \mapsto \|f(\cdot,y)\|_p$ is in $L^1(\nu)$, we have that

$$\int_X \left(\int_Y |f(x,y)|^p d\mu(x) \right)^{1/p} d\nu(y) < \infty.$$

So, we repeat the above proof taking f as |f| (as all the hypothesis are met) and we have that the function $x \to \int f(x,y) d\nu(y)$ is in $L^p(\mu)$ and

$$\left[\int_X \left(\int_Y |f(x,y)| \, d\nu(y) \right)^p d\mu(x) \right]^{\frac{1}{p}} \le \int_X \left(\int_Y |f(x,y)|^p \, d\mu(x) \right)^{1/p} d\nu(y).$$

which is the same as

$$\left\| \int f(\cdot, y) d\nu(y) \right\|_{p} \le \int ||f(\cdot, y)||_{p} d\nu(y).$$

To finish the proof for $p = \infty$. Fix $y \in Y$. Hence for μ -almost every x,

$$f(x,y) \leq ||f(\cdot,y)||_{\infty}$$
.

It follows that for each $x \in X$,

$$\int_{Y} f(x, y) d\nu(y) \le \int_{Y} \|f(\cdot, y)\| d\nu(y)$$

Taking (essential)-supremum over $x \in X$, we have

$$\left\| \int_{Y} f(x, y) d\nu(y) \right\|_{\infty} \leq \int_{Y} \left\| f(\cdot, y) \right\|_{\infty} d\nu(y).$$

Let $1 \leq p < \infty$ and $f \in L_p(\mathbb{T})$. For any $t \in \mathbb{R}$ define $\tau_t f(x) := f(x-t)$. Prove that $\|\tau_t f - f\|_p \to 0$ as $t \to 0$. Show that the conclusion fails for $p = \infty$.

Solution. Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{T})$. To show $\lim_{t\to 0^+} \|\tau_t f - f\|_p = 0$, let $\varepsilon > 0$ be given. Since $C\left(\mathbb{T}\right)$ is dense in $L^{p}\left(\mathbb{T}\right)$, there is some $g\in C\left(\mathbb{T}\right)$ such that $\|f-g\|_{p}<\frac{\varepsilon}{3}$.

Since $g \in C(\mathbb{T})$, g is uniformly continuous on \mathbb{T} . Hence, there is some $\delta > 0$ such that

$$\|g(\cdot - t) - g(t)\|_{\infty} < \frac{\varepsilon}{3}$$

whenever $|t| < \delta$.

Hence, we have that $\|\tau_t g - g\|_{\infty} < \frac{\varepsilon}{3}$ whenever $|t| < \delta$. Consequently, we have that

$$\|g(\cdot - t) - g(t)\|_p^p = \int_{\mathbb{T}} |g(x - t) - g(x)|^p dx \le \|g(\cdot - t) - g(t)\|_{\infty}^p = \|\tau_t g - g\|_{\infty}^p$$

and hence $\|\tau_t g - g\| < \frac{\varepsilon}{3}$ whenever $|t| < \delta$. Also, note that $\|\tau_t (f - g)\|_p = \|f - g\|_p$ because Lebesgue measure is translation invari-

Hence, we have for $|t| < \delta$, we have that

$$\|\tau_t f - f\|_p = \|\tau_t f - \tau_t g + \tau_t g - g + g - f\|_p$$

$$\leq \|\tau_t (f - g)\|_p + \|\tau_t g - g\|_p + \|g - f\|_p$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

This completes the proof.

Let $f \in L_1(\mathbb{R})$. Define $\hat{f}(\zeta) = \int_{\mathbb{R}} f(x)e^{-2\pi ix\zeta}dx$. Show that if $\int_{\mathbb{R}} |x||f(x)|dx < \infty$, then we must have that \hat{f} is continuously differentiable. Find a condition on f for which \hat{f} will be a smooth function.

Solution. We need to show that the function \hat{f} is continuously differentiable. Fix a point $\zeta_0 \in \mathbb{R}$. Consider the sequence of function $F_n : \mathbb{R} \to \mathbb{C}$ given by

$$F_n(x) = f(x) e^{-2\pi i x \zeta_0} \left(\frac{e^{\left(-2\pi i \frac{x}{n}\right)} - 1}{1/n} \right)$$

for each $x \in \mathbb{R}$. It is easy to see that $F_n(x)$ converges pointwise everywhere to $-2\pi i x f(x) e^{-2\pi i x \zeta_0}$ because $\lim_{n\to\infty} \frac{e^{(-2\pi i \frac{x}{n})}-1}{1/n} = 0$ for each $x \in \mathbb{R}$. Also, we claim that $|F_n(x)| \leq 2\pi |xf(x)|$. To show this, we make use of the fact that $|e^{ix}-1| \leq |x|$ for each $x \in \mathbb{R}$. To this end, let $x \in \mathbb{R}$ and consider the following:

$$|F_n(x)| = \left| f(x) e^{-2\pi i x \zeta_0} \left(\frac{e^{\left(-2\pi i \frac{x}{n}\right)} - 1}{1/n} \right) \right|$$

$$\leq |f(x)| \frac{\left|-2\pi i \frac{x}{n}\right|}{1/n}$$

$$= 2\pi |xf(x)|$$

We went through the trouble of defining the sequence of function $(F_n)_{n\in\mathbb{N}}$ for the reason

$$\begin{aligned} \left| e^{ix} - 1 \right| &= \left| \cos x + i \sin x - 1 \right| \\ &= \left| 1 - \cos x + i \sin x \right| \\ &= \left| 2 \sin^2 \left(\frac{x}{2} \right) + 2i \sin \left(\frac{x}{2} \right) \cos \left(\frac{x}{2} \right) \right| \\ &= \left| 2i \sin \left(\frac{x}{2} \right) e^{\frac{ix}{2}} \right| \\ &\leq 2 \frac{\left| x \right|}{2} = \left| x \right|. \end{aligned}$$

¹One can show this by using that fact that $|\sin x| \leq |x|$ for each $x \in \mathbb{R}$ as follows:

that:

$$\frac{d\hat{f}}{d\zeta}(\zeta_0) = \lim_{n \to \infty} \frac{\hat{f}(\zeta_0 + \frac{1}{n}) - \hat{f}(\zeta_0)}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \int_{\mathbb{R}} F_n(x) dx$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} F_n(x) dx \qquad \text{(by DCT)}$$

$$= \int_{\mathbb{R}} -2\pi i x f(x) e^{-2\pi i x \zeta_0} dx$$

$$= -2\pi i \widehat{(xf)}(\zeta_0).$$

This shows that \hat{f} is differentiable and $\frac{d\hat{f}}{d\zeta}(\zeta) = -2\pi i(\widehat{xf})(\zeta)$. To see that this is continuous, let $\zeta_0 \in R$ and let (h_n) be any sequence converging to 0 and we again apply DCT in the following way:

$$\lim_{n \to \infty} \widehat{xf} \left(\zeta_0 + h_n \right) = \lim_{n \to \infty} \int_{-\infty}^{\infty} xf \left(x \right) e^{-2\pi i (\zeta_0 + h_n)}$$

$$\stackrel{\text{(DCT)}}{=} \int_{-\infty}^{\infty} \lim_{n \to \infty} xf \left(x \right) e^{-2\pi i (\zeta_0 + h_n)}$$

$$= \int_{-\infty}^{\infty} xf \left(x \right) e^{-2\pi i \zeta_0}$$

$$= \widehat{xf} \left(\zeta_0 \right)$$

This would complete the proof provided we justify the step at DCT step. That is easily justified by the fact that $x \mapsto x f(x)$ is in $L^1(\mathbb{R})$.

Finally, we showed in class that if $f \in \mathcal{S}(\mathbb{R})$, that is, the Schwartz class of \mathbb{R} then \hat{f} must be smooth.

Let $f: \mathbb{R} \to \mathbb{C}$ be such that $\int_{\mathbb{R}} |f(x)| dx < \infty$ and $g \in C_c^{\infty}(\mathbb{R})$. Prove that the function f * g defined by $f * g(x) := \int_{\mathbb{R}} f(y) g(x-y) dy$ is a well-defined smooth function.

- (a) Is f * g will also be compactly supported? What if $f \in C_c^{\infty}(\mathbb{R})$?
- (b) Prove that $||f * g||_p \le ||f||_1 ||g||_p$ for all $1 \le p \le \infty$.

Solution. (a) If $f \in L^1(\mathbb{R})$ and $g \in C_c^{\infty}(\mathbb{R})$ then it can be shown that f * g may not be compactly supported.

On the other hand, we show that if both f and g are both compactly supported then f*g must be compactly supported. In fact, we show that if supp $(f*g) \subset \overline{\operatorname{supp} f + \operatorname{supp} g}$.

First, we claim that for a fixed $x \in R$, $f(x - y) g(y) \neq 0$ implies that $y \in (x - \operatorname{supp} f) \cap \operatorname{supp} g$. To see this, let $y \in \mathbb{R}$ be such that $f(x - y) g(y) \neq 0$. Consequently, $f(x - y) \neq 0$ and $g(y) \neq 0$. If $g(y) \neq 0$ then $y \in \operatorname{supp} g$ and if $f(x - y) \neq 0$ then $x - y \in \operatorname{supp} f$, that is, $y \in x - \operatorname{supp} f$. Let $C_x = (x - \operatorname{supp} f) \cap \operatorname{supp} g$ for each $x \in \mathbb{R}$.

Now, note that for a fixed $x \in \mathbb{R}$, we have that

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y) g(y) dy$$

$$= \int_{C_x} f(x - y) g(y) dy + \int_{C_x} f(x - y) g(y) dy \text{ (by the previous paragraph)}$$

$$= \int_{(x-\text{supp } f)\cap \text{supp } g} f(x - y) g(y) dy.$$

We claim that if $x \notin \operatorname{supp} f + \operatorname{supp} g$ then $(x - \operatorname{supp} f) \cap \operatorname{supp} g = \emptyset$. This is to see for if $y \in \operatorname{supp} (x - \operatorname{supp} f) \cap \operatorname{supp} g$ then $x - y \in \operatorname{supp} f$ and $y \in \operatorname{supp} g$ which implies $x \in \operatorname{supp} f + \operatorname{supp} g$. Consequently, if $x \notin \operatorname{supp} f + \operatorname{supp} g$ then we have that (f * g)(x) = 0. Hence, we have that (f * g) = 0 a.e. on $(\operatorname{supp} f + \operatorname{supp} g)^c$. Hence, f * g = 0 a.e. in particular on the interior of $(\operatorname{supp} f + \operatorname{supp} g)^c$ which equals $\operatorname{supp} f + \operatorname{supp} g$.

Since sum of two compact sets is compact, we are done.³.

²The proof of the claim of supp $(f * g) \subset \overline{\text{supp } f + \text{supp } g}$ of the solution was borrowed from [1].

³because sum is jointly continuous and product of compact sets is compact.

(b) One can prove this with the weaker hypothesis that $g \in L^{p}(\mathbb{R})$ in the following way:

$$\begin{split} \|f * g\|_p &= \left\| \int_{\mathbb{R}} f(y) g \left(\cdot - y \right) \, dy \right\|_p \\ &\leq \int_{\mathbb{R}} \|f \left(y \right) g \left(\cdot - y \right) \|_p \, dy \\ &= \int_{\mathbb{R}} |f(y)| \, \|g \left(\cdot - y \right) \|_p \, dy \\ &= \int_{\mathbb{R}} |f(y)| \, \|g\|_p \, dy \qquad \qquad \text{(translation invariance)} \\ &= \|f\|_1 \, \|g\|_p \, . \end{split}$$

References

- [1] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011, pp. xiv+599. ISBN: 978-0-387-70913-0.
- [2] Donald L. Cohn. *Measure theory*. Second. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, New York, 2013, pp. xxi+457. ISBN: 978-1-4614-6955-1; 978-1-4614-6956-8. DOI: 10.1007/978-1-4614-6956-8. URL: https://doi.org/10.1007/978-1-4614-6956-8.
- [3] Walter Rudin. Real and complex analysis. Second. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974, pp. xii+452.