IITB RISC

Multi-cycle Implementation

Project-1
Ananthapadmanabhan A (20D070010)
Neeraj Nixon (20D070056)
Aditya Byju (20D070004)
Arpit Hanotiya (20D070016)

Course Professor: Prof. Virendra Singh

Microprocessors

 ${\rm April}\ 2022$

Contents

Microprocessor Design	3
State Elaboration	
State Flow Diagram	4
Datapath	7
Control Word	8

MICROPROCESSOR DESIGN

STATE ELABORATION

S1	$R_7 \longrightarrow MEM_A, ALU_A \\ +1 \longrightarrow ALU_B \\ MEM_D \longrightarrow IR \\ ALU_out \longrightarrow R_7$
S2	$IR_{9-11} \longrightarrow RF_A_1$ $IR_{6-8} \longrightarrow RF_A_2$ $RF_D_1 \longrightarrow T_1$ $RF_D_2 \longrightarrow T_2$
S3	$T_1/(T_1 \to LS_1) \to ALU_A$ $T_2 \longrightarrow ALU_B$ $ALU_out \longrightarrow T_3$
S4	$IR_{3-5} \longrightarrow RF_A_3$ $T_3 \longrightarrow RF_D_3$
S5	$T_3 \longrightarrow RF_D_3$ $IR_{6-8} \longrightarrow RF_A_3$
S6	$IR_{0-5} \longrightarrow SE_{6-15} \longrightarrow T_2$ $IR_{9-11} \longrightarrow RF_A_1$ $RF_D_1 \longrightarrow T_1$
S7	$T_1 \longrightarrow ALU_A$ $T_2 \longrightarrow ALU_B$ $ALU_out \longrightarrow T_3$
S8	$IR_{0-8} \to SE_{9-15} \to LS_7 \to RF_D_3$ $IR_{9-11} \longrightarrow RF_A_3$
S9	$IR_{6-8} \longrightarrow RF_A_2$ $RF_D_2 \longrightarrow T_1$ $IR_{0-5} \longrightarrow SE_{9-16} \longrightarrow T_2$
S10	$T_3 \longrightarrow MEM_A$ $MEM_D \longrightarrow DR$
S11	$T_1 \longrightarrow ALU_A$ $T_2 \longrightarrow ALU_B$ $ALU_out \longrightarrow T_3$ $IR_{9-11} \longrightarrow RF_A_1$ $RF_D_1 \longrightarrow T_1$
S12	$IR_{0-5} \longrightarrow SE_{6-15} \longrightarrow ALU_B$ $R_7 \longrightarrow ALU_A$ $ALU_out \longrightarrow R_7$
S13	$\begin{array}{c} +1 \longrightarrow ALU_B \\ R_7 \longrightarrow ALU_A \\ ALU_out \longrightarrow R_7 \end{array}$
S14	$R_7 \longrightarrow ALU_A, RF_D_3$ $+1 \longrightarrow ALU_B$ $ALU_out \longrightarrow R_7$ $IR_{9-11} \longrightarrow RF_A_3$

S15	$\begin{array}{c} IR_{0-8} \longrightarrow SE_{9-15} \longrightarrow ALU_B \\ R_7 \longrightarrow ALU_A \\ ALU_out \longrightarrow R_7 \end{array}$
S16	$T_2 \longrightarrow R_7$
S17	$IR_{0-8} \xrightarrow{T_1 \longrightarrow ALU_A} ALU_B$ $ALU_out \longrightarrow R_7$
S18	$DR \longrightarrow RF_D_3$ $IR_{9-11} \longrightarrow RF_A_3$
S19	$\begin{array}{c} T_2 \longrightarrow MEM_D \\ T_3 \longrightarrow MEM_A \end{array}$
S20	$IR_{0-7} \longrightarrow T_4$ $IR_{9-11} \longrightarrow RF_A_1$ $RF_D_1 \longrightarrow T_5$
S21	$T_{4} \longrightarrow PE$ $PO_{1} \longrightarrow T_{6}$ $PO_{2} \longrightarrow T_{4}$ $T_{5} \longrightarrow MEM_A, ALU_A$ $+1 \longrightarrow ALU_B$ $ALU_out \longrightarrow T_{5}$ $MEM_D \longrightarrow DR$
S22	$DR \longrightarrow RF_D_3,$ $T_6 \longrightarrow RF_A_3$ $T_4 \longrightarrow PE$ $PO_1 \longrightarrow T_6$ $PO_2 \longrightarrow T_4$ $T_5 \longrightarrow MEM_A, ALU_A$ $+1 \longrightarrow ALU_B$ $ALU_out \longrightarrow T_5$ $MEM_D \longrightarrow DR$
S23	$T_4 \longrightarrow PE$ $PO_1 \longrightarrow RF_A_1$ $PO_2 \longrightarrow T_4$ $RF_D_1 \longrightarrow T_1$
S24	$T_{1} \longrightarrow MEM_D$ $T_{5} \longrightarrow MEM_A, ALU_A$ $+1 \longrightarrow ALU_B$ $ALU_out \longrightarrow T_{5}$ $T_{4} \longrightarrow PE$ $PO_{1} \longrightarrow RF_A_{1}$ $PO_{2} \longrightarrow T_{4}$ $RF_D_{1} \longrightarrow T_{1}$

STATE FLOW DIAGRAM

ADD/ADL	ADC	ADZ
SO	SO	SO
<u>\$1</u>	S1	S1
	C=1	Z=1
52	S2	52
53	S3	S3
54	54	S4
50	50	SO
ADI	NDU	NDC
S0 S1	S0 S1	S0 S1
56	52	C=1
53	\$7	57
S5	S4	S4
SO	SO	So

DATAPATH

CONTROL WORD

There are 25 control inputs needeed for the microprocessor.

Bit No.	Name	Use
24	MR	Enables Memory Read Operation
23	MW	Enables Memory Write Operation
22	IR EN	Enables write into Instruction register
21	PC EN	Enables Write into PC
20	PC MUX	Choose input to PC
19	RF EN	Enables Write into Register
18	PC MUX	Choose input to PC
17	T1 MUX	Decides input to T1
16	T2 MUX	Decides input to T2
15	T4 MUX	Decides input to T4(PE Inp reg)
14	T5 MUX	Decides input to T5(LM/SM Addr Reg)
13	T5 EN	Enables write into T5(LM/SM Addr Reg)
12	RF_A1 MUX	Decides input to RF_A1
11,10	MEM Addr MUX	Decides input to Address port of Memory
9,8	ALU A MUX	Decides input to ALU_A
7,6	ALU B MUX	Decides input to ALU_B
5,4	ALU_Op	Decides ALU Operation
3,2	RF_A3 MUX	Decides input to RF_A3
1,0	RF_D3 MUX	Decides input to RF_D3