Consider the frame given in Problem 2 of Homework 3.

- **1.)** Calculate the first eigenvalue and eigenvector (mass-normalized) by using the inverse iteration method.
- **2.**) Calculate the second and the third eigenvalue and eigenvector (mass-normalized) by using inverse iteration with shifts.
- 3.) Calculate the damping matrix (Rayleigh) by assuming ζ =0.05 for the first and the third modes.
- **4.)** A force vector $\underline{p}(t) = p_0 \cos \omega t \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}^T$ acts, where $p_0 = 250 \text{ kN}$ and $\omega = 2\omega_1$.
 - a) Determine the modal displacement vectors $\underline{\mathbf{u}}_1$, $\underline{\mathbf{u}}_2$, $\underline{\mathbf{u}}_3$ and the total displacement vector \mathbf{u} (consider only first three modes) at $\mathbf{t} = T_1/2$.
 - **b**) Determine the modal force vectors \underline{f}_1 , \underline{f}_2 , \underline{f}_3 and the story shear distribution (consider only first three modes) at $t = T_1/2$.
 - c) Determine the base shear time history V_b (t) by using the first three modes, for $t \le 4T_1$ and compare with the external dynamic force.

Present your results graphically.

Use Matlab or Mathcad in your calculations, and show your steps explicitly.