

Model Development Phase Template

Date	4 July 2024
Team ID	SWTID1720097611
Project Title	CovidVision: Advanced COVID-19 Detection from Lung X-rays with Deep Learning
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

Model 1 (VGG16):

Model 2 (ResNet50):

Model 3 (InceptionV3):

Model 4 (Xception):

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
VGG16	<pre>vgg = VGG16(input_shape=(224,224,3),include_top=False) for layers in vgg.layers: layers.trainable = False x = Flatten()(vgg.output) x = Dense(256,activation='relu')(x) output = Dense(4,activation='softmax')(x) vgg16=Model(vgg.input,output) vgg16.summary()</pre>	Speck 1/28
ResNet50	resnet= ResNet50(input_shape=(224,224,3),include_top=False) for layers in resnet.layers: layers.trainable = False x=Flatten()(resnet.output) x=Dense(256,activation='relu')(x) output=Dense(4,activation='softmax')(x) resnet50=Model(resnet.input,output) resnet50.summary()	Epoch 1/15 1578 138/step loss: 16.5380 - accuracy: 0.2917 - val_loss: 6.5568 - val_accuracy: 0.4583 12/12 1 1388 134/step loss: 1.65380 - accuracy: 0.790 - val_loss: 1.7918 - val_accuracy: 0.4583 12/12 1 1388 134/step loss: 1.7918 - accuracy: 0.3790 - val_loss: 1.7918 - val_accuracy: 0.3812 12/12 1 12/12 1389 136/step loss: 1.7918 - accuracy: 0.4790 - val_loss: 1.7911 - val_accuracy: 0.4791 12/12 1389 136/step loss: 1.7918 - accuracy: 0.4790 - val_loss: 1.7918 - val_accuracy: 0.4602 12/12 1 12/12 1389 136/step loss: 1.2341 - accuracy: 0.4581 - val_loss: 1.1304 - val_accuracy: 0.4666 12/12 1 12/12 1389 136/step loss: 1.2341 - accuracy: 0.4790 - val_loss: 1.1306 - val_accuracy: 0.4790 12/12 1 12/12 1 1398 136/step loss: 1.2801 - accuracy: 0.4790 - val_loss: 1.1262 - val_accuracy: 0.4479 12/12 1 1398 136/step - loss: 1.2791 - accuracy: 0.4590 - val_loss: 1.2262 - val_accuracy: 0.4271 12/12 1 1398 136/step - loss: 1.1708 - accuracy: 0.5000 - val_loss: 1.2262 - val_accuracy: 0.3058 12/12 1 1398 136/step - loss: 1.1708 - accuracy: 0.4000 - val_loss: 1.2260 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 - accuracy: 0.4000 - val_loss: 1.2260 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 - accuracy: 0.4000 - val_loss: 1.2270 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 - accuracy: 0.4000 - val_loss: 1.2270 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 - accuracy: 0.4000 - val_loss: 1.2270 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 - accuracy: 0.4000 - val_loss: 1.2270 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 - accuracy: 0.4000 - val_loss: 1.2270 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 - accuracy: 0.4000 - val_loss: 1.2270 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 136/step - loss: 1.1358 - accuracy: 0.4000 - val_loss: 1.2270 - val_accuracy: 0.4271 1398 136/step - loss: 1.1358 136/step - loss: 1.1358 - accuracy: 0.4000 - val_accuracy: 0.4271 1398 136/

Inception	<pre>inception = InceptionV3(input_shape=(224,224,3),include_top=False) for layers in inception.layers: layers.trainable = False x=Flatten()(inception.output) x=Dense(256,activation='relu')(x) output=Dense(4,activation='softmax')(x) inceptionV3=Model(inception.input,output)</pre>	Fgoch 1/28
Xception	<pre>xception = Xception(input_shape=(299,299,3),include_top=False) for layers in xception.layers: layers.trainable = False x=Flatten()(xception.output) x=Dense(256,activation='relu')(x) output=Dense(4,activation='softmax')(x) xception=Model(xception.input,output) xception.summary()</pre>	Epoch 1/15