San Francisco State University

CSC 648 - 848

Milestone 3 Submission Form

Section 01 Team 01

Item	Credentials		
Website URL	http://ec2-44-197-240-111.compute-1.amazonaws.com/about/ http://44.197.240.111/about/		
SSH Connection command	ssh -i "mykp.pem" ec2-user@ec2-44-197-240-111.compute- 1.amazonaws.com		
Database Endpoint	csc648-db-team-1.cp7px58ibcuh.us-east-1.rds.amazonaws.com		
Database Username	adminuser		
Database Password	burritoman2023#		
Database Port	3306		
GitHub Repository Link	https://github.com/CSC-648-SFSU/csc648-spring23-01-team01		

How to connect to EC2 instance:

- 1. Clone https://github.com/CSC-648-SFSU/csc648-spring23-01-team01
- 2. Run "cd application"
- 3. Run ssh -i "mykp.pem" ec2-user@ec2-44-197-240-111.compute-1.amazonaws.com
- 4. You are now connected to the EC2 instance.

In case, step 3 throws an error saying "insufficient permissions" or a similar error, please run "chmod 400 mykp.pem" in case you use an Apple device. In case of windows, please follow steps as below.

- select .pem file -> right click -> properties
- Security > Advanced > Disable inheritance
- Remove all Users
- Add > Select a principal
- In "Enter the object name to select" type your Windows username > ok
- Give all permissions > ok > apply

Steps to host in the server and deployment:

Below are the steps we followed to host our code in the server and for deployment:

For database creation:

We created a free tier database from Amazon RDS with the following configurations:

Instance				
Configuration	Instance class	Storage	Performance Insights	
DB instance ID	Instance class	Encryption	Performance Insights enabled	
sc648-db-team-1	db.t2.micro	Not enabled	Turned off	
ngine version	vCPU	Storage type		
3.0.28	1	General Purpose SSD (gp2)		
DB name	RAM	Storage		
eam1_database	1 GB	20 GiB		
icense model	Availability	Provisioned IOPS		
General Public License	Availability	-		
Option groups	Master username	Storage throughput		
lefault:mysql-8-0 ⊘ In sync	adminuser	-		
Amazon Resource Name (ARN)	Master password	Storage autoscaling		
rn:aws:rds:us-east-	*****	Enabled		
:183886752180:db:csc648-db-team-	IAM DB authentication	Marianova atomora throughold		
l	Not enabled	Maximum storage threshold 1000 GiB		
Resource ID	Multi-AZ	1000 dib		
lb- SW7NKMIUQXRODX7L5MIRDXZWBE	No			
Created time	Secondary Zone			
ebruary 11, 2023, 12:04 (UTC-08:00)	-			

2. We used MySQL workbench to connect to the database.

For creating EC2 instance:

- 1. We created a free tier EC2 instance. It is a t2.micro instance with 8gb memory.
- 2. Next, we used docker and docker compose to generate the build and get our code up and running on the same.

Steps we follow to push code changes:

- 1. Create a feature branch from the development branch, make you changes and push code to your branch.
- Raise a PR from feature branch to development branch and get it approved by the backend lead in case backend changes are made, with similar steps for frontend changes.

- 3. Raise a PR from development branch to master branch wherein the Team Lead approves the PR, after which, the backend lead deploys the code onto the server as and when needed.
- 4. The deployment of the code is done manually, wherein the backend lead will pull the latest changes onto the EC2 instance and then uses docker-compose to get the build running.