Non-parametric density estimation

Gosia Migut

Slides credit: David Tax

Admin stuff

- Lab 3 downloads: 220
- Questions lab 3: 200+

Keep practicing!

After practicing with the concept of this lecture you should be able to:

- Explain what are and how to use the learning curves
- Explain the Naive Bayes classifier, including the following:
 - components and their function
 - independence assumption
 - dealing with missing data
 - Continuous example
 - Discrete example
 - Pros and cons

Literature

- Naive bayes
 - Lecture notes CS229: section 2 and 2.1 (excluding 2.2). Andrew Ng, Standford University.
 http://cs229.stanford.edu/notes/cs229-notes2.pdf
- Learning curves
 - Section 8.2 from "Pattern Recognition: Introduction and Terminology" by R.P.W. Duin and E. Pekalska.

http://www.37steps.com/data/pdf/PRIntro_large.pdf

Recap last lecture

- Non-parametric density estimation
- K-nn and Parzen

- Lab: optimize k for k-nn
- Now: optimize h for Parzen density estimation

Parzen width parameter

Parzen densities for different h

Feature 0

Log-likelihood

- To evaluate a fit of a density model to some data,
 -> define an error.
- Eg. use the log-likelihood:

$$LL(X) = \log\left(\prod_{i} \hat{p}(x_i)\right) = \sum_{i} \log(\hat{p}(x_i))$$

Pseudo code

Loglikelihood vs. h for training set

Loglikelihood vs. h for training set (blue) and test set (red)

Learning curves

Learning curves

- Curves that plot [estimated] classification errors against the number of samples in training set
- Usually plot error both on training and on test set
- Gives insight in, e.g.
 - Amount of overtraining
 - Usefulness of additional data
 - How different classifiers compare

Apparent classification error

Repeated learning curves

Small sample sizes have a very large variability

Averaged learning curve

Different classifier complexity

Fill in short evaluation

- One positive comment about the course
- One point of improvement
- Other remarks

https://forms.gle/YAQtzDynSubZnvn28

Naïve Bayes classifier

Recap Bayes classifer

- For classification we need p(y|x)
- We can use Bayes' theorem if we can estimate p(y) and p(x|y)

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Recap Bayes classifier

 Assigning an object to the class with the maximum posterior probability gives the Bayes' classifier

$$p(x|y_1)p(y_1) > p(x|y_2)p(y_2)$$

- The Bayes' classifier is the optimal classifier
- The Bayes' error is the smallest error attainable $\varepsilon^* > \varepsilon$

Warming up question

- Suppose we have trained a generative model and now get a new test example x. Our model tells us that: $p(x|y_0) = 0.01$, $p(x|y_1) = 0.03$ and $p(y_0) = p(y_1) = 0.5$
- What is $p(y_1|x)$?
 - A. 0.015
 - B. 0.25
 - C. 0.75
 - Insufficient information to compute. We also need to know the p(x).

•
$$p(y_1|x) = \frac{p(x|y_1)p(y_1)}{p(x)}$$

•
$$p(x) = p(x|y_1)p(y_1) + p(x|y_0)p(y_0)$$

•
$$p(y_1|x) = \frac{0.03*0.5}{0.03*0.5+0.01*0.5} = 0.75$$

Density estimation

 So, we want to estimate a class probability density function:

 Typically, each feature vector x has many features:

$$p(x|y) = p(x_1, x_2, x_3, x_4, ..., x_d|y)$$

 To estimate this joint pdf (conditional on the class), we need LOTS of data... (curse of dimensionality)

Naive Bayes: Independence assumption

- Now assume, that all features are independent
- We assume conditional independence given y
- We just estimate $p(x_i|y)$ per feature and multiply them.

$$p(x|y) = p(x_1, x_2, x_3, x_4, ..., x_d|y) = \prod_{i=1}^d p(x_i|y)$$

= $p(x_1|y)p(x_2|y) ... p(x_d)$

No curse of dimensionality!

Conditional independence example

- We assume conditional independence of two variables given a third variable.
- Probabilities of going to the beach and getting a heat stroke may be independent if we know the wheather is hot

$$p(B,S|H) = p(B|H)p(S|H)$$

- Hot weather "explains" all the dependence between beach and heartstroke
- In classification: class value explains all the dependence between attributes

Naive Bayes: Independence assumption

- Now assume, that all features are independent
- We assume conditional independence given y
- We just estimate $p(x_i|y)$ per feature and multiply them.

$$p(x|y) = p(x_1, x_2, x_3, x_4, ..., x_d|y) = \prod_{i=1}^d p(x_i|y)$$

= $p(x_1|y)p(x_2|y) ... p(x_d|y)$

No curse of dimensionality!

Parametric vs. non-parametric

• You still have to choose a model for $p(x_i|y)$

Naive Bayes classifier

Continuous data example

- Distinguish children from adults based on size
 - Classes: y = {a, c}, features: x = {height (cm), weight (kg)}
 - Training examples: 4 adults, 12 children
- Class probaballities $p(a) = \frac{4}{4+12} = 0.25, p(c) = 0.75$
- Model for adults:
 - Assume height and weight are independent
 - Height, estimate Gaussian with mean, variance

$$\begin{cases} \mu_{h,a} = \frac{1}{4} \sum_{i:y_i = a} h_i \\ \sigma_{h,a}^2 = \frac{1}{4} \sum_{i:y_i = a} (h_i - \mu_{h,a})^2 \end{cases}$$

- Weight, estimate Gaussian $(\mu_{w,a}, \sigma_{w,a}^2)$
- Model for children: use $(\mu_{h,c}, \sigma_{h,c}^2)$, $(\mu_{w,c}, \sigma_{w,c}^2)$

Continuous example

$$p(w|a) = \frac{1}{\sqrt{2\pi\sigma_{w,a}^2}} exp - (\frac{w - \mu_{w,a}^2}{2\sigma_{w,a}^2})$$

$$p(h|a) = \frac{1}{\sqrt{2\pi\sigma_{h,a}^2}} exp - (\frac{h - \mu_{h,a}^2}{2\sigma_{h,a}^2})$$

$$p(x|a) = p(w|a)p(h|a)$$

$$p(a|x) = \frac{p(x|a)p(a)}{p(x)}$$

Problems with Naive Bayes

Discrete example

Separate spam from valid email (features = words)

D1: "send us your password"	spam
D2: "send us review"	valid
D3: "review your password"	valid
D4: "review us"	spam
D5: "send your password"	spam
D6: "send us your account"	spam

p(spam) = 4/6 p(valid) = 2/6				
	spam	valid		
Password	2/4	1/2		
Review	1/4	2/2		
Send	3/4	1/2		
Us	3/4	1/2		
Your	3/4	1/2		
Account	1/4	0/2		

New email "review us now"

Discrete example

- New email: "review us now"
- p("review us"|spam) =p([0, 1, 0, 1, 0, 0]|spam) =

$$(1 - \frac{2}{4})(\frac{1}{4})(1 - \frac{3}{4})(\frac{3}{4})(1 - \frac{3}{4})(1 - \frac{1}{4}) = 0.0044$$

• p("review us"|valid) = p([0, 1, 0, 1, 0, 0]|valid) =
$$(1 - \frac{1}{2})(\frac{2}{2})(1 - \frac{1}{2})(\frac{1}{2})(1 - \frac{1}{2})(1 - \frac{1}{2})(1 - \frac{0}{2}) = 0.0625$$

valid

1/2

1/2

1/2

1/2

0/2

2/2

p(spam) = 4/6 p(valid) = 2/6

Password

Review

Send

Your

Account

Us

spam

2/4

1/4

3/4

3/4

3/4

1/4

- p("review us"|spam) = 0.0044
- p("review us"|valid) = 0.0625

p(spam) = 4/6 p(valid) = 2/6				
	spam	valid		
Password	2/4	1/2		
Review	1/4	2/2		
Send	3/4	1/2		
Us	3/4	1/2		
Your	3/4	1/2		
Account	1/4	0/2		

- p("review us"|spam)p(spam) = 0.0044 * 4/6 = 0.0029
- p("review us"|valid)p(valid) = 0.0625 * 2/6 = 0.02
- Note: identical example!

Zero frequency problem

- Any email containing "account" is spam
 - p("account"|valid) = 0/2

p(spam) = 4/6 p(valid) = 2/6				
	spam	valid		
Password	2/4	1/2		
Review	1/4	2/2		
Send	3/4	1/2		
Us	3/4	1/2		
Your	3/4	1/2		
Account	1/4	0/2		

- Solution: never allow zero probabilities
 - Laplace smoothing: add a small positive number to the counts (K-> number of classes)

$$p(w|c) = \frac{num(w,c) + \varepsilon}{num(c) + K\varepsilon}$$

- May use global statistics in place of ε : num(w)/num
- Very common problem (50% of words occure once)

Fooling Naive Bayes

- Every word contributes independently to p(spam|email)
- Add lots of valid words into spam email.

Missing data

- Suppose we don't have value for some attribute x_i
 - Eg. some medical test not performed on patient
- How to compute $p(x_1, ..., x_i, ... x_d | y)$
- Easy with Naive Bayes
 - Ignore attribute instance where it's missing a value
 - Compute likelihood based on observed values
 - No need to fill in or explicitly model missing values
 - Based on conditional independence between attributes

$$P(x_1, \dots, x_j, \dots, x_d) = \prod_{i \neq j}^d p(x_i | y)$$

Missing data example

- Three coin tosses: event = $\{x_1 = H, x_2 = ?, x_3 = T\}$
 - Event: head, unknown (either tail ot head), tail
 - event = {H, H, T} + {H, T, T}
 - -P(event) = P(H, H, T) + P(H, T, T)
- General case: x_i has missing value

$$p(x_1, ..., x_j, ..., x_d|y) = p(x_1|y) ... p(x_j|y) ... p(x_d|y)$$

•
$$\sum_{x_j} p(x_1, ... x_j, ... x_d | y) =$$

 $\sum_{x_j} p(x_1 | y) ... p(x_j | y) ... p(x_d | y) =$
 $p(x_1 | y) ... [\sum_{x_j} p(x_j | y)] ... p(x_d | y) =$
 $p(x_1 | y) ... [1] ... p(x_d | y)$

Naive Bayes pros and cons

- Can handle high dimensional feature spaces
- Fast training time
- Can handle missing values
- Transparent

 Can't deal with correlated features

After practicing with the concept of this lecture you should be able to:

- Explain what are and how to use the learning curves
- Explain the Naive Bayes classifier, including the following:
 - components and their function
 - independence assumption
 - dealing with missing data
 - Continuous example
 - Discrete example
 - Pros and cons

Questions to think about

- Is feature scaling an issue for Naive Bayes?
- How would the learning curve look like for a very simple classifier, like nearest mean?

 Which classifier doesn't make 0 training error when we have 1 object per class? K-nn, Parzen, Nearest mean, LDA, QDA, Naive Bayes?

Exercise Naive Bayes

 Predict if Bob will default his loan

Bob:

Homeowner: no

Maritial status: married

Job experience: 3

Home owner	Maritial status	Job experience	Deafulted
Yes	Single	3	No
No	Married	4	No
No	Single	5	No
Yes	Married	4	No
No	Divorced	2	Yes
No	Married	4	No
Yes	Divorced	2	No
No	Married	3	Yes
No	Married	3	No
Yes	Single	2	Yes

- p(y = no) = 7/10
- P(home owner = no|y = no| = 4/7
- P(martial status = married|y = no) = 4/7
- P(job experience = 3|y = no) = 2/7
- P(Bob will not default) = $\frac{7}{10} * \frac{4}{7} * \frac{4}{7} * \frac{2}{7} = 0.065$

- p(y = yes) = 3/10
- P(home owner = no|y = yes) = 1/3
- P(martial status = married|y = yes) = 1/3
- P(job experience = 3|y = yes) = 1/3
- P(Bob will default) = $\frac{3}{10} * \frac{1}{3} * \frac{1}{3} * \frac{1}{3} = 0.011$

- P(Bob will not default) = 0.065
- P(Bob will default) = 0.011

Predict: Bob will not default

