Języki formalne i złożoność obliczeniowa.

Na podstawie wykładu profesora Macieja Kandulskiego semestr zimowy 2019/2020

Uniwersytet Adama Mickiewicza wydział Matematyki i Informatyki

Wykład 12.10.2019

1 Złożoność obliczeniowa

Zagadnienia złożoności obliczeniowej - jakie sa koszty prowadzenia obliczeń czasowe i pamięciowe:

- Złożoność wykładnicza
- Nierozsądne gospodarowanie czasem
- Nierozsądne gospodarowanie pamięciową ...

2 Gramatyka

Gramatyka. Jak poprawnie budować wyrażenia danego języka (zbiór zasad). Gramatyka inaczej jest nazywana syntaktyką albo składnią.

Między innymi kompilator posiada w sobie element rozpoznający gramatykę.

3 Symbol a znaczenie symbolu

3.1 Abstrakcyjne pojęcie liczby

Warto odróżnić symbol od jego znaczenia. Np. liczbę dwa można zapisywac w postaci symoblu cyfry arabskiej **2** lub rzymskiej **II**. To samo dotyczy słowa **słoń** - słowo oznacza wielkie kilkutonowe zwierze ale nim nie jest (nie jest bytem materialnym).

Abstrahować. Abstrachować znacyz pomijać. Np.: abstrakcyjna liczba dwa powstała z pominięciem takich cech jak wielkość, pochodzenie.

3.2 Przykład powstania liczby

Różna materialne nośniki niosące te same liczby obiektów o różnych cechach. Opisanie wspólnej cechy obiektów - **liczebności** .

- (i) **couple** of people (para ludzi 2)
- (ii) pair of pistols (para pistoletów 2)
- (iii) yoke of oxen (zaprzeg dwa zwięrzęta)

Abstakcyjna liczba **2** powstała abstrahując od pochodzenia (np. zwierzęcia), wielkości (np. broni) czy płci (para ludzi) pozostawiając tylko jedną wspólną cechę, którą jest **liczebność**.

4 Języki formalne

4.1 Pojęcia

Ciągi i zbiory ciągów traktowane są jako obiekty materialne a **nie** abstrakycjne. **Skończoność** - ważna cecha alfabetu/zbioru ponieważ tylko skończone zbiory danych można przechowywać w **fizycznym urządzeniu**.

Alfabet V. Alfabet V to: dowolny, niepusty, skończony zbior znaków $np.: V = \{I\}$, $V' = \{a,b\}$.

Słowo nad alfabetem V. Słowo nad alfabetem V to dowolny, skończony ciąg znkaów z V. np.: IIII (słowo nad alfabete $V=\{I\}$) czy abba (słowo nad alfabetem $V=\{a,b\}$)

Słowo puste ϵ . Słowo puste ϵ - słowo o 0 (zerowym) wystąpieniu symboli. Uwaga! Spacja NIE jest słowem pustym.

 \mathbf{V}^* . Zbiór wszsytkich słów nad alfabetem V. Łącznie z pustym słowem ϵ .

 $\mathbf{V^*}\setminus\{\epsilon\}=\mathbf{V+.}$ Zbiór wszsytkich niepustych słów. (ŁWyłączenie ze zbioru pustego słowa ϵ)

Oznaczenie słów. Słowa oznaczane są wielkimi literami z końca alfabetu łacińskiego, np.: P,Q,R.

4.2 Operacja konkatenacji

Własności konkatenacji

- Konkatenacja jest działaniem łacznym w zbiorze słów
- Konkatenacja w ogólnoście **NIE** jest przemienna (bywa przemienna dla tyh samych słów **ab ab**) lub jeśli alfabet skada sie tylko z jednego znaku np $V = \{a\}$
- ϵ słowo puste zachowje się jak element neutralny dla operacji konkatenacji: $\epsilon P \subset P \epsilon = P$.

4.3 Konkatnacja a grupa algebraiczna