Quiz 8

Problem. Consider the following neuron network, which includes 3 input neurons, 2 hidden neurons and 1 output neurons.

Initial input, weight and bias values are

X ₁	X 2	Х3	W14	W15	W24	W25	W34	W 35	W46	W 56	θ4	θ5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

The expected output value is 1. The learning rate is 0.9 Knowing that the actual output at some neuron *j* is calculated as follows.

$$y_j(p) = \operatorname{sigmoid}\left[\sum_{i=1} x_i(p) \times w_{ij}(p) + \theta_j\right]$$

where n is the number of inputs of neuron j, w_{ij} is the corresponding link from a neuron i in the previous layer to neuron j, and θ_j is the bias at neuron j.

Present all calculations required to perform the backpropagation once (i.e., one forward pass and one backward pass) on the given neural network in the following cases

Step 1 – Initialization Step 2 – Activation

At iteration p:

- Calculate the actual output from n=3 inputs of neuron j in the hidden layer:

$$y_j(p) = sigmoid\left(\sum_{i=1}^n x_i(p)w_{ij}(p) + \theta_j\right)$$

- Calculate the actual output from k=2 inputs of neuron m in the hidden layer:

$$y_k(p) = sigmoid(\sum_{j=1}^{2} y_j(p)w_{jk}(p) + \theta_k$$

Step 3 – Weight Training:

The output layer:

- Calculate the error gradient for neuron k in the output layer:

$$\delta_k(p) = y_k(p) * [1 - y_k(p)] * [y_{d,k}(p) - y_k(p)]$$

- Calculate the weight corrections:

$$\Delta w_{ik}(p) = \alpha * y_i(p) * \delta_k(p)$$

- Update the weights at the output neurons:

$$w_{ik}(p+1) = w_{ik}(p) + \Delta w_{ik}(p)$$

The hidden layer:

- Calculate the error gradient for neuron j in the hidden layer:

$$\delta_j(p) = y_j(p) * [1 - y_j(p)] * \sum_{k=1}^{l} \delta_k w_{jk}(p)$$

- Calculate the weight corrections:

$$\Delta w_{ii}(p) = \alpha * x_i(p) * \delta_i(p)$$

- Update the weights at the hidden neurons:

$$w_{ij}(p+1) = w_{ij}(p) + \Delta w_{ij}(p)$$

a) Ignore all biases (precision to 3 decimal places).

Ignore all biases - Forward

Output at neuron 4	0.426		
Output at neuron 5	0.475		
Output at neuron 6	0.527		

Ignore all biases - Backward

Error gradient at neuron 6	0.118
Error gradient at neuron 5	-0.006

Error gradient at neuron 4	-0.009		
Update w46	-0.255		
Update w56	-0.150		
Update w14	0.192		
Update w15	-0.305		
Update w24	0.400		
Update w25	0.100		
Update w34	-0.508		
Update w35	0.195		

b) Consider all biases such that each bias is treated as a neuron and thus it will be also updated *(precision to 3 decimal places).*

(Consider all biases – Forward

Output at neuron 4	0.332		
Output at neuron 5	0.525		
Output at neuron 6	0.552		

Consider all biases – Backward

Error gradient at neuron 6	0.111
Error gradient at neuron 5	-0.006
Error gradient at neuron 4	-0.007
Update w46	-0.267
Update w56	-0.148
Update w14	0.193
Update w15	-0.305
Update w24	0.400
Update w25	0.100
Update w34	-0.507
Update w35	0.195
Update bias 6	-0.407
Update bias 5	0.195
Update bias 4	0.200