# Choice of timescale and its implications for longitudinal cognitive aging research (work in progress)

Jingxuan Wang & Ruijia Chen
Department of Epidemiology and Biostatistics
University of California, San Francisco

June 22, 2022



## Background

- In longitudinal cognitive aging research (for example, cohort study), generalized linear mixed models (GLMM) are widely used to describe the change over time of outcomes and association with risk factors
  - With continuous outcomes, linear mixed models (LMM) are often used
- However, the timescale seems an arbitrary choice in the LMM literature
  - Time on study
  - Age
  - Age + adjust for baseline age



### Aims

Use simulations to evaluate how different parameterizations of timescales affect longitudinal cognitive aging research results

- Estimated effects of education on the rate of cognitive decline
- Estimated within- and between-person age effects



## Simulation- Procedure

- Generate a hypothetical cohort
- 2. Create an analytical sample
- 3. Generate data according to data generating rules
- 4. Estimate parameters of interest
  - Timescale: study time / age / age + adjustment
- 5. Repeat 1-4 for multiple iterations (B=1000)
- 6. Quantify magnitude of bias
  - Percentage bias =  $\frac{\hat{\beta} \beta}{\beta} * 100\%$



# Simulation- Hypothetical cohort study

- Hypothetical cohort:
  - Study the effect of completion of high school education on late-life cognitive decline
  - N = 50,000 subjects born between 1920 and 1955 (uniformly)
  - In 2010, a random sample of n=2,000 subjects who survived to late life (55-90 years old) enrolled in the study
    - $P(survial_i) = \frac{\exp(\gamma_{0t} + \gamma_1 educ_i + \gamma_2 U_i)}{1 + \exp(\gamma_{0t} + \gamma_1 educ_i + \gamma_2 U_i)}$ ,  $\gamma_{0t}$  selected to match the age distribution based on the 2010 Census
  - Cognitive function was measured on 10 waves over 10 years





# Simulation- Data generating rules

- Causal structures
  - Causal structure 1 (no bias anticipated)
    - U is the unmeasured determinants of cognitive decline

- Causal structure 2 (selection bias)
  - U is the unmeasured determinants of cognitive decline





Selection into cohort

# Simulation- Data generating rules

- Unified causal structures
- Generation of repeated measures of cognitive function

$$Y_{it} = \beta_{00} + b_{0i} + \beta_{01}educ_i + \beta_{02}U_i + \beta_{03}pe_{ij}$$
$$+(\beta_{10} + b_{1i} + \beta_{11}educ_i + \beta_{12}U_i) \times age_{it} + \epsilon_{ij}$$

Age as timescale

- $educ_i \sim Bernulli(0.4)$
- $U_i \sim N(0,1)$
- True within-person age effect = true
   between-person age effect





# Simulation-Input parameter values

|                        | Cognitive intercept |            | Cog        | Cognitive decline |            |            | Mortality  |            |
|------------------------|---------------------|------------|------------|-------------------|------------|------------|------------|------------|
| Causal structure       | $eta_{00}$          | $eta_{01}$ | $eta_{02}$ | $eta_{10}$        | $eta_{11}$ | $eta_{12}$ | $\gamma_1$ | $\gamma_2$ |
| 1: no bias anticipated | 0                   | -0.05      | -0.005     | -0.05             | -0.05      | -0.005     | -log(2)    | 0          |
| 2: selection bias      | 0                   | -0.05      | -0.005     | -0.05             | -0.05      | -0.005     | -log(2)    | -log(2)    |

| Parameter    | Definition                                              | Value |
|--------------|---------------------------------------------------------|-------|
| $eta_{03}$   | Practice effect                                         | 0.05  |
| $\sigma_0^2$ | Variance of random cognitive intercept                  | 0.2   |
| $\sigma_1^2$ | Variance of random cognitive slope                      | 0.005 |
| ρ            | Correlation between random intercepts and random slopes | 0.01  |
| $\sigma^2$   | Variance of measurement error                           | 0.7   |





# Simulation- Model fitting

Three parameterizations

| Timescale        | LMM model with a random intercept and slope                                                                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time on study    | $\begin{split} E\big[Y_{ij}\big] &= (\beta_{00} + b_{i0}) + (\beta_{10} + b_{i1})time_{ij} + \beta_2 baseline\_age_i \\ &+ \beta_{02} educ_i + \beta_{03} pe_{ij} + \beta_{11} time_{ij} \times educ_i \end{split}$  |
| Age              | $E[Y_{ij}] = (\alpha_{00} + v_{i0}) + (\alpha_{10} + v_{i1})age_{ij} + \alpha_{02}educ_i + \alpha_{03}pe_{ij} + \alpha_{11}age_{ij} \times educ_i$                                                                   |
| Age + adjustment | $\begin{split} E\big[Y_{ij}\big] &= (\gamma_{00} + u_{i0}) + (\gamma_{10} + u_{i1})age_{ij} + \gamma_2 baseline\_age_i \\ &+ \gamma_{02}educ_i + \gamma_{03}pe_{ij} + \gamma_{11}age_{ij} \times educ_i \end{split}$ |



# Simulation- Model fitting

Three parameterizations

| Timescale        | LMM model with a random intercept and slope                                                                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time on study    | $\begin{split} E\big[Y_{ij}\big] &= (\beta_{00} + b_{i0}) + \beta_{10} + b_{i1})time_{ij} + \beta_2 baseline\_age_i \\ &+ \beta_{02}educ_i + \beta_{03}pe_{ij} + \beta_{11}time_{ij} \times educ_i \end{split}$      |
| Age              | $E[Y_{ij}] = (\alpha_{00} + v_{i0}) + (\alpha_{10} + v_{i1})age_{ij} + \alpha_{02}educ_i + \alpha_{03}pe_{ij} + \alpha_{11}age_{ij} \times educ_i$                                                                   |
| Age + adjustment | $\begin{split} E\big[Y_{ij}\big] &= (\gamma_{00} + u_{i0}) + (\gamma_{10} + u_{i1})age_{ij} + \gamma_2 baseline\_age_i \\ &+ \gamma_{02}educ_i + \gamma_{03}pe_{ij} + \gamma_{11}age_{ij} \times educ_i \end{split}$ |

Sanity check 1: under the data generation rules, the coefficient for time on study and baseline age should be approximately the same

Sanity check 2: the coefficient for baseline age should be approximately zero



# Simulation- Model fitting

Three parameterizations

| Timescale        | LMM model with a random intercept and slope                                                                                                                                                                          | Within-person<br>age effect | Between-<br>person age<br>effect |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|
| Time on study    | $\begin{split} E\big[Y_{ij}\big] &= (\beta_{00} + b_{i0}) + (\beta_{10} + b_{i1})time_{ij} + \beta_2 baseline\_age_i \\ &+ \beta_{02} educ_i + \beta_{03} pe_{ij} + \beta_{11} time_{ij} \times educ_i \end{split}$  | $eta_{10}$                  | $eta_2$                          |
| Age              | $E[Y_{ij}] = (\alpha_{00} + v_{i0}) + (\alpha_{10} + v_{i1})age_{ij} + \alpha_{02}educ_i + \alpha_{03}pe_{ij} + \alpha_{11}age_{ij} \times educ_i$                                                                   | $lpha_{10}$                 | $lpha_{10}$                      |
| Age + adjustment | $\begin{split} E\big[Y_{ij}\big] &= (\gamma_{00} + u_{i0}) + (\gamma_{10} + u_{i1})age_{ij} + \gamma_2 baseline\_age_i \\ &+ \gamma_{02}educ_i + \gamma_{03}pe_{ij} + \gamma_{11}age_{ij} \times educ_i \end{split}$ | $\gamma_{10}$               | $\gamma_{10} + \gamma_2$         |



Causal structure 1 (no bias anticipated)

Effect of education on cognitive decline





#### Takeaway:

 In causal structure 1, the estimated effect of education on rate of cognitive change was unbiased, independent of timescale



Causal structure 1 (no bias anticipated)

Within- and between-person age effects





| Time<br>scale | LMM model with a random intercept and slope                          | Within          | Between                  |
|---------------|----------------------------------------------------------------------|-----------------|--------------------------|
| Time          | $E[Y_{ij}] = \beta_{10}time_{ij} + \beta_2 baseline\_age_i + \cdots$ | $eta_{10}$      | $\beta_2$                |
| Age           | $E[Y_{ij}] = \alpha_{10} ag e_{ij} + \cdots$                         | $lpha_{10}$     | $lpha_{10}$              |
| Age2          | $E[Y_{ij}] = \gamma_{10}age_{ij} + \gamma_2baseline\_age_i + \cdots$ | γ <sub>10</sub> | $\gamma_{10} + \gamma_2$ |

#### Takeaway:

within

between

 In causal structure 1, all timescales gave unbiased estimates for withinperson age effect. Time as timescale overestimated between-person age effect



Causal structure 2 (selection bias)

Effect of education on cognitive decline





#### Takeaway:

 In causal structure 2, the magnitude of bias with moderate input parameters was relatively small, but independent of timescale



Causal structure 2 (selection bias)

Within- and between-person age effects





| Time<br>scale | LMM model with a random intercept and slope                          | Within          | Between                  |
|---------------|----------------------------------------------------------------------|-----------------|--------------------------|
| Time          | $E[Y_{ij}] = \beta_{10}time_{ij} + \beta_2 baseline\_age_i + \cdots$ | $eta_{10}$      | $\beta_2$                |
| Age           | $E[Y_{ij}] = \alpha_{10} ag e_{ij} + \cdots$                         | $lpha_{10}$     | $\alpha_{10}$            |
| Age2          | $E[Y_{ij}] = \gamma_{10}age_{ij} + \gamma_2baseline\_age_i + \cdots$ | γ <sub>10</sub> | $\gamma_{10} + \gamma_2$ |

#### Takeaway:

within

between

 In causal structure 2, all timescales underestimated within-person age effect and the magnitude of bias was independent of timescale



## Summary

- Under current data generating structures (true within- and between-person age effects are the the same), analytical timescale did not affect the magnitude of bias in within-person age effect
  - "Wrong" analytical timescale may give biased between-person age effect
- Analytical timescale did not affect the magnitude of bias in estimated effect of education on rate of cognitive decline
  - In the absence of bias, time on study and current age resulted in almost identical unbiased results
  - In the presence of selection bias, the magnitudes of bias were similar (and small)



## Next steps- simulation

- Nonlinear age effect
- Cohort effect
- Healthy participation effect
  - A 75-year-old person who enrolls in a study may be healthier (higher cognitive level, lower rate of decline) than an otherwise comparable person who turns 75 after several years of follow-up
- Loss to follow-up



## Next steps

- Assess and compare the associations between education and cognitive decline in the Health and Retirement Study and the Life After 90 Study under the following three scenarios:
  - Using time as the timescale
  - Using current age as the timescale
  - Using current age as the timescale and adjust for baseline age



## Comments or suggestions?

Jingxuan Wang: jingxuan.wang@ucsf.edu

Ruijia Chen: ruijia.chen@ucsf.edu

