References

- 1. Dynasim AB. Dymola User's Manual. http://www.dynasim.se/, 1994–2006.
- T. Alamo, A. Cepeda, and D. Limon. Improved computation of ellipsoidal invariant sets for saturated control systems. In *Proceedings of the 44th IEEE Conference on Decision and Control*, pages 6216–6221, Seville, Spain, December 2005.
- 3. F. Amato, M. Mattei, S. Scala, and L. Verde. Robust flight control design for the HIRM (High Incidence Research Model) via linear quadratic methods. In *Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit*, Boston, MA, August 1998.
- 4. N. Ananthkrishnan and NK. Sinha. Level Flight Trim and Stability Analysis Using an Extended Bifurcation and Continuation Procedure. *AIAA*, 24(6):1225–1228, 2001.
- 5. P. Apkarian and R. Adams. Advanced Gain-Scheduling Techniques for Uncertain Systems. *IEEE Trans Control Systems Technology*, 6(1):21–32, 1998.
- 6. P. Apkarian and P. Gahinet. A Convex Characterization of Gain-Scheduled H_{∞} Controllers. tac, 40(5):853–864, May 1995.
- P. Apkarian, P. Gahinet, and G. Becker. Self-Scheduled H_∞ Control of Linear Parameter-Varying Systems: A Design Example. Automatica, 31:1251–1261, 1995.
- 8. K. J. Åström and L. Rundqwist. Integrator windup and how to avoid it. In *Proceedings of the American Control Conference*, pages 1693–1698, Pittsburgh, USA, June 1989.
- 9. G. Avanzini and G. de Matteis. Bifurcation analysis of a highly augmented aircraft model. *Journal of Guidance, Control and Dynamics*, 20(4):754–759, 1997.
- H. Backström. Report on the usage of the Generic Aerodata Model. Technical report, Saab Aircraft AB, Linköping, 1997.
- 11. E. Bakker, L. Nyborg, and H. B. Pacejka. Tyre modeling for use in vehicle dynamic studies. In *SAE paper 870421 SAE Inc. Warrendale*, PA, 1987.
- G. Balas, J. Doyle, K. Glover, A. Packard, and R. Smith. μ-Analysis and Synthesis Toolbox. The MathWorks Inc., Natick MA, June 1998.
- G. Balas, J. Mueller, and J. Barker. Application of Gain-Scheduled, Multivariable Control Techniques the F/A-18 System Research Aircraft. Technical Report 99-4206, AIAA, 1999.
- 14. G. J. Balas, R. Chiang, A. Packard, and M. Safonov. Robust control toolbox v3.0, 2006.
- J. Bals, G. Hofer, A. Pfeiffer, and C. Schallert. Virtual Iron Bird A Multidisciplinary Modelling And Simulation Platform For New Aircraft System Architectures. In DGLR Luft- und Raumfahrtkongress 2005, Friedrichshafen, DGLR-Jahrbuch 2005, 2005.
- C. Barbu, R. Reginatto, A. R. Teel, and L. Zaccarian. Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. In *Proceedings of the American Control Conference*, pages 1230–1234, Chicago, USA, June 2000.

- 17. J. M. Barker and G. Balas. Flight Control of a Tailless Aircraft via Linear Parameter Varying Techniques. Technical Report 99-4133, 1999, AIAA.
- A. G. Barmes and T. J. Yager. Enhancement of aircraft ground handling simulation capability. In AGARD-AG-333, PA, 1998. NATO.
- G. Becker and A. Packard. Robust Performance of Linear Parametrically Varying Systems Using Parametrically Dependent Linear Dynamic Feedback. Systems and Control Letters, 23(3):205–215, 1994.
- C. Belcastro, T.H. Khong, Shin. J.Y., H. Kwatny, B.C. Chang, and G. Balas. Uncertainty Modeling for Robustness Analysis of Aircraft Control Upset Prevention and Recovery Systems. In AIAA Guidance, Navigation, and Control Conference, San Francisco, CA, August 2005.
- 21. C.M. Belcastro and B.C. Chang. On parametric uncertainty modeling for real parameter variations. In *IEEE Conference on Decision and Control*, December 1992.
- C.M. Belcastro and B.C. Chang. LFT Formulation for Multivariable Polynomial Problems. In *American Control Conference*, pages 1002–1007, Philadelphia, PA, June 1998.
- J-M. Biannic, P. Apkarian, and W. Garrard. Parameter Varying Control of a High-Performance Aircraft. AIAA, 20(2):225–231, 1997.
- J-M. Biannic and C. Doll. Graphical tools for creating and simulating interconnected LFR objects. In *IEEE-CCA-CACSD Conference*, Munich, Germany, October 2006.
- 25. J-M. Biannic and C. Doll. Simulink handling of LFR objects. Free Web publication http://www.cert.fr/dcsd/idco/perso/Biannic/mypage.html, 2006.
- J-M. Biannic and G. Ferreres. Efficient computation of a guaranteed robustness margin. In Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 2005.
- 27. J-M. Biannic, S. Tarbouriech, and D. Farret. A practical approach to performance analysis of saturated systems with application to fighter aircraft flight controllers. In *Proceedings of the 5th IFAC Symposium on Robust Control Design*, 2006.
- J. H. Blakelock. Automatic Control of Aircraft and Missiles. Wiley, New York, NY, 2nd edition, 1991.
- R. P. Braatz, P. M. Young, J. C. Doyle, and M. Morari. Computational complexity of μ calculation. *IEEE Transactions on Automatic Control*, 39(5):1000–1002, 1994.
- F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems. Springer, New York, NY, 2004.
- C. Burgat and S. Tarbouriech. Intelligent anti-windup for systems with input magnitude saturation. *International Journal of Robust and Nonlinear Control*, 8(12):1085–1100, 1998.
- Y.Y. Cao, Z. Lin, and D.G. Ward. An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. *IEEE Transactions on Automatic Control*, 47(1):140–145, 2002.
- 33. J.V. Carroll and R. K. Mehra. Bifurcation Analysis of Nonlinear Aircraft Dynamics. *AIAA*, 5(5):529–536, 1982.
- 34. R. Carter, J. M. Gablonsky, A. Patrick, C. T. Kelley, and O. J. Eslinger. Algorithms for noisy problems in gas transmission pipeline optimization. *Optimization and Engineering*, 2(2):139–157, 2001.
- G. Charles, M Lowenberg, D Stoten, X Wang, and M. di Bernardo. Aircraft Flight Dynamics Analysis and Controller Design Using Bifurcation Tailoring. In AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, August 2002. AIAA-2002-4751.
- S. Chetty, G. Deodhare, and B. B. Misra. Design, development and flight testing of control laws for the indian light combat aircraft. In *Proceedings of the AIAA Guidance, Navigation* and Control Conference, Monterey, California, 2002. AIAA-2002-4649.

- Y. S. Chou and A. L. Tits. On robust stability under slowly-varying memoryless uncertainty.
 In *Proceedings of the 34th IEEE Conference on Decision and Control*, pages 4321–4326,
 New Orleans, USA, December 1995.
- 38. J. Clot. Système d'alarme et de sécurité active pour la conduite automobile. Technical Report 98441, LAAS-CNRS, October 1998.
- J. Clot, J. Falipou, T. Sentenac, P. Pebayle, F. Lorenzi, and S. Marchant. Systeme d'alarme et de securite active pour la conduite automobile. Technical Report 98441, LAAS-CNRS, October 1998.
- 40. J. C. Cockburn. Multidimensional realizations of systems with parametric uncertainty. In *Mathematical Theory of Networks and Systems*, Perpignan, France, June 2000.
- 41. J. C. Cockburn and B. G. Morton. Linear Fractional Representations of Uncertain Systems. *Automatica*, 33(7):1263–1271, 1997.
- 42. J. W. Curtis and R. W. Beard. A graphical understanding of Lyapunov-based nonlinear control. In *Proc. CDC '02*, pages 2278–2283, Las Vegas, NV, 2002. Session WeP10-1.
- 43. L. Daga. RealTime Blockset for MATLAB.http://digilander.libero.it/LeoDaga/Simulink/RTBlockset.htm, 2004.Retrived 17th March 2007.
- 44. R. D'Andrea and S. Khatri. Kalman decomposition of linear fractional transformation representations and minimality. In *American Control Conference*, pages 3557–3561, Alburquerque, NM, June 1997.
- 45. B. Dang-Vu and D. Brocas. Closed-Loop Constrained Control Allocation for a Supermaneuverable Aircraft. In *Proceedings of 21st ICAS Congress*, Melbourne, Australia, 1998.
- L. Davis, editor. Handbook of genetic algorithms. Van Nostrand Reinhold, New York, 1991.
- 47. K. Deb. Optimisation for engineering design algorithms and examples. Prentice-Hall of India, New Delhi, 1995.
- 48. S. Dietz, G. Scherer, G. Looye, and S. Bennani. Diffedrent LMI Synthesis Techniques to Design a Flexible Aircraft Gust Response Control Law. Technical Report 2003-5418, AIAA, 2003.
- 49. Littleboy DM and Smith PR. Bifurcation Analysis of a High Incidence Aircraft with Nonlinear Dynamic Inversion Control. In AIAA Atmospheric Flight Mechanics Conference, New Orleans, LA, Collection of Technical Papers, 1997.
- 50. J. Doyle. Analysis of feedback systems with structured uncertainties. *IEE Proceedings*, *Part D*, 129(6):242–250, 1982.
- 51. J. Duprez. Automatisation du pilotage au sol pour la navigation aéroportuaire. Doctorat, Université Paul Sabatier, LAAS Report No04633, September 2004.
- 52. J. Duprez, F. Mora-Camino, and F. Villaume. Aircraft-on-ground lateral control for low speed manœuvers. In *Proceedings of the 16th IFAC Symposium on Automatic Control in Aerospace*, St. Petersburg, Russia, June 2004.
- WC. Durham, JG. Bolling, and KA. Bordignon. Minimum Drag Control Allocation. AIAA, 20(1):190–198, 1996.
- WC. Durham, F. Lutze, and Mason W. Kinematics and aerodynamics of the velocity vector roll. Technical Report 1993-3625, AIAA, 1993.
- 55. H. Elmqvist. Object-Oriented Modeling and Automatic Formula Manipulation in Dymola. In *SIMS '93, Scandinavian Simulation Society*, Kongberg, Norway, June 1993.
- 56. H. Elmqvist and M. Otter. Methods for Tearing Systems of Equations in Object-Oriented Modeling. In *Proceedings of the European Simulation Multiconference (ESM'94)*, pages 326 – 332, Barcelona, Spain, 1994.
- 57. H. Elmqvist, M. Otter, and F. Cellier. Inline integration: A new mixed symbolic /numeric approach for solving differential—algebraic equation systems. In *Keynote Address, Proc. ESM'95, European Simulation Multiconference, Prague, Czech Republic, June 5–8, 1995, pp. xxiii–xxxiv,* 1995.

- D. Enns, D. Bugajski, R. Hendrick, and G. Stein. Dynamic Inversion: an evolving methodology for flight control design. *International Journal of Control*, 59(1):71–91, 1994.
- M. K. H. Fan, A. L. Tits, and J. C. Doyle. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. *IEEE Transactions on Automatic Control*, 36(1):25– 38, 1991.
- 60. J. Farrell, M. Polycarpou, and M. Sharma. Adaptive backstepping with magnitude, rate, and bandwidth constraints: Aircraft longitude control. In *Proc. American Control Conference*, 2003, volume 5, pages 3898–3904, Denver, CO, June 4–6 2003.
- J. Farrell, M. Sharma, and M. Polycarpou. On-line approximation based aircraft longitudinal control. In *Proc. American Control Conference 2003*, volume 2, pages 1011–1019, Denver, CO, June 4–6 2003.
- Application of multivariable control theory to aircraft control laws: Final report Multivariable control design. Technical report, Honeywell TC and Lockheed Martin Skunk Works, May 1996.
- 63. G. Ferreres. A practical approach to robustness analysis with aeronautical applications. Springer Verlag, 1999.
- 64. G. Ferreres and J-M. Biannic. Reliable computation of the robustness margin for a flexible transport aircraft. *Control Engineering Practice*, 9(12):1267–1278, 2001.
- G. Ferreres and V. Fromion. Computation of the robustness margin with the skewed μ tool. Systems and Control Letters, 32(4):193–202, 1997.
- 66. G. Ferreres and C. Roos. Robust feedforward design in the presence of LTI/LTV uncertainties. *International Journal of Robust and Nonlinear Control*, 2007.
- 67. H. A. Fertik and C. W. Ross. Direct digital control algorithm with anti-windup feature. *ISA Transactions*, 6:317–328, 1967.
- C. Fielding, A. Varga, S. Bennani, and M. Selier, editors. Advanced techniques for clearance of flight control laws. Number 283 in Lecture notes in control and information sciences. Springer Verlag, 2002.
- D. E. Finkel and C. T. Kelley. Convergence analysis of the direct algorithm. Technical Report CRSC-TR04-28, N. C. State University Center for Research in Scientific Computation, July 2004.
- 70. P. J. Fleming and R. C. Purshouse. Evolutionary algorithms in control systems engineering: a survey. *Control Engineering Practice*, 10(11):1223–1241, 2002.
- L. Forssell and U. Nilsson. ADMIRE The Aero-Data Model in a Research Environment. Version 4.0. Model description. Technical Report FOI-R--1624--SE, Swedish Defence Research Agency, Stockholm, December 2005.
- 72. L. S. Forssell. Flight clearance analysis using global nonlinear optimisation based search algorithms. In *Proceedings of the AIAA Guidance, Navigation, and Control Conference*, Austin, Texas, August 2003.
- 73. L. S. Forssell. Personel communication, March 2004.
- L. S. Forssell, G. Hovmark, Å. Hyden, and F. Johansson. The aero-data model in a research environment (admire) for flight control robustness evaluation. Technical Report TP-119-7, GARTEUR, August 2001.
- L. S. Forssell and Å. Hyden. Flight control system validation using global nonlinear optimisation algorithms. In *Proceedings of the European Control Conference*, Cambridge, U.K., September 2003.
- P. Gahinet and P. Apkarian. A Linear Matrix Inequality approach to H_∞ control. International Journal of Robust and Nonlinear Control, 4:421–448, 1994.
- 77. P. Gahinet, P. Apkarian, and M. Chilali. Affine Parameter-Dependent Lyapunov Functions for Real Parametric Uncertainty. In *Proceedings of IEEE Conference on Decision and Control*, pages 2026–2031, 1994.

- 78. P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. *LMI control toolbox*. The Mathworks, Inc., 1995.
- 79. P. Gahinet, A. Nemirovsky, A. Laub, and M. Chilali. *LMI Control Toolbox*. The MathWorks Inc, Natick MA, 1995.
- 80. J.P. Garcia and D. Martín. System description note relating to nose landing gear wheels and brakes/steering. Technical report, Airbus.
- 81. T. Glad and O. Härkegård. Backstepping control of a rigid body. In *Proceedings of the 41st IEEE Conference on Decision and Control 2002*, volume 4, pages 3944–3945, Las Vegas, NV, December 10–13 2002.
- 82. D. E. Goldberg. *Genetic algorithms in search, optimization and machine learning*. Addison-Wesley, 1989.
- 83. MG Goman and AV Khramtsovsky. Global stability analysis of nonlinear aircraft dynamics. In AIAA Atmospheric Flight Mechanics Conference, New Orleans, LA, Collection of Technical Papers, pages 662–672, 1997. AIAA-97-3721.
- 84. MG Goman and AV Khramtsovsky. Application of Bifurcation and Continuation Methods for an Aircraft Control Law Design. *Philosophical Transections of the Royal Society of London, Series A*, 356(1745):2277–2295, 1998. The Theme Issue Flight Dynamics of High Performance Manoeuvrable Aircraft.
- MG. Goman and A.V. Khramtsovsky. Computational Framework for Investigation of Aircraft Nonlinear Dynamics. *Journal Advances in Engineering Software*, 2007. Elsevier Ltd., doi:10.1016/j.advengsoft.2007.02.004.
- MG. Goman and EN. Kolesnikov. Robust Nonlinear Dynamic Inversion Method for an Aircraft Motion Control. Technical Report 98-4208, AIAA, 1998.
- 87. M.G. Goman, Y. Patel, and A.V. Khramtsovsky. Flight Clearance Tools Using a Nonlinear Bifurcation Analysis Framework. In *AIAA Guidance, Navigation, and Control Conference and Exhibit*, Austin, TX, 2003. AIAA-2003-5557.
- MG Goman, GI Zagaynov, and AV Khramtsovsky. Application of Bifurcation Theory to Nonlinear Flight Dynamics Problems. *Progress in Aerospace Sciences*, 33:539–586, 1997.
- J.M. Gomes da Silva Jr. and S. Tarbouriech. Stability regions for linear systems with saturating controls. In *Proceedings of the 5th European Control Conference*, Karlsruhe, Germany, September 1999.
- 90. J.M. Gomes da Silva Jr. and S. Tarbouriech. Antiwindup design with guaranteed regions of stability: an LMI-based approach. *IEEE Transactions on Automatic Control*, 50(1):106–111, 2005.
- 91. P. Guicheteau. Application de la Théorie des bifurcations a l'étude del pertes de controle sur avion de combat. Technical Report 2, La Recherche Aerospatiale, 1982. 61–73.
- 92. P. Guicheteau. Bifurcation Theory: A Tool for Nonlinear Flight Dynamics. *Philosophical Transactions of the Royal Society of London, Series A*, 356(1745):2181–2201, 1998. The Theme Issue Flight Dynamics of High Performance Manoeuvrable Aircraft.
- 93. Duda H., Bouwer G., Bauschat J.M., and Hahn K.-U. *In: J.F. Magni, S. Bennani, J. Terlouw, Eds. Robust Flight Control, a Design Challenge.*, chapter A Model Following Control Approach, pages 116 124, 360 378. Lecture Notes in Control and Information Sciences, Vol 224. Springer-Verlag, 1997.
- 94. O. Härkegård and T. Glad. A backstepping design for flight path angle control. In *Proc. 39th IEEE Conference on Decision and Control*, volume 4, pages 3570–3575, Sydney, Australia, December 12-15 2000.
- 95. A. Heck. Introduction to Maple. Springer-Verlag, 1993.
- 96. S. Hecker, A. Varga, and J-F. Magni. Enhanced LFR Toolbox for MATLAB. In *IEEE International symposium on computer aided control system design*, Taipei, Taiwan, September 2004.

- S. Hecker, A. Varga, and J-F. Magni. Enhanced LFR Toolbox for Matlab. In *IEEE International Symposium on Computer Aided Control System Design*, pages 25–29, Taipei, Taiwan, September 2004.
- 98. S. Hecker, A. Varga, and J.F. Magni. Enhanced LFR-Toolbox for Matlab. *Aerospace Science and Technology*, 9(2), 2005.
- 99. D. Henrion and S. Tarbouriech. LMI relaxations for robust stability of linear systems with saturating controls. *Automatica*, 35(9):1599–1604, 1999.
- 100. H. Hindi and S. Boyd. Analysis of linear systems with saturation using convex optimization. In *Proceedings of the 37th IEEE Conference on Decision and Control*, pages 903–908, Tampa, USA, December 1998.
- T. Hu and Z. Lin. Control systems with actuator saturation: analysis and design. Birkhäuser, 2001.
- 102. T. Hu, A.R. Teel, and L. Zaccarian. Nonlinear L₂ gain and regional analysis for linear systems with anti-windup compensation. In *Proceedings of the American Control Conference*, pages 3391–3395, Portland, USA, June 2005.
- 103. ICAO. Manual of the ICAO Standard Atmosphere, 3 edition, 1993. Doc 7488.
- Alberto Isidori. Nonlinear Control Systems: An Introduction, volume 72 of Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin, 1985.
- T. Iwasaki and S. Hara. Generalized KYP lemma: unified frequency domain inequalities with design applications. *IEEE Transactions on Automatic Control*, 50(1):41–59, 2005.
- T. Iwasaki, G. Meinsma, and M. Fu. Generalized S-Procedure and finite frequency KYP lemma. *Mathematical Problems in Engineering*, 6:305–320, 2000.
- 107. Doyle J., K Glover, P Khargonekar, and B. Francis. State-space solutions to standard H_2 and H_{∞} control problems. tac, 34(8):831–847, August 1989.
- CC Jahnke and FEC Culick. Application of Bifurcation Theory to the High-Angle-of-Attack Dynamics of the F-14. *Journal of Aircraft*, 31(1):26–34, 1994.
- Matthieu Jeanneau. Description of aircraft ground dynamics. Technical report, Airbus France, 2005. Confidential.
- M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid systems. *IEEE Transactions on Automatic Control*, 43(4):555–559, 1998.
- 111. Joint Aviation Authorities Committee. Joint Aviation Requirements, JAR–AWO All Weather Operations. Technical report, JAAC, August 1996. Change 2.
- 112. D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the lipschitz constant. *Journal of Optimization Theory and Application*, 79(1), 1993.
- 113. U. Jönsson and A. Rantzer. Systems with uncertain parameters time-variations with bounded derivatives. *International Journal of Robust and Nonlinear Control*, 6(9-10):969–982, 1996.
- N. Kapoor, A. R. Teel, and P. Daoutidis. An anti-windup design for linear systems with input saturation. *Automatica*, 34(5):559–574, 1998.
- 115. F Karlsson and L. Forssell. Aircraft Flight Control Design Challenge for use within the GARTEUR project "Nonlinear Methods in Aircraft Flight Control". Technical Report TP-147-01, GARTEUR, 2006.
- 116. H. K. Khalil. Nonlinear Systems. MacMillan, 1992.
- 117. H. K. Khalil. Nonlinear Systems. Prentice Hall, NJ, third edition, 2002.
- P. Kokotovic and M. Arcak. Constructive nonlinear control: A historical perspective. Automatica, 37(5):637–662, 2001.
- 119. U. Korte. The industrial process for clearance of flight control laws of fighter aircraft. Technical Report TP-119-6, GARTEUR, January 2000.
- 120. U. Korte, S. Scala, F. Forssell, and H. Luijerink. Selected criteria for clearance of the admire flight control laws. addendum to the admire aircraft model. Technical Report TP-119-07-A1-v1, GARTEUR, July 2001.

- 121. M. V. Kothare and M. Morari. Stability analysis of anti-windup control scheme: a review and some generalizations. In *Proceedings of the 4th European Control Conference*, Brussels, Belgium, July 1997.
- 122. M. V. Kothare and M. Morari. Multiplier theory for stability analysis of anti-windup control systems. *Automatica*, 35(5):917–928, 1999.
- 123. K. Krishnakumar and D. E. Goldberg. Control system optimisation using genetic algorithms. *Journal of Guidance, Control and Dynamics*, 15(3):735–739, 1992.
- 124. K. Krishnamkumar, R. Swaminathan, S. Garg, and S. Narayanaswamy. Solving the linear parameter optimisation problems using genetic algorithms. In *Proceedings of the AIAA Guidance, Navigation and Control Conference*, pages 449–460, Baltimore, MD, August 1995.
- M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and Adaptive Control Design.
 Adaptive and Learning Systems for Signal Processing and Control. Wiley, New York, 1995.
- P. Lambrechts, J. Terlouw, S. Bennani, and M. Steinbuch. Parametric Uncertainty Modeling using LFTs. In *American Control Conference*, pages 267–272, San Franciso, CA, June 1993.
- 127. J. Lampinen and I. Zelinka. Mechanical engineering design by differential evolution. In Marco Dorigo David Corne and Fred Glover, editors, *New Ideas in Optimisation*, pages 127–146. McGraw-Hill, London (UK), 1999.
- 128. SH. Lane and RF. Stengel. Flight Control Design Using Nonlinear Inverse Dynamics. *auto*, 24:471–483, 1988.
- 129. F. Lavergne. Méthodologie de synthèses de lois de commande non linéaires et robustes: application au suivi de trajectoire des avions de transport. PhD thesis, Université Toulouse III – Paul Sabatier, 2005.
- 130. C. T. Lawrence, A. L. Tits, and P. Van Dooren. A fast algorithm for the computation of an upper bound on the μ -norm. *Automatica*, 36(3):449–456, 2000.
- T. Lee and Y. Kim. Nonlinear adaptive flight control using backstepping and neural networks controller. J. Guidance, Control and Dynamics, 24(4):675–682, July-August 2001.
- 132. D.J. Leith and W.E. Leithead. Survey of Gain-Scheduling analysis and Design. *International Journal of Control*, 73(11):1001–1025, 2000.
- 133. R. Lind, G. J. Balas, and A. Packard. Robustness analysis with linear time-invariant and time-varying real uncertainty. In *Proceedings of the AIAA Guidance, Navigation and Control Conference*, pages 132–140, Baltimore, USA, August 1995.
- 134. P. Lindroth, U. Nilsson, F. Jarsved, and H. Toghian. TVC-Admire, Slutrapport. Technical report, Institutionen för Flygteknik, KTH, 1999.
- 135. F. G. Lobo and D. E. Goldberg. Decision making in a hybrid genetic algorithm. Technical Report 96009, IlliGAL, September 1996.
- 136. H. Logemann and E.P. Ryan. Asymptotic behaviour of nonlinear systems. *American Mathematical Monthly*, 111:864–889, December 2004.
- 137. G. Looye, S. Hecker, T. Kier, C. Reschke, and J. Bals. Multi-disciplinary aircraft model development using object-oriented modelling techniques. In *DGLR Jahrbuch*. Deutsche Gesellschaft für Luft- und Raumfahrt, 2005.
- 138. Gertjan Looye. Integrated Flight Mechanics and Aeroelastic Aircraft Modeling using Object-Oriented Modeling Techniques. In *Proceedings of the AIAA Modeling and Simulation Technologies Conference*, Portland, USA, August 1999. AIAA-99-4192.
- 139. Gertjan Looye. Design of Robust Autopilot Control Laws with Nonlinear Dynamic Inversion. *at Automatisierungstechnik*, 49(12), 2001.
- 140. Gertjan Looye. Integration of Rigid and Aeroelastic Aircraft Models using the Residualised Model Method. In *Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD)*, Munich, Germany, June 2005.

- 141. Gertjan Looye, Michael Thümmel, Matthias Kurze, Martin Otter, and Johann Bals. Non-linear Inverse Models for Control. In *Proceedings of the third international Modelica conference*, Hamburg, March 2005.
- 142. M.H. Lowenberg. Bifurcation analysis as a tool for post-departure stability enhancement. *AIAA Paper*, 3716:11–13, 1997.
- 143. M.H. Lowenberg and Y. Patel. Use of Bifurcation Diagrams in Piloted Test Procedures. *Aeronautical Journal of the RAeS*, 104(1035):225–235, 2000.
- 144. B. Lu, F. Wu, and S. Kim. Linear parameter varying anti-windup compensation for enhanced flight control performance. AIAA Journal of Guidance, Control and Dynamics, 28(3):494–504, 2005.
- 145. J. H. Ly, R. Y. Chiang, K. C. Goh, and M. G. Safonov. LMI multiplier Km/μ analysis of the Cassini spacecraft. *International Journal of Robust and Nonlinear Control*, 8(2):155–168, 1998.
- 146. FBJ. Macmillen and JMT. Thompson. Bifurcation Analysis in the Flight Dynamics Design Process? A view from the Aircraft Industry. *Philosophical Transactions of the Royal Society of London, Series A*, 356(1745):2321–2333, 1998. The Theme Issue Flight Dynamics of High Performance Manoeuvrable Aircraft.
- 147. J-F. Magni. Linear Fractional Representation Toolbox Modelling, Order Reduction, Gain Scheduling. Technical Report TR 6/08162 DCSD, ONERA, Systems Control and Flight Dynamics Department, Toulouse, France, January 2004.
- 148. J-F. Magni. Linear Fractional Representation Toolbox (version 2.0) for use with Matlab. Free Web publication http://www.cert.fr/dcsd/idco/perso/Magni/, 2006.
- J. F. Magni, S. Bennani, and J. Terlouw, editors. Robust Flight Control, a Design Challenge., volume 224 of Lecture Notes in Control and Information Sciences. Springer-Verlag, 1997.
- 150. A. Marcos, D. G. Bates, and I. Postlethwaite. A Multivariate Polynomial Matrix Order Reduction Algorithm for Linear Fractional Transformation Modelling. In *IFAC World Congress on Automatic Control*, Pragues, July 2005.
- 151. A. Marcos, D.G. Bates, and I. Postlethwaite. Flight Dynamics Application of a New Symbolic Matrix Order-Reduction Algorithm. In *International Conference on Polynomial Symbolic Systems*, Paris, FR, November 2004.
- 152. A. Marcos, D.G. Bates, and I. Postlethwaite. Exact Nonlinear Modeling using Symbolic Linear Fractional Transformations. In *IFAC World Congress*, Praga, CH, June 2005.
- 153. C. I. Marrison and R. F. Stengel. Design of robust control systems for a hypersonic aircraft. *AIAA*, 21(1):58–63, 1998.
- 154. The MathWorks. Optimization toolbox user's guide, version 2 edition, September 2000.
- S.E. Mattsson and G. Söderlind. Index Reduction in Differential-Algebraic Equations using Dummy Derivatives. SIAM Journal on Scientific Computing, 14:677 – 692, 1993.
- 156. A. Megretski and A. Rantzer. System analysis via integral quadratic constraints: Part i. Technical Report LUTD2/TFRT-7531-SE, Department of Automatic Control, Lund Institute of Technology, April 1995.
- A. Megretski and S. Treil. Power distribution inequalities in optimization and robustness of uncertain systems. *Journal of Mathematical Systems, Estimation and Control*, 3(3):310–319, 1993.
- 158. R.K. Mehra, W.C. Kessel, and J. V. Carroll. Global Stability and Control Analysis of Aircraft at High Angles of Attack. Technical Report ONR-CR215-(1/2/3), Scientific Systems Inc., 1977/1978/1979. Annual Technical Reports 1/2/3.
- 159. G. Meinsma, T. Iwasaki, and M. Fu. When is (D,G)-scaling both necessary and sufficient. *IEEE Transactions on Automatic Control*, 45(9):1755–1759, 2000.
- 160. G. Meinsma, Y. Shrivastava, and M. Fu. A dual formulation of mixed μ and on the losslessness of (D,G) scaling. *IEEE Transactions on Automatic Control*, 42(7):1032–1036, 1997.

- 161. P. P. Menon, D. G. Bates, and I. Postlethwaite. Hybrid evolutionary optimisation methods for the clearance of nonlinear flight control laws. In *Proceedings of CDC-ECC*, Seville, December 2005.
- 162. P. P. Menon, D. G. Bates, and I. Postlethwaite. Hybrid optimisation scheme for the clearance of flight control laws. In *Proceedings of IFAC World Congress*, Prague, July 2005.
- 163. P. P. Menon, D. G. Bates, and I. Postlethwaite. A deterministic hybrid optimisation algorithm for nonlinear flight control system analysis. In *Proceedings of American Control Conference*, Minneapolis, 2006.
- 164. P. P. Menon, D. G. Bates, and I. Postlethwaite. Robustness analysis of nonlinear flight control laws over continuous region of the flight envelope. In *Proceedings of IFAC Robust Control Design Symposium*, Toulouse, July 2006.
- 165. P. P. Menon, J. Kim, D. G. Bates, and I. Postlethwaite. Improved clearance of flight control laws using hybrid optimisation. In *Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems*, Singapore, December 2004.
- 166. P. P. Menon, A. A. Pashilkar, and K. Sudhakar. Identification of departure susceptibility for design of carefree maneuverable control scheme. *Modeling, Simulation, Optimization* for Design of Multi-disciplinary Engineering Systems (MSO-DMES) International Conf., Paper, 77, 2003.
- G. Meyer et al. Nonlinear controller design for flight control systems. In *Proc. IFAC Symp.*, Nonlinear Control Systems Design, Capri, pages 136–141, 1989.
- MILSTD-1797A, Military Standard, Flying Qualities of Piloted aircraft. US Department of Defense, 1990.
- 169. MIL-F-8785C, Military specification, flying qualities of piloted airplanes, August 1996.
- 170. A. Miyamoto and G. Vinnicombe. Robust control of plants with saturation nonlinearity based on coprime factor representation. In *Proceedings of the 35th IEEE Conference on Decision and Control*, pages 2838–2840, Kobe, Japan, December 1996.
- 171. Modelica Design Group. Modelica: Language design for multi-domain modeling. http://www.modelica.org.
- 172. D. Moormann, P.J. Mosterman, and G. Looye. Object-oriented computational model building of aircraft flight dynamics and systems. *Aerospace Science and Technology*, 3(3), April 1999.
- 173. S. Mulgund, K. Harper, K. Krishnakumar, and G. Zacharias. Air combat tactics optimisation using stochastic genetic algorithms. In *IEEE International Conference on Systems, Man and Cybernetics*, La Jolla, CA, October 1998.
- 174. Philipp Nagel. Design of on-ground control laws for a civil transport aircraft. Technical report, Master's Thesis University of Stuttgart, conducted at the DLR German Aerospace Center Oberpfaffenhofen, Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany, 2006. Confidential.
- 175. Martin Otter. Objektorientierte Modellierung mechatronischer Systeme am Beispiel Geregelter Roboter. PhD thesis, Fakultät für Maschinenbau der Ruhr-Universität Bochum, November 1995. VDI Vortschrittsberichte, Rechnergestützte Verfahren, Reihe 20, Nr. 147.
- 176. A. Packard and J. Doyle. The complex structured singular value. *Automatica*, 29(1):71–109, 1993.
- 177. A. Packard and J. Doyle. The complex structured singular value. *Automatica*, 29(1):71–109, 1993.
- 178. A. Packard and J. Doyle. The complex structured singular value. *Automatica*, 29(1):71–109, 1993.
- 179. G. D. Padfield and M. D. White. Flight simulation in academia HELIFLIGHT in its first year of operation at the University of Liverpool. *Aeronautical Journal*, 107(1075):529–538, 2003.

- F. Paganini. Robust stability under mixed time varying, time invariant and parametric uncertainty. *Automatica*, 32(10):1381–1392, 1996.
- 181. C.C. Pantelides. The consistent initialization of differential-algebraic systems. SIAM Journal of Scientific and Statistical Computing, 9:213 –231, 1988.
- 182. G. Papageorgiou and K. Glover. Design of a Robust Gain Scheduled Controller for the High Incidence Research Model. Technical Report 99-4276, AIAA, 1999.
- 183. G. Papageorgiou, K. Glover, G. D'Mello, and Y. Patel. Taking robust LPV control into flight on the VAAC Harrier. In *The 39th IEEE Decision and Control Conference*, pages 4558–4564, 2000.
- 184. A. Paranjape, NK. Sinha, and N. Ananthkrishnan. Use of Bifurcation and Continuation Methods for Aircraft Trim and Stability Analysis - A State-of-the-Art. In 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007.
- 185. Y Patel and D Littleboy. Piloted Simulation Tools for Aircraft Departure Analysis. *Philosophical Transactions of the Royal Society of London, Series A*, 356(1745):2203–2221, 1998. The Theme Issue Flight Dynamics of High Performance Manoeuvrable Aircraft.
- 186. M. Perhenschi. A modified genetic algorithm for the design of an autonoumous helicopter control system. In *Proceedings of the AIAA Guidance, Navigation and Control Conference*, pages 1183–1192, New Orlenes, LA, 1997. August.
- J. Pinter. Globally convergent methods for n-dimensional multiextremal optimization. Optimisation, 17(2):187–202, 1986.
- 188. JB Planeaux, JA Beck, and DD Baumann. Bifurcation Analysis of a Model Fighter Aircraft with Control Augmentation. Technical Report 1990-2836, AIAA, 1990.
- 189. K. Poolla and A. Tikku. Robust performance against time-varying structured perturbations. *IEEE Transactions on Automatic Control*, 40(9):1589–1602, 1995.
- 190. R. W. Pratt. *Flight control systems*, volume 184 of *Progress in Astronautics and Aeronautics*. AIAA, 1999.
- 191. J. Protz and A. Sparks. An LPV Controller for a tailless fighter aircraft simulation. Technical Report 98-4298, AIAA, 1998.
- 192. Z. Qu. Robust Control of Nonlinear Systems. Wiley, New York, NY, 1998.
- 193. A. Rantzer. On the Kalman-Yakubovich-Popov lemma. *Systems and Control Letters*, 28(1):7–10, 1996.
- 194. Christian Reschke. Flight Loads Analysis with Inertially Coupled Equations of Motion. In *Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit* 2005, San Francisco CA, 2005.
- NATO Research and Technology Organisation. Flight Control Design Best Practices. Technical Report RTO-TR-029, NATO-RTO, December 2000.
- 196. J.W.C. Robinson and U. Nilsson. Design of a nonlinear autopilot for velocity and attitude control using block backstepping. In *Proc. AIAA Guidance, Navigation & Control Conf. & Exhibit '05*, San Francisco CA, August 15-18 2005. AIAA paper 2005-6266.
- 197. T. Rogalsky and R. W. Derksen. Hybridization of differential evolution for aerodynamic design. In *Proceedings of the 8th Annual Conference of the Computational Fluid Dynamics Society of Canada*, pages 729–736, 2000.
- T. Rogalsky, R. W. Derksen, and S. Kocabiyik. Differential evolution in aerodynamic optimization. *Canadian Aeronautics and Space Institute Journal*, 46(4):183–190, 2000.
- C. Roos and J-M. Biannic. On robustness analysis versus mixed LTI/LTV uncertainties. In Proceedings of the 5th IFAC Symposium on Robust Control Design, Toulouse, France, July 2006.
- 200. C. Roos and J-M. Biannic. A positivity approach to robust controllers analysis and synthesis versus mixed LTI/LTV uncertainties. In *Proceedings of the American Control Conference*, pages 3661–3666, Minneapolis, USA, June 2006.

- L. Rundqwist, K. Ståhl-Gunnarsson, and J. Enhagen. Rate limiters with phase compensation in jas39 gripen. In *Proceedings of the European Control Conference*, pages 2451–2457, July 1997.
- 202. G. W. Ryan III. A genetic search technique for identification of aircraft departures. In *Proceedings of the AIAA Flight Mechanics Conference*, August 1995. AIAA-95-3453.
- M. Saeki and N. Wada. Synthesis of a static anti-windup compensator via Linear Matrix Inequalities. *International Journal of Robust and Nonlinear Control*, 12(10):927–953, 2002.
- 204. W. E. Schmitendorf, O. Shaw, R. Benson, and S. Forrest. Using genetic algorithms for controller design: simultaneous stabilization and eigenvalue placement in a region. In *Proceedings of the AIAA Guidance, Navigation and Control Conference*, pages 757–761, Hilton Head Island, SC, August 1992.
- C. Schumacher and P.P. Khargonekar. Stability analysis of a missile control system with a dynamic inversion controller. J. Guidance, Control and Dynamics, 21(3):508–515, 1998.
- 206. C.J Schumacher, P.P. Khargonekar, and N.H. McClamroch. Stability analysis of dynamic inversion controllers using time-scale separation. In *Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit*, Boston, MA, August 10-12 1998. AIAA paper 1998-4322.
- AA. Schy and ME. Hannah. Prediction of Jump Phenomena in Roll-Coupled Maneuvers of Airplanes. *Journal of Aircraft*, 14(4):375–382, 1977.
- J. S. Shamma. Robust stability with time-varying structured uncertainty. *IEEE Transactions on Automatic Control*, 39(4):714

 –724, 1994.
- 209. Shamma, F. and Athans, M. Gain scheduling: Potential hazards and possible remedies. *IEEE Control Systems*, pages 101–107, June 1992.
- G. Shin, J. Balas and M. Kaya. Blending Methodology of Linear Parameter Varying Control Synthesis of F-16 Aircraft System. AIAA, 25(6):1040–1048, 2002.
- 211. B. Shubert. A sequential method seeking the global maximum of a function. *SIAM Journal on Numerical Analysis*, 9(3):379–388, 1972.
- 212. SN. Singh and WJ. Rugh. Decoupling in a class of nonlinear systems by state variable feedback. ASME Transactions Series G, Journal of Dynamic Systems, Measurement and Control, 94(4):323–329, 1972.
- S. Skogestad and I. Postlethwaite. Multivariable Feedback Control Analysis and Design. Wiley, May 1996.
- Jean Jacques E Slotine and Weiping Li. Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, N.J., 1991.
- PR. Smith. A Simplified Approach to Nonlinear Dynamic Inversion Based Flight Control. Technical Report N98-4461, AIAA, 1998.
- M. Spillman. Robust Longitudinal Flight Control Design Using Linear Parameter-Varying Feedback. AIAA, 23(1):101–108, 2000.
- 217. R. Steinhauser, G. Looye, and O. Brieger. Design and Evaluation of Control Laws for the X-31A with Reduced Vertical Tail. In *Proceedings of the AIAA Guidance and Control Conference*, Providence, Rhode Island, USA, August 2004. AIAA-2004-5031.
- 218. A. Steinicke and G. Michalka. Improving transient performance of dynamic inversion missile autopilot by use of backstepping. In *Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit*, Monterey, CA, August 5-8 2002. AIAA paper 2002-4658.
- B. L. Stevens and F. L. Lewis. Aircraft Control and Simulation. John Wiley & Sons, Inc., New York, 2nd edition, 1992.
- B. L. Stevens and F. L. Lewis. Aircraft Control and Simulation. John Wiley & Sons, Inc., New York, 2nd edition, 1992, 2000, 2003.
- R. Storn and K. Price. Differential evolution: a simple and efficient heuristic for global optimization over continuous space. *Journal of Global Optimization*, 11(4):341–369, 1997.

- 222. G. D. Sweriduk, P. K. Menon, and M. L. Steinberg. Robust command augmentation system design using genetic search methods. In *Proceedings of the AIAA Guidance, Navigation* and Control Conference, pages 296–304, Boston, MA, August 1998.
- 223. M. Sznaier and P. Parrilo. On the gap between *μ* and its upper bound for systems with repeated uncertainty blocks. In *Proceedings of the 38th IEEE Conference on Decision and Control*, pages 4511–4516, Phoenix, USA, December 1999.
- 224. S. Tarbouriech and J.M. Gomes da Silva Jr. Admissible polyhedra for discrete-time linear systems with saturating controls. In *Proceedings of the American Control Conference*, pages 3915–3919, Albuquerque, USA, June 1997.
- S. Tarbouriech, C. Prieur, and J.M. Gomes da Silva Jr. Stability analysis and stabilization of systems presenting nested saturations. *IEEE Transactions on Automatic Control*, 51(8):1364–1371, 2006.
- S. Tarbouriech, I. Queinnec, and G. Garcia. Stability region enlargement through antiwindup strategy for linear systems with dynamics restricted actuator. *International Journal* of System Science, 37(2):79–90, 2006.
- 227. A. R. Teel. Anti-windup for exponentially unstable linear systems. *International Journal of Robust and Nonlinear Control*, 9(10):701–716, 1999.
- 228. A. R. Teel and N. Kapoor. The \mathcal{L}_2 anti-windup problem: its definition and solution. In *Proceedings of the 4th European Control Conference*, Brussels, Belgium, July 1997.
- 229. Michael Thümmel. Modellbasierte Regelung mit nichtlinearen inversen Systemen und Beobachtern zur Optimierung der Dynamik von Robotern mit elastischen Gelenken. PhD thesis, Lehrstuhl für Elektrische Antriebssysteme. Technische Universität München, 2006.
- M. Turner and L. Zaccarian (Editors). Special issue: anti-windup. *International Journal of System Science*, 37(2):65–139, 2006.
- 231. M. Turner and S. Tarbouriech. Anti-windup for linear systems with sensor saturation: sufficient conditions for global stability and \mathcal{L}_2 gain. In *Proceedings of the 45th IEEE Conference on Decision and Control*, pages 5418–5423, San Diego, USA, December 2006.
- 232. C. van Etten, G. Balas, and S. Bennani. Linear Parametrically Varying Integrated Flight and Structural Mode Control for a Flexible Aircraft. Technical Report 99-4217, AIAA, 1999.
- 233. A. Varga and G. Looye. Symbolic and Numerical Software tools for LFT-based Low Order Uncertainty Modeling. In *IEEE Symposium on Computed Aided Control System Design*, Hawai'i, USA, August 1999.
- 234. A. Varga, G. Looye, G. Moormann, and G. Grubel. Automated Generation of LFT-Based Parametric Uncertainty Descriptions from Generic Aircraft Models. *Mathematical and Computer Modelling of Dynamical Systems*, 4(4):249–274, 1998.
- A. Vooren. Expanding ADMIRE's Aerodynamic Evelope for High Angles of Attack. Technical Report FOI-R--0771--SE, Swedish Defence Research Agency, Stockholm, 2003.
- 236. D.G. Ward, M. Sharma, and N.D. Richards. Intelligent control of unmanned air vehicles: Program summary and representative results. In *Proc. 2nd AIAA "Unmanned Unlimited" Conf. and Workshop and Exhibit*, San Diego, CA, September 15-18 2003. AIAA paper 2003-6641.
- S. Wolfram. *Mathematica:* a System for Doing Mathematics by Computer. Addison-Wesley, 1991.
- F. Wu and S. W. Kim. LPV Controller Interpolation for Improved Gain-Scheduling Control Performance. Technical Report 2002-4759, AIAA, 2002.
- 239. F. Wu and M. Soto. Extended anti-windup control schemes for LTI and LFT systems with actuator saturations. *International Journal of Robust and Nonlinear Control*, 14(15):1255–1281, 2004.
- F. Wu, X.H Yang, A. Packard, and G. Becker. Induced L₂-norm Control for LPV Systems with Bounded Parameter Variation Rates. *ijrnc*, 6:983–998, 1996.

- 241. J. Yen, J. C. Liao, D. Randolph, and B. Lee. A hybrid approach to modeling metabolic systems using genetic algorithm and simplex method. In *Proceedings of the 11th IEEE Conference on Artificial Intelligence for Applications*, pages 277–283, Los Angeles, CA, February 1995.
- JW. Young, AA. Schy, and KG. Jonson. Pseudosteady-State Analysis of Nonlinear Aircraft Maneuvers. Technical Report 1758, NASA, 1980.
- 243. P. M. Young and J. C. Doyle. A lower bound for the mixed μ problem. *IEEE Transactions on Automatic Control*, 42(1):123–128, 1997.
- 244. P. M. Young, M. P. Newlin, and J. C. Doyle. Computing bounds for the mixed μ problem. International Journal of Robust and Nonlinear Control, 5(6):573–590, 1995.
- 245. G. I. Zagaynov and M. G. Goman. Bifurcation Analysis of Critical Aircraft Flight Regimes. In *Proceedings of the 14th Congress of ICAS*, volume 1, pages 217–223, Toulouse, France, 1984.
- 246. H. Zhu and D. B. Bogy. Direct algorithm and its application to slider air-bearing surface optimisation. *IEEE Transactions on Magnetics*, 38(5), September 2002.
- X. Zhu, Y. Huang, and J. Doyle. Genetic algorithms and simulated annealing for robustness analysis. In *Proceedings of American Control Conference*, volume 6, pages 3756–3760, Albuquerque, NM, June 1997.
- J. W. Zwolak, J. J. Tyson, and L. T. Watson. Globally optimised parameters for a model of mitotic control in frog egg extracts. *IEE Proceedings on Systems Biology*, 152(2):81–92, June 2005.

Index

α-demand system, 204	parameter-varying, 133
μ -analysis, 199	reduced-order, 132
n_z -demand system, 204	approximate departure criterion, 308
actuator dynamics, 241	atmosphere model, 48
adaptive controller, 138	attainable equilibrium set, 309
ADMIRE	automatic inversion, 148
actuators, 44	
aerodata model, 41	backstepping
description, 35	block, 237
dynamic model, 38	control law, 239
engine model, 43	bicycle model approximation, 149, 156, 157,
envelope, 37	160, 163
flight control system, 49	bifurcation analysis, 302
sensors, 46	
aerodynamic	care free, 57
angles, 234	clonk analysis, 290
forces, 234	closed loop system, 240
Airbus benchmark	command filter, 157, 159, 163
architecture, 22	command generator, 239
behaviour, 23	command variables, 147
control objectives, 25	selection, 161
criteria, 27	conical rotaton rate, 234, 237
design and analysis challenges, 24	control affine form, 235
manoeuvres, 29	control allocation, 162, 166, 308
on-ground transport aircraft, 3	control law
aircraft	block backstepping, 239
attitude, 10	NDI-TSS, 245
position, 10	controller
pre-design phase, 148	implementation, 246
aircraft-on-ground	coordinate system
automatic inversion, 167	aircraft, 4
object oriented implementation, 151, 164	coordinate system
anti-windup design	aerodynamic, 5
full-order, 127	body-fixed, 4
	,, -

earth, 4	Generic Aerodata Model, 35
wheels, 5	generic system, 235
corner speed, 57	Genetic Algorithms, 265
critical disturbances, 319	ground-forces
	estimation, 138
D-K iterations, 199	identification, 105
design constraints, 59	linear approximation, 178, 187
design process	modelling, 106
flight control laws, 162	
rapid prototyping, 161	H-DIRECT, 283
desired dynamics, 237, 241	handling qualities, 201
desktop simulator, 171	handling quality requirements, 312
differential algebraic equation, 156	handling qualities, 57
differential algebraic index, 156	Hopf bifurcation, 316
Differential evolution, 266	Horner factorization, Affine factorization, 74
dihedral stability derivative, 305	Horner factorization, Sum decomposition, 73
DIRECT, 267, 280	Hybrid differential evolution, 279
directional stability derivative, 305	Hybrid genetic algorithm, 275
DIviding RECTangles, 280	Hybrid optimisation, 267, 274
dummy derivative, 157	J , , ,
Dymola, 151	inline integration, 167
dynamic inversion, 244	interconnection diagram, 205
dynamics	International Standard Atmosphere, 48
internal, 160	Inverse Feed Forward Compensation, 147
zero, 160	inverse trimming procedure, 310
	invertible, 236
Earth-Centered Earth-Fixed frame, 151	
Earth-Centred Inertial frame, 151	Jacobian matrix, 309
envelope	Jacobian matrix, 509
design, 57	KYP lemma, 181
equation	KIF leilillä, 181
nonlinear solver, 154	LET 76
equations of motion, 303	LFT, 76
equilibrium points, 237	controller design, 135
equilibrium states, 308	controller implementation, 138
error dynamics, 240	design-oriented modelling, 102
F 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	exact modelling, 96
Feedback Linearisation, 147, 160	interconnection, 109
feedback signal synthesis, 162	modelling, 92, 107, 120, 178
forces and moments, 10	approach, 86
aerodynamic loads, 10	exact, 85, 86 nonlinear, 69, 85
brakes, 19	symbolic, 69, 70, 85
engines, 12 gravity, 12	nested substitution, 79, 82, 91
nose wheel steering system, 21	symbolic differentiation, 79, 90
rolling forces, 14	symbolic unferentiation, 79, 90 symbolic modelling, 97
shock absorbers, 13	LFT,LHT, 69
5110CK 005010C15, 1 <i>5</i>	LHT, 70
gain scheduling, 147, 246	examples, 78
GAM, 35	pseudocode, 89
- ,	F

routine	Newton-Euler equations, 233
factorization, 74	Nichols plot, 212
information management, 72	Nonlinear Dynamic Inversion, 147, 160
Sum decomposition, 75	nonlinear dynamic inversion, 244, 312
LHT,ETD, 98	normal acceleration, 234
Lie derivatives, 159	normal force, 305
Linear Matrix Inequalities, 199	
LMI, 125, 127, 131, 184, 185	on-ground-aircraft, 92, 96
local stability, 309	optimisation
local stability maps, 315	multi-objective, 167
LPV, 95, 99, 102	ordinary differential equation, 155
LPV system, 199	orthogonal matrix, 236
LTV, 108	orthogonal matrix, 250
Lyapunov function, 238	Padé approximation, 208
	parameter continuation, 302
manoeuvrability, 304	parameter-dependent Lyapunov function, 199
matched uncertainties, 244	
model	piecewise linear fitting, 204
aircraft	pitching moment, 305
flexible, 153	
rigid-body, 153	qualitative theory, 302
causality, 149	
compiler, 148	rapid prototyping, 148
differential equations, 159	reference model, 210, 312
inverse	reference signals, 236
stability, 160	region of attraction, 311
	regions of attraction, 309
inversion, 147, 159 automatic, 157, 167	relative degree, 157, 159
object-oriented	rigid body motion, 233
-	robust performance, 209
translation of, 155	robust stability, 214
Model Following Control, 147	robustness, 243
Modelica, 151	robustness analysis
across variables, 150	LTI/LTV uncertainties, 186
connectors, 150	mixed- μ upper bound, 183
data bus, 153	performance level, 184
Flight Dynamics Library, 151	stability margin, 183
flow variables, 150, 153	structured singular value, 183
libraries, 151, 153	rolling moment, 305
modelling	Tolling moment, 303
block diagram, 149	
multi-disciplinary, 149	saddle-node bifurcation, 316
object-oriented, 147, 148	saturated systems
signal flow, 149	performance index, 125
moment controlled, 234	stability analysis, 124
multi-body system, 154	saturation modelling, 106
multiple-attractor dynamics, 309	saturations, 122
	sector conditions, 123
NDI, 138, 241, 244	semi-positive realness, 180
NDI identification, 105	Sequential Quadratic Progamming, 265
NDI,LPV, 95	simulation

batch, 162 desktop, 171 pilot-in-the-loop, 148, 162 real-time, 171 singular value decomposition, 236 state variables, 234 strict feedback form, 235 Sum decomposition, 75

time varying, 236 time-scale separation, 244 tracking, 236 transonic, 57 trim computation, 164 trim points, 241 tuning parameters, 241

variable attitude velocity-vector roll manoeuvre, 323 velocity vector roll, 234, 241 velocity-vector roll manoeuvre, 309 virtual control gain matrix, 235 virtual control law, 237, 240

weighting functions, 205 worst-case, 260 worst-case pilot inputs, 290

yawing moment, 305

Printing: Mercedes-Druck, Berlin Binding: Stein+Lehmann, Berlin

Lecture Notes in Control and Information Sciences

Edited by M. Thoma, M. Morari

Further volumes of this series can be found on our homepage: springer.com

Vol. 365: Bates D.; Hagström M. (Eds.) Nonlinear Analysis and Synthesis Techniques for Aircraft Control 360 p. 2007 [978-3-540-73718-6]

Vol. 364: Chiuso A.; Ferrante A.; Pinzoni S. (Eds.) Modeling, Estimation and Control 356 p. 2007 [978-3-540-73569-4]

Vol. 363: Besançon G. (Ed.) Nonlinear Observers and Applications 224 p. 2007 [978-3-540-73502-1]

Vol. 362: Tarn T.-J.; Chen S.-B.; Zhou C. (Eds.)

Robotic Welding, Intelligence and Automation 562 p. 2007 [978-3-540-73373-7]

Vol. 361: Méndez-Acosta H.O.; Femat R.; González-Álvarez V. (Eds.): Selected Topics in Dynamics and Control of Chemical and Biological Processes 320 p. 2007 [978-3-540-73187-0]

Vol. 360: Kozlowski K. (Ed.) Robot Motion and Control 2007 452 p. 2007 [978-1-84628-973-6]

Vol. 359: Christophersen F.J. Optimal Control of Constrained Piecewise Affine Systems 190 p. 2007 [978-3-540-72700-2]

642 p. 2007 [978-3-540-72698-2]

Vol. 358: Findeisen R.; Allgöwer F.; Biegler L.T. (Eds.): Assessment and Future Directions of Nonlinear Model Predictive Control

Vol. 357: Queinnec I.; Tarbouriech S.; Garcia G.; Niculescu S.-I. (Eds.): Biology and Control Theory: Current Challenges

589 p. 2007 [978-3-540-71987-8]

Vol. 356: Karatkevich A.: Dynamic Analysis of Petri Net-Based Discrete Systems 166 p. 2007 [978-3-540-71464-4]

Vol. 355: Zhang H.; Xie L.: Control and Estimation of Systems with Input/Output Delays 213 p. 2007 [978-3-540-71118-6]

Vol. 354: Witczak M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems

215 p. 2007 [978-3-540-71114-8]

305 p. 2007 [978-3-540-70700-4]

Vol. 353: Bonivento C.; Isidori A.; Marconi L.; Rossi C. (Eds.) Advances in Control Theory and Applications

Vol. 352: Chiasson, J.; Loiseau, J.J. (Eds.) Applications of Time Delay Systems 358 p. 2007 [978-3-540-49555-0]

Vol. 351: Lin, C.; Wang, Q.-G.; Lee, T.H., He, Y. LMI Approach to Analysis and Control of Takagi-Sugeno Fuzzy Systems with Time Delay 204 p. 2007 [978-3-540-49552-9]

Vol. 350: Bandyopadhyay, B.; Manjunath, T.C.; Umapathy, M. Modeling, Control and Implementation of Smart Structures 250 p. 2007 [978-3-540-48393-9]

Vol. 349: Rogers, E.T.A.; Galkowski, K.; Owens, D.H. Control Systems Theory and Applications for Linear

Repetitive Processes 482 p. 2007 [978-3-540-42663-9]

Vol. 347: Assawinchaichote, W.; Nguang, K.S.; Shi P.

Fuzzy Control and Filter Design for Uncertain Fuzzy Systems 188 p. 2006 [978-3-540-37011-6]

1179 p. 2006 [978-3-540-37257-8]

Vol. 346: Tarbouriech, S.; Garcia, G.; Glattfelder, A.H. (Eds.) Advanced Strategies in Control Systems with Input and Output Constraints

480 p. 2006 [978-3-540-37009-3] Vol. 345: Huang, D.-S.; Li, K.; Irwin, G.W. (Eds.) Intelligent Computing in Signal Processing and Pattern Recognition

Vol. 344: Huang, D.-S.; Li, K.; Irwin, G.W. (Eds.) Intelligent Control and Automation 1121 p. 2006 [978-3-540-37255-4]

Vol. 341: Commault, C.; Marchand, N. (Eds.) Positive Systems 448 p. 2006 [978-3-540-34771-2]

Vol. 340: Diehl, M.; Mombaur, K. (Eds.) Fast Motions in Biomechanics and Robotics 500 p. 2006 [978-3-540-36118-3]

Vol. 339: Alamir, M.

Stabilization of Nonlinear Systems Using Receding-horizon Control Schemes 325 p. 2006 [978-1-84628-470-0]

Vol. 338: Tokarzewski, J.

Finite Zeros in Discrete Time Control Systems 325 p. 2006 [978-3-540-33464-4]

Vol. 337: Blom, H.; Lygeros, J. (Eds.) Stochastic Hybrid Systems

395 p. 2006 [978-3-540-33466-8] **Vol. 336:** Pettersen, K.Y.; Gravdahl, J.T.;

Nijmeijer, H. (Eds.)
Group Coordination and Cooperative Control

310 p. 2006 [978-3-540-33468-2] **Vol. 335:** Kozłowski, K. (Ed.)

Robot Motion and Control 424 p. 2006 [978-1-84628-404-5]

Vol. 334: Edwards, C.; Fossas Colet, E.;

Fridman, L. (Eds.) Advances in Variable Structure and Sliding Mode

Control 504 p. 2006 [978-3-540-32800-1]

Vol. 333: Banavar, R.N.; Sankaranarayanan, V. Switched Finite Time Control of a Class of Underactuated Systems

99 p. 2006 [978-3-540-32799-8]

Vol. 332: Xu, S.; Lam, J. Robust Control and Filtering of Singular Systems 234 p. 2006 [978-3-540-32797-4]

Vol. 331: Antsaklis, P.J.; Tabuada, P. (Eds.) Networked Embedded Sensing and Control 367 p. 2006 [978-3-540-32794-3]

Vol. 330: Koumoutsakos, P.; Mezic, I. (Eds.) Control of Fluid Flow 200 p. 2006 [978-3-540-25140-8]

Vol. 329: Francis, B.A.; Smith, M.C.; Willems, J.C. (Eds.)
Control of Uncertain Systems: Modelling.

Approximation, and Design 429 p. 2006 [978-3-540-31754-8]

Vol. 328: Loría, A.; Lamnabhi-Lagarrigue, F.; Panteley, E. (Eds.)

Advanced Topics in Control Systems Theory 305 p. 2006 [978-1-84628-313-0]

Vol. 327: Fournier, J.-D.; Grimm, J.; Leblond, J.; Partington, J.R. (Eds.)
Harmonic Analysis and Rational Approximation 301 p. 2006 [978-3-540-30922-2]

Vol. 326: Wang, H.-S.; Yung, C.-F.; Chang, F.-R. H_{∞} Control for Nonlinear Descriptor Systems 164 p. 2006 [978-1-84628-289-8]

Vol. 325: Amato, F.

Robust Control of Linear Systems Subject to Uncertain

Time-Varying Parameters 180 p. 2006 [978-3-540-23950-5]

Vol. 324: Christofides, P.; El-Farra, N.

Control of Nonlinear and Hybrid Process Systems 446 p. 2005 [978-3-540-28456-7] **Vol. 323:** Bandyopadhyay, B.; Janardhanan, S.

Discrete-time Sliding Mode Control 147 p. 2005 [978-3-540-28140-5]

Vol. 322: Meurer, T.; Graichen, K.; Gilles, E.D. (Eds.)

Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems 422 p. 2005 [978-3-540-27938-9]

Vol. 321: Dayawansa, W.P.; Lindquist, A.; Zhou, Y. (Eds.)

New Directions and Applications in Control Theory

400 p. 2005 [978-3-540-23953-6]

Vol. 320: Steffen, T. Control Reconfiguration of Dynamical Systems 290 p. 2005 [978-3-540-25730-1]

Vol. 319: Hofbaur, M.W. Hybrid Estimation of Complex Systems 148 p. 2005 [978-3-540-25727-1]

Vol. 318: Gershon, E.; Shaked, U.; Yaesh, I. H_{∞} Control and Estimation of State-multiplicative Linear Systems

256 p. 2005 [978-1-85233-997-5]

Vol. 317: Ma, C.; Wonham, M. Nonblocking Supervisory Control of State Tree Structures

208 p. 2005 [978-3-540-25069-2]

Vol. 316: Patel, R.V.; Shadpey, F. Control of Redundant Robot Manipulators 224 p. 2005 [978-3-540-25071-5]

Vol. 315: Herbordt, W. Sound Capture for Human/Machine Interfaces: Practical Aspects of Microphone Array Signal Processing 286 p. 2005 [978-3-540-23954-3]

Vol. 314: Gil', M.I. Explicit Stability Conditions for Continuous Systems 193 p. 2005 [978-3-540-23984-0]

Vol. 313: Li, Z.; Soh, Y.; Wen, C. Switched and Impulsive Systems 277 p. 2005 [978-3-540-23952-9]

Vol. 312: Henrion, D.; Garulli, A. (Eds.) Positive Polynomials in Control 313 p. 2005 [978-3-540-23948-2]