

Autoria: Thimonier H. et al.

Apresentação: André Luiz Moreira Dutra

Índice

- 1. Introdução
- 2. Método
- 3. Modelo
- 4. Experimentos
- 5. Resultados
- 6. Discussões
- 7. Conclusão

01

Introdução

Problema: Detecção de Anomalias

- Detecção de anomalias em dados tabulares
- Quais amostras/linhas de uma tabela fogem de uma noção de normalidade dos dados da tabela?

anomaly

2 leaf 3
_ /64/ 6
21
41
62

Motivações

Medicina

- Diagnóstico de doenças
- Diagnósticos antecipados

Cibersegurança

- Detecção de fraudes
- Detecção de tráfego intruso

Aprendizado de Máquina

Limpeza de dados

 para remoção de
 outliers fora do padrão
 a ser detectado.

Peso	Altura
80kg	1.74m
3kg	0.5m
3kg	1.74m
400kg	7m

Dependências feature-feature

- Correspondem a padrões de dependência entre features (colunas) da tabela.
- Uma amostra anômala quanto a dependências featurefeature possui valores de features incompatíveis com suas próprias outras features.

Peso	Altura		
80kg	1.74m		
3kg	0.5m		
3kg	1.74m		
400kg	7m		

Dependências amostra-amostra-

- Correspondem a padrões de dependência entre amostras (linhas) da tabela.
- Uma amostra anômala quanto a dependências amostraamostra possui valores de features incompatíveis com os valores das mesmas features em outras amostras da tabela.

02 Método

Abordagens

Abordagens Baseadas em Reconstrução

- Aborda a detecção de amostras anômalas por meio de autoencoders.
- Modelos recebem uma amostra e geram uma cópia.
- Anomalias são diferentes da cópia feita pelo modelo.

Técnicas de Masking

- Uso de máscaras nas amostras que ocultam algumas de suas features.
- Modelos tentam inferir os valores ocultos da amostra a partir de valores conhecidos da amostra.
- Anomalias têm valores ocultos reais diferentes dos valores preditos.

Abordagem do modelo

- Adicionar detecção de dependências amostra-amostra às técnicas de masking.
- Recebe um conjunto de dados de treino, conhecidamente não-anômalo, e um conjunto desconhecido.
- Aplica máscaras nas amostras do conjunto desconhecido
- O modelo tenta inferir as features ocultas a partir de ambos os conjuntos de dados.
- Anomalias têm valores reais diferentes dos valores preditos.

Objetivo Final do Modelo

- x: amostra, linha da tabela
- m: máscara aplicada à amostra. 1 sse o valor é oculto
- phi_theta: modelo de predição das features ocultas
- theta: parâmetros do modelo phi
- **D_train:** amostras de treino da tabela

$$\mathbf{x}^m = \{x_j : m_j = 1\} \qquad \qquad \mathbf{x}^o = \{x_j : m_j = 0\}$$

$$\min_{\theta \in \Theta} \sum_{\mathbf{x} \in \mathcal{D}_{train}} d\left(\mathbf{x}^{m}, \phi_{\theta}\left(\mathbf{x}^{o} \mid \mathbf{X}^{O}\right)\right).$$

Modelo

Modelos de Processamento de sequências

- Modelos genéricos tratam de dados de entrada e saída unitários.
- Modelos de processamento de sequências tratam de dados de entrada, saída ou ambos sequenciais:
 - Texto
 - Áudio
 - Vídeo
 - Macromoléculas sequenciais (DNA, proteínas)
- Nem sempre a sequência de entrada e de saída seguem a mesma ordem:
 - O CAVALO Branco
 - The **White** HORSE

Soluções Anteriores: Redes Neurais Recorrentes

- Funciona como uma rede feed-forward, porém passada em ordem sobre em cada um dos dados da sequência.
- Possui um par de entradas e um par de saídas, de maneira unitária, como uma rede feed-forward
- Uma das entradas e uma das saídas correspondem a um estado oculto que representa a memória do modelo:
 - Ao passar pelo i-ésimo elemento, recebe como entrada a memória de quando passou pelo i-1
 - Ao passar pelo i-ésimo elemento, deixa a memória para quando passar pelo elemento i+1
- O significado da entrada e saída padrões depende da arquitetura.
- Problemas:
 - Vetor de contexto perde informação sobre as iterações mais antigas ao longo do tempo.
 - Tem desempenho ruim para sequências muito grandes.

Traditional RNN encoder-decoder

Comment Se passe ta journée How was your day Unimportant SCALER Topics

Transformer

- Uma versão melhorada da RNN
- Passa os vetores de contexto de todas as iterações do encoder para o decoder.
- Cada iteração do decoder decide quais vetores de contexto levar em consideração usando uma porcentagem de importância atribuída a cada vetor de contexto do encoder, denominada de mecanismo de atenção.
- Os mecanismos de atenção são definidos calculando a similaridade do vetor de contexto do decoder em uma iteração com os vetores de contexto de cada iteração do encoder e passando por uma softmax para retornar as porcentagens.
- A combinação dos vetores de contexto da entrada, ponderada pelas atenções, gera o vetor de contexto de saída do decoder em cada iteração.
- O vetor de contexto de saída, junto à saída da iteração anterior, geram a saída do decoder em cada iteração.

Transformer

Mecanismos de Atenção: Cálculo da Atenção

- Q[i]: Vetor Contextual da i-ésima saída
- K[i]: Vetor Contextual da i-ésima entrada
- V[i]: Valores da i-ésima entrada usados para o cálculo da atenção (usualmente igual a K[i]
- Attention: porcentagem de similaridade entre os vetores de K e cada vetor Q[i]
 - Vetores mais similares são mais influentes na saída Q[i]

Attention(
$$\mathbf{Q}, \mathbf{K}, \mathbf{V}$$
) = softmax $\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d_k}}\right) \mathbf{V}$

Mecanismos de Atenção: Multi-Head Attention

- Múltiplos vetores de atenção diferentes são calculados e cada um divide um pedaço da influência.
- Resultados são combinados ao fim.
- Divisão da influência, combinação dos resultados são parâmetros de treino.

$$\begin{aligned} \text{MultiHead}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) &= \text{concat}(O_1, \dots, O_k) W^O, \text{ where} \\ O_j &= \text{Attention}(\mathbf{Q}W_j^Q, \mathbf{K}W_j^K, \mathbf{V}W_j^V) \end{aligned}$$

Mecanismos de Atenção: Multi-Head Self-Attention

- Features de entrada e de saída são iguais.
- O Modelo aprende o padrão dos dados.

$$MHSelfAtt(\mathbf{H}) = MultiHead(\mathbf{Q} = \mathbf{H}, \mathbf{K} = \mathbf{H}, \mathbf{V} = \mathbf{H})$$

Mecanismos de Atenção: MHSA adaptada ao modelo

- Adaptações ao valor final da MHSA oriundas da definição e boas práticas dos modelos.
- Normalização de camada antes e depois do cálculo da atenção.
- Branch residual somado à atenção do modelo.
- Valor da predição anterior pela rede de saída (rFF) influencia a atenção final.

$$Res(\mathbf{H}) = \mathbf{H}W^{res} + MHSelfAtt (LN(\mathbf{H}))$$

$$MHSA(\mathbf{H}) = Res(\mathbf{H}) + rFF (LN (Res (\mathbf{H}))) \in \mathbb{R}^{n \times h}$$

Non Parametric Transformer (NTP)

- Projetada para detectar padrões entre as amostras
- Utiliza uma arquitetura semelhante aos transformadores
 - Utiliza mecanismos de atenção MHSA
 - o Faz embedding dos dados de entrada
- Ao invés de treinar a rede passando cada amostra, passa como entrada todas as amostras de uma vez.
- Em cada iteração, alterna entre usar a atenção entre as linhas (amostras) e as colunas (features) dos dados de entrada.

(a) Input

(b) Embedding

(c) Datapoint Attention

(d) Attribute Attention

Modelo Final Proposto

- Para cada base de dados, é definido o treino e a validação:
 - O treino é constituído por metade das amostras originais
 - A validação possui a outra metade mais as amostras anômalas
- Para cada base, m máscaras são definidas deterministicamente:
 - É definido o número máximo r de features a serem mascaradas simultaneamente.
 - o mé o total de combinações de features escolhendo de 1 a r.
 - Vetores unidimensionais com cada combinação possível de features dentro do limite estipulado são definidos como máscaras.
 - A mesma máscara é aplicada em todas as amostras da validação.
- A função de perda é a anomaly score da predição gerada:
 - Para cada amostra, seu valor é comparado com os resultados originais da tabela:
 - erro quadrado médio para valores numéricos
 - Cross-entropy para valores categóricos
- A classificação da amostra como anômala é feita com um T-teste do score da amostra contra os scores da tabela com limiar de 5%.

Modelo Final Proposto

Experimentos

Bases de dados utilizadas

Bases médicas

- 2 bases menores:
 - o Arrythmia
 - Thyroid

Bases de cibersegurança

- 2 bases maiores, com informações de tráfego na internet:
 - KDD
 - KDDRev

Bases estruturadas para detecção de anomalias

- 28 bases selecionadas para problemas de detecção de anomalias.
 - Wine
 - Lympho
 - Vowels
 - o ...

Method	DROCC	GOAD	NeuTraL-AD	Internal Cont.	NPT-AD
	(abalone)	(thyroid)	(arrhy.)		
Wine	63.0 ± 20.0	67.0 ± 9.4	78.2 ± 4.5	90.0 ± 6.3	72.5 ± 7.7
Lympho	65.0 ± 5.0	68.3 ± 13.0	20.0 ± 18.7	86.7 ± 6.0	94 . 2 ±7.9
Glass	14.5 ± 11.1	12.7 ± 3.9	9.0 ± 4.4	27.2 ± 10.6	$26.2 \pm 10.$
Vertebral	9.3 ± 6.1	16.3 ± 9.6	3.8 ± 1.2	26.0 ± 7.7	20.3 ± 4.8
Wbc	9.0 ± 6.2	66.2 ± 2.9	60.9 ± 5.6	67.6 ± 3.6	67.3 ± 1.7
Ecoli	N/A	61.4 ± 31.7	7.0 ± 7.1	70.0 ± 7.8	77.7 ± 0.1
Ionosph.	76.9 ± 2.8	83.4 ± 2.6	90.6 ± 2.4	93.2 ± 1.3	92.7 ± 0.6
Arrhyth.	37.1 ± 6.8	52.0 ± 2.3	59.5 ± 2.6	61.8 ± 1.8	60.4 ± 1.4
Breastw	93.0 ± 3.7	96.0 ± 0.6	91.8 ± 1.3	96.1 ± 0.7	95.7 ± 0.3
Pima	66.0 ± 4.1	66.0 ± 3.1	60.3 ± 1.4	$59.1 {\pm} 2.2$	68.8 ± 0.6
Vowels	66.2 ± 8.8	31.1 ± 4.2	10.0 ± 6.2	90.8 ± 1.6	88.7 ± 1.6
Letter	55.6 ± 3.6	20.7 ± 1.7	5.7 ± 0.8	$62.8 {\pm} 2.4$	71.4 ± 1.9
Cardio	49.8 ± 3.2	78.6 ± 2.5	45.5 ± 4.3	71.0 ± 2.4	78.1 ± 0.1
Seismic	19.1 ± 0.9	$24.1 {\pm} 1.0$	11.8 ± 4.3	20.7 ± 1.9	26.2 ± 0.7
Musk	99.4 ± 1.5	100.0 ± 0.0	99.0 ± 0.0	100.0 ± 0.0	$100.0\pm0.$
Speech	4.3 ± 2.0	4.8 ± 2.3	$4.7 {\pm} 1.4$	$5.2 {\pm} 1.2$	9.3 ± 0.8
Thyroid	72.7 ± 3.1	72.5 ± 2.8	69.4 ± 1.4	76.8 ± 1.2	77.0 ±0.6
Abalone	17.9 ± 1.3	57.6 ± 2.2	53.2 ± 4.0	68.7 ± 2.3	59.7 ± 0.1
Optdigits	30.5 ± 5.2	0.3 ± 0.3	16.2 ± 7.3	66.3 ± 10.1	62.0 ± 2.7
Satimage2	4.8 ± 1.6	90.7 ± 0.7	92.3 ± 1.9	92.4 ± 0.7	94.8 ± 0.8
Satellite	52.2 ± 1.5	64.2 ± 0.8	71.6 ± 0.6	73.2 ± 1.6	74.6 ± 0.7
Pendigits	11.0 ± 2.6	40.1 ± 5.0	69.8 ± 8.7	82.3 ± 4.5	92.5 ± 1.3
Annthyr.	64.2 ± 3.3	50.3 ± 6.3	44.1 ± 2.3	45.4 ± 1.8	57.7 ± 0.6
Mnist	N/A	66.9 ± 1.3	84.8 ± 0.5	85.9 ± 0.0	71.8 ± 0.3
Mammo.	32.6 ± 2.1	33.7 ± 6.1	19.2 ± 2.4	29.4 ± 1.4	43.6 ± 0.5
Shuttle	N/A	73.5 ± 5.1	97.9 ± 0.2	98.4 ± 0.1	98.2 ± 0.3
Mullcross	N/A	99.7 ± 0.8	96.3 ± 10.5	100.0 ± 0	100.0 ± 0
Forest	N/A	0.1 ± 0.2	51.6 ± 8.2	44.0 ± 4.1	58.0 ± 10
Kdd	N/A	79.6 ± 3.9	96.9 ± 2.0	99.4 ± 0.1	98.7 ± 0.3
Kddrev	N/A	98.0 ± 0.1	96.5 ± 1.5	99.2 ± 0.3	98.5 ± 0.1
mean	33.6	55.9	53.9	69.7	71.2
mean std	4.6	4.2	3.9	2.9	2.0
mean rank	10.7	7.6	9.0	3.2	3.0

Resultados

- Cada modelo foi executado para cada base em 20 repetições (10 para as bases maiores como as KDD).
- O F1 e a AUROC (Area Under the Receiver Operating Characteristic curve) foram coletados para cada instância e a média e desvio padrão das repetições foi calculada.
- O F1 médio, o desvio médio e o ranking médio de cada modelo foram coletados (ranking n corresponde ao n-ésimo melhor modelo para uma base)
- NPT-AD teve melhor desempenho geral, e apresentou a melhor solução para quase todas as bases

Method	COPOD	IForest	KNN	PIDForest	RRCF	NPT-AD
Wine	60.0 ± 4.5	64.0 ± 12.8	94.0 ±4.9	50.0 ± 6.4	69.0 ± 11.4	72.5 ± 7.3
Lympho	85.0 ± 5.0	71.7 ± 7.6	80.0 ± 11.7	70.0 ± 0.0	36.7 ± 18.0	94.2 ± 7.9
Glass	11.1 ± 0.0	11.1 ± 0.0	11.1 ± 9.7	8.9 ± 6.0	15.6 ± 13.3	26.2 ± 10.9
Vertebral	1.7 ± 1.7	13.0 ± 3.8	10.0 ± 4.5	12.0 ± 5.2	8.0 ± 4.8	20.3 ± 4.8
Wbc	71.4 ± 0.0	70.0 ± 3.7	63.8 ± 2.3	65.7 ± 3.7	54.8 ± 6.1	67.3 ± 1.7
Ecoli	25.6 ± 11.2	58.9 ± 22.2	77.8 ± 3.3	25.6 ± 11.2	28.9 ± 11.3	77.7 ± 0.1
Ionosphere	70.8 ± 1.8	80.8 ± 2.1	88.6 ± 1.6	67.1 ± 3.9	72.0 ± 1.8	92.7 ± 0.6
Arrhythmia	58.2 ± 1.4	60.9 ± 3.3	61.8 ± 2.2	22.7 ± 2.5	50.6 ± 3.3	60.4 ± 1.4
Breastw	96.4 ± 0.6	97.2 ± 0.5	96.0 ± 0.7	70.6 ± 7.6	63.0 ± 1.8	95.7 ± 0.3
Pima	62.3 ± 1.1	69.6 ± 1.2	65.3 ± 1.0	65.9 ± 2.9	55.4 ± 1.7	68.8 ± 0.6
Vowels	4.8 ± 1.0	$25.8 {\pm} 4.7$	64.4 ± 3.7	23.2 ± 3.2	18.0 ± 4.6	88.7 ± 1.6
Letter	12.9 ± 0.7	15.6 ± 3.3	45.0 ± 2.6	14.2 ± 2.3	17.4 ± 2.2	71.4 ± 1.9
Cardio	65.0 ± 1.4	73.5 ± 4.1	67.6 ± 0.9	43.0 ± 2.5	43.9 ± 2.7	78.1 ± 0.1
Seismic	29.2 ± 1.3	73.9 ± 1.5	30.6 ± 1.4	29.2 ± 1.6	24.1 ± 3.2	26.2 ± 0.7
Musk	49.6 ± 1.2	52.0 ± 15.3	100.0 ± 0.0	35.4 ± 0.0	38.4 ± 6.5	100 ± 0.0
Speech	3.3 ± 0.0	4.9 ± 1.9	5.1 ± 1.0	2.0 ± 1.9	3.9 ± 2.8	9.3 ± 0.8
Thyroid	30.8 ± 0.5	78.9 ± 2.7	57.3 ± 1.3	72.0 ± 3.2	31.9 ± 4.7	77.0 ± 0.6
Abalone	50.3 ± 6.4	53.4 ± 1.7	43.4 ± 4.8	58.6 ± 1.6	36.9 ± 6.4	59.7 ± 0.1
Optdigits	3.0 ± 0.3	15.8 ± 4.3	90.0 ± 1.2	22.5 ± 16.8	1.3 ± 0.7	62.0 ± 2.7
Satimage2	77.9 ± 0.9	86.5 ± 1.7	93.8 ± 1.2	35.5 ± 0.4	47.9 ± 3.4	94.8 ± 0.8
Satellite	56.7 ± 0.2	69.6 ± 0.5	76.3 ± 0.4	46.9 ± 3.7	55.4 ± 1.3	74.6 ± 0.7
Pendigits	34.9 ± 0.6	52.1 ± 6.4	91.0 ± 1.4	44.6 ± 5.3	16.3 ± 2.6	92.5 ± 1.3
Annthyroid	31.5 ± 0.5	57.3 ± 1.3	37.8 ± 0.6	65.4 ± 2.7	32.1 ± 0.8	57.7 ± 0.6
Mnist	38.5 ± 0.4	51.2 ± 2.5	69.4 ± 0.9	32.6 ± 5.7	33.5 ± 1.7	71.8 ± 0.3
Mammo.	53.4 ± 0.9	39.0 ± 3.3	38.8 ± 1.5	28.1 ± 4.3	27.1 ± 1.9	43.6 ± 0.5
Shuttle	96.0 ± 0.0	96.4 ± 0.8	97.3 ± 0.2	70.7 ± 1.0	32.0 ± 2.2	98.2 ± 0.3
Mullcross	66.0 ± 0.1	99.1 ± 0.5	100.0 ± 0.0	67.4 ± 2.1	100.0 ± 0.0	100.0 ± 0.0
Forest	18.2 ± 0.2	11.1 ± 1.6	92.1 ± 0.3	8.1 ± 2.8	$9.9{\pm}1.5$	58.0 ± 10.0
Kdd	44.5 ± 0.1	95.6 ± 2.2	98.9 ± 0.4	92.1 ± 2.2	74.7 ± 0.9	98.7 ± 0.3
Kdd-rev	30.9 ± 0.4	96.4 ± 2.4	85.2 ± 0.3	50.9 ± 4.1	9.8 ± 1.2	98.5 ± 0.1
mean	44.7	58.2	67.7	43.4	37.0	71.2
mean std	1.5	4.0	2.2	3.9	4.2	2.0
mean rank	10.1	6.8	5.1	10.8	11.9	3.0

Resultados

- Mesmos testes foram feitos para modelos nãobaseados em deep-learning.
- O NPT-AD também teve um desempenho geral melhor que todas as demais soluções.
- Só perdeu em desvio padrão, mas a diferença no desvio é muito menor que a diferença positiva na média.

06 Discussões

(a) F1-Score (\(\epsilon\))

Dados de treino contaminados

- Definir uma base de treino robusta e livre de anomalias é difícil em um cenário real.
- Teste do modelo para dados de treino contaminados:
 - Uma base de treino limpa de 900 amostras foi definida, com 100 amostras anômalas separadas.
 - Amostras variando entre 1 e 10% de contaminação foram utilizadas para treino do modelo.
 - F1 e AUROC (area under the receiving operator characteristic curve) coletadas
- Quedas de performance significativas a partir de 2% de contaminação

(b) AUROC (↑)

Impacto de dependências amostra-amostra

- O objetivo final do modelo era ser capaz de detectar dependências amostra-amostra.
- Para isso, o modelo já treinado foi executado 20 vezes com colunas permutadas aleatoriamente (apenas dependência entre amostras impactaria o resultado).
- Queda na F1 e na AUROC em relação ao modelo original coletadas.
- Maiores quedas na F1: AUROC leva pouco em consideração dependências amostra-amostra

F1(T_random) - F1(T)

	Mammo.	Glass	BreastW	Pendigits
$\Delta F1$ $\Delta AUROC$	$-1.0 \\ -0.1$	$-9.6 \\ -0.1$	$-0.5 \\ -0.1$	$-2.8 \\ -0.1$

AUROC(T_random) - AUROC(T)

Limitações e Conclusão

Limitações

- Modelo altamente complexo
- Requer poder computacional muito alto
 - Complexidade do NPT
 - Complexidade da função de score da anomalia
- Por esse motivo, pode n\u00e3o ser adequado para bases com muitas features

Conclusão

- O modelo proposto é o primeiro na literatura a utilizar dependências feature-feature e amostra-amostra para a detecção de anomalias.
- Utilizando uma extensa quantidade de dados, o modelo teve desempenho melhor que técnicas estado-da-arte para métricas de F1 e AUROC.
- Os experimentos demonstram a robustez do método para dados de treino contaminados
- Com este trabalho, é enfatizada a importância de considerar dependências amostra-amostra para a detecção de anomalias em tabelas.

Obrigado!

Bibliografia

Attention mechanism: Overview: https://www.youtube.com/watch?v=fjJOgb-E41w&ab_channel=GoogleCloudTech

Attention Mechanism in a Nutshell: https://www.youtube.com/watch?v=oMeIDqRguLY&ab_channel=HalflingWizard

Illustrated Guide to Recurrent Neural Networks: Understanding the Intuition: https://www.youtube.com/watch?v=LHXXI4-IEns&t=339s&ab_channel=TheA.I.Hacker-MichaelPhi

Kossen J et al., Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

Thimonier H. et al, Beyond Individual Input for Deep Anomaly Detection on Tabular Data

Vaswani A. et al, Attention Is All You Need