Algorithms and Tools in Bioinformatics

Data, Tools and Technologies in Bioinformatics

Julia Vetter

julia.vetter@fh-hagenberg.at

Course Content

- (1) Overview
- (2) Standard Datasets/Modern File Formats
- (3) Databases/Platforms
- (4) Data (Pre-) Processing
- (5) Tools
- (6) Machine Learning

Recap: Alu sequence ("Real-Life" Example I)

- Are the primer suitable to extract the Alu sequence from the PLAT gene?
- Primer: GTGAAAAGCAAGGTCTACCAG and GACACCGAGTTCATCTTGAC

- # 1. go to: https://www.omim.org/ and search for PLAT
- # 2. choose "Plasminogen Activator, Tissue; PLAT"
- # 3. click on "DNA" and navigate to "Ensembl (MANE Select)"
- # 4. click on "Download sequence" > "Preview" > search (CTRL+F) for
 "Intron 8" > copy the sequence to file (or as string to python
 script)
- # 5. close this window and click on "Show transcript table" > click on "NM_000930.5" > you can see all genetic relevant information about the PLAT gene
- # 6. search next to "Nucleotide" for "PLAT Alu sequence" in NCBI Nucleotides > select first entry (GenBank: K03021.1)
- # 7. download FASTA sequence (use "Send to" + "File" + "FASTA" + "Create File") > save as "PLATwithALUsequence.fasta"
- # 8. process raw sequences and extract sequence between primers:
 GTGAAAAGCAAGGTCTACCAG and GACACCGAGTTCATCTTGAC
 Hint: remember DNA strands you won't find the second primer if you
 don't use the reverse complementary version: GTCAAGATGAACTCGGTGTC
- # 9. go to https://dotlet.vital-it.ch/ > add both sequences > take a
 screenshot
- # 11. Note the following parameters: Number of Gaps, Alignment Score, Start position of the Gap
- # 12. (optional) search for ORFs (using ORFfinder:
 https://www.ncbi.nlm.nih.gov/orffinder/) > insert
 sequence with Alu > how many ORFs are found?

Mentimeter: Quiz (Alignment)

Databases

Name	Туре	Usage for our example
ОМІМ	Secondary Database Bibliographic Database	= Online Mendelian Inheritance in Man Institute: NCBI Information acquisition PLAT gene
Ensembl	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
NCBI Nucleotides	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
ALFRED	Secondary Database Allele Frequency Database	Institute: Yale Center for Medical Informatics Population genetics information

Tools

Name	Туре	Usage for our example
In-Silico PCR	PCR simulation	Institute: UCSC Genomics Institute Get primer and sequence information
Dotlet JS beta	Sequence alignment	Institute: SIB Vital-IT Sequence comparison/alignment
ORFfinder	Open reading frame finder	Institute: NCBI Identification of open reading frames

OMIM

https://omim.org/

- **▶** Gene Structure
- ▶ Mapping
- **▶** Gene Function
- **▼** Population Genetics

Ludwig et al. (1992) described an insertion/deletion polymorphism of a 311-bp Alu sequence in intron 8 of the PLAT gene. In all populations studied, the frequency of each of 2 alleles varied between 0.40 and 0.60. The similar frequencies among different ethnic groups suggested that the insertion or subsequent deletion of this Alu sequence occurred early in human evolution. •

and the C-terminal light chain. The light chain contains the active site (Ny et al., 1984).

Databases

Name	Туре	Usage for our example
OMIM	Secondary Database Bibliographic Database	Online Mendelian Inheritance in ManInstitute: NCBIInformation acquisition PLAT gene
Ensembl	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
NCBI Nucleotides	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
ALFRED	Secondary Database Allele Frequency Database	Institute: Yale Center for Medical Informatics Population genetics information

Tools

Name	Туре	Usage for our example
In-Silico PCR	PCR simulation	Institute: UCSC Genomics Institute Get primer and sequence information
Dotlet JS beta	Sequence alignment	Institute: SIB Vital-IT Sequence comparison/alignment
ORFfinder	Open reading frame finder	Institute: NCBI Identification of open reading frames

Recap: Alu sequence

II

Primer: GTGAAAAGCAAGGTCTACCAG and GACACCGAGTTCATCTTGAC

Databases

Name	Туре	Usage for our example
OMIM	Secondary Database Bibliographic Database	= Online Mendelian Inheritance in Man Institute: NCBI Information acquisition PLAT gene
Ensembl	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
NCBI Nucleotides	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
ALFRED	Secondary Database Allele Frequency Database	Institute: Yale Center for Medical Informatics Population genetics information

Tools

Name	Туре	Usage for our example
Dotlet JS beta	Sequence alignment	Institute: SIB Vital-IT Sequence comparison/alignment
EMBOSS Needle	Sequence alignment	Institute: EMBL-EBI Sequence alignment using Needleman-Wunsch
ORFfinder	Open reading frame finder	Institute: NCBI Identification of open reading frames

Dotlet https://dotlet.vital-it.ch/

Recap: Alu sequence

Primer: GTGAAAAGCAAGGTCTACCAG and GACACCGAGTTCATCTTGAC

Databases

Name	Туре	Usage for our example
OMIM	Secondary Database Bibliographic Database	= Online Mendelian Inheritance in Man Institute: NCBI Information acquisition PLAT gene
Ensembl	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
NCBI Nucleotides	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
ALFRED	Secondary Database Allele Frequency Database	Institute: Yale Center for Medical Informatics Population genetics information

Tools

Name	Туре	Usage for our example
Dotlet JS <i>beta</i>	Sequence alignment	Institute: SIB Vital-IT Sequence comparison/alignment
EMBOSS Needle	Sequence alignment	Institute: EMBL-EBI Sequence alignment using Needleman-Wunsch
ORFfinder	Open reading frame finder	Institute: NCBI Identification of open reading frames

EMBOSS Needle

https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle

withALU	1	GTGAAAAGCAAGGTCTACCAGTTTTCCAACCTAAATCCCAAGTTAAGGGT	50
withoutALU	1	GTGAAAAGCAAGGTCTACCAGTTTTCCAACCTAAATCCCAAGTTAAGGGT	50
withALU	51	CCTGGCCTGTAACCATTTAGTCCTCAGCTGTTCTCCTGACATCTTTATTG	100
withoutALU	51	CCTGGCCTGTAACCATTTAGTCCTCAGCTGTTCTCCTGACATCTTTATTG	100
withALU	101	CAATGATTTGTAAGAGTTCCGTAACAGGACAGCTCACAGTTCTGTCTG	150
withoutALU	101	CAATGATTTGTAAGAGTTCCGTAACAGGACAGCTCACAGTTCTGTCTG	150
withALU	151	AACCCTATGAGATTAGAACACTACGGCCGGGCGCGGTGGCTCACGCCTGT	200
withoutALU	151	AACCCTATGAGATT	164
withALU	201	AATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGA	250
withoutALU	1 65		164
withALU	251	TCGAGACCATCCCGGCTAAAACGGTGAAACCCCGTCTCTACTAAAACTAC	300
withoutALU	165		164
withALU	301	AAAAAATAGCCGGGCGTAGTGGCGGGCGCCTGTAGTCCTGGCTACTTGGG	350
withoutALU	1 65		164
withALU	351	AGGCTGAGGCAGGAGAATGGCATGAACCCGGGAGGCGGAGCTTGCAGTGA	400
withoutALU	165		164
withALU	401	GCCGAGATCCCGCCACTGCACTCCAGCCTGGGCAACAGAGCGAGACTCCG	450
withoutALU	165		164
withALU	451	TCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	500
withoutALU	165	AGAACACTACATTACTGACTGGGTA	189
withALU	501	ACAAAGTTAAAGAGAAGTTCTCCTAGGGTGGGGGTGTGCTGCAAG 545	
withoutALU	190	ACAAAGTTAAAGAGAAGTTCTCCTAGGGTGGGGGTGTGCTGCAAG 234	

EMBOSS Needle https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle

Results for Job ID: emboss_needle-I20240227-181057-

Tool Output

```
# Program: needle
# Rundate: Tue 27 Feb 2024 18:11:10
# Commandline: needle
    -auto
    -stdout
    -asequence emboss_needle-I20240227-181057-0979-632480-p1m.asequence
    -bsequence emboss needle-I20240227-181057-0979-632480-p1m.bsequence
    -datafile EDNAFULL
    -gapopen 10.0
    -gapextend 0.5
    -endopen 10.0
    -endextend 0.5
    -aformat3 pair
    -snucleotide1
    -snucleotide2
# Align_format: pair
# Report_file: stdout
```

```
#
# Aligned sequences: 2
# 1: EMBOSS 001
# 2: EMBOSS 001
# Matrix: EDNAFULL
# Gap_penalty: 10.0
# Extend_penalty: 0.5
# Length: 545
# Identity:
              234/545 (42.9%)
# Similarity:
              234/545 (42.9%)
               311/545 (57.1%)
# Gaps:
# Score: 1005.0
```

EMBOSS Needle

https://www.ebi.ac.uk/jdispatcher/psa/emboss_needle

withALU	1	GTGAAAAGCAAGGTCTACCAGTTTTCCAACCTAAATCCCAAGTTAAGGGT	50
withoutALU	1	GTGAAAAGCAAGGTCTACCAGTTTTCCAACCTAAATCCCAAGTTAAGGGT	50
withALU	51	CCTGGCCTGTAACCATTTAGTCCTCAGCTGTTCTCCTGACATCTTTATTG	100
withoutALU	51	CCTGGCCTGTAACCATTTAGTCCTCAGCTGTTCTCCTGACATCTTTATTG	100
withALU	101	CAATGATTTGTAAGAGTTCCGTAACAGGACAGCTCACAGTTCTGTCTG	150
withoutALU	101	CAATGATTTGTAAGAGTTCCGTAACAGGACAGCTCACAGTTCTGTCTG	150
withALU	151	AACCCTATGAGATTAGAACACTACGGCCGGGCGCGGTGGCTCACGCCTGT	200
withoutALU	151	AACCCTATGAGATT	164
withALU	201	AATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGA	250
withoutALU	165		164
withALU	251	TCGAGACCATCCCGGCTAAAACGGTGAAACCCCGTCTCTACTAAAACTAC	300
withoutALU	165		164
withALU	301	AAAAAATAGCCGGGCGTAGTGGCGGGCGCCTGTAGTCCTGGCTACTTGGG	350
withoutALU	165		164
withALU	351	AGGCTGAGGCAGGAGAATGGCATGAACCCGGGAGGCGGAGCTTGCAGTGA	400
withoutALU	165		164
withALU	401	GCCGAGATCCCGCCACTGCACTCCAGCCTGGGCAACAGAGCGAGACTCCG	450
withoutALU	165		164
withALU	451	TCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	500
withoutALU	165	AGAACACTACATTACTGACTGGGTA	189
withALU	501	ACAAAGTTAAAGAGAAGTTCTCCTAGGGTGGGGGTGTGCTGCAAG 545	
withoutALU	190	ACAAAGTTAAAGAGAAGTTCTCCTAGGGTGGGGGTGTGCTGCAAG 234	

Databases

Name	Туре	Usage for our example
OMIM	Secondary Database Bibliographic Database	= Online Mendelian Inheritance in Man Institute: NCBI Information acquisition PLAT gene
Ensembl	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
NCBI Nucleotides	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
ALFRED	Secondary Database Allele Frequency Database	Institute: Yale Center for Medical Informatics Population genetics information

Tools

Name	Туре	Usage for our example
In-Silico PCR	PCR simulation	Institute: UCSC Genomics Institute Get primer and sequence information
Dotlet JS <i>beta</i>	Sequence alignment	Institute: SIB Vital-IT Sequence comparison/alignment
ORFfinder	Open reading frame finder	Institute: NCBI Identification of open reading frames

ORFfinder https://www.ncbi.nlm.nih.gov/orffinder/

ORFfinder https://www.ncbi.nlm.nih.gov/orffinder/

Databases

Name	Туре	Usage for our example
OMIM	Secondary Database Bibliographic Database	= Online Mendelian Inheritance in Man Institute: NCBI Information acquisition PLAT gene
Ensembl	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
NCBI Nucleotides	Secondary Database Genome Database	Institute: EMBL (Reference) sequence data acquisition
ALFRED	Secondary Database Allele Frequency Database	Institute: Yale Center for Medical Informatics Population genetics information

Tools

Name	Туре	Usage for our example
In-Silico PCR	PCR simulation	Institute: UCSC Genomics Institute Get primer and sequence information
Dotlet JS beta	Sequence alignment	Institute: SIB Vital-IT Sequence comparison/alignment
ORFfinder	Open reading frame finder	Institute: NCBI Identification of open reading frames

ALFRED

https://alfred.med.yale.edu/alfred/index.asp

ALFRED https://alfred.med.yale.edu/alfred/index.asp

Algorithms and Tools in Bioinformatics

Data, Tools and Technologies in Bioinformatics

Julia Vetter

julia.vetter@fh-hagenberg.at

"Real-Life" Example II

Research Area: Molecular Biology

Research Focus: Chronic Myeloid Leukemia (CML)

Research Question:

"We have synthesized DNA imitating **CML patients' BCR-ABL** fusion gene and established a customdesigned NGS workflow. These samples should have a **specific allele frequency** at specific loci in the sequence. Are we able to achieve the defined target allele frequencies?"

- 1) What is chronic myeloid leukemia (CML)?
- 2) What data source/file formats do we have to work with?
- 3) Is additional information about the received data provided?
- 4) How can we evaluate the custom-designed NGS workflow?

1) Chronic Myeloid Leukemia

- ~ blood cancer
- = hematopoietic neoplasm leading to granulocytic precursor cells' uncontrolled proliferation
- Caused by a translocation leading to the BCR-ABL1 fusion gene – also called "Philadelphia chromosome"

1) Chronic Myeloid Leukemia (CML)

1) Chronic Myeloid Leukemia (CML)

IV

- Symptoms
 - Anemia
 - Weight loss
 - Fever
 - Enlarged spleen
- Treatment
 - Tyrosine Kinase Inhibitors (TKIs)
 - (Chemotherapy)
 - (Radiation)
 - (Stem cell transplantation)

1) Chronic Myeloid Leukemia (CML)

Protein	DNA
M244V	c.730A>G
L248R	c.743T>G
L248V	c.742C>G
G250E	c.749G>A
Q252H	c.756G>C
Y253F	c.758A>T
E255K	c.763G>A
E255V	c.764A>T
D276G	c.827A>G
E279K	c.835G>A
V299L	c.895G>T
T315A	c.943A>G
T315I	c.944C>T
T315V	c.943 944AC>GT
F317L	c.951 c>A
F317R	c.949 950TT>CG
F317V	c.949T>G
M343T	c.1028T>C
M351T	c.1052T>C
F359I	c.1075T>A
F359V	c.1075T>G
L384M	c.1150C>A
H396P	c.1187A>C
H396R	c.1187A>G
F486S	c.1457T>C

CML Relapse Event

2) Data Source/File Formats?

- Synthesized CML NGS data
- in FASTQ file format

3) Additional Information?

- Reference sequence (ABL)
- Primer
- Target Mutation Rates: **E255K G > A 100 %**

4) Evaluate the Custom-Designed NGS Workflow?

Are we able to reach the "target allele frequency"?

Hands-on...

```
# 1. perform quality check
# 2. clean data
# 3. perform mapping (using bowtie2 or bwa - e.g. on https://usegalaxy.org/ or install bowtie2/bwa)
# 4. perform consensus sequence (using e.g., ivar consensus on https://usegalaxy.org/)
# 5. perform multiple sequence alignment (using e.g., https://www.ebi.ac.uk/Tools/msa/clustalo/)
# 6. merge sequences (using e.g., Samtools merge)
# 7. load the generated BAM and BAI files into IGV
```

Colab: ATBI 2

Tools

Name	Туре	Usage for our example
Galaxy	Tools collection	Provides various tools for biological data (pre-) processing
FastQC	FASTQ quality control tool	Institute: Babraham Institute Quality control tool for high throughput sequencing data
Bowtie2	Sequence mapping tool to reference sequence	Institute: John Hopkins University Mapping of FASTQ files to reference sequence
BWA	Sequence mapping tool to reference sequence	= Burrows-Wheeler Aligner Mapping of FASTQ files to reference sequence
Clustal Omega	Multiple sequence alignment tool	Institute: EMBL-EBI Alignment of two or more sequences – identification of differences/mutations/insertions/deletions – provides information of sequence similarities (phylogenetic tree)
IGV	Integrative genomics viewer	Institute: Broad Institute, University of California Provides information about allele frequencies (and mutations/mismatches/insertions/deletions)

"Real-Life" Example III

Research Area: Immunology

Research Focus: Gene Expression Analysis

Research Question:

"We are currently analyzing various gene expressions of patients suffering from acute myeloid leukemia (AML) and comparing them to expressions in healthy individuals. Are you able to reproduce our results and do you have some suggestions for further gene targets?"

"Real-Life" Example III - Questions

- 1) What is acute myeloid leukemia (AML)?
- 2) What data sources do we have to work with?
- 3) How do the results of our "collaboration partners" look like?
- 4) Can we suggest some target genes for further analysis?

1) Acute Myeloid Leukemia (AML)

- ~ blood cancer
- = hematopoietic neplasm leading to uncontrolled proliferation of haemotopoietic cells
- 8 subtypes FAB Classification:
 - M0 M7
 - Depends on the affected cell types

FAB CLASSIFICATION SYSTEM OF ACUTE MYELOID LEUKAEMIA

- Symptoms
 - Weight loss
 - Fatigue
 - Fever
 - Night sweats
 - Loss of appetite
- Treatment
 - Chemotherapy
 - Radiation
 - Stem cell transplantation

2) Data Sources

- Public available datasets
- Gene expression data
- Microarray data

wikipedia

3) Results of "Collaboration Partners"

Hands-on...

```
Colab: ATBI_2
```

- # 1. get data > go to https://www.ncbi.nlm.nih.gov/geo/browse/ or https://www.ebi.ac.uk/arrayexpress/browse.html and search for "AML" > sort by "Assays" > use GSE12417
- # 2. use GEOparse to download GSE12417
- # 3. get target gene IDs
- # 3a. go to http://biogps.org/#goto=welcome and search for the required genes
- # 3b. download the platform file (e.g., GPL96-57554.txt) from your GEO dataset and use e.g., pandas to find the IDs
- # 4. define target genes
- # 5. prepare and collect data
- # 6. compare FAB classes and perform statistics
- # 7. compare AML vs Healthy individuals using GSE13159
- # 8. go to https://www.genome.jp/kegg/ and search for additional targets > search for IL1B > select TNF SIGNALING PATHWAY
- # 9. perform ML (classification AML or healthy control (HC) using GSE13159 data)

Results comparison

4) Gene Target Suggestions

- CREB1
- CEBPB

Databases

Name	Туре	Usage for our example
GEO	Secondary Database Genome Database	= Gene Expression Omnibus Institute: NCBI Gene expression data acquisition
ArrayExpress	Secondary Database Genome Database	Institute: EMBL Gene expression data acquisition
KEGG	Secondary Database Enzymes and Metabolic Pathways	Kyoto Encyclopedia of Genes and Genomes Institute: Kyoto University, Bioinformatics Center, Kanehisa Laboratories Pathway informations
BioGPS	Composite Database	Gene expression data information collection

Tools

Name	Туре	Usage for our example
GEOparse	Python package	Collect GEO data
scikit-learn	Python package	Machine Learning for feature importances