Initial:

First Pass:

Second Pass:

Third Pass:

Fourth Pass:

d	S	t	х	У	z
	8	8	∞	8	0
1	2	5	7	13	0
2	2	4	6	9	0
3	2	4	6	9	0
4	2	4	6	9	0

π	S	t	х	У	Z
	NIL	NIL	NIL	NIL	NIL
1	Z	х	Z	t	NIL
2	z	х	У	S	NIL
3	Z	х	У	S	NIL
4	Z	Х	у	S	NIL

Return value is True.

Change wright of (z, x) to 4.

Initial:

First Pass:

Second Pass:

Third Pass:

Fourth Pass:

d	S	t	х	У	Z
	0	∞	∞	∞	8
1	0	2	4	7	-2
2	0	0	2	7	-4
3	-2	-2	0	6	-6
4	-4	-4	-2	4	-8

π	S	t	х	У	Z
	NIL	NIL	NIL	NIL	NIL
1	NIL	х	У	S	t
2	NIL	х	х	S	t
3	Z	х	х	S	t
4	Z	Х	х	S	t

Return value is False.

3.

d	S	t	х	У	z
	∞	0	∞	∞	8
1	∞	0	6	2	8
2	∞	0	6	2	8
3	∞	0	6	2	8
4	11	0	6	2	8
5	11	0	6	2	8

π	S	t	х	У	z
	NIL	NIL	NIL	NIL	NIL
1	NIL	х	У	S	t
2	NIL	х	х	S	t
3	NIL	х	х	S	t
4	Z	х	х	S	t
5	Z	х	х	S	t

```
RELIABILITY(G, r, x, y)
   INITIALIZE-SINGLE-SOURCE(G, x) Initialize to be negative infinite
   S = \emptyset
   Q = G.V
   while Q \neq \emptyset do
       u = \text{EXTRACT-} \text{MAX(Q)}
       S = S \cup \{u\}
       for each vertex v \in G.Adj[u] do
          if v.d > u.d \cdot r(u, v) then
              v.d = u.d \cdot r(u, v)
              v.\pi = u
           end if
       end for
   end while
   while y \neq x do
       Print y
       y = y.\pi
   end while
   Print x
```

```
5.
MODIFIED-DIJKSTRA(G,w,s)
for each v \in G.V do v.d = VW + 1 v.\pi = NIL
end for
s.d = 0
Initialize an array A of length VW + 2
A[0].insert(s)
Set A[VW + 1] equal to a linked list containing every vertex except s
k = 0
for i = 1 to |V| do
    while A[k] = NIL do
       k = k + 1
    end while
    u = A[k].head
    A[k].delete(u)
    for each vertex v \in G.Adj[u] do
       if v.d > u.d + w(u,v) then
```

A[v.d].delete(v.list)v.d = u.d + w(u, v)

A[v.d].insert(v)v.list = A[v.d].head

 $v.\pi = u$

end if

end for

end for

6.

$k \mid$			1	$)^k$		
	/ 0	∞	∞	∞	-1	∞
	1	0	∞	2	∞	∞
0	∞	2	0	∞	∞	-8
0	-4	∞	∞	0	3	∞
	∞	7	∞	∞	0	∞
	1 00	5	10	∞	∞	0 /
7	/ 0	∞	∞	∞	-1	∞
	1	0	∞	2	0	∞
1	∞	2	0	∞	∞	-8
	-4	∞	∞	0	-5	∞
	∞	7	∞	∞	0	∞
	1 00	5	10	∞	∞	0 /

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ 1 & 0 & \infty & 2 & 0 & \infty \\ 3 & 2 & 0 & 4 & 2 & -8 \\ -4 & \infty & \infty & 0 & -5 & \infty \\ 8 & 7 & \infty & 9 & 0 & \infty \\ 6 & 5 & 10 & 7 & 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ 1 & 0 & \infty & 2 & 0 & \infty \\ 3 & 2 & 0 & 4 & 2 & -8 \\ -4 & \infty & \infty & 0 & -5 & \infty \\ 8 & 7 & \infty & 9 & 0 & \infty \\ 6 & 5 & 10 & 7 & 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ -4 & \infty & \infty & 0 & -5 & \infty \\ 8 & 7 & \infty & 9 & 0 & \infty \\ 6 & 5 & 10 & 7 & 5 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & \infty & \infty & \infty & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ 0 & 2 & 0 & 4 & -1 & -8 \\ -4 & \infty & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 6 & \infty & 8 & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ 0 & 2 & 0 & 4 & -1 & -8 \\ -4 & 2 & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 6 & \infty & 8 & -1 & \infty \\ -2 & 0 & \infty & 2 & -3 & \infty \\ -5 & -3 & 0 & -1 & -6 & -8 \\ -4 & 2 & \infty & 0 & -5 & \infty \\ 5 & 7 & \infty & 9 & 0 & \infty \\ 3 & 5 & 10 & 7 & 2 & 0 \end{bmatrix}$$

```
PRINT-ALL-PAIRS-SHORTEST-PATH(\Phi, i, j)

if i == j

print i

elseif \Phi_{ij} == NIL

print "no path between i and j"

else

PRINT-ALL-PAIRS-SHORTEST-PATH(\Pi, i, \Phi_{ij})

print \Phi_{ij}

PRINT-ALL-PAIRS-SHORTEST-PATH(\Pi, \Phi_{ij}, j)
```

8.

We can get one of the MST shown as follows:

So, the cost is 1 + 2 + 3 + 3 + 4 + 4 + 6 = 23.

(b)

We can get 2 different MST:

(c)

For the second MST above, the order of the edges is (a, c), (a, e), (d, f), (c, d), (a, h), (f, g), (b, h).

For (a, c), We have $S = \{a\}$, $V - S = \{b, c, d, e, f, g, h\}$, so we add a safe edge (a, c) that w(a, c) = 1. And we will get $A = \{(a, c)\}$.

For (a, e), We have $S = \{a, c\}$, $V - S = \{b, d, e, f, g, h\}$, so we add a safe edge (a, e) that w(a, e) = (a, e)

2. And we will get $A = \{(a, c), (a, e)\}.$

For (d, f), We have $S = \{d\}$, $V - S = \{a, b, c, e, f, g, h\}$, so we add a safe edge (d, df that w(d, f) = 3. And we will get $A = \{(a, c), (a, e), (d, f)\}$.

9.

At the beginning: $A = \{\}$, $Q = \{a, b, c, d, e, f, g, h\}$ and a.key = 0, other keys are ∞ .

Because a.key is the smallest, we will extract it and update keys for those vertices adjacent to a. Now, $A = \{\}, Q = \{b, c, d, e, f, g, h\}$.

Because c.key is the smallest, we will extract it and add the edge (a, c) to A. Also, updating keys for those vertices adjacent to c. Now, $A = \{(a, c)\}, Q = \{b, d, e, f, g, h\}$.

Because e.key is the smallest, we will extract it and add the edge (a, e) to A. Also, updating keys for those vertices adjacent to e. Now, $A = \{(a, c), (a, e)\}, Q = \{b, d, f, g, h\}$.

Because d.key is the smallest, we will extract it and add the edge (c, d) to A. Also, updating keys for those vertices adjacent to d. Now, $A = \{(a, c), (a, e), (c, d)\}, Q = \{b, f, g, h\}.$

Because f.key is the smallest, we will extract it and add the edge (d, f) to A. Also, updating keys for those vertices adjacent to f. Now, $A = \{(a, c), (a, e), (c, d), (d, f)\}, Q = \{b, g, h\}.$

Because h.key and g.key are the smallest, we choose g according to the order of alphabet, we will extract it and add the edge (f, g) to A. Also, updating keys for those vertices adjacent to g. Now, A = $\{(a, c), (a, e), (c, d), (d, f), (f, g)\}, Q = \{b, h\}.$

Because h.key is the smallest, we will extract it and add the edge (a, h) to A. Also, updating keys for those vertices adjacent to h. Now, $A = \{(a, c), (a, e), (c, d), (d, f), (a, h)\}, Q = \{b\}.$

Because b.key is the smallest, we will extract it and add the edge (h, b) to A. Also, updating keys for those vertices adjacent to b. Now, $A = \{(a, c), (a, e), (c, d), (d, f), (a, h), (b, h)\}, Q = \{\}.$

Because $Q = \emptyset$, we use Prim algorithm get the MST, which is shown as above. And the order the vertex are removed from Q is a, e, d, f, g, h, b.