IMO Winter Training – January 2002

Sequences and Series

1. The sequence a_0, a_1, \ldots satisfies $a_n = ka_{n-1} - a_{n-2}$ for all $n \ge 2$. Show that (a_n) is periodic if k is:

(a) 1. (b) -1. (c) $\sqrt{2}$. (d) $\sqrt{3}$. (e) $\frac{1+\sqrt{5}}{2}$.

1,1,で一,サードー1,一

2. Let F_n denote the n^{th} Fibonacci number. Prove that for all $n \geq 1$,

(a) $F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$.

(b) $F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$.

11111 it1+4 = 2.3

- (c) The Lucas sequence (L_n) is defined by $L_0=2$, $L_1=1$, and $L_n=L_{n-1}+L_{n-2}$ for all $n\geq 2$. Find formulas for $L_1+L_2+\cdots+L_n$ and $L_1^2+L_2^2+\cdots+L_n^2$.
- 3. Find the following:

(a) $\frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{n-1}{n!}$.

(b) $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n!$

Mayor Xx-1

4. Let (x_n) be a sequence of non-zero real numbers such that $x_n^2 - x_{n-1}x_{n+1} = 1$, for $n = 1, 2, 3, \ldots$ Prove that there exists a real number a such that $x_{n+1} = ax_n - x_{n-1}$ for all $n \ge 1$.

5. Let $n \ge 0$. Let $\tau = (1 + \sqrt{5})/2$ and $A = \tau^{2n+1}$. Finally, let F be the fractional part of A, i.e. $F = A - \lfloor A \rfloor$. Prove that AF = 1.

6. Let n be a non-negative integer. Prove that the least integer greater than $(1+\sqrt{3})^{2n}$ is divisible by 2^{n+1} .

- The faces of a regular tetrahedron are labelled 1, 2, 3, and 4. It is then placed on the plane, with the 1 initially on the bottom, and continuously rolled randomly to 1 initially on the bottom. $q \times_{V_n+1} \times_{V_n} p_n$ that the 1 is on the bottom after n rolls.
 - 8. Let n be a positive integer. Show that

Kn K - 2 +1

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$

Ky-1

9. Let n be a positive integer, and define $f(n) = 1! + 2! + \cdots + n!$. Find polynomials P(x) and Q(x) such

$$f(n+2) = P(n)f(n+1) + Q(n)f(n),$$

for all $n \geq 1$.

- 10. The sequence (a_n) satisfies a linear recurrence whose characteristic polynomial is p(x). Let $s_n =$ $a_1 + a_2 + \cdots + a_n$. Show that (s_n) satisfies the linear recurrence whose characteristic polynomial is (x-1)p(x).
- 11. (a) Let $a_n = \binom{n}{m}$, where m is a fixed non-negative integer. Prove that

$$\Delta^k a_0 = \begin{cases} 1 & \text{if } k = m, \\ 0 & \text{otherwise.} \end{cases}$$

(b) Let a_n be a polynomial in n. Prove that

$$a_n = a_0 \binom{n}{0} + \Delta a_0 \binom{n}{1} + \Delta^2 a_0 \binom{n}{2} + \cdots$$

for all integers n.

- 12. Let $a_0 = 4$, $a_1 = 16$, and $a_n = 14a_{n-1} a_{n-2} 24$ for $n \ge 2$. Prove that a_n is a perfect square for all n.
- 13. The sequence (a_n) satisfies $a_0 = 4$ and

$$a_n = \frac{15 - a_{n-1}}{7 - a_{n-1}}$$

for $n \geq 1$. Find a closed formula for a_n .

- 14. Let $T_0 = 2$, $T_1 = 3$, $T_2 = 6$, and for $n \ge 3$, $T_n = (n+4)T_{n-1} 4nT_{n-2} + (4n-8)T_{n-3}$. The first few terms are 2, 3, 6, 14, 40, 152, 784, 5168, 40576, 363392. Find, with proof, a formula for T_n of the form $T_n = A_n + B_n$, where (A_n) and (B_n) are well-known sequences.
- 15. Let $a_1 = 1$, and $16a_{n+1} = 1 + 4a_n + \sqrt{1 + 24a_n}$ for $n \ge 1$. Prove that a_n is rational for all n.
- 16. Evaluate:

$$\sum_{n=1}^{\infty}\arctan\left(\frac{1}{n^2-n+1}\right).$$

17. Find

(a)

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}.$$

(b)

$$\sum_{k=1}^{n} \frac{k}{k^4 + k^2 + 1}.$$

- 18. Let a be the greatest root of the equation $x^3 3x + 1 = 0$. Show that $\lfloor a^{1788} \rfloor$ and $\lfloor a^{1988} \rfloor$ are both divisible by 17.
- 19. Let (u_n) be the sequence defined by $u_0 = 0$, $u_1 = 1$, and $u_n = ku_{n-1} u_{n-2}$ for $n \ge 2$, where k is an integer.
 - (a) Prove that $u_1 + u_3 + \cdots + u_{2m-1} = u_m^2$ for all $m \ge 1$.
 - (b) Prove that $u_1 + u_2 + \cdots + u_m$ divides $u_1^3 + u_2^3 + \cdots + u_m^3$ for all $m \ge 1$.
- 20. Let n be a positive integer, $n \geq 2$. Let F_n denote the n^{th} Fibonacci number. Prove that

$$F_n^2 = \prod_{k=1}^{n-1} \left[3 + 2\cos\left(\frac{2\pi k}{n}\right) \right].$$