Final Exam: Wednesday, May 17 at 2pm S-2243

Topics you should be familiar with:

GREENHOUSE GAS MODULE

STOICHIOMETRY

- a. Balancing Equations
- b. Converting grams to moles, moles to grams
- c. Atomic mass units, molar mass
- d. Empirical analysis (may not always involve "nice round" numbers)

STRUCTURE OF THE ATOM

- a. Be familiar with the electromagnetic spectrum, Line Spectra
- b. Determining wavelength of electromagnetic radiation given its frequency or energy.
- c. Atomic Structure

Cathode ray expt (Thompson)
Evidence electrons charge (Millikan)
Evidence of dense nuclei (Rutherford)

d. Determining electrons/neutrons/protons in a given element/ion

PERIODIC TABLE

- a. Properties and reactivity similar by column.
- b. Metals form cations, Non-Metals form anions
- c. Identify and name simple ionic and molecular compounds

LEWIS STRUCTURES

- a. Non-ionic compounds form covalent complexes by sharing electrons
- b. Counting valence electrons
- c. Formal charge
- d. Oxidation Numbers (elements reduced or oxidized in chemical reactions, oxidizing and reducing agents)

MOLECULAR GEOMETRY

- a. Electrons repel one another, adopt geometry to minimize repulsion(VSEPR)
- b. Be able to assign geometries and bond angles for central atoms with 2-6 things around them.
- c. Predict dipole moment.

ATOMIC STRUCTURE AND ENERGETICS

- a. Bohr model of the hydrogen atom.
- b. Wave/quantum behavior of matter explains line spectra
- c. Energy level changes in hydrogen atom (absorption/emission)
- d. Quantum numbers: n,l,m (meaning and allowed values)
- e. Spatial representations of orbitals (1)
- f. Electron configurations in atoms (filling of orbitals), orbital diagrams
 - --Pauli Exclusion Principle, Hund's rules

PERIODIC PROPERTIES

- a. Trends in atom/ion sizes, ionization energies and metallic character
 - i. --role of shielding
- b. Trends in group reactivity

CHEMICAL BONDING

- a. Covalent bonding, strengths of bonds
- b. Hybrid Orbital theory
- c. Assigning hybridization knowing geometry
- d. Molecular Orbital Theory
 - i. Predict magnetic properties, bond order, bond strengths

OXIDATION NUMBERS

- a. Determine the oxidation numbers of elements.
- b. Identify elements as reduced or oxidized in chemical reactions

INTERMOLECULAR FORCES, AND LIQUIDS

- a. Differences between gases, liquids and solids
- b. Intermolecular forces
 - i. Ion-dipole forces, dipole-dipole forces, hydrogen bonding, and London dispersion forces
 - ii. Know relative strengths and effect on phase changes.
- c. Liquid Properties
 - i. Viscosity, surface tension, capillary action
- d. Phase Changes and phase diagrams
 - i. Exothermic or Endothermic?
 - ii. Vapor Pressure

SOLUTIONS

- a. What is a solution?
 - i. Solvent, solute
 - ii. How do solutions form?, role of intermolecular forces.
- b. Factors affecting solubility
 - i. Intermolecular forces, temperature, pressure

- ii. Gases
- iii. Solids
- c. Saturated, unsaturated and supersaturated solutions and solubility
- d. Concentration (Molarity, dilutions)

CHEMICAL EQUILIBRIUM

- a. Equilibrium Constant Expression (Homogeneous and Heterogeneous Equilibria)
- b. Interpreting, and Calculating Equilibrium Constants
- c. Predicting the Direction of Reaction
- d. Calculating Equilibrium Concentrations
- e. Le Châtelier's Principle

ACID-BASE EQUILIBRIUM

- a. Weak acids
 - i. Calculate Ka from pH, percent ionization, calculate pH using Ka
- b. Weak bases
- c. Acid-Base Behavior and Chemical Structure (worksheet answered in class with the acid program)
- d. Acid-Base properties of salt solutions.

BUFFERS AND TITRATIONS

- b. The common-ion effect
- c. Buffered Solutions
 - i. Composition and action of buffer solutions, calculate pH of a buffer, addition of strong acids or bases to buffers.
- d. Acid-Base Titrations
 - i. Strong acid strong base titrations, weak acid strong base titrations, weak base - strong acid titrations, calculate pH at different points in a titration.

THERMOCHEMISTRY

- a. Properties of state functions, sign conventions (exothermic, endothermic)
 - i. First law of thermodynamics, internal energy, enthalpy
- b. Heat Capacity (C_m , C_s) and calorimetry
- c. Hess's Law
- d. Enthalpy diagrams and standard heats of reaction from heats of formation.

CHEMICAL THERMODYNAMICS

- a. Entropy and spontaneous processes
 - a. Second and third laws of thermodynamics
 - b. Standard Entropy Change
- b. Predict how the entropy of the system will change with a change in temperature, volume, number of gas molecules and phase change.

- c. Gibbs Free Energy
 - i. Spontaneity
 - ii. Equilibrium Constant
 - iii. Standard Free Energy Change