Deep Learning HW1

1. Prove Normal Equations:

Given a training set $S = \{X, y\}$, a linear hypothesis class $\{h_{\theta}(\mathbf{x}) = \sum_{j=1}^{N} \theta_{j} x_{j}\}$ and the mean squared error loss function:

$$\mathcal{L} = \frac{1}{2M} \sum_{i=1}^{M} (h_{\theta}(\mathbf{x_i}) - y_i)^2$$

prove that $\boldsymbol{\theta}$ that minimizes \mathcal{L} satisfies:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y}$$

where:
$$\mathbf{x_i}, \boldsymbol{\theta} \in \mathbb{R}^N$$
, $\mathbf{y} \in \mathbb{R}^M$, $\mathbf{X} = \begin{bmatrix} -\mathbf{x_1}^T & -\\ -\mathbf{x_2}^T & -\\ \vdots & \\ -\mathbf{x_M}^T & - \end{bmatrix}$, $M \ge N$

Solution:

Let us derive \mathcal{L} w.r to θ .

$$\mathcal{L} = \frac{1}{2M} \sum_{i=1}^{M} (h_{\theta}(x_i) - y_i)^2 = \frac{1}{2M} \sum_{i=1}^{M} \left(\sum_{j=1}^{N} \theta_j x_{ij} - y_i \right)^2 = \frac{1}{2M} \sum_{i=1}^{M} \left\| \theta X_i^T - y_i \right\|^2 = \frac{1}{2} \|X\theta - y\|^2$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = X^T (X\theta - y)$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0 \text{ iff } X^T (X\theta - y) = 0$$

$$\to X^T X \theta = X^T y$$

As required.

2. Unique solution:

Show that a unique solution for linear regression exists iff the features are not linearly dependent. Namely, show that a unique solution:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathcal{L} = \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

exists iff X has full column rank.

Assume X is full rank, we know that $rk(X) = rk(X^T)$ and since X^TX is square (matrix multiplication definition) That would suggest that X^TX is also invertible since it's a composition of full rank transformation.

Taking our optimality condition from Q1 that states that $X^TX\theta = X^Ty$ and applying our new found knowledge we could rearrange the terms to get $(X^TX)^{-1}X^TX\theta = (X^TX)^{-1}X^Ty$ if $f(X^TX)^{-1}X^Ty = \theta$. Meaning that the optimal point of $\mathcal L$ with respect to θ is when $\theta = (X^TX)^{-1}X^Ty$.

Assume that a unique solution $\theta = (X^T X)^{-1} X^T y$ exists. We know from basic linear algebra that rank X = rank $X^T X$ and since $X^T X$ is invertible, it is full rank, and so is X.

Short proof that $rk(X) = rk(X^TX)$. Proving that $Null(X^TX) \subset Null(X)$ suffices since the other direction is trivial, and the statement will follow.

Let u be a vector, such that $X^TXu=0$ and let v=Xu. $u^T\widetilde{X^TXu}=v^Tv=0$. That could only be if v is the 0 vector. And so $Null(X^TX)\subset Null(X)$.