A1-1 report

Baorong Wei, 301401797

alpha (α): Controls the continuity of the snake. Larger values will make the snake act like a rigid rod, while smaller values will make it more flexible.

beta (β): Controls the curvature of the snake. Larger values make the snake smoother, while smaller values allow it to form more intricate shapes.

gamma (γ): The time step in each iteration. It's a balance between accuracy and speed of convergence.

kappa (κ): A coefficient to control the influence of the external energy on the snake. w_line: Weight of the line energy, which pulls the snake to regions of the image with intensities similar to the snake points.

w_edge: Weight of the edge energy, which attracts the snake to edges in the image.

w_term: Weight of the terminal energy, which might be used to detect corners or end-points.

Star:

```
alpha = 0.05
beta = 2
gamma = 1
kappa = 2
w_line = 0.01
w_edge = 1
w_term = 0.01
```


circle:

```
alpha = 0.1
beta = 3
gamma = 1
kappa = 2
w_line = 0.01
w_edge = 1
w_term = 0.01
```


square:

```
alpha = 0.05
beta = 0.05
gamma = 1
kappa = 2
w_line = 0.001
w_edge = 1.1
w_term = 1
```


shape:

```
alpha = 0.06
beta = 0.6
gamma = 1
kappa = 2
w_line = 0.001
w_edge = 1.5
w_term = 0.5
```


dental:

```
num_interpolated_points = 1500 # Number of interpolated points
alpha = 0.06
beta = 1
gamma = 1.1
kappa = 2
w_line = 0.001
w_edge = 2
w_term = 0.5
```


outer layer of the brain (left image below):

```
alpha = 0.06
beta = 1.2
gamma = 1
kappa = 3.5
w_line = 0.001
w_edge = 2.5
w_term = 0.01
```


inner contour of the brain (right image above):

```
alpha = 0.6
beta = 2.5
gamma = 1.5
kappa = 3
w_line = -0.001
w_edge = 2.5
w_term = 0.01
```

right eye hole:

```
alpha = 0.08
beta = 1.5
gamma = 1
kappa = 2.5
w_line = 1
w_edge = 3
w_term = 0.01
```


vase:

```
alpha = 0.2
beta = 2
gamma = 1
kappa = 2
w_line = 0.001
w_edge = 1.2
w_term = 0.5
```


Answer to the bonus question:

Cx and Cy are the first-order derivatives of the image intensity in the x and y directions, respectively. They represent the gradient. Cxx, Cyy, and Cxy are the second-order derivatives (in terms of x and y). The numerator represents the gradient direction, which is the change in intensity of the image, with second-order derivatives. The nominator provides information about the bendiness or the degree of turning of the curve. The denominator acts as a normalizing factor. The first-order derivatives capture the square of the slope of the curve at a point. It adjusts or scales this information based on the steepness or the gradient of the curve.