Sezione di prelievo delle istruzioni

- > Si prelevano dalla memoria
 - un'istruzione, dalla locazione puntata da PC
 - un operando dalla locazione puntata da RZ, quest'ultima è calcolata con valori di altri operandi, es. con indirizzamento indiretto, Load R5, X(R7)
- MuxMA seleziona una sorgente e la invia alla memoria
- Il contenuto di IR va ai circuiti di controllo per generare i segnali di controllo
- IR può contenere un valore immediato a 16 bit che indica un indirizzo. Il componente Immediato riceve IR estrae l'indirizzo e lo estende a 32 bit, quindi lo inoltra a MuxB per accedere alla memoria

Prof. Tramontar

Prof. Tramontana

Generatore di indirizzi delle istruzioni

- Nell'esecuzione sequenziale il Sommatore prende in ingresso PC e 4 ed effettua la somma, così PC punta all'istruzione successiva nella seguenza
- Primo passo (fronte del clock)
 - L'istruzione da eseguire è prelevata dalla memoria e scritta in IR
 - PC è scritto in PC-Temp e al Sommatore si passa PC in InA, e 4 in InB
- Il risultato della somma, ovvero 0ut, è scritto in PC e in PC-Temp (MuxPC ha selezionato l'ingresso 1).
 Quindi in PC e PC-Temp è stato scritto l'indirizzo dell'istruzione successiva (sequenziale)

L'istruzione in IR è decodificata

PC-Temp

MuxY

(Indirizzo di rientro)

RA

Valore immediato (Spiazzamento per il salto)

PC

MuxINC

MuxINC

Valore immediato (Spiazzamento per il salto)

MuxINC

Out

Prof. Tramontana

17

Generatore di indirizzi delle istruzioni

- Per istruzioni di salto, il Sommatore prende in ingresso PC e lo spiazzamento relativo a PC (operando immediato in IR)
- Terzo passo: si preleva lo spiazzamento da IR e si inserisce in InB (MuxINC ha selezionato l'ingresso 1), il Sommatore lo somma con PC che proviene da InA, si scrive Out su PC (MuxPC ha selezionato l'ingresso 1)
- Un'istruzione di chiamata a subroutine è stata assemblata come Call_Register R9, con R9 pari all'indirizzo della prima istruzione della subroutine
- Al passo 2, R9 era stato prelevato e inserito in RA
- ▶ Terzo passo: RA è scritto in PC (MuxPC ha selezionato l'ingresso 0)
- Al passo 2, in PC-Temp era stato inserito l'indirizzo di rientro da sottoprogramma o da interruzione

C Valore immediato (Spizzamento per il sulto)
PC Indirizzo di rientro)

RA

Valore immediato (Spizzamento per il sulto)

MuxIVC

Out

InB

Sommatore
Out

Passi di esecuzione (S. 5.4): Add

18

Passi di esecuzione: Load e Store

In attesa della memoria

- ▶ Si è assunto che le operazioni di caricamento dalla memoria e di scrittura in memoria siano completate in un ciclo di clock (nello stadio 4 per le istruzioni load e store)
- La memoria è molto più lenta del processore e richiede più di un ciclo di clock per essere letta
- Un processore 2 GHz ha un periodo di clock di 0,5 ns, la memoria RAM ha tempo di accesso di circa 100 ns. Lo stadio 4 dovrebbe durare 200 cicli di clock:
- Tuttavia se il dato è nella cache L1 (sullo stesso chip del processore), il tempo di accesso è circa 0,5 ns, allora un ciclo di clock basta per la lettura. Il tempo di accesso alla cache L1 potrebbe essere fino a 2 ns (4 cicli)
- Se il dato non è in cache, il circuito di controllo estende il passo di esecuzione fino a quando l'operazione di lettura non sia stata completata
- Al completamento della lettura viene asserito il segnale MFC (memory function completed)

Passi di esecuzione: salti

> Formato delle istruzioni di salto

Valore immediato o	Codice perativo

21

Salto incondizionato

Passo Azione

- 1 Indirizzo di memoria ← [PC], Leggi memoria, IR ← Dati da memoria, PC ← [PC] + 4
- 2 Decodifica istruzione
- 3 PC ← [PC] + Spiazzamento per il salto
- 4 Nessuna azione
- 5 Nessuna azione
- ▶ Salto condizionato, istruzione Branch_if_[R5]=[R6] CICLO
 - Il confronto può essere effettuato tramite sottrazione [R5]-[R6] nell'ALU, ma il circuito di confronto è più veloce, quindi il circuito di controllo esamina il risultato, ovvero positivo, negativo nullo, in base ai segnali generati

Passo	Azione
1	Indirizzo di memoria \leftarrow [PC], Leggi memoria, IR \leftarrow Dati da memoria, PC \leftarrow [PC] + 4
2	Decodifica istruzione, RA \leftarrow [R5], RB \leftarrow [R6]
3	Confronta [RA] con [RB], Se [RA] = [RB], allora $PC \leftarrow [PC] + Spiazzamento per il salto$
4	Nessuna azione

Lettura registri sorgente

Nessuna azione

- ▶ Si è assunto che i registri sorgenti siano letti al passo 2 contemporaneamente alla decodifica del codice operativo dell'istruzione appena caricata
- Poiché l'istruzione non è stata ancora decodificata come si determinano i registri da caricare?
- Gli indirizzi dei registri da caricare sono negli stessi bit per tutte le istruzioni, l'hardware li legge non appena l'istruzione è stata caricata in IR e sono disponibili in RA e RB alla fine del passo 2
- > Se non sono necessari, al passo 3 essi saranno ignorati dall'hardware
- ▶ Per ciascuna istruzione vista prima, al passo 2 vengono letti due registri, quando non serve uno dei registri, questo viene ignorato

Segnali di controllo (S. 5.5)

- Durante l'esecuzione di un'istruzione i dati si spostano attraverso i quattro stadi nel percorso dati e i risultati delle azioni svolte sono immagazzinati nei registri interstadi RA, RB, RZ, RY, RM, PC-Temp e trasferiti da uno stadio al successivo in ciascun ciclo di clock, quindi i registri interstadi sono sempre abilitati
- I contenuti dei registri PC, IR non devono essere alterati a ogni ciclo di clock, quindi sono abilitati solo nei passi in cui è necessaria una scrittura (i segnali di controllo forniscono l'abilitazione alla scrittura)
- Nel percorso dati, i segnali di controllo forniscono l'input di selezione ai multiplatori MuxB, MuxY e MuxC. Occorre inviare la selezione al MuxB al passo 3, ma si invia la stessa selezione in tutti i passi per semplificare il circuito di controllo (lo stesso per MuxY)
- Nella sezione di prelievo, il segnale di controllo dà l'input per MuxMA, la selezione deve cambiare dal passo 1 (uso del PC per prelevare l'istruzione) al passo 4 (uso di RZ per Load e Store)
- Nel generatore di indirizzi, i segnali di controllo forniscono l'input per MuxINC e MuxPC
- > Inoltre occorre inviare un segnale di scrittura al banco dei registri, selezionare l'operazione dell'ALU, selezionare il bit di esito, mandare il segnale di scrittura o lettura alla, e MFC

