

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

transformation the $x_i(\alpha,\beta)$ be the same, then corresponding to those orders is to be inferred the existence of the derivatives

$$D_{\alpha}D_{\beta}x_{i} = \sum_{j} \xi_{ij}D_{\beta}x_{j} = \sum_{j} \eta_{j}\xi_{ij} = Y\xi_{i},$$

$$D_{\beta}D_{\alpha}x_{i} = \sum_{j} \eta_{ij}D_{\alpha}x_{j} = \sum_{j} \xi_{j}\eta_{ij} = X\eta_{i}.$$

If these are to agree the commutator must vanish at all points actually occurring in the transformation; a similar limitation in the meaning of "identical" may be understood in the proof of sufficiency.

THE INTENSITIES OF X-RAYS OF THE L SERIES II. THE CRITICAL POTENTIALS OF THE PLATINUM LINES

By DAVID L. WEBSTER

DEPARTMENT OF PHYSICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY Communicated by Edwin B. Wilson. Read before Academy, November 10, 1919

Introduction.—This work is a continuation of that of Webster and Clark, reported in these Proceedings¹ in 1917. Part of the present work was done at Harvard University with the apparatus described in the earlier paper, and part with my new apparatus at the Massachusetts Institute of Technology. The object in view is the investigation of the laws relating intensity to potential, for the L-series lines, for the purpose of comparison with current theories of X-ray spectra, and the present paper deals with the determination of the critical potentials of the platinum lines of medium intensity, the stronger ones having been reported in the previous paper and the fainter ones, observed only in tungsten by Dershem² and Overn,³ being so faint as to require a much more prolonged study.

Apparatus.—The work at Harvard showed that with the slit widths needed for accurate intensity measurements it would be difficult to work with certainty on any lines but the strong ones, when the voltage was near the critical value. As the previous work of the author on the rhodium K series⁴ had shown that photography gave good results in such work it was decided to use it here. In this case, where the lines are many and scattered and faint, the best instrument seemed to be the bent mica spectrograph of de Broglie and Lindemann⁵ with which they have obtained excellent spectrograms. These show spectra of six orders, called first to sixth inclusive, though I think the last one, from its angle, must really be the seventh rather than the sixth, which must be very faint. The grating space is about 10 Ångstroms and the third and fifth orders are the strongest.

In the present work, to increase the intensity even at a sacrifice of resolving power, I used a long radius, either 40 or 80 cm., with the tube 75 cm. from the mica and the plate as shown in figure 1. In practice, even with the best mica, there are faults in its structure that make it necessary to take several photographs at each voltage with different positions of the mica so as to insure clear reflection for each line in one case or another. To avoid scattered rays the mica was held on the edges of two

brass plates, far enough apart so that no direct rays struck them, and the direct beam through the mica was caught in a sheet of lead. The lines were identified from a chart made from the wave-length measurements of Siegbahn and Friman,⁶ and the voltmeter (Chaffee type, as in the previous work) was calibrated by the wave-length λ_{min} , of the high frequency end of the third order spectrum as determined from this chart. In all exposures near any critical voltages the voltage was regulated to a mean deviation of $^{1}/_{5}$ to $^{1}/_{3}$ of $^{1}0$ from the average value.

An important improvement in the voltmeter, introduced in the work at Harvard, was the use of a single insulator only, directly under the suspended system, with fairly good electrostatic screening. This prevents disturbances from indeterminate charges on the insulator which may otherwise make serious errors.

Each spectrogram was taken on one or two Eastman Dupli-tized X-ray films backed by a Seed Graflex plate. For locating very faint lines this combination was useful because with the plate and film, or two films, in contact after development any relative motion of the two would make

the spectrum flash out stronger when the images coincided. This method worked especially well when they were still wet. The parts where the general radiation was not too strong were also examined by holding the film against a white paper in a strong light, and a negative lens was also used. Since these methods were needed it is obviously impossible to show the faint lines in a reproduction even when there was no doubt of their existence in the original. Therefore, no reproduction is attempted here.

I wish here to express my thanks to Mr. D. S. Piston, who took most of the photographs in this investigation.

The potential was furnished by a modified form of Hull's⁷ apparatus shown in figure 2. The 500-cycle current came from a Crocker-Wheeler motor generator loaned by the Submarine Signal Co., through the generosity of Mr. H. W. J. Fay. The transformers and inductances were made mostly from parts of induction coils contributed by the Boston City Hospital, through the kindness of Dr. F. H. Williams. The 60-cycle one had the small secondaries so placed that the heating current in either kenotron was the same whether the other was on or not. The condensers were of glass plates and sheet iron, immersed in oil and protected as in Hull's apparatus, by corona gaps.

With connection A, shown by the short-dash line, only one kenotron is used, and the potential on it rises to more than twice that of the D. C. line, while the frequency of the fluctuation on that line is 500—, the same as that of the transformer. But with connection B, using two kenotrons, the potential on each is that of the D. C. line itself, that of the transformer is half that amount, and the fluctuation frequency on the D. C. line is doubled. It should be noticed that to produce this double frequency it is most essential that no part of the transformer secondary or first or second condensers should be grounded.

The constants of the apparatus were approximately as follows: $C_1 = 3 \times 10^{-3}$ mfd, $C_2 = C_3 = 1.5 \times 10^{-3}$ mfd, L_1 (sum of the two sides plus twice the mutual inductance) = 20,000 henries, $L_2 = 15,000$ henries. Such large inductances are not strictly necessary, and were used only because they were at hand. They were measured by using 90 kv. (measured by spark) at 500— with an A. C. voltmeter (current type) in series in the middle of the line. As the voltage fluctuation is approximately

 $\overline{C_1C_2C_3L_1L_2\omega^5}$, it is extremely small, probably not over a few volts under the worst conditions. The resistance of L_1 and L_2 together, measured by D. C., was about 0.3 megohm. When running, a current type voltmeter in series with C_2 and C_3 showed no measurable current, though of course it showed easily the current in C_1 .

Incidentally, it may be noted that the above expression for the fluctuation should contain also the factor $(1 - C_2M\omega^2)$, where M is the mutual inductance between L_1 and L_2 . This factor could readily be used to neu-

Note: Short-dash line, connection A only. Long-dash lines, connection B only. Ground only at point A at high potentials and only at point B at low.

tralize the slight remaining fluctuation, as at 2 meters distance, with L_1 and L_2 parallel, M=100 henries. In this case, however, no attempt was made to adjust M accurately, but L_2 was tipped to a nearly vertical position, 2 meters from L_1 , which was horizontal, and L_1 was set perpendicular to the 500 — transformer, and also to the 60 — one, which were both horizontal and far apart.

An important point is the condensers across the secondary of the transformer. To eliminate unsteadiness due to fluctuations on the 115–volt D. C. line, that ran the motor-generator, the generator field was excited by a storage battery and the variable condenser was then adjusted for resonance. Under these conditions, the potential on C_1 being a maximum with respect to speed changes, a small change in the speed of the motor could affect it only by a second order amount, always negative, therefore, not such as to bring out spectrum lines falsely. This arrangement proved invaluable in making long exposures. The only fluctuations that ever made trouble were small ones due to current changes produced by the traces of gas that cannot be removed from the tube without melting the platinum target to do so.

I wish here to express my thanks to Mr. R. M. Frye for valuable assistance in the construction of this apparatus.

The X-ray tube was the same one used in the previous work, but, through the kindness of Dr. Coolidge, it had been provided with a thin window of a type used by Blake and Duane, made by blowing a thin, spherical shell, convex inward. This greatly reduced the exposures required.

Results.—Considering each line separately, the results are as follows: α_1 . This line was definitely shown by the ionization method to belong to L_1 , and fixed the critical potential of L_1 most accurately, the average of the best measurements being 11.47 ± 0.05 kv. Since conditions were adapted for intensity measurements but no attempt was made to measure wave-lengths, the value of h found there will not be used, but rather the value recommended by Birge, which is 6.554×10^{-27} erg sec., with Millikan's e. This gives $\lambda_{L_1} = 1.076 \pm 0.005$ Å. The films show α_1 very strong when $\lambda_{min} = 1.01$ Å, and not at all at 1.08.

 α_2 . In the mica films this line is resolved from α_1 only in the 5th order, but as this order is strong, it shows clearly when λ_{min} is around 0.90 Å, and definitely, though faintly, at 1.01. Since the critical wave-length of L_2 is 0.935 Å (see β_1), this places α_2 in L_1 . The ratio of its intensity to that of α_1 was tested at Harvard by the ionization method, with results shown in figure 3. Since the ratio is the same at 40.0 kv. as at 17.85, the law of constant intensity ratios for lines of the same series holds in this case.

Ir α_1 . This line, due to an impurity of iridium in the target, shows faintly but definitely when $\lambda_{min} = 1.01 \text{ Å}$, but not at 1.08.

l. This line is too faint to show near its critical potential in any order

but the third, and there it is covered at high voltages by the fourth order β_1 . But β_1 belongs to L_2 , and even its strong third order line is gone at $\lambda_{min} = 0.945$ Å, while a line still appears at the position of 4 β_1 and 3 l. This must be 3 l. It is definitely visible though somewhat fainter than

Reckoning the intensities by measurement of the vertical lines drawn to the peaks in the figure, the ratio of α_1 to α_2 is 1.11 at 17.85 kv. and 1.10 at 4.00.

 $3 Ir \alpha_1$. It is doubtful at 1.01 Å, but the fact that it shows at 0.945 places it in L_1 .

 β_2 . This line shows strongly when $\lambda_{min} = 1.01$ Å, but not at all at 1.08, as one might expect from the ionization work previously reported, which placed it in L_1 .

- β_5 . This line shows well at high voltages, and faintly but distinctly when $\lambda_{min} = 1.01$ Å. This places it in L_1 .
- β_6 . In the calcite spectrograms taken at Harvard there is a faint companion of β_5 at a wave-length greater by 0.010 ± 0.002 Å. This also shows in some high resolution mica films, where the tube was 3 meters from the mica instead of 75 cm., and in a few of the low resolution mica films, at $\lambda_{min} = 0.88$, 0.910 and 0.945 Å. In all the others β_5 is wide. The fact that it shows as low as 0.945 Å places it in L_1 , and its intensities in the calcite films indicate that it follows qualitatively the constant intensity ratio law. At least it does not violate it in any such way as an L_2 line would when compared with an L_1 . Since β_5 and β_6 are both in L_1 their wavelength difference would be nearly the same in tungsten as in platinum. β_6 is, therefore, probably the analogue of the tungsten line discovered by Dershem and given by Overn as 1.2212 Å, β_5 being his line 1.2097 Å.
- β_1 . This line belongs to L_2 and gave the most definite results by ionization for determining λ_{L_2} . With the present h this is 0.935 ± 0.004 Å. The films show β_1 plainly at 0.910 Å, but not at all at 0.945 Å even in the third order.
- η . The third order of this line unfortunately coincides with the fourth of γ_2 , which belongs, as noted below, to L_2 . But the fourth order is faint and the third strong, and the fourth γ_1 which is very near 3η and $4 \gamma_2$ is but very little stronger than they. Since $3 \gamma_1$ is much stronger than $3 \gamma_2$ this means that most of the intensity of this combined line is that of 3η . Now the combined line and $4 \gamma_1$ show the same intensity ratio, as nearly as one can tell, at all voltages, and are visible down to $\lambda_{min} = 0.910$ Å, but not at 0.945. At these low voltages $4 \gamma_2$ alone would certainly be invisible, and if η and γ_1 were not in the same series the change in their ratio would be unmistakable even with no measuring instruments. Hence, we may fairly confidently assign η to L_2 .
- β_4 . This line gave results by ionization showing a critical wave-length 0.935 ± 0.02 Å, the accuracy not being equal to that obtained with β_1 because it is rather faint. The films, however, show a faint line in this position even at $\lambda_{min} = 1.01$ Å, far below the critical potential of L_2 . This is probably the same as a line which is just resolved from Pt β_4 in the calcite and high resolution mica spectrograms. It is called Ir β_2 because its wave-length is that of the iridium line and it obviously does not belong to L_2 . But as all lines are rather wider in the mica photographs and the work of Dershem and Overn showed a line in tungsten that might be near this point in platinum, further work with a high resolving power and long exposures is needed. As the present spectrograph is unsuitable for this and several other problems presented by the very faint lines, a more suitable one is now being constructed by Mr. F. C. Hoyt.

Ir β_1 and Ir β_2 . These lines appear in the calcite and high resolution

mica films, and behave like $Pt \beta_1$ and $Pt \beta_2$, the changes in relative intensities with voltage being very striking in both cases.

 β_3 . This line is obscured by β_2 except in the calcite films. Its behavior there is similar to that of the L_2 lines and quite different from that of the L_1 . It must be in either L_2 or L_3 .

 λ_1 . The films show this line clearly when $\lambda_{min} = 0.910$, but not at all at 0.945, confirming the ionization work that assigned it to L_2 .

 γ_2 and γ_3 . These two lines are not resolved except in three films at 35, 25 and 18 kv. In these the tube was removed 3 meters from the mica instead of 75 cm. In this case the exposure at 35 kv. was 7 hours and at 18 kv., 30 hours. In these films γ_2 and γ_3 are just resolved in the third order and well separated in the fifth. These films were taken for three purposes, to confirm the existence of β_6 , $Ir \beta_1$ and $Ir \beta_2$, to get the absorption spectrum discussed below, and to see if any difference could be found in the intensity ratio of γ_2 and γ_3 at different voltages. γ_3 in each film is fainter than γ_2 , and it appeared slightly more so at 18 kv. than at 35, but the difference in the ratio was too small to base any definite conclusions on it, though if it exists they must belong to different series. resolution films show the combined line $\gamma_{2,3}$ well at high potentials, faintly but definitely at $\lambda_{min} = 0.895$ Å, and it is barely visible under the best conditions at 0.907. Since $\lambda_{\gamma_4} = 0.900$ Å, this line cannot be in the same series with γ_4 but must have a critical wave-length longer than 0.907 and, therefore, presumably belong to L_2 where $\lambda_{L_2} = 0.935$ Å. the absorption spectra discussed below indicate that γ_3 is distinctly more absorbed than γ_2 , showing an absorption limit, A_2 , corresponding to L_2 , lying between them. This apparently means that γ_3 cannot belong to L_2 and, therefore, that γ_2 is probably the line showing at $\lambda_{min} = 0.907$ Å. But it does not mean definitely that γ_3 has the same critical potential as γ_4 , although the natural assumption is that it has. This is important in connection with Sommerfeld's theory to be discussed in the next paper.

 γ_4 . This line is so near the bromine absorption limit that any work on it is uncertain, and with the mica spectrograph 3 γ_4 is obscured by 2 $Ir \alpha_1$ and 5 γ_4 by 4 β_4 . But since $\lambda_{\gamma_4} < \lambda_{L_2}$ or λ_{L_1} it can hardly belong to either of these series, and must be ascribed to L_3 .

The Faint Lines.—In this class are included the lines found only by Dershem and Overn, in tungsten. For these, further work will be necessary, with high resolving power and very long exposures.

The Critical Points.—The question arises whether the critical wavelengths determined by potentials are identical with the absorption limits, as they seem to be in the K series. The critical wave-lengths found by Clark and me for L_1 and L_2 were identical, within limits of error, with the wave-lengths of β_5 and γ_2 , respectively, provided $h=6.554\times 10^{-27}$ erg sec., and, therefore the results of various measurements of absorption limits are compared with these lines in the following table:

TABLE 1

ELEMENT	λ_{A_1}	$\lambda_{oldsymbol{eta}_5}$	$\lambda_{\beta_5} - \lambda_{A_1}$	λ_{A_2}	λ_{γ_2}	$\lambda_{\gamma_2} - \lambda_{\Lambda_2}$	λ_{A_3}	λ_{γ_4}	$\lambda_{\gamma_4} - \lambda_{A_3}$
Tungsten	1.230^{10}	1.20973	-0.020	1.08110	1.0596^{3}	-0.021	1.02510	1.02633	+0.001
Tungsten	1.215^{11}	1.2097^{3}	0.005						
Platinum	1.070^{11}	1.072^{6}	+0.002						
Platinum	1.072^{12}	1.072^{6}	0.000	0.934^{12}	0.033^{6}	-0.001			
Gold	1.041^{11}	1.035^{6}	0.006	0.901^{11}	0.8986	-0.003	0.861^{11}	0.869^{6}	+0.008
Gold	1.042^{12}	1.035^{6}	0.007	0.914^{12}	0.898^{6}	0.016			
Mercury	1.009^{11}	1.013^{13}	+0.004						
Thallium	0.977^{11}	0.977^{6}	0.000	0.843^{11}	0.844_{6}	+0.001			
Lead	0.948^{11}	0.953^{13}	+0.005	0.814^{11}	0.820^{6}	+0.006			
Lead	0.949^{14}	0.953^{13}	+0.004	0.813^{14}	0.820^{6}	+0.007	0.78114	0.792^{6}	+0.011
Bismuth	0.924^{11}	0.923^{6}	0.001	0.789^{11}	0.794^{6}	+0.005	0.756^{11}	0.762^{6}	+0.006
Thorium	0.760^{11}	0.767^{13}	+0.007	0.627^{11}	0.637^{13}	+0.010	0.607^{11}	0.610^{13}	+0.003
Uranium	0.721^{11}	0.726^{13}	+0.005	0.591^{11}	0.598^{13}	+0.007	0.567^{11}	0.571^{13}	+0.004
Mean			-0.001	***************************************		0.000			+0.006

From this table it would appear that A_1 , A_2 and A_3 are probably at nearly the same wave-lengths as β_5 , γ_2 and γ_4 , respectively, in every element. But most of these results were obtained with different apparatus for the two kinds of measurement, and there is considerable disagreement. As even a slight difference in wave-length one way or the other is of great theoretical interest, it seemed desirable to check this point by using a screen of H₂PtCl₆ on blank films. This was attempted in two of the high resolving power spectrograms. The results were not very satisfactory, owing to the strong absorption by the other substances than platinum in the screen, and the presence of the less absorbed radiation of higher frequencies, in the fifth order, at the most interesting part of the third. But they seem to indicate that A_1 is within a very few thousandths of an Ångstrom of β_5 , and that A_2 is between γ_2 and γ_3 , γ_3 being apparently the more strongly absorbed of these lines. This is consistent with the conclusion reached above, that γ_2 belongs to L_2 and γ_3 to L_3 , but the evidence is unsatisfactory and none was obtained on A_3 . This apparatus was not designed for high resolving power but it is hoped that this point will be settled with the other apparatus now being constructed by Mr. F. C. Hoyt for work on the fainter lines.

Summary of Results.—We have assigned the lines to the various series as follows:

To L_1 , l, α_2 , α_1 , β_2 , β_6 and β_5 ;

To L_2 , η , β_4 , β_1 , γ_1 , γ_2 and perhaps β_3 ;

To L_3 , γ_4 , probably γ_3 and perhaps β_3 .

Unassigned, all of Dershem's and Overn's faint lines except β_6 , which is probably one of them.

Critical points:

 $\lambda_{L_1} = 1.076 \pm 0.005 \text{ Å, approximately } = \lambda_{\beta_{\delta}};$

 $\lambda_{L_2} = 0.935 \pm 0.004 \text{ Å, approximately } = \lambda_{\gamma_2};$

 λ_{L_1} , λ_{L_2} and λ_{L_3} are probably exactly equal to λ_{A_1} , λ_{A_2} and λ_{A_3} though more work is needed on this point.

Intensity ratios: constant for any pair of lines of the same series, with changes in voltage, as far as they have been investigated.

- ¹ Webster, D. L., and Clark, H., these Proceedings, 3, 1917 (181-185).
- ² Dershem, E., *Physic. Rev.*, *Ithaca*, 11, 1918 (461–476).
- ³ Overn, O. W., *Ibid.*, **13**, 1919 (137–142).
- ⁴ Webster, D. L., *Ibid.*, **9**, 1916 (599–613).
- ⁵ De Broglie, M., and Lindemann, F. A., C. R. Acad. Sci., Paris, 158, 1914 (944); de Broglie, M., J. Physique, Paris, 4, 1914 (265–267); see also independent invention by Rohmann, H., Physik. Zs., Leipzig, 15, 1915 (510–512).
- ⁶ Siegbahn, M., and Friman, E., Phil. Mag., London, 32, 1916 (39-49); or Siegbahn, M., Jahrb. Radioakt. Elektronik, Aachen, 13, 1916 (296-341).
 - ⁷ Hull, A. W., G. E. Review, Schenectady, 19, 1916 (173–181).
 - 8 Blake, F. C., and Duane, W., Physic. Rev., Ithaca, 10, 1917 (625).
 - ⁹ Birge, R. T., *Ibid.*, 14, 1919 (361-368).
 - ¹⁰ Duane, W., and Shimizu, T., Ibid., 14, 1919 (67-73).
- ¹¹ De Broglie, M., J. Physique, Paris, **6**, 1916 (161–168), with an addition of 1.5' to all angles as advised by him in a personal communication.
 - ¹² Wagner, E., Ann. Physik, Leipzig, 46, 1915 (868-893).
 - ¹³ Calculated from Siegbahn and Friman's wave-lengths of other lines.
 - ¹⁴ Duane, W., and Shimizu, T., these Proceedings, 5, 1919 (198-200).

THE EFFECT OF PHYSICAL AGENTS ON THE RESISTANCE OF MICE TO CANCER

By JAMES B. MURPHY

Rockefeller Institute for Medical Research, New York City Read before the Academy, November 10, 1919

The report which I wish to present today has to do with further progress in the work which I reported before the Academy in June, 1915. I will review that work briefly in order to orient you with the observations made since then.

The fundamental point in immunity to transplanted cancer is that there are two types of resistance, the so-called natural and induced immunity. Mice may be rendered resistant by an injection of a quantity of homologous living tissue given at least a week or ten days before the cancer inoculation; this is called induced immunity. A variable proportion of mice inoculated with a transplantable tumor will be resistant; this is called natural immunity. The histological manifestation of resistance about an introduced cancer graft in these two types of immunity is the same and