Logica Propozițională. Seminar 4 - Fișă de exerciții

- 1. Demonstrați că $(p \land r)$ este consecință sintactică din $(q \land r) \land q$ și $p \land p$.
- 2. Arătați că următoarele sevențe sunt valide:
 - (a) $p \wedge q, r \vdash p \wedge (r \vee r');$
 - (b) $p \rightarrow (q \rightarrow r) \vdash p \land q \rightarrow r;$
 - (c) $p \land \neg r \rightarrow q, \neg q, p \vdash r;$
- 3. Terminați "jocul" de la adresa https://profs.info.uaic.ro/~stefan.ciobaca/lnd.html. Nu trișați. Se consideră trișat: schimbarea codului JavaScript, dacă altcineva rezolvă un nivel în locul dumneavoastră, sau dacă demonstrați regulile derivate folosind chiar regulile derivate (într-un singur pas).
- 4. Demonstrați că următoarele reguli sunt derivate:
 - (a) $\neg \neg i$;
 - (b) LEM (law of excluded middle): LEM $\overline{\Gamma \vdash \varphi \lor \neg \varphi}$;
 - (c) PBC (proof by contradiction): PBC $\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi;}$
 - (d) MT (modus tollens): MT $\frac{\Gamma \vdash \varphi \to \varphi' \qquad \Gamma \vdash \neg \varphi'}{\Gamma \vdash \neg \varphi}.$
- 5. Demonstrați teorema de corectitudine (prin inducție după numărul de pași din demonstrația formală).
- 6. Arătați că regula $\neg \neg e$ poate fi derivată folosind LEM (i.e. puteți folosi LEM în demonstrația formală, dar nu $\neg \neg e$).
- 7. Demonstrați, apelând la teoremele de corectitudine și completitudine, că $\varphi_1 + \varphi_2$ dacă și numai dacă $\varphi_1 \equiv \varphi_2$.