CS-341 Lecture 6

February 20, 2001 Dr. Vickery

Assigning Numeric Values to 4-bit Numbers					
Binary	Unsigned	Sign-Magnitude	Biased (8)	One's Complement	Two's Complement
0000	0	+0	-8	+0	0
0001	1	+1	-7	+1	+1
0010	2	+2	-6	+2	+2
0011	3	+3	-5	+3	+3
0100	4	+4	4	+4	+4
0101	5	+5	-3	+5	+5
0110	6	+6	-2	+6	+6
0111	7	+7	-1	+7	+7
1000	8	-0	0	-7	-8
1001	9	-1	+1	-6	-7
1010	10	-2	+2	-5	-6
1011	11	-3	+3	4	-5
1100	12	4	+4	-3	- 4
1101	13	-5	+5	-2	-3
1110	14	-6	+6	-1	-2
1111	15	-7	+7	-0	-1

Two's Complement Encoding

- Using *n* bits to represent values, the range is -2^{n-1} to $+2^{n-1}-1$
- Consider the leftmost bit to have a negative weight.
 - Useful when changing word size: sign extension.
 - Also makes it easy to evaluate numbers.
- Negate by subtracting from zero
 - Equivalent to "flip bits and add 1"
- Subtract by negating minuend and adding
- Carry is normal and usually ignored.
- Overflow is when correct value cannot be represented in *n* bits.

The Leftmost Bit Has a Negative Weight

- $1101 = -2^3 + 2^2 + 2^0$
 - $\square = \underline{-8} + 4 + 1$
 - **□** = -3
- $11101 = -2^4 + 2^3 + 2^2 + 2^0$
 - $\Box = -16 + 8 + 4 + 1$
 - **□** = -3
 - Because -8 = -16 + 8

Sign Extension

- 1111 1111 1111 1111 1111 1111 1111 1001₂
 - Same as 1001₂ (-7)

BUT

- 1011 1111 1111 1111 1111 1111 1111 1001,
 - $\ \, Equals \, \hbox{-}2^{31} + 2^{29} + 2^{28} + 2^{27} + 2^{26} + 2^{25} + \dots$

Negate by Subtracting from Zero

- (0 X) = -X
- In n bits, zero is the same as 2^n
 - For example, 24 is 10000,
- For any $n 2^n$ -1 is n-many ones.
 - For example, 24-1 is 15, which is 1111₂
- If you subtract from 2 n-1, there will never be any borrows.
 - Only two cases: 1-0 is 1 and 1-1 is 0

Two's Complement Negation

- When using two's complement encoding for numbers, "taking the two's complement" means to negate the value of a number.
- Subtract from zero, which is the same as subtracting from 2ⁿ-1 and adding 1, which is the same as flipping the bits and adding 1.
 - Positive numbers become negative
 - Negative numbers become positive
 - Zero becomes zero
 - $\ But \ \hbox{-} 2^{n\hbox{-} 1} \ becomes \ \dots \ \hbox{-} 2^{n\hbox{-} 1}$

Two's Complement Subtraction

- Negate the minuend (second operand), and add.
 X-Y = X+(-Y)
- ALU design: just one circuit for adding, plus a small amount of logic for negating the minuend instead of a whole other circuit for subtracting.
 - Simpler to design and faster execution.
- A carry out of the leftmost position is normal, and may be ignored.
 - May be used for multiple-precision arithmetic.

Two's Complement Overflow

- If the result of an addition is bigger than +2ⁿ⁻¹-1 or less than -2ⁿ⁻¹, the correct answer cannot be represented with n bits, and overflow has occurred.
- Carry into the leftmost position will be unequal to the carry out of the leftmost position iff overflow occurs.
 - Adding a positive value to a negative value cannot overflow.
 - Add two positives: sign bit of 1 indicates overflow
 - Add two negatives: sign bit of 0 indicates overflow

Floating-Point Encoding

- Real numbers: range from -∞ to +∞
 - Infinitely many values between any two points on the number line.
- Many schemes, but virtually all computers now use IEEE-754 encoding.
- · All schemes based on scientific notation
 - Signed fraction * base Signed exponent
 - The base doesn't have to be encoded
 - It's always base two for IEEE-754

IEEE-754 Encoding

- Two formats, using 32 and 64 bits
 - Correspond to Java's float and double data types.
 - Sign of fraction: 1 bit
 - Signed exponent: 8 bits (biased-127) or 11 bits (biased-1023) for 32 and 64-bit formats.
 - Value of fraction: 23 or 52 bits for 32 and 64-bit formats.