

Overview

- Overview of Bound-to-Bound Data Collaboration (B2BDC)
 - models + data = dataset (model-data system)
- Dataset Consistency
 - scalar consistency measure
 - vector consistency measure
- Dataset examples:
 - GRI-Mech 3.0
 - DLR-SynG
- B2BDC protocol for model validation
 - suggested use of B2BDC tools for model validation

Bound-to-Bound Data Collaboration

UQ as constrained optimization: parameters constrained by models and data

Models

"True" QOI models

$$f_e:\mathbb{R}^n\to\mathbb{R}$$

Surrogate QOI models

$$M_e(x) \approx f_e(x)$$

Fitting error

$$|M_e(x) - f_e(x)| \le \epsilon_e$$

$$e = 1, ..., N$$

Data

 Prior knowledge on uncertain parameters

$$x \in \mathcal{H} \subseteq \mathbb{R}^n$$

QOI measurements (w/ uncertainty)

$$L_e \le y_e \le U_e$$

$$e = 1, ..., N$$

Dataset

$$x \in \mathcal{H} \subseteq \mathbb{R}^n$$

$$L_e - \epsilon_e \le M_e(x) \le U_e + \epsilon_e$$
for $e = 1, ..., N$

Feasible set – parameters for which the models and data agree.

Prediction establishes the range of a model $M_Q(x)$ subject to model-data constraints

$$\min \quad M_Q(x)$$
s.t. $x \in \mathcal{F}$

 $\max M_Q(x)$ s.t. $x \in \mathcal{F}$

Consistency of a Dataset

- A dataset is consistent if it is feasible
 - Parameters exist for which model predictions match experimental observations

Consistency analysis is quantifying model validation.

Q: Does there exist a parameter vector $x \in \mathcal{H}$ for which the models and data agree, within uncertainty?

A: Compute the *scalar consistency* measure (**SCM**)

Scalar Consistency Measure (SCM)*

The SCM produces a symmetric tightening $(\gamma > 0)$ or stretching $(\gamma < 0)$ of all experimental bounds.

$$(U_e - L_e)(1 - \gamma)$$

* Feeley, R.; Seiler, P.; Packard, A.; Frenklach, M. J. Phys. Chem. A. 2004, 108, 9573-9583.

Q: Does there exist a parameter vector $x \in \mathcal{H}$ for which the models and data agree, within uncertainty?

<u>A:</u> Compute the scalar consistency measure (**SCM**)

If consistent, go to prediction.

• If inconsistent, ???

Scalar Consistency Measure (SCM)*

 $\max_{s.t.} \gamma$ s.t. $L_e + \frac{(U_e - L_e)}{2} \gamma \le M_e(x) \le U_e - \frac{(U_e - L_e)}{2} \gamma$ $x \in \mathcal{H}, \gamma \in \mathbb{R}$ for $e = 1, \dots, N$

* Feeley, R.; Seiler, P.; Packard, A.; Frenklach, M. J. Phys. Chem. A. 2004, 108, 9573-9583.

Q: Does there exist a parameter vector $x \in \mathcal{H}$ for which the models and data agree, within uncertainty?

<u>A:</u> Compute the scalar consistency measure (**SCM**)

If consistent, go to prediction.

Scalar Consistency Measure (SCM)*

 $\max \gamma$ s.t. $L_e + \frac{(U_e - L_e)}{2} \gamma \le M_e(x) \le U_e - \frac{(U_e - L_e)}{2} \gamma$ $x \in \mathcal{H}, \gamma \in \mathbb{R}$ for $e = 1, \dots, N$

Next step: identify which parts of this model-data system may be at fault.

* Feeley, R.; Seiler, P.; Packard, A.; Frenklach, M. J. Phys. Chem. A. 2004, 108, 9573-9583.

Q: Does there exist a parameter vector $x \in \mathcal{H}$ for which the models and data agree, within uncertainty?

<u>A:</u> Compute the scalar consistency measure (**SCM**)

• If inconsistent, ???

 $\max_{s.t.} \gamma$ s.t. $L_e + \frac{(U_e - L_e)}{2} \gamma \le M_e(x) \le U_e - \frac{(U_e - L_e)}{2} \gamma$ $x \in \mathcal{H}, \gamma \in \mathbb{R}$ for $e = 1, \dots, N$

Next step: identify which parts of this model-data system may be at fault.

^{*} Feeley, R.; Seiler, P.; Packard, A.; Frenklach, M. J. Phys. Chem. A. 2004, 108, 9573-9583.

Q: Does there exist a parameter vector $x \in \mathcal{H}$ for which the models and data agree, within uncertainty?

<u>A:</u> Compute the scalar consistency measure (**SCM**)

- If consistent, go to prediction.
- If inconsistent, ???

Scalar Consistency Measure (SCM)*

 $\max_{s.t.} \gamma$ s.t. $L_e + \frac{(U_e - L_e)}{2} \gamma \le M_e(x) \le U_e - \frac{(U_e - L_e)}{2} \gamma$ $x \in \mathcal{H}, \gamma \in \mathbb{R}$ for $e = 1, \dots, N$

Next step: identify which parts of this model-data system may be at fault.

New criteria can be used for the identification:

- How many experimental bounds do we need to change to become consistent?
 - o search for a **sparse** resolution to the inconsistency
 - o sparse solutions are interpretable

^{*} Feeley, R.; Seiler, P.; Packard, A.; Frenklach, M. J. Phys. Chem. A. 2004, 108, 9573-9583.

Vector Consistency

Q: Does there exist a parameter vector $x \in \mathcal{H}$ for which the models and data agree, within uncertainty?

<u>A:</u> Compute the scalar consistency measure (**SCM**)

If inconsistent, compute the vector consistency measure (VCM)

- alternative consistency measure
- offers detailed analysis of inconsistency by allowing independent relaxations

Scalar Consistency Measure (SCM)

max γ s.t. $L_e + \frac{(U_e - L_e)}{2} \gamma \leq M_e(x) \leq U_e - \frac{(U_e - L_e)}{2} \gamma$ $x \in \mathcal{H}, \gamma \in \mathbb{R}$ for $e = 1, \dots, N$

Vector Consistency Measure (VCM)

min
$$\|\Delta^{L}\|_{1} + \|\Delta^{U}\|_{1}$$
s.t.
$$L_{e} - \Delta_{e}^{L} \leq M_{e}(x) \leq U_{e} + \Delta_{e}^{U}$$

$$\Delta_{e}^{L}, \Delta_{e}^{U} \in \mathbb{R}, x \in \mathcal{H}$$
for $e = 1, ..., N$

Vector Consistency

Q: Does there exist a parameter vector $x \in \mathcal{H}$ for which the models and data agree, within uncertainty?

<u>A:</u> Compute the *scalar consistency* measure (**SCM**)

If inconsistent, compute the vector consistency measure (VCM)

- alternative consistency measure
- offers detailed analysis of inconsistency by allowing independent relaxations

Scalar Consistency Measure (SCM)

max s.t. $L_e + \frac{(U_e - L_e)}{2} \gamma \le M_e(x) \le U_e - \frac{(U_e - L_e)}{2} \gamma$ $x \in \mathcal{H}, \gamma \in \mathbb{R}$

for
$$e = 1, \dots, N$$

Vector Consistency Measure (VCM)

 $\|\Delta^L\|_1 + \|\Delta^U\|_1$ heuristic for sparsity min

s.t. $L_e - \Delta_e^L \le M_e(x) \le U_e + \Delta_e^U$

 $\Delta_e^L, \Delta_e^U \in \mathbb{R}, x \in \mathcal{H}$

for e = 1, ..., N

Examples*

* Hegde, A.; Li, W.; Oreluk, J.; Packard, A.; Frenklach, M. 2017. arXiv:1701.04695.

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

Scalar Consistency

 Procedure: Iteratively apply SCM, using sensitivities (Lagrange multipliers) to identify problems.

Vector Consistency

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

Scalar Consistency

- Procedure: Iteratively apply SCM, using sensitivities (Lagrange multipliers) to identify problems.
- SCM < 0. Analyze ranked sensitivities

Vector Consistency

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

Vector Consistency

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

Scalar Consistency

- Procedure: Iteratively apply SCM, using sensitivities (Lagrange multipliers) to identify problems.
- SCM < 0. Analyze ranked sensitivities
- SCM > 0. Two QOIs removed, dataset consistent.

Vector Consistency

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

Scalar Consistency

- Procedure: Iteratively apply SCM, using sensitivities (Lagrange multipliers) to identify problems.
- SCM < 0. Analyze ranked sensitivities
- SCM > 0. Two QOIs removed, dataset consistent.

Vector Consistency

Compute VCM.

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

Scalar Consistency

- Procedure: Iteratively apply SCM, using sensitivities (Lagrange multipliers) to identify problems.
- SCM < 0. Analyze ranked sensitivities
- SCM > 0. Two QOIs removed, dataset consistent.

Vector Consistency

- Compute VCM.
- Two QOIs relaxed (same as in SCM), dataset consistent.

GRI-Mech 3.0 dataset (77 QOIs, 102 uncertain parameters) for natural gas combustion.

Scalar Consistency

 Procedure: Iteratively apply SCM, using sensitivities (Lagrange multipliers)

Rapid and interpretable resolution of inconsistency

Vector Consistency

- Compute VCM.
- Two QOIs relaxed (same as in SCM),

Rapid and interpretable resolution of inconsistency

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

Vector Consistency

^{*} Slavinskaya, N.; et al. *Energy & Fuels.* **2017**, vol. 31, pp 2274–2297

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

 SCM < 0. Analyze ranked sensitivities (Lagrange multipliers). **Vector Consistency**

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.

Vector Consistency

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.

Vector Consistency

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.
 - Remove QOI # 109.

Vector Consistency

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.
 - Remove QOI # 109.

Vector Consistency

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.
 - Remove QOI # 109.

 This strategy results in the removal of 73 QOIs.

Vector Consistency

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.
 - Remove QOI # 109.

- This strategy results in the removal of 73 QOIs.
- Another strategy results in 56 QOIs removed.

Vector Consistency

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.
 - Remove QOI # 109.

- This strategy results in the removal of 73 QOIs.
- Another strategy results in 56 QOIs removed.

Vector Consistency

Compute VCM.

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.
 - Remove QOI # 109.

- This strategy results in the removal of 73 QOIs.
- Another strategy results in 56 QOIs removed.

Advantages of VCM: DLR-SynG

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.
 - Remove QOI # 109.

- This strategy results in the removal of 73 QOIs.
- Another strategy results in 56 QOIs removed.

Vector Consistency

- Compute VCM.
 - Recommends 43 relaxations (18 to lower bounds, 25 to upper bounds)

Advantages of VCM: DLR-SynG

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove QOI #104 from dataset.
- SCM < 0. Analyze ranked sensitivities.
 - Remove QOI # 109.

Repeat until consistent

- This strategy results in the removal or 73 QOIs.
- Another strategy results in 56 QOIs removed.

Vector Consistency

- Compute VCM.
 - Recommends 43 relaxations (18 to lower bounds, 25 to upper bounds)

Example of what we termed massive inconsistency

Advantages of VCM: DLR-SynG

DLR-SynG dataset* (159 QOIs, 55 uncertain parameters) developed at DLR.

Scalar Consistency

- SCM < 0. Analyze ranked sensitivities (Lagrange multipliers).
 - Remove OOI #104 from dataset

Indirect and inefficient resolution of inconsistency

13 QUIS.

Another strategy results in 56 QOIs removed.

Vector Consistency

- Compute VCM.
 - Recommends 43 relaxations (18 to lower bounds, 25 to upper bounds)

Direct, one-shot resolution of inconsistency

Including weights

What if we are unwilling to change certain experimental bounds?

Including weights

- Domain expert knowledge and opinions enter VCM as weights.
- **Idea:** If a <u>dataset</u> is inconsistent, one should be less willing to relax model-data constraints they trust and more willing to relax constraints that are less reliable. The same goes for parameter bounds.

Weighted VCM

$$\min_{x,\Delta^{L},\Delta^{U},\delta^{l},\delta^{u}} \|\Delta^{L}\|_{1} + \|\Delta^{U}\|_{1} + \|\delta^{l}\|_{1} + \|\delta^{u}\|_{1}$$
s.t.
$$L_{e} - \underbrace{W_{e}^{L}}_{e} \Delta_{e}^{L} \leq M_{e}(x) \leq U_{e} + \underbrace{W_{e}^{U}}_{e} \Delta_{e}^{U} \qquad \text{for } e = 1, ..., N$$

$$l_{i} - \underbrace{W_{i}^{l}}_{i} \delta_{i}^{l} \leq x_{i} \leq u_{i} + \underbrace{W_{i}^{u}}_{i} \delta_{i}^{u} \qquad \text{for } i = 1, ..., n$$

- Small weight less willing to change bound.
- Large weight more willing to change bound.

Weights and GRI-Mech 3.0

 Single application of VCM identifies two experimental bounds.

Weights and GRI-Mech 3.0

Single application of VCM identifies two experimental bounds.

Weights applied to only the previous two bounds.

Tradeoff effect from using different weights

Computing the VCM

Example: GRI-Mech 3.0 dataset – VCM relaxations with varying weights, relaxations allowed to two constraints

Protocol for model validation

B2BDC protocol

```
Step 1: Construct dataset - QOI selection, model
                            building, data collection,
                            etc.
Step 2: Remove self-inconsistent QOIs
Step 3: Scalar consistency (SCM) analysis
       IF inconsistent
           perform vector consistency (VCM) analysis
Step 4: Prediction & further analysis
```

Summary

Consistency analysis is model validation

- Vector Consistency offers an efficient approach to resolving inconsistent datasets
 - particularly efficient for resolving massive inconsistency
 - incorporates expert knowledge through weights
 - examples: GRI-Mech 3.0, DLR-SynG

 Utilizing both the SCM and the VCM offers a powerful strategy for model validation

Acknowledgements

This work is supported as a part of the CCMSC at the University of Utah, funded through PSAAP by the National Nuclear Security Administration, under Award Number DE-NA0002375.

Questions?