Problem in continuous time system

7 Differential equations

7.1 Basic Definition

Definition 7.1 Terms

Autonomous: The time variable t does not explicitly appear, for instance

Autonomous: $\dot{x} = ax$, Nonautonomous: $\ddot{x} = -c\dot{x} - \sin x + \rho \sin x$

Initial Value The number $x_0 = x(0)$ is called the **initial value** of the function x.

Flow The **flow** F of an autonomous differential equation is the function of time t and initial value x_0 which represents the set of solutions. Thus $F(t,x_0)$ is the value at time t of the solution with initial value x_0 . We will often use the slightly different notation $F_t(x_0)$ to mean the same thing.

Equilibrium A constant solution of the autonomous differential equation $\dot{x} = f(x)$ is called an **equilibrium** of the equation.

Sink An equilibrium solution is called **attracting** or a **sink** if the trajectories of nearby initial conditions converge to it.

Source It is called **repelling** or a **source** if the solutions through nearby initial conditions diverge from it.

* I. One dimension system.

$E~x~a~m~p~l~e~7.1 \hspace{0.5cm} \textit{Logistic differential equation}$

Consider a differential equation $\dot{x} = ax(1-x)$ where a > 0 is a constant.

Figure 56: $x_0 - t$ plot of logistic DE

- [i] Existence Each point in the (t,x)-plane has a solution passing through it. The solution has slope given by the differential equation at that point.
- [ii] Uniqueness Only one solution passes through any particular (t, x).
- [iii] Continuous dependence Solutions through nearby initial conditions remain close over short time intervals. In other words, the flow $F(t,x_0)$ is a continuous function of x_0 as well as t. Using the first concept, we can draw a **slope field** in the (t,x)-plane by evaluating $\dot{x} = ax(1-x)$ at several points and putting a short line segment with the evaluated slope at each point

* II. High dimension linear system.

Definition 7.2 Lyapunov Stable An equilibrium point \mathbf{v} is called stable or Lyapunov stable if every initial point $\mathbf{v_0}$ that is chosen very close to \mathbf{v} has the property that the solution $F(t, \mathbf{v_0})$ stays close to \mathbf{v} for $t \geq 0$.

More formally, for any neighborhood N of \mathbf{v} there exists a neighborhood N_1 of \mathbf{v} , contained in N, such that for each initial point $\mathbf{v_0}$ in N_1 , the solution $F(t, \mathbf{v_0})$ is in N for all $t \geq 0$.

An equilibrium is called asymptotically stable if it is both stable and attracting.

An equilibrium is called **unstable** if it is not stable.

Finally, an equilibrium is **globally asymptotically stable** if it is asymptotically stable and all initial values converge to the equilibrium.

Theorem 7.1 Stability of Origin Let A be an $n \times n$ matrix, and consider the equation $\dot{\mathbf{v}} = A\mathbf{v}$. If the real parts of all eigenvalues of A are negative, then the equilibrium $\mathbf{v} = 0$ is globally asymptotically stable. If A has n distinct eigenvalues and if the real parts of all eigenvalues of A are nonpositive, then $\mathbf{v} = 0$ is stable.

III. High dimension nonlinear system.

CONCLUSION 7.1 For all high dimension ODE, it can be transformed into a first-order system.

So if we consider a high dimension nonlinear equation, that is same as consider a 1-dim ODE system.

Theorem 7.2 Existence and Uniqueness

Consider the first-order differential equation $\dot{\mathbf{v}} = f(\mathbf{v})$ where both f and its first partial derivatives with respect to v are continuous on an open set U. Then for any real number t_0 and real vector v_0 , there is an open interval containing t_0 , on which there exists a solution satisfying the initial condition $v(t_0) = v_0$, and this solution is unique.

Definition 7.3 Lipschitz Constant

Let U be an open set in \mathbb{R}^n . A function f on \mathbb{R}^n is said to be Lipschitz on U if there exists a constant L s.t.

$$\forall v, w \in U, ||f(v) - f(w)|| \le L||v - w||$$

The constant L is called a Lipschitz constant for f.

Theorem 7.3 Continuous dependence on initial conditions

Let f be defined on the open set U in \mathbb{R}^n , and assume that f has Lipschitz constant L in the variables v on U. Let v(t) and w(t) be solutions of $\dot{\mathbf{v}} = f(\mathbf{v})$, and let $[t_0, t_1]$ be a subset of the domains of both solutions. Then

$$\forall t \in [t_0, t_1], ||v(t) - w(t)|| \le ||v(t_0) - w(t_0)|| \exp(L(t - t_0))$$

Next two definition introduced the sink, source and saddle in continuous problem.

Definition 7.4 An equilibrium v_0 of $\dot{v} = f(v)$ is called hyperbolic if none of the eigenvalues of $Df(v_0 \text{ has real part } 0.$

Definition 7.5 Let v_0 be an equilibrium of $\dot{v} = f(v)$. If the real part of each eigenvalue of $Df(v_0)$ is strictly negative, then v_0 is asymptotically stable. If the real part of at least one eigenvalue is strictly positive, then v_0 is unstable.

7.2 Energy Function, Lyapunov Function

Definition 7.6 Level curve

Given a real number c and a function $E: \mathbb{R}^2 \to \mathbb{R}$, the set $E_c = \{(x,y)|E(x,y) = c\}$ is called a **level curve** of the function E.

Definition 7.7 Lyapunov Function

Let v_0 be an equilibrium of $\dot{\mathbf{v}} = f(\mathbf{v})$. A function $E : \mathbb{R}^n \to \mathbb{R}$ is called a Lyapunov function for v_0 if for some neighborhood $N(v_0)$, the following conditions are satisfied:

$$[i] \forall v \in N(v_0) \setminus \{v_0\}, E(v_0) = 0 \land E(v) > 0$$

[ii]
$$\forall v \in N(V_0), E(v) \leq 0$$

If the stronger inequality

$$[ii'] \forall v \in N(V_0), \dot{E}(v) < 0$$

holds, then E is called a strict Lyapunov function.

Theorem 7.4 Let v_0 be an equilibrium of $\dot{\mathbf{v}} = f(\mathbf{v})$. If there exists a Lyapunov function for v, then v is stable. If there exists a strict Lyapunov function for v, then v is asymptotically stable.

Definition 7.8 Basin of attraction

Let v_0 be an asymptotically stable equilibrium of $\dot{\mathbf{v}} = f(\mathbf{v})$. Then the basin of attraction of v_0 , denoted $B(v_0)$, is the set of initial conditions v_{init} s.t.

$$\lim_{t \to \infty} F(t, v_{init}) = v_0$$

Definition 7.9 A set $U \subset \mathbb{R}^n$ is called a forward invariant set for $\dot{\mathbf{v}} = f(\mathbf{v})$ if for each $v_0 \in U$, the forward orbit $\{F(t, v_0) : t \geq 0\}$ is contained in U. A forward invariant set that is bounded is called a **trapping region**. We also require that a trapping region be an n-dimensional set.

CONCLUSION 7.2 Barbashin-LaSalle

Let E be a Lyapunov function for v_0 on the neighborhood $N(v_0)$. Let $Q = \{v \in N : E(v) = 0\}$. Assume that N is forward invariant. If the only forward-invariant set contained completely in Q is v_0 , then v_0 is asymptotically stable. Furthermore, N is contained in the basin of v_0 ; that is, $\forall v \in N, \lim_{t \to \infty} F(t, v) = v_0$