Формальные языки

Домашнее задание 11

Фадеева Екатерина

$\fbox{2.}\ { m S} ightarrow { m aSbbbb} \mid { m aaaSbb} \mid { m c}$

Грамматика $S \to aSbbbb \mid T, T \to aaaTbb \mid c$ эквивалентна исходной, т.к. в этой грамматике мы сначала делаем все правила вида $S \to aSbbbb$ из первой грамматики, а потом все правила вида $S \to aaaSbb$ из первой грамматики (а нам не важно в первой грамматике, в каком порядке выполнять все правила, кроме последнего правила $S \to c$).

Любое слово, принадлежащее этой грамматике, имеет вид a^ncb^m , т.к. любое правило либо дописывает справа буквы b и слева буквы a, либо дописывает c и завершает разбор.

Любой вывод слова в этой грамматике имеет вид: выполняем x правил $S \to aSbbbb$, затем правило $S \to T$, затем y правил $T \to aaaTbb$, затем правило $T \to c$.

Теперь докажем, что приведенная грамматика однозначная: если у нас есть слово a^ncb^m и его вывод с числами x и y, то известно, что выведется слово $a^{x+3y}cb^{4x+2y}$, а значит:

$$\begin{cases} x + 3y = n \\ 4x + 2y = m \end{cases}$$

Из этого можно однозначно вывести x и y:

$$\begin{cases} x = \frac{3m - 2n}{10} \\ y = \frac{4n - m}{10} \end{cases}$$

Т.о. вывод слова a^ncb^m — обязательно сначала выполняем $\frac{3m-2n}{10}$ правил S \to aSbbbb, затем правило S \to T, затем $\frac{4n-m}{10}$ правил T \to aaaTbb, затем правило T \to c, а значит вывод однозначен, чтд.

Т.о. ответ — S \rightarrow aSbbbb | T, T \rightarrow aaaTbb | c.

3. Это язык из слов таких, что:

- 1) Слово состоит из букв a и b
- 2) Общее количество букв a в слове в два раза больше общего количества букв b
- 3) На любом префиксе этого слова количество букв a не меньше, чем удвоенное количество букв b

⇒: любое слово из исходной грамматики соответствует правилам выше, это можно доказать по индукции по шагам вывода:

Если шаг вывода — $F \rightarrow \epsilon$, то правила выполняются

Если шаг вывода — $F \to aFaFbF$, то по индукции для трех внутренних F правила выполняются, а значит верно, что в полученном в результате дальшейшего вывода слове общее число букв a в два раза больше, чем число букв b (мы добавили еще две буквы a и одну b), и неравенства на всех префиксах тоже выполняются (раз выполняются для любых префиксов внутренних F, и к ним добавляются либо одна a, либо две a и одна b, а они ничего не испортят).

 \Leftarrow : теперь покажем, что любое слово, удовлетворяющее правилам выше, выводится из F. Сделаем это по индукции от длины слова: пусть исходное слово — w. Если оно пустое, утверждение верно. Если же оно не пустое, выделим маинимальный его непустой префикс w[0..i], количество букв a на котором в два раза больше количества букв b (такой найдется, т.к. подходит вся строка). Этот префикс обязан начинаться на aa и заканчиваться на b; а подстрочка между этими aa и b обладает теми-же свойствами, что и вся строка, т.е. для нее можно применить предположение индукции. Остаток строки w[i+1..] тоже обладает теми-же свойствами, значит его тоже можно вывести из F по предположению индукции. Тогда слово w можно вывести с помощью $F \to aFaFbF \to a\epsilon aFbF = aaFbF$.

4. Первая грамматика: $F \rightarrow a \mid bF \mid cFF$

Вторую грамматику можно переписать: $K \to aaK \mid abK \mid caK \mid cbK \mid a \mid c$ Можно нарисовать бесконечный автомат, который принимает пересечение этих двух языков (пояснение внизу):

Этот автомат — пересечение бесконечного автомата для первого языка и конечного автомата для второго:

- 1) первый столбец вершин если мы находимся в K из второй грамматики, т.е. уже выписали четное число букв и можем ходить только по a или c;
- 2) второй столбец вершин если мы находимся в M из второй грамматики, т.е. уже выписали нечетное число букв и можем ходить только по a или b.
- 3) строка грамматики F^n обозначает состояние, в котором мы уже выписали какойто префикс грамматики, и осталось вывести какой-то остаток из нетерминала F n раз (в том числе вершина T когда нам осталось вывести что-нибудь из нуля нетерминалов F, т.е. ничего; это вершиниа терминальная)

Например, вывод $F \to cFF \to cbFF \to cbcFFF \to cbcbFFF \to cbcbaFF \to cbcbaaF \to cbcbaaa$ соответствует пути в автомате $F_0 \to FF_1 \to FF_0 \to FFF_1 \to FFF_0 \to FFF_1 \to F$ (получается, состояние — количество F в конце + четность количества уже выведенных терминалов в начале)

По этому бесконечному автомату мы хотим построить КС грамматику. Для этого обозначим X - все пути из какой-то вершины слева в себя, при этом не переходя в строки выше исходной (т.е. в вершины с меньшим количеством F, чем в начале), Y - все пути из какой-то вершины справа в себя (тоже не заходящие выше). Вычислим X и Y рекурсивно:

Из автомата можно вывести, перебирая все пути:

$$\begin{cases} X \to \epsilon \mid cYaX \mid cYbXaYbX \\ Y \to \epsilon \mid bXcYbXaY \end{cases}$$

Терминальное состояние достижимо только из Xa.

Т.о. мой ответ:

$$\begin{cases} S \to Xa \\ X \to \epsilon \mid cYaX \mid cYbXaYbX \\ Y \to \epsilon \mid bXcYbXaY \end{cases}$$