THEORETICAL COMPUTER SCIENCE TUTORING (1)

Maurizio Fiusco

Let L be the set of strings $s = \langle x_1 x_2 \dots x_n \rangle$ of even length such that:

•
$$x_i \in \{a, b\}$$
, for $i = 1, ..., \frac{n}{2}$

•
$$x_i \in \{c, d\}$$
, for $i = \frac{n}{2} + 1, ..., n$

•
$$x_i = a \Leftrightarrow x_{n-i+1} = c$$
, for $i = 1, \dots, \frac{n}{2}$

Let L be the set of strings $s = \langle x_1 x_2 \dots x_n \rangle$ of even length such that:

•
$$x_i \in \{a, b\}$$
, for $i = 1, ..., \frac{n}{2}$

•
$$x_i \in \{c, d\}$$
, for $i = \frac{n}{2} + 1, ..., n$

•
$$x_i = a \Leftrightarrow x_{n-i+1} = c$$
, for $i = 1, \dots, \frac{n}{2}$

a a b b d d c c	а	а	b	b	d	d	С	С
-----------------	---	---	---	---	---	---	---	---

Let L be the set of strings $s = \langle x_1 x_2 \dots x_n \rangle$ of even length such that: \P

- $x_i \in \{a, b\}$, for $i = 1, ..., \frac{n}{2}$
- $x_i \in \{c, d\}$, for $i = \frac{n}{2} + 1, ..., n$
- $x_i = a \Leftrightarrow x_{n-i+1} = c$, for $i = 1, ..., \frac{n}{2}$
- $x_i = b \iff x_{n-i+1} = d$, for $i = 1, \dots, \frac{n}{2}$

a b a d c

Let L be the set of strings $s = \langle x_1 x_2 \dots x_n \rangle$ of even length such that:

•
$$x_i \in \{a, b\}$$
, for $i = 1, ..., \frac{n}{2}$

•
$$x_i \in \{c, d\}$$
, for $i = \frac{n}{2} + 1, ..., n$

•
$$x_i = a \Leftrightarrow x_{n-i+1} = c$$
, for $i = 1, \dots, \frac{n}{2}$

•
$$x_i = b \Leftrightarrow x_{n-i+1} = d$$
, for $i = 1, \dots, \frac{\overline{n}}{2}$

а	а	b	b	а	d	d	d	С	С
			1						l

Let L be the set of strings $s = \langle x_1 x_2 \dots x_n \rangle$ of even length such that:

- $x_i \in \{a, b\}$, for $i = 1, ..., \frac{n}{2}$
- $x_i \in \{c, d\}$, for $i = \frac{n}{2} + 1, ..., n$
- $x_i = a \Leftrightarrow x_{n-i+1} = c$, for $i = 1, ..., \frac{n}{2}$
- $x_i = b \Leftrightarrow x_{n-i+1} = d$, for $i = 1, ..., \frac{n}{2}$

Define a deterministic Turing Machine that accepts all and only the words contained in \boldsymbol{L}

Let $s = \langle x_1 x_2 \dots x_n \rangle \in \{a, b, c, d\}^n$ e $\sigma = \langle y_1 y_2 \dots y_n \rangle \in \{0, 1\}^n$ the binary string associated with s according to the following rules:

- $y_i = 0 \Leftrightarrow x_i = a \ \lor x_i = c$, per $1 \le i \le n$
- $y_i = 1 \Leftrightarrow x_i = b \lor x_i = d$, per $1 \le i \le n$

I just have to check if the string is palindrome

Let $s = \langle x_1 x_2 \dots x_n \rangle \in \{a, b, c, d\}^n$ e $\sigma = \langle y_1 y_2 \dots y_n \rangle \in \{0, 1\}^n$ the binary string associated with s according to the following rules:

- $y_i = 0 \Leftrightarrow x_i = a \lor x_i = c$, for $1 \le i \le n$
- $y_i = 1 \Leftrightarrow x_i = b \ \lor x_i = d$, for $1 \le i \le n$

is σ palindrome?

2 possible ways:

- Transform the string and check if it is a palindrome using the appropriate Turing machine
- Modify the Turing machine that checks if a string is palindrome

Modified TM

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_0

	_	а	а	b	d	C	С					

$$\langle q_0, a, \square, q_a, right \rangle$$

similar if I find *b*

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

								_	 		
		а	b	d	С	C					

$$\langle q_a, a, a, q_a, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

									_	 	
		а	b	d	С	С					

$$\langle q_a, b, b, q_a, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

		а	b	d	С	C					

$$\langle q_a, d, d, q_a, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

		а	b	d	O	C					

$$\langle q_a, c, c, q_a, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

						•					
		а	b	d	С	С					

$$\langle q_a, c, c, q_a, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

									_		
		а	þ	d	C	С					

$$\langle q_a, \Box, \Box, q_c, left \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_c

		а	b	d	С	С					

$$\langle q_c, c, \Box, q_{left}, left \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

		-								
		а	b	d	C					

$$\langle q_{left}, c, c, q_{left}, left \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

								_			
		а	b	d	С						

$$\langle q_{left}, d, d, q_{left}, left \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

<u> </u>									_		
		а	b	d	С						

$$\langle q_{left}, b, b, q_{left}, left \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

		а	b	d	С						
										,	1

$$\langle q_{left}, a, a, q_{left}, left \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

								1		1 1	 	
		а	b	d	С							

$$\langle q_{left}, \Box, \Box, q_0, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_0

		а	b	d	С					

$$\langle q_0, a, \square, q_a, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_a

		_								
		b	d	C						l
			.	_						ĺ

$$\langle q_a, b, b, q_a, right \rangle$$

• • •

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_0

		b	d						

$$\langle q_0, b, \square, q_b, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_b

		_							
			þ						

$$\langle q_b, d, d, q_b, right \rangle$$

similar if I find a, b or c

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_b

			d						

$$\langle q_b, \Box, \Box, q_d, left \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_d

			d						

$$\langle q_d, d, \square, q_{left}, left \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

I	

$$\langle q_{ind}, \Box, \Box, q_0, right \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_0

$$\langle q_0, \square, \square, q_{acc}, stop \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

							_		
]	

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_0

_	 	-				_			_	_		
			d	b	а	С	d	d				

$$\langle q_0, d, d, q_{rej}, stop \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

			4	h	2		4	٦			
			u	D	а	C	J	u			

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_0

										 _	
											i
			_	■_	_	_	_ 1				ı
				n	ı а		\Box	(1			1
					ч		J	u			i

$$\langle q_0, c, c, q_{rej}, stop \rangle$$

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

				_		_	_			
				h	a	4				l
			C		a	u	u			1
										1

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_c

			b	a	С	d	d			

$$\langle q_c, d, d, q_{rej}, stop \rangle$$

similar if I find a, b or \square

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

<u> </u>											
				b	а	С	d	d			

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

 q_d

			b	а	С	d	С			

$$\langle q_c, c, c, q_{rej}, stop \rangle$$

similar if I find a, b or \square

$$\Sigma = \{a, b, c, d, \square\}$$

$$Q = \{q_0, q_a, q_b, q_c, q_d, q_{left}, q_{acc}, q_{rej}\}$$

				b	a	C	d	C			
			<u> </u>								

Problem 2.3 from EsMacchineTuring.pdf (uniroma2.it)

Design a Turing machine that computes the two functions described below:

•
$$f(n,k) = \left[\frac{n}{k}\right]$$

•
$$f(n,k) = \left\lceil \frac{n}{k} \right\rceil$$

• $g(n,k) = \left\lceil \frac{n}{k} \right\rceil$

n

k

f(n,k)

Problem 2.3 from EsMacchineTuring.pdf (uniroma2.it)

Es.

$$n = 15, k = 6$$

 $f(15,6) = 3$
 $g(15,6) = 2$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

Es.

$$n = 1111111, k = 111$$

 $f(1111111,111) = 111, g(1111111,111) = 11$

 q_f

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_0, (1,1,\Box,\Box), (1,1,1,\Box), q_1, (r,r,r,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_1, (1,1,\Box,\Box), (1,1,\Box,\Box), q_1, (r,r,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_1, (1,1,\Box,\Box), (1,1,\Box,\Box), q_1, (r,r,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_1, (1, \square, \square, \square), (1, \square, \square, 1), q_2, (s, l, s, r) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_2, (1,1,\Box,\Box), (1,1,\Box,\Box), q_2, (s,l,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_2, (1,1,\Box,\Box), (1,1,\Box,\Box), q_2, (s,l,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_2, (1,1,\Box,\Box), (1,1,\Box,\Box), q_2, (s,l,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_2, (1, \square, \square, \square), (1, \square, \square, \square), q_0, (s, r, s, s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_0, (1,1,\Box,\Box), (1,1,1,\Box), q_1, (r,r,r,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_1, (1,1,\Box,\Box), (1,1,\Box,\Box), q_1, (r,r,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_1, (1,1,\Box,\Box), (1,1,\Box,\Box), q_1, (r,r,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_1, (1, \square, \square, \square), (1, \square, \square, 1), q_2, (s, l, s, r) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_2, (1,1,\Box,\Box), (1,1,\Box,\Box), q_2, (s,l,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_2, (1,1,\Box,\Box), (1,1,\Box,\Box), q_2, (s,l,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_2, (1,1,\Box,\Box), (1,1,\Box,\Box), q_2, (s,l,s,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_2, (1, \square, \square, \square), (1, \square, \square, \square), q_0, (s, r, s, s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_0, (1,1,\Box,\Box), (1,1,1,\Box), q_1, (r,r,r,s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_1, (\Box, 1, \Box, \Box), (\Box, 1, \Box, \Box), q_f, (s, s, s, s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

 q_f

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_1, (\Box, \Box, \Box, \Box), (\Box, \Box, \Box, 1), q_f, (s, s, s, s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

 q_f

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

$$\langle q_0, (\square, 1, \square, \square), (\square, 1, \square, \square), q_f, (s, s, s, s) \rangle$$

$$\Sigma = \{1, \square\}, Q = \{q_0, q_1, q_2, q_f\}$$

 q_f

Let k be a constant in \mathbb{N} , and let NT_k be a non-deterministic Turing machine with a degree of non-determinism equal to k. Define a non-deterministic Turing machine NT_2 with a degree of non-determinism equal to 2 that is equivalent to NT_k