DataLunch Statistical Power

Ian Dworkin

23 Jul 2025

Points to think about before starting your power analysis

Figure 1. Confidence intervals for five different environmental scenarios.

Figure 1: Effects_Not_Pvalues

Figure 1 from Fox (2001)

Points to think about before starting your power analysis

- Power analysis to maximize precision of your quantities of interest
- ► Lakens (2022) is a good starting place for considering how to determine appropriate/sufficient sample sizes (including a Shiny app!)

the traditional "4 possible outcomes of a statistical test"

	Reject Null	Accept Null
	Type I error, α Correct, $1 - \beta$	
ivuii i aise	Correct, $1 - p$	Type if error, ρ

- ightharpoonup (1-eta) is **power**, probability of detecting a true difference.
- $ightharpoonup (1-\alpha)$ is **confidence**, probability of correctly accepting null.

Critical value for a t distribution, for a one tailed test

Critical value for a t distribution, for a two tailed test

Keep in mind

These kinds of dichotomies lead you to an "Is there an effect?" thinking.

Instead you should ask "What is the effect?" and for a power analysis, "What precision of the effect do I want, given the resources I have?"

Say you conduct an analysis on two different data sets, in the first p = 0.05, the second test has p = 0.001.

- Say you conduct an analysis on two different data sets, in the first p = 0.05, the second test has p = 0.001.
- Does this mean the second test has a bigger effect? That the statistical model accounts for more variation (i.e. higher R^2)?

- Say you conduct an analysis on two different data sets, in the first p = 0.05, the second test has p = 0.001.
- ▶ Does this mean the second test has a bigger effect? That the statistical model accounts for more variation (i.e. higher R^2)?
- Not necessarily. The magnitude of an effect could be similar, and the sample sizes differ (the second data set being much larger).

- Say you conduct an analysis on two different data sets, in the first p = 0.05, the second test has p = 0.001.
- ▶ Does this mean the second test has a bigger effect? That the statistical model accounts for more variation (i.e. higher R^2)?
- Not necessarily. The magnitude of an effect could be similar, and the sample sizes differ (the second data set being much larger).
- ▶ It could also be that there is less variability in the second data set.

- Say you conduct an analysis on two different data sets, in the first p = 0.05, the second test has p = 0.001.
- ▶ Does this mean the second test has a bigger effect? That the statistical model accounts for more variation (i.e. higher R^2)?
- Not necessarily. The magnitude of an effect could be similar, and the sample sizes differ (the second data set being much larger).
- ▶ It could also be that there is less variability in the second data set.
- However it could also be that there is a difference in these. You need to examine (and report) all three whenever possible (include confidence intervals on estimates).

Let's compare these three data sets

► We are examining the relationship between body size and fitness.

Let's compare these three data sets

▶ Is there a relationship?

Is there a relationship?

In fact they all have the same relationship fitness $\sim N(2+0.5*size, \sigma=2)$, and only differ in sample size.

Statistical Power Analysis in R

 Most statistical software packages provide functions for simple power analyses

Statistical Power Analysis in R

- Most statistical software packages provide functions for simple power analyses
- ► R has lots of useful packages

► Let's start by seeing how we get critical values for a *t* distribution

- ► Let's start by seeing how we get critical values for a *t* distribution
- Assume we have a sample size of n = 25, $\alpha = 0.05$ for a two-tailed distribution.

- ► Let's start by seeing how we get critical values for a *t* distribution
- Assume we have a sample size of n=25, $\alpha=0.05$ for a two-tailed distribution.
- ▶ We can use the qt() function for the t distribution

- Let's start by seeing how we get critical values for a t distribution
- Assume we have a sample size of n=25, $\alpha=0.05$ for a two-tailed distribution.
- ▶ We can use the qt() function for the t distribution

```
qt(p = 0.975, df = 24)
```

```
## [1] 2.063899
```

▶ Why do we have df = 24, not 25?

- Let's start by seeing how we get critical values for a t distribution
- Assume we have a sample size of n=25, $\alpha=0.05$ for a two-tailed distribution.
- ▶ We can use the qt() function for the t distribution

```
qt(p = 0.975, df = 24)
```

```
## [1] 2.063899
```

- ▶ Why do we have df = 24, not 25?
- ▶ Why is p = 0.975, not 0.95 (with $\alpha = 0.05$)?

How does the critical value	change with sample size?
-----------------------------	--------------------------

► We can make a plot looking at this across a range of sample sizes.

How does the critical value change with sample size?

We can make a plot looking at this across a range of sample sizes.

```
curve(qt(p = 0.975,df = x), 2, 25,
    col = "red", lwd = 3, cex.lab = 2,
    main = "Critical values of t for different sample sizes
    xlab = "Sample Size",
    ylab = expression(paste("t value (two tailed), ", alpha
```

How does the critical value change with sample size?

We can make a plot looking at this across a range of sample sizes.

Critical values for other distributions

▶ There are other distributions we can use:

Critical values for other distributions

- ▶ There are other distributions we can use:
- ▶ qf() for the F distribution, qchisq() for χ^2 etc..

▶ Many libraries in R to use, depending on purposes.

- ▶ Many libraries in R to use, depending on purposes.
- in base R, there is power.t.test(), power.anova.test(),
 power.prop.test()

- ▶ Many libraries in R to use, depending on purposes.
- in base R, there is power.t.test(), power.anova.test(),
 power.prop.test()
- **pwr** is an R package that does many simple types of statistical models (proportions, 1-way ANOVA, regression, χ^2 , glm)

- ▶ Many libraries in R to use, depending on purposes.
- in base R, there is power.t.test(), power.anova.test(),
 power.prop.test()
- **pwr** is an R package that does many simple types of statistical models (proportions, 1-way ANOVA, regression, χ^2 , glm)
- See the CRAN TASK VIEWS on experimental design for a list (and description) of more.

- Many libraries in R to use, depending on purposes.
- in base R, there is power.t.test(), power.anova.test(),
 power.prop.test()
- **pwr** is an R package that does many simple types of statistical models (proportions, 1-way ANOVA, regression, χ^2 , glm)
- See the CRAN TASK VIEWS on experimental design for a list (and description) of more.
- See this draft task view for power

- Many libraries in R to use, depending on purposes.
- in base R, there is power.t.test(), power.anova.test(),
 power.prop.test()
- **pwr** is an R package that does many simple types of statistical models (proportions, 1-way ANOVA, regression, χ^2 , glm)
- See the CRAN TASK VIEWS on experimental design for a list (and description) of more.
- See this draft task view for power
- I will show just a couple here.

Some of the functions in base R

```
## [1] "power"
```

"power.anova.test" "power.prop.te

power.t.test

▶ What goes into a *t*-test?

power.t.test

▶ What goes into a *t*-test?

$$\frac{\bar{x}_A - \bar{x}_B}{\hat{\sigma} \frac{1}{\sqrt{n}}}$$

▶ What goes into a *t*-test?

$$\frac{\bar{x}_A - \bar{x}_B}{\hat{\sigma} \frac{1}{\sqrt{n}}}$$

ightharpoonup \bar{x}_A is the mean for group A, \bar{x}_B for B

▶ What goes into a *t*-test?

$$\frac{\bar{x}_A - \bar{x}_B}{\hat{\sigma} \frac{1}{\sqrt{n}}}$$

- ightharpoonup \bar{x}_A is the mean for group A, \bar{x}_B for B
- ▶ The denominator is just the *pooled standard error of the mean*

What goes into a t-test?

$$\frac{\bar{x}_A - \bar{x}_B}{\hat{\sigma} \frac{1}{\sqrt{n}}}$$

- $ightharpoonup \bar{x}_A$ is the mean for group A, \bar{x}_B for B
- ▶ The denominator is just the *pooled standard error of the mean*
- ▶ So we see that there are 4 critical things:

▶ What goes into a *t*-test?

$$\frac{\bar{x}_A - \bar{x}_B}{\hat{\sigma} \frac{1}{\sqrt{n}}}$$

- $ightharpoonup \bar{x}_A$ is the mean for group A, \bar{x}_B for B
- ▶ The denominator is just the pooled standard error of the mean
- So we see that there are 4 critical things:
- $ightharpoonup \alpha$, the difference between means $\Delta = \bar{x}_A \bar{x}_B$, n and $\hat{\sigma}$

```
power.t.test
   pwr_t_check <- power.t.test(delta = 0.5, sd = 2,</pre>
                                 sig.level = 0.05,
                                 power = 0.8)
   pwr t check
   ##
   ##
            Two-sample t test power calculation
   ##
   ##
                     n = 252.1281
   ##
                 delta = 0.5
   ##
                    sd = 2
   ##
             sig.level = 0.05
                 power = 0.8
   ##
   ##
          alternative = two.sided
   ##
   ## NOTE: n is number in *each* group
   str(pwr t check)
```

• what sample sizes we would need for a range of differences, Δ , on the interval [0.1, 0.5].

- what sample sizes we would need for a range of differences, Δ , on the interval [0.1, 0.5].
- \blacktriangleright $(1-\beta) = 0.8$, $\hat{\sigma} = 2$, $\alpha = 0.05$

##

```
\blacktriangleright \Delta=0.5,\,\hat{\sigma}=2,\,\alpha=0.05 delta_vals = seq(from = 0.1, to = 0.5, by = 0.01) delta_vals
```

[1] 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

► This creates a vector from 0.1 - 0.5

```
power.n <- sapply(delta_vals, pow.test)</pre>
```

► This uses one of the *apply functions to repeat the function pow.test for each element of the vector delta_vals.

```
power.n <- sapply(delta_vals, pow.test)</pre>
```

- ➤ This uses one of the *apply functions to repeat the function pow.test for each element of the vector delta_vals.
- ▶ Thus for each value in the vector delta_vals (from 0.1 to 0.5), it puts this value into pow.test() and then returns the estimated n (# of observations needed to achieve this power).

power.anova.test example

More complex power analyses

- pwr has many useful functions for experimental designs of simple to moderate complexity.
- pwrss does as well, and can generate some very helpful figures to help understand
- If you are designing experiments and you think it is likely you are going to use mixed models, the simr is a good choice to learn (relatively straightforward)
- EMSS has useful sample size calculators.

roll your own with Monte Carlo simulations

▶ It is relatively straightforward to put this in a for loop to generate power analyses for more complicated designs/analyses

roll your own with Monte Carlo simulations

- ▶ It is relatively straightforward to put this in a for loop to generate power analyses for more complicated designs/analyses
- ► Learning how to do simple *Monte Carlo* simulations gives you lots of flexibility

roll your own with Monte Carlo simulations

- It is relatively straightforward to put this in a for loop to generate power analyses for more complicated designs/analyses
- ► Learning how to do simple *Monte Carlo* simulations gives you lots of flexibility
- ▶ I have posted a series of screencasts on YouTube, starting here that will teach you the basics.

Monte carlo power analysis example

▶ R code is hidden (but you can see it with the .Rmd file)

Plotting results from a power analysis

Plotting results from a power analysis

References

Fox, David R. 2001. "Environmental Power Analysis – a New Perspective." *Environmetrics* 12 (5): 437–49. https://doi.org/10.1002/env.470.

Lakens, Daniël. 2022. "Sample Size Justification." *Collabra: Psychology* 8 (1): 33267. https://doi.org/10.1525/collabra.33267.