Assignment 11; STAT 689

Philip Anderson; panders2@tamu.edu 4/02/2018

```
library("HRW")
library("mgcv")
library("cosso")
library("tidyverse")
```

Question 1

```
data("BostonMortgages")
str(BostonMortgages)
                   2380 obs. of 13 variables:
## 'data.frame':
## $ dir : num 0.221 0.265 0.372 0.32 0.36 ...
## $ hir
              : num 0.221 0.265 0.248 0.25 0.35 ...
              : num 0.8 0.922 0.92 0.86 0.6 ...
## $ lvr
## $ ccs
               : int 5 2 1 1 1 1 1 2 2 2 ...
## $ mcs
              : int 2 2 2 2 1 1 2 2 2 1 ...
## $ pbcr
              : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ dmi
              : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 2 1 ...
## $ self : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ single : Factor w/ 2 levels "no", "yes": 1 2 1 1 1 1 2 1 1 2 ...
              : num 3.9 3.2 3.2 4.3 3.2 ...
## $ uria
## $ comdominiom: int 0 0 0 0 0 1 0 0 0 ...
## $ black : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ deny
                : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 2 1 ...
1A
Which model does Cosso select?
# create a 1/0 indicator for deny so we know what the procedures are predicting
BostonMortgages$deny_bin <- ifelse(BostonMortgages$deny=="yes", 1, 0)
# corroborate results with contingency table
table(BostonMortgages$deny_bin, BostonMortgages$deny)
##
##
        no
            yes
              0
    0 2095
         0 285
# generate design matrix
# column 5 has a huge outlier - drop it so that cosso will run
BostonMortgages_red <- BostonMortgages %>%
 dplyr::filter(dir < 1)</pre>
```

```
# one-hot-encode the factor variables, dropping the intercept this function makes along the way
fac_to_int <- stats::model.matrix(~ black + pbcr + self + single, BostonMortgages_red)[, -1] %>%
 data.frame()
# grab the non-factor variables
int_vars <- BostonMortgages_red[, c("dir", "lvr")]</pre>
# bring everything together
X <- as.matrix(cbind(fac_to_int, int_vars))</pre>
# generate response array with custom response variable
y <- BostonMortgages_red[, c("deny_bin")]</pre>
# run the cosso model
start <- Sys.time()</pre>
cosso_mod <- cosso::cosso(x=X, y=y, family=c("Binomial"))</pre>
end <- Sys.time()</pre>
# runtime
print(end - start)
## Time difference of 29.4271 secs
# we will want to see how our coefficients jointly change with various tuning parameters
tune_matrix <- data.frame(cosso_mod$tune$Mgrid</pre>
                  , cosso_mod$tune$L2norm
names(tune_matrix) <- c("M","blackyes", "pbcryes", "selfyes", "singleyes", "dir", "lvr")</pre>
print(round(tune_matrix, 2))
         M blackyes pbcryes selfyes singleyes dir lvr
## 1 0.00
               0.00
                       0.00
                                  0
                                          0.00 0.00 0.00
## 2 0.20
               0.00
                       0.00
                                   0
                                          0.00 1.31 0.00
## 3 0.45
               0.00
                       0.00
                                  0
                                         0.00 1.28 0.00
## 4 0.70
               0.00
                       0.00
                                  0
                                         0.00 1.26 0.00
## 5 0.95
               0.00
                     0.00
                                  0
                                         0.00 1.25 0.00
## 6 1.20
               0.00
                     1.89
                                  0
                                         0.00 1.25 0.00
                                         0.00 1.24 0.00
## 7 1.45
               0.00
                     1.89
                                  0
## 8 1.70
               0.00
                       1.89
                                   0
                                         0.00 1.25 0.00
## 9 1.95
               0.00
                     1.78
                                  0
                                         0.00 1.49 0.69
## 10 2.20
               0.89
                     1.65
                                  0
                                        0.00 1.44 0.62
## 11 2.45
                                         0.00 1.43 0.63
               0.89
                       1.65
                                  0
## 12 2.95
                       1.65
                                   0
                                         0.00 1.43 0.64
               0.89
                                   0
                                          0.00 1.42 0.65
## 13 3.45
               0.89
                       1.65
                                          0.38 1.38 0.63
## 14 3.95
               0.84
                       1.68
                                   0
# we will now want to select an optimal tuning paramter
start <- Sys.time()</pre>
set.seed(1738)
tune_mod <- cosso::tune.cosso(cosso_mod, 10, FALSE)</pre>
fin <- Sys.time()</pre>
print(fin - start)
## Time difference of 55.35386 secs
# print out the regularization trace
print(tune_mod$OptM)
## [1] 3.45
```



```
# determine what our coefficients for this model will be based on our tuning matrix
tune_matrix %>%
    dplyr::filter(M==tune_mod$OptM) %>%
    print()
```

```
## M blackyes pbcryes selfyes singleyes dir lvr
## 1 3.45 0.8896404 1.652929 0 0 1.420734 0.6461124
```

Cosso selects black, pbcr, dir, and lvr for our model.

1B

Which model does mgcv select?

I am going to use the exact same data set generated for the cosso problem, but moved from matrix form in to a data frame. Note that this means I am going to keep the outlier removed.

```
boston_df <- data.frame(cbind(y, X))
# rename our response
names(boston_df)[1] <- "deny_bin"
head(boston_df)</pre>
```

```
deny_bin blackyes pbcryes selfyes singleyes
##
                                                      dir
## 1
            0
                                       0
                                                  0 0.221 0.8000000
                      0
                               0
## 2
            0
                      0
                               0
                                       0
                                                  1 0.265 0.9218750
                                                  0 0.372 0.9203980
## 3
            0
                      0
                              0
                                       0
            0
                               0
                                       0
                                                  0 0.320 0.8604651
## 4
                      0
## 5
            0
                      0
                              0
                                       0
                                                  0 0.360 0.6000000
## 6
            0
                               0
                                       0
                                                  0 0.240 0.5105263
```

```
mgcv_mod <- mgcv::gam(deny_bin ~ blackyes + pbcryes + selfyes + singleyes + dir + lvr
, data=boston_df</pre>
```

```
, family=binomial(link="logit")
                       select=TRUE
mgcv::summary.gam(mgcv_mod)
##
## Family: binomial
## Link function: logit
##
## Formula:
## deny_bin ~ blackyes + pbcryes + selfyes + singleyes + dir + lvr
## Parametric coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
                           0.4722 -13.581 < 2e-16 ***
## (Intercept) -6.4130
## blackyes
                0.9292
                           0.1586
                                    5.858 4.68e-09 ***
## pbcryes
                1.6533
                           0.1833
                                    9.018 < 2e-16 ***
## selfyes
                           0.1988
                                    2.875 0.00404 **
                0.5716
## singleyes
                0.3833
                           0.1391
                                   2.756 0.00585 **
                                   6.428 1.29e-10 ***
## dir
                5.1953
                           0.8082
## lvr
                2.5333
                           0.4531
                                   5.590 2.26e-08 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = 0.151
                        Deviance explained = 15.6%
## UBRE = -0.38041 Scale est. = 1
```

The mgcv procedure selected all of the variables that we put into the model.

1C

The variables selected by both models are relatively close, but not exact. Given past experiences with both packages, I am more readily inclined to trust mgcv over cosso.

Question 2

```
data("femSBMD")
names(femSBMD) <- tolower(names(femSBMD))</pre>
str(femSBMD)
## 'data.frame':
                  1003 obs. of 7 variables:
            : int 1111222333...
  $ idnum
            : num 0.719 0.732 0.776 0.781 0.62 0.627 0.759 0.79 0.641 0.622 ...
## $ spnbmd
             : num 11.2 12.2 13.2 14.3 12.7 13.8 14.8 15.8 10.9 11.9 ...
## $ ethnicity: Factor w/ 4 levels "Asian", "Black", ...: 4 4 4 4 4 4 4 4 4 4 ...
## $ black
            : int 0000000000...
## $ hispanic : int 0000000000...
## $ white
             : int 1 1 1 1 1 1 1 1 1 1 ...
```

2A

Define a new identification variable, given as 2 times the existing identification variable.

```
femSBMD$idnum2 <- 2*femSBMD$idnum</pre>
str(femSBMD)
## 'data.frame':
                   1003 obs. of 8 variables:
##
   $ idnum
              : int 1 1 1 1 2 2 2 2 3 3 ...
              : num 0.719 0.732 0.776 0.781 0.62 0.627 0.759 0.79 0.641 0.622 ...
## $ spnbmd
              : num 11.2 12.2 13.2 14.3 12.7 13.8 14.8 15.8 10.9 11.9 ...
## $ age
## $ ethnicity: Factor w/ 4 levels "Asian", "Black", ...: 4 4 4 4 4 4 4 4 4 4 ...
## $ black
              : int 0000000000...
## $ hispanic : int 0 0 0 0 0 0 0 0 0 ...
## $ white
              : int 1 1 1 1 1 1 1 1 1 1 ...
              : num 2 2 2 2 4 4 4 4 6 6 ...
## $ idnum2
```

2B

Rerun the gamm given in class, using first the original idnum variable and then the new one. Ensure that we are getting the same results with each.

```
# original fit
class_fit <- mgcv::gamm(spnbmd ~ s(age) + black + hispanic + white</pre>
                        , random=list(idnum = ~1) # intercept allowed to vary randomly
                        , data=femSBMD
                         )
# new fit
hw_fit <- mgcv::gamm(spnbmd ~ s(age) + black + hispanic + white
                        , random=list(idnum2 = ~1)
                        , data=femSBMD
# print the original results
summary(class_fit$gam)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## spnbmd ~ s(age) + black + hispanic + white
##
## Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.92538
                           0.01243 74.444 < 2e-16 ***
## black
                0.08191
                           0.01718
                                     4.769 2.13e-06 ***
               -0.01516
                           0.01754
                                    -0.864
                                              0.388
## hispanic
## white
                0.01503
                           0.01748
                                     0.860
                                              0.390
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
##
            edf Ref.df
                           F p-value
## s(age) 7.201 7.201 225.6 <2e-16 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.519
   Scale est. = 0.0013551 n = 1003
# print out the updated results
summary(hw_fit$gam)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## spnbmd ~ s(age) + black + hispanic + white
## Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.92538 0.01243 74.444 < 2e-16 ***
## black
              0.08191
                       0.01718
                                 4.769 2.13e-06 ***
## hispanic -0.01516
                         0.01754 -0.864
                                          0.388
## white
             0.01503
                         0.01748
                                 0.860
                                           0.390
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
           edf Ref.df
                        F p-value
## s(age) 7.201 7.201 225.6 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.519
    Scale est. = 0.0013551 n = 1003
```

The specific number of the id number variable does not appear to matter in the gamm function's grouping of observations.

Question 3

3A

```
(version_info <- version)</pre>
##
                   x86_64-apple-darwin15.6.0
## platform
## arch
                   x86_64
## os
                   darwin15.6.0
## system
                   x86_64, darwin15.6.0
## status
## major
## minor
                   4.3
## year
                   2017
## month
                   11
```

```
## day
                  30
## svn rev
                  73796
## language
## version.string R version 3.4.3 (2017-11-30)
## nickname
                  Kite-Eating Tree
version_num <- paste0(version_info$major, ".", version_info$minor)</pre>
cat("\n")
print(paste0("version num: ", version_num))
## [1] "version num: 3.4.3"
3C
library("rstan")
## Loading required package: StanHeaders
## rstan (Version 2.17.3, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## Attaching package: 'rstan'
## The following object is masked from 'package:tidyr':
##
##
       extract
```

Question 4

\$ weight : n
library("lattice")

RStan has loaded successfully.

```
pig.weights <- read.csv("/Users/panders2/Documents/schools/tamu/stat_689/homework/semiparametric-regres
names(pig.weights) <- tolower(names(pig.weights))
str(pig.weights)

## 'data.frame': 432 obs. of 3 variables:
## $ id.num : int 1 1 1 1 1 1 1 1 1 2 ...
## $ num.weeks: int 1 2 3 4 5 6 7 8 9 1 ...</pre>
```

4A

Display the lattice plot of the pig data.

: num 24 32 39 42.5 48 54.5 61 65 72 22.5 ...

Pig Data

4B

Looking at the data, it appears that a random-intercept model holds for these data. Note that the slope of each pig's data appears to be the same - the main difference between the lines tends to be the point where they started.

4C

##

Fit the random-intercept model and give your code. Also, do a summary and show your results.

```
## Formula:
## weight ~ num.weeks
##
## Parametric coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.3556
                            0.5988
                                     32.32
                                             <2e-16 ***
## num.weeks
                 6.2099
                            0.0391 158.81
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = 0.93
    Scale est. = 4.3833
                            n = 432
# now grab confidence interval information
intervals(random_int$lme)
## Approximate 95% confidence intervals
##
##
   Fixed effects:
##
                    lower
                               est.
                                        upper
## X(Intercept) 18.181008 19.355613 20.530219
## Xnum.weeks
                 6.133191 6.209896 6.286601
## attr(,"label")
## [1] "Fixed effects:"
##
   Random Effects:
##
##
    Level: id.num
##
                      lower
                                est.
                                        upper
## sd((Intercept)) 3.130774 3.849349 4.732852
##
##
   Within-group standard error:
##
      lower
                est.
                        upper
```

The between-person (intercept) variance is captured by the 95% interval given by (3.13, 4.73), which does not contain zero and is thus significant. The within-person (random error) variance is captured by the 95% interval given by (1.95, 2.25), which also does not contain zero and is thus significant.

1.950670 2.093625 2.247056