Good Morning Friends (3)

Today's Quote

Today's Content / operator

- Modular arithmetic
- I Hard problem

Range

inf
$$\rightarrow \left[-2\times10^{9}, 2\times10^{9}\right]$$

% Basics

$$\begin{bmatrix} 100 = (14X7) + 2 \\ 1 & 1 & 1 \\ dvd & quo div & rem \end{bmatrix}$$

n 1. a = Remainder when n is divided by a.

Dividend = div & quo + remainder.

Quiras

150 % 11 = 150 - (qrate) mult of 11 z=150) = 7

100 %
$$\overline{T}$$
 = 100 - (qrate) mult of \overline{T} z=100) = \overline{g} .

-40 % \overline{T} = -40 - (qrate) mult of \overline{T} z=100) = \overline{g} .

-60 % \overline{g} = -60 - (qrate) mult of \overline{g} z=-60)

= -60 - (-62) = -60 + 63 = \overline{g} .

-40 % \overline{g} = -40 - (qrate) mult of \overline{g} z=-40)

= -40 % \overline{g} = -40 - (qrate) mult of \overline{g} z=-40)

= -40 % \overline{g} = -40 + 45 = \overline{g} .

Aphin Tova/c/c++/C# & Doubt section

-40 % \overline{g} = -40 % \overline{g} in the language.

-40 % \overline{g} = -40 % \overline{g} in the language.

-40 % \overline{g} = -40 % \overline{g} = -40 % \overline{g} | 1/10 correct arm.

-40 % \overline{g} = -40 % \overline{g} = -40 % \overline{g} | 1/10 correct arm.

-40 % \overline{g} = -40 % \overline{g} = -40 % \overline{g} | 1/10 correct arm.

-40 % \overline{g} = -40 % \overline{g} | 1/10 correct arm.

Why %: Limit our input data in required range
$$-50,000$$
 } Hashing: Suploming? $-50,000$ } $7.10 = \{0,1,2,3,4,5,6,7,8,9\}$ Consistent Hashing: $\{HLD, LLD\}$

Modular Arithmetic

$$\frac{a}{8}$$
 $\frac{b}{6}$ $\frac{c}{10}$ $\frac{c}{10}$

$$(a * b) / p = (a / p * b / p) / p$$

$$6 \% 10 = 6$$
 $(6 \% 10), \% 10 = 6$

Divisibility Rules

observation.

$$2 457 \% 4 = (2400 + 57)\% 4$$

$$= ((2400\%4) + (57\%4))\% 4$$

$$= (57\%4)\% 4 = 57\%4$$

observation

$$\frac{10^2 \text{ /.4}}{10^3 \text{ /.4}} = 0 \quad \text{Any multiple}$$

$$\frac{10^3 \text{ /.4}}{10^3 \text{ /.4}} = 0 \quad \text{of (00 will)}$$
be divisible by 4.

Q) Liven a, n, p. Calculate an 1/2 p without inbuilt functions. (onstraints 1 = a = 109, 2 = p = 109, 1 = n = 105 Q = 3, n = 4, p = 7① a << n ½ p → a · 2 n ½ p [x]. fun(a, n, p) <

for(1=1; i <= n; i+t) {

n = a * a [a, n=4 = a" "P.] __ fun(a,n,p) { 2 | value. | 1 | q² = [a*a] | 2 | a⁴ | [a²*a²] | 3 | a⁸ | (a⁴*a⁴) | 4 | a¹⁶ | (a⁸*a⁸) Q = Q * Q

3
return 9% P (a161/.P.) $\frac{\int un(a, h, p)}{\int un(a, h, p)} \frac{a}{\int un(a$

$$an = (ans * a) ! P$$
 $[0, p-1] * [q] = 10^9 \times 10^9 \approx 10^{18} = long can hold this$

dry-run // airen a, n=4, p.

ans = (ans * 9) / P

1

ans = a 1/2 -0 No overflow.

a /. P

2

ans = (a//p * a) % p = ((a/p)/p + a/p)/.p = (ax.p + a x.p) y. p = $(a+a) \% p = 0^{2} \% p$

a2 /. p

3

ans = $(a^2 \times p + a) \times p$

any = a3/.p = No overflow

a2 1/2 p

4

ans = $\left(\frac{q^2 \cancel{y} \cdot \rho}{10^9} + \frac{q}{10^9}\right) \cancel{y} \cdot \rho$

= ay 1/1 p = No overflow

Of Civen I number in arr[] format. Calculate aut7 % p Note. arr[i] represents a single digit of number.

$$\frac{\text{traints}}{0}$$
.

 $\int 1 < z = N < z = 10^{5}$
 $\int 0 < z = arr[i] < z = 9$
 $\int 0 < z = p < z = 10^{9}$

$$\frac{6}{9}$$
: $\frac{72643}{.50} = 433$

$$\frac{2}{3} = \frac{7}{5}, \quad p = 16$$

Hint: Split the no. digit by digit & then toy to calculate the answer.

bscudo- code.

fun (
$$aux(7, N, p)$$
 f
long $anx = 0$
long $t = 1$ //10°=1
for ($i = n-1$; $i >= 0$; $i--)$ f
 $ans = (ans + aux(i) *t) % p$
 $t = (++10) % p$
return ans ;

Doubts

$$|00 \%7 = |00 - (7 \times 14)| = 2$$

$$= |00 - (9 \times 14)| = 2$$