Dept. of Electrical Engineering, IIT Madras CADLAB July 2015 session

- > Time duration of exam is two hours
- > vector operations are a must or lose lots of marks!!
- **▷** Label all plots. Add legends. Make the plots professional looking.
- > Comments are not optional. They are required.
- > pseudocode should be readable and neatly formatted.
- > code should be written as part of a LyX file.
- > Please download the blank LyX file with noweb enabled.
- **▷** LyX file should be named your-roll-number.lyx
- > I should be able to extract the python code using the view menu.
- **▷** Include the plots in the lyx file and generate a pdf.
- > Internet will be turned off at the beginning of the exam.
- **▷** Zip the L_YX file and the pdf file together and name it as *your-roll-number.zip*. Leave it in the home directory of your machine and show the same to the TA before leaving.
- > Late submission will result in reduced marks.

A long wire carries a current $I=4\pi/\mu_0$ Amp. The wire is along the z-axis exept that it has has a semi-circular bend of radius 10 cm centered about the origin. The semi-circle lies in the x-z plane. The problem is to compute and plot the magnetic field \vec{B} on the x-y plane at z=0. Plot both a contour plot of the strength of the field $|\vec{B}|$ and a vector plot of the field in the plane.

The computation involves the calculation of the Biot-Savart integral:

$$\vec{B}(x,y,0) = \frac{\mu_0}{4\pi} \int \frac{I\vec{d}l \times \vec{R}}{R^3} \approx \frac{\mu_0 I}{4\pi} \sum_{k=0}^{N-1} \frac{\vec{d}l_k \times \vec{R}}{R^3}$$

where $\vec{R} = \vec{r} - \vec{r}'$. Here $\vec{r} = x\hat{x} + y\hat{y}$ is the point where we want the field, and \vec{r}' is the point on the wire and $\vec{d}l$ is the differential length along the wire.

Assume that the wire goes from -30 to 30 cm, and assume that the region to plot is a square -20 < x, y < 20. The expression to be computed is

$$\vec{B}_{ij} = \sum_{k=0}^{N-1} \frac{\vec{d}l_k \times \vec{R}_{ijk}}{R_{ijk}^3}$$

where $\vec{R}_{ijk} = \vec{r}_{ij} - \vec{r}'_k$.

- > Write pseudocode for how you will solve this problem.
- \triangleright Break the square region into a 101 by 101 mesh and the wire into 200 sections. Use 30% of the points in the wires for each of the straight sections and 40% for the loop. Define the data structures required for the problem. Plot the wire in the x-z plane with bounds (-20,20) along x and (-30,30) along z. Properly label the graph.
- \triangleright Obtain the vectors \vec{r}'_k , $\vec{d}l_k$ and \vec{r}_{ij} , where k indexes the segments of the wire and i, j index the x and y positions of the square region.
- Define a function calc(k) that calculates \vec{R}_{ijk} for all i, j, for the value of k passed to the function (k is the index into the \vec{r}' array, which you have defined earlier.) Note: vectorize this function!
- \triangleright Extend calc to generate the terms in the sum, i.e., write out the cross product and divide by R_{ij}^3 , and return the term to add to \vec{B} . Note: vectorize the function
- ightharpoonup Use the function to compute \vec{B}_{ij} (you can use a for loop here. Justify in a comment)
- \triangleright Plot the magnetic field (contour and arrow plots). To show more detail, plot the contour of $\log_{10}\left|\vec{B}\right|$ and plot the vector plot of $\vec{B}/\left|\vec{B}\right|$ (arrows of constant length). Locate the (x,y) position of the straight segments. Why is field not going round that

• ...

Useful Python Commands (use "?" to get help on these from ipython)

```
from pylab import *
import system-function as name
Note: lstsq is found as scipy.linalq.lstsq
ones(List)
zeros(List)
range (NO, N1, Nstep)
arange(N0,N1,Nstep)
linspace(a,b,N)
logspace (log10(a), log10(b), N)
X, Y=meshgrid(x, y)
where(condition)
where (condition & condition)
where(condition | condition)
a=b.copy()
lstsq(A,b) to fit A*x=b
A.max() to find max value of numpy array (similalry min)
A.astype(type) to convert a numpy array to another type (eq int)
def func(args):
  . . .
  return List
matrix=c_[vector, vector, ...] to create a matrix from vectors
figure(n) to switch to, or start a new figure labelled n
plot(x, y, style, ..., lw=...)
semilogx(x,y,style,...,lw=...)
semilogy (x, y, style, ..., lw=...)
contour(x,y,matrix,levels...)
quiver(X,Y,U,V) # X,Y,U,V all matrices
xlabel(label, size=)
ylabel(label, size=)
title(label, size=)
xticks(size=) # to change size of xaxis numbers
yticks(size=)
legend(List) to create a list of strings in plot
annotate(str,pos,lblpos,...) to create annotation in plot
grid (Boolean)
```