MA100 - Travaux dirigés

Informations générales

- Les enseignements se font sous forme de COURS/TD. Il n'y a pas de CM en amphi.
- Ils se déroulent sur 14 semaines à raison de 8 semaine de 4h30 (3h + 1h30) et 6 semaines de 3h.
- Il y aura au moins trois contrôles continus.
- Vérifier votre emploi du temps très régulièrement, au moins chaque début de semaine.
- La semaine du 26 octobre est une semaine de vacances.
- La semaine du 11 janvier est pour d'éventuels rattrapages de CC ou de TD
- Les vacances de fin de l'année civile du 20 décembre 2020 au 3 janvier 2020 inclus.
- Le polycopié de cours est sur Moodle.
- Certains TD ont besoin d'une introduction sous forme de cours, d'autres non.
- Chaque feuille de TD est suivie d'une série d'exercices d'entrainement dont les énoncés sont similaires à ceux du TD et une série pour aller plus loin pour ceux qui souhaitent chercher davantage. Ces exercices ne sont pas à corriger en TD mais seulement pour ceux qui l'ont cherchés.
- Vous trouverez sur Moodle un sujet d'auto-évaluation, qui contient des exercices de révision d'analyse (études de signe, factorisation, fonctions usuelles) : faites le pour réviser et rendez votre devoir à votre enseignant e pour lui permettre d'évaluer le niveau de son groupe et d'ajuster son enseignement.

Contenu du document

TD 1 : Etude de fonctions	2
TD 2 : Polynômes	5
TD 3 : Suites numériques	7
TD 4 : Développements limités	10
TD 5 : Intégration	13
TD 6 : Equations différentielles	15

TD 1: Etude de fonctions

Exercice 1. Calculer les fonctions dérivées des fonctions suivantes en précisant les différentes étapes du calcul:

(1)
$$f: x \to e^x (1-x)^2$$
 (2) $f: x \to \ln(e^x + e^{-x})$ (3) $f: x \to \frac{e^x - e^{-x}}{e^x + e^{-x}}$

(4)
$$f: x \to \frac{\sqrt{x^2 + 1}}{x}$$
 (5) $f: x \to \sin(x) - \frac{1}{3}\sin^2(x)$ (6) $f: x \to \tan^2(x) + \ln(\cos^2(x))$

Exercice 2. Calculer les limites suivantes

(1)
$$\lim_{x \to -\infty} \frac{x^3 - x^2 + 2x + 1}{-3x^2 + x - 1}$$
 (2) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x}$ (3) $\lim_{x \to 3^-} \frac{|x - 3|}{x - 3}$

(1)
$$\lim_{x \to -\infty} \frac{x^3 - x^2 + 2x + 1}{-3x^2 + x - 1}$$
 (2) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x}$ (3) $\lim_{x \to 3^-} \frac{|x - 3|}{x - 3}$ (4) $\lim_{x \to 1^-} \ln\left(\frac{1 + x}{1 - x}\right)$ (5) $\lim_{x \to 0} 2x \ln(x + \sqrt{x})$ (6) $\lim_{x \to +\infty} \frac{\ln(3x + 1)}{\sqrt{2x + 3}}$

Exercice 3. (asymptotes)

On considère la fonction suivante : $f(x) = \sqrt{x^2 + x + 1} - x$

- 1. Etudier les limites de f en $-\infty$ et $+\infty$
- 2. Calculer les asymptotes de f si elles existent

Exercice 4. (étude complète) Faire l'étude complète des fonctions suivantes :

$$f(x) = \sqrt{x^2 - x - 6}, \quad g(x) = 2|2x - 1| - |x + 2| + 3x, \quad h(x) = \frac{x^2 - 2x + 5}{x + 1}, \quad j(x) = \ln\left(\frac{e^x + e^{-x}}{2}\right)$$

Exercice 5. (composées et réciproques) Le but de cet exercice est de démontrer l'égalité suivante :

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0 \end{cases}$$

Les questions qui suivent vous guident jusqu'au résultat.

- 1. On pose $f(x) = \arctan(x) + \arctan(\frac{1}{x})$. Quel est le domaine de définition de f? Est-elle dérivable partout sur son domaine de définition?
- 2. Calculer la dérivée de f.
- 3. Calculer f(1) et f(-1).
- 4. Déduire des questions précédentes l'égalité recherchée.

Exercice 6. Déterminer $x \in \mathbb{R}$ vérifiant l'(in)équation (E).

- 1. $\cos(x) = \frac{\sqrt{3}}{2}$
- 2. $\sin(x)\cos(x) = -\frac{\sqrt{3}}{4}$
- 3. $\sqrt{3}\sin(x) \cos(x) < \sqrt{2}$

1. Donner le domain de définition des fonctions suivantes : $f(x) = \arccos(\tan(x))$, Exercice 7. $g(x) = \arcsin(\cos(x)), h(x) = \tan(\arcsin(x))$

2. Donnner une expression algébrique des fonctions suivantes : $f(x) = \cos(\arcsin(x)), g(x) =$ $\sin(\arctan(x))$

TD1 - Pour s'entrainer

Exercice 8. Pour cet exercice :

- 1. S'il y a une forme indéterminée (FI), préciser laquelle.
- 2. Dire quelle est la méthode adaptée pour lever cette FI, et motiver ce choix.
- 3. La mettre en œuvre pour calculer la limite, en détaillant les étapes.

Calculer les limites suivantes, si elles existent :

$$a) \lim_{x \to 0^+} \frac{|x|-1}{\sqrt{x}-1} \quad b) \lim_{x \to 4^+} \frac{\sqrt{x-4}}{x+2} \quad c) \lim_{x \to 3^-} \frac{|x-3|}{x-3} \quad d) \lim_{x \to 1} \ln \left(\frac{1+x}{1-x}\right) \quad e) \lim_{x \to -\infty} \frac{e^x + e^{-x}}{2x}$$

$$f) \lim_{x \to +\infty} (\sqrt{x+4} - \sqrt{x-3}), \quad g) \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} \quad h) \lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2} \quad i) \lim_{x \to 0} \frac{x^2 + 2|x|}{x}$$

$$j) \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin x} \quad k) \lim_{x \to -\infty} \sqrt{x^2 + x + 1} - x \quad l) \lim_{x \to -\infty} \sqrt{x^2 + 1} - \sqrt{x^2 - 1}$$

Exercice 9. Soient m, n des entiers positifs. Étudier $\lim_{x\to 0} \frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}$.

Exercice 10. Calculer les dérivées des fonctions :

$$x \mapsto \sqrt{1 + x^2 \sin^2 x}$$
 ; $x \mapsto \frac{\exp(1/x) + 1}{\exp(1/x) - 1}$; $x \mapsto \log \frac{1 + \sin(x)}{1 - \sin(x)}$

- 1. $x \mapsto \ln(\cos(x))$; $x \mapsto \tan(x)$; $x \mapsto \sin(\tan(x))$
- 2. $x \mapsto (\ln(1+x))^2$; $x \mapsto \exp(\sin(x))$; $x \mapsto \sin^6(x)$

Exercice 11. (étude complète)

Faire l'étude complète des fonctions suivantes (parité, domaine de déf, dérivée, variations, limites, asymptotes, graphe, etc.) :

$$f(x) = x + 2 - \frac{4}{x - 2}, \quad g(x) = \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \quad h(x) = \frac{x^2 - 2x + 5}{x - 1}, \quad j(x) = \frac{e^x + e^{-x}}{2}$$
$$k(x) = \ln\left(\frac{1 + x}{1 - x}\right), \quad l(x) = \frac{1}{x}\ln\left(\frac{e^x - 1}{x}\right) \quad m(x) = e^{1/\ln x} \quad n(x) = \left(1 + \frac{1}{x}\right)^x \quad p(x) = \ln\left|\frac{1}{e^x - 1}\right|$$

Exercice 12. Étudier la dérivabilité de la fonction définie par :

$$f(x) = x^2 \cos \frac{1}{x}$$
, si $x \neq 0$; $f(0) = 0$

Exercice 13. Montrer que pour tout $x \in \mathbb{R}_+$ on a $\sin(x) \leq x$.

Exercice 14. Déterminer les extremums de $f(x) = x^4 - x^3 + 1$ sur \mathbb{R} .

Exercice 15. Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ si $x > 1$

soit dérivable sur \mathbb{R}_{+}^{*} .

Exercice 16. On pose : $F = \{ \arcsin, \arccos, \arctan \}$ et $G = \{ \sin, \cos, \tan \}$.

- 1. Pour tout $f \in F$ et pour tout $g \in G$, donner une expression algébrique pour la composée $g \circ f$.
- 2. Pour tout $f \in F$ et pour tout $g \in G$, déterminer le domaine de définition de la composée $f \circ g$ et représenter son graphe.

TD1 - Pour aller plus loin

Exercice 17. Soit $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 \sin \frac{1}{x}$. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Exercice 18. Prolonger par continuité en 0 et étudier la dérivabilté des fonctions

$$f(x) = \sqrt{x} \ln x$$
 ; $g(x) = \frac{e^x - 1}{\sqrt{x}}$

Exercice 19. Montrer que le polynôme $X^n + aX + b$, $(a, b \in \mathbb{R}, n \in \mathbb{N})$ admet au plus trois racines réelles.

Exercice 20. Pour tout $x \in]1, +\infty[$ on pose $f(x) = x \ln(x) - x$. Montrer que f est une bijection de $[1, +\infty[$ sur $]-1, +\infty[$. On pose $g = f^{-1}$ l'application réciproque de f. Calculer g(0) et g'(0).

Exercice 21. Soit $n \geq 2$ un entier fixé et $f: \mathbb{R}^+ = [0, +\infty[\longrightarrow \mathbb{R} \text{ la fonction définie par la formule suivante :$

$$f(x) = \frac{1+x^n}{(1+x)^n}, \quad x \ge 0.$$

- 1. (a) Montrer que f est dérivable sur \mathbb{R}^+ et calculer f'(x) pour $x \geq 0$.
 - (b) En étudiant le signe de f'(x) sur \mathbb{R}^+ , montrer que f atteint un minimum sur \mathbb{R}^+ que l'on déterminera.
- 2. (a) En déduire l'inégalité suivante : $(1+x)^n \leq 2^{n-1}(1+x^n)$, $\forall x \in \mathbb{R}^+$.
 - (b) Montrer que si $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$ alors on a $(x+y)^n \le 2^{n-1}(x^n+y^n)$.

Exercice 22. Soit f une fonction définie sur un intervalle I contenant x_0 dans son intérieur. On suppose que $\lim_{x\to x_0} f(x) = u > 0$. Démontrer qu'il existe t > 0 tel que si $0 < |x - x_0| < t$ alors $f(x) \ge \frac{u}{2}$.

Exercice 23. On pose : $F = \{ \text{argsinh}, \text{argcosh}, \text{argtanh} \}$ et $G = \{ \text{sinh}, \text{cosh}, \text{tanh} \}$.

- 1. Pour tout $f \in F$ et pour tout $g \in G$, donner une expression algébrique pour la composée $g \circ f$.
- 2. Pour tout $f \in F$ et pour tout $g \in G$, déterminer le domaine de définition de la composée $f \circ g$ et représenter son graphe.

Exercice 24. (composées et réciproques) On considère la fonction f qui à $x \in \mathbb{R}$ associe :

$$f(x) = \arcsin\left(\frac{2x}{1+x^2}\right)$$
.

- 1. Vérifier que f est définie et continue sur \mathbb{R} .
- 2. Montrer que f est dérivable sur $\mathbb{R} \setminus \{-1,1\}$ et calculer sa dérivée.
- 3. Représenter le graphe de f.
- 4. Montrer que :

$$f(x) = \begin{cases} -2\arctan(x) - \pi & \text{si } x \in]-\infty, -1] \\ 2\arctan(x) & \text{si } x \in [-1, 1] \\ -2\arctan(x) + \pi & \text{si } x \in [1, +\infty[$$

Exercice 25. Déterminer $x \in \mathbb{R}$ vérifiant l'équation (E).

- 1. (E) $\arccos(x) = \arcsin(1/3) + \arcsin(1/4)$.
- 2. (E) $\arccos(x) = 2\arccos(3/4)$.
- 3. (E) $\arccos(x) = \arcsin(1-x)$.
- 4. (E) $\arctan(x) + \arctan(2x) = \pi/4$.

TD 2 : Polynômes

Exercice 1. Effectuer la division euclidienne du polynôme $P = X^5 - X^4 + 2X^3 + X^2 + 4$ par $Q = X^2 - 1$.

Exercice 2. Effectuer les divisions euclidiennes de

$$3X^5 + 4X^2 + 1$$
 par $X^2 + 2X + 3$,
 $3X^5 + 2X^4 - X^2 + 1$ par $X^3 + X + 2$,
 $X^4 - X^3 + X - 2$ par $X^2 - 2X + 4$.

Exercice 3. Décomposer dans $\mathbb{R}[X]$, sans déterminer ses racines, le polynôme $P = X^4 + 1$, en produit de facteurs irréductibles.

Exercice 4. Décomposer les fractions suivantes en éléments simples sur \mathbb{R} , par identification des coefficients.

1.
$$F = \frac{X}{X^2 - 4}$$

$$2. \ G = \frac{X^3 - 3X^2 + X - 4}{X - 1}$$

3.
$$H = \frac{2X^3 + X^2 - X + 1}{X^2 - 2X + 1}$$

4.
$$K = \frac{X+1}{X^4+1}$$

TD2 - Pour s'entrainer

Exercice 5. Effectuer la division euclidienne de A par B:

1.
$$A = 3X^5 + 4X^2 + 1$$
, $B = X^2 + 2X + 3$

2.
$$A = 3X^5 + 2X^4 - X^2 + 1$$
, $B = X^3 + X + 2$

3.
$$A = X^4 - X^3 + X - 2$$
, $B = X^2 - 2X + 4$

4.
$$A = X^5 - 7X^4 - X^2 - 9X + 9$$
, $B = X^2 - 5X + 4$

Exercice 6 (Calcul de restes). Trouver les restes des divisions euclidiennes :

1. de
$$X^{50}$$
 par $X^2 - 3X + 2$.

2. de
$$(X + \sqrt{3})^{17}$$
 par $X^2 + 1$.

3. de
$$X^8 - 32X^2 + 48$$
 par $(X - \sqrt{2})^3$.

Exercice 7. Décomposer $X^{12} - 1$ en produit de facteurs irréductibles dans $\mathbb{R}[X]$.

Exercice 8. Décomposer les fractions suivantes en éléments simples sur \mathbb{R} , en raisonnant par substitution pour obtenir les coefficients.

1.
$$F = \frac{X^5 + X^4 + 1}{X^3 - X}$$

2.
$$G = \frac{X^3 + X + 1}{(X - 1)^3 (X + 1)}$$

3.
$$H = \frac{X}{(X^2+1)(X^2+4)}$$

4.
$$K = \frac{2X^4 + X^3 + 3X^2 - 6X + 1}{2X^3 - X^2}$$

TD2 - Pour aller plus loin

Exercice 9. Calculer le reste de la division euclidienne du polynôme $X^n + X + 1$ par le polynôme $(X - 1)^2$.

Exercice 10. Déterminer $a, b \in \mathbb{Z}$ de façon à ce que le polynôme $aX^{n+1} - bX^n + 1$ soit divisible par le polynôme $(X-1)^2$. Calculer alors le quotient des deux polynômes.

Exercice 11. Quelle est la décomposition de $X^6 + 1$ en facteurs irréductibles dans $\mathbb{C}[X]$? Dans $\mathbb{R}[X]$?

Exercice 12. Soit $P = (X^2 - X + 1)^2 + 1$.

- 1. Vérifier que i est racine de P.
- 2. En déduire alors la décomposition en produit de facteurs irréductibles de P sur $\mathbb{R}[X]$
- 3. Factoriser sur $\mathbb{C}[X]$ et sur $\mathbb{R}[X]$ les polynômes suivants en produit de polynômes irréductibles : $P = X^4 + X^2 + 1$, $Q = X^{2n} + 1$, $R = X^6 X^5 + X^4 X^3 + X^2 X + 1$, $S = X^5 13X^4 + 67X^3 171X^2 + 216X 108$ (on cherchera les racines doubles de S).

Exercice 13. Soit P le polynôme $X^4 + 2X^2 + 1$. Déterminer les multiplicités des racines i et -i, de deux façons différentes : soit en décomposant P dans $\mathbb{C}[X]$, soit en utilisant le polynôme dérivé de P.

Exercice 14. Soit le polynôme $P = X^8 + 2X^6 + 3X^4 + 2X^2 + 1$.

- 1. Montrer que j est racine de ce polynôme. Déterminer son ordre de multiplicité.
- 2. Quelle conséquence peut-on tirer de la parité de P?
- 3. Décomposer P en facteurs irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Exercice 15. Soient x_1, x_2, x_3 les racines de $X^3 - 2X^2 + X + 3$. Calculer $x_1^3 + x_2^3 + x_3^3$.

Exercice 16. Factoriser dans $\mathbb{R}[X]$:

- 1. $X^6 + 1$.
- 2. $X^9 + X^6 + X^3 + 1$.

TD 3 : Suites numériques

Exercice 1. Récurrence

Démontrer par récurrence que $\forall n \in \mathbb{N}^{\star}, \sum_{n=1}^{n} p(p+1) = \frac{n(n+1)(n+2)}{3}$

En déduire une expression en fonction de n de chacune des sommes suivantes :

$$S_1 = \sum_{k=1}^n \sum_{p=0}^k p,$$
 $S_2 = \sum_{k=1}^n \sum_{p=0}^k k,$ $S_3 = \sum_{k=1}^n \sum_{p=0}^k n.$

Exercice 2. Encadrement

On considère la suite $(a_n)_{n>0}$ définie par $a_n = \sum_{k=1}^n \frac{n}{n^2 + k}$.

Montrer que pour tout n > 0 on a : $\frac{n^2}{n^2 + n} \le a_n \le \frac{n^2}{n^2 + 1}$ et déduire la limte de (a_n) .

Exercice 3. Soit une suite arithmétique (u_n) ne s'annulant pas. On note r sa raison et u_0 son premier terme.

- 1. Montrer que pour tout entier k, on a $\frac{r}{u_k u_{k+1}} = \frac{1}{u_k} \frac{1}{u_{k+1}}$
- 2. En déduire que

$$\sum_{k=0}^{n} \frac{1}{u_k u_{k+1}} = \frac{n+1}{u_0 u_{n+1}}$$

Exercice 4. Calculer la limite de la suite (u_n) dans chacun des cas suivants :

(1)
$$u_n = \sqrt{n+1} - \sqrt{n}$$
 (2) $u_n = \frac{(-1)^n}{n^2}$ (3) $u_n = \frac{n^2}{n^2 + n}$

(4)
$$u_n = \frac{1}{n^2} \sum_{k=1}^n k$$
 (5) $u_n = \frac{\sin n}{n}$ (6) $u_n = \frac{\sqrt{\ln(n+3)}}{\sqrt{\ln(\ln(n+3))}}$

Exercice 5. Suite récurrente

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout entier naturel $n, u_{n+1} = \sqrt{u_n + 1}$

- 1. Démontrer que pour tout entier naturel $n, 0 < u_n < 2$
- 2. Démontrer que pour tout entier naturel $n, u_n \leq u_{n+1}$
- 3. Que peut-on déduire?

Exercice 6. Suite récurrente

On admet que la suite (u_n) déterminée par la donnée de son premier terme $u_0 \neq 0$ et telle que pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{3-2u_n}$ est bien définie. Pour tout entier n, on pose $v_n = \frac{u_n-1}{u_n}$. Montrer que (v_n) est une suite géométrique, déduire l'expression de u_n en fonction de n et u_0 et étudier la limite de (u_n) .

TD3 - Pour s'entrainer

Exercice 7. Étudier la convergence des suites suivantes définies par le terme général

1.
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n}$$

$$2. \ v_n = \frac{n\sin(n)}{n^2 + 1}$$

3.
$$w_n = \frac{1}{n} + (-1)^n$$

4.
$$t_n = (-1)^n \frac{n+1}{n}$$

Exercice 8. Suite croissante et majorée

Soit (u_n) une suite de]0,1[telle que pour tout entier n on ait $(1-u_n)u_{n+1}>1/4..$

- 1. Montrer que si (u_n) converge vers ℓ alors $\ell = 1/2$.
- 2. Montrer que pour tout entier n on $a: u_n(1-u_n) \le 1/4 < u_{n+1}(1-u_n)$.
- 3. En déduire que la suite (u_n) est croissante et qu'elle est est convergente.

Exercice 9. On définit par récurrence les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ par :

$$u_0 = 1, v_0 = 2, u_{n+1} = \frac{(u_n)^2}{u_n + v_n}, v_{n+1} = \frac{(v_n)^2}{u_n + v_n}.$$

- 1. Montrer par récurrence que l'on a $u_n > 0$ et $v_n > 0$.
- 2. Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ décroissent. En déduire qu'elles convergent vers ℓ et ℓ' respectivement. Montrer que l'on a $\ell\ell'=0$.
- 3. Montrer que la suite $(v_n u_n)_{n \in \mathbb{N}}$ est constante. En déduire ℓ et ℓ' .

Exercice 10. Série harmonique

Pour tout $n \in \mathbb{N}^*$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que la suite $(H_{2n} - H_n)$ est minorée par $\frac{1}{2}$ et en déduire que la suite (H_n) tend vers $+\infty$.

TD3 - Pour aller plus loin

Exercice 11. Soit $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.

- 1. En utilisant une intégrale, montrer que pour tout n > 0: $\frac{1}{n+1} \le \ln(n+1) \ln(n) \le \frac{1}{n}$.
- 2. En déduire que $\ln(n+1) \le H_n \le \ln(n) + 1$.
- 3. Déterminer la limite de H_n .
- 4. Montrer que $u_n = H_n \ln(n)$ est décroissante et positive.
- 5. Conclusion?

Exercice 12. Montrer qu'une suite d'entiers qui converge est constante à partir d'un certain rang.

Exercice 13. Soit $f: [0,1] \to [0,1]$. On considère $a \in [0,1]$ et la suite $(u_n)_{n \in \mathbb{N}}$ vérifiant $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$. Les propriétés suivantes sont-elles vraies ou fausses :

- 1. Si f est croissante, alors (u_n) est croissante.
- 2. Si (u_n) est croissante, alors f est croissante.
- 3. Si (u_n) est croissante et f monotone, alors f est croissante.
- 4. Si (u_n) converge vers une limite l, alors l est point fixe de f.
- 5. Si f est dérivable, alors (u_n) est bornée.
- 6. Si le graphe de f est au dessus de la droite d'équation y = x, alors (u_n) est croissante.
- 7. Si (u_n) converge vers un point fixe l de f, alors f est continue en l.

Exercice 14. Les énoncés suivants sont-ils vrais ou faux?

- 1. Une suite à termes positifs qui tend vers 0 est décroissante à partir d'un certain rang.
- 2. Si une suite a une limite strictement positive, tous ses termes sont strictement positifs à partir d'un certain rang. Réciproque?

Exercice 15. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} . Que pensez-vous des propositions suivantes :

- 1. Si $(u_n)_n$ converge vers un réel ℓ alors $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers ℓ .
- 2. Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, il en est de même de $(u_n)_n$.
- 3. Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, de même limite ℓ , il en est de même de $(u_n)_n$.

TD 4 : Développements limités

Exercice 1. Donner le développement limité en 0 des fonctions

- 1. $x \mapsto \ln(\cos(x))$ (à l'ordre 6).
- 2. $x \mapsto (\ln(1+x))^2$ (à l'ordre 4).
- 3. $x \mapsto \exp(\sin(x))$ (à l'ordre 3).
- 4. $x \mapsto \sin^6(x)$ (à l'ordre 9.)

Exercice 2. Faire un développement limité en a à l'ordre n de :

- 1. $f(x) = \sqrt{x}$; n = 3; a = 1
- 2. $g(x) = e^{\sqrt{x}}$; n = 3; a = 1
- 3. $h(x) = \ln(\sin x)$; n = 3; $a = \pi/3$

4.
$$f(x) = \frac{\sqrt{1+x^2}}{1+x+\sqrt{1+x^2}}; n=2; a=0.$$

Exercice 3. Questions de limites

Pour chacune des fonctions suivantes, déterminer si elles ont une limite en 0. Si oui, la calculer (si possible).

- 1. $f: x \longmapsto \frac{\sin x x}{x^2}$
- 2. $g: x \longmapsto \frac{\sin x x}{x^3}$
- 3. $h: x \longmapsto \frac{\cos x \sqrt{1-x^2}}{x^4}$

Exercice 4. Déterminer la position relative de la courbe de la fonction $f: x \longmapsto \sqrt{x^2 + 1}$ et de sa tangente au voisinage des points d'abscisse 0 puis 1. On pourra envisager deux méthodes différentes, et les comparer.

Exercice 5. Etude de l'allure de la courbe de la fonction $p: x \longmapsto x\sqrt{1+x^2}$ au voisinage de $+\infty$: on cherchera/trouvera une parabole asymptote à la courbe, on précisera la position relative de la courbe et de l'asymptote au voisinage de $+\infty$.

À l'aide d'une machine, regarder les positions relatives de la courbe et de cette parabole asymptote sur les intervalles [0,1], [0,2], puis [0,10]. Méditer.

Que peut-on dire de la courbe au voisinage de $-\infty$?

Exercice 6. (examen de mai 2013)

On conseille de bien détailler les calculs.

1. Calculer le développement limité à l'ordre 3 au voisinage de 0 de

$$f(x) = \exp(2\sqrt{1+x} - 2) - \frac{x}{4}\sin(x).$$

2. En déduire une équation de la tangente T à la courbe représentative C de f au point d'abscisse 0. Déterminer alors la position relative au voisinage de 0 de T et C.

TD4 - Pour s'entrainer

- **Exercice 7.** 1. En utilisant une formule de Taylor à l'ordre 2, donner une valeur approchée de $\cos(0,01)$ et de $\cos(0,05)$. Comparer avec les valeurs proposées par votre calculatrice (ces dernières sont-elles exactes?)
 - 2. Même question avec $\sqrt{4,01}$, mais en utilisant en une formule de Taylor à l'ordre 1 seulement.

Exercice 8. On considère la fonction réelle f donnée par $f(x) = x^2 + (x+1) \ln x$.

- 1. Ecrire les différentes formules de Taylor pour f au voisinage de 1, à l'ordre 1 puis à l'ordre 2.
- 2. Donner l'équation de la tangente à la courbe représentative de f au point d'abscisse 1. Quelle est la position relative entre la courbe et sa tangente au point d'abscisse 1? Donner l'équation de la "meilleure approximation parabolique" de f au voisinage de 1.
- 3. Sur une calculatrice ou un ordinateur, représenter sur un même graphique la courbe de f, puis la tangente et la parabole, successivement sur un « petit intervalle autour de $1 \gg$ (par exemple]0,8;1,2[) puis sur un « grand intervalle autour de $1 \gg$. Représenter enfin la parabole d'équation $y=2x^2-1$ (même valeur en 1, ainsi que pour la dérivée première mais pas pour la seconde). Pensez-vous que $\frac{f(x)-(2x^2-1)}{(x-1)^2}$ ait la limite 0 en 1?

Exercice 9. Déterminer (en réfléchissant à la démarche à suivre avant de se lancer dans des calculs) les développements limités au voisinage de 0, sauf mention contraire, aux ordres indiqués, des fonctions suivantes.

- 1. (a) $a_1: x \mapsto x^5 x^3 + 2x^2 + x + \frac{2}{1-x}$ à l'ordre 4.
 - (b) $a_2: x \longmapsto \ln(1+x) + \sin(x)$ à l'ordre 3, puis à l'ordre 4.
 - (c) $a_3 = \text{sh à l'ordre 3, à l'ordre 4, à l'ordre 5, puis à l'ordre <math>2n$ quelconque.
- 2. $b_1: x \longmapsto \frac{\sin x}{x}$ à l'ordre 6. Peut-on faire de même pour $b_2: x \longmapsto \frac{\sin x}{x^2}$?
- 3. (a) $c_1: x \longmapsto \frac{\cos x}{1-x}$ à l'ordre 6.
 - (b) $c_2: x \longmapsto e^x \sqrt{1+x}$ à l'ordre 3.
 - (c) $c_3: x \longmapsto \left(\frac{\sin x}{x}\right)^2$ à l'ordre 4 puis à l'ordre 5.
- 4. Calculer le développement limité à l'ordre 3 au voisinage de 0 de

$$f(x) = \cos(x)e^x + x^4 + \frac{1}{1 + \ln(1+x)}.$$

Exercice 10. Soit
$$f(x) = \left(\frac{\ln(x+1)}{\ln x}\right)^x$$

Calculer $\ell = \lim_{x \to +\infty} f(x)$ et donner un équivalent de $(f(x) - \ell)$ lorsque $x \to +\infty$.

Exercice 11. Calculer les limites suivantes

$$\lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2} \qquad \lim_{x \to 0} \frac{\ln(1+x) - \sin x}{x} \qquad \lim_{x \to 0} \frac{\cos x - \sqrt{1-x^2}}{x^4}$$

Exercice 12. Déterminer la position relative de la courbe de la fonction $g: x \longmapsto \sqrt{1+3x+3x^2}$ et de sa tangente au point d'abscisse 0.

Exercice 13. Étudier l'allure de la courbe de la fonction $q: x \mapsto \frac{x^2 - 5x + 3}{x} e^{-\frac{1}{x}}$ au voisinage de

Exercice 14. (examen de mai 2011) Soit f la fonction définie sur $]0; +\infty[$ par $f(x)=(x^2+x^2)$ $(x)\sqrt{1+\frac{1}{x}}$.

- 1. Déterminer le développement limité au voisinage de 0 à l'ordre 3 de $\sqrt{1+h}$.
- 2. Montrer que la courbe représentative \mathcal{C} de f admet une parabole asymptote au voisinage $de +\infty$, puis préciser la position relative de la courbe et de cette asymptote au voisinage de $+\infty$. On pourra utiliser la question (a) en posant $h=\frac{1}{x}$.

Exercice 15. Déterminer les limites suivantes :

1)
$$\lim_{x \to \infty} \sqrt{x^2 + 3x + 2} + x$$

2)
$$\lim_{x\to 0^+} (\arctan x)^{\frac{1}{x^2}}$$

1)
$$\lim_{x \to -\infty} \sqrt{x^2 + 3x + 2} + x$$
 2) $\lim_{x \to 0^+} (\arctan x)^{\frac{1}{x^2}}$ 3) $\lim_{x \to 0} \frac{(1 + 3x)^{\frac{1}{3}} - 1 - \sin x}{1 - \cos x}$

TD4 - Pour aller plus loin

Exercice 16. Inégalités de Kolmogorov

Soit f une fonction définie sur \mathbb{R} , de classe \mathbb{C}^2 . On suppose que f et f'' sont bornées, et l'on pose:

$$M_0 = \sup_{x \in \mathbb{R}} |f(x)|, \quad M_2 = \sup_{x \in \mathbb{R}} |f''(x)|$$

 $(M_0 \text{ et } M_2 \text{ sont donc des nombres réels tels que, pour tout } x \text{ réel, on a } |f(x)| \leq M_0 \text{ et } |f''(x)| \leq$ M_2). Le but de cet exercice est de prouver que f' est bornée, et de majorer $M_1 = \sup_{x \in \mathbb{R}} |f'(x)|$ en fonction de M_0 et M_2 . Soit $x \in \mathbb{R}$, et h > 0.

- 1. Appliquer la formule de Taylor-Lagrange à f entre x et x + h à l'ordre 2.
- 2. En déduire l'inégalité:

$$|f'(x)| \le \frac{2M_0}{h} + \frac{hM_2}{2}.$$

En particulier, si on choisit h=1, on obtient $|f'(x)| \leq 2M_0 + \frac{M_2}{2}$ pour tout x de \mathbb{R} , ce qui prouve que f' est bornée par M_1 , avec $M_1 \leq 2M_0 + \frac{M_2}{2}$. On se propose de trouver une meilleure majoration:

- 3. Etudier la fonction $h \mapsto \frac{2M_0}{h} + \frac{hM_2}{2}$ sur $]0, +\infty[$.
- 4. En déduire $M_1 \leq 2\sqrt{M_0M_2}$.

Exercice 17. Suite de solutions d'une équation et comportement asymptotique

- 1. Montrer que l'équation $\tan x = x$ possède une solution unique notée x_n dans $\left| n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2} \right|$.
- 2. Ecrire une relation entre x_n et $\arctan(x_n)$.
- 3. Montrer que la suite $(x_n n\pi)_{n \in \mathbb{N}}$ converge puis déterminer sa limite. En déduire que $x_n = n\pi + \frac{\pi}{2} + o(1).$
- 4. Facultatif (plus difficile).
 - (a) Démontrer que $\forall x \in \mathbb{R}?*$, $\arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$. En déduire qu'au voisinage de $+\infty$,

$$\arctan(x) = \frac{\pi}{2} - \frac{1}{x} + o(\frac{1}{x^2}).$$

(b) En écrivant $x_n = n\pi + \frac{\pi}{2} + \epsilon_n$ et en utilisant le résultat de la question 2., en déduire que

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right).$$

TD 5: Intégration

Exercice 1. Calculer les intégrales suivantes :

$$a)I_{1} = \int_{1}^{2} \left(x^{2} + \frac{3}{x^{2}}\right) dx, \quad b)I_{2} = \int_{1}^{2} (2 - 4e^{3x}) dx, \qquad c)I_{3} = \int_{0}^{1} \frac{x + 1}{x^{2} + 2x + 5} dx,$$
$$d)I_{4} = \int_{1}^{2} \frac{e^{1/x}}{x^{2}} dx, \qquad e)I_{5} = \int_{0}^{1} (2x + 3)\sqrt{x^{2} + 3x + 4} dx, \quad f)I_{6} = \int_{0}^{1} \frac{1}{1 + x^{2}} dx.$$

Exercice 2. À l'aide d'intégrations par parties, calculer les intégrales suivantes :

$$a)I_{1} = \int_{e}^{2e} x^{2} \ln x \, dx, \qquad b)I_{2} = \int_{2}^{3} \frac{x}{\sqrt{x-1}} \, dx, \quad c)I_{3} = \int_{0}^{\pi/2} e^{x} \cos x \, dx,$$
$$d)I_{4} = \int_{1}^{e} (x^{2} + x + 2) \ln(x) \, dx, \quad e)I_{5} = \int_{1}^{e} (\ln x)^{2} \, dx, \quad f)I_{6} = \int_{0}^{1} \arctan x \, dx.$$

Exercice 3. A l'aide d'un changement de variables adéquat :

1. calculer les intégrales suivantes,

a)
$$\int_{1}^{3} \frac{dx}{\sqrt{x} + \sqrt{x^{3}}}$$
 b) $\int_{1}^{e^{2}} \frac{\ln x}{x + x(\ln x)^{2}} dx$ c) $\int_{0}^{1} \frac{e^{2x}}{e^{x} + 1} dx$ d) $\int_{0}^{\pi/4} \frac{dx}{\cos^{4} x} dx$

2. calculer les primitives suivantes sur I

a)
$$\int_{-\infty}^{t} \frac{\sin x \cos x}{1 - \cos x} dx, I = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \qquad b) \int_{-\infty}^{t} \frac{dx}{\cos x}, I = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

Exercice 4. Calculer les intégrales suivantes, en réfléchissant préalablement à l'outil (voire les outils) le plus adapté pour chaque calcul :

a)
$$\int_{1}^{e} \frac{1 + \ln x}{x} dx$$
 b) $\int_{0}^{1} \sqrt{1 - x^{2}} dx$ c) $\int_{0}^{1} \frac{\arctan x}{(x + 1)^{2}} dx$ d) $\int_{0}^{\pi/4} \frac{dx}{1 + \sin x \cos x}$

Exercice 5. Décomposer chacune des fractions rationnelles suivantes en éléments simples dans \mathbb{R} pour en déduire une primitive :

$$q_1(x) = \frac{x^2}{(x-2)(x-3)}, \quad q_2(x) = \frac{2x-1}{(x-1)^2 x}, \quad q_3(x) = \frac{x^7+1}{x^2-1}$$

$$q_4(x) = \frac{5x^2 - 2x + 3}{(x^2 + 1)(x - 1)}, \quad q_5(x) = \frac{1}{x^2 + 2x + 3}, \quad q_6(x) = \frac{1}{x^2 + x - 1}$$

TD5 - Pour s'entrainer

Exercice 6. Déterminer une primitive sur I des fonctions suivantes définies par :

$$\begin{array}{ll} a) \ f(x) = x e^{x^2}, \ I = \mathbb{R} & b) \ g(x) = \frac{x^2}{1+x^3}, \ I =]-1, +\infty[\\ c) \ h(x) = \frac{\ln x}{x} \ , \ I =]0, +\infty[& d) \ i(x) = \frac{x}{\sqrt{1+x^2}}, \ I = \mathbb{R} \\ e) \ j(x) = \frac{1}{x \ln x}, \ I =]0, +\infty[& f) \ k(x) = \tan x, \ I = \left] -\frac{\pi}{2} \ , \frac{\pi}{2} \right[. \end{array}$$

Exercice 7. Calculer les primitives suivantes par changement de variable.

$$\int (\cos x)^{1234} \sin x \, dx, \quad \int \frac{1}{x \ln x} \, dx, \quad \int \frac{1}{3 + \exp(-x)} dx, \quad \int \frac{1}{\sqrt{4x - x^2}} dx$$

Exercice 8. Calculer les primitives suivantes par intégration par partie :

$$\int e^x \cos x dx \quad ; \quad \int \frac{\ln x}{x^n} dx \ n \in \mathbb{N} \quad ; \quad \int x \operatorname{Arctan} x dx \quad ; \quad \int (x^2 + x + 1) e^x dx.$$

Exercice 9. Calculer les primitives (on précisera leurs intervalles de définition) ou intégrales suivantes, en réfléchissant préalablement à l'outil (voire les outils) le plus adapté pour chaque calcul :

e)
$$\int_{1}^{e} \frac{dx}{x\sqrt{\ln x + 1}}$$
 f) $\int_{1}^{x} \frac{x + 1}{x^{2} - x + 1} dx$ g) $\int_{0}^{1/2} \arcsin x dx$ h) $\int_{1}^{x} \frac{dx}{1 + x^{3}}$

Exercice 10. Décomposer les fractions rationnelles suivantes; en calculer les primitives.

$$\begin{array}{lll} a)\frac{1}{a^2+x^2} & b)\frac{1}{(1+x^2)^2} & c)\frac{x^3}{x^2-4} & d)\frac{4x}{(x-2)^2} & e)\frac{1}{x^2+x+1} \\ f)\frac{1}{(t^2+2t-1)^2} & g)\frac{3t+1}{(t^2-2t+10)^2} & h)\frac{3t+1}{t^2-2t+10} & i)\frac{1}{t^3+1} & j)\frac{x^3+2}{(x+1)^2} \\ k)\frac{x+1}{x(x-2)^2} & l)\frac{(x^2-1)(x^3+3)}{2x+2x^2} & m)\frac{x^2}{(x^2+3)^3(x+1)} & n)\frac{x^7+x^3-4x-1}{x(x^2+1)^2} & o)\frac{3x^4-9x^3+12x^2-11x+7}{(x-1)^3(x^2+1)} \end{array}$$

TD5 - Pour aller plus loin

Exercice 11. Calculer les intégrales suivantes :

$$J_1 = \int_{0}^{\frac{\pi}{2}} \sin^3 t \cos^4 t \, dt, \quad J_2 = \int_{0}^{\pi} \sin t \cos^2 t \, dt,$$

$$J_3 = \int_{0}^{\frac{\pi}{4}} \sin^2 t \cos^3 t \, dt, \quad J_4 = \int_{0}^{\pi} \sin^2 t \cos^2 t \, dt.$$

Exercice 12. Formule de Wallis

Soit, pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t \, dt.$$

- 1. Établir une relation de récurrence entre I_{n+2} et I_n pour tout $n \in \mathbb{N}$. Calculer les valeurs de I_0 et de I_1 . En déduire I_n pour tout $n \in \mathbb{N}$.
- 2. Comparer les réels I_n , I_{n+1} et I_{n+2} . À l'aide de la question précdente en déduire la convergence de la suite $\left(\frac{I_{n+1}}{I_n}\right)_{n\in\mathbb{N}}$.
- 3. Montrer que:

$$\lim_{n \to \infty} \frac{2^2 4^2 6^2 \dots (2p)^2}{3^2 5^2 \dots (2p-1)^2 (2p+1)} = \frac{\pi}{2}.$$

Exercice 13. Soit x > 0 un réel. Calculer les valeurs de

$$I(x) = \int_0^x \frac{\arctan t}{1+t^2} dt$$
 et $J(x) = \int_0^x \frac{\arctan t}{(1+t)^2} dt$.

Quelles sont leurs limites quand $x \to +\infty$?

Exercice 14. Pour tous n, p dans \mathbb{N} , on définit

$$J_{n,p} = \int_0^{\pi/2} \sin^n t \cos^p t \, dt.$$

Trouver des relations de récurrence liant $J_{n,p}$ et $J_{n,p-2}$, ainsi que $J_{n,p}$ et $J_{n-2,p}$. En déduire la valeur de $J_{n,p}$.

TD 6 : Equations différentielles

Exercice 1. Résoudre sur \mathbb{R} l'équation différentielle (E) $y'-y=e^t$

Exercice 2. On considère sur $I =]-\infty, +\infty[$ l'équation différentielle

(E)
$$y' + 2y = t^2 - 3t$$

Trouver une solution particulière de (E) de la forme d'une fonction polynômiale $y(t) = at^2 + bt + c$ puis la résoudre.

Exercice 3. Résoudre sur l'intervalle $I =]0, +\infty[$ l'équation différentielle

$$(E) \quad 2ty' + y = t^4$$

puis donner la solution de (E) qui vaut 0 en 1.

Exercice 4. Montrer que l'équation différentielle $t^2y' + 2ty = 1$ n'a pas de solutions sur \mathbb{R} .

Exercice 5. On considère sur $I =]0, \pi[$ l'équation différentielle

$$(E) \quad y'\sin(t) - y\cos(t) = 1$$

Vérifier que la fonction sin est une solution non nulle de l'équation homogène associée à (E) et que la fonction $-\cos$ est une solution particulière de (E) puis donner toutes les solutions de E.

Exercice 6. Résoudre sur l'intervalle I proposé les équations différentielles suivantes :

$$(E_1)$$
 $(t \ln(t))y' + y = t, I =]1, +\infty[$ (E_2) $t(ty' + y - t) = 1, I =]-\infty, 0[$

Exercice 7.

Trouver les solutions des équations différentielles du second ordre suivantes :

(a)
$$u'' - u' - 2u = 0$$
; $u(0) = 3$; $u'(0) = 0$

(b)
$$u'' - 4u' + 4u = 0$$
; $u(0) = 3$; $u'(0) = -4$

(c)
$$u'' - 2u' + 5u = 0$$
; $u(0) = -1$; $u'(0) = 3$

Exercice 8. On considère sur $I =]-\infty, 0[$ l'équation différentielle

$$(E) \quad x(xy' + y - x) = 1$$

1. Montrer qu'une fonction f est solution de (E) ssi la fonction f_1 définie par $f_1(x) = xf(x)$ est solution de l'équation différentielle (E_1) :

$$(E_1) \quad y' = \frac{1}{x} + x$$

2. Résoudre l'équation différentielle (E_1) puis l'équation (E) dans I.

TD6 - Pour s'entrainer

Exercice 9. Trouver les solutions réelles des équations différentielles suivantes :

$$y'(t) + 2y(t) = 0$$
 ; $\frac{dx}{dt} - x = 0$; $y'(x) + 2y(x) = 0$ avec $(y - y')(0) = 0$

Exercice 10. Résoudre les équations différentielles suivantes :

$$y' = y + x$$
 avec $y(0) = 1$; $y' = \cos x + y$; $y' + 2y = (x - 2)^2$

Exercice 11. Trouver les solutions réelles des équations différentielles suivantes :

$$(1+x^2)y' - xy = 0$$
 ; $y' + y \tan x = 0$, pour $x \in]\frac{\pi}{2}, \frac{3\pi}{2}[$

Exercice 12. Résoudre sur l'intervalle I de \mathbb{R} proposé les équations différentielles suivantes :

1.
$$(x \ln x)y' + y = x$$
, $I =]1, +\infty[$; $x(xy' + y - x) = 1$, $I =]-\infty, 0[$

2.
$$2xy' + y = x^4$$
, $I =]-\infty, 0[$; $y' + 2y = x^2 - 3x$, $I = \mathbb{R}$

Exercice 13.

Trouver les solutions des équations différentielles du second ordre suivantes :

(a)
$$u'' - 6u' + 10u = 0$$
; $u(0) = 4$; $u'(0) = -3$

(b)
$$u'' + u' - 6u = 0$$
; $u(0) = 2$; $u'(0) = 3$

(c)
$$u'' + 8u' + 16u = 0$$
; $u(0) = 1$; $u'(0) = -2$

TD6 - Pour aller plus loin

Exercice 14. Résoudre l'équation différentielle $x(x^2-1)y'+2y=x^2$. (On déterminera $a,b,c\in\mathbb{R}$ tels que $\frac{1}{x(x^2-1)}=\frac{a}{x}+\frac{b}{x-1}+\frac{c}{x+1}$).

Exercice 15. On se propose d'intégrer sur l'intervalle le plus grand possible contenu dans $]0,\infty[$ l'équation différentielle :

(E)
$$y'(x) - \frac{y(x)}{x} - y(x)^2 = -9x^2$$
.

- 1. Déterminer $a \in]0, \infty[$ tel que y(x) = ax soit une solution particulière y_0 de (E).
- 2. Montrer que le changement de fonction inconnue : $y(x) = y_0(x) \frac{1}{z(x)}$ transforme l'équation (E) en l'équation différentielle

$$(E_1)$$
 $z'(x) + (6x + \frac{1}{x})z(x) = 1.$

- 3. Intégrer (E_1) sur $]0, \infty[$.
- 4. Donner toutes les solutions de (E) définies sur $]0, \infty[$.