SEACAR Nekton Analysis

Last compiled on 02 March, 2023

Contents

Important Notes	1
Libraries and Settings	1
File Import	2
Data Filtering	2
Managed Area Statistics	3
Appendix I: Managed Area Species Richness	5

Important Notes

These scripts were created by J.E. Panzik for SEACAR.

All scripts and outputs can be found on the SEACAR GitHub repository:

 $https://github.com/FloridaSEACAR/SEACAR_Panzik$

This markdown file is designed to be compiled by SEACAR_Nekton_ReportRender.R.

Libraries and Settings

Loads libraries used in the script. The inclusion of scipen option limits how frequently R defaults to scientific notation. Sets default settings for displaying warning and messages in created document, and sets figure dpi.

```
library(knitr)
library(data.table)
library(dplyr)
library(lubridate)
library(ggplot2)
library(scales)
library(tidyr)
library(tidyr)
library(gridExtra)
#library(tidyverse)
library(ggpubr)
```

```
library(scales)
options(scipen=999)
opts_chunk$set(warning=FALSE, message=FALSE, dpi=200)
```

File Import

Imports file that is determined in the SEACAR_Nekton_ReportRender.R script.

The command fread is used because of its improved speed while handling large data files. Only columns that are used by the script are imported from the file, and are designated in the select input.

The script then gets the name of the parameter as it appears in the data file and units of the parameter.

Data Filtering

Documentation on database filtering is provided here: SEACAR Documentation- Analysis Filters and Calculations.docx

The filtering that is performed by the script at this point removes rows that are missing values for ResultValue and EffortCorrection_100m2, and removes any EffortCorrection_100m2 that is 0 because it will cause an infinite number when determining Species Richness.

A group of unique ManagedAreaName, ProgramID, ProgramName, ProgramLocationID, SampleDate, and GearSize_m are being considered a "reference" for measurement. For each "reference", the number of observed species is summed and then divided by the EffortCorrection_100m2to determine the Species Richness per 100 square meters.

The ManagedAreaName values from the data are actually shortened versions, and are merged with the full versions. The species richness data is then written to a file. And the list of Managed Areas with observations is stored.

```
data <- data[!is.na(data$EffortCorrection_100m2),]
data <- data[data$EffortCorrection_100m2!=0,]
data <- data[!is.na(data$ResultValue),]</pre>
```

```
data <- data %>%
   group by (ManagedAreaName, ProgramID, ProgramName, ProgramLocationID,
            SampleDate, GearType, GearSize m) %>%
   summarise(ParameterName=parameter,
             Year=unique(Year), Month=unique(Month),
             N_Species=sum(ResultValue),
             EffortCorrection 100m2=unique(EffortCorrection 100m2),
             SpeciesRichness=N Species/unique(EffortCorrection 100m2))
#setnames(data, c("ManagedAreaName"), c("ShortName"))
data <- merge.data.frame(MA_All[,c("AreaID", "ManagedAreaName")],</pre>
                           data, by="ManagedAreaName", all=TRUE)
#data$ShortName <- NULL
fwrite(data, paste0(out_dir,"/Nekton_", param_name, "_UsedData.txt"), sep="|")
data$SampleDate <- as.Date(data$SampleDate)</pre>
MA_Include <- unique(data$ManagedAreaName[!is.na(data$N_Species)])</pre>
MA Include <- MA Include[order(MA Include)]
n <- length(MA_Include)</pre>
```

Managed Area Statistics

Gets summary statistics for each managed area. Uses piping from dplyr package to feed into subsequent steps. The following steps are performed:

- 1. Group data that have the same ManagedAreaName, Year, Month, GearType, and GearSize m.
 - Second summary statistics do not use the Month grouping and are only for ManagedAreaName and Year.
 - Third summary statistics do not use Year grouping and are only for ManagedAreaName and Month
- 2. For each group, provide the following information: Parameter Name (ParameterName), Number of Entries (N_Data), Lowest Value (Min), Largest Value (Max), Median, Mean, Standard Deviation, and a list of all Program IDs included in these measurements.
- 3. Sort the data in ascending (A to Z and 0 to 9) order based on ManagedAreaName then Year then Month
- 4. Write summary stats to a pipe-delimited .txt file in the output directory
 - Output Files in SEACAR GitHub

```
StandardDeviation=sd(SpeciesRichness),
             ProgramIDs=paste(sort(unique(ProgramID), decreasing=FALSE),
                              collapse=', '))
MA_YM_Stats <- as.data.table(MA_YM_Stats[order(MA_YM_Stats$ManagedAreaName,
                                               MA_YM_Stats$Year,
                                               MA_YM_Stats$Month,
                                               MA_YM_Stats$GearSize_m), ])
fwrite(MA YM Stats, paste0(out dir,"/Nekton ", param name,
                           " ManagedArea YearMonth Stats.txt"), sep="|")
rm(MA YM Stats)
MA_Y_Stats <- data %>%
   group by(AreaID, ManagedAreaName, Year, GearType, GearSize m) %>%
   summarize(ParameterName=parameter,
             N_Data=length(na.omit(SpeciesRichness)),
             Min=min(SpeciesRichness),
             Max=max(SpeciesRichness),
             Median=median(SpeciesRichness),
             Mean=mean(SpeciesRichness),
             StandardDeviation=sd(SpeciesRichness),
             ProgramIDs=paste(sort(unique(ProgramID), decreasing=FALSE),
                              collapse=', '))
MA_Y_Stats <- as.data.table(MA_Y_Stats[order(MA_Y_Stats$ManagedAreaName,
                                             MA_Y_Stats$Year,
                                             MA Y Stats$GearSize m), ])
fwrite(MA_Y_Stats, paste0(out_dir,"/Nekton_", param_name,
                          "_ManagedArea_Year_Stats.txt"), sep="|")
MA_M_Stats <- data %>%
   group_by(AreaID, ManagedAreaName, Month, GearType, GearSize_m) %>%
   summarize(ParameterName=parameter,
             N_Data=length(na.omit(SpeciesRichness)),
             Min=min(SpeciesRichness),
             Max=max(SpeciesRichness),
             Median=median(SpeciesRichness),
             Mean=mean(SpeciesRichness),
             StandardDeviation=sd(SpeciesRichness),
             ProgramIDs=paste(sort(unique(ProgramID), decreasing=FALSE),
                              collapse=', '))
MA_M_Stats <- as.data.table(MA_M_Stats[order(MA_M_Stats$ManagedAreaName,
                                             MA_M_Stats$Month,
                                             MA_M_Stats$GearSize_m), ])
fwrite(MA_M_Stats, pasteO(out_dir,"/Nekton_", param_name,
                          "_ManagedArea_Month_Stats.txt"), sep="|")
rm(MA_M_Stats)
MA_Ov_Stats <- data %>%
   group_by(AreaID, ManagedAreaName, GearType, GearSize_m) %>%
   summarize(ParameterName=parameter,
             N_Years=length(unique(na.omit(Year))),
             EarliestYear=min(Year),
             LatestYear=max(Year),
             N_Data=length(na.omit(SpeciesRichness)),
```

```
Min=min(SpeciesRichness),
              Max=max(SpeciesRichness),
              Median=median(SpeciesRichness),
              Mean=mean(SpeciesRichness),
              StandardDeviation=sd(SpeciesRichness),
              ProgramIDs=paste(sort(unique(ProgramID), decreasing=FALSE),
                                collapse=', '))
MA Ov Stats <- as.data.table(MA Ov Stats[order(MA Ov Stats$ManagedAreaName,
                                                  MA Ov Stats$GearSize m), ])
MA Ov Stats$Year MinRichness <- NA
MA_Ov_Stats$Year_MaxRichness <- NA
for(m in 1:nrow(MA_Ov_Stats)){
   ma <- MA_Ov_Stats$ManagedAreaName[m]</pre>
   gear <- MA_Ov_Stats$GearType[m]</pre>
   size <- MA_Ov_Stats$GearSize_m[m]</pre>
   if (MA_Ov_Stats$N_Data[m] == 0) {
      next
   }
   ds <- MA_Y_Stats[MA_Y_Stats$ManagedAreaName==ma &
                        MA_Y_Stats$GearType==gear &
                        MA_Y_Stats$GearSize_m==size,]
   min <- min(ds$Mean)
   max <- max(ds$Mean)</pre>
   year min <- ds$Year[ds$Mean==min]</pre>
   year max <- ds$Year[ds$Mean==max]</pre>
   MA_Ov_Stats$Year_MinRichness[m] <- year_min</pre>
   MA_Ov_Stats$Year_MaxRichness[m] <- year_max</pre>
MA_Ov_Stats$ProgramIDs <- gsub("", NA, MA_Ov_Stats$ProgramIDs)
fwrite(MA_Ov_Stats, paste0(out_dir,"/Nekton_", param_name,
                             "_ManagedArea_Overall_Stats.txt"), sep="|")
MA_Ov_Stats <- MA_Ov_Stats[!is.na(MA_Ov_Stats$EarliestYear), ]</pre>
```

Appendix I: Managed Area Species Richness

The plots shown here are the species richness for each managed area with a yearly average, separated by gear size.

- 1. Set common plot theme.
- 2. Determine the earliest and latest year of the data to create x-axis scale and intervals
- 3. determine the upper and lower limit of the plot for better y-axis labels
- 4. Determines what gear types are present and adjusts legend entries
- 5. Add the plot line
- 6. Set the plot type as a point plot with the size of the points
- 7. Create the title, x-axis, y-axis, and color fill labels
- 8. Set the y and x limits
- 9. Apply common plot theme
- 10. Create file name to save figure
- 11. Save figure as png file

```
plot_theme <- theme_bw() +</pre>
      theme(panel.grid.major = element_blank(),
            panel.grid.minor = element_blank(),
            text=element_text(family="Arial"),
            #title=element_text(face="bold"),
            plot.title=element_text(hjust=0.5, size=12, color="#314963"),
            plot.subtitle=element_text(hjust=0.5, size=10, color="#314963"),
            legend.title=element text(size=10),
            legend.text.align = 0,
            axis.title.x = element_text(size=10, margin = margin(t = 5, r = 0,
                                                          b = 10, 1 = 0)),
            axis.title.y = element_text(size=10, margin = margin(t = 0, r = 10,
                                                           b = 0, 1 = 0)),
            axis.text=element_text(size=10),
            axis.text.x=element_text(angle = -45, hjust = 0))
gear_colors <- c("Trawl (4.8 m)"="#00374f",</pre>
                  "Trawl (6.1 m)"="#007c99",
                  "Seine (183 m)"="#00c9db")
gear_shapes <- c("Trawl (4.8 m)"=21,</pre>
                  "Trawl (6.1 \text{ m})"=22,
                  "Seine (183 m)"=24)
if(n==0){
      print("There are no monitoring locations that qualify.")
} else {
      for (i in 1:n) {
            plot_data <- MA_Y_Stats[MA_Y_Stats$ManagedAreaName==MA_Include[i]]</pre>
            plot_data$GearType_Plot <- pasteO(plot_data$GearType, " (",</pre>
                                           plot_data$GearSize_m, " m)")
            t_max <- max(MA_Ov_Stats$LatestYear[MA_Ov_Stats$ManagedAreaName==
                                                        MA_Include[i]])
            t_min <- min(MA_Ov_Stats$EarliestYear[MA_Ov_Stats$ManagedAreaName==
                                                           MA_Include[i]])
            t <- t_max-t_min
            if(t>=30){
                  brk <- -10
            else if(t<30 & t>=10){
                  brk <- -5
            else if(t<10 & t>=4){
                  brk < -2
            }else if(t<4){</pre>
                  brk <- -1
            y_range <- max(plot_data$Mean) - min(plot_data$Mean)</pre>
            y_min <- if(min(plot_data$Mean)-(0.1*y_range)<0){</pre>
               y_min <- 0
            } else {
```

```
y_min <- min(plot_data$Mean)-(0.1*y_range)</pre>
            }
            y_max <- max(plot_data$Mean)+(0.1*y_range)</pre>
            gear_colors_plot <- gear_colors[unique(plot_data$GearType_Plot)]</pre>
            gear_shapes_plot <- gear_shapes[unique(plot_data$GearType_Plot)]</pre>
            p1 <- ggplot(data=plot_data, group=as.factor(GearType_Plot)) +</pre>
               geom_line(aes(x=Year, y=Mean, color=as.factor(GearType_Plot)),
                          size=0.75, alpha=1) +
               geom_point(aes(x=Year, y=Mean, fill=as.factor(GearType_Plot),
                               shape=as.factor(GearType Plot)), size=2,
                           color="#333333", alpha=1) +
               labs(title="Nekton Species Richness",
                    subtitle=MA_Include[i],
                    x="Year", y=bquote('Richness (species/100'*~m^{2}*')'),
                    fill="Gear type", color="Gear type", shape="Gear type") +
               scale_x_continuous(limits=c(t_min-0.25, t_max+0.25),
                                   breaks=seq(t_max, t_min, brk)) +
               scale_y_continuous(limits=c(y_min, y_max),
                                   breaks=pretty_breaks(n=5)) +
               scale_fill_manual(values=gear_colors_plot) +
               scale_color_manual(values=gear_colors_plot) +
               scale shape manual(values=gear shapes plot) +
               plot_theme
            outname <- paste0("Nekton_", gsub(" ", "", MA_Include[i]), "_",</pre>
                               param_name, ".png")
            png(paste0(out_dir, "/Figures/", outname),
                width = 8,
                height = 4,
                units = "in",
                res = 200)
            #rm(plot_data)
            print(p1)
            dev.off()
            ResultTable <- MA_Ov_Stats[MA_Ov_Stats$ManagedAreaName==MA_Include[i],]</pre>
            ResultTable <- ResultTable[,-c("AreaID", "ManagedAreaName",</pre>
                                               "ProgramIDs", "GearType Plot")]
            t1 <- ggtexttable(ResultTable, rows = NULL,
                               theme=ttheme(base_size=7))
            print(ggarrange(p1, t1, ncol=1, heights=c(0.85, 0.15)))
            cat("\n \n \n \n")
      }
}
```

Nekton Species Richness Apalachicola Bay Aquatic Preserve

e_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
	Species Richness	21	2000	2021	1664	0.1851852	24.81481	7.777778	7.790687	3.621108	2003

Nekton Species Richness Apalachicola National Estuarine Research Reserve

ze_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
3	Species Richness	21	2000	2021	1931	0.1851852	24.81481	7.407407	7.62424	3.724814	2003

Nekton Species Richness Boca Ciega Bay Aquatic Preserve

ize_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
.1	Species Richness	32	1989	2020	868	0	4.5871560	1.0118726	1.3286098	0.9235100	2002
3.0	Species Richness	25	1996	2020	997	0	0.9223301	0.2912621	0.3142437	0.1651043	1996

Size_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness	Y
6.1	Species Richness	20	1999	2020	2555	0	3.372909	1.349164	1.305283	0.5310301	2015	

Nekton Species Richness Cockroach Bay Aquatic Preserve

Size_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
3.1	Species Richness	32	1989	2020	1666	0	3.747676	0.7495353	0.8377281	0.5409541	2012
3.0	Species Richness	25	1996	2020	476	0	0.776699	0.1941748	0.2139594	0.1190414	1997

Nekton Species Richness Lemon Bay Aquatic Preserve

ize_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
1	Species Richness	1	2001	2001	3	1.48408	2.428494	2.023745	1.978773	0.4738107	2001

Nekton Species Richness Nature Coast Aquatic Preserve

ize_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
1	Species Richness	1	2003	2003	2	0	0.9444145	0.4722072	0.4722072	0.6678019	2003

Nekton Species Richness Pinellas County Aquatic Preserve

ize_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
.1	Species Richness	32	1989	2020	2903	0	6.2061522	0.7100861	0.9508383	0.7793933	2000
3.0	Species Richness	25	1996	2020	2621	0	0.9223301	0.2184466	0.2576835	0.1548152	1996

Nekton Species Richness Rookery Bay Aquatic Preserve

Size_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness	,
.1	Species Richness	10	2000	2009	535	0	2.563411	0.9444145	0.9368491	0.4215923	2004	

Size_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness	Y
6.1	Species Richness	20	1999	2020	3098	0	3.372909	1.214247	1.240812	0.5320749	2015	

Nekton Species Richness St. Martins Marsh Aquatic Preserve

ze_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
	Species Richness	1	2003	2003	1	1.420172	1.420172	1.420172	1.420172	NA	2003

Nekton Species Richness Terra Ceia Aquatic Preserve

ize_m	ParameterName	N_Years	EarliestYear	LatestYear	N_Data	Min	Max	Median	Mean	StandardDeviation	Year_MinRichness
.1	Species Richness	32	1989	2020	709	0	4.2161360	0.7420399	1.0343022	0.8365280	2001
3.0	Species Richness	25	1996	2020	921	0	0.7524272	0.2669903	0.2750809	0.1325194	1997