Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра информатики Дисциплина: Методы численного анализа

ОТЧЁТ

к лабораторной работе на тему

Аппроксимация граничных условий второго рода в методе конечных разностей на примере уравнения теплопроводности

Выполнил: студент группы 153501 Тимофеев Кирилл Андреевич

Проверил: Анисимов Владимир Яковлевич

Цели выполнения задания

Ознакомиться с наиболее часто применяемыми способами аппроксимации граничных условий второго рода (граничных условий (ГУ) Неймана) в методе конечных разностей (на примере ГУ для одномерного нестационарного уравнения теплопроводности).

Краткие теоретические сведения

Задачи, которые будут использоваться для анализа свойств численных решений с ГУ второго рода, формулируются так: в стержне длиной L с menлоизолированной боковой поверхностью торец x=0 nodдерживается при nocmoянной температуре T_0 (ГУ первого рода), а торец x=1 - menлоизолирован (ГУ второго рода); температуропроводность материала стержня постоянна и равна a; в начальный момент времени t=0 стержень нагрет до температуры $T_{\text{нач}}(x)$ (координата x отсчитывается от левого торца стержня (рис. 2.4)). Найти распределение температуры по стержню в любой момент времени, т. е. найти функцию T(x, t) для $0 < x \le L$ и t > 0.

Рис. 2.4.

Стержень круглого сечения нарисован условно — сечение может иметь любую форму, и если боковая поверхность теплоизолирована, то температура любой точки стержня может зависеть только от координаты x и не будет зависеть от координаты поперек стержня).

Искомая функция T(x,t) является решением одномерного уравнения теплопроводности, которое в безразмерных координатах имеет вид:

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}, \ 0 < x < 1, \ 0 < t \le T.$$

Граничные условия:

$$T(0,t) = T_0$$
, $\frac{\partial T(1,t)}{\partial x} = 0$, для $0 < t \le T$

(на границе x = 0 граничное условие первого рода, а при x = 1 – второго).

Начальные условия: $T(x,0) = T_{\text{нач}}(x)$ при 0 < x < 1.

Способы реализации ГУ второго рода

Методы конечных разностей, применяемые для численного решения задач с граничными условиями второго (и третьего) рода, не имеют никаких принципиальных отличий от методов, применяемых для задач с ГУ первого рода. Для решения поставленной задачи методом конечных разностей необходимо представить граничное условие второго рода в «естественном» для этого метода виде, т. е. с использованием численного решения (величин T_i^n). Иными словами, производную в граничном условии надо заменить ее разностной аппроксимацией, а это можно сделать многими способами. Рассмотрим только два способа реализации ГУ второго рода, которые будут использованы в расчетах. При рассмотрении используем ту же равномерную сетку, что и в лабораторной работе №13.

Первый способ. Приближенно значение производной при x=1 можно записать, используя аппроксимацию производной по x левой разностью:

$$\frac{\partial T}{\partial x} = \frac{T_N^n - T_{N-1}^n}{h},\tag{2.43}$$

таблица 2.1.

а поскольку значение этой производной в рассматриваемой задаче равно нулю, то аппроксимация граничного условия выглядит так:

$$T_N^n - T_{N-1}^n = 0.$$
 (2.44)

Численное решение ДУ с граничным условием второго рода при x=1 происходит почти так же, как и с ГУ первого рода: на каждом шаге по времени с помощью разностной схемы вычисляются все T_i^n при, $1 \le i \le N-1$, а значение T_N^n (на границе) вычисляется по формуле (2.44). Это и есть первый способ реализации граничного условия второго рода. Следует обратить внимание на то, что разностная аппроксимация первой производной левой разностью (формула (2.43)) имеет первый порядок точности по h, т. е. O(h).

Второй способ можно пояснить на примере явной разностной схемы аппроксимации уравнения теплопроводности. Алгоритм явной схемы можно записать так:

$$T_i^{n+1} = T_i^n + \frac{\tau}{h^2} (T_{i+1}^n - 2T_i^n + T_{i-1}^n)$$
 (2.45)

Из этого выражения следует, что для вычисления величины T_1^0 требуется какая-то величина T_{N+1}^n , которая *не входит* в расчетную область. Однако ее можно вычислить, используя аппроксимацию производной в граничном условии центральной разностью:

$$\frac{\partial T}{\partial x} = \frac{T_{N+1}^n - T_{N-1}^n}{2h},\tag{2.46}$$

а поскольку значение этой производной в рассматриваемой задаче равно нулю, то аппроксимация граничного условия выглядит так:

$$T_N^n = T_{N-1}^n. (2.47)$$

Способ реализации граничного условия здесь несколько иной: на каждом шаге по времени с помощью разностной схемы вычисляются все T_i^{n+1} при, $\mathbf{1} \leq \mathbf{i} \leq \mathbf{N} - \mathbf{1}$, а при вычислении T_i^0 в разностной схеме заменяются T_{N+1}^n на T_{N-1}^n (используется равенство (2.45)).

Обратите внимание на то, что разностная аппроксимация первой производной центральной разностью (формула (2.46)) имеет второй порядок точности по h, т.е. $O(h^2)$. Рассмотренному выше второму способу реализации ГУ второго рода можно дать другую интерпретацию, которая может оказаться более наглядной и полезной в сложных задачах. Эта другая интерпретация связана с введением «фиктивных» узлов (узлов вне зоны расчета). На рис.(2.5) показаны такие узлы (линия узлов, находящихся на

рис.(2.5)

расстоянии h от границы, на которой поставлено ГУ второго рода).

Если температуру в этих узлах задавать равной значениям температуры в соответствующих симметричных относительно границы узлах (согласно равенству (2.45)), то для расчета будет использоваться *одна и та же* разностная схема для всех узлов (включая и узлы при i=N). В работе должна быть предусмотрена возможность численного решения уравнения

таблица 2.1.

теплопроводности с помощью неявной и явной разностных схем. Возможность использования различных граничных и начальных условий ограничена задачами, которые позволяют в достаточной мере познакомиться с основными способами реализации ГУ второго рода и их свойствами.

Шаги сетки выбираются также как и в лабораторной работе №13. Расчетная область по времени, реализованная в программе, составляет во всех случаях отрезок [0, 1]. Результаты расчета выводятся в виде таблицы (2.10). После расчета необходимо построить такие же, как в лабораторной работе №13, графики решений.

Программная реализация

```
import numpy as np
import math
from matplotlib import pyplot as plt
from scipy import integrate
from mpl toolkits.mplot3d import Axes3D
A = -1
B = 1
k = 0.5
phi = lambda x: abs(x)
g1 = lambda t: 1
g2 = lambda t: 1
f = lambda x, t: 0
T = 0.4
def explicit_method 1(h, tau, build plot=False):
    M = int(T / tau) + 1
    N = int((B - A) / h) + 1
    x values = np.linspace(A, B, N)
    t values = np.linspace(0, tau, M)
    matrix = np.zeros((M, N))
    matrix[0] = [phi(x) for x in x values]
    matrix[:, 0] = [q1(t) for t in t values]
    for i in range (M - 1):
        for j in range(1, N - 1):
            matrix[i + 1][j] = k * tau / h ** 2 * matrix[i][j - 1]
            matrix[i + 1][j] += (1 - 2 * k * tau / h ** 2) * matrix[i][j]
            matrix[i + 1][j] += k * tau / h ** 2 * matrix[i][j + 1]
            matrix[i + 1][j] += tau * f(x values[j], t values[i])
        matrix[i + 1][-1] = matrix[i + 1][-2] + h * g2(t values[i])
    if build plot:
        fig = plt.figure()
        ax = fig.add subplot(111, projection='3d')
        for i in range(len(t values) - 1, -2, -1000):
            x = x values
            y = [\overline{i} * tau] * len(x)
            z = matrix[i]
            ax.plot(x, y, z)
        plt.show()
    return matrix
```

```
def explicit method 2(h, tau, build plot=False):
    M = int(T / tau) + 1
    N = int((B - A) / h) + 1
    x values = np.linspace(A, B, N)
    t values = np.linspace(0, tau, M)
    matrix = np.zeros((M, N))
    matrix[0] = [phi(x) for x in x values]
    matrix[:, 0] = [q1(t) for t in t values]
    for i in range (M - 1):
        for j in range(1, N - 1):
            matrix[i + 1][j] = k * tau / h ** 2 * matrix[i][j - 1]
            matrix[i + 1][j] += (1 - 2 * k * tau / h ** 2) * matrix[i][j]
            matrix[i + 1][j] += k * tau / h ** 2 * matrix[i][j + 1]
            matrix[i + 1][j] += tau * f(x_values[j], t_values[i])
        matrix[i + 1][-1] = k * tau / h ** 2 * matrix[i][-2]
        matrix[i + 1][-1] += (1 - 2 * k * tau / h ** 2) * <math>matrix[i][-1]
        matrix[i + 1][-1] += k * tau / h ** 2 * (2 * h * g2(t values[i]) +
matrix[i + 1][-2]
        matrix[i + 1][-1] += tau * f(x values[j], t values[i])
    if build plot:
        fig = plt.figure()
        ax = fig.add subplot(111, projection='3d')
        for i in range(len(t values) - 1, -2, -1000):
            x = x values
            y = [\overline{i} * tau] * len(x)
            z = matrix[i]
            ax.plot(x, y, z)
        plt.show()
    return matrix
def implicit method 1(h, tau, build plot=False):
    M = int(T / tau) + 1
    N = int((B - A) / h) + 1
    x \text{ values} = \text{np.linspace}(A, B, N)
    t values = np.linspace(0, tau, M)
    result = np.zeros((M, N))
    result[0] = [phi(x) for x in x values]
    result[:, 0] = [g1(t) for t in t values]
    matrix = np.zeros((N, N))
    for j in range (1, N - 1):
        matrix[j][j-1] = -k * tau / h ** 2
        matrix[j][j] = 1 + 2 * k * tau / h ** 2
        matrix[j][j + 1] = -k * tau / h ** 2
    matrix[0][0] = 1
    matrix[-1][-1] = 1
    matrix[-1][-2] = -1
```

```
for i in range(1, M):
        b = np.array([tau * f(x, t values[i] + tau) for x in x values]) +
result[i - 1]
        b[0] = g1(t values[i])
        b[-1] = h * g2(t values[i])
        result[i] = np.linalg.solve(matrix, b)
    if build plot:
        fig = plt.figure()
        ax = fig.add subplot(111, projection='3d')
        for i in range(len(t values) -1, -2, -1000):
            x = x values
            y = [\overline{i} * tau] * len(x)
            z = result[i]
            ax.plot(x, y, z)
        plt.show()
    return result
def implicit method 2(h, tau, build plot=False):
   M = int(T / tau) + 1
   N = int((B - A) / h) + 1
    x values = np.linspace(A, B, N)
    t values = np.linspace(0, tau, M)
   result = np.zeros((M, N))
   result[0] = [phi(x) for x in x values]
   result[:, 0] = [g1(t) for t in t_values]
   matrix = np.zeros((N + 1, N + 1))
    for j in range (1, N):
        matrix[j][j-1] = -k * tau / h ** 2
        matrix[j][j] = 1 + 2 * k * tau / h ** 2
        matrix[j][j + 1] = -k * tau / h ** 2
   matrix[0][0] = 1
   matrix[-1][-1] = 1
   matrix[-1][-3] = -1
    for i in range (1, M):
        b = np.zeros(N + 1)
        b[1:-1] = np.array([tau * f(x, t values[i] + tau) for x in
x values[1:]]) + result[i - 1][1:]
        b[0] = g1(t values[i])
        b[-1] = 2 * h * g2(t_values[i])
        result[i] = np.linalg.solve(matrix, b)[:-1]
    if build plot:
        fig = plt.figure()
        ax = fig.add subplot(111, projection='3d')
        for i in range(len(t_values) - 1, -2, -1000):
            x = x values
            y = [\overline{i} * tau] * len(x)
            z = result[i]
            ax.plot(x, y, z)
```

```
plt.show()
    return result
def task():
    h = (B - A) / 500
    tau = 0.5 * (h ** 2) / k
    # explicit_method_1(h, tau, build_plot=True)
    # explicit method_2(h, tau, build_plot=True)
    # implicit method 1(h, tau, build plot=True)
    # implicit method 2(h, tau, build plot=True)
from approximation import task
from statistics import stats
if __name__ == '__main__':
    task()
    stats()
from prettytable import PrettyTable
import matplotlib.pyplot as plt
import numpy as np
from approximation import explicit method 1, explicit method 2,
implicit method 1, implicit method 2, A, B
variants_1 = [
    # N, tau, t1, t2
    [10, 0.001, 0.25, 0.3],
    [10, 0.0005, 0.25, 0.3],
    [10, 0.00025, 0.25, 0.3],
    [10, 0.000125, 0.25, 0.3],
    [10, 0.0000625, 0.25, 0.3]
1
variants 2 = [
    # N, t1, t2
    [10, 0.25, 0.3],
    [20, 0.25, 0.3],
    [30, 0.25, 0.3],
    [40, 0.25, 0.3],
    [50, 0.25, 0.3]
1
methods = [
    [explicit method 1, 'Explicit method #1'],
    [explicit_method_2, 'Explicit method #2'],
    [implicit method 1, 'Implicit method #1'],
    [implicit_method_2, 'Implicit method #2']
]
table 1 = PrettyTable()
table 2 = PrettyTable()
table_3 = PrettyTable()
table 4 = PrettyTable()
table 1.field names = ['N', 'tau', 's(t=t1)', 's(t=t2)', 'max(t=t1)',
'max(t=t2)']
```

```
table 2.field names = ['N', 'tau', 's(t=t1)', 's(t=t2)', 'max(t=t1)',
'max(t=t2)']
table 3.field names = ['N', 'tau', 's(t=t1)', 's(t=t2)', 'max(t=t1)',
'max(t=t2)']
table 4.field names = ['N', 'tau', 's(t=t1)', 's(t=t2)', 'max(t=t1)',
'max(t=t2)']
errors t1 = []
errors_t2 = []
def stats():
    for method, name in methods:
        print(name)
print('
__')
        for N, tau, t1, t2 in variants 1:
            h = (B - A) / N
            solution 1 = method(h, tau)
            solution 2 = method(h, tau / 2)
            err t1 = (solution 1[int(t1 / tau)] - solution 2[2 * int(t1 /
tau) ])
            err t2 = (solution 1[int(t2 / tau)] - solution 2[2 * int(t2 /
tau)])
            errors t1.append((tau, np.linalg.norm(err t1)))
            errors_t2.append((tau, np.linalg.norm(err t2)))
            table 1.add row([N, tau, err t1.std(), err t2.std(),
max(abs(err t1)), max(abs(err t2))])
        print('h is fixed')
        print(table 1)
        table 1.clear rows()
        plt.xscale('log')
        plt.xlabel('tau', fontsize=18)
        plt.ylabel('error', fontsize=18)
        plt.plot([tau for tau, err in errors t1], [tau for tau, err in
errors_t1], label='t = t1')
        plt.legend()
        plt.show()
        errors t1.clear()
        plt.xscale('log')
        plt.xlabel('tau', fontsize=18)
        plt.ylabel('error', fontsize=18)
        plt.plot([tau for tau, err in errors t2], [tau for tau, err in
errors t2], label='t = t2')
        plt.legend()
        plt.show()
        errors t2.clear()
        for N, t1, t2 in variants 2:
            h = (B - A) / N
            tau = 0.0001
            solution 1 = method(h, tau)
            solution 2 = method(h / 2, tau)
            err t1 = (solution 1[int(t1 / tau)] - solution 2[int(t1 /
tau) ][::2])
            err t2 = (solution 1[int(t2 / tau)] - solution 2[int(t2 /
tau)][::2])
            errors t1.append((h, np.linalg.norm(err t1)))
```

```
errors t2.append((h, np.linalg.norm(err t2)))
            table 2.add row([N, tau, err t1.std(), err t2.std(),
max(abs(err t1)), max(abs(err t2))])
        print('tau is fixed')
        print(table 2)
        table 2.clear rows()
        plt.xscale('log')
        plt.xlabel('h', fontsize=18)
        plt.ylabel('error', fontsize=18)
       plt.plot([h for h, err in errors t1], [h for h, err in errors t1],
label='t = t1')
        plt.legend()
        plt.show()
        errors_t1.clear()
        plt.xscale('log')
        plt.xlabel('h', fontsize=18)
        plt.ylabel('error', fontsize=18)
       plt.plot([h for h, err in errors t2], [h for h, err in errors t2],
label='t = t2')
        plt.legend()
        plt.show()
        errors t2.clear()
        print('tau is h ^ 2 / 6 (relative to tau)')
        for N, t1, t2 in variants 2:
            h = (B - A) / N
            tau = (h ** 2) / 6
            solution 1 = method(h, tau)
            solution 2 = method(h, tau / 2)
            err t1 = (solution 1[int(t1 / tau)] - solution 2[2 * int(t1 /
tau) ])
            err t2 = (solution 1[int(t2 / tau)] - solution 2[2 * int(t2 /
tau) ])
            table 3.add row([N, tau, err t1.std(), err t2.std(),
max(abs(err t1)), max(abs(err t2))])
        print(table 3)
        table 3.clear rows()
        print('tau is h ^ 2 / 6 (relative to h)')
        for N, t1, t2 in variants 2:
            h = (B - A) / N
            tau = (h ** 2) / 6
            solution 1 = method(h, tau)
            solution 2 = method(h / 2, tau)
            err t1 = (solution 1[int(t1 / tau)] - solution 2[int(t1 /
tau)][::2])
            err t2 = (solution 1[int(t2 / tau)] - solution 2[int(t2 /
tau)][::2])
            table 4.add row([N, tau, err t1.std(), err t2.std(),
max(abs(err t1)), max(abs(err t2))])
        print(table 4)
```

Полученные результаты

ЗАДАЧА1. Найти приближенное решение начально-краевой задачи для уравнения теплопроводности:

$$\begin{cases} \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + f(x,t), & a < x < b, \ 0 < t \le T, \\ u(a,t) = g_1(t), & \frac{\partial u}{\partial t}(b,t) = g_2(t), \ 0 < t \le T, \\ u(x,0) = \varphi(x), & a \le x \le b, \end{cases}$$

используя явную и неявную разностные схемы. Исходные данные указаны в табл. 2.9. Изобразить графики зависимости приближенного решения от x при t = 0, 2τ , 4τ ,...T.

№	а	b	k	T	$\varphi(x)$	$g_1(t)$	$g_2(t)$	f(x,t)
2	-1	1	0.5	0.4	x	1	1	0

1. Явная схема (аппроксимация производной левой разностью)

Выше представлены графики численного решения: в первом случае взяли шаг $h=\frac{b-a}{200}$, во втором – $h=\frac{b-a}{500}$.

Далее будут представлены таблицы при произвольном взятии $t_1=0.25,\ t_2=0.3$ с нахождением обеих характеристик ошибки численного решения: по среднеквадратичному отклонению и по максимуму модуля разности.

Таблица результатов для фиксированного h(N):

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t=t_{n1})$	$max(t = t_{n2})$
10	0.001	6.083951305108566 e-05	5.579226650329204 e-05	0.000105520845257 61174	9.381030058186 468e-05
10	0.0005	3.038586604090092 7e-05	2.787284158119085 e-05	5.275691948863903 e-05	4.690174271787 528e-05
10	0.00025	1.518447421113331 9e-05	1.393059880920059 6e-05	2.637760095725028 e-05	2.345002668863 172e-05
10	0.000125	7.590124142342779 e-06	6.963844047525788 4e-06	1.318858786719667 7e-05	1.172480303818 2241e-05
10	6.25e-05	3.794534076873064 e-06	3.481558230682302 e-06	6.594240875068547 e-06	5.862348839036 358e-06

Графики зависимости ошибки численного решения от т в точках $t_{_1}$ и $t_{_2}$

Таблица результатов для фиксированного τ :

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t = t_{n1})$	$max(t=t_{n2})$
10	0.0001	0.004236065312913 646	0.004862588812475 398	0.00897943343811 8356	0.01167478478490 3247
20	0.0001	0.001199587972141 4236	0.001497207137499 9365	0.00330768609842 06924	0.00455339733510 5069
30	0.0001	0.000618034618214 664	0.000811827909306 6644	0.00196313037658 7907	0.00276735429385 1776
40	0.0001	0.000399222789756 966	0.000542576658474 2156	0.00138494632247 19916	0.00197766314869 31873
50	0.0001	0.000289670488603 71707	0.000403269142842 8413	0.00106690396937 62539	0.00153589749458 80455

Графики зависимости ошибки численного решения от h в точках t_1 и t_2 соответственно:

Таблица результатов для $au = \frac{h^2}{6}$ относительно h:

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t=t_{n1})$	$max(t=t_{n2})$
10	0.0066 666666 666666 68	0.000413098503766 0129	0.000380178630381 85355	0.00071012275102 56658	0.00063522102118 65161
20	0.0016 666666 666666 67	9.805396822435236 e-05	9.099646777473177 e-05	0.00016870836702 65932	0.00015256043558 647958
30	0.0007 407407 407407 407	4.277486821661204 e-05	3.979788207350345 e-05	7.42419996711540 8e-05	6.73737453228962 e-05
40	0.0004 166666 666666 6675	2.386297936884941 2e-05	2.224036297833858 e-05	4.16705561238628 34e-05	3.79000221655267 9e-05
50	0.0002 666666 666666 667	1.519116093515303 e-05	1.416306754778572 7e-05	2.66279849029937 84e-05	2.42358650229812 5e-05

Таблица результатов для $au = rac{h^2}{6}\,$ относительно au :

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t=t_{n1})$	$max(t=t_{n2})$
10	0.0066	0.004188889875095	0.004780857975347	0.00881912147951	0.01137417599084
	666666 666666	468	526	125	4115
	68				
20	0.0016	0.001188120873403	0.001486576907978	0.00326332766525	0.00451577770472
	666666	3297	9994	1392	9551
	666666				
	67				
30	0.0007	0.000615985148416	0.000811917814160	0.00195594257888	0.00276900272061
	407407	8361	2111	97578	5754
	407407				
	407				
40	0.0004	0.000397829380985	0.000541475115320	0.00137951616900	0.00197378941281
	166666	44717	0336	06719	40088
	666666				
	6675				
50	0.0002	0.000289265297062	0.000403444265563	0.00106541245423	0.00153680192825
	666666	5794	7222	33054	71144
	666666				
	667				

Для последующих способов я не буду писать данные пояснения, так как они будут идентичны.

2. Явная схема (аппроксимация производной центральной разностью)

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t = t_{n1})$	max(t
					$= t_{n2}$)
10	0.001	4.723245373328425 e-05	3.889864988051209 5e-05	0.000107247125214 42692	9.714134818894 493e-05
10	0.0005	2.359392547529224 e-05	1.944151449908392 3e-05	5.362866942265620 6e-05	4.857750775411 063e-05
10	0.00025	1.179139986622064 8e-05	9.718803172684687 e-06	2.681562436368523 e-05	2.429046300644 888e-05
10	0.000125	5.894310769373536 e-06	4.858912881981175 e-06	1.340813617112246 4e-05	1.214565883123 0755e-05
10	6.25e-05	2.946808313883246 4e-06	2.429334253459118 e-06	6.704149119407532 e-06	6.072936045375 954e-06

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t = t_{n1})$	$max(t = t_{n2})$
10	0.0001	0.002355309954402 2264	0.002087710827616 8076	0.00623685822004 5993	0.00565146981309 38346
20	0.0001	0.000562546103268 5054	0.000493880182525 394	0.00151022982695 78096	0.00137675804816 15638
30	0.0001	0.000244505694048 4604	0.000212100029968 3911	0.00066764613601 78854	0.00060930395034 26989
40	0.0001	0.000133958728418 57618	0.000114056735392 15733	0.00037489255755 4074	0.00034235513780 19529
50	0.0001	8.272192365673557 e-05	6.878731656990887 e-05	0.00023976538984 810114	0.00021911049246 736702

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t=t_{n1})$	$max(t=t_{n2})$
10	0.0066 666666 666666 68	0.000322367821827 8181	0.000267682124165 2717	0.00071974493614 39623	0.00065425522197 80395
20	0.0016 666666 666666 67	7.290729291957187 e-05	6.112253843373224 e-05	0.00016982869841 319914	0.00016358135425 953435
30	0.0007 407407 407407 407	3.167979235727355 e-05	3.188795504795445 e-05	7.46566802988235 5e-05	0.00013547797525 87021
40	0.0004 166666 666666 6675	1.878520148434441 e-05	2.287392064601840 8e-05	6.34213510921632 9e-05	0.00011070689484 538043
50	0.0002 666666 666666 667	1.333756488513028 e-05	1.860121858697299 5e-05	5.57208755758154 e-05	9.35756276965182 8e-05

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t = t_{n1})$	$max(t=t_{n2})$
10	0.0066 666666 666666 68	0.002267474154487 7535	0.001956273717021 5607	0.00620745459327 9094	0.00566342975202 1887
20	0.0016 666666 666666	0.000523456494747 4022	0.000435238950801 90683	0.00151193591891 49084	0.00137914549343 90934
30	0.0007 407407 407407 407	0.000222410139363 91947	0.000182871277837 69974	0.00066774363544 70268	0.00060986762363 49632
40	0.0004 166666 666666 6675	0.000121521573680 51228	0.000100769460614 6534	0.00037520879131 65836	0.00034319293999 62397
50	0.0002 666666 666666 667	7.601905147162651 e-05	6.467562906542223 e-05	0.00023989556628 42317	0.00022054819490 491262

3. Неявная схема (аппроксимация производной левой разностью)

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t = t_{n1})$	max(t
					$= t_{n2}$)
10	0.001	6.056927515732742 e-05	5.560599999818003 e-05	0.000105493898444 05344	9.378349806493 658e-05
10	0.0005	3.031830644446104 8e-05	2.782627433776835 e-05	5.275018347339344 e-05	4.689504213761 797e-05
10	0.00025	1.516758430693080 4e-05	1.391895696167813 6e-05	2.637591699411468 e-05	2.344835154427 516e-05
10	0.000125	7.585901676694193 e-06	6.960933602714832 5e-06	1.318816686618484 7e-05	1.172438423713 2845e-05
10	6.25e-05	3.793478417572562 e-06	3.480830575032597 5e-06	6.594135842974413 5e-06	5.862244419452 267e-06

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t = t_{n1})$	$max(t = t_{n2})$
10	0.0001	0.004236296975373 478	0.004862417806499 32	0.00897872087295 1484	0.01167328299230 63
20	0.0001	0.001199875581961 5935	0.001497300937162 0804	0.00330805525896 28276	0.00455319913889 8956
30	0.0001	0.000618257489169 1393	0.000811928224744 024	0.00196353671704 4967	0.00276734869897 21052
40	0.0001	0.000399400673896 3085	0.000542665870859 9314	0.00138531068488 66759	0.00197770714842 01603
50	0.0001	0.000289817751906 38274	0.000403347207196 0195	0.00106722390357 09463	0.00153595602714 59571

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t=t_{n1})$	$max(t=t_{n2})$
10	0.0066 666666 666666 68	0.000400813083434 74926	0.000371464855864 4323	0.00070897722203 22255	0.00063395886967 44891
20	0.0016 666666 666666	9.736899553480697 e-05	9.050399379662022 e-05	0.00016848025288 257462	0.00015239298590 802308
30	0.0007 407407 407407 407	4.264849002416807 5e-05	3.970540096273954 6e-05	7.41967290748268 8e-05	6.73402448435056 5e-05
40	0.0004 166666 666666 6675	2.382437189004899 e-05	2.221175220883555 8e-05	4.16563887239429 5e-05	3.78894360423265 3e-05
50	0.0002 666666 666666 667	1.517573414030119 e-05	1.415157265114540 3e-05	2.66222553438333 34e-05	2.42315700255679 72e-05

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t=t_{n1})$	$max(t = t_{n2})$
10	0.0066 666666 666666 68	0.004206373394932 559	0.004772585420166 17	0.00877592764959 445	0.01127983858398 407
20	0.0016 666666 666666 67	0.001193025978165 2009	0.001488234519387 3666	0.00326984078199 6214	0.00451273019734 022
30	0.0007 407407 407407 407	0.000617642824915 7221	0.000812659130545 5549	0.00195897785095 45575	0.00276895586200 47627
40	0.0004 166666 666666 6675	0.000398573632950 68556	0.000541849090915 4982	0.00138104675281 8138	0.00197398017806 84907
50	0.0002 666666 666666 667	0.000289658485876 5553	0.000403652077348 53085	0.00106626767370 43242	0.00153695678199 36147

4. Неявная схема (аппроксимация производной центральной разностью)

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t=t_{n1})$	$max(t) = t_{n2}$
10	0.001	5.793107408402738 e-05	5.477784808614859 e-05	0.000106950819772 63321	9.631608672167 058e-05
10	0.0005	2.899395034130058 3e-05	2.741185009459592 5e-05	5.347543604822258 e-05	4.816015395597 839e-05
10	0.00025	1.450409070466340 5e-05	1.371166286450940 8e-05	2.673773292838355 e-05	2.408060695741 0655e-05
10	0.000125	7.253825789322637 e-06	6.857266708236671 e-06	1.336887118980056 9e-05	1.204043620511 8521e-05
10	6.25e-05	3.627358175224580 4e-06	3.428992245303698 e-06	6.684436968162899 e-06	6.020251394067 699e-06

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t = t_{n1})$	$max(t = t_{n2})$
10	0.0001	0.002357161539402 026	0.002090569882037 4023	0.00623913376184 9314	0.00565310243869 0771
20	0.0001	0.000565522163138 5558	0.000498659956604 4883	0.00151068013408 41192	0.00137700853103 97806
30	0.0001	0.000248671841388 12134	0.000218786096588 21296	0.00066780910343 96649	0.00060927925497 28387
40	0.0001	0.000139215600267 86286	0.000122342231738 83315	0.00037494756850 575683	0.00034219228789 095224
50	0.0001	8.886207258034275 e-05	7.803580724370769 e-05	0.00023976211961 712623	0.00021884785435 810628

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t=t_{n1})$	$max(t=t_{n2})$
10	0.0066 666666 666666 68	0.000383343682504 51034	0.000364436197156 20395	0.00071871365016 62916	0.00065004660237 58866
20	0.0016 666666 666666	9.451522671518745 e-05	8.890945898801281 e-05	0.00016931208449 499913	0.00015407133146 51665
30	0.0007 407407 407407 407	4.176231760688136 5e-05	3.916545349419991 e-05	7.44156612785262 8e-05	6.78063713632215 4e-05
40	0.0004 166666 666666 6675	2.344265952858733 e-05	2.196667400805825 8e-05	4.17425701582652 1e-05	3.80769960668381 2e-05
50	0.0002 666666 666666 667	1.497866877734244 e-05	1.402208723052107 2e-05	2.66649066800739 3e-05	2.43256661921487 1e-05

N	τ	$s(t=t_{n1})$	$s(t=t_{n2})$	$max(t = t_{n1})$	$max(t = t_{n2})$
10	0.0066 666666	0.002389066819482 074	0.002135774712315 7394	0.00636338510639 517	0.00577796362900 2902
	666666	074	7354	317	2902
	68				
20	0.0016	0.000568821503227	0.000501448927838	0.00151958788233	0.00138349735719
	666666	8197	9154	01978	26756
	666666				
	67				
30	0.0007	0.000249078231272	0.000218897193576	0.00066896410634	0.00060967248409
	407407	1299	7515	82576	26049
	407407				
	407				
40	0.0004	0.000139417155030	0.000122486547507	0.00037544241780	0.00034251074730
	166666	80693	44882	43503	73452
	666666				
	6675				
50	0.0002	8.890985387392975	7.803216760063505	0.00023988668445	0.00021885711494
	666666	e-05	e-05	190653	162852
	666666				
	667				

Выводы

Явная разностная схема решает уравнение в каждый последующий момент времени, используя значения в предыдущие моменты времени. Таким образом, она явно выражает следующее значение функции через предыдущие значения. Это означает, что для вычисления значения в каждый момент времени необходимо знать значения функции в предыдущие моменты времени. Явная схема легко реализуется, но может иметь ограничения по устойчивости и точности, которые зависят от выбора шага по времени и пространству.

Неявная разностная схема использует значения функции в следующем моменте времени, выражая их через значения функции в текущий момент времени. Таким образом, она неявно выражает следующее значение через текущее значение. Это означает, что для вычисления значения в каждый момент времени необходимо решать систему уравнений, что требует больших вычислительных затрат. Неявная схема более устойчива и точна, но её реализация может быть более сложной и требовательной к ресурсам.

Для явной разностной схемы с аппроксимацией первой производной левой разностью порядок сходимости по пространственному шагу h будет равен O(h), а по временному шагу $\tau - O(\tau)$. Для явной разностной схемы с аппроксимацией первой производной центральной разностью порядок сходимости по пространственному шагу h будет равен $O(h^2)$, а по временному шагу $\tau - O(\tau)$.

Для неявной разностной схемы с аппроксимацией первой производной левой разностью порядок сходимости по пространственному шагу h будет равен O(h), а по временному шагу $\tau - O(\tau)$. Для неявной разностной схемы с аппроксимацией первой производной центральной разностью порядок сходимости по пространственному шагу h будет равен $O(h^2)$, а по временному шагу $\tau - O(\tau)$.

Более точные аппроксимации граничных условий второго рода приводят к увеличению порядка сходимости разностной схемы. Это связано с тем, что при более точной аппроксимации граничных условий уменьшается ошибка на границе области, что приводит к уменьшению глобальной ошибки во всей области и, следовательно, к увеличению порядка сходимости. Однако, более точные аппроксимации могут привести к увеличению сложности вычислений и увеличению количества вычислительных операций, что может оказать негативное влияние на производительность и время вычислений.