

DESIGN AND ANALYSIS OF ALGORITHM MID SEMESTER EXAMINATION (CSE & IT)

F.M. - 30

Time - 1.5 Hr.

Answer all questions

1. (a) Wustrate the operation of merge sort on the array A= <3, 41, 52, 26, 38, 57, 9, 49>.

[2X 5]

(b) Rank the following functions by order of growth.

- (c) Write Recurrence equation to find out the time complexity of quick sort algorithm and then solve it using master method.
- (d) Solve the following recurrence using recursion tree method.

$$T(n) = T(n/4) + T(n/2) + cn^2$$

- (e) Show that the solution to T(n) = 2T(n/2 + 17) + n is $O(n \lg n)$ using substitution method.
- 2. Find an optimal parenthesization of a matrix-chain product whose sequence of dimension is <5, 10, 3, 12, 5, 50, 6> using dynamic programming. [5]
- 3. Consider the following set of activities

[5

	•			J					T	7.40	
i	1	2	3	4	5	6	7	8	9	10	11
Si	1.	3.	0	5	3	5	6	8	8	2	12
fi	4	5	6	7	9	9	10	11	12	14	16

Select a maximum-size subset of mutually compatible activities using greedy algorithm.

4. Determine an LCS of <1, 0,0,1,0,1,0,1> and <0,1,0,1,1,0,1,1,0>.

[5]

5. Give pseudocode to reconstruct an LCS from the completed C table and the original sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ in O(m+n) time, without using the b table. [5]