

Purpose: Vegetation Essential Climate Variables

https://gcos.wmo.int/en/essential-climate-variables

- Canopy Cover (fCOVER)
 - Foliage presence
 - Habitat
 - Land cover change
- fAPAR
 - Foliage productivity/health
 - Status and trends
 - Crop modelling
- Leaf Area Index
 - Foliage density/biomass
 - Status and trends
 - Ecosystem/weather models
- Surface Albedo
 - Ecosystem/weather models

Description

ML Algorithms uploaded using as Tensor Flow like objects

ARD inputs using ESA/USGS/GEE API (free and open) Free and open algorithms

ARD outputs interoperable at Canada and Global levels

Temporal Series of Monthly Vegetation Parameters of Canada

Description

Analysis Ready Input Data

Dataset	Source	Resolution	Official Access	Other Access
Surface Reflectance	ESA Sentinel 2A & 2B	10m, daily	Copernicus Data Hub	AWS,GEE
Surface Reflectance	USGS Landsat 5,7,8,9	30m, daily	Earth Explorer	AWS,GEE
Land Cover	NALCMS North America	30m, annual	Geo.ca	AWS,GEE
Land Cover	Coprenicus Global Land Service	100m, annual	AWS,GEE	AWS,GEE
Water Cover	ECCC	30m, annual	Geo.ca	AWS
Elevation	Tokyo University	90m	GEE	GEE

Algorithms

Description

Spatial Processing

Temporal Processing

Technical capabilities expected of DEC Prototype

Back End

- Global Multi archive access (Landsat, Sentinel 1,2,3, Modis)
- GEE API option (OAUTH)
- Load balancing, auto scaling
- Mosaicing/subsetting/reprojection on the fly
- GIT integration of input algorithms
- Tensor Processing Hardware
- Generative AI tools

Front End

- Python Notebook interface (a la Federal Science Data Hub)
- Job Scheduler
- Export to Cloud or Local Drive
- Copernicus Data Hub Like Query/Production Functionality
- EODMS Export
- External access

Updated Storage and Compute Requirements

Storage (annual)

Dataset	Granules	Volume (Tb)
Landsat (2013+)	100,000	60
Sentinel-2 (2016+)	600,000	480
MODIS/S3 (2000+)	1000	1
500m Products (2000+)	1460	1
20m Products	72	5

Compute

Requirement	GEE EECU-hr	48 core, high ram
Canada 30d, 20m	50000	1 month
Canada 30d, 30m	10000	1 week
Regional stack,10m	1000	?
Local stack, 10m	100	?
Canada 1d, 500m	?	?

Time Period & Result

Schedule

- 20m & 30m monthly now
- 20m and 30m local now
- 500m daily September 2024

Result: GitHub - fqqlsun/LEAF_production

