Probabilités et statistiques

I – Variables aléatoires

G. Chênevert

13 novembre 2023

Au menu aujourd'hui

Introduction

Variables aléatoire

Moments

La nature du hasard ...

• Dieu joue-t-il aux dés?

• Le vrai hasard existe-t-il?

• Et le destin?

• Et le libre arbitre?

:

• Et après?

Soyons pragmatiques

Probabilité : permet de décrire et **modéliser** simplement mais précisément certains phénomènes complexes

La théorie des probabilités n'est, au fond, que le bon sens réduit au calcul.

— Laplace

Statistique : application de cette théorie à la description et l'analyse de jeux de données numériques

Archétype : la pièce

$$\mathbb{P}[\mathtt{P}] = \mathbb{P}[\mathtt{F}] = \frac{1}{2}$$

Interprétation fréquentiste

Sur 1000 lancers . . .

Et le déterminisme?

Modèle de Keller

En mécanique classique

Équations simples :

$$egin{cases} h(t) = h_0 + v_0 t - rac{g}{2} t^2 \ heta(t) = \omega t \end{cases}$$

Retour à h_0 en $t_f = \frac{2v_0}{g}$, et alors

$$\theta(t_f) = \frac{2v_0\,\omega}{g}.$$

Diagramme de phase

P ou F selon (v_0, ω)

Deux lancers

1000 paires simulées . . .

Agglomérons

Pour X le nombre de P par suite de 10 lancers :

Simulation informatique

Validation du modèle

Ne faut pas oublier de confronter à l'expérience!

L'hypothèse d'équiprobabilité tient-elle la route?

Apparemment pas tout à fait :

$$\mathbb{P}[P] \approx 51 \%, \quad \mathbb{P}[F] \approx 49 \%,$$

$$\mathbb{P}[\mathsf{tranche}] \approx 0.017 \%$$
!

Parenthèse

Comment obtenir l'équiprobabilité si on ne dispose que d'une pièce biaisée ?

Truc de von Neumann :

On lance des paires jusqu'à l'obtention de PF ou FP.

$$\mathbb{P}[\mathtt{PF}] = \mathbb{P}[\mathtt{FP}] =
ho(1-
ho)$$
 où $ho := \mathbb{P}[\mathtt{P}]$

Truc de von Neumann

À chaque paire on a probabilité :

- q := 2p(1-p) de conclure,
- $1 q = p^2 + (1 p)^2$ de devoir relancer.

Soit N le nombre de paires de lancers nécessaires :

$$\mathbb{P}[N=n]=(1-q)^{n-1}q \qquad (n\in\mathbb{N},\ n\neq 0).$$

Notation : $N \sim \mathcal{G}(q)$ appelée **loi géométrique**

Loi géométrique

Bonne nouvelle:

$$\mathbb{P}[N < +\infty] = \sum_{n=1}^{\infty} (1-q)^{n-1} q = q \cdot \frac{1}{1-(1-q)} = 1$$

le procédé se termine presque sûrement (du moins si $p \notin \{0,1\}$).

En d'autres termes : $\mathbb{P}[N=+\infty]=0$. On pourrait très bien obtenir une suite comme

mais c'est presque impossible.

Au menu aujourd'hui

Introduction

Variables aléatoires

Moments

Formalisons

Définition

Une variable aléatoire est une fonction

$$X:\Omega\longrightarrow\mathbb{R}$$

où Ω désigne l'ensemble des résultats d'une expérience aléatoire.

Techniquement : on doit pouvoir associer, à tout sous-ensemble $\mathcal{E} \subset \Omega$ raisonnable (événement) une probabilité

$$0 \leq \mathbb{P}[\mathcal{E}] \leq 1.$$

Pour toute partie raisonnable $\mathcal A$ de $\mathbb R$, on peut alors considérer la probabilité

$$0 \leq \mathbb{P}[X \in \mathcal{A}] \leq 1.$$

Exemple

On lance une pièce de monnaie (non nécessairement équilibrée) :

$$\Omega = \{P, F\}.$$

Posons

$$X(P) = 1$$
, $\mathbb{P}[X = 1] =: p$, $X(F) = 0$, $\mathbb{P}[X = 0] = 1 - p$.

On note $X \sim \mathcal{B}(p)$ loi de Bernoulli avec probabilité de succès p.

Exempleⁿ

On lance n fois une pièce de monnaie :

$$\Omega = \{P, F\}^n$$

et soit X le nombre de P obtenus.

Pour $k \in \llbracket 0, n \rrbracket$,

$$\mathbb{P}[X=k] = \binom{n}{k} p^k (1-p)^{n-k}.$$

Notation : $X \sim \mathcal{B}(n, p)$ loi binomiale.

Loi binomiale

$\mathsf{Exemple}^{\mathbb{N}^*}$

On lance une pièce de monnaie jusqu'à l'obtention du premier P :

$$\Omega = \{P, F\}^{\mathbb{N}^*} = \{(\omega_n)_{n=1}^{\infty} \mid \omega_n \in \{P, F\}\}$$

et soit N le numéro du premier succès.

$$\mathbb{P}[N = n] = (1 - p)^{n-1}p$$
 pour $n = 1, 2, ...$

et 0 sinon.

Notation : $N \sim \mathcal{G}(p)$ loi géométrique de paramètre p.

Fonction de répartition

Définition

La fonction de répartition d'une variable aléatoire X est la fonction $F_X : \mathbb{R} \to \mathbb{R}$ définie par

$$F_X(x) := \mathbb{P}[X \le x].$$

(Note : certains auteurs utilisent l'inégalité stricte)

C'est une fonction croissante, avec

$$\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to +\infty} F_X(x) = 1.$$

F_X pour $X \sim \mathcal{B}(n,p)$

Densité de probabilité

Définition

La densité f_X d'une variable aléatoire X est la dérivée de sa fonction de répartition

$$f_X := \frac{\mathsf{d}}{\mathsf{d} x} F_X = F_X'$$

(au sens des signaux).

Contient toute l'information sur la loi de X:

$$\mathbb{P}[a < X \le b] = F_X(b) - F_X(a) = \int_a^b f_X(x) \, dx$$

Types de loi

La loi de X est dite :

- discrète lorsque F_X est constante par morceaux
 sa dérivée ne contient alors que des diracs
- continue lorsque F_X l'est
 sa dérivée est alors une fonction ordinaire
- mixte dans tous les autres cas

Exemple discret (fini)

$$X \sim \mathcal{U}(\llbracket 1, 6 \rrbracket)$$

$$f_X(x) = \frac{1}{6} \sum_{k=1}^6 \delta(x-k)$$

Exemple continu

$$Y \sim \mathcal{U}([0,6])$$

$$f_Y(x) = \frac{1}{6} \text{ sur } [0, 6]$$

Exemple mixte

$$f_Z = \frac{f_X + f_Y}{2}$$

La reine des lois : $\mathcal{N}(\mu, \sigma)$

Formules

$$X \sim \mathcal{N}(\mu, \sigma)$$
:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Cas particulier $Z \sim \mathcal{N}(0,1)$: loi normale centrée réduite

$$f_Z(z) = rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}z^2} \qquad F_Z(z) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-rac{1}{2}t^2} \, \mathrm{d}t$$

parfois notée Φ (voir aussi erf)

En pratique

On peut toujours se ramener à une $\mathcal{N}(0,1)$.

Proposition

$$X \sim \mathcal{N}(\mu, \sigma) \implies Z := \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Preuve : $F_Z(z) = F_X(\mu + \sigma z)$ d'où

$$f_Z(z) = \frac{\mathsf{d}}{\mathsf{d}z} F_X(\mu + \sigma z) = \sigma f_X(\mu + \sigma z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

Au menu aujourd'hui

Introduction

Variables aléatoire

Moments

Tendance centrale

Définition

L'espérance mathématique d'une variable aléatoire X est

$$\mathbb{E}[X] := \int_{-\infty}^{+\infty} x \, f_X(x) \, \mathrm{d}x.$$

Plus généralement on calcule l'espérance de Y = g(X) par changement de variable :

$$\mathbb{E}[g(X)] = \mathbb{E}[Y] = \int_{-\infty}^{+\infty} y \, f_Y(y) \, \mathrm{d}y = \int_{-\infty}^{+\infty} g(x) \, f_X(y) \, \mathrm{d}x$$

Attention : ne pas confondre avec mode et médiane

Exemples

•
$$X \sim \mathcal{B}(n, p) \implies \mathbb{E}[X] = np$$

- $X \sim \mathcal{G}(p) \implies \mathbb{E}[X] = \frac{1}{p}$
- $X \sim \mathcal{N}(\mu, \sigma) \implies \mathbb{E}[X] = \mu$
- •

Propriétés

•
$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$

• Si
$$\mathbb{P}[X=c]=1$$
 alors $\mathbb{E}[X]=c$

• Si
$$\mathbb{P}[X \ge 0] = 1$$
 alors $\mathbb{E}[X] \ge 0$

•
$$\mathbb{E}[ag(X) + bh(X)] = a\mathbb{E}[g(X)] + b\mathbb{E}[h(X)]$$

Attention : en général $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$

Fonction génératice des moments

Définition

Pour X une v.a., on appelle fonction génératrice des moments de X la fonction

$$g_X(t) := \mathbb{E}\Big[e^{tX}\Big] = \int_{-\infty}^{+\infty} e^{tx} f_X(x) \, \mathrm{d}x.$$

Pourquoi fonction génératrice des moments? Si on appelle $\mu_n = \mathbb{E}[X^n]$ le n^e moment de X, on a

$$g_X(t) = \mathbb{E}\left[e^{tX}\right] = \mathbb{E}\left[\sum_{n=0}^{\infty} \frac{(tX)^n}{n!}\right] = \sum_{n=0}^{\infty} \frac{t^n}{n!} \mathbb{E}[X^n] = \sum_{n=0}^{\infty} \frac{\mu_n}{n!} t^n$$

Une transformation intégrale

Proposition

Si X est un variable aléatoire dont tous les moments μ_n sont finis, alors la suite $(\mu_n)_{n=1}^{\infty}$ caractérise complètement la loi de X.

En effet:

$$(\mu_n)_{n=1}^{\infty} \longleftrightarrow g_X \longleftrightarrow f_X$$

$$\operatorname{car} \, \widehat{f_X}(\xi) = \int_{-\infty}^{+\infty} f_X(x) \, \mathrm{e}^{-2\pi \mathrm{i} \xi x} \, \mathrm{d} x = \mathbb{E} \Big[\mathrm{e}^{-2\pi \mathrm{i} \xi X} \Big] \, = g_X(-2\pi \mathrm{i} \xi) \, !$$