

IQS7222C DATASHEET

10 Channel Mutual / 8 Channel Self-capacitive and inductive Touch and Proximity Controller with I²C communications interface, configurable GPIOs and low power options

1 Device Overview

The IQS7222C ProxFusion[®] IC is a sensor fusion device for various multi-channel sensing structures from button arrays to sliders and wear detection pairs. The sensor is fully I²C compatible and on-chip calculations enable the IC to respond effectively even in lowest power modes.

1.1 Main Features

- > Highly flexible ProxFusion® device
- > 9 (QFN) / 8 (WLCSP)external sensor pad connections
- > Configure up to 10ⁱ Channels using the external connections
- > External sensor options:
 - Up to 8 self capacitive buttons
 - Up to 4 self capacitive wear detection pairs (with physical reference)
 - Up to 10 mutual capacitive touch/proximity sensors
 - Up to 4 inductive sensor elements for metal detection
- > Built-in basic functions:
 - Automatic tuning
 - Noise filtering
 - Differential measurements (reference channels)
 - Debounce & Hysteresis
 - Dual direction trigger indication
- > Built-in Signal processing options:
 - Slider output
 - Wheel output
 - Up to 4 elements per slider/wheel
 - Up to 2 sliders/wheels simultaneously
 - Slider/wheel gestures to be calculated on host processor
- > Design simplicity
 - PC Software for debugging and obtaining optimal settings and performance
 - One-time programmable settings for custom power-on IC configuration
 - Auto-run from programmed settings for simplified integration
- > Automated system power modes for optimal response vs consumption
- > I²C communication interface with IRQ/RDY(up to fast plus -1MHz)
- > Event and streaming modes
- > Customizable user interface due to programmable memory
- > Supply Voltage 1.8V(-5%)to 3.5V
- > Small packages
 - WLCSP18 (1.62 x 1.62 x 0.525 mm) interleaved 0.4mm x 0.6mm ball pitch
 - QFN20 (3.00 x 3.00 x 0.55 mm) 0.40mm pitch

WLCSP18 & QFN20 package Representation only

1.2 Applications

- > SAR Compliance in Mobile devices
- > Wear Detection
- > Appliance user interface (Sliders, Wheels & Buttons)
- > Waterproof Buttons (Inductive)
- > Low power Wake-up Buttons / Proximity

1.3 Block Diagram

Figure 1.1: Functional Block Diagramⁱⁱ

ⁱWLCSP18 package has 1 less external pad connection and the maximum amount of buttons that can be configured are less than QFN20 package

iiWLCSP18 packages do not have a CRx4 and combines GPIO0 and GPIO3

Contents

1	Devic 1.1	e Overvi Main Fe	iew eatures	1
	1.2 1.3		tions	
2	Hardy	vare Con	nnection	6
	2.1	WLCSP	P18 Pin Diagrams	6
	2.2		Pin Diagram	
	2.3		ibutes	
	2.4	_	Descriptions	
	2.5	Reference 2.5.1	nce Schematic	
3	Electr	ical Cha	aracteristics	13
	3.1		e Maximum Ratings	
	3.2		mended Operating Conditions	
	3.3		ating	
	3.4	Current	Consumption	14
4			witching Characteristics	15
	4.1		Levels	
	4.2 4.3		Pin Levels and Characteristics	
	4.4		O Characteristics	
	4.5	_	aracteristics	
5		usion® N		17
	5.1		el Options	
	5.2		wer Options	
	5.3		/alue	
	5.4	5.3.1 Referen	Max Count	
	5.4	5.4.1	Reseed	
	5.5	•	tic Tuning Implementation (ATI)	
	5.6		tic Re-ATI	
		5.6.1	Description	
		5.6.2	Conditions for Re-ATI to activate	
		5.6.3	ATI Error	18
6	Sensi	ng Mode	es	20
	6.1	Mode Ti	imeout	
	6.2		Filter	
		6.2.1	IIR Filter	20
7		vare Sett		21
	7.1	•	Transfer Frequency	
	7.2			
		7.2.1	Reset Indication	
		7.2.2	Software Reset	21

IQ Switch[®] ProxFusion[®] Series

8	Additi	ional Features	22
	8.1	Setup Defaults	22
	8.2	Automated Start-up	22
	8.3	Watchdog Timer (WDT)	22
	8.4	RF Immunity	22
_	120 1	April a re	00
9		terface	23
	9.1	I ² C Module Specification	23
	9.2	I ² C Address	23
	9.3	I ³ C Compatibility	23
	9.4	Memory Map Addressing	23 23
		9.4.1 8-bit Address	
	0.5	9.4.2 Extended 16-bit Address	23
	9.5	Data	2425
	9.6 9.7	I ² C Timeout	25 25
	9.7	Terminate Communication	25
	9.0	Invalid Communications Return	25
	9.10	I ² C Interface	25
	9.10	9.10.1 I ² C Streaming	25
		9.10.2 I ² C Event Mode	26
		9.10.3 I ² C Stream in Touch Mode	26
	9.11	Event Mode Communication	26
	3.11	9.11.1 Events	26
		9.11.2 Force Communication	26
	9.12	Program Flow Diagram	27
	0.12	Trogram Flow Blagram	
10	I ² C M	emory Map - Register Descriptions	28
44	lmanda	montation and Layout	33
11	11.1	mentation and Layout Layout Fundamentals	33
	11.1	11.1.1 Power Supply Decoupling	33
		11.1.2 VREG	33
			34
		11.1.3 WLCSP Light Sensitivity	34
12	Order	ring Information	35
	12.1		35
	12.2	Top Marking	35
		12.2.1 WLCSP18 Package	35
		12.2.2 QFN20 Package Marking Option 1	35
		12.2.3 QFN20 Package Marking Option 2	35
13		age Specification	36
	13.1	Package Outline Description – QFN20	36
	13.2	Package Outline Description – WLCSP18	37
	13.3	Tape and Reel Specifications	38
	13.4	Moisture Sensitivity Levels	39
	13.5	Reflow Specifications	39
A	Memo	ory Map Descriptions	40
В	Revis	sion History	52
		and the state of t	_

C Known Issues 52

2 Hardware Connection

2.1 WLCSP18 Pin Diagrams

Table 2.1: 18-pin WLCSP18 Package

Ball-side View

Top-side View

Pin no.	Signal
A1	CTx9/GPIO0/CTx10/GPIO3 ⁱ
А3	SCL/GPIO2
A5	MCLR/GPIO6
B2	CTx11/GPIO4
B4	SDA/GPIO1
C1	CTx8/Vbias
C3	RDY/GPIO5
C5	VDD
D4	VSS
D2	CRx2/CTx2
D4	VSS
E1	CRx6/CTx6
E3	CRx1/CTx1
E5	VREGD
F2	CRx5/CTx5
F4	CRx0/CTx0
G1	CRx7/CTx7
G3	CRx3/CTx3
G5	VREGA

2.2 QFN20 Pin Diagram

Table 2.2: 20-pin QFN Package (Top View)

Pin no.	Signal name	Pin no.	Signal name
1	VDD	11	CRx6/CTx6
2	VREGD	12	CRx7/CTx7
3	VSS	13	CTx8/Vbias
4	VREGA	14	CTx9/GPIO0
5	CRx0/CTx0	15	CTx10/GPIO3
6	CRx1/CTx1	16	CTx11/GPIO4
7	CRx2/CTx2	17	RDY/GPIO5
8	CRx3/CTx3	18	SCL/GPIO2
9	CRx4/CTx4	19	SDA/GPIO1
10	CRx5/CTx5	20	MCLR/GPIO6

Area name	Signal name
(TAB ⁱⁱ	Thermal pad (floating)

Please note that CTx9/GPIO0 and CTx10/GPIO3 are connected together in the WLCSP18 package

ⁱⁱIt is recommended to connect the thermal pad (TAB) to VSS.

2.3 Pin Attributes

Table 2.3: Pin Attributes

Pin no.		Signal name	Signal type	Buffer type	Power source
WLCSP18 QFN20					
C5	1	VDD	Power	Power	N/A
E5	2	VREGD	Power	Power	N/A
D4	3	VSS	Power	Power	N/A
G5	4	VREGA	Power	Power	N/A
F4	5	CRx0/CTx0	Analog		VREGA
E3	6	CRx1/CTx1	Analog		VREGA
D2	7	CRx2/CTx2	Analog		VREGA
G3	8	CRx3/CTx3	Analog		VREGA
-	9	CRx4/CTx4	Analog		VREGA
F2	10	CRx5/CTx5	Analog		VREGA
E1	11	CRx6/CTx6	Analog		VREGA
G1	12	CRx7/CTx7	Analog		VREGA
C1	13	CTx8/Vbias	Analog		VREGA
A1	14	CTx9/GPIO0	Prox/Digital		VREGA/VDD
B4	19	SDA/GPIO1	Digital		VDD
A3	18	SCL/GPIO2	Digital		VDD
A1	15	CTx10/GPIO3	Prox/Digital		VREGA/VDD
B2	16	CTx11/GPIO4	Prox/Digital		VREGA/VDD
C3	17	RDY/GPIO5	Digital		VDD
A5	20	MCLR/GPIO6	Digital		VDD

2.4 Signal Descriptions

Table 2.4: Signal Descriptions

Function	Signal name Pin no.		Pin type ⁱⁱⁱ	Description	
		WLCSP18	QFN20		
	CRx0/CTx0	F4	5	Ю	
	CRx1/CTx1	E3	6	IO	
	CRx2/CTx2	D2	7	IO	
	CRx3/CTx3	G3	8	IO	ProxFusion® channel
	CRx4/CTx4	-	9	IO	TTOXI USIOTI CHATITIEI
ProxFusion®	CRx5/CTx5	F2	10	IO	
1 TOXT USIOTT	CRx6/CTx6	E1	11	IO	
	CRx7/CTx7	G1	12	IO	
	CTx8/Vbias	C1	13	0	CTx8 pad
	CTx9/GPIO0	A1	14	IO	CTx9/GPIO0 pad
	CTx10/GPIO3	A1	15	IO	CTx10/GPIO3 pad
	CTx11/GPIO4	B2	16	IO	CTx11/GPIO4 pad
	RDY/GPIO5	C3	17	0	RDY/GPIO5 pad
GPIO	MCLR/GPIO6	A 5	20	Ю	Active pull-up, 200k resistor to VDD. Pulled low during POR, and MCLR function enabled by default. VPP input for OTP.
I ² C	SDA/GPIO1	B4	19	IO	I ² C Data
10	SCL/GPIO2	А3	18	IO	I ² C Clock
	VDD	C5	1	Р	Power supply input voltage
Dower	VREGD	E5	2	Р	Internal regulated supply output for digital domain
Power	VSS	D4	3	Р	Analog/Digital Ground
	VREGA	G5	4	Р	Internal regulated supply output for analog domain

 $^{^{\}text{iii}}$ Pin Types: I = Input, O = Output, IO = Input or Output, P = Power

2.5 Reference Schematic

Figure 2.1: 8 Button Self Capacitance Reference Schematic

Figure 2.2: Wear, Reference and Inductive Sensing Reference Schematic

Figure 2.3: 3 Channel Slider, 4 Channel Wheel with Touch Sensor Reference Schematiciv

2.5.1 Possible Slider/Wheel Combinations

		Example
3 channel self-capacitive wheel	3 channel self-capacitive wheel	
4 channel mutual wheel	-	ROZ

^{iv}Refer to section 2.5.1 for more slider/wheel combinations

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 3.1: Absolute Maximum Ratings

	Min	Max	Unit
Voltage applied at VDD pin to VSS	1.71	3.5	V
Voltage applied to any ProxFusion® pin	-0.3	VREGA	V
Voltage applied to any other pin (referenced to VSS)	-0.3	VDD + 0.3 (3.5 V max)	V
Storage temperature, T _{stg}	-40	85	°C

3.2 Recommended Operating Conditions

Table 3.2: Recommended Operating Conditions

Recommended	operating conditions	Min	Nom	Max	Unit
VDD	Supply voltage applied at VDD pin: F _{OSC} = 14 MHz	1.71		3.5	V
VREGA	Internal regulated supply output for analog domain:	1.40	4.50	4 57	V
VREGD	F _{OSC} = 14 MHz Internal regulated supply output for digital domain: F _{OSC} = 14 MHz	1.49	1.53	1.57	V
VSS	Supply voltage applied at VSS pin		0		V
T_A	Operating free-air temperature	-40	25	85	°C
C_{VDD}	Recommended capacitor at VDD	2×C _{VREGA}	3×C _{VREGA}		μF
C _{VREGA}	Recommended external buffer capacitor at VREGA, ESR \leq 200 m Ω	2	4.7	10	μF
C _{VREGD}	Recommended external buffer capacitor at VREGD, ESR \leq 200 m Ω	2	4.7	10	μF
Cx _{SELF-VSS}	Maximum capacitance between ground and all external electrodes on all ProxFusion® blocks (self-capacitance mode)	1	-	400 ⁱ	pF
Cm _{CTx-CRx}	Capacitance between Receiving and Transmitting electrodes on all ProxFusion [®] blocks (mutual-cap mode)	0.2	-	9i	pF
Cp _{CRx-VSS-1M}	Maximum capacitance between ground and all external electrodes on all ProxFusion® blocks (mutual-capacitance mode @f xfer = 1 MHz)			100 ⁱ	pF
Cp _{CRx-VSS-4M}	Maximum capacitance between ground and all external electrodes on all ProxFusion [®] blocks (mutual-capacitance mode @ $f_{xfer} = 4 \text{ MHz}$ sensing)			25 ⁱ	pF
Cp _{CRx-VSS} Cm _{CTx-CRx}	Capacitance ratio for optimal SNR in mutual capacitance mode ⁱⁱ	10		20	n/a
RCx _{CRx/CTx}	Series (in-line) resistance of all mutual capacitance pins (Tx & Rx pins) in mutual capacitance mode	O ⁱⁱⁱ	0.47	10 ^{iv}	kΩ
RCx _{SELF}	Series (in-line) resistance of all self capacitance pins in self capacitance mode	O ⁱⁱⁱ	0.47	10 ^{iv}	kΩ

3.3 ESD Rating

Table 3.3: ESD Rating

		Value	Unit
V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ^v	±4000	V

3.4 Current Consumption

Mutual Inductive Mode Setup:ATI Target = 50, F_{OSC} = 14MHzSelf-capacitive Mode Setup:ATI Target = 512, F_{xfer} = 500kHzMutual capacitive Mode Setup:ATI Target = 512, F_{xfer} = 500kHz

Interface Selection: Event mode

Power mode	Active channels	Report rate (Sampling rate) [ms]	Typical Cu	/pical Current [μA]
			1.8V	3.3V
	Mutual Inductive (2 coils)	10		156
Active Mode	Self-capacitive (10 channels)	16	365	367
	Mutual Capacitive slider and buttons	16	593	596
Idle	Mutual Inductive (2 coils)	80		20
luie	Self-capacitive (10 channels)	60	83	82
	Mutual Capacitive slider and buttons	60	114	115
ULP	Wake-up proximity - Distributed self channel	160	6.6	6.8
	Mutual Inductive (2 coils)	200		10

 $^{^{}i}RCx = 0 \Omega$

ⁱⁱPlease note that the the maximum values for Cp and Cm are subject to this ratio

 $^{^{\}rm iii}$ Nominal series resistance of 470 Ω is recommended to prevent received and emitted EMI effects. Typical resistance also adds additional ESD protection

^{iv}Series resistance limit is a function of f_{xfer} and the circuit time constant, RC. $R_{max} \times C_{max} = \frac{1}{(6 \times f_{xfer})}$ where C is the pin capacitance to VSS.

^VJEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±4000 V may actually have higher performance.

4 Timing and Switching Characteristics

4.1 Reset Levels

Table 4.1: Reset Levels

Parameter		Min	Тур	Max	Unit
V_{VDD}	Power-up/down level (Reset trigger) - slope > 100 V/s	1.040	1.353	1.568	V
V_{VREGD}	Power-up/down level (Reset trigger) - slope > 100 V/s	0.945	1.122	1.304	V

4.2 MCLR Pin Levels and Characteristics

Table 4.2: MCLR Pin Characteristics

Parameter		Conditions	Min	Тур	Max	Unit
V	MCLR Input low level voltage	VDD = 3.3 V	VSS - 0.3	-	1.05	V
V _{IL(MCLR)}		VDD = 1.7 V			0.75	
V	MCLR Input high level voltage	VDD = 3.3 V 2.25			VDD + 0.3	V
V _{IH(MCLR)}	Wick input high level voltage	VDD = 1.7 V	1.05	-	VDD + 0.3	V
R _{PU(MCLR)}	MCLR pull-up equivalent resistor		180	210	240	kΩ
	. MOLD				15	200
^t PULSE(MCLR)	MCLR input pulse width – no trigger	VDD = 1.7 V	-	-	10	ns
t _{TRIG(MCLR)}	MCLR input pulse width – ensure trigger		250	-	-	ns

Figure 4.1: MCLR Pin Diagram

4.3 Miscellaneous Timings

Table 4.3: Miscellaneous Timings

Parameter		Min	Тур	Max	Unit
f _{xfer}	Charge transfer frequency (derived from f _{OSC})	42	500 - 1500	3500	kHz
fosc	Master CLK frequency tolerance 14 MHz	13.23	14	14.77	MHz

4.4 Digital I/O Characteristics

Table 4.4: Digital I/O Characteristics

Paramet	ter	Test Conditions	Min	Тур	Max	Unit
V_{OL}	SDA & SCL Output low voltage	$I_{sink} = 20 mA$			0.3	V
V_{OL}	GPIO ⁱ Output low voltage	$I_{sink} = 10 mA$			0.15	V
V_{OH}	Output high voltage	I _{source} = 20 mA	VDD - 0.2			V
V_{IL}	Input low voltage				VDD × 0.3	V
V_{IH}	Input high voltage		VDD × 0.7			V
C _{b_max}	SDA & SCL maximum bus capacitance				550	рF

4.5 I²C Characteristics

Table 4.5: I²C Characteristics

Paramet	er	VDD	Min	Тур	Max	Unit
f _{SCL}	SCL clock frequency	1.8 V, 3.3 V			1000	kHz
t _{HD,STA}	Hold time (repeated) START	1.8 V, 3.3 V	0.26			μs
t _{SU,STA}	Setup time for a repeated START	1.8 V, 3.3 V	0.26			μs
t _{HD,DAT}	Data hold time	1.8 V, 3.3 V	0			ns
t _{SU,DAT}	Data setup time	1.8 V, 3.3 V	50			ns
t _{SU,STO}	Setup time for STOP	1.8 V, 3.3 V	0.26			μs
t _{SP}	Pulse duration of spikes suppressed by input filter	1.8 V, 3.3 V	0		50	ns

Figure 4.2: I²C Mode Timing Diagram

ⁱRefers to CTx9, CTx10, CTx11, and RDY pins

5 ProxFusion[®] Module

The IQS7222C contains dual ProxFusion[®] modules that uses patented technology to measure and process the sensor data. Two modules ensure a rapid response from multi-channel implementations. The multiple touch, proximity and weighted average (slider&wheel) outputs are the primary output from the sensor.

5.1 Channel Options

Self-capacitance, Mutual capacitance, Reference tracking and Inductive designs are possible with the IQS7222C.

> Sensor pad design overview: AZD008

> Mutual capacitive button layout guide: AZD036

> Inductive design layout guide: AZD115

5.2 Low Power Options

The IQS7222C offers 3 power modes:

- > Normal power mode (NP)
 - Flexible key scan rate
- > Lower power mode (LP)
 - Flexible key scan rate
 - Typically set to a slower rate than NP
- > Ultra-low power mode (ULP)
 - Optimized firmware setup
 - Intended for rapid wake-up on a single channel (e.g. distributed proximity event), enabling immediate button response for an approaching user
 - Other sensor channels are typically sampled at a slower rate in order to optimize power consumption

5.3 Count Value

The sensing measurement returns a *count value* for each channel. Count values are inversely proportional to capacitance/inductance, and all outputs are derived from this.

5.3.1 Max Count

Each channel is limited to having a count value smaller than the configurable limit (<u>Maximum counts</u>). If the ATI setting or hardware causes measured count values higher than this, the conversion will be stopped, and the max value will be read for that relevant count value.

5.4 Reference Value/Long-Term Average (LTA)

User interaction is detected by comparing the measured count values to some reference value. The reference value/LTA of a sensor is slowly updated to track changes in the environment and is not updated during user interaction.

5.4.1 Reseed

Since the *Reference* for a channel is critical for the device to operate correctly, there could be known events or situations which would call for a manual reseed. A reseed takes the latest measured counts, and seeds the *reference/LTA* with this value, therefore updating the value to the latest environment. A reseed command can be given by setting the corresponding bit (Register 0xD0, bit3).

5.5 Automatic Tuning Implementation (ATI)

The ATI is a sophisticated technology implemented in the new ProxFusion® devices to allow optimal performance of the devices for a wide range of sensing electrode capacitances and inductance, without modification to external components. The ATI settings allow tuning of various parameters. For a detailed description of ATI, please contact Azoteq.

5.6 Automatic Re-ATI

5.6.1 Description

Re-ATI will be triggered if certain conditions are met. One of the most important features of the Re-ATI is that it allows easy and fast recovery from an incorrect ATI, such as when performing ATI during user interaction with the sensor. This could cause the wrong ATI Compensation to be configured, since the user affects the capacitance of the sensor. A Re-ATI would correct this. It is recommended to always have this enabled. When a Re-ATI is performed on the IQS7222C, a status bit will set momentarily to indicate that this has occurred.

5.6.2 Conditions for Re-ATI to activate

A Re-ATI is performed when the reference of a channel drifts outside of the acceptable range around the ATI Target. The boundaries where Re-ATI occurs for the channels are adjustable in registers listed in Table A.15.

Re-ATI Boundary_{default} = ATI target \pm ($\frac{1}{8}$ ATI Target)

For example, assume that the ATI target is configured to 800 and that the and the default boundary value is 1/8*800 = 100. If Re-ATI is enabled, the ATI algorithm will be repeated under the following conditions:

Reference > 900 or Reference < 700

The ATI algorithm executes in a short time, so goes unnoticed by the user.

5.6.3 ATI Error

After the ATI algorithm is performed, a check is done to see if there was any error with the algorithm. An ATI error is reported if one of the following is true for any channel after the ATI has completed:

- > ATI Compensation = 0 (min value)
- > ATI Compensation ≥ 1023 (max value)
- > Count is already outside the Re-ATI range upon completion of the ATI algorithm

If any of these conditions are met, the corresponding error flag will be set (<u>ATI Error</u>). The flag status is only updated again when a new ATI algorithm is performed.

Re-ATI will not be repeated immediately if an ATI Error occurs. A configurable time (*ATI error timeout*) will pass where the Re-ATI is momentarily suppressed. This is to prevent the Re-ATI repeating indefinitely. An ATI error should however not occur under normal circumstances.

6 Sensing Modes

6.1 Mode Timeout

In order to optimize power consumption and performance, power modes are "stepped" by default in order to move to power efficient modes when no interaction has been detected for a certain (configurable) time know as the "mode timeout". The value for the power mode to never timeout (i.e the current power mode will never progress to a lower power mode), is 0x00.

6.2 Count Filter

6.2.1 IIR Filter

The IIR filter applied to the digitized raw input offers various damping options as defined in Table A.22 and Table A.23

Damping factor = Beta/256

7 Hardware Settings

Settings specific to hardware and the ProxFusion® Module charge transfer characteristics can be changed.

Below, some are described, the other hardware parameters are not discussed as they should only be adjusted under guidance of Azoteq support engineers.

7.1 Charge Transfer Frequency

The charge transfer frequency (f_{xfer}) can be configured using the product GUI, and the relative parameters ($\underline{Charge\ Transfer\ frequency}$) will be provided. For high resistance sensors, it might be needed to decrease f_{xfer} .

7.2 Reset

7.2.1 Reset Indication

After a reset, the <u>Reset</u> bit will be set by the system to indicate the reset event occurred. This bit will clear when the master sets the <u>Ack Reset</u>, if it becomes set again, the master will know a reset has occurred, and can react appropriately.

While Reset bit remains set:

- > The device will not be able to enter into I²C Event mode operation (i.e. streaming communication behavior will be maintained until the Reset bit is cleared)
- > During the period of ATI execution, the device will provide communication windows continuously during the ATI process, resulting in much longer time to finish the ATI routine.

7.2.2 Software Reset

The IQS7222C can be reset by means of an I²C command (*Soft Reset*).

8 Additional Features

8.1 Setup Defaults

The supplied GUI can be utilised to configure the optimal settings. The design specific settings are exported and can be written to the device by the master after every power-on reset.

8.2 Automated Start-up

The device is programmed with the application firmware, bundled with settings specifically configured for the current hardware as described in Section 8.1. After power-up the device will automatically use the settings and perform the configuration/setup accordingly.

8.3 Watchdog Timer (WDT)

A software watchdog timer is implemented to improve system reliability.

The working of this timer is as follows:

- A software timer t_{WDT} is linked to the LFTMR (Low frequency timer) running on the "always on" Low Frequency Oscillator (10 kHz).
- > This timer is reset at a strategic point in the main loop.
- > Failing to reset this timer will cause the appropriate ISR (interrupt service routine) to run.
- > This ISR performs a software triggered POR (Power on Reset).
- > The device will reset, performing a full cold boot.

8.4 RF Immunity

The IQS7222C has immunity to high power RF noise. To improve the RF immunity, extra decoupling capacitors are suggested on V_{REG} and V_{DD} .

Place a 100pF in parallel with the $2.2\mu\text{F}$ ceramic on V_{REG} . Place a $4.7\mu\text{F}$ ceramic on V_{DD} . All decoupling capacitors should be placed as close as possible to the V_{DD} and V_{REG} pads.

If needed, series resistors can be added to Rx electrodes to reduce RF coupling into the sending pads. Normally these are in the range of 470Ω -1k Ω . PCB ground planes also improve noise immunity.

9 I²C Interface

9.1 I²C Module Specification

The device supports a standard two wire I²C interface with the addition of an RDY (ready interrupt) line. The communications interface of the IQS7222C supports the following:

- > Fast-mode-plus standard I²C up to 1MHz.
- > Streaming data as well as event mode.
- > The provided interrupt line (RDY) is an open-drain active low implementation and indicates a communication window.

The IQS7222C implements 8-bit addressing with 2 data bytes at each address with the exception of extended addresses, which implement 16-bit addressing with 2 bytes at each address. Two consecutive read/writes are required in this memory map structure. The two bytes at each address will be referred to as "byte 0" (least significant byte) and "byte 1" (most significant byte).

9.2 I²C Address

The default 7-bit device address is 0x44 ('01000100'). The full address byte will thus be 0x89 (read) or 0x88 (write).

Other address options exist on special request. Please contact Azoteg.

9.3 I³C Compatibility

This device is not compatible with an I³C bus due to clock stretching allowed for data retrieval.

9.4 Memory Map Addressing

9.4.1 8-bit Address

Most of the memory map implements an 8-bit addressing scheme for the required user data. Extended memory map addresses implement 16-bit addressing scheme.

9.4.2 Extended 16-bit Address

For development purposes, larger blocks of data are found in an extended 16-bit memory addressable location. It is possible to only address each Block as an 8-bit address, and then continue to clock into the next address locations. For example, if the procedure depicted below is followed, you will read the values from the hypothetical address 0xE000 to 0XE300:

Figure 9.1: Extended 16-bit Addressing for Continuous Block

However, if you need to address a specific byte in that extended memory map space, then you will need to address using the full 16-bit address (note the 16-bit address is high byte first, unlike the data which is low byte first):

Figure 9.2: Extended 16-bit Addressing for a Specific Register

9.5 Data

The data is 16-bit words, meaning that each address obtains 2 bytes of data. For example, address 0x10 will provide two bytes, then the next two bytes read will be from address 0x11.

The 16-bit data is sent in little endian byte order (least significant byte first).

The h file generated by the GUI will display the start address of each block of data, with each address containing 2 bytes. The data of all the addresses can be written consecutively -in a single block of data or the entire memory map, (refer to figure 9.1), or data can be written explicitly to a specific address (refer to figure 9.2). An example of the h file exported by the GUI and the order of the data, is shown in figure 9.3 below.

```
/* Change the Sensor 0 Settings */
/* Memory Map Position 0x30 - 0x39 */

#define SENSOR_0_SETUP_0 0x01 — LSB
#define SENSOR_0_SETUP_1 0x07 — MSB
```

Figure 9.3: Example of an H file Exported by the GUI

9.6 I²C Timeout

If the communication window is not serviced within the I^2C timeout period (in milliseconds), the session is ended (RDY goes HIGH), and processing continues as normal. This allows the system to continue and keep reference values up to date even if the master is not responsive, however the corresponding data was missed/lost, and this should be avoided. The default I^2C timeout period is set to 500ms and can be adjusted in register 0xDC.

9.7 Terminate Communication

A standard I²C STOP ends the current communication window.

If the stop bit disable (bit 0 register 0xDA) is set, the device will not respond to a standard I^2C STOP. The communication window must be terminated using the end communications command (0xFF).

Figure 9.4: Force Stop Communication Sequence

9.8 RDY/IRQ

The communication has an open-drain active-LOW RDY signal to inform the master that updated data is available. It is optimal for the master to use this as an interrupt input and obtain the data accordingly. It is also useful to allow the master MCU to enter low-power/sleep allowing wake-up from the touch device when user presence is detected. It is recommended that the RDY be placed on an interrupt-on-pin-change input on the master.

9.9 Invalid Communications Return

The device will give an invalid communication response (0xEE) under the following conditions:

- > The host is trying to read from a memory map register that does not exist.
- > The host is trying to read from the device outside of a communication window (i.e. while RDY = high)

9.10 I²C Interface

The IQS7222C has 3 <u>I²C interface options</u>, as described in the sections below.

9.10.1 I²C Streaming

I²C Streaming mode refers to constant data reporting at the relevant power mode report rate specified in register $\underline{0xD4}$ (normal power), register $\underline{0xD6}$ (low power) and register $\underline{0xD8}$ (ultra low power) respectively.

9.10.2 I²C Event Mode

The device can be set up to bypass the communication window when no activity is sensed (EVENT MODE). This is usually enabled since the master does not want to be interrupted unnecessarily during every cycle if no activity occurred. The communication will resume (RDY will indicate available data) if an enabled event occurs.

9.10.3 I²C Stream in Touch Mode

Stream in touch is a hybrid I^2C mode between streaming mode and event mode. The device follows event mode I^2C protocol but when a touch is registered on any channel, the device enters streaming mode until the touch is released.

The hybrid I²C interface is specifically aimed at the use of sliders where data needs to be received and processed for the duration of a touch.

9.11 Event Mode Communication

Event mode can only be entered if the following requirements are met:

- > <u>Reset</u> bit must be cleared by acknowledging the device reset condition occurrence through writing <u>Ack Reset</u> bit to clear the System status flag.
- > Events must be serviced by reading from the <u>Events</u> register 0x11 to ensure all events flags are cleared otherwise continuous reporting (RDY interrupts) will persist after every conversion cycle similar to streaming mode

9.11.1 Events

Numerous events can be individually enabled to trigger communication, bit definitions can be found in Table A.3 and Table A.2:

- > Power mode change
- > Prox or touch event
- > ATI error
- > ATI active
- > ATI Event

9.11.2 Force Communication

In streaming mode, the IQS7222C I²C will provide Ready (RDY) windows at intervals specified in the power mode report rate . Ideally, communication with the IQS7222C should only be initiated in a Ready window but a communcation request described in figure 9.5 below, will force a Ready window to open. In event mode Ready windows are only provided when an event is reported and a Ready window must be requested to write or read settings outside of this window. The minimum and maximum time between the communication request and the opening of a RDY window (t_{wait}), is application specific, but the average values are 0.1ms $\leq t_{wait} \leq 45 \text{ms}^{\,i}$.

The communcation request sequence is shown in figure 9.5 below.

ⁱPlease contact Azoteq for an application specific value of twait

Figure 9.5: Force Communication Sequence

9.12 Program Flow Diagram

The program flow for event mode communication is shown in 9.6

Figure 9.6: Progam Flow Diagram

10 I²C Memory Map - Register Descriptions

See Appendix A for a more detailed description of registers and bit definitions

Address	Data (16bit)	Notes
0x00 - 0x09	Version details	See Table A.1
Read Only		
0x10	System Status	See Table A.2
0x11	Events	See Table A.3
0x12	Prox event States	See Table A.4
0x13	Touch event States	See Table A.5
0x14	Slider/Wheel 0 Output	
0x15	Slider/Wheel 1 Output	16-bit value
Read Only	Channel Counts	
0x20	Channel 0 Counts	
0x21	Channel 1 Counts	
0x22	Channel 2 Counts	
0x23	Channel 3 Counts	
0x24	Channel 4 Counts	
0x25	Channel 5 Counts	16-bit value
0x26	Channel 6 Counts	
0x27	Channel 7 Counts	
0x28	Channel 8 Counts	
0x29	Channel 9 Counts	
Read Only	Channel LTA	
0x30	Channel 0 LTA	
0x31	Channel 1 LTA	
0x32	Channel 2 LTA	
0x33	Channel 3 LTA	
0x34	Channel 4 LTA	
0x35	Channel 5 LTA	16-bit value
0x36	Channel 6 LTA	
0x37	Channel 7 LTA	
0x38	Channel 8 LTA	
0x39	Channel 9 LTA	
Read-Write	Cycle Setup	
0x8000	Oyolo octup	See Table A.6
0x8001	Cycle Setup 0	See Table A.7
0x8002	Syste Sotup o	See Table A.8
0x8100		See Table A.6
0x8101	Cycle Setup 1	See Table A.7
0x8102	Cycle Cotap 1	See Table A.8
0x8200		See Table A.6
0x8200	Cycle Setup 2	See Table A.7
0x8201	Syste Solup 2	See Table A.8
0x8300		See Table A.6
0x8300	Cycle Setup 3	See Table A.7
0x8301	Gyold Getup o	See Table A.7
		See Table A.6
0x8400	Cycle Setup 4	
0x8401	Cycle Setup 4	See Table A.7
0x8402	Clahal Curls Cature	See Table A.8
0x8500	Global Cycle Setup	See Table A.9
0x8501	Coarse and Fine Divider Preloads	See Table A.10

0x8502	Compensation Preload	See Table A.11
Read-Write	Button Setup - Thresholds, Hysteresis and Debounce	
0x9000		See Table A.12
0x9001	Button Setup 0	See Table A.13
0x9002		See Table A.14
0x9100		See Table A.12
0x9101	Button Setup 1	See Table A.13
0x9102		See Table A.14
0x9200		See Table A.12
0x9201	Button Setup 2	See Table A.13
0x9202		See Table A.14
0x9300		See Table A.12
0x9301	Button Setup 3	See Table A.13
0x9302		See Table A.14
0x9400		See Table A.12
0x9401	Button Setup 4	See Table A.13
0x9402	·	See Table A.14
0x9500		See Table A.12
0x9501	Button Setup 5	See Table A.13
0x9502		See Table A.14
0x9600		See Table A.12
0x9601	Button Setup 6	See Table A.13
0x9602	·	See Table A.14
0x9700		See Table A.12
0x9701	Button Setup 7	See Table A.13
0x9702	•	See Table A.14
0x9800		See Table A.12
0x9801	Button Setup 8	See Table A.13
0x9802		See Table A.14
0x9900		See Table A.12
0x9901	Button Setup 9	See Table A.13
0x9902	•	See Table A.14
Read-Write	Channel Setup- ATI Parameters, Reference Channel and Rx Select	
	Channel 0	
0.4000	CRX Select and General Channel Setup	See Table A.15
0xA000	•	
	ATI Base and Target	See Table A 17
0xA001	ATI Base and Target Fine and Coarse Multipliers	See Table A.17
0xA001 0xA002	Fine and Coarse Multipliers	See Table A.18
0xA001 0xA002 0xA003	Fine and Coarse Multipliers ATI Compensation	See Table A.18 See Table A.19
0xA001 0xA002 0xA003 0xA004	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0	See Table A.18 See Table A.19 See Table A.20
0xA001 0xA002 0xA003	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1	See Table A.18 See Table A.19
0xA001 0xA002 0xA003 0xA004 0xA005	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1	See Table A.18 See Table A.19 See Table A.20 See Table A.21
0xA001 0xA002 0xA003 0xA004 0xA005	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1 CRX Select and General Channel Setup	See Table A.18 See Table A.19 See Table A.20 See Table A.21 See Table A.15
0xA001 0xA002 0xA003 0xA004 0xA005 0xA100 0xA101	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1 CRX Select and General Channel Setup ATI Base and Target	See Table A.18 See Table A.19 See Table A.20 See Table A.21 See Table A.15 See Table A.17
0xA001 0xA002 0xA003 0xA004 0xA005 0xA100 0xA101 0xA101	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1 CRX Select and General Channel Setup ATI Base and Target Fine and Coarse Multipliers	See Table A.18 See Table A.19 See Table A.20 See Table A.21 See Table A.15 See Table A.17 See Table A.18
0xA001 0xA002 0xA003 0xA004 0xA005 0xA100 0xA101 0xA102 0xA103	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1 CRX Select and General Channel Setup ATI Base and Target Fine and Coarse Multipliers ATI Compensation	See Table A.18 See Table A.20 See Table A.21 See Table A.15 See Table A.15 See Table A.17 See Table A.18 See Table A.19
0xA001 0xA002 0xA003 0xA004 0xA005 0xA100 0xA101 0xA102 0xA103 0xA104	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1 CRX Select and General Channel Setup ATI Base and Target Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0	See Table A.18 See Table A.19 See Table A.20 See Table A.21 See Table A.15 See Table A.17 See Table A.18 See Table A.19 See Table A.20
0xA001 0xA002 0xA003 0xA004 0xA005 0xA100 0xA101 0xA102 0xA103	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1 CRX Select and General Channel Setup ATI Base and Target Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1	See Table A.18 See Table A.20 See Table A.21 See Table A.15 See Table A.17 See Table A.18 See Table A.18
0xA001 0xA002 0xA003 0xA004 0xA005 0xA100 0xA101 0xA102 0xA103 0xA104 0xA105	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1 CRX Select and General Channel Setup ATI Base and Target Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 2	See Table A.18 See Table A.19 See Table A.20 See Table A.21 See Table A.15 See Table A.17 See Table A.18 See Table A.19 See Table A.20 See Table A.20 See Table A.21
0xA001 0xA002 0xA003 0xA004 0xA005 0xA100 0xA101 0xA102 0xA103 0xA104	Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1 Channel 1 CRX Select and General Channel Setup ATI Base and Target Fine and Coarse Multipliers ATI Compensation Reference Channel Settings 0 Reference Channel Settings 1	See Table A.18 See Table A.19 See Table A.20 See Table A.21 See Table A.15 See Table A.17 See Table A.18 See Table A.19 See Table A.20

0xA203	ATI Compensation	See Table A.19
0xA204	Reference Channel Settings 0	See Table A.20
0xA205	Reference Channel Settings 1	See Table A.21
	Channel 3	
0xA300	CRX Select and General Channel Setup	See Table A.15
0xA301	ATI Base and Target	See Table A.17
0xA302	Fine and Coarse Multipliers	See Table A.18
0xA303	ATI Compensation	See Table A.19
0xA304	Reference Channel Settings 0	See Table A.20
0xA305	Reference Channel Settings 1	See Table A.21
	Channel 4	
0xA400	CRX Select and General Channel Setup	See Table A.15
0xA401	ATI Base and Target	See Table A.17
0xA402	Fine and Coarse Multipliers	See Table A.18
0xA403	ATI Compensation	See Table A.19
0xA404	Reference Channel Settings 0	See Table A.20
0xA405	Reference Channel Settings 1	See Table A.21
	Channel 5	
0xA500	CRX Select and General Channel Setup	See Table A.16
0xA501	ATI Base and Target	See Table A.17
0xA502	Fine and Coarse Multipliers	See Table A.18
0xA503	ATI Compensation	See Table A.19
0xA504	Reference Channel Settings 0	See Table A.20
0xA505 Reference Channel Settings 1		See Table A.21
	Channel 6	
0xA600	CRX Select and General Channel Setup	See Table A.16
0xA601	ATI Base and Target	See Table A.17
0xA602	Fine and Coarse Multipliers	See Table A.18
0xA603	ATI Compensation	See Table A.19
0xA604	Reference Channel Settings 0	See Table A.20
0xA605	Reference Channel Settings 1	See Table A.21
	Channel 7	
0xA700	CRX Select and General Channel Setup	See Table A.16
0xA701	ATI Base and Target	See Table A.17
0xA702	Fine and Coarse Multipliers	See Table A.18
0xA703	ATI Compensation	See Table A.19
0xA704	Reference Channel Settings 0	See Table A.20
0xA705	Reference Channel Settings 1	See Table A.21
	Channel 8	
0xA800	CRX Select and General Channel Setup	See Table A.16
0xA801	ATI Base and Target	See Table A.17
0xA802	Fine and Coarse Multipliers	See Table A.18
0xA803	ATI Compensation	See Table A.19
0xA804	Reference Channel Settings 0	See Table A.20
0xA805	Reference Channel Settings 1	See Table A.21
	Channel 9	233 .0010 / 1121
0xA900	CRX Select and General Channel Setup	See Table A.16
0xA900	ATI Base and Target	See Table A.17
0xA901	Fine and Coarse Multipliers	See Table A.17
0xA903	ATI Compensation	See Table A.19
0xA904	Reference Channel Settings 0	See Table A.19

0xA905	Reference Channel Settings 1	See Table A.21
Read-Write	Filter Betas	
0xAA00	Filter Beta	See Table A.22
0xAA01	Fast Filter Beta	See Table A.23
Read-Write	Slider 0 Setup	
0xB000	Slider 0 General Setup	See Table A.24
0xB001	Calibration and Bottom Speed	See Table A.25
0xB002	Top Speed	16-bit value
0xB003	Resolution	To bit value
0xB004	Enable Mask	See Table A.26
0xB005	Enable Status Link	See Table A.27
0xB006	Delta link 0	See Table A.28
0xB007	Delta Link 1	See Table A.28
0xB008	Delta Link 2	See Table A.28
0xB009	Delta Link 3	See Table A.28
Read-Write	Slider 1 Setup	
0xB100	Slider 1 General Setup	See Table A.24
0xB101	Calibration and Bottom Speed	See Table A.25
0xB102	Top Speed	16-bit value
0xB103	Resolution	TO-DIL VAIUE
0xB104	Enable Mask	See Table A.26
0xB105	Enable Status Link	See Table A.27
0xB106	Delta link 0	See Table A.28
0xB107	Delta Link 1	See Table A.28
0xB108	Delta Link 2	See Table A.28
0xB109	Delta Link 3	See Table A.28
Read-Write	GPIO Settings	
0xC000	Output 0 Enable and Configuration Settings	See Table A.29
0xC001	Output 0 Mask	See Table A.30
0xC002	Output 0 Enable Status Link	See Table A.31
0xC100	Output 1 Enable and Configuration Settings	See Table A.29
0xC101	Output 1 Mask	See Table A.30
0xC102	Output 1 Enable Status Link	See Table A.31
0xC200	Output 2 Enable and Configuration Settings	See Table A.29
0xC201	Output 2 Mask	See Table A.30
0xC202	Output 2 Enable Status Link	See Table A.31
Read-Write	PMU and System Settings	
0xD0	Control settings	See Table A.32
0xD1	ATI Error Timeout	16-bit value * 0.5 (
0xD2	ATI Report Rate	16-bit value (ms)
0xD3	Normal Power Mode Timeout	16-bit value (ms)
0xD4	Normal Power Mode Report Rate	16-bit value (ms) Range: 0 - 3000
0xD5	Low Power Mode Timeout	16-bit value (ms)
0xD6	Low Power Mode Report Rate	16-bit value (ms) Range: 0 - 3000
0xD7	Normal Power Update rate in Ultra-low Power Mode	16-bit value (ms)
0xD8	Ultra-low Power Mode Report Rate	16-bit value (ms) Range: 0 - 3000
0xD9	Event Enable	See Table A.33
0xDA	I ² C Communication	See Table A.34

0xDB	GPIO Override	See Table A.35
0xDC	Communication Timeout	See Table A.36

11 Implementation and Layout

11.1 Layout Fundamentals

NOTE

Information in the following Applications section is not part of the Azoteq component specification, and Azoteq does not warrant its accuracy or completeness. Azoteq's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

11.1.1 Power Supply Decoupling

Azoteq recommends connecting a combination of a $4.7\,\mu\text{F}$ plus a $100\,\text{pF}$ low-ESR ceramic decoupling capacitor between the VDD and VSS pins. Higher-value capacitors may be used but can impact supply rail ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few millimetres).

Figure 11.1: Recommended Power Supply Decoupling

11.1.2 VREG

The VREG pin requires a $2.2\,\mu\text{F}$ capacitor to regulate the LDO internal to the device. This capacitor must be placed as close as possible to the microcontroller. The figure below shows an example layout where the capacitor is placed close to the IC.

Figure 11.2: VREG Capacitor Placement Close to IC

11.1.3 WLCSP Light Sensitivity

The CSP package is sensitive to infrared light. When the silicon IC is subject to the photo-electric effect, an increase in leakage current is experienced. Due to the low power consumption of the IC this causes a change in signal and is common in the semiconductor industry with CSP devices.

If the IC could be exposed to IR in the product, then a dark glob-top epoxy material should cover the complete package to block infrared light. It is important to use sufficient material to completely cover the corners of the package. The glob-top also provides further advantages such as mechanical strength and shock absorption.

12 Ordering Information

12.1 Ordering Code

IQS7222C	ZZZ	ppb

IC NAME	IQS7222C	=	IQS7222C	
			001	Reserved
			101	8 button self capacitance startup, configurable via I ² C.
POWER-ON CONFIGURATION	ZZZ	=	102	8 button self capacitance startup, configurable via I ² C. I ² C address = 0x45
DACKACE TYPE			CS	WLCSP-18 package
PACKAGE TYPE	рр	=	QN	QFN-20 package
BULK PACKAGING	b	=	R	WLCSP-18 Reel (3000pcs/reel) QFN-20 Reel (2000pcs/reel)

Figure 12.1: Order Code Description

12.2 Top Marking

12.2.1 WLCSP18 Package

12.2.2 QFN20 Package Marking Option 1

12.2.3 QFN20 Package Marking Option 2

13 Package Specification

13.1 Package Outline Description – QFN20

Figure 13.1: QFN (3x3)-20 Package Outline Visual Description

Table 13.1: QFN (3x3)-20 Package Outline Visual Description

Dimension	[mm]	Dimension	[mm]
Α	0.55 ± 0.05	Е	3
A1	0.035 ± 0.05	е	0.4
A2	0.3	J	1.7 ± 0.1
A3	0.203	K	1.7 ± 0.1
b	0.2 ± 0.05	L	0.4 ± 0.05
D	3		

13.2 Package Outline Description – WLCSP18

Figure 13.2: WLCSP (1.62x1.62)-18 Package Outline Visual Description

Table 13.2: WLCSP (1.62x1.62)-18 Package Outline Visual Description

Dimension	[mm]	Dimension	[mm]
Α	0.525 ± 0.05	E	1.620 ± 0.015
A1	0.2 ± 0.02	E1	1.2
A2	0.3 ± 0.025	e1	0.4
b	0.260 ± 0.039	e2	0.6
D	1.620 ± 0.015	f	0.36
D1	1.2		

13.3 Tape and Reel Specifications

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Reel Width (W1)

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Figure 13.3: Tape and Reel Specification

Table 13.3: Tape and reel Specifications

Package Type	Pins	Reel Diameter (mm)	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
QFN20	20	180	12.4	3.3	3.3	8.0	8	12	Q2
WLCSP18	18	179	8.4	1.78	1.78	0.69	4	8	Q1

13.4 Moisture Sensitivity Levels

Package	MSL
QFN20	1
WLCSP18	1

13.5 Reflow Specifications

Contact Azoteq

A Memory Map Descriptions

Table A.1: Version Information

Register:	0x00 - 0x09				
Address	Category	Name		Value	
0x00		Product Number		863	
0x01		Major Version	1 (for order code 001)	2	2
0x02	Reserved	Minor Version	13	6	23/27 ⁱ
0x03		Reserved			
0x04		rioscived			
0x05 - 0x09		Reserved			

Table A.2: System Status

Registe	r:	0x10													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Rese	erved				Global Halt	NP up- date	Powe	r mode	Reset	Res	ATI Error	ATI Active

- > Bit 7: Global Halt
 - 0: Global Halt not active
 - 1: Global Halt active
- > Bit 6: Normal Power Update
 - 0: No Normal Power Update occured
 - 1: Normal Power update occured
- > Bit 4-5: Current Power Mode
 - 00: Normal power mode
 - 01: Low power mode
 - 10: Ultra-low power mode
- > Bit 3: Device Reset
 - 0: No reset occurred
 - 1: Reset occurred
- > Bit 1: ATI Error
 - 0: No ATI error occurred
 - 1: ATI error occurred
- > Bit 0: ATI Active
 - 0: ATI not active
 - 1: ATI active

Table A.3: Events

Register		0x11													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Rese	erved	Power Event	ATI Event					Rese	erved					Touch Event	Prox Event

> Bit 13: Power Event

- 0: No Power Event occurred
- 1: Power Event occurred

> Bit 12: ATI Event

- 0: No ATI Event occurred
- 1: ATI Event occurred

> Bit 1: Touch Event

- 0: No Touch Event occurred
- 1: Touch Event occurred

> Bit 0: Prox Event

- 0: No Prox Event occurred
- 1: Prox Event occurred

ⁱPlease refer to PCN-PR560-IQS7222C Product Change note v1.0

Table A.4: Proximity Event States

Register:		0x12													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
						CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

> Bit 0-10: Channel Prox Event

- 0: No prox event occurred on channel
- 1: Prox event occurred on channel

Table A.5: Touch Event States

Register:		0x13													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
						CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

> Bit 0-10: Channel Touch Event

- 0: No touch event occurred on channel
- 1: Touch event occurred on channel

Table A.6: Cycle Setup 0

Register:		0x8000,	0x8100, 0x	8200, 0x83	300, 0x8400										
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Cor	nversion Fre	equency Pe	eriod					Con	ersion Fre	quency Fra	ction		

> Bit 8-15: Conversion Frequency Period

- The calculation of the charge transfer frequency (f_{xfer} is shown below. The relevant formula is determined by the value of the dead time enabled bit (refer to table A.7)
- Dead time enabled: $f_{\text{xfer}} = \frac{f_c l k}{2*period + 2}$ Dead time enabled: $f_{\text{xfer}} = \frac{f_c l k}{2*period + 3}$
- Range: 0 127

> Bit 0-7: Conversion Frequency Fraction

- $256 * \frac{f_{\text{conv}}}{f_{\text{clk}}}$ Range: 0 255
- > Note: if Conversion frequency fraction is fixed at 127 and dead time is enabled, the following values of the conversion period will result in the corresponding charge transfer frequencies:
 - 1: 2MHz
 - 5: 1MHzⁱⁱ
 - 12: 500kHz
 - 17: 350kHz
 - 26: 250kHz
 - 53: 125kHz

Table A.7: Cycle Setup 1

Register	:	0x8001,	0x8101, 0x	8201, 0x83	01, 0x8401										
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CTX8	CTX7	CTX6	CTX5	CTX4	CTX3	CTX2	CTX1	CTX0	Ground inac- tive Rxs	Dead time en- abled	FOSC TX Freq	Vbias en- able		PXS Mode	

> Bit 15: CTx8

0: CTx8 disabled

1: CTx8 enabled

> Bit 14: CTx7

0: CTx7 disabled

1: CTx7 enabled

> Bit 13: CTx6

0: CTx6 disabled

1: CTx6 enabled

ⁱⁱPlease note: The maximum charge transfer frequency for mutual capacitive mode (refer to table A.7) is 1MHz

- > Bit 12: CTx5
 - 0: CTx5 disabled
 - 1: CTx5 enabled
- > Bit 11: CTx4
 - 0: CTx4 disabled
 - 1: CTx4 enabled
- > Bit 10: CTx3
 - 0: CTx3 disabled
 - 1: CTx3 enabled
- > Bit 9: CTx2
 - 0: CTx2 disabled
 - 1: CTx2 enabled
- > Bit 8: CTx1
 - 0: CTx1 disabled
 - 1: CTx1 enabled
- > Bit 7: CTx0
 - 0: CTx0 disabled
 - 1: CTx0 enabled
- > Bit 6: Ground Inactive Rx's
 - 0: Inactive Rx floating
 - 1: Inactive Rx Grounded

> Bit 5: Dead Time Enabled

- Functionality used to avoid transient effect.
- 0: Deadtime disabled
- 1: Deadtime enabled

> Bit 4: FOSC TX Frequency

- 0: Disabled Tx frequency set to the value of charge transfer frequency selected with the combination of charge transfer frequency fractio and period values
- 1: Enabled Tx frequency set to the value of FOSC

> Bit 3: Vbias Enabled

- Creates a constant voltage output on Tx8 to offset input voltage.
- Enable in biased resonant inductive sensing if the voltage swing on the selected CRx is small.
- 0: Vbias disabled
- 1: Vbias enabled
- > Bit 0-2: PXS Mode
 - 000: None
 - 001: Self-capacitive
 - 010: Mutual capacitiveⁱⁱⁱ
 - 011: Mutual inductance

Table A.8: Cycle Setup 2

Register	:	0x8002,	0x8102, 0x	8202, 0x83	02, 0x8402										
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Reserved			Current Refer- ence En- able	Refe	rrent rence itput	(Current Ref	erence Leve	el		Current Ref	erence Trim	

> Bit 10: Current Reference Enable

- 0: Disable current reference
- 1: Enable current reference

> Bit 8-9: Current Reference Output

- 00: Disabled
- 10: Self-inductance to pads

> Bit 4-7: Current Reference Level

- 4 bit value to scale current output
- Higher values will result in a higher output current

> Bit 0-3: Current Reference Trim

- 4 bit value to adjust current supply output
- Higher values will result in a higher output current

ⁱⁱⁱPlease note that the maximum allowed charge transfer frequency (see table A.6) for mutual capacitive mode is 1MHz i.e frequency period \geq 5

Table A.9: Global Cycle Setup

Register:		0x8500													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Res- erved	Maximur	m counts			Reserved			1	1	C	00		Mode date	Rese	erved

> Bit 13-14: Maximum counts

00: 102301: 204710: 409511: 16384

> Bit 2-3: Auto Mode Update

Number of conversions created before each interrupt is generated

00: 401: 810: 16

• 11: 32

Table A.10: Coarse and Fine Multipliers Preload

Register:		0x8501													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Rese	rved		Fine	Divider Pre	eload			Rese	erved			Coars	e Divider P	reload	

> Bit 0-4: Coarse Divider Preload

• 5-bit coarse divider preload value

> Bit 9-13: Fine Divider Preload

5-bit fine divider preload value

Table A.11: ATI Compensation Preload

Register:		0x8502													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Rese	erved						ΑT	I Compens	ation Prelo	ad			

> Bit 0-9: ATI Compensation Preload

10-bit preload value

Table A.12: Button Setup 0

Register:		0x9000,	0x9100, 0x	9200, 0x93	00, 0x9400,	0x9500, 0	x9600, 0x9	700, 0x980	0, 0x9900						
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	E	xit			Ent	er		Res Set 0			Prox	imity Thres	hold		

> Bit 12-15: Exit Debounce Value

0000: Debounce disabled

4-bit value

> Bit 8-11: Enter Debounce Value

0000: Debounce disabled

4-bit value

> Bit 0-6: Proximity Threshold

7-bit value

Table A.13: Button Setup 1

Register:		0x9001,	0x9101, 0x	9201, 0x93	01, 0x9401	, 0x9501, 0	x9601, 0x9	701, 0x980	1, 0x9901						
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Touch H	ysteresis							Touch T	reshold			

> Bit 8-15: **Touch Hysteresis**

• Touch hysteresis value determines the release threshold. Release threshold can be determined as follows:

LTA * Threshold bit value Threshold bit value * Hysteresis bit value * LTA

> Bit 0-7: Touch Threshold

 $\frac{LTA}{256}$ * 8bit value

Table A.14: Button Setup 2

Register:		0x9002,	0x9101, 0x	9202, 0x93	02, 0x9402	, 0x9502, 0	x9602, 0x9	702, 0x980	02, 0x9902						
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Touch Eve	nt Timeout							Prox Ever	nt Timeout			

> Bit 8-15: Touch Event Timeout

- 8-bit value * 500ms where a reseed of the LTA is forced. If the LTA is outside of the LTA ATI band a re-ATI event will occur if ATI is not disabled
- 0: Never timeout (recommended for use with follower and reference channels)

> Bit 0-7: **Prox Event Timeout**

- 8-bit value * 500ms where a reseed of the LTA is forced. If the LTA is outside of the LTA ATI band a re-ATI event will occur if ATI is not disabled
- 0: Never timeout (recommended for use with follower and reference channels)

Table A.15: CRX Select and General Channel Setup(CH0-CH4)

Register:		0xA000,	0xA100, 0x	kA200, 0xA	300, 0xA40	0									
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Мо	de	ATI E	Band	Global halt	Invert	Dual	Enabled	CRX3	CRX2	CRX1	CRX0	Cs Size	Vref 0.5V	Proj Bias	Select

> Bit 14-15: Channel Mode

- 00: Independent
- 01: Reference
- 10: Follower

> Bit 12-13: ATI band

- 00: 1/16 * Target
- 01: 1/8 * Target
 10: 1/4 * Target
 11: 1/2 * Target

> Bit 11: Global halt

- If enabled, the LTA on the channel will halt when any other channel with global halt enabled, is in a prox/touch state. The function is aimed at slider/ wheel applications
- 0: Halt disabled
- 1: Halt enabled

> Bit 10: Invert Direction

- If this bit is enabled, the direction in which a touch will be triggered, is inverted. Bit must be enabled for mutual capacitive mode
- 0: Invert direction disabled
- 1: Invert direction enabled

> Bit 9: Bi-directional sensing

- 0: Bi-directional sensing disabled
- 1: Bi-directional sensing enabled

> Bit 8: Channel Enabled

- 0: Channel disabled
- 1: Channel enabled

> Bit 7: CRx3

- 0: CRx3 disabled
- 1: CRx3 enabled

> Bit 6: CRx2

- 0: CRx2 disabled
- 1: CRx2 enabled

> Bit 5: CRx1

- 0: CRx1 disabled
- 1: CRx1 enabled

> Bit 4: CRx0

- 0: CRx0 disabled
- 1: CRx0 enabled

> Bit 3: Cs Size

- 0: 40pF use when external load is very small
- 1: 80pF

> Bit 2: Vref 0.5V Enable

- Decrease internal sampling capacitor size
- 0: Vref 0.5V disabled C_s = Value chosen in Cs 80pF bit (40pF/80pF)
- 1: Vref 0.5V enabled C_s = Half of the value chosen in Cs 80pF bit (40pF/80pF)

> Bit 0-1: Projected Bias Select

- 00: 2μΑ
- 01: 5μA
- 10: 7μA
- 11: 10μA

Table A.16: CRX Select and General Channel Setup(CH5-CH9)

Register:		0xA500,	0xA600, 0	kA700, 0xA	800, 0xA90	0									
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Mo	ode	ATI E	Band	Global halt	Invert	Dual	Enabled	CRX7	CRX6	CRX5	CRX4	Cs 80pF	Vref 0.5V	Proj Bia	s Select

> Bit 14-15: Mode

- 00: Independent
- 01: Reference
- 10: Follower

> Bit 12-13: ATI band

- 00: 1/16 * Target
- 01: 1/8 * Target
- 10: 1/4 * Target
- 11: 1/2 * Target

> Bit 11: Global halt

- If enabled, the LTA on the channel will halt when any other channel with global halt enabled, is in a prox/touch state. The function is aimed at slider/ wheel applications
- 0: Halt disabled
 - 1: Halt enabled

> Bit 10: Invert Direction

- If this bit is enabled, the direction in which a touch will be triggered, is inverted. Bit must be enabled for mutual capacitive mode
- 0: Invert direction disabled
- 1: Invert direction enabled

> Bit 9: Bi-directional Sensing

- 0: Bi-directional sensing disabled
- 1: Bi-directional sensing enabled

> Bit 8: Channel Enabled

- 0: Channel disabled
- 1: Channel enabled

> Bit 7: CRx7

- 0: CRx7 disabled
- 1: CRx7 enabled

> Bit 6: CRx6

- 0: CRx6 disabled
- 1: CRx6 enabled

> Bit 5: CRx5

- 0: CRx5 disabled
- 1: CRx5 enabled

> Bit 4: CRx4

- 0: CRx4 disabled
- 1: CRx4 enabled

> Bit 3: Cs Size

- 0: 40pF use when external load is very small
- 1: 80pF

> Bit 2: Vref 0.5V Enable

- Decrease internal sampling capacitor size
- 0: Vref 0.5V disabled C_s = Value chosen in Cs 80pF bit (40pF/80pF)
- 1: Vref 0.5V enabled C_s = Half of the value chosen in Cs 80pF bit (40pF/80pF)

> Bit 0-1: Projected Bias Select

- 00: 2μA
- 01: 5μA

10: 7μΑ11: 10μΑ

Table A.17: ATI Base and Target

Register:		0xA001,	0xA101, 0x	A201, 0xA	301, 0xA40	1, 0xA501,	0xA601, 0	xA701, 0xA	801, 0xA9	01					
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			ATI T	arget						ATI Base				ATI Mode	

> Bit 8-15: ATI Target

8-bit value * 8

> Bit 3-7: ATI Base

5-bit value * 16

> Bit 0-2: ATI Mode

000: ATI Disabled

001: Compensation only

010: ATI from compensation divider
011: ATI from fine fractional divider
100: ATI from coarse fractional divider

101: Full ATI

Table A.18: Fine and Coarse Multipliers

Register:		0xA002,	0xA102, 0x	kA202, 0xA	302, 0xA402	2, 0xA502,	0xA602, 0	xA702, 0xA	.802, 0xA90)2					
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Rese	rved		Fine I	Fractional D	Divider		Co	arse Fracti	onal Multip	lier		Coarse	Fractional	Divider	

> Bit 9-13: Fine Fractional Divider

5-bit value

> Bit 5-8: Coarse Fractional Multiplier

4-bit value

> Bit 0-4: Coarse Fractional Divider

5-bit value

Table A.19: ATI Compensation

Register:		0xA003,	0xA103, 0x	xA203, 0xA	303, 0xA40	3, 0xA503,	0xA603, 0	xA703, 0xA	803, 0xA90	03					
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Comi	oonsation F	lividor		Pos				(omnoncat	on Soloctic	nn.			

- > Bit 11-15: Compensation Divider
 - 5-bit value
- > Bit 0-9: Compensation Selection
 - 10-bit value

Table A.20: Reference Channel Settings 0

Register:		0xA004,	0xA104, 0x	A204, 0xA	304, 0xA40	4, 0xA504,	0xA604, 0	xA704, 0xA	804, 0xA90)4					
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					R	eference F	ollower Ma	sk Pointer/	Sensor Ma	sk					

- > Please note that the register value is used for either Follower Mask Link Ptr or Reference Sensor Ptr based on the mode selected in table A.15 / A.16, bit 14-15
- > Reference Follower Mask Pointer Mode = Reference
 - 0x694 (decimal = 1684): Prox
 - 0x696 (decimal = 1686): Touch
- > Sensor Mask Mode = Follower
 - 0x000 (decimal = 0): None
 - 0x418 (decimal = 1048): Channel 0
 - 0x442 (decimal = 1090): Channel 1
 - 0x46C (decimal = 1132): Channel 2
 - 0x496 (decimal = 1174): Channel 3
 - 0x4C0 (decimal = 1216): Channel 4
 - 0x4EA (decimal = 1258): Channel 5

0x514 (decimal = 1300): Channel 6
0x53E (decimal = 1342): Channel 7
0x568 (decimal = 1384): Channel 8
0x592 (decimal = 1426): Channel 9

Table A.21: Reference Channel Settings 1

Register:		0xA005,	0xA105, 0x	(A205, 0xA	305, 0xA40	5, 0xA505,	0xA605, 0	xA705, 0xA	805, 0xA90)5					
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
						Reference	Follower M	ask/ Refere	nce Weigh	t					

- > Please note that the register value is used for either Follower Mask or Reference Weight based on the mode selected in table A.15 / A.16, bit 14-15
- > Reference Follower Mask (used to enable current sensor as a reference channel for the selected channel) Mode = Reference
 - 0: Disabled
 - 1: Channel enabled as reference for Channel 0
 - 2: Channel enabled as reference for Channel 1 enabled
 - 4: Channel enabled as reference for Channel 2 enabled
 - 8: Channel enabled as reference for Channel 3 enabled
 - 16: Channel enabled as reference for Channel 4 enabled
 - 32: Channel enabled as reference for Channel 5 enabled
 - 64: Channel enabled as reference for Channel 6 enabled
 - 128: Channel enabled as reference for Channel 7 enabled
 - 256: Channel enabled as reference for Channel 8 enabled
 - 512: Channel enabled as reference for Channel 9 enabled
- > **Reference Weight** Mode = Follower
 - 16-bit decimal value/256

Table A.22: Filter Betas

Register	:	0xAA00													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	LTA Low F	Power Beta		I	TA Normal	Power Beta	3	(Counts Low	Power Bet	а	Co	ounts Norma	al Power Be	eta

- > Bit 12-15: LTA Low Power Beta Filter Value
 - 4-bit value
- > Bit 8-11: LTA Normal Power Beta Filter Value
 - 4-bit value
- > Bit 4-7: Counts Low Power Beta Filter Value
 - 4-bit value
- > Bit 0-3: Counts Normal Power Beta Filter Value
 - 4-bit value

Table A.23: Fast Filter Betas

Register:		0xAA01													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Rese	erved				Lī	A Low Pov	er Fast Bet	a	LTA	Normal Po	wer Fast B	eta

- > Bit 4-7: LTA Low Power Fast Beta Filter Value
 - 4-bit value
- > Bit 0-3: LTA Normal Power Fast Beta Filter Value
 - 4-bit value

Table A.24: Slider/Wheel Setup 0

Register:		0xB000,	0xB100												
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Lower Ca	alibration				Static Filter	Slo	ow/Static B	eta	Wheel En- able	To	otal Channel	s

> Bit 8-15: Lower Calibration

8-bit value

> Bit 7: Static Filter

• 0: Static filter disabled

• 1: Static filter enabled

> Bit 4-6: Slow/Static Beta

3-bit value

> Bit 3: Wheel Enable

0: Wheel disabled

• 1: Wheel enabled

> Bit 0-2: Total Channels

0010: 2 Channels0011: 3 Channels0100: 4 ChannelsElse: Disabled

Table A.25: Slider/Wheel Setup 1

Register:		0xB001,	0xB101												
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Bottom FI	Iter Speed							Upper Ca	alibration			

> Bit 8-15: Bottom Filter Speed

8-bit value

> Bit 0-7: Upper Calibration

8-bit value

Table A.26: Slider Enable Mask

F	Register:		0xB004,	0xB104												
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Rese	erved			CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

- > Please note that all channels in use must be selected
- > Bit 0-9: Slider Channel Enable Mask
 - 0: Disabled
 - 1: Channel 0 enabled for slider
 - 2: Channel 1 enabled for slider
 - 4: Channel 2 enabled for slider
 - 8: Channel 3 enabled for slider
 - 16: Channel 4 enabled for slider
 - 32: Channel 5 enabled for slider
 - 64: Channel 6 enabled for slider
 - 128: Channel 7 enabled for slider
 - 256: Channel 8 enabled as output
 - 512: Channel 9 enabled as output

Table A.27: Slider Enable Status Link

Register:		0xB005,	0xB105												
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
							Enable S	tatus Link							

> Bit 0-15: Enable Status Link

- 0x694 (decimal = 1684): Output linked to channel prox
- 0x696 (decimal = 1686): Output linked to channel touch

Table A.28: Delta Link

Register:		0xB006,	0xB007, 0x	(B008, 0xB	009, 0xB10	6, 0xB107,	0xB108, 0	xB109							
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
							Delta	a Link							

- > Bit 0-15: **Delta Link** Select element order per channel
- > Delta link number corresponds with slider element order

- 0x000 (decimal = 0): Disabled
- 0x438 (decimal = 1080): Channel 0 enabled for element
- 0x462 (decimal = 1122): Channel 1 enabled for element
- 0x48C (decimal = 1164): Channel 2 enabled for element
- 0x4B6 (decimal = 1206): Channel 3 enabled for element
- 0x4E0 (decimal = 1248): Channel 4 enabled for element
- 0x50A (decimal = 1290): Channel 5 enabled for element
- 0x534 (decimal = 1332): Channel 6 enabled for element
- 0x55E (decimal = 1374): Channel 7 enabled for element
- 0x588 (decimal = 1416): Channel 8 enabled for element
- 0x5B2 (decimal = 1458): Channel 9 enabled for element

Table A.29: GPIO Enable and Configuration Settings

Register:		UXCUUU,	UXC 100, 0	XC200											
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
				Reserved					GPIO4	GPIO3	Rese	erved	GPIO0	Output Con- figura- tion	Enable

- > Bit 6: **GPIO4**
 - 0: GPIO4 not linked to output
 - 1: GPIO4 linked to output
- > Bit 5: **GPIO3**
 - 0: GPIO3 not linked to output
 - 1: GPIO3 linked to output
- > Bit 2: GPIO0
 - 0: GPIO0 not linked to output
 - 1: GPIO0 linked to output
- > Bit 1: Output Configuration
 - 0: Push pull active high logic
 - 1: Open Drain active low logic (requires additional pull-up resistance to VDD level, no internal pull-up)
- > Bit 0: Enable
 - 0: GPIO Output disabled
 - 1: GPIO Output enabled

Table A.30: GPIO0 Enable Mask

Register:		0xC001,	0xC101, 0	xC201											
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Rese	erved			CH9	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

- > Please note that more than one channel can be selected as an output
- > Bit 0-7: Channel Enable Mask
 - 0: Disabled
 - 1: Channel 0 enabled as output
 - 2: Channel 1 enabled as output
 - 4: Channel 2 enabled as output
 - 8: Channel 3 enabled as output
 - 16: Channel 4 enabled as output
 - 32: Channel 5 enabled as output
 - 64: Channel 6 enabled as output
 - 128: Channel 7 enabled as output
- > Bit 8-9: Channel Enable Mask
 - 256: Channel 8 enabled as output
 - 512: Channel 9 enabled as output

Table A.31: GPIO Enable Status Link

Register:		0xC002,	0xC102, 0	xC202											
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
							Enable S	tatus Link							

> Bit 0-15: Enable Status Link

- 0x694 (decimal = 1684): Output linked to channel prox
- 0x696 (decimal = 1686): Output linked to channel touch
- 0x6A4 (decimal = 1700): Direct output (Use register 0xDB (See table A.35) to directly override the GPIO output state for the instance of CH0, CH1 or CH2)

Table A.32: Control Settings

Register:		0xD0													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Rese	erved				Interfac	ce type	Power	mode	Reseed	Re- ATI	Soft Reset	ACK Reset

> Bit 6-7: Interface Selection

- 00: I²C streaming
- 01: I²C event mode
- 10: I²C Stream in touch

> Bit 4-5: Power Mode Selection

- 00: Normal power
- 01: Low power
- 10: Ultra-low Power
- 11: Automatic power mode switching

> Bit 3: Execute Reseed Command

- 0: Do not reseed
- 1: Reseed

> Bit 2: Execute ATI Command

- 0: Do not ATI
- 1: ATI

> Bit 1: Soft Reset

- 0: Do not reset device
- 1: Reset device after communication window terminates

> Bit 0: Acknowledge Reset Command

- 0: Do not acknowledge reset
- 1: Acknowledge reset

Table A.33: Event Enable

Register:		0xD9													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Rese	erved	Power	ATI					Rese	erved					Touch	Prox

> Bit 13: Power Event

- 0: Power event masked
- 1: Power event enabled

> Bit 12: ATI Event

- 0: ATI event masked
- 1: ATI event enabled

> Bit 1: Touch Event

- 0: Touch event masked
- 1: Touch event enabled

> Bit 0: Prox Event

- 0: Prox event masked
- 1: Prox event enabled

Table A.34: I²C Communication

Reg	gister:		0xDA													
Bit	15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
						Reserv	/ed						Stop re- ceived	Start re- ceived	RW check dis- abled	Stop bit dis- abled

> Bit 3: Stop Received Flag

- 0: No I²C stop received
- 1: I²C stop received

- > Bit 2: Start Received Flag
 - 0: No I²C start received
 - 1: I²C start received
- > Bit 1: RW Check Disabled
 - 0: Write not allowed to read only registers
 - 1: Read and write allowed to read only registers
- > Bit 0: Stop Bit Disabled
 - 0: I²C communication window terminated by stop bit.
 - 1: I²C communication window not terminated by stop bit. Send 0xFF to slave address to terminate window

Table A.35: GPIO Override

Register:		0xDB													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
						Reserved							CH2	CH1	CH0

- > Note: To write to this register, the register's address (0xDB) must be commanded explicitly before writing data i.e. in a separate I²C write setup command.
- > Bit 2: CH2
 - 0: Channel 2 direct output state inactive
 - 1: Channel 2 direct output state active
- > Bit 1: CH1
 - 0: Channel 1 direct output state inactive
 - 1: Channel 1 direct output state active
- > Bit 0: CH0
 - 0: Channel 0 direct output state inactive
 - 1: Channel 0 direct output state active
- > Note: To use direct outputs
 - Output must be enabled as "Direct".
 - The corresponding channel "CHx" in the Channel Enable Mask register (refer to table A.30) must be enabled. E.g. For output 2, CH2 must be selected.
 - The corresponding GPIO override bit, "CHx" must be enabled. E.g. For output 2, the CH2 bit under "GPIO Override" must be enabled.

Table A.36: I²C Communication Timeout

Register:		0xDC													
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	I ² C Communication Timeout														

- > Note: To write to this register, the register's address (0xDC) must be commanded explicitly before writing data i.e. in a separate I²C write setup command.
- > Bit 0-15: I²C Communication Timeout
 - 16-bit value [ms]
 - Range: 0 64535
 - Default = 500ms

B Revision History

Release	Date	Changes
v1.0	July 2021	Initial release
v1.1	July 2021	Filter beta bit definition corrected
v1.2	August 2021	Reference schematics updated to include 3 GPIO's Extra GPIO registers and descriptions add Order code 101 and 102 added Tape and Reel information added Slider and wheel combinations added Firmware version changed to v2.6 Bit definition for Read-write check corrected
v1.3	November 2021	Changed Communication protocol description Read-write permissions added in memory map Stop-bit disable bit definition corrected Revision history added Force communication section added Register 0xDC added VREG minimum and maximum values added Firmware version changed to v2.23 Changes implemented for IQS7222C 101 and 102 IC options according to "PCN-PR560-IQS7222C Product Change note v0.1"
v1.4	Desember 2021	Firmware version changed to v2.27. Appendix C, known issues added Changes implemented for IQS7222C 101 and 102 IC options according to "PCN-PR560-IQS7222C Product Change note v1.0"
v1.5	January 2022	Information regarding h files added Added program flow diagram
v1.6	June 2022	Added watchdog timer Minor format and spelling errors addressed Frontpage package dimension update Description of Direct Output GPIO function added Package description and dimension updated Schematics updated to match VREG capacitor
		recommendations
v1.7	June 2022	·

C Known Issues

V2.23 and earlier: Polling during start-up may result in device lockup. Suspend polling for at least 25ms after receiving a NACK.

Contact Information

	USA	Asia	South Africa
Physical Address	11940 Jollyville Rd Suite 120-S Austin TX-78759 USA	Room501A, Block A T-Share International Centre Taoyuan Road Nanshan District Shenzhen Guangdong Province PRC	1 Bergsig Avenue Paarl 7646 South Africa
Postal Address	11940 Jollyville Rd Suite 120-S Austin TX–78759 USA	Room501A, Block A T-Share International Centre Taoyuan Road Nanshan District Shenzhen Guangdong Province PRC	PO Box 3534 Paarl 7620 South Africa
Tel	+1 512 538 1995	+86 755 8303 5294 ext 808	+27 21 863 0033
Email	info@azoteq.com	info@azoteq.com	info@azoteq.com

Visit www.azoteq.com for a list of distributors and worldwide representation.

Patents as listed on www.azoteq.com/patents-trademarks/ may relate to the device or usage of the device.

Azoteq[®], Crystal Driver[®], IQ Switch[®], ProxSense[®], ProxFusion[®], LightSense[™], SwipeSwitch[™], and the Qiogo are trademarks of Azoteq.

The information in this Datasheet is believed to be accurate at the time of publication. Azoteq uses reasonable effort to maintain the information up-to-date and accurate, but does not warrant the accuracy, completeness or reliability of the information contained herein. All content and information are provided on an "as is" basis only, without any representations or warranties, express or implied, of any kind, including representations about the suitability of these products or information for any purpose. Azoteq disclaims all warranties and conditions with regard to these products and information, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, title and non-infringement of any third party intellectual property rights. Azoteq assumes no liability for any damages or injury arising from any use of the information or the product or caused by, without limitation, failure of performance, error, omission, interruption, defect, delay in operation or transmission, even if Azoteq has been advised of the possibility of such damages. The applications mentioned herein are used solely for the purpose of illustration and Azoteq makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Azoteq products are not authorized for use as critical components in life support devices or systems. No licenses to patents are granted, implicitly, express or implied, by estoppel or otherwise, under any intellectual property rights. In the event that any of the abovementioned limitations or exclusions does not apply, it is agreed that Azoteq's total liability for all losses, damages and causes of action (in contract, tort (including without limitation, negligence) or otherwise) will not exceed the amount already paid by the customer for the products. Azoteq reserves the right to alter its products, to make corrections, deletions, modifications, enhancements, improvements and other changes to the content and information, its products, programs and services at any time or to move or discontinue any contents, products, programs or services without prior notification. For the most up-to-date information and binding Terms and Conditions please refer to www.azoteq.com.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Azoteq: