Отчёт о выполнении лабораторной работы 1.1.1

Определение удельного сопротивления нихромовой проволоки

Автор: Трунов Владимир Б01-103

1 Введение

Цель работы: измерить удельное сопротивление тонкой проволоки круглого сечения, изготовленной из нихромового сплава.

В работе используются: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

В работе используются следующие методы измерения сопротивления:

- 1. определение углового коэффициента наклона зависимости напряжения на проволоке от тока через неё;
- 2. измерение с помощью моста постоянного тока.

2 Теоретические сведения

Удельное сопротивления однородной проволоки круглого сечения можно определить по следующей формуле:

$$\rho = R \frac{\pi d^2}{4I},\tag{1}$$

где R – сопротивление проволоки, d – её диаметр, l – длина.

Согласно закону Ома напряжение V и ток I в образце связаны соотношением

$$V = RI$$
.

Для измерения напряжения и тока используем схему на puc. 1.

T.к. используемый вольтметр неидеален необходимо сделать поправку на его сопротивление R_V .

Показания амперметра I_A и вольтметра V_{B} связаны следующим соотношением

$$V_{\rm B}=R'I_{\rm A},$$

где R' – сопротивление параллельно соединённых проволоки и вольтметра.

При этом
$$\frac{1}{R'} = \frac{1}{R_V} + \frac{1}{R}$$
, и $R_V \gg R, R'$.

Рис. 1: Схема цепи

Таким образом, график зависимости $V_{\rm B}\left(I_A\right)$ должен представлять прямую, угловой коэффициент которой есть R', откуда сопротивление образца может быть найдено по следующей формуле:

$$R = \frac{R_V R'}{R_V - R'} \approx R' \left(1 + \frac{R'}{R_V} \right) \tag{2}$$

3 Оборудование и экспериментальные погрешности

Штангенциркуль: $\Delta_{\text{mt}} = \pm 0.05 \text{ мм}$

Микрометр: $\Delta_{\text{мкм}} = \pm 0.01 \text{ мм}$

Вольтметр:

Система	Магнито-электрическая
Класс точности	0,5
Предел измерений	0,75 мА
Цена деления	$5 \cdot 10^{-3} \text{ B} = 5 \text{ мB}$
Чувствительность	200 дел./В
Внутреннее сопротивление	5 кОм
Погрешность при считывании со шкалы	±2,5 мВ
Максимальная погрешность по классу точности	±3,75 мВ

Амперметр:

Система	Цифровая
Предел измерения	2 A
Разрядность дисплея	5 ед.
Внутреннее сопротивление	$R_A = 1.4 \text{ Om}$
Погрешность	$\Delta = (0.002 \cdot X + 2k)$
	X - величина
	К - единица младшего разряда
	(k = 0.01 mA)

В диапазоне измерения R от 1 до 10 Ом относительная поправка к сопротивлению согласно ф-ле (2) составляет $\approx 10^{-4}\%$ (при R'=10 Ом и $R_V=5$ кОм). Поэтому эта поправка пренебрежимо мала и не оказывает значительного влияния на последующие измерения. Поэтому далее будем считать, что

$$R \approx R'$$

Мост постоянного тока Р4833:

WICCI HOCIONHIDIO IONA I 4000.	
Класс точности	0,1
Разрядность магазина сопротивлений	5 ед.
Исследуемый диапазон измерений	$10^{-4} - 10$ Ом (для множителя $N =$
	10^{-2})
Погрешность измерений в используемом	±0,010 Ом
диапазоне	

4 Результаты измерений и обработка данных

4.1 Измерение диаметра d проволоки

Измерения проводились штангенциркулем и микрометром для N=10 различных участков проволоки. При измерении штангенциркулем получено d=0,4 мм для всех участков. При измерении микрометром были получены следующие показания:

2

Среднее значение диаметра $\overline{d} = \frac{\sum d_i}{N} = 0.357$ мм.

Случайная погрешность измерения
$$\sigma_{\overline{d}} = \sqrt{\frac{1}{N(N-1)}\sum (d_i - \overline{d})^2} \approx 0{,}001$$
 мм.

Номер измерения	1	2	3	4	5	6	7	8	9	10
d, мм	0,35	$0,\!36$	0,36	$0,\!35$	0,36	0,36	0,36	0,35	0,36	0,36

Таблица 1: Измерение диаметра проволоки микрометром

С учётом инструментальной погрешности $\Delta_{\text{мкм}}=0.01$ мм погрешность диаметра может быть вычислена как $\sigma_{\overline{d}}^{\text{полн}}=\sqrt{\sigma_{\overline{d}}^2+\Delta_{\text{мкм}}^2}\approx 0.01$ мм.

Окончательные результаты измерения диаметра проволоки:

 \bullet Штангенциркулем: $d = 0.4 \pm 0.05$ мм

• Микрометром: 0.357 ± 0.01 мм ($\varepsilon = 2.7\%$)

4.2 Измерение сопротивления проволоки

Результаты измерений зависимостей показания вольтметра $V_{\rm B}$ от показаний амперметра I_A в схеме на puc. 1 представлены в Taблице 2. Соответствующие графики зависимостей изображены на puc. 2.

Пользуясь методом наименьших квадратов, строим аппроксимирующие прямые $V_{\rm B}=\overline{R}I_A$, определяя их угловой коэффициент по формуле

$$\overline{R} = \frac{\langle VI \rangle}{\langle I^2 \rangle}.$$

$l=20~\mathrm{cm}$										
$V_{\rm B}$, дел.	145	119	85	54	40	44	55	70	81	142
$V_{\rm B}$, мВ	725	595	425	270	200	220	275	350	405	710
I_A , MA	334,16	275,28	194,88	123,62	92,33	102,75	127,91	162,69	186,32	328,03
				l =	= 30 см					
V_{B} , дел.	149	120	91	71	52	59	67	78	94	124
$V_{\rm B}$, мВ	745	600	455	355	260	295	335	390	470	620
I_A , MA	227,16	182,61	138,14	107,99	78,89	90,03	101,51	117,83	142,59	189,22
	$l=50~\mathrm{cm}$									
$V_{\rm B}$, дел.	150	136	114	92	77	88	105	130	143	125
$V_{\rm B}$, мВ	750	680	570	460	385	440	525	650	715	625
I_A , MA	139,06	125,81	105,1	85,15	71,16	81,32	97,09	120,46	$132,\!55$	115,25

Таблица 2: Зависимость V_B от I_A для разных длин проволоки l.

Случайную погрешность определения углового коэффициента вычисляем как

$$\sigma_R^{\text{cf}} = \sqrt{\frac{1}{n-1} \left(\frac{\langle V^2 \rangle}{\langle I^2 \rangle} - \overline{R}^2 \right)},$$

где n = 10 – число измерений.

Теперь оценим систематическую погрешность, которая возникает из-за неточности используемых приборов. Полагая, что при всех измерениях относительная погрешность неизменна, оценим погрешность вычисления частного R=V/I при максимальных значения V и I:

$$\Delta_R^{\text{chct}} \approx R \sqrt{\left(\frac{\Delta_V}{V_{max}}\right)^2 + \left(\frac{\Delta_I}{I_{max}}\right)^2}$$

Тогда полная погрешность измерения R вычисляется следующим образом:

$$\sigma_R^{ ext{полн}} = \sqrt{\left(\sigma_R^{ ext{cm}}
ight)^2 + \left(\Delta_R^{ ext{chct}}
ight)^2}.$$

Результаты вычислений приведены в *Таблице* 3. Там же представлены результаты измерения сопротивления при помощи моста P4833.

l, cm	\overline{R} , Ом	$\sigma_R^{\text{сл}}$, Ом	$\sigma_R^{\text{сист}}$, Ом	$\sigma_r^{\text{полн}}$, Ом	$\varepsilon, \%$	R_{moct} , Om
20	2,170	0,008	0,007	0,011	0,5	$(2,174 \pm 0,010)$
30	3,270	0,009	0,011	0,014	0,4	$(3,276 \pm 0,010)$
50	5,382	0,017	0,018	0,025	0,5	$(5,363 \pm 0,010)$

Таблица 3: Результаты измерения сопротивления проволоки

Рис. 2: Результаты измерений напряжения V_B в зависимости от тока I_A для проволок разной длины l и их линейная аппроксимация y=kx.

Таким образом, относительная погрешность измерения сопротивления достаточно мала и находится на уровне 0,5%. Также вычисленные значения сопротивления достаточно хорошо совпадают с измерениями при помощи моста.

4.3 Вычисление удельного сопротивления

По формуле (1) находим удельное сопротивление материала проволоки, используя значения, полученные в п. 4.2. Относительную погрешность вычисления ρ определяем по следующей формуле и заносим результаты в maбnuy 4:

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2}.$$

	ρ , Om · mm ² /m	$\sigma_p, \mathrm{Om} \cdot \mathrm{mm}^2/\mathrm{m}$	$\varepsilon_{ ho},\%$
l=20 cm	1,086	0,062	5,7
l = 30 cm	1,092	0,063	5,8
l = 50 cm	1,079	0,062	5,7

Таблица 4: Результат измерения удельного сопротивления

Усредняя результаты трёх опытов, окончательно получаем:

$$\overline{\rho} = \underline{(1{,}086 \pm 0{,}062)~\mathrm{Om}\cdot\mathrm{mm}^2/\mathrm{m}}~(\varepsilon_{\rho} = 5{,}7\%)$$

5 Обсуждение результатов и выводы

В ходы работы было получено значение удельного сопротивления нихромовой проволоки с точностью $\sim 5.7\%$. Табличные значения для нихрома лежат в диапазоне $0.99\dots1.12~{\rm Cm\cdot mm^2/m}$ в зависимости от состава различных сплавов. Измеренные значения $\rho=(1.086\pm0.062)~{\rm Cm\cdot mm^2/m}$ попадают в нужный диапазон, однако они не позволяют точно определить марку сплава.

Следует отметить, что погрешность измерения удельного сопротивления ρ существенно зависит от погрешности измерения диаметра проволоки (т.е. от точности миркометра или штангенциркуля). Уточнить значение диаметра проволоки позволили многократные измерения по всей ее длине. Но это по-прежнему не гарантирует ее однородность.