

RANDOMIZED ALGORITHMS

- An algorithm is called randomized if it uses:
 - a random number to make a decision at least once during the computation and
 - its computation time is determined not only by the input data but also by the values of a random number generator.

DETERMINISTIC ALGORITHMS

Input Deterministic Output Algorithm

- Deterministic algorithm always solves the problem correctly.
- Deterministic algorithm runs at least
 O(...) fast, i.e. for the worst case.

RANDOMIZED ALGORITHMS

Input Deterministic Output
Algorithm Random numbers

- Randomized algorithm takes a source of random numbers and makes random choices during execution.
- Behavior (running time) can vary even with a fixed input.

RANDOMIZED ALGORITHMS

- Why use randomness?
 - To avoid worst-case behavior: randomness can (probabilistically) guarantee average case behavior.
 - To achieve efficient approximate solutions to intractable problems.

RANDOMIZED ALGORITHMS

- Two main types:
 - Monte Carlo
 - o Runs for a fixed number of steps.
 - If there is no solution, returns "no".
 - If there is a solution, finds it with some probability (i.e. > 0.5).
 - Las Vegas
 - Always produces the correct answer.
 - Running time is random.

RANDOMIZED ALGORITHMS o Example: Find π using randomized algorithm (result) n: 1 4.0 0.0 2.0 4.0 4.0 n. 2 3.0 3.0 n: 4 4.0 n: 64 3.0625 3.125 3.0625 n: 1024 3.16796875 3.13671875 3.1640625 n: 16384 3.14038085 3.1279296 3.12622070 n: 131072 3.13494873 3.14785766 3.1376647 n: 1048576 3.14015579 3.14387893 3.1411247

RANDOMIZED ALGORITHMS

- Example: Randomized quicksort.
 - Running time for deterministic QS.
 - o[Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
 - o[Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta(n^2)$ comparisons.
 - Randomized Q5. Protect against worst case by choosing splitter at random.

RANDOMIZED ALGORITHMS

- o Example: Primality test.
 - The primality test provides the probability of whether or not a large number is prime.
 - Several theorems including Fermat's theorem provide idea of primality test.
 - Cryptography schemes such as RSA algorithm are heavily based on primality test.

RANDOMIZED ALGORITHMS

- o Example: Primality test.
 - A Naïve Algorithm:
 - Pick any integer P that is greater than 2.
 - Try to divide P by all odd integers starting from 3 to square root of P.
 - o If ${\bf P}$ is divisible by any one of these odd integers, we can conclude that ${\bf P}$ is not prime.
 - The worst case is that we have to go through all odd number testing cases up to square root of P.
 - Time complexity is $O(\sqrt{n})$

RANDOMIZED ALGORITHMS

- o Example: Primality test.
 - Fermat's Theorem: If P is prime and 0 < A < P then $A^{P-1} = 1 \pmod{P}$.
 - Given a number P, we can choose a particular A (e.g., 2) with 0 < A < P and calculate A^{p-1} ($mod\ P$):
 - If $A^{P-1} \neq 1 \pmod{P}$ then P is not prime.
 - o If $A^{P-1} = 1 \pmod{P}$ then P is probably prime.

16/23

RANDOMIZED ALGORITHMS

- o Example: Primality test.
 - We can randomize the above algorithm by choosing 1 < A < P at random.
 - For an A chosen at random if $A^{p-1} \neq 1 \pmod{P}$ then we say P is not prime otherwise we accept P is prime.
 - If actually P is not a prime it is a mistake.
 - The probability of mistake is k in each computation. If for m independent computations the algorithm says that P is prime, the probability that P is a prime is at least $1 ext{-} k^m$.

RANDOMIZED ALGORITHMS

- Advantages of randomized algorithms:
 - · Simplicity.
 - Performance.
 - For many problems, a randomized algorithm is the simplest, the fastest, or both.

RANDOMIZED ALGORITHMS

Monte Carlo

Las Vegas?

RANDOMIZED ALGORITHMS

- Applications and scope:
 - Number-theoretic algorithms:
 - o Primality testing (Monte Carlo).
 - Data structures:
 - Sorting quicksort (Las Vegas)
 - o Order statistics, searching, computational geometry.
 - Algebraic identities:
 - Polynomial and matrix identity verification. Interactive proof systems.

RANDOMIZED ALGORITHMS

- o Applications and scope:
 - Mathematical programming:
 - Faster algorithms for linear programming. Rounding linear program solutions to integer program solutions.
 - Graph algorithms:
 - o Minimum spanning trees, shortest paths, minimum cuts.
 - Counting and enumeration:
 - Matrix permanent. Counting combinatorial structures.

RANDOMIZED ALGORITHMS

- Applications and scope:
 - Parallel and distributed computing:
 - o Deadlock avoidance, distributed consensus.
 - Probabilistic existence proofs:
 - Show that a combinatorial object arises with non-zero probability among objects drawn from a suitable probability space.

THAT'S ALL FOR TODAY!

