Introduction to AI: Machine Learning Models

Motivating Example

Figure 1. A collection of data sets produced by our technique. While different in appearance, each has the same summary statistics (mean, std. deviation, and Pearson's corr.) to 2 decimal places. ($\overline{x} = 54.02$, $\overline{y} = 48.09$, $sd_x = 14.52$, $sd_y = 24.79$, Pearson's r = +0.32)

Matejka et al. (2017)

Machine Learning (supervised learning)

Machine Learning

"Testing"

Learning Spectrum

Supervised

Semi-supervised

Less labeled data req.

Unsupervised

Predictive Power

Types of Supervised Learning

Regression

Input features: Continuous

Output prediction: Continuous

Classification

Input features: Continuous OR Categorical

Output prediction: Categorical

Both continuous and categorical data have to be **numeric**

Model selection - General Guidelines

- As model complexity increases:
 - Predictive accuracy increases
 - Required data increases (more parameters)
 - Potential for overfitting increases
 - Interpretability decreases

Classification Rules

CHA₂DS₂-VASc

	Condition	Points
С	Congestive heart failure (or Left ventricular systolic dysfunction)	1
Н	Hypertension: blood pressure consistently above 140/90 mmHg (or treated hypertension on medication)	1
A ₂	Age ≥75 years	2
D	Diabetes Mellitus	1
S ₂	Prior Stroke or TIA or thromboembolism	2
٧	Vascular disease (e.g. peripheral artery disease, myocardial infarction, aortic plaque)	1
Α	Age 65–74 years	1
Sc	Sex category (i.e. female sex)	1

Score	Risk	Anticoagulation Therapy
0 (male) or 1 (female)	Low	No anticoagulant therapy
1 (male)	Moderate	Oral anticoagulant should be considered
2 or greater	High	Oral anticoagulant is recommended

Logistic Regression

Support Vector machine

In 4D

K-nearest neighbors

Decision Trees

- Technique for classification or regression
 - Data doesn't have to be linearly separable
- Input and output variables can be continuous or categorical
- Completely interpretable

Decision Trees - Example

Day	Weather	Temperature	Humidity	Wind	Attack?
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Decision Trees - Example

Decision Tree - Overfitting

Random Forest

Neural Network

Scaling Up

You've picked an algorithm, now what?

1. Explore the data

- a. Visualize (plot) it
- b. Inspect the values

2. Prepare your data:

- a. 'Clean' it remove outlier samples, remove/fill missing values, etc
- b. Decide which features you want to use. Potential for dimensionality reduction/clustering
- c. Know which variables are continuous or categorical
- d. Know what you are predicting

Dimensionality Reduction

- Excessive features make models more difficult to train
- Techniques to combat this problem:
 - Principal Component Analysis (PCA)
 - t-Stochastic Neighbor Embedding (tSNE)
 - Initial univariate stats, rank by odds ratios

- 3. Split your data into training, validation and test sets
 - a. The test set should only be used once at the very end to check your model performance

- 3. Split your data into training, validation and test sets
 - a. The test set should only be used once at the very end to check your model performance

Stratified - equal proportion of events in each set

- **4. Train** the ML algorithm with the training set
- Validate results on the validation set
 - a. Cross validation: Multiple different validation sets can be created from the original data
- 6. Change 'hyperparameters' and repeat training and validation if necessary
- 7. Good validation performance → Check results on the **test set!**

Parameters vs. Hyperparameters

Parameters are the weights / biases that the ML model is fitting to the data

- Hyperparameters are parameters that govern how the ML model learns
 - The maximum depth of a decision tree
 - Number of iterations
 - Optimization technique
 - Batch size
 - Learning rate

Evaluating Performance

- Classification:
 - Accuracy, recall, precision,
 - Receiver operating characteristic (ROC) curve
- Regression:
 - Mean 'distance' error

- Task dependent:
 - Imaging pixel-based classification errors (e.g. Dice Coefficient)

		Actual		
		Positive	Negative	
ted	Positive	True Positive	False Positive	
Predicted	Negative	False Negative	True Negative	

Model selection - General Guidelines

- Pick the model with the 'best' cross-validation performance
 - Is a 0.1% increase in performance meaningful?
 - Always use statistical tests to identify real differences

 Other considerations: Complexity, explainability, training time (cost), amount of labeled data

OPEN Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer

Marta Bogowicz 1,2,16*, Arthur Jochems 1,16, Timo M. Deist 2, Stephanie Tanadini-Lang 1, Shao Hui Huang 3, Biu Chan, John N. Waldron, Scott Bratman 3, Brian O'Sullivan, Oliver Riesterer^{1,4}, Gabriela Studer^{1,5}, Jan Unkelbach¹, Samir Barakat², Ruud H. Brakenhoff⁶, Irene Nauta⁶, Silvia E. Gazzani⁷, Giuseppina Calareso⁸, Kathrin Scheckenbach⁹, Frank Hoebers¹⁰, Frederik W. R. Wesseling¹⁰, Simon Keek², Sebastian Sanduleanu², Ralph T. H. Leijenaar², Marije R. Vergeer¹¹, C. René Leemans⁶, Chris H. J. Terhaard¹², Michiel W. M. van den Brekel¹³, Olga Hamming-Vrieze14, Martijn A. van der Heijden13, Hesham M. Elhalawani 15, Clifton D. Fuller 15, Matthias Guckenberger & Philippe Lambin 152

PICO

P: Patients at any of 6 cohort hospitals with head and neck tumors, CECT, and HPV histology

I: Prediction of HPV status and overall survival with Al algorithm

C: No comparator

O: Prediction accuracy/sens/spec/auc

What methods did they use?

Radiomics analysis. (Radiomic features were extracted from the primary tumor region. The treatment defined gross tumor volume (GTV) was visually assessed for the presence of artifacts and slices with artifacts were manually removed from the contour. Images were resampled to 3.3 mm cubic voxels using linear interpolation. The Hounsfield unit range was set to (-20, 180) to limit the analysis to soft tissue. In total, 981 features were extracted with the Z-Rad radiomics software implementation¹⁷:

- shape (n = 18).
- intensity distribution (n = 17).
- texture (n = 90): the Gray Level Co-occurrence Matrix (n = 26), the Neighborhood Gray Tone Difference Matrix (n = 4), the Gray Level Run Length Matrix (n = 14), the Gray Level Size Zone Matrix (n = 14), the Gray Level Distance Zone Matrix (n = 16) and the Neighboring Gray Level Dependence Matrix (n = 16).
- wavelet transform (n = 856).

Radiomics

1

2.

$$entropy = -\sum_{i=1}^{N_g} p(i) \log_2 ig(p(i) + \epsilonig)$$

.

$$GLV = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(i,j| heta)(i-\mu)^2$$

Feature selection. First, data quality check was performed. Missing values were assessed and features with more than 20% missing values were excluded. Similarly, to avoid outliers, features with skewed distribution (skewness > 5) were excluded. The exclusion criteria were evaluated in the entire dataset for the centralized learning and per cohort for distributed learning. In the distributed learning, the union of features excluded per cohort was considered as the excluded subset.

Next, inter-features correlations were assessed (Fig. 1). Features were scaled with the z-score. In distributed learning, the global mean and standard deviation per feature were obtained by sharing local statistics on mean, dispersion from mean and number of patients in the cohort. The global correlations were estimated as weighted average of fisher transformed local correlation coefficients. The average linkage hierarchical clustering (Python SciPy library v. 1.3.0) was performed on the set of inter-features correlation coefficients with a 0.6 cutoff, separately for the centralized and distributed learning.

Finally, to select a feature representative per cluster a univariate logistic regression was performed on the entire dataset (centralized learning) as well as the separate cohorts (distributed learning). In the centralized learning, per cluster, the feature with the highest area under the receiver operator characteristic curve (AUC) was chosen if the false discovery rate < 0.05. In the distributed learning, per cohort and per cluster, the feature with the highest AUC was chosen to represent each cluster. In the central sever the cohort-specific sets were compared

Classification. A multivariate logistic regression model was trained for both outcomes, HPV and 2 year overall survival (2yOS). In the centralized learning, the model was fitted with a GLM (generalized linear models)

Comparison of the models. Five models were created to predict HPV status and another five to predict 2yOS. For each of the models, four cohorts were used for training and one was left out for external validation (patients with unknown status were excluded from modeling of the respective outcome). The prognostic power of a model was evaluated in the validation cohort. Models were trained in a distributed and centralized manner for comparison.

Cross-Validation or Bootstrapping!!!

Results

Motivating Example

Patterns

Article

Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction

Saaket Agrawal, ^{1,2,3,6} Marcus D.R. Klarqvist, ^{4,6} Connor Emdin, ^{1,2,3} Aniruddh P. Patel, ^{1,2,3} Manish D. Paranjpe, ^{1,2,3} Patrick T. Ellinor, ^{1,2,3} Anthony Philippakis, ⁴ Kenney Ng, ⁵ Puneet Batra, ⁴ and Amit V. Khera^{1,2,3,7,*}

¹Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA

²Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Simches Research Building | CPZN 6.256, Boston, MA 02114, USA

³Department of Medicine, Harvard Medical School, Boston, MA, USA

⁴Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA

⁵Center for Computational Health, IBM Research, Cambridge, MA, USA

COVID-19 Artificial Intelligence Diagnosis Using Only Cough Recordings

Jordi Laguarta , Ferran Hueto, and Brian Subirana

Classification problem: classify COVID from cough

on Alzneimer's, which significantly improves the COVID-19 discrimination accuracy of our architecture. Results: When validated with subjects diagnosed using an official test, the model achieves COVID-19 sensitivity of 98.5% with a specificity of 94.2% (AUC: 0.97). For asymptomatic subjects it achieves sensitivity of 100% with a specificity of 83.2%. Conclusions: Al techniques can produce a free, non-invasive real-time any-time instantly distributable large-

Biomarker	Model Name	COVID(%)	Alzheimer(%)
R. Tract	Cough	23	9
Sentiment	Intonation	8	19
Vocal cords	WW 'THEM'	19	16
R.Tract&Sent.	Cough&Tone.	0	0
R.Tract&V.cords	Cough&WW	1	6
Sent.&V.cords	Tone.&WW	0	3
In All 3		34	41
In Neither 3		15	6

train and validate the COVID-19 discriminator. 4256 subjects (80%) were used for training and 1064 (20%) for validation. Table I provides more details on the patient distribution for the randomly sampled patients selected from the dataset.

No cross-validation, but sample size is large

but...

	Positives			Negatives			Total	
	#	%	Hit(%)	#	%	Hit(%)	%	Hit(%)
Number of Patients	2660	50.0	94.0	2660	50.0	78.4	100.0	86.4
COVID-19 Diagn	ostic							
Official Test Doctor	475	17.9	98.5	224	8.4	94.2	13.1	97.1
Assessment Personal	962	36.2	98.8	523	19.7	92.8	27.9	96.7
Assessment	1223	46.0	89.5	1913	71.9	72.6	58.9	79.2
Symptoms								
No Symptoms 'Official'	102	3.8	100.0	114	4.3	83.2	4.1	91.1
No Symptoms	196	7.4	100.0	2029	76.3	78.3	41.8	80.2
Fever	656	24.7	98.1	34	1.3	88	13.0	97.6
Tiredness	1428	53.7	93.2	210	7.9	81.2	30.8	91.7
Sore Throat	1064	40.0	99.9	205	7.7	84.8	23.9	97.5
Diff. Breathing	680	25.6	99.3	49	1.8	77.1	13.7	97.8
Chest Pain	680	25.6	99.4	58	2.2	87.3	13.9	98.4
Diarrhea	652	24.5	94.2	100	3.8	71.8	14.1	91.2
Cough	1724	64.8	99.8	262	9.8	91.1	37.3	98.7

but...

	Positives				Negativ	es	Total	
	#	%	Hit(%)	#	%	Hit(%)	%	Hit(%)
No Symptoms 'Official'	102	3.8	100.0	114	4.3	83.2	4.1	91.1

What is this study missing?

- Diverse dataset
- Resampling, either cross-validation or bootstrapping
- Comparison with status quo methods (RAT, or a classification rule of flu-like symptoms = COVID)

Is the study valuable?

"Proof of concept" - is there a signal?