1er Parcial Lógica 2008

1. V o F. Justifique.

- (a) Sean L y L' reticulados y $f: L \to L'$ un homomorfismo sobre. Si P es un filtro primo de L entonces $f(P) = \{f(a) : a \in P\}$ es un filtro primo de L'.
 - (b) Sean L un reticulado y $P \subseteq L$ un filtro primo. Si $S \subseteq P$ y existe inf(S) entonces $inf(S) \in P$.
 - (c) Sea (L,s,i,0,1) un reticulado acotado. Si $a,b\in L$ son complementados entonces a i b también lo es.
 - (d) Sea (L, \leq) un reticulado y sea $S \subseteq L$ tal que $(S, \{(a, b) \in \mathbb{S}^2 : a \leq b\})$ es un reticulado. Entonces S es un subuniverso de (L, s, i), donde s e i son las operaciones de supremo e ínfimo asociadas a \leq .
- 2. Sean A y B conjuntos no vacíos y sea $f:A\to B$ una función. Definimos $F:\mathcal{P}(B)\to\mathcal{P}(A)$ por $F(X)=\{a\in A:f(a)\in X\}$. Pruebe que F es un homomorfismo de álgebras de Boole de $(\mathcal{P}(B),\cup,\cap.^c,\emptyset,B)$ en $(\mathcal{P}(A),\cup,\cap.^c,\emptyset,A)$.
- 3. Sean L y L' los reticulados acotados descriptos por las siguientes figuras.

 Pruebe que no hay un homomorfismo sobre de L en L'.

F(0) = 0' F(1) = 1'

F es sobre
$$\Rightarrow \exists \times y \in EL + q \quad f(x) = A \quad f(y) = B, f(x)$$
 $f(x) : f(y) = 0' \Rightarrow f(x) = 0'$
 $f(a; c) = f(a) = A \quad A(s)$
 $f(b; c) = F(a) \Rightarrow F(a) = 0' \Rightarrow F(d) = C \quad \text{pa ser } F(a) = C$

Pero $F(b; d) = F(b) = A \quad A(s)$
 $F(b; d) = F(a) = A \quad A(s)$