2IL50 Data Structures

2023-24 Q3

Lecture 8: Augmenting Data Structures

Announcement

Next Monday March 11 only two lecture rooms: AUD 3 and AUD 6

Binary Search Trees

Binary search trees

```
root of T denoted by T.root
internal nodes have four fields:
    key (and possible other satellite data)
    left: points to left child
    right: points to right child
    p: points to parent. T.root. p = NIL
```


Binary search trees

A binary tree is

- a leaf or
- a root node x with a binary tree as its left and/or right child

Binary-search-tree property

- \blacksquare if y is in the left subtree of x, then y. key $\leq x$.key
- if y is in the right subtree of x, then y. key $\geq x$.key

Minimizing the running time

All operations can be executed in time proportional to the height h of the tree (instead of proportional to the number n of nodes in the tree)

Worst case: $\Theta(n)$

Solution: guarantee small height (balance the tree)

$$\rightarrow h = \Theta(\log n)$$

Balanced binary search trees

Search, Minimum, Maximum, Predecessor, Successor, Insert, and Delete can be executed in time $\Theta(\log n)$.

Red-black Trees

Red-black trees

Red-black tree

binary search tree where each node has a color attribute which is either red or black

Red-black properties

- Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (NIL) is black.
- 4. If a node is red, then both its children are black. (Hence no two reds in a row on a simple path from the root to a leaf)
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Lemma

A red-black tree with n nodes has height $\leq 2 \log(n+1)$.

Red-black trees: Insertion

- 1. Do a regular binary search tree insertion
- 2. Fix the red-black properties

Step 1

- find the leaf where the node should be inserted
- replace the leaf by a red node that contains the key to be inserted

Red-black trees: Insertion

- 1. Do a regular binary search tree insertion
- 2. Fix the red-black properties

Red-black properties

- Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (NIL) is black.
- 4. If a node is red, then both its children are black.
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

The new node is red → Property 2 or 4 can be violated. Remove the violation by rotations and recoloring.

Rotation

Step 2: Fixing the red-black properties

Invariant: z and z. p are both red and this is the only red-black violation (or z is a red root \Rightarrow just recolor and terminate)

```
while z \neq T. root and z.p is red if z.p == z.p.p. left y = z.p.p. right case i: y is red
```


color z.p and y black, color z.p.p red

$$z = z.p.p$$

continue up the tree

else ... // symmetric case

Step 2: Fixing the red-black properties

Invariant: z and z. p are both red and this is the only red-black violation (or z is a red root \Rightarrow just recolor and terminate)

case ii and iii: y is black

case ii: z == z.p. right

case iii: a == a.p. left

Red-black trees: Insertion

- 1. Do a regular binary search tree insertion
- 2. Fix the red-black properties

Red-black trees: Insertion

- 1. Do a regular binary search tree insertion
- 2. Fix the red-black properties
 - move up the tree as long as case i occurs and recolor accordingly
 - as soon as case ii or iii occurs at most two rotations and two recolorings ✓
 - \blacksquare if you reach the root or the parent of z is black \checkmark

Running time? $O(\text{height of the tree}) = O(\log n)$

Red-black trees: Deletion

- 1. Do a regular binary search tree deletion
- 2. Fix the red-black properties
 - Slightly more complicated case distinction than insertion see book for details
 - can be done by recoloring as before and at most three rotations

Search, insert, and delete can be executed with a red-black tree in $O(\log n)$ time.

Augmenting Data Structures

Data structures

Data structures are used in many applications

directly: the user repeatedly queries the data structure

indirectly: to make algorithms run faster

In most cases a standard data structure is sufficient (possibly provided by a software library)

But sometimes one needs additional operations that are not supported by any standard data structure

need to design new data structure?

Not always: often augmenting an existing structure is sufficient

Example

S set of elements, each with a unique key.

Operations

Search(S, k): return a pointer to an element x in S with x. key = k, or NIL if such an element does not exist.

OS-Select(S, i): return a pointer to an element x in S with the ith smallest key (the key with rank i)

Solution: sorted array

 A
 2
 5
 6
 9
 10
 11
 24
 27
 31
 35
 41
 43
 54
 55
 73

the key with rank i is stored in A[i]

Example

S set of elements, each with a unique key.

Operations

```
Search(S, k): return a pointer to an element x in S with x. key = k, or NIL if such an element does not exist.
OS-Select(S, i): return a pointer to an element x in S with the i<sup>th</sup> smallest key (the key with rank i)
Insert(S, x): inserts element x into S, that is, S ← S ∪ {x}
Delete(S, x): remove element x from S
```

Solution?

Use red-black trees

OS-Select(S, 3): report key with rank 3

Idea 1: store the rank of each node in the node

2

2 1

Use red-black trees

OS-Select(S, 3): report key with rank 3

Idea 1: store the rank of each node in the node

Problem:

Insertion can change the rank of every node!

Worst case O(n)

Idea 2: store the size of the subtree in each node

Idea 2: store the size of the subtree

Store in each node *x*:

- \blacksquare x. left, x. right
- \blacksquare x. parent
- \blacksquare x.key
- \blacksquare x. color
- x. size = number of keys insubtree rooted at x(NIL. size = 0)

Order-Statistic tree

Order-statistic trees: OS-Select

OS-Select(x, i): return pointer to node containing the ith smallest key of the subtree rooted at x

```
OS-Select(x, i)

1 r = x. left. size + 1

2 if i == r

3 return x

4 elseif i < r

5 return OS-Select(x. left, i)

6 else

7 return OS-Select(x. right, i - r)
```


Running time? $O(\log n)$

Order-statistic trees: OS-Rank

OS-Rank(T, x): return the rank of x in the linear order determined by an inorder walk of T = 1 + number of keys smaller than x

Order-statistic trees: OS-Rank

OS-Rank(T, x): return the rank of x in the linear order determined by an inorder walk of T = 1 + number of keys smaller than x

```
OS-Rank(T, x)

1 r = x. left. size + 1

2 y = x

3 while y \neq T. root

4 if y == y. p. right

5 r = r + y. p. left. size + 1

6 y = y. p
```


Running time? $O(\log n)$

OS-Rank: Correctness

```
OS-Rank(T, x)

1 r = x. left. size + 1

2 y = x

3 while y \neq T. root

4 if y == y. p. right

5 r = r + y. p. left. size + 1

6 y = y. p
```

Invariant

At the start of each iteration of the **while** loop, r = rank of x. key in T_v

subtree with root *y*

Initialization

 $r = \text{rank of } x. \text{ key in } T_x \quad (y = x)$

= number of keys smaller than x. key in $T_x + 1$

= x. left. size + 1 (binary-search-tree property)

OS-Rank: Correctness

```
OS-Rank(T, x)

1 r = x. left. size + 1

2 y = x

3 while y \neq T. root

4 if y == y. p. right

5 r = r + y. p. left. size + 1

6 y = y. p
```

Invariant

At the start of each iteration of the **while** loop, r = rank of x. key in T_y

Termination

loop terminates when y = T. root

- → subtree rooted at *y* is entire tree
- $\rightarrow r = \text{rank of } x. \text{ key in entire tree}$

OS-Rank: Correctness

```
OS-Rank(T, x)

1 r = x.left.size + 1

2 y = x

3 while y \neq T.root

4 if y == y.p.right

5 r = r + y.p.left.size + 1

6 y = y.p
```

Invariant

At the start of each iteration of the **while** loop, r = rank of x. key in T_v

Maintenance case i: $y = y \cdot p$ right

- → all keys in $T_{y.p.left}$ and y.p.key are smaller than x.key
- → rank x. key in $T_{y.p}$ = rank x. key in $T_y + y$. p. left. size + 1

case ii:
$$y = y \cdot p \cdot \text{left}$$

- \rightarrow all keys in $T_{y.p.right}$ and y.p. key are larger than x. key
- \rightarrow rank x. key in $T_{y.p} = \text{rank } x$. key in T_y

Order-statistic trees: Insertion and deletion

Insertion and deletion

as in a regular red-black tree, but we have to update x. size field

Red-black trees: Insertion

- 1. Do a regular binary search tree insertion
- 2. Fix the red-black properties

Step 1

- find the leaf where the node should be inserted
- replace the leaf by a red node that contains the key to be inserted
- \blacksquare size of the new node = 1
- increment size of each node on the search path

Red-black trees: Insertion

- 1. Do a regular binary search tree insertion
- 2. Fix the red-black properties

Red-black properties

- Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (NIL) is black.
- 4. If a node is red, then both its children are black.
- 5. For each node, all paths from the node to descendant leaves contain the same number of black nodes.

The new node is red → Property 2 or 4 can be violated. Remove the violation by rotations and recoloring.

Rotation

A rotation affects only x. size and y. size

We can determine the new values based on the size of children:

$$x$$
. size = x . left. size + x . right. size + 1

Order-statistic trees

The operations Insert, Delete, Search, OS-Select, and OS-Rank can be executed with an order-statistic tree in $O(\log n)$ time.

Augmenting data structures

Methodology for augmenting a data structure

- 1. Choose an underlying data structure.
- 2. Determine additional information to maintain.
- 3. Verify that we can maintain additional information for existing data structure operations.
- 4. Develop new operations.

You don't need to do these steps in strict order!

Red-black trees are very well suited to augmentation ...

OS tree

- 1. R-B tree
- 2. *x*. size
- 3. maintain size during insert and delete
- 4. OS-Select and OS-Rank

Augmenting red-black trees

Theorem [RB-tree Augmentation]

Augment an RB-tree with field f, where x. f depends only on information in x, x. left, and x. right (including x. left. f and x. right. f). Then we can maintain values of f in all nodes during insert and delete without affecting $O(\log n)$ performance.

When we alter information in x, changes propagate only upward on the search path for x ...

Augmenting red-black trees

Theorem [RB-tree Augmentation]

Augment an RB-tree with field f, where x. f depends only on information in x, x. left, and x. right (including x. left. f and x. right. f). Then we can maintain values of f in all nodes during insert and delete without affecting $O(\log n)$ performance.

Proof (insert)

Step 1 Do a regular binary search tree insertion

go up from inserted node and update f additional time: $O(\log n)$

Augmenting red-black trees

Theorem [RB-tree Augmentation]

Augment an RB-tree with field f, where x. f depends only on information in x, x. left, and x. right (including x. left. f and x. right. f). Then we can maintain values of f in all nodes during insert and delete without affecting $O(\log n)$ performance.

Proof (insert)

Step 2 Fix the red-black properties by rotations and recoloring

update f for x, y, and their ancestors additional time per rotation: $O(\log n)$

Example: Interval Trees

Interval trees

S set of closed intervals

closed: endpoints are part of the interval

Operations

Interval-Insert(T, x): adds an interval x, whose int field is assumed to contain an interval, to the interval tree T.

Interval-Delete(T, x): removes the element x from the interval tree T.

Interval-Search(T, j): returns pointer to a node x in T such that x, int overlaps j, or NIL if no such element exists.

- 1. Choose an underlying data structure.
- 2. Determine additional information to maintain.
- 3. Verify that we can maintain additional information for existing data structure operations.
- 4. Develop new operations.

- 1. Choose an underlying data structure.
 - use red-black trees
 - \blacksquare each node x contains interval x. int
 - \blacksquare key is left endpoint x. int. low

inorder walk would list intervals sorted by low endpoint

- 2. Determine additional information to maintain.
- 3. Verify that we can maintain additional information for existing data structure operations.
- 4. Develop new operations.

- Choose an underlying data structure. ✓
- 2. Determine additional information to maintain.
- 3. Verify that we can maintain additional information for existing data structure operations.
- 4. Develop new operations.

case 1: $i \cap j \neq \emptyset$ report i


```
case 1: i \cap j \neq \emptyset report i

case 2: j lies left of i
j cannot overlap any interval in the right subtree
```



```
case 1: i \cap j \neq \emptyset report i
```

```
case 2: j lies left of i
j cannot overlap any interval in the right subtree
```

```
case 3: j lies right of i need additional information!
```

```
x. \max = \max \text{ endpoint value in subtree rooted at } x
= \max\{i. \text{ high where } i \text{ is stored in the subtree rooted at } x\}
```


i. low $\leq i$. left. max

```
x. \max = \max \text{ endpoint value in subtree rooted at } x
= \max\{i. \text{ high where } i \text{ is stored in the subtree rooted at } x\}
```

- Choose an underlying data structure. ✓
- 2. Determine additional information to maintain. ✓
- 3. Verify that we can maintain additional information for existing data structure operations.
- 4. Develop new operations.

Interval-Search

Running time? $O(\log n)$

```
Interval-Search(T, j)
 1 x = T.root
 2 while x \neq T. nil and j does not overlap x. int
         if x. left \neq NIL and x. left. max \geq j. low
 3
              x = x. left
 4
         else
 5
              x = x. right
 6
 7 return x
Correctness
Invariant
                 If tree T contains an interval that overlaps j,
                 then there is such an interval in the subtree rooted at x.
```

- Choose an underlying data structure. ✓
- 2. Determine additional information to maintain. ✓
- 3. Verify that we can maintain additional information for existing data structure operations.
- 4. Develop new operations. ✓

Augmenting red-black trees

Theorem [RB-tree Augmentation]

Augment an RB-tree with field f, where x. f depends only on information in x, x. left, and x. right (including x. left. f and x. right. f). Then we can maintain values of f in all nodes during insert and delete without affecting $O(\log n)$ performance.

Additional information

 $x. \max = \max$ endpoint value in subtree rooted at x

x. max depends only on

- information in x: x. int. high
- information in x. left: x. left. max
- information in x. right: x. right. max
- \blacksquare $x. \max = \max\{x. \text{ int. high, } x. \text{ left. max, } x. \text{ right. max}\}$
- \rightarrow insert and delete still run in $O(\log n)$ time