

Enumerating *m*-Length Walks in Directed Graphs with Constant Delay **Duncan Adamson**, Paweł Gawrychowski, Florin Manea March 17, 2024

Motivation

- There are many settings in which we wish to enumerate every object within a class of combinatorial objects.
- As such classes are often of exceptional size relative to the description of the class.
- One such example is **regular languages**, where a deterministic, finite automaton can describe a class of possibly unbounded size.
 - We are motivated particularly by the class of prefix closed langagues avoiding a set of forbidden substrings, via a problem originating in chemistry.

Theorem 1. There is an algorithm which, given a number m, enumerates, without repetitions, all walks of length m in a (directed) graph G = (V, E) with a worst-case delay of O(1), after preprocessing taking O(|E|) time.

2 / 16

Overview

Given the number of walks in a graph (up to n^n), there are two main objectives with the output of our algorihtm:

- **Reconstructability**: The output must allow the most recently enumerated walk to be reconstructed "efficiently".
 - Lower Bound: O(m) (for an m-length walk).
 - Upper Bound $O(n^n)$.
- Efficient: The algorithm needs to minimise the delay between outputs.
 - Lower Bound O(1).
 - Upper Bound $O(n^n)$.

We match the lower bound for both conditions by introducing the data structures of **default edges**, **default paths**, and the **default graph**.

Definition

Given a graph G = (V, E) and vertex $v \in V$, the **Default Edge** from v is the edge from v in the longest walk starting at v in G. The **Default Path** from v is the path formed by following default edges from each state starting at v. The **Default Graph** of G, D(G), is the graph induced by the default edges.

Default Graph Example

Using the Defualt Graph to represent walks

Key Idea. We represent each walk as a list of vertex-length pairs, each representing a sub walk. The tuple (v, ℓ) represents the walk on the delault path from ν for ℓ steps.

For **strings** accepted by a given automaton A, each walk represents a string, and the tuples in the representation represent substrings

Enumerating *m*-Length Walks in Directed Graphs **Duncan Adamson**, Paweł Gawrychowski, with Constant Delay Florin Manea

Output

- At each step, we assume that we have a stack of state-length pairs, allowing the full word to be reconstructed in O(n) time.
- Our goal now is to edit the stack with a constant number of operations in order to represent the next string.
- At each step, the output is a representation of the edit operations, allowing the strings to be explicitly output on demand.

9 / 16

High Level Idea

Our algorithm operates as follows:

- Starting with a walk W (which we assume has been output) we find the possible ways of *branching* from this walk.
- Each node on the path is weighted by the depth of the node in the default path, and the length of the **second** longest walk from the node.
- Using these weights, we do a range maximum query on the graph, and choose the best state on the walk to branch from.

Avoiding unnecessary backtracking

- To avoid unnecessary backtracking in the execution, we use tail recursion, to ensure that we can skip any backtracking to a node that is **exhausted**.
- A node is **exhausted** if every walk from the node has already been enumerated (from the current prefix).

Additional Results

- Along with the enumeration results, we give auxiliary results for ranking and unranking walks in the order output by the enumeration of the algorithm.
- The rank of a walk is the integer corresponding to the number of walks output before it.
- The **unranking** problem takes an integer *i* and asks for the walk with a rank of *i*.

Ranking and Unranking results (informal)

The **rank** of an *m*-length walk in the enumeration output order of the graph G=(V,E) with m vertices can be computed in $O(|E|+mn^{\omega}+m^2\Delta)$ time, where ω is the exponent for matrix multiplication and Δ is the largest degree of any vertex in G.

Given an integer i, the i^{th} m-lengthwalk in the enumeration output order of the graph G with n vertices can be computed in $O(|E|+mn^{\omega}+m^2\Delta)$ time, where ω is the exponent for matrix multiplication and Δ is the largest degree of any vertex in G.

Summary

Results:

- An enumeration algorithm with constant delay for walks of length m in the graph G
- Polynomial time algorithms for ranking and unranking in enumeration order.

Open Problems:

- Can we enumerate regular languages with constant delay?
- Can we rank and unrank in linear (Or $O(\Delta n^{\omega})$) time?