Project Euler net

Distinct powers

Problem 29

Consider all integer combinations of a^b for $2 \le a \le 5$ and $2 \le b \le 5$:

$$2^{2}$$
=4, 2^{3} =8, 2^{4} =16, 2^{5} =32
 3^{2} =9, 3^{3} =27, 3^{4} =81, 3^{5} =243
 4^{2} =16, 4^{3} =64, 4^{4} =256, 4^{5} =1024
 5^{2} =25, 5^{3} =125, 5^{4} =625, 5^{5} =3125

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

How many distinct terms are in the sequence generated by a^b for $2 \le a \le 100$ and $2 \le b \le 100$?