THE BRAIN

I. INTRODUCTION

A. Human Brain

- 1) mass $\sim 1 2 \,\mathrm{kg}$ in mature adult
 - a) about 2% of body weight
 - i) uses 20% of oxygen, 25% of glucose, 15% of blood flow
- b) mass at birth about 20% of final value
 - i) mass increase due to growth of axons, dendrites, synapses, myelin sheaths

B. Cortex

- 1) size of cortex separates humans from other species
 - a) area: $5\,\mathrm{cm}^2$ for rat, $5\times10^2\,\mathrm{cm}^2$ for chimp, $2\times10^3\,\mathrm{cm}^2$ for human
 - i) extra area in human cortex obtained by folding
 - ii) thickness of cortex $\sim 0.3\,\mathrm{cm}$
- b) $\gtrsim 3 \times 10^{10}$ neurons in human cortex
 - i) mammalian cortex has $\sim 1.5 \times 10^7$ neurons per cm⁻²
- c) $\gtrsim 10^{14}$ synapses in human cortex
 - i) $\gtrsim 10^3$ synapses per neuron
- 2) human genome does not carry detailed wiring diagram for cortex
 - a) its information content is far too small
 - i) wiring diagram would require $\gtrsim 10^{14}$ bits of information
- b) genome carries about 5×10^9 bits of information
 - i) human genome is about one meter of DNA
 - ii) 4 types of base pairs
 - iii) separation of 4×10^{-8} cm between base pairs
 - iv) much of genome may be nonsense
- 3) cortex develops in response to external stimuli
 - a) molecular markers involved in initial wiring
- b) refinements due to activity
- c) number of synapses pared back during development
- C. Explosion In Size Of Cortex Due To Limited Genetic Instructions
- 1) comparison of evolution of genome and cortex
 - a) genome length: 4 cm for fruit fly, 40 cm for chicken, 1 m for mouse, 1 m for human

- b) number of neurons: 10^5 for fruit fly, 5×10^6 for mouse, 10^{11} for human
- 2) rapid evolution during past $3 \times 10^6 \, \mathrm{yr}$

II. FUNCTION

- A. Neuron
- 1) components: cell body, axon, dendrites
- 2) nominal dimensions for pyramidal cell in cortex
 - a) cell body: blob with $r \sim 20 \,\mu\mathrm{m}$
- b) axon: cylinder with $r \sim 1 \,\mu{\rm m}$ and $l \sim 1 \,{\rm cm}$
- c) total surface area about $6 \times 10^{-4} \, \mathrm{cm}^2$
 - i) dominated by axon
- d) total volume about 10^{-8} cm³
 - i) comparable contributions from axon and cell body
- 2) electrical properties
 - a) axons are output devices
 - i) actively propagate signals
 - ii) contain repeater stations
- b) dendrites are input devices
 - i) electrically passive
 - ii) some may produce spikes
- 3) synapses
 - a) connect axons to dendrites
 - i) signals transmitted chemically across synapses
 - ii) synaptic space $\approx 2 \times 10^{-6}$ cm
 - iii) time delay $\sim 0.1 \,\mathrm{ms}$ due to diffusion
 - iv) to achieve post synaptic threshold may take much longer
- b) can be excitatory or inhibitory
 - i) excitatory: glutamate transmitter opens Na channels (MSG)
 - ii) inhibitory: gaba transmitter opens Cl or K channels
 - iii) most common neurotransmitters in cortex
 - iv) amino acids
 - v) inhibitory synapses usually more proximal to cell body
- B. Action Potentials
- 1) neuron sums inputs

- a) strength related to distance of synapse on dendrite from cell body
- b) sum determines whether firing occurs
- 2) spikes initiated on axon close to cell body
- a) can travel in both directions along axon
- 3) pulses are quantized, all the same
 - a) pulse length $\sim 1 \,\mathrm{ms}$
- b) pulse strength $\Delta V \sim 10^2 \,\mathrm{mV}$
- c) length and strength determined by kinetics of ion channels
- 4) signal strength coded in firing rate ν
 - a) at rest: $0 \lesssim \nu \lesssim 50\,\mathrm{Hz}$, typically $\nu \sim 5\,\mathrm{Hz}$
- b) excited: $2 \lesssim \nu \lesssim 200 \,\mathrm{Hz}$, typically $\nu \sim 50 \,\mathrm{Hz}$
 - i) limited to $\nu \lesssim 10^3 \, \mathrm{Hz}$ by refractory period of ion channels
- 5) propagation speed
 - a) depends on axon diameter and myelination
 - i) $v \sim 5 \,\mathrm{m\,s^{-1}}$ typical value for brain
 - ii) up to $v \sim 100 \, \mathrm{m \, s^{-1}}$ in spinal cord

C. Axon Modeled As Coaxial Cable

- 1) parameters
 - a) radius a, membrane thickness t, length, l
 - i) typical values: $a \sim \mu \mathrm{m}, \, t \sim 7 \times 10^{-7} \, \mathrm{cm}, \, l \sim 1 \, \mathrm{cm}$
 - b) longitudinal resistance, $R_a = \rho_a/\pi a^2 l$
 - i) salt solution, $\rho_a \approx 30\,\mathrm{ohm\,cm}$
 - i) $R_a \sim 1 \times 10^9 (\,\mu\text{m}/a)^2 (l/\,\text{cm}) \,\text{ohm}$
 - c) membrane capacitance, $C_m = 2\pi\epsilon_0 Kal/t$
 - i) dielectric constant of lipid membrane, $K \approx 6$
 - ii) $C_m \approx 7 \times 10^{-4} (a/\mu \text{m}) (l/\text{cm}) \mu \text{F}$
 - iii) $C_m/A \approx 1 \,\mu\mathrm{F\,cm^{-2}}$
 - d) membrane resistance, $R_m = \rho_m t/(2\pi a l)$
 - i) $\rho_m \approx 1.5 \times 10^9 \, \mathrm{ohm} \, \mathrm{cm}$
 - ii) $\rho_m t \approx 10^3 \, \mathrm{ohm \, cm^2}$
 - iii) $R_m \approx 2 \times 10^6 (\mu \text{m}/a) (\text{cm}/l) \text{ohm}$
 - e) inductance negligible

D. Action Potential Propagation Along Unmyelinated Neuron

1) longitudinal diffusion

a) neglect current through membrane

$$\frac{\partial V}{\partial t} = -\frac{l}{C_m} \frac{\partial I}{\partial z}$$

$$\frac{\partial V}{\partial z} = -\frac{R_a}{l}I$$

b) diffusion equation

$$\frac{\partial V}{\partial t} = \frac{l^2}{R_a C_m} \frac{\partial^2 V}{\partial z^2}$$

- ii) diffusion constant, $D \equiv l^2/R_a C_m \sim 1.5 (a/\,\mu\mathrm{m})\,\mathrm{cm^2\,s^{-1}}$
- c) $\lambda \sim (D\Delta t)^{1/2}$, spreading length for pulse of duration Δt
 - i) $\lambda \sim 4 \times 10^{-2} (a/\,{\rm cm})^{1/2} (\Delta t/\,{\rm ms})^{1/2}\,{\rm cm}$
- d) propagation speed along axon

$$v \sim \frac{\lambda}{\Delta t} \sim 40 \left(\frac{a}{\mu \text{m}}\right)^{1/2} \text{cm s}^{-1}$$

- i) evaluated for $\Delta t \approx 1 \,\mathrm{ms}$
- 2) leakage through membrane
 - a) clamp voltage of axoplasm

$$\frac{\partial V}{\partial t} = -\frac{V}{R_m C_m}$$

- b) voltage decays exponentially with time constant $\tau = R_m C_m$ i) $\tau \sim 1.5 \times 10^{-3} \, \mathrm{s}$
- 3) combined equation reads

$$\frac{\partial V}{\partial t} + \frac{V}{R_m C_m} = \frac{l^2}{R_a C_m} \frac{\partial^2 V}{\partial z^2}$$

- a) impulse regeneration not included in equation
- E. Action Potential Propagation Along Myelinated Neuron
- 1) myelin sheath decreases C_m
- a) 10-15 wraps of myelin sheath per micron diameter of axon
 - i) like paper towels on cardboard roller
- b) $C_m \sim 3 \times 10^{-5} (l/\text{cm}) \, \mu\text{F}$
 - i) note C_m independent of a

- 2) cross membrane currents restricted to nodes of Ranvier
 - a) separated by a few mm
 - a) size a few μ m
- 3) myelination increases propagation speed at fixed size
 - a) $\lambda \sim 2 \times 10^{-1} (a/\,\mu\mathrm{m})\,\mathrm{cm}$
- b) $v \sim 2(a/\mu \text{m}) \,\text{m s}^{-1}$
 - i) note: $v \propto a$

F. Power Requirements

- 1) $P = C(\Delta V)^2 \nu/2$
 - a) $P \sim 3 \times 10^{-12} \nu$ watt for our canonical neuron
 - b) $\sim 10^{11}$ neurons firing at $\nu \sim 10\,\mathrm{Hz}$ yields a total power $\sim 3\,\mathrm{watt}$
 - c) based on unmyelinated axons
 - i) myelination decreases power usage
 - ii) do small, unmyelinated axons use most of electic power?
 - iii) could dendrites use significant power?
- 2) total power used by brain ~ 20 watt
 - a) how much for ion pumps?
- b) how much for axon transport?
 - i) molecular motors
- 3) experimental indications
 - a) ion transport is major part of metabolism
 - i) barbiturate an esthesia producing isoelectric EEG reduces metabolism to 40% of normal value
 - ii) inhibiting Na-K pump using ouabain reduces metabolism to 20% of normal value

III. INFORMATION INPUT AND STORAGE

- A. Eye
- 1) retina is 2.4 cm behind cornea, pupil size $0.2 \lesssim p \lesssim 0.4$ cm
 - a) 10^7 cones
 - i) maximum density in center of fovea, $1.5\times10^7\,\mathrm{cm^{-2}}$
 - b) 10^8 rods
 - i) maximum density 20° from center of fovea, 1.6×10^7 cm⁻²
 - ii) can detect single photon
 - c) cone acuity 10 times rod acuity, less convergence

- d) cone sensitivity at fovea 10 times smaller than rod sensitivity at 20°
- 2) resolution of eye at fovea $\Delta\theta \sim 5 \times 10^{-4} \,\mathrm{rad} \sim 2$ arc minutes
- a) density of cones matches diffraction limited resolution of eye
 - i) diffraction limit: $\Delta\theta \sim \lambda/p \sim 2.5 \times 10^{-4}$
 - ii) cone spacing: $\Delta \theta \sim 10^{-4}$
- 3) input from visual receptors funnels into $\sim 10^6$ neurons in optic nerve
 - a) optic nerve can transmit $\sim 10^7$ bits per second
- 4) auditory nerve has $\sim 3 \times 10^4$ neurons
 - a) auditory bandwidth is $\sim 2 \times 10^4 \, \mathrm{Hz}$

B. Television

- 1) standard TV channel uses $\Delta \nu \approx 6\,\mathrm{MHz}$ in range $50-1,000\,\mathrm{MHz}$
 - a) only $\Delta \nu \approx 4 \,\mathrm{MHz}$ for picture
- b) 2.11×10^5 picture elements
 - i) 495 horizontal lines
- c) raster scans at 60 frames per second
 - i) more than 40 frames per second needed to avoid flicker
- d) 10⁷ elements per second
- 2) angular scale of picture element
 - a) $50 \,\mathrm{cm} \times 50 \,\mathrm{cm}$ screen
 - i) element size, $\Delta x \approx \Delta y \approx 0.1 \,\mathrm{cm}$
- b) viewed at distance of $d \approx 3 \,\mathrm{m}$
- c) $\Delta\theta \sim 3 \times 10^{-4} \text{ rad}$
- 3) match of visual input to TV
 - a) $\Delta\nu\approx 4\,\mathrm{MHz}$ matches capacity of optic nerve
 - i) $\sim 10^6$ neurons firing at $\nu \sim 10\,\mathrm{Hz}$
- b) $\Delta\theta \sim 5 \times 10^{-4}$ rad matches angular separation of picture elements
- 4) aliens might wonder which came first, the TV or the eye

C. Memory

- 1) Hebb proposed that information is stored in strength of synaptic connections
 - a) suppose that there are there N discernible levels of synaptic strength
- b) human brain might be able to store $\gtrsim 10^{14} \ln_2(N)$ bits
 - i) every bit in one full year of viewing TV