Scaling laws, from Perceptrons to Deep networks

Francesco D'Amico

Dipartimento di Fisica

October 23, 2025

Outline of the talk

- Review on neural scaling law
 - Empirical findings on neural scaling laws
 - Two models to predict power-laws exponents
 - Discussion (1^o part)

- Our results (with Dario Bocchi and Matteo Negri)
 - Simple perceptron model
 - Experiments on deep networks
 - Discussion (2^o part)

Part IA: Empirical findings

- Neural scaling laws phenomenology
- Why they motivated large scale LLMs like GPT-3/4
- How to use them to optimize compute cost

Glossary

- P: number of training data
- N: total number of learnable parameters
- \bullet \mathscr{L} : generalization loss, i.e. cross-entropy in classification
- ε : generalization error

Hestness et al (2017): Deep Learning Scaling is Predictable, Empirically

ResNet, image classification

LLM, next word prediction

Hestness et al (2017): Deep Learning Scaling is Predictable, Empirically

 $\mathcal{Q}(\mathbf{p}) = \mathbf{p} \mathbf{p}^{-\gamma}$

$$\mathscr{L}(P) \sim cP^{-\gamma}$$

Power law in intermediate regime:

Hestness et al (2017): Deep Learning Scaling is Predictable, Empirically

Power law in intermediate regime:

$$\mathcal{L}(P) \sim cP^{-\gamma}$$

Empirical properties of curves for model tested:

- Power laws in all domains tested
- ullet Exponent γ depends on task/dataset
- Architectures change mainly constant c
- Same for optimizers (SGD, Adam ..)

Two different scaling laws:

$$arepsilon(N,P)pprox egin{cases} aP^{-lpha}+c_P(N) & ext{ (data scaling at fixed model)} \\ bN^{-eta}+c_N(P) & ext{ (model scaling at fixed dataset)} \end{cases}$$
 $(P=\#{
m data},\,N=\#{
m parameters})$

Two different scaling laws:

$$arepsilon(N,P)pprox egin{cases} aP^{-lpha}+c_P(N) \ bN^{-eta}+c_N(P) \end{cases}$$

Saturating constant depends on the fixed parameter

Two different scaling laws:

$$\varepsilon(N,P) \approx \begin{cases}
aP^{-\alpha} + c_P(N) \\
bN^{-\beta} + c_N(P)
\end{cases}$$

Saturating constant depends on the fixed parameter

Proposed scaling: $\varepsilon(N,P) = aP^{-\alpha} + bN^{-\beta} + c_{\infty}$

Proposed scaling: $\varepsilon(N,P) = aP^{-\alpha} + bN^{-\beta} + c_{\infty}$

(c) Extrapolation on WikiText-103.

model fraction 1/16

6

data fraction 1/8

measured test loss

7.0

6.5 - u:0.5%

6.0

5.5 5.0 4.5 4.0

3.5

3.0

fit

 $\sigma:1.689\%$

extrapolated

Proposed scaling: $\varepsilon(N,P) = aP^{-\alpha} + bN^{-\beta} + c_{\infty}$

 \Rightarrow small P,N models capable of predicting large P,N models

Almost perfect scaling laws in GPT models across many magnitudes

Language modeling performance improves smoothly and predictably:

 Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)

- Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)
- Maximum exponent by scaling in tandem N,P

- Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)
- Maximum exponent by scaling in tandem N,P
- Large models more sample-efficient than small models: same performance with fewer datapoints

- Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)
- Maximum exponent by scaling in tandem N,P
- Large models more sample-efficient than small models: same performance with fewer datapoints
- Given a fixed compute budget C, best strategy ⇒ very large model stopped very short of convergence

Language modeling performance improves smoothly and predictably:

- Performance depends strongly on scale, weakly on model shape (i.e. width vs depth)
- Maximum exponent by scaling in tandem N,P
- Large models more sample-efficient than small models: same performance with fewer datapoints
- Given a fixed compute budget C, best strategy ⇒ very large model stopped very short of convergence

"Scaling is all you need"

All those results motivated extreme P,N scaling \Rightarrow GPT-3/4 models

All those results motivated extreme P,N scaling \Rightarrow GPT-3/4 models

Smaller models fit predicted GPT-4 loss

Hoffmann et al. (2022): Training Compute-Optimal Large Language Models

Given an available compute C, what is best choice of N,P?

Hoffmann et al. (2022): Training Compute-Optimal Large Language Models

Given an available compute C, what is best choice of N,P?

Isocurves at fixed C

Hoffmann et al. (2022): Training Compute-Optimal Large Language Models

Given an available compute C, what is best choice of N,P?

$$\Rightarrow P_{\mathsf{opt}}(C), N_{\mathsf{opt}}(C) \; \mathsf{both} \sim C^{0.5}$$
Chinchilla scaling law

Summary of empirical results

- Loss/error scales as $\varepsilon(N,P) = aP^{-\alpha} + bN^{-\beta} + c_{\infty}$
- Exponents robusts wrt most of details of training and architectures
- **Solution** Exponents found $\in [0.05, 0.5]$
- **9** Best strategy given a compute C to scale $P, N \sim C^{0.5}$

Part IB. Two attempts to explain exponents: geometric bounds and DMFT models

Idea:

Case
$$\mathcal{L}(P) - \mathcal{L}(\infty) = \Delta(P)$$
:

Underparametrized $(P \gg N \gg 1)$: variance dominates $\Delta(P) \sim c_{\text{var}} P^{-1}$ (infinite limit + corrections)

Case
$$\mathcal{L}(P) - \mathcal{L}(\infty) = \Delta(P)$$
:

- **Underparametrized** $(P \gg N \gg 1)$: variance dominates $\Delta(P) \sim c_{\text{var}} P^{-1}$ (infinite limit + corrections)
- **Overparametrized** $(N \gg P \gg 1)$: bias dominates $\Delta(P) \sim c_{\text{bias}} P^{-\alpha_{\text{bias}}}$

Case
$$\mathcal{L}(P) - \mathcal{L}(\infty) = \Delta(P)$$
:

- **Underparametrized** $(P \gg N \gg 1)$: **variance** dominates $\Delta(P) \sim c_{\text{var}} P^{-1}$ (infinite limit + corrections)
- **Overparametrized** $(N \gg P \gg 1)$: bias dominates $\Delta(P) \sim c_{\rm bias} P^{-\alpha_{\rm bias}}$

Case
$$\mathcal{L}(N) - \mathcal{L}(\infty) = \Delta(N)$$
:

- **Overparametrized** $(N \gg P \gg 1)$: **variance** dominates $\Delta(N) \sim c_{\text{var}} N^{-1} \ (N^{-1/2} \ \text{deep case})$ (infinite limit + corrections)
- ② Underparametrized $(P \gg N \gg 1)$: bias dominates $\Delta(N) \sim c_{\rm bias} N^{-\alpha_{\rm bias}}$

- **①** Exponents $\{-1, -1/2\}$ in variance-dominated regimes
- Different exponents in bias-dominated regimes

Idea:

- **①** Exponents $\{-1, -1/2\}$ in variance-dominated regimes
- Different exponents in bias-dominated regimes

Prediction for bias-dominated:

Idea:

- **①** Exponents $\{-1, -1/2\}$ in variance-dominated regimes
- Different exponents in bias-dominated regimes

Prediction for bias-dominated:

$$\Delta(P) \sim P^{-1/d}$$
; $\Delta(N) \sim N^{-1/d}$

Idea:

- **①** Exponents $\{-1, -1/2\}$ in variance-dominated regimes
- Different exponents in bias-dominated regimes

Prediction for bias-dominated:

$$\Delta(P) \sim P^{-1/d}$$
; $\Delta(N) \sim N^{-1/d}$

Assuming:

- Data lie on d-dimensional hidden manifold
- Teacher-student: y = F(x) and $\hat{y} = f(x)$

Analytical model: linear random features

Analytical model: linear random features

Teacher

$$F(x) = \sum_{M=1}^{S} \omega_M F_M(x)$$

Analytical model: linear random features

Teacher

$$F(x) = \sum_{M=1}^{S} \omega_M F_M(x)$$

Student

$$f(x) = \sum_{\mu=1}^{N} \theta_{\mu} f_{\mu}(x)$$

Analytical model: linear random features

Teacher

$$F(x) = \sum_{M=1}^{S} \omega_M F_M(x)$$

Student

$$f(x) = \sum_{\mu=1}^{N} \theta_{\mu} f_{\mu}(x)$$

• $\omega_M \sim \mathcal{N}(0, 1/S)$, θ_M learnable

Analytical model: linear random features

Teacher

$$F(x) = \sum_{M=1}^{S} \omega_M F_M(x)$$

Student

$$f(x) = \sum_{\mu=1}^{N} \theta_{\mu} f_{\mu}(x)$$

- $\omega_M \sim \mathcal{N}(0, 1/S)$, θ_M learnable
- Student features $f_{\mu} \in P$ -dimensional subspace of teacher features

Analytical model: linear random features

Key ingredient: power-laws in features and data

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_x[F(x)F^T(x)]$$

Data-data second moment matrix:

$$\mathcal{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_{x}[F(x)F^{T}(x)]$$

Data-data second moment matrix:

$$\mathscr{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

ullet \mathscr{C},\mathscr{K} share non-zero eigenvalues λ_i

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_x[F(x)F^T(x)]$$

Data-data second moment matrix:

$$\mathscr{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

- ullet \mathscr{C},\mathscr{K} share non-zero eigenvalues λ_i
- **Key ingredient**: power-law spectrum $\lambda_i = \frac{1}{i^{1+\alpha_K}}$

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_x[F(x)F^T(x)]$$

Data-data second moment matrix:

$$\mathscr{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

- \mathscr{C}, \mathscr{K} share non-zero eigenvalues λ_i
- **Key ingredient**: power-law spectrum $\lambda_i = \frac{1}{i^{1+\alpha_K}}$

Results:

Analytical model: linear random features

Key ingredient: power-laws in features and data

Feature-feature second moment matrix:

$$\mathscr{C} = \mathbb{E}_x[F(x)F^T(x)]$$

Data-data second moment matrix:

$$\mathscr{K}(x,x') = \frac{1}{S}F^{T}(x)F(x')$$

- \mathscr{C}, \mathscr{K} share non-zero eigenvalues λ_i
- **Key ingredient**: power-law spectrum $\lambda_i = \frac{1}{i^{1+\alpha_K}}$

Results:

- $\alpha_K \sim 1/d$

Result: linear random features

Why studying dynamics?

They can address:

Why studying dynamics?

They can address:

Scaling law in training time t

Why studying dynamics?

They can address:

- Scaling law in training time t
- Compute-optimal scalings

Why studying dynamics?

They can address:

- Scaling law in training time t
- Compute-optimal scalings
- All consistent at $t \to \infty$ with previous results

Model: teacher-student random features

Model: teacher-student random features

• Data $\mathbf{x} \in \mathbb{R}^N$ drawn $\mathbf{x} \sim p(\mathbf{x})$

Model: teacher-student random features

- Data $\mathbf{x} \in \mathbb{R}^N$ drawn $\mathbf{x} \sim p(\mathbf{x})$
- ullet Teacher from fixed features $\psi(\mathbf{x}) \in \mathbb{R}^M$ + noise:

$$y(\mathbf{x}) = \frac{1}{\sqrt{M}} \mathbf{w}^* \cdot \psi(\mathbf{x}) + \sigma \varepsilon(\mathbf{x})$$

Model: teacher-student random features

- Data $\mathbf{x} \in \mathbb{R}^N$ drawn $\mathbf{x} \sim p(\mathbf{x})$
- ullet Teacher from fixed features $\psi(\mathbf{x}) \in \mathbb{R}^M$ + noise:

$$y(\mathbf{x}) = \frac{1}{\sqrt{M}} \mathbf{w}^* \cdot \boldsymbol{\psi}(\mathbf{x}) + \sigma \boldsymbol{\varepsilon}(\mathbf{x})$$

• Student is a lower-dimensional projection of features $\mathbf{A}\psi(\mathbf{x})$ where $\mathbf{A} \in \mathbb{R}^{N \times M}, \, A_{ij}$ i.i.d.

$$f(\mathbf{x}) = \frac{1}{\sqrt{N}} \mathbf{w} \cdot \mathbf{A} \psi(\mathbf{x})$$

Assumption: power-law features + data

1 Given $\langle \psi_k(\mathbf{x}) \psi_l(\mathbf{x}) \rangle_{\mathbf{x} \sim p(\mathbf{x})} = \delta_{kl} \lambda_k$ (fixed)

Assumption: power-law features + data

• Given
$$\langle \psi_k(\mathbf{x}) \psi_l(\mathbf{x}) \rangle_{\mathbf{x} \sim p(\mathbf{x})} = \delta_{kl} \lambda_k$$
 (fixed)
$$\Rightarrow \text{ assume } \lambda_k \sim k^{-b}$$

Assumption: power-law features + data

• Given
$$\langle \psi_k(\mathbf{x}) \psi_l(\mathbf{x}) \rangle_{\mathbf{x} \sim p(\mathbf{x})} = \delta_{kl} \lambda_k$$
 (fixed)
$$\Rightarrow \text{ assume } \lambda_k \sim k^{-b}$$

b inverse to data+kernel complexity

Assumption: power-law features + data

• Given
$$\langle \psi_k(\mathbf{x}) \psi_l(\mathbf{x}) \rangle_{\mathbf{x} \sim p(\mathbf{x})} = \delta_{kl} \lambda_k$$
 (fixed)
$$\Rightarrow \text{ assume } \lambda_k \sim k^{-b}$$

b inverse to data+kernel complexity

② Expand Teacher
$$f^*(\mathbf{x}) = \sum_k \omega_k^* \psi_k(\mathbf{x})$$

$$\Rightarrow$$
 assume $(\omega_k^*)^2 \lambda_k \sim k^{-a}$

Assumption: power-law features + data

• Given $\langle \psi_k(\mathbf{x}) \psi_l(\mathbf{x}) \rangle_{\mathbf{x} \sim p(\mathbf{x})} = \delta_{kl} \lambda_k$ (fixed) $\Rightarrow \mathsf{assume} \ \lambda_k \sim k^{-b}$

b inverse to data+kernel complexity

- **2** Expand Teacher $f^*(\mathbf{x}) = \sum_k \omega_k^* \psi_k(\mathbf{x})$
 - \Rightarrow assume $(\omega_k^*)^2 \lambda_k \sim k^{-a}$
 - $(\omega_k^*)^2 \lambda_k$ controls generalization error per mode
 - Large a ⇒ target error concentrated in first modes ⇒ easy task

DMFT results

(1) Bottleneck scalings

$$\mathscr{L}(t,P,N) \,pprox \, egin{cases} t^{-rac{a-1}{b}}, & P,N
ightarrow \infty & ext{(Time)}, \ P^{-\min\{a-1,2b\}}, & t,N
ightarrow \infty & ext{(Data)}, \ N^{-\min\{a-1,2b\}}, & t,P
ightarrow \infty & ext{(Model)}. \end{cases}$$

DMFT results

(1) Bottleneck scalings

$$\mathscr{L}(t,P,N) \, \approx \, \begin{cases} t^{-\frac{a-1}{b}}, & P,N \to \infty \quad \text{(Time)}, \\ P^{-\min\{a-1,2b\}}, & t,N \to \infty \quad \text{(Data)}, \\ N^{-\min\{a-1,2b\}}, & t,P \to \infty \quad \text{(Model)}. \end{cases}$$

(2) Compute optimal

• Compute optimal time-size: $t \sim C^{\frac{b}{1+b}}$, $N \sim C^{\frac{1}{1+b}}$ $\Rightarrow t$ has to be scaled more than N, P

DMFT results

(1) Bottleneck scalings

$$\mathscr{L}(t,P,N) \, \approx \, \begin{cases} t^{-\frac{a-1}{b}}, & P,N \to \infty \quad \text{(Time)}, \\ P^{-\min\{a-1,2b\}}, & t,N \to \infty \quad \text{(Data)}, \\ N^{-\min\{a-1,2b\}}, & t,P \to \infty \quad \text{(Model)}. \end{cases}$$

(2) Compute optimal

• Compute optimal time-size: $t \sim C^{\frac{b}{1+b}}$, $N \sim C^{\frac{1}{1+b}}$ $\Rightarrow t$ has to be scaled more than N,P

$$ullet$$
 $\mathscr{L}_{\mathsf{opt}}(C) \sim C^{-rac{a-1}{1+b}}$

Limitations and new results

NTK/random features underestimate exponents

Limitations and new results

NTK/random features underestimate exponents

Recent attempts with feature learning:

- Bordelon et al. (ICLR 2025) How Feature Learning Can Improve Neural Scaling Laws
- Defilippis et al. (Sept. 2025) Scaling Laws and Spectra of Shallow Neural Networks in the Feature Learning Regime

Limitations and new results

- NTK/random features underestimate exponents
 - Recent attempts with feature learning:
 - Bordelon et al. (ICLR 2025) How Feature Learning Can Improve Neural Scaling Laws
 - Defilippis et al. (Sept. 2025) Scaling Laws and Spectra of Shallow Neural Networks in the Feature Learning Regime
- Different (complicated) tasks produce "phase-transitions" Wei et al., (2022): Emergent Abilities of Large Language Models

References

- Hestness et al (2017): Deep Learning Scaling is Predictable, Empirically
- Rosenfeld et al. (2020): A Constructive Prediction of the Generalization Error Across Scales
- Kaplan et al (2020): Scaling laws for neural language models
- Bahri et al. (2021): Explaining Neural Scaling Laws
- Hoffmann et al. (2022): Training Compute-Optimal Large Language Models
- Maloney et al. (2022): A Solvable Model of Neural Scaling Laws
- Wei et al., (2022): Emergent Abilities of Large Language Models
- Bordelon et al. (2024): A Dynamical Model of Neural Scaling Laws
- Bordelon et al. (2025) How Feature Learning Can Improve Neural Scaling Laws
- Defilippis et al. (2025) Scaling Laws and Spectra of Shallow Neural Networks in the Feature Learning Regime

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2*}, Dario Bocchi^{1,2*}, Matteo Negri^{1,2}

¹ Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

² 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2*}, Dario Bocchi^{1,2*}, Matteo Negri^{1,2}

Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

2 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Outline:

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2}*, Dario Bocchi^{1,2}*, Matteo Negri^{1,2}

Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

2 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Outline:

We show two new scalings laws in a simple Perceptron model

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2}*, Dario Bocchi^{1,2}*, Matteo Negri^{1,2}

Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

2 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Outline:

- We show two new scalings laws in a simple Perceptron model
- ② These new laws combined reproduce $\varepsilon \sim P^{-\gamma}$ scaling law

Implicit bias produces neural scaling laws in learning curves, from perceptrons to deep networks

Francesco D'Amico^{1,2}*, Dario Bocchi^{1,2}*, Matteo Negri^{1,2}

Physics Department, University of Rome Sapienza, Piazzale Aldo Moro 5, Rome 00185

2 1CNR-Nanotec Rome unit, Piazzale Aldo Moro 5, Rome 00185

Outline:

- We show two new scalings laws in a simple Perceptron model
- ② These new laws combined reproduce $\varepsilon \sim P^{-\gamma}$ scaling law
- Valid empirically for Deep Nets in real image classification

• Student perceptron $\mathbf{w} \in \mathbb{R}^N$, Teacher perceptron $\mathbf{w}^* \in \mathbb{R}^N$

- Student perceptron $\mathbf{w} \in \mathbb{R}^N$, Teacher perceptron $\mathbf{w}^* \in \mathbb{R}^N$
- $P = \alpha N$ random binary examples $\mathbf{x}^{\mu} \in \{\pm 1\}^{N}$
- Labels $y^{\mu} = \operatorname{sign}(\mathbf{x}^{\mu} \cdot \mathbf{w}^*)$

- Student perceptron $\mathbf{w} \in \mathbb{R}^N$, Teacher perceptron $\mathbf{w}^* \in \mathbb{R}^N$
- $P = \alpha N$ random binary examples $\mathbf{x}^{\mu} \in \{\pm 1\}^{N}$
- Labels $y^{\mu} = \operatorname{sign}(\mathbf{x}^{\mu} \cdot \mathbf{w}^*)$
- Spherical weights $\|\mathbf{w}^*\|^2 = \|\mathbf{w}\|^2 = \lambda N$

- Student perceptron $\mathbf{w} \in \mathbb{R}^N$, Teacher perceptron $\mathbf{w}^* \in \mathbb{R}^N$
- $P = \alpha N$ random binary examples $\mathbf{x}^{\mu} \in \{\pm 1\}^{N}$
- Labels $y^{\mu} = \operatorname{sign}(\mathbf{x}^{\mu} \cdot \mathbf{w}^*)$
- Spherical weights $\|\mathbf{w}^*\|^2 = \|\mathbf{w}\|^2 = \lambda N$
- Cross-entropy (Pseudo-likelihood) Loss:

$$L(\mathbf{w}; \lambda) = -\left[\sum_{\mu=1}^{P} \Delta^{\mu} - \log 2 \cosh(\Delta^{\mu})\right] = \sum_{\mu=1}^{P} V(\Delta^{\mu})$$

where margins

$$\Delta^{\mu} \equiv y^{\mu} \left(\frac{\boldsymbol{w} \cdot \boldsymbol{x}^{\mu}}{\sqrt{\lambda N}} \right)$$

Solution at fixed α interpolates known learning rules

Unbounded norm perceptrons \approx fixed-norm

• Norm $\lambda(t)$ increases monotonically for GD, Soudry et al., (2018)

Unbounded norm perceptrons \approx fixed-norm

- Norm $\lambda(t)$ increases monotonically for GD, Soudry et al., (2018)
- ullet $\epsilon(\lambda)$ curves in fixed-norm case

Unbounded norm perceptrons \approx fixed-norm

- Norm $\lambda(t)$ increases monotonically for GD, Soudry et al., (2018)
- $\varepsilon(\lambda)$ curves in fixed-norm case $\approx \varepsilon(\lambda(t))$ in unbounded case

Unbounded norm perceptrons ≈ fixed-norm

- Norm $\lambda(t)$ increases monotonically for GD, Soudry et al., (2018)
- $\varepsilon(\lambda)$ curves in fixed-norm case $\approx \varepsilon(\lambda(t))$ in unbounded case

Relative error $\hat{\epsilon}_{gen} \equiv \epsilon_{gen}/\epsilon_0$, where $\epsilon_0 = \epsilon(\lambda=0)$

Relative error $\hat{\epsilon}_{gen} \equiv \epsilon_{gen}/\epsilon_0$, where $\epsilon_0 = \epsilon(\lambda=0)$

Relative error $\hat{\epsilon}_{gen} \equiv \epsilon_{gen}/\epsilon_0$, where $\epsilon_0 = \epsilon(\lambda=0)$

1 Early training $(\lambda < \lambda_{elbow}(\alpha))$ $\rightarrow \hat{\epsilon}_{gen} \sim k_1 \lambda^{-\gamma_1}$

Relative error $\hat{\epsilon}_{gen} \equiv \epsilon_{gen}/\epsilon_0$, where $\epsilon_0 = \epsilon(\lambda=0)$

- **1** Early training $(\lambda < \lambda_{elbow}(\alpha))$ $\rightarrow \hat{\varepsilon}_{gen} \sim k_1 \lambda^{-\gamma_1}$
- ② Optima of curves $(\lambda > \lambda_{elbow}(\alpha)) \rightarrow \lambda_{opt} \sim k_2 \alpha^{\gamma_2}$

Result (2): collapse on a master curve Φ

Define the rescaling $\hat{\epsilon}_{gen}/\hat{\epsilon}_{opt} = \Phi_{lpha}(\lambda/\lambda_{opt})$

Result (2): collapse on a master curve Φ

Define the rescaling $\hat{\epsilon}_{gen}/\hat{\epsilon}_{opt} = \Phi_{\alpha}(\lambda/\lambda_{opt})$

Result (2): collapse on a master curve Φ

Define the rescaling $\hat{\epsilon}_{gen}/\hat{\epsilon}_{opt} = \Phi_{\alpha}(\lambda/\lambda_{opt})$

Curves converge to a master curve for $\alpha\gg 1$: $\Phi_{\alpha}\to\Phi$

Result (3): predict neural scaling law

- **1** $\hat{\varepsilon}_{\mathrm{gen}} \sim k_1 \lambda^{-\gamma_1}$ for $\lambda < \lambda_{elbow}(\alpha)$
- $oldsymbol{2} \lambda_{\mathrm{opt}} \sim k_2 lpha^{\gamma_2} \ \mathrm{for} \ \lambda > \lambda_{elbow}(lpha)$
- **③** $\hat{\epsilon}_{gen}/\hat{\epsilon}_{opt} = \Phi(\lambda/\lambda_{opt})$ for $\alpha\gg 1$

Result (3): predict neural scaling law

•
$$\hat{\varepsilon}_{\text{gen}} \sim k_1 \lambda^{-\gamma_1}$$
 for $\lambda < \lambda_{elbow}(\alpha)$

$$\hat{\epsilon}_{
m gen}/\hat{\epsilon}_{
m opt} = \Phi(\lambda/\lambda_{
m opt}) ext{ for } lpha \gg 1$$

$$\hat{arepsilon}_{
m gen} \sim k_1 \, k_2^{-\gamma_1} \, lpha^{-\gamma_1 \gamma_2} \, \, {
m for} \, \, lpha \gg 1$$

Result (3): predict neural scaling law

$$\bullet \quad \hat{\varepsilon}_{\text{gen}} \sim k_1 \lambda^{-\gamma_1} \text{ for } \lambda < \lambda_{elbow}(\alpha)$$

$$\begin{array}{l} \bullet \quad \hat{\epsilon}_{\rm gen} \sim k_1 \lambda^{-\gamma_1} \; {\rm for} \; \lambda < \lambda_{elbow}(\alpha) \\ \\ \bullet \quad \lambda_{\rm opt} \sim k_2 \alpha^{\gamma_2} \; {\rm for} \; \lambda > \lambda_{elbow}(\alpha) \\ \\ \bullet \quad \hat{\epsilon}_{\rm gen} \sim k_1 k_2^{-\gamma_1} \; \alpha^{-\gamma_1 \gamma_2} \; {\rm for} \; \alpha \gg 1 \\ \\ \bullet \quad \hat{\epsilon}_{\rm gen} \sim \alpha^{-\gamma}, \; {\rm with} \; \boxed{\gamma = \gamma_1 \gamma_2} \end{array}$$

$$\hat{\epsilon}_{\rm gen}/\hat{\epsilon}_{\rm opt} = \Phi(\lambda/\lambda_{
m opt}) \ {
m for} \ lpha \gg 1$$

$$\hat{arepsilon}_{
m gen} \sim k_1 \, k_2^{-\gamma_1} \, lpha^{-\gamma_1 \gamma_2} \, \, {
m for} \, \, lpha \gg 1$$

$$\hat{arepsilon}_{
m gen} \sim lpha^{-\gamma}$$
, with $\gamma = \gamma_1 \gamma_2$

Does the theory also apply to deep networks?

Architectures:

- Convolutional Neural Networks (CNN)
- Residual Neural Networks (ResNet)
- Vision Transformers (ViT)

Datasets:

- MNIST (greyscale digits, 10 classes)
- CIFAR10 (RGB images, 10 classes)
- CIFAR100 (RGB images, 100 classes)

Norm in deep networks: Bartlett et al. (2017) Spectrally-normalized margin bounds for neural networks

Spectral Complexity norm for a L-layer deep net with matrices A_i :

- ρ_i Lipschitz constant of layer i activation function
- $\|\cdot\|_{\sigma}$ biggest singular value (spectral norm)
- $\|\cdot\|_{2,1}$ sum of ℓ_2 norms of columns
- M_i reference matrix (can be = 0)

$$R_{A} = \left(\prod_{i=1}^{L} \rho_{i} \|A_{i}\|_{\sigma}\right) \left(\sum_{i=1}^{L} \frac{\|A_{i}^{\top} - M_{i}^{\top}\|_{2,1}^{2/3}}{\|A_{i}\|_{\sigma}^{2/3}}\right)^{3/2}$$

Norm in deep networks: Bartlett et al. (2017) Spectrally-normalized margin bounds for neural networks

Spectral Complexity norm for a L-layer deep net with matrices A_i :

- ρ_i Lipschitz constant of layer i activation function
- $\|\cdot\|_{\sigma}$ biggest singular value (spectral norm)
- $\|\cdot\|_{2,1}$ sum of ℓ_2 norms of columns
- M_i reference matrix (can be = 0)

$$R_{A} = \left[\left(\prod_{i=1}^{L} \rho_{i} \|A_{i}\|_{\sigma} \right) \right] \left(\sum_{i=1}^{L} \frac{\|A_{i}^{\top} - M_{i}^{\top}\|_{2,1}^{2/3}}{\|A_{i}\|_{\sigma}^{2/3}} \right)^{3/2}$$

Maximum expansion

Norm in deep networks: Bartlett et al. (2017) Spectrally-normalized margin bounds for neural networks

Spectral Complexity norm for a L-layer deep net with matrices A_i :

- ρ_i Lipschitz constant of layer i activation function
- $\|\cdot\|_{\sigma}$ biggest singular value (spectral norm)
- $\|\cdot\|_{2,1}$ sum of ℓ_2 norms of columns
- M_i reference matrix (can be = 0)

$$R_{A} = \left[\left(\prod_{i=1}^{L} \rho_{i} \|A_{i}\|_{\sigma} \right) \right] \left(\sum_{i=1}^{L} \frac{\|A_{i}^{\top} - M_{i}^{\top}\|_{2,1}^{2/3}}{\|A_{i}\|_{\sigma}^{2/3}} \right)^{3/2}$$

Maximum expansion

Effective rank

Result (1): Two scaling laws

Result (1): Two scaling laws

Result (2): Collapse on a master curve

Result (2): Collapse on a master curve

Deep Networks

- Direct measure: γ_{meas}
- Measure γ_1, γ_2 and compute $\gamma_{pred} = \gamma_1 \gamma_2$

- Direct measure: γ_{meas}
- Measure γ_1, γ_2 and compute $\gamma_{pred} = \gamma_1 \gamma_2$

In a realistic case:

$$\bullet \quad \varepsilon_{\rm gen} = k_1 \lambda^{-\gamma_1} + q_1$$

$$\begin{cases}
\mathbf{\varepsilon}_{\text{gen}} = k_1 \lambda^{-\gamma_1} + q_1 \\
\mathbf{\varepsilon}_{\text{gen}} = k_1 (k_2 P^{\gamma_2} + q_2)^{-\gamma_1} + q_1
\end{cases}$$

$$\mathbf{\varepsilon}_{\text{gen}} = k_1 (k_2 P^{\gamma_2} + q_2)^{-\gamma_1} + q_1$$

- Direct measure: γ_{meas}
- Measure γ_1, γ_2 and compute $\gamma_{pred} = \gamma_1 \gamma_2$

In a realistic case:

$$\varepsilon_{\text{gen}} = k_1 (k_2 P^{\gamma_2} + q_2)^{-\gamma_1} + q_1$$

Intermediate regime $\varepsilon \sim P^{-\gamma_1 \gamma_2}$

Hestness et al (2017) empirical curve

- Direct measure: γ_{meas}
- Measure γ_1, γ_2 and compute $\gamma_{pred} = \gamma_1 \gamma_2$

In a realistic case:

$$\varepsilon_{\text{gen}} = k_1 (k_2 P^{\gamma_2} + q_2)^{-\gamma_1} + q_1$$

Intermediate regime $\varepsilon \sim P^{-\gamma_1 \gamma_2}$

Model	Dataset	γ_{pred}	γ_{meas}	σ
CNN	MNIST	0.60	0.55	0.09
CNN	CIFAR10	0.28	0.25	0.07
CNN	CIFAR100	0.16	0.16	0.03
ResNet	MNIST	0.57	0.69	0.08
ResNet	CIFAR10	0.54	0.56	0.04
ResNet	CIFAR100	0.31	0.37	0.03
ViT	MNIST	0.47	0.54	0.03
ViT	CIFAR10	0.23	0.21	0.03
ViT	CIFAR100	0.14	0.12	0.04

Hestness et al (2017) empirical curve

 $\gamma_1 \gamma_2$ compatible with γ_{meas}

Numerically we tested

A moderate weight decay

Numerically we tested

- A moderate weight decay
- SGD instead of Adam

Numerically we tested

- A moderate weight decay
- SGD instead of Adam
- **1** Other norm definitions: $\ell_1, \ell_2, G_{2,1}$, Spectral.

Numerically we tested

- A moderate weight decay
- SGD instead of Adam
- **1** Other norm definitions: $\ell_1, \ell_2, G_{2,1}$, Spectral.

Results:

Qualitative picture is the same in all cases

Numerically we tested

- A moderate weight decay
- SGD instead of Adam
- **1** Other norm definitions: $\ell_1, \ell_2, G_{2,1}$, Spectral.

Results:

- Qualitative picture is the same in all cases
- ② In (1) and (2) also $\gamma_1 \gamma_2$ compatible with γ (same γ as before)

Numerically we tested

- A moderate weight decay
- SGD instead of Adam
- **1** Other norm definitions: $\ell_1, \ell_2, G_{2,1}$, Spectral.

Results:

- Qualitative picture is the same in all cases
- ② In (1) and (2) also $\gamma_1 \gamma_2$ compatible with γ (same γ as before)
- **1** In (3) $\gamma_1 \gamma_2 \neq \gamma \Rightarrow$ Spectral complexity is "special"

Limitations and possible extensions

No hidden layer ⇒ no scaling in N
 Extension: NTK or feature learning two-layers NN

Limitations and possible extensions

- No hidden layer ⇒ no scaling in N
 Extension: NTK or feature learning two-layers NN
- Statical results to predict dynamics
 Extension: DMFT (i.e. Montanari and Urbani, (2025) Dynamical Decoupling of Generalization and Overfitting in Large Two-Layer Networks)

Limitations and possible extensions

- No hidden layer ⇒ no scaling in N
 Extension: NTK or feature learning two-layers NN
- Statical results to predict dynamics
 Extension: DMFT (i.e. Montanari and Urbani, (2025) Dynamical Decoupling of Generalization and Overfitting in Large Two-Layer Networks)
- Only image classification
 Extension: LLMs (i.e. Maloney et al. (2022) A Solvable Model of Neural Scaling Laws)

Thank you for attention!

Francesco D'Amico

Dipartimento di Fisica

October 23, 2025

Contact: francesco.damico@uniroma1.it

Bahri et al. (2021): Explaining Neural Scaling Laws

Idea:

Why -1/d exponents? Arguments for *bounds*

- Scaling in P (overparametrized):
 Distance of test points to closest training point \(\mathcal{O}(P^{-1/d}) \)
- Scaling in N (underparametrized):
 - **1** Take *N* anchor points $I = \{x\}_{1,...,N}$ from the huge dataset.
 - ② f approximates F piecewise with N regions, centered on I points.
 - **3** Distance of test points to closest *I*: $\mathcal{O}(N^{-1/d})$