- 8. The fusion protein of claim 7, wherein the fusion protein comprises a sequence selected from the group consisting of:
- (a) sequences provided in SEQ ID NO: 682, 692, 695, 699, 703 and 709; and
- (b) sequences encoded by SEQ ID NO: 679, 691, 696, 700, 704 and 708.
- 9. An oligonucleotide that hybridizes to a sequence recited in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 or 786-788 under moderately stringent conditions.
- 10. A method for stimulating and/or expanding T cells specific for a tumor protein, comprising contacting T cells with at least one component selected from the group consisting of:
 - (a) polypeptides according to claim 2;
 - (b) polynucleotides according to claim 1; and
- (c) antigen-presenting cells that express a polypeptide according to claim 1,

under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.

11. An isolated T cell population, comprising T cells prepared according to the method of claim 10.

WO 01/051633 PCT/US01/01574

- 12. A composition comprising a first component selected from the group consisting of physiologically acceptable carriers and immunostimulants, and a second component selected from the group consisting of:
 - (a) polypeptides according to claim 2;
 - (b) polynucleotides according to claim 1;
 - (c) antibodies according to claim 5;
 - (d) fusion proteins according to claim 7;
 - (e) T cell populations according to claim 11; and
- (f) antigen presenting cells that express a polypeptide according to claim 2.
- 13. A method for stimulating an immune response in a patient, comprising administering to the patient a composition of claim 12.
- 14. A method for the treatment of a cancer in a patient, comprising administering to the patient a composition of claim 12.
- 15. A method for determining the presence of a cancer in a patient, comprising the steps of:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the biological sample with an oligonucleotide according to claim 9;
- (c) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and
- (d) compare the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence of the cancer in the patient.
- 16. A diagnostic kit comprising at least one oligonucleotide according to claim 9.

- 17. A diagnostic kit comprising at least one antibody according to claim 5 and a detection reagent, wherein the detection reagent comprises a reporter group.
- 18. A method for inhibiting the development of a cancer in a patient, comprising the steps of:
- (a) incubating CD4+ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of: (i) polypeptides according to claim 2; (ii) polynucleotides according to claim 1; and (iii) antigen presenting cells that express a polypeptide of claim 2, such that T cell proliferate; and
- (b) administering to the patient an effective amount of the proliferated T cells,

thereby inhibiting the development of a cancer in the patient.

Effector: Target Ratio

Fig. 1

2/10

Fig. 2A

Fig. 2B

Fig. 4

SUBSTITUTE SHEET (RULE 26)

Expression of P501S by the Baculovirus Expression System

C 6 million high 5 cells in 6-well plate were infected with an unrelated control virus BV/ECD_PD (lane2), without virus (lane3), or with recombinant baculovirus for P501 at different MOIs (lane 4-8). Cell lysates were run on SDS-PAGE under the reducing conditions and analyzed by Western blot with a monoclonal antibody against P501S (P501S-10E3-G4D3). Lane 1 is the biotinylated protein molecular weight marker (BioLabs).

Fig. 7

8/10

Schematic of P501S with predicted transmembrane, cytoplasmic, and extracellular regions

MVQRLWVSRLLRHRK AQLLLVNLLTFGLEVCLAAGIT YVPPLLLEVGVEEKFM TMVLGIGPVLGLVCYPLLGSAS

DHWRGRYGRRP FIWALSLGILLSLFLIPRAGWL AGLLCPDPRPLE LALLILGVGLLDFCGQVCFTPL

EALISDLFRDPDHCRQ AYSVYAFMISLGGCLGYLLPAI DWDTSALAPYLGTQEE

CLFGLLTLIFLTCVAATLLV AEEAALGPTEPAEGLSAPSLSPHCCPCRARLAFRNLGALLPRL

HQLCCRMPRTLRR LEVAELCSWMALMTFTLFYTDF VGEGLYQGVPRAEPGTEARRHYDEGVR

MGSLGLFLQCAISLVFSLVM DRLVQRFGTRAVYLAS VAAFPVAAGATCLSHSVAVVTA SAA

LTGFTFSALQILPYTLASLY HREKQVFLPKYRGDTGGASSEDSLMTSFLPGPKPGAPFPNGHVGAGGSGL

LPPPPALCGASACDVSVRVVVGEPTEARVVPGRG ICLDLAILDSAFLLSQVAPSLF MGSIVQLSQS

VTAYMVSAAGLGLVAIYFAT QVVFDKSDLAKYSA

<u>Underlined sequence</u>: Predicted transmembrane domain; **Bold sequence**: Predicted extracellular domain; *Italic sequence*: Predicted intracellular domain. Sequence in bold/underlined: used generate polyclonal rabbit serum

Localization of domains predicted using HMMTOP (G.E. Tusnady an I. Simon (1998) Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to topology Prediction.J.Mol Biol. 283, 489-506.

Fig. 9

Genomic Map cf (5) Corixa Candidate Genes

F1g. 10

Fig.

SEQUENCE LISTING

```
<110> Corixa Corporation
           Smithkline Beechan Biologicals S.A.
           Xu, Jiangchun
           Dillon, Davin C.
           Mitcham, Jennifer L.
           Harlocker, Susan L.
           Jiang, Yuqui
           Reed, Steven G.
           Kalos, Michael D.
           Fanger, Gary R.
           Retter, Marc W. Stolk, John A.
           Day, Craig H.
           Skeiky, Yasir A.W.
           Wang, Aijun
           Meagher, Medeleine Joy
           Vanderbrugge, Didier
            Dewerchin, Marianne
            Dehottay, Ph.
            de Rop, Philippe
      <120> COMPOSITIONS AND METHODS FOR THE THERAPY AND
            DIAGNOSIS OF PROSTATE CANCER
      <130> 210121.42722PC
      <140> PCT
      <141> 2001-01-16
      <160> 792
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 814
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(814)
      <223> n = A, T, C or G
      <400> 1
ttttttttt tttttcacag tataacagct ctttatttct gtgagttcta ctaggaaatc
                                                                         60
atcaaatctg agggttgtct ggaggacttc aatacacctc cccccatagt gaatcagctt
                                                                        120
                                                                        180
ccagggggtc cagtccctct ccttacttca tccccatccc atgccaaagg aagaccctcc
ctccttggct cacagccttc tctaggcttc ccagtgcctc caggacagag tgggttatgt
                                                                        240
tttcagctcc atccttgctg tgagtgtctg gtgcgttgtg cctccagctt ctgctcagtg
                                                                        300
cttcatggac agtgtccagc acatgtcact ctccactctc tcagtgtgga tccactagtt
                                                                        360
ctagagcggc cgccaccgcg gtggagctcc agcttttgtt ccctttagtg agggttaatt
                                                                        420
gcgcgcttgg cgtaatcatg gtcataactg tttcctgtgt gaaattgtta tccgctcaca
                                                                        480
attccacaca acatacgage eggaageata aagtgtaaag eetggggtge etaatgagtg
                                                                        540
anctaactca cattaattgc gttgcgctca ctgnccgctt tccagtcngg aaaactgtcg
                                                                        600
                                                                        660
tgccagctgc attaatgaat cggccaacgc ncggggaaaa gcggtttgcg ttttgggggc
```

```
icttsegett etegeteact nanteetgeg eteggtentt eggetgeggg gaaeggtate
                                                                         720
  actecteaaa ggnggtatta eggttateen naaatenggg gataceengg aaaaaanttt
                                                                         780
  aacaaaaggg cancaaaggg cngaaacgta aaaa
                                                                         814
        <210> 2
       <211> 816
        <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (816)
       <223> n = A, T, C or G
       <400> 2
 acagaaatgt tggatggtgg agcacctttc tatacgactt acaggacagc agatggggaa
                                                                          60
 ttcatggctg ttggagcaat agaaccccag ttctacgagc tgctgatcaa aggacttgga
                                                                         120
 ctaaagtetg atgaacttee caateagatg ageatggatg attggeeaga aatgaagaag
                                                                         180
 aagttigcag atgtatttgc aaagaagacg aaggcagagt ggtgtcaaat ctttgacggc
                                                                         240
 acagatgeet gtgtgaetee ggttetgaet tttgaggagg ttgtteatea tgatcacaae
                                                                         300
 aaggaacggg getegtttat caccagtgag gagcaggacg tgagcccccg cectgcacet
                                                                        360
 ctgctgttaa acaccccagc catecettet ttcaaaaggg atccactagt tctagaageg
                                                                        420
 gccgccaccg cggtggagct ccagcttttg ttccctttag tgagggttaa ttgcgcgctt
                                                                        480
 ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt tatccgctca caattccccc
                                                                        540
 aacatacgag coggaacata aagtgttaag cotggggtge ctaatgantg agetaacten
                                                                        600
 cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaaactgtcg tgccactgen
                                                                        660
 ttantgaate ngccaccec egggaaaagg eggttgentt ttgggeetet teegetttee
                                                                        720
 tegeteatty atcetngene eeggtetteg getgeggnga aeggtteact cetcaaagge
                                                                        780
ggtntnccgg ttatccccaa acnggggata cccnga
                                                                        816
       <210> 3
       <211> 773
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (773)
      <223> n = A, T, C or G
      <400> 3
ctitigaaag aagggatggc tggggtgttt aacagcagag gtgcagggcg ggggctcacg
                                                                         60
tectgeteet cactggtgat aaacgageee egtteettgt tgtgateatg atgaacaace
                                                                        120
Loctcaaaag toagaacogg agtcacacag goatotgtgo ogtcaaagat ttgacaccac
                                                                        180
totgocttog tottotttgc aaatacatot gcaaacttot tottoattto tggccaatca
                                                                       240
tocatgetea tetgattggg aagtteatea gaetttagte cannteettt gateageage
                                                                       300
togtagaact ggggttetat tgctccaaca gccatgaatt ccccatctgc tgtcctgtaa
                                                                       360
gtogtataga aaggtgetee accatecaac atgttetgte etegaggggg ggeeeggtae
                                                                       420
ccaattegee ctatantgag tegtattaeg egegeteact ggeegtegtt ttacaaegte
                                                                       480
gtgactggga aaaccetggg cgttaccaac ttaatcgcct tgcagcacat ccccctttcg
                                                                       540
ccagctgggc gtaatancga aaaggcccgc accgatcgcc cttccaacag ttgcgcacct
                                                                       600
gaatgggnaa atgggacccc cctgttaccg cgcattnaac ccccgcnggg tttngttgtt
                                                                       660
acceccaent nnacegetta caetttgeca gegeettane gecegeteee tttencettt
                                                                       720
ettecettee ttteneneen ettteeeeeg gggttteeee entcaaacee ena
                                                                       773
     <210> 4
     <211> 828
     <212> DNA
```

```
<213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(828)
      \langle 223 \rangle n = A, T, C or G
      <400> 4
                                                                        60
cctcctgagt cctactgacc tgtgctttct ggtgtggagt ccagggctgc taggaaaagg
aatgggcaga cacaggtgta tgccaatgtt tctgaaatgg gtataatttc gtcctctct
                                                                        120
teggaacaet ggetgtetet gaagaettet egeteagttt eagtgaggae acaeaaaag
                                                                        180
acgtgggtga ccatgttgtt tgtggggtgc agagatggga ggggtggggc ccaccctgga
                                                                        240
agagtggaca gtgacacaag gtggacactc tctacagatc actgaggata agctggagcc
                                                                        300
acaatgcatg aggcacacac acagcaagga tgacnctgta aacatagccc acgctgtcct
                                                                        360
gngggcactg ggaagcctan atnaggccgt gagcanaaag aaggggagga tccactagtt
                                                                        420
ctanagegge egecacegeg gtgganetee anettttgtt eeetttagtg agggttaatt
                                                                        480
gegegettgg entaateatg gteataneth ttteetgtgt gaaattgtta teegeteaca
                                                                        540
attccacaca acatacganc cggaaacata aantgtaaac ctggggtgcc taatqantga
                                                                        600
ctaactcaca ttaattgcgt tgcgctcact gcccgctttc caatcnggaa acctgtcttg
                                                                        660
concttgcat tnatgaaten gecaaceee ggggaaaage gtttgegttt tgggegetet
                                                                        720
tecgetteet eneteantta ntecetnene teggteatte eggetgenge aaaceggtte
                                                                        780
                                                                        828
accnecteca aagggggtat teeggtttee cenaateegg ggananee
      <210> 5
      <211> 834
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(834)
      <223> n = A,T,C or G
      <400> 5
ttttttttt tttttactga tagatggaat ttattaagct tttcacatgt gatagcacat
                                                                         60
agttttaatt gcatccaaag tactaacaaa aactctagca atcaagaatg gcagcatgtt
                                                                        120
attttataac aatcaacacc tgtggctttt aaaatttggt tttcataaga taatttatac
                                                                        180
tgaagtaaat ctagccatgc ttttaaaaaa tgctttaggt cactccaagc ttggcagtta
                                                                        240
acatttggca taaacaataa taaaacaatc acaatttaat aaataacaaa tacaacattg
                                                                        300
taggccataa tcatatacag tataaggaaa aggtggtagt gttgagtaag cagttattag
                                                                        360
aatagaatac cttggcctct atgcaaatat gtctagacac tttgattcac tcagccctga
                                                                        420
cattcagttt tcaaagtagg agacaggttc tacagtatca ttttacagtt tccaacacat
                                                                        480
tgaaaacaag tagaaaatga tgagttgatt tttattaatg cattacatcc tcaagagtta
                                                                        540
                                                                        600
tcaccaaccc ctcaqttata aaaaattttc aagttatatt agtcatataa cttggtgtgc
ttattttaaa ttagtgctaa atggattaag tgaagacaac aatggtcccc taatgtgatt
                                                                        660
gatattggtc atttttacca gcttctaaat ctnaactttc aggcttttga actggaacat
                                                                        720
tgnatnacag tgttccanag ttncaaccta ctggaacatt acagtgtgct tgattcaaaa
                                                                        780
tgttattttg ttaaaaatta aattttaacc tggtggaaaa ataatttgaa atna
                                                                        834
      <210> 6
      <211> 818
      <212> DNA
      <213> Homo sapien
      <220>
       <221> misc feature
       <222> (1)...(818)
       <223> n = A, T, C or G
```

```
<400> 6
 ttitttttt titttitt aagacccica icaatagaig gagacataca gaaatagica
                                                                          60
 auccacatet acaaaatgee agtateagge ggeggetteg aageeaaagt gatgtttgga
                                                                         120
 totaaagtga aatattagtt ggeggatgaa geagatagtg aggaaagttg agecaataat
                                                                         180
 gacgtgaagt cogtggaage otgtggotac aaaaaatgtt gagcogtaga tgcogtogga
                                                                         240
 aatggtgaag ggagactcga agtactctga ggcttgtagg agggtaaaat agagacccag
                                                                         300
 taaaattgta ataagcagtg cttgaattat ttggtttcgg ttgttttcta ttagactatg
                                                                         360
 gtgageteag gtgattgata etectgatge gagtaataeg gatgtgttta ggagtgggae
                                                                         420
 ttotagggga tttagegggg tgatgeetgt tgggggeeag tgeeeteeta gttggggggt
                                                                         480
 Legggctagg ctggagtggt aaaaggctca gaaaaatcct gcgaagaaaa aaacttctga
                                                                        540
 ggtaataaat aggattatee egtategaag geetttttgg acaggtggtg tgtggtggee
                                                                        600
 ttggtatgtg ctttetegtg ttacategeg ceateattgg tatatggtta gtgtgttggg
                                                                        660
 ttantangge stantatgaa gaacttttgg antggaatta aatcaatnge ttggeeggaa
                                                                        720
 gtcattanga nggctnaaaa ggccctgtta ngggtctggg ctnggtttta cccnacccat
                                                                        780
 ggaatnenee ecceggaena ntgnatecet attettaa
                                                                        818
       <210> 7
       <211> 817
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(817)
       <223> r. = A,T,C or G
       <400> 7
 ttttttttt ttttttt tggctctaga gggggtagag ggggtgctat agggtaaata
                                                                         60
 cgggccctat ttcaaagatt tttaggggaa ttaattctag gacgatgggt atgaaactgt
                                                                        120
ggtttgctcc acagatttca gagcattgac cgtagtatac ccccggtcgt gtagcggtga
                                                                        180
aagtggtttg gtttagacgt ccgggaattg catctgtttt taagcctaat gtggggacag
                                                                        240
ctcatgagtg caagacgtct tgtgatgtaa ttattatacn aatgggggct tcaatcggga
                                                                        300
gtactactcg attgtcaacg tcaaggagtc gcaggtcgcc tggttctagg aataatgggg
                                                                        360
gaagtatgta ggaattgaag attaatccgc cgtagtcggt gttctcctag gttcaatacc
                                                                        420
attggtggcc aattgatttg atggtaaggg gagggatcgt tgaactcgtc tgttatgtaa
                                                                        480
aggatneett ngggatggga aggenatnaa ggaetangga tnaatggegg geangatatt
                                                                        540
tcaaacngtc tctanttcct gaaacgtctg aaatgttaat aanaattaan tttngttatt
                                                                        600
gaatnttnng gaaaagggct tacaggacta gaaaccaaat angaaaanta atnntaangg
                                                                       660
enttatentn aaagginata aceneteeta inateceaee eaaingnati eeceaenenn
                                                                       720
acnattggat neceeantte canaaangge enceeeegg tgnanneene ettttgttee
                                                                       780
cttnantgan ggttattene ceetngentt atcance
                                                                       817
      <210> 8
      <211> 799
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(799)
      <223> n = A,T,C or G
      <400> 8
cattlecggg tttactttct aaggaaagcc gagcggaagc tgctaacgtg ggaatcggtg
                                                                        60
cataaggaga actttetget ggcacgeget agggacaage gggagagega eteegagegt
                                                                       120
of gaagegea egteecagaa ggtggaettg geactgaaac agetgggaea cateegegag
                                                                       180
Lacgaacage geetgaaagt getggagegg gaggteeage agtgtageeg egteetgggg
                                                                       240
```

```
tqqqtqqccq anqcctqanc cqctctqcct tqctqcccc angtgggccg ccaccccctg
                                                                       300
acctgcctgu gtccaaacac tgagccctqc tggcggactt caagganaac ccccacangg
                                                                       360
qqattttqct cctanantaa qqctcatctq qqcctcqqcc cccccacctg gttggccttg
                                                                       420
tetttgangt gagececatg tecatetggg ceaetgteng gaccacettt ngggagtgtt
                                                                       480
ctecttacaa ecacannatq cccqqctect cccqqaaacc anteccance tgngaaggat
                                                                       540
caagneetgn atceactnnt netanaaccq geenceneeq engtggaacc encettntgt
                                                                       600
teetttent tnagggttaa tnnegeettg geettneean ngteetnene ntttteennt
                                                                       660
qttnaaattq ttangeneee neennteeen ennennenan eeeqaeeenn annttnnann
                                                                       720
                                                                       780
nectggggt necnnengat tgacconnec necetntant tgenttnggg nnenntgece
                                                                       799
ctttccctct nggganncg
      <210> 9
      <211> 801
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(801)
      \langle 223 \rangle n = A,T,C or G
      <400> 9
                                                                        60
acqccttqat cctcccaqqc tqqqactqqt tctqqqaqqa gccqggcatg ctgtggtttg
                                                                       120
taangatqac actcccaaaq qtqqtcctqa caqtqqccca qatqqacatg gggctcacct
                                                                       180
caaqqacaaq qccaccaqqt qcqqqqccq aagcccacat gatccttact ctatgagcaa
                                                                       240
aatcccctqt qqqqqcttct ccttqaaqtc cgccancaqg gctcagtctt tggacccang
                                                                       300
caqqtcatqq qqttqtnqnc caactqqqqq ccncaacqca aaanggcnca gggcctcngn
                                                                       360
cacccatece angaegege tacactnetg gaceteeene tecaccactt teatgegetg
                                                                       420
ttcntacccg cgnatntgtc ccanctgttt engtgeenac tecancttct nggacgtgeg
                                                                       480
ctacatacge ceggantene netecegett tgtecetate caegtnecan caacaaattt
                                                                       540
encentantq cacenattee caentttnne agnttteene nnegngette ettntaaaag
qqttqanccc cqqaaaatnc cccaaaqggg gggggccngg tacccaactn ccccctnata
                                                                       600
getgaantee ccatnacenn gnetenatgg ancenteent titaannaen tietnaactt
                                                                       660
gggaanance etegneentn ecceenttaa teceneettg enangnment ecceenntee
                                                                       720
nccennntng gentntnann enaaaaagge eennnaneaa teteetnnen eeteantteg
                                                                       780
                                                                       801
ccancected aaateggeen e
      <210> 10
      <211> 789
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(789)
      <223> n = A, T, C or G
      <400> 10
                                                                        60
cagtetaint ggccagtgtg gcagettice etgtggetge eggtgecaca tgcetgteec
                                                                       120
acaqtqtqqc cqtqqtqaca gcttcaqccq ccctcaccqq gttcaccttc tcagccctqc
                                                                       180
agatectgee ctacacactg geotecetet accaceggga gaageaggtg tteetgeeea
                                                                       240
aataccqaqq qqacactgga ggtqctaqca gtgaggacag cctgatgacc agcttcctgc
                                                                       300
caqqccctaa qcctggagct cccttcccta atggacacgt gggtgctgga ggcagtggcc
                                                                       360
tgctcccacc tccacccgcg ctctgcgggg cctctgcctg tgatgtctcc gtacgtgtgg
tggtgggtga gcccaccgan gccagggtgg ttccgggccg gggcatctgc ctggacctcg
                                                                       420
ccatcctgga tagtgcttcc tgctgtccca ngtggcccca tccctgttta tgggctccat
                                                                       480
tgtccagctc agccagtctg tcactgccta tatggtgtct gccgcaggcc tgggtctggt
                                                                       540
cccatttact ttgctacaca ggtantattt gacaagaacg anttggccaa atactcaqcg
                                                                       600
```

```
ttaawaaatt ccagcaacat tgggggtgga aggcetgeet cactgggtee aacteeeege
                                                                         660
 teetgttaac cecatgggge tgeeggettg geegeeaatt tetgttgetg ceaaantnat
                                                                         720
 gtgactetet getgecaect gttgetgget gaagtgenta engeneanet nggggggtng
                                                                         780
 quiqttaca
                                                                         789
        <210> 11
        <211> 772
        <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (772)
       <223> n = A, T, C or G
       <400> 11
 cccaccctac ccaaatatta gacaccaaca cagaaaagct agcaatggat tcccttctac
                                                                         60
 tttgttaaat aaataagtta aatatttaaa tgcctgtgtc tctgtgatgg caacagaagg
                                                                        120
 accaacagge cacateetga taaaaggtaa gaggggggtg gateageaaa aagacagtge
                                                                        180
 tgtgggctga ggggacctgg ttcttgtgtg ttgcccctca ggactcttcc cctacaaata
                                                                        240
 actiticatat giticaaatco catggaggag tgiticatoo tagaaactco catgcaagag
                                                                        300
 ctacattaaa cgaagctgca ggttaagggg cttanagatg ggaaaccagg tgactgagtt
                                                                        360
tattcagete ccaaaaacce ttetetaggt gtgtctcaac taggaggeta getgttaacc
                                                                        420
ctgagectgg gtaatccacc tgeagagtee eegcatteea gtgeatggaa eeettetgge
                                                                        480
ctccctgtat aagtccagac tgaaaccccc ttggaaggnc tccagtcagg cagccctana
                                                                        540
aactggggaa aaaagaaaag gacgcccan ccccagctg tgcanctacg cacctcaaca
                                                                        600
gcacagggtg gcagcaaaaa aaccacttta ctttggcaca aacaaaaact ngggggggca
                                                                        660
acceeggeae ecenangggg gttaacagga anengggnaa entggaacee aattnaggea
                                                                        720
ggcccnccac cccnaatntt gctgggaaat ttttcctccc ctaaattntt to
                                                                        772
       <210> 12
       <211> 751
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(751)
      <223> n = A, T, C or G
      <400> 12
gececaatte cagetgecae accaeceaeg gtgaetgeat tagtteggat gteatacaaa
                                                                        60
agetgattga ageaaceete taetttttgg tegtgageet tttgettggt geaggtttea
                                                                       120
trggctgtgt tggtgacgtt greattgeaa cagaatgggg gaaaggeact greetettg
                                                                       180
aagtanggtg agteetcaaa ateegtatag ttggtgaage cacageaett gageeettte
                                                                       240
atggtggtgt tecacacttg agtgaagtet teetgggaac cataatettt ettgatggca
                                                                       300
ggcactacca gcaacgtcag ggaagtgctc agccattgtg gtgtacacca aggcgaccac
                                                                       360
agcagctgen aceteagcaa tgaagatgan gaggangatg aagaagaacg tenegaggge
                                                                       420
acacttgctc tcagtcttan caccatanca gcccntgaaa accaananca aagaccacna
                                                                       480
enceggetge gatgaagaaa tnacceeneg ttgacaaact tgeatggeae tggganceae
                                                                       540
agtggcccna aaaatcttca aaaaggatgc cccatcnatt gaccccccaa atgcccactg
                                                                       600
ccaacagggg ctgcccacn cncnnaacga tganccnatt gnacaagatc tncntggtct
                                                                       660
inathaacht gaaccetgen thgtggctcc tgttcaggnc chnggcctga cttcthaann
                                                                       720
ammgaacton gaagnoocca enggananne g
                                                                       751
      <210> 13
      <211> 729
      <212> DNA
```

```
<213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(729)
      <223> n = A, T, C or G
      <400> 13
gagecaggeg tecetetgee tgeceaetea gtggeaacae eegggagetg ttttgteett
                                                                        60
tgtggancct cagcagtncc ctctttcaga actcantgcc aaganccctg aacaggagcc
                                                                       120
                                                                       180
accatgcagt gcttcagctt cattaagacc atgatgatcc tcttcaattt gctcatcttt
ctgtgtggtg cagccctgtt ggcagtgggc atctgggtgt caatcgatgg ggcatccttt
                                                                       240
ctgaagatct tcqqqccact gtcgtccagt gccatgcagt ttgtcaacgt gggctacttc
                                                                       300
ctcatcgcaq ccggcgttgt ggtcttagct ctaggtttcc tgggctgcta tggtgctaag
                                                                       360
actgagagca agtgtgccct cgtgacgttc ttcttcatcc tcctcctcat cttcattgct
                                                                       420
gaggttgcaa tgctgtggtc gccttggtgt acaccacaat ggctgagcac ttcctgacgt
                                                                       480
tgctggtaat gcctgccatc aanaaaagat tatgggttcc caggaanact tcactcaagt
                                                                       540
gttggaacac caccatgaaa gggctcaagt gctgtggctt cnnccaacta tacggatttt
                                                                       600
gaagantcac ctacttcaaa gaaaanagtg cctttccccc atttctgttg caattgacaa
                                                                       660
                                                                       720
acqtccccaa cacaqccaat tgaaaacctg cacccaaccc aaangggtcc ccaaccanaa
                                                                       729
attnaaggg
      <210> 14
      <211> 816
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(816)
      <223> n = A.T.C or G
      <400> 14
tgctcttcct caaagttgtt cttgttgcca taacaaccac cataggtaaa gcgggcgcag
                                                                         60
tgttcgctga aggggttgta gtaccagcgc gggatgctct ccttgcagag tcctgtgtct
                                                                       120
ggcaggtcca cgcagtgccc tttgtcactg gggaaatgga tgcgctggag ctcgtcaaag
                                                                       180
ccactcgtgt atttttcaca ggcagcctcg tccgacgcgt cggggcagtt gggggtgtct
                                                                       240
tcacactcca ggaaactgtc natgcagcag ccattgctgc agcggaactg ggtgggctga
                                                                       300
cangtgccag agcacactgg atggcgcctt tccatgnnan gggccctgng ggaaagtccc
                                                                        360
tganccccan anctgcctct caaangcccc accttgcaca ccccgacagg ctagaatgga
                                                                        420
atcttcttcc cgaaaggtag ttnttcttgt tgcccaancc ancccentaa acaaactett
                                                                        480
gcanatctgc tccgnggggg tcntantacc ancgtgggaa aagaacccca qqcnqcqaac
                                                                        540
caancttgtt tggatncgaa gcnataatct nctnttctgc ttggtggaca gcaccantna
                                                                        600
ctgtnnanct ttagncentg gteetentgg gttgnnettg aacetaaten cennteaact
                                                                        660
gggacaaggt aantngcent cetttnaatt ecenanentn ececetggtt tggggttttn
                                                                       720
enenetecta ecceagaaan neegtgttee eccecaacta ggggcenaaa cennttntte
                                                                        780
                                                                        816
cacaaccetn ccccacccac gggttengnt ggttng
      <210> 15
      <211> 783
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (783)
      <223> n = A, T, C or G
```

```
<400> 15
 ccaaggeetg ggcaggeata nacttgaagg tacaacccca ggaacccctg gtgctgaagg
                                                                          60
 atgtggaaaa cacagattgg cgcctactgc ggggtgacac ggatgtcagg gtagagagga
                                                                         120
 aagacccaaa ccaggtggaa ctgtggggac tcaaggaang cacctacctg ttccagctga
                                                                         180
 cagtgactag ctcagaccac ccagaggaca cggccaacgt cacagtcact gtgctgtcca
                                                                         240
 coaageagae agaagaetae tgeetegeat ceaacaangt gggtegetge eggggetett
                                                                         300
 teccaegetg gtactatgae eccaeggage agatetgeaa gagtttegtt tatggagget
                                                                         360
 nutrigggeaa caagaacaac tacetteggg aagaagagtg cattetance tgtengggtg
                                                                         420
 tgcaaggtgg geetttgana ngcanetetg gggeteange gaettteece eagggeeeet
                                                                         480
 ccatggaaag gegecateea ntgttetetg geacetgtea geceacecag tteegetgea
                                                                         540
 thantggotg etgeatenae antitectng aattgtgaea acaecececa ntgeececaa
                                                                         600
 represente aaagetteee tgttnaaaaa tacneeantt ggettttnae aaacneeegg
                                                                         660
 cnecteentt tteecenntn aacaaaggge netngenttt gaactgeeen aaccenggaa
                                                                         720
 tetneeningg aaaaantnee eeccetggtt eetnnaanee eetcenenaa anetneecce
                                                                         780
                                                                         783
       <210> 16
       <211> 801
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(801)
       <223> n = A, T, C or G
       <400> 16
 gooccaatto cagotgocac accacocacg gtgactgoat tagttoggat gtcatacaaa
                                                                         60
 agetgattga ageaaceete taetttttgg tegtgageet tttgettggt geaggtttea
                                                                        120
 ttggctgtgt tggtgacgtt gtcattgcaa cagaatgggg gaaaggcact gttctctttg
                                                                        180
 aagtagggtg agtcctcaaa atccgtatag ttggtgaagc cacagcactt gagccctttc
                                                                        240
atggtggtgt tccacacttg agtgaagtct tcctgggaac cataatcttt cttgatggca
                                                                        300
ggeactacca gcaacgtcag gaagtgetca gccattgtgg tgtacaccaa ggcgaccaca
                                                                        360
gcaqctgcaa cctcagcaat gaagatgagg aggaggatga agaagaacgt cncgagggca
                                                                        420
cactigetet eegiettage accatageag eecangaaac caagageaaa gaccacaaeg
                                                                        480
congotgoga atgaaagaaa ntacccacgt tgacaaactg catggccact ggacgacagt
                                                                        540
tggcccgaan atcttcagaa aagggatgcc ccatcgattg aacacccana tgcccactgc
                                                                        600
cnacaggget geneenenen gaaagaatga geeattgaag aaggatente ntggtettaa
                                                                        660
igaactgaaa centgeatgg tggeeeetgt teagggetet tggeagtgaa ttetganaaa
                                                                        720
aaggaacngc ntnagccccc ccaaangana aaacaccccc gggtgttgcc ctgaattggc
                                                                        780
ggccaaggan ccctgccccn g
                                                                        801
      <210> 17
      <211> 740
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(740)
      <223> n = A, T, C or G
      <400> 17
que adageca ggegteeste tgeetgeesa eteagtggea acaeeeggga getgttttgt
                                                                        60
cctttgtgga gcctcagcag ttccctcttt cagaactcac tgccaagagc cctgaacagg
                                                                       120
agodaccatg cagtgettea getteattaa gaccatgatg atectettea atttgeteat
                                                                       180
cttrctgtgt ggtgcagccc tgttggcagt gggcatctgg gtgtcaatcg atggggcatc
                                                                       240
orttotgaag atottogggo cactgtogto cagtgocatg cagtttgtoa acgtgggota
                                                                       300
```

```
360
cttcctcatc gcagccggcg ttgtggtctt tgctcttggt ttcctgggct gctatggtgc
taagacggag agcaagtgtg ccctcgtgac gttcttcttc atcctcctcc tcatcttcat
                                                                       420
tgctgaagtt gcagctgctg tggtcgcctt ggtgtacacc acaatggctg aaccattcct
                                                                       480
gacgttgctg gtantgcctg ccatcaanaa agattatggg ttcccaggaa aaattcactc
                                                                       540
                                                                       600
aantntggaa caccnccatg aaaagggctc caatttctgn tggcttcccc aactataccg
gaattttgaa aganteneee taetteeaaa aaaaaanant tgeetttnee eeenttetgt
                                                                       660
                                                                       720
tgcaatgaaa acntcccaan acngccaatn aaaacctgcc cnnncaaaaa ggntcncaaa
                                                                       740
caaaaaaant nnaagggttn
      <210> 18
      <211> 802
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(802)
      <223> n = A, T, C or G
      <400> 18
                                                                        60
ccgctggttg cgctggtcca gngnagccac gaagcacgtc agcatacaca gcctcaatca
caaggtette eagetgeege acattaegea gggeaagage etecageaac actgeatatg
                                                                       120
ggatacactt tactttagca gccagggtga caactgagag gtgtcgaagc ttattcttct
                                                                       180
gageetetgt tagtggagga agatteeggg etteagetaa gtagteageg tatgteecat
                                                                       240
aagcaaacac tgtgagcagc cggaaggtag aggcaaagtc actctcagcc agctctctaa
                                                                       300
                                                                       360
cattgggcat gtccagcagt tctccaaaca cgtagacacc agnggcctcc agcacctgat
ggatgagtgt ggccagcgct gcccccttgg ccgacttggc taggagcaga aattgctcct
                                                                       420
ggttctgccc tgtcaccttc acttccgcac tcatcactgc actgagtgtg ggggacttgg
                                                                       480
                                                                       540
geteaggatg tecagagaeg tggtteegee eeetenetta atgacaeegn eeanneaaee
                                                                       600
gteggetece geegantgng ttegtegtne etgggteagg gtetgetgge enetaettge
aancttcgtc nggcccatgg aattcaccnc accggaactn gtangatcca ctnnttctat
                                                                       660
aaccggncgc caccgcnnnt ggaactccac tcttnttncc tttacttgag ggttaaggtc
                                                                       720
                                                                       780
accettnneg ttacettggt ccaaacentn centgtgteg anatngtnaa tenggneena
                                                                       802
tnccancene atangaagee ng
      <210> 19
      <211> 731
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(731)
      <223> n = A, T, C or G
      <400> 19
                                                                         60
cnaagettee aggtnaeggg eegenaanee tgaeeenagg tancanaang eagnengegg
                                                                        120
gagcccaccg tcacgnggng gngtctttat nggagggggc ggagccacat cnctggacnt
cntgacccca actccccncc ncncantgca gtgatgagtg cagaactgaa ggtnacgtgg
                                                                       180
                                                                        240
caggaaccaa gancaaanne tgeteennte caagteggen nagggggegg ggetggeeae
geneateent enagtgetgn aaageeeenn eetgtetaet tgtttggaga aengennnga
                                                                        300
catgcccagn gttanataac nggcngagag tnantttgcc tetecettec ggctgcgcan
                                                                        360
cgngtntgct tagnggacat aacctgacta cttaactgaa cccnngaatc tnccncccct
                                                                        420
ccactaaget cagaacaaaa aacttegaca ccacteantt gteacetgne tgeteaagta
                                                                        480
aagtgtaccc catneccaat gtntgctnga ngctctgncc tgcnttangt tcggtcctgg
                                                                        540
gaagacctat caattnaagc tatgtttctg actgcctctt gctccctgna acaancnacc
                                                                        600
                                                                        660
cnncnntcca aggggggnc ggccccaat ccccccaacc ntnaattnan tttanccccn
                                                                        720
ccccnggcc cggcctttta cnancntcnn nnacngggna aaaccnnngc tttncccaac
```

```
nnaatcence t
                                                                         731
        <210> 20
        <211> 754
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc feature
        <222> (1)...(754)
       <223> n = A, T, C or G
       <400> 20
 ttttttttt tttttttt taaaaacccc ctccattnaa tgnaaacttc cgaaattgtc
                                                                         60
 caaccccetc ntccaaatnn centtteegg gngggggtte caaacccaan ttanntttgg
                                                                        120
 annttaaatt aaatnttnnt tggnggnnna anccnaatgt nangaaagtt naacccanta
                                                                        180
 tnancttnaa tncctggaaa congtngntt ccaaaaatnt ttaaccctta antocctccg
                                                                        240
 aaatngttna nggaaaaccc aanttctcnt aaggttgttt gaaggntnaa tnaaaanccc
                                                                        300
 nnccaattgt tittngccac gcctgaatta attggnttcc gntgttttcc nttaaaanaa
                                                                        360
 ggnnancccc ggttantnaa tececeenne eccaattata eeganttttt ttngaattgg
                                                                        420
 gancconcgg gaattaacgg ggnnnntccc tnttgggggg enggnncccc cccntcggg
                                                                        480
 ggttngggnc aggnennaat tgtttaaggg teegaaaaat eeeteenaga aaaaaanete
                                                                        540
 ccaggntgag nntngggttt ncccccccc canggcccct ctcgnanagt tggggtttgg
                                                                        600
 ggggcctggg attitnttc ccctnttncc tccccccc ccnggganag aggttngngt
                                                                        660
 tttgntcnne ggeceeneen aaganetttn eeganttnan ttaaateent geetnggega
                                                                        720
 agtccnttgn agggntaaan ggccccctnn cggg
                                                                        754
       <210> 21
       <211> 755
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(755)
       <223> n = A, T, C or G
      <400> 21
atcancccat gacccenaac nngggaccnc tcanccggnc nnncnaccnc cggccnatca
                                                                        60
nngtnagnne actnennttn nateacneec encenactae gecenenane enacgeneta
                                                                       120
nncanatnee actganngeg egangtngan ngagaaanet nataccanag neaccanaen
                                                                       180
ccagetgtee nanaangeet nnnataengg nnnateeaat ntgnaneete enaagtattn
                                                                       240
nncnncanat gattttcctn ancegattac centneceee taneceetee eccecaaena
                                                                       300
cgaaggenet ggneenaagg nngegnenee eegetagnte eeenneaagt eneneneeta
                                                                       360
aacteaneen nattaenege ttentgagta teacteceeg aateteacee tacteaacte
                                                                       420
aaaaaanatcn gatacaaaat aatncaagcc tgnttatnac actntgactg ggtctctatt
                                                                       480
ttagnggtcc ntnaancntc ctaatacttc cagtctncct tcnccaattt ccnaanggct
                                                                       540
ctttengaca geatnttttg gtteeenntt gggttettan ngaattgeee ttentngaae
                                                                       600
gggctcntct tttccttcgg ttancctggn ttcnnccggc cagttattat ttcccntttt
                                                                       660
aaattentne entttanttt tggenttena aacceeegge ettgaaaaeg geeeeetggt
                                                                       720
aaaaggttgt tttganaaaa tttttgtttt gttcc
                                                                       755
      <210> 22
      <211> 849
      <212> DNA
      <213> Homo sapien
     <220>
```

WO 01/051633 PCT/US01/01574

```
<221> misc feature
      <222> (1)...(849)
      \langle 223 \rangle n = A,T,C or G
      <400> 22
ttttttttt tttttangtg tngtcgtgca ggtagaggct tactacaant gtgaanacgt
                                                                        60
acgctnggan taangcgacc cganttctag gannencect aaaatcanac tgtgaagatn
                                                                       120
atcctgnnna cggaanggte accggnngat nntgctaggg tgnccnctcc cannnenttn
                                                                       180
cataacteng nggecetgee caccacette ggeggeeeng ngneegggee egggteattn
                                                                       240
gnnttaaccn cactnngcna neggttteen neecenneng accenggega teeggggtne
                                                                       300
tctgtcttcc cctgnagncn anaaantggg ccncggnccc ctttacccct nnacaagcca
                                                                       360
engeenteta neenengeee eccetecant nngggggaet geenannget eegttnetng
                                                                       420
nnacccennn gggtncctcg gttgtcgant cnaccgnang ccanggattc cnaaggaagg
                                                                       480
tgcgttnttg gcccctaccc ttcgctncgg nncacccttc ccgacnanga nccgctcccg
                                                                       540
chennegning cetenecteg caacacege netentengt neggninece ceccacege
                                                                       600
necetenene ngnegnanen eteeneenee gteteannea ecaeeeegee eegeeaggee
                                                                       660
ntcanccacn ggnngacnng nagenennte geneegegen gegneneett egeenengaa
                                                                       720
ctncntcngg ccantnncgc tcaancenna cnaaacgccg ctgcgcggcc cgnagcgncc
                                                                       780
necteenega gteeteegn etteenacee angnntteen egaggaeaen nnaceegee
                                                                       840
                                                                       849
nncangcgg
      <210> 23
      <211> 872
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(872)
      <223> n = A,T,C or G
      <400> 23
                                                                         60
gogoaaacta tacttogoto gnactogtgo gootogotno tottttooto ogcaaccatg
                                                                        120
tctgacnanc ccgattnggc ngatatcnan aagntcganc agtccaaact gantaacaca
cacacnenan aganaaatee netgeettee anagtanaen attgaaenng agaaceange
                                                                        180
nggcgaatcg taatnaggcg tgcgccgcca atntgtcncc gtttattntn ccagcntcnc
                                                                        240
ctnccnaccc tacntcttcn nagctgtcnn acccctngtn cgnacccccc naggtcggga
                                                                        300
tegggtttnn nntgacegng ennecectee eccenteeat naeganeene eegeaceaee
                                                                        360
nanngenege neceegnnet ettegeenee etgteetntn eeeetgtnge etggenengn
                                                                        420
accgcattga ccctcgccnn ctncnngaaa ncgnanacgt ccgggttgnn annancgctg
                                                                        480
tgggnnngcg tctgcnccgc gttccttccn ncnncttcca ccatcttcnt tacngggtct
                                                                        540
concecent tenneache eetgggaege thteethtge eeecettnac teececeett
                                                                        600
cgncgtgncc cgnccccacc ntcatttnca nacgntcttc acaannncct ggntnnctcc
                                                                        660
cnancngncn gtcanccnag ggaagggngg ggnnccnntg nttgacgttg nggngangte
                                                                        720
cgaanantcc tencentean enctaceet egggegnnet etengttnee aacttaneaa
                                                                        780
                                                                        840
ntetececeq nangemente teagectene ceneceenet etetgeantg tnetetgete
                                                                        872
tnaccnntac gantnttegn encectettt ce
      <210> 24
      <211> 815
       <212> DNA
      <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1) ... (815)
       <223> n = A, T, C or G
```

```
<400> 24
 gcatgcaage ttgagtatte tatagngtca ectaaatane ttggentaat catggtenta
                                                                         60
 netgnettee tgtgteaaat gtatacnaan tanatatgaa tetnatntga caaganngta
                                                                        120
 tentneatta gtaacaantg tnntgteeat eetgtengan canatteeca tnnattnegn
                                                                        180
 cgcattenen geneantatn taatngggaa ntennntnnn neacenneat etatentnee
                                                                        240
 genecetgae tggnagagat ggatnantte tnntntgaee nacatgttea tettggattn
                                                                        300
 aanancecee egengneeae eggttngnng enageennte ceaagacete etgtggaggt
                                                                        360
 aacctgcgtc aganncatca aacntgggaa acccgcnncc angtnnaagt ngnnncanan
                                                                        420
 gatecegtee aggnttnace atceettene agegeeect tingtgeett anagngnage
                                                                        480
 gtgtccnanc enetcaacat ganacgegee agnecanceg caattnggea caatgtegne
                                                                        540
 gaaccccta gggggantna thcaaanccc caggattgtc chchcangaa atccchcanc
                                                                        600
 suchecetae connettigg gaengigaee aanteeegga gineeagiee ggeengnete
                                                                        660
 ccccaccggt nnccntgggg gggtgaanct cngnntcanc cngncgaggn ntcgnaagga
                                                                        720
 accggnectn ggnegaanng anenntenga agngeenent egtataacce ecceteneca
                                                                        780
 ncenaengnt agntecece engggtnegg aangq
                                                                        815
       <210> 25
       <211> 775
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(775)
       <223> n = A, T, C or G
       <400> 25
ccgagatgte tegeteegtg geettagetg tgetegeget actetetet tetggeetgg
                                                                         60
aggetateca gegtaeteca aagatteagg tttaeteaeg teatecagea gagaatggaa
                                                                        120
agtcaaattt cctgaattgc tatgtgtctg ggtttcatcc atccgacatt gaanttgact
                                                                       180
tactgaagaa tgganagaga attgaaaaag tggagcattc agacttgtct ttcagcaagg
                                                                       240
actggtcttt ctatctcntg tactacactg aattcacccc cactgaaaaa gatgagtatg
                                                                        300
ectyccgtgt gaaccatgtg actttgtcac agcccaagat agttaagtgg gatcgagaca
                                                                       360
tytaagcagn enneatggaa gtttgaagat geegeatttg gattggatga attecaaatt
                                                                       420
etgettgett genttttaat antgatatge ntatacacee taccetttat gneeccaaat
                                                                       480
tgtaggggtt acatnantgt tenentngga catgatette etttataant cencentteg
                                                                       540
auttgecegt enceengttn ngaatgttte ennaaceaeg gttggeteee eeaggtenee
                                                                       600
tettaeggaa gggcetggge enetttneaa ggttggggga acenaaaatt tenettntge
                                                                       660
conceencea enntettgng nneneanttt ggaaccette enatteeest tggestenna
                                                                       720
ncettnncta anaaaacttn aaaneginge naaannittn acticcecc tiacc
                                                                       775
      <210> 26
      <211> 820
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(820)
      <223> n = A, T, C or G
      <400> 26
anattantae agtgtaatet ttteecagag gtgtgtanag ggaaegggge etagaggeat
                                                                        60
cocemagata nottatanca acagtgottt gaccaagago tgotgggcac atttootgca
                                                                       120
gaaaaggtgg cggtccccat cactcctcct ctcccatagc catcccagag gggtgagtag
                                                                       180
ccatcangce tteggtggga gggagteang gaaacaacan accaeagage anacagacea
                                                                       240
ntgat sacca tgggcgggag cgagcctctt ccctgnaccg gggtggcana nganagccta
                                                                       300
netgaggggt cacactataa aegttaaega cenagatnan cacetgette aagtgeaece
                                                                       360
```

```
ttectacetg acnaecagng acennnaact gengeetggg gacagenetg gganeageta
                                                                                                                              420
acnnagcact cacctgcccc cccatggccg tncgcntccc tggtcctgnc aagggaagct
                                                                                                                              480
ccctgttgga attncgggga naccaaggga nccccctcct ccanctgtga aggaaaaann
                                                                                                                              540
gatggaattt thecetteeg geennteece tetteettta caegeeecet nntactente
                                                                                                                              600
tecetetntt nteetgnene aettttnace cennnattte eettnattga teggannetn
                                                                                                                              660
ganattecae thnegeethe entenateng naanaenaaa naethtetha eeenggqqat
                                                                                                                              720
gggnncctcg ntcatcetet etttttenet acencenntt etttgeetet eettngatea
                                                                                                                              780
tecaacente gntggeentn ecceecennn teetttneee
                                                                                                                              820
           <210> 27
           <211> 818
           <212> DNA
           <213> Homo sapien
           <220>
           <221> misc feature
           <222> (1)...(818)
           <223> n = A, T, C or G
           <400> 27
                                                                                                                                60
tetqqqtqat qqcetettee teeteaqgga cetetgaetg etetgggeea aagaatetet
                                                                                                                              120
tqtttcttct ccqaqcccca qqcaqcqqtq attcaqccct gcccaacctg attctgatga
ctgcggatgc tgtgacggac ccaaggggca aatagggtcc cagggtccag ggaggggcgc
                                                                                                                              180
                                                                                                                              240
etgetgagea etteegeeee teaecetgee eageeeetge eatgagetet gggetgggte
                                                                                                                              300
tecgeeteca gggttetget ettecangea ngeeancaag tggegetggg eeacaetgge
                                                                                                                              360
ttetteetge ecenteeetg getetgante tetgtettee tgteetgtge angeneettg
                                                                                                                               420
gateteagtt tecetenete anngaactet gtttetgann tetteantta aetntgantt
                                                                                                                               480
tatnacenan tggnetgtne tgtennactt taatgggeen gaeeggetaa teeeteeete
netecettee anttennnna acengettne ententetee centaneeeg eengggaane
                                                                                                                               540
                                                                                                                               600
ctcctttgcc ctnaccangg gccnnnaccg cccntnnctn ggggggcnng gtnnctnenc
                                                                                                                               660
ctgntnnccc enctenennt theetegtec ennennegen nngcanntte nengtecenn
                                                                                                                               720
thnctctten ngthtegnaa nghtenenth thnnnnghen nghthnthen teeetetene
                                                                                                                               780
connitioning that the non-second control of the second control of 
                                                                                                                              818
ccennecece ngnattaagg ceteenntet eeggeene
           <210> 28
           <211> 731
           <212> DNA
           <213> Homo sapien
           <220>
           <221> misc feature
           <222> (1)...(731)
           <223> n = A, T, C or G
           <400> 28
                                                                                                                                 60
aggaagggcg gagggatatt gtangggatt gagggatagg agnataangg gggaggtgtg
                                                                                                                               1.20
toccaacatg anggtgnngt totottttga angagggttg ngtttttann conggtgggt
                                                                                                                               180
qattnaaccc cattgtatqg agnnaaaggn tttnagggat ttttcggctc ttatcagtat
                                                                                                                               240
ntanatteet gtnaategga aaatnatntt tennenggaa aatnttgete eeateegnaa
                                                                                                                               300
attnetcecg ggtagtgeat nttngggggn engecangtt teecaggetg etanaategt
                                                                                                                               360
actaaagntt naagtgggan tncaaatgaa aacctnncac agagnatccn tacccgactg
                                                                                                                               420
tnnnttncct tegecetntg actetgenng ageceaatae cenngngnat gtenecengn
nnngcgncnc tgaaannnnc tcgnggctnn gancatcang gggtttcgca tcaaaagcnn
                                                                                                                               480
                                                                                                                               540
cgtttcncat naaggcactt tngcctcatc caacenetng ccetenneca tttngccgtc
nggttenect acgetnning encetnnin ganatttine eegeetnggg naanceteet
                                                                                                                               600
                                                                                                                               660
qnaatgggta gggncttntc ttttnaccnn gnggtntact aatcnnctnc acgentnctt
                                                                                                                               720
tctcnacccc ccccttttt caatcccanc ggcnaatggg gtctccccnn cganggggg
```

```
nnncccanne c
                                                                         731
        <210> 29
        <211> 822
        <212> DNA
        <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(822)
       \langle 223 \rangle n = A, T, C or G
       <400> 29
 actagtccag tgtggtggaa ttccattgtg ttggggncnc ttctatgant antnttagat
                                                                          60
 egeteanace teacancete cenaenange etataangaa nannaataga netgtnennt
                                                                         120
 atnitntacne teatanneet ennnaceeae teeetettaa eeentactgi geetaingen
                                                                         180
 tnnctantet ntgeegeetn enanceaeen gtgggeenae enenngnatt etenatetee
                                                                        240
 tenecatnin gectananta ngineatace etatacetae necaatgeta nnnetaanen
                                                                        300
 tecatnantt annntaacta ceactgaent ngaetttene atnaneteet aatttgaate
                                                                        360
 tactetgaet eccaengeet annnattage anenteceee nacnatntet caaccaaate
                                                                        420
 ntcaacaacc tatctanctg ttcnccaacc nttncctccg atccccnnac aaccccctc
                                                                        480
 ccaaataccc nccacctgac ncctaacccn caccatcccg gcaagccnan ggncatttan
                                                                        540
 ccactggaat cacnatngga naaaaaaac ccnaactete tanenennat eteectaana
                                                                        600
 aatneteetn naatttaetn neantneeat caaneecaen tgaaaennaa eecetgtttt
                                                                        660
 tanatecett etttegaaaa eenaeeettt annneeeaae etttngggee eeeeenetne
                                                                        720
cenaatgaag gneneccaat enangaaacg neentgaaaa anenaggena anannnteeg
                                                                        780
canatcetat ecettanttn ggggneeett neeengggee ee
                                                                        822
       <210> 30
       <211> 787
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
      <222> (1)...(787)
      <223> n = A, T, C or G
      <400> 30
eggeegeetg etetggeaca tgeeteetga atggeateaa aagtgatgga etgeecattg
                                                                         60
ctagagaaga cettetete tactgteatt atggageeet geagactgag ggeteeeett
                                                                        120
gtctgcagga tttgatgtct gaagtcgtgg agtgtggctt ggagctcctc atctacatna
                                                                        180
getggaagee etggagggee tetetegeea geeteeeet teteteeaeg eteteeangg
                                                                        240
acaccagggg ctccaggcag cccattattc ccagnangac atggtgtttc tccacgcgga
                                                                        300
eccatgggge etgnaaggee agggteteet ttgacaccat etetecegte etgeetggca
                                                                        360
ggeegtggga tecaetantt etanaacggn egeeaceneg gtgggagete eagettttgt
                                                                        420
tecenttaat gaaggttaat tgenegettg gegtaateat nggteanaac tnttteetgt
                                                                        480
gtgaaattgt ttntcccctc ncnattccnc ncnacatacn aacceggaan cataaagtgt
                                                                        540
taaagcctgg gggtngcctn nngaatnaac tnaactcaat taattgcgtt ggctcatggc
                                                                        600
ecgettteen ttenggaaaa etgtenteee etgenttnnt gaateggeea eeeecenggg
                                                                        660
aaaageggtt tgenttttng ggggnteett cenetteece ectenetaan ecetnegeet
                                                                       720
eggtegttne nggtngeggg gaangggnat nnnetecene naagggggng agnnngntat
                                                                       780
ccccaaa
                                                                       787
      <210> 31
      <211> 799
      <212> DNA
      <213> Homo sapien
```

```
<220>
     <221> misc feature
     <222> (1)...(799)
     \langle 223 \rangle n = A,T,C or G
     <400> 31
                                                                       60
tttttttttt tttttttggc gatgctactg tttaattgca ggaggtgggg gtgtgtgtac
                                                                      120
catgtaccag ggctattaga agcaagaagg aaggagggag ggcagagcgc cctgctgagc
                                                                      180
aacaaaggac tootgcagcc ttototgtot gtotottggc gcaggcacat ggggaggcot
                                                                      240
cccgcagggt gggggccacc agtccagggg tgggagcact acanggggtg ggagtgggtg
                                                                      300
gtggctggtn cnaatggcct gncacanatc cctacgattc ttgacacctg gatttcacca
ggggaccttc tgttctccca nggnaacttc ntnnatctcn aaagaacaca actgtttctt
                                                                      360
                                                                      420
cngcanttct ggctgttcat ggaaagcaca ggtgtccnat ttnggctggg acttggtaca
                                                                      480
tatggttccg gcccacctct cccntcnaan aagtaattca ccccccccn ccntctnttg
                                                                      540
cctgggcct taantacca caccggaact canttantta ttcatcttng gntgggcttg
                                                                      600
ntnatencen eetgaangeg eeaagttgaa aggeeaegee gtneeenete eeeatagnan
nttttnncnt canctaatgc ccccccnggc aacnatccaa tccccccccn tgggggcccc
                                                                      660
ageccangge eccegneteg ggnnneengn enegnantee ecaggntete ceantengne
                                                                      720
                                                                      780
cennngence ecegeacgea gaacanaagg ntngageene egeannnnnn nggtnnenae
                                                                      799
ctegeeece cennegnng
      <210> 32
      <211> 789
      <212> DNA
      <213> Homo sapien
     <220>
     <221> misc feature
      <222> (1) ... (789)
      <223> n = A, T, C or G
      <400> 32
                                                                       60
ttttttttt tttttttt
ttttnccnag ggcaggttta ttgacaacct cncgggacac aancaggctg gggacaggac
                                                                      120
                                                                      180
ggcaacaggc teeggeggeg geggeggegg ceetacetge ggtaceaaat ntgcageete
cgctcccgct tgatnttcct ctgcagctgc aggatgccnt aaaacagggc ctcggccntn
                                                                      240
                                                                      300
qqtqqqcacc ctqqqatttn aatttccacq qqcacaatgc ggtcgcancc cctcaccacc
                                                                      360
nattaggaat agtggtntta ecencenceg ttggeneaet eceentggaa accaettnte
                                                                      420
gcggctccgg catctggtct taaaccttgc aaacnctggg gccctctttt tggttantnt
                                                                      480
ncongocaca atcatnacto agactggono gggotggoco caaaaaanon coccaaaaaco
qqnccatqte ttnneqqqqt tqctqcnatn tncatcacct cccgggcnca ncaggncaac
                                                                      540
                                                                      600
ccaaaagttc ttgnggccn caaaaaanct ccggggggnc ccagtttcaa caaagtcatc
                                                                      660
ccccttggcc cccaaatcct cccccqntt nctgggtttg ggaacccacg cctctnnctt
tggnnggcaa gntggntccc ccttcgggcc cccggtgggc ccnnctctaa ngaaaacncc
                                                                      720
ntectnnnca ecatecece nngnnaegne tancaangna teeettttt tanaaaeggg
                                                                      780
                                                                      789
cccccncg
      <210> 33
      <211> 793
      <212> DNA
      <213> Homo sapien
      <220>
     <221> misc_feature
     <222> (1)...(793)
     <223> n = A, T, C \text{ or } G
```

```
<400> 33
 gacagaacat gttggatggt ggagcacctt tctatacgac ttacaggaca gcagatgggg
                                                                          60
 aattoatggo tgrtggagoa atanaacooo agttotacga gotgotgato aaaggaottg
                                                                         120
 gactaaagto tgatgaactt cccaatcaga tgagcatgga tgattggcca gaaatgaana
                                                                         180
 agaagtttgc agatgtattt gcaaagaaga cgaaggcaga gtggtgtcaa atctttgacg
                                                                         240
 gcacagatgo otgtgtgact coggttotga ottttgagga ggttgttcat catgatcaca
                                                                         300
 acaangaacg gggctcgttt atcaccantg aggagcagga cgtgagcccc cgccctgcac
                                                                         360
 ctetgetgtt aaacacccca gecatecett ettteaaaag ggatecacta ettetagage
                                                                         420
 ggnegecace geggtggage tecagetttt gtteeettta gtgagggtta attgegeget
                                                                         480
 tggcgtaatc atggtcatan ctgtttcctg tgtgaaattg ttatccgctc acaattccac
                                                                         540
 acaucatacg anceggaage atnaaatttt aaageetggn ggtngeetaa tgantgaact
                                                                         600
 nactoacatt aattggettt gegeteactg eccgetttee agteeggaaa acctgteett
                                                                         660
 gccagctgcc nttaatgaat cnggccaccc cccggggaaa aggcngtttg cttnttgggg
                                                                         720
 egenetteec getttetege treetgaant cetteecee ggtetttegg ettgeggena
                                                                         780
 acggtatena ect
                                                                         793
       <210> 34
       <211> 756
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(756)
       \langle 223 \rangle n = A, T, C or G
       <400> 34
gccgcgaccg gcatgtacga gcaactcaag ggcgagtgga accgtaaaag ccccaatctt
                                                                         60
ancaagtgcg gggaanagct gggtcgactc aagctagttc ttctggagct caacttcttg
                                                                        120
ccaaccacag ggaccaaget gaccaaacag cagctaatte tggcccgtga catactggag
                                                                        180
atcggggccc aatggagcat cctacgcaan gacatcccct ccttcgagcg ctacatggcc
                                                                        240
cageteaaat getaetaett tgattaeaan gageagetee eegagteage etatatgeae
                                                                        300
cagetettgg geeteaacet cetetteetg etgteecaga accgggtgge tgantnecae
                                                                        360
acgganttgg ancggctgcc tgcccaanga catacanacc aatgtctaca tcnaccacca
                                                                        420
gtytcctgga gcaatactga tgganggcag ctaccncaaa gtnttcctgg ccnagggtaa
                                                                        480
catececege egagagetae acettettea ttgacateet getegaeact ateagggatg
                                                                        540
aaaatcgeng ggttgctcca gaaaggctnc aanaanatcc ttttcnctga aggcccccgg
                                                                        600
athenotagt notagaateg geoegecate geggtggane etceaacett tegttneeet
                                                                        660
ttactgaggg ttnattgccg cccttggcgt tatcatggtc acnccngttn cctgtgttga
                                                                        720
aattnttaac ccccacaat tccacgccna cattng
                                                                        756
      <210> 35
      <211> 834
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(834)
      \langle 223 \rangle n = A,T,C or G
      <400> 35
aggratetet anatonacet gnatgeatgg ttgteggtgt ggtegetgte gatgaanatg
                                                                         60
aacaggatet tgecettgaa getetegget getgtnttta agttgeteag tetgeegtea
                                                                        120
tagtcagaca cnctcttggg caaaaaacan caggatntga gtcttgattt cacctccaat
                                                                        180
aatettengg getgtetget eggtgaacte gatgaenang ggeagetggt tgtgtntgat
                                                                        240
agantecane angiteteet tggtgacete ecetteaaag ttgtteegge etteateaaa
                                                                        300
cttctnnaan angannance canctttgtc gagetggnat ttgganaaca egtcactgtt
                                                                        360
```

```
420
ggaaactgat cccaaatggt atgtcatcca tegectetge tgcctgcaaa aaacttgett
                                                                        480
ggeneaaate egacteeen teettgaaag aageenatea eacceeete eetggactee
                                                                        540
nncaangact cincegeine ecenteenng cagggitggit ggeanneegg geeentgege
ttetteagee agtteaenat ntteateage eeetetgeea getgttntat teettggggg
                                                                        600
ggaanccgtc tetecettee tgaannaact ttgaccgtng gaatageege genteneent
                                                                        660
acntnotggg cogggttcaa antocotoon ttgnonnton cotogggcca ttotggattt
                                                                        720
nccnaacttt ttccttcccc cnccccncgg ngtttggntt tttcatnggg ccccaactct
                                                                        780
getnttggcc anteccetgg gggcntntan eneceeetnt ggtccentng ggcc
                                                                        834
      <210> 36
      <211> 814
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(814)
      \langle 223 \rangle n = A, T, C or G
      <400> 36
                                                                         60
eggnegettt eengeegege eeeqttteea tgacnaagge teeetteang ttaaataenn
cctaqnaaac attaatgggt tqctctacta atacatcata cnaaccagta agcctgccca
                                                                        120
                                                                        180
naacqccaac tcagqccatt cctaccaaag gaagaaaggc tggtctctcc accccctgta
qqaaaqqcct qccttqtaag acaccacaat ncggctgaat ctnaagtctt gtgttttact
                                                                        240
                                                                        300
aatqqaaaaa aaaaataaac aanaggtttt gttctcatgg ctgcccaccg cagcctggca
                                                                        360
ctaaaacanc ccaqcqctca cttctqcttq ganaaatatt ctttqctctt ttggacatca
                                                                        420
qqcttqatqq tatcactqcc acntttccac ccagctgggc ncccttcccc catntttgtc
                                                                        480
antqanctqq aaqqcctqaa ncttaqtctc caaaagtctc ngcccacaag accggccacc
                                                                        540
aggggangte ntttncagtg gatetgecaa anantaceen tateatennt gaataaaaag
                                                                        600
geocetgaac ganatgette cancancett taagaceeat aateetngaa eeatggtgee
                                                                        660
cttccggtct gatccnaaag gaatgttcct gggtcccant ccctcctttg ttncttacgt
                                                                        720
tgtnttggac centgetngn atnacecaan tganateece ngaageacee tneeeetgge
                                                                        780
attigantit entaaattet etgeeetaen netgaaagea enalteeeth ggeneenaan
                                                                        814
ggngaactca agaaggtctn ngaaaaacca cncn
      <210> 37
      <211> 760
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(760)
      \langle 223 \rangle n = A, T, C or G
      <400> 37
                                                                         60
gcatgctgct cttcctcaaa gttgttcttg ttgccataac aaccaccata ggtaaagcgg
                                                                        120
gcgcagtgtt cgctgaaggg gttgtagtac cagcgcggga tgctctcctt gcagagtcct
gtgtctggca ggtccacgca atgccctttg tcactgggga aatggatgcg ctggagctcg
                                                                        180
                                                                        240
tonaanceae tegtgtattt tteaeangea geeteeteeg aagenteegg geagttgggg
                                                                        300
qtqtcqtcac actccactaa actqtcqatn cancagccca ttqctqcaqc ggaactgggt
                                                                        360
qqqctqacaq qtqccaqaac acactqqatn qqcctttcca tggaagggcc tgggggaaat
                                                                        420
encetnance caaactgeet eteaaaggee acettgeaca eecegacagg etagaaatge
                                                                        480
actettette ecaaaggtag ttgttettgt tgeecaagea neetecanea aaceaaaane
                                                                        540
ttgcaaaatc tgctccgtgg gggtcatnnn taccanggtt ggggaaanaa acccggcngn
                                                                        600
gancenectt gtttgaatge naaggnaata ateeteetgt ettgettggg tggaanagea
                                                                        660
caattqaact gttaacnttg ggccqnqttc cnctngggtq gtctgaaact aatcaccgtc
                                                                        720
actggaaaaa ggtangtgcc ttccttgaat tcccaaantt cccctngntt tgggtnnttt
```

```
of a minde chaaaaateg inthecede centanggeg
                                                                      760
       <210> 38
       <211> 724
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(724)
       \langle 223 \rangle n = A, T, C or G
       <400> 38
 60
 oticenaaat tgtecaaece eetenneeaa atnneeattt eeggggggg gttecaaaec
                                                                      120
 caaattaatt ttgganttta aattaaatnt tnattngggg aanaanccaa atgtnaagaa
                                                                      180
 aatttaaccc attatnaact taaatnootn gaaaccontg gnttocaaaa atttttaacc
                                                                      240
cttaaatccc tccgaaattg ntaanggaaa accaaattcn cctaaggctn tttgaaggtt
                                                                      300
ngatttaaac ccccttnant tnttttnacc cnngnctnaa ntatttngnt tccggtgttt
                                                                      360
tectnitiaan eninggiaac teeegniaat gaannneest aanceaatta aacegaatti
                                                                      420
tttttgaatt ggaaattcen ngggaattna ccggggtttt tcccntttgg gggccatnce
                                                                      480
cccnctttcg gggtttgggn ntaggttgaa tttttnnang ncccaaaaaa ncccccaana
aaaaaaactcc caagnnttaa tingaatnic ccccttccca ggcctttigg gaaaggnggg
                                                                      600
ttuntggggg congggantt onttoccon tincencoc ecceenggt aaanggttat
                                                                      660
ngnntttggt ttttgggccc cttnanggac cttceggatn gaaattaaat ccccgggncg
                                                                      720
geeg
                                                                      724
      <210> 39
      <211> 751
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(751)
      <223> n = A, T, C or G
      <400> 39
ttttttttt tttttctttg ctcacattta atttttattt tgatttttt taatgctgca
                                                                      60
caacacaata tttatttcat ttgtttcttt tatttcattt tatttgtttg ctgctgctgt
                                                                     120
tttatttatt tttactgaaa gtgagaggga acttttgtgg ccttttttcc ttttctgta
                                                                     180
ggccgcctta agctttctaa atttggaaca tctaagcaag ctgaanggaa aagggggttt
                                                                     240
cgcaaaatca ctcgggggaa nggaaaggtt gctttgttaa tcatgcccta tggtgggtga
                                                                     300
ttaactgctt gtacaattac ntttcacttt taattaattg tgctnaangc tttaattana
                                                                     360
off.gggggtt cocteccan accaacceen etgacaaaaa gtgcengeee teaaatnatg
                                                                     420
teceggennt enttgaaaca caengengaa ngtteteatt nteceenene cagginaaaa
                                                                     480
tgaagggtta ccatntttaa cnccacctcc acntggennn gcctgaatcc tcnaaaancn
                                                                     540
cecteaanen aattnetnng ceceggtene gentnngtee eneceggget cegggaantn
                                                                     600
cacccccnga annenntnne naacnaaatt ccgaaaatat teeenntene teaatteeee
                                                                     660
cnnagactnt cctcnncnan cncaattttc ttttnntcac gaacnegnnc cnnaaaatgn
                                                                     720
nnnnenecte enetngteen naateneean e
                                                                     751
     <210> 40
     <211> 753
     <212> DNA
      <213> Homo sapien
     <220>
```

```
<221> misc feature
      <222> (1)...(753)
      <223> n = A, T, C or G
      <400> 40
                                                                        60
gtqqtatttt ctqtaaqatc aggtqttcct ccctcgtagg tttagaggaa acaccctcat
aqatqaaaac cccccqaqa caqcaqcact gcaactgcca agcaqccggg gtaggagggg
                                                                       120
                                                                       180
eqecetatge acaqetqqqe eettqagaca geagggette gatgteagge tegatgteaa
tggtctggaa geggeggetg tacctgcgta ggggcacacc gtcagggccc accaggaact
                                                                       240
                                                                       300
teteaaaqtt eeaggeaacn tegttgegae acaeeggaga eeaggtgatn agettggggt
cggtcataan cgcggtggcg tcgtcgctgg gagctggcag ggcctcccgc aggaaggcna
                                                                       360
ataaaaggtg cgccccgca ccgttcanct cgcacttctc naanaccatg angttgggct
                                                                       420
cnaacccacc accanneegg actteettga nggaatteec aaatetette gntettggge
                                                                       480
ttctnctgat gecctanctg gttgeccngn atgccaanca nececaance eeggggteet
                                                                       540
aaancaccon ceteetentt teatetgggt tnttnteece ggacentggt teetetcaag
                                                                       600
ggancccata tetenacean tacteacent necececent gnnacecane ettetanngn
                                                                       660
                                                                       720
ttcccnccq ncctctqqcc cntcaaanan gcttncacna cctgggtctg ccttccccc
                                                                       753
tnccctatct gnaccccncn tttgtctcan tnt
      <210> 41
      <211> 341
      <212> DNA
      <213> Homo sapien
      <400> 41
actatatcca tcacaacaga catgottcat cocatagact tottgacata gottcaaatg
                                                                        60
                                                                        120
aqtqaaccca tccttqattt atatacatat atgttctcag tattttggga gcctttccac
                                                                       180
ticittaaac cttqttcatt atgaacactg aaaataggaa tttgtgaaga gttaaaaagt
                                                                       240
tatagcttgt ttacgtagta agtttttgaa gtctacattc aatccagaca cttagttgag
                                                                        300
tqttaaactq tqatttttaa aaaatatcat ttgagaatat tctttcagag gtattttcat
ttttactttt tgattaattg tgttttatat attagggtag t
                                                                        341
      <210> 42
      <211> 101
      <212> DNA
      <213> Homo sapien
      <400> 42
                                                                        60
acttactqaa tttagttctg tgctcttcct tatttagtgt tgtatcataa atactttgat
                                                                        101
gtttcaaaca ttctaaataa ataattttca gtggcttcat a
      <210> 43
      <211> 305
      <212> DNA
      <213> Homo sapien
      <400> 43
acatetttgt tacagtetaa gatgtgttet taaateacea tteetteetg gteeteacee
                                                                         60
                                                                        120
tocaggqtqq totcacactg taattagagc tattgaggag totttacagc aaattaagat
                                                                        180
tcaqatqcct tqctaagtct agagttctag agttatgttt cagaaagtct aagaaaccca
                                                                        240
cctcttgaga ggtcagtaaa gaggacttaa tatttcatat ctacaaaatg accacaggat
                                                                        300
tqqatacaqa acqaqaqtta tcctqqataa ctcagagctg agtacctgcc cgggggccgc
                                                                        305
tcqaa
      <210> 44
      <211> 852
      <212> DNA
      <213> Homo sapien
```

```
<220>
       <221> misc feature
       <222> (1)...(852)
       <223> n = A, T, C \text{ or } G
       <400> 44
 acataaatat cagagaaaag tagtotttga aatatttacg tocaggagtt otttgtttot
                                                                         60
 gartatitgg tgtgtgtttt ggtttgtgtc caaagtattg gcagcttcag ttttcatttt
                                                                        120
 ctctccatcc tcgggcattc ttcccaaatt tatataccag tcttcgtcca tccacacgct
                                                                        180
ccagaatttc tottttgtag taatatotca tagotoggot gagottttca taggtoatgo
                                                                        240
tgctgttgtt cttcttttta ccccatagct gagccactgc ctctgatttc aagaacctga
                                                                        300
agacgccctc agatcggtct tcccatttta ttaatcctgg gttcttgtct gggttcaaga
                                                                        360
ggatgtcgcg gatgaattcc cataagtgag tecetetegg gttgtgettt ttggtgtgge
                                                                        420
acttggcagg ggggtcttgc tcctttttca tatcaggtga ctctgcaaca ggaaggtgac
                                                                        480
tggtggttgt catggagatc tgagcccggc agaaagtttt gctgtccaac aaatctactg
                                                                        540
tgctaccata gttggtgtca tataaatagt tctngtcttt ccaggtgttc atgatggaag
                                                                        600
gctcagtttg ttcagtcttg acaatgacat tgtgtgtgga ctggaacagg tcactactgc
                                                                        660
actggccgtt ccacttcaga tgctgcaagt tgctgtagag gagntgcccc gccgtccctg
                                                                        720
ccgcccgggt gaactcctgc aaactcatgc tgcaaaggtg ctcgccgttg atgtcgaact
                                                                        780
cntggaaagg gatacaattg gcatccagct ggttggtgtc caggaggtga tggagccact
                                                                        840
cccacacctg gt
                                                                        852
      <210> 45
      <211> 234
      <212> DNA
      <213> Homo sapien
      <400> 45
acaacagacc cttgctcgct aacgacctca tgctcatcaa gttggacgaa tccgtgtccg
                                                                         60
agtetgacae cateeggage ateageattg ettegeagtg ecetaeegeg gggaactett
                                                                        120
gcctcgtttc tggctggggt ctgctggcga acggcagaat gcctaccgtg ctgcagtgcg
                                                                        180
tgaacgtgtc ggtggtgtct gaggaggtct gcagtaagct ctatgacccg ctgt
                                                                        234
      <210> 46
      <211> 590
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(590)
      <223> n = A,T,C or G
      <400> 46
actitttatt taaatgitta taaggcagat ctatgagaat gatagaaaac atggtgtgta
                                                                        60
atttgatagc aatattttgg agattacaga gttttagtaa ttaccaatta cacagttaaa
                                                                       120
aagaagataa tatattocaa goanatacaa aatatotaat gaaagatoaa ggoaggaaaa
                                                                       180
tgantataac taattgacaa tggaaaatca attttaatgt gaattgcaca ttatccttta
                                                                       240
aaagetttea aaanaaanaa ttattgeagt etanttaatt eaaacagtgt taaatggtat
                                                                       300
caggataaan aactgaaggg canaaagaat taattttcac ttcatgtaac ncacccanat
                                                                       360
ttacaatggc ttaaatgcan ggaaaaagca gtggaagtag ggaagtantc aaggtctttc
                                                                       420
tggtctctaa tctgccttac tctttgggtg tggctttgat cctctggaga cagctgccag
                                                                       480
ggctcctgtt atatccacaa tcccagcagc aagatgaagg gatgaaaaag gacacatgct
                                                                       540
gccttccttt gaggagactt catctcactg gccaacactc agtcacatgt
                                                                       590
      <210> 47
      <211> 774
```

```
<212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(774)
       \langle 223 \rangle n = A, T, C or G
       <400> 47
acaagggggc ataatgaagg agtggggana gattttaaag aaggaaaaaa aacgaggccc
                                                                             60
tgaacagaat tttcctgnac aacggggctt caaaataatt ttcttgggga ggttcaagac
                                                                            120
gcttcactgc ttgaaactta aatggatgtg ggacanaatt ttctgtaatg accctgaggg
                                                                            180
cattacagac gggactctgg gaggaaggat aaacagaaag gggacaaagg ctaatcccaa
                                                                            240
aacatcaaag aaaggaaggt ggcgtcatac ctcccagcct acacagttct ccagggctct
                                                                            300
cctcatccct ggaggacgac agtggaggaa caactgacca tgtccccagg ctcctgtgtg
                                                                            360
ctggetectg gtetteagee eccagetetg gaageecaee etetgetgat eetgegtgge
                                                                            420
ccacactcct tgaacacaca tccccaggtt atattcctgg acatggctga acctcctatt
                                                                            480
cctacttccg agatgccttg ctccctgcag cctgtcaaaa tcccactcac cctccaaacc
                                                                            540
acggcatggg aagcetttet gacttgeetg attacteeag catettggaa caatecetga
                                                                            600
ttccccactc cttagaggca agatagggtg gttaagagta gggctggacc acttggagcc aggctgctgg cttcaaattn tggctcattt acgagctatg ggaccttggg caagtnatct
                                                                            660
                                                                            720
teacttetat gggenteatt ttgttetace tgcaaaatgg gggataataa tagt
                                                                            774
       <210> 48
       <211> 124
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(124)
       <223> n = A, T, C or G
       <400> 48
canaaattga aattttataa aaaggcattt ttctcttata tccataaaat gatataattt
                                                                            60
ttgcaantat anaaatgtgt cataaattat aatgttcctt aattacagct caacgcaact
                                                                            120
tggt
                                                                            124
       <210> 49
       <211> 147
       <212> DNA
       <213> Homo sapien
       <220>
      <221> misc feature
      <222> (1)...(147)
      <223> n = A, T, C or G
      <400> 49
qccgatgcta ctattttatt qcaqqaqqtg qqqqtqtttt tattattctc tcaacagctt
                                                                            60
tgtggctaca ggtggtgtct gactgcatna aaaanttttt tacgqgtgat tgcaaaaatt
                                                                           120
ttagggcacc catatcccaa gcantgt
                                                                           147
      <210> 50
      <211> 107
      <212> DNA
```

<213> Homo sapien

```
<400> 50
 acartaaatt aataaaagga ctgttggggt tctgctaaaa cacatggctt gatatattgc
                                                                       60
 atogtttgag gttaggagga gttaggcata tgttttggga gaggggt
                                                                      107
      <210> 51
      <211> 204
      <212> DNA
      <213> Homo sapien
      <400> 51
gtchladdaa gtetagggga cacacgacte tggggtcacg gggccgacac acttgcacgg
                                                                       60
 120
 geettgeaag gteagaaagg ggaeteaggg etteeaceae ageeetgeee caettggeea
                                                                     180
cotecetttt gggaccagca atgt
                                                                     204
      <210> 52
      <211> 491
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(491)
      <223> n = A, T, C or G
      <400> 52
acaaagataa catttatett ataacaaaaa tttgatagtt ttaaaggtta gtattgtgta
                                                                      60
gggtattttc caaaagacta aagagataac tcaggtaaaa agttagaaat gtataaaaca
                                                                     120
ccatcagaca ggtttttaaa aaacaacata ttacaaaatt agacaatcat ccttaaaaaa
                                                                     180
aaaacttctt gtatcaattt cttttgttca aaatgactga cttaantatt tttaaatatt
                                                                     240
tcanaaacac ttcctcaaaa attttcaana tggtagcttt canatgtncc ctcagtccca
                                                                     300
atgttgctca gataaataaa totogtgaga acttaccacc caccacaagc tttctggggc
                                                                     360
atgcaacagt gtcttttctt tnctttttct ttttttttt ttacaggcac agaaactcat
                                                                     420
capttttatt tggataacaa agggtotoca aattatattg aaaaataaat ocaagttaat
                                                                     480
alcactettq t
                                                                     491
      <210> 53
      <211> 484
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(484)
      <223> n = A, T, C or G
      <400> 53
acataattta gcagggctaa ttaccataag atgctattta ttaanaggtn tatgatctga
                                                                      60
gtattaacag ttgctgaagt ttggtatttt tatgcagcat tttctttttg ctttgataac
                                                                     120
actacagaac ccttaaggac actgaaaatt agtaagtaaa gttcagaaac attagctgct
                                                                     180
caatcaaatc totacataac actatagtaa ttaaaacgtt aaaaaaaagt gttgaaatct
                                                                     240
gcactagtat anaccgctcc tgtcaggata anactgcttt ggaacagaaa gggaaaaanc
                                                                     300
agotttgant ttotttgtgo tgatangagg aaaggotgaa ttacottgtt goototooot
                                                                     360
Hatgattggc aggtenggta aatnecaaaa catattecaa eteaacaett etttteeneg
                                                                     420
tancttgant ctgtgtattc caggancagg cggatggaat gggccagccc ncggatgttc
                                                                     480
cant
                                                                     484
```

<210> 54

<211> 151 <212> DNA <213> Homo sapien	
<pre><400> 54 actaaacctc gtgcttgtga actccataca gaaaacggtg ccatccctga acacggctgg ccactgggta tactgctgac aaccgcaaca acaaaaacac aaatccttgg cactggctag tctatgtcct ctcaagtgcc tttttgtttg t</pre>	60 120 151
<210> 55 <211> 91 <212> DNA <213> Homo sapien	
<400> 55 acctggcttg teteogggtg gtteceggeg cececeaegg teeceagaac ggacaettte geeeteeagt ggataetega gecaaagtgg t	60 91
<210> 56 <211> 133 <212> DNA <213> Homo sapien	
<pre><400> 56 ggcggatgtg cgttggttat atacaaatat gtcattttat gtaagggact tgagtatact tggatttttg gtatctgtgg gttgggggga cggtccagga accaataccc catggatacc aagggacaac tgt</pre>	60 120 133
<210> 57 <211> 147 <212> DNA <213> Homo sapien	
<220> <221> misc_feature <222> (1)(147) <223> n = A,T,C or G	
<400> 57 actctggaga acctgagccg ctgctccgcc tctgggatga ggtgatgcan gcngtggcgc gactgggagc tgagcccttc cctttgcgcc tgcctcagag gattgttgcc gacntgcana tctcantggg ctggatncat gcagggt	60 120 147
<210> 58 <211> 198 <212> DNA <213> Homo sapien	
<220> <221> misc_feature <222> (1)(198) <223> n = A,T,C or G	
<pre><400> 58 acagggatat aggtttnaag ttattgtnat tgtaaaatac attgaatttt ctgtatactc tgattacata catttatect ttaaaaaaga tgtaaatett aattttatg ccatetatta atttaccaat gagttacett gtaaatgaga agteatgata geaetgaatt ttaactagtt ttgactteta agtttggt</pre>	60 120 180 198

```
<210> 59
        <211> 330
        <212> DNA
        <213> Homo sapien
        <400> 59
 acaacaaatg ggttgtgagg aagtottato agcaaaactg gtgatggota ctgaaaagat
                                                                         60
 ccattgaaaa ttatcattaa tgattttaaa tgacaagtta tcaaaaactc actcaatttt
                                                                         120
 cacctgtgct agcttgctaa aatgggagtt aactctagag caaatatagt atcttctgaa
                                                                        180
 tacagtcaat aaatgacaaa gccagggcct acaggtggtt tccagacttt ccagacccag
                                                                        240
 cagaaggaat ctattttatc acatggatct ccgtctgtgc tcaaaatacc taatgatatt
                                                                        300
 tttcgtcttt attggacttc tttgaagagt
                                                                        330
       <210> 60
       <211> 175
       <212> DNA
       <213> Homo sapien
       <400> 60
 accgtgggtg ccttctacat tcctgacggc tccttcacca acatctggtt ctacttcggc
                                                                        60
 gtogtggget cetteetett cateeteate cagetggtge tgeteatega etttgegeae
                                                                        120
 teetggaace ageggtgget gggeaaggee gaggagtgeg attecegtge etggt
                                                                        175
       <210> 61
       <211> 154
       <212> DNA
       <213> Homo sapien
       <400> 61
accecaettt teeteetgtg ageagtetgg aetteteaet getaeatgat gagggtgagt
                                                                         60
gattgttgct cttcaacagt atcctccct ttccggatct gctgagccgg acagcagtgc
                                                                        120
 tggactgcac ageocogggg etccacattg etgt
                                                                        154
       <210> 62
       <211> 30
       <212> DNA
      <213> Homo sapien
      <400> 62
cgctcgagcc ctatagtgag tcgtattaga
                                                                        30
      <210> 63
      <211> 89
      <212> DNA
      <213> Homo sapien
      <400> 63
acaagtcatt tcagcaccct ttgctcttca aaactgacca tcttttatat ttaatgcttc
                                                                        60
ctgtatgaat aaaaatggtt atgtcaagt
                                                                        89
      <210> 64
      <211> 97
      <212> DNA
      <213> Homo sapien
      <400> 64
accggagtaa ctgagteggg acgetgaate tgaatecace aataaataaa ggttetgeag
```

```
97
aatcagtgca tccaggattg gtccttggat ctggggt
      <210> 65
      <211> 377
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(377)
      <223> n = A, T, C \text{ or } G
      <400> 65
acaacaanaa ntcccttctt taggccactg atggaaacct ggaaccccct tttgatggca
                                                                        60
gcatggcgtc ctaggccttg acacagcggc tggggtttgg gctntcccaa accgcacacc
                                                                       120
                                                                       180
ccaacctqq tctacccaca nttctqqcta tqqqctqtct ctqccactqa acatcaggqt
                                                                       240
tcqqtcataa natgaaatcc caanggggac agaggtcagt agaggaagct caatgagaaa
ggtgctgttt gctcagccag aaaacagctg cctggcattc gccgctgaac tatgaacccg
                                                                       300
tgggggtgaa ctacccccan gaggaatcat gcctgggcga tgcaanggtg ccaacaggag
                                                                       360
                                                                       377
gggcgggagg agcatgt
      <210> 66
      <211> 305
      <212> DNA
      <213> Homo sapien
      <400> 66
acgcctttcc ctcagaattc agggaagaga ctgtcgcctg ccttcctccg ttgttgcgtg
                                                                         60
agaacccgtg tgccccttcc caccatatcc accctcgctc catctttgaa ctcaaacacg
                                                                        120
aggaactaac tgcaccctgg teeteteece agteeceagt teacceteea teeeteacet
                                                                        180
tcctccactc taagggatat caacactgcc cagcacaggg gccctgaatt tatgtggttt
                                                                        240
ttatatattt tttaataaga tgcactttat gtcatttttt aataaagtct gaagaattac
                                                                        300
                                                                        305
tgttt
      <210> 67
      <211> 385
      <212> DNA
      <213> Homo sapien
      <400> 67
actacacaca ctccacttgc ccttgtgaga cactttgtcc cagcacttta ggaatgctga
                                                                         60
ggtcggacca gccacatete atgtgcaaga ttgcccagca gacatcaggt ctgagagtte
                                                                        120
cccttttaaa aaaggggact tgcttaaaaa agaagtctag ccacgattgt gtagagcagc
                                                                        180
tgtgctgtgc tggagattca cttttgagag agttctcctc tgagacctga tctttagagg
                                                                        240
ctgggcagtc ttgcacatga gatggggctg gtctgatctc agcactcctt agtctgcttg
                                                                        300
cctctcccag ggccccagce tggccacace tgcttacagg gcactctcag atgcccatac
                                                                        360
                                                                        385
catagtttct gtgctagtgg accgt
      <210> 68
      <211> 73
      <212> DNA
      <213> Homo sapien
      <400> 68
acttaaccag atatatttt accccagatg gggatattct ttgtaaaaaa tgaaaataaa
                                                                         60
                                                                         73
gtttttttaa tgg
      <210> 69
```

```
<211> 536
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(536)
       <223> n = A, T, C or G
       <400> 69
 actagtccag tgtggtggaa ttccattgtg ttgggggctc tcaccctcct ctcctgcagc
                                                                         60
 topagettig igeteigeet eigaggagae eaiggeeeag eaictgagia eeeigeigei
                                                                        120
 cctgctggcc accctagctg tggccctggc ctggagcccc aaggaggagg ataggataat
                                                                        180
 cccgggtggc atctataacg cagacctcaa tgatgagtgg gtacagcgtg cccttcactt
                                                                        240
 cgccatcage gagtataaca aggccaccaa agatgactae tacagaegte egetgegggt
                                                                        300
 actaagagee aggeaacaga eegttggggg ggtgaattae ttettegaeg tagaggtggg
                                                                        360
 cegaaccata tgtaccaagt eccageceaa ettggacaee tgtgeettee atgaacagee
                                                                        420
 agaactgcag aagaaacagt tgtgctcttt cgagatctac gaagttccct ggggagaaca
                                                                        480
 gaangtooot gggtgaaato caggtgtcaa gaaatootan ggatotgttg ccaggo
                                                                        536
      <210> 70
      <211> 477
      <212> DNA
      <213> Homo sapien
<400> 70
atgaccccta acaggggccc tetcagccct cctaatgacc teeggectag ccatgtgatt
                                                                         60
tcacttccac tccataacgc tcctcatact aggcctacta accaacacac taaccatata
                                                                       120
ccaatgatgg cgcgatgtaa cacgagaaag cacataccaa ggccaccaca caccacctgt
                                                                       180
ccaaaaaggc cttcgatacg ggataatcct atttattacc tcagaagttt ttttcttcgc
                                                                       240
agggattttt ctgagccttt taccactcca gcctagcccc taccccccaa ctaggagggc
                                                                       300
actggccccc aacaggcatc accccgctaa atcccctaga agtcccactc ctaaacacat
                                                                       360
cogtattact cgcatcagga gtatcaatca cctgagctca ccatagtcta atagaaaaca
                                                                       420
accgaaacca aattattcaa agcactgctt attacaattt tactgggtct ctatttt
                                                                       477
      <210> 71
      <211> 533
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(533)
      <223> n = A, T, C or G
agagetatag gtacagtgtg ateteagett tgeaaacaea ttttetaeat agatagtaet
                                                                        60
aggtattaat agatatgtaa agaaagaaat cacaccatta ataatggtaa gattggttta
                                                                       120
tgtgatttta gtggtatttt tggcaccctt atatatgttt tccaaacttt cagcagtgat
                                                                       180
attatttcca taacttaaaa agtgagtttg aaaaagaaaa tctccagcaa gcatctcatt
                                                                       240
taaataaagg tttgtcatct ttaaaaaatac agcaatatgt gactttttaa aaaagctgtc
                                                                       300
aaataggtgt gaccctacta ataattatta gaaatacatt taaaaaacatc gagtacctca
                                                                       360
agtcagtttg ccttgaaaaa tatcaaatat aactcttaga gaaatgtaca taaaagaatg
                                                                       420
of togtaatt tiggagtang aggitecete eteaatitig tattitaaa aagtacatgg
                                                                       480
taaaaaaaaa aattcacaac agtatataag gctgtaaaat gaagaattct gcc
                                                                       533
     <210> 72
     <211> 511
```

```
<212> DNA
     <213> Homo sapien
     <220>
     <221> misc feature
     <222> (1)...(511)
     <223> n = A, T, C or G
     <400> 72
                                                                      60
tattacggaa aaacacacca cataattcaa ctancaaaga anactgcttc agggcgtgta
aaatgaaagg cttccaggca gttatctgat taaagaacac taaaagaggg acaaggctaa
                                                                     120
aaqccqcaqq atqtctacac tatancaggc gctatttggg ttggctggag gagctgtgga
                                                                     180
                                                                     240
aaacatggan agattggtge tgganatege egtggetatt eeteattgtt attacanagt
                                                                     300
qaqqttctct qtqtqcccac tqgtttgaaa accgttctnc aataatgata gaatagtaca
cacatgagaa ctgaaatggc ccaaacccag aaagaaagcc caactagatc ctcagaanac
                                                                     360
                                                                     420
qcttctaqqq acaataaccq atqaaqaaaa gatggcctcc ttgtgccccc gtctgttatg
atttctctcc attgcagcna naaacccgtt cttctaagca aacncaggtg atgatggcna
                                                                     480
                                                                     511
aaatacaccc cctcttgaag naccnggagg a
     <210> 73
     <211> 499
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(499)
      <223> n = A, T, C or G
      <400> 73
                                                                      60
caqtqccaqc actqqtqcca qtaccaqtac caataacagt gccagtgcca gtgccagcac
cagtggtggc ttcagtgctg gtgccagcct gaccgccact ctcacatttg ggctcttcgc
                                                                     120
tggccttggt ggagctggtg ccagcaccag tggcagctct ggtgcctgtg gtttctccta
                                                                     180
caaqtqaqat tttaqatatt qttaatcctq ccagtctttc tcttcaaqcc agqqtqcatc
                                                                     240
                                                                     300
ctcaqaaacc tactcaacac agcactctag gcagccacta tcaatcaatt gaagttgaca
360
                                                                     420
antitagagg qcccqtttaa acccqctgat cagcctcgac tgtqccttct anttqccagc
catctqttqt ttqccctcc cccqntgcct tccttgaccc tggaaagtgc cactcccact
                                                                     480
                                                                     499
gtcctttcct aantaaaat
      <210> 74
      <211> 537
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(537)
      <223> n = A, T, C or G
      <400> 74
                                                                      60
tttcatagga gaacacactg aggagatact tgaagaattt ggattcagcc gcgaagagat
                                                                     120
ttatcagctt aactcagata aaatcattga aagtaataag gtaaaagcta gtctctaact
tccaggccca cggctcaagt gaatttgaat actgcattta cagtgtagag taacacataa
                                                                     180
cattgtatgc atggaaacat ggaggaacag tattacagtg tcctaccact ctaatcaaga
                                                                     240
aaagaattac agactctgat tctacagtga tgattgaatt ctaaaaaatgg taatcattag
                                                                     300
                                                                     360
ggcttttgat ttataanact ttgggtactt atactaaatt atggtagtta tactgccttc
cagtttgctt gatatattg ttgatattaa gattcttgac ttatattttg aatgggttct
                                                                     420
```

```
aciguadaan gaatgatata ticitgaaga categatata catttattia cactettgat
                                                                         480
 totacaatgt agaaaatgaa ggaaatgooc caaattgtat ggtgataaaa gtocogt
                                                                         537
       <210> 75
       <211> 467
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(467)
       \langle 223 \rangle n = A, T, C or G
       <400> 75
 caaanacaat tgttcaaaag atgcaaatga tacactactg ctgcagctca caaacacctc
                                                                         60
 igcatattac acgiaccicc iccigcicci caagiagigt ggictattit gccatcatca
                                                                         120
 cctgctgtct gcttagaaga acggctttct gctgcaangg agagaaatca taacagacgg
                                                                        180
 tggcacaagg aggccatctt ttcctcatcg gttattgtcc ctagaagcgt cttctgagga
                                                                        240
 totagttggg ctttctttct gggtttgggc catttcantt ctcatgtgtg tactattcta
                                                                        300
 tcattattgt ataacggttt tcaaaccngt gggcacncag agaacctcac tctgtaataa
                                                                        360
caatgaggaa tagccacggt gatetecage accaaatete tecatgttnt tecagagete
                                                                        420
ctccagccaa cccaaatagc cgctgctatn gtgtagaaca tccctgn
                                                                        467
       <210> 76
       <211> 400
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(400)
      <223> n = A,T,C or G
      <400> 76
aagctgacag cattcgggcc gagatgtctc gctccgtggc cttagctgtg ctcgcgctac
                                                                         60
tetetette tggeetggag getatecage gtactecaaa gatteaggtt tacteaegte
                                                                        120
atocagcaga gaatggaaag toaaatttoo tgaattgota tgtgtotggg tttcatocat
                                                                        180
ccgacattga agttgactta ctgaagaatg gagagagaat tgaaaaagtg gagcattcag
                                                                        240
actiotetti cagcaaggae tggtetttet atetettgta etacaetgaa tteaeceeca
                                                                        300
ctgaaaaaga tgagtatgcc tgccgtgtga accatgtgac tttgtcacag cccaagatng
                                                                        360
ttnagtggga tcganacatg taagcagcan catgggaggt
                                                                        400
      <210> 77
      <211> 248
      <212> DNA
      <213> Homo sapien
      <400> 77
ctggagtgcc ttggtgtttc aagcccctgc aggaagcaga atgcaccttc tgaggcacct
                                                                         60
ccagetgeec eggegggga tgegaggete ggageacect tgeeeggetg tgattgetge
                                                                        120
cagging teateteage tittetgice cittgetece ggcaageget tetgetgaaa
                                                                       180
gticatatet ggageetgat gtettaaega ataaaggtee catgeteeae eegaaaaaaa
                                                                       240
aaaaaaaa
                                                                       248
      <210> 78
      <211> 201
     <212> DNA
     <213> Homo sapien
```

```
<400> 78
                                                                        60
actagtecag tgtggtggaa ttecattgtg ttgggeecaa cacaatgget acetttaaca
teacceagae eccqccctqc ccqtqcccca cqctqctqct aacgacagta tgatqcttac
                                                                       120
                                                                       180
totgotacto ggaaactatt tttatgtaat taatgtatgo tttottgttt ataaatgoot
                                                                       201
gatttaaaaa aaaaaaaaa a
      <210> 79
      <211> 552
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(552)
      <223> n = A, T, C or G
      <400> 79
                                                                        60
teettttgtt aggtttttga gacaacecta gacetaaact gtgtcacaga ettetgaatg
                                                                       120
tttaggcagt gctagtaatt tcctcgtaat gattctgtta ttactttcct attctttatt
                                                                       180
cctctttctt ctgaagatta atgaagttga aaattgaggt ggataaatac aaaaaggtag
tgtgatagta taagtatcta agtgcagatg aaagtgtgtt atatatatcc attcaaaaatt
                                                                       240
                                                                       300
atgcaaqtta gtaattactc agggttaact aaattacttt aatatgctgt tgaacctact
ctqttccttq qctagaaaaa attataaaca ggactttgtt agtttgggaa gccaaattga
                                                                       360
                                                                       420
taatattota tgttotaaaa gttgggotat acataaanta tnaagaaata tggaatttta
                                                                       480
ttcccaqqaa tatqqqqttc atttatqaat antacccqqq anaqaagttt tgantnaaac
cngttttggt taatacgtta atatgtcctn aatnaacaag gcntgactta tttccaaaaa
                                                                       540
                                                                       552
aaaaaaaaa aa
      <210> 80
      <211> 476
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(476)
      <223> n = A,T,C or G
      <400> 80
                                                                         60
acagggattt gagatgctaa ggccccagag atcgtttgat ccaaccctct tattttcaga
                                                                       120
ggggaaaatg gggcctagaa gttacagagc atctagctgg tgcgctggca cccctggcct
cacacagact cccgagtage tgggactaca ggcacacagt cactgaagea ggccctgttt
                                                                       180
                                                                       240
qcaattcacg ttgccacctc caacttaaac attcttcata tgtgatgtcc ttagtcacta
                                                                       300
aggttaaact ttcccaccca gaaaaggcaa cttagataaa atcttagagt actttcatac
                                                                       360
tottotaagt cotottocag cotoactttg agtoctcott gggggttgat aggaantnto
                                                                       420
tcttggcttt ctcaataaaa tctctatcca tctcatgttt aatttggtac gcntaaaaaat
                                                                       476
qctqaaaaaa ttaaaatqtt ctqqtttcnc tttaaaaaaaa aaaaaaaaa aaaaaa
      <210> 81
      <211> 232
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (232)
      <223> n = A, T, C or G
```

```
<400> 81
 tittittig tatgeenten etgtggngtt attgttgetg ceaecetgga ggageceagt
                                                                          60
 iterretgta terriettit etgggggate treetggete tgecceteca treecageet
                                                                         120
 ctcatcccca terrgeactt trgctagggt tggaggeget treetggtag ececteagag
                                                                         180
 actoagtoag ogggaataag tootaggggt ggggggtgtg gcaagcoggo ot
                                                                         232
       <210> 82
       <211> 383
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (383)
       \langle 223 \rangle n = A,T,C or G
       <400> 82
aggegggage aquagetaua gecauagece aagaagagtg geagtgeeag cactggtgee
                                                                          60
agtaccagta ccaataacat gccagtgcca gtgccagcac cagtggtggc ttcagtgctg
                                                                         120
gtgccagcct quaccgccact ctcacatttg ggctcttcgc tggccttggt ggagctggtg
                                                                         180
ccagcaccag tggcagetet ggtgcctgtg gtttctccta caagtgagat tttagatatt
                                                                         240
gttaatcctq ccagtctttc tettcaagcc agggtgcatc ctcagaaacc tactcaacac
                                                                         300
ageactetng geagecacta teaateaatt gaagttgaca etetgeatta aatetatttg
                                                                        360
ccatttcaaa aaaaaaaaaa aaa
                                                                         383
      <210> 83
      <211> 494
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(494)
      <223> n = A, T, C or G
      <400> 83
accquattgg gaccgctggc ttataagcga tcatgtcctc cagtattacc tcaacgagca
                                                                         60
gggagatcga gtctatacgc tgaagaaatt tgacccgatg ggacaacaga cctgctcagc
                                                                        120
ccatcctgct cggttctccc cagatgacaa atactctcga caccgaatca ccatcaagaa
                                                                        180
acgetteaag gtgeteatga ceeageaace gegeeetgte etetgagggt cettaaactg
                                                                        240
atgtetttte tgccacetgt taccectegg agacteegta accaaactet teggactgtg
                                                                        300
agccetgatg cetttttgcc agccatacte tttggcntcc agtetetegt ggcgattgat
                                                                        360
tatgettgtg tgaggeaate atggtggeat cacceatnaa gggaacacat ttgantttt
                                                                       420
tttcncatat tttaaattac naccagaata nttcagaata aatgaattga aaaactctta
                                                                       480
aaaaaaaaa aaaa
                                                                        494
      <210> 84
      <211> 380
      <212> DNA
      <213> Homo sapien
     <220>
     <221> misc feature
     <222> (1)...(380)
     <223> n = A, T, C or G
     <400> 84
```

```
gctggtagcc tatggcgtgg ccacggangg gctcctgagg cacgggacag tgacttccca
                                                                         60
agtatoctgc gccgcgtctt ctaccgtccc tacctgcaga tcttcgggca gattccccaq
                                                                        120
gaggacatgg acgtggccct catggagcac agcaactgct cgtcggagcc cggcttctgg
                                                                        180
                                                                        240
qcacacctc ctqqqqccca qqcgggcacc tgcgtctccc agtatgccaa ctggctggtg
gtgctgctcc tcgtcatctt cctgctcgtg gccaacatcc tgctggtcac ttgctcattg
                                                                        300
ccatgttcag ttacacattc ggcaaagtac agggcaacag cnatctctac tgggaaggcc
                                                                        360
                                                                        380
agcgttnccg cctcatccgg
      <210> 85
      <211> 481
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(481)
      <223> n = A, T, C or G
      <400> 85
gagttagete etceacaace ttgatgaggt egtetgeagt ggeetetege tteatacege
                                                                         60
tnccatcgtc atactgtagg tttgccacca cctcctgcat cttggggcgg ctaatatcca
                                                                        120
ggaaactctc aatcaagtca ccgtcnatna aacctgtggc tggttctgtc ttccgctcgg
                                                                        180
tgtgaaagga tctccagaag gagtgctcga tcttccccac acttttgatg actttattga
                                                                        240
gtcgattctg catgtccagc aggaggttgt accagctctc tgacagtgag gtcaccagcc
                                                                        300
ctatcatgcc nttgaacgtg ccgaagaaca ccgagccttg tgtggggggt gnagtctcac
                                                                        360
ccaqattctg cattaccaga nagccgtggc aaaaganatt gacaactcgc ccaggnngaa
                                                                        420
aaagaacacc teetggaagt getngeeget eetegteent tggtggnnge gentneettt
                                                                        480
                                                                        481
      <210> 86
      <211> 472
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(472)
      <223> n = A, T, C or G
      <400> 86
aacatcttcc tgtataatgc tgtgtaatat cgatccgatn ttgtctgctg agaattcatt
                                                                         60
                                                                        120
acttggaaaa gcaacttnaa gcctggacac tggtattaaa attcacaata tgcaacactt
                                                                        180
taaacagtgt gtcaatctgc tcccttactt tgtcatcacc agtctgggaa taagggtatg
ccctattcac acctgttaaa agggcgctaa gcatttttga ttcaacatct ttttttttga
                                                                        240
cacaagteeg aaaaaageaa aagtaaacag tinttaatti gitageeaat teaetitett
                                                                        300
                                                                        360
catgggacag agccatttga tttaaaaagc aaattgcata atattgagct ttgggagctg
                                                                        420
atatntgage ggaagantag cetttetaet teaceagaea caacteettt catattggga
                                                                        472
tqttnacnaa aqttatqtct cttacaqatg ggatgctttt gtggcaattc tg
       <210> 87
       <211> 413
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(413)
       <223> n = A, T, C or G
```

```
<400> 87
 agaaaccagt atototnaaa acaacctoto ataccttgtg gacctaattt tgtgtgcgtg
                                                                         60
 igtgtgtgcg cgcatattat atagacaggc acatcttttt tacttttgta aaagcttatg
                                                                        120
 estettiggt atctatatet gigaaagitt taatgatetg ceataatgie tiggggaeet
                                                                        180
 ligiettetg tgtaaatggt actagagaaa acacetaint tatgagteaa tetagiingt
                                                                        240
 titattogae atgaaggaaa tttocagatn acaacactna caaactotoo ottgactagg
                                                                        300
 ggggacaaag aaaagcanaa ctgaacatna gaaacaattn cctggtgaga aattncataa
                                                                        360
 acagaaattg ggtngtatat tgaaananng catcattnaa acgttttttt ttt
                                                                        413
       <210> 88
      <211> 448
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(448)
      <223> n = A, T, C or G
      <400> 88
egeagegggt cetetetate tagetecage etetegeetg ecceaetece egegteeege
                                                                         60
qtectageen accatggeeg ggeeectgeg egeeeegetg etectgetgg ecateetgge
                                                                       120
cgtggccctg gccgtgagcc ccgcggccgg ctccagtccc ggcaagccgc cgcgcctggt
                                                                       180
gggaggccca tggaccccgc gtggaagaag aaggtgtgcg gcgtgcactg gactttgccg
                                                                       240
teggenanta caacaaacce geaacnactt ttacenagen egegetgeag gttgtgeege
                                                                       300
cccaancaaa ttgttactng gggtaantaa ttcttggaag ttgaacctgg gccaaacnng
                                                                       360
tttaccagaa ccnagccaat tngaacaatt ncccctccat aacagcccct tttaaaaaagg
                                                                       420
gaancantcc tgntcttttc caaatttt
                                                                       448
      <210> 89
      <211> 463
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(463)
      <223> n = A, T, C or G
      <400> 89
gaattttgtg cactggccac tgtgatggaa ccattgggcc aggatgcttt gagtttatca
                                                                        60
gtagtgattc tgccaaagtt ggtgttgtaa catgagtatg taaaatgtca aaaaattagc
                                                                       120
agaggtctag gtctgcatat cagcagacag tttgtccgtg tattttgtag ccttgaagtt
                                                                       180
ctcagtgaca agttnnttct gatgcgaagt tctnattcca gtgttttagt cctttgcatc
                                                                       240
tttnatgttn agacttgcct ctntnaaatt gcttttgtnt tctgcaggta ctatctgtgg
                                                                       300
tttaacaaaa tagaannact tctctgcttn gaanatttga atatcttaca tctnaaaatn
                                                                       360
aattctctcc ccatannaaa acccangccc ttggganaat ttgaaaaang gntccttcnn
                                                                       420
aattennana antteagntn teatacaaca naaenggane eee
                                                                       463
     <210> 90
     <211> 400
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc feature
     <222> (1)...(400)
```

WO 01/051633 PCT/US01/01574

```
<223> n = A, T, C or G
      <400> 90
agggattgaa ggtctnttnt actgtcggac tgttcancca ccaactctac aagttgctgt
                                                                        60
cttccactca ctgtctgtaa gcntnttaac ccagactgta tcttcataaa tagaacaaat
                                                                       120
tetteaccag teacatette taggacettt ttggatteag ttagtataag etetteeact
                                                                       180
tcctttgtta agacttcatc tggtaaagtc ttaagttttg tagaaaggaa tttaattgct
                                                                       240
cgttctctaa caatgtcctc tccttgaagt atttggctga acaacccacc tnaagtccct
                                                                       300
                                                                       360
ttqtqcatcc attttaaata tacttaatag ggcattggtn cactaggtta aattctgcaa
                                                                       400
gagtcatctg tctgcaaaag ttgcgttagt atatctgcca
      <210> 91
      <211> 480
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(480)
      <223> n = A, T, C or G
      <400> 91
gageteggat ccaataatet ttgtetgagg geageaeaea tatneagtge catggnaaet
                                                                        60
ggtctacccc acatgggagc agcatgccgt agntatataa ggtcattccc tgagtcagac
                                                                       120
atgeetettt gactaeegtg tgeeagtget ggtgattete acacacetee nneegetett
                                                                       180
                                                                       240
tgtggaaaaa ctggcacttg nctggaacta gcaagacatc acttacaaat tcacccacga
gacacttgaa aggtgtaaca aagcgactct tgcattgctt tttgtccctc cggcaccagt
                                                                       300
tgtcaatact aacccgctgg tttgcctcca tcacatttgt gatctgtagc tctggataca
                                                                       360
tetectgaca gtactgaaga acttettett ttgttteaaa ageaactett ggtgeetgtt
                                                                       420
ngatcaggtt cccatttccc agtccgaatg ttcacatggc atatnttact tcccacaaaa
                                                                       480
      <210> 92
      <211> 477
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(477)
      <223> n = A, T, C or G
      <400> 92
atacagecea nateceacea egaagatgeg ettgttgaet gagaacetga tgeggteact
                                                                        60
ggtcccgctg tagccccagc gactctccac ctgctggaag cggttgatgc tgcactcctt
                                                                        120
cccacgcagg cagcagcggg gccggtcaat gaactccact cgtggcttgg ggttgacggt
                                                                        180
taantgcagg aagaggctga ccacctegeg gtccaccagg atgcccgact gtgcgggacc
                                                                        240
tgcagcgaaa ctcctcgatg gtcatgagcg ggaagcgaat gangcccagg gccttgccca
                                                                        300
gaacetteeg eetgttetet ggegteacet geagetgetg eegetnaeae teggeetegg
                                                                        360
accageggae aaaeggegtt gaacageege accteaegga tgeecantgt gtegegetee
                                                                        420
aggaacggen ccagegtgte caggtcaatg teggtgaane etcegegggt aatggeg
                                                                        477
      <210> 93
      <211> 377
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
```

```
<222> (1)...(377)
       <223> n = A, T, C or G
       <400> 93
 gaacggctgg accttgcctc gcattgtgct gctggcagga ataccttggc aagcagctcc
                                                                          60
 agtecgagea geoccagace getgeegeee gaagetaage etgeetetgg cetteceete
                                                                         120
 egecteaatg cagaaccant agtgggagca etgtgtttag agttaagagt gaacactgtn
                                                                         180
 tgattttact tgggaattte etetgttata tagettttee caatgetaat ttecaaacaa
                                                                         240
 caacaacaaa ataacatgtt tgcctgttna gttgtataaa agtangtgat tctgtatnta
                                                                         300
 aagaaaatat tactgttaca tatactgctt gcaanttctg tatttattgg tnctctggaa
                                                                         360
 atadatatat tattaaa
                                                                         377
       <210> 94
       <211> 495
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(495)
       <223> n = A, T, C or G
       <400> 94
ccctttgagg ggttagggtc cagttcccag tggaagaaac aggccaggag aantgcgtgc
                                                                         60
cgagetgang cagattteec acagtgacee cagageeetg ggetatagte tetgaceeet
                                                                        120
ccaaggaaag accacettet ggggacatgg getggaggge aggacetaga ggcaccaagg
                                                                        180
gaaggeeeca tteegggget gtteecegag gaggaaggga aggggetetg tgtgeeece
                                                                        240
acgaggaana ggccctgant cctgggatca nacacccctt cacgtgtatc cccacacaaa
                                                                        300
tgcaagetca ccaaggteec eteteagtee etteectaca ecetgaacgg neactggeec
                                                                        360
acacccaccc agancancca cccgccatgg ggaatgtnct caaggaatcg cngggcaacg
                                                                        420
tggactetng tecennaagg gggeagaate tecaatagan gganngaace ettgetnana
                                                                        480
aaaaaaana aaaaa
                                                                        495
      <210> 95
      <211> 472
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(472)
      <223> n = A, T, C or G
      <400> 95
gattacttgg tttcattgcc accacttagt ggatgtcatt tagaaccatt ttgtctgctc
                                                                         60
ectetggaag cettgegeag ageggaettt gtaattgttg gagaataact getgaatttt
                                                                        120
tagetgtttt gagttgatte geaceaetge accaeacte aatatgaaaa etatttnact
                                                                        180
tatttattat cttgtgaaaa gtatacaatg aaaattttgt tcatactgta tttatcaagt
                                                                        240
atgatgaaaa gcaatagata tatattottt tattatgttn aattatgatt gccattatta
                                                                        300
atcggcaaaa tgtggagtgt atgttctttt cacagtaata tatgcctttt gtaacttcac
                                                                       360
ttggttattt tattgtaaat gaattacaaa attcttaatt taagaaaatg gtangttata
                                                                       420
tttanttcan taatttcttt ccttgtttac gttaattttg aaaagaatgc at
                                                                       472
      <210> 96
      <211> 476
      <212> DNA
      <213> Homo sapien
```

```
<220>
      <221> misc feature
      <222> (1)...(476)
      <223> n = A, T, C or G
      <400> 96
ctgaagcatt tcttcaaact tntctacttt tgtcattgat acctgtagta agttgacaat
                                                                        60
gtggtgaaat ttcaaaatta tatgtaactt ctactagttt tactttctcc cccaagtctt
                                                                       120
ttttaactca tgatttttac acacacaatc cagaacttat tatatageet ctaagtettt
                                                                       180
attetteaca gtagatgatg aaagagteet ceagtgtett gngcanaatg ttetagntat
                                                                       240
agetggatac atacngtggg agttctataa actcatacct cagtgggact naaccaaaat
                                                                       300
tgtgttagtc tcaattccta ccacactgag ggagcctccc aaatcactat attcttatct
                                                                       360
gcaggtactc ctccagaaaa acngacaggg caggcttgca tgaaaaagtn acatctgcgt
                                                                       420
                                                                       476
tacaaagtet atetteetea nangtetgtn aaggaacaat ttaatettet agettt
      <210> 97
      <211> 479
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(479)
      <223> n = A, T, C or G
      <400> 97
actettteta atgetgatat gatettgagt ataagaatge atatgteact agaatggata
                                                                        60
aaataatqct qcaaacttaa tqttcttatq caaaatqqaa cqctaatqaa acacaqctta
                                                                       120
caatcqcaaa tcaaaactca caaqtqctca tctgttqtag atttagtgta ataagactta
                                                                        180
gattgtgctc cttcggatat gattgtttct canatcttgg gcaatnttcc ttagtcaaat
                                                                        240
caggetacta gaattetgtt attggatatn tgagageatg aaatttttaa naatacaett
                                                                        300
qtgattatna aattaatcac aaatttcact tatacctgct atcagcagct agaaaaacat
                                                                        360
ntnnttttta natcaaagta ttttgtgttt ggaantgtnn aaatgaaatc tgaatgtggg
                                                                        420
ttenatetta tttttteeen gaenaetant tnetttttta gggnetatte tganecate
                                                                        479
      <210> 98
      <211> 461
      <212> DNA
      <213> Homo sapien
      <400> 98
agtgacttqt cctccaacaa aaccccttga tcaagtttgt ggcactgaca atcagaccta
                                                                         60
tgctagttcc tgtcatctat tcgctactaa atgcagactg gaggggacca aaaaggggca
                                                                        120
                                                                        180
tcaactccag ctggattatt ttggagcctg caaatctatt cctacttgta cggactttga
                                                                        240
aqtgattcag tttcctctac ggatgagaga ctggctcaag aatatcctca tgcagcttta
tgaagccact ctgaacacgc tggttatcta gatgagaaca gagaaataaa gtcagaaaat
                                                                        300
                                                                        360
ttacctggag aaaagaggct ttggctgggg accatcccat tgaaccttct cttaaggact
ttaagaaaaa ctaccacatg ttgtgtatcc tggtgccggc cgtttatgaa ctgaccaccc
                                                                        420
tttggaataa tcttgacgct cctgaacttg ctcctctgcg a
                                                                        461
      <210> 99
      <211> 171
      <212> DNA
      <213> Homo sapien
      <400> 99
gtggccgcgc gcaggtgttt cctcgtaccg cagggccccc tcccttcccc aggcgtccct
                                                                        60
                                                                        120
eggegeetet gegggeeega ggaggagegg etggegggtg gggggagtgt gacceaccet
```

cggtgagaa	a agccttctct	agcgatctga	a gaggegtgee	ttgggggtad	c c	171
<21 <21	0> 100 1> 269 2> DNA 3> Homo sapi	en				
	0. 100					
oggoogoaa ogaotgoga aaggotgag oagooggaa	0> 100 g tgcaactcca c gacggcggcg c tgacgccgca c agagcccggt c gcaggtgcag	gegaeagteg gaggtegtgt gaagegggag	r caggtgcagc . cacgtcccac	gegggegeet gaeettgaeg	ggggtettge cegteggga	60 120 180 240 269
<211 <212	0> 101 L> 405 2> DNA 3> Homo sapi	en				
)> 101					
gctagcaagg ttgattggtt agtgggtgca tgaccgtcat ctgttctgga	ttttggaatc taacagggta tgtctttatg ccctcctgt tttcttgaca gggagattag acgaataccg	gggcatggtt ggggcggggt agaacctggt tcaatgttat ggtttcttgc	acatgttcag ggggtagggg tacaaagctt tagaagtcag caaatccaac	gtcaacttcc aaacgaagca ggggcagttc gatatctttt aaaatccact	tttgtcgtgg aataacatgg acctggtctg agagagtcca	60 120 180 240 300 360 405
<211 <212	> 102 > 470 > DNA > Homo sapie	en				
	> 102					
ggcacttaat tcaaaatcta atatacttct caaagtacaa ccgcaaaggt aaatcttagg	tttttttt ccatttttat aattattcaa ttcagcaaac ttatcttaac taaagggaac ggaatatata ttgtttgggc	ttcaaaatgt attagccaaa ttgttacata actgcaaaca aacaaattct cttcacacgg	ctacaaattt tccttaccaa aattaaaaaa ttttaaggaa tttacaacac gatcttaact	aatcccatta ataataccca atatatacgg ctaaaataaa cattataaaa tttactcact	tacggtattt aaaatcaaaa ctggtgttt aaaaaacact atcatatctc	60 120 180 240 300 360 420 470
<210 <211 <212	> 103 > 581 > DNA > Homo sapie					
<400	> 103					
tttttttt tacacatatt taaatggaaa gaaaatette atttttettg gettetetag	tttttttga tattttataa ctgccttaga tctagctctt tctttaaaat cctcatttcc	ttggtattag tacataattc ttgactgtaa tatctaatct tagctcttat	atattcaaaa ttaggaatta atttttgact ttccattttt ctactattag	ggcagetttt gcttaaaatc cttgtaaaac tccctattcc taagtggctt	aaaatcaaac tgcctaaagt atccaaattc aagtcaattt ttttcctaaa	60 120 180 240 300 360
agggaaaaca	ggaagagaaa aatagcattt	tggcacacaa	aacaaacatt	ttatattcat	atttctacct	420 480
ccattttagt	cactaaacga	tatcaaagtg	ccagaatgca	aaaggtttgt	gaacatttat	540

tcaaaagcta atataagata tttcacatac tcatctttct g	581					
<210> 104 <211> 578 <212> DNA <213> Homo sapien						
<pre></pre>	60 120 180 240 300 360 420 480 540 578					
<213> Homo sapien <400> 105 tttttttttt tttttcagta ataatcagaa caatatttat ttttatattt aaaattcata gaaaagtgcc ttacatttaa taaaagtttg tttctcaaag tgatcagagg aattagatat gtcttgaaca ccaatattaa tttgaggaaa atacaccaaa atacattaag taaattattt aagatcatag agcttgtaag tgaaaagata aaatttgacc tcagaaactc tgagcattaa aggggtgtcac tggtaaacca acacattctg gacttcttgc tttaattttg tgatgaatat ggggtgtcac taatacgtgg atatgagttg acaagtttct ctttcttcaa tctttaagg ggcgagaaat gaggaagaaa agaaaaggat tacgcatact gtctttcta tggaaggatt aggtatgtt cctttgccaa tattaaaaaa ataataatgt ttactactag tgaaaccc	60 120 180 240 300 360 420 480 538					
<210> 106 <211> 473 <212> DNA <213> Homo sapien						
<pre><400> 106 ttttttttt ttttttagtc aagtttctat ttttattata attaaagtct tggtcatttc atttattagc tctgcaactt acatatttaa attaaagaaa cgttttagac aactgtacaa tttataaatg taaggtgcca ttattgagta atatattcct ccaagagtgg atgtgtccct tctcccacca actaatgaac agcaacatta gtttaatttt attagtagat atacactgct gcaaacgcta attctcttct ccatccccat gtgatattgt gtatatgtgt gagttggtag aatgcatcac aatctacaat caacagcaag atgaagctag gctgggcttt cggtgaaaat agactgtgtc tgtctgaatc aaatgatctg acctatcctc ggtggcaaga actcttcgaa ccgcttcctc aaaggcgctg ccacatttgt ggctctttgc acttgttca aaa</pre>	60 120 180 240 300 360 420 473					
<210> 107 <211> 1621 <212> DNA <213> Homo sapien						
<400> 107 cgccatggca ctgcagggca tctcggtcat ggagetgtcc ggcctggccc cgggcccgtt ctgtgctatg gtcctggctg acttcggggc gcgtgtggta cgcgtggacc ggcccggctc	60 120					

```
segetaegae gtgageeget tgggeegggg caagegeteg ctagtgetgg acetgaagea
                                                                    180
geogegggga geogeegtge tgeggegtet gtgcaagegg teggatgtge tgetggagee
                                                                     240
cttccgccgc ggtgtcatgg agaaactcca gctgggccca gagattctgc agcgggaaaa
                                                                    300
tocaaggett atttatgeea ggetgagtgg atttggeeag teaggaaget tetgeeggtt
                                                                    360
agetggeeac gatateaact arttggettt gteaggtgtt eteteaaaaa ttggeagaag
                                                                    420
tggtgagaat cegtatgece egetgaatet eetggetgae tttgetggtg gtggeettat
                                                                    480
gtgtgcactg ggcattataa tggctctttt tgaccgcaca cgcactgaca agggtcaggt
                                                                    540
cattgatgca aatatggtgg aaggaacagc atatttaagt tottttctgt ggaaaactca
                                                                    600
gaaatcgagt ctgtgggaag cacctcgagg acagaacatg ttggatggtg gagcaccttt
                                                                    660
statacgact tacaggacag cagatgggga attcatggct gttggagcaa tagaacccca
                                                                    720
gttetacgag etgetgatea aaggaettgg actaaagtet gatgaactte ecaateagat
                                                                    780
gagcatggat gattggccag aaatgaagaa gaagtttgca gatgtatttg caaagaagac
                                                                    840
gaaggcagag tggtgtcaaa tetttgaegg cacagatgee tgtgtgaete eggttetgae
                                                                    900
ttttgaggag gttgttcatc atgatcacaa caaggaacgg ggctcgttta tcaccagtga
                                                                    960
ggagcaggac gtgagccccc gccctgcacc tctgctgtta aacaccccag ccatcccttc
                                                                   1020
tttcaaaagg gatcctttca taggagaaca cactgaggag atacttgaag aatttggatt
                                                                   1080
cageegegaa gagatttate agettaaete agataaaate attgaaagta ataaggtaaa
                                                                   1140
agctagtoto taacttocag goccacggot caagtgaatt tgaatactgo atttacagtg
                                                                   1200
tagagtaaca cataacattg tatgcatgga aacatggagg aacagtatta cagtgtccta
                                                                   1260
ccactctaat caagaaaaga attacagact ctgattctac agtgatgatt gaattctaaa
                                                                   1320
aatggttatc attagggctt ttgatttata aaactttggg tacttatact aaattatggt
                                                                   1380
agttattctg cettecagtt tgcttgatat atttgttgat attaagatte ttgacttata
                                                                   1440
ittigaatgg gitciagiga aaaaggaatg atataticit gaagacatcg atatacatti
atttacactc ttgattctac aatgtagaaa atgaggaaat gccacaaatt gtatggtgat
1620
                                                                   1621
```

<210> 108 <211> 382 <212> PRT

<213> Homo sapien

<400> 108

Met Ala Leu Gln Gly Ile Ser Val Met Glu Leu Ser Gly Leu Ala Pro 10 Gly Pro Phe Cys Ala Met Val Leu Ala Asp Phe Gly Ala Arg Val Val 25 Arg Val Asp Arg Pro Gly Ser Arg Tyr Asp Val Ser Arg Leu Gly Arg 40 Gly Lys Arg Ser Leu Val Leu Asp Leu Lys Gln Pro Arg Gly Ala Ala 55 Val Leu Arg Arg Leu Cys Lys Arg Ser Asp Val Leu Leu Glu Pro Phe 75 Arg Arg Gly Val Met Glu Lys Leu Gln Leu Gly Pro Glu Ile Leu Gln 85 Arg Glu Asn Pro Arg Leu Ile Tyr Ala Arg Leu Ser Gly Phe Gly Gln 100 105 Ser Gly Ser Phe Cys Arg Leu Ala Gly His Asp Ile Asn Tyr Leu Ala 120 125 Leu Ser Gly Val Leu Ser Lys Ile Gly Arg Ser Gly Glu Asn Pro Tyr 135 Ala Pro Leu Asn Leu Leu Ala Asp Phe Ala Gly Gly Gly Leu Met Cys 150 155 Ala Leu Gly Ile Ile Met Ala Leu Phe Asp Arg Thr Arg Thr Asp Lys 165 170 175 Gly Gln Val Ile Asp Ala Asn Met Val Glu Gly Thr Ala Tyr Leu Ser 185 Ser Phe Leu Trp Lys Thr Gln Lys Ser Ser Leu Trp Glu Ala Pro Arg

200

Gly Gln Asn Met Leu Asp Gly Gly Ala Pro Phe Tyr Thr Thr Tyr Arg

195

WO 01/051633 PCT/US01/01574

```
220
                        215
Thr Ala Asp Gly Glu Phe Met Ala Val Gly Ala Ile Glu Pro Gln Phe
                                        235
                    230
Tyr Glu Leu Leu Ile Lys Gly Leu Gly Leu Lys Ser Asp Glu Leu Pro
                                    250
                245
Asn Gln Met Ser Met Asp Asp Trp Pro Glu Met Lys Lys Phe Ala
                                                    270
                                265
Asp Val Phe Ala Lys Lys Thr Lys Ala Glu Trp Cys Gln Ile Phe Asp
                            280
Gly Thr Asp Ala Cys Val Thr Pro Val Leu Thr Phe Glu Glu Val Val
                        295
His His Asp His Asn Lys Glu Arg Gly Ser Phe Ile Thr Ser Glu Glu
                                         315
                    310
Gln Asp Val Ser Pro Arg Pro Ala Pro Leu Leu Leu Asn Thr Pro Ala
                                     330
                325
Ile Pro Ser Phe Lys Arg Asp Pro Phe Ile Gly Glu His Thr Glu Glu
                                                     350
                                 345
Ile Leu Glu Glu Phe Gly Phe Ser Arg Glu Glu Ile Tyr Gln Leu Asn
                            360
Ser Asp Lys Ile Ile Glu Ser Asn Lys Val Lys Ala Ser Leu
                        375
                                             380
      <210> 109
      <211> 1524
      <212> DNA
      <213> Homo sapien
      <400> 109
                                                                        60
ggcacgaggc tgcgccaggg cctgagcgga ggcgggggca gcctcgccag cgggggcccc
                                                                       120
gggcctggcc atgcctcact gagccagcgc ctgcgcctct acctcgccga cagctggaac
cagtgegace tagtggetet caectgette etectgggeg tgggetgeeg getgaeeeeg
                                                                       180
ggtttgtacc acctgggccg cactgtcctc tgcatcgact tcatggtttt cacggtgcgg
                                                                       240
ctgcttcaca tcttcacggt caacaaacag ctggggccca agatcgtcat cgtgagcaag
                                                                       300
atgatgaagg acgtgttctt cttcctcttc ttcctcggcg tgtggctggt agcctatggc
                                                                       360
gtggccacgg aggggctcct gaggccacgg gacagtgact tcccaagtat cetgcgccgc
                                                                       420
gtcttctacc gtccctacct gcagatcttc gggcagattc cccaggagga catggacgtg
                                                                       480
qccctcatgg agcacagcaa ctgctcgtcg gagcccggct tctgggcaca ccctcctggg
                                                                       540
geceaggegg geacetgegt eteceagtat gecaactgge tggtggtget geteetegte
                                                                       600
atcttcctgc tcgtggccaa catcctgctg gtcaacttgc tcattgccat gttcagttac
                                                                       660
acatteggea aagtacaggg caacagegat etetactgga aggegeageg ttacegeete
                                                                       720
atcogggaat tocactoteg geologicat geologicat trategical eteccactig
                                                                       780
egectectge teaggeaatt gtgeaggega eeeeggagee eeeageegte eteeeeggee
                                                                       840
ctcgagcatt tccgggttta cctttctaag gaagccgagc ggaagctgct aacgtgggaa
                                                                       900
                                                                       960
toggtgcata aggagaactt totgotggca ogcgotaggg acaageggga gagegactee
                                                                      1020
qagcgtctga agcgcacgtc ccagaaggtg gacttggcac tgaaacagct gggacacatc
                                                                      1080
egegagtacg aacagegect gaaagtgetg gagegggagg tecageagtg tageeggte
ctggggtggg tggccgaggc cctgagccgc tctgccttgc tgcccccagg tgggccgcca
                                                                      1140
cccctgacc tgcctgggtc caaagactga gccctgctgg cggacttcaa ggagaagccc
                                                                      1200
ccacagggga ttttgctcct agagtaaggc tcatctgggc ctcggccccc gcacctggtg
                                                                      1260
gccttgtcct tgaggtgagc cccatgtcca tctgggccac tgtcaggacc acctttggga
                                                                      1320
                                                                      1380
gtgtcatcct tacaaaccac agcatgcccg gctcctccca gaaccagtcc cagcctggga
ggatcaaggc ctggatcccg ggccgttatc catctggagg ctgcagggtc cttggggtaa
                                                                      1440
                                                                      1500
cagggaccac agacccctca ccactcacag attectcaca ctggggaaat aaagccattt
                                                                      1524
cagaggaaaa aaaaaaaaaa aaaa
```

<210> 110

<211> 3410 <212> DNA <213> Homo sapien

<400> 110

gggaaccage etgeaegege tggeteeggg tgaeageege gegeetegge eaggatetga 60 gtgatgagac gtgtccccac tgaggtgccc cacagcagca ggtgttgagc atgggctgag 120 aagetggace ggeaceaaag ggetggeaga aatgggegee tggetgatte etaggeagtt 180 ggcggcagca aggaggagag gccgcagctt ctggagcaga gccgagacga agcagttctg 240 gagtgeetga aeggeeeest gageestace egeetggees actatggtes agaggetgtg 300 ggtgageege etgetgegge aceggaaage ceagetettg etggtcaace tgetaacett 360 tggcctggag gtgtgtttgg ccgcaggcat cacctatgtg ccgcctctgc tgctggaagt 420 gggggtagag gagaagttca tgaccatggt gctgggcatt ggtccagtgc tgggcctggt 480 ctgtgtcccg ctcctaggct cagccagtga ccactggcgt ggacgctatg gccgccgccg 540 gecetteate tgggeaetgt cettgggeat eetgetgage etetttetea teecaaggge 600 egget.ggeta geagggetge tgtgeeegga teecaggeee etggagetgg caetgeteat 660 cctgggcgtg gggctgctgg acttctgtgg ccaggtgtgc ttcactccac tggaggccct 720 getetetgae etetteeggg acceggacea etgtegeeag geetactetg tetatgeett 780 catgateagt cttggggget geetgggeta eeteetgeet geeattgaet gggacaeeag 840 tgccctggcc ccctacctgg gcacccagga ggagtgcctc tttggcctgc tcaccctcat 900 ettecteace tgegtageag ceacactget ggtggetgag gaggeagege tgggeeceae 960 cgagccagca gaagggctgt cggccccctc cttgtcgccc cactgctgtc catgccgggc 1020 ecgettgget tteeggaace tgggegeet getteeegg etgeaceage tgtgetgeeg 1080 catgeceege accetgegee ggetettegt ggetgagetg tgeagetgga tggcacteat 1140 gaccttcacg ctgttttaca cggatttcgt gggcgagggg ctgtaccagg gcgtgcccag 1200 agctgagccg ggcaccgagg cccggagaca ctatgatgaa ggcgttcgga tgggcagcct 1260 ggggctgttc ctgcagtgcg ccatctccct ggtcttctct ctggtcatgg accggctggt 1320 gcagcgattc ggcactcgag cagtctattt ggccagtgtg gcagctttcc ctgtggctgc 1380 cggtgccaca tgcctgtccc acagtgtggc cgtggtgaca gcttcagccg ccctcaccgg 1440 gttcaccttc tcagccctgc agatcctgcc ctacacactg gcctccctct accaccggga 1500 gaagcaggtg ttcctgccca aataccgagg ggacactgga ggtgctagca gtgaggacag 1560 cctgatgacc agcttcctgc caggccctaa gcctggagct cccttcccta atggacacgt 1620 aggtgctgga ggcagtggcc tgctcccacc tccaccegeg ctctgcgggg cctctgcctg 1680 tgatgtctcc gtacgtgtgg tggtgggtga gcccaccgag gccagggtgg ttccgggccg 1740 gggcatctgc ctggacctcg ccatcctgga tagtgccttc ctgctgtccc aggtggcccc 1800 atccctgttt atgggctcca ttgtccagct cagccagtct gtcactgcct atatggtgtc 1860 tgccgcaggc ctgggtctgg tcgccattta ctttgctaca caggtagtat ttgacaagag 1920 cgacttggcc aaatactcag cgtagaaaac ttccagcaca ttggggtgga gggcctgcct 1980 cactgggtcc cagetececg etectgttag ecceatgggg etgeeggget ggeegecagt 2040 ttctgttgct gccaaagtaa tgtggctctc tgctgccacc ctgtgctgct gaggtgcgta 2100 gctgcacage tgggggctgg ggcgtccctc tcctctctc ccagtctcta gggctgcctg 2160 actggaggcc ttccaagggg gtttcagtct ggacttatac agggaggcca gaagggctcc 2220 atgcactgga atgcggggac tctgcaggtg gattacccag gctcagggtt aacagctagc 2280 ctcctagttg agacacacct agagaagggt ttttgggagc tgaataaact cagtcacctg 2340 gtttcccatc tctaagcccc ttaacctgca gcttcgttta atgtagctct tgcatgggag 2400 tttctaggat gaaacactcc tccatgggat ttgaacatat gacttatttg taggggaaga 2460 gteetgaggg geaacacaca agaaccaggt ecceteagee caeagcactg tetititget 2520 gatccacccc cctcttacct tttatcagga tgtggcctgt tggtccttct gttgccatca 2580 cagagacaca ggcatttaaa tatttaactt atttatttaa caaagtagaa gggaatccat 2640 tgctagcttt tctgtgttgg tgtctaatat ttgggtaggg tgggggatcc ccaacaatca 2700 ggtcccctga gatagctggt cattgggctg atcattgcca gaatcttctt ctcctggggt 2760 ctggcccccc aaaatgccta acccaggacc ttggaaattc tactcatccc aaatgataat 2820 tccaaatgct gttacccaag gttagggtgt tgaaggaagg tagagggtgg ggcttcaggt 2880 ct.caacggct tocctaacca cocctcttct cttggcccag cctggttccc cccacttcca 2940 etececteta etetetetag gaetgggetg atgaaggeae tgeccaaaat ttecectace 3000 eccaacttte ecctaecece aacttteece accageteea caaccetgtt tggagetact 3060 gcaggaccag aagcacaaag tgcggtttcc caagcetttg tecatetcag eccecagagt 3120 atatetgtge ttggggaate teacacagaa acteaggage acceetgee tgagetaagg 3180

WO 01/051633 PCT/US01/01574

```
3240
gaggtettat eteteagggg gggtttaagt geegtttgea ataatgtegt ettatttatt
                                                                  3300
tagcggggtg aatattttat actgtaagtg agcaatcaga gtataatgtt tatggtgaca
                                                                  3360
3410
<210> 111
     <211> 1289
     <212> DNA
     <213> Homo sapien
     <400> 111
agecaggegt coctetgect geocacteag tggcaacace egggagetgt tttgtcettt
                                                                    60
                                                                    120
gtggagecte ageagtteee tettteagaa eteaetgeea agageeetga acaggageea
                                                                   180
ccatgcagtg cttcagcttc attaagacca tgatgatcct cttcaatttg ctcatctttc
tgtqtqgtgc agccctgttg gcagtgggca tctgggtgtc aatcgatggg gcatcctttc
                                                                   240
                                                                   300
tgaagatett egggeeactg tegteeagtg ecatgeagtt tgteaacgtg ggetaettee
                                                                    360
tcatcgcagc cggcgttgtg gtctttgctc ttggtttcct gggctgctat ggtgctaaga
                                                                    420
ctgagagcaa gtgtgccctc gtgacgttct tcttcatcct cctcctcatc ttcattgctg
                                                                    480
aggttgcage tgctgtggte geettggtgt acaccacaat ggetgagcae tteetgacgt
tgctggtagt gcctgccatc aagaaagatt atggttccca ggaagacttc actcaagtgt
                                                                   540
ggaacaccac catgaaaggg ctcaagtgct gtggcttcac caactatacg gattttgagg
                                                                    600
actcacccta cttcaaagag aacagtgcct ttcccccatt ctgttgcaat gacaacgtca
                                                                    660
                                                                    720
ccaacagc caatgaaacc tgcaccaagc aaaaggctca cgaccaaaaa gtagagggtt
getteaatea gettttgtat gacateegaa etaatgeagt caeegtgggt ggtgtggeag
                                                                    780
                                                                    840
ctggaattgg gggcctcgag ctggctgcca tgattgtgtc catgtatctg tactgcaatc
tacaataagt ccacttctgc ctctgccact actgctgcca catgggaact gtgaagaggc
                                                                    900
accetggcaa geageagtga ttgggggagg ggacaggate taacaatgte acttgggcca
                                                                    960
                                                                   1020
gaatggacct gecetttetg etecagactt ggggetagat agggaccact cettttageg
atgcctgact ttccttccat tggtgggtgg atgggtgggg ggcattccag agcctctaag
                                                                   1080
                                                                   1140
qtaqccaqtt ctqttqccca ttcccccagt ctattaaacc cttgatatgc cccctaggcc
tagtggtgat cccagtgctc tactggggga tgagagaaag gcattttata gcctgggcat
                                                                   1200
                                                                   1260
aagtgaaatc agcagagcct ctgggtggat gtgtagaagg cacttcaaaa tgcataaacc
                                                                   1289
tgttacaatg ttaaaaaaaa aaaaaaaaa
      <210> 112
      <211> 315
      <212> PRT
      <213> Homo sapien
      <400> 112
Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val Asn Lys Gln
                                  10
                5
Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys Asp Val Phe
                               25
                                                  30
           20
Phe Phe Leu Phe Phe Leu Gly Val Trp Leu Val Ala Tyr Gly Val Ala
                                              45
                           40
Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro Ser Ile Leu
                       55
Arg Arg Val Phe Tyr Arg Pro Tyr Leu Gln Ile Phe Gly Gln Ile Pro
                   70
                                      75
Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn Cys Ser Ser
                                                      95
               85
                                  90
Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala Gly Thr Cys
                                                  110
                               105
           100
Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu Val Ile Phe
                                              125
                           120
Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Met Phe
    130
                                          140
                       135
```

Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu Tyr Trp Lys 150 **1**55 Ala Glm Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg Pro Ala Leu 165 170 175 Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu Leu Arg Gln 180 185 Leu Cys Arg Arg Pro Arg Ser Pro Gln Pro Ser Ser Pro Ala Leu Glu 200 His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys Leu Leu Thr 210 215 Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg Ala Arg Asp 230 235 Lys Arg Glu Ser Asp Ser Glu Arg Leu Lys Arg Thr Ser Gln Lys Val 245 250 255 Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr Glu Gln Arg 260 265 Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg Val Leu Gly 275 280 Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro Pro Gly Gly 295 Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp 310

<210> 113

<211> 553

<212> PRT

<213> Homo sapien

<400> 113

Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala 10 Gln Leu Leu Val Asn Leu Leu Thr Phe Gly Leu Glu Val Cys Leu 25 Ala Ala Gly Ile Thr Tyr Val Pro Pro Leu Leu Glu Val Gly Val 40 Glu Glu Lys Phe Met Thr Met Val Leu Gly Ile Gly Pro Val Leu Gly 5.5 Leu Val Cys Val Pro Leu Leu Gly Ser Ala Ser Asp His Trp Arg Gly 70 75 Arg Tyr Gly Arg Arg Pro Phe Ile Trp Ala Leu Ser Leu Gly Ile 90 Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala Gly Trp Leu Ala Gly Leu 105 Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu Ala Leu Leu Ile Leu Gly 115 120 Val Gly Leu Leu Asp Phe Cys Gly Gln Val Cys Phe Thr Pro Leu Glu 130 135 140 Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg Gln Ala 150 155 Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu Gly Gly Cys Leu Gly Tyr 165 170 Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu 185 190 Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu Leu Thr Leu Ile Phe Leu 200 205 Thr Cys Val Ala Ala Thr Leu Leu Val Ala Glu Glu Ala Ala Leu Gly 215 220 Pro Thr Glu Pro Ala Glu Gly Leu Ser Ala Pro Ser Leu Ser Pro His

240

230

235

```
Cys Cys Pro Cys Arg Ala Arg Leu Ala Phe Arg Asn Leu Gly Ala Leu
                                  250
               245
Leu Pro Arg Leu His Gln Leu Cys Cys Arg Met Pro Arg Thr Leu Arg
                               265
           260
Arg Leu Phe Val Ala Glu Leu Cys Ser Trp Met Ala Leu Met Thr Phe
                           280
Thr Leu Phe Tyr Thr Asp Phe Val Gly Glu Gly Leu Tyr Gln Gly Val
                                           300
                       295
Pro Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly
                   310
                                       315
Val Arg Met Gly Ser Leu Gly Leu Phe Leu Gln Cys Ala Ile Ser Leu
                325
                                   330
Val Phe Ser Leu Val Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg
                               345
Ala Val Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala
                            360
                                               365
Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu
                        375
                                           380
Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr Leu Ala
                   390
                                       395
Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro Lys Tyr Arg Gly
                                   410
               405
Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser Leu Met Thr Ser Phe Leu
                                425
Pro Gly Pro Lys Pro Gly Ala Pro Phe Pro Asn Gly His Val Gly Ala
                            440
                                               445
Gly Gly Ser Gly Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser
                                           460
                        455
Ala Cys Asp Val Ser Val Arg Val Val Gly Glu Pro Thr Glu Ala
                    470
                                       475
Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp
               485
                                   490
Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met Gly Ser
                                505
                                                    510
Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser Ala Ala
                            520
                                                525
Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Phe Asp
                        535
Lys Ser Asp Leu Ala Lys Tyr Ser Ala
                    550
      <210> 114
      <211> 241
      <212> PRT
      <213> Homo sapien
      <400> 114
Met Gln Cys Phe Ser Phe Ile Lys Thr Met Met Ile Leu Phe Asn Leu
                                    10
Leu Ile Phe Leu Cys Gly Ala Ala Leu Leu Ala Val Gly Ile Trp Val
Ser Ile Asp Gly Ala Ser Phe Leu Lys Ile Phe Gly Pro Leu Ser Ser
Ser Ala Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly
                                            60
Val Val Val Phe Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr
```

120

180

240

300

360

366

```
Glu Ser Lys Cys Ala Leu Val Thr Phe Phe Phe Ile Leu Leu Leu Ile
                85
                                     90
Phe Ile Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr
            100
                                105
                                                     110
Met Ala Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys
        115
                            120
Asp Tyr Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met
    130
                        135
Lys Gly Leu Lys Cys Cys Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp
                    150
                                        155
Ser Pro Tyr Phe Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn
                165
                                    170
                                                         175
Asp Asn Val Thr Asn Thr Ala Asn Glu Thr Cys Thr Lys Gln Lys Ala
            180
                                185
His Asp Gln Lys Val Glu Gly Cys Phe Asn Gln Leu Leu Tyr Asp Ile
        195
                            200
Arg Thr Asn Ala Val Thr Val Gly Gly Val Ala Ala Gly Ile Gly Gly
    210
                        215
                                            220
Leu Glu Leu Ala Ala Met Ile Val Ser Met Tyr Leu Tyr Cys Asn Leu
225
                    230
                                        235
Gln
      <210> 115
      <211> 366
      <212> DNA
      <213> Homo sapien
      <400> 115
gctctttctc tcccctcctc tgaatttaat tctttcaact tgcaatttgc aaggattaca
cattleactg tgatgtatat tgtgttgcaa aaaaaaaaaa gtgtetttgt ttaaaattac
ttggtttgtg aatccatctt gctttttccc cattggaact agtcattaac ccatctctga
actggtagaa aaacatctga agagctagtc tatcagcatc tgacaggtga attggatggt
totcagaacc atttcaccca gacagcctgt ttctatcctg tttaataaat tagtttgggt
tototacatg cataacaaac cotgotocaa totgtoacat aaaagtotgt gacttgaagt
ttagtc
      <210> 116
      <211> 282
```

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> (1)...(282)

<223> n = A, T, C or G

<400> 116

acaaagatga accatttcct atattatagc aaaattaaaa tctacccgta ttctaatatt 60 gagaaatgag atnaaacaca atnttataaa gtctacttag agaagatcaa gtgacctcaa 120 agactttact attttcatat tttaagacac atgatttatc ctattttagt aacctggttc 180 atacgttaaa caaaggataa tgtgaacagc agagaggatt tgttggcaga aaatctatgt 240 toaatotnga actatotana toacagacat ttotattoot tt 282

<210> 117

<211> 305

<212> DNA

<213> Homo sapien

```
<220>
      <221> misc feature
      <222> (1)...(305)
      <223> n = A, T, C or G
      <400> 117
acacatgtcg cttcactgcc ttcttagatg cttctggtca acatanagga acagggacca
                                                                         60
tatttateet eeeteetgaa acaattgeaa aataanacaa aatatatgaa acaattgeaa
                                                                        120
aataaggcaa aatatatgaa acaacaggtc tcgagatatt ggaaatcagt caatgaagga
                                                                        180
tactgatccc tgatcactgt cctaatgcag gatgtgggaa acagatgagg tcacctctgt
                                                                        240
gactgcccca gcttactgcc tgtagagagt ttctangctg cagttcagac agggagaaat
                                                                        300
tgggt
                                                                        305
      <210> 118
      <211> 71
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(71)
      <223> n = A, T, C or G
      <400> 118
accaaggtgt ntgaatetet gaegtgggga tetetgatte eegeacaate tgagtggaaa
                                                                         60
aantcctggg t
                                                                         71
      <210> 119
      <211> 212
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(212)
      <223> n = A, T, C or G
      <400> 119
actecggttg gtgtcagcag cacgtggcat tgaacatngc aatgtggagc ccaaaccaca
                                                                         60
gaaaatgggg tgaaattggc caactttcta tnaacttatg ttggcaantt tgccaccaac
                                                                        120
agtaagctgg cccttctaat aaaagaaaat tgaaaggttt ctcactaanc ggaattaant
                                                                        180
aatggantca aganactccc aggcctcagc gt
                                                                        212
      <210> 120
      <211> 90
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(90)
      <223> n = A, T, C or G
      <400> 120
actcgttgca natcaggggc cccccagagt caccgttgca ggagtccttc tggtcttgcc
                                                                         60
ctccgccggc gcagaacatg ctggggtggt
                                                                         90
```

```
<210> 121
        <211> 018
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(218)
        <223> n = A, T, C or G
        <400> 121
 tgtanegtga anacgacaga nagggttgte aaaaatggag aaneettgaa gteattttga
                                                                           60
 gaataagatt tgctaaaaga tttggggcta aaacatggtt attgggagac atttctgaag
                                                                          120
 atathcanat agattangga atgaattcat ggttcttttg ggaattcctt tacgatngcc
                                                                          180
 ageatanact teatgtgggg atancageta coettgta
                                                                          218
       <210> 122
       <211: 171
       <212> LNA
       <213> homo sapien
       <400> 122
 taggggtgta tgcaactgta aggacaaaaa ttgagactca actggcttaa ccaataaagg
                                                                          60
 cattigttag creatggaac aggaagtogg atggtggggc atcttcagtg ctgcatgagt
                                                                         120
 caccaccccg grigggtcat ctgtgccaca ggtccctgtt gacagtgcgg t
                                                                         171
       <210> 123
       <211> 7€
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(76)
       <223> n = A, T, C or G
       <400> 123
tgtagegtga agacnacaga atggtgtgtg etgtgetate eaggaacaca tttattatea
                                                                          60
ttatcaanta ttgtgt
                                                                          76
       <210> 124
       <211> 131
       <212> DNA
      <213> Homo sapien
      <400> 124
accttteccc aaggecaatg teetgtgtge taactggeeg getgeaggae agetgeaatt
                                                                         60
caatgtgctg ggtcatatgg aggggaggag actctaaaat agccaatttt attctcttgg
                                                                        120
ttaagatttg t
                                                                        131
      <210> 125
      <211> 432
      <212> DNA
      <213> Home sapien
      <400> 125
actitateta etggetatga aatagatggt ggaaaattge gttaccaact ataccaetgg
                                                                         60
cttgaaaaag aggtgatage tetteagagg acttgtgaet tttgeteaga tgetgaagaa
                                                                        120
```

```
ctacagtctg catttggcag aaatgaagat gaatttggat taaatgagga tgctgaagat
                                                                       180
ttgcctcacc aaacaaagt gaaacaactg agagaaaatt ttcaggaaaa aagacagtgg
                                                                        240
ctcttgaagt atcagtcact tttgagaatg tttcttagtt actgcatact tcatggatcc
                                                                        300
catggtgggg gtcttgcatc tgtaagaatg gaattgattt tgcttttgca agaatctcag
                                                                        360
caggaaacat cagaaccact attttctagc cctctgtcag agcaaacctc agtgcctctc
                                                                        420
                                                                        432
ctctttgctt gt
      <210> 126
      <211> 112
      <212> DNA
      <213> Homo sapien
      <400> 126
acacaacttg aatagtaaaa tagaaactga gctgaaattt ctaattcact ttctaaccat
                                                                         60
agtaagaatg atatttcccc ccagggatca ccaaatattt ataaaaattt gt
                                                                        112
      <210> 127
      <211> 54
      <212> DNA
      <213> Homo sapien
      <400> 127
accacgaaac cacaaacaag atggaagcat caatccactt gccaagcaca gcag
                                                                         54
      <210> 128
      <211> 323
      <212> DNA
      <213> Homo sapien
      <400> 128
acctcattag taattgtttt gttgtttcat ttttttctaa tgtctcccct ctaccagctc
                                                                         60
acctgagata acagaatgaa aatggaagga cagccagatt teteetttge tetetgetea
                                                                        120
ttctctctga agtctaggtt acccattttg gggacccatt ataggcaata aacacagttc
                                                                        180
ccaaagcatt tggacagttt cttgttgtgt tttagaatgg ttttcctttt tcttagcctt
                                                                        240
ttcctgcaaa aggctcactc agtcccttgc ttgctcagtg gactgggctc cccagggcct
                                                                        300
                                                                        323
aggetgeett etttteeatg tee
      <210> 129
      <211> 192
      <212> DNA
      <213> Homo sapien
      <220>
       <221> misc feature
       <222> (1)...(192)
      \langle 223 \rangle n = A,T,C or G
       <400> 129
acatacatgt gtgtatattt ttaaatatca cttttgtatc actctgactt tttagcatac
                                                                         60
                                                                        120
tgaaaacaca ctaacataat ttntgtgaac catgatcaga tacaacccaa atcattcatc
tagcacattc atctgtgata naaagatagg tgagtttcat ttccttcacg ttggccaatg
                                                                        180
                                                                        192
gataaacaaa gt
       <210> 130
       <211> 362
       <212> DNA
       <213> Homo sapien
```

```
<220>
        <221> misc feature
        <222> (1)...(362)
        <223> n = A, T, C or G
        <400> 130
 ccctttttta tggaatgagt agactgtatg tttgaanatt tanccacaac ctctttgaca
                                                                           60
 tataatgacg caacaaaaag gtgctgttta gtcctatggt tcagtttatg cccctgacaa
                                                                          120
 gtttccattg tgttttgccg atcttctggc taatcgtggt atcctccatg ttattagtaa
                                                                          180
 ttotgtatto cattttgtta acgootggta gatgtaacet gotangaggo taactttata
                                                                          240
 straittaaa agetettatt ttgtggteat taaaatggea atttatgtge ageaetttat
                                                                         300
 tgcagcagga agcacgtgtg ggttggttgt aaagctcttt gctaatctta aaaagtaatg
                                                                         360
 gą
                                                                          362
       <210> 131
       <211> 332
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(332)
       <223> n = A, T, C or G
       <400> 131
 ctititgaaa gatcgtgtcc actcctgtgg acatcttgtt ttaatggagt ttcccatgca
                                                                          60
 gtangactgg tatggttgca gctgtccaga taaaaacatt tgaagagctc caaaatgaga
                                                                         120
gtteteceag gttegeeetg etgetecaag teteageage ageetetttt aggaggeate
                                                                         180
ttctgaacta gattaaggca gcttgtaaat ctgatgtgat ttggtttatt atccaactaa
                                                                         240
cttccatctg ttatcactgg agaaagccca gactccccan gacnggtacg gattgtgggc
                                                                         300
atanaaggat tgggtgaagc tggcgttgtg gt
                                                                         332
      <210> 132
      <211> 322
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (322)
      <223> n = A, T, C or G
      <400> 132
actittgcca tittgtatat ataaacaatc tigggacatt ciccigaaaa ciaggigtcc
agtggctaag agaactegat ttcaagcaat tetgaaagga aaaccagcat gacacagaat
                                                                         60
                                                                        120
ctcaaattcc caaacagggg ctctgtggga aaaatgaggg aggacctttg tatctcgggt
                                                                        180
tttagcaagt taaaatgaan atgacaggaa aggcttattt atcaacaaag agaagagttg
                                                                        240
ggatgettet aaaaaaaact ttggtagaga aaataggaat getnaateet agggaageet
                                                                        300
gtaacaatct acaattggtc ca
                                                                        322
      <210> 133
      <211> 278
      <212> DNA
      <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(278)
```

WO 01/051633 PCT/US01/01574

```
<223> n = A, T, C or G
      <400> 133
acaagcette acaagtttaa etaaattggg attaatettt etgtanttat etgeataatt
                                                                         60
cttgtttttc tttccatctg gctcctgggt tgacaatttg tggaaacaac tctattgcta
                                                                         120
                                                                         180
ctatttaaaa aaaatcacaa atctttccct ttaagctatg ttnaattcaa actattcctg
                                                                         240
ctattcctgt tttgtcaaag aaattatatt tttcaaaata tgtntatttg tttgatgggt
                                                                         278
cccacqaaac actaataaaa accacagaga ccagcctg
      <210> 134
      <211> 121
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(121)
      <223> n = A, T, C or G
      <400> 134
gtttanaaaa cttgtttagc tccatagagg aaagaatgtt aaactttgta ttttaaaaca
                                                                          60
tgattctctg aggttaaact tggttttcaa atgttatttt tacttgtatt ttgcttttgg
                                                                         120
                                                                         121
      <210> 135
      <211> 350
       <212> DNA
      <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(350)
       \langle 223 \rangle n = A, T, C \text{ or } G
       <400> 135
                                                                          60
acttanaacc atgcctagca catcagaatc cctcaaagaa catcagtata atcctatacc
atancaagtg gtgactggtt aagcgtgcga caaaggtcag ctggcacatt acttgtgtgc
                                                                         120
aaacttgata cttttgttct aagtaggaac tagtatacag tncctaggan tggtactcca
                                                                         180
                                                                         240
gggtgcccc caactcctgc agccgctcct ctgtgccagn ccctgnaagg aactttcgct
ccacctcaat caagccctgg gccatgctac ctgcaattgg ctgaacaaac gtttgctgag
                                                                         300
                                                                         350
ttcccaagga tgcaaagcct ggtgctcaac tcctggggcg tcaactcagt
       <210> 136
       <211> 399
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1) ... (399)
       <223> n = A, T, C \text{ or } G
       <400> 136
 tgtaccgtga agacgacaga agttgcatgg cagggacagg gcagggccga ggccagggtt
                                                                           60
gctgtgattg tatccgaata ntcctcgtga gaaaagataa tgagatgacg tgagcagcct
                                                                          120
gcagacttgt gtctgccttc aanaagccag acaggaaggc cctgcctgcc ttggctctga
                                                                          180
                                                                          240
 cctggcggcc agccagccag ccacaggtgg gcttcttcct tttgtggtga caacnccaag
 aaaactgcag aggcccaggg tcaggtgtna gtgggtangt gaccataaaa caccaggtgc
                                                                          300
```

```
torcuggaac cogggeaaag gecateceea estacageea geatgeceae tggegtgatg
                                                                          360
  ggracagang gatgaagcag ccagnigite igeigigit
                                                                          399
        1210> 137
       <211> 165
        3212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(165)
       \langle 223 \rangle n = A, T, C or G
       <400> 137
 actggtgtgg tngggggtga tgctggtggt anaagttgan gtgacttcan gatggtgtgt
                                                                          60
 ggaggaagtg tgtgaacgta gggatgtaga ngttttggcc gtgctaaatg agcttcggga
                                                                         120
 ttggctggtc ccactggtgg tcactgtcat tggtggggtt cctgt
                                                                         165
       <210> 138
       <211> 338
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(338)
       <223> n = A, T, C or G
       <400> 138
actcactgga atgccacatt cacaacagaa tcagaggtet gtgaaaacat taatggetee
                                                                         60
ttaacttctc cagtaagaat cagggacttg aaatggaaac gttaacagcc acatgcccaa
                                                                        120
tgctgggcag tctcccatgc cttccacagt gaaagggctt gagaaaaatc acatccaatg
                                                                        180
toatqtgttt ccagccacac caaaaggtgc ttggggtgga gggctggggg catananggt
                                                                        240
cangeeteag gaageeteaa gtteeattea getttgeeae tgtacattee ceatntttaa
                                                                        300
addaaactgat gcctttttt tttttttttt taaaattc
                                                                        338
      <210> 139
      <211> 382
      <212> DNA
      <213> Homo sapien
      <400> 139
gggaatcttg gtttttggca tctggtttgc ctatagccga ggccactttg acagaacaaa
                                                                         60
gaaagggact tegagtaaga aggtgattta cagecageet agtgeeegaa gtgaaggaga
                                                                        120
Attraaacag acetegteat teetggtgtg ageetggteg geteaeegee tateatetge
                                                                        180
atttgcctta ctcaggtgct accggactct ggcccctgat gtctgtagtt tcacaggatg
                                                                        240
cettatttgt ettetacace ecacagggee ecetacttet teggatgtgt ttttaataat
                                                                        300
gteagetatg tgeeceatee teetteatge ecteecteec ttteetacea etgetgagtg
                                                                        360
qcctggaact tgtttaaagt gt
                                                                        382
      <210> 140
     <211> 200
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(200)
```

```
<223> n = A, T, C or G
      <400> 140
accaaanctt ctttctgttg tgttngattt tactataggg gtttngcttn ttctaaanat
                                                                         60
acttttcatt taacancttt tgttaagtgt caggctgcac tttgctccat anaattattg
                                                                        120
ttttcacatt tcaacttgta tgtgtttgtc tcttanagca ttggtgaaat cacatatttt
                                                                        180
                                                                        200
atattcagca taaaggagaa
      <210> 141
      <211> 335
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(335)
      \langle 223 \rangle n = A,T,C or G
      <400> 141
actttatttt caaaacactc atatgttgca aaaaacacat agaaaaataa agtttggtgg
                                                                          60
gggtgctgac taaacttcaa gtcacagact tttatgtgac agattggagc agggtttgtt
                                                                         120
atgcatgtag agaacccaaa ctaatttatt aaacaggata gaaacaggct gtctgggtga
                                                                         180
aatggttctg agaaccatcc aattcacctg tcagatgctg atanactagc tcttcagatg
                                                                         240
tttttctacc agttcagaga tnggttaatg actanttcca atggggaaaa agcaagatgg
                                                                         300
                                                                         335
attcacaaac caagtaattt taaacaaaga cactt
      <210> 142
      <211> 459
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(459)
      <223> n = A, T, C \text{ or } G
       <400> 142
accaggttaa tattgccaca tatatccttt ccaattgcgg gctaaacaga cgtgtattta
                                                                          60
gggttgttta aagacaaccc agcttaatat caagagaaat tgtgaccttt catggagtat
                                                                         120
ctgatggaga aaacactgag ttttgacaaa tcttatttta ttcagatagc agtctgatca
                                                                         180
cacatggtcc aacaacactc aaataataaa tcaaatatna tcagatgtta aagattggtc
                                                                         240
ttcaaacatc atagccaatg atgccccgct tgcctataat ctctccgaca taaaaccaca
                                                                         300
tcaacacctc agtggccacc aaaccattca gcacagcttc cttaactgtg agctgtttga
                                                                         360
agctaccagt ctgagcacta ttgactatnt ttttcangct ctgaatagct ctagggatct
                                                                         420
                                                                         459
cagcangggt gggaggaacc agctcaacct tggcgtant
       <210> 143
       <211> 140
       <212> DNA
       <213> Homo sapien
       <400> 143
acattteett ecaecaagte aggaeteetg gettetgtgg gagttettat eacetgaggg
                                                                          60
aaatccaaac agteteteet agaaaggaat agtgteacca acceeaccca tetecetgag
                                                                         120
                                                                         140
accatccgac ttccctgtgt
       <210> 144
       <211> 164
```

```
<212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1) ... (164)
       <223> n = A, T, C or G
       <400> 144
 acticagtaa caacatacaa taacaacatt aagtgtatat tgccatcttt gtcattttct
                                                                          60
 atctatacca etetecette tgaaaacaan aatcactane caatcactta tacaaatttg
                                                                         120
 aggcaattaa tocatatttg ttttcaataa ggaaaaaaag atgt
                                                                         164
       <210> 145
       <211> 303
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(303)
       <223> n = A, T, C or G
      <400> 145
acqtagacca tccaactttg tatttgtaat ggcaaacatc cagnagcaat tcctaaacaa
                                                                         60
actggagggt atttataccc aattatccca ttcattaaca tgccctcctc ctcaggctat
                                                                         120
gcaggacage tatcataagt eggeecagge atceagatae taceatttgt ataaaettea
                                                                        180
gtaggqgagt ccatccaagt gacaggtcta atcaaaggag gaaatggaac ataagcccag
                                                                         240
tagtaaaatn ttgcttagct gaaacagcca caaaagactt accgccgtgg tgattaccat
                                                                        300
caa
                                                                        303
      <210> 146
      <211> 327
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(327)
      <223> n = A, T, C or G
      <400> 146
actgcagctc aattagaagt ggtctctgac tttcatcanc ttctccctgg gctccatgac
                                                                         60
actggcctgg agtgactcat tgctctggtt ggttgagaga gctcctttgc caacaggcct
                                                                        120
ccaagtcagg getgggattt gttteettte cacattetag caacaatatg etggecaett
                                                                        180
cctgaacagg gagggtggga ggagccagca tggaacaagc tgccactttc taaagtagcc
                                                                        240
agacttgccc ctgggcctgt cacacctact gatgaccttc tgtgcctgca ggatggaatg
                                                                        300
taggggtgag ctgtgtgact ctatggt
                                                                        327
     <210> 147
     <211> 173
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(173)
     <223> n = A,T,C or G
```

```
<400> 147
acattgtttt tttgagataa agcattgana gagctctcct taacgtgaca caatggaagg
                                                                         60
actggaacac atacccacat ctttgttctg agggataatt ttctgataaa gtcttgctgt
                                                                        120
                                                                        173
atattcaagc acatatgtta tatattattc agttccatgt ttatagccta gtt
      <210> 148
      <211> 477
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(477)
      <223> n = A, T, C or G
      <400> 148
acaaccactt tatctcatcg aatttttaac ccaaactcac tcactgtgcc tttctatcct
                                                                          60
                                                                         120
atgggatata ttatttgatg ctccatttca tcacacatat atgaataata cactcatact
gecetactae etgetgeaat aateacatte eetteetgte etgaeeetga agecattggg
                                                                         180
gtggtcctag tggccatcag tccangcctg caccttgagc ccttgagctc cattgctcac
                                                                         240
nccancecae etcacegace ecatectett acacagetae etcettgete tetaaceeca
                                                                         300
tagattatnt ccaaattcag tcaattaagt tactattaac actctacccg acatgtccag
                                                                         360
caccactggt aageettete cagecaacae acacacaea acaencaeac acacacatat
                                                                         420
ccaggcacag gctacctcat cttcacaatc acccctttaa ttaccatgct atggtgg
                                                                         477
       <210> 149
       <211> 207
       <212> DNA
       <213> Homo sapien
       <400> 149
                                                                          60
acagttgtat tataatatca agaaataaac ttgcaatgag agcatttaag agggaagaac
                                                                         120
taacgtattt tagagagcca aggaaggttt ctgtggggag tgggatgtaa ggtggggcct
                                                                         180
gatgataaat aagagtcagc caggtaagtg ggtggtgtgg tatgggcaca gtgaagaaca
                                                                         207
tttcaggcag agggaacagc agtgaaa
       <210> 150
       <211> 111
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(111)
       <223> n = A, T, C \text{ or } G
       <400> 150
 accttgattt cattgctgct ctgatggaaa cccaactatc taatttagct aaaacatggg
                                                                          60
                                                                         111
 cacttaaatg tggtcagtgt ttggacttgt taactantgg catctttggg t
       <210> 151
       <211> 196
       <212> DNA
       <213> Homo sapien
       <400> 151
 agegeggeag gteatattga acattecaga tacetateat tactegatge tgttgataae
```

```
aggaagatgg ctttgaactc agggtcacca ccagctattg gaccttacta tgaaaaccat
                                                                        120
 ggataccaac cggaaaaccc ctatcccgca cagcccactg tggtccccac tgtctacgag
                                                                        180
 gtgdatddgg dtdagt
                                                                        196
       <210> 152
       <211> 132
       <212> DNA
       <213> Homo sapien
       <400> 152
 acageaettt cacatgtaag aagggagaaa tteetaaatg taggagaaag ataacagaae
                                                                         60
 sticecetti teatetagig giggaaaeet gaigettiai giigaeagga alagaaeeag
                                                                        120
 gagggagttt gt
                                                                        132
       <210> 153
       <211> 285
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(285)
       <223> n = A, T, C or G
       <400> 153
acaanaccca nganaggcca ctggccgtgg tgtcatggcc tccaaacatg aaagtgtcag
                                                                        60
cttctgctct tatgtcctca tctgacaact ctttaccatt tttatcctcg ctcagcagga
                                                                        120
gcacatcaat aaagtccaaa gtcttggact tggccttggc ttggaggaag tcatcaacac
                                                                       180
cctggctagt gagggtgcgg cgccgctcct ggatgacggc atctgtgaag tcgtgcacca
                                                                       240
gtctgcaggc cctgtggaag cgccgtccac acggagtnag gaatt
                                                                       285
      <210> 154
      <211> 333
      <212> DNA
      <213> Homo sapien
      <400> 154
accacagtee tgttgggcca gggetteatg accetttetg tgaaaageea tattateace
                                                                        60
accccaaatt tttccttaaa tatctttaac tgaaggggtc agcctcttga ctgcaaagac
                                                                       120
cctaagccgg ttacacagct aactcccact ggccctgatt tgtgaaattg ctgctgcctg
                                                                       180
attggcacag gagtcgaagg tgttcagctc ccctcctccg tggaacgaga ctctgatttg
                                                                       240
agtttcacaa attctcgggc cacctcgtca ttgctcctct gaaataaaat ccggagaatg
                                                                       300
qtcaggcctg tctcatccat atggatcttc cgg
                                                                       333
      <210> 155
      <211> 308
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(308)
      <223> n = A, T, C or G
      <400> 155
actggaaata ataaaaccca catcacagtg ttgtgtcaaa gatcatcagg gcatggatgg
                                                                        60
gaaagtgott tgggaactgt aaagtgoota acacatgato gatgattttt gttataatat
                                                                       120
tigaatcacg gigcatacaa actolocigo oigolocico igggooccag occoagocco
                                                                       180
```

```
240
atcacagete aetgetetgt teatecagge ecageatgta gtggetgatt ettettgget
                                                                        300
qcttttaqcc tccanaaqtt tctctgaagc caaccaaacc tctangtgta aggcatgctg
                                                                        308
gccctggt
      <210> 156
      <211> 295
      <212> DNA
      <213> Homo sapien
      <400> 156
accttgctcg gtgcttggaa catattagga actcaaaata tgagatgata acagtgccta
                                                                         60
ttattgatta ctgagagaac tgttagacat ttagttgaag attttctaca caggaactga
                                                                        120
gaataggaga ttatgtttgg ccctcatatt ctctcctatc ctccttgcct cattctatgt
                                                                        180
                                                                        240
ctaatatatt ctcaatcaaa taaggttagc ataatcagga aatcgaccaa ataccaatat
                                                                        295
aaaaccagat gtctatcctt aagattttca aatagaaaac aaattaacag actat
      <210> 157
      <211> 126
      <212> DNA
      <213> Homo sapien
      <400> 157
                                                                         60
acaaqtttaa ataqtqctqt cactgtgcat gtgctgaaat gtgaaatcca ccacatttct
                                                                        120
gaagagcaaa acaaattotg toatgtaato totatottgg gtogtgggta tatotgtooc
                                                                        126
      <210> 158
      <211> 442
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(442)
      \langle 223 \rangle n = A, T, C or G
      <400> 158
acceactggt cttggaaaca cccatcctta atacgatgat ttttctgtcg tgtgaaaatg
                                                                         60
aanccagcag getgeeecta gteagteett eetteeagag aaaaagagat ttgagaaagt
                                                                         120
geetgggtaa tteaceatta attteeteee ecaaactete tgagtettee ettaatatt
                                                                         180
ctggtggttc tgaccaaagc aggtcatggt ttgttgagca tttggggatcc cagtgaagta
                                                                         240
                                                                         300
natgtttgta gccttgcata cttagccctt cccacgcaca aacggagtgg cagagtggtg
ccaaccetgt tttcccagtc cacgtagaca gattcacagt gcggaattct ggaagctgga
                                                                         360
nacagacggg ctctttgcag agccgggact ctgagangga catgagggcc tctgcctctg
                                                                         420
                                                                         442
tgttcattct ctgatgtcct gt
      <210> 159
      <211> 498
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(498)
      <223> n = A, T, C or G
      <400> 159
acttccaggt aacgttgttg tttccgttga gcctgaactg atgggtgacg ttgtaggttc
```

```
tocascaaga actgaggttg cagagogggt agggaagagt gctgttccag ttgcacctgg
                                                                         120
 getgetgtgg actgttgttg attecteact acggcccaag gttgtggaac tggcanaaag
                                                                         180
 atgtgttgtt gganttgage tegggegget gtggtaggtt gtgggetett caacagggge
                                                                         240
 tgotgragtg cogggangtg aangtgttgt gtcacttgag cttggccage totggaaagt
                                                                         300
 antanattet teetgaagge cagegettgt ggagetggea ngggteantg ttgtgtgtaa
                                                                         360
 ogaabcagtg ctgctgtggg tgggtgtana tcctccacaa agcctgaagt tatggtgtcn
                                                                         420
 teaggtaana atgtggttte agtgteeetg ggengetgtg gaaggttgta nattgteace
                                                                        480
 aagggaataa gctgtggt
                                                                        498
       <210> 160
       <211> 380
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(380)
       <223> n = A,T,C or G
       <400> 160
 acctgcatcc agetteectg ccaaactcac aaggagacat caacetctag acagggaaac
                                                                         60
 agetteagga taetteeagg agacagagee accageagea aaacaaatat teeeatgeet
                                                                        120
 ggagcatggc atagaggaag ctganaaatg tggggtctga ggaagccatt tgagtctggc
                                                                        180
cactagacat etcatcagee acttgtgtga agagatgeee catgaceeca gatgeetete
                                                                        240
ccaccettae etceatetea cacacttgag etttecacte tgtataatte taacateetg
gagaaaaatg gcagtttgac cgaacctgtt cacaacggta gaggctgatt tctaacgaaa
                                                                        300
                                                                        360
cttgtagaat gaageetgga
                                                                        380
       <210> 161
       <211> 114
       <212> DNA
      <213> Homo sapien
      <400> 161
actecacate ecetetgage aggeggttgt egtteaaggt gtatttggee ttgeetgtea
cactgtccac tggcccctta tccacttggt gcttaatccc tcgaaagagc atgt
                                                                       60
                                                                       114
      <210> 162
      <211> 177
      <212> DNA
      <213> Homo sapien
      <400> 162
actttetgaa tegaateaaa tgataettag tgtagtttta atateeteat atatateaaa
                                                                       60
gttttactac tctgataatt ttgtaaacca ggtaaccaga acatccagtc atacagcttt
                                                                       120
tagtgatata taacttggca ataacccagt ctggtgatac ataaaactac tcactgt
                                                                       177
      <210> 163
      <211> 137
      <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(137)
     <223> n = A, T, C or G
     <400> 163
```

PCT/US01/01574

```
catttataca gacaggcgtg aagacattca cgacaaaaac gcgaaattct atcccgtgac
                                                                         60
canagaagge agetaegget actectaeat cetggegtgg gtggeetteg eetgeacett
                                                                        120
                                                                        137
catcagcggc atgatgt
      <210> 164
      <211> 469
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(469)
      <223> n = A, T, C or G
      <400> 164
                                                                         60
cttatcacaa tgaatgttct cctgggcagc gttgtgatct ttgccacctt cgtgacttta
                                                                        120
tgcaatgcat catgctattt catacctaat gagggagttc caggagattc aaccaggaaa
                                                                        180
tgcatggatc tcaaaggaaa caaacaccca ataaactcgg agtggcagac tgacaactgt
                                                                        240
gagacatgca cttgctacga aacagaaatt tcatgttgca cccttgtttc tacacctgtg
                                                                        300
ggttatgaca aagacaactg ccaaagaatc ttcaagaagg aggactgcaa gtatatcgtg
                                                                        360
gtggagaaga aggacccaaa aaagacctgt tctgtcagtg aatggataat ctaatgtgct
                                                                        420
tctagtaggc acagggctcc caggccaggc ctcattctcc tctggcctct aatagtcaat
                                                                        469
gattgtgtag ccatgcctat cagtaaaaag atntttgagc aaacacttt
      <210> 165
      <211> 195
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(195)
      <223> n = A, T, C \text{ or } G
      <400> 165
acagttttt atanatatcg acattgccgg cacttgtgtt cagtttcata aagctggtgg
                                                                         60
                                                                        120
atcogotyto atcoactatt cottygotay agtaaaaatt attottatay cocatytooc
                                                                        180
tgcaggccgc ccgcccgtag ttctcgttcc agtcgtcttg gcacacaggg tgccaggact
                                                                        195
tcctctgaga tgagt
      <210> 166
      <211> 383
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(383)
      <223> n = A, T, C or G
       <400> 166
                                                                          60
 acatettagt agtgtggcae atcaggggge catcagggte acagteaete atageetege
                                                                         120
 cgaggtcgga gtccacacca ccggtgtagg tgtgctcaat cttgggcttg gcgcccacct
                                                                         180
 ttggagaagg gatatgctgc acacacatgt ccacaaagcc tgtgaactcg ccaaagaatt
                                                                         240
 tttgcagacc agcctgagca aggggcggat gttcagcttc agctcctcct tcgtcaggtg
                                                                         300
 gatgccaacc tegtetangg teegtgggaa getggtgtee aenteaceta caacetggge
                                                                         360
 gangatetta taaagagget eenagataaa etecaegaaa ettetetggg agetgetagt
                                                                         383
 nggggccttt ttggtgaact ttc
```

```
<210> 167
        <211> 247
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc feature
        <222> (1)...(247)
        <223> n = A,T,C or G
       <400> 167
 acagagecag acettggeca taaatgaane agagattaag actaaacece aagteganat
                                                                          60
 tggagcagaa actggagcaa gaagtgggcc tggggctgaa gtagagacca aggccactgc
                                                                        120
 tatanecata cacagageca acteteagge caaggenatg gttggggeag anecagagae
                                                                        180
 tcaatctgan tccaaagtgg tggctggaac actggtcatg acanaggcag tgactctgac
                                                                        240
 tgangtc
                                                                         247
       <210> 168
       <211> 273
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(273)
       <223> n = A, T, C or G
       <400> 168
acttctaagt tttctagaag tggaaggatt gtantcatcc tgaaaatggg tttacttcaa
                                                                         60
aatccctcan cottgttctt cacnactgtc tatactgana gtgtcatgtt tccacaaagg
                                                                        120
getgacacet gageetgnat tttcacteat ecetgagaag ecettteeag tagggtggge
                                                                        180
Batteceaae tteettgeea caagetteee aggetttete eeetggaaaa eteeagettg
                                                                        240
agteccagat acacteatgg getgeeetgg gea
                                                                        273
       <210> 169
       <211> 431
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(431)
      <223> n = A, T, C or G
      <400> 169
acageettgg etteeccaaa etecacagte teagtgeaga aagateatet tecageagte
                                                                        60
ageteagace agggteaaag gatgtgacat caacagttte tggttteaga acaggtteta
                                                                       120
ctactgtcaa atgacccccc atacttcctc aaaggctgtg gtaagttttg cacaggtgag
                                                                       180
ggcagcagaa agggggtant tactgatgga caccatcttc tctgtatact ccacactgac
                                                                       240
cttgccatgg gcaaaggccc ctaccacaaa aacaatagga tcactgctgg gcaccagctc
                                                                       300
acgcacatca ctgacaaccg ggatggaaaa agaantgcca actttcatac atccaactgg
                                                                       360
aaaqtgatct gatactggat tettaattac etteaaaage ttetggggge cateagetge
                                                                       420
togaacactg a
                                                                       431
      <210> 170
      <211> 266
      <212> DNA
```

```
<213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(266)
      <223> n = A, T, C or G
      <400> 170
                                                                      60
acctgtgggc tgggctgtta tgcctgtgcc ggctgctgaa agggagttca gaggtggagc
                                                                     120
tcaaqqaqct ctgcaggcat tttgccaanc ctctccanag canagggagc aacctacact
ccccgctaga aagacaccag attggagtcc tgggaggggg agttggggtg ggcatttgat
                                                                     180
gtatacttgt cacctgaatg aangagccag agaggaanga gacgaanatg anattggcct
                                                                     240
                                                                      266
tcaaagctag gggtctggca ggtgga
      <210> 171
      <211> 1248
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(1248)
      <223> n = A, T, C or G
      <400> 171
ggcagccaaa tcataaacgg cgaggactgc agcccgcact cgcagccctg gcaggcggca
                                                                       60
ctggtcatgg aaaacgaatt gttctgctcg ggcgtcctgg tgcatccgca gtgggtgctg
                                                                      120
tcagccgcac actgtttcca gaagtgagtg cagagctcct acaccatcgg gctgggcctg
                                                                      180
                                                                      240
cacagtettq aggecqacca agagecaggg agecagatgg tggaggecag ceteteegta
cggcacccag agtacaacag accettgete getaacgace teatgeteat caagttggae
                                                                      300
quatccgtgt ccgagtctga caccatccgg agcatcagca ttgcttcgca gtgccctacc
                                                                      360
geggggaact cttgcctcgt ttctggctgg ggtctgctgg cgaacggcag aatgcctacc
                                                                      420
gtgctgcagt gcgtgaacgt gtcggtggtg tctgaggagg tctgcagtaa gctctatqac
                                                                      480
ccgctgtacc accccagcat gttctgcgcc ggcggagggc aagaccagaa ggactcctgc
                                                                      540
aacggtgact ctggggggcc cctgatctgc aacgggtact tgcagggcct tgtgtctttc
                                                                      600
ggaaaagccc cgtgtggcca agttggcgtg ccaggtgtct acaccaacct ctgcaaattc
                                                                      660
actgagtgga tagagaaaac cgtccaggcc agttaactct gggggactggg aacccatgaa
                                                                      720
                                                                      780
attgacccc aaatacatcc tgcggaagga attcaggaat atctgttccc agcccctcct
ccctcaggcc caggagtcca ggccccagc ccctcctccc tcaaaccaag ggtacagatc
                                                                      840
                                                                      900
cocagococt cotocotcag accoaggagt coagacococ cagococtco tocotcagac
                                                                      960
ccaggagtcc agcccctcct ccctcagacc caggagtcca gaccccccag cccctcctcc
ctcagaccca ggggtccagg cccccaaccc ctcctccctc agactcagag gtccaagccc
                                                                     1020
ccaaccente attecceaga eccagaggte caggteccag eccetentee etcagaceca
                                                                     1080
                                                                     1140
qcqqtccaat qccacctaga ctntccctgt acacagtgcc cccttgtggc acgttgaccc
aaccttacca gttggttttt catttttngt ccctttcccc tagatccaga aataaagttt
                                                                     1200
                                                                     1248
<210> 172
      <211> 159
      <212> PRT
      <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1)...(159)
      <223> Xaa = Any Amino Acid
      <400> 172
```

```
Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro
                                     10
 Lau Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser
             20
                                 25
 Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr
                             40
 Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly
                         55
 Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu
                     70
                                        75
 Gio Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe
                 85
                                     90
 Cys Ala Gly Gly Gly Gln Kaa Gln Kaa Asp Ser Cys Asn Gly Asp Ser
                                105
 Gly Gly Fre Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe
         115
                             120
 Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn
                        135
                                            140
 Leu Cys lys Pne Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
 145
                     150
       <210 - 173
       <2115 1265
       <212> UNA
       <213> Homo sapien
       <220>
      <221> misc_feature
       <222> (1)...(1265)
      <223> n = A,T,C or G
      <400> 173
ggcagcccgc actcgcagcc ctggcaggcg gcactggtca tggaaaacga attgttctgc
                                                                        60
togggegtee tggtgeatee geagtgggtg etgteageeg caeactgttt ecagaactee
                                                                       120
tacaccatcg ggctgggcct gcacagtctt gaggccgacc aagagccagg gagccagatg
                                                                       180
gtggaggcca gcctctccgt acggcaccca gagtacaaca gacccttgct cgctaacgac
                                                                       240
ctcatgctca tcaagttgga cgaatccgtg tccgagtctg acaccatccg gagcatcagc
                                                                       300
attgcttcgc agtgccctac cgcggggaac tcttgcctcg tttctggctg gggtctgctg
                                                                       360
gcgaacggtg agctcacggg tgtgtgtctg ccctcttcaa ggaggtcctc tgcccagtcg
                                                                       420
cgggggctga cccagagete tgcgtcccag gcagaatgee taccgtgctg cagtgcgtga
                                                                       480
acgtgtcggt ggtgtctgag gaggtctgca gtaagctcta tgacccgctg taccacccca
                                                                       540
gcatgttetg egeeggegga gggeaagaee agaaggaete etgeaaeggt gaetetgggg
                                                                       600
ggcccctgat ctgcaacggg tacttgcagg gccttgtgtc tttcggaaaa gccccgtgtg
                                                                       660
gccaagttgg cgtgccaggt gtctacacca acctctgcaa attcactgag tggatagaga
                                                                       720
aaaccgtcca ggccagttaa ctctggggac tgggaaccca tgaaattgac ccccaaatac
                                                                       780
atcctgcgga aggaattcag gaatatctgt tcccagcccc tcctcctca ggcccaggag
                                                                       840
tocaggeecc cageceetee teeetcaaac caagggtaca gateeccage eecteetee
                                                                       900
teagacecag gagtecagae ececeagece etecteete agacecagga gtecagece
                                                                       960
tecteentea gacceaggag tecagaceee ecageeeete eteceteaga eccaggggtt
                                                                      1020
gaggeeecca acceetecte etteagagte agaggteeaa geeeccaace ectegtteee
                                                                      1080
cagacccaga ggtnnaggte ccagccccte tteentcaga cccagnggte caatgccace
                                                                      1140
tagattttcc ctgnacacag tgcccccttg tggnangttg acccaacctt accagttggt
                                                                      1200
ttttcatttt tngtcccttt cccctagatc cagaaataaa gtttaagaga ngngcaaaaa
                                                                      1260
aaaaa
                                                                      1265
      <210> 174
```

BNSDOCE - WC- - 01516/3A3 TAS

<211> 1459 <212> DNA

```
<213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(1459)
      <223> n = A, T, C or G
      <400> 174
                                                                        60
ggtcagccgc acactgtttc cagaagtgag tgcagagctc ctacaccatc gggctgggcc
                                                                       120
tgcacagtct tgaggccgac caagagccag ggagccagat ggtggaggcc agcctctccg
                                                                       180
tacqqcaccc agagtacaac agacccttgc tcgctaacga cctcatgctc atcaagttgg
acgaatccgt gtccgagtct gacaccatcc ggagcatcag cattgcttcg cagtgcccta
                                                                       240
                                                                       300
ccgcggggaa ctcttgcctc gtttctggct ggggtctgct ggcgaacggt gagctcacgg
gtgtgtct gccctcttca aggaggtcct ctgcccagtc gcgggggctg acccagagct
                                                                       360
ctgcgtccca ggcagaatgc ctaccgtgct gcagtgcgtg aacgtgtcgg tggtgtctga
                                                                        420
ngaggtetge antaagetet atgaceeget gtaceaeece ancatgttet gegeeggegg
                                                                        480
agggcaagac cagaaggact cctgcaacgt gagagaggg aaaggggagg gcaggcgact
                                                                        540
                                                                        600
cagggaaggg tggagaaggg ggagacagag acacacaggg ccgcatggcg agatgcagag
                                                                        660
atggagagac acacagggag acagtgacaa ctagagagag aaactgagag aaacagagaa
ataaacacag gaataaagag aagcaaagga agagagaaac agaaacagac atggggaggc
                                                                        720
                                                                        780
agaaacacac acacatagaa atgcagttga ccttccaaca gcatggggcc tgagggcggt
gacctccacc caatagaaaa tootottata acttttgact coccaaaaac ctgactagaa
                                                                        840
atagcctact gttgacgggg agccttacca ataacataaa tagtcgattt atgcatacgt
                                                                        900
                                                                        960
tttatgcatt catgatatac ctttgttgga attttttgat atttctaagc tacacagttc
                                                                       1020
gtctgtgaat ttttttaaat tgttgcaact ctcctaaaat ttttctgatg tgtttattga
                                                                       1080
aaaaatccaa gtataagtgg acttgtgcat tcaaaccagg gttgttcaag ggtcaactgt
gtacccagag ggaaacagtg acacagattc atagaggtga aacacgaaga gaaacaggaa
                                                                       1140 .
aaatcaagac tctacaaaga ggctgggcag ggtggctcat gcctgtaatc ccagcacttt
                                                                       1200
                                                                       1260
gggaggcgag gcaggcagat cacttgaggt aaggagttca agaccagcct ggccaaaatg
gtgaaateet gtetgtaeta aaaatacaaa agttagetgg atatggtgge aggegeetgt
                                                                       1320
aatcccagct acttgggagg ctgaggcagg agaattgctt gaatatggga ggcagaggtt
                                                                       1380
                                                                       1440
gaagtgagtt gagatcacac cactatactc cagctggggc aacagagtaa gactctgtct
                                                                       1459
caaaaaaaa aaaaaaaaa
      <210> 175
      <211> 1167
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(1167)
      <223> n = A, T, C \text{ or } G
      <400> 175
                                                                         60
gcgcagccct ggcaggcggc actggtcatg gaaaacgaat tgttctgctc gggcgtcctg
                                                                        120
gtgcatccgc agtgggtgct gtcagccgca cactgtttcc agaactccta caccatcggg
                                                                        180
ctgggcctgc acagtcttga ggccgaccaa gagccaggga gccagatggt ggaggccagc
ctctccgtac ggcacccaga gtacaacaga ctcttgctcg ctaacgacct catgctcatc
                                                                        240
                                                                        300
aagttggacg aatccgtgtc cgagtctgac accatccgga gcatcagcat tgcttcgcag
                                                                        360
tgccctaccg cggggaactc ttgcctcgtn tctggctggg gtctgctggc gaacggcaga
atgcctaccg tgctgcactg cgtgaacgtg tcggtggtgt ctgaggangt ctgcagtaag
                                                                        420
ctctatgacc cgctgtacca ccccagcatg ttctgcgccg gcggagggca agaccagaag
                                                                        480
                                                                        540
qactcctgca acggtgactc tggggggccc ctgatctgca acgggtactt gcagggcctt
gtgtctttcg gaaaagcccc gtgtggccaa cttggcgtgc caggtgtcta caccaacctc
                                                                        600
                                                                        660
tgcaaattca ctgagtggat agagaaaacc gtccagncca gttaactctg gggactggga
                                                                        720
acccatgaaa ttgaccccca aatacatcct gcggaangaa ttcaggaata tctgttccca
                                                                        780
goodcotocto cotcaggodo aggagtodag goodcoagod cotoctocot caaaccaagg
```

```
gtanagatee ecageceete eteceteaga eccaggagte cagacecece ageceetent
                                                                         840
 contragace caggagtera geoecteete entragacge aggagterag accecceage
                                                                         900
 contented teagaceeag gggtgeagge ecceaacee tenteentea gagteagagg
                                                                         960
  lecame pages caaccected treeceagas coagaggine aggicocage costocices
                                                                        1020
 tcayacccag cggtccaatg ccacctagan tntccctgta cacagtgccc ccttgtggca
                                                                        1080
 rightigaccoa accitaccag tiggittitic attititigic coliticocci agatecagaa
                                                                        1140
 ataaagtnta agagaagcgc aaaaaaa
                                                                        1167
       <210> 176
       <211> 205
       <212> PRT
       <213> Homo sapien
       <220>
       <221> VARIANT
       <222> (1)...(205)
       <223> Xaa = Any Amino Acid
       <400> 176
 Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp
 1
                  5
                                     10
 Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu
                                 25
Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val
        35
                             40
 Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Leu Leu Leu
                         55
Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser
                     70
                                         75
Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly
                8.5
                                     90
Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met
                                 105
                                                      110
Pro Thr Val Leu His Cys Val Asn Val Ser Val Val Ser Glu Xaa Val
        115
                             120
                                                 125
Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala
    130
                         135
                                             140
Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly
145
                                         155
Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys
                165
                                     170
                                                         175
Ala Pro Cys Gly Gln Leu Gly Val Pro Gly Val Tyr Thr Asn Leu Cys
            180
                                 185
Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Xaa Ser
                             200
      <210> 177
      <211> 1119
      <212> DNA
      <213> Homo sapien
      <400> 177
gogcactogo agocctggca ggoggcactg gtoatggaaa acgaattgtt ctgctogggo
                                                                        60
g^{\ast} ontggtge atcogcagtg ggtgctgtca gccgcacact gtttccagaa ctcctacacc
                                                                        120
ategggetgg geetgeacag tettgaggee gaccaagage cagggageca gatggtggag
                                                                       180
gocaquetet cogtacggca occagagtac aacagaccet tgetegetaa cgaceteatg
                                                                        240
ctcatcaugt tggacgaatc cgtgtccgag tctgacacca tccggagcat cagcattgct
                                                                       300
togoagtgoo ctacegoggg gaactottgo etegtttotg gotggggtot gotggogaac
                                                                       360
```

420

480

540

600 660

720 780

840 900

960

1020

1080 1119

60

120

180

240

```
gatgctgtga ttgccatcca gtcccagact gtgggaggct gggagtgtga gaagctttcc
caaccetage aggettatae cattteggea acttecagtg caaggaegte etgetgeate
ctcactgggt gctcactact gctcactgca tcacccggaa cactgtgatc aactagccag
caccatagtt ctccgaagtc agactatcat gattactgtg ttgactgtgc tgtctattgt
actaaccatg ccgatgttta ggtgaaatta gcgtcacttg gcctcaacca tcttggtatc
cagttatect cactgaattg agattteetg etteagtgte agecatteee acataattte
tgacctacag aggtgaggga tcatatagct cttcaaggat gctggtactc ccetcacaaa
ttcatttctc ctgttgtagt gaaaggtgcg ccctctggag cctcccaggg tgggtgtgca
ggtcacaatg atgaatgtat gatcgtgttc ccattaccca aagcctttaa atccctcatg
ctcagtacac cagggcaggt ctagcatttc ttcatttagt gtatgctgtc cattcatgca
accacctcag gactcctgga ttctctgcct agttgagctc ctgcatgctg cctccttggg
gaggtgaggg agagggccca tggttcaatg ggatctgtgc agttgtaaca cattaggtgc
ttaataaaca gaagctgtga tgttaaaaaa aaaaaaaaa
      <210> 178
      <211> 164
      <212> PRT
      <213> Homo sapien
      <220>
      <221> VARIANT
      <222> (1)...(164)
      <223> Xaa = Any Amino Acid
      <400> 178
Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp
                                    10
Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu
                                25
Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val
                            40
Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu
Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser
                                         75
                    70
Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly
                                     90
                85
Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Asp Ala Val
                                                     1.10
                                105
            100
Ile Ala Ile Gln Ser Xaa Thr Val Gly Gly Trp Glu Cys Glu Lys Leu
                                                 125
                            120
Ser Gln Pro Trp Gln Gly Cys Thr Ile Ser Ala Thr Ser Ser Ala Arg
                        135
Thr Ser Cys Cys Ile Leu Thr Gly Cys Ser Leu Leu Leu Thr Ala Ser
                    150
Pro Gly Thr Leu
      <210> 179
      <211> 250
      <212> DNA
      <213> Homo sapien
      <400> 179
ctggagtgcc ttggtgtttc aagcccctgc aggaagcaga atgcaccttc tgaggcacct
ccagctgccc ccggccgggg gatgcgaggc tcggagcacc cttgcccggc tgtgattgct
```

qccaggcact gttcatctca gcttttctgt ccctttgctc ccggcaagcg cttctgctga

aagttcatat ctggagcctg atgtcttaac gaataaaggt cccatgctcc acccgaaaaa

```
aaaaaaaaa
                                                                         250
        <210> 180
        <211> 202
        <212> DNA
        <213> Homo sapien
        <400> 180
 actagtccag tgtggtggaa ttccattgtg ttgggcccaa cacaatggct acctttaaca
                                                                         60
 teacceagae eccgeecetg eccgtgeece acgetgetge taacgacagt atgatgetta
                                                                        120
 ctctgctact cggaaactat ttttatgtaa ttaatgtatg ctttcttgtt tataaatgcc
                                                                        180
 tgatttaaaa aaaaaaaaa aa
                                                                        202
       <210> 181
       <211> 558
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(558)
       <223> n = A, T, C or G
       <400> 181
 tccytttgkt naggtttkkg agacamccck agacctwaan ctgtgtcaca gacttcyngg
                                                                         60
 aatgtttagg cagtgctagt aatttcytcg taatgattct gttattactt tcctnattct
                                                                        120
 ttattcctct ttcttctgaa gattaatgaa gttgaaaatt gaggtggata aatacaaaaa
                                                                        180
 ggtagtgtga tagtataagt atctaagtgc agatgaaagt gtgttatata tatccattca
                                                                        240
 aaattatgca agttagtaat tactcagggt taactaaatt actttaatat gctgttgaac
                                                                        300
ctactctgtt ccttggctag aaaaaattat aaacaggact ttgttagttt gggaagccaa
                                                                       360
 attgataata ttctatgttc taaaagttgg gctatacata aattattaag aaatatggaw
                                                                       420
ttttattccc aggaatatgg kgttcatttt atgaatatta cscrggatag awgtwtgagt
                                                                       480
aaaaycagtt ttggtwaata ygtwaatatg tcmtaaataa acaakgcttt gacttatttc
                                                                       540
caaaaaaaa aaaaaaaa
                                                                       558
       <210> 182
      <211> 479
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(479)
      <223> n = A, T, C or G
      <400> 182
{\tt acagggwttk} grggatgcta agsccccrga rwtygtttga tccaaccctg gcttwttttc
                                                                        60
agaggggaaa atggggccta gaagttacag mscatytagy tggtgcgmtg gcacccctgg
                                                                       120
esteacacag asteeegagt agetgggaet acaggeacac agteactgaa geaggeeetg
                                                                       180
ttwgcaattc acgttgccac ctccaactta aacattcttc atatgtgatg tccttagtca
                                                                       240
ctaaggttaa actttcccac ccagaaaagg caacttagat aaaatcttag agtactttca
                                                                       300
tactmttcta agtcctcttc cagcctcact kkgagtcctm cytgggggtt gataggaant
                                                                       360
ntctcttggc tttctcaata aartctctat ycatctcatg tttaatttgg tacgcatara
                                                                       420
awtgstgara aaattaaaat gttctggtty mactttaaaa araaaaaaaa aaaaaaaaa
                                                                       479
      <210> 183
      <211> 384
      <212> DNA
```

<213> Homo sapien

```
<400> 183
aggcgggagc agaagctaaa gccaaagccc aagaagagtg gcagtgccag cactggtgcc
                                                                        60
agtaccagta ccaataacag tgccagtgcc agtgccagca ccagtggtgg cttcagtgct
                                                                       120
ggtgccagcc tgaccgccac tctcacattt gggctcttcg ctggccttgg tggagctggt
                                                                       180
gecageacea gtggcagete tggtgcctgt ggttteteet acaagtgaga ttttagatat
                                                                       240
tgttaateet gecagtettt etetteaage cagggtgeat eeteagaaac etaeteaaca
                                                                       300
cagcactcta ggcagccact atcaatcaat tgaagttgac actctgcatt aratctattt
                                                                       360
                                                                       384
gccatttcaa aaaaaaaaaa aaaa
      <210> 184
      <211> 496
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(496)
      <223> n = A, T, C or G
      <400> 184
accgaattgg gaccgctggc ttataagcga tcatgtyynt ccrgtatkac ctcaacgagc
                                                                         60
agggagatcg agtctatacg ctgaagaaat ttgacccgat gggacaacag acctgctcag
                                                                        120
cccatcctgc tcggttctcc ccagatgaca aatactctsg acaccgaatc accatcaaga
                                                                        180
                                                                        240
aacgcttcaa ggtgctcatg acccagcaac cgcgccctgt cctctgaggg tcccttaaac
tgatgtcttt tctgccacct gttacccctc ggagactccg taaccaaact cttcggactg
                                                                        300
tgagccctga tgcctttttg ccagccatac tctttggcat ccagtctctc gtggcgattg
                                                                        360
attatgcttg tgtgaggcaa tcatggtggc atcacccata aagggaacac atttgacttt
                                                                        420
tttttctcat attttaaatt actacmagaw tattwmagaw waaatgawtt gaaaaactst
                                                                        480
                                                                        496
taaaaaaaa aaaaaa
      <210> 185
      <211> 384
      <212> DNA
      <213> Homo sapien
      <400> 185
                                                                         60
gctggtagcc tatggcgkgg cccacggagg ggctcctgag gccacggrac agtgacttcc
                                                                        120
caagtatcyt gcgcsgcgtc ttctaccgtc cctacctgca gatcttcggg cagattcccc
aggaggacat ggacgtggcc ctcatggagc acagcaactg ytcgtcggag cccggcttct
                                                                        180
                                                                        240
gggcacaccc tcctggggcc caggcgggca cctgcgtctc ccagtatgcc aactggctgg
                                                                        300
tggtgctgct cctcgtcatc ttcctgctcg tggccaacat cctgctggtc aacttgctca
ttgccatgtt cagttacaca ttcggcaaag tacagggcaa cagcgatctc tactgggaag
                                                                        360
                                                                        384
gcgcagcgtt accgcctcat ccgg
      <210> 186
      <211> 577
      <212> DNA
      <213> Homo sapien
      <220>
       <221> misc feature
       <222> (1)...(577)
       <223> n = A, T, C or G
       <400> 186
gagttagete etceacaace ttgatgaggt egtetgeagt ggeetetege tteatacege
                                                                         60
```

```
thecategic atactgtagg titigecacea cytectggca tettggggcg gentaatatt
                                                                         120
 ccaggaaact ctcaatcaag tcaccgtcga tgaaacctgt gggctggttc tgtcttccgc
                                                                         180
 toggtgtgaa aggateteee agaaggagtg etegatette eccacaettt tgatgaettt
                                                                         240
 artgagtega tictgeatgt ceageaggag gttgtaceag etetetgaea gtgaggteae
                                                                         300
 cagocotato atgoogttga mogtgoogaa garcacogag cottgtgtgg gggkkgaagt
                                                                         360
 stcacccaga ttctgcatta ccagagagcc gtggcaaaag acattgacaa actcgcccag
                                                                         420
 gtggaaaaag amcameteet ggargtgetn geegeteete gtemgttggt ggeagegetw
                                                                         480
 feettttgae acacaaacaa gttaaaggca ttttcagece ccagaaantt gtcatcatee
                                                                         540
 aagatntege acageactna teeagttggg attaaat
                                                                         577
       <210> 187
       <211> 534
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(534)
       <223> n = A, T, C or G
       <400> 187
 aacatcttcc tgtataatgc tgtgtaatat cgatccgatn ttgtctgstg agaatycatw
                                                                         60
 actkggaaaa gmaacattaa agcctggaca ctggtattaa aattcacaat atgcaacact
                                                                        120
 ttaaacagtg tgtcaatctg ctcccyynac tttgtcatca ccagtctggg aakaagggta
                                                                        180
 tgecctattc acacctgtta aaagggeget aageattttt gatteaacat ettttttt
                                                                        240
 gacacaagtc cgaaaaaagc aaaagtaaac agttatyaat ttgttagcca attcactttc
                                                                        300
ttcatgggac agagccatyt gatttaaaaa gcaaattgca taatattgag cttygggagc
                                                                        360
tgatatttga gcggaagagt agcetttcta ettcaccaga cacaactcce tttcatattg
                                                                        420
ggatgttnac naaagtwatg tctctwacag atgggatgct tttgtggcaa ttctgttctg
                                                                        480
 aggatetece agtttattta ceaettgeae aagaaggegt tttetteete agge
                                                                        534
       <210> 188
       <211> 761
       <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(761)
      <223> n = A, T, C or G
      <400> 188
agaaaccagt atctctnaaa acaacctctc ataccttgtg gacctaattt tgtgtgcgtg
                                                                        60
tgtgtgtgcg cgcatattat atagacaggc acatcttttt tacttttgta aaagcttatg
                                                                       120
cototttggt atctatatct gtgaaagttt taatgatctg ccataatgtc ttggggacct
                                                                       180
ttgtcttctg tgtaaatggt actagagaaa acacctatnt tatgagtcaa tctagttngt
                                                                       240
tttattcgac atgaaggaaa tttccagatn acaacactna caaactctcc ctkgackarg
                                                                       300
ggggacaaag aaaagcaaaa ctgamcataa raaacaatwa cctggtgaga arttgcataa
                                                                       360
acagaaatwr ggtagtatat tgaarnacag catcattaaa rmgttwtktt wttctccctt
                                                                       420
gcaaaaaaca tgtacngact tcccgttgag taatgccaag ttgtttttt tatnataaaa
                                                                       480
cttgcccttc attacatgtt tnaaagtggt gtggtgggcc aaaatattga aatgatggaa
                                                                       540
ctgactgata aagctgtaca aataagcagt gtgcctaaca agcaacacag taatgttgac
                                                                       600
atgcttaatt cacaaatgct aatttcatta taaatgtttg ctaaaataca ctttgaacta
                                                                       660
ettttctgtn ttcccagage tgagatntta gattttatgt agtatnaagt gaaaaantac
                                                                       720
gaaaataata acattgaaga aaaananaaa aaanaaaaa a
                                                                       761
      <210> 189
```

<211> 482

WO 01/051633 PCT/US01/01574

67

```
<212> DNA
     <213> Homo sapien
     <220>
      <221> misc feature
      <222> (1)...(482)
      <223> n = A, T, C or G
      <400> 189
                                                                        60
ttttttttt tttgccgatn ctactatttt attgcaggan gtgggggtgt atgcaccgca
caccggggct atnagaagca agaaggaagg agggagggca cagccccttg ctgagcaaca
                                                                       120
aagccgcctg ctgccttctc tgtctgtctc ctggtgcagg cacatgggga gaccttcccc
                                                                       180
                                                                       240
aaggcagggg ccaccagtcc aggggtggga atacaggggg tgggangtgt gcataagaag
tgataggcac aggccacceg gtacagacce ctcggctcct gacaggtnga tttcgaccag
                                                                       300
gtcattgtgc cctgcccagg cacagcgtan atctggaaaa gacagaatgc tttccttttc
                                                                       360
aaatttggct ngtcatngaa ngggcanttt tccaanttng gctnggtctt ggtacncttg
                                                                       420
                                                                       480
gtteggeeca geteenegte caaaaantat teaccennet cenaattget tgenggneee
                                                                       482
CC
      <210> 190
      <211> 471
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(471)
      <223> n = A, T, C or G
      <400> 190
ttttttttt ttttaaaaca gtttttcaca acaaaattta ttagaagaat agtggttttg
                                                                        60
aaaactctcg catccagtga gaactaccat acaccacatt acagctngga atgtnctcca
                                                                       120
aatgtctggt caaatgatac aatggaacca ttcaatctta cacatgcacg aaagaacaag
                                                                       180
cgcttttgac atacaatgca caaaaaaaaa aggggggggg gaccacatgg attaaaattt
                                                                       240
taagtactca tcacatacat taagacacag ttctagtcca gtcnaaaatc agaactgcnt
                                                                       300
tgaaaaattt catgtatgca atccaaccaa agaacttnat tggtgatcat gantnctcta
                                                                       360
ctacatcnac cttgatcatt gccaggaacn aaaagttnaa ancacncngt acaaaaanaa
                                                                       420
tctgtaattn anttcaacct ccgtacngaa aaatnttnnt tatacactcc c
                                                                       471
      <210> 191
      <211> 402
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(402)
      <223> n = A, T, C or G
      <400> 191
                                                                         60
gagggattga aggtctgttc tastgtcggm ctgttcagcc accaactcta acaagttgct
gtcttccact cactgtctgt aagcttttta acccagacwg tatcttcata aatagaacaa
                                                                        120
attetteace agteacatet tetaggacet ttttggatte agttagtata agetetteea
                                                                       180
cttcctttgt taagacttca tctggtaaag tcttaagttt tgtagaaagg aattyaattg
                                                                        240
ctcgttctct aacaatgtcc tctccttgaa gtatttggct gaacaaccca cctaaagtcc
                                                                        300
ctttgtgcat ccattttaaa tatacttaat agggcattgk tncactaggt taaattctgc
                                                                        360
                                                                        402
aagagtcatc tgtctgcaaa agttgcgtta gtatatctgc ca
```

```
<210> 192
       <211> 601
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(601)
       <223> n = A, T, C or G
       <400> 192
 gageteggat ecaataatet ttgtetgagg geageacaea tatneagtge eatggnaact
                                                                         60
 ggtctacccc acatgggagc agcatgccgt agntatataa ggtcattccc tgagtcagac
                                                                        120
 atgcytyttt gaytaccgtg tgccaagtgc tggtgattct yaacacacyt ccatcccgyt
                                                                        180
 cttttgtgga aaaactggca cttktctgga actagcarga catcacttac aaattcaccc
                                                                        240
 acgagacact tgaaaggtgt aacaaagcga ytcttgcatt getttttgte ecteeggeae
                                                                        300
 cagttgtcaa tactaacceg ctggtttgec tecateacat ttgtgatetg tagetetgga
                                                                        360
 tacateteet gacagtactg aagaacttet tettttgttt caaaageare tettggtgee
                                                                        420
 igtiggatea ggiteceatt teecagicyg aatgiteaca iggeatatii waciieceae
                                                                        480
 aaaacattgc gatttgaggc tcagcaacag caaatcctgt tccggcattg gctgcaagag
                                                                        540
cetegatgta geeggeeage geeaaggeag gegeegtgag eeccaccage ageagaagea
                                                                        600
                                                                        601
       <210> 193
       <211> 608
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(608)
      <223> n = A, T, C or G
      <400> 193
atacagecca nateccacca egaagatgeg ettgttgaet gagaacetga tgeggteaet
                                                                         60
ggtcccgctg tagccccagc gactctccac ctgctggaag cggttgatgc tgcactcytt
                                                                        120
cccaacgcag gcagmagcgg gsccggtcaa tgaactccay tcgtggcttg gggtkgacgg
                                                                       180
tkaagtgcag gaagaggctg accacctcgc ggtccaccag gatgcccgac tgtgcgggac
                                                                       240
ctgcagcgaa actcctcgat ggtcatgagc gggaagcgaa tgaggcccag ggccttgccc
                                                                       300
agaaccttcc gcctgttctc tggcgtcacc tgcagctgct gccgctgaca ctcggcctcg
                                                                       360
gaccagegga caaacggert tgaacageeg caceteaegg atgeeeagtg tgtegegete
                                                                       420
caggammgsc accagegtgt ccaggtcaat gteggtgaag ceeteegegg gtratggegt
                                                                       480
ctgcagtgtt tttgtcgatg ttctccaggc acaggctggc cagctgcggt tcatcgaaga
                                                                       540
gtcgcgcctg cgtgagcagc atgaaggcgt tgtcggctcg cagttcttct tcaggaactc
                                                                       600
cacgcaat
                                                                       608
      <210> 194
      <211> 392
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(392)
      <223> n = A, T, C or G
      <400> 194
gaacggctgg accttgcctc gcattgtgct tgctggcagg gaataccttg gcaagcagyt
```

```
ccagtccgag cagccccaga ccgctgccgc ccgaagctaa gcctgcctct ggccttcccc
                                                                       120
tccgcctcaa tgcagaacca gtagtgggag cactgtgttt agagttaaga gtgaacactg
                                                                       180
tttgatttta cttgggaatt tcctctgtta tataqctttt cccaatgcta atttccaaac
                                                                       240
aacaacaaca aaataacatg tttgcctgtt aagttgtata aaagtaggtg attctgtatt
                                                                       300
taaagaaaat attactgtta catatactgc ttgcaatttc tgtatttatt gktnctstgg
                                                                       360
                                                                       392
aaataaatat agttattaaa ggttgtcant cc
      <210> 195
      <211> 502
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(502)
      <223> n = A, T, C or G
      <400> 195
ccsttkgagg ggtkaggkyc cagttyccga gtggaagaaa caggccagga gaagtgcgtg
                                                                        60
                                                                       120
ccgagctgag gcagatgttc ccacagtgac ccccagagcc stgggstata gtytctgacc
                                                                       180
cctcncaaqq aaaqaccacs ttctggggac atgggctgga gggcaggacc tagaggcacc
aagggaaggc cccattccgg ggstgttccc cgaggaggaa gggaagggc tctgtgtgcc
                                                                       240
                                                                       300
ccccasqaqq aaqaqqcct gaqtcctggg atcagacacc ccttcacgtg tatccccaca
caaatgcaag ctcaccaagg tcccctctca gtccccttcc stacaccctg amcggccact
                                                                       360
gscscacacc cacccagage acgccacccg ccatggggar tgtgctcaag gartcgcngg
                                                                       420
gcarcgtgga catcingtcc cagaaggggg cagaatctcc aatagangga cigarcmstt
                                                                       480
                                                                       502
gctnanaaaa aaaaanaaaa aa
      <210> 196
      <211> 665
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(665)
      <223> n = A, T, C or G
      <400> 196
ggttacttgg tttcattgcc accacttagt ggatgtcatt tagaaccatt ttgtctgctc
                                                                        60
cctctggaag ccttgcgcag agcggacttt gtaattgttg gagaataact gctgaatttt
                                                                       120
wagetgtttk gagttgatts geaceactge acceacaact teaatatgaa aacyawttga
                                                                       180
actwatttat tatcttgtga aaagtataac aatgaaaatt ttgttcatac tgtattkatc
                                                                       240
aagtatgatg aaaagcaawa gatatatatt cttttattat gttaaattat gattgccatt
                                                                       300
attaatcggc aaaatgtgga gtgtatgttc ttttcacagt aatatatgcc ttttgtaact
                                                                       360
tcacttggtt attttattgt aaatgartta caaaattctt aatttaagar aatggtatgt
                                                                       420
watatttatt tcattaattt ctttcctkgt ttacgtwaat tttgaaaaga wtgcatgatt
                                                                       480
tcttgacaga aatcgatctt gatgctgtgg aagtagtttg acccacatcc ctatgagttt
                                                                       540
ttcttagaat gtataaaggt tgtagcccat cnaacttcaa agaaaaaat gaccacatac
                                                                        600
tttgcaatca ggctgaaatg tggcatgctn ttctaattcc aactttataa actagcaaan
                                                                        660
                                                                        665
aagtg
      <210> 197
      <211> 492
      <212> DNA
      <213> Homo sapien
      <220>
```

```
<221> misc feature
        <222> (1)...(492)
        \langle 223 \rangle n = A, T, C or G
        <400> 197
  ttttnttttt tttttttgc aggaaggatt ccatttattg tggatgcatt ttcacaatat
                                                                           60
  atgtttattg gagcgatcca ttatcagtga aaagtatcaa gtgtttataa nattttagg
                                                                          120
  maggcagatt cacagaacat getngtenge ttgcagtttt acctegtana gatnacagag
                                                                          180
 aattatagto naaccagtaa acnaggaatt tacttttcaa aagattaaat ccaaactgaa
                                                                          240
 caaaatteta eeetgaaact tacteeatee aaatattgga ataanagtea geagtgatae
                                                                          300
 attotottot gaactttaga ttttotagaa aaatatgtaa tagtgatcag gaagagotot
                                                                          360
 tgttcaaaag tacaacnaag caatgttccc ttaccatagg cottaattca aactttgatc
                                                                          420
 catttcactc ccatcacggg agtcaatgct acctgggaca cttgtatttt gttcatnctg
                                                                          480
 ancntggctt aa
                                                                          492
       <210> 198
       <211> 478
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1) ... (478)
       <223> n = A, T, C or G
       <400> 198
 tttnttttgn atttcantct gtannaanta ttttcattat gtttattana aaaatatnaa
                                                                          60
 tgtntccacn acaaatcatn ttacntnagt aagaggccan ctacattgta caacatacac
                                                                         120
 tgagtatatt ttgaaaagga caagtttaaa gtanacncat attgccganc atancacatt
                                                                         180
 tatacatggc ttgattgata tttagcacag canaaactga gtgagttacc agaaanaaat
                                                                         240
natatatgtc aatcngattt aagatacaaa acagatccta tggtacatan catcntgtag
                                                                         300
gagttgtggc tttatgttta ctgaaagtca atgcagttcc tgtacaaaga gatggccgta
                                                                         360
 agcattctag tacctctact ccatggttaa gaatcgtaca cttatgttta catatgtnca
                                                                         420
gggtaagaat tgtgttaagt naanttatgg agaggtccan gagaaaaatt tgatncaa
                                                                         478
       <210> 199
       <211> 482
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(482)
      <223> n = A, T, C or G
      <400> 199
agtgacttgt cctccaacaa aaccccttga tcaagtttgt ggcactgaca atcagaccta
                                                                         60
tgctagttcc tgtcatctat tcgctactaa atgcagactg gaggggacca aaaaggggca
                                                                        120
tcaactccag ctggattatt ttggagcctg caaatctatt cctacttgta cggactttga
                                                                        180
agtgattcag tttcctctac ggatgagaga ctggctcaag aatatcctca tgcagcttta
                                                                        240
tgaagccnac tetgaacacg ctggttatet nagatgagaa neagagaaat aaagtenaga
                                                                        300
aaatttacct ggangaaaag aggetttngg etggggacca teccattgaa eettetetta
                                                                        360
anggacttta agaanaaact accacatgtn tgtngtatcc tggtgccngg ccgtttantg
                                                                        420
Lachtngach neaccettnt ggaatanant ettgachgen teetgaactt geteetetge
                                                                        480
ga
                                                                        482
      <210> 200
      <211> 270
```

```
<212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(270)
      <223> n = A, T, C or G
      <400> 200
cggccgcaag tgcaactcca gctggggccg tgcggacgaa gattctgcca gcagttggtc
                                                                       60
cgactgcgac gacggcggcg gcgacagtcg caggtgcagc gcgggcgcct ggggtcttgc
                                                                      120
aaggctgagc tgacgccgca gaggtcgtgt cacgtcccac gaccttgacg ccgtcgggga
                                                                      180
cagccggaac agagcccggt gaangcggga ggcctcgggg agcccctcgg gaagggcggc
                                                                      240
                                                                      270
ccgagagata cgcaggtgca ggtggccgcc
      <210> 201
      <211> 419
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(419)
      <223> n = A, T, C or G
      <400> 201
ttttttttt ttttggaatc tactgcgagc acagcaggtc agcaacaagt ttattttgca
                                                                       60
gctagcaagg taacagggta gggcatggtt acatgttcag gtcaacttcc tttgtcgtgg
                                                                      120
ttgattggtt tgtctttatg ggggcggggt ggggtagggg aaancgaagc anaantaaca
                                                                      180
tggagtgggt gcaccctccc tgtagaacct ggttacnaaa gcttggggca gttcacctgg
                                                                      240
tctgtgaccg tcattttctt gacatcaatg ttattagaag tcaggatatc ttttagagag
                                                                      300
tccactgtnt ctggagggag attagggttt cttgccaana tccaancaaa atccacntga
                                                                      360
aaaagttgga tgatncangt acngaatacc ganggcatan ttctcatant cggtggcca
                                                                      419
      <210> 202
      <211> 509
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(509)
      <223> n = A, T, C or G
      <400> 202
                                                                        60
tttnttttt tttttttt tttttttt tttttttt
tggcacttaa tccatttta tttcaaaatg tctacaaant ttnaatncnc cattatacng
                                                                       120
gtnattttnc aaaatctaaa nnttattcaa atntnagcca aantccttac ncaaatnnaa
                                                                       180
tacncncaaa aatcaaaaat atacntntct ttcagcaaac ttngttacat aaattaaaaa
                                                                       240
aatatatacg gctggtgttt tcaaagtaca attatcttaa cactgcaaac atntttnnaa
                                                                       300
ggaactaaaa taaaaaaaaa cactnccgca aaggttaaag ggaacaacaa attcntttta
                                                                       360
caacancnnc nattataaaa atcatatctc aaatcttagg ggaatatata cttcacacng
                                                                       420
ggatcttaac ttttactnca ctttgtttat ttttttanaa ccattgtntt gggcccaaca
                                                                       480
                                                                       509
caatggnaat nccnccncnc tggactagt
       <210> 203
       <211> 583
       <212> DNA
```

```
<213> Homo sapien
       <220>
       <221> misc feature
       <222> (1) ... (583)
       \langle 223 \rangle n = A, T, C or G
       <400> 203
 ttttttttt tttttttga cocccctctt ataaaaaaca agttaccatt ttattttact
                                                                        60
 talacatatt tattttataa tiggtattag atattcaaaa ggcagciitt aaaatcaaac
                                                                       120
 tadatggaaa ctgccttaga tacataatto ttaggaatta gottaaaato tgcctaaagt
                                                                       180
 Manaatotto totagotott tigacigiaa attitigaci ciigiaaaac atccaaatto
                                                                       240
 attiticity totttaaaat tatotaatot ticcattiti tooctatioo aagtoaatti
                                                                       300
 gentetetas esteatttee tagetettat etaetattag taagtggett tttteetaaa
                                                                       360
 agggaaaara gjaagagana atggcacaca aaacaaacat tttatattca tatttctacc
                                                                       420
 tacgtuaata aaatagcatt ttgtgaagoo agotcaaaag aaggottaga toottttatg
                                                                       480
 tocattttag tcactaaacg atatenaaag tgecagaatg caaaaggttt gtgaacattt
                                                                       540
 attcaaaag: taatataaga tatttcacat actcatcttt ctq
                                                                       583
       <210 - 204
      <211 > 589
       <21.7> DNA
      <213 - Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(589)
      <223> n = A, T, C or G
      <400> 204
60
tttcactctc tagatagggc atgaagaaaa ctcatctttc cagctttaaa ataacaatca
                                                                      120
aatotottat gotatatoat attttaagtt aaactaatga gtoactggot tatottotoo
                                                                      180
tgaaggaaat ctgttcattc ttctcattca tatagttata tcaagtacta ccttgcatat
                                                                      240
tgagaggttt ttetteteta tttacacata tattteeatg tgaatttgta teaaacettt
                                                                      300
attttcatgc aaactagaaa ataatgtntt cttttgcata agagaagaga acaatatnag
                                                                      360
cattacaaaa ctgctcaaat tgtttgttaa gnttatccat tataattagt tnggcaggag
                                                                      420
ctaatacaaa tcacatttac ngacnagcaa taataaaact gaagtaccag ttaaatatcc
                                                                      480
aaaataatta aaggaacatt tttagcctgg gtataattag ctaattcact ttacaagcat
                                                                      540
ttattnagaa tgaattcaca tgttattatt centagecea acacaatgg
                                                                      589
      <210> 205
      <211> 545
      <212> DNA
      <213> Homo sapien
     <220>
     <221> misc feature
     <222> (1)...(545)
     \langle 223 \rangle n = A, T, C or G
     <400> 205
tttttntttt tttttcagt aataatcaga acaatattta tttttatatt taaaattcat
                                                                       60
agaaaagtgc cttacattta ataaaagttt gtttctcaaa gtgatcagag gaattagata
                                                                      120
tngtcttgaa caccaatatt aatttgagga aaatacacca aaatacatta agtaaattat
                                                                      180
traagatoat agagottgta agtgaaaaga taaaatttga cotcagaaac totgagoatt
                                                                      240
appastocac tattagcaaa taaattacta tggacttett getttaattt tgtgatgaat
                                                                      300
atggggtgtc actggtaaac caacacattc tgaaggatac attacttagt gatagattct
                                                                      360
```

```
tatgtacttt gctanatnac gtggatatga gttgacaagt ttctctttct tcaatctttt
                                                                        420
aaggggcnga ngaaatgagg aagaaaagaa aaggattacg catactgttc tttctatngg
                                                                        480
aaggattaga tatgtttcct ttgccaatat taaaaaaata ataatgttta ctactagtqa
                                                                        540
                                                                        545
aaccc
      <210> 206
      <211> 487
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(487)
      <223> n = A, T, C or G
      <400> 206
ttttttttt ttttttagtc aagtttctna tttttattat aattaaagtc ttggtcattt
                                                                          60
catttattag ctctgcaact tacatattta aattaaagaa acgttnttag acaactgtna
                                                                         120
                                                                         180
caatttataa atqtaaqqtq ccattattga gtanatatat tcctccaaga gtggatgtgt
cccttctccc accaactaat gaancagcaa cattagttta attttattag tagatnatac
                                                                         240
                                                                         300
actgctgcaa acgctaattc tcttctccat ccccatgtng atattgtgta tatgtgtgag
                                                                         360
ttggtnagaa tgcatcanca atctnacaat caacagcaag atgaagctag gcntgggctt
tcggtgaaaa tagactgtgt ctgtctgaat caaatgatct gacctatcct cggtggcaag
                                                                         420
                                                                         480
aactetteqa acceetteet caaaggenge tgecacattt gtggentetn ttgeaettgt
                                                                         487
ttcaaaa
      <210> 207
      <211> 332
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(332)
      \langle 223 \rangle n = A, T, C or G
      <400> 207
                                                                          60
tgaattggct aaaagactgc atttttanaa ctagcaactc ttatttcttt cctttaaaaa
tacatagcat taaatcccaa atcctattta aagacctgac agcttgagaa ggtcactact
                                                                         120
                                                                         180
gcatttatag gaccttctgg tggttctgct gttacntttg aantctgaca atccttgana
                                                                         240
atctttgcat gcagaggagg taaaaggtat tggattttca cagaggaana acacagcgca
                                                                         300
gaaatgaagg ggccaggctt actgagcttg tccactggag ggctcatggg tgggacatgg
                                                                         332
aaaagaaggc agcctaggcc ctggggagcc ca
      <210> 208
      <211> 524
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(524)
      \langle 223 \rangle n = A, T, C or G
      <400> 208
agggcgtggt gcggagggcg ttactgtttt gtctcagtaa caataaatac aaaaagactg
                                                                          60
                                                                         120
gttgtgttcc ggccccatcc aaccacgaag ttgatttctc ttgtgtgcag agtgactgat
                                                                         180
tttaaaggac atggagcttg tcacaatgtc acaatgtcac agtgtgaagg gcacactcac
```

```
tcccgcgtga ttcacattta gcaaccaaca atagctcatg agtccatact tgtaaatact
                                                                          240
 titygcagaa tactintiga aactigcaga tgataactaa gatccaagat atticccaaa
                                                                         300
 gtaaatagaa gtgggtcata atattaatta cotgttcaca tcagottcca tttacaagte
                                                                         360
 atgageceag acaetgacat caaactaage ceaettagae teeteaceae eagtetgtee
                                                                         420
 tgtcatcaga caggaggetg tcaccttgac caaattetca ccagtcaatc atctatccaa
                                                                         480
 aaaccattac ctgatccact tooggtaatg caccaccttg gtga
                                                                         524
        <210> 209
        <211> 159
        <212> DNA
        <213> Homo sapien
        <400> 209
 gggtgaggaa atccagagtt gccatggaga aaattccagt gtcagcattc ttgctccttg
                                                                          60
 tggccctctc ctacactctg gccagagata ccacagtcaa acctggagcc aaaaaggaca
                                                                         120
 caaaggacte tegacecaaa etgeeccaga eceteteca
                                                                         159
       <210> 210
       <211> 256
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(256)
       <223> n = A, T, C or G
       <400> 210
actecetgge agacaaagge agaggagaga getetgttag ttetgtgttg ttgaactgee
                                                                         60
actgaatttc tttccacttg gactattaca tgccanttga gggactaatg gaaaaacgta
                                                                        120
tggggagatt ttanccaatt tangtntgta aatggggaga ctggggcagg cgggagagat
                                                                        180
ttgcagggtg naaatgggan ggctggtttg ttanatgaac agggacatag gaggtaggca
                                                                        240
ccaggatgct aaatca
                                                                        256
      <210> 211
      <211> 264
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(264)
      <223> n = A, T, C or G
      <400> 211
acattgtttt tttgagataa agcattgaga gagctctcct taacgtgaca caatggaagg
                                                                         60
actggaacac atacccacat ctttgttctg agggataatt ttctgataaa gtcttgctgt
                                                                        120
atattcaagc acatatgtta tatattattc agttccatgt ttatagccta gttaaggaga
                                                                        180
ggggagatac attengaaag aggactgaaa gaaatactca agtnggaaaa cagaaaaaga
                                                                        240
aaaaaaggag caaatgagaa gcct
                                                                        264
      <210> 212
      <211> 328
      <212> DNA
      <213> Homo sapien
      <220>
     <221> misc feature
```

```
<222> (1)...(328)
      <223> n = A, T, C or G
      <400> 212
                                                                         60
acccaaaaat ccaatqctqa atatttqqct tcattattcc canattcttt gattqtcaaa
ggatttaatg ttgtctcagc ttgggcactt cagttaggac ctaaggatgc cagccggcag
                                                                        120
gtttatatat gcagcaacaa tattcaagcg cgacaacagg ttattgaact tgcccgccag
                                                                        180
ttnaatttca ttcccattga cttgggatcc ttatcatcag ccagagagat tgaaaattta
                                                                        240
cccctacnac tctttactct ctgganaggg ccagtggtgg tagctataag cttggccaca
                                                                        300
                                                                        328
ttttttttc ctttattcct ttgtcaga
      <210> 213
      <211> 250
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(250)
      <223> n = A, T, C or G
      <400> 213
acttatgage agagegaeat atcenagtgt agactgaata aaactgaatt ctetecagtt
                                                                         60
                                                                        120
taaagcattg ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct
cattatgcca aagganatat acatttcaat totocaaact tottoctcat tocaagagtt
                                                                        180
                                                                        240
ttcaatattt gcatgaacct gctgataanc catgttaana aacaaatatc tctctnacct
                                                                        250
tctcatcggt
      <210> 214
      <211> 444
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (444)
      <223> n = A, T, C or G
      <400> 214
acccagaatc caatgctgaa tatttggctt cattattccc agattctttg attgtcaaag
                                                                         60
gatttaatgt tgtctcagct tgggcacttc agttaggacc taaggatgcc agccggcagg
                                                                        120
                                                                        180
tttatatatg cagcaacaat attcaagcgc gacaacaggt tattgaactt gcccgccagt
                                                                        240
tgaatttcat tcccattgac ttgggatcct tatcatcagc canagagatt gaaaatttac
                                                                        300
ccctacgact ctttactctc tggagagggc cagtggtggt agctataagc ttggccacat
                                                                        360
tttttttcc tttattcctt tgtcagagat gcgattcatc catatgctan aaaccaacag
agtgactttt acaaaattcc tataganatt gtgaataaaa ccttacctat agttgccatt
                                                                        420
                                                                        444
actttgctct ccctaatata cctc
      <210> 215
      <211> 366
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(366)
      <223> n = A, T, C or G
```

76

```
<400> 215
  acttatgage agagegacat atecaagtgt anactgaata aaactgaatt etetecagtt
                                                                           60
  *adageattg ctcactgaag ggatagaagt gactgccagg agggaaagta agccaaggct
                                                                          120
  callatgeca aagganatat acattteaat tetecaaaet tetteeteat teeaagagtt
                                                                          180
  ttcaatattt gcatgaacct gctgataagc catgttgaga aacaaatatc tctctgacct
  totuatoggt aagcagaggo tgtaggcaac atggaccata gogaanaaaa aacttagtaa
                                                                          240
                                                                          300
  tocaagetgt tttctacact gtaaccaggt ttccaaccaa ggtggaaatc tcctatactt
                                                                          360
  ggt gcc
                                                                          366
        <210> 216
        <211> 260
        <212> DNA
        <213> Homo sapien
        <220>
        <221> misc_feature
        <222> (1)...(260)
       <223> n = A, T, C or G
       <400> 216
 ctgtataaac agaactccac tgcangaggg agggccgggc caggagaatc tccgcttgtc
                                                                          60
 caagacaggg gcctaaggag ggtctccaca ctgctnntaa gggctnttnc attttttat
                                                                         120
 taataaaaag tnnaaaaggc ctcttctcaa cttttttccc ttnggctgga aaatttaaaa
                                                                         180
 atcaaaaatt teetnaagtt nteaagetat eatatataet ntateetgaa aaageaacat
                                                                         240
 aattetteet teecteettt
                                                                         260
       <210> 217
       <211> 262
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(262)
       <223> n = A, T, C or G
       <400> 217
acctacgtgg gtaagtttan aaatgttata atttcaggaa naggaacgca tataattgta
                                                                         60
tottgoctat aattitotat titaataagg aaatagcaaa tiggggtggg gggaatgtag
                                                                        120
ggcattctac agtttgagca aaatgcaatt aaatgtggaa ggacagcact gaaaaatttt
                                                                        180
atgaataatc tgtatgatta tatgtctcta gagtagattt ataattagcc acttacccta
                                                                        240
atateettea tgettgtaaa gt
                                                                        262
      <210> 218
      <211> 205
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(205)
      <223> n = A, T, C or G
      <400> 218
accaaggtgg tgcattaccg gaantggatc aangacacca tcgtggccaa cccctgagca
                                                                         60
necetateaa eteeettttg tagtaaaett ggaacettgg aaatgaceag gecaagaete
                                                                        120
agguetecce agttetactg acetttgtee ttangtntna ngtecagggt tgetaggaaa
                                                                        180
anaaatcagc agacacaggt gtaaa
                                                                        205
```

```
<210> 219
      <211> 114
      <212> DNA
      <213> Homo sapien
      <400> 219
tactgttttg tctcagtaac aataaataca aaaagactgg ttgtgttccg gccccatcca
                                                                        60
accacgaagt tgatttctct tgtgtgcaga gtgactgatt ttaaaggaca tgga
                                                                       114
      <210> 220
      <211> 93
      <212> DNA
      <213> Homo sapien
      <400> 220
actagccage acaaaaggca gggtagcctg aattgettte tgetetttac atttetttta
                                                                        60
                                                                        93
aaataagcat ttagtgctca gtccctactg agt
      <210> 221
      <211> 167
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(167)
      <223> n = A, T, C or G
      <400> 221
actangtgca ggtgcgcaca aatatttgtc gatattccct tcatcttgga ttccatgagg
                                                                        60
tettttgecc ageetgtgge tetactgtag taagtttetg etgatgagga geeagnatge
                                                                       120
eeeccactac cttccctgac gctccccana aatcacccaa cctctgt
                                                                       167
      <210> 222
       <211> 351
       <212> DNA
       <213> Homo sapien
       <400> 222
agggcgtggt gcggagggcg gtactgacct cattagtagg aggatgcatt ctggcacccc
                                                                         60
gttcttcacc tgtcccccaa tccttaaaag gccatactgc ataaagtcaa caacagataa
                                                                        120
atgtttgctg aattaaagga tggatgaaaa aaattaataa tgaatttttg cataatccaa
                                                                        180
ttttctcttt tatatttcta gaagaagttt ctttgagcct attagatccc gggaatcttt
                                                                        240
taggtgagca tgattagaga gcttgtaggt tgcttttaca tatatctggc atatttgagt
                                                                        300
ctcgtatcaa aacaatagat tggtaaaggt ggtattattg tattgataag t
                                                                        351
       <210> 223
       <211> 383
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(383)
       <223> n = A,T,C or G
       <400> 223
```

119

```
aaaacaaaca aacaaaaaaa acaattette atteagaaaa attatettag ggactgatat
                                                                        60
  tggtaattat ggtcaattta atwrtrttkt ggggcatttc cttacattgt cttgacaaga
                                                                       120
  ttaaaatgtc tgtgccaaaa ttttgtattt tatttggaga cttcttatca aaagtaatgc
                                                                       180
  tgccaaagga agtctaagga attagtagtg ttcccmtcac ttgtttggag tgtgctattc
                                                                       240
  taaaagattt tgatttcctg gaatgacaat tatattttaa ctttggtggg ggaaanagtt
                                                                       300
  ataggaccac agtetteact tetgatactt gtaaattaat ettttattgc acttgttttg
                                                                       360
  accattaago tatatgttta aaa
                                                                       383
       <210> 224
       <211> 320
       <212> DNA
       <213> Homo sapien
       <400> 224
 cccctgaagg cttcttgtta gaaaatagta cagttacaac caataggaac aacaaaaaga
                                                                       60
 aaaagtttgt gacattgtag tagggagtgt gtacccctta ctccccatca aaaaaaaaa
                                                                      120
 ggatacatgg ttaaaggata raagggcaat attttatcat atgttctaaa agagaaggaa
                                                                      180
 gagaaaatac tactttctcr aaatggaagc ccttaaaggt gctttgatac tgaaggacac
                                                                      240
 aaatgtggcc gtccatcctc ctttaragtt gcatgacttg gacacggtaa ctgttgcagt
                                                                      300
 tttaractcm gcattgtgac
                                                                      320
       <210> 225
       <211> 1214
       <212> DNA
       <213> Homo sapien
       <400> 225
 gaggactgca gcccgcactc gcagccctgg caggcggcac tggtcatgga aaacgaattg
                                                                       60
 ttetgetegg gegteetggt geateegeag tgggtgetgt cageegeaca etgttteeag
                                                                      120
 aacteetaca ceateggget gggeetgeac agtettgagg eegaceaaga geeagggage
                                                                      180
 cagatggtgg aggccagcct ctccgtacgg cacccagagt acaacagacc cttgctcgct
                                                                      240
 aacgacetca tgeteatcaa gttggacgaa teegtgteeg agtetgacae cateeggage
                                                                      300
 atcagcattg cttcgcagtg ccctaccgcg gggaactctt gcctcgtttc tggctggggt
                                                                      360
etgetggega acggeagaat geetacegtg etgeagtgeg tgaaegtgte ggtggtgtet
                                                                      420
gaggaggtet geagtaaget etatgaceeg etgtaceace ceageatgtt etgegeegge
                                                                      480
ggagggcaag accagaagga ctcctgcaac ggtgactctg gggggcccct gatctgcaac
                                                                      540
gggtacttgc agggccttgt gtctttcgga aaagccccgt gtggccaagt tggcgtgcca
                                                                      600
ggtgtctaca ccaacctctg caaattcact gagtggatag agaaaaccgt ccaggccagt
                                                                      660
taactctggg gactgggaac ccatgaaatt gaccccaaa tacatcctgc ggaaggaatt
caggaatate tgtteccage cectectee teaggeceag gagteeagge ecceagece
                                                                     720
                                                                     780
tecteetca aaccaagggt acagateee ageeeeteet eeetcagace caggagteea
                                                                     840
gacccccag ccctcctcc ctcagaccca ggagtccagc ccctcctcc tcagacccag
                                                                     900
gagtecagae eccecageee etecteete agaeeeaggg gtecaggeee ecaaceeete
                                                                     960
cteceteaga eteagaggte caageeecea acceeteett eeecagaeee agaggteeag
                                                                    1020
qteccagee etecteete agaeecageg gtecaatgee acetagaete tecetgtaca
                                                                    1080
cagtgccccc ttgtggcacg ttgacccaac cttaccagtt ggtttttcat tttttgtccc
                                                                    1140
1200
aaaaaaaaa aaaa
                                                                    1214
      <210> 226
      <211> 119
      <212> DNA
      <213> Homo sapien
      <400> 226
accoagtatg tgcagggaga cggaacccca tgtgacagcc cactccacca gggttcccaa
                                                                      60
agaacctggc ccagtcataa tcattcatcc tgacagtggc aataatcacg ataaccagt
```

```
<210> 227
      <211> 818
      <212> DNA
      <213> Homo sapien
      <400> 227
acaattcata gggacgacca atgaggacag ggaatgaacc cggctctccc ccagccctga
                                                                        60
tttttgctac atatggggtc ccttttcatt ctttgcaaaa acactgggtt ttctgagaac
                                                                       120
acggacggtt cttagcacaa tttgtgaaat ctgtgtaraa ccgggctttg caggggagat
                                                                       180
                                                                       240
aattttcctc ctctggagga aaggtggtga ttgacaggca gggagacagt gacaaggcta
gagaaagcca cgctcggcct tctctgaacc aggatggaac ggcagacccc tgaaaacgaa
                                                                       300
                                                                       360
gcttgtcccc ttccaatcag ccacttctga gaacccccat ctaacttcct actggaaaag
                                                                       420
agggcctcct caggagcagt ccaagagttt tcaaagataa cgtgacaact accatctaga
                                                                       480
qqaaaqggtg caccctcagc agagaagccg agagcttaac tetggtcgtt tecagagaca
                                                                       540
acctgctggc tgtcttggga tgcgcccagc ctttgagagg ccactacccc atgaacttct
gccatccact ggacatgaag ctgaggacac tgggcttcaa cactgagttg tcatgagagg
                                                                       600
gacaggetet geceteaage eggetgaggg cageaaceae teteeteece ttteteaege
                                                                       660
aaagccattc ccacaaatcc agaccatacc atgaagcaac gagacccaaa cagtttggct
                                                                       720
                                                                       780
caagaggata tgaggactgt ctcagcctgg ctttgggctg acaccatgca cacacacaag
                                                                       818
gtccacttct aggttttcag cctagatggg agtcgtgt
      <210> 228
      <211> 744
      <212> DNA
      <213> Homo sapien
      <400> 228
                                                                         60
actggagaca ctgttgaact tgatcaagac ccagaccacc ccaggtctcc ttcgtgggat
gtcatgacgt ttgacatacc tttggaacga gcctcctcct tggaagatgg aagaccgtgt
                                                                        120
                                                                        180
tcgtggccga cctggcctct cctggcctgt ttcttaagat gcggagtcac atttcaatgg
                                                                        240
taggaaaagt ggcttcgtaa aatagaagag cagtcactgt ggaactacca aatggcgaga
tgctcggtgc acattggggt gctttgggat aaaagattta tgagccaact attctctggc
                                                                        300
accagattet aggecagttt gttecactga agetttteee acageagtee acctetgeag
                                                                        360
gctggcagct gaatggcttg ccggtggctc tgtggcaaga tcacactgag atcgatgggt
                                                                        420
                                                                        480
gagaaggeta ggatgettgt etagtgttet tagetgteac gttggeteet teeaggttgg
                                                                        540
ccagacggtg ttggccactc ccttctaaaa cacaggcgcc ctcctggtga cagtgacccg
                                                                        600
ccqtqqtatq ccttqqccca ttccaqcagt cccagttatg catttcaagt ttggggtttg
                                                                        660
ttcttttcgt taatgttcct ctgtgttgtc agctgtcttc atttcctggg ctaagcagca
                                                                        720
ttgggagatg tggaccagag atccactcct taagaaccag tggcgaaaga cactttcttt
                                                                        744
cttcactctg aagtagctgg tggt
      <210> 229
      <211> 300
      <212> DNA
      <213> Homo sapien
      <400> 229
                                                                         60
cqaqtctqqq ttttqtctat aaaqtttqat ccctcctttt ctcatccaaa tcatqtqaac
                                                                        120
cattacacat cgaaataaaa gaaaggtggc agacttgccc aacgccaggc tgacatgtgc
tgcagggttg ttgtttttta attattattg ttagaaacgt cacccacagt ccctgttaat
                                                                        180
                                                                        240
ttgtatgtga cagccaactc tgagaaggtc ctatttttcc acctgcagag gatccagtct
                                                                        300
cactaggete etecttgece teacactgga gteteegeea gtgtgggtge eeactgacat
      <210> 230
      <211> 301
      <212> DNA
      <213> Homo sapien
```

```
<400> 230
 cagcagaaca aatacaaata tgaagagtgo aaagatotoa taaaatotat gotgaggaat
                                                                          60
 qaqcqacagt tcaaggagga gaagcttgca gagcagctca agcaagctga ggagctcagg
                                                                         120
 vaatataaag teetggttea caeteaggaa egagagetga eecagttaag ggagaagttg
                                                                         180
 cgggaaggga gagatgcctc cctctcattg aatgagcatc tccaggccct cctcactccg
                                                                        240
 gatgaaccgg acaagtccca ggggcaggac ctccaagaaa cagacctcgg ccgcgaccac
                                                                         300
                                                                         301
       <210> 231
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 231
 gcaagcacge tggcaaatct ctgtcaggte agetecagag aagecattag teattttage
                                                                         60
 caggaactcc aagtccacat ccttggcaac tggggacttg cgcaggttag ccttgaggat
                                                                        120
 ggcaacacgg gacttctcat caggaagtgg gatgtagatg agctgatcaa gacggccagg
                                                                        180
 totgaggatg gcaggatcaa tgatgtcagg ccggttggta ccgccaatga tgaacacatt
                                                                        240
 ttttttgtg gacatgccat ccatttctgt caggatctgg ttgatgactc ggtcagcagc
                                                                        300
                                                                        301
      <210> 232
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 232
agtaggtatt tegtgagaag tteaacacea aaactggaae atagttetee tteaagtgtt
                                                                         60
ggcgacagcg gggcttcctg attctggaat ataactttgt gtaaattaac agccacctat
                                                                        120
agaagagtcc atctgctgtg aaggagaca agagaactct gggttccgtc gtcctgtcca
                                                                        180
cgtgctgtac caagtgctgg tgccagcctg ttacctgttc tcactgaaaa tctggctaat
                                                                        240
getettgtgt atcacttetg attetgacaa teaateaate aatggeetag ageaetgaet
                                                                        300
                                                                        301
      <210> 233
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 233
atgactgact teccagtaag getetetaag gggtaagtag gaggateeae aggatttgag
                                                                        60
atgetaagge eecagagate gtttgateea accetettat ttteagaggg gaaaatgggg
                                                                        120
cctagaagtt acagagcatc tagctggtgc gctggcaccc ctggcctcac acagactccc
                                                                        180
gagtagetgg gaetacagge acaeagteae tgaageagge eetgttagea attetatgeg
                                                                        240
tacaaattaa catgagatga gtagagactt tattgagaaa gcaagagaaa atcctatcaa
                                                                       300
                                                                       301
      <210> 234
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 234
aggrectaca categagaet catecatgat tgatatgaat ttaaaaaatta caagcaaaga
                                                                        60
cattltattc atcatgatgc tttcttttgt ttcttctttt cgttttcttc tttttctttt
                                                                       120
toaatttcag caacatactt ctcaatttct tcaggattta aaatcttgag ggattgatct
                                                                       180
rgceteatga cageaagtte aatgtttttg ceaectgaet gaaceaette caggagtgee
                                                                       240
rtgatcacca gcttaatggt cagatcatct gcttcaatgg cttcgtcagt atagttcttc
                                                                       300
```

```
+
                                                                        301
      <210> 235
      <211> 283
      <212> DNA
      <213> Homo sapien
      <400> 235
tggggctgtg catcaggcgg gtttgagaaa tattcaattc tcagcagaag ccagaatttg
                                                                         60
aattccctca tettttaggg aatcatttac caggtttgga gaggattcag acagetcagg
                                                                        120
tgctttcact aatgtctctg aacttctgtc cctctttgtt catggatagt ccaataaata
                                                                        180
atgttatctt tqaactqatq ctcataqqaq aqaatataaq aactctqaqt qatatcaaca
                                                                        240
ttagggattc aaagaaatat tagatttaag ctcacactgg tca
                                                                        283
      <210> 236
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 236
aggteeteea eeaaetgeet gaageaeggt taaaattggg aagaagtata gtgeageata
                                                                         60
aatactttta aatcgatcag atttccctaa cccacatgca atcttcttca ccagaagagg
                                                                        120
teggageage atcattaata ceaageagaa tgegtaatag ataaatacaa tggtatatag
                                                                        180
tgggtagacg gcttcatgag tacagtgtac tgtggtatcg taatctggac ttgggttgta
                                                                        240
aagcatcgtg taccagtcag aaagcatcaa tactcgacat gaacgaatat aaagaacacc
                                                                        300
                                                                        301
      <210> 237
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 237
cagtggtagt ggtggtggac gtggcgttgg tcgtggtgcc ttttttggtg cccgtcacaa
                                                                         60
actcaatttt tgttcgctcc tttttggcct tttccaattt gtccatctca attttctggg
                                                                        120
cettggctaa tgcctcatag taggagteet cagaccagee atggggatea aacatateet
                                                                        180
ttgggtagtt ggtgccaagc tcgtcaatgg cacagaatgg atcagcttct cgtaaatcta
                                                                        240
gggttccgaa attettett cetttggata atgtagttca tatecattee etcetttate
                                                                        300
                                                                        301
      <210> 238
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 238
                                                                         60
gggcaggttt ttttttttt ttttttgatg gtgcagaccc ttgctttatt tgtctgactt
gttcacagtt cagcccctg ctcagaaaac caacgggcca gctaaggaga ggaggaggca
                                                                        120
cettgagaet teeggagteg aggeteteea gggtteecea geecateaat cattttetge
                                                                        180
                                                                        240
accceetgee tgggaageag cteeetgggg ggtgggaatg ggtgaetaga agggatttea
                                                                        300
gtgtgggacc cagggtctgt tcttcacagt aggaggtgga agggatgact aatttcttta
                                                                        301
t.
      <210> 239
      <211> 239
      <212> DNA
      <213> Homo sapien
```

```
<400> 239
  staagcaget agggaattet ttatttagta atgteetaac ataaaagtte acataactge
                                                                          60
  rtetateaaa ecatgataet gagetttätä acaaceeaga aataaetaag agaaggeaaa
                                                                         120
  atascacot tagagatoaa gaaacattta cacagttoaa otgtttaaaa atagotoaac
                                                                         180
 attcagccag tgagtagagt gtgaatgcca gcatacacag tatacaggtc cttcaggga
                                                                         239
        <210> 240
        <211> 300
        <212> DNA
        <213> Homo sapien
       <400> 240
 ggtcctaatg aagcagcagc ttccacattt taacgcaggt ttacggtgat actgtccttt
                                                                         60
 gggatetgec etccagtgga acettttaag gaagaagtgg geecaageta agttecacat
                                                                        120
 getgggtgag ccagatgact tetgtteeet ggteacttte tteaatgggg cgaatggggg
                                                                        180
 etgecaggtt tttaaaatca tgetteatet tgaageaeae ggteaettea eceteeteae
                                                                        240
 getgtgggtg tactttgatg aaaataccca etttgttgge etttetgaag etataatgte
                                                                        300
       <210> 241
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 241
 gaggtetggt getgaggtet etgggetagg aagaggagtt etgtggaget ggaageeaga
                                                                         60
 cetetttgga ggaaacteca geagetatgt tggtgtetet gagggaatge aacaaggetg
                                                                        120
 ctcctccatg tattggaaaa ctgcaaactg gactcaactg gaaggaagtg ctgctgccag
                                                                        180
 tgtgaagaac cagcctgagg tgacagaac ggaagcaaac aggaacagcc agtctttct
                                                                        240
 tectectect gteataeggt eteteteaag cateetttgt tgteagggge etaaaaggga
                                                                        300
                                                                        301
       <210> 242
       <211> 301
       <212> DNA
      <213> Homo sapien
      <400> 242
ccgaggtcct gggatgcaac caatcactct gtttcacgtg acttttatca ccatacaatt
                                                                        60
tgtggcattt cctcattttc tacattgtag aatcaagagt gtaaataaat gtatatcgat
                                                                       120
gtcttcaaga atatatcatt cctttttcac tagaacccat tcaaaatata agtcaagaat
                                                                       180
cttaatatca acaaatatat caagcaaact ggaaggcaga ataactacca taatttagta
                                                                       240
taagtaccca aagttttata aatcaaaagc cctaatgata accatttta gaattcaatc
                                                                       300
а
                                                                       301
      <210> 243
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 243
aggtaagtcc cagtttgaag ctcaaaagat ctggtatgag cataggctca tcgacgacat
                                                                        60
ggtggcccaa gctatgaaat cagagggagg cttcatctgg gcctgtaaaa actatgatgg
                                                                       120
tgacgtgcag tcggactctg tggcccaagg gtatggctct ctcggcatga tgaccagegt
                                                                       180
octgotttgt ccagatggca agacagtaga agcagaggct gcccacggga ctgtaacccg
                                                                       240
teactacege atgitecaga aaggacagga gacgiceace aateccattg effecatitt
                                                                       300
                                                                       301
```

<210> 244

```
<211> 300
      <212> DNA
      <213> Homo sapien
      <400> 244
                                                                        60
gctggtttgc aagaatgaaa tgaatgattc tacagctagg acttaacctt gaaatggaaa
                                                                       120
qtcatqcaat cccatttgca ggatctgtct gtgcacatgc ctctgtagag agcagcattc
                                                                       180
ccaqqqacct tqqaaacagt tgacactgta aggtgcttgc tccccaagac acatcctaaa
                                                                       240
aggtgttgta atggtgaaaa cgtcttcctt ctttattgcc ccttcttatt tatgtgaaca
                                                                       300
actitttiqtc ttttqtqtat cttttttaaa ctgtaaagtt caattgtgaa aatgaatatc
      <210> 245
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 245
qtctqaqtat ttaaaatgtt attgaaatta tccccaacca atgttagaaa agaaagaggt
                                                                        60
                                                                       120
tatatactta qataaaaaat gaggtgaatt actatccatt gaaatcatgc tcttagaatt
aaggccagga gatattgtca ttaatgtara cttcaggaca ctagagtata gcagccctat
                                                                       180
                                                                       240
qttttcaaaq aqcaqaqatq caattaaata ttgtttagca tcaaaaaggc cactcaatac
                                                                       300
agctaataaa atgaaagacc taatttctaa agcaattctt tataatttac aaagttttaa
                                                                       301
      <210> 246
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 246
                                                                        60
qqtctqtcct acaatqcctq cttcttgaaa gaagtcggca ctttctagaa tagctaaata
acctgggctt attttaaaga actatttgta gctcagattg gttttcctat ggctaaaata
                                                                       120
agtgcttctt gtgaaaatta aataaaacag ttaattcaaa gccttgatat atgttaccac
                                                                       180
                                                                       240
taacaatcat actaaatata ttttgaagta caaagtttga catgctctaa agtgacaacc
caaatgtgtc ttacaaaaca cgttcctaac aaggtatgct ttacactacc aatgcagaaa
                                                                       300
                                                                       301
      <210> 247
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 247
                                                                        60
aggteetttg geagggetea tggateagag eteaaactgg agggaaagge atttegggta
                                                                       120
qcctaaqaqq qcqactggcg gcagcacaac caaggaaggc aaggttgttt cccccacgct
                                                                       180
qtqtcctqtq ttcaqqtqcq acacacaatc ctcatgggaa caggatcacc catgcqctqc
                                                                       240
ccttqatqat caaqqttggg gcttaagtgg attaagggag gcaagttctg ggttccttgc
                                                                       300
cttttcaaac catqaaqtca ggctctgtat ccctcctttt cctaactgat attctaacta
                                                                       301
      <210> 248
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 248
                                                                        60
aggteettgg agatgeeatt teageegaag gactettetw tteggaagta cacceteaet
                                                                        120
attaggaaga ttcttagggg taatttttct gaggaaggag aactagccaa cttaagaatt
```

```
scaggaagaa agtggtttgg aagacagcca aagaaataaa agcagattaa attgtatcag
                                                                         180
 glucatteca geotgitigge aactecataa aaacatttea gattitaate eegaattiag
                                                                         240
 ctaatgagac tggatttttg ttttttatgt tgtgtgtcgc agagctaaaa actcagttcc
                                                                         300
                                                                         301
        <210> 249
        <211> 301
        <212> DNA
       <213> Homo sapien
       <400> 249
 grocagagga agcacctggt gotgaactag gottgoootg otgtgaactt goacttggag
                                                                          60
 coordance actifitates cogaaaaaco ogacogacot cogogatoto egtocogoco
                                                                         120
 ccagggagae acageagtga etcagagetg gtegeaeaet gtgeeteeet eetcaeegee
                                                                         180
 categraatg auttattttg aaaattaatt ccaecateet tteagattet ggatggaaag
                                                                         240
 actgaatott tquetcagaa ttgtttgctg aaaagaatga tgtgactttc ttagtcattt
                                                                         300
                                                                         301
       <210> 250
       <211 - 301
       <212> DNA
       <213> Homo sapien
       <400> 250
 ggictgigae aaggaetige aggetgiggg aggeaagiga ceettaacae tacaettete
                                                                         60
 ettatettta ttggettgat aaacataatt atttetaaca etagettatt teeagttgee
                                                                        120
 cataagcaca tougtacttt tetetggetg gaatagtaaa etaaagtatg gtacatetae
                                                                        180
 ctaaaaagact actatgtgga ataatacata ctaatgaagt attacatgat ttaaagacta
                                                                        240
caataaaacc aaacatgctt ataacattaa gaaaaacaat aaagatacat gattgaaacc
                                                                        300
                                                                        301
       <210> 251
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 251
geogaggtee tacatttgge coagttteec cotgeatect etceagggee cotgeeteat
                                                                         60
agacaacctc atagagcata ggagaactgg ttgccctggg ggcaggggga ctgtctggat
                                                                        120
ggcaggggtc ctcaaaaatg ccactgtcac tgccaggaaa tgcttctgag cagtacacet
                                                                        180
cattgggate aatgaaaage tteaagaaat etteaggete actetettga aggeeeggaa
                                                                        240
cetetggagg ggggcagtgg aatcccaget ccaggacgga teetgtegaa aagatateet
                                                                        300
C
                                                                        301
      <210> 252
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 252
gcaaccaatc actctgtttc acgtgacttt tatcaccata caatttgtgg catttcctca
                                                                        60
ttttctacat tgtagaatca agagtgtaaa taaatgtata tcgatgtctt caagaatata
                                                                       120
tcattccttt ttcactagga acccattcaa aatataagtc aagaatctta atatcaacaa
                                                                       180
atatatcaag caaactggaa ggcagaataa ctaccataat ttagtataag tacccaaagt
                                                                       240
tttataaatc aaaagcccta atgataacca tttttagaat tcaatcatca ctgtagaatc
                                                                       300
                                                                       301
```

<210> 253

WO 01/051633 PCT/US01/01574

```
<211> 301
      <212> DNA
      <213> Homo sapien
      <400> 253
                                                                        60
ttccctaaga agatgttatt ttgttgggtt ttgttccccc tccatctcga ttctcgtacc
caactaaaaa aaaaaaataa agaaaaaatg tgctgcgttc tgaaaaaataa ctccttagct
                                                                        120
tggtctgatt gttttcagac cttaaaatat aaacttgttt cacaagcttt aatccatgtg
                                                                       180
gatttttttt cttagagaac cacaaaacat aaaaggagca agtcggactg aatacctgtt
                                                                       240
                                                                        300
tocatagtgc ccacagggta ttcctcacat tttctccata ggaaaatgct ttttcccaag
                                                                        301
      <210> 254
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 254
cgctgcgcct ttcccttggg ggaggggcaa ggccagaggg ggtccaagtg cagcacgagg
                                                                         60
aacttgacca attcccttga agcgggtggg ttaaaccctg taaatgggaa caaaatcccc
                                                                        120
ccaaatctct tcatcttacc ctggtggact cctgactgta gaattttttg gttgaaacaa
                                                                        180
qaaaaaaata aagetttgga etttteaagg ttgettaaca ggtactgaaa gactggeete
                                                                        240
acttaaactq aqccaqqaaa aqctqcaqat ttattaatqq gtqtqttaqt gtqcaqtqcc
                                                                        300
                                                                        301
      <210> 255
      <211> 302
      <212> DNA
      <213> Homo sapien
      <400> 255
agcttttttt ttttttttt ttttttttt ttcattaaaa aatagtgctc tttattataa
                                                                         60
attactgaaa tgtttctttt ctgaatataa atataaatat gtgcaaagtt tgacttggat
                                                                        120
tgggattttq ttgagttctt caagcatctc ctaataccct caagggcctg agtaggggg
                                                                        180
                                                                        240
aggaaaaaqq actqqaqqtg gaatctttat aaaaaacaag agtgattgag gcagattgta
aacattatta aaaaacaaga aacaaacaaa aaaatagaga aaaaaaccac cccaacacac
                                                                        300
                                                                        302
      <210> 256
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1) ... (301)
      <223> n = A, T, C \text{ or } G
      <400> 256
gttccagaaa acattgaagg tggcttccca aagtctaact agggataccc cctctagcct
                                                                         60
                                                                        120
aggaccetee tecceacace teaatecace aaaceateca taatgeacee agataggeee
acceccaaaa geetggacac ettgagcaca eagttatgac eaggacagac teatetetat
                                                                        180
aggcaaatag ctgctqqcaa actggcatta cctggtttgt ggggatgggg gggcaagtgt
                                                                        240
                                                                        300
gtggcctctc ggcctggtta gcaagaacat tcagggtagg cctaagttan tcgtgttagt
                                                                        301
      <210> 257
```

<211> 301

```
<212> DNA
        <213> Home sapien
        <400> 257
  gttgtggagg aactetgget tgeteattaa gteetaetga tttteactat eeeetgaatt
                                                                           60
  topodactia tittigiett teactatege aggeettaga agaggietae eigeeteeag
                                                                          120
  tottacctag tocagtotac cocctggagt tagaatggcc atcctgaagt gaaaagtaat
                                                                          180
  gtcacattac tecetteagt gatttettgt agaagtgeea atceetgaat gecaccaaga
                                                                          240
  tottaatott cacatottta atottatoto tttgactoot otttacacog gagaaggoto
                                                                         300
                                                                          301
        <210> 258
        <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       \langle 223 \rangle n = A,T,C or G
       <400> 258
 cageagtagt agatgeegta tgccageaeg eccageacte ecaggateag caccageaee
                                                                          60
 aggggcccag ccaccaggcg cagaagcaag ataaacagta ggctcaagac cagagccacc
                                                                         120
 cccagggcaa caagaatcca ataccaggac tgggcaaaat cttcaaagat cttaacactg
                                                                         180
 atgtctcggg cattgaggct gtcaataana cgctgatccc ctgctgtatg gtggtgtcat
                                                                         240
 tggtgatece tgggagegee ggtggagtaa egttggteea tggaaageag egeccacaae
                                                                         300
                                                                         301
       <210> 259
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A,T,C or G
       <400> 259
tcatatatgc aaacaaatgc agactangcc tcaggcagag actaaaggac atctcttggg
                                                                         60
gtgtcctgaa gtgatttgga cccctgaggg cagacaccta agtaggaatc ccagtgggaa
                                                                        120
gcaaagccat aaggaagccc aggatteett gtgatcagga agtgggccag gaaggtctgt
                                                                        180
tecageteae ateteatety catgeageae ggaceggatg egeceaetgg gtettggett
                                                                        240
occteccate tteteaagea gtgteettgt tgageeattt geateettgg etceaggtgg
                                                                        300
                                                                        301
      <210> 260
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 260
itttttttttt ccctaaggaa aaagaaggaa caagtctcat aaaaccaaat aagcaatggt
                                                                         60
aaggtgtett aacttgaaaa agattaggag teactggttt acaagttata attgaatgaa
                                                                        120
agaactgtaa cagccacagt tggccatttc atgccaatgg cagcaaacaa caggattaac
                                                                        180
tagggcaaaa taaataagtg tgtggaagcc ctgataagtg cttaataaac agactgattc
                                                                        240
actgagacat cagtacetge eegggeggee getegageeg aattetgeag atatecatea
                                                                        300
```

```
301
      <210> 261
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 261
aaatattcga gcaaatcctg taactaatgt gtctccataa aaggctttga actcagtgaa
                                                                        60
tctgcttcca tccacgattc tagcaatgac ctctcggaca tcaaagctcc tcttaaggtt
                                                                       120
agcaccaact attccataca attcatcagc aggaaataaa ggctcttcag aaggttcaat
                                                                       180
ggtgacatcc aatttettet gataatttag attecteaca acetteetag ttaagtgaag
                                                                       240
                                                                       300
ggcatqatga tcatccaaag cccagtggtc acttactcca gactttctgc aatgaagatc
                                                                       301
      <210> 2€2
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 262
gaggagagcc tgttacagca tttgtaagca cagaatactc caggagtatt tgtaattgtc
                                                                        60
tgtgagcttc ttgccgcaag tctctcagaa atttaaaaag atgcaaatcc ctgagtcacc
                                                                       120
                                                                       180
cctagacttc ctaaaccaga tcctctgggg ctggaacctg gcactctgca tttgtaatga
gggctttctg gtgcacacct aattttgtgc atctttgccc taaatcctgg attagtgccc
                                                                       240
                                                                       300
catcattacc cccacattat aatgggatag attcagagca gatactctcc agcaaagaat
                                                                       301
      <210> 263
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 263
tttagcttgt ggtaaatgac tcacaaaact gattttaaaa tcaagttaat gtgaattttg
                                                                        60
aaaattacta cttaatccta attcacaata acaatggcat taaggtttga cttgagttgg
                                                                       120
ttcttagtat tatttatggt aaataggctc ttaccacttg caaataactg gccacatcat
                                                                       180
taatgactga cttcccagta aggctctcta aggggtaagt angaggatcc acaggatttg
                                                                       240
agatgctaag gccccagaga tcgtttgatc caaccctctt attttcagag gggaaaatgg
                                                                       300
                                                                       301
      <210> 264
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 264
aaagacgtta aaccactcta ctaccacttg tggaactctc aaagggtaaa tgacaaascc
                                                                        60
aatgaatgac tctaaaaaca atatttacat ttaatggttt gtagacaata aaaaaacaag
                                                                       120
gtggatagat ctagaattgt aacattttaa gaaaaccata scatttgaca gatgagaaag
                                                                       180
ctcaattata gatgcaaagt tataactaaa ctactatagt agtaaagaaa tacatttcac
                                                                       240
accetteata taaatteact atettggett gaggeactee ataaaatgta teaegtgeat
                                                                        300
                                                                       301
```

```
<210> 265
        <211> 301
        <212> DNA
        <213> Homo sapien
        <400> 265
  tgc:::aagtt atgtgtaagt gtatccgcac ccagaggtaa aactacactg tcatctttgt
                                                                          60
  cttcttgtga cgcagtattt cttctctggg gagaagccgg gaagtcttct cctggctcta
                                                                         120
 catallottg gaagteteta atcaactttt gttccatttg tttcatttct tcaggaggga
                                                                         180
 ttttuagttt gtcaacatgt tototaacaa cacttgocca tttotgtaaa gaatccaaag
                                                                         240
 can neagg ctttgacatg teaacaacea geataactag agtateette agagataegg
                                                                         300
                                                                         301
       <210> 266
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 266
 taccgtctgc ccttcctccc atccaggeca tctgcgaatc tacatgggtc ctcctattcg
 acaccagate actetteet etacccacag gettgetatg ageaagagae acaaceteet
                                                                         60
 etettergtg ttecagette tttteetgtt etteceacee ettaagttet atteetgggg
                                                                        120
                                                                        180
 atagagacac caatacccat aacetetete etaageetee ttataaceca gggtgcacag
                                                                        240
 cacagactee tgacaactgg taaggecaat gaactgggag etcacagetg getgtgeetg
                                                                        300
                                                                        301
       <210> 267
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 267
anagageaca ggecagetea geetgeeetg geeatetaga eteageetgg etecatgggg
                                                                         60
gtteteagtg etgagteeat ceaggaaaag etcaectaga eettetgagg etgaatette
atceteacag geagettetg agageetgat attectagee ttgatggtet ggagtaaage
                                                                        120
                                                                        180
ctcattctga tteeteteet tettttettt caagttgget tteeteacat eestetgtte
                                                                        240
aattogette agettgtetg etttageeet eattteeaga agettettet etttggeate
                                                                        300
                                                                        301
      <210> 268
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 268
aatgteteae teaactaett eeeageetae egtggeetaa ttetgggagt tttettetta
                                                                        60
gatettggga gagetggtte ttetaaggag aaggaggaag gacagatgta actttggate
                                                                       120
togaagagga agtotaatgg aagtaattag toaacggtoo ttgtttagac tottggaata
                                                                       180
tgctgggtgg ctcagtgagc ccttttggag aaagcaagta ttattcttaa ggagtaacca
                                                                       240
cttcccattg ttctactttc taccatcatc aattgtatat tatgtattct ttggagaact
                                                                       300
                                                                       301
     <210> 269
      <211> 301
      <212> DNA
     <213> Homo sapien
```

```
<400> 269
taacaatata cactagctat ctttttaact gtccatcatt agcaccaatg aagattcaat
                                                                         60
aaaattacct ttattcacac atctcaaaac aattctgcaa attcttagtg aagtttaact
                                                                        120
atagtcacag accttaaata ttcacattgt tttctatgtc tactgaaaat aagttcacta
                                                                        180
cttttctgga tattctttac aaaatcttat taaaattcct ggtattatca cccccaatta
                                                                        240
tacagtagca caaccacctt atgtagtttt tacatgatag ctctgtagaa gtttcacatc
                                                                        300
                                                                        301
      <210> 270
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 270
cattgaagag cttttgcgaa acatcagaac acaagtgctt ataaaattaa ttaagcctta
                                                                         60
                                                                        120
cacaagaata catattcctt ttatttctaa ggagttaaac atagatgtag ctgatgtgga
gagettgetg gtgeagtgea tattggataa cactatteat ggeegaattg ateaagteaa
                                                                        180
                                                                        240
ccaacteett gaactggate atcagaagaa gggtggtgca cgatatactg cactagataa
                                                                        300
tggaccaacc aactaaattc tctcaccagg ctgtatcagt aaactggctt aacagaaaac
                                                                        301
а
      <210> 271
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C \text{ or } G
      <400> 271
aaaaggttot cataagatta acaatttaaa taaatatttg atagaacatt ctttotoatt
                                                                         60
                                                                        120
tttatagctc atctttaggg ttgatattca gttcatgctt cccttgctgt tcttgatcca
gaattgcaat cacttcatca gcctgtattc gctccaattc tctataaagt gggtccaagg
                                                                        180
                                                                        240
tgaaccacag agccacagca cacctctttc ccttggtgac tgccttcacc ccatganggt
                                                                        300
tetetectee agatganaac tgateatgeg eccaeatttt gggttttata gaageagtea
                                                                        301
      <210> 272
      <211> 301
      <212> DNA
      <213> Homo sapien
       <400> 272
                                                                         60
taaattgcta agccacagat aacaccaatc aaatggaaca aatcactgtc ttcaaatgtc
                                                                        120
ttatcagaaa accaaatgag cctggaatct tcataatacc taaacatgcc gtatttagga
                                                                        180
tccaataatt ccctcatgat gagcaagaaa aattctttgc gcacccctcc tgcatccaca
gcatcttctc caacaaatat aaccttgagt ggcttcttgt aatctatgtt ctttgttttc
                                                                         240
                                                                        300
ctaaggactt ccattgcatc tcctacaata ttttctctac gcaccactag aattaagcag
                                                                         301
       <210> 273
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
```

```
<221> misc feature
        <222> (1)...(301)
        <223> n = A, T, C or G
        <400> 273
  acatgtgtgt atgtgtatct ttgggaaaan aanaagacat cttgtttayt atttttttgg
                                                                           60
  agagangetg ggacatggat aatcacwtaa tttgctayta tyactttaat ctgactygaa
                                                                          120
  gaaceyteta aaaataaaat ttaecatgte dtatatteet tatagtatge ttattteace
                                                                          180
  ttytttctgt ccagagagag tatcagtgac ananatttma gggtgaamac atgmattggt
                                                                          240
  gggacttnty tttacngagm accetgeeeg sgegeeeteg makengantt eegesanane
                                                                          300
                                                                          301
        <210> 274
        <211> 301
        <212> DNA
        <213> Homo sapien
        <220>
       <221> misc_feature
       <222> (1)...(301)
       \langle 223 \rangle n = A, T, C or G
       <400> 274
 cttatatact ctttctcaga ggcaaaagag gagatgggta atgtagacaa ttctttgagg
                                                                          60
 aacagtaaat gattattaga gagaangaat ggaccaagga gacagaaatt aacttgtaaa
                                                                         120
 tgattetett tggaatetga atgagateaa gaggeeaget ttagettgtg gaaaagteea
                                                                         180
 totaggtatg gttgcattet egtettettt tetgcagtag ataatgaggt aaccgaagge
                                                                         240
 aattgtgctt cttttgataa gaagctttct tggtcatatc aggaaattcc aganaaagtc
                                                                         300
                                                                         301
       <210> 275
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(301)
       <223> n = A, T, C or G
       <400> 275
teggtgteag eageacgtgg cattgaacat tgcaatgtgg ageecaaace acagaaaatg
                                                                          60
gggtgaaatt ggccaacttt ctattaactt atgttggcaa ttttgccacc aacagtaagc
                                                                         120
tggcccttct aataaaagaa aattgaaagg tttctcacta aacggaatta agtagtggag
                                                                         180
tcaagagact cecaggeete agegtacetg ceegggegge egetegaage egaattetge
                                                                         240
agatatecat cacactggeg gnegetegan catgeateta gaaggnecaa ttegeeetat
                                                                         300
                                                                         301
      <210> 276
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 276
tgtacacata ctcaataaat aaatgactgc attgtggtat tattactata ctgattatat
ttatcatgtg acttctaatt agaaaatgta tccaaaagca aaacagcaga tatacaaaat
                                                                        120
takkyagaca gaagatagac attaacagat aaggcaactt atacattgag aatccaaatc
                                                                        180
caatacattt aaacattigg gaaatgaggg ggacaaatgg aagccagatc aaatttgtgt
                                                                        240
```

PCT/US01/01574

91

```
300
aaaactattc agtatgtttc ccttgcttca tgtctgagaa ggctctcctt caatggggat
                                                                       301
      <210> 277
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 277
tttgttgatg tcagtatttt attacttgcg ttatgagtgc tcacctggga aattctaaag
                                                                        60
atacagagga cttggaggaa gcagagcaac tgaatttaat ttaaaagaag gaaaacattg
                                                                       120
gaatcatggc actectgata ettteccaaa teaacaetet caatgeeeca eestegteet
                                                                       180
caccatagtg gggagactaa agtggccacg gatttgcctt angtgtgcag tgcgttctga
                                                                       240
gttenetgte gattacatet gaccagtete ettttteega agteenteeg tteaatettg
                                                                       300
                                                                       301
      <210> 278
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 278
taccactaca etecageetg ggeaacagag caagacetgt eteaaageat aaaatggaat
                                                                        60
aacatatcaa atgaaacagg gaaaatgaag ctgacaattt atggaagcca gggcttgtca
                                                                       120
cagtetetac tgttattatg cattacetgg gaatttatat aageeettaa taataatgee
                                                                       180
aatgaacatc tcatgtgtgc tcacaatgtt ctggcactat tataagtgct tcacaggttt
                                                                       240
tatgtgttct tcgtaacttt atggantagg tactcggccg cgaacacgct aagccgaatt
                                                                       300
                                                                       301
      <210> 279
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 279
aaagcaggaa tgacaaagct tgcttttctg gtatgttcta ggtgtattgt gacttttact
                                                                         60
gttatattaa ttgccaatat aagtaaatat agattatata tgtatagtgt ttcacaaagc
                                                                        120
ttagaccttt accttccagc caccccacag tgcttgatat ttcagagtca gtcattggtt
                                                                        180
atacatgtgt agttccaaag cacataagct agaanaanaa atattctag ggagcactac
                                                                        240
catctgtttt cacatgaaat gccacacaca tagaactcca acatcaattt cattgcacag
                                                                        300
                                                                        301
      <210> 280
```

BNSDOCID: <WO 0151633A3 IA>

```
<211> 301
        <212> DNA
        <213> Homo sapien
        <400> 280
 ggtactggag ttttcctccc ctgtgaaaac gtaactactg ttgggagtga attgaggatg
                                                                          60
  tagaaaggtg gtggaaccaa attgtggtca atggaaatag gagaatatgg ttctcactct
                                                                         120
 rgagaaaaaa acctaagatt agcccaggta gttgcctgta acttcagttt ttctgcctgg
                                                                         180
 gtttgatata gtttagggtt ggggttagat taagatctaa attacatcag gacaaagaga
                                                                         240
 cagactatta actocacagt taattaagga ggtatgttoc atgtttattt gttaaagcag
                                                                         300
                                                                         301
        <210> 281
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 281
 aggtacaaga aggggaatgg gaaagagetg etgetgtgge attgtteaae ttggatatte
                                                                         60
 geogageaat ecaaateetg aatgaagggg catettetga aaaaggagat etgaatetea
                                                                        120
 atgtggtagc aatggcttta tcgggttata cggatgagaa gaactccctt tggagagaaa
                                                                        180
 tgtgtagcac actgcgatta cagctaaata acccgtattt gtgtgtcatg tttgcatttc
                                                                        240
 tgacaagtga aacaggatet tacgatggag ttttgtatga aaacaaagtt gcagtacete
                                                                        300
                                                                        301
       <210> 282
       <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 282
 caggiactac agaattaaaa tactgacaag caagtagitt citggcgigc acgaatigca
                                                                         60
 todaqaaccc aaaaattaag aaattcaaaa agacattttg tgggcacctg ctagcacaga
                                                                        120
agegeagaag caaageecag geagaaceat getaacetta eageteagee tgeacagaag
                                                                        180
egeagaagea aageeeagge agaaceatge taacettaca geteageetg cacagaageg
                                                                        240
cagaagcaaa gcccaggcag aacatgctaa ccttacagct cagcctgcac agaagcacag
                                                                        300
                                                                        301
       <210> 283
       <211> 301
       <212> DNA
       <213> Homo sapien
      <400> 283
atotgtatac ggcagacaaa otttatarag tgtagagagg tgagcgaaag gatgcaaaag
                                                                        60
cactttgagg gctttataat aatatgctgc ttgaaaaaaa aaatgtgtag ttgatactca
                                                                       120
gtgcatctcc agacatagta aggggttgct ctgaccaatc aggtgatcat ttttctatc
                                                                       180
acttcccagg ttttatgcaa aaattttgtt aaattctata atggtgatat gcatctttta
                                                                       240
ggaaacatat acatttttaa aaatctattt tatgtaagaa ctgacagacg aatttgcttt
                                                                       300
g
                                                                       301
      <210> 284
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 284
.aggtacaaa acgctattaa gtggcttaga atttgaacat ttgtggtctt tatttacttt
```

```
120
qcttcqtqtq tqqqcaaaqc aacatcttcc ctaaatatat attaccaaga aaagcaagaa
                                                                       180
gcagattagg tttttgacaa aacaaacagg ccaaaagggg gctgacctgg agcagagcat
                                                                       240
ggtgagaggc aaggcatgag agggcaagtt tgttgtggac agatctgtgc ctactttatt
                                                                       300
actggagtaa aagaaaacaa agttcattga tgtcgaagga tatatacagt gttagaaatt
                                                                       301
      <210> 285
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 285
                                                                         60
acatcaccat gateggatec eccaeccatt atacgttgta tgtttacata aatactette
aatgatcatt agtgttttaa aaaaaatact gaaaactcct tctgcatccc aatctctaac
                                                                       120
caggaaagca aatgctattt acagacctgc aagccctccc tcaaacnaaa ctatttctgg
                                                                       180
attaaatatg tctgacttct tttgaggtca cacgactagg caaatgctat ttacgatctg
                                                                       240
                                                                       300
caaaaqctqt ttgaagagtc aaagccccca tgtgaacacg atttctggac cctgtaacag
                                                                       301
      <210> 286
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 286
taccactgca ttccagcctg ggtgacagag tgagactccg tctccaaaaa aaactttgct
                                                                         60
tgtatattat ttttgcctta cagtggatca ttctagtagg aaaggacagt aagattttt
                                                                        120
atcaaaatgt gtcatgccag taagagatgt tatattcttt tctcatttct tccccaccca
                                                                        180
aaaataagct accatatagc ttataagtct caaatttttg ccttttacta aaatgtgatt
                                                                        240
                                                                        300
gtttctgttc attgtgtatg cttcatcacc tatattaggc aaattccatt ttttcccttg
                                                                        301
t
      <210> 287
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 287
tacagatctg ggaactaaat attaaaaatg agtgtggctg gatatatgga gaatgttggg
                                                                         60
                                                                        120
cccagaagga acgtagagat cagatattac aacagctttg ttttgagggt tagaaatatg
aaatgatttg gttatgaacg cacagtttag gcagcagggc cagaatcctg accctctgcc
                                                                        180
                                                                        240
cogtggttat ctcctccca gcttggctgc ctcatgttat cacagtattc cattttgttt
                                                                        300
gttgcatgtc ttgtgaagcc atcaagattt tctcgtctgt tttcctctca ttggtaatgc
                                                                        301
      <210> 288
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 288
                                                                         60
gtacacctaa ctgcaaggac agctgaggaa tgtaatgggc agccgctttt aaagaagtag
agtcaatagg aagacaaatt ccagttccag ctcagtctgg gtatctgcaa agctgcaaaa
                                                                        120
```

```
galetttaaa gacaatttea agagaatatt teettaaagt tggcaatttg gagateatae
  aaaagcatct gcttttgtga tttaatttag ctcatctggc cactggaaga atccaaacag
                                                                         180
                                                                         240
  retgeettaa tittggatga atgeatgatg gaaatteaat aatttagaaa gitaaaaaaa
                                                                         300
                                                                         301
        <210> 289
        <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1) ... (301)
       <223> n = A, T, C or G
       <400> 289
 ggtacactgt ttccatgtta tgtttctaca cattgctacc tcagtgctcc tggaaactta
 gettttgatg tetecaagta gtecaeette atttaaetet ttgaaaetgt ateatetttg
                                                                         60
 ccaagtaaga gtggtggcct atttcagctg ctttgacaaa atgactggct cctgacttaa
                                                                        120
                                                                        180
 ogttotataa atgaatgtgo tgaagcaaag tgoocatggt ggoggogaan aagagaaaga
 tgtgttttgt tttggactet etgtggteee ttecaatget gtgggtttee aaceagngga
                                                                        240
                                                                        300
                                                                        301
       <210> 290
       <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 290
acactgaget ettettgata aatatacaga atgettggea tatacaagat tetatactae
                                                                         60
tgactgatct gttcatttct ctcacagctc ttacccccaa aagcttttcc accctaagtg
ttotgaccto ottitotaat cacagtaggg atagaggcag ancoacctac aatgaacatg
                                                                       120
                                                                       180
gagttctatc aagaggcaga aacagcacag aatcccagtt ttaccattcg ctagcagtgc
                                                                       240
tgccttgaac aaaaacattt ctccatgtct cattttcttc atgcctcaag taacagtgag
                                                                       300
                                                                       301
      <210> 291
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 291
caggtaccaa tttcttctat cctagaaaca tttcatttta tgttgttgaa acataacaac
tatatcagct agatttttt tctatgcttt acctgctatg gaaaatttga cacattctgc
                                                                        60
                                                                       120
tttactcttt tgtttatagg tgaatcacaa aatgtatttt tatgtattct gtagttcaat
                                                                       180
agccatggct gittactica titaatttat ttagcataaa gacattatga aaaggcctaa
acatgagett caetteecea etaactaatt ageatetgtt atttettaac egtaatgeet
                                                                       240
                                                                       300
                                                                       301
     <210> 292
     <211> 301
     <212> DNA
     <213> Homo sapien
```

```
<220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A,T,C or G
      <400> 292
accttttagt agtaatgtct aataataaat aagaaatcaa ttttataagg tccatatagc
                                                                        60
tgtattaaat aatttttaag tttaaaagat aaaataccat cattttaaat gttggtattc
                                                                       120
aaaaccaaag natataaccg aaaggaaaaa cagatgagac ataaaatgat ttgcnagatg
                                                                       180
ggaaatatag tasttyatga atgttnatta aattccagtt ataatagtgg ctacacactc
                                                                       240
tcactacaca cacagacccc acagtcctat atgccacaaa cacatttcca taacttgaaa
                                                                       300
                                                                       301
      <210> 293
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 293
ggtaccaagt gctggtgcca gcctgttacc tgttctcact gaaaagtctg gctaatgctc
                                                                         60
ttgtgtagtc acttctgatt ctgacaatca atcaatcaat ggcctagagc actgactgtt
                                                                       120
aacacaaacg tcactagcaa agtagcaaca gctttaagtc taaatacaaa gctgttctgt
                                                                       180
gtgagaattt tttaaaaggc tacttgtata ataacccttg tcatttttaa tgtacctcgg
                                                                       240
cegegaceae getaageega attetgeaga tatecateae aetggeggee getegageat
                                                                       300
                                                                       301
      <210> 294
      <211> 301
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 294
tgacccataa caatatacac tagctatctt tttaactgtc catcattagc accaatgaag
                                                                         60
attcaataaa attaccttta ttcacacatc tcaaaacaat tctgcaaatt cttagtgaag
                                                                        120
tttaactata gtcacaganc ttaaatattc acattgtttt ctatgtctac tgaaaataag
                                                                        180
                                                                        240
ttcactactt ttctgggata ttctttacaa aatcttatta aaattcctgg tattatcacc
cccaattata cagtagcaca accaccttat gtagttttta catgatagct ctgtagaggt
                                                                        300
                                                                        301
       <210> 295
       <211> 305
       <212> DNA
       <213> Homo sapien
       <400> 295
gtactctttc tctcccctcc tctgaattta attctttcaa cttgcaattt gcaaggatta
                                                                         60
cacatttcac tgtgatgtat attgtgttgc aaaaaaaaa gtgtctttgt ttaaaattac
                                                                        120
ttggtttgtg aatccatctt gctttttccc cattggaact agtcattaac ccatctctga
                                                                        180
                                                                        240
actggtagaa aaacrtctga agagctagtc tatcagcatc tgacaggtga attggatggt
                                                                        300
teteagaace attteaccea gaeageetgt ttetateetg tttaataaat tagtttgggt
                                                                        305
tatat
```

```
<010> 296
        <211> 301
        <212> DNA
        <213> Homo sapien
        <400> 296
  aggtactatg ggaagetget aaaataatat ttgatagtaa aagtatgtaa tgtgetatet
                                                                           60
  cacctagtag taaactaaaa ataaactgaa actttatgga atctgaagtt attttccttg
                                                                          120
  attaaataga attaataaac caatatgagg aaacatgaaa ccatgcaatc tactatcaac
  tttgaaaaag tgattgaacg aaccacttag ctttcagatg atgaacactg ataagtcatt
                                                                          180
                                                                          240
  grouttact ataaatttta aaatctgtta ataagatggo otatagggag gaaaaagggg
                                                                          300
                                                                          301
        <210> 297
        <211> 300
        <2129 DNA
        <213> Homo sapien
       <220>
       <221 - misc feature
       <222> (1)...(300)
       \langle 223 \rangle n - A,T,C or G
       <400> 237
 actgagtttt auctggacge caageaggea aggetggaag gttttgetet etttgtgeta
                                                                          60
 aaggtittga aaaccttgaa ggagaatcat tttgacaaga agtacttaag agtctagaga
                                                                         120
 acaaagangt quaccagetg aaageteteg ggggaanett acatgtgttg ttaggeetgt
                                                                         180
 tecateatty gragtgeact ggceatecet caaaatttgt etgggetgge etgagtggte
                                                                         240
 accgcaccte ggccgcgace acgctaagec gaattetgca gatatecate acactggcgg
                                                                         300
       <210> 298
       <211> 301
       <212> DNA
       <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(301)
      <223> n = A, T, C or G
      <400> 298
tatggggttt gtcacccaaa agctgatgct gagaaaggcc tccctggggc ccctcccgcg
                                                                         60
ggcatctgag agacctggtg ttccagtgtt tctggaaatg ggtcccagtg ccgccggctg
                                                                        120
tgaagetete agateaatea egggaaggge etggeggtgg tggecacetg gaaceaceet
                                                                        180
gtoctgtotg titacattte actayeaggt titetetggg cattaenatt tgtteceeta
                                                                        240
caacagtgac ctgtgcattc tgctgtggcc tgctgtgtct gcaggtggct ctcagcgagg
                                                                        300
                                                                        301
      <210> 299
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 299
gttttgagac ggagtttcac tettgttgee cagactggae tgeaatggea gggtetetge
                                                                        60
teactgcace etetgeetee caggttegag caatteteet geeteageet eccaggtage
                                                                        120
igggattgca ggeteaegee accataceea getaattttt ttgtattttt agtagagaeg
                                                                       180
gagtttegee atgttggeea getggtetea aacteetgae eteaagegae etgeetgeet
                                                                       240
```

```
cggcctccca aagtgctgga attataggca tgagtcaaca cgcccagcct aaagatattt
                                                                       300
                                                                       301
      <210> 300
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 300
                                                                        60
atteagtttt atttgctgcc ccagtatctg taaccaggag tgccacaaaa tcttgccaga
tatgtcccac acccactggg aaaggctccc acctggctac ttcctctatc agctgggtca
                                                                       120
gctgcattcc acaaggttct cagcctaatg agtttcacta cctgccagtc tcaaaactta
                                                                       180
gtaaagcaag accatgacat teeeccaegg aaateagagt ttgeeceaee gtettgttae
                                                                       240
tataaagcet geetetaaca gteettgett etteacacea atecegageg catececeat
                                                                       300
                                                                       301
      <210> 301
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 301
                                                                        60
ttaaattttt gagaggataa aaaggacaaa taatctagaa atgtgtcttc ttcagtctgc
                                                                       120
agaggacccc aggtctccaa gcaaccacat ggtcaagggc atgaataatt aaaagttggt
                                                                       180
gggaactcac aaagaccctc agagctgaga cacccacaac agtgggagct cacaaagacc
                                                                       240
ctcagagctg agacacccac aacagtggga gctcacaaag accctcagag ctgagacacc
cacaacagca cctcgttcag ctgccacatg tgtgaataag gatgcaatgt ccagaagtgt
                                                                       300
                                                                       301
t
      <210> 302
      <211> 301
      <212> DNA
      <213> Homo sapien
      <400> 302
aggtacacat ttagcttgtg gtaaatgact cacaaaactg attttaaaat caagttaatg
                                                                        60
tgaattttga aaattactac ttaatcctaa ttcacaataa caatggcatt aaggtttgac
                                                                        120
ttgagttggt tcttagtatt atttatggta aataggctct taccacttgc aaataactgg
                                                                       180
                                                                       240
ccacatcatt aatgactgac ttcccagtaa ggctctctaa ggggtaagta ggaggatcca
                                                                        300
caggatttga gatgctaagg ccccagagat cgtttgatcc aaccctctta ttttcagagg
                                                                        301
      <210> 303
      <211> 301
       <212> DNA
       <213> Homo sapien
       <400> 303
                                                                         60
 aggtaccaac tgtggaaata ggtagaggat catttttct ttccatatca actaagttgt
 atattgtttt ttgacagttt aacacatctt cttctgtcag agattctttc acaatagcac
                                                                        120
                                                                        180
 tggctaatgg aactaccgct tgcatgttaa aaatggtggt ttgtgaaatg atcataggcc
 agtaacgggt atgttttct aactgatett ttgctcgttc caaagggace tcaagacttc
                                                                        240
 categatttt atatetgggg tetagaaaag gagttaatet gtttteeete ataaatteae
                                                                        300
                                                                        301
       <210> 304
       <211> 301
       <212> DNA
```

```
<213> Homo sapien
        <400> 304
  acatggatgt tattttgcag actgtcaacc tgaatttgta tttgcttgac attgcctaat
                                                                          60
  tattagtttc agtttcagct tacccacttt ttgtctgcaa catgcaraas agacagtgcc
                                                                         120
  ctttttagtg tatcatatca ggaatcatct cacattggtt tgtgccatta ctggtgcagt
                                                                         180
  gactttcagc cacttgggta aggtggagtt ggccatatgt ctccactgca aaattactga
                                                                         240
  ttttoottit gtaattaata agtgtgtgtg tgaagattot ttgagatgag gtatatatot
                                                                         300
                                                                         301
        <210> 305
        <211> 301
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc_feature
       <222> (1)...(301)
       <223> n = A,T,C or G
       <400> 305
 gangtacage gtggtcaagg taacaagaag aaaaaaatgt gagtggcate ctgggatgag
                                                                         60
 cagggggaca gacctggaca gacacgttgt catttgctgc tgtgggtagg aaaatgggcg
                                                                        120
 taaaggagga gaaacagata caaaatctcc aactcagtat taaggtattc tcatgcctag
                                                                        180
 aatattggta gaaacaagaa tacattcata tggcaaataa ctaaccatgg tggaacaaaa
                                                                        240
 ttctgggatt taagttggat accaangaaa ttgtattaaa agagctgttc atggaataag
                                                                        300
                                                                        301
       <210> 306
       <211> 8
       <212> PRT
       <213> Homo sapien
       <400> 306
Val Leu Gly Trp Val Ala Glu Leu
      <210> 307
      <211> 637
      <212> DNA
      <213> Homo sapien
      <400> 307
acagggratg aagggaaagg gagaggatga ggaagccccc ctggggattt ggtttggtcc
                                                                        60
ttgtgatcag gtggtctatg gggcttatcc ctacaaagaa gaatccagaa ataggggcac
                                                                       120
attgaggaat gatacttgag cccaaagagc attcaatcat tgttttattt gccttmtttt
                                                                       180
cacaccattg gtgagggagg gattaccacc ctggggttat gaagatggtt gaacacccca
                                                                       240
cacatagcac cggagatatg agatcaacag tttcttagcc atagagattc acagcccaga
                                                                       300
gcaggaggac gcttgcacac catgcaggat gacatggggg atgcgctcgg gattggtgtg
                                                                       360
aagaagcaag gactgttaga ggcaggcttt atagtaacaa gacggtgggg caaactctga
                                                                       420
tttccgtggg ggaatgtcat ggtcttgctt tactaagttt tgagactggc aggtagtgaa
                                                                       480
actcattagg ctgagaacct tgtggaatgc acttgaccca sctgatagag gaagtagcca
                                                                       540
ggtgggagcc tttcccagtg ggtgtgggac atatctggca agattttgtg gcactcctgg
                                                                       600
ttacagatac tggggcagca aataaaactg aatcttg
                                                                       637
      <210> 308
     <211> 647
     <212> DNA
```

```
<213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(647)
      <223> n = A, T, C or G
      <400> 308
acgattttca ttatcatgta aatcgggtca ctcaaggggc caaccacagc tgggagccac
                                                                        60
tgctcagggg aaggttcata tgggactttc tactgcccaa ggttctatac aggatataaa
                                                                       120
ggngcctcac agtatagatc tggtagcaaa gaagaagaaa caaacactga tctctttctg
                                                                       180
                                                                       240
ccacccctct qaccctttgg aactcctctg accctttaga acaagcctac ctaatatctg
ctagagaaaa gaccaacaac ggcctcaaag gatctcttac catgaaggtc tcagctaatt
                                                                       300
                                                                       360
cttqqctaaq atqtqqqttc cacattaggt tctgaatatg gggggaaggg tcaatttgct
cattttgtgt gtggataaag tcaggatgcc cagggggccag agcagggggc tgcttgcttt
                                                                       420
                                                                       480
qqqaacaatq qctqaqcata taaccatagg ttatggggaa caaaacaaca tcaaagtcac
                                                                       540
tgtatcaatt gccatgaaga cttgagggac ctgaatctac cgattcatct taaggcagca
                                                                       600
qqaccaqttt qaqtqqcaac aatgcaqcaq cagaatcaat ggaaacaaca gaatgattgc
                                                                       647
aatgteettt titteteet gettetgaet tgataaaagg ggaeegt
      <210> 309
      <211> 460
      <212> DNA
      <213> Homo sapien
      <400> 309
                                                                        60
actttatagt ttaggctgga cattggaaaa aaaaaaaaagc cagaacaaca tgtgatagat
aatatgattg gctgcacact tecagactga tgaatgatga acgtgatgga ctattgtatg
                                                                        120
gagcacatct tcagcaagag ggggaaatac tcatcatttt tggccagcag ttgtttgatc
                                                                        180
accaaacatc atgccagaat actcagcaaa ccttcttagc tcttgagaag tcaaagtccg
                                                                        240
ggggaattta ttcctggcaa ttttaattgg actccttatg tgagagcagc ggctacccag
                                                                        300
ctggggtggt ggagcgaacc cgtcactagt ggacatgcag tggcagagct cctggtaacc
                                                                        360
aeetagagga atacacagge acatgtgtga tgccaagegt gacacetgta geaetcaaat
                                                                        420
                                                                        460
ttgtcttgtt tttgtctttc ggtgtgtaag attcttaagt
      <210> 310
      <211> 539
      <212> DNA
      <213> Homo sapien
      <400> 310
acgggactta tcaaataaag ataggaaaag aagaaaactc aaatattata ggcagaaatg
                                                                         60
ctaaaggttt taaaatatgt caggattgga agaaggcatg gataaagaac aaagttcagt
                                                                        120
taggaaagag aaacacagaa ggaagagaca caataaaagt cattatgtat tctgtgagaa
                                                                        180
gtcagacagt aagatttgtg ggaaatgggt tggtttgttg tatggtatgt attttagcaa
                                                                        240
taatctttat ggcagagaaa gctaaaatcc tttagcttgc gtgaatgatc acttgctgaa
                                                                        300
ttcctcaagg taggcatgat gaaggagggt ttagaggaga cacagacaca atgaactgac
                                                                        360
ctagatagaa agccttagta tactcagcta ggaatagtga ttctgagggc acactgtgac
                                                                        420
atgattatgt cattacatgt atggtagtga tggggatgat aggaaggaag aacttatggc
                                                                        480
atattttcac ccccacaaaa gtcagttaaa tattgggaca ctaaccatcc aggtcaaga
                                                                        539
      <210> 311
      <211> 526
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
```

```
<222> (1)...(526)
        <223> n = A, T, C or G
       <400> 311
 caaatttgag ccaatgacat agaattttac aaatcaagaa gcttattctg gggccatttc
                                                                          60
 thingacgtt tictctaaac tactaaagag gcattaatga tocataaatt atattatcta
                                                                         120
 catttacago atttaaaatg tgttcagcat gaaatattag ctacagggga agctaaataa
                                                                         180
 attaaacatg gaataaagat ttgtccttaa atataatcta caagaagact ttgatatttg
                                                                         240
 tttttcacaa gtgaagcatt cttataaagt gtcataacct ttttggggaa actatgggaa
                                                                         300
 aaaatgggga aactetgaag ggttttaagt atettaeetg aagetaeaga etecataace
                                                                         360
 tetettaca gggageteet geageeeeta cagaaatgag tggetgagat tettgattge
                                                                         420
 aragcaagag cttctcatct aaaccctttc cctttttagt atctgtgtat caagtataaa
                                                                         480
 agttotataa actgtagtnt acttatttta atccccaaag cacagt
                                                                         526
       <210> 312
       <211> 500
       <212> DNA
       <213> Homo sapien
       <220>
       <221> misc feature
       <222> (1)...(500)
       \leq 223 > n = A, T, C \text{ or } G
       <400> 312
cetetetete eccaececet gaetetagag aactgggttt teteccagta etccagcaat
                                                                          60
 tcatttctga aagcagttga gccactttat tccaaagtac actgcagatg ttcaaactct
                                                                         120
coatttetet tteeetteea cetgeeagtt ttgetgaete teaacttgte atgagtgtaa
                                                                         180
 gcattaagga cattatgett ettegattet gaagacagge eetgeteatg gatgaetetg
                                                                         240
gcttcttagg aaaatatttt tcttccaaaa tcagtaggaa atctaaactt atcccctctt
                                                                         300
tgcagatgtc tagcagcttc agacatttgg ttaagaaccc atgggaaaaa aaaaaatcct
                                                                         360
tgctaatgtg gtttcctttg taaaccanga ttcttatttg nctggtatag aatatcagct
                                                                         420
otgaacgtgt ggtaaagatt titgtgtttg aatataggag aaatcagtit gctgaaaagt
                                                                        480
tagtettaat tatetattgg
                                                                         500
      <210> 313
      <211> 718
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(718)
      \langle 223 \rangle n = A,T,C or G
      <400> 313
ggagatttgt gtggtttgca gccgagggag accaggaaga tctgcatggt gggaaggacc
                                                                         60
tgatgataca gaggtgagaa ataagaaagg ctgctgactt taccatctga ggccacacat
                                                                        120
ctgctgaaat ggagataatt aacatcacta gaaacagcaa gatgacaata taatgtctaa
                                                                        180
gtagtgacat gtttttgcac atttccagcc cttttaaata tccacacaca caggaagcac
                                                                        240
aaaaggaage acagagatee etgggagaaa tgeeeggeeg eeatettggg teategatga
                                                                        300
gcctcgccct gtgcctgntc ccgcttgtga gggaaggaca ttagaaaatg aattgatgtg
                                                                        360
ttccttaaag gatggcagga aaacagatcc tgttgtggat atttatttga acgggattac
                                                                        420
agatttgaaa tgaagtcaca aagtgagcat taccaatgag aggaaaacag acgagaaaat
                                                                        480
cttgatggtt cacaagacat gcaacaaaca aaatggaata ctgtgatgac acgagcagce
                                                                        540
Bactggggag gagataccac ggggcagagg tcaggattct ggccctgctg cctaactgtg
                                                                        600
egttatacca atcatttcta titetaccet caaacaaget gingaatate igacitacgg
                                                                        660
ttettntgge ceacatttte atnateeace cententttt aannttante caaantgt
                                                                       718
```

<210> 314												
<211> 358												
<212> DNA <213> Homo sapien	·											
<400> 314 qtttatttac attacagaaa aaacatcaag acaatgtata	a ctatttcaaa tatatc	cata 60										
cataatcaaa tatagctgta gtacatgttt tcattggtgt												
caacatgtgt agatctcttg tcttattctt ttgtctataa												
gctctcggta gtccagccac tgtgaaacat gctccctttattgttgtatt gctgaactgt agtgccctgt attttgcttc												
tetggggeat tteettgtga tgeagaggae caccacaca												
<210> 315 <211> 341 <212> DNA <213> Homo sapien												
<400> 315												
taccacctcc ccgctggcac tgatgagccg catcaccatg												
ataggtgatg atgaggacat ggaatgggcc cccaaggatggaccccatt ctgaaqatgt ctggaacctc taccagcagg												
agtcaccage teceegacca geoggatate gteettagge	g gtcatgtagg cttcct	gaag 240										
tagcttctgc tgtaagaggg tgttgtcccg ggggctcgtggaggggggg tagatgcagc acatggtgaa gcagatgatg		gctt 300 341										
gagggggegg tagatgeage acatggtgaa geagatgate	, c	341										
<210> 316 <211> 151												
<211> 151 <212> DNA												
<213> Homo sapien												
<400> 316												
agactgggca agactcttac gccccacact gcaatttggt												
tgtgggcctt tctcgagttt ctgattataa acaccactggcattcaggga gctctggttg caatattagt t	g agcgatgtgt tgactg	gact 120 151										
<210> 317 <211> 151												
<212> DNA												
<213> Homo sapien												
<400> 317												
agaactagtg gatectaatg aaatacetga aacatatatt ateteattt atetetggee ttaaceetgg eteetgagge	t ggcatttatc aatggc	tcaa 60 cagg 120										
ccagggetet gttettgeca cacetgettg a	c tycgyccayc agated	151										
<210> 318												
<211> 151												
<212> DNA												
<213> Homo sapien												
<400> 318												
actggtggga ggcgctgttt agttggctgt tttcagaggggctgcaggct ggagtgtctt tattcctggc gggagaccgg	g gtotttogga gggadd c acattogadt gotgad	tcct 60 acta 120										
tgggggcggt ttatcaggca gtgataaaca t	o acarrocaer gergay	151										
<210> 319												
·												

```
<211> 151
       <212> DNA
       <213> Homo sapien
       <400> 319
 auctagtgga tocagagota taggtacagt gtgatotoag otttgcaaac acatttota
                                                                         60
 catagatagt actaggtatt aatagatatg taaagaaaga aatcacacca ttaataatgg
                                                                        120
 taadattggg tttatgtgat tttagtgggt a
                                                                        151
       <210> 320
       <211> 150
       <212> DNA
       <213> Homo sapien
       <400> 320
 aactagtgga tccactagtc cagtgtggtg gaattccatt gtgttggggt tctagatcgc
                                                                        60
 gageggetge cettittitt tittittitg ggggggaatt tittittit aatagttatt
                                                                        120
 gagtgttcta cagettacag taaataccat
                                                                        150
      <210> 321
      <211> 151
      <212> DNA
      <213> Homo sapien
      <400> 321
 agcaactttg tttttcatcc aggttatttt aggcttagga tttcctctca cactgcagtt
                                                                        60
 tagggtggca ttgtaaccag ctatggcata ggtgttaacc aaaggctgag taaacatggg
                                                                       120
 tgectetgag aaatcaaagt etteataeae t
                                                                       151
      <210> 322
      <211> 151
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(151)
      <223> n = A,T,C or G
      <400> 322
atccagcate tteteetgtt tettgeette ettttette ttettasatt etgettgagg
                                                                        60
tttgggcttg gtcagtttgc cacagggctt ggagatggtg acagtcttct ggcattcggc
                                                                       120
attgtgcagg gctcgcttca nacttccagt t
                                                                       151
      <210> 323
      <211> 151
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(151)
      <223> n = A, T, C or G
      <400> 323
Lgaggacttg tkttctttt ctttattttt aatcctctta ckttgtaaat atattgccta
                                                                       60
magactcant tactacccag tttgtggttt twtgggagaa atgtaactgg acagttagct
                                                                      120
quicaatyaa aaagacactt ancccatgtg g
                                                                      151
```

```
<210> 324
      <211> 461
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc feature
      <222> (1)...(461)
      <223> n = A, T, C or G
      <400> 324
acctgtgtgg aatttcagct ttcctcatgc aaaaggattt tgtatccccg gcctacttga
                                                                        60
agaagtggtc agctaaagga atccaggttg ttggttggac tgttaatacc tttgatgaaa
                                                                       120
agagttacta cgaatcccat cttggttcca gctatatcac tgacagcatg gtagaagact
                                                                       180
gcgaacetea ettetagaet tteaeggtgg gacgaaacgg gtteagaaac tgeeagggge
                                                                       240
ctcatacagg gatatcaaaa taccctttgt gctacccagg ccctggggaa tcaggtgact
                                                                       300
cacacaaatg caatagttgg teactgcatt tttacctgaa ccaaagctaa acccggtgtt
                                                                       360
gccaccatgc accatggcat gccagagttc aacactgttg ctcttgaaaa ttgggtctga
                                                                       420
aaaaacgcac aagagcccct gccctgccct agctgangca c
                                                                       461
      <210> 325
      <211> 400
      <212> DNA
      <213> Homo sapien
      <400> 325
acactgtttc catgttatgt ttctacacat tgctacctca gtgctcctgg aaacttagct
                                                                        60
tttgatgtct ccaagtagtc cacettcatt taactetttg aaactgtatc atetttgeca
                                                                       120
agtaagagtg gtggcctatt tcagctgctt tgacaaaatg actggctcct gacttaacgt
                                                                       180
tetataaatg aatgtgetga agcaaagtge ecatggtgge ggegaagaag agaaagatgt
                                                                       240
gttttgtttt ggactetetg tggteeette caatgetgtg ggttteeaac caggggaagg
                                                                       300
gtocottttg cattgocaag tgocataacc atgageacta egetaceatg gttotgocte
                                                                       360
                                                                       400
ctggccaagc aggctggttt gcaagaatga aatgaatgat
      <210> 326
      <211> 1215
      <212> DNA
      <213> Homo sapien
      <400> 326
                                                                        60
ggaggactgc agcccgcact cgcagccctg gcaggcggca ctggtcatgg aaaacgaatt
gttctgctcg ggcgtcctgg tgcatccgca gtgggtgctg tcagccgcac actgtttcca
                                                                       120
                                                                       180
gaactectac accateggge tgggeetgea eagtettgag geegaceaag ageeagggag
ccagatggtg gaggccagcc tetecgtacg gcacccagag tacaacagac cettgetege
                                                                       240
                                                                       300
taacgacctc atgctcatca agttggacga atccgtgtcc gagtctgaca ccatccggag
catcagcatt gcttcgcagt gccctaccgc ggggaactct tgcctcgttt ctggctgggg
                                                                       360
tetgetggeg aaeggeagaa tgeetaeegt getgeagtge gtgaaegtgt eggtggtgte
                                                                       420
tgaggaggtc tgcagtaagc tctatgaccc gctgtaccac cccagcatgt tctgcgccgg
                                                                       480
                                                                       540
eggagggcaa gaccagaagg acteetgcaa eggtgaetet ggggggceee tgatetgcaa
                                                                       600
egggtacttg cagggeettg tgtetttegg aaaageeeeg tgtggeeaag ttggegtgee
                                                                       660
aggtgtctac accaacctct gcaaattcac tgagtggata gagaaaaccg tccaggccag
ttaactctgg ggactgggaa cccatgaaat tgacccccaa atacatcctg cggaaggaat
                                                                       720
teaggaatat etgtteecag eccetectee eteaggeeca ggagteeagg eccecageec
                                                                       780
ctcctcctc aaaccaaggg tacagatccc cagccctcc tccctcagac ccaggagtcc
                                                                       840
agaccecca geocetecte ceteagacee aggagtecag eccetectee eteagaceea
                                                                       900
                                                                       960
ggagtecaga cececcage cetecteet cagacccagg ggtecagge cecaacceet
ceteceteag acteagaggt ceaageeece aaceeeteet teeceagaee cagaggteea
                                                                      1020
```

```
ggteccagee estecteest cagacceage ggtecaatge cacetagaet etcectgtae
  acagtgeeee ettgtggeae gttgaceeaa eettaceagt tggtttttea ttttttgtee
                                                                      1080
                                                                      1140
  1200
  dadaaaaaaa aaaaa
                                                                      1215
        <210> 327
        <211> 220
        <212> PRT
        <213> Homo sapien
        <400> 327
  Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met
                                     10
  Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val
                                 25
 Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly
 Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu
                         55
                                            60
 Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu Ala
                     70
                                        75
 Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser Asp
 Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly Asn
                                105
 Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg Met Pro
                            120
                                               125
 Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu Val Cys
                        135
                                            140
 Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys Ala Gly
                    150
                                        155
 Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly Gly Pro
                165
                                    170
                                                       175
 Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly Lys Ala
                                185
                                                   190
 Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu Cys Lys
        195
                            200
                                               205
 Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
                        215
      <210> 328
      <211> 234
      <212> DNA
      <213> Homo sapien
      <400> 328
egetegtete tggtagetge agecaaatea taaaeggega ggaetgeage eegeactege
                                                                      60
agecetggea ggeggeactg gteatggaaa acgaattgtt etgeteggge gteetggtge
                                                                     120
atccgcagtg ggtgctgtca gccacact gtttccagaa ctcctacacc atcgggctgg
                                                                     180
gcctgcacag tcttgaggcc gaccaagagc cagggagcca gatggtggag gcca
                                                                     234
      <210> 329
      <211> 77
      <212> PRT
      <213> Homo sapien
      <400> 329
Leu Val Ser Gly Ser Cys Ser Gln Ile Ile Asn Gly Glu Asp Cys Ser
```

```
10
                                                         15
Pro His Ser Gln Pro Trp Gln Ala Ala Leu Val Met Glu Asn Glu Leu
                                25
Phe Cys Ser Gly Val Leu Val His Pro Gln Trp Val Leu Ser Ala Thr
                            40
His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu Gly Leu His Ser Leu
                        55
Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val Glu Ala
      <210> 330
      <211> 70
      <212> DNA
      <213> Homo sapien
      <400> 330
cccaacacaa tggcccgatc ccatccctga ctccgccctc aggatcgctc gtctctggta
                                                                        60
                                                                        70
gctgcagcca
      <210> 331
      <211> 22
      <212> PRT
      <213> Homo sapien
      <400> 331
Gln His Asn Gly Pro Ile Pro Ser Leu Thr Pro Pro Ser Gly Ser Leu
                                     10
                 5
Val Ser Gly Ser Cys Ser
            20
      <210> 332
      <211> 2507
      <212> DNA
      <213> Homo sapien
      <400> 332
                                                                         60
tggtgccgct gcagccggca gagatggttg agctcatgtt cccgctgttg ctcctccttc
tgcccttcct tctgtatatg gctgcgcccc aaatcaggaa aatgctgtcc agtggggtgt
                                                                        120
gtacatcaac tgttcagctt cctgggaaag tagttgtggt cacaggagct aatacaggta
                                                                        180
tegggaagga gacagecaaa gagetggete agagaggage tegagtatat ttagettgee
                                                                        240
gggatgtgga aaagggggaa ttggtggcca aagagatcca gaccacgaca gggaaccagc
                                                                        300
                                                                        360
aggtgttggt gcggaaactg gacctgtctg atactaagtc tattcgagct tttgctaagg
                                                                        420
gcttcttagc tgaggaaaag cacctccacg ttttgatcaa caatgcagga gtgatgatgt
gtccgtactc gaagacagca gatggctttg agatgcacat aggagtcaac cacttgggtc
                                                                        480
                                                                        540
acttectect aacceatetg etgetagaga aactaaagga atcageecea teaaggatag
taaatgtgtc ttccctcgca catcacctgg gaaggatcca cttccataac ctgcagggcg
                                                                        600
                                                                        660
agaaattcta caatgcaggc ctggcctact gtcacagcaa gctagccaac atcctcttca
                                                                        720
cccaggaact ggcccggaga ctaaaaggct ctggcgttac gacgtattct gtacaccctg
gcacagtcca atctgaactg gttcggcact catctttcat gagatggatg tggtggcttt
                                                                        780
                                                                        840
teteettttt catcaagact eeteageagg gageecagae cageetgeae tgtgeettaa
                                                                        900
cagaaggtct tgagattcta agtgggaatc atttcagtga ctgtcatgtg gcatgggtct
ctgcccaagc tcgtaatgag actatagcaa ggcggctgtg ggacgtcagt tgtgacctgc
                                                                        960
tgggcctccc aatagactaa caggcagtgc cagttggacc caagagaaga ctgcagcaga
                                                                       1020
                                                                       1080
ctacacagta cttcttgtca aaatgattct ccttcaaggt tttcaaaacc tttagcacaa
agagagcaaa accttccagc cttgcctgct tggtgtccag ttaaaactca gtgtactgcc
                                                                       1140
agattogtot aaatgtotgt catgtocaga tttactttgc ttotgttact gocagagtta
                                                                       1200
 ctagagatat cataatagga taagaagacc ctcatatgac ctgcacagct cattttcctt
                                                                       1260
 ctgaaagaaa ctactaccta ggagaatcta agctatagca gggatgattt atgcaaattt
                                                                       1320
```

```
gaastagett etttgtteac aatteagtte eteccaacea accagtette aetteaagag
                                                                      1380
 ggccacactg caacctcage ttaacatgaa taacaaagae tggctcagga gcagggcttg
                                                                      1440
 eccaggeatg gtggateace ggaggteagt agtteaagae eageetggee aacatggtga
                                                                      1500
 aaccccacct ctactaaaaa ttgtgtatat ctttgtgtgt cttcctgttt atgtgtgcca
agggagtatt ttcacaaagt tcaaaacagc cacaataatc agagatggag caaaccagtg
                                                                      1560
                                                                      1620
ccatccagte tttatgcaaa tgaaatgctg caaagggaag cagattctgt atatgttggt
                                                                      1680
aactacccac caagagcaca tgggtagcag ggaagaagta aaaaaagaga aggagaatac
                                                                     1740
ggaagataa tgcacaaaat gaagggacta gttaaggatt aactagccct ttaaggatta
actagttaag gattaatagc aaaagayatt aaatatgcta acatagctat ggaggaattg
agggcaagca cccaggactg atgaggtctt aacaaaaacc agtgtggcaa aaaaaaaaa
aaaaaaaaaa aaaaatccta aaaacaaaca aacaaaaaa acaattcttc attcagaaaa
attatettag ggaetgatat tggtaattat ggteaattta ataatattt ggggeattte
                                                                     2040
cttacattgt cttgacaaga ttaaaatgtc tgtgccaaaa ttttgtattt tatttggaga
                                                                     2100
cttettatea aaagtaatge tgeeaaagga agtetaagga attagtagtg tteecateae
ttgtttggag tgtgctattc taaaagattt tgatttcctg gaatgacaat tatattttaa
                                                                     2220
ctttggtggg ggaaagagtt ataggaccac agtcttcact tctgatactt gtaaattaat
                                                                     2280
cttttattgc acttgttttg accattaagc tatatgttta gaaatggtca ttttacggaa
                                                                     2340
aaattagaaa aattotgata atagtgoaga ataaatgaat taatgtttta ottaatttat
                                                                     2400
attgaactgt caatgacaaa taaaaattct ttttgattat tttttgtttt catttaccag
aataaaaacg taagaattaa aagtttgatt acaaaaaaa aaaaaaa
                                                                     2460
                                                                     2507
      <210> 333
      <211> 3030
      <212> DNA
      <213> Homo sapien
      <400> 333
geaggegact tgcgagetgg gagegattta aaacgetttg gatteeceeg geetgggtgg
                                                                       60
                                                                      120
                                                                      180
                                                                      240
                                                                     300
                                                                     360
```

ggagagegag etgggtgeee cetagattee eegeceeege aceteatgag eegaceeteg getecatgga geceggeaat tatgecaeet tggatggage caaggatate gaaggettge tgggageggg agggggggg aatetggteg eccaeteece tetgaecage caeceagegg egectaeget gatgeetget gteaactatg ecceettgga tetgeeagge teggeggage ogecaaagca atgecacca tgecetgggg tgececaggg gaegteecca geteeegtge cttatggtta ctttggagge gggtactact cctgccgagt gtcccggage tcgctgaaac 420 cetgtgccca ggcagccace etggccgcgt accccgcgga gacteccacg gccggggaag 480 agtaccccag yegecccact gagtttgeet tetateeggg atateeggga acctaccage 540 ctatggccag ttacctggac gtgtctgtgg tgcagactct gggtgctcct ggagaaccgc 600 gacatgactc cctgttgcct gtggacagtt accagtcttg ggctctcgct ggtggctgga 660 acagecagat gtgttgccag ggagaacaga acccaccagg tecettttgg aaggcagcat 720 ttgcagacte cagegggcag cacecteetg acgeetgege etttegtege ggeegeaaga 780 aacgcattcc gtacagcaag gggcagttgc gggagctgga gcgggagtat gcggctaaca 840 agtteateae caaggacaag aggegeaaga teteggeage caecageete teggagegee 900 agattaccat ctggtttcag aaccgccggg tcaaagagaa gaaggttctc gccaaggtga 960 agaacagcgc taccccttaa gagatctcct tgcctgggtg ggaggagcga aagtgggggt 1020 gteetgggga gaccaggaac etgccaagee eaggetgggg ccaaggaete tgctgagagg 1080 cccctagaga caacaccctt cccaggccac tggctgctgg actgttcctc aggagcgcc 1140 tgggtaccca gtatgtgcag ggagacggaa ccccatgtga cagcccactc caccagggtt 1200 cccaaagaac ctggcccagt cataatcatt catcctgaca gtggcaataa tcacgataac cagtactage tgccatgate gttageetea tattttetat etagagetet gtagageaet 1260 1320 ttagaaaccg ctttcatgaa ttgagctaat tatgaataaa tttggaaggc gatccctttg 1380 cagggaaget tteteteaga ecceetteea ttacaeetet eaceetggta acageaggaa 1440 gactgaggag aggggaacgg gcagattegt tgtgtggetg tgatgteegt ttageatttt 1500 teteagetga cagetgggta ggtggacaat tgtagagget gtetetteet eceteettgt 1560 ccaccccata gggtgtaccc actggtcttg gaagcaccca tccttaatac gatgatttt 1620 ctgtcgtgtg aaaatgaagc cagcaggctg cccctagtca gtccttcctt ccagagaaaa 1680 agagatttga gaaagtgcct gggtaattca ccattaattt cctcccccaa actctctgag 1740 tettecetta atattetgg tggttetgae caaageaggt catggtttgt tgageatttg 1800 againeceagt gaagtagatg titgtageet tgeatactta geeetteeca ggeacaaaeg 1860

107

gagtggcaga	gtggtgccaa	ccctgttttc	ccagtccacg	tagacagatt	cacagtgcgg	1920
aattctggaa	gctggagaca	gacgggctct	ttgcagagcc	gggactctga	gagggacatg	1980
agggcctctg	cctctgtgtt	cattctctga	tgtcctgtac	ctgggctcag	tgcccggtgg	2040
gactcatctc	ctggccgcgc	agcaaagcca	gcgggttcgt	gctggtcctt	cctgcacctt	2100
aggetgggg	tggggggcct	gccggcgcat	tctccacgat	tgagcgcaca	ggcctgaagt	2160
ctggacaacc	cgcagaaccg	aagctccgag	cagcgggtcg	gtggcgagta	gtggggtcgg	2220
tggcgagcag	ttggtggtgg	gccgcggccg	ccactacctc	gaggacattt	ccctcccgga	2280
gccagctctc	ctagaaaccc	cgcggcggcc	gccgcagcca	agtgtttatg	gcccgcggtc	2340
gggtgggatc	ctagccctgt	ctcctctcct	gggaaggagt	gagggtggga	cgtgacttag	2400
acacctacaa	atctatttac	caaagaggag	cccgggactg	agggaaaagg	ccaaagagtg	2460
tgagtgcatg	cggactgggg	gttcagggga	agaggacgag	gaggaggaag	atgaggtcga	2520
tttcctgatt	taaaaaatcg	tccaagcccc	gtggtccagc	ttaaggtcct	cggttacatg	2580
cgccgctcag	agcaggtcac	tttctgcctt	ccacgtcctc	cttcaaggaa	gccccatgtg	2640
ggtagctttc	aatatcgcag	gttcttactc	ctctgcctct	ataagctcaa	acccaccaac	2700
gatcgggcaa	gtaaaccccc	tccctcgccg	acttcggaac	tggcgagagt	tcagcgcaga	2760
tagacctata	gggaggggc	aagatagatg	agggggagcg	gcatggtgcg	gggtgacccc	2820
ttggagagag	qaaaaaggcc	acaagagggg	ctgccaccgc	cactaacgga	gatggccctg	2880
gtagagacct	ttgggggtct	ggaacctctg	gactccccat	gctctaactc	ccacactctg	2940
ctatcagaaa	cttaaacttg	aggattttct	ctgtttttca	ctcgcaataa	aytcagagca	3000
	aaaaaaaaa					3030

<210> 334

<211> 2417

<212> DNA

<213> Homo sapien

<400> 334

60 ggcggccgct ctagagctag tgggatcccc cgggctgcac gaattcggca cgagtgagtt ggagttttac ctgtattgtt ttaatttcaa caagcctgag gactagccac aaatgtaccc 120 agtttacaaa tgaggaaaca ggtgcaaaaa ggttgttacc tgtcaaaggt cgtatgtggc 180 240 agagecaaga tttgageeca gttatgtetg atgaaettag eetatgetet ttaaaettet gaatgctgac cattgaggat atctaaactt agatcaattg cattttccct ccaagactat 300 360 ttacttatca atacaataat accaccttta ccaatctatt gttttgatac gagactcaaa 420 tatgccagat atatgtaaaa gcaacctaca agctctctaa tcatgctcac ctaaaagatt 480 cccgggatct aataggctca aagaaacttc ttctagaaat ataaaagaga aaattggatt 540 atgcaaaaat tcattattaa ttttttcat ccatccttta attcagcaaa catttatctg ttgttgactt tatgcagtat ggccttttaa ggattggggg acaggtgaag aacggggtgc 600 cagaatgcat cctcctacta atgaggtcag tacacatttg cattttaaaa tgccctgtcc 660 720 agctgggcat ggtggatcat gcctgtaatc tcaacattgg aaggccaagg caggaggatt getteageee aggagtteaa gaccageetg ggeaacatag aaagaeeeea teteteaate 780 aatcaatcaa tgccctgtct ttgaaaataa aactctttaa gaaaggttta atgggcaggg 840 900 tgtggtagct catgcctata atacagcact ttgggaggct gaggcaggag gatcacttta gcccagaagt tcaagaccag cctgggcaac aagtgacacc tcatctcaat tttttaataa 960 1020 aatgaataca tacataagga aagataaaaa gaaaagttta atgaaagaat acagtataaa 1080 acaaatctct tggacctaaa agtatttttg ttcaagccaa atattgtgaa tcacctctct 1140 gtgttgagga tacagaatat ctaagcccag gaaactgagc agaaagttca tgtactaact 1200 aatcaacccg aggcaaggca aaaatgagac taactaatca atccgaggca aggggcaaat 1260 tagacggaac ctgactctgg tctattaagc gacaactttc cctctgttgt atttttcttt tattcaatgt aaaaggataa aaactctcta aaactaaaaa caatgtttgt caggagttac 1320 1380 aaaccatgac caactaatta tggggaatca taaaatatga ctgtatgaga tcttgatggt 1440 ttacaaagtg tacccactgt taatcacttt aaacattaat gaacttaaaa atgaatttac ggagattgga atgtttcttt cctgttgtat tagttggctc aggctgccat aacaaaatac 1500 1560 cacagactgg gaggettaag taacagaaat teatttetea cagttetggg ggetggaagt 1620 ccacgatcaa ggtgcaggaa aggcaggett cattetgagg cccctetett ggetcacatg tggccaccct cccactgcgt gctcacatga cctctttgtg ctcctggaaa gagggtgtgg 1680 1740 gggacagagg gaaagagaag gagagggaac tctctggtgt ctcgtctttc aaggacccta acctgggcca ctttggccca ggcactgtgg ggtggggggt tgtggctgct ctgctctgag 1800 1860 tggccaagat aaagcaacag aaaaatgtcc aaagctgtgc agcaaagaca agccaccgaa

```
cagggatets eteateasts tggggacete caagteggee accetggagg caagececea
                                                                       1920
 cagageceat geaaggtgge ageageagaa gaagggaatt gteeetgtee ttggeacatt
                                                                       1980
 ceteacegae etggtgatge tggaeactge gatgaatggt aatgtggatg agaatatgat
                                                                       2040
 ggacteccag aaaaggagac ccagetgete aggtggetge aaatcattae ageetteate
                                                                       2100
 ctggggagga actgggggcc tggttctggg tcagagagca gcccagtgag ggtgagagct
                                                                       2160
 acagootgte etgecagetg gatecocagt coeggteaac cagtaateaa ggotgageag
                                                                       2220
 atcaggette eeggagetgg tettgggaag ceageeetgg ggtgagttgg etectgetgt
                                                                       2280
 agtactgaga caatattgto ataaattoaa tgogooottg tatccotttt totttttat
                                                                       2340
 ctgtctacat ctataatcas tatgcatact agtctttgtt agtgtttcta ttcmacttaa
                                                                       2400
 tagagatatg ttatact
                                                                       2417
       <210> 335
       <211> 2984
       <212> DNA
       <213> Homo sapien
       <400> 335
atccctcctt ccccactctc ctttccagaa ggcacttggg gtcttatctg ttggactctg
                                                                         60
aaaacacttc aggcgccctt ccaaggcttc cccaaacccc taagcagccg cagaagcgct
                                                                        120
cccgagctgc cttctcccac actcaggtga tcgagttgga gaggaagttc agccatcaga
                                                                        180
agtacetgte ggeceetgaa egggeeeace tggeeaagaa eeteaagete aeggagaeee
                                                                        240
aagtgaagat atggtteeag aacagaeget ataagaetaa gegaaageag eteteetegg
                                                                        300
agetgggaga ettggagaag caeteetett tgeeggeeet gaaagaggag geetteteee
                                                                        360
gggcctccct ggtctccgtg tataacagct atccttacta cccatacctg tactgcgtgg
                                                                        420
gcagctggag cccagctttt tggtaatgcc agctcaggtg acaaccatta tgatcaaaaa
                                                                        480
ctgccttccc cagggtgtct ctatgaaaag cacaaggggc caaggtcagg gagcaagagg
                                                                        540
tgtgcacacc aaagctattg gagatttgcg tggaaatctc asattcttca ctggtgagac
                                                                        600
aatgaaacaa cagagacagt gaaagtttta atacctaagt cattccccca gtgcatactg
                                                                        660
taggtcattt tttttgcttc tggctacctg tttgaagggg agagagggaa aatcaagtgg
                                                                       720
tattttccag cactttgtat gattttggat gagctgtaca cccaaggatt ctgttctgca
                                                                       780
actocatect cotgtgtcac tgaatatcaa etetgaaaga gcaaacetaa caggagaaag
                                                                       840
gacaaccagg atgaggatgt caccaactga attaaactta agtccagaag cctcctgttg
                                                                       900
gccttggaat atggccaagg ctctctctgt ccctgtaaaa gagaggggca aatagagagt
                                                                       960
ctccaagaga acgccctcat gctcagcaca tatttgcatg ggagggggag atgggtggga
                                                                      1020
ggagatgaaa atatcagctt ttcttattcc tttttattcc ttttaaaaatg gtatgccaac
                                                                      1080
ttaagtattt acagggtggc ccaaatagaa caagatgcac tcgctgtgat tttaagacaa
                                                                      1140
gctgtataaa cagaactcca ctgcaagagg gggggccggg ccaggagaat ctccgcttgt
                                                                      1200
ccaagacagg ggcctaagga gggtctccac actgctgcta ggggctgttg catttttta
                                                                      1260
ttagtagaaa gtggaaaggc ctcttctcaa cttttttccc ttgggctgga gaatttagaa
                                                                      1320
tcagaagttt cctggagttt tcaggctatc atatatactg tatcctgaaa ggcaacataa
                                                                      1380
ttcttccttc cctcctttta aaattttgtg ttcctttttg cagcaattac tcactaaagg
                                                                      1440
gcttcatttt agtccagatt tttagtctgg ctgcacctaa cttatgcctc gcttatttag
                                                                      1500
cocgagatet ggtettttt tttttttt tttttccgtc tccccaaage tttatctgtc
                                                                      1560
ttgacttttt aaaaaagttt gggggcagat tctgaattgg ctaaaagaca tgcattttta
                                                                      1620
aaactagcaa ctcttatttc tttcctttaa aaatacatag cattaaatcc caaatcctat
                                                                      1680
ttaaagacct gacagettga gaaggtcact actgcattta taggaccttc tggtggttct
                                                                      1740
gctgttacgt ttgaagtctg acaatccttg agaatctttg catgcagagg aggtaagagg
                                                                      1800
tattggattt tcacagagga agaacacagc gcagaatgaa gggccaggct tactgagctg
                                                                      1860
tccagtggag ggctcatggg tgggacatgg aaaagaaggc agcctaggcc ctggggagcc
                                                                      1920
cagtccactg agcaagcaag ggactgagtg agccttttgc aggaaaaggc taagaaaaag
                                                                      1980
gaaaaccatt ctaaaacaca acaagaaact gtccaaatgc tttgggaact gtgtttattg
                                                                      2040
cctataatgg gtccccaaaa tgggtaacct agacttcaga gagaatgagc agagagcaaa
                                                                      2100
ggagaaatct ggctgtcctt ccattttcat tctgttatct caggtgagct ggtagaggg
                                                                      2160
agacattaga aaaaaatgaa acaacaaaac aattactaat gaggtacgct gaggcctggg
                                                                      2220
agtotottga otocactact taattoogtt tagtgagaaa ootttoaatt ttottttatt
                                                                      2280
agaagggcca gcttactgtt ggtggcaaaa ttgccaacat aagttaatag aaagttggcc
                                                                      2340
aatttcaccc cattttctgt ggtttgggct ccacattgca atgttcaatg ccacgtgctg
                                                                      2400
ctgacaccga ccggagtact agccagcaca aaaggcaggg tagcctgaat tgctttctgc
                                                                      2460
```

```
tetttacatt tettttaaaa taageattta gtgeteagte eetaetgagt aetetttete
                                                                    2520
teceeteete tgaatttaat tettteaact tgeaatttge aaggattaca eattteaetg
                                                                    2580
tgatgtatat tgtgttgcaa aaaaaaaaaa aagtgtcttt gtttaaaatt acttggtttg
                                                                    2640
tgaatccatc ttgctttttc cccattggaa ctagtcatta acccatctct gaactggtag
                                                                    2700
aaaaacatct gaagagctag tctatcagca tctgacaggt gaattggatg gttctcagaa
                                                                    2760
ccatttcacc cagacagect gtttctatcc tgtttaataa attagtttgg gttctctaca
                                                                    2820
tgcataacaa accctgctcc aatctgtcac ataaaagtct gtgacttgaa gtttagtcag
                                                                    2880
cacccccacc aaactttatt tttctatgtg ttttttgcaa catatgagtg ttttgaaaat
                                                                    2940
2984
     <210> 336
     <211> 147
     <212> PRT
     <213> Homo sapien
     <400> 336
Pro Ser Phe Pro Thr Leu Leu Ser Arg Arg His Leu Gly Ser Tyr Leu
                                   10
                5
Leu Asp Ser Glu Asn Thr Ser Gly Ala Leu Pro Arg Leu Pro Gln Thr
                               25
Pro Lys Gln Pro Gln Lys Arg Ser Arg Ala Ala Phe Ser His Thr Gln
                           40
                                               45
Val Ile Glu Leu Glu Arg Lys Phe Ser His Gln Lys Tyr Leu Ser Ala
                       55
                                           60
Pro Glu Arg Ala His Leu Ala Lys Asn Leu Lys Leu Thr Glu Thr Gln
                                       75
                   70
Val Lys Ile Trp Phe Gln Asn Arg Arg Tyr Lys Thr Lys Arg Lys Gln
               85
                                   90
Leu Ser Ser Glu Leu Gly Asp Leu Glu Lys His Ser Ser Leu Pro Ala
                               105
           100
                                                   110
Leu Lys Glu Glu Ala Phe Ser Arg Ala Ser Leu Val Ser Val Tyr Asn
                          120
       115
                                              125
Ser Tyr Pro Tyr Tyr Pro Tyr Leu Tyr Cys Val Gly Ser Trp Ser Pro
   130
                       135
Ala Phe Trp
145
     <210> 337
     <211> 9
     <212> PRT
     <213> Homo sapien
     <400> 337
Ala Leu Thr Gly Phe Thr Phe Ser Ala
     <210> 338
     <211> 9
     <212> PRT
     <213> Homo sapien
     <400> 338
Leu Leu Ala Asn Asp Leu Met Leu Ile
     <210> 339
```

<211> 318

<212> PRT <213> Homo sapien

<400> 339 Met Val Glu Leu Met Phe Pro Leu Leu Leu Leu Leu Pro Phe Leu 10 Leu Tyr Met Ala Ala Pro Gln Ile Arg Lys Met Leu Ser Ser Gly Val 20 25 Cys Thr Ser Thr Val Gln Leu Pro Gly Lys Val Val Val Thr Gly 40 Ala Asn Thr Gly Ile Gly Lys Glu Thr Ala Lys Glu Leu Ala Gln Arg 55 Gly Ala Arg Val Tyr Leu Ala Cys Arg Asp Val Glu Lys Gly Glu Leu 70 Val Ala Lys Glu Ile Gln Thr Thr Gly Asn Gln Gln Val Leu Val 85 90 Arg Lys Leu Asp Leu Ser Asp Thr Lys Ser Ile Arg Ala Phe Ala Lys 100 105 Gly Phe Leu Ala Glu Glu Lys His Leu His Val Leu Ile Asn Asn Ala 115 120 Gly Val Met Met Cys Pro Tyr Ser Lys Thr Ala Asp Gly Phe Glu Met 135 His Ile Gly Val Asn His Leu Gly His Phe Leu Leu Thr His Leu Leu 150 155 Leu Glu Lys Leu Lys Glu Ser Ala Pro Ser Arg Ile Val Asn Val Ser 165 170 Ser Leu Ala His His Leu Gly Arg Ile His Phe His Asn Leu Gln Gly 180 185 Glu Lys Phe Tyr Asn Ala Gly Leu Ala Tyr Cys His Ser Lys Leu Ala 200 205 Asn Ile Leu Phe Thr Gln Glu Leu Ala Arg Arg Leu Lys Gly Ser Gly 215 220 Val Thr Thr Tyr Ser Val His Pro Gly Thr Val Gln Ser Glu Leu Val 230 235 Arg His Ser Ser Phe Met Arg Trp Met Trp Trp Leu Phe Ser Phe Phe 250 Ile Lys Thr Pro Gln Gln Gly Ala Gln Thr Ser Leu His Cys Ala Leu 260 265 Thr Glu Gly Leu Glu Ile Leu Ser Gly Asn His Phe Ser Asp Cys His 275 280 285 Val Ala Trp Val Ser Ala Gln Ala Arg Asn Glu Thr Ile Ala Arg Arg 295 300 Leu Trp Asp Val Ser Cys Asp Leu Leu Gly Leu Pro Ile Asp 305 310

<210> 340

<211> 483 <212> DNA

<213> Homo sapien

<400> 340

gccgaggtet gccttcacac ggaggacacg agactgette etcaaggget ectgeetgee tqqaaaactgg tgggaggee tgtttagttg getgtttca gaggggtett teggagggac 120 aggetggag gtctttatte etggegggag accgcacatt ecactgetga ggttgtgggg geggtttate aggeagtgat aaacataaga tgtcatttee ttgaeteegg 240 ecttcaattt tetetttgge tgaegacgga gteegtggtg teeegatgta actgaeceet 300 getecaaacg tgaeateact gatgetette tegggggtge tgatggeeg ettggteacg 120 aaacataatt egeteaatet egetgatgt eccgatgta actgaeceet 300 getecaaact egecattega etettgetee aaactgtatg aagacacetg actgeaegtt 420

ttttctgggc ctg	ttccagaatt	taaagtgaaa	ggcagcactc	ctaagctccg	actccgatgc	480 483
		en				
<400	> 3/11					
		tcattataaa	tagecteect	aaggaaaata	cactgaatgc	60
	-	tttttataga	-			120
		tattttactt				180
		tgatggtttt				240
		gaagagaaca			ttaagtactc	300
ctgattctta	acatigicit	taatgaccac	aagacaacca	acag		344
<210	> 342					
<2113						
<212						
<213	> Homo sapie	en				
<400						
		aagcccaaty				60
		cttggttcca caagagagtg				120 180
		aaaatattgt				240
		aaaagtcaga				300
		ttcctgtgtg				360
		caaatgcaaa				420
		atcgtcttct				480
		gtcttttctg				540
ttcagccacc	cactcttcgc	cttagcttga	ccgtgagtct	cggctgccgc	tg	592
<210	> 343					
<211>						
	> DNA				-	
<213	> Homo sapie	en				
<400>			,			60
		caagctcaaa				60
		ctccagcctc tttcttcccc				120 180
		tgtgtcacat	_	_		240
		gaaccccagc				300
		aaattgtggg				360
aaaccaccaa				3 22	2 23	382
<210>						
<211>						
<212> <213>	> DNA > Homo sapie	en				
<400>	-					
		taaatcagag	acagacttct	gagtgatgag	actectoaca	60
		gctggatgga				120
	_	taaggccagc			_	180
agtctttcag	agaaatggat	gcaatcagag	tgggatcccg	gtcacatcaa	ggtcacactc	240
caccttcatg	tgcctgaatg	gttgccaggt	cagaaaaatc	caccccttac	gagtgcggct	300

```
troaccetat atecceegee egegteeett tetecataaa attettetta gtagetatta
                                                                        360
collectatt attigateta gasattgeee teetittaee eetaeeatga geeetaeaaa
                                                                        420
 Paachaacct gocactaata gttatgtoat coctottatt aatcatcato ctagocctaa.
                                                                        480
 ut organica tgagtgacta caaaaaggat tagactgago oqaataacaa aaaaaa
                                                                        536
      <210> 345
      <211> 251
      <212> DNA
      <213> Homo sapien
      <400> 345
accttttgag gtctctctca ccacctccac agccaccgtc accgtgggat gtgctggatg
                                                                         60
tgaatgaage coccatettt gtgcctcctg aaaagagagt ggaagtgtcc gaggactttg
                                                                        120
goytgggcca ggaaatcaca tootacactg occaggagco agacacattt atggaacaga
                                                                        180
duataacata toggatttgg agagacactg ccaactggct ggagattaat coggacactg
                                                                        240
gtgccatttc c
                                                                        251
      <210> 346
      <211> 282
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(282)
      <223> n = A, T, C or G
<400> 346
egegtetetg acactgtgat catgacaggg gttcaaacag aaagtgeetg ggeeteett
                                                                        60
ctaagtcttg ttaccaaaaa aaggaaaaag aaaagatctt ctcagttaca aattctggga
                                                                       120
agggagaeta tacctggctc ttgccctaag tgagaggtct tccctcccgc accaaaaaat
                                                                       180
agaaaggett tetattteae tggeeeaggt agggggaagg agagtaaett tgagtetgtg
                                                                       240
agleteattt cecaaggtge etteaatget catnaaaace aa
                                                                       282
      <210> 347
      <211> 201
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1)...(201)
      <223> n = A, T, C or G
      <400> 347
acacacataa tattataaaa tgccatctaa ttggaaggag ctttctatca ttgcaagtca
                                                                        60
tamatataac tittaaaana niactancag ciittaccia ngcicciaaa igciigtaaa
                                                                       120
tetgagactg actggaccca eccagaccca gggcaaagat acatgttacc atatcatett
                                                                       180
tataaagaat ttttttttc c
                                                                       201
      <010> 348
      <211> 251
      <212> DNA
      <213> Homo sapien
      <400> 348
origitabatica caacattigt goatcactty tyccaagiga gaaaatgito taaaatcaca
                                                                        60
ayagagaaca gtgccagaat gaaactgacc ctaagtccca ggtgcccctg ggcaggcaga
                                                                       120
```

```
aggagacact cccagcatgg aggagggttt atcttttcat cctaggtcag gtctacaatg
                                                                       180
ggggaaggtt ttattataga actoccaaca goccacotca ctoctgocac ccacocgatg
                                                                       240
gccctgcctc c
                                                                       251
      <210> 349
      <211> 251
      <212> DNA
      <213> Homo sapien
      <400> 349
taaaaatcaa gccatttaat tqtatctttq aaqqtaaaca atatatqqqa qctqqatcac
                                                                        60
aacccctgag gatqccagag ctatqggtcc agaacatggt gtggtattat caacagagtt
                                                                       120
cagaagggtc tgaactctac gtgttaccag agaacataat gcaattcatg cattccactt
                                                                       180
agcaattttg taaaatacca gaaacagacc ccaagagtct ttcaagatga ggaaaattca
                                                                       240
actcctggtt t
                                                                       251
      <210> 350
      <211> 908
      <212> DNA
      <213> Homo sapien
      <400> 350
ctggacactt tgcgagggct tttgctggct gctgctgctg cccgtcatgc tactcatcgt
                                                                        60
agcccgcccg gtgaagctcg ctgctttccc tacctcctta agtgactgcc aaacgcccac
                                                                       120
cggctggaat tgctctggtt atgatgacag agaaaatgat ctcttcctct gtgacaccaa
                                                                       180
cacctgtaaa tttgatgggg aatgtttaag aattggagac actgtgactt gcqtctqtca
                                                                       240
gttcaagtgc aacaatgact atgtgcctgt gtgtggctcc aatggggaga gctaccagaa
                                                                       300
tgagtgttac ctgcgacagg ctgcatgcaa acagcagagt gagatacttg tggtgtcaga
                                                                       360
aggatcatgt gccacagtcc atgaaggctc tggagaaact agtcaaaagg agacatccac
                                                                       420
ctgtgatatt tgccagtttg gtgcagaatg tgacgaagat gccgaggatg tctggtqtt
                                                                       480
gtgtaatatt gactgttctc aaaccaactt caatcccctc tgcgcttctg atgggaaatc
                                                                       540
ttatgataat gcatgccaaa tcaaagaagc atcgtgtcag aaacaggaga aaattgaagt
                                                                       600
catgiotiti ggiogatgio aagataacac aactacaact actaagictig aagatiggica
                                                                       660
ttatgcaaga acagattatg cagagaatgc taacaaatta gaagaaagtg ccagagaaca
                                                                       720
ccacatacct tgtccggaac attacaatgg cttctgcatg catgggaagt gtgagcattc
                                                                       780
tatcaatatg caggagccat cttgcaggtg tgatgctggt tatactggac aacactgtga
                                                                       840
aaaaaaggac tacagtgttc tatacgttgt tcccggtcct gtacgatttc agtatgtctt
                                                                       900
aatcgcag
                                                                       908
      <210> 351
      <211> 472
      <212> DNA
      <213> Homo sapien
      <400> 351
ccagttattt gcaagtggta agagcctatt taccataaat aatactaaga accaactcaa
                                                                        60
gtcaaacctt aatgccattg ttattgtgaa ttaggattaa gtagtaattt tcaaaattca
                                                                       120
cattaacttg attttaaaat cagwtttgyg agtcatttac cacaagctaa atgtgtacac
                                                                       180
tatgataaaa acaaccattg tattcctgtt tttctaaaca gtcctaattt ctaacactgt
                                                                       240
atatateett egacateaat gaactttgtt ttettttaet eeagtaataa agtaggeaca
                                                                       300
gatetgteca caacaaactt geeeteteat geettgeete teaccatget etgetecagg
                                                                       360
teagececct titiggeetgt tigtitigte aaaaacetaa tetgettett gettitettg
                                                                       420
gtaatatata tttagggaag atgttgcttt gcccacacac gaagcaaagt aa
                                                                       472
      <210> 352
      <211> 251
      <212> DNA
      <213> Homo sapien
```

```
<400> 352
 ctcaaagcta atctctcggg aatcaaacca gaaaagggca aggatcttag gcatggtgga
                                                                         60
 tgtggataag gccaggtcaa tggctgcaag catgcagaga aagaggtaca tcggagcgtg
                                                                        120
 caggetgegt teegteetta egatgaagae caegatgeag ttteeaaaca ttgeeactae
                                                                        180
 atacatggaa aggagggga agccaaccca gaaatgggct ttctctaatc ctgggatacc
                                                                        240
 aataagcaca a
                                                                        251
       <210> 353
       <211> 436
       <212> DNA
       <213> Homo sapien
       <400> 353
 ttttttttt tttttttt ttttttacaa caatgcagtc atttatttat tgagtatgtg
                                                                         60
 cacattatgg tattattact atactgatta tatttatcat gtgacttcta attaraaaat
                                                                        120
 gtatccaaaa gcaaaacagc agatatacaa aattaaagag acagaagata gacattaaca
                                                                        180
 gataaggcaa cttatacatt gacaatccaa atccaataca tttaaacatt tgggaaatga
                                                                        240
 gggggacaaa tggaagccar atcaaatttg tgtaaaacta ttcagtatgt ttcccttgct
                                                                        300
 tcatgtctga raaggctctc ccttcaatgg ggatgacaaa ctccaaatgc cacacaaatg
                                                                        360
 ttaacagaat actagattca cactggaacg ggggtaaaga agaaattatt ttctataaaa
                                                                        420
 gggctcctaa tgtagt
                                                                        436
       <210> 354
       <211> 854
       <212> DNA
       <213> Homo sapien
       <400> 354
ccttttctag ttcaccagtt ttctgcaagg atgctggtta gggagtgtct gcaggaggag
                                                                        60
caagtetgaa accaaateta ggaaacatag gaaacgagee aggeacaggg etggtgggee
                                                                       120
atcagggacc accetttggg ttgatatttt gettaatetg catettttga gtaagatcat
                                                                       180
ctggcagtag aagctgttet ccaggtacat ttetetaget catgtacaaa aacateetga
                                                                       240
aggactttgt caggtgcctt gctaaaagcc agatgcgttc ggcacttcct tggtctgagg
                                                                       300
ttaattgcac acctacagge actgggetea tgettteaag tattttgtee teactttagg
                                                                       360
gtgagtgaaa gatccccatt ataggagcac ttgggagaga tcatataaaa gctgactctt
                                                                       420
gagtacatgc agtaatgggg tagatgtgt tggtgtgtct tcattcctgc aagggtgctt
                                                                       480
gttagggagt gtttccagga ggaacaagtc tgaaaccaat catgaaataa atggtaggtg
                                                                       540
tgaactggaa aactaattca aaagagagat cgtgatatca gtgtggttga tacaccttgg
                                                                       600
caatatggaa ggctctaatt tgcccatatt tgaaataata attcagcttt ttgtaataca
                                                                       660
aaataacaaa ggattgagaa tcatggtgtc taatgtataa aagacccagg aaacataaat
                                                                       720
atatcaactg cataaatgta aaatgcatgt gacccaagaa ggccccaaag tggcagacaa
                                                                       780
cattgtaccc attitecett ecaaaatgtg ageggeggge etgetgettt caaggetgte
                                                                       840
acacgggatg tcag
                                                                       854
      <210> 355
      <211> 676
      <212> DNA
      <213> Homo sapien
      <400> 355
gaaattaagt atgagetaaa tteeetgtta aaaeetetag gggtgacaga tetetteaae
                                                                        60
caggtcaaag ctgatctttc tggaatgtca ccaaccaagg gcctatattt atcaaaagcc
                                                                       120
atecacaagt catacetgga tgteagegaa gagggcaegg aggeageage agecaetggg
                                                                       180
gacagcateg etgtaaaaag cetaceaatg agageteagt teaaggegaa eeaceette
                                                                       240
etgttettta taaggeacae teataceaae aegateetat tetgtggeaa gettgeetet
                                                                       300
coctaateag atggggttga gtaaggetea gagttgeaga tgaggtgeag agacaateet
                                                                       360
gtgactttcc cacggccaaa aagctgttca cacctcacgc acctctgtgc ctcagtttgc
                                                                       420
```

```
tcatctgcaa aataggtcta ggatttcttc caaccatttc atgagttgtg aagctaaggc
                                                                       480
tttgttaatc atggaaaaag gtagacttat gcagaaagcc tttctggctt tcttatctgt
                                                                       540
ggtgtctcat ttgagtgctg tccaqtgaca tgatcaagtc aatgagtaaa attttaaggg
                                                                       600
attagatttt ettgaettgt atgtatetgt gagatettga ataagtgaee tgaeatetet
                                                                       660
gcttaaaqaa aaccaq
                                                                       676
      <210> 356
      <211> 574
      <212> DNA
      <213> Homo sapien
      <400> 356
ttttttttt tttttcagga aaacattctc ttactttatt tgcatctcag caaaggttct
                                                                        60
catgtggcac ctgactggca tcaaaccaaa gttcgtaggc caacaaagat gggccactca
                                                                       120
caagetteee attigtagat eteagtgeet atgagtatet gacacetgtt cetetettea
                                                                       180
gtctcttagg gaggcttaaa tctgtctcag gtgtgctaag agtgccagcc caaggkggtc
                                                                       240
aaaagtccac aaaactgcag tctttgctgg gatagtaagc caagcagtgc ctggacagca
                                                                       300
gagttetttt ettgggcaac agataaccag acaggaetet aategtgete ttatteaaca
                                                                       360
ttcttctqtc tctqcctaga ctqqaataaa aaqccaatct ctctcqtqqc acaqqqaaqq
                                                                       420
agatacaago togtttacat gtgatagato taacaaaggo atotacogaa gtotggtotg
                                                                       480
gatagacggc acagggagct cttaggtcag cgctgctggt tggaggacat tcctgagtcc
                                                                       540
agctttgcag cctttgtgca acagtacttt ccca
                                                                       574
      <210> 357
      <211> 393
      <212> DNA
      <213> Homo sapien
      <400> 357
tttttttt tttttttt tttttttt tacagaatat aratgettta teaetgkact
                                                                        60
taatatggkg kettgttcae tataettaaa aatgcaecae teataaatat ttaattcage
                                                                       120
aagccacaac caaracttga ttttatcaac aaaaacccct aaatataaac ggsaaaaaag
                                                                       180
atagatataa ttattooagt ttttttaaaa ottaaaarat attooattgo ogaattaara
                                                                       240
araarataag tgttatatgg aaagaagggc attcaagcac actaaaraaa cctgaggkaa
                                                                       300
gcataatctg tacaaaatta aactgtcctt tttggcattt taacaaattt gcaacgktct
                                                                       360
ttttttttt tttctgtttt tttttttt tac
                                                                       393
      <210> 358
      <211> 630
      <212> DNA
      <213> Homo sapien
      <400> 358
acagggtaaa caggaggatc cttqctctca cggagcttac attctagcag qaggacaata
                                                                        60
ttaatgttta taggaaaatg atgagtttat gacaaaggaa gtagatagtg ttttacaaga
                                                                       120
gcatagagta gggaagctaa tccagcacag ggaggtcaca gagacatccc taaggaagtg
                                                                       180
gagtttaaac tgagagaagc aagtgcttaa actgaaggat gtgttgaaga agaagggaga
                                                                       240
gtagaacaat ttgggcagag ggaaccttat agaccctaag gtgggaaggt tcaaaqaact
                                                                       300
gaaagagage tagaacaget ggageegtte teeggtgtaa agaggagtea aagagataag
                                                                       360
attaaagatg tgaagattaa gatcttggtg gcattcaggg attggcactt ctacaagaaa
                                                                       420
teactgaagg gagtaatgtg acattacttt teactteagg atggecatte taacteeagg
                                                                       480
gggtagactg gactaqqtaa gactqqaggc aggtagacct cttctaaqqc ctqcqataqt
                                                                       540
gaaagacaaa aataaqtqqq qaaattcagg ggatagtgaa aatcaqtagq acttaatqag
                                                                       600
caagccagag gttcctccac aacaaccagt
                                                                       630
      <210> 359
      <211> 620
```

<212> DNA

<213> Homo sapien

acagcattoc aaaatataca taattaaaa atgotactaa otcaccagaa gaataaagtg atggcattoc ccaagggaaa aggattaact gttttaggaa aagacaaca tgatacctta igcaacatta tgcttcatga aatgtcattg aatgtcattg acttataa aacaaaaagc tcaccaaa otgtaaagat gtgacagtgt <210> 360	tatagaaaat ctctgccagt tagagagatt cagatataaa ggaagcaaca ataatatgta gaattctggg tactatcttg	ttataatcag tattaaagga cttctggatt gcttcgccac ctaccetttc gaaagaaggt tcaaataaaa gcatataacc	aaaaataaat ttactgctgg atgttcaata ggaagagatg aggcataaaa ctgatgaaaa ttctttgaag tatqaaggca	attcaggag tgaattaaat tttatttcac gacaaagcac tttggagaaa tgacatcctt aaaacatcca aaactaaaca	60 120 180 240 300 360 420 480 540 600 620
<211> 431 <212> DNA <213> Homo sapie	en				
<400> 360 aaaaaaaaa agccagaaca tgatgaatga tgaacgtgat tactcatcat ttttggccag aaaccttctt agctcttgag tggactcctt atgtgagagc agtggacatg cagtggcaga tgatgccaag cgtgacacct agattcttag t	ggactattgt cagttgtttg aagtcaaagt agcggctacc gctcctggta	atggagcaca atcaccaaac ccgggggaat cagctggggt accacctaga	tetteageaa ateatgeeag ttatteetgg ggtggagega ggaatacaca	gaggggaaa aatactcagc caattttaat acccgtcact ggcacatgtg	60 120 180 240 300 360 420 431
<210> 361 <211> 351 <212> DNA <213> Homo sapie	n				
<pre><400> 361 acactgattt ccgatcaaaa actttcttct cagaagatag ttgggtcctc tggtctcttg ttgacttcct ccggggcttt caatcctgga ttcaatgtct ctgccactct gtcctccagc</pre>	ggcacagcca ccaagtttcc cccgagggct gaaacctcgc	ttgccttggc cagccactcg tcaccgtgag tctctgcctg	ctcacttgaa agggagaaat ccctgcggcc ctggacttct	gggtctgcat atcgggaggt ctcagggctg gaggccgtca	60 120 180 240 300 351
<210> 362 <211> 463 <212> DNA <213> Homo sapie	n.				
<pre><400> 362 acttcatcag gccataatgg g tgtagatgag ccggctgaag a ccccggtcac agaaatgacc a cgtaaaggat ttccgcgtcc g tgtrctcaaa ctgaatatcc a agttccattt ctcactttgg t cacacttgca cacattctcc c tranguctgc ttatggaaac t</pre>	atettgegea aggttgggtg : gtgtegeagg : ceaaaggegt : tgatetggg ! ctgataagea :	tgegeggett tttteaggtg acagaegtat eggtaggaaa tgeetteeat	Cagggcgaag Ccagtgctgg atacttccct ttccttggtg gtgctggctc gacaggaagg	ttettggege gteageaget ttetteeeea tgtttettgt tgggeatage	60 120 180 240 300 360 420 463

```
<210> 363
      <211> 653
      <212> DNA
      <213> Homo sapien
      <220>
      <221> misc_feature
      <222> (1) ... (653)
      <223> n = A, T, C or G
      <400> 363
accecegagt nectgnetgg catactgnga acgaccaacg acacaccaa geteggeete
                                                                        60
ctcttggnga ttctgggtga catcttcatg aatggcaacc gtgccagwga ggctgtcctc
                                                                       120
tgggaggcac tacqcaaqat gggactqcgt cctqqqqtqa qacatcctct ccttqqaqat
                                                                       180
ctaacqaaac ttctcaccta tgagttgtaa agcagaaata cctgnactac agacgagtgc
                                                                       240
ccaacaqcaa cccccqqaa qtatqaqttc ctctrqqqcc tccqttccta ccatqaqasc
                                                                       300
tagcaagatg naagtgttga gantcattgc agaggttcag aaaagagacc cntcgtgact
                                                                       360
ggtctgcaca gttcatggag gctgcagatg aggccttgga tgctctggat gctgctgcag
                                                                       420
ctgaggccga agcccgggct qaagcaagaa cccgcatggg aattggagat gaggctgtgt
                                                                       480
ntgggccctg gagctgggat qacattgagt ttgagctgct gacctgggat gaggaaggag
                                                                       540
attttggaga teentggtee agaatteeat ttacettetg ggeeagatae caecagaatg
                                                                       600
cccgctccag attecctcag acctttgccg gtcccattat tggtcstggt ggt
                                                                       653
      <210> 364
      <211> 401
      <212> DNA
      <213> Homo sapien
      <400> 364
actagaggaa agacqttaaa ccactctact accacttqtq qaactctcaa aqqqtaaatq
                                                                        60
acaaagccaa tgaatgactc taaaaacaat atttacattt aatggtttgt agacaataaa
                                                                       120
aaaacaaqgt ggatagatct agaattgtaa cattttaaga aaaccatagc atttgacaga
                                                                       180
tgagaaagct caattataga tgcaaagtta taactaaact actatagtag taaagaaata
                                                                       240
catttcacac cettcatata aattcactat ettggettga ggeactecat aaaatgtate
                                                                       300
acgtgcatag taaatcttta tatttgctat ggcgttgcac tagaggactt ggactgcaac
                                                                       360
aagtggatgc gcggaaaatg aaatcttctt caatagccca g
                                                                       401
      <210> 365
      <211> 356
      <212> DNA
      <213> Homo sapien
      <400> 365
ccagtgtcat atttgggctt aaaatttcaa gaaggcact tcaaatggct ttgcatttgc
                                                                        60
atgittcagt gctagagcgt aggaatagac cctggcgtcc actgtgagat gttcttcagc
                                                                       120
taccagagca tcaagtctct gcagcaggtc attcttgggt aaagaaatqa cttccacaaa
                                                                       180
ctctccatcc cctggctttg gcttcggcct tgcgttttcg qcatcatctc cqttaatqqt
                                                                       240
gactgtcacg atgtgtatag tacagtttga caagcctggg tccatacaga ccgctggaga
                                                                       300
acatteggea atgteeett tgtageeagt ttettetteg ageteeegga gageag
                                                                       356
      <210> 366
      <211> 1851
      <212> DNA
      <213> Homo sapien
      <400> 366
teatcaccat tgccagcage ggcaccgtta gtcaggtttt ctgggaatce cacatgagta
                                                                        60
cttccgtgtt cttcattctt cttcaatage cataaatctt ctagetctgg ctggctgttt
                                                                       120
```

```
toactteett taageetttg tgaetettee tetgatgtea getttaagte ttgttetgga
                                                                      180
 ttgctgtttt cagaagagat ttttaacatc tgtttttctt tgtagtcaga aagtaactgg
                                                                      240
 casattacat gatgatgact agaaacagca tactetetgg cegtetitee agatettgag
                                                                      300
 addatacate ascattttge teaagtagag ggetgaetat aettgetgat ceacaacata
                                                                      360
cagcaagtat gagagcagtt cttccatatc tatccagcgc atttaaattc gctttttct
                                                                      420
Egattaaaaa tttcaccact tgctgttttt gctcatgtat accaagtagc agtggtgtga
                                                                      480
ggccatgett gttttttgat tegatateag cacegtataa gagcagtget ttggccatta
                                                                      540
atttatette attgtagaca geatagtgta gagtggtatt tecatactea tetggaatat
                                                                      600
ttggatcagt gccatgttcc agcaacatta acgcacattc atcttcctgg cattgtacgg
                                                                      660
cctttgtcag agctgtcctc tttttgttgt caaggacatt aagttgacat cgtctgtcca
                                                                      720
gcacgagttt tactacttct gaattcccat tggcagaggc cagatgtaga gcagtcctct
                                                                      780
tttgcttgtc cctcttgttc acatccgtgt ccctgagcat gacgatgaga tcctttctgg
                                                                      840
ggactttacc ccaccaggca gctctgtgga gcttgtccag atcttctcca tggacgtggt
                                                                      900
acctgggate catgaaggeg ctgtcategt agteteecca agegaceaeg ttgetettge
                                                                      960
egeteceetg cageagggga ageagtggea geaceaettg cacetettge teccaagegt
                                                                     1020
cttcacagag gagtcgttgt ggtctccaga agtgcccacg ttgctcttgc cgctcccct
                                                                    1080
gtccatccag ggaggaagaa atgcaggaaa tgaaagatgc atgcacgatg gtatactcct
                                                                    1140
cagccatcaa acttetggac agcaggteac ttecageaag gtggagaaag etgtecacee
                                                                    1200
acagaggatg agatecagaa accacaatat ceatteacaa acaaacaett tteagecaga
                                                                    1260
cacaggtact gaaatcatgt catctgcggc aacatggtgg aacctaccca atcacacatc
                                                                    1320
aagagatgaa gacactgcag tatatctgca caacgtaata ctcttcatcc ataacaaaat
                                                                    1380
aatataattt toototggag ocatatggat gaactatgaa ggaagaacto occgaagaag
                                                                    1440
ccagtcgcag agaagccaca ctgaagctct gtcctcagcc atcagcgcca cggacaggar
                                                                    1500
tgtgtttett ecceagtgat geagecteaa gttateeega agetgeegea geacaeggtg
                                                                    1560
geteetgaga aacaccccag etetteeggt etaacacagg caagtcaata aatgtgataa
                                                                    1620
tcacataaac agaattaaaa gcaaagtcac ataagcatct caacagacac agaaaaggca
                                                                    1680
tttgacaaaa tccagcatcc ttgtatttat tgttgcagtt ctcagaggaa atgcttctaa
                                                                    1740
cttttcccca tttagtatta tgttggctgt gggcttgtca taggtggttt ttattacttt
                                                                    1800
aaggtatgtc ccttctatgc ctgttttgct gagggtttta attctcgtgc c
                                                                    1851
      <210> 367
      <211> 668
      <212> DNA
      <213> Homo sapien
      <400> 367
cttgagette caaataygga agaetggeee ttacacasgt caatgttaaa atgaatgeat
                                                                      60
ttcagtattt tgaagataaa attrgtagat ctataccttg ttttttgatt cgatatcagc
                                                                     120
accrtataag agcagtgctt tggccattaa tttatctttc attrtagaca gcrtagtgya
                                                                     180
gagtggtatt tccatactca tctggaatat ttggatcagt gccatgttcc agcaacatta
                                                                     240
acgcacattc atcttcctgg cattgtacgg cctgtcagta ttagacccaa aaacaaatta
                                                                     300
catatettag gaatteaaaa taacatteea eagettteae eaactagtta tatttaaagg
                                                                     360
agaaaactca tttttatgcc atgtattgaa atcaaaccca cctcatgctg atatagttgg
                                                                     420
ctactgcata cctttatcag agctgtcctc tttttgttgt caaggacatt aagttgacat
                                                                     480
cgtctgtcca gcaggagttt tactacttct gaattcccat tggcagaggc cagatgtaga
                                                                     540
gcagtcctat gagagtgaga agacttttta ggaaattgta gtgcactagc tacagccata
                                                                     600
gcaatgattc atgtaactgc aaacactgaa tagcctgcta ttactctgcc ttcaaaaaaa
                                                                     660
aaaaaaaa
                                                                     668
      <210> 368
      <211> 1512
      <212> DNA
      <213> Homo sapien
      <400> 368
60
tggggttggge trgaatcccc tgctggggtt ggcaggtttt ggctgggatt gactttytc
                                                                     120
ttcaaacaga ttggaaaccc ggagttacct gctagttggt gaaactggtt ggtagacgcg
                                                                     180
```

1260

1320

1380

1440

1500

1560

1620

1680

```
atctgttggc tactactggc ttctcctggc tgttaaaagc agatggtggt tgaggttgat
                                                                     240
tccatgccgg ctgcttcttc tgtgaagaag ccatttggtc tcaggagcaa gatgggcaag
                                                                     300
tggtgctgcc gttgcttccc ctgctgcagg gagagcggca agagcaacgt gggcacttct
                                                                     360
ggagaccacg acgactctgc tatgaagaca ctcaggagca agatgggcaa gtggtgccgc
                                                                     420
cactgcttcc cctgctgcag ggggagtggc aagagcaacg tgggcgcttc tggagaccac
                                                                     480
gacgaytetg ctatgaagac actcaggaac aagatgggca agtggtgctg ccactgcttc
                                                                     540
ccctgctgca gggggagcrg caagagcaag gtgggcgctt ggggagacta cgatgacagt
                                                                     600
gccttcatgg agcccaggta ccacgtccgt ggagaagatc tggacaagct ccacagagct
                                                                     660
gcctggtggg gtaaagtccc cagaaaggat ctcatcgtca tgctcaqqqa cactqacqtq
                                                                     720
aacaagaagg acaagcaaaa gaggactgct ctacatctgg cctctgccaa tgggaattca
                                                                     780
gaagtagtaa aactestget ggacagaega tgteaaetta atgteettga caacaaaaag
                                                                     840
aggacagete tgayaaagge egtacaatge caggaagatg aatgtgegtt aatgttgetg
                                                                     900
gaacatggca ctgatccaaa tattccagat gagtatggaa ataccactct rcactaygct
                                                                     960
rtctayaatg aagataaatt aatggccaaa gcactgctct tatayggtgc tgatatcgaa
                                                                    1020
tcaaaaaaca aggtatagat ctactaattt tatcttcaaa atactgaaat qcattcattt
                                                                    1080
taacattgac gtgtgtaagg gccagtcttc cgtatttgga agctcaagca taacttgaat
                                                                    1140
gaaaatattt tgaaatgacc taattatctm agactttatt ttaaatattg ttatttcaa
                                                                    1200
agaagcatta gagggtacag ttttttttt ttaaatgcac ttctggtaaa tacttttqtt
                                                                    1260
gaaaacactg aatttgtaaa aggtaatact tactattttt caatttttcc ctcctaggat
                                                                    1320
ttttttcccc taatgaatgt aagatggcaa aatttgccct gaaataggtt ttacatgaaa
                                                                    1380
actccaagaa aagttaaaca tgtttcagtg aatagagatc ctgctccttt ggcaagttcc
                                                                    1440
taaaaaacag taatagatac gaggtgatgc gcctgtcagt ggcaaggttt aagatatttc
                                                                    1500
tgatctcgtg cc
                                                                    1512
      <210> 369
      <211> 1853
      <212> DNA
      <213> Homo sapien
      <400> 369
60
tgggctgggc trgaatcccc tgctggggtt ggcaggtttt ggctgggatt gacttttytc
                                                                     120
ticaaacaga tiggaaaccc ggagttacci gctagtiggi gaaaciggii ggtagacgcg
                                                                     180
atctgttggc tactactggc ttctcctggc tgttaaaagc agatggtggt tgaggttgat
                                                                     240
tocatgoogg ctgcttcttc tgtgaagaag ccatttggtc tcaggagcaa gatgggcaag
                                                                     300
tggtgetgee gttgetteee etgetgeagg gagageggea agageaaegt gggeaettet
                                                                     360
ggagaccacg acgactctgc tatgaagaca ctcaggagca agatgggcaa gtggtgccgc
                                                                     420
cactgcttcc cctgctgcag ggggagtggc aagagcaacg tgggcgcttc tggagaccac
                                                                     480
gacgaytetg etatgaagae acteaggaae aagatgggea agtggtgetg eeactgette
                                                                     540
ccctgctgca gggggagcrg caagagcaag gtgggcgctt ggggagacta cgatgacagy
                                                                     600
gccttcatgg akcccaggta ccacgtccrt ggagaagatc tggacaagct ccacagagct
                                                                     660
gcctggtggg gtaaagtccc cagaaaggat ctcatcgtca tgctcaggga cackgaygtg
                                                                     720
aacaagargg acaagcaaaa gaggactgct ctacatctgg cctctgccaa tgggaattca
                                                                     780
gaagtagtaa aactcstgct ggacagacga tgtcaactta atgtccttga caacaaaaag
                                                                     840
aggacagete tgayaaagge egtacaatge caggaagatg aatgtgegtt aatgttgetg
                                                                     900
gaacatggca ctgatccaaa tattccagat gagtatggaa ataccactct rcactaygct
                                                                     960
rtctayaatg aagataaatt aatggccaaa gcactgctct tatayggtgc tgatatcgaa
                                                                    1020
tcaaaaaaca agcatggcct cacaccactg ytacttggtr tacatgagca aaaacagcaa
                                                                    1080
gtsgtgaaat ttttaatyaa gaaaaaagcg aatttaaaat gcrctggata gatatggaag
                                                                    1140
```

ractgctctc atacttgctg tatgttgtgg atcagcaagt atagtcagcc ytctacttga

gcaaaatrtt gatgtatett eteaagatet ggaaagaegg eeagagagta tgetgtttet

agtcatcatc atgtaatttg ccagttactt tctgactaca aagaaaaaca gatgttaaaa

atetettetg aaaacageaa teeagaacaa gaettaaage tgacateaga ggaagagtea

caaaggetta aaggaagtga aaacagecag ceagaggeat ggaaactttt aaatttaaae

ttttggttta atgtttttt tttttgcctt aataatatta gatagtccca aatgaaatwa

cctatgagac taggctttga gaatcaatag attcttttt taagaatctt ttggctagga

gcggtgtctc acgcctgtaa ttccagcacc ttgagaggct gaggtgggca gatcacgaga

tcaggagatc gagaccatcc tggctaacac ggtgaaaccc catctctact aaaaatacaa

```
aaacttaget gggtgtggtg gegggtgeet gtagteeeag etaeteagga rgetgaggea
                                                                      1740
 ggagaatggc atgaacccgg gaggtggagg ttgcagtgag ccgagatccg ccactacact
                                                                      1800
 ccaqcetggg tgacagagca agactetgte teaaaaaaaa aaaaaaaaaa aaa
                                                                      1853
      <210> 370
      <211> 2184
      <212> DNA
      <213> Homo sapien
      <400> 370
ggcacgagaa ttaaaaccct cagcaaaaca ggcatagaag ggacatacct taaagtaata
                                                                        60
aaaaccacct atgacaagcc cacagccaac ataatactaa atggggaaaa gttagaagca
                                                                       120
tttcctctga gaactgcaac aataaataca aggatgctgg attttgtcaa atgccttttc
                                                                       180
tgtgtctgtt gagatgctta tgtgactttg cttttaattc tgtttatgtg attatcacat
                                                                       240
ttattgactt gcctgtgtta gaccggaaga gctggggtgt ttctcaggag ccaccgtgtg
                                                                       300
ctgcggcagc ttcgggataa cttgaggctg catcactggg gaagaaacac aytcctgtcc
                                                                       360
gtggcgctga tggctgagga cagagcttca gtgtggcttc tctgcgactg gcttcttcgg
                                                                       420
ggagttcttc cttcatagtt catccatatg gctccagagg aaaattatat tattttgtta
                                                                       480
tggatgaaga gtattacgtt gtgcagatat actgcagtgt cttcatctct tgatgtgta
                                                                       540
ttgggtaggt tccaccatgt tgccgcagat gacatgattt cagtacctgt gtctggctga
                                                                       600
aaagtgtttg tttgtgaatg gatattgtgg tttctggatc tcatcctctg tgggtggaca
                                                                       660
qctttctcca ccttgctgga agtgacctgc tgtccagaag tttgatggct gaggagtata
                                                                       720
ccatcgtgca tgcatctttc atttcctgca tttcttcctc cctggatgga cagggggagc
                                                                       780
ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa gacgcttggg
                                                                       840
agcaagaggt gcaagtggtg ctgccactgc ttcccctgct gcaggggagc ggcaagagca
                                                                       900
acgtggtcgc ttggggagac tacgatgaca gcgccttcat ggatcccagg taccacgtcc
                                                                       960
atggagaaga tetggacaag etecacagag etgeetggtg gggtaaagte eccagaaagg
                                                                      1020
atctcatcgt catgctcagg gacacggatg tgaacaagag ggacaagcaa aagaggactg
                                                                      1080
ctctacatct ggcctctgcc aatgggaatt cagaagtagt aaaactcgtg ctggacagac
                                                                      1140
gatgtcaact taatgtcctt gacaacaaaa agaggacagc tctgacaaag gccgtacaat
                                                                      1200
gccaggaaga tgaatgtgcg ttaatgttgc tggaacatgg cactgatcca aatattccag
                                                                      1260
atgagtatgg aaataccact ctacactatg ctgtctacaa tgaagataaa ttaatggcca
                                                                      1320
aagcactgct cttatacggt gctgatatcg aatcaaaaaa caagcatggc ctcacaccac
                                                                      1380
tgctacttgg tatacatgag caaaaacagc aagtggtgaa atttttaatc aagaaaaaag
                                                                      1440
cgaatttaaa tgcgctggat agatatggaa gaactgctct catacttgct gtatgttgtg
                                                                      1500
gatcagcaag tatagtcagc cctctacttg agcaaaatgt tgatgtatct tctcaagatc
                                                                      1560
tggaaagacg gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact
                                                                      1620
ttctgactac aaagaaaaac agatgttaaa aatctcttct gaaaacagca atccagaaca
                                                                      1680
agacttaaag ctgacatcag aggaagagtc acaaaggctt aaaggaagtg aaaacagcca
                                                                      1740
gccagaggca tggaaacttt taaatttaaa cttttggttt aatgttttt ttttttgcct
                                                                      1800
taataatatt agatagteec aaatgaaatw acctatgaga ctaggetttg agaatcaata
                                                                      1860
gattetttt ttaagaatet tttggetagg ageggtgtet caegeetgta attecageae
                                                                     1920
cttgagaggc tgaggtgggc agatcacgag atcaggagat cgagaccatc ctggctaaca
                                                                     1980
cggtgaaacc ccatctctac taaaaataca aaaacttagc tgggtgtggt ggcgggtgcc
                                                                     2040
tgtagtccca gctactcagg argctgaggc aggagaatgg catgaacccg ggaggtggag
                                                                     2100
gttgcagtga gccgagatcc gccactacac tccagcctgg gtgacagagc aagactctgt
                                                                     2160
ctcaaaaaaa aaaaaaaaaa aaaa
                                                                     2184
     <210> 371
     <211> 1855
     <212> DNA
     <213> Homo sapien
     <220>
     <221> misc_feature
     <222> (1)...(1855)
     <223> n = A, T, C or G
```

```
<400> 371
tgcacgcatc ggccagtgtc tgtgccacgt acactgacgc cccctgagat gtgcacgccq
                                                                        60
cacgegeacg ttgcaegege ggeagegget tqqctqqctt qtaaeqqctt qcacqeqcae
                                                                       120
geogeococg cataaccgte agactgqcct gtaacggctt geaggegeac geogeacgeg
                                                                       180
egtaaegget tggetgeet gtaaeggett geaegtgeat getgeaegeg egttaaegge
                                                                       240
ttggctggca tgtagccgct tggcttggct ttgcattytt tgctkggctk ggcgttgkty
                                                                       300
tettggattg aegetteete ettggatkga egttteetee ttggatkgae gttteytyty
                                                                       360
tegeqtteet tigetggaet igaeetitty tetgetgggt tiggeatice titiggggigg
                                                                       420
gctgggtgtt ttctccgggg gggktkgccc ttcctggggt gggcgtgggk cgccccagg
                                                                       480
gggcgtgggc tttccccggg tgggtgtggg ttttcctqqq gtgggqtggq ctqtqctqqq
                                                                       540
atccccctgc tggggttggc agggattgac ttttttcttc aaacagattg gaaacccgga
                                                                       600
gtaacntgct agttggtgaa actggttggt agacgcgatc tgctggtact actgtttctc
                                                                      660
ctggctgtta aaagcagatg gtggctgagg ttgattcaat gccggctgct tcttctgtga
                                                                      720
agaagecatt tggteteagg ageaagatgg geaagtggtg egeeactget teeectgetg
                                                                      780
cagggggagc ggcaagagca acgtgggcac ttctggagac cacaacgact cctctgtgaa
                                                                      840
gacgcttggg agcaagaggt gcaagtggtg ctgcccactg cttcccctgc tgcaggggag
                                                                      900
cggcaagagc aacgtggkcg cttggggaga ctacgatgac agcgccttca tggakcccag
                                                                      960
gtaccacgtc crtggagaag atctggacaa gctccacaga gctgcctggt ggggtaaagt
                                                                      1020
ccccagaaag gatctcatcg tcatgctcag ggacactgay gtgaacaaga rggacaagca
                                                                      1080
aaagaggact gctctacatc tggcctctgc caatgggaat tcagaagtag taaaactcgt
                                                                      1140
gctggacaga cgatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa
                                                                     1200
ggccgtacaa tgccaggaag atgaatgtgc gttaatgttg ctggaacatg gcactgatcc
                                                                     1260
aaatattcca gatgagtatg gaaataccac tctacactat gctgtctaca atgaagataa
                                                                     1320
attaatggcc aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaaggtata
                                                                     1380
gatctactaa ttttatcttc aaaatactga aatgcattca ttttaacatt gacgtgtgta
                                                                     1440
agggccagtc ttccgtattt ggaagctcaa gcataacttg aatgaaaata ttttgaaatg
                                                                     1500
acctaattat ctaagacttt attttaaata ttgttatttt caaagaagca ttagagggta
                                                                     1560
cagtttttt tttttaaatg cacttctggt aaatactttt gttgaaaaca ctgaatttgt
                                                                     1620
aaaaggtaat acttactatt tttcaatttt tccctcctag gattttttc ccctaatgaa
                                                                     1680
tgtaagatgg caaaatttgc cctgaaatag gttttacatg aaaactccaa gaaaagttaa
                                                                     1740
acatgtttca gtgaatagag atcctgctcc tttggcaagt tcctaaaaaa cagtaataga
                                                                     1800
tacgaggtga tgcgcctgtc agtggcaagg tttaagatat ttctgatctc gtgcc
                                                                     1855
      <210> 372
      <211> 1059
      <212> DNA
      <213> Homo sapien
      <400> 372
gcaacgtggg cacttctgga gaccacaacg actcctctgt gaagacgctt gggagcaaga
                                                                        60
ggtgcaagtg gtgctgccca ctgcttcccc tgctgcaggg gagcggcaag agcaacgtgg
                                                                      120
gegettgrgg agactmegat gacagygeet teatggagee caggtaceae gteegtggag
                                                                      180
aagatetgga caagetecae agagetgeee tggtggggta aagteeceag aaaggatete
                                                                      240
atcgtcatgc tcagggacac tgaygtgaac aagarggaca agcaaaagag gactgctcta
                                                                      300
catctggcct ctgccaatgg gaattcagaa gtagtaaaac tcstgctgga cagacgatgt
                                                                      360
caacttaatg teettgacaa caaaaagagg acagetetga yaaaggeegt acaatgeeag
                                                                      420
gaagatgaat gtgcgttaat gttgctggaa catggcactg atccaaatat tccagatgag
                                                                      480
tatggaaata ccactetrea etaygetree tayaatgaag ataaattaat ggccaaagca
                                                                      540
ctgctcttat ayggtgctga tatcgaatca aaaaacaagg tatagatcta ctaattttat
                                                                      600
cttcaaaata ctgaaatgca ttcattttaa cattgacgtg tgtaagggcc agtcttccgt
                                                                      660
atttggaagc tcaagcataa cttgaatgaa aatattttga aatgacctaa ttatctaaga
                                                                      720
ctttatttta aatattgtta ttttcaaaga agcattagag ggtacagttt tttttttta
                                                                      780
aatgcacttc tggtaaatac ttttgttgaa aacactgaat ttgtaaaagg taatacttac
                                                                      840
tatttttcaa tttttccctc ctaggatttt tttcccctaa tgaatgtaag atggcaaaat
                                                                      900
ttgccctgaa ataggtttta catgaaaact ccaagaaaag ttaaacatgt ttcagtgaat
                                                                      960
agagatcctg ctcctttggc aagttcctaa aaaacagtaa tagatacgag gtgatgcgcc
                                                                     1020
tgtcagtggc aaggtttaag atatttctga tctcgtgcc
                                                                     1059
```

```
<210> 373
      <211> 1155
      <212> DNA
      <213> Homo sapien
      <400> 373
arggragtig aggrigatic catgoogget geetettetg tgaagaagee attiggiete
                                                                        60
499agcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag
                                                                       120
agcaacgtgg gcacttotgg agaccacgae gactotgeta tgaagacact caggagcaag
                                                                       180
sigggcaagt ggigcegcea cigciicece igcigcaggg ggagiiggcaa gagcaacgig
                                                                       240
folgettetg gagaeeaega egaetetget atgaagaeae teaggaaeaa gatgggeaag
                                                                       300
tgytgctqcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg
                                                                       360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg
                                                                       420
gavaagstoo acagagotgo otggtggggt aaagtoocca gaaaggatot catogtoatg
                                                                       480
ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc
                                                                       540
retgecaatg ggaatteaga agtagtaaaa eteetgetgg acagaegatg teaaettaat
                                                                       600
gteettgaca acaaaaagag gacagetetg ataaaggeeg tacaatgeea ggaagatgaa
                                                                       660
tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat
                                                                       720
accactotgo actacgotat otataatgaa gataaattaa tggocaaago actgototta
                                                                       780
tatggtgctg atatoqaato aaaaaacaag catggeetea caccactgtt acttggtgta
                                                                       840
catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca
                                                                       900
ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata
                                                                       960
gtcagcottc tacttgagca aaatattgat gtatettete aagatetate tggacagaeg
                                                                      1020
gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac
                                                                      1080
adagaaaaac agatgctaaa aatctcttct gaaaacagca atccaqaaaa tgtctcaaga
                                                                      1140
accagaaata aataa
                                                                      1155
      <210> 374
      <211> 2000
      <212> DNA
      <213> Homo sapien
      <400> 374
atggtggttg aggttgatte catgeegget geetettetg tgaagaagee atttggtete
                                                                        60
aggagcaaga tgggcaagtg qtgctqccqt tgcttcccct qctqcaqqqa qaqcqqcaaq
                                                                       120
agcaacgtgg gcacttetgg agaccacgac gactetgeta tgaagacact caggagcaag
                                                                       180
atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg
                                                                       240
ggegettetg gagaceaega egactetget atgaagaeae teaggaaeaa gatgggeaag
                                                                       300
tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg
                                                                       360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg
                                                                       420
gacaagctcc acagagctgc ctggtggggt aaagtcccca gaaaggatct catcgtcatg
                                                                       480
ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc
                                                                       540
tetgecaatg ggaatteaga agtagtaaaa eteetgetgg acagacgatg teaacttaat
                                                                       600
gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca qqaaqatqaa
                                                                       660
tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat
                                                                       720
accactetge actaegetat etataatgaa gataaattaa tggeeaaage actgetetta
                                                                       780
tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta
                                                                       840
catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca
                                                                       900
ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata
                                                                       960
gtcagccttc tacttqaqca aaatattqat qtatcttctc aagatctatc tqqacaqacq
                                                                     1020
gccagagagt atgctqtttc tagtcatcat catqtaattt gccaqttact ttctqactac
                                                                     1080
aaagaaaaac agatgetaaa aatetettet gaaaacagea ateeagaaca agaettaaag
                                                                     1140
ctgacatcag aggaagagte acaaaggtte aaaggcagtg aaaatageea gecagagaaa
                                                                     1200
atgtotoaag aaccagaaat aaataaggat qqtgatagag aggttgaaga agaaatgaag
                                                                     1260
aagcatgaaa gtaataatgt qqqattacta qaaaacctga ctaatqqtqt cactqctqqc
                                                                     1320
aatggtgata atggattaat tootoaaagg aagaqoagaa cacotqaaaa toaqoaattt
                                                                     1380
ustyacaacy aaaytyaaya ytatcacaya atttycyaat taytttotya ctacaaayaa
                                                                     1440
aaacagatge caaaatacte ttetgaaaae agcaacceag aacaagactt aaagetgaca
                                                                     1500
```

```
tcagaggaag agtcacaaag gcttgagggc agtgaaaatg gccagccaga gctagaaaat
                                                                   1560
tttatggcta tcgaagaaat gaagaagcac ggaagtactc atgtcggatt cccagaaaac
                                                                   1620
ctgactaatg gtgccactgc tggcaatggt gatgatggat taattcctcc aaggaagagc
                                                                   1680
agaacacctg aaagccagca atttcctgac actgagaatg aagagtatca cagtgacgaa
                                                                   1740
1800
attctgattc atgaagaaaa gcagatagaa gtggttgaaa aaatgaattc tgagctttct
                                                                   1860
cttagttgta agaaagaaaa agacatcttg catgaaaata gtacgttgcg ggaagaaatt
                                                                   1920
gccatgctaa gactggagct agacacaatg aaacatcaga gccagctaaa aaaaaaaaa
                                                                   1980
aaaaaaaaa aaaaaaaaaa
                                                                   2000
      <210> 375
      <211> 2040
      <212> DNA
      <213> Homo sapien
      <400> 375
atggtggttg aggttgattc catgccggct gcctcttctg tgaagaagcc atttggtctc
                                                                     60
aggagcaaga tgggcaagtg gtgctgccgt tgcttcccct gctgcaggga gagcggcaag
                                                                    120
agcaacgtgg gcacttetgg agaccacgac gactetgeta tgaagacact caggagcaag
                                                                    180
atgggcaagt ggtgccgcca ctgcttcccc tgctgcaggg ggagtggcaa gagcaacgtg
                                                                    240
ggcgcttctg gagaccacga cgactctgct atgaagacac tcaggaacaa gatgggcaag
                                                                    300
tggtgctgcc actgcttccc ctgctgcagg gggagcggca agagcaaggt gggcgcttgg
                                                                    360
ggagactacg atgacagtgc cttcatggag cccaggtacc acgtccgtgg agaagatctg
                                                                    420
gacaagctcc acagagctgc ctggtggggt aaagtcccca gaaaggatct catcgtcatg
                                                                    480
ctcagggaca ctgacgtgaa caagaaggac aagcaaaaga ggactgctct acatctggcc
                                                                    540
tctgccaatg ggaattcaga agtagtaaaa ctcctgctgg acagacgatg tcaacttaat
                                                                    600
gtccttgaca acaaaaagag gacagctctg ataaaggccg tacaatgcca ggaagatgaa
                                                                    660
tgtgcgttaa tgttgctgga acatggcact gatccaaata ttccagatga gtatggaaat
                                                                    720
accactetge actaegetat etataatgaa gataaattaa tggeeaaage actgetetta
                                                                    780
tatggtgctg atatcgaatc aaaaaacaag catggcctca caccactgtt acttggtgta
                                                                    840
catgagcaaa aacagcaagt cgtgaaattt ttaatcaaga aaaaagcgaa tttaaatgca
                                                                    900
ctggatagat atggaaggac tgctctcata cttgctgtat gttgtggatc agcaagtata
                                                                    960
gtcagcotto tacttgagca aaatattgat gtatottoto aagatotato tggacagacg
                                                                   1020
gccagagagt atgctgtttc tagtcatcat catgtaattt gccagttact ttctgactac
                                                                   1080
aaagaaaaac agatgctaaa aatctcttct gaaaacagca atccagaaca agacttaaag
                                                                   1140
ctgacatcag aggaagagtc acaaaggttc aaaggcagtg aaaatagcca gccagagaaa
                                                                   1200
atgtctcaag aaccagaaat aaataaggat ggtgatagag aggttgaaga agaaatgaag
                                                                   1260
aagcatgaaa gtaataatgt gggattacta gaaaacctga ctaatggtgt cactgctggc
                                                                   1320
aatggtgata atggattaat teeteaaagg aagageagaa caeetgaaaa teageaattt
                                                                   1380
cctgacaacg aaagtgaaga gtatcacaga atttgcgaat tagtttctga ctacaaagaa
                                                                   1440
aaacagatge caaaatacte ttetgaaaac agcaacecag aacaagactt aaagetgaca
                                                                   1500
tcagaggaag agtcacaaag gcttgagggc agtgaaaatg gccagccaga gaaaagatct
                                                                   1560
caagaaccag aaataaataa ggatggtgat agagagctag aaaattttat ggctatcgaa
                                                                   1620
gaaatgaaga agcacggaag tactcatgtc ggattcccag aaaacctgac taatggtgcc
                                                                   1680
actgctggca atggtgatga tggattaatt cctccaagga agagcagaac acctgaaagc
                                                                   1740
cagcaatttc ctgacactga gaatgaagag tatcacagtg acgaacaaaa tgatactcag
                                                                   1800
aagcaatttt gtgaagaaca gaacactgga atattacacg atgagattct gattcatgaa
                                                                   1860
gaaaagcaga tagaagtggt tgaaaaaatg aattctgagc tttctcttag ttgtaagaaa
                                                                  1920
gaaaaagaca tcttgcatga aaatagtacg ttgcgggaag aaattgccat gctaagactg
                                                                  1980
2040
      <210> 376
      <211> 329
      <212> PRT
      <213> Homo sapien
     <400> 376
```

Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe

```
10
Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu
      20
                     25
Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser
                       40
Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg
                    55
                                     60
Fro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val
                70
                                  75
Val Leu Pro Leu Leu Pro Leu Leu Gln Gly Ser Gly Lys Ser Asn Val
                               90
Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr
          100
                          105
                                            110
His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp
                       120
Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp
                   135
                                      140
Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser
                150
                                  155
Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys
             165
                              170
                                   175
Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala
                          185
Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly
                       200
Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr
                    215
Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr
                230
                                  235 240
Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu
             245
                              250
Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys
                          265
         260
Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu
     275 280 285
Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu
 290 295 300
Glu Gln Asn Val Asp Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu
                310
                               315
Ser Met Leu Phe Leu Val Ile Ile Met
       325
```

<210> 377

<211> 148

<212> PRT

<213> Homo sapien

<220>

<221> VARIANT

<222> (1)...(148)

<223> Xaa = Any Amino Acid

<400> 377

 Met
 Thr
 Xaa
 Pro
 Ser
 Trp
 Ser
 Pro
 Gly
 Thr
 Thr
 Ser
 Val
 Glu
 Lys
 Ile

 1
 5
 10
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15

```
35
                            40
 Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu
                        5.5
 Val Val Lys Leu Xaa Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp
Asn Lys Lys Arg Thr Ala Leu Xaa Lys Ala Val Gln Cys Gln Glu Asp
Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro
                               105
Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Xaa Tyr Asn Glu Asp
                         120
Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser
                       135
Lys Asn Lys Val
145
      <210> 378
      <211> 1719
      <212> PRT
      <213> Homo sapien
      <400> 378
Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys
                                    10
Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe
Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp
His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp
Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val
                                        75
Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Lou Arg Asn
                                    90
Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser
Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe
                            120
Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His
                        135
Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met
                    150
                                        155
Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala
                                    170
Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu
           180
                                185
Leu Asp Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr
                            200
Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met
Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn
                    230
                                       235
Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys
                                   250
Ala Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly
           260
                               265
Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val
       275
```

Lys	Phe 290	Leu	Ile	Lys	Lys	Lys 295	Ala	Asn	Leu	Asn	Ala 300	Leu	Asp	Arg	Tyr
Gly 305		Thr	Ala	Leu	Ile 310		Ala	Val	Суз	Cys 315	Gly	Ser	Ala	Ser	Ile 320
Val	Ser	Leu	Leu	Leu 325	Glu	Gln	Asn	Ile	Asp 330	Val	Ser	Ser	Gln	Asp 335	Leu
Ser	Gly	Gln	Thr 340	Ala	Arg	Glu	Tyr	Ala 345	Val	Ser	Ser	His	His 350	His	Val
Tle	Cys	Gln 355	Leu	Leu	Ser	Asp	Tyr 360	Lys	Glu	Lys	Gln	Met 365	Leu	Lys	Ile
Ser	Ser 370	Glu	Asn	Ser	Asn	Pro 375	Glu	Asn	Val	Ser	Arg 380	Thr	Arg	Asn	Lys
Pro 385	Arg	Thr	His	Met	Val 390	Val	Glu	Val	Asp	Ser 395	Met	Pro	Ala	Ala	Ser 400
		_	_	405					410		Met			415	
_	_	_	420		_			425			Lys		430		
		435	_		_		440				Thr	445			
	450	_	_	_	_	455					Cys 460				
465				_	470					475	Asp				480
		_		485					490		His			495	
			500	_				505			Trp		510		
		515					520				Arg	525			
	530					535					Val 540				
545					550					555	Lys				560
				565					570		Gly			575	
			580					585			Asn		590		
=	-	595					600				Cys	605		_	
_	610					615					Pro 620				
625	_	-			630					635	Tyr				640
				645					650		Asp			655	
	_		660					665			Val		670		
		675		_			680				Ala	685			
	690			_	_	695					Ala 700				
Ser 705	Ala	Ser	Ile	Val	Ser 710	Leu	Leu	Leu	Glu	G1n 715	Asn	Ile	Asp	Val	Ser 720
	Gln	Asp		725	Gly				730		Tyr			735	
His	His	His	Val 740	Ile	Cys	Gln	Leu	Leu 745	Ser	Asp	Tyr	Lys	Glu 750	Lys	Gln

Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu Pro Arg Thr His Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys Pro Phe Gly Leu Arg Ser Lys Met 1060 1065 Gly Lys Trp Cys Cys Arg Cys Phe Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys

Lys Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly 1220 1225 1230 Asr. Ser Glu Val Val Lys Leu Leu Leu Asp Arg Arg Cys Gln Leu Asn 1235 1240 1245 Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Ile Lys Ala Val Gln Cys 1250 1255 1260 Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro 1265 1270 1275 1280 Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Ile Tyr 1285 1290 1295 Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp 1300 1305 1310 Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Gly Val 1315 1320 1325 His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Ala 1330 1335 1340 Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala 1345 1350 1355 1360 Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Leu Glu Gln Asn 1365 1370 1375 Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu Tyr 1380 1385 1390 Ala Val Ser Ser His His His Val Ile Cys Gln Leu Leu Ser Asp Tyr 1395 1400 1405 Lys Glu Lys Gln Met Leu Lys Ile Ser Ser Glu Asn Ser Asn Pro Glu 1410 1415 1420 Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Phe Lys Gly 1425 1430 1435 1440 Ser Glu Asn Ser Gln Pro Glu Lys Met Ser Gln Glu Pro Glu Ile Asn 1445 1450 1455 Lys Asp Gly Asp Arg Glu Val Glu Glu Glu Met Lys Lys His Glu Ser 1460 1465 1470 Asn Asn Val Gly Leu Leu Glu Asn Leu Thr Asn Gly Val Thr Ala Gly 1475 1480 1485 Asn Gly Asp Asn Gly Leu Ile Pro Gln Arg Lys Ser Arg Thr Pro Glu 1490 1495 1500 Asn Gln Gln Phe Pro Asp Asn Glu Ser Glu Glu Tyr His Arg Ile Cys 1505 1510 1515 1520 Glu Leu Val Ser Asp Tyr Lys Glu Lys Gln Met Pro Lys Tyr Ser Ser 1525 1530 Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu Glu Glu 1540 1545 1550 Ser Gln Arg Leu Glu Gly Ser Glu Asn Gly Gln Pro Glu Lys Arg Ser 1555 1560 1565 Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Leu Glu Asn Phe 1570 1575 1580 Met Ala Ile Glu Glu Met Lys Lys His Gly Ser Thr His Val Gly Phe 1585 1590 1595 1600 Pro Glu Asn Leu Thr Asn Gly Ala Thr Ala Gly Asn Gly Asp Asp Gly 1605 1610 1615 Leu Ile Pro Pro Arg Lys Ser Arg Thr Pro Glu Ser Gln Gln Phe Pro 1620 1625 1630 Asp Thr Glu Asn Glu Glu Tyr His Ser Asp Glu Gln Asn Asp Thr Gln 1635 1640 1645 Lys Gln Phe Cys Glu Glu Gln Asn Thr Gly Ile Leu His Asp Glu Ile 1650 1655 1660 beu lle His Glu Glu Lys Gln Ile Glu Val Val Glu Lys Met Asn Ser 1675 1680 1670

10 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp 40 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 5.5 60 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val 70 7.5 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn 85 90 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser 105 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe 120 Met Glu Pro Arg Tyr His Val Arg Gly Glu Asp Leu Asp Lys Leu His 135 140 Arg Ala Ala Trp Trp Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met 150 155 Leu Arg Asp Thr Asp Val Asn Lys Lys Asp Lys Gln Lys Arg Thr Ala 165 170 Leu His Leu Ala Ser Ala Asn Gly Asn Ser Glu Val Val Lys Leu Leu 185 Leu Asp Arg Arg Cys Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr 200 Ala Leu Ile Lys Ala Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met 215 220 Leu Leu Glu His Gly Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn 230 235 Thr Thr Leu His Tyr Ala Ile Tyr Asn Glu Asp Lys Leu Met Ala Lys 245 250 Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly 265 Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys Gln Gln Val Val 280 Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr 295 300 Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile 310 315 Val Ser Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu 325 330 Ser Gly Gln Thr Ala Arg Glu Tyr Ala Val Ser Ser His His His Val 345 Ile Cys Gln Leu Leu Ser Asp Tyr Lys Glu Lys Gln Met Leu Lys Ile

355 360 Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp Leu Lys Leu Thr Ser Glu 375 380 elu Glu Ser Gln Arg Phe Lys Gly Ser Glu Asn Ser Gln Pro Glu Lys 390 395 Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu 405 410 Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn 420 425 Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asn Gly Leu Ile Pro 440 445 Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu 455 460 Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu 470 475 Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp 485 490 Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu 500 505 Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys 520 Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly 535 Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser 550 555 Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr 565 570 His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln 585 Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln 600 Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys 615 620 Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile 625 630 635 Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu 650 <210> 380

<211> 671

<212> PRT

<213> Homo sapien

<400> 380

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys 10 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe 25 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp 40 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp 55 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val 70 75 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn 8.5 90 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser 100 105

Gly	Lys	Ser 115	Lys	Val	Gly	Ala	Trp 120	Gly	Asp	Tyr	Asp	Asp 125	Ser	Ala	Phe
Met	Glu 130	Pro	Arg	Tyr	His	Val 135	Arg	Gly	Glu	Asp	Leu 140	Asp	Lys	Leu	His
145			_	_	150	_	Val		_	155					160
				165			Lys		170					175	
			180				Gly	185					190		
	_	195					Asn 200					205			
	210		-			215	Cys				220				
225					230		Pro			235					240
				245			Tyr		250					255	
			260				Asp	265					270		
		275					Val 280					285			
-	290			_	_	295	Ala				300				
305	_				310		Ala			315					320
				325			Asn		330					335	
	_		340		_		Tyr	345					350		
	_	355					Tyr 360 Glu					365			
	370					375			_		380				
385				_	390		Gly			395					400
				405			Asn Ser		410					4 15	
			420	_			Gly	425			_		430		
		435	_				440 Glu		_	_		445			
	450	_				455	Cys				460				
465			_		470		Ser			475			_	_	480
				485	_		Glu		490					495	
			500				Ser	505					510		
		515					520 Phe					525		_	
	530	_				535	Phe				540			_	
545					550		Gly			555					560
1117	uiq	ату	M211	565	wsh	тэр	эт Х	ıı⇔u	570	FIO	ETO	ary	тλг	575	עדה

```
Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His
              580
                                  585
  Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn
          595
                              600
  Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile
                          615
                                              620
  Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys
  625
                      630
                                          635
  Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala
                  645
                                      650
  Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu
              660
                                  665
        <210> 381
        <211> 251
        <212> DNA
        <213> Homo sapien
       <400> 381
 ggagaagcgt ctgctggggc aggaaggggt ttccctgccc tctcacctgt ccctcaccaa
                                                                         60
 ggtaacatgc ttcccctaag ggtatcccaa cccaggggcc tcaccatgac ctctgagggg
                                                                        120
 ccaatatece aggagaagea ttgggggagtt gggggcaggt gaaggaeeea ggaeteaeae
                                                                        180
 atectgggcc tecaaggcag aggagaggt ceteaagaag gteaggagga aaateegtaa
                                                                        240
 caagcagtca q
                                                                        251
<210> 382
<211> 3279
<212> DNA
<213> Homo sapiens
<400> 382
cttcctgcag cccccatgct ggtgaggggc acgggcagga acagtggacc caacatggaa 60
atgctggagg gtgtcaggaa gtgatcgggc tctggggcag ggaggagggg tggggagtgt 120
cactgggagg ggacatectg cagaaggtag gagtgagcaa acaccegetg caggggaggg 180
gagageeetg eggeaeetgg gggageagag ggageageae etgeeeagge etgggaggag 240
gggcctggag ggcgtgagga ggagcgaggg ggctgcatgg ctggagtgag ggatcagggg 300
cagggegega gatggeetea caeagggaag agagggeeee teetgeaggg eeteacetgg 360
qccacaggag gacactgctt ttcctctgag gagtcaggag ctgtggatgg tgctggacag 420
aagaaggaca gggcctggct caggtgtcca gaggctgtcg ctggcttccc tttgggatca 480
gactgcaggg agggagggg gcagggttgt ggggggagtg acgatgagga tgacctgggg 540
gtggctccag gccttgcccc tgcctgggcc ctcacccagc ctccctcaca gtctcctggc 600
ceteagtete teceetecae tecatectee atetggeete agtgggteat tetgateaet 660
gaactgacca tacccagece tgcccacgge ectecatgge tececaatge eetggagagg 720
ggacatctag tcagagagta gtcctgaaga ggtggcctct gcgatgtgcc tgtgggggca 780
gcatcctgca gatggtcccg gccctcatcc tgctgacctg tctgcaggga ctgtcctcct 840
ggaccttgcc ccttgtgcag gagctggacc ctgaagtccc ctccccatag gccaagactg 900
gagecttgtt ecetetgttg gaeteeetge ceatattett gtgggagtgg gttetggaga 960
cattletgte tgtteetgag agetgggaat tgeteteagt catetgeetg egeggttetg 1020
agagatggag ttgcctaggc agttattggg gccaatcttt ctcactgtgt ctctcctcct 1080
ttaccettag ggtgattetg ggggteeact tgtetgtaat ggtgtgette aaggtateae 1140
atcatggggc cctgagccat gtgccctgcc tgaaaagcct gctgtgtaca ccaaggtggt 1200
geattacegg aagtggatea aggacaeeat egeageeaae eeetgagtge eeetgteeea 1260
occetacete tagtaaattt aagteeacet caegttetgg cateaettgg cetttetgga 1320
Egotggacae etgaagettg gaacteacet ggeegaaget egageeteet gagteetaet 1380
gacctgtgct ttctggtgtg gagtccaggg ctgctaggaa aaggaatggg cagacacagg 1440
tgtatgccaa tgtttctgaa atgggtataa tttcgtcctc tccttcggaa cactggctgt 1500
stetgaagae ttetegetea gttteagtga ggacacacae aaagaegtgg gtgaceatgt 1560
lytitgtggg gtgcagagat gggaggggtg gggcccaccc tggaagagtg gacagtgaca 1620
```

```
caaggtggac actetetaca gateactgag gataagetgg agecacaatg catgaggeac 1680
acacacagca aggttgacgc tgtaaacata gcccacgctg teetgggggc actgggaagc 1740
ctagataagg ccgtgagcag aaagaagggg aggatcctcc tatgttgttg aaggagggac 1800
tagggggaga aactgaaagc tgattaatta caggaggttt gttcaggtcc cccaaaccac 1860
cgtcagattt gatgatttcc tagcaggact tacagaaata aagagctatc atgctgtggt 1920
ttattatggt ttgttacatt gataggatac atactgaaat cagcaaacaa aacagatgta 1980
tagattagag tgtggagaaa acagaggaaa acttgcagtt acgaagactg gcaacttggc 2040
tttactaagt tttcagactg gcaggaagtc aaacctatta ggctgaggac cttgtggagt 2100
gtagctgatc cagctgatag aggaactagc caggtggggg cctttccctt tggatggggg 2160
gcatatccga cagttattct ctccaagtgg agacttacgg acagcatata attctccctg 2220
caaggatgta tgataatatg tacaaagtaa ttccaactga ggaagctcac ctgatcctta 2280
gtgtccaggg tttttactgg gggtctgtag gacgagtatg gagtacttga ataattgacc 2340
tgaagtcctc agacctgagg ttccctagag ttcaaacaga tacagcatgg tccagagtcc 2400
cagatgtaca aaaacaggga ttcatcacaa atcccatctt tagcatgaag ggtctggcat 2460
ggcccaaggc cccaagtata tcaaggcact tgggcagaac atgccaagga atcaaatgtc 2520
atctcccagg agttattcaa gggtgagccc tttacttggg atgtacaggc tttgagcagt 2580
gcagggctgc tgagtcaacc ttttattgta caggggatga gggaaaggga gaggatgagg 2640
aagccccct ggggatttgg tttggtcttg tgatcaggtg gtctatgggg ctatccctac 2700
aaagaagaat ccagaaatag gggcacattg aggaatgata ctgagcccaa agagcattca 2760
atcattgttt tatttgcctt cttttcacac cattggtgag ggagggatta ccaccctggg 2820
gttatgaaga tggttgaaca ccccacacat agcaccggag atatgagatc aacagtttct 2880
tagccataga gattcacagc ccagagcagg aggacgctgc acaccatgca ggatgacatg 2940
ggggatgcgc tcgggattgg tgtgaagaag caaggactgt tagaggcagg ctttatagta 3000
acaagacggt ggggcaaact ctgatttccg tgggggaatg tcatggtctt gctttactaa 3060
gttttgagac tggcaggtag tgaaactcat taggctgaga accttgtgga atgcagctga 3120
cccagctgat agaggaagta gccaggtggg agcctttccc agtgggtgtg ggacatatct 3180
ggcaagattt tgtggcactc ctggttacag atactggggc agcaaataaa actgaatctt 3240
gttttcagac cttaaaaaaa aaaaaaaaaa aaaagtttt
<210> 383
<211> 154
<212> PRT
<213> Homo sapiens
<400> 383
Met Ala Gly Val Arg Asp Gln Gly Gln Gly Ala Arg Trp Pro His Thr
Gly Lys Arg Gly Pro Leu Leu Gln Gly Leu Thr Trp Ala Thr Gly Gly
His Cys Phe Ser Ser Glu Glu Ser Gly Ala Val Asp Gly Ala Gly Gln
Lys Lys Asp Arg Ala Trp Leu Arg Cys Pro Glu Ala Val Ala Gly Phe
Pro Leu Gly Ser Asp Cys Arg Glu Gly Gly Arg Gln Gly Cys Gly Gly
Ser Asp Asp Glu Asp Asp Leu Gly Val Ala Pro Gly Leu Ala Pro Ala
Trp Ala Leu Thr Gln Pro Pro Ser Gln Ser Pro Gly Pro Gln Ser Leu
                                105
Pro Ser Thr Pro Ser Ser Ile Trp Pro Gln Trp Val Ile Leu Ile Thr
        115
                            120
```

```
Stu Leu Thr Ile Pro Ser Pro Ala His Gly Pro Pro Trp Leu Pro Asn
                         135
 Ala Leu Glu Arg Gly His Leu Val Arg Glu
                     150
<210> 384
 <211> 557
 3212> DNA
<213> Homo sapiens
<400> 384
ggateeteta gageqqeege etaetaetae taaattegeg geegegtega egaagaagag 60
aaagatgtg: ttigtttigg actototgtg gtocottoca atgotgtggg tttocaacca 120
ggggaagggt cccttttgca ttgccaagtg ccataaccat gagcactact ctaccatggt 180
tetgectect quecaageag getggtttge aagaatgaaa tgaatgatte tacagetagg 240
acttaacett qaaatqqqaa gtettgcaat eccatttgea ggateegtet gtgcacatge 300
ctctgtagag agcastc ccagggacct tggaaacagt tggcactgta aggtgcttgc 360
tececaagae acateetaaa aggtgttgta atggtgaaaa egtetteett etttattgee 420
cettettatt tätgigääsa aetgittigte tittitigta tettittaa aetgitaaagt 480
tcaattgtga aaatgaatat catgcaaata aattatgcga tttttttttc aaagtaaaaa 540
aaaaaaaaa aaaaaaa
<210> 385
<211> 337
<212> DNA
<213> Homo sapiens
<400> 385
ttcccaggtg atgtgcgagg gaagacacat ttactatect tgatgggget gatteettta 60
gtttctctag cagcagatgg gttaggagga agtgacccaa gtggttgact cctatgtgca 120
totcaaagec atetgetgte ttegagtacg gacacateat cacteetgea ttgttgatea 180
aaacgtggag gtgcttttcc tcagctaaga agcccttagc aaaagctcga atagacttag 240
tatcagacag gtccagtttc cgcaccaaca cctgctggtt ccctgtcgtg gtctggatct 300
ctttggccac caattccccc ttttccacat cccggca
<210> 386
<211> 300
<212> DNA
<213> Homo sapiens
<400> 386
gggcccgcta ccggcccagg ccccgcctcg cgagtcctcc tccccgggtg cctgcccgca 60
goodgetegg cocagagggt gggegegggg etgeetetae eggetggegg etgtaactea 120
gcgaccttgg cccgaagget ctagcaagga cccaccgacc ccagccgcgg cggcggcggc 180
gcggactttg cccggtgtgt ggggcggagc ggactgcgtg tccgcggacg ggcagcgaag 240
atgttagect tegetgeeag gaeegtggae egateeeagg getgtggtgt aaceteagee 300
<210> 387
<211> 537
<212> DNA
<213> Homo sapiens
<400> 387
aggoogagto gggcaccaag ggactotttg caggottoot tootoggato atcaaggotg 60
corrected typecateaty atcageacet atgagttegg caaaagette ttecagagge 120
```

```
tgaaccagga ccggcttctg ggcggctgaa aggggcaagg aggcaaggac cccgtctctc 180
 ccacggatgg ggagaggca ggaggagacc cagccaagtg ccttttcctc agcactgagg 240
gagggggctt gtttcccttc cctcccggcg acaagetcca gggcagggct gtccctctgg 300
gcggcccagc acttcctcag acacaacttc ttcctgctgc tccagtcgtg gggatcatca 360
cttacccacc ccccaagttc aagaccaaat cttccagctg ccccttcgt gtttccctgt 420
gtttgctgta gctgggcatg tctccaggaa ccaagaagcc ctcagcctgg tgtagtctcc 480
ctgacccttg ttaattcctt aagtctaaag atgatgaact tcaaaaaaaa aaaaaaa
<210> 388
<211> 520
<212> DNA
<213> Homo sapiens
<400> 388
aggataattt ttaaaccaat caaatgaaaa aaacaaacaa acaaaaaagg aaatgtcatg 60
tgaggttaaa ccagtttgca ttcccctaat gtggaaaaag taagaggact actcagcact 120
gtttgaagat tgcctcttct acagcttctg agaattgtgt tatttcactt gccaagtgaa 180
ggaccccctc cccaacatgc cccagcccac ccctaagcat ggtcccttgt caccaggcaa 240
ccaggaaact gctacttgtg gacctcacca gagaccagga gggtttggtt agctcacagg 300
acttececca ecceagaaga ttageatece atactagaet catacteaac teaactagge 360
tcatactcaa ttgatggtta ttagacaatt ccatttcttt ctggttatta taaacagaaa 420
atctttcctc ttctcattac cagtaaaggc tcttggtatc tttctgttgg aatgatttct 480
atgaacttgt cttattttaa tggtgggttt tttttctggt
<210> 389
<211> 365
<212> DNA
<213> Homo sapiens
<400> 389
cgttgcccca gtttgacaga aggaaaggcg gagcttattc aaagtctaga gggagtggag 60
gagttaagge tggatttcag atetgeetgg ttecageege agtgtgeeet etgeteeee 120
aacgactttc caaataatct caccagegee ttecagetca ggegteetag aagegtettg 180
aagcctatgg ccagctgtct ttgtgttccc tctcacccgc ctgtcctcac agctgagact 240
cccaggaaac cttcagacta ccttcctctg ccttcagcaa ggggcgttgc ccacattctc 300
tgagggtcag tggaagaacc tagactccca ttgctagagg tagaaagggg aagggtgctg 360
gggag
<210> 390
<211> 221
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(221)
<223> n = A,T,C or G
<400> 390
tgcctctcca tcctggcccc gacttctctg tcaggaaagt ggggatggac cccatctgca 60
tacacggntt ctcatgggtg tggaacatct ctgcttgcgg tttcaggaag gcctctggct 120
gctctangag tctgancnga ntcgttgccc cantntgaca naaggaaagg cggagcttat 180
tcaaagtcta gagggagtgg aggagttaag gctggatttc a
<210> 391
<211> 325
<212> DNA
<213> Homo sapiens
```

```
マビ20ン
 1221> misc_feature
~222> (1)...(325)
<223> n = A, T, C or G
<400> 391
tquageaggt ecogaggest costagages tgggggesgae tetgtgnega tgeangettt 60
ctotogogoc cagootggag otgotoctgg catotaccaa caatcagnog aggogagcag 120
tagecaggge actgetgeea acagecagte ennataceat catginacee ggtgngetet 180
maantingat niccanaged ciacecaten tagitteiget eteccaeegg niaceageed 240
castgoodag gaateetaca gooagtacoo tgtoocgacg tototacota coagtacgat 300
gagaceteeg getactacta tgace
<210> 392
<211> 277
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1) ... (277)
\langle 223 \rangle n = A,T,C or G
<400> 392
atattgttta acteetteet ttatatettt taacatttte atggngaaag gtteacatet 60
agtoteactt nggenagngn etectacttg agtotettee eeggeetgnn eeagtngnaa 120
antaccanga accgncatgn cttaanaacn ncctggtttn tgggttnntc aatgactgca 180
tgcagtgcac caccetgtee actaegtgat getgtaggat taaagtetea eagtgggegg 240
ctgaggatac agcgccgcgt cctgtgttgc tggggaa
<210> 393
:211> 566
~212> DNA
<213> Homo sapiens
<400> 393
actagtocag tgtggtggaa ttogoggoog ogtogaogga caggtoagot gtotggotoa 60
gtgatetaea ttetgaagtt gtetgaaaat gtetteatga ttaaatteag eetaaaegtt 120
ttgccgggaa cactgcagag acaatgctgt gagtttccaa ccttagccca tctgcgggca 180
gagaaggtct agtttgtcca tcagcattat catgatatca ggactggtta cttggttaag 240
gaggggtcta ggagatctgt cccttttaga gacaccttac ttataatgaa gtatttggga 300
gggtggtttt caaaagtaga aatgtcctgt attccgatga tcatcctgta aacattttat 360
catttattaa toatoootgo otgtgtotat tattatatto atatototao gotggaaact 420
ttctgcctca atgtttactg tgcctttgtt tttgctagtt tgtgttgttg aaaaaaaaa 480
cattototgo otgagtttta atttttgtoo aaagttattt taatotatac aattaaaago 540
ttttgcctat caaaaaaaa aaaaaa
<210> 394
<211> 384
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<2222> (1)...(384)
223 > n = A, T, C \text{ or } G
```

```
<400> 394
gaacatacat ytcccggcac ctgagctgca gtctgacatc atcgccatca cqqqcctcqc 60
tgcaaattng gaccgggcca aggctggact gctggagcgt gtgaagqagc tacaqqccna 120
gcaggaggac cgggctttaa ggagttttaa gctgagtgtc actgtagacc ccaaatacca 180
tcccaagatt atcgggagaa agggggcagt aattacccaa atccggttgg agcatgacgt 240
gaacatccag tttcctgata aggacgatgg gaaccagcc caggaccaaa ttaccatcac 300
agggtacgaa aagaacacag aagctgccag ggatgctata ctgagaattg tgggtgaact 360
tgagcagatg gtttctgagg acqt
<210> 395
<211> 399
<212> DNA
<213> Homo sapiens
<400> 395
ggcaaaactg tgtgacctca ataagacctc gcagatccaa ggtcaagtat cagaagtgac 60
tetgacettg gaetecaaga eetacateaa eageetgget atattagatg atgageeagt 120
tatcagaggt ttcatcattg cggaaattgt ggagtctaag gaaatcatgg cctctgaagt 180
atteacgtet ttecagtace etgagttete tatagagttg cetaacacag geagaattgg 240
ccagctactt gtctgcaatt gtatcttcaa gaataccctg gccatccctt tgactgacgt 300
caagttetet ttggaaagee tgggeatete eteactaeag acetetgaee atgggaeggt 360
gcagcctggt gagaccatcc aatcccaaat aaaatgcac
                                                                   399
<210> 396
<211> 403
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(403)
<223> n = A, T, C or G
<400> 396
tggagttntc agtgcaaaca agccataaag cttcagtagc aaattactgt ctcacagaaa 60
gacattttca acttctgctc cagctgctga taaaacaaat catgtgttta gcttgactcc 120
agacaaggac aacctgttcc ttcataactc tctagagaaa aaaaggagtt gttagtagat 180
actaaaaaaa gtggatgaat aatctggata tttttcctaa aaagattcct tgaaacacat 240
taggaaaatg gagggcctta tgatcagaat gctagaatta gtccattgtg ctgaagcagg 300
gtttagggga gggagtgagg gataaaagaa ggaaaaaaag aagagtgaga aaacctattt 360
atcaaagcag gtgctatcac tcaatgttag gccctgctct ttt
<210> 397
<211> 100
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(100)
<223> n = A, T, C or G
<400> 397
actagincag tgiggiggaa ticgcggccg cgicgaccta naanccatci ciatagcaaa 60
tccatccccg ctcctggttg gtnacagaat gactgacaaa
                                                                   100
<210> 398
<211> 278
```

```
<212> DNA
 <213> Homo sapiens
  3220>
 <221> misc_feature
 <222> (1)...(278)
 <223> n = A, T, C or G
 <400> 398
 geggeegegt egacageagt teegeeageg etegeecetg ggtggggatg tgetgeaege 60
 scacetggae atetggaagt cageggeetg gatgaaagag eggaetteae etggggegat 120
 tractactgt geotegacca gtgaggagag etggaccgae agegaggtgg acteateatg 180
 ctccgggcag cccatccacc tgtggcagtt cctcaaggag ttgctactca agccccacag 240
 ctatggccgc ttcattangt ggctcaacaa ggagaagg
 <210> 399
 <211> 298
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(298)
 \langle 223 \rangle n = A, T, C or G
 <400> 399
 acggaggtgg aggaagcgnc cctgggatcg anaggatggg tcctgncatt gaccncctcn 60
ggggtgccng catggagcgc atgggcgcgg gcctgggcca cggcatggat cgcgtgggct 120
ccgagatcga gcgcatgggc ctggtcatgg accgcatggg ctccgtggag cgcatgggct 180
ccggcattga gcgcatgggc ccgctgggcc tcgaccacat ggcctccanc attgancgca 240
tgggccagac catggagcgc attggctctg gcgtggagcn catgggtgcc ggcatggg
<210> 400
<211> 548
<212> DNA
<213> Homo sapiens
<400> 400
acateaacta etteeteatt ttaaggtatg geagtteeet teateeeett tteetgeett 60
gtacatgtac atgtatgaaa titteettete ttacegaact etetecacae ateacaaggt 120
caaagaacca cacgettaga agggtaagag ggcaccetat gaaatgaaat ggtgatttet 180
tgagtetett ttttccacgt ttaaggggee atggcaggae ttagagttge gagttaagae 240
tgcagagggc tagagaatta tttcatacag gctttgaggc cacccatgtc acttatcccg 300
tataccetet caccatecce tigictacte tgatgecece aagatgeaac tgggcageta 360
gttggcccca taattctggg cctttgttgt ttgttttaat tacttgggca tcccaggaag 420
atttccagtg atctectace atgggeeece etectgggat caageeecte ecaggeeetg 480
teeccagece etectgeece ageecaeeeg ettgeettgg tgeteagece teecattggg 540
agcaggtt
                                                                    548
<210> 401
<211> 355
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(355)
\langle 223 \rangle n = A,T,C or G
```

```
<400> 401
actigtitica tigtitatigtit ctacacatti ctacctcaqt getectiqua actitagetti 60
tgatqtctcc aagtaqtcca ccttcattta actctttgaa actqtatcat ctttqccaag 120
taagagtggt ggcctatttc agctgctttg acaaaatgac tggctcctga cttaacgttc 180
tataaatgaa tgtgctgaag caaagtgccc atggtggcgg cgaagaagan aaagatgtgt 240
tttgttttgg actctctgtg gtcccttcca atgctgnggg tttccaacca ggggaagggt 300
cccttttgca ttgccaagtg ccataaccat gagcactact ctaccatggn tctgc
<210> 402
<211> 407
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(407)
\langle 223 \rangle n = A, T, C or G
<400> 402
atggggcaag ctggataaag aaccaagacc cactggagta tgctgtcttc aagaaaccca 60
teteacatge ggtggeatae ataggeteaa aataaaggaa tggagaaaaa tattteaage 120
aaatggaaaa cagaaaaaag caggtqttqc actcctactt tctqacaaaa cagactatqc 180
gaataaagat aaaaaagaga aggacattac aaaggtggtc ctgacctttg ataaatctca 240
ttgcttgata ccaacctggg ctgttttaat tgcccaaacc aaaaggataa tttgctgagg 300
ttgtggaget teteceetge agagagteee tgateteeca aaatttggtt gagatgtaag 360
gntgattttg ctgacaactc cttttctgaa gttttactca tttccaa
<210> 403
<211> 303
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1) ... (303)
<223> n = A, T, C or G
<400> 403
cagtatttat agccnaactg aaaagctagt agcaggcaag tctcaaatcc aggcaccaaa 60
tectaageaa gageeatgge atggtgaaaa tgcaaaagga gagtetggee aatetacaaa 120
tagagaacaa gacctactca gtcatgaaca aaaaggcaga caccaacatg gatctcatgg 180
gggattggat attgtaatta tagagcagga agatgacagt gatcqtcatt tqgcacaaca 240
tettaacaac gaccgaaace cattatttac ataaacetec atteggtaac catgttgaaa 300
gga
<210> 404
<211> 225
<212> DNA
<213> Homo sapiens
<400> 404
aagtgtaact tttaaaaatt tagtggattt tgaaaattct tagaggaaag taaaggaaaa 60
attgttaatg cactcattta cctttacatg gtgaaagttc tctcttgatc ctacaaacag 120
acattttcca ctcgtgtttc catagttgtt aagtgtatca gatgtgttgg gcatgtgaat 180
ctccaagtgc ctgtgtaata aataaagtat ctttatttca ttcat
                                                                    225
<210> 405
```

```
<211> 334
 <212> DNA
<213> Homo sapiens
<220>
 12?1> misc_feature
<222> (1)...(334)
\langle 223 \rangle n = A,T,C or G
<400> 405
qagetgttat actgtgagtt ctactaggaa atcatcaaat ctgagggttg tctggaggac 60
ttcaatacac etcececat agtgaatcag ettecagggg gtccagtece teteettact 120
teatececat eccatgeeaa aggaagacee teeteettg geteacagee ttetetagge 180
ttcccagtgc ctccaggaca gagtgggtta tgttttcagc tccatccttg ctgtgagtgt 240
ctygtgcggt tgtgcctcca gcttctgctc agtgcttcat ggacagtgtc cagcccatgt 300
cactetecae teteteanng tggateceae eect
<210> 406
<211> 216
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(216)
\langle 223 \rangle n = A,T,C or G
<400> 406
tttcatacct aatgagggag ttganatnac atnnaaccag gaaatgcatg gatctcaang 60
gaaacaaaca cccaataaac tcggagtggc agactgacaa ctgtgagaca tgcacttgct 120
acnaaacaca aatttnatgt tgcacccttg tttctacacc tgtgggttat gacaaagaca 180
actgccaaag aatnttcaag aaggaggact gccant
                                                                     216
<210> 407
<211> 413
<212> DNA
<213> Homo sapiens
<400> 407
getgacttge tagtateate tgeatteatt qaageacaag aactteatge ettgacteat 60
gtaaatgcaa taqqattaaa aaataaattt qatatcacat qqaaacaqac aaaaaatatt 120
gtacaacatt gcaccaqtq tcaqattcta cacctqqcca ctcaqqaaqc aaqaqttaat 180
cccagaggtc tatgtcctaa tgtgttatgg caaatggatg tcatgcacgt accttcattt 240
ggaaaattgt catttgtcca tgtgacagtt gatacttatt cacatttcat atgggcaacc 300
tgccagacag gagaaagtet teccatgtta aaagacattt attatettgt ttteetgtea 360
tgggagttcc agaaaaagtt aaaacagaca atgggccagg ttctgtagta aag
<210> 408
<211> 183
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(183)
\langle 223 \rangle n = A,T,C or G
<400> 408
```

```
ggagetngee eteaatteet eeatntetat gttaneatat ttaatgtett ttgnnattaa 60
tncttaacta gttaatcctt aaagggctan ntaatcctta actagtccct ccattgtgag 120
cattateett ecagtatten cettetnttt tatttaetee tteetggeta eccatgtaet 180
ntt
<210> 409
<211> 250
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(250)
<223> n = A, T, C or G
<400> 409
cccacgcatg ataagctctt tatttetgta agteetgeta ggaaateate aaatetgaeg 60
gtggtttggg ggacctgaac aaacctcctg taattaatca gctttcagtt tctcccccta 120
gtccctcctt caacaacata ggaggatcct ccccttcttt ctgctcacgg ccttatctag 180
gcttcccagt gcccccagga cagcgtgggc tatgtttaca gcgcntcctt gctggggggg 240
ggccntatgc
<210> 410
<211> 306
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(306)
<223> n = A, T, C or G
<400> 410
ggctggtttg caagaatgaa atgaatgatt ctacagctag gacttaacct tgaaatggaa 60
agtettgeaa teecatttge aggateegte tgtgeacatg cetetgtaga gageageatt 120
cccagggacc ttggaaacag ttggcactgt aaggtgcttg ctccccaaga cacatcctaa 180
aaggtgttgt aatggtgaaa accgcttcct tctttattgc cccttcttat ttatgtgaac 240
nactggttgg cttttttgn atcttttta aactggaaag ttcaattgng aaaatgaata 300
tcntgc
<210> 411
<211> 261
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(261)
<223> n = A,T,C or G
<400> 411
agagatattn cttaggtnaa agttcataga gttcccatga actatatgac tggccacaca 60
ggatcttttg tatttaagga ttctgagatt ttgcttgagc aggattagat aaggctgttc 120
tttaaatgtc tgaaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180
aggaaggaaa gatgtgaata ggctgatggg caaaaaaacca atttacccat cagttccagc 240
cttctctcaa ggngaggcaa a
                                                                   261
<210> 412
```

```
<211> 241
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <222> (1)...(241)
 4223 > n = A,T,C \text{ or } G
 <400> 412
 gttcaatgtt acctgacatt totacaacac cocactcacc gatgtattcg ttgcccagtg 60
 ggaacatacc agcctgaatt tggaaaaaat aattgtgttt cttgcccagg aaatactacg 120
 actgactttg atggctccac aaacataacc cagtgtaaaa acagaagatg tggaggggag 180
 ctgggagatt tcactgggta cattgaattc ccaaactacc cangcaatta cccagccaac 240
<210> 413
<211> 231
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(231)
\langle 223 \rangle n = A,T,C or G
<400> 413
aactettaca atecaagtga etcatetgtg tgettgaate etttecaetg teteatetee 60
ctcatccaag tttctagtac cttctctttg ttgtgaagga taatcaaact gaacaacaaa 120
aagtttactc tcctcatttg gaacctaaaa actctcttct tcctgggtct gagggctcca 180
agaatccttg aatcanttct cagatcattg gggacaccan atcaggaacc t
<210> 414
<211> 234
<212> DNA
<213> Homo sapiens
<400> 414
actgtccatg aagcactgag cagaagctgg aggcacaacg caccagacac tcacagcaag 60
gatggagctg aaaacataac ccactctgtc ctggaggcac tgggaagcct agagaaggct 120
gtgagccaag gagggagggt cttcctttgg catgggatgg ggatgaagta aggagaggga 180
ctggaccccc tggaagctga ttcactatgg ggggaggtgt attgaagtcc tcca
<210> 415
<011> 217
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(217)
\langle 223 \rangle n = A,T,C or G
<400> 415
gcataggatt aagactgagt atcttttcta cattctttta actttctaag gggcacttct 60
caaaacacag accaggtage aaateteeac tgetetaagg nteteaceac caetttetea 120
cacctagcaa tagtagaatt cagtcctact tctgaggcca gaagaatggt tcagaaaaat 180
antggattat aaaaaataac aattaagaaa aataatc
```

```
<210> 416
<211> 213
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(213)
<223> n = A, T, C or G
<400> 416
atgcatatnt aaagganact gcctcgcttt tagaagacat ctggnctgct ctctgcatga 60
ggcacagcag taaagctctt tgattcccag aatcaagaac tctccccttc agactattac 120
cgaatgcaag gtggttaatt gaaggccact aattgatgct caaatagaag gatattgact 180
atattggaac agatggagtc tctactacaa aag
<210> 417
<211> 303
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(303)
<223> n = A, T, C or G
<400> 417
nagtottcag goccatcagg gaagttcaca ctggagagaa gtcatacata tgtactgtat 60
gtgggaaagg ctttactctg agttcaaatc ttcaagccca tcagagagtc cacactggag 120
agaagccata caaatgcaat gagtgtggga agagcttcag gagggattcc cattatcaag 180
ttcatctagt ggtccacaca ggagagaaac cctataaatg tgagatatgt gggaagggct 240
tcantcaaag ttegtatett caaatecate ngaaggneea cagtatanan aaacetttta 300
                                                                   303
agt
<210> 418
<211> 328
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(328)
<223> n = A, T, C or G
<400> 418
tttttggcgg tggtgggca gggacgggac angagtctca ctctgttgcc caggctggag 60
tgcacaggca tgatctcggc tcactacaac ccctgcctcc catgtccaag cgattcttgt 120
qcctcaqcct tccctqtaqc taqaattaca qqcacatqcc accacaccca gctaqttttt 180
gtatttttag tagagacagg gtttcaccat gttggccagg ctggtctcaa actcctnacc 240
tcagnggtca ggctggtctc aaactcctga cctcaagtga tctgcccacc tcagcctccc 300
                                                                   328
aaagtgctan gattacaggc cgtgagcc
<210> 419
<211> 389
<212> DNA
<213> Homo sapiens
```

```
<2220>
<221> misc_feature
<222> (1)...(389)
<0.035 n = A,T,C or G
<400> 419
cetecteaag aeggeetgtg gteegeetee eggeaaceaa gaageetgea gtgeeatatg 60
accept gage catggactgg agectgaaag geagegtaca ecctgeteet gatettgetg 120
cttgtttcct ctctgtggct ccattcatag cacagttgtt gcactgaggc ttgtgcaggc 180
gugcaagge caagetgget caaagageaa ceagteaaet etgecaeggt gtgecaggea 240
coggitated agecacease eteacteget ecogeasaty gesestesgt tettetacee 300
tamaggtagg accaaaggge atotgotttt otgaagtoot otgototato agcoatoacg 360
tggcagccac tcnggctgtg tcgacqcgg
<210> 420
<211> 408
<212> DNA
<213> Homo sapiens
<400> 420
gttcctccta actcctgcca gaaacagete tcctcaacat gagagetgca cccctcctcc 60
tggccagggc agcaagcett agcettgget tettgtttet getttttte tggctagace 120
gaagtgtact agccaaggag tigaagtiig igactiiggi giitcggcai ggagaccgaa 180
gtcccattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240
gccaacteac ccagctgggc atggagcagc attatgaact tggagagtat ataagaaaga 300
gatatagaaa attottgaat gagtootata aacatgaaca ggtttatatt cgaagcacag 360
acgttgaccg gactttgatg aagtgctatg acaaacctgg caagcccg
<210> 421
<211> 352
<212> DNA
<213> Homo sapiens
<22.0>
<221> misc feature
<222> (1)...(352)
\langle 223 \rangle n = A,T,C or G
<400> 421
gctcaaaaat ctttttactg atnggcatgg ctacacaatc attgactatt acggaggcca 60
gaggagaatg aggcctggcc tgggagccct gtgcctacta naagcacatt agattatcca 120
ttcactgaca gaacaggtet tttttgggte ettettetee accaenatat acttgeagte 180
etecttettg aagattettt ggeagttgte tttgteataa eecacaggtg tagaaacaag 240
ggtgcaacat gaaatttetg tttegtagea agtgcatgte teacaagttg geangtetge 300
cacteegagt ttattgggtg tttgttteet ttgagateea tgeattteet gg
<210> 422
<211> 337
<212> DNA
<213> Homo sapiens
<400> 422
atgccaccat gctggcaatg cagcgggcgg tcgaaggcct gcatatccag cccaagctgg 60
***Gatega eggeaacegt tgeeegaagt tgeegatgee ageegaageg gtggteaagg 120
gugatageaa ggtgeeggeg ategeggegg egteaateet ggeeaaggte ageegtgate 180
{\tt qtg} {\tt aaatggc} \ \ {\tt agctgtcgaa} \ \ {\tt ttgatctacc} \ \ {\tt cgggttatgg} \ \ {\tt catcggcggg} \ \ {\tt cataagggct} \ \ 240
at a macace ggtgeacetg gaageettge ageggetggg geegaegeeg atteacegae 300
ger streed coggracyge tygectatga aaattat
```

```
<210> 423
<211> 310
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(310)
<223> n = A, T, C or G
<400> 423
gctcaaaaat ctttttactg atatggcatg gctacacaat cattgactat tagaggccag 60
aggagaatga ggcctggcct gggagccctg tgcctactan aagcncatta gattatccat 120
tcactgacag aacaggtett ttttgggtee ttetteteea ceaegatata ettgeagtee 180
teettettga agattetttg geagttgtet ttgteataac eeacaggtgt anaaacaagg 240
gtgcaacatg aaatttetgt ttegtageaa gtgcatgtet cacagttgte aagtetgeee 300
tccgagttta
<210> 424
<211> 370
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(370)
<223> n = A, T, C or G
<400> 424
gctcaaaaat ctttttactg ataggcatgg ctacacaatc attgactatt agaggccaga 60
ggagaatgag gcctggcctg ggagccctgt gcctactaga agcacattag attatccatt 120
cactgacaga acaggtettt tttgggteet tetteteeae cacgatatae ttgcagteet 180
ccttcttgaa gattctttgg cagttgtctt tgtcataacc cacaggtgta gaaacatcct 240
ggttgaatct cctggaactc cctcattagg tatgaaatag catgatgcat tgcataaagt 300
cacgaaggtg gcaaagatca caacgctgcc cagganaaca ttcattgtga taagcaggac 360
tecgtegacg
<210> 425
<211> 216
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(216)
<223> n = A, T, C or G
<400> 425
aattgctatn ntttattttg ccactcaaaa taattaccaa aaaaaaaaa tnttaaatga 60
taacaacnca acatcaaggn aaananaaca ggaatggntg actntgcata aatnggccga 120
anattateca ttatnttaag ggttgaette aggntacage acacagaeaa acatgeecag 180
gaggntntca ggaccgctcg atgtnttntg aggagg
<210> 426
<211> 596
<212> DNA
<213> Homo sapiens
```

```
<400> 426
ctrocagiga ggataaccci gitgcccegg geogaggite tecattagge tetgattgat 60
 issuagtoag tgatggaagg gtgttotgat cattoogaot gooddaaggg togotggoda 120
getetetgtt ttgetgagtt ggeagtagga ectaatttgt taattaagag tagatggtga 180
grigteettg tattttgatt aacctaatgg cetteecage aegactegga tteagetgga 240
gacatcacgg caacttttaa tgaaatgatt tgaagggcca ttaagaggca cttcccqtta 300
ttaggcagtt catctgcact gataacttet tggcagetga getggtegga getgtggeec 360
aaacgcacac ttggcttttg gttttgagat acaactctta atcttttagt catgcttgag 420
ggtggatggc cttttcagct ttaacccaat ttgcactgcc ttggaagtgt agccaggaga 480
Atabacteat atactegtgg gettagagge cacageagat gteattggte tactgeetga 540
steecgetgg teccatecca ggacetteca teggegagta cetgggagee egtget
<210> 427
<211> 107
<212> DNA
<213> Home sapiens
<220>
<221> misc_feature
<222> (1)...(107)
<223> n = A, T, C or G
<400> 427
gaagaattca aqttaqqttt attcaaaggg cttacngaga atcctanacc caggncccag 60
cccgggagca gccttanaga gctcctgttt gactgcccgg ctcagng
<210> 428
<211> 38
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(38)
<223> n = A, T, C or G
<400> 428
gaacttccna anaangactt tattcactat tttacatt
                                                                   38
<210> 429
<211> 544
<212> DNA
<213> Homo sapiens
<400> 429
ctttgctgga cggaataaaa gtggacgcaa gcatgacctc ctgatgaggg cgctgcattt 60
attgaagage ggetgeagee etgeggttea gattaaaate egagaattgt atagaegeeg 120
atatecaega actettgaag gaetttetga tttatecaea ateaaateat eggtttteag 180
tttggatggt ggctcatcac ctgtagaacc tgacttggcc gtggctggaa tccactcgtt 240
geettecaet teagttacae eteacteace atecteteet gttggttetg tgetgettea 300
agatactaag eccaeatttg agatgeagea gecateteee ecaatteete etgtecatee 360
tgatgtgcag ttaaaaaatc tgccctttta tgatgtcctt gatgttctca tcaagcccac 420
qagtttagtt caaagcagta ttcagcgatt tcaagagaag ttttttattt ttgctttgac 480
acctcaacaa gttagagaga tatgcatatc cagggatttt ttgccaggtg gtaggagaga 540
ttat
<210> 430
```

```
<211> 507
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(507)
<223> n = A, T, C or G
<400> 430
cttatcncaa tggggctccc aaacttggct gtgcagtgga aactccgggg gaattttgaa 60
gaacactgac acccatcttc caccccgaca ctctgattta attgggctgc agtgagaaca 120
gagcatcaat ttaaaaagct gcccagaatg ttntcctggg cagcgttgtg atctttgccn 180
ccttcgtgac tttatgcaat gcatcatgct atttcatacc taatgaggga gttccaqqaq 240
attcaaccag gatgtttcta cncctgtggg ttatgacaaa gacaactgcc aaagaatntt 300
caagaaggag gactgcaagt atatcgtggt ggagaagaag gacccaaaaa agacctgttc 360
tgtcagtgaa tggataatct aatqtqcttc taqtagqcac aggqctccca qqccagqcct 420
catteteete tggeetetaa tagteaatga ttgtgtagee atgeetatea gtaaaaagat 480
ttttgagcaa aaaaaaaaa aaaaaaa
<210> 431
<211> 392
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(392)
<223> n = A, T, C or G
<400> 431
gaaaattcag aatggataaa aacaaatgaa gtacaaaata tttcagattt acatagcgat 60
aaacaagaaa gcacttatca ggaggactta caaatggaag tacactctan aaccatcatc 120
tatcatggct aaatgtgaga ttagcacagc tgtattattt gtacattgca aacacctaga 180
aagagatggg aaacaaaatc ccaggagttt tgtgtgtgga gtcctgggtt ttccaacaga 240
catcattcca gcattctgag attagggnga ttggggatca ttctggagtt ggaatgttca 300
acaaaagtga tgttgttagg taaaatgtac aacttctgga tctatgcaga cattgaaggt 360
gcaatgagtc tggcttttac tctgctgttt ct
<210> 432
<211> 387
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(387)
<223> n = A, T, C or G
<400> 432
ggtatccnta cataatcaaa tatagctgta gtacatgttt tcattggngt agattaccac 60
aaatgcaagg caacatgtgt agatctcttg tcttattctt ttgtctataa tactgtattg 120
ngtagtccaa geteteggna gtecagecae tgngaaacat getecettta gattaacete 180
gtggacnctn ttgttgnatt gtctgaactg tagngccctg tattttgctt ctgtctgnga 240
attotgttgc ttctggggca tttccttgng atgcagagga ccaccacaca gatgacagca 300
atctgaattg ntccaatcac agctgcgatt aagacatact gaaatcgtac aggaccggga 360
acaacgtata gaacactgga gtccttt
```

```
<210> 433
<211> 281
<212> DNA
<213> Homo sapiens
<:220>
<221> misc feature
+202> (1)...(281)
<223> n = A, T, C or G
< 400> 433
Locaactage anagaanact getteagggn gtgtaaaatg aaaggettee aegeagttat 60
ctgattaaag aacactaaga gagggacaag gctagaagcc gcaggatgtc tacactatag 120
caggenetat ttgggttgge tggaggaget gtggaaaaca tggagagatt ggegetggag 180
ategeogtgg ctatteeten ttgntattae accagngagg ntetetgtnt geocaetggt 240
tnnaaaaccg ntatacaata atgatagaat aggacacaca t
<210> 434
<211> 484
<212> DNA
<213> Homo sapiens
<400> 434
ttttaaaata agcatttagt gctcagtccc tactgagtac tctttctctc ccctcctctg 60
aatttaattc tttcaacttg caatttgcaa ggattacaca tttcactgtg atgtatattg 120
tgttgcaaaa aaaaaaagt gtctttgttt aaaattactt ggtttgtgaa tccatcttgc 180
tttttcccca ttggaactag tcattaaccc atctctgaac tggtagaaaa acatctgaag 240
agctagteta teageatetg acaggtgaat tggatggtte teagaaceat tteaceeaqa 300
cagectgttt etateetgtt taataaatta gtttgggtte tetacatgea taacaaacee 360
tgctccaatc tgtcacataa aagtctgtga cttgaagttt agtcagcacc cccaccaaac 420
tttatttttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataaag tacccatgtc 480
ttta
<210> 435
<211> 424
<212> DNA
<213> Homo sapiens
<400> 435
gegeegetea gageaggtea etttetgeet tecaegteet eetteaagga ageeceatgt 60
gggtagcttt caatategea ggttettaet eetetgeete tataagetea aacceaceaa 120
cgatcgggca agtaaaccc ctccctcgcc gacttcggaa ctggcgaqag ttcagcqcaq 180
atgggcctgt ggggaggggg caagatagat gagggggagc ggcatgqtqc ggggtgaccc 240
cttggagaga ggaaaaaggc cacaagaggg gctgccaccg ccactaacgg agatggccct 300
ggtagagacc tttgggggtc tggaacctct ggactcccca tgctctaact cccacactct 360
getateagaa aettaaaett gaggatttte tetgttttte aetegeaata aatteagage 420
aaac
<210> 436
<211> 667
<212> DNA
<213> Homo sapiens
-1220>
<221> misc feature
<222> (1)...(667)
\langle 223 \rangle n = A,T,C or G
```

```
<400> 436
accttgggaa nactctcaca atataaaggg tcgtagactt tactccaaat tccaaaaagg 60
teetggeeat gtaateetga aagtttteee aaggtageta taaaateett ataagggtge 120
agectettet ggaatteete tgattteaaa gteteaetet eaagttettg aaaaegaggg 180
cagtteetga aaggeaggta tageaactga tetteagaaa gaggaactgt gtgeaeeggg 240
atgggetgee agagtaggat aggatteeag atgetgaeae ettetggggg aaacaggget 300
gccaggtttg tcatagcact catcaaagtc cggtcaacgt ctgtgcttcg aatataaacc 360
tgttcatgtt tataggactc attcaagaat tttctatatc tctttcttat atactctcca 420
agttcataat gctgctccat gcccagctgg gtgagttggc caaatccttg tggccatgag 480
gatteettta tggggteagt gggaaaggtg teaatgggae tteggtetee atgeegaaac 540
accaaaqtca caaacttcaa ctccttqqct aqtacacttc qqtctagcca gaaaaaaaqc 600
agaaacaaga agccaaggct aaggcttgct gccctgccag gaggaggggt gcagctctca 660
tgttgag
<210> 437
<211> 693
<212> DNA
<213> Homo sapiens
<400> 437
ctacqtctca accctcattt ttaqqtaaqq aatcttaaqt ccaaaqatat taaqtqactc 60
acacaqecaq qtaaqqaaaq etqgattqqe acactaqqac tetaccatac egggttttgt 120
taaaqctcag qttagqaqqc tgataaqctt qqaaggaact tcagacagct ttttcagatc 180
ataaaagata attottagoo catgttotto tooagagoag acotgaaatg acagcacago 240
aggtactect ctattttcac coctettgct tetactetet ggeagteaga cetgtgggag 300
gccatgggag aaagcagctc tctggatgtt tgtacagatc atggactatt ctctgtggac 360
catttctcca ggttacccta ggtgtcacta ttggggggac agccagcatc tttagctttc 420
atttgagttt ctgtctgtct tcagtagagg aaacttttgc tcttcacact tcacatctga 480
acacctaact gctgttgctc ctgaggtggt gaaagacaga tatagagctt acagtattta 540
tectatttet aggeactgag ggetgtgggg tacettgtgg tgccaaaaca gateetgttt 600
taaggacatg ttgcttcaga gatgtctgta actatctggg ggctctgttg gctctttacc 660
ctgcatcatg tgctctcttg gctgaaaatg acc
                                                                  693
<210> 438
<211> 360
<212> DNA
<213> Homo sapiens
<400> 438
ctgcttatca caatgaatgt tctcctgggc agcgttgtga tctttgccac cttcgtgact 60
ttatgcaatg catcatgcta tttcatacct aatgagggag ttccaggaga ttcaaccagg 120
atgtttctac acctgtgggt tatgacaaag acaactgcca aagaatcttc aagaaggagg 180
actgcaagta tatctggtgg agaagaagga cccaaaaaaag acctgttctg tcagtgaatg 240
gataatetaa tgtgetteta gtaggeacag ggeteecagg ecaggeetea tteteetetg 300
gcctctaata gtcaataatt gtgtagccat gcctatcagt aaaaagattt ttgagcaaac 360
<210> 439
<211> 431
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(431)
<223> n = A, T, C or G
<400> 439
gttcctnnta actectgeca gaaacagete teeteaacat gagagetgea eeeeteetee 60
```

```
iggccaggge ageaageett ageetigget tetigittet getititte iggetagaee 120
 gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180
 gtoocattga cacctttccc actgacccca taaaggaatc ctcatggcca caaggatttg 240
 guuaacteae eeagetggge atggageage attatgaaet tggagagtat ataagaaaga 300
 gatatagaaa attottgaat gagtootata aacatgaaca ggtttatatt cgaagcacag 360
 angttgaceg gaetttgatg agtgetatga caaacetgge ageeegtega egeggeegeg 420
 aatttagtag t
 <210> 440
 <211> 523
 -212> DNA
 <213> Homo sapiens
 <400> 440
 agagataaag cttaggtcaa agttcataga gttcccatga actatatgac tggccacaca 60
 ggatcttttg tatttaagga ttctgagatt ttgcttgagc aggattagat aaggctgttc 120
 tttaaatgtc tgaaatggaa cagatttcaa aaaaaaaccc cacaatctag ggtgggaaca 180
 aggaaggaaa gatgtgaata ggctgatggg caaaaaaacca atttacccat cagttccagc 240
 cttctctcaa ggagaggcaa agaaaggaga tacagtggag acatctggaa agttttctcc 300
actggaaaac tgctactatc tgtttttata tttctgttaa aatatatgag gctacagaac 360
taaaaaattaa aacctctttg tgtcccttgg tcctggaaca tttatgttcc ttttaaagaa 420
acaaaaatca aactttacag aaagatttga tgtatgtaat acatatagca gctcttgaag 480
tatatatatc atagcaaata agtcatctga tgagaacaag cta
<210> 441
<211> 430
<212> DNA
<213> Homo sapiens
<400> 441
gttcctccta actcctgcca gaaacagete tectcaacat gagagetgca eccetectee 60
*ggccagggc agcaagcett agcettgget tettgtttet getttttte tggctagace 120
gaagtgtact agccaaggag ttgaagtttg tgactttggt gtttcggcat ggagaccgaa 180
gtcccattga cacetttece aetgaececa taaaggaate etcatggeca caaggatttg 240
gocaactcac ccagetggge atggageage attatgaact tggagagtat ataagaaaga 300
gatatagaaa attettgaat gagteetata aacatgaaca ggtttatatt egaageacag 360
acgttgaccg gactttgatg agtgctatga caaacctggc agcccgtcga cgcggccgcg 420
aatttagtag
                                                                   430
<210> 442
<211> 362
<212> DNA
<213> Homo sapiens
<400> 442
ctaaggaatt agtagtgttc ccatcacttg tttggagtgt gctattctaa aagattttga 60
tttcctggaa tgacaattat attttaactt tggtggggga aagagttata ggaccacagt 120
cttcacttct gatacttgta aattaatctt ttattgcact tgttttgacc attaagctat 180
atgtttagaa atggtcattt tacggaaaaa ttagaaaaat tctgataata gtgcagaata 240
aatgaattaa tgttttactt aatttatatt gaactgtcaa tgacaaataa aaattctttt 300
tgattatttt ttgttttcat ttaccagaat aaaaactaag aattaaaagt ttgattacag 360
ta
                                                                   362
<210> 443
<211> 624
1212> DNA
<.1.3> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (1)...(624)
<223> n = A, T, C or G
<400> 443
ttttttttt gcaacacaat atacatcaca gtgaaatgtg taatccttgc aaattgcaag 60
ttgaaagaat taaattcaga ggaggggaga gaaagagtac tcagtaggga ctgagcacta 120
aatgcttatt ttaaaagaaa tgtaaagagc agaaagcaat tcaggctacc ctgccttttg 180
tgctggctag tactccggtc ggtgtcagca gcacgtggca ttgaacattg caatgtggag 240
cccaaaccac agaaaatggg gtgaaattgg ccaactttct attaacttgg cttcctgttt 300
tataaaaatat tgtgaataat atcacctact tcaaaqggca gttatgaggc ttaaatgaac 360
taacgcctac aaaacactta aacatagata acataggtgc aagtactatg tatctggtac 420
atggtaaaca teettattat taaagteaac getaaaatga atgtgtgtge atatgetaat 480
agtacagaga gagggcactt aaaccaacta agggcctqqa gggaaggttt cctqgaaaga 540
ngatgcttgt gctgggtcca aatcttggtc tactatgacc ttggccaaat tatttaaact 600
ttgtccctat ctgctaaaca gatc
<210> 444
<211> 425
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(425)
<223> n = A, T, C or G
<400> 444
gcacatcatt nntcttgcat tctttgagaa taagaagatc agtaaatagt tcagaagtgg 60
gaagetttgt ceaggeetgt gtgtgaacee aatgttttge ttagaaatag aacaagtaag 120
ttcattgcta tagcataaca caaaatttgc ataagtggtg gtcagcaaat ccttgaatgc 180
tgcttaatgt gagaggttgg taaaatcctt tgtgcaacac tctaactccc tgaatgtttt 240
gctgtgctgg gacctgtgca tgccagacaa ggccaagctg gctgaaagag caaccagcca 300
cctctqcaat ctqccacctc ctqctqqcaq qatttqtttt tqcatcctqt qaaqaqccaa 360
ggaggcacca gggcataagt gagtagactt atggtcgacg cggccgcgaa tttagtagta 420
gtaga
                                                                   425
<210> 445
<211> 414
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(414)
<223> n = A, T, C or G
<400> 445
catgtttatg nttttggatt actttgggca cctagtgttt ctaaatcgtc tatcattctt 60
ttctgttttt caaaagcaqa gatggccaga gtctcaacaa actgtatctt caagtctttg 120
tgaaattett tgeatgtgge agattattgg atgtagttte etttaactag catataaate 180
tggtgtgttt cagataaatg aacagcaaaa tgtggtggaa ttaccatttg gaacattgtg 240
aatgaaaaat tgtgtctcta gattatgtaa caaataacta tttcctaacc attgatcttt 300
ggatttttat aatectacte acaaatgact aggettetee tettgtattt tgaageagtg 360
tgggtgctgg attgataaaa aaaaaaaaag tcgacgcggc cgcgaattta gtag
                                                                   414
<210> 446
```

```
<211> 631
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(631)
 \langle 223 \rangle n = A,T,C or G
 <400> 446
 acaaattaga anaaagtgcc agagaacacc acataccttg teeggaacat tacaatggct 60
 tetgeatgea tgggaagtgt gageatteta teaatatgea ggageeatet tgeaggtgtg 120
 atgctggtta tactggacaa cactgtgaaa aaaaggacta cagtgttcta tacgttgttc 180
 ccggtcctgt acgatttcag tatgtcttaa tcgcagctgt gattggaaca attcagattg 240
 ctgtcatctg tgtggtggtc ctctgcatca caagggccaa actttaggta atagcattgg 300
 actgagattt gtaaactttc caaccttcca ggaaatgccc cagaagcaac agaattcaca 360
 gacagaagca aaatacaggg cactacagtt cagacaatac aacaagagcg tccacgaggt 420
 taatctaaag ggagcatgtt tcacagtggc tggactaccg agagcttgga ctacacaata 480
 cagtattata gacaaagaa taagacaaga gatctacaca tgttgccttg catttgtggt 540
 aatctacacc aatgaaaaca tgtactacag ctatatttga ttatgtatgg atatatttga 600
 aatagtatac attgtcttga tgttttttct g
 <210> 447
 <211> 585
 <212> DNA
 <213> Homo sapiens
 <220>
<221> misc feature
<222> (1)...(585)
<223> n = A, T, C or G
<400> 447
ccttgggaaa antntcacaa tataaagggt cgtagacttt actccaaatt ccaaaaaggt 60
cctggccatg taatcctgaa agttttccca aggtagctat aaaatcctta taagggtgca 120
gcctcttctg gaattcctct gatttcaaag tctcactctc aagttcttga aaacgagggc 180
agttcctgaa aggcaggtat agcaactgat cttcagaaag aggaactgtg tgcaccggga 240
tgggctgcca gagtaggata ggattccaga tgctgacacc ttctggggga aacagggctg 300
ccaggtttgt catagcactc atcaaagtcc ggtcaacgtc tgtgcttcga atataaacct 360
gttcatgttt ataggactca ttcaagaatt ttctatatct ctttcttata tactctccaa 420
gttcataatg ctgctccatg cccagctggg tgagttggcc aaatccttgt ggccatgagg 480
atteetttat ggggteagtg ggaaaggtgt eaatgggaet teggteteea tgeegaaaca 540
ccaaagtcac aaacttcaac teettggeta gtacaetteg gteta
<210> 448
<211> 93
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(93)
\langle 2.23 \rangle n = A,T,C or G
<400> 448
Luctogtggg toattetgan nnccgaactg acentgecag ceetgeegan gggeeneeat 60
syntecetag tgecetggag aggangggge tag
```

```
<210> 449
<211> 706
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(706)
<223> n = A, T, C or G
<400> 449
ccaagttcat gctntgtgct ggacgctgga cagggggcaa aagcnnttgc tcgtgggtca 60
ttctgancac cgaactgacc atgccagccc tgccgatggt cctccatggc tccctagtgc 120
cctggagag aggtgtctag tcagagagta gtcctggaag gtggcctctg ngaggagcca 180
cggggacage atcetgcaga tggtcgggcg cgtcccattc gccattcagg ctgcgcaact 240
gttqqqaaqq gcgatcggtg cgggcctctt cgctattacg ccagctggcg aaagggggat 300
gtgctgcaag gcgattaagt tgggtaacgc cagggttttc ccagtcncga cgttgtaaaa 360
cqacqqccaq tqaattgaat ttaggtgacn ctatagaaga gctatgacgt cgcatgcacg 420
cqtacqtaaq cttggatcct ctagagcqqc cgcctactac tactaaattc gcggccgcgt 480
cqacqtqqqa tccncactqa qaqaqtqqaq aqtqacatqt gctqqacnct gtccatgaag 540
cactgagcag aagctggagg cacaacgcnc cagacactca cagctactca ggaggctgag 600
aacaggttga acctgggagg tggaggttgc aatgagctga gatcaggccn ctgcncccca 660
706
<210> 450
<211> 493
<212> DNA
<213> Homo sapiens
<400> 450
gagacggagt gtcactctgt tgcccaggct ggagtgcagc aagacactgt ctaagaaaaa 60
acagttttaa aaggtaaaac aacataaaaa gaaatatcct atagtggaaa taagagagtc 120
aaatqaqqct qaqaacttta caaagggatc ttacagacat gtcgccaata tcactgcatg 180
agcctaagta taagaacaac ctttggggag aaaccatcat ttgacagtga ggtacaattc 240
caaqtcaqqt aqtqaaatqq qtqqaattaa actcaaatta atcctqccaq ctqaaacqca 300
agagacactg tcagagagtt aaaaagtgag ttctatccat gaggtgattc cacagtcttc 360
tcaaqtcaac acatctqtqa actcacaqac caaqttctta aaccactqtt caaactctqc 420
tacacatcag aatcacctgg agagctttac aaactcccat tgccgagggt cgacgcggcc 480
                                                                 493
gcgaatttag tag
<210> 451
<211> 501
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(501)
<223> n = A, T, C or G
<400> 451
aggegegtee cattegeeat teaggetgeg caactgttgg gaagggegat eggtgeggge 60
ctcttcqcta ttacqccaqc tqqcqaaagg qqqatqtqct qcaaqqcqat taaqttqqqt 120
aacgccaqqq ttttcccaqt cncgacgttg taaaacgacg gccagtgaat tqaatttagg 180
tgacnetata gaagagetat gacgtegeat geacgegtae gtaagettgg atcetetaga 240
geggeegeet actactacta aattegegge egegtegaeg tgggateene actgagagag 300
tggagagtga catgtgctgg acnetgteea tgaagcactg agcagaaget ggaggcacaa 360
eqenceagae acteaeaget acteaggagg etgagaacag gttgaacetg ggaggtggag 420
```

```
gttgcaatga gctgagatca ggccnctgcn ccccagcatg gatgacagag tgaaactcca 480
 tottaaaaaa aaaaaaaaa a
<210> 452
<211> 51
 <212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(51)
\langle 223 \rangle n = A,T,C or G
<400> 452
agacggtttc accnttacaa cnccttttag gatgggnntt ggggagcaag c
                                                                     51
<210> 453
<211> 317
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(317)
\langle 223 \rangle n = A,T,C or G
<400> 453
tacatcttgc tttttcccca ttggaactag tcattaaccc atctctgaac tggtagaaaa 60
acatctgaag agctagtcta tcagcatctg gcaagtgaat tggatggttc tcagaaccat 120
ttcacccana cagcctgttt ctatcctgtt taataaatta gtttgggttc tctacatgca 180
taacaaaccc tgctccaatc tgtcacataa aagtctgtga cttgaagttt antcagcacc 240
cccaccaaac tttattttc tatgtgtttt ttgcaacata tgagtgtttt gaaaataagg 300
tacccatgtc tttatta
                                                                     317
<210> 454
<211> 231
<212> DNA
<213> Homo sapiens
<400> 454
ttcgaggtac aatcaactct cagagtgtag tttccttcta tagatgagtc agcattaata 60
taagccacgc cacgctcttg aaggagtctt gaattctcct ctgctcactc agtagaacca 120
agaagaccaa attettetge ateceagett geaaacaaaa ttgttettet aggteteeac 180
cottootttt toagtgttoo aaagotooto acaatttoat gaacaacago t
                                                                    231
<210> 455
<211> 231
<212> DNA
<213> Homo sapiens
<400> 455
taccaaagag ggcataataa tcagtctcac agtagggttc accatcctcc aagtgaaaaa 60
cattgitice aatgggetti ecacaggeta eacacacaaa acaggaaaca tgecaagtti 120
guttcaacgc attgatgact totocaagga tottootttg gcatcgacca cattcagggg 180
caaagaattt ctcatagcac agetcacaat acagggetee ttteteetet a
<210> 456
<211> 231
```

```
<212> DNA
<213> Homo sapiens
<400> 456
ttggcaggta cccttacaaa gaagacacca taccttatgc gttattaggt ggaataatca 60
ttccattcag tattatcgtt attattcttg gagaaaccct gtctgtttac tgtaaccttt 120
tgcactcaaa ttcctttatc aggaataact acatagccac tatttacaaa gccattggaa 180
cetttttatt tggtgeaget getagteagt ceetgactga cattgeeaag t
<210> 457
<211> 231
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(231)
<223> n = A, T, C or G
<400> 457
cgaggtaccc aggggtctga aaatctctnn tttantagtc gatagcaaaa ttgttcatca 60
gcatteetta atatgatett getataatta gatttttete eattagagtt catacagttt 120
tatttgattt tattagcaat ctctttcaga agacccttga gatcattaag ctttgtatcc 180
agttgtctaa atcgatgcct catttcctct gaggtgtcgc tggcttttgt g
<210> 458
<211> 231
<212> DNA
<213> Homo sapiens
<400> 458
aggtotggtt occoccactt ccactoccot ctactototo taggactggg ctgggccaag 60
agaagagggg tggttaggga agccqttgaq acctqaagcc ccaccctcta ccttccttca 120
acaccctaac cttgggtaac agcatttgga attatcattt gggatgagta qaatttccaa 180
ggtcctgggt taggcatttt ggggggccag accccaggag aagaagattc t
<210> 459
<211> 231
<212> DNA
<213> Homo sapiens
<400> 459
ggtaccgagg ctcgctgaca cagagaaacc ccaacgcgag gaaaggaatg gccagccaca 60
cettegegaa acctgtggtg geceaceagt ectaaeggga eaggacagag agacagagea 120
geoetgeact gtttteecte caccacagee atcetgteec teattggete tgtgetttee 180
actatacaca gtcaccgtcc caatgagaaa caagaaggag caccctccac a
                                                                   231
<210> 460
<211> 231
<212> DNA
<213> Homo sapiens
<400> 460
gcaggtataa catgctgcaa caacagatgt gactaggaac ggccggtgac atggggaggg 60
cetateacce tattettggg ggetgettet teacagtgat catgaageet ageageaaat 120
cccacctccc cacacgcaca cggccagcct ggagcccaca gaagggtcct cctgcagcca 180
gtggagettg gtecageetc cagtecacec ctaccagget taaggataga a
```

```
<210> 461
<211> 231
<212> DNA
 .213> Homo sapiens
 400> 461
cgaggtttga gaagetetaa tgtgcagggg ageegagaag caggeggeet agggagggte 60
quatrate cagaagagta tatacatace agaagagaaa cagacacta tatateetaa 120
gtggggttca gtgaggagtg ggaaattggt tcagcagaac caagcegttg ggtgaataag 180
agggggatte catggcactg atagageeet atagttteag agetgggaat t
<210> 462
<211> 231
<212> DNA
<213> Homo sapiens
<400> 462
aggtaccete attgtageea tgggaaaatt gatgtteagt ggggateagt gaattaaatg 60
gggtcatgca agtataaaaa ttaaaaaaaa aagacttcat gcccaatctc atatgatgtg 120
gaagaactgt tagagagacc aacagggtag tgggttagag atttccagag tcttacattt 180
tctagaggag gtatttaatt tcttctcact catccagtgt tgtatttagg a
<210> 463
<211> 231
<212> DNA
<213> Homo sapiens
<400> 463
tactocages tggtgacaga gegagaceet ateacegees eccaceecas caaaaaaaaa 60
actgagtaga caggtgteet ettggeatgg taagtettaa gteeeeteee agatetgtga 120
catttgacag gtgtcttttc ctctggacct cggtgtcccc atctgagtga gaaaaggcag 180
tggggaggtg gatcttccag tcgaagcggt atagaagccc gtgtgaaaag c
1210> 464
<211> 231
<212> DNA
<213> Homo sapiens
<400> 464
gtactctaag attttatcta agttgccttt tctgggtggg aaagtttaac cttagtgact 60
aaggacatca catatgaaqa atgtttaagt tggaggtggc aacgtgaatt qcaaacaqqq 120
cctgcttcag tgactgtgtg cctgtagtcc cagctactcg ggagtctgtg tgaggccagg 180
ggtgccagcg caccagctag atgctctgta acttctaggc cccattttcc c
<210> 465
<211> 231
<212> DNA
<213> Homo sapiens
<400> 465
catgttgttg tagctgtggt aatgctggct gcatctcaga cagggttaac ttcaqctcct 60
gtggcaaatt agcaacaaat totgacatca tatttatggt ttotgtatot ttgttgatga 120
aggatggcac aattittgct tgtgttcata atatactcag attagttcag ctccatcaga 180
taaactggag acatgcagga cattagggta gtgttgtagc tctggtaatg a
<210> 466
<211> 231
<212> DNA
```

```
<213> Homo sapiens
<400> 466
caggtacete tttccattgg atactgtgct agcaagcatg ctctccgggg tttttttaat 60
ggccttcgaa cagaacttgc cacataccca ggtataatag tttctaacat ttgcccagga 120
cctgtgcaat caaatattgt ggagaattcc ctagctggag aagtcacaaa gactataggc 180
aataatggag accagtccca caagatgaca accagtcgtt gtgtgcggct g
<210> 467
<211> 311
<212> DNA
<213> Homo sapiens
<400> 467
gtacaccctg gcacagtcca atctgaactg gttcggcact catctttcat gagatggatg 60
tggtggcttt tctccttttt catcaagact cctcagcagg gagcccagac cagcctgcac 120
tgtgccttaa cagaaggtct tgagattcta agtgggaatc atttcagtga ctgtcatgtg 180
gcatgggtct ctgcccaagc tcgtaatgag actatagcaa ggcggctgtg ggacgtcagt 240
tgtgacctgc tgggcctccc aatagactaa caggcagtgc cagttggacc caagagaaga 300
ctgcagcaga c
<210> 468
<211> 3112
<212> DNA
<213> Homo sapiens
<400> 468
cattgtgttg ggagaaaaac agaggggaga tttgtgtggc tgcagccgag ggagaccagg 60
aagatctgca tggtgggaag gacctgatga tacagagttt gataggagac aattaaaggc 120
tggaaggcac tggatgcctg atgatgaagt ggactttcaa actggggcac tactgaaacg 180
atgggatggc cagagacaca ggagatgagt tggagcaagc tcaataacaa agtggttcaa 240
cgaggacttg gaattgcatg gagctggagc tgaagtttag cccaattgtt tactagttga 300
gtgaatgtgg atgattggat gatcatttct catctctgag cctcaggttc cccatccata 360
aaatgggata cacagtatga totataaagt gggatatagt atgatotact toactgggtt 420
atttgaagga tgaattgaga taatttattt caggtgccta gaacaatgcc cagattagta 480
catttggtgg aactgagaaa tggcataaca ccaaatttaa tatatgtcag atgttactat 540
gattatcatt caatctcata gttttgtcat ggcccaattt atcctcactt gtgcctcaac 600
aaattgaact gttaacaaag gaatctctgg tcctgggtaa tggctqaqca ccactgagca 660
tttccattcc agttggcttc ttgggtttgc tagctgcatc actagtcatc ttaaataaat 720
gattaaataa agaacttgag aagaacaggt ttcattaaac ataaaatcaa tgtagacgca 840
aattttctgg atgggcaata cttatgttca caggaaatgc tttaaaatat gcagaagata 900
attaaatggc aatggacaaa gtgaaaaact tagacttttt ttttttttt ggaagtatct 960
ggatgttcct tagtcactta aaggagaact gaaaaatagc agtgagttcc acataatcca 1020
acctgtgaga ttaaggctct ttgtggggaa ggacaaagat ctgtaaattt acagtttcct 1080
tccaaagcca acgtcgaatt ttgaaacata tcaaagctct tcttcaagac aaataatcta 1140
tagtacatct ttcttatggg atgcacttat gaaaaatggt ggctgtcaac atctagtcac 1200
tttagctctc aaaatggttc attttaagag aaagttttag aatctcatat ttattcctgt 1260
ggaaggacag cattgtggct tggactttat aaggtcttta ttcaactaaa taggtgagaa 1320
ataagaaagg ctgctgactt taccatctga ggccacacat ctgctgaaat ggagataatt 1380
aacatcacta gaaacagcaa gatgacaata taatgtctaa gtagtgacat gtttttgcac 1440
atttecagee eetttaaata teeacacaca caggaageae aaaaggaage acagagatee 1500
ctgggagaaa tgcccggccg ccatcttggg tcatcgatga gcctcgccct gtgcctggtc 1560
ccgcttgtga gggaaggaca ttagaaaatg aattgatgtg ttccttaaag gatgggcagg 1620
aaaacagate etgttgtgga tatttatttg aacgggatta cagatttgaa atgaagtcac 1680
aaagtgagca ttaccaatga gaggaaaaca gacgagaaaa tettgatgge ttcacaagac 1740
atgcaacaaa caaaatggaa tactgtgatg acatgaggca gccaagctgg ggaggagata 1800
accacggggc agagggtcag gattctggcc ctgctgccta aactgtgcgt tcataaccaa 1860
```

```
atcatttcat atttctaacc ctcaaaacaa agetgttgta atatctgatc tctacggttc 1920
  rtictgggcc caacattote catatateca gecacaetea tttttaatat ttagtteeca 1980
 garetgtaet gtgaeettte tacaetgtag aataacatta eteattttgt teaaagaeee 2040
 tagtgttgc tgcctaatat gtagctgact gtttttccta aggagtgttc tggcccaggg 2100
 gatetgtgaa caggetggga ageateteaa gatettteea gggttataet taetageaca 2160
 cascatgate attacggagt gaattateta ateaacatea teeteagtgt etttgeecat 2220
 actgaaattc attteccact tttgtgccca ttctcaagac ctcaaaatgt cattccatta 2280
 ataccacagg attaactttt ttttttaacc tggaagaatt caatgttaca tgcagctatg 2340
 ggaatttaat tacatatttt gttttccagt gcaaagatga ctaagtcctt tatccctccc 2400
 stitgtttga tttttttcc agtataaagt taaaatgctt agccttgtac tgaggctgta 2460
 tadagecaca geotetecce atecetecag cettatetgt cateaceate aacceetece 2520
 atguacctaa acaaaatcta acttgtaatt cottgaacat gtoaggoata cattattoot 2580
 totgootgag aagstottoo ttgtototta aatotagaat gatgtaaagt tttgaataag 2640
 ttgactatet taetteatge aaagaaggga cacatatgag atteateate acatgagaca 2700
 gcaaatacta aaagtqtaat ttgattataa gagtttagat aaatatatga aatgcaagag 2760
 ccacagaggg aatgtitatg gggcacgttt gtaagcctgg gatgtgaagc aaaggcaggg 2820
 aacctcatag tatcttatat aatatacttc atttctctat ctctatcaca atatccaaca 2880
 agettttcac aquattoatg cagtgcaaat ceccaaaggt aacetttate catttcatgg 2940
 tgagtgcgct ttacaatttt ggcaaatcat actggtcact tatctcaact ttgagatgtg 3000
 tttgtccttg tanttaattg aaagaaatag ggcactcttg tgagccactt tagggttcac 3060
 teetggeaat aaagaattta caaagageaa aaaaaaaaaa aaaaaaaaaa aa
 <210> 469
 <211> 2229
 <212> DNA
 <213> Homo sap.ens
 <400> 469
 agetetttgt aaattettta ttgccaggag tgaaccetaa agtggeteae aagagtgeee 60
 tatttctttc aattaactac aaggacaaac acatctcaaa gttgagataa gtgaccagta 120
tgatttgcca aaattctaaa gcgcactcac catgaaatgg ataaaggtta cctttgggga 180
tttgcactgc atqaattctg tgaaaagctt gttggatatt gtgatagaga tagagaaatg 240
adgtatatta tataagatac tatgaggttc cctgcctttg cttcacatcc caggcttaca 300
aacgtgeece ataaacatte eetetgtgge tettgeattt catatattta tetaaactet 360
tataatcaaa tacactttta gtatttgctg tctcatgtga tgatgaatct catatgtgtc 420
cettetttge atgaagtaag atagteaact tatteaaaac tttacateat tetagattta 480
agagacaagg aagagettet caggeagaag gaataatgta tgeetgacat gtteaaggaa 540
ttacaagtta gattttgttt aggtgcatgg gaggggttga tggtgatgac agataaggct 600
ggagggatgg ggagaggetg tggetgtata cageeteagt acaaggetaa geattttaae 660
tttatactgg aaaaaaatc aaacaaaggg gagggataaa ggacttagtc atctttgcac 720
tggaaaacaa aatatgtaat taaattccca tagctgcatg taacattgaa ttcttccagg 780
ttaaaaaaaa agttaatcct gtgatattaa tggaatgaca ttttgaggtc ttgagaatgg 840
gcacaaaagt gggaaatgaa tttcagtatg ggcaaagaca ctgaggatga tgttgattag 900
ataattcact ccgtaatgat catgetgtgt gctagtaagt ataaccctgg aaagatcttg 960
agatgettee cageetgtte acagateece tgggeeagaa caeteettag gaaaaacagt 1020
cayetacata ttaggcagea acaegaaggg tetttgaaca aaatgagtaa tgttatteta 1080
cagtgtagaa aggtcacagt acagatetgg gaactaaata ttaaaaatga gtgtggctgg 1140
atatatggag aatgttgggc ccagaaggaa ccgtagagat cagatattac aacagctttg 1200
ttttgagggt tagaaatatg aaatgatttg gttatgaacg cacagtttag gcagcagggc 1260
cagaatectg accetetgee cegtggttat etectececa gettggetge eteatgteat 1320
cacagtattc cattttgttt gttgcatgtc ttgtgaagcc atcaagattt tctcgtctgt 1380
tttcctctca ttggtaatgc tcactttgtg acttcatttc aaatctgtaa tcccgttcaa 1440
ataaatatee acaacaggat etgtttteet geecateett taaggaacae ateaatteat 1500
ritetaatgt cottocctca caagogggac caggoacagg gogaggotca togatgacco 1560
Lagatggcgg ccgggcattt ctcccaggga tctctgtgct tccttttgtg cttcctgtgt 1620
gtatggatat ttaaaggggc tggaaatgtg caaaaacatg tcactactta gacattatat 1680
hem matching cigitticiag tgatgitaat tatchccatt toagcagatg tgtggcotca 1740
gatogtaaag toagcagoot tiottattto toacotggaa atacatacga coatttgagg 1800
```

159

agacaaatgg caaggtgtca gcataccctg aacttgagtt gagagctaca cacaatatta 1860

```
ttggtttccg agcatcacaa acaccetete tgtttcttca etgggcacag aattttaata 1920
cttatttcag tgggctgttg gcaggaacaa atgaagcaat ctacataaag tcactagtgc 1980
agtgcctgac acacaccatt ctcttgaggt cccctctaga gatcccacag gtcatatgac 2040
ttcttqqqqa qcaqtqqctc acacctqtaa tcccaqcact ttgggaggct gaggcaggtg 2100
ggtcacctga ggtcaggagt tcaagaccag cctggccaat atggtgaaac cccatctcta 2160
ctaaaaatac aaaaattagc tgggcgtgct ggtgcatgcc tgtaatccca gccccaacac 2220
aatggaatt
<210> 470
<211> 2426
<212> DNA
<213> Homo sapiens
<400> 470
gtaaattett tattgecagg agtgaaceet aaagtggete acaagagtge eetatteett 60
tcaattaact acaaggacaa acacatctca aagttgagat aagtgaccag tatgatttgc 120
caaaattcta aagcgcactc accatgaaat ggataaaggt tacctttggg gatttgcact 180
gcatgaattc tgtgaaaagc ttgttggata ttgtgataga gatagagaaa tgaagtatat 240
tatataagat actatgaggt teeetgeett tgetteaeat eeeaggetta caaaegtgee 300
ccataaacat tecetetgtg getettgeat tteatatatt tatetaaact ettataatea 360
aattacactt ttagtatttg ctgtctcatg tgatgatgaa tctcatatgt gtcccttctt 420
tgcatgaagt aagatagtca acttattcaa aactttacat cattctagat ttaagagaca 480
aggaagagct tctcaggcag aaggaataat gtatgcctga catgttcaag gaattacaag 540
ttagattttg tttaggtgca tgggaggggt tgatggtgat gacagataag gctggaggga 600
tgqggagagg ctgtggctgt atacagecte agtacaagge taagcatttt aactttatae 660
tggaaaaaaa atcaaacaaa ggggagggat aaaggactta gtcatctttg cactggaaaa 720
caaaatatgt aattaaattc ccatagctgc atgtaacatt gaattcttcc aggttaaaaa 780
aaaaagttaa tootgtgata ttaatggaat gacattttga ggtottgaga atgggcacaa 840
aagtgggaaa tgaatttcag tatgggcaaa gacactgagg atgatgttga ttagataatt 900
cactccgtaa tgatcatgct gtgtgctagt aagtataacc ctggaaagat cttgagatgc 960
ttcccagcct gttcacagat cccctgggcc agaacactcc ttaggaaaaa cagtcagcta 1020
catattaggc agcaacacga agggtctttg aacaaaatga gtaatgttat tctacagtgt 1080
agaaaggtca cagtacagat ctgggaacta aatattaaaa atgagtgtgg ctggatatat 1140
ggagaatgtt gggcccagaa ggaaccgtag agatcagata ttacaacagc tttgttttga 1200
gggttagaaa tatgaaatga tttggttatg aacgcacagt ttaggcagca gggccagaat 1260
cetgacecte tgeecegtgg ttatetecte cecagettgg etgeeteatg teateacagt 1320
attccatttt gtttgttgca tgtcttgtga agccatcaag attttctcgt ctgttttcct 1380
ctcattggta atgctcactt tgtgacttca tttcaaatct gtaatcccgt tcaaataaat 1440
atccacaaca ggatctgttt tcctgcccat cctttaagga acacatcaat tcattttcta 1500
atgtccttcc ctcacaagcg ggaccaggca cagggcgagg ctcatcgatg acccaagatg 1560
geggeeggge atttetecca qqgatetetg tgetteettt tgtgetteet gtgtgtgtgg 1620
atatttaaag gggctggaaa tgtgcaaaaa catgtcacta cttagacatt atattgtcat 1680
cttgctgttt ctagtgatgt taattatctc catttcagca gatgtgtggc ctcagatggt 1740
aaagtcagca gcctttctta tttctcacct ggaaatacat acgaccattt gaggagacaa 1800
atggcaaggt gtcagcatac cctgaacttg agttgagagc tacacacaat attattggtt 1860
tecgageate acaaacacce tetetgttte tteaetggge acagaatttt aatacttatt 1920
tcagtgggct gttggcagga acaaatgaag caatctacat aaagtcacta gtgcagtgcc 1980
tgacacacac cattetettg aggteecete tagagateec acaggteata tgaettettg 2040
qqqagcagtg gctcacacct gtaatcccag cactttggga ggctgaggca ggtgggtcac 2100
ctgaggtcag gagttcaaga ccagcctggc caatatggtg aaaccccatc tctactaaaa 2160
atacaaaaat tagetgggeg tgetggtgca tgeetgtaat eecagetaet tgggaggetg 2220'
aggcaggaga attgctggaa catgggaggc ggaggttgca gtgagctgta attgtgccat 2280
tgcactcgaa cctgggcgac agagtggaac tctgtttcca aaaaacaaac aaacaaaaa 2340
ggcatagtca gatacaacgt gggtgggatg tgtaaataga agcaggatat aaagggcatg 2400
gggtgacggt tttgcccaac acaatg
                                                                  2426
```

```
<211> 812
  <212> DNA
 <213> Homo sapiens
 <400> 471
 qaacaaaatg agtaatgtta ttctacagtg tagaaaggtc acagtacaga tctgggaact 60
 aaatattaaa aatgagtgtg gctggatata tggagaatgt tgggcccaga aggaaccgta 120
 gagatcagat attacaacag ctttgttttg agggttagaa atatgaaatg atttggttat 180
 gaacgcacag tttaggcagc agggccagaa tcctgaccct ctgccccgtg gttatctcct 240
 occeancing getgeeteat gicateaeag tatteeattt tgtttgttge atgtettgtg 300
 aagecateaa gatttteteg tetgttttee teteattggt aatgeteact ttgtgaette 360
 atticaaate tgtaateeeg ticaaataaa tateeacaac aggatetgtt ticetgeeca 420
 teetttaagg aacacateaa tteatttet aatgteette eeteacaage gggaccagge 480
 acagggcgag gctcatcgat gacccaagat ggcggccggg catttctccc agggatctct 540
 gtgcttcctt ttgtgcttcc tgtgtgtgtg gatatttaaa ggggctggaa atgtgcaaaa 600
 acatgtcact acttagacat tatattgtca tcttgctgtt tctagtgatg ttaattatct 660
 ccatttcage agatgtgtgg cctcagatgg taaagtcage agcetttett attteteace 720
 totgtateat caggieette ceaceatgea gatetteetg gieteeeteg getgeageea 780
 cacaaatctc ccctctgttt ttctgatgcc ag
 <210> 472
 <211> 515
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <222> (1)...(515)
 <223> n = A, T, C or G
<400> 472
acggagactt atttctgat attgtctgca tatgtatgtt tttaagagtc tggaaatagt 60
cttatgactt tectateatg ettattaata aataatacag eecagagaag atgaaaatgg 120
attccagaat tattggtcct tgcagcccgg tgaatctcag caagaggaac caccaactga 180
caatcaggat attgaacctg gacaagagag agaaggaaca cctccgatcg aagaacgtaa 240
agtagaaggt gattgccagg aaatggatct ggaaaagact cggagtgagc gtggagatgg 300
ctctgatgta aaagagaaga ctccacctaa tcctaagcat gctaagacta aagaagcagg 360
agatgggcag ccataagtta aaaagaagac aagctgaagc tacacacatg gctgatgtca 420
cattgaaaat gtgactgaaa atttgaaaat tctctcaata aagtttgagt tttctctgaa 480
gaaaaaaaa naaaaaaaa aaanaaaaan aaaaa
                                                                   515
<210> 473
<211> 5829
<212> DNA
<213> Homo sapiens
<400> 473
cgcatgccgg ggaagcccaa gctggctcga agagccacca gccacctgtg caagggtggg 60
ectggaccag ttggaccage caccaagete acetacteaa ggaagcaggg atggecaggt 120
tgcaacagcc tgagtggctg ccacctgata gctgatggag cagaggcctg aggaaaatca 180
gatggcacat ttagctcttt aatggatctt aagttaattt ttctataaag cacatggcac 240
cagtecatge etcagagete gtatggeact geggaceaca geaggeegag tteecaggat 300
tgccatccag gggggccttc tgtagccctg gccagacctt gcagaggtgg ctgggtgctc 360
tttgagcgag ctcggcctcc ctggcatgca caggccccag gtactgacac gctgctctga 420
gtgagettgt cetgeettgg etgeeaceta actgetgatg gageagegge ettaggaaaa 480
gcaaatggcg ctgtagccca actttagggt agaagaagat gtaccatgtc cggccgctag 540
ttggtgactg gtgcacctgc tcctggcgta cccttgcaga ggtgggtggt tgctctttgg 600
coagettgge ettgeetgge atgeacaage etcagtgeaa caactgteet acaaatggag 660
```

acacagagag gaaacaagca gegggeteag gageagggtg tgtgetgeet ttggggetee 720 agtocatgoc toggqtoqta tqqtactgoa ggottottgg ttgccaagag goggaccaca 780 ggccttcttg aggaggactt tacgttcaag tgcagaaagc agccaaaatt accatccatg 840 agactaagcc ttctgtggcc ctggcgagac ttaaaatttg tgccaaggca ggacaagctc 900 actoggagca gogtgtcagt agotggggcc tatgoatgcc gggcagggcc gggctggctg 960 aaggagcaac cagccacctc tgcaagggtg cgcctagtgc aggcggagca tccaccacct 1020 cacccgctcg aggaagtggg gatggccagg ttcccacagc ctgagtgtct gccaccttat 1080 tgctgatgga gcagaggcct taagaaaagc agatggcact gtggccctac ctttagggtg 1140 gaagaagtga tgtacatgtc cggacgctaa ttggtgactg gtacaccggc tcctgctaca 1200 cctttgcaga ggtggctggt tgctctttga gccagcttgt ccttgcccgg catgcacaag 1260 tttcaqtqca acaactttqc cacaaatgga gccatataga ggaaacaaga agcaggttca 1320 ggagaagggt gtaccctgcc tttggggctc cagtccatgc ctcaggtgtc acatggcact 1380 qcqqqcttct tqqttqccaq qaqqcqqacc acaggccatc ttggggagga ctttgtgttc 1440 aagtgcagaa agcagccagg attgccatcc agggggacct tctatagccc tggccaaacc 1500 ttqcaqqqqt qtctqqttqc tctttqaqcc qqcttqgcct ccctggcatg cacgggcccc 1560 aggtgetgge acgetgetee gagtgtgett gteetgeett ggetgeeace tetgeggggg 1620 tgcgtctgga gqqqqtqgac cggccaccaa ccttacccag tcaaggaagt ggatggccat 1680 gttcccacag cctgagtggc tgccacctga tggctgatgg agcaaaggcc ttaggaaaag 1740 cagatggccc ttggccctac ctttttgtta gaagaactga tgttccatgt cctgcagcga 1800 qtqaqqttqq tqqctqtqcc cccaqctcct qgcqcqccct cgcagaggtg actggttgct 1860 ctttgggccc tcttggcctt gcccagcatg cacaagcctc agtgctacta ctgtgctaca 1920 aatggagcca tataggggaa acgagcagcc atctcaggag caaggtgtat gctgcctttg 1980 ggggeteeag teettgeete aagggtetta tgteactgtg ggettettgg ttgteaagag 2040 gcagaccata ggccgtcttg agagggactt tatgttcaag tgcagaaagc agccaggatt 2100 qccaccctcq qqactctqcc ttctgtggcc ctggccaaac ttagaatttg gccgtagaca 2160 qqacaqqctc actiqqaqta qcqtqtccqt agctqgggtc tqtqcatqcc gggcaaggcc 2220 gggctggctc ggggagcaac cagccacctc tgcgggggtg cgcctggagc aggtggagca 2280 gecaccaget cacccactee aggaageegg ggtageeagg tteecaagge etgagtgggt 2340 gccacctaat ggctgaagaa acagaggcct tgggaaaacc agatggcact gtggccctac 2400 ctttatggta gaagagctga tttagcctga ctggcagcgt gtggggttgg tggctggtct 2460 gcctgctgct ggcgcatccg tgcaaggatg gctggttgcc ctttgagcca gcttgccctt 2520 gcccggcatg cgcaagcctc agtgcaacaa ctgtgctgca aatggggcca tatagaggaa 2580 aggagcagct ggctctggag catggtgtgc actccctttg ggccttcagt ccatgtctca 2640 tgggtcgtat gacactgcgg gcttgttggt tgccaagagg cagaccacag gtcatcttga 2700 qqaqqacttt atgttccagt ccagaaagca gccagtggta ccacccaggg gacttgtgct 2760 tctgtgccca ggccagacgt agaatttgac aaagtcagga cggtctcagt cagagcggcg 2820 tgtcggtccc cggggcctgt gcatgccggg cagggccggg ctggcttggg gagcaagcag 2880 ccacctctgt taagggtgtg cctggagcag gtggagcagc caccaacctc acgcactgaa 2940 agaagcaggg atggccaggt tccaacatcc tgagtggctg ccacctgatg gctgatggag 3000 cagaggcctg aggaaaagca gatggcactg ctttgtagtg ctgttctttg tctctcttga 3060 tctttttcag ttaatgtctg ttttatcaga gactaggatt gcaaaccctg ctcttttttg 3120 ctttccattt gcttggtaaa tattcctcca tccctttatt ttaagcctat gtgtgtcttt 3180 qcacatqaqa tqqqtctcct gaatacagga caacaatggg tctttactct ttatccaact 3240 tgccagtctg tgtcttttaa ctggggcatt tagcccattt acatttaagt ttagtattgt 3300 tacatgtgaa atttatcctg tcatgatgtt gctagctttt tatttttccc attagtttgc 3360 agtttcttta tagtgtcaat ggtctttaca attcgatatg tttttgtagt ggctggtact 3420 ggtttttcct ttctacgttt agtgtctcct tcaggagctc ttgtaacaca agaatgtgga 3480 tttatttctt gtaaggtaaa tatgtggatt tatttcttgg gactgtattc tatggccttt 3540 accccaagaa tcattacttt ttaaaatgca attcaaatta gcataaaaca tttacagcct 3600 atggaaaggc ttgtggcatt agaatcctta tttataggat tattttgtgt ttttttgaga 3660 tatqqtcttt qtcatcqaqq caqaagtgcc gtggtttgat cataattcac cacagccctg 3720 aactettgag tecaageeat cettttgeet taateteesa accagttgga tetgeaggea 3780 taaggcatca tgcgtggcta attttttcac gttttttttt tttttttgtc gagattatgg 3840 tqtcactqtq ttqctctqqc tgatctcaaa tgtttgacct caagggatct ttctgccacg 3900 qcctcctaaa gtqctaggat tatatgcatg atacaccatg cctattgtag agtattacat 3960 tattttcaaa qtcttattqt aagagccatt tattqccttt ggcctaaata actcaatata 4020 atatctctga aacttttttt tgacaaattt tggggcgtga tgatgagaga agggggtttg 4080 aaactttcta ataagagtta acttagagcc atttaagaaa ggaaaaaaca caaattatca 4140

```
gaaaaacaac agtaagatca agtgcaaaag ttctgtggca aagatgatga gagtaaagaa 4200
 talatgittg tgactcatgg tggcttttac tttgttcttg aatttctgag tacgggttaa 4260
 pattiaaaga atotacatta tagataacat titatigcaa giaaatgiat ticaaaatti 4320
 attattggtt ttgtatgaga ttattctcag cotacttcat tatcaagcta tattatttta 4380
 ttaatgtagt tcgatgatct tacagcaaag ctgaaagctg tatcttcaaa atatgtctat 4440
 ttgactaaaa agttattcaa caggagttat tatctataaa aaaaatacaa caggaatata 4500
 aaaaacttga ggataaaaag atgttggaaa aagtaatatt aaatcttaaa aaacatatgg 4560
 saactacaca atggtgaaga cacattggtg aagtacaaaa atataaattg gatctagaag 4620
 aaagggcaat gcaggcaata gaaaaattag tagaaatccc tttaaaggtt agtttgtaaa 4680
 atcaggtaag titatitata attigetite attiatitea etgeaaatta tattitggat 4740
 atgtatatat attgtgcttc ctctgcctgt cttacagcaa tttgccttgc agagttctag 4800
 gaaaaaggtg gcatgtgttt ttactttcaa aatatttaaa tttccatcat tataacaaaa 4860
 tcaatttttc agagtaatga ttctcactgt ggagtcattt gattattaag acccgttggc 4920
 ataagattac atcetetgac tataaaaatc etggaagaaa acetaggaaa tattegtetg 4980
 gacattgcac ttggcaatga atttatgggt aaccactgat ccacttccag tcactatcca 5040
 tgagttttta tttccagata catgaaatca tatgagttga aactttcttt tgattgagca 5100
 gtttggaaac cgtctttttg tagaatctgc aagtggatat ttggaaccct ttgaggccta 5160
 tgctgaaaaa agaaatatct tcactacatg atgaccacca gcagcagctg gggaaaccag 5220
 caccetgtgg aattecatae ggtgeataga atacateete eetteagteg gettgggtea 5280
 acttaggtca tgggccacct ggctgatagc agtttccaca gaaatgcttc aagatgaaag 5340
 tggatgaccg ggccacctc caccactgcc ctgtaagacc atgggacaca caggccacca 5400
 gttcttttca tgtggtcatc ccctgttaga tgggagaaaa tacacctgcc tcatttttgt 5460
 accttctgtg tgaacattcc acggcagact gtcgctaaat gtggatgaag aattgaatga 5520
atgaatgaat atgagagaaa atgaataaat ggttcagatc ctgggctgga aggctgtgta 5580
tgaggatggt gggtagagga gggtetgttt ttettgeett taagteacta attgteactt 5640
 tggggcagga gcacaggett tgaatgcaga ccgactggac tttaattctg gctttactag 5700
 ttgtgattgt gtgaccttgt gaaagttact taaaccctct gtgcctgttt ctttatctgt 5760
aaaatggaga taataagatg tcaaaggact gtggtaagaa ttaaatgctt taaaaaaaaa 5820
aaaaaaaaa
<210> 474
<211> 1594
<212> DNA
3213> Homo sapiens
<400> 474
atttatggat cattaatgcc tctttagtag tttagagaaa acgtcaaaag aaatggcccc 60
agaataaget tettgatttg taaaatteta tgteattgge teaaatttgt atagtatete 120
aaaatataaa tatatagaca totoagataa tatatttgaa atagcaaatt ootgttagaa 180
aataatagta cttaactaga tgagaataac aggtcgccat tatttgaatt gtctcctatt 240
cgtttttcat ttgttgtgtt actcatgttt tacttatgag ggatatatat aacttccact 300
gttttcagaa ttattgtatg cagtcagtat gagaatgcaa tttaagtttc cttgatgctt 360
tttcacactt ctattactag aaataagaat acagtaatat tggcaaagaa aattgaccag 420
ttcaataaaa ttttttagta aatetgattg aaaataaaca ttgettatgg etttettaca 480
tcaatattgt tatgtcctag acaccttatc tgaaattacg gcttcaaaat tctaattatg 540
Egcaaatgtg taaaatatca atactttatg ttcaagctgg ggcctcttca ggcgtcctgg 600
gctgagagag aaagatgcta gctccgcaag ccggagaggg aacaccgcca cattgttaca 660
eggacacace gecaegtgga caeatgacea gacteacatg taeagacaca eggagacatt 720
accacatgga gacaccgtca cacagtcaca cggacacact ggcatagtca catggacgga 780
cacacagaca tatggagaaa tcacatggac acaccaccac actatcacag ggacacagac 840
acacggagac atcaccacat ggacacactg tcacactacc acagggacac gagacatcac 900
actgtcacat ggacacacca tcacacacat gaacacaccg acacactgcc atatggacac 960
tggcacacac actgccacac tgtcacatgg acacacctcc acaccatcac accaccacac 1020
acactgeetg tggacacaag gacacacaga cactgtcaca cagatacaca aaacactgte 1080
acacggagac atcaccatge agatacacca coactotggt geogtotgaa ttaccotgot 1140
ggggggacag cagtggcata ctcatgccta agtgactggc tttcacccca gtagtgattg 1200
nectecatea acaetgeeca ecceaggitg gggetacece ageceatett tacaaaacag 1260
ggcaaggtga actaatggag tgggtggagg agttggaaga aatcccagcg tcagtcaccg 1320
```

```
ggatagaatt cccaaggaac cctctttttg gaggatggtt tccatttctg gaggcgatct 1380
gccgacaggg tgaatgcctt cttgcttgtc ttctggggaa tcagagagag tccgttttgt 1440
ggtgggaaga gtgtggctgt gtactttgaa ctcctgtaaa ttctctgact catgtccaca 1500
aaaccaacag ttttgtgaat gtgtctggag gcaagggaag ggccactcag gatctatgtt 1560
gaagggaaga ggcctggggc tggagtattc gctt
<210> 475
<211> 2414
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (33)
<223> n=A, T, C or G
<400> 475
cccaacacaa tggctttata agaatgcttc acntgtgaaa aacaaatatc aaagtcttct 60
tgtagattat ttttaaggac aaatetttat teeatgttta atttatttag ettteeetgt 120
agctaatatt tcatgctgaa cacattttaa atgctgtaaa tgtagataat gtaatttatg 180
tatcattaat gcctctttag tagtttagag aaaacgtcaa aagaaatggc cccagaataa 240
gcttcttgat ttgtaaaatt ctatgtcatt ggctcaaatt tgtatagtat ctcaaaatat 300
aaatatatag acatctcaga taatatattt gaaatagcaa attcctgtta gaaaataata 360
gtacttaact agatgagaat aacaggtcgc cattatttga attgtctcct attcgttttt 420
catttgttgt gttactcatg ttttacttat ggggggatat atataacttc cgctgttttc 480
agaagtattg tatgcagtca gtatgagaat gcaatttaag tttccttgat gctttttcac 540
acttctatta ctagaaataa gaatacagta atattggcaa agaaaattga ccagttcaat 600
aaaatttttt agtaaatctg attgaaaata aacattgctt atggctttct tacatcaata 660
ttgttatgtc ctagacacct tatctgaaat tacggcttca aaattctaat tatgtgcaaa 720
tgtgtaaaat atcaatactt tatgttcaag ctggggcctc ttcaggcgtc ctgggctgag 780
agagaaagat gctagctccg caagccgggg agggaacacc gccacattgt tacatggaca 840
caccgccacg tggacacatg accagactca catgtacaga cacacggaga cattaccaca 900
tggagacacc gtcacacagt cacacgagca cactggcata gtcacatgga cggacacaca 960
gacatatgga gaaatcacac tgacacacca ccacactatc acagggacac agacacacgg 1020
agacatcacc acatggacac actgtcacac taccacaggg acacgagaca tcacactgtc 1080
acatggacac accatcacac acatgaacac accgacacac tgccatatgg acactgccac 1140
acacactgcc acactgtcac atggacacac ctccatacca tcacaccacc acacactg 1200
ccatgtggac acaaggacac acagacactg tcacacagat acacaaaaca ctgtcacacg 1260
gagacatcac catgcagata caccaccaca tggacatagc accagacact ctgccacaca 1320
gatacaccac cacacagaaa tgcggacaca ctgccacaca gacaccacca catcgttgcc 1380
acactttcat gtgtcagctg gcggtgtggg ccccacgact ctgggctcta atcgagaaat 1440
tacttggaca tatagtgaag gcaaaatttt tttttatttt ctgggtaacc aagcgcgact 1500
ctgtctcaaa aaaagaaaaa aaaagcaata tactgtgtaa tcgttgacag cataattcac 1560
tattatgtag atcggagagc agaggattct gaatgcatga acatatcatt aacatttcaa 1620
tacattactc ataattactg atgaactaaa gagaaaccaa gaaattatgg tgatagttat 1680
attgacctgg agaaatgtag acacaaaaga accgtaagat gagaaatgtg ttaacacagt 1740
ctataagggc atgcaagaat aaaaataggg gagaaaacag gagagttttt caagagcttt 1800
ctggtcatgt aagtcaactt gtatcggtta atttttaaaa ggtttattta catgcaataa 1860
actgcacata cttcaattgt acattttggt aattcttggc atttgtagct ctataaaacc 1920
agcaacatat taaaatagca aacatatcca ttacctttac caccaaagtt ttcttgtgtt 1980
ttttctactc actttttcct gcctatcccc ccatctcttc cacaggtaac cactgatcca 2040
cttccagtca ctatccatga gtttttattt ccaaatacat gaaatcatat gaatttctgg 2100
tttttcctgt tggagcccaa ggagcaaggg cagaatgagg aacatgatgt ttcttwccga 2160
cagttactca tgacgtetec atecaggact gagggggca teetteteca tetaggactg 2220
ggggcatect tetecateca gtattggggg teateettet ecatecagta ttgggggtea 2280
tectecteca tecaggaeet gaggggtgte etttetgeg etteettgga tggeagtett 2340
tecetteatg tttatagtra ettaceatta aateaetgtg eegttttte etaaaataaa 2400
                                                                   2414
aaaaaaaaa aaaa
```

```
<210> 476
 <011> 3434
 <213> Homo sapiens
 <400> 476
 sigtgotgoa aatggggooa tatagaggaa aggagoagot ggototggag catggtgtgo 60
 actementing ggccttcagt coatgectca tgggtcgtat gacactgcgg gcttgttggt 120
 tg:raagagg cagaccacag gtcatcttga ggaggacttt atgttccagt ccagaaagca 180
 gccagtggta ccacccaggg gacttgtgct tctgtggccc aggccagacg tagaatttga 240
 caaagtcagg acggtctcag tcagagcagc atgtcggtcc ccggggcctg tgcatgccgg 300
 gcagggccag gctggcttaa ggagcaagca gccacctctg ttaggggtgt gcctggagca 360
 ggtggagcag ccaccaacet cacgeactga aagaagcagg gatggccagg ttccaacate 420
ctgagtggct gccacctgat ggctgatgga gcagaggcct gaggaaaagc agatggcact 480
 getttgtagt getgttettt gtetetettg atetttttea gttaatgtet gttttateag 540
agactaggat tgcaaaccet gctcttttt gctttccatt tgcttggtaa atattcctcc 600
atccctttat tttaagccta tgtgtgtctt tgcacatgag atgggtctcc tgaatacagg 660
acaacaatgg gtctttactc tttatccaac ttgccagtct gtgtctttta actggggcat 720
ttagcccatt tacatttaag tttagtattt gttacatgtg aaatttatcc tgtcatgatg 780
ttgctagctt tttattttc ccattagttt gcagtttctt tatagtgtca atggtcttta 840
caattegata tgtttttgta gtggetggta etggttttte etttetaegt ttagtgtete 900
cttcaggage tettgtaaca caagaatgtg gatttattte ttgtaaggta aatatgtgga 960
tttattctgg gactgtattc tatggccttt accccaagaa tcattacttt ttaaaatgca 1020
attcaaatta gcataaaaca tttacageet atggaaagge ttgtggcatt agaateetta 1080
tttataggat tattttgtgt ttttttgaga tatggtcttt gtcatcgagg cagaagtgcc 1140
gtggtttgat cataattcac cacagocotg aactottgag tocaagocat cottttgcot 1200
taateteeca accagttgga tetacaagea taaggeatea tgegtggeta attttteac 1260
gttttttttt tttttgtcga gattatggta tcactgtgtt gctctggctg atctcaaatg 1320
tttgacctca agggatcttt ctgccacagc ctcctaaagt gctaggatta tatgcatgat 1380
acaccatgee tattgtagag tattacatta ttttcaaagt ettattgtaa gageeattta 1440
ttgcctttgg cctaaataac tcaatataat atctctgaaa cttttttttg acaaattttg 1500
nggcgtgatg atgagagaag ggggtttgaa actttctaat aagagttaac ttagagccat 1560
ttanganagg aanaacaca aattatcaga annacanacag tangatcang tgcananagtt 1620
ctgtggcaaa gatgatgaga gtaaagaata tatgtttgtg actcatggtg gcttttactt 1680
tgttcttgaa tttctgagta cgggttaaca tttaaagaat ctacattata gataacattt 1740
tattgcaagt aaatgtattt caaaatttgt tattggtttt gtatgagatt attctcagcc 1800
tacttcatta tcaagctata ttattttatt aatgtagttc gatgatctta cagcaaagct 1860
gaaagctgta tetteaaaat atgtetattt gaetaaaaag ttatteaaca ggagttatta 1920
tctataaaaa aatacaacag gaatataaaa aacttgagga taaaaaagatg ttggaaaaag 1980
taatattaaa tottaaaaaa catatggaaa ctacacaatg gtgaagacac attggtgaag 2040
tacaaaaata taaattggat ctagaagaaa gggcaatgca ggcaatagaa aaattagtag 2100
aaatcccttt aaaggttagt ttgtaaaatc aggtaagttt atttataatt tgctttcatt 2160
tatttcactg caaattatat tttggatatg tatatatatt gtgcttcctc tgcctgtctt 2220
acagcaattt geettgeaga gttetaggaa aaaggtggea tgtgttttta ettteaaaat 2280
atttaaattt ccatcattat aacaaaatca atttttcaga gtaatgattc tcactgtgga 2340
gtcatttgat tattaagacc cgttggcata agattacatc ctctgactat aaaaatcctq 2400
gaagaaaacc taggaaatat tcgtctggac attgcacttg gcaatgaatt tatgggcgct 2460
ttggaateet geagatataa taatgataat taaacaaaae aeteagagaa aetgeeaaee 2520
ctaggatgaa gtatattgtt actgtgcttt gggattaaaa taagtaacta cagtttatag 2580
aacttttata ctgatacaca gacactaaaa agggaaaggg tttagatgag aagctctgct 2640
atgcaatcaa gaatctcagc cactcatttc tgtaggggct gcaggagctc cctgtaaaga 2700
gaggttatgg agtctgtagc ttcaggtaag atacttaaaa cccttcagag tttctccatt 2760
trutcccata gtttccccaa aaaggttatg acactttata agaatgcttc acttgtgaaa 2820
aacaaatatc aaagtettet tgtagattat ttttaaggae aaatetttat tecatgttta 2880
atttatttag ctttccctgt agctaatatt tcatgctgaa cacattttaa atgctgtaaa 2940
uguagataat gtaatttatg tatcattaat gcctctttag tagtttagag aaaacgtcaa 3000
dagnaatgge cecagaataa gettettgat ttgtaaaatt etatgteatt ggeteaaatt 3060
```

tgtatagtat ctcaaaatat aaatatatag acatctcaga taatatatt gaaatagcaa 3120 attcctgtta gaaataata gtacttaact agatgagaat aacaggtcgc cattatttga 3180 attgtctcct attcgtttt cattgttgt gttactcatg ttttacttat gggggggatat 3240 atataacttc cgctgtttc agaagtattg tatgcagtca gtatgagaat gcaatttaag 3300 tttccttgat gcttttcac acttctatta ctagaaataa gaatacagta atattggcaa 3360 agaaaattga ccagttcaat aaaattttt agaaaatcg attgaaaata aaaaaaaaa 3420 aaaaaaaaaa aaaa

<210> 477

<211> 140

<212> PRT

<213> Homo sapiens

<400> 477

Met Asp Gly His Thr Asp Ile Trp Arg Asn His Met Asp Thr Pro Pro 5 10 15

His Tyr His Arg Asp Thr Asp Thr Arg Arg His His His Met Asp Thr 20 25 30

Leu Ser His Tyr His Arg Asp Thr Arg His His Thr Val Thr Trp Thr 35 40 45

His His His Thr His Glu His Thr Asp Thr Leu Pro Tyr Gly His Trp 50 55 60

His Thr His Cys His Thr Val Thr Trp Thr His Leu His Thr Ile Thr 65 70 75 80

Pro Pro His Thr Leu Pro Val Asp Thr Arg Thr His Arg His Cys His
85 90 95

Thr Asp Thr Gln Asn Thr Val Thr Arg Arg His His His Ala Asp Thr 100 105 110

Pro Pro Leu Trp Cys Arg Leu Asn Tyr Pro Ala Gly Gly Thr Ala Val 115 120 125

Ala Tyr Ser Cys Leu Ser Asp Trp Leu Ser Pro Gln 130 135 140

<210> 478

<211> 143

<212> PRT

<213> Homo sapiens

<400> 478

Met Tyr Arg His Thr Glu Thr Leu Pro His Gly Asp Thr Val Thr Gln 5 10 15

Ser His Gly His Thr Gly Ile Val Thr Trp Thr Asp Thr Gln Thr Tyr
20 25 30

Gly Glu Ile Thr Trp Thr His His His Thr Ile Thr Gly Thr Gln Thr
35 40 45

His Gly Asp Ile Thr Thr Trp Thr His Cys His Thr Thr Thr Gly Thr

50 55 60

Arg Asp Ile Thr Leu Ser His Gly His Thr Ile Thr His Met Asn Thr 65 70 75 80

Pro Thr His Cys His Met Asp Thr Gly Thr His Thr Ala Thr Leu Ser 85 90 95

His Gly His Thr Ser Thr Pro Ser His His His Thr His Cys Leu Trp 100 105 110

Thr Gln Gly His Thr Asp Thr Val Thr Gln Ile His Lys Thr Leu Ser 115 120 125

His Gly Asp Ile Thr Met Gln Ile His His His Ser Gly Ala Val 130 135 140

<210> 479

<211> 222

<212> PRT

<213> Homo sapiens

<400> 479

Met Tyr Arg His Thr Glu Thr Leu Pro His Gly Asp Thr Val Thr Gln
5 10 15

Ser His Glu His Thr Gly Ile Val Thr Trp Thr Asp Thr Gln Thr Tyr 20 25 30

Gly Glu Ile Thr Leu Thr His His His Thr Ile Thr Gly Thr Gln Thr 35 40 45

His Gly Asp Ile Thr Thr Trp Thr His Cys His Thr Thr Thr Gly Thr 50 55 60

Arg Asp Ile Thr Leu Ser His Gly His Thr Ile Thr His Met Asn Thr 65 70 75 80

Pro Thr His Cys His Met Asp Thr Ala Thr His Thr Ala Thr Leu Ser 85 90 95

His Gly His Thr Ser Ile Pro Ser His His His Thr His Cys His Val 100 105 110

Asp Thr Arg Thr His Arg His Cys His Thr Asp Thr Gln Asn Thr Val 115 120 125

Thr Arg Arg His His His Ala Asp Thr Pro Pro His Gly His Ser Thr 130 140

Arg His Ser Ala Thr Gln Ile His His His Thr Glu Met Arg Thr His 145 150 155 160

Cys His Thr Asp Thr Thr Thr Ser Leu Pro His Phe His Val Ser Ala 165 170 175

Gly Gly Val Gly Pro Thr Thr Leu Gly Ser Asn Arg Glu Ile Thr Trp

180 185 190

Thr Tyr Ser Glu Gly Lys Ile Phe Phe Tyr Phe Leu Gly Asn Gln Ala 195 200 205

Arg Leu Cys Leu Lys Lys Arg Lys Lys Lys Gln Tyr Thr Val 210 215 220

<210> 480

<211> 144

<212> PRT

<213> Homo sapiens

<400> 480

Met Glu Pro Tyr Arg Gly Asn Glu Gln Pro Ser Gln Glu Gln Gly Val $5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Cys Cys Leu Trp Gly Leu Gln Ser Leu Pro Gln Gly Ser Tyr Val Thr
20 25 30

Val Gly Phe Leu Val Val Lys Arg Gln Thr Ile Gly Arg Leu Glu Arg 35 40 45

Asp Phe Met Phe Lys Cys Arg Lys Gln Pro Gly Leu Pro Pro Ser Gly 50 55 60

Leu Cys Leu Leu Trp Pro Trp Pro Asn Leu Glu Phe Gly Arg Arg Gln 65 70 75 80

Asp Arg Leu Thr Trp Ser Ser Val Ser Val Ala Gly Val Cys Ala Cys
85 90 95

Arg Ala Arg Pro Gly Trp Leu Gly Glu Gln Pro Ala Thr Ser Ala Gly 100 105 110

Val Arg Leu Glu Gln Val Glu Gln Pro Pro Ala His Pro Leu Gln Glu 115 120 125

Ala Gly Val Ala Arg Phe Pro Arg Pro Glu Trp Val Pro Pro Asn Gly 130 135 140

<210> 481

<211> 167

<212> PRT

<213> Homo sapiens

<400> 481

Met His Gly Pro Gln Val Leu Ala Arg Cys Ser Glu Cys Ala Cys Pro 5 10 15

Ala Leu Ala Ala Thr Ser Ala Gly Val Arg Leu Glu Gly Val Asp Arg 20 25 30

Pro Pro Thr Leu Pro Ser Gln Gly Ser Gly Trp Pro Cys Ser His Ser 35 40 45

Leu Ser Gly Cys His Leu Met Ala Asp Gly Ala Lys Ala Leu Gly Lys 50 55 60

Ala Asp Gly Pro Trp Pro Tyr Leu Phe Val Arg Arg Thr Asp Val Pro 65 70 75 80

Cys Pro Ala Ala Ser Glu Val Gly Gly Cys Ala Pro Ser Ser Trp Arg 85 90 95

Ala Leu Ala Glu Val Thr Gly Cys Ser Leu Gly Pro Leu Gly Leu Ala 100 105 110

Gln His Ala Gln Ala Ser Val Leu Leu Cys Tyr Lys Trp Ser His 115 120 125

The Gly Glu Thr Ser Ser His Leu Arg Ser Lys Val Tyr Ala Ala Phe 130 135 140

Gly Gly Ser Ser Pro Cys Leu Lys Gly Leu Met Ser Leu Trp Ala Ser 145 150 155 160

Trp Leu Ser Arg Gly Arg Pro 165

<210> 482

<211> 143

<212> PRT

<213> Homo sapiens

<400> 482

Met Glu Pro Tyr Arg Gly Asn Lys Lys Gln Val Gln Glu Lys Gly Val
5 10 15

Pro Cys Leu Trp Gly Ser Ser Pro Cys Leu Arg Cys His Met Ala Leu 20 25 30

Arg Ala Ser Trp Leu Pro Gly Gly Gly Pro Gln Ala Ile Leu Gly Arg
35 40 45

Thr Leu Cys Ser Ser Ala Glu Ser Ser Gln Asp Cys His Pro Gly Gly 50 55 60

Pro Ser Ile Ala Leu Ala Lys Pro Cys Arg Gly Val Trp Leu Leu Phe 65 70 75 80

Glu Pro Ala Trp Pro Pro Trp His Ala Arg Ala Pro Gly Ala Gly Thr

Leu Leu Arg Val Cys Leu Ser Cys Leu Gly Cys His Leu Cys Gly Gly 100 105 110

Ala Ser Gly Gly Gly Pro Ala Thr Asn Leu Thr Gln Ser Arg Lys 115 120 125

Trp Met Ala Met Phe Pro Gln Pro Glu Trp Leu Pro Pro Asp Gly 135 <210> 483 <211> 143 <212> PRT <213> Homo sapiens <400> 483 Met Glu Thr Gln Arg Gly Asn Lys Gln Arg Ala Gln Glu Gln Gly Val Cys Cys Leu Trp Gly Ser Ser Pro Cys Leu Gly Ser Tyr Gly Thr Ala Gly Phe Leu Val Ala Lys Arg Arg Thr Thr Gly Leu Leu Glu Glu Asp Phe Thr Phe Lys Cys Arg Lys Gln Pro Lys Leu Pro Ser Met Arg Leu Ser Leu Leu Trp Pro Trp Arg Asp Leu Lys Phe Val Pro Arg Gln Asp Lys Leu Thr Arg Ser Ser Val Ser Val Ala Gly Ala Tyr Ala Cys Arg Ala Gly Pro Gly Trp Leu Lys Glu Gln Pro Ala Thr Ser Ala Arg Val Arg Leu Val Gln Ala Glu His Pro Pro Pro His Pro Leu Glu Glu Val 120 Gly Met Ala Arg Phe Pro Gln Pro Glu Cys Leu Pro Pro Tyr Cys 130 <210> 484 <211> 30 <212> PRT <213> Homo Sapien <400> 484 Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe 5 10 Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile 25

<210> 485

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Made in a lab

<400> 485

gggaagctta tcacctatgt gccgcctctg c

```
<210> 486
       <211> 27
       <212> DNA
       <213> Artificial Sequence
       <220>
       <223> Made in a lab
       <400> 486
 gogaattoto acgotgagta tttggco
                                                                          27
       <210> 497
       <211> 3€
       <212> DNA
       <213> Artificial Sequence
       <2200>
       <223> Made in a lab
       <400> 48°
occgaattot tanctgooda toogaacgoo ttoato
                                                                          36
      <210> 498
      <211> 33
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 488
gggaagette tteecegget geaceagetg tge
                                                                         33
      <210> 489
      <211> 19
      <212> PRT
      <213> Artificial Sequence
      <223> Made in a lab
      <400> 489
Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg Ala Val Tyr Leu Ala
1
                                     10
Ser Val Ala
      <210> 490
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 490
Tyr Leu Ala Ser Val Ala Ala Phe Pro Val Ala Ala Gly Ala Thr Cys
```

```
10
                                                    15
Leu Ser His Ser
     <210> 491
     <211> 20
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <400> 491
Thr Cys Leu Ser His Ser Val Ala Val Val Thr Ala Ser Ala Ala Leu
                        10
        5
Thr Gly Phe Thr
     <210> 492
     <211> 20
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <400> 492
Ala Leu Thr Gly Phe Thr Phe Ser Ala Leu Gln Ile Leu Pro Tyr Thr
                           10
Leu Ala Ser Leu
           20
      <210> 493
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
     <400> 493
Tyr Thr Leu Ala Ser Leu Tyr His Arg Glu Lys Gln Val Phe Leu Pro
                                  10
Lys Tyr Arg Gly
      <210> 494
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
     <400> 494
Leu Pro Lys Tyr Arg Gly Asp Thr Gly Gly Ala Ser Ser Glu Asp Ser
                                  10
Leu Met Ile Ser
```

```
20
       <210> 495
       <211> 20
       <212> PRT
       <213> Artificial Sequence
       <220>
       <223> Made in a lab
      <400> 495
Asp Ser Leu Met Thr Ser Phe Leu Pro Gly Pro Lys Pro Gly Ala Pro
Phe Pro Asn Gly
          20
      <210> 496
      <211> 21
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 496
Ala Pro Phe Pro Asn Gly His Val Gly Ala Gly Gly Ser Gly Leu Leu
                                   10
Pro Pro Pro Pro Ala
            20
      <210> 497
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 497
Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser Ala Cys Asp Val
Ser Val Arg Val
        20
      <210> 498
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
     <400> 498
Asp Val Ser Val Arg Val Val Gly Glu Pro Thr Glu Ala Arg Val
                               10
Val Pro Gly Arg
            20
```

120 180

240

```
<210> 499
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 499
Arg Val Val Pro Gly Arg Gly Ile Cys Leu Asp Leu Ala Ile Leu Asp
                                     10
Ser Ala Phe Leu
            20
      <210> 500
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 500
Leu Asp Ser Ala Phe Leu Leu Ser Gln Val Ala Pro Ser Leu Phe Met
                                    10
Gly Ser Ile Val
            20
      <210> 501
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 501
Phe Met Gly Ser Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met
                                    10
                                                         15
Val Ser Ala Ala
            20
      <210> 502
      <211> 414
      <212> DNA
      <213> Homo Sapien
      <220>
      <221> misc_feature
      <222> (1) ... (414)
      <223> n=A,T,C or G
      <400> 502
caccatggag acaggectge getggetttt cetggteget gtgetcaaag gtgtccaatg
tcagtcggtg gaggagtccg ggggtcgcct ggtcacgcct gggacacctt tgacantcac
ctgtagagtt tttggaatng acctcagtag caatgcaatg agctgggtcc gccaggctcc
agggaagggg ctggaatgga tcggagccat tgataattgt ccacantacg cgacctgggc
```

```
yaaaggooga ttnatnattt ccaaaacctn gaccacggtg gatttgaaaa tgaccagtco
                                                                        300
 yacaaccgag gacacggcca cctatttttg tggcagaatg aatactggta atagtggttg
                                                                        360
 Thaqaatatt tggggcccag gcaccetggt caecginice tcagggcaac ctaa
                                                                        414
      <210> 503
      <211> 379
      <212> DNA
      <213> Homo Sapien
      . 220>
      <'021> misc_feature
      <222> (1)...(379)
      <223> n=A, T, C or G
      <400> 503
athogatggt gottggtcaa aggtgtccag tgtcagtcgg tggaggagtc cgggggtcgc
                                                                        60
ctggtcacge ctgggacacc cctgacactc acctgcaccg tntctggatt ngacatcagt
                                                                       120
agctatggag tgagetgggt cegecagget ceagggaagg ggetggnata categgatea
                                                                       180
ttagtagtag tggtacattt tacgcgagct gggcgaaagg ccgattcacc atttccaaaa
                                                                       240
octngaccae ggtggatttg aaaatcacca gtttgacaac cgaggacacg gccacctatt
                                                                       300
tntgtgccag agggggttt aattataaag acatttgggg cccaggcacc ctggtcaccg
                                                                       360
tntccttagg gcaacctaa
                                                                       379
      <210> 504
      <211> 19
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 504
Gly the Thr Asn Tyr Thr Asp Phe Glu Asp Ser Pro Tyr Phe Lys Glu
Asn Ser Ala
      <210> 505
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 505
Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn Asp Asn Val Thr
1
                               1.0
Asn Thr Ala Asn
      <210> 506
      SD11> 407
      <212> DNA
      <213> Homo Sapien
     <400> 506
```

```
60
 atqqaqacaq gcctqcgctq qcttctcctq qtcgctgcgc tcaaaggtgt ccagtgtcag
 tegetggagg agteeggggg tegeetggte aegeetggga cacceetgae acteaeetge
                                                                        120
 accqtctctq qattctccct caqtaqcaat qcaatqatct qqqtccqcca qqctccaqqq
                                                                        180
 aaqqqqctqq aatacatcqq atacattaqt tatgqtqqta gcgcatacta cgcqaqctgq
                                                                        240
 gtgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgag aatgaccagt
                                                                        300
 ctgacaaccq aggacacqqc cacctatttc tqtqccagaa ataqtgattt tagtggtatg
                                                                        360
 ttgtggggcc caggcaccct ggtcaccgtc tcctcagggc aacctaa
                                                                        407
       <210> 507
       <211> 422
       <212> DNA
       <213> Homo Sapien
       <400> 507
 atggagacag geetgegetg getteteetg gtegetgtge teaaaggtgt eeagtgteag
                                                                         60
 teggtggagg agteeggggg tegeetggte aegeetggga caeceetgae acteacetgt
                                                                        120
 acagtetetg gatteteect cageaactae gacetgaact gggteegeea ggeteeaggg
                                                                        180
 aaggggctgg aatggatcgg gatcattaat tatgttggta ggacggacta cgcgaactgg
                                                                        240
 qcaaaaqqcc qqttcaccat ctccaaaacc tcgaccaccg tggatctcaa gatcgccagt
                                                                        300
 ccqacaaccq aqqacacqqc cacctatttc tqtqccaqaq qqtqgaaqtq cqatqaqtct
                                                                        360
                                                                        420
 qqtccqtqct tqcqcatctq qqqcccaqqc accetqqtca ccgtctcctt agggcaacct
                                                                        422
 aa
       <210> 508
       <211> 411
       <212> DNA
       <213> Homo Sapien
       <220>
       <221> misc_feature
       <222> (1)...(411)
       <223> n=A, T, C or G
       <400> 508
                                                                         60
 atqqaqacaq qcctcqctqq cttctcctqq tcgctqtqct caaaggtqtc cagtqtcagt
 cqqtqqaqqa qtccqqqqt cqcctqqtca cgcctgggac acccctgaca ctcacctgca
                                                                        120
                                                                        180
 cagtetetgg aategacete agtagetaet geatgagetg ggteegeeag geteeaggga
 aggggctgga atggatcgga atcattggta ctcctggtga cacatactac gcgaggtggg
                                                                        240
                                                                        300
 egaaaggeeg atteaceate tecaaaacet egaceaeggt geatntgaaa ateneeagte
 cgacaaccga ggacacggcc acctatttct gtgccagaga tcttcgggat ggtagtagta
                                                                        360
 ctggttatta taaaatctgg ggcccaggca ccctggtcac cgtctccttg g
                                                                        411
       <210> 509
       <211> 15
       <212> PRT
       <213> Artificial Sequence
       <220>
       <223> Made in a lab
       <400> 509
Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
                                    1.0
       <210> 510
       <211> 15
       <212> PRT
       <213> Artificial Sequence
```

```
<220>
      <223> Made in a lab
      <400> 510
Pro Glu Tyr Asn Arg Pro Leu Leu Ala Asn Asp Leu Met Leu Ile
      <210> 511
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 511
Tyr His Pro Ser Met Phe Cys Ala Gly Gly Gln Asp Gln Lys
                                    10
      <210> 512
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 512
Asp Ser Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu
                                   10
      <210> 513
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
     <400> 513
Ala Pro Cys Gly Gln Val Gly Val Pro Asx Val Tyr Thr Asn Leu
1
                5
                                   10
      <210> 514
      <211> 15
      <212> PRT
      <213> Artificial Sequence
     <220>
      <223> Made in a lab
     <400> 514
Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
                                    10
     <210> 515
```

```
<211> 15
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 515
Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg
                                    10
      <210> 516
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 516
Val Ser Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln
                                 10
      <210> 517
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 517
Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met
                                   10
      <210> 518
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 518
Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg His Tyr Asp Glu Gly
                                   10
      <210> 519
      <211> 17
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 519
Arg Ala Glu Pro Gly Thr Glu Ala Arg Arg Asn Tyr Asp Glu Gly Cys
               5
                                  10
```

```
Gly
      <210> 520
      <211> 25
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 520
Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly Thr
Glu Ala Arg Arg His Tyr Asp Glu Gly
            20
      <210> 521
      <211> 21
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 521
Ala Pro Phe Pro Asn Gly His Val Gly Ala Gly Gly Ser Gly Leu Leu
                                    10
Pro Pro Pro Pro Ala
            20
      <210> 522
      <211> 20
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> Made in a lab
      <400> 522
Leu Leu Val Val Pro Ala Ile Lys Lys Asp Tyr Gly Ser Gln Glu Asp
1
Phe Thr Gln Val
          20
     <210> 523
      <211> 254
      <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Made in a lab
     <220>
     <221> VARIANT
     <222> (1)...(254)
     <223> Xaa = any amino acid
```

```
<400> 523
 Met Ala Thr Ala Gly Asn Pro Trp Gly Trp Phe Leu Gly Tyr Leu Ile
                                      10
 Leu Gly Val Ala Gly Ser Leu Val Ser Gly Ser Cys Ser Gln Ile Ile
                                  25
 Asn Gly Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu
                                                  4.5
                              40
 Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln
                         55
 Trp Val Leu Ser Ala Thr His Cys Phe Gln Asn Ser Tyr Thr Ile Gly
 65
                     70
                                          75
 Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met
                 8.5
                                      90
 Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu
             100
                                  105
                                                     110
 Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu
         115
                             120
                                                  125
 Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala
                         135
 Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg
                     150
                                          155
 Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu
                 165
                                      170
 Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys
             180
                                 185
                                                      190
 Ala Gly Gly Gln Xaa Gln Xaa Asp Ser Cys Asn Gly Asp Ser Gly
         195
                             200
 Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly
                         215
                                              220
 Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu
 225
                     230
                                          235
 Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
                 245
                                      250
<210> 524
<211> 765
<212> DNA
<213> Homo sapien
<400> 524
atggccacag caggaaatcc ctggggctgg ttcctggggt acctcatcct tggtgtcgca
                                                                         60
ggategeteg tetetggtag etgeageeaa ateataaaeg gegaggaetg eageeegeae
                                                                       120
tegeageeet ggeaggegge aetggteatg gaaaacgaat tgttetgete gggegteetg
                                                                       180
gtgcatccgc agtgggtgct qtcaqccgca cactgtttcc agaactccta caccatcggg
                                                                       240
ctgggcctgc acagtcttga ggccgaccaa gagccaggga gccagatggt ggaggccagc
                                                                       300
ctctccgtac ggcacccaga gtacaacaga cccttgctcg ctaacgacct catgctcatc
                                                                       360
aagttggacg aatccgtgtc cgagtctgac accatccgga gcatcagcat tgcttcgcag
                                                                       420
tgccctaccg cggggaactc ttgcctcgtt tctggctggg gtctgctggc gaacggcaga
                                                                       480
atgcctaccg tgctgcagtg cgtgaacgtg tcggtggtgt ctgaggaggt ctgcagtaag
                                                                       540
etetatgace egetgtacea ecceageatg ttetgegeeg geggagggea agaceagaag
                                                                       600
gacteetgea aeggtgacte tggggggeee etgatetgea aegggtaett geagggeett
                                                                       660
gtgtctttcg gaaaagcccc gtqtggccaa gttggcgtgc caggtgtcta caccaacctc
                                                                       720
tgcaaattca ctgagtggat agagaaaacc gtccaggcca gttaa
                                                                       765
<210> 525
<211> 254
```

<212> PRT

<213> Homo sapien

```
<400> 525
 Met Ala Thr Ala Gly Asn Pro Trp Gly Trp Phe Leu Gly Tyr Leu Ile
                                      10
 Leu Gly Val Ala Gly Ser Leu Val Ser Gly Ser Cys Ser Gln Ile Ile
                                  25
                                                      30
 Asn Gly Glu Asp Cys Ser Pro His Ser Gln Pro Trp Gln Ala Ala Leu
                              40
 Val Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln
                          55
 Trp Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly
                     70
                                          75
 Leu Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met
                                      90
 Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu
                                 105
 Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu
                             120
 Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala
                         135
                                              140
 Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly Arg
                     150
                                          155
 Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu Glu
                 165
                                     170
 Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe Cys
             180
                                 185
 Ala Gly Gly Gln Asp Gln Lys Asp Ser Cys Asn Gly Asp Ser Gly
         195
                             200
                                                  205
 Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe Gly
                         215
                                             220
Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn Leu
                     230
                                         235
                                                             240
Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser
                 245
<210> 526
<211> 963
<212> DNA
<213> Homo sapiens
<400> 526
atgagtteet geaactteae acatgeeace tttgtgetta ttggtateee aggattagag 60
aaagcccatt tetgggttgg etteceete etttecatgt atgtagtgge aatgtttgga 120
aactgcatcg tggtcttcat cgtaaggacg gaacgcagcc tgcacgctcc gatgtacctc 180
tttctctgca tgcttgcagc cattgacctg gccttatcca catccaccat gcctaagatc 240
citgcccttt tctggtttga ttcccgagag attagctttg aggcctgtct tacccagatg 300
ttotttatto atgocototo agocattgaa tocaccatoo tgotggocat ggootttgac 360
egttatgtgg ccatetgeea eecaetgege catgetgeag tgetcaacaa tacagtaaca 420
geocagattg geategtgge tgtggteege ggateeetet tttttteee actgeetetg 480
ctgatcaage ggetggeett etgeeactee aatgteetet egeacteeta ttgtgteeac 540
caggatgtaa tgaagttggc ctatgcagac actttgccca atgtggtata tggtcttact 600
gccattetgc tggtcatggg cgtggacgta atgttcatct ccttgtccta ttttctgata 660
atacgaacgg ttctgcaact gccttccaag tcagagcggg ccaaggcctt tggaacctgt 720
gtgtcacaca ttggtgtggt actcgccttc tatgtgccac ttattggcct ctcagttgta 780
caccgetttg gaaacageet teateceatt gtgegtgttg teatgggtga catetacetg 840
ctgctgcctc ctgtcatcaa tcccatcatc tatggtgcca aaaccaaaca gatcagaaca 900
ogggtgetgg ctatgtteaa gateagetgt gaeaaggaet tgeaggetgt gggaggeaag 960
tga
                                                                   963
```

181

<210> 527 <211> 320 <212> PRT

<213> Homo sapiens

<400> 527

Met Ser Ser Cys Asn Phe Thr His Ala Thr Phe Val Leu Ile Gly Ile 5 10 15

Pro Gly Leu Glu Lys Ala His Phe Trp Val Gly Phe Pro Leu Leu Ser 20 25 30

Met Tyr Val Val Ala Met Phe Gly Asn Cys Ile Val Val Phe Ile Val 35 40 45

Arg Thr Glu Arg Ser Leu His Ala Pro Met Tyr Leu Phe Leu Cys Met 50 55 60

Leu Ala Ala Ile Asp Leu Ala Leu Ser Thr Ser Thr Met Pro Lys Ile 65 70 75 80

Leu Ala Leu Phe Trp Phe Asp Ser Arg Glu Ile Ser Phe Glu Ala Cys
85 90 95

Leu Thr Gln Met Phe Phe Ile His Ala Leu Ser Ala Ile Glu Ser Thr 100 105 110

Ile Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro 115 120 125

Leu Arg His Ala Ala Val Leu Asn Asn Thr Val Thr Ala Gln Ile Gly 130 135 140

Ile Val Ala Val Val Arg Gly Ser Leu Phe Phe Phe Pro Leu Pro Leu 145 150 155 160

Leu Ile Lys Arg Leu Ala Phe Cys His Ser Asn Val Leu Ser His Ser 165 170 175

Tyr Cys Val His Gln Asp Val Met Lys Leu Ala Tyr Ala Asp Thr Leu 180 185 190

Pro Asn Val Val Tyr Gly Leu Thr Ala Ile Leu Leu Val Met Gly Val 195 200 205

Asp Val Met Phe Ile Ser Leu Ser Tyr Phe Leu Ile Ile Arg Thr Val 210 215 220

Leu Gln Leu Pro Ser Lys Ser Glu Arg Ala Lys Ala Phe Gly Thr Cys 225 230 235 240

Val Ser His Ile Gly Val Val Leu Ala Phe Tyr Val Pro Leu Ile Gly
245 250 255

Leu Ser Val Val His Arg Phe Gly Asn Ser Leu His Pro Ile Val Arg 260 265 270

```
Val Val Met Gly Asp Ile Tyr Leu Leu Pro Pro Val Ile Asn Pro
                              280
 ile lie Tyr Gly Ala Lys Thr Lys Gln Ile Arg Thr Arg Val Leu Ala
                          295
 Met Phe Lys Ile Ser Cys Asp Lys Asp Leu Gln Ala Val Gly Gly Lys
                                          315
         <210> 528
         <211> 20
         <212> DNA
        <213> Homo Sapien
        <400> 528
  actatggtcc agaggctgtg
                                                                          20
        <210> 529
        <211> 20
        <212> DNA
        <213> Homo Sapien
        <400> 529
  atcacctatg tgccgcctct
                                                                          20
 <210> 530
 <211> 1852
 <212> DNA
 <213> Homo sapiens
 <400> 530
ggcacgagaa ttaaaaccct cagcaaaaca ggcatagaag ggacatacct taaagtaata 60
aaaaccacct atgacaagec cacagecaac ataatactaa atggggaaaa gttagaagea 120
Ettectetga gaactgeaac aataaataca aggatgetgg attttgteaa atgeetttte 180
tgtgtctgtt gagatgctta tgtgactttg cttttaattc tgtttatgtg attatcacat 240
ttattgactt gcctgtgtta gaccggaaga gctggggtgt ttctcaggag ccaccgtgtg 300
ctgcggcagc ttcgggataa cttgaggctg catcactggg gaagaaacac aytcctgtcc 360
gtggcgctga tggctgagga cagagcttca gtgtggcttc tctgcgactg gcttcttcgg 420
ggagttette etteatagtt cateeatatg geteeagagg aaaattatat tattttgtta 480
tggatgaaga gtattacgtt gtgcagatat actgcagtgt cttcatctct tgatgtgtga 540
ttgggtaggt tccaccatgt tgccgcagat gacatgattt cagtacctgt gtctggctga 600
aaagtgtttg tttgtgaatg gatattgtgg tttctggatc tcatcctctg tgggtggaca 660
gettteteca eettgetgga agtgaeetge tgteeagaag tttgatgget gaggagtata 720
ecategtgea tgeatettte attteetgea titetteete eetggatgga cagggggage 780
ggcaagagca acgtgggcac ttetggagac cacaacgact cetetgtgaa gaegettggg 840
agcaagaggt gcaagtggtg ctgccactgc ttcccctgct gcagggggag cggcaagagc 900
aacgtggtcg cttggggaga ctacgatgac agcgccttca tggatcccag gtaccacgtc 960
catggagaag atctggacaa gctccacaga gctgcctggt ggggtaaagt ccccagaaag 1020
gateteateg teatgeteag ggacaeggat gtgaacaaga gggacaagca aaagaggact 1080
getetacate tggcetetge caatgggaat teagaagtag taaaactegt getggacaga 1140
cgatgtcaac ttaatgtcct tgacaacaaa aagaggacag ctctgacaaa ggccgtacaa 1200
tgccaggaag atgaatgtgc gttaatgttg ctggaacatg gcactgatcc aaatattcca 1260
gatgagtatg gaaataccac totacactat gotgtotaca atgaagataa attaatggcc 1320
aaagcactgo tottatacgg tgotgatato gaatcaaaaa acaagcatgg cotcacacca 1380
ctgctacttg gtatacatga gcaaaaacag caagtggtga aatttttaat caagaaaaaa 1440
gcyaatttaa atgcgctgga tagatatgga agaactgctc tcatacttgc tgtatgttgt 1500
agal cagcaa gtatagtcag coctotactt gagcaaaatg ttgatgtato ttotcaagat 1560
ctggaaagac ggccagagag tatgctgttt ctagtcatca tcatgtaatt tgccagttac 1620
```

PCT/US01/01574 WO 01/051633

```
tttctgacta caaagaaaaa cagatgttaa aaatctcttc tgaaaacagc aatccagaac 1680
aagacttaaa getgacatca gaggaagagt cacaaagget taaaggaagt gaaaacagee 1740
agccagagct agaagattta tggctattga agaagaatga agaacacgga agtactcatg 1800
tqqqattccc aqaaaacctq actaacqqtg ccgctgctgg caatggtgat ga
<210> 531
<211> 879
<212> DNA
<213> Homo sapiens
<400> 531
atgcatcttt catttcctgc atttcttcct ccctggatgg acagggggag cggcaagagc 60
aacgtgggca cttctggaga ccacaacgac teetetgtga agaegettgg gageaagagg 120
tgcaagtggt gctgccactg cttcccctgc tgcaggggga gcggcaagag caacgtggtc 180
gcttggggag actacgatga cagcgccttc atggatccca ggtaccacgt ccatggagaa 240
gatetggaca agetecacag agetgeetgg tggggtaaag tececagaaa ggateteate 300
gtcatgctca gggacacgga tgtgaacaag agggacaagc aaaagaggac tgctctacat 360
ctggcctctg ccaatgggaa ttcagaagta gtaaaactcg tgctggacag acgatgtcaa 420
cttaatgtcc ttgacaacaa aaagaggaca gctctgacaa aggccgtaca atgccaggaa 480
gatgaatgtq cqttaatgtt gctggaacat ggcactgatc caaatattcc agatgagtat 540
ggaaatacca ctctacacta tgctgtctac aatgaagata aattaatggc caaagcactg 600
ctcttatacg gtgctgatat cgaatcaaaa aacaagcatg gcctcacacc actgctactt 660
ggtatacatg agcaaaaaca gcaagtggtg aaatttttaa tcaagaaaaa agcgaattta 720
aatgcgctgg atagatatgg aagaactgct ctcatacttg ctgtatgttg tggatcagca 780
agtatagtca gccctctact tgagcaaaat gttgatgtat cttctcaaga tctggaaaga 840
cggccagaga gtatgctgtt tctagtcatc atcatgtaa
<210> 532
<211> 292
<212> PRT
<213> Homo sapiens
<400> 532
Met His Leu Ser Phe Pro Ala Phe Leu Pro Pro Trp Met Asp Arg Gly
                                      10
Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asn Asp Ser Ser
                                 25
Val Lys Thr Leu Gly Ser Lys Arg Cys Lys Trp Cys Cys His Cys Phe
                             40
Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp
                         55
Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr His Val His Gly Glu
Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg
                 8.5
Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Arg Asp
                                 105
             100
Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser
                            120
         115
Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys Gln Leu Asn Val Leu
```

879

```
1.30
                         135
                                              140
 Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala Val Gln Cys Gln Glu
                     150
 Asy Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile
                 165
                                     170
 Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Val Tyr Asn Glu
                                 185
 Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu
                             200
 Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Ile His Glu
                         215
 Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu
                     230
Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys
                245
                                     250
Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu Glu Gln Asn Val Asp
                                 265
Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu Ser Met Leu Phe Leu
                             280
Val Ile Ile Met
    290
<210> 533
<211> 801
<212> DNA
<213> Homo sapiens
<400> 533
atgtacaagc ttcagtgcaa caactgtgct acaaatggag ccacagagag gaaacaagca 60
gcaggctcag gagcagggta tgcgctgcct tcggctctcc aatccatgcc tcagggctcc 120
tatgccactg cacgattett ggttgccaag aggccaacca caggccatet tgagaaggag 180
tttatgttcc actgcagaaa gcagccagga tcaccatcca ggggacttgg tcttctgtgg 240
occtggccag acatagaatt tgtgccaagg caggacaagc tcactcagag cagcgtgtta 300
gtacctcaaa tetgtgegtg ceagacaagg eeaaaetgge teaatgagea aceagceace 360
tetgeagggg tgegtetgga ggaggtggae cagecaceaa cettacecag teaaggaagt 420
ggatggccat gttcccacag cctgagtggc tgccacctga tggctgatat agcaaaggcc 480
ttaggaaaag cagatggccc ttggccctac ctttttgtta gaagaactga tgttccatgt 540
cctgcagcga gtgaggttgg tggctgtgcc cccagctcct ggcacaccct cgcagaggtg 600
actggttgct ctttgagece tettageett geecageatg caeaageete agtgetaeta 660
ctgtgctaca aatggagcca tataggggaa acgagcagcc atctcaggag caaggtgtat 720
getgeettig ggggeteeag teetigeete aagggietta igteacigig ggetietigg 780
ttgccaagag gcagaccata g
<210> 534
<211> 266
<212> PRT
<213> Homo sapiens
```

<400> 534 Met Tyr Lys Leu Gln Cys Asn Asn Cys Ala Thr Asn Gly Ala Thr Glu Arg Lys Gln Ala Ala Gly Ser Gly Ala Gly Tyr Ala Leu Pro Ser Ala Leu Gln Ser Met Pro Gln Gly Ser Tyr Ala Thr Ala Arg Phe Leu Val 40 Ala Lys Arg Pro Thr Thr Gly His Leu Glu Lys Glu Phe Met Phe His Cys Arg Lys Gln Pro Gly Ser Pro Ser Arg Gly Leu Gly Leu Leu Trp Pro Trp Pro Asp Ile Glu Phe Val Pro Arg Gln Asp Lys Leu Thr Gln Ser Ser Val Leu Val Pro Gln Ile Cys Ala Cys Gln Thr Arg Pro Asn Trp Leu Asn Glu Gln Pro Ala Thr Ser Ala Gly Val Arg Leu Glu Glu 120 Val Asp Gln Pro Pro Thr Leu Pro Ser Gln Gly Ser Gly Trp Pro Cys 135 Ser His Ser Leu Ser Gly Cys His Leu Met Ala Asp Ile Ala Lys Ala 155 Leu Gly Lys Ala Asp Gly Pro Trp Pro Tyr Leu Phe Val Arg Arg Thr Asp Val Pro Cys Pro Ala Ala Ser Glu Val Gly Gly Cys Ala Pro Ser 185

Ser Trp His Thr Leu Ala Glu Val Thr Gly Cys Ser Leu Ser Pro Leu 195 200 205

Ser Leu Ala Gln His Ala Gln Ala Ser Val Leu Leu Cys Tyr Lys 210 215 220

Trp Ser His Ile Gly Glu Thr Ser Ser His Leu Arg Ser Lys Val Tyr 225 230 235 240

Ala Ala Phe Gly Gly Ser Ser Pro Cys Leu Lys Gly Leu Met Ser Leu 245 250 255

Trp Ala Ser Trp Leu Pro Arg Gly Arg Pro 260 265

<210> 535

<211> 6082

<212> DNA

<213> Homo sapiens

<400> 535 octobactat tabagottat aggaaattab aatobacttt abaggootba aaggitbatt 60 ctiggeegage ggaeaggegt ggeggeegga geeceageat eeetgettga ggteeaggag 120 eggageeege ggeeactgee geetgateag egegaeeeeg geeeggeee geeeggeeg 180 gcaagatgct gcccgtgtac caggaggtga agcccaaccc gctgcaggac gcgaacctct 240 gctcacgcgt gttcttctgg tggctcaatc ccttgtttaa aattggccat aaacggagat 300 tagaggaaga tgatatgtat teagtgetge cagaagaeeg eteacageae ettggagagg 360 agttgcaagg gttctgggat aaagaagttt taagagctga gaatgacgca cagaagcctt 420 ctttaacaag agcaatcata aagtgttact ggaaatctta tttagttttg ggaattttta 480 cgttaattga ggaaagtgcc aaagtaatcc agcccatatt tttgggaaaa attattaatt 540 attttgaaaa ttatgatccc atggattctg tggctttgaa cacagcgtac gcctatgcca 600 cggtgctgac tttttgcacg ctcattttgg ctatactgca tcacttatat ttttatcacg 660 ttcagtgtgc tgggatgagg ttacgagtag ccatgtgcca tatgatttat cggaaggcac 720 ttcgtcttag taacatggcc atggggaaga caaccacagg ccagatagtc aatctgctgt 780 ccaatgatgt gaacaagttt gatcaggtga cagtgttett acaetteetg tgggcaggae 840 cactgcaggc gategcagtg actgccctac tetggatgga gataggaata tegtgccttg 900 ctgggatggc agttctaatc attctcctgc ccttgcaaag ctgttttggg aagttgttct 960 catcactgag gagtaaaact gcaactttca cggatgccag gatcaggacc atgaatgaag 1020 ttataactgg tataaggata ataaaaatgt acgcctggga aaagtcattt tcaaatctta 1080 ttaccaattt gagaaagaag gagattteea agattetgag aagtteetge eteaggggga 1140 tgaatttggc ttcgtttttc agtgcaagca aaatcatcgt gtttgtgacc ttcaccacct 1200 acgtgctcct cggcagtgtg atcacagcca gccgcgtgtt cgtggcagtg acgctgtatg 1260 gggctgtgcg gctgacggtt accetettet teceetcage cattgagagg gtgtcagagg 1320 caatcgtcag catccgaaga atccagacct ttttgctact tgatgagata tcacagcgca 1380 acceptcaget geographicage geog gggataaggc atcagagacc ccaactctac aaggcctttc ctttactgtc agacctggcg 1500 aattgttagc tgtggtcggc cccgtgggag cagggaagtc atcactgtta agtgccgtgc 1560 teggggaatt ggeeceaagt eaegggetgg teagegtgea tggaagaatt geetatgtgt 1620 etcagcagee etgggtgtte tegggaacte tgaggagtaa tattttattt gggaagaaat 1680 acgaaaagga acgatatgaa aaagtcataa aggcttgtgc tctgaaaaag gatttacagc 1740 tgttggagga tggtgatctg actgtgatag gagatcgggg aaccacgctg agtggagggc 1800 agaaagcacg ggtaaacctt gcaagagcag tgtatcaaga tgctgacatc tatctcctgg 1860 acgatectet cagtgeagta gatgeggaag ttageagaea ettgttegaa etgtgtattt 1920 gtcaaatttt gcatgagaag atcacaattt tagtgactca tcagttgcag tacctcaaag 1980 ctgcaagtca gattctgata ttgaaagatg gtaaaatggt gcagaagggg acttacactg 2040 agttcctaaa atctggtata gattttggct cccttttaaa gaaggataat gaggaaagtg 2100 aacaacctcc agttccagga actcccacac taaggaatcg taccttctca gagtcttcgg 2160 ittggtctca acaatcttct agaccctcct tgaaagatgg tgctctggag agccaagata 2220 cagagaatgt cccagttaca ctatcagagg agaaccgttc tgaaggaaaa gttggttttc 2280 aggcctataa gaattacttc agagctggtg ctcactggat tgtcttcatt ttccttattc 2340 tectaaacae tgeageteag gttgeetatg tgetteaaga ttggtggett teatactggg 2400 caaacaaaca aagtatgcta aatgtcactg taaatggagg aggaaatgta accgagaagc 2460 tagatettaa etggtaetta ggaatttatt eaggtttaac tgtagetaec gttetttttg 2520 gcatagcaag atctctattg gtattctacg tccttgttaa ctcttcacaa actttgcaca 2580 acaaaatgtt tgagtcaatt ctgaaagctc cggtattatt ctttgataga aatccaatag 2640 gaagaatttt aaatcgtttc tccaaagaca ttggacactt ggatgatttg ctgccgctga 2700 cgtttttaga tttcatccag acattgctac aagtggttgg tgtggtctct gtggctgtgg 2760 ccgtgattcc ttggatcgca atacccttgg ttccccttgg aatcattttc attttcttc 2820 ggcgatattt tttggaaacg tcaagagatg tgaagcgcct ggaatctaca actcggagtc 2880 cagtgttttc ccacttgtca tettetete aggggetetg gaccateegg geatacaaag 2940 cagaagagag gtgtcaggaa ctgtttgatg cacaccagga tttacattca gaggcttggt 3000 tettgttttt gacaaegtee egetggtteg eegteegtet ggatgeeate tgtgeeatgt 3060 ttgtcatcat cgttgccttt gggtccctga ttctggcaaa aactctggat gccgggcagg 3120 ttggtttggc actgtcctat gccctcacgc tcatggggat gtttcagtgg tgtgttcgac 3180 Baagtgctga agttgagaat atgatgatct cagtagaaag ggtcattgaa tacacagacc 3240 tgaaaaaga agcacettgg gaatateaga aacgeeeace accageetgg ceeeatgaag 3300 gagtgataat ctttgacaat gtgaacttca tgtacagtcc aggtgggcct ctggtactga 3360

187

```
agcatctgac agcactcatt aaatcacaag aaaaggttgg cattgtggga agaaccggag 3420
ctggaaaaag ttccctcatc tcagcccttt ttagattgtc agaacccgaa ggtaaaattt 3480
ggattgataa gatcttgaca actgaaattg gacttcacga tttaaggaag aaaatgtcaa 3540
tcatacctca ggaacctgtt ttgttcactg gaacaatgag gaaaaacctg gatcccttta 3600
atgagcacac ggatgaggaa ctgtggaatg ccttacaaga ggtacaactt aaagaaacca 3660
ttgaagatct tcctggtaaa atggatactg aattagcaga atcaggatcc aattttagtg 3720
ttggacaaag acaactggtg tgccttgcca gggcaattct caggaaaaat cagatattga 3780
ttattgatga agcgacggca aatgtggatc caagaactga tgagttaata caaaaaaaat 3840
ccgggagaaa tttgcccact gcaccgtgct aaccattgca cacagattga acaccattat 3900
tgacagcgac aagataatgg ttttagattc aggaagactg aaagaatatg atgagccgta 3960
tgttttgctg caaaataaag agagcctatt ttacaagatg gtgcaacaac tgggcaaggc 4020
agaagccgct gccctcactg aaacagcaaa acaggtatac ttcaaaaagaa attatccaca 4080
tattggtcac actgaccaca tggttacaaa cacttccaat ggacagccct cgaccttaac 4140
tattttcgag acagcactgt gaatccaacc aaaatgtcaa gtccgttccg aaggcatttg 4200
ccactagttt ttggactatg taaaccacat tgtacttttt tttactttgg caacaaatat 4260
ttatacatac aagatgctag ttcatttgaa tatttctccc aacttatcca aggatctcca 4320
gctctaacaa aatggtttat ttttatttaa atgtcaatag ttgtttttta aaatccaaat 4380
cagaggtgca ggccaccagt taaatgccgt ctatcaggtt ttgtgcctta agagactaca 4440
gagtcaaagc tcatttttaa aggagtagga cagagttgtc acaggttttt gttgttgttt 4500
ttattgcccc caaaattaca tgttaatttc catttatatc agggattcta tttacttgaa 4560
gactgtgaag ttgccatttt gtctcattgt tttctttgac ataactagga tccattattt 4620
cccctgaagg cttcttgtta gaaaatagta cagttacaac caataggaac aacaaaaaga 4680
aaaagtttgt gacattgtag tagggagtgt gtacccctta ctccccatca aaaaaaaaa 4740
tggatacatg gttaaaggat agaagggcaa tattttatca tatgttctaa aagagaagga 4800
agagaaaata ctactttctc aaaatggaag cccttaaagg tgctttgata ctgaaggaca 4860
caaatgtgac cgtccatcct cctttagagt tgcatgactt ggacacggta actgttgcag 4920
ttttagactc agcattgtga cacttcccaa gaaggccaaa cctctaaccg acattcctga 4980
aatacgtggc attattcttt tttggatttc tcatttatgg aaggctaacc ctctgttgac 5040
tgtaagcctt ttggtttggg ctgtattgaa atcctttcta aattgcatga ataggctctg 5100
ctaacgtgat gagacaaact gaaaattatt gcaagcattg actataatta tgcagtacgt 5160
tctcaggatg catccagggg ttcattttca tgagcctgtc caggttagtt tactcctgac 5220
cactaatagc attgtcattt gggctttctg ttgaatgaat caacaaacca caatacttcc 5280
tgggaccttt tgtactttat ttgaactatg agtctttaat ttttcctgat gatggtggct 5340
gtaatatgtt gagttcagtt tactaaaggt tttactatta tggtttgaag tggagtctca 5400
tgacctctca gaataaggtg tcacctccct gaaattgcat atatgtatat agacatgcac 5460
acgtgtgcat ttgtttgtat acatatattt gtccttcgta tagcaagttt tttgctcatc 5520
agcagagagc aacagatgtt ttattgagtg aagccttaaa aagcacacac cacacagc 5580
taactgccaa aatacattga ccgtagtagc tgttcaactc ctagtactta gaaatacacg 5640
tatggttaat gttcagtcca acaaaccaca cacagtaaat gtttattaat agtcatggtt 5700
cgtattttag gtgactgaaa ttgcaacagt gatcataatg aggtttgtta aaatgatagc 5760
tatattcaaa atgtctatat gtttatttgg acttttgagg ttaaaagacag tcatataaac 5820
gtcctgtttc tgttttaatg ttatcataga attttttaat gaaactaaat tcaattgaaa 5880
taaatgatag ttttcatctc caaaaaaaaa aaaaaaaagg gcggccgctc gagtctagag 5940
ggcccgttta aacccgctga tcagcctcga ctgtgccttc tagttgccag ccatctgttg 6000
tttgcccctc ccccgtgcct tccttgaccc tggaaggtgc cactcccact gtcctttcct 6060
                                                                   6082
aataaaatga ggaaattgca tc
<210> 536
<211> 6140
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(6140)
```

<223> n=A,T,C or G

<400> 536

cagiggogea gictcagete actgeageet coaceteetg tgitcaagea gicctcetge 60 ctcagccacc agactageag gtctcccccg cctctttctt ggaaggacac ttgccattgg 120 atttaggacc cacttggata atccaggatg atgtcttcac tccaacatcc tcagtttaat 180 recatgigea aataceetti teecaaataa eatteaatte titaceagga aaggiggete 240 aatoootigt ttaaaattgg ocataaacgg agattagagg aagatgatat gtattcagtg 300 stgecagaag accgeteaca geacettgga gaggagttge aagggttetg ggataaagaa 360 gttttaagag ctgagaatga cgcacagaag ccttctttaa caagagcaat cataaagtgt 420 tactggaaat ettatttagt titigggaatt titaegttaa tigaggaaag tgecaaagta 480 atccagccca tatttttggg aaaaattatt aattattttg aaaattatga tcccatggat 540 ectgtggctt tgaacacage gtacgectat gecaeggtge tgaetttttg caegeteatt 600 stagectatae tgeateaett atatttttat eaegtteagt gtgetgggat gaggttaega 660 gtagecatgt gecatatgat ttateggaag geacttegte ttagtaacat ggecatgggg 720 aagacaacca caggccagat agtcaatctg ctgtccaatg atgtgaacaa gtttgatcag 780 gtgacagtgt tettacaett eetgtgggea ggaccaetge aggegatege agtgactgee 840 ctactctgga tggagatagg aatatcgtgc cttgctggga tggcagttct aatcattctc 900 ctgcccttgc aaagctgttt tgggaagttg ttctcatcac tgaggagtaa aactgcaact 960 ttcacggatg ccaggatcag gaccatgaat gaagttataa ctggtataag gataataaaa 1020 atgtacgcct gggaaaagtc attttcaaat cttattacca atttgagaaa gaaggagatt 1080 tecaagatte tgagaagtte etgeeteagg gggatgaatt tggettegtt ttteagtgea 1140 agcaaaatca tegtgtttgt gaeetteace acetaegtge teeteggeag tgtgateaca 1200 gccagccgcg tgttcgtggc agtgacgctg tatggggctg tgcggctgac ggttaccctc 1260 ttcttcccct cagccattga gagggtgtca gaggcaatcg tcagcatccg aagaatccag 1320 acctttttgc tacttgatga gatatcacag cgcaaccgtc agctgccgtc agatggtaaa 1380 aagatggtgc atgtgcagga ttttactgct ttttgggata aggcatcaga gaccccaact 1440 ctacaaggcc tttcctttac tgtcagacct ggcgaattgt tagctgtggt cggcccgtg 1500 ggagcaggga agtcatcact gttaagtgcc gtgctcgggg aattggcccc aagtcacggg 1560 ctggtcagcg tgcatggaag aattgcctat gtgtctcagc agccctgggt gttctcggga 1620 actctgagga gtaatatttt atttgggaag aaatacgaaa aggaacgata tgaaaaagtc 1680 ataaaggett gtgetetgaa aaaggattta cagetgttgg aggatggtga tetgaetgtg 1740 ataggagatc ggggaaccac gctgagtgga gggcagaaag cacgggtaaa ccttgcaaga 1800 gcagtgtatc aagatgctga catctatctc ctggacgatc ctctcagtgc agtagatgcg 1860 gaagttagca gacacttgtt cgaactgtgt atttgtcaaa ttttgcatga gaagatcaca 1920 attttagtga ctcatcagtt gcagtacctc aaagctgcaa gtcagattct gatattgaaa 1980 gatggtaaaa tggtgcagaa ggggacttac actgagttcc taaaatctgg tatagatttt 2040 ggctcccttt taaagaagga taatgaggaa agtgaacaac ctccagttcc aggaactccc 2100 acactaagga atcgtacctt ctcagagtct tcggtttggt ctcaacaatc ttctagaccc 2160 teettgaaag atggtgetet ggagageeaa gatacagaga atgteecagt tacactatea 2220 gaggagaacc gttctgaagg aaaagttggt tttcaggcct ataagaatta cttcagagct 2280 ggtgctcact ggattgtctt cattttcctt attctcctaa acactgcagc tcaggttgcc 2340 tatgtgcttc aagattggtg gctttcatac tgggcaaaca aacaaagtat gctaaatgtc 2400 actgtaaatg gaggaggaaa tgtaaccgag aagctagatc ttaactggta cttaggaatt 2460 tattcaggtt taactgtagc taccgttctt tttggcatag caagatctct attggtattc 2520 tacgtccttg ttaactcttc acaaactttg cacaacaaaa tgtttgagtc aattctgaaa 2580 geteeggtat tattetttga tagaaateea ataggaagaa ttttaaateg ttteteeaaa 2640 gacattggac acttggatga tttgctgccg ctgacgtttt tagatttcat ccagacattg 2700 ctacaagtgg ttggtgtggt ctctgtggct gtggccgtga ttccttggat cgcaataccc 2760 ttggttcccc ttggaatcat tttcattttt cttcggcgat attttttgga aacgtcaaga 2820 gatgtgaage geetggaate tacaactegg agtecagtgt ttteceaett gteatettet 2880 ctccaggggc tctggaccat ccgggcatac aaagcagaag agaggtgtca ggaactgttt 2940 gatgcacacc aggatttaca ttcagaggct tggttcttgt ttttgacaac gtcccgctgg 3000 ttcgccgtcc gtctggatgc catctgtgcc atgtttgtca tcatcgttgc ctttgggtcc 3060 ctgattctgg caaaaactct ggatgccggg caggttggtt tggcactgtc ctatgccctc 3120 acgctcatgg ggatgtttca gtggtgtgtt cgacaaagtg ctgaagttga gaatatgatg 3180 atctcagtag aaagggtcat tgaatacaca gaccttgaaa aagaagcacc ttgggaatat 3240 cagaaacgcc caccaccagc ctggccccat gaaggagtga taatctttga caatgtgaac 3300 tcatgtaca gtccaggtgg gcctctggta ctgaagcatc tgacagcact cattaaatca 3360 caagaaaagg ttggcattgt gggaagaacc ggagctggaa aaagttccct catctcagcc 3420 ctttttagat tgtcagaacc cgaaggtaaa atttggattg ataagatctt gacaactgaa 3480

```
attggacttc acgatttaag gaagaaaatg tcaatcatac ctcaggaacc tgttttgttc 3540
actggaacaa tgaggaaaaa cctggateec tttaatgage acaeggatga ggaactgtgg 3600
aatgeettae aagaggtaea aettaaagaa accattgaag atetteetgg taaaatggat 3660
actgaattag cagaatcagg atccaatttt agtgttggac aaagacaact ggtgtgcctt 3720
qccaqqqcaa ttctcaqqaa aaatcaqata ttqattattq atgaagcgac ggcaaatgtg 3780
gatccaagaa ctgatgagtt aatacaaaaa aaaatccggg agaaatttgc ccactgcacc 3840
gtgctaacca ttgcacacag attgaacacc attattgaca gcgacaagat aatqqtttta 3900
gattcaggaa gactgaaaga atatgatgag ccgtatgttt tgctgcaaaa taaagagagc 3960
ctattttaca agatggtgca acaactgggc aaggcagaag ccgctgccct cactgaaaca 4020
gcaaaacaqa qatqqqqttt caccatqttq gccaqqctqq tctcaaactc ctgacctcaa 4080
gtgatccacc tgccttggcc tcccaaactg ctgagattac aggtgtgagc caccacgccc 4140
agectgagta tacttcaaaa gaaattatee acatattggt cacactgace acatggttac 4200
aaacacttcc aatggacagc cctcgacctt aactattttc gagacagcac tgtgaatcca 4260
accaaaatqt caaqtccgtt ccgaaggcat ttgccactag tttttggact atgtaaacca 4320
cattgtactt ttttttactt tggcaacaaa tatttataca tacaagatgc tagttcattt 4380
gaatatttct cccaacttat ccaaggatct ccagctctaa caaaatggtt tatttttatt 4440
taaatgtcaa tagtkgkttt ttaaaatcca aatcagaggt gcaggccacc agttaaatgc 4500
cgtctatcag gttttgtgcc ttaagagact acagnagtca gaagctcatt tttaaaggag 4560
taggacagag ttgtcacagg tttttgttgg tgtttktatt gcccccaaaa ttacatgtta 4620
atttccattt atatcagggg attctattta cttgaagact gtgaagttgc cattttgtct 4680
cattgttttc tttgacatam ctaggatcca ttatttcccc tgaaggcttc ttgkagaaaa 4740
tagtacagtt acaaccaata ggaactamca aaaagaaaaa gtttgtgaca ttgtagtagg 4800
gagtgtgtac cccttactcc ccatcaaaaa aaaaaatgga tacatggtta aaggatagaa 4860
gggcaatatt ttatcatatg ttctaaaaga gaaggaagag aaaatactac tttctcaaaa 4920
tggaagccct taaaggtgct ttgatactga aggacacaaa tgtgaccgtc catcctcctt 4980
tagagttgca tgacttggac acggtaactg ttgcagtttt agactcagca ttgtgacact 5040
teccaagaag gecaaacete taacegacat teetgaaata egtggeatta ttettttttg 5100
gatttctcat ttaggaaggc taaccctctg ttgamtgtam kccttttggt ttgggctgta 5160
ttgaaateet ttetaaattg catgaatagg etetgetaac egtgatgaga caaactgaaa 5220
attattgcaa gcattgacta taattatgca gtacgttctc aggatgcatc caggggttca 5280
ttttcatgag cctgtccagg ttagtttact cctgaccact aatagcattg tcatttgggc 5340
tttctqttqa atqaatcaac aaaccacaat acttcctggg accttttgta ctttatttga 5400
actatgagtc tttaattttt cctgatgatg gtggctgtaa tatgttgagt tcagtttact 5460
aaaggtttta ctattatggt ttgaagggag tctcatgacc tctcagaaaa ggtgcacctc 5520
cctgaaattg catatatgta tatagacatg cacacgtgtg catttgtttg tatacatata 5580
tttgtccttc gtatagcaag ttttttgctc atcagcagag agcaacagat gttttattga 5640
gtgaagcett aaaaagcaca caccacaca agctaactge caaaatacat tgaccgtagt 5700
agctgttcaa ctcctagtac ttagaaatac acgtatggtt aatgttcagt ccaacaaacc 5760
acacacagta aatgtttatt aatagtcatg gttcgtattt taggtgactg aaattgcaac 5820
agtgatcata atgaggtttg ttaaaatgat agctatattc aaaatgtcta tatgtttatt 5880
tggacttttg aggttaaaga cagtcatata aacgtcctgt ttctgtttta atgttatcat 5940
agaatttttt aatgaaacta aattcaattg aaataaatga tagttttcat ctccaaaaaa 6000
aaaaaaaaa qgcggcccqc tcqaqtctag agggcccggt ttaaacccgc tgatcagcct 6060
cgactgtgcc ttctagttgc cagccatctg ttgtttggcc ctccccgtg ccttccttga 6120
ccctggaagg ggccactccc
<210> 537
<211> 1228
<212> PRT
<213> Homo sapiens
<400> 537
Met Leu Pro Val Tyr Gln Glu Val Lys Pro Asn Pro Leu Gln Asp Ala
```

Asn Leu Cys Ser Arg Val Phe Phe Trp Trp Leu Asn Pro Leu Phe Lys

Il€	e Gly	7 Hi:	s Ly: 5	s Arg	g Arg	Leu	Glu 40	Glu	ı Asp	Asp) Met	Ty:		r Val	Leu
Pro	50 50	ı Ası	o Ar	g Ser	Gln	His 55		Gl _y	/ Glu	ı Glu	Leu 60		n Gly	y Ph∈	Trp
Asp 65	Lys	Glı	ı Val	l Leu	Arg 70	Ala	Glu	Asn	Asp	75		Lys	Pro	Ser	Leu 80
Thr	Arg	r Ala	a Il€	Ile 85	Lys	Cys	Tyr	Trp	90		Туг	Leu	ı Val	. Leu 95	Gly
Ile	Phe	Thr	100	ı Ile	Glu	Glu	Ser	Ala 105		Val	Ile	Gln	Pro		Phe
Leu	Gly	Lys 115	Ile	e Ile	Asn	Tyr	Phe 120	Glu	Asn	Tyr	Asp	Pro 125		Asp	Ser
Val	Ala 130	Leu	Asn	Thr	Ala	Tyr 135	Ala	Tyr	Ala	Thr	Val 140	Leu	Thr	Phe	Cys
Thr 145	Leu	Ile	Leu	Ala	Ile 150	Leu	His	His	Leu	Tyr 155	Phe	Tyr	His	Val	Gln 160
Cys	Ala	Gly	Met	Arg 165	Leu	Arg	Val	Ala	Met 170	Суз	His	Met	Ile	Tyr 175	Arg
Lys	Ala	Leu	Arg 180	Leu	Ser	Asn	Met	Ala 185	Met	Gly	Lys	Thr	Thr 190	Thr	Gly
Gln	Ile	Val 195	Asn	Leu	Leu	Ser	Asn 200	Asp	Val	Asn	Lys	Phe 205	Asp	Gln	Val
Thr	Val 210	Phe	Leu	His	Phe	Leu 215	Trp	Ala	Gly	Pro	Leu 220	Gln	Ala	Ile	Ala
Val 225	Thr	Ala	Leu	Leu	Trp 230	Met	Glu	Ile	Gly	Ile 235	Ser	Cys	Leu	Ala	Gly 240
Met	Ala	Val	Leu	Ile 245	Ile	Leu	Leu	Pro	Leu 250	Gln	Ser	Cys	Phe	Gly 255	Lys
Leu	Phe	Ser	Ser 260	Leu	Arg	Ser	Lys	Thr 265	Ala	Thr	Phe	Thr	Asp 270	Ala	Arg

Tyr Ala Trp Glu Lys Ser Phe Ser Asn Leu Ile Thr Asn Leu Arg Lys 290 295 300

Ile Arg Thr Met Asn Glu Val Ile Thr Gly Ile Arg Ile Ile Lys Met

Lys Glu Ile Ser Lys Ile Leu Arg Ser Ser Cys Leu Arg Gly Met Asn 305 310 315 320

Leu Ala Ser Phe Phe Ser Ala Ser Lys Ile Ile Val Phe Val Thr Phe 325 330 335

Thr Thr Tyr Val Leu Leu Gly Ser Val Ile Thr Ala Ser Arg Val Phe

			340					345					350		
Val	Ala	Val 355	Thr	Leu	Tyr	Gly	Ala 360	Val	Arg	Leu	Thr	Val 365	Thr	Leu	Phe
Phe	Pro 370	Ser	Ala	Ile	Glu	Arg 375	Val	Ser	Glu	Ala	Ile 380	Val	Ser	Ile	Arg
Arg 385	Ile	Gln	Thr	Phe	Leu 390	Leu	Leu	Asp	Glu	Ile 395	Ser	Gln	Arg	Asn	Arg 400
Gln	Leu	Pro	Ser	Asp 405	Gly	Lys	Lys	Met	Val 410	His	Val	Gln	Asp	Phe 415	Thr
Ala	Phe	Trp	Asp 420	Lys	Ala	Ser	Glu	Thr 425	Pro	Thr	Leu	Gln	Gly 430	Leu	Ser
Phe	Thr	Val 435	Arg	Pro	Gly	Glu	Leu 440	Leu	Ala	Val	Val	Gly 445	Pro	Val	Gly
Ala	Gly 450	Lys	Ser	Ser	Leu	Leu 455	Ser	Ala	Val	Leu	Gly 460	Glu	Leu	Ala	Pro
Ser 465	His	Gly	Leu	Val	Ser 470	Val	His	Gly	Arg	Ile 475	Ala	Tyr	Val	Ser	Gln 480
Gln	Pro	Trp	Val	Phe 485	Ser	Gly	Thr	Leu	Arg 490	Ser	Asn	Ile	Leu	Phe 495	Gly
Lys	Lys	Tyr	Glu 500	Lys	Glu	Arg	Tyr	Glu 505	Lys	Val	Ile	Lys	Ala 510	Cys	Ala
Leu	Lys	Lys 515	Asp	Leu	Gln	Leu	Leu 520	Glu	Asp	Gly	Asp	Leu 525	Thr	Val	Ile
Gly	Asp 530		Gly	Thr	Thr	Leu 535		Gly	Gly	Gln	Lys 540		Arg	Val	Asn
Leu 545	Ala	Arg	Ala	Val	Tyr 550	Gln	Asp	Ala	Asp	Ile 555	Tyr	Leu	Leu	Asp	Asp 560
Pro	Leu	Ser	Ala	Val 565		Ala	Glu	Val	Ser 570	Arg	His	Leu	Phe	Glu 575	Leu
Cys	Ile	Суз	Gln 580		Leu	His	Glu	Lys 585		Thr	Ile	Leu	Val 590	Thr	His
Gln	Leu	Gln 595		Leu	Lys	Ala	Ala 600		Gln	Ile	Leu	11e 605	Leu	Lys	Asp
Gly	Lys 610		Val	Gln	Lys	Gly 615		Tyr	Thr	Glu	Phe 620	Leu	Lys	Ser	Gly
Ile 625		Phe	Gly	Ser	Leu 630		Lys	Lys	Asp	Asn 635		Glu	Ser	Glu	Gln 640
Pro	Pro	Val	Pro	Gly 645		Pro	Thr	Leu	Arg 650		Arg	Thr	Phe	Ser 655	Glu

Se:	r Se	r Va	1 Trp 660	p Se.	r Gli	n Glr	n Se:	r Se: 66!		g Pro	Ser	r Leu	1 Lys 670	_	Gly
Ala	a Lei	u Gl: 67.	u Sei 5	c Gli	n Asp	Thi	680		. Val	l Pro	∨al	. Thr 685		i Sei	Glu
Glı	1 Ası 690	n Aro	g Ser	Glı	Gl3	/ Lys 695		L Gly	/ Ph€	∋ Gln	Ala 700		Lys	Asr	Tyr
Phe 705	Arq	g Ala	a Gly	/ Ala	His 710) Ile	e Val	. Phe	715		Leu	Ile	Leu	Leu 720
Asr	Thi	Ala	a Ala	Glr 725	val	Ala	Tyr	. Val	Leu 730		Asp	Trp	Trp	Leu 735	Ser
Туг	Trp	> Ala	740	Lys	Gln	Ser	Met	Leu 745		Val	Thr	Val	Asn 750		Gly
Gly	Asr	Val 755	Thr	Glu	Lys	Leu	Asp 760		Asn	Trp	Tyr	Leu 765	Gly	Ile	Tyr
Ser	Gl ₃ 770	Leu I	Thr	Val	Ala	Thr 775	Val	Leu	Phe	Gly	Ile 780	Ala	Arg	Ser	Leu
Leu 785	Val	Phe	Tyr	Val	Leu 790	Val	Asn	Ser	Ser	Gln 795	Thr	Leu	His	Asn	Lys 800
Met	Phe	Glu	Ser	Ile 805	Leu	Lys	Ala	Pro	Val 810	Leu	Phe	Phe	Asp	Arg 815	Asn
Pro	Ile	Gly	Arg 820	Ile	Leu	Asn	Arg	Phe 825	Ser	Lys	Asp	Ile	Gly 830	His	Leu
Asp	Asp	Leu 835	Leu	Pro	Leu	Thr	Phe 840	Leu	Asp	Phe	Ile	Gln 845	Thr	Leu	Leu
Gln	Val 850	Val	Gly	Val	Val	Ser 855	Val	Ala	Val	Ala	Val 860	Ile	Pro	Trp	Ile
Ala 865	Ile	Pro	Leu	Val	Pro 870	Leu	Gly	Ile	Ile	Phe 875	Ile	Phe	Leu	Arg	Arg 880
Tyr	Phe	Leu	Glu	Thr 885	Ser	Arg	Asp	Val	Lys 890	Arg	Leu	Glu	Ser	Thr 895	Thr
Arg	Ser	Pro	Val 900	Phe	Ser	His	Leu	Ser 905	Ser	Ser	Leu	Gln	Gly 910	Leu	Trp
Thr	Ile	Arg 915	Ala	Tyr	Lys	Ala	Glu 920	Glu	Arg	Cys		Glu 925	Leu	Phe	Asp
Ala	His 930	Gln	Asp	Leu	His	Ser 935	Glu	Ala	Trp	Phe	Leu 940	Phe	Leu	Thr	Thr
Ser 945	Arg	Trp	Phe	Ala	Val 950	Arg	Leu	Asp		Ile 955	Cys .	Ala	Met	Phe	Val 960

- Ile Ile Val Ala Phe Gly Ser Leu Ile Leu Ala Lys Thr Leu Asp Ala 965 970 975
- Gly Gln Val Gly Leu Ala Leu Ser Tyr Ala Leu Thr Leu Met Gly Met 980 985 990
- Phe Gln Trp Cys Val Arg Gln Ser Ala Glu Val Glu Asn Met Met Ile 995 1000 1005
- Ser Val Glu Arg Val Ile Glu Tyr Thr Asp Leu Glu Lys Glu Ala Pro 1010 1015 1020
- Trp Glu Tyr Gln Lys Arg Pro Pro Pro Ala Trp Pro His Glu Gly Val 1025 1030 1035 1040
- Ile Ile Phe Asp Asn Val Asn Phe Met Tyr Ser Pro Gly Gly Pro Leu 1045 1050 1055
- Val Leu Lys His Leu Thr Ala Leu Ile Lys Ser Gln Glu Lys Val Gly 1060 1065 1070
- Ile Val Gly Arg Thr Gly Ala Gly Lys Ser Ser Leu Ile Ser Ala Leu 1075 1080 1085
- Phe Arg Leu Ser Glu Pro Glu Gly Lys Ile Trp Ile Asp Lys Ile Leu 1090 1095 1100
- Thr Thr Glu Ile Gly Leu His Asp Leu Arg Lys Lys Met Ser Ile Ile 1105 1110 1115 1120
- Pro Gln Glu Pro Val Leu Phe Thr Gly Thr Met Arg Lys Asn Leu Asp 1125 1130 1135
- Pro Phe Asn Glu His Thr Asp Glu Glu Leu Trp Asn Ala Leu Gln Glu 1140 1145 1150
- Val Gln Leu Lys Glu Thr Ile Glu Asp Leu Pro Gly Lys Met Asp Thr 1155 1160 1165
- Glu Leu Ala Glu Ser Gly Ser Asn Phe Ser Val Gly Gln Arg Gln Leu 1170 1175 1180
- Val Cys Leu Ala Arg Ala Ile Leu Arg Lys Asn Gln Ile Leu Ile Ile 1185 1190 1195 1200
- Asp Glu Ala Thr Ala Asn Val Asp Pro Arg Thr Asp Glu Leu Ile Gln 1205 1210 1215
- Lys Lys Ser Gly Arg Asn Leu Pro Thr Ala Pro Cys 1220 1225
- <210> 538
- <211> 1261
- <212> PRT
- <213> Homo sapiens
- <400> 538
- Met Tyr Ser Val Leu Pro Glu Asp Arg Ser Gln His Leu Gly Glu Glu

				ŗ	5				1	0				1	5
Le:	Glı	n Gl	y Phe 20	e Trp	o Ası	o Lys	s Gli	ı Val 25		u Ar	g Ala	a Gl	ı As: 3		p Ala
Glr	Ly:	s Pro	o Ser 5	Lei	ı Thi	r Arg	, Ala 40		e Ile	e Ly.	s Cys	з Туг 45		p Ly	s Ser
Туг	Let 50	u Val	l Leı	ı Gly	≀ Il∈	Phe 55	Thr	Leu	ı Ile	e Gl:	ı Glı 60		Ala	a Ly:	s Val
Ile 65	Glr	n Pro	o Ile	e Fhe	Leu 70	ı Gly	Lys	: Ile	e Ile	Ası 75		: Phe	e Glu	ı Ası	n Tyr 80
t'sb	Pro) Met	: Asp	Ser 85	Val	Ala	Leu	Asr	Thr 90		a Tyr	Ala	туг	Ala 95	a Thr
Val	Leu	ı Thr	Phe 100		Thr	Leu	Ile	Leu 105		ıle	e Leu	His	His		ı Tyr
Phe	Tyr	His 115	Val	Gln	Cys	Ala	Gly 120		Arg	Lev	ı Arg	Val 125		Met	: Cys
His	Met 130	Ile	Tyr	Arg	Lys	Ala 135	Leu	Arg	Leu	Ser	Asn 140		Ala	Met	Gly
Lys 145	Thr	Thr	Thr	Gly	Gln 150	Ile	Val	Asn	Leu	Leu 155		Asn	Asp	Val	Asn 160
Lys	Phe	Asp	Gln	Val 165	Thr	Val	Phe	Leu	His 170	Phe	Leu	Trp	Ala	Gly 175	
Leu	Gln	Ala	Ile 180	Ala	Val	Thr	Ala	Leu 185	Leu	Trp	Met	Glu	Ile 190	Gly	Ile
Ser	Cys	Leu 195	Ala	Gly	Met	Ala	Val 200	Leu	Ile	Ile	Leu	Leu 205	Pro	Leu	Gln
Ser	Cys 210	Phe	Gly	Lys	Leu	Phe 215	Ser	Ser	Leu	Arg	Ser 220	Lys	Thr	Ala	Thr
Phe 225	Thr	Asp	Ala	Arg	Ile 230	Arg	Thr	Met	Asn	Glu 235	Val	Ile	Thr	Gly	Ile 240
Arg	Ile	Ile	Lys	Met 245	Tyr	Ala	Trp	Glu	Lys 250	Ser	Phe	Ser	Asn	Leu 255	Ile
Thr	Asn	Leu	Arg 260	Lys	Lys	Glu	Ile	Ser 265	Lys	Ile	Leu	Arg	Ser 270	Ser	Cys
eu	Arg	Gly 275	Met	Asn	Leu	Ala	Ser 280	Phe	Phe	Ser	Ala	Ser 285	Lys	Ile	Ile
7al	Phe 290	Val	Thr	Phe	Thr	Thr 295	Tyr	Val	Leu	Leu	300	Ser	Val	Ile	Thr
Ala 805	Ser	Arg	Val		Val 310	Ala	Val	Thr	Leu	Tyr 315	Gly	Ala	Val	Arg	Leu 320

Thr	· Val	Thr	Leu	Phe 325	Phe	Pro	Ser	Ala	Ile 330	Glu	Arg	Val	Ser	Glu 335	Ala
Ile	· Val	Ser	Ile 340	Arg	Arg	Ile	Gln	Thr 345	Phe	Leu	Leu	Leu	Asp 350	Glu	Ile
Ser	Gln	Arg 355	Asn	Arg	Gln	Leu	Pro 360	Ser	Asp	Gly	Lys	Lys 365	Met	Val	His
Val	Gln 370	Asp	Phe	Thr	Ala	Phe 375	Trp	Asp	Lys	Ala	Ser 380	Glu	Thr	Pro	Thr
Let 385	Gln	Gly	Leu	Ser	Phe 390	Thr	Val	Arg	Pro	Gly 395	Glu	Leu	Leu	Ala	Val 400
Va]	Gly	Pro	Val	Gly 405	Ala	Gly	Lys	Ser	Ser 410	Leu	Leu	Ser	Ala	Val 415	Leu
Gly	Glu	Leu	Ala 420	Pro	Ser	His	Gly	Leu 425	Val	Ser	Val	His	Gly 430	Arg	Ile
Ala	Tyr	Val 435	Ser	Gln	Gln	Pro	Trp 440	Val	Phe	Ser	Gly	Thr 445	Leu	Arg	Ser
Ası	11e 450	Leu	Phe	Gly	Lys	Lys 455	Tyr	Glu	Lys	Glu	Arg 460	Tyr	Glu	Lys	Val
11e 465	E Lys	Ala	Cys	Ala	Leu 470	Lys	Lys	Asp	Leu	Gln 475	Leu	Leu	Glu	Asp	Gly 480
Asp	Leu	Thr	Val	Ile 485	Gly	Asp	Arg	Gly	Thr 490	Thr	Leu	Ser	Gly	Gly 495	Gln
Lys	s Ala	Arg	Val 500	Asn	Leu	Ala	Arg	Ala 505	Val	Tyr	Gln	Asp	Ala 510	Asp	Ile
ТУ	Leu	Leu 515	Asp	Asp	Pro	Leu	Ser 520	Ala	Val	Asp	Ala	Glu 525	Val	Ser	Arg
	530					535					540				
116 545	e Leu	Val	Thr	His	Gln 550	Leu	Gln	Tyr	Leu	Lys 555	Ala	Ala	Ser	Gln	Ile 560
Le	ı Ile	Leu	Lys	Asp 565	Gly	Lys	Met	Val	Gln 570	Lys	Gly	Thr	Tyr	Thr 575	Glu
Phe	e Leu	Lys	Ser 580	Gly	Ile	Asp	Phe	Gly 585	Ser	Leu	Leu	Lys	Lys 590	Asp	Asn
Glı	ı Glu	Ser 595		Gln	Pro	Pro	Val 600	Pro	Gly	Thr	Pro	Thr 605	Leu	Arg	Asn
Ar	Thr 610	Phe	Ser	Glu	Ser	Ser 615	Val	Trp	Ser	Gln	Gln 620	Ser	Ser	Arg	Pro

Ser 625		Lys	Asp	Gly	Ala 630	Leu	Glu	Ser	Gln	Asp 635		Glu	Asn	Val	Pro 640
Val	Thr	Leu	Ser	Glu 645	Glu	Asn	Arg	Ser	Glu 650		Lys	Val	Gly	Phe 655	Gln
Ala	Tyr	Lys	Asn 660		Phe	Arg	Ala	Gly 665		His	Trp	Ile	Val 670	Phe	Ile
Phe	Leu	Ile 675		Leu	Asn	Thr	Ala 680	Ala	Gln	Val	Ala	Tyr 685		Leu	Gln
Asp	Trp 690	Trp	Leu	Ser	Tyr	Trp 695		Asn	Lys	Gln	Ser 700	Met	Leu	Asn	Val
Thr 705	Val	Asn	Gly	Gly	Gly 710	Asn	Val	Thr	Glu	Lys 715	Leu	Asp	Leu	Asn	Trp 720
Tyr	Leu	Gìy	Il€	Tyr 725	Ser	Gly	Leu	Thr	Val 730	Ala	Thr	Val	Leu	Phe 735	Gly
Ile	Ala	Arg	Ser 7 4 0	Leu	Leu	Vāl	Phe	Tyr 745	Val	Leu	Val	Asn	Ser 750	Ser	Gln
Thr	Leu	His 755	Asn	Lys	Met	Phe	Glu 760	Ser	Ile	Leu	Lys	Ala 765	Pro	Val	Leu
Phe	Phe 770	Asp	Arg	Asn	Pro	Ile 775	Gly	Arg	Ile	Leu	Asn 780	Arg	Phe	Ser	Lys
Asp 785	Ile	Gly	His	Leu	Asp 790	Asp	Leu	Leu	Pro	Leu 795	Thr	Phe	Leu	Asp	Phe 800
Ile	Gln	Thr	Leu	Leu 805	Gln	Val	Val	Gly	Val 810	Val	Ser	Val	Ala	Val 815	Ala
Val	Ile	Pro	Trp 820	Ile	Ala	Ile	Pro	Leu 825	Val	Pro	Leu	Gly	Ile 830	Ile	Phe
Ile	Phe	Leu 835	Arg	Arg	Tyr	Phe	Leu 840	Glu	Thr	Ser	Arg	Asp 845	Val	Lys	Arg
Leu	Glu 850	Ser	Thr	Thr	Arg	Ser 855	Pro	Val	Phe	Ser	His 860	Leu	Ser	Ser	Ser
Leu 865	Gln	Gly	Leu	Trp	Thr 870	Ile	Arg	Ala	Tyr	Lys 875	Ala	Glu	Glu	Arg	Cys 880
Gln	Glu	Leu	Phe	Asp 885	Ala	His	Gln	Asp	Leu 890	His	Ser	Glu	Ala	Trp 895	Phe
Leu	Phe	Leu	Thr 900	Thr	Ser	Arg	Trp	Phe 905	Ala	Val	Arg	Leu	Asp 910	Ala	Ile
Cys	Ala	Met 915	Phe	Val	Ile	Ile	Val 920	Ala	Phe	Gly	Ser	Leu 925	Ile	Leu	Ala
Lys	Thr	Leu	Asp	Ala	Gly	Gln	Val	Gly	Leu	Ala	Leu	Ser	Tyr	Ala	Leu

	930					935					940				
Thr 945	Leu	Met	Gly	Met	Phe 950	Gln	Trp	Cys	Val	Arg 955	Gln	Ser	Ala	Glu	Val 960
Glu	Asn	Met	Met	Ile 965	Ser	Val	Glu	Arg	Val 970	Ile	Glu	Tyr	Thr	Asp 975	Leu
Glu	Lys	Glu	Ala 980	Pro	Trp	Glu	Tyr	Gln 985	Lys	Arg	Pro	Pro	Pro 990	Ala	Trp
Pro	His	Glu 995	Gly	Val	Ile	Ile	Phe 100	-	Asn	Val	Asn	Phe 100		Tyr	Ser
Pro	Gly 101		Pro	Leu	Val	Leu 101		His	Leu	Thr	Ala 1020		Ile	Lys	Ser
Gln 102		Lys	Val	Gly	Ile 1030		Gly	Arg	Thr	Gly 1035		Gly	Lys	Ser	Ser 1040
Leu	Ile	Ser	Ala	Leu 1045		Arg	Leu	Ser	Glu 1050		Glu	Gly	Lys	Ile 1055	_
Ile	Asp	Lys	Ile 1060	Leu)	Thr	Thr	Glu	Ile 1065		Leu	His	Asp	Leu 1070		Lys
Lys	Met	Ser 107		Ile	Pro	Gln	Glu 1080		Val	Leu	Phe	Thr 1085	_	Thr	Met
Arg	Lys 109		Leu	Asp	Pro	Phe 1095		Glu	His	Thr	Asp 1100		Glu	Leu	Trp
Asn 1105		Leu	Gln	Glu	Val 1110		Leu	Lys	Glu	Thr 1115		Glu	qaA	Leu	Pro 1120
Gly	Lys	Met	Asp	Thr 1125		Leu	Ala	Glu	Ser 1130		Ser	Asn	Phe	Ser 1135	
Gly	Gln	Arg	Gln 1140	Leu)	Val	Cys	Leu	Ala 1145		Ala	Ile	Leu	Arg 1150	_	Asn
Gln	Ile	Leu 1155		Ile	Asp	Glu	Ala 1160		Ala	Asn	Val	Asp 1165		Arg	Thr
Asp	Glu 1170		Ile	Gln	Lys	Lys 1175		Arg	Glu	Lys	Phe 1180		His	Cys	Thr
Val 1185		Thr	Ile	Ala	His 1190		Leu	Asn	Thr	Ile 1195		Asp	Ser	Asp	Lys 1200
Ile	Met	Val	Leu	Asp 1205		Gly	Arg	Leu	Lys 1210		Tyr	Asp	Glu	Pro 1215	
Val	Leu	Leu	Gln 1220	Asn)	Lys	Glu	Ser	Leu 1225		Tyr	Lys	Met	Val 1230		Gln
Leu	Gly	Lys 1235		Glu	Ala	Ala	Ala 1240		Thr	Glu	Thr	Ala 1245		Gln	Arg

```
Trp Gly Phe Thr Met Leu Ala Arg Leu Val Ser Asn Ser
   1250
 <210> 539
 <:11> 10
 <212> PRT
 3213> Artificial Sequence
 <220>
 <223> Made in a lab
 <400> 539
 Cys Leu Ser His Ser Val Ala Val Val Thr
    5
<210> 540
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Made in a lab
<400> 540
Ala Val Val Thr Ala Ser Ala Ala Leu
    5
<210> 541
<211> 14
<212> PRT
<213> Homo sapiens
:400> 541
Leu Ala Gly Leu Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu
<210> 542
<211> 15
<212> PRT
<213> Homo sapiens
<400> 542
Thr Gln Val Val Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala
                 5
                                    10
<210> 543
<211> 12
<212> PRT
<213> Homo sapiens
<400> 543
Phe Met Gly Ser Ile Val Gln Leu Ser Gln Ser Val
                 5
                                   10
```

<210> 544

<211> 18

<212> PRT

<213> Homo sapiens

<400> 544

Thr Tyr Val Pro Pro Leu Leu Glu Val Gly Val Glu Glu Lys Phe
5 10 15

Met Thr

<210> 545

<211> 18

<212> PRT

<213> Homo sapiens

<400> 545

Met Asp Arg Leu Val Gln Arg Phe Gly Thr Arg Ala Val Tyr Leu Ala 5 10 15

Ser Val

<210> 546

<211> 29

<212> PRT

<213> Homo sapiens

<400> 546

Phe Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly
5 10 15

Thr Glu Ala Arg Arg His Tyr Asp Glu Gly Val Arg Met 20 25

<210> 547

<211> 58

<212> PRT

<213> Homo sapiens

<400> 547

Val Ala Glu Glu Ala Ala Leu Gly Pro Thr Glu Pro Ala Glu Gly Leu
5 10 15

Ser Ala Pro Ser Leu Ser Pro His Cys Cys Pro Cys Arg Ala Arg Leu 20 25 30

Ala Phe Arg Asn Leu Gly Ala Leu Leu Pro Arg Leu His Gln Leu Cys 35 40 45

Cys Arg Met Pro Arg Thr Leu Arg Arg Leu 50 55

```
<210> 548
 <211> 18
 <212> PRT
 <213> Homo sapiens
 <400> 548
 Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu Gly Thr Gln Glu
                                     10
 Glu Cys
 <210> 549
 <211> 18
 <212> PRT
 <213> Homo sapiens
 <400> 549
 Leu Glu Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg
                        10
 Gin Ala
 <210> 550
 <211> 14
<212> PRT
<213> Homo sapiens
<400> 550
Ser Asp His Trp Arg Gly Arg Tyr Gly Arg Arg Pro Phe
       <210> 551
       <211> 11
       <212> PRT
       <213> Artificial Sequence
       <220>
       <223> Made in a lab
       <400> 551
 Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala
<210> 552
<211> 2577
<212> DNA
<213> Homo sapiens
<400≥ 552
agcatatgta acatgacctg tgcttcagtg ttcttttgtg atcaaaaatt ccttactttt 60
agtitttat ctatggtaga accaccaga gcaggggtcc tcaactccca ggccacagac 120
reataceagt ceaeggaeta ttatgaacea caccacacag gaggaggtga geactaggea 180
agecaaggaa getteacetg taettacage cacaegecat ggeteatatt acagectgaa 240
```

```
ctctgcctcc actcagatca gtgataacat tagaaactca ttggagcacg aaccctgttg 300
tgaactgcct atccgaagga tctaggttgt gtgcttcgta tgagaatcta atgccagatg 360
atctatcatt gtctcacttt gcccccagat aagaccatct agttgcagaa aaataagctc 420
agagetteca etgattetae attatggata tgtgeegeeg aageaageae aaageeetae 480
ttttacacat gcctagtgat gcttcatgga caaggcttgg ctctgttgag tccaactaac 540
ctacctgaga ttctgagatt tctcttcaat ggcttcctgt gagctagagt ttgaaaatat 600
cttaaaatct tgagctagag atggaagtag cttggacgat tttcattatc atgtaaatcg 660
ggtcactcaa ggggccaacc acagctggga gccactgctc aggggaaggt tcatatggga 720
ctttctactg cccaaggttc tatacaggat ataaaggtgc ctcacagtat agatctggta 780
gcaaagaaga agaaacaaac actgatetet ttetgecace cetetgaece tttggaacte 840
ctctgaccct ttagaacaag cctacctaat atctgctaga gaaaagacca acaacggcct 900
caaaqqatct cttaccatqa aqqtctcaqc taattcttgg ctaagatgtg ggttccacat 960
taggttctga atatgggggg aagggtcaat ttgctcattt tgtgtgtgga taaagtcagg 1020
atgeceaggg geeagageag ggggetgetg etttgggaae aatggetgag catataacca 1080
taggtatggg aacaaaaaac atcaaagtca ctgtatcaat tgccatgaag actcgaggga 1140
cctqaatcta ccgattcatc ttaaggcagc aggaccagtt tgagtggcaa caatgcagca 1200
qcaqaatcaa tggaaacaac agaatgattg caatgteett ttttttetee teettetgae 1260
ttgataaaag ggaccqtctt ccttggattt agtgaacccc tttggttcct gaaaaattca 1320
aggagtatet aggacatagt ecceaqaaga eagtacaaga etttetgata aactggacat 1380
ttcaagrccc aaataactaa tcagaaaaat caaagatgtg atactatttt ttatcccatg 1440
cataggtgct acacttggat caaatgaaca atgttgggat ctytatggat aaaggtctta 1500
aaagteetga qataaagaat eetgeaceca etggtaette taaettgtet tgttttttgt 1560
ctatgacatc tcacctgata tgtaagatgt aactgttata attattttaa acctcaattt 1680
agcattaact agccttttaa tgtaaacact tacacattat gaygactaga aacagcatac 1740
tctctggccg tctgtccaga tagatcttga gaagatacat caatgttttg ctcaagtaga 1800
aggetgaeta taettgeega tecacaacat acageaagta tgagageagt tetaaaatga 1860
cagagatagg aacagtaata aagttattkt aaaagctaat ttgatatact ttaccaattt 1920
aacatettge etgteegtge agaateaaae atttacatge actaaaagae ataageatet 1980
tcaqtqctca aqtqttcatc tttqtaaaat accaccaaqq ttaaaaggaa gggacaaaaa 2040
aaaaaaaaccc tcttatctca qtqqqqtatt qcataqcaqa agctactaat ttgaagtcct 2100
ttqatqqaca aqaaacaata ttaqqqccac ttatctqaaa tqaacaaaga tttaagtgaa 2160
qatttcatca cagetteect agactqatat qetqtaatag aaaatcaget agggggtaaa 2220
ataaataaga gotototgoa tgotgaaago aagtaagatt aataataatg gtaagaatag 2280
tagtcacagg agtttcagtt aatgatgcca ataagcatgt gctaggcact gaattaaatg 2340
ccacatatat ctttcttatg cgcagcaaac tttgaaggat atattctcct acttttcata 2400
tatgacaaca tatttggtgg taaataacgt tcccaaggtc acacacctag caagtaagaa 2460
aqttaggaat taaacccagt attgtgtgaa tctaaagcct aacttttttc tctttatcac 2520
ccacctacgg cttqtcttca ttaaaggaaa agtgtatcca cttaaaaaaa aaaaaaa
<210> 553
<211> 58
<212> PRT
<213> Homo sapiens
<400> 553
```

Ser Ile Cys Asn Met Thr Cys Ala Ser Val Phe Phe Cys Asp Gln Lys

Phe Leu Thr Phe Ser Phe Leu Ser Met Val Glu Pro Pro Arg Ala Gly 25

Val Leu Asn Ser Gln Ala Thr Asp Ser Tyr Gln Ser Thr Asp Tyr Tyr

Glu Pro His His Thr Gly Gly Glu His

```
<210> 554
```

<211> 59

<212> PRT

<213> Homo sapiens

<400> 554

Leu Gln Lys Asn Lys Leu Arg Ala Ser Thr Asp Ser Thr Leu Trp Ile
5 10 15

Cys Ala Ala Glu Ala Ser Thr Lys Pro Tyr Phe Tyr Thr Cys Leu Val 20 25 30

Met Leu His Gly Gln Gly Leu Ala Leu Leu Ser Pro Thr Asn Leu Pro 35 40 45

Glu Ile Leu Arg Phe Leu Phe Asn Gly Phe Leu 50 55

<210> 555

<211> 71

<212> PRT

<213> Homo sapiens

<400> 555

Leu Gly Arg Phe Ser Leu Ser Cys Lys Ser Gly His Ser Arg Gly Gln
5 10 15

Pro Gln Leu Gly Ala Thr Ala Gln Gly Lys Val His Met Gly Leu Ser $20 \\ 25 \\ 30$

Thr Ala Gln Gly Ser Ile Gln Asp Ile Lys Val Pro His Ser Ile Asp 35 40 45

Leu Val Ala Lys Lys Lys Gln Thr Leu Ile Ser Phe Cys His Pro 50 55 60

Ser Asp Pro Leu Glu Leu Leu
65 70

<210> 556

<211> 81

<212> PRT

<213> Homo sapiens

<400> 556

Asn His Pro Glu Gln Gly Ser Ser Thr Pro Arg Pro Gln Thr His Thr 5 10 15

Ser Pro Arg Thr Ile Met Asn His Thr Thr Gln Glu Glu Val Ser Thr
20 25 30

Arg Gln Ala Lys Glu Ala Ser Pro Val Leu Thr Ala Thr Arg His Gly
35 40 45

Ser Tyr Tyr Ser Leu Asn Ser Ala Ser Thr Gln Ile Ser Asp Asn Ile

50 55 60

Arg Asn Ser Leu Glu His Glu Pro Cys Cys Glu Leu Pro Ile Arg Arg 65 70 75 80

Ile

<210> 557

<211> 54

<212> PRT

<213> Homo sapiens

<400> 557

Ser Leu Ser Ala Thr Pro Leu Thr Leu Trp Asn Ser Ser Asp Pro Leu
5 10 15

Glu Gln Ala Tyr Leu Ile Ser Ala Arg Glu Lys Thr Asn Asn Gly Leu 20 25 30

Lys Gly Ser Leu Thr Met Lys Val Ser Ala Asn Ser Trp Leu Arg Cys 35 40 45

Gly Phe His Ile Arg Phe 50

<210> 558

<211> 77

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> (1)...(77)

<223> Xaa = Any amino acid

<400> 558

Asn Asp Arg Asp Arg Asn Ser Asn Lys Val Ile Xaa Lys Ala Asn Leu
5 10 15

Ile Tyr Phe Thr Asn Leu Thr Ser Cys Leu Ser Val Gln Asn Gln Thr 20 25 30

Phe Thr Cys Thr Lys Arg His Lys His Leu Gln Cys Ser Ser Val His 35 40 45

Leu Cys Lys Ile Pro Pro Arg Leu Lys Gly Arg Asp Lys Lys Lys 50 55 60

Pro Ser Tyr Leu Ser Gly Val Leu His Ser Arg Ser Tyr 65 70 75

<210> 559

<211> 50

<212> PRT

```
<213> Homo sapiens
```

<400> 559

Thr Leu Pro Pro Leu Arg Ser Val Ile Thr Leu Glu Thr His Trp Ser 5 10 15

Thr Asn Pro Val Val Asn Cys Leu Ser Glu Gly Ser Arg Leu Cys Ala
20 25 30

Ser Tyr Glu Asn Leu Met Pro Asp Asp Leu Ser Leu Ser His Phe Ala 35 40 45

Pro Arg 50

<210> 560

<211> 56

<212> PRT

<213> Homo sapiens

<400> 560

The Gly Ser Leu Lys Gly Pro Thr Thr Ala Gly Ser His Cys Ser Gly
5 10 15

Glu Gly Ser Tyr Gly Thr Phe Tyr Cys Pro Arg Phe Tyr Thr Gly Tyr
20 25 30

Lys Gly Ala Ser Gln Tyr Arg Ser Gly Ser Lys Glu Glu Glu Thr Asn 35 40 45

Thr Asp Leu Phe Leu Pro Pro Leu 50 55

<210> 561

<211> 57

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> (1)...(57)

<223> Xaa = Any amino acid

<400> 561

Val Leu His Leu Asp Gln Met Asn Asn Val Gly Ile Xaa Met Asp Lys 5 10 15

Gly Leu Lys Ser Pro Glu Ile Lys Asn Pro Ala Pro Thr Gly Thr Ser 20 25 30

Asn Leu Ser Cys Phe Leu Ser Xaa Phe Trp Leu Met Gln Gly Thr Asn 35 40 45

Ser Leu Pro Arg Glu Asn Tyr Leu Asn 50 55

```
<210> 562
<211> 59
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (1)...(59)
<223> Xaa = Any amino acid
Asp Leu Tyr Pro Xaa Arg Ser Gln His Cys Ser Phe Asp Pro Ser Val
Ala Pro Met His Gly Ile Lys Asn Ser Ile Thr Ser Leu Ile Phe Leu
Ile Ser Tyr Leu Xaa Leu Glu Met Ser Ser Leu Ser Glu Ser Leu Val
                             40
Leu Ser Ser Gly Asp Tyr Val Leu Asp Thr Pro
                         55
<210> 563
<211> 79
<212> PRT
<213> Homo sapiens
<400> 563
Cys Phe Leu Phe Pro Tyr Leu Trp Leu Tyr Ala Gln Pro Leu Phe Pro
Lys Gln Gln Pro Pro Ala Leu Ala Pro Gly His Pro Asp Phe Ile His
             20
Thr Gln Asn Glu Gln Ile Asp Pro Ser Pro His Ile Gln Asn Leu Met
                             40
Trp Asn Pro His Leu Ser Gln Glu Leu Ala Glu Thr Phe Met Val Arg
Asp Pro Leu Arg Pro Leu Leu Val Phe Ser Leu Ala Asp Ile Arg
                     70
<210> 564
<211> 64
<212> PRT
<213> Homo sapiens
<400> 564
Ala Cys Ser Lys Gly Ser Glu Glu Phe Gln Arg Val Arg Gly Val Ala
```

Glu Arg Asp Gln Cys Leu Phe Leu Leu Leu Cys Tyr Gln Ile Tyr Thr

25

```
Val Arg His Leu Tyr Ile Leu Tyr Arg Thr Leu Gly Ser Arg Lys Ser 35 40 45
```

His Met Asn Leu Pro Leu Ser Ser Gly Ser Gln Leu Trp Leu Ala Pro 50 55 60

<210> 565

<211> 57

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> (1)...(57)

<223> Xaa = Any amino acid

<400> 565

Leu Tyr Tyr Cys Ser Tyr Leu Cys His Phe Arg Thr Ala Leu Ile Leu
5 10 15

Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Leu Leu Glu Gln
20 25 30

Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Arg Glu 35 40 45

Tyr Ala Val Ser Ser Xaa His Asn Val 50 55

<210> 566

<211> 55

<212> PRT

<213> Homo sapiens

<400> 566

Ile Leu Leu Glu Phe Phe Arg Asn Gln Arg Gly Ser Leu Asn Pro Arg
5 10 15

Lys Thr Val Pro Phe Ile Lys Ser Glu Gly Gly Glu Lys Lys Gly His

Cys Asn His Ser Val Val Ser Ile Asp Ser Ala Ala Ala Leu Leu Pro 35 40 45

Leu Lys Leu Val Leu Leu Pro 50 55

<210> 567

<211> 51

<212> PRT

<213> Homo sapiens

<400> 567

Tyr Ser Asp Phe Asp Val Phe Cys Ser His Thr Tyr Gly Tyr Met Leu

15 5 10 Ser His Cys Ser Gln Ser Ser Ser Pro Leu Leu Trp Pro Leu Gly Ile Leu Thr Leu Ser Thr His Lys Met Ser Lys Leu Thr Leu Pro Pro Ile Phe Arg Thr 50 <210> 568 <211> 75 <212> PRT <213> Homo sapiens <400> 568 Lys Val Gly Glu Tyr Ile Leu Gln Ser Leu Leu Arg Ile Arg Lys Ile Tyr Val Ala Phe Asn Ser Val Pro Ser Thr Cys Leu Leu Ala Ser Leu 2.5 Thr Glu Thr Pro Val Thr Thr Ile Leu Thr Ile Ile Ile Asn Leu Thr 40 Cys Phe Gln His Ala Glu Ser Ser Tyr Leu Phe Tyr Pro Leu Ala Asp 55 Phe Leu Leu Gln His Ile Ser Leu Gly Lys Leu <210> 569 <211> 4809 <212> DNA <213> Homo sapiens <400> 569 qcatccagaq tqqtqqactg gttacaggct atgaacctac actgatgcgg caccaccacc 60 cagagtecae rggttatgtt ggtteaeatt tactettget gtggtatggt etataggttt 120 ggacagatgt ccgataatcc tttttacatt ttggcatcct tgggtagctc gtcttgtagg 180 aatggacttg cttcaaagtg gaggcaggca gatccttcag acgggtatat ggagccctgt 240 tttcagttgc ttttctaatt ctctcttatc gtttacctca aaatcttcct gaggtctcgc 300 ttccttttaa aatccttgtc tactttgcag catcactctg acactcccat tgattcctca 360 qcacctactg actacacggt taggagtgca agggtagaat tcatgtttta ttcatctttg 420 ggtctgtagc acccagcaaa gtgctcagta aatgcgcagt aattgatttg acctctgaac 480 aaatacacac tgtactaaga atctacacac cgaaagacaa aaacaagaca aatttgagtg 540 ctacaggtgt cacgcttggc atcacacatg tgcctgtgta ttcctctagg tggttaccag 600 gagetetgee actgeatgte caetagtgae gggttegete caecacecea getgggtage 660 cyctyctctc acataagggg tccaattaaa attyccagga ataaattccc ccggactttg 720 acttctcaag agctaagaag gtttgctgag tattctggca tgatgtttgg tgatcaaaca 780 actgctqqcc aaaaatqatg agtatttccc cctcttqctg aagatgtqct ccatacaata 840 qtccatcaca ttcatcattc atcagtctgg aagtgtgcag aacaacatgt aatagataat 900 atgattggct gcacacttce agactgatga atgatgaatg tgatggacta ttgtatggag 960 cacatettea geaagagggg gaaatactea teattttate tattacatgt tgttetggtt 1020

ittitittt tecaatgice agectaaact ataaagtact tigagaacge acagtgagee 1080 ataagettge caataaagag teetetgtgg tatggaactg gettatttea tacacaatet 1140 40848caatg agggcactat tggaaacata ctgtgctgca cagagcattt acaccgctta 1200 totttaatet teeseageaa teettgettt gtgegeattt atgateettg eteteagaag 1260 tocacataet titteeceaac egiaacaaat tattiaacte atetaatgia tgiatgieeg 1320 ognagiciga aaacagtaat tgicciiggg aagaagigag tilaagagag ciciagggca 1380 ctoatcacaa ctccagccct gecetecatg tggtageage tetttggact ggggetaagt 1440 gorciattott gtgottoatt ootggtaago toaatttott taoottagga taactttgot 1500 ggaaaagggc tcagattcag ccgaccattg tggcctctgt ggctgtcaca gcttgtccct 1560 gacatgetat gatgttgggt coccttetea teccettggg atttettetg etggeceaea 1620 gccagaacaa ctaggccttt tactccacca tccctttgtt ttcttttgtt tcgttggtaa 1680 and caatee tectaceate catgeatage autitetama auctgaattt caagageagt 1740 atotgaagaa acaaacatga titggtoott tiagtaaaca gaataaatti taataaatca 1800 actitgaaat agtigtaaga gitaagaaaa agcacaaaac igagatcatc agagcagcii 1860 ggcctcaaag qucaqqcagc aggattctac agggtttgag cottcctaag tgaagctgtt 1920 teetgeagge (sectifities mageteetag etameagees etteteecae gattggeams 1980 aaagagcaaa aataactitg tacttgatgo tgagtcagtg taaaaaagcca taaaaaattc 2040 cototaaatq tilaaaatqtt tgootoottt gaggottoto tootootaot gggtotggat 2100 aaattagcac tagacttata tigagtcaca gatetgggee etgecacaga gagetteete 2160 ctagtgtgtg atgitittic iccaaactat tgatacaaaa tgcactggaa tagaaatcaa 2220 cagaaactgg tcaaaggtgt ggcatacaca ttctcatgta gatgtaaagc tgtgcttaga 2280 attectttgt quaretggt tiggtettgg tittettggt gtttgattea titttttacg 2340 taaattacaa aaaccctcca catttottoa tggattgtat tagtocatgt totocagaga 2400 agcagaacga qttqqatqta tgttttggaa gagattatga ggaaccggct catgtgatga 2460 aggaggttga gamqteetgt getetgeeat etgeaagetg aagaeetgga aagetgaggg 2520 tgtggctcca gtctgagtct gaaggcccaa gaaccagggg aaccaacggt gtagattcca 2580 ggttgaaggc aqqaqaagat ggatgtccca gctcagcagg caggcaggaa gcaaatgggg 2640 taaatteete etteeteeae ettttgttee atteaggeet teaacagatt ggatgagege 2700 cocceacce ccacactagg gagggccate tgctttactg agtcggctga gtcaagtgcc 2760 agecteatee caaaacacte tecagacaca egcagaaatg tttcatetgg geaccetgtg 2820 gecagteatg etgacacaca gaactaacca tgacatggat tettettaaa geagtgatag 2880 gagcgaacag aaacattttc ataattttca attattttta atgaaaacta tatctgatgg 2940 aattgtttaa acctagicig gecacacatt atticetggg accgecete etteaateee 3000 ttggacactg atgactttat gcccagatta cactggaggc ctgtgctgat tttctaacac 3060 atacctgcaa ctgagctggc aaaaagaaaa ctaggcaagt atgacagata catgatgcac 3120 aggctaagtg caaaggaaag aaaaacacca actgcaggga tgagggactc acccctttag 3180 aagtttctac ttgagcagct agaagactac aatgccactc atcaaaacag tgactcaggg 3240 ggagtatttg ggataaagga ggaatctgat gttggaggtc aaatttgaag tgtctttaag 3300 acctacaggt aacgagacag ctggacaaac acatggaact caggacaaag gctctaagga 3360 cagcacagea getgacatee tgtgtgacag cettgaaage ageaggeeeg eegeteacat 3420 tttggaaggg aaaatgggta caatgttgtc tgccactttg gggccttctt gggtcacatg 3480 cattttacat ttatgcagtt gatatattta tgtttcctgg gtcttttata cattagacac 3540 catgattoto aatootttgt tattttgtat tacaaaaago tgaattatta tttcaaatat 3600 gggcaaatta gagcetteea tattgecaag gtgtateaae cacaetgata yeaygatete 3660 tettttgaat tagtttteea gtteacacet accatttatt teatgattgg ttteagactt 3720 gttcctcctg gaaacactcc ctaacaagca cccttgcagg aatgaagaca caccacaca 3780 atctacccca ttactgcatg tactcaagag tcagctttta tatgatctct cccaagtgct 3840 cctataatgg ggatetttca eteacectaa agtgaggaca aaataettga aageatgage 3900 ccagtgcctg taggtgtgca attaacctca gaccaaggaa gtgccgaacg catctggctt 3960 ttagcaagge acetgacaaa gteetteagg atgtttttgt acatgageta gagaaatgta 4020 cctggagaac agcttctact gccagatgat cttactcaaa agatgcagat taagcaaaat 4080 atcaacccaa agggtggtcc ctgatggccc accagcccct gtgcctggct cgtttcctat 4140 gittectaga titiggittea gaettgetee teetgeagae acteectaae cageateett 4200 gcagaaaact ggtgaactag aaaaggcctg tgtgggtcac gtggccaccc aacaccacag 4260 cagtgtctaa ggtatgcgtg ggagcctgca cagcaggagc ggggtcttct ggagacccgc 4320 atgagatgca aagggcagtg gacaaggagc caagggaggt ggctctagtc acgctggtat 4380 39 gocaget tgaggatget gggcaagtee egageegtet geetteetag taccacagtt 4440 accaetgtet gttacetege gagtteaagt getteaegtg agacagetae gagacaggee 4500

```
cctggaaact ggaaaatgcy aagtaaatgt catgcacaat tgttgttcac attttatctc 4560
aatcactttt accaaatcag gctaaaccct gggtattcat aacgtcttgg gctgtacaaa 4620
ttgttccttg aaatgactca gagacatttt ctgaattggc ttccatcagc caagcatttc 4680
ttcagaactg gaaaaatgct ttaaatttgg ctttgtcatg attattaaaa cactctgtac 4740
atttttatt attgaaatta acacattgcc tactttttaa aaattggaaa aagaaaaaaa 4800
                                                                  4809
aaaaaaaa
<210> 570
<211> 951
<212> DNA
<213> Homo sapiens
<400> 570
aaaattqaat attqaqatac cattctttag tgttaccttt tttacccaca tgtgtttctg 60
aaaatattgg aattttattc atcttaaaaa ttggacccgg ccttatttac catctttaat 120
ccattttagt actatgggtg agtacatgga attgaagtct ggcttaaatc ttcagaaagt 180
tatatatcta ttttatttta tttttttqaq acagagtctc gctgtgtcac ccaggctgga 240
gtgcggtgcc acaatcttgg ctcactgcaa cctctgagtc ccaggttcaa gcgatactca 300
tgcctcggcc tcctgagtag ctgggactac aggcgtgcac caccacatct ggctaatctt 360
tttttgtatt tttagtagag acggggtttc actgtggtct ccatctcctg acctcgtgat 420
ccgcctgcct cccaaagtgc tgggattaca ggcatgagcc accgcacaca gctgggactg 480
ggtaatttat aaagaaaaga ggtttaatga ctcacagttc cgcatggctg gagaggcctc 540
aggaaactta caatcatggt ggaaggcgaa ggggaagcaa ggcacgtctt acatggtggc 600
aggagagaac gagtgagggg ggagactgcc acaaactttt tttttttgag acaagagtct 660
ggccctgttg cccaggctgg agtgcagtgg catgatetea geteaetgea acetetgeet 720
cacaggttca agcaattete atgeeteage etecegeata getgggacca caggtatgea 780
ccaccacacc tagctaattt ttgtagtttt agtagagatg gggtctcact atgttgctca 840
ggctggtcta aaactcctgg gctccagcaa tccgcctgcc ttggcctccc aaagtgctgg 900
ggttacaggc ataagccacc acatccagcc tgccacatac ttttaaacta t
<210> 571
<211> 819
<212> DNA
<213> Homo sapiens
<400> 571
cagettaaaa atggtttett gaaateagtg attageatte aeteaceagt aeeeetaeta 60
aggggtaggc actggtttgt actcctggga atacaggagt acaccagaat ttatttctgc 120
ttattgcttt tgttgcaaat gccgtggctt catctgagga attctagaat tcagagggtg 180
tageceteca etetgetgte ttgetatetg eteteattge ateegtttaa eetgeattet 240
gaaagatgtt tctcaggttt ttccttgacg attttcttct tttctgattc tgacaatgtt 300
ttaaatcatt gtactgtggt tatcatttct ctgcatttat tttacccatc ttcctttgta 360
acttgtccta ttgtctttta atttctgcct gttctttatg gctttcaact tcataaataa 420
catgttttct caaatctctt tgtgaattcc agagagggcc aggcacggtg gctcacatct 480
gtaatcccag cactttgggg aggctgagac gggtggatca cttgaggtca ggagtttgag 540
accagectgg ccaacatggt gaaateeegt tteactaaaa atacaaaaat tacceaggea 600
tggtggcggg cgcctgtaat cccaggtact cgggaggctg agggaggaga atcgcttgaa 660
cctgggaggc tgagggagga gaatcgcttg aacccgggag gcagaggttg cagtgaaccg 720
agatcatgtt gctgcactcc agcctggtca acagagcaag actctgcctc aaaaacaaac 780
                                                                   819
aaataaacaa acaaacaaac aaaacagaga gattttgct
<210> 572
<211> 203
<212> DNA
<213> Homo sapiens
<400> 572
tatagaatac tcaagctatg catcaagctt ggtaccgagc tcggatccac tatttacggc 60
```

cgccagtgtg ctggaattcg cccttagctc ggatccacta gtccagtgtg gtggaattcc 120 attgtgttgg gcccaacaca atggagccac cacatccagc ctgccacata cttttaaact 180 atcaggtctc atgagaactc atg

<210> 573

<211> 132

<212> PRT

<213> Homo sapiens

<400> 573

Met Val Glu Gly Glu Gly Glu Ala Arg His Val Leu His Gly Gly Arg
5 10 15

Arg Glu Arg Val Arg Gly Glu Thr Ala Thr Asn Phe Phe Leu Arg 20 25 30

Gln Glu Ser Gly Pro Val Ala Gln Ala Gly Val Gln Trp His Asp Leu 35 40 45

Ser Ser Leu Gln Pro Leu Pro His Arg Phe Lys Gln Phe Ser Cys Leu 50 60

Ser Leu Pro His Ser Trp Asp His Arg Tyr Ala Pro Pro His Leu Ala 65 70 75 80

Asn Phe Cys Ser Phe Ser Arg Asp Gly Val Ser Leu Cys Cys Ser Gly 85 90 95

Trp Ser Lys Thr Pro Gly Leu Gln Gln Ser Ala Cys Leu Gly Leu Pro
100 105 110

Lys Cys Trp Gly Tyr Arg His Lys Pro Pro His Pro Ala Cys His Ile 115 120 125

Leu Leu Asn Tyr 130

<210> 574

<211> 62

<212> PRT

<213> Homo sapiens

<400> 574

Met Thr His Ser Ser Ala Trp Leu Glu Arg Pro Gln Glu Thr Tyr Asn
5 10 15

His Gly Gly Arg Arg Gly Ser Lys Ala Arg Leu Thr Trp Gln
20 25 30

Glu Arg Thr Ser Glu Gly Gly Asp Cys His Lys Leu Phe Phe Glu 35 40 45

Thr Arg Val Trp Pro Cys Cys Pro Gly Trp Ser Ala Val Ala
50 55 60

<210> 575

```
<211> 76
<212> PRT
```

<213> Homo sapiens

<400> 575

Met Val Lys Ser Arg Phe Thr Lys Asn Thr Lys Ile Thr Gln Ala Trp 5 10 15

Trp Arg Ala Pro Val Ile Pro Gly Thr Arg Glu Ala Glu Gly Gly Glu 20 25 30

Ser Leu Glu Pro Gly Arg Leu Arg Glu Glu Asn Arg Leu Asn Pro Gly 35 40 45

Gly Arg Gly Cys Ser Glu Pro Arg Ser Cys Cys Cys Thr Pro Ala Trp 50 55 60

Ser Thr Glu Gln Asp Ser Ala Ser Lys Thr Asn Lys 65 70 75

<210> 576

<211> 68

<212> PRT

<213> Homo sapiens

<220>

<221> VARIANT

<222> (1)...(68)

<223> Xaa = Any Amino Acid

<400> 576

Met Leu Gly Lys Ser Arq Ala Val Cys Leu Pro Ser Thr Thr Val Thr 5 10 15

Thr Val Cys Tyr Leu Ala Ser Ser Ser Ala Ser Arg Glu Thr Ala Thr
20 25 30

Arg Gln Ala Pro Gly Asn Trp Lys Met Xaa Ser Lys Cys His Ala Gln 35 40 45

Leu Leu Phe Thr Phe Tyr Leu Asn His Phe Tyr Gln Ile Arg Leu Asn 50 55 60

Pro Gly Tyr Ser

<210> 577

<211> 57

<212> PRT

<213> Homo sapiens

Z4005 577

Met Tyr Leu Glu Asn Ser Phe Tyr Cys Gln Met Ile Leu Leu Lys Arg
5 10 15

Cys Arg Leu Ser Lys Ile Ser Thr Gln Arg Val Val Pro Asp Gly Pro

20 25 30

Pro Ala Pro Val Pro Gly Ser Phe Pro Met Phe Pro Arg Phe Gly Phe 35 40 45

Arg Leu Ala Pro Pro Ala Asp Thr Pro 50 55

<210> 578

<211> 51

<212> PRT

<213> Homo sapiens

<400> 578

Met Gln Leu Ile Tyr Leu Cys Phe Leu Gly Leu Leu Tyr Ile Arg His 5 10 15

His Asp Ser Gln Ser Phe Val Ile Leu Tyr Tyr Lys Lys Leu Asn Tyr 20 25 30

Tyr Phe Lys Tyr Gly Gln Ile Arg Ala Phe His Ile Ala Lys Val Tyr 35 40 45

Gln Pro His 50

<210> 579

<211> 56

<212> PRT

<213> Homo sapiens

<400> 579

Met His Phe Thr Phe Met Gln Leu Ile Tyr Leu Cys Phe Leu Gly Leu 5 10 15

Leu Tyr Ile Arg His His Asp Ser Gln Ser Phe Val Ile Leu Tyr Tyr 20 25 30

Lys Lys Leu Asn Tyr Tyr Phe Lys Tyr Gly Gln Ile Arg Ala Phe His
35 40 45

Ile Ala Lys Val Tyr Gln Pro His

<210> 580

<211> 67

<212> PRT

<213> Homo sapiens

<400> 580

Met Glu Leu Arg Thr Lys Ala Leu Arg Thr Ala Gln Gln Leu Thr Ser

Cys Val Thr Ala Leu Lys Ala Ala Gly Pro Pro Leu Thr Phe Trp Lys 20 25 30

Gly Lys Trp Val Gln Cys Cys Leu Pro Leu Trp Gly Leu Leu Gly Ser 35 40 45

His Ala Phe Tyr Ile Tyr Ala Val Asp Ile Phe Met Phe Pro Gly Ser 50 55 60

Phe Ile His

<210> 581

<211> 77

<212> PRT

<213> Homo sapiens

<400> 581

Met Leu Glu Val Lys Phe Glu Val Ser Leu Arg Pro Thr Gly Asn Glu
5 10 15

Thr Ala Gly Gln Thr His Gly Thr Gln Asp Lys Gly Ser Lys Asp Ser 20 25 30

Thr Ala Ala Asp Ile Leu Cys Asp Ser Leu Glu Ser Ser Arg Pro Ala 35 40 45

Ala His Ile Leu Glu Gly Lys Met Gly Thr Met Leu Ser Ala Thr Leu 50 55 60

Gly Pro Ser Trp Val Thr Cys Ile Leu His Leu Cys Ser 65 70 75

<210> 582

<211> 51

<212> PRT

<213> Homo sapiens

<400> 582

Met Leu Phe Leu Gln Thr Ile Asp Thr Lys Cys Thr Gly Ile Glu Ile 5 $$ 10 $$ 15

Asn Arg Asn Trp Ser Lys Val Trp His Thr His Ser His Val Asp Val 20 25 30

Lys Leu Cys Leu Glu Phe Leu Cys Gly Val Trp Phe Gly Leu Gly Phe 35 40 45

Leu Gly Val

<210> 583

<211> 60

<212> PRT

<213> Homo sapiens

<400> 583

```
Met Ser Thr Ser Asp Gly Phe Ala Pro Pro Pro Gln Leu Gly Ser Arg
5 10 15
```

Cys Ser His Ile Arg Gly Pro Ile Lys Ile Ala Arg Asn Lys Phe Pro 20 25 30

Arg Thr Leu Thr Ser Gln Glu Leu Arg Arg Phe Ala Glu Tyr Ser Gly 35 40 45

Met Met Phe Gly Asp Gln Thr Thr Ala Gly Gln Lys 50 55 60

<210> 584

<211> 76

<212> PRT

<213> Homo sapiens

<400> 584

Met Cys Leu Cys Ile Pro Leu Gly Gly Tyr Gln Glu Leu Cys His Cys 5 10 15

Met Ser Thr Ser Asp Gly Phe Ala Pro Pro Pro Gln Leu Gly Ser Arg
20 25 30

Cys Ser His Ile Arg Gly Pro Ile Lys Ile Ala Arg Asn Lys Phe Pro 35 40 45

Arg Thr Leu Thr Ser Gln Glu Leu Arg Arg Phe Ala Glu Tyr Ser Gly 50 55

Met Met Phe Gly Asp Gln Thr Thr Ala Gly Gln Lys 65 70 75

<210> 585

<211> 50

<212> PRT

<213> Homo sapiens

<400> 585

Met Val Tyr Arg Phe Gly Gln Met Ser Asp Asn Pro Phe Tyr Ile Leu
5 10 15

Ala Ser Leu Gly Ser Ser Ser Cys Arg Asn Gly Leu Ala Ser Lys Trp 20 25 30

Arg Gln Ala Asp Pro Ser Asp Gly Tyr Met Glu Pro Cys Phe Gln Leu 35 40

Leu Phe

50

<210> 586

<211> 60

<212> PRT

<213> Homo sapiens

WO 01/051633 PCT/US01/01574

```
<400> 586
Met Leu Val His Ile Tyr Ser Cys Cys Gly Met Val Tyr Arg Phe Gly
Gln Met Ser Asp Asn Pro Phe Tyr Ile Leu Ala Ser Leu Gly Ser Ser
Ser Cys Arg Asn Gly Leu Ala Ser Lys Trp Arg Gln Ala Asp Pro Ser
                             40
Asp Gly Tyr Met Glu Pro Cys Phe Gln Leu Leu Phe
                         55
<210> 587
<211> 1408
<212> DNA
<213> Homo sapiens
<400> 587
ctggacactt tgcgagggct tttgctggct gctgctgctg cccgtcatgc tactcatcgt 60
agecegeeg gtgaageteg etgettteee taceteetta agtgaetgee aaaegeeeae 120
eggetggaat tgetetggtt atgatgaeag agaaaatgat etetteetet gtgaeaceaa 180
cacctgtaaa tttgatgggg aatgtttaag aattggagac actgtgactt gcgtctgtca 240
gttcaagtgc aacaatgact atgtgcctgt gtgtggctcc aatggggaga gctaccagaa 300
tgagtgttac ctgcgacagg ctgcatgcaa acagcagagt gagatacttg tggtgtcaga 360
aggatcatgt gccacagatg caggatcagg atctggagat ggagtccatg aaggctctgg 420
agaaactagt caaaaggaga catccacctg tgatatttgc cagtttggtg cagaatgtga 480
cqaaqatqcc qaqqatqtct qqtqtqtqt taatattqac tqttctcaaa ccaacttcaa 540
teceetetge gettetgatg ggaaatetta tgataatgea tgeeaaatea aagaageate 600
gtgtcagaaa caggagaaaa ttgaagtcat gtctttgggt cgatgtcaag ataacacaac 660
tacaactact aagtetgaag atgggeatta tgeaagaaca gattatgeag agaatgetaa 720
caaattagaa gaaagtgcca gagaacacca cataccttgt ccggaacatt acaatggctt 780
ctgcatgcat gggaagtgtg agcattctat caatatgcag gagccatctt gcaggtgtga 840
tgctggttat actggacaac actgtgaaaa aaaggactac agtgttctat acgttgttcc 900
cgqtcctgta cgatttcagt atgtcttaat cgcagctgtg attggaacaa ttcagattgc 960
tgtcatctgt gtggtggtcc tctgcatcac aaggaaatgc cccagaagca acagaattca 1020
cagacagaag caaaatacag ggcactacag ttcagacaat acaacaagag cgtccacgag 1080
gttaatctaa agggagcatg tttcacagtg gctggactac cgagagcttg gactacacaa 1140
tacagtatta taqacaaaag aataagacaa gagatctaca catgttgcct tgcatttgtg 1200
gtaatctaca ccaatgaaaa catgtactac agctatattt gattatgtat ggatatattt 1260
gaaatagtat acattgtctt gatgtttttt ctgtaatgta aataaactat ttatatcaca 1320
caatawagtt ttttctttcc catgtatttg ttatatataa taaatactca gtgatgagaa 1380
aaaaaaaaaa aaaaaaaaa rwmgaccc
                                                                  1408
<210> 588
<211> 81
<212> PRT
<213> Homo sapiens
<400> 588
Met Pro Gln Lys Gln Gln Asn Ser Gln Thr Glu Ala Lys Tyr Arg Ala
Leu Gln Phe Arg Gln Tyr Asn Lys Ser Val His Glu Val Asn Leu Lys
                                 25
```

```
Gly Ala Cys Phe Thr Val Ala Gly Leu Pro Arg Ala Trp Thr Thr Gln 35 40 45
```

Tyr Ser Ile Ile Asp Lys Arg Ile Arg Gln Glu Ile Tyr Thr Cys Cys 50 55 60

Leu Ala Phe Val Val Ile Tyr Thr Asn Glu Asn Met Tyr Tyr Ser Tyr $6\overline{\epsilon}$ 70 75 80

lle

<210> 589

<211> 157

<212> PRT

<213> Homo sapiens

<400> 589

Met Thr Met Cys Leu Cys Val Ala Pro Met Gly Arg Ala Thr Arg Met 5 10 15

Ser Val Thr Cys Asp Arg Leu His Ala Asn Ser Arg Val Arg Tyr Leu 20 25 30

Trp Cys Gln Lys Asp His Val Pro Gln Met Gln Asp Gln Asp Leu Glu 35 40 45

Met Glu Ser Met Lys Ala Leu Glu Lys Leu Val Lys Arg Arg His Pro 50 55 60

Pro Val Ile Phe Ala Ser Leu Val Gln Asn Val Thr Lys Met Pro Arg 65 70 75 80

Mot Ser Gly Val Cys Val Ile Leu Thr Val Leu Lys Pro Thr Ser Ile 85 90 95

Pro Ser Ala Leu Leu Met Gly Asn Leu Met Ile Met His Ala Lys Ser 100 105 110

Lys Lys His Arg Val Arg Asn Arg Arg Lys Leu Lys Ser Cys Leu Trp
115 120 125

Val Asp Val Lys Ile Thr Gln Leu Gln Leu Leu Ser Leu Lys Met Gly 130 135 140

Ile Met Gln Glu Gln Ile Met Gln Arg Met Leu Thr Asn 145 150 155

<210> 590

<211> 347

<212> PRT

-213> Homo sapiens

<400> 590

Mct Leu Leu Ile Val Ala Arg Pro Val Lys Leu Ala Ala Phe Pro Thr
5 10 15

WO 01/051633 PCT/US01/01574

Ser	Leu	Ser	Asp 20	Cys	Gln	Thr	Pro	Thr 25	Gly	Trp	Asn	Суѕ	Ser 30	Gly	Tyr
Asp	Asp	Arg 35	Glu	Asn	Asp	Leu	Phe 40	Leu	Суѕ	Asp	Thr	Asn 45	Thr	Cys	Lys
Phe	Asp 50	Gly	Glu	Cys	Leu	Arg 55	Ile	Gly	Asp	Thr	Val 60	Thr	Cys	Val	Cys
Gln 65	Phe	Lys	Cys	Asn	Asn 70	Asp	Tyr	Val	Pro	Val 75	Cys	Gly	Ser	Asn	Gly 80
Glu	Ser	Tyr	Gln	Asn 85	Glu	Cys	Tyr	Leu	Arg 90	Gln	Ala	Ala	Cys	Lys 95	Gln
Gln	Ser	Glu	Ile 100	Leu	Val	Val	Ser	Glu 105	Gly	Ser	Cys	Ala	Thr 110	Asp	Ala
Gly	Ser	Gly 115	Ser	Gly	Asp	Gly	Val 120	His	Glu	Gly	Ser	Gly 125	Glu	Thr	Ser
Gln	Lys 130	Glu	Thr	Ser	Thr	Cys 135	Asp	Ile	Суѕ	Gln	Phe 140	Gly	Ala	Glu	Суз
Asp 145	Glu	Asp	Ala	Glu	Asp 150	Val	Trp	Cys	Val	Cys 155	Asn	Ile	Asp	Cys	Ser 160
Gln	Thr	Asn	Phe	Asn 165	Pro	Leu	Cys	Ala	Ser 170	Asp	Gly	Lys	Ser	T yr 175	Asp
Asn	Ala	Суѕ	Gln 180	Ile	Lys	Glu	Ala	Ser 185	Суѕ	Gln	Lys	Gln	Glu 190	Lys	Ile
Glu	Val	Met 195	Ser	Leu	Gly	Arg	Cys 200	Gln	Asp	Asn	Thr	Thr 205	Thr	Thr	Thr
Lys	Ser 210	Glu	Asp	Gly	His	Tyr 215	Ala	Arg	Thr	Asp	Tyr 220	Ala	Glu	Asn	Ala
Asn 225	Lys	Leu	Glu	Glu	Ser 230	Ala	Arg	Glu	His	His 235	Ile	Pro	Cys	Pro	Glu 240
His	Tyr	Asn	Gly	Phe 245	Cys	Met	His	Gly	Lys 250	Cys	Glu	His	Ser	Ile 255	Asn
Met	Gln	Glu	Pro 260	Ser	Cys	Arg	Cys	Asp 265	Ala	Gly	Tyr	Thr	Gly 270	Gln	His
Cys	Glu	Lys 275	Lys	Asp	Tyr	Ser	Val 280	Leu	Tyr	Val	Val	Pro 285	Gly	Pro	Val
Arg	Phe 290	Gln	Tyr	Val	Leu	Ile 295	Ala	Ala	Val	Ile	Gly 300	Thr	Ile	Gln	Ile
Ala 305	Val	Ile	Cys	Val	Val 310	Val	Leu	Cys	Ile	Thr 315	Arg	Lys	Cys	Pro	Arg 320

120

180

240

300

360

420

480

540

565

218

```
Ger Asn Arg Ile His Arg Gln Lys Gln Asn Thr Gly His Tyr Ser Ser
                                      330
 Asp Asn Thr Thr Arg Ala Ser Thr Arg Leu Ile
             340
 <210> 591
 <211> 565
 <212> DNA
 <213> Homo sapien
 <400> 591
 actaaagcaa atgaacaago tgacttgota gtatcatctg cattcattga agcacaagaa
 cttcatgcct tgactcatgt aaatgcaata ggattaaaaa ataaatttga tatcacatgg
 aaacagacaa aaaatattgt acaacattgc acccagtgtc agattctaca cctggccact
 caggaagcaa gagttaatcc cagaggtcta tgtcctaatg tgttatggca aatggatgtc
 atgcacgtac cttcatttgg aaaattgtca tttgtccatg tgacagttga tacttattca
 catttcatat gggcaacctg ccagacagga gaaagtactt cccatgttaa aagacattta
ttatcttgtt ttcctgtcat gggagttcca gaaaaagtta aaacagacaa tgggccaggt
tactgtagta aagcatttca aaaattctta aatcagtgga aaattacaca tacaatagga
attetetata atteceaagg acaggecata attgaaggaa etaatagaac aeteaaaget
caattggtta aacaaaaaaa aaaaa
<210> 592
<211> 188
<212> PRT
<213> Homo sapien
<400> 592
Thr Lys Ala Asn Glu Gln Ala Asp Leu Leu Val Ser Ser Ala Phe Ile
                                     10
Glu Ala Gln Glu Leu His Ala Leu Thr His Val Asn Ala Ile Gly Leu
            20
                                25
Lys Asn Lys Phe Asp Ile Thr Trp Lys Gln Thr Lys Asn Ile Val Gln
                            40
His Cys Thr Gln Cys Gln Ile Leu His Leu Ala Thr Gln Glu Ala Arg
                        55
Val Asn Pro Arg Gly Leu Cys Pro Asn Val Leu Trp Gln Met Asp Val
                    70
                                        75
Met His Val Pro Ser Phe Gly Lys Leu Ser Phe Val His Val Thr Val
                                    90
Asp Thr Tyr Ser His Phe Ile Trp Ala Thr Cys Gln Thr Gly Glu Ser
                                105
                                                     110
Thr Ser His Val Lys Arg His Leu Leu Ser Cys Phe Pro Val Met Gly
        115
                            120
Val Pro Glu Lys Val Lys Thr Asp Asn Gly Pro Gly Tyr Cys Ser Lys
                        135
                                            140
Ala Phe Gln Lys Phe Leu Asn Gln Trp Lys Ile Thr His Thr Ile Gly
                                        155
Ile Leu Tyr Asn Ser Gln Gly Gln Ala Ile Ile Glu Gly Thr Asn Arg
               165
                                    170
Thr Leu Lys Ala Gln Leu Val Lys Gln Lys Lys
<210> 593
```

 $\langle 2102 | 393 \\ \langle 211 \rangle | 271$

```
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(271)
\langle 223 \rangle n = A, T, C or G
<400> 593
actttatgtt cnagtgcana aanceneetg gattgccace ntacteteag ggetgtgant
                                                                         60
tgtgcnccca nagcaacctg ggcacgcggg gacagggggg ccnacaattg agggagcggt
                                                                        120
gtccctagct ggggtctata catgncnggg naagggcngc tgagtnccat nagcaaagga
                                                                        180
nctagnatnt gegggggtge ggeetgggee taccetttna ageateentn gatecaetee
                                                                        240
                                                                        271
angaanceng gggtagneag gtttnecaac a
<210> 594
<211> 376
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(376)
<223> n = A,T,C or G
<400> 594
cctttggggg nggggggaac ctttaccatt gtnccccttt atttcatttg gttngggttc
                                                                         60
gcgccctcnn gggccaacaa agttatcgtn nttgaagaga anatttttt ggnttngncc
                                                                        120
cgattaagcg ncaaatgtgt agcaaaangc cgtgccactt gtggcgtagc tncgtcgggt
                                                                        180
cgattcgacg acaaggcgtn gcgcgntanc gttagtctcn aatngacccn gtggcatqaq
                                                                        240
cccacgangg nttcgtgtcg tcacatggnc tctagacata acgenencen tttttncag
                                                                        300
                                                                        360
agggggntgc cgcccttagg gaggnagggg tggggacact agccaancca nantetnacc
ccattgaaga aaaggn
                                                                        376
<210> 595
<211> 242
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(242)
<223> n = A,T,C or G
<400> 595
agnotgotgn togtnocotn tatgtggott catnntgagg acaanagtng cactgagget
                                                                         60
tgngnatgcc aggcaaggnc aagctggctc aaaaagcatc cacccacctc tgnaangggt
                                                                        120
atgccangag cangtgcacc agtcccaact angagncccn ggcatgntac atcttcttcc
                                                                        180
acccctnaaa ntttgngcta caangnccat ttttctttt ctcttaaggg ncncntqqct
                                                                        240
                                                                        242
tc
<210> 596
<211> 535
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
```

```
<222> (1)...(535)
  1223 r_i = A, T, C \text{ or } G
 <400> 596
 accagttgga tactgctaaa nagatattta tgcagcctca tatgttaagt cgtatatttt
 gaaagstitt taaatiitti ottiaagaag attitagatg ottatoactg agtacoagag
                                                                         120
 ggatgtaggc tgatgccctt atcaacaaag tcagggactg tggcacacaa ggattgacta
                                                                         180
 ctgcagacac ggccacaatg ctacctctag agggcctgaa tccccctgcc ctctctggtg
                                                                         240
 qqqaqaaqqq ctqqcaqaqc cattaqcatq qqctccqqcc aatcctqqcc actttqacac
                                                                         300
 Loctggtgct gacccagggt cctggaggaa gggatgaggt gggcagtaga gatgctcagg
                                                                         360
 gcagtggccc ctttccatcc acactggaac tatttcagta ttttaccacc aattcagcca
                                                                         420
 trecettgtg cgctggctga acateageee tgctccaggt ctcagtttcc cetttgtaaa
                                                                         480
 gggaaagctc tggattcagg gagtgatgaa gaggtcatca tggtcttgag aattc
                                                                         535
 <210> 597
 <211> 257
 <212> DNA
 <213> Home sapien
 <220>
 <221> misc_feature
 <222> (1)...(257)
 \langle 223 \rangle n = A,T,C or G
<400> 597
tttcnatacc caaaantacc ccatattang accanacatt tgtctnggaa aaattaccat
                                                                          60
tntntaacnt ttggqccacc tgagannaaa tgggtgtaat ncatgataag atggancagn
                                                                         120
attnetetta agatnngatn agacceegtt ttteaeggaa catateeaag nacceaatag
                                                                         180
gnaacaagcc acgggnggag tcacaaacat atattcttta ctctcataat ccgtnncaca
                                                                         240
naactnttgn acttgac
                                                                         257
<210> 598
<211> 222
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(222)
<223> n = A, T, C or G
<400> 598
nntggntacc gtcnaaactt nncttggtac ccgagctcgg atccactagt ccagtgtggt
                                                                         60
ggaatteeat tgtgttggge tataagetgt aatagtggag negtgetngg tteattgean
                                                                         120
nagneeetee geanneaene ttgnnacaae etgtgagnag genataaatt atteaeataa
                                                                         180
tcatcactge atgaanctga ctcaaacgca tccacntaca cc
                                                                         222
<210> 599
<211> 238
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(238)
<223> n = A, T, C or G
<400> 599
```

```
gcatgacatc ancgatgtnt ttggnnacct ganattngct aaaactngng natgccgggn
                                                                        60
atgnagqttt qqtantqatc tatqcactca catctcatqq qqacqtttca tqtqqaqtqn
                                                                       120
tcgacaangt tgctgnancn gagaagtgat gatctcagtt gaaagggtca tgtgaataca
                                                                       180
                                                                       238
cnttacactt gaaaaaqaag cacattggga atatcacgaa acgnccacca acatcctg
<210> 600
<211> 232
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(232)
<223> n = A, T, C or G
<400> 600
                                                                        60
cgaactattt agactaccta ggaaaattat tttagtatca gaagaatatc aggggtgtag
                                                                       120
tactcatcag agctaaatga gagcgcttta aaaatgttag tttgtcttcc gccatttcta
                                                                       180
cagaaagctg caatttcagg ttttcaacct aataggtgat atttaanaaa aaaaaaaagc
aatcgcaaat agccccactg cttttacaaa tcatttttc cccaacacaa tg
                                                                       232
<210> 601
<211> 547
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(547)
<223> n = A, T, C or G
<400> 601
                                                                        60
cattgtgttg gggaaaaaat gatttgtata agcagtgggg ctatttgcga ttgcttttt
                                                                       120
tititctiaa atatcaccta tiaggitgaa aacctgaaat tycaycttic tylagaaatg
                                                                       180
gcggaagaca aactaacatt tttaaagcgc tctcatttag ctctgatgag tactacaccc
ctnatattct tctgatacta aaataatttt cctagtgtag tctaaacttt tttaaaaaaga
                                                                       240
                                                                       300
catgtaatcc geggagttag taactcaaaa egagtgeatc tnggaagtat egeageegtt
nctggatnaa attcccagct tgctngcttg ctnagccggg gggcggtnaa aaaaacatct
                                                                       360
gcagccongg ggnaaaaacc ttcgcattgt tcttacgtgt ttacgttatt ttatttccct
                                                                       420
                                                                       480
nnagcaagge nggganttgg ggactegaaa tggtacagtt gggctgggga tegecettgt
tacataaaaq negtecaqaa gaqqqaeqqt tacaqqengg ganetecaaa ggteagteee
                                                                       540
                                                                       547
tgccatt
<210> 602
<211> 826
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(826)
<223> n = A, T, C or G
<400> 602
cggggggnnt tacgtctctc tggacgcttt tattgtacca gggcgatccc agcccaactg
                                                                        60
                                                                       120
taccattcga gtccctactc ctgccttgct ctagggaaat aaaataacgt aaacacgtaa
gaacaatgcg aaagcgtttt cttccctagg ctgcagattg tcttcttcac cgcccctgct
                                                                       180
                                                                       240
tagctagcta gctagctggg aatttaatcc agaaacggct tgcgatacct cctagatgca
```

```
ctogttttga gttacaaact cogoggatta catgtctttt taaaaaagtt tagactacac
 tagggaaaat tattttagta toagaagaat atcagggggt gtagtactca toagagotna
                                                                        360
 atgagagege titaaaaaatg ttagtitgie tteegeeatt tetacagaaa getgeaatti
                                                                        420
 caggttttca nectaatagg tgatatntaa gaaaaaaaaa acaategean atageecaet
                                                                        480
 gettttacaa ateatttte tertetaggt atageetgte aggtggeeta atgtatttt
                                                                        540
 gacateteta ggaattitaa tagaccagaa atgggtgeea gagatatgee tgeactaate
                                                                        600
 ttaagtgggg atttatgtat ttctcaanca agtgattaaa gcaaaactag gcacgaatga
                                                                        660
 datcaagate titaggeeag aaateatgaa nanttitana attatittan gaatetgtgg
                                                                        720
 cttotottot taaaatngaa aaaaaaattg tttaaaccca naaggtotga atacccaagc
                                                                        780
 necetgaach anagaacaan geeggageac eeecteecaa ateeee
                                                                        826
 <210> 603
 <211> 817
 <212> DNA
 <213> Homo sapien
 <220>
 <221> misc_feature
 <222> (1)...(817)
 <223> n = A, T, C or G
 <400> 603
nnangacttt tgtggtntta tacaattntt ttttctattt ctatgaagag aaagccacag
                                                                         60
agtectaaaa taattetaaa aeteateatg aetttettge etaaaagate ttgattteaa
                                                                        120
tegtgeetag ttttgettta ateaettget tgagaaatae ataaateece aettaagatt
                                                                       180
agtgcaggca tatctctggc acccatttct ggttctatta aaattcctag agatgtcaaa
                                                                       240
aattacatta ggccacctga caggctatac ctagaagaga aaaaatgatt tgtaaaagca
                                                                       300
gtggggctat ttgcgattgc ttttttttt tcttaaatat cacctattag gttgaaaacc
                                                                       360
tgaaattgca gctttctgta gaaatggcgg aagacaaact aacattttta aagcgctctc
                                                                       420
atttagetet gatgagtaet acacecetga tattettetg atactaaaat aatttteeta
                                                                       480
gtgtagtcta aacttttta aaaagacatg taatccgcgg agtttgtaac tcaaaacgag
                                                                       540
tgcatctagg aggtatcgca agccgtttct ggattaaatt cccagctagc ttgcttgctt
                                                                       600
agcaggggcg ggnaaanaag acatctgcag cctagggaag aaaacctttc gcattgttct
                                                                       660
tacgtgttta cgttatttta tttcctanaa caaggcngaa ttgggactcg aatggttcag
                                                                       720
ttggggtggg ggatcccctg gtncataaaa ngtcanaaag anggtacagg cggaacncca
                                                                       780
agggtcgtcc tgcatttana ctcggaattt tggtgcc
                                                                       817
<210> 604
<211> 694
<212> DNA
<213> Homo sapien
<220>
<221> misc_feature
<222> (1)...(694)
<223> n = A, T, C or G
<400> 604
cttttcaaat catttttnct cttctaggta tancctgtca ggtggcctaa tgtaattttt
                                                                        60
gacateteta ngaattttaa tagaaccaga aatgggtgee agagatatge etgeactaat
                                                                       120
cttaagtggg gatttatgta tttctcaagc aagtgattaa agcaaaacta ggcacgattg
                                                                       180
aaatcaagat cttttaggca anaaagtcat gatgagtttt agaattattt taggactctg
                                                                       240
tggctttctc ttcatagaaa tagaaaaaaa aattgtataa aaccacaaaa ggtcctgaat
                                                                       300
agecaaagea acaetganea aaaagaaean ageagggaag caacaeaeta cenqaattea
                                                                       360
aattatacta ccagggtgta gtaaccaaaa cagcattcta ttggcataaa atagacacca
                                                                       420
agaccaatgg ancagaataa agaaccccac aaataaatcc atatatntac cgccanctga
                                                                       480
ttatcaataa chaacaccaa gaacatatht taagggacht notattcaat aantagtgot
                                                                      540
ggnaaaaact gggaaatcca tatgcagaaa naatgaaact agacccctat ccctcaccat
                                                                      600
```

```
acgcaaannt caacttegga atgggattac aaaacttaag acattecaac ccaagaaact
                                                                        660
atnaaancta ctattaagaa aacagatcnc nccc
                                                                        694
<210> 605
<211> 678
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(678)
<223> n = A, T, C or G
<400> 605
                                                                         60
taaaaatcta qactacacta qqaaattatt ttantatcag aagaatatca ggggtgtagt
                                                                        120
acteateana octaaatgag agegetttaa aaatgttagt ttgtetteeg eeatttetae
                                                                        180
agaaagctgc aatttcaggt tttcaaccta ataggtgata tttaagaaaa aaaaaaagca
                                                                        240
atogoaaata gooccactgo tittacaaat cattititot citotaggta tagootgica
                                                                        300
qqtqqcctaa tqtaattttt qacatctcta qqaattttaa tagaaccaga aatggqtqcc
agagatatge etgeactaat ettaagtggg gatttatgta ttteteaage aagtgattaa
                                                                        360
                                                                        420
agcaaaacta gycacgattg aaatcaanat cttttaggca agaaagtcat gatgagtttt
                                                                        480
anaattattt taggactotg tggotttoto ttoatagaaa tagaaaaaaa aaattgtata
                                                                        540
aaaaccacaa aaqqtcctqa ataqcccaaa qcaacactga acaaaangaa caaagcagga
                                                                        600
agcaacacac taccqqaatt caattatact accaaggtgt antaaccaaa acagcattct
                                                                        660
attgggcata aaatagacca aagaccagtg ggaaacagaa taaagaancc caaaataaat
                                                                        678
cctatattta cngcccnc
<210> 606
<211> 263
<212> DNA
<213> Homo sapien
<220>
<221> misc feature
<222> (1)...(263)
<223> n = A, T, C or G
<400> 606
                                                                         60
qtqqqtcnq cancaqccaa ctcaqcttcc tttcgggctt tgttagcaga cggatcatcc
totagtocac tgtgntcaaa ttocattgtg tgggggconc tcgcctcggc canagatctg
                                                                        120
                                                                        180
agtgancana entgteecca etgaggtgee ceacagengn ttgtntteag cangggetna
                                                                        240
caactcgacc ggcagcgnan ggctggcaga antgngcgcc tnnctcattc ctacgcngtn
                                                                        263
ngccgcagga aggangacag gcc
<210> 607
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 607
                                                                         22
ccatgtgggt cccggttgtc tt
<210> 608
<211> 22
<212> DNA
```

<pre><213> Artificial Sequence</pre>	
<220>	
<pre><cd3> Primer</cd3></pre>	
<490> 608	
gataggggtg ctcaggggtt gg	22
<210> 609	
<211> 40	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 609	
getggacagg gggcaaaage tggggcagtg aaccatgtge	40
<210> 610	
<211> 27	
<212> DNA (213) Provide 1 2	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 6-0	
ccttgtccag atagcccagt agctgac	27
<210> 611	
<211> 46	
<212> DNA	
<pre><213> Artificial Sequence</pre>	
<220>	
<223> Primer	
<400> 611	
gatagagaaa accgtecagg ccagtattgt gggaggctgg gagtgc	46
<210> 612	
<211> 40	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 612	
gcacatggtt cactgeeeca gettttgeee eetgteeage	40
<210> 613	
<pre><211> 38</pre>	
<pre>312> DNA 313> Artificial Sequence</pre>	
<220>	

WO 01/051633 PCT/US01/01574

225

<223> Primer <400> 613 38 gccgctcgag ttagaattcg gggttggcca cgatggtg <210> 614 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 614 53 cggcgggcat atgcatcacc atcaccatca catcataaac ggcgaggact gca <210> 615 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> Primer <400> 615 46 qcactcccag cctcccacaa tactggcctg gacggttttc tctatc <210> 616 <211> 1350 <212> DNA <213> Homo sapien <400> 616 60 atgcatcace atcaccatca catcataaac ggcgaggact gcagcccgca etcgcagccc 120 tggcaggcgg cactggtcat ggaaaacgaa ttgttctgct cgggcgtcct ggtgcatccg cagtgggtgc tgtcagccgc acactgtttc cagaactcct acaccatcgg gctgggcctg 180 240 cacagtettg aggeegacea agageeaggg ageeagatgg tggaggeeag ceteteegta 300 cqqcacccaq agtacaacaq accettgete getaacgace teatgeteat caagttggac 360 quatcogtgt cogagtotga caccatoogg agcatoagca ttgcttogca gtgccctaco 420 qcqqgqaact cttqcctcqt ttctggctqq gqtctqctqq cgaacqgcaq aatgcctacc gtgctgcagt gcgtgaacgt gtcggtggtg tctgaggagg tctgcagtaa gctctatgac 480 540 ccgctgtacc accccagcat gttctgcgcc ggcggagggc aagaccagaa ggactcctgc 600 aacggtgact ctggggggcc cctgatctgc aacgggtact tgcagggcct tgtgtctttc 660 qqaaaagccc cgtgtggcca agttggcgtg ccaggtgtct acaccaacct ctgcaaattc 720 actgagtgga tagagaaaac cgtccaggcc agtattgtgg gaggctggga gtgcgagaag 780 catteceaac eetggeaggt gettgtggee tetegtggea gggeagtetg eggeggtgtt 840 ctggtgcacc cccagtgggt cctcacagct gcccactgca tcaggaacaa aagcgtgatc 900 ttgctgggtc ggcacagcct gtttcatcct gaagacacag gccaggtatt tcaggtcagc 960 cacagettee cacaceeget etacgatatg ageeteetga agaategatt ceteaggeea 1020 qqtgatgact ccagccacga cctcatgctg ctccgcctgt cagagcctgc cgagctcacg 1080 qatgctgtga aggtcatgga cctgcccacc caggagccag cactggggac cacctgctac gcctcaggct ggggcagcat tgaaccagag gagttcttga ccccaaagaa acttcagtgt 1140 1200 gtggacctcc atgttatttc caatgacgtg tgtgcgcaag ttcaccctca gaaggtgacc 1260 aaqttcatgc tgtgtgctgg acgctggaca gggggcaaaa gctggggcag tgaaccatgt 1320 gccctgcccg aaaggccttc cctgtacacc aaggtggtgc attaccggaa gtggatcaag 1350 qacaccatcg tggccaaccc cgaattctaa

<210> 617

```
<211> 241
  <212> PRT
  (213> Homo sapiens
  <400> 699
  Met Gln His His His His His Leu Arg Val Pro Glu Pro Arg Pro
                                      10
 Gly Glu Ala Lys Ala Glu Gly Ala Ala Pro Pro Thr Pro Ser Lys Pro
              20
                                  25
 Leu Thr Ser Phe Leu Ile Gln Asp Ile Leu Arg Asp Gly Ala Gln Arg
                              40
 Gln Gly Gly Arg Thr Ser Ser Gln Arg Gln Arg Asp Pro Glu Pro Glu
                          55
 Pro Glu Pro Glu Pro Glu Gly Gly Arg Ser Arg Ala Gly Ala Gln Asn
                      70
                                          75
 Asp Gln Leu Ser Thr Gly Pro Arg Ala Ala Pro Glu Glu Ala Glu Thr
                                      90
 Leu Ala Glu Thr Glu Pro Glu Arg His Leu Gly Ser Tyr Leu Leu Asp
             100
                                 105
                                                      110
 Ser Glu Asn Thr Ser Gly Ala Leu Pro Arg Leu Pro Gln Thr Pro Lys
         115
                             120
 Gln Pro Gln Lys Arg Ser Arg Ala Ala Phe Ser His Thr Gln Val Ile
                         135
                                             140
 Glu Leu Glu Arg Lys Phe Ser His Gln Lys Tyr Leu Ser Ala Pro Glu
                                         155
 Arg Ala His Leu Ala Lys Asn Leu Lys Leu Thr Glu Thr Gln Val Lys
                 165
                                     170
                                                          175
 Ile Trp Phe Gln Asn Arg Arg Tyr Lys Thr Lys Arg Lys Gln Leu Ser
             180
                                 185
 Ser Glu Leu Gly Asp Leu Glu Lys His Ser Ser Leu Pro Ala Leu Lys
         195
                             200
 Glu Glu Ala Phe Ser Arg Ala Ser Leu Val Ser Val Tyr Asn Ser Tyr
                         215
                                             220
 Pro Tyr Tyr Pro Tyr Leu Tyr Cys Val Gly Ser Trp Ser Pro Ala Phe
                     230
 Trp
<210> 700
<211> 729
<212> DNA
<213> Homo sapiens
<400> 700
atgeageate accaccatea ceaecteagg gttceggage egeggeeegg ggaggegaaa
                                                                        60
geggagggg cegegeegee gaeccegtee aagcegetea egteetteet catecaggae
                                                                       120
atectgeggg aeggegea geggeaagge ggeegeaega geageeagag acagegegae
                                                                       180
ccggagccgg agccagagcc agagccagag ggaggacgca gccgcgcgg ggcgcagaac
                                                                       240
gaccagetga geacegggee eegegeegeg eeggatgagg eegagaeget ggeagagaee
                                                                       300
gagccagaaa ggcacttggg gtcttatctg ttggactctg aaaacacttc aggcgccctt
                                                                       360
ccaaggette eccaaacece taagcageeg cagaageget eccgagetge etteteccae
                                                                       420
actcaggtga tcgagttgga gaggaagttc agccatcaga agtacctgtc ggcccctgaa
                                                                       480
egggeecace tggeeaagaa ceteaagete aeggagaeee aagtgaagat atggtteeag
                                                                       540
aacagacgct ataagactaa gcgaaagcag ctctcctcgg agctgggaga cttggagaag
                                                                       600
cacteetttt tgeeggeeet gaaagaggag geettetee gggeeteet ggteteegtg
                                                                       660
tataacaget atcettacta cccatacetg cactgegtgg geagetggag cccagetttt
                                                                       720
tggtaatga
                                                                       729
```

```
<210> 701
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 701
                                                                       27
ctactaagcg ctggagtgag ggatcag
<210> 702
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 702
                                                                       33
catcgagaat tcactactct ctgactagat gtc
<210> 703
<211> 161
<212> PRT
<213> Homo sapiens
<400> 703
Met Gln His His His His His Ala Gly Val Arg Asp Gln Gly Gln
                 5
                                     īΰ
Gly Ala Arg Trp Pro His Thr Gly Lys Arg Gly Pro Leu Leu Gln Gly
                                 25
            20
Leu Thr Trp Ala Thr Gly Gly His Cys Phe Ser Ser Glu Glu Ser Gly
Ala Val Asp Gly Ala Gly Gln Lys Lys Asp Arg Ala Trp Leu Arg Cys
Pro Glu Ala Val Ala Gly Phe Pro Leu Gly Ser Asp Cys Arg Glu Gly
                                         75
                     70
Gly Arg Gln Gly Cys Gly Gly Ser Asp Asp Glu Asp Asp Leu Gly Val
                                     90
                85
Ala Pro Gly Leu Ala Pro Ala Trp Ala Leu Thr Gln Pro Pro Ser Gln
            100
                                 105
Ser Pro Gly Pro Gln Ser Leu Pro Ser Thr Pro Ser Ser Ile Trp Pro
       115
                             120
Gln Trp Val Ile Leu Ile Thr Glu Leu Thr Ile Pro Ser Pro Ala His
                       135
                                             140
Gly Pro Pro Trp Leu Pro Asn Ala Leu Glu Arg Gly His Leu Val Arg
                                         155
145
                    150
Glu
<210> 704
 <211> 489
 <212> DNA
 <213> Homo sapiens
```

180

240

300

```
<400> 704
 atgeageate accaccatea ceaegetgga gtgagggate aggggcaggg egegagatgg
 cotcacacag ggaagagag gcccctcctg cagggcctca cctgggccac aggaggacac
 tgetttteet etgaggagte aggagetgtg gatggtgetg gacagaagaa ggacagggee
 rggctcaggt gtccagaggc tgtcgctggc ttccctttgg gatcagactg cagggaggga
 qggcqgcagg gttgtggggg gagtgacgat gaggatgacc tgggggtggc tccaggcctt
 geccetgeet gggeceteac ceageeteec teacagtete etggecetea gteteteece
 tecactecat ectecatety geoteagtgy gteattetga teactgaact gaccatacee
                                                                        420
 agocctgocc acggocctcc atggotcocc aatgccctgg agaggggaca totagtcaga
                                                                        480
 gagtagtga
                                                                        489
 <210> 705
 <211> 132
 <212> PRT
 <213> Homo sapiens
 <400> 705
 Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly Phe
                                     10
 Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Arg Ser
                                 25
 Gly Gly Gly Ser Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly
                             40
 Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val
                         55
Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val
                     70
                                         75
 Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala
                                     90
Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser Val Asn Trp
                                 105
Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu
        115
                             120
                                                 125
Gly Pro Pro Ala
    130
<210> 706
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 706
ggggaattca tcacctatgt gccgcctctg c
                                                                     31
<210> 707
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
```

```
<400> 707
                                                                    40
gggctcgagt cactcgccca cgaaatccgt gtaaaacagc
<210> 708
<211> 1203
<212> DNA
<213> Homo sapiens
<400> 708
atgcatcacc atcaccatca cacggccgcg tccgataact tccagctgtc ccagggtggg 60
cagggattcg ccattccgat cgggcaggcg atggcgatcg cgggccagat caagettccc 120
accettcata tegggeetac egeetteete ggettgggtg ttgtegacaa caacggcaac 180
ggcgcacgag tccaacgcgt ggtcgggagc gctccggcgg caagtctcgg catctccacc 240
ggcgacgtga tcaccgcggt cgacggcgct ccgatcaact cggccaccgc gatggcggac 300
gcgcttaacg ggcatcatcc cggtgacgtc atctcggtga cctggcaaac caagtcgggc 360
ggcacgcgta cagggaacgt gacattggcc gagggacccc cggccgaatt catcacctat 420
gtgccgcctc tgctgctgga agtgggggta gaggagaagt tcatgaccat ggtgctgggc 480
attggtccag tgctgggcct ggtctgtgtc ccgctcctag gctcagccag tgaccactgg 540
cgtggacgct atggccgccg ccggcccttc atctgggcac tgtccttggg catcctgctg 600
agectettte teateceaag ggeeggetgg etageaggge tgetgtgeee ggateeeagg 660
cccctggagc tggcactgct catcctgggc gtggggctgc tggacttctg tggccaggtg 720
tgetteacte caetggagge cetgetetet gaeetettee gggaeeegga ceaetgtege 780
caggectact etgtetatge etteatgate agtettgggg getgeetggg etaceteetg 840
cctgccattg actgggacac cagtgccctg gccccctacc tgggcaccca ggaggagtgc 900
ctctttggcc tgctcaccct catcttcctc acctgcgtag cagccacact gctggtggct 960
gaggaggcag cgctgggccc caccgagcca gcagaagggc tgtcggcccc ctccttgtcg 1020
ccccactgct gtccatgccg ggcccgcttg gctttccgga acctgggcgc cctgcttccc 1080
cggctgcacc agctgtgctg ccgcatgccc cgcaccctgc gccggctctt cgtggctgag 1140
ctgtgcagct ggatggcact catgacette acgetgtttt acaeggattt egtgggegag 1200
tga
<210> 709
<211> 400
<212> PRT
<213> Homo sapiens
<400> 709
Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
Ser Gln Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
                                 25
Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala
Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
```

100							105					110					
Va	l Th	r T	rp G 15	ln Tì	nr Ly	s Se	r Gl 12	у Gl О	y Th	r Ar	g Th	r Gl ₃		n Va	l Thr		
Le	u Al 13	a G. 0	lu G	ly Pr	o Pr	o Al 13	a Gl 5	u Ph	e Il	e Th	r Tyr 140		i Pr	o Pr	o Leu		
Le 14	u Le 5	u G	lu Va	al Gl	y Va 15	1 G1 0	u Gl	u Ly	s Ph	e Me 15	t Thi	Met	: Va:	l Le	ı Gly 160		
Il	e Gl	y Pi	co Va	al Le 16	u G1 5	y Le	u Va	l Cy	s Va 17		o Leu	ı Lev	Gly	y Sei 175	Ala		
Se	r As _l	p Hi	.s Tr 18	p Ar	g Gl	y Ar	д Ту:	r Gl:	y Ar	g Ar	g Arg	Pro	Phe 190		e Trp		
Ala	a Lei	ı S∈ 19	er Le	eu Gl	y Ile	e Lei	1 Let 200	ı Sei	r Lei	ı Ph∈	e Leu	11e 205		Arc	, Ala		
Gl	7 Trp 210) Le	u Al	a Gl	y Leu	ı Lei 215	cys	s Pro	Asp	Pro	Arg 220	Pro	Leu	Glu	Leu		
Ala 225	ı Lei	ı Le	u Il	e Le	u Gly 230	/ Val	. Gly	/ Let	ı Let	235	Phe	Cys	Gly	Gln	Val 240		
Суз	Ph∈	e Th	r Pr	o Lei 24!	ı Glu	ı Ala	Leu	Leu	Ser 250		Leu	Phe	Arg	Asp 255	Pro		
Asp	His	Су	s Ar 26	g Glr O	n Ala	Tyr	Ser	Val 265	Туг	Ala	Phe	Met	Ile 270	Ser	Leu		
Gly	Gly	Cy:	s Lei 5	ı Gly	y Tyr	Leu	Leu 280	Pro	Ala	Ile	Asp	Trp 285	Asp	Thr	Ser		
Ala	Leu 290	Ala	a Pro	туг	Leu	Gly 295	Thr	Gln	Glu	Glu	Суs 300	Leu	Phe	Gly	Leu		
Leu 305	Thr	Let	ı Ile	Phe	Leu 310	Thr	Cys	Val	Ala	Ala 315	Thr	Leu	Leu	Val	Ala 320		
Glu	Glu	Ala	a Ala	Leu 325	Gly	Pro	Thr	Glu	Pro 330	Ala	Glu	Gly	Leu	Ser 335	Ala		
Pro	Ser	Leu	Ser 340	Pro	His	Cys	Cys	Pro 345	Cys	Arg	Ala		Leu 350	Ala	Phe		
Arg	Asn	Leu 355	Gly	Ala	Leu	Leu	Pro 360	Arg	Leu	His	Gln	Leu 365	Cys	Cys	Arg		
Met	Pro 370	Arg	Thr	Leu	Arg	Arg 375	Leu	Phe	Val	Ala	Glu 380	Leu (Cys	Ser	Trp		
Met 385	Ala	Leu	Met	Thr	Phe 390	Thr	Leu	Phe	Tyr	Thr 395	Asp .	Phe '	Val		Glu 400		

```
<210> 710
<211> 20
<212> PRT
<213> Homo sapiens
<400> 710
Leu Leu Pro Pro Pro Pro Ala Leu Cys Gly Ala Ser Ala Cys Asp Val
Ser Val Arg Val
<210> 711
<211> 60
<212> DNA
<213> Homo sapiens
<400> 711
ctgctcccac ctccacccgc gctctgcggg gcctctgcct gtgatgtctc cgtacgtgtg 60
<210> 712
<211> 10
<212> PRT
<213> Homo sapiens
<400> 712
Ala Ser Ala Cys Asp Val Ser Val Arg Val
<210> 713
<211> 30
<212> DNA
<213> Homo sapiens
<400> 713
                                                                    30
gcctctgcct gtgatgtctc cgtacgtgtg
<210> 714
<211> 9
<212> PRT
<213> Homo sapiens
<400> 714
Ala Ser Ala Cys Asp Val Ser Val Arg
                 5
 1
<210> 715
<211> 9
<212> PRT
<213> Homo sapiens
<400> 715
Ser Ala Cys Asp Val Ser Val Arg Val
<210> 716
<211> 27
```

```
<212> DNA
 <213> Homo sapiens
 <400> 716
 totgootgtg atgtotcogt acgtgtg
                                                                    27
 <210> 717
 <211> 19
 <212> PRT
 <213> Homo sapiens
 <400> 717
 Gly Ile Gly Pro Val Leu Gly Leu Val Cys Val Pro Leu Leu Gly Ser
                                                          15
 Ala Ser Asp
 <210> 718
 <211> 19
 <212> PRT
 <213> Homo sapiens
 <400> 718
Val Pro Pro Leu Leu Glu Val Gly Val Glu Glu Lys Phe Met Thr
                                      10
                                                         15
Met Val Leu
<210> 719
<211> 19
<212> PRT
<213> Homo sapiens
<400> 719
Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala
                                    10
Gln Leu Leu
<210> 720
<211> 57
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (57)
<223> n = A,T,C or G
<400> 720
ggnathggnc engtnytngg nytngtntgy gtnecnytny tnggnwsngc nwsngay 57
```

WO 01/51633 PCT/US01/01574

```
<210> 721
<211> 57
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(57)
\langle 223 \rangle n = A, T, C or G
<400> 721
                                                                      57
gtncenecny tnytnytnga rgtnggngtn gargaraart tyatgaenat ggtnytn
<210> 722
<211> 57
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(57)
\langle 223 \rangle n = A,T,C or G
<400> 722
atggtncarm gnytntgggt nwsnmgnytn ytnmgncaym gnaargcnca rytnytn
                                                                      57
<210> 723
<211> 9
<212> PRT
<213> Homo sapiens
<400> 723
Val Leu Gln Cys Val Asn Val Ser Val
<210> 724
<211> 9
<212> PRT
<213> Homo sapiens
<400> 724
Arg Met Pro Thr Val Leu Gln Cys Val
<210> 725
<211> 9
<212> PRT
<213> Homo sapiens
<400> 725
Asn Leu Cys Lys Phe Thr Glu Trp Ile
<210> 726
<211> 9
<212> PRT
```

```
113> Homo sapiens
 <400> 726
 Met Leu Ile Lys Leu Asp Glu Ser Val
 <210> 727
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 727
 Leu Leu Ala Asn Asp Leu Met Leu Ile
 <210> 728
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 728
 Leu Leu Ala Ash Gly Arg Met Pro Thr Val
 <210> 729
 <211> 10
 <212> PRT
<213> Homo sapiens
<400> 729
Leu Met Leu Ile Lys Leu Asp Glu Ser Val
<21.0> 730
<211> 10
<212> PRT
<213> Homo sapiens
<400> 730
Val Leu Gln Cys Val Asn Val Ser Val Val
<210> 731
<211> 10
<212> PRT
<213> Homo sapiens
Gly Leu Leu Ala Asn Gly Arg Met Pro Thr
<210> 732
<211> 10
<212> PRT
<213> Homo sapiens
<400> 732
Thr Val Leu Gln Cys Val Asn Val Ser Val
```

WO 01/51633 PCT/US01/01574

```
10
 1
<210> 733
<211> 9
<212> PRT
<213> Homo sapiens
<400> 733
Gly Val Leu Val His Pro Gln Trp Val
<210> 734
<211> 9
<212> PRT
<213> Homo sapiens
<400> 734
Val Leu Val His Pro Gln Trp Val Leu
<210> 735
<211> 1195
<212> DNA
<213> Homo sapiens
<400> 735
ccqagactca cqqtcaaqct aaggcgaaga gtqggtggct gaagccatac tattttatag 60
aattaatgga aagcaqaaaa gacatcacaa accaagaaga actttggaaa atgaagccta 120
qqaqaaattt aqaaqaaqac qattatttgc ataaggacac gggagagacc agcatgctaa 180
aaagacctgt gcttttgcat ttgcaccaaa cagcccatgc tgatgaattt gactgccctt 240
cagaacttca gcacacacag gaactctttc cacagtggca cttgccaatt aaaatagctg 300
ctattatagc atctctgact tttctttaca ctcttctgag ggaagtaatt caccctttag 360
caacttccca tcaacaatat ttttataaaa ttccaatcct ggtcatcaac aaagtcttgc 420
caatggtttc catcactctc ttggcattgg tttacctgcc aggtgtgata gcagcaattg 480
tccaacttca taatggaacc aagtataaga agtttccaca ttggttggat aagtggatgt 540
taacaaqaaa qcaqtttqqq cttctcaqtt tcttttttgc tgtactgcat gcaatttata 600
gtctqtctta cccaatqaqq cqatcctaca gatacaagtt gctaaactgg gcatatcaac 660
aggtccaaca aaataaaqaa qatqcctgqa ttqaqcatga tgtttggaga atggagattt 720
atgtqtctct qqqaattqtq qqattqqcaa tactqqctct qttqqctqtq acatctattc 780
catctgtgag tgactctttg acatggagag aatttcacta tattcagagc aagctaggaa 840
ttgtttccct tctactgggc acaatacacg cattgatttt tgcctggaat aagtggatag 900
atataaaaca atttgtatgg tatacacctc caacttttat gatagctgtt ttccttccaa 960
ttgttgtcct qatatttaaa agcatactat tcctgccatg cttgaggaag aagatactga 1020
agattagaca tggttgggaa gacgtcacca aaattaacaa aactgagata tgttcccaqt 1080
tqtaqaatta ctqtttacac acatttttqt tcaatattqa tatattttat caccaacatt 1140
<210> 736
<211> 339
<212> PRT
<213> Homo sapiens
<400> 736
Met Glu Ser Arg Lys Asp Ile Thr Asn Gln Glu Glu Leu Trp Lys Met
```

- Lys Pro Arg Arg Asn Leu Glu Glu Asp Asp Tyr Leu His Lys Asp Thr 20 25 30
- Gly Glu Thr Ser Met Leu Lys Arg Pro Val Leu Leu His Leu His Gln 35 40 45
- Thr Ala His Ala Asp Glu Phe Asp Cys Pro Ser Glu Leu Gln His Thr 50 60
- Gln Glu Leu Phe Pro Gln Trp His Leu Pro Ile Lys Ile Ala Ala Ile 65 70 75 80
- Ile Ala Ser Leu Thr Phe Leu Tyr Thr Leu Leu Arg Glu Val Ile His
 85 90 95
- Pro Leu Ala Thr Ser His Gln Gln Tyr Phe Tyr Lys Ile Pro Ile Leu 100 105 110
- Val Ile Asn Lys Val Leu Pro Met Val Ser Ile Thr Leu Leu Ala Leu 115 120 125
- Val Tyr Leu Pro Gly Val Ile Ala Ala Ile Val Gln Leu His Asn Gly 130 135 140
- Thr Lys Tyr Lys Lys Phe Pro His Trp Leu Asp Lys Trp Met Leu Thr 145 150 155 160
- Arg Lys Gln Phe Gly Leu Leu Ser Phe Phe Phe Ala Val Leu His Ala 165 170 175
- Ile Tyr Ser Leu Ser Tyr Pro Met Arg Arg Ser Tyr Arg Tyr Lys Leu 180 185 190
- Leu Asn Trp Ala Tyr Gln Gln Val Gln Gln Asn Lys Glu Asp Ala Trp
 195 200 205
- Ile Glu His Asp Val Trp Arg Met Glu Ile Tyr Val Ser Leu Gly Ile 210 215 . 220
- Val Gly Leu Ala Ile Leu Ala Leu Leu Ala Val Thr Ser Ile Pro Ser 225 230 235 240
- Val Ser Asp Ser Leu Thr Trp Arg Glu Phe His Tyr Ile Gln Ser Lys 245 250 255
- Leu Gly Ile Val Ser Leu Leu Leu Gly Thr Ile His Ala Leu Ile Phe 260 265 270
- Ala Trp Asn Lys Trp Ile Asp Ile Lys Gln Phe Val Trp Tyr Thr Pro
 275 280 285
- Pro Thr Phe Met Ile Ala Val Phe Leu Pro Ile Val Val Leu Ile Phe 290 295 300
- Lys Ser Ile Leu Phe Leu Pro Cys Leu Arg Lys Lys Ile Leu Lys Ile 305 310 315 320
- Arg His Gly Trp Glu Asp Val Thr Lys Ile Asn Lys Thr Glu Ile Cys

WO 01/51633 PCT/US01/01574

287

335 325 330 Ser Gln Leu <210> 737 <211> 2172 <212> DNA <213> Homo sapiens <400> 737 aaaattqaat attgagatac cattetttag tgttacettt tttacecaca tgtgtttetg 60 aaaatattgg aattttattc atcttaaaaa ttggacccgg ccttatttac catctttaat 120 ccattttagt actatgggtg agtacatgga attgaagtct ggcttaaatc ttcagaaagt 180 tatatatcta ttttatttta ttttttgag acagagtctc gctgtgtcac ccaggctgga 240 gtgcggtgcc acaatcttgg ctcactgcaa cctctgagtc ccaggttcaa gcgatactca 300 tgcctcqqcc tcctqaqtaq ctggqactac aggcgtgcac caccacatct ggctaatctt 360 tttttgtatt tttagtagag acggggtttc actgtggtct ccatctcctg acctcgtgat 420 cegeetgeet cecaaagtge tgggattaca ggeatgagee acegeacaca getgggaetg 480 ggtaatttat aaagaaaaga ggtttaatga ctcacagttc cgcatggctg gagaggcctc 540 aggaaactta caatcatggt ggaaggcgaa ggggaagcaa ggcacgtctt acatggtggc 600 aggagagaac gagtgagggg ggagactgcc acaaactttt tttttttgag acaagagtct 660 qgccctqttq cccaqqctqq aqtqcaqtqq catgatctca gctcactqca acctctgcct 720 cacaggttca agcaattctc atgcctcage ctcccgcata gctgggacca caggtatgca 780 ccaccacacc tagctaattt ttgtagtttt agtagagatg gggtctcact atgttgctca 840 qqctqqtcta aaactcctqq qctccaqcaa tccqcctqcc ttqqcctccc aaaqtqctqq 900 ggttacagge ataagccacc acatccagcc tgccacatac ttttaaacta tcaggtctca 960 tgagaactca tgcactatca caagaatagc atggggaaaa tcccccccat aatccaatca 1020 cctcccacca qqtctcctcc qacacqtqqq attqqqtqqq qacacaqaqc caaaccqtat 1080 caqatqctqc aqqqqctqqq qacactqaqa ccactcaqac etqqtqtctc tqtcactctt 1140 ctgqqctctq tctqtctcca qqacctccct cccttccat gqtatagaag gaaagtgctg 1200 taaqqtqcaa attqcacaqq aactoottaa qacatacatc atccactcag cagttttagg 1260 ttcgcagcaa aatggagtgg aaggaacaga aatttcctgt gcacccctcc ccgctgtctc 1320 cgccatatcg gcatcctgca tccagagtgg tggactggtt acaggctatg aacctacact 1380 gatgeggeac caccaccag agtecaeggg ttatgttggt teacatttac tettgetgtg 1440 gtatggteta taggtttgga cagatgtccg ataatcettt ttacattttg gcatcettgg 1500 gtageteqte ttgtaggaat ggaettgett caaagtggag geaggeagat cetteagaeg 1560 ggtatatgga gccctgtttt cagttgcttt tctaattctc tcttatcgtt tacctcaaaa 1620 tcttcctqaq qtctcqcttc cttttaaaat ccttqtctac tttqcaqcat cactctgaca 1680 ctccattgat tectcageae etactgaeta caeggttagg agtgeaaggg tagaatteat 1740 qttttattca tctttqqqtc tqtaqcaccc agcaaaqtgc tcaqtaaatg cqcagtaatt 1800 gatttgacct ctgaacaaat acacactgta ctaagaatct acacaccgaa agacaaaaac 1860 aagacaaatt tgagtgctac aggtgtcacg cttggcatca cacatgtgcc tgtgtattcc 1920 tctaggtggt taccaggage tctgccactg catgtccact agtgacgggt tcgctccacc 1980 accocagetg ggtageeget geteteacat aaggggteea attaaaattg ceaggaataa 2040 attoccccqq actttqactt ctcaaqaqct aaqaaqqttt qctqaqtatt ctggcatgat 2100 gtttggtgat caaacaactg ctggccaaaa atgatgagta tttccccctc ttgctgaaga 2160 tgtgctccat ac <210> 738 <211> 2455 <212> DNA <213> Homo sapiens <400> 738 cagettaaaa atggtttett gaaateagtg attageatte acteaceagt acceetacta 60 aggggtaggc actggtttgt actcctggga atacaggagt acaccagaat ttattctgc 120

```
turtgetit tgttgeaaat geegtggett eatetgagga attetagaat teagagggtg 180
 ragocoteca etetgetgic tigotatetg eteteatige ateegtitaa eetgeattet 240
 passagatgtt teteaggttt tteettgaeg attitettet titetgatte tgaeaatgtt 300
 liadateatt gtactgtggt tateatttet etgeatttat tttacceate tteetttgta 360
 actigiccta tigicittia atticigect gitettiatg getticaact teataaataa 420
 satgittet caaatotott tgigaattoo agagagggoo aggoacggig gotcacatoi 480
 gtaatcccag cactttgggg aggctgagac gggtggatca cttgaggtca ggagtttgag 540
 accageetgg ccaacatggt gaaateeegt tteactaaaa atacaaaaat tacccaggea 600
 tggtggcggg cgcctgtaat cccaggtact cgggaggctg agggaggaga atcgcttgaa 660
 cotyggagge tgagggagga gaategettg aaccegggag geagaggttg eagtgaaceg 720
 agateatgtt getgeactee ageetggtea acagageaag actetgeete aaaaacaaac 780
 Haataaacaa acaaacaaac aaaacagaga gattttgctg caatgtacaa ggagcaattt 840
 geteetttaa aaaaataatt tttggeeagg caeagtgget caeacetgta ateceageae 900
 tttgggaage caaggtgggt ggateatttg aggteaggag tttgagatea geetggeeaa 960
 catggtgaaa cactatetet attaaaaata caaaaatgtg eteagtgtgg tggtgeacat 1020
 ctgtaatctc agecteeege atagetggga ceacaggtat geaceaceae acetagetaa 1080
 tttttgtagt tttagtagag atggggtete actatgttge teaggetggt etaaaactee 1140
 tgggctccag caatccgcct gccttggcct cccaaagtgc tggggttaca ggcataagcc 1200
 recacateca geotgecaca taettttaaa etateaggte teatgagaae teatgeacta 1260
 tcacaagaat agcatgggga aaatcccccc cataatccaa tcacctccca ccaggtctcc 1320
 tecgaeaegt gggattgggt ggggaeaeag agecaaaeeg tateagatge tgeagggget 1380
 ggggacactg agaccactca gacctggtgt ctctgtcact cttctgggct ctgtctgtct 1440
 scaggacete ecteceette catggtatag aaggaaagtg etgtaaggtg caaattgcae 1500
 aggaacteet taagacatae ateateeaet cageagtttt aggttegeag caaaatggag 1560
 tggaaggaac agaaatttee tgtgeaceee teecegetgt eteegeeata teggeateet 1620
geatecagag tggtggaetg gttaeagget atgaacetae aetgatgegg caccaccace 1680
cagagtccac aggttatgtt ggttcacatt tactcttgct gtggtatggt ctataggttt 1740
ggacagatgt ccgataatcc tttttacatt ttggcatcct tgggtagctc gtcttgtagg 1800
aatggacttg cttcaaagtg gaggcaggca gatccttcag acgggtatat ggagccctgt 1860
tttcagttgc ttttctaatt ctctcttatc gtttacctca aaatcttcct gaggtctcgc 1920
ttccttttaa aatccttgtc tactttgcag catcactctg acactccatt gattcctcag 1980
sacctactga ctacacggtt aggagtgcaa gggtagaatt catgttttat tcatctttgg 2040
guetgtagea eccageaaag tgeteagtaa atgegeagta attgatttga eetetgaaca 2100
uatacacact gtactaagaa totacacaco gaaagacaaa aacaagacaa atttgagtgo 2160
tacaggtgtc acgcttggca tcacacatgt gcctgtgtat tcctctaggt ggttaccagg 2220
agetetgeea etgeatgtee actagtgaeg ggttegetee accaeceeag etgggtagee 2280
actgetetea cataaggggt eeaattaaaa ttgeeaggaa taaatteeee eggaetttga 2340
cttctcaaga gctaagaagg tttgctgagt attctggcat gatgtttggt gatcaaacaa 2400
ctgctggcca aaaatgatga gtatttcccc ctcttgctga agatgtgctc catac
<210> 739
<211> 2455
<212> DNA
<213> Homo sapiens
<400> 739
cagettaaaa atggtttett gaaateagtg attageatte aeteaceagt aeeeetaeta 60
aggggtaggc actggtttgt actcctggga atacaggagt acaccagaat ttattctgc 120
ttattgcttt tgttgcaaat geegtggett eatetgagga attetagaat teagagggtg 180
tageceteca etetgetgte tigetatetg eteteatige ateegittaa eetgeattet 240
gaaagatgtt teteaggttt tteettgaeg attttettet tttetgatte tgacaatgtt 300
ttaaatcatt gtactgtggt tatcatttct ctgcatttat tttacccatc ttcctttgta 360
actigicota tigicittia atticigosi gitottiatg gotticaact toataaataa 420
catgittict caaatcictt tgtgaattcc agagagggcc aggcacggtg gctcacatct 480
gtaatcccag cactttgggg aggctgagac gggtggatca cttgaggtca ggagtttgag 540.
uncayeetgg ccaacatggt gaaateeegt tteactaaaa atacaaaaat tacccaggca 600
tggtggcggg cgcctgtaat cccaggtact cgggaggctg agggaggaga atcgcttgaa 660
cetgggagge tgagggagga gaategettg aaccegggag geagaggttg cagtgaaceg 720
```

```
agateatqtt qetqeactee aqeetqqtea acaqaqeaaq actetqeete aaaaacaaac 780
aaataaacaa acaaacaaac aaaacagaga gattttgctg caatgtacaa ggagcaattt 840
geteetttaa aaaaataatt tttggceagg cacagtgget cacacetgta ateccageae 900
tttgggaage caaggtgggt ggateatttg aggteaggag tttgagatea geetggeeaa 960
catggtgaaa cactatctct attaaaaata caaaaatgtg ctcagtgtgg tggtgcacat 1020
ctgtaatctc agcctcccgc atagctggga ccacaggtat gcaccaccac acctagctaa 1080
tttttgtagt tttagtagag atggggtete actatgttge teaggetggt etaaaactee 1140
tgggctccag caatccgcct gccttggcct cccaaagtgc tggggttaca ggcataagcc 1200
accacateca geetgeeaca taettttaaa etateaggte teatgagaac teatgeacta 1260
tcacaagaat agcatgggga aaatcccccc cataatccaa tcacctccca ccaggtctcc 1320
tccgacacgt gggattgggt ggggacacag agccaaaccg tatcagatgc tgcaggggct 1380
ggggacactg agaccactca gacctggtgt ctctgtcact cttctgggct ctgtctgtct 1440
ccaggacctc cctccccttc catggtatag aaggaaagtg ctgtaaggtg caaattgcac 1500
aggaactect taaqacatac atcatecact cagcagtttt aggtteqcag caaaatggag 1560
tggaaggaac agaaatttcc tgtgcacccc tccccgctgt ctccgccata tcggcatcct 1620
qcatccagaq tgqtgqactq qttacagqct atgaacctac actqatqcqq caccaccacc 1680
cagagtccac aggttatgtt ggttcacatt tactcttgct gtggtatggt ctataggttt 1740
ggacaqatqt ccgataatcc tttttacatt ttggcatcct tgggtagctc gtcttgtagg 1800
aatggacttg cttcaaaqtg gaggcaggca gateetteag acgggtatat ggageeetgt 1860
tttcaqttqc ttttctaatt ctctcttatc qtttacctca aaatcttcct qaggtctcqc 1920
ttccttttaa aatccttgtc tactttgcag catcactctg acactccatt gattcctcag 1980
cacctactga ctacacggtt aggagtgeaa gggtagaatt catgttttat tcatctttgg 2040
gtctgtagca cccagcaaag tgctcagtaa atgcgcagta attgatttga cctctgaaca 2100
aatacacact gtactaagaa tctacacacc gaaagacaaa aacaagacaa atttgagtgc 2160
tacaggtgtc acgcttggca tcacacatgt gcctgtgtat tcctctaggt ggttaccagg 2220
agetetgeea etgeatgtee actagtgaeg ggttegetee accaecccag etgggtagee 2280
gctgctctca cataaggggt ccaattaaaa ttgccaggaa taaattcccc cggactttga 2340
cttctcaaga gctaagaagg tttgctgagt attctggcat gatgtttggt gatcaaacaa 2400
ctgctggcca aaaatgatga gtatttcccc ctcttgctga agatgtgctc catac
<210> 740
<211> 62
<212> PRT
<213> Homo sapiens
<400> 740
Met Thr His Ser Ser Ala Trp Leu Glu Arg Pro Gln Glu Thr Tyr Asn
His Gly Gly Arg Arg Gly Ser Lys Ala Arg Leu Thr Trp Trp Gln
Glu Arg Thr Ser Glu Gly Gly Asp Cys His Lys Leu Phe Phe Glu
         35
                             40
Thr Arg Val Trp Pro Cys Cys Pro Gly Trp Ser Ala Val Ala
<210> 741
<211> 135
<212> PRT
<213> Homo sapiens
<400> 741
Met Val Glu Gly Glu Gly Glu Ala Arg His Val Leu His Gly Gly Arg
                 5
                                    10
```

Arg Glu Arg Val Arg Gly Glu Thr Ala Thr Asn Phe Phe Leu Arg 20 25 30

Gln Glu Ser Gly Pro Val Ala Gln Ala Gly Val Gln Trp His Asp Leu 35 40 45

Ser Ser Leu Gln Pro Leu Pro His Arg Phe Lys Gln Phe Ser Cys Leu 50 60

Ser Leu Pro His Ser Trp Asp His Arg Tyr Ala Pro Pro His Leu Ala 65 70 75 80

Asn Phe Cys Ser Phe Ser Arg Asp Gly Val Ser Leu Cys Cys Ser Gly 85 90 95

Trp Ser Lys Thr Pro Gly Leu Gln Gln Ser Ala Cys Leu Gly Leu Pro 100 105 110

Lys Cys Trp Gly Tyr Arg His Lys Pro Pro His Pro Ala Cys His Ile 115 120 125

Leu Leu Asn Tyr Gln Val Ser 130 135

<210> 742

<211> 77

<212> PRT

<213> Homo sapiens

<400> 742

Met His Tyr His Lys Asn Ser Met Gly Lys Ile Pro Pro Ile Ile Gln $$5\$

Ser Pro Pro Thr Arg Ser Pro Pro Thr Arg Gly Ile Gly Trp Gly His 20 25 30

Arg Ala Lys Pro Tyr Gln Met Leu Gln Gly Leu Gly Thr Leu Arg Pro 35 40 45

Leu Arg Pro Gly Val Ser Val Thr Leu Leu Gly Ser Val Cys Leu Gln 50 55 60

Asp Leu Pro Pro Leu Pro Trp Tyr Arg Arg Lys Val Leu 65 70 75

<210> 743

<211> 60

<212> PRT

<213> Homo sapiens

<400> 743

Met Leu Val His Ile Tyr Ser Cys Cys Gly Met Val Tyr Arg Phe Gly 5 10 15

Gln Met Ser Asp Asn Pro Phe Tyr Ile Leu Ala Ser Leu Gly Ser Ser 20 25 30

Ser Cys Arg Asn Gly Leu Ala Ser Lys Trp Arg Gln Ala Asp Pro Ser 35 40 45

Asp Gly Tyr Met Glu Pro Cys Phe Gln Leu Leu Phe 50 55 60

<210> 744

<211> 76

<212> PRT

<213> Homo sapiens

<400> 744

Met Cys Leu Cys Ile Pro Leu Gly Gly Tyr Gln Glu Leu Cys His Cys
5 10 15

Met Ser Thr Ser Asp Gly Phe Ala Pro Pro Pro Gln Leu Gly Ser Arg
20 25 30

Cys Ser His Ile Arg Gly Pro Ile Lys Ile Ala Arg Asn Lys Phe Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Arg Thr Leu Thr Ser Gln Glu Leu Arg Arg Phe Ala Glu Tyr Ser Gly 50 55 60

Met Met Phe Gly Asp Gln Thr Thr Ala Gly Gln Lys 65 70 75

<210> 745

<211> 76

<212> PRT

<213> Homo sapiens

<400> 745

Met Val Lys Ser Arg Phe Thr Lys Asn Thr Lys Ile Thr Gln Ala Trp $$5\,$

Trp Arg Ala Pro Val Ile Pro Gly Thr Arg Glu Ala Glu Gly Glu 20 25 30

Ser Leu Glu Pro Gly Arg Leu Arg Glu Glu Asn Arg Leu Asn Pro Gly 35 40 45

Gly Arg Gly Cys Ser Glu Pro Arg Ser Cys Cys Cys Thr Pro Ala Trp
50 55 60

Ser Thr Glu Gln Asp Ser Ala Ser Lys Thr Asn Lys
65 70 75

<210> 746

<211> 80

<212> PRT

<213> Homo sapiens

<400> 746

Met Leu Leu His Ser Ser Leu Val Asn Arg Ala Arg Leu Cys Leu Lys

5 10 15

Asn Lys Gln Ile Asn Lys Gln Thr Asn Lys Thr Glu Arg Phe Cys Cys 20 25 30

Asn Val Gln Gly Ala Ile Cys Ser Phe Lys Lys Ile Ile Phe Gly Gln 35 40 45

Ala Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Glu Ala Lys Val 50 55 60

Gly Gly Ser Phe Glu Val Arg Ser Leu Arg Ser Ala Trp Pro Thr Trp 65 70 75 80

<210> 747

<211> 72

<212> PRT

<213> Homo sapiens

<400> 747

Met His Tyr His Lys Asn Ser Met Gly Lys Ile Pro Pro His Asn Pro 5 10 15

Ile Thr Ser His Gln Val Ser Ser Asp Thr Trp Asp Trp Val Gly Thr 20 25 30

Gln Ser Gln Thr Val Ser Asp Ala Ala Gly Ala Gly Asp Thr Glu Thr 35 40 45

Thr Gln Thr Trp Cys Leu Cys His Ser Ser Gly Leu Cys Leu Ser Pro 50 60

Gly Pro Pro Ser Pro Ser Met Val 65 70

<210> 748

<211> 77

<212> PRT

<213> Homo sapiens

<400> 748

Met His Tyr His Lys Asn Ser Met Gly Lys Ile Pro Pro Ile Ile Gln
5 10 15

Ser Pro Pro Thr Arg Ser Pro Pro Thr Arg Gly Ile Gly Trp Gly His

Arg Ala Lys Pro Tyr Gln Met Leu Gln Gly Leu Gly Thr Leu Arg Pro
35

Leu Arg Pro Gly Val Ser Val Thr Leu Leu Gly Ser Val Cys Leu Gln 50 60

Asp Leu Pro Pro Leu Pro Trp Tyr Arg Arg Lys Val Leu 65 70 75

PCT/US01/01574 WO 01/51633

293

<210> 749 <211> 60 <212> PRT <213> Homo sapiens <400> 749 Met Leu Val His Ile Tyr Ser Cys Cys Gly Met Val Tyr Arg Phe Gly Gln Met Ser Asp Asn Pro Phe Tyr Ile Leu Ala Ser Leu Gly Ser Ser Ser Cys Arg Asn Gly Leu Ala Ser Lys Trp Arg Gln Ala Asp Pro Ser Asp Gly Tyr Met Glu Pro Cys Phe Gln Leu Leu Phe <210> 750 <211> 76 <212> PRT <213> Homo sapiens <400> 750 Met Cys Leu Cys Ile Pro Leu Gly Gly Tyr Gln Glu Leu Cys His Cys Met Ser Thr Ser Asp Gly Phe Ala Pro Pro Pro Gln Leu Gly Ser Arg Cys Ser His Ile Arg Gly Pro Ile Lys Ile Ala Arg Asn Lys Phe Pro 40 Arg Thr Leu Thr Ser Gln Glu Leu Arg Arg Phe Ala Glu Tyr Ser Gly Met Met Phe Gly Asp Gln Thr Thr Ala Gly Gln Lys 70 <210> 751 <211> 2479 <212> DNA <213> Homo sapiens <400> 751 gtcatattga acattccaga tacctatcat tactcgatgc tgttgataac agcaagatgg 60 ctttgaactc agggtcacca ccagctattg gaccttacta tgaaaaccat ggataccaac 120 cggaaaaccc ctatcccgca cagcccactg tggtccccac tgtctacgag gtgcatccgg 180 ctcagtacta cccgtccccc gtgccccagt acgccccgag ggtcctgacg caggcttcca 240 according type consists according to the contract of the contr agaaagcact gtgcatcacc ttgaccctgg ggaccttcct cgtgggagct gcgctggccg 360 ctggcctact ctggaagttc atgggcagca agtgctccaa ctctgggata gagtgcgact 420

cctcaggtac ctgcatcaac ccctctaact ggtgtgatgg cgtgtcacac tgccccggcg 480 gggaggacga gaatcggtgt gttcgcctct acggaccaaa cttcatcctt cagatgtact 540 catctcagag gaagtcctgg caccctgtgt gccaagacga ctggaacgag aactacgggc 600

BNSDOCID: <WO 0151633A2_1, >

```
gggcggcctg cagggacatg ggctataaga ataattttta ctctagccaa ggaatagtgg 660
 atgacagegg atccaecage tttatgaaac tgaacacaag tgeeggcaat gtegatatet 720
 ataaaaaact gtaccacagt gatgcctgtt cttcaaaaagc agtggtttct ttacgctgtt 780
 lagostgcgg ggtcaacttg aactcaagec gecagageag gategtggge ggtgagageg 840
 cgctcccggg ggcctggccc tggcaggtca gcctgcacgt ccagaacgtc cacgtgtgcg 900
 gaggetecat cateacecee gagtggateg tgacageege ecaetgegtg gaaaaacete 960
 transantce atggenting acggentity cggggattit gagacantet ticatgtict 1020
 auggageegg ataccaagta caaaaagtga ttteteatee aaattatgae teeaagaeea 1080
 agaacaatga cattgegetg atgaagetge agaageetet gaettteaac gaeetagtga 1140
 aaccagtgtg tetgeecaae eeaggeatga tgetgeagee agaacagete tgetggattt 1200
 cogggtgggg ggccaccgag gagaaaggga agacctcaga agtgctgaac gctgccaagg 1260
 tgetteteat tgagaeacag agatgeaaca geagatatgt etatgaeaac etgateacae 1320
 cagecatgat ctgtgeegge tteetgeagg ggaacgtega ttettgeeag ggtgaeagtg 1380
 gagggcctct ggtcacttcg aacaacaata tctggtggct gataggggat acaagctggg 1440
 gttctggctg tgccaaagct tacagaccag gagtgtacgg gaatgtgatg gtattcacgg 1500
 actggattta tcgacaaatg aaggcaaacg gctaatccac atggtcttcg tccttgacgt 1560
 cgttttacaa gaaaacaatg gggctggttt tgcttccccg tgcatgattt actcttagag 1620
 atgattcaga ggtcacttca tttttattaa acagtgaact tgtctggctt tggcactctc 1680
 tgccatactg tgcaggctgc agtggctccc ctgcccagcc tgctctccct aaccccttgt 1740
 ccgcaagggg tgatggccgg ctggttgtgg gcactggcgg tcaattgtgg aaggaagagg 1800
 gttggagget geeceeattg agatetteet getgagteet ttecagggge caattttgga 1860
 tgagcatgga gctgtcactt ctcagctgct ggatgacttg agatgaaaaa ggagagacat 1920
ggaaagggag acagccaggt ggcacctgca geggetgeec tetggggeea ettggtagtg 1980
teeceageet aetteacaag gggattttge tgatgggtte ttagageett ageageeetg 2040
gatggtggcc agaaataaag ggaccagccc ttcatgggtg gtgacgtggt agtcacttgt 2100
aaggggaaca gaaacatttt tgttcttatg gggtgagaat atagacagtg cccttggtgc 2160
gagggaagca attgaaaagg aacttgccct gagcactcct ggtgcaggtc tccacctgca 2220
cattgggtgg ggctcctggg agggagactc agccttcctc ctcatcctcc ctgaccctgc 2280
tectageace etggagagtg aatgeeeett ggteeetgge agggegeeaa gtttggeace 2340
atgtcggcct cttcaggcct gatagtcatt ggaaattgag gtccatgggg gaaatcaagg 2400
atgctcagtt taaggtacac tgtttccatg ttatgtttct acacattgat ggtggtgacc 2460
ctgagttcaa agccatctt
<210> 752
<211> 492
<212> PRT
<213> Homo sapiens
<400> 752
Met Ala Leu Asn Ser Gly Ser Pro Pro Ala Ile Gly Pro Tyr Tyr Glu
                                     10
Asn His Gly Tyr Gln Pro Glu Asn Pro Tyr Pro Ala Gln Pro Thr Val
Val Pro Thr Val Tyr Glu Val His Pro Ala Gln Tyr Tyr Pro Ser Pro
                             40
Val Pro Gln Tyr Ala Pro Arg Val Leu Thr Gln Ala Ser Asn Pro Val
Val Cys Thr Gln Pro Lys Ser Pro Ser Gly Thr Val Cys Thr Ser Lys
                                         75
Thr Lys Lys Ala Leu Cys Ile Thr Leu Thr Leu Gly Thr Phe Leu Val
Gly Ala Ala Leu Ala Ala Gly Leu Leu Trp Lys Phe Met Gly Ser Lys
```

			100					105					110		
Суѕ	Ser	Asn 115	Ser	Gly	Ile	Glu	Cys 120	Asp	Ser	Ser	Gly	Thr 125	Cys	Ile	Asn
Pro	Ser 130	Asn	Trp	Cys	Asp	Gly 135	Val	Ser	His	Cys	Pro 140	Gly	Gly	Glu	Asp
Glu 145	Asn	Arg	Cys	Val	Arg 150	Leu	Tyr	Gly	Pro	Asn 155	Phe	Ile	Leu	Gln	Met 160
Tyr	Ser	Ser	Gln	Arg 165	Lys	Ser	Trp	His	Pro 170	Val	Cys	Gln	Asp	Asp 175	Trp
Asn	Glu	Asn	Tyr 180	Gly	Arg	Ala	Ala	Cys 185	Arg	Asp	Met	Gly	Tyr 190	Lys	Asn
Asn	Phe	Tyr 195	Ser	Ser	Gln	Gly	Ile 200	Val	Asp	Asp	Ser	Gly 205	Ser	Thr	Ser
Phe	Met 210	Lys	Leu	Asn	Thr	Ser 215		Gly	Asn	Val	Asp 220	Ile	Tyr	Lys	Lys
Leu 225	Tyr	His	Ser	Asp	Ala 230	Cys	Ser	Ser	Lys	Ala 235	Val	Val	Ser	Leu	Arg 240
Cys	Leu	Ala	Cys	Gly 245	Val	Asn	Leu	Asn	Ser 250	Ser	Arg	Gln	Ser	Arg 255	Ile
Val	Gly	Gly	Glu 260	Ser	Ala	Leu	Pro	Gly 265	Ala	Trp	Pro	Trp	Gln 2 7 0	Val	Ser
Leu	His	Val 275	Gln	Asn	Vəl	His	Val 280	Cys	Gly	Gīγ	Ser	Ile 285	Ile	Thr	Pro
Glu	Trp 290	Ile	Val	Thr	Ala	Ala 295	His	Cys	Val	Glu	Lys 300	Pro	Leu	Asn	Asn
Pro 305	Trp	His	Trp	Thr	Ala 310	Phe	Ala	Gly	Ile	Leu 315	Arg	Gln	Ser	Phe	Met 320
Phe	Tyr	Gly	Ala	Gly 325	Tyr	Gln	Val	Gln	Lys 330	Val	Ile	Ser	His	Pro 335	Asn
Tyr	Asp	Ser	Lys 340	Thr	Lys	Asn	Asn	Asp 345	Ile	Ala	Leu	Met	Lys 350	Leu	Gln
Lys	Pro	Leu 355	Thr	Phe	Asn	Asp	Leu 360	Val	Lys	Pro	Val	Cys 365	Leu	Pro	Asn
Pro	Gly 370	Met	Met	Leu	Gln	Pro 375	Glu	Gln	Leu	Cys	Trp 380	Ile	Ser	Gly	Trp
Gly 385	Ala	Thr	Glu	Glu	Lys 390	Gly	Lys	Thr	Ser	Glu 395	Val	Leu	Asn	Ala	Ala 400
Lys	Val	Leu	Leu	Ile 405	Glu	Thr	Gln	Arg	Cys 410	Asn	Ser	Arg	Tyr	Val 415	Tyr

<210> 753

atgacagcgg atccaccagc ttt

```
Asp Asn Leu Ile Thr Pro Ala Met Ile Cys Ala Gly Phe Leu Gln Gly Asn Val Asp Ser Cys Gln Gly Asp Aso Gly Gly Gly Pro Leu Val Thr Ser Asn Asn Asn Ile Trp Trp Leu Ile Gly Asp Thr Ser A65

Cys Ala Lys Ala Tyr Arg Pro Gly Val Tyr Gly Asn Val Met Val Phe A65

Thr Asp Trp Ile Tyr Arg Gln Met Lys Ala Asn Gly Asn Gly Asp Thr Ser Gly A850
```

```
<210> 754
<211> 209
<?12> PRT
<213> Homo sapiens
<400> 754
Met Ala Leu Asn Ser Gly Ser Pro Pro Ala Ile Gly Pro Tyr Tyr Glu
                                    10
Asn His Gly Tyr Gln Pro Glu Asn Pro Tyr Pro Ala Gln Pro Thr Val
                                25
Val Pro Thr Val Tyr Glu Val His Pro Ala Gln Tyr Tyr Pro Ser Pro
                            40
Val Pro Gln Tyr Ala Pro Arg Val Leu Thr Gln Ala Ser Asn Pro Val
                                             60
Val Cys Thr Gln Pro Lys Ser Pro Ser Gly Thr Val Cys Thr Ser Lys
                    70
                                        75
Thr Lys Lys Ala Leu Cys Ile Thr Leu Thr Leu Gly Thr Phe Leu Val
```

```
Gly Ala Ala Leu Ala Ala Gly Leu Leu Trp Lys Phe Met Gly Ser Lys
                               105
Cys Ser Asn Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn
                          120
                                              125
Pro Ser Asn Trp Cys Asp Gly Val Ser His Cys Pro Gly Gly Glu Asp
                       135
                                   140
Glu Asn Arg Cys Val Arg Leu Tyr Gly Pro Asn Phe Ile Leu Gln Met
                  150
                               155
Tyr Ser Ser Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp
              165
                                 170
Asn Glu Asn Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn
        180 185
Asn Phe Tyr Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser
                           200
Phe
<210> 755
<211> 27
<212> PRT
<213> Homo sapiens
<400> 755
Val Gly Glu Gly Leu Tyr Gln Gly Val Pro Arg Ala Glu Pro Gly Thr
Glu Ala Arg Arg His Tyr Asp Glu Gly Val Arg
<210> 756
<211> 35
<212> DNA
<213> Artificial Sequence
<223> PCR primer
<400> 756
ggatccgccg ccaccatgtc actttctagc ctgct
                                                                     35
<210> 757
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 757
gtegacteag etggaceaea geegeag
                                                                    27
<210> 758
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
```

```
<400> 758
 agatoegoeg coaccatggg otgoaggotg otot
                                                                       34
 <210> 759
 <211 > 27
 <212> DNA
 <220>
 <2035 PCR primer
 <400> 759
 gregacteag agateettte tettgae
                                                                       27
<210> 760
<211> 936
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...()
\langle 223 \rangle n = A,T,C or G
<400> 760
atgggetgea ggetgntetg etgtgeggtt etetgtetee tgggageggt ecceatggaa 60
acgggagtta cqcagacacc aagacacctg gtcatgggaa tgacaaataa gaagtctttg 120
aaatgtgaac aacatctggg tcataacgct atgtattggt acaagcaaag tgctaagaag 180
ccactggagc tcatgtttgt ctacagtctt gaagaacggg ttgaaaacaa cagtgtgcca 240
agtogottet cacetgaatg coccaacage teteacttat teetteacet acacacectg 300
cayccagaag actoggood gtatototgo gooagoagoo aagacoggac aagcagotoo 360
tacgagcagt acttcgggcc gggcaccagg ctcacggtca cagaggacct gaaaaacgtg 420
treccaeceg aggregetgt gtttgageca teagaageag agateteeca caeceaaaag 480
gccacactgg tgtgcctggc cacaggette taccccgace acgtggaget gagetggtgg 540
gtgaatggga aggaggtgca cagtggggtc agcacagacc cgcagcccct caaggagcag 600
cocgecetea atgaetecag atactgeetg ageageegee tgagggtete ggeeacette 660
tggcagaacc cccgcaacca cttccgctgt caagtccagt tctacgggct ctcggagaat 720
gacgagtgga cccaggatag ggccaaacct gtcacccaga tcgtcagcgc cgaggcctgg 780
ggtagagcag actgtggctt cacctccgag tcttaccagc aaggggtcct gtctgccacc 840
atcctctatg agatcttgct agggaaggcc accttgtatg ccgtgctggt cagtgccctc 900
gtgctgatgg ccatggtcaa gagaaaggat ttctga
<210> 761
<211> 834
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...()
<223> n = A,T,C or G
<400> 761
atgtcacttt ctagcctgct naaggtggtc acagcttcac tgtggctagg acctggcatt 60
gochagaaga taactcaaac ccaaccagga atgttcgtgc aggaaaagga ggctgtgact 120
ctggactgca catatgacac cagtgatcaa agttatggtc tcttctggta caagcagccc 180
```

```
agcagtgggg aaatgatttt tettatttat eaggggtett atgaegagea aaatgeaaca 240
gaaggteget acteattgaa tttecagaag geaagaaaat eegeeaacet tgteatetee 300
getteacaac tgggggaete ageaatgtat ttetgtgeaa tgagagaggg egegggagga 360
ggaaacaaac tcacctttgg gacaggcact cagctaaaag tggaactcaa tatccagaac 420
cctgaccetg ccgtgtacca gctgagagac tctaaatcca gtgacaagtc tgtctgccta 480
ttcaccgatt ttgattctca aacaaatgtg tcacaaagta aggattctga tgtgtatatc 540
acagacaaaa ctgtgctaga catgaggtct atggacttca agagcaacag tgctgtggcc 600
tggagcaaca aatctgactt tgcatgtgca aacgccttca acaacagcat tattccagaa 660
gacaccttct tccccagccc agaaagttcc tgtgatgtca agctggtcga gaaaagcttt 720
gaaacagata cgaacctaaa ctttcaaaac ctgtcagtga ttgggttccg aatcctcctc 780
ctgaaagtgg ccgggtttaa tctgctcatg acgctgcggc tgtggtccag ctga
<210> 762
<211> 311
<212> PRT
<213> Homo sapiens
<220>
<221> variant
<222> (1)...(311)
<223> Xaa = Any amino acid
<400> 762
Met Gly Cys Arg Leu Xaa Cys Cys Ala Val Leu Cys Leu Leu Gly Ala
Val Pro Met Glu Thr Gly Val Thr Gln Thr Pro Arg His Leu Val Met
Gly Met Thr Asn Lys Lys Ser Leu Lys Cys Glu Gln His Leu Gly His
Asn Ala Met Tyr Trp Tyr Lys Gln Ser Ala Lys Lys Pro Leu Glu Leu
Met Phe Val Tyr Ser Leu Glu Glu Arg Val Glu Asn Asn Ser Val Pro
Ser Arg Phe Ser Pro Glu Cys Pro Asn Ser Ser His Leu Phe Leu His
Leu His Thr Leu Gln Pro Glu Asp Ser Ala Leu Tyr Leu Cys Ala Ser
Ser Gln Asp Arg Thr Ser Ser Tyr Glu Gln Tyr Phe Gly Pro Gly
Thr Arg Leu Thr Val Thr Glu Asp Leu Lys Asn Val Phe Pro Pro Glu
                        135
Val Ala Val Phe Glu Pro Ser Glu Ala Glu Ile Ser His Thr Gln Lys
                    150
                                                            160
Ala Thr Leu Val Cys Leu Ala Thr Gly Phe Tyr Pro Asp His Val Glu
Leu Ser Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr
            180
                                185
                                                    190
```

- Asp Pro Gln Pro Leu Lys Glu Gln Pro Ala Leu Asn Asp Ser Arg Tyr 195 200 205
- Cys Leu Ser Ser Arg Leu Arg Val Ser Ala Thr Phe Trp Gln Asn Pro 210 215 220
- Arg Asn His Phe Arg Cys Gln Val Gln Phe Tyr Gly Leu Ser Glu Asn 225 230 235 240
- Asp Glu Trp Thr Gln Asp Arg Ala Lys Pro Val Thr Gln Ile Val Ser 245 250 255
- Ala Glu Ala Trp Gly Arg Ala Asp Cys Gly Phe Thr Ser Glu Ser Tyr 260 265 270
- Gln Gln Gly Val Leu Ser Ala Thr Ile Leu Tyr Glu Ile Leu Leu Gly 275 280 285
- Lys Ala Thr Leu Tyr Ala Val Leu Val Ser Ala Leu Val Leu Met Ala 290 295 300
- Met Val Lys Arg Lys Asp Phe 305 310
- <210> 763
- <211> 277
- <212> PRT
- <213> Homo sapiens
- <400> 763
- Met Ser Leu Ser Ser Leu Leu Lys Val Val Thr Ala Ser Leu Trp Leu 5 10 15
- Gly Pro Gly Ile Ala Gln Lys Ile Thr Gln Thr Gln Pro Gly Met Phe 20 25 30
- Val Gln Glu Lys Glu Ala Val Thr Leu Asp Cys Thr Tyr Asp Thr Ser 35 40 45
- Asp Gln Ser Tyr Gly Leu Phe Trp Tyr Lys Gln Pro Ser Ser Gly Glu 50 60
- Met Ile Phe Leu Ile Tyr Gln Gly Ser Tyr Asp Glu Gln Asn Ala Thr 65 70 75 80
- Glu Gly Arg Tyr Ser Leu Asn Phe Gln Lys Ala Arg Lys Ser Ala Asn 85 90 95
- Leu Val Ile Ser Ala Ser Gln Leu Gly Asp Ser Ala Met Tyr Phe Cys 100 105 110
- Ala Met Arg Glu Gly Ala Gly Gly Gly Asn Lys Leu Thr Phe Gly Thr
 115 120 125
- Gly Thr Gln Leu Lys Val Glu Leu Asn Ile Gln Asn Pro Asp Pro Ala 130 135 140

PCT/US01/01574

```
Val Tyr Gln Leu Arg Asp Ser Lys Ser Ser Asp Lys Ser Val Cys Leu
                    150
Phe Thr Asp Phe Asp Ser Gln Thr Asn Val Ser Gln Ser Lys Asp Ser
                165
                                    170
Asp Val Tyr Ile Thr Asp Lys Thr Val Leu Asp Met Arg Ser Met Asp
                                185
Phe Lys Ser Asn Ser Ala Val Ala Trp Ser Asn Lys Ser Asp Phe Ala
                            200
Cys Ala Asn Ala Phe Asn Asn Ser Ile Ile Pro Glu Asp Thr Phe Phe
Pro Ser Pro Glu Ser Ser Cys Asp Val Lys Leu Val Glu Lys Ser Phe
Glu Thr Asp Thr Asn Leu Asn Phe Gln Asn Leu Ser Val Ile Gly Phe
                                    250
Arg Ile Leu Leu Lys Val Ala Gly Phe Asn Leu Leu Met Thr Leu
                                265
Arg Leu Trp Ser Ser
        275
<210> 764
<211> 1536
<212> DNA
<213> Homo sapiens
<400> 764
atgtacaacc tgttgctgtc ctacqacaqa catqqqqacc acctqcaqcc cctqqacctc 60
gtgcccaatc accagggtet cacccettte aagetggetg gagtggaggg taacactgtg 120
atgtttcagc acctgatgca gaagcggaag cacacccagt ggacgtatgg accactgacc 180
tegactetet atgaceteae agagategae teeteagggg atgageagte cetgetggaa 240
cttatcatca ccaccaagaa gegggagget egecagatee tggaccagae geeggtgaag 300
gagetggtga geeteaagtg gaageggtae gggeggeegt aettetgeat getgggtgee 360
atatatctgc tgtacatcat ctgcttcacc atgtgctgca tctaccgccc cctcaagccc 420
aggaccaata accgcacgag cccccgggac aacaccctct tacagcagaa gctacttcag 480
gaagcctaca tgacccctaa ggacgatatc cggctggtcg gggagctggt gactgtcatt 540
ggggctatca tcatcctgct ggtagaggtt ccagacatct tcagaatggg ggtcactcgc 600
ttctttggac agaccatcct tgggggccca ttccatgtcc tcatcatcac ctatgccttc 660
atggtgctgg tgaccatggt gatgcggctc atcagtgcca gcggggaggt ggtacccatg 720
teetttgeac tegtgetggg etggtgeaac gteatgtact tegecegagg attecagatg 780
ctaggcccct tcaccatcat gattcagaag atgatttttg gcgacctgat gcgattctgc 840
tggctgatgg ctgtggtcat cctgggcttt gcttcagcct tctatatcat cttccagaca 900
gaggaccccg aggagetagg ccacttetac gactacccca tggccctgtt cagcaccttc 960
gagetgttee ttaccateat egatggeeca gecaactaca aegtggaeet geeetteatg 1020
tacagcatca cetatgetge etttgecate ategecacae tgeteatget caaceteete 1080
attgccatga tgggcgacac tcactggcga gtggcccatg agcgggatga gctgtggagg 1140
geccagattg tggccaccae ggtgatgetg gageggaage tgectegetg cetgtggeet 1200
cgctccggga tctgcggacg ggagtatggc ctgggagacc gctggttcct gcgggtggaa 1260
gacaggcaag atctcaaccg gcagcggatc caacgctacg cacaggcctt ccacacccgg 1320
ggctctgagg atttggacaa agactcagtg gaaaaactag agctgggctg tcccttcagc 1380
```

```
occeaectgt coettectat geocteagtg tetegaagta cetecegeag eagtgecaat 1440
 igggaaagge tteggeaagg gaceetgagg agagaeetge gtgggataat caacaggggt 1500
 ctggaggacg gggagagctg ggaatatcag atctga
<210> 765
 <211> 1533
<212> DNA
<213> Homo sapiens
<400> 765
atgtacaacc tgttgctgtc ctacgacaga catggggacc acctgcagcc cctggacctc 60
gtgcccaatc accagggtct cacccctttc aagctggctg gagtggaggg taacactgtg 120
atgitticage accigatgea gaageggaag cacaeceagi ggaegiatgg accaetgaee 180
tegactetet atgaceteae agagategae teeteagggg atgageagte eetgetggaa 240
ettateatea eeaccaagaa gegggagget egecagatee tggaecagae geeggtgaag 300
gagctggtga gcctcaagtg gaagcggtac gggcggccgt acttctgcat gctgggtgcc 360
atatatctgc tgtacatcat ctgcttcacc atgtgctgca tctaccgccc cctcaagccc 420
aggaccaata accgcacgag cccccgggac aacaccctct tacagcagaa gctacttcag 480
gaageetaea tgaeeeetaa ggaegatate eggetggteg gggagetggt gaetgteatt 540
ggggctatca tcatcctgct ggtagaggtt ccagacatct tcagaatggg ggtcactcgc 600
ttetttggae agaceateet tgggggeeea tteeatgtee teateateae etatgeette 660
atggtgctgg tgaccatggt gatgcggctc atcagtgcca gcggggaggt ggtacccatg 720
teetttgeae tegtgetggg etggtgeaae gteatgtaet tegecegagg atteeagatg 780
ctaggcccct tcaccatcat gattcagaag atgatttttg gcgacctgat gcgattctgc 840
tggctgatgg ctgtggtcat cctgggcttt gcttcagcct tctatatcat cttccagaca 900
gaggaccccg aggagctagg ccacttctac gactacccca tggccctgtt cagcaccttc 960
gagetgttee ttaccateat egatggeeca gecaactaca aegtggaeet geeetteatg 1020
tacagcatca cetatgetge etttgecate ategecacae tgeteatget caaceteete 1080
attgccatga tgggcgacac tcactggcga gtggcccatg agcgggatga gctgtggagg 1140
geocagatty tygecaccae gytyatgety gageggaage tycetegety cetytyget 1200
cgctccggga tctgcggacg ggagtatggc ctgggagacc gctggttcct gcgggtggaa 1260
gacaggcaag atotoaacog goagoggato caaogotaog cacaggoott coacacoogg 1320
ggototgagg atttggacaa agactoagtg gaaaaactag agotgggotg tooottoagc 1380
occeacetgt coeffectat geoefcagtg totogaagta coffeegcag cagtgecaat 1440
tgggaaaggc ttcggcaagg gaccctgagg agagacctgc gtgggataat caacaggggt 1500
ctggaggacg gggagagctg ggaatatcag atc
                                                                   1533
<210> 766
<211> 511
<212> PRT
<213> Homo sapiens
<400> 766
Met Tyr Asn Leu Leu Ser Tyr Asp Arg His Gly Asp His Leu Gln
Pro Leu Asp Leu Val Pro Asn His Gln Gly Leu Thr Pro Phe Lys Leu
             20
Ala Gly Val Glu Gly Asn Thr Val Met Phe Gln His Leu Met Gln Lys
                             40
Arg Lys His Thr Gln Trp Thr Tyr Gly Pro Leu Thr Ser Thr Leu Tyr
     50
Asp Leu Thr Glu Ile Asp Ser Ser Gly Asp Glu Gln Ser Leu Leu Glu
                    70
                                         7.5
```

Leu	Ile	Ile	Thr	Thr 85	Lys	Lys	Arg	Glu	Ala 90	Arg	Gln	Ile	Leu	Asp 95	Gln
Thr	Pro	Val	Lys 100	Glu	Leu	Val	Ser	Leu 105	Lys	Trp	Lys	Arg	Tyr 110	Gly	Arg
Pro	Tyr	Phe 115	Cys	Met	Leu	Gly	Ala 120	Ile	Tyr	Leu	Leu	Tyr 125	Ile	Ile	Cys
Phe	Thr 130	Met	Суѕ	Суѕ	Ile	Tyr 135	Arg	Pro	Leu	Lys	Pro 140	Arg	Thr	Asn	Asn
Arg 145	Thr	Ser	Pro	Arg	Asp 150	Asn	Thr	Leu	Leu	Gln 155	Gln	Lys	Leu	Leu	Gln 160
Glu	Ala	Tyr	Met	Thr 165	Pro	Lys	Asp	Asp	Ile 170	Arg	Leu	Val	Gly	Glu 175	Leu
Val	Thr	Val	Ile 180	Gly	Ala	Ile	Ile	Ile 185	Leu	Leu	Val	Glu	Val 190	Pro	Asp
Ile	Phe	Arg 195	Met	Gly	Val	Thr	Arg 200	Phe	Phe	Gly	Gln	Thr 205	Ile	Leu	Gly
Gly	Pro 210	Phe	His	Val	Leu	Ile 215	Ile	Thr	Tyr	Ala	Phe 220	Met	Val	Leu	Val
Thr 225	Met	Val	Met	Arg	Leu 230	Ile	Ser	Ala	Ser	Gly 235	Glu	Val	Val	Pro	Met 240
Ser	Phe	Ala	Leu	Val 245	Leu	Gly	Trp	Cys	Asn 250	Val	Met	Tyr	Phe	Ala 255	Arg
Gly	Phe	Gln	Met 260	Leu	Gly	Pro	Phe	Thr 265	Ile	Met	Ile	Gln	Lys 270	Met	Ile
Phe	Gly	Asp 275	Leu	Met	Arg	Phe	Cys 280	Trp	Leu	Met	Ala	Val 285	Val	Ile	Leu
Gly	Phe 290	Ala	Ser	Ala	Phe	Tyr 295	Ile	Ile	Phe	Gln	Thr 300	Glu	Asp	Pro	Glu
Glu 305	Leu	Gly	His	Phe	Tyr 310	Asp	Tyr	Pro	Met	Ala 315	Leu	Phe	Ser	Thr	Phe 320
Glu	Leu	Phe	Leu	Thr 325	Ile	Ile	Asp	Gly	Pro 330	Ala	Asn	Tyr	Asn	Val 335	Asp
Leu	Pro	Phe	Met 340	Tyr	Ser	Ile	Thr	Tyr 345	Ala	Ala	Phe	Ala	Ile 350	Ile	Ala
Thr	Leu	Leu 355	Met	Leu	Asn	Leu	Leu 360	Ile	Ala	Met	Met	Gly 365	Asp	Thr	His
Trp	Arg 370	Val	Ala	His	Glu	Arg 375	Asp	Glu	Leu	Trp	Arg 380	Ala	Gln	Ile	Val
Ala	Thr	Thr	Val	Met	Leu	Glu	Arg	Lys	Leu	Pro	Arg	Cys	Leu	Trp	Pro

385	ò				390)				395					400
Arg	g Ser	Gly	· Ile	Cys 405		' Arg	Glu	Tyr	Gly 410		Gly	Asp	Arg	Trp 415	Phe
Let	ı Arg	Val	Glu 420		Arg	Gln	Asp	Leu 425		Arg	Gln	Arg	11e 430		Arg
Туг	Ala	Gl.n 435		Phe	His	Thr	Arg 440	Gly	Ser	Glu	Asp	Leu 445		Lys	Asp
Ser	Val 450		Lys	Leu	Glu	Leu 455	Gly	Суѕ	Pro	Phe	Ser 460	Pro	His	Leu	Ser
Leu 465	Pro	Met	Pro	Ser	Val 470	Ser	Arg	Ser	Thr	Ser 475	Arg	Ser	Ser	Ala	Asn 480
Trp	Glu	Arg	Leu	Arg 485	Gln	Gly	Thr	Leu	Arg 490	Arg	Asp	Leu	Arg	Gly 495	Ile
Ile	Asn	Arg	Gly 500	Leu	Glu	Asp	Gly	Glu 505	Ser	Trp	Glu	Tyr	Gln 510	Ile	
<21 <21 <21	0> 70 1> 11 2> P1 3> Ho	34 RT omo :	sapio	ens											
	Tyr		Leu	Leu 5	Leu	Ser	Tyr	Asp	Arg 10	His	Gly	Asp	His	Leu 15	Gln
Pro	Leu	Asp	Leu 20	Val	Pro	Asn	His	Gln 25	Gly	Leu	Thr	Pro	Phe 30	Lys	Leu
Ala	Gly	Val 35	Glu	Gly	Asn	Thr	Val 40	Met	Phe	Gln	His	Leu 45	Met	Gln	Lys
Arg	Lys 50	His	Thr	Gln	Trp	Thr 55	Tyr	Gly	Pro	Leu	Thr 60	Ser	Thr	Leu	Tyr
Asp 65	Leu	Thr	Glu	Ile	Asp 70	Ser	Ser	Gly	Asp	Glu 75	Gln	Ser	Leu	Leu	Glu 80
Leu	Ile	Ile	Thr	Thr 85	Lys	Lys	Arg	Glu	Ala 90	Arg	Gln	Ile	Leu	Asp 95	Gln
Thr	Pro	Val	Lys	Glu	Leu	Val	Ser	Leu 105	Lys	Trp	Lys	Arg	Tyr 110	Gly	Arg
			100					100					110		
Pro	Tyr			Met	Leu		Ala 120		Tyr	Leu	Leu	Tyr 125		Ile	Cys

305

<210> 768

<211> 55

<212> PRT <213> Homo sapiens

<400> 768

Ala Tyr Arg Pro Leu Lys Pro Arg Thr Asn Asn Arg Thr Ser Pro Arg 10 15

Asp Asn Thr Leu Leu Gln Gln Lys Leu Leu Gln Glu Ala Tyr Met Thr 20 25 30

Pro Lys Asp Asp Ile Arg Leu Val Gly Glu Leu Val Thr Val Ile Gly 35 40 45

Ala Ile Ile Ile Leu Leu Val 50 55

<210> 769

<211> 39

<212> PRT

<213> Homo sapiens

<400> 769

Glu Val Pro Asp Ile Phe Arg Met Gly Val Thr Arg Phe Phe Gly Gln 5 10 15

Thr Ile Leu Gly Gly Pro Phe His Val Leu Ile Ile Thr Tyr Ala Phe 20 25 30

Met Val Leu Val Thr Met Val

<210> 770

<211> 19

<212> PRT

<213> Homo sapiens

<400> 770

Met Arg Leu Ile Ser Ala Ser Gly Glu Val Val Pro Met Ser Phe Ala 5 10 15

Leu Val Leu

<210> 771

<211> 52

<212> PRT

<213> Homo sapiens

<400> 771

Gly Trp Cys Asn Val Met Tyr Phe Ala Arg Gly Phe Gln Met Leu Gly 5 10 15

Pro Phe Thr Ile Met Ile Gln Lys Met Ile Phe Gly Asp Leu Met Arg

20 25 30

Phe Cys Trp Leu Met Ala Val Val Ile Leu Gly Phe Ala Ser Ala Phe 35 40 45

Tyr Ile Ile Phe 50

<210> 772

<211> 213

<212> PRT

<213> Homo sapiens

<400> 772

Gln Thr Glu Asp Pro Glu Glu Leu Gly His Phe Tyr Asp Tyr Pro Met
5 10 15

Ala Leu Phe Ser Thr Phe Glu Leu Phe Leu Thr Ile Ile Asp Gly Pro 20 25 30

Ala Asn Tyr Asn Val Asp Leu Pro Phe Met Tyr Ser Ile Thr Tyr Ala 35 40 45

Ala Phe Ala Ile Ile Ala Thr Leu Leu Met Leu Asn Leu Leu Ile Ala 50 55 60

Met Met Gly Asp Thr His Trp Arg Val Ala His Glu Arg Asp Glu Leu 65 70 75 80

Trp Arg Ala Gln Ile Val Ala Thr Thr Val Met Leu Glu Arg Lys Leu 85 90 95

Pro Arg Cys Leu Trp Pro Arg Ser Gly Ile Cys Gly Arg Glu Tyr Gly
100 105 110

Leu Gly Asp Arg Trp Phe Leu Arg Val Glu Asp Arg Gln Asp Leu Asn 115 120 125

Arg Gln Arg Ile Gln Arg Tyr Ala Gln Ala Phe His Thr Arg Gly Ser 130 135 140

Glu Asp Leu Asp Lys Asp Ser Val Glu Lys Leu Glu Leu Gly Cys Pro 145 150 155 160

Ser Arg Ser Ser Ala Asn Trp Glu Arg Leu Arg Gln Gly Thr Leu Arg 180 185 190

Arg Asp Leu Arg Gly Ile Ile Asn Arg Gly Leu Glu Asp Gly Glu Ser 195 200 205

Trp Glu Tyr Gln Ile 210

PCT/US01/01574

```
<210> 773
<211> 1302
<212> DNA
<213> Homo sapiens
<400> 773
tggacaaagg gggtcacaca ttccttccat acggttgagc ctctacctgc ctggtgctgg 60
tcacagttca gcttcttcat gatggtggat cccaatggca atgaatccag tgctacatac 120
ttcatcctaa taggcctccc tggtttagaa gaggctcagt tctggttggc cttcccattg 180
tgctccctct accttattgc tgtgctaggt aacttgacaa tcatctacat tgtgcggact 240
gagcacagce tgcatgagce catgtatata tttctttgca tgctttcagg cattgacatc 300
ctcatctcca cctcatccat gcccaaaatg ctggccatct tctggttcaa ttccactacc 360
atccagtttg atgcttgtct gctacagatg tttgccatcc actccttatc tqqcatqqaa 420
tecacagtge tgetggeeat ggettttgae egetatgtgg ceatetgtea eccactgege 480
catgccacag tacttacgtt gcctcgtgtc accaaaattg gtgtggctgc tgtggtgcgg 540
ggggctgcac tgatggcacc ccttcctgtc ttcatcaagc agctgccctt ctgccgctcc 600
aatateettt eeeatteeta etgeetaeae caagatgtea tgaagetgge etgtgatgat 660
atcegggtca atgtegtcta tggcettate gteateatet eegecattqq eetqqactea 720
cttctcatct ccttctcata tctgcttatt cttaagactg tgttgggctt gacacgtgaa 780
gcccaggcca aggcatttgg cacttgcgtc tctcatgtgt qtqctqtqtt catattctat 840
gtacctttca ttggattgtc catggtgcat cgctttagca agcggcgtga ctctccqctq 900
cocgteatet tggccaatat etatetgetg gtteeteetg tgeteaacce aattgtetat 960
ggagtgaaga caaaggagat tcgacagcgc atcettegac ttttccatgt ggccacacac 1020
getteagage cetaggtgte agtgateaaa ettetttee atteagagte etetgattea 1080
gattttaatg ttaacatttt ggaagacagt attcagaaaa aaaatttcct taataaaaat 1140
acaactcaga tccttcaaat atgaaactgg ttggggaatc tccattttt caatattatt 1200
ttcttctttg ttttcttgct acatataatt attaataccc tgactaggtt gtggtttgag 1260
ggttattact tttcatttta ccatgcagtc caaatctaaa ct
                                                                  1302
<210> 774
<211> 2061
<212> DNA
<213> Homo sapiens
<400> 774
acgattcgac agegeatect tegactttte catqtgqcca cacacqette agaqeectag 60
gtgtcagtga tcaaacttct tttccattca gagtcctctg attcagattt taatgttaac 120
attttggaag acagtattca gaaaaaaaat ttccttaata aaaatacaac tcagatcctt 180
caaatatgaa actggttggg gaatctccat tttttcaata ttatttctt ctttgttttc 240
ttgctacata taattattaa taccctgact aggttgtggt tggagggtta ttacttttca 300
ttttaccatg cagtccaaat ctaaactgct tctactgatg gtttacagca ttctgagata 360
agaatggtac atctagagaa catttgccaa aggcctaagc acggcaaagg aaaataaaca 420
cagaatataa taaaatgaga taatctagct taaaactata actteetett cagaacteec 480
aaccacattg gatctcagaa aaatgctgtc ttcaaaatga cttctacaga gaagaaataa 540
tttttcctct ggacactagc acttaagggg aagattggaa gtaaagcctt gaaaagagta 600
catttaccta cgttaatgaa agttgacaca ctgttctgag agttttcaca gcatatggac 660
cctgtttttc ctatttaatt ttcttatcaa ccctttaatt aggcaaagat attattagta 720
ccctcattgt agccatggga aaattgatgt tcagtgggga tcagtgaatt aaatggggtc 780
atacaagtat aaaaattaaa aaaaaaggac ttcatgccca atctcatatg atgtggaaga 840
actgttagag agaccaacag ggtagtgggt tagagatttc cagagtctta cattttctag 900
aggaggtatt taatttette teacteatee agtgttgtat ttaggaattt eetggeaaca 960
gaactcatgg ctttaatccc actagctatt gcttattgtc ctggtccaat tgccaattac 1020
ctgtgtcttg gaagaagtga tttctaggtt caccattatg gaagattctt attcagaaag 1080
totgcatagg gottatagca agttatttat ttttaaaagt tocataggtg attotgatag 1140 '
gcagtgaggt tagggagcca ccagttatga tgggaagtat ggaatggcag gtcttgaaga 1200
taacattggc cttttgagtg tgactcgtag ctggaaagtg agggaatctt caggaccatg 1260
ctttatttgg ggctttgtgc agtatggaac agggactttg agaccaggaa agcaatctga 1320
```

```
ctraggeatg ggaatcagge attititgett etgagggget attaccaagg qitaataggt 1380
ttoatottoa acaggatatg acaacagtgt taaccaagaa actcaaatta caaatactaa 1440
sacatgigat catatatgig gitaagittica titticititti caateeteag qiteeetgat 1500
anguarteet ataacatget tteateceet titiqtaatgg atateatatt tggaaatgee 1560
tatttaatac tigtattige igeiggacig taageeeatg agggeacigt tiattatiga 1620
atgreatete tgtteateat tgaetgetet ttgeteatea ttgaateece cageaaagtg 1680
cetagaacat aatagtgett atgettgaca eeggttattt tteateaaae etgatteett 1740
stgreetgaa cacatageea ggeaattite cageettett tgagttgggt attattaaat 1800
tetaggeeatt acticeaatg tgagtggaag tgacatgtge aattietata cetaggeteat 1860
cataccetee catgigeage etticatgit gacattaaat gigacitiggg aagetatgig 1920
tacacagag taaatcacca gaagcotgga tttotgaaaa aactgtgcag agccaaacct 1980
stgleattig caactoccae tigitattigt acgaggeagt iggataagig aaaaataaag 2040
tactattgtg tcaagtctct g
<210> 775
<211> 957
<212> DNA
<213> Homo sapiens
<400> 775
atgatggtgg atcccaatgg caatgaatcc agtgctacat acttcatcct aataggcctc 60
cotggtttag augusgetea gitetggitg geetteeeat tgigeteeet etacettatt 120
getgtgetag glaacttgae aatcatetae attgtgegga etgageaeag eetgeatgag 180
cccatgtata tatitettig catgettica ggcattgaca tecteatete caceteatee 240
atgeceaaaa tgetggeeat ettetggtte aatteeacta eeateeagtt tgatgettgt 300
ctgctacaga tgtttgccat ccactcctta tctggcatgg aatccacagt gctqctgqcc 360
atggettttg accgetatgt ggeeatetgt cacceaetge geeatgeeae agtaettaeg 420
ttgeetegtg teaccaaaat tggtgtgget getgtggtge ggggggetge actgatggea 480
eccetteetg tetteateaa geagetgeee ttetgeeget ecaatateet tteecattee 540
tactgeetae accaagatgt catgaagetg geetgtgatg atateegggt caatgtegte 600
tatggeetta tegteateat eteegeeatt ggeetggaet eactteteat eteettetea 660
taletgetta ttettaagae tgtgttggge ttgacaegtg aageceagge caaggeattt 720
ggeacttgcg teteteatgt gtgtgctgtg tteatattet atgtacettt cattggattg 780
tecatggtgc atcgetttag caageggegt gaeteteege tgeeegteat ettggeeaat 840
atctatctgc tggttcctcc tgtgctcaac ccaattgtct atggagtgaa gacaaaggag 900
attegacage geatectieg acttitecat gtggecacae aegetteaga geeetag
<210> 776
<211> 954
<212> DNA
<213> Homo sapiens
<400> 776
atgatggtgg atcccaatgg caatgaatcc agtgctacat acttcatcct aataggcctc 60
cetggtttag aagaggetea gttetggttg geetteeeat tgtgeteeet etaeettatt 120
getgtgetag gtaacttgae aateatetae attgtgegga etgageaeag eetgeatgag 180
cccatgtata tatticitig catgcttica ggcattgaca tecteatete caecteatee 240
atgeccaaaa tgetggeeat ettetggtte aattecaeta eeatecagtt tgatgettgt 300
ctgctacaga tgtttgccat ccactcctta tctggcatgg aatccacagt gctgctggcc 360
atggettttg accgetatgt ggecatetgt cacceaetge gecatgeeae agtaettaeg 420
ttgcctcgtg tcaccaaaat tggtgtggct gctgtggtgc ggggggctgc actgatggca 480
secetteetg tetteateaa geagetgeee ttetgeeget ceaatateet tteeeattee 540
tactgeetae accaagatgt catgaagetg geetgtgatg atateegggt caatgtegte 600
tatggcctta togtoatcat eteogocatt ggcctggact cactteteat etecttetea 660
tatotgotta ttottaagad tgtgttgggd ttgacacgtg aagoccaggd caaggdattt 720
39 ochtgeg teteteatgt gtgtgetgtg tteatattet atgtaeettt cattggattg 780
tocatggtgc atogethtag caageggegt gacteteege tgcccgtcat chtggccaat 840
```

atctatctgc tggttcctcc tgtgctcaac ccaattgtct atggagtgaa gacaaaggag 900 attcgacagc gcatccttcg acttttccat gtggccacac acgcttcaga gccc 954

<210> 777

<211> 318

<212> PRT

<213> Homo sapiens

<400> 777

Met Met Val Asp Pro Asn Gly Asn Glu Ser Ser Ala Thr Tyr Phe Ile 5 10 15

Leu Ile Gly Leu Pro Gly Leu Glu Glu Ala Gln Phe Trp Leu Ala Phe 20 25 30

Pro Leu Cys Ser Leu Tyr Leu Ile Ala Val Leu Gly Asn Leu Thr Ile 35 40 45

Ile Tyr Ile Val Arg Thr Glu His Ser Leu His Glu Pro Met Tyr Ile
50 60

Phe Leu Cys Met Leu Ser Gly Ile Asp Ile Leu Ile Ser Thr Ser Ser 65 70 75 80

Met Pro Lys Met Leu Ala Ile Phe Trp Phe Asn Ser Thr Thr Ile Gln 85 90 95

Phe Asp Ala Cys Leu Leu Gln Met Phe Ala Ile His Ser Leu Ser Gly 100 105 110

Met Glu Ser Thr Val Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala 115 120 125

Ile Cys His Pro Leu Arg His Ala Thr Val Leu Thr Leu Pro Arg Val 130 135 140

Thr Lys Ile Gly Val Ala Ala Val Val Arg Gly Ala Ala Leu Met Ala 145 150 155 160

Pro Leu Pro Val Phe Ile Lys Gln Leu Pro Phe Cys Arg Ser Asn Ile 165 170 175

Leu Ser His Ser Tyr Cys Leu His Gln Asp Val Met Lys Leu Ala Cys 180 185 190

Asp Asp Ile Arg Val Asn Val Val Tyr Gly Leu Ile Val Ile Ile Ser 195 200 205

Ala Ile Gly Leu Asp Ser Leu Leu Ile Ser Phe Ser Tyr Leu Leu Ile 210 215 220

Leu Lys Thr Val Leu Gly Leu Thr Arg Glu Ala Gln Ala Lys Ala Phe 225 230 235 240

Gly Thr Cys Val Ser His Val Cys Ala Val Phe Ile Phe Tyr Val Pro 245 250 255

```
Phe Ile Gly Leu Ser Met Val His Arg Phe Ser Lys Arg Arg Asp Ser 260 265 270
```

Pro Leu Pro Val Ile Leu Ala Asn Ile Tyr Leu Leu Val Pro Pro Val 275 280 285

Leu Asn Pro Ile Val Tyr Gly Val Lys Thr Lys Glu Ile Arg Gln Arg 290 295 300

Ile Leu Arg Leu Phe His Val Ala Thr His Ala Ser Glu Pro 305 310 315

<210> 778

<211> 28

<212> PRT

<213> Homo sapiens

<400> 778

Met Met Val Asp Pro Asn Gly Asn Glu Ser Ser Ala Thr Tyr Phe Ile 5 10 15

Leu Ile Gly Leu Pro Gly Leu Glu Glu Ala Gìn Phe 20 25

<210> 779

<211> 9

<212> PRT

<213> Homo sapiens

<400> 779

Arg Thr Glu His Ser Leu His Glu Pro

<210> 780

<211> 21

<212> PRT

<213> Homo sapiens

<400> 780

Lys Met Leu Ala Ile Phe Trp Phe Asn Ser Thr Thr Ile Gln Phe Asp 5 10 15

Ala Cys Leu Leu Gln 20

<210> 781

<211> 20

<212> PRT

<213> Homo sapiens

<400> 781

Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg His Ala Thr Val Leu $5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

```
Thr Leu Pro Arg
             20
<210> 782
<211> 37
<212> PRT
<213> Homo sapiens
<400> 782
Phe Ile Lys Gln Leu Pro Phe Cys Arg Ser Asn Ile Leu Ser His Ser
Tyr Cys Leu His Gln Asp Val Met Lys Leu Ala Cys Asp Asp Ile Arg
Val Asn Val Val Tyr
         35
<210> 783
<211> 13
<212> PRT
<213> Homo sapiens
<400> 783
Lys Thr Val Leu Gly Leu Thr Arg Glu Ala Gln Ala Lys
<210> 784
<211> 10
<212> PRT
<213> Homo sapiens
<400> 784
Val His Arg Phe Ser Lys Arg Arg Asp Ser
                 5
<210> 785
<211> 22
<212> PRT
<213> Homo sapiens
<400> 785
Lys Thr Lys Glu Ile Arg Gln Arg Ile Leu Arg Leu Phe His Val Ala
                  5
Thr His Ala Ser Glu Pro
             20
<210> 786
<211> 3245
<212> DNA
<213> Homo sapiens
```

```
~4"... 786
 gregaeceae gegteegege gagetaagea ggaggeggag geggaggegg agggegaggg 60
 ucquagageg cegectggag egeggeaggt catattgaae attecagata cetateatta 120
 crogatgetg ttgataacag caagatgget ttgaactcag ggtcaccacc agetattgga 180
 settactatg aaaaccatgg ataccaaccg gaaaacccct atcccgcaca geccactgtg 240
 gravesacty totacgaggt geateegget cagtactace egteeceegt geoccagtae 300
 geocegaggg tectgacgca ggettecaac eccgtegtet geacgcagee caaateecca 360
 recgggacag tgtgcacete aaagaetaag aaagcaetgt gcatcacett gaccetgggg 420
 acctrected tgggagetge getggeeget ggeetaetet ggaagtteat gggeageaag 480
 tgctccaact ctgggataga gtgcgactcc tcaggtacct gcatcaaccc ctctaactgg 540
 tgroutggeg tgtcacactg ccccggcggg gaggacgaga atcggtgtgt tcgcctctac 600
 ggatcaaact tcatccttca ggtgtactca tctcagagga agtcctggca ccctgtgtgc 660
 caagacgact ggaacgagaa ctacgggcgg gcggcctgca gggacatggg ctataagaat 720
 aatttttact ctagccaagg aatagtggat gacagcggat ccaccagctt tatgaaactg 780
 aacacaagtg ccggcaatgt cgatatctat aaaaaactgt accacagtga tgcctgttct 840
 tcaaaagcag tggtttettt acgetgtata geetgegggg tcaaettgaa etcaageege 900
 cagagcagga ttgtgggcgg cgagagcgcg ctcccggggg cctggccctg gcaggtcagc 960
 etgcacgtec agaacgteca egtgtgegga ggetecatea teacceeega gtggategtg 1020
acagccgccc actgcgtgga aaaacctctt aacaatccat ggcattggac ggcatttgcg 1080
gggattttga gacaatcttt catgttctat ggagccggat accaagtaga aaaagtgatt 1140
teteatecaa attatgaete caagaccaag aacaatgaea ttgegetgat gaagetgeag 1200
aageetetga ettteaaega eetagtgaaa eeagtgtgte tgeecaaeee aggeatgatg 1260
etgeagecag aacagetetg etggatttee gggtgggggg eeacegagga gaaagggaag 1320
acctcagaag tgctgaacgc tgccaaggtg cttctcattg agacacagag atgcaacagc 1380
agatatgtet atgacaacet gateacacea geeatgatet gtgeeggett eetgeagggg 1440
aacgtcgatt cttgccaggg tgacagtgga gggcctctgg tcacttcgaa gaacaatatc 1500
tggtggctga taggggatac aagctggggt tctggctgtg ccaaagctta cagaccagga 1560
gtgtacggga atgtgatggt attcacggac tggatttatc gacaaatgag ggcagacggc 1620
taatccacat ggtcttcgtc cttgacgtcg ttttacaaga aaacaatggg gctggttttg 1680
cttccccgtg catgatttac tcttagagat gattcagagg tcacttcatt tttattaaac 1740
agtgaacttg totggotttg goactototg coattotgtg caggotgcag tggotcccot 1800
gcccagcctg ctctccctaa ccccttgtcc gcaaggggtg atggccggct ggttgtgggc 1860
actggcggtc aagtgtggag gagaggggtg gaggctgccc cattgagatc ttcctgctga 1920
gtoetttcca ggggccaatt ttggatgagc atggagctgt cacctctcag ctgctggatg 1980
acttgagatg aaaaaggaga gacatggaaa gggagacagc caggtggcac ctgcagcggc 2040
tgccctctgg ggccacttgg tagtgtcccc agcctacctc tccacaaggg gattttgctg 2100
atgggttctt agageettag eageeetgga tggtggeeag aaataaaggg accageeett 2160
catgggtggt gacgtggtag tcacttgtaa ggggaacaga aacatttttg ttcttatggg 2220
gtgagaatat agacagtgcc cttggtgcga gggaagcaat tgaaaaggaa cttgccctga 2280
gcacteetgg tgcaggtete cacetgcaca ttgggtgggg etectgggag ggagacteag 2340
cetteeteet cateeteet gaecetgete etageacet ggagagtgea catgeceett 2400
ggtcctggca gggcgccaag tctggcacca tgttggcctc ttcaggcctg ctagtcactg 2460
gaaattgagg tccatggggg aaatcaagga tgctcagttt aaggtacact gtttccatgt 2520
tatgtttcta cacattgcta cctcagtgct cctggaaact tagcttttga tgtctccaag 2580
Ragiccacci tcatttaact cittgaaact giatcatcii igccaagtaa gagiggigge 2640
ctatttcagc tgctttgaca aaatgactgg ctcctgactt aacgttctat aaatgaatgt 2700
gctgaagcaa agtgcccatg gtggcggcga agaagagaaa gatgtgtttt gttttggact 2760
ctctgtggtc ccttccaatg ctgtgggttt ccaaccaggg gaagggtccc ttttgcattg 2820
ccaagtgcca taaccatgag cactactcta ccatggttct gcctcctggc caagcaggct 2880
ggtttgcaag aatgaaatga atgattctac agctaggact taaccttgaa atggaaagtc 2940
ttgcaatccc atttgcagga tccgtctgtg cacatgcctc tgtagagagc agcattccca 3000
gggaccttgg aaacagttgg cactgtaagg tgcttgctcc ccaagacaca tcctaaaagg 3060
tgttqtaatg gtgaaaacgt cttccttctt tattgcccct tcttatttat gtgaacaact 3120
gttigtcttt ttttgtatct tttttaaact gtaaagttca attgtgaaaa tgaatatcat 3180
```

```
<210> 787
<211> 1479
<212> DNA
<213> Homo sapiens
<400> 787
atggctttga actcagggtc accaccagct attggacctt actatgaaaa ccatggatac 60
caaceggaaa acceetatee egeacageee actgtggtee ceaetgteta egaggtgeat 120
coggetcagt actaecogte eccegtgeee cagtaegeee egagggteet gaegeagget 180
tccaaccecg tcgtctgcac gcagcccaaa tccccatccg ggacagtgtg cacctcaaag 240
actaagaaag cactgtgcat caccttgacc ctggggacct tcctcgtggg agctgcgctg 300
geogetggcc tactetggaa gttcatgggc agcaagtgct_ccaactetgg gatagagtgc 360
gactecteag gtacetgcat caaccetet aactggtgtg atggcgtgte acactgcccc 420
ggcggggagg acgagaatcg gtgtgttcgc ctctacggat caaacttcat ccttcaggtg 480
tactcatctc agaggaagtc ctggcaccct gtgtgccaag acgactggaa cgagaactac 540
gggcgggcgg cctgcaggga catqqqctat aaqaataatt tttactctaq ccaaqqaata 600
gtggatgaca geggatecae cagetttatg aaactgaaca caagtgeegg caatgtegat 660
atctataaaa aactgtacca cagtgatgcc tgttcttcaa aagcagtggt ttctttacgc 720
tgtatagect geggggteaa ettgaactea ageegeeaga geaggattgt gggeggegag 780
agegegetee egggggeetg geeetggeag gteageetge aegteeagaa egteeaegtg 840
tgcggaggct ccatcatcac ccccqaqtqg atcqtgacaq ccqcccactq cqtqqaaaaa 900
cctcttaaca atccatggca ttggacggca tttgcgggga ttttgagaca atctttcatg 960
ttctatggag ccggatacca agtagaaaaa gtgatttctc atccaaatta tgactccaag 1020
accaagaaca atgacattgc gctgatgaag ctgcagaagc ctctgacttt caacgaccta 1080
gtgaaaccag tqtqtctqcc caacccagqc atgatqctqc aqccagaaca qctctqctqq 1140
atttccgggt ggggggccac cgaggagaaa gggaagacct cagaagtgct gaacgctgcc 1200
aaggtgcttc tcattgagac acagagatgc aacagcagat atgtctatga caacctgatc 1260
acaccagoca tgatotgtgo cqqcttoctq cagqqqaacq tcqattottq ccaqqqtgac 1320
agtggagggc ctctqqtcac ttcqaaqaac aatatctqqt qqctqataqq qqatacaaqc 1380
tggggttctg gctqtqccaa aqcttacaqa ccaqqaqtqt acqqqaatqt qatqqtattc 1440
acggactgga tttatcgaca aatgagggca gacggctaa
<210> 788
<211> 1476
<212> DNA
<213> Homo sapiens
<400> 788
atggctttga actcagggtc accaccagct attggacctt actatgaaaa ccatggatac 60
caaccggaaa acccctatcc cgcacagccc actgtggtcc ccactgtcta cgaggtgcat 120
coggeteagt actaecogte eccegtgeec cagtaegeec egagggteet gaegeagget 180
tecaaeceeg tegtetgeae geageecaaa tececateeg ggacagtgtg eaceteaaag 240
actaagaaag cactgtgcat caccttgacc ctggggacct tcctcgtggg agctgcgctg 300
gccgctggcc tactctggaa gttcatgggc agcaagtgct ccaactctgg gatagagtgc 360
gactecteag gtacetgeat caaccectet aactggtgtg atggcgtgte acactgeece 420
ggcggggagg acgagaatcg gtgtgttcgc ctctacggat caaacttcat ccttcaggtg 480
tactcatctc agaggaagtc ctggcaccct gtgtgccaag acgactggaa cgagaactac 540
gggcgggcgg cctgcaggga catgggctat aagaataatt tttactctag ccaaggaata 600
gtggatgaca gcggatccac cagctttatg aaactgaaca caagtgccgg caatgtcgat 660
atctataaaa aactgtacca cagtgatgcc tgttcttcaa aagcagtggt ttctttacgc 720
tgtatagcct geggggteaa cttgaactea ageegeeaga geaggattgt gggeggegag 780
agegegetee egggggeetg geeetggeag gteageetge aegteeagaa egteeaegtg 840
tgcggaggct ccatcatcac ccccgagtgg atcgtqacag ccqcccactg cgtggaaaaa 900
cctcttaaca atccatggca ttggacggca tttgggggga ttttgagaca atctttcatg 960
ttctatggag ccggatacca agtagaaaaa gtgatttctc atccaaatta tgactccaag 1020
accaagaaca atgacattgc gctgatgaag ctgcagaagc ctctgacttt caacgaccta 1080
gtgaaaccag tgtgtctgcc caacccaggc atgatgctgc agccagaaca gctctgctgg 1140
```

```
atitoogggt ggggggccac cgaggagaaa gggaagacot cagaagtgot gaacgotgoo 1200
 aaggtgeete teattgagae acagagatge aacageagat atgtetatga caacetgate 1260
 acaccagoca tgatetgtgc eggetteetg caggggaacg tegattettg ecagggtgae 1320
 agtggagggc ctctggtcac ttcgaagaac aatatctggt ggctgatagg ggatacaagc 1380
 tggggttctg gctgtgccaa agcttacaga ccaggagtgt acgggaatgt gatggtattc 1440
 acggacigga titatcgaca aatgagggca gacggc
<210> 789
<211> 492
< 12> PRT
<213> Homo sapiens
<400> 789
Met Ala Leu Asn Ser Gly Ser Pro Pro Ala Ile Gly Pro Tyr Tyr Glu
                                      10
                                                          15
Asn His Gly Tyr Gln Pro Glu Asn Pro Tyr Pro Ala Gln Pro Thr Val
              20
                                  25
Val Pro Thr Val Tyr Glu Val His Pro Ala Gln Tyr Tyr Pro Ser Pro
                             40
                                                  4.5
Val Pro Gln Tyr Ala Pro Arg Val Leu Thr Gln Ala Ser Asn Pro Val
                         5.5
Val Cys Thr Gln Pro Lys Ser Pro Ser Gly Thr Val Cys Thr Ser Lys
                      70
                                          75
Thr Lys Lys Ala Leu Cys Ile Thr Leu Thr Leu Gly Thr Phe Leu Val
                 85
                                      90
Gly Ala Ala Leu Ala Ala Gly Leu Leu Trp Lys Phe Met Gly Ser Lys
                                 105
Cys Ser Asn Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn
                             120
Pro Ser Asp Trp Cys Asp Gly Val Ser His Cys Pro Gly Gly Glu Asp
                        135
Glu Asn Arg Cys Val Arg Leu Tyr Gly Ser Asn Phe Ile Leu Gln Val
                    150
                                         155
Tyr Ser Ser Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp
                165
                                     170
                                                         175
Asn Glu Asn Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn
            180
                                 185
                                                     190
Asn Phe Tyr Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser
        195
                            200
Phe Met Lys Leu Asn Thr Ser Ala Gly Asn Val Asp Ile Tyr Lys Lys
                        215
                                             220
Leu Tyr His Ser Asp Ala Cys Ser Ser Lys Ala Val Val Ser Leu Arg
                    230
                                         235
Cys Ile Ala Cys Gly Val Asn Leu Asn Ser Ser Arg Gln Ser Arg Ile
                245
                                    250
                                                         255
Val Gly Gly Glu Ser Ala Leu Pro Gly Ala Trp Pro Trp Gln Val Ser
            260
                                265
                                                     270
Leu His Val Gln Asn Val His Val Cys Gly Gly Ser Ile Ile Thr Pro
                            280
                                                 285
Glu Trp Ile Val Thr Ala Ala His Cys Val Glu Lys Pro Leu Asn Asn
                        295
                                             300
Pro Trp His Trp Thr Ala Phe Ala Gly Ile Leu Arg Gln Ser Phe Met
                    310
                                        315
Phe Tyr Gly Ala Gly Tyr Gln Val Glu Lys Val Ile Ser His Pro Asn
                325
                                    330
                                                         335
Tyr Asp Ser Lys Thr Lys Asn Asn Asp Ile Ala Leu Met Lys Leu Gln
            340
                                345
                                                     350
```

```
Lys Pro Leu Thr Phe Asn Asp Leu Val Lys Pro Val Cys Leu Pro Asn
                          360
Pro Gly Met Met Leu Gln Pro Glu Gln Leu Cys Trp Ile Ser Gly Trp
                      375
                                         380
Gly Ala Thr Glu Glu Lys Gly Lys Thr Ser Glu Val Leu Asn Ala Ala
                 390
                                     395
Lys Val Leu Leu Ile Glu Thr Gln Arg Cys Asn Ser Arg Tyr Val Tyr
           405
                                 410
Asp Asn Leu Ile Thr Pro Ala Met Ile Cys Ala Gly Phe Leu Gln Gly
        420
                             425
Asn Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Thr Ser
              440
                                            445
Lys Asn Asn Ile Trp Trp Leu Ile Gly Asp Thr Ser Trp Gly Ser Gly
                      455
                                      460
Cys Ala Lys Ala Tyr Arg Pro Gly Val Tyr Gly Asn Val Met Val Phe
               470
                                    475
Thr Asp Trp Ile Tyr Arg Gln Met Arg Ala Asp Gly
```

<210> 790 <211> 100 <212> PRT

<213> Homo sapiens

<400> 790

 Met
 Ala
 Leu
 Asn
 Ser
 Gly
 Ser
 Pro
 Pro
 Ala
 Ile
 Gly
 Pro
 Tyr
 Tyr
 Glu
 Asn
 Pro
 Tyr
 Pro
 Ala
 Gln
 Pro
 Thr
 Val

 Val
 Pro
 Thr
 Val
 Tyr
 Glu
 Val
 His
 Pro
 Ala
 Gln
 Tyr
 Pro
 Ser
 Pro

 Val
 Pro
 Gln
 Tyr
 Glu
 Val
 His
 Pro
 Ala
 Gln
 Tyr
 Pro
 Ser
 Pro

 Val
 Pro
 Gln
 Tyr
 Ala
 Pro
 Arg
 Val
 Leu
 Thr
 Gln
 Ala
 Ser
 Pro
 Val

 Val
 Cys
 Thr
 Gln
 Pro
 Lys
 Ser
 Pro
 Ser
 Gly
 Thr
 Val
 Cys
 Thr
 Ser
 Lys
 Ala
 Pro
 Inch
 Pro
 Inch
 Inch</t

100

<210> 791

<211> 393

<212> PRT

<213> Homo sapiens

<400> 791

 Leu Ala Ala Gly Leu Leu Trp Lys
 Phe Met Gly Ser Lys
 Cys Ser Asn 15

 Ser Gly Ile Glu Cys Asp Ser Ser Gly Thr Cys Ile Asn Pro Ser Asn 20
 25
 30

 Trp Cys Asp Gly Val Ser His Cys Pro Gly Gly Glu Asp Glu Asn Arg 35
 40
 40

 Cys Val Arg Leu Tyr Gly Ser Asn Phe Ile Leu Gln Val Tyr Ser Ser 50
 55

 Gln Arg Lys Ser Trp His Pro Val Cys Gln Asp Asp Trp Asn Glu Asn 65
 70

```
Tyr Gly Arg Ala Ala Cys Arg Asp Met Gly Tyr Lys Asn Asn Phe Tyr
                8.5
                                   90
 Ser Ser Gln Gly Ile Val Asp Asp Ser Gly Ser Thr Ser Phe Met Lys
          100
                             105
 Leu Asn Thr Ser Ala Gly Asn Val Asp Ile Tyr Lys Lys Leu Tyr His
    115
                          120
                                             125
Ser Asp Ala Cys Ser Ser Lys Ala Val Val Ser Leu Arg Cys Ile Ala
           135
                                         140
Cys Gly Val Asn Leu Asn Ser Ser Arg Gln Ser Arg Ile Val Gly Gly
         150
                                     155
Glu Ser Ala Leu Pro Gly Ala Trp Pro Trp Gln Val Ser Leu His Val
           165
                                 170
Gln Asn Val His Val Cys Gly Gly Ser Ile Ile Thr Pro Glu Trp Ile
          180
                             185
Val Thr Ala Ala His Cys Val Glu Lys Pro Leu Asn Asn Pro Trp His
       195
                          200
                                             205
Trp Thr Ala Phe Ala Gly Ile Leu Arg Gln Ser Phe Met Phe Tyr Gly
                     215
                                         220
Ala Gly Tyr Gln Val Glu Lys Val Ile Ser His Pro Asn Tyr Asp Ser
                  230
                                     235
Lys Thr Lys Asn Asn Asp Ile Ala Leu Met Lys Leu Gln Lys Pro Leu
        245
                                 250
Thr Phe Asn Asp Leu Val Lys Pro Val Cys Leu Pro Asn Pro Gly Met
        260
                             265
Met Leu Gln Pro Glu Gln Leu Cys Trp Ile Ser Gly Trp Gly Ala Thr
                         280
                                            285
Glu Glu Lys Gly Lys Thr Ser Glu Val Leu Asn Ala Ala Lys Val Leu
                     295
                                        300
Leu Ile Glu Thr Gln Arg Cys Asn Ser Arg Tyr Val Tyr Asp Asn Leu
              310
                                    315
Ile Thr Pro Ala Met Ile Cys Ala Gly Phe Leu Gln Gly Asn Val Asp
              325
                                330
Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Thr Ser Lys Asn Asn
           340
                             345
                                               350
Ile Trp Trp Leu Ile Gly Asp Thr Ser Trp Gly Ser Gly Cys Ala Lys
              360
                                           365
Ala Tyr Arg Pro Gly Val Tyr Gly Asn Val Met Val Phe Thr Asp Trp
           375
Ile Tyr Arg Gln Met Arg Ala Asp Gly
```

<210> 792

<211> 595

<212> PRT

<213> Homo sapiens

<400> 792

 Met
 Ser
 Phe
 Leu
 Asn
 Phe
 Thr
 Ala
 Val
 Leu
 Phe
 Ala
 Ala
 Ser
 Ala

 Leu
 Ala
 Ala
 Pro
 Val
 Asn
 Thr
 Thr
 Glu
 Asp
 Glu
 Thr
 Ala
 Glu
 Ala
 Glu
 Ala
 Glu
 Asp
 Phe
 Asp
 Asp
 Leu
 Gly
 Asp
 Phe
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Phe
 Asp
 Phe
 Asp
 Asp
 Asp
 Glu
 Asp
 Asp
 Phe
 Asp
 A

Leu	Glu	Lys	Arg	Glu 85	Ala	Glu	Ala	Met	Val 90	Leu	Gly	Ile	Gly	Pro 95	Val
Leu	Gly	Leu	Val 100		Val	Pro	Leu	Leu 105		Ser	Ala	Ser	Asp 110	His	Trp
Arg	Gly	Arg 115	Tyr	Gly	Arg	Arg	Arg 120		Phe	Ile	Trp	Ala 125	Leu	Ser	Leu
Gly	Ile 130	Leu	Leu	Ser	Leu	Phe 135	Leu	Ile	Pro	Arg	Ala 140	Gly	Trp	Leu	Ala
Gly 145	Leu	Leu	Cys	Pro	Asp 150	Pro	Arg	Pro	Leu	Glu 155	Leu	Ala	Leu	Leu	Ile 160
Leu	Gly	Val	Gly	Leu 165	Leu	Asp	Phe	Cys	Gly 170	Gln	Val	Суѕ	Phe	Thr 175	Pro
	Glu		180					185					190		
	Ala	195					200					205			4
	Tyr 210					215					220				
225	Leu				230		_			235					240
	Leu			245					250					255	
	Gly		260					265					270		
	His	275					280					285			
	Leu 290					295					300				
305	Arg	_			310					315					320
	Phe			325					330					335	
	Val		340					345					350		
	Gly	355	_		_		360					365			
	Leu 370					375					380				
385	Arg			_	390					395					400
	Ala			405					410					415	
	Leu Ala		420					425					430		
		435					440					445			
	Gly 450			_	_	455					460				
465	Leu				470					475					480
	Ala			485					490					495	
	Ser		500					505					510		
	Ala	515					520					525			
ьeu	Asp 530	ser	ATa	rne	ьeu	ьеи 535	ser	GTU	vaT	ΑТЭ	540	ser	ьeu	rne	Met

318

Gly Ser Ile Val Gln Leu Ser Gln Ser Val Thr Ala Tyr Met Val Ser 545
Ala Ala Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Val 566
Phe Asp Lys Ser Asp Leu Ala Lys Tyr Ser Ala Gly Gly His His His 585
His His 595

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 19 July 2001 (19.07.2001)

PCT

(10) International Publication Number WO 01/51633 A3

- (51) International Patent Classification: C12N 15/12, 15/11, 1/21, 5/10, C07K 14/47, 16/18, 19/00, A61K 38/17, 48/00, G01N 33/68, C12Q 1/68, C12N 5/08
- (21) International Application Number: PCT/US01/01574
- (22) International Filing Date: 16 January 2001 (16:01:2001)
- (25) Filling Language:

English

(26) Publication Language:

English

(30) Priority Data:

09.483,672

14 January 2000 (14.01.2000) US

- (71) Applicant for an accountage a Nates except USr. CORIXA CORPORATION [UNUS] 1124 Columbia Street. Suite 200. Scattle, WA 98104 (US)
- (72) Inventors; and
- (75) Inventors Applicants (16) U.S. only); XU, Jiangchun [US/US], 18808 S.E. 43rd Place, Bellevue, WA 98006 (US) DILLON, Davin, C. [US/US], 18112 N.W. Montreux Drive, Issiquah, WA 98027 (US), MITCHAM,

Jennifer, L. [US/US]: 16677 N.E. 88th Street, Redmond, WA 98052 (US). HARLOCKER, Susan, L. [US/US]; 7522 13th Avenue W., Seattle, WA 98117 (US), JIANG, Yuqiu [CN/US]; 5001 South 232nd Street, Kent, WA 98032 (US). REED, Steven, G. [US/US]: 2843-122nd Place N.E., Bellevue, WA 98005 (US), KALOS, Michael, D. [US/US]; 8116 Dayton Ave. N., Seattle, WA 98103 (US). FANGER, Gary, Richard [US/US]: 15906-29th Drive S.E., Mill Creek, WA 98012 (US), DAY, Craig, H. [US/US]: 11501 Stone Ave. N., C122, Seattle, WA 98133 (US). RETTER, Marc, W. [US/US]: 33402 N.E. 43rd Place, Carnation, WA 98104 (US), STOLK, John, A. [US/US]: 7436 Northeast 144th Place, Bothell, WA 98011 (US). SKEIKY, Yasir, A.W. [LB/US]: 15106 S.E. 47th Place, Bellevue, WA 98006 (US), WANG, Aijun [CN/US]: 3106-213th Place S.E., Issaquah, WA 98029 (US). MEAGHER, Madeleine, Joy [US/US]: 507 N.E. 71st. #1, Seattle, WA 98115 (US).

(74) Agents: POTTER, Jane, E.R.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 et al. (US).

[Commed on next page]

(54) Title: COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF PROSTATE CANCER

Effector: Target Ratio

(57) Abstract: Compositions and methods for the therapy and diagnosis of cancer, particularly prostate cancer, are disclosed. Illustrative compositions comprise one or more prostate-specific polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly prostate cancer.

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM). European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report:

20 June 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

Inter. Inal Application No PCT/US 01/01574

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/12 C12N15/11 C12N1/21 C12N5/10 C07K14/47 C07K16/18 C07K19/00 A61K38/17 A61K48/00 G01N33/68 C12Q1/68 C12N5/08

Actionsing to International Patent Classification (IPC) or to both hat onal classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{lll} \mbox{Minimum accommentation searched} & \mbox{classification system followed by classification symbols.} \\ \mbox{IPC-7} & \mbox{C12N} & \mbox{A61K} & \mbox{C07K} & \mbox{G01N} & \mbox{C12Q} \\ \end{array}$

Continentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, EMBL, BIOSIS, WPI Data, SEQUENCE SEARCH

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Dategory	Citation of document, with indication, where appropriate, of th	e relevant passages	Relevant to claim No
χ γ !	W0 98 37093 A (CORIXA CORP) 27 August 1998 (1998-08-27) the whole document		1-5,7,9, 12-14 6,10,11, 15-18
	WO 98 37418 A (CORIXA CORP) 27 August 1998 (1998-08-27) the whole document		1-6,9, 15-17 6,15-17
!	WO 97 33909 A (CORIXA CORP) 18 September 1997 (1997-09-18)		
į		-/	
į			
	documents are listed in the continuation of box C.	X Patent family members are listed in	n annex.
document considere	pories of cred documents: defining the general state of the larr which is not led to be of particular relevance lument but published on or after the international	"T" later document published after the inter or priority date and not in conflict with t cited to understand the principle or the invention.	he application but

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.					
Special categories of cited documents :						
"A" document defining the general state of the larr which is not considered to be of particular relevance."	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory, underlying the invention.					
E earlier document but published on or atter the international tiling date.	"X" document of particular relevance, the claimed invention					
L document which may throw doubts on priority claim(s) or	cannot be considered novel or cannot be considered to					
which is cited to establish the publication date of another	involve an inventive step when the document is taken alone					
Citation or other special reason (as ispecified)	"Y" document of particular relevance; the claimed, invention cannot be considered to involve an inventive, step when the					
"O" document reterring to an oral disclosure, use, exhibition or other means.	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled in the art.					
P* document published prior to the international thing date but						
later than the priority date claimed	'8" document member of the same patent family					
Cate of the actual completion of the international scarch	Date of mailing of the international search report					
4 September 2001	1 0 . 01. 02					
Jame arm making address of the ISA	Authorized officer					
European Patent Office, P.B. 5518 Patentiaan 2	The second of th					
NE - 2280 HV Ruswick						
Tel (+31-70, 340-2040, Tx, c1, 661, spoint) Fax (+31-70-340-3016	VAN DER SCHAAL C.A.					
GA (5. 10.0-0 0010	VIII DEN GOMAL C.A.					

Fire PCT 34 010 (second sheet (July 1992)

INTERNATIONAL SEARCH REPORT

Intern: al Application No
PCT/US 01/01574

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category	Citation of document, with indication, where appropriate, of the relevant passages	nelevant to craim No.
Y	SJOGREN H O: "Therapeutic immunization against cancer antigens using genetically engineered cells" IMMUNOTECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS BV. NL, vol. 3, no. 3, 1 October 1997 (1997-10-01), pages 161-172, XP004097000 ISSN: 1380-2933 the whole document	10,11,18
P,X	WO 00 04149 A (CORIXA CORP) 27 January 2000 (2000-01-27) the whole document	1-7,9-18
E	WO 01 25272 A (CORIXA CORP ; REED STEVEN G (US); XU JIANGCHUN (US); CHEEVER MARTIN) 12 April 2001 (2001-04-12) SEQ ID NO 1 claims	1-7,9-18
E	WO 01 34802 A (HARLOCKER SUSAN L ; CORIXA CORP (US); DAY CRAIG H (US); JIANG YUQIU) 17 May 2001 (2001-05-17) SEQ ID NO 1 claims	1-7,9-18

INTERNATIONAL SEARCH REPORT

PCT/US 01/01574

ed

Form POT ISA 216 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: Invention 1: Claims 1-7 9-18 partially

A polypeptide comprising at least an immunogenic portion of a prostate tumor protein encoded by SEQ ID 1 (according to the Description of the Sequence Identifiers), fragments and variants thereof, fusion proteins comprising it, polynucleotides or oligonucleotides derived therefrom, antibodies binding to the polypeptide, their use in the treatment of cancer, in methods for diagnosing cancer, or for expanding and/or stimulating T-cells.

2. Claims: Inventions 2-527: Claims 1-18 partially and as far as applicable

As for subject 1 but concerning respectively SEQ IDs 2-111,115-171,173-175,177,179-305,307-315,326,328, 330,332-335,340-375,381,382,384-476,524,526,530,531,533,535 536,552,569-572,587,591,593-606,618-626,630,631,634,636,639-6 55,674,680,681,711,713,716,720-722,735,737-739,751,753,764,76 5,773-776 and 786-788

INTERNATIONAL SEARCH REPORT

a. I imation on patent family members

Intern. al Application No PCT/US 01/01574

Patent assument		Publication		Patent tamby	P. bycation
oited in search report		cate		member(s)	Publication date
WO 9837093	A	27-08-1998	SUURN PHOLERSOSA	6261562 B1 731840 B2 6181898 A 9808881 A 1252837 T 1005546 A2 0002095 A2 994069 A 335348 A1 9902053 T2 6262245 B1 9837093 A2 6329505 B1 9801585 A	17-07-2001 05-04-2001 09-09-1998 11-09-2001 10-05-2000 07-06-2000 28-10-2000 22-10-1999 25-04-2000 21-04-2000 17-07-2001 27-08-1998 11-12-2001 04-09-1998
WO 9837418	А	27-08-1998	AU BR EP JP WO ZA	6536898 A 9807734 A 0972201 A2 2001513886 T 9837418 A2 9801536 A	09-09-1998 31-10-2000 19-01-2000 04-09-2001 27-08-1998 08-01-1999
WO 9733909	А	18-09-1997	AU AU BR CA EP NO WO US	728186 B2 2329597 A 9708082 A 2249742 A1 0914335 A2 984229 A 9733909 A2 6034218 A	04-01-2001 01-10-1997 27-07-1999 18-09-1997 12-05-1999 13-11-1998 18-09-1997 07-03-2000
WO 0004149	Α	27-01-2000	AU CN EP NO WO US	5314899 A 1315998 T 1097208 A2 20010196 A 0004149 A2 6329505 B1	07-02-2000 03-10-2001 09-05-2001 12-03-2001 27-01-2000 11-12-2001
W0 0125272	Α	12-04-2001	AU WO	7994200 A 0125272 A2	10-05-2001 12-04-2001
WO 0134802	A	17-05-2001	US AU AU WO WO	6329505 B1 1656501 A 6158700 A 0104143 A2 0134802 A2	11-12-2001 06-06-2001 30-01-2001 18-01-2001 17-05-2001

	*

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

. I BROKE OMERBE IN DIENK OKON ING ENKE DIENE BERKE NOOR DIENE IN GEBOOR DEED HEE

(43) International Publication Date 19 July 2001 (19,07,2001)

PCT

(10) International Publication Number WO 01/051633 A3

- (51) International Patent Classification[†]: C12N 15/12, 15/11, 1/21, 5/10, C07K 14/47, 16/18, 19/00, A61K 38/17, 48/00, G01N 33/68, C12Q 1/68, C12N 5/08
- (21) International Application Number: PCT/US01/01574
- (22) International Filing Date: 16 January 2001 (16.01.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/483,672

14 January 2000 (14.01.2000) US

- (71) Applicant (for all designated States except US): CORINA CORPORATION [US/US]: 1124 Columbia Street, Suite 200, Seattle, WA 98104 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): XU, Jiangchun [US/US]: 15805 S.E. 43rd Place, Bellevue, WA 98006

(US). DILLON, Davin, C. [US/US]: 18112 N.W. Montreux Drive, Issaquah, WA 98027 (US), MITCHAM, Jennifer, L. [US/US]: 16677 N.E. 88th Street, Redmond. WA 98052 (US). HARLOCKER, Susan, L. [US/US]; 7522 13th Avenue W., Seattle, WA 98117 (US), JIANG. Yuqiu [CN/US]: 5001 South 232nd Street, Kent, WA 98032 (US). REED, Steven, G. [US/US]: 2843-122nd Place N.E., Bellevue, WA 98005 (US). KALOS, Michael, D. [US/US]: 8116 Dayton Ave. N., Seattle, WA 98103 (US). FANGER, Gary, Richard [US/US]: 15906-29th Drive S.E., Mill Creek, WA 98012 (US), DAY, Craig, H. [US/US]; 11501 Stone Ave. N., C122, Seattle, WA 98133 (US). RETTER, Marc, W. [US/US]: 33402 N.E. 43rd Place, Carnation, WA 98104 (US). STOLK, John, A. [US/US]: 7436 Northeast 144th Place. Bothell, WA 98011 (US). SKEIKY, Yasir, A.W. [LB/US]: 15106 S.E. 47th Place, Bellevue, WA 98006 (US), WANG, Aijun [CN/US]: 3106-213th Place S.E., Issaquah, WA 98029 (US). MEAGHER, Madeleine, Joy [US/US]: 507 N.E. 71st. #1, Seattle, WA 98115 (US).

[Continued on next page]

(54) Title: COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF PROSTATE CANCER

Effector: Target Ratio

(57) Abstract: Compositions and methods for the therapy and diagnosis of cancer, particularly prostate cancer, are disclosed. Illustrative compositions comprise one or more prostate-specific polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly prostate cancer.

WO 01/051633 A3

- (74) Agents: POTTER, Jane, E.R.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 et al. (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 20 June 2002

(48) Date of publication of this corrected version:

31 October 2002

(15) Information about Correction:

see PCT Gazette No. 44/2002 of 31 October 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/051633 PCT/US01/01574

COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF PROSTATE CANCER

5 TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to therapy and diagnosis of cancer, such as prostate cancer. The invention is more specifically related to polypeptides, comprising at least a portion of a prostate-specific protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides are useful in pharmaceutical compositions, *e.g.*, vaccines, and other compositions for the diagnosis and treatment of prostate cancer.

BACKGROUND OF THE INVENTION

Cancer is a significant health problem throughout the world. Although Cancer is a significant health problem throughout the world. Although advances have been made in detection and therapy of cancer, no vaccine or other universally successful method for prevention or treatment is currently available. Current therapies, which are generally based on a combination of chemotherapy or surgery and radiation, continue to prove inadequate in many patients.

Prostate cancer is the most common form of cancer among males, with an estimated incidence of 30% in men over the age of 50. Overwhelming clinical evidence shows that human prostate cancer has the propensity to metastasize to bone, and the disease appears to progress inevitably from androgen dependent to androgen refractory status, leading to increased patient mortality. This prevalent disease is currently the second leading cause of cancer death among men in the U.S.

In spite of considerable research into therapies for the disease, prostate cancer remains difficult to treat. Commonly, treatment is based on surgery and/or radiation therapy, but these methods are ineffective in a significant percentage of cases. Two previously identified prostate specific proteins - prostate specific antigen (PSA)

10

15

20

25

and prostatic acid phosphatase (PAP) - have limited therapeutic and diagnostic potential. For example, PSA levels do not always correlate well with the presence of prostate cancer, being positive in a percentage of non-prostate cancer cases, including benign prostatic hyperplasia (BPH). Furthermore, PSA measurements correlate with prostate volume, and do not indicate the level of metastasis.

In spite of considerable research into therapies for these and other cancers, prostate cancer remains difficult to diagnose and treat effectively. Accordingly, there is a need in the art for improved methods for detecting and treating such cancers. The present invention fulfills these needs and further provides other related advantages.

10 SUMMARY OF THE INVENTION

In one aspect, the present invention provides polynucleotide compositions comprising a sequence selected from the group consisting of:

- (a) sequences provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788;
- (b) complements of the sequences provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788;
- (c) sequences consisting of at least 20 contiguous residues of a sequence provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788;
- (d) sequences that hybridize to a sequence provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375,

- 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788, under moderately stringent conditions;
- 5 sequences having at least 75% identity to a sequence of SEQ ID NO: 1-111. 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788;
- 10 sequences having at least 90% identity to a sequence of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788; and
- 15 (g) degenerate variants of a sequence provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788.
- In one preferred embodiment, the polynucleotide compositions of the invention are expressed in at least about 20%, more preferably in at least about 30%, and most preferably in at least about 50% of prostate tissue samples tested, at a level that is at least about 2-fold, preferably at least about 5-fold, and most preferably at least about 10-fold higher than that for other normal tissues.
- The present invention, in another aspect, provides polypeptide compositions comprising an amino acid sequence that is encoded by a polynucleotide sequence described above.

The present invention further provides polypeptide compositions comprising an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383,

477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-551, 553-568, 573-586, 588-590, 592, 627-629, 632, 633, 635, 637, 638, 656-671, 675, 683, 684, 710, 712, 714, 715, 717-719, 723-734, 736, 740-750, 752, 754, 755, 766-772, 777-785 and 789-791.

In certain preferred embodiments, the polypeptides and/or polynucleotides of the present invention are immunogenic, *i.e.*, they are capable of eliciting an immune response, particularly a humoral and/or cellular immune response, as further described herein.

The present invention further provides fragments, variants and/or derivatives of the disclosed polypeptide and/or polynucleotide sequences, wherein the fragments, variants and/or derivatives preferably have a level of immunogenic activity 10 of at least about 50%, preferably at least about 70% and more preferably at least about 90% of the level of immunogenic activity of a polypeptide sequence set forth in SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-551, 553-568, 573-586, 588-590, 592, 627-629, 632, 633, 635, 637, 638, 656-671, 675, 683, 684, 710, 712, 714, 715, 717-719, 15 723-734, 736, 740-750, 752, 754, 755, 766-772, 777-785 or 789-791, or a polypeptide sequence encoded by a polynucleotide sequence set forth in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 20 753, 764, 765, 773-776 and 786-788.

The present invention further provides polynucleotides that encode a polypeptide described above, expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.

Within other aspects, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.

Within a related aspect of the present invention, pharmaceutical compositions, e.g., vaccine compositions, are provided for prophylactic or therapeutic applications. Such compositions generally comprise an immunogenic polypeptide or

25

15

20

polynucleotide of the invention and an immunostimulant, such as an adjuvant, together with a physiologically acceptable carrier.

The present invention further provides pharmaceutical compositions that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a polypeptide of the present invention, or a fragment thereof; and (b) a physiologically acceptable carrier.

Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient. Illustrative antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.

Within related aspects, pharmaceutical compositions are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.

The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins, typically in the form of pharmaceutical compositions, e.g., vaccine compositions, comprising a physiologically acceptable carrier and/or an immunostimulant. The fusions proteins may comprise multiple immunogenic polypeptides or portions/variants thereof, as described herein, and may further comprise one or more polypeptide segments for facilitating and/or enhancing the expression, purification and/or immunogenicity of the polypeptide(s).

Within further aspects, the present invention provides methods for stimulating an immune response in a patient, preferably a T cell response in a human patient, comprising administering a pharmaceutical composition described herein. The patient may be afflicted with prostate cancer, in which case the methods provide treatment for the disease, or a patient considered to be at risk for such a disease may be treated prophylactically.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a

10

15

20

25

patient a pharmaceutical composition as recited above. The patient may be afflicted with prostate cancer, in which case the methods provide treatment for the disease, or a patient considered to be at risk for such a disease may be treated prophylactically.

The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a polypeptide of the present invention, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the polypeptide from the sample.

Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.

Methods are further provided, within other aspects, for stimulating and/or expanding T cells specific for a polypeptide of the present invention, comprising contacting T cells with one or more of: (i) a polypeptide as described above; (ii) a polynucleotide encoding such a polypeptide; and (iii) an antigen presenting cell that expresses such a polypeptide; under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Isolated T cell populations comprising T cells prepared as described above are also provided.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.

The present invention further provides methods for inhibiting the development of a cancer in a patient, comprising the steps of: (a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of polypeptide disclosed herein; (ii) a polynucleotide encoding such a polypeptide; and (iii) an antigen-presenting cell that expressed such a polypeptide; and (b) administering to the patient an effective amount of the proliferated T cells, thereby inhibiting the development of a cancer in the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient.

WO 01/051633 PCT/US01/01574

7

Within further aspects, the present invention provides methods for determining the presence or absence of a cancer, preferably a prostate cancer, in a patient comprising: (a) contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within preferred embodiments, the binding agent is an antibody, more preferably a monoclonal antibody.

The present invention also provides, within other aspects, methods for monitoring the progression of a cancer in a patient. Such methods comprise the steps of: (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b), and therefrom monitoring the progression of the cancer in the patient.

The present invention further provides, within other aspects, methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide of the present invention; (b) detecting in the sample a level of a polynucleotide, preferably mRNA, that hybridizes to the oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within certain embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide of the present invention, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to an inventive polynucleotide, or a complement of such a polynucleotide.

10

15

20

25

10

15

20

25

In related aspects, methods are provided for monitoring the progression of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide of the present invention; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) with the amount detected in step (b), and therefrom monitoring the progression of the cancer in the patient.

Within further aspects, the present invention provides antibodies, such as monoclonal antibodies, that bind to a polypeptide as described above, as well as diagnostic kits comprising such antibodies. Diagnostic kits comprising one or more oligonucleotide probes or primers as described above are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE IDENTIFIERS

Figure 1 illustrates the ability of T cells to kill fibroblasts expressing the representative prostate-specific polypeptide P502S, as compared to control fibroblasts. The percentage lysis is shown as a series of effector:target ratios, as indicated.

Figures 2A and 2B illustrate the ability of T cells to recognize cells expressing the representative prostate-specific polypeptide P502S. In each case, the number of γ -interferon spots is shown for different numbers of responders. In Figure 2A, data is presented for fibroblasts pulsed with the P2S-12 peptide, as compared to fibroblasts pulsed with a control E75 peptide. In Figure 2B, data is presented for fibroblasts expressing P502S, as compared to fibroblasts expressing HER-2/neu.

Figure 3 represents a peptide competition binding assay showing that the P1S#10 peptide, derived from P501S, binds HLA-A2. Peptide P1S#10 inhibits HLA-A2 restricted presentation of fluM58 peptide to CTL clone D150M58 in TNF release

10

15

20

25

bioassay. D150M58 CTL is specific for the HLA-A2 binding influenza matrix peptide fluM58.

Figure 4 illustrates the ability of T cell lines generated from P1S#10 immunized mice to specifically lyse P1S#10-pulsed Jurkat A2Kb targets and P501S-transduced Jurkat A2Kb targets, as compared to EGFP-transduced Jurkat A2Kb. The percent lysis is shown as a series of effector to target ratios, as indicated.

Figure 5 illustrates the ability of a T cell clone to recognize and specifically lyse Jurkat A2Kb cells expressing the representative prostate-specific polypeptide P501S, thereby demonstrating that the P1S#10 peptide may be a naturally processed epitope of the P501S polypeptide.

Figures 6A and 6B are graphs illustrating the specificity of a CD8⁺ cell line (3A-1) for a representative prostate-specific antigen (P501S). Figure 6A shows the results of a ⁵¹Cr release assay. The percent specific lysis is shown as a series of effector:target ratios, as indicated. Figure 6B shows the production of interferongamma by 3A-1 cells stimulated with autologous B-LCL transduced with P501S, at varying effector:target rations as indicated.

Figure 7 is a Western blot showing the expression of P501S in baculovirus.

Figure 8 illustrates the results of epitope mapping studies on P501S.

Figure 9 is a schematic representation of the P501S protein showing the location of transmembrane domains and predicted intracellular and extracellular domains.

Figure 10 is a genomic map showing the location of the prostate genes P775P, P704P, B305D, P712P and P774P within the Cat Eye Syndrome region of chromosome 22q11.2

Figure 11 shows the results of an ELISA assay to determine the specificity of rabbit polyclonal antisera raised against P501S.

SEQ ID NO: 1 is the determined cDNA sequence for F1-13

SEQ ID NO: 2 is the determined 3' cDNA sequence for F1-12

30 SEQ ID NO: 3 is the determined 5' cDNA sequence for F1-12

	SEQ ID NO: 4 is the determined 3' cDNA sequence for F1-16
	SEQ ID NO: 5 is the determined 3' cDNA sequence for H1-1
	SEQ ID NO: 6 is the determined 3' cDNA sequence for H1-9
	SEQ ID NO: 7 is the determined 3' cDNA sequence for H1-4
5	SEQ ID NO: 8 is the determined 3' cDNA sequence for J1-17
	SEQ ID NO: 9 is the determined 5' cDNA sequence for J1-17
	SEQ ID NO: 10 is the determined 3' cDNA sequence for L1-12
	SEQ ID NO: 11 is the determined 5' cDNA sequence for L1-12
	SEQ ID NO: 12 is the determined 3' cDNA sequence for N1-1862
10	SEQ ID NO: 13 is the determined 5' cDNA sequence for N1-1862
	SEQ ID NO: 14 is the determined 3' cDNA sequence for J1-13
	SEQ ID NO: 15 is the determined 5' cDNA sequence for J1-13
	SEQ ID NO: 16 is the determined 3' cDNA sequence for J1-19
	SEQ ID NO: 17 is the determined 5' cDNA sequence for J1-19
15	SEQ ID NO: 18 is the determined 3' cDNA sequence for J1-25
	SEQ ID NO: 19 is the determined 5' cDNA sequence for J1-25
	SEQ ID NO: 20 is the determined 5' cDNA sequence for J1-24
	SEQ ID NO: 21 is the determined 3° cDNA sequence for J1-24
	SEQ ID NO: 22 is the determined 5' cDNA sequence for K1-58
20	SEQ ID NO: 23 is the determined 3' cDNA sequence for K1-58
	SEQ ID NO: 24 is the determined 5' cDNA sequence for K1-63
	SEQ ID NO: 25 is the determined 3' cDNA sequence for K1-63
	SEQ ID NO: 26 is the determined 5' cDNA sequence for L1-4
	SEQ ID NO: 27 is the determined 3' cDNA sequence for L1-4
25	SEQ ID NO: 28 is the determined 5' cDNA sequence for L1-14
	SEQ ID NO: 29 is the determined 3' cDNA sequence for L1-14
	SEQ ID NO: 30 is the determined 3' cDNA sequence for J1-12
	SEQ ID NO: 31 is the determined 3' cDNA sequence for J1-16
	SEQ ID NO: 32 is the determined 3' cDNA sequence for J1-21
30	SEQ ID NO: 33 is the determined 3' cDNA sequence for K1-48

	SEQ ID NO: 34 is the determined 3' cDNA sequence for K1-55
	SEQ ID NO: 35 is the determined 3' cDNA sequence for L1-2
	SEQ ID NO: 36 is the determined 3' cDNA sequence for L1-6
	SEQ ID NO: 37 is the determined 3' cDNA sequence for N1-1858
5	SEQ ID NO: 38 is the determined 3' cDNA sequence for N1-1860
	SEQ ID NO: 39 is the determined 3' cDNA sequence for N1-1861
	SEQ ID NO: 40 is the determined 3' cDNA sequence for N1-1864
	SEQ ID NO: 41 is the determined cDNA sequence for P5
	SEQ ID NO: 42 is the determined cDNA sequence for P8
10	SEQ ID NO: 43 is the determined cDNA sequence for P9
	SEQ ID NO: 44 is the determined cDNA sequence for P18
	SEQ ID NO: 45 is the determined cDNA sequence for P20
	SEQ ID NO: 46 is the determined cDNA sequence for P29
	SEQ ID NO: 47 is the determined cDNA sequence for P30
15	SEQ ID NO: 48 is the determined cDNA sequence for P34
	SEQ ID NO: 49 is the determined cDNA sequence for P36
	SEQ ID NO: 50 is the determined cDNA sequence for P38
	SEQ ID NO: 51 is the determined cDNA sequence for P39
	SEQ ID NO: 52 is the determined cDNA sequence for P42
20	SEQ ID NO: 53 is the determined cDNA sequence for P47
	SEQ ID NO: 54 is the determined cDNA sequence for P49
	SEQ ID NO: 55 is the determined cDNA sequence for P50
	SEQ ID NO: 56 is the determined cDNA sequence for P53
	SEQ ID NO: 57 is the determined cDNA sequence for P55
25	SEQ ID NO: 58 is the determined cDNA sequence for P60
	SEQ ID NO: 59 is the determined cDNA sequence for P64
	SEQ ID NO: 60 is the determined cDNA sequence for P65
	SEQ ID NO: 61 is the determined cDNA sequence for P73
	SEQ ID NO: 62 is the determined cDNA sequence for P75
30	SEQ ID NO: 63 is the determined cDNA sequence for P76

WO 01/051633

PCT/US01/01574

12

SEQ ID NO: 64 is the determined cDNA sequence for P79 SEQ ID NO: 65 is the determined cDNA sequence for P84 SEQ ID NO: 66 is the determined cDNA sequence for P68 SEQ ID NO: 67 is the determined cDNA sequence for P80 (also referred 5 to as P704P) SEQ ID NO: 68 is the determined cDNA sequence for P82 SEQ ID NO: 69 is the determined cDNA sequence for U1-3064 SEQ ID NO: 70 is the determined cDNA sequence for U1-3065 SEQ ID NO: 71 is the determined cDNA sequence for V1-3692 10 SEQ ID NO: 72 is the determined cDNA sequence for 1A-3905 SEQ ID NO: 73 is the determined cDNA sequence for V1-3686 SEQ ID NO: 74 is the determined cDNA sequence for R1-2330 SEQ ID NO: 75 is the determined cDNA sequence for 1B-3976 SEQ ID NO: 76 is the determined cDNA sequence for V1-3679 15 SEQ ID NO: 77 is the determined cDNA sequence for 1G-4736 SEQ ID NO: 78 is the determined cDNA sequence for 1G-4738 SEQ ID NO: 79 is the determined cDNA sequence for 1G-4741 SEQ ID NO: 80 is the determined cDNA sequence for 1G-4744 SEQ ID NO: 81 is the determined cDNA sequence for 1G-4734 20 SEQ ID NO: 82 is the determined cDNA sequence for 1H-4774 SEQ ID NO: 83 is the determined cDNA sequence for 1H-4781 SEQ ID NO: 84 is the determined cDNA sequence for 1H-4785 SEQ ID NO: 85 is the determined cDNA sequence for 1H-4787 SEQ ID NO: 86 is the determined cDNA sequence for 1H-4796 25 SEQ ID NO: 87 is the determined cDNA sequence for 11-4807 SEQ ID NO: 88 is the determined cDNA sequence for 1I-4810 SEQ ID NO: 89 is the determined cDNA sequence for 1I-4811 SEQ ID NO: 90 is the determined cDNA sequence for 1J-4876 SEQ ID NO: 91 is the determined cDNA sequence for 1K-4884 30 SEQ ID NO: 92 is the determined cDNA sequence for 1K-4896

	SEQ ID NO: 93 is the determined cDNA sequence for 1G-4761
	SEQ ID NO: 94 is the determined cDNA sequence for 1G-4762
	SEQ ID NO: 95 is the determined cDNA sequence for 1H-4766
	SEQ ID NO: 96 is the determined cDNA sequence for 1H-4770
5	SEQ ID NO: 97 is the determined cDNA sequence for 1H-4771
	SEQ ID NO: 98 is the determined cDNA sequence for 1H-4772
	SEQ ID NO: 99 is the determined cDNA sequence for 1D-4297
	SEQ ID NO: 100 is the determined cDNA sequence for 1D-4309
	SEQ ID NO: 101 is the determined cDNA sequence for 1D.1-4278
10	SEQ ID NO: 102 is the determined cDNA sequence for 1D-4288
	SEQ ID NO: 103 is the determined cDNA sequence for 1D-4283
	SEQ ID NO: 104 is the determined cDNA sequence for 1D-4304
	SEQ ID NO: 105 is the determined cDNA sequence for 1D-4296
	SEQ ID NO: 106 is the determined cDNA sequence for 1D-4280
15	SEQ ID NO: 107 is the determined full length cDNA sequence for F1-12
	(also referred to as P504S)
	SEQ ID NO: 108 is the predicted amino acid sequence for F1-12
	SEQ ID NO: 109 is the determined full length cDNA sequence for J1-17
	SEQ ID NO: 110 is the determined full length cDNA sequence for L1-12
20	(also referred to as P501S)
	SEQ ID NO: 111 is the determined full length cDNA sequence for N1-
	1862 (also referred to as P503S)
	SEQ ID NO: 112 is the predicted amino acid sequence for J1-17
	SEQ ID NO: 113 is the predicted amino acid sequence for L1-12 (also
25	referred to as P501S)
	SEQ ID NO: 114 is the predicted amino acid sequence for N1-1862 (also
	referred to as P503S)
	SEQ ID NO: 115 is the determined cDNA sequence for P89
	SEQ ID NO: 116 is the determined cDNA sequence for P90
30	SEQ ID NO: 117 is the determined cDNA sequence for P92

	SEQ ID NO: 118 is the determined cDNA sequence for P95
	SEQ ID NO: 119 is the determined cDNA sequence for P98
	SEQ ID NO: 120 is the determined cDNA sequence for P102
	SEQ ID NO: 121 is the determined cDNA sequence for P110
5	SEQ ID NO: 122 is the determined cDNA sequence for P111
	SEQ ID NO: 123 is the determined cDNA sequence for P114
	SEQ ID NO: 124 is the determined cDNA sequence for P115
	SEQ ID NO: 125 is the determined cDNA sequence for P116
	SEQ ID NO: 126 is the determined cDNA sequence for P124
10	SEQ ID NO: 127 is the determined cDNA sequence for P126
	SEQ ID NO: 128 is the determined cDNA sequence for P130
	SEQ ID NO: 129 is the determined cDNA sequence for P133
	SEQ ID NO: 130 is the determined cDNA sequence for P138
	SEQ ID NO: 131 is the determined cDNA sequence for P143
15	SEQ ID NO: 132 is the determined cDNA sequence for P151
	SEQ ID NO: 133 is the determined cDNA sequence for P156
	SEQ ID NO: 134 is the determined cDNA sequence for P157
•	SEQ ID NO: 135 is the determined cDNA sequence for P166
	SEQ ID NO: 136 is the determined cDNA sequence for P176
20	SEQ ID NO: 137 is the determined cDNA sequence for P178
	SEQ ID NO: 138 is the determined cDNA sequence for P179
	SEQ ID NO: 139 is the determined cDNA sequence for P185
	SEQ ID NO: 140 is the determined cDNA sequence for P192
	SEQ ID NO: 141 is the determined cDNA sequence for P201
25	SEQ ID NO: 142 is the determined cDNA sequence for P204
	SEQ ID NO: 143 is the determined cDNA sequence for P208
	SEQ ID NO: 144 is the determined cDNA sequence for P211
	SEQ ID NO: 145 is the determined cDNA sequence for P213
	SEQ ID NO: 146 is the determined cDNA sequence for P219
30	SEQ ID NO: 147 is the determined cDNA sequence for P237

	SEQ ID NO: 148 is the determined cDNA sequence for P239
	SEQ ID NO: 149 is the determined cDNA sequence for P248
	SEQ ID NO: 150 is the determined cDNA sequence for P251
	SEQ ID NO: 151 is the determined cDNA sequence for P255
5	SEQ ID NO: 152 is the determined cDNA sequence for P256
	SEQ ID NO: 153 is the determined cDNA sequence for P259
	SEQ ID NO: 154 is the determined cDNA sequence for P260
	SEQ ID NO: 155 is the determined cDNA sequence for P263
	SEQ ID NO: 156 is the determined cDNA sequence for P264
10	SEQ ID NO: 157 is the determined cDNA sequence for P266
	SEQ ID NO: 158 is the determined cDNA sequence for P270
	SEQ ID NO: 159 is the determined cDNA sequence for P272
	SEQ ID NO: 160 is the determined cDNA sequence for P278
	SEQ ID NO: 161 is the determined cDNA sequence for P105
15	SEQ ID NO: 162 is the determined cDNA sequence for P107
	SEQ ID NO: 163 is the determined cDNA sequence for P137
	SEQ ID NO: 164 is the determined cDNA sequence for P194
	SEQ ID NO: 165 is the determined cDNA sequence for P195
	SEQ ID NO: 166 is the determined cDNA sequence for P196
20	SEQ ID NO: 167 is the determined cDNA sequence for P220
	SEQ ID NO: 168 is the determined cDNA sequence for P234
	SEQ ID NO: 169 is the determined cDNA sequence for P235
	SEQ ID NO: 170 is the determined cDNA sequence for P243
	SEQ ID NO: 171 is the determined cDNA sequence for P703P-DE1
25	SEQ ID NO: 172 is the predicted amino acid sequence for P703P-DE1
	SEQ ID NO: 173 is the determined cDNA sequence for P703P-DE2
	SEQ ID NO: 174 is the determined cDNA sequence for P703P-DE6
	SEQ ID NO: 175 is the determined cDNA sequence for P703P-DE13
	SEQ ID NO: 176 is the predicted amino acid sequence for P703P-DE13
30	SEQ ID NO: 177 is the determined cDNA sequence for P703P-DE14

		SEQ ID NO: 178 is the predicted amino acid sequence for P703P-DE14
		SEQ ID NO: 179 is the determined extended cDNA sequence for 1G-
	4736	
		SEQ ID NO: 180 is the determined extended cDNA sequence for 1G-
5	4738	
		SEQ ID NO: 181 is the determined extended cDNA sequence for 1G-
	4741	
		SEQ ID NO: 182 is the determined extended cDNA sequence for 1G-
	4744	
10		SEQ ID NO: 183 is the determined extended cDNA sequence for 1H-
	4774	
		SEQ ID NO: 184 is the determined extended cDNA sequence for 1H-
	4781	
		SEQ ID NO: 185 is the determined extended cDNA sequence for 1H-
15	4785	
		SEQ ID NO: 186 is the determined extended cDNA sequence for 1H-
	4787	
		SEQ ID NO: 187 is the determined extended cDNA sequence for 1H-
	4796	
20		SEQ ID NO: 188 is the determined extended cDNA sequence for 1I-
	4807	
		SEQ ID NO: 189 is the determined 3' cDNA sequence for 1I-4810
		SEQ ID NO: 190 is the determined 3' cDNA sequence for 1I-4811
		SEQ ID NO: 191 is the determined extended cDNA sequence for 1J-
25	4876	
	.070	SEQ ID NO: 192 is the determined extended cDNA sequence for 1K-
	4884	
		SEQ ID NO: 193 is the determined extended cDNA sequence for 1K-
	4896	524 12 1.0. 155 to the determined emenant != 1 114 meet tel mee
	サロフひ	

		SEQ ID NO: 194 is the determined extended cDNA sequence for 1G-
	4761	
		SEQ ID NO: 195 is the determined extended cDNA sequence for 1G-
	4762	
5		SEQ ID NO: 196 is the determined extended cDNA sequence for 1H-
	4766	
		SEQ ID NO: 197 is the determined 3' cDNA sequence for 1H-4770
		SEQ ID NO: 198 is the determined 3' cDNA sequence for 1H-4771
		SEQ ID NO: 199 is the determined extended cDNA sequence for 1H-
10	4772	
		SEQ ID NO: 200 is the determined extended cDNA sequence for 1D-
	4309	
		SEQ ID NO: 201 is the determined extended cDNA sequence for 1D.1-
	4278	
15		SEQ ID NO: 202 is the determined extended cDNA sequence for 1D-
	4288	
		SEQ ID NO: 203 is the determined extended cDNA sequence for 1D-
	4283	
		SEQ ID NO: 204 is the determined extended cDNA sequence for 1D-
20	4304	
		SEQ ID NO: 205 is the determined extended cDNA sequence for 1D-
	4296	
		SEQ ID NO: 206 is the determined extended cDNA sequence for 1D-
	4280	
25		SEQ ID NO: 207 is the determined cDNA sequence for 10-d8fwd
		SEQ ID NO: 208 is the determined cDNA sequence for 10-H10con
		SEQ ID NO: 209 is the determined cDNA sequence for 11-C8rev
		SEQ ID NO: 210 is the determined cDNA sequence for 7.g6fwd
		SEQ ID NO: 211 is the determined cDNA sequence for 7.g6rev
3()		SEQ ID NO: 212 is the determined cDNA sequence for 8-b5fwd

	SEQ ID NO:	213 is the	determined	cDNA	sequence	for	8-b5rev
	SEQ ID NO:	214 is the	determined	cDNA	sequence	for	8-b6fwd
	SEQ ID NO:	215 is the	determined	cDNA	sequence	for	8-b6 rev
	SEQ ID NO:	216 is the	determined	cDNA	sequence	for	8-d4fwd
5	SEQ ID NO:	217 is the	determined	cDNA	sequence	for	8-d9rev
	SEQ ID NO:	218 is the	determined	cDNA	sequence	for	8-g3fwd
	SEQ ID NO:	219 is the	determined	cDNA	sequence	for	8-g3rev
	SEQ ID NO:	220 is the	determined	cDNA	sequence	for	8-h11rev
	SEQ ID NO:	221 is the	determined	cDNA	sequence	for	g-f12fwd
10	SEQ ID NO:	222 is the	determined	cDNA	sequence	for	g-f3rev
	SEQ ID NO:	223 is the	determined	cDNA	sequence	for	P509S
	SEQ ID NO:	224 is the	determined	cDNA	sequence	for	P510S
	SEQ ID NO:	225 is the	determined	cDNA	sequence	for	P703DE5
	SEQ ID NO:	226 is the	determined	cDNA	sequence	for	9-A11
15	SEQ ID NO:	227 is the	determined	cDNA	sequence	for	8-C6
	SEQ ID NO:	228 is the	determined	cDNA	sequence	for	8-H7
	SEQ ID NO:	229 is the	determined	cDNA	sequence	for	JPTPN13
	SEQ ID NO:	230 is the	determined	cDNA	sequence	for	JPTPN14
	SEQ ID NO:	231 is the	determined	cDNA	sequence	for	JPTPN23
20	SEQ ID NO:	232 is the	determined	cDNA	sequence	for	JPTPN24
	SEQ ID NO:	233 is the	determined	cDNA	sequence	for	JPTPN25
	SEQ ID NO:	234 is the	determined	cDNA	sequence	for	JPTPN30
	SEQ ID NO:	235 is the	determined	cDNA	sequence	for	JPTPN34
	SEQ ID NO:	236 is the	determined	cDNA	sequence	for	PTPN35
25	SEQ ID NO:	237 is the	determined	cDNA	sequence	for	JPTPN36
	SEQ ID NO:	238 is the	determined	cDNA	sequence	for	JPTPN38
	SEQ ID NO:	239 is the	determined	cDNA	sequence	for	JPTPN39
	SEQ ID NO:	240 is the	determined	cDNA	sequence	for	JPTPN40
	SEQ ID NO:	241 is the	determined	cDNA	sequence	for	JPTPN41
30	SEQ ID NO:	242 is the	determined	cDNA	sequence	for	JPTPN42

SEQ ID NO: 243 is the determined cDNA sequence for JPTPN45	,
SEQ ID NO: 244 is the determined cDNA sequence for JPTPN46)•
SEQ ID NO: 245 is the determined cDNA sequence for JPTPN51	
SEQ ID NO: 246 is the determined cDNA sequence for JPTPN56	,
SEQ ID NO: 247 is the determined cDNA sequence for PTPN64	
SEQ ID NO: 248 is the determined cDNA sequence for JPTPN65	
SEQ ID NO: 249 is the determined cDNA sequence for JPTPN67	
SEQ ID NO: 250 is the determined cDNA sequence for JPTPN76	
SEQ ID NO: 251 is the determined cDNA sequence for JPTPN84	
SEQ ID NO: 252 is the determined cDNA sequence for JPTPN85	
SEQ ID NO: 253 is the determined cDNA sequence for JPTPN86	
SEQ ID NO: 254 is the determined cDNA sequence for JPTPN87	
SEQ ID NO: 255 is the determined cDNA sequence for JPTPN88	
SEQ ID NO: 256 is the determined cDNA sequence for JP1F1	
SEQ ID NO: 257 is the determined cDNA sequence for JP1F2	
SEQ ID NO: 258 is the determined cDNA sequence for JP1C2	
SEQ ID NO: 259 is the determined cDNA sequence for JP1B1	
SEQ ID NO: 260 is the determined cDNA sequence for JP1B2	
SEQ ID NO: 261 is the determined cDNA sequence for JP1D3	
SEQ ID NO: 262 is the determined cDNA sequence for JP1A4	
SEQ ID NO: 263 is the determined cDNA sequence for JP1F5	
SEQ ID NO: 264 is the determined cDNA sequence for JP1E6	
SEQ ID NO: 265 is the determined cDNA sequence for JP1D6	
SEQ ID NO: 266 is the determined cDNA sequence for JP1B5	
SEQ ID NO: 267 is the determined cDNA sequence for JP1A6	
SEQ ID NO: 268 is the determined cDNA sequence for JP1E8	
SEQ ID NO: 269 is the determined cDNA sequence for JP1D7	
SEQ ID NO: 270 is the determined cDNA sequence for JP1D9	
SEQ ID NO: 271 is the determined cDNA sequence for JP1C10	
SEQ ID NO: 272 is the determined cDNA sequence for JP1A9	

	SEQ ID NO: 2	2/3 is the	determined	CDNA	sequence	Ior	JP1F12
	SEQ ID NO: 2	274 is the	determined	cDNA	sequence	for	JP1E12
	SEQ ID NO: 2	275 is the	determined	cDNA	sequence	for	JP1D11
	SEQ ID NO: 2	276 is the	determined	cDNA	sequence	for	JP1C11
5	SEQ ID NO: 2	277 is the	determined	cDNA	sequence	for	JP1C12
	SEQ ID NO: 2	278 is the	determined	cDNA	sequence	for	JP1B12
	SEQ ID NO: 2	279 is the	determined	cDNA	sequence	for	JP1A12
	SEQ ID NO: 2	280 is the	determined	cDNA	sequence	for	JP8G2
	SEQ ID NO: 2	281 is the	determined	cDNA	sequence	for	JP8H1
10	SEQ ID NO: 2	282 is the	determined	cDNA	sequence	for	JP8H2
	SEQ ID NO: 2	283 is the	determined	cDNA	sequence	for	JP8A3
	SEQ ID NO: 2	284 is the	determined	cDNA	sequence	for	JP8A4
	SEQ ID NO: 2	285 is the	determined	cDNA	sequence	for	JP8C3
	SEQ ID NO: 2	286 is the	determined	cDNA	sequence	for	JP8G4
15	SEQ ID NO: 2	287 is the	determined	cDNA	sequence	for	JP8B6
	SEQ ID NO: 2	288 is the	determined	cDNA	sequence	for	JP8D6
	SEQ ID NO: 2	289 is the	determined	cDNA	sequence	for	JP8F5
	SEQ ID NO: 2	290 is the	determined	cDNA	sequence	for	JP8A8
	SEQ ID NO: 2	291 is the	determined	cDNA	sequence	for	JP8C7
20	SEQ ID NO: 2	292 is the	determined	cDNA	sequence	for	JP8D7
	SEQ ID NO: 2	293 is the	determined	cDNA	sequence	for	P8D8
	SEQ ID NO: 2	294 is the	determined	cDNA	sequence	for	JP8E7
	SEQ ID NO: 2	295 is the	determined	cDNA	sequence	for	JP8F8
	SEQ ID NO: 2	296 is the	determined	cDNA	sequence	for	JP8G8
25	SEQ ID NO: 2	297 is the	determined	cDNA	sequence	for	JP8B10
	SEQ ID NO: 2	298 is the	determined	cDNA	sequence	for	JP8C10
	SEQ ID NO: 2	299 is the	determined	cDNA	sequence	for	JP8E9
	SEQ ID NO: 3	300 is the	determined	cDNA	sequence	for	JP8E10
	SEQ ID NO: 3	301 is the	determined	cDNA	sequence	for	JP8F9
30	SEQ ID NO: 3	302 is the	determined	cDNA	sequence	for	JP8H9

	SEQ ID NO: 303 is the determined cDNA sequence for JP8C12
	SEQ ID NO: 304 is the determined cDNA sequence for JP8E11
	SEQ ID NO: 305 is the determined cDNA sequence for JP8E12
	SEQ ID NO: 306 is the amino acid sequence for the peptide PS2#12
5	SEQ ID NO: 307 is the determined cDNA sequence for P711P
	SEQ ID NO: 308 is the determined cDNA sequence for P712P
	SEQ ID NO: 309 is the determined cDNA sequence for CLONE23
	SEQ ID NO: 310 is the determined cDNA sequence for P774P
	SEQ ID NO: 311 is the determined cDNA sequence for P775P
10	SEQ ID NO: 312 is the determined cDNA sequence for P715P
	SEQ ID NO: 313 is the determined cDNA sequence for P710P
	SEQ ID NO: 314 is the determined cDNA sequence for P767P
	SEQ ID NO: 315 is the determined cDNA sequence for P768P
	SEQ ID NO: 316-325 are the determined cDNA sequences of previously
15	isolated genes
	SEQ ID NO: 326 is the determined cDNA sequence for P703PDE5
	SEQ ID NO: 327 is the predicted amino acid sequence for P703PDE5
	SEQ ID NO: 328 is the determined cDNA sequence for P703P6.26
	SEQ ID NO: 329 is the predicted amino acid sequence for P703P6.26
20	SEQ ID NO: 330 is the determined cDNA sequence for P703PX-23
	SEQ ID NO: 331 is the predicted amino acid sequence for P703PX-23
	SEQ ID NO: 332 is the determined full length cDNA sequence for
	P509S
	SEQ ID NO: 333 is the determined extended cDNA sequence for P707P
25	(also referred to as 11-C9)
	SEQ ID NO: 334 is the determined cDNA sequence for P714P
	SEQ ID NO: 335 is the determined cDNA sequence for P705P (also
	referred to as 9-F3)
	SEQ ID NO: 336 is the predicted amino acid sequence for P705P
30	SEQ ID NO: 337 is the amino acid sequence of the pentide P1S#10

	SEQ ID NO: 338 is the amino acid sequence of the peptide p5
	SEQ ID NO: 339 is the predicted amino acid sequence of P509S
	SEQ ID NO: 340 is the determined cDNA sequence for P778P
	SEQ ID NO: 341 is the determined cDNA sequence for P786P
5	SEQ ID NO: 342 is the determined cDNA sequence for P789P
	SEQ ID NO: 343 is the determined cDNA sequence for a clone showing
	homology to Homo sapiens MM46 mRNA
	SEQ ID NO: 344 is the determined cDNA sequence for a clone showing
	homology to Homo sapiens TNF-alpha stimulated ABC protein (ABC50) mRNA
10	SEQ ID NO: 345 is the determined cDNA sequence for a clone showing
	homology to Homo sapiens mRNA for E-cadherin
	SEQ ID NO: 346 is the determined cDNA sequence for a clone showing
	homology to Human nuclear-encoded mitochondrial serine hydroxymethyltransferase
	(SHMT)
15	SEQ ID NO: 347 is the determined cDNA sequence for a clone showing
	homology to Homo sapiens natural resistance-associated macrophage protein2
	(NRAMP2)
	SEQ ID NO: 348 is the determined cDNA sequence for a clone showing
	homology to Homo sapiens phosphoglucomutase-related protein (PGMRP)
20	SEQ ID NO: 349 is the determined cDNA sequence for a clone showing
	homology to Human mRNA for proteosome subunit p40
	SEQ ID NO: 350 is the determined cDNA sequence for P777P
	SEQ ID NO: 351 is the determined cDNA sequence for P779P
	SEQ ID NO: 352 is the determined cDNA sequence for P790P
25	SEQ ID NO: 353 is the determined cDNA sequence for P784P
	SEQ ID NO: 354 is the determined cDNA sequence for P776P
	SEQ ID NO: 355 is the determined cDNA sequence for P780P
	SEQ ID NO: 356 is the determined cDNA sequence for P544S
	SEQ ID NO: 357 is the determined cDNA sequence for P745S
30	SEQ ID NO: 358 is the determined cDNA sequence for P782P

	SEQ ID NO: 359 is the determined cDNA sequence for P783P
	SEQ ID NO: 360 is the determined cDNA sequence for unknown 17984
	SEQ ID NO: 361 is the determined cDNA sequence for P787P
	SEQ ID NO: 362 is the determined cDNA sequence for P788P
5	SEQ ID NO: 363 is the determined cDNA sequence for unknown 17994
	SEQ ID NO: 364 is the determined cDNA sequence for P781P
	SEQ ID NO: 365 is the determined cDNA sequence for P785P
	SEQ ID NO: 366-375 are the determined cDNA sequences for splice
	variants of B305D.
10	SEQ ID NO: 376 is the predicted amino acid sequence encoded by the
	sequence of SEQ ID NO: 366.
	SEQ ID NO: 377 is the predicted amino acid sequence encoded by the
	sequence of SEQ ID NO: 372.
	SEQ ID NO: 378 is the predicted amino acid sequence encoded by the
15	sequence of SEQ ID NO: 373.
	SEQ ID NO: 379 is the predicted amino acid sequence encoded by the
	sequence of SEQ ID NO: 374.
	SEQ ID NO: 380 is the predicted amino acid sequence encoded by the
	sequence of SEQ ID NO: 375.
20	SEQ ID NO: 381 is the determined cDNA sequence for B716P.
	SEQ ID NO: 382 is the determined full-length cDNA sequence for
	P711P.
	SEQ ID NO: 383 is the predicted amino acid sequence for P711P.
	production to 17111,

SEQ ID NO: 383 is the predicted amino acid sequence for P711P. SEQ ID NO: 384 is the cDNA sequence for P1000C.

SEQ ID NO: 385 is the cDNA sequence for CGI-82.

SEQ ID NO:386 is the cDNA sequence for 23320.

SEQ ID NO:387 is the cDNA sequence for CGI-69.

SEQ ID NO:388 is the cDNA sequence for L-iditol-2-dehydrogenase.

SEQ ID NO:389 is the cDNA sequence for 23379.

SEQ ID NO:390 is the cDNA sequence for 23381.

		SEQ ID NO:391 is the cDNA sequence for KIAA0122.
		SEQ ID NO:392 is the cDNA sequence for 23399.
		SEQ ID NO:393 is the cDNA sequence for a previously identified gene.
		SEQ ID NO:394 is the cDNA sequence for HCLBP.
5		SEQ ID NO:395 is the cDNA sequence for transglutaminase.
		SEQ ID NO:396 is the cDNA sequence for a previously identified gene.
		SEQ ID NO:397 is the cDNA sequence for PAP.
		SEQ ID NO:398 is the cDNA sequence for Ets transcription factor
	PDEF.	
10		SEQ ID NO:399 is the cDNA sequence for hTGR.
		SEQ ID NO:400 is the cDNA sequence for KIAA0295.
		SEQ ID NO:401 is the cDNA sequence for 22545.
		SEQ ID NO:402 is the cDNA sequence for 22547.
		SEQ ID NO:403 is the cDNA sequence for 22548.
15		SEQ ID NO:404 is the cDNA sequence for 22550.
		SEQ ID NO:405 is the cDNA sequence for 22551.
		SEQ ID NO:406 is the cDNA sequence for 22552.
		SEQ ID NO:407 is the cDNA sequence for 22553 (also known as
	P1020C).	
20		SEQ ID NO:408 is the cDNA sequence for 22558.
		SEQ ID NO:409 is the cDNA sequence for 22562.
		SEQ ID NO:410 is the cDNA sequence for 22565.
		SEQ ID NO:411 is the cDNA sequence for 22567.
		SEQ ID NO:412 is the cDNA sequence for 22568.
25		SEQ ID NO:413 is the cDNA sequence for 22570.
		SEQ ID NO:414 is the cDNA sequence for 22571.
		SEQ ID NO:415 is the cDNA sequence for 22572.
		SEQ ID NO:416 is the cDNA sequence for 22573.
		SEQ ID NO:417 is the cDNA sequence for 22573.
30		SEQ ID NO:418 is the cDNA sequence for 22575.

	SEQ ID NO:419 is the cDNA sequence for 22580.
	SEQ ID NO:420 is the cDNA sequence for 22581.
	SEQ ID NO:421 is the cDNA sequence for 22582.
	SEQ ID NO:422 is the cDNA sequence for 22583.
5	SEQ ID NO:423 is the cDNA sequence for 22584.
	SEQ ID NO:424 is the cDNA sequence for 22585.
	SEQ ID NO:425 is the cDNA sequence for 22586.
	SEQ ID NO:426 is the cDNA sequence for 22587.
	SEQ ID NO:427 is the cDNA sequence for 22588.
10	SEQ ID NO:428 is the cDNA sequence for 22589.
	SEQ ID NO:429 is the cDNA sequence for 22590.
	SEQ ID NO:430 is the cDNA sequence for 22591.
	SEQ ID NO:431 is the cDNA sequence for 22592.
	SEQ ID NO:432 is the cDNA sequence for 22593.
15	SEQ ID NO:433 is the cDNA sequence for 22594.
	SEQ ID NO:434 is the cDNA sequence for 22595.
	SEQ ID NO:435 is the cDNA sequence for 22596.
	SEQ ID NO:436 is the cDNA sequence for 22847.
	SEQ ID NO:437 is the cDNA sequence for 22848.
20	SEQ ID NO:438 is the cDNA sequence for 22849.
	SEQ ID NO:439 is the cDNA sequence for 22851.
	SEQ ID NO:440 is the cDNA sequence for 22852.
	SEQ ID NO:441 is the cDNA sequence for 22853.
	SEQ ID NO:442 is the cDNA sequence for 22854.
25	SEQ ID NO:443 is the cDNA sequence for 22855.
	SEQ ID NO:444 is the cDNA sequence for 22856.
	SEQ ID NO:445 is the cDNA sequence for 22857.
	SEQ ID NO:446 is the cDNA sequence for 23601.
	SEQ ID NO:447 is the cDNA sequence for 23602.
30	SEQ ID NO:448 is the cDNA sequence for 23605.

	SEQ ID NO:449 is the cDNA sequence for 23606.
	SEQ ID NO:450 is the cDNA sequence for 23612.
	SEQ ID NO:451 is the cDNA sequence for 23614.
	SEQ ID NO:452 is the cDNA sequence for 23618.
5	SEQ ID NO:453 is the cDNA sequence for 23622.
	SEQ ID NO:454 is the cDNA sequence for folate hydrolase.
	SEQ ID NO:455 is the cDNA sequence for LIM protein.
	SEQ ID NO:456 is the cDNA sequence for a known gene.
	SEQ ID NO:457 is the cDNA sequence for a known gene.
10	SEQ ID NO:458 is the cDNA sequence for a previously identified gene.
	SEQ ID NO:459 is the cDNA sequence for 23045.
	SEQ ID NO:460 is the cDNA sequence for 23032.
	SEQ ID NO:461 is the cDNA sequence for clone 23054.
	SEQ ID NO:462-467 are cDNA sequences for known genes.
15	SEQ ID NO:468-471 are cDNA sequences for P710P.
	SEQ ID NO:472 is a cDNA sequence for P1001C.
	SEQ ID NO: 473 is the determined cDNA sequence for a first splice
	variant of P775P (referred to as 27505).
	SEQ ID NO: 474 is the determined cDNA sequence for a second splice
20	variant of P775P (referred to as 19947).
	SEQ ID NO: 475 is the determined cDNA sequence for a third splice
	variant of P775P (referred to as 19941).

SEQ ID NO: 476 is the determined cDNA sequence for a fourth splice variant of P775P (referred to as 19937).

SEQ ID NO: 477 is a first predicted amino acid sequence encoded by the sequence of SEQ ID NO: 474.

SEQ ID NO: 478 is a second predicted amino acid sequence encoded by the sequence of SEQ ID NO: 474.

SEQ ID NO: 479 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 475.

SEQ ID NO: 480 is a first predicted amino acid sequence encoded by the sequence of SEQ ID NO: 473.

SEQ ID NO: 481 is a second predicted amino acid sequence encoded by the sequence of SEQ ID NO: 473.

5 SEQ ID NO: 482 is a third predicted amino acid sequence encoded by the sequence of SEQ ID NO: 473.

SEQ ID NO: 483 is a fourth predicted amino acid sequence encoded by the sequence of SEQ ID NO: 473.

SEQ ID NO: 484 is the first 30 amino acids of the M. tuberculosis 10 antigen Ra12.

SEQ ID NO: 485 is the PCR primer AW025.

SEQ ID NO: 486 is the PCR primer AW003.

SEQ ID NO: 487 is the PCR primer AW027.

SEQ ID NO: 488 is the PCR primer AW026.

SEQ ID NO: 489-501 are peptides employed in epitope mapping studies.

SEQ ID NO: 502 is the determined cDNA sequence of the complementarity determining region for the anti-P503S monoclonal antibody 20D4.

SEQ ID NO: 503 is the determined cDNA sequence of the complementarity determining region for the anti-P503S monoclonal antibody JA1.

SEQ ID NO: 504 & 505 are peptides employed in epitope mapping studies.

SEQ ID NO: 506 is the determined cDNA sequence of the complementarity determining region for the anti-P703P monoclonal antibody 8H2.

SEQ ID NO: 507 is the determined cDNA sequence of the complementarity determining region for the anti-P703P monoclonal antibody 7H8.

SEQ ID NO: 508 is the determined cDNA sequence of the complementarity determining region for the anti-P703P monoclonal antibody 2D4.

SEQ ID NO: 509-522 are peptides employed in epitope mapping studies.

SEQ ID NO: 523 is a mature form of P703P used to raise antibodies 30 against P703P.

15

SEQ ID NO: 524 is the putative full-length cDNA sequence of P703P.

SEQ ID NO: 525 is the predicted amino acid sequence encoded by SEQ

ID NO: 524.

SEO ID NO: 526 is the full-length cDNA sequence for P790P.

SEQ ID NO: 527 is the predicted amino acid sequence for P790P.

SEQ ID NO: 528 & 529 are PCR primers.

SEQ ID NO: 530 is the cDNA sequence of a splice variant of SEQ ID

NO: 366.

5

SEQ ID NO: 531 is the cDNA sequence of the open reading frame of

10 SEQ ID NO: 530.

SEQ ID NO: 532 is the predicted amino acid encoded by the sequence of

SEQ ID NO: 531.

SEQ ID NO: 533 is the DNA sequence of a putative ORF of P775P.

SEQ ID NO: 534 is the predicted amino acid sequence encoded by SEQ

15 ID NO: 533.

SEQ ID NO: 535 is a first full-length cDNA sequence for P510S.

SEQ ID NO: 536 is a second full-length cDNA sequence for P510S.

SEQ ID NO: 537 is the predicted amino acid sequence encoded by SEQ

ID NO: 535.

20 SEQ ID NO: 538 is the predicted amino acid sequence encoded by SEQ

ID NO: 536.

SEQ ID NO: 539 is the peptide P501S-370.

SEQ ID NO: 540 is the peptide P501S-376.

SEO ID NO: 541-551 are epitopes of P501S.

SEQ ID NO: 552 is an extended cDNA sequence for P712P.

SEQ ID NO: 553-568 are the amino acid sequences encoded by predicted open reading frames within SEQ ID NO: 552.

SEQ ID NO: 569 is an extended cDNA sequence for P776P.

SEQ ID NO: 570 is the determined cDNA sequence for a splice variant

30 of P776P referred to as contig 6.

SEQ ID NO: 571 is the determined cDNA sequence for a splice variant of P776P referred to as contig 7.

SEQ ID NO: 572 is the determined cDNA sequence for a splice variant of P776P referred to as contig 14.

5 SEQ ID NO: 573 is the amino acid sequence encoded by a first predicted ORF of SEQ ID NO: 570.

SEQ ID NO: 574 is the amino acid sequence encoded by a second predicted ORF of SEQ ID NO: 570.

SEQ ID NO: 575 is the amino acid sequence encoded by a predicted 10 ORF of SEQ ID NO: 571.

SEQ ID NO: 576-586 are amino acid sequences encoded by predicted ORFs of SEQ ID NO: 569.

SEQ ID NO: 587 is a DNA consensus sequence of the sequences of P767P and P777P.

SEQ ID NO: 588-590 are amino acid sequences encoded by predicted ORFs of SEQ ID NO: 587.

SEQ ID NO: 591 is an extended cDNA sequence for P1020C.

SEQ ID NO: 592 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: P1020C.

SEQ ID NO: 593 is a splice variant of P775P referred to as 50748.

SEQ ID NO: 594 is a splice variant of P775P referred to as 50717.

SEQ ID NO: 595 is a splice variant of P775P referred to as 45985.

SEQ ID NO: 596 is a splice variant of P775P referred to as 38769.

SEQ ID NO: 597 is a splice variant of P775P referred to as 37922.

SEQ ID NO: 598 is a splice variant of P510S referred to as 49274.

SEQ ID NO: 599 is a splice variant of P510S referred to as 39487.

SEQ ID NO: 600 is a splice variant of P504S referred to as 5167.16.

SEQ ID NO: 601 is a splice variant of P504S referred to as 5167.1.

SEQ ID NO: 602 is a splice variant of P504S referred to as 5163.46.

SEQ ID NO: 603 is a splice variant of P504S referred to as 5163.42.

PSA.

10

SEQ ID NO: 605 is a splice variant of P504S referred to as 5163.17.

SEQ ID NO: 606 is a splice variant of P501S referred to as 10640.

SEQ ID NO: 607-615 are the sequences of PCR primers.

5 SEQ ID NO: 616 is the determined cDNA sequence of a fusion of P703P and PSA.

SEQ ID NO: 617 is the amino acid sequence of the fusion of P703P and

SEQ ID NO: 618 is the cDNA sequence of the gene DD3.

SEQ ID NO: 619 is an extended cDNA sequence for P714P.

SEQ ID NO: 620-622 are the cDNA sequences for splice variants of P704P.

SEQ ID NO: 623 is the cDNA sequence of a splice variant of P553S referred to as P553S-14.

SEQ ID NO: 624 is the cDNA sequence of a splice variant of P553S referred to as P553S-12.

SEQ ID NO: 625 is the cDNA sequence of a splice variant of P553S referred to as P553S-10.

SEQ ID NO: 626 is the cDNA sequence of a splice variant of P553S referred to as P553S-6.

SEQ ID NO: 627 is the amino acid sequence encoded by SEQ ID NO: 626.

SEQ ID NO: 628 is a first amino acid sequence encoded by SEQ ID NO: 623.

SEQ ID NO: 629 is a second amino acid sequence encoded by SEQ ID NO: 623.

SEQ ID NO: 630 is a first full-length cDNA sequence for prostate-specific transglutaminase gene (also referred to herein as P558S).

SEQ ID NO: 631 is a second full-length cDNA sequence for prostate-30 specific transglutaminase gene. SEQ ID NO: 632 is the amino acid sequence encoded by the sequence of SEQ ID NO: 630.

SEQ ID NO: 633 is the amino acid sequence encoded by the sequence of SEQ ID NO: 631.

SEQ ID NO: 634 is the full-length cDNA sequence for P788P.

SEQ ID NO: 635 is the amino acid sequence encoded by SEQ ID NO:

634.

5

15

P703P.

SEQ ID NO: 636 is the determined cDNA sequence for a polymorphic variant of P788P.

SEQ ID NO: 637 is the amino acid sequence encoded by SEQ ID NO: 636.

SEQ ID NO: 638 is the amino acid sequence of peptide 4 from P703P.

SEQ ID NO: 639 is the cDNA sequence that encodes peptide 4 from P703P.

SEQ ID NO: 640-655 are cDNA sequences encoding epitopes of P703P.

SEQ ID NO: 656-671 are the amino acid sequences of epitopes of

SEQ ID NO: 672 and 673 are PCR primers.

SEQ ID NO: 674 is the cDNA sequence encoding an N-terminal portion 20 of P788P expressed in *E. coli*.

SEQ ID NO: 675 is the amino acid sequence of the N-terminal portion of P788P expressed in *E. coli*.

SEQ ID NO: 676 is the amino acid sequence of the *M. tuberculosis* antigen Ra12.

25 SEQ ID NO: 677 and 678 are PCR primers.

SEQ ID NO: 679 is the cDNA sequence for the Ra12-P510S-C construct.

SEQ ID NO: 680 is the cDNA sequence for the P510S-C construct.

SEQ ID NO: 681 is the cDNA sequence for the P510S-E3 construct.

10

15

20

SEQ ID NO: 682 is the amino acid sequence for the Ra12-P510S-C construct.

SEQ ID NO: 683 is the amino acid sequence for the P510S-C construct.

SEQ ID NO: 684 is the amino acid sequence for the P510S-E3 construct.

SEQ ID NO: 685-690 are PCR primers.

SEQ ID NO: 691 is the cDNA sequence of the construct Ra12-P775P-ORF3.

SEQ ID NO: 692 is the amino acid sequence of the construct Ra12-P775P-ORF3.

SEQ ID NO: 693 and 694 are PCR primers.

SEQ ID NO: 695 is the determined amino acid sequence for a P703P His tag fusion protein.

SEQ ID NO: 696 is the determined cDNA sequence for a P703P His tag fusion protein.

SEQ ID NO: 697 and 698 are PCR primers.

SEQ ID NO: 699 is the determined amino acid sequence for a P705P His tag fusion protein.

SEQ ID NO: 700 is the determined cDNA sequence for a P705P His tag fusion protein.

SEQ ID NO: 701 and 702 are PCR primers.

SEQ ID NO: 703 is the determined amino acid sequence for a P711P His tag fusion protein.

SEQ ID NO: 704 is the determined cDNA sequence for a P711P His tag fusion protein.

SEQ ID NO: 705 is the amino acid sequence of the *M. tuberculosis* antigen Ra12.

SEQ ID NO: 706 and 707 are PCR primers.

SEQ ID NO: 708 is the determined cDNA sequence for the construct Ra12-P501S-E2.

735.

SEQ ID NO: 709 is the determined amino acid sequence for the construct Ra12-P501S-E2.

SEQ ID NO: 710 is the amino acid sequence for an epitope of P501S.

SEQ ID NO: 711 is the DNA sequence encoding SEQ ID NO: 710.

SEQ ID NO: 712 is the amino acid sequence for an epitope of P501S.

SEQ ID NO: 713 is the DNA sequence encoding SEQ ID NO: 712.

SEQ ID NO: 714 is a peptide employed in epitope mapping studies.

SEQ ID NO: 715 is the amino acid sequence for an epitope of P501S.

SEQ ID NO: 716 is the DNA sequence encoding SEQ ID NO: 715.

SEQ ID NO: 717-719 are the amino acid sequences for CD4 epitopes of P501S.

SEQ ID NO: 720-722 are the DNA sequences encoding the sequences of SEQ ID NO: 717-719.

SEQ ID NO: 723-734 are the amino acid sequences for putative CTL epitopes of P703P.

SEQ ID NO: 735 is the full-length cDNA sequence for P789P.

SEQ ID NO: 736 is the amino acid sequence encoded by SEQ ID NO:

SEQ ID NO: 737 is the determined full-length cDNA sequence for the splice variant of P776P referred to as contig 6.

SEQ ID NO: 738-739 are determined full-length cDNA sequences for the splice variant of P776P referred to as contig 7.

SEQ ID NO: 740-744 are amino acid sequences encoded by SEQ ID NO: 737.

SEQ ID NO: 745-750 are amino acid sequences encoded by the splice variant of P776P referred to as contig 7.

SEQ ID NO: 751 is the full-length cDNA sequence for human transmembrane protease serine 2.

SEQ ID NO: 752 is the amino acid sequence encoded by SEQ ID NO: 30 751.

SEQ ID NO: 753 is the cDNA sequence encoding the first 209 amino acids of human transmembrane protease serine 2.

SEQ ID NO: 754 is the first 209 amino acids of human transmembrane protease serine 2.

SEQ ID NO: 755 is the amino acid sequence of peptide 296-322 of P501S.

SEQ ID NO: 756-759 are PCR primers.

SEQ ID NO: 760 is the determined cDNA sequence of the Vb chain of a T cell receptor for the P501S-specific T cell clone 4E5.

SEQ ID NO: 761 is the determined cDNA sequence of the Va chain of a T cell receptor for the P501S-specific T cell clone 4E5.

SEQ ID NO: 762 is the amino acid sequence encoded by SEQ ID NO 760.

SEQ ID NO: 763 is the amino acid sequence encoded by SEQ ID NO 761.

SEQ ID NO: 764 is the full-length open reading frame for P768P including stop codon.

SEQ ID NO: 765 is the full-length open reading frame for P768P without stop codon.

SEQ ID NO: 766 is the amino acid sequence encoded by SEQ ID NO: 765.

SEQ ID NO: 767-772 are the amino acid sequences for predicted domains of P768P.

SEQ ID NO: 773 is the full-length cDNA sequence of P835P.

SEQ ID NO: 774 is the cDNA sequence of the previously identified clone FLJ13581.

SEQ ID NO: 775 is the cDNA sequence of the open reading frame for P835P with stop codon.

SEQ ID NO: 776 is the cDNA sequence of the open reading frame for 30 P835P without stop codon.

15

20

25

SEQ ID NO: 777 is the full-length amino acid sequence for P835P.

SEQ ID NO: 778-785 are the amino acid sequences of extracellular and intracellular domains of P835P.

SEQ ID NO: 786 is the full-length cDNA sequence for P1000C.

SEQ ID NO: 787 is the cDNA sequence of the open reading frame for P1000C, including stop codon.

SEQ ID NO: 788 is the cDNA sequence of the open reading frame for P1000C, without stop codon.

SEQ ID NO: 789 is the full-length amino acid sequence for P1000C.

SEQ ID NO: 790 is amino acids 1-100 of SEQ ID NO: 789.

SEQ ID NO: 791 is amino acids 100-492 of SEQ ID NO: 789.

SEQ ID NO: 792 is the amino acid sequence of an α prepro-P501S recombinant protein.

15 DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed generally to compositions and their use in the therapy and diagnosis of cancer, particularly prostate cancer. As described further below, illustrative compositions of the present invention include, but are not restricted to, polypeptides, particularly immunogenic polypeptides, polynucleotides encoding such polypeptides, antibodies and other binding agents, antigen presenting cells (APCs) and immune system cells (e.g., T cells).

The practice of the present invention will employ, unless indicated specifically to the contrary, conventional methods of virology, immunology, microbiology, molecular biology and recombinant DNA techniques within the skill of the art, many of which are described below for the purpose of illustration. Such techniques are explained fully in the literature. See, e.g., Sambrook, et al. Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al. Molecular Cloning: A Laboratory Manual (1982); DNA Cloning: A Practical Approach, vol. I & II (D. Glover, ed.); Oligonucleotide Synthesis (N. Gait, ed., 1984); Nucleic Acid

Hybridization (B. Hames & S. Higgins, eds., 1985); Transcription and Translation (B. Hames & S. Higgins, eds., 1984); Animal Cell Culture (R. Freshney, ed., 1986); Perbal, A Practical Guide to Molecular Cloning (1984).

All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.

As used in this specification and the appended claims, the singular forms "a," "an" and "the" include plural references unless the content clearly dictates otherwise.

Polypeptide Compositions

10

15

20

25

As used herein, the term "polypeptide" " is used in its conventional meaning, *i.e.*, as a sequence of amino acids. The polypeptides are not limited to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide, and such terms may be used interchangeably herein unless specifically indicated otherwise. This term also does not refer to or exclude post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. A polypeptide may be an entire protein, or a subsequence thereof. Particular polypeptides of interest in the context of this invention are amino acid subsequences comprising epitopes, *i.e.*, antigenic determinants substantially responsible for the immunogenic properties of a polypeptide and being capable of evoking an immune response.

Particularly illustrative polypeptides of the present invention comprise those encoded by a polynucleotide sequence set forth in any one of SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788, or a sequence that hybridizes under moderately stringent conditions, or, alternatively, under highly stringent conditions, to a polynucleotide sequence set forth in any one of SEQ ID NOs: 1-111, 115-171, 173-175,

177. 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788. In specific embodiments, the polypeptides of the invention comprise amino acid sequences as set forth in any one of SEQ ID NO: 112-114, 172, 176. 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-551, 553-568, 573-586, 588-590, 592, 627-629, 632, 633, 635, 637, 638, 656-671, 675, 683, 684, 710, 712, 714, 715, 717-719, 723-734, 736, 740-750, 752, 754, 755, 766-772, 777-785 and 789-791.

10 The polypeptides of the present invention are sometimes herein referred to as prostate-specific proteins or prostate-specific polypeptides, as an indication that their identification has been based at least in part upon their increased levels of expression in prostate tissue samples. Thus, a "prostate-specific polypeptide" or "prostate-specific protein," refers generally to a polypeptide sequence of the present invention, or a polynucleotide sequence encoding such a polypeptide, that is expressed 15 in a substantial proportion of prostate tissue samples, for example preferably greater than about 20%, more preferably greater than about 30%, and most preferably greater than about 50% or more of prostate tissue samples tested, at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in other normal tissues, as determined using a representative assay provided herein. A prostate-20 specific polypeptide sequence of the invention, based upon its increased level of expression in tumor cells, has particular utility both as a diagnostic marker as well as a therapeutic target, as further described below.

In certain preferred embodiments, the polypeptides of the invention are immunogenic, i.e., they react detectably within an immunoassay (such as an ELISA or 25 T-cell stimulation assay) with antisera and/or T-cells from a patient with prostate cancer. Screening for immunogenic activity can be performed using techniques well known to the skilled artisan. For example, such screens can be performed using methods such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one illustrative example, a

10

15

20

25

30

polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A.

As would be recognized by the skilled artisan, immunogenic portions of the polypeptides disclosed herein are also encompassed by the present invention. An "immunogenic portion," as used herein, is a fragment of an immunogenic polypeptide of the invention that itself is immunologically reactive (*i.e.*, specifically binds) with the B-cells and/or T-cell surface antigen receptors that recognize the polypeptide. Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (*i.e.*, they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well-known techniques.

In one preferred embodiment, an immunogenic portion of a polypeptide of the present invention is a portion that reacts with antisera and/or T-cells at a level that is not substantially less than the reactivity of the full-length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Preferably, the level of immunogenic activity of the immunogenic portion is at least about 50%, preferably at least about 70% and most preferably greater than about 90% of the immunogenicity for the full-length polypeptide. In some instances, preferred immunogenic portions will be identified that have a level of immunogenic activity greater than that of the corresponding full-length polypeptide, e.g., having greater than about 100% or 150% or more immunogenic activity.

In certain other embodiments, illustrative immunogenic portions may include peptides in which an N-terminal leader sequence and/or transmembrane domain has been deleted. Other illustrative immunogenic portions will contain a small N-

and/or C-terminal deletion (e.g., 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.

In another embodiment, a polypeptide composition of the invention may also comprise one or more polypeptides that are immunologically reactive with T cells and/or antibodies generated against a polypeptide of the invention, particularly a polypeptide having an amino acid sequence disclosed herein, or to an immunogenic fragment or variant thereof.

In another embodiment of the invention, polypeptides are provided that comprise one or more polypeptides that are capable of eliciting T cells and/or antibodies that are immunologically reactive with one or more polypeptides described herein, or one or more polypeptides encoded by contiguous nucleic acid sequences contained in the polynucleotide sequences disclosed herein, or immunogenic fragments or variants thereof, or to one or more nucleic acid sequences which hybridize to one or more of these sequences under conditions of moderate to high stringency.

The present invention, in another aspect, provides polypeptide fragments comprising at least about 5, 10, 15, 20, 25, 50, or 100 contiguous amino acids, or more, including all intermediate lengths, of a polypeptide composition set forth herein, such as those set forth in SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-551, 553-568, 573-586, 588-590, 592, 627-629, 632, 633, 635, 637, 638, 656-671, 675, 683, 684, 710, 712, 714, 715, 717-719, 723-734, 736, 740-750, 752, 754, 755, 766-772, 777-785 and 789-791, or those encoded by a polynucleotide sequence set forth in a sequence of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788.

In another aspect, the present invention provides variants of the polypeptide compositions described herein. Polypeptide variants generally encompassed by the present invention will typically exhibit at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or more identity

10

15

20

25

30

(determined as described below), along its length, to a polypeptide sequence set forth herein.

In one preferred embodiment, the polypeptide fragments and variants provided by the present invention are immunologically reactive with an antibody and/or T-cell that reacts with a full-length polypeptide specifically set forth herein.

In another preferred embodiment, the polypeptide fragments and variants provided by the present invention exhibit a level of immunogenic activity of at least about 50%, preferably at least about 70%, and most preferably at least about 90% or more of that exhibited by a full-length polypeptide sequence specifically set forth herein.

A polypeptide "variant," as the term is used herein, is a polypeptide that typically differs from a polypeptide specifically disclosed herein in one or more substitutions, deletions, additions and/or insertions. Such variants may be naturally occurring or may be synthetically generated, for example, by modifying one or more of the above polypeptide sequences of the invention and evaluating their immunogenic activity as described herein using any of a number of techniques well known in the art.

For example, certain illustrative variants of the polypeptides of the invention include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other illustrative variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.

In many instances, a variant will contain conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. As described above, modifications may be made in the structure of the polynucleotides and polypeptides of the present invention and still obtain a functional molecule that encodes a variant or derivative polypeptide with desirable characteristics, e.g., with immunogenic characteristics. When it is desired to alter the amino acid sequence of a polypeptide to create an equivalent, or

WO 01/051633 PCT/US01/01574

41

even an improved, immunogenic variant or portion of a polypeptide of the invention, one skilled in the art will typically change one or more of the codons of the encoding DNA sequence according to Table 1.

For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated that various changes may be made in the peptide sequences of the disclosed compositions, or corresponding DNA sequences which encode said peptides without appreciable loss of their biological utility or activity.

42

TABLE 1

Amino Acids			Codons					
Alanine	Ala	Α	GCA	GCC	GCG	GCU		
Cysteine	Cys	C	UGC	UGU				
Aspartic acid	Asp	D	GAC	GAU				
Glutamic acid	Glu	E	GAA	GAG				
Phenylalanine	Phe	F	UUC	UUU				
Glycine	Gly	G	GGA	GGC	GGG	GGU		
Histidine	His	Н	CAC	CAU				
Isoleucine	Ile	I	AUA	AUC	AUU			
Lysine	Lys	K	AAA	AAG				
Leucine	Leu	L	UUA	UUG	CUA	CUC	CUG	CUU
Methionine	Met	M	AUG				•	
Asparagine	Asn	N	AAC	AAU				
Proline	Pro	P	CCA	CCC	CCG	CCU		
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGU
Serine	Ser	S	AGC	AGU	UCA	UCC	UCG	UCU
Threonine	Thr	T	ACA	ACC	ACG	ACU		
Valine	Val	V	GUA	GUC	GUG	GUU		
Tryptophan	Trp	W	UGG		ì			
Tyrosine	Tyr	Y	UAC	UAU				

In making such changes, the hydropathic index of amino acids may be The importance of the hydropathic amino acid index in conferring considered. interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982, incorporated herein by reference). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and 10 the like. Each amino acid has been assigned a hydropathic index on the basis of its

10

15

20

25

30

hydrophobicity and charge characteristics (Kyte and Doolittle, 1982). These values are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, *i.e.* still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ± 2 is preferred, those within ± 1 are particularly preferred, and those within ± 0.5 are even more particularly preferred. It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U. S. Patent 4,554,101 (specifically incorporated herein by reference in its entirety), states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.

As detailed in U. S. Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (\pm 3.0); lysine (\pm 3.0); aspartate (\pm 3.0 \pm 1); glutamate (\pm 3.0 \pm 1); serine (\pm 0.3); asparagine (\pm 0.2); glutamine (\pm 0.2); glycine (0); threonine (\pm 0.4); proline (\pm 0.5 \pm 1); alanine (\pm 0.5); histidine (\pm 0.5); cysteine (\pm 1.0); methionine (\pm 1.3); valine (\pm 1.5); leucine (\pm 1.8); isoleucine (\pm 1.8); tyrosine (\pm 2.3); phenylalanine (\pm 2.5); tryptophan (\pm 3.4). It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within \pm 2 is preferred, those within \pm 1 are particularly preferred, and those within \pm 0.5 are even more particularly preferred.

As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take various of the foregoing characteristics into consideration are well known to those

15

20

25

30

of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

In addition, any polynucleotide may be further modified to increase stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetylmethyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

Amino acid substitutions may further be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his, and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain nonconservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.

As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein, which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

When comparing polypeptide sequences, two sequences are said to be "identical" if the sequence of amino acids in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using 10 the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins - Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical 15 Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) CABIOS 4:11-17; Robinson, 20 E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy - the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Proc. Natl. Acad., Sci. USA 80:726-730.

Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) *Add. APL. Math* 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443, by the search for similarity methods of Pearson and Lipman (1988) *Proc. Natl. Acad. Sci. USA* 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics

Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by inspection.

One preferred example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) *Nucl. Acids Res.* 25:3389-3402 and Altschul et al. (1990) *J. Mol. Biol.* 215:403-410, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. For amino acid sequences, a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.

In one preferred approach, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polypeptide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (*i.e.*, the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Within other illustrative embodiments, a polypeptide may be a fusion polypeptide that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known

5

15

20

25

20

tumor protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the polypeptide or to enable the polypeptide to be targeted to desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the polypeptide.

Fusion polypeptides may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion polypeptide is expressed as a recombinant polypeptide, allowing the production of increased levels, relative to a non-fused polypeptide, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion polypeptide that retains the biological activity of both component polypeptides.

A peptide linker sequence may be employed to separate the first and second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion polypeptide using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al.,

10

15

20

25

30

Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

The fusion polypeptide can comprise a polypeptide as described herein together with an unrelated immunogenic protein, such as an immunogenic protein capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91, 1997).

In one preferred embodiment, the immunological fusion partner is derived from a Mycobacterium sp., such as a *Mycobacterium tuberculosis*-derived Ra12 fragment. Ra12 compositions and methods for their use in enhancing the expression and/or immunogenicity of heterologous polynucleotide/polypeptide sequences is described in U.S. Patent Application 60/158,585, the disclosure of which is incorporated herein by reference in its entirety. Briefly, Ra12 refers to a polynucleotide region that is a subsequence of a *Mycobacterium tuberculosis* MTB32A nucleic acid. MTB32A is a serine protease of 32 KD molecular weight encoded by a gene in virulent and avirulent strains of *M. tuberculosis*. The nucleotide sequence and amino acid sequence of MTB32A have been described (for example, U.S. Patent Application 60/158,585; see also, Skeiky *et al.*, *Infection and Immun.* (1999) 67:3998-4007, incorporated herein by reference). C-terminal fragments of the MTB32A coding sequence express at high levels and remain as a soluble polypeptides throughout the purification process. Moreover, Ra12 may enhance the immunogenicity of heterologous

15

20

25

immunogenic polypeptides with which it is fused. One preferred Ra12 fusion polypeptide comprises a 14 KD C-terminal fragment corresponding to amino acid residues 192 to 323 of MTB32A. Other preferred Ra12 polynucleotides generally comprise at least about 15 consecutive nucleotides, at least about 30 nucleotides, at least about 60 nucleotides, at least about 100 nucleotides, at least about 200 nucleotides, or at least about 300 nucleotides that encode a portion of a Ra12 polypeptide. polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a Ra12 polypeptide or a portion thereof) or may comprise a variant of such a sequence. Ra12 polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the biological activity of the encoded fusion polypeptide is not substantially diminished, relative to a fusion polypeptide comprising a native Ra12 polypeptide. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native Ra12 polypeptide or a portion thereof.

Within other preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in E coli (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.

In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from *Streptococcus pneumoniae*, which synthesizes an N-acetyl-L-alanine

15

20

25

amidase known as amidase LYTA (encoded by the LytA gene; *Gene 43*:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of *E. coli* C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (*see Biotechnology 10*:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion polypeptide. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.

Yet another illustrative embodiment involves fusion polypeptides, and the polynucleotides encoding them, wherein the fusion partner comprises a targeting signal capable of directing a polypeptide to the endosomal/lysosomal compartment, as described in U.S. Patent No. 5,633,234. An immunogenic polypeptide of the invention, when fused with this targeting signal, will associate more efficiently with MHC class II molecules and thereby provide enhanced in vivo stimulation of CD4⁺ T-cells specific for the polypeptide.

Polypeptides of the invention are prepared using any of a variety of well known synthetic and/or recombinant techniques, the latter of which are further described below. Polypeptides, portions and other variants generally less than about 150 amino acids can be generated by synthetic means, using techniques well known to those of ordinary skill in the art. In one illustrative example, such polypeptides are synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

In general, polypeptide compositions (including fusion polypeptides) of 30 the invention are isolated. An "isolated" polypeptide is one that is removed from its

10

15

20

25

original environment. For example, a naturally-occurring protein or polypeptide is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are also purified, e.g., are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure.

Polynucleotide Compositions

The present invention, in other aspects, provides polynucleotide compositions. The terms "DNA" and "polynucleotide" are used essentially interchangeably herein to refer to a DNA molecule that has been isolated free of total genomic DNA of a particular species. "Isolated," as used herein, means that a polynucleotide is substantially away from other coding sequences, and that the DNA molecule does not contain large portions of unrelated coding DNA, such as large chromosomal fragments or other functional genes or polypeptide coding regions. Of course, this refers to the DNA molecule as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

As will be understood by those skilled in the art, the polynucleotide compositions of this invention can include genomic sequences, extra-genomic and plasmid-encoded sequences and smaller engineered gene segments that express, or may be adapted to express, proteins, polypeptides, peptides and the like. Such segments may be naturally isolated, or modified synthetically by the hand of man.

As will be also recognized by the skilled artisan, polynucleotides of the invention may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules may include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a polypeptide/protein of the invention or a portion thereof) or may comprise a sequence that encodes a variant or derivative, preferably an immunogenic variant or derivative, of such a sequence.

Therefore, according to another aspect of the present invention, polynucleotide compositions are provided that comprise some or all of a polynucleotide sequence set forth in any one of SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788, complements of a polynucleotide sequence set forth in any one of SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788, and degenerate variants of a polynucleotide sequence set forth in any one of SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788. In certain preferred embodiments, the polynucleotide sequences 20 set forth herein encode immunogenic polypeptides, as described above.

In other related embodiments, the present invention provides polynucleotide variants having substantial identity to the sequences disclosed herein in SEQ ID NOs: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788, for example those comprising at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a polynucleotide sequence of this invention using the methods described herein, (e.g.,

25

10

15

20

BLAST analysis using standard parameters, as described below). One skilled in this art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.

Typically, polynucleotide variants will contain one or more substitutions, additions, deletions and/or insertions, preferably such that the immunogenicity of the polypeptide encoded by the variant polynucleotide is not substantially diminished relative to a polypeptide encoded by a polynucleotide sequence specifically set forth herein). The term "variants" should also be understood to encompasses homologous genes of xenogenic origin.

In additional embodiments, the present invention provides polynucleotide fragments comprising various lengths of contiguous stretches of sequence identical to, or complementary to, one or more of the sequences disclosed herein. For example, polynucleotides are provided by this invention that comprise at least about 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 or more contiguous nucleotides of one or more of the sequences disclosed herein as well as all intermediate lengths there between. It will be readily understood that "intermediate lengths", in this context, means any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through 200-500; 500-1,000, and the like.

In another embodiment of the invention, polynucleotide compositions are provided that are capable of hybridizing under moderate to high stringency conditions to a polynucleotide sequence provided herein, or a fragment thereof, or a complementary sequence thereof. Hybridization techniques are well known in the art of molecular biology. For purposes of illustration, suitable moderately stringent conditions for testing the hybridization of a polynucleotide of this invention with other polynucleotides include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-60°C, 5 X SSC, overnight; followed by washing twice at 65°C for

20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. One skilled in the art will understand that the stringency of hybridization can be readily manipulated, such as by altering the salt content of the hybridization solution and/or the temperature at which the hybridization is performed. For example, in another embodiment, suitable highly stringent hybridization conditions include those described above, with the exception that the temperature of hybridization is increased, e.g., to 60-65°C or 65-70°C.

In certain preferred embodiments, the polynucleotides described above, e.g., polynucleotide variants, fragments and hybridizing sequences, encode polypeptides that are immunologically cross-reactive with a polypeptide sequence specifically set forth herein. In other preferred embodiments, such polynucleotides encode polypeptides that have a level of immunogenic activity of at least about 50%, preferably at least about 70%, and more preferably at least about 90% of that for a polypeptide sequence specifically set forth herein.

The polynucleotides of the present invention, or fragments thereof, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, illustrative polynucleotide segments with total lengths of about 10,000, about 5000, about 3000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are contemplated to be useful in many implementations of this invention.

When comparing polynucleotide sequences, two sequences are said to be "identical" if the sequence of nucleotides in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison

15

20

25

window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, preferably 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

5 Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins - Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical 10 Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) CABIOS 4:11-17; Robinson, E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) Mol. Biol. Evol. 4:406-15 425; Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy - the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Proc. Natl. Acad., Sci. USA 80:726-730.

Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) *Add. APL. Math* 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443, by the search for similarity methods of Pearson and Lipman (1988) *Proc. Natl. Acad. Sci. USA* 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by inspection.

One preferred example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) *Nucl. Acids Res.* 25:3389-3402 and Altschul et al. (1990) *J. Mol. Biol.* 215:403-410, respectively. BLAST and BLAST

10

15

20

25

30

2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) *Proc. Natl. Acad. Sci. USA* 89:10915) alignments, (B) of 50, expectation (E) of 10, M=5, N=-4 and a comparison of both strands.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (*i.e.*, the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides

15

20

25

30

that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

Therefore, in another embodiment of the invention, a mutagenesis approach, such as site-specific mutagenesis, is employed for the preparation of immunogenic variants and/or derivatives of the polypeptides described herein. By this approach, specific modifications in a polypeptide sequence can be made through mutagenesis of the underlying polynucleotides that encode them. These techniques provides a straightforward approach to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the polynucleotide.

Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Mutations may be employed in a selected polynucleotide sequence to improve, alter, decrease, modify, or otherwise change the properties of the polynucleotide itself, and/or alter the properties, activity, composition, stability, or primary sequence of the encoded polypeptide.

In certain embodiments of the present invention, the inventors contemplate the mutagenesis of the disclosed polynucleotide sequences to alter one or more properties of the encoded polypeptide, such as the immunogenicity of a polypeptide vaccine. The techniques of site-specific mutagenesis are well-known in the art, and are widely used to create variants of both polypeptides and polynucleotides. For example, site-specific mutagenesis is often used to alter a specific portion of a DNA molecule. In such embodiments, a primer comprising typically about 14 to about 25

15

20

25

nucleotides or so in length is employed, with about 5 to about 10 residues on both sides of the junction of the sequence being altered.

As will be appreciated by those of skill in the art, site-specific mutagenesis techniques have often employed a phage vector that exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage. These phage are readily commercially-available and their use is generally well-known to those skilled in the art. Double-stranded plasmids are also routinely employed in site directed mutagenesis that eliminates the step of transferring the gene of interest from a plasmid to a phage.

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart of two strands of a double-stranded vector that includes within its sequence a DNA sequence that encodes the desired peptide. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically. This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as *E. coli* polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as *E. coli* cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.

The preparation of sequence variants of the selected peptide-encoding DNA segments using site-directed mutagenesis provides a means of producing potentially useful species and is not meant to be limiting as there are other ways in which sequence variants of peptides and the DNA sequences encoding them may be obtained. For example, recombinant vectors encoding the desired peptide sequence may be treated with mutagenic agents, such as hydroxylamine, to obtain sequence variants. Specific details regarding these methods and protocols are found in the teachings of Maloy *et al.*, 1994; Segal, 1976; Prokop and Bajpai, 1991; Kuby, 1994; and Maniatis *et al.*, 1982, each incorporated herein by reference, for that purpose.

15

20

25

As used herein, the term "oligonucleotide directed mutagenesis procedure" refers to template-dependent processes and vector-mediated propagation which result in an increase in the concentration of a specific nucleic acid molecule relative to its initial concentration, or in an increase in the concentration of a detectable signal, such as amplification. As used herein, the term "oligonucleotide directed mutagenesis procedure" is intended to refer to a process that involves the template-dependent extension of a primer molecule. The term template dependent process refers to nucleic acid synthesis of an RNA or a DNA molecule wherein the sequence of the newly synthesized strand of nucleic acid is dictated by the well-known rules of complementary base pairing (see, for example, Watson, 1987). Typically, vector mediated methodologies involve the introduction of the nucleic acid fragment into a DNA or RNA vector, the clonal amplification of the vector, and the recovery of the amplified nucleic acid fragment. Examples of such methodologies are provided by U. S. Patent No. 4,237,224, specifically incorporated herein by reference in its entirety.

In another approach for the production of polypeptide variants of the present invention, recursive sequence recombination, as described in U.S. Patent No. 5,837,458, may be employed. In this approach, iterative cycles of recombination and screening or selection are performed to "evolve" individual polynucleotide variants of the invention having, for example, enhanced immunogenic activity.

In other embodiments of the present invention, the polynucleotide sequences provided herein can be advantageously used as probes or primers for nucleic acid hybridization. As such, it is contemplated that nucleic acid segments that comprise a sequence region of at least about 15 contiguous nucleotides that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence disclosed herein will find particular utility. Longer contiguous identical or complementary sequences, e.g., those of about 20, 30, 40, 50, 100, 200, 500, 1000 (including all intermediate lengths) and even up to full length sequences will also be of use in certain embodiments.

The ability of such nucleic acid probes to specifically hybridize to a 30 sequence of interest will enable them to be of use in detecting the presence of

15

20

25

complementary sequences in a given sample. However, other uses are also envisioned, such as the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

Polynucleotide molecules having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15-20, 30, 50, or even of 100-200 nucleotides or so (including intermediate lengths as well), identical or complementary to a polynucleotide sequence disclosed herein, are particularly contemplated as hybridization probes for use in, e.g., Southern and Northern blotting. This would allow a gene product, or fragment thereof, to be analyzed, both in diverse cell types and also in various bacterial cells. The total size of fragment, as well as the size of the complementary stretch(es), will ultimately depend on the intended use or application of the particular nucleic acid segment. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the contiguous complementary region may be varied, such as between about 15 and about 100 nucleotides, but larger contiguous complementarity stretches may be used, according to the length complementary sequences one wishes to detect.

The use of a hybridization probe of about 15-25 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having contiguous complementary sequences over stretches greater than 15 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having genecomplementary stretches of 15 to 25 contiguous nucleotides, or even longer where desired.

Hybridization probes may be selected from any portion of any of the sequences disclosed herein. All that is required is to review the sequences set forth herein, or to any continuous portion of the sequences, from about 15-25 nucleotides in length up to and including the full length sequence, that one wishes to utilize as a probe or primer. The choice of probe and primer sequences may be governed by various

10

15

20

25

30

factors. For example, one may wish to employ primers from towards the termini of the total sequence.

Small polynucleotide segments or fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such as the PCRTM technology of U. S. Patent 4,683,202 (incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.

The nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of the entire gene or gene fragments of interest. Depending on the application envisioned, one will typically desire to employ varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity, one will typically desire to employ relatively stringent conditions to form the hybrids, *e.g.*, one will select relatively low salt and/or high temperature conditions, such as provided by a salt concentration of from about 0.02 M to about 0.15 M salt at temperatures of from about 50°C to about 70°C. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly suitable for isolating related sequences.

Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template, less stringent (reduced stringency) hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ salt conditions such as those of from about 0.15 M to about 0.9 M salt, at temperatures ranging from about 20°C to about 55°C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to

15

20

25

30

destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

According to another embodiment of the present invention, polynucleotide compositions comprising antisense oligonucleotides are provided. Antisense oligonucleotides have been demonstrated to be effective and targeted inhibitors of protein synthesis, and, consequently, provide a therapeutic approach by which a disease can be treated by inhibiting the synthesis of proteins that contribute to the disease. The efficacy of antisense oligonucleotides for inhibiting protein synthesis is well established. For example, the synthesis of polygalactauronase and the muscarine type 2 acetylcholine receptor are inhibited by antisense oligonucleotides directed to their respective mRNA sequences (U. S. Patent 5,739,119 and U. S. Patent 5,759,829). Further, examples of antisense inhibition have been demonstrated with the nuclear protein cyclin, the multiple drug resistance gene (MDG1), ICAM-1, E-selectin, STK-1, striatal GABAA receptor and human EGF (Jaskulski et al., Science. 1988 Jun 10;240(4858):1544-6; Vasanthakumar and Ahmed, Cancer Commun. 1989;1(4):225-32; Peris et al., Brain Res Mol Brain Res. 1998 Jun 15;57(2):310-20; U. S. Patent 5,801,154; U.S. Patent 5,789,573; U.S. Patent 5,718,709 and U.S. Patent 5,610,288). Antisense constructs have also been described that inhibit and can be used to treat a variety of abnormal cellular proliferations, e.g. cancer (U. S. Patent 5,747,470; U. S. Patent 5,591,317 and U. S. Patent 5,783,683).

Therefore, in certain embodiments, the present invention provides oligonucleotide sequences that comprise all, or a portion of, any sequence that is capable of specifically binding to polynucleotide sequence described herein, or a complement thereof. In one embodiment, the antisense oligonucleotides comprise DNA or derivatives thereof. In another embodiment, the oligonucleotides comprise RNA or derivatives thereof. In a third embodiment, the oligonucleotides are modified DNAs comprising a phosphorothicated modified backbone. In a fourth embodiment, the oligonucleotide sequences comprise peptide nucleic acids or derivatives thereof. In each case, preferred compositions comprise a sequence region that is complementary,

15

20

25

30

and more preferably substantially-complementary, and even more preferably, completely complementary to one or more portions of polynucleotides disclosed herein. Selection of antisense compositions specific for a given gene sequence is based upon analysis of the chosen target sequence and determination of secondary structure, T_m, binding energy, and relative stability. Antisense compositions may be selected based upon their relative inability to form dimers, hairpins, or other secondary structures that would reduce or prohibit specific binding to the target mRNA in a host cell. Highly preferred target regions of the mRNA, are those which are at or near the AUG translation initiation codon, and those sequences which are substantially complementary to 5' regions of the mRNA. These secondary structure analyses and target site selection considerations can be performed, for example, using v.4 of the OLIGO primer analysis software and/or the BLASTN 2.0.5 algorithm software (Altschul *et al.*, Nucleic Acids Res. 1997 Sep 1;25(17):3389-402).

The use of an antisense delivery method employing a short peptide vector, termed MPG (27 residues), is also contemplated. The MPG peptide contains a hydrophobic domain derived from the fusion sequence of HIV gp41 and a hydrophilic domain from the nuclear localization sequence of SV40 T-antigen (Morris *et al.*, Nucleic Acids Res. 1997 Jul 15;25(14):2730-6). It has been demonstrated that several molecules of the MPG peptide coat the antisense oligonucleotides and can be delivered into cultured mammalian cells in less than 1 hour with relatively high efficiency (90%). Further, the interaction with MPG strongly increases both the stability of the oligonucleotide to nuclease and the ability to cross the plasma membrane.

According to another embodiment of the invention, the polynucleotide compositions described herein are used in the design and preparation of ribozyme molecules for inhibiting expression of the tumor polypeptides and proteins of the present invention in tumor cells. Ribozymes are RNA-protein complexes that cleave nucleic acids in a site-specific fashion. Ribozymes have specific catalytic domains that possess endonuclease activity (Kim and Cech, Proc Natl Acad Sci U S A. 1987 Dec;84(24):8788-92; Forster and Symons, Cell. 1987 Apr 24;49(2):211-20). For example, a large number of ribozymes accelerate phosphoester transfer reactions with a

15

20

25

30

high degree of specificity, often cleaving only one of several phosphoesters in an oligonucleotide substrate (Cech *et al.*, Cell. 1981 Dec;27(3 Pt 2):487-96; Michel and Westhof, J Mol Biol. 1990 Dec 5;216(3):585-610; Reinhold-Hurek and Shub, Nature. 1992 May 14;357(6374):173-6). This specificity has been attributed to the requirement that the substrate bind via specific base-pairing interactions to the internal guide sequence ("IGS") of the ribozyme prior to chemical reaction.

Six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds *in trans* (and thus can cleave other RNA molecules) under physiological conditions. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.

The enzymatic nature of a ribozyme is advantageous over many technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the concentration of ribozyme necessary to affect a therapeutic treatment is lower than that of an antisense oligonucleotide. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme. Similar mismatches in antisense molecules do not prevent their action (Woolf *et al.*, Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7305-9). Thus, the

15

20

25

30

specificity of action of a ribozyme is greater than that of an antisense oligonucleotide binding the same RNA site.

The enzymatic nucleic acid molecule may be formed in a hammerhead, hairpin, a hepatitis δ virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA motif. Examples of hammerhead motifs are described by Rossi et al. Nucleic Acids Res. 1992 Sep 11;20(17):4559-65. Examples of hairpin motifs are described by Hampel et al. (Eur. Pat. Appl. Publ. No. EP 0360257), Hampel and Tritz, Biochemistry 1989 Jun 13;28(12):4929-33; Hampel et al., Nucleic Acids Res. 1990 Jan 25;18(2):299-304 and U. S. Patent 5,631,359. An example of the hepatitis δ virus motif is described by Perrotta and Been, Biochemistry. 1992 Dec 1;31(47):11843-52; an example of the RNaseP motif is described by Guerrier-Takada et al., Cell. 1983 Dec;35(3 Pt 2):849-57; Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, Cell. 1990 May 18;61(4):685-96; Saville and Collins, Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8826-30; Collins and Olive, Biochemistry. 1993 Mar 23;32(11):2795-9); and an example of the Group I intron is described in (U. S. Patent 4,987,071). All that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule. Thus the ribozyme constructs need not be limited to specific motifs mentioned herein.

Ribozymes may be designed as described in Int. Pat. Appl. Publ. No. WO 93/23569 and Int. Pat. Appl. Publ. No. WO 94/02595, each specifically incorporated herein by reference) and synthesized to be tested *in vitro* and *in vivo*, as described. Such ribozymes can also be optimized for delivery. While specific examples are provided, those in the art will recognize that equivalent RNA targets in other species can be utilized when necessary.

Ribozyme activity can be optimized by altering the length of the ribozyme binding arms, or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see *e.g.*, Int. Pat. Appl. Publ. No. WO

92/07065; Int. Pat. Appl. Publ. No. WO 93/15187; Int. Pat. Appl. Publ. No. WO 91/03162; Eur. Pat. Appl. Publ. No. 92110298.4; U. S. Patent 5,334,711; and Int. Pat. Appl. Publ. No. WO 94/13688, which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules), modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements.

Sullivan *et al.* (Int. Pat. Appl. Publ. No. WO 94/02595) describes the general methods for delivery of enzymatic RNA molecules. Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes may be directly delivered *ex vivo* to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination may be locally delivered by direct inhalation, by direct injection or by use of a catheter, infusion pump or stent. Other routes of delivery include, but are not limited to, intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Int. Pat. Appl. Publ. No. WO 94/02595 and Int. Pat. Appl. Publ. No. WO 93/23569, each specifically incorporated herein by reference.

Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozyme-encoding sequences into a DNA expression vector. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters may also be used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells Ribozymes

10

15

20

25

10

15

20

25

expressed from such promoters have been shown to function in mammalian cells. Such transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated vectors), or viral RNA vectors (such as retroviral, semliki forest virus, sindbis virus vectors).

In another embodiment of the invention, peptide nucleic acids (PNAs) compositions are provided. PNA is a DNA mimic in which the nucleobases are attached to a pseudopeptide backbone (Good and Nielsen. Antisense Nucleic Acid Drug Dev. 1997 7(4) 431-37). PNA is able to be utilized in a number methods that traditionally have used RNA or DNA. Often PNA sequences perform better in techniques than the corresponding RNA or DNA sequences and have utilities that are not inherent to RNA or DNA. A review of PNA including methods of making, characteristics of, and methods of using, is provided by Corey (*Trends Biotechnol* 1997 Jun;15(6):224-9). As such, in certain embodiments, one may prepare PNA sequences that are complementary to one or more portions of the ACE mRNA sequence, and such PNA compositions may be used to regulate, alter, decrease, or reduce the translation of ACE-specific mRNA, and thereby alter the level of ACE activity in a host cell to which such PNA compositions have been administered.

PNAs have 2-aminoethyl-glycine linkages replacing the normal phosphodiester backbone of DNA (Nielsen *et al.*, *Science* 1991 Dec 6;254(5037):1497-500; Hanvey *et al.*, Science. 1992 Nov 27;258(5087):1481-5; Hyrup and Nielsen, Bioorg Med Chem. 1996 Jan;4(1):5-23). This chemistry has three important consequences: firstly, in contrast to DNA or phosphorothioate oligonucleotides, PNAs are neutral molecules; secondly, PNAs are achiral, which avoids the need to develop a stereoselective synthesis; and thirdly, PNA synthesis uses standard Boc or Fmoc protocols for solid-phase peptide synthesis, although other methods, including a modified Merrifield method, have been used.

PNA monomers or ready-made oligomers are commercially available from PerSeptive Biosystems (Framingham, MA). PNA syntheses by either Boc or Fmoc protocols are straightforward using manual or automated protocols (Norton et al.,

10

15

20

25

30

Bioorg Med Chem. 1995 Apr;3(4):437-45). The manual protocol lends itself to the production of chemically modified PNAs or the simultaneous synthesis of families of closely related PNAs.

As with peptide synthesis, the success of a particular PNA synthesis will depend on the properties of the chosen sequence. For example, while in theory PNAs can incorporate any combination of nucleotide bases, the presence of adjacent purines can lead to deletions of one or more residues in the product. In expectation of this difficulty, it is suggested that, in producing PNAs with adjacent purines, one should repeat the coupling of residues likely to be added inefficiently. This should be followed by the purification of PNAs by reverse-phase high-pressure liquid chromatography, providing yields and purity of product similar to those observed during the synthesis of peptides.

Modifications of PNAs for a given application may be accomplished by coupling amino acids during solid-phase synthesis or by attaching compounds that contain a carboxylic acid group to the exposed N-terminal amine. Alternatively, PNAs can be modified after synthesis by coupling to an introduced lysine or cysteine. The ease with which PNAs can be modified facilitates optimization for better solubility or for specific functional requirements. Once synthesized, the identity of PNAs and their derivatives can be confirmed by mass spectrometry. Several studies have made and utilized modifications of PNAs (for example, Norton et al., Bioorg Med Chem. 1995 Apr;3(4):437-45; Petersen et al., J Pept Sci. 1995 May-Jun;1(3):175-83; Orum et al., Biotechniques. 1995 Sep;19(3):472-80; Footer et al., Biochemistry. 1996 Aug 20;35(33):10673-9; Griffith et al., Nucleic Acids Res. 1995 Aug 11;23(15):3003-8; Pardridge et al., Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5592-6; Boffa et al., Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1901-5; Gambacorti-Passerini et al., Blood. 1996 Aug 15;88(4):1411-7; Armitage et al., Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12320-5; Seeger et al., Biotechniques. 1997 Sep;23(3):512-7). U.S. Patent No. 5,700,922 discusses PNA-DNA-PNA chimeric molecules and their uses in diagnostics, modulating protein in organisms, and treatment of conditions susceptible to therapeutics.

WO 01/051633 PCT/US01/01574

69

Methods of characterizing the antisense binding properties of PNAs are discussed in Rose (Anal Chem. 1993 Dec 15;65(24):3545-9) and Jensen *et al.* (Biochemistry. 1997 Apr 22;36(16):5072-7). Rose uses capillary gel electrophoresis to determine binding of PNAs to their complementary oligonucleotide, measuring the relative binding kinetics and stoichiometry. Similar types of measurements were made by Jensen *et al.* using BIAcoreTM technology.

Other applications of PNAs that have been described and will be apparent to the skilled artisan include use in DNA strand invasion, antisense inhibition, mutational analysis, enhancers of transcription, nucleic acid purification, isolation of transcriptionally active genes, blocking of transcription factor binding, genome cleavage, biosensors, *in situ* hybridization, and the like.

Polynucleotide Identification, Characterization and Expression

Polynucleotide compositions of the present invention may be identified, prepared and/or manipulated using any of a variety of well established techniques (see generally, Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989, and other like references). For example, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for tumor-associated expression (*i.e.*, expression that is at least two fold greater in a tumor than in normal tissue, as determined using a representative assay provided herein). Such screens may be performed, for example, using the microarray technology of Affymetrix, Inc. (Santa Clara, CA) according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 94*:2150-2155, 1997). Alternatively, polynucleotides may be amplified from cDNA prepared from cells expressing the proteins described herein, such as tumor cells.

Many template dependent processes are available to amplify a target sequences of interest present in a sample. One of the best known amplification methods is the polymerase chain reaction (PCRTM) which is described in detail in U.S. Patent Nos. 4,683,195, 4,683,202 and 4,800,159, each of which is incorporated herein by

10

15

20

15

20

25

30

reference in its entirety. Briefly, in PCRTM, two primer sequences are prepared which are complementary to regions on opposite complementary strands of the target sequence. An excess of deoxynucleoside triphosphates is added to a reaction mixture along with a DNA polymerase (e.g., Taq polymerase). If the target sequence is present in a sample, the primers will bind to the target and the polymerase will cause the primers to be extended along the target sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the target to form reaction products, excess primers will bind to the target and to the reaction product and the process is repeated. Preferably reverse transcription and PCRTM amplification procedure may be performed in order to quantify the amount of mRNA amplified. Polymerase chain reaction methodologies are well known in the art.

Any of a number of other template dependent processes, many of which are variations of the PCR ™ amplification technique, are readily known and available in the art. Illustratively, some such methods include the ligase chain reaction (referred to as LCR), described, for example, in Eur. Pat. Appl. Publ. No. 320,308 and U.S. Patent No. 4,883,750; Qbeta Replicase, described in PCT Intl. Pat. Appl. Publ. No. PCT/US87/00880; Strand Displacement Amplification (SDA) and Repair Chain Reaction (RCR). Still other amplification methods are described in Great Britain Pat. Appl. No. 2 202 328, and in PCT Intl. Pat. Appl. Publ. No. PCT/US89/01025. Other nucleic acid amplification procedures include transcription-based amplification systems (TAS) (PCT Intl. Pat. Appl. Publ. No. WO 88/10315), including nucleic acid sequence based amplification (NASBA) and 3SR. Eur. Pat. Appl. Publ. No. 329,822 describes a nucleic acid amplification process involving cyclically synthesizing single-stranded RNA ("ssRNA"), ssDNA, and double-stranded DNA (dsDNA). PCT Intl. Pat. Appl. Publ. No. WO 89/06700 describes a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single-stranded DNA ("ssDNA") followed by transcription of many RNA copies of the sequence. Other amplification methods such as "RACE" (Frohman, 1990), and "one-sided PCR" (Ohara, 1989) are also well-known to those of skill in the art.

An amplified portion of a polynucleotide of the present invention may be used to isolate a full length gene from a suitable library (e.g., a tumor cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

For hybridization techniques, a partial sequence may be labeled (*e.g.*, by nick-translation or end-labeling with ³²P) using well known techniques. A bacterial or bacteriophage library is then generally screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (*see* Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences can then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

Alternatively, amplification techniques, such as those described above, can be useful for obtaining a full length coding sequence from a partial cDNA sequence. One such amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res. 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of

15

20

25

15

20

25

30

amplification with the same linker primer and a second primer specific to the known region. A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., *PCR Methods Applic. 1*:111-19, 1991) and walking PCR (Parker et al., *Nucl. Acids. Res. 19*:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence. Full length DNA sequences may also be obtained by analysis of genomic fragments.

In other embodiments of the invention, polynucleotide sequences or fragments thereof which encode polypeptides of the invention, or fusion proteins or functional equivalents thereof, may be used in recombinant DNA molecules to direct expression of a polypeptide in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences that encode substantially the same or a functionally equivalent amino acid sequence may be produced and these sequences may be used to clone and express a given polypeptide.

As will be understood by those of skill in the art, it may be advantageous in some instances to produce polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce a recombinant RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.

15

20

25

30

Moreover, the polynucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter polypeptide encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the gene product. For example, DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. In addition, site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, or introduce mutations, and so forth.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences may be ligated to a heterologous sequence to encode a fusion protein. For example, to screen peptide libraries for inhibitors of polypeptide activity, it may be useful to encode a chimeric protein that can be recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the polypeptide-encoding sequence and the heterologous protein sequence, so that the polypeptide may be cleaved and purified away from the heterologous moiety.

Sequences encoding a desired polypeptide may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers, M. H. et al. (1980) *Nucl. Acids Res. Symp. Ser.* 215-223, Horn, T. et al. (1980) *Nucl. Acids Res. Symp. Ser.* 225-232). Alternatively, the protein itself may be produced using chemical methods to synthesize the amino acid sequence of a polypeptide, or a portion thereof. For example, peptide synthesis can be performed using various solid-phase techniques (Roberge, J. Y. et al. (1995) *Science 269*:202-204) and automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin Elmer, Palo Alto, CA).

A newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, T. (1983) Proteins, Structures and Molecular Principles, WH Freeman and Co., New York, N.Y.) or other comparable techniques available in the art. The composition of the synthetic peptides may be

10

15

20

25

30

confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure). Additionally, the amino acid sequence of a polypeptide, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

In order to express a desired polypeptide, the nucleotide sequences encoding the polypeptide, or functional equivalents, may be inserted into appropriate expression vector, *i.e.*, a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. Such techniques are described, for example, in Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York. N.Y.

A variety of expression vector/host systems may be utilized to contain and express polynucleotide sequences. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.

The "control elements" or "regulatory sequences" present in an expression vector are those non-translated regions of the vector--enhancers, promoters, 5' and 3' untranslated regions--which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used.

15

20

25

For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the PBLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Gibco BRL, Gaithersburg, MD) and the like may be used. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are generally preferred. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding a polypeptide, vectors based on SV40 or EBV may be advantageously used with an appropriate selectable marker.

In bacterial systems, any of a number of expression vectors may be selected depending upon the use intended for the expressed polypeptide. For example, when large quantities are needed, for example for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding the polypeptide of interest may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of .beta.galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509); and the like. pGEX Vectors (Promega, Madison, Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

In the yeast, Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) *Methods Enzymol*. 153:516-544.

In cases where plant expression vectors are used, the expression of sequences encoding polypeptides may be driven by any of a number of promoters. For

example, viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311. Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs, S. or Murry, L. E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196).

An insect system may also be used to express a polypeptide of interest. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences encoding the polypeptide may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the polypeptide-encoding sequence will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia larvae in which the polypeptide of interest may be expressed (Engelhard, E. K. et al. (1994) *Proc. Natl. Acad. Sci. 91*:3224-3227).

In mammalian host cells, a number of viral-based expression systems are generally available. For example, in cases where an adenovirus is used as an expression vector, sequences encoding a polypeptide of interest may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing the polypeptide in infected host cells (Logan, J. and Shenk, T. (1984) *Proc. Natl. Acad. Sci. 81*:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.

10

15

20

Specific initiation signals may also be used to achieve more efficient translation of sequences encoding a polypeptide of interest. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding the polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162).

In addition, a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to facilitate correct insertion, folding and/or function. Different host cells such as CHO, COS, HeLa, MDCK, HEK293, and WI38, which have specific cellular machinery and characteristic mechanisms for such post-translational activities, may be chosen to ensure the correct modification and processing of the foreign protein.

For long-term, high-yield production of recombinant proteins, stable expression is generally preferred. For example, cell lines which stably express a polynucleotide of interest may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which

30

15

successfully express the introduced sequences. Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1990) Cell 22:817-23) genes which can be employed in tk.sup.- or aprt.sup.- cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14); and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). The use of visible markers has gained popularity with such markers as anthocyanins, beta-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131).

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed. For example, if the sequence encoding a polypeptide is inserted within a marker gene sequence, recombinant cells containing sequences can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a polypeptide-encoding sequence under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

Alternatively, host cells that contain and express a desired 30 polynucleotide sequence may be identified by a variety of procedures known to those of

15

20

10

15

20

25

30

skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include, for example, membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein.

A variety of protocols for detecting and measuring the expression of polynucleotide-encoded products, using either polyclonal or monoclonal antibodies specific for the product are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on a given polypeptide may be preferred for some applications, but a competitive binding assay may also be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul. Minn.) and Maddox, D. E. et al. (1983; *J. Exp. Med. 158*:1211-1216).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences, or any portions thereof may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits. Suitable reporter molecules or labels, which may be used include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with a polynucleotide sequence of interest may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a recombinant cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood

15

20

25

by those of skill in the art, expression vectors containing polynucleotides of the invention may be designed to contain signal sequences which direct secretion of the encoded polypeptide through a prokaryotic or eukaryotic cell membrane. Other recombinant constructions may be used to join sequences encoding a polypeptide of interest to nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen. San Diego, Calif.) between the purification domain and the encoded polypeptide may be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing a polypeptide of interest and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography) as described in Porath, J. et al. (1992, Prot. Exp. Purif. 3:263-281) while the enterokinase cleavage site provides a means for purifying the desired polypeptide from the fusion protein. A discussion of vectors which contain fusion proteins is provided in Kroll, D. J. et al. (1993; DNA Cell Biol. 12:441-453).

In addition to recombinant production methods, polypeptides of the invention, and fragments thereof, may be produced by direct peptide synthesis using solid-phase techniques (Merrifield J. (1963) *J. Am. Chem. Soc.* 85:2149-2154). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Alternatively, various fragments may be chemically synthesized separately and combined using chemical methods to produce the full length molecule.

15

20

25

30

Antibody Compositions, Fragments Thereof and Other Binding Agents

According to another aspect, the present invention further provides binding agents, such as antibodies and antigen-binding fragments thereof, that exhibit immunological binding to a tumor polypeptide disclosed herein, or to a portion, variant or derivative thereof. An antibody, or antigen-binding fragment thereof, is said to "specifically bind," "immunogically bind," and/or is "immunologically reactive" to a polypeptide of the invention if it reacts at a detectable level (within, for example, an ELISA assay) with the polypeptide, and does not react detectably with unrelated polypeptides under similar conditions.

Immunological binding, as used in this context, generally refers to the non-covalent interactions of the type which occur between an immunoglobulin molecule and an antigen for which the immunoglobulin is specific. The strength, or affinity of immunological binding interactions can be expressed in terms of the dissociation constant (K_d) of the interaction, wherein a smaller K_d represents a greater affinity. Immunological binding properties of selected polypeptides can be quantified using methods well known in the art. One such method entails measuring the rates of antigen-binding site/antigen complex formation and dissociation, wherein those rates depend on the concentrations of the complex partners, the affinity of the interaction, and on geometric parameters that equally influence the rate in both directions. Thus, both the "on rate constant" (K_{on}) and the "off rate constant" (K_{off}) can be determined by calculation of the concentrations and the actual rates of association and dissociation. The ratio of K_{off}/K_{on} enables cancellation of all parameters not related to affinity, and is thus equal to the dissociation constant K_d . See, generally, Davies et al. (1990) Annual Rev. Biochem. 59:439-473.

An "antigen-binding site," or "binding portion" of an antibody refers to the part of the immunoglobulin molecule that participates in antigen binding. The antigen binding site is formed by amino acid residues of the N-terminal variable ("V") regions of the heavy ("H") and light ("L") chains. Three highly divergent stretches within the V regions of the heavy and light chains are referred to as "hypervariable regions" which are interposed between more conserved flanking stretches known as

"framework regions," or "FRs". Thus the term "FR" refers to amino acid sequences which are naturally found between and adjacent to hypervariable regions in immunoglobulins. In an antibody molecule, the three hypervariable regions of a light chain and the three hypervariable regions of a heavy chain are disposed relative to each other in three dimensional space to form an antigen-binding surface. The antigen-binding surface is complementary to the three-dimensional surface of a bound antigen, and the three hypervariable regions of each of the heavy and light chains are referred to as "complementarity-determining regions," or "CDRs."

Binding agents may be further capable of differentiating between patients with and without a cancer, such as prostate cancer, using the representative assays provided herein. For example, antibodies or other binding agents that bind to a tumor protein will preferably generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, more preferably at least about 30% of patients. Alternatively, or in addition, the antibody will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, sputum, urine and/or tumor biopsies) from patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. Preferably, a statistically significant number of samples with and without the disease will be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

Any agent that satisfies the above requirements may be a binding agent.

For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation

5

10

15

of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

10

15

20

15

20

25

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

A number of therapeutically useful molecules are known in the art which comprise antigen-binding sites that are capable of exhibiting immunological binding properties of an antibody molecule. The proteolytic enzyme papain preferentially cleaves IgG molecules to yield several fragments, two of which (the "F(ab)" fragments) each comprise a covalent heterodimer that includes an intact antigen-binding site. The enzyme pepsin is able to cleave IgG molecules to provide several fragments, including the "F(ab')₂" fragment which comprises both antigen-binding sites. An "Fv" fragment can be produced by preferential proteolytic cleavage of an IgM, and on rare occasions IgG or IgA immunoglobulin molecule. Fv fragments are, however, more commonly derived using recombinant techniques known in the art. The Fv fragment includes a non-covalent V_H::V_L heterodimer including an antigen-binding site which retains much of the antigen recognition and binding capabilities of the native antibody molecule. Inbar et al. (1972) Proc. Nat. Acad. Sci. USA 69:2659-2662; Hochman et al. (1976) Biochem 15:2706-2710; and Ehrlich et al. (1980) Biochem 19:4091-4096.

A single chain Fv ("sFv") polypeptide is a covalently linked $V_H::V_L$ heterodimer which is expressed from a gene fusion including V_{H^-} and V_L -encoding genes linked by a peptide-encoding linker. Huston et al. (1988) Proc. Nat. Acad. Sci. USA 85(16):5879-5883. A number of methods have been described to discern chemical structures for converting the naturally aggregated--but chemically separated--light and heavy polypeptide chains from an antibody V region into an sFv molecule which will fold into a three dimensional structure substantially similar to the structure of an

10

15

20

25

antigen-binding site. See, *e.g.*, U.S. Pat. Nos. 5,091,513 and 5,132,405, to Huston et al.; and U.S. Pat. No. 4,946,778, to Ladner et al.

Each of the above-described molecules includes a heavy chain and a light chain CDR set, respectively interposed between a heavy chain and a light chain FR set which provide support to the CDRS and define the spatial relationship of the CDRs relative to each other. As used herein, the term "CDR set" refers to the three hypervariable regions of a heavy or light chain V region. Proceeding from the N-terminus of a heavy or light chain, these regions are denoted as "CDR1," "CDR2," and "CDR3" respectively. An antigen-binding site, therefore, includes six CDRs, comprising the CDR set from each of a heavy and a light chain V region. A polypeptide comprising a single CDR, (e.g., a CDR1, CDR2 or CDR3) is referred to herein as a "molecular recognition unit." Crystallographic analysis of a number of antigen-antibody complexes has demonstrated that the amino acid residues of CDRs form extensive contact with bound antigen, wherein the most extensive antigen contact is with the heavy chain CDR3. Thus, the molecular recognition units are primarily responsible for the specificity of an antigen-binding site.

As used herein, the term "FR set" refers to the four flanking amino acid sequences which frame the CDRs of a CDR set of a heavy or light chain V region. Some FR residues may contact bound antigen; however, FRs are primarily responsible for folding the V region into the antigen-binding site, particularly the FR residues directly adjacent to the CDRS. Within FRs, certain amino residues and certain structural features are very highly conserved. In this regard, all V region sequences contain an internal disulfide loop of around 90 amino acid residues. When the V regions fold into a binding-site, the CDRs are displayed as projecting loop motifs which form an antigen-binding surface. It is generally recognized that there are conserved structural regions of FRs which influence the folded shape of the CDR loops into certain "canonical" structures--regardless of the precise CDR amino acid sequence. Further, certain FR residues are known to participate in non-covalent interdomain contacts which stabilize the interaction of the antibody heavy and light chains.

A number of "humanized" antibody molecules comprising an antigenbinding site derived from a non-human immunoglobulin have been described, including chimeric antibodies having rodent V regions and their associated CDRs fused to human constant domains (Winter et al. (1991) Nature 349:293-299; Lobuglio et al. (1989) Proc. Nat. Acad. Sci. USA 86:4220-4224; Shaw et al. (1987) J Immunol. 138:4534-4538; and Brown et al. (1987) Cancer Res. 47:3577-3583), rodent CDRs grafted into a human supporting FR prior to fusion with an appropriate human antibody constant domain (Riechmann et al. (1988) Nature 332:323-327; Verhoeyen et al. (1988) Science 239:1534-1536; and Jones et al. (1986) Nature 321:522-525), and rodent CDRs supported by recombinantly veneered rodent FRs (European Patent Publication No. 519,596, published Dec. 23, 1992). These "humanized" molecules are designed to minimize unwanted immunological response toward rodent antihuman antibody molecules which limits the duration and effectiveness of therapeutic applications of those moieties in human recipients.

As used herein, the terms "veneered FRs" and "recombinantly veneered FRs" refer to the selective replacement of FR residues from, e.g., a rodent heavy or light chain V region, with human FR residues in order to provide a xenogeneic molecule comprising an antigen-binding site which retains substantially all of the native FR polypeptide folding structure. Veneering techniques are based on the understanding that the ligand binding characteristics of an antigen-binding site are determined primarily by the structure and relative disposition of the heavy and light chain CDR sets within the antigen-binding surface. Davies et al. (1990) Ann. Rev. Biochem. 59:439-473. Thus, antigen binding specificity can be preserved in a humanized antibody only wherein the CDR structures, their interaction with each other, and their interaction with the rest of the V region domains are carefully maintained. By using veneering techniques, exterior (e.g., solvent-accessible) FR residues which are readily encountered by the immune system are selectively replaced with human residues to provide a hybrid molecule that comprises either a weakly immunogenic, or substantially non-immunogenic veneered surface.

10

15

20

The process of veneering makes use of the available sequence data for human antibody variable domains compiled by Kabat et al., in Sequences of Proteins of Immunological Interest, 4th ed., (U.S. Dept. of Health and Human Services, U.S. Government Printing Office, 1987), updates to the Kabat database, and other accessible U.S. and foreign databases (both nucleic acid and protein). Solvent accessibilities of V region amino acids can be deduced from the known three-dimensional structure for human and murine antibody fragments. There are two general steps in veneering a murine antigen-binding site. Initially, the FRs of the variable domains of an antibody molecule of interest are compared with corresponding FR sequences of human variable domains obtained from the above-identified sources. The most homologous human V regions are then compared residue by residue to corresponding murine amino acids. The residues in the murine FR which differ from the human counterpart are replaced by the residues present in the human moiety using recombinant techniques well known in the art. Residue switching is only carried out with moieties which are at least partially exposed (solvent accessible), and care is exercised in the replacement of amino acid residues which may have a significant effect on the tertiary structure of V region domains, such as proline, glycine and charged amino acids.

In this manner, the resultant "veneered" murine antigen-binding sites are thus designed to retain the murine CDR residues, the residues substantially adjacent to the CDRs, the residues identified as buried or mostly buried (solvent inaccessible), the residues believed to participate in non-covalent (e.g., electrostatic and hydrophobic) contacts between heavy and light chain domains, and the residues from conserved structural regions of the FRs which are believed to influence the "canonical" tertiary structures of the CDR loops. These design criteria are then used to prepare recombinant nucleotide sequences which combine the CDRs of both the heavy and light chain of a murine antigen-binding site into human-appearing FRs that can be used to transfect mammalian cells for the expression of recombinant human antibodies which exhibit the antigen specificity of the murine antibody molecule.

In another embodiment of the invention, monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in

15

20

10

15

20

25

30

this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the

15

20

25

intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers that provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

T Cell Compositions

The present invention, in another aspect, provides T cells specific for a tumor polypeptide disclosed herein, or for a variant or derivative thereof. Such cells

15

20

25

30

may generally be prepared *in vitro* or *ex vivo*, using standard procedures. For example, T cells may be isolated from bone marrow, peripheral blood, or a fraction of bone marrow or peripheral blood of a patient, using a commercially available cell separation system, such as the IsolexTM System, available from Nexell Therapeutics, Inc. (Irvine, CA; see also U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). Alternatively, T cells may be derived from related or unrelated humans, non-human mammals, cell lines or cultures.

T cells may be stimulated with a polypeptide, polynucleotide encoding a polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide of interest. Preferably, a tumor polypeptide or polynucleotide of the invention is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.

T cells are considered to be specific for a polypeptide of the present invention if the T cells specifically proliferate, secrete cytokines or kill target cells coated with the polypeptide or expressing a gene encoding the polypeptide. T cell specificity may be evaluated using any of a variety of standard techniques. For example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., Cancer Res. 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques. For example, T cell proliferation can be detected by measuring an increased rate of DNA synthesis (e.g., by pulse-labeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with a tumor polypeptide (100 ng/ml - 100 μ g/ml, preferably 200 ng/ml - 25 μ g/ml) for 3 - 7 days will typically result in at least a two fold increase in proliferation of the T cells. Contact as described above for 2-3 hours should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine release (e.g., TNF or IFN-y) is indicative of T cell activation (see Coligan et

al., Current Protocols in Immunology, vol. 1, Wiley Interscience (Greene 1998)). T cells that have been activated in response to a tumor polypeptide, polynucleotide or polypeptide-expressing APC may be CD4⁺ and/or CD8⁺. Tumor polypeptide-specific T cells may be expanded using standard techniques. Within preferred embodiments, the T cells are derived from a patient, a related donor or an unrelated donor, and are administered to the patient following stimulation and expansion.

For therapeutic purposes, CD4⁺ or CD8⁺ T cells that proliferate in response to a tumor polypeptide, polynucleotide or APC can be expanded in number either *in vitro* or *in vivo*. Proliferation of such T cells *in vitro* may be accomplished in a variety of ways. For example, the T cells can be re-exposed to a tumor polypeptide, or a short peptide corresponding to an immunogenic portion of such a polypeptide, with or without the addition of T cell growth factors, such as interleukin-2, and/or stimulator cells that synthesize a tumor polypeptide. Alternatively, one or more T cells that proliferate in the presence of the tumor polypeptide can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution.

Pharmaceutical Compositions

In additional embodiments, the present invention concerns formulation of one or more of the polynucleotide, polypeptide, T-cell and/or antibody compositions disclosed herein in pharmaceutically-acceptable carriers for administration to a cell or an animal, either alone, or in combination with one or more other modalities of therapy.

It will be understood that, if desired, a composition as disclosed herein may be administered in combination with other agents as well, such as, e.g., other proteins or polypeptides or various pharmaceutically-active agents. In fact, there is virtually no limit to other components that may also be included, given that the additional agents do not cause a significant adverse effect upon contact with the target cells or host tissues. The compositions may thus be delivered along with various other agents as required in the particular instance. Such compositions may be purified from host cells or other biological sources, or alternatively may be chemically synthesized as

20

PCT/US01/01574

described herein. Likewise, such compositions may further comprise substituted or derivatized RNA or DNA compositions.

Therefore, in another aspect of the present invention, pharmaceutical compositions are provided comprising one or more of the polynucleotide, polypeptide, antibody, and/or T-cell compositions described herein in combination with a physiologically acceptable carrier. In certain preferred embodiments, the pharmaceutical compositions of the invention comprise immunogenic polynucleotide and/or polypeptide compositions of the invention for use in prophylactic and theraputic vaccine applications. Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Generally, such compositions will comprise one or more polynucleotide and/or polypeptide compositions of the present invention in combination with one or more immunostimulants.

It will be apparent that any of the pharmaceutical compositions described herein can contain pharmaceutically acceptable salts of the polynucleotides and polypeptides of the invention. Such salts can be prepared, for example, from pharmaceutically acceptable non-toxic bases, including organic bases (e.g., salts of primary, secondary and tertiary amines and basic amino acids) and inorganic bases (e.g., sodium, potassium, lithium, ammonium, calcium and magnesium salts).

In another embodiment, illustrative immunogenic compositions, e.g., vaccine compositions, of the present invention comprise DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. As noted above, the polynucleotide may be administered within any of a variety of delivery systems known to those of ordinary skill in the art. Indeed, numerous gene delivery techniques are well known in the art, such as those described by Rolland, Crit. Rev. Therap. Drug Carrier Systems 15:143-198, 1998, and references cited therein. Appropriate polynucleotide expression systems will, of course, contain the necessary regulatory DNA regulatory sequences for expression in a patient (such as a suitable promoter and terminating signal). Alternatively, bacterial delivery systems may involve

5

15

20

15

20

25

the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope.

Therefore, in certain embodiments, polynucleotides encoding immunogenic polypeptides described herein are introduced into suitable mammalian host cells for expression using any of a number of known viral-based systems. In one illustrative embodiment, retroviruses provide a convenient and effective platform for gene delivery systems. A selected nucleotide sequence encoding a polypeptide of the present invention can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to a subject. A number of illustrative retroviral systems have been described (*e.g.*, U.S. Pat. No. 5,219,740; Miller and Rosman (1989) BioTechniques 7:980-990; Miller, A. D. (1990) Human Gene Therapy 1:5-14; Scarpa et al. (1991) Virology 180:849-852; Burns et al. (1993) Proc. Natl. Acad. Sci. USA 90:8033-8037; and Boris-Lawrie and Temin (1993) Cur. Opin. Genet. Develop. 3:102-109.

In addition, a number of illustrative adenovirus-based systems have also been described. Unlike retroviruses which integrate into the host genome, adenoviruses persist extrachromosomally thus minimizing the risks associated with insertional mutagenesis (Haj-Ahmad and Graham (1986) J. Virol. 57:267-274; Bett et al. (1993) J. Virol. 67:5911-5921; Mittereder et al. (1994) Human Gene Therapy 5:717-729; Seth et al. (1994) J. Virol. 68:933-940; Barr et al. (1994) Gene Therapy 1:51-58; Berkner, K. L. (1988) BioTechniques 6:616-629; and Rich et al. (1993) Human Gene Therapy 4:461-476).

Various adeno-associated virus (AAV) vector systems have also been developed for polynucleotide delivery. AAV vectors can be readily constructed using techniques well known in the art. See, e.g., U.S. Pat. Nos. 5,173,414 and 5,139,941; International Publication Nos. WO 92/01070 and WO 93/03769; Lebkowski et al. (1988) Molec. Cell. Biol. 8:3988-3996; Vincent et al. (1990) Vaccines 90 (Cold Spring Harbor Laboratory Press); Carter, B. J. (1992) Current Opinion in Biotechnology 3:533-539; Muzyczka, N. (1992) Current Topics in Microbiol. and Immunol. 158:97-129;

Kotin, R. M. (1994) Human Gene Therapy 5:793-801; Shelling and Smith (1994) Gene Therapy 1:165-169; and Zhou et al. (1994) J. Exp. Med. 179:1867-1875.

Additional viral vectors useful for delivering the polynucleotides encoding polypeptides of the present invention by gene transfer include those derived from the pox family of viruses, such as vaccinia virus and avian poxvirus. By way of example, vaccinia virus recombinants expressing the novel molecules can be constructed as follows. The DNA encoding a polypeptide is first inserted into an appropriate vector so that it is adjacent to a vaccinia promoter and flanking vaccinia DNA sequences, such as the sequence encoding thymidine kinase (TK). This vector is then used to transfect cells which are simultaneously infected with vaccinia. Homologous recombination serves to insert the vaccinia promoter plus the gene encoding the polypeptide of interest into the viral genome. The resulting TK.sup.(-) recombinant can be selected by culturing the cells in the presence of 5-bromodeoxyuridine and picking viral plaques resistant thereto.

A vaccinia-based infection/transfection system can be conveniently used to provide for inducible, transient expression or coexpression of one or more polypeptides described herein in host cells of an organism. In this particular system, cells are first infected in vitro with a vaccinia virus recombinant that encodes the bacteriophage T7 RNA polymerase. This polymerase displays exquisite specificity in that it only transcribes templates bearing T7 promoters. Following infection, cells are transfected with the polynucleotide or polynucleotides of interest, driven by a T7 promoter. The polymerase expressed in the cytoplasm from the vaccinia virus recombinant transcribes the transfected DNA into RNA which is then translated into polypeptide by the host translational machinery. The method provides for high level, transient, cytoplasmic production of large quantities of RNA and its translation products. See, *e.g.*, Elroy-Stein and Moss, Proc. Natl. Acad. Sci. USA (1990) 87:6743-6747; Fuerst et al. Proc. Natl. Acad. Sci. USA (1986) 83:8122-8126.

Alternatively, avipoxviruses, such as the fowlpox and canarypox viruses, can also be used to deliver the coding sequences of interest. Recombinant avipox viruses, expressing immunogens from mammalian pathogens, are known to confer

30

10

15

protective immunity when administered to non-avian species. The use of an Avipox vector is particularly desirable in human and other mammalian species since members of the Avipox genus can only productively replicate in susceptible avian species and therefore are not infective in mammalian cells. Methods for producing recombinant Avipoxviruses are known in the art and employ genetic recombination, as described above with respect to the production of vaccinia viruses. See, *e.g.*, WO 91/12882; WO 89/03429; and WO 92/03545.

Any of a number of alphavirus vectors can also be used for delivery of polynucleotide compositions of the present invention, such as those vectors described in U.S. Patent Nos. 5,843,723; 6,015,686; 6,008,035 and 6,015,694. Certain vectors based on Venezuelan Equine Encephalitis (VEE) can also be used, illustrative examples of which can be found in U.S. Patent Nos. 5,505,947 and 5,643,576.

Moreover, molecular conjugate vectors, such as the adenovirus chimeric vectors described in Michael et al. J. Biol. Chem. (1993) 268:6866-6869 and Wagner et al. Proc. Natl. Acad. Sci. USA (1992) 89:6099-6103, can also be used for gene delivery under the invention.

Additional illustrative information on these and other known viral-based delivery systems can be found, for example, in Fisher-Hoch et al., *Proc. Natl. Acad. Sci. USA 86*:317-321, 1989; Flexner et al., *Ann. N.Y. Acad. Sci. 569*:86-103, 1989; Flexner et al., *Vaccine 8*:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, *Biotechniques 6*:616-627, 1988; Rosenfeld et al., *Science 252*:431-434, 1991; Kolls et al., *Proc. Natl. Acad. Sci. USA 91*:215-219, 1994; Kass-Eisler et al., *Proc. Natl. Acad. Sci. USA 90*:11498-11502, 1993; Guzman et al., *Circulation 88*:2838-2848, 1993; and Guzman et al., *Cir. Res. 73*:1202-1207, 1993.

In certain embodiments, a polynucleotide may be integrated into the genome of a target cell. This integration may be in a specific location and orientation *via* homologous recombination (gene replacement) or it may be integrated in a random, non-specific location (gene augmentation). In yet further embodiments, the polynucleotide may be stably maintained in the cell as a separate, episomal segment of

15

20

25

15

20

25

30

DNA. Such polynucleotide segments or "episomes" encode sequences sufficient to permit maintenance and replication independent of or in synchronization with the host cell cycle. The manner in which the expression construct is delivered to a cell and where in the cell the polynucleotide remains is dependent on the type of expression construct employed.

In another embodiment of the invention, a polynucleotide is administered/delivered as "naked" DNA, for example as described in Ulmer et al., *Science 259*:1745-1749, 1993 and reviewed by Cohen, *Science 259*:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

In still another embodiment, a composition of the present invention can be delivered via a particle bombardment approach, many of which have been described. In one illustrative example, gas-driven particle acceleration can be achieved with devices such as those manufactured by Powderject Pharmaceuticals PLC (Oxford, UK) and Powderject Vaccines Inc. (Madison, WI), some examples of which are described in U.S. Patent Nos. 5,846,796; 6,010,478; 5,865,796; 5,584,807; and EP Patent No. 0500 799. This approach offers a needle-free delivery approach wherein a dry powder formulation of microscopic particles, such as polynucleotide or polypeptide particles, are accelerated to high speed within a helium gas jet generated by a hand held device, propelling the particles into a target tissue of interest.

In a related embodiment, other devices and methods that may be useful for gas-driven needle-less injection of compositions of the present invention include those provided by Bioject, Inc. (Portland, OR), some examples of which are described in U.S. Patent Nos. 4,790,824; 5,064,413; 5,312,335; 5,383,851; 5,399,163; 5,520,639 and 5,993,412.

According to another embodiment, the pharmaceutical compositions described herein will comprise one or more immunostimulants in addition to the immunogenic polynucleotide, polypeptide, antibody, T-cell and/or APC compositions of this invention. An immunostimulant refers to essentially any substance that enhances or potentiates an immune response (antibody and/or cell-mediated) to an exogenous

15

20

25

30

antigen. One preferred type of immunostimulant comprises an adjuvant. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Within certain embodiments of the invention, the adjuvant composition is preferably one that induces an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN-γ, TNFα, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, *Ann. Rev. Immunol.* 7:145-173, 1989.

Certain preferred adjuvants for eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A, together with an aluminum salt. MPL® adjuvants are available from Corixa Corporation (Seattle, WA; *see*, for example, US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing

oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555, WO 99/33488 and U.S. Patent Nos. 6,008,200 and 5,856,462. Immunostimulatory DNA sequences are also described, for example, by Sato et al., *Science 273*:352, 1996. Another preferred adjuvant comprises a saponin, such as Quil A, or derivatives thereof, including QS21 and QS7 (Aquila Biopharmaceuticals Inc., Framingham, MA); Escin; Digitonin; or *Gypsophila* or *Chenopodium quinoa* saponins. Other preferred formulations include more than one saponin in the adjuvant combinations of the present invention, for example combinations of at least two of the following group comprising QS21, QS7, Quil A, β -escin, or digitonin.

Alternatively the saponin formulations may be combined with vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and polylactide-co-glycolide particles, poly-N-acetyl glucosamine-based polymer matrix, particles composed of polysaccharides or chemically modified polysaccharides, liposomes and lipid-based particles, particles composed of glycerol monoesters, etc. The saponins may also be formulated in the presence of cholesterol to form particulate structures such as liposomes or ISCOMs. Furthermore, the saponins may be formulated together with a polyoxyethylene ether or ester, in either a non-particulate solution or suspension, or in a particulate structure such as a paucilamelar liposome or ISCOM. The saponins may also be formulated with excipients such as Carbopol^R to increase viscosity, or may be formulated in a dry powder form with a powder excipient such as lactose.

In one preferred embodiment, the adjuvant system includes the combination of a monophosphoryl lipid A and a saponin derivative, such as the combination of QS21 and 3D-MPL® adjuvant, as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprise an oil-in-water emulsion and tocopherol. Another particularly preferred adjuvant formulation employing QS21, 3D-

10

15

10

15

 MPL^{fe} adjuvant and tocopherol in an oil-in-water emulsion is described in WO 95/17210.

Another enhanced adjuvant system involves the combination of a CpG-containing oligonucleotide and a saponin derivative particularly the combination of CpG and QS21 is disclosed in WO 00/09159. Preferably the formulation additionally comprises an oil in water emulsion and tocopherol.

Additional illustrative adjuvants for use in the pharmaceutical compositions of the invention include Montanide ISA 720 (Seppic, France), SAF (Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Enhanzyn[®]; Corixa, Hamilton, MT), RC-529 (Corixa, Hamilton, MT) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. Patent Application Serial Nos. 08/853,826 and 09/074,720, the disclosures of which are incorporated herein by reference in their entireties, and polyoxyethylene ether adjuvants such as those described in WO 99/52549A1.

Other preferred adjuvants include adjuvant molecules of the general formula

(I): $HO(CH_2CH_2O)_n$ -A-R,

wherein, n is 1-50, A is a bond or -C(O)-, R is C_{1-50} alkyl or Phenyl C_{1-50} alkyl.

One embodiment of the present invention consists of a vaccine formulation comprising a polyoxyethylene ether of general formula (I), wherein *n* is between 1 and 50, preferably 4-24, most preferably 9; the *R* component is C₁₋₅₀, preferably C₄-C₂₀ alkyl and most preferably C₁₂ alkyl, and *A* is a bond. The concentration of the polyoxyethylene ethers should be in the range 0.1-20%, preferably from 0.1-10%, and most preferably in the range 0.1-1%. Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether, polyoxyethylene-9-steoryl ether, polyoxyethylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether. Polyoxyethylene ethers such as polyoxyethylene lauryl ether are described in the Merck index (12th edition: entry 7717). These adjuvant molecules are described in WO

10

15

20

25

99/52549. The polyoxyethylene ether according to the general formula (I) above may, if desired, be combined with another adjuvant. For example, a preferred adjuvant combination is preferably with CpG as described in the pending UK patent application GB 9820956.2.

According to another embodiment of this invention, an immunogenic composition described herein is delivered to a host via antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects *per se* and/or to be immunologically compatible with the receiver (*i.e.*, matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature 392*:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (*see* Timmerman and Levy, *Ann. Rev. Med. 50*:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate *in situ*, with marked cytoplasmic processes (dendrites) visible *in vitro*), their ability to take up, process and present antigens with high efficiency and their ability to activate naïve T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells *in vivo* or *ex vivo*, and such modified dendritic cells are contemplated by the present invention. As an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (*see Zitvogel et al.*, *Nature Med. 4*:594-600, 1998).

Dendritic cells and progenitors may be obtained from peripheral blood, 30 bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph

nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFα to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFα, CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcγ receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).

APCs may generally be transfected with a polynucleotide of the invention (or portion or other variant thereof) such that the encoded polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place *ex vivo*, and a pharmaceutical composition comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs *in vivo*. *In vivo* and *ex vivo* transfection of dendritic cells, for example, may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., *Immunology and cell Biology* 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the tumor polypeptide, DNA (naked or within a plasmid vector) or

RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will typically vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, mucosal, intravenous, intracranial, intraperitoneal, subcutaneous and intramuscular administration.

Carriers for use within such pharmaceutical compositions are biocompatible, and may also be biodegradable. In certain embodiments, the formulation preferably provides a relatively constant level of active component release. In other embodiments, however, a more rapid rate of release immediately upon administration may be desired. The formulation of such compositions is well within the level of ordinary skill in the art using known techniques. Illustrative carriers useful in this regard include microparticles of poly(lactide-co-glycolide), polyacrylate, latex, Other illustrative delayed-release carriers starch, cellulose, dextran and the like. include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see e.g., U.S. Patent No. 5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638). The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

In another illustrative embodiment, biodegradable microspheres (e.g., polylactate polyglycolate) are employed as carriers for the compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268; 5,075,109; 5,928,647; 5,811,128; 5,820,883; 5,853,763;

10

15

20

25

15

20

25

5,814,344, 5,407,609 and 5,942,252. Modified hepatitis B core protein carrier systems. such as described in WO/99 40934, and references cited therein, will also be useful for many applications. Another illustrative carrier/delivery system employs a carrier comprising particulate-protein complexes, such as those described in U.S. Patent No. 5,928,647, which are capable of inducing a class I-restricted cytotoxic T lymphocyte responses in a host.

The pharmaceutical compositions of the invention will often further comprise one or more buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, bacteriostats, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide), solutes that render the formulation isotonic, hypotonic or weakly hypertonic with the blood of a recipient, suspending agents, thickening agents and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate.

The pharmaceutical compositions described herein may be presented in unit-dose or multi-dose containers, such as sealed ampoules or vials. Such containers are typically sealed in such a way to preserve the sterility and stability of the formulation until use. In general, formulations may be stored as suspensions, solutions or emulsions in oily or aqueous vehicles. Alternatively, a pharmaceutical composition may be stored in a freeze-dried condition requiring only the addition of a sterile liquid carrier immediately prior to use.

The development of suitable dosing and treatment regimens for using the particular compositions described herein in a variety of treatment regimens, including e.g., oral, parenteral, intravenous, intranasal, and intramuscular administration and formulation, is well known in the art, some of which are briefly discussed below for general purposes of illustration.

In certain applications, the pharmaceutical compositions disclosed herein may be delivered *via* oral administration to an animal. As such, these compositions may be formulated with an inert diluent or with an assimilable edible carrier, or they

20

25

30

may be enclosed in hard- or soft-shell gelatin capsule, or they may be compressed into tablets, or they may be incorporated directly with the food of the diet.

The active compounds may even be incorporated with excipients and used in the form of ingestible tablets, buccal tables, troches, capsules, elixirs, suspensions, syrups, wafers, and the like (see, for example, Mathiowitz et al., Nature 1997 Mar 27;386(6623):410-4; Hwang et al., Crit Rev Ther Drug Carrier Syst 1998;15(3):243-84; U. S. Patent 5,641,515; U. S. Patent 5,580,579 and U. S. Patent 5,792,451). Tablets, troches, pills, capsules and the like may also contain any of a variety of additional components, for example, a binder, such as gum tragacanth, acacia, cornstarch, or gelatin; excipients, such as dicalcium phosphate; a disintegrating agent, such as corn starch, potato starch, alginic acid and the like; a lubricant, such as magnesium stearate; and a sweetening agent, such as sucrose, lactose or saccharin may be added or a flavoring agent, such as peppermint, oil of wintergreen, or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar, or both. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compounds may be incorporated into sustained-release preparation and formulations.

Typically, these formulations will contain at least about 0.1% of the active compound or more, although the percentage of the active ingredient(s) may, of course, be varied and may conveniently be between about 1 or 2% and about 60% or 70% or more of the weight or volume of the total formulation. Naturally, the amount of active compound(s) in each therapeutically useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.

WO 01/051633

For oral administration, the compositions of the present invention may alternatively be incorporated with one or more excipients in the form of a mouthwash, dentifrice, buccal tablet, oral spray, or sublingual orally-administered formulation. Alternatively, the active ingredient may be incorporated into an oral solution such as one containing sodium borate, glycerin and potassium bicarbonate, or dispersed in a dentifrice, or added in a therapeutically-effective amount to a composition that may include water, binders, abrasives, flavoring agents, foaming agents, and humectants. Alternatively the compositions may be fashioned into a tablet or solution form that may be placed under the tongue or otherwise dissolved in the mouth.

10

15

In certain circumstances it will be desirable to deliver the pharmaceutical compositions disclosed herein parenterally, intravenously, intramuscularly, or even intraperitoneally. Such approaches are well known to the skilled artisan, some of which are further described, for example, in U. S. Patent 5,543,158; U. S. Patent 5,641,515 and U. S. Patent 5,399,363. In certain embodiments, solutions of the active compounds as free base or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations generally will contain a preservative to prevent the growth of microorganisms.

20

25

30

Illustrative pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (for example, see U. S. Patent 5,466,468). In all cases the form must be sterile and must be fluid to the extent that casy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and/or

by the use of surfactants. The prevention of the action of microorganisms can be facilitated by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

In one embodiment, for parenteral administration in an aqueous solution, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a sterile aqueous medium that can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. Moreover, for human administration, preparations will of course preferably meet sterility, pyrogenicity, and the general safety and purity standards as required by FDA Office of Biologics standards.

In another embodiment of the invention, the compositions disclosed herein may be formulated in a neutral or salt form. Illustrative pharmaceutically-acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. Upon formulation, solutions will be

20

107

administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.

The carriers can further comprise any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions. The phrase "pharmaceutically-acceptable" refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a human.

In certain embodiments, the pharmaceutical compositions may be delivered by intranasal sprays, inhalation, and/or other aerosol delivery vehicles. Methods for delivering genes, nucleic acids, and peptide compositions directly to the lungs *via* nasal aerosol sprays has been described, *e.g.*, in U. S. Patent 5,756,353 and U. S. Patent 5,804,212. Likewise, the delivery of drugs using intranasal microparticle resins (Takenaga *et al.*, J Controlled Release 1998 Mar 2;52(1-2):81-7) and lysophosphatidyl-glycerol compounds (U. S. Patent 5,725,871) are also well-known in the pharmaceutical arts. Likewise, illustrative transmucosal drug delivery in the form of a polytetrafluoroetheylene support matrix is described in U. S. Patent 5,780,045.

In certain embodiments, liposomes, nanocapsules, microparticles, lipid particles, vesicles, and the like, are used for the introduction of the compositions of the present invention into suitable host cells/organisms. In particular, the compositions of the present invention may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like. Alternatively, compositions of the present invention can be bound, either covalently or non-covalently, to the surface of such carrier vehicles.

The formation and use of liposome and liposome-like preparations as potential drug carriers is generally known to those of skill in the art (see for example, Lasic, Trends Biotechnol 1998 Jul;16(7):307-21; Takakura, Nippon Rinsho 1998

10

15

20

10

15

20

25

Mar;56(3):691-5; Chandran *et al.*, Indian J Exp Biol. 1997 Aug;35(8):801-9; Margalit, Crit Rev Ther Drug Carrier Syst. 1995;12(2-3):233-61; U.S. Patent 5,567,434; U.S. Patent 5,552,157; U.S. Patent 5,565,213; U.S. Patent 5,738,868 and U.S. Patent 5,795,587, each specifically incorporated herein by reference in its entirety).

Liposomes have been used successfully with a number of cell types that are normally difficult to transfect by other procedures, including T cell suspensions, primary hepatocyte cultures and PC 12 cells (Renneisen *et al.*, J Biol Chem. 1990 Sep 25;265(27):16337-42; Muller *et al.*, DNA Cell Biol. 1990 Apr;9(3):221-9). In addition, liposomes are free of the DNA length constraints that are typical of viral-based delivery systems. Liposomes have been used effectively to introduce genes, various drugs, radiotherapeutic agents, enzymes, viruses, transcription factors, allosteric effectors and the like, into a variety of cultured cell lines and animals. Furthermore, he use of liposomes does not appear to be associated with autoimmune responses or unacceptable toxicity after systemic delivery.

In certain embodiments, liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs).

Alternatively, in other embodiments, the invention provides for pharmaceutically-acceptable nanocapsule formulations of the compositions of the present invention. Nanocapsules can generally entrap compounds in a stable and reproducible way (see, for example, Quintanar-Guerrero *et al.*, Drug Dev Ind Pharm. 1998 Dec;24(12):1113-28). To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 µm) may be designed using polymers able to be degraded *in vivo*. Such particles can be made as described, for example, by Couvreur *et al.*, Crit Rev Ther Drug Carrier Syst. 1988;5(1):1-20; zur Muhlen *et al.*, Eur J Pharm Biopharm. 1998 Mar;45(2):149-55; Zambaux *et al.* J Controlled Release. 1998 Jan 2;50(1-3):31-40; and U. S. Patent 5,145,684.

15

20

Cancer Therapeutic Methods

In further aspects of the present invention, the pharmaceutical compositions described herein may be used for the treatment of cancer, particularly for the immunotherapy of prostate cancer. Within such methods, the pharmaceutical compositions described herein are administered to a patient, typically a warm-blooded animal, preferably a human. A patient may or may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions may be used to prevent the development of a cancer or to treat a patient afflicted with a cancer. Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or conventional chemotherapeutic drugs. As discussed above, administration of the pharmaceutical compositions may be by any suitable method, including administration by intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal, intradermal, anal, vaginal, topical and oral routes.

Within certain embodiments, immunotherapy may be active immunotherapy, in which treatment relies on the *in vivo* stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (such as polypeptides and polynucleotides as provided herein).

Within other embodiments, immunotherapy may be passive immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T cells as discussed above, T lymphocytes (such as CD8⁺ cytotoxic T lymphocytes and CD4⁺ T-helper tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokine-activated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive immunotherapy. The

10

15

20

25

30

polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Patent No. 4,918,164) for passive immunotherapy.

Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth in vitro, as described herein. Culture conditions for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition in vivo are well known in the art. Such in vitro culture conditions typically use intermittent stimulation with antigen, often in the presence of As noted above, cytokines (such as IL-2) and non-dividing feeder cells. immunoreactive polypeptides as provided herein may be used to rapidly expand antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast and/or B cells, may be pulsed with immunoreactive polypeptides or transfected with one or more polynucleotides using standard techniques well known For example, antigen-presenting cells can be transfected with a in the art. polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system. Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term in vivo. Studies have shown that cultured effector cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al., Immunological Reviews 157:177, 1997).

Alternatively, a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated ex vivo for transplant back into the same patient. Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitary, intraperitoneal or intratumor administration.

Routes and frequency of administration of the therapeutic compositions described herein, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous,

111

intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Preferably, between 1 and 10 doses may be administered over a 52 week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50% above the basal (i.e., untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccinedependent generation of cytolytic effector cells capable of killing the patient's tumor cells in vitro. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-In general, for pharmaceutical compositions and vaccines vaccinated patients. comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 25 μg to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a tumor protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

Cancer Detection and Diagnostic Compositions, Methods and Kits

In general, a cancer may be detected in a patient based on the presence of one or more prostate tumor proteins and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, sputum urine and/or tumor biopsies)

20

112

obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a cancer such as prostate cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the presence or absence of a cancer. In general, a prostate tumor sequence should be present at a level that is at least three fold higher in tumor tissue than in normal tissue

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include full length prostate tumor proteins and polypeptide portions thereof to which the binding agent binds, as described above.

10

15

20

25

113

The solid support may be any material known to those of ordinary skill in the art to which the tumor protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 µg, and preferably about 100 ng to about 1 µg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay.

This assay may be performed by first contacting an antibody that has been immobilized

10

15

on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is a period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with prostate cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20^{TM} . The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.

The detection reagent is then incubated with the immobilized antibodypolypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed

20

25

115

and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of a cancer, such as prostate cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for the cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.

10

15

20

116

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of immobilized binding agent. Concentration of second binding agent at the area of immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the tumor proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to use tumor polypeptides to detect antibodies that bind to such polypeptides in a biological sample. The detection of such tumor protein specific antibodies may correlate with the presence of a cancer.

5

10

15

20

10

15

20

25

30

A cancer may also, or alternatively, be detected based on the presence of T cells that specifically react with a tumor protein in a biological sample. Within certain methods, a biological sample comprising CD4+ and/or CD8+ T cells isolated from a patient is incubated with a tumor polypeptide, a polynucleotide encoding such a polypeptide and/or an APC that expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated in vitro for 2-9 days (typically 4 days) at 37°C with polypeptide (e.g., $5 - 25 \mu g/ml$). It may be desirable to incubate another aliquot of a T cell sample in the absence of tumor polypeptide to serve as a control. For CD4⁺ T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8+ T cells, activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.

As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding a tumor protein in a biological sample. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a tumor cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (*i.e.*, hybridizes to) a polynucleotide encoding the tumor protein. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding a tumor protein may be used in a hybridization assay to detect the presence of polynucleotide encoding the tumor protein in a biological sample.

To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a tumor protein of the invention that is at least 10

nucleotides, and preferably at least 20 nucleotides, in length. Preferably, oligonucleotide primers and/or probes hybridize to a polynucleotide encoding a polypeptide described herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence as disclosed herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY. 1989).

One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as biopsy tissue, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.

In another embodiment, the compositions described herein may be used as markers for the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide(s) evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the

15

WO 01/051633

10

15

20

25

cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.

Certain *in vivo* diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.

As noted above, to improve sensitivity, multiple tumor protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of tumor protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or alternatively, assays for tumor proteins provided herein may be combined with assays for other known tumor antigens.

The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a tumor protein. Such antibodies or fragments may be provided attached to a support material, as described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

Alternatively, a kit may be designed to detect the level of mRNA encoding a tumor protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a tumor protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be

120

present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a tumor protein.

The following Examples are offered by way of illustration and not by way of limitation.

5

EXAMPLES

EXAMPLE 1

ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC POLYPEPTIDES

10

15

20

25

30

This Example describes the isolation of certain prostate-specific polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library was constructed from prostate tumor poly A⁺ RNA using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol. Specifically, prostate tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A⁺ RNA was then purified using a Qiagen oligotex spin column mRNA purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the Notl/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BAXI adaptors (Invitrogen, San Diego, CA) and digested with Notl. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA), the cDNA was ligated into the EcoRI/Notl site of pCDNA3.1 (Invitrogen) and transformed into ElectroMax *E. coli* DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human pancreas cDNA expression library was prepared from a pool of six tissue specimens (Clontech). The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis.

The prostate tumor library contained 1.64×10^7 independent colonies, with 70% of clones having an insert and the average insert size being 1745 base pairs. The normal pancreas cDNA library contained 3.3×10^6 independent colonies, with 69% of clones having inserts and the average insert size being 1120 base pairs. For both libraries, sequence analysis showed that the majority of clones had a full length cDNA sequence and were synthesized from mRNA, with minimal rRNA and mitochondrial DNA contamination.

cDNA library subtraction was performed using the above prostate tumor and normal pancreas cDNA libraries, as described by Hara *et al.* (*Blood*, *84*:189-199, 1994) with some modifications. Specifically, a prostate tumor-specific subtracted cDNA library was generated as follows. Normal pancreas cDNA library (70 μ g) was digested with EcoRI, NotI, and SfuI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 μ l of H₂O, heat-denatured and mixed with 100 μ l (100 μ g) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (50 μ l) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 μ l H₂O to form the driver DNA.

To form the tracer DNA, 10 μg prostate tumor cDNA library was digested with BamHI and XhoI, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 μ l H₂O. Tracer DNA was mixed with 15 μ l driver DNA and 20 μ l of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 6 C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 μ l H₂O, mixed with 8 μ l driver DNA and 20 μ l of 2 x hybridization buffer, and subjected to a hybridization at 68

15

20

25

10

15

20

25

30

^oC for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into BamHI/XhoI site of chloramphenicol resistant pBCSK⁺ (Stratagene, La Jolla, CA 92037) and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate a prostate tumor specific subtracted cDNA library (referred to as "prostate subtraction 1").

To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted prostate tumor specific library and grouped based on insert size. Representative cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A (Foster City, CA). Six cDNA clones, hereinafter referred to as F1-13, F1-12, F1-16, H1-1, H1-9 and H1-4, were shown to be abundant in the subtracted prostate-specific cDNA library. The determined 3' and 5' cDNA sequences for F1-12 are provided in SEQ ID NO: 2 and 3, respectively, with determined 3' cDNA sequences for F1-13, F1-16, H1-1, H1-9 and H1-4 being provided in SEQ ID NO: 1 and 4-7, respectively.

The cDNA sequences for the isolated clones were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). Four of the prostate tumor cDNA clones, F1-13, F1-16, H1-1, and H1-4, were determined to encode the following previously identified proteins: prostate specific antigen (PSA), human glandular kallikrein, human tumor expression enhanced gene, and mitochondria cytochrome C oxidase subunit II. H1-9 was found to be identical to a previously identified human autonomously replicating sequence. No significant homologies to the cDNA sequence for F1-12 were found.

Subsequent studies led to the isolation of a full-length cDNA sequence for F1-12 (also referred to as P504S). This sequence is provided in SEQ ID NO: 107, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 108. cDNA splice variants of P504S are provided in SEQ ID NO: 600-605.

To clone less abundant prostate tumor specific genes, cDNA library subtraction was performed by subtracting the prostate tumor cDNA library described above with the normal pancreas cDNA library and with the three most abundant genes

in the previously subtracted prostate tumor specific cDNA library: human glandular kallikrein, prostate specific antigen (PSA), and mitochondria cytochrome C oxidase Specifically, 1 µg each of human glandular kallikrein, PSA and subunit II. mitochondria cytochrome C oxidase subunit II cDNAs in pCDNA3.1 were added to the driver DNA and subtraction was performed as described above to provide a second subtracted cDNA library hereinafter referred to as the "subtracted prostate tumor specific cDNA library with spike".

Twenty-two cDNA clones were isolated from the subtracted prostate tumor specific cDNA library with spike. The determined 3' and 5' cDNA sequences for the clones referred to as J1-17, L1-12, N1-1862, J1-13, J1-19, J1-25, J1-24, K1-58, K1-10 63, L1-4 and L1-14 are provided in SEQ ID NOS: 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27 and 28-29, respectively. The determined 3' cDNA sequences for the clones referred to as J1-12, J1-16, J1-21, K1-48, K1-55, L1-2, L1-6, N1-1858, N1-1860, N1-1861, N1-1864 are provided in SEQ ID NOS: 30-40, respectively. Comparison of these sequences with those in the gene bank as described 15 above, revealed no significant homologies to three of the five most abundant DNA species, (J1-17, L1-12 and N1-1862; SEQ ID NOS: 8-9, 10-11 and 12-13, respectively). Of the remaining two most abundant species, one (J1-12; SEQ ID NO:30) was found to be identical to the previously identified human pulmonary surfactant-associated protein, 20 and the other (K1-48; SEQ ID NO:33) was determined to have some homology to R. norvegicus mRNA for 2-arylpropionyl-CoA epimerase. Of the 17 less abundant cDNA clones isolated from the subtracted prostate tumor specific cDNA library with spike, four (J1-16, K1-55, L1-6 and N1-1864; SEQ ID NOS:31, 34, 36 and 40, respectively) were found to be identical to previously identified sequences, two (J1-21 and N1-1860; SEQ ID NOS: 32 and 38, respectively) were found to show some homology to non-25 human sequences, and two (L1-2 and N1-1861; SEQ ID NOS: 35 and 39, respectively) were found to show some homology to known human sequences. No significant homologies were found to the polypeptides J1-13, J1-19, J1-24, J1-25, K1-58, K1-63, L1-4, L1-14 (SEQ ID NOS: 14-15, 16-17, 20-21, 18-19, 22-23, 24-25, 26-27, 28-29, respectively).

10

15

20

Subsequent studies led to the isolation of full length cDNA sequences for J1-17, L1-12 and N1-1862 (SEQ ID NOS: 109-111, respectively). The corresponding predicted amino acid sequences are provided in SEQ ID NOS: 112-114. L1-12 is also referred to as P501S. A cDNA splice variant of P501S is provided in SEQ ID NO: 606.

In a further experiment, four additional clones were identified by subtracting a prostate tumor cDNA library with normal prostate cDNA prepared from a pool of three normal prostate poly A+ RNA (referred to as "prostate subtraction 2"). The determined cDNA sequences for these clones, hereinafter referred to as U1-3064, U1-3065, V1-3692 and 1A-3905, are provided in SEQ ID NO: 69-72, respectively. Comparison of the determined sequences with those in the gene bank revealed no significant homologies to U1-3065.

A second subtraction with spike (referred to as "prostate subtraction spike 2") was performed by subtracting a prostate tumor specific cDNA library with spike with normal pancreas cDNA library and further spiked with PSA, J1-17, pulmonary surfactant-associated protein, mitochondrial DNA, cytochrome c oxidase subunit II, N1-1862, autonomously replicating sequence, L1-12 and tumor expression enhanced gene. Four additional clones, hereinafter referred to as V1-3686, R1-2330, 1B-3976 and V1-3679, were isolated. The determined cDNA sequences for these clones are provided in SEQ ID NO:73-76, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to V1-3686 and R1-2330.

Further analysis of the three prostate subtractions described above (prostate subtraction 2, subtracted prostate tumor specific cDNA library with spike, and prostate subtraction spike 2) resulted in the identification of sixteen additional clones, referred to as 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1G-4734, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4810, 1I-4811, 1J-4876, 1K-4884 and 1K-4896. The determined cDNA sequences for these clones are provided in SEQ ID NOS: 77-92, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to 1G-4741, 1G-4734, 1I-4807, 1J-4876 and 1K-4896 (SEQ ID NOS: 79, 81, 87, 90 and 92, respectively). Further analysis of the

15

20

isolated clones led to the determination of extended cDNA sequences for 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4807, 1J-4876, 1K-4884 and 1K-4896, provided in SEQ ID NOS: 179-188 and 191-193, respectively, and to the determination of additional partial cDNA sequences for 1I-4810 and 1I-4811, provided in SEQ ID NOS: 189 and 190, respectively.

Additional studies with prostate subtraction spike 2 resulted in the isolation of three more clones. Their sequences were determined as described above and compared to the most recent GenBank. All three clones were found to have homology to known genes, which are Cysteine-rich protein, KIAA0242, and KIAA0280 (SEQ ID NO: 317, 319, and 320, respectively). Further analysis of these clones by Synteni microarray (Synteni, Palo Alto, CA) demonstrated that all three clones were over-expressed in most prostate tumors and prostate BPH, as well as in the majority of normal prostate tissues tested, but low expression in all other normal tissues.

An additional subtraction was performed by subtracting a normal prostate cDNA library with normal pancreas cDNA (referred to as "prostate subtraction 3"). This led to the identification of six additional clones referred to as 1G-4761, 1G-4762, 1H-4766, 1H-4770, 1H-4771 and 1H-4772 (SEQ ID NOS: 93-98). Comparison of these sequences with those in the gene bank revealed no significant homologies to 1G-4761 and 1H-4771 (SEQ ID NOS: 93 and 97, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4761, 1G-4762, 1H-4766 and 1H-4772 provided in SEQ ID NOS: 194-196 and 199, respectively, and to the determination of additional partial cDNA sequences for 1H-4770 and 1H-4771, provided in SEQ ID NOS: 197 and 198, respectively.

Subtraction of a prostate tumor cDNA library, prepared from a pool of polyA+ RNA from three prostate cancer patients, with a normal pancreas cDNA library (prostate subtraction 4) led to the identification of eight clones, referred to as 1D-4297, 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280 (SEQ ID NOS: 99-107). These sequences were compared to those in the gene bank as described above. No significant homologies were found to 1D-4283 and 1D-4304 (SEQ ID NOS: 30 103 and 104, respectively). Further analysis of the isolated clones led to the

10

15

20

25

determination of extended cDNA sequences for 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280, provided in SEQ ID NOS: 200-206, respectively.

cDNA clones isolated in prostate subtraction 1 and prostate subtraction 2, described above, were colony PCR amplified and their mRNA expression levels in prostate tumor, normal prostate and in various other normal tissues were determined using microarray technology (Synteni, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Two clones (referred to as P509S and P510S) were found to be overexpressed in prostate tumor and normal prostate and expressed at low levels in all other normal tissues tested (liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon). The determined cDNA sequences for P509S and P510S are provided in SEO ID NO: 223 and 224, respectively. Comparison of these sequences with those in the gene bank as described above, revealed some homology to previously identified ESTs.

Additional, studies led to the isolation of the full-length cDNA sequence for P509S. This sequence is provided in SEQ ID NO: 332, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 339. Two variant full-length cDNA sequences for P510S are provided in SEQ ID NO: 535 and 536, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 537 and 538, respectively. Additional splice variants of P510S are provided in SEQ ID NO: 598 and 599.

127

EXAMPLE 2

DETERMINATION OF TISSUE SPECIFICITY OF PROSTATE-SPECIFIC POLYPEPTIDES

Using gene specific primers, mRNA expression levels for the representative prostate-specific polypeptides F1-16, H1-1, J1-17 (also referred to as P502S), L1-12 (also referred to as P501S), F1-12 (also referred to as P504S) and N1-1862 (also referred to as P503S) were examined in a variety of normal and tumor tissues using RT-PCR.

Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 1-2 μg of total RNA with SuperScript II reverse transcriptase (BRL Life Technologies) at 42 6 C for one hour. The cDNA was then amplified by PCR with genespecific primers. To ensure the semi-quantitative nature of the RT-PCR, β -actin was used as an internal control for each of the tissues examined. First, serial dilutions of the first strand cDNAs were prepared and RT-PCR assays were performed using β -actin specific primers. A dilution was then chosen that enabled the linear range amplification of the β -actin template and which was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the β -actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA that was prepared without adding reverse transcriptase.

mRNA Expression levels were examined in four different types of tumor tissue (prostate tumor from 2 patients, breast tumor from 3 patients, colon tumor, lung tumor), and sixteen different normal tissues, including prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach, testes, bone marrow and brain. F1-16 was found to be expressed at high levels in prostate tumor tissue, colon tumor and normal prostate, and at lower levels in normal liver, skin and testes, with expression being undetectable in the other tissues examined. H1-1 was found to be expressed at high levels in prostate tumor, lung tumor, breast tumor, normal prostate, normal colon and normal brain, at much lower levels in normal lung, pancreas, skeletal muscle, skin,

5

10

15

20

25

15

20

25

30

small intestine, bone marrow, and was not detected in the other tissues tested. J1-17 (P502S) and L1-12 (P501S) appear to be specifically over-expressed in prostate, with both genes being expressed at high levels in prostate tumor and normal prostate but at low to undetectable levels in all the other tissues examined. N1-1862 (P503S) was found to be over-expressed in 60% of prostate tumors and detectable in normal colon and kidney. The RT-PCR results thus indicate that F1-16, H1-1, J1-17 (P502S), N1-1862 (P503S) and L1-12 (P501S) are either prostate specific or are expressed at significantly elevated levels in prostate.

Further RT-PCR studies showed that F1-12 (P504S) is over-expressed in 60% of prostate tumors, detectable in normal kidney but not detectable in all other tissues tested. Similarly, R1-2330 was shown to be over-expressed in 40% of prostate tumors, detectable in normal kidney and liver, but not detectable in all other tissues tested. U1-3064 was found to be over-expressed in 60% of prostate tumors, and also expressed in breast and colon tumors, but was not detectable in normal tissues.

RT-PCR characterization of R1-2330, U1-3064 and 1D-4279 showed that these three antigens are over-expressed in prostate and/or prostate tumors.

Northern analysis with four prostate tumors, two normal prostate samples, two BPH prostates, and normal colon, kidney, liver, lung, pancrease, skeletal muscle, brain, stomach, testes, small intestine and bone marrow, showed that L1-12 (P501S) is over-expressed in prostate tumors and normal prostate, while being undetectable in other normal tissues tested. J1-17 (P502S) was detected in two prostate tumors and not in the other tissues tested. N1-1862 (P503S) was found to be over-expressed in three prostate tumors and to be expressed in normal prostate, colon and kidney, but not in other tissues tested. F1-12 (P504S) was found to be highly expressed in two prostate tumors and to be undetectable in all other tissues tested.

The microarray technology described above was used to determine the expression levels of representative antigens described herein in prostate tumor, breast tumor and the following normal tissues: prostate, liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon. L1-12 (P501S) was found to be

129

over-expressed in normal prostate and prostate tumor, with some expression being detected in normal skeletal muscle. Both J1-12 and F1-12 (P504S) were found to be over-expressed in prostate tumor, with expression being lower or undetectable in all other tissues tested. N1-1862 (P503S) was found to be expressed at high levels in prostate tumor and normal prostate, and at low levels in normal large intestine and normal colon, with expression being undetectable in all other tissues tested. R1-2330 was found to be over-expressed in prostate tumor and normal prostate, and to be expressed at lower levels in all other tissues tested. 1D-4279 was found to be over-expressed in prostate tumor and normal prostate, expressed at lower levels in normal spinal cord, and to be undetectable in all other tissues tested.

Further microarray analysis to specifically address the extent to which P501S (SEQ ID NO: 110) was expressed in breast tumor revealed moderate over-expression not only in breast tumor, but also in metastatic breast tumor (2/31), with negligible to low expression in normal tissues. This data suggests that P501S may be over-expressed in various breast tumors as well as in prostate tumors.

The expression levels of 32 ESTs (expressed sequence tags) described by Vasmatzis *et al.* (*Proc. Natl. Acad. Sci. USA 95*:300-304, 1998) in a variety of tumor and normal tissues were examined by microarray technology as described above. Two of these clones (referred to as P1000C and P1001C) were found to be over-expressed in prostate tumor and normal prostate, and expressed at low to undetectable levels in all other tissues tested (normal aorta, thymus, resting and activated PBMC, epithelial cells, spinal cord, adrenal gland, fetal tissues, skin, salivary gland, large intestine, bone marrow, liver, lung, dendritic cells, stomach, lymph nodes, brain, heart, small intestine, skeletal muscle, colon and kidney. The determined cDNA sequences for P1000C and P1001C are provided in SEQ ID NO: 384 and 472, respectively. The sequence of P1001C was found to show some homology to the previously isolated Human mRNA for JM27 protein. Subsequent comparison of the sequence of SEQ ID NO: 384 with sequences in the public databases, led to the identification of a full-length cDNA sequence of P1000C (SEQ ID NO: 786), which encodes a 492 amino acid sequence. Analysis of the amino acid sequence using the PSORT II program led to the

10

15

20

25

130

identification of a putative transmembrane domain from amino acids 84-100. The cDNA sequence of the open reading frame of P1000C, including the stop codon, is provided in SEQ ID NO: 787, with the open reading frame without the stop codon being provided in SEQ ID NO: 788. The full-length amino acid sequence of P1000C is provided in SEQ ID NO: 789. SEQ ID NO: 790 and 791 represent amino acids 1-100 and 100-492 of P1000C, respectively.

The expression of the polypeptide encoded by the full length cDNA sequence for F1-12 (also referred to as P504S; SEQ ID NO: 108) was investigated by immunohistochemical analysis. Rabbit-anti-P504S polyclonal antibodies were generated against the full length P504S protein by standard techniques. Subsequent isolation and characterization of the polyclonal antibodies were also performed by techniques well known in the art. Immunohistochemical analysis showed that the P504S polypeptide was expressed in 100% of prostate carcinoma samples tested (n=5).

The rabbit-anti-P504S polyclonal antibody did not appear to label benign prostate cells with the same cytoplasmic granular staining, but rather with light nuclear staining. Analysis of normal tissues revealed that the encoded polypeptide was found to be expressed in some, but not all normal human tissues. Positive cytoplasmic staining with rabbit-anti-P504S polyclonal antibody was found in normal human kidney, liver, brain, colon and lung-associated macrophages, whereas heart and bone marrow were negative.

This data indicates that the P504S polypeptide is present in prostate cancer tissues, and that there are qualitative and quantitative differences in the staining between benign prostatic hyperplasia tissues and prostate cancer tissues, suggesting that this polypeptide may be detected selectively in prostate tumors and therefore be useful in the diagnosis of prostate cancer.

10

15

20

10

15

25

30

131

EXAMPLE 3

ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC POLYPEPTIDES BY PCR-BASED SUBTRACTION

A cDNA subtraction library, containing cDNA from normal prostate subtracted with ten other normal tissue cDNAs (brain, heart, kidney, liver, lung, ovary, placenta, skeletal muscle, spleen and thymus) and then submitted to a first round of PCR amplification, was purchased from Clontech. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the vector pT7 Blue T-vector (Novagen, Madison, WI) and transformed into XL-1 Blue MRF' *E. coli* (Stratagene). DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

Fifty-nine positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the gene bank, as described above, revealed no significant homologies to 25 of these clones, hereinafter referred to as P5, P8, P9, P18, P20, P30, P34, P36, P38, P39, P42, P49, P50, P53, P55, P60, P64, P65, P73, P75, P76, P79 and P84. The determined cDNA sequences for these clones are provided in SEQ ID NO: 41-45, 47-52 and 54-65, respectively. P29, P47, P68, P80 and P82 (SEQ ID NO: 46, 53 and 66-68, respectively) were found to show some degree of homology to previously identified DNA sequences. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in prostate.

Further studies employing the sequence of SEQ ID NO: 67 as a probe in standard full-length cloning methods, resulted in the isolation of three cDNA sequences which appear to be splice variants of P80 (also known as P704P). These sequences are provided in SEQ ID NO: 620-622.

Further studies using the PCR-based methodology described above resulted in the isolation of more than 180 additional clones, of which 23 clones were found to show no significant homologies to known sequences. The determined cDNA sequences for these clones are provided in SEQ ID NO: 115-123, 127, 131, 137, 145,

15

20

25

30

147-151, 153, 156-158 and 160. Twenty-three clones (SEQ ID NO: 124-126, 128-130, 132-136, 138-144, 146, 152, 154, 155 and 159) were found to show some homology to previously identified ESTs. An additional ten clones (SEQ ID NO: 161-170) were found to have some degree of homology to known genes. Larger cDNA clones containing the P20 sequence represent splice variants of a gene referred to as P703P. The determined DNA sequence for the variants referred to as DE1, DE13 and DE14 are provided in SEQ ID NOS: 171, 175 and 177, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 172, 176 and 178, respectively. The determined cDNA sequence for an extended spliced form of P703 is provided in SEQ ID NO: 225. The DNA sequences for the splice variants referred to as DE2 and DE6 are provided in SEQ ID NOS: 173 and 174, respectively.

mRNA Expression levels for representative clones in tumor tissues (prostate (n=5), breast (n=2), colon and lung) normal tissues (prostate (n=5), colon, kidney, liver, lung (n=2), ovary (n=2), skeletal muscle, skin, stomach, small intestine and brain), and activated and non-activated PBMC was determined by RT-PCR as described above. Expression was examined in one sample of each tissue type unless otherwise indicated.

P9 was found to be highly expressed in normal prostate and prostate tumor compared to all normal tissues tested except for normal colon which showed comparable expression. P20, a portion of the P703P gene, was found to be highly expressed in normal prostate and prostate tumor, compared to all twelve normal tissues tested. A modest increase in expression of P20 in breast tumor (n=2), colon tumor and lung tumor was seen compared to all normal tissues except lung (1 of 2). Increased expression of P18 was found in normal prostate, prostate tumor and breast tumor compared to other normal tissues except lung and stomach. A modest increase in expression of P5 was observed in normal prostate compared to most other normal tissues. However, some elevated expression was seen in normal lung and PBMC. Elevated expression of P5 was also observed in prostate tumors (2 of 5), breast tumor and one lung tumor sample. For P30, similar expression levels were seen in normal prostate and prostate tumor, compared to six of twelve other normal tissues tested.

Increased expression was seen in breast tumors, one lung tumor sample and one colon tumor sample, and also in normal PBMC. P29 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to the majority of normal tissues. However, substantial expression of P29 was observed in normal colon and normal lung (2 of 2). P80 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to all other normal tissues tested, with increased expression also being seen in colon tumor.

Further studies resulted in the isolation of twelve additional clones, hereinafter referred to as 10-d8, 10-h10, 11-c8, 7-g6, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3, 8-h11, 9-f12 and 9-f3. The determined DNA sequences for 10-d8, 10-h10, 11-c8, 8-d4, 8-d9, 8-h11, 9-f12 and 9-f3 are provided in SEQ ID NO: 207, 208, 209, 216, 217, 220, 221 and 222, respectively. The determined forward and reverse DNA sequences for 7-g6, 8-b5, 8-b6 and 8-g3 are provided in SEQ ID NO: 210 and 211; 212 and 213; 214 and 215; and 218 and 219, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to the sequence of 9-f3. The clones 10-d8, 11-c8 and 8-h11 were found to show some homology to previously isolated ESTs, while 10-h10, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3 and 9-f12 were found to show some homology to previously identified genes. Further characterization of 7-G6 and 8-G3 showed identity to the known genes PAP and PSA, respectively.

mRNA expression levels for these clones were determined using the micro-array technology described above. The clones 7-G6, 8-G3, 8-B5, 8-B6, 8-D4, 8-D9, 9-F3, 9-F12, 9-H3, 10-A2, 10-A4, 11-C9 and 11-F2 were found to be over-expressed in prostate tumor and normal prostate, with expression in other tissues tested being low or undetectable. Increased expression of 8-F11 was seen in prostate tumor and normal prostate, bladder, skeletal muscle and colon. Increased expression of 10-H10 was seen in prostate tumor and normal prostate, bladder, lung, colon, brain and large intestine. Increased expression of 9-B1 was seen in prostate tumor, breast tumor, and normal prostate, salivary gland, large intestine and skin, with increased expression of 11-C8 being seen in prostate tumor, and normal prostate and large intestine.

20

An additional cDNA fragment derived from the PCR-based normal prostate subtraction, described above, was found to be prostate specific by both microarray technology and RT-PCR. The determined cDNA sequence of this clone (referred to as 9-A11) is provided in SEQ ID NO: 226. Comparison of this sequence with those in the public databases revealed 99% identity to the known gene HOXB13.

Further studies led to the isolation of the clones 8-C6 and 8-H7. The determined cDNA sequences for these clones are provided in SEQ ID NO: 227 and 228, respectively. These sequences were found to show some homology to previously isolated ESTs.

PCR and hybridization-based methodologies were employed to obtain longer cDNA sequences for clone P20 (also referred to as P703P), yielding three additional cDNA fragments that progressively extend the 5' end of the gene. These fragments, referred to as P703PDE5, P703P6.26, and P703PX-23 (SEQ ID NO: 326, 328 and 330, with the predicted corresponding amino acid sequences being provided in SEQ ID NO: 327, 329 and 331, respectively) contain additional 5' sequence. P703PDE5 was recovered by screening of a cDNA library (#141-26) with a portion of P703P as a probe. P703P6.26 was recovered from a mixture of three prostate tumor cDNAs and P703PX_23 was recovered from cDNA library (#438-48). Together, the additional sequences include all of the putative mature serine protease along with part of the putative signal sequence. The full-length cDNA sequence for P703P is provided in SEQ ID NO: 524, with the corresponding amino acid sequence being provided in SEQ ID NO: 525.

Using computer algorithms, the following regions of P703P were predicted to represent potential HLA A2-binding CTL epitopes: amino acids 164-172 of SEQ ID NO: 525 (SEQ ID NO: 723); amino acids 160-168 of SEQ ID NO: 525 (SEQ ID NO: 724); amino acids 239-247 of SEQ ID NO: 525 (SEQ ID NO: 725); amino acids 118-126 of SEQ ID NO: 525 (SEQ ID NO: 726); amino acids 112-120 of SEQ ID NO: 525 (SEQ ID NO: 727); amino acids 155-164 of SEQ ID NO: 525 (SEQ ID NO: 728); amino acids 117-126 of SEQ ID NO: 525 (SEQ ID NO: 729); amino acids 164-173 of SEQ ID NO: 525 (SEQ ID NO: 730); amino acids 154-163 of SEQ ID NO:

10

15

20

25

15

20

25

30

525 (SEQ ID NO: 731); amino acids 163-172 of SEQ ID NO: 525 (SEQ ID NO: 732); amino acids 58-66 of SEQ ID NO: 525 (SEQ ID NO: 733); and amino acids 59-67 of SEQ ID NO: 525 (SEQ ID NO: 734).

P703P was found to show some homology to previously identified proteases, such as thrombin. The thrombin receptor has been shown to be preferentially expressed in highly metastatic breast carcinoma cells and breast carcinoma biopsy samples. Introduction of thrombin receptor antisense cDNA has been shown to inhibit the invasion of metastatic breast carcinoma cells in culture. Antibodies against thrombin receptor inhibit thrombin receptor activation and thrombin-induced platelet activation. Furthermore, peptides that resemble the receptor's tethered ligand domain inhibit platelet aggregation by thrombin. P703P may play a role in prostate cancer through a protease-activated receptor on the cancer cell or on stromal cells. potential trypsin-like protease activity of P703P may either activate a protease-activated receptor on the cancer cell membrane to promote tumorgenesis or activate a proteaseactivated receptor on the adjacent cells (such as stromal cells) to secrete growth factors and/or proteases (such as matrix metalloproteinases) that could promote tumor angiogenesis, invasion and metastasis. P703P may thus promote tumor progression and/or metastasis through the activation of protease-activated receptor. Polypeptides and antibodies that block the P703P-receptor interaction may therefore be usefully employed in the treatment of prostate cancer.

To determine whether P703P expression increases with increased severity of Gleason grade, an indicator of tumor stage, quantitative PCR analysis was performed on prostate tumor samples with a range of Gleason scores from 5 to > 8. The mean level of P703P expression increased with increasing Gleason score, indicating that P703P expression may correlate with increased disease severity.

Further studies using a PCR-based subtraction library of a prostate tumor pool subtracted against a pool of normal tissues (referred to as JP: PCR subtraction) resulted in the isolation of thirteen additional clones, seven of which did not share any significant homology to known GenBank sequences. The determined cDNA sequences for these seven clones (P711P, P712P, novel 23, P774P, P775P, P710P and P768P) are

15

20

25

30

provided in SEQ ID NO: 307-311, 313 and 315, respectively. The remaining six clones (SEQ ID NO: 316 and 321-325) were shown to share some homology to known genes. By microarray analysis, all thirteen clones showed three or more fold over-expression in prostate tissues, including prostate tumors, BPH and normal prostate as compared to normal non-prostate tissues. Clones P711P, P712P, novel 23 and P768P showed over-expression in most prostate tumors and BPH tissues tested (n=29), and in the majority of normal prostate tissues (n=4), but background to low expression levels in all normal tissues. Clones P774P, P775P and P710P showed comparatively lower expression and expression in fewer prostate tumors and BPH samples, with negative to low expression in normal prostate.

Further studies led to the isolation of an extended cDNA sequence for P712P (SEQ ID NO: 552). The amino acid sequences encoded by 16 predicted open reading frames present within the sequence of SEQ ID NO: 552 are provided in SEQ ID NO: 553-568.

The full-length cDNA for P711P was obtained by employing the partial sequence of SEQ ID NO: 307 to screen a prostate cDNA library. Specifically, a directionally cloned prostate cDNA library was prepared using standard techniques. One million colonies of this library were plated onto LB/Amp plates. Nylon membrane filters were used to lift these colonies, and the cDNAs which were picked up by these filters were denatured and cross-linked to the filters by UV light. The P711P cDNA fragment of SEQ ID NO: 307 was radio-labeled and used to hybridize with these filters. Positive clones were selected, and cDNAs were prepared and sequenced using an automatic Perkin Elmer/Applied Biosystems sequencer. The determined full-length sequence of P711P is provided in SEQ ID NO: 382, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 383.

Using PCR and hybridization-based methodologies, additional cDNA sequence information was derived for two clones described above, 11-C9 and 9-F3, herein after referred to as P707P and P714P, respectively (SEQ ID NO: 333 and 334). After comparison with the most recent GenBank, P707P was found to be a splice variant of the known gene HoxB13. In contrast, no significant homologies to P714P

10

were found. Further studies employing the sequence of SEQ ID NO: 334 as a probe in standard full-length cloning methods, resulted in an extended cDNA sequence for P714P. This sequence is provided in SEQ ID NO: 619. This sequence was found to show some homology to the gene that encodes human ribosomal L23A protein.

Clones 8-B3, P89, P98, P130 and P201 (as disclosed in U.S. Patent Application No. 09/020,956, filed February 9, 1998) were found to be contained within one contiguous sequence, referred to as P705P (SEQ ID NO: 335, with the predicted amino acid sequence provided in SEQ ID NO: 336), which was determined to be a splice variant of the known gene NKX 3.1.

Further studies on P775P resulted in the isolation of four additional sequences (SEQ ID NO: 473-476) which are all splice variants of the P775P gene. The sequence of SEQ ID NO: 474 was found to contain two open reading frames (ORFs). The predicted amino acid sequences encoded by these ORFs are provided in SEQ ID NO: 477 and 478. The cDNA sequence of SEQ ID NO: 475 was found to contain an ORF which encodes the amino acid sequence of SEQ ID NO: 479. The cDNA sequence of SEQ ID NO: 473 was found to contain four ORFs. The predicted amino acid sequences encoded by these ORFs are provided in SEQ ID NO: 480-483. Additional splice variants of P775P are provided in SEQ ID NO: 593-597.

Subsequent studies led to the identification of a genomic region on chromosome 22q11.2, known as the Cat Eye Syndrome region, that contains the five prostate genes P704P, P712P, P774P, P775P and B305D. The relative location of each of these five genes within the genomic region is shown in Fig. 10. This region may therefore be associated with malignant tumors, and other potential tumor genes may be contained within this region. These studies also led to the identification of a potential open reading frame (ORF) for P775P (provided in SEQ ID NO: 533), which encodes the amino acid sequence of SEQ ID NO: 534.

Comparison of the clone of SEQ ID NO: 325 (referred to as P558S) with sequences in the GenBank and GeneSeq DNA databases showed that P558S is identical to the prostate-specific transglutaminase gene, which is known to have two forms. The full-length sequences for the two forms are provided in SEQ ID NO: 630 and 631, with

the corresponding amino acid sequences being provided in SEQ ID NO: 632 and 633, respectively. The cDNA sequence of SEQ ID NO: 631 has a 15 pair base insert, resulting in a 5 amino acid insert in the corresponding amino acid sequence (SEQ ID NO: 633). This insert is not present in the sequence of SEQ ID NO: 630.

Further studies on P768P (SEQ ID NO: 315) led to the identification of the putative full-length open reading frame (ORF). The cDNA sequence of the ORF with stop codon is provided in SEQ ID NO: 764. The cDNA sequence of the ORF without stop codon is provided in SEQ ID NO: 765, with the corresponding amino acid sequence being provided in SEQ ID NO: 766. This sequence was found to show 86% identity to a rat calcium transporter protein, indicating that P768P may represent a human calcium transporter protein. The locations of transmembrane domains within P768P were predicted using the PSORT II computer algorithm. Six transmembrane domains were predicted at amino acid positions 118-134, 172-188, 211-227, 230-246, 282-298 and 348-364. The amino acid sequences of SEQ ID NO: 767-772 represent amino acids 1-134, 135-188, 189-227, 228-246, 247-298 and 299-511 of P768P, respectively.

EXAMPLE 4

SYNTHESIS OF POLYPEPTIDES

20

25.

30

5

10

15

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of

0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

5

EXAMPLE 5

FURTHER ISOLATION AND CHARACTERIZATION OF PROSTATE-SPECIFIC POLYPEPTIDES BY PCR-BASED SUBTRACTION

10 A cDNA library generated from prostate primary tumor mRNA as described above was subtracted with cDNA from normal prostate. The subtraction was performed using a PCR-based protocol (Clontech), which was modified to generate larger fragments. Within this protocol, tester and driver double stranded cDNA were separately digested with five restriction enzymes that recognize six-nucleotide restriction sites (Mlul, MscI, PvuII, SalI and StuI). This digestion resulted in an average 15 cDNA size of 600 bp, rather than the average size of 300 bp that results from digestion with Rsal according to the Clontech protocol. This modification did not affect the

subtraction efficiency. Two tester populations were then created with different

20

adapters, and the driver library remained without adapters.

The tester and driver libraries were then hybridized using excess driver cDNA. In the first hybridization step, driver was separately hybridized with each of the two tester cDNA populations. This resulted in populations of (a) unhybridized tester cDNAs, (b) tester cDNAs hybridized to other tester cDNAs, (c) tester cDNAs hybridized to driver cDNAs and (d) unhybridized driver cDNAs. The two separate hybridization reactions were then combined, and rehybridized in the presence of additional denatured driver cDNA. Following this second hybridization, in addition to populations (a) through (d), a fifth population (e) was generated in which tester cDNA with one adapter hybridized to tester cDNA with the second adapter. Accordingly, the second hybridization step resulted in enrichment of differentially expressed sequences which could be used as templates for PCR amplification with adaptor-specific primers.

25

15

20

25

30

The ends were then filled in, and PCR amplification was performed using adaptor-specific primers. Only population (e), which contained tester cDNA that did not hybridize to driver cDNA, was amplified exponentially. A second PCR amplification step was then performed, to reduce background and further enrich differentially expressed sequences.

This PCR-based subtraction technique normalizes differentially expressed cDNAs so that rare transcripts that are overexpressed in prostate tumor tissue may be recoverable. Such transcripts would be difficult to recover by traditional subtraction methods.

In addition to genes known to be overexpressed in prostate tumor, seventy-seven further clones were identified. Sequences of these partial cDNAs are provided in SEQ ID NO: 29 to 305. Most of these clones had no significant homology to database sequences. Exceptions were JPTPN23 (SEQ ID NO: 231; similarity to pig valosin-containing protein), JPTPN30 (SEQ ID NO: 234; similarity to rat mRNA for proteasome subunit), JPTPN45 (SEQ ID NO: 243; similarity to rat norvegicus cytosolic NADP-dependent isocitrate dehydrogenase), JPTPN46 (SEQ ID NO: 244; similarity to human subclone H8 4 d4 DNA sequence), JP1D6 (SEQ ID NO: 265; similarity to *G. gailius* dynein light chain-A), JP8D6 (SEQ ID NO: 288; similarity to human BAC clone RG016J04), JP8F5 (SEQ ID NO: 289; similarity to human subclone H8 3 b5 DNA sequence), and JP8E9 (SEQ ID NO: 299; similarity to human Alu sequence).

Additional studies using the PCR-based subtraction library consisting of a prostate tumor pool subtracted against a normal prostate pool (referred to as PT-PN PCR subtraction) yielded three additional clones. Comparison of the cDNA sequences of these clones with the most recent release of GenBank revealed no significant homologies to the two clones referred to as P715P and P767P (SEQ ID NO: 312 and 314). The remaining clone was found to show some homology to the known gene KIAA0056 (SEQ ID NO: 318). Using microarray analysis to measure mRNA expression levels in various tissues, all three clones were found to be over-expressed in prostate tumors and BPH tissues. Specifically, clone P715P was over-expressed in most prostate tumors and BPH tissues by a factor of three or greater, with elevated expression

15

20

seen in the majority of normal prostate samples and in fetal tissue, but negative to low expression in all other normal tissues. Clone P767P was over-expressed in several prostate tumors and BPH tissues, with moderate expression levels in half of the normal prostate samples, and background to low expression in all other normal tissues tested.

Further analysis, by microarray as described above, of the PT-PN PCR subtraction library and of a DNA subtraction library containing cDNA from prostate tumor subtracted with a pool of normal tissue cDNAs, led to the isolation of 27 additional clones (SEQ ID NO: 340-365 and 381) which were determined to be over-expressed in prostate tumor. The clones of SEQ ID NO: 341, 342, 345, 347, 348, 349, 351, 355-359, 361, 362 and 364 were also found to be expressed in normal prostate. Expression of all 26 clones in a variety of normal tissues was found to be low or undetectable, with the exception of P544S (SEQ ID NO: 356) which was found to be expressed in small intestine. Of the 26 clones, 11 (SEQ ID NO: 340-349 and 362) were found to show some homology to previously identified sequences. No significant homologies were found to the clones of SEQ ID NO: 350, 351, 353-361, and 363-365.

Comparison of the sequence of SEQ ID NO: 362 with sequences in the GenBank and GeneSeq DNA databases showed that this clone (referred to as P788P) is identical to GeneSeq Accession No. X27262, which encodes a protein found in the GeneSeq protein Accession No. Y00931. The full length cDNA sequence of P788P is provided in SEQ ID NO: 634, with the corresponding predicted amino acid being provided in SEQ ID NO: 635. Subsequently, a full-length cDNA sequence for P788P that contains polymorphisms not found in the sequence of SEQ ID NO: 634, was cloned multiple times by PCR amplification from cDNA prepared from several RNA templates from three individuals. This determined cDNA sequence of this polymorphic variant of P788P is provided in SEQ ID NO: 636, with the corresponding amino acid sequence being provided in SEQ ID NO: 637. The sequence of SEQ ID NO: 637 differs from that of SEQ ID NO: 635 by six amino acid residues. The P788P protein has 7 potential transmembrane domains at the C-terminal portion and is predicted to be a plasma membrane protein with an extracellular N-terminal region.

15

20

25

Further studies on the clone of SEQ ID NO: 352 (referred to as P790P) led to the isolation of the full-length cDNA sequence of SEQ ID NO: 526. The corresponding predicted amino acid is provided in SEQ ID NO: 527. Data from two quantitative PCR experiments indicated that P790P is over-expressed in 11/15 tested prostate tumor samples and is expressed at low levels in spinal cord, with no expression being seen in all other normal samples tested. Data from further PCR experiments and microarray experiments showed over-expression in normal prostate and prostate tumor with little or no expression in other tissues tested. P790P was subsequently found to show significant homology to a previously identified G-protein coupled prostate tissue receptor.

Additional studies on the clone of SEQ ID NO: 354 (referred to as P776P) led to the isolation of an extended cDNA sequence, provided in SEQ ID NO: 569. The determined cDNA sequences of three additional splice variants of P776P are provided in SEQ ID NO: 570-572. The amino acid sequences encoded by two predicted open reading frames (ORFs) contained within SEQ ID NO: 570, one predicted ORF contained within SEQ ID NO: 571, and 11 predicted ORFs contained within SEQ ID NO: 569. are provided in SEQ ID NO: 573-586, respectively. Further studies led to the isolation of the full-length sequence for the clone of SEQ ID NO: 570 (provided in SEQ ID NO: 737). Full-length cloning efforts on the clone of SEQ ID NO: 571 led to the isolation of two sequences (provided in SEQ ID NO: 738 and 739), representing a single clone, that are identical with the exception of a polymorphic insertion/deletion at position 1293. Specifically, the clone of SEQ ID NO: 739 (referred to as clone F1) has a C at position 1293. The clone of SEQ ID NO: 738 (referred to as clone F2) has a single base pair deletion at position 1293. The predicted amino acid sequences encoded by 5 open reading frames located within SEQ ID NO: 737 are provided in SEQ ID NO: 740-744, with the predicted amino acid sequences encoded by the clone of SEQ ID NO: 738 and 739 being provided in SEQ ID NO: 745-750.

Comparison of the cDNA sequences for the clones P767P (SEQ ID NO: 314) and P777P (SEQ ID NO: 350) with sequences in the GenBank human EST database showed that the two clones matched many EST sequences in common,

15

20

25

30

suggesting that P767P and P777P may represent the same gene. A DNA consensus sequence derived from a DNA sequence alignment of P767P, P777P and multiple EST clones is provided in SEQ ID NO: 587. The amino acid sequences encoded by three putative ORFs located within SEQ ID NO: 587 are provided in SEQ ID NO: 588-590.

The clone of SEQ ID NO: 342 (referred to as P789P) was found to show homology to a previously identified gene. The full length cDNA sequence for P789P and the corresponding amino acid sequence are provided in SEQ ID NO: 735 and 736, respectively.

10

PEPTIDE PRIMING OF MICE AND PROPAGATION OF CTL LINES

EXAMPLE 6

6.1. This Example illustrates the preparation of a CTL cell line specific for cells expressing the P502S gene.

Mice expressing the transgene for human HLA A2Kb (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with P2S#12 peptide (VLGWVAEL; SEQ ID NO: 306), which is derived from the P502S gene (also referred to herein as J1-17, SEQ ID NO: 8), as described by Theobald et al., Proc. Natl. Acad. Sci. USA 92:11993-11997, 1995 with the following modifications. Mice were immunized with 100µg of P2S#12 and 120µg of an I-Ab binding peptide derived from hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and using a nylon mesh single cell suspensions prepared. Cells were then resuspended at 6 x 10⁶ cells/ml in complete media (RPMI-1640; Gibco BRL, Gaithersburg, MD) containing 10% FCS, 2mM Glutamine (Gibco BRL), sodium pyruvate (Gibco BRL), non-essential amino acids (Gibco BRL), 2 x 10⁻⁵ M 2mercaptoethanol, 50U/ml penicillin and streptomycin, and cultured in the presence of irradiated (3000 rads) P2S#12-pulsed (5mg/ml P2S#12 and 10mg/ml B2-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7µg/ml dextran sulfate and 25µg/ml LPS for 3 days). Six days later, cells (5 x 10⁵/ml) were restimulated with 2.5 x 10⁶/ml peptide pulsed irradiated (20,000 rads) EL4A2Kb cells

15

20

25

30

(Sherman et al, *Science 258*:815-818, 1992) and 3 x 10⁶/ml A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20U/ml IL-2. Cells continued to be restimulated on a weekly basis as described, in preparation for cloning the line.

P2S#12 line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 10⁴ cells/ well) as stimulators and A2 transgenic spleen cells as feeders (5 x 10⁵ cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were restimulated as before. On day 21, clones that were growing were isolated and maintained in culture. Several of these clones demonstrated significantly higher reactivity (lysis) against human fibroblasts (HLA A2Kb expressing) transduced with P502S than against control fibroblasts. An example is presented in Figure 1.

This data indicates that P2S #12 represents a naturally processed epitope of the P502S protein that is expressed in the context of the human HLA A2Kb molecule.

6.2. This Example illustrates the preparation of murine CTL lines and CTL clones specific for cells expressing the P501S gene.

This series of experiments were performed similarly to that described above. Mice were immunized with the P1S#10 peptide (SEQ ID NO: 337), which is derived from the P501S gene (also referred to herein as L1-12, SEQ ID NO: 110). The P1S#10 peptide was derived by analysis of the predicted polypeptide sequence for P501S for potential HLA-A2 binding sequences as defined by published HLA-A2 binding motifs (Parker, KC, et al, J. Immunol., 152:163, 1994). P1S#10 peptide was synthesized as described in Example 4, and empirically tested for HLA-A2 binding using a T cell based competition assay. Predicted A2 binding peptides were tested for their ability to compete HLA-A2 specific peptide presentation to an HLA-A2 restricted CTL clone (D150M58), which is specific for the HLA-A2 binding influenza matrix peptide fluM58. D150M58 CTL secretes TNF in response to self-presentation of peptide fluM58. In the competition assay, test peptides at 100-200 µg/ml were added to cultures of D150M58 CTL in order to bind HLA-A2 on the CTL. After thirty minutes,

WO 01/051633

145

PCT/US01/01574

CTL cultured with test peptides, or control peptides, were tested for their antigen dose response to the fluM58 peptide in a standard TNF bioassay. As shown in Figure 3, peptide P1S#10 competes HLA-A2 restricted presentation of fluM58, demonstrating that peptide P1S#10 binds HLA-A2.

Mice expressing the transgene for human HLA A2Kb were immunized as described by Theobald et al. (Proc. Natl. Acad. Sci. USA 92:11993-11997, 1995) with the following modifications. Mice were immunized with 62.5µg of P1S #10 and 120μg of an I-A^b binding peptide derived from Hepatitis B Virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and single cell suspensions prepared using a nylon mesh. Cells were then resuspended at 6 x 10⁶ cells/ml in complete media (as described above) and cultured in the presence of irradiated (3000 rads) P1S#10-pulsed (2µg/ml P1S#10 and 10mg/ml β2-microglobulin) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7µg/ml dextran sulfate and 25µg/ml LPS for 3 days). Six days later cells (5 x 10⁵/ml) were restimulated with 2.5 x 10⁶/ml peptide-pulsed irradiated (20,000 rads) EL4A2Kb cells, as described above, and 3 x 10⁶/ml A2 transgenic spleen feeder cells. Cells were cultured in the presence of 20 U/ml IL-2. Cells were restimulated on a weekly basis in preparation for cloning. After three rounds of in vitro stimulations, one line was generated that recognized P1S#10-pulsed Jurkat A2Kb targets and P501S-transduced Jurkat targets as shown in Figure 4.

A P1S#10-specific CTL line was cloned by limiting dilution analysis with peptide pulsed EL4 A2Kb tumor cells (1 x 10⁴ cells/ well) as stimulators and A2 transgenic spleen cells as feeders (5 x 10⁵ cells/ well) grown in the presence of 30U/ml IL-2. On day 14, cells were restimulated as before. On day 21, viable clones were isolated and maintained in culture. As shown in Figure 5, five of these clones demonstrated specific cytolytic reactivity against P501S-transduced Jurkat A2Kb targets. This data indicates that P1S#10 represents a naturally processed epitope of the P501S protein that is expressed in the context of the human HLA-A2.1 molecule.

5

10

20

146

EXAMPLE 7

PRIMING OF CTL IN VIVO USING NAKED DNA IMMUNIZATION

WITH A PROSTATE ANTIGEN

The prostate-specific antigen L1-12, as described above, is also referred to as P501S. HLA A2Kb Tg mice (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with 100 µg P501S in the vector VR1012 either intramuscularly or intradermally. The mice were immunized three times, with a two week interval between immunizations. Two weeks after the last immunization, immune spleen cells were cultured with Jurkat A2Kb-P501S transduced stimulator cells. CTL lines were stimulated weekly. After two weeks of *in vitro* stimulation, CTL activity was assessed against P501S transduced targets. Two out of 8 mice developed strong anti-P501S CTL responses. These results demonstrate that P501S contains at least one naturally processed HLA-A2-restricted CTL epitope.

EXAMPLE 8

ABILITY OF HUMAN T CELLS TO RECOGNIZE PROSTATE-SPECIFIC POLYPEPTIDES

This Example illustrates the ability of T cells specific for a prostate tumor polypeptide to recognize human tumor.

Human CD8⁺ T cells were primed *in vitro* to the P2S-12 peptide (SEQ ID NO: 306) derived from P502S (also referred to as J1-17) using dendritic cells according to the protocol of Van Tsai et al. (*Critical Reviews in Immunology 18*:65-75, 1998). The resulting CD8⁺ T cell microcultures were tested for their ability to recognize the P2S-12 peptide presented by autologous fibroblasts or fibroblasts which were transduced to express the P502S gene in a γ -interferon ELISPOT assay (*see* Lalvani et al., *J. Exp. Med. 186*:859-865, 1997). Briefly, titrating numbers of T cells were assayed in duplicate on 10⁴ fibroblasts in the presence of 3 μ g/ml human β 2-microglobulin and 1 μ g/ml P2S-12 peptide or control E75 peptide. In addition, T cells were simultaneously assayed on autologous fibroblasts transduced with the P502S gene or as a control, fibroblasts transduced with HER-2/*neu*. Prior to the assay, the

5

15

20

25

fibroblasts were treated with 10 ng/ml γ-interferon for 48 hours to upregulate class I MHC expression. One of the microcultures (#5) demonstrated strong recognition of both peptide pulsed fibroblasts as well as transduced fibroblasts in a γ-interferon ELISPOT assay. Figure 2A demonstrates that there was a strong increase in the number of γ-interferon spots with increasing numbers of T cells on fibroblasts pulsed with the P2S-12 peptide (solid bars) but not with the control E75 peptide (open bars). This shows the ability of these T cells to specifically recognize the P2S-12 peptide. As shown in Figure 2B, this microculture also demonstrated an increase in the number of γ-interferon spots with increasing numbers of T cells on fibroblasts transduced to express the P502S gene but not the HER-2/neu gene. These results provide additional confirmatory evidence that the P2S-12 peptide is a naturally processed epitope of the P502S protein. Furthermore, this also demonstrates that there exists in the human T cell repertoire, high affinity T cells which are capable of recognizing this epitope. These T cells should also be capable of recognizing human tumors which express the P502S gene.

EXAMPLE 9

ELICITATION OF PROSTATE ANTIGEN-SPECIFIC CTL RESPONSES IN HUMAN BLOOD

20

15

This Example illustrates the ability of a prostate-specific antigen to elicit a CTL response in blood of normal humans.

Autologous dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal donors by growth for five days in RPMI medium containing 10% human serum, 50 ng/ml GMCSF and 30 ng/ml IL-4. Following culture, DC were infected overnight with recombinant P501S-expressing vaccinia virus at an M.O.I. of 5 and matured for 8 hours by the addition of 2 micrograms/ml CD40 ligand. Virus was inactivated by UV irradiation, CD8⁺ cells were isolated by positive selection using magnetic beads, and priming cultures were initiated in 24-well plates. Following five stimulation cycles using autologous fibroblasts

WO 01/051633

retrovirally transduced to express P501S and CD80, CD8+ lines were identified that specifically produced interferon-gamma when stimulated with autologous P501S-The P501S-specific activity of cell line 3A-1 could be transduced fibroblasts. maintained following additional stimulation cycles on autologous B-LCL transduced with P501S. Line 3A-1 was shown to specifically recognize autologous B-LCL transduced to express P501S, but not EGFP-transduced autologous B-LCL, as measured by cytotoxicity assays (51Cr release) and interferon-gamma production (Interferongamma Elispot; see above and Lalvani et al., J. Exp. Med. 186:859-865, 1997). The results of these assays are presented in Figures 6A and 6B.

10

15

20

25

EXAMPLE 10

IDENTIFICATION OF A NATURALLY PROCESSED CTL EPITOPE CONTAINED WITHIN THE PROSTATE-SPECIFIC ANTIGEN P703P

The 9-mer peptide p5 (SEQ ID NO: 338) was derived from the P703P antigen (also referred to as P20). The p5 peptide is immunogenic in human HLA-A2 donors and is a naturally processed epitope. Antigen specific human CD8+ T cells can be primed following repeated in vitro stimulations with monocytes pulsed with p5 peptide. These CTL specifically recognize p5-pulsed and P703P-transduced target cells in both ELISPOT (as described above) and chromium release assays. Additionally, immunization of HLA-A2Kb transgenic mice with p5 leads to the generation of CTL lines which recognize a variety of HLA-A2Kb or HLA-A2 transduced target cells expressing P703P.

Initial studies demonstrating that p5 is a naturally processed epitope were done using HLA-A2Kb transgenic mice. HLA-A2Kb transgenic mice were immunized subcutaneously in the footpad with 100 µg of p5 peptide together with 140 µg of hepatitis B virus core peptide (a Th peptide) in Freund's incomplete adjuvant. Three weeks post immunization, spleen cells from immunized mice were stimulated in vitro with peptide-pulsed LPS blasts. CTL activity was assessed by chromium release assay five days after primary in vitro stimulation. Retrovirally transduced cells expressing the 30

control antigen P703P and HLA-A2Kb were used as targets. CTL lines that specifically recognized both p5-pulsed targets as well as P703P-expressing targets were identified.

Human *in vitro* priming experiments demonstrated that the p5 peptide is immunogenic in humans. Dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by culturing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, the DC were pulsed with 1 ug/ml p5 peptide and cultured with CD8+ T cell enriched PBMC. CTL lines were restimulated on a weekly basis with p5-pulsed monocytes. Five to six weeks after initiation of the CTL cultures, CTL recognition of p5-pulsed target cells was demonstrated. CTL were additionally shown to recognize human cells transduced to express P703P, demonstrating that p5 is a naturally processed epitope.

Studies identifying a further peptide epitope (referred to as peptide 4) derived from the prostate tumor-specific antigen P703P that is capable of being recognized by CD4 T cells on the surface of cells in the context of HLA class II molecules were carried out as follows. The amino acid sequence for peptide 4 is provided in SEQ ID NO: 638, with the corresponding cDNA sequence being provided in SEQ ID NO: 639.

Twenty 15-mer peptides overlapping by 10 amino acids and derived from the carboxy-terminal fragment of P703P were generated using standard procedures. Dendritic cells (DC) were derived from PBMC of a normal female donor using GM-CSF and IL-4 by standard protocols. CD4 T cells were generated from the same donor as the DC using MACS beads and negative selection. DC were pulsed overnight with pools of the 15-mer peptides, with each peptide at a final concentration of 0.25 microgram/ml. Pulsed DC were washed and plated at 1 x 10⁴ cells/well of 96-well V-bottom plates and purified CD4 T cells were added at 1 x 10⁵/well. Cultures were supplemented with 60 ng/ml IL-6 and 10 ng/ml IL-12 and incubated at 37 °C. Cultures were restimulated as above on a weekly basis using DC generated and pulsed as above as antigen presenting cells, supplemented with 5 ng/ml IL-7 and 10 u/ml IL-2. Following 4 *in vitro* stimulation cycles, 96 lines (each line corresponding to one well) were tested for specific proliferation and cytokine production in response to the

15

20

25

15

20

25

stimulating pools with an irrelevant pool of peptides derived from mammaglobin being used as a control.

One line (referred to as 1-F9) was identified from pool #1 that demonstrated specific proliferation (measured by 3H proliferation assays) and cytokine production (measured by interferon-gamma ELISA assays) in response to pool #1 of P703P peptides. This line was further tested for specific recognition of the peptide pool, specific recognition of individual peptides in the pool, and in HLA mismatch analyses to identify the relevant restricting allele. Line 1-F9 was found to specifically proliferate and produce interferon-gamma in response to peptide pool #1, and also to peptide 4 (SEQ ID NO: 638). Peptide 4 corresponds to amino acids 126-140 of SEQ ID NO: 327. Peptide titration experiments were conducted to assess the sensitivity of line 1-F9 for the specific peptide. The line was found to specifically respond to peptide 4 at concentrations as low as 0.25 ng/ml, indicating that the T cells are very sensitive and therefore likely to have high affinity for the epitope.

To determine the HLA restriction of the P703P response, a panel of antigen presenting cells (APC) was generated that was partially matched with the donor used to generate the T cells. The APC were pulsed with the peptide and used in proliferation and cytokine assays together with line 1-F9. APC matched with the donor at HLA-DRB0701 and HLA-DQB02 alleles were able to present the peptide to the T cells, indicating that the P703P-specific response is restricted to one of these alleles.

Antibody blocking assays were utilized to determine if the restricting allele was HLA-DR0701 or HLA-DQ02. The anti-HLA-DR blocking antibody L243 or an irrelevant isotype matched IgG2a were added to T cells and APC cultures pulsed with the peptide RMPTVLQCVNVSVVS (SEQ ID NO: 638) at 250 ng/ml. Standard interferon-gamma and proliferation assays were performed. Whereas the control antibody had no effect on the ability of the T cells to recognize peptide-pulsed APC, in both assays the anti-HLA-DR antibody completely blocked the ability of the T cells to specifically recognize peptide-pulsed APC.

To determine if the peptide epitope RMPTVLQCVNVSVVS (SEQ ID NO: 638) was naturally processed, the ability of line 1-F9 to recognize APC pulsed with recombinant P703P protein was examined. For these experiments a number of

15

20

25

30

recombinant P703P sources were utilized; *E. coli*-derived P703P, Pichia-derived P703P and baculovirus-derived P703P. Irrelevant protein controls used were *E. coli*-derived L3E a lung-specific antigen) and baculovirus-derived mammaglobin. In interferongamma ELISA assays, line 1-F9 was able to efficiently recognize both *E. coli* forms of P703P as well as Pichia-derived recombinant P703P, while baculovirus-derived P703P was recognized less efficiently. Subsequent Western blot analysis revealed that the *E coli* and Pichia P703P protein preparations were intact while the baculovirus P703P preparation was approximately 75% degraded. Thus, peptide RMPTVLQCVNVSVVS (SEQ ID NO: 638) from P703P is a naturally processed peptide epitope derived from P703P and presented to T cells in the context of HLA-DRB-0701

In further studies, twenty-four 15-mer peptides overlapping by 10 amino acids and derived from the N-terminal fragment of P703P (corresponding to amino acids 27-154 of SEQ ID NO: 525) were generated by standard procedures and their ability to be recognized by CD4 cells was determined essentially as described above. DC were pulsed overnight with pools of the peptides with each peptide at a final concentration of 10 microgram/ml. A large number of individual CD4 T cell lines (65/480) demonstrated significant proliferation and cytokine release (IFN-gamma) in response to the P703P peptide pools but not to a control peptide pool. The CD4 T cell lines which demonstrated specific activity were restimulated on the appropriate pool of P703P peptides and reassayed on the individual peptides of each pool as well as a peptide dose titration of the pool of peptides in a IFN-gamma release assay and in a proliferation assay.

Sixteen immunogenic peptides were recognized by the T cells from the entire set of peptide antigens tested. The amino acid sequences of these peptides are provided in SEQ ID NO: 656-671, with the corresponding cDNA sequences being provided in SEQ ID NO: 640-655, respectively. In some cases the peptide reactivity of the T cell line could be mapped to a single peptide, however some could be mapped to more than one peptide in each pool. Those CD4 T cell lines that displayed a representative pattern of recognition from each peptide pool with a reasonable affinity for peptide were chosen for further analysis (I-1A, -6A; II-4C, -5E; III-6E, IV-4B, -3F, -9B, -10F, V-5B, -4D, and -10F). These CD4 T cells lines were restimulated on the

15

20

25

30

152

appropriate individual peptide and reassayed on autologous DC pulsed with a truncated form of recombinant P703P protein made in E. coli (a.a. 96 - 254 of SEQ ID NO: 525), full-length P703P made in the baculovirus expression system, and a fusion between influenza virus NS1 and P703P made in E. coli. Of the T cell lines tested, line I-1A recognized specifically the truncated form of P703P (E. coli) but no other recombinant form of P703P. This line also recognized the peptide used to elicit the T cells. Line 2-4C recognized the truncated form of P703P (E. coli) and the full length form of P703P made in baculovirus, as well as peptide. The remaining T cell lines tested were either peptide-specific only (II-5E, II-6F, IV-4B, IV-3F, IV-9B, IV-10F, V-5B and V-4D) or were non-responsive to any antigen tested (V-10F). These results demonstrate that the peptide sequence RPLLANDLMLIKLDE (SEQ ID NO: 671; corresponding to a.a. 110-124 of SEQ ID NO: 525) recognized by the T cell line I-1A, and the peptide sequences SVSESDTIRSISIAS (SEQ ID NO: 668; corresponding to a.a. 125-139 of SEQ ID NO: 525) and ISIASQCPTAGNSCL (SEQ ID NO: 667; corresponding to a.a. 135-149 of SEQ ID NO: 525) recognized by the T cell line II-4C may be naturally processed epitopes of the P703P protein.

EXAMPLE 11

EXPRESSION OF A BREAST TUMOR-DERIVED ANTIGEN

In Prostate

Isolation of the antigen B305D from breast tumor by differential display is described in US Patent Application No. 08/700,014, filed August 20, 1996. Several different splice forms of this antigen were isolated. The determined cDNA sequences for these splice forms are provided in SEQ ID NO: 366-375, with the predicted amino acid sequences corresponding to the sequences of SEQ ID NO: 292, 298 and 301-303 being provided in SEQ ID NO: 299-306, respectively. In further studies, a splice variant of the cDNA sequence of SEQ ID NO: 366 was isolated which was found to contain an additional guanine residue at position 884 (SEQ ID NO: 530), leading to a frameshift in the open reading frame. The determined DNA sequence of this ORF is

WO 01/051633

provided in SEQ ID NO: 531. This frameshift generates a protein sequence (provided in SEQ ID NO: 532) of 293 amino acids that contains the C-terminal domain common to the other isoforms of B305D but that differs in the N-terminal region.

The expression levels of B305D in a variety of tumor and normal tissues were examined by real time PCR and by Northern analysis. The results indicated that B305D is highly expressed in breast tumor, prostate tumor, normal prostate and normal testes, with expression being low or undetectable in all other tissues examined (colon tumor, lung tumor, ovary tumor, and normal bone marrow, colon, kidney, liver, lung, ovary, skin, small intestine, stomach). Using real-time PCR on a panel of prostate tumors, expression of B305D in prostate tumors was shown to increase with increasing Gleason grade, demonstrating that expression of B305D increases as prostate cancer progresses.

EXAMPLE 12

15 GENERATION OF HUMAN CTL IN VITRO USING WHOLE GENE PRIMING AND STIMULATION
TECHNIQUES WITH THE PROSTATE-SPECIFIC ANTIGEN P501S

Using *in vitro* whole-gene priming with P501S-vaccinia infected DC (see, for example, Yee et al, *The Journal of Immunology*, 157(9):4079-86, 1996), human CTL lines were derived that specifically recognize autologous fibroblasts transduced with P501S (also known as L1-12), as determined by interferon-γ ELISPOT analysis as described above. Using a panel of HLA-mismatched B-LCL lines transduced with P501S, these CTL lines were shown to be likely restricted to HLAB class I allele. Specifically, dendritic cells (DC) were differentiated from monocyte cultures derived from PBMC of normal human donors by growing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following culture, DC were infected overnight with recombinant P501S vaccinia virus at a multiplicity of infection (M.O.I) of five, and matured overnight by the addition of 3 μg/ml CD40 ligand. Virus was inactivated by UV irradiation. CD8+ T cells were isolated using a magnetic bead system, and priming cultures were initiated

20

25

using standard culture techniques. Cultures were restimulated every 7-10 days using autologous primary fibroblasts retrovirally transduced with P501S and CD80. Following four stimulation cycles, CD8+ T cell lines were identified that specifically produced interferon-γ when stimulated with P501S and CD80-transduced autologous fibroblasts. A panel of HLA-mismatched B-LCL lines transduced with P501S were generated to define the restriction allele of the response. By measuring interferon-γ in an ELISPOT assay, the P501S specific response was shown to be likely restricted by HLA B alleles. These results demonstrate that a CD8+ ČTL response to P501S can be elicited.

To identify the epitope(s) recognized, cDNA encoding P501S was fragmented by various restriction digests, and sub-cloned into the retroviral expression vector pBIB-KS. Retroviral supernatants were generated by transfection of the helper Supernatants were then used to transduce packaging line Phoenix-Ampho. Jurkat/A2Kb cells for CTL screening. CTL were screened in IFN-gamma ELISPOT assays against these A2Kb targets transduced with the "library" of P501S fragments. Initial positive fragments P501S/H3 and P501S/F2 were sequenced and found to encode amino acids 106-553 and amino acids 136-547, respectively, of SEQ ID NO: 113. A truncation of H3 was made to encode amino acid residues 106-351 of SEQ ID NO: 113, which was unable to stimulate the CTL, thus localizing the epitope to amino acid residues 351-547. Additional fragments encoding amino acids 1-472 (Fragment A) and amino acids 1-351 (Fragment B) were also constructed. Fragment A but not Fragment B stimulated the CTL thus localizing the epitope to amino acid residues 351-472. Overlapping 20-mer and 18-mer peptides representing this region were tested by pulsing Jurkat/A2Kb cells versus CTL in an IFN-gamma assay. Only peptides P501S-369(20) and P501S-369(18) stimulated the CTL. Nine-mer and 10-mer peptides representing this region were synthesized and similarly tested. Peptide P501S-370 (SEQ ID NO: 539) was the minimal 9-mer giving a strong response. Peptide P501S-376 (SEQ ID NO: 540) also gave a weak response, suggesting that it might represent a cross-reactive epitope.

10

15

20

15

20

25

30

In subsequent studies, the ability of primary human B cells transduced with P501S to prime MHC class I-restricted, P501S-specific, autologous CD8 T cells was examined. Primary B cells were derived from PBMC of a homozygous HLA-A2 donor by culture in CD40 ligand and IL-4, transduced at high frequency with recombinant P501S in the vector pBIB, and selected with blastocidin-S. For in vitro priming, purified CD8+ T cells were cultured with autologous CD40 ligand + IL-4 derived, P501S-transduced B cells in a 96-well microculture format. These CTL microcultures were re-stimulated with P501S-transduced B cells and then assayed for specificity. Following this initial screen, microcultures with significant signal above background were cloned on autologous EBV-transformed B cells (BLCL), also transduced with P501S. Using IFN-gamma ELISPOT for detection, several of these CD8 T cell clones were found to be specific for P501S, as demonstrated by reactivity to BLCL/P501S but not BLCL transduced with control antigen. It was further demonstrated that the anti-P501S CD8 T cell specificity is HLA-A2-restricted. First, antibody blocking experiments with anti-HLA-A,B,C monoclonal antibody (W6.32), anti-HLA-B,C monoclonal antibody (B1.23.2) and a control monoclonal antibody showed that only the anti-HLA-A,B,C antibody blocked recognition of P501Sexpressing autologous BLCL. Secondly, the anti-P501S CTL also recognized an HLA-A2 matched, heterologous BLCL transduced with P501S, but not the corresponding EGFP transduced control BLCL.

A naturally processed, CD8, class I-restricted peptide epitope of P501S was identified as follows. Dendritic Cells (DC) were isolated by Percol gradient followed by differential adherence, and cultured for 5 days in the presence of RPMI medium containing 1% human serum, 50ng/ml GM-CSF and 30ng/ml IL-4. Following culture, DC were infected for 24 hours with P501S-expressing adenovirus at an MOI of 10 and matured for an additional 24 hours by the addition of 2ug/ml CD40 ligand. CD8 cells were enriched for by the subtraction of CD4+, CD14+ and CD16+ populations from PBMC with magnetic beads. Priming cultures containing 10,000 P501S-expressing DC and 100,000 CD8+ T cells per well were set up in 96-well V-bottom plates with RPMI containing 10% human serum, 5ng/ml IL-12 and 10ng/ml IL-6. Cultures were stimulated every 7 days using autologous fibroblasts retrovirally

transduced to express P501S and CD80, and were treated with IFN-gamma for 48-72 hours to upregulate MHC Class I expression. 10u/ml IL-2 was added at the time of stimulation and on days 2 and 5 following stimulation. Following 4 stimulation cycles, one P501S-specific CD8+ T cell line (referred to as 2A2) was identified that produced IFN-gamma in response to IFN-gamma-treated P501S/CD80 expressing autologous fibroblasts, but not in response to IFN-gamma-treated P703P/CD80 expressing autologous fibroblasts in a γ -IFN Elispot assay. Line 2A2 was cloned in 96-well plates with 0.5 cell/well or 2 cells/well in the presence of 75,000 PBMC/well, 10,000 B-LCL/well, 30ng/ml OKT3 and 50u/ml IL-2. Twelve clones were isolated that showed strong P501S specificity in response to transduced fibroblasts.

Fluorescence activated cell sorting (FACS) analysis was performed on P501S-specific clones using CD3-, CD4- and CD8-specific antibodies conjugated to PercP, FITC and PE respectively. Consistent with the use of CD8 enriched T cells in the priming cultures, P5401S-specific clones were determined to be CD3+, CD8+ and CD4-.

To identify the relevant P501S epitope recognized by P501S specific CTL, pools of 18-20 mer or 30-mer peptides that spanned the majority of the amino acid sequence of P501S were loaded onto autologous B-LCL and tested in y-IFN Elispot assays for the ability to stimulate two P501S-specific CTL clones, referred to as 4E5 and 4E7. One pool, composed of five 18-20 mer peptides that spanned amino acids 411-486 of P501S (SEQ ID NO: 113), was found to be recognized by both P501S-specific clones. To identify the specific 18-20 mer peptide recognized by the clones, each of the 18-20 mer peptides that comprised the positive pool were tested individually in γ -IFN Elispot assays for the ability to stimulate the two P501S-specific CTL clones, 4E5 and 4E7. Both 4E5 and 4E7 specifically recognized one 20-mer peptide (SEQ ID NO: 710; cDNA sequence provided in SEQ ID NO: 711) that spanned amino acids 453-472 of P501S. Since the minimal epitope recognized by CD8+ T cells is almost always either a 9 or 10-mer peptide sequence, 10-mer peptides that spanned the entire sequence of SEQ ID NO: 710 were synthesized that differed by 1 amino acid. Each of these 10-mer peptides was tested for the ability to stimulate two P501S-specific clones, (referred to as 1D5 and 1E12). One 10-mer peptide (SEQ ID NO: 712; cDNA sequence provided in

10

15

20

25

WO 01/051633

10

15

20

25

30

SEQ ID NO: 713) was identified that specifically stimulated the P501S-specific clones. This epitope spans amino acids 463-472 of P501S. This sequence defines a minimal 10-mer epitope from P501S that can be naturally processed and to which CTL responses can be identified in normal PBMC. Thus, this epitope is a candidate for use as a vaccine moiety, and as a therapeutic and/or diagnostic reagent for prostate cancer.

To identify the class I restriction element for the P501S-derived sequence of SEQ ID NO: 712, HLA blocking and mismatch analyses were performed. In γ -IFN Elispot assays, the specific response of clones 4A7 and 4E5 to P501S-transduced autologous fibroblasts was blocked by pre-incubation with 25ug/ml W6/32 (pan-Class I blocking antibody) and B1.23.2 (HLA-B/C blocking antibody). These results demonstrate that the SEQ ID NO: 712-specific response is restricted to an HLA-B or HLA-C allele.

For the HLA mismatch analysis, autologous B-LCL (HLA-A1,A2,B8,B51. Cw7) Cw1. and heterologous **B-LCL** (HLA-A2,A3,B18,B51,Cw5,Cw14) that share the HLAB51 allele were pulsed for one hour with 20ug/ml of peptide of SEQ ID NO: 712, washed, and tested in γ-IFN Elispot assays for the ability to stimulate clones 4A7 and 4E5. Antibody blocking assays with the B1.23.2 (HLA-B/C blocking antibody) were also performed. SEQ ID NO: 712-specific response was detected using both the autologous (D326) and heterologous (D107) B-LCL, and furthermore the responses were blocked by pre-incubation with 25ug/ml of B1.23.2 HLA-B/C blocking antibody. Together these results demonstrate that the P501S-specific response to the peptide of SEQ ID NO: 712 is restricted to the HLA-B51 class I allele. Molecular cloning and sequence analysis of the HLA-B51 allele from D3326 revealed that the HLA-B51 subtype of D326 is HLA-B51011.

Based on the 10-mer P501S-derived epitope of SEQ ID NO: 712, two 9-mers with the sequences of SEQ ID NO: 714 and 715 were synthesized and tested in Elispot assays for the ability to stimulate two P501S-specific CTL clones derived from line 2A2. The 10-mer peptide of SEQ ID NO: 712, as well as the 9-mer peptide of SEQ ID NO: 715, but not the 9-mer peptide of SEQ ID NO: 714, were capable of stimulating the P501S-specific CTL to produce IFN-gamma. These results demonstrate that the peptide of SEQ ID NO: 715 is a 9-mer P501S-derived epitope recognized by P501S-

158

specific CTL. The DNA sequence encoding the epitope of SEQ ID NO: 715 is provided in SEQ ID NO: 716.

To identify the class I restricting allele for the P501S-derived peptide of SEQ ID NO: 712 and 715 specific response, each of the HLA B and C alleles were cloned from the donor used in the *in vitro* priming experiment. Sequence analysis indicated that the relevant alleles were HLA-B8, HLA-B51, HLA-Cw01 and HLA-Cw07. Each of these alleles were subcloned into an expression vector and cotransfected together with the P501S gene into VA-13 cells. Transfected VA-13 cells were then tested for the ability to specifically stimulate the P501S-specific CTL in ELISPOT assays. VA-13 cells transfected with P501S and HLA-B51 were capable of stimulating the P501S-specific CTL to secrete gamma-IFN. VA-13 cells transfected with HLA-B51 alone or P501S + the other HLA-alleles were not capable of stimulating the P501S-specific CTL. These results demonstrate that the restricting allele for the P501S-specific response is the HLAB51 allele. Sequence analysis revealed that the subtype of the relevant restricting allele is HLA-B51011.

To determine if the P501S-specific CTL could recognize prostate tumor cells that express P501S, the P501S-positive lines LnCAP and CRL2422 (both expressing "moderate" amounts of P501S mRNA and protein), and PC-3 (expressing low amounts of P501S mRNA and protein), plus the P501S-negative cell line DU-145 were retrovirally transduced with the HLA-B51011 allele that was cloned from the donor used to generate the P501S-specific CTL. HLA-B51011- or EGFP-transduced and selected tumor cells were treated with gamma-interferon and androgen (to upregulate stimulatory functions and P501S, respectively) and used in gamma-interferon Elispot assays with the P501S-specific CTL clones 4E5 and 4E7. Untreated cells were used as a control.

Both 4E5 and 4E7 efficiently and specifically recognized LnCAP and CRL2422 cells that were transduced with the HLA-B51011 allele, but not the same cell lines transduced with EGFP. Additionally, both CTL clones specifically recognized PC-3 cells transduced with HLA-B51011, but not the P501S-negative tumor cell line DU-145. Treatment with gamma-interferon or androgen did not enhance the ability of CTL to recognize tumor cells. These results demonstrate that P501S-specific CTL,

10

15

20

25

159

generated by *in vitro* whole gene priming, specifically and efficiently recognize prostate tumor cell lines that express P501S.

A naturally processed CD4 epitope of P501S was identified as follows.

CD4 cells specific for P501S were prepared as described above. A series of 16 overlapping peptides were synthesized that spanned approximately 50% of the amino terminal portion of the P501S gene (amino acids 1- 325 of SEQ ID NO: 113). For priming, peptides were combined into pools of 4 peptides, pulsed at 4 μg/ml onto dendritic cells (DC) for 24 hours, with TNF-alpha. DC were then washed and mixed with negatively selected CD4+ T cells in 96 well U-bottom plates. Cultures were restimulated weekly on fresh DC loaded with peptide pools. Following a total of 4 stimulation cycles, cells were rested for an additional week and tested for specificity to APC pulsed with peptide pools using γ-IFN ELISA and proliferation assays. For these assays, adherent monocytes loaded with either the relevant peptide pool at 4ug/ml or an irrelevant peptide at μg/ml were used as APC. T cell lines that demonstrated either specific cytokine secretion or proliferation were then tested for recognition of individual peptides that were present in the pool. T cell lines could be identified from pools A and B that recognized individual peptides from these pools.

160

From pool A, lines AD9 and AE10 specifically recognized peptide 1 (SEQ ID NO: 719), and line AF5 recognized peptide 39 (SEQ ID NO: 718). From pool B, line BC6 could be identified that recognized peptide 58 (SEQ ID NO: 717). Each of these lines were stimulated on the specific peptide and tested for specific recognition of the peptide in a titration assay as well as cell lysates generated by infection of HEK 293 cells with adenovirus expressing either P501S or an irrelevant antigen. For these assays, APC-adherent monocytes were pulsed with either 10, 1, or 0.1 µg/ml individual P501S peptides, and DC were pulsed overnight with a 1:5 dilution of adenovirally infected cell lysates. Lines AD9, AE10 and AF5 retained significant recognition of the relevant P501S-derived peptides even at 0.1 mg/ml. Furthermore, line AD9 demonstrated significant (8.1 fold stimulation index) specific activity for lysates from adenovirus-P501S infected cells. These results demonstrate that high affinity CD4 T cell lines can be generated toward P501S-derived epitopes, and that at least a subset of these T cells specific for the P501S derived sequence of SEQ ID NO: 719 are specific for an epitope that is naturally processed by human cells. The DNA sequences encoding the amino acid sequences of SEQ ID NO: 717-719 are provided in SEQ ID NO: 720-722, respectively.

To further characterize the P501S-specific activity of AD9, the line was cloned using anti-CD3. Three clones, referred to as 1A1, 1A9 and 1F5, were identified that were specific for the P501S-1 peptide (SEQ ID NO: 719). To determine the HLA restriction allele for the P501S-specific response, each of these clones was tested in class II antibody blocking and HLA mismatch assays using proliferation and gamma-interferon assays. In antibody blocking assays and measuring gamma-interferon production using ELISA assays, the ability of all three clones to recognize peptide pulsed APC was specifically blocked by co-incubation with either a pan-class II blocking antibody or a HLA-DR blocking antibody, but not with a HLA-DQ or an irrelevant antibody. Proliferation assays performed simultaneously with the same cells confirmed these results. These data indicate that the P501S-specific response of the clones is restricted by an HLA-DR allele. Further studies demonstrated that the restricting allele for the P501S-specific response is HLA-DRB1501.

10

15

20

25

15

161

EXAMPLE 13

IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS BY MICROARRAY ANALYSIS

This Example describes the isolation of certain prostate-specific polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 372 clones were identified, and 319 were successfully sequenced. Table I presents a summary of these clones, which are shown in SEQ ID NOs:385-400. Of these sequences SEQ ID NOs:386, 389, 390 and 392 correspond to novel genes, and SEQ ID NOs: 393 and 396 correspond to previously identified sequences. The others (SEQ ID NOs:385, 387, 388, 391, 394, 395 and 397-400) correspond to known sequences, as shown in Table I.

<u>Table I</u>
<u>Summary of Prostate Tumor Antigens</u>

Known Genes	Previously Identified Genes	Novel Genes
T-cell gamma chain	P504S	23379 (SEQ ID NO:38
Kallikrein	P1000C	23399 (SEQ ID NO:39
Vector	P501S	23320 (SEQ ID NO:38
CGI-82 protein mRNA (23319; SEQ ID NO:385)	P503S	23381 (SEQ ID NO:390)
PSA	P510S	
Ald. 6 Dehyd.	P784P	
L-iditol-2 dehydrogenase (23376; SEQ ID NO:388)	P502S	
Ets transcription factor PDEF (22672; SEQ ID NO:398)	Р706Р	
hTGR (22678; SEQ ID NO:399)	19142.2, bangur.seq (22621; SEQ ID NO:396)	
KIAA0295(22685; SEQ ID NO:400)	5566.1 Wang (23404; SEQ ID NO:393)	
Prostatic Acid Phosphatase(22655; SEQ ID NO:397)	P712P	
transglutaminase (22611; SEQ ID NO:395)	P778P	
HDLBP (23508; SEQ ID NO:394)		
CGI-69 Protein(23367; SEQ ID NO:387)		
KIAA0122(23383; SEQ ID NO:391)		
TEEG		

15

20

25

30

CGI-82 showed 4.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 43% of prostate tumors, 25% normal prostate, not detected in other normal tissues tested. L-iditol-2 dehydrogenase showed 4.94 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 90% of prostate tumors, 100% of normal prostate, and not detected in other normal tissues tested. Ets transcription factor PDEF showed 5.55 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% prostate tumors, 25% normal prostate and not detected in other normal tissues tested. hTGR1 showed 9.11 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 63% of prostate tumors and is not detected in normal tissues tested including normal prostate. KIAA0295 showed 5.59 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 47% of prostate tumors, low to undetectable in normal tissues tested including normal prostate tissues. Prostatic acid phosphatase showed 9.14 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 67% of prostate tumors, 50% of normal prostate, and not detected in other normal tissues tested. Transglutaminase showed 14.84 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 30% of prostate tumors, 50% of normal prostate, and is not detected in other normal tissues tested. High density lipoprotein binding protein (HDLBP) showed 28.06 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% of normal prostate, and is undetectable in all other normal tissues tested. CGI-69 showed 3.56 fold over-expression in prostate tissues as compared to other normal tissues tested. It is a low abundant gene, detected in more than 90% of prostate tumors, and in 75% normal prostate tissues. The expression of this gene in normal tissues was very low. KIAA0122 showed 4.24 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 57% of prostate tumors, it was undetectable in all normal tissues tested including normal prostate tissues. 19142.2 bangur showed 23.25 fold over-expression in prostate tissues as compared to other

164

normal tissues tested. It was over-expressed in 97% of prostate tumors and 100% of normal prostate. It was undetectable in other normal tissues tested. .5566.1 Wang showed 3.31 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 97% of prostate tumors, 75% normal prostate and was also over-expressed in normal bone marrow, pancreas, and activated PBMC. Novel clone 23379 (also referred to as P553S) showed 4.86 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in 97% of prostate tumors and 75% normal prostate and is undetectable in all other normal tissues tested. Novel clone 23399 showed 4.09 fold over-expression in prostate tissues as compared to other normal tissues tested. It was over-expressed in 27% of prostate tumors and was undetectable in all normal tissues tested including normal prostate tissues. Novel clone 23320 showed 3.15 fold over-expression in prostate tissues as compared to other normal tissues tested. It was detectable in all prostate tumors and 50% of normal prostate tissues. It was also expressed in normal colon and trachea. Other normal tissues do not express this gene at high level.

Subsequent full-length cloning studies on P553S, using standard techniques, revealed that this clone is an incomplete spliced form of P501S. The determined cDNA sequences for four splice variants of P553S are provided in SEQ ID NO: 623-626. An amino acid sequence encoded by SEQ ID NO: 626 is provided in SEQ ID NO: 627. The cDNA sequence of SEQ ID NO: 623 was found to contain two open reading frames (ORFs). The amino acid sequences encoded by these two ORFs are provided in SEQ ID NO: 628 and 629.

EXAMPLE 14

25

10

15

20

IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS BY ELECTRONIC SUBTRACTION

This Example describes the use of an electronic subtraction technique to identify prostate-specific antigens.

165

Potential prostate-specific genes present in the GenBank human EST database were identified by electronic subtraction (similar to that described by Vasmatizis et al., *Proc. Natl. Acad. Sci. USA 95*:300-304, 1998). The sequences of EST clones (43,482) derived from various prostate libraries were obtained from the GenBank public human EST database. Each prostate EST sequence was used as a query sequence in a BLASTN (National Center for Biotechnology Information) search against the human EST database. All matches considered identical (length of matching sequence >100 base pairs, density of identical matches over this region > 70%) were grouped (aligned) together in a cluster. Clusters containing more than 200 ESTs were discarded since they probably represented repetitive elements or highly expressed genes such as those for ribosomal proteins. If two or more clusters shared common ESTs, those clusters were grouped together into a "supercluster," resulting in 4,345 prostate superclusters.

Records for the 479 human cDNA libraries represented in the GenBank release were downloaded to create a database of these cDNA library records. These 479 cDNA libraries were grouped into three groups: Plus (normal prostate and prostate tumor libraries, and breast cell line libraries, in which expression was desired), Minus (libraries from other normal adult tissues, in which expression was not desirable), and Other (libraries from fetal tissue, infant tissue, tissues found only in women, non-prostate tumors and cell lines other than prostate cell lines, in which expression was considered to be irrelevant). A summary of these library groups is presented in Table II.

166

<u>Table II</u>

Prostate cDNA Libraries and ESTs

Library	# of Libraries	# of ESTs
Plus	25	43,482
Normal	11	18,875
Tumor	11	21,769
Cell lines	3	2,838
Minus	166	
Other	287	

Each supercluster was analyzed in terms of the ESTs within the supercluster. The tissue source of each EST clone was noted and used to classify the superclusters into four groups: Type 1- EST clones found in the Plus group libraries only; no expression detected in Minus or Other group libraries; Type 2- EST clones derived from the Plus and Other group libraries only; no expression detected in the Minus group; Type 3- EST clones derived from the Plus, Minus and Other group libraries, but the number of ESTs derived from the Plus group is higher than in either the Minus or Other groups; and Type 4- EST clones derived from Plus, Minus and Other group libraries, but the number derived from the Plus group is higher than the number derived from the Minus group. This analysis identified 4,345 breast clusters (see Table III). From these clusters, 3,172 EST clones were ordered from Research Genetics, Inc., and were received as frozen glycerol stocks in 96-well plates.

5

10

15

20

<u>Table III</u>

<u>Prostate Cluster Summary</u>

Туре	# of Superclusters	# of ESTs Ordered
1	688	677
2	2899	2484
3	85	11
4	673	0
Total	4345	3172

The EST clone inserts were PCR-amplified using amino-linked PCR primers for Synteni microarray analysis. When more than one PCR product was obtained for a particular clone, that PCR product was not used for expression analysis. In total, 2,528 clones from the electronic subtraction method were analyzed by microarray analysis to identify electronic subtraction breast clones that had high levels of tumor vs. normal tissue mRNA. Such screens were performed using a Synteni (Palo Alto, CA) microarray, according to the manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 94*:2150-2155, 1997). Within these analyses, the clones were arrayed on the chip, which was then probed with fluorescent probes generated from normal and tumor prostate cDNA, as well as various other normal tissues. The slides were scanned and the fluorescence intensity was measured.

Clones with an expression ratio greater than 3 (*i.e.*, the level in prostate tumor and normal prostate mRNA was at least three times the level in other normal tissue mRNA) were identified as prostate tumor-specific sequences (Table IV). The sequences of these clones are provided in SEQ ID NO: 401-453, with certain novel sequences shown in SEQ ID NO: 407, 413, 416-419, 422, 426, 427 and 450.

<u>Table IV</u>

<u>Prostate-tumor Specific Clones</u>

SEQ ID NO.	Sequence	Comments
	Designation	
401	22545	previously identified P1000C
402	22547	previously identified P704P
403	22548	known
404	22550	known
405	22551	PSA
406	22552	prostate secretory protein 94
407	22553	novel
408	22558	previously identified P509S
409	22562	glandular kallikrein
410	22565	previously identified P1000C
411	22567	PAP
412	22568	B1006C (breast tumor antigen)
413	22570	novel
414	22571	PSA
415	22572	previously identified P706P
416	22573	novel
417	22574	novel
418	22575	novel
419	22580	novel
420	22581	PAP
421	22582	prostatic secretory protein 94
422	22583	novel
423	22584	prostatic secretory protein 94
424	22585	prostatic secretory protein 94
425	22586	known
426	22587	novel
427	22588	novel
428	22589	PAP
429	22590	known
430	22591	PSA
431	22592	known
432	22593	Previously identified P777P
433	22594	T cell receptor gamma chain
434	22595	Previously identified P705P
435	22596	Previously identified P707P
436	22847	PAP
437	22848	known
437	22849	prostatic secretory protein 57

439	22851	PAP
440	22852	PAP
441	22853	PAP
442	22854	previously identified P509S
443	22855	previously identified P705P
444	22856	previously identified P774P
445	22857	PSA
446	23601	previously identified P777P
447	23602	PSA
448	23605	PSA
449	23606	PSA
450	23612	novel
451	23614	PSA
452	23618	previously identified P1000C
453	23622	previously identified P705P

Further studies on the clone of SEQ ID NO: 407 (also referred to as P1020C) led to the isolation of an extended cDNA sequence provided in SEQ ID NO: 591. This extended cDNA sequence was found to contain an open reading frame that encodes the predicted amino acid sequence of SEQ ID NO: 592. The P1020C cDNA and amino acid sequences were found to show some similarity to the human endogenous retroviral HERV-K pol gene and protein.

EXAMPLE 15

10 FURTHER IDENTIFICATION OF PROSTATE-SPECIFIC ANTIGENS BY MICROARRAY ANALYSIS

This Example describes the isolation of additional prostate-specific polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library as described above was screened using microarray analysis to identify clones that display at least a three fold over-expression in prostate tumor and/or normal prostate tissue, as compared to non-prostate normal tissues (not including testis). 142 clones were identified and sequenced. Certain of these clones are shown in SEQ ID NO: 454-467. Of these sequences, SEQ ID NO: 459-460 represent novel genes. The others (SEQ ID NO: 454-458 and 461-467) correspond to known sequences. Comparison of the determined

cDNA sequence of SEQ ID NO: 461 with sequences in the Genbank database using the BLAST program revealed homology to the previously identified transmembrane protease serine 2 (TMPRSS2). The full-length cDNA sequence for this clone is provided in SEQ ID NO: 751, with the corresponding amino acid sequence being provided in SEQ ID NO: 752. The cDNA sequence encoding the first 209 amino acids of TMPRSS2 is provided in SEQ ID NO: 753, with the first 209 amino acids being provided in SEQ ID NO: 754.

The sequence of SEQ ID NO: 462 (referred to as P835P) was found to correspond to the previously identified clone FLJ13518 (Accession AK023643; SEQ ID NO: 774), which had no associated open reading frame (ORF). This clone was used to search the Geneseq DNA database and matched a clone previously identified as a G protein-coupled receptor protein (DNA Geneseq Accession A09351; amino acid Geneseg Accession Y92365), that is characterized by the presence of seven transmembrane domains. The sequences of fragments between these domains are provided in SEQ ID NO: 778-785, with SEQ ID NO: 778, 780, 782 and 784 representing extracellular domains and SEQ ID NO: 779, 781, 783 and 785 representing intracellular domains. SEQ ID NO: 778-785 represent amino acids 1-28, 53-61, 83-103, 124-143, 165-201, 226-238, 263-272 and 297-381, respectively, of P835P. The full-length cDNA sequence for P835P is provided in SEQ ID NO: 773. The cDNA sequence of the open reading frame for P835P, including stop codon, is provided in SEQ ID NO: 775, with the open reading frame without stop codon being provided in SEQ ID NO: 776 and the corresponding amino acid sequence being provided in SEQ ID NO: 777.

25

20

EXAMPLE 16

FURTHER CHARACTERIZATION OF PROSTATE-SPECIFIC ANTIGEN P710P

This Example describes the full length cloning of P710P.

The prostate cDNA library described above was screened with the P710P fragment described above. One million colonies were plated on LB/Ampicillin plates.

20

Nylon membrane filters were used to lift these colonies, and the cDNAs picked up by these filters were then denatured and cross-linked to the filters by UV light. The P710P fragment was radiolabeled and used to hybridize with the filters. Positive cDNA clones were selected and their cDNAs recovered and sequenced by an automatic Perkin Elmer/Applied Biosystems Division Sequencer. Four sequences were obtained, and are presented in SEQ ID NO: 468-471. These sequences appear to represent different splice variants of the P710P gene. Subsequent comparison of the cDNA sequences of P710P with those in Genbank revealed homology to the DD3 gene (Genbank accession numbers AF103907 & AF103908). The cDNA sequence of DD3 is provided in SEQ ID NO: 618.

EXAMPLE 17

PROTEIN EXPRESSION OF PROSTATE-SPECIFIC ANTIGENS

This example describes the expression and purification of prostatespecific antigens in *E. coli*, baculovirus, mammalian and yeast cells.

a) Expression of P501S in E. coli

Expression of the full-length form of P501S was attempted by first cloning P501S without the leader sequence (amino acids 36-553 of SEQ ID NO: 113) downstream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 484) in pET17b. Specifically, P501S DNA was used to perform PCR using the primers AW025 (SEQ ID NO: 485) and AW003 (SEQ ID NO: 486). AW025 is a sense cloning primer that contains a HindIII site. AW003 is an antisense cloning primer that contains an EcoRI site. DNA amplification was performed using 5 μl 10X Pfu buffer, 1 μl 20 mM dNTPs, 1 μl each of the PCR primers at 10 μM concentration, 40 μl water, 1 μl Pfu DNA polymerase (Stratagene, La Jolla, CA) and 1 μl DNA at 100 ng/μl. Denaturation at 95°C was performed for 30 sec, followed by 10 cycles of 95°C for 30 sec, 60°C for 1 min and by 72°C for 3 min. 20 cycles of 95°C for 30 sec, 65°C for 1 min and by 72°C for 3 min, and lastly by 1 cycle of 72°C for 10 min. The PCR product was

cloned to Ra12m/pET17b using HindIII and EcoRI. The sequence of the resulting fusion construct (referred to as Ra12-P501S-F) was confirmed by DNA sequencing.

The fusion construct was transformed into BL21(DE3)pLysE, pLysS and CodonPlus *E. coli* (Stratagene) and grown overnight in LB broth with kanamycin. The resulting culture was induced with IPTG. Protein was transferred to PVDF membrane and blocked with 5% non-fat milk (in PBS-Tween buffer), washed three times and incubated with mouse anti-His tag antibody (Clontech) for 1 hour. The membrane was washed 3 times and probed with HRP-Protein A (Zymed) for 30 min. Finally, the membrane was washed 3 times and developed with ECL (Amersham). No expression was detected by Western blot when the Ra12-P501S-F fusion was used for expression in BL21CodonPlus by CE6 phage (Invitrogen).

An N-terminal fragment of P501S (amino acids 36-325 of SEQ ID NO: 113) was cloned down-stream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 in pET17b as follows. P501S DNA was used to perform PCR using the primers AW025 (SEQ ID NO: 485) and AW027 (SEQ ID NO: 487). AW027 is an antisense cloning primer that contains an EcoRI site and a stop codon. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ra12 in pET17b at the HindIII and EcoRI sites. The fusion construct (referred to as Ra12-P501S-N) was confirmed by DNA sequencing.

The Ra12-P501S-N fusion construct was used for expression in BL21(DE3)pLysE, pLysS and CodonPlus, essentially as described above. Using Western blot analysis, protein bands were observed at the expected molecular weight of 36 kDa. Some high molecular weight bands were also observed, probably due to aggregation of the recombinant protein. No expression was detected by Western blot when the Ra12-P501S-F fusion was used for expression in BL21CodonPlus by CE6 phage.

A fusion construct comprising a C-terminal portion of P501S (amino acids 257-553 of SEQ ID NO: 113) located down-stream of the first 30 amino acids of the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 484) was prepared as follows. P501S

30

DNA was used to perform PCR using the primers AW026 (SEQ ID NO: 488) and AW003 (SEQ ID NO: 486). AW026 is a sense cloning primer that contains a HindIII site. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ra12 in pET17b at the HindIII and EcoRI sites. The sequence for the fusion construct (referred to as Ra12-P501S-C) was confirmed.

The Ra12-P501S-C fusion construct was used for expression in BL21(DE3)pLysE, pLysS and CodonPlus, as described above. A small amount of protein was detected by Western blot, with some molecular weight aggregates also being observed. Expression was also detected by Western blot when the Ra12-P501S-C fusion was used for expression in BL21CodonPlus induced by CE6 phage.

A fusion construct comprising a fragment of P501S (amino acids 36-298 of SEQ ID NO: 113) located down-stream of the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 705) was prepared as follows. P501S DNA was used to perform PCR using the primers AW042 (SEQ ID NO: 706) and AW053 (SEQ ID NO: 707). AW042 is a sense cloning primer that contains a EcoRI site. AW053 is an antisense primer with stop and Xho I sites. DNA amplification was performed essentially as described above. The resulting PCR product was cloned to Ra12 in pET17b at the EcoRI and Xho I sites. The resulting fusion construct (referred to as Ra12-P501S-E2) was expressed in B834 (DE3) pLys S *E. coli* host cells in TB media for 2 h at room temperature. Expressed protein was purified by washing the inclusion bodies and running on a Ni-NTA column. The purified protein stayed soluble in buffer containing 20 mM Tris-HCl (pH 8), 100 mM NaCl, 10 mM β-Me and 5% glycerol. The determined cDNA and amino acid sequences for the expressed fusion protein are provided in SEQ ID NO: 708 and 709, respectfully.

25 <u>b) Expression of P501S in Baculovirus</u>

The Bac-to-Bac baculovirus expression system (BRL Life Technologies, Inc.) was used to express P501S protein in insect cells. Full-length P501S (SEQ ID NO: 113) was amplified by PCR and cloned into the XbaI site of the donor plasmid pFastBacl. The recombinant bacmid and baculovirus were prepared according to the

15

WO 01/051633

174

PCT/US01/01574

manufacturer's instructions. The recombinant baculovirus was amplified in Sf9 cells and the high titer viral stocks were utilized to infect High Five cells (Invitrogen) to make the recombinant protein. The identity of the full-length protein was confirmed by N-terminal sequencing of the recombinant protein and by Western blot analysis (Figure 7). Specifically, 0.6 million High Five cells in 6-well plates were infected with either the unrelated control virus BV/ECD_PD (lane 2), with recombinant baculovirus for P501S at different amounts or MOIs (lanes 4-8), or were uninfected (lane 3). Cell lysates were run on SDS-PAGE under reducing conditions and analyzed by Western blot with the anti-P501S monoclonal antibody P501S-10E3-G4D3 (prepared as described below). Lane 1 is the biotinylated protein molecular weight marker (BioLabs).

The localization of recombinant P501S in the insect cells was investigated as follows. The insect cells overexpressing P501S were fractionated into fractions of nucleus, mitochondria, membrane and cytosol. Equal amounts of protein from each fraction were analyzed by Western blot with a monoclonal antibody against P501S. Due to the scheme of fractionation, both nucleus and mitochondria fractions contain some plasma membrane components. However, the membrane fraction is basically free from mitochondria and nucleus. P501S was found to be present in all fractions that contain the membrane component, suggesting that P501S may be associated with plasma membrane of the insect cells expressing the recombinant protein.

c) Expression of P501S in Mammalian Cells

Full-length P501S (553 amino acids; SEQ ID NO: 113) was cloned into various mammalian expression vectors, including pCEP4 (Invitrogen), pVR1012 (Vical, San Diego, CA) and a modified form of the retroviral vector pBMN, referred to as pBIB. Transfection of P501S/pCEP4 and P501S/pVR1012 into HEK293 fibroblasts was carried out using the Fugene transfection reagent (Boehringer Mannheim). Briefly, 2 ul of Fugene reagent was diluted into 100 ul of serum-free media and incubated at room temperature for 5-10 min. This mixture was added to 1 ug of P501S plasmid DNA, mixed briefly and incubated for 30 minutes at room temperature. The

10

20

Fugene/DNA mixture was added to cells and incubated for 24-48 hours. Expression of recombinant P501S in transfected HEK293 fibroblasts was detected by means of Western blot employing a monoclonal antibody to P501S.

Transfection of p501S/pCEP4 into CHO-K cells (American Type Culture Collection, Rockville, MD) was carried out using GenePorter transfection reagent (Gene Therapy Systems, San Diego, CA). Briefly, 15 µl of GenePorter was diluted in 500 µl of serum-free media and incubated at room temperature for 10 min. The GenePorter/media mixture was added to 2 µg of plasmid DNA that was diluted in 500 µl of serum-free media, mixed briefly and incubated for 30 min at room temperature. CHO-K cells were rinsed in PBS to remove serum proteins, and the GenePorter/DNA mix was added and incubated for 5 hours. The transfected cells were then fed an equal volume of 2x media and incubated for 24-48 hours.

FACS analysis of P501S transiently infected CHO-K cells, demonstrated surface expression of P501S. Expression was detected using rabbit polyclonal antisera raised against a P501S peptide, as described below. Flow cytometric analysis was performed using a FaCScan (Becton Dickinson), and the data were analyzed using the Cell Quest program.

d) Expression of P501S in S. cerevisiae

P501S was expressed in yeast, directed in membranes, using the yeast α prepro signal sequence. The natural signal sequence and first lumenal domain of P501S was deleted in order to conserve the natural positioning of the expressed P501S protein.

Specifically, the α prepro signal sequence of *S. cerevisiae* linked to amino acids 55-553 of SEQ ID NO: 113 with a His tag tail was cloned into the plasmid pRIT15068 with the CUP1 promoter and transfected into *S. cerevisiae* strain Y1790. The Y1790 strain is Leu+ and His-. Expression of protein was induced by addition of either 500 μ M or 250 μ M of CuSO₄ at 30 °C in minimal medium supplemented with histidine. Cells were harvested 24 hours after induction. Extracts were prepared by growing cells to a concentration of OD600 5.0 in 50 mM citrate phosphate buffer (pH 4.0) plus 130 mM NaCl supplemented with protease inhibitors. Cells were disrupted

30

using glass beads and centrifuged for 20 min at 15,000 g. The recombinant protein was found to be 100% pellet associated.

Expression of the recombinant protein (molecular weight 63 kD) was demonstrated by Western blot analysis, using the anti-P501S monoclonal antibody 10E-D4-G3 described below. The amino acid sequence of the expressed protein is provided in SEQ ID NO: 792.

Fermentation processes for the production of the α prepro-P501S-His tag recombinant protein in *S. cerevisiae* (strain Y1790 – CUP1 inducible promoter) were evaluated as follows. One hundred μl of a master seed containing 2.5 x 10⁸ cells/ml of transformed *S. cerevisiae* Y1790 were spread on FSC004AA solid medium. The composition of the FSC004AA medium is as follows: glucose 10 g/l; Na₂MoO₄.2H₂O 0.0002 g/l; folic acid 0.000064 g/l; KH₂PO₄ 1 g/l; MnSO₄.H₂O 0.0004 g/l; Inositol 0.064 g/l; MgSO₄.7H₂O 0.5 g/l; H₃BO₃ 0.0005 g/l; Pyridoxine 0.008 g/l; CaCl₂.2H₂O 0.1 g/l; KI 0.0001 g/l; Thiamine 0.008 g/l; NaCl 0.1 g/l; CoCl₂.6H₂O 0.00009 g/l; Niacin 0.000032 g/l; FeCl₃.6H₂O 0.0002 g/l; Riboflavin 0.000016 g/l; Panthotenate Ca 0.008 g/l; CuSO₄.5H₂O 0.00004 g/l; Biotin 0.000064 g/l; para-aminobenzoic acid 0.000016 g/l; ZnSO₄.7H₂O 0.00004 g/l; (NH₄)₂SO₄ 5 g/l; agar 18 g/l; Histidine 0.1 g/l.

Two plates were incubated for 26 h at 30 °C. These solid pre-cultures were harvested in 5 ml of liquid medium FSC007AA and 0.5 ml (or 9.3 x 10⁷ cells) of this suspension was used to inoculate 2 liquid pre-cultures.

The composition of the FSC007AA medium is as follows: Glucose 10 g/l; Na₂MoO₄.2H₂O 0.0002 g/l; folic acid 0.000064 g/l; KH₂PO₄ 1 g/l; MnSO₄.H₂O 0.0004 g/l; Inositol 0.064 g/l; MgSO₄.7H₂O 0.5 g/l; H₃BO₃ 0.0005 g/l; Pyridoxine 0.008 g/l; CaCl₂.2H₂O 0.1 g/l; KI 0.0001 g/l; Thiamine 0.008 g/l; NaCl 0.1 g/l; CoCl₂.6H₂O 0.00009 g/l; Niacine 0.000032 g/l; FeCl₃.6H₂O 0.0002 g/l; Riboflavin 0.000016 g/l; Panthotenate Ca 0.008 g/l; CuSO₄.5H₂O 0.00004 g/l; Biotin 0.000064 g/l; para-aminobenzoic acid 0.000016 g/l; ZnSO₄.7H₂O 0.00004 g/l; (NH₄)₂SO₄ 5 g/l; Histidine 0.1 g/l.

These pre-cultures were run for 20 hours in 2L flasks containing 400 ml of medium FSC007AA in order to obtain an OD of 1.8. The other characteristics of these pre-cultures are as follows: pH 2.8; glucose 2.3 g/L; ethanol 3.4 g/L.

20

The best timing for liquid pre-cultures for strain Y1790 was determined in preliminary experiments. Liquid pre-cultures containing 400 ml of medium and inoculated with various volumes of Master Seed (0.25, 0.5, 1 or 2 ml) were monitored in order to identify the best inoculum size and timing. Glucose, ethanol, pH, OD and cell number (determined by flow cytometry) were followed between 16 and 23 hours of culture. Glucose exhaustion and maximal biomass were obtained after 20 hour incubation with 0.5 inoculum. These conditions were adopted for transferring the preculture into fermentation.

In total, 800ml of pre-culture were used to inoculate a 20 L fermenter containing 5L of medium FSC002AA. Three ml of irradiated antifoam were added before inoculation. The composition of the FSC002AA medium is as follows: (NH₄)₂SO₄ 6.4 g/l; Na₂MoO₄.2H₂O 2.05 mg/l; folic acid 0.54 mg/l; KH₂PO₄ 8.25 g/l; MnSO₄.H₂O 4.1 mg/l; inositol 540 mg/; MgSO₄.7H₂O 4.69 g/l; H₃BO₃ 5.17 m/l; pyridoxine 68 mg/l; CaCl₂.2H₂O 0.92 g/l; KI 1.03 mg/l; thiamine 68 mg/l; NaCl 0.06g/l; CoCl₂.6H₂O 0.92 mg/l; Niacine 0.27 mg/l; HCl 1 ml/l; FeCl₃.6H₂O 9.92 mg/l; Riboflavin 0.13 mg/l; CuSO₄.5H₂O 0.41 mg/l; Glucose 0.14 g/l; Panthotenate Ca 68 mg/l; ZnSO₄.7H₂O 4.1 mg/l; Biotin 0.54 mg/l; para-aminobenzoic acid 0.13 mg/l; Histidine 0.3 g/l

The carbon source (glucose) was supplemented by a continuous feeding of FFB004AA medium. The composition of the FFB004AA medium is as follows: glucose 350 g/l; Na₂MoO₄.2H₂O 5.15 mg/l; folic acid 1.36 mg/l; KH₂PO₄ 20.6 g/l; MnSO₄.H₂O 10.3 mg/l; inositol 1350 mg/l; MgSO₄.7H₂O 11.7 g/l; H₃BO₃ 12.9 m/l; pyridoxine 170 mg/l; CaCl₂.2H₂O 2.35 g/l; KI 2.6 mg/l; thiamine 170 g/l; NaCl 0.15 g/l; CoCl₂.6H₂O 2.3 mg/l; niacine 0.67 mg/l; HCl 2.5 ml/l; FeCl₃.6H₂O 24.8 mg/l; riboflavin; 0.33 mg/l; CuSO₄.5H₂O 1.03 mg/l; biotin 1.36 mg/l; panthotenate Ca 170 mg/l; ZnSO₄.7H₂O 10.3 mg/l; para-aminobenzoic acid: 0.33 mg/l; histidine 5.35 g/l.

The residual glucose concentration was maintained very low (\$\square\$50 mg/L) in order to minimize ethanol production by fermentation. This was achieved by limiting the development of the microorganism using a limited glucose feed rate. The Standard biomass content (OD 80-90) was reached in fermentation after 44 hour growth phase.

CUP1 promoter was then induced by adding 500µM CuSO₄ in order to

produce P501S antigen. CuSO₄ addition was followed by ethanol accumulation (up to 6 g/L), and the glucose feeding rate was then reduced in order to consume the ethanol. The copper available for the microorganism was monitored by testing Cu ion concentration in the broth supernatant using a spectrophotometric copper assay (DETC method). The fermentation was then supplemented by CuSO₄ throughout the induction phase in order to maintain its concentration between 150 and 250 μM in the supernatant. The biomass reached an OD of 100 at the end of induction. Cells were harvested after 8 hours of induction.

Cell homogenate was prepared and analysed by SDS-PAGE and Western Blot using standard protocols. A major protein band with the expected molecular weight of 62KD was detected by Western blot using anti-P501S monoclonal antibodies. Western blot analysis also showed that the major 62KD band was progressively produced from 30 minutes of induction on, and reached a maximum after 3 hours. No more antigen seemed to be produced between 3 and 12 hours of induction.

The number of passages through a French Press necessary to extract all the antigen from the cells was evaluated. One, three and five passages were tested and total cell lysates, supernatants and pellets of cell lysates were analysed by Western blot. Three passages through a French Press were sufficient to completely extract the antigen. The antigen was present in the insoluble fraction.

20

25

30

10

15

e) Expression of P703P in Baculovirus

The cDNA for full-length P703P-DE5 (SEQ ID NO: 326), together with several flanking restriction sites, was obtained by digesting the plasmid pCDNA703 with restriction endonucleases Xba I and Hind III. The resulting restriction fragment (approx. 800 base pairs) was ligated into the transfer plasmid pFastBacI which was digested with the same restriction enzymes. The sequence of the insert was confirmed by DNA sequencing. The recombinant transfer plasmid pFBP703 was used to make recombinant bacmid DNA and baculovirus using the Bac-To-Bac Baculovirus expression system (BRL Life Technologies). High Five cells were infected with the recombinant virus BVP703, as described above, to obtain recombinant P703P protein.

20

25

e) Expression of P788P in E. Coli

A truncated, N-terminal portion, of P788P (residues 1-644 of SEQ ID NO: 777: referred to as P788P-N) fused with a C-terminal 6xHis Tag was expressed in *E. coli* as follows. P788P cDNA was amplified using the primers AW080 and AW081 (SEQ ID NO: 672 and 673). AW080 is a sense cloning primer with an NdeI site. AW081 is an antisense cloning primer with a XhoI site. The PCR-amplified P788P, as well as the vector pCRX1, were digested with NdeI and XhoI. Vector and insert were ligated and transformed into NovaBlue cells. Colonies were randomly screened for insert and then sequenced. P788P-N clone #6 was confirmed to be identical to the designed construct. The expression construct P788P-N #6/pCRX1 was transformed into *E. coli* BL21 CodonPlus-RIL competent cells. After induction, most of the cells grew well, achieving OD600 of greater than 2.0 after 3 hr. Coomassic stained SDS-PAGE showed an over-expressed band at about 75 kD. Western blot analysis using a 6xHisTag antibody confirmed the band was P788P-N. The determined cDNA sequence for P788P-N is provided in SEQ ID NO: 674, with the corresponding amino acid sequence being provided in SEQ ID NO: 675.

f) Expression of P510S in E. Coli

The P510S protein has 9 potential transmembrane domains and is predicted to be located at the plasma membrane. The C-terminal protein of this protein, as well as the predicted third extracellular domain of P510S were expressed in *E. coli* as follows.

The expression construct referred to as Ra12-P501S-C was designed to have a 6 HisTag at the N-terminal enc, followed by the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 676) and then the C-terminal portion of P510S (amino residues 1176-1261 of SEQ ID NO: 538). Full-length P510S was used to amplify the P510S-C fragment by PCR using the primers AW056 and AW057 (SEQ ID NO: 677 and 678, respectively). AW056 is a sense cloning primer with an EcoRI site. AW057 is an antisense primer with stop and XhoI sites. The amplified P501S fragment and Ra12/pCRX1 were digested with EcoRI and XhoI and then purified. The insert and

PCT/US01/01574

vector were ligated together and transformed into NovaBlue. Colonies were randomly screened for insert and sequences. For protein expression, the expression construct was transformed into *E. coli* BL21 (DE3) CodonPlus-RIL competent cells. A minimulation screen was performed to optimize the expression conditions. After induction the cells grew well, achieving OD 600 nm greater than 2.0 after 3 hours. Coomassie stain SDS-PAGE showed a highly over-expressed band at approx. 30 kD. Though this is higher than the expected molecular weight, western blot analysis was positive, showing this band to be the His tag-containing protein. The optimized culture conditions are as follows. Dilute overnight culture/daytime culture (LB + kanamycin + chloramphenicol) into 2xYT (with kanamycin and chloramphenicol) at a ratio of 25 ml culture to 1 liter 2xYT. Allow to grow at 37 °C until OD600 = 0.6. Take an aliquot out as T0 sample. Add 1 mM IPTG and allow to grow at 30 °C for 3 hours. Take out a T3 sample, spin down cells and store at -80 °C. The determined cDNA and amino acid sequences for the Ra12-P510S-C construct are provided in SEQ ID NO: 679 and 682, respectively.

The expression construct P510S-C was designed to have a 5' added start codon and a glycine (GGA) codon and then the P510S C terminal fragment followed by the in frame 6x histidine tag and stop codon from the pET28b vector. The cloning strategy is similar to that used for Ra12-P510S-C, except that the PCR primers employed were those shown in SEQ ID NO: 685 and 686, respectively and the Ncol/XhoI cut in pET28b was used. The primer of SEQ ID NO: 685 created a 5' NcoI site and added a start codon. The antisense primer of SEQ ID NO: 686 creates a XhoI site on P510S C terminal fragment. Clones were confirmed by sequencing. For protein expression, the expression construct was transformed into E. coli BL21 (DE3) CodonPlus-RIL competent cells. An OD600 of greater than 2.0 was obtained 30 hours after induction. Coomassie stained SDS-PAGE showed an over-expressed band at about 11 kD. Western blot analysis confirmed that the band was P510S-C, as did N-terminal protein The optimized culture conditions are as follows: dilute overnight sequencing. culture/daytime culture (LB + kanamycin + chloramphenicol) into 2x YT (+ kanamycin and chloramphenicol) at a ratio of 25 mL culture to 1 liter 2x YT, and allow to grow at

10

15

20

25

20

37 °C until an OD 600 of about 0.5 is reached. Take out an aliquot as T0 sample. Add 1 mM IPTG and allow to grow at 30 °C for 3 hours. Spin down the cells and store at -80 °C until purification. The determined cDNA and amino acid sequences for the P510S-C construct are shown in SEQ ID NO: 680 and 683, respectively.

The predicted third extracellular domain of P510S (P510S-E3; residues 328-676 of SEQ ID NO: 538) was expressed in E. coli as follows. The P510S fragment was amplified by PCR using the primers shown in SEQ ID NO: 687 and 688. The primer of SEQ ID NO: 687 is a sense primer with an NdeI site for use in ligating into pPDM. The primer of SEQ ID NO: 688 is an antisense primer with an added XhoI site for use in ligating into pPDM. The resulting fragment was cloned to pPDM at the NdeI and XhoI sites. Clones were confirmed by sequencing. For protein expression, the clone ws transformed into E. coli BL21 (DE3) CodonPlus-RIL competent cells. After induction, an OD600 of greater than 2.0 was achieved after 3 hours. Coomassie stained SDS-PAGE showed an over-expressed band at about 39 kD, and N-terminal sequencing confirmed the N-terminal to be that of P510S-E3. Optimized culture conditions are as follows: dilute overnight culture/daytime culture (LB + kanamycin + chloramphenicol) into 2x YT (kanamycin and chloramphenicol) at a ratio of 25 ml culture to 1 liter 2x YT. Allow to grow at 37 °C until OD 600 equals 0.6. Take out an aliquot as T0 sample. Add 1 mM IPTG and allow to grow at 30 °C for 3 hours. Take out a T3 sample, spin down the cells and store at -80 °C until purification. The determined cDNA and amino acid sequences for the P501S-E3 construct are provided in SEQ ID NO: 681 and 684, respectively.

g) Expression of P775S in E. Coli

The antigen P775P contains multiple open reading frames (ORF). The third ORF, encoding the protein of SEQ ID NO: 483, has the best emotif score. An expression fusion construct containing the *M. tuberculosis* antigen Ra12 (SEQ ID NO: 676) and P775P-ORF3 with an N-terminal 6x HisTag was prepared as follows. P775P-ORF3 was amplified using the sense PCR primers of SEQ ID NO: 689 and the antisense PCR primer of SEQ ID NO: 690. The PCR amplified fragment of P775P and

182

Ra12/pCRX1 were digested with the restriction enzymes EcoRI and XhoI. Vector and insert were ligated and then transformed into NovaBlue cells. Colonies were randomly screened for insert and then sequenced. A clone having the desired sequence was transformed into *E. coli* BL21 (DE3) CodonPlus-RIL competent cells. Two hours after induction, the cell density peaked at OD600 of approximately 1.8. Coomassie stained SDS-PAGE showed an over-expressed band at about 31 kD. Western blot using 6x HisTag antibody confirmed that the band was Ra12-P775P-ORF3. The determined cDNA and amino acid sequences for the fusion construct are provided in SEQ ID NO: 691 and 692, respectively.

10

15

H) Expression of a P703P His tag fusion protein in E. coli

The cDNA for the coding region of P703P was prepared by PCR using the primers of SEQ ID NO: 693 and 694. The PCR product was digested with EcoRI restriction enzyme, gel purified and cloned into a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into *E. coli* BL21 (DE3) pLys S expression host cells. The determined amino acid and cDNA sequences for the expressed recombinant P703P are provided in SEQ ID NO: 695 and 696, respectively.

20

25

I) EXPRESSION OF A P705P HIS TAG FUSION PROTEIN IN E. COLI

The cDNA for the coding region of P705P was prepared by PCR using the primers of SEQ ID NO: 697 and 698. The PCR product was digested with EcoRI restriction enzyme, gel purified and cloned into a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into *E. coli* BL21 (DE3) pLys S and BL21 (DE3) CodonPlus expression host cells. The determined amino acid and cDNA sequences for the expressed recombinant P705P are provided in SEQ ID NO: 699 and 700, respectively.

J) EXPRESSION OF A P711P HIS TAG FUSION PROTEIN IN E. COLI

The cDNA for the coding region of P711P was prepared by PCR using the primers of SEQ ID NO: 701 and 702. The PCR product was digested with EcoRI restriction enzyme, gel purified and cloned into a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into *E. coli* BL21 (DE3) pLys S and BL21 (DE3) CodonPlus expression host cells. The determined amino acid and cDNA sequences for the expressed recombinant P711P are provided in SEQ ID NO: 703 and 704, respectively.

10

EXAMPLE 18

PREPARATION AND CHARACTERIZATION OF ANTIBODIES AGAINST PROSTATE-SPECIFIC POLYPEPTIDES

15

a) Preparation and Characterization of Polyclonal Antibodies against P703P, P504S and P509S

Polyclonal antibodies against P703P, P504S and P509S were prepared as follows.

Each prostate tumor antigen expressed in an *E. coli* recombinant expression system was grown overnight in LB broth with the appropriate antibiotics at 37°C in a shaking incubator. The next morning, 10 ml of the overnight culture was added to 500 ml to 2x YT plus appropriate antibiotics in a 2L-baffled Erlenmeyer flask. When the Optical Density (at 560 nm) of the culture reached 0.4-0.6, the cells were induced with IPTG (1 mM). Four hours after induction with IPTG, the cells were harvested by centrifugation. The cells were then washed with phosphate buffered saline and centrifuged again. The supernatant was discarded and the cells were either frozen for future use or immediately processed. Twenty ml of lysis buffer was added to the cell pellets and vortexed. To break open the *E. coli* cells, this mixture was then run

through the French Press at a pressure of 16,000 psi. The cells were then centrifuged again and the supernatant and pellet were checked by SDS-PAGE for the partitioning of the recombinant protein. For proteins that localized to the cell pellet, the pellet was resuspended in 10 mM Tris pH 8.0, 1% CHAPS and the inclusion body pellet was washed and centrifuged again. This procedure was repeated twice more. The washed inclusion body pellet was solubilized with either 8 M urea or 6 M guanidine HCl containing 10 mM Tris pH 8.0 plus 10 mM imidazole. The solubilized protein was added to 5 ml of nickel-chelate resin (Qiagen) and incubated for 45 min to 1 hour at room temperature with continuous agitation. After incubation, the resin and protein mixture were poured through a disposable column and the flow through was collected. The column was then washed with 10-20 column volumes of the solubilization buffer. The antigen was then cluted from the column using 8M urea, 10 mM Tris pH 8.0 and 300 mM imidazole and collected in 3 ml fractions. A SDS-PAGE gel was run to determine which fractions to pool for further purification.

As a final purification step, a strong anion exchange resin such as HiPrepQ (Biorad) was equilibrated with the appropriate buffer and the pooled fractions from above were loaded onto the column. Each antigen was eluted off the column with a increasing salt gradient. Fractions were collected as the column was run and another SDS-PAGE gel was run to determine which fractions from the column to pool. The pooled fractions were dialyzed against 10 mM Tris pH 8.0. The proteins were then vialed after filtration through a 0.22 micron filter and the antigens were frozen until needed for immunization.

Four hundred micrograms of each prostate antigen was combined with 100 micrograms of muramyldipeptide (MDP). Every four weeks rabbits were boosted with 100 micrograms mixed with an equal volume of Incomplete Freund's Adjuvant (IFA). Seven days following each boost, the animal was bled. Sera was generated by incubating the blood at 4°C for 12-4 hours followed by centrifugation.

Ninety-six well plates were coated with antigen by incubating with 50 microliters (typically 1 microgram) of recombinant protein at 4 °C for 20 hours. 250 microliters of BSA blocking buffer was added to the wells and incubated at room

30

15

20

25

temperature for 2 hours. Plates were washed 6 times with PBS/0.01% Tween. Rabbit sera was diluted in PBS. Fifty microliters of diluted sera was added to each well and incubated at room temperature for 30 min. Plates were washed as described above before 50 microliters of goat anti-rabbit horse radish peroxidase (HRP) at a 1:10000 dilution was added and incubated at room temperature for 30 min. Plates were again washed as described above and 100 microliters of TMB microwell peroxidase substrate was added to each well. Following a 15 min incubation in the dark at room temperature, the colorimetric reaction was stopped with 100 microliters of 1N H₂SO₄ and read immediately at 450 nm. All polyclonal antibodies showed immunoreactivity to the appropriate antigen.

b) Preparation and Characterization of Antibodies against P501S

A murine monoclonal antibody directed against the carboxy-terminus of the prostate-specific antigen P501S was prepared as follows.

A truncated fragment of P501S (amino acids 355-526 of SEQ ID NO: 113) was generated and cloned into the pET28b vector (Novagen) and expressed in *E. coli* as a thioredoxin fusion protein with a histidine tag. The trx-P501S fusion protein was purified by nickel chromatography, digested with thrombin to remove the trx fragment and further purified by an acid precipitation procedure followed by reverse phase HPLC.

Mice were immunized with truncated P501S protein. Serum bleeds from mice that potentially contained anti-P501S polyclonal sera were tested for P501S-specific reactivity using ELISA assays with purified P501S and trx-P501S proteins. Serum bleeds that appeared to react specifically with P501S were then screened for P501S reactivity by Western analysis. Mice that contained a P501S-specific antibody component were sacrificed and spleen cells were used to generate anti-P501S antibody producing hybridomas using standard techniques. Hybridoma supernatants were tested for P501S-specific reactivity initially by ELISA, and subsequently by FACS analysis of reactivity with P501S transduced cells. Based on these results, a monoclonal hybridoma referred to as 10E3 was chosen for further subcloning. A number of subclones were

186

generated, tested for specific reactivity to P501S using ELISA and typed for IgG isotype. The results of this analysis are shown below in Table V. Of the 16 subclones tested, the monoclonal antibody 10E3-G4-D3 was selected for further study.

Table V

Isotype analysis of murine anti-P501S monoclonal antibodies

Hybridoma clone	Isotype	Estimated [Ig] in supernatant (μg/ml)	
4D11	IgG1	14.6	
1G1	IgG1	0.6	
4F6	IgG1	72	
4H5	IgG1	13.8	
4H5-E12	IgG1	10.7	
4H5-EH2	IgG1	9.2	
4H5-H2-A10	IgG1	10	
4H5-H2-A3	IgG1	12.8	
4H5-H2-A10-G6	IgG1	13.6	
4H5-H2-B11	IgG1	12.3	
10E3	IgG2a	3.4	
10E3-D4	IgG2a	3.8	
10E3-D4-G3	IgG2a	9.5	
10E3-D4-G6	IgG2a	10.4	
10E3-E7	IgG2a	6.5	
8H12	IgG2a	0.6	

The specificity of 10E3-G4-D3 for P501S was examined by FACS analysis. Specifically, cells were fixed (2% formaldehyde, 10 minutes), permeabilized (0.1% saponin, 10 minutes) and stained with 10E3-G4-D3 at 0.5 – 1 µg/ml, followed by incubation with a secondary, FITC-conjugated goat anti-mouse Ig antibody (Pharmingen, San Diego, CA). Cells were then analyzed for FITC fluorescence using an Excalibur fluorescence activated cell sorter. For FACS analysis of transduced cells, B-LCL were retrovirally transduced with P501S. For analysis of infected cells, B-LCL were infected with a vaccinia vector that expresses P501S. To demonstrate specificity in these assays, B-LCL transduced with a different antigen (P703P) and uninfected B-LCL vectors were utilized. 10E3-G4-D3 was shown to bind with P501S-transduced B-

10

15

LCL and also with P501S-infected B-LCL, but not with either uninfected cells or P703P-transduced cells.

To determine whether the epitope recognized by 10E3-G4-D3 was found on the surface or in an intracellular compartment of cells. B-LCL were transduced with P501S or HLA-B8 as a control antigen and either fixed and permeabilized as described above or directly stained with 10E3-G4-D3 and analyzed as above. Specific recognition of P501S by 10E3-G4-D3 was found to require permeabilization, suggesting that the epitope recognized by this antibody is intracellular.

The reactivity of 10E3-G4-D3 with the three prostate tumor cell lines Lncap, PC-3 and DU-145, which are known to express high, medium and very low levels of P501S, respectively, was examined by permeabilizing the cells and treating them as described above. Higher reactivity of 10E3-G4-D3 was seen with Lncap than with PC-3, which in turn showed higher reactivity that DU-145. These results are in agreement with the real time PCR and demonstrate that the antibody specifically recognizes P501S in these tumor cell lines and that the epitope recognized in prostate tumor cell lines is also intracellular.

Specificity of 10E3-G4-D3 for P501S was also demonstrated by Western blot analysis. Lysates from the prostate tumor cell lines Lncap, DU-145 and PC-3, from P501S-transiently transfected HEK293 cells, and from non-transfected HEK293 cells were generated. Western blot analysis of these lysates with 10E3-G4-D3 revealed a 46 kDa immunoreactive band in Lncap, PC-3 and P501S-transfected HEK cells, but not in DU-145 cells or non-transfected HEK293 cells. P501S mRNA expression is consistent with these results since semi-quantitative PCR analysis revealed that P501S mRNA is expressed in Lncap, to a lesser but detectable level in PC-3 and not at all in DU-145 cells. Bacterially expressed and purified recombinant P501S (referred to as P501SStr2) was recognized by 10E3-G4-D3 (24 kDa), as was full-length P501S that was transiently expressed in HEK293 cells using either the expression vector VR1012 or pCEP4. Although the predicted molecular weight of P501S is 60.5 kDa, both transfected and "native" P501S run at a slightly lower mobility due to its hydrophobic nature.

15

Immunohistochemical analysis was performed on prostate tumor and a panel of normal tissue sections (prostate, adrenal, breast, cervix, colon, duodenum, gall bladder, ileum, kidney, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis). Tissue samples were fixed in formalin solution for 24 hours and embedded in paraffin before being sliced into 10 micron sections. Tissue sections were permeabilized and incubated with 10E3-G4-D3 antibody for 1 hr. HRP-labeled antimouse followed by incubation with DAB chromogen was used to visualize P501S immunoreactivity. P501S was found to be highly expressed in both normal prostate and prostate tumor tissue but was not detected in any of the other tissues tested.

To identify the epitope recognized by 10E3-G4-D3, an epitope mapping approach was pursued. A series of 13 overlapping 20-21 mers (5 amino acid overlap; SEQ ID NO: 489-501) was synthesized that spanned the fragment of P501S used to generate 10E3-G4-D3. Flat bottom 96 well microtiter plates were coated with either the peptides or the P501S fragment used to immunize mice, at 1 microgram/ml for 2 hours at 37 °C. Wells were then aspirated and blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature, and subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified antibody 10E3-G4-D3 was added at 2 fold dilutions (1000 ng - 16 ng) in PBST and incubated for 30 minutes at room temperature. This was followed by washing 6 times with PBST and subsequently incubating with HRP-conjugated donkey anti-mouse IgG (H+L)Affinipure F(ab') fragment (Jackson Immunoresearch, West Grove, PA) at 1:20000 for 30 minutes. Plates were then washed and incubated for 15 minutes in tetramethyl benzidine. Reactions were stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using an ELISA plate reader. As shown in Fig. 8, reactivity was seen with the peptide of SEQ ID NO: 496 (corresponding to amino acids 439-459 of P501S) and with the P501S fragment but not with the remaining peptides, demonstrating that the epitope recognized by 10E3-G4-D3 is localized to amino acids 439-459 of SEQ ID NO: 113.

In order to further evaluate the tissue specificity of P501S, multi-array immunohistochemical analysis was performed on approximately 4700 different human tissues encompassing all the major normal organs as well as neoplasias derived from

15

these tissues. Sixty-five of these human tissue samples were of prostate origin. Tissue sections 0.6 mm in diameter were formalin-fixed and paraffin embedded. Samples were pretreated with HIER using 10 mM citrate buffer pH 6.0 and boiling for 10 min. Sections were stained with 10E3-G4-D3 and P501S immunoreactivity was visualized with HRP. All the 65 prostate tissues samples (5 normal, 55 untreated prostate tumors, 5 hormone refractory prostate tumors) were positive, showing distinct perinuclear staining. All other tissues examined were negative for P501S expression.

c) Preparation and Characterization of Antibodies against P503S

A fragment of P503S (amino acids 113-241 of SEQ ID NO: 114) was expressed and purified from bacteria essentially as described above for P501S and used to immunize both rabbits and mice. Mouse monoclonal antibodies were isolated using standard hybridoma technology as described above. Rabbit monoclonal antibodies were isolated using Selected Lymphocyte Antibody Method (SLAM) technology at Immgenics Pharmaceuticals (Vancouver, BC, Canada). Table VI, below, lists the monoclonal antibodies that were developed against P503S.

Table VI

Antibody	Species
20D4	Rabbit
JA1	Rabbit
1A4	Mouse
1C3	Mouse
1C9	Mouse
1D12	Mouse
2A11	Mouse
2H9	Mouse
4H7	Mouse
8A8	Mouse
8D10	Mouse
9C12	Mouse
6D12	Mouse

10

15

20

25

30

The DNA sequences encoding the complementarity determining regions (CDRs) for the rabbit monoclonal antibodies 20D4 and JA1 were determined and are provided in SEQ ID NO: 502 and 503, respectively.

In order to better define the epitope binding region of each of the antibodies, a series of overlapping peptides were generated that span amino acids 109-213 of SEO ID NO: 114. These peptides were used to epitope map the anti-P503S monoclonal antibodies by ELISA as follows. The recombinant fragment of P503S that was employed as the immunogen was used as a positive control. Ninety-six well microtiter plates were coated with either peptide or recombinant antigen at 20 ng/well overnight at 4 °C. Plates were aspirated and blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature then washed in PBS containing 0.1% Tween 20 (PBST). Purified rabbit monoclonal antibodies diluted in PBST were added to the wells and incubated for 30 min at room temperature. This was followed by washing 6 times with PBST and incubation with Protein-A HRP conjugate at a 1:2000 dilution for a further 30 min. Plates were washed six times in PBST and incubated with tetramethylbenzidine (TMB) substrate for a further 15 min. The reaction was stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using at ELISA plate reader. ELISA with the mouse monoclonal antibodies was performed with supernatants from tissue culture run neat in the assay.

All of the antibodies bound to the recombinant P503S fragment, with the exception of the negative control SP2 supernatant. 20D4, JA1 and 1D12 bound strictly to peptide #2101 (SEQ ID NO: 504), which corresponds to amino acids 151-169 of SEQ ID NO: 114. 1C3 bound to peptide #2102 (SEQ ID NO: 505), which corresponds to amino acids 165-184 of SEQ ID NO: 114. 9C12 bound to peptide #2099 (SEQ ID NO: 522), which corresponds to amino acids 120-139 of SEQ ID NO: 114. The other antibodies bind to regions that were not examined in these studies.

Subsequent to epitope mapping, the antibodies were tested by FACS analysis on a cell line that stably expressed P503S to confirm that the antibodies bind to cell surface epitopes. Cells stably transfected with a control plasmid were employed as

15

20

25

a negative control. Cells were stained live with no fixative. 0.5 ug of anti-P503S monoclonal antibody was added and cells were incubated on ice for 30 min before being washed twice and incubated with a FITC-labelled goat anti-rabbit or mouse secondary antibody for 20 min. After being washed twice, cells were analyzed with an Excalibur fluorescent activated cell sorter. The monoclonal antibodies 1C3, 1D12, 9C12, 20D4 and JA1, but not 8D3, were found to bind to a cell surface epitope of P503S.

ln order to determine which tissues express P503S. immunohistochemical analysis was performed, essentially as described above, on a panel of normal tissues (prostate, adrenal, breast, cervix, colon, duodenum, gall bladder, ileum, kidney, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis). HRPlabeled anti-mouse or anti-rabbit antibody followed by incubation with TMB was used to visualize P503S immunoreactivity. P503S was found to be highly expressed in prostate tissue, with lower levels of expression being observed in cervix, colon, ileum and kidney, and no expression being observed in adrenal, breast, duodenum, gall bladder, ovary, pancreas, parotid gland, skeletal muscle, spleen and testis.

Western blot analysis was used to characterize anti-P503S monoclonal antibody specificity. SDS-PAGE was performed on recombinant (rec) P503S expressed in and purified from bacteria and on lysates from HEK293 cells transfected with full length P503S. Protein was transferred to nitrocellulose and then Western blotted with each of the anti-P503S monoclonal antibodies (20D4, JA1, 1D12, 6D12 and 9C12) at an antibody concentration of 1 ug/ml. Protein was detected using horse radish peroxidase (HRP) conjugated to either a goat anti-mouse monoclonal antibody or to protein A-sepharose. The monoclonal antibody 20D4 detected the appropriate molecular weight 14 kDa recombinant P503S (amino acids 113-241) and the 23.5 kDa species in the HEK293 cell lysates transfected with full length P503S. Other anti-P503S monoclonal antibodies displayed similar specificity by Western blot.

d) Preparation and Characterization of Antibodies against P703P

Rabbits were immunized with either a truncated (P703Ptr1; SEQ ID NO: 172) or full-length mature form (P703Pfl; SEQ ID NO: 523) of recombinant P703P

192

protein was expressed in and purified from bacteria as described above. Affinity purified polyclonal antibody was generated using immunogen P703Pfl or P703Ptr1 attached to a solid support. Rabbit monoclonal antibodies were isolated using SLAM technology at Immgenics Pharmaceuticals. Table VII below lists both the polyclonal and monoclonal antibodies that were generated against P703P.

Table VII

Antibody	Immunogen	Species/type
Aff. Purif. P703P (truncated); #2594	P703Ptrl	Rabbit polyclonal
Aff. Purif. P703P (full length); #9245	P703Pfl	Rabbit polyclonal
2D4	P703Ptrl	Rabbit monoclonal
8H2	P703Ptrl	Rabbit monoclonal
7H8	P703Ptrl	Rabbit monoclonal

The DNA sequences encoding the complementarity determining regions (CDRs) for the rabbit monoclonal antibodies 8H2, 7H8 and 2D4 were determined and are provided in SEQ ID NO: 506-508, respectively.

Epitope mapping studies were performed as described above. Monoclonal antibodies 2D4 and 7H8 were found to specifically bind to the peptides of SEQ ID NO: 509 (corresponding to amino acids 145-159 of SEQ ID NO: 172) and SEQ ID NO: 510 (corresponding to amino acids 11-25 of SEQ ID NO: 172), respectively. The polyclonal antibody 2594 was found to bind to the peptides of SEQ ID NO: 511-514, with the polyclonal antibody 9427 binding to the peptides of SEQ ID NO: 515-517.

The specificity of the anti-P703P antibodies was determined by Western blot analysis as follows. SDS-PAGE was performed on (1) bacterially expressed recombinant antigen; (2) lysates of HEK293 cells and Ltk-/- cells either untransfected or transfected with a plasmid expressing full length P703P; and (3) supernatant isolated from these cell cultures. Protein was transferred to nitrocellulose and then Western blotted using the anti-P703P polyclonal antibody #2594 at an antibody concentration of 1 ug/ml. Protein was detected using horse radish peroxidase (HRP) conjugated to an anti-rabbit antibody. A 35 kDa immunoreactive band could be observed with

10

15

recombinant P703P. Recombinant P703P runs at a slightly higher molecular weight since it is epitope tagged. In lysates and supernatants from cells transfected with full length P703P, a 30 kDa band corresponding to P703P was observed. To assure specificity, lysates from HEK293 cells stably transfected with a control plasmid were also tested and were negative for P703P expression. Other anti-P703P antibodies showed similar results.

Immunohistochemical studies were performed as described above, using anti-P703P monoclonal antibody. P703P was found to be expressed at high levels in normal prostate and prostate tumor tissue but was not detectable in all other tissues tested (breast tumor, lung tumor and normal kidney).

e) Preparation and Characterization of Antibodies against P504S

Full-length P504S (SEQ ID NO: 108) was expressed and purified from bacteria essentially as described above for P501S and employed to raise rabbit monoclonal antibodies using Selected Lymphocyte Antibody Method (SLAM) technology at Immgenics Pharmaceuticals (Vancouver, BC, Canada). The anti-P504S monoclonal antibody 13H4 was shown by Western blot to bind to both expressed recombinant P504S and to native P504S in tumor cells.

Immunohistochemical studies using 13H4 to assess P504S expression in various prostate tissues were performed as described above. A total of 104 cases, including 65 cases of radical prostatectomies with prostate cancer (PC), 26 cases of prostate biopsies and 13 cases of benign prostate hyperplasia (BPH), were stained with the anti-P504S monoclonal antibody 13H4. P504S showed strongly cytoplasmic granular staining in 64/65 (98.5%) of PCs in prostatectomies and 26/26 (100%) of PCs in prostatic biopsies. P504S was stained strongly and diffusely in carcinomas (4+ in 91.2% of cases of PC; 3+ in 5.5%; 2+ in 2.2% and 1+ in 1.1%) and high grade prostatic intraepithelial neoplasia (4+ in all cases). The expression of P504S did not vary with Gleason score. Only 17/91 (18.7%) of cases of NP/BPH around PC and 2/13 (15.4%) of BPH cases were focally (1+, no 2+ to 4+ in all cases) and weakly positive for P504S in large glands. Expression of P504S was not found in small atrophic glands, postatrophic hyperplasia. basal cell hyperplasia and transitional cell metaplasia in either biopsies or

194

prostatectomies. P504S was thus found to be over-expressed in all Gleason scores of prostate cancer (98.5 to 100% of sensitivity) and exhibited only focal positivities in large normal glands in 19/104 of cases (82.3% of specificity). These findings indicate that P504S may be usefully employed for the diagnosis of prostate cancer.

5

10

15

20

25

30

EXAMPLE 19

CHARACTERIZATION OF CELL SURFACE EXPRESSION AND CHROMOSOME LOCALIZATION OF THE PROSTATE-SPECIFIC ANTIGEN P501S

This example describes studies demonstrating that the prostate-specific antigen P501S is expressed on the surface of cells, together with studies to determine the probable chromosomal location of P501S.

The protein P501S (SEQ ID NO: 113) is predicted to have 11 transmembrane domains. Based on the discovery that the epitope recognized by the anti-P501S monoclonal antibody 10E3-G4-D3 (described above in Example 17) is intracellular, it was predicted that following transmembrane determinants would allow the prediction of extracellular domains of P501S. Fig. 9 is a schematic representation of the P501S protein showing the predicted location of the transmembrane domains and the intracellular epitope described in Example 17. Underlined sequence represents the predicted transmembrane domains, bold sequence represents the predicted extracellular domains, and italicized sequence represents the predicted intracellular domains. Sequence that is both bold and underlined represents sequence employed to generate polyclonal rabbit serum. The location of the transmembrane domains was predicted using HHMTOP as described by Tusnady and Simon (Principles Governing Amino Acid Composition of Integral Membrane Proteins: Applications to Topology Prediction, *J. Mol. Biol. 283*:489-506, 1998).

Based on Fig. 9, the P501S domain flanked by the transmembrane domains corresponding to amino acids 274-295 and 323-342 is predicted to be extracellular. The peptide of SEQ ID NO: 518 corresponds to amino acids 306-320 of P501S and lies in the predicted extracellular domain. The peptide of SEQ ID NO: 519,

which is identical to the peptide of SEQ ID NO: 518 with the exception of the substitution of the histidine with an asparginine, was synthesized as described above. A Cys-Gly was added to the C-terminus of the peptide to facilitate conjugation to the carrier protein. Cleavage of the peptide from the solid support was carried out using the following cleavage mixture: trifluoroacetic acid:ethanediol:thioanisol:water:phenol (40:1:2:2:3). After cleaving for two hours, the peptide was precipitated in cold ether. The peptide pellet was then dissolved in 10% v/v acetic acid and lyophilized prior to purification by C18 reverse phase hplc. A gradient of 5-60% acetonitrile (containing 0.05% TFA) in water (containing 0.05% TFA) was used to elute the peptide. The purity of the peptide was verified by hplc and mass spectrometry, and was determined to be >95%. The purified peptide was used to generate rabbit polyclonal antisera as described above.

Surface expression of P501S was examined by FACS analysis. Cells were stained with the polyclonal anti-P501S peptide serum at 10 μg/ml, washed, incubated with a secondary FITC-conjugated goat anti-rabbit Ig antibody (ICN), washed and analyzed for FITC fluorescence using an Excalibur fluorescence activated cell sorter. For FACS analysis of transduced cells, B-LCL were retrovirally transduced with P501S. To demonstrate specificity in these assays, B-LCL transduced with an irrelevant antigen (P703P) or nontransduced were stained in parallel. For FACS analysis of prostate tumor cell lines, Lncap, PC-3 and DU-145 were utilized. Prostate tumor cell lines were dissociated from tissue culture plates using cell dissociation medium and stained as above. All samples were treated with propidium iodide (PI) prior to FACS analysis, and data was obtained from PI-excluding (i.e., intact and non-permeabilized) cells. The rabbit polyclonal serum generated against the peptide of SEQ ID NO: 519 was shown to specifically recognize the surface of cells transduced to express P501S, demonstrating that the epitope recognized by the polyclonal serum is extracellular.

To determine biochemically if P501S is expressed on the cell surface, peripheral membranes from Lncap cells were isolated and subjected to Western blot analysis. Specifically, Lncap cells were lysed using a dounce homogenizer in 5 ml of homogenization buffer (250 mM sucrose, 10 mM HEPES, 1mM EDTA, pH 8.0, 1

20

25

15

20

25

30

complete protease inhibitor tablet (Boehringer Mannheim)). Lysate samples were spun at 1000 g for 5 min at 4 °C. The supernatant was then spun at 8000g for 10 min at 4 °C. Supernatant from the 8000g spin was recovered and subjected to a 100,000g spin for 30 min at 4 °C to recover peripheral membrane. Samples were then separated by SDS-PAGE and Western blotted with the mouse monoclonal antibody 10E3-G4-D3 (described above in Example 17) using conditions described above. Recombinant purified P501S, as well as HEK293 cells transfected with and over-expressing P501S were included as positive controls for P501S detection. LCL cell lysate was included as a negative control. P501S could be detected in Lncap total cell lysate, the 8000g (internal membrane) fraction and also in the 100,000g (plasma membrane) fraction. These results indicate that P501S is expressed at, and localizes to, the peripheral membrane.

To demonstrate that the rabbit polyclonal antiserum generated to the peptide of SEQ ID NO: 519 specifically recognizes this peptide as well as the corresponding native peptide of SEQ ID NO: 518, ELISA analyses were performed. For these analyses, flat-bottomed 96 well microtiter plates were coated with either the peptide of SEQ ID NO: 519, the longer peptide of SEQ ID NO: 520 that spans the entire predicted extracellular domain, the peptide of SEQ ID NO: 521 which represents the epitope recognized by the P501S-specific antibody 10E3-G4-D3, or a P501S fragment (corresponding to amino acids 355-526 of SEQ ID NO: 113) that does not include the immunizing peptide sequence, at 1 µg/ml for 2 hours at 37 °C. Wells were aspirated, blocked with phosphate buffered saline containing 1% (w/v) BSA for 2 hours at room temperature and subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified anti-P501S polyclonal rabbit serum was added at 2 fold dilutions (1000 ng -125 ng) in PBST and incubated for 30 min at room temperature. This was followed by washing 6 times with PBST and incubating with HRP-conjugated goat anti-rabbit IgG (H+L) Affinipure F(ab') fragment at 1:20000 for 30 min. Plates were then washed and incubated for 15 min in tetramethyl benzidine. Reactions were stopped by the addition of 1N sulfuric acid and plates were read at 450 nm using an ELISA plate reader. As shown in Fig. 11, the anti-P501S polyclonal rabbit serum specifically recognized the peptide of SEQ ID NO: 519 used in the immunization as well as the longer peptide of SFQ ID NO: 520, but did not recognize the irrelevant P501S-derived peptides and fragments.

In further studies, rabbits were immunized with peptides derived from the P501S sequence and predicted to be either extracellular or intracellular, as shown in Fig. 9. Polyclonal rabbit sera were isolated and polyclonal antibodies in the serum were purified, as described above. To determine specific reactivity with P501S, FACS analysis was employed, utilizing either B-LCL transduced with P501S or the irrelevant antigen P703P, of B-LCL infected with vaccinia virus-expressing P501S. For surface expression, dead and non-intact cells were excluded from the analysis as described above. For intracellular staining, cells were fixed and permeabilized as described above. Rabbit polyclonal serum generated against the peptide of SEQ ID NO: 548, which corresponds to amino acids 181-198 of P501S, was found to recognize a surface epitope of P501S. Rabbit polyclonal serum generated against the peptide SEQ ID NO: 551, which corresponds to amino acids 543-553 of P501S, was found to recognize an epitope that was either potentially extracellular or intracellular since in different experiments intact or permeabilized cells were recognized by the polyclonal sera. Based on similar deductive reasoning, the sequences of SEQ ID NO: 541-547, 549 and 550, which correspond to amino acids 109-122, 539-553, 509-520, 37-54, 342-359, 295-323, 217-274, 143-160 and 75-88, respectively, of P501S, can be considered to be potential surface epitopes of P501S recognized by antibodies.

In further studies, mouse monoclonal antibodies were raised against amino acids 296 to 322 to P501S, which are predicted to be in an extracellular domain. A/J mice were immunized with P501S/adenovirus, followed by subsequent boosts with an *E. coli* recombinant protein, referred to as P501N, that contains amino acids 296 to 322 of P501S, and with peptide 296-322 (SEQ ID NO: 755) coupled with KLH. The mice were subsequently used for splenic B cell fusions to generate anti-peptide hybridomas. The resulting 3 clones, referred to as 4F4 (IgG1,kappa), 4G5 (IgG2a,kappa) and 9B9 (IgG1,kappa), were grown for antibody production. The 4G5 mAb was purified by passing the supernatant over a Protein A-sepharose column,

15

20

25

15

20

25

30

followed by antibody elution using 0.2M glycine, pH 2.3. Purified antibody was neutralized by the addition of 1M Tris, pH 8, and buffer exchanged into PBS.

For ELISA analysis, 96 well plates were coated with P501S peptide 296-322 (referred to as P501-long), an irrelevant P775 peptide, P501S-N, P501TR2, P501S-long-KLH, P501S peptide 306-319 (referred to as P501-short)-KLH, or the irrelevant peptide 2073-KLH, all at a concentration of 2 ug/ml and allowed to incubate for 60 minutes at 37 °C. After coating, plates were washed 5X with PBS + 0.1% Tween and then blocked with PBS, 0.5% BSA, 0.4% Tween20 for 2 hours at room temperature. Following the addition of supernatants or purified mAb, the plates were incubated for 60 minutes at room temperature. Plates were washed as above and donkey anti-mouse IgHRP-linked secondary antibody was added and incubated for 30 minutes at room temperature, followed by a final washing as above. TMB peroxidase substrate was added and incubated 15 minutes at room temperature in the dark. The reaction was stopped by the addition of 1N H₂SO₄ and the OD was read at 450 nM. All three hybrid clones secreted mAb that recognized peptide 296-322 and the recombinant protein P501N.

For FACS analysis, HEK293 cells were transiently transfected with a P501S/VR1012 expression constructs using Fugene 6 reagent. After 2 days of culture, cells were harvested and washed, then incubated with purified 4G5 mAb for 30 minutes on ice. After several washes in PBS, 0.5% BSA, 0.01% azide, goat anti-mouse Ig-FITC was added to the cells and incubated for 30 minutes on ice. Cells were washed and resuspended in wash buffer including 1% propidium iodide and subjected to FACS analysis. The FACS analysis confirmed that amino acids 296-322 of P501S are in an extracellular domain and are cell surface expressed.

The chromosomal location of P501S was determined using the GeneBridge 4 Radiation Hybrid panel (Research Genetics). The PCR primers of SEQ ID NO: 528 and 529 were employed in PCR with DNA pools from the hybrid panel according to the manufacturer's directions. After 38 cycles of amplification, the reaction products were separated on a 1.2% agarose gel, and the results were analyzed through the Whitehead Institute/MIT Center for Genome Research web server

WO 01/051633

199

PCT/US01/01574

(http://www-genome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) to determine the probable chromosomal location. Using this approach, P501S was mapped to the long arm of chromosome 1 at WI-9641 between q32 and q42. This region of chromosome 1 has been linked to prostate cancer susceptibility in hereditary prostate cancer (Smith *et al. Science 274*:1371-1374, 1996 and Berthon *et al. Am. J. Hum. Genet. 62*:1416-1424, 1998). These results suggest that P501S may play a role in prostate cancer malignancy.

EXAMPLE 20

REGULATION OF EXPRESSION OF THE PROSTATE-SPECIFIC ANTIGEN P501S

10

15

20

25

30

Steroid (androgen) hormone modulation is a common treatment modality in prostate cancer. The expression of a number of prostate tissue-specific antigens have previously been demonstrated to respond to androgen. The responsiveness of the prostate-specific antigen P501S to androgen treatment was examined in a tissue culture system as follows.

Cells from the prostate tumor cell line LNCaP were plated at 1.5 x 10⁶ cells/T75 flask (for RNA isolation) or 3 x 10⁵ cells/well of a 6-well plate (for FACS analysis) and grown overnight in RPMI 1640 media containing 10% charcoal-stripped fetal calf serum (BRL Life Technologies, Gaithersburg, MD). Cell culture was continued for an additional 72 hours in RPMI 1640 media containing 10% charcoal-stripped fetal calf serum, with 1 nM of the synthetic androgen Methyltrienolone (R1881; New England Nuclear) added at various time points. Cells were then harvested for RNA isolation and FACS analysis at 0, 1, 2, 4, 8, 16, 24, 28 and 72-hours post androgen addition. FACS analysis was performed using the anti-P501S antibody 10E3-G4-D3 and permeabilized cells.

For Northern analysis, 5-10 micrograms of total RNA was run on a formaldehyde denaturing gel, transferred to Hybond-N nylon membrane (Amersham Pharmacia Biotech, Piscataway, NJ), cross-linked and stained with methylene blue. The filter was then prehybridized with Church's Buffer (250 mM Na₂HPO₄, 70 mM H₃PO₄, 1 mM EDTA, 1% SDS, 1% BSA in pH 7.2) at 65 °C for 1 hour. P501S DNA was

200

labeled with 32P using High Prime random-primed DNA labeling kit (Boehringer Mannheim). Unincorporated label was removed using MicroSpin S300-HR columns (Amersham Pharmacia Biotech). The RNA filter was then hybridized with fresh Church's Buffer containing labeled cDNA overnight, washed with 1X SCP (0.1 M NaCl, 0.03 M Na₂HPO₄.7H₂O, 0.001 M Na₂EDTA), 1% sarkosyl (n-lauroylsarcosine) and exposed to X-ray film.

Using both FACS and Northern analysis, P501S message and protein levels were found in increase in response to androgen treatment.

10 EXAMPLE 20

PREPARATION OF FUSION PROTEINS OF PROSTATE-SPECIFIC ANTIGENS

The example describes the preparation of a fusion protein of the prostate-specific antigen P703P and a truncated form of the known prostate antigen PSA. The truncated form of PSA has a 21 amino acid deletion around the active serine site. The expression construct for the fusion protein also has a restriction site at 3' end, immediately prior to the termination codon, to aid in adding cDNA for additional antigens.

The full-length cDNA for PSA was obtained by RT-PCR from a pool of RNA from human prostate tumor tissues using the primers of SEQ ID NO: 607 and 608, and cloned in the vector pCR-Blunt II-TOPO. The resulting cDNA was employed as a template to make two different fragments of PSA by PCR with two sets of primers (SEQ ID NO: 609 and 610; and SEQ ID NO: 611 and 612). The PCR products having the expected size were used as templates to make truncated forms of PSA by PCR with the primers of SEQ ID NO: 611 and 613, which generated PSA (delta 208-218 in amino acids). The cDNA for the mature form of P703P with a 6X histidine tag at the 5' end, was prepared by PCR with P703P and the primers of SEQ ID NO: 614 and 615. The cDNA for the fusion of P703P with the truncated form of PSA (referred to as FOPP) was then obtained by PCR using the modified P703P cDNA and the truncated form of PSA cDNA as templates and the primers of SEQ ID NO: 614 and 615. The FOPP

15

20

25

cDNA was cloned into the NdeI site and XhoI site of the expression vector pCRX1, and confirmed by DNA sequencing. The determined cDNA sequence for the fusion construct FOPP is provided in SEQ ID NO: 616, with the amino acid sequence being provided in SEQ ID NO: 617.

The fusion FOPP was expressed as a single recombinant protein in E. coli as follows. The expression plasmid pCRX1FOPP was transformed into the E. coli strain BL21-CodonPlus RIL. The transformant was shown to express FOPP protein upon induction with 1 mM IPTG. The culture of the corresponding expression clone was inoculated into 25 ml LB broth containing 50 ug/ml kanamycin and 34 ug/ml chloramphenicol, grown at 37 °C to OD600 of about 1, and stored at 4 °C overnight. The culture was diluted into 1 liter of TB LB containing 50 ug/ml kanamycin and 34 ug/ml chloramphenicol, and grown at 37 °C to OD600 of 0.4. IPTG was added to a final concentration of 1 mM, and the culture was incubated at 30 °C for 3 hours. The cells were pelleted by centrifugation at 5,000 RPM for 8 min. To purify the protein, the cell pellet was suspended in 25 ml of 10 mM Tris-Cl pH 8.0, 2mM PMSF, complete protease inhibitor and 15 ug lysozyme. The cells were lysed at 4 °C for 30 minutes, sonicated several times and the lysate centrifuged for 30 minutes at 10,000 x g. The precipitate, which contained the inclusion body, was washed twice with 10 mM Tris-Cl pH 8.0 and 1% CHAPS. The inclusion body was dissolved in 40 ml of 10 mM Tris-Cl pH 8.0, 100 mM sodium phosphate and 8 M urea. The solution was bound to 8 ml Ni-NTA (Qiagen) for one hour at room temperature. The mixture was poured into a 25 ml column and washed with 50 ml of 10 mM Tris-Cl pH 6.3, 100 mM sodium phosphate, 0.5% DOC and 8M urea. The bound protein was eluted with 350 mM imidazole, 10 mM Tris-Cl pH 8.0, 100 mM sodium phosphate and 8 M urea. The fractions containing FOPP proteins were combined and dialyzed extensively against 10 mM Tris-Cl pH 4.6, aliquoted and stored at - 70 °C.

202

EXAMPLE 21

REAL-TIME PCR CHARACTERIZATION OF THE PROSTATE-SPECIFIC ANTIGEN P501S IN PERIPHERAL BLOOD OF PROSTATE CANCER PATIENTS

Circulating epithelial cells were isolated from fresh blood of normal individuals and metastatic prostate cancer patients, mRNA isolated and cDNA prepared using real-time PCR procedures. Real-time PCR was performed with the TaqmanTM procedure using both gene specific primers and probes to determine the levels of gene expression.

Epithelial cells were enriched from blood samples using an immunomagnetic bead separation method (Dynal A.S., Oslo, Norway). Isolated cells were lysed and the magnetic beads removed. The lysate was then processed for poly A+mRNA isolation using magnetic beads coated with Oligo(dT)25. After washing the beads in buffer, bead/poly A+ RNA samples were suspended in 10 mM Tris HCl pH 8.0 and subjected to reversed transcription. The resulting cDNA was subjected to real-time PCR using gene specific primers. Beta-actin content was also determined and used for normalization. Samples with P501S copies greater than the mean of the normal samples + 3 standard deviations were considered positive. Real time PCR on blood samples was performed using the TaqmanTM procedure but extending to 50 cycles using forward and reverse primers and probes specific for P501S. Of the eight samples tested, 6 were positive for P501S and β-actin signal. The remaining 2 samples had no detectable β-actin or P501S. No P501S signal was observed in the four normal blood samples tested.

25 EXAMPLE 22

EXPRESSION OF THE PROSTATE-SPECIFIC ANTIGENS P703P AND P501S IN SCID MOUSE-PASSAGED PROSTATE TUMORS

When considering the effectiveness of antigens in the treatment of prostate cancer, the continued presence of the antigens in tumors during androgen

5

10

15

ablation therapy is important. The presence of the prostate-specific antigens P703P and P501S in prostate tumor samples grown in SCID mice in the presence of testosterone was evaluated as follows.

Two prostate tumors that had metastasized to the bone were removed from patients, implanted into SCID mice and grown in the presence of testosterone. Tumors were evaluated for mRNA expression of P703P, P501S and PSA using quantitative real time PCR with the SYBR green assay method. Expression of P703P and P501S in a prostate tumor was used as a positive control and the absence in normal intestine and normal heart as negative controls. In both cases, the specific mRNA was present in late passage tumors. Since the bone metastases were grown in the presence of testosterone, this implies that the presence of these genes would not be lost during androgen ablation therapy.

EXAMPLE 23

15

20

10

ANTI-P503S MONOCLONAL ANTIBODY INHIBITS TUMOR GROWTH IN VIVO

The ability of the anti-P503S monoclonal antibody 20D4 to suppress tumor formation in mice was examined as follows.

Ten SCID mice were injected subcutaneously with HEK293 cells that expressed P503S. Five mice received 150 micrograms of 20D4 intravenously at day 0 (time of tumor cell injection), day 5 and day 9. Tumor size was measured for 50 days. Of the five animals that received no 20D4, three formed detectable tumors after about 2 weeks which continued to enlarge throughout the study. In contrast, none of the five mice that received 20D4 formed tumors. These results demonstrate that the anti-P503S Mab 20D4 displays potent anti-tumor activity *in vivo*.

25

EXAMPLE 24

CHARACTERIZATION OF A T CELL RECEPTOR CLONE FROM A P501S-SPECIFIC T CELL CLONE

T cells have a limited lifespan. However, cloning of T cell receptor (TCR) chains and subsequent transfer essentially enables infinite propagation of the T

204

cell specificity. Cloning of tumor-antigen TCR chains allows the transfer of the specificity into T cells isolated from patients that share the TCR MHC-restricting allele. Such T cells could then be expanded and used in adoptive transfer settings to introduce the tumor antigen specificity into patients carrying tumors that express the antigen. T cell receptor alpha and beta chains from a CD8 T cell clone specific for the prostate-specific antigen P501S were isolated and sequenced as follows.

Total mRNA from 2 x 10⁶ cells from CTL clone 4E5 (described above in Example 12) was isolated using Trizol reagent and cDNA was synthesized. To determine Va and Vb sequences in this clone, a panel of Va and Vb subtype-specific primers was synthesized and used in RT-PCR reactions with cDNA generated from each of the clones. The RT-PCR reactions demonstrated that each of the clones expressed a common Vb sequence that corresponded to the Vb7 subfamily. Futhermore, using cDNA generated from the clone, the Va sequence expressed was determined to be Va6. To clone the full TCR alpha and beta chains from clone 4E5, primers were designed that spanned the initiator and terminator-coding TCR nucleotides. The primers were as follows: TCR Valpha-6 5'(sense): GGATCC---GCCGCCACC-ATGTCACTTTCTAGCCTGCT (SEQ ID NO: 756) BamHI site 3' (antisense): GTCGAC---Kozak alpha **TCR** alpha TCR sequence TCAGCTGGACCACAGCCGCAG (SEQ ID NO: 757) SalI site TCR alpha constant sequence TCR Vbeta-7. 5'(sense): GGATCC---GCCGCCACC--ATGGGCTGCAGGCTGCTCT (SEQ ID NO: 758) BamHI site Kozak TCR alpha sequence TCR beta 3' (antisense): GTCGAC---TCAGAAATCCTTTCTCTTGAC (SEQ ID NO: 759) Sall site TCR beta constant sequence. Standard 35 cycle RT-PCR reactions were established using cDNA synthesized from the CTL clone and the above primers, employing the proofreading thermostable polymerase PWO (Roche, Nutley, NJ).

The resultant specific bands (approx. 850 bp for alpha and approx. 950 for beta) were ligated into the PCR blunt vector (Invitrogen) and transformed into *E. coli*. *E. coli* transformed with plasmids containing full-length alpha and beta chains were identified, and large scale preparations of the corresponding plasmids were generated. Plasmids containing full-length TCR alpha and beta chains were submitted

30

10

15

205

for sequencing. The sequencing reactions demonstrated the cloning of full-length TCR alpha and beta chains with the determined cDNA sequences for the Vb and Va chains being shown in SEQ ID NO: 760 and 761, respectively. The corresponding amino acid sequences are shown in SEQ ID NO: 762 and 763, respectively. The Va sequence was shown by nucleotide sequence alignment to be 99% identical (347/348) to Va6.2, and the Vb to be 99% identical to Vb7 (336/338).

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

206

CLAIMS

What is Claimed:

- 1. An isolated polynucleotide comprising a sequence selected from the group consisting of:
- (a) sequences provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788;
- (b) complements of the sequences provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788;
- (c) sequences consisting of at least 20 contiguous residues of a sequence provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788;
- (d) sequences that hybridize to a sequence provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788 under moderately stringent conditions;
- (e) sequences having at least 75% identity to a sequence of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-

375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788;

- (f) sequences having at least 90% identity to a sequence of SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788; and
- (g) degenerate variants of a sequence provided in SEQ ID NO: 1-111, 115-171, 173-175, 177, 179-305, 307-315, 326, 328, 330, 332-335, 340-375, 381, 382 and 384-476, 524, 526, 530, 531, 533, 535, 536, 552, 569-572, 587, 591, 593-606, 618-626, 630, 631, 634, 636, 639-655, 674, 680, 681, 711, 713, 716, 720-722, 735, 737-739, 751, 753, 764, 765, 773-776 and 786-788.
- 2. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
- (a) sequences recited in SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-551, 553-568, 573-586, 588-590, 592, 627-629, 632, 633, 635, 637, 638, 656-671, 675, 683, 684, 710, 712, 714, 715, 717-719, 723-734, 736, 740-750, 752, 754, 755, 766-772, 777-785 and 789-791;
- (b) sequences having at least 70% identity to a sequence of SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-551, 553-568, 573-586, 588-590, 592, 627-629, 632, 633, 635, 637, 638, 656-671, 675, 683, 684, 710, 712, 714, 715, 717-719, 723-734, 736, 740-750, 752, 754, 755, 766-772, 777-785 and 789-791;
- (c) sequences having at least 90% identity to a sequence of SEQ ID NO: 112-114, 172, 176, 178, 327, 329, 331, 336, 339, 376-380, 383, 477-483, 496, 504, 505, 519, 520, 522, 525, 527, 532, 534, 537-551, 553-568, 573-586, 588-590, 592, 627-

629, 632, 633, 635, 637, 638, 656-671, 675, 683, 684, 710, 712, 714, 715, 717-719, 723-734, 736, 740-750, 752, 754, 755, 766-772, 777-785 and 789-791;

- (d) sequences encoded by a polynucleotide of claim 1;
- (e) sequences having at least 70% identity to a sequence encoded by a polynucleotide of claim 1; and
- (f) sequences having at least 90% identity to a sequence encoded by a polynucleotide of claim 1.
- 3. An expression vector comprising a polynucleotide of claim 1 operably linked to an expression control sequence.
- 4. A host cell transformed or transfected with an expression vector according to claim 3.
- 5. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a polypeptide of claim 2.
- 6. A method for detecting the presence of a cancer in a patient, comprising the steps of:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the biological sample with a binding agent that binds to a polypeptide of claim 2;
- (c) detecting in the sample an amount of polypeptide that binds to the binding agent; and
- (d) comparing the amount of polypeptide to a predetermined cut-off value and therefrom determining the presence of a cancer in the patient.
- 7. A fusion protein comprising at least one polypeptide according to claim 2.