NATIONAL UNIVERSITY OF SINGAPORE

Master's of Computing (General-Track)

Alpha Tree Search and Machine Learning Approaches to Optimising Real Estate Portfolios

Leong Wei Ming

Supervisor: Professor Liu Li Li

Examiner: Professor Chin Wei Ngan

Department of Computer Science
Internal Capstone Project for AY2023/2024

ABSTRACT

An internal project about applying genetic algorithm to search for optimal alphas. State the major contribution:

DECLARATION

I hereby declare that this project report is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in this report.

This report has also not been submitted for any degree in any university previously.

ACKNOWLEDGEMENT

I would like to thank Professor Liu Lili for her guidance, support and encouragement throughout the course of this project. Working with Professor Lili has been a great learning experience, getting to learn much more about machine learning and its applications to finance in solving some challenges faced by industry practitioners.

Also many thanks to Professor Chin Wei Ngan for taking the time out to assess this project.

CONTENTS

1	Intr	oducti	ion		2
	1.1	Proble	em Definit	ion	2
	1.2	Motiva	ations .		2
	1.3	Major	Contribu	tion and Creativity	2
Ι	Bac	kgrour	nd		1
2	Fina	ancial	Termino	logy and Concepts	2
	2.1	Key T	erms		3
		2.1.1	Stock .		3
		2.1.2	Real Est	tate Investment Trusts (REITs)	3
		2.1.3	Portfolio)	3
	2.2	Evalua	ating Inve	stments with Data	3
		2.2.1 Technical Analysis with Price Volume Data		al Analysis with Price Volume Data	3
			2.2.1.1	Profits and Loss (PnL)	3
			2.2.1.2	Risk and Volatility	3
			2.2.1.3	Sharpe Ratio	3
		2.2.2	Fundam	ental Analysis with Financial Statements	3
			2.2.2.1	Income Statement	3
			2.2.2.2	Balance Sheet	3
			2.2.2.3	Cash Flow Statement	3
		2.2.3	Alpha F	ormulas	3

		2.2.4	Other Methods of Analyses	3
3	$\operatorname{Lit}_{\epsilon}$	serature Review of Portfolio Optimisation Techniques		
	3.1	Optim	al Portfolio Theory	4
	3.2	Tradit	ional Time-Series Analysis	4
	3.3	Machine Learning Techniques		4
	3.4	Comparison of Techniques		4
		3.4.1	Scope	4
		3.4.2	Profitability	4
		3.4.3	Predictive Accuracy	4
II	Inn	ovation	1	1
4	Dat	asets	asets	
	4.1	Extend	ded Fundamental Data Features	2
	4.2	Featur	re Selection with Decision Trees	2
5	Met	$\operatorname{ethodology}$		3
	5.1 Machine Learning for REITs Portfolio Optimisation		ne Learning for REITs Portfolio Optimisation	4
		5.1.1	\ensuremath{MLR} / NN / LSTM Predictions with Extended Features	4
		5.1.2	Trade Execution Logic	4
		5.1.3	Performance Evaluation	4
	5.2	Genetic Algorithm Search for Outperforming Alphas		4
		5.2.1	Alpha Tree	4
		5.2.2	Application of Genetic Algorithms to Alpha Trees	4
			5.2.2.1 Objective Function	4
			5 2 2 2 Selection	1

			5.2.2.3 Crossover	4
			5.2.2.4 Mutation	4
		5.2.3	Portfolio Allocation Using Alpha	4
		5.2.4	Performance Evaluation	4
II	IExp	erime	ents	1
6	Pos	t-proc	essed Financial Datasets	2
7	Ma	chine l	Learning Results	3
	7.1	Evalua	ating Stock Price Predictions	3
		7.1.1	Multiple Linear Regression (MLR)	3
		7.1.2	Neural Networks (NN)	3
		7.1.3	Long-Short Term Memory (LSTM)	3
	7.2	Trade	Execution Results with Different Parameters	3
	7.3	Overa	all Evaluation of Performances	3
8	Alp	ha Tre	ee Search Results	4
	8.1	Alpha	as Generated	4
		8.1.1	Initial Set	4
		8.1.2	Intermediate Alphas	4
		8.1.3	Best Performing Alphas	4
	8.2	Portfo	olio Allocation Results with Best Performing Alphas	4
	8.3	Overa	all Evaluation of Performance	4
9	Cor	nclusio	\mathbf{n}	5
	9.1	Bench	nmarking Against Index Funds	5

9.2	Comparing Results with Literature Review	5
9.3	Key Findings	5
9.4	Major Contribution and Creativity	5
9.5	Future Work	5
	9.5.1 More Operators and Features for Alphas	Ξ.

INTRODUCTION

The saying goes that once a profitable trading strategy has been discovered and traded on by enough people, its profits will be eroded away and it will cease to be profitable. Traders and investors appear to be playing a neverending game of "Hide-and-Seek" in search of profitable trading formulas. Due to the increasingly dynamic nature of the financial markets, traditional financial time-series forecasting models which are static in nature are becoming less effective than machine learning models in picking the best investments (Sheth & Shah, 2023).

1.1 Problem Definition

Optimising Real Estate Portfolios

1.2 Motivations

1.3 Major Contribution and Creativity

I. Background

FINANCIAL TERMINOLOGY AND CONCEPTS

2.1	Kev	Terms
	,	

- 2.1.1 Stock
- 2.1.2 Real Estate Investment Trusts (REITs)
- 2.1.3 Portfolio
- 2.2 Evaluating Investments with Data
- 2.2.1 Technical Analysis with Price Volume Data
- 2.2.1.1 Profits and Loss (PnL)
- 2.2.1.2 Risk and Volatility
- 2.2.1.3 Sharpe Ratio
- 2.2.2 Fundamental Analysis with Financial Statements

3

- 2.2.2.1 Income Statement
- 2.2.2.2 Balance Sheet
- 2.2.2.3 Cash Flow Statement
- 2.2.3 Alpha Formulas
- 2.2.4 Other Methods of Analyses

LITERATURE REVIEW OF PORTFOLIO OPTIMISATION TECHNIQUES

- 3.1 Optimal Portfolio Theory
- 3.2 Traditional Time-Series Analysis
- 3.3 Machine Learning Techniques
- 3.4 Comparison of Techniques
- **3.4.1** Scope
- 3.4.2 Profitability
- 3.4.3 Predictive Accuracy

II. Innovation

DATASETS

- 4.1 Extended Fundamental Data Features
- 4.2 Feature Selection with Decision Trees

METHODOLOGY

- Machine Learning for REITs Portfolio Op-5.1 timisation
- MLR / NN / LSTM Predictions with Extended 5.1.1 **Features**
- 5.1.2 Trade Execution Logic
- 5.1.3 **Performance Evaluation**
- Genetic Algorithm Search for Outperform-5.2 ing Alphas
- Alpha Tree 5.2.1
- Application of Genetic Algorithms to Alpha Trees 5.2.2

4

- 5.2.2.1**Objective Function**
- 5.2.2.2Selection
- 5.2.2.3Crossover
- **5.2.2.4** Mutation
- Portfolio Allocation Using Alpha 5.2.3
- **Performance Evaluation** 5.2.4

III. Experiments

POST-PROCESSED FINANCIAL DATASETS

MACHINE LEARNING RESULTS

- 7.1 Evaluating Stock Price Predictions
- 7.1.1 Multiple Linear Regression (MLR)
- 7.1.2 Neural Networks (NN)
- 7.1.3 Long-Short Term Memory (LSTM)
- 7.2 Trade Execution Results with Different
 Parameters
- 7.3 Overall Evaluation of Performances

ALPHA TREE SEARCH RESULTS

- 8.1 Alphas Generated
- 8.1.1 Initial Set
- 8.1.2 Intermediate Alphas
- 8.1.3 Best Performing Alphas
- 8.2 Portfolio Allocation Results with Best Performing Alphas
- 8.3 Overall Evaluation of Performance

CONCLUSION

- 9.1 Benchmarking Against Index Funds
- 9.2 Comparing Results with Literature Review
- 9.3 Key Findings
- 9.4 Major Contribution and Creativity
- 9.5 Future Work
- 9.5.1 More Operators and Features for Alphas

Figure 9.1: The Universe

REFERENCES

Sheth, D., & Shah, M. (2023, February). Predicting stock market using machine learning: best and accurate way to know future stock prices. International Journal of System Assurance Engineering and Management, 14(1), 1–18. Retrieved 2024-04-07, from https://link.springer.com/10.1007/s13198-022-01811-1 doi: 10.1007/s13198-022-01811-1