

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Hlboké neurónové siete Prednáška č.6 Aplikácie hlbokých neurónových sietí

- Vizuálna kontrola prostredia (Computer Vision)
- Rozpoznávanie, klasifikácia z obrazu
- Detekcia objektov
- HMI rozpoznávanie gest, reči, tváre
- Rozpoznanie textu
- Riadenie systémov

- Vizuálna spätná väzba (Robot Buxter)
- snaha naučiť sa 18 pozícií úchopu predmetu
- 50 tisíc pokusov (700 robot-hodín)
- Architektúra CNN podobná AlexNet

- Robotom asistovaná operácia (vizuálna spätná väzba)
- Robot DaVinci (vstupom informácie zo senzorov nie priamo obraz)

Wang, Z., & Fey, A. M. (2018). Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. International journal of computer assisted radiology and surgery, 13(12), 1959-1970.

- vizuálna inšpekcia kanalizačných potrubí
- vstupom do CNN obraz zo všesmerovej kamery
- výstupom je časová analýza záznamu prechodu kanalizačným potrubím

Original Omnidirectional Camera Image

Pipe inlet present

Pipe joint present

Clear pipe

- detekcia poškodených obrobkov vizuálna kontrola
- vstupom do CNN je obraz 512x512 z kamery
- Binárny klasifikačný problém dobrá / poškodená
- Trénovacie data (73,5%)

Dataset	Rozlíšenie	Celkový	Počet
		počet	poškodených
		snímok	
Neaugmentovany	512 x 512 x 1	1300	781

Model	Vstupný	Normalizácia			
	rozmer	vstupu			
Inception V3	299x299x3	<-1,1>			
ResNet50 V2	224x224x3	<-1,1>			

<u>Výsledky detekcie – Inception sieť</u>

Kostur (2021) , Projekt z predmetu VIR

- vizuálna inšpekcia slnečných panelov
- detekcia poškodení panelov (mikropraskliny, praskliny, odtrhnuté zberacie pásky, prasklinami oddelené plochy, straty medzi plochami, ...)
- CNN je natrénovaná na obrazoch rôznych poškodení
- snímanie obrazu napr. termokamerov pomocou dronu

Aplikácia – zváranie materiálov – Detekcia typu trajektórie

- nasnímaný obraz z kamery
- trénovaná CNN na obrazy z kamery, klasifikácia do 10 skupín typov trajektorií

Fig. 1. Description of Different Layers in 2D CNN for Weld Shapes Classification.

Abhilasha Singh, V. Kalaichelvi a, R. Karthikeyan, (2020), Application of Convolutional Neural Network for Classification and Tracking of Weld Seam Shapes for TAL Brabo Manipulator

Aplikácie v automobilovom priemysle

- detekcia prekážok, auta, ľudí
- rozpoznanie značiek
- predikcia zakrivenia cesty, detekcia čiar

 ${\bf Zdroje\ obr\'azkov: medium.com, devblogs.nvidia.com}$

- Diagnostika z obrazu vyhodnotenie MRI, CT, RTG, USG, histopatolódii snímkov
- Analýza meraných signálov EKG, EEG, EMG
- Telemedicína, Health Chatbot

 Rozpoznávanie signálov (EKG, EEG, EMG) pomocou CNN

• Rozpoznávanie neurologických ochorení – Finger Tapping Test

- Detekcia príznakov klasifikácia MLP sieť
- Meraný signál LSTM sieť

• detekcia poškodenia očnej sietnice pri cukrovke

· detekcia poškodenia očnej sietnice pri cukrovke

Kaggle databáza – stupne poškodenia

0 - 25790

1 - 2443

2 - 5292

3 – 873 (2087)

4 – 708 (1914)

Predtrénované siete – transfer learning

- AlexNet
- VGGnet
- ResNet
- GoogLeNet.
- Inception

HOW A DEEP NEURAL NETWORK SEES

2 triedy – Kaggle dataset - nepoškodené 25790 / poškodené 23 472 (stupeň 1 až 4) VGG

Pokus		1	2	3	4	5	Min	Max	Mean
Úspeš	nosť								
Tréno	vacie Data	94,66%	93,41%	94,64%	93,12%	91,47%	91,47%	94,66%	93,46%
Úspeš	nosť								
Testo	vacie Data	86,46%	86,89%	92,31%	90,08%	90,35%	86,46%	92,31%	89,22%

Resnet

Pokus	1	2	3	4	5	Min	Max	Mean
Úsnočnosť								
Úspešnosť Trénovacie Data	94,66%	93,41%	94,64%	93,12%	91,47%	91,47%	94,66%	93,46%
Úspešnosť Testovacie Data	86,46%	86,89%	92,31%	90,08%	90,35%	86,46%	92,31%	89,22%

Inception

Pokus	1	2	3	4	5	Min	Max	Mean
Úspešnosť Trénovacie Data	94,85%	92,44%	96,06%	94,02%	97,11%	92,44%	97,11%	94,90%
Úspešnosť Testovacie Data	90,29%	90,13%	93,02%	90,18%	93,37%	90,13%	93,37%	91,40%

Príklad trénovania – Inception sieť

Target Class

Úspešnosť klasifikácie, senzitivita (citlivosť), špecificita

sensitivity, recall, hit rate, or true positive rate (TPR)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

specificity, selectivity or true negative rate (TNR)

$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$$

precision or positive predictive value (PPV)

$$PPV = \frac{TP}{TP + FP} = 1 - FDR$$

negative predictive value (NPV)

$$NPV = \frac{TN}{TN + FN} = 1 - FOR$$

accuracy (ACC)

$$ext{ACC} = rac{ ext{TP} + ext{TN}}{ ext{P} + ext{N}} = rac{ ext{TP} + ext{TN}}{ ext{TP} + ext{TN} + ext{FP} + ext{FN}}$$

balanced accuracy (BA)

$$\mathrm{BA} = \frac{TPR + TNR}{2}$$

F1 score

is the harmonic mean of precision and sensitivity

$$F_1 = 2 \cdot \frac{PPV \cdot TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$$

- occlusion sensitivity maps heat maps
- CAM class activation mapping
- Grad-CAM gradient class activation mapping
- Deep Dream Image

- Citlivosť CNN pre klasifikáciu do triedy (occlusion sensitivity maps heat maps)
- Zistenie, ktoré časti vstupného obrazu najviac prispievajú na priradení do danej triedy
- Demo Matlab Understand Network Predictions Using Occlusion

Zeiler M.D., Fergus R. (2014) Visualizing and Understanding Convolutional Networks. In: Fleet D., Pajdla T., Schiele B., Tuytelaars (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8689. Springer, Cham.

- Mapovanie aktivácie tried (CAM class activation mapping)
- Zistenie, ktoré časti vstupného obrazu najviac prispievajú na klasifikácii do jednotlivých tried
- Demo Matlab Investigate Network Predictions Using Class Activation Mapping

Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning deep features for discriminative localization." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2921-2929. 2016.

- Gradientovo váhované mapovanie aktivácie tried (Grad-CAM gradient class activation mapping)
- Zistenie, ktoré časti vstupného obrazu najviac prispievajú na klasifikácii do jednotlivých tried
- Demo Matlab Grad-CAM Reveals the Why Behind Deep Learning Decisions

Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. "Grad-CAM: Visual Explanations from Deep Network via Gradient-Based Localization." In IEEE International Conference on Computer Vision (ICCV), 2017, pp. 618–626.

- Modifikované metódy Grad-CAM
- GradCAM++ rovnako ako GradCAM, ale používa gradienty druhého rádu
- XGradCAM rovnako ako GradCAM, ale škáluje gradienty podľa normalizovaných aktivácií
- ScoreCAM vytvára obraz pomocou škálovaných aktivácií a meria pokles výstupu
- AblationCAM vynuluje aktivácie a meria pokles výstupu

Pytorch Link: https://github.com/jacobgil/pytorch-grad-cam

Haofan Wang, Zifan Wang, Mengnan Du, at all., Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks, https://arxiv.org/abs/1910.01279

- Vizualizácia máp príznakov Deep Dream Image (demo Deep Dream Images Using GoogLeNet)
- syntetizuje obrázky, ktoré silne aktivujú sieťové vrstvy
- Vizualizáciou môžete zvýrazniť vlastnosti obrázkov naučené sieťou. Tieto obrázky sú užitočné na pochopenie a diagnostiku správania siete.

Ďakujem Vám za pozornosť.

(priestor na Vaše otázky)

