Exercices Séquence 3 partie A : les vecteurs

1. Grâce à la liste de points suivantes, calculer les composantes des vecteurs demandés (en 2D)

A(-4,7)

B(-6,9)

C(14,3)

D(20,0)

E(-2,8)

a) $\overrightarrow{AB} =$

b) $\overrightarrow{BE} =$

- c) $\overrightarrow{CD} =$
- d) $\overrightarrow{EA} =$
- e) $\overrightarrow{AD} =$
- 2. Dans le triangle rectangle ABC, trouvez les informations manquantes (mesures des côtés et des angles)

- 3. Soit les vecteurs $\vec{s} = [4 \quad -3]$, $\vec{t} = [2 \quad 2]$, $\vec{u} = [-1 \quad 1]$, $\vec{v} = [1 \quad -3]$ et $\vec{w} = [-3 \quad -4]$
 - a) Représentez ces vecteurs dans le plan cartésien

b) Calculez la norme de chaque vecteur

c) Calculez la direction (angle d'orientation par rapport à 0°) pour chaque vecteur

d) Trouvez un vecteur \vec{a} tel que les vecteurs \vec{a} , \vec{s} et \vec{t} forment un triangle. Vous devez exprimer ce vecteur à l'aide de ses composantes, comme les autres vecteurs de la question.

e) Donnez les composantes du vecteur $\vec{r} = -3\vec{u} + 2\vec{w} + \vec{t}$

f)	Évaluez $\vec{u} \bullet \vec{v}$
g)	Quel est l'angle entre les vecteurs \vec{u} et \vec{v} ?
h)	Les vecteurs \vec{s} et \overrightarrow{w} sont-ils orthogonaux (forment-ils un angle droit)?
i)	Trouvez les composantes de 2 vecteurs de longueur 1 qui forment un angle droit avec le vecteur $\vec{v}.$

- 4. Soit les vecteurs $\vec{u}=\begin{bmatrix}1&2\end{bmatrix}$, $\vec{v}=\begin{bmatrix}4&3\end{bmatrix}$ et $\vec{w}=\begin{bmatrix}-2&-3\end{bmatrix}$. Évaluez les expressions suivantes :
- a) $\vec{u} \cdot \vec{v}$

b)
$$\vec{u} \cdot (2\vec{v} - 3\vec{w})$$

c)
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$$

- 5. Grâce à la liste de points suivantes, calculer les composantes des vecteurs demandés (en 3D)
- A(2,15,7)
- B(-3,0,6)
- C(-1 , -4 , -3)
- D(12, -6, 0)
- E(-2,9,-4)

- a) $\overrightarrow{AB} =$
- b) $\overrightarrow{BE} =$
- c) $\overrightarrow{CD} =$
- d) $\overrightarrow{EA} =$
- e) $\overrightarrow{AD} =$
- 6. Soit le triangle dans l'espace dont les sommets sont les points A(2,2,-1), B(3,0,4) et C(4,5,6).
 - a) Quel est le périmètre du triangle ABC?

		>
b)	Trouvez les angles α , β	et γ du vecteur AB .

c) Quelle est la mesure de l'angle issu du point A dans ce triangle?

- 7. Soit les vecteurs $\vec{s} = [4 \quad 1 \quad 2]$, $\vec{t} = [3 \quad -1 \quad 2]$, $\vec{u} = [1 \quad -2 \quad 4]$, $\vec{v} = [-2 \quad 1 \quad 1]$ et $\vec{w} = [-3 \quad 6 \quad -12]$.
 - a) Que vaut $3\vec{u} + 2\vec{s} 4\vec{t}$?

b) Que vaut $||3\vec{u} + 2\vec{s} - 4\vec{t}||$?

c) Quels sont les angles directeurs de \vec{v} ?

d) Quel est l'angle entre \vec{u} et \vec{v} ?