# Customer Segmentation Using Data Science Team Members

PRIYA KUMARI REG NO:-310521104077

#### What is customer segmentation and why does it matter?

Also known as market segmentation, customer segmentation is the division of potential customers in a given market into discrete groups. That division is based on customers having similar:

- 1. Needs
- 2. Buying characteristics

There are three main approaches to market segmentation:

1.A priori segmentation, the simplest approach, uses a classification scheme based on publicly available characteristics—such as industry and company size—to create distinct groups of customers within a market. However, a priori market segmentation may not always be valid since companies in the same industry and of the same size may have very different needs.

2. Needs-based segmentation is based on differentiated, validated drivers (needs) that customers express for a specific product or service being offered. The needs are discovered and verified through primary market research, and segments are demarcated based on those different needs rather than characteristics such as industry or company size.

3. Value-based segmentation differentiates customers by their economic value, grouping customers with the same value level into individual segments that can be distinctly targeted.

This guide will focus on the value-based approach, which allows expansion-stage companies to clearly define and target their best prospects (based on its current knowledge of the market) and satisfy most of their needs for segmentation in the expansion stage—without consuming the time and resources of a traditional, descriptive segmentation research process.

#### PART 1: Analyze and Clean the dataset

- Cleaning the data
- Exploratory analysis
- Feature engineering

#### PART 2: Creating customer categories

- · Intermediate dataset grouped by invoices
- Final dataset grouped by customers
- · K-means clustering

Interpreting the clusters

#### PART 3: Testing models for predicition

- · Classic sklearn models
- · Random Forest
- XGBoost

## **Customer Segmentation and Analysis:**

#### Steps to solve the problem:

- 1. Importing Libraries.
- 2. Exploration of data.
- 3. Data Visualization.
- 4. Clustering using K-Means.
- 5. Selection of Clusters.
- 6. Ploting the Cluster Boundry and Clusters.
- 7. 3D Plot of Clusters.

#### Importing Libraries.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns import
plotly as py import
plotly.graph_objs as go from
sklearn.cluster import KMeans
import warnings import os
warnings.filterwarnings("ignore")
py.offline.init_notebook_mode(connected = True)
```

#### **Data Exploration**

```
df = pd.read_csv(r'../input/Mall_Customers.csv') df.head()
```

|   | CustomerID | Gender | Age | Annual Income (k\$) | Spending Score (1-100) |
|---|------------|--------|-----|---------------------|------------------------|
| 0 | 1          | Male   | 19  | 15                  | 39                     |

| 1 | 2 | Male   | 21 | 15 | 81 |
|---|---|--------|----|----|----|
| 2 | 3 | Female | 20 | 16 | 6  |
| 3 | 4 | Female | 23 | 16 | 77 |
| 4 | 5 | Female | 31 | 17 | 40 |

df.shape
(200, 5)
df.describe()

|       | CustomerID | Age        | Annual Income (k\$) | Spending Score (1-100) |
|-------|------------|------------|---------------------|------------------------|
| count | 200.000000 | 200.000000 | 200.000000          | 200.000000             |
| mean  | 100.500000 | 38.850000  | 60.560000           | 50.200000              |
| std   | 57.879185  | 13.969007  | 26.264721           | 25.823522              |
| min   | 1.000000   | 18.000000  | 15.000000           | 1.000000               |
| 25%   | 50.750000  | 28.750000  | 41.500000           | 34.750000              |

| 50% | 100.500000 | 36.000000 | 61.500000  | 50.000000 |
|-----|------------|-----------|------------|-----------|
| 75% | 150.250000 | 49.000000 | 78.000000  | 73.000000 |
| max | 200.000000 | 70.000000 | 137.000000 | 99.000000 |

df.dtypes

CustomerID int64 Gender object int64 Age Annual Income (k\$) int64 Spending Score (1-100) int64 dtype: object df.isnull().sum() CustomerID Gender 0 Age Annual Income (k\$) Spending Score (1-100) dtype: int64

**Data Visualization** 



Distribution of values in Age , Annual Income and Spending Score according to Gender Clustering using K- means

### 1.Segmentation using Age and

#### **Spending Score:**



## Selecting N Clusters based in Inertia (Squared Distance between Centroids and data points, should be less)



```
algorithm = (KMeans(n_clusters = 4 ,init='k-means++', n_init = 10 ,max_iter=300,
tol=0.0001, random_state= 111 , algorithm='elkan') ) algorithm.fit(X1) labels1
= algorithm.labels_
centroids1 = algorithm.cluster_centers_
```

#### 2. Segmentation using Annual Income and Spending Score:





#### 3. Segmentation using Age, Annual Income and Spending Score:



 $\label{eq:algorithm} \begin{subarray}{ll} algorithm = (KMeans(n\_clusters = 6 ,init='k-means++', n\_init = 10 ,max\_iter=300, tol=0.0001, random\_state= 111 , algorithm='elkan') ) algorithm.fit(X3) labels3 \\ \end{subarray}$ 

| Cluster | Age   | Income | Spending Score | Size of Cluster |
|---------|-------|--------|----------------|-----------------|
| 1       | 26.68 | 57.58  | 47.79          | 38              |
| 2       | 56.33 | 54.27  | 49.07          | 45              |
| 3       | 45.52 | 26.29  | 19.38          | 21              |
| 4       | 25.25 | 25.83  | 76.92          | 24              |
| 5       | 32.69 | 86.54  | 82.13          | 39              |
| 6       | 41.94 | 88.94  | 16.97          | 33              |

## CustomerID prediction

| 0 | 15619 | 0 |
|---|-------|---|
| 1 | 17389 | 2 |
| 2 | 14450 | 1 |
| 3 | 15727 | О |
| 4 | 15790 | О |

## Clusters



| © CustomerID = | ▲ Genre =              | # Age = | # Annual Income (k\$) = | # Spending Score ( = |
|----------------|------------------------|---------|-------------------------|----------------------|
| 1 200          | Female 56%<br>Male 44% | 18 70   | 15 137                  | 1 99                 |
| 0001           | Male                   | 19      | 15                      | 39                   |
| 0002           | Male                   | 21      | 15                      | 81                   |
| 0003           | Female                 | 20      | 16                      | 6                    |
| 0004           | Female                 | 23      | 16                      | 77                   |
| 0005           | Female                 | 31      | 17                      | 40                   |
| 0006           | Female                 | 22      | 17                      | 76                   |
| 0007           | Female                 | 35      | 18                      | 6                    |
| 0008           | Female                 | 23      | 18                      | 94                   |
| 0009           | Male                   | 64      | 19                      | 3                    |
| 0010           | Female                 | 30      | 19                      | 72                   |
| 0011           | Male                   | 67      | 19                      | 14                   |
| 0012           | Female                 | 35      | 19                      | 99                   |
| 0013           | Female                 | 58      | 20                      | 15                   |
| 0014           | Female                 | 24      | 20                      | 77                   |
| 0015           | Male                   | 37      | 20                      | 13                   |

| 0016 | Male   | 22 | 20 | 79 |
|------|--------|----|----|----|
| 0017 | Female | 35 | 21 | 35 |
| 0018 | Male   | 20 | 21 | 66 |
| 0019 | Male   | 52 | 23 | 29 |
| 0020 | Female | 35 | 23 | 98 |
| 0021 | Male   | 35 | 24 | 35 |
| 0022 | Male   | 25 | 24 | 73 |
| 0023 | Female | 46 | 25 | 5  |
| 0024 | Male   | 31 | 25 | 73 |
| 0025 | Female | 54 | 28 | 14 |
| 0026 | Male   | 29 | 28 | 82 |
| 0027 | Female | 45 | 28 | 32 |
| 0028 | Male   | 35 | 28 | 61 |
| 0029 | Female | 40 | 29 | 31 |
| 0030 | Female | 23 | 29 | 87 |
| 0031 | Male   | 60 | 30 | 4  |
| 0032 | Female | 21 | 30 | 73 |



## Conclusion

Customer segmentation is essential. Machine learning can get control over the complete process. Discovering all of the different groups that build up a more meaningful customer base permits you to get into customers' brains and give them precisely what they crave, enhancing their participation and expanding profits.