

Feuille $n^{\circ}2$: Variable Complexe

Exercice 1 : En appliquant le théorème de Cauchy à la fonction e^{-z^2} sur le contour Γ ci-contre, calculer la valeur de :

$$\int_0^{+\infty} e^{-x^2} \cos\left(\alpha x\right) \, dx$$

Exercice 2:

1) On désire calculer l'intégrale suivante

$$I = \int_{\Gamma} \frac{dz}{z - a}$$

pour différents contours Γ .

- a) Calculer I lorsque Γ est un cercle de centre a et de rayon r (on pourra utiliser le paramètrage $z a = re^{i\theta}$, $0 \le \theta < 2\pi$).
- b) On considère un contour Γ' contenant Γ et on note D' et D les domaines du plan complexe dont les frontières sont Γ' et Γ (D est le disque de centre a et de rayon r). Appliquer le théorème de Cauchy à la fonction $\frac{1}{z-a}$ sur $D' \backslash D$. En déduire $\int_{\Gamma'} \frac{dz}{z-a}$ lorsque Γ' est un contour entourant le point z=a.
 - c) Déterminer I lorsque Γ est un contour n'entourant pas le point z=a.
- 2) Après avoir effectué une décomposition en éléments simples de la fraction rationnelle $f(z) = \frac{3z-2}{z^2-z}$ et en utilisant les résultats de la question 1), déterminer

$$\int_{\Gamma} f(z)dz$$

lorsque Γ est un contour entourant les points z=0 et z=1.

Exercice 3:

1) Soit D un domaine simplement connexe dont la frontière est notée Γ . On suppose que f est une fonction holomorphe sur D et continue sur Γ . Soit $a \in D$ et $h \in \mathbb{C}$ tel que $a+h \in D$. Rappeler l'expression de f(a) et de f(a+h) en fonction d'intégrales calculées le long de la frontière Γ . En déduire

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \frac{1}{2i\pi} \int_{\Gamma} \frac{f(z)}{(z-a)^2} dz$$

Indication : on pourra étudier

$$g(h) = \frac{f(a+h) - f(a)}{h} - \frac{1}{2i\pi} \int_{\Gamma} \frac{f(z)}{(z-a)^2} dz$$

et remplacer f(a) et f(a+h) par leurs expressions intégrales.

2) En déduire la valeur de

$$\int_{\Gamma} \frac{e^{2z}}{\left(z+1\right)^2} dz$$

où Γ est un contour contenant le point z=-1.