APSCHE Short Term Virtual Internship Program ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Project Title: Traffictelligence: Advanced Traffic Volume Estimation with Machine

Learning

Team ID: LTVIP2025TMID38998

Team Size: 5

Team members:

1. Tharigopula Dhanendra Kumar (Team lead-CSE)

- 2. V Neeladevi (ECE)
- 3. Vantla Ruchitha (CSE)
- 4. Vutukuri Bhavyasree (CAI)

5. Yalluru Lakshmi Prasanna (CAI)

Internship Platform: SmartBridge

Institution: [SVR ENGINEERING COLLEGE]

Location: Ayyaluru Metta, Nandyal

Table of Contents

- 1. Introduction
- 2. Objective
- 3. Problem Statement
- 4. Literature Review
- 5. Methodology
- 6. Technology Stack
- 7. Data Collection and Preprocessing
- 8. Model Selection and Training
- 9. Web App Interface
- 10. System Architecture
- 11. Results and Evaluation
- 12. Challenges and Solutions
- 13. Future Scope
- 14. Advantages
- 15. Disadvantages
- 16. Applications
- 17. conclusion

1. Introduction

Traffic congestion is a significant issue in modern cities, affecting both daily commuters and logistics. Traditional traffic monitoring systems are limited in scale, accuracy, and cost-effectiveness. This internship project explores the use of machine learning and computer vision to build a smart, scalable, and efficient traffic volume estimation tool—**Traffictelligence**.

2. Objective

To develop a machine learning-based application capable of:

- Detecting and classifying vehicles from video feeds
- Estimating traffic volume in real time
- Supporting smart urban traffic management systems

3. Problem Statement

Traditional methods for monitoring traffic:

- Require extensive infrastructure (sensors, personnel)
- Suffer from accuracy issues in crowded conditions
- Are not scalable for developing regions

Proposed Solution:

A computer vision-based system that works with existing CCTV or drone footage using ML models.

4. Literature Review

Author	Method	Accuracy	Remarks
Zhao et al. (2019)	CNN on traffic videos	87%	Limited to highway data
Singh & Kumar (2021)	YOLOv3	92%	Suitable for Indian road conditions
Gupta et al. (2020)	SVM-based detection	78%	Not ideal for dense traffic

5. Methodology

Step-by-Step Process:

- 1. Video frame extraction
- 2. Vehicle detection using YOLOv5
- 3. Vehicle counting using bounding boxes
- 4. Volume estimation based on counts
- 5. Visual output on Flask web interface

Process Diagram:

CSS

CopyEdit

[Video Input] --> [Frame Extraction] --> [YOLOv5 Detection] --> [Vehicle Counting] --> [Volume Estimation] --> [Flask Output]

6. Technology Stack

Component Tool/Library

Language Python

ML Framework YOLOv5, TensorFlow

Image Processing OpenCV

Data Manipulation NumPy, Pandas

Web Interface Flask, HTML/CSS

Visualization Matplotlib, Seaborn

7. Data Collection and Preprocessing

Source: Open-source traffic datasets and YouTube videos

• Frame extraction rate: 1–2 fps

Preprocessing:

Resize to 640x640

o Normalize pixel values

o Annotate with bounding boxes

8. Model Selection and Training

- YOLOv5 was selected due to its speed and accuracy.
- Trained on the COCO dataset and fine-tuned for traffic scenarios.

Model	Accuracy	FPS	Size
YOLOv3	89%	25	237 MB
YOLOv5s	91%	45	14 MB
SSD-Mobile Net	84%	35	17 MB

9. Web App Interface

- Built using Flask framework
- Features:
 - o Upload video
 - Detect vehicles
 - o Show volume and summary

10. System Architecture

Block Diagram:

• Input: Video or live feed

• **Processing:** YOLOv5 + OpenCV

• Output: Detection results & analytics

Mathematica

CopyEdit

Capture \rightarrow Preprocess \rightarrow Detect \rightarrow Count \rightarrow Analyze \rightarrow Visualize

11. Results and Evaluation

• Accuracy: ~91% for real-world traffic

• FPS: ~10–15 on CPU (no GPU)

• Working for different traffic times

Time Slot Vehicle Count Density

8–9 AM 123 High

9–10 AM 98 Medium

11–12 AM 62 Low

Traffic count bar graph

12. Challenges and Solutions

Challenge Solution

Poor night-time accuracy Histogram equalization for contrast

Occluded vehicles Applied object tracking with IoU

Model size too large Switched to YOLOv5s for optimization

13. Future Scope

- Add traffic forecasting using LSTM
- Deploy on Jetson Nano or Raspberry Pi
- Integrate with cloud-based smart traffic systems
- Improve night detection with infrared datasets

14. Advantages:

1. Accurate Predictions

Machine learning models can analyze historical traffic data, weather, time, and events to predict traffic volume with high accuracy.

2. Real-Time Adaptability

The system can adapt to live traffic feeds and update estimates dynamically, helping in real-time traffic management.

3. Cost-Efficient

Reduces reliance on expensive traditional traffic sensors by leveraging existing camera or GPS data.

4. Scalability

Can be deployed city-wide or in specific high-traffic zones without major hardware infrastructure.

15. Disadvantages:

1. Data Dependency

The accuracy of the model heavily depends on the quality and quantity of data. Poor or biased data leads to incorrect predictions.

2. Privacy Concerns

Using video feeds or GPS data for tracking can raise privacy issues if not handled with proper data anonymization and legal compliance.

16. Applications:

1. Smart City Traffic Management

Used by municipalities to optimize traffic signals, manage congestion, and plan infrastructure improvements.

2. Navigation Systems

Integrated into Google Maps, Waze, or autonomous vehicle systems for route planning and traffic avoidance.

3. Event & Disaster Planning

Helps in predicting traffic surges during public events or rerouting during emergencies and roadblocks.

4. Public Transport Optimization

Assists in planning bus/train schedules by predicting road congestion.

17. Conclusion

The *Traffictelligence* system provides an innovative, real-time solution for traffic volume estimation using machine learning. The solution is cost-effective, scalable, and applicable to real-world urban environments, especially in developing nations.