

Dacon Competition 2022 Samsung Al Challenge

Algorithm of team [cgu]

Seoul National University

Bio & Health Informatics Lab (Prof. Sun Kim)

JeongHyeon Gu, Danyeong Lee, Sangyeup Kim

Problem definition

"Development of an AI algorithm that predicts reorganization energy from 3d molecular structure"

$$\lambda_g = E_g^* - E_g$$
 , $\lambda_{ex} = E_{ex}^* - E_{ex}$

- E_q : Ground state energy in the ground state geometry
- E_q^* : Ground state energy in the excited state geometry
- E_q : Excited state energy in the excited state geometry
- E_{ex}^* : Excited state energy in the ground state geometry

Approaches

Data

- Input: SMILES, conformer_g, conformer_ex
- Output: Reorg_g, Reorg_ex

Molecule encoder candidates

- GNN models
- Transformer models

How to utilize 3D coordinate information?

	Rotation	Translation	Articles
Raw coordinates (x, y, z)	variant	variant	
Bond lengths & Bond-bond angles	invariant	invariant	DimeNet (ICLR, '20) HMGNN (ICDM, '20) GeoGNN (Nature Machine Intelligence, '22)
Atom-atom distance	invariant	invariant	PhysChem (NeurIPS, '21) GEM-2 (arxiv, '22)

Candidate baselines

GNN-based

- GIN-virtual (ICLR, 2019)
- GeoGNN (Nature Machine Intelligence, 2022)

Transformer-based

- EGT (KDD, 2022)
- GRPE (ICLR, 2022)
- GEM-2 (arXiv, 2022)

Pre-training datasets

- GEOM
- PCQM4Mv2

Baseline: GeoGNN

Atom-Bond graph G

• Bond-Angle graph *H*

- Bond lengths
 <u>RBF-embedded & added to bond features</u>
- Bond-bond angles
 RBF-embedded & used as angle features
- Iteratively update
 - 1. Bond features on *H*
 - 2. Atom features on *G*
- Used GIN (Xu et al., 2019)

cf) Radial basis function (RBF)

$$e_m(x) = \exp(-\gamma \parallel x - \mu_m \parallel^2)$$

Used to expand each continuous value x into a vector

- *x*: input continuous value
- μ_m : centers ranging from minimum value to maximum value of corresponding features with certain stride (0.01 in GeoGNN)
- γ : controls the shape of radial kernel

Our Model

 In our challenge dataset, we have two different conformers representing two states (ground, excited)

Bond lengths

- Bond lengths of 2 states are RBF-embedded & concatenated
- Added to bond features

Bond-bond angles

- Bond-bond angles of 2 states are RBF-embedded & concatenated
- Used as angle features
- + Atom position gaps between two states
 - Euclidean distances between atoms of two states are RBF-embedded
 - Concatenated to atom features

Our Model

Training & Evaluation

- Implementation
 - PyTorch & PyTorch Lightning
 - Configuration with Hydra
- Training
 - AdamW & Cosine Annealing LR scheduler
 - Gradient Clipping
- Evaluation (10-fold CV)
 - Metrics: RMSE, Pearson Corr., R2 score
 - Tracked with weight & biases
 - Hyperparameter tuning with Optuna
- 10-fold CV stacking ensemble
 - 4 different hyperparameters set / 3 different seeds (0, 1, 2)
 - ⇒ 10-fold CV stacking of 12 different models
 - ⇒ XGBoost 7 fold CV ensemble.

Stacking Ensemble

Discussion

- Integration of features of 2 states
 - Separately encoding each conformer did not work well. (Framework candidate 1)
 - Using concatenated features of two states showed better performance. (Framework candidate 2)
- CV stacking ensemble
 - Predictions of several models are used as new features to train new model.
 - Two labels $(\lambda_q, \lambda_{ex})$ are moderately correlated -> More informative new features
- Future works
 - Self-supervised pre-training with large-scale datasets
 - GEOM, PCQM4Mv2, ...
 - Transformer models
 - Graphormer, EGT, GRPE...

Thank you