Electricity price forecasting using Markov regime switching model

Rok Ivanek

Faculty of Mathematics and Physics

9. junij 2017

Overview

- Introduction
- 2 Data
- Oeseasonalizing
- Markov switching model
- 6 EM Algorithm
- 6 Simulation
- Measuring performance

Electricity price forecasting using Markov regime switching model

- Take publicly available data on electricity prices
- Pre-process it (deseasonalize, average, split to train and test)
- Choose an appropriate regime switching model
- Fit the model using EM algorithm
- Run a simulation and try to predict test data
- Measure performance

Electricity price data

- The data is publicly available
- Is influenced by seasons, has a weekly trend
- Deseasonalizing needed
- Exhibits random periods when prices spike

Electricity price data

Electricity spot prices

Electricity price data

Electricity spot prices

- The focus in a different project
- I used a preexisting STL function in R
- It detects trend and seasons in your time series data
- After subtracting trend and seasons you are left with the stochastic part of your process

Deseasonalized electricity spot prices

Markov switching model

- What is a Markov switching model?
- Motivation for using it in electricity prices modeling
- Our data does not show clear signs of base an spike regimes
- We can still use it
- How do we use it?
- How do we fit it to the data?

EM Algorithm

- What kind of Markov switching model was used.
- What parameters did I have to fit.
- EM Algorithm is iterative and gradually improves parameters using likelihood
- Implementing this was by far the most difficult part of the project
- Managed to do it by following an example from Erik Kole
- It converged nicely and fitted the parameters on my data

The final parameters:

•
$$\mu_0 = 3.21, \sigma_0 = 6.20$$

•
$$\mu_1 = -5.16, \sigma_1 = 5.59$$

•
$$p_{00} = 0.97, p_{11} = 0.96$$

•
$$\xi \approx 0$$

Simulation

Measuring performance

- 20 simulations:
- RMSE: $\mu = 10.32, \sigma = 0.44$
- MAPE: $\mu = 29, \sigma = 1.22$
- 1000 simulations:
- RMSE: $\mu = 10.36, \sigma = 0.43$
- MAPE: $\mu = 29.39, \sigma = 1.21$
- 10000 simulations:
- RMSE: $\mu = 10.36, \sigma = 0.43$
- MAPE: $\mu = 29.35, \sigma = 1.27$

References¹

//prac.im.pwr.wroc.pl/~hugo/publ/BierbrauerTrueckRWeron04_ICCS.pdf

- https://personal.eur.nl/kole/rsexample.pdf
 - https://www.r-bloggers.com/time-series-decomposition/
- https://anomaly.io/seasonal-trend-decomposition-in-r/
- https://anomaly.io/detect-seasonality-using-fourier-transform-r/

The End