1 (True or False) and Justify

[20 bodov]

Uveďte, či je tvrdenie pravdivé a nanajvýš tromi vetami svoj názor zdôvodnite.

(Úplne správna odpoveď je za 2.5 boda. Správna odpoveď úplne bez zdôvodnenia je za 0.5 boda. Nesprávna odpoveď, ako aj správna odpoveď s úplne nesprávnym zdôvodnením, sú za 0 bodov.)

- Q1 Ak je f primitívne rekurzívna, tak g definovaná predpisom $g(n) = 2^{2^{f(n)}}$ je tiež primitívne rekurzívna.
- Q2 Ak je rekurzívna funkcia f surjektívna (teda jej oborom hodnôt je celé \mathbb{N}), tak existuje rekurzívna funkcia g taká, že $\forall n: f(g(n)) = n$.
- Q3 Ak je čiastočne rekurzívna funkcia f surjektívna (teda jej oborom hodnôt je celé \mathbb{N} , ale definičným oborom môže byť len podmnožina \mathbb{N}), tak existuje (totálna!) rekurzívna funkcia g taká, že $\forall n: f(g(n)) = n$.
- Q4 Definičný obor čiastočne rekurzívnej funkcie je čiastočne rekurzívna množina.
- Q5 Obor hodnôt čiastočne rekurzívnej funkcie je čiastočne rekurzívna množina.
- Q6 Existuje zhora ohraničená rekurzívna funkcia, ktorá nie je primitívne rekurzívna.
- Q7 Pod slovom programy teraz uvažujme programy v našom Pascale, ktoré počítajú unárne totálne funkcie. Pekná postupnosť je každá postupnosť programov P_1, P_2, \ldots taká, že P_1 je identita a pre každé i > 1 platí: program P_{i+1} má časovú zložitosť $O(P_i(n))$. (Slovne: pre skoro každý vstup n nám program P_i povie, najviac ako dlho môže počítať program P_{i+1} .)
 - Ku každému programu Q existuje pekná postupnosť, ktorá ho obsahuje.
- Q8 Množina pravdivých tvrdení v našej aritmetike prirodzených čísel so sčítaním a násobením (postavenej na predikátovej logike prvého rádu) je rekurzívne vyčísliteľná.

2 (True or False) and Justify – riešenie

 $[20 \,\, \mathrm{bodov}]$

Q1 TRUE. Ľahko zložíme g napr. kompozíciou z f, pow a konštánt.

že najvýznamnejšia cifra A(n,n) primitívne rekurzívna nebude.)

- Q2 TRUE. Keď chceme vypočítať hodnotu g(n), hľadáme i také, že f(i) = n. (Takýchto i môže byť viac, nám stačí nájsť jedno ľubovoľné.)
 - Program pre g vyzerá tak, že postupne počítame hodnoty f(i) pre rastúce i. Keďže f je surjektívna, máme istotu, že časom nájdeme také i, pre ktoré f(i) = n. Preto tento program vždy zastane, a teda g je rekurzívna.
- Q3 TRUE. Tá istá argumentácia ako v Q2, len hodnoty f(i) musíme rátať paralelne, nie sekvenčne.
- Q4 TRUE. Zo samotnej funkcie f ľahko definujeme jeho čiastočnú charakteristickú funkciu $\xi_D(n) = \text{sgn}(1 + f(n))$. Alebo cez generátory: paralelne počítame f pre všetky možné n. Vždy, keď pre nejaké n výpočet skončí, dáme hodnotu n na výstup.
- Q5 TRUE. Tu je výhodnejší pohľad cez generátory: paralelne počítame f pre všetky možné n. Tentokrát ale vždy, keď pre nejaké n výpočet skončí, dáme na výstup hodnotu, ktorú tento výpočet vypočítal.
- Q6 TRUE. Je ňou napríklad signum univerzálnej funkcie pre unárne primitívne rekurzívne funkcie. (Pozor! Napríklad funkcia $f(n) = A(n,n) \mod 2$ v skutočnosti je primitívne rekurzívna, vieme ju totiž rátať aj bez toho, aby sme spočítali A(n,n). Ale viaceré iné variácie na tému Ackermann fungujú napr. by som si tipol,
- Q7 FALSE. Pomocou indukcie a vety o primitívne rekurzívnej časovej zložitosti vieme dokázať, že všetky programy v každej peknej postupnosti počítajú len primitívne rekurzívne funkcie. Teda napríklad program Q počítajúci Ackermannovu funkciu nemôžeme v peknej postupnosti stretnúť.
 - (Pozor! Program počítajúci Busy Beaver funkciu neexistuje, nemôžeme ho teda použiť ako kontrapríklad.)
- Q8 FALSE. Na prednáške bol dôkaz, že táto množina je aspoň taká ťažká ako komplement HALT-u, lebo vieme v aritmetike pre ľubovoľný program P sformulovať tvrdenie "program P sám na sebe nezastane".

3 Známa pôda [4+4+7 bodov]

V tejto úlohe sa pýtam na priamo odprednášané veci, ukážte, že im dostatočne rozumiete.

Nech φ_i je efektívne číslovanie unárnych čiastočne rekurzívnych funkcií, pričom φ_0 je nikde nedefinovaná funkcia (teda $\forall x : \varphi_0(x) = \bot$), φ_4 je identita a $\varphi_{4747}(x) = (\text{ak } x \text{ je štvorec tak } \sqrt{x} \text{ inak } \bot)$. Nech PRIME je množina všetkých prvočísel a nech $HALT = \{n \mid \varphi_n(n) \neq \bot\}$.

- a) Dokážte, že $PRIME \leq_m HALT$. V bežnom programovacom jazyku naprogramujte vyhovujúcu redukciu.
- b) Rozhodnite a dokážte, či $HALT \leq_m PRIME$.
- c) Rozhodnite a dokážte, ktoré z množín PRIME a HALT sú m-úplné.

4 Známa pôda – riešenie

[4+4+7 bodov]

4.1 Podúloha a)

Zo zadania vieme, že $4 \in HALT$ a $0 \notin HALT$. Redukcia môže vyzerať nasledovne:

```
def is_prime(n):
    if n<2: return False
    for i in range(2,n):
        if n%i==0: return False
    return True

def redukcia(n):
    if is_prime(n): return 4  # cislo fcie, co sama na sebe zastane
    return 0  # cislo fcie, co sama na sebe nezastane</pre>
```

(Pozor! Redukcia musí byť funkcia, ktorej výpočet vždy skončí! Vstup je číslo, výstup je tiež číslo. Obľúbená chyba bola "redukcia", ktorá namiesto return 4 zastala a namiesto return 0 sa zacyklila.)

4.2 Podúloha b)

Neplatí to: jednoducho preto, že takáto redukcia by spolu s vyššie uvedenou funkciou is_prime tvorila algoritmus rozhodujúci problém zastavenia, a teda HALT by bola rekurzívna.

4.3 Podúloha c)

Kvôli podúlohe b) nemôže PRIME byť m-úplná. Dôkaz m-úplnosti HALT je v skriptách. (Predstavte si, že sem bol copy&pastenutý.)

5 Formalizmus [5+10 bodov]

V tejto úlohe klaďte hlavný dôraz na presnosť a korektnosť práce s formalizmom z prednášky.

Uvažujme Minského registrový stroj. Program preň je postupnosť očíslovaných inštrukcií INC x, DEC x a ZERO x y [z]. Uvažujme konštrukciu, ktorá zo stroja so štyrmi počítadlami vyrobí ekvivalentný s dvoma. Formálne definujte, ako je pri tejto konštrukcii reprezentovaný obsah pôvodných počítadiel v nových počítadlách.

Následne napíšte časť programu, ktorá odsimuluje zväčšenie hodnoty v počítadle 2. T.j. napíšte tú časť programu, ktorá sa v novom stroji vykoná vtedy, keď by pôvodný stroj vykonal inštrukciu INC 2.

6 Formalizmus – riešenie

[5+10 bodov]

Označme hodnoty v pôvodných registroch a, b, c, d. V novom stroji budeme mať vo významných okamihoch v registri 0 hodnotu $2^a 3^b 5^c 7^d$, zatiaľ čo register 1 bude prázdny.

Zväčšenie pôvodného registra 2 (nech je to premenná c) teda zodpovedá vynásobeniu nového registra 0 piatimi. Predpokladáme, že na začiatku obsahuje nový register 1 nulu, na konci ho do takého istého stavu vrátime. Program:

- 1. ZERO 0 5 2
- 2. DEC 0
- 3. INC 1
- 4. ZERO 0 5 2
- 5. ZERO 1 13 6
- 6. DEC 1

- 7. INC 0
- 8. INC 0
- 9. INC 0
- 10. INC 0
- 11. INC 0
- 12. ZERO 1 13 6

7 Exkurzia do neznáma

[10 bodov]

V tejto úlohe sa pýtam na niečo, čo som priamo neprednášal, a chcem vidieť, ako si s tým poradíte.

Pošlite mi SMS s definíciou čo najrýchlejšie rastúcej funkcie.

(Kto nemá kredit alebo sa mu nechce, môže napísať na papier. Ale samozrejme: limit je 160 znakov!)

8 Exkurzia do neznáma – riešenie

[10 bodov]

Tu je môj pokus (spred písomky, má 154 znakov, ukázalo sa, že ostal neprekonaný):

Nech B_0 je Busy Beaver pre Minskeho stroje a nech B_{n+1} je to iste pre stroje ktore navyse maju instrukciu na vypocet B_n . Moja funkcia je $f(n)=B_n(n)$.

Teda napríklad keď definujeme B_1 , máme meta-Minského stroje s inštrukciami INC x, DEC x, ZERO x y [z] a BO x, pričom BO x zoberie obsah registra x a nahradí ho hodnotou $B_0(x)$.

Pre takúto množinu strojov môžeme teda opäť $B_1(n)$ definovať ako najväčšie číslo, ktoré vyrobí na prázdnom vstupe stroj, ktorý má najviac n (nových) inštrukcií a v konečnom čase zastane.

Všimnite si, že už B_1 rastie neporovnateľne rýchlejšie, ako čokoľvek, čo viete "naskladať" z funkcie B_0 pomocou kompozícií, cyklov a rekurzie – teda aj ako napr. $B_0(\ldots(B_0(n))\ldots)$.

$$B_0(n)$$
-krát

Vedeli by ste teraz definovať funkciu, ktorá rastie rýchlejšie ako každá z mojich B_i ?