DOCUMENT RESUME

ED 428 507 EF 005 224

AUTHOR Callahan, Michael P.; Parker, Danny S.; Dutton, Wanda L.;

McIlvaine, Janet E. R.

TITLE Energy Efficiency for Florida Educational Facilities: The

1996 Energy Survey of Florida Schools. Final Report.

INSTITUTION Florida Solar Energy Center, Cape Canaveral.

SPONS AGENCY Florida State Dept. of Education, Tallahassee.

REPORT NO FSEC-CR-951-97 PUB DATE 1997-07-00

NOTE 75p.

AVAILABLE FROM Web site: http://www.fsec.ucf.edu/~bdac/pubs/CR951

PUB TYPE Reports - Research (143) EDRS PRICE MF01/PC03 Plus Postage.

DESCRIPTORS Air Conditioning; Comparative Analysis; *Cost Effectiveness;

Educational Facilities Improvement; Elementary Secondary Education; *Energy Audits; *Energy Conservation; Heating;

*Public Schools; School Surveys

IDENTIFIERS Florida

ABSTRACT

Florida has recently completed a survey of energy use and related physical and operational characteristics of the state's public schools. This report presents results from 1,298 surveys received (680 providing matching utility data) revealing that total energy costs for the Florida school system totaled \$205 million in 1995. Other data show that floor area and number of students influenced energy use, schools with light colored roofs used 7 percent less annual energy, classrooms with windows used 18 percent less energy than those without windows, schools using predominantly packaged cooling equipment rather than central chillers used 24 percent less energy, facilities with ceiling fans in classrooms substantially reduced energy needs and higher cooling set point temperatures, and schools with operable windows which could be opened for ventilation showed 12 percent lower energy use. This document provides the study objectives, data collection methods and design, the tabulation of results, and the analysis of the data. Appendices provide a sample completed survey, the survey statistics and frequencies by school type, and the EUI (Energy Use Index) ranking of all schools. (Contains 35 references.) (GR)

On-line publications

Energy Efficiency for Florida Educational Facilities: The 1996 Energy Survey of Florida Schools

Final Report

FSEC-CR-951-97*_ July 1997

Prepared by

Michael P. Callahan Danny S. Parker Wanda L. Dutton Janet E.R. McIlvaine

Florida Solar Energy Center 1679 Clearlake Rd. Cocoa, FL 32922-5703 U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION

- CENTER (ERIC)
 This document has been reproduced as received from the person or organization originating it.
- Minor changes have been made to improve reproduction quality.
- Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.

Table of Contents

Executive Summary

I. Introduction

II. Objectives of the Study

III. Data Collection

Survey Instrument
Response Rate
Statistical Significance
Coding of Surveys
Response by District

IV. Tabulation of Results

Section B. School Type and Characteristics Section C. Operation and Schedule Section D. Energy Systems Section E. Energy Data

V. Analysis

Ranking of Facility Energy Use Statistical Analysis General

Facility Age
Operation
Building Characteristics
Cooling
Chillers
Other Heating, Ventilation and Air Conditioning (HVAC) Equipment
HVAC Controls
Ventilation and Indoor Air Quality
Lighting
Energy Awareness Programs
Cayeats

VI. Conclusions
VII. Acknowledgments
VIII. References

Appendices

Appendix A: Sample Completed Survey

Appendix B: Survey Statistics and Frequencies by School Type

Appendix C: EUI Ranking of All Schools

Executive Summary

A detailed survey of energy use and related physical and operational characteristics of Florida's public schools has been completed. A mailed survey instrument was sent to all 2,512 schools throughout the state in March 1996. A total of 1,298 surveys were returned -- a response rate of approximately 52%. Of these some 680 provided matching utility data. The survey data was analyzed to create a school energy use profile as well as to identify characteristics that may influence efficiency. Based on our findings, the total annual energy cost for the Florida school system totaled \$205 million in 1995. As shown in Figure E-1, elementary schools make up almost half of this energy cost since they represent the largest total floor area within the Florida school system. Annual total energy costs averaged \$1.24/ft².

We ranked schools with complete data (654 facilities) by their energy use per square foot, or Energy Use Index (EUI, kBtu/ft²). The EUI's varied from 2 - 226 kBtu/ft². The 10% of schools who used the most energy per square foot were identified as potential candidates for future improvement projects.

Finally, an analysis was performed of the statistical influences on energy use in schools based on the responses to the survey questionnaire against the matched utility data. The analysis showed some surprising influences:

- Floor area and number of students and faculty were significant factors increasing annual energy use. High schools, Middle schools and vocational schools used more than elementary schools. Portable classrooms increased annual energy use by approximately 10,800 kWh each.
- Schools conditioned on non-school days and those with central thermostats used more energy. Schools with manual lighting and clock thermostat controls used less. Cooling set points were shown to have a strong influence.

- Classrooms with windows used 18% less energy than those without them. This may be due to reduced need for interior lighting, available ventilation or both.
- Schools with light colored roofs used 7% less annual energy.
- Schools relying predominantly on packaged cooling equipment rather than central chillers used 24% less energy. However, the reason for this finding stems from the fact that chillers in older schools showed evidence of very poor performance; newer chiller installations did not show this tendency. Elevated consumption associated with chillers may also reflect the need to consider zoning by evaluating space loads and schedules. Chiller sub-systems such as pumps, air handlers and cooling towers consume significant amounts of energy and efficient options should be selected.
- Heat pump systems except water loop types were shown to be beneficial.
- Schools with a history of humidity problems tended to use more energy. Complaints of indoor air quality (IAQ) and humidity problems were strongly related.
- Schools using windows for ventilation reported significantly lower IAQ concerns although schools with higher cfm ventilation per student showed lower incidence of IAQ problems. We believe operable windows provide a sense of control to faculty and students on the IAQ issue. Greater cfm/student will tend to increase interior humidity levels which were shown to be strongly linked to IAQ concerns.
- Facilities with ceiling fans in classrooms showed substantially reduced energy needs and higher cooling set point temperatures.
- Schools with operable windows which could be opened for ventilation showed 13% lower energy use.
- Schools or demand controlled ventilation more energy on an annual basis.
- Low temperature air distribution systems showed no significant reduction to annual energy costs or monthly peak demand and were associated with increased complaints of indoor air quality and humidity problems. These systems were also associated with the largest increases to annual normalized energy use of all identified survey characteristics.

I. Introduction

Over the last four years, the Florida Solar Energy Center (FSEC) has been under contract to assist the Florida Department of Education (FDOE) with identifying energy saving strategies. In 1993-1995 FSEC produced a detailed simulation study and three workshops outlining how efficiency could be improved for *new* construction (McIlvaine et al., 1995).

During the course of the workshop sessions, many participants requested similar information for improving energy performance of existing schools. However, a similar simulation study would lead to concepts that were meaningless for most schools because of Florida's diverse school building stock. A more feasible exercise would be to prioritize energy improvements based on individual or district wide school characteristics. Toward that end, an extensive survey was launched in early 1996 to assess energy use in over 2,500 Florida public schools. The survey, results, and implications are summarized here. The project

was funded by the Florida Department of Education (DOE), Office of Technology.

II. Objectives of the Study

In response to FDOE's desire to improve Florida schools' energy performance, our objectives were threefold:

- To develop detailed information on the characteristics of Florida schools which might have energy implications.
- To develop ranking of schools based on relative energy use.
- To analyze the statistical association of school characteristics and energy use.

The principal yardstick used in this analysis is that of energy used per square foot of air conditioned floor area, or *Energy Use Index*:

EUI = Annual Energy Use (kBtu) / Facility Floor Area (ft²)

This measure allows comparison of schools to determine those with the largest opportunities for savings.

III. Data Collection

Data collection took place over a nine month period beginning March 1996.

Survey Instrument

FSEC staff designed an extensive, six-part hundred item questionnaire targeting key energy profile information for Florida educational facilities. The DOE reviewed the draft document and FSEC subsequently mailed roughly $2500^{(1)}$ to Florida's public schools (primary, secondary, and specialty) in early March 1996. The survey also called for schools to forward 1995 utility records with the response. A cover letter from the Bureau Chief of Educational Facilities, accompanied each survey. In early September 1996, each non-respondent received a mailed reminder notice. A sample completed survey is presented in Appendix A. A breakdown of the schools within the state are as follows:

Table 1

Breakdown of Florida Schools

Type	Number	Percentage
Elementary	1,510	60.1%
Middle/Jr. High	436	14.4%
High School	294	11.7%
Combination	126	5.0%
Exceptional	79	3.1%
Vocational Ed	35	1.4%
Adult	32	1.3%
Total	2,512	100.0%

Source: Charles Wooten, Florida Department of Education, June 19, 1997

Response Rate

Over 900 schools submitted a response to the questionnaire by late August, 1996. The reminder letter netted about 400 additional submissions before the December 31, 1996 deadline. Many surveys lacked important details and were completed or clarified with telephone follow up.

A total of 1,298 schools comprise the final database, a response rate of approximately 52%. The geographic distribution of the survey responses by Florida county is shown in <u>Figure 1</u>. Of these schools a subset of about 670 submitted the requested utility data. For most mailed surveys a response rate of 10% is typical and 20% is the best that can usually be expected (Steeh, 1979). Thus, the staff of Florida's schools provided an exceptional return rate for such a lengthy and detailed survey.

Statistical Significance

With the population taken as 2,512 schools the total returns of 1,298 are sufficient to meet a 95% confidence level if those returning the surveys were random. However, the questionnaire was administered using a written survey, so the returns are not necessarily a random representation (Overton, 1977). It is difficult to determine whether the respondents are representative of Florida schools as a whole. However, the follow-up mail reminder was used as an effort to obtain data from initial non-respondents. Generally, the fundamental statistics (energy use and costs and floor area) showed no systematic bias (p < 0.1) between the initial group and those responding to the reminder. This gives good confidence that the survey-respondents are representative of the overall population.

Coding of Surveys

One staff member manually coded in each survey response using a personal computer and standard statistical software, SPSS for Windows Version 7.0. Written responses to multiple choice questions, and other ambiguous entries were classified as accurately as possible. A second staff member checked data for reasonableness with respect to maximum and minimum values for each question. Out-of-range data were corrected manually (i.e., age of space conditioning system listed on form as 1981 was corrected to 15 years) or set to missing. Very few errors were detected, therefore, the data likely vary little from the original submissions. This is not to say, however, that the submitted responses are accurate. In certain cases we were clearly able to determine that incorrect information had been submitted (e.g., conditioned floor area) gross floor area). To the extent possible, these were corrected, or otherwise set to missing.

Unfortunately, some questions-- often dealing with technical aspects or equipment -- were difficult for the respondents to gauge accurately, so that responses were of limited utility.

Response by District

Each school district was asked to participate in the study. However, response within districts was not uniform with respect to the survey or, particularly, the utility data. Under-represented districts may have lacked resources or interest in the project. Well-represented districts, such as Okeechobee and Volusia Counties, may reflect existing interest in reducing energy use. In most districts, surveys were completed at the school level and matching utility data was provided by the district. The response for Orange County schools was most complete of those submitted. Three smaller districts -- Gilchrist, Madison and Liberty counties -- provided no responses.

IV. Tabulation of Results

A school's energy use is determined by the construction of the building(s), the mechanical and electrical equipment and its efficiency, and occupant activities ranging from interior temperature settings to daily schedules. In the sections which follow, we briefly summarize some of the highlights from the results in Sections B, C, and D of the survey.

Section B. School Type and Characteristics

Survey questions in Section B. School Type and Characteristics, collect details about the school type, size, number of occupants, grade level of students, and special facilities (i.e., gymnasium, media center) that relate to energy use. Some of the highlights from the responses:

• Responding facilities

- Elementary schools: 58%⁽²⁾
 Middle/Jr. High schools: 18%
- High Schools: 14% - Vocational: 3%

• Floor Area

- Average (Avg.) Gross = 98,900 sq.ft.
- Avg. Conditioned = 87,151 sq.ft.

• Portable Classrooms

- Number: Avg. school has 9.9
- Avg. Total Portable floor area = 8,362 sq.ft.

• Special Facilities

- 33% have gymnasium
- 29% have auditorium

- 96% have media centers
- 47% have computer labs
- 36% have athletic facilities with showers
- 4% have a pool
- Food Preparation: 97% have a cafeteria facility
 - Avg of 739 meals prepared daily
 - 82% are main cooking facility; 14% are satellite serving facility
 - Avg of 5.5 refrigerators or freezers per school

Student/Faculty and Staff

Students: Avg = 981
Faculty: Avg = 57
Administrative: 26

<u>Discussion</u>: The data provide an interesting portrait of a typical Florida school. The survey respondents are weighted towards elementary schools since these comprise the largest overall group within the Florida school system, (see Table 1). Appendix B provides the survey frequency information broken out by school types. Figure 2 shows how middle schools and high schools are both larger and use more energy. Interestingly, high schools and vocational schools use disproportionately more energy than their conditioned floor area would indicate.

Section C. Operation and Schedule

Section C. Operation and Schedule characterizes how the facility is operated including daily and annual schedule, HVAC operational characteristics, including zoning, classroom temperatures, natural and mechanical ventilation, and problem areas.

8

School Year

- Avg of 186 days per year with students
- Avg of 19 teacher work days
- Only 9 % were year round schools
- Majority (65%) were *not* closed during summers
- 58% had summer school programs
- 87% had year round administrative operation
- 25% had night school or adult education

Typical Schedule

- Maintenance staff arrives at 6:35 AM
- Faculty arrives at 7:30 AM
- Students arrive at 8:00 AM
- Students depart at 2:45 PM
- Faculty departs at 3:15 PM
- Maintenance staff departs at 8:55 PM
- Night school staff departs at 9:05 PM

• Air Conditioning Operation during Non-School Periods

- 45% during non-school hours
- 41% during non-school days
- 41% over summer break and holidays

• Areas Air-Conditioned during Non-School Days

- 34% classrooms and main building are conditioned
- 51% library or media center
- 9% gymnasiums
- 53% administrative offices
- 26% cafeterias

• Cooling Thermostat Temperatures

- Classroom facilities: 74.8F
- Classrooms non-occupied: 77.8F

• Heating Thermostat Temperatures

- Classroom facilities: 71.7F
- Classrooms non-occupied: 69.5F

• Interior Temperature Regulation⁽³⁾

- Manual thermostats: 67%
 - Central thermostats: 40%
 - Locked thermostats: 37%
 - Clock thermostats: 18%

- Energy management system: 50%

Ventilation

- Windows used sometimes for natural ventilation: 52%

- Average design ventilation rate per student: 7.9 cfm

HVAC System/Problems

- System Age: 10.8 years

- Problems with excessive humidity: 53%

- Complaints of poor indoor air quality: 59%

- Complaints regarding interior temperatures: 69%

- Changed thermostat settings in last year: 63%

• Energy Awareness Programs

- 60% have programs at school level
- 67% have programs at district level

<u>Discussion</u>: The information on operation and schedule shows that Florida's schools are operating for much of the year. Sixty-four percent were not closed during summers even though only nine percent of facilities surveyed were "year around schools." Even during non-school days, most schools air condition a good portion of the facilities. Although this is understandable for media centers and libraries, it seems likely that reducing the cooling of classrooms during such periods (34% conditioned) may offer opportunities to energy savings. This was clearly illustrated in a recent project at a Florida school (Sherwin and Parker, 1996). Based on the survey, proper cooling set points appear contentious. Although 75°F was the most common thermostat setting, over two thirds of respondents (69%) experienced complaints associated with thermostat settings and 63% of total respondents had changed thermostat settings in response within the last year. Manual thermostats were the most common control method.

The average design ventilation rate was 7.9 cfm per student although a fairly bi-modal distribution; many schools had 5 cfm/student while others had 15 cfm in correspondence to the new ASHRAE Standard 62-1989. We were surprised to find, however, that 52% of respondents reported using operable windows for ventilation rather than air conditioning at some time during the year. This goes against the prevailing wisdom within Florida design circles that natural ventilation cannot produce adequate comfort. Interestingly, a very detailed study in Hawaii schools has recently concluded that good thermal comfort can often be achieved within a tropical setting without air conditioning (Kwok, 1997) As will be shown later, we also found schools who claimed to natural ventilate rather than air condition at some point in the school year to be a statistically significant indicator of lower facility energy use.

Over half of the surveyed schools reported problems with indoor humidity and 59% indicated complaints regarding indoor air quality (IAQ). There was strong correlation between IAQ concerns, and complaints of humidity and the design ventilation rate and the use of natural ventilation within the school. Schools reporting the use of windows for ventilation reported a much lower incidence of complaints associated with IAQ. Demand controlled ventilation (CO₂ sensors) were not associated with improved perception of IAQ. Interestingly, older schools appeared to have the fewest problems in this regard. About 60% of schools reported having an energy awareness program in place.

Section D. Energy Systems

Requested in Section D., Energy Systems, were the building construction characteristics including mechanical systems, building envelope, lighting, and controls. All the inquiries were posed as a simple yes/no check-off for each characteristic. Different portions of the facility may have differing construction so that the characteristics for a single component count will often be greater than 100%.

Building/Roof

- 34% have uninsulated roofs or ceilings
- 50% have gravel over a built up-roof
- 23% have a single ply membrane roof
- 20% have a modified bitumen roof
- 20% have asphalt shingles
- 35% have a light colored roof

• Walls/Windows

- 66% of walls are uninsulated
- 22% of classrooms have no windows
- 27% of glass has tint or other solar control
- 16% have skylights

• HVAC System Characteristics

- Central Chiller: 57% of schools; 31% have cooling tower
- Packaged or split system AC units: 45%
- Roof-top HVAC units: 38%
- Window or wall AC units: 52%
- Heating: Elec. resistance (42%); heat pump (22%); furnace (9%), boiler (42%)
- Variable frequency drives: 7%
- Gas absorption cooling: 1%

• HVAC Air Distribution/Ventilation

- Constant volume air distribution: 24%
- Variable air volume system: 19%
- Fan coil system: 32%
- Ceiling return plenum: 32%
- Heat pipe dehumidification: 4%
- Enthalpy wheel dehumidification: 1%
- CO₂ demand controlled ventilation: 5%
- Low temperature air system: 3%

• Lighting Systems

- Standard flourescent fixtures (T12, 40W lamps, w/magnetic ballasts): 82%
- Electronic ballasts: 44%
- Automatic scheduling: 47%
- Incandescent exit lighting: 52%
- Occupancy sensor controls: 21%
- Outdoor security lighting: 85%

Parking lot lighting: 74%Athletic field lighting: 19%

• Controls and Other

- Fully manual control of energy systems: 38%

- Clock controls: 43%; 37% operating

- Energy Management System: 42%; 38% operating

- Ceiling fans in classrooms: 13%

<u>Discussion</u>: Although we expected walls to be uninsulated in existing Florida school (66%); we were surprised to find that 34% had an uninsulated roof or ceiling. Some 22% of classrooms had no windows, which could both increase interior lighting needs, as well as make it impossible to ventilate if the cooling system was not operating. Just over half of the schools had a central chiller for the cooling system; packaged direct expansion cooling equipment was the common alternative. Heating was most often electric with 42% using electric resistance and 22% with heat pumps. Gas furnaces and boilers comprised 51%. Constant volume air distribution was typical with a few systems using advanced technologies (heat pipe dehumidification, demand ventilation control etc.) to improve performance. Most schools had standard flourescent fixtures, although about 44% had some fixtures with electronic ballasts. Some 21% had occupancy sensor controls of lighting and over two thirds had parking lot and/or security lighting. About 38% of schools had fully manual energy controls; 43% had clock or energy management system controls although fewer indicated these were functioning properly. Thirteen percent of classrooms had ceiling fans.

Section E. Energy Data

Requested in Section E. Energy Data were the primary heating fuels and also the matching utility data from the facility for the last 12 months. Information was not requested on cooling fuels since virtually all of the facilities use electricity for cooling in one fashion or another. Specific questions asked if natural gas cooling systems were in use.

Approximately 677 facilities provided matching electric utility data. Even fewer schools provided natural gas consumption information (approximately 90 facilities) although many do not use this fuel.

• Primary Heating Fuel

- Electricity: 53% - Natural gas: 13%

- Oil: 7% - Propane: 5%

- Combination: 13%

• Primary Water Heating Fuel

Electricity: 39%Natural gas: 24%

- Oil: 5%

- Propane: 12%

- Combination/other: 13%

- No hot water: 1%

• Cooling Fuel

- Electric: 99% - Natural gas: 1%

• Total Annual Energy Costs

- Avg was \$93,823 per year

- Range varied from \$1,282 to \$428,288!

<u>Graphical Summary</u>: Figure 3 shows a histogram and detailed statistics of the recorded electricity use in the 677 schools with valid utility data. The data are log-normal, reflecting many facilities with low to moderate energy use, but with a long tail of facilities with considerably greater consumption. Figure 4 provides a similar presentation for natural gas consumption (therms = 100 cubic feet of gas = 10^5 Btu).

Figures 5a and 5b show a bar chart presenting the monthly average electricity use and demand in the surveyed schools. The influence of time of year, including summer break, is obvious in the data. September typically has the largest monthly electricity consumption, followed by May. Electricity use is lowest in January, suggesting that outdoor air temperature has a strong influence on facility space conditioning energy consumption.

BEST COPY AVAILABLE

Figure 6 shows a histogram for annual energy related costs for all fuels in the surveyed schools. The average school's energy costs were \$94,000 in 1994-1995. This amounts to approximately \$1.24 per square foot per year in average annual energy related operating expenses for Florida's education facilities. Based on submitted records, the typical school pays approximately \$0.047/kWh with monthly demand charges of \$5.90/kW. (4)

V. Analysis

BEST COPY AVAILABLE

Ranking of Facility Energy Use

As expected, we found that facility energy use generally tracks floor area. Figure 7 presents a scatter plot of the relationship between school floor area and electricity consumption by school type. There is a strong association between floor area and annual energy use. The correlation coefficient (R) between the two is 80% with a t-statistic of 31.0. Regression analysis showed that floor area of buildings explained 64% of the variation in annual school energy use (12.0 kWh/ft²). High schools and middle schools tend to be larger and use considerably more energy than elementary schools. However, as evident in the scatter in graph, there is still a considerable amount of school-to-school variation in energy use that is not accounted for by differences in floor area.

A central objective of the energy survey was to obtain the necessary information to classify schools by their normalized energy use (kBtu/ft²) or EUI. The EUI provides a ready method of identifying those facilities using the greatest amount of energy per square foot. The lower the number the better (analogous to cost per square foot).

We computed EUI for the 654 schools which had valid floor area and energy consumption data (utility data for all fuels). Figure 8 shows the summary statistics for EUI and a histogram of the distribution of EUI values for the facilities with data. Most schools have EUIs of 25 - 100 Btu/ft² although there is a significant number with greater energy use. Those with very low EUIs are often associated with closed facilities.

BEST COPY AVAILABLE

Table 2 shows the top 10% of the ranked facilities (65 schools) with the *highest* EUIs. This listing is potentially useful, since these facilities likely represent good opportunities for further energy audits, renovation and retrofit. Generally, in commercial building retrofit projects, those facilities can save most whose energy costs are currently elevated (Piette et al., 1994). The ranking for all 654 schools is reproduced in Appendix C.

One potential use for this information is to segment the population of surveyed schools into groups with higher and lesser energy use for the purposes of retrofit projects. A relevant example of the benefits of such retrofits was recently shown in a Florida elementary school which found a 15% overall energy savings from a series of installed retrofit measures (Sherwin and Parker, 1996).

Statistical Analysis

School characteristics, schedules and equipment efficiency all play an active role in how much energy is used in educational facilities. However, sorting out the individual impacts on energy use is difficult due to complex interactions. Consequently, we used a two step approach to determine which factors were most strongly associated with recorded energy use. The objective of this exercise to create a list of significant factors and to examine these with respect to how they might provide information that could be used to reduce energy use in Florida educational facilities.

In the first step, each potential variable in the data base was compared to the electricity, or total energy use (EUI) using a standard unpaired t-test of means assuming unequal variances. This was used to screen potential variables so that the largest possible data set could be used for the final analysis. (5)

After potentially important variables were identified using the t-test, stepwise multiple regression was used in which the dependent variable was recorded energy use and the potential independent explanatory variables comprised all of the responses to the survey questions. (6) Yes/no answers were transformed in to "dummy variables" (0=no; 1= yes) to facilitate this process.

In the stepwise scheme, all of the potential survey variables are regressed against the total energy use

(annual kWh) with the variable with the lowest F-ratio being dropped from the equation. The scheme then moves on to consider the next group of variables. This process continues until no more variables remain which cannot satisfy the critical F-ratio (2.0).

In our analysis, a series of 24 interactive "models" were created, before the regression halted with the final set of 23 independent variables which were found to be statistically associated with total recorded energy use in the 460 schools composing the data set. We summarize the highlights from the statistical analysis in Tables 3 and 4.

Table 2

Top Ten Percent of Florida School's with Highest Energy Use

DISTRICT	SCHOOL	CITY	TOTAL EUI
Dade	Fairchild Elementary	Miami	226.82
Pinellas	Oldsmar Community Elementary	Oldsmar	214.72
Escambia	C A Weis Elementary	Pensacola	209.83
Dade	North Miami Senior	North Miami	191.6
Pinellas	Dixie Hollins Senior	Saint Petersburg	180.24
Broward	South Plantation	Plantation	174.51
Palm Beach	West Technical Ed. Center	Belle Glade	166.17
Brevard	Gemini Elementary	Melbourne	166.12
Brevard	Enterprise Elementary	Cocoa	166.07
Pinellas	Oldsmar Elementary	Oldsmar	165.94
Orange	Windy Ridge Elementary	Orlando	165.31
Dade	Ponce De Leon Middle	Coral Gables	160.35
Broward	Palmview Elementary	Pompano Beach	159.74
Dade	Greenglade Elementary	Miami	157.09
Dade	W. R. Thomas Middle	Miami	155.65
Dade	Florida City Elementary	Florida City	153.15
Martin	South Fork	Stuart	151.47
Volusia	Read-Pattillo	New Smyrna Beach	151.22
Broward	Piper Senior High	Sunrise	150.66
Lee	Buckingham Exceptional St. Center	Fort Myers	150.58

Dade	Miami Killian Senior	Miami	149.84
Clay	Clay Junior Senior High	Green Cove	148.82
Lee	Lehigh Senior	Lehigh Acres	148.6
Dade	Robert Morgan Voc. Tech. Institute	Miami	147.31
Charlotte	Vineland Elementary	Rotunda	145.09
Broward	Tropical Elementary	Plantation	144.22
Dade	Hammocks Middle	Miami	143.34
Lee	Suncoast Middle	N Fort Myers	142.68
Broward	Dillard Elementary	Fort Lauderdale	141.95
Dade	Marine & Science Tech. Academy	Miami	140.38
Palm Beach	Boca Raton Senior	Boca Raton	139.24
Orange	Arbor Ridge Elementary	Orlando	138.22
Broward	Sheridan Vocational Center	Hollywood	137.12
Orange	Winter Park Senior	Winter Park	136.67
Escambia	Brentwood Middle	Pensacola	134.11
Orange	Baymeadows Elementary	Orlando	133.15
Palm Beach	Jupiter Elementary	Jupiter	132.1
Broward	Stranahan Senior High	Fort Lauderdale	132.09
Dade	Hialeah Gardens Elementary	Hialeah Gardens	130.59
Dade	Lindsey Hopkins Tech. Ed. Center	Miami	130.06
Lafayette	Lafayette Elementary	Mayo	128.63
Broward	Driftwood Middle	Hollywood	128.2
Okaloosa	Clifford Meigs Middle	Shalimar	127.56
Lee	Cypress Lake Middle	Fort Myers	126.48
Palm Beach	Adult Education center	West Palm Beach	125.28
Palm Beach	Palm Beach Public	Palm Beach	125.12
Palm Beach	Boca Raton Community Middle	Boca Raton	124.88
Pinellas	Lealman Avenue elementary	Saint Petersburg	123.57
Dade	Golden Glades Elementary	Opa Locka	123.33
		- 	

Palm Beach	W Riviera Elementary	Riviera Beach	120.48
Dade	Kinloch Park Middle	Miami	120.07
Dade	Brownsville Middle	Miami	119.21
Dade	Allapattah Middle	Miami	118.49
Broward	Atlantic West Elementary	Margate	117.54
Dade	Thomas Jefferson Middle	Miami	116.78
Dade	Jose Marti Middle	Hialeah	116.67
Palm Beach	Olympic Heights Senior	Boca Raton	115.98
Broward	Plantation Senior High	Plantation	115.56
Dade	Redland Middle	Homestead	115.31
Okaloosa	Laurel Hill	Laurel Hill	113.42
Brevard	Endeavor Elementary	Cocoa	113.30
Charlotte	L A Ainger Middle	Rotunda	113.12
Palm Beach	Suncoast Senior	Riviera Beach	112.05
Dade	Miami Coral Park Sr	Miami	111.85

The following factors showed a tendency to increase annual school energy consumption:

Table 3

Factors Identified as Increasing Annual Energy Consumption

School Type

- Middle Schools and High Schools
- Vocational Schools

Building

- Building floor area
- Presence of an auditorium
- Additional portable classrooms

Operation

- Average number of students, faculty and staff
- Administrative offices open year round and after hours
- Higher winter heating set points

- · School conditioned on non-school days and after hours
- Night schools
- · Number of meals served

Equipment and Energy Systems

- Central chillers/cooling towers
- Constant volume air distribution systems
- Water loop heat pumps
- Fan coil systems
- Outdoor and parking lighting
- Low temperature air distribution system

Swimming pools

- Having pools
- Heated swimming pools

Controls

- Clock based lighting controls
- Occupancy sensor lighting control
- Previous problems with excessive humidity
- Demand controlled ventilation
- Past problems with thermostat setting

The following factors were found to *lower* annual energy consumption.

Table 4

Factors Identified as Reducing Annual Energy Consumption

Building

- Classrooms with windows
- · Classrooms with operable windows
- · Ceiling fans in classrooms
- Light colored roof

Equipment and Energy Systems

- Heat pump heating
- Natural gas furnace

Operation

Closed summers

School energy awareness program

Controls

- Higher cooling set point temperatures
- Fully manual HVAC controls
- Clock thermostat

Although statistically significant coefficients are provided in Figure 9, indicating magnitude of the effect, we do not emphasize these results since we believe that the direction of the influence of the variables are much more robust than the numbers attached to them.

General

As indicated in the initial analysis, we found that high schools, middle schools and vocational schools used more energy on a per square foot (normalized) basis than did elementary schools. Auditoriums appeared to lead to added energy use, but analysis of covariance indicated that this was mainly due to the variable's function as an indicator for middle schools or high school. Due to their numbers, however, elementary schools represent a larger fraction of the overall conditioned floor area within the Florida educational system. They also had a greater variance in their relative energy use. While high schools uniformly used more energy than did elementary schools, the use in the elementary schools varied greatly for a given school size. This indicates that other factors are at work that account for the differences. There is a sizeable portion of the stock of elementary schools which have poor energy utilization efficiencies that can possibly be rectified.

Many of the identified statistically significant influences were expected. These include the influence of building floor area, number of portables and the numbers of students and teachers. Each square foot of conditioned floor area was found to increase annual electricity consumption by 11.3 (±0.8) kWh.

A statistical analysis found that on average each portable classroom increased facility energy use by about 10,840 (±5141) kWh per year. The average school had about ten portables with an area of about 856 (±18) square feet each. We did not find, however, that portable classrooms used appreciably more energy per square foot than did permanent facilities. On a annual basis, portable classrooms used about 12 kWh/square foot. A t-test of means revealed that the difference between energy use for permanent building floor area and that of portables was not statistically significant. Based on monitoring of twelve portable classrooms at Fellsmere Elementary in Indian River County Florida a full year, we know that portable classrooms average about 30 kWh per day (Sherwin et al., 1996). This equates to about 10,950 kWh/year-very close to the statistical estimate. Thus energy use in portable classrooms in the state is very large: 250 million kWh and costing about \$18 million dollars in their operation. FSEC currently has a research project underway to evaluate how efficiency in Florida portable classrooms might be improved (Callahan et al., 1997). Simulation analysis of portable energy savings potential, suggests that energy use in such portables may be reduced by up to 23% with a payback of less than three years (Brown et al., 1997).

As expected, we found with all other things equal, each additional hundred students added to a facility's enrollment could be expected to increase annual energy use by about 1.3%. This partly reflects physical realities. The human body produces heat at a rate of about 250 Btu/hr sensible and 200 Btu/hr latent. A facility faculty and student body of 500 would need 19 tons of air conditioning to remove body heat alone. Further, each student adds to the facility design ventilation rate, which considerably adds to the cooling system latent and sensible cooling requirements. Finally, a larger body of students and faculty tend to turn on more lights, eat more meals in the cafeteria and use more computers, etc.

Facility Age

In general, we found that newer Florida educational facilities are more efficient. Schools aged 5 years or less used 1.6 kBtu/ft² per year less than did older facilities, although the difference between groups was not statistically significant. Since these facilities are typically better insulated with more modern equipment, this finding meets expectations. However, there are other factors at play, such as per student ventilation

rate, and cooling equipment choices that may be responsible for the variation unexplained by facility age. Multi-variate analysis indicated that these factors (ventilation rates/humidity concerns) and cooling equipment choices (chiller vs. packaged equipment) were ultimately responsible for the observed differences rather than facility vintage itself.

Operation

Not surprisingly, our analysis verified several common assumptions relative to school operations. Year round schools used more energy -- particularly during June and July -- than did those closed during the summer. Similarly, schools reporting keeping administrative offices open year round or those operating night schools or adult education sessions were also associated with elevated consumption. Finally, those schools reporting that most of the facility was air conditioned during non-school days and after hours showed an increase of 13% in annual normalized energy relative to those that did not. This may indicate a savings opportunity in such facilities based on improved zoning for cooling or through the use of clock or automated thermostats to allow temperatures to be elevated during non-school periods.

Building Characteristics

One of the most common building improvements associated with energy efficiency, added insulation, did not show up as being a statistically significant factor for differences in school energy consumption. This finding was true both for ceilings/roof and wall insulation. The finding that wall insulation was not important was expected based on previous simulation analysis (McIlvaine et al., 1995). However that schools reporting no ceiling insulation did not show elevated energy use was unexpected. A t-test of means showed energy use in schools with insulated roofs consumed 0.17 kBtu/ft² less than in non-insulated schools, but with an uncertainty of \pm 4.54 kBtu/ft² -- without statistical significance. Thirty five percent of schools reported the absence of ceiling or roof insulation.

In general, these schools tended to be older than those with insulation. One hypothesis for our finding was that older schools had other characteristics that reduced energy use, masking the fact that ceiling insulation was really a benefit. Accordingly, we segmented the data into two groups of schools with similar ages. However, our results still showed no differences to the conclusions above -- no statistical significance could be attached to energy savings from ceiling insulation within our sample. It should be pointed out, however, that the fact that ceiling insulation does not appear significant does not mean it is ineffective. Instead it may indicate that other factors are at work which obscure the benefits involved. (8)

One envelope related factor did appear to be influential: schools reporting a predominantly light colored roof showed lower energy use per square foot. This was expected, given a previous evaluation conducted in 1996 for the Department of Education which showed that white roofs can significantly reduce sensible cooling requirements in Florida schools (Parker et al., 1996). That study showed that a white roof reduced an elementary school's measured annual chiller energy use by 10%.

One of the big surprises was that schools which reported windows in classrooms showed an 18% lower normalized annual energy use. The observed difference, 12.28 ± 5.38 kBtu/ft², was highly significant. Mirroring these results, those schools possessing windowless classrooms showed increased annual energy consumption. Since building energy simulations indicate that added window areas in school facilities increase cooling loads, we hypothesize that the effect of windows in classrooms observed in our data was to reduce the need for electrical lighting through daylighting. Windows may also provide an opportunity for ventilation as an alternative to space cooling during the appropriate seasons. Analysis of covariance

indicated that the physical presence of windows in classrooms was the primary driver for the observed differences. (see the section below on ventilation and indoor air quality). A project already performed for the Department of Education has shown that daylight dimming lighting systems have the potential to automatically reduce classroom lighting needs by 27% in spaces with appropriate daylight (Floyd and Parker, 1994).

Schools with swimming pools showed a 16% greater relative energy use than those without them; schools with heated pools showed a 20% increase. Both findings argue for careful consideration of pool pumping in the design of new facilities and for the consideration of solar heating in facilities which consider providing heated pools. A study of swimming pools showed that reduction in piping and filter friction losses with oversized piping could significantly reduce pumping energy (Messenger and Hayes, 1984).

Cooling

Simulation analysis of energy use in a Florida school has estimated that consumption associated with space cooling and ventilation is responsible for about 43% of total consumption (McIlvaine et al., 1995). Reinforcing the validity of this estimate was a detailed monitoring project of a Florida elementary school which showed that the space cooling end-use comprised 40% of measured annual energy use (Sherwin et al., 1996).

Chillers

A somewhat surprising finding was that schools with central chillers used considerably more energy than those relying on packaged systems. The reason may have to do with both efficiency and zoning. [9] It must be emphasized that the COP of a chiller cannot be directly compared with the EER of a packaged unit. A chiller's efficiency may reach a COP of 6 (EER=20). However, other components must be used with this equipment which ultimately bring down the efficiency substantially. This includes cooling towers or air-cooled condensers, as well as air handling and pumping equipment. (10) Large chillers can also suffer degraded performance when used under part load conditions.

Schools reporting a central chiller used 14.24 ±4.26 kBtu/ft² (24.5%) more than those who relied on packaged equipment. This translates to an added annual increase in energy costs of \$0.11/ft² per year. However, in further examining the data, we were able to discover that the elevation of energy use by chillers in educational facilities was strongly tied to the facility age. For instance, the presence of a chiller had no statistically significant impact on normalized utility costs if the building was less than 15 years old. However, where chillers were used in older buildings, the impact of chillers to increase energy use was large and very pronounced. (11) We believe this reflects the fact that newer chiller installations are much more efficient than older systems. Also, older chillers may be in poor operating condition. This likely indicates a large opportunity to reduce school facility energy use by replacing aging chillers or proper recommissioning of systems.

This potential was recently demonstrated in a monitored elementary school which found replacement of an aging chiller with a new, more efficient model to reduce cooling energy use by 15% (Sherwin et al., 1996). However, further complicating this issue is cost. While it is known to facilities planners that the cost of central chiller systems remains one of the greatest sources of expense in new educational facility construction, the differences in differential maintenance costs against packaged systems are unknown or undocumented.

There are obviously other issues-- arguably more important than energy. Central chiller systems can

potentially provide better humidity control -- a fact made important by the new ventilation requirements with ASHRAE Standard 62-89. The increased ventilation rates for Florida schools established by this standard will typically increase space conditioning energy by 15-20% (Davanagere et al., 1996). The best solution may be to use dehumidification technologies and demand controlled ventilation to hold costs down.

Other Heating, Ventilation and Air Conditioning (HVAC) Equipment

HVAC equipment other than chillers showed significant influences within the data on annual energy use. Cooling towers evidenced elevated energy use relative to schools without them, although the analysis of covariance revealed that the seeming influence of cooling towers was masking heightened consumption associated with central chillers. Fan coil systems also showed a similar indication of higher use; fan coil systems are almost always associated with chiller systems. Constant air volume systems also showed higher use, although here the impact appeared genuine. This is not surprising, since constant volume air distribution systems may be less efficient at meeting cooling loads without reheat for humidity control than variable air volume systems.

Analysis also indicated that schools who relied primarily on window air conditioning systems used less annual energy than those with other systems. This seemingly contrary finding may indicate two potential benefits from window air conditioners: 1) Ability to easily zone each space so that cooling systems are only used where needed, and 2) the improved performance from a cooling system which does not result in commonly observed problems in commercial buildings with uncontrolled air flow (Cummings et al., 1996) and unintended heat gain to duct systems located in roof/ceiling plenums. Maintenance, however, may be more expensive.

Heat pump systems showed 18% lower annual energy use than those systems without them -- likely due to the increased effectiveness relative to electric resistance. A more detailed examination of the data revealed, however, that water loop heat pump systems were considerably less effective than other heat pump systems. One explanation is the additional energy required for the operation of the pumps, drives and cooling tower associated with such systems. As expected, schools using natural gas for heating showed lower usage in annual electrical. However, when examining total energy consumption, including the use of natural gas, systems with gas furnaces appeared comparable to heat pump systems. Natural gas boilers showed a tendency to use more fuel for heating than did furnace systems.

Another finding of interest was that low temperature distribution systems, often associated with thermal storage cooling systems, were associated with the largest elevation in normalized energy use of any characteristic identified in our analysis. (13) Often these systems are operated with a time of use (TOU) rate to take advantage of their ability to reduce facility monthly demand charges. Even so, we found no evidence that energy costs per square foot were lower for facilities with low temperature systems than those without them. An unpaired t-test of means revealed that annual energy costs per square foot were not significantly different for those systems with low temperature distribution systems than those without them. In addition, a similar test of the average monthly kW demand per square foot revealed no statistically significant reduction. Such systems are often advocated for their superior humidity control. Again, our analysis found no evidence to support such a contention. Within facilities which were newer than ten years, complaints of humidity problems were actually 13.9% higher for facilities with low temperature distribution systems than for those without them, although the differences were not statistically significant.

HVAC Controls

One of the most important opportunities with energy using equipment is examination of the ways in which

the equipment is switched. The reported preference for an annual cooling temperature for educational facilities had a mean value of 74.8°F, but varied from 65 - 82°F. Individually, many schools reported recent disagreement among faculty and staff regarding preferred interior temperatures. This same group was also shown to have higher annual energy consumption than the group of schools without such problems. Of those reporting changes to the thermostat in response to complaints, analysis revealed that this group had a 0.3 F° lower reported thermostat setting than those who did not report complaints. A statistical evaluation showed that for each degree (F) which the reported facility cooling thermostat was raised, the annual normalized electricity use fell by 2.6%. Since cooling energy use is about 40% of facility energy use, each degree decrease in cooling thermostat setting will increase annual space cooling energy use by an average of 7%. Obviously, methods of reliably setting the thermostat upwards during non-occupied periods can show benefits.

Opposite to the effect of cooling thermostat, we found that each degree higher which the classrooms and facilities were reportedly heated to during Florida's short winters increased normalized annual energy use by about 2%. As expected, this influence was found to be relatively lower for the group of schools using heat pumps for heating than those using resistance electric heat. The sample of schools with natural gas data (89) was too small to support a similar analysis for gas heating.

Schools with clock thermostats or fully manual controls showed lower energy use than the group relying on an energy management system (EMS). Of the 311 schools reporting ownership of an EMS, some 68% reported them as operational. However, the group showing operational EMS systems evidenced 9.1 ±6.7% greater annual energy use than those facilities relying on other control systems. We speculated that part of this influence arose from the association of EMS with chillers and higher ventilation rates which were found to be primary drivers of increased HVAC energy use. (14) Constraining our analysis only to facilities less than ten years old, we found that an EMS reduced mean normalized energy use by 7% although the difference was not statistically significant. This is not surprising since proper setup and commissioning of EMS is vital to good performance.

Ventilation and Indoor Air Quality

Indoor Air Quality (IAQ) and ventilation rates have become a major concern in Florida educational facilities, both from a standpoint of energy use as well as for the well-being of students and staff. Our survey revealed some interesting patterns relative to these issues.

Some 252 schools responded to the question concerning the design ventilation rate. The mean value of 7.9 cfm/student is potentially misleading as the distribution was strongly bi-modal. There was a significant group of 185 schools reporting a ventilation rate 5 cfm/student and another large group of 52 schools at 15 cfm/student. The better ventilated schools tended to be newer (24 years for 15 cfm/student against 32 years for those with 5 cfm/student). The group with the higher ventilation rate had a 17% higher electricity use per unit floor area (67.4 kBtu/ft² against 57.4 kBtu/ft²), although the difference was not statistically significant. It should be noted, that other differences between schools may be associated with the higher ventilation rate. One is the likelihood that a school has a central chiller: 65% of schools with 15 cfm/student had chillers against 43% in the group at 5 cfm per student.

Table 5 shows various influences of variables of interest on frequency of complaints on IAQ. Interestingly, cfm per student showed up as a significant factor increasing the frequency of complaints. However, schools who reported opening windows rather than air conditioning had significantly lower complaints regarding IAQ. We think this finding is due to the perceived control over the indoor air quality issue which operable windows provide to faculty and students.

Table 5

Influences of Statistically Significant Variables on Frequency
of Perceived Problems with Indoor Air Quality

Case (n)	Problems with IAQ	Difference (Statistical significance)
No humidity problems (606)	27.3%	+59.6%****
Humidity problems (692)	86.2%	
No demand vent (1255)	57.9%	+20.5%****
Demand controlled vent (65)	78.4%	
cfm/student <6 (186)	28.6%	+36.9%****
cfm/student >14 (58)	65.5%	
Non-low temp. system	58.5%	+12.9%*
(1256)	71.4%	
Low temperature air system (42)	71.170	
No windows opened (616)	63.7%	-9.2%***
Windows opened for cooling (670)	54.4%	
Older facility (>5 years)	49.1%	+11.0%**
New facility (<5 years old)	60.1%	,

Statistical significance:

90.0% level: *

95.0% level: **

99.0% level: ***

99.9% level: ****

Schools which reported having problems with interior humidity were much more likely to report problems with IAQ. The strong association of IAQ with reported problems with humidity may indicate that schools with larger ventilation rates are more commonly experiencing greater moisture related problems which are perceived as leading to poor indoor air quality. Interestingly, schools that claimed to ventilate with operable windows rather than use air conditioning for cooling, also reported a lower frequency of problems with humidity.

Two additional findings were of surprise. Facilities which claimed to open windows rather than use air

conditioning during portions of the year were quite numerous -- 51.6% of the population of schools responding. Further, we discovered that those schools making this claim had significantly lower annual energy use; a reduction of 8.83 ± 4.24 kBtu/ft² (12.5%). An obvious explanation is that mechanical cooling is avoided through natural ventilation that is not possible in facilities without operable windows.

We also found that the 116 schools who claimed to use ceiling fans in classrooms also had a significantly lower level of space conditioning energy use (15.54 ±6.56 kBtu/ft² or 22.4% less). Analysis of covariance revealed that there was some association between those schools reporting the use of windows for ventilation and those using ceiling fans, but that both factors were even more significant when an interacted term (ceiling fans and operable windows) was introduced to the statistical analysis. Reported thermostat settings were 0.66 F° higher in schools with ceiling fans -- a fact significant at the 90% level. Given the unusual nature of our finding, we examined other characteristics of schools using ceiling fans. Although such schools were often older, we repeated the analysis for facilities less than ten years old and found similar results. Beyond our study, there are practical concerns with advocating widespread ceiling fan use: strobe-like flicker from fans below lighting fixtures and air movement with desk-top papers. Even so, our analysis suggests this is an issue that should be examined further.

Lighting

Questions posed on lighting systems revealed mixed influences. Parking lot and outdoor security light appeared to lead to elevated annual consumption, although there was no statistically significant difference between schools with standard controls and those using motion sensor controls. We did see, however, that clock controls for lighting appeared to increase energy use, likely because clock controls will lead to increased hours of operation against discretionary manual operation. We found no statistically significant differences in lighting energy consumption between standard flourescent and newer systems using electronic ballasts. We repeated this analysis with the data censured to schools built in the last ten years on the chance that building age was confounding our results. Again, we found no statistically significant difference in normalized energy use based on reported lighting system type. (16)

Another seemingly contradictory finding was that schools reporting the use of occupancy sensor controls showed elevated energy use. We believed it possible that this finding is due to the fact that schools with automated controls often have other systems which may increase energy use: chillers and higher ventilation rates. To provide greater resolution, we censured the data to only schools built in the last five years. In doing so, we still found no statistically significant difference for buildings with occupancy sensor lighting controls.

It should be kept in mind, that two evaluations performed in the last three years for FDOE with metered lighting energy use found relatively low savings associated with the use of occupancy sensors in school facilities (Floyd et al., 1995, Floyd et al., 1996). In one study with metered lighting energy use in a Pasco County school, the savings in lighting energy was approximately 10%. In another study of a second elementary school (Sherwin et al., 1996), the use of occupancy sensor controls lead to increased lighting energy consumption. Based on work elsewhere, we believe this is due to increased lighting on-time hours with automated controls where effective manual control was previously used (Pigg et al., 1996). Further, both Florida studies found that without proper set up and commissioning of such systems, potential savings can be greatly reduced. We believe that the findings from our two investigations, as well as from this survey data, questions the general use of occupancy sensors in classrooms. Even so, a large scale study in the Pacific Northwest suggests that this technology may be quite beneficial in common areas in educational facilities (bathrooms, copy rooms, storage, hallways etc.) where occupancy rates are relatively low and potential savings are greater (Richman et al., 1994).

Perhaps the most intriguing finding of the overall statistical results was that facilities with windows in classrooms had 18% lower energy use than those without. This is likely due to diminished need for artificial lighting in these spaces. A previous FSEC project has already shown that daylight dimming system can reduce lighting needs in classrooms by 27% (Schrum, et.al., 1995). If occupants turn lights off when daylight is abundant, the effect would likely be similar but to a lesser degree.

Energy Awareness Programs

Many schools and districts around Florida now administer energy awareness programs to reduce their energy consumption through more vigilant operation of controls and improved operation and maintenance practices. Our analysis indicated that these programs have a small, but statistically significant impact on energy use. Schools which had such a program had about a 4% lower annual energy use than those schools that did not. On average, this saved 0.095 ± 0.055 per square foot per year. We estimate that the average energy awareness program can save a typical facility 5,000 - 12,000 in annual operating costs.

Caveats

The results presented above should be considered approximate for a variety of reasons. Firstly, the survey responses were necessarily inexact on many items; there are likely errors in many of the estimates provided by the respondents. Some questions were poorly understood, even fundamental ones such as conditioned floor area. Thus, the fact that roof insulation level did not show up as an identified characteristic does not mean that insulation is unimportant. It rather indicates that the reported accuracy of the response or other interactions may obscure the true effect. Many respondents had no idea whether the roof was insulated.

Readers must also be cautioned that some of the identified factors in the model may not be truly responsible for the differences observed by the regression. Some may be statistical "carriers by association" where the true causal factor is not identified, but is rather associated with the chosen explanatory variable. An example might be the finding that demand controlled ventilation increases energy use. This ventilation system tends to be on newer type buildings which may use more energy due to increased ventilation. Thus, the chosen indicators by the regression may be associated with other causal factors, such as ventilation level, which are unreported (or poorly characterized) by the survey responses.

Another point must be emphasized: the fact that variables were excluded from the regression does *not* indicate they are unimportant. A good example is the impact of light colored roofing. These do not show up as significant in the regression so long as its polar opposite, dark roofing is included; they do show up when that variable is excluded. The relationships discovered also do not explain *why* influences were significant. A good example is the finding that schools with classrooms with windows used significantly less energy than those without. We do not know why those with windows perform better. It could have to do with reduced electric lighting from daylighting, possibility for mild season ventilation, both, or association with some other hidden causal influence.

Finally, there are real limitations with multiple regression methods that make the statistical model necessarily inexact. These included collinearity between independent variables, omitted variables, non-linear relationships and a host of other problems. A thorough discussion is provided by Mosteller and Tukey (1977). Regardless, we do believe that most of the reported influences above are robust; they will turn out to be of statistical significance regardless of how the data are analyzed.

VI. Conclusions

A detailed survey of energy use and energy use characteristics of Florida's public schools has been completed. The mailed survey instrument was sent to over 2,500 schools over the state in March, 1996. Some 1,298 surveys were returned by December 31, 1996 -- a response rate of approximately 52%. Of these some 677 had matching utility data. The survey data was analyzed to create a profile of energy use at Florida schools as well as characteristics that may influence their relative efficiency.

Given the average operating energy use by school type, we were able to estimate overall energy costs to the Florida school system at \$205 million per year. The typical Florida school used 1.4 million kWh and 7,400 therms of natural gas in 1995 at an annual expense of \$94,000. We also ranked schools with complete data (654 facilities) by their energy use per square foot. The Energy Use Index (EUI, kBtu/ft²) was used to sort schools based on their energy related performance. The EUIs varied from 2 - 226 Btu/ft². The top 10% of consumers (the 65 schools who used most per square foot) were identified for potential future retrofit projects to reduce their energy consumption.

Finally, an analysis was performed to examine the statistical influences on energy use in schools based on the responses to the survey questionnaire against the matched utility data. The analysis contained some surprising influences:

- Floor area and number of students and faculty were significant factors in annual energy use. High schools and vocational schools used more.
- Schools with light colored roof used 6 7% less energy than those with dark roofs.
- Schools that were conditioned on non-school days and after school hours, used more energy.
 Interestingly, schools with occupancy sensor lighting controls or operating EMS systems did not use less than schools with manual controls. Cooling set points were shown to have strong influence.
 Each ^oF the cooling system thermostat was increased was shown to decrease annual energy consumption by 20,000 kWh/yr.
- Classrooms with windows used 20% less energy than those without them. This may be due to reduced need for interior lighting, available ventilation during mild weather, or both.
- Schools relying predominantly on packaged cooling equipment rather than central chillers used 24% less energy. In part, this stems from the fact that chillers in older schools evidenced of very poor performance; newer chillers installations did not show this tendency. Elevated consumption associated with chillers may also reflect the potential for zoned cooling as well as the need for increased energy efficient chiller sub-systems such as pumps, air handlers and cooling towers.
- Heating system choices other than electric resistance heating were shown to be beneficial. This includes heat pump systems, although water loop systems showed less advantageous performance.
- Schools with a history of humidity problems used more energy (likely from electric reheat). Indoor air quality (IAQ) problems were strongly associated with humidity complaints and increased ventilation levels. Conversely, classrooms opening windows for ventilation reported a much lower incidence of IAQ problems.
- Facilities with ceiling fans in classrooms showed lower energy needs. The reasons behind this

31

finding are unclear. Although, the statistical influence is quite pronounced. One partial explanation is cooling thermostat setting. The 155 schools reporting the use of fans gave a cooling thermostat setting of 75.2°F against the 74.8°F without fans -- a finding significant at the 99% level.

- Schools with low temperature air distribution systems or newer demand controlled ventilation systems used considerably more energy and also had higher annual energy costs even when normalized by floor area.
- Demand controlled ventilation may be associated with higher energy use because of increases to the effective minimum ventilation rate.
- Energy awareness programs resulted in measurable reductions to annual energy use.

VII. Acknowledgments

Due to its size, this survey represented an extremely large task for all involved. Special thanks to Suzanne Marshall and the DOE staff, Office of Educational Facilities for their support. Great credit is due to the staff members of Florida's schools and school districts who completed the detailed survey and did so, for the most part, with patience and enthusiasm. At FSEC, thanks to Rob Vieira who reviewed the survey for clarity and content and Sandra Chadwick who faxed out many of the forms to schools who needed them. Kyle Simmons assisted with data entry and Mike Woodall of the Pasco County School District provided feed back on the pilot survey instrument. Finally, David Tracy, an energy consultant to Hillsborough County Schools, provided a thorough review of the initial draft to great advantage for the final report.

VIII. References

- G. Brown, D. Bjornson, J. Briscoe, S. Fremouw, J. Kline, P. Kumar, P. Larocque, D. Northcutt, Z. Wang, D. Rasmussen, K. Rasmussen and J. Stanard, 1996, "Design and Evaluation of Energy Efficient Modular Classroom Structures," <u>Proceedings of the 22nd National Passive Solar Conference</u>, Washington D.C.
- M. Callahan, D. Floyd and D. Parker, 1997. <u>Energy Efficient Improvements to Portable Classrooms-- A Proposed Project to Volusia County Schools</u>, FSEC-CR-939-97, Florida Solar Energy Center, Cocoa, FL.
- J.B. Cummings, C.R. Withers, N. Moyer, P. Fairey and B. McKendry, 1996. <u>Uncontrolled Air Flow in Non-Residential Buildings</u>, FSEC-CR-878-96, Florida Solar Energy Center, Cocoa, FL.
- B.S. Davanagere, K. Rengarajan, D.B. Shirey III, R.A. Raustad, 1996. <u>Impacts of ASHRAE Standard 62-1989 on Florida Schools</u>, FSEC-CR-856-95, Florida Solar Energy Center, Cocoa, FL.
- D. Floyd and D. Parker, 1994. "Field Commissioning of a Daylight Dimming System," <u>Proceedings of</u> Right Light Three: 3rd European Conference on Energy Efficient Lighting, Newcastle on Tyne, U.K.
- D. Floyd, D. Parker, J. Sherwin and J.E.R. McIlvaine, 1995. <u>Energy Efficiency Technology Demonstration Project for Florida Educational Facilities: Occupancy Sensors</u>, FSEC-CR-867-95, Florida Solar Energy Center, Cocoa, FL.

- D.B. Floyd, D.S. Parker, J.E.R. McIlvaine and J.R. Sherwin, <u>Energy Efficiency Technology Demonstration Project for Florida Educational Facilities: Occupancy Sensors</u>, FSEC-CR-867-95, Florida Solar Energy Center, Cocoa, FL, December, 1995.
- A.G. Kwok, <u>Thermal Comfort in Naturally Ventilated and Air Conditioned Classrooms in the Tropics</u>, Ph.D. dissertation, University of California, Berkeley, CA, Spring, 1997.
- R.A. Messenger and S.J. Hayes, 1984. <u>Swimming Pool Circulation System Energy Efficiency Study</u>, Final Report, Florida Atlantic University, Boca Raton, FL.
- J.E.R. McIlvaine, M, Mallette, D. Parker, P. Lapujade, D. Floyd, L. Schrum and T. Stedman, *Energy Efficiency Design for Florida Educational Facilities*, prepared for the Florida Department of Education, Florida Solar Energy Center, Cocoa, FL, 1994.
- F. Mosteller and J.W. Tukey, <u>Data Analysis and Regression</u>, Addison Wesley Publishing Co., Reading, MA, 1977.
- T. S. Overton, "Estimating Non-Response Bias in Mail Surveys," <u>Journal of Marketing Research</u>, (August 1977), p. 396-402.
- D.S. Parker, J.R. Sherwin, J.K. Sonne and S.F. Barkaszi, Jr.,1996, <u>Demonstration of Cooling Savings from Light Colored Roof Surfacing in Florida Commercial Buildings: Our's Savior's School</u>, FSEC-CR-904-96, Florida Solar Energy Center, Cocoa, FL, 1994.
- M.A. Piette, B. Nordman, O. deBuen and R. Diamond, "Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration Project," Proceedings of the 1994 Summer Study on Energy Efficiency in Buildings, Vol. 9, p. 243, American Council for an Energy Efficient Economy, Washington D.C.
- S. Pigg, M. Eilers and J. Reed, 1996, "Behavioral Aspects of Lighting and Occupancy Sensors in Private Offices," <u>Proceedings of the 1996 Summer Study on Energy Efficiency in Buildings</u>, Vol. 8, p. 161, American Council for an Energy Efficient Economy, Washington D.C.
- E. Richman, A. Dittmer and J. Keller, 1994. <u>Field Analysis of Occupancy Sensor Operation: Parameters Affecting Lighting Energy Savings</u>, PNL-10135, Pacific Northwest Laboratories, Richland, WA.
- L. Shrum, D.S. Parker and D.B. Floyd, "Daylight Dimming Systems: Studies in Energy Savings and Efficiency," <u>Proceedings of the 1996 Summer Study on Energy Efficiency in Buildings</u>, Vol. 4, p. 311, American Council for an Energy Efficient Economy, Washington D.C.
- J. Sherwin and D. Parker, <u>FLASTAR: Florida Alliance for Saving Taxes and Resources</u>, FSEC-CR-916-96, Florida Solar Energy Center, Cocoa, FL, October, 1996.
- C. Steeh, "Trends in Nonresponse Rates 1952-1979," <u>Public Opinion Quarterly</u>, Vol. 45 (Spring, 1981), p. 40-57.
- 1. Duplicate requests from a portion of those receiving the survey, and some requesting the survey who were not included in the original mailing, complicates the process of determining the actual number of schools to whom the instrument was mailed. However, the initial Department of Education mailing list exceeded 2500.

- 2. Note: All percentages (%) refer to percentage of total schools responding.
- 3. Note: total is >100 due to multiple control strategies at some schools.
- 4. This agrees well with prevailing electricity rates for the GSD class for Florida Power and Light Company, the largest Florida utility. In September 1995, this rate was \$0.039/kWh with monthly demand charges of \$6.25/kW.
- <u>5.</u> EUI was used in the analysis to control for the largest factor influencing energy use- floor area- so that false correlation would not be drawn from factors associated with this variable.
- <u>6.</u> Multi-variate analysis is a complex subject. Those looking for a more thorough explanation are referred to Mosteller and Tukey's <u>Data Analysis and Regression</u>. Addison-Wesley, 1977.
- <u>7.</u> All uncertainties for differences in means in the report were assessed and/or reported at the 90% confidence level.
- 8. One factor may be uncontrolled air flow in school buildings where roof/plenum air is able to bypass insulation making it ineffective (see Cummings, et.al., 1996).
- 9. A Chiller installation in inappropriate circumstances may result in increased chiller run hours because a single building/classroom or office needs cooling when the rest of the facility does not. With packaged equipment, only the appropriate packaged equipment is powered, but with a chiller when a single thermostat unit is activated and calls for cooling, the entire chiller (or one of its large compressors) are powered to serve a small cooling load with result that part load efficiency suffers. This doesn't mean that chillers are not appropriate for schools, but it does likely indicate that a combination of chillers and constant cooling for dehumidification, etc. However, within schools with chillers, the central chillers may be operated the entire summer just to maintain these spaces when a dedicated packaged system would spare the operation of the larger system.
- 10. A good example comes from FSEC's own new facility in Cocoa, Florida. On July 17, 1997, a hot summer day, the metered chiller daytime loads were 98 kW to produce about 120 tons of cooling. This implies a chiller efficiency of about EER = 14.7 Btu/W. However, at the same time the air handler loads averaged about 27 kW and pumps, drives, and cooling tower used 13 kW more-- a 41% increase in the cooling system energy use and a reduction in EER to 10.4 Btu/W. On the other hand, a good portion of four and five ton unitary equipment have EERs of 12 Btu/W or better.
- 11. The specifics of this analysis are as follows:

Chillers in facilities < 15 years old (+3.82 $\{\pm 9.11\}$ kBtu/ft²)

Chillers in facilities > 15 years old (+17.64 $\{\pm 4.85\}$ kBtu/ft²)

- 12. We used analysis of covariance (ANCOVA) to identify true carriers for the observed variance where two factors were strongly associated and both were found to lead to elevated energy use.
- 13. Since we did not ask a question about thermal storage systems we were not able to examine this specific system.
- 14. A monitored assessment performed for the Florida Energy Office has shown that a properly functioning EMS in a Florida elementary school can provide a 16% reduction to measured HVAC energy use (Sherwin et al., 1996).

- 15. The reported design ventilation rate varied from 3 to 30 cfm per student.
- 16. This does not indicate that flourescent lighting systems with electronic ballasts do not use less energy (an established fact), but rather that our statistical analysis could not conclusively establish the fact.

Submitted to:

Florida Department of Education Office of Educational Facilities Room 1014, Florida Education Center 325 West Gaines St. Tallahassee, FL 32399

On-line publications

Back to publication.

Appendix A

THE 1996 ENERGY SURVEY OF FLORIDA PUBLIC SCHOOLS

Please return this survey to:

D. Parker Florida Solar Energy Center 1679 Clearlake Road Cocoa, FL 32922-5703

March 1996

A. Background Information
1. School District
2. School name
3. Street
4. City
5. Zip Code
5. Telephone
7. Principal
3. Maintenance Coordinator
P. Year originally built?
10. Major additions? (yr.)
B. School Type and Characteristics
Note: We are aware that some items, such as number of portable classrooms, may change frequently.
I. School type:
a. Elementary

d. Vocational e. Community College
2. a. Gross floor area of all premanent buildings?
b. Conditioned floor area of all permanent buildings? (excluding portable classrooms)
3. Number of operated portable classrooms?
a. Total floor area of portable classrooms?
4. Gymnasium? Yes No
5. Auditoriums? Yes No No
6. Media Centers? Yes No No
7. Cafeteria? Yes No No
a. If Yes, approximately how many meals are <i>prepared</i> on the average school day?
b. How many meals are served?
c. Is this a satellite serving facility ; or a main cooking facility .
8. Number of refrigerators or freezers?
9. Approximate number of students (maximum) during year?
10. Average number of faculty/teachers?
11. Number of administrative/clerical and other staff?
12. Athletic facilities with showers? Yes No No
13. Swimming pool? Yes No No
a. Heated? Yes No
C. Operation and Schedule
1. Number of days per year with students?
2. Year round school? Yes No
3. Closed summers? Yes No No
4. Special summer school? Yes No

a. Average number of students?
5. Number of non-school days with faculty?
6. Night school or adult education? Yes No
7. Schedule during school year: <u>Time</u> (NA if not applicable)
a. Maintenance staff arrives b. Faculty/staff arrives c. Students arrive d. Students depart e. Faculty departs f. Night school staff arrives g. Night students arrive h. Night school students depart i. Night school staff departs j. Maintenance staff departs
8. Are administrative offices open year round? Yes No
a. If no, what dates so they open close b. Time open c. Time closed
9. Is the school air conditioned during non-school hours? Yes No
a. During non-school days? Yes No Do
10. If the school is air conditioned during non-school periods, which of the following are conditioned during these times. (Check all that apply):
a. Most of buildings and facilities b. Library/media center c. Gymnasium d. Administrative offices e. Cafeteria f. Other
11. What is the most common cooling temperature maintained inside classroom facilities? (Important! please verify by measurement if possible)
a. In use b. Non-occupied periods
12. What is the most common heating temperature maintained inside facilities?

ERIC

3 Full Tout Provided by ERIC

a. In use
a. In use b. Non-occupied periods
13. How are interior temperatures maintained (check all that apply):
a. Individual manual thermostats b. Central thermostats c. Locked? Yes No d. Clock thermostats e. Energy management system f. Direct Digital Controls (DDC) Yes No Not sure
14. Are windows ever opened for natural ventilation rather than using mechanical cooling? Yes No
15. What is the design mechanical ventilation rate per student (cfm)? Don't know
16. Approximately how old is the main HVAC system?yrs.
17. Previous problems at your facility with excessive humidity (eg. mold/mildew)?
Yes No No
18. Have there ever been complaints of poor indoor air quality?
Yes No No
19. Previous complaints from students and staff regarding indoor temperatures?
Yes No No
20. Have thermostat settings been changed in the last year due to comfort complaints? Yes No
21. Is an active energy educational awareness program in place?
a. At your school? Yes No b. At your district? Yes No
D. Energy Systems
In this section, the facility manager will be asked about a number of technical items, many with which they

may be unfamiliar. Please check all that apply and <u>leave blank if unsure</u>. Don't worry if there are questions no one can answer. Do the best you can, but realize that you are not expected to be familiar with all the described systems. Where there are multiple buildings, please check all that apply or give information that is most generally applicable.)

Building

	1. Insulated roof or ceiling:
	2. Gravel over built up roof
	3. Single ply membrane
	4. Color: (Light , Medium , Dark)
	5. Modified bitumen (tar paper)
	6. Asphalt shingle
	7. Insulated walls
	8. Windows in classrooms
	9. No windows in classrooms
	10. Tinted or solar control glass
	11. Skylights
<u>HVA</u>	<u>c</u>
	12. Central chillers:
	Reciprocating , Screw, , Centrifugal , Yes, but don't know type
	13. Packaged or split system ACs
	14. Roof-top units
	15. Heat pumps
	16. Water loop heat pumps
	17. Window or wall air conditioning units
	18. Strip electric resistance heating
	19. Heat pump heating
	20. Furnace heating system
	21. Boiler heating system
	22. Cooling tower(s)

23. Variable frequency drives
24. Constant volume air distribution
25. Variable air volume system
26. Fan coil system
27. Ceiling return plenum
28. Dehumidification heat pipes
29. Enthalpy wheel
30. Demand ventilation control (CO ₂ sensors)
31. Gas absorption cooling
32. Low temperature air system
Lighting
33. Standard fluorescent lighting fixtures
34. Fluorescent fixtures with electronic ballasts
35. Clock or other automatic scheduling
36. Incandescent exit lighting
37. Fluorescent exit lighting
38. Occupancy sensors
39. Outdoor security lighting
40. Motion sensor control of outdoor lighting
41. Parking lot lighting
42. Athletic field lighting
Controls
43. Fully manual controls
44. Clock controls
45 Operating clock control? Ves No

46. Energy management system (EMS)
47. Operating EMS? Yes No
Miscellaneous
49. Ceiling fans in classrooms? Yes No
50. Computer labs? Yes No
E. Energy Data
1. What is the primary heating fuel for the facility?
a. Electric
b. Natural gas
c. Oil 🖾
d. Propane
e. Solar
2. What is the primary water heating fuel?
a. None, no hot water
b. Electric
c. Natural gas
d. Oil 🕮
e. Propane
f. Solar w/backup
F. Very Important! Please attach all utility billing records for each month of 1995 for all fuels that apply:
1 Electricity
2 Natural gas
3 Oil
4 Propane

Primary person completing this	survey:
Name:	
Title:	
Telephone:	
Other Comments:	
	Back to publication

Back to publication

Appendix B

Characteristics of a Typical Florida School*

	Elementary	Middle	High	Vocational	Other ⁺
Gym	5%	76%	93%	3%	<1%
Auditorium	18%	33%	77%	15%	12%
Media Center	97%	97%	97%	85%	64%
Cafeteria	98%	99%	96%	73%	80%
main	83%	87%	89%	56%	32%
satellite	14%	10%	9%	21%	8%
Athletic facilities with showers	4%	92%	95%	21%	4%
Swimming pool	1%	3%	18%	<1%	12%
heated	1%	<1%	10%	<1%	12%

^{*} Percentages based on 755 elementary, 234 middle, 181 high, 34 vocational, and 25 "other" schools.

+Other refers to special education centers, exceptional student centers, university lab schools, etc.

Yearly Schedule for Public Schools in Florida

	Elementary	Middle	High	Vocational	Other
Year around school	9%	3%	3%	65%	24%
Closed summers	37%	32%	18%	15%	16%
Special summer school	49%	63%	82%	41%	36%
Night school	11%	22%	64%	85%	36%
Administrative offices	81%	91%	98%	94%	80%
open year round					

Air Conditioner Operation During Non-School Hours

	Elementary	Middle	High	Vocational	Other
Non-school hours	44%	41%	55%	38%	28%
Non-school days	39%	41%	50%	35%	36%
Summer break and	41%	41%	46%	21%	24%
holidays					
Areas conditioned		37%	46%		
most buildings	31%	53%	61%	38%	28%
library/media	50%	17%	30%	83%	32%
gym	2%	54%	59%	<1%	4%
admin. offices	39%	28%	30%	38%	24%
cafeteria	26%			21%	8%

Interior Temperature Controls

	Elementary	Middle	High	Vocational	Other
Individual Manual thermostats	68%	64%	62%	73%	84%
Central thermostats	37%	41%	50%	38%	36%
Locked thermostats	32%	43%	54%	41%	28%
Clock thermostats	18%	17%	17%	29%	12%
Energy Management Systems	48%	56%	63%	47%	24%
Direct digital control	12%	15%	25%	23%	16%

Ventilation, HVAC Problems and Energy Awareness

	Elementary	Middle	High	Vocational	Other
Windows open for ventilation	55%	48%	47%	21%	44%
Problems with excess humidity	52%	55%	62%	56%	36%
Complaints of poor indoor air quality	57%	60%	72%	59%	32%
Complaints regarding indoor temperatures	65%	71%	86%	62%	56%
Thermostats changed in the last year due to comfort complaints	61%	61%	78%	62%	52%
Energy Awareness Program					
at school	63%	56%	58%	56%	68%
at district	68%	65%	64%	65%	80%

Average Building Characteristics

	Elementary	Middle	High	Vocational	Other
Insulated roof or ceiling	60%	67%	72%	65%	64%
Gravel over built up roof	49%	53%	56%	65%	44%
Single ply membrane	21%	23%	31%	29%	16%
Color	34%			38%	16%
light	22%	35%	38%	18%	56%
medium	7%	24%	25%	6%	4%
dark		35%	8%		
Modified bitumen	18%	24%	24%	26%	8%
Asphalt shingles	19%	17%	18%	23%	36%
Insulated walls	30%	32%	37%	29%	24%
Windows in classrooms	84%	84%	75%	65%	84%
No windows in classrooms	19%	26%	35%	32%	4%
Tinted or solar control glass	25%	31%	31%	26%	28%
Skylights	14%	17%	27%	21%	12%

Lighting Systems Characteristics in Florida Public Schools

	Elementary	Middle	High	Vocational	Other
Standard fixture	80%	84%	88%	91%	84%
Fixtures with electronic ballasts	43%	45%	48%	23%	24%
Automatic scheduling	44%	53%	58%	47%	32%
Exit lighting					
incandescent	50%	55%	57%	62%	28%
fluorescent	35%	45%	52%	50%	24%
Occupancy sensors	19%	27%	25%	15%	20%
Outdoor security lighting	82%	88%	89%	94%	80%
Motion sensor control of outdoor lights	9%	12%	13%	<1%	4%
Parking lot lighting	69%	82%	87%	82%	40%
Athletic field lighting	5%	16%	81%	3%	8%

Controls and Miscellaneous Information for Florida Public Schools

	Elementary	Middle	High	Vocational	Other
Fully manual controls	37%	31%	45%	41%	52%
Clock controls	39%	48%	50%	62%	32%
Operating clock controls	34%	43%	45%	41%	28%
EMS	40%	51%	51%	44%	12%
Operating EMS	36%	46%	47%	44%	16%
Ceiling fans in classrooms	15%	8%	8%	12%	12%
Computer labs	42%	55%	56%	53%	28%

HVAC Information for Florida Schools

	{	:	: 8	:	Vocational	:	:
- 3			<u> </u>	<u> </u>	<u>}:</u>	<u> </u>	÷

Age of HVAC	10.5	10.8	11.3	14.9	11.5
Central Chillers		17%		26%	
centrifugal	6%	14%	26%	18%	4%
reciprocating	16%	8%	21%	3%	12%
screw	5%	26%	13%	24%	4%
do not know	21%		24%		20%
Packaged or split system	41%	45%	57%	44%	28%
Roof-top units	33%	45%	52%	53%	12%
Heat pumps	29%	31%	34%	23%	16%
Water loop heat pumps	11%	21%	18%	18%	8%
Window or wall units	52%	51%	54%	53%	48%
Strip electric resistance heat	40%	42%	50%	44%	40%
Heat pump heat	21%	20%	26%	15%	16%
Furnace heating	9%	10%	9%	9%	8%
Boiler heating	35%	55%	52%	50%	8%
Cooling tower	20%	45%	56%	53%	20%
Variable frequency drives	4%	12%	15%	9%	4%
Constant volume air distribution	19%	27%	39%	30%	20%
Variable air volume system	14%	26%	34%	26%	12%
Fan coil system	27%	37%	26%	53%	24%
Ceiling return plenum	26%	35%	52%	56%	28%
Dehumidification heat pipes	4%	33%	8%	6%	<1%
Enthalpy wheel	1%	1%	<1%	3%	<1%
CO ₂ sensors	4%	6%	8%	6%	4%
Gas absorption cooling	1%	1%	1%	<1%	<1%
	***************************************	<u></u>		**********	,

200000000000000000000000000000000000000	Low temperature air	2%	3%	7%	6%	12%
	system					
- 8	CFM per student	7.9	8.4	8.2	5	5

Heating Fuel Characteristics

	Elementary	Middle	High	Vocational	Other
Primary heating fuel					
electric	56%	46%	50%	47%	52%
natural gas	12%	17%	15%	18%	4%
oil	7%	9%	8%	6%	<1%
propane	6%	4%	5%	6%	<1%
none		<1%		3%	
Primary water heating fuel	43%				
	22%	30%	28%	44%	68%
electric	5%	30%	30%	4%	8%
natural gas	12%	8%	8%	3%	<1%
oil	1%	13%			
propane		1%	1%		
none		1,0	1,0		

School Characteristics

	Elementary	Middle	High	Vocational	Other
Gross floor area	65,985	112,689	200,234	149,998	41,871
Conditioned floor area	59,908	97,385	175,248	105,104	37,074
Number of portables	10	11	12	11	6
Floor area of all portables	7,963	8,793	9,575	8,098	5,459
Meals	691	870 819			
# prepared	669		899	305	295
# served			850	273	254
Number of refrigerators/freezers	5	6	8	10	6
Maximum number of students	769	1116	1688	2156	352
Average number of faculty	48	62	93	75	25
Number of staff	23	24	35	44	22
Number of days per year w/ students	184	186	188	217	195
Avg. no. students in summer school	168	326	589	458	121
Number of non-school days w/ faculty	17	22	22	12	13

Typical Daily Schedule During the School Year

	Elementary	Middle	High	Vocational	Other
Maintenance staff arrives	6:35	6:55	6:20	6:15	6:30
Faculty staff arrives	7:35	7:50	7:10	7:20	7:30
Students arrive	8:05	8:30	7:30	7:55	8:10
Students depart	14:40	15:15	14:25	15:40	14:20
Faculty departs	15:15	15:25	15:00	16:00	14:40
Night school staff arrives	15:15	15:30	15:30	17:05	16:55
Night school students arrive	17:15	17:20	17:10	17:50	17:55
Night school students depart	20:20	21:00	21:10		20:50
Night school staff departs	20:50	21:20	21:30		20:55
Maintenance staff departs	21:00	21:20	21:30	20:00	21:45
Administrative offices	July				
dates open	June	July			
dates closed	7:30	June			
time open	16:05	7:30	7:00	7:10	7:40
time closed		16:35	17:00	20:00	16:15
Cooling temperatures					
(°F)	74.7	74.7	74.9	75.3	75.1
in use	77.8	77.7	77.2	79.3	78.7
non-occupied					
Heating temperatures			72.7		69.1
(°F)	71.6	71.5	70.1	70.4	66.1
in use	70.1	68.7		63.9	***************************************
non-occupied					

Average Monthly Demand for Florida Public Schools (kW)

	Elementary	Middle	High	Vocational	Other
January	309.6	511.3	838.9	670.7	436.0
February	311.8	521.2	855.1	670.9	397.0
March	309.8	525.9	850.2	669.1	284.5
April	317.4	538.7	875.6	635.1	292.2
May	346.3	585.0	948.2	669.7	294.0
June	336.7	572.5	881.9	651.8	347.8
July	293.7	492.3	743.5	626.3	417.6
August	309.0	522.3	830.3	627.6	398.7
September	348.4	591.9	928.7	726.4	423.2
October	348.8	601.2	937.9	775.2	370.4
November	330.9	567.3	906.0	690.1	387.7
December	322.7	549.5	862.1	677.9	360.3

Averages of Other Energy Use

	Elementary	Middle	High	Vocational	Other
Gallons oil	1,913	1,711	2,408	••	
Oil dollars	\$1,149	\$1,199	\$1,617		
Propane gallons	3,066	3,207	5,916	2740	
Propane dollars	\$1,995	\$3,222	\$3,826	\$1,665	

Average Natural Gas Therms

	Elementary	Middle	High	Vocational
January	774.9	1,300.4	1,965.6	1,616.5
February	720.7	1,279.9	1,967.9	1,553.9
March	577.0	1,047.5	1,073.4	1,101.1
April	339.5	631.5	1,148	848.5
May	289.5	456.0	755.3	1,031.6
June	249.3	404.2	622.6	900.2
July	148.1	215.1	423.5	771.3
August	168.1	252.7	427.8	681.9
September	277.0	380.1	579.9	553.1
October	325.1	448.2	1,152.5	898.8
November	539.4	634.3	1,079.5	1,158.1
December	631.8	986.9	1,364.3	826.3

Average Natural Gas Dollars

	Elementary	Middle	High	Vocational
January	1,640.46	730.68	1,137.18	727.48
February	400.50	740.11	1,128.58	695.44
March	306.81	616.72	692.69	592.51
April	199.28	407.54	698.2	529.02
May	168.56	277.82	529.93	669.39
June	150.19	201.88	430.85	552.46
July	95.34	126.52	386.92	407.24
August	97.80	135.87	273.66	344.20
September	146.53	805.47	512.75	291.60
October	171.09	233.83	481.66	449.06
November	286.05	358.59	641.21	541.28
December	349.54	558.04	712.85	360.57

Average kWh Per Month by School Type

	Elementary	Middle	High	Vocational	Other
January	59,422	111,245	215,097	214,550	64,780
February	62,273	120,237	228,414	207,048	71,323
March	64,834	124,203	232,555	223,704	51,081
April	67,959	127,474	236,080	216,635	53,035
May	82,648	157,206	289,243	251,119	66,934
June	82,460	152,830	275,430	253,275	77,762
July	70,708	138,975	236,080	247,654	85,424
August	75,845	145,354	268,471	232,963	74,561
September	91,900	172,139	305,121	276,278	88,715
October	87,511	172,446	302,204	297,761	80,590
November	77,917	150,699	276,636	255,101	79,764
December	66,249	129,815	234,541	220,421	80,188

Average kW Dollars Per Month by School

•••••	Elementary	Middle	High	Vocational	Other
January	4,538.64	8,275.58	14,794.61	13,480.59	5,166.24
February	4,822.34	8,525.37	15,579.90	13,175.50	5,453.87
March	4,862.82	8,586.58	15,584.81	14,089.79	3,657.23
April	5,034.16	8,979.02	16,189.90	13,822.31	3,804.48
May	5,945.30	10,589.56	18,557.67	15,146.54	4,379.15
June	5,680.02	10,023.45	17,368.69	14,974.00	5,312.70
July	4,896.16	8,688.03	14,682.72	14,224.85	5,917.63
August	5,225.32	9,385.82	16,213.94	14,135.31	5,358.85
September	6,223.66	10,765.57	18,775.21	16,300.64	6,174.41
October	6,120.27	11,182.48	19,151.96	17,812.17	5,567.64
November	5,617.12	10,110.88	17,757.17	15,546.18	5,424.98
December	5,021.38	8,828.13	15,649.48	14,049.87	5,398.98

School Characteristics in Areas and Energy Use

	Elementary	Middle	High	Vocational	Other
Gross floor area	65,985	112,689	200,234	149,998	40,735
Conditioned floor area	58,589	97,385	185,248	105,104	37,074
Number of portables	9	11	12	11	5
Portable floor area	7,987	8,793	9,575	8,098	5,095
Electric EUI	63.6	68.2	73.0	93.9	94.0
Gas EUI	0.312	0.532	0.451	0.555	0.420
Oil EUI	5.2 E-2	0	3.5 E-2	0	5.9 E-3
Propane EUI	0.229	0.147	0.267	0.561	0
Total EUI	64.7	69.4	74.4	96.3	95.2
Total kWh	881,483	1,665,734	3,088,335	2,869,999	770,416
Total electric dollars	63,248	119,883	192,983	182,895	38,179
Total natural gas	4,986	8,764	12,271	11,357	5,545
Total natural gas dollars	175	370	545	783	103
Total dollars	64,002	121,333	195,016	186,074	38,959
Dollars per square foot	1.18	1.55	1.20	1.69	1.74

Back to publication

Back to publication.

Appendix C

DISTRICT	<u>SCHOOL</u>	<u>CITY</u>	TOTAL EUI
Dade	Fairchild Elementary	Miami	226.82
Pinellas	Oldsmar Community Elementary	Oldsmar	214.72
Escambia	C A Weis Elementary	Pensacola	209.83
Dade	North Miami Senior	North Miami	191.6
Pinellas	Dixie Hollins Senior	Saint Petersburg	180.24
Broward	South Plantation	Plantation	174.51
Palm Beach	West Technical Ed. Center	Belle Glade	166.17
Brevard	Gemini Elementary	Melbourne	166.12
Brevard	Enterprise Elementary	Cocoa	166.07
Pinellas	Oldsmar Elementary	Oldsmar	165.94
Orange	Windy Ridge Elementary	Orlando	165.31
Dade	Ponce De Leon Middle	Coral Gables	160.35
Broward	Palmview Elementary	Pompano Beach	159.74
Dade	Greenglade Elementary	Miami	157.09
Dade	W. R. Thomas Middle	Miami	155.65
Dade	Florida City Elementary	Florida City	153.15
Martin	South Fork	Stuart	151.47
Volusia	Read-Pattillo	New Smyrna Beach	151.22
Broward	Piper Senior High	Sunrise	150.66
Lee	Buckingham Exceptional St. Center	Fort Myers	150.58
Dade	Miami Killian Senior	Miami	149.84
Clay	Clay Junior Senior High	Green Cove	148.82
Lee	Lehigh Senior	Lehigh Acres	148.6
Dade	Robert Morgan Voc. Tech. Institute	Miami	147.31
Charlotte	Vineland Elementary	Rotunda	145.09
Broward	Tropical Elementary	Plantation	144.22
Dade	Hammocks Middle	Miami	143.34
Lee	Suncoast Middle	N Fort Myers	142.68
Broward	Dillard Elementary	Fort Lauderdale	141.95
Dade	Marine & Science Tech. Academy	Miami	140.38
Palm Beach	Boca Raton Senior	Boca Raton	139.24
Orange	Arbor Ridge Elementary	Orlando	138.22
Broward	Sheridan Vocational Center	Hollywood	137.12
Orange	Winter Park Senior	Winter Park	136.67

Escambia	Brentwood Middle	Pensacola	134.11
Orange	Baymeadows Elementary	Orlando	133.15
Palm Beach	Jupiter Elementary	Jupiter	132.1
Broward	Stranahan Senior High	Fort Lauderdale	132.09
Dade	Hialeah Gardens Elementary	Hialeah Gardens	130.59
Dade	Lindsey Hopkins Tech. Ed. Center	Miami	130.06
Lafayette	Lafayette Elementary	Mayo	128.63
Broward	Driftwood Middle	Hollywood	128.2
Okaloosa	Clifford Meigs Middle	Shalimar	127.56
Lee	Cypress Lake Middle	Fort Myers	126.48
Palm Beach	Adult Education center	West Palm Beach	125.28
Palm Beach	Palm Beach Public	Palm Beach	125.12
Palm Beach	Boca Raton Community Middle	Boca Raton	124.88
Pinellas	Lealman Avenue elementary	Saint Petersburg	123.57
Dade	Golden Glades Elementary	Opa Locka	123.33
Palm Beach	W Riviera Elementary	Riviera Beach	120.48
Dade	Kinloch Park Middle	Miami	120.07
Dade	Brownsville Middle	Miami	119.21
Dade	Allapattah Middle	Miami	118.49
Broward	Atlantic West Elementary	Margate	117.54
Dade	Thomas Jefferson Middle	Miami	116.78
Dade	Jose Marti Middle	Hialeah	116.67
Palm Beach	Olympic Heights Senior	Boca Raton	115.98
Broward	Plantation Senior High	Plantation	115.56
Dade	Redland Middle	Homestead	115.31
Okaloosa	Laurel Hill	Laurel Hill	113.42
Brevard	Endeavor Elementary	Cocoa	113.3
Charlotte	L A Ainger Middle	Rotunda	113.12
Palm Beach	Suncoast Senior	Riviera Beach	112.05
Dade	Miami Coral Park Sr	Miami	111.85
Escambia	Pensacola Beach Elementary	Pensacola Beach	111.32
Dade	Dunbar Elementary	Miami	110.88
Orange	Catalina Elementary	Orlando	110.11
Broward	Plantation Middle	Plantation	109.17
Dade	Parkway Middle	Miami	108.71
Orange	Clay Springs Elementary	Apopka	108.48
Palm Beach	North Technical Education Center	Riviera Beach	108.38
Pinellas	Boca Ciega Senior	Gulfport	108.3

Brevard	Palm Bay Elementary	Palm Bay	107.91
Broward	Seminole Middle	Plantation	107.66
Broward	Western Senior High	Davis	107.5
Palm Beach	South Technical Ed. Center	Boynton Beach	107.02
Bay	Rutherford Senior High	Springfield	106.67
Broward	William T McFatter Vocational-	Davie	105.98
Dade	Miami Palmetto Senior	Miami	105.87
Charlotte	Deep Creek Elementary	Punta Gorda	105.85
Broward	Hollywood Park Elementary	Hollywood	105.63
Lee	Tanglewood Elementary	Fort Myers	104.78
Dade	Henry H. Filer Middle	Hialeah	103.75
Broward	Royal Palm Elementary	Lauderhill	103.1
Brevard	Indialantic Elementary	Indialantic	102.82
Orange	Columbia Elementary	Orlando	102.59
Seminole	Tuskawilla Middle	Oveido	102.2
Dade	Pine Lake Elementary	Miami	101.96
Broward	Apollo Middle	Hollywood	101.61
Pinellas	Gibbs Senior	Saint Petersburg	100.97
Broward	Riverglades Elementary	Parkland	100.38
Broward	Annabel C. Perry Elementary	Miramar	100.27
Broward	Colbert Elementary	Hollywood	100.09
Brevard	Thomas Jefferson Junior High	Merritt Island	99.94
Brevard	Andrew Jackson Middle	Titusville	99.29
Dade	Ludlam Elementary	South Miami	98.9
Dade	Phyllis R Miller Elementary	Miami	98.68
Broward	Dillard Senior High	Fort Lauderdale	98.29
Broward	Deerfield Beach Middle	Deerfield	97.95
Broward	Tequesta Trace Middle	Fort Lauderdale	97.59
Broward	Boyd H Anderson Senior High	Lauderdale Lakes	97.55
Clay	Ridgeview Elementary	Orange Park	97.2
Orange	Waterbridge Elementary	Orlando	96.72
Palm Beach	Lake Park Elementary	Lake Park	96.5
Brevard	Mims Elementary	Mims	96.2
Orange	Hunter's Creek Elementary	Orlando	96.13
Sarasota	Venice Senior	Venice	96.01
Orange	Conway Elementary	Orlando	95.61
Broward	Hollywood Central Elementary	Hollywood	95.3
Orange	Ocoee Elementary	Ocoee	95.08

Dade	Biscayne Elementary	Miami Beach	94.81
Palm Beach	Pahokee Mid/Sr	Pahokee	94.33
Brevard	Challenger 7 Elementary	Cocoa	93.9
Broward	Stephen Foster Elementary	Fort Lauderdale	93.68
Broward	South Broward Senior High	Hollywood	93.61
Brevard	Delaura Junior High	Satellite	93.12
Brevard	Merritt Island Senior High	Merritt Island	93.06
Pinellas	Shore Acres Elementary	Saint Petersburg	92.42
Lee	Lee County High Tech Center	Fort Myers	92.23
Dade	Palm Springs Elementary	Hialeah	92.1
Dade	Ojus Elementary	North Miami Beach	91.79
Okaloosa	Richbourg Middle	Crestview	91.75
Bay	Lucille Moore Elementary	Panama City	91.44
Dade	Olinda elementary	Miami	90.98
Escambia	McArthur Elementary	Pensacola	90.89
Broward	Maplewood Elementary	Coral Springs	90.66
Charlotte	Liberty Elementary	Port Charlotte	90.58
Escambia	Ferry Pass Middle	Pensacola	90.56
Orange	Tildenville Elementary	Winter Garden	90.51
Palm Beach	Congress Middle	Boynton Beach	90.08
Palm Beach	Royal Palm School	Lantana	90.06
Palm Beach	School of CHOICE	Pahokee	89.5
Pasco	Harry Schwettman Ed. Center	New Port Richey	89.33
Dade	South Dade Senior	Homestead	89.15
Dade	Gulfstream Elementary	Miami	89.04
Dade	Mays Middle	Miami	88.88
Pinellas	Garrison-Jones Elementary	Dunedin	88.73
Lee	Gateway Elementary	Fort Myers	88.55
Orange	Sadler Elementary	Orlando	88.47
Orange	Jones Senior	Orlando	88.44
Orange	Meadowbrook Middle	Orlando	88.39
Charlotte	Myakka River Elemntary	Gulf Cove	88.04
Broward	Driftwood Elementary	Hollywood	87.89
Broward	Country Isles Elementary	Fort Lauderdale	87.83
Lee	Alva Middle	Alva	87.61
Pinellas	Pinellas Park Middle	Pinellas Park	87.56
Broward	Mary M Bethune Elementary	Hollywood	87.46
	Grove Park Elementary	Lake Park	87.19

Lee	Colonial Elementary	Fort Myers	86.83
Dade	Auburndale Elementary	Miami	86.79
Palm Beach	Crystal Lakes Elementary	Boynton Beach	86.47
Orange	Dommerich Elementary	Maitland	85.89
Bay	A. Crawford Mosley Senior High	Lynn Haven	85.69
Palm Beach	Jupiter Middle	Jupiter	85.66
Bay	Bay Senior	Panama City	85.17
Sarasota	Pine View School	Osprey	84.71
Palm Beach	Citrus Cove Elementary	Boynton Beach	84.32
Dade	Horace Mann Middle	Miami	84.26
Palm Beach	Santaluces Senior	Lantana	84.16
Broward	Harbordale Elementary	Fort Lauderdale	84.1
Sarasota	Gocio Elementary	Sarasota	84.01
Brevard	Spessard L Holland Elementary	Satellite	83.99
Brevard	Lyndon B. Johnson Jr. High	Melbourne	83.96
Lee	Caloosa Middle	Cape Coral	83.53
Lake	South Lake Education Center	Graveland	83.3
Bay	Margaret K. Lewis School	Panama City	83.05
Broward	JP Taravella Senior High	Coral Springs	82.98
Palm Beach	Wellington Elementary	Wellington	82.68
Orange	Aloma Elementary	Winter Park	82.31
Palm Beach	New Horizons Elementary	Wellington	82.15
Pinellas	Tarpon Springs Senior	Tarpon Springs	81.87
Broward	Crystal Lake Middle	Pompano Beach	81.68
Broward	Deerfield Beach Senior High	Deerfield	81.63
Dade	Richmond Elementary Community	Miami	81.5
Charlotte	Charlotte Harbor School	Charlotte Harbor	81.42
Palm Beach	Calusa Elementary	Boca Raton	81.27
Broward	Plantation Elementary	Plantation	81.24
Bay	Rosenwald Middle	Panama City	81.22
Brevard	Christa McAuliffe Elementary	Palm Bay	80.88
Dade	Riverside Elementary	Miami	80.57
Palm Beach	Liberty Park Elementary	West Palm Beach	80.52
Orange	O-Tech Westside Tech	Winter Garden	80.44
Palm Beach	Acreage Pines Community Elementary	Loxahatchee	80.34
Broward	Sanders Park Elementary	Pompano Beach	80.32
Charlotte	East Elementary	Punta Gord	80.01
Broward	Atlantic Vocational Center	Coconut Creek	79.97

Leon	Woodville Elementary	Woodville	79.84
Dade	Allapattah Elementary	Miami	79.72
Broward	North Lauderdale Elementary	North Lauderdal	79.47
Palm Beach	Hagen Road Elementary	Boynton Beach	79.37
Charlotte	Murdock Middle	Port Charlotte	79.28
Broward	McNab Elementary	Pompano Beach	79.11
Broward	Silver Ridge Elementary	Davie	79.09
Broward	Flamingo Elementary	Davie	78.65
Palm Beach	Boca Raton Elementary	Boca Raton	78.37
Dade	Miami Edison Senior	Miami	78.24
Broward	Collins Elementary	Dania	77.85
Escambia	Longleaf Elementary	Pensacola	77.83
Lake	Oak Park Middle	Leesburg	77.63
Broward	West Hollywood Elementary	Hollywood	77.3
Dade	Hialeah Senior	Hialeah	77.3
Orange	Chickasaw Elementary	Orlando	77.26
Bay	Waller Elementary	Youngstown	76.87
Broward	Forest Hills Elementary	Coral Springs	76.55
Taylor	Taylor Technical Inst.	Perry	76.55
Broward	Sea Castle Elementary	Miramar	76.48
Brevard	Mila Elementary	Merritt Island	76.17
Manatee	lda M. Stewart Elementary	Bradenton	76.01
Orange	Winegard Elementary	Orlando	75.89
Broward	Larkdale Elementary	Fort Lauderdale	75.78
Palm Beach	Highland Elementary	Lake Worth	75.66
Clay	WE Cherry Elementary	Orange Park	75.51
Martin	Hobe Sound Elementary	Hobe Sound	75.35
Palm Beach	Wellington Senior	Wellington	75.28
Palm Beach	Omni Middle	Boca Raton	75.15
Broward	Dania Elementary	Dania	75.06
Seminole	Lake Howell Senior	Winter Park	75.05
Palm Beach	North Grade Elementary	Lake Worth	74.94
Broward	MacArthur Senior High	Hollywood	74.92
Palm Beach	Wellington Landings Middle	Wellington	74.62
Seminole	Crooms Academy	Sanford	74.16
Baker	Baker Senior High	Glen Saint Mary	73.94
Orange	Hillcrest Elementary	Orlando	73.82
Broward	Village Elementary	Sunrise	73.6

Palm Beach	Christa McAuliffe Middle	Boynton Beach	73.1
Lee	Edgewood Renaissance Elementary	Fort Myers	72.14
Lee	Michigan Elementary	Fort Myers	72.14
Broward	McNicol Middle	Hollywood	71.98
Putnam	Interlachen Elementary	Interlachen	71.94
Broward	Ramblewood Middle	Coral Springs	71.88
Volusia	Edgewater public	Edgewater	71.67
Broward	Miramar Elementary	Miramar	71.57
Palm Beach	Indian Pines Elementary	Lake Worth	71.53
Orange	Lockhart Elementary	Orlando	71.47
Palm Beach	Watson B. Duncan Comm. Middle Schoo	Palm Beach Gardens	71.26
Gulf	Highland View Elementary	Port St. Joe	71.18
Escambia	Brown-Barge Middle	Pensacola	70.84
Pinellas	Sutherland Elementary	Palm Harbor	70.83
Charlotte	Lemon Bay Senior High	Englewood	70.46
Pinellas	Ridgecrest Elementary	Largo	70.45
Palm Beach	Nothmore Elementary	West Palm Beach	70.41
Brevard	University Park Elementary	Melbourne	70.12
Orange	Zellwood Elementary	Zellwood	70.01
Volusia	Atlantic Senior	Port Orange	69.97
Sarasota	Taylor Ranch Elementary	Venice	69.91
Charlotte	Port Charlotte Senior High	Port Charlotte	69.69
Dade	Design & Architecture Senior	Miami	69.42
Manatee	Braden River Elementary	Bradenton	69.35
Brevard	Melbourne Senior High	Melbourne	69.27
Okeechobee	Yearling Middle	Okeechobee	69.27
Brevard	James Madison Middle	Titusville	69.06
Brevard	Hans Christian Anderson Elementary	Rockledge	69.03
Broward	Oakridge Elementary	Hollywood	68.92
Dade	South Hialeah Elementary	Hialeah	68.72
Charlotte	Benjamin J Baker Elemetnary	Punta Gord	68.63
Saint Lucie	Pt St Lucie Elementary	Port Saint Lucie	68.57
Leon	Chaires Elementary]	Tallahassee	68.25
Washington	Washington-Holmes Tech. Center	Chipley	68.16
Lee	Three Oaks Elementary	Fort Myers	68.14
Charlotte	Charlotte Senior High	Punta Gorda	67.93
Polk	East Area Adult	Auburndale	67.91
Lake	Mascotte Elementary	Mascotte	67.87

Broward	Pines Lakes Elementary	Pembroke Pines	67.86
Pinellas	Belleair Elementary	Clearwater	67.82
Orange	Oak Hill Elementary	Orlando	67.64
Bay	Springfield Elementary	Panama City	67.63
Dade	Cypress Elementary	Miami	67.23
Calhoun	Blountstown middle	Blountstown	67.21
Palm Beach	Lantana Elementary	Lantana	67.19
Palm Beach	S.D. Spady Elementary	Delray Beach	67.12
Orange	Rolling Hills	Orlando	67.03
Broward	Boulevard Heights Elementary	Hollywood	66.96
Alachua	William S. Talbot Elementary	Gainesville	66.91
Brevard	Tropical Elementary	Merritt Island	66.89
Dade	G W Carver Middle	Miami	66.89
Palm Beach	Forest Hill Senior	West Palm Beach	66.76
Dade	Irving & Beatrice Peskoe Elementary	Homestead	66.74
Brevard	South Lake Elementary	Titusville	66.36
Escambia	J H Workman Middle	Pensacola	66.36
Sarasota	Sarasota County Tech. Inst.	Sarasota	66.2
Orange	Ivey Lane Elementary	Orlando	65.77
Lee	Riverdale Senior	Fort Myers	65.74
Pinellas	Orange Grove Elementary	Seminole	65.21
Okaloosa	Ocean City Elementary	Fort Walton Beach	64.81
Orange	Gateway Jr/Sr	Orlando	64.8
Palm Beach	Loxahatchee Groves Elem	Loxahatchee	64.76
Pinellas	Leila G. Davis Elementary	Clearwater	64.76
Pinellas	Ponce De Leon Elementary	Clearwater	64.67
Hendry	Labelle Senior	LaBelle	64.62
Broward	Park Ridge Elementary	Pompano Beach	64.44
Broward	Douglas Senior High	Parkland	64.38
Charlotte	Port Charlotte Middle	Port Charlotte	64.34
Broward	Cooper City Elementary	Cooper City	64.08
Dade	Booker T. Washington Middle	Miami	64.06
Dade	Miami Southridge Senior	Miami	64.04
Alachua	C.W. Norton Elementary	Gainesville	63.84
Pinellas	Palm Harbor Elementary	Palm Harbor	63.79
Seminole	Midway Elementary	Sanford	63.7
Palm Beach	Whispering Pines Elementary	Boca Raton	63.67
Volusia	New Smyrna Beach Senior	New Syrna Beach	63.67

Volusia	L S McInnis Elementary	Deleon Springs	63.56
Bay	Jinks Middle	Panama City	63.5
Pasco	Seven Springs Elementary	New Port Richey	63.4
Brevard	Roy Allen Elementary	Melbourne	63.25
Broward	Deerfield Beach Elementary	Deerfield	63.12
Okaloosa	Annette P Edwins Elementary	Fort Walton	63.06
Bay	Mowat Middle	Lynn Haven	62.91
Orange	Lovell Elementary	Apopka	62.91
Brevard	Lockmar Elementary	Palm Bay	62.83
Broward	Meadowbrook Elementary	Fort Lauderdale	62.79
Lee	Spring Creek Elementary	Bonita Springs	62.73
Brevard	Pinewood Elementary	Mims	62.65
Escambia	N B Cook	Pensacola	62.61
Brevard	Eau Gallie Senior High	Melbourne	62.48
Dade	Hialeah Elementary	Hialeah	62.44
Dade	Crestview Elementary	Miami	62.32
Volusia	Deltona Senior	Deltona	61.61
Charlotte	Meadow Park Elemetnary	Port Charlotte	61.59
Broward	Eagle Point Elementary	Sunrise	61.46
Brevard	Apollo Elementary	Titusville	61.36
Okaloosa	Kenwood Elementary	Fort Walton Beach	61.31
Broward	Pasedena Lakes Elementary	Pembroke Pines	61.3
Pinellas	Cross Bayou Elementary	Pinellas Park	61.29
Volusia	Ormond Beach Middle	Ormond Beach	61.15
Brevard	Coquina Elementary	Titusville	61.14
Brevard	Ocean Breeze Elementary	Indian Harbor	61.09
Dade	Homestead Senior	Homestead	61.08
Broward	Floranada Elementary	Fort Lauderdale	61
Volusia	George Marks Elementary	Deland	60.73
Manatee	Sara Scott Harllee Middle	Bradenton	60.22
Volusia	Holly Hill Elementary	Holly Hill	60.18
Escambia	Ensley Elementary	Pensacola	60.1
Volusia	Woodward Elementary	Deland	60.07
Palm Beach	H.L. Johnson Elementary	Royal Palm Beach	60
Martin	J.D. Parker School of Science	Stuart	59.92
Seminole	Winter Springs Elementary	Winter Springs	59.7
collier	Shadowlawn Elementary	Naples	59.66
Okaloosa	Silver Sand School	Fort Walton Beach	59.52

Orange	Cypress Park Elementary	Orlando	59.41
Dade	Banyan Elementary	Miami	59.38
Volusia	Galaxy Middle	Deltona	59.14
Dade	Miami Lakes Tech. ed. Center	Miami Lakes	59.13
Broward	Forest Glen Middle	Coral Springs	59.07
Volusia	Mainland Senior	Daytona Beach	58.93
Broward	Westpine Middle	Sunrise	58.9
Broward	Cypress Elementary	Pompano Beach	58.86
Collier	Sea Gate Elementary	Naples	58.66
Broward	Broward Fire Academy	Davie	58.56
Orange	Southwest Middle	Orlando	58.54
Palm Beach	KEC Canal Point Elementary	Canal Point	58.41
Broward	James S. Rickards Middle	Oakland Park	58.39
Sarasota	North Port Glenallen Elementary	North Port	58.37
Charlotte	Peace River Elementary	Charlotte Harbor	58.34
Manatee	Palmetto Senior	Palmetto	58.28
Okaloosa	Combs New Heights	Fort Walton Beach	58.09
Dade	Southwood Middle	Miami	58.05
Brevard	Sabal Elementary	Melbourne	57.99
Martin	Warfield Elementary	IndianTown	57.85
Broward	Hollywood Hills Senior High	Hollywood	57.79
Broward	Walter C. Young Middle	Pembroke Pines	57.77
Palm Beach	Coral Sunset Elementary	Boca Raton	57.77
Clay	Orange Park Junior High	Orange Park	57.71
Bay	Tyndall Elementary	Tyndall AFB	57.67
Volusia	Friendship Elementary	Deltona	56.97
Pasco	Fred Marchman Tech	New Port Richey	56.88
Pinellas	Pinellas Park Senior	Largo	56.81
Orange	William Frangus Elementary	Orlando	56.77
Lake	Beverly Shores Elementary	Leesburg	56.67
Dade	Riviera Middle	Miami	56.64
Sarasota	Wilkinson Elementary	Sarasota	56.64
Dade	Marjory Stoneman Douglas Elemtnary	Miami	56.62
Pasco	Lake Myrtle Elementary	Land O' Lakes	56.53
Dade	Miami Heights Elementary	Miami	56.51
Orange	Shingle Creek Elementary	Orlando	56.51
Palm Beach	Forest Hill elementary	West Palm Beach	56.46
Lee	Heights Elementary	Fort Myers	56.45

Pinellas	Northeast Senior	Saint Petersburg	56.39
Volusia	Discovery Elementary	Deltona	56.38
Martin	Hidden Oaks Middle	Palm City	56.32
Broward	Indian Trace Elementary	Fort Lauderdale	56.31
Escambia	George S Hallmark Elementary	Pensacola	56.18
Lee	Franklin Park Magnet Elem.	Fort Myers	56.18
Monroe	Marathon Senior	Marathon	56.01
Brevard	Palm Bay Senior High	Melbourne	55.96
Clay	Grove Park Elementary	Orange Park	55.87
Volusia	Westside Elementary	Daytona Beach	55.85
Manatee	Louise R. Johnson Middle	Bradenton	55.83
Taylor	Taylor County Senior	Perry	55.75
Osceola	Gateway Senior	Kissimmee	55.22
Volusia	Blue Lake Elementary	Deland	55.15
Palm Beach	Palm Beach Lakes Senior	West Palm Beach	55.13
Broward	Wingate Oaks Center	Fort Lauderdale	54.96
Broward	Peters Elementary	Plantation	54.85
Volusia	Turie T. Small Elementary	Daytona Beach	54.71
Bay	Hiland Park Elementary	Panama City	54.61
Gulf	Port St. Joe Jr/Sr	Port St. Joe	54.58
Clay	Montclair Elementary	Orange Park	54.39
Sarasota	Ashton Elementary	Sarasota	54.31
Volusia	Pine Trail Elementary	Ormond Beach	54.28
Palm Beach	Manatee Elementary	Lake Worth	54.21
Lee	Fort Myers Sr	Fort Myers	54.14
Orange	Lake Como Elementary	Orlando	53.95
Sarasota	Englewood Elementary	Englewood	53.9
Volusia	Timbercrest Elementary	Deltona	53.9
Sarasota	Southside Elementary	Sarasota	53.89
Highlands	Lake Placid Senior	Lake Placid	53.86
Monroe	Glynn Archer Elementary	Key West	53.75
Charlotte	Punta Gorda Middle	Punta Gorda	53.69
Brevard	John F. Turner Sr. Elementary	Palm Bay	53.67
Broward	Sheridan Park Elementary	Hollywood	52.99
Osceola	Neptune Middle	Kissimmee	52.95
Palm Beach	Berkshire Elementary	West Palm Beach	52.93
Orange	Shenandoah Elementary	Orlando	52.92
Volusia	Taylor Middle/Senior	Pierson	52.87

66 8/5/99 12:28 PM

Lake	Leesburg Senior	Leesburg	52.84
Orange	Magnolia ESE	Orlando	52.7
Orange	Stonewall Jackson Middle	Orlando	52.35
Taylor	Gladys Morse Elementary	Perry	52.28
Palm Beach	South Area Senior	Lake Worth	51.84
Broward	Cresthaven Elementary	Pompano Beach	51.8
Leon	Buck Lake Elementary	Tallahassee	51.8
Monroe	Plantation Key School	Tavernier	51.56
Lee	New Directions Sr	Fort Myers	51.42
Orange	Audubon Park Elementary	Orlando	51.41
Sarasota	Tuttle Elementary	Sarasota	51.34
Pasco	Gulf Senior	New Port Richey	51.22
Pinellas	Anona Elementary	Largo	51.19
Palm Beach	Limestone Creek Elementary	Jupiter	51.13
Orange	Apopka Middle	Apopka	51.07
Lee	Cypress Lake Senior	Fort Myers	51.04
Pinellas	Osceola Middle	Seminole	50.81
Walton	Paxton School	Paxton	50.55
Okeechobee	Okeechobee Senior	Okeechobee	50.51
Pasco	Ridgewood Senior	New Port Richey	50.19
Osceola	Boggy Creek Elementary	Kissimmee	50.09
Broward	Walker Elementary(Magnet)	Fort Lauderdale	50.08
Osceola	Hickory Tree Elementary	Saint Cloud	49.86
Bay	Surfside Middle	Panama City Beach	49.82
Leon	Fort Braden Elem/Mid	Tallahassee	49.81
Volusia	Spruce Creek Senior	Port Orange	49.68
Volusia	Bonner Elementary	Daytona Beach	49.38
Pinellas	Joseph L. Carwise Middle	Palm Harbor	49.26
Pasco	Pine View Middle	Land O' Lakes	49.25
Volusia	Port Orange Elemetnary	Port Orange	49.24
Pinellas	Starkey Elementary	Seminole	49.21
Palm Beach	Rolling Green Elementary	Boynton Beach	49.1
Broward	Welleby Elementary	Sunrise	48.93
Volusia	Sunrise Elementary	Deltona	48.66
Alachua	Santa Fe Senior High	Alachua	48.61
Pinellas	Palm Harbor Middle	Palm Harbor	48.4
Broward	Henry D Perry Middle	Miramar	48.35
Highlands	Lake Placid Middle	Lake Placid	48.27

Dade	Miami Norland Senior	Miami	47.92
Hardee	Hardee Senior	Wauchula	47.84
Leon	Oak Ride Elementary	Tallahassee	47.84
Broward	Coral Park Elementary	Coral Springs	47.68
Washington	Kate M. Smith Elementary	Chipley	47.3
Clay	Lake Asbury Elementary	Green Cove	47.21
Okaloosa	Shalimar Elementary	Shalimar	47.11
Okaloosa	Crestview High	Crestview	47.06
Escambia	Warrington Middle	Pensacola	47.03
Manatee	Palma Sola elementary	Bradenton	46.81
Orange	Pershing Elementary	Orlando	46.72
Pasco	Land O' Lakes Sr	Land O' Lakes	46.48
Pasco	Cypress Elementary	New Port Richey	46.46
Lee	Sunshine Elementary	Lehigh Acres	46.4
Palm Beach	Wynnebrook Elementary	W Palm Beach	46.39
Вау	Shaw Adult Center	Panama City	46.26
Gulf	Port St. Joe Elementary	Port St. Joe	46.16
Brevard	Riviera Elementary	Palm Bay	45.91
Gulf	Gulf County Adult	Port St. Joe	45.9
Clay	Ridgeview Junior High	Orange Park	45.84
Osceola	Deerwood Elementary	Kissimmee	45.62
Pasco	Hudson Senior	Hudson	45.54
Dade	Miami Northwestern Senior High	Miami	45.33
Orange	Azalea Park Elementary	Orlando	45.31
Orange	Pinar Elementary	Orlando	45.31
Volusia	Coronado Beach Elementary	New Smyrna Beach	45.26
Volusia	Tomoka Elementary	Ormand Beach	45.16
Volusia	Ormond Beach Elementary	Ormond Beach	45.11
Hillsborough	Ben Hill Jr. High	Tampa	45.06
Martin	Stuart Middle	Stuart	45.05
Walton	Freeport Elementary	Freeport	44.89
Pasco	San Antonio Elementary	Dade City	44.71
Brevard	Golfview Elementary	Rockledge	44.51
Brevard	Stone Junior High	Melbourne	44.47
Escambia	Brownsville Middle	Pensacola	44.39
Pasco	Gulfside Elementary	Holiday	44.32
Manatee	Blanche H. Doughtey Elementary	Bradenton	44.26
Clay	Keystone Heights Junior Senior	Keystone Height	44.21

Clay	Lakeside Elementary	Orange Park	44.16
Broward	Westwood Heights Elementary	Fort Lauderdale	44.15
Bay	Patronis Elementary	Panama City Beach	43.77
Broward	Croissant Park Elementary	Fort Lauderdale	43.62
Pasco	Shady Hills Elementary	Spring Hill	43.6
Pinellas	Hamilton Disston	Gulfport	43.57
Brevard	Imperial Estates Elementary	Titusville	43.33
Seminole	Bear Lake Elementary	Apopka	43.32
Calhoun	Carr Elementary & Middle	Clarksville	43.31
Volusia	Southwestern Middle	Deland	43.27
Charlotte	Neil Armstrong Elemetnary	Port Charlotte	43.22
Pasco	Schrader Elementary	New port Richey	43.22
Clay	Lakeside Junior High	Orange Park	43.17
Volusia	Deland Senior	Deland	43.17
Manatee	Manatee Elementary	Bradenton	43.04
Okeechobee	North Elementary	Okeechobee	42.87
Leon	Little Chaires PreKindergarten	Tallahassee	42.86
Gulf	Wewahitchka Elementary	Wewahitchka	42.82
Manatee	Bayshore Senior	Bradenton	42.62
Volusia	Boston Avenue School	Deland	42.61
Orange	Lockhart Middle	Orlando	42.58
Monroe	Key Largo Elem/Middle	Key Largo	42.53
Escambia	Century Elementary	Century	42.51
Palm Beach	Allamanda Elementary	Palm Beach Gardens	42.49
Broward	Whiddon-Rogers Education Ctr	Fort Lauderdale	42.43
Pasco	Northwest Elementary	Hudson	42.35
Dade	Morningside Elementary	Miami	42.33
Volusia	Starke Elementary	Deland	41.88
Charlotte	Sallie Jones Elementary	Punta Gorda	41.79
Pinellas	East Lake Senior	Tarpon Springs	41.67
Pinellas	Lake St. George Elementary	Palm Harbor	41.63
Volusia	Deltona Lakes Elementary	Deltona	41.54
Alachua	Hawthorne High School	Hawthorne	41.47
Okeechobee	Okeechobee South Elementary	Okeechobee	41.31
Manatee	Samoset Elementary	Bradenton	41.3
Dade	Southside Elementary	Miami	41.11
Clay	Orange Park Elemetnary	Orange Park	40.99
Leon	Gilchrist Elementary	Tallahassee	40.94

Seminole	Marguerite Partin elementary	Oviedo	40.72
Monroe	Gerald Adams Elementary	Key West	40.71
Gulf	Wewahitchka Jr/Sr	Wewahitchka	40.67
Orange	Maitland Middle	Maitland	40.64
Pasco	Centennial Elementary	Dade City	40.49
Volusia	Chisholm Elementary	New Smyrna Beach	40.34
Pasco	Quail Hollow Elementary	Wesley Chapel	40.13
Lee	Bonita Springs Elementary	Bonita Springs	40.11
Dade	Joella C Good Elementary	Miami	39.96
Highlands	Avon Elementary	Avon Park	39.86
Pasco	Moore-Mickens Edu. Ctr.	Dade City	39.8
Lee	Mariner Senior	Cape Coral	39.78
Seminole	Douglas Stenstrom Elementary	Oviedo	39.69
Calhoun	Blountstown Senior High	Blountstown	39.65
Broward	Lauderhill Middle	Lauderhill	39.59
Pinellas	North Ward Elementary	Clearwater	39.57
Dade	Little River Elementary	Miami	39.5
Volusia	Holly Hill Middle	Holly Hill	39.34
Lee	Orange River Elementary	Fort Myers	39.23
Monroe	Coral Shores	Tavernier	39.14
Taylor	Perry Elementary	Perry	38.98
Okaloosa	Addie R. Lewis Middle	Valparaiso	38.94
Pinellas	Clearwater Senior	Clearwater	38.88
Palm Beach	J.C. Mitchell Community School	Boca Raton	38.83
Pasco	Calusa Elementary	Port Richey	38.59
Volusia	Deland Middle	Deland	38.3
Pasco	Anclote Elementary	New Port Richey	38.15
Pinellas	Azalea Middle	Saint Petersburg	38.08
Pinellas	Calvin Hunsinger Excep.	Clearwater	37.99
Manatee	Manatee Senior	Bradenton	37.91
Volusia	Seville Public	Seville	37.91
Clay	Middleburg Elementary	Middleburg	37.7
Manatee	Robert H. Prine Elementary	Bradenton	37.57
Pinellas	Tarpon Springs Middle	Tarpon Springs	37.2
Sarasota	Venice Area Middle	Venice	37.01
Leon	Walter T. Moore Elementary	Tallahassee	36.96
Escambia	McReynolds PATS Center	Pensacola	36.93
Pinellas	Mount Vernon Elementary	Saint Petersburg	36.81

Hillsborough	Adams Middle	Tampa	36.8
Martin	Indiantown Middle	Indiantown	36.67
Volusia	Palm Terrace Elementary	Daytona Beach	36.67
Okeechobee	Central Elementary	Okeechobee	36.66
Escambia	Bellview	Pensacola	36.55
Pasco	Thomas Weighman Middle	Wesley Chapel	36.55
Pasco	Lacoochee Elementary	Dade city	36.46
volusia	Pierson Elementary	Pierson	36.41
Clay	Charles E Bennett Elementary	Green Cove	36.1
Manatee	Braden River Middle	Bradenton	35.87
Orange	Howard Middle	Orlando	35.86
Pasco	Rodney B. Cox Elementary	Dade City	35.85
Osceola	Thacker Avenue Elementary	Kissimmee	35.76
Sarasota	Fruitville Elementary	Sarasota	35.44
Volusia	Longstreet Elementary	Daytona Beach	35.36
Lee	Gulf Elementary	Cape Coral	35.26
Okeechobee	Everglades Elementary	Okeechobee	35.15
Lee	Pelican Elementary	Cape Coral	35.1
Okaloosa	Wright Elementary	Fort Walton Beach	34.89
Lee	Estero Senior	Estero	34.86
Pasco	Hudson Middle	Hudson	34.81
Pinellas	Azalea Elementary	Saint Petersburg	34.73
Lee	Trafalgar Middle	Cape Coral	34.58
Okaloosa	Niceville Senior	Niceville	34.54
Seminole	Longwood Elementary	Longwood	34.44
Brevard	Satellite Senior High	Satellite Beach	34.28
Highlands	Woodlawn Elementary	Sebring	34.26
Pasco	R B Stewart Middle	Zephyrhills	34.21
Pinellas	Campbell Park Elementary	Saint Petersburg	34.16
Pinellas	Seminole Middle	Seminole	34.09
Pinellas	Riviera Middle	Saint Petersburg	33.94
Brevard	John F. Kennedy Middle	Rockledge	33.44
Okeechobee	Seminole Elementary	Okeechobee	33.39
Lee	Gulf Middle	Cape Coral	32.84
Pinellas	Osceola Senior	Seminole	32.49
Brevard	Southwest Junior High	Palm Bay	32.48
Pasco	Richey Elementary	New Port Richey	31.94
Highlands	Park Elementary	Avon Park	31.91

Pinellas	Meadowlawn Middle	saint Petersburg	31.67
Martin	Crystal Lake Elementary	Stuart	31.62
Brevard	Cape View Elementary	Cape Canaveral	31.52
Monroe	Stanley Switlik	Marathon	31.41
Broward	Wilton Manors Elementary	Wilton Manors	31.38
Pasco	Gulf Middle	New Port Richey	30.99
Pasco	Hudson Elementary	Hudson	30.97
Broward	Cypress Run Alternative Exceptional	Pompano Beach	30.6
Volusia	Ortona Elementary	Daytona Beach	30.34
Manatee	J.P. Miller Elementary	Bradenton	30.33
Volusia	Osceola Elementary	Ormond Beach	30.06
Calhoun	Blountstown Elementary	Blountstown	29.94
Calhoun	Altha Public School	Altha	29.7
Highlands	Sun and Lake Elementary	Sebring	29.64
Pinellas	Eisenhower Elementary	Clearwater	29.47
Pasco	Mittye P Locke Elementary	Elfers	29.42
Pinellas	Curtis Fundamental Elementary	Clearwater	29.17
Pinellas	Morgan Fitzgerald Middle	Largo	28.85
Escambia	Molino Elementary	Molino	28.59
Escambia	Spencer Bibbs Adv Learning Academy	Pensacola	28.43
Pinellas	Lynch Elementary	Saint Petersburg	27.98
Escambia	Myrtle Grove Elementary	Pensacola	27.5
Brevard	Central Junior High	Melbourne	27.04
Palm Beach	Lantana Middle	Lantana	26.69
Leon	Swift Creek Middle	Tallahassee	26.42
Manatee	H.S. Moody Elementary	Bradenton	26.3
Palm Beach	U.B. Kinsey/Palmview elementary	West Palm Beach	25.53
Pasco	Moon Lake Elementary	New Port Richey	25.49
Washington	Vernon Senior	Vernon	25.17
Highlands	Lake Country Elementary	Lake Placid	25.02
Pasco	River Ridge Mid./Sr.	New Port Richey	23.72
Pasco	Zephyrhills Senior	Zephyrhills	23.62
Martin	Martin County Senior	Stuart	23.53
Pasco	Denham Oaks Elementary	Lutz	22.8
Brevard	Jupiter Elementary	Palm Bay	21.78
Pinellas	Blanton Elementary	Saint Petersburg	21.33
Dade	Flagami Elementary	Miami	20.71
Leon	Cobb Middle	Tallahassee	19.55

Dade	Ruth K Broad- Bay Harbor Elementary	Bay Harbor	19.37
Pinellas	Southside Fundamental Middle	Saint Petersburg	19.03
Okeechobee	Okeechobee Center	Okeechobee	18.81
DeSoto	DeSoto Middle	Arcadia	17.99
Escambia	Escambia Westgate Center	Pensacola	17.95
Pinellas	Belcher Elementary	Clearwater	15.06
Washington	Vernon Elementary	Vernon	15
Orange	Durrance Elementary	Orlando	12.84
Hendry	Labelle Elementary	LaBelle	11.67
Walton	Walton Senior	Defuniak Springs	10.58
Martin	Felix Williams	Stuart	6.41
Bay	Smith Elementary	Panama City	2.4

Back to publication.

U.S. DEPARTMENT OF EDUCATION

Office of Educational Research and Improvement (OERI) Educational Resources Information Center (ERIC)

NOTICE

REPRODUCTION BASIS

	This document is covered by a signed "Reproduction Release (Blanket)" form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.
X	This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").
	This document is in the public domain, according to Suzanne Marshall of the Florida Department of Education. Confirmed by telephone in consultation with Micahel P. Callahan of the Florida Solar Energy Center, 4 May 1999.

