Лабораторная работа No1

Основы информационной безопасности

Нджову Н.

18 февраля 2025

Российский университет дружбы народов, Москва, Россия

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Установка и настройка операционной системы.
- 2. Найти следующую информацию:
 - 2.1 Версия ядра Linux (Linux version).
 - 2.2 Частота процессора (Detected Mhz processor).
 - 2.3 Модель процессора (CPU0).
 - 2.4 Объем доступной оперативной памяти (Memory available).
 - 2.5 Тип обнаруженного гипервизора (Hypervisor detected).
 - 2.6 Тип файловой системы корневого раздела

Я создала новую виртуальную машину, указивая имя и образ ISO(рис.1).

Рис. 1: создание виртуальной машины

Я выбрала имя пользователя и имя хоста(рис.2)

Рис. 2: установки гостевой оси

Я указывала размер основной памяти виртуальной машины и выбрала количество процессора(рис.3)

Рис. 3: указание размера основной памяти виртуальной машины

Я установила размер диска на 40ГБ(рис.4)

Рис. 4: Окно определения размера виртуального динамического жёсткого диска и его расположения

Проверяю подключен ли образ диска к носителю(рис.5)

Рис. 5: подключение образа оптического диска

Я запускала виртуальную машину(рис.6)

Я выбрала English в качестве языка интерфейс(рис.7)

Я скорректировала часовой пояс и место(рис.8)

Я выбрала языки раскладки клавиатуры и задала комбинацию клавиш для переключения между раскладками клавиатуры (рис.9)

Рис. 9: языки раскладки клавиатуры

В разделе выбора программы в качестве базовой среды указывала Server with GUI, а в качестве дополнения - Development tools(рис.10)

Я отключила KDUMP (рис.11)

KDUMP	ROCKY LINUX 8.10 INSTALLATION		
Done	⊞ us		Help!
Kdump is a kernel crash dumping mechanism. In the event of a system crash, kdump will capture information from your system that can be involubble in determining the cause require reserving a portion of system memory that will be unwalsable for other uses.	of the crash. Note the	hat kdump c	oes
☐ Enable kdump			
Kdump Memory Reservation: Automatic Manual			
Memory To Be Reserved (MB): 160 - +			
Total System Memory (MB): 1970 Usable System Memory (MB): 1810			

Рис. 11: отключение КDUMP

Я включила сетевое подключение и задала имя хоста(рис.12)

Рис. 12: сеть и имя узла

Я установила пароль для root и пользователя с правами администратора(рис.13)

Рис. 13: пароль для root

После завершения установки операционной системы я перезагрузилая и запустила виртуальную машину(рис.14)

B VirtualBox оптический привод должен автоматически отключиться(рис.15)

Рис. 16: проверка носителей

Я вошла в ОС, используя учетную запись, созданную во время установки(рис.16)

Рис. 17: входа в ос

Я открывала терминал и запускала команда dmesg | less(рис.17)

```
E
                               Nelianiovu@Nelianiovu:~
File Edit View Search Terminal Help
     0.0000001 Linux version 4.18.0-553.el8 10.x86 64 (mockbuild@iad1-prod-build
001.bld.equ.rockylinux.org) (gcc version 8.5.0 20210514 (Red Hat 8.5.0-22) (GCC)
 #1 SMP Fri May 24 13:05:10 UTC 2024
     0.0000001 Command line: BOOT IMAGE=(hd0.msdos1)/vmlinuz-4.18.0-553.el8 10.x
86 64 root=/dev/mapper/rl-root ro_resume=/dev/mapper/rl-swap_rd.lvm.lv=rl/root r
d. lvm.lv=rl/swap rhqb quiet
     0.0000001 x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point regi
sters'
     0.0000001 x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
     0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
     0.0000001 x86/fpu: xstate offset[2]: 576. xstate sizes[2]: 256
     0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes.
using 'standard' format.
     0.0000001 signal: max sigframe size: 1776
     0.0000001 BIOS-provided physical RAM map:
     0.000000] BIOS-e820: [mem 0x0000000000000-0x0000000009fbff] usable
     0.0000001 BIOS-e820: [mem 0x000000000009fc00-0x0000000009ffff] reserved
     0.000000] BIOS-e820: [mem 0x00000000000f0000-0x0000000000fffff] reserved
     0.000000] BIOS-e820: [mem 0x0000000000100000-0x000000007ffeffff] usable
     0.0000001 BIOS-e820: [mem 0x000000007fff0000-0x000000007fffffff] ACPI data
     0.0000001 BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
     0.0000001 BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
     0.0000001 BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
```

Выполнение дополнительного задания

Я использовала поиск с помощью grep-dmesg | grep -i "то, что ищем", и получила следующую информацию:

Версия ядра Linux (Linux version)(рис.18)

```
[Nelianjovu@Nelianjovu ~]$ dmesg | less
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Linux version"
[ 0.000000] Linux version 4.18.0-553.el8_10.x86_64 (mockbuild@iad1-prod-build
301.bld.equ.rockylinux.org) (gcc version 8.5.0 20210514 (Red Hat 8.5.0-22) (GCC)
] #1 SMP Fri May 24 13:05:10 UTC 2024
[Nelianjovu@Nelianjovu ~]$
```

Рис. 19: Версия ядра Linux

Частота процессора (Detected Mhz processor)(рис.19)

```
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Detected Mhz processor"
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Detected"
[    0.000000] Hypervisor detected: KVM
[    0.000000] tsc: Detected 2496.000 MHz processor
[    0.714255] hub 1-0:1.0: 12 ports detected
[    0.724362] hub 2-0:1.0: 12 ports detected
[    1.062052] systemd[1]: Detected virtualization oracle.
[    1.062055] systemd[1]: Detected architecture x86-64.
[    2.872625] systemd[1]: Detected virtualization oracle.
[    2.872628] systemd[1]: Detected architecture x86-64.
```

Рис. 20: Частота процессора

Выполнение дополнительного задания

Модель процессора (CPU0)(рис.20)

Рис. 21: Модель процессора

Объем доступной оперативной памяти (Memory available)(рис.21)

```
model: 0x9a, stepping: 0x3)
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Memory"
     0.000000] ACPI: Reserving FACP table memory at [mem 0x7fff00f0-0x7fff01e3]
     0.000000] ACPI: Reserving DSDT table memory at [mem 0x7fff0610-0x7fff2962]
     0.000000] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
     0.000000] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
     0.000000] ACPI: Reserving APIC table memory at [mem 0x7fff0240-0x7fff029b]
     0.0000001 ACPI: Reserving SSDT table memory at [mem 0x7fff02a0-0x7fff060b]
     0.0000001 Early memory node ranges
     0.000000] PM: Registered nosave memory: [mem 0x00000000-0x000000fff]
     0.000000] PM: Registered nosave memory: [mem 0x0009f000-0x0009ffff]
     0.000000] PM: Registered nosave memory: [mem 0x000a0000-0x000effff] 0.000000] PM: Registered nosave memory: [mem 0x000f0000-0x000fffff]
     0.000000 Memory: 261120K/2096696K available (14339K kernel code, 5957K rwd
ata. 8568K rodata. 2820K init. 13792K bss. 139920K reserved. 0K cma-reserved)
     0.003000] Freeing SMP alternatives memory: 36K
     0.111008] x86/mm: Memory block size: 128MB
     0.611362] Freeing initrd memory: 52464K
0.659792] Non-volatile memory driver v1.3
     0.938116] Freeing unused decrypted memory: 2028K
     0.9389671 Freeing unused kernel image (initmem) memory: 2820K
     1.048684] Freeing unused kernel image (text/rodata gap) memory: 2016K
     1.049802] Freeing unused kernel image (rodata/data gap) memory: 1672K
```

Выполнение дополнительного задания

Тип обнаруженного гипервизора (Hypervisor detected)(рис.22)

```
[Nelianjovu@Nelianjovu ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] <mark>Hypervisor detected:</mark> KVM
```

Рис. 23: Тип обнаруженного гипервизора

Тип файловой системы корневого раздела(рис.23)

```
[Nelianjovu@Nelianjovu ~]$ sudo fdisk -l
We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:
    #1) Respect the privacy of others.
    #2) Think before you type.
    #3) With great power comes great responsibility.
[sudo] password for Nelianjovu:
Disk /dev/sda: 40 GiB, 42949672960 bytes, 83886080 sectors
Disk model: VBOX HARDDISK
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel Type: dos
Disk identifier: 0x89e63470
Device
          Boot Start
                            End Sectors Size Id Type
/dev/sdal * 2048 2099199 2097152 1G 83 Linux
/dev/sda2 2099200 83886079 81786880 39G 8e Linux LVM
```

Последовательность монтирования файловых систем

```
[Nelianiovu@Nelianiovu ~]$ dmesg | grep -i "Mount"
       0.0368771 Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, line
lar)
      0.036881] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes,
  linear)
       3.024407] XFS (dm-0): Mounting V5 Filesystem
      3.033559] XFS (dm-0): Ending clean mount
       5.436879] systemd[1]: Set up automount Arbitrary Executable File Formats Fi
 le System Automount Point.
      5.442967] systemd[1]: Mounting Huge Pages File System...
5.443784] systemd[1]: Mounting POSIX Message Queue File System...
5.444568] systemd[1]: Mounting Kernel Debug File System...
      5.445325] systemd[1]: Mounting Kernel Trace File System...
      5.457696] systemd[1]: Starting Remount Root and Kernel File Systems...
      5.463144] systemd[1]: Mounted Huge Pages File System.
      5.463297] systemd[1]: Mounted POSIX Message Queue File System.
      5.463410] systemd[1]: Mounted Kernel Debug File System.
5.463523] systemd[1]: Mounted Kernel Trace File System.
5.466575] systemd[1]: Mounting FUSE Control File System...
5.467511] systemd[1]: Mounting Kernel Configuration File System...
      5.476338] systemd[1]: Finished Remount Root and Kernel File Systems.
       5.476555] systemd[1]: Mounted Kernel Configuration File System.
```

Рис. 25: Последовательность монтирования файловых систем

Выводы

Выполнив эту лабораторной работы, я приобрела практических навыков установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.