

# Probability Methods in Engineering CSE-209

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 5





# Counting Methods

- > Sampling without replacement without ordering
  - $\square$  k draws from n objects
  - Combinations
- > Sampling with replacement without ordering
  - $\square$  k draws from n objects
  - Object replaced after draw





## Examples

- Find the number of ways of selecting two objects from  $A = \{1, 2, 3, 4, 5, 6\}$ 
  - Without regard to order
  - With regard to order





## Examples (cont.)

- > Find the number of distinct permutations of
  - □ Balls labeled 1, 2, 3 and 4
  - □ 2 white balls and 2 black balls
  - □ 3 white balls and 2 black balls





#### Examples (cont.)

> A set of 6 laptops contains 3 defective ones. Suppose 4 of them are selected at random and checked. What is the probability that 2 of the defective laptops are selected?





#### Examples (cont.)

➤ A batch of 10 items contains 4 defective items. Suppose 5 items are selected at random and tested. What is the probability that exactly 2 of the items tested are defective?





# Counting Methods (cont.)

#### Sampling with replacement without ordering

- $\triangleright$  *n* objects and *k* draws
- $\triangleright$  k can be greater than n
- Make a table of x's and /'s
  - $\blacksquare$  E.g. the number of objects, n = 4 and draws, k = 5

| Object 1 |   | Object 2 |   | Object 3 |   | Object 4 |
|----------|---|----------|---|----------|---|----------|
| xx       | / |          | / | X        | / | XX       |

- > In summary, xx//x/xx
- $\triangleright$  n 1 /'s and k x's
- > So the number of different arrangements would be

$$C = \begin{pmatrix} n-1+k \\ C \\ k \end{pmatrix} = \begin{pmatrix} n-1+k \\ n-1 \end{pmatrix}$$





## Counting Methods (cont.)

#### Sampling with replacement without ordering

Three balls placed in an urn are labeled as 1, 2 and 3. Five draws are performed in such a way that ball is placed back in the urn after each draw. Find the number of possible outcomes of this random experiment.

