Table 1

Solute Name	$\Delta G(\mathbf{kcal/mol})$	$\Delta S({ m cal/mol^{\circ}}{ m K})$	$Cp(\mathbf{cal/mol^{\circ}K})$
$1_bromo_2_chloroethane$	0.33(-1.95)	-19.73	239.39
1_bromo_2_methylpropane	0.99(-0.03)	-18.67	219.45
1_bromobutane	1.09(-0.40)	-23.40	264.57
1_bromoheptane	0.93(0.34)	-18.60	218.92
1_bromohexane	1.09(0.18)	-22.41	255.51
1_bromooctane	0.98(0.52)	-19.72	229.64
1_bromopentane	1.00(-0.10)	-19.91	231.83
1_bromopropane	0.93(-0.56)	-18.47	217.61
1_chloro_222_trifluoroethane	-0.41(0.06)	-25.65	309.97
1_chlorobutane	0.75(-0.16)	-17.44	201.54
1_chloroheptane	0.73(0.29)	-16.82	195.22
1_chlorohexane	0.99(0.00)	-25.60	278.88
1_chloropentane	0.64(-0.07)	-15.82	184.77
1_chloropropane	1.01(-0.33)	-23.57	264.02
1_ethylnaphthalene	-1.99(-2.40)	-25.25	158.07
1_iodobutane	-0.05(-0.25)	-22.60	240.17
1_iodobatane	0.04(0.27)	-23.97	254.07
1_iodohexane	0.05(0.08)	-23.97	254.07
1_iodopentane	-0.01(-0.14)	-22.78	242.62
1_iodopropane	0.01(-0.53)	-24.55	258.48
1_methyl_imidazole	-4.86(-8.41)	-30.75	-120.71
1_methyl_pyrrole	-1.82(-2.89)	-19.73	77.68
1_methylcyclohexene	1.65(0.67)	-21.20	236.91
1_methylnaphthalene	-2.30(-2.44)	-18.70	98.62
1_naphthol	-8.45(-7.67)	-22.87	132.07
1_naphthylamine	-7.52(-7.28)	-28.22	233.37
1_nitrobutane	-0.57(-3.09)	-21.33	202.02
1_nitropentane	-0.72(-2.82)	-16.10	154.22
1_nitropropane	-0.55(-3.34)	-23.24	219.70
11_diacetoxyethane	-8.50(-4.97)	-32.95	-461.91
11_dichloroethane	0.25(-0.84)	-21.32	253.49
11_dichloroethene	1.12(0.25)	-18.86	243.35
11_diethoxyethane	-2.62(-3.28)	-30.73	-70.33
11_difluoroethane	-0.53(-0.11)	-21.69	225.05
111_trichloroethane	0.99(-0.19)	-20.97	255.51
111_trifluoro_222_trimethoxyethane	-3.16(-0.80)	-24.62	92.42
111_trifluoropropan_2_ol	-7.15(-4.16)	-27.88	287.08
111_trimethoxyethane	-3.98(-4.42)	-22.63	-171.60
1112_tetrachloroethane	0.37(-1.28)	-17.47	237.59
112_trichloro_122_trifluoroethane	1.75(1.77)	-19.52	244.16
112_trichloroethane	-1.15(-1.99)	-20.52	264.85
1122_tetrachloroethane	-0.34(-2.47)	-26.48	347.20
12_diacetoxyethane	-10.10(-6.34)	-33.51	-511.21
12_dibromoethane	0.72(-2.33)	-28.83	329.75

1

12 _dichlorobenzene	-0.04(-1.36)	-22.76	265.02	
12 _dichloroethane	-0.87(-1.79)	-18.71	217.10	
12_dichloropropane	-0.72(-1.27)	-17.77	198.38	
12_diethoxyethane	-3.62(-3.54)	-24.71	-156.91	
12_dimethoxyethane	-4.32(-4.84)	-31.93	-195.48	
12_ethanediol	-12.26(-9.30)	-31.72	-125.58	
123_trichlorobenzene	0.33(-1.24)	-21.99	274.80	
123_trimethylbenzene	-0.31(-1.21)	-18.88	142.45	
1234_tetrachlorobenzene	1.00(-1.34)	-26.08	320.25	
1235_tetrachlorobenzene	1.11(-1.62)	-20.87	270.70	
124_trichlorobenzene	0.69(-1.12)	-27.21	327.69	
124_trimethylbenzene	-0.02(-0.86)	-26.24	212.85	
1245_tetrachlorobenzene	1.13(-1.34)	-22.99	290.96	
13_dichlorobenzene	0.06(-0.98)	-19.09	234.04	
13_dichloropropane	-0.50(-1.89)	-18.52	201.92	
13_dimethylnaphthalene	-2.02(-2.47)	-20.38	118.39	
135_trichlorobenzene	0.84(-0.78)	-21.77	276.77	
135_trimethylbenzene	-0.01(-0.90)	-25.43	208.56	
14_dichlorobenzene	0.15(-1.01)	-23.36	274.19	
14_dichlorobutane	-0.59(-2.32)	-23.90	245.02	
14_dimethyl_piperazine	-3.68(-7.58)	-28.18	-413.16	
14_dimethylnaphthalene	-1.90(-2.82)	-24.79	161.12	
14_dioxane	-3.43(-5.06)	-23.03	-112.85	
2_bromo_2_methylpropane	0.59(0.84)	-16.92	186.52	
2_bromopropane	0.92(-0.48)	-24.47	266.39	
2_butoxyethanol	-4.54(-6.25)	-29.87	15.00	
2_chloro_111_trimethoxyethane	-5.34(-4.59)	-26.17	-154.12	
2_chloro_2_methylpropane	0.79(1.09)	-23.79	246.20	
2_chloroaniline	-5.81(-4.91)	-20.61	263.27	
2_chlorobutane	0.93(0.00)	-24.69	261.48	
2_chlorophenol	-3.98(-4.55)	-24.09 -21.44	228.36	
2_chloropropane	0.73(-0.25)	-21.74	232.93	
2_chloropyridine	-2.96(-4.39)	-21.74 -29.14	71.02	
2_chlorotoluene	-0.11(-1.14)	-23.66	$\frac{71.02}{239.96}$	
2_ethoxyethanol	-9.56(-6.69)			
	\ /	-29.91	-248.54	
2_ethylpyrazine	-5.11(-5.45)	-26.42	-150.68	
2_ethylpyridine	-2.48(-4.33)	-27.22	-15.70	
2_ethyltoluene	-0.19(-1.04)	-23.94	188.34	
2_fluorophenol	-4.11(-5.29)	-23.80	249.78	
2_iodophenol	-3.36(-6.20)	-22.83	251.70	
2_iodopropane	-0.14(-0.46)	-23.50	237.59	
2_isobutylpyrazine	-4.59(-5.04)	-26.86	-145.25	
2_methoxy_111_trimethoxyethane	-7.81(-5.73)	-29.84	-429.85	
2_methoxyaniline	-7.37(-6.12)	-25.53	132.39	
2_methoxyethanamine	-6.77(-6.55)	-32.62	-164.08	
2_methoxyethanol	-9.31(-6.76)	-30.93	-219.04	
2_methoxyphenol	-5.84(-5.57)	-24.41	135.56	
$2_{\text{methyl_but_}2_{\text{ene}}}$	1.61(1.31)	-19.92	226.79	

$2_{\text{methylbut}}_{2_{\text{ene}}}$	1.56(1.31)	-18.36	211.84
2_methylbuta_13_diene	1.09(0.68)	-25.20	260.71
$2_{methylbutan_1_ol}$	-3.44(-4.42)	-25.64	56.31
$2_{methylbutan_2ol}$	-2.86(-4.43)	-21.82	52.71
2-methylbutane	2.30(2.38)	-20.33	255.78
2_methylhexane	2.26(2.93)	-19.62	248.29
2_methylpent_1_ene	1.71(1.47)	-20.40	236.53
2 _methylpentan_ 2 _ol	-3.44(-3.92)	-20.69	16.24
2_methylpentan_3_ol	-2.19(-3.88)	-21.34	64.17
2_methylpentane	2.33(2.51)	-21.41	265.56
$2_{methylpropan_1_0}$	-4.33(-4.50)	-23.88	108.93
2 _methylpropan_ 2 _ol	-3.48(-4.47)	-24.67	11.06
2-methylpropane	2.36(2.32)	-21.93	270.51
2_methylpropene	1.78(1.16)	-23.81	267.13
2_methylpyrazine	-5.46(-5.51)	-24.30	-172.01
2_methylpyridine	-2.80(-4.63)	-24.80	-69.26
2 _methyltetrahydrofuran	-0.90(-3.30)	-21.10	18.85
2_methylthiophene	0.13(-1.38)	-24.82	237.70
2_naphthol	-8.36(-8.11)	-28.20	189.84
2_naphthylamine	-7.99(-7.47)	-24.23	186.15
2_nitroaniline	-6.14(-7.37)	-19.71	218.89
2-nitrophenol	-8.44(-4.58)	-19.69	234.31
2_nitropropane	-0.60(-3.13)	-22.61	204.45
2_nitrotoluene	-1.53(-3.58)	-20.76	191.05
2_phenylethanol	-6.69(- <i>6.79</i>)	-23.62	-16.04
2_propoxyethanol	-9.87(- <i>6.40</i>)	-27.76	-419.11
22_dimethylbutane	2.31(2.51)	-20.39	255.88
22_dimethylpentane	2.30(2.88)	-20.38	255.32
22_dimethylpropane	2.29(2.51)	-19.74	250.34
222_trifluoroethanol	-6.78(-4.31)	-26.35	301.40
224_trimethylpentane	$2.34(2.89)^{'}$	-21.61	267.67
225_trimethylhexane	2.36(2.93)	-22.43	275.19
23_dimethylbuta_13_diene	$0.99(\theta.40)$	-22.94	233.10
23_dimethylbutane	2.37(2.34)	-22.08	271.47
23_dimethylnaphthalene	-2.03(-2.78)	-20.40	118.38
23_dimethylpentane	2.24(2.52)	-18.71	239.60
23_dimethylphenol	-5.72(-6.16)	-20.09	171.33
23_dimethylpyridine	-2.72(-4.82)	-21.45	-99.29
234_trimethylpentane	2.26(2.56)	-19.28	245.41
24_dimethylpentan_3_one	-2.75(-2.74)	-25.03	-225.21
24_dimethylpentane	2.27(2.83)	-19.48	246.87
24_dimethylphenol	-5.66(-6.01)	-21.08	181.48
24_dimethylpyridine	-2.58(-4.86)	-27.03	-55.90
25_dimethylphenol	-3.78(-5.91)	-25.18	170.82
25_dimethylpyridine	-2.55(-4.72)	-24.82	-78.37
25_dimethyltetrahydrofuran	-0.58(-2.92)	-23.52	20.86
26_dimethylaniline	-4.58(-5.21)	-20.73	107.78
26_dimethylnaphthalene	-1.92(-2.63)	-23.71	149.16
v 1	(/	· I	

	1 000(700) 1	0.4.40	1-00.
26_dimethylphenol	-3.86(-5.26)	-24.48	176.84
26_dimethylpyridine	-2.34(-4.59)	-26.24	-42.48
3_acetylpyridine	-7.13(-8.26)	-30.53	-262.42
3_chloroaniline	-5.81(-5.82)	-22.19	301.13
3_chlorophenol	-5.64(-6.62)	-24.30	265.58
3_chloroprop_1_ene	0.29(-0.57)	-22.79	256.41
3_chloropyridine	-2.29(-4.01)	-23.84	47.99
3_cyanophenol	-8.40(-9.65)	-25.16	238.57
3_cyanopyridine	-4.84(-6.75)	-24.93	30.07
3_ethylphenol	-5.91(-6.25)	-23.58	181.25
3_ethylpyridine	-2.74(-4.59)	-23.93	-45.10
3_formylpyridine	-7.67(-7.10)	-26.18	-254.00
3_hydroxybenzaldehyde	-10.52(-9.50)	-21.59	-73.48
3 _methoxyaniline	-8.25(-7.29)	-21.62	126.53
3 _methoxyphenol	-8.14(-7.66)	-24.23	125.95
$3_{methyl_1h_indole}$	-6.13(-5.88)	-22.26	121.74
$3_{\text{methyl_but_1_ene}}$	1.87(1.83)	-23.07	267.51
$3_{\text{methylbut_1_ene}}$	1.83(1.82)	-21.90	256.24
$3_{methylbutan_1_0}$	-5.47(-4.42)	-24.89	49.02
3 _methylbutan_ 2 _one	-3.20(-3.24)	-25.41	-162.96
3 _methylbutanoic_acid	-8.72(-6.09)	-27.16	-26.63
3-methylheptane	2.32(2.97)	-21.54	267.13
3 _methylhexane	2.39(2.71)	-22.98	280.73
3 _methylpentane	2.28(2.51)	-19.77	249.59
3 _methylpyridine	-2.83(-4.77)	-23.24	-50.57
3 _nitroaniline	-7.88(-8.84)	-22.21	264.48
3 _nitrophenol	-7.36(-9.62)	-21.72	281.97
3 _nitrotoluene	-1.70(-3.45)	-21.61	197.29
3-phenylpropanol	-6.19(-6.92)	-29.46	38.02
$33_{\text{dimethylbutan}}_{2\text{-one}}$	-2.90(-3.11)	-28.01	-122.64
33 _dimethylpentane	2.35(2.56)	-21.79	269.52
333 _trimethoxypropionitrile	-7.15(-6.40)	-24.20	-97.24
34_{-} dimethylphenol	-5.81(-6.50)	-23.23	182.87
34_{-} dimethylpyridine	-2.70(-5.22)	-24.58	-45.67
35 _dimethylphenol	-6.04(-6.27)	-24.58	192.76
35 _dimethylpyridine	-2.50(-4.84)	-28.62	-36.09
4 _acetylpyridine	-7.34(-7.62)	-27.64	-265.25
4 _bromophenol	-6.18(-7.13)	-22.25	248.62
4_bromotoluene	-0.22(-1.39)	-22.80	231.63
4 _chloro_ 3 _methylphenol	-5.61(-6.79)	-23.66	251.34
4 _chloroaniline	-6.31(-5.90)	-22.29	247.34
4 _chlorophenol	-6.13(-7.03)	-21.95	238.03
4_cyanophenol	-8.71(-10.17)	-23.62	209.90
4_cyanopyridine	-4.99(-6.02)	-22.90	10.76
4_ethylphenol	-6.12(-6.13)	-24.98	196.15
4_ethylpyridine	-2.85(-4.73)	-25.25	-42.82
4_ethyltoluene	-0.12(-0.95)	-25.64	203.04
4_fluorophenol	-6.19(- <i>6</i> .19)	-21.20	226.04
			•

4_formylpyridine	-7.49(-7.00)	-25.02	-215.11
4_hydroxybenzaldehyde	-11.45(-8.83)	-25.82	-77.79
4_isopropyltoluene	0.17(-0.68)	-27.00	236.90
4_methoxyacetophenone	-7.10(-4.40)	-30.71	-207.73
4_methoxyaniline	-8.16(-7.48)	-25.34	90.65
4_methyl_1h_imidazole	-7.65(-10.27)	-23.41	-220.78
4 _methylacetophenone	-5.05(-4.70)	-29.32	-153.82
4_methylbenzaldehyde	-5.23(-4.27)	-26.83	-116.27
4_methylpentan_2_ol	-2.28(-3.73)	-23.57	174.63
4_methylpentan_2_one	-3.00(-3.05)	-26.60	-126.66
4_methylpyridine	-3.00(-4.93)	-23.31	-61.11
$4_n_{propylphenol}$	-6.02(-5.90)	-27.04	216.76
4-nitroaniline	-8.93(-10.27)	-23.36	289.36
4_nitrophenol	-7.78(-10.64)	-22.81	290.33
4_tert_butylphenol	-6.81(-5.91)	-29.81	195.45
acenaphthene	-2.24(-3.15)	-26.93	157.72
acetaldehyde	-4.03(-3.50)	-18.15	-125.51
acetic_acid	-9.69(-6.69)	-21.02	-111.71
acetonitrile	-2.32(-3.88)	-15.90	85.88
acetophenone	-5.24(-4.58)	-27.19	-167.65
alpha_methylstyrene	-1.00(-1.24)	-24.58	176.92
aniline	-6.56(-5.49)	-21.58	147.32
anisole	-2.45(-2.45)	-23.09	101.85
anthracene	-3.53(-3.95)	-29.15	170.54
azetidine	-3.49(-5.56)	-20.43	-180.12
benzaldehyde	-5.37(-4.02)	-24.61	-119.19
benzamide	-11.25(-11.00)	-28.34	-382.18
benzene	-0.66(-0.86)	-19.57	142.64
benzonitrile	-2.80(-4.21)	-22.11	143.25
benzotrifluoride	-1.39(-0.25)	-22.56	229.01
benzyl_alcohol	-5.93(-6.62)	-24.27	18.69
benzyl_bromide	-1.43(-2.38)	-23.09	197.06
benzyl_chloride	-1.59(-1.93)	-22.84	188.23
biphenyl	-2.11(-2.66)	-28.35	173.63
bis_2_chloroethylether	-3.59(-4.23)	-24.27	128.88
bromobenzene	-0.44(-1.46)	-20.71	213.54
bromoethane	0.77(-0.74)	-16.39	198.11
bromomethane	0.74(-0.82)	-13.88	180.28
bromotrifluoromethane	1.49(1.79)	-15.80	211.29
but_1_ene	1.66(1.38)	-18.12	216.75
but_1_yne	0.99(-0.16)	-17.79	205.39
buta_13_diene	0.83(0.61)	-17.47	191.36
butan_1_ol	-4.20(-4.72)	-22.22	22.74
butan_2_ol	-3.34(-4.62)	-21.30	89.85
butanenitrile	-1.74(-3.64)	-20.35	121.06
butanoic_acid	-9.02(-6.35)	-25.30	-56.26
butanone	-3.67(-3.71)	-22.72	-123.34
butyraldehyde	-3.67(-3.18)	-22.72	-123.34
	1 3.5. (0.10)		120.01

chlorobenzene	-0.36(-1.12)	-20.34	210.67	
chlorodifluoromethane	-1.36(-0.50)	-20.34 -14.28	256.61	
chloroethane	0.57(-0.63)	-14.28	187.68	
chloroethylene	0.64(-0.59)	-15.06	195.57	
chlorofluoromethane	-0.95(-0.77)	-14.08	196.81	
chloromethane	0.52(-0.55)	-14.08 -13.56	171.11	
cis_12_dimethylcyclohexane	\ /			
	2.39(1.58)	-23.01	281.17 143.25	
cyanobenzene	-2.80(-4.10)	-22.11		
cyclohepta_135_triene	-0.37(-0.99)	-21.31	166.59	
cycloheptanol	-3.84(-5.48)	-25.14	23.30	
cyclohexane	2.29(1.23)	-20.27	254.71	
cyclohexanol	-4.40(-5.46)	-24.75	20.36	
cyclohexanone	-3.36(-4.91)	-25.03	-160.43	
cyclohexene	1.61(0.37)	-20.11	230.25	
cyclohexylamine	-2.54(-4.59)	-22.94	109.27	
cyclopentane	2.22(1.20)	-18.81	239.77	
cyclopentanol	-4.33(-5.49)	-22.57	57.46	
cyclopentanone	-3.26(-4.70)	-23.07	-126.20	
cyclopentene	1.43(0.56)	-18.54	213.11	
cyclopropane	1.97(0.75)	-15.49	205.42	
decan_1_ol	-4.24(-3.64)	-35.11	154.87	
decan_2_one	-2.81(-2.34)	-35.34	-16.28	
di_isopropyl_sulfide	-0.15(-1.21)	-24.89	178.77	
di_n_butyl_ether	0.20(-0.83)	-30.65	142.15	
di_n_butylamine	-1.58(-3.24)	-32.26	3.71	
di_n_propyl_ether	0.04(-1.16)	-26.52	102.26	
di_n_propyl_sulfide	0.21(-1.28)	-26.08	226.91	
di_n_propylamine	-1.71(-3.65)	-28.11	-33.60	
dibromomethane	0.55(-1.96)	-15.59	217.61	
dichloromethane	-0.03(-1.31)	-14.88	208.59	
diethoxymethoxybenzene	-4.14(-5.23)	-35.53	46.36	
diethyl_disulfide	-0.39(-1.64)	-23.82	222.21	
diethyl_ether	-0.41(-1.59)	-22.43	46.02	
diethyl_malonate	-9.08(-6.00)	-36.25	-384.68	
diethyl_succinate	-8.07(-5.71)	-38.79	-417.40	
diethyl_sulfide	-0.04(-1.46)	-21.91	181.04	
diethylamine	-2.02(-4.07)	-23.98	-82.83	
diiodomethane	-1.30(-2.49)	-16.65	244.51	
diisopropyl_ether	0.31(-0.53)	-24.87	121.43	
diisopropylamine	-1.33(-3.22)	-26.37	-6.79	
dimethoxymethane	-2.25(-2.93)	-20.69	-38.37	
dimethyl_disulfide	1.32(-1.83)	-18.25	223.16	
dimethyl_ether	-1.15(-1.91)	-17.41	-12.30	
dimethyl_sulfate	-8.76(-5.10)	-27.14	-372.40	
dimethyl_sulfide	0.01(-1.61)	-16.73	161.70	
$dimethyl_sulfone$	-10.82(-10.08)	-26.90	-629.28	
dimethyl_sulfoxide	-7.92(-8.71)	-24.59	-496.79	
dimethylamine	-3.72(-4.29)	-19.98	-184.32	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		
E.hept.2.ene		\ /		
E.hex_2.enal				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	\ /		
ethanamide $-10.46(-9.7i)$ -22.48 -414.97 ethane $2.12(1.83)$ -14.50 199.96 ethanethiol $-1.44(-1.14)$ -16.61 181.74 ethanol $-5.03(-5.00)$ -18.60 15.87 ethene $1.47(1.28)$ -13.53 175.26 ethyl.acetate $-3.70(-2.94)$ -24.79 -150.54 ethyl.benzoate $-4.81(-3.64)$ -31.05 -171.77 ethyl.butanoate $-3.30(-2.49)$ -29.35 -151.25 ethyl.permanate $-3.83(-2.9)$ -23.32 -88.21 ethyl.pentyl.ether $-3.40(-2.49)$ -31.85 -176.80 ethyl.phenyl.ether $-2.00(-2.22)$ -25.63 134.94 ethyl.phenyl.ether $-2.00(-2.22)$ -25.63 134.94 ethyl.penganoate $-3.63(-2.68)$ -27.56 -197.38 ethyl.pengl.ether $-2.00(-2.22)$ -25.63 134.94 ethyl.pengl.ether $-2.00(-2.22)$ -25.63 134.94 ethyl.pengl.e		` /		
$\begin{array}{c} \text{ethane} \\ \text{ethanethiol} \\ \text{ethanethiol} \\ \text{ethanol} \\ \text{ethanol} \\ \text{othanol} \\ ot$				
$\begin{array}{c} \text{ethanethiol} \\ \text{ethanol} \\ \text{ethanol} \\ \text{ethene} \\ \text{ethene} \\ \text{ethene} \\ \text{ethyl.acetate} \\ \text{ethyl.acetate} \\ \text{-3.70}(-2.94) \\ \text{-24.79} \\ \text{-150.54} \\ \text{ethyl.butanoate} \\ \text{-4.81}(-3.64) \\ \text{-3.30}(-2.49) \\ \text{-29.35} \\ \text{-151.52} \\ \text{-171.77} \\ \text{ethyl.butanoate} \\ \text{-3.30}(-2.49) \\ \text{-29.35} \\ \text{-21.32} \\ \text{-88.21} \\ \text{-88.21} \\ \text{ethyl.pentanoate} \\ \text{-3.83}(-2.56) \\ \text{-21.32} \\ \text{-88.21} \\ \text{-88.21} \\ \text{-ethyl.pentanoate} \\ \text{-3.319}(-2.23) \\ \text{-33.43} \\ \text{-101.25} \\ \text{-ethyl.pentanoate} \\ \text{-3.40}(-2.49) \\ \text{-31.85} \\ \text{-176.80} \\ \text{-179.38} \\ \text{-ethyl.pentanoate} \\ \text{-3.63}(-2.68) \\ \text{-27.56} \\ \text{-197.38} \\ \text{-197.38} \\ \text{-ethyl.propanoate} \\ \text{-3.63}(-2.68) \\ \text{-27.56} \\ \text{-197.38} \\ \text{-197.39} \\ \text{-19.55} \\ \text{-169.83} \\ \text{-197.39} \\ \text{-19.55} \\ \text{-100.79} \\ \text{-22.20}(-2.22) \\ \text{-25.63} \\ \text{-134.94} \\ \text{-4.26}(-4.50) \\ \text{-19.55} \\ \text{-19.73} \\ \text{-19.75} \\ \text{-19.75} \\ \text{-10.73} \\ \text{-19.75} \\ \text{-10.73} \\ \text{-19.75} \\ \text{-10.73} \\ \text{-19.75} \\ \text{-10.73} \\ \text{-10.75} \\ -1$		` ′		
$\begin{array}{c} \text{ethanol} \\ \text{ethene} \\ \text{ethyl} \\ \text{acetate} \\ \text{chyl} \\ \text{bethyl} \\ \text{cactate} \\ \text{constants} \\ \text{chyl} \\ \text{bethyl} \\ \text{pentanoate} \\ \text{constants} \\ cons$				
ethene $1.47(1.28)$ -13.53 175.26 ethyl_bcnzoate $-3.70(-2.94)$ -24.79 -150.54 ethyl_benzoate $-4.81(-3.64)$ -21.05 -171.77 ethyl_benzoate $-3.30(-2.49)$ -29.35 -151.25 ethyl_hexanoate $-3.83(-2.56)$ -21.32 -88.21 ethyl_pentlanoate $-3.40(-2.49)$ -31.85 -176.80 ethyl_phenyl_ether $-2.00(-2.22)$ -25.63 134.94 ethyl_propanoate $-3.63(-2.68)$ -27.56 -197.38 ethylamine $-4.26(-4.50)$ -19.55 -169.83 ethylamine $-4.26(-4.50)$ -19.55 -169.83 ethylamine $-4.26(-4.50)$ -19.55 -169.83 ethylamine $-3.63(-2.68)$ -27.56 -197.38 ethylamine $-3.63(-2.58)$ -27.56 -197.38 ethylamine $-3.63(-2.58)$ -27.56 -197.38 ethylamine $-3.63(-2.59)$ -19.55 -160.83 ethylamine <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{c} \mbox{ethyl.acetate} \\ \mbox{ethyl.benzoate} \\ \mbox{ethyl.benzoate} \\ \mbox{ethyl.butanoate} \\ \mbox{ethyl.butanoate} \\ \mbox{ethyl.formate} \\ \mbox{ethyl.formate} \\ \mbox{ethyl.formate} \\ \mbox{ethyl.formate} \\ \mbox{ethyl.pentanoate} \\ \mbox{ethyl.pentanoate} \\ \mbox{ethyl.pentanoate} \\ \mbox{ethyl.pentanoate} \\ \mbox{ethyl.pentanoate} \\ \mbox{ethyl.phenyl.ether} \\ \mbox{ethyl.penzoanoate} \\ \mbox{ethyl.penzoanoanoate} \\ \mbox{ethyl.penzoanoate} \\ \mbox{ethyl.penzoanoate} \\ \mbox{ethyl.penzoanoanoate} \\ \mbox{ethyl.penzoanoate} \\ \mbox{ethyl.penzoanoate} \\ \mbox{ethyl.penzoanoate} \\ \mbox{ethyl.penzoanoanoate} \\ \mbox{ethyl.penzoanoanoate} \\ \mbox{ethyl.penzoanoanoate} \\ \mbox{ethyl.penzoanoate} \\ \mbox{ethyl.penzoanoanoate} \\ \mbox{ethyl.penzoanoate} \\ \mbox{ethyl.penzoanoate} \\ $		\ /		
$\begin{array}{c} {\rm ethyl_benzoate} \\ {\rm ethyl_butanoate} \\ {\rm chyl_formate} \\ {\rm chyl_pentanoate} \\ {\rm chyl_penyl_cher} \\ {\rm chyl_penyl_cher} \\ {\rm chyl_penyl_cher} \\ {\rm chyl_penyl_cher} \\ {\rm chyl_propanoate} \\ {\rm chyl_prop$				
$\begin{array}{c} \text{ethyl-butanoate} \\ \text{ethyl-formate} \\ \text{cash}(-2.49) \\ \text{constants}(-2.49) \\ \text{constants}(-2.23) \\ $	·	-3.70(-2.94)	-24.79	-150.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ethyl_benzoate$	-4.81(-3.64)	-31.05	-171.77
$\begin{array}{c} \text{ethyl.hexanoate} \\ \text{ethyl.pentanoate} \\ \text{ethyl.pentanoate} \\ \text{ethyl.pentanoate} \\ \text{ethyl.phenyl.ether} \\ \text{ethyl.phenyl.ether} \\ \text{ethyl.propanoate} \\ ethyl.prop$	$ethyl_butanoate$	-3.30(-2.49)	-29.35	-151.25
$\begin{array}{c} {\rm ethyl_pentanoate} \\ {\rm ethyl_phenyl_ether} \\ {\rm ethyl_phenyl_ether} \\ {\rm ethyl_propanoate} \\ {\rm ethyl_pr$	$ethyl_formate$	-3.83(-2.56)	-21.32	-88.21
$\begin{array}{c} \text{ethyl_propanoate} \\ \text{ethyl_propanoate} \\ \text{ethyl_propanoate} \\ \text{ethyl_propanoate} \\ \text{ethylamine} \\ \text{ethylamine} \\ \text{ethylamine} \\ \text{ethylamine} \\ \text{ethylenzene} \\ $	ethyl_hexanoate	-3.19(-2.23)	-33.43	-101.25
$\begin{array}{c} \text{ethyl.propanoate} \\ \text{ethylamine} \\ \text{ethylamine} \\ \text{ethylenzene} \\ \text{o.} 3.63(-2.68) \\ \text{o.} -4.26(-4.50) \\ \text{o.} -19.55 \\ \text{o.} -169.83 \\ \text{ethylenzene} \\ \text{o.} -3.3(-0.79) \\ \text{o.} -23.60 \\ \text{o.} 180.15 \\ \text{fluorene} \\ \text{fluorobenzene} \\ \text{o.} -0.39(-0.80) \\ \text{o.} -19.55 \\ \text{consided} \\ \text{o.} 208.20 \\ \text{o.} -3.35 \\ \text{o.} \\ \text{o.} -28.38 \\ \text{o.} 163.51 \\ \text{fluorobenzene} \\ \text{o.} -0.39(-0.80) \\ \text{o.} -19.55 \\ \text{consided} \\ \text{o.} 203.10 \\ \text{o.} \\ \text{o.} -0.22 \\ \text{o.} -12.86 \\ \text{o.} 141.41 \\ \text{formaldehyde} \\ \text{o.} -4.25(-2.75) \\ \text{halothane} \\ \text{o.} -4.21(-11.1) \\ \text{o.} -18.76 \\ \text{c.} -255.97 \\ \text{heptalyne} \\ \text{heptalyne} \\ \text{heptan1.ol} \\ \text{o.} -3.78(-4.21) \\ \text{o.} -28.46 \\ \text{o.} -24.43 \\ \text{o.} -23.98 \\ \text{c.} -26.64 \\ \text{o.} -24.43 \\ \text{o.} -23.98 \\ \text{c.} -26.64 \\ \text{o.} -24.43 \\ \text{o.} -23.98 \\ \text{c.} -26.64 \\ \text{o.} -24.43 \\ \text{o.} -27.54 \\ \text{o.} -28.46 \\ \text{o.} -27.54 \\ \text{o.} -28.46 \\ \text{o.} -27.64 \\ \text{o.} -28.46 \\ \text{o.} -27.64 \\ \text{o.} -28.46 \\ \text{o.} -27.64 \\ \text{o.} -29.57 \\ \text{o.} -117.24 \\ \text{heptan2.one} \\ \text{heptan4.one} \\ \text{o.} -2.75(-2.92) \\ \text{o.} -3.009 \\ \text{o.} -176.66 \\ \text{heptanal} \\ \text{o.} -3.27(-2.67) \\ \text{o.} -28.57 \\ \text{o.} -32.32 \\ \text{hex1.ene} \\ \text{o.} -27.5(-2.92) \\ \text{o.} -30.09 \\ \text{o.} -176.66 \\ \text{heptan1.yne} \\ \text{hex1.yne} \\ \text{hex1.yne} \\ \text{hex1.yne} \\ \text{hex1.yne} \\ \text{hex1.91} \\ \text{o.} -24.96 $	$ethyl_pentanoate$	-3.40(-2.49)	-31.85	-176.80
$\begin{array}{c} \text{ethylamine} \\ \text{ethylbenzene} \\ \text{ethylbenzene} \\ \text{ethylbenzene} \\ \text{fluoroene} \\ \text{co.} 33(-0.79) \\ \text{co.} 23.60 \\ \text{ls0.} 15 \\ \text{fluorobenzene} \\ \text{fluorobenzene} \\ \text{fluorobenzene} \\ \text{fluorobenzene} \\ \text{fluoromethane} \\ \text{co.} 39(-0.80) \\ \text{co.} 19.55 \\ \text{co.} 203.10 \\ \text{fluoromethane} \\ \text{co.} 06(-0.22) \\ \text{co.} 12.86 \\ \text{l41.41} \\ \text{formaldehyde} \\ \text{d.} 4.25(-2.75) \\ \text{halothane} \\ \text{lalothane} \\ \text{o.} 20(-0.11) \\ \text{lalothane} \\ lalo$	$ethyl_phenyl_ether$	-2.00(-2.22)	-25.63	134.94
$\begin{array}{c} \text{ethylbenzene} \\ \text{fluorene} \\ \text{fluorene} \\ \text{fluorobenzene} \\ \text{fluorobenzene} \\ \text{fluorobenzene} \\ \text{fluorobenzene} \\ \text{fluorobenzene} \\ \text{fluorobenzene} \\ \text{fluoromethane} \\ \text{fluorobenzene} \\ \text{fluoromethane} \\ \text{fluoromethane} \\ \text{fluoromethane} \\ \text{fluoromethane} \\ \text{fluoromethane} \\ \text{fluoromethane} \\ \text{fluorobenzene} \\ \text{fluoromethane} $	$ethyl_propanoate$	-3.63(-2.68)	-27.56	-197.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ethylamine	-4.26(-4.50)	-19.55	-169.83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ethylbenzene	-0.33(-0.79)	-23.60	180.15
fluoromethane $0.06(-0.22)$ -12.86 141.41 formaldehyde $-4.25(-2.75)$ -14.84 -91.50 halothane $0.20(-0.11)$ -18.76 255.97 hept_1_ene $1.86(1.66)$ -24.43 278.34 hept_1_yne $1.25(0.60)$ -23.98 265.64 heptan_1_ol $-3.78(-4.21)$ -28.46 77.61 heptan_2_one $-3.12(-3.04)$ -29.57 -117.24 heptan_4_one $-2.75(-2.92)$ -30.09 -176.66 heptanal $-3.27(-2.67)$ -28.57 -32.32 hex_1_ene $1.79(1.58)$ -22.32 258.71 hex_1_yne $1.16(0.29)$ -21.91 245.96 hexal_5_diene $1.22(1.01)$ -21.54 235.29 hexafluoropropene $0.64(-3.76)$ -18.99 251.60 hexan_1_ol $-3.80(-4.40)$ -26.52 33.19 hexan_2_one $-3.22(-3.28)$ -27.50 -139.30 hexan_3_ol $-2.95(-4.06)$ -25.03 128.96 hexanal $-3.46(-2.81)$ -26.67 -61.24 hexanoic_acid $-8.67(-6.21)$ -28.89 -48.15 hydrogen_sulfide $-3.68(-0.70)$ -18.51 -410.36 hydrogen_sulfide $-3.68(-0.70)$ -10.40 209.39 imidazole $-7.74(-9.63)$ -19.90 -143.44 indane $-0.47(-1.74)$ -21.14 -22.63 iodoethane $-0.47(-1.74)$ -21.14 -22.63 iodoemethane $-0.40(-0.74)$ -17.22	fluorene	-2.92(-3.35)	-28.38	163.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fluorobenzene	-0.39(-0.80)	-19.55	203.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	fluoromethane	0.06(-0.22)	-12.86	141.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	formaldehyde	-4.25(-2.75)	-14.84	-91.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	halothane	0.20(-0.11)	-18.76	255.97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	hept_1_ene		-24.43	278.34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	\ /	-23.98	265.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` ′	-28.46	77.61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	, , , ,	-29.57	-117.24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	` ' '		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	` /		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	, , ,	-22.32	258.71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\text{hex}_1\text{-yne}$	' '		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·		-21.54	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	hexafluoropropene	\ /	-18.99	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` ′		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , ,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` '		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 0	` /		
$ \begin{array}{c ccccc} iodobenzene & & -0.47(-1.74) & -21.14 & 229.63 \\ iodoethane & & -0.40(-0.74) & -17.22 & 189.51 \\ iodomethane & & -0.58(-0.89) & -14.71 & 178.18 \\ \end{array} $		` /		
iodoethane $-0.40(-0.74)$ -17.22 189.51 iodomethane $-0.58(-0.89)$ -14.71 178.18		\ ' '		
iodomethane $-0.58(-0.89)$ -14.71 178.18		` ' '		
5.00(5.01) 50.00				
	V	(~ -)		_33.31

isoamyl_formate	-4.29(-2.13)	-27.35	-104.67	
isobutyl_acetate	-3.36(-2.36)	-28.22	-102.85	
isobutyl_formate	-3.89(-2.22)	-25.00	-45.38	
$isobutyl_isobutano ate$	-2.70(-1.69)	-32.37	-116.13	
isobutylbenzene	0.03(0.16)	-26.03	216.66	
isobutyraldehyde	-3.42(-2.86)	-22.46	-131.92	
isoflurane	-3.66(0.10)	-21.10	332.67	
$isopropyl_acetate$	-3.50(-2.64)	-26.05	-134.21	
$isopropyl_formate$	-3.42(-2.02)	-22.56	-40.95	
isopropylbenzene	-0.25(-0.30)	-25.09	193.92	
$m_bis_trifluoromethyl__benzene$	-2.67(1.07)	-24.71	263.08	
m_cresol	-5.98(-5.49)	-22.95	177.45	
m_xylene	-0.24(-0.83)	-23.65	187.04	
methane	2.04(1.99)	-11.94	175.34	
$methane sulfonyl_chloride$	-7.47(-4.87)	-21.62	-146.05	
methanethiol	-1.44(-1.24)	-13.95	174.52	
methanol	-5.45(-5.10)	-15.86	-22.58	
methoxyflurane	-1.04(-1.12)	-21.55	202.05	
$methyl_acetate$	-4.62(-3.13)	-22.97	-251.06	
$methyl_benzoate$	-5.24(-3.92)	-28.63	-185.39	
$methyl_butanoate$	-3.68(-2.83)	-26.74	-175.13	
$methyl_chloroacetate$	-4.53(-4.00)	-22.45	-58.42	
$methyl_cyanoacetate$	-7.00(-6.72)	-24.08	-91.59	
$methyl_cyclohexanecarboxylate$	-3.04(-3.30)	-29.36	-139.70	
$methyl_cyclohexyl_ketone$	-2.97(-3.90)	-28.29	-108.37	
$methyl_cyclopropanecarboxylate$	-4.22(-4.10)	-26.20	-239.71	
$methyl_cyclopropyl_ketone$	-3.01(-4.61)	-23.90	-126.95	
$methyl_ethyl_ether$	-0.78(-2.10)	-19.88	22.43	
methyl_ethyl_sulfide	-0.04(-1.50)	-19.31	172.16	
$methyl_formate$	-4.07(-2.78)	-18.29	-67.18	
methyl_hexanoate	-3.60(-2.49)	-30.87	-126.71	
$methyl_isopropyl_ether$	-0.59(-2.01)	-21.37	30.21	
$methyl_methane sulfonate$	-9.01(-4.87)	-26.53	-451.57	
$methyl_octanoate$	-3.31(-2.04)	-34.83	-71.36	
$methyl_p_methoxybenzoate$	-6.73(-5.33)	-31.92	-207.06	
$methyl_p_nitrobenzoate$	-5.49(-6.88)	-29.54	-35.28	
$methyl_pentanoate$	-3.79(-2.56)	-29.32	-204.79	
methyl_propanoate	-4.06(-2.93)	-25.10	-233.78	
$methyl_propyl_ether$	-0.77(-1.66)	-22.38	0.53	
$methyl_t_butyl_ether$	-0.38(-2.21)	-22.55	53.54	
$methyl_tert_butyl_ether$	-0.38(-2.21)	-22.55	53.39	
$methyl_trifluoroacetate$	-2.64(-1.10)	-20.96	120.02	
$methyl_trimethylacetate$	-3.15(-2.40)	-27.55	-154.69	
methylamine	-5.02(-4.55)	-16.80	-171.59	
methylcyclohexane	2.35(1.70)	-21.94	270.38	
methylcyclopentane	2.28(1.59)	-20.56	257.17	
morpholine	-5.20(-7.17)	-23.37	-235.89	
N_acetylpyrrolidine	-6.74(-9.80)	-30.84	-573.75	

n_butane	2.25(2.07)	-18.67	239.45	
n_butanethiol	-1.21(-0.99)	-20.57	222.32	
$n_butyl_acetate$	-3.79(-2.64)	-29.37	-148.75	
n_{-} butylacetamide	-9.73(-9.31)	-31.48	-412.56	
n_{-} butylamine	-4.31(-4.24)	-23.95	-160.52	
$n_butylbenzene$	-0.21(-0.40)	-27.69	220.49	
n_decane	2.63(3.16)	-31.16	358.88	
n_{-} heptane	2.44(2.67)	-24.91	299.31	
n_{-} heptylamine	-3.83(-3.79)	-29.50	-2.80	
n_hexane	2.38(2.48)	-22.81	278.48	
$n_{\text{hexyl_acetate}}$	-3.57(-2.26)	-33.29	-81.31	
n_{-} hexylamine	-3.86(-3.95)	-27.28	-46.53	
n_{-} hexylbenzene	-0.08(-0.04)	-31.83	259.72	
$N_{methyl}N_{222}$ trifluoroethyl_aniline	-4.90(-1.92)	-28.00	156.62	
N_{-} methylacetamide	-8.68(-10.00)	-25.90	-477.14	
N_{-} methylaniline	-5.38(<i>-4.69</i>)	-24.12	107.63	
N_{-} methylmorpholine	-3.66(- <i>6.32</i>)	-26.35	-332.36	
N_{-} methylpiperazine	-5.55(-7.77)	-28.67	-536.57	
N_{-} methylpiperidine	-1.28(-3.88)	-25.71	-213.10	
n _nonane	2.57(3.13)	-29.06	338.15	
n_octane	2.51(2.88)	-26.98	318.70	
n_{-} octylamine	-4.05(-3.65)	-32.07	-47.17	
n_{-} pentane	2.31(2.32)	-20.73	259.49	
$n_{pentyl_acetate}$	-3.79(-2.51)	-31.61	-146.09	
$n_pentyl_propanoate$	-3.38(-2.11)	-34.09	-166.11	
n_{-} pentylamine	-4.48(-4.09)	-26.69	-219.31	
n_{-} pentylbenzene	-0.14(-0.23)	-29.81	241.23	
n_{-} pentylcyclopentane	2.53(2.55)	-28.46	332.42	
n_{-} propanethiol	-0.88(-1.06)	-16.67	1859.04	
n_{propyl}	-3.72(-2.79)	-27.14	-152.61	
$n_propyl_butyrate$	-3.11(-2.28)	-31.46	-125.91	
$n_{propyl_formate}$	-4.20(-2.48)	-23.70	-89.29	
n_propyl_propanoate	-3.46(-2.44)	-29.74	-183.94	
$n_{propylamine}$	-4.13(-4.39)	-21.34	-115.49	
$n_{propylbenzene}$	-0.23(-0.53)	-25.65	201.12	
$n_{propylcyclopentane$	2.40(2.13)	-24.34	292.99	
naphthalene	-2.27(-2.40)	-24.46	150.35	
nitrobenzene	-1.98(-4.12)	-21.46	200.22	
nitroethane	-0.85(-3.71)	-17.61	168.93	
nitromethane	-1.18(-4.02)	-15.20	159.58	
$NN_{dimethyl_p_methylbenzamide}$	-7.89(-11.01)	-35.76	-451.94	
NN_dimethyl_p_nitrobenzamide	-8.84(-9.76)	-35.29	-377.34	
NN_dimethylaniline	-3.27(-11.95)	-26.30	16.89	
NN_dimethylbenzamide	-8.20(-3.45)	-34.51	-555.70	
NN_dimethylformamide	-6.53(-7.81)	-24.17	-388.31	
non_1_ene	$1.99(2.06)^{'}$	-28.63	318.28	
nonan_1_ol	-4.56(-3.88)	-33.87	122.18	
nonan_2_one	-2.94(-2.49)	-33.54	-61.42	
	` ' /	ļ		

nonan_5_one	-2.56(-2.64)	-33.79	-84.91
nonanal	-3.25(-2.07)	-32.93	-2.65
o_cresol	-5.78(-5.87)	-22.58	194.64
o_{-} toluidine	-5.68(-5.53)	-23.31	141.02
o_xylene	-0.29(-0.90)	-23.03	182.01
oct_1_ene	1.93(1.92)	-26.48	299.27
oct_1_yne	1.30(0.71)	-26.04	285.43
octan_1_ol	-5.21(-4.09)	-32.46	132.96
$octan_2$ _one	-3.02(-2.88)	-31.47	-79.84
octanal	-3.40(-2.29)	-30.98	-38.78
p_cresol	-6.27(-6.13)	-23.03	178.92
p_dibromobenzene	0.01(-2.30)	-22.07	261.95
p_{-} toluidine	-6.28(-5.57)	-23.59	170.69
p_xylene	-0.26(-0.80)	-23.67	186.44
pent_1_ene	1.73(1.68)	-20.25	238.89
pent_1_yne	1.10(0.01)	-19.84	226.25
penta_14_diene	1.01(0.93)	-19.79	214.13
pentachloroethane	0.85(-1.39)	-20.52	279.26
pentan_1_ol	-3.89(-4.57)	-24.09	53.27
pentan_2_ol	-3.76(-4.39)	-23.98	78.55
pentan_2_one	-3.29(-3.52)	-25.47	-163.37
pentan_3_ol	-3.35(-4.35)	-24.22	35.80
pentan_3_one	-2.91(-3.41)	-25.31	-143.85
pentanal	-3.47(-3.03)	-24.63	-88.53
pentanenitrile	-1.67(-3.52)	-22.43	139.63
pentanoic_acid	-8.95(-6.16)	-27.16	-62.40
phenanthrene	-3.60(-3.88)	-28.83	170.17
phenol	-6.51(-6.61)	-20.98	157.77
phenyl_formate	-6.06(-3.82)	-25.24	-38.25
phenyl_methyl_sulfide	-1.25(-2.73)	-23.32	194.57
phenyl_trifluoroethyl_ether	-4.81(-1.29)	-26.28	236.32
piperazine	-6.72(-7.40)	-24.53	-291.42
piperidine	-2.42(-5.11)	-22.88	-54.99
prop_2_en_1_ol	-4.55(-5.03)	-19.15	41.35
propan_1_ol	-4.24(-4.85)	-19.63	18.10
propan_2_ol	-3.92(-4.74)	-20.42	-13.86
propane	2.18(1.96)	-16.60	219.71
propanenitrile	-1.91(-3.84)	-18.28	102.19
propanoic_acid	-9.75(-6.46)	-24.53	-131.96
propanone	-3.67(-3.80)	-20.89	-158.30
propene	1.53(1.32)	-16.02	195.54
propionaldehyde	-3.63(-3.43)	-20.30	-107.23
propyne	0.82(-0.48)	-15.46	183.20
pyrene	-4.36(-4.52)	-29.98	172.28
pyridine	-3.24(-4.69)	-21.26	-84.28
pyrrole	-4.40(-4.78)	-17.95	126.06
pyrrolidine	-3.19(-5.48)	-22.53	-204.41
quinoline	-3.93(-5.72)	-25.93	-44.46
	·	'	

sec_butylbenzene	-0.08(-0.45)	-26.64	216.12
styrene	-1.14(-1.24)	-22.90	165.57
teflurane	-0.49(0.50)	-17.92	264.28
tert_butylbenzene	-0.21(-0.44)	-26.15	200.65
tetrachloroethene	2.20(0.10)	-19.08	243.43
tetrachloromethane	2.07(0.08)	-17.80	230.53
tetrafluoromethane	1.42(3.12)	-14.53	201.16
tetrahydrofuran	-1.35(-3.47)	-20.44	-26.04
tetrahydropyran	-0.65(-3.12)	-21.45	43.55
thiophene	-0.29(-1.42)	-17.72	175.18
thiophenol	-2.41(-2.55)	-20.63	225.56
toluene	-0.46(-0.89)	-21.63	163.72
trans_14_dimethylcyclohexane	2.40(2.11)	-23.60	286.79
triacetyl_glycerol	-15.31(-8.84)	-36.02	-386.60
tribromomethane	1.19(-2.13)	-17.38	243.26
trichloroethene	1.13(-0.44)	-17.72	241.64
trichloromethane	0.38(-1.08)	-16.18	244.25
triethyl_phosphate	-10.74(-7.54)	-43.55	-1041.02
triethylamine	-0.44(-3.22)	-27.11	-131.58
$trimethoxy_methane$	-4.38(-4.42)	-25.24	-124.92
trimethoxymethylbenzene	-5.31(-4.04)	-34.02	-286.35
trimethyl_phosphate	-11.69(-8.70)	-34.87	-936.98
trimethylamine	-1.81(-3.20)	-22.18	-259.84
$undecan_2one$	-3.05(-2.15)	-38.23	-65.23
$Z_12_dichloroethene$	-0.02(-1.17)	-16.31	221.63
$Z_pent_2_ene$	1.70(1.31)	-19.90	232.26