

Day 45 機器學習

梯度提升機

楊証琨

出題教練

知識地圖機器學習-模型選擇-樹狀模型-梯度提升機(Gradient Boosting Machine)

機器學習概論 Introduction of Machine Learning

監督式學習 Supervised Learning

前處理 Processing 探索式 數據分析 Exploratory Data Analysis 特徵 工程 Feature Engineering 模型 選擇 Model selection

參數調整 Fine-tuning

集成 Ensemble 非監督式學習 Unsupervised Learning

> 分群 Clustering

降維 Dimension Reduction

模型選擇 Model selection

概論

驗證基礎

預測類型

評估指標

基礎模型 Basic Model

線性回歸 Linear Regression

邏輯斯回歸 Logistic Regression

套索算法 LASSO

嶺回歸 Ridge Regression

樹狀模型 Tree based Model

決策樹 Decision Tree

隨機森林 Logistic Regression

梯度提升機 Gradient Boosting Machine

本日知識點目標

- 了解梯度提升機的基本原理與架構
- 梯度提升機與決策樹/隨機森林的差異
- 梯度提升機的梯度從何而來,又是怎麼計算的

梯度提升機 (Gradient Boosting Machine)

- 隨機森林使用的集成方法稱為 Bagging (Bootstrap aggregating),用
 抽樣的資料與 features 生成每一棵樹,最後再取平均
- Boosting 則是另一種集成方法,希望能夠由後面生成的樹,來修正前面樹學不好的地方
- 更怎麼修正前面學錯的地方呢?計算 Gradient!

梯度提升機 (Gradient Boosting Machine)

每次生成樹都是要修正前面樹預測的錯誤,並乘上 learning rate 讓後面的樹能有更多學習的空間

y = score1 * learning_rate + score2 * learning_rate ++ scoreN * learning_rate

Bagging 與 Boosting 的差別

- Bagging 是透過抽樣 (sampling) 的方式來生成每一棵樹,樹與樹之間是獨立生成的
- Boosting 是透過序列 (additive) 的方式來生成每一顆樹,每棵樹都會與前

充電時間 Brain Charge

請跳出PDF至官網Sample Code&作業 進行今日作業

