### **D Kommunikation & Rechnernetze**

- D1 Einführung und Motivation
- D2 Technischer Überblick
- D3 Lokale Rechnernetze
- D4 Einige Gemeinsamkeiten von Betriebssystemen und Rechnernetzen: Architekturmodelle und Diensthierarchien

D2 aus: Coulouris/Dollimore/Kindberg: "Distributed Systems - Concepts and Design", 5. Ausg., Pearson, 2012



## **Communication Systems:** Network types

|                  | Range       | Bandwidth (Mbps) | Latency (ms) |
|------------------|-------------|------------------|--------------|
| LAN              | 1-2 kms     | 10-1000          | 1-10         |
| WAN              | worldwide   | 0.010-600        | 100-500      |
| MAN              | 2-50 kms    | 1-150            | 10           |
| Wireless LAN     | 0.15-1.5 km | 2-11             | 5-20         |
| Wireless WAN     | worldwide   | 0.010-2          | 100-500      |
| Internet         | worldwide   | 0.05-600         | 100-500      |
| WPAN (Bluetooth) | ) 10-30m    | 0.5-2            | 5-20         |
| WiFi             | 0.15-1.5 km | 11-108           | 5-20         |
| WiMAX            | 5-50 km     | 1.5-20           | 5-20         |
| WWAN/GSM3        | G worldwide | 348-14.4         | 100-500      |
| LTE              | worldwide   | 100-300          | • • •        |



(Stand: ab ca. 2000+)

# Principles of Communication Networks (1): Conceptual layering of protocol software





## **Example: Protocol Layers in the ISO Open Systems Interconnection (ISO/OSI) Model Example**





## **ISO/OSI Protocol Layer Summary**

| Layer        | Description                                                                                                                                                                                                                                                                                                    | Examples                                   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Application  | Protocols that are designed to meet the communication requirements of specific applications, often defining the interface to a service.                                                                                                                                                                        | HTTP, FTP, SMTP,<br>CORBA IIOP             |
| Presentation | Protocols at this level transmit data in a network representation that is independent of the representations used in individual computers, which may differ. Encryption is also performed in this layer, if required.                                                                                          | Secure Sockets (SSL),CORBA Data Rep.       |
| Session      | At this level reliability and adaptation are performed, such as detection of failures and automatic recovery.                                                                                                                                                                                                  |                                            |
| Transport    | This is the lowest level at which messages (rather than packets) are handled. Messages are addressed to communication ports attached to processes, Protocols in this layer may be connection-oriented or connectionless.                                                                                       | TCP, UDP                                   |
| Network      | Transfers data packets between computers in a specific network. In a WAN or an internetwork this involves the generation of a route passing through routers. In a single LAN no routing is required.                                                                                                           | IP, ATM virtual circuits                   |
| Data link    | Responsible for transmission of packets between nodes that are directly connected by a physical link. In a WAN transmission is between pairs of routers or between routers and hosts. In a LAN it is between any pair of hosts.                                                                                | Ethernet MAC,<br>ATM cell transfer,<br>PPP |
| Physical     | The circuits and hardware that drive the network. It transmits sequences of binary data by analogue signalling, using amplitude or frequency modulation of electrical signals (on cable circuits), light signals (on fibre optic circuits) or other electromagnetic signals (on radio and microwave circuits). | Ethernet base- band signalling, ISDN       |



## Layering of Protocol Data Units – Encapsulation as it is applied in layered protocols





## Principles of Communication Networks (2): *Addressing* – Internet address structure, showing field sizes in bits





### **Decimal representation of Internet addresses**





# Principles of Communication Networks (3): Routing in a wide area network





### Routing tables for the network in previous foil

| Routings from A |       |      |  |
|-----------------|-------|------|--|
| To              | Link  | Cost |  |
| A               | local | 0    |  |
| В               | 1     | 1    |  |
| $\mathbf{C}$    | 1     | 2    |  |
| D               | 3     | 1    |  |
| _ E             | 1     | 2    |  |

| Routings from B |       |      |  |
|-----------------|-------|------|--|
| То              | Link  | Cost |  |
| A               | 1     | 1    |  |
| В               | local | 0    |  |
| C               | 2     | 1    |  |
| D               | 1     | 2    |  |
| E               | 4     | 1    |  |

| Routings from C |       |      |  |  |
|-----------------|-------|------|--|--|
| То              | Link  | Cost |  |  |
| A               | 2     | 2    |  |  |
| В               | 2     | 1    |  |  |
| $\mathbf{C}$    | local | 0    |  |  |
| D               | 5     | 2    |  |  |
| E               | 5     | 1    |  |  |

| Routings from D |       |      |  |  |
|-----------------|-------|------|--|--|
| То              | Link  | Cost |  |  |
| A               | 3     | 1    |  |  |
| В               | 3     | 2    |  |  |
| C               | 6     | 2    |  |  |
| D               | local | 0    |  |  |
| E               | 6     | 1    |  |  |

| Routings from E |       |      |  |  |
|-----------------|-------|------|--|--|
| То              | Link  | Cost |  |  |
| A               | 4     | 2    |  |  |
| В               | 4     | 1    |  |  |
| C               | 5     | 1    |  |  |
| D               | 6     | 1    |  |  |
| Е               | local | 0    |  |  |



### Example routing algorithm (Router Info Protocol, RIP)

Send: Each t seconds or when local table Tl changes, send Tl on each non-faulty outgoing link.

```
Receive: Whenever a routing table Tr is received on link n:
for all rows Rr in Tr {
     if (Rr.link \neq n) {
          Rr.cost = Rr.cost + 1;
          Rr.link = n;
          if (Rr.destination is not in Tl) add Rr to Tl;
           // add new destination to Tl
          else for all rows Rl in Tl {
               if (Rr.destination = Rl.destination) and
                         (Rr.cost < Rl.cost \text{ or } Rl.link = n)) Rl = Rr;
               // Rr.cost < Rl.cost : remote node has better route
               // Rl.link = n: remote node is more authoritative
```



# Principles of Communication Networks (4): Simplified Internetwork Layers





### **Example: TCP/IP Protocol Layers**





### The programmer's conceptual view of a TCP/IP Internet





### IP packet layout





## Message encapsulation in data packets transmitted via TCP over an Ethernet





## **Example: Simplified View of a Computer Science Department Network**





# Principles of Communication Networks (5): Extension A: *IPv6 – Header Layout*

| Version (4 bits)                  | Priority (4 bits) | Flow label (24 bits) |                      |                    |
|-----------------------------------|-------------------|----------------------|----------------------|--------------------|
| Payload len                       | gth (16 bits)     |                      | Next header (8 bits) | Hop limit (8 bits) |
| Source address<br>(128 bits)      |                   |                      |                      |                    |
| Destination address<br>(128 bits) |                   |                      |                      |                    |



### **Tunnelling for IPv6 migration**



IPv4: seit 1984 – Adressengpass bei 2<sup>32</sup> (ca. 4,3 Mrd) Adressen, ab 2011 akut

IPv6: 10 Jahre Einführung – max. 2<sup>128</sup> Adressen (ca.3,4\*10<sup>38</sup>)



### **Extension B: Wireless LAN configuration**





### **MobileIP** routing mechanism





### Extension C: Basic Security – Firewall configurations

#### Firewall goals:

- service control
- behaviour control
- user control

A **bastion host** is a special purpose computer on a network specifically designed and configured to withstand attacks.

The computer generally hosts a single application, for example a proxy server, and all other services are removed or limited to reduce the threat to the computer. It is hardened in this manner primarily due to its location and purpose, which is either on the outside of the firewall or in the <a href="DMZ">DMZ</a> and usually involves access from untrusted networks or computers.





# **Extension D: Making Communication** *faster***: ATM protocol layers**





## **ATM** cell layout





### Switching virtual paths in an ATM network





### Standardisation: IEEE 802.x local network standards

|   | IEEE No. | Name      | Title                               | Reference    |
|---|----------|-----------|-------------------------------------|--------------|
|   | 802.3    | Ethernet  | CSMA/CD Networks (Ethernet)         | [IEEE 1985a] |
|   | 802.4    |           | Token Bus Networks                  | [IEEE 1985b] |
|   | 802.5    |           | Token Ring Networks                 | [IEEE 1985c] |
|   | 802.6    |           | Metropolitan Area Networks          | [IEEE 1994]  |
|   | 802.11   | WiFi      | Wireless Local Area Networks        | [IEEE 1999]  |
|   | 802.15.1 | Bluetooth | Wireless Personal Area Networks     | [IEEE 2002]  |
|   | 802.15.4 | ZigBee    | Wireless Sensor Networks            | [IEEE 2003]  |
| _ | 802.16   | WiMAX     | Wireless Metropolitan Area Networks | [IEEE 2004a] |



## **Ethernet ranges and speeds**

|                       | 10Base5 | 10BaseT | 100BaseT | 1000BaseT |
|-----------------------|---------|---------|----------|-----------|
| Data rate:            | 10 Mbps | 10 Mbps | 100 Mbps | 1000 Mbps |
| Max. segment lengths: |         |         |          |           |
| Twisted wire (UTP)    | 100 m   | 100 m   | 100 m    | 25 m      |
| Coaxial cable (STP)   | 500 m   | 500 m   | 500 m    | 25 m      |
| Multi-mode fibre      | 2000 m  | 2000 m  | 500 m    | 500 m     |
| Mono-mode fibre       | 25000 m | 25000 m | 20000 m  | 2000 m    |



### **Bluetooth frame structure**



bits: 3 1 1 1 4 8

| Destination | <br>  Flow | Ack   | Seq | Type | Header checksum   |
|-------------|------------|-------|-----|------|-------------------|
| Destination | 110 **     | 1 IOK |     | 1990 | Treader encekbann |

SCO packets (e.g. for voice data) have a 240-bit payload containing 80 bits of data triplicated, filling exactly one timeslot.

