Lecture 8 Least Squares

Note by Samion Suwito on 2/13/25

Last Time

$$A = U_r \Sigma_r V_r^ op$$
 , $A^+ = V_r \Sigma_r^{-1} U_r^ op$

Remark

$$A^+A=V_rV_r^ op=$$
 Projection onto $\mathcal{N}(A)^ot$ $AA^ op=U_rU_r^ op=$ Projection onto $\mathcal{R}(A)$

(identity minus the above is the projection onto the subspace perp)

Lecture 7 Low Rank Approximation and Pseudo inverse > Examples

Connect to Least Squares

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ find x^* of minimum l^2 norm s.t. It minimises:

$$\min_x \|Ax-b\|_2^2$$

Important Idea: If A doesn't have full column rank then there is a non trivial null space meaning that the solutions won't be unique as you can add a vector from the null space to x.

$$egin{aligned} \min_x \|Ax - b\|_2^2 &= \min_{y \in \mathcal{R}(A)} \|y - b\|_2^2 \ &= \|\pi_{\mathcal{R}(\mathcal{A})}(b) - b\|_2^2 \ &= \|AA^+b - b\|_2^2 \end{aligned}$$

Projection is AA^+ shown above.

Solutions to the problem are those x such that $Ax = AA^+b$.

 $x=x_0+x_n$ where $x_0=\pi_{\mathcal{N}(A)^\perp}(x)$ and $x_N=\pi_{\mathcal{N}(A)}(x)$ Then we see did that we can vary x by changing its component on the null space x_n but we claim that there is a unique x_N

$$A^+Ax=A^+AA^+b$$
 $A^+Ax=A^+Ax_0+A^+Ax_N$ so the last part = 0 $A^+Ax_0=\pi_{\mathcal{N}(A)^\perp}(x_0)=x_0$ therefore unique \Longrightarrow If $Ax=AA^+b$, then $x_0=A^+b$

$$\min_{x} \|Ax - b\|_2^2$$

have form: $x^* = A^+b + x_N$ where $x_N \in \mathcal{N}(A)$

How to find solution of minimum norm:

Pythagorean Theorem: $\|A^+b+x_N\|_{2^2}=\|A^+b\|_2^2+\|x_N\|_2^2$ $\|A^+b\|_2^2+\|x_N\|_2^2\geq \|A^+b\|_2^2$ w/equality $\iff x_N=0$ Means min norm solution is $x^*=A^+b$

Variations on Least Square:

Linearly Constrained LS

$$\min_{x} ||Ax - y||^2 \text{ s.t. } Cx = d$$

Represents flow in = flow out in a network essentially a real life constraint.

If problem is feasible, then consider: $x_0=C^+d$, is a solution to Cx=d we can then say that all solutions to Cx=d is of form $x=x_0+Nz$ where columns of N form basis for the $\mathcal{N}(C)$.

This changes the problem to

$$\min_z \|A(x_0 + Nz) - y\|_2^2 = \min_z \|ANz - (y - AC^+d)\|_2^2$$

We can just rewrite AN to A^\prime and $y-AC^+d$ to be some vector b and look at it like a LS problem therefore the min norm solution is

$$z^* = (AN)^+(y - AC^+d)$$

With all solutions including any additional vector in $\mathcal{N}(AN)$

Least Squares when Different Hilbert Norm

Least squares when $\|x\|^2=\langle x,x
angle$ for some inner product $\langle\cdot,\cdot
angle$ on \mathbb{R}^m

Recall: There exists positive definite W s.t. $\|y\|^2=y^\top Wy$ and that p.d. matrices can be split into $(W^{1/2})^\top (W^{1/2})$ where $W^{1/2}$ is also p.d.

$$\begin{aligned} \min_{x} \|Ax - b\|^{2} &= (Ax - b)^{\top} W(Ax - b) \\ &= (Ax - b)^{\top} (W^{1/2})^{\top} (W^{1/2}) (Ax - b) \\ &= (W^{1/2} Ax - W^{1/2} b)^{\top} (W^{1/2} Ax - W^{1/2} b) \\ &= \|W^{1/2} Ax - W^{1/2} b\|_{2}^{2} \\ &\implies x^{*} = (W^{1/2} A)^{+} W^{1/2} b + \mathcal{N}(A) \end{aligned}$$

Weighted Least Squares

$$\min_x \sum_i w_i |a_i^ op x - b_i|^2, \; w_i > 0$$

The above was a special case of previous where $W = \operatorname{diag}(w_1, \dots, w_m)$. The weights can't be negative as then it's not a convex problem and the minimum maybe $-\infty$

ℓ^2 regularised LS

From Lecture 1

$$\min_{x} \|Ax - b\|_2^2 + \lambda^2 \|x - x_0\|_2^2 \quad \lambda \geq 0$$

It's called regularised as the last term is a regularised. As λ increases in encourages values that are closer to x_0 .

We can rewrite it as

$$\min_x \|egin{bmatrix} A \ \lambda I \end{bmatrix} x - egin{bmatrix} b \ \lambda x_0 \end{bmatrix}\|_2^2$$

Since ℓ^2 norm is separable

Question: What about e.g., ℓ^1 regularisation (LASSO)

Useful as it encourages sparse solutions (a lot of 0s) useful compressed sensing. As the cost

function means that it wants to be closer to 0 as let's say we put it at 0.1 then we get 0.1 for ℓ^1 whereas for ℓ^2 we would get 0.01 therefore encouraging 0 more for ℓ^1 .

You cannot transform this into a least squares problem

Examples

"Time Series Analysis" of Autoregressive model.

$$y(k) = w_1 y(k-1) + w_2 y(k-2) \dots w_n y(k-n) + e(k)$$

where e(k) is an error term

Suppose, we know $(y(k-1)\dots y(k-n))^{\top}$ and can write it as vector $\phi(k)$ and weights $(w_1\dots w_n)=w^{\top}$ then best linear estimate is $w^{\top}\phi(k)\approx y(k)\implies$ estimation error $e(k)=y(k)-w^{\top}\phi(k)$.

Suppose we don't know model w, but have data $\phi(1),\ldots,\phi(N)$ How to estimate W?

For next lecture.