114-1 (Fall 2025) Semester

Reinforcement Learning

Assignment #1

TA: Chen-Yu Lin (林辰宇)

Department of Electrical Engineering National Taiwan University

Outline

- Tasks
 - Iterative policy evaluation
 - Policy iteration
 - Value iteration
 - Async dynamic programming
- Environment
- Code structure
- Report
- Grading
- Submission
- Policy
- Contact
- Appendix

Tasks

Task 1 - Iterative Policy Evaluation

- Problem
 - Evaluate a given non-deterministic policy (probability distribution)
- Solution
 - Iterative application of Bellman expectation backup

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+ Loop:
```

```
\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S} \text{:} \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \quad \text{Synchronous update} \\ \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ \text{until } \Delta < \theta \end{array}
```

[source]

Task 2 - Policy Iteration

- Problem
 - Find the optimal deterministic policy
- Solution
 - Policy evaluation: iterative policy evaluation
 - Policy improvement: greedy policy improvement
 - Eventually converges to optimal policy

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathbb{S}$

2. Policy Evaluation

Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S} \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) \big[r + \gamma V(s') \big] \quad \text{Synchronous update} \\ \Delta \leftarrow \max(\Delta,|v-V(s)|) \end{array}$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement $\begin{array}{l} policy\text{-}stable \leftarrow true \\ \text{For each } s \in \mathbb{S}: \\ old\text{-}action \leftarrow \pi(s) \\ \pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \text{If } old\text{-}action \neq \pi(s), \text{ then } policy\text{-}stable \leftarrow false \\ \text{If } policy\text{-}stable, \text{ then stop and return } V \approx v_* \text{ and } \pi \approx \pi_*; \text{ else go to } 2 \\ \end{array}$

[source]

Task 3 - Value Iteration

- Problem
 - Find the optimal deterministic policy
- Solution
 - Iterative application of Bellman optimality backup

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

```
Loop:
```

```
\begin{array}{l} \mid \Delta \leftarrow 0 \\ \mid \text{Loop for each } s \in \mathcal{S} \text{:} \\ \mid \quad v \leftarrow V(s) \\ \mid \quad V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r \, | \, s,a) \big[ r + \gamma V(s') \big] \text{ Synchronous update} \\ \mid \quad \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ \text{until } \Delta < \theta \end{array}
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

[source]

Task 4 - Async Dynamic Programming

Problem

- Find the optimal deterministic policy with better efficiency
- Less environment interaction

Solutions

- In-place dynamic programming
- Prioritized sweeping
- Real-time dynamic programming

Environment

Grid World

State space

- Nonterminal states: Empty (White)
- Terminal states: Goal (Green), Trap (Red)
- 0-indexed

Action space

- Up, down, left, right
- Hitting the wall will remain at the same state

Reward

- Step reward given at every transition
- Goal reward given after reaching goal state
- Trap reward given after reaching trap state

Done Flag

- Separator for episodes
- Return true from step when doing any action at terminal states
- Need to modify the Bellman equation
- Most gym-like environments also use this implementation

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \sum_{s' \in \mathcal{S}, r \in \mathcal{R}} p(s', r|s, a)(r + \gamma v_{\pi}(s'))$$

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(a|s) \sum_{s' \in \mathcal{S}, r \in \mathcal{R}} p(s', r|s, a)(r + \gamma v_{\pi}(s')(1 - Done))$$

- 10 -

Assignment #1

Code Structure

requirement.txt

• Conda

```
conda create -n rl_assignment_1 python=3.11
conda activate rl_assignment_1
pip install -r requirement.txt
```

venv

```
python -m venv venv
source venv/bin/activate
pip install -r requirement.txt
```


DP_solver.py

class **DynamicProgramming**

- Parent class for DP algorithms
- TODO: get_q_value()

class IterativePolicyEvaluation

TODO: get_state_value(), evaluate(), run()

class **PolicyIteration**

TODO: get_state_value(), policy_evaluation(), policy_improvement(), run()

class ValueIteration

TODO: get_state_value(), policy_evaluation(), policy_improvement(), run()

class AsyncDynamicProgramming

• TODO: run()

Feel free to add any function if needed, but you must include at least the run() function so that we can grade your code.

- 13 -

gridworld.py

- Methods:
 - get_action_space(): Get the dimension of action space
 - get_state_space(): Get the dimension of the state space
 - step(): Interact with the environment
 - reset(): Reset the environment
 - visualize(): Draw the maze with policy and values
 - run_policy(): Run the policy from given start state. Output the state history
- Step count:
 - Increment every time when step() method is called
 - Private member. Use get_step_count() to access.
- Step reward might not be constant at every state transition at private test cases
 - You need to use step() to access the reward function
- Don't try to modify or override any private member (double underscore prefix)
- You do not call reset() by yourself. We may rename the function when grading.

main.py

- Methods:
 - run_policy_evaluation()
 - run_policy_iteration()
 - run_value_iteration()
 - run_async_dynamic_programming()
- These methods will call your written functions in DP_solver.py
- The output will be an image and the step counts for the algorithm

- 15 -

Report

- Q1. What methods have you tried for async DP? Compare their performance. (12%)
 - 4% per method tried with reasonable result and comparison
- Q2. What is your final method? How is it better than other methods you've tried? (8%)
 - 4% for reasonable explanation on how it's better
 - 4% for a novel method that outperforms the three methods mentioned in class (You need to point out how your method is different from them)
- LaTeX PDF format. Handwriting is forbidden.
 - Overleaf template
 - Write clearly and concisely in a few sentences
 - Practice using LaTeX for the final report

Overleaf

- Online LaTeX editor
- LaTeX
 - Good for math equations, tables and indexes
 - Widely used in paper writing and math writing
- Traditional Chinese will cause some compile problems
- Official guide

Grading

Grading

- Iterative policy evaluation (25%)
 - Test cases (5% x 5 test cases)
- Policy iteration (20%)
 - Test cases (4% x 5 test cases)
- Value iteration (25%)
 - Test cases (5% x 5 test cases)
- Async dynamic programming (30%)
 - Better than your sync DP (5% x 2 test cases) (Both policy iteration and value iteration)
 - Note 1: Your method must use fewer steps than your synchronous DP, and the policy must be optimal.
 - Note 2: You only need to include the best-performing version of your method in the code you submit.
 - Report (20%)

Criteria

- Test cases:
 - Call run() and check the final output
 - Task 1: Check the values after evaluation
 - Task 2, 3, 4: Only check if the output policy is optimal
 - Run time limit 3 minute for each case to avoid infinite loops
 - Up to 1500 states in private test cases
 - Only task 4 considers step count
- Sample solutions are provided for reference
 - Optimal policy might not be unique
 - In the sample solutions, the policy is derived by following the traversal order of the action index.

- 21 -

Submission

- 22 -

Submission

- Submit on NTU COOL with following zip file structure
 - Get rid of pycache, DS_Store, __MACOSX, etc.
 - Student ID with lower case
 - 10-point deduction for wrong format (See appendix for common mistakes)

- Deadline: 2025/10/01 Wed 11:59 PM
- No late submission is allowed

Policy

Policy

Package

- You can use any Python standard library (e.g., heap, queue...)
- However, system level packages are prohibited (e.g., sys, os, multiprocess, subprocess, shutil, pathlib, ...) for security concern

Importing any one of them will result in 0 points for the whole assignment (even if you didn't call it)

Collaboration

- Discussions are encouraged
- Write your own codes

Plagiarism & cheating

- All assignment submissions will be subject to duplication checking (e.g., MOSS)
- Any student who cheats will receive an F grade in this course.

Policy

Policy on Al-Generated Code

- Use of AI tools is permitted, but you are responsible for any code they produce
- Code that match others will be considered plagiarism, regardless of source

Grade appeal

• Assignment grades are considered finalized two weeks after release

Contact

- 27 -

Questions?

- General questions
 - Use channel #assignment in slack as first option
 - Reply in thread to avoid spamming other people
- Personal questions
 - DM me on Slack: **TA 林辰宇 D14942012**
- To ensure everyone has equal access to the same clarifications, only questions before

2025/09/30 Tue 11:59 PM will be answered

Appendix

Appendix: Common Submission Mistakes

Several mistakes that may lead to score deductions, including but not limited to:

- Forgetting to remove your debugging codes and system level packages
 - Example: pdb.set_trace() → Get 0 points for all test cases
 - Importing system level packages (os, sys…) → Get 0 points for the whole assignment
- Did not check your submission files thoroughly:
 - Incorrect file names: report.pdf.pdf
 - Redundant files: .DS_Store, __MACOSX
 - Missing files
 - Format mistakes will cost 10 points from the assignment

Appendix: Zip

- We recommend zipping using zip -r {your_id}.zip {your_id} -x '**/.*'
- Check your zip file with

unzip -l archive.zip

unzip -l b06901150.zip Archive: b06901150.zip Length Date Time Name b06901150/ 0 09-09-2025 21:19 09-26-2024 03:58 b06901150/DP_solver.py 15569 09-26-2024 04:26 b06901150/report.pdf 53300 3 files 68869 **Correct**

	1.00004450		
<pre>> unzip -l</pre>	. <u>b06901150.</u> z	<u>:1p</u>	/
Archive: b06901150.zip			
Length	Date	Time	Name
0	09-09-2025	21:19	b06901150/
220	09-09-2025	21:19	MACOSX/b06901150
6148	09-09-2025	21:19	b06901150/.DS_Store
120	09-09-2025	21:19	MACOSX/b06901150/DS_Store
15569	09-26-2024	03:58	b06901150/DP_solver.py
176	09-26-2024	03:58	MACOSX/b06901150/DP_solver.py
53300	09-26-2024	04:26	b06901150/report.pdf
75533			7 files

(Note: There will be an extra __MACOSX folder if you are zipping the files using macOS's UI)

Incorrect