Exp. No. 03

Name of Experiment: Verification of KVL for dc circuits.

Theory:

Kirchhoff's law states that the algebraic sum of all voltages around a closed path is equal to zero. Mathematically it states that, $\sum V_m = 0$ in a loop.

It can be said in another way, the applied voltage of a series circuit equals the sum of the voltage drop across the series elements.

$$\sum V_{rise} = \sum V_{drop}$$

Equipments:

- 1. Resistance. (3 pieces)
- 2. Connecting wires.
- 3. DC Voltage source.

- 4. Ammeter.
- 5. Project board
- 6. Multi-meter.

Circuit diagram:

Figure: 1

Procedure:

- (1) According to the circuit diagram that shown in figure: 1, connect the elements properly.
- (2) Measure the voltage drop V_1 , V_2 , V_3 across R_1 , R_2 , R_3 respectively.
- (3) Complete the calculation and find the percentage of error.

Experimental Data:

SL No.	$\begin{array}{c} \text{Supply} \\ \text{Voltage} \\ \\ \text{V}_{s}\left(v\right) \end{array}$	Voltage drop across R ₁ , V ₁ (v)	Voltage drop across R ₂ , V ₂ (v)	Voltage drop across R ₃ , V ₃ (v)	Total Voltage drop $V = V_1 + V_2 + V_3$ (v)	Percentage of $error = \\ (V_s - V) / V_s \times 100 \%$
1.						
2.						
3.						
4.						
5.						

Discussion: Write yourself.