Thermodynamik schwarzer Löcher

Tamara Szecsey

Fakultät für Physik

13. Januar 2016

Was ist Informationsentropie?

Die drei Hauptsätze

Verdampfung

Weitere Betrachtung

Informationsentropie

Die Entropie zählt wieviele Mikrozustände eines Systems einen Makrozustand bilden.

Beispiel: Wurf von zwei W6 Würfeln.

Wie viele Ja-Nein-Fragen muss man beantworten, um das Ergebnis zu bekommen? (Im Falle von genau zwei möglichen Ausgängen.) Beispiel: Münzwurf hat die Informationsentropie von 1 Bit.

Der Nullte Hauptsatz der Thermodynamik

Die Hawkingstrahlung

Der Nullte Hauptsatz der Thermodynamik

Entanglement

Classically: objects are in one arrangement or another.

Quantum mechanics allows for a superposition of both possibilities.

Der Nullte Hauptsatz der Thermodynamik

Die Hawkingstrahlung

Nullter Hauptsatz besagt nun, dass genauso viel Temperatur aufgenommen werden muss, wie abgestrahlt wird

⇒ Beschleunigung an der Oberfläche

Der Erste Hauptsatz der Thermodynamik

Der erste Hauptsatz der Thermodynamik besagt Energieerhaltung:

$$\Delta U = \Delta Q + \Delta W$$

Umgeschrieben:

$$\mathrm{d}E = T\mathrm{d}S + \mathrm{d}W$$

Analogie zu schwarzen Löchern mit Hilfe von Kerr-Neumann Metrik und geschickt gewählten Koordinaten

Ergebnis:

$$d(Mc^2) = \frac{\kappa}{8\pi G} dA + \Omega dJ - \Phi dq$$

Der Zweite Hauptsatz der Thermodynamik

${\sf Verdampfung/Evaporation}$

Weitere Betrachtung

Vielen Dank für Eure Aufmerksamkeit!