- Ejercicio 1 (1.25 pto.)

Sean los vectores \vec{v} y $\vec{w} \in \mathbb{R}^3$ tal que el ángulo que forman dichos vectores es $\frac{\pi}{3}$; $||\vec{v}|| = 2$ y \vec{v} es ortogonal a $\vec{v} - \vec{w}$. Entonces $||\vec{w}||$ es:

La respuesta es un número natural.

Respuesta: 4

Resolución

Como \vec{v} es ortogonal a $\vec{v} - \vec{w}$ tenemos que $\vec{v} \cdot (\vec{v} - \vec{w}) = 0$. Como el producto escalar es distributivo respecto de la diferencia tenemos $||\vec{v}||^2 - \vec{v} \cdot \vec{w} = 0$; esto es $4 - 2 \cdot ||\vec{w}|| \cdot \cos(\frac{\pi}{3}) = 0$. Despejando obtenemos el valor de $||\vec{w}||$.

- Ejercicio 2 (1.25 pto.)

Sea el plano $\Pi:5x-y-z=1$ y un punto $P=\left(\frac{1}{4};-1;\frac{1}{2}\right)$. Si R es el punto simétrico de P respecto del plano Π , indicá la única opción que muestra la distancia de P a R.

- A) $\frac{3}{108}$
- B) $\frac{3}{\sqrt{27}}$
- C) $\frac{3}{2\sqrt{27}}$
- D) $-\frac{3}{27}$

Respuesta: C

Resolución

Como los puntos P y R son simétricos respecto del plano dado, entonces, los puntos se encuentran a igual distancia del mismo. Luego, la distancia entre los puntos resultará el doble de la distancia entre P y el plano Π . Recuperando el procedimiento estudiado para hallar la distancia de un punto a un plano, llegaremos a que la distancia entre P y Π es $\frac{3}{4\sqrt{27}}$. Finalmente, la distancia entre P y R es $\frac{3}{2\sqrt{27}}$.

- Ejercicio 3 (1.25 pto.)

En el conjunto $S = \{(1;5;0;4), (1;2;0;3), (0;3;0;k)\}$ para el valor k=1 la dimensión del subespacio S es: Respuesta: 2

Resolución

Vemos que $\{(1;5;0;4) = (1;2;0;3) + (0;3;0;1)\}$ por lo tanto la base tiene dos vectores y en ese caso la dimensión de S es 2.

- Ejercicio 4 (1.25 pto.)

Sea la parábola de ecuación $y^2 - 8x - 2y = -9$. La ecuación de la directriz es:

- A) x = -1
- B) x = 3
- C) x = -3
- D) x = 5

Respuesta: x = -1

Resolución

Para hallar los diversos elementos de la parábola, debemos llevarla a su expresión canónica. Completando cuadrados, llegamos a la ecuación $(y-1)^2=8(x-1)$. Luego el vértice es el punto (1;1) y el valor de p es 4. Luego el valor de p es 2. Luego la ecuación de la directriz es x=1-2, es decir; x=-1.

- Ejercicio 5 (1.25 pto.)

Dadas las matrices:
$$A = \begin{pmatrix} -1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
 y $B = \begin{pmatrix} 0 & 0 & -1 \\ 2 & 0 & -k \\ 0 & -2 & 0 \end{pmatrix}$

Respuesta: $k = \frac{1}{4}$

Resolución

Calcular el determinante de $A^2 - AB$ es lo mismo que calcular el determinante de A(A - B). Por propiedades de los determinantes esto es lo mismo que calcular del producto del determinante de A y el determinante de A-B. El determinante de A es -6. El determinante de A-B es 2k-1. Luego -6(2k-1)=3, decir, $k=\frac{1}{4}$.

- Ejercicio 6 (1.25 pto.)

Sea $T:\mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal que su matriz asociada es:

$$A_T = \left(\begin{array}{rrr} 2 & -7 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{array}\right)$$

La dimensión de la imagen de T es:

- A) 0
- B) 1
- C) 2
- D) 3

Respuesta: D

Teniendo en cuenta que $\det(T) \neq 0$ entonces la matriz es inversible, luego el sistema $A_T \cdot \vec{X} = \vec{0}$ tiene solución única $\vec{0}$ por lo tanto dim(Nu(T))=0 y por el teorema de la dimensión tenemos que dim(Img(T))=3.

- Ejercicio 7 (1.25 pto.)

Hallá la forma binómica del número complejo w con parte imaginaria negativa y que cumple la siguiente ecuación:

$$w=\frac{2+wi}{\overline{w}}$$

Respuesta: -2i.

Resolución

Podemos comenzar con reemplazar w = a + bi en la ecuación dada para deducir la parte real e imaginaria de w:

$$a + bi = \frac{2 + (a + bi)i}{a - bi}$$

$$(a + bi) \cdot (a - bi) = 2 + ai - b$$

$$a^{2} + b^{2} = 2 - b + ai$$

$$a^2 + b^2 = 2 - b + ai$$

De esta última igualdad se puede leer, igualando partes reales e imaginarias de los complejos que se formaron de cada lado de la igualdad, que: $a^2 + b^2 = 2 - b$; 0 = a por lo que nos queda que a = 0 y que $b^2 + b - 2 = 0$. En consecuencia, y usando además el dato de que b es negativo, nos queda: a = 0 y b = -2.

- Ejercicio 8 (1.25 pto.)

Dados los polinomios $P(x) = (x^2 - 4)(x^2 + 7)$ y $Q(x) = (x^2 - 7)(x^2 - 4)$. Elegí la única opción que resulta verdadera.

- A) Q(x) P(x) tiene grado 4.
- B) P(x) + Q(x) tiene al menos una raíz compleja.
- C) Q(x) P(x) no tiene raíces simples.
- D) P(x) + Q(x) tiene una raíz doble.

Respuesta: D

Si se resuelve $(P+Q)(x)=2x^2(x^2-4)$ y $(Q-P)(x)=-14(x^2-4)$ puede comprobarse que la única opción correcta es que el polinomio (P+Q)(x) tiene una raíz doble x=0.