Homework #1 TA: Shuo Yang

- 1. Database approach is different with the file-based approach in three ways:
 - (a) Unlike file-based approach, where the structure of data is embedded in the application programs, database approach decouples the structure of data from the application programs, thus providing data-program independence. In database approach, the structure of data is held in system catalog (or data dictionary) and programs can share data.
 - (b) Database approach also reduces unnecessary data redundancy which is often the case in the file-base approach.

		Point of view	Functions	Relationship with other levels
2.	External level	User's view of data	Let users access data that is	Interfaces with conceptual level
			customized to their needs	to provide logical independence
	Conceptual level	Community view of	Describes the logical structure	Interfaces with external level to
		database, seen by	of the entire database, but	support external views and inter-
		DBA	is independent of any storage	faces with internal level to pro-
			considerations	vide physical data independence
	Internal level	Physical representa-	Describes how data is stored	Interfaces with conceptual level
		tion of the database	in the database	to provide physical data indepen-
				dence

- 3. The three-tier client-server architecture maps naturally to the Web with a web browser acting as a thin client, an application server handling user requests and a database server managing data access. This architecture has better modularity (easier to modify or replace one tier without affecting the others), better load balancing (with the separation of core business logic from the database functions) compared to the two-tier client-server architecture for traditional DBMSs.
- 4. MySQL supports client-server architecture because it was designed to operate in a networking environment where multiple users can simultaneously connect to the database to make requests. In MySQL package, mysqld is the server program that manages database and handles client requests, mysql is the client program that connects to mysqld to access the database.
- 5. Mathematical relations are based on set theory. Let $D_1, D_2, \dots D_n$ be n sets(domains). Their Cartesian product is defined as:

$$D_1 \times D_2 \times \dots \times D_n = \{ (d_1, d_2, \dots, d_n) | d_1 \in D_1, d_2 \in D_2, \dots d_n \in D_n \}$$
 (1)

A mathematical relation on the n sets is defined as any set of n-tuples from this Cartesian product. Now let A_1, A_2, \dots, A_n be attributes with values drawing from the domains $D_1, D_2, \dots D_n$. Then the set $\{A_1 : D_1, A_2 : D_2, \dots, A_n : D_n\}$ is a relation schema. In relational model, a relation defined by the relation schema is a set of mapping from the attribute names to their corresponding domains.

Thus, a relation R is a set of n-tuples:

$$R = \{ (A_1 : d_1, A_2 : d_2, \cdots, A_n : d_n) | d_1 \in D_1, d_2 \in D_2, \cdots d_n \in D_n \}$$
 (2)

In this way, we can think of a relation in the relational model as any subset of the Cartesian product of the domains of the attributes.

6. The primary key is the candidate key that is selected to identify tuples uniquely within a relation. A foreign key is an attribute or set of attributes within one relation that matches the candidate key of some (possibly the same) relation.

For example, consider the following relations:

Student(<u>UANetID</u>, firstName, lastName, CSID) Grade(<u>CSID</u>, <u>Assignment#</u>, score) Employee(<u>SSN</u>, firstName, lastName, superSSN)

where *CSID* in the **Student** relation is a candidate key. Thus *CSID* in the **Grade** table is a foreign key refers to the candidate key CSID in the **Student** relation. *superSSN*(supervisor's SSN) is a foreign key refers to the primary key *SSN* in the same relation.

- 7. A relationship type is a set of associations between one or more participating entity types.
 - (a) Unary relationship (recursive relationship): Employee *supervises* employee
 - (b) Binary relationship: Doctor works for Hospital
 - (c) Ternary relationship: Client sees Doctor at Hospital
- 8. The relationship **Newspaper** Advertises **PropertyForRent** consists of two attributes: <u>dateAdvert</u> (representing the date the advert took place) and <u>cost</u> (representing the cost of the advert).
- 9. ER diagram is shown below:

- 10. Consider Manager as a specialization of the Staff entity. This would move the Manages relationship from Staff to the Manager subclass. However, the attributes for both entities would be the same and there would, therefore, seem to be no obvious advantage to introducing the Manager specialization.
- 11. (a) The system fails if either one of the four hard drives fails. Put it in another way, the system works only if all the four hard drives do not fail. The probability of the system not fail is:

$$P_{nf} = (1 - 0.015)^2 \times (1 - 0.03)^2 \tag{3}$$

$$\approx 0.913$$
 (4)

$$=91.3\%$$
 (5)

Therefore the probability of failure of the system is:

$$P_f = 1 - P_{nf} \tag{6}$$

$$=0.087\tag{7}$$

$$=8.7\%$$
 (8)

(b) In order to exceed a 50% failure rate, we need to satisfy the following condition:

$$P_f = 1 - P_{nf} \tag{9}$$

$$= 1 - ((1 - 0.015)^n \times (1 - 0.03)^n)$$
(10)

$$> 50\%$$
 (11)

When n = 15, $P_f = 49.5\%$. When n = 16, $P_f = 51.8\%$. Thus there must be at least 32 hard drives the RAID system would have to exceed a 50% failure rate.

12. Dynamic hashing index structure is shown below:

Dynamic Hashing Index Structure

13. (a) Insertion process of B^+ tree is shown below:

(b) Deletion process of B^+ tree is shown below:

