

Skolkovo Institute of Science and Technology

MASTER'S THESIS

Fantastic grants and where to find them

Master's Educational Program: Startups, memes and bullshitting

Student	
	Josef Svejk
St	tartups, memes and bullshitting
	June 18, 2019
Research Advis	or: Dmitriy L. Kishmish Associate Professor
Co-Advisor:	
	Kozma P. Prutkov
	Associate Professor

Moscow 2019 All rights reserved.©

The author hereby grants to Skoltech permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole and in part in any medium now known or hereafter created.

Fantastic grants and where to find them

Josef Svejk

Submitted to the Skolkovo Institute of Science and Technology on June 18, 2019

Abstract

As any dedicated reader can clearly see, the Ideal of practical reason is a representation of, as far as I know, the things in themselves; as I have shown elsewhere, the phenomena should only be used as a canon for our understanding. The paralogisms of practical reason are what first give rise to the architectonic of practical reason. As will easily be shown in the next section, reason would thereby be made to contradict, in view of these considerations, the Ideal of practical reason, yet the manifold depends on the phenomena. Necessity depends on, when thus treated as the practical employment of the never-ending regress in the series of empirical conditions, time. Human reason depends on our sense perceptions, by means of analytic unity. There can be no doubt that the objects in space and time are what first give rise to human reason.

Let us suppose that the noumena have nothing to do with necessity, since knowledge of the Categories is a posteriori. Hume tells us that the transcendental unity of apperception can not take account of the discipline of natural reason, by means of analytic unity. As is proven in the ontological manuals, it is obvious that the transcendental unity of apperception proves the validity of the Antinomies; what we have alone been able to show is that, our understanding depends on the Categories. It remains a mystery why the Ideal stands in need of reason. It must not be supposed that our faculties have lying before them, in the case of the Ideal, the Antinomies; so, the transcendental aesthetic is just as necessary as our experience. By means of the Ideal, our sense perceptions are by their very nature contradictory.

Research Advisor:

Name: Dmitriy L. Kishmish Degree: Professor of sour soup Title: Associate Professor

Co-Advisor:

Name: Kozma P. Prutkov

Degree: Professor, Doctor of doctors

Title: Associate Professor

Contents

1 Introduction		oduction	4
2	The model		
	2.1	Problem statement	5
	2.2	The dispersion of a homogeneous wire	7
	2.3	Wavefunctions of a homogeneous wire	8

Chapter 1

Introduction

The system, considered in this work, is a pair of 1D superconductors connected with a Josephson junction. For all the discussion presented it's crucial for one of superconductors to be topological.

Topological superconductivity is relatively fresh topic in physics. On the one hand it's being connected to particle physics through the notion of Majorana fermion – the particle coinciding with it's own antiparticle. It can be looked for not only in Standart models' context, but also as a state in solids. Despite the difference between theses entities, there is a clear analogy between majoranas in condensed matter and majoranas in particle physics.

On the other hand topological superconductivity is of interest to quantum computation community as a platform to build fault tolerant quantum memory. Although significant difficulties has appeared on this way, the intention to realize this program is still strong and gives the motivation to build a superconducting samples, which demonstrates signatures of nontrivial topology.

The brief discussion of topological superconductivity as well as it's connection to majornas in particle physics and quantum computation is presented in the introduction. The subsequent character presents the model for Jospehson junction of two 1D supeconductors and and the investigation of it's properties – spectrum, supercurrent and ionization rate. The discussion of a potential use of this results can be found in the completive character The most important technical details can be found in supplementary.

The review, presented here, only scartches the surface of rich topic of topological superconductivity. More complete discsssion can be found in the notes of (LINKS-LINKS)

Chapter 2

The model

2.1 Problem statement

The system under consideration consists of two 1D s-type superconducting wires connected with a tunnel junction. There is a strong spin-orbit coupling assumed to be present and external magnetic field is applied in the direction perpendicular to the wire. The Hamiltonianm of the bulk of each wire, written in the Bogoliubov-de Gennes formalism, is similar to the ones presented in [1] and [2]:

$$\mathcal{H} = \int dy \, \Psi^{\dagger}(y) \, H\Psi(y) \qquad \Psi = \begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \\ \psi_{\downarrow}^{\dagger} \\ -\psi_{\uparrow}^{\dagger} \end{pmatrix} \tag{2.1}$$

$$H = \left(\frac{p^2}{2m} - \mu_0\right)\tau_z + up\sigma_z\tau_z + B\sigma_x + \Delta\tau_\phi \tag{2.2}$$

Here σ_i and τ_i are Pauli matrices in spin and particle-hole subspaces respectfully, $\tau_\phi = \tau_x \cos \phi - \tau_y \sin \phi$, with ϕ being a superconducting phase, μ_0 is a chemical potential, B is an external magnetic field, Δ is the absolute value of superconducting order parameter and u is spin-orbit coupling constant with the dimension of velocity. The wire is being aligned along the y-axis, while the direction of the magnetic field coincides with x-axis. Note, that only one component of spin-orbit is nonzero due to 1D nature of the problem.

The tunnel junction is introduced by applying an external electrical field. It's potential profile $U\left(y\right)$ is presented at figure 2.1(a). Inside each wire the potential is assumed to be homogeneous,
thought it's value can be different to the right and to the left of the junction. The junction itself is
modeled by a sharp pike of the potential.

To take this into account one should include an additional term $U(y) \tau_z$ in (2.2). However this term can be combined with the second term of by (2.2) by introducing an effective chemical potential $\mu(y) = \mu_0 - U(y)$ (see figure 2.1(b)). From now on all presence of the external field will be hidden in $\mu(y)$.

The superconducting phase ϕ in left and right wires, ϕ_L and ϕ_R , can also be different. The phase inside the barrier is assumed to be a continuous monotonous function going from ϕ_L to ϕ_R . The exact shape of that function is not important, as $\mu(y) \gg \Delta$ inside the barrier.

Figure 2.1: (a) y-profile of external electrical field. (b) y-profile of effective chemical potential

Finally, the BdG Hamiltonian for the model reads:

$$H = \left(\frac{p^2}{2m} - \mu(y)\right)\tau_z + up\sigma_z\tau_z + B\sigma_x + \Delta\tau_{\phi(y)}$$
(2.3)

with

$$\mu(y) = \begin{cases} \mu_L, & -\frac{L}{2} < y \\ \mu_b, & -\frac{L}{2} < y < \frac{L}{2} \\ \mu_R, & \frac{L}{2} < y \end{cases} \qquad \phi(y) = \begin{cases} \phi_L, & -\frac{L}{2} < y \\ \phi_R \frac{\frac{L}{2} + y}{L} + \phi_L \frac{\frac{L}{2} - y}{L}, & -\frac{L}{2} < y < \frac{L}{2} \\ \phi_R, & \frac{L}{2} < y \end{cases}$$
(2.4)

with L being the size of the junction. Note, that the parameters B, u, Δ and m are taken to be constant within all the system.

This setup is close to the one of the models considered by Oreg et al. in [1] ("Spatially varying μ " section). The difference is in the profile of $\mu(y)$ – in [1] there is a step in effective chemical potential, while here this function possesses a well.

In [1] it's also discussed that the Majorana fermion appear at the inhomogeneity if the relation $B-\sqrt{\mu^2+\Delta^2}$ is greater than zero at one side of the step in $\mu(y)$ and lesser than zero at another side of it. As will be shown further, this is also relevant to the system presented here. Note, that if $B>|\Delta|$ this condition can always be satisfied by choosing appropriate μ_L and μ_R .

The model, described by (2.3) and (2.4) possesses a big number of external parameters. Different areas in this parameter space require different approaches and sometimes lead to completely

different physics. Here the certain experimentally reasonable constraints are assumed:

$$\mu_L, \mu_R \ll B \sim \Delta \ll mu^2 \ll |\mu_b|$$
 (2.5)

The experimental justification of this choice is given in the section **SECTION ABOUT REALIZATION**, while call for it from theoretical point of view will arise further in this chapter.

2.2 The dispersion of a homogeneous wire

Before discussing the properties of the junction it's necessary to consider a dispersion of a homogeneous wire modeled with the Hamiltonian (2.2). Although this can be done exactly, it's instructive to obtain this dependence step by step, starting with a simpler model and adding new terms until the Hamiltonian (2.2) is restored.

The starting point is the Hamiltonian consisting only of kinetic energy and chemical potential terms: $H = \frac{p^2}{2m} - \mu$. It has simple parabolic dispersion presented at fig. 2.2(a). When the spin is introduced and spin-orbit coupling term $up\sigma_z$ is added, the parabola splits in two (fig. 2.2(b)), each one corresponding to it's own z-protection of the spin. After introducing a magnetic field with $B\sigma_x$ term, the gap at the intersection opens (fig. 2.2(c)). The next step is introducing the BdG formalism, by adding the multiplier τ_z elsewhere except for magnetic field term: $H = \left(\frac{p^2}{2m} - \mu_0\right)\tau_z + up\sigma_z\tau_z + B\sigma_x$. This procedure doubles the spectra in a way that each eigenvector with energy E obtains a partner eigenvector with energy -E, so additional two energy branches appear, being a mirror reflection of initial dispersion. This is presented at fig. 2.2(d), with the dashed lines being BdG partners. The last step is adding the superconducting term $\Delta\tau_\phi$, which opens the gap where the dashed and the solid lines are intersected (fig. 2.2(f)).

As was mentioned before, the dispersion can be found explicitly. As was pointed in [1], it can be done by squiring the Hamiltonian (2.2) twice and solving a resulting biquadratic equation, leading to:

$$E_{1,2}^{2}(p) = B^{2} + \Delta^{2} + \xi_{p}^{2} + (up)^{2} \pm 2\sqrt{B^{2}\Delta^{2} + B^{2}\xi_{p}^{2} + (up)^{2}\xi_{p}^{2}}$$
 (2.6)

with $\xi_p = \frac{p^2}{2m} - \mu$. This dependence, presented at fig. 2.2(f), has two positive and two negative branches, as any BdG dispersion with electron-hole symmetry does. It further discussion only positive branches are considered, if opposite is not mentioned.

Figure 2.2: The dispersion of different Hamiltonians: a) mere kinetic energy and chemical potential: $H = \frac{p^2}{2m} - \mu$ b) spin-orbit coupling added: $H = \frac{p^2}{2m} - \mu_0 + up\sigma_z$ c) magnetic field added: $H = \frac{p^2}{2m} - \mu_0 + up\sigma_z + B\sigma_x$ d) BdG formalism introduced: $H = \left(\frac{p^2}{2m} - \mu_0\right)\tau_z + up\sigma_z\tau_z + B\sigma_x$ e) complete Hamiltonian of homogeneous wire: $H = \left(\frac{p^2}{2m} - \mu_0\right)\tau_z + up\sigma_z\tau_z + B\sigma_x + \Delta\tau_\phi$. The parameters of the Hamiltonians for plotting are: B = 0.2, $\Delta = 0.3$, u = 0.9, m = 1, $\mu = 0.11$

If the constrains (2.5) are assumed, the lower branch of this spectra has three minima: one of them is at p=0 exactly, and two another are at $p=\pm 2mu$ in the leading order. The last two are not very interesting – the energy there is approximately equal to Δ , as it should be due to perturbative introduction of superconducting term. On the contrary, the minimum at p=0, which is given by[1]:

$$E_2(0) = |g|, \quad g = B^2 - \sqrt{\Delta^2 + \mu^2}$$
 (2.7)

is most important peculiarity of the spectrum. First, as $\mu \ll B \sim \Delta$, it's the true gap of the spectrum as $\left|B^2 - \sqrt{\Delta^2 + \mu^2}\right| \approx \left|B - \Delta - \frac{\mu^2}{2\Delta}\right| \ll \Delta$. Second, after introducing the quntity

2.3 Wavefunctions of a homogeneous wire

Though the wavefunctions of (2.2) can be found explicitly, their form is enough complicated to stall further analysis. Here it's reasonable to recall one of the constraints (2.5): the one, which sets the spin-orbit energy mu^2 to be the biggest energy parameter for homogeneous wire (the parameter μ_b appears only when barrier is introduced)

Bibliography

¹Y. Oreg, G. Refael, and F. von Oppen, "Helical liquids and majorana bound states in quantum wires", Phys. Rev. Lett. **105** (2010).

²R. Lutchyn, J. Sau, and D. Sarma, "Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures", Phys. Rev. Lett. **105** (2010).

³H. Zhang et al., "Quantized majorana conductance", Nature **556**, 74–79 (2018).