11 Homotopy Groups

Function Spaces

No exercises!

Group Objects and Cogroup Objects

Exercise 11.1.

- (i) By definition of a product, there is a unique morphism $\theta: (X, q_1, q_2) \to (C_1 \times C_2, p_1, p_2)$ in \mathscr{C} making the diagram commute, namely $\theta = (q_1, q_2)$.
- (ii) The objects are ordered triples (X, k_1, k_2) where X is a set and $k_i : C_i \to X$ are functions. Morphisms $\theta : (X, k_1, k_2) \to (Y, \ell_1, \ell_2)$ are functions $\theta : X \to Y$ making the following commute:

Exercise 11.2. We first tackle Ab.

The map $\theta: X \to G_1 \oplus G_2$ in the product diagram is given by $\theta(g) = (q_1g, q_2g)$. Commutativity follows from the fact that $p_i(\theta(g)) = q_i(g)$. Uniqueness of θ follows from the fact that any other θ' must satisfy $\theta'(g) = (g_1, g_2)$ where $g_i = p_i(g_1, g_2) = q_i(g)$. Hence $\theta' = \theta$.

The map $\eta: G_1 \oplus G_2 \to X$ in the coproduct diagram is given by $(g,h) \mapsto k_1(g) + k_2(h)$, where + denotes the operation in the abelian group X. We can easily check commutativity and uniqueness using the fact that η must be a group homomorphism.

Now, for **Grp**, note that the free product property on p. 173 is exactly the coproduct property. The same argument as in the abelian case shows that direct product is the product in **Grp**.

Exercise 11.3.

(i) We will show this for \mathbf{Top}_* . Suppose we have $((X, x), k_1, k_2)$. It is obvious that the map $\theta : (A_1 \vee A_2, *) \to (X, x)$, if it exists, must take * to x, and $* \neq a_i \in j_i(A_i)$ to $k_i(a_i)$. We need only show that this map θ is continuous. (In contrast, the proof has already been completed for \mathbf{Set}_* ; commutativity of the relevant diagram is obvious from the definition of θ .)

Suppose $U \subseteq X$ is closed. Note that $\theta^{-1}(U) \cap A_i = k_i^{-1}(U)$. (This statement is clear if $* \notin U$. If $* \in U$, then

$$\theta^{-1}(U) \cap A_i = (\theta^{-1}(U \setminus \{x\}) \cap A_i) \cup \{*\} = k_i^{-1}(U \setminus \{x\}) \cup \{a_i\} = k_i^{-1}(U)$$

which proves the statement anyway.) The definition of the topology of the wedge (see Example 8.9) implies that $\theta^{-1}(U)$ is closed. Hence θ is continuous, completing the proof.

(ii) Call this subset S. The map $f: A_1 \vee A_2 \to S$ which takes $a \in A_i$ (or, more accurately, $a \in j_i(A_i)$) to (a, a_2) if i = 1 and to (a_1, a) if i = 2 is continuous by the previous argument. It is clearly bijective and closed, since a closed set F in $A_1 \vee A_2$ is still closed in $A_1 \times A_2$. Thus it is a homeomorphism.

Exercise 11.4. Commutativity follows from the interchanging of C_1 and C_2 in the definition. To see

associativity, consider the following diagram:

There is a unique map $X \to (C_1 \times C_2) \times C_3$ making this diagram commute.

Now define $p_1:(C_1\times C_2)\times C_3\to C_1$ to be the composition of the red arrows below. Furthermore, the product property of $C_2\times C_3$ implies the existence of the following blue and green arrows:

Let p_2 be the blue arrow. The fact that there is still the same unique map $X \to (C_1 \times C_2) \times C_2$ making this commute, then, implies that $(C_1 \times C_2) \times C_3$ is the product of C_1 and $C_2 \times C_3$, thus proving associativity.

Exercise 11.5.

(i) We would like to find $f_1 \times f_2$ making the following commute:

But the existence of maps $C_1 \times C_2 \to C_i \to D_i$ implies, by the product property of $D_1 \times D_2$, a unique map $f_1 \times f_2$ into $D_1 \times D_2$ making the diagram commute.

(ii) Same idea.

Exercise 11.6.

(i) Note that Δ_X is the unique map making the red part of the diagram commute, while $q_1 \times q_2$ is the unique

map making the blue part commute:

But of course, since the maps $q_i \circ 1_X = X \to X \to D_i$ are equal to simply the maps $q_i : X \to D_i$, we know that the unique map $X \mapsto D_1 \times D_2$ making this entire diagram commute is (q_1, q_2) . Uniqueness implies that (q_1, q_2) must be equal to $(q_1 \times q_2)\Delta_X$.

- (ii) This is the same idea.
- (iii) We already showed the first statement. For the second, notice that $\nabla_B(f \times g) = (f, g)$. But $(f, g)\Delta_A(a) = (f(a), g(a)) = (f + g)(a)$ because $A \oplus B = A \coprod B$.

Exercise 11.7.

(i) Everything follows from the hint, except that we must verify that $1_{X\times Z}$ and $\theta\lambda$ complete the given diagram. Commutativity of the left triangle is obvious in both cases. To see that $q1_{X\times Z}=t$, note that Z being terminal implies that q=t. To show that $q\theta\lambda=t$, note that $q\theta\lambda: X\times Z\to X\to X\times Z\to Z$. Thus Z being terminal again implies the result.

Now θ and λ are inverses, and so $X \times Z$ and X are equivalent.

(ii) This is the dualized version of the previous part.

Exercise 11.8. We will use the definition of a group object. If G is a group object, then the terminal object Z is the one-element group $\{z\}$. With standard notation, let $e \in G$ be $\varepsilon(z)$. Note that $\mu(g,e) = \mu(e,g) = g$. Now the fact that μ is a homomorphism implies that

$$\mu(q_1, q_2) = \mu(q_1, e)\mu(e, q_2) = q_1q_2,$$

so that μ must be the multiplication operation of G. Using this, we can show that η is indeed the inverse operation: $\eta(g) = g^{-1}$. In particular, we know that

$$q \cdot \eta(q) = (\mu \circ (1, \eta))(q) = e$$

for any g.

Now we know that η must be a homomorphism. Thus

$$g^{-1}h^{-1} = \eta(g)\eta(h) = \eta(gh) = (gh)^{-1} = h^{-1}g^{-1}.$$

Obviously this proves that G is abelian.

Exercise 11.9. The initial object A in both cases is the empty set. The existence of a morphism $e: C \to A$ implies that $C = \emptyset$. It is easy to verify that \emptyset is a cogroup object, which completes the proof.

Exercise 11.10. This time we use the co-identity property. Let $x \in C$. Then m(x) is either in the first coordinate or the second (or it is the basepoint *). Thus either 1 II e or $e \coprod 1$ will take m(x) to $e(C) = * \in A \subset C \coprod A$.

Now we compare this with the maps in the co-identity triangles. In particular, if $x \neq *$ is an element of C, then the maps $C \to C \coprod A$ and $C \to A \coprod C$ take x to itself, not $x \mapsto *$. This contradicts commutativity, so $C = \{*\}$.

Exercise 11.11.

 We prove this only for group objects; the result for cogroup objects simply involves oppositely oriented arrows.

Identities follow from the commutativity of the following:

$$\begin{array}{ccc} G \times G \xrightarrow{1_G \times 1_G} G \times G \\ \downarrow^{\mu} & \downarrow^{\mu} \\ G \xrightarrow{1_G} G. \end{array}$$

Associativity follows from associativity of \mathscr{C} . Composition follows from commutativity of the following:

$$\begin{array}{cccc} G \times G & \xrightarrow{f \times f} & H \times H & \xrightarrow{g \times g} & J \times J \\ \downarrow & & \downarrow & & \downarrow \\ G & \xrightarrow{f} & H & \xrightarrow{g} & J, \end{array}$$

as well as the fact that

$$(g \times g) \circ (f \times f) = gf \circ gf.$$

(ii) The first statement follows from Theorem 11.4.

For the second statement, we must show that

$$f_*(M_X^G(p,q)) = M_X^H(f_*(p), f_*(q)),$$

where $p, q \in \text{Hom}(X, G)$. But we know that

$$M_X^G(p,q)=\mu^G(p,q)\in \operatorname{Hom}(X,G),$$

so that

$$f \circ M_X^G(p,q) : x \mapsto f(\mu^G(p(x),q(x))).$$

On the other hand we know that

$$M_X^H(f_*(p), f_*(q)) = \mu^H(fp, fq)$$

is the map taking

$$x \mapsto \mu^H(fp(x), fq(x)).$$

It thus suffices to show that

$$f(\mu^G(p(x),q(x)) = \mu^H(fp(x),fq(x)).)$$

But following $(p(x), q(x)) \in G \times G$ in the special diagram implies the result.

Exercise 11.12. That every abelian group is a group object is clear by Exercise 11.8. To see that it is a cogroup object, define $e: g \mapsto a$ where $A = \{a\}, m: g \mapsto (g,g),$ and $h: g \mapsto -g$. The axioms are easy to check.

Exercise 11.13. We will show that $\operatorname{Hom}(F, -)$ takes values in groups, where F is a finitely generated free group. Let $\{x_1, \ldots, x_n\}$ be a basis for F. Now consider the following function $P_G : \operatorname{Hom}(F, G) \times \operatorname{Hom}(F, G) \to \operatorname{Hom}(F, G)$:

$$P_G:(f,q)\mapsto (x_i\mapsto f(x_i)q(x_i)).$$

We will show that this gives Hom(F, G) a group structure.

Note that an element of $\operatorname{Hom}(F,G)$ is completely determined by where it sends each x_i . Thus P_G is well-defined. Now suppose $\varphi:G\to H$, so that $\varphi_*:\operatorname{Hom}(F,G)\to\operatorname{Hom}(F,H)$. Then we need to show that

$$\varphi_*(P_G(f,g)) = P_H(\varphi_*(f), \varphi_*(g)).$$

The left side takes

$$x_i \mapsto f(x_i)g(x_i) \mapsto \varphi(f(x_i)g(x_i)).$$

On the other hand, the right side takes

$$x_i \mapsto (\varphi f(x_i), \varphi g(x_i)) \mapsto \varphi f(x_i) \cdot \varphi g(x_i).$$

But these are equal because φ is a homeomorphism.

Exercise 11.14. This is easy; we can even use the same functions/morphisms.

Loop Space and Suspension

Exercise 11.15. We would like to show that the following commutes for all $f: A' \to A$:

$$\begin{array}{ccc} \operatorname{Hom}(A \otimes Y, C) & \xrightarrow{\quad (f \otimes 1)^* \quad} \operatorname{Hom}(A' \otimes Y, C) \\ & & \downarrow \tau_{A'C} \\ \operatorname{Hom}(A, \operatorname{Hom}(Y, C)) & \xrightarrow{\quad f^* \quad} \operatorname{Hom}(A', \operatorname{Hom}(Y, C)), \end{array}$$

where $\tau_{AC}(\varphi) = \varphi^{\#}$.

First, we look at the lower path $f^* \circ \tau_{AC}$. If $\varphi : A \otimes Y \to C$ takes (a, y) to $\varphi(a, y)$, then $\tau_{AC}(\varphi) = \varphi^{\#}$ takes $a \in A$ to the map $\varphi_a \in \text{Hom}(Y, C)$ defined by $\varphi_a(y) = \varphi(a, y)$. Thus $\varphi^{\#}f : A' \to \text{Hom}(Y, C)$ is defined by

$$\varphi^{\#}f: f' \mapsto a \mapsto \varphi_a,$$

where a = f(a').

On the other hand, the upper path takes φ to the map

$$[\varphi(f\otimes 1)]^\#:A'\to \operatorname{Hom}(Y,C)$$

defined by taking

$$a' \mapsto [\psi_{a'} : y \mapsto \varphi(f(a'), 1(y))].$$

Of course, these are the same since f(a') = a, proving commutativity. The second square is similar.

Exercise 11.16. We'll show the first square, namely commutativity of

$$\operatorname{Hom}(GA,C) \xrightarrow{(Gf)^*} \operatorname{Hom}(GA',C)$$

$$\downarrow^{\tau_{A'C}} \qquad \qquad \downarrow^{\tau_{A'C}}$$

$$\operatorname{Hom}(A,C) \xrightarrow{f^*} \operatorname{Hom}(A',C),$$

where τ_{AC} takes $\varphi: GA \to C$ to $\varphi|_A$. But commutativity is obvious, since both paths end up taking φ to $\varphi f: A' \to C$, where the maps are as sets.

Exercise 11.17. We will show this for G; the statement for F amounts to dualizing the following argument. Adjointness implies that there is a bijection τ_{AC} between $\operatorname{Hom}(FA,C)$ and $\operatorname{Hom}(A,GC)$. Hence consider the two diagrams below; the left one is in $\mathscr C$ and the right one is in $\mathscr A$:

Here, we let $\theta: X \to GC$ be the morphism corresponding to $\tilde{\theta}$ under τ_{XC} , and we let \tilde{q}_i be the morphism corresponding to q_i under the bijection τ_{XC_i} . We claim that θ completes the diagram on the right. To see this, use the fact that $(Gg)_*\tau = \tau g_*$. Now if $g = p_1$, then

$$\tau g_*(\tilde{\theta}) = \tau(p_1\tilde{\theta}) = \tau(\tilde{q}_1) = q_1.$$

Now we must show that θ is the unique map making the product diagram on the right commute. Suppose η were another possible map. Define $\tilde{\eta} = \tau^{-1}(\eta)$. We will show that $\tilde{\eta} = \tilde{\theta}$, so the product diagram in \mathscr{C} and the fact that τ is a bijection will imply that $\eta = \theta$.

But notice that

$$((Gp_1)_* \circ \tau)(\tilde{\eta}) = (Gp_1) * (\eta) = (Gp_1) * (\theta) = ((Gp_1)_* \circ \tau)(\tilde{\theta}) = (\tau \circ (p_1)_*)(\tilde{\theta}).$$

But naturality implies that

$$((Gp_1)_* \circ \tau)(\tilde{\eta}) = (\tau \circ (p_1)_*)(\tilde{\eta}).$$

It thus follows that

$$\tau(p_1\tilde{\theta}) = \tau(p_1\tilde{\eta}).$$

Since τ is a bijection, it follows that

$$p_1\tilde{\theta} = p_1\tilde{\eta} = \tilde{q}_1.$$

Thus $\tilde{\eta}$ completes the product diagram in \mathscr{C} , so that $\tilde{\eta} = \tilde{\theta}$, proving the result.

Exercise 11.18. This is exactly stereographic projection (or the reverse of it).

Exercise 11.19. Note that J^n is homeomorphic to $\mathbb{I}^n \setminus \{N\}$, where N is some fixed point. Hence $(J^n)^\infty \approx \mathbb{I}^n$.

Exercise 11.20. Consider the map taking A to ∞ and taking $x \in X \setminus A$ to itself. This is obviously a homeomorphism.

Exercise 11.21. We have the following:

$$S^m \wedge S^n = (\mathbb{R}^m)^{\infty} \wedge (\mathbb{R}^n)^{\infty} = (\mathbb{R}^{m+n})^{\infty} = S^{m+n}.$$

Exercise 11.22. We have

$$\mathbb{I}^n \wedge \mathbb{I} = (J^n)^{\infty} \wedge J^{\infty} = (J^{n+1})^{\infty} = \mathbb{I}^{n+1}.$$

Homotopy Groups

Exercise 11.23. Let $F: \beta \simeq y_0$ be a homotopy. We would like to show that

$$\beta_* : \pi_n(X, x_0) \to \pi_n(Y, y_0)$$

 $[\alpha] \mapsto [\beta \circ \alpha].$

To do so, we must show that $\beta \circ \alpha$ is nullhomotopic rel $\dot{\mathbb{I}}^n$. Consider the map

$$F \circ (\alpha \times \mathrm{id}_{\mathbb{I}}) : \mathbb{I}^n \times \mathbb{I} \to Y$$

 $(u, t) \mapsto F(\alpha(u), t).$

Obviously, this is a homotopy between $\beta(\alpha(u))$ and the constant map at y_0 . To see that this is rel $\dot{\mathbb{I}}^n$, simply note that $u \in \dot{\mathbb{I}}^n$ implies that $F(\alpha(u), t) = F(x_0, t) = y_0$, since α and F are pointed maps.

Exercise 11.24. We have the following chain of equalities (note that some equalities are up to isomorphism or homotopy, depending on the category):

$$\pi_n(X \times Y) = [S^n, X \times Y]$$

$$= \Omega(X \times Y)$$

$$= \Omega X \times \Omega Y$$

$$= [S^n, X] \times [S^n, Y]$$

$$= [S^n, X] \oplus [S^n, Y] = \pi_n(X) \oplus \pi_n(Y).$$

Since $\pi_n(S^1) = 0$, it follows that $\pi_n(T) = \pi_n(S^1) \times \pi_n(S^1) = 0$.

Exercise 11.25. This follows from Theorem 11.29 and the fact that S^n covers $\mathbb{R}P^n$.

Exercise 11.26. Note that Theorem 10.54(i) applies because locally path-connected and contractible implies connected. Thus X is a covering space for X/G, and so Theorem 11.29 implies that $\pi_n(X) \cong \pi_n(X/G)$. But $\pi_n(X) = 0$ for $n \geq 2$ since X is contractible.

Exercise 11.27. This follows almost immediately from the hint. To see that * and o coincide, note that

$$f * g = (f \circ e) * (e \circ g) = (f * e) \circ (e * g) = f \circ g.$$

To see commutativity, we need only check that $f * g = g \circ f$. But this follows because

$$f * g = (e \circ f) * (g \circ e) = (e * g) \circ (f * e) = g \circ f,$$

as desired.

Exercise 11.28.

(i) We follow the path laid out in the hints. First, note that, if $q \in Q$, then

$$\mu(f,e)(q) = \mu(f(q),p_0) = (\mu(-,p_0) \circ f)(q).$$

Thus it follows that

$$[f] * [e] = [\mu(f, e)] = [\mu(-, p_0) \circ f] = [1_P \circ f] = [f],$$

where we use the property of an *H*-space. Similarly, we can show that [e] * [f] = [f].

Now we must show that $[f] \circ [e] = [f]$. But $[f] \circ [e] = [(f, e)m]$, and (f, e)m takes q to f(q) if m(q) is in the first coordinate of $Q \vee Q$, and takes q to p_0 if m(q) is in the second coordinate. Letting q_1 be as in the definition of an H'-group, i.e., letting q_1 be the projection to the first coordinate, we see that q_1m takes q to q if m(q) is in the first coordinate and takes q to q_0 otherwise. Thus fq_1m takes q to either f(q) or p_0 , depending on the coordinate of q, and so it follows that $fq_1m = (f, e)m$. But of course $q_1m \simeq 1_Q$, from which the conclusion follows.

To show the second condition of Exercise 11.27, note first that

$$([f] \circ [h]) * ([g] \circ [j]) = [\mu((f,h)m,(g,j)m)].$$

The map on the right side takes q to either $\mu(fq, gq)$ or $\mu(hq, jq)$, depending on where m(q) is in the first or second coordinate of $Q \vee Q$. On the other hand, we have

$$([f] * [g]) \circ ([h] * [j]) = [(\mu(f, g), \mu(h, j))m],$$

which takes

$$q\mapsto m(q)\mapsto \begin{cases} \mu(fq,gq)\\ \mu(hq,jq) \end{cases},$$

which is the exact same. Thus condition (ii) is satisfied, and the previous exercise proves the result.

(ii) Note that $[\Sigma^2 X, Y] = [\Sigma X, \Omega Y]$ since Σ and Ω are adjoint functors. Now since ΣX is an H-group and ΩY is an H-group in the category, hence an H-space, it follows from the previous part that $[\Sigma X, \Omega Y]$ is abelian.

Exercise 11.29. First, we must show that this is well-defined. Suppose $F: f \simeq g \operatorname{rel}\{s_n\}$. We claim that $\Sigma f \simeq \Sigma g$ with the map $G: (a, b, t) \mapsto (F(a, t), b)$. But this is easy to verify because $G(a, b, 0) = (F(a, 0), b) = (f(a), b) = (\Sigma f)(a, b)$, and similarly for G(a, b, 1).

Now, we will show that it is a homomorphism. Let $m_n: S^n \to S^n \vee S^n$ be comultiplication. Then [f][g] = [(f,g)m]. We would like to show that

$$[\Sigma((f,q)m_n)] = [\Sigma f][\Sigma q] = [(\Sigma f, \Sigma q)m_{n+1}].$$

To see this, note that the left side takes (a,b) to (f(a),b) or (g(a),b), depending on which $S^n \wedge S^1$ -component $m_{n+1}(a,b)$ belongs to in $(S^n \wedge S^1) \vee (S^n \wedge S^1)$. On the other hand, we know that $\Sigma((f,g)m_n)$ takes (a,b) to $(((f,g)m_n)(a),b)$. This first coordinate $((f,g)m_n)(a)$ is f(a) or g(a), depending on which "half" m_n takes a to. Using a rotation to make sure the two halves which m_n and m_{n+1} determine line up (after projecting S^{n+1} down to the equator, which is S^n), it is easy to show that these maps are homotopic.

Exercise 11.30. Any map $Y \to X$ is homotopic to some simplicial approximation $Sd^qL \to K$. Obviously, there are only countably many simplicial approximations, since there are only finitely many vertices of each Sd^qL and of K. Hence [Y,X] is countable. Thus $\pi_n(X) = [S^n,X]$ must be countable.

Exact Sequences

Exercise 11.31. This is the exact same argument as part (ii) of ??.

Exercise 11.32. The same diagram chase remark applies, just changing H to π .

Exercise 11.33. We have the following long exact sequence:

$$\ldots \to \pi_{n+1}(X,X) \xrightarrow{d} \pi_n(X) \xrightarrow{\mathrm{id}} \pi_n(X) \xrightarrow{j_*} \pi_n(X,X) \xrightarrow{d} \pi_{n-1}(X) \xrightarrow{\mathrm{id}} \ldots$$

Now we know that $\ker j_* = \operatorname{imid} = \pi_n(X)$, so that $\operatorname{im} j_* = 0$. Hence $\ker d = 0$. But $\operatorname{im} d = \ker \operatorname{id} = 0$, and so $\ker d = \pi_n(X,X)$. The result now follows.

Fibrations

Exercise 11.34.