DM - Ciências ULisboa 2017/2018

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA II EXERCÍCIOS – Folha 1 - continuação

Matemática e Matemática Aplicada

Geometria Analítica

28. Em \mathbb{R}^3 considere as retas r e s, de equações cartesianas

$$\left\{ \begin{array}{ll} y=1+x \\ z=1 \end{array} \right. \text{ e } \left\{ \begin{array}{ll} x=1+z \\ y=1 \end{array} \right. \text{, respetivamente.}$$

- (a) Determine $r \cap s$.
- (b) Considere o ponto P = (1, 2, 1). Verifique que P não pertence a s. Calcule d(P, s).
- (c) Escreva uma equação cartesiana do plano γ que contém P e s.

29. Em \mathbb{R}^3 considere, para cada $\alpha \in \mathbb{R}$, o plano π_{α} , com equação cartesiana

$$x + 2y + \alpha z - 3 = 0.$$

- (a) Determine α de modo que a reta $r = (1, -1, 1) + \langle (1, 2, -3) \rangle$ seja perpendicular ao plano π_{α} .
- (b) Escreva uma equação vetorial do subespaço afim β definido pela reta r e pelo ponto P = (1, 0, 1). Qual a dimensão de β ?
- (c) Descreva geometricamente o conjunto dos pontos de \mathbb{R}^3 comuns aos planos π_{α} , $\alpha \in \mathbb{R}$.
- 30. Considere os pontos P = (1, 3, 4, 6), Q = (-3, 1, -1, 3) e R = (-2, -2, 2, 4) de \mathbb{R}^4 .
 - (a) Verifique que os pontos P, Q, R são não colineares.
 - (b) Seja \mathcal{G} o subespaço afim de \mathbb{R}^4 que definido por P, Q, R.
 - i. Determine uma equação vetorial de \mathcal{G} e indique dim \mathcal{G} .
 - ii. Determine equações paramétricas de \mathcal{G} .
 - iii. Determine equações cartesianas de \mathcal{G} .
 - (c) Se G é o subespaço vetorial associado a \mathcal{G} , determine uma base de G^{\perp} e equações cartesianas do subespaço afim $\mathcal{H} = P + G^{\perp}$.
- 31. (0
pcional) Em $\mathbb{R}^3,$ demonstre que
 - (a) a interseção de dois planos não paralelos é uma reta;
 - (b) duas retas concorrentes definem um plano;
 - (c) a interseção de duas retas não paralelas e complanares é um ponto;
 - (d) duas retas paralelas e distintas definem um plano;
 - (e) uma reta e um ponto não pertencente à reta definem um plano;
 - (f) a interseção de um plano com uma reta não paralela ao plano é um ponto.