Deep Learning Final Assignment: Parameter-Efficient Fine-tuning with LoRA

Course: Deep Learning Instructor: Dr. Mahdi Eftekhari

Deadline: Weeks

1 Assignment Overview

This capstone assignment integrates multiple deep learning concepts covered throughout the course, focusing on parameter-efficient fine-tuning using Low-Rank Adaptation (LoRA) for question answering. You will implement a complete pipeline for adapting GPT-2 to the SQuAD dataset while exploring the theoretical foundations and practical implications of modern fine-tuning techniques.

• **Points:** 100

• Estimated Time: 15-20 hours

2 Learning Objectives

By completing this assignment, you will demonstrate mastery of:

- 1. **Transformer Architecture Understanding**: Deep comprehension of attention mechanisms, causal language modeling, and autoregressive generation
- 2. Parameter-Efficient Transfer Learning: Implementation and analysis of LoRA for reducing computational costs while maintaining performance
- 3. **Dataset Preprocessing**: Advanced tokenization strategies for sequence-to-sequence tasks with proper attention masking
- 4. **Training Pipeline Design**: End-to-end model training with custom data collators, loss functions, and evaluation metrics
- 5. **Model Evaluation**: Comprehensive assessment using domain-specific metrics (SQuAD F1, Exact Match)
- 6. **Inference and Generation**: Implementation of controlled text generation with sampling strategies

3 Theoretical Background

3.1 Low-Rank Adaptation (LoRA)

LoRA reduces the number of trainable parameters by constraining the weight updates to a low-rank decomposition:

$$W' = W + \Delta W = W + BA \tag{1}$$

where:

- $W \in \mathbb{R}^{d \times k}$ is the original pre-trained weight matrix
- $\Delta W = BA$ with $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$, and $r \ll \min(d, k)$
- Only matrices A and B are trained while W remains frozen

The rank r and scaling factor α control the adaptation capacity:

$$h = Wx + \frac{\alpha}{r}BAx \tag{2}$$

3.2 Question Answering with Causal LMs

For extractive QA adapted to generative models, we format examples as:

```
Context: [context_text]
Question: [question_text]
Answer: [answer_text] < e o s >
```

The loss function masks prompt tokens to focus learning on answer generation:

$$\mathcal{L} = -\sum_{t=T_{prompt}}^{T_{total}} \log P(x_t|x_{< t})$$
(3)

4 Implementation Tasks

4.1 Task 1: Data Preprocessing (25 points)

Implement the preprocess_function that converts SQuAD examples into properly formatted training sequences:

Requirements:

- Create structured prompts with context, question, and answer
- Implement proper tokenization with attention to sequence length
- Design label masking to exclude prompt tokens from loss computation
- Handle edge cases (empty answers, truncation)

Key Considerations:

- How does prompt masking affect gradient flow?
- What are the implications of different maximum sequence lengths?
- How should you handle examples where answers don't fit after truncation?

4.2 Task 2: Custom Data Collation (20 points)

Implement the QADataCollator class for efficient batching:

Requirements:

- Dynamic padding to batch maximum length
- Proper attention mask generation
- Label padding with -100 for loss masking
- Memory-efficient tensor creation

Analysis Questions:

- Compare dynamic vs. static padding strategies
- Analyze memory usage patterns with different batch sizes
- Discuss trade-offs between padding strategies and computational efficiency

4.3 Task 3: LoRA Configuration and Training (30 points)

Set up and execute the LoRA fine-tuning pipeline:

Requirements:

- Configure LoRA parameters (rank, alpha, dropout)
- Implement parameter freezing for base model
- Set up training arguments with appropriate hyperparameters
- Monitor training metrics and convergence

Experimental Analysis: Design and conduct experiments varying:

- LoRA rank (r = 4, 8, 16, 32)
- Learning rates (1e-4, 2e-4, 5e-4)
- Target modules (attention only vs. attention + MLP)

Create plots showing:

- Training/validation loss curves
- Parameter count vs. performance trade-offs
- Computational cost analysis

4.4 Task 4: Inference and Evaluation (25 points)

Implement the complete evaluation pipeline:

Requirements:

- Design inference function with controllable generation
- Implement SQuAD metric computation (F1, Exact Match)
- Compare with baseline (non-fine-tuned) model
- Analyze failure cases and model limitations

Generation Strategy Analysis: Experiment with different decoding strategies:

- Greedy decoding
- Top-k sampling (k = 10, 25, 50)
- Nucleus sampling (p = 0.8, 0.9, 0.95)
- Temperature scaling (0.7, 1.0, 1.3)

Document the impact on answer quality and diversity.

5 Deliverables

5.1 1. Complete Implementation (40 points)

Submit fully functional code with all TODOs completed. Code must:

- Run without errors on provided test cases
- Include comprehensive documentation
- Follow clean coding practices
- Include appropriate error handling

5.2 2. Experimental Report (40 points)

Submit a 6-8 page technical report including:

Section 1: Methodology (10 points)

- LoRA configuration rationale
- Hyperparameter selection process
- Data preprocessing design decisions

Section 2: Experimental Results (20 points)

- Quantitative results table with confidence intervals
- Training dynamics analysis with plots
- Ablation study results
- Statistical significance testing

Section 3: Analysis and Discussion (10 points)

- Model performance interpretation
- Failure case analysis with examples
- Computational efficiency discussion
- Comparison with full fine-tuning

5.3 3. Theoretical Questions (20 points)

Answer the following questions with mathematical rigor:

- 1. **LoRA Mathematics** (8 points): Derive the forward and backward pass equations for a LoRA-adapted linear layer. Show how gradients flow through the low-rank matrices during backpropagation.
- 2. Loss Function Analysis (6 points): Explain why masking prompt tokens in the loss function is crucial for QA fine-tuning. Discuss potential issues if the entire sequence contributed to loss.
- 3. Computational Complexity (6 points): Compare the time and space complexity of LoRA fine-tuning vs. full fine-tuning. Calculate the parameter reduction factor for your specific configuration.

6 Evaluation Criteria

6.1 Technical Implementation (40%)

- Correctness: Code runs without errors and produces expected outputs
- Completeness: All required components implemented
- Efficiency: Reasonable computational and memory usage
- Code Quality: Clean, documented, well-structured code

6.2 Experimental Rigor (30%)

- Methodology: Sound experimental design with appropriate controls
- Analysis: Thorough interpretation of results with statistical analysis
- Visualization: Clear, informative plots and tables
- Reproducibility: Results can be replicated from provided code

6.3 Theoretical Understanding (20%)

- Mathematical Accuracy: Correct derivations and explanations
- Conceptual Depth: Deep understanding of underlying principles
- Critical Analysis: Thoughtful discussion of limitations and implications

6.4 Communication (10%)

- Clarity: Well-written, organized report
- Completeness: All required sections addressed
- Professional Presentation: Proper formatting, citations, and figures

7 Common Pitfalls to Avoid

- 1. Gradient Issues: Ensure LoRA parameters have requires_grad=True
- 2. Memory Leaks: Properly manage GPU memory with gradient accumulation
- 3. Label Misalignment: Verify prompt masking corresponds to correct token positions
- 4. Evaluation Bias: Don't overfit to validation set during hyperparameter tuning
- 5. Generation Loops: Implement proper stopping criteria for text generation

8 Resources and References

8.1 Essential Papers

- 1. Hu et al. (2021). "LoRA: Low-Rank Adaptation of Large Language Models"
- 2. Rajpurkar et al. (2016). "SQuAD: 100,000+ Questions for Machine Reading Comprehension"
- 3. Vaswani et al. (2017). "Attention Is All You Need"

8.2 Technical Documentation

- Hugging Face Transformers: https://huggingface.co/docs/transformers/
- PEFT Library: https://huggingface.co/docs/peft/
- PyTorch Documentation: https://pytorch.org/docs/

8.3 Computational Resources

• You can use Google Colab free plan to train the model for at least 15 epochs(we don't need this much of training)

9 Submission Guidelines

- 1. Code Submission: Single Python file with complete implementation
- 2. **Report**: PDF format, 6-8 pages, IEEE conference style
- 3. **Results**: Include model checkpoints and evaluation outputs
- 4. Reproducibility: Requirements.txt and execution instructions

File Structure:

```
assignment_submission/
|-- lora_qa_finetuning.py
|-- report.pdf
|-- results/
| |-- model_checkpoints/
| |-- evaluation_results.json
| '-- plots/
|-- requirements.txt
'-- README.md
```

10 Grading Rubric

This assignment represents the culmination of your deep learning education, integrating theoretical knowledge with practical implementation skills essential for modern AI research and development.

Component	Excellent (A)	Good (B)	Satisfactory (C)	Needs Improvement (D/F)
Implementation	All components work perfectly, efficient code	Minor issues, mostly working	Some bugs, basic functionality	Major issues, incomplete
Experiments	Comprehensive analysis, multiple configurations	Good experiments, some analysis	Basic experiments, limited analysis	Insufficient experimentation
Theory	Deep understanding, accurate derivations	Good understanding, mostly correct	Basic understanding, some errors	Poor understanding, major errors
Report	Excellent writing, thorough analysis	Good writing, adequate analysis	Basic writing, superficial analysis	Poor communication, incomplete

Table 1: Grading Rubric