DSCI 523: Programming for Data Manipulation

Contents

- License
- Course Learning Outcomes
- Teaching Team
- Lecture Schedule
- Deliverables
- Class Schedule & office hours
- Policies

Program design and data manipulation using industry-standard software tools designed for statistical work. Organizing, filtering, sorting, grouping, reformatting, converting, and cleaning data to prepare it for further analysis. This course is not eligible for Credit/D/Fail grading.

Course Webpage https://pages.github.ubc.ca/MDS-2024-25/DSCI_523_r-prog_students/README.html

Course GitHub repo https://github.ubc.ca/MDS-2024-25/DSCI_523_r-prog_students

License

© 2021 Tiffany Timbers

Software licensed under the MIT License, non-software content licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License. See the license file for more information.

Course Learning Outcomes

By the end of the course, students are expected to be able to:

- 1. Read data into R from vanilla (e.g., csv) and non-standard plain text files, as well as common spreadsheet file types (e.g., xls).
- 2. Manipulate a single data table in R, to do things such as:
 - o filtering rows based on a criterion or combination of criteria;
 - selecting variables;
 - creating new variables and modifying pre-existing ones;
 - rearranging the observations or variables in a deliberate way (e.g., sorting).
- 3. Define tidy data and explain why it is an optimal format for data analysis involving rectangular data in R.
- 4. Transform data into the tidy data format in R using [tidyr].
- 5. Understand the key data structures in R.
- 6. Compare and contrast these relationships to the relationship between vectors and data frame objects in R. Move data fluidly between these object types.
- 7. Manage and manipulate data with dates and times, missing values and categorical variables in R. Rename data frame columns.

- 9. Translate fundamental programming concepts such as loops and conditionals into R code.
- 10. Use the split-apply-combine approach in R to iterate over and summarize data by groups.
- 11. Understand how to write functions in R, document them correctly and assess if they are correct via unit testing.
- 12. Know when and how to abstract code (e.g., into functions) to make it more modular and robust.
- 13. Use a functional programming style as another means of code abstraction in R.
- 14. Use metaprogramming (in particular, tidy evaluation) to make use of tidyverse functions inside custom written functions in R.
- 15. Produce human-readable code that incorporates best practices of programming and coding style.

Teaching Team

Section 001

Position	Name	Slack Handle
Lecture & Lab Instructor	Tiffany Timbers	@tiff
Teaching Assistant	Samir Damji	@Samir Damji
Teaching Assistant	Maria Stephenson	@Maria
Teaching Assistant	Ramin Rezaeianzadeh	@Ramin Rezaeianzadeh (TA)
Teaching Assistant	Riya Eliza Shaju	@Riya Eliza Shaju

Section 002

Position	Name	Slack Handle
Lecture & Lab Instructor	Gittu George	@gittu
Teaching Assistant	Meltem Omur	@Meltem Omur (TA)
Teaching Assistant	Tony Liang	@Tony Liang
Teaching Assistant	Atabak Eghbal	@Atabak
Teaching Assistant	Ngoc Bui	@ngoc

Lecture Schedule

We will be employing a lot of active learning in this course, as you learn programming best by doing! Typically there will be assigned readings & videos that should be reviewed before each lecture. During synchronous lecture meeting times, I will start with a live demonstration related to the videos you watched beforehand, and then we will work in small breakout groups on a lecture worksheet (a Jupyter notebook) that allow us to practice what was covered in the assigned readings & videos. This synchronous class will be recorded and shared afterwards.

Lecture	Торіс	Required readings	Required videos	Supplementary resources
1	Reading data, single data frame manipulations & tidying data in R	Introduction to Data Science chapter 1 chapter 2, sections 2.0-2.5 inclusive chapter 3, sections 3.0-3.5 inclusive	Lecture 1 videos	 Data Import Cheatsheet Data transformation cheat sheet STAT 545 (chapter 5) Relevant chapters of R for Data Science
2	Key datatypes & operators in R	Not applicable	Lecture 2 videos	Base R cheat sheetAdvanced R (chapters 2-5)
3	Working with dates, strings & factors in R	STAT 545 (Data Analysis 2 section)	Lecture 3 videos	 Dates and Times Cheatsheet Work with Strings Cheatsheet Factors with forcats Cheatsheet
4	Two table joins & base R control flow	STAT 545 (Chapter 15)	Lecture 4 videos	R for Data Science (chapter 13)

Lecture	Topic	Required readings	Required videos	Supplementary resources
5	Tidy control flow in R	STAT 545 (section 7.8)	Lecture 5 videos	• R for Data Science (section 5.6)
6	Functions & testing in R	R for Data Science (chapter 19)	Lecture 6 videos	 Chapters 6 - 8 of Advanced R Testing chapter of R packages
7	Mapping & nested data frames in R		Lecture 7 videos	 RStudio Apply/map functions Cheat Sheet R for Data Science (section 21.5) R for Data Science (section 25.3 - 25.5) Advanced R (chapter 9)
8	Tidy evaluation in R	Programming with dplyr	<u>Lecture 8</u> <u>videos</u>	 RStudio Tidy Evaluation Cheat Sheet Advanced R (Metaprogramming
		Skip to main content		

See the lecture learning objectives for a detailed breakdown of lecture-by-lecture learning objectives.

Deliverables

You are responsible for the following deliverables, which will determine your course grade:

Assessment	Weight	Due Date
Lab 1	10%	2024-09-07 18:00 PT
Lab 2	10%	2024-09-14 18:00 PT
Lab 3	10%	2024-09-22 11:59 PT
Lab 4	10%	2024-09-28 18:00 PT
Worksheet 1	1%	2024-09-07 18:00 PT
Worksheet 2	1%	2024-09-07 18:00 PT
Worksheet 3	1%	2024-09-14 18:00 PT
Worksheet 4	1%	2024-09-14 18:00 PT
Worksheet 5	1%	2024-09-22 11:59 PT
Worksheet 6	1%	2024-09-22 11:59 PT
Worksheet 7	1%	2024-09-28 18:00 PT
Worksheet 8	1%	2024-09-28 18:00 PT
Pre-lecture quizzes	1%	Before each lecture
iClicker	1%	During each lecture
Quiz 1	25%	2024-09-17 - 2024-09-20

Class Schedule & office hours

See calendar.

Policies

Please see the general MDS policies.

Lecture 1 - Introduction to R via the tidyverse