东南大学生物科学与医学工程学院

医学图像处理

期中大作业: MRI 成人脑胶质瘤图像分割

11121220 邓羽丰

一、问题描述与前期准备

数据集包含通过四种不同协议成像的三维 MRI 图像数据,其中,tln、tlc、t2f、t2w 分别表示在 MRI 中根据 T1 成像的原始数据、根据 T1 成像的加权数据、根据 T2 成像的 MRI 液体衰减反转图像(脑脊液抑制图像)、根据 T2 成像的加权数据四种不同的成像协议。

将.nii 文件导入到 ImageJ 中,可以查看图像,并且可以另存为 Raw 文件,方便进行图像处理。 注意到,横断面图像有 155 张,长宽均为 240 个像素,这需要在使用 MFC 导入数据时进行设置。

名称	日期	类型	大小
20_t1native_155_240	2024/4/27 10:52	RAW 文件	17,438 KB
20_t1weighted_155_2	2024/4/27 10:52	RAW 文件	17,438 KB
20_t2flair_155_240_2	2024/4/27 10:53	RAW 文件	17,438 KB
20_t2weighted_155_2	2024/4/27 10:53	RAW 文件	17,438 KB

二、问题分析与算法实现

导入时,使用 CComPtr<IFileOpenDialog> 智能指针创建一个对话框对象 pFileOpen 用于选择数据集的文件夹,调用 CoCreateInstance 函数创建一个 IFileOpenDialog 实例,并将其指针赋值给pFileOpen。得到文件夹路径后读取这个文件夹下的所有 RAW 文件,为每个文件创建一个 CDib 类型的指针,实现数据导入。

数据导入后,弹出对话框,在这个对话框类中完成图像显示和处理的全部操作。为每个视图创建一个 CDib 类对象,矢状面与冠状面的计算方式与之前的代码一致。这里需要注意,这个数据集的扫描层间距与像素宽度相等,因此显示时不需要进行插值。图像通过 CImage 类的 Draw 函数绘制在指定的 picture control 控件上。

在查看图像时,每一列代表一种协议的三个视图,从左到右依次为 t1 native, t1 weighted, t2 weighted, t2 flair。通过 slider 控件与 OnHScroll 函数,可以实现使用滑块改变显示的图像的功能。

从上图可以看出,t1 native 图像的肿瘤不十分明显,而其他三种协议的肿瘤区域都比较明显,并且肿瘤区域都要稍亮一些,所以我们不妨尝试先对图像进行阈值处理,转为二值图像进行操作。选取一个比较合适的阈值后,使用 OpenCV 库的 threshold 函数对图像进行二值化。

从上图可以看出,在二值化后,虽然可以得到肿瘤的大致区域,但是图像中有很多比较细小的噪声, 非常类似于椒盐噪声。因此,尝试使用中值滤波器对图像进行滤波

滤波后,大部分的细小噪声被去除,剩余的噪声区域较小,因此我们可以考虑使用膨胀加腐蚀的方法进行进一步的滤波。

腐蚀膨胀后,去掉了一下比较小的噪声,并且对肿瘤区域的影响不大。对于这些残存的噪声,我使用的算法为:

首先使用 findContours 统计轮廓数量,如果轮廓数大于 1,则对图像进行开运算并更新轮廓数,直到轮廓数等于 1 或者达到设定的最大值时停止,然后做了多少次开运算就做多少次闭运算。这个算法可以有效地去除小的非肿瘤区域,并链接狭窄处的肿瘤区域,获得更好的效果。

最后,将分割结果以紫色显示在原图像上,得到最终的结果

