Homework 3

Andrew Tindall Analysis I

October 4, 2019

Problem 1. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $x_0 \in \mathbb{R}^n$.

- (i) Prove that $f'(x_0)$ is the linear, automatically continuous, operator from \mathbb{R}^n to \mathbb{R}^m that is given by the matrix $A \in \mathbb{R}^{n \times m}$ whose components are partial derivatives: $A_{ij} = \frac{\partial f^i}{\partial x_j}(x_0)$. This is the Jacobi matrix.
- (ii) Prove that if all partial derivatives of f exist and are continuous, then f is strongly differentiable at each $x_0 \in \mathbb{R}^n$.

Proof. (i) incomplete

(ii) incomplete

Problem L. et E be a Banach space and let F be a finite-dimensional subspace of E. Show that there exists a closed subspace $G \subset E$ such that:

$$F + G = E \text{ and } F \cap G = \{0\}.$$

Proof. This proof is adapted from a Stackexchange answer given at [1] Assuming that F is n-dimensional, let $e_1, ... e_n$ be a basis of F. Define the linear functionals f_i on the basis e_i by $f_i(e_i) = 1$, and $f_i(e_j) = 0$ if $i \neq j$. Then by Hahn-Banach, each of these functionals may be extended to functionals g_i defined on the whole of E. Let the space G be defined as

$$G = \bigcap_{i=1}^{n} \ker(g_i).$$

We now show that this space is closed, that F + G = E, and that $F \cap G = \{0\}$. First, G is closed because the kernel of any functional is closed, and therefore so is their intersection.

Now, let $x \in E$ be arbitrary; we decompose it into elements of F and G. Let $y = g_1(x)e_1 + \cdots + g_n(x)e_n$, and $z = x - (g_1(x)e_1 + \cdots + g_n(x)e_n)$. It is clear that $y \in F$, and we see that $z \in G$ because, for any g_i ,

$$g_i(z) = g_i(x - (g_1(x))e_1 + \dots + g_n(x)e_n)$$

= $g_i(x) - g_i(x)g_i(e_i)$ = 0

Therefore, g is in the intersection of the kernels of all g_i , meaning it is in G, and so any arbitrary element of E may be decomposed as y + z, with $y \in F$ and $z \in G$. So E = F + G.

Now, we show that $F \cap G = \{0\}$. Let x be an arbitary element of $F \cap G$. Because $x \in F$, we may write it as $x = x_1e_1 + \cdots + x_ne_n$; therefore for any g_i ,

$$g_i(x) = x_n g_i(e_i) = x_i.$$

However, $x \in \ker(g_i)$, so each component x_i is 0.

- **Problem 3.** (i) Let $(E, \|\cdot\|)$ be the Banach space defined in problem 5 of Homework 3 (the space of Lipschitz functions $f: X \to \mathbb{R}$, where $f(x_0) = 0$, and $\|f\|$ is the lowest Lipschitz constant of f). For each $x \in X$, let $T_x(f) = f(x)$. Prove that each $T_x \in E^*$, and that $\|T_x T_y\| = d(x, y)$. Deduce that X is therefore isometric to a subset of E^* .
 - (ii) Let E be a linear normed space. Prove that it is isometric with a linear subspace of the Banach space $\mathcal{B}(B_{E^*}(1))$ of bounded real functions on the closed unit ball in the dual space E^* : $B_{E^*}(1) = \{T \in E^*; ||T|| \le 1\}$.
- *Proof.* (i) Let x in X be arbitrary. We show first that $T_x \in E^*$; i.e. that it is a bounded real functional on E.
 - $T_x(f+g) = T_x(f) + T_x(g)$: This follows from direct calculation, as

$$T_x(f+g) = (f+g)(x)$$
$$= f(x) + g(x)$$
$$= T_x(f) + T_x(g)$$

• $T_x(\alpha f) = \alpha T_x(f)$: This too, follows from calculation:

$$T_x(\alpha f) = (\alpha f)(x)$$
$$= \alpha(f(x))$$
$$= \alpha T_x(f)$$

• $||T_x|| < \infty$: We show that the norm of T_x is bounded by $d(x, x_0)$. For if f is an arbitrary element of E with lowest Lipschitz constant 1, then in particular

$$\frac{|f(x) - f(x_0)|}{d(x, x_0)} \le 1,$$

And so $|T_x(f)| \leq d(x, x_0)$.

Therefore T_x is an element of the continuous dual. Now, let $x, y \in E$ be arbitrary. We may bound the value of $||T_x - T_y||$ by d(x, y): if $f \in E$ is an arbitrary Lipschitz function with $f(x_0) = 0$ and Lipschitz constant 1, then $\frac{|f(x) - f(y)|}{d(x,y)} \le 1$, so

$$|(T_x - T_y)(f)| = |(f(x) - f(y))|$$

 $\leq d(x, y)$

Now, we can also show that this bound is attained: let f be the function:

$$z \mapsto \frac{d(z,y)d(x_0,x)}{d(x_0,x) + d(x_0,y)} - \frac{d(z,x)d(x_0,y)}{d(x_0,x) + d(x_0,y)}.$$

Then f is Lipschitz, because the distance function has Lipschitz constant 1, and it is an element of E, because $f(x_0) = 0$:

$$f(x_0) = \frac{d(x_0, y)d(x_0, x)}{d(x_0, x) + d(x_0, y)} - \frac{d(x_0, x)d(x_0, y)}{d(x_0, x) + d(x_0, y)} = 0$$

Also, $||f|| \le 1$, because for any two $w, z \in X$,

$$|f(z) - f(w)| = \left| \frac{d(z, y)d(x_0, x) - d(w, y)d(x_0, x)}{d(x_0, x) + d(x_0, y)} - \frac{d(z, x)d(x_0, y) - d(w, x)d(x_0, y)}{d(x_0, x) + d(x_0, y)} \right|$$

$$\leq \left| \frac{((d(z, x) - d(w, x))d(x_0, y)}{d(x_0, x) + d(x_0, y)} \right| + \left| \frac{(d(z, y) - d(w, y))d(x_0, x)}{d(x_0, x) + d(x_0, y)} \right|$$

$$\leq \frac{d(z, w)d(x_0, y)}{d(x_0, x) + d(x_0, y)} + \frac{d(z, w)d(x_0, x)}{d(x_0, x) + d(x_0, y)}$$

$$= d(w, z)$$

In fact, ||f|| = 1, because |f(x) - f(y)| = d(x, y). So, f is an element of the unit ball in E.

Now, we can show that $|T_x(f) - T_y(f)| = d(x, y)$. In fact, this follows from the earlier observation that |f(x) - f(y)| = d(x, y), which we can see by calculation:

$$|f(x) - f(y)| = \left| \frac{(d(x,y) - d(x,x))d(x_0,x)}{d(x_0,x) + d(x_0,y)} + \frac{(d(x,y) - d(y,y)d(x_0,x))}{d(x_0,x) + d(x_0,y)} \right|$$

$$= d(x,y)$$

Therefore, $||T_x - T_y|| = d(x, y)$. Therefore the subspace of elements $\{T_x; x \in X\}$ is isometric to the space X itself.

(ii) incomplete

Problem 4. Let (Y, d) be a complete metric space and let $f: B \to Y$ be a contractive mapping with Lipschitz constant $\alpha < 1$, where B is an open ball centered at some y_0 with radius r > 0. Prove that if $d(f(y_0), y_0) < (1 - \alpha)r$ then f has a fixed point.

Proof. Given the above assumptions, let $k = d(f(y_0), y_0)/r$, which we assume to be less than $(1 - \alpha)$. We now show that f restricts to a contraction mapping on the closed ball B' with radius $\frac{kr}{1-\alpha}$: Let $x \in B'$. Then we want to show that $f(x) \in B'$, i.e. that $d(f(x), y_0) \leq \frac{kr}{1-\alpha}$. This in fact holds:

$$d(f(x), y_0) \le d(f(x), f(y)) + d(f(y), y)$$

$$\le \alpha d(x, y) + kr$$

$$\le \alpha \frac{kr}{1 - \alpha} + kr$$

$$= \frac{kr}{1 - \alpha}$$

Therefore f restricts to a function $B' \to B'$, and the restriction of a contraction mapping is a contraction mapping. Because Y is a complete space, the closed subspace B' is complete, and by the contraction mapping theorem f admits a fixed point $x_0 \in B' \subset B$.

Problem L. et (X, d) be a complete metric space and $f: X \to X$ a map such that for some n > 1 the composition of the function f with itself n times: $f^{(n)}: X \to X$ is a contraction.

- (i) Does f have to be continuous?
- (ii) Prove that f has a unique fixed point in X.

Proof. (i) No, f does not have to be continuous - for example, let f be the function on the unit ball in \mathbb{R}^2 :

$$f(x,y) = \begin{cases} \left(\frac{x}{2}, \frac{y}{2}\right) & y \neq 0\\ \left(-\frac{x}{2}, 0\right) & y = 0 \end{cases}$$

Then f is discontinuous on the line y=0, but $f^{(2)}$ is the continuous contraction mapping $(x,y)\mapsto (\frac{x}{4},\frac{y}{4})$.

 ${\rm (ii)}\ incomplete$

References

[1] Tsemo Aristide, Complement a finite dimensional subspace in a Banach space, URL: https://math.stackexchange.com/q/3224629