Aula 3 - Arquitetura de Computadores

Paulino

27-02-2020

Representação Binária

Representação de Dados

- Diferença entre informação e dados:
 - ▶ informação tem contexto, significado
 - dados são mais abstratos: números, textos, valores
- Precisamos representar os dados em bits no computador digital.
- Num computador digital, os sinais binários correspondem a bits que são armazenados em elementos de memória, eles são aplicados às entradas de circuitos digitais e são as saídas desses circuitos.

- ▶ Um bit é um sinal, ou o estado de um elemento de memorização, que pode ter um de 2 valores binários: 0 ou 1.
- Um byte, ou um octeto, é um arranjo de 8 bits. As memórias, em geral, são arranjadas para serem acessadas
- byte-a-byte. Isto é, os endereços de memória permitem acessar um byte específico de uma memória.
- Os dados (e as instruções) são compostos por bytes. Ao dizermos que um computador (ou um processador) trabalha com 32 ou 64 bits, isto quer dizer que o processador consegue realizar operações aritméticas com dados numéricos em 32 ou
 - 64 bits. Ou, a palavra do processador é de 32 ou 64 bits. Na maioria das vezes, isto quer, também, dizer que o barramento de dados transmite palavras de 32 ou 64 bits.

Representação de texto

- Textos são compostos por caracteres
- Os caracteres são:
 - letras maiúsculas e minúsculas de um alfabeto: a, b, c, ... e A, B, C, ...
 - ▶ sinais de pontuação: . , ! ? ; :
 - sinais gráficos: + / * & @ \$ % () [] { } # ' < > ~ \ SP
 - ▶ dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Precisamos de códigos binários únicos para cada um destes caracteres:
 - ▶ ASCII conjunto de caracteres usado na telegrafia americana, serviu de base para uma codificação de 7 bits. Além dos caracteres textuais, existem caracteres de *controle* que indicam: início de transmissão, fim de transmissão, fim de linha, sineta, DEL, . . .
 - ► EBCEDIC codificação usada pela IBM
 - ► UTF-8

ASCII

USASCII code chart

07 De D	-				=_	۰۰,	°°,	٥,	۰,	' o o	١٥,	' _{'0}	١,,
	b4+	b ₃	p 5	٠,	SON SON	0	1	2	3	4	5	6	7
``	0	0	0	0	0	NUL .	DLE	SP	0	0	Р	`	P
	0	0	0	1	_	SOH	DC1	!	1	Α.	0	0	q
	0	0	1	0	2	STX	DCS		2	В	R	. b	r
	0	0	1	1	3	ETX	DC3	#	3	C	S	c	5
	0	1	0	0	4	EOT	DC4		4	D	T	d	1
	0	1	0	1	5	ENQ	NAK	%	5	E	υ	•	U
	0	1	1	0	6	ACK	SYN	8	6	F	>	1	v
	0	1	1	1	7	BEL	ETB	,	7	G	w	9	w
	1	0	0	0	8	BS	CAN	(8	н	x	h	х
	-	0	0	1	9	нТ	EM)	9	1	Y	i	у
	_	0	1	0	10	LF	SUB	*	:	J	Z	j	z
	1	0	1	1	11	VT	ESC	+	:	K	C	k.	(
	1	1	0	0	12	FF	FS		<	L	١.	1	1
	1	1	0	1	13	CR	GS	-	-	м)	m)
	•	.1	1	0	14	so	RS		>	N	^	n	\sim
	1	1	1	1	15	\$1	US	/	?	0	_	0	DEL

Figure 1: Tabela ASCII

Fonte: Wikipedia

Representação de números inteiros em bits

- Os números poderiam ser representados diretamente como texto usando códigos como o ASCII ou o EBCEDIC. Se os números só são armazenados, esta pode ser uma boa solução. Mas, se quisermos realizar operações aritméticas com os números, este tipo de codificação não é apropriado.
- Uma representação numérica boa deve facilitar a criação de HW para implementar as operações aritméticas nos números.
- Uma representação natural que atende este requisito é a representação em base 2 dos números inteiros não negativos.

Representação dos números em diferentes bases

Notação de números com diferentes bases

- Base 10 (decimal): $1969_{10} = 1969_d = 1 \cdot 10^3 + 9 \cdot 10^2 + 6 \cdot 10^1 + 9 \cdot 10^0$
- ▶ Base 8 (octal): $1969_{10} = 3661_8 = 3 \cdot 8^3 + 6 \cdot 8^2 + 6 \cdot 8^1 + 1 \cdot 8^0$
- ▶ Base 2 (binária): $1969_{10} = 11110110001_2 = 11110110001_b = 1 \cdot 2^{10} + 1 \cdot 2^9 + 1 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$
- Base 16 (hexadecimal): $1969_{10} = 7B1_{16} = 7B1_{H} = 7 \cdot 16^{2} + B \cdot 16^{1} + 1 \cdot 16^{0}$

Tabelas de codificações importantes

Decimal Hexa Octal Binário

Decimal	Пела	Octai	Dillali
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
10	Α	12	1010
11	В	13	1011
12	C	14	1100
13	D	15	1101
14	Е	16	1110
15	F	17	1111

Tabelas de codificações importantes(1)

Decimal	Hexa	Octal	Binário
16=2 ⁴	10	20	10000
$32=2^5$	20	40	100000
$64=2^6$	40	100	1000000
$128=2^{7}$	80	200	10000000
$256=2^{8}$	100	400	100000000
$512=2^9$	200	1000	1000000000
$1K=1024=2^{10}$	400	2000	10000000000
$1M=2^{20}$	100000	4000000	100000000000000000000000000000000000000

▶ Observe a aproximação: $1024 \approx 1K$

Para eliminar a dúvida de 1KB = 1000B ou 1024B, foi introduzida a noção de *Kilo binary Bytes* em 1998 pelo IEC. Agora, o correto é escrever: 1KiB, 1MiB, 1GiB, ... Mas, muitos ainda não conhecem este conceito.

Tabelas de codificações importantes(2)

Figure 2: Tabela das potências de 1000 (Fonte: Wikipedia)

Conversão de números decimais para base 2

- Faça divisões sucessivas por 2 até o quociente ser 0
- O número em base 2 é dado pelos restos das divisões
- O bit mais significativo é o último resto, o bit menos significativo é o resto da primeira divisão

Conversão de Binário para Decimal

▶ Dado um número em base 2: $b_n b_{n-1} \dots b_1 b_0$ para convertê-lo em decimal, basta calcular:

$$b_n \cdot 2^n + b_{n-1} \cdot 2^{n-1} + \ldots + b_1 \cdot 2^1 + b_0 \cdot 2^0$$

Exemplo:

Quociente	Resto
1969	1
984	0
492	0
246	0
123	1
61	1
30	0
15	1
7	1
3	1
1	1
0	

$$1969_{10}=11110110001_2$$
 (ano em que o homem pisou na lua) $11110110001_2=2^{10}+2^9+2^8+2^7+2^5+2^4+1=1024+512+256+128+32+16+1=1969_{10}$

Exercícios

- 1. Converta de decimal para binário:
- a. 19
- b. 33
- c. 42
- 2. Converta para decimal os seguintes números:
- a. 10101010
- b. 110011001100
- c. 111000111000111

Adição de números

Estouro (overflow)

- Os processadores tem um número fixo de bits para realizar as operações aritméticas. Por exemplo, imagine um processador de 8 bits:
 - Os números são sempre representados por 8 bits
 - ightharpoonup Ex.: 42 ightharpoonup 00101010 e não simplesmente 101010
- Problema 1: o que acontece quando um número precisa de mais bits para ser representado?
- Problema 2: e se a adição de 2 números resultar num número não representável por 8 bits?

Exemplo:
$$100 + 200$$

Subtração

- Problema: não existe num bit, como representar números negativos num computador digital?
- ► Solução: bit de sinal ← bit mais a esquerda, *MSB*

Quando o bit de sinal é 0, o número é positivo, quando é 1, o número é negativo. O zero tem sinal positivo.

Representação de inteiros negativos com complemento de 2

- Negue (complemento de 1) cada bit da representação positiva com o númro de bits da palavra do processador
- ➤ Adicione 1, este é o número negativo em complemento de 2 (complemento de 1+1)

Exemplos:

decimal	8 bits	16 bits
-1	11111111	11111111111111111
-7	11111001	1111111111111001
-127	10000001	11111111110000001
-130	estouro	111111111011111110

Por que usar representação em complemento de 2?

- Observe que se você complementar um número duas vezes, você obtém o número original (i.e., -(-x) = x)
- A operação de complementar um número é fácil de ser executada pelo HW
- ► Adicionar um número e o complemento de 2 de outro dá o mesmo resultado que subtrair o primeiro do segundo ⇒ não precisa de HW para subtração

Exercícios

- 1. Calcule usando complemento de 2 com 8 bits:
- a. 15 7
- b. -15 + 7
- c. -128 1
- d. -128 128

Observações importantes

- Para o complemento de 2 ter sentido sempre precisamos saber o tamanho da palavra
- ▶ A regra para saber se houve *estouro* precisa ser revista
 - Ao adicionar dois números com sinais opostos, não há estouro
 - Ao adicionar dois números com o mesmo sinal, há estouro se o sinal do resultado é diferente do sinal dos operandos
- O maior número positivo que podemos representar com n bits é $2^{n-1}-1$
- ▶ O menor número negativo representável com n bits é -2^{n-1}
- Se usamos uma palavra com n bits para representar apenas inteiros não negativos, os números representados estão no intervalo $[0,2^n-1]$
- Ao representar números negativos com complemento de 2, os números estão no intervalo $[-2^{n-1}, 2^{n-1} 1]$