

An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen*

Saining Xie* Kaiming He

CVPR 2021

Yueyi Zhang 2024-11-27 report

Background

An Empirical Study of Training Self-Supervised Vision Transformers

Unsupervised learning

Kaiming He

- Large amounts of unlabeled data
- Pretext task
- Flexibility

InstDisc CVPR 2018

- Data augmentation
- Memory bank
- NCE loss details
- Proximal Regularization

As learning converges, the difference between iterations, i.e. $\mathbf{v}_i^{(t)} - \mathbf{v}_i^{(t-1)}$, gradually vanishes, and the augmented loss is reduced to the original one. With proximal regularization, our final objective becomes:

$$J_{NCE}(\boldsymbol{\theta}) = -E_{P_d} \left[\log h(i, \mathbf{v}_i^{(t-1)}) - \lambda \| \mathbf{v}_i^{(t)} - \mathbf{v}_i^{(t-1)} \|_2^2 \right] - m \cdot E_{P_n} \left[\log (1 - h(i, \mathbf{v}'^{(t-1)})) \right].$$
(10)

Wu, Zhirong, et al. "Unsupervised feature learning via non-parametric instance discrimination." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

MoCo-v1 CVPR 2020

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f_q, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
  x_q = aug(x) # a randomly augmented version
  x_k = aug(x) # another randomly augmented version
  q = f_q.forward(x_q) # queries: NxC
   k = f_k.forward(x_k) # keys: NxC
   k = k.detach() # no gradient to keys
   # positive logits: Nx1
  l_pos = bmm(q.view(N, 1, C), k.view(N, C, 1))
   # negative logits: NxK
   l_neg = mm(q.view(N,C), queue.view(C,K))
   # logits: Nx(1+K)
  logits = cat([l_pos, l_neg], dim=1)
   # contrastive loss, Eqn. (1)
  labels = zeros(N) # positives are the 0-th
  loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
  loss.backward()
  update(f_q.params)
   # momentum update: key network
   f_k.params = m*f_k.params+(1-m)*f_q.params
   # update dictionary
  enqueue (queue, k) # enqueue the current minibatch
   dequeue (queue) # dequeue the earliest minibatch
```

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020.

BYOL NeurIPS 2020

train the online network to predict the target network representation of the same image under a different augmented view

Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-supervised learning." *Advances in neural information processing systems* 33 (2020): 21271-21284.

SimSam

NeurIPS 2020

Algorithm 1 SimSiam Pseudocode, PyTorch-like

```
# f: backbone + projection mlp
# h: prediction mlp

for x in loader: # load a minibatch x with n samples
    x1, x2 = aug(x), aug(x) # random augmentation
    z1, z2 = f(x1), f(x2) # projections, n-by-d
    p1, p2 = h(z1), h(z2) # predictions, n-by-d

L = D(p1, z2)/2 + D(p2, z1)/2 # loss

L.backward() # back-propagate
    update(f, h) # SGD update

def D(p, z): # negative cosine similarity
    z = z.detach() # stop gradient

p = normalize(p, dim=1) # 12-normalize
    z = normalize(z, dim=1) # 12-normalize
    return - (p*z).sum(dim=1).mean()
```

method	batch size	negative pairs	momentum encoder	100 ep	200 ep	400 ep	800 ep
SimCLR (repro.+)	4096	✓		66.5	68.3	69.8	70.4
MoCo v2 (repro.+)	256	\checkmark	✓	67.4	69.9	71.0	72.2
BYOL (repro.)	4096		✓	66.5	70.6	73.2	74.3
SwAV (repro.+)	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

$$\mathcal{D}(p_1,z_2) = -\frac{p_1}{\|p_1\|_2} \cdot \frac{z_2}{\|z_2\|_2} \qquad \mathcal{L} = \frac{1}{2} \mathcal{D}(p_1,\operatorname{stopgrad}(z_2)) + \frac{1}{2} \mathcal{D}(p_2,\operatorname{stopgrad}(z_1)).$$

Chen, Xinlei, and Kaiming He. "Exploring simple siamese representation learning." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2021.

Method

technique 1: Network Architecture

Algorithm 1 MoCo v3: PyTorch-like Pseudocode

```
# f_q: encoder: backbone + proj mlp + pred mlp
# f_k: momentum encoder: backbone + proj mlp
# m: momentum coefficient
# tau: temperature
for x in loader: # load a minibatch x with N samples
  x1, x2 = aug(x), aug(x) # augmentation
  q1, q2 = f_q(x1), f_q(x2) # queries: [N, C] each
  k1, k2 = f_k(x1), f_k(x2) \# keys: [N, C] each
  loss = ctr(q1, k2) + ctr(q2, k1) # symmetrized
   loss.backward()
  update(f q) # optimizer update: f q
  f_k = m * f_k + (1-m) * f_q \# momentum update: f_k
# contrastive loss
def ctr(q, k):
  logits = mm(q, k.t()) # [N, N] pairs
  labels = range(N) # positives are in diagonal
  loss = CrossEntropyLoss(logits/tau, labels)
   return 2 * tau * loss
```

Notes: mm is matrix multiplication. k.t() is k's transpose. The prediction head is excluded from f_k (and thus the momentum update).

$$\mathcal{L}_q = -\log \frac{\exp(q \cdot k^+ / \tau)}{\exp(q \cdot k^+ / \tau) + \sum_{k^-} \exp(q \cdot k^- / \tau)}.$$

0.99	0.06	0.28	0.55	0.50	0.36	0.22	0.22	0.70	0.10
0.55	0.96	0.73	0.41	0.37		0.02	0.43	0.24	0.65
0.56	0.46	1.00	0.13	0.28	0.68	0.72	0.64	0.49	0.66
0.31	0.42	0.27	0.91	0.19	0.49	0.02	0.30	0.02	0.18
0.37	0.32	0.12	0.06	0.97	0.26	0.62	0.33	0.14	0.55
0.29	0.01	0.44	0.05	0.19	0.99	0.78	0.12	0.25	0.54
0.40	0.12	0.61	0.20	0.63	0.74	0.98	0.61	0.23	0.17
0.01	0.44	0.26	0.65	0.79	0.05	0.18	0.90	0.11	0.09
0.33	0.75	0.67	0.12	0.02	0.40	0.46	0.03	0.98	0.05
0.48	0.77	0.23	0.61	0.46	0.73	0.60	0.29	0.13	0.96

R50, 800-ep	MoCo v2 [12]	MoCo v2+ [13]	MoCo v3
linear acc.	71.1	72.2	73.8

The improvement here is mainly due to the extra prediction head and large-batch (4096) training.

Method

technique 2: Fixed Random Patch Projection

For the standard ViT patch size, the patch projection matrix is complete (768-d output for a 3-channel 16×16 patch) or overcomplete.

Method

technique 3: BatchNorm in ViT

framework	model	params	acc. (%)
linear probing:			
iGPT [9]	iGPT-L	1362M	69.0
iGPT [9]	iGPT-XL	6801M	72.0
MoCo v3	ViT-B	86M	76.7
MoCo v3	ViT-L	304M	77.6
MoCo v3	ViT-H	632M	78.1
MoCo v3	ViT-BN-H	632M	79.1
MoCo v3	ViT-BN-L/7	304M	81.0
end-to-end fine-tuning:			
masked patch pred. [16]	ViT-B	86M	79.9 [†]
MoCo v3	ViT-B	86M	83.2
MoCo v3	ViT-L	304M	84.1

We notice that this comparison concerns a composition of many choices. As one example, the default ViT backbone in [16] uses LayerNorm (LN), while the default ResNet [21] uses BatchNorm (BN). These design choices can lead to a systematic gap. In our preliminary experiments, we explore replacing LN with BN in the ViT backbone's MLP blocks (*i.e.*, excluding self-attention blocks). We simply refer to this as a "ViT-BN" backbone. It leads to ~1% improvement consistently (see Fig. 8).

We have to set the batch size as 2048 when removing BN, otherwise it does not converge. Removing BN reduces accuracy by 2.1%. Despite the decrease, this is a completely *BN-free* system. This data point suggests that BN is not necessary for contrastive learning to work, yet appropriate usage of BN can improve accuracy.

Experiment

Learning Rate:

Figure 2. **Training curves of different learning rates** (MoCo v3, ViT-B/16, 100-epoch ImageNet, AdamW, batch 4096).

Optimizer:

AdamW, LARS, LAMB (sensitive)

Figure 3. Training curves of LAMB optimizer (MoCo v3, ViT-B/16, 100-epoch ImageNet, wd=1e-3, batch 4096).

Batch Size:

Figure 1. Training curves of different batch sizes (MoCo v3, ViT-B/16, 100-epoch ImageNet, AdamW, lr=1.0e-4).

Training Time:

model	FLOPs	vs. R50	TPUs	hours
ViT-S/16	4.6 G	1.1×	256	1.2
ViT-B/16	17.5 G	$4.3 \times$	256	2.1
ViT-L/16	61.3 G	15.0×	256	6.1
ViT-H/14	166.7 G	$40.7 \times$	512	9.8

Table 3. **Training time of ViT + MoCo v3**, per 100 ImageNetepochs, in our TensorFlow implementation. The FLOPs number (in multiply-adds) is per 224×224 crop, and "vs. R50" is the relative FLOPs vs. ResNet-50 (4.1G).

	300-ер	600-ep
ViT-S/16	72.5	73.4
ViT-B/16	76.5	76.7

Result

case	pre-train	ViT-S	ViT-B	ViT-L
masked patch pred. [16]	JFT-300M	-	79.9	-
DeiT [41]	-	79.9	81.8	n/a
MoCo v3	ImageNet-1k	81.4	83.2	84.1

Table 5. **End-to-end fine-tuning** accuracy (%) in ImageNet-1k.

Figure 8. Comparisons with state-of-the-art big ResNets, presented as parameters-vs.-accuracy trade-off. All entries are pretrained with two 224×224 crops, and are evaluated by linear probing. SimCLR v2 results are from Table 1 in [11], and BYOL results are from Table 1 in [18].

Finally, we note that with supervised pre-training in bigger datasets (ImageNet-21k or JFT-300M), the ViT results in [16] can be better than ours when transferring to these small datasets. A potential future work is to perform

ļ												
	CIFAR-10 [25]		CIFAR-100 [25]		Oxford Flowers-102 [32]			Oxford-IIIT-Pets [34]				
pre-train	ViT-B	ViT-L	ViT-H	ViT-B	ViT-L	ViT-H	ViT-B	ViT-L	ViT-H	ViT-B	ViT-L	ViT-H
random init.	77.8	77.1	75.9	48.5	48.3	48.0	54.4	54.3	52.8	40.1	42.8	40.4
ImNet supervised [16]	98.1	97.9	n/a	87.1	86.4	n/a	89.5	89.7	n/a	93.8	93.6	n/a
ImNet self-sup., MoCo v3	98.9 \(\frac{1}{2}0.8\)	99.1 \(\pm\)1.2	99.1	90.5 ↑3.4	91.1 ↑4.7	91.2	97.7 ↑8.2	98.6 \(\pm\)8.9	98.8	93.2 \ \ 0.6	93.7 \(\daggered{0.1}\)	94.2

Table 6. **Transfer learning** accuracy (%) in four datasets. All entries are end-to-end fine-tuned [16]. Pre-training are performed in the ImageNet-1k training set. The models are ViT-B/16, ViT-L/16, and ViT-H/14. Results of ImageNet-supervised pre-training are from Table 3 in [16]. The arrows indicate the changes w.r.t. the ImageNet-supervised counterparts.

Thanks!