Cybersecurity Management GCS-1.1.Monitoring

2022-2023

Prof. Raül Roca

raul.roca-canovas@upc.edu

linkedin.com/in/roca-cybersecurity

Basic concepts

Adversary (threat agent)

Attack

Countermeasure

Risk

Security Policy

System
Resource (Asset)

Threat

Vulnerability

Additional concepts (related to attacks)

CYBERSECURITY EVENT VS INCIDENT

VS

Event

A cybersecurity event is a change in the normal behavior of a given system, process, environment or workflow.

Examples of a cybersecurity event:

- An employee flags a suspicious email
- Someone downloads software (authorized or unauthorized) to a company device
- A security lapse occurs due to a server outage

Incident

An incident is a change in a system that negatively impacts the organization, municipality, or business.

Examples of an incident:

- An employee replies to a phishing email, divulging confidential information
- Equipment with stored sensitive data is stolen
- A password is compromised through a brute force attack on your system

Additional concepts (related to attacks)

Information Security Event

Information

Security Incident

Information Security Event Definition:

Any observable occurrence in the operations of a network or information technology service, system or data indicating that a security policy may have been violated or a security safeguard may have failed.

Information Security <u>Incident</u> Definition:

An information security **event** where it is alleged or suspected that unauthorized access, use, modification, or disclosure of printed, electronic, audio or visual non-public institutional data to an unauthorized individual or entity may have occurred.

Information Data Breach Definition:

An information security **incident** validated by the Data Incident Response

Team where unauthorized access, use, modification, or disclosure of information has occurred.

Exercise: read the four examples in

https://cybersecurity.osu.edu/sites/default/files/security_events_to_potential_breach_examples.pdf

Introduction to logs

System logs

```
Terminal
Tue Dec 15 20:49:00 C
                                            /var/log/syslog:
Dec 15 19:43:01 Gandalf dbus[974]: [system] Successfully activated service 'org.
Dec 15 19:43:06 Gandalf dbus[974]: [system] Activating service name='org.opensus
Dec 15 19:43:06 Gandalf dbus[974]: [system] Successfully activated service 'org.
Dec 15 19:43:07 Gandalf /hpfax:
Dec 15 19:43:28 Gandalf python3: io/hpmud/jd.c 93: unable to read device-id
Dec 15 19:43:28 Gandalf python3: io/hpmud/jd.c 875: invalid ip 192.168.1.1
Dec 15 19:43:28 Gandalf /hp-makeuri
Dec 15 19:44:50 Gandalf dbus[974]: [system] Activating service name='org.opensus
Dec 15 19:44:50 Gandalf dbus[974]: [system] Successfully activated service 'org.
Dec 15 19:44:50 Gandalf colord: Profile added: Samsung-ML-2160-Gray..
Dec 15 19:44:50 Gandalf colord: Device added: cups-Samsung-ML-2160
Dec 15 19:46:28 Gandalf kernel: [40146.336194] nouveau E[chrome[2853]] multiple
Dec 15 19:46:28 Gandalf kernel: [40146.336203] nouveau E[chrome[2853]] validate
Dec 15 19:46:28 Gandalf kernel: [40146.336206] nouveau E[chrome[2853]] validate
Dec 15 19:46:28 Gandalf kernel: [40146.356562] nouveau E[
Dec 15 19:46:28 Gandalf kernel: [40146.356573] nouveau E[
Dec 15 19:46:28 Gandalf kernel: [40146.356580] nouveau E[
                                                             PGRAPH][0000:02:00.0
Dec 15 19:46:28 Gandalf kernel: [40146.356591] nouveau E[
Dec 15 20:17:01 Gandalf CRON[13961]: (root) CMD ( cd / && run-parts --report
Dec 15 20:20:41 Gandalf kernel: [42199.067003] nouveau E[ PFIF0][0000:02:00.0
restored session from 13 minutes ago; press Ctrl-R to reset session
```

```
| Packet | P
```

• In IT: log (one record of a single event) = log file = logbook

- Relevant event in a System. Questions:
 - Are there records of the System?
 - Who manages records?
 - How long are records kept stored?
- logbook →
 - WHAT happened
 - Lessons learned

Aircraft black box

- It is a key element in:
 - Auditing
 - validate everything to get a certification
 - Regulations/Certifications
 - demonstrate our behavior & the application of established processes
 - Forensic Analysis
 - follow an agreed process in order to preserve them as a clue in case of court trial

Events: Kinds of

Primary event

 Any circumstance, action or change in a System

Derived event

 New event as a result of the application of a method or process applied to previous events.

Complex event

 Abstraction of other events, known as dominant ones.

Events: potential logging issues

- DoD → t(between events) < t(needed to process them)
- Lack of storage space in a centralized system

Security events

- Must provide: Traceability & Auditability.
- Answers to:
 - What component was manipulated?
 - When did it happen?
 - Who did interact with the component of our interest?
 - **How** did the event happen?
 - Why the event was foreseen?

Security events: examples

Feb 13 06:55:26:%SEC_LOGIN-5-**LOGIN_SUCCESS:**Login Success [user: cisco] [Source: 10.10.1.5] [localport: 23] at 06:55:26 **UTC** Fri Feb 13 2015

Feb 13 19:45:05 ubuntu sshd[26999]: **Accepted password** for root from 192.168.1.3 port 10916 ssh2

Event Type: **Success** Audit Event Source: Security Event Category: Account **Logon** Event ID: 680 Date: 2015-02-13 Time: 23:53:00 User: NT AUTHORITY\SYSTEM Computer: MYSERVERNAME Description: Logon attempt by: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0 Logon account: Administrator Source Workstation: MYCOMPUTER Error Code: 0x0

Security events: information

Security events: kind of

- Out of working hours
- Brute force
- Unauthorized access
- Scans
- Spam
- Malware
- Etc.

System Logs

- Files and directories used for:
 - a) research & state the cause of a problem, or
 - b) periodically monitor preventively
- Linux (GNU/Linux)
 - /var/log
- Microsoft Windows
 - Events (of Windows)
 - Record (log)

Log Management (LM)

- Processes large volumes of records
- Includes
 - Collecting event records (logs)
 - Centralized Aggregation of logs
 - Long-term **Retention \rightarrow Granularity** changes over time
 - Log Analysis: in Real Time and Bulk after their storage
 - Record Search
 - Report production/compilation, submission/delivery

Log Management: Challenges

- Security Intelligence
- Centralized Collecting
- Effectiveness of analysis (Why? How?)
- Data → Information
- Traceability
- IT Regulation Compliance
 - E.g., NIST-800-53, PCI-DSS, GDPR, DNIS, etc.

Log Management: Key Elements

- Logs volume: Data Granularity & Retention time
- Logs Format heterogeneity: common format & parsing
- The architecture of networks and systems

Log Management: Schema

Syslog. Powerful registry system(UNIX)

- UNIX logging mechanism
 - Capturing relevant events
 - Storage facility
 - Protocol → syslog messages
 - RFC 5424
 - UDP / 514
 - No state between client and server
 - No authentication of the sender or reciprocal authentication of the recipient of the messages
 - Without proof reception
 - Brand of uncoordinated time
 - Content of the message or its format non standardized (noteven suggested)

Mar 1 06:25:43 serverl sshd[23170]: Accepted publickey for server2 from 172.30.128.115 port 21011 ssh2

Mar 1 07:16:42 serverl sshd[9326]: Accepted password for murugiah from 10.20.30.108 port 1070 ssh2

Mar 1 07:16:53 serverl sshd[22938]: reverse mapping checking getaddrinfo for ip10.165.nist.gov failed - POSSIBLE BREAKIN ATTEMPT!

Mar 1 07:26:28 serverl sshd[22572]: Accepted publickey for server2 from 172.30.128.115 port 30606 ssh2

Mar 1 07:28:33 serverl su: BAD SU kkent to root on /dev/ttyp2

Mar 1 07:28:41 serverl su: kkent to root on /dev/ttyp2

SIEM. Security Information & Event Management

SIEM: Schema SIEM control panel (ELK)

SIEM Use cases

Threat detection

Detect security threats using rulebased log correlation engines, threat modeling framework (MITRE ATT&CK) integrations, and anomaly detection.

Anomaly detection

Spot advanced persistent threats and sophisticated attacks using AI- and ML-driven user and entity behavior analytics (UEBA).

Cloud security

Protect multi-cloud environments by auditing security events and enforcing security policies for access to cloud resources.

Compliance auditing

Prove compliance with regulatory mandates and generate audit-ready reports in a few clicks.

Security analytics

Continuously monitor security events from different sources across the network with analytical dashboards.

Endpoint protection

Monitor and protect your endpoints proactively from cyberthreats.

SIEM components

- Security Information Management (SIM) -
 - Long-term **storage**
 - Analysis of registration data
 - Reports
- Security Event Manager (SEM)
 - Real-time monitoring
 - Correlation of events
 - Notifications and alerts
 - Consoles, views, and dashboards

SIEM = SIM + SEM = long & short + real-time

SIEM: Record & context

SIEM vs. LM

Functionality	SIEM	LM
Log collection	Collects relevant records for security & context Data	Collects all records
Records pre-processing	Analysis, enrichment, Standardization (harmonization), categorization, etc.	Indexing, Analysis or nothing
Logs Retention	Analyzed data retention in Standard format	Analyzed data retention in native format
Reports	Personalized Reports focused in security	General purpose reports
Analysis	Correlation, threat evolution, event prioritization	Full-text analysis, tagging
Alarms and Notifications	Advanced reports, security-focused	Simple Alerts on all logs
Other functionalities	Incident Management, context analysis, etc.	High scalability of collection and storage

Use case: Intrusion detection

Defense in depth (deep defense or elastic

The attacker can overcome some obstacles but cannot sustain the attack for a long time.

Defense in depth

Intrusion Detection System (IDS)

- Intrusion
 - any unauthorized attempt or access to a system
 - malicious use of its resources
- IDS
 - HW/SW
 - identify signs of malicious activity in the network
 - CIA
 - Attacks against a computer or network

Effectiveness of IDS

- Known (less sophisticated attacks)
 - Groups Hacktivists
 - Scams by large-scale email
 - n-day attacks
- Targeted attacks (more sophisticated attacks)
 - Criminals
 - States, Terrorists
- New vulnerabilities
 - Zero-day, 1-day exploits

Cash

Not effective

IDS classification

- Where are they running? (Deployment)
 - Host-based: HIDS
 - Monitoring → Incoming packages, Login activities, Activities of root, File systems
 - Network-based: NIDS
 - Monitoring → The traffic on the network to which the hosts are connected
- How do they perform the detection? (Algorithms)
 - Based on signatures (knowledge)
 - Based on anomalies (behavior)

Architecture of an IDS

