Cashierless-Store

21/10/2565

สมมติฐานการออกแบบ

Scope

ลดภาระการคิดเงินของเจ้าของกิจการร้านค้า

Main Function

Automatic Payment System: Wallet + Face Recognition

Item Checkout: Object Detection

Security System: กล้องสองตัว / ชั่งน้ำหนัก

Stock management + Analytics: คำนวณรายได้ กำไร เป้าหมาย

เป้าหมายเทอม 1: ถ่ายภาพแยกแยะสินค้าได้

เป้าหมายเทอม 2: งานทั้งหมด

Item Checkout System Hardware Design

Detection area

Spacing Expectation

.. พ.ท.ทัตัองศรใช้

เป้าหมายภาพสำหรับTest เล็กที่สุดที่ 155.32 *391.5 pixel

Item Checkout System Design

How

Using Object Detection to detect and identify objects in the checkout area by getting an input from a camera

Why

Using Object Detection with Camera will help reduce unnecessary cost from using RFID and easy-to-fit in any hardware-design

Item Checkout System Design

System Specification

Data

Type: Image

Resolution: minimum 400x400 pixels

Content: one or multiple (upto 20) types of snacks in the same Image

Size: approximately 20 (types) x 200(variants) or 4000 original images. Augmented will be around 12000 images.

Model

In consideration between

Faster-RCNN by ShaogingRen mAP 32

Using Region-based CNN architecture

2. Detr by Facebook mAP 42

Using Transformers encoder decoder architecture (Bipartite Matching technique)

Device

Specification: minimum 400x400 pixels

FPS: at-most 10 fps (fastest detection take around 100ms per image)

Item Checkout System Design

System Design

1. Serve Our model using Pytorch + Flask for pytorch model (REST-API approach)

2. Using Tensorflow lite on Raspberry pi for Tensorflow model (Edge Computing approach)

Backup

Item Checkout System Hardware Design (Calculation)

$$aov_i = 2 \arctan \left(\frac{sensors size_i}{2 \times focal length} \right)$$

$$ext{fov}_i = 2 an \left(rac{ ext{aov}_i}{2}
ight) imes d$$

<u>Camera Field of View Calculator</u> (omnicalculator.com)

Item Checkout System Design (Backup)

Item Checkout System Design (Backup)

