Лабораторна робота № 3

Тема: Моделювання просторово-розподілених процесів.

Мета: Засвоїти основні поняття про моделі просторово-розподілених процесів та про їхні властивості, навчитися будувати і досліджувати такі моделі за допомогою чисельних методів. Оволодіння навичками моделювання систем, що описуються диференціальними рівняннями в частинних похідних, методом приведення до системи звичайних диференціальних рівнянь.

Порядок виконання роботи:

- 1. Вивчення теорії та прикладів.
- 2. Виконня завдання 1.
- 3. Виконня завдання 2.
- 5. Складання звіту по лабораторній роботі, в якому представляється:
 - опис побудови моделі теплопровідності;
 - комп'ютерна програми реалізації завдань 1 і 2;
 - 3D графіки числового та аналітичного розв'язків відповідної задачі теплопровідності та числові значення обчислених похибок між ними.
- висновки з лабораторної роботи.

Загальні теоретичні відомості.

Більшість відомих у природі явищ і процесів поширюються в часі та просторі. Фізичні закони, що визначають їхню поведінку, мають безупинний характер та описуються диференціальними рівняннями в частинних похідних. Це електричні і магнітні поля, поширення тепла і дифузійні процеси, теорія пружності й ін.

Прикладами таких диференціальних рівнянь ϵ :

- рівняння Пуассона

$$\nabla^2 V = \frac{\partial^2 V}{\partial^2 x} + \frac{\partial^2 V}{\partial^2 y} = f(x, y); \tag{1}$$

- рівняння теплового потоку

$$\nabla^2 V = K \frac{\partial V}{\partial t}; \tag{2}$$

- хвильове рівняння

$$\nabla^2 V = \alpha^2 \frac{\partial^2 V}{\partial^2 t}.$$
 (3)

Розглянемо одну методику розв'язання рівняння Лапласа, яке ϵ частковим випадком рівняння Пуассона та ма ϵ вигляд

$$\nabla^2 V = \frac{\partial^2 V}{\partial^2 x} + \frac{\partial^2 V}{\partial^2 y} = 0;$$
 (4)

Формулюємо задачу таким чином. Необхідно знайти в якійсь області (ділянці) Ω на площині xy безперервну функцію V(x, y), яка задовольняє рівнянню (4) та приймає на межі Γ області задані значення $V_{\Gamma} = \varphi(x, y)$.

Така задача відома під назвою задачі Діріхле для рівняння Лапласа. Ця задача є класичною та часто використовується для демонстрації переваг її розв'язування паралельними методами, наприклад, в дисципліні "Паралельні та розподілені обчислення".

В загальному випадку межа Γ може бути довільною, однак будемо розглядати задачу Діріхле на прямокутній ділянці Ω , сторони якої дорівнюють a і b.

Для розв'язування диференціальних рівнянь у частинних похідних частіше використовують кінцево-різницеві методи, в яких частинні похідні апроксимуються різницевими операторами.

Отже, розглянемо прямокутну ділянку Ω на площині xy з рівномірною (для спрощення) сіткою з кроком h (рис. 1).

Рис. 1. Прямокутна ділянка Ω та позначення $V_{i,j}$ функції в вузлах рівномірної сітки.

Позначимо значення функції в вузлах сітки через $V_{i,j}$. Тоді часткові похідні в рівнянні Лапласа можна апроксимувати центральними кінцевими різницями другого порядку

$$\frac{\partial^2 V}{\partial^2 x} \approx \frac{V_{i+1,j} - 2V_{i,j} + V_{i-1,j}}{h^2} + O(h^2); \tag{5}$$

$$\frac{\partial^2 V}{\partial^2 v} \approx \frac{V_{j,i+1} - 2V_{i,j} + V_{i,j-1}}{h^2} + O(h^2); \tag{6}$$

де $O(h^2)$ – члени другого порядку малості; i=1,2,...,n – індекси точок уздовж осі x;j=1,2,...,m – індекси точок уздовж осі y.

Вузли сітки (i,j) внутрішньої області Ω будемо називати внутрішніми, вузли на межі Γ — граничними. Таким чином, індекси внутрішніх вузлів сітки мають значення $i=2,\ldots,n-1$ та $j=2,\ldots,m-1$. Якщо вирази (5) та (6) підставити в рівняння (4), то, нехтуючи членами другого порядку малості, рівняння Лапласа для кожного внутрішнього вузла можна записати у вигляді

$$V_{i,j} = \frac{1}{4} \Big(V_{i+1,j} + V_{i-1,j} + V_{i,j+1} + V_{i,j-1} \Big). \tag{7}$$

Позначимо задану граничну функцію нижньої грані області Ω як φ_{1x} на межі [0, a], верхньої грані φ_{2x} – на межі [0, a], лівої грані φ_{1y} – на межі [0, b], правої

грані φ_{2y} — на межі [0, b]. При цьому повинні виконуватися *граничні умови* $\varphi_{1x}(0) = \varphi_{1y}(0), \varphi_{1x}(a) = \varphi_{2y}(0), \varphi_{2x}(0) = \varphi_{1y}(b), \varphi_{2x}(a) = \varphi_{2y}(b).$

Таким чином, нам відомі значення функції $V_{i,j}$ на граничних вузлах, тобто відомі значення $V_{i,1}$, $V_{i,m}$, $V_{1,j}$, $V_{n,j}$ для усіх i та j.

Після введених вище визначень та позначень можна для кожного внутрішнього вузла сітки записати рівняння виду (7). Отримаємо систему з $(n-2)\times(m-2)$ лінійних алгебраїчних рівнянь. Приклад такого рівняння для вузла (2,2)

$$V_{2,2} = \frac{1}{4} (V_{3,2} + V_{1,2} + V_{2,3} + V_{2,1}).$$

Значення функції $V_{i,j}$ в кожному вузлі є середнім врівноваженим чотирьох сусідніх вузлів. Така форма апроксимації виникла завдяки обраному способу апроксимації других похідних рівняння Лапласа центральними різницями другого порядку та зветься чотирьох точковим (або хрестоподібним) шаблоном (рис. 1). В залежності від способу апроксимації можна отримати інші шаблони, наприклад, 6-точковий, 8-точковий.

Одним з методів знаходження значень $V_{i,j}$ на внутрішніх вузлах сітки області Ω ϵ ітераційний метод Якобі, який для кожного рівняння (7) можна записати так

$$V_{i,j}^{k+1} = \frac{1}{4} \left(V_{i+1,j}^k + V_{i-1,j}^k + V_{i,j+1}^k + V_{i,j-1}^k \right), \tag{8}$$

де k = 0, 1, 2, ... – номер ітерації.

Щоб розпочати ітераційний процес (першу ітерацію) необхідно задати початкові значення функції $V_{i,j}^0$ на внутрішніх вузлах сітки. Якщо нам нічого невідомо про передбачуваний розв'язок, то ці начальні значення можна обирати довільними.

Ітераційний процес закінчується, коли результати обчислення значень функції $V_{i,j}$ у всіх внутрішніх вузлах сітки на даній ітерації відрізняються від значень функції попередньої ітерації не більш ніж припустима похибка ε . Умова закінчення ітераційного процесу визначається за формулою

$$\max \left| V_{i,j}^{k+1} - V_{i,j}^k \right| < \varepsilon, \tag{9}$$

де ϵ – деяке мале, попередньо задане, додатне число.

У практичних додатках важливу роль відіграє моделювання розповсюдження тепла в деякому середовищі в часі. Швидкість зміни температури в точках середовища описується за допомогою рівняння теплопровідності, яке для одновимірного випадку має вигляд

$$\frac{\partial T}{\partial t} = a \frac{\partial^2 V}{\partial v^2},\tag{10}$$

де $a = \lambda c/\rho$ (м²/с) — коефіцієнт температуропровідності матеріалу середовища, який характеризує швидкість зміни у ньому температури;

λ (Вт/(м·град)) – коефіцієнт теплопровідності речовини;

c (Дж /(кг·°С)) – питома теплоємність; (для довідки: Дж = Вт·с);

 ρ (кг/м³) – щільність речовини.

Розроблено безліч методів розв'язування рівняння теплопровідності, таких як метод Фур'є, метод розділення змінних, метод кінцевих різниць, метод скінченних елементів та ін. У випадку методу кінцевих різниць, одновимірна задача розв'язується на двовимірній сітці, один вимір якої являє товщину простору поширення тепла, а інший — час. У даній лабораторній роботі використовується метод, в якому зміна температури в часі обчислюється за допомогою чисельного інтегрування.

Розглянемо стінку, що складається з однорідної речовини, яка розділяє два середовища з різними температурами. Стінка має товщину L (рис. 2). Припустимо, що ширина і висота стінки нескінченні. Температура середовища зліва від стінки може змінюватися в часі за деяким законом $\varphi_1(t)$, а справа — за законом $\varphi_2(t)$. Функції $\varphi_1(t)$ та $\varphi_2(t)$ назвемо *граничними умовами*. Початкове розподілення температури в точках стінки задається функцією $\varphi(y)$, яку будемо називати *початковими умовами*.

Рис. 2. Схема розбиття товщини стінки на шари.

Будемо позначати температуру в точках стінки через u(t, y). Припускаємо, що площа стінки нескінченна, а речовина стінки однорідна, отже точки стінки, що знаходяться на одній вертикалі, мають однакову температуру. З урахуванням введених позначень, процес поширення температури в стінці буде описуватися рівнянням теплопровідності у вигляді

$$\frac{\partial u(t,y)}{\partial t} = a \frac{\partial^2 u(t,y)}{\partial y^2},\tag{11}$$

(12)

та умовами $u(0, y) = \varphi(y), u(t, 0) = \varphi_1(t), u(t, L) = \varphi_2(t).$

Для отримання системи звичайних диференціальних рівнянь, що апроксимують рівняння теплопровідності, розділимо стінку вертикальними лініями на N шарів однакової товщини δ . На перетині цих прямих з віссю y утвориться ряд точок, які пронумеруємо від i=1 до N+1. Тепер для кожної з позначених точок можна записати рівняння теплопровідності

$$\frac{\partial u(t, y_i)}{\partial t} = a \frac{\partial^2 u(t, y_i)}{\partial y_i^2},\tag{13}$$

Позначимо $u(t, y_i)$ через $u_i(t)$. Частинну похідну $\frac{\partial^2 u(t, y_i)}{\partial y_i^2}$ в кожній i-й точці можна апроксимувати за допомогою різниці другого порядку

$$\frac{\partial^2 u(t, y_i)}{\partial y_i^2} \approx \frac{u_{i+1}(t) - 2u_i(t) + u_{i-1}(t)}{\delta^2} + O(\delta^2). \tag{14}$$

Введемо позначення $\mu = a/\delta^2$. Нехтуючи членами другого порядку малості $O(\delta^2)$ та врвховуючи введені вище позначення, отримаємо звичайні диференціальні рівняння для кожної внутрішньої осі y_i

$$\frac{du_i(t)}{dt} = \mu(u_{i+1}(t) - 2u_i(t) + u_{i-1}(t)). \tag{15}$$

Таких рівнянь буде стільки, скільки точок було визначено на осі y. Якщо кількість точок N, то всі рівняння разом складуть систему з N диференціальних рівнянь. Наприклад, для чотирьох точок система рівнянь буде виглядати наступним чином

$$u'_{1}(t) = \mu(u_{2}(t) - 2u_{1}(t) + \varphi_{1}(t)),$$

$$u'_{2}(t) = \mu(u_{3}(t) - 2u_{2}(t) + u_{1}(t)),$$

$$u'_{3}(t) = \mu(u_{4}(t) - 2u_{3}(t) + u_{2}(t)),$$

$$u'_{4}(t) = \mu(\varphi_{2}(t) - 2u_{4}(t) + u_{3}(t))$$
(16)

за початкових умов $u_i(0) = \varphi(y_i)$ та граничних умов $u(t, 0) = \varphi_1(t), u(t, L) = \varphi_2(t).$

Таку систему рівнянь можна розв'язати за допомогою будь-яких методів чисельного інтегрування (наприклад, Рунге-Кутта).

Для випадку, коли границях стінки підтримується стала температура, а початкова температура у стінці є нульовою, тобто $\varphi_1(t) = \alpha$, $\varphi_2(t) = \beta$ і $\varphi(y) = 0$, відомо аналітичний розв'язок задачі теплопровідності (11) - (12) у вигляді

$$u(t,y) = \frac{\beta - \alpha}{L} y + \alpha + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\beta (-1)^n - \alpha \right) e^{-\left(\frac{\pi n}{L}a\right)^2 t} \sin\left(\frac{\pi n}{L}y\right). \tag{17}$$

Завдання 1

- змоделюйте процес зміни температури в стінці із заданого матеріалу методом приведення до системи звичайних диференціальних рівнянь задачі теплопровідності (11) (12). Вихідні дані для віповідної задачі теплопровідності представлені у таблиці 1;
- на мові Python напишіть програму реалізації методу Рунге-Кутта для числового інтегрування із кроком h та тривалістю T, отриманої в попередньому пункті системи звичайних диференціальних рівнянь із відповідними початковими та граничними умовами;

Таблиця 1. Вихідні дані для моделювання задачі теплопровідності (11) – (12).

Варіант	Матеріал	a,	<i>L</i> , м	Т,	N	h	$\varphi_1(t)=\alpha$	$\varphi_2(t)=\beta$	$\varphi(y)$,
		$10^{-6} \text{ m}^2/\text{c}$		год.			$^{\circ}C$	$^{\circ}C$	°C
		0.002	0.2	7.0	100				
1	Дерево	0,082	0,3	72	100	3	1	20	0
2	Цегла	0,52	0,5	120	100	1	2	21	0
3	Скло	0,34	0,01	1	100	0,15	3	22	0
4	Мідь	111,0	0,07	1	100	0,15	4	23	0
5	Повітря	19,0	1,0	3	100	0,15	5	24	0
6	Вода	0,143	0,75	10	100	0,3	6	25	0
7	Алюміній	84,18	0,02	0,1	100	0,015	7	26	0
8	Нейлон	0,09	0,001	0,1	100	0,03	8	27	0
9	Гума	0,13	0,025	0,1	100	0,015	9	28	0
10	Свинець	23,6	0.6	1	100	0,3	10	29	0
11	Дерево	0,082	0,5	140	100	3	11	30	0
12	Цегла	0,52	1,0	240	100	1	12	31	0
13	Скло	0,34	0,02	2	100	0,15	13	32	0
14	Мідь	111,0	0,15	2	100	0,15	14	33	0
15	Повітря	19,0	1,5	4,5	100	0,15	15	34	0
16	Вода	0,143	1,5	20	100	0,3	16	35	0
17	Алюміній	84,18	0,05	0,25	100	0,015	17	36	0
18	Нейлон	0,09	0,005	0,5	100	0,03	18	37	0
19	Гума	0,13	0,05	0,2	100	0,015	19	38	0
20	Свинець	23,6	1.2	2	100	0,3	20	39	0

Завдання 2

- -на мові Python напишіть програму для візуалізації у вигляді 3D графіка отриманого в попередньому завданні числового розв'язку задачі теплопровідності;
- зобразіть на отриманому 3D графіку також і аналітичний розвязок (17) відповідної задачі теплопровідності, обмежившись 30-ма доданками нескінченного ряду у формулі (17);
- на основі формул (18) обчисліть максимальну абсолютну (MAE) та середньостатистичну (MSE) похибки отриманого числового розв'язку у порівнянні із відповідним аналітичним розв'язком (17).

$$MAE = \max_{\substack{1 \le i \le M \\ 1 \le j \le N}} |u(t_i, y_j) - \hat{u}(t_i, y_j)|, \quad MSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (u(t_i, y_j) - \hat{u}(t_i, y_j))^2, \quad (18)$$

де $\hat{u}(t_i, y_j)$, $u(t_i, y_j)$ – відповідно числовий та аналітичний (17) розв'язки задачі теплопровідності; M = (T/h) - 1.