Project Report: Privacy Preserving with Preference **Elicitation Process**

Team Tatooine • 05.07.2020

Progress

Recent progress

- Data Gathering
- Data Cleaning
- Implemented Content Based Recommender System
- Implemented Hierarchical Clustering

Work In-Progress

 Implementing Differential Privacy Mechanism

Training Data Set

₽		userId	movieId	rating	title	year	genre1	genre2	genre3	genre4	genre5	genre6
	0	1	31	2.5	Dangerous Minds	1995.0	Drama	NaN	NaN	NaN	NaN	NaN
	117	1	1129	2.0	Escape from New York	1981.0	Action	Adventure	Sci-Fi	Thriller	NaN	NaN
	165	1	1172	4.0	Cinema Paradiso	1989.0	Drama	NaN	NaN	NaN	NaN	NaN
	403	1	1343	2.0	Cape Fear	1991.0	Thriller	NaN	NaN	NaN	NaN	NaN
	211	1	1263	2.0	Deer Hunter, The	1978.0	Drama	War	NaN	NaN	NaN	NaN
	259	1	1287	2.0	Ben-Hur	1959.0	Action	Adventure	Drama	NaN	NaN	NaN
	305	1	1293	2.0	Gandhi	1982.0	Drama	NaN	NaN	NaN	NaN	NaN
	849	1	3671	3.0	Blazing Saddles	1974.0	Comedy	Western	NaN	NaN	NaN	NaN
	84	1	1061	3.0	Sleepers	1996.0	Thriller	NaN	NaN	NaN	NaN	NaN
	806	1	2968	1.0	Time Bandits	1981.0	Adventure	Comedy	Fantasy	Sci-Fi	NaN	NaN

```
no_of_ratings = movie_ratings.rating.unique()
print(no_of_ratings)
movie_ratings.hist(bins=11)
```



```
diff_ratings = sorted_df[['genre1']]
rating_values = diff_ratings.genre1.unique()
print(rating_values)

['Drama' 'Action' 'Thriller' 'Comedy' 'Adventure' 'Animation' 'Fantasy'
'Children' 'Crime' 'Mystery' 'Documentary' 'Horror' 'Musical' 'Film-Noir'
'Sci-Fi' 'Romance' 'Western' 'War' '(no genres listed)']
```

Training Data Set

- 10 unique rating values
- Maximum ratings between 3.5 and 4.5
- Genres: Adventure,
 Animation, Children,
 Action, Comedy, Crime,
 Documentary, Drama,
 Fantasy, Film-Noir,
 Horror, Musical, Mystery,
 Romance, Sci-Fi, Thriller,
 War and Western

Movie Recommendation for a user based on his previous activity - movie ratings

```
In [1]: runfile('D:/CySA+Prep/RecommenderSystem_CIS700/RecSys-Materials/
RecSys-Materials/CollaborativeFiltering/SimpleUserCF.py', wdir='D:/CySA+Prep/
RecommenderSystem_CIS700/RecSys-Materials/RecSys-Materials/
CollaborativeFiltering')
Computing the cosine similarity matrix...
Done computing similarity matrix...
Computing the cosine similarity matrix...
Done computing similarity matrix...
Inception (2010) 3.3
```

Measuring Accuracy of the Algorithm - Using Hit Rate as accuracy measure

```
In [2]: runfile('D:/CySA+Prep/RecommenderSystem_CIS700/RecSys-Materials/
RecSys-Materials/CollaborativeFiltering/EvaluateUserCF.py', wdir='D:/CySA
+Prep/RecommenderSystem_CIS700/RecSys-Materials/RecSys-Materials/
CollaborativeFiltering')
Reloaded modules: MovieLens
Loading movie ratings...

Computing movie popularity ranks so we can measure novelty later...
Estimating biases using als...
Computing the cosine similarity matrix...
Done computing similarity matrix...
Done computing similarity matrix...
Computing the cosine similarity matrix...
Done computing similarity matrix...
Done computing similarity matrix...
Done computing similarity matrix...
```

HR 0.05514157973174367

User based Collaborative Recommender System

Hit Rate: We calculate the Top-N recommendations for a user, if that user has rated one movie from those recommendations, we consider that as a hit. So the hit rate will be the ratio of hits from the Top-N recommendations for all the users to the total number of users

HR = totalhits/totalusers

	userId	recommendedMovie	count	recommendedMovieRatng
0	1	527	1	4.5
1	2	908	1	2.8
2	3	780	1	4.2
3	4	527	1	2.9
4	5	778	1	4.3
	***	5.16	***	(*** (
666	667	50	1	3.3
667	668	356	1	2.6
668	669	2762	1	3.7
669	670	58559	1	2.9
670	671	135	1	2.0

671 rows × 4 columns

Output of Recommender System

- Ran the recommender system over all the users from input dataset (ratings.csv)
- Mapped all the recommended movies to their movield from the movies dataset (movies.csv)

₽

	userId	${\tt recommended} {\tt Movie}$	count	${\tt recommended}{\tt MovieRatng}$
0	1	527	1	4.5
1	2	908	1	2.8
2	3	780	1	4.2
3	4	527	1	2.9
4	5	778	1	4.3
	****	0.00	***	(275)
666	667	50	1	3.3
667	668	356	1	2.6
668	669	2762	1	3.7
669	670	58559	1	2.9
670	671	135	1	2.0

671 rows x 4 columns

Recommender output analysis

Hierarchical Clustering

Hierarchical clustering is used for clustering together movies that are similar to each other.

The algorithm uses an agglomerative(bottom up) approach to derive the clusters

Using One hot encoding for creating vectors

	25 188		movie	ld	
		m1	m2		mn
	u1	0	1		1
	u2	1	0		1
userld		1	1		1
	un	0	0		1

Correlation Matrix

movieId userId	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0
5	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

A correlation matrix is created to define the similarities between each movie with every other movie.

A correlation of '1' defines movies that are the most similar

This is used to create hierarchical clusters

Clustering Result

The scipy package is used to perform hierarchical clustering from the given matrix

A traditional dendogram is created with a limit of 200 clusters

Movies that are most similar to each other belong to the same cluster

Differential Privacy Mechanism

$$\Pr[x \mid 4.5] = \frac{e^{\frac{(4.5,x)\varepsilon}{d}}}{\sum_{y[0,5]} e^{\frac{(4.5,y)\varepsilon}{d}}}$$

x = 4.5 (system generated rating)

y = k (user given rating for the same movie)

d = error distance of x|y over a scale of (0, 0.1, 0.2, 0.3,, 5.0)

 $eps = \{0.1, 0.2, 0.3,, 1.0\}$

10

Differential Privacy Mechanism

Approach 1:

- Alter Just one user record in the dataset, ratings.csv
- See if there is any change in the clusters.

Approach 2:

- Alter in batches of 5, 10, 15,.....
 User Records in the dataset
- See the changes in clusters (if any)

Differential Privacy Mechanism

Approach 1:

Generate fake data for 1 user

Concern:

 Should I be concerned about the distribution of data?

Approach 2:

• Generate fake data for 5 users

Concern:

Same as Approach 1.

Questions, comments and/or concerns?