Second Order Equations (Mass-Damper-Spring System) $m\ddot{x} + b\dot{x} + kx = 0$

Solve $\ddot{x} + x = 0$

Stability of $\dot{x}=Ax$ A is stable when all eig(A) have negative real parts (Why?) $e^{a+bi}=\dots$

Repeated Roots: Solve $\ddot{x} - 2\dot{x} + x = 0$ * $e^{At} = e^{It + At - It} = \cdots$

Matrix Exponentials

$$e^A = Pe^{[\lambda]}P^{-1}$$

Solve
$$\dot{x} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} x$$

Matrix Exponentials $e^A e^B = e^{A+B}$ holds if AB=BA

Singular Value Decomposition (SVD)

$$A = U \Sigma V^{\mathsf{T}}$$

$$V^{\mathsf{T}}V = U^{\mathsf{T}}U = I$$

V consists of eigenvectors of $A^{T}A$ U consists of eigenvectors of AA^{T} Σ is related to eigenvalues of $A^{T}A$

Visualization: SVD

Sigma =

Visualization: SVD

U*Sigma<mark>*</mark>V'

ans =

Sigma =

-0.4153	-0.5665	0.7118
-0.9018	0.1531	-0.4042
0.1200	-0.8097	-0.5744

If largest eigenvalue of A is σ_1 , prove $||Ax|| \le \sigma_1 ||x||$

Consider
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Consider
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Consider
$$A = \begin{bmatrix} -1 & 2 \\ 1 & 2 \end{bmatrix}$$

Consider
$$A = \begin{bmatrix} -1 & 2 \\ 1 & 2 \end{bmatrix}$$
 evec =
[evec, eval] = eig(A) $\begin{bmatrix} -0.9628 & -0.4896 \\ 0.2703 & -0.8719 \end{bmatrix}$

evec =

-0.9628 0.2703

-0.4896 -0.8719

eval =

Visualization: Linear Systems

Consider
$$A = \begin{bmatrix} -1 & -2 \\ 1 & -2 \end{bmatrix}$$

 $\dot{x} = Ax$

Initial condition: (1,1)

```
evec =
```

eval =

Visualization: Linear Systems

