MelodyGLM: Pre-Training with Musical N-Gram for Melody Generation and Editing Bachelor Thesis

HUANG Zhijie

Chu Kochen Honor College, Zhejiang University Department of Computer Science and Technology 2023.06

Melody Pretraining for Generation & Editing

Background: Deep Learning & Intelligent Music

Scale & Generality

Reference:

[1] ChatGPT, OpenAI. [2] Stable Diffusion, Stability AI.

[3] Briot, J.-P., & Pachet, F. (2020). Deep learning for music generation: Challenges and directions.

Neural Computing and Applications.

[4] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing.

Melody Pretraining for Generation & Editing

Background: Deep Learning & Intelligent Music

Pretraining + Music -

Weakness

- Few datasets. Small/poor quality. (scale)
- Good at only one particular task. (generality)

Goal

- Knowledge transfer from large-scale datasets.
 (scale)
- Unify music generative tasks. (generality)

Reference:

[1] ChatGPT, OpenAI. [2] Stable Diffusion, Stability AI.

[3] Briot, J.-P., & Pachet, F. (2020). Deep learning for music generation: Challenges and directions. Neural Computing and Applications.

[4] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing.

Challenge: Tailor Pretraining to Music

Solution

- Statistically capture musical semantic boundaries.
- Explore musical vocabulary among different dimensions.
- Design masking strategy tailored to characteristics of music.

Method: Musical N-gram Masking Strategy

Common Patterns vocabulary phrases

vocabulary, phrases and idioms

- Context: relationship among notes
- Boundary: high-level semantics
- Dimension: both pitch and rhythm

Reference:

[1] Xiao, D., Li, Y.-K., Zhang, H., Sun, Y., Tian, H., Wu, H., & Wang, H. (2021). ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding. [2] Levine, Y., Lenz, B., Lieber, O., Abend, O., Leyton-Brown, K., Tennenholtz, M., & Shoham, Y. (2020). PMI-Masking: Principled masking of correlated spans.

Method: Musical N-gram Masking Strategy

Example: Most significant pitch 3-grams extracted from the Wikifonia dataset.

Common Patterns

vocabulary, phrases and idioms

- Context: relationship among notes
- Boundary: high-level semantics
- Dimension: both pitch and rhythm

Reference:

[1] Xiao, D., Li, Y.-K., Zhang, H., Sun, Y., Tian, H., Wu, H., & Wang, H. (2021). ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding. [2] Levine, Y., Lenz, B., Lieber, O., Abend, O., Leyton-Brown, K., Tennenholtz, M., & Shoham, Y. (2020). PMI-Masking: Principled masking of correlated spans.

Method Overview

Downstream Tasks

Method: Melody Encoding

Compound word music encoding. A unit of one single note.

Method: Model Architecture & Pretraining Task

Multi-granularity & Multi-dimension Task
Unified Architecture & Span-infilling Objective

Various downstream tasks with different formats

generation, editing, inpainting, refinement...

Reference:

[1] Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., & Tang, J. (2022). GLM: General Language Model Pretraining with Autoregressive Blank Infilling.
[2] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.

Experimental Settings & Evaluation Metrics

Ablation Studies

Effectiveness of the main components

- 1. Masking strategy
 - Random Span (SpanBERT)
 - Random Bar (MusicBERT)
 - Single Span (MASS)
 - N-gram (Ours)

- 2. Pretraining framework
 - GPT-style
 - No pretraining
- 3. Multi-granularity objective
 - N-gram
 - N-gram + Single Span

Hyperparameters of n-gram extraction

- 1. Masking ratio
 - 20%, 40%, 60%, 80%
- 2. N-gram extraction strategy
 - jointly for pitch & rhythm
 - separately for pitch & rhythm

- 3. N-gram length (N = ?)
 - 3–5, 3–8, **3–12**

Baseline Comparison

Compare with baselines on downstream tasks

- 1. Melody generation
 - Compound Word
 Transformer (2021)
 - Music Transformer (2018)

2. Melody inpainting

• VLI (2021)

Metrics

- 1. Objective evaluation
 - Perplexity
 - Consistency pitch histogram
 - Rhythmicity average 101
- Structure structure error
- **Diversity** distinct pitch n-gram percentage

- 2. Subjective evaluation
 - Consistency
 - Rhythmicity

- Structure
- Overall Quality

Comparison: Melody Generation & Inpainting

Baseline Comparison

Compare with baselines on downstream tasks

- 1. Melody generation
 - Compound Word Transformer (2021)
 - Music Transformer (2018)

2. Melody inpainting

- VLI (2021)

MelodyGLM

- Good consistency & rhythm
- Excellent structure & long-term coherence
- Nice musical creativity & diversity

Table 1: Results on 32-bar melody generation compared with SOTA baselines

Model	$OA(PCH) \uparrow$	$OA(IOI) \uparrow$	$SE\downarrow$	DN_{short}	DN_{medium}	DN_{long}
Ground Truth	-	-	-	1.4737	3.5765	7.6436
$\mathbf{MT}^{[3]}$	0.8399	0.9203	2.63%	0.8580	2.2132	5.5436
CWT ^[5]	0.9168	0.9573	4.84%	1.2454	3.2014	7.2011
MelodyGLM	0.9783	0.9636	1.75%	1.3118	3.2642	7.1856

Table 2: Results on 4-bar melody inpainting compared with SOTA baseline

Model	$OA(PCH) \uparrow$	$OA(IOI) \uparrow$	$SE\downarrow$	DN_{short}	DN_{medium}	DN_{long}
Ground Truth	-	_	-	1.9466	3.9951	7.2187
$VLI^{[18]}$	0.9760	0.9615	0.58%	2.0867	4.1792	7.3696
MelodyGLM	0.9907	0.9671	0.25%	1.926	3.9651	7.1957

Note: Greater overlapped area (OA) and lesser structure error (SE) is better. For other metrics, closer to ground truth is better.

Ablation: Masking Strategy, Ratio & Pretraining Framework

Figure 1: PPL under different masking strategies and ratio on two downstream tasks

Figure 2: PPL under different pretraining framework on two downstream tasks

- Musical n-gram masking outperforms others.
- Multi-granularity training brings performance gain.
- GPT-style pretraining still struggles a bit on inpainting.
- Ours pretraining framework generalizes on two tasks.

Ablation: Dimension & Scale of N-gram Extraction

Figure 3: PPL under different dimensions of n-gram extraction on two downstream tasks

 Independent modeling for different musical dimensions benefits two tasks.

MelodyGLM Conclusion

MelodyGLM

Pre-Training with Musical N-Gram for Melody Generation and Editing

Contributions:

- Introduce the paradigm of pretrain-fine-tune to music generation.
- Design musical N-gram masking strategy and multi-granularity, multi-task training objective **tailored to music**.
- MelodyGLM outperforms previous SOTA methods on melody generation and inpainting, enabling various generative tasks.