Distribuciones

```
In [ ]: import seaborn as sns
         import matplotlib.pyplot as plt
In [ ]:
         sns.get_dataset_names()
Out[]: ['anagrams',
          'anscombe',
          'attention',
          'brain_networks',
          'car_crashes',
          'diamonds',
          'dots',
          'dowjones',
          'exercise',
          'flights',
          'fmri',
          'geyser',
          'glue',
          'healthexp',
          'iris',
          'mpg',
          'penguins',
          'planets',
          'seaice',
          'taxis',
          'tips',
          'titanic']
In [ ]: #Escogeré el Dataset de taxis
         taxis = sns.load_dataset('taxis')
         taxis.head(3)
Out[ ]:
             pickup dropoff passengers distance fare
                                                                           color payment pickup_zone dropoff_zone pickup_boroug
                                                          tip tolls total
                       2019-
              2019-
                                                                                               Lenox Hill
                                                                                                         UN/Turtle Bay
                                                                                     credit
                                                                0.0 12.95 yellow
         0
              03-23
                       03-23
                                       1
                                              1.60
                                                    7.0 2.15
                                                                                                                             Manhatta
                                                                                      card
                                                                                                   West
                                                                                                                South
            20:21:09 20:27:24
              2019-
                       2019-
                                                                                             Upper West
                                                                                                           Upper West
              03-04
                       03-04
                                       1
                                                                0.0
                                              0.79
                                                    5.0 0.00
                                                                     9.30 yellow
                                                                                      cash
                                                                                                                             Manhatta
                                                                                              Side South
                                                                                                            Side South
            16:11:55 16:19:00
              2019-
                       2019-
                                                                                     credit
                                                                                               Alphabet
              03-27
                       03-27
                                       1
                                              1.37
                                                   7.5 2.36
                                                               0.0 14.16 yellow
                                                                                                           West Village
                                                                                                                             Manhatta
                                                                                      card
                                                                                                    City
            17:53:01 18:00:25
In [ ]: #Implementando graficos para distribuciones
         sns.histplot(data=taxis,x='distance')
         plt.show()
           600
           500
           400
        Count
           300
           200
           100
             0
                                                                25
                                                                         30
                            5
                                                                                  35
                                    10
                                             15
                                                       20
```

In []: #Agrupando con bins para obtener
 #cierto número de barras
 sns.histplot(data=taxis,x='distance',bins=30)
 plt.show()

distance

Para ver el comportamiento acumulativo

```
In [ ]: #Seteandolo en verdadero
sns.histplot(data=taxis,x='distance',bins=30,cumulative=True)
plt.show()
```


In []: #Cambio de count a Frequency en eje Y
 sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='frequency')
 plt.show()

In []: #Trabajando con la probabilidad en Y
 sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='probability')
 plt.show()

In []: #Trabajando con percent en Y
 sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='percent')
 plt.show()
 #Porcentajes

In []: #Trabajando con density en Y
 sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='density')
 plt.show()

Count por default

```
In [ ]: #Trabajando con count en Y
    sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='count')
    plt.show()
```


Parametro multiple

```
In [ ]: #Trabajando con multiple = stack
sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='count',multiple='stack')
plt.show()
```



```
In [ ]: #Trabajando con multiple = layer
sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='count',multiple='layer')
plt.show()
```


In []: #Trabajando con multiple = dodge
sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='count',multiple='dodge')
plt.show()

Dodge: Uno a lado del otro

```
In []: #Trabajando con multiple = fill
sns.histplot(data=taxis,x='distance',bins=30,cumulative=False,hue='color',stat='count',multiple='fill')
plt.show()
```


El dodge es muy bueno porque permite hacer comparativas de las distribuciones

KDE Diagrama de Densidad

```
In [ ]: sns.kdeplot(data=taxis,x='distance',hue='color')
Out[ ]: <Axes: xlabel='distance', ylabel='Density'>
                                                                             color
          0.25
                                                                               yellow
                                                                               green
          0.20
       Density
0.15
          0.10
          0.05
          0.00
                                      10
                                                                     30
                                                      20
                                                                                     40
                                                distance
```

Este es diagrama de comportamiento de como se está coportando distance . Tanto por color yellow y por green .

Parece ser que hay mayor cantidad de taxis yellow que recorren mas distancia, y que la distancia más común recorrida está en un rango de 0 a 5

```
In []: #Acumulativo
sns.kdeplot(data=taxis,x='distance',hue='color',cumulative=True)
Out[]: <Axes: xlabel='distance', ylabel='Density'>
```



```
In [ ]: sns.kdeplot(data=taxis,x='distance',hue='color',shade=True)
       /tmp/ipykernel_35392/4017864630.py:1: FutureWarning:
       `shade` is now deprecated in favor of `fill`; setting `fill=True`.
       This will become an error in seaborn v0.14.0; please update your code.
         sns.kdeplot(data=taxis,x='distance',hue='color',shade=True)
```

Out[]: <Axes: xlabel='distance', ylabel='Density'>

Shade

El parametro shade parece que ya está obsoleto y hay que cambiarlo por fill . Este parametro lo que hace es rellenar el área debajo de la curva

```
In [ ]: sns.kdeplot(data=taxis,x='distance',hue='color',fill=True)
        plt.show()
```


ecdfplot

```
In [ ]: sns.ecdfplot(data=taxis,x='distance',hue='color')
    plt.show()
```


Esta es una gráfica escalonada de la proporción que tienen las diferentes distancias a lo largo de la frecuencia, con respecto al color.

```
In [ ]: #Stat= count
sns.ecdfplot(data=taxis,x='distance',hue='color',stat='count')
plt.show()
```


Esta es una de las grandes cosas de Seaborn

Diagrama de distribución

```
In [ ]: sns.displot(data=taxis,x='distance',hue='color')
   plt.show()
```


Me acaba de ejecutar un histograma

IMPORTANTE:

No te compliques demasiado y ajusta los parametros como en las gráficas anterioresm pero este tipo de gráfico, te ofrece una gran ventaja con kind y puedes ajustarlo a lo que trabajes para graficos de distribución. Simplemente especificandolo en kind

Aporte por Camilo Gonzalo Morales Sanchez

Se explica por partes como agregar mas de un grafica con seaborn, aplicando lo visto en clases anteriores


```
#importar librerias
import seaborn as sns
import matplotlib.pyplot as plt
#cargar La data
tips = sns.load_dataset('tips')
#subplots
fig, axes = plt.subplots(nrows=2,ncols=2, figsize = (12,8))
#seaborn en cada subsplots
# Subplot 1: Distribución de la cuenta total
sns.histplot(data=tips, x="total_bill", kde=True, ax=axes[0, 0])
axes[0, 0].set_title("Distribución de Total Bill")
# Subplot 2: cuenta por cada dia y cada sexo
sns.countplot(data = tips, x = 'day', hue = 'sex', ax=axes[0,1])
axes[0, 1].set_title("countplot Total Bill por Día")
# Subplot 3: Boxplot de la cuenta total vs día de la semana por cada sexo
sns.boxplot(data = tips, x= 'day', y='total_bill', hue='sex', dodge=True, ax=axes[1,0])
axes[1, 0].set_title("Boxplot Total Bill por Día")
# Subplot 4: violinplot de la cuenta total vs el dia de la semana por cada sexo
sns.violinplot(data = tips, x= 'day', y = 'total_bill', hue='sex', split= True, dodge= True, ax=axes[1,1])
axes[1, 1].set_title("violinplot Total Bill por Día")
# Ajustar espaciado entre subplots
plt.tight_layout()
# Mostrar los subplots
plt.show()
```

Referencias:

• Visualizing distributions of data