The European COVID-19 Forecasting Hub: Participation

As of 18 April 2023

We report on teams' involvement in the European COVID-19 Forecast Hub between 7 March 2021 and 16 April 2023. We exclude two models created by the Hub each week.

A total 46 independent teams have participated in the Hub over time, contributing 60 unique models. At most, 31 teams were contributing one or more models to the Hub in any one week. In the last month, we collected forecasts from 15 unique models.

Participating teams and models over time

Excludes Hub-generated models

Individual teams' participation

Complete model information

Model name	Authors	Team	Methods	Com plete meta data
AMM- EpiInvert	Luis Alvarez, Jean- David Morel, Jean- Michel Morel	AMM	Learning from the past a short time forecast of the COVID-19 incidence curve trend.	Meta data
BIOCOMSC -Gompertz	Martí Català, Enric Álvarez, Sergio Alonso, Daniel López, Clara Prats	BIOCOMSC	Empirical model based on cases and deaths dynamics.	Meta data
bisop- seirfilter	Martin Šmíd, Jan Trnka, Vít Tuček, Milan Zajíček	Centre for Modelling of Biological and Social Processes	please see https://www.medrxiv.org/content/1 0.1101/2021.02.16.21251834v1	Meta data
bisop- seirfilterlit e	Martin Šmíd, Jan Trnka, Vít Tuček, Milan Zajíček	Centre for Modelling of Biological and Social Processes	A simple stochastic SEIR state space model	Meta data
CovidMetri cs- epiBATS	Tom Zimmer mann, Arne Rodloff	University of Cologne Covid Metrics	Forecasts are based on TBATS - models (DeLivera, Hyndman and Snyder (2011)) and are updated daily for each German state.	Meta data

Model name	Authors	Team	Methods	Com plete meta data
DirkBeckm ann- Gompertz	Dr. Dirk Beckma nn	DirkBeckmann	gompertz model	Meta data
DSMPG- bayes	Sebastia n B. Mohr, Jonas Dehning, Viola Priesem ann	Priesemann Group, MPI-DS	Bayesian inference of SIR-dynamics	Meta data
ECDC- hosp_mod el	Rok Grah, Rene Niehus	ECDC Modelling Team	mechanistic estimation of hospitalisations using age disaggregated data of weekly cases, vaccination, and case hospitalisation rates	Meta data
epiforecast s-arimareg	Sophie Meakin	epiforecasts	A regression model forecasting admissions from 1-week-lagged cases, with ARIMA errors. Fit to weekly data.	Meta data
epiforecast s-caseconv	Sophie Meakin	epiforecasts	A convolution of cases and a delay distribution fit to weekly data.	Meta data
epiforecast s- EpiExpert	Nikos Bosse, Sam Abbott, Sebastia n Funk	Epiforecasts / London School of Hygiene and Tropical Medicine	Mean ensemble of human predictions	Meta data
epiforecast s- EpiExpert_ direct	Nikos Bosse, Sam Abbott, Sebastia n Funk	Epiforecasts / London School of Hygiene and Tropical Medicine	Mean ensemble of human predictions	Meta data
epiforecast s- EpiExpert_ Rt	Nikos Bosse, Sam Abbott, Sebastia n Funk	Epiforecasts / London School of Hygiene and Tropical Medicine	Mean ensemble of human predictions of Rt which get mapped to cases and deaths using a renewal equation	Meta data

Model name	Authors	Team	Methods	Com plete meta data
epiforecast s-EpiNow2	Nikos Bosse, Sam Abbott, Sebastia n Funk	Epiforecasts / London School of Hygiene and Tropical Medicine	Semi-mechanistic estimation of the time-varying reproduction number for latent infections mapped to reported cases/deaths.	Meta data
epiforecast s- tsensembl e	Sophie Meakin	epiforecasts	A mean ensemble of three autoregressive time series models (ARIMA, ETS and "naive" - future admissions are equal to the last observed week, with expanding uncertainty).	Meta data
epiforecast s- weeklygro wth	Sam Abbott	epiforecasts	A Bayesian autoregressive model using weekly incidence data, application of the forecast.vocs R package.	Meta data
epiMOX- SUIHTER	Giovanni Ardengh i, Giovanni Ziarelli, Luca Dede', Nicola Parolini, Alfio Quarter oni	epiMOX	Compartmental model SUIHTER	Meta data
EuroCOVI Dhub- baseline	Hugo Gruson	European COVID- 19 Forecast Hub	An baseline model against which other models can be evaluated	Meta data
EuroCOVI Dhub- ensemble	Katharin e Sherratt, Nikos Bosse, Sebastia n Funk	European COVID- 19 Forecast Hub	An ensemble, or model average, of submitted forecasts to the European COVID-19 Forecast Hub.	Meta data
FIAS_FZJ- Epi1Ger	Maria V. Barbaro	Frankfurt Institute for	An extended SEIR model with additional compartments for	Meta data

Model name	Authors	Team	Methods	Com plete meta data
	ssa, Jan Fuhrma nn, Stefan Krieg, Jan H. Meinke	Advanced Studies & Forschungszentru m Jülich	undetected cases	
fjordhest- ensemble	Sasi Kandula, Gunnar Rø, Birgitte de Blasio	fjordhest	An inverse-WIS weighted ensemble of a mechanistic model, two time series models (ARIMA, ETS) and a random walk with drift model.	Meta data
fohm-c19inbel	Sharon Kuhlma nn- Berenzo n, Martin Camitz	FD-AN, Folkhälsomyndigh eten	Negative binomial fit/projection on reported cases by age group, then converted to hospitalizations by risk assumptions updated circa monthly.	Meta data
GoeWroc- BaseBayes	Tobias Weber, Viktor Bezboro dov, Tyll Krueger, Dominic Schuhm acher	GoeWroc	A mixture between a SIR and Bayesian modelling approach, with regard to a possible spatial extension and local r values in later versions.	Meta data
HZI- AgeExtend edSEIR	Isti Rodiah, Berit Lange, Pratizio Vanella, Alexand er Kuhlma nn,	Helmholtz Zentrum fuer Infektionsforschu ng	Deterministic SEIR type model	Meta data

Model				Com plete meta
name	Authors	Team	Methods	data
	Wolfgan g Bock			
ICM-agentMode l	Rafał Bartczuk , Łukasz Górski, Magdale na Gruziel- Słomka, Artur Kaczore k, Jan Kisielew ski, Antoni Moszyńs ki, Karol Niedziel ewski, Jędrzej Nowosie lski, Maciej Radwan, Francisz ek Rakows ki, Marcin Semeniu k, Jakub Zieliński	ICM / University of Warsaw	Agent-based model	Meta data
IEM_Healt h- CovidProje ct	Brad Suchoski , Steve Stage, Heidi Gurung, Sid Baccam	IEM Health	SEIR model projections for daily incident confirmed COVID cases and deaths by using AI to fit actual cases observed.	Meta data

Model name	Authors	Team	Methods	Com plete meta data
ILM-EKF	Stefan Heyder, Thomas Hotz	ILM	Extended Kalman filter based on reproduction equation	Meta data
Imperial- DeCa	Sangeeta Bhatia, Pierre Nouvelle t	Imperial College London	Uses both cases and deaths to estimate an observed CFR. Projections are based on the estimated CFR.	Meta data
Imperial- RtI0	Sangeeta Bhatia, Pierre Nouvelle t	Imperial College London	Jointly estimates initial incidence and reproduction number	Meta data
Imperial- sbkp	Sangeeta Bhatia, Pierre Nouvelle t, Kris V Parag	Imperial College London	Optimises the window over which reproduction number is assumed to be constant.	Meta data
itwm- dSEIR	Jan Mohring, Neele Leithäus er, Michael Helmlin g	Fraunhofer Institute for Industrial Mathematics ITWM	Integral equation model based on age cohorts taking into account vaccination and testing. The parameters are adjusted to the counted cases and deaths.	Meta data
ITWW-county_rep ro	Przemys law Biecek, Viktor Bezboro dov, Marcin Bodych, Jan Pablo Burgard, Stefan	ITWW	Forecasts of county level incidence based on regional reproduction numbers.	Meta data

Model				Com plete meta
name	Authors	Team	Methods	data
	Heyder, Thomas Hotz, Tyll Krüger			
JBUD- HMXK	Jozef Budzins ki	JBUD	Heavily modified infection-age SIR-X model with waning immunity, vaccinations, seasonality and undetected cases.	Meta data
Karlen- pypm	Dean Karlen	Karlen Working Group	Discrete-time difference equations with long periods of constant transmission rate	Meta data
KITmetrics lab- bivar_bran ching	Johanne s Bracher	KITmetricslab	Delta-variant and other cases are modelled as independent branching processes, with weekly growth rates following random walks. Forecasts for 3 and 4 wk are likely unreliable.	Meta data
LANL- GrowthRat e	Dave Osthus, Sara Del Valle, Carrie Manore, Brian Weaver, Lauren Castro, Courtne y Shelley, Manhon g (Mandy) Smith, Julie Spencer, Geoffrey Fairchild , Travis Pitts,	Los Alamos National Labs	This model makes predictions about the future, unconditional on particular intervention strategies. Statistical dynamical growth model accounting for population susceptibility.	Metadata

Model name	Authors	Team	Methods	Com plete meta data
name	Dax Gerts, Lori Dauelsb erg, Ashlynn Daughto n, Morgan, Gorris, Beth Hornbei n, Daniel Israel, Nidhi Parikh, Deborah Shutt, Amanda Ziemann	Team	Methous	uata
LeipzigIMI SE-SECIR	Yuri Kheifetz, Holger Kirsten, Markus Scholz	Universitaet Leipzig IMISE/GenStat	SECIR type model	Meta data
MIMUW- StochSEIR	Anna Gambin, Krzyszto f Gogolew ski, Blażej Miasojed ow, Ewa Szczurek , Daniel Rabczen ko, Magdale na	Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw	Extended SEIR model	Meta data

Model				Com plete meta
name	Authors	Team	Methods	data
MIT_Covid Analytics- DELPHI	Rosińska Michael Lingzhi Li, Hamza Tazi Bouardi, Dimitris Bertsim as	CovidAnalytics at MIT	This model makes predictions for future cases based on a heavily modified SEIR model taking into account underdetection and government intervention. Current interventions are assumed to continue.	Meta data
MOCOS-agent1	Marek Bawiec, Marcin Bodych, Tyll Krueger, Tomasz Ozanski, Barbara Pabjan, Agata Migalska , Przemys law Biecek, Viktor Bezboro dov, Ewa Szczurek , Ewaryst Rafajłow icz, Ewa Rafajłow icz, Wojciec h Rafajłow icz	MOCOS group	Agent-based microsimulation model	Metadata
MUNI-	Andrea	Masaryk	ARIMA model with outlier detection	Meta

Model name	Authors	Team	Methods	Com plete meta data
ARIMA	Kraus, David Kraus	University	fitted to transformed weekly aggregated series.	data
MUNI- LaggedReg ARIMA	Andrea Kraus, David Kraus	Masaryk University	Regression of hospitalizations and deaths on lagged cases with ARIMA errors.	Meta data
MUNI-VAR	Andrea Kraus, David Kraus	Masaryk University	Vector autoregression model fitted to outlier-corrected transformed weekly aggregated series.	Meta data
MUNI_DMS -SEIAR	Veronik a Eclerova , Lenka Pribylov a	Department of Mathematics and Statistics Masaryk University Team	SEIAR model with A compartment of absent unobserved infected estimated from hospital data with incorporated mobility data dependence; optimized to the compartment of all exposed (unobserved included)	Meta data
PL_GRedla rski- DistrictsSu m	Grzegorz Redlarsk i	Grzegorz Redlarski	Modified SIR method, applied to all districts. Forecasts for districts are summed up.	Meta data
prolix- euclidean	Loïc Pottier	prolix	Offsets obtained by correlations, best linear approximation of reproduction rates (using vaccination approximation) by least euclidean distance, and linear prediction.	Meta data
RobertWal raven-ESG	Robert Walrave n	Robert Walraven	Multiple skewed gaussian distribution peaks fit to raw data	Meta data
SDSC_ISG- TrendMod el	Ekaterin a Krymov a, Dorina Thanou, Benjami n Bejar Haro, Tao Sun, Gavin Lee,	Swiss Data Science Center / University of Geneva	The Trend Model predicts daily cases and deaths using linear extrapolation on the linear or log scale of the underlying trend estimated by a robust LOESS seasonal-trend decomposition model.	Meta data

Model name	Authors	Team	Methods	Com plete meta data
	Elisa Manetti, Christin e Choirat, Antoine Flahault,	70000		<u>uuuu</u>
	Guillaum e Obozins ki			
SGroup- RandomFo rest	Ajitesh Srivasta va, Majd Al Aawar	Srivastava Group	Random Forest ensemble of the predictors generated from the USC-SIkJalpha submission.	Meta data
Statgroup1 9-richards	Pierfran cesco Alaimo Di Loro, Fabio Divino, Alessio Farcome ni, Giovann a Jona Lasinio, Antonell o Maruotti , Marco Mingion e, Gianfran co Lovison	Statgroup19	Richards' curve based generalized growth model	Meta data
Statgroup1 9- spatialrich	Pierfran cesco Alaimo Di Loro,	Statgroup19	Richards' curve based generalized growth model taking into account spatial dependence	Meta data

Model name	Authors	Team	Methods	Com plete meta data
ards	Fabio Divino, Alessio Farcome ni, Giovann a Jona Lasinio, Antonell o Maruotti , Marco Mingion e, Gianfran co Lovison			
UB- BSLCoV	David Moriña	UB	Bayesian synthetic likelihood estimation for underreported non- stationary time series	Meta data
UC3M- EpiGraph	David E. Singh, Miguel Guzman Merino, Maria Cristina Marines cu, Jesus Carreter o, Alberto Cascajo Garcia	Universidad Carlos III de Madrid	Agent-based parallel simulator that models individual interactions extracted from social networks and demographical data.	Meta data
ULZF- SEIRC19SI	Janez Zibert	University of Ljubljana, Faculty of Health Sciences Team	SEIHR model extended with compartments for hospitals, intensive care units, asymptomatic cases, separate submodels for vaccinated and unvaccinated, divided to 5 age subgroups of population	Meta data

Model name	Authors	Team	Methods	Com plete meta data
UMass- MechBayes	Dan Sheldon, Graham Gibson, Nick Reich	UMass-Amherst	Bayesian compartmental model with observations on cumulative case counts and cumulative deaths. Model is fit independently to each state. Model includes observation noise and a case detection rate.	Meta data
UMass- SemiMech	Dan Sheldon, Graham Gibson, Nick Reich	UMass-Amherst	Bayesian semi-compartmental model with observations on incident case counts and incident deaths. Model is fit independently to each state. Model includes observation noise and a case detection rate.	Meta data
UNED- PreCoV2	José L. Aznarte, César Pérez, José Almagro, Pedro Álvarez, Álvaro Ortiz, Fernand o Blat	UNED	Bayesian time series models with ARIMA noise and fixed transfer functions for each input.	Meta data
UNIPV- BayesINGA RCHX	Paolo Giudici, Barbara Tarantin o	UNIPV Periscope Working Group	Bayesian estimation of time- dependent models with time-varying coefficients to predict COVID-19 positive counts.	Meta data
UpgUmibU si- MultiBayes	Francesc o Bartoluc ci, Fulvia Pennoni, Antoniet ta Mira	UNIPG_UNIMIB_U SI_UNINSUBRIA	Bayesian Dirichlet-Multinomial models for counts of patients in mutually exclusive and exhaustive categories such as hospitalized in regular wards and in intensive care units, deceased and recovered	Meta data
USC- SIkJalpha	Ajitesh Srivasta va, Frost Tianjian	University of Southern California	A heterogeneous infection rate model with human mobility for epidemic modeling. Our model adapts to changing trends and provide	Meta data

Model	A dha a	T	Marila a Ja	Com plete meta
name	Authors Xu	Team	Methods predictions of confirmed cases and deaths.	data
USyd- OneModel Man	Pablo Montero Manso	University of Sydney Forecast Lab	A single autoregressive model fit jointly to all European time series, adding time series from the top regions across the world. A high-dimensional manifold embedding is used capture the process.	Meta data
UVA- Ensemble	Anirudd ha Adiga, Lijing Wang, Srinivas an Venkatr amanan, Akhil Sai Peddire ddy, Benjami n Hurt, Przemys law Porebski , Bryan Lewis, Madhav Marathe, Jiangzho u Chen, Anil Vullikan ti	University of Virginia, Biocomplexity COVID-19 Response Team	An ensemble of multiple methods such as auto-regressive (AR)models with exogenous variables, Long short-term memory (ISTM) models, Kalman filter and PatchSim (an SEIR model).	Metadata