Ekološko modeliranje i predviđanje

Ime Prezime Autora

1. listopada 2025.

Sadržaj

Sadrzaj					
1	Uvod u ekološko modeliranje				
	1.1	Što je ekološki model?	1		
	1.2	Povijest ekološkog modeliranja	1		
	1.3	Svrha i primjena modela	1		
	1.4	Vrste modela	1		
2	Matematičke osnove za modeliranje 3				
	2.1	Diferencijalne jednadžbe	3		
	2.2	Matrična algebra	3		
	2.3	Osnove vjerojatnosti i statistike	3		
3	Modeli populacijske dinamike 5				
	3.1	Eksponencijalni rast	5		
	3.2	Logistički rast	5		
	3.3	Modeli Lotka-Volterra (predator-plijen)	5		
	3.4	Strukturirani modeli populacija	5		
4	Modeli interakcija među vrstama 7				
	4.1	Kompeticija	7		
	4.2	Mutualizam i parazitizam	7		
5	Modeli ekosustava				
	5.1	Protok energije i kruženje tvari	9		
	5.2	Modeli hranidbenih mreža	9		
	5.3	Prostorni modeli	9		
6	Validacija i analiza modela				
	6.1	Kalibracija modela	11		
	6.2	Validacija i verifikacija	11		
	6.3	Analiza osjetljivosti i nesigurnosti	11		
7	Predviđanje u ekologiji				
	7.1	Izazovi ekološkog predviđanja	13		
	7.2	Modeliranje scenarija	13		
	7.3	Primjeri: klimatske promjene i biodiverzitet	13		
Δ	Osn	nove softvera za modeliranje	15		

ii	$SADR\check{Z}$	ŽΑJ

Bibliografija 17

Uvod u ekološko modeliranje

1.1 Što je ekološki model?

Ekološki model je apstraktna, obično matematička, reprezentacija ekološkog sustava. Cilj modela je pojednostaviti složene interakcije u prirodi kako bi se lakše razumjele, analizirale i predvidjele. Modeli mogu varirati od jednostavnih jednadžbi koje opisuju rast populacije do složenih simulacija koje obuhvaćaju cijele ekosustave.

1.2 Povijest ekološkog modeliranja

Povijest ekološkog modeliranja seže u rano 20. stoljeće s radovima Lotke i Volterre na modelima predator-plijen. Razvoj računalne tehnologije u drugoj polovici 20. stoljeća omogućio je razvoj znatno složenijih simulacijskih modela.

1.3 Svrha i primjena modela

Modeli se u ekologiji koriste za:

- Razumijevanje temeljnih ekoloških procesa.
- Predviđanje budućih stanja ekosustava (npr. utjecaj klimatskih promjena).
- Upravljanje resursima (npr. održivo ribarstvo).
- Testiranje hipoteza koje je teško ili nemoguće provjeriti u stvarnom svijetu.

1.4 Vrste modela

Ekološke modele možemo podijeliti u nekoliko kategorija:

- Analitički modeli: Sastoje se od jednadžbi čija se rješenja mogu pronaći u zatvorenom obliku.
- Simulacijski (numerički) modeli: Rješavaju se pomoću računala korak po korak.

- Deterministički vs. stohastički modeli: Deterministički modeli daju isti izlaz za iste ulazne parametre, dok stohastički uključuju element slučajnosti.
- Prostorno eksplicitni vs. implicitni modeli: Eksplicitni modeli uzimaju u obzir točnu lokaciju jedinki ili resursa.

Matematičke osnove za modeliranje

2.1 Diferencijalne jednadžbe

Mnogi ekološki procesi, poput rasta populacije, opisuju se kao promjene tijekom vremena. Diferencijalne jednadžbe su ključan alat za to. Primjerice, eksponencijalni rast populacije (N) opisuje se jednadžbom:

$$\frac{dN}{dt} = rN$$

gdje je r stopa rasta.

2.2 Matrična algebra

Matrična algebra je neophodna za modele koji prate populacije strukturirane po dobi ili stadijima (npr. Leslie matrice). Matrica prijelaza opisuje vjerojatnosti preživljavanja i reprodukcije različitih dobnih skupina.

2.3 Osnove vjerojatnosti i statistike

Statistički alati koriste se za procjenu parametara modela iz stvarnih podataka i za analizu nesigurnosti. Stohastički modeli izravno ugrađuju vjerojatnosne procese.

Modeli populacijske dinamike

3.1 Eksponencijalni rast

Model neograničenog rasta, primjenjiv u idealnim uvjetima bez ograničenja resursa.

$$N(t) = N_0 e^{rt}$$

gdje je N_0 početna veličina populacije.

3.2 Logistički rast

Realističniji model koji uključuje kapacitet okoliša (K). Rast se usporava kako se populacija približava kapacitetu.

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

3.3 Modeli Lotka-Volterra (predator-plijen)

Klasičan model koji opisuje cikličke oscilacije u populacijama predatora (P) i plijena (V):

$$\frac{dV}{dt} = rV - \alpha VP$$
$$\frac{dP}{dt} = \beta VP - qP$$

3.4 Strukturirani modeli populacija

Ovi modeli dijele populaciju u klase (npr. dob, veličina) i prate dinamiku svake klase zasebno, što omogućuje detaljniji uvid u populacijsku dinamiku.

Modeli interakcija među vrstama

4.1 Kompeticija

Modeli kompeticije, poput proširenog Lotka-Volterra modela, analiziraju kako dvije ili više vrsta koje koriste iste ograničene resurse utječu jedna na drugu.

4.2 Mutualizam i parazitizam

Matematički modeli mogu opisati i pozitivne interakcije (mutualizam) ili interakcije gdje jedna vrsta ima koristi na štetu druge (parazitizam).

Modeli ekosustava

5.1 Protok energije i kruženje tvari

Ovi modeli prate kretanje energije i nutrijenata (npr. ugljika, dušika) kroz različite trofičke razine i komponente ekosustava.

5.2 Modeli hranidbenih mreža

Analiziraju strukturu i stabilnost složenih mreža interakcija predatora i plijena unutar zajednice.

5.3 Prostorni modeli

Uključuju prostornu dimenziju, modelirajući kako se populacije i resursi raspoređuju i kreću u prostoru (npr. metapopulacijski modeli, modeli krajolika).

Validacija i analiza modela

6.1 Kalibracija modela

Proces podešavanja parametara modela kako bi izlaz modela što bolje odgovarao opaženim, stvarnim podacima.

6.2 Validacija i verifikacija

Validacija je provjera podudara li se model sa stvarnim svijetom, dok je verifikacija provjera radi li model kako je zamišljeno (npr. je li kod ispravan).

6.3 Analiza osjetljivosti i nesigurnosti

Analiza osjetljivosti ispituje kako promjene u ulaznim parametrima utječu na izlaz modela. Analiza nesigurnosti kvantificira pouzdanost predviđanja modela.

Predviđanje u ekologiji

7.1 Izazovi ekološkog predviđanja

Ekološki sustavi su složeni, nelinearni i podložni slučajnim događajima, što predviđanje čini iznimno teškim.

7.2 Modeliranje scenarija

Koristi se za istraživanje mogućih budućih ishoda pod različitim pretpostavkama (npr. različiti scenariji klimatskih promjena, politike upravljanja).

7.3 Primjeri: klimatske promjene i biodiverzitet

Modeli se koriste za predviđanje kako će klimatske promjene utjecati na rasprostranjenost vrsta, stabilnost ekosustava i bioraznolikost.

Dodatak A

Osnove softvera za modeliranje

Kratak pregled popularnih alata za ekološko modeliranje:

- R: Snažan statistički jezik s brojnim paketima za ekološko modeliranje.
- Python: Svestran programski jezik s bibliotekama kao što su NumPy i SciPy.
- NetLogo: Platforma za modeliranje temeljeno na agentima.

Bibliografija

- [1] Lotka, A. J. (1925). Elements of physical biology. Williams & Wilkins Company.
- [2] Volterra, V. (1926). Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem. R. Accad. Naz. dei Lincei, 2, 31-113.
- [3] Gotelli, N. J. (2008). A primer of ecology. Sinauer Associates.