CS711A Assignment 2

Manthan Sit

1 Question 1

1.1

P_1'	\hat{P}_2
b	c
a	a
$^{\mathrm{c}}$	b

The function is Strategy Proof and onto $\{a, b, c\}$ and also $f(P) \in \{P_1(1), P_2(1)\}$ s. t. $f(P_1, P_2) = a$.

We need to show that $f(P'_1, P'_2) = b$.

Going be contradiction, assume that $f(P'_1, P'_2) = a$. Consider a preference profile (P'_1, \hat{P}_2) as follows:

If $f((P'_1, \hat{P}_2) = b$, then Player 2 manipulates from P'_2 to \hat{P}_2 to change the outcome to a. Knowing it to be strategy proof, the value has to c.

For $(P'_1, \hat{P}_2) \to (P_1, P_2)$, $D(c, P_1) = D(c, P'_1) = \phi$, and $D(c, P_2) = D(c, \hat{P}_1) = \{a, b\}$.

Since $f(P'_1, \hat{P}_2) = c$, we have $f(P_1, P_2) = c$, because the stategy proof social choice function is monotonic.

But since $f(P_1, P_2) = a$, we arrive at a contradiction. Hence, our assumption is false and value is b.

1.2

Supposing these preferences are generated from a single-peaked preference domain with the intrinsic ordering of the alternatives being a < b < c, it doesn't hold. It is because for \hat{P}_2 , b cannot be the lowest preference since it makes it single peaked.

Since the conclusion is false, a mechanism that can have f(P1,P2) = a can be done using the Median Voter Social Choice Function (MVSCF). As every MVSCF is Strategy Proof and onto, f is the same.

Now consider, MV SCF selects the leftmost peak among the preference profiles. In our case, a is that corresponding peak.