Introducción a los Sistemas Operativos

Práctica 6 Repaso inodos

¿Qué es un inodo?

Estructura auxiliar que permite, en la mayoría de los sistemas de archivos de sistemas operativos *nix, referenciar los archivos y acceder a ellos.

¿Qué es un inodo?

- •Información de bajo nivel sobre archivos (regulares, directorios, enlaces).
- Se identifica con un número.
- •Contiene:
 - -Metainformación del archivo.
 - -Punteros a los bloques de datos en el disco que conforman el archivo.

Un disco puede estar lleno y tener espacio libre a la vez.

Un disco puede estar lleno y tener espacio libre a la vez.

Puede quedarse sin inodos libres, por lo que no podrían crearse nuevos archivos, pero aún así tener espacio libre.

- •Metainformación (la obviaremos por simplicidad).
- •4 direcciones a los bloques de datos:
 - -2 de direccionamiento directo (DD).
 - 1 de direccionamiento indirecto simple (DIS).
 - 1 de direccionamiento indirecto doble (DID).

(Metainformación)

Puntero a bloque de datos (DD)

Puntero a bloque de datos (DD)

Puntero a bloque de direcciones (DIS)

Puntero a bloque de direcciones (DID)

Cada dirección es de 64 bits.

(Metainformación)	(obviado)
Puntero a bloque de datos (DD)	64 bits
Puntero a bloque de datos (DD)	64 bits
Puntero a bloque de direcciones (DIS)	64 bits
Puntero a bloque de direcciones (DID)	64 bits

Tamaño del inodo: $4 \times 64 \text{ bits} = 256 \text{ bits}$

Cada bloque es de 2 Kib.

¿Cuántos inodos puede contener un bloque de disco?

Cada bloque es de 2 Kib.

2 Kib ÷ 256 bits = 8 inodos por bloque.

Cada bloque es de 2 Kib.

Cada dirección es de 64 bits.

2 Kib \div 64 bits = 32 direcciones por bloque.

¿Cuál es el tamaño de archivo máximo que admite esta estructura?

Cual es el tamaño de archivo máximo que admite esta estructura?

- 2 punteros a bloque de datos (DD) +
- 1 puntero a bloque de direcciones que apuntan a bloques de datos (DIS) +
- 1 puntero a bloque de direcciones que apuntan a bloques de direcciones, que apuntan a

bloques de datos (DID)

¿Cuál es el tamaño de archivo máximo que admite esta estructura?

2 x 2 Kib (DD) +

1 x 32 x 2 Kib (DIS) +

1 x 32 x 32 x 2 Kib (DID)

¿Cuál es el tamaño de archivo máximo que admite esta estructura?

4 Kib + 64 Kib + 2048 Kib= 2116 Kib

= 264.5 KiB

