

• Estimar duração

- Estimar duração
- Estimar tamanho máximo da entrada

- Estimar duração
- Estimar tamanho máximo da entrada
- Comparar algoritmos

- Estimar duração
- Estimar tamanho máximo da entrada
- Comparar algoritmos
- Partes do código para melhorar

- Estimar duração
- Estimar tamanho máximo da entrada
- Comparar algoritmos
- Partes do código para melhorar
- Escolher algoritmo

- Estimar duração
- Estimar tamanho máximo da entrada
- Comparar algoritmos
- Partes do código para melhorar
- Escolher algoritmo
 - Tamanho até 6 não precisa otimizar

- Estimar duração
- Estimar tamanho máximo da entrada
- Comparar algoritmos
- Partes do código para melhorar
- Escolher algoritmo
 - Tamanho até 6 não precisa otimizar
 - ullet Tamanho \sim 1000, garanta que não é exponencial

- Estimar duração
- Estimar tamanho máximo da entrada
- Comparar algoritmos
- Partes do código para melhorar
- Escolher algoritmo
 - Tamanho até 6 não precisa otimizar
 - ullet Tamanho \sim 1000, garanta que não é exponencial
 - ullet Tamanho \sim 1 bilhão, garanta tempo linear

Complexidade de tempo T(n): total de operações executadas pelo algoritmo, em função do tamanho da entrada n.

Complexidade de tempo T(n): total de operações executadas pelo algoritmo, em função do tamanho da entrada n.

• Assumimos que as operações gastam o mesmo tempo.

Complexidade de tempo T(n): total de operações executadas pelo algoritmo, em função do tamanho da entrada n.

- Assumimos que as operações gastam o mesmo tempo.
- Então basta contar o total de operações.

Complexidade de tempo T(n): total de operações executadas pelo algoritmo, em função do tamanho da entrada n.

- Assumimos que as operações gastam o mesmo tempo.
- Então basta contar o total de operações.
- Ex.: $T(n) = 3n^2 + 7n + 23$.

Complexidade de tempo T(n): total de operações executadas pelo algoritmo, em função do tamanho da entrada n.

- Assumimos que as operações gastam o mesmo tempo.
- Então basta contar o total de operações.
- Ex.: $T(n) = 3n^2 + 7n + 23$.

Complexidade de espaço S(n): total de memória necessária para executar o algoritmo, em função do tamanho da entrada n.

Algoritmo P_1 demanda $T_1(n)=n^4$ operações, e P_2 demanda $T_2(n)=2^n$ operações.

Algoritmo P_1 demanda $T_1(n)=n^4$ operações, e P_2 demanda $T_2(n)=2^n$ operações. A máquina executa 10^6 operações por segundo.

Algoritmo P_1 demanda $T_1(n) = n^4$ operações, e P_2 demanda $T_2(n) = 2^n$ operações. A máquina executa 10^6 operações por segundo. Se n = 1000, qual é o tempo de execução destes algoritmos?

Algoritmo P_1 demanda $T_1(n) = n^4$ operações, e P_2 demanda $T_2(n) = 2^n$ operações. A máquina executa 10⁶ operações por segundo. Se n = 1000, qual é o tempo de execução destes algoritmos?

$$Velocidade (oper/seg) = \frac{Complexidade (oper)}{Tempo (seg)}$$

$$) = \frac{\text{Tempo (seg)}}{\text{Tempo (seg)}}$$

Algoritmo P_1 demanda $T_1(n) = n^4$ operações, e P_2 demanda $T_2(n) = 2^n$ operações. A máquina executa 10^6 operações por segundo.

Se n = 1000, qual é o tempo de execução destes algoritmos?

$$\mathsf{Velocidade}\;(\mathsf{oper/seg}) = \frac{\mathsf{Complexidade}\;(\mathsf{oper})}{\mathsf{Tempo}\;(\mathsf{seg})}$$

Tempo (seg)
$$T_1(n)/10^6 = (1000)^4/10^6 = 10^6 \text{ segundos } (11.6 \text{ dias}).$$

Algoritmo P_1 demanda $T_1(n) = n^4$ operações, e P_2 demanda $T_2(n) = 2^n$ operações. A máquina executa 10⁶ operações por segundo.

Se n = 1000, qual é o tempo de execução destes algoritmos?

$$Velocidade (oper/seg) = \frac{Complexidade (oper)}{Tempo (seg)}$$

$$T_1(n)/10^6 = (1000)^4/10^6 = 10^6 \text{ segundos (11.6 dias)}.$$

$$T_2(n)/10^6 = 2^{1000}/10^6 \approx 1{,}07 \times 10^{295}$$
 segundos (1,24 × 10²⁹⁰ dias).

Obs.: número de partículas no universo é cerca de 10⁸⁰.

Algoritmo P_1 demanda $T_1(n) = n^4$ operações, e P_2 demanda $T_2(n) = 2^n$ operações. A máquina executa 10^6 operações por segundo.

Se n = 1000, qual é o tempo de execução destes algoritmos?

 $T_1(n)/10^6 = (1000)^4/10^6 = 10^6$ segundos (11.6 dias).

$$\mathsf{Velocidade} \; \mathsf{(oper/seg)} = rac{\mathsf{Complexidade} \; \mathsf{(oper)}}{\mathsf{Tempo} \; \mathsf{(seg)}}$$

$$T_2(n)/10^6 = 2^{1000}/10^6 \approx 1{,}07 \times 10^{295}$$
 segundos (1,24 × 10²⁹⁰ dias). Obs.: número de partículas no universo é cerca de 10⁸⁰.

Dizemos que P_1 é *viável* (polinomial), e que P_2 é *inviável* (exponencial).

Ignoramos constantes multiplicativas.

$$T(n) = \underbrace{a_1 \cdot f_1(n)}_{\text{termo}} + \underbrace{a_2 \cdot f_2(n)}_{\text{termo}} + \underbrace{a_3 \cdot f_3(n)}_{\text{termo}}$$

Ex.:
$$T(n) = 3n^2 + 7n + 23 \approx n^2 + n$$
.

Ignoramos constantes multiplicativas.

$$T(n) = \underbrace{a_1 \cdot f_1(n)}_{\text{termo}} + \underbrace{a_2 \cdot f_2(n)}_{\text{termo}} + \underbrace{a_3 \cdot f_3(n)}_{\text{termo}}$$

Ex.:
$$T(n) = 3n^2 + 7n + 23 \approx n^2 + n$$
.

Por que?

 $Ignoramos\ constantes\ multiplicativas.$

$$T(n) = \underbrace{a_1 \cdot f_1(n)}_{\text{termo}} + \underbrace{a_2 \cdot f_2(n)}_{\text{termo}} + \underbrace{a_3 \cdot f_3(n)}_{\text{termo}}$$

Ex.:
$$T(n) = 3n^2 + 7n + 23 \approx n^2 + n$$
.

Por que?

Dependem do modelo

Ignoramos constantes multiplicativas.

$$T(n) = \underbrace{a_1 \cdot f_1(n)}_{\text{termo}} + \underbrace{a_2 \cdot f_2(n)}_{\text{termo}} + \underbrace{a_3 \cdot f_3(n)}_{\text{termo}}$$

Ex.:
$$T(n) = 3n^2 + 7n + 23 \approx n^2 + n$$
.

Por que?

- Dependem do modelo
- Muito trabalho e pouco significativo (n^2 vs n^3 mais significativo que n^2 vs $3n^2$)

Ignoramos constantes multiplicativas.

$$T(n) = \underbrace{a_1 \cdot f_1(n)}_{\text{termo}} + \underbrace{a_2 \cdot f_2(n)}_{\text{termo}} + \underbrace{a_3 \cdot f_3(n)}_{\text{termo}}$$

Ex.:
$$T(n) = 3n^2 + 7n + 23 \approx n^2 + n$$
.

Por que?

- Dependem do modelo
- Muito trabalho e pouco significativo (n^2 vs n^3 mais significativo que n^2 vs $3n^2$)

Obs.: Constantes são importantes em algoritmos muito utilizados.

Ignoramos termos de menor crescimento.

$$T(n) = \underbrace{a_1 \cdot f_1(n)}_{\text{termo}} + \underbrace{a_2 \cdot f_2(n)}_{\text{termo}} + \underbrace{a_3 \cdot f_3(n)}_{\text{termo}}$$

Ignoramos termos de menor crescimento.

$$T(n) = \underbrace{a_1 \cdot f_1(n)}_{\text{termo}} + \underbrace{a_2 \cdot f_2(n)}_{\text{termo}} + \underbrace{a_3 \cdot f_3(n)}_{\text{termo}}$$

Ex.:
$$T(n) = 3n^2 + 7n + 23 \approx n^2 + n \approx n^2$$
.

Ignoramos termos de menor crescimento.

$$T(n) = \underbrace{a_1 \cdot f_1(n)}_{\text{termo}} + \underbrace{a_2 \cdot f_2(n)}_{\text{termo}} + \underbrace{a_3 \cdot f_3(n)}_{\text{termo}}$$

Ex.:
$$T(n) = 3n^2 + 7n + 23 \approx n^2 + n \approx n^2$$
.

As duas simplificações são formalizadas pelas notações assintóticas (ex.: Θ , O).

• Tamanho da entrada: quantidade de bits necessários para codificá-la.

- Tamanho da entrada: quantidade de bits necessários para codificá-la.
- Quantos bits são necessário para codificar o valor inteiro positivo v?

- Tamanho da entrada: quantidade de bits necessários para codificá-la.
- Quantos bits são necessário para codificar o valor inteiro positivo v? Como 2^{n-1} é o menor valor v com n bits,

$$2^{n-1} \le v < 2^n$$

- Tamanho da entrada: quantidade de bits necessários para codificá-la.
- Quantos bits são necessário para codificar o valor inteiro positivo v? Como 2^{n-1} é o menor valor v com n bits,

$$2^{n-1} \le v < 2^n \quad \Rightarrow \quad n-1 \le \log_2 v < n$$

- Tamanho da entrada: quantidade de bits necessários para codificá-la.
- Quantos bits são necessário para codificar o valor inteiro positivo v? Como 2^{n-1} é o menor valor v com n bits,

$$2^{n-1} \le v < 2^n \quad \Rightarrow \quad n-1 \le \log_2 v < n \quad \Rightarrow \quad n = \lfloor \log_2 v \rfloor + 1 \approx \log_2 v$$

- Tamanho da entrada: quantidade de bits necessários para codificá-la.
- Quantos bits são necessário para codificar o valor inteiro positivo v? Como 2^{n-1} é o menor valor v com n bits,

$$2^{n-1} \le v < 2^n \quad \Rightarrow \quad n-1 \le \log_2 v < n \quad \Rightarrow \quad n = \lfloor \log_2 v \rfloor + 1 \approx \log_2 v$$

Ex.: Entrada com valor 1 bilhão tem tamanho $n = \lfloor \log_2 10^9 \rfloor + 1 = 30$ bits.

- Tamanho da entrada: quantidade de bits necessários para codificá-la.
- Quantos bits são necessário para codificar o valor inteiro positivo v? Como 2^{n-1} é o menor valor v com n bits,

$$2^{n-1} \le v < 2^n \quad \Rightarrow \quad n-1 \le \log_2 v < n \quad \Rightarrow \quad n = \lfloor \log_2 v \rfloor + 1 \approx \log_2 v$$

• Se recebe valor v como entrada e gasta T(n) = v, seu tempo de execução é linear?

- Tamanho da entrada: quantidade de bits necessários para codificá-la.
- Quantos bits são necessário para codificar o valor inteiro positivo v? Como 2^{n-1} é o menor valor v com n bits,

$$2^{n-1} \le v < 2^n \quad \Rightarrow \quad n-1 \le \log_2 v < n \quad \Rightarrow \quad n = \lfloor \log_2 v \rfloor + 1 \approx \log_2 v$$

• Se recebe valor v como entrada e gasta T(n) = v, seu tempo de execução é linear? Não, pois $T(n) = v \approx 2^n$ (exponencial em n).

- P_1 : soma os V inteiros em um array.
- P_2 : checa se um inteiro V é divisível por 2, por 3, ... até V.

- P_1 : soma os V inteiros em um array.
- P_2 : checa se um inteiro V é divisível por 2, por 3, ... até V.

Os dois realizam V-1 operações (adições ou divisões).

- P_1 : soma os V inteiros em um array.
- P_2 : checa se um inteiro V é divisível por 2, por 3, ... até V.
- Os dois realizam V-1 operações (adições ou divisões). P_1 é considerado *viável*, enquanto P_2 é considerado *inviável*. Por que?

- P_1 : soma os V inteiros em um array.
- P_2 : checa se um inteiro V é divisível por 2, por 3, ... até V.

Os dois realizam V-1 operações (adições ou divisões). P_1 é considerado *viável*, enquanto P_2 é considerado *inviável*. Por que?

Supondo inteiros de 64 bits, o tamanho da entrada para P_1 vale n=64V.

• P_1 : soma os V inteiros em um array.

• P_2 : checa se um inteiro V é divisível por 2, por 3, ... até V.

Os dois realizam V-1 operações (adições ou divisões).

 P_1 é considerado *viável*, enquanto P_2 é considerado *inviável*. Por que?

Supondo inteiros de 64 bits, o tamanho da entrada para P_1 vale n=64V. Concluímos que $T_1(n)=V-1=\frac{1}{64}n-1$ (linear).

 \bullet P_1 : soma os V inteiros em um array.

• P_2 : checa se um inteiro V é divisível por 2, por 3, ... até V.

Os dois realizam V-1 operações (adições ou divisões). P_1 é considerado *viável*, enquanto P_2 é considerado *inviável*. Por que?

Supondo inteiros de 64 bits, o tamanho da entrada para P_1 vale n=64V. Concluímos que $T_1(n)=V-1=\frac{1}{64}n-1$ (linear).

Em P_2 o tamanho da entrada é o número de bits de V, ou seja $n \approx \log_2 V$.

• P_1 : soma os V inteiros em um array.

• P_2 : checa se um inteiro V é divisível por 2, por 3, ... até V.

Os dois realizam V-1 operações (adições ou divisões). P_1 é considerado *viável*, enquanto P_2 é considerado *inviável*. Por que?

Supondo inteiros de 64 bits, o tamanho da entrada para P_1 vale n=64V. Concluímos que $T_1(n)=V-1=\frac{1}{64}n-1$ (linear).

Em P_2 o tamanho da entrada é o número de bits de V, ou seja $n \approx \log_2 V$. Concluímos que $T(n)_2 = V - 1 \approx 2^n - 1$ (exponencial).

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

Ex.: Quantidade de dígitos de um número inteiro v.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

Ex.: Quantidade de dígitos de um número inteiro v.

Quantidade de bits $\approx \log_2 v$

Quantidade de dígitos $\approx \log_{10} v$

$$\log_{10} v = \left(\frac{1}{\log_2 10}\right) \times \log_2 v$$

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

Ex.: Tupla $\langle x_1, x_2, \dots, x_n \rangle$ com *n* elementos, cada um com aproximadamente *C* bits.

• Total de bits $\approx C \cdot n$.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

- Total de bits $\approx C \cdot n$.
- Então podemos usar *n* como tamanho da entrada.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

- Total de bits $\approx C \cdot n$.
- Então podemos usar *n* como tamanho da entrada.
- Ex.: vetor de inteiros, cada um com 32 bits.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

- Total de bits $\approx C \cdot n$.
- Então podemos usar *n* como tamanho da entrada.
- Ex.: vetor de inteiros, cada um com 32 bits.
- Ex.: strings, cada caractere com 8 bits.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

Ex.: Grafo com n vértices e m arestas.

• Tamanho depende da implementação.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

- Tamanho depende da implementação.
- Array de arestas ocupa $2 \log_2 n$ bits por aresta, totalizando $m \times 2 \log_2(n)$ bits.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

- Tamanho depende da implementação.
- Array de arestas ocupa $2 \log_2 n$ bits por aresta, totalizando $m \times 2 \log_2(n)$ bits.
- Matriz de adjacências ocupa n^2 bits.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

- Tamanho depende da implementação.
- Array de arestas ocupa $2 \log_2 n$ bits por aresta, totalizando $m \times 2 \log_2(n)$ bits.
- Matriz de adjacências ocupa n^2 bits.
- Lista de adjacências ocupa $P \cdot n$ bits no array de ponteiros, e $(\log_2(n) + P) \times m$ nos elementos das listas, totalizando $P \cdot n + (\log_2(n) + P)m$ bits.

Definições equivalentes: produzem aproximadamente uma constante vezes o total de bits.

- Tamanho depende da implementação.
- Array de arestas ocupa $2 \log_2 n$ bits por aresta, totalizando $m \times 2 \log_2(n)$ bits.
- Matriz de adjacências ocupa n^2 bits.
- Lista de adjacências ocupa $P \cdot n$ bits no array de ponteiros, e $(\log_2(n) + P) \times m$ nos elementos das listas, totalizando $P \cdot n + (\log_2(n) + P)m$ bits.
- Para simplificar, costuma-se usar m ou n + m como tamanho do grafo.

Ex.: Ordenação por inserção: $\sim n$ para ordem crescente, e $\sim n^2$ para ordem decrescente.

Ex.: Ordenação por inserção: $\sim n$ para ordem crescente, e $\sim n^2$ para ordem decrescente.

Das 2^n entradas possíveis, qual considerar na análise?

Ex.: Ordenação por inserção: $\sim n$ para ordem crescente, e $\sim n^2$ para ordem decrescente.

Das 2^n entradas possíveis, qual considerar na análise?

• Entrada típica: para qual aplicação?

Ex.: Ordenação por inserção: $\sim n$ para ordem crescente, e $\sim n^2$ para ordem decrescente.

Das 2^n entradas possíveis, qual considerar na análise?

- Entrada típica: para qual aplicação?
- Caso médio: todas têm a mesma chance de ocorrer?

Ex.: Ordenação por inserção: $\sim n$ para ordem crescente, e $\sim n^2$ para ordem decrescente.

Das 2^n entradas possíveis, qual considerar na análise?

- Entrada típica: para qual aplicação?
- Caso médio: todas têm a mesma chance de ocorrer?
- Pior caso: é um caso típico?

Ex.: Ordenação por inserção: $\sim n$ para ordem crescente, e $\sim n^2$ para ordem decrescente.

Das 2^n entradas possíveis, qual considerar na análise?

- Entrada típica: para qual aplicação?
- Caso médio: todas têm a mesma chance de ocorrer?
- Pior caso: é um caso típico?

Costuma-se usar a análise de pior caso.

Menor número possível de operações para resolver uma instância do problema com tamanho n.

Complexidade de tempo de um problema

Menor número possível de operações para resolver uma instância do problema com tamanho $\it n.$

Ex.: Todo algoritmo de ordenação baseado em comparações realiza pelo menos $n \log_2 n$ operações. Mergesort está entre os melhores, pois o total de operações é da ordem de $n \log_2 n$.