ДЗ по линейной алгебре на 16.02.2022

Кожевников Илья 2112-1

15 февраля 2022 г.

№1

По определению, линейная функция - эта та функция, которая определана над полем F и возвращает значение из поля F. Тогда заметим, что производная от функции - это линейное отображение. Тогда мы можем брать производную от функции до тех пор, пока она не станет равна константе. Тогда получится как раз, что V — F. Значит, данные функции линейны.

Теперь проверим, что $\epsilon_1, \epsilon_2, \epsilon_3$ образуют базис V*.

Генерь провермя, то
$$\epsilon_1, \epsilon_2, \epsilon_3$$
 сорыз по сыме γ :
$$\epsilon_1(1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \epsilon_2(x) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \epsilon_3(x^2) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 Так как V* - это множество всех линейных функций на $R[x]_{\leq 2}$, то тогда необходимо дока-

зать, что
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
 , $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ - базис пространства R^3

Но это очевидно, т.к. данная система векторов - это стандартный базис \mathbb{R}^3 . Значит, утверждение доказано.

Ч.Т.Д.

№2

Запишем удобное представление двойственного базиса:

$$\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{pmatrix} \circ \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix} = E$$
, где $\epsilon_i \circ e_j \Leftrightarrow \epsilon_i(e_j)$

Тогда перепишем матрицы в базисе $M_2(R)$ в векторном виде и запишем эти векторы в мат-

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Тогда выходит, что должно выполняться равенство
$$\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \end{pmatrix} \circ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Отсюда,
$$\begin{cases} \epsilon_1 = (1,0,0,0) \\ \epsilon_2 = (0,1,0,0) \\ \epsilon_3 = (0,0,1,0) \\ \epsilon_4 = (0,0,0,1) \end{cases}$$

Значит, эти линейные функции и будут образовывать искомый двойственный базис.

Тогда каждая из этих функций будет возвращать і-тый элемент из векторного вида матрицы

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
T.e. $\epsilon_1(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = a, ..., \epsilon_4(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = d$

№3

Допустим, векторы $e_1, e_2, ..., e_n$ составляют базис $ker\alpha$ (и $ker\beta$, соответственно, тоже). Тогда дополним эту систему векторов до базиса всего V вектором e_{n+1} . Тогда получится, что $\alpha(e_{n+1}) \neq 0$ и $\beta(e_{n+1}) \neq 0$.

Теперь допустим, что у нас есть еще один функционал φ такой, что $\varphi = k\alpha$.

Тогда выходит, что при $i \in \{1, 2, ..., n\}$ $\varphi(e_i) = k\alpha(e_i) = 0 = \beta(e_i)$, а при i = n+1 будет выполняться $\varphi(e_{n+1}) = k\alpha(e_{n+1}) = \beta(e_{n+1})$

Отсюда следует, что $\beta = \varphi = k\alpha$.

Ч.Т.Д.

№5

Для начала зафиксируем базис $(1, x, x^2, ..., x^n)$

Заметим, что каждая линейная функция соответствует строке вида (0,0,...,i!,...,0,0), где i! стоит на i+1-том месте (i! там будет стоять, потому что при взятии производной несколько раз от функции вида x^a мы получим сначала ax^{a-1} , затем $a(a-1)x^{a-2}$ и так далее, пока не получим a!). Тогда получится, что все такие строки будут ЛНЗ, и они будут образовывать базис V^* .

Ч.Т.Д.

Теперь найдем двойственный этому базис V.

Для того, чтобы это сделать, будет достаточно просто каждый из векторов вида (0,0,...,i!,...,0,0) разделить на i!. Тогда полученные базисы $e_1,e_2,...,e_n$ и будут образовывать базис, двойственный данному.

№6

1)
$$\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{pmatrix} \circ \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix} = E, \ \text{где } \epsilon_i \circ e_j \Leftrightarrow \epsilon_i(e_j)$$

Тогда должно выполняться равенство $\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{pmatrix} \circ \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Значит, нам необходимо найти
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1} = \frac{1}{|A|} \cdot A^{T}$$

$$|A| = 0 + 1 + 0 - 0 - 0 - 2 = -1$$

$$A^{T} = \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & -1 \\ 1 & -2 & 2 \end{pmatrix}^{T}$$

$$= \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -2 \\ -1 & -1 & 2 \end{pmatrix}$$

$$A^{-1} = -\begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -2 \\ -1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 0 & 2 \\ 1 & 1 & -2 \end{pmatrix}$$

Значит, искомыми линейными функциями будут $\epsilon_1-\epsilon_3, -\epsilon_1+2\epsilon_3, \epsilon_1+\epsilon_2-2\epsilon_3$ Ответ: $\epsilon_1-\epsilon_3, -\epsilon_1+2\epsilon_3, \epsilon_1+\epsilon_2-2\epsilon_3$

2)

Пойдем от обратного. Тогда верно будет равенство
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \circ \begin{pmatrix} e_1 & e_2 & e_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Отсюда,
$$\begin{pmatrix} e_1 & e_2 & e_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 0 & 2 \\ 1 & 1 & -2 \end{pmatrix}$$

Ответ: $e_1-e_2+e_3, e_3, -e_1+2e_2-2e_2$