```
In [2]: pip install plotly
                      Requirement already satisfied: plotly in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages (5.16.1)Note:
                      you may need to restart the kernel to use updated packages.
                      Requirement already satisfied: tenacity>=6.2.0 in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages (fro
                      m plotly) (8.2.3)
                      Requirement already satisfied: packaging in c:\users\lenovo\appdata\roaming\python\python311\site-packages (fro
                      m plotly) (23.0)
In [3]: pip install scikit-image
                      Requirement already satisfied: scikit-image in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages (0.21.0
                      Requirement already satisfied: numpy>=1.21.1 in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages (from
                      scikit-image) (1.24.3)
                      Requirement already satisfied: scipy>=1.8 in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages (from sci
                      kit-image) (1.10.1)
                      Requirement already satisfied: network x>= 2.8 in c:\users\lenovo\an aconda 3\envs\pthon 3\lib\site-packages (from a conda conda a conda a conda conda a conda a conda a conda a conda a conda a con
                       scikit-image) (3.1)
                      Requirement already satisfied: pillow>=9.0.1 in c:\users\lenovo\anaconda3\envs\pthon3\lib\site-packages (from the context of the context of
                      scikit-image) (9.4.0)
                      Requirement already satisfied: imageio>=2.27 in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages (from
                      scikit-image) (2.31.1)
                      Requirement already satisfied: tifffile>=2022.8.12 in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages
                       (from scikit-image) (2023.7.4)
                      Requirement already satisfied: PyWavelets>=1.1.1 in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages (f
                      rom scikit-image) (1.4.1)
                      Requirement already satisfied: packaging>=21 in c:\users\lenovo\appdata\roaming\python\python311\site-packages
                       (from scikit-image) (23.0)
                      Requirement already satisfied: lazy loader>=0.2 in c:\users\lenovo\anaconda3\envs\python3\lib\site-packages (fr
                      om scikit-image) (0.3)
                      Note: you may need to restart the kernel to use updated packages.
In [4]: import cv2
                      import numpy as np
                       from matplotlib import pyplot as plt
                       from scipy import ndimage
                       from skimage import measure, color, io
                       import plotly
                       import plotly.express as px
                       import plotly.graph_objects as go
                       from skimage import data, filters, measure, morphology
                       from skimage import data
                       from skimage.color import rgb2gray
In [ ]:
```

Sample 1 Rice Grade 100%

```
In [5]: Img_Sample1 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample1\\Sample1.jpg")
In [6]: plt.imshow(Img_Sample1)
Out[6]: <matplotlib.image.AxesImage at 0x2d7839c3f50>
```



```
In [/]: | Img_Sample1_1 = cv2.1mread("u:\\lest_At\\lmages_vatasets\\v2_lestIng_1mages\\Sample1\\Sample1_1.]pg")
         Img_Sample1_2 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample1\\Sample1_2.jpg")
         Img_Sample1_3 = cv2.imread("D:\Test_Al\Images_Datasets\02\_Testing_images\Sample1\Sample1_3.jpg")
         Img_Sample1_4 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample1\\Sample1_4.jpg")
         Img_Sample1_1_Gray=rgb2gray(Img_Sample1_1)
In [8]:
         Img_Sample1_2_Gray=rgb2gray(Img_Sample1_2)
         Img_Sample1_3_Gray=rgb2gray(Img_Sample1_3)
         Img_Sample1_4_Gray=rgb2gray(Img_Sample1_4)
         # Create a figure with subplots to display the images
In [9]:
         plt.figure(figsize=(10, 4))
         # Display the second image sample
         plt.subplot(2, 3, 1)
         plt.imshow(Img Sample1 1 Gray, cmap='gray')
         plt.title('Sample1_1 Whole_Rice')
         # Display the third image sample
         plt.subplot(2, 3, 2)
         plt.imshow(Img_Sample1_2_Gray, cmap='gray')
         plt.title('Sample1 2 Head Rice')
         # Display the fourth image sample
         plt.subplot(2, 3, 3)
         plt.imshow(Img_Sample1_3_Gray, cmap='gray')
         plt.title('Sample1_3 Bigbroke_Rice')
         # Display the fourth image sample
         plt.subplot(2, 3, 4)
         plt.imshow(Img_Sample1_4_Gray, cmap='gray')
         plt.title('Sample1_4 Smallbroke_Rice')
         # Adjust spacing between subplots
         plt.tight layout()
         # Show the plot
         plt.show()
                  Sample1 1 Whole Rice
                                                        Sample1 2 Head Rice
                                                0
                                                                                           Sample1_3 Bigbroke Rice
                 南西南省京安岛管西
                                                    经彩彩色级宗师的好像
                 雪
                    $ 图 面 图 图 於 學 及
                                                                                         常
         500
                                                                                   250
                                              500
                                                    码
                                                      图
                                                         公 俗
                    图 原
                                                                                               1000
                                                                                                        2000
                                                                                                                 3000
                                                          1000
                                                                   2000
                                                                            3000
                     1000
                              2000
                                       3000
                Sample1 4 Smallbroke Rice
           0
         250
             0
                     1000
                              2000
                                       3000
         # Apply Otsu's thresholding to each image
In [10]:
         threshold_Img_Sample1_1 = filters.threshold_otsu(Img_Sample1_1_Gray)
         threshold Img Sample1 2 = filters.threshold otsu(Img Sample1 2 Gray)
         threshold Img Sample1 3 = filters.threshold otsu(Img Sample1 3 Gray)
         threshold_Img_Sample1_4 = filters.threshold_otsu(Img_Sample1_4_Gray)
In [11]:
         img mask Sample1 1 = Img Sample1 1 Gray > threshold Img Sample1 1
         img_mask_Sample1_1 = morphology.remove_small_objects(img_mask_Sample1_1, 15)
         img_mask_Sample1_1 = morphology.remove_small_holes(img_mask_Sample1_1, 15)
         # Sample1 2
         img_mask_Sample1_2 = Img_Sample1_2_Gray > threshold_Img_Sample1_2
         img_mask_Sample1_2 = morphology.remove_small_objects(img_mask_Sample1_2, 15)
         img mask Sample1 2 = morphology.remove small holes(img mask Sample1 2, 15)
         # Sample1 3
         img mask Sample1 3 = Img Sample1 3 Gray > threshold Img Sample1 3
         img_mask_Sample1_3 = morphology.remove_small_objects(img_mask_Sample1_3, 15)
         img_mask_Sample1_3 = morphology.remove_small_holes(img_mask_Sample1_3, 15)
         # Sample1 4
         img_mask_Sample1_4 = Img_Sample1_4_Gray > threshold_Img_Sample1_4
         img_mask_Sample1_4 = morphology.remove_small_objects(img_mask_Sample1_4, 15)
         img mask Sample1 4 = morphology.remove small holes(img mask Sample1 4, 15)
In [12]: img labels Sample1 1 = measure.label(img mask Sample1 1)
         img_labels_Sample1_2 = measure.label(img_mask_Sample1_2)
         img labels Sample1 3 = measure.label(img mask Sample1 3)
         img labels Sample1 4 = measure.label(img mask Sample1 4)
```

```
import pandas as pd
In [15]:
          import numpy as np
          from skimage.measure import regionprops, regionprops_table
          props Sample1 1 = regionprops table(img labels Sample1 1, properties=('area', 'major axis length', 'minor axis
          # Create empty lists to store property values
          equiv diameters = []
          aspect ratios = []
          compactnesses = []
          roundnesses = []
          categories = []
          for idx, region in enumerate(regionprops(img labels Sample1 1)):
               # Calculate properties for each region
               equiv_diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length
               compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
               roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
               # Append the calculated values to the respective lists
              equiv diameters.append(equiv diameter)
               aspect_ratios.append(aspect_ratio)
               compactnesses.append(compactness)
               roundnesses.append(roundness)
               categories.append('Whole Rice')
          # Create a dictionary with all the properties
          props_Sample1_1 = {
                'area': props_Sample1_1['area'],
               'major_axis_length': props_Sample1_1['major_axis_length'],
               'minor axis length': props Sample1 1['minor axis length'],
               'perimeter': props_Sample1_1['perimeter'],
               'eccentricity': props Sample1 1['eccentricity'],
               'solidity': props Sample1 1['solidity'],
               'extent': props_Sample1_1['extent'],
'equiv_diameter': equiv_diameters,
               'aspect_ratio': aspect_ratios,
               'compactness': compactnesses,
               'roundness': roundnesses,
               'category': categories,
          # Create a DataFrame from the dictionary
          df_Sample1_1 = pd.DataFrame(props_Sample1_1)
In [16]: df_Sample1_1
Out[16]:
                area major axis length minor axis length perimeter eccentricity solidity
                                                                                        extent equiv diameter aspect ratio compactness i
            0 1101.0
                                                                    0.960575 0.954073 0.433977
                                                                                                               3.596837
                                                                                                                            1.813691
                            71.653909
                                             19.921369 158.409163
                                                                                                   37.441110
                                                                    0.947878 0.957447 0.600000
                                                                                                               3.138398
            1 1170.0
                             68.740281
                                             21.902982 158.468037
                                                                                                   38.596506
                                                                                                                            1.707999
            2 1176.0
                            68.096447
                                             22.625869 158.468037
                                                                    0.943187 0.947623 0.602151
                                                                                                   38.695345
                                                                                                               3.009672
                                                                                                                            1.699285
            3 1211.0
                             69.127190
                                             22.634081 158.994949
                                                                    0.944877 0.958828 0.472125
                                                                                                   39.266947
                                                                                                               3.054120
                                                                                                                            1.661165
            4 1356.0
                            74.134883
                                             23.791050 170.994949
                                                                    0.947108 0.950245 0.481534
                                                                                                   41.551328
                                                                                                               3.116083
                                                                                                                            1.715920
          235 1060.0
                            68.443411
                                             20.158612 152.409163
                                                                    0.955642 0.947274 0.440199
                                                                                                   36.737364
                                                                                                               3.395244
                                                                                                                            1.743839
          236 1204.0
                             70.446099
                                             22.423973 158.911688
                                                                    0.947985 0.946541 0.729697
                                                                                                   39.153294
                                                                                                                3.141553
                                                                                                                            1.669073
          237
               953.0
                            61.146389
                                             20.155013 138.752309
                                                                    0.944114 0.961655 0.464878
                                                                                                   34.833853
                                                                                                               3.033805
                                                                                                                            1.607599
               976.0
                             66 261010
                                             18 980184 146 994949
                                                                    0.958096 0.959685 0.436494
                                                                                                   35 251692
                                                                                                               3 491063
                                                                                                                            1 761754
          238
          239 1288 0
                            72 144466
                                             23.261936 166.166522
                                                                    0.946591 0.960477 0.479881
                                                                                                   40 496080
                                                                                                               3.101396
                                                                                                                            1 705930
         240 rows × 12 columns
```

```
In [17]: import pandas as pd
         import numpy as np
          from skimage.measure import regionprops, regionprops_table
          props_Sample1_2 = regionprops_table(img_labels_Sample1_2, properties=('area', 'major_axis_length', 'minor_axis_
          # Create empty lists to store property values
         equiv_diameters = []
          aspect_ratios = []
          compactnesses = []
          roundnesses = []
          categories = []
          for idx, region in enumerate(regionprops(img_labels_Sample1_2)):
              # Calculate properties for each region
              equiv_diameter = np.sqrt(4 * region.area / np.pi)
              aspect_ratio = region.major_axis_length / region.minor_axis_length
              compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
              # Append the calculated values to the respective lists
              equiv_diameters.append(equiv_diameter)
              aspect_ratios.append(aspect_ratio)
              compactnesses.append(compactness)
              roundnesses.append(roundness)
              categories.append('Head Rice')
          # Create a dictionary with all the properties
          props Sample1 2 = {
              'area': props Sample1 2['area'],
              'major_axis_length': props_Sample1_2['major_axis_length'],
              'minor_axis_length': props_Sample1_2['minor_axis_length'],
              'perimeter': props_Sample1_2['perimeter'],
              'eccentricity': props_Sample1_2['eccentricity'],
              'solidity': props_Sample1_2['solidity'],
              'extent': props Sample1 2['extent'],
              'equiv diameter': equiv diameters,
              'aspect_ratio': aspect_ratios,
              'compactness': compactnesses,
              'roundness': roundnesses,
              'category': categories,
         }
          # Create a DataFrame from the dictionary
         df_Sample1_2 = pd.DataFrame(props_Sample1_2)
```

In [18]: df_Sample1_2

Out[18]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness r	1
	0	936.0	58.142131	20.788439	133.012193	0.933896	0.972973	0.835714	34.521764	2.796849	1.504171	
	1	1138.0	69.101559	21.436271	152.894444	0.950667	0.958719	0.447327	38.065031	3.223581	1.634674	
	2	1028.0	68.191315	19.560026	153.480231	0.957978	0.943119	0.426910	36.178588	3.486259	1.823484	
	3	969.0	65.380499	19.268812	146.409163	0.955584	0.947214	0.425186	35.125050	3.393074	1.760366	
	4	881.0	57.191350	19.915174	133.775649	0.937413	0.953463	0.584218	33.492149	2.871747	1.616473	
	135	1035.0	58.536112	22.874793	138.852814	0.920484	0.961003	0.537942	36.301555	2.558979	1.482379	
	136	1038.0	63.962143	21.139914	146.325902	0.943804	0.948812	0.676662	36.354128	3.025658	1.641479	
	137	1063.0	63.015974	21.789443	146.124892	0.938317	0.957658	0.558298	36.789314	2.892042	1.598473	
	138	1201.0	73.138918	21.379942	161.497475	0.956321	0.950158	0.828847	39.104484	3.420913	1.728139	
	139	1176.0	68.833246	22.029453	157.639610	0.947404	0.950687	0.623873	38.695345	3.124601	1.681564	

140 rows × 12 columns

In []:

Sample1_3

imnort nandas as nd

```
import numpy as np
from skimage.measure import regionprops, regionprops_table
props_Sample1_3 = regionprops_table(img_labels_Sample1_3, properties=('area', 'major_axis_length', 'minor_axis_
# Create empty lists to store property values
equiv diameters = []
aspect ratios = []
compactnesses = []
roundnesses = []
categories = []
for idx, region in enumerate(regionprops(img_labels_Sample1_3)):
    # Calculate properties for each region
    equiv_diameter = np.sqrt(4 * region.area / np.pi)
    aspect_ratio = region.major_axis_length / region.minor_axis_length
    compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
    # Append the calculated values to the respective lists
    equiv_diameters.append(equiv_diameter)
    aspect_ratios.append(aspect_ratio)
    compactnesses.append(compactness)
    roundnesses.append(roundness)
    categories.append('Big Broke')
# Create a dictionary with all the properties
props_Sample1_3 = {
     'area': props_Sample1_3['area'],
    'major_axis_length': props_Sample1_3['major_axis_length'],
'minor_axis_length': props_Sample1_3['minor_axis_length'],
     'perimeter': props Sample1 3['perimeter'],
    'eccentricity': props Samplel 3['eccentricity'],
    'solidity': props_Sample1_3['solidity'],
    'extent': props_Sample1_3['extent'],
    'equiv diameter': equiv diameters,
    'aspect_ratio': aspect_ratios,
'compactness': compactnesses,
    'roundness': roundnesses,
    'category': categories,
}
# Create a DataFrame from the dictionary
df Sample1 3 = pd.DataFrame(props Sample1 3)
```

In [20]: df_Sample1_3

Out[20]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness	rou
	0	724.0	45.984950	20.622768	115.740115	0.893799	0.951380	0.583871	30.361578	2.229815	1.472378	0
	1	840.0	48.985597	22.496999	120.852814	0.888303	0.954545	0.525328	32.703535	2.177428	1.383644	0
	2	792.0	48.554685	21.275503	117.195959	0.898889	0.962333	0.536585	31.755405	2.282187	1.380035	0
	3	872.0	49.772152	23.145382	127.396970	0.885297	0.939655	0.587205	33.320637	2.150414	1.481125	0
	4	886.0	56.716183	20.352259	133.438600	0.933398	0.953714	0.485746	33.587055	2.786727	1.599261	0
	5	620.0	41.583309	19.707228	105.491378	0.880567	0.959752	0.776942	28.096415	2.110054	1.428343	0
	6	674.0	41.535979	21.648180	110.740115	0.853440	0.945302	0.587108	29.294427	1.918682	1.447905	0
	7	660.0	42.654483	20.431952	109.982756	0.877809	0.945559	0.582011	28.988586	2.087636	1.458463	0
	8	781.0	49.894300	20.344990	121.497475	0.913088	0.951279	0.628824	31.534110	2.452412	1.504089	0
	9	703.0	48.518636	18.866302	112.627417	0.921303	0.964335	0.867901	29.918011	2.571709	1.435896	0
	10	682.0	41.075122	21.765609	108.911688	0.848062	0.949861	0.631481	29.467768	1.887157	1.384059	0
	11	815.0	50.751859	21.162882	127.124892	0.908912	0.944380	0.519770	32.213200	2.398154	1.577952	0
	12	865.0	49.900041	22.409457	122.710678	0.893488	0.961111	0.570204	33.186627	2.226740	1.385284	0
	13	827.0	50.885025	21.291231	123.941125	0.908254	0.954965	0.733156	32.449485	2.389952	1.478140	0
	14	780.0	46.537340	22.118587	117.941125	0.879831	0.945455	0.738636	31.513915	2.103992	1.419143	0
	15	857.0	50.098845	22.047997	122.468037	0.897954	0.956473	0.600982	33.032806	2.272263	1.392691	0
	16	651.0	46.059784	18.779369	111.455844	0.913108	0.943478	0.778708	28.790258	2.452680	1.518500	0
	17	746.0	44.829007	21.542209	109.455844	0.876972	0.980289	0.888095	30.819421	2.080985	1.277995	0

. . . .

```
Sample1_4
```

```
In [21]:
         import pandas as pd
          import numpy as np
         from skimage.measure import regionprops, regionprops_table
         props_Sample1_4 = regionprops_table(img_labels_Sample1_4, properties=('area', 'major_axis_length', 'minor_axis_
         # Create empty lists to store property values
         equiv diameters = []
         aspect ratios = []
          compactnesses = []
          roundnesses = []
          categories = []
          for idx, region in enumerate(regionprops(img_labels_Sample1_4)):
              # Calculate properties for each region
              equiv_diameter = np.sqrt(4 * region.area / np.pi)
              aspect_ratio = region.major_axis_length / region.minor_axis_length
              compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
              # Append the calculated values to the respective lists
              equiv_diameters.append(equiv_diameter)
              aspect_ratios.append(aspect_ratio)
              compactnesses.append(compactness)
              roundnesses.append(roundness)
              categories.append('Small Broke')
          # Create a dictionary with all the properties
         props Sample1 4 = {
               'area': props_Sample1_4['area'],
              'major axis length': props Sample1 4['major axis length'],
              'minor axis length': props Sample1 4['minor axis length'],
              'perimeter': props_Sample1_4['perimeter'],
```

```
'eccentricity': props_Sample1_4['eccentricity'],
                     'solidity': props_Sample1_4['solidity'],
                     'extent': props_Sample1_4['extent'],
                     'equiv diameter': equiv diameters,
                     'aspect ratio': aspect ratios,
                     'compactness': compactnesses,
                     'roundness': roundnesses,
                     'category': categories,
              # Create a DataFrame from the dictionary
              df Sample1_4 = pd.DataFrame(props_Sample1_4)
In [22]: df_Sample1 4
                  area major_axis_length minor_axis_length perimeter eccentricity
                                                                                                         solidity
                                                                                                                       extent equiv_diameter aspect_ratio compactness round
              0 516.0
                                    34.941465
                                                            19.055662 89.154329
                                                                                           0.838202 0.957328 0.616487
                                                                                                                                       25.631847
                                                                                                                                                         1.833653
                                                                                                                                                                           1.225816
              1 523.0
                                    35.207074
                                                            19.279400 91.698485
                                                                                           0.836740 0.944043 0.769118
                                                                                                                                       25.805121
                                                                                                                                                         1.826150
                                                                                                                                                                           1.279419
                                                                                                                                                                                         0.53
 In [ ]:
              Combine
              csv_file_path = 'Sample1_1.csv'
In [23]:
              df Sample1 1.to csv(csv file path, index=False)
              print(f"Data has been exported to {csv file path}") # print a message to confirm the export
              csv_file_path = 'Sample1_2.csv'
              df Sample1 2.to csv(csv file path, index=False)
              print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
               csv file path = 'Sample1_3.csv'
              df Sample1 3.to csv(csv file path, index=False)
              print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
               csv file path = 'Sample1 4.csv'
              df_Sample1_4.to_csv(csv_file_path, index=False)
              print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
              Data has been exported to Sample1_1.csv
              Data has been exported to Sample1_2.csv
              Data has been exported to Sample1_3.csv
              Data has been exported to Sample1_4.csv
In [24]: import pandas as pd
              # List of CSV file names
               csv_files = [
                     "Sample1_1.csv",
                     "Sample1 2.csv",
                     "Sample1 3.csv"
                     "Sample1_4.csv",
              # Create an empty DataFrame to store the combined data
              combined prop data = pd.DataFrame()
              \# Loop through the CSV files and append their data to the combined_data DataFrame
              for file in csv_files:
                     df = pd.read csv(file) # Read each CSV file
                     combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFr
              # Save the combined data to a new CSV file
              combined_prop_data.to_csv("Sample1_Data.csv", index=False)
              C:\Users\LENOVO\AppData\Local\Temp\ipykernel_9256\3599681874.py:17: FutureWarning: The frame.append method is d
              eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                 combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
              C:\Users\LENOVO\AppData\Local\Temp\ipykernel 9256\3599681874.py:17: FutureWarning: The frame.append method is d
              eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                 combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
              eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                 combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFram
              \verb|C:\USers\LENOVO\AppData\Local\Temp\ipykernel\_9256\3599681874.py: 17: Future \textit{Warning}: The frame.append method is defined by the first of the f
              eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                 combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
In [25]: Sample1 Data = pd.read csv("Sample1 Data.csv")
```

```
<class 'pandas.core.frame.DataFrame'>
          RangeIndex: 400 entries, 0 to 399
          Data columns (total 12 columns):
                                      Non-Null Count Dtype
           #
               Column
           - - -
                                      400 non-null
                area
                                                        float64
                major axis length 400 non-null
                                                        float64
                                                        float64
                minor_axis_length
                                      400 non-null
           3
                perimeter
                                      400 non-null
                                                        float64
                eccentricity
                                      400 non-null
                                                        float64
           5
                                      400 non-null
                                                        float64
                solidity
           6
                extent
                                      400 non-null
                                                        float64
                                      400 non-null
                                                        float64
                equiv diameter
           8
                                      400 non-null
                aspect ratio
                                                        float64
                                      400 non-null
                compactness
                                                        float64
           10 roundness
                                      400 non-null
                                                        float64
           11 category
                                      400 non-null
                                                        object
          dtypes: float64(11), object(1)
          memory usage: 37.6+ KB
In [27]: Sample1_Data
                 area major_axis_length minor_axis_length
                                                          perimeter eccentricity
                                                                                solidity
                                                                                          extent equiv_diameter aspect_ratio compactness
Out[27]:
            0 1101.0
                              71.653909
                                               19.921369 158.409163
                                                                      0.960575 0.954073 0.433977
                                                                                                      37.441110
                                                                                                                   3.596837
                                                                                                                                1.813691
            1 1170.0
                             68.740281
                                               21.902982 158.468037
                                                                                                      38.596506
                                                                                                                   3.138398
                                                                                                                                1.707999
                                                                      0.947878 0.957447 0.600000
                                                                                                                   3.009672
            2 1176.0
                             68.096447
                                               22.625869 158.468037
                                                                      0.943187 0.947623 0.602151
                                                                                                      38.695345
                                                                                                                                1.699285
                                                                      0.944877 0.958828 0.472125
                                                                                                      39.266947
            3 1211.0
                              69.127190
                                               22.634081 158.994949
                                                                                                                   3.054120
                                                                                                                                1.661165
            4 1356.0
                              74.134883
                                               23.791050 170.994949
                                                                      0.947108 0.950245 0.481534
                                                                                                      41.551328
                                                                                                                   3.116083
                                                                                                                                1.715920
          395
                857.0
                              50.098845
                                               22.047997 122.468037
                                                                      0.897954 0.956473 0.600982
                                                                                                      33.032806
                                                                                                                   2.272263
                                                                                                                                1.392691
           396
                651.0
                              46.059784
                                               18.779369 111.455844
                                                                      0.913108 \quad 0.943478 \quad 0.778708
                                                                                                      28.790258
                                                                                                                   2.452680
                                                                                                                                1.518500
          397
                746.0
                              44.829007
                                               21.542209 109.455844
                                                                      0.876972 0.980289 0.888095
                                                                                                      30.819421
                                                                                                                   2.080985
                                                                                                                                1.277995
                                                                                                      25.631847
           398
                516.0
                              34.941465
                                               19.055662
                                                          89.154329
                                                                      0.838202 0.957328 0.616487
                                                                                                                   1.833653
                                                                                                                                1.225816
                523.0
                             35.207074
                                               19.279400 91.698485
                                                                      0.836740 0.944043 0.769118
                                                                                                      25.805121
                                                                                                                   1.826150
                                                                                                                                1.279419
          399
          400 rows × 12 columns
In [49]:
          unique categories = Sample1 Data['category'].unique()
          print(unique_categories)
           ['Whole Rice' 'Head Rice' 'Big Broke' 'Small Broke']
In [28]:
          #####################
                                        Sample1: CSV file is Sample1_Data.csv
 In [ ]:
```

Sample 2 Rice Grade 5%

In [26]: Sample1_Data.info()

```
In [29]: Img_Sample2 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample2\\Sample2.jpg")
In [30]: plt.imshow(Img_Sample2)
Out[30]: <matplotlib.image.AxesImage at 0x2d7841fcc90>
```

```
0 -
      庭 战 您
                   邻 俗
                            25%
 500 -
      然 邀
             徳
                   雪
                      图
                            心
                   衙
                      沙
                             2
             刽
1000 -
                   崇
                       1
      沿海
1500 -
                   癒
         ※
                   急
      经
2000 -
      给给
                   感
2500 -
                   阁
3000
                   您不
             1000
                  1500
                        2000 2500 3000
    0
        500
```

```
Img Sample 2 1 = cv2.imread("D:\Test_Al\Images_Datasets\02\_Testing\_images\Sample 2\Lippg")
In [31]:
          Img Sample2 2 = cv2.imread("D:\\Test Al\\Images Datasets\\02 Testing images\\Sample2\\Sample2 2.jpg")
          Img_Sample2_3 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample2\\Sample2_3.jpg")
Img_Sample2_4 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample2\\Sample2\\Sample2_4.jpg")
In [32]:
          Img_Sample2_1_Gray=rgb2gray(Img_Sample2_1)
          Img_Sample2_2_Gray=rgb2gray(Img_Sample2_2)
          Img Sample2 3 Gray=rgb2gray(Img Sample2 3)
          Img Sample2 4 Gray=rgb2gray(Img Sample2 4)
In [33]: # Create a figure with subplots to display the images
          plt.figure(figsize=(10, 6))
          # Display the second image sample
          plt.subplot(1, 4, 1)
          plt.imshow(Img Sample2 1 Gray, cmap='gray')
          plt.title('Sample2_1 Whole_Rice')
          # Display the third image sample
          plt.subplot(1, 4, 2)
          plt.imshow(Img_Sample2_2_Gray, cmap='gray')
          plt.title('Sample2 2 Head Rice')
          # Display the fourth image sample
          plt.subplot(1, 4, 3)
          plt.imshow(Img_Sample2_3_Gray, cmap='gray')
          plt.title('Sample2_3 Bigbroke Rice')
          # Display the fourth image sample
          plt.subplot(1, 4, 4)
          plt.imshow(Img Sample2 4 Gray, cmap='gray')
          plt.title('Sample2_4 Smallbroke Rice')
          # Adjust spacing between subplots
          plt.tight_layout()
          # Show the plot
          plt.show()
```



```
threshold_Img_Sample2_1 = filters.threshold_otsu(Img_Sample2_1_Gray)
In [34]:
          threshold_Img_Sample2_2 = filters.threshold_otsu(Img_Sample2_2_Gray)
          threshold Img Sample2 3 = filters.threshold otsu(Img Sample2 3 Gray)
          threshold_Img_Sample2_4 = filters.threshold_otsu(Img_Sample2_4_Gray)
In [35]:
         # Sample2_1
          img_mask_Sample2_1 = Img_Sample2_1_Gray > threshold_Img_Sample2_1
          img mask Sample2 1 = morphology.remove small objects(img mask Sample2 1,
          img_mask_Sample2_1 = morphology.remove_small_holes(img_mask_Sample2_1, 15)
          img mask Sample2 2 = Img Sample2 2 Gray > threshold Img Sample2 2
          img_mask_Sample2_2 = morphology.remove_small_objects(img_mask_Sample2_2, 15)
          img_mask_Sample2_2 = morphology.remove_small_holes(img_mask_Sample2_2, 15)
          # Sample2 3
         img_mask_Sample2_3 = Img_Sample2_3_Gray > threshold_Img_Sample2_3
          img mask Sample2 3 = morphology.remove small objects(img mask Sample2 3, 15)
          img mask Sample2 3 = morphology.remove small holes(img mask Sample2 3, 15)
          # Sample2 4
          img mask Sample2 4 = Img Sample2 4 Gray > threshold Img Sample2 4
          img_mask_Sample2_4 = morphology.remove_small_objects(img_mask_Sample2_4, 15)
          img_mask_Sample2_4 = morphology.remove_small_holes(img_mask_Sample2_4, 15)
In [36]: img_labels_Sample2_1 = measure.label(img_mask_Sample2_1)
img_labels_Sample2_2 = measure.label(img_mask_Sample2_2)
          img labels Sample2 3 = measure.label(img mask Sample2 3)
          img labels Sample2 4 = measure.label(img_mask_Sample2_4)
 In [ ]:
```

Sample2_1

```
import pandas as pd
import numpy as np
from skimage.measure import regionprops, regionprops_table

props_Sample2_1 = regionprops_table(img_labels_Sample2_1, properties=('area', 'major_axis_length', 'minor_axis_

# Create empty lists to store property values
equiv_diameters = []
aspect_ratios = []
compactnesses = []
roundnesses = []
roundnesses = []
categories = []

for idx, region in enumerate(regionprops(img_labels_Sample2_1)):
    # Calculate properties for each region
    equiv_diameter = np.sqrt(4 * region.area / np.pi)
    aspect_ratio = region.major_axis_length / region.minor_axis_length
```

```
compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
              roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
              # Append the calculated values to the respective lists
              equiv_diameters.append(equiv_diameter)
              aspect_ratios.append(aspect_ratio)
              compactnesses append (compactness)
              roundnesses.append(roundness)
              categories.append('Whole Rice') # Category 5 for Whole
          # Create a dictionary with all the properties
          props_Sample2_1 = {
               'area': props_Sample2_1['area'],
              'major_axis_length': props_Sample2_1['major_axis_length'],
'minor_axis_length': props_Sample2_1['minor_axis_length'],
               'perimeter': props_Sample2_1['perimeter'],
               'eccentricity': props_Sample2_1['eccentricity'],
              'solidity': props_Sample2_1['solidity'],
              'extent': props_Sample2_1['extent'],
               'equiv_diameter': equiv_diameters,
              'aspect_ratio': aspect_ratios,
               'compactness': compactnesses,
               'roundness': roundnesses,
              'category': categories,
          # Create a DataFrame from the dictionary
          df Sample2 1 = pd.DataFrame(props Sample2 1)
Out[38]:
```

In [38]: df_Sample2_1

area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness	r
1260.0	71.496582	22.703544	162.409163	0.948242	0.964778	0.477273	40.053487	3.149138	1.665868	
1104.0	67.751054	21.023568	150.669048	0.950637	0.970123	0.796537	37.492085	3.222624	1.636323	
948.0	58.390897	20.900842	133.254834	0.933742	0.961460	0.769481	34.742353	2.793710	1.490554	
1047.0	70.367938	19.187485	159.195959	0.962107	0.948370	0.481158	36.511393	3.667387	1.926227	
1148.0	66.868341	22.100976	152.610173	0.943801	0.963087	0.530009	38.231911	3.025583	1.614415	
1190.0	72.033093	21.434382	163.639610	0.954702	0.955823	0.603448	38.924993	3.360633	1.790689	
1086.0	66.122660	21.314786	152.124892	0.946620	0.959364	0.548485	37.185187	3.102197	1.695746	
1193.0	70.393179	22.265468	158.083261	0.948659	0.941594	0.723030	38.974027	3.161540	1.666946	
974.0	66.297948	18.919205	145.580736	0.958419	0.962451	0.435599	35.215555	3.504267	1.731566	
1100.0	68.783242	20.815164	151.722871	0.953111	0.964912	0.431711	37.424103	3.304478	1.665327	
	1260.0 1104.0 948.0 1047.0 1148.0 1190.0 1086.0 1193.0 974.0	1260.0 71.496582 1104.0 67.751054 948.0 58.390897 1047.0 70.367938 1148.0 66.868341 1190.0 72.033093 1086.0 66.122660 1193.0 70.393179 974.0 66.297948	1260.0 71.496582 22.703544 1104.0 67.751054 21.023568 948.0 58.390897 20.900842 1047.0 70.367938 19.187485 1148.0 66.868341 22.100976 1190.0 72.033093 21.434382 1086.0 66.122660 21.314786 1193.0 70.393179 22.265468 974.0 66.297948 18.919205	1260.0 71.496582 22.703544 162.409163 1104.0 67.751054 21.023568 150.669048 948.0 58.390897 20.900842 133.254834 1047.0 70.367938 19.187485 159.195959 1148.0 66.868341 22.100976 152.610173 1190.0 72.033093 21.434382 163.639610 1086.0 66.122660 21.314786 152.124892 1193.0 70.393179 22.265468 158.083261 974.0 66.297948 18.919205 145.580736	1260.0 71.496582 22.703544 162.409163 0.948242 1104.0 67.751054 21.023568 150.669048 0.950637 948.0 58.390897 20.900842 133.254834 0.933742 1047.0 70.367938 19.187485 159.195959 0.962107 1148.0 66.868341 22.100976 152.610173 0.943801 1190.0 72.033093 21.434382 163.639610 0.954702 1086.0 66.122660 21.314786 152.124892 0.946620 1193.0 70.393179 22.265468 158.083261 0.948659 974.0 66.297948 18.919205 145.580736 0.958419	1260.0 71.496582 22.703544 162.409163 0.948242 0.964778 1104.0 67.751054 21.023568 150.669048 0.950637 0.970123 948.0 58.390897 20.900842 133.254834 0.933742 0.961460 1047.0 70.367938 19.187485 159.195959 0.962107 0.948370 1148.0 66.868341 22.100976 152.610173 0.943801 0.963087 1190.0 72.033093 21.434382 163.639610 0.954702 0.955823 1086.0 66.122660 21.314786 152.124892 0.946620 0.959364 1193.0 70.393179 22.265468 158.083261 0.948659 0.941594 974.0 66.297948 18.919205 145.580736 0.958419 0.962451	1260.0 71.496582 22.703544 162.409163 0.948242 0.964778 0.477273 1104.0 67.751054 21.023568 150.669048 0.950637 0.970123 0.796537 948.0 58.390897 20.900842 133.254834 0.933742 0.961460 0.769481 1047.0 70.367938 19.187485 159.195959 0.962107 0.948370 0.481158 1148.0 66.868341 22.100976 152.610173 0.943801 0.963087 0.530009 1190.0 72.033093 21.434382 163.639610 0.954702 0.955823 0.603448 1086.0 66.122660 21.314786 152.124892 0.946620 0.959364 0.548485 1193.0 70.393179 22.265468 158.083261 0.948659 0.941594 0.723030 974.0 66.297948 18.919205 145.580736 0.958419 0.962451 0.435599	1260.0 71.496582 22.703544 162.409163 0.948242 0.964778 0.477273 40.053487 1104.0 67.751054 21.023568 150.669048 0.950637 0.970123 0.796537 37.492085 948.0 58.390897 20.900842 133.254834 0.933742 0.961460 0.769481 34.742353 1047.0 70.367938 19.187485 159.195959 0.962107 0.948370 0.481158 36.511393 1148.0 66.868341 22.100976 152.610173 0.943801 0.963087 0.530009 38.231911 1190.0 72.033093 21.434382 163.639610 0.954702 0.955823 0.603448 38.924993 1086.0 66.122660 21.314786 152.124892 0.946620 0.959364 0.548485 37.185187 1193.0 70.393179 22.265468 158.083261 0.948659 0.941594 0.723030 38.974027 974.0 66.297948 18.919205 145.580736 0.958419 0.962451 0.43559	1260.0 71.496582 22.703544 162.409163 0.948242 0.964778 0.477273 40.053487 3.149138 1104.0 67.751054 21.023568 150.669048 0.950637 0.970123 0.796537 37.492085 3.222624 948.0 58.390897 20.900842 133.254834 0.933742 0.961460 0.769481 34.742353 2.793710 1047.0 70.367938 19.187485 159.195959 0.962107 0.948370 0.481158 36.511393 3.667387 1148.0 66.868341 22.100976 152.610173 0.943801 0.963087 0.530009 38.231911 3.025583	1260.0 71.496582 22.703544 162.409163 0.948242 0.964778 0.477273 40.053487 3.149138 1.665868 1104.0 67.751054 21.023568 150.669048 0.950637 0.970123 0.796537 37.492085 3.222624 1.636323 948.0 58.390897 20.900842 133.254834 0.933742 0.961460 0.769481 34.742353 2.793710 1.490554 1047.0 70.367938 19.187485 159.195959 0.962107 0.948370 0.481158 36.511393 3.667387 1.926227 1148.0 66.868341 22.100976 152.610173 0.943801 0.963087 0.530009 38.231911 3.025583 1.614415 </th

240 rows × 12 columns

```
In [ ]:
```

Sample2 2

```
In [39]: import pandas as pd
          import numpy as np
          from skimage.measure import regionprops, regionprops table
          props Sample2 2 = regionprops table(img labels Sample2 2, properties=('area', 'major axis length', 'minor axis
          # Create empty lists to store property values
          equiv diameters = []
          aspect_ratios = []
          compactnesses = []
          roundnesses = []
          categories = []
          for idx, region in enumerate(regionprops(img_labels_Sample2_2)):
               # Calculate properties for each region
               equiv diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length
compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
```

```
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
    # Append the calculated values to the respective lists
    equiv diameters.append(equiv diameter)
    aspect ratios.append(aspect ratio)
    compactnesses.append(compactness)
    roundnesses.append(roundness)
    categories.append('Head rice') # Category 4 for Head
# Create a dictionary with all the properties
props Sample2 2 = {
     'area': props_Sample2_2['area'],
    'major_axis_length': props_Sample2_2['major_axis_length'],
'minor_axis_length': props_Sample2_2['minor_axis_length'],
    'perimeter': props_Sample2_2['perimeter'],
     'eccentricity': props_Sample2_2['eccentricity'],
    'solidity': props Sample2 2['solidity'],
    'extent': props Sample2 2['extent'],
     'equiv_diameter': equiv_diameters,
     'aspect_ratio': aspect_ratios,
    'compactness': compactnesses,
    'roundness': roundnesses,
'category': categories,
# Create a DataFrame from the dictionary
df_Sample2_2 = pd.DataFrame(props_Sample2_2)
```

In [40]: df_Sample2_2

Out[40]

o compactness	aspect_ratio	equiv_diameter	extent	solidity	eccentricity	perimeter	minor_axis_length	major_axis_length	area	:
2 1.598474	3.226762	35.735966	0.865401	0.970958	0.950766	141.941125	20.042389	64.672023	1003.0	0
5 1.589938	2.991725	38.265199	0.479167	0.963956	0.942483	151.580736	22.284304	66.668501	1150.0	1
8 1.498785	2.856238	35.771577	0.485507	0.968208	0.936708	137.580736	21.256516	60.713672	1005.0	2
3 1.612181	3.069603	35.143169	0.782889	0.945419	0.945447	140.183766	20.259230	62.187800	970.0	3
7 1.486759	2.842697	38.098466	0.904762	0.975192	0.936083	145.941125	22.838141	64.921915	1140.0	4
0 1.566700	2.576660	35.485686	0.548835	0.948226	0.921618	139.539105	22.390693	57.693192	989.0	127
3 1.654813	3.125993	38.826738	0.717576	0.954839	0.947452	156.911688	22.159280	69.269758	1184.0	128
9 1.589511	3.157029	35.179381	0.470019	0.972000	0.948508	139.338095	19.880613	62.763678	972.0	129
0 1.708631	3.164910	34.870385	0.496104	0.931707	0.948771	143.195959	19.879925	62.918164	955.0	130
5 1.661538	2.917825	33.205804	0.547755	0.936216	0.939437	134.468037	19.654605	57.348706	866.0	131
	2.57666 3.12599 3.15702 3.16491	35.485686 38.826738 35.179381 34.870385	 0.548835 0.717576 0.470019 0.496104	0.948226 0.954839 0.972000 0.931707	0.921618 0.947452 0.948508 0.948771	 139.539105 156.911688 139.338095 143.195959	 22.390693 22.159280 19.880613 19.879925	57.693192 69.269758 62.763678 62.918164	989.0 1184.0 972.0 955.0	 127 128 129

132 rows × 12 columns

In []:

Sample2 3

```
In [41]:
           import pandas as pd
           import numpy as np
           from skimage.measure import regionprops, regionprops_table
           props_Sample2_3 = regionprops_table(img_labels_Sample2_3, properties=('area', 'major_axis_length', 'minor_axis_
           # Create empty lists to store property values
           equiv diameters = []
           aspect_ratios = []
           compactnesses = []
           roundnesses = []
           categories = []
           for idx, region in enumerate(regionprops(img labels Sample2 3)):
                # Calculate properties for each region
                equiv_diameter = np.sqrt(4 * region.area / np.pi)
                aspect_ratio = region.major_axis_length / region.minor_axis_length
compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
```

```
# Append the calculated values to the respective lists
     equiv_diameters.append(equiv_diameter)
     aspect_ratios.append(aspect_ratio)
     compactnesses append (compactness)
     roundnesses.append(roundness)
     categories.append('Big Broke') # Category 3 for Big Broke
# Create a dictionary with all the properties
props_Sample2_3 = {
      'area': props Sample2 3['area'],
     'major_axis_length': props_Sample2_3['major_axis_length'],
'minor_axis_length': props_Sample2_3['minor_axis_length'],
'perimeter': props_Sample2_3['perimeter'],
'eccentricity': props_Sample2_3['eccentricity'],
     'solidity': props_Sample2_3['solidity'],
'extent': props_Sample2_3['extent'],
     'equiv diameter': equiv diameters,
     'aspect_ratio': aspect_ratios, 'compactness': compactnesses,
     'roundness': roundnesses,
     'category': categories,
}
# Create a DataFrame from the dictionary
df_Sample2_3 = pd.DataFrame(props_Sample2_3)
```

In [42]: df_Sample2_3

Out[42]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness	ro
-	0	664.0	37.938992	22.667306	102.225397	0.801893	0.958153	0.614815	29.076297	1.673732	1.252390	
	1	951.0	55.232275	22.493587	129.923882	0.913315	0.956740	0.515447	34.797282	2.455468	1.412497	
	2	713.0	47.588991	19.343941	112.953319	0.913660	0.959623	0.521199	30.130048	2.460150	1.423963	
	3	842.0	48.794048	22.426294	119.095454	0.888120	0.972286	0.526250	32.742445	2.175752	1.340505	
	4	866.0	53.755282	20.826861	127.497475	0.921896	0.960089	0.644345	33.205804	2.581055	1.493741	
	5	931.0	55.971264	22.021700	137.811183	0.919348	0.940404	0.554167	34.429435	2.541641	1.623340	
	6	834.0	47.523084	22.660397	115.698485	0.878996	0.981176	0.882540	32.586528	2.097187	1.277260	
	7	699.0	41.470605	21.851751	105.882251	0.849914	0.961486	0.587395	29.832775	1.897816	1.276319	
	8	672.0	39.957736	21.811188	102.811183	0.837879	0.965517	0.617647	29.250931	1.831984	1.251704	
	9	941.0	52.793912	23.331763	132.468037	0.897044	0.954361	0.568237	34.613847	2.262749	1.483962	
	10	628.0	44.928348	18.182379	106.568542	0.914451	0.964670	0.581481	28.277101	2.470983	1.439092	
	11	807.0	50.646451	20.737643	119.698485	0.912329	0.950530	0.817629	32.054708	2.442247	1.412843	
	12	882.0	51.015883	22.258238	124.367532	0.899801	0.960784	0.563939	33.511152	2.292000	1.395518	
	13	642.0	42.632085	19.495106	104.526912	0.889319	0.956781	0.764286	28.590554	2.186810	1.354289	
	14	914.0	54.754066	21.623228	129.438600	0.918717	0.951093	0.520798	34.113647	2.532187	1.458719	
	15	926.0	57.234246	21.042695	134.568542	0.929961	0.954639	0.597419	34.336858	2.719910	1.556203	
	16	933.0	52.443252	22.917230	128.568542	0.899466	0.962848	0.666429	34.466397	2.288377	1.409866	
	17	798.0	50.613136	20.576724	119.438600	0.913629	0.957983	0.521569	31.875463	2.459728	1.422580	
	18	720.0	44.282884	21.187222	111.597980	0.878114	0.956175	0.728008	30.277590	2.090075	1.376481	
	19	859.0	53.744165	20.717436	128.124892	0.922715	0.950221	0.527641	33.071329	2.594151	1.520772	
	20	1050.0	57.697126	23.607305	138.024387	0.912463	0.959781	0.543478	36.563664	2.444037	1.443818	
	21	821.0	48.442649	22.331106	124.124892	0.887410	0.952436	0.557745	32.331558	2.169290	1.493361	
	22	860.0	49.880146	22.290983	122.710678	0.894588	0.959821	0.566908	33.090573	2.237683	1.393338	
	23	759.0	46.327132	21.293222	114.225397	0.888112	0.955919	0.592969	31.086795	2.175675	1.367961	
	24	876.0	53.997930	21.051092	127.840620	0.920878	0.955289	0.700800	33.396974	2.565089	1.484649	
	25	741.0	44.686053	21.459363	108.870058	0.877145	0.980159	0.882143	30.715965	2.082357	1.272884	

```
Sample2_4
```

```
import pandas as pd
import numpy as np
from skimage.measure import regionprops, regionprops_table

props_Sample2_4 = regionprops_table(img_labels_Sample2_4, properties=('area', 'major_axis_length', 'minor_axis_

# Create empty lists to store property values
equiv_diameters = []
aspect_ratios = []
compactnesses = []
roundnesses = []
categories = []
```

```
# Calculate properties for each region
               equiv_diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length compactness = (region.perimeter ** 2) / (4 * np.pi * region.area) roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
               # Append the calculated values to the respective lists
               equiv_diameters.append(equiv_diameter)
               aspect ratios.append(aspect ratio)
               compactnesses.append(compactness)
               roundnesses.append(roundness)
               categories.append('Small Broke') # Category 2 for Small
          # Create a dictionary with all the properties
          props_Sample2_4 = {
                area': props Sample1 4['area'],
               'major_axis_length': props_Sample2_4['major axis length'],
               'minor_axis_length': props_Sample2_4['minor_axis_length'],
                'perimeter': props_Sample2_4['perimeter'],
               'eccentricity': props Sample2 4['eccentricity'],
               'solidity': props_Sample2_4['solidity'],
'extent': props_Sample2_4['extent'],
               'equiv diameter': equiv diameters,
               'aspect ratio': aspect ratios,
               'compactness': compactnesses,
               'roundness': roundnesses,
               'category': categories,
          }
          # Create a DataFrame from the dictionary
          df Sample2 4 = pd.DataFrame(props Sample2 4)
In [44]: df_Sample2_4
              area major_axis_length minor_axis_length perimeter eccentricity
                                                                           solidity
                                                                                     extent equiv_diameter aspect_ratio compactness round
Out[44]:
          0 516.0
                          34.710176
                                           19.091537 89.154329
                                                                 0.835147 0.957090 0.612903
                                                                                                25 557228
                                                                                                             1.818092
                                                                                                                          1.232985
                                                                                                                                    0.54
          1 523.0
                          32.274153
                                           21.518863 90.526912
                                                                 0.745279 0.947559 0.734923
                                                                                                25.829780
                                                                                                             1.499808
                                                                                                                          1.244555
                                                                                                                                    0.64
 In [ ]:
          Combine
          csv file path = 'Sample2 1.csv'
In [50]:
          df_Sample2_1.to_csv(csv_file_path, index=False)
          print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
          csv_file_path = 'Sample2_2.csv'
          df Sample2 2.to csv(csv file path, index=False)
          print(f"Data has been exported to {csv file path}") # print a message to confirm the export
          csv file path = 'Sample2 3.csv'
          df_Sample2_3.to_csv(csv_file_path, index=False)
          print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
          csv file path = 'Sample2 4.csv'
          df Sample2 4.to csv(csv file path, index=False)
          print(f"Data has been exported to {csv file path}") # print a message to confirm the export
          Data has been exported to Sample2_1.csv
          Data has been exported to Sample2_2.csv
Data has been exported to Sample2_3.csv
          Data has been exported to Sample2 4.csv
In [51]: import pandas as pd
          # List of CSV file names
          csv_files = [
               "Sample2_1.csv",
               "Sample2 2.csv",
               "Sample2_3.csv",
               "Sample2_4.csv",
          # Create an empty DataFrame to store the combined data
          combined prop data = pd.DataFrame()
          # Loop through the CSV files and append their data to the combined data DataFrame
          for file in csv_files
               df = pd.read csv(file) # Read each CSV file
               combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFr
          # Save the combined data to a new CSV file
```

for idx, region in enumerate(regionprops(img_labels_Sample2_4)):

```
eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                   C:\Users\LENOVO\AppData\Local\Temp\ipykernel_9256\1012631406.py:17: FutureWarning: The frame.append method is d
                eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                   combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
                C:\Users\LENOVO\AppData\Local\Temp\ipykernel 9256\1012631406.py:17: FutureWarning: The frame.append method is d
                eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                   combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
                \verb|C:\USers\LENOVO\AppData\Local\Temp\ipykernel\_9256\1012631406.py: 17: Future Warning: The frame append method is discovered by the first of the f
                eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                   combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFram
In [52]: Sample2_Data = pd.read_csv("Sample2_Data.csv")
In [53]: Sample2_Data.info()
                <class 'pandas.core.frame.DataFrame'>
                RangeIndex: 400 entries, 0 to 399
                Data columns (total 12 columns):
                 #
                       Column
                                                        Non-Null Count Dtype
                 0
                                                         400 non-null
                                                                                     float64
                 1
                        major axis length 400 non-null
                                                                                     float64
                 2
                        minor_axis_length 400 non-null
                                                                                     float64
                 3
                        perimeter
                                                         400 non-null
                                                                                     float64
                        eccentricity
                                                         400 non-null
                                                                                     float64
                 5
                        solidity
                                                         400 non-null
                                                                                     float64
                 6
                        extent
                                                         400 non-null
                                                                                     float64
                 7
                        equiv diameter
                                                         400 non-null
                                                                                     float64
                 8
                        aspect ratio
                                                         400 non-null
                                                                                     float64
                 9
                                                         400 non-null
                        compactness
                                                                                     float64
                 10
                        roundness
                                                         400 non-null
                                                                                     float64
                 11
                        category
                                                         400 non-null
                                                                                     object
                dtypes: float64(11), object(1)
                memory usage: 37.6+ KB
In [54]: Sample2 Data
                          area major_axis_length minor_axis_length
                                                                                       perimeter eccentricity
                                                                                                                         solidity
                                                                                                                                        extent equiv_diameter aspect_ratio compactness
Out[54]:
                   0 1260.0
                                             71.496582
                                                                      22.703544 162.409163
                                                                                                          0.948242 0.964778 0.477273
                                                                                                                                                         40.053487
                                                                                                                                                                             3.149138
                                                                                                                                                                                                1.665868
                                                                                                                                                                             3.222624
                   1 1104.0
                                             67.751054
                                                                      21.023568 150.669048
                                                                                                          0.950637 0.970123 0.796537
                                                                                                                                                         37.492085
                                                                                                                                                                                                 1.636323
                   2
                        948.0
                                            58.390897
                                                                      20.900842 133.254834
                                                                                                          0.933742 0.961460 0.769481
                                                                                                                                                         34.742353
                                                                                                                                                                             2.793710
                                                                                                                                                                                                1.490554
                   3 1047.0
                                             70.367938
                                                                       19.187485 159.195959
                                                                                                          0.962107 0.948370 0.481158
                                                                                                                                                         36.511393
                                                                                                                                                                             3.667387
                                                                                                                                                                                                 1.926227
                   4 1148.0
                                             66.868341
                                                                      22.100976 152.610173
                                                                                                          0.943801 0.963087 0.530009
                                                                                                                                                         38.231911
                                                                                                                                                                             3.025583
                                                                                                                                                                                                1.614415
                395
                        759.0
                                             46.327132
                                                                      21.293222 114.225397
                                                                                                          0.888112 0.955919 0.592969
                                                                                                                                                         31.086795
                                                                                                                                                                             2.175675
                                                                                                                                                                                                1.367961
                396
                        876.0
                                             53.997930
                                                                      21.051092 127.840620
                                                                                                          0.920878 0.955289 0.700800
                                                                                                                                                         33 396974
                                                                                                                                                                             2 565089
                                                                                                                                                                                                 1.484649
                397
                        741.0
                                             44.686053
                                                                      21.459363 108.870058
                                                                                                          0.877145 0.980159 0.882143
                                                                                                                                                         30.715965
                                                                                                                                                                             2.082357
                                                                                                                                                                                                 1.272884
                398
                        516.0
                                             34.710176
                                                                       19.091537
                                                                                       89.154329
                                                                                                          0.835147 0.957090 0.612903
                                                                                                                                                          25.557228
                                                                                                                                                                             1.818092
                                                                                                                                                                                                 1.232985
                399
                        523.0
                                             32.274153
                                                                      21.518863
                                                                                      90.526912
                                                                                                         0.745279 0.947559 0.734923
                                                                                                                                                         25.829780
                                                                                                                                                                             1.499808
                                                                                                                                                                                                1.244555
               400 rows × 12 columns
                unique categories = Sample2 Data['category'].unique()
                print(unique categories)
                ['Whole Rice' 'Head rice' 'Big Broke' 'Small Broke']
                ########################
                                                             Sample2: CSV file is Sample2 Data.csv
                                                                                                                                     ######################
In [47]:
 In [ ]:
```

C:\Users\LENOVO\AppData\Local\Temp\ipykernel_9256\1012631406.py:17: FutureWarning: The frame.append method is d

combined_prop_data.to_csv("Sample2_Data.csv", index=False)

Sample 3 Rice Grade 10%

plt.show()

```
In [56]: Img Sample3 = cv2.imread("D:\\Test Al\\Images Datasets\\02 Testing images\\Sample3\\Sample3.jpg")
In [57]: plt.imshow(Img_Sample3)
          <matplotlib.image.AxesImage at 0x2d78ed19350>
                             意 愈
            500
           1000
                                   图
                                        阁
                              衙
                                             心下
                                                   巡
                                                       慰
                                                                宗
                    巡
                         彩
           1500
                    亚
                         必
                              心法
                                    4
           2000
                         念
                               企
                                   統
                                         3
           2500 -
                     4
           3000
                 0
                       500
                              1000
                                     1500
                                             2000 2500
                                                            3000
           Img_Sample3_1 = cv2.imread("D:\Test_Al\Images_Datasets\02_Testing_images\Sample3_1.jpg") \\ Img_Sample3_2 = cv2.imread("D:\Test_Al\Images_Datasets\02_Testing_images\Sample3\Sample3_2.jpg") \\ 
In [58]:
          Img Sample3 3 = cv2.imread("D:\\Test Al\\Images Datasets\\02 Testing images\\Sample3\\Sample3 3.jpg")
          Img_Sample3_4 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample3\\Sample3_4.jpg")
Img_Sample3_5 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample3\\Sample3_5.jpg")
In [59]:
          Img Sample3 1 Gray=rgb2gray(Img Sample3 1)
          Img_Sample3_2_Gray=rgb2gray(Img_Sample3_2)
          Img Sample3 3 Gray=rgb2gray(Img Sample3 3)
          Img Sample3 4 Gray=rgb2gray(Img Sample3 4)
          Img_Sample3_5_Gray=rgb2gray(Img_Sample3_5)
In [60]: # Create a figure with subplots to display the images
          plt.figure(figsize=(12, 5))
          # Display the second image sample
          plt.subplot(2, 3, 1)
          plt.imshow(Img Sample3 1 Gray, cmap='gray')
          plt.title('Sample3_1 Whole_Rice')
          # Display the third image sample
          plt.subplot(2, 3, 2)
          plt.imshow(Img_Sample3_2_Gray, cmap='gray')
          plt.title('Sample3 2 Head Rice')
          # Display the fourth image sample
          plt.subplot(2, 3, 3)
          plt.imshow(Img Sample3 3 Gray, cmap='gray')
          plt.title('Sample3_3 Bigbroke_Rice')
          # Display the fourth image sample
          plt.subplot(2, 3, 4)
          plt.imshow(Img_Sample3_4_Gray, cmap='gray')
          plt.title('Sample3_4 Smallbroke_Rice')
          # Display the fifth image sample
          plt.subplot(2, 3, 5)
          plt.imshow(Img Sample3 5 Gray, cmap='gray')
          plt.title('Sample3_5 Smallbroke_C1')
          # Adjust spacing between subplots
          plt.tight_layout()
          # Show the plot
```

Sample3 2 Head Rice

影影

亚

秘密的的 的的形形的

Sample3 3 Bigbroke Rice

企 総 省

250

Sample3 1 Whole Rice

500

多层的品品的品品的

compactnesses.append(compactness)
roundnesses.append(roundness)

categories.append('Whole Rice') # Category 5 for Whole

物效能

```
# Create a dictionary with all the properties
props_Sample3_1 = {
    'area': props_Sample3_1['area'],
    'major_axis_length': props_Sample3_1['major_axis_length'],
    'minor_axis_length': props_Sample3_1['minor_axis_length'],
    'perimeter': props_Sample3_1['perimeter'],
    'eccentricity': props_Sample3_1['eccentricity'],
    'solidity': props_Sample3_1['solidity'],
    'extent': props_Sample3_1['extent'],
    'equiv_diameter': equiv_diameters,
    'aspect_ratio': aspect_ratios,
    'compactness': compactnesses,
    'roundness': roundnesses,
    'category': categories,
}
# Create a DataFrame from the dictionary
df_Sample3_1 = pd.DataFrame(props_Sample3_1)
```

In [65]: df Sample3 1

Out[65]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness
	0	1117.0	65.854698	22.142203	151.823376	0.941781	0.955518	0.458162	37.712181	2.974171	1.642155
	1	1038.0	62.841487	21.275411	143.012193	0.940946	0.960222	0.810304	36.354128	2.953714	1.567974
	2	1128.0	64.224762	22.707464	149.740115	0.935411	0.947899	0.696296	37.897417	2.828355	1.581821
	3	1019.0	65.666510	19.924394	151.497475	0.952858	0.947907	0.746520	36.019871	3.295785	1.792366
	4	1056.0	66.481353	20.553220	151.195959	0.951011	0.942857	0.500711	36.667983	3.234596	1.722688
	215	1195.0	72.076350	21.489217	163.639610	0.954521	0.956000	0.605984	39.006682	3.354071	1.783196
	216	1094.0	66.449099	21.402370	152.953319	0.946710	0.957968	0.536275	37.321898	3.104754	1.701730
	217	1174.0	68.665825	22.011427	155.497475	0.947229	0.958367	0.752564	38.662427	3.119553	1.638961
	218	1103.0	68.698729	20.891757	151.722871	0.952638	0.967544	0.432889	37.475101	3.288317	1.660798
	219	1074.0	65.382213	21.143420	148.568542	0.946269	0.955516	0.666253	36.979173	3.092320	1.635459

220 rows × 12 columns

```
Sample3 2
```

```
In [66]:
          import pandas as pd
          import numpy as np
          from skimage.measure import regionprops, regionprops table
          props Sample3 2 = regionprops table(img labels Sample3 2, properties=('area', 'major axis length', 'minor axis
          # Create empty lists to store property values
          equiv_diameters = []
          aspect ratios = []
          compactnesses = []
          roundnesses = []
          categories = []
          for idx, region in enumerate(regionprops(img labels Sample3 2)):
              # Calculate properties for each region
              equiv diameter = np.sqrt(4 * region.area / np.pi)
              aspect_ratio = region.major_axis_length / region.minor_axis_length
              compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
              # Append the calculated values to the respective lists
              equiv diameters.append(equiv diameter)
              aspect ratios.append(aspect ratio)
              compactnesses.append(compactness)
              roundnesses.append(roundness)
              categories.append('Head rice') # Category 4 for Head
          # Create a dictionary with all the properties
```

```
props_Sample3_2 = {
    'area': props_Sample3_2['area'],
    'major_axis_length': props_Sample3_2['minor_axis_length'],
    'minor_axis_length': props_Sample3_2['minor_axis_length'],
    'perimeter': props_Sample3_2['perimeter'],
    'eccentricity': props_Sample3_2['eccentricity'],
    'solidity': props_Sample3_2['escentricity'],
    'extent': props_Sample3_2['extent'],
    'equiv_diameter': equiv_diameters,
    'aspect_ratio': aspect_ratios,
    'compactness': compactnesses,
    'roundness': roundnesses,
    'category': categories,
}

# Create a DataFrame from the dictionary
df_Sample3_2 = pd.DataFrame(props_Sample3_2)
```

```
In [67]: df_Sample3_2
```

Out[67]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness r
	0	880.0	64.736634	17.488300	145.296465	0.962820	0.942184	0.489433	33.473135	3.701711	1.909051
	1	936.0	58.142131	20.788439	133.012193	0.933896	0.972973	0.835714	34.521764	2.796849	1.504171
	2	1028.0	68.292229	19.528652	153.237590	0.958242	0.943119	0.426910	36.178588	3.497027	1.817723
	3	926.0	60.729098	19.899182	134.994949	0.944792	0.970650	0.457510	34.336858	3.051839	1.566081
	4	1057.0	60.546495	22.585737	140.183766	0.927819	0.974194	0.883041	36.685340	2.680740	1.479485

	127	980.0	59.665131	21.259387	136.509668	0.934367	0.962672	0.494949	35.323855	2.806531	1.513181
	128	1180.0	68.353038	22.376132	154.651804	0.944899	0.967213	0.470494	38.761097	3.054730	1.612940
	129	890.0	64.340515	17.851747	144.710678	0.960738	0.947817	0.494994	33.662786	3.604158	1.872411
	130	1243.0	69.562514	22.973013	158.409163	0.943894	0.968823	0.482531	39.782367	3.028010	1.606496
	131	989.0	60.309184	21.366976	140.811183	0.935135	0.941009	0.583137	35.485686	2.822542	1.595395

132 rows × 12 columns

```
In [ ]:
```

Sample3_3

```
In [68]:
          import pandas as pd
          import numpy as np
          from skimage.measure import regionprops, regionprops table
          props Sample3 3 = regionprops table(img labels Sample3 3, properties=('area', 'major axis length', 'minor axis
          # Create empty lists to store property values
          equiv_diameters = []
          aspect_ratios = []
           compactnesses = []
          roundnesses = []
          categories = []
          for idx, region in enumerate(regionprops(img_labels_Sample3_3)):
               # Calculate properties for each region
               equiv diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length
compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
               # Append the calculated values to the respective lists
               equiv diameters.append(equiv diameter)
               aspect ratios.append(aspect ratio)
               compactnesses.append(compactness)
               roundnesses.append(roundness)
               categories.append('Big Broke') # Category 3 for Big Broke
          # Create a dictionary with all the properties
          props Sample3 3 = {
```

```
'area': props_Sample3_3['area'],
    'major_axis_length': props_Sample3_3['major_axis_length'],
    'minor_axis_length': props_Sample3_3['minor_axis_length'],
    'perimeter': props_Sample3_3['perimeter'],
    'eccentricity': props_Sample3_3['eccentricity'],
    'solidity': props_Sample3_3['solidity'],
    'extent': props_Sample3_3['extent'],
    'equiv_diameter': equiv_diameters,
    'aspect_ratio': aspect_ratio,
    'compactness': compactnesses,
    'roundness': roundnesses,
    'roundness': roundnesses,
}

# Create a DataFrame from the dictionary
df_Sample3_3 = pd.DataFrame(props_Sample3_3)
```

In [69]: df_Sample3_3

In [69]:	df_	_Sample	:3_3									
Out[69]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness	ro
	0	751.0	44.494238	22.021156	111.781746	0.868938	0.959132	0.552206	30.922531	2.020522	1.324012	
	1	734.0	45.636389	20.874502	113.254834	0.889256	0.954486	0.672161	30.570539	2.186226	1.390617	
	2	781.0	47.123331	21.525840	116.710678	0.889570	0.953602	0.581101	31.534110	2.189152	1.387907	
	3	1152.0	64.668588	23.029445	151.497475	0.934442	0.960000	0.807854	38.298459	2.808083	1.585435	
	4	716.0	42.157815	21.956537	107.053824	0.853668	0.966262	0.604730	30.193369	1.920058	1.273742	
	5	593.0	50.286482	15.991070	116.746212	0.948091	0.922240	0.415266	27.477828	3.144660	1.829031	
	6	802.0	48.430339	21.698921	120.811183	0.894012	0.954762	0.594074	31.955252	2.231924	1.448205	
	7	704.0	51.792389	17.577247	120.367532	0.940650	0.951351	0.470588	29.939283	2.946559	1.637707	
	8	732.0	45.156692	20.864599	111.053824	0.886854	0.959371	0.581876	30.528861	2.164273	1.340745	
	9	651.0	39.976668	21.281535	101.355339	0.846525	0.970194	0.794872	28.790258	1.878467	1.255748	
	10	1087.0	64.089265	21.865153	149.539105	0.940003	0.957709	0.575742	37.202303	2.931114	1.637081	
	11	1086.0	58.098914	24.328068	140.267027	0.908108	0.961062	0.538690	37.185187	2.388143	1.441689	
	12	866.0	50.956558	22.278838	124.183766	0.899358	0.962222	0.803340	33.205804	2.287218	1.417105	
	13	779.0	51.454193	19.937479	120.627417	0.921878	0.965304	0.872340	31.493707	2.580777	1.486431	
	14	544.0	39.622528	17.933782	96.710678	0.891706	0.952715	0.515152	26.318099	2.209379	1.368170	
	15	769.0	53.192025	19.014720	123.781746	0.933923	0.926506	0.506588	31.290913	2.797413	1.585539	
	16	617.0	40.035261	20.053671	102.183766	0.865505	0.952160	0.719114	28.028357	1.996406	1.346694	
	17	658.0	43.885348	19.374377	104.953319	0.897273	0.966226	0.541118	28.944630	2.265123	1.332161	
	18	844.0	50.342253	21.886806	124.426407	0.900546	0.944072	0.732639	32.781308	2.300119	1.459731	
	19	816.0	48.406323	21.663172	118.568542	0.894270	0.962264	0.657005	32.232956	2.234498	1.371005	
	20	945.0	55.788982	22.009621	134.225397	0.918889	0.953582	0.605769	34.687337	2.534754	1.517147	
	21	1044.0	60.884931	22.144847	143.095454	0.931510	0.960442	0.514793	36.459047	2.749395	1.560779	
	22	908.0	55.203432	21.455320	131.740115	0.921382	0.952781	0.617687	34.001493	2.572948	1.521039	
	23	874.0	51.101966	22.225197	125.254834	0.900470	0.951034	0.713469	33.358827	2.299281	1.428459	
	24	638.0	43.139481	19.358165	107.053824	0.893665	0.952239	0.545299	28.501348	2.228490	1.429466	
	25	870.0	53.761816	21.044475	127.769553	0.920204	0.949782	0.741688	33.282404	2.554676	1.493226	
	26	932.0	54.954777	21.960222	129.681241	0.916687	0.964803	0.516630	34.447921	2.502469	1.435914	

27	697.0	45.670601	19.868507	111.982756	0.900411	0.954795	0.586207	29.790065	2.298643	1.431725
28	817.0	49.631804	21.544033	121.781746	0.900876	0.944509	0.524390	32.252701	2.303738	1.444550
29	1251.0	70.047581	23.221623	157.722871	0.943451	0.963790	0.472075	39.910183	3.016481	1.582422
30	697.0	48.495966	18.562672	111.455844	0.923845	0.970752	0.860494	29.790065	2.612553	1.418283
31	900.0	54.717671	21.442786	131.053824	0.920016	0.954401	0.580645	33.851375	2.551799	1.518613
32	769.0	50.026059	20.032014	117.941125	0.916327	0.948212	0.779129	31.290913	2.497305	1.439443
33	826.0	46.717083	22.920719	118.083261	0.871369	0.957126	0.705983	32.429861	2.038203	1.343343
34	867.0	58.330495	19.737486	131.597980	0.941012	0.936285	0.750649	33.224971	2.955315	1.589533
35	848.0	52.853933	20.784408	130.811183	0.919435	0.938053	0.563830	32.858897	2.542961	1.605773
36	752.0	43.393557	22.714048	113.982756	0.852061	0.950695	0.617406	30.943111	1.910428	1.374835
37	844.0	50.182854	21.925196	124.669048	0.899507	0.955832	0.639394	32.781308	2.288821	1.465430
38	802.0	50.230114	20.653408	120.367532	0.911556	0.954762	0.527632	31.955252	2.432050	1.437588
39	655.0	44.586790	19.113601	109.882251	0.903455	0.930398	0.532520	28.878572	2.332726	1.466912
40	777.0	44.904637	22.193826	110.769553	0.869323	0.974906	0.840909	31.453253	2.023294	1.256637
41	811.0	54.983656	19.309251	129.396970	0.936307	0.952996	0.551701	32.134052	2.847529	1.642924
42	857.0	51.117654	21.817822	121.112698	0.904339	0.969457	0.850198	33.032806	2.342931	1.362036
43	877.0	59.288204	18.985364	135.982756	0.947343	0.954298	0.590572	33.416030	3.122837	1.677870

In []:

Sample3_4

```
In [70]:
          import pandas as pd
          import numpy as np
          from skimage.measure import regionprops, regionprops table
          props_Sample3_4 = regionprops_table(img_labels_Sample3_4, properties=('area', 'major_axis_length', 'minor_axis_
          # Create empty lists to store property values
          equiv diameters = []
          aspect ratios = []
          compactnesses = []
           roundnesses = []
          categories = []
          for idx, region in enumerate(regionprops(img labels Sample3 4)):
               # Calculate properties for each region
               equiv_diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length
               compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
               # Append the calculated values to the respective lists
               equiv diameters.append(equiv diameter)
               aspect_ratios.append(aspect_ratio)
               compactnesses.append(compactness)
               roundnesses.append(roundness)
               categories.append('Small Broke') # Category 2 for Small
          # Create a dictionary with all the properties
          props_Sample3 4 = {
               'area': props_Sample3_4['area'],
               'major_axis_length': props_Sample3_4['major_axis_length'],
'minor_axis_length': props_Sample3_4['minor_axis_length'],
               'perimeter': props_Sample3_4['perimeter'],
               'eccentricity': props_Sample3_4['eccentricity'],
               'solidity': props Sample3 4['solidity'],
               'extent': props_Sample3_4['extent'],
'equiv_diameter': equiv_diameters,
               'aspect_ratio': aspect_ratios,
```

```
'compactness': compactnesses,
               'roundness': roundnesses,
                'category': categories,
          }
          # Create a DataFrame from the dictionary
          df Sample3 4 = pd.DataFrame(props Sample3 4)
In [71]: df_Sample3_4
              area major_axis_length minor_axis_length perimeter eccentricity
                                                                            solidity
                                                                                      extent equiv_diameter aspect_ratio compactness
          0 594.0
                          37.251499
                                           20.691983 96.124892
                                                                  0.831539 0.965854 0.562500
                                                                                                  27.500987
                                                                                                               1.800287
                                                                                                                            1.237871
                                                                                                                                      0.54
          1 669.0
                          37.057968
                                            23.222278 99.597980
                                                                  0.779303 0.963977 0.786134
                                                                                                  29.185566
                                                                                                               1.595794
                                                                                                                            1.179954
                                                                                                                                      0.62
          2 588.0
                          36.867721
                                            20.796947 95.296465
                                                                  0.825709 0.971901 0.576471
                                                                                                  27.361741
                                                                                                               1.772747
                                                                                                                            1.229041
 In [ ]:
          Sample3_5
In [72]:
          import pandas as pd
          import numpy as np
          from skimage.measure import regionprops, regionprops table
          props_Sample3_5 = regionprops_table(img_labels_Sample3_5, properties=('area', 'major_axis_length', 'minor_axis_
           # Create empty lists to store property values
          equiv_diameters = []
          aspect_ratios = []
           compactnesses = []
           roundnesses = []
          categories = []
           for idx, region in enumerate(regionprops(img_labels_Sample3_5)):
               # Calculate properties for each region
               equiv_diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length
compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
               roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
               # Append the calculated values to the respective lists
               equiv_diameters.append(equiv_diameter)
               aspect_ratios.append(aspect_ratio)
               compactnesses append (compactness)
               roundnesses.append(roundness)
               categories.append('Small Broke C1') # Category 1 for C1
          # Create a dictionary with all the properties
          props_Sample3_5 = {
                '<mark>area':</mark>    props_Sample3_5['<mark>area']</mark>,
               'major_axis_length': props_Sample3_5['major_axis_length'],
'minor_axis_length': props_Sample3_5['minor_axis_length'],
                'perimeter': props_Sample3_5['perimeter'],
               'eccentricity': props Sample3 5['eccentricity'],
               'solidity': props_Sample3_5['solidity'],
                'extent': props_Sample3_5['extent'],
               'equiv diameter': equiv diameters,
                'aspect ratio': aspect ratios,
                'compactness': compactnesses,
               'roundness': roundnesses,
               'category': categories,
          # Create a DataFrame from the dictionary
          df Sample3 5 = pd.DataFrame(props Sample3 5)
In [73]: df_Sample3 5
              area major_axis_length minor_axis_length perimeter eccentricity
                                                                            solidity
                                                                                      extent equiv_diameter aspect_ratio compactness round
          0 368.0
                          24.957233
                                            18.894142 70.183766
                                                                  0.653345 0.968421 0.730159
                                                                                                  21.646066
                                                                                                               1.320898
                                                                                                                            1.065162
 In [ ]:
          Combine
In [74]: csv_file_path = 'Sample3_1.csv'
```

```
df Sample3 1.to csv(csv file path, index=False)
                    print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
                    csv file path = 'Sample3 2.csv'
                    df Sample3 2.to csv(csv file path, index=False)
                    print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
                    csv file path = 'Sample3 3.csv'
                    df_Sample3_3.to_csv(csv_file_path, index=False)
                    print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
                    csv_file_path = 'Sample3 4.csv'
                    df_Sample3_4.to_csv(csv_file_path, index=False)
                    print(f"Data has been exported to {csv file path}") # print a message to confirm the export
                    csv file path = 'Sample3 5.csv'
                    df Sample3 5.to csv(csv file path, index=False)
                    print(f"Data has been exported to {csv file path}") # print a message to confirm the export
                    Data has been exported to Sample3_1.csv
                    Data has been exported to Sample3 2.csv
                    Data has been exported to Sample3 3.csv
                    Data has been exported to Sample3 4.csv
                    Data has been exported to Sample3 5.csv
In [75]: import pandas as pd
                    # List of CSV file names
                    csv_files = [
                              "Sample3_1.csv",
                             "Sample3_2.csv",
                             "Sample3 3.csv",
                             "Sample3 4.csv",
                             "Sample3_5.csv",
                    1
                    # Create an empty DataFrame to store the combined data
                    combined prop data = pd.DataFrame()
                    # Loop through the CSV files and append their data to the combined data DataFrame
                    for file in csv_files:
                             df = pd.read csv(file) # Read each CSV file
                             combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFr
                    # Save the combined data to a new CSV file
                    combined prop data.to csv("Sample3 Data.csv", index=False)
                    \verb|C:\USers\LENOVO\AppData\Local\Temp\ipykernel\_9256\2920714122.py: 18: Future Warning: The frame append method is discontinuous and the property of the prop
                    eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                        combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
                    C:\Users\LENOVO\AppData\Local\Temp\ipykernel 9256\2920714122.py:18: FutureWarning: The frame.append method is d
                    eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                        combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
                    \verb|C:\USers\LENOVO\AppData\Local\Temp\ipykernel\_9256\2920714122.py: 18: Future Warning: The frame append method is discontinuous and the property of the prop
                    eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                        combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFram
                    C:\Users\LENOVO\AppData\Local\Temp\ipykernel 9256\2920714122.py:18: FutureWarning: The frame.append method is d
                    eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                        combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFram
                    C:\Users\LENOVO\AppData\Local\Temp\ipykernel_9256\2920714122.py:18: FutureWarning: The frame.append method is d
                    eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                        combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFram
In [76]: Sample3 Data = pd.read csv("Sample3 Data.csv")
In [77]: Sample3_Data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 12 columns):
                       Non-Null Count Dtype
# Column
0
                                        float64
    area
                        400 non-null
    major axis length 400 non-null
                                        float64
 2
    minor_axis_length 400 non-null
                                        float64
                        400 non-null
 3
    perimeter
                                        float64
    eccentricity
                        400 non-null
                                        float64
    solidity
                        400 non-null
                                        float64
                        400 non-null
                                        float64
6
    extent
    {\tt equiv\_diameter}
 7
                        400 non-null
                                        float64
 8
    aspect_ratio
                        400 non-null
                                        float64
                        400 non-null
    compactness
                                        float64
10 roundness
                        400 non-null
                                        float64
 11 category
                        400 non-null
                                        object
dtypes: float64(11), object(1)
memory usage: 37.6+ KB
```

Tn	[781:	Sample3	Data
4.11	1701	Jamp cc3	Daca

out[78]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness	r
	0	1117.0	65.854698	22.142203	151.823376	0.941781	0.955518	0.458162	37.712181	2.974171	1.642155	
	1	1038.0	62.841487	21.275411	143.012193	0.940946	0.960222	0.810304	36.354128	2.953714	1.567974	
	2	1128.0	64.224762	22.707464	149.740115	0.935411	0.947899	0.696296	37.897417	2.828355	1.581821	
	3	1019.0	65.666510	19.924394	151.497475	0.952858	0.947907	0.746520	36.019871	3.295785	1.792366	
	4	1056.0	66.481353	20.553220	151.195959	0.951011	0.942857	0.500711	36.667983	3.234596	1.722688	
	395	877.0	59.288204	18.985364	135.982756	0.947343	0.954298	0.590572	33.416030	3.122837	1.677870	
	396	594.0	37.251499	20.691983	96.124892	0.831539	0.965854	0.562500	27.500987	1.800287	1.237871	
	397	669.0	37.057968	23.222278	99.597980	0.779303	0.963977	0.786134	29.185566	1.595794	1.179954	
	398	588.0	36.867721	20.796947	95.296465	0.825709	0.971901	0.576471	27.361741	1.772747	1.229041	
	399	368.0	24.957233	18.894142	70.183766	0.653345	0.968421	0.730159	21.646066	1.320898	1.065162	

400 rows × 12 columns

Sample 4 Rice Grade 15%

```
In [81]: Img_Sample4 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample4\\Sample4.jpg")
In [82]: plt.imshow(Img_Sample4)
<matplotlib.image.AxesImage at 0x2d78edce690>
```

```
0 -
                    影物
                              心
500
                    色
                              23/2
                    心
                              統
1000
          添
                    必
                              5
1500 -
                     恐
                              恋
                              翁
       赊
2000 -
                               15
      悐
                    恣
2500
                    添
3000
                    雪
                    1500 2000 2500 3000
    0
         500
              1000
```

```
Img Sample4 1 = cv2.imread("D:\Test Al\Images Datasets\02 Testing images\Sample4\Sample4 1.jpg")
In [83]:
          Img Sample4 2 = cv2.imread("D:\\Test_Al\\Images_Datasets\\02_Testing_images\\Sample4\\Sample4_2.jpg")
          Img\_Sample4\_3 = cv2.imread("D:\Test\_Al\Images\_Datasets\02\_Testing\_images\Sample4\Sample4\_3.jpg")
          Img Sample4 4 = cv2.imread("D:\\Test Al\\Images Datasets\\02 Testing images\\Sample4\\Sample4 4.jpg")
Img Sample4 5 = cv2.imread("D:\\Test Al\\Images Datasets\\02 Testing images\\Sample4\\Sample4 5.jpg")
In [84]: Img Sample4 1 Gray=rgb2gray(Img Sample4 1)
          Img Sample4 2 Gray=rgb2gray(Img Sample4 2)
          Img_Sample4_3_Gray=rgb2gray(Img_Sample4_3)
          Img_Sample4_4_Gray=rgb2gray(Img_Sample4_4)
          Img_Sample4_5_Gray=rgb2gray(Img_Sample4_5)
In [85]: # Create a figure with subplots to display the images
          plt.figure(figsize=(12, 8))
          # Display the second image sample
          plt.subplot(2, 3, 1)
          plt.imshow(Img_Sample4_1_Gray, cmap='gray')
          plt.title('Sample4_1 Whole Rice')
          # Display the third image sample
          plt.subplot(2, 3, 2)
          plt.imshow(Img_Sample4_2_Gray, cmap='gray')
          plt.title('Sample4_2 Head_Rice')
          # Display the fourth image sample
          plt.subplot(2, 3, 3)
          plt.imshow(Img_Sample4_3_Gray, cmap='gray')
          plt.title('Sample4_3 Bigbroke_Rice')
          # Display the fourth image sample
          plt.subplot(2, 3, 4)
          plt.imshow(Img Sample4 4 Gray, cmap='gray')
          plt.title('Sample4 4 Smallbroke Rice')
          # Display the fifth image sample
          plt.subplot(2, 3, 5)
          plt.imshow(Img_Sample4_5_Gray, cmap='gray')
          plt.title('Sample4_5 Smallbroke_C1')
          # Adjust spacing between subplots
          plt.tight_layout()
          # Show the plot
```

```
img_labels_Sample4_1 = measure.label(img_mask_Sample4_1)
img_labels_Sample4_2 = measure.label(img_mask_Sample4_2)
img_labels_Sample4_3 = measure.label(img_mask_Sample4_3)
img_labels_Sample4_4 = measure.label(img_mask_Sample4_4)
img_labels_Sample4_5 = measure.label(img_mask_Sample4_5)
```

```
υαιτιριύτ_ ι
In [89]: import pandas as pd
          import numpy as np
          from skimage.measure import regionprops, regionprops table
          props Sample4 1 = regionprops table(img labels Sample4 1, properties=('area', 'major axis length', 'minor axis
          # Create empty lists to store property values
          equiv_diameters = []
          aspect ratios = []
          compactnesses = []
          roundnesses = []
          categories = []
          for idx, region in enumerate(regionprops(img labels Sample4 1)):
               # Calculate properties for each region
              equiv_diameter = np.sqrt(4 * region.area / np.pi)
              aspect_ratio = region.major_axis_length / region.minor_axis_length
              compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
              roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
              # Append the calculated values to the respective lists
              equiv diameters.append(equiv diameter)
              aspect_ratios.append(aspect_ratio)
              compactnesses.append(compactness)
              roundnesses.append(roundness)
              categories.append('Whole Rice') # Category 5 for Whole
          # Create a dictionary with all the properties
          props Sample4 1 = {
               'area': props_Sample4_1['area'],
              'major_axis_length': props_Sample4_1['major_axis_length'],
'minor_axis_length': props_Sample4_1['minor_axis_length'],
               'perimeter': props_Sample4_1['perimeter'],
'eccentricity': props_Sample4_1['eccentricity'],
              'solidity': props_Sample4_1['solidity'],
              'extent': props_Sample4_1['extent'],
'equiv_diameter': equiv_diameters,
               'aspect_ratio': aspect_ratios,
               'compactness': compactnesses,
               'roundness': roundnesses,
               'category': categories,
          # Create a DataFrame from the dictionary
          df_Sample4_1 = pd.DataFrame(props_Sample4_1)
```

In [90]: df_Sample4_1

Out[90]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness
	0	1207.0	69.227836	22.512157	158.651804	0.945649	0.960987	0.470565	39.202042	3.075131	1.659483
	1	1023.0	71.645640	18.339173	156.325902	0.966685	0.955182	0.654092	36.090498	3.906700	1.900975
	2	1115.0	62.839069	22.934397	147.740115	0.931019	0.956261	0.662901	37.678404	2.739949	1.557802
	3	1254.0	73.055586	22.097360	165.722871	0.953158	0.960184	0.430189	39.958008	3.306078	1.742840
	4	1078.0	65.568443	21.290971	149.923882	0.945812	0.963360	0.473014	37.047972	3.079636	1.659255
								•••			
	215	966.0	59.291285	21.315682	137.254834	0.933142	0.957384	0.736842	35.070634	2.781580	1.551916
	216	771.0	67.172362	14.958021	145.651804	0.974891	0.948339	0.327806	31.331577	4.490725	2.189614
	217	1033.0	66.212080	20.099647	148.166522	0.952811	0.955597	0.455467	36.266465	3.294191	1.691181
	218	1102.0	74.073716	19.246000	162.651804	0.965656	0.959095	0.408148	37.458110	3.848785	1.910409
	219	1049.0	63.502483	21.420309	142.769553	0.941392	0.965930	0.832540	36.546249	2.964592	1.546272

220 rows × 12 columns

```
In [91]: import pandas as pd
           import numpy as np
           from skimage.measure import regionprops, regionprops table
           props Sample4 2 = regionprops table(img labels Sample4 2, properties=('area', 'major axis length', 'minor axis
           # Create empty lists to store property values
           equiv_diameters = []
           aspect ratios = []
           compactnesses = []
           roundnesses = []
           categories = []
           for idx, region in enumerate(regionprops(img labels Sample4 2)):
               # Calculate properties for each region
equiv_diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length
               compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
               # Append the calculated values to the respective lists
               equiv_diameters.append(equiv_diameter)
               aspect_ratios.append(aspect_ratio)
               compactnesses.append(compactness)
               roundnesses.append(roundness)
               categories.append('Head rice') # Category 4 for Head
           # Create a dictionary with all the properties
           props_Sample4 2 = -
                'area': props Sample4 2['area'],
               'major_axis_length': props_Sample4_2['major_axis_length'],
'minor_axis_length': props_Sample4_2['minor_axis_length'],
'perimeter': props_Sample4_2['perimeter'],
               'eccentricity': props_Sample4_2['eccentricity'],
                'solidity': props Sample4 2['solidity'],
                'extent': props_Sample4_2['extent'],
                'equiv_diameter': equiv_diameters,
                'aspect_ratio': aspect_ratios,
                'compactness': compactnesses,
                'roundness': roundnesses,
                'category': categories,
           # Create a DataFrame from the dictionary
           df_Sample4_2 = pd.DataFrame(props_Sample4_2)
In [92]: | df_Sample4_2
Out[92]:
```

				_
Tin	[021+	df	Samnl 🗚	っ

:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness	•
	0	1003.0	64.672023	20.042389	141.941125	0.950766	0.970958	0.865401	35.735966	3.226762	1.598474	
	1	1151.0	66.654847	22.308238	150.994949	0.942331	0.964795	0.479583	38.281833	2.987903	1.576303	
	2	978.0	59.463095	21.458806	138.083261	0.932614	0.959764	0.733133	35.287792	2.771035	1.551434	
	3	930.0	58.364007	20.508797	133.254834	0.936227	0.958763	0.754870	34.410940	2.845804	1.519404	
	4	1041.0	67.569022	20.050692	153.195959	0.954957	0.952425	0.490113	36.406625	3.369910	1.794048	
	107	1133.0	69.261387	21.160384	157.053824	0.952187	0.954507	0.590104	37.981317	3.273163	1.732436	
	108	854.0	64.199528	17.271271	138.769553	0.963133	0.955257	0.777778	32.974939	3.717128	1.794406	
	109	1123.0	67.011089	21.615029	153.982756	0.946549	0.949281	0.624583	37.813331	3.100208	1.680175	
	110	1149.0	67.654789	22.070700	154.166522	0.945292	0.960702	0.479950	38.248559	3.065367	1.646077	
	111	1094.0	69.139275	20.533262	154.325902	0.954882	0.952962	0.657452	37.321898	3.367184	1.732409	

112 rows × 12 columns

In []:

Sample4 3

In [93]: import pandas as pd

```
import numpy as np
from skimage.measure import regionprops, regionprops_table
props_Sample4_3 = regionprops_table(img_labels_Sample4_3, properties=('area', 'major_axis length', 'minor axis
# Create empty lists to store property values
equiv diameters = []
aspect ratios = []
compactnesses = []
roundnesses = []
categories = []
for idx, region in enumerate(regionprops(img labels Sample4 3)):
    # Calculate properties for each region
    equiv_diameter = np.sqrt(4 * region.area / np.pi)
    aspect_ratio = region.major_axis_length / region.minor_axis_length
compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
    roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
    # Append the calculated values to the respective lists
    equiv diameters.append(equiv diameter)
    aspect_ratios.append(aspect_ratio)
    compactnesses.append(compactness)
    roundnesses.append(roundness)
    categories.append('Big Broke') # Category 3 for Big Broke
# Create a dictionary with all the properties
props_Sample4 3 = {
     'area': props_Sample4_3['area'],
     'major axis length': props Sample4 3['major axis length'],
    'minor_axis_length': props_Sample4_3['minor_axis_length'],
    'perimeter': props_Sample4_3['perimeter'],
     'eccentricity': props_Sample4_3['eccentricity'],
    'solidity': props Sample4 3['solidity'],
    'extent': props_Sample4_3['extent'],
'equiv_diameter': equiv_diameters,
    'aspect_ratio': aspect_ratios,
    'compactness': compactnesses,
    'roundness': roundnesses,
    'category': categories,
# Create a DataFrame from the dictionary
df_Sample4_3 = pd.DataFrame(props_Sample4_3)
```

In [94]: df_Sample4_3

Out[94]:		area	major_axis_length	minor_axis_length	perimeter	eccentricity	solidity	extent	equiv_diameter	aspect_ratio	compactness	rou
	0	625.0	45.056638	18.047198	107.154329	0.916277	0.960061	0.578704	28.209479	2.496600	1.461940	0
	1	803.0	50.555159	20.667003	120.526912	0.912624	0.948052	0.813576	31.975168	2.446178	1.439603	0
	2	882.0	50.972023	22.282232	123.539105	0.899390	0.963934	0.576471	33.511152	2.287564	1.376989	0
	3	644.0	42.585406	19.592317	104.526912	0.887882	0.954074	0.750583	28.635053	2.173577	1.350083	0
	4	915.0	54.858577	21.610997	129.438600	0.919136	0.951143	0.521368	34.132304	2.538457	1.457124	0
	59	729.0	45.100271	20.804506	111.053824	0.887247	0.959211	0.579491	30.466238	2.167813	1.346262	0
	60	669.0	40.343059	21.647750	105.053824	0.843842	0.958453	0.578720	29.185566	1.863614	1.312767	0
	61	789.0	44.887273	22.924573	115.941125	0.859750	0.959854	0.740150	31.695205	1.958042	1.355777	0
	62	673.0	47.903863	18.132085	110.526912	0.925597	0.951909	0.787135	29.272687	2.641939	1.444479	0
	63	688.0	41.848515	21.352324	107.597980	0.860039	0.956885	0.696356	29.597108	1.959904	1.339091	0

64 rows × 12 columns

In []:

Sample4_4

In [97]: import pandas as pd import numpy as np

```
from skimage.measure import regionprops, regionprops table
          props_Sample4_4 = regionprops_table(img_labels_Sample4_4, properties=('area', 'major_axis_length', 'minor_axis_
          # Create empty lists to store property values
          equiv_diameters = []
          aspect_ratios = []
          compactnesses = []
           roundnesses = []
           categories = []
          for idx, region in enumerate(regionprops(img_labels_Sample4_4)):
               # Calculate properties for each region
               equiv_diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length
               compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
               # Append the calculated values to the respective lists
               equiv diameters.append(equiv diameter)
               aspect_ratios.append(aspect_ratio)
               compactnesses.append(compactness)
               roundnesses.append(roundness)
               categories.append('Small Broke') # Category 2 for Small
          # Create a dictionary with all the properties
          props Sample4 4 =
               'area': props_Sample4_4['area'],
               'major_axis_length': props_Sample4_4['major_axis_length'],
               'minor axis length': props Sample4 4['minor axis length'],
               'perimeter': props Sample4 4['perimeter'],
               'eccentricity': props_Sample4_4['eccentricity'],
               'solidity': props Sample4 4['solidity'],
               'extent': props Sample4 4['extent'],
               'equiv_diameter': equiv_diameters,
               'aspect_ratio': aspect_ratios,
               'compactness': compactnesses,
               'roundness': roundnesses,
               'category': categories,
          # Create a DataFrame from the dictionary
          df Sample4 4 = pd.DataFrame(props Sample4 4)
In [98]: df Sample4 4
Out[98]:
              area major axis length minor axis length perimeter eccentricity
                                                                          solidity
                                                                                     extent equiv diameter aspect ratio compactness round
          0 502.0
                          33.505504
                                           19.253170 89.497475
                                                                 0.818415 0.956190 0.669333
                                                                                                25.281738
                                                                                                             1.740259
                                                                                                                          1.269720
                                                                                                                                    0.56
          1 478.0
                          31.145639
                                           19.771499 83.355339
                                                                 0.772670 0.957916 0.758730
                                                                                                24.669992
                                                                                                             1.575280
                                                                                                                          1.156722
                                                                                                                                    0.62
          2 558 0
                          34 705836
                                           20 735185 91 355339
                                                                 0.801902 0.962069 0.768595
                                                                                                26 654599
                                                                                                             1 673765
                                                                                                                          1.190211
                                                                                                                                    0.58
 In [ ]:
          Sample4 5
In [99]:
          import pandas as pd
          import numpy as np
          from skimage.measure import regionprops, regionprops_table
          props Sample4 5 = regionprops table(img labels Sample4 5, properties=('area', 'major axis length', 'minor axis
          # Create empty lists to store property values
          equiv diameters = []
          aspect ratios = []
           compactnesses = []
           roundnesses = []
          categories = []
           for idx, region in enumerate(regionprops(img labels Sample4 5)):
               # Calculate properties for each region
               equiv_diameter = np.sqrt(4 * region.area / np.pi)
               aspect_ratio = region.major_axis_length / region.minor_axis_length
compactness = (region.perimeter ** 2) / (4 * np.pi * region.area)
roundness = (4 * region.area) / (np.pi * (region.major_axis_length ** 2))
               # Append the calculated values to the respective lists
               equiv diameters.append(equiv diameter)
               aspect_ratios.append(aspect_ratio)
```

compactnesses.append(compactness)

```
categories.append('Small Broke C1') # Category 1 for C1
          # Create a dictionary with all the properties
         props Sample4 5 = +
              'area': props_Sample4_5['area'],
              'major axis length': props Sample4 5['major axis length'],
              'minor_axis_length': props_Sample4_5['minor_axis_length'],
              'perimeter': props_Sample4_5['perimeter'],
              'eccentricity': props_Sample4_5['eccentricity'],
              'solidity': props Sample4 5['solidity'],
              'extent': props_Sample4_5['extent'],
              'equiv_diameter': equiv_diameters,
              'aspect_ratio': aspect_ratios,
              'compactness': compactnesses,
              'roundness': roundnesses,
              'category': categories,
         }
          # Create a DataFrame from the dictionary
         df Sample4 5 = pd.DataFrame(props Sample4 5)
In [100... df_Sample4_5
Out[100]:
              area major_axis_length minor_axis_length perimeter eccentricity
                                                                      solidity
                                                                              extent equiv_diameter aspect_ratio compactness round
           0 424.0
                         24.950905
                                        22.123769 76.870058
                                                             0.462361 0.961451 0.80303
                                                                                         23.234749
                                                                                                     1.127787
                                                                                                                1.109018
                                                                                                                          0.86
 In [ ]:
         Combine
         csv_file_path = 'Sample4_1.csv'
In [101...
         df Sample4 1.to csv(csv file path, index=False)
         print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
          csv file path = 'Sample4 2.csv'
         df Sample4 2.to csv(csv file path, index=False)
         print(f"Data has been exported to {csv file path}") # print a message to confirm the export
          csv file path = 'Sample4 3.csv'
         df_Sample4_3.to_csv(csv_file_path, index=False)
          print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
          csv file path = 'Sample4 4.csv'
         df_Sample4_4.to_csv(csv_file_path, index=False)
         print(f"Data has been exported to {csv_file_path}") # print a message to confirm the export
          csv_file_path = 'Sample4 5.csv'
         df_Sample4_5.to_csv(csv_file_path, index=False)
         print(f"Data has been exported to {csv file path}") # print a message to confirm the export
         Data has been exported to Sample4_1.csv
         Data has been exported to Sample4 2.csv
         Data has been exported to Sample4_3.csv
         Data has been exported to Sample4_4.csv
         Data has been exported to Sample4_5.csv
In [102... import pandas as pd
          # List of CSV file names
          csv_files = [
              "Sample4_1.csv",
              "Sample4_2.csv",
              "Sample4 3.csv",
              "Sample4_4.csv",
              "Sample4 5.csv",
          1
          # Create an empty DataFrame to store the combined data
          combined_prop_data = pd.DataFrame()
          # Loop through the CSV files and append their data to the combined data DataFrame
          for file in csv files:
              df = pd.read csv(file) # Read each CSV file
              combined prop data = combined prop data.append(df, ignore_index=True) # Append data to the combined DataFr
          # Save the combined data to a new CSV file
          combined prop data.to csv("Sample4 Data.csv", index=False)
```

roundnesses.append(roundness)

```
\verb|C:\USers\LENOVO\AppData\Local\Temp\ipykernel\_9256\2332497413.py: 18: Future Warning: The frame append method is discovered by the first of the f
                            eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                                  combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
                            \verb|C:\USers\LENOVO\AppData\Local\Temp\ipykernel\_9256\2332497413.py: 18: Future Warning: The frame append method is discontinuous and the property of the prop
                            eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                                  combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFram
                             \hbox{\tt C:\backslash Users\backslash LENOVO\backslash AppData\backslash Local\backslash Temp\backslash ipykernel\_9256\backslash 2332497413.py:18: Future Warning: The frame.append method is discontinuous and the property of the property of
                            eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                                  combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFram
                            C:\Users\LENOVO\AppData\Local\Temp\ipykernel_9256\2332497413.py:18: FutureWarning: The frame.append method is d
                            eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                                  combined prop data = combined prop data.append(df, ignore index=True) # Append data to the combined DataFram
                            C:\Users\LENOVO\AppData\Local\Temp\ipykernel_9256\2332497413.py:18: FutureWarning: The frame.append method is d
                            eprecated and will be removed from pandas in a future version. Use pandas.concat instead.
                                  combined_prop_data = combined_prop_data.append(df, ignore_index=True) # Append data to the combined DataFram
In [103... Sample4 Data = pd.read csv("Sample4 Data.csv")
In [104... Sample4_Data.info()
                             <class 'pandas.core.frame.DataFrame'>
                            RangeIndex: 400 entries, 0 to 399
                            Data columns (total 12 columns):
                               #
                                           Column
                                                                                                   Non-Null Count
                                                                                                                                                  Dtype
                               0
                                           area
                                                                                                    400 non-null
                                                                                                                                                    float64
                                           major_axis_length
                                                                                                                                                    float64
                               1
                                                                                                   400 non-null
                                           minor_axis_length
                               2
                                                                                                   400 non-null
                                                                                                                                                    float64
                               3
                                           perimeter
                                                                                                    400 non-null
                                                                                                                                                    float64
                               4
                                                                                                   400 non-null
                                           eccentricity
                                                                                                                                                    float64
                               5
                                           solidity
                                                                                                    400 non-null
                                                                                                                                                    float64
                               6
                                                                                                    400 non-null
                                                                                                                                                    float64
                                           extent
                               7
                                           equiv_diameter
                                                                                                    400 non-null
                                                                                                                                                    float64
                               8
                                                                                                   400 non-null
                                           aspect ratio
                                                                                                                                                    float64
                               9
                                           compactness
                                                                                                    400 non-null
                                                                                                                                                    float64
                               10
                                           roundness
                                                                                                    400 non-null
                                                                                                                                                    float64
                                                                                                   400 non-null
                               11
                                           category
                                                                                                                                                    object
                            dtypes: float64(11), object(1)
                            memory usage: 37.6+ KB
In [105... Sample4 Data
Out[105]:
                                                area major_axis_length minor_axis_length
                                                                                                                                                                                                                     solidity
                                                                                                                                                          perimeter eccentricity
                                                                                                                                                                                                                                                extent equiv diameter aspect ratio compactness
                                    0 1207.0
                                                                                                                              22.512157 158.651804
                                                                                                                                                                                           0.945649 0.960987 0.470565
                                                                                                                                                                                                                                                                              39.202042
                                                                                                                                                                                                                                                                                                                                                  1.659483
                                                                                 69.227836
                                                                                                                                                                                                                                                                                                                3.075131
                                    1 1023 0
                                                                                 71 645640
                                                                                                                              18 339173 156 325902
                                                                                                                                                                                           0.966685 0.955182 0.654092
                                                                                                                                                                                                                                                                              36 090498
                                                                                                                                                                                                                                                                                                                3 906700
                                                                                                                                                                                                                                                                                                                                                  1 900975
                                    2 1115.0
                                                                                 62.839069
                                                                                                                              22.934397 147.740115
                                                                                                                                                                                           0.931019 0.956261 0.662901
                                                                                                                                                                                                                                                                              37.678404
                                                                                                                                                                                                                                                                                                                2.739949
                                                                                                                                                                                                                                                                                                                                                  1.557802
                                         1254.0
                                                                                 73.055586
                                                                                                                              22.097360 165.722871
                                                                                                                                                                                           0.953158 0.960184 0.430189
                                                                                                                                                                                                                                                                              39.958008
                                                                                                                                                                                                                                                                                                                3.306078
                                                                                                                                                                                                                                                                                                                                                   1.742840
                                    4 1078.0
                                                                                 65.568443
                                                                                                                              21.290971 149.923882
                                                                                                                                                                                           0.945812 0.963360 0.473014
                                                                                                                                                                                                                                                                              37.047972
                                                                                                                                                                                                                                                                                                                3.079636
                                                                                                                                                                                                                                                                                                                                                  1.659255
                                  ...
                               395
                                             688.0
                                                                                 41.848515
                                                                                                                              21.352324 107.597980
                                                                                                                                                                                           0.860039 0.956885 0.696356
                                                                                                                                                                                                                                                                              29.597108
                                                                                                                                                                                                                                                                                                                1.959904
                                                                                                                                                                                                                                                                                                                                                  1.339091
                               396
                                              502.0
                                                                                 33.505504
                                                                                                                              19.253170
                                                                                                                                                          89.497475
                                                                                                                                                                                           0.818415 0.956190 0.669333
                                                                                                                                                                                                                                                                              25.281738
                                                                                                                                                                                                                                                                                                                1.740259
                                                                                                                                                                                                                                                                                                                                                  1.269720
                               397
                                              478.0
                                                                                 31.145639
                                                                                                                              19.771499
                                                                                                                                                          83.355339
                                                                                                                                                                                           0.772670 0.957916 0.758730
                                                                                                                                                                                                                                                                              24.669992
                                                                                                                                                                                                                                                                                                                1.575280
                                                                                                                                                                                                                                                                                                                                                  1.156722
                               398
                                              558.0
                                                                                 34.705836
                                                                                                                              20.735185
                                                                                                                                                          91.355339
                                                                                                                                                                                           0.801902 0.962069 0.768595
                                                                                                                                                                                                                                                                              26.654599
                                                                                                                                                                                                                                                                                                                1.673765
                                                                                                                                                                                                                                                                                                                                                  1.190211
                                                                                                                              22.123769
                                                                                                                                                                                           0.462361 0.961451 0.803030
                                                                                                                                                                                                                                                                              23 234749
                                                                                                                                                                                                                                                                                                                                                  1 109018
                               399
                                              424 0
                                                                                24 950905
                                                                                                                                                          76.870058
                                                                                                                                                                                                                                                                                                                1.127787
```

400 rows × 12 columns

In [106... unique_categories = Sample4_Data['category'].unique()
 print(unique_categories)

['Whole Rice' 'Head rice' 'Big Broke' 'Small Broke' 'Small Broke C1']

