CME341 - Preamble for the first Midterm Material up to end of Assignment 5

Created: October 3, 2014 modified: September 27, 2021

In preparation for the exam (i.e. prior to entering the exam) do the following:

- 1. Using a lab computer (in Linux mode), create a directory called first_midterm_CME341. Make a Quartus project within that directory called student_circuit and the make the top entity in that project student_circuit. Use the Cyclone IVe FPGA that is used on the DE2-115 boards, which has part number EP4CE115F29C7.
- 2. Download the files student_circuit.sv, student_circuit_preamble.sv, and student_circuit.sdc and place them in the project directory.
- 3. Add the files student_circuit.sv and student_circuit_preamble.sv to the Quartus project: Project → add/remove files in project
- 4. If you forgot to make student_circuit.sv the top-level entity when establishing the project with the project wizard it can be after the project is created by opening student_circuit.sv and then selecting Project → Set as top-level entity.
- 5. Compile the project.
- 6. Download the file midterm_1_testbench.sv and place it in the subdirectory of the Quartus project: simulation → modelsim.
- 7. Make a Modelsim project in the subdirectory and add files student_circuit.vo and midterm_1_testbench.sv.
- 8. Compile all.
- 9. Start the simulation. Remember to include the required simulation libraries: altera_mf_ver, altera_ver, and cycloneive_ver
- 10. Add signals clk, clear, seed, stimulus, student_output, counter_full_bar and accumulator_output to the wave window.
- 11. Make the radix of all signals hexadecimal.
- 12. Change the grid & timeline properties of the horizontal axis to have units of microseconds.
- 13. Save the format of the wave window in a wave.do file so the wave window can be quickly set up in the exam.
- 14. Run the simulation with the -all option.

Figure 1: Full view of wave window

Figure 2: Zoomed in view at the beginning of the wave window

- 15. After "full-zooming" the wave window it should be as shown in Figure 1. A closer view near the beginning is shown in Figure 2. A close look at Figure 1 shows four clear pulse, two or which are narrower than the other two. A zoomed in view of one of the narrow clear pulses is shown in Figure 3.
- 16. Notice from observing the wave window that the value of variable **seed** changes at 320 microseconds from 8'AA to 8'HFF. The reason for this is important and is explained below.
- 17. The results of the simulation are coded in the 16 bit variable accumulator_output. The result, i.e. the value of accumulator_output, is valid only at the times when binary variable counter_full_bar is low. The value of accumulator_output depends on: the prototype student_circuit.sv (and any submodules) and the value of the variable seed. The variable seed changes at time 320 μ s from 8'hAA to the value of a variable named exam_dependent_seed. In the posted version of

clk	0							
clear	0							
seed	ff	aa						
stimulus	ff	c5	c6	c7	c8	c9	ca	cb
student_output	ff	c5	c6	c7	()(00)(c	3 c9	ca	cb
counter_full_bar	0							
accumulator_output	4311	da33	b545	6b63	d7a0	ae05	5cd1	b862

Figure 3: Zoomed in view showing one of the two narrow clear pulses

midterm_1_testbench.sv exam_dependent_seed is set to 8'HFF. The two"valid result" values of accumulator_output should be 16'H622D and 16'H4311 for seeds 8'HAA and 8'HFF, respectively. Please check your wave window to make sure this is the case.

18. The very first thing you must do in the exam is change the value of variable exam_dependent_seed in midterm_1_testbench.sv to the seed given on your answer sheet. To be sure you will do that correctly in the exam modify midterm_1_testbench.sv so that exam_dependent_seed is set to 8'HAA. Then recompile midterm_1_testbench.sv. Then check the wave window to make sure seed is 8'HAA for the entire 640 μs and the two "valid" values of accumulator_output, (i.e. the values at the two times counter_full_bar is low) are both 16'H622D.

Example Exam Question

Modify the modelsim testbench midterm_1_testbench.sv so that exam_dependent_seed is set to 8'H11.

Then modify student_circuit to make it a combinational logic circuit whose output is 8'H00 while clear is high and is otherwise the "exclusive or" of the input and the constant 8'H3C.

Recompile the Quartus project.

Compile and load the Modelsim project. Then add the appropriate signals to the wave window (easiest way is to execute do wave.do).

If your circuit is working properly accumulator_output should be 16'H62DE when counter_full_bar is low for seed = 8'HAA.

Once your circuit is working properly report the value of accumulator_output when counter_full_bar is low for the seed on your exam sheet, which for this example is 8'H11.