Math 401: Homework 11

Tim Farkas

Nov 2021

Problem 1

Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are differentiable at 0 and that f(0) = g(0) = 0. Define

$$k(x) = \begin{cases} f \circ g(x) & x < 0 \\ 0 & x = 0 \\ g \circ f(x) & x > 0 \end{cases}$$

Show that k is differentiable at 0 and find k'(0).

Since $f \circ g(x)$ and $g \circ f(x)$ are differentiable at 0, we have that $(f \circ g)'(x) = f'(g(x))g'(x)$ and $(g \circ f)'(x) = g'(f(x))f'(x)$. Evaluating each derivative at x = 0 yields

$$(f \circ g)'(0) = f'(g(0))g'(0)$$
$$= f'(0)g'(0)$$

and

$$(g \circ f)'(0) = g'(f(0))f'(0)$$

= $f'(0)g'(0)$

Hence we can show that both the left and right limits of k at $x \to 0$ are equal:

$$\lim_{x \to -0} \frac{k(x) - k(0)}{x - 0} = \frac{(f \circ g)(x) - 0}{x}$$

$$= \frac{(f \circ g)(x) - (f \circ g)(0)}{x - 0}$$

$$= (f \circ g)'(x)$$

$$= f'(0)g'(0)$$

and

$$\lim_{x \to +0} \frac{k(x) - k(0)}{x - 0} = \frac{(g \circ f)(x) - 0}{x}$$

$$= \frac{(g \circ f)(x) - (g \circ f)(0)}{x - 0}$$

$$= (g \circ f)'(x)$$

$$= f'(0)g'(0)$$

Hence k is differentiable at 0 and k'(0) = f'(0)g'(0).

Problem 2

Suppose $f,g:\mathbb{R}\to\mathbb{R},\,S$ is a finite set where $S\subseteq(0,\infty)$ and $\forall x\notin S,\,f(x)=g(x).$

Show that if f is differentiable at 0, then g is differentiable at 0 and f'(0) = g'(0).

Since S is a finite set, S has a minimum and $\min\{S\} > 0$.

Hence, take $\delta = \min\{S\}$. Then there exists a neighborhood $N(0, \delta)$ wherein f(x) = g(x), and hence f'(0) = g'(0).

Problem 3

Prove that if a polynomial function $p: \mathbb{R} \to \mathbb{R}$ is divisible by $(x-2)^3$, then the polynomial p'(x) is divisible by $(x-2)^2$.

By definition we can take $p = (x-2)^3 p^*$, where p^* is some polynomial factor of p.

Then we have

$$p' = \frac{d}{dx}(x-2)^3 p^*$$

$$= 3(x-2)^2 p^* + (x-2)^3 p'^*$$

$$= (x-2)^2 [3p^* + (x-2)p'^*]$$

$$= (x-2)p^{**}$$
 (product rule)

Where p^{**} is a polynomial, since the derivative of a polynomial is a polynomial, and the sum of polynomials is polynomial.

Problem 4

Prove that if f(x) is an even function, then f'(0) = 0.

If f(x) is even, then f'(x) is odd, by proof in recitation.

If f'(x) is odd, then we have that f'(0) = f'(-0) = -f(0), so f'(0) = -f'(0), and therefore we have that 2f'(0) = 0, and f'(0) = 0.