CS 351 DATA ORGANIZATION & MANAGEMENT

FALL 2010

QUIZ 3/ SECTION-1 (Date given: November 1, 2010)

- **1-** Given that bv = 5 and h = 3
 - a. How many pages?
 - b. How many pages at level h?
 - c. How many pages at level h+1?

Solution:

a. n: number of pages

$$bv = n - 2^h$$
 \Rightarrow $n = bv + 2^h = 5 + 2^3 = 13$

b. The last page at level h is 111 $(2^h - 1 = 2^3 - 1 = 7)$

Therefore, there are 3 pages at level h (i.e., 101, 110, 111)

c. The number of pages at level h + 1 is calculated as follows:

f(bv) = 2 * bv = 2 * 5 = 10 (or as an another way, you can calculate as 13 - 3 = 10).

2- bv = $0 \rightarrow \boxed{ 16 | 52 }$ 57
42

$$h=2\\$$

Desired Lf = 1/2

Blocking factor = 2

- 42: 0101010
- 57: 0111001
- 16: 0010000
- 52: 0110100

- 33: 0100001
- 78: 1001110

13: 0001101

22: 0010110

Add these records

Solution:

At each time after reaching the target load factor, insert (Lf*Bkfr) record(s) and update the file.

Target Load Factor = 1/2Bkfr = 2

<u>Add 33</u>

Update:

$bv \rightarrow 00$	16	52
01	57	33
10	42	
11		

000	16	
$bv \rightarrow 01$	57	33
10	42	
11		
100	52	

<u>Add 78</u>

Update:

000	16	
$bv \rightarrow 01$	57	33
10	42	78
11		
100	52	

000	16	
001	57	33
$bv \rightarrow 10$	42	78
11		
100	52	
101		

<u>Add 13</u>

000	16	
001	57	33
$bv \rightarrow 10$	42	78
11		
100	52	
101	13	

<u>Update:</u>

000	16	
001	57	33
010	42	
$bv \rightarrow 11$		
100	52	
101	13	
110	78	

<u>Add 22</u>

000	16	
001	57	33
010	42	
$bv \rightarrow 11$		
100	52	
101	13	
110	78	22

<u>Update:</u>

QUIZ 3/ SECTION-2 (Date given: October 25, 2010)

1- Linear Hashing

$$n = 14$$

- What is by and h?
- What is the number of pages at level h? Also give the page numbers.
- What is the number of pages at level h + 1? Also give the page numbers.

Solution:

$$h = \lfloor \lg n \rfloor = \lfloor \lg 14 \rfloor = \lfloor \lg 2^{3,\dots} \rfloor = 3$$

$$bv = n - 2^h = 14 - 2^3 = 6$$

The last page at level $h \Rightarrow 2^3 - 1 = 7$

⇒ Therefore, there are 2 pages at level h (i.e., 110 and 111)

The number of pages at level h + 1 is calculated as follows:

$$f(bv) = 2 * bv = 2 * 6 = 12$$
 (or as an another way, you can calculate as $14 - 2 = 12$).

Page numbers at level h+1 are between 0000-0101, and 1000-1101.

2- Extendible Hashing,

Block size = 3

Key	Mod(key, 32)	Binary Pseudo key
39	7	00111
7	7	00111
70	6	00110
46	14	01110
60	28	11100
25	25	11001

Add 39, 7, 70

Rules:

- If a bucket whose local depth is equal to the global depth is split, the directory must be doubled.
- Whenever a bucket is split, increment the local depth of the split bucket and its split image by 1.

QUIZ 3/ SECTION-3 (Date given: October 26, 2010)

1- Linear Hashing

$$n = 13$$

- What is by and h?
- What is the number of pages at level h? Also give the page numbers.
- What is the number of pages at level h + 1? Also give the page numbers.

Solution:

$$h = \lfloor \lg n \rfloor = \lfloor \lg 13 \rfloor = \lfloor \lg 2^{3,\dots} \rfloor = 3$$

$$bv = n - 2^h = 13 - 2^3 = 5$$

The last page at level $h \Rightarrow 2^3 - 1 = 7$

⇒ Therefore, there are 3 pages at level h (i.e., 101, 110 and 111)

The number of pages at level h+1 is calculated as follows:

f(bv) = 2 * bv = 2 * 5 = 12 (or as an another way, you can calculate as 13 - 3 = 10).

Page numbers at level h+1 are between 0000-0100, and 1000-1100.

2- Extendible Hashing

Block Size = 2

Key	Mod(key, 32)	Binary Pseudo key
44	12	01100
25	25	11001
61	29	11101
46	14	01110
34	2	00010
24	24	11000

Add 44, 25

Add 61,46

Add 34

Add 24

