说明: 样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$, $\Phi(1) = 0.8413$,

上分位数: $F_{0.1}(1,1) = 39.86$; $\chi^2_{0.99}(4) = 0.711$; $\chi^2_{0.99}(5) = 1.145$; $\chi^2_{0.09}(4) = 9.488$; $\chi^2_{0.09}(5) = 11.07$.

一、计算题(3小题,每小题6分,共18分)

- 1. 设 Λ 和 B 为随机事件、 $P(\Lambda) = 0.4$ 、P(B) = 0.6、 $P(\Lambda | B) = 0.6$ 、求 $P(\Lambda \cup \overline{B})$.
- 2. 随机变量 X 服从期望为 2 的指数分布, 求 P{X > 6|2 < x < 10}.
- 3. 某批零件中有正品6个, 次品4个, 从中任取2个零件. 已知一个零件为正品、求 另一个零件也为正品的概率.

二、计算题(3小题,每小题6分,共18分)

- 1. 一元二次方程 t² + Xt + Y = 0 中, X 、 Y 分别是一枚骰子连续抛两次出现的点数. 求方程有两个实根的概率.
- 2. 随机变量 X 的分布律 $P\{X = k\} = (k-1)\theta^2(1-\theta)^{k-2}, k = 2,3,...,$ 其中 θ (0 < θ < 1)为 未知参数、求 E(X) .
- . 生产线生产的产品成箱包装,每箱重量是随机的. 假设每箱平均重 50 千克,标准差为5千克. 如果用载重为5.05吨的汽车承运,利用中心极限定理计算每辆车 能装 100 箱的概率 (汽车不允许超载).

、计算题(共18分)

上随机变量(X, Y)的概率密度为 $f(x,y) = \begin{cases} 1, -x < y < x, 0 < x < 1, \\ 0, 其他. \end{cases}$

- (6分) 判断 X 和 Y 的独立性并说明理由;
- (6分) 求条件密度∫_{rix}(y|x);
- (6分) 求 P{Y>X/2}.

则、计算题(3 小题,每小题 6 分,共 18 分)

- 1. 设 X_1 和 X_2 为总体 $X \sim N(0,0.3^2)$ 的样本、求 $P(\frac{(X_1+X_2)^2}{(X_1-X_2)^2} < 39.86)$.
- 2. 设总体 X 的分布律为 $\begin{pmatrix} -1 & 0 & 2 \\ 2\theta & \theta & 1-3\theta \end{pmatrix}$, 其中 $\theta(0<\theta<\frac{1}{3})$ 为未知参数, $X_1,...,X_n$ 是来 θ 的矩估计.
- 3. 设总体 X 的密度函数为 $f(x) = \begin{cases} \theta e^{\theta} x^{-(\theta+1)}, & x > c, \\ 0, & \text{其他,} \end{cases}$ 其中, c(c>0) 为已知常数, $\theta(\theta>1)$ 为未知参数, X_1, \dots, X_n 是来自 X 的样本, 求 θ 的极大似然估计量.

五、计算题(2小题,每小题7分,共14分)

- 1. 设某次大型考试考生的成绩 $X \sim N(\mu, \sigma^2)$. 进行两次独立随机抽样,第一次抽取 n_1 个 成绩,平均分为 $\overline{X_1}$ 分,标准差为 S_1 分;第二次抽取 n_2 个成绩,平均分为 $\overline{X_2}$ 分,标准差为 S_2 分. 在显著性水平 $\alpha = 0.05$ 下,利用两次抽样数据给出检验假设 $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$ 的检验统计量和拒绝域.
- 2. 某批零件的尺寸 $X \sim N(\mu, \sigma^2)$, 从中随机抽取 5 个零件测得尺寸分别为 55, 47, 54, 50, 44. 求 σ^2 的置信度为 0.95 的两个单侧置信区间.

六、计算题(2小题,每小题7分,共14分)

- 1. 设随机变量(X, Y)的概率密度为 $f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, 0 \le y \le 2, \\ 0, & \text{ 其他.} \end{cases}$
- 2. 设随机变量 X_1, X_2, X_3 独立同分布于均匀总体 $X \sim U(\theta, 2\theta)$, 其中参数 $\theta > 0$. 求 $Y = \max\{X_1, X_2, X_3\}$ 的分布函数和概率密度.

zuzu2021 学年 春季 学期	总分	_	=	=	भिरा	立	八
课程名称: 概率论与数理统计							

一、计算题(3 小题,每小题 6 分,共 18 分)

- 1. 如吳寧件 A. B 満足 P(A) = 0.4, P(B) = 0.5, P(B|A) = 0.3, 以 P(A∪B).
- 2. 随机变量 X~B(2,p), Y~B(3,p), 且 P{X > 1} = 4/9, 求 P{Y ≤ 2}.
- 3. 励机变量 X 服从指数分布 E(2), 求 E(2X2-e-2X).

二、计算题(3小题,每小题6分,共18分)

- 1. 已知随机向量(X,Y) 服从 N(3, -2,4,9,0.5), 求p(X,X+Y).
- 2. 甲从蒙有 10 个红球、8 个白球的盒子 A 中随机地取 3 个球放入空盒子 B, 然后 乙酰机地从 B 中取一球, 求乙取得的是红戏的概率.
- 菜等件平均重量为 0.5kg, 均方差为 0.01kg, 那么 5000 个等件的总重量超过 2501kg 的概率大约是多少?

三、计算颜(共18分)

设随机向量(X,Y)的联合分布律如下:

	,		1 /		
X\Y	0	1	2	3	7
0	1/64	2/64	2/64	3/64	٦.
1	2/64	4/64	4764	6/64] :
2	2/64	4/64	5/64	6/64	7
3	3/64	6/64	6/6A	8/64	
	2				_

- 1. (6分) 以 X 和 Y 各户的分布符:
- 2. (6分) 求在Y≠2下X的条件分布徐;
- 3. (6分) 判断 X 和 Y 是否相互独立? 说明理由. 并求 P{X ≠ 1|Y = 2}.

四、计算题(3小题,每小题6分,共18分)

- 1. 设 X_1, X_2, \cdots, X_n 是来自服从正态分布 $N(\mu, \sigma^2)$ 的总体 X 的 组样本,求参数 μ 和 σ^2 的矩估 计.
- 2. 1 小题中参数 μ 的矩估计 Ω 是否是 E(X)的无偏估计? Ω^2 是否是 $E(X^2)$ 的无偏估计?
- 3. 设X₁,X₂,…,X_n是米自总体 X 的一组祥本, X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, & 0 < x < 1, & \frac{1}{\theta} \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, & 0 < x < 1, & \frac{1}{\theta} \end{cases}$$

求参数6的最大似然估计。

五、证明题与计算题(2小题,每小题7分,共14分)

- 1. 设义,Y 是相互独立的随机变景,分布函数分别为 $P_X(x)$ 和 $P_Y(y)$,证明: $Z = \min\{X,Y\}$ 的分布函数 $P_Z(z) = P_X(z) + P_Y(z) F_X(z)P_Y(z)$.
- 2. 设 X 具有福岑密度f_X(x), 求 Y = X²的福岑密度.

六、计算题(2小题,每小题7分,共14分)

- 装饮料的容量服从正态分布 N(μ, σ²), X₁, X₂, ···, X₁₁是染自该总体的样本, 样本标准差 为 2.6. 在显著性水平 0.05 下, 可否认为方差保持在方差的设定值 6.25?

 $\Phi(1.414)=0.9215, \Phi(2)=0.9772.$

 $t_{0.025}(8) = 2.3060, t_{0.05}(8) = 1.8595, t_{0.025}(9) = 2.2622, t_{0.05}(9) = 1.8331.$ $\chi_{0.025}^2(10) = 20.483, \chi_{0.925}^2(10) = 3.247, \chi_{0.025}^2(11) = 21.920, \chi_{0.025}^2(11) = 3.816.$