Puzzle para niños

Probablemente conozcan este tipo de puzzle:

Dada una instancia, ¿cuáles son los pasos que llevan a la solución?

Formalmente: El puzzle de 15

Este puzzle consta de 15 piezas con números en una grilla de 4×4

La idea es deslizar las piezas hasta dejar los números en orden

1. Deslizar hacia arriba

2. Deslizar hacia la derecha

3. Deslizar hacia abajo

4. Deslizar hacia la izquierda

15 Puzzle

Entonces,

¿Cómo lo resolvemos?

Búsqueda

Podríamos hacer lo siguiente:

- 1. Construir un grafo que represente el problema
- 2. Utilizar DFS para buscar el camino a la solución

¿Cómo hacemos esto?

Búsqueda

Podríamos hacer lo siguiente:

- 1. Construir un grafo que represente el problema
- 2. Utilizar DFS para buscar el camino a la solución

¿Cómo hacemos esto?

Grafo de estados

Un grafo de estados G(V, E) se define de la siguiente manera:

Cada nodo en V es una configuración distinta del problema

Hay una arista de u a v si se puede pasar de u a v en un paso.

En el caso del Puzzle de 15

Limitaciones

¿Qué tamaño tiene el grafo de estados del puzzle de 15?

¿Hay algún problema con eso?

Diccionarios al rescate

Los problemas de este tipo suelen tener muchos estados

Hay que generar el grafo a medida que se exploran los estados

Se necesita un diccionario para no generar estados repetidos

Búsqueda

Podríamos hacer lo siguiente:

- 1. Construir un grafo que represente el problema
- 2. Utilizar DFS para buscar el camino a la solución

¿Cómo hacemos esto?

buscar dfs(D, s, g): Insertar **s** en **D** if s = g, return true foreach operation op: $t \leftarrow op(s)$ if $t \in D$, continue $t.parent \leftarrow s$, $t.operation \leftarrow op$ if buscar dfs(D, t, q): return true: return false

El Puzzle de 15++

Dada una configuración del puzzle de 15

¿Cuáles son los pasos necesarios para llegar a la solución...

... en la menor cantidad de pasos posible?

Ruta más corta

Si la distancia es el largo de la ruta más corta entre dos nodos,

¿Está la solución a distancia 1 del origen? ¿Y a distancia 2?

¿Cómo podemos responder esa pregunta para una distancia n?

Tenemos: Depth First Search

Queremos: Breadth First Search

La idea del algoritmo de BFS

Partiendo de i = 1:

- 1. Generar los estados a distancia i del origen
- 2. Si alguno de esos es el destino, estamos listos
- 3. Si no, incrementar i en 1 y volver a 1.

¿Cómo hacemos esto de manera eficiente?

```
buscar bfs(D, s, g):
Open ← una cola vacía. D ← un diccionario vacío.
Insertar s en Open y en D
while Open \neq \emptyset:
         s \leftarrow el siguiente elemento de Open
         foreach operation op:
                  t \leftarrow op(s)
                  if t \in D, continue
                  t.parent \leftarrow s, t.operation \leftarrow op
                  if t = g, return true
                  Insertar t en D y en Open
```

return false

Relación entre DFS y BFS

Si reemplazamos esa cola en BFS por un stack, tenemos DFS.

Es una forma de implementar DFS de manera iterativa

La complejidad de ambos algoritmos es la misma

Control

Demuestra que cuando BFS genera cualquier nodo del grafo, lo ha encontrado por la ruta más corta posible desde el nodo de origen.