Climate data processing for climate resilience

Tajikistan and Kyrgyzstan

Data access, processing and methodological concepts

Webinar 17. - 27. 11.2020

DAY 08 Climate Change Indices

Objectives of Day 08

Date: 19.11

Presentation: Day08_Climate-Indices

https://github.com/nilshempelmann/climdatatutorial/

Objectives:

- Wrap up of last days
- Understanding of scenarios of change concepts
- Concept of Downscaling
- Climate indices
- Climate signals and their uncertainty

Shared sozio-economic Pathways (SSP)

SSP5: Fossil fueled development · Rapid economic growth, free trade

fueled by carbon-intensive fuels

- · High technology development
- · Low regard for gobal environment and first SDGs
- · Technology fixes Low population and high mobility

Clash of civilisations

Middle of the Road

SSP3: Regional rivalry

- · Competition among regions
- Low technology development
- · Environment and social goals not a priority
- · Focus on domestic resources
- · High population growth
- · Slow economic growth dev. countries

SSP1: Sustainability

· Global cooperation

mitigation

to

Challenge

- · Rapid technology dev.
- · Strong env. policy
- · Low population growth
- · Declining inequity
- · Focus on renewables & efficiency
- Dietary shifts
- · Forest protection

Markets

SSP2:

UN world

Have's and have not's

SSP4: Inequality

- · Inequality across and within regions
- · Social cohesion degrades
- Low technology development
- Environment priority for the few affluent
- · Limited trade

Challenge to adaptation

Reliable data production

Source: The next generation of scenarios for climate change research and assessment 2010 https://www.nature.com/articles/nature08823

Downscaling

Regional Climate modelling

Gobal Model data as forcing data Limited model domain Spatial resolution (up to ~10x10 km)

Further Infos:

https://cordex.org/domains/region-8-central-asia/

Example of GCM-RCM combination

Tércio Ambrizzi 2018: The state of the art and fundamental aspects of regional climate modeling in South America: https://doi.org/10.1111/nyas.13932

Multi-Model Ensemble

Processing based on variable tas: Temperaure at surface

30 Year running mean incl. Uncertainty

Multimodel ensemble In comparison to meteo Observation

Bias adjusted

Multi-model Ensemble

5 Members RCP8.5

Signal: 2071-2099

Processing based on variable pr: precipitation

Multi-model mean of the percentage change in winter (DJF, top), summer (JJA, middle), and annual (bottom) precipitation for RCP8.5 (4 °C world) for Central Asia by <u>2071–2099 relative to 1951–1980</u>. Hatched areas indicate uncertainty regions with two or more out of five models disagreeing on the direction of change. The multi-model analysis is based on GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M Source: Reyer 2017 Climate change impacts in Central Asia and their implications for development DOI:10.1007/s10113-015-0893-z

Climate Indices

https://www.met.hu/en/omsz/tevekenysege k/klimamodellezes/eghajlati_szelsosegek/

Index	Name	Definition	Unit
Crossing fix threshold			
Temperature			
FD	Frost days	T _{min} < 0 °C	days
TN-10LT	Extremely cold days	T _{min} < -10 °C	uays
TX0LT	Winter days	T _{max} < 0 °C	days
TN20GT	Tropical nights	T _{min} > 20 °C	days
SU	Summer days	T _{max} > 25 °C	days
TX30GE	Hot days	T _{max} ≥ 30 °C	days
TX35GE	Extremely hot days	T _{max} ≥ 35 °C	days
DTR	Diurnal temperature range	T _{max} -T _{min}	°C
Precipitation			
RR0.1	Days with precipitation above 0.1 mm	R _{day} ≥ 0.1 mm	days
RR1	Rainy days	R _{day} ≥ 1 mm	days

Hands ON:

Time series future prediction

