

计算机组成 (2018)

肖利民 北航计算机学院

电话: 18910864005

邮箱: xiaolm@buaa.edu.cn

微信: xiaolm70

计算机组成

课程介绍

课程介绍

❖课程名称

➤ 计算机组成(Computer Organization)

❖ 学时学分

▶课堂教学: 64学时 / 4学分

❖ 课程概况

- ▶ 覆盖了传统的数字逻辑、计算机组成原理、汇编语言编程三门课程的知识。
- ▶ 从原理性的角度出发,以MIPS系统为主要学习对象,讲述计算机硬件系统的组成、各部件的结构及其底层硬件工作原理,使学生理解计算机的组织与结构和工作过程,掌握计算机硬件系统的基本设计方法,培养学生分析、设计和开发计算机硬件系统的基本能力,为后续课程打下坚实基础。

❖配套实验课(独立开设)

➤ 配套课程设计:要求自主开发一台以MIPS处理器为核心的功能型计算机。

课程介绍

- **❖ 主要目标:** 理解并掌握计算机的运行原理和设计方法
 - >学习计算机硬件的组成
 - >理解计算机硬件/软件的协同机制
 - > 掌握计算机硬件的设计
- ❖ 核心任务:实现基于MIPS的功能型计算机
 - ▶以数字电路为基础,设计MIPS的功能组件
 - ▶以功能组件为基础,构造MIPS CPU
 - >编写MIPS程序,验证系统功能

❖ 与其它课程的关系

- ▶ 先导课程: 计算机导论
- ▶后续课程:操作系统、编译原理、接口与通信、系统结构

课程介绍

序号	内容	学时数
第一讲	计算机组成概述	4
第二讲	组合逻辑设计	8
第三讲	时序逻辑设计	6
第四讲	主存储器	4
第五讲	指令系统与汇编语言	2
第六讲	MIPS处理器设计	12
第七讲	高速缓存存储器	4
第八讲	虚拟存储系统	2
第九讲	外部存储与输入输出方式	2
习题	各部分习题课	16
复习	复习、答疑、机动	4

学时分配: 总学时64学时

第一讲: 计算机组成概述(4学时)

❖ 目 标

▶了解计算机系统的基本功能、组成框架、典型结构及层次关系,掌握 计算机中数的表示方法及常用编码。

- > 计算机系统的基本组成
- ▶ 计算机系统的典型架构与层次关系
- > 计算机中数的表示
 - 定点数的表示(原码、反码、补码)
 - ▶ 浮点数的表示
 - 其他编码(格雷码、循环码、ASCII码、汉字编码)
- ▶ 计算机的程序执行原理简介
 - 指令的含义简介
 - 程序的执行过程简介

第二讲:组合逻辑设计(8学时)

❖ 目 标

▶了解门电路的基本结构,掌握布尔代数的理论及其门电路实现方法,进而 掌握布尔方程表示、转换及化简等方法,以及运算单元、译码器等基本组 合逻辑部件设计方法,学习并掌握Verilog HDL。

- ▶逻辑门电路(2学时)
 - 非门、与门、或门、复合逻辑门电路及其性能指标
 - TTL、MOS集成门电路
- ▶布尔代数原理及其门电路实现(2学时)
 - 布尔代数基本原理
 - 布尔代数的门电路实现
- ▶基本组合逻辑部件设计(4学时)
 - 运算单元电路(加法器、比较器、函数发生器)
 - 多路选择器,译码器,编码器
- ➤ Verilog HDL介绍(**自学**)

第三讲:时序逻辑设计(6学时)

❖ 目 标

》掌握触发器、寄存器的结构和工作原理,掌握有限状态机、同步时序逻辑 电路的设计方法和分析方法,具备使用仿真工具开发时序逻辑电路的能力

- ▶锁存器和触发器(2学时)
 - SR锁存器、D锁存器
 - D触发器,JK触发器
 - 基于D触发器的寄存器构造
- ▶有限状态机(FSM)(2学时)
 - Moore型FSM
 - Mealy型FSM
- ▶时序逻辑电路设计分析(2学时)
 - 数据寄存器
 - 移位寄存器
 - 计数器

第四讲: 主存储器(4学时)

- ❖ 目 标
 - ▶了解存储单元电路的工作原理,掌握主存储器的结构特点、工作原理和构造方法。
- ❖ 主要内容
 - ▶存储单元电路(1学时)
 - SRAM存期单元电路
 - DRAM存储单元电路
 - ROM存储单元电路
 - ▶主存储器的结构(1学时)
 - SRAM芯片的内部结构
 - DRAM芯片的内部结构
 - ▶存储器的扩展(2学时)
 - **DRAM**的刷新

第五讲:指令系统与MIPS汇编语言(2学时)

❖ 目 标

▶以X86和MIPS两种指令系统为研究对象,学习并掌握计算机指令系统的格式、寻址方式和设计方法,理解CISC和RISC两种指令系统的特点;学习并掌握MIPS汇编语言编程。

- ▶指令系统概述(1学时)
 - 指令系统的基本要素
 - 指令格式、寻址方式
- ▶典型指令系统简介(1学时)
 - MIPS指令系统介绍
 - X86指令系统介绍
 - CISC与RISC的特点
- >MIPS汇编语言编程(自学)

第六讲: MIPS处理器设计(12学时)

❖ 目 标

▶以小型MIPS处理器为研究对象,学习并掌握基于指令执行分析的数据通路构造方法、基于与或逻辑阵列为基础的MIPS控制器设计方法,进而掌握MIPS处理器设计方法。

- ▶处理器的功能、组成、一般设计方法等(1学时)
- ➤MIPS处理器设计概述(1学时)
 - 结构、指令集、数据通路的基本组件
- ▶单周期处理器设计(4学时)
 - 单周期数据通路设计(工程方法),
 - 单周期控制器设计、性能分析
- ▶流水线处理器设计(6学时)
 - 流水线数据通路设计(工程方法)
 - 流水线控制器设计、性能分析

第七讲:高速缓存存储器(CACHE)(4学时)

❖ 目 标

▶掌握高速缓存存储器(Cache)的结构特点和工作原理,以及多级Cache 层次关系,掌握Cache的映射机制、Cache的命中与缺失分析及其性能计算方法。

- ▶程序执行局部性原理
- ▶ Cache的结构与工作原理
- **▶ Cache的映射机制**
 - 直接映射
 - 全相联映射
 - 组相联映射
- **▶Cache**的替换策略
- > Cache性能分析与其他
 - Cache数据一致性问题
 - 命中率与缺失分析
 - ▶ 性能计算

第八讲:虚拟存储系统(2学时)

❖ 目 标

▶掌握虚拟存储器工作原理、虚实地址转换与页表工作原理、TLB工作原理,具备进行虚拟存储器性能分析的能力。

- ▶虚拟存储器工作原理
- > 虚实地址转换
- > 页表工作原理
- **▶TLB**工作原理
- > 虚拟存储器性能分析

第九讲:外部存储与输入输出方式(2学时)

- ❖ 目 标
 - ▶掌握程序查询I/O、中断I/O和DMA I/O等输入输出方式的工作原理。
- ❖ 主要内容
 - > 外部存储器
 - **▶I/O**方式
 - 程序查询I/O方式
 - 中断与中断I/O方式
 - DMA I/O方式
 - I/O通道
 - ➤MIPS的I/O抽象

理论课学习资源

❖ 课程站点

- 浏览器中输入北航课程中心网址: course.buaa.edu.cn
- 输入北航统一认证中心的"学号/密码",登录课程中心。
- 点击选择"计算机组成",进入课程站点
- http://course.buaa.edu.cn/portal/site/2d7624ea-7997-40bbb531-0ed9ab609dfe
- > 学生用户
 - "资源"目录: 下载资料(讲义、自学材料、教辅资料等)
 - "作业" 目录: 上传作业(文件或直接输入)
 - 了解课程相关信息 (课程简介、课程大纲等)

参考书及参考资料

- ❖ Computer Organization & Design—The Hardware / Software Interface, 计算机组成与设计—硬件/软件接口(第3版),机械工业出版社, David A. Patterson & John L. Hennessy著
- ❖ Digital Design and Computer Architecture,数字设计和计算机体系结构,机械工业出版社, David Money Harris & Sarah L. Harris著
- ❖ Verilog数字系统设计教程,北航出版社,夏宇闻著

理论课助教

❖ 助教: 闫柏成

▶地点: 学院路校区新主楼G1045

▶电话: 188 1029 6901

▶电邮: yanbaicheng@buaa. edu. cn

▶微信: yxs-gothic_89863 (建群)

理论课考核

❖ 总评成绩

- ➤ 平时成绩: **15%**, 主要是平时作业完成情况
- ▶ 期末考试: 85%

课程学习

❖为什么要学好这门课?

- ▶计算机专业必修的核心基础课程
- > 计算机专业学生的核心竞争力
- > 将来职业发展的重要基础
- >继续研究生学业的必考课

❖如何学好这门课?

- ▶课前:预习教材相关内容
- ▶课堂:明确概念、弄清原理、分清重点、注意例题 (解题方法)
- ▶课后:及时复习教材相关内容,并完成布置的作业(熟练)
- >实验: 通过实际实验,提高感性认识

计算机组成课程设计概述 (2018秋季学期)

计算机组成课程设计教学团队

北京航空航天大学计算机学院

实验教学目标

- · 以MIPS体系结构指令集为例,理解计算机软硬件接口
 - 能够编写一定规模的汇编语言程序
 - 从指令的操作语义入手,推导出CPU设计结构
 - 能够根据每条指令的操作语义,总结出处理需求,对应至功能部件
 - 根据处理需求的逻辑关系,建立功能部件的连接关系
- · 自主开发MIPS流水线CPU
 - 掌握流水线CPU的工作原理及其构造方法
 - 用工程方法开发符合工业标准且具有一定工程规模的流水线CPU
 - 理解计算机硬件工作原理及核心机制
 - 通过工程能力训练过程建立系统观点

预备阶段: Week 1-6

- 目标: 学习相关基础知识、编程语言及设计工具
 - 数制
 - 数字电路
 - 门电路、组合电路、时序电路
 - -语言
 - Verilog-HDL 语法、数字系统硬件设计与验证
 - 汇编语言 MIPS指令集、汇编程序解析及设计
 - -工具
 - Logisim 数字电路模拟器,具有直观友善的电路建模和仿真功能
 - ISE 硬件描述语言模拟器, 搭建功能型计算机, 并仿真验证
 - MARS MIPS模拟器,辅助MIPS汇编程序编写、调试,设计验证的黄金模型
- · 学习方式: 在SP00平台完成相关教学内容的自学与评测
 - SPOC: Small Private Online Course

预备阶段: 教程部分的建议学习顺序

- 基础知识(数制等)
- Logisim
- Verilog与ISE
- MIPS指令集及汇编语言

Project阶段: Week 7-17

序号	项目名称	课下测试(PW)	课上测试(PT)	启动周	工作周数	检查 周
预备	基础知识,Logisim,汇编, Verilog-HDL	SPOC平台完成自学 校历第一周(启动周)周五18时课程内容发布,第六周周]四10时截止教程部分评测提交	1	5	6
PO	部件及状态机设计 (Logisim)	搭建CRC校验码计算电路,ALU, GRF,正则表达式匹配	Logisim完成部件及FSM设计	6	1	7
P1	部件及状态机设计 (Verilog-HDL)	实现splitter, ALU,EXT,格雷码计数器,合法表达式识别	Verilog-HDL完成部件及FSM设计	7	1	8
P2	汇编语言	矩阵乘法、排序、回文串判断	选择题+编程题	8	1	9
Р3	Logisim开发单周期CPU	完成支持7条指令的单周期CPU设计	新增指令	9	1	10
P4	Verilog开发单周期CPU	完成支持7条指令的单周期CPU设计	新增指令	10	1	11
P5	Verilog开发流水线CPU(1)	完成支持10指令流水线CPU设计	流水线工程化方法	11	1	12
Р6	Verilog开发流水线CPU(2)	完成支持50指令流水线CPU设计	流水线工程化方法	12	1	13
P7	Verilog开发MIPS微系统(1)	完成微型MIPS系统设计 开发简单I/O,验证中断	现场测试	13	2	15
P8	Verilog开发MIPS微系统(2)	完成微型MIPS系统设计 集成串口控制器,板级运行	现场测试	15	2	17

Project阶段: Week 7-17

序号	项目名称	课下测试(PW)	课上测试(PT)	启动周	工作周数	检查 周
预备	基础知识,Logisim,汇编, Verilog-HDL	SPOC平台完成自学 校历第一周(启动周)周五18时课程内容发布,第六周周]四10时截止教程部分评测提交	1	5	6
Р0	12	教程部分的首次检查周为校历第6周		6	1	7
I		四 10 时截止时间前,完成教程部分 若该周课上测试 <mark>不通过</mark> ,在校历第		7	1	8
P2		进行教程部分测试		8	1	9
Р3	Logisim开发单周期CPU	完成支持7条指令的单周期CPU设计	新增指令	9	1	10
P4	Verilog开发单周期CPU	完成支持7条指令的单周期CPU设计	新增指令	10	1	11
P5	Verilog开发流水线CPU(1)	完成支持10指令流水线CPU设计	流水线工程化方法	11	1	12
P		P7仅有一 <mark>次</mark> 课上检查机会,即校历第 检查周为校历第17周	第15周;	12	1	13
P7	Verilog开发MIPS派示与叫一		シログル 以	13	2	15
P8	Verilog开发MIPS微系统(2)	完成微型MIPS系统设计 集成串口控制器,板级运行	现场测试	15	2	17

2016计组课设学生Project通过分布情况

• 整体不及格率: 35%, 优秀率: 5%

2016教程部分学生自评反馈

教程难度	非常容易	容易	一般	难	非常难
您如何评价Logisim教程难度?	3%	11%	42%	37%	7%
您如何评价Verilog/ISE教程难度?	4%	16%	45%	25%	11%
您如何评价MIPS/MARS教程难度?	2%	11%	42%	31%	14%

Results gathered from 216 respondents.

教程学习时间	0~4	4~10	10~16	16~∞
您在Logisim教程上花费的小时数是?	8%	30%	33%	28%
您在Verilog/ISE教程上花费的小时数是?	7%	32%	32%	30%
您在MIPS/MARS教程上花费的小时数是?	11%	26%	32%	31%

Results gathered from 215 respondents.

教学运行过程

- 课下: 学习, 并独立完成实验
 - 学习SPOC平台提供的学习材料
 - -基于SPOC平台完成知识点评测(选择题、填空、判断题等)
 - 提交Project至SPOC平台进行自动评测
- 课上: 通过测试评价完成质量
 - -基于SPOC平台完成知识点测评(选择题、填空、判断题等)
 - 以课下project为基础,限定时间内实现课上的新增设计要求
 - 从SPOC平台下载个人课下提交的project
 - 完善project以支持课上设计要求
 - 提交project至SPOC平台进行自动评测
 - 一对一方式,回答教学团队的问题

SPOC平台: 注册与选课

- 注册: http://cscore.net.cn/register
 - 务必使用**学号**作为用户名
- 选课: 在SPOC平台计算机组成课设选课
 - http://cscore.net.cn/courses/course-v1:BUAA+B3I062410+2018_T1/about
 - 选课截止时间: 9月16日17:00
- 注册&选课中出现问题: 请在论坛提问
 - http://cscore.net.cn/courses/coursev1:BUAA+B3I062410+2018_T1/discussion/forum/
- 浏览器: Chrome、Firefox、IE、Safari
 - 请使用最新版本

课程页面

课程信息 论坛 进度

多路选择器

在组合电路中,多路选择器(*Multiplexer*,简称MUX)是非常重要的一类部件,他们在组合电路中扮演着非常重要的角色。下图是一个典型的Logisim中的多路选择器,左侧是多个**输入**,右侧是相应的**输出**,通过底部(黑色)的**选择信号**,对输入的信号进行选择后输出。另外一个端口是部件的使能端,当其为高电平(为1)时,整个部件正常工作。

MUX最为重要的功能就是多个信号中选1,在我们未来的CPU设计中,我们需要设置很多的MUX来使得CPU中的数据通路能够处理复杂的指令集。

Selection:	Multiplexer
Facing	East
Select Location	Bottom/Left
Select Bits	1
Data Bits	1
Disabled Output	Floating
Include Enable?	Yes

在具体使用中,当选中MUX时,需要关注左下角的**Selection**: **Multiplexer**界面,其中可以对数据位宽,选择位宽,是否有使能端等都可以进行相关设置,可以在实际搭建中,灵活使用。

译码器

译码器和多路选择器类似,同样是组合电路中非常重要的部件,下图中,右侧是多个**输出**,底部是黑色的选择信号与使能端。译码器最大的功能在于将二**进制编码**转换为相应的**独热码(one-hot),**如101的三位二进制

与课程内容进行交互

➡ P3 - Logisim 单周期

来自课程团队的课程动态及通知太使用

查询学习进度及效果 课程信息

按照课程进度发布

(one-hot),如101的三位二进制

SPOC平台:追踪学习全过程

- 学生学习教学素材 (Lecture Video, Lecture Text)的情况
- "Progress"栏目将记录知识点评测情况(Quiz, Worked Example)
- 论坛活跃情况
 - 教学经验表明: 多参与讨论,将有助于完成实验
 - 鼓励利用网络资源搜索或以讨论的方式解决问题
 - 将未能解决的问题在论坛发布, 以寻求帮助
 - 将解决方案在论坛分享,并积极帮助他人解决问题
- 自动评测
 - 记录在SPOC平台上的历次提交版本及评测结果

实验课成绩评定方法

- 单次Project得分构成
 - SPOC学习情况
 - 课下Project完成情况
 - 课上新增设计需求完成及问答情况
- 实验最终成绩
 - 最终成绩由教程及历次Project成绩及SPOC论坛活跃度综合评定
 - 依据SPOC论坛活跃度(有效提问 / 回复)适度加分
- 特别说明: P5是课程及格线的必要条件
 - 完成P5仅是及格的必要条件之一,但不是充分条件

学术诚实

- 查重机制: 自动化查重+人工确认
 - 若发现异常,将人工复查并进行答辩
- 查重范围: 涵盖本届及往届
- 惩罚措施: 抄袭行为确认后, 课程最终成绩清零
 - 鼓励大家交流、讨论,但禁止拷贝代码
- 重要事情说3遍: 抄袭零容忍! 抄袭零容忍! 抄袭零容忍!
 - 不要挑战学院惩处学术不端的决心
 - 2016秋季学期: 15人被取消课程成绩
 - 抄袭不仅导致课程成绩清零,还影响奖学金评定、保研等

计组课设教学团队

教师团队

高小鹏

万寒

张亮

李辉勇

杨建磊

傅翠娇

教辅团队 ——Student Teaching Assistant advisoR

张明远

潘叙辰

刘子渊

王磊

伍俊洁

秦冉

钟梓皓

付卓群

王柏润

周雨飞

林家桢

于乾勉

白勇

杨帅

S. T. A. R. 教辅团队

- S.T.A.R.: Student Teaching Assistant advisoR
- 教辅团队职责
 - -参与实验体系、实验环境建设
 - 亲历整个实验过程,产生的改进想法非常宝贵且具建设性
 - 线上线下答疑、分享学习经验
 - 知识要用来分享,才能承先启后
 - 成功不只付出与拥有,有承担才是最高的成就!
 - 检查实验进度、完善评价体系
 - 希望每一位同学都能凭借自己的努力,获得一份公正的评判

2019计组课设S. T. A. R. 教辅团队招募

- 如果你优秀且具有强烈的责任感与使命感,请加入我们!
- 我们期待你们新鲜的想法与做法,为课程添加新的活力!
- · 学院将向S.T.A.R.团队成员颁发荣誉证书!
- · 祝S.T.A.R.每位成员因有能力帮助他人,始终快乐!

特别提示

• 在学校教务系统完成课设选课,否则会导致没有成绩

- 预备阶段学习效果在很大程度上决定能否通过课程
 - 这5周的学习成效是重要的分水岭
 - 不要因为这5周没有监督就懈怠
 - 务必在Week1-6的预备阶段管理好自己, 抓紧自学