Università degli Studi di Padova Dipartimento di Matematica "Tullio Levi-Civita" Laurea Magistrale in Informatica a.a. 2018-2019

FAST MESSAGE PROPAGATION OVER IOV SCENARIOS

Relatore: Prof. Claudio Enrico Palazzi

Co-relatore: Dott. Armir Bujari

Jordan Gottardo 1179739 Esame di laurea - 18 Luglio 2019

CONTENTS

CONTEXT

- Vehicular and Flying Ad-Hoc Networks (VANETs and FANETs)
- Several applications
 - Smart city management
 - Video streaming
 - Traffic control
- Focus: Emergency Message Distribution (EMD)
 - Message delivery
 - Timeliness
 - Avoid medium saturation

TECHNOLOGIES AND TOOLS

- Expensive large scale tests
 - Need to use simulators (ns-3)
- Additional tools and models
 - Real map data
 - Road junction modeling
- Signal propagation models
 - Two-Ray Ground
 - Obstacle shadowing (with 3D extension)

FAST-BROADCAST

- Multi-hop probabilistic delay-based broadcasting protocol
- Dynamic transmission range estimation
 - No need to know it *a priori*, as often assumed in other protocols
- Estimation Phase:
 - Vehicles exchange small Hello Messages (beacons) to estimate their transmission range
 - o 1 Hello Message sent every BeaconInterval (e.g., 100ms) within each transmission range
- Broadcast Phase:

Waiting time [0...1024] [0...512] [0...32]

ROFF (RObust Fast Forwarding)

- Multi-hop deterministic delay-based broadcasting protocol
- Deterministically defines the farthest forwarder
- Estimation Phase:
 - Each vehicle sends a Hello Message every BeaconInterval (e.g., 100ms)
 - Neighborhood discovery process
 - o Each vehicle builds a Neighbor Table (NBT) with one entry for each neighbor

Broadcast Phase:

Priority	3	2	1
Waiting time	2	1	0

MY CONTRIBUTIONS

- Improvements to Fast-Broadcast
- Implementation and extension to 2D and 3D scenarios of ROFF
- Evaluation and comparison of Fast-Broadcast and ROFF through simulations
 - Urban scenarios with and without buildings
- Proposal of extension to exploit road junctions to increase message delivery ratios
 - SJ-Fast-Broadcast and SJ-ROFF (SJ=Smart Junction)

SIMULATIONS – SCENARIOS AND METRICS

Several scenarios of increasing complexity

Scenario name	Туре	Buildings	Drones
Platoon	1D	X	X
Grid	2D	\	X
Los Angeles	2D	~	X
Padua	2D	/	X
Los Angeles smart city	3D	/	/

Metrics:

- o Coverage ↑
- o End-to-end delay ↓
- Redundancy ↓

URBAN SCENARIOS

Los Angeles

Padua

PRELIMINARY TESTS - CONFIGURATION

Scenario configuration		Simulator configuration	
Scenario name	Padua	Packet payload size	100 byte
Latitude N [°]	45.4171	Frequency [GHz]	2.4
Latitude S [°]	45.3981	Channel bandwidth [MHz]	22
Longitude W [°]	11.8654	Transmission speed [Mbps]	11
Longitude E [°]	11.8923	Transmission powers [dBm]	-7.0, 4.6, 13.4
Circumference radius [m]	1000	Transmission ranges [m]	100, 300, 500
Distance between vehicles [m]	5, 15, 25, 35, 45	Modulation	DSSS
Number of vehicles	4975, 2856, 1775, 1318, 1072	Propagation loss model	ns3::TwoRayGround
Number of simulations	4500	Propagation delay model	ns3::ConstantSpeed

END-TO-END DELAY ↓

- ↑ Coverage: comparable results
- ↓ End-to-end delay:

REDUNDANCY ↓

PADUA URBAN SCENARIO

Scenario configuration		
Scenario name	Padua	
Latitude N [°]	45.4171	
Latitude S [°]	45.3981	
Longitude W [°]	11.8654	
Longitude E [°]	11.8923	
Circumference radius [m]	1000	
Distance between vehicles [m]	25	
Number of vehicles	1775	
Number of buildings	6322	
Number of simulations	4500	

Simulator configuration	
Packet payload size	100 byte
Frequency [GHz]	2.4
Channel bandwidth [MHz]	22
Transmission speed [Mbps]	11
Transmission powers [dBm]	-7.0, 4.6, 13.4
Transmission ranges [m]	100, 300, 500
Modulation	DSSS
Propagation loss model	ns3::TwoRayGround
Propagation delay model	ns3::ConstantSpeed
Shadowing model	ns3::ObstacleShadowing

PADUA – COVERAGE ↑

98.67 97.76 35<u>.</u>34 34<u>.</u>76 24,78 7.89 ROFF Fast-Broadcast 100m 300m 500m

Without buildings

With buildings

EXPLOITING JUNCTIONS - EXAMPLE

Without junction model

With junction model

JUNCTION MODEL

- Aim: exploit vehicles located within junctions to improve coverage
- Identification of junctions via OSM/SUMO tools

```
<junction id="1101896841" type="right_before_left" x="1261.31" y="2430.73"
incLanes="94925123#0_0 -94925123#1_0" intLanes=":1101896841_0_0 :1101896841_1_0
:1101896841_2_0 :1101896841_3_0 :1101896841_4_0 :1101896841_5_0"
shape="1262.20,2433.25 1263.07,2432.75 1262.80,2431.98 1262.85,2431.66 1263.03,
2431.39 1263.32,2431.17 1263.73,2430.99 1263.11,2429.09 1259.38,2430.19 1259.87,
2432.13 1260.78,2432.09 1261.18,2432.22 1261.56,2432.46 1261.90,2432.81">
```

- 20x20m bounding box to extend the polygon
- Vehicles within a junction participate in a second contention with other vehicles within the same junction
- Extension applicable both to Fast-Broadcast and ROFF
 - SJ-Fast-Broadcast and SJ-ROFF

JUNCTION MODEL - SCENARIOS

Los Angeles

Padua

PADUA URBAN SCENARIO WITH JUNCTIONS

Scenario configuration		
Scenario name	Padua	
Latitude N [°]	45.4171	
Latitude S [°]	45.3981	
Longitude W [°]	11.8654	
Longitude E [°]	11.8923	
Circumference radius [m]	1000	
Distance between vehicles [m]	25	
Number of vehicles	1775	
Number of buildings	6322	
Number of junctions	3231	
Number of simulations	4500	

Simulator configuration	
Packet payload size	100 byte
Frequency [GHz]	2.4
Channel bandwidth [MHz]	22
Transmission speed [Mbps]	11
Transmission powers [dBm]	-7.0, 4.6, 13.4
Transmission ranges [m]	100, 300, 500
Modulation	DSSS
Propagation loss model	ns3::TwoRayGround
Propagation delay model	ns3::ConstantSpeed
Shadowing model	ns3::ObstacleShadowing

PADUA – COVERAGE ↑

99.94 99.61 93.29 91.42 75.4 72.1 SJ-Fast-Broadcast SJ-ROFF 300m 500m 100m

Without junctions

With junctions

PADUA – REDUNDANCY ↓

1127 910 835 828 801 779 SJ-Fast-Broadcast SJ-ROFF 300m 100m 500m

Without junctions

With junctions

L.A. SMART CITY SCENARIO

- Vehicular + drones mixed scenario
 - Message propagation in 3D
- Different buildings configurations
 - No buildings

L.A. SMART CITY SCENARIO

- Vehicular + drones mixed scenario
 - Message propagation in 3D
- Different buildings configurations
 - No buildings
 - Buildings with real heights

L.A. SMART CITY SCENARIO

- Vehicular + drones mixed scenario
 - Message propagation in 3D
- Different buildings configurations
 - No buildings
 - Buildings with real heights
 - Very tall buildings

LOS ANGELES – COVERAGE 1

Without buildings

Real height buildings

Very tall buildings

CONCLUSIONS

- ROFF introduces a much smaller end-to-end delay than Fast-Broadcast
 - Greater redundancy
 - Determinism and collisions
 - High number of Hello Messages
- SJ-Fast-Broadcast and SJ-ROFF improve coverage greatly
 - At the cost of more retransmissions
- The algorithms work well even in mixed 3D scenarios

FUTURE WORKS

- Dynamic lower and upper bounds for Fast-Broadcast's waiting time calculation
 - Based on vehicle density

- Junction identification backup mode
 - Reliance on GPS
 - Compute angle between received messages to identify vehicles within junctions

Evaluation in more widespread FANETs