Suvodeep Das

Section-B

Roll-90

▼ IMPORTING PANDAS

```
import pandas as pd
from google.colab import drive
```

▼ EXTRACTING DATA FROM CSV FILE

```
drive.mount('/content/drive')
filename = '/content/drive/My Drive/datasets/auto-mpg.csv'
df = pd.read_csv(filename)
df.head()
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mour

na na	origin	model year	acceleration	weight	horsepower	displacement	cylinders	mpg	
chevro chevo mal	1	70	12.0	3504	130.0	307.0	8	18.0	0
bı skyl (1	70	11.5	3693	165.0	350.0	8	15.0	1
>									

→ PRINTING ROWS AND COLUMNS

▼ DATA TYPE OF FILENAME

```
type(filename)
str
```

▼ SEEING THE NULL VALUES

df.isnull()

df.isnull().sum()

mpg 0
cylinders 0
displacement 0
horsepower 6
weight 0
acceleration 0
model year 0
origin 0
car name 0
dtype: int64

397

→ OUTLIERS REMOVAL

```
def remove_outlier(ds,col):
    quart1 = ds[col].quantile(0.25)
    quart3 = ds[col].quantile(0.75)
    IQR = quart3 - quart1 #Inter quartile range
    ·low_val·=·quart1·-·1.5*IQR
    ·high_val·=·quart3·+·1.5*IQR
    ds = ds.loc[(ds[col] > low_val) & (ds[col] < high_val)]
    return ds
data = remove_outlier(df, "mpg")
nrowcount = data.shape[0]
print(nrowcount)</pre>
```

✓ 0s completed at 1:41 PM

X