Homework 2

Due on Tuesday, September 25, at 05:20 pm

Answer the following 9 questions and solve the problems on the computational part to get full credit for this homework assignment. Please follow the instructions for homework assignments. I reserve the right to deduct points if you do not follow these rules.

- 1. Answer the following questions that relate functions f to their epigraph epi f.
 - (a) When is the epigraph of a function a halfspace?
 - (b) When is the epigraph of a function a convex cone?
 - (c) When is the epigraph of a function a polyhedron?
- 2. Here we explore the second-order conditions for convexity on an affine set. Let $F \in \mathbf{R}^{n,m}$, $\tilde{x} \in \mathbf{R}^n$. The restriction of $f: \mathbf{R}^n \to \mathbf{R}$ to the affine set $\{Fx + \tilde{x} : x \in \mathbf{R}^m\}$ is defined as the function $\tilde{f}: \mathbf{R}^m \to \mathbf{R}$ with $\tilde{f}(x) = f(Fx + \tilde{x})$, $\mathrm{dom}\,\tilde{f} = \{x : Fx + \tilde{x} \in \mathrm{dom}\,f\}$. Suppose f is twice differentiable with a convex domain.
 - (a) Show that \tilde{f} is convex if and only if for all $x \in \text{dom } \tilde{f}$ we have that $F^T \nabla^2 f(Fx + \tilde{x}) F \succeq 0$.
 - (b) Suppose that $A \in \mathbf{R}^{p,n}$ is a matrix whose nullspace $\mathrm{N}(A)$ is equal to the range of F and $\mathrm{rank}\,A = n \mathrm{rank}\,F$. Show that \tilde{f} is convex if and only if for all $x \in \mathrm{dom}\,\tilde{f}$ there exists a $\lambda \in \mathbf{R}$ such that

$$\nabla^2 f(Fx + \tilde{x}) + \lambda A^\mathsf{T} A \succeq 0.$$

Hint: You can use the following result: If $B \in \mathbf{S}^n$ and $A \in \mathbf{R}^{p,n}$, then $x^\mathsf{T} B x \geq 0$ for all $x \in \mathbf{N}(A)$ if and only if there exists a λ such that $B + \lambda A^\mathsf{T} A \succeq 0$.

3. A function $g: \mathbf{R}^n \to \mathbf{R}^n$ is called *monotone* if for all $x, y \in \text{dom } g$,

$$(g(x) - g(y))^{\mathsf{T}}(x - y) \ge 0.$$

Suppose that $f: \mathbf{R}^n \to \mathbf{R}$ is a differentiable convex function. Show that its gradient ∇f is monotone.

- 4. We say the function $f: \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ is convex-concave if f(x,y) is a concave function of y, for each fixed x, and a convex function of x, for each fixed y. We also require its domain to have the product form $\mathrm{dom}\, f = A \times B$, where $A \subseteq \mathbf{R}^n$ and $B \subseteq \mathbf{R}^m$ are convex.
 - (a) Give a second-order condition for a twice differentiable function $f: \mathbf{R}^n \times \mathbf{R}^m \to R$ to be convex-concave, in terms of its Hessian $\nabla^2 f(x,y)$.
 - (b) Suppose that $f: \mathbf{R}^n \times \mathbf{R}^m \to R$ is convex-concave and differentiable, with $\nabla f(\tilde{x}, \tilde{y}) = 0$. Show that the saddle-point property holds: For all x, y, we have $f(\tilde{x}, y) \leq f(\tilde{x}, \tilde{y}) \leq f(x, \tilde{y})$. Show that this implies that f satisfies the strong max-min property:

$$\sup_{y \in \mathbf{R}^m} \inf_{x \in \mathbf{R}^n} f(x, y) = \inf_{x \in \mathbf{R}^n} \sup_{y \in \mathbf{R}^m} f(x, y)$$

(and their common value is $f(\tilde{x}, \tilde{y})$).

- 5. For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.
 - (a) $f(x) = \exp(x) 1$ on **R**.
 - (b) $f(x_1, x_2) = 1/x_1x_2$ on \mathbb{R}^2_{++} .
 - (c) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbf{R} \times \mathbf{R}_{++}$.
- 6. Show that $f(X) = \operatorname{tr}(X^{-1})$ is convex on $\operatorname{dom} f = \mathbf{S}^n_{++}$, where $\operatorname{tr}: \mathbf{R}^{n,n} \to \mathbf{R}$ is the trace. Hint: The arguments are similar to the example of the log-determinant function $f: \mathbf{S}^n \to \mathbf{R}$ with $f(X) = \log \det X$ and $\operatorname{dom} f = \mathbf{S}^n_{++}$ we considered in class.
- 7. Show that the following functions are convex. Hint: Use arguments based on composition rules to make your point (i.e., use arguments concerning the characteristics of h and g to establish that $f(x) = (h \circ g)(x) = h(g(x))$ is convex).
 - (a) $f(x) = -\log(-\log(\sum_{i=1}^m \exp(a_i^\mathsf{T} x + b_i)))$ on $\dim f = \{x : \sum_{i=1}^m \exp(a_i^\mathsf{T} x + b_i) < 1\}$. You can use the fact that the log-sum-exp function $\log(\sum_{i=1}^m \exp(y_i))$ is convex.
 - (b) $f(x,u,v) = -\log(uv x^\mathsf{T} x)$ on $\mathrm{dom}\, f = \{(x,u,v) : uv > x^\mathsf{T} x, \ u,v > 0\}$. You can use the fact that $x^\mathsf{T} x/u$ is convex.
 - (c) $f(x,t) = -\log(t^p \|x\|_p^p)$ where p > 1 and $\text{dom } f = \{(x,t) : t > \|x\|_p\}$. You can use the fact that $\|x\|_p^p / u^{p-1}$ is convex on $\{(x,u) : u > 0\}$.
- 8. Show that the following statements are valid. Hint: Use arguments based on the fact that the perspective of a convex function is convex to make your point.
 - (a) For p > 1 the function

$$f(x,t) = \frac{\sum_{i=1}^{n} |x_i|^p}{t^{p-1}} = \frac{\|x\|_p^p}{t^{p-1}}$$

is convex on $\{(x, t) : t > 0\}$.

(b) The function

$$f(x) = \frac{\|Ax + b\|_2^2}{c^{\mathsf{T}}x + d}$$

is convex on $\{x: c^{\mathsf{T}}x + d > 0\}$, where $A \in \mathbf{R}^{m,n}$, $b \in \mathbf{R}^m$, $c \in \mathbf{R}^n$, and $d \in \mathbf{R}$.

9. Show that the logistic function $f(x) = \exp(x)/(1 + \exp(x))$ with dom $f = \mathbf{R}$ is log-concave.