Probabilitie Graphical Models. Assignment 2. - 20171047 3.5> 2> a) Algorithm: We have sample 5 from X.

if 5 has a positive instance n^{+} then return town hypothesis $h_{z}(n) = \{1, 0\}$ else return vall negative hypothesis h^- i.e $h^-(n) = 0$ - This is an ERM as it minimizes Ls(h) = | { i & [m] : h(ni) + yi} | trivially. $[m] = \{1, 2, 3, ..., m\}$ $b \in E(0,1), D$: probability distribution of samples over XIf h was indeed the True hypothesis, then the above ERM gives zero generalization ever -> we have a perfect hypothesis and we we done. Now, if we have a single (+) ve instance i e nt.

if n' & training sequence 5, the above ERH still gives La perfect solution. if $D[\{n^+\}] \leq \epsilon$, generalization ever on true error is where bounded by ϵ $\omega.P.1$. J D[{nts] > ∈ & nt is not in S → Let E be the event not in S s.t D[{nt}] >E Now, $S[n-D^m[E] \leq (1-\epsilon)^m \leq e^{-m\epsilon}$. Hingleton defined in the problem is PAC lear able And sample complexity $m_{\mathcal{H}}(\epsilon, \delta) \leq \log(1+1/\delta)$ = log (1/8)/e = - log 8 & my (e,8) & I.

4.5> 1> A is the leavining algorithm. A (5) is the generated hypothesis. D: probability distribution over X. Given: Range of loss functions L is [0,1] Sume $\forall \epsilon, \delta \in (0,1) \& \forall D'over X x {0,1},$ $\exists m(\epsilon, \delta) \in \mathbb{N} \ (\text{uffer bound}) \text{ s.t } \forall m \geq m(\epsilon, \delta)$ $\sum_{S \sim D^m} \left[L_D(A(S)) > \epsilon \right] < S$ -Assuming birrary labels 20,13 for instances in X. To show that I mo EIN s.t & m > mo, Es~Dm [LD(A(s))]

< rack for some 7 > 0 --> · Let $\epsilon = \min(1, \pi)$. $m_0 = m_{H}(\epsilon, \epsilon)$ Now, $\forall m \geq m_0^2$ since $L \leq 1$; $E\left[L_D(A(S))\right] \leq IP\left[L_D(A(S)) > \frac{1}{2}\right]. 1$ $S \sim D^m$ + Pm[LD(A(S)) < 7/2].7/2 $\leq \mathbb{P}\left[L_{D}(A(5)) > \epsilon\right] + \frac{1}{2}$ $\leq \epsilon + \pi/2 \leq \pi/2 + \pi/2 = \pi$. Also, if line [LD (A(S))] = 0 for e, S e (0,1);] moeIN s.t & m > mo, E [Lo (A(S))] ≤ E.S. Markon's Inequality gives us: $\mathbb{P}_{S\sim D^m}\left[L_D(A(S))>\epsilon\right] \leq \mathbb{E}_{S\sim D^m}\left[L_D(A(S))\right] \leq \mathbb{E}_{S}$

being the number of samples. $C = \{C_1, C_2, ..., C_m\}$ m being the number of samples. $C \subseteq X$; we obtain $H'_C \subseteq H_C$. So, if C is shattered by some h in H'; $h \in H$ as well as $H' \subseteq H$ & in that H shatters C. ... By definition: VC dim $(H') \subseteq VC$ dim (H)