

PASO 1: La convolución crea "detectores de características" que recorren la imagen

PASO 2: Max Pooling

PASO 3: Aplanado

PASO 4: Conexión completa

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Imagen de Entrada Detector de Características Mapa de Características

ø

Imagen de Entrada Detector de Características

0

Mapa de Características

Imagen de Entrada Detector de Características Mapa de Características

PASO 1: La convolución crea "detectores de características" que recorren la imagen

PASO 2: Max Pooling: reduce el tamaño y el coste, convirtiéndolo en más genérico

PASO 3: Aplanado

PASO 4: Conexión completa

Max Pooling

1

Mapa de Características

Max Pooling

1 1

Mapa de Características

Max Pooling

1 1 0

Mapa de Características

Max Pooling

1 1 0

Mapa de Características

Mapa de Características

Max Pooling

1	1	0
4	2	1
0		

Mapa de Características Max Pooling

1	1	0
4	2	1
0	2	1

Imagen de Entrada

PASO 1: La convolución crea "detectores de características" que recorren la imagen

PASO 2: Max Pooling: reduce el tamaño y el coste, convirtiéndolo en más genérico

PASO 3: Aplanado:convertir todo a un solo vector unidimensional

PASO 4: Conexión completa

1	1	0
4	2	1
0	2	1

Aplanado

Mapa de Características Pooled

PASO 3: Aplanado

PASO 1: La convolución crea "detectores de características" que recorren la imagen

PASO 2: Max Pooling: reduce el tamaño y el coste, convirtiéndolo en más genérico

PASO 3: Aplanado: convertir todo a un solo vector unidimensional

PASO 4: Conexión completa: RNA totalmente conectada para aprender a clasificar

De imagen a texto

RNC para imágenes: buscamos características locales en una imagen. ¿Por qué no probar lo mismo para frases de texto?

De imagen a texto

Representación de las imágenes

Representación del texto

- -

Representación sencilla pero inefectiva de palabras: one-hot encoding. No hay relación entre las palabras.

$$\label{eq:dog} \begin{split} \mathrm{dog} = [0, \dots, 0, \ 1 \quad , 0, \dots, 0] & \quad \begin{array}{c} \mathit{vocab_size} \approx 100,000 \\ & \uparrow \\ \mathit{dog} \\ \end{split}$$

Word embedding: hacemos cada vector más pequeño => añadimos relaciones entre palabras.

$$dog = [0.194, 0.047, \dots, 0.126]$$

 $emb_dim \approx 64$

Word embedding: relación matemática entre las palabras

Male-Female

Verb tense

[king] - [man] + [woman] = [queen]

[Paris] - [France] + [Italia] = [Rome]

Modelo Skip-grama: en la frase "In spite of everything, I still believe people are really good at heart", la palabra "good" produce los pares ("good", "are"), ("good", "really"), ("good", "at"), ("good", "heart") en forma de target/contexto.

Diferencias Principales:

- Cada filtro tiene achura = d_model. Dividir la dimensión de embedding no tiene sentido.
- Elegimos el máximo para cada filtro. La posición de la característica en la frase es menos relevante.
- 3 tamaños diferentes de filtros, para capturar diferentes niveles de correlación entre las palabras.