8. Tìm tất cả các số nguyên dương n sao cho tồn tại đa thức P(x) hệ số nguyên thỏa mãn : Với mọi số nguyên dương k, khi chia các số $P^k(0), P^k(1), ..., P^k(n-1)$ cho n, ta thu được đúng $\left\lceil \frac{n}{2^k} \right\rceil$ số dư phân biệt.

Step 1): Nếu là lũy thừa của 2 thì P(x)=2x thỏa, easy.

Nếu n là số nguyên tố ta sẽ vẽ đồ thị rồi nội suy Lagrange cái một. Đầu tiên cho nối đỉnh 0 vào chính nó, ta phải nối 1 đỉnh vào chính nó do đặc điểm của đồ thị x-

>P(x) này. Đặt $a_k = \left[\frac{n}{2^k}\right]$. Ở lượt thứ k thỏa mãn $a_{k-1} > 1$ ta sẽ xét các số

 a_{k} , a_{k+1} ,..., a_{k-1} -1. Ta nối a_{k-1} -i với a_{k} -i, với mọi i=1,2,..., a_{k-1} - a_{k} . Để ý $2a_{k}$ - a_{k-1} \in {0;1} và đỉnh 0 luôn đc nối với chính nó nên dễ dàng quy nạp là { $P^{k}(x) \pmod{n} | x=0,1,2,...$ } ={0;1;...; a_{k} -1} với mọi k thỏa a_{k-1} >1. Nếu a_{k-1} =2 thì a_{k} =1 thì cũng dễ thấy là { $P^{k}(x) \pmod{n} | x=0,1,2,...$ }={0}

Vậy n nguyên tố hoặc lũy thừa 2 thỏa mãn ycbt.

Nhận xét: Với dãy a_k giảm bất kì và n nguyên tố, điều kiện cần và đủ để tồn tại đồ thị là a_{k-1} - a_k \ge a_{k-2} - a_{k-1}

Step 2): Ta sẽ loại đi trường hợp lũy thừa số nguyên tố lẻ. Xét n là lũy thừa của p. Ta xét mọi thứ theo (mod n). Ở đây hễ a=b tức là a=b(mod n)

Bổ đề gần như hiển nhiên nhưng CỰC KỲ quan trọng:

Bổ đề: Cho số nguyên tố p, số nguyên ko âm rP'(r), khi này với mọi số

nguyên dương n là lũy thừa của p, ta có:

$$| \{P(kp+r) \pmod{n} | k=0,1,...,n/p\} | \le \frac{n}{p^2}$$

Ban đầu, xét P'(0),P'(1),...,P'(p-1), nếu tất cả chúng đều chia hết cho p, thì theo bổ đề ta có \mid { $P(i) \pmod n$ $\mid i=0,1,...,n-1$ } $\mid \leq \frac{n}{p}$, tạch

Nên bây h ta xét: Tồn tại số nguyên n để P'(n) khác 0 (mod p) Gọi c là 1 số m tốt nếu P'(c), P'(P(c)),...,P'(P^{m+1}(c)) ko chia hết cho p Xét $Z_m = \{kp+m \pmod n \mid k=0,1,2,...\}$. Với tập hợp S, đặt $P^m(S) = \{P^m(x) \pmod n \mid x \in S \}$

Ý tưởng chính để đánh giá: nếu c là số m tốt thì tồn tại số a sao cho thì $P^{m+1}(Z_c) = Z_a$ nếu ko thì $|P^{m+1}(Z_c)| \le \frac{n}{p^2}$. Việc $P^{m+1}(Z_c)$ giảm đột ngột xuống $\frac{n}{p^2}$ sẽ thích hợp để đánh giá.

Đặt $S_i = \{P^i(j) \mid j = 0,1,2,...\}$. Ý tưởng là ta sẽ chọn thời điểm mà $|S_{i+1}| < \frac{1}{2} |S_i|$

Gọi i là số nguyên LỚN NHẤT sao cho tồn tại số i tốt và thử xét i>0. Ý tưởng ở đây là xét số c thỏa mãn c là số i tốt và khi này $P^{i+1}(Z_c)=Z_a$ và $X_1=S_{i+1}\setminus Z_a$ khi này $S_{i+2}=P(Z_a)\cup P(X_1)$. Khi này $S_{i+2}\leq \frac{n}{p^2}+|X_1|$ và $S_{i+1}=\frac{n}{p}+|X_1|$. Ta sẽ chọn thời điểm i

này vì ở tập S_{i+2} tất cả mọi thứ $(P^{i+2}(Z_c))$ đều $\leq \frac{n}{p^2}$ trong khi ở S_{i+1} vẫn còn $\geq \frac{n}{p}$.

Bắt tay vào thực hiện ý tưởng:

Khi i>0: Ta muốn chặn $|X_1| < \frac{(p-2)n}{p^2}$. Để ý khi này ta sẽ thử xét 2 con a,b thuộc X_1 thỏa mãn $P(a) = P(b) \pmod{p}$ khi này rất có thể $P^{i+1}(Z_a)$ và $P^{i+1}(Z_b)$ cùng thuộc 1 tập nào đó có kích thước $\leq \frac{n}{n^2}$.

Bây giờ xét con x thỏa mãn $P(x)=x \pmod p$, con này hơi hi hữu. Ta có $P'(x)=0 \pmod p$. Điều khiến ta để ý là $P^m(Z_x)\subset P^{m-1}(Z_x)$ và $|P^m(Z_x)|<|P^{m-1}(Z_x)|$ nên sẽ thuận tiện đánh giá. Để ý 1 con y thỏa mãn $P(y)=x \pmod p$ và y khác $x \pmod p$, để ý là y khác $c \pmod p$ do y ko là số i tốt, khi này $P(Z_y)\subset Z_x$ và $P^3(Z_y)\subset P^2(Z_x)$ và $P^3(Z_x)\subset P^2(Z_x)$. Vì i>0 nên $P^{i+2}(Z_y)$ và $P^{i+2}(Z_x)$ đều $C C^2(Z_x)$ nên $P(X_1)|\leq |P^{i+2}(Z_y)$ $C^2(Z_x)$ và $C^2(Z_x)$ $C^2(Z_x)$

(đúng vậy ta sẽ xét $P(X_1)$ thay vì X_1). Khi này ko khó thấy $|S_{i+2}| < \frac{1}{2} |S_{i+1}|$

Nhận xét khi i>0: Khi bạn nhận ra rằng bạn đã ra 90% bài toán nhưng đánh giá ngu 1 bước là thay vì xét $S_{i+2} \le \frac{n}{p^2} + |X_1|$ thì bạn có thể xét $S_{i+1} \ge \frac{n}{p} + |P(X_1)|$ vì ra

thẳng là $|P(X_1)| < (p-2)\frac{n}{p^2}$ luôn rồi, còn đánh giá $|X_1|$ làm mình mất 5 tiếng cuộc đời mà ko xử lí đc dấu đẳng thức. Để ý là nếu xét X_1 thì bị vướng cái là $|P^{i+1}(Z_y)|$ $\cup P^{i+1}(Z_x)| \le |P(Z_x)|$ nó chỉ $\le \frac{n}{p^2}$ chứ ko có $< \frac{n}{n^2}$ và khó xử lí dấu =.

Khi i=0: Vậy th hi hữu là i=0. Khi này xét $n_1, n_2, ..., n_c$ là những số 0 tốt và đôi 1 ko = nhau (mod p), khi này tồn tại $m_1, m_2, ..., m_d$ đôi 1 ko = nhau (mod p) để $A_1 = P(Z_{n_1}) \cup P(Z_{n_2}) \cup ... \cup P(Z_{n_c}) = Z_{m_1} \cup Z_{m_2} \cup ... \cup Z_{m_d}$ và xét $X_1 = S_1 \setminus A_1$. Để ý là

 $|X_1| \le (p-c)\frac{n}{p^2}$. Nếu d ≥ 2 thì $X_1 = \frac{dn}{p} + A_1$ và $S_2 = P(S_1) \cup P(A_1) \le \frac{dn}{p^2} + A_1$ khi này nếu

d≥2 thì $|S_2| < \frac{1}{2} |S_1|$. Nếu d=1, khi này $S_1 \le \frac{n}{p} + \frac{(p-1)n}{p^2} < \frac{n}{2}$ nếu p>3.

Nếu p=3. WLOG P(2)=2(mod 3) và P'(0) ko chia hết cho 3. Nếu P(0)=P(1)=2 (mod 3) thì $S_1 \subset Z_2$, tạch. Trong P(0), P(1) phải có 1 số =2 (mod 3), WLOG là P(1), cái còn lại tương tự, khi này phải có P(0)=1 (mod 3). Nếu P'(1) ko chia hết cho 3 2n

thì Z_1 và $Z_2 \subset S_1$ nên $|S_1| \ge \frac{2n}{3}$, tạch. Nên $3 \mid P'(1)$, khi này $P(Z_1) \subset Z_2$ và

$$\begin{split} &P^2(Z_1) {\subset} P(Z_2) \text{ mặt khác } P^2(Z_2) {\subset} P(Z_2) \text{ và } P^2(Z_0) {\subset} P(Z_1). \text{ Nên } S_2 {\leq} \mid P^2(Z_1) \\ & \cup P^2(Z_2) |+ P^2(Z_0) {\leq} \frac{2n}{q} \text{, tạch.} \end{split}$$

Tóm lại mọi lũy thừa của số nguyên tố lẻ và ko phải số nguyên tố đều ko thỏa.

Step 3): Ta sẽ loại khi n ko phải lũy thừa số nguyên tố. Giả sử $n=p_1^{a_1}p_2^{a_2}...p_k^{a_k}$. Đặt $S_{(i;j)}=\{P^j(k) \pmod{p_i^{a_i}} \mid k=0,1,2,...\}$ và đặt $b_{(i;j)}=|S_{(i;j)}|$ và để ý là $S_{(i;j+1)}\subset S_{(i;j)}$ với mọi i,j nên nếu $b_{(i;j+1)}=b_{(i;j)}$ thì $b_{(i,k)}=b_{(i;j)}$ với mọi $k\geq j+1$. Ban đầu, phải có ít nhất 2 số i thỏa mãn $b_{(i;1)}>1$ do $b_{(1;1)}b_{(2;1)}...b_{(k;1)}=\left\lceil \frac{n}{2}\right\rceil$. Để ý là với mọi m đủ lớn thì $b_{(i;m)}=1$ với mọi i. Từ đó sẽ tồn tại thời điểm j thỏa mãn, có 2 con số a,b thỏa $b_{(a;j)}$ và $b_{(b;j)}>1$ và $b_{(a;j+1)}=1$. Khi này ta thấy $b_{(b;j+1)}< b_{(b;j)}$ và dễ thấy $b_{(1;j)}b_{(2;j)}...b_{(k;j)}>2b_{(1;j+1)}b_{(2;j+1)}...b_{(k;j+1)}$, toang. Tóm lại n ko phải lũy thừa số nguyên tố thì ko thỏa ycbt.