```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.datasets
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
from sklearn import metrics
house price dataset = sklearn.datasets.fetch california housing()
print(house_price_dataset)
→ {'data': array([[
                        8.3252
                                       41.
                                                       6.98412698, ...,
                                                                         2.55555556,
                          , -122.23
               37.88
                                         ],
               8.3014
                            21.
                                              6.23813708, ...,
                                                                  2.10984183,
                          , -122.22
               37.86
                                         ٦,
               7.2574
                            52.
                                              8.28813559, ...,
                                                                  2.80225989,
                          , -122.24
               37.85
                                         ],
               1.7
                             17.
                                              5.20554273, ...,
                                                                  2.3256351 ,
               39.43
                          , -121.22
                                         ],
               1.8672
                             18.
                                              5.32951289, ...,
                                                                  2.12320917.
               39.43
                          , -121.32
                                         ],
               2.3886
                                              5.25471698, ...,
                             16.
                                                                   2.61698113,
                                              'target': array([4.526, 3.585, 3.521, ..., 0.923, 0.847, 0.894]), 'frame': None, 'target_na'
               39.37
                          , -121.24
                                         ]]),
     4
# Loading the dataset to a pandas dataframe
house_price_dataframe = pd.DataFrame(house_price_dataset.data, columns = house_price_dataset.feature_names)
house_price_dataframe.head()
\overline{2}
        MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude
                                                                                            0 8 3252
                     41.0 6.984127
                                     1.023810
                                                     322.0 2.555556
                                                                         37.88
                                                                                  -122.23
      1 8.3014
                     21.0 6.238137
                                     0.971880
                                                    2401.0 2.109842
                                                                         37.86
                                                                                  -122.22
                                                                                  -122.24
      2 7 2574
                     52.0 8.288136
                                     1 073446
                                                     496.0 2.802260
                                                                         37 85
      3 5.6431
                     52.0 5.817352
                                     1.073059
                                                     558.0 2.547945
                                                                         37.85
                                                                                  -122.25
      4 3 8462
                     52.0 6.281853
                                     1.081081
                                                     565.0 2.181467
                                                                         37 85
                                                                                  -122 25
 Next steps: ( Generate code with house_price_dataframe )

    View recommended plots

                                                                                   New interactive sheet
# add the target column to the dataframe
house_price_dataframe['price'] = house_price_dataset.target
house_price_dataframe.head()
₹
                                                                                                   \blacksquare
        MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude price
      0 8.3252
                     41.0 6.984127
                                      1.023810
                                                     322.0 2.555556
                                                                         37.88
                                                                                  -122.23 4.526
                                                                                                   th
      1 8.3014
                     21.0 6.238137
                                     0.971880
                                                    2401.0 2.109842
                                                                         37 86
                                                                                  -122 22 3 585
                     52.0
                          8.288136
                                                     496.0 2.802260
                                                                                  -122.24 3.521
      2 7.2574
                                      1.073446
                                                                         37.85
      3 5.6431
                     52.0 5.817352
                                     1.073059
                                                     558.0 2.547945
                                                                         37.85
                                                                                  -122.25 3.413
      4 3.8462
                     52.0 6.281853
                                     1.081081
                                                     565.0 2.181467
                                                                         37.85
                                                                                  -122.25 3.422
 Next steps: ( Generate code with house_price_dataframe )

    View recommended plots

                                                                                   New interactive sheet
# checking the number of rows and columns in the dataframe
house_price_dataframe.shape
→ (20640, 9)
# check for missing values
house_price_dataframe.isnull().sum
```

```
pandas.core.frame.DataFrame.sum
def sum(axis: Axis | None=0, skipna: bool=True, numeric_only: bool=False, min_count: int=0,
    **kwargs)

>>> pd.Series([np.nan]).sum()
0.0

>>> pd.Series([np.nan]).sum(min_count=1)
nan
```

statistical measures of the dataset house_price_dataframe.describe()

Understanding the correlation between various features in the dataset

Positive Correlation Negative Correlation

```
correlation = house_price_dataframe.corr()
```

constructing a heatmap to understand the correlation

```
plt.figure(figsize=(10,10))
```

 $sns.heatmap(correlation, cbar=True, square=True, fmt='.1f', annot=True, annot_kws=\{'size':8\}, cmap='Blues'\}$

→ <Axes: >


```
X = house_price_dataframe.drop(['price'], axis=1)
```

3.422 0.781

0.771

4

20635 20636

print(X,Y)

$\overline{\Rightarrow}$		MedInc	HouseAge	AveRooms	AveBedrms	Population	Ave0ccup	Latitude	\
_	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	
	• • •					• • •			
	20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	
	20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	
	20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	
	20638	1.8672		5.329513					
	20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	
	Longitude								
	0	-122.							
	1	-122.							
	2	-122.							
	3	-122.							
	4	-122.	25						
			• •						
		-121.							
	20636	-121.							
	20637	-121.							
	20638	-121.							
	20639	-121.	24						
	[20040 mana n 0 malumma] 0 4 520								
					4.526				
	1	3.585							
	2	3.521							
	5	3.413	•						

Y = house_price_dataframe['price']

```
20637
              0.923
     20638
              0.847
     20639
              0.894
     Name: price, Length: 20640, dtype: float64
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
→ (20640, 8) (16512, 8) (4128, 8)
# load the model
model = XGBRegressor()
#training the model with X train
model.fit(X_train, Y_train)
<del>___</del>
                                      XGBRegressor
     XGBRegressor(base score=None, booster=None, callbacks=None,
                   colsample_bylevel=None, colsample_bynode=None,
colsample_bytree=None, device=None, early_stopping_rounds=None,
                   enable_categorical=False, eval_metric=None, feature_types=None,
                   gamma=None, grow_policy=None, importance_type=None,
                   interaction_constraints=None, learning_rate=None, max_bin=None,
                   max_cat_threshold=None, max_cat_to_onehot=None,
                   max_delta_step=None, max_depth=None, max_leaves=None,
                   min_child_weight=None, missing=nan, monotone_constraints=None,
                   multi_strategy=None, n_estimators=None, n_jobs=None,
                   num_parallel_tree=None, random_state=None, ...)
# accuracy for prediction on training data
training_data_prediction = model.predict(X_train)
print(training_data_prediction)
→ [0.5523039 3.0850039 0.5835302 ... 1.9204227 1.952873 0.6768683]
# R Squared Error
score_1 = metrics.r2_score(Y_train, training_data_prediction)
# Mean Absolute Error
score_2 = metrics.mean_absolute_error(Y_train, training_data_prediction)
print('R Sqaured Error:', score_1)
print('Mean Absolute Error:', score_2)
R Sqaured Error: 0.943650140819218
     Mean Absolute Error: 0.1933648700612105
plt.scatter(Y_train, training_data_prediction)
plt.xlabel("Actual Price")
plt.ylabel("Predicted Price")
plt.title("Actual Price vs Predicted Price")
plt.show()
→
                            Actual Price vs Predicted Price
         5
         4
      Predicted Price
```