Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j/t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: p(j/t) is the relative frequency of class j at node t).

- For 2-class problem (p, 1 - p):

• GINI =
$$1 - p^2 - (1 - p)^2 = 2p (1-p)$$

C1	0
C2	6
Gini=	0.000

C1	3
C2	3
Gini=	0.500

Computing Gini Index of a Single Node

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

Computing Gini Index for a Collection of Nodes

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at parent node p.

- Choose the attribute that minimizes weighted average
 Gini index of the children
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	7
C2	5
Gini	= 0.486

Gini(N1)

$$= 1 - (5/6)^2 - (1/6)^2$$

= 0.278

Gini(N2)

$$= 1 - (2/6)^2 - (4/6)^2$$

= 0.444

	N1	N2							
C1	5	2							
C2	1	4							
Gini=0.361									

Weighted Gini of N1 N2

$$= 0.361$$

Gain = 0.486 - 0.361 = 0.125

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

		CarType											
	Family	Family Sports Luxury											
C1	1	8	1										
C2	3	0	7										
Gini	0.163												

Two-way split (find best partition of values)

	CarType							
	{Sports, Luxury}	{Family}						
C1	9	1						
C2	7	3						
Gini	0.468							

	CarType								
	{Sports}	{Family, Luxury}							
C1	8	2							
C2	0	10							
Gini	0.167								

Which of these is the best?

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting valuesNumber of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 Repetition of work.

ID	Home Owner	Marital Status	Annual Income	Defaulted
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Annual Income?

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat	No	No	No	Yes	Yes	Yes	No	No	No	No
						Annua	al Incom	е			
Sorted Values	→	60	70	75	85	90	95	100	120	125	220

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Cheat		No			No		N	0	Ye	s Ye		s	Υe	es	s No		No		No		No		
			Annual Income																				
Sorted Values		60 70		75		5	85		90		9	5 100		120		125		220					
Split Positions _		5	5	6	65		2	80		8	87		92		7 1		10 12		22	17	72	2 230	
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	\=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	120	0.4	0.400 0.37		375 0.34).343 (0.417 0.		0.400		<u>0.300</u>		43	0.375		0.400		0.420	