

Amazon ML Challenge

2023

// Problem

To build a machine learning model that can predict product length from catalog metadata.

// Dataset

Column Name	Description
PRODUCT_ID	Represents a unique identification of a product
TITLE	Represents the title of the product
DESCRIPTION	Represents the description of the product
BULLET_POINTS	Represents the bullet points about the product
PRODUCT_TYPE_ID	Represents the product type
PRODUCT_LENGTH	Represents the length of the product

Download >

// Team

ML Architects

- > Pranjal Agarwal
- > Akanksha Mishra
- Prajesh Pratap Singh

// Approach

- Imported Training and Testing dataset using `pandas dataframe`
- Applied data pre-processing
 - Removed `Nan` values from columns [`BULLET_POINTS',
 'DESCRIPTION'] of training and testing data
 - Merged columns ['TITLE', 'BULLET_POINTS', 'DESCRIPTION'] into
 one column ['INFO'] in training and testing data
 - Data cleaning: cleaned training and testing data of ['INFO']
 column
 - Replaced newline with space
 - Replaced tab with space
 - Replaced quotes with space
 - Converted to lowercase
 - Removed punctuation marks
 - Removed apostrophe s
 - Re-structured data
 - Training data
 - o ['Title', 'PRODUCT_LENGTH']
 - Testing Data
 - o ['Title', 'PRODUCT ID']
 - Separated data into training and testing set
 - Performed vectorization
 - Imported `TF-IDF` (Term Frequency Inverse Document Frequency) vectorizer
 - Removed stopwords using `NLTK`
 - Transformed dataset and fit into vectorizer model
 - Performed data encoding to feed into `Logistic Regression` model
- Training Model
 - Providing `x_train` and `Y_train` as input
 - o Predicting using Model

- Writing data into File
 - Initializing predicted ['PRODUCT_ID', 'PRODUCT_LENGTH'] to new dataframe variable
 - Writing this variable to the file `submission.csv` and saving it.

// Feature Engineering

- Extracted all the columns necessary for prediction
- Merged these columns into one column
- Removed
 - Whitespaces
 - Newline
 - Punctuation
 - Apostrophe
 - Stopwords
- Converted to lowercase
- Performed `TF-IDF` vectorization

// Tools

- **Sklearn**: Scikit-learn or Sklearn is a popular Python library for machine learning. It provides a wide range of tools and algorithms for various machine learning tasks, such as classification, regression, clustering, and dimensionality reduction.
- Pandas: Pandas is a popular open-source Python library used for data manipulation, analysis, and cleaning. It provides data structures for effectively storing and manipulating large and complex datasets.
- Numpy: NumPy (short for Numerical Python) is a Python library used for working with arrays and matrices of numerical data. NumPy provides a set of numerical and mathematical functions for fast operations on these arrays.
- **Csv**: CSV stands for Comma Separated Values. It is a simple file format used to store tabular data, such as a spreadsheet or a database.

- NItk: NLTK (Natural Language Toolkit) is a popular Python library used for natural language processing (NLP) tasks such as tokenization, stemming, lemmatization, part-of-speech tagging, parsing, and machine learning. It provides a set of tools and resources for working with human language data in Python.
- **Re**: re is a built-in Python module used for working with regular expressions. Regular expressions are a sequence of characters that define a search pattern, used for matching and manipulating strings.
- **TF-IDF**: TF-IDF stands for Term Frequency-Inverse Document Frequency. It is a statistical measure used to evaluate the importance of a word in a document in a collection of documents or corpus.