

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS / DEPARTAMENTO DE ESTADÍSTICA

ELM2400 Métodos Estadísticos

Intervalos de Confianza

Profesor: Alexis Peña

Ayudante: Reinaldo González S.

1. Estimación de la Media

Suponga que $X_1, X_2, ..., X_n$ es una muestra aleatoria de una población Normal con media μ y varianza σ^2 y que se quiere obtener un intervalo de confianza del $(1-\alpha)100\,\%$ para μ . El estimador de μ es:

$$\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

1.1. σ^2 conocido

Pivote	Intervalo
$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	$IC(\mu) = \bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot Z_{1-\alpha/2}$

Nota:

Teorema del Limite Central: Si $X_1, X_2, ..., X_n$ es una muestra aleatoria de una población X con media μ y varianza finita σ^2 , entonces:

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \to N(0, 1)$$
 cuando $n \to \infty$

Debido a este Teorema, el intervalo anterior es valido para estimar la media de cualquier distribución especialmente cuando $n \to \infty$.

1.2. σ^2 desconocido

Se reemplaza
$$\sigma^2$$
 por su estimador insesgado $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

Pivote	Intervalo
$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$	$IC(\mu) = \bar{X} \pm \frac{S}{\sqrt{n}} \cdot t_{n-1,1-\alpha/2}$

Notas:

- a) Si n>30 se puede aproximar $t_{n-1,1-\alpha/2}$ por $Z_{1-\alpha/2}$ pues la distribución t-Student converge a la distribución Normal.
- b) El intervalo también es útil cuando la población es aproximadamente Normal.

2. Comparación de Dos Medias

Sean $X_1, X_2, ..., X_{n1}$ muestras aleatorias de una población Normal $N(\mu_1, \sigma_1^2)$ e $Y_1, Y_2, ..., Y_{n2}$ muestras aleatorias de una población Normal $N(\mu_2, \sigma_2^2)$. Ambas muestras independientes. Las medias poblacionales μ_1 y μ_2 pueden ser comparadas usando la diferencia $\mu_1 - \mu_2$, cuyo estimador es $\hat{\mu_1} - \hat{\mu_2} = \bar{X} - \bar{Y}$.

2.1. σ_1^2 y σ_2^2 conocidas

Pivote	Intervalo
$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	$IC(\mu_1 - \mu_2) = (\bar{X} - \bar{Y}) \pm \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \cdot Z_{1-\alpha/2}$

2.2. σ_1^2 y σ_2^2 desconocidas pero iguales $(\sigma_1^2 = \sigma_2^2 = \sigma^2)$

Se usa el estimador de σ^2 dado por:

$$\hat{\sigma}^2 = S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$$

$$S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$$

Pivote	Intervalo
$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$	$IC(\mu_1 - \mu_2) = (\bar{X} - \bar{Y}) \pm S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \cdot t_{n_1 + n_2 - 2, 1 - \alpha/2}$

2.3. σ_1^2 y σ_2^2 desconocidas y distintas

Pivote	Intervalo
$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_v$	$IC(\mu_1 - \mu_2) = (\bar{X} - \bar{Y}) \pm \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \cdot t_{v,1-\alpha/2}$

$$\operatorname{con} \upsilon = (S_1^2 n_1 + S_2^2 n_2)^2 \bigg/ \frac{(S_1^2/n_1)^2}{n_1 - 1} + \frac{(S_2^2/n_2)^2}{n_2 - 1}$$

3. Comparación de Dos Medias para datos Pareados

Sean los pares $(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)$ donde $X_1,X_2,...,X_n$ puede ser considerada una muestra aleatoria de una población normal $N(\mu_1,\sigma_1^2)$ e $Y_1,Y_2,...,Y_n$ una muestra aleatoria de una población normal $N(\mu_2,\sigma_2^2)$. Se supone que X_i e Y_i no son independientes pero si lo son (X_i,Y_i) de $(X_j,Y_j), i \neq j$. Se trata de hacer inferencia respecto a $\mu_1-\mu_2$.

Pivote	Intervalo
$F = \frac{\bar{d} - \mu_D}{S_D / \sqrt{n}} \sim t_{n-1}$	$IC(\mu_1 - \mu_2) = \bar{d} \pm \frac{S_D}{\sqrt{n}} \cdot t_{n-1,1-\alpha/2}$

$$\mu_{D} = \mu_{1} - \mu_{2}$$

$$d_{i} = X_{i} - Y_{i}$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i} = \bar{X} - \bar{Y}$$

$$S_{D}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \bar{d})^{2}$$

Nota:

Si $0 \in IC(\mu_1 - \mu_2)$ dados en las secciones 2.1, 2.2, 2.3 y 3, entonces se infiere, con un $(1-\alpha)100\%$ de confianza que $\mu_1 = \mu_2$.

4. Estimación de la Varianza

Suponga que $X_1, X_2, ..., X_n$ es una muestra aleatoria de una poblacion normal $N(\mu, \sigma^2)$ y que se quiere obtener un intervalo de confianza del $(1 - \alpha)100\%$ para σ^2 cuyo estimador es:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

4.1. μ desconocido

Pivote	Intervalo
$X = \frac{(n-1)S^2}{\sigma^2} = \frac{\sum (X_i - \bar{X})^2}{\sigma^2} \sim \chi_{n-1}^2$	$IC(\sigma^2) = \left[\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2} ; \frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2} \right]$

4.2. μ conocido

Pivote	Intervalo
$X = \frac{\sum (X_i - \mu)^2}{\sigma^2} \sim \chi_n^2$	$IC(\sigma^2) = \left[\frac{\sum (X_i - \mu)^2}{\chi_{n,1-\alpha/2}^2}; \frac{\sum (X_i - \mu)^2}{\chi_{n,\alpha/2}^2}\right]$

5. Comparación de Dos Varianzas

Sea $X_1, X_2, ..., X_{n1}$ una muestra aleatoria de una población normal $N(\mu_1, \sigma_1^2)$ e $Y_1, Y_2, ..., Y_{n2}$ otra muestra aleatoria de una población normal $N(\mu_2, \sigma_2^2)$. Ambas muestras independientes con μ_1 y μ_2 desconocidas. Las varianzas poblacionales σ_1^2 y σ_2^2 pueden ser comparadas usando el cuociente cuyo estimador es:

$$\frac{\hat{\sigma}_{1}^{2}}{\hat{\sigma}_{2}^{2}} = \frac{S_{1}^{2}}{S_{2}^{2}}$$

$$S_{1}^{2} = \frac{1}{n_{1} - 1} \sum_{i=1}^{n_{1}} (X_{i} - \bar{X})^{2}$$

$$S_{2}^{2} = \frac{1}{n_{2} - 1} \sum_{i=1}^{n_{2}} (Y_{i} - \bar{Y})^{2}$$

Pivote	Intervalo
$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1}$	$IC(\sigma_2^2/\sigma_1^2) = \left[\frac{S_2^2}{S_1^2} \cdot F_{n_1-1,n_2-1,\alpha/2} ; \frac{S_2^2}{S_1^2} \cdot F_{n_1-1,n_2-1,1-\alpha/2} \right]$

Nota:

Si $1 \in IC(\sigma_2^2/\sigma_1^2)$, entonces se infiere, con un $(1-\alpha)100\%$ de confianza que las varianzas poblacionales σ_1^2 y σ_2^2 son iguales.

6. Estimación de una Proporción

Sea $X_1, X_2, ..., X_n$ una muestra aleatoria de una población Bernoulli de parámetro p cuyo estimador es:

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 , $X_i = 0, 1$, $0 \le p \le 1$

Usando el Teorema del Limite Central se puede obtener un intervalo aproximado para p si n es grande (n > 30).

$$IC(p) = \hat{p} \pm \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \cdot Z_{1-\alpha/2}$$

7. Comparación de Proporciones

Sean $X_1, X_2, ..., X_{n1}$ e $Y_1, Y_2, ..., Y_{n2}$ muestras aleatorias independientes de poblaciones Bernoulli de parámetros p_1 y p_2 respectivamente. Las proporciones poblacionales pueden ser comparadas a través de un intervalo de confianza aproximado para muestras grandes, dado por:

$$IC(p_1 - p_2) = (\hat{p_1} - \hat{p_2}) \pm \sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n_1} + \frac{\hat{p_2}(1 - \hat{p_2})}{n_2}} \cdot Z_{1-\alpha/2}$$

Nota:

Si $0 \in IC(p_1 - p_2)$ entonces se infiere, con un $(1 - \alpha)100\%$ de confianza, que $p_1 = p_2$.

8. Estimación de Cualquier Parámetro

Si $X_1, X_2, ..., X_n$ es una muestra aleatoria de una población X con función de densidad $f(x, \theta)$ y $\hat{\theta}_{EMV}$ es el estimador máximo verosímil de θ entonces se pueden usar las propiedades de normalidad asintótica de estos estimadores para obtener un intervalo aproximado para θ .

Como $\frac{\hat{\theta}_{EMV}-\theta}{1/\sqrt{nI_I(\theta)}}$ tiende a N(0,1) cuando $n\to\infty$. Con $I_I(\theta)=-E\bigg(\frac{\partial^2}{\partial\theta^2}\ln(f(x,\theta))\bigg)$, entonces el intervalo de confianza asintótico es:

$$IC(\theta) = \hat{\theta}_{EMV} \pm \frac{1}{\sqrt{nI_I(\hat{\theta})}} \cdot Z_{1-\alpha/2}$$