МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Лекция 6

Повтор.

Определение. Интервал $I(\xi) = (a_1(\xi), a_2(\xi))$ со случайными концами (случайный интервал), определяемый двумя функциями наблюдений, называется доверительным интервалом для параметра а с уровнем доверия P_{Π} (обычно близким к 1), если

$$\min_{a} \mathbf{P}\{I(\xi) \ni a\} \equiv \min_{a} \mathbf{P}\{a_{1}(\xi) < a < a_{2}(\xi)\} = P_{\perp}, \tag{1}$$

т.е. если при любом значении параметра а вероятность (зависящая от а) накрыть случайным интервалом $I(\xi)$ истинное значение а велика, не менее заданной величины P_{Π} .

Один из способов был виден из примера: оценка среднего нормальной совокупности. Пусть $\xi = (\xi_1, \, \xi_2...\xi_n) \, N(a, \, \sigma^2)$ совокупности, a=?, σ известно.

$$\hat{a} = \hat{a}(\xi_1, \xi_2...\xi_n) = \frac{1}{n} \sum_{i=1}^n \xi_i \equiv \frac{\overline{\xi}}{}$$
- оценивающая статистика, з.р. известен

$$N(a, \frac{\sigma^2}{n})$$
 (3)

 $\overline{\xi} \equiv \!\! \zeta$ - оценивающая статистика (можно взять $\sum\limits_{i=1}^n \! \xi_i$ -тоже оценивающая ст-ка)

. 1.<mark>Конструируем с.в. φ введением параметра *а* так, чтобы з.р.</mark>

был известен:
$$\varphi(\zeta;a) = \frac{\zeta - a}{\sigma/\sqrt{n}},$$
 (4)

2. По заданному уровню доверия $P_{\rm Д}$ определим для ϕ интервал (f_1, f_2) так, чтобы он содержал в себе вероятность $P_{\rm Д}$, т.е.

$$\mathbf{P}\left\{f_{1} < \varphi < f_{2}\right\} = P_{\mathcal{A}}$$

$$\frac{\zeta - a}{\sigma / \sqrt{n}} \quad . \quad \forall a \quad \textbf{(5)}$$

3). Разрешаем неравенства под знаком вер-ти:

$$\mathbf{P}\left\{g_{1}(\zeta) < a < g_{2}(\zeta)\right\} = P_{\mathcal{I}} \tag{6}$$

Теперь под знаком вероятности стоит событие, состоящее в том, что случайный интервал накроет неизвестное значение параметра с заданной большой вероятностью $P_{\rm Д}$ при любом значении параметра, т.е. $(g_1(\zeta),g_2(\zeta))$ - доверит. инт-л с уровнем доверия $P_{\rm Д}$.

Конец повтора

Доверительные границы -2

6.4. Интервалы для параметров нормального распределения

А. Распределение хи-квадрат с к степенями свободы. Для рассмотрения типичных практических примеров потребуются сведения о некоторых распределениях. Многие задачи статистики связаны с распределением хи-квадрат (х²(к)).

Пусть α_1 , $\alpha_2...\alpha_k$ — независимые случайные величины, распределенные по стандартному нормальному закону N(0,1). Рассмотрим сумму их квадратов и обозначим соответствующую случайную величину через χ^2_L :

$$\chi_k^2 = \alpha_1^2 + \alpha_2^2 + \dots + \alpha_k^2. \tag{10}$$

Распределение этой случайной величины называют

распределением хи-квадрат с к степенями свободы.

Нетрудно показать (см., например, [2], Гнеденко, Курс теории вероятностей, §24), что плотность этого распределения выражается следующей формулой:

$$h_k(x) = C_k x^{k/2-1} e^{-x/2}, \ x > 0, \tag{11}$$

где $C_k = (2^{k/2}\Gamma(k/2))^{-1}$ — нормирующий множитель, $\Gamma(\lambda) = \int_0^\infty t^{\lambda-1}e^{-t}dt$ —

знаменитая гамма-функция; напомним, что $\Gamma(\lambda) = (\lambda - 1)\Gamma(\lambda - 1)$, и при целом λ , $\Gamma(\lambda) = (\lambda - 1)!$.

На рис. 8 показаны графики при различных значениях к.

Рис. 8. Семейство плотностей распределения χ^2 Заметим, что при k=2 получаем показательное распределение: $h_2(x) = 0.5e^{-x/2} \sim E(1/2).$

Из соотношения (10) получаем первые два момента:

$$\mathsf{M}\chi_k^2 = k, \qquad \mathsf{D}\chi_k^2 = 2k,$$
 Проверяем: $\mathsf{D}\chi_k^2 = \sum_{i=1}^k D\alpha_i^2 = k \mathsf{D}\alpha_i^2 = k \mathsf{D}\alpha_i^4 - \left(M\alpha_i^4 - \left(M\alpha_i^2\right)^2\right) = k\left(3 - 1^2\right) = 2k$

Ясно, что с увеличением числа k степеней свободы распределение $\chi^2(k)$ смещается вправо и расплывается,

а также, что оно <mark>асимптотически нормально</mark> (в силу центральной предельной теоремы):

$$\chi^2(k) \sim N(k, 2k)$$
 при $k \rightarrow \infty$;

при k > 30 можно пользоваться таблицами нормального распределения.

Далее отметим полезные сведения.

Замечание о связи с гамма-распределением. Распределение χ^2 - хи-квадрат является частным случаем *гамма-распределения*, для которого плотность выражается формулой

 $p(x; \lambda, a) = \frac{C(\lambda, a)}{x^{\lambda - 1}e^{-ax}}, x > 0, \lambda > 0, a > 0$ (двухпараметрическое), где $C(\lambda, a) = a^{\lambda}/\Gamma(\lambda)$ - нормирующий множитель; λ – параметр формы,

a — параметр масштаба, $\Gamma(\lambda) = \int\limits_0^\infty t^{\lambda-1} e^{-t} dt$ - гамма-функция. Первые два

момента m_1 и σ^2 равны соответственно

$$m_1 = \lambda/a$$
, $\sigma^2 = \lambda/a^2$.

Характеристическая функция f(t) этого распределения выражается формулой:

$$f(t) = Me^{it\xi} = \int_{0}^{\infty} e^{itx} p(x;\lambda,a) dx = \frac{a^{\lambda}}{\Gamma(\lambda)} \int_{0}^{\infty} e^{itx} x^{\lambda-1} e^{-ax} dx = \frac{1}{\Gamma(\lambda)} \int_{0}^{\infty} e^{-\left(1-i\frac{t}{a}\right)ax} \left(ax\right)^{\lambda-1} d\left(ax\right) = \frac{a^{\lambda}}{\Gamma(\lambda)} \int_{0}^{\infty} e^{-ax} dx = \frac{1}{\Gamma(\lambda)} \int_{0}^{\infty} e^{-\left(1-i\frac{t}{a}\right)ax} \left(ax\right)^{\lambda-1} d\left(ax\right) = \frac{a^{\lambda}}{\Gamma(\lambda)} \int_{0}^{\infty} e^{-ax} dx = \frac{1}{\Gamma(\lambda)} \int_{0}^{\infty} e^{-ax} dx$$

новая переменная интегрирования: $z = \left(1 - i\frac{t}{a}\right)ax$

$$=\frac{\left(1-i\frac{t}{a}\right)^{-\lambda}}{\Gamma(\lambda)}\int_{0}^{\infty}e^{-z}z^{\lambda-1}dz=\left(1-i\frac{t}{a}\right)^{-\lambda}.$$
 (12)

Если λ — целое число, то распределение называется распределением Эрланга, которому подчиняется сумма λ независимых случайных величин, показательно распределенных с плотностью ae^{-ax} , x>0.

Справедливость формулы (11) можно легко показать, определив характеристические функции для α_1^2 и затем для $\chi_k^2 = \alpha_1^2 + \alpha_2^2 + ... + \alpha_k^2$. Характеристическая функция для случайной величины χ_k^2 оказывается равной

$$(1-2it)^{-k/2}$$

откуда следует, что соответствующее распределение является гаммараспределением с параметрами λ = k/2, a = 1/2.

Б. Совместное распределение выборочных среднего и дисперсии нормальной совокупности. (важный вопрос! обобщнеие в регрессионном анализе)

Теорема. Пусть $\xi = (\xi_1, \, \xi_2 ... \xi_n)$ — выборка $N(m, \, \sigma^2)$, оценки параметров:

$$\overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i - s^2 = \frac{1}{n} \sum_{i=1}^{n} (\xi_i - \overline{\xi})^2$$
 выборочные среднее и дисперсия.

Утверждения: 1) эти статистики $\frac{\xi}{\xi}$ и s^2 независимы;

2) <mark>с. в. $\sqrt{n}(\overline{\xi}-m)/\sigma \sim N(0,1)$ - стандартный нормальный закон,</mark>

3) $ns^2/\sigma^2 \sim \chi^2(n-1)$ — хи-квадрат с числом степеней свободы (n-1).

Доказательство. Перейдем нормировкой к новым случайным величинам

 $\eta_i = (\xi_i - m)/\sigma$, i = 1, 2...n, которые образуют выборку $\eta = (\eta_1, \eta_2...\eta_n)$ из совокупности, распределенной по N(0, 1). Тогда

$$\overline{\eta} = \frac{1}{n} \sum_{i=1}^{n} \eta_i = (\overline{\xi} - m)/\sigma,$$

$$\frac{ns^{2}}{\sigma^{2}} = \sum_{i=1}^{n} \left(\frac{\xi_{i} - \overline{\xi}}{\sigma}\right)^{2} = \sum_{i=1}^{n} \left(\frac{\xi_{i} - m}{\sigma} - \frac{\overline{\xi} - m}{\sigma}\right)^{2} = n\left[\frac{1}{n}\sum_{i=1}^{n} (\eta_{i} - \overline{\eta})^{2}\right] = n\left(\frac{1}{n}\sum_{i=1}^{n} \eta_{i}^{2} - \overline{\eta}^{2}\right) = \sum_{i=1}^{n} \eta_{i}^{2} - n\overline{\eta}^{2}; (13)$$

здесь предпоследняя сумма есть умноженная на *п* дисперсия выборочного распределения.

Преобразуем вектор η с помощью ортогонального преобразования с матрицей С:

$$\zeta = C\eta$$
,

где первая строка матрицы С состоит из одинаковых элементов, равных 1 / \sqrt{n} . Дисперсионная матрица ζ , с учетом того, что

$$M(\eta \eta^T) = I и C^T = C^{-1}$$
,

равна

$$D\zeta = MC\eta(C\eta)^{T} = CM(\eta\eta^{T})C^{T} = I,$$

где I — единичная матрица, и потому $\zeta_1,\ \zeta_2...\zeta_n$ — независимые случайные величины, распределенные по N(0, 1).

Если учесть, что ортогональное преобразование не меняет

расстояния, т. е.
$$\sum_{i=1}^{n} \eta_i^2 = \sum_{i=1}^{n} \zeta_i^2$$
,

а для первого элемента справедливо соотношение

$$\zeta_1 = \sum_{i=1}^n \frac{1}{\sqrt{n}} \eta_i = \sqrt{n} \eta,$$

то выражение (13) примет вид

$$ns^{2}/\sigma^{2} = \sum_{i=1}^{n} \eta_{i}^{2} - n\overline{\eta}^{2} = \sum_{i=1}^{n} \zeta_{i}^{2} - \zeta_{1}^{2} = \zeta_{2}^{2} + \zeta_{3}^{2} + \dots + \zeta_{n}^{2}.$$

Последняя сумма ns^2/σ^2 распределена по закону хи-квадрат с (n–1) степенями свободы и не зависит от

$$\zeta_1 = \sqrt{n}\overline{\eta} = \sqrt{n}\frac{\overline{\xi} - m}{\sigma}$$
, T.e. of $\overline{\xi}$.

Именно это утверждает данная теорема.

В. Доверительный интервал для дисперсии нормальной совокупности. Пусть $\xi = (\xi_1, \xi_2...\xi_n)$ — выборка из совокупности, распределенной по нормальному закону $N(m, \sigma^2)$. Задан коэффициент доверия P_{Π} .

Параметр m может быть известен или не известен, поэтому рассматриваем два случая одновременно. В качестве несмещенных оценок для σ^2 используем статистики: если m известно, то

$$s^2 = \sum_{i=1}^n \left(\xi_i - m\right)^2 / n$$
 , и тогда $\frac{ns^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{\xi_i - m}{\sigma}\right)^2 \sim \chi_n^2$,

иначе

$$s^2 = \sum_{i=1}^n \left(\xi_i - \overline{\xi}\right)^2 / (n-1)$$
, и тогда $\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{\xi_i - \overline{\xi}}{\sigma}\right)^2 \sim \chi_{n-1}^2$ по теореме.

Рассмотрим случайную величину

$$\varphi(\xi, m, \sigma) = ks^2/\sigma^2$$
, где $k = \begin{cases} n, \text{ если } m \text{ известно,} \\ (n-1), \text{ если } m \text{ неизвестно.} \end{cases}$

Очевидно, что в обоих случаях случайная величина ϕ подчиняется закону распределения хи-квадрат с k степенями свободы.

Определим интервал (f_1 , f_2) так, чтобы

$$\mathbf{P}\{f_1 < \phi < f_2\} = P_{\mathrm{Д}}.$$

В качестве f_1 и f_2 возьмем квантили уровней соответственно $(1 - P_{\text{Д}})$ / 2 и $(1 + P_{\text{Д}})$ / 2 распределения хи-квадрат с k степенями свободы:

$$\begin{array}{c|c} & & & \\ \hline \begin{array}{c} I-P_3 \\ \hline \end{array} \\ \hline \begin{array}{c} I_1 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} I_2 \\ \hline \end{array} \\ \end{array}$$

$$\mathbf{P}\left\{\chi_{k}^{2} < f_{1}\right\} = (1-P_{Д})/2, \quad \mathbf{P}\left\{\chi_{k}^{2} < f_{2}\right\} = (1+P_{Д})/2.$$

Разрешая под знаком вероятности два неравенства относительно σ

$$f_1 < \varphi = ks^2/\sigma^2 < f_2,$$

получим соотношение

$$\mathbf{P}\left\{s\sqrt{k/f_2} < \sigma < s\sqrt{k/f_1}\right\} = P_{\Pi}$$

верное при любых значениях m и σ , откуда следует, что интервал $\left(s\sqrt{k/f_2},\ s\sqrt{k/f_1}\right)$ является доверительным для σ с доверительной вероятностью P_{Π} .

Пример. Пусть среднее m неизвестно, n = 2, $P_{\rm Д}$ = 0,95. Тогда

$$s = |x_1 - x_2| / \sqrt{2} = \frac{\Delta x}{\sqrt{2}},$$

и доверительный интервал весьма широк — (0,5s, 30s).

При
$$n = 10$$
: (0,7s, 1,8s),

при
$$n = 20$$
 — (0,87s, 1,17s).

Вывод: если оцениваете с.к.о., не верьте точечной оценке, обязательно считайте доверит. интервал.

Г. Распределение Стьюдента. Многие задачи статистики приводят к рассмотрению следующей случайной величины.

Пусть с.в.:
$$\alpha$$
, $N(0,1)$,

и с.в. χ_k^2 , ~ хи-квадрат с k степенями свободы.

Образуем новую случайную величину T_k следующим образом:

$$T_k = \frac{\alpha}{\sqrt{\chi_k^2/k}} \,. \tag{14}$$

Распределение этой случайной величины называется **распределением Стьюдента** (псевдоним английского статистика В. Госсета) с k степенями свободы и обозначается s(k). Плотность $s_k(x)$ распределения выражается формулой:

$$S_k(x) = C_k \frac{1}{(1+x^2/k)^{(k+1)/2}}, -\infty < x < \infty,$$

где $C_k = \frac{1}{\sqrt{\pi k}} \frac{\Gamma((k+1)/2)}{\Gamma(n/2)}$ — нормирующий множитель.

При k=1 распределение Коши с плотностью $\frac{1}{\pi(1+x^2)}$.

При увеличении k знаменатель в (14) сходится к 1, поскольку математическое ожидание

$$\frac{M\chi_k^2/k=1}{k}$$
, а дисперсия $\frac{D\chi_k^2/k}{k} \rightarrow 0$,

и потому распределение S(k) сходится к стандартному нормальному. При k > 30 для вероятностей р > 0,01 можно нормальным распределением.

$$T_k \sim N(0, 1);$$

Д. Доверительный интервал для среднего нормальной совокупности при **неизвестной** дисперсии.

Пусть $\xi = (\xi_1, \xi_2...\xi_n)$ — выборка из совокупности, распределенной по нормальному закону $N(m, \sigma^2)$. Построим доверительный интервал с коэффициентом доверия $P_{\rm L}$. Параметр σ неизвестен, но именно он определяет точность оценки, т.е. ширину интервала, поэтому его тоже нужно оценить.

Пусть
$$\overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$$
 — оценка м.о. ~ $N(m, \frac{1}{n} \sigma^2)$.

$$\alpha = \frac{\overline{\xi} - m}{\sigma / \sqrt{n}} \sim N(0, 1)$$
 - стандартный нормальный закон,

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\xi_i - \overline{\xi})^2$$
 — оценка дисперсии,

 $\frac{n-1}{\sigma^2} s^2 \sim \chi_{n-1}^2$ - распределение хи-квадрат с (*n*–1) степенями свободы,

и α и s^2 независимы.

Построим статистику T_{n-1} делением

$$T_{n-1} = \left(\frac{\overline{\xi} - m}{\sigma / \sqrt{n}}\right) / \sqrt{\frac{(n-1)s^2}{\sigma^2} / (n-1)} = \frac{\overline{\xi} - m}{s / \sqrt{n}} \forall m, \sigma^2 = \varphi$$

Неизвестное значение σ сократилось. В силу определения с.в. с законом Стьюдента и теоремы о независимости выборочных среднего

и дисперсии нормальной совокупности, эта статистика подчиняется закону Стьюдента с (n-1) степенями свободы. По заданному $P_{\rm L}$ определяем симметричный интервал $(-t_P, t_P)$ такой, что

P{-
$$t_P$$
 < T_{n-1} < t_P } = P_{\perp} ∀ m , σ^2

Очевидно, что t_P есть квантиль уровня $(1+P_{\Pi})/2$.

Разрешая под знаком вероятности два неравенства относительно параметра т

$$-t_P < \frac{\overline{\xi} - m}{s / \sqrt{n}} < t_P,$$

получаем:

$$\mathbf{P}\{\ \overline{\xi} - t_P \frac{s}{\sqrt{n}} < m < \overline{\xi} + t_P \frac{s}{\sqrt{n}}\} = P_{\perp} \forall m, \sigma^2$$

Последнее соотношение верно при любых значениях параметров *m* и σ , и потому случайный интервал { $\overline{\xi}$ - $t_P \frac{s}{\sqrt{n}}$, $\overline{\xi}$ + $t_P \frac{s}{\sqrt{n}}$ } является доверительным с вероятностью P_{Π} .

Замечание. Сравнение полученного интервала с интервалом,

$$(\xi - f_p \frac{\sigma}{\sqrt{n}}, \ \xi + f_p \frac{\sigma}{\sqrt{n}})$$

построенным при известной дисперсии (первый пример построения интервала). Видно, что в полученном интервале вместо известного значения σ фигурирует оценка s для σ , и вместо квантили f_P нормального распределения N(0,1)появилась квантиль *S*(*n*-1) Стьюдента. Отметим, распределения что при доверительных вероятностях $t_P > f_P$. В табл. 2 для примера приведены некоторые значения.

Табл. 2. Сравнительные значения f_P и

 t_P

		t_P			
$P_{\text{Д}}$	f_P	<i>n</i> = 5	<i>n</i> = 10	n = 20	n = 50
0.95	1.96	2.57	2.23	2.09	2.00
0.99	2.58	4.03	3.17	2.85	2.66

6.5. Построение центральной статистики.

В общем случае центральную статистику $φ(\xi, a)$, закон которой известен и не зависит от параметра, можно построить, основываясь на следующей лемме.

Лемма. Пусть ξ — непрерывная случайная величина с функцией распределения F(x). Тогда случайная величина

$$\eta = F(\xi) \sim R[0,1].$$

Действительно, определив функцию распределения $F_{\eta}(y)$ случайной величины η :

$$F_{\eta}(y) = P\{\eta \equiv F(\xi) < y\} = \begin{cases} 0, \text{ если } y \le 0, \\ P\{\xi < F^{-1}(y)\} = F(F^{-1}(y)) = y, \text{ если } 0 < y \le 1, \\ 1, \text{ если } y > 1, \end{cases}$$

убеждаемся, что это так.

Пусть при построении доверительного интервала мы используем некоторую статистику $\zeta(\xi_1, \xi_2...\xi_n)$. Определим функцию распределения F(z,a) статистики ζ (F зависит от a).

$$\zeta \sim F(z,a)$$

Случайная величина $\varphi = F(\zeta,a)$, если a есть ucmunhoe значение параметра, в силу леммы, распределена pashomepho на ompeske [0, 1] при любом истинном значении a, и потому мы можем ее принять в качестве центральной статистики $\varphi(\xi,a) = F(\zeta,a)$. В качестве (9) имеем соотношение (рис.9):

 $P\left\{ \alpha < \phi = F(\zeta,a) < 1-\alpha \right\} = 1 - 2\alpha \equiv P_{\mathcal{A}},$ справедливое при любом значении параметра a. Разрешив два неравенства под знаком вероятности относительно a, получим доверительный интервал.

Такой подход с некоторыми изменениями можно применить и для

дискретных распределений.

Рис. 9. Выбор интервала для $F(\zeta,a)$

Замечание 1. Можно рассуждать иначе. При любом фиксированном значении истинного параметра *а* определим интервал $(z_1(a), z_2(a))$ так, чтобы

$$P\{z_1(a) < \zeta < z_2(a)\} = P_{\mathcal{I}}. \tag{15}$$

Ясно, что в качестве z_1 и z_2 можно взять квантили, т.е. определить z_1 и z_2 из условий

$$F(z_1,a) = (1 - P_{II}) / 2, \qquad F(z_2,a) = (1 + P_{II}) / 2.$$

Если $z_1(a)$ и $z_2(a)$ монотонно возрастают по a, то, разрешив два неравенства под знаком Р в (15) и учитывая, что $z_1(a) < z_2(a)$, получим соотношение

$$P\{z_2^{-1}(\zeta) < a < z_1^{-1}(\zeta)\} = P_{\mathcal{D}},$$

верное при любом *а. Я*сно, что интервал $(z_2^{-1}(\zeta))$, $z_1^{-1}(\zeta)$), определяемый двумя функциями от ζ , является доверительным с уровнем доверия P_{Π} .

Если $z_1(a)$ и $z_2(a)$ монотонно *убывают* по a, то доверительный интервал получим таким же образом.

При построении *односторонних границ* нужно вместо двух неравенств использовать лишь одно, согласовав знак неравенства с типом границы (верхняя или нижняя) и с характером монотонности (убывание или возрастание).

Пример 1. Пусть ξ_1 , $\xi_2...\xi_n$ — независимые наблюдения над нормальной $N(m, \sigma^2)$ случайной величиной. Пусть дисперсия σ^2 известна. Построим доверительный интервал для среднего m с уровнем доверия $P_{\rm A}=1-2\alpha$. Оценкой для m является статистика $\overline{\xi}=1$

$$rac{1}{n}\sum_{i=1}^n \xi_i$$
 , имеющая функцию распределения $F_{ar{\xi}}(z) = \Phiigg(rac{z-m}{\sigma/\sqrt{n}}igg)$, где $\Phi(x)$ -

функция стандартного нормального распределения. Согласно лемме,

случайная величина $\Phi\!\!\left(\frac{\overline{\xi}\text{-}m}{\sigma\!/\sqrt{n}}\right)$ распределена равномерно на отрезке

[0,1], следовательно,

$$P\left\{\alpha < \Phi\left(\frac{\overline{\xi}-m}{\sigma/\sqrt{n}}\right) < 1-\alpha\right\} = 1-2\alpha = P_{\Lambda}$$

при любом истинном значении *т*. После разрешения двух неравенств под знаком вероятности получим

$$\mathbf{P}\!\!\left\{\overline{\xi}-\frac{\sigma}{\sqrt{n}}\Phi^{-1}(1-\alpha)< m<\overline{\xi}+\frac{\sigma}{\sqrt{n}}\Phi^{-1}(1-\alpha)\right\}=\mathbf{P}_{\mathbf{\square}},$$

где учтено, что $\Phi^{-1}(\alpha)$ = - $\Phi^{-1}(1-\alpha)$. Обозначив $\Phi^{-1}(1-\alpha)$ = f_P ,

получаем интервал ($\overline{\xi}$ - $f_p \frac{\sigma}{\sqrt{n}}$, $\overline{\xi}$ + $f_p \frac{\sigma}{\sqrt{n}}$), совпадающий с (8).

Пример 2. Пусть ξ_1 , $\xi_2...\xi_n$ — независимые наблюдения над случайной величиной, распределенной равномерно на отрезке [0, a], где a — неизвестный параметр, для которого нужно построить верхнюю доверительную границу с доверительной вероятностью $P_{\rm L} = 1 - \alpha$. Оценивающей статистикой является $\zeta = \max_i \xi_i$ — достаточная

для *а* статистика. Определим функцию распределения случайной величины ζ:

$$F_{\zeta}(z, a) = P \left\{ \max_{i} \xi_{i} < z \right\} = \begin{cases} 0, \text{ если } z \leq 0, \\ (z/a,)^{n} \text{ если } 0 < z < a, \\ 1, \text{ если } z \geq a. \end{cases}$$

Случайная величина $(\zeta/a,)^n$ распределена равномерно на [0,1], и потому при любом a

$$P\left\{\left(\max \xi_i/a\right)^n > 1 - P_{\mathcal{I}}\right\} = P_{\mathcal{I}} = P\left\{\max_i \xi_i / \sqrt[n]{1 - P_{\mathcal{I}}} > a\right\},\,$$

что означает, что статистика $\max_i \xi_i / \sqrt[n]{1-P_{\mathcal{I}}}$ является верхней

доверительной границей для a с коэффициентом доверия $P_{\text{Д}}$. Верно также при любом a

$$P\left\{\left(\max \xi_i/a\right)^n < P_{\mathcal{I}}\right\} = P_{\mathcal{I}} = P\left\{\max_i \xi_i / \sqrt[n]{P_{\mathcal{I}}} < a\right\},\,$$

т.е. статистика $\max_i \xi_i \Big/ \sqrt[n]{P_{\mathcal{I}}}$ является нижней доверительной границей.

Замечание 2. Общая логика построения доверительного множества по статистике ζ заключается в следующем. Для каждого значения параметра a построим множество Z(a) значений z случайной величины ζ вероятности $P_{\mathcal{I}}$; конечно, оно зависит от a, Z=Z(a):

$$P\{\zeta \in Z(a)\} = P_{\Pi} \ \forall \ a.$$

Далее для любого z построим множество A(z) значений параметра a, включив в него те значения a, для которых Z(a) содержит z:

$$A(z) = \{a: z \in Z(a)\}, \text{ r.e. } a \in A(z) \iff z \in Z(a),$$

и потому случайное множество $A(\zeta)$ содержит истинное значение a с вероятностью

$$\mathsf{P}\{\mathsf{A}(\zeta)\ni a\}=\mathsf{P}\{\zeta\in\mathsf{Z}(a)\}=P_{\mathsf{I}}\;\forall\;\;a.$$

§ 7. Интервалы при больших выборках

7.1. Использование асимптотической нормальности оценок.

Пусть по выборке $\xi = (\xi_1, \xi_2...\xi_n)$ оценивается неизвестный параметр a, и пусть оценка $\hat{a} = \hat{a}(\xi)$ асимптотически нормальна со

средним \boldsymbol{a} и дисперсией $\sigma_n^2(a)$, зависящей от неизвестного параметр \boldsymbol{a} . Рассмотрим нормированную погрешность

$$\varphi(\xi, a) = \frac{\hat{a}(\xi) - a}{\sigma_n(a)}.$$
 (16)

Эта случайная величина распределена приближенно по нормальному закону N(0,1) при любом значении параметра a. По заданному значению доверительной вероятности $P_{\mathcal{I}}$ определяем симметричный интервал $(-f_{\mathsf{P}}, f_{\mathsf{P}})$, который несет в себе вероятность $P_{\mathcal{I}}$ нормального N(0,1) распределения, и потому при любом значении параметра a верно приближенное соотношение:

$$P\{ | \varphi(\xi, a)| < f_P\} \approx P_{\mathcal{I}}, \ \forall \ a$$
.

Полагая монотонность ϕ по a и разрешая под знаком вероятности неравенства

$$-f_P < \frac{\hat{a}(\xi) - a}{\sigma_n(a)} < f_P, \tag{16a}$$

относительно а, получим соотношение

$$P\{g_1(\hat{a}, f_P) < a < g_2(\hat{a}, f_P)\} \approx P_{\mathcal{A}},$$

верное при любом значении параметра a. Это означает, что $(g_1(\hat{a},f_P),\,g_2(\hat{a},f_P))$ является доверительным интервалом коэффициентом доверия, приближенно равным $P_{\mathcal{A}}$.

Замечание. Сказанное можно обобщить. Вместо оценки $\hat{a}(\xi)$ рассматрим $\zeta = \zeta(\xi_1, \, \xi_2 ... \xi_n)$ — некоторую статистику, распределенную приближенно нормально с мат. ожиданием $m(a) = M\zeta$ и дисперсией $\sigma^2(a) = D\zeta$. Пронормировав ζ , вместо (16), получаем с.в. :

$$\varphi(\zeta, a) = \frac{\zeta - m(a)}{\sigma_n(a)} \sim N(0, 1)$$

Все остальное будет справедливым, в результате получим доверительный интервал.

7.2. Примеры

А. Доверительный интервал для вероятности. Пусть P(A) = a — неизвестная вероятность некоторого события A, и ξ — число появлений A в серии n независимых испытаний. Несмещенной оценкой для a является $\hat{a} = \xi/n$, которая по теореме Муавра-Лапласа при больших значениях числа испытаний n является асимптотически нормальной с параметрами

$$M\hat{a} = M\frac{\xi}{n} = a$$
, $D\hat{a} = D\frac{\xi}{n} = \frac{a(1-a)}{n} = \sigma_n^2(a)$,

и потому нормированная погрешность

$$\varphi(\hat{a}, a) = \frac{\hat{a} - a}{\sigma_n(a)} = \frac{\hat{a} - a}{\sqrt{a(1 - a)}} \sqrt{n}$$

распределена приближенно по нормальному закону *N*(0,1) при любом значении параметра *a*. Разрешая неравенство (16)

$$\varphi^{2}(\hat{a},a) = \left(\frac{\hat{a}-a}{\sqrt{a(1-a)}}\sqrt{n}\right)^{2} < f_{P}^{2}$$

относительно \pmb{a} , получаем доверительный интервал $(a_1(\hat{a},f_P,n),a_2(\hat{a},f_P,n))$, где \pmb{a}_1 , \pmb{a}_2 — корни соответствующего квадратного уравнения

$$\mathbf{a}_{1,2} = \left\lceil (\hat{a} + f_P^2 / 2n) \pm f_P \sqrt{\frac{\hat{a}(1-\hat{a})}{n} + \frac{f_P^2}{4n^2}} \right\rceil / \left(1 + \frac{f_P^2}{n^2}\right).$$

При больших *п* формула упрощается:

$$\mathbf{a}_{1,2} \approx \hat{a} \pm f_P \sqrt{\frac{\hat{a}(1-\hat{a})}{n}} = \hat{a} \pm f_P \sigma_n(\hat{a}).$$

При малых значениях n, когда нельзя пользоваться приближенной нормальностью, пользуются статистическими таблицами, в которых для заданных n и $P_{\rm L}$ и полученному значению оценки \hat{a} указаны левый и правый концы интервала. Вставить номограмму

Б. Доверительный интервал для коэффициента корреляции. Пусть имеется пара случайных величин (ξ , η), для которых по имеющейся выборке (ξ_1 , η_1), (ξ_2 , η_2)...(ξ_n , η_n) нужно определить доверительный интервал для коэффициента корреляции

$$r = \frac{\text{cov}(\xi, \eta)}{\sigma_{\xi}\sigma_{\eta}} = \frac{M(\xi\eta) - M\xi \cdot M\eta}{\sqrt{D\xi \cdot D\eta}}.$$

напомним практический смысл:

ПРОГНОЗ:
$$\hat{\xi}(\eta) = M\left(\xi \middle| \eta = y\right) = M\left(\xi\right) + r\frac{\sigma_{\xi}}{\sigma_{\eta}}(y - M\eta)$$

Методом моментов получаем оценку для r: $\hat{r} = \frac{\overline{\xi \eta} - \overline{\xi} \cdot \overline{\eta}}{s_{\xi} \cdot s_{\eta}}$,

где обозначено

$$\overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i}, \overline{\eta} = \frac{1}{n} \sum_{i=1}^{n} \eta_{i}, \overline{\xi} \overline{\eta} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i} \eta_{i}, \ s_{\xi} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\xi_{i} - \overline{\xi}_{i})^{2}}, \ s_{\eta} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\overline{\eta}_{i} - \overline{\eta})^{2}}.$$

Если распределение случайных величин (ξ , η) является нормальным, оценка \hat{r} распределена при больших n приближенно нормально [4], причем

$$M\hat{r} = r$$
, $D\hat{r} = \frac{(1-r^2)^2}{n-1}$.

Этого достаточно, чтобы определить приближенный доверительный интервал. Однако, более удобным является другой способ, основанный на преобразовании z Фишера:

$$z = z(\hat{r}) = \frac{1}{2} \ln \frac{1+\hat{r}}{1-\hat{r}}.$$

Эта статистика распределена приближенно (при $n \ge 20$) по нормальному закону [4] со средним

$$m_z(r) \approx \frac{1}{2} \ln \frac{1+r}{1-r} + \frac{r}{2(n-3)}$$

и дисперсией $\sigma^2 \approx 1/(n-3)$, а статистика

$$\sqrt{n-3}(z-m_z(r)) \sim N(0,1)$$

приближенно нормальна. Доверительный интервал для \emph{r} получаем из неравенства

$$\left| \sqrt{n-3} (z-m_z(r)) \right| < f_P,$$

где $f_P = Q((1 + P_{\rm Д}) / 2)$ — квантиль уровня $(1 + P_{\rm Д}) / 2$ нормального распределения. В статистических таблицах (например, [4]) даны интервалы для заданных n, $P_{\rm Д}$ и \hat{r} . Для примера укажем, что при $P_{\rm Д} = 0.95$ и $\hat{r} = 0.8$ интервалы составляют:

$$(0,32; 0,95)$$
 при $n = 10$ и $(0,53; 0,92)$ при $n = 20$.