신용카드 고객 Segment 세분화 프로젝트

멋쟁이사자처럼 14조

이수형 | 김성철 | 심기열 | 이태윤

Contents

01 프로젝트 개요

05 모델성능평가

02 EDA

06 결론 및 시사점

03 Feature Engineering

07 질의응답

04 Modeling

프로젝트 개요

01 프로젝트 개요

배경요약및목표

• 신용카드 고객 데이터를 분석하여 고객 등급 분류 모델 개발

기대 효과

- 그룹별 맞춤형 마케팅 전략 수립
- 신용 리스크 및 이상 거래 탐지 가능
- 경영진용 인사이트 제공
- 월/분기별 Segment 성과 추적 → 전략 조정 용이

EDA

• Target data 분포

• Target data 분포

소수 클래스인 Segment A, B를 잘 예측하는 모델 구축 필요

소수 클래스인 Segment A, B를 잘 예측하는 모델 구축

Feature Engineering

전처리 방식

1.데이터 유형에 따른 결측치 처리

• 범주형 데이터일 경우 기타, 수치형 데이터일 경우 평균으로 처리

2.데이터 구성에 따른 변수 처리

• 컬럼이 고유값 1개로만 이루어져 있거나, 결측치 비율이 90% 이상인 경우, 삭제

상관관계 분석

- 수치형 → Spearman
- 이진범주형 → Point-biserial
- 다중범주형 → Cramer's V

- 변수 유형에 따라 각기 다른 상관계수 사용을 통해 상관계수 도출
- target과의 상관계수 > 0.4인 변수들 로 선정

```
# 상관계수 계산 결과가 correlations에 들어있다고 가정
filtered = correlations.abs()
filtered = filtered[filtered > 0.4].sort_values(ascending=False)
print(filtered)
```

다중공선성제거(VIF)

```
# 상관계수로 선택된 변수만 사용

X = df

# 상수항 추가 (intercept term)

X = add_constant(X)

# VIF 계산

vif_df = pd.DataFrame()

vif_df["변수명"] = X.columns

vif_df["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
```

• VIF 계수가 높은 순대로 제거해 최종적으로 변수들이 26 이하의 VIF계수를 가짐으로써 다중공선성 해소

Segment(A/B, C/D/E) 간 column 차이

Segment(A/B, C/D/E) 별 차이

Segment(A/B, C/D/E) 별 차이

RFM 고객 세분화 분석

- 1.Recency: 얼마나 최근에 구매했는가
 - → '최종이용일자_기본' 컬럼 선정

- 2. Frequency: 얼마나 자주 구매했는가
 - → '이용건수신용_R12M' 컬럼 선정

- 3.Monetary: 얼마나 많은 금액을 지출했는가
 - → '이용금액_R3M_신용체크' 컬럼 선정

RFM 고객 세분화 분석(Recency)

2016-08과 2018-07을 기준으로 very past/past/recent의 3가지 등급을 가진 변수 생성

RFM 고객 세분화 분석(Frequency)

100-800을 기준으로 low/middle/high의 3가지 등급을 가진 변수 생성

RFM 고객 세분화 분석(Monetary)

18000-65000-100000을 기준으로 very low/low/middle/high의 4가지 등급을 가진 변수 생성

파생변수(증감률)

파생변수명	=	항목1	연산	항목2
카드이용금액합	=	1순위 카드	+	2순위 카드
카드이용금액차	=	1순위 카드	-	2순위 카드
업종이용금액합	=	1순위 업종	+	2순위 업종 + 3순위 업종
업종 집중도	=	1순위 업종	/	업종이용금액합 + 1
쇼핑합계	=	1순위 쇼핑	+	2순위 쇼핑
쇼핑비중	=	쇼핑합계	/	업종이용금액합 + 1
입금률_B2M	=	정상입금원금_B2M	/	정상청구원금_B2M + 1
입금률_B5M	=	정상입금원금_B5M	/	정상청구원금_B5M + 1
입금률증감_B2M_B5M	=	입금률_B2M	-	입금률_B5M

파생변수(증감률)

```
증감률 (\%) = \frac{현재값 - 이전값}{이전값} \times 100
```

```
def calc_growth_rate(current, past_avg):
# 1) 숫자형 변환 (NaN 있으면 그대로 뮤지)
current = pd.to_numeric(current, errors='coerce').fillna(0)
past_avg = pd.to_numeric(past_avg, errors='coerce').fillna(0)

# 2) 분모가 0인 경우 False, 아니면 True mask
mask = past_avg != 0

# 3) 기본값 0 배열 생성
result = np.zeros(len(current))

# 4) mask=True인 곳만 계산
result[mask] = (current[mask] - past_avg[mask]) / past_avg[mask]
return result
```

- '일시불이용증감률_R6M_R12M'
- '일시불평잔증감률_R3M_R6M'
- '일시불평잔증감률_B0M_R3M'
- '오프라인증감률_R3M_R6M'
- '오프라인증감률_B0M_R3M'
- '청구금액증감률_R3M_R6M'
- '청구금액증감률_B0M_R3M'

Feature Engineering

1.초기 데이터

분석을 시작하는 전체 변수 집합

총 855개 Columns

3. VIF

변수 간 다중공선성 문제 해결 → 모델 안정성

기준: VIF > 26 변수 제거

30개 Columns

2. 상관 계수

목표 변수와 유의미한 관계의 변수 선택

기준: 상관계수 > 0.4

35개 Columns

4.최종 변수 확정

RFM 고객 세분화 방법론 적용 기간에 따른 증감율 적용

파생변수 생성 / 대체

38개 Columns

Modeling

모델링방법론

Method1

A,B/C,D,E 그룹으로 나눠 각각 모델 학습 -> A,B 모델 예측 결과 중 A 또는 B일 확률이 높은 결과를 C,D,E 모델 예측 결과에 덮어씌움 -> 각 예측 결과 토대로 Segment 예측

Method2

A,B/C,D,E 그룹으로 나눠 각각 모델 학습 -> 각 모델을 통한 Segment의 예측 확률 도출 -> 각 예측 확률을 하나의 행렬로 합산해 최종결과 환산

Method3

데이터를 E와 not E 그룹으로Set1 생성 -> not E 그룹에서 not C,D,CD 그룹으로 Set2 생성 -> A,B만 모아 Set3 생성 ->Set1,2,3로 생성 한 model1,2,3를 차례대로 사용해 예측

모델링최종선택

Method1 public score: 0.8495

Method2 public score: 0.7054

Method3 public score: 0.9024

Method3 최종선정

Method3 모델 바탕으로 VIF, 파생변수 기반의 피쳐 변화에 의한 모델 성능 향상 도모

모델성능비교

모델별 정확도, 오분류율

결론 및 시사점

6. 결론

- 1. E vs Others → C/D vs Others → A vs B, 3단계 모델링
- 2. RFM 고객 세분화 방법론을 적용한 파생변수 생성
 - 3. 기간에 따른 증감율 파생변수 생성

Segment 소수 클래스(A, B) 예측 성능 향상

상관계수 0.4이상 column

Segme	nt	Total	Correct	Incorrect	Accuracy(%)	Misclass(%)
0	А	194	167	27	86.08	13.92
1	В	29	10	19	34.48	65.52
2	С	25518	16384	9134	64.21	35.79
3	D	69848	35064	34784	50.20	49.80
4	E	384411	367359	17052	95.56	4.44

상관계수 0.4이상 column + 파생변수 + VIF 제거

Segme	nt	Total	Correct	Incorrect	Accuracy(%)	Misclass(%)
0	A	194	167	27	86.08	13.92
1	В	29	13	16	44.83	55.17
2	С	25518	16083	9435	63.03	36.97
3	D	69848	34211	35637	48.98	51.02
4	Ε	384411	367569	16842	95.62	4.38

6. 의의 및 한계

- 불균형 데이터 해결 전략 수행 : auto balanced를 통해 불균형 정도가 심한 데이터에 적합한 방식 채택
- Segment 별 특징이 두드러지는 column 발견

- 불균형 데이터 해결에 집중했음에도 Segment B, C, D 오분류율이 낮지 않음
- 금융 관련 방법론 등 다양한 방법 적용 부족
- 결측치 대체 과정에서 평균, '기타'가 아닌 다른 방식으로의 대체 미실시

6. 향후 연구방향

- 고객 분류, 금융 관련 방법론 등 다양한 방법 적용하여 후속 연구 실시
- 결측치 대체 과정에서 평균, '기타'가 아닌 다른 방식으로의 대체 실시
- 모델 다양화한 Ensemble 모델링 실시

질의응답

궁금한 사항을 질문해 주세요.

Thank you

감사합니다.