Tema 2: Models discrets multidimensionals lineals

Jordi Villà i Freixa

Universitat de Vic - Universitat Central de Catalunya Matemàtiques Troc comú en Biologia i Biotecnologia

jordi.villa@uvic.cat

darrera actualització 8 d'octubre de 2025

curs 2025-2026

Índex

- Models discrets multidimensionals lineals
- Models lineals: el model de Leslie
- Matrius de Leslie: cas general
- 4 Recursivitat en dues dimensions: joves i madurs
- 6 Anàlisi a llarg termini
- 6 Referències

Models multidimensionals

En aquesta secció considerarem models en què la població no queda representada per un sol valor numèric, sinó que està dividida en diversos **grups**, **blocs** o **estrats**, en funció de diverses circumstàncies:

- Edat
- Capacitat reproductiva
- Característiques vitals
- Localització

Cada grup tindrà la seva pròpia variable, que representa el nombre d'individus en aquest grup a cada instant de temps.

curs 2025-2026

Equacions recurrents per a cada grup

L'evolució de cada grup vindrà descrita per una **equació recursiva** que dona el nombre d'individus en el moment k a partir del nombre d'individus de tots els grups en el moment anterior k-1.

Sistema recursiu

Tindrem, doncs, una equació recursiva per a cada grup: és a dir, un sistema d'equacions recurrents.

Matemàticament, el model tindrà més d'una dimensió.

Models lineals: el model de Leslie

En particular, ens centrarem en models multidimensionals del tipus més simple possible: els que tenen equacions recurrents de forma lineal. Aquest tipus de model és conegut com el **model de Leslie**, en honor al seu autor, el fisiòleg **Patrick Holt Leslie** (1900-1974). Veure'n un bon resum a bio.libretexts.org.

Un primer exemple simple

Un determinat insecte té 3 etapes vitals:

$$ou \rightarrow larva \rightarrow adult$$

- L'insecte passa d'ou a larva en un període de temps.
- De larva a adult en un altre període.
- L'adult pon ous i mor en el següent període.

Variables del model

Definim:

 $H_k := \text{nombre d'ous en l'instant } k$

 $L_k :=$ nombre de larves en l'instant k

 $A_k :=$ nombre d'adults en l'instant k

Es coneix que:

- Només un 4% dels ous arriben a larva.
- Només un 39% de les larves arriben a adults.
- Cada adult pon una mitjana de 73 ous.

Equacions del model

Aquestes dades es poden expressar així:

$$\begin{cases} H_k = 73A_{k-1} & \text{(cada adult pon 73 ous)} \\ L_k = 0.04H_{k-1} & \text{(4\% dels ous passen a larves)} \\ A_k = 0.39L_{k-1} & \text{(39\% de les larves passen a adults)} \end{cases}$$

Representació matricial

Les equacions anteriors formen un sistema lineal que pot expressar-se en forma matricial:

$$\begin{pmatrix} H_k \\ L_k \\ A_k \end{pmatrix} = \begin{pmatrix} 0 & 0 & 73 \\ 0.04 & 0 & 0 \\ 0 & 0.39 & 0 \end{pmatrix} \begin{pmatrix} H_{k-1} \\ L_{k-1} \\ A_{k-1} \end{pmatrix}$$

$$\Rightarrow P_k = MP_{k-1}$$

Relació amb el model unidimensional

En el cas unidimensional, el model de Malthus deia:

$$x_k = Rx_{k-1}, \quad R > 0$$

En aquest cas, per descriure la situació de la població en el moment k, necessitem un **vector** de variables:

$$P_k = \begin{pmatrix} H_k \\ L_k \\ A_k \end{pmatrix}$$

Forma general del sistema

El sistema d'equacions recurrents s'escriu:

$$P_k = MP_{k-1}, \quad k \ge 1$$

on M és una matriu quadrada de mida $n \times n$, sent n el nombre de grups en què dividim la població.

$$M = \begin{pmatrix} 0 & 0 & 73 \\ 0.04 & 0 & 0 \\ 0 & 0.39 & 0 \end{pmatrix}$$

Evolució temporal del sistema

Si es coneix la distribució inicial P_0 , podem calcular els valors futurs:

$$P_{1} = MP_{0}$$

$$P_{2} = MP_{1} = M^{2}P_{0}$$

$$P_{3} = MP_{2} = M^{3}P_{0}$$

$$\vdots$$

$$P_{k} = M^{k}P_{0}$$

$$\Rightarrow P_{k} = M^{k}P_{0}$$

Aquesta expressió és anàloga a $x_k = R^k x_0$ del cas unidimensional. Tot i que la fórmula general $P_k = M^k P_0$ és elegant, el càlcul de potències successives d'una matriu M^k no és immediat manualment.

Suposem que, en l'instant inicial k=0, la població d'insectes és:

$$H_0=1000$$
 ous, $L_0=100$ larves, $A_0=10$ adults.

Utilitzant les equacions recurrents del model:

$$P_k = MP_{k-1}, \quad M = \begin{pmatrix} 0 & 0 & 73 \\ 0.04 & 0 & 0 \\ 0 & 0.39 & 0 \end{pmatrix}$$

Càlcul per al primer període (k = 1)

$$\begin{pmatrix} H_1 \\ L_1 \\ A_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 73 \\ 0.04 & 0 & 0 \\ 0 & 0.39 & 0 \end{pmatrix} \begin{pmatrix} 1000 \\ 100 \\ 10 \end{pmatrix} = \begin{pmatrix} 730 \\ 40 \\ 39 \end{pmatrix}$$

Resultat

En el moment k = 1:

$$H_1 = 730, \quad L_1 = 40, \quad A_1 = 39$$

Càlcul per al segon període (k = 2)

$$\begin{pmatrix} H_2 \\ L_2 \\ A_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 73 \\ 0.04 & 0 & 0 \\ 0 & 0.39 & 0 \end{pmatrix} \begin{pmatrix} 730 \\ 40 \\ 39 \end{pmatrix} = \begin{pmatrix} 2847 \\ 29.2 \\ 15.6 \end{pmatrix}$$

Resultat

En el moment k = 2:

$$H_2 = 2847$$
, $L_2 = 29.2$, $A_2 = 15.6$

Evolució de la població

A partir d'aquestes dades i utilitzant un full de càlcul (prova de fer-ho amb Matlab), es pot obtenir la següent taula d'evolució temporal:

k	H_k (ous)	L_k (larves)	A_k (adults)
0	1000.0	100.0	10.0
1	730.0	40.0	39.0
2	2847.0	29.2	15.6
3	113.9	113.9	11.4
4	831.3	4.6	44.4
5	3242.2	33.3	1.8
6	129.7	129.7	13.0
7	946.7	5.2	50.6
8	3692.2	37.9	2.0
9	147.7	147.7	14.8
10	1078.1	5.9	57.6
11	4204.7	43.1	2.3

Observacions

- Es pot veure que les poblacions d'ous, larves i adults fluctuen amb el temps.
- El sistema mostra un comportament periòdic o quasi periòdic segons els valors dels paràmetres.
- Aquest tipus de model permet analitzar la dinàmica temporal de poblacions estructurades.

Matrius de Leslie: cas general

Les matrius de Leslie apareixen en el model del mateix nom. Aquest model descriu l'evolució d'una població dividida en grups segons l'edat.

Idea bàsica

Es subdivideix l'esperança de vida V en n subintervals de igual longitud, i es classifica la població en n grups:

$$E^{(1)}, E^{(2)}, \ldots, E^{(n)}$$

on:

$$E^{(i)}$$
: individus d'edat entre $\frac{(i-1)V}{n}$ i $\frac{iV}{n}$.

Model de Leslie amb 4 generacions

Exemple de partició en 4 grups d'edat

$$0 \quad \frac{V}{4} \quad \frac{2V}{4} \quad \frac{3V}{4} \quad V$$

$$E^{(1)}$$
 $E^{(2)}$ $E^{(3)}$ $E^{(4)}$

- $E^{(1)}$: individus més joves (recent nascuts).
- $E^{(4)}$: individus més vells (proper a la fi de la vida esperada).

Paràmetres del model

- a_i : taxa de fertilitat del grup $E^{(i)}$.
- b_i : taxa de supervivència del grup $E^{(i)}$ (proporció que passa al següent).

Supervivència i procreació

El model considera dues relacions principals entre grups:

- Supervivència: fracció d'individus que passen del grup $E^{(i)}$ al $E^{(i+1)}$.
 - b_i = proporció de supervivents del grup $E^{(i)}$.
- **Procreació:** nombre mitjà de nous individus (grup $E^{(1)}$) generats pels individus de cada grup.
 - a_i = nombre mitjà de descendents del grup $E^{(i)}$.

Exemples:

- Si el 45% del grup $E^{(1)}$ sobreviu $\Rightarrow b_1 = 0.45$.
- Si cada individu del grup $E^{(3)}$ té 4 descendents $\Rightarrow a_3 = 4$.

Sistema d'equacions recurrents

Per a quatre grups d'edat:

$$\begin{cases} E_k^{(1)} = a_1 E_{k-1}^{(1)} + a_2 E_{k-1}^{(2)} + a_3 E_{k-1}^{(3)} + a_4 E_{k-1}^{(4)} \\ E_k^{(2)} = b_1 E_{k-1}^{(1)} \\ E_k^{(3)} = b_2 E_{k-1}^{(2)} \\ E_k^{(4)} = b_3 E_{k-1}^{(3)} \end{cases}$$

$$\Rightarrow P_k = AP_{k-1}$$

on P_k és el vector de poblacions per grup d'edat:

$$P_k = \begin{pmatrix} E_k^{(1)} \\ E_k^{(2)} \\ E_k^{(3)} \\ E_k^{(4)} \end{pmatrix}$$

Forma matricial del model de Leslie

$$A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & 0 & 0 & 0 \\ 0 & b_2 & 0 & 0 \\ 0 & 0 & b_3 & 0 \end{pmatrix}$$

Estructura característica

- **Primera fila:** coeficients de procreació (a_i) .
- **Subdiagonal:** coeficients de supervivència (b_i) .
- La resta de posicions són zeros.

Aquest tipus de matriu s'anomena matriu de Leslie.

Interpretació biològica

- El model de Leslie permet descriure l'evolució d'una població estructurada per edats.
- La dinàmica temporal es determina mitjançant:

$$P_k = A^k P_0$$

on P_0 és la distribució inicial.

- El valor propi dominant de A indica la taxa de creixement poblacional.
- El vector propi associat dona la distribució estable d'edats.

Exemple

Volem estudiar una població d'una espècie amb una edat màxima de 20 anys, dividint la vida en períodes de 5 anys.

Divisió per grups d'edat

$$E^{(1)}: 0-5 \text{ anys}$$

$$E^{(2)}: 6{-}10 \text{ anys}$$

$$E^{(3)}: 11-15$$
 anys

$$E^{(4)}: 16-20$$
 anys

- Només una **quarta part** del primer grup sobreviu ($b_1 = 0.25$).
- Només la **meitat** del segon grup sobreviu ($b_2 = 0.5$).
- Només una **dècima part** del tercer grup arriba al quart ($b_3 = 0.1$).
- Fertilitat: $a_2 = 1$, $a_3 = 3$, $a_4 = 2$.

Equacions recurrents

Denotem $E_k^{(i)}$ com el nombre d'individus del grup i al període k.

$$\begin{cases} E_k^{(1)} = E_{k-1}^{(2)} + 3E_{k-1}^{(3)} + 2E_{k-1}^{(4)} \\ E_k^{(2)} = 0.25E_{k-1}^{(1)} \\ E_k^{(3)} = 0.5E_{k-1}^{(2)} \\ E_k^{(4)} = 0.1E_{k-1}^{(3)} \end{cases}$$

En forma matricial:

$$P_k = AP_{k-1}, \quad A = \begin{pmatrix} 0 & 1 & 3 & 2 \\ 0.25 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.1 & 0 \end{pmatrix}$$

Condicions inicials

Distribució inicial per grups (k = 0):

$$P_0 = \begin{pmatrix} 100 \\ 70 \\ 70 \\ 40 \end{pmatrix}$$

Objectiu: calcular la distribució poblacional al cap de 10 anys. Com que cada període és de 5 anys:

10 anys
$$\Rightarrow k = 2$$
.

Calculem:

$$P_1 = AP_0, \quad P_2 = AP_1.$$

Resultats numèrics

$$P_1 = \begin{pmatrix} 360 \\ 25 \\ 35 \\ 7 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 144 \\ 90 \\ 12.5 \\ 3.5 \end{pmatrix}$$

Interpretació

- Després de 5 anys (k = 1), augmenta la població més jove (360 individus).
- Després de 10 anys (k = 2), disminueixen tots els grups.

Evolució temporal de la població

k	$E_k^{(1)}$	$E_k^{(2)}$	$E_k^{(3)}$	$E_{k}^{(4)}$
0	100.0	70.0	70.0	40.0
1	360.0	25.0	35.0	7.0
3	134.5	36.0	45.0	1.25
5	96.6	43.4	16.8	1.8
7	92.6	24.4	12.1	2.2
9	62.1	16.2	11.6	1.2
11	42.2	13.3	7.8	8.0
13	32.1	9.6	5.3	0.7
15	5 23.4	6.7	4.0	0.5
17	7 16.7	4.9	2.9	0.3
19	9 12.1	3.6	2.1	0.2

Conclusions biològiques

- El nombre total d'individus T_k disminueix progressivament.
- El model indica una tendència cap a l'extinció.
- És possible analitzar aquest comportament sense calcular cada etapa mitjançant:

$$P_k = A^k P_0$$

i estudiant els valors propis de A.

Estructura poblacional

Considerem una espècie estructurada en dues classes:

- **Joves** (J_k) : individus sense capacitat reproductiva.
- Madurs (M_k) : individus amb capacitat reproductiva.

Suposicions:

- Cada individu madur produeix, de mitjana, **3 nous joves** per període.
- Un 40% dels joves sobreviu i esdevé madur.
- Un 50% dels madurs sobreviu al següent període.

Sistema d'equacions

El model discret ve donat per:

$$\begin{cases} J_k = 3M_{k-1}, \\ M_k = 0.40 J_{k-1} + 0.50 M_{k-1}. \end{cases}$$

En forma matricial:

$$\begin{pmatrix} J_k \\ M_k \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 0.4 & 0.5 \end{pmatrix} \begin{pmatrix} J_{k-1} \\ M_{k-1} \end{pmatrix} \implies \mathbf{X}_k = A\mathbf{X}_{k-1}.$$

Evolució temporal

Partint de la configuració inicial:

$$\begin{pmatrix} J_0 \\ M_0 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix},$$

obtenim:

$$\begin{pmatrix} J_1 \\ M_1 \end{pmatrix} = \begin{pmatrix} 12 \\ 2.8 \end{pmatrix},$$

$$\begin{pmatrix} J_2 \\ M_2 \end{pmatrix} = \begin{pmatrix} 8.4 \\ 6.2 \end{pmatrix},$$

$$\begin{pmatrix} J_3 \\ M_3 \end{pmatrix} = \begin{pmatrix} 18.6 \\ 6.4 \end{pmatrix}, \text{ etc.}$$

La població total augmenta amb el temps, mostrant un creixement

exponencial.

33 / 40

Jordi Villà i Freixa (FCTE) Models curs 2025-2026

Tendència asimptòtica

De la simulació numèrica s'observa:

- La raó $\frac{J_k}{M_k} o 2.184$
- La raó $\frac{T_k}{T_{k-1}} o 1.374$

Interpretació:

- La proporció joves/madurs s'estabilitza.
- La **població total** creix un 37,4% a cada període.

$$T_k \approx 1.374 T_{k-1}$$
.

Explicació matemàtica

El comportament s'explica pels autovalors i autovectors de la matriu:

$$A = \begin{pmatrix} 0 & 3 \\ 0.4 & 0.5 \end{pmatrix}.$$

$$\lambda_1 = 1.3736, \qquad \lambda_2 = -0.8736.$$

Autovectors associats:

$$v_1 = \begin{pmatrix} 0.9092 \\ 0.4163 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0.9601 \\ 0.2796 \end{pmatrix}.$$

Comportament a llarg termini

Qualsevol vector inicial es pot expressar com una combinació:

$$\mathbf{X}_0 = c_1 v_1 + c_2 v_2.$$

Aleshores:

$$\mathbf{X}_k = c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2.$$

Com que $|\lambda_2| < |\lambda_1|$, per a k gran:

$$\mathbf{X}_k \approx c_1 \lambda_1^k \mathbf{v}_1.$$

Per tant:

$$\frac{T_k}{T_{k-1}} \to \lambda_1 = 1.3736, \quad \frac{J_k}{M_k} \to \frac{0.9092}{0.4163} = 2.184.$$

Interpretació biològica

Figura 1: Evolució de la població total - creixement exponencial.

- La població creix exponencialment amb una taxa del 37,4%.
- Les proporcions joves/madurs tendeixen a valors constants.
- L'autovector associat a λ_1 indica l'estructura estable d'edats.

Teorema general (Leslie)

Teorema: Si una matriu A de Leslie té un autovalor positiu dominant λ_1 amb autovector $v_1 > 0$, aleshores:

- **1** Per a k gran, $P_k \rightarrow c v_1$: les proporcions d'edats s'estabilitzen.
- $\lim_{k\to\infty}\frac{T_k}{T_{k-1}}=\lambda_1.$
- § Si $\lambda_1>1$, la població creix; si $\lambda_1=1$, s'estabilitza; si $\lambda_1<1$, s'extingeix.

Exemple amb tres classes d'edat

Suposem un model amb tres classes i:

$$\lambda_1 = 1.3, \qquad \nu = (0.9, 0.3, 0.18).$$

Aleshores:

$$\lim_{k \to \infty} \frac{T_k}{T_{k-1}} = 1.3, \quad T_k \approx 1.3 \ T_{k-1}.$$

Les proporcions asimptòtiques són:

$$\frac{A_k}{T_k} \approx 0.65, \quad \frac{B_k}{T_k} \approx 0.22, \quad \frac{C_k}{T_k} \approx 0.13.$$

Conclusió: la població creix indefinidament mantenint proporcions constants entre classes d'edat.

Bibliografia

El material d'aquestes presentacions està basat en anteriors presentacions i apunts d'altres professors [Corbera(2019)] de la UVic-UCC i d'altres universitats [de Souza(2025)], pàgines web diverses (normalment enllaçades des del text), o bé monografies [Otto and Day(2007)].

Montserrat Corbera.

Unitat 2. Càlcul integral.

Universitat de Vic - Universitat Central de Catalunya, Facultat de Ciències i Tecnologia, Vic, Barcelona, 2019. Drets reservats. No es pot copiar sense permís de l'autora.

Diego Araújo de Souza.

Matemáticas aplicadas a la biología.

Apuntes de classe: grado en Biología, asignatura de matemáticas, 2025.

Departamento de Ecuaciones diferenciales y Análsis Numérico; Universidad de Sevilla.

Sarah P. Otto and Troy Day.

A biologist's guide to mathematical modeling in ecology and evolution.

Princeton University Press, Princeton, 2007.

ISBN 978-0-691-12344-8.

OCLC: ocm65065577.

