

Integrantes:

Rodia Zuriel Tejeda Moreno A01260437 Israel Luján González A01794693 Alejandro Munguia Salazar A01104775 Alán García Bernal A0111178 Jorge Arturo Hernández Morales A01794908

Repositorio:

https://github.com/ZurielTM/Equipo28/

Fase I | Avance de Proyecto

Operaciones de aprendizaje automático

EXPOSITOR: EQUIPO 28

Acercamiento inicial al problema de la actividad

Planteamiento del Problema:

El cáncer de tiroides es una enfermedad tratable, pero su **recurrencia** representa un desafío para el manejo a largo plazo de los pacientes. El objetivo principal de este conjunto de datos es construir un modelo predictivo que:

- 1. Prediga con precisión qué pacientes tendrán una recurrencia del cáncer de tiroides bien diferenciado.
- Identifique las características clínico-patológicas más influyentes en la predicción de la recurrencia (e.g., ¿la edad o el género tienen un impacto significativo?).
- 3. Sea robusto a lo largo del tiempo, dado que los datos abarcan un periodo de 15 años.
- Preguntas clave:
- 1. ¿Es posible predecir la recurrencia del cáncer de manera precisa utilizando Machine Learning?**
- 2. ¿Cuáles son las características más influyentes para predecir la recurrencia?**
- 3. ¿Cómo manejar la variabilidad temporal en los datos para crear un modelo robusto a largo plazo?**

Análisis del problema

Impacto Clínico:

Este conjunto de datos tiene un **potencial significativo para mejorar la gestión clínica** del cáncer de tiroides. Al utilizar estos datos, los médicos pueden contar con herramientas predictivas que les ayuden a **pronosticar la recurrencia** de la enfermedad con mayor precisión, lo que les permitirá **ajustar los planes de tratamiento** de forma más personalizada y efectiva.

Al predecir con mayor exactitud qué pacientes tienen un mayor riesgo de recurrencia, se pueden aplicar tratamientos más agresivos o realizar seguimientos más cercanos en aquellos casos que lo necesiten, optimizando los recursos y mejorando la **calidad de vida** de los pacientes.

Además, dado que el conjunto de datos no contiene **restricciones éticas adicionales** ni **información sensible**, su uso es ideal para **estudios secundarios** y puede ser empleado en investigaciones abiertas, colaboraciones internacionales o **demostraciones públicas** de inteligencia artificial aplicada a la medicina. Esto facilita su empleo en la creación y validación de modelos de aprendizaje automático, acelerando el desarrollo de tecnologías que pueden tener un impacto real y positivo en el diagnóstico, tratamiento y seguimiento de pacientes con cáncer de tiroides.

Resumen del Conjunto de Datos

Data	columns (total 17 col	umns):					
#	Column	Non-Null Count	Dtype				
0	Age	383 non-null	int64				
1	Gender	383 non-null	object				
2	Smoking	383 non-null	object				
3	Hx Smoking	383 non-null	object				
4	Hx Radiothreapy	383 non-null	object				
5	Thyroid Function	383 non-null	object				
6	Physical Examination	383 non-null	object				
7	Adenopathy	383 non-null	object				
8	Pathology	383 non-null	object				
9	Focality	383 non-null	object				
10	Risk	383 non-null	object				
11	T	383 non-null	object				
12	N	383 non-null	object				
13	М	383 non-null	object				
14	Stage	383 non-null	object				
15	Response	383 non-null	object				
16	Recurred	383 non-null	object				
dtypes: int64(1), object(16)							
memoi	ry usage: 51.0+ KB						

Características del Conjunto de Datos:

- Número de instancias: 383 pacientes
- Número de características: 16 (incluyendo variables demográficas, clínicas y la columna objetivo) Columna objetivo: "Recurred" (indicando si el
- paciente ha tenido una recurrencia del cáncer)
- Tipos de variables: Reales, categóricas e integér
- Valores faltantes: Ninguno

	count
Recurred	
No	275
Yes	108

Tratamiento y transformación de datos

- Edad (Age): La única columna numérica con 383 datos válidos; Se aplicó StandardScaler para normalizar la columna Age. Esto transformó la variable Age para que tenga una media de 0 y una desviación estándar de 1, lo cual es útil en modelos que son sensibles a la escala de los datos (como regresión logística o SVM).
- 1. Columnas categóricas: Varios campos tienen categorías con una alta frecuencia de un valor específico, como:
- 2. Género (Gender): La mayoría son mujeres (312 de 383).
- 3. Historial de Fumár (Hx Śmoking): La mayoría no son fumadores (355 de 383).
- 4. Recurrencia (Recurred): La mayoría de los pacientes no han tenido recurrencia del cáncer (275 de 383).
- Las filas duplicadas han sido eliminadas.
- Aplicado One-Hot Encoding a las variables categóricas, convirtiéndolas en variables binarias para que puedan ser usadas en el análisis y modelado. y después del proceso, el DataFrame contiene 41 columnas, con las variables categóricas convertidas en 0 y 1.

Age	Gender	Smoking	Hx Smoking	Hx Radiothreapy	Thyroid Function	Physical Examination	Adenopathy	Pathology	Focality	Risk	T	N	М	Stage	Response	Recurred
27	F	No	No	No	Euthyroid	Single nodular goiter-left	No	Micropapillary	Uni-Focal	Low	T1a	N0	MO	1	Indeterminate	No
34	F	No	Yes	No	Euthyroid	Multinodular goiter	No	Micropapillary	Uni-Focal	Low	T1a	N0	M0	1	Excellent	No
30	F	No	No	No	Euthyroid	Single nodular goiter-right	No	Micropapillary	Uni-Focal	Low	T1a	N0	M0	Ī	Excellent	No
62	F	No	No	No	Euthyroid	Single nodular goiter-right	No	Micropapillary	Uni-Focal	Low	T1a	N0	M0	1	Excellent	No
62	F	No	No	No	Euthyroid	Multinodular goiter	No	Micropapillary	Multi-Focal	Low	T1a	N0	M0	j	Excellent	No

Exploración y preprocesamiento de datos

- Distribución de la variable Age (normalizada): La distribución parece ser unimodal, la mayoría de los pacientes están concentrados en una cierta edad.
- Distribución de la variable Recurred: La mayoría de los pacientes no han tenido recurrencia del cáncer.
- Relación entre Gender y recurrencia de cáncer: No parece haber una gran diferencia en las tasas de recurrencia entre femenino y masculino,
- Mapa de calor de correlación entre variables: El mapa de calor muestra que algunas variables tienen correlaciones leves.

Actividades y tareas a realizar por rol

Analizar y comprender el dataset así como entender la problemática que se plantea solucionar con el mismo

Alejandro Munguia Salazar **Experto de Negocio**

Explorar el dataset y testear diferentes modelos de Machine Learning para elegir el que sea considerado mejor

Rodia Zuriel Tejada
Jorge Arturo Hernández Morales
Científico de Datos

Diseñar y automatizar el flujo de datos desde la obtención hasta el preprocesamiento e ingeniería de características.

Alán García Bernal **Ingeniero de Datos**

Asegurar la reproducibilidad y escalabilidad del modelo a través de herramientas como refactorización y DVC.

Israel Luján González

Arquitecto ML

Métodos y técnicas para utilizar

Preprocesamiento y feature engineering:

Dado que todas las variables independientes, salvo 'Age' son variables categóricas, aplicamos la técnica de **One Hot Encoding** para poder utilizar dichas variables para entrenar nuestro modelo que intentará predecir la reaparición de cáncer de tiroides.

Además, utilizamos **Principal Component Analysis** para reducir el número de dimensiones a 22 (después del One Hot Encoding) conservando el 95% de la varianza de los datos originales.

Modelos a Entrenar:

Dado que el problema que intentaremos resolver es predecir si un paciente entrará en la categoría de Recaída o No, seleccionamos 3 modelos de clasificación y compararemos su efectividad. Estos modelos son:

- Logistic Regresion
- Decision Tree
- Random Forest

Algunas de las razones por las que elegimos estos modelos fueron la interpretabilidad y simplicidad.

```
# Fase 2: Entrenamiento de los modelos
# 1. Regresión Logística
log_reg = LogisticRegression(max_iter=1000)
log_reg.fit(X_train, y_train)
y_pred_log_reg = log_reg.predict(X_test)
model_results['Logistic Regression'] = accuracy_score(y_test, y_pred_log_reg)
# 2. Árbol de Decisión
tree_clf = DecisionTreeClassifier(random_state=42)
tree_clf.fit(X_train, y_train)
y_pred_tree = tree_clf.predict(X test)
model_results['Decision Tree'] = accuracy_score(y test, y pred_tree)
# 3. Random Forest
rf clf = RandomForestClassifier(random_state=42)
rf clf.fit(X train, y train)
y pred rf = rf clf.predict(X test)
model results['Random Forest'] = accuracy score(y test, y pred rf)
```

Resultados Preliminares

En el acercamiento inicial de los modelos obtuvimos resultados bastante buenos, alcanzando niveles de accuracy mayores a 90%:

• Logistic Regresion: 94.52%

• Decision Tree: 94.52%

Random Forest: 95.89%\$

Es importante recalcar que estamos trabajando con un set de datos con mucho trabajo de limpieza y estandarización de datos.

Fine Tunning:

Con el objetivo de complementar el proceso decidimos probar con distintos hiperparámetros para mejorar los resultados.

```
# Espacio de hiperparámetros para Regresión Logística
param grid log reg = {
    'C': [0.01, 0.1, 1, 10, 100],
    'solver': ['newton-cg', 'lbfgs', 'liblinear'],
    'penalty': ['12'] # Solo L2 soportado para los solvers 'newton-cg', 'lbfgs
Fitting 5 folds for each of 15 candidates, totalling 75 fits
Mejores hiperparámetros para Regresión Logística:
 'C': 10, 'penalty': 'l2', 'solver': 'liblinear'}
```

```
# Espacio de hiperparámetros para Árbol de Decisión
 param grid tree = {
     'max depth': [10, 20, 30, None],
     'min samples split': [2, 5, 10],
     'min samples leaf': [1, 2, 4]
Fitting 5 folds for each of 36 candidates, totalling 180 fits
Mejores hiperparámetros para Árbol de Decisión:
 'max depth': 10, 'min samples leaf': 1, 'min samples split': 2}
```

```
param dist = {
     'n estimators': [100, 200, 300, 400, 500],
    'max depth': [None, 10, 20, 30, 40, 50],
     'min samples split': [2, 5, 10],
    'min samples leaf': [1, 2, 4],
    'bootstrap': [True, False]
```

```
# Definimos el espacio de hiperparámetros para Random Forest Fitting 5 folds for each of 50 candidates, totalling 250 fits
                                                                /usr/local/lib/python3.10/dist-packages/numpy/ma/core.py:2820: RuntimeWarning: invalid value encountered in cast
                                                                  data = np.array(data, dtype=dtype, copy=copy,
                                                                Mejores hiperparámetros para Random Forest:
                                                                {'n estimators': 300, 'min samples split': 5, 'min samples leaf': 1, 'max depth': 40, 'bootstrap': False}
```

Resultados Finales:

Los resultados finales para cada modelo fueron los siguientes:

Resultados de	Regresión precision		Optimizada: f1-score	support
	brecizion	Lecall	11-Score	Support
False	0.96	0.98	0.97	51
True	0.95	0.91	0.93	22
accuracy			0.96	73
macro avg	0.96	0.94	0.95	73
weighted avg	0.96	0.96	0.96	73
Matriz de Con	fusión:			
[[50 1] [2 20]]				

Resultados de	Árbol de De	cisión Op	timizado:	
	precision	recall	f1-score	support
False	0.96	0.96	0.96	51
raise	0.90	0.90	0.90	21
True	0.91	0.91	0.91	22
255411254			0.95	73
accuracy			0.95	
macro avg	0.93	0.93	0.93	73
weighted avg	0.95	0.95	0.95	73
Matriz de Conf	usion:			
[[49 2]				
[2 20]]				

Resultados de	Random Fores	t Optimi:	zado:	
	precision	recall	f1-score	support
False	0.96	0.98	0.97	51
True	0.95	0.91	0.93	22
accuracy			0.96	73
macro avg	0.96	0.94	0.95	73
weighted avg	0.96	0.96	0.96	73
Matriz de Con	fusión:			
[[50 1]				
[2 20]]				

Tanto Regresión Logística como Random Forest tienen el mejor rendimiento en términos de exactitud (96%) y F1-Score (0.93). Ambos modelos logran un excelente equilibrio entre precisión y recall para la clase "True" (recurrencia de cáncer).

El Árbol de Decisión, aunque ligeramente menos preciso, también ofrece un buen rendimiento con una exactitud de 95% y un FI-Score de 0.91.

Conclusiones y reflexión final

Alejandro Munguia Salazar - Experto de Negocio

"Puedo mejorar en el análisis profundo de la interacción entre las variables clínicas. El análisis exploratorio y la colaboración con otros roles fueron esenciales para identificar las características más influyentes en la recurrencia."

Israel Luján González - Arquitecto ML

"Necesito optimizar la integración de herramientas de seguimiento y versionado. El uso de DVC y la escalabilidad del modelo garantizaron la reproducibilidad a medida que ajustábamos los hiperparámetros."

Alán García Bernal - Ingeniero de Datos

"Mejoraría la optimización del flujo automatizado. El preprocesamiento y la ingeniería de características, como el One-Hot Encoding y PCA, mejoraron el rendimiento de los modelos."

Rodia Zuriel Tejada - Científico de Datos

"Podría explorar modelos adicionales para comparar su rendimiento. La selección de Random Forest y Regresión Logística fue adecuada para obtener un alto rendimiento en la predicción."

Jorge Arturo Hernández Morales - Científico de Datos

"Mejoraría el ajuste de hiperparámetros en modelos alternativos. Las estrategias empleadas en el ajuste de los modelos actuales lograron precisión y un buen balance entre precisión y recall."

GRACIAS!