STM32F407 ADC

한국산업기술대학교 메카트로닉스공학과 마이크로컴퓨터응용 담당교수: 남윤석

0.1 Sensor Interface 구조

(1) Sensor-ADC 이용

마이크로컴퓨터 응용

0.1 Sensor Interface 구조

(2) Communication 이용

- → Analog signal(Single)
- **⇒** Serial Communication(I2C, SPI, USART)
- Digital signal (Bus)

마<u>이크로컴퓨터 응용 STM32F407 ADC</u>

0.2 A/D 컨버터(converter) 정의

- 정의: Analog signal을 Digital signal로 Conversion(변환)하는 회로(모듈)
- 변환시 고려해야할 요소
 - : Analog 신호전압범위, 디지털신호표현크기(bit 수)

마<u>이크로컴퓨터 응용 STM32F407 AD</u>C

0.3 ADC(A/D converter) 와 DAC(D/A converter)

• ADC

DAC

마<u>이크로컴퓨터 응용 STM32F407 AD</u>C

0.4 A/D 컨버터(converter) 주요 용어

- A/D 컨버터 중요 용어: 입력전압 범위, 분해능
 - 입력전압 범위: 0~5V, 0~12V, -5~+5V 등
 - 분해능 : 8 bit, 10bit, 12bit, 14bit, 16bit 등
- * 분해능이란? 입력값을 얼마나 세밀하게 변환할 수 있는가를 나 타내는 수치
 - 예)입력 전압 범위가 0~5V이고, 분해능이 10bit 이면 최소 변환 전압 값은?

입력전압 영역(5=5-0)을 2**10 = 1024 로 나눈 값 5/1024 = 0.005V

<u>A/D 컨버터 과정</u>

(@1) $0\sim5V(입력전압범위)$ 아날로그 신호 입력 : 2비트(분해능) 디

지털 값으로 변환

0V : 00B

 $5 \times (1/3) \text{V} : 01\text{B}$

 $5 \times (2/3) \text{V} : 10 \text{B}$

5V:11B

(@2) 0~5V (입력전압범위) 아날로그 신호 입력: 8비트 (분해능) 디

지털 값으로 변환

0V : 0000 0000B

1.25V: 0011 1111B

2.5V : 0111 1111B

3.75V: 1011 1111B

5V : 1111 1111B

1. STM32F407 ADC 개요

- SAR(Successive-approximation-register) ADC Architecture
- 12 bit Resolution
- Ref 전압 Max 3.3V

STM32F407 ADC 마이크로컴퓨터 응용

* SAR type ADC의 동작 예

마<u>이크로컴퓨터</u> 응용 STM32F407 AD C

- 총 19개 아날로그 신호 입력채널:
 - 외부입력 16개
 - 내부입력 3개(Vbat, VrefInt, TempSensor)
- 변환 종료시 또는 아날로그 워치독 이벤트 발생시 인터럽트 발생
- 여러 변환 모드 제공: 단일(single), 연속(continuous), 스캔(scan), 불연속(discontinuous) 변환 모드
- 변환결과값 저장: left or right-aligned 16-bit data register
- ADC 공급 전압 요구사항 : Full speed 상황에서 2.4V ~ 3.6V, Slow speed 상황에서 1.8V 이하
- ADC input 범위: Vref-(Vssa에 연결됨) ~ Vref+(Vdda에 연결됨) 즉, 측정하고자 하는 입력신호의 범위는 ADC 기준전압범위(Vref-
- ~ Vref+)에 의해 결정

마이크로컴퓨터 응용 STM32F407 TIMER

2. STM32F407 ADC 구성

- 총 3개의 ADC 모듈(ADC1, ADC2, ADC3) 장착
- 각 ADCx 내부의 AD 변환모듈: 2개 채널(Regular channel, Injected channel)
- AD 변환된 데이터 저장: 2개의 16비트 데이터 레지스터(Regular data register, Injected data register)에 각각 저장되어 MCU로 전달
- 외부의 아날로그 입력: ADCx_IN0 ~ ADCx_IN15의 16개 핀을 통해 입력
- 내부의 아날로그 입력

ADCx_IN16(내부): Temperature Sensor 온도 측정용

ADCx_IN17(내부): Internal Reference voltage 측정용

ADCx_IN18(내부): VBAT 전압 측정용

- AD 변환 시작용 트리거 신호의 입력
 - 기본: ADCx→CR2. SWSTART 비트를 ON
 - 외부: 외부인터럽트 입력 EXTI_11과 EXTI_15
 - 내부: Timer

<그림2> ADC 구성도(ADC 및 Data Register 부분)

<그림 3> ADC 구성도(Interrupt 신호발생 부분)

마이크로컴퓨터 응용 <u>STM32F407 AD</u>C

<그림 4> ADC 구성도(ADC start Trigger 신호발생 부분)

Remarks

Signal type

Name

V _{REF+}	Input, analog reference positive	The higher/positive reference voltage for the ADC, 1.8 V \leq V _{REF+} \leq V _{DDA}									
V _{DDA}	Input, analog supply	Analog power supply equal to V_{DD} and 2.4 V \leq $V_{DDA} \leq$ V_{DD} (3.6 V) for full speed 1.8 V \leq $V_{DDA} \leq$ V_{DD} (3.6 V) for reduced speed									
V _{REF} _	Input, analog reference negative	The lower/negative reference voltage for the ADC, $V_{REF-} = V_{SSA}$									
V _{SSA}	Input, analog supply ground	Ground for analog power supply equal to V _{SS}									
ADCx_IN[15:0]	Analog input signals	16 analog input channels									
• 표준 연결	방법										
Vref+ □ Filter(RC) Filter(RLC) → Vdda(Analog supply)											
Vref- □ 	GND	GND → Vssa(Analog supply)									

Vdd (Digital supply)

마이크로컴퓨터 응용

ADC1_IN13

ADC1_IN14

ADC1_IN15

PC3

PC4

PC5

STM32F407 ADC

PC3

PF4

PF5

ADC3_IN13

ADC3_IN14

ADC3_IN15

ADO D = 0 0 2 世년(本44.1)/DA (4 5) DD(4 1) DO(4 5) DD(4 10)

•	• ADC 모듈의 입력 재일(종24ch)(PA[0:7],PB[0:1],PC[0:5],PF[3:10])													
	AI	OC1		AI	OC2		ADC3							
	채널 이름	관련GPIO 핀		채널 이름	관련GPIO 핀		채널 이름	관련GPIO 핀						
	ADC1_IN0	PA0		ADC2_IN0	PA0		ADC3_IN0	PA0						
	ADC1_IN1	PA1		ADC2_IN1	PA1		ADC3_IN1	PA1						
	ADC1_IN2	PA2		ADC2_IN2	PA2		ADC3_IN2	PA2						
	ADC1_IN3	PA3		ADC2_IN3	PA3		ADC3_IN3	PA3						
	ADC1_IN4	PA4		ADC2_IN4	PA4		ADC3_IN4	PF6						
	ADC1_IN5	PA5		ADC2_IN5	PA5		ADC3_IN5	PF7						
	ADC1_IN6	PA6		ADC2_IN6	PA6		ADC3_IN6	PF8						
	ADC1_IN7	PA7		ADC2_IN7	PA7		ADC3_IN7	PF9						
	ADC1_IN8	PB0		ADC2_IN8	PB0		ADC3_IN8	PF10						
	ADC1_IN9	PB1		ADC2_IN9	PB1		ADC3_IN9	PF3						
	ADC1_IN10	PC0		ADC2_IN10	PC0		ADC3_IN10	PC0						
	ADC1_IN11	PC1		ADC2_IN11	PC1		ADC3_IN11	PC1						
	ADC1_IN12	PC2		ADC2_IN12	PC2		ADC3_IN12	PC2						

PC3

PC4

PC5

ADC2_IN13

ADC2_IN14

ADC2_IN15

마이크로컴퓨터 응용 <u>STM32F407 AD</u>(

• 각 모듈(ADCx)의 입력 채널 선택 과정

- (1) ADCx 모듈의 채널을 선택하고, 관련 GPIO clock enable, (예) ADC1의 CH0을 선택하고자 하면, Port A에 clock enable 함.
- (2) GPIOx → MODER 를 Analog IN으로 설정 (예) ADC1의 CH0(PA0)을 선택하였다면, GPIOA→MODER의 1,0 bit를 '11'로 set .
- (3) ADCx clock enable (APB2ENR)
- (1)선택시 주의사항
 - : 같은 pin는 중복으로 서로 다른 모듈에 속할 수 없음. 예를 들면,
 - ADC1이 CH4(PA4)을 사용할 경우, ADC2는 CH4을 사용할 수 없음(PA4이 양쪽에 관련되어 있으므로)
 - 그러나, ADC1이 CH4(PA4)을 사용할 경우, ADC3도 CH4(PF6)를 사용할 수 있음

3. STM32F407 ADC 주요 기능

3.1 ADC on-off control

- ADC Power On: ADCx→CR2.ADON=1
- Conversion Start: ADCx→CR2. SWSTART

or ADCx→CR2. JSWSTART=1

• Conversion Stop and ADC Power Down : ADCx→CR2.ADON=0

3.2 ADC clock

- Analog 회로용 clock: ADCCLK(ADC1,2,3)
 - APB2 clock으로부터 분주되어 제공(fPCLK2/2, /4, /6 or /8)
- Digital 회로용 clock(레지스터 R/W access용)
 - APB2 clock(Max 84MHz)
 - RCC→APB2ENR에서 Enable 설정

3.3 Channel selection

: 외부입력을 받는 16개 채널중 <u>변환할 채널 선택과 변환순서</u>를 지정하 기 위한 방법

- <u>레귤러 그룹(Regular group)을 이용</u>: ADCx→SQRx 레지스터를 이용하여 채널의 변환순서를 16개까지 지정 가능(주로 이 방법이 사용)
- -ADCx→SQR1.L[3:0] bits : 변환채널수 설정
- -ADCx→SQRy. SQz[4:0] bits : 변환순서 설정(y=1~3, z=1~16)
- 인젝티드 그룹(Injected group)을 이용: ADC_JSQR 레지스터를 이용하여 채널의 변환순서를 4개까지 지정 가능(레귤러 그룹보다는 우선순위가 높음, 즉 우선 처리해야할 입력신호는 인젝티드 그룹 이용하는 것이 유리함)
- -ADCx→JSQR.JL[1:0] bits : 변환채널수 설정
- -ADCx→JSQR. JSQy[4:0] bits : 변환순서 설정(y=1~4)

3.4 단일(Single) 변환 모드 (Regular Group 경우)

- ADC는 변환을 1번만 수행
- 단일 변환 모드 설정: ADCx→CR2.CONT 비트=0
- 단일 변환 시작: ADCx→CR2.SWSTART 비트=1 또는 외부 트리거 입력 인가
- 단일 변환 종료후:
- 변환결과값 저장: 16-bit ADCx→DR register - EOC (end of conversion) flag = 1
- Total Head (If EOCIE hit 1)
- Interrupt 발생 (if EOCIE bit = 1)
- 3.5 연속(Continuous) 변환 모드(Regular Group 경우)
- 연속으로 AD변환을 실행케 하는 모드
- 하나의 변환이 완료되면 바로 다음의 변환 시작
- 연속 변환 모드 설정: ADCx→CR2.CONT 비트=1
- 연속 변환 시작: **ADCx→CR2.SWSTART** 비트=1 또는 외부 트리거 입력이 인가 (반드시 **EOCS** = **0**)
- 각 변환 종료후: 변환결과값 저장: ADCx→DR register
- EOC flag = 1, Interrupt 발생 (if EOCIE bit = 1)

3.6 동작 타이밍 선도

- AD 변환기는 전원 공급 후 제대로 동작하기 위해서는 tstab 만큼의 안정화(stabilization) 시간이 필요
- 변환 시작 신호가 주어진 후 15클럭 사이클이 지나면 변환 완료

<그림 5> ADC의 동작 타이밍 선도

3.7 스캔(Scan) 모드

- 채널 그룹 내의 모든 채널들을 $ADCx \rightarrow SQRx$ 레지스터에 지정된 순서대로 스캔하여 변환하는 모드
- 스캔 모드 설정 : ADCx→CR1.SCAN 비트=1
- 연속 변환 모드인 경우는 스캔 모드의 동작이 연속적으로 일어남

3.8 불연속(Discontinuous) 모드

- 채널 그룹 내의 일부 채널을 미리 정해진 순서대로 변환하는 모드
- 외부 트리거 신호가 입력되면 n개(n <= 8) 채널의 변환만 이루어짐. 다시 외부 트리거 신호가 입력되면 다음의 n개 변환, n개가 되지 않더라도 정해진 변환 순서의 끝이 되면 그대로 종료
- (변환 예) n=3이고, 채널의 변환 순서 =0,1,2,3,6,7,9,10 일 경우
- 1번째 트리거 입력: 채널 0, 1, 2 가 변환됨
- 2번째 트리거 입력: 채널 3, 6, 7 이 변환됨
- 3번째 트리거 입력: 채널 9, 10 이 변환되고 EOC 이벤트 발생
- -4번째 트리거 입력: 다시 채널 0, 1, 2 가 변환됨
- 이 후는 동일한 방식의 동작이 반복됨

3.9 데이터 정렬

• 데이터 레지스터에 변환결과를 저장하는 방식; 오른쪽 정렬(Right aligned)(reset 값)과 왼쪽 정렬(Left aligned) 방식

(a) 오른쪽 정렬

(b) 왼쪽 정렬

3.10 외부 트리거에 의한 변환 시작(레귤러 그룹 경우)

• ADCx→CR2.EXTSEL[3:0] 비트 설정: 레귤러 채널에 대하여 외부 트리거 신호(timer capture or EXTI line)를 선택

Source	Туре	EXTSEL[3:0]					
TIM1_CH1 event		0000					
TIM1_CH2 event		0001					
TIM1_CH3 event		0010					
TIM2_CH2 event		0011					
TIM2_CH3 event		0100					
TIM2_CH4 event		0101					
TIM2_TRGO event	l	0110					
TIM3_CH1 event	Internal signal from on-chip timers	0111					
TIM3_TRGO event		1000					
TIM4_CH4 event		1001					
TIM5_CH1 event		1010					
TIM5_CH2 event		1011					
TIM5_CH3 event		1100					
TIM8_CH1 event		1101					
TIM8_TRGO event		1110					
EXTI line11	External pin	1111					

• ADC_CR2.EXTEN[1:0] 비트 설정: 레귤러 채널에 대하여 External trigger Enable (polarity 도 지정)

Source	EXTEN[1:0] / JEXTEN[1:0]
Trigger detection disabled	00
Detection on the rising edge	01
Detection on the falling edge	10
Detection on both the rising and falling edges	11

3.11 ADC 인터럽트

- AD 변환이 완료된 경우: 인터럽트 발생 가능
- ADC1, ADC2, ADC3 인터럽트: 동일한 인터럽트 벡터(18번)
- •인터럽트 핸들러 루틴: ADC_IRQHandler(void)

Interrupt event	Event flag	Enable control bit					
End of conversion of a regular group	EOC	EOCIE					
End of conversion of an injected group	JEOC	JEOCIE					
Analog watchdog status bit is set	AWD	AWDIE					
Overrun	OVR	OVRIE					

 $V_{25}^{(1)}$

Voltage at 25 °C

3.12 Temperature sensor

Calculate the temperature using the following formula:

Temperature (in $^{\circ}$ C) = {($V_{SENSE} - V_{25}$) / Avg_Slope} + 25

0.76

STM32F407 ADC

- Reading the temperature
- **1.** Select ADCx→IN16 or ADCx→IN18 input channel.
- 2. Select a sampling time greater than the minimum sampling time specified in the datasheet.
- 3. ADC→CCR. TSVREFE bit =1 to wake up the temperature sensor from power down mode
- **4.** Start the ADC conversion by ADCx→CR2.SWSTART bit=1(or by external trigger)
- 5. Read the resulting VSENSE data in the ADC data register
- 6. Calculate the temperature using the following formula:
- Temperature (in °C) = {(VSENSE V25) / Avg_Slope} + 25

Where:

- -V25 = VSENSE value for 25° C
- Avg_Slope = average slope of the temperature vs. VSENSE curve (given in mV/ $^{\circ}$ C or μ V/ $^{\circ}$ C)
- * Refer to the datasheet's electrical characteristics section for the actual values of V25 and Avg_Slope.

마이크로컴퓨터 응용 STM32F407 TIMER

4. ADC 레지스터

4.1 Register Map

Table 54. ADC global register map

Offset	Register
0x000 - 0x04C	ADC1
0x050 - 0x0FC	Reserved
0x100 - 0x14C	ADC2
0x118 - 0x1FC	Reserved
0x200 - 0x24C	ADC3
0x250 - 0x2FC	Reserved
0x300 - 0x308	Common registers

Register

Offset

0x18

0x1C

0x20

Reset value

ADC_JOFR3

Reset value

ADC_JOFR4

Reset value

AWD

0

0

ADON

0

0

0 0 0

0 0 0

0

0 0 0 0

JOFFSET3[11:0]

JOFFSET4[11:0]

0 | 0

0 0

0

0

10

0 0 0 0

0 0 0 0

0 0

0 0 0 0 0

6

8 /

2 3 4 5 6

JEOC JSTRT STRT EOC ADC_SR 0x00 Reserved Reset value 0 0 DISC NUM [2:0] NUM RES[1:0] JAWDEN AWDEN DISCEN AWD SGL JEOCIE AWDIE EOCIE OVRIE JAUTO AWDCH[4:0] ADC_CR1 Reserved 0x04 Reserved 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JEXTEN[1:0] EXTEN[1:0] Re se Re SWSTART EOCS se CONT **JEXTSEL** SOO DMA ADC_CR2 EXTSEL [3:0] r٧ [3:0] Reserved 0x08 Reserved ed ed Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Sample time bits SMPx_x ADC_SMPR1 0x0C Reset value 0 ADC_SMPR2 Sample time bits SMPx_x 0x10 Reset value 0 JOFFSET1[11:0] ADC_JOFR1 0x14 Reserved Reset value 0 0 0 0 0 0 0 0 0 0 0 ADC_JOFR2 JOFFSET2[11:0]

Reserved

Reserved

Reserved

Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	=	10	6	8	7	9	2	4	3	7	-	0
0.00	ADC_CSR										OVR	STRT	JSTRT	JEOC	EOC	AWD	Res	er	OVR	STRT	JSTRT	JEOC	EOC	AWD	Res	ser	OVB	STRT	JSTRT	JEOC	EOC	AWD	
0x00	Reset value				F	Rese	rve	d				0	0	0	0	0	0	ve		0	0	0	0	0	0	ve		0	0	Ó	0	0	0
								ADC3					ADC2					ADC1															
0x04	ADC_CCR	asa pasasa TSVREFE VBATE						R	ese	erve	t	ADCPRE[1:0]		DMA[1:0]		SOO	Re se v ed	DE	ELA'	Y [3:	:0]	Res	serv	ed	•	MUI	TI [4:0]					
	Reset value	0 0											0	0	0	0	0		0	0	0	0				0	0	0	0	0			
0,00	ADC_CDR		Regular DATA2[15							[15	5:0]			Regular D				r DA	DATA1[15:0]														
0x08	Reset value								0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

마<u>이크로컴퓨터 응용 STM32F407 AD</u>C

5. ADC 주요 레지스터

• ADC status register (ADC_SR)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved											JSTRT	JEOC	EOC	AWD
				nes	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0					

• Bit 1 EOC: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register.

0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)

1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

15

rw

14

DISCNUM[2:0]

rw

converted.

0: Scan mode disabled

0: EOC interrupt disabled

17

rw

16

0

rw

STM32F407 ADC

• ADC control register 1 (ADC_CR1) Reset value: 0x0000 0000

11

DISC

ΕN

rw

26

OVRIE

rw

10

JAUTO

rw

Note: An EOC interrupt is generated if the EOCIE bit is set:

Bit 5 EOCIE: Interrupt enable for EOC

-At the end of each regular group sequence if the EOCS bit is cleared to 0

-At the end of each regular channel conversion if the EOCS bit is set to 1

1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

25

rw

9

AWDSG

rw

RES

24

rw

8

SCAN

rw

23

AWDEN

rw

JEOCIE

rw

22

JAWDEN

rw

6

AWDIE

rw

21

5

EOCIE

rw

20

4

rw

19

3

rw

Reserved

18

2

AWDCH[4:0]

rw

31 30 29 28 27

Reserved

13

rw

12

JDISCE

Ν

rw

1: Scan mode enabled

Note: A JEOC interrupt is generated only on the end of conversion of the last channel if JEOCIE =1.

마이크로컴퓨터 응용

STM32F407 ADC

• ADC control register 2 (ADC_CR2)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
reserved	SWST ART	EXTEN		EXTSEL[3:0]				reserved	JSWST ART	JEXT	EN		JEXTS	SEL[3:0]	
·	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ALIGN EOCS DDS DMA											CONT	ADON			
	reserv	veu		rw	rw	rw	rw		rw	rw					

• Bit 30 SWSTART: Start conversion of regular channels

This bit is set by software to start conversion and cleared as soon as the conversion starts.

0: Reset state

1: Starts conversion of regular channels

• Bits 29:28 EXTEN: External trigger enable for regular channels

These bits are set and cleared by software to select the external trigger polarity and enable the trigger of a regular group.

00: Trigger detection disabled

01: Trigger detection on the rising edge

10: Trigger detection on the falling edge

11: Trigger detection on both the rising and falling edges

• Bits 27:24 EXTSEL[3:0]: External event select for regular group

These bits select the external event used to trigger the start of conversion of a regular group:

0000: Timer 1 CC1 event 0001: Timer 1 CC2 event

0010: Timer 1 CC3 event 0011: Timer 2 CC2 event

0100: Timer 2 CC3 event **0101: Timer 2 CC4 event**

0110: Timer 2 TRGO event **0111: Timer 3 CC1 event**

1000: Timer 3 TRGO event **1001: Timer 4 CC4 event**

1010: Timer 5 CC1 event 1011: Timer 5 CC2 event 1100: Timer 5 CC3 event **1101: Timer 8 CC1 event**

1111: EXTI line11 1110: Timer 8 TRGO event Bit 11 ALIGN: Data alignment

0: Right alignment 1: Left alignment

Bit 10 EOCS: End of conversion selection

0: The EOC bit is set at the end of each sequence of regular conversions. Overrun detection is enabled only if DMA=1.

1: The EOC bit is set at the end of each regular conversion. Overrun detection is enabled. **Bit 1 CONT: Continuous conversion**

This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared.

0: Single conversion mode 1: Continuous conversion mode

Bit 0 ADON: A/D Converter ON / OFF

0: Disable ADC conversion and go to power down mode 1: Enable ADC

마이크로컴퓨터 응용

17

16

• ADC sample time register 1 (ADC_SMPR1)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	D	oconyod			5	MP18[2:	0]	S	SMP17[2:0	0]	S	MP16[2:0	0]	SMP1	5[2:1]
	Reserved				rw	rw	rw	m	rw	rw	rw	rw	rw	w	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP15_0	SMP15_0 SMP14[2:0]			S	MP13[2:	0]	S	MP12[2:0	0]	S	MP11[2:0	0]	5	MP10[2:0)]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

• ADC sample time register 2 (ADC_SMPR2)

27

Reset value: 0x0000 0000

20

01	00	20	20	21	20	20	24	20	22	21	20	10	10	17	10
Rese	nvod		SMP9[2:0]		SMP8[2:0]		SMP7[2:0]]	!	SMP6[2:0]]	SMP	5[2:1]
11636	or veu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP 5_0 SMP4[2:0])]	,	SMP3[2:0)]	5	SMP2[2:0]	,	SMP1[2:0]	,	SMP0[2:0]]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

23

22

21

20

19

24

Bits 26:0 SMPx[2:0]: Channel x sampling time selection

During sampling cycles, the channel selection bits must remain unchanged.

Note: 000: 3 cycles

001: 15 cycles

010: 28 cycles

011: 56 cycles

31

30

100: 84 cycles

101: 112 cycles

110: 144 cycles

111: 480 cycles

마이크로컴퓨터 응용

• ADC regular sequence register 1 (ADC_SQR1)

Reset value: 0x0000 0000

31	30	29	28	2/	26	25	24	23	22	21	20	19	18	1/	16
			Dose	erved					L[3	3:0]			SQ16	6[4:1]	
			nese	erveu			,	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ16_0	.0 SQ15[4:0]							SQ14[4:0]]				SQ13[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw

• Bits 23:20 L[3:0]: Regular channel sequence length

0000: 1 conversion 0001: 2 conversions

•••

1111: 16 conversions

• Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 16th in the conversion sequence.

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence

Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence

마<u>이크로컴퓨터 응용 STM32F407 AD</u>C

• ADC regular sequence register 2 (ADC_SQR2)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	nved			SQ12[4:0]				SQ11[4:0				SQ1	0[4:1]	
11656	iveu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ10_0		SQ9[4:0]						SQ8[4:0]					SQ7[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

• Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 12th in the sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence

Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence

마<u>이크로컴퓨터 응용 STM32F407 AD</u>C

• ADC regular sequence register 3 (ADC_SQR3)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	ruod			SQ6[4:0]					SQ5[4:0]				SQ4	[4:1]	
nese	erveu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ4_0	SQ3[4:0]							SQ2[4:0]					SQ1[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 6th in the sequence to be converted.
- Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence
- Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence
- Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence
- Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence
- Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence

마이크로컴퓨터 응용 STM32F407 ADC

• ADC regular data register (ADC_DR) Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DATA[15:0]															
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 15:0 DATA[15:0]: Regular data

These bits are read-only. They contain the conversion result from the regular channels.

17

16

19

20

18

25

24

Reset value: 0x0000 0000 30 29 28 27 26 31

01	00	20	20	21	20	20	24	20		21	20	10	10	- ''	10
			Dos	erved				TSVREFE	VBATE		Rese	rvod		ADO	PRE
			nes	erveu				rw	rw		nese	erveu		rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DMA	[1:0]	DDS	Res.		DELA	Y[3:0]		Reserved					MULTI[4:	0]	
rw	rw	rw	nes.	rw	rw	rw	rw	, n	eserveu	ed			rw	rw	rw

23

22

21

• Bit 23 TSVREFE: Temperature sensor and VREFINT enable

This bit is set and cleared by software to enable/disable the temperature sensor and the VREFINT channel.

- 0: Temperature sensor and VREFINT channel disabled
- 1: Temperature sensor and VREFINT channel enabled

• Bits 17:16 ADCPRE: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC. The clock is common for all the ADCs.

- Note: 00: PCLK2 divided by 2
- 01: PCLK2 divided by 4
- 10: PCLK2 divided by 6
- 11: PCLK2 divided by 8

마이크로컴퓨터 응용 STM32F407 ADC

Bits 4:0 MULTI[4:0]: Multi ADC mode selection

These bits are written by software to select the operating mode.

All the ADCs independent:
 00000: Independent mode

- 00001 to 01001: Dual mode, ADC1 and ADC2 working together, ADC3 is independent

00001: Combined regular simultaneous + injected simultaneous mode

00010: Combined regular simultaneous + alternate trigger mode

00011: Reserved

00101: Injected simultaneous mode only

00110: Regular simultaneous mode only

00111: interleaved mode only

01001: Alternate trigger mode only

– 10001 to 11001: Triple mode: ADC1, 2 and 3 working together

10001: Combined regular simultaneous + injected simultaneous mode

10010: Combined regular simultaneous + alternate trigger mode

10011: Reserved

10101: Injected simultaneous mode only

10110: Regular simultaneous mode only

10111: interleaved mode only

11001: Alternate trigger mode only

All other combinations are reserved and must not be programmed

마이크로컴퓨터 응용 STM32F407 ADC

STM32F407 ADC의 주요 전기적 특징

Table 67. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply		1.8 ⁽¹⁾	-	3.6	V
V _{REF+}	Positive reference voltage		1.8 ⁽¹⁾⁽²⁾⁽³⁾	-	V_{DDA}	V
f _{ADC}	ADC clock frequency	$V_{DDA} = 1.8^{(1)(3)}$ to 2.4 V	0.6	15	18	MHz
		$V_{DDA} = 2.4 \text{ to } 3.6 \text{ V}^{(3)}$	0.6	30	36	MHz
ts ⁽⁴⁾	Campling time	f _{ADC} = 30 MHz	0.100	-	16	μs
ls\"	Sampling time		3	-	480	1/f _{ADC}
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
t _{CONV} ⁽⁴⁾	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs

RCC clock enable 레지스터 구조

•RCC_AHB1ENR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reser- ved	OTGHS ULPIEN	OTGHS EN	ETHMA CPTPE N	ETHMA CRXEN	ETHMA CTXEN	ETHMA CEN	Rese		DMA2EN	DMA1EN	CCMDATA RAMEN	Res.	BKPSR AMEN	Rese	erved
	rw	rw	rw	rw	rw	rw		•	rw	rw			rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		CRCEN		Reserved	i	GPIOIE N	GPIOH EN	GPIOGE N	GPIOFE N	GPIOEEN	GPIOD EN	GPIOC EN	GPIOB EN	GPIOA EN
			rw				rw	rw	rw	rw	rw	rw	rw	rw	rw

GPIO

•RCC APB1ENR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved	DAC EN	PWR EN	Reser-	CAN2 EN	CAN1 EN	Reser-	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART3 EN	USART: EN	Reser- ved
		rw	rw	veu	rw	rw	veu	rw	rw	rw	rw	rw	rw	rw	veu
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 EN	SPI2 EN	Rese	erved	WWDG EN	Rese	erved	TIM14 EN	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN
rw	rw	•		rw			rw	rw	rw	rw	rw	rw	rw	rw	rw

USART:2~5

Timer:2~7, 12~14

•RCC_APB2ENR

Timer:9~11

Timer:1,8

SYSCFG SPI1 EN

ADC

USART:1,6

●인터럽트 벡터 테이블(총82개)- Interrupts (0~15)

0	7	settable	WWDG	Window Watchdog interrupt	0x0000 0040
1	8	settable	PVD	PVD through EXTI line detection interrupt	0x0000 0044
2	9	settable	TAMP_STAMP	Tamper and TimeStamp interrupts through the EXTI line	0x0000 0048
3	10	settable	RTC_WKUP	RTC Wakeup interrupt through the EXTI line	0x0000 004C
4	11	settable	FLASH	Flash global interrupt	0x0000 0050
5	12	settable	RCC	RCC global interrupt	0x0000 0054
6	13	settable	EXTI0	EXTI Line0 interrupt	0x0000 0058
7	14	settable	EXTI1	EXTI Line1 interrupt	0x0000 005C
8	15	settable	EXTI2	EXTI Line2 interrupt	0x0000 0060
9	16	settable	EXTI3	EXTI Line3 interrupt	0x0000 0064
10	17	settable	EXTI4	EXTI Line4 interrupt	0x0000 0068
11	18	settable	DMA1_Stream0	DMA1 Stream0 global interrupt	0x0000 006C
12	19	settable	DMA1_Stream1	DMA1 Stream1 global interrupt	0x0000 0070
13	20	settable	DMA1_Stream2	DMA1 Stream2 global interrupt	0x0000 0074
14	21	settable	DMA1_Stream3	DMA1 Stream3 global interrupt	0x0000 0078
15	22	settable	DMA1_Stream4	DMA1 Stream4 global interrupt	0x0000 007C

●인터럽트 벡터 테이블- Interrupts (16~28)

Position	Priority	Type of priority	Acronym	Description	Offset
16	23	settable	DMA1_Stream5	DMA1 Stream5 global interrupt	0x0000 0080
17	24	settable	DMA1_Stream6	DMA1 Stream6 global interrupt	0x0000 0084
18	25	settable	ADC	ADC1, ADC2 and ADC3 global interrupts	0x0000 0088
19	26	settable	CAN1_TX	CAN1 TX interrupts	0x0000 008C
20	27	settable	CAN1_RX0	CAN1 RX0 interrupts	0x0000 0090
21	28	settable	CAN1_RX1	CAN1 RX1 interrupt	0x0000 0094
22	29	settable	CAN1_SCE	CAN1 SCE interrupt	0x0000 0098
23	30	settable	EXTI9_5	EXTI Line[9:5] interrupts	0x0000 009C
24	31	settable	TIM1_BRK_TIM9	TIM1 Break interrupt and TIM9 global interrupt	0x0000 00A0
25	32	settable	TIM1_UP_TIM10	TIM1 Update interrupt and TIM10 global interrupt	0x0000 00A4
26	33	settable	TIM1_TRG_COM_TIM11	TIM1 Trigger and Commutation interrupts and TIM11 global interrupt	0x0000 00A8
27	34	settable	TIM1_CC	TIM1 Capture Compare interrupt	0x0000 00AC
28	35	settable	TIM2	TIM2 global interrupt	0x0000 00B0

●인터럽트 벡터 테이블- Interrupts (29~43)

1	1 1		1	1	1	
29	36	settable	TIM3	TIM3 global interrupt	0x0000 00B4	
30	37	settable	TIM4	TIM4 global interrupt	0x0000 00B8	
31	38	settable	I2C1_EV	I ² C1 event interrupt	0x0000 00BC	
32	39	settable	I2C1_ER	I ² C1 error interrupt	0x0000 00C0	
33	40	settable	I2C2_EV	I ² C2 event interrupt	0x0000 00C4	
34	41	settable	I2C2_ER	I ² C2 error interrupt	0x0000 00C8	
35	42	settable	SPI1	SPI1 global interrupt	0x0000 00CC	
36	43	settable	SPI2	SPI2 global interrupt	0x0000 00D0	
37	44	settable	USART1	USART1 global interrupt	0x0000 00D4	
38	45	settable	USART2	USART2 global interrupt	0x0000 00D8	
39	46	settable	USART3	USART3 global interrupt	0x0000 00DC	
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000 00E0	
41	48	settable	RTC_Alarm	RTC Alarms (A and B) through EXTI line interrupt	0x0000 00E4	
42	49	settable	OTG_FS WKUP	USB On-The-Go FS Wakeup through EXTI line interrupt	0x0000 00E8	
43	50	settable	TIM8_BRK_TIM12	TIM8 Break interrupt and TIM12 global interrupt	0x0000 00EC	

●인터럽트 벡터 테이블- Interrupts (44~56)

Position	Priority	Type of priority	Acronym	Description	Offset	
44	51	settable	TIM8_UP_TIM13	TIM8 Update interrupt and TIM13 global interrupt	0x0000 00F0	
45	52	settable	TIM8_TRG_COM_TIM14	TIM8 Trigger and Commutation interrupts and TIM14 global interrupt	0x0000 00F4	
46	53	settable	TIM8_CC	TIM8 Capture Compare interrupt	0x0000 00F8	
47	54	settable	DMA1_Stream7	DMA1 Stream7 global interrupt	0x0000 00FC	
48	55	settable	FSMC	FSMC global interrupt	0x0000 0100	
49	56	settable	SDIO	SDIO global interrupt	0x0000 0104	
50	57	settable	TIM5	TIM5 global interrupt	0x0000 0108	
51	58	settable	SPI3	SPI3 global interrupt	0x0000 010C	
52	59	settable	UART4	UART4 global interrupt	0x0000 0110	
53	60	settable	UART5	UART5 global interrupt	0x0000 0114	
54	61	settable	TIM6_DAC	TIM6 global interrupt, DAC1 and DAC2 underrun error interrupts	0x0000 0118	
55	62	settable	TIM7	TIM7 global interrupt	0x0000 011C	
56	63	settable	DMA2_Stream0	DMA2 Stream0 global interrupt	0x0000 0120	

7. STM32F407의 ADC 프로그래밍 실습

7.1 프로그램에서의 ADCx set-up 과정 및 레지스터 설정

RCC 설정

- RCC→AHB1ENR(GPIOy Clock Enable)
- RCC→APB2ENR(ADCx Clock Enable)

INT Enable

- GPIOy → MODER, Analog input
- NVIC→ISER[](ADC Interrupt 사용 경우)

ADCx 초기 설정

- ADC→CCR(Mode, Clock)
- ADCx→CR1/2, ADCx→ SQR1/2/3(Mode, Trigger, Resolution, Data_Align, Regular channel sequence length)
- ADCx \rightarrow SMPR1/2

Int Handler 설정

• ADC_IRQHandler()

Selecting an Alternate function

Selecting an alternate function on STM32F405xx/07xx and STM32F415xx/17xx

For pins 0 to 7, the GPIOx_AFRL[31:0] register selects the dedicated alternate function

For pins 8 to 15, the GPIOx_AFRH[31:0] register selects the dedicated alternate function

마이크로컴퓨터 응용 STM32F407 ADC

7.2 STM32F407의 ADC의 Address(Memory map)

Bus	Boundary address	Peripheral	
	0x4001 4C00 - 0x4001 57FF	Reserved	
	0x4001 4800 - 0x4001 4BFF	TIM11	
	0x4001 4400 - 0x4001 47FF	TIM10	
	0x4001 4000 - 0x4001 43FF	TIM9	
	0x4001 3C00 - 0x4001 3FFF	EXTI	
	0x4001 3800 - 0x4001 3BFF	SYSCFG	
	0x4001 3400 - 0x4001 37FF	Reserved	
	0x4001 3000 - 0x4001 33FF	SPI1	
APB2	0x4001 2C00 - 0x4001 2FFF	SDIO	
	0x4001 2400 - 0x4001 2BFF	Reserved	
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3	
	0x4001 1800 - 0x4001 1FFF	Reserved	
	0x4001 1400 - 0x4001 17FF	USART6	
	0x4001 1000 - 0x4001 13FF	USART1	
	0x4001 0800 - 0x4001 0FFF	Reserved	
	0x4001 0400 - 0x4001 07FF	TIM8	
	0x4001 0000 - 0x4001 03FF	TIM1	
	0x4000 7800- 0x4000 FFFF	Reserved	

7.3 STM32F407의 ADC관련 header file(stm32f4xx.h)주요 부분

```
/* Peripheral memory map */
#define PERIPH_BASE ((uint32_t)0x40000000) /* Peripheral base address */
#define APB1PERIPH BASE
                             PERIPH BASE
                             (PERIPH\_BASE + 0x00010000)
#define APB2PERIPH BASE
/* APB2 peripherals */
#define ADC1 BASE
                         (APB2PERIPH BASE + 0x2000)
#define ADC2 BASE
                         (APB2PERIPH BASE + 0x2100)
                         (APB2PERIPH\_BASE + 0x2200)
#define ADC3 BASE
#define ADC BASE
                         (APB2PERIPH\_BASE + 0x2300)
#define ADC
                    ((ADC_Common_TypeDef *) ADC_BASE)
                    ((ADC_TypeDef *) ADC1_BASE)
#define ADC1
                    ((ADC_TypeDef *) ADC2_BASE)
#define ADC2
                    ((ADC_TypeDef *) ADC3_BASE)
#define ADC3
typedef struct
{ __IO uint32_t CSR; //ADC Common status register, offset:ADC1_BASE + 0x300
  _IO uint32_t CCR; //ADC common control register, offset:ADC1_BASE + 0x304
   _IO uint32_t CDR; //ADC common regular data register for dual
              AND triple modes, offset: ADC1 base address + 0x308
} ADC_Common_TypeDef;
```

마이크로컴퓨터 응용 <u>STM32F407 AD</u>C

```
typedef struct
   IO uint32_t SR; // ADC status register, Address offset: 0x00
   IO uint32_t CR1; // ADC control register 1, Address offset: 0x04
   IO uint32_t CR2; //ADC control register 2, Address offset: 0x08
   IO uint32_t SMPR1; //ADC sample time register 1, Address offset: 0x0C
   IO uint32_t SMPR2; //ADC sample time register 2, Address offset: 0x10
   IO uint32_t JOFR1; //ADC injected channel data offset register 1, offset: 0x14
   IO uint32_t JOFR2; // ADC injected channel data offset register 2, offset: 0x18
   IO uint32_t JOFR3;//ADC injected channel data offset register 3, offset: 0x1C
   IO uint32_t JOFR4; //ADC injected channel data offset register 4, offset: 0x20
   IO uint32_t HTR; //ADC watchdog higher threshold register, offset: 0x24
   IO uint32_t LTR; //ADC watchdog lower threshold register, offset: 0x28
   IO uint32_t SQR1; //ADC regular sequence register 1, offset: 0x2C
   IO uint32_t SQR2;//ADC regular sequence register 2, offset: 0x30
   IO uint32_t SQR3;//ADC regular sequence register 3, offset: 0x34
   IO uint32_t JSQR; //ADC injected sequence register, offset: 0x38
   IO uint32_t JDR1; //ADC injected data register 1, offset: 0x3C
   IO uint32_t JDR2; //ADC injected data register 2, Address offset: 0x40
   IO uint32_t JDR3; //ADC injected data register 3, Address offset: 0x44
   IO uint32_t JDR4; //ADC injected data register 4, Address offset: 0x48
   IO uint32_t DR; //ADC regular data register, Address offset: 0x4C
} ADC_TypeDef;
```

부록: ADC Application (Sensor Interface)

센서 실습 보드

센서 실습 보드 인터페이스

1. Distance Sensor Interface

적외선 거리 측정 Sensor (GP2Y0A21YK0F)

■Block diagram

거리 Sensor 인터페이스 회로(with u-processor)

거리와 전압 사이 관계

거리 측정범위: 10cm~80cm

2. Acceleration Sensor Interface

가속도 측정 Sensor (MMA7260QT)

- $ADC123_IN11 = PC1$
- ADC123 IN12 = PC2
- $ADC123_{IN}13 = PC3$

Characteristic	Symbo	Min	Тур	Max	Unit
Output Signal					
Zero g ($T_A = 25$ °C, $V_{DD} = 3.3 V$) ⁽⁵⁾	V_{OFF}	1.485	1.65	1.815	V

Acceleration _____

Figure 3. Simplified Transducer Physical Model

가속도 측정 Sensor (MMA7260QT) 가속도 축

DYNAMIC ACCELERATION

가속도 측정 Sensor (MMA7260QT) 내부 구성도

가속도 측정 Sensor 인터페이스 회로(with u-processor)

가속도 측정 Sensor 인터페이스 회로(with u-processor)

센서출력 증폭회로

증폭율: 1+ 4.7K/10K= 1.47

STM32F407 (PC1~3): ADC123_IN11,12,13 (J2)