Each quotient X''/X, Y''/Y, and Z''/Z must be a constant. In the familiar way, we find

$$Y(y) = \sin my \quad (m = 1, 2, ...)$$

and

$$Z(z) = \sin nz$$
 $(n = 1, 2, ...),$

so that

$$X'' = (m^2 + n^2)X, \quad X(0) = 0.$$

Therefore,

$$X(x) = A \sinh(\sqrt{m^2 + n^2} x).$$

Summing up, our complete solution is

$$u(x, y, z) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{mn} \sinh(\sqrt{m^2 + n^2} x) \sin my \sin nz.$$
 (7)

Finally, we plug in our inhomogeneous condition at $x = \pi$:

$$g(y,z) = \sum \sum A_{mn} \sinh(\sqrt{m^2 + n^2} \pi) \sin my \sin nz.$$

This is a *double* Fourier sine series in the variables y and z! Its theory is similar to that of the single series. In fact, the eigenfunctions $\{\sin my \cdot \sin nz\}$ are mutually orthogonal on the square $\{0 < y < \pi, 0 < z < \pi\}$ (see Exercise 2). Their normalizing constants are

$$\int_0^{\pi} \int_0^{\pi} (\sin my \sin nz)^2 \, dy \, dz = \frac{\pi^2}{4}.$$

Therefore,

$$A_{mn} = \frac{4}{\pi^2 \sinh(\sqrt{m^2 + n^2} \pi)} \int_0^{\pi} \int_0^{\pi} g(y, z) \sin my \sin nz \, dy \, dz. \quad (8)$$

Hence the solutions can be expressed as the doubly infinite series (7) with the coefficients A_{mn} . The complete solution to Example 2 is (7) and (8). With such a series, as with a double integral, one has to be careful about the order of summation, although in most cases any order will give the correct answer.

EXERCISES

1. Solve $u_{xx} + u_{yy} = 0$ in the rectangle 0 < x < a, 0 < y < b with the following boundary conditions:

$$u_x = -a$$
 on $x = 0$ $u_x = 0$ on $x = a$
 $u_y = b$ on $y = 0$ $u_y = 0$ on $y = b$.