

Optimistic Thompson Sampling-based Algorithms for Reinforcement Learning

Bingshan Hu (U-Alberta, Amii), Tianyue H. Zhang (UBC), Nidhi Hegde (U-Alberta, Amii), Mark Schmidt (UBC, Amii)

Multi-arm bandits can be viewed as stateless MDP

Check out our work at UAI 2023 (Oral presentation)!!!

Challenge: Exploitation vs Exploration Trade-Off

Exploitation

Take actions with high empirical reward to gain pay-off

Exploration

Take less observed actions to gather information

A stochastic MAB instance $\Theta := ([K]; \mu_1, \mu_2, \dots, \mu_K)$ In every round $t = 1, 2, \dots, T$

1. Environment generates a reward vector $X_1(t), \ldots, X_j(t), \ldots, X_K(t)$

2. Simultaneously, Learner pulls an arm $J_t \in [K]$

3. Environment reveals $X_{J_t}(t)$; Learner observes and obtains $X_{J_t}(t)$

Stochastic Multi-Armed Bandits (MAB)

Goal: pull arms sequentially to maximize cumulative reward

Regret: $\mathcal{R}(T; \Theta) = \mathbb{E}\left[\sum_{t=1}^{T} \left(\max_{j \in [K]} \mu_j - \mu_{J_t}\right)\right]$

Episodic Markov Decision Processes (MDP)

An MDP instance $M := (T, H, [S], [A], \{\mu\}_{[S] \times [A] \times [H]}, \{\vec{P}\}_{[S] \times [A] \times [H]}, p_0)$

Number of episodes: T . State space: [S]Number of rounds in each episode: H. Action space: [A]

Mean reward function: $\{\mu_{s,a,t}\}$

Transition probability distribution function: $\{\vec{p}_{s,a,t}\}$ Deterministic initial state distribution: p_0

Policy: $\pi = (\pi(\cdot, 1), \pi(\cdot, 2), \dots, \pi(\cdot, H))$ with each $\pi(\cdot, t) : \mathcal{S} \to \mathcal{A}$ taking a state s_t as input and outputs an action a_t that will played in that state

Goal: play a sequence of policies $\pi_1, \pi_2, \dots, \pi_k, \dots, \pi_K$ to accumulate as much reward as possible

Regret: $\mathcal{R}(T;M) = \mathbb{E}\left[\sum_{t=1}^K \left(V_1^{\pi_*}(s_1^k) - V_1^{\pi_k}(s_1^k)\right)\right]$, where $V_t^{\pi}(s)$ is the value function and π_* is the optimal policy

Model-based:

IPPER Confidence [] (UCB) vs Thompson Sampling (TS) in Bandits

Unknown parameters:

Empirical parameters:

 $(\mu_1,\mu_2,\ldots,\mu_K)$

 $(\hat{\mu}_{1,O_1(t-1)},\hat{\mu}_{2,O_2(t-1)},\ldots,\hat{\mu}_{K,O_K(t-1)})$

The confidence $\overline{\mu_{j,t}}$ (UCB): $\overline{\mu_{j,t}} = \widehat{\mu_{j,O_j(t-1)}} + \sqrt{\frac{2\log(t)}{O_j(t-1)}}$ Pull arm $J_t = \arg\max\overline{\mu_{j,t}}$

Thompson Sampling (TS): Optimistic TS (O-TS):

 $\begin{array}{l} \theta_{j,t} \sim \mathcal{N}\left(\widehat{\mu}_{j,O_{j}(t-1)}, \ \frac{1}{O_{j}(t-1)}\right) \\ \theta_{j,t} \sim \mathcal{N}'\left(\widehat{\mu}_{j,O_{j}(t-1)}, \ \frac{1}{O_{j}(t-1)}\right) \\ \theta_{j,t} \sim \mathcal{N}^{+}\left(\widehat{\mu}_{j,O_{j}(t-1)}, \ \frac{1}{O_{j}(t-1)}\right) \end{array} \right\} \quad J_{t} = \arg\max\theta_{j,t}$

Optimistic TS⁺ (O-TS⁺):

More Optimistic Distributions!!

• 0-TS for bandits was originally proposed and empirically evaluated in Chapelle and Li [2011], May et al. [2012].

are always better than empirical parameters!

S = 5, A = 3, H = 10

Episode

O-TS-MDP

O-TS-MDP+

1e7

Experiments for MDP

2.0 -

0.5

Key idea: sampled parameters

Empirical parameters: $\hat{\mu}_{s,a,t}^{k-1}, \hat{P}_{s,a,t}^{k-1}$

UCB-VI:

 $M^k = \left\{ [S], [A], H, \overline{\mu}^k, \hat{P}^{k-1} \right\},$ where $\bar{\mu}_{s,a,t}^k = \hat{\mu}_{s,a,t}^{k-1} + \tilde{O}\left(\sqrt{\frac{H^2}{O_{s,a,t}^{k-1}}}\right)$

O-TS-MDP vs O-TS-MDP in MDPs

O-TS-MDP:

Unknown parameters: $\mu_{s,a,t}, P_{s,a,t}$

 $M^k = \left\{ [S], [A], H, \frac{\theta^k}{\ell}, \hat{P}^{k-1} \right\},$ where: $\theta_{s,a,t}^k \sim \mathcal{N}' \left(\hat{\mu}_{s,a,t}^{k-1}, \ \tilde{O} \left(\frac{H^3 S}{O_{s,a,t}^{k-1}} \right) \right)$

O-TS-MDP⁺

 $M^k = \left\{ [S], [A], H, \frac{\theta^k}{l}, \hat{P}^{k-1} \right\},$ where: $\theta_{s,a,t}^{k} \sim \mathcal{N}^{+} \left(\hat{\mu}_{s,a,t}^{k-1}, \tilde{O} \left(\frac{H^2}{O_{s,a,t}^{k-1}} \right) \right)$ O-TS⁺: $\tilde{O} \left(\sqrt{ASH^3T} \right)$

. Construct a model M^k in each episode k

. Find the best policy π_k for M^k

O-TS: $\tilde{O}\left(\sqrt{AS^2H^4T}\right)$

- 0-TS-MDP enjoys an elegant theoretical analysis, avoiding bounding the absolute value of approximation error.
- O-TS-MDP⁺ has the same regret bound as UCB-VI [Azar et al., 2017] and can be viewed as a randomized version of UCB-VI.

Acknowledgement

This work was supported by Alberta Machine Intelligence Institute (Amii) and the Canada CIFAR AI Program.

Regret JPPER $O\left(\sqrt{KT\ln(T)}\right)$