Preuves en logique équationnelle

David Delahaye

David.Delahaye@lirmm.fr

Université de Montpellier Faculté des Sciences

Licence Informatique L3 2022-2023

Égalité

Syntaxe

- C'est un prédicat binaire, noté de manière infixe;
- $s \doteq t$, où s et t sont des termes.

Sémantique

- $[s \doteq t]_{\rho}^{I} = ([s]_{\rho}^{I} = [t]_{\rho}^{I});$
 - Où « = » est l'égalité sur D_I ;
 - Ne pas confondre la syntaxe et la sémantique :

 - « = » ≡ égalité sémantique

Égalité

Syntaxe

- C'est un prédicat binaire, noté de manière infixe;
- $s \doteq t$, où s et t sont des termes.

Sémantique

- $[s \doteq t]_{\rho}^{I} = ([s]_{\rho}^{I} = [t]_{\rho}^{I});$
- Où « = » est l'égalité sur D_I ;
- Ne pas confondre la syntaxe et la sémantique :
 - « \doteq » \equiv égalité syntaxique;
 - « = » = égalité sémantique.

Logique équationnelle

Équations : syntaxe

- Équation \equiv paire de termes notée $s \doteq t$;
- Les termes s et t ne sont pas forcément clos;
- Mais la quantification sur les variables libres est implicite;
- $s \doteq t \equiv \forall \vec{x}.s \doteq t$, où $\vec{x} = FV(s) \cup FV(t)$;
- Exemple : $x + 0 \doteq x \equiv \forall x.x + 0 \doteq x$.

Logique équationnelle

Équations : sémantique

- Soit $s \doteq t$ une équation et I une interprétation;
- I est un modèle de $s \doteq t$ ou I satisfait $s \doteq t$, noté $I \models s \doteq t$, ssi pour toute affectation ρ , $[\![s]\!]_{\rho}^{I} = [\![t]\!]_{\rho}^{I}$;
- Un ensemble $\mathcal E$ d'équations entraı̂ne $s \doteq t$, noté $\mathcal E \models s \doteq t$, ssi toutes les interprétations satisfaisant toutes les équations de $\mathcal E$ en même temps (les modèles de $\mathcal E$) sont aussi des modèles de $s \doteq t$, c'est-à-dire quand $I \models s' \doteq t'$ pour tout $s' \doteq t' \in \mathcal E$ implique $I \models s \doteq t$.

- Démontrer que : x + 0 = x, x + y = y + x = 0 + x = x, où 0 est une constante et « + » est un symbole de fonction binaire noté de manière infixe;
- Démonstration :
 - Soit *I* une interprétation telle que $I \models x + 0 \stackrel{.}{=} x$ et $I \models x + y \stackrel{.}{=} y + x$ c'est-à-dire pour toute affectation ρ :

```
\|x + 0\|_{\rho}^{l} = \|x\|_{\rho}^{l}, \text{ c.-à-d. } l(+)(\rho(x), l(0)) = \rho(x) (1);
\|x + v\|_{\rho}^{l} = \|y + x\|_{\rho}^{l}, \text{ c.-à-d. } l(+)(\rho(x), \rho(y)) = l(+)(\rho(y), \rho(x)) (2)
```

- doit démontrer que $I \models 0 + x = x$, c'est-à-dire pour toute
- Hectation ρ , $[0 + x]]_{\rho}^{\prime} = [x]]_{\rho}^{\prime}$, c.-à-d. $I(+)(I(0), \rho(x)) = \rho(x)$
 - $I(+)(I(0), \rho(x)) = I(+)(\rho(x), I(0)), \text{ selon } (2);$
- Puis, $I(+)(\rho(x), I(0)) = \rho(x)$, selon (1)

Conséquence logique

- Démontrer que : $x + 0 \doteq x, x + y \doteq y + x \models 0 + x \doteq x$, où 0 est une constante et « + » est un symbole de fonction binaire noté de manière infixe:
- Démonstration :
 - Soit I une interprétation telle que $I \models x + 0 \doteq x$ et $I \models x + y \doteq y + x$, c'est-à-dire pour toute affectation ρ :

L3 Info. 2022-2023

- Démontrer que : x + 0 = x, x + y = y + x = 0 + x = x, où 0 est une constante et « + » est un symbole de fonction binaire noté de manière infixe;
- Démonstration :
 - Soit *I* une interprétation telle que $I \models x + 0 \doteq x$ et $I \models x + y \doteq y + x$, c'est-à-dire pour toute affectation ρ :
 - On doit démontrer que $l \models 0 + x = x$, c'est-à-dire pour toute
 - Trectation ρ , $[0 + x]]_{\rho} = [x]]_{\rho}$, c.-a-d. $I(+)(I(0), \rho(x)) = \rho(x)$
 - $I(+)(I(0), \rho(x)) = I(+)(\rho(x), I(0)), \text{ selon } (2);$
 - Puis, $I(+)(\rho(x), I(0)) = \rho(x)$, selon (1)

- Démontrer que : x + 0 = x, x + y = y + x = 0 + x = x, où 0 est une constante et « + » est un symbole de fonction binaire noté de manière infixe;
- Démonstration :
 - Soit *I* une interprétation telle que $I \models x + 0 \doteq x$ et $I \models x + y \doteq y + x$, c'est-à-dire pour toute affectation ρ :
 - $[x + 0]_{\rho}^{I} = [x]_{\rho}^{I}, \text{ c.-à-d. } I(+)(\rho(x), I(0)) = \rho(x) \text{ (1)};$ $[x + y]_{\rho}^{I} = [y + x]_{\rho}^{I}, \text{ c.-à-d. } I(+)(\rho(x), \rho(y)) = I(+)(\rho(y), \rho(x)) \text{ (2)}.$
 - On doit démontrer que $I \models 0 + x \doteq x$, c'est-à-dire pour toute affectation ρ , $[0 + x]_{\rho}^{I} = [x]_{\rho}^{I}$, c.-à-d. $I(+)(I(0), \rho(x)) = \rho(x)$:
 - $I(+)(I(0), \rho(x)) = I(+)(\rho(x), I(0)), \text{ selon } (2);$
 - * Puis, $I(+)(\rho(x), I(0)) = \rho(x)$, selon (1)

- Démontrer que : $x + 0 \doteq x, x + y \doteq y + x \models 0 + x \doteq x$, où 0 est une constante et « + » est un symbole de fonction binaire noté de manière infixe:
- Démonstration :
 - Soit I une interprétation telle que $I \models x + 0 \stackrel{.}{=} x$ et $I \models x + y \stackrel{.}{=} y + x$, c'est-à-dire pour toute affectation ρ :
 - $[x + 0]_{0}^{I} = [x]_{0}^{I}$, c.-à-d. $I(+)(\rho(x), I(0)) = \rho(x)$ (1); * $[x + y]_{\rho}^{I} = [y + x]_{\rho}^{I}$, c.-à-d. $I(+)(\rho(x), \rho(y)) = I(+)(\rho(y), \rho(x))$ (2).
 - On doit démontrer que $I \models 0 + x = x$, c'est-à-dire pour toute affectation ρ , $[0 + x]_{\rho}^{I} = [x]_{\rho}^{I}$, c.-à-d. $I(+)(I(0), \rho(x)) = \rho(x)$:
 - $I(+)(I(0), \rho(x)) = I(+)(\rho(x), I(0))$, selon (2):
 - * Puis, $I(+)(\rho(x), I(0)) = \rho(x)$, selon (1).

Substitution

Définition

- ullet Une substitution σ est une application de ${\mathcal V}$ vers ${\mathcal T}$;
- Elle se définit par récurrence structurelle comme suit :
 - ▶ Si $x \in \mathcal{V}$ alors $\sigma(x) = \sigma(x)$;
 - Si $f \in \mathcal{S}_{\mathcal{F}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $\sigma(f(t_1, \ldots, t_n)) = f(\sigma(t_1), \ldots, \sigma(t_n)).$

Exemple

- Soit la substitution σ telle que $\sigma(x) = a$ et $\sigma(y) = f(b)$, où a et b sont des constantes, et f un symbole de fonction unaire;

Position et substitution

Position

- Une position est un élément de $(\mathbb{N} \{0\})^*$;
- Etant donné un terme t, le terme $t|_p$ désigne le terme à la position p et se définit par récurrence structurelle sur les positions :
 - \triangleright Si $p = \epsilon$, $t|_{\epsilon} = t$:
 - Si $p = i \cdot p'$ et $t = f(t_1, \dots, t_n)$, où l'on a $i \le n$ et où p' est une position, alors $t|_{i \cdot p'} = t_i|_{p'}$.
- Exemples : si $t = f(x, g(y, z)), t|_{\epsilon} = f(x, g(y, z)), t|_{1} = x$ $t|_2 = g(v, z), t|_{21} = v, t|_{22} = z.$

Substitution à une position donnée

- La notation $t[u]_p$ désigne la substitution de u au terme $t|_p$ dans t;
- Exemple : si $t = f(x, g(y, z)), t[h(a)]_{21} = f(x, g(h(a), z)).$

Règles $\frac{s \doteq t \in \mathcal{E}}{s \doteq t}$ ax

Règles

$$\frac{s \doteq t \in \mathcal{E}}{s \doteq t} \text{ ax} \qquad \frac{s \doteq s}{s \doteq s} \text{ refl}$$

$$\frac{s \doteq t}{t \doteq s} \text{ sym} \qquad \frac{s \doteq t}{s \doteq u} \text{ trans}$$

$$\frac{s \doteq t}{\sigma(s) \doteq \sigma(t)} \text{ subst} \qquad \frac{s \doteq t}{u[s]_p \doteq u[t]_p} \text{ cont}$$

4□ > 4酉 > 40

Règles

$$\frac{s \doteq t \in \mathcal{E}}{s \doteq t} \text{ ax} \qquad \frac{s \doteq s}{s \doteq s} \text{ refl}$$

$$\frac{s \doteq t}{t \doteq s} \text{ sym} \qquad \frac{s \doteq t}{s \doteq u} \text{ trans}$$

$$\frac{s \doteq t}{\sigma(s) \doteq \sigma(t)} \text{ subst} \qquad \frac{s \doteq t}{u[s]_{\rho} \doteq u[t]_{\rho}} \text{ cont}$$

Arbre de preuve (arbre de dérivation)

- On part de l'équation initiale à démontrer;
- On applique les règles en raisonnement abductif (raisonnement arrière), c'est-à-dire que l'on part de ce qu'on veut montrer pour aller vers les hypothèses/axiomes);
- On construit ainsi un arbre dont le séquent est la racine et les branches sont créées par les différentes prémisses des règles de déduction;
- Dans une branche, on s'arrête lorsqu'on atteint une règle axiomatique, qui devient ainsi une feuille de l'arbre;
- Un arbre de preuve est un arbre dont toutes les branches se terminent par une règle axiomatique (on parle alors de branche close).

Propriétés

Prouvabilité

• $s \doteq t$ est prouvable dans EQ à partir de \mathcal{E} , noté $\mathcal{E} \vdash_{\mathsf{EQ}} s \doteq t$, ssi il existe une dérivation dans EQ se terminant sur $s \doteq t$ à partir de \mathcal{E} .

Théorème d'adéquation (Birkhoff, 1933)

- $\bullet \ \, \mathsf{Correction} : \mathsf{Si} \,\, \mathcal{E} \vdash_{\mathsf{EQ}} s \stackrel{.}{=} t \,\, \mathsf{alors} \,\, \mathcal{E} \models s \stackrel{.}{=} t \,;$
- Complétude : Si $\mathcal{E} \models s \doteq t$ alors $\mathcal{E} \vdash_{\mathsf{FQ}} s \doteq t$.

Exemple précédent

- $\mathcal{E} = x + 0 \doteq x, x + y \doteq y + x$;
- On veut démontrer que $\mathcal{E} \vdash_{\mathsf{FQ}} 0 + x \stackrel{.}{=} x$:

$$x + y \doteq y + x$$
 $x + 0 \doteq x \in \mathcal{E}$

$$0 + x \doteq x + 0 \qquad \qquad x + 0 \doteq x$$

$$0+x=x$$

Exemple précédent

- $\mathcal{E} = x + 0 \doteq x, x + y \doteq y + x$;
- On veut démontrer que $\mathcal{E} \vdash_{\mathsf{EQ}} 0 + x \stackrel{.}{=} x$:

$$x + y \doteq y + x \in \mathcal{E}$$

$$x + y \doteq y + x \qquad x + 0 \doteq x \in \mathcal{E}$$

$$0 + x \doteq x + 0 \qquad x + 0 \doteq x$$

$$0 + x \doteq x$$

Exemple précédent

- $\mathcal{E} = x + 0 = x, x + y = y + x$;
- On veut démontrer que $\mathcal{E} \vdash_{\mathsf{FQ}} 0 + x \stackrel{.}{=} x$:

$$x + y \doteq y + x \in \mathcal{E}$$

$$x + y \doteq y + x \qquad x + 0 \doteq x \in \mathcal{E}$$

$$0 + x \doteq x + 0 \qquad x + 0 \doteq x$$

$$0 + x \doteq x \qquad \text{trans}$$

Exemple précédent

- $\mathcal{E} = x + 0 \doteq x, x + y \doteq y + x$;
- On veut démontrer que $\mathcal{E} \vdash_{\mathsf{FQ}} 0 + x \stackrel{.}{=} x$:

$$\frac{x+y \doteq y+x \in \mathcal{E}}{\frac{x+y \doteq y+x}{0+x \doteq x+0}} \text{ subst} \qquad \begin{array}{c} x+0 \doteq x \in \mathcal{E} \\ x+0 \doteq x \end{array} \text{ trans}$$

Exemple précédent

- $\mathcal{E} = x + 0 = x, x + y = y + x$;
- On veut démontrer que $\mathcal{E} \vdash_{\mathsf{EQ}} 0 + x \stackrel{.}{=} x$:

Exemple précédent

- $\mathcal{E} = x + 0 = x, x + y = y + x$;
- On veut démontrer que $\mathcal{E} \vdash_{\mathsf{EQ}} 0 + x \stackrel{.}{=} x$:

$$\frac{x+y \doteq y + x \in \mathcal{E}}{\frac{x+y \doteq y + x}{0+x \doteq x + 0}} \text{ ax} \qquad \frac{x+0 \doteq x \in \mathcal{E}}{x+0 \doteq x} \text{ ax}$$

$$\frac{0+x \doteq x + 0}{0+x \doteq x} \text{ trans}$$

Faire le lien entre EQ et LK/LJ

Nouvelle formulation pour EQ

$$\frac{\forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash s \doteq t} \mathsf{ax}_{eq}$$

$$\frac{\Gamma \vdash s \doteq t}{\Gamma \vdash t \doteq s} \mathsf{refl} \qquad \frac{\Gamma \vdash s \doteq t}{\Gamma \vdash t \doteq s} \mathsf{sym}$$

$$\frac{\Gamma \vdash s \doteq t}{\Gamma \vdash s \doteq u} \mathsf{trans} \qquad \frac{\Gamma \vdash s \doteq t}{\Gamma \vdash u[s]_{p} \doteq u[t]_{p}} \mathsf{cont}$$

Remarques

- On ajoute un séquent (avec des équations et d'autres formules).
- Les équations sont explicitement (universellement) quantifiées.
- La règle ax_{eq} gère les instanciations.
- La règle subst est capturée par la règle axeq

4 □ > 4 ₱ > 4 0 0 0

Faire le lien entre EQ et LK/LJ

Ajout de règles à LK

$$\frac{\Gamma \vdash \Delta, s \doteq t \qquad \Gamma \vdash \Delta, P(s)}{\Gamma \vdash \Delta, P(t)} =_{\mathsf{right}}$$

$$rac{\Gamma dash \Delta, s \doteq t \qquad \Gamma, P(s) dash \Delta}{\Gamma, P(t) dash \Delta} =_{\mathsf{left}}$$

Ajout de règles à LJ

$$\frac{\Gamma \vdash s \doteq t \qquad \Gamma \vdash P(s)}{\Gamma \vdash P(t)} =_{\mathsf{right}}$$

$$\frac{\Gamma \vdash s \doteq t \qquad \Gamma, P(s) \vdash A}{\Gamma, P(t) \vdash A} =_{\mathsf{left}}$$

Faire le lien entre EQ et LK/LJ

Nouvelle formulation pour EQ

$$\frac{\forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash s \doteq t} \operatorname{ax_{eq}} \frac{}{\Gamma \vdash s \doteq s} \operatorname{refl}$$

Remarques

- Les règles $=_{right}$ et $=_{left}$ sont très puissantes.
- Les règles sym, trans et cont deviennent redondantes!
- En effet, il suffit de prendre l'égalité \doteq pour P.

Système LK_{FQ}

Règles concernant l'égalité

$$\frac{\forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash s \doteq t} \text{ax}_{eq}$$

$$\frac{\Gamma \vdash \Delta, s \doteq t \qquad \Gamma \vdash \Delta, P(s)}{\Gamma \vdash \Delta, P(t)} =_{right}$$

$$\frac{\Gamma \vdash \Delta, s \doteq t \qquad \Gamma, P(s) \vdash \Delta}{\Gamma, P(t) \vdash \Delta} =_{left}$$

Système LJ_{FQ}

Règles concernant l'égalité

$$\frac{\forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash s \doteq t} \text{ ax}_{eq}$$

$$\frac{\Gamma \vdash s \doteq t \qquad \Gamma \vdash P(s)}{\Gamma \vdash P(t)} =_{right}$$

$$\frac{\Gamma \vdash s \doteq t \qquad \Gamma, P(s) \vdash A}{\Gamma, P(t) \vdash A} =_{left}$$

Preuve dans LK_{EQ}/LJ_{EQ}

Exemple

- $\Gamma = \forall x.x + 0 \doteq x, \forall x, y.x + y \doteq y + x.$
- On veut démontrer que $\Gamma \vdash \forall x. P(0+x) \Rightarrow P(x)$.

Preuve dans LK_{EQ}/LJ_{EQ}

Exemple

- $\Gamma = \forall x.x + 0 \doteq x, \forall x, y.x + y \doteq y + x.$
- On veut démontrer que $\Gamma \vdash \forall x. P(0+x) \Rightarrow P(x)$.

$$\frac{ \frac{\Gamma \vdash x + 0 \stackrel{.}{=} 0 + x}{\Gamma \vdash x + 0 \stackrel{.}{=} x} \xrightarrow{\mathsf{aX}_{eq}} \frac{\mathsf{aX}_{eq}}{\Gamma \vdash x + 0 \stackrel{.}{=} x} \xrightarrow{\mathsf{eright}} \frac{\mathsf{aX}_{eq}}{\Gamma, P(0 + x) \vdash P(0 + x)} \underset{\mathsf{eright}}{=} \mathsf{ax}} = \frac{\Gamma, P(0 + x) \vdash P(x)}{\Gamma, P(0 + x) \vdash P(x)} \xrightarrow{\mathsf{eright}} \mathsf{ax}} = \mathsf{eright}}{\Gamma, P(0 + x) \vdash P(x) \xrightarrow{\mathsf{right}}} \mathsf{ax}$$

Optimisations de LK_{EQ}

Remplacement des règles $=_{right}$ et $=_{left}$ dans LK

$$\frac{\Gamma \vdash \Delta, P(s) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(t)} =_{\mathsf{right1}}$$

$$\frac{\Gamma \vdash \Delta, P(t) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(s)} =_{\mathsf{right2}}$$

$$\frac{\Gamma, P(s) \vdash \Delta \qquad \forall \vec{x}. s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(t) \vdash \Delta} =_{\mathsf{left}1}$$

$$\frac{\Gamma, P(t) \vdash \Delta \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(s) \vdash \Delta} =_{\mathsf{left2}}$$

Remarque

• La règle ax_{eq} devient redondante!

Optimisations de LK_{EQ}

Remplacement des règles $=_{right}$ et $=_{left}$ dans LK

$$\frac{\Gamma \vdash \Delta, P(s) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(t)} =_{\mathsf{right1}}$$

$$\frac{\Gamma \vdash \Delta, P(t) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(s)} =_{\mathsf{right2}}$$

$$\frac{\Gamma, P(s) \vdash \Delta}{\Gamma, P(t) \vdash \Delta} \quad \forall \vec{x}. s' \stackrel{\cdot}{=} t' \in \Gamma \quad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(t) \vdash \Delta} =_{\mathsf{left}1}$$

$$\frac{\Gamma, P(t) \vdash \Delta}{\Gamma, P(s) \vdash \Delta} \quad \forall \vec{x}. s' \doteq t' \in \Gamma \quad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(s) \vdash \Delta} =_{\mathsf{left2}}$$

Remarque

• La règle ax_{eq} devient redondante!

Optimisations de LK_{EQ}

Remplacement des règles $=_{right}$ et $=_{left}$ dans LK

$$\frac{\Gamma \vdash \Delta, P(s) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(t)} =_{\mathsf{right1}}$$

$$\frac{\Gamma \vdash \Delta, P(t) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(s)} =_{\mathsf{right2}}$$

$$\frac{\Gamma, P(s) \vdash \Delta \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(t) \vdash \Delta} =_{\mathsf{left1}}$$

$$\frac{\Gamma, P(t) \vdash \Delta \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(s) \vdash \Delta} =_{\mathsf{left2}}$$

Remarque

• La règle ax_{eq} devient redondante!

Optimisations de LK_{EQ}

Remplacement des règles $=_{right}$ et $=_{left}$ dans LK

$$\frac{\Gamma \vdash \Delta, P(s) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(t)} =_{\mathsf{right}1}$$

$$\frac{\Gamma \vdash \Delta, P(t) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(s)} =_{\mathsf{right2}}$$

$$\frac{\Gamma, P(s) \vdash \Delta \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(t) \vdash \Delta} =_{\mathsf{left1}}$$

$$\frac{\Gamma, P(t) \vdash \Delta}{\Gamma, P(s) \vdash \Delta} \quad \forall \vec{x}. s' \stackrel{.}{=} t' \in \Gamma \quad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(s) \vdash \Delta} =_{\mathsf{left2}}$$

Remarque

• La règle ax_{eq} devient redondante!

Optimisations de LK_{EQ}

Remplacement des règles $=_{right}$ et $=_{left}$ dans LK

$$\frac{\Gamma \vdash \Delta, P(s) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(t)} =_{\mathsf{right1}}$$

$$\frac{\Gamma \vdash \Delta, P(t) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash \Delta, P(s)} =_{\mathsf{right2}}$$

$$\frac{\Gamma, P(s) \vdash \Delta \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(t) \vdash \Delta} =_{\mathsf{left1}}$$

$$\frac{\Gamma, P(t) \vdash \Delta}{\Gamma, P(s) \vdash \Delta} \quad \forall \vec{x}. s' \doteq t' \in \Gamma \quad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(s) \vdash \Delta} =_{\mathsf{left2}}$$

Remarque

• La règle ax_{eq} devient redondante!

Optimisations de LJ_{EQ}

Remplacement des règles $=_{right}$ et $=_{left}$ dans LJ

$$\frac{\Gamma \vdash P(s) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash P(t)} =_{\mathsf{right1}}$$

$$\frac{\Gamma \vdash P(t) \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash P(s)} =_{\mathsf{right2}}$$

$$\frac{\Gamma, P(s) \vdash A \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(t) \vdash A} =_{\mathsf{left}1}$$

$$\frac{\Gamma, P(t) \vdash A \qquad \forall \vec{x}.s' \doteq t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(s) \vdash A} =_{\mathsf{left2}}$$

Remarque

• La règle ax_{eq} est toujours redondante.

Système LK_{FQ} (version finale et optimisée)

Règles concernant l'égalité

$$\frac{\Gamma \vdash s \stackrel{.}{=} s}{\Gamma \vdash \Delta, P(s)} \quad \forall \vec{x}.s' \stackrel{.}{=} t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t') \\
\Gamma \vdash \Delta, P(t) \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma \vdash \Delta, P(t) \qquad \forall \vec{x}.s' \stackrel{.}{=} t' \in \Gamma \qquad s = \sigma(s'), t = \sigma(t') \\
\Gamma \vdash \Delta, P(s) \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(t) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(t) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s \in \Gamma \quad s = \sigma(s'), t = \sigma(t') \\
\Gamma, P(s) \vdash \Delta \qquad \exists r \in \Gamma \quad s \in$$

Système LJ_{EQ} (version finale et optimisée)

Règles concernant l'égalité

$$\frac{\Gamma \vdash S \stackrel{.}{=} s}{\Gamma \vdash P(s)} \quad \forall \vec{x}.s' \stackrel{.}{=} t' \in \Gamma \quad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash P(t)} =_{\mathsf{right1}}$$

$$\frac{\Gamma \vdash P(t)}{\Gamma \vdash P(s)} \quad \forall \vec{x}.s' \stackrel{.}{=} t' \in \Gamma \quad s = \sigma(s'), t = \sigma(t')}{\Gamma \vdash P(s)} =_{\mathsf{right2}}$$

$$\frac{\Gamma, P(s) \vdash A}{\Gamma, P(t) \vdash A} \quad \forall \vec{x}.s' \stackrel{.}{=} t' \in \Gamma \quad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(t) \vdash A} =_{\mathsf{left1}}$$

$$\frac{\Gamma, P(t) \vdash A}{\Gamma, P(s) \vdash A} \quad \forall \vec{x}.s' \stackrel{.}{=} t' \in \Gamma \quad s = \sigma(s'), t = \sigma(t')}{\Gamma, P(s) \vdash A} =_{\mathsf{left2}}$$

Preuve dans LK_{EQ}/LJ_{EQ}

Exemple

- $\Gamma = \forall x.x + 0 \doteq x, \forall x, y.x + y \doteq y + x.$
- On veut démontrer que $\Gamma \vdash \forall x. P(0+x) \Rightarrow P(x)$.

$$\frac{\frac{\Gamma, P(x) \vdash P(x)}{\Gamma, P(x + 0) \vdash P(x)}}{\frac{\Gamma, P(0 + x) \vdash P(x)}{\Gamma, P(0 + x) \Rightarrow P(x)}} =_{\text{left2}}, \sigma_{2}$$

$$\frac{\Gamma, P(0 + x) \vdash P(x)}{\Gamma \vdash P(0 + x) \Rightarrow P(x)} \Rightarrow_{\text{right}}$$

$$\frac{\Gamma \vdash \forall x. P(0 + x) \Rightarrow P(x)}{\Gamma \vdash \forall x. P(0 + x) \Rightarrow P(x)}$$

 $\sigma_1 = [x/x, 0/y], \ \sigma_2 = [x/x].$

Preuve dans LK_{EQ}/LJ_{EQ}

Exemple

- $\Gamma = \forall x.x + 0 \doteq x, \forall x, y.x + y \doteq y + x.$
- On veut démontrer que $\Gamma \vdash \forall x. P(0+x) \Rightarrow P(x)$.

$$\frac{\frac{\Gamma, P(x) \vdash P(x)}{\Gamma, P(x + 0) \vdash P(x)}}{\frac{\Gamma, P(0 + x) \vdash P(x)}{\Gamma, P(0 + x) \vdash P(x)}} =_{\text{left2}}, \sigma_{2}$$

$$\frac{\Gamma, P(0 + x) \vdash P(x)}{\Gamma \vdash P(0 + x) \Rightarrow P(x)} \Rightarrow_{\text{right}}$$

$$\frac{\Gamma \vdash \forall x. P(0 + x) \Rightarrow P(x)}{\Gamma \vdash \forall x. P(0 + x) \Rightarrow P(x)}$$

$$\sigma_1 = [x/x, 0/y], \ \sigma_2 = [x/x].$$

Équivalence entre les règles de LJ_{EQ} et les tactiques de Coq

Règle de LJ _{EQ}	Tactique Coq
refl	reflexivity
$=_{right1}$	rewrite <- id
$=_{right2}$	rewrite id
$=_{left1}$	rewrite <- in id
$=_{left2}$	rewrite in id

- Ne pas oublier que Coq fonctionne en abductif.
- Par défaut, les réécritures sont gauche-droite.
- La réécriture droite-gauche s'indique explicitement avec rewrite <-.

```
Un exemple simple
Coq < Parameter E : Set.
E is assumed
Coq < Parameters a b : E.
a is assumed
b is assumed
Coq < Parameter P : E -> Prop.
P is assumed
```

Coq < Axiom eq : a = b.

eq is assumed

```
Un exemple simple
Coq < Goal P(b) \rightarrow P(a).
1 subgoal
   P b \rightarrow P a
Coq < intro.
1 subgoal
  H : P b
   Pa
```

Coq < assumption.
No more subgoals.</pre>

```
Sens de la réécriture
Coq < Goal P(a) \rightarrow P(b).
1 subgoal
   Pa \rightarrow Pb
Coq < intro.
1 subgoal
  H : P a
   P b
```

Sens de la réécriture

```
Coq < rewrite <- eq.

1 subgoal

H : P a

-----
P a

Coq < assumption.

No more subgoals.
```