MovieLens Recommendation Systems

How do companies know what you like?

Recommendation Systems:

MovieLens Data

This dataset describes 5-star rating and free-text tagging activity from a movie recommendation service called MovieLens.

It contains 100836 ratings across 58098 movies based on 610 users

Our Model

Popularity Based Recommendation

- Non-personalized recommendations for when we have no data!
- We set Item Popularity as a baseline as it avoids creating niches. Users might want to be suggested movies that are popular even though they do not match their taste 100%

The winners of the Netflix Prize Competition used item popularity as a ranking function. As it enables to find a personalized ranking function rather than just item popularity, to satisfy taste of members with varying tastes.

Content-Based Preprocessing

- Ratings Flagged data issues to try out various models
 - Sampling
 - Guy in a bad mood
 - Transform Ratings
- Movies Parse title, years, dummified genres,
- **User** Demographics, mapped zip code to coordinates
- User/Movies Low usage: 7.38% (Ohsoso troll 13%)

Next Steps: Web crawling to get more movie information

Content-Based Filtering

- Lazy Predict: Getting intuition of what works best
- **Preprocessing:** Scaling & Dummifying variables
- **Pipeline & Tuning:** Optimizing hyperparameters with 5-fold CV

Black Sheeps

- DBSCAN with:

- User Demographics
- Preferred Genre

Item-Based KNN:

Recommending 'weird' people similar things to what they like

Collaborative Filtering

We implemented **Singular Value Decomposition (SVD)** model since it was giving us the lowest RMSE after hyperparameter tuning compared to other collaborative filtering models like KNN inspired ones.

RMSE

NormalPredictor	1.42
BaselineOnly	0.87
SlopeOne	0.89
CoClustering	0.94
KNNBasic	0.93
KNNWithMeans	0.87
KNNWithZScore	0.87
KNNBaseline	0.86
SVD	0.85

Hybrid Recommendation

Filtering (SVD)

Content-Based (Random Forest) 35%

Weighted Hybrid RecommendationRMSE: 0.84

RMSE

Collaborative Filtering 0.856962

Content-Based 0.888943

Hybrid Approach 0.845025

nDCG @ k

- Range: 0-1

nDCG@k 4.7 5 4.6 3 Rank Switch with true ratings Prediction 4.2 4 MODEL for User 3.5 4 3.1 5 Normalize by Replicate for each Calculate for k Calculate DCG Score Dividing by user and take numbers of Ideal Ranking recommendations average $DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{log_2(i+1)}$

Let's try it together!

Future Improvements

- Cold Start: resolve "new items" issue
- Find optimal minimal number of watched movies so that a user stops being new
- Let our model decide which users are black sheep!
- Combining Popularity Based and Content Based for diversity
- Linearly blend SVD and RBM to reduce error
- Display percentage of how much the user might enjoy a recommended movie

THANKS!

Any questions?

