CMPEN 431 - Project 2 Design Space Exploration Report Prapti Panigrahi (pmp5425)

1. Framework Description:

The provided framework allowed rapid exploration of the design space with minimum simulation time. We were introduced to an architectural simulator called Simple Scalar that enabled the exploration of multiple configurations with respect to two metrics - Energy and Performance (time). Correlation of the metrics (edp and execution time) with each parameter from the 18 dimensions was evaluated, observing how the performance (and energy) metrics change with the change in each dimension value. The framework enabled us to design efficient heuristics instead of brute force exhaustive search. Further, pre-marking many design configurations invalid helped quicken the process of exploration.

2. Design Points Chosen by DSE:

- a) Performance (Best Time)
 - i) bestTimeConfig: 0 0 0 2 0 8 0 0 3 2 0 0 4 3 0 0 0 0
 - ii) bestEDPConfig 0 0 0 2 0 8 0 0 3 1 0 0 4 3 0 0 0 0

b) Energy Efficiency

- i) bestTimeConfig: 0 0 0 2 0 6 2 0 3 1 0 0 4 3 2 0 0 0
- ii) bestEDPConfig: 0 0 0 2 0 6 1 0 3 1 0 0 4 3 2 0 0 0

A1. Table

Parameter	Performance	EDP
width	Value = 1 Why = Pipelining leads to higher IPC, thus reducing time. Multi-width pipelines have more complications and a lot more data hazard checks	Value = 1 Why = Pipelining leads to higher IPC, thus reducing time. Multi-width pipelines have more complications and a lot more data hazard checks
scheduling	Value = In-Order Why = OOO leads to a faster execution	Value = In-Order Why = OOO executes every instruction greedily, thus leading to a faster execution
11block	Value = 8 Why = Higher block size means lower miss rate.	Value = 8 Why = Higher block size means lower miss rate.
dl1sets	Value = 128 Why = Optimal number of data sets reduces miss rates	Value = 128 Why = Optimal number of data sets reduces miss rates
dl1assoc	Value = 1 Why = Higher data associativity improves Cache miss rates	Value = 1 Why = Higher data associativity improves Cache miss rates
il1sets	Value = 8192 Why = More Instruction Sets increases IPC	Value = 8192 Why = More Instruction Sets increases IPC
il1assoc	Value = 1 Why = Low value chosen as num sets is high	Value = 1 Why = Low value chosen as num sets is high
ul2sets	Value = 256 Why = decreases Global Miss Rate	Value = 256 Why = decreases Global Miss Rate
ul2block	Value = 128 Why = reduces Global AMAT	Value = 128 Why = Global AMAT
ul2assoc	Value = 4 Why = leads to lesser Global miss rates	Value = 2 Why = leads to lesser Global miss rates
replacepolicy	Value = LRU Why = Multiple data blocks and instructions, once used, would be used again with high probabilities.	Value = LRU Why = Multiple data blocks and instructions, once used, would be used again with high probabilities.
fpwidth	Value = 1 Why = More ALUs allow extraction of more ILP and increase performance	Value = 1 Why = More ALUs allow extraction of more ILP and increase performance
branchsettings	Value = -bpred comb -bpred: comb 1024 Why = Branch Prediction takes care of control hazards, thus increasing performance.	Value = -bpred comb -bpred: comb 1024 Why = Branch Prediction takes care of control hazards, thus increasing performance.
ras	Value = 8 Why = Higher the value, lower the miss penalty	Value = 8 Why = Higher the value, lower the miss penalty
btb	Value = (128 – 16) Why = Larger btb has lesser misses	Value = (128 – 16) Why = Larger btb has lesser misses

A.

5. A more sophisticated heuristic:

In our current heuristic, we change one parameter at a time and see its effect on a global metric. The receptive field of this parameter (i.e., the effect it has on the global metric might be unnoticable). So, a better and more sophisticated heuristic might be to change two or more parameters at a time, based on a pre-defined prior, which groups the parameters that have the highest priority of bringing maximum change in the global heuristic. The convergence of such a method might be faster.

6. Two new insights gained:

- a) I got to learn about SimpleScalar simulator and how it is efficiently used in design space exploration
- b) How to choose a heuristic to efficiently perform design space exploration instead of an exhaustive search.