1 NEGAÇÃO DE SENTENÇAS QUANTIFICADAS

Considere o conjunto universo *H* dos seres humanos. As expressões:

- 1. $(\forall x)(x \text{ fala francês})$
- 2. $(\exists x)(x \text{ foi a Lua})$

são proposições que, em linguagem comum, podem ser enunciadas como:

- 1. "Toda pessoa fala francês"
- 2. "Alguém foi a Lua"

Estas proposições podem ser negadas da seguinte forma:

- 1. "Nem toda pessoa fala francês"
- 2. "Ninguém foi a Lua"

De modo geral, a **negação** da proposição $(\forall x \in A)(p(x))$ é equivalente a **afirmação** de que, **para ao menos um** $x \in A$, p(x) é falsa ou $\sim p(x)$ é verdadeira.

Analogamente, a **negação** da proposição $(\exists x \in A)(p(x))$ é equivalente a **afirmação** de que, **para todo** $x \in A$, p(x) é falsa ou $\sim p(x)$ é verdadeira.

Assim,

1. Uma sentença quantificada com quantificador universal, $(\forall x \in A)(p(x))$, é negada assim: substitui-se o quantificador universal pelo existencial e nega-se p(x), obtendo-se:

$$(\exists x)(\sim p(x))$$

2. Uma sentença quantificada com quantificador existencial, $(\exists x \in A)(p(x))$, é negada assim: substitui-se o quantificador existencial pelo universal e nega-se p(x), obtendose:

$$(\forall x)(\sim p(x))$$

Exemplos:

$$1. \ (\forall x \in \mathbb{R})(x+3=5)$$

$$\sim$$
: $(\exists x \in \mathbb{R})(x+3 \neq 5)$

2.
$$(\forall x \in \mathbb{R})(x(x+1) = x^2 + x)$$

$$\sim : (\exists x \in \mathbb{R})(x(x+1) \neq x^2 + x)$$

- 3. Todo losango é um quadrado
 - ~: Existe um losango que não é um quadrado

4.
$$(\forall n \in \mathbb{N})(n+2>8)$$

$$\sim$$
: $(\exists n \in \mathbb{N})(n+2 \le 8)$

5.
$$(\exists x \in \mathbb{R})(x = x)$$

$$\sim: (\forall x \in \mathbb{R})(x \neq x)$$

6.
$$(\exists x \in \mathbb{R})(3x - 5 \neq 0)$$

$$\sim$$
: $(\forall x \in \mathbb{R})(3x - 5 = 0)$

7.
$$(\exists x \in \mathbb{R})(|x| \ge 0)$$

$$\sim$$
: $(\forall x \in \mathbb{R})(|x| < 0)$

1.1 Contra-Exemplo

Para mostrar que uma proposição da forma $(\forall x \in A)(p(x))$ é **falsa** basta mostrar que a **negação** $(\exists x \in A)(\sim p(x))$ é **verdadeira**, isto é, que existe **pelo menos um** elemento $x_0 \in A$ tal que $p(x_0)$ é uma proposição **falsa**. O elemento x_0 recebe o nome de **contra-exemplo**.

Exemplos:

1. A proposição $(\forall x \in \mathbb{N})(2^n > n^2)$) é **falsa**.

Contra-exemplo: n=2. Note que $2^2=2^2$. Observe que x=3, x=4 também são contra-exemplos.

2. A proposição $(\forall x \in \mathbb{R})(|x| \neq 0)$ é **falsa**.

Contra-exemplo: x = 0. Note que |0| = 0.

3. A proposição $(\forall x \in \mathbb{R})(x^2 = x)$ é falsa.

Contra-exemplo: x = 3. Note que $3^2 \neq 3$.

2 COMO NEGAR PROPOSIÇÕES

Negação da conjunção

A **negação** de $p \land q$ é a proposição $\sim p \lor \sim q$, pois

$$\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$$

Exemplos:

1. $p: a \neq 0 \text{ e } q: b \neq 0$

 $p \land q : a \neq 0 \land b \neq 0$

 $\sim (p \land q) : a = 0 \lor b = 0$

2. *p* : João é estudante e *q*: Maria é atriz

 $p \land q$: João é estudante e Maria é atriz

 $\sim (p \land q)$: João não é estudante ou Maria não é atriz.

Negação da disjunção

A **negação** de $p \lor q$ é a proposição $\sim p \land \sim q$, pois

$$\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$$

Exemplos:

1. p : O triângulo ABC é isósceles e q : O triângulo ABC é equilátero

 $p \lor q$: O triângulo *ABC* é isósceles ou é equilátero

 $\sim (p \lor q)$: O triângulo ABC não é isósceles e não é equilátero

2. *p* : João é estudante e *q* : Maria é atriz

 $p \lor q$: João é estudante ou Maria é atriz

 $\sim (p \land q)$: João não é estudante e Maria não é atriz.

Negação da condicional

A **negação** de $p \rightarrow q$ é a proposição $p \land \sim q$, pois

$$\sim (p \rightarrow q) \Leftrightarrow p \land \sim q$$

Exemplos:

1.
$$p: 2 \in \mathbb{Z}$$
 e $q: 2 \in \mathbb{Q}$

$$p \rightarrow q$$
: Se $2 \in \mathbb{Z}$ então $2 \in \mathbb{Q}$

$$\sim (p \rightarrow q) : 2 \in \mathbb{Z} \land 2 \notin \mathbb{Q}$$

2. p : João é estudante e q: Maria é atriz

 $p \rightarrow q$: Se João é estudante então Maria é atriz

 $\sim (p \rightarrow q)$: João é estudante e Maria não é atriz.

Negação da bicondicional

A **negação** de $p \leftrightarrow q$ é a proposição $(p \land \sim q) \lor (\sim p \land q)$, pois

$$\sim (p \leftrightarrow q) \Leftrightarrow (p \land \sim q) \lor (\sim p \land q)$$

Exemplos:

1.
$$p:5^2=(-5)^2$$
 e $q:5=-5$

$$p \leftrightarrow q: 5^2 = (-5)^2$$
 se e somente se $q: 5 = -5$

$$\sim (p \leftrightarrow q) : (5^2 = (-5)^2 \text{ e } 5 \neq -5) \text{ ou } (5^2 \neq (-5)^2 \text{ e } 5 = -5)$$

2. p : João é estudante e q: Maria é atriz

 $p \leftrightarrow q$: João é estudante se e somente se Maria é atriz

 $\sim (p \leftrightarrow q)$: João é estudante e Maria não é atriz ou João não é estudante e Maria é atriz.