Resolução da Lista 3 - Análise de Dados Longitudinais

Helen Lourenço e Vitor Kroeff

Questão 1

a)

b)

```
exp(ajuste_gee$coefficients)
```

```
(Intercept) month trt:month 0.5608934 0.8425524 0.9252438
```

O coeficiente β_2 está relacionado ao efeito do tempo no grupo de tratamento A (ou controle). O expoente e^{β_2} representa uma razão de chances. Essa razão de chances indica que, no grupo A, o coeficiente está associado a uma redução na probabilidade de ocorrência de onicólise com o passar dos meses.

c)

O coefiente β_3 está associado a interação entre o tratamento B e o tempo em meses. Assim como na alternativa anterior, vemos que $e^{\beta_3}=0,925$ está assciado a uma reduzação das chances de ocorrência de onicólise com o passar dos meses, porém uma redução menor que a do grupo controle.

d)

Podemos observar o summary do modelo ajustado como sendo:

```
summary(ajuste_gee)
```

```
Call:
geeglm(formula = y ~ trt * month - trt, family = binomial(link = "logit"),
   data = dados, id = id, corstr = "exchangeable")
Coefficients:
                              Wald Pr(>|W|)
           Estimate Std.err
(Intercept) -0.57822  0.13041 19.661 9.25e-06 ***
month
           -0.07770 0.05379 2.086
trt:month
                                     0.149
              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Correlation structure = exchangeable
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
              1.088 0.5265
 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
       0.4217 0.2203
Number of clusters:
                    294 Maximum cluster size: 7
```

Com base no p-valor associado ao β_3 , não parece ter uma diferençã significativa entre os tratamentos aplicados nos Grupos A e B. Também com base nos coeficientes do modelos, podemos observar que essa chance de desnvolver uma onicólise sereve diminui com o passar dos meses.

e)

```
ajuste_misto <-lme4::glmer(
  formula = y ~ month + trt:month + (1 | id),
  family = binomial(link = "logit"),
  data = dados)</pre>
```

f)

Como o efeito aleatório está apenas no intercepto, vimos a seguinte relação aproximada entre entre os coeficientes do modelo marginal e aqueles do modelo de efeitos aleatórios.

$$\beta_M = \frac{\beta_{EA}}{\sqrt{1 + \frac{16\sqrt{3}}{15\pi}}\sigma_b^2}$$

```
var_bi <- lme4::VarCorr(ajuste_misto)
var_bi</pre>
```

```
id (Intercept) 4.54

var_bi <- sqrt(as.numeric(var_bi)) # Conversão para númerico
fator <- sqrt(1 + (16*sqrt(3)/(15*pi)*var_bi))
fator</pre>
```

[1] 1.916

month

month:trt

Groups Name

Podemos comparar as magnitudes dos efeitos da seguinte forma:

Std.Dev.

Podemos observar estimativas maiores para o modelo misto em relação ao GEE, mas com o mesmo sinal, indicando uma concordância dos efeitos das variáveis.

2.309

1.873

-0.171 0.843 0.000 -0.396 0.673 0.00

-0.078 0.925 0.149 -0.146 0.865 0.03

g)

```
knitr::kable(
exp(summary(ajuste_misto)$coef))
```

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	0.0707	2.031	0.0238	1.00
month	0.6733	1.047	0.0002	1.00
month:trt	0.8646	1.069	0.1134	1.03

A interpretação é muito próxima a do modelo GEE, onde β_2 está associada a variação no mês no grupo A (controle), porém está sendo levado em conta a variação de cada paciente do grupo A por conta do efeito aleatório no intercepto.

- h)
- i)
- j)

Questão 2

a)

b)

Nos ajustes realizados na alternativa anterior $Y_{ij}(response)$ segue uma distribuição Normal com diferentes formas de estimar a matriz de coreelção. Dentre as ajustas estão (em ordem):

- Independete: Nenhuma correlação entre as observações repetidas.
- Simetria Composta: Todas as observações dentro de um indivíduo têm a mesma correlação.
- AR(1): As observações mais próximas no tempo têm maior correlação.
- Não Estruturada: A correlação entre cada par de observações é estimada de forma independente.

c)

Podemos comparar cada um dos modelos ajustados na alternativa a) e comparar com a sua respectiva estrutura do modelo gls() da seguinte forma:

Independente

Para os modelos com matriz de correlação independentes, podemos observar que

```
dados_rats <- na.omit(dados_rats)
summary(ajuste_gee_ind)$coefficients # Ajuste GEE</pre>
```

```
Estimate Std.err Wald Pr(>|W|)
(Intercept) 63.049929 1.186235 2825.059 0.0000
group 0.243826 0.678895 0.129 0.7195
time 0.203898 0.014009 211.857 0.0000
group:time -0.008235 0.008066 1.042 0.3073
```

```
ajuste_gls_ind <- gls(response ~ group * time, data = dados_rats)
summary(ajuste_gls_ind) # Ajuste GLS</pre>
```

```
Generalized least squares fit by REML
  Model: response ~ group * time
  Data: dados_rats
   AIC BIC logLik
  1203 1221 -596.7
```

Coefficients:

```
Value Std.Error t-value p-value (Intercept) 63.05 1.6633 37.91 0.0000 group 0.24 0.8163 0.30 0.7654 time 0.20 0.0217 9.39 0.0000 group:time -0.01 0.0108 -0.76 0.4476
```

Correlation:

```
(Intr) group time
group -0.924
time -0.969 0.902
```

group:time 0.889 -0.969 -0.924

Standardized residuals:

```
Min Q1 Med Q3 Max -2.57774 -0.67881 0.04173 0.61316 2.60110
```

Residual standard error: 2.511

Degrees of freedom: 252 total; 248 residual

d)

Consideramos o ajuste ajuste_gee_unstructured (Não Estruturada), como o mais adequado aos dados. abaixos temos o resultado do summarydo modelo.

summary(ajuste_gee_unstructured)\$coefficients

```
Estimate Std.err Wald Pr(>|W|)
(Intercept) 70.55828 2.35043 901.157 0.00000
group -2.50386 1.05934 5.587 0.01810
time 0.08166 0.04398 3.448 0.06335
group:time 0.03421 0.01848 3.428 0.06410
```

Com base nos resultados, podemos observar que as variáveis time e interação de tempo e grupo (group::time), não são significativas a um nível de 5%. Mas podemos ver que o efeito de grupo é significativo.

Questão 3

a)

```
ajuste_misto_intercept <- lme4::lmer(response ~ group*time + (1|subject), data = dados_rats)
ajuste_misto_tempo <- lme4::lmer(response ~ group * time + (1 + time | subject), data = dados</pre>
```

Ambos os modelos ajustado assumem que \$ Y_{ij}|b_i N(,)\$ e que os $b_i(b_{0i},b_{1i}) \sim N(0,\Sigma)$. Onde b_{0i} é o efeito aleatório do intercepto e b_{1i} do tempo.

b)

Nos modelos ajustados no item a) temos a seguinte relação de parâmetros:

Table 2: Modelos Mistos

Modelo	Efeitos fixos	Efeitos aleatórios	Total de parâmetros
ajuste_misto_intercept	4	2	6
$ajuste_misto_tempo$	4	4	8