

Data struct 1. store		find Key	B57 041	
2. Support		insertion. deletion	0(h)	
	=> (omplex	e binary searc	ch tree	h-> min al
= Problem:	after	insertion or	deletion -	> no longer
	return	10 complete	BS7 : 0	Cn)
s (005er (0		Balenced b		
	$h_L - h_r \leq $ $BB \leq T$ v	balance r HVL Tr.) f
AVL Tree:				
Leinma: A	balanced b	binary tree with	n nodes v	nust have
P1-00-1.	height of			6
n	1y BB7 of ≥ ch	height h has h \(\langle \langle \langle n \)	at (past	c" hodes

n(h)	= #	nodes in	the smallest	t BBT uf	height h.
n(1)	=1 h(2) = 3) 113)=	4 n(4)	= 7 = h(3)+n(2)+1=7.
0	3	0		0	
			V		
	= n/h-1	10	2) +1 h	>2. nh.	$\approx (\frac{\sqrt{3}+1}{3})^{h}$.
, ,	h < 69,	618			
Rotation	SI	abtree most	и.	X .	
	, u	haht	1-otation		
		Aesinh led	\longrightarrow $/\mathcal{E}$		
	\ / \		out most	B1 000000	-)
			change 3		Divide a c+la
ř-J	B57:=>	A < V < 1	3 < n < c	night > 14	main B(T
Insertio					miled balanced)
2	insert		ST) [hl-hr]	€ > .
		() 1 × 1			

.

Ll 1015e

extended version D: NIL external nucles 0: internal modes Paths have disparity lower than twice. A red black Tree is a BST whose extended version satisfies the following properties. (1) node color: red or black. (2) root is black. (3) (eaves (NIL) are black. (4) Children of red must be block => red << block (5) -X, for each node v, all descending paths from v to Leaves contain the same number of black nodes (excluding v)

Sblack height of v: bhcv) $(4) + (5) = h(7) \in 2h(7)$ $h(7) \in 2h(7)$ $h(7) \in 2h(7)$ $h(7) \in 2h(7)$ Lemma: rate ~ (and r is less than twice, so A RBT (in extended version) with n internal modes
has height of out most 2 (292 (nH) Proof: for uET

Define: Tu: size (7u) = # internal nodes

	bh(n)
Will show	size (Tu) > 2 bh(n) -1 for any ux
	if true
	Size (T) > 2 bh (T) => bh (T) < 692 (n+1)
	$=>h(7) \leq 2 lg_2(n+1)$
Induction:	1 2 2 0 J2 0 141)
Base case	h(Tu) = 0
	U: D Size (Tu) =0 bh(u) =0
	size (7h) > 2 bh(h) -1
Inductive hyp	othesis;
Assume	e that for an Tu with hiTu) EK
Sizo (e that for an Tu with h(Tu) EK (Tu) >2 bh(n) -1
Inductive ste	ep when h(Tu) = K+1
27/0(0(21/0) 3/0	
\mathcal{U}	
Size (Tu	u) = 1+ size (TV1) + size (TV2)
(hypothesis)	
bh(Vi) = bh(V) - 1 u is b	red
bh(Vi): bh(V)-1 uisb	black 2 2'2
	black = 2 bh (u) -1

Insertion:		
1. inse	ot.	
2. mark	the new node red.	
	P	
	lefichild sight child	
4/5	letachild sight child	
(ase 1:	sibling of u is red.	
	mark pas red mark v and sibling as black.	
N	as black.	
V	part sinith	
	diffrent cen9th	
<i>a</i>)	P is toot, mark P as black. done.	
<i>b</i>)	parent of Pis plack, done.	
(C)	parent et Pis red, viviation goes injuards	
	sibling of u is blank.	
1	P. 1 v is left child	
V Z		
	L, votation V DP	
V O A	and change	
A / AB	and change A B (1)	

V ((lower)

doletion	do	9n)		3						
	rota	tions	J.	vta fion)					