Last day of class: Dec 8
\$ 6.4. Swong Induction
Swategy: To provid a goal: Une Pins. prove: Uke N Cken, Piks I-> Pins.
n=0: (Uk<0, P(k))-> Pw). => True for n=0.
Empty => True True
n=1: (VKCI, PLKI) -> PUI) => ((k=u, PLK)) -> PUI) true.
n=2 (YK<2, P(K)) > P(2) => ((KC {0,1}, P(K)) > P(2).
Thm 6-4.1 (Division Algorithum):
Ymt 2t, yn 6N, 3 g, r 6 N such that no gmar, r 6 [0, m).
Proof: Let mbt, We use strong induction on n, Let now,
and assume for all Ken, there exist q, r EN, k=qmor arem.
Case 1: ncm: then n=0·m+n so g=0, r=ncm.
Case 2: nom: by inducive hyposis, q', r', n' 62 such that
nom: gimer, p'em. Then h= (g'+1)mor',
so take q=q't1 and r=r'
Recall: nol is prime iff - Jat N, IboN (neab nacnaben)
Thin 6-4.2: Yn>1 is either a prime or a graduit of prime.
Proo7: We use strong induction on n.
Let No1: Suppose that for all k with 16 ks n, k 25
either prime or a product of primes.
It n 2> prime, ne're done.
In n is not done: there exist a, but such that ab = n, acn
Since acl, n), bell, n), So by the induction hypothesis.

a, b are either or a product of primes. In any case,
habas a product of primes 1.
Thm 6-4.4: (well-ordered principle): Every non-empty set of
natural number has a smallest element.
Proof: les & EN, We'll prove by conntraposeine.
& does not has a smallest element. We'll show that s = Ø.
i.e. UnEN (ngs). We'll use Strong induction.
Assume Uken (k&s). The congrapositive is 27 kes, nek
Therefore, if n 65, it is the smallest element in S.
Bore in the assumption, & is enpry. not.
En: Every ge Q' can be written m/n such that m, nE 2th having
no common divisor > 1.
Proof = Les q6 GeT, Les S= {met+ Inex+ q= mn}.
This is non-empty, so it has a smallest element m,
then q= mh for some not,
If m/n is not in lonest term, then 2d>1 such that dlm,
dln, Bout then q= m/d, m/d= 2t, n/d= 2t, So m/d ts.
but m/d es, it is a contradiction.