

Második forduló, 2023. január 11.

magicforest • HU

Varázserdő (magicforest)

A csodaszarvas egy messzi-messzi varázserdőben él, ahol szeret *varázssétákat* tenni az ösvények mentén. A feladatod az lesz, hogy meghatározd, hány különböző *varázsséta* közül választhat.

1. ábra. A szarvas éppen tervezi a sétát.

Az erdőben N darab tisztás van (1-től N-ig számozva), illetve M darab ösvény (1-től M-ig számozva), melyek végpontjai tisztások. Az i. ösvény végpontjainak sorszáma legyen a_i és b_i , az ösvény varázsértéke pedig c_i .

Egy séta mindig egy tisztáson kezdődik, keresztülhalad bizonyos tisztásokon (egymást követő tisztások között mindig egy ösvényt bejárva), és egy tisztáson végződik. Egy tisztást többször is érinthet. A séta hossza a bejárt ösvények száma.

Egy k hosszú sétát varázssétának nevezünk, ha a bejárt ösvények varázsértékeit rendre m_1, m_2, \ldots, m_k -val jelölve az alábbiak teljesülnek:

- $k \ge 1$;
- $m_i + 1 = m_{i+1}$ minden $1 \le i \le k 1$ esetén.

Két varázsséta különböző, ha a bejárt ösvények sorozata különböző.

Írj programot, amely megadja a különböző varázsséták számát. Mivel egy ilyen varázslatos helyen ez a szám nagyon nagy is lehet, az eredményt modulo $10^9 + 7$ kell kiírni.

Bemenet

Az első sor két egész számot tartalmaz, N és M értékét.

A következő M sorban soronként 3 szám szerepel: a_i , b_i és c_i , ahol a_i és b_i az i. ösvény végpontjai, c_i pedig a varázsértéke.

Kimenet

Egyetlen sorban egy egész számot kell kiírni: a különböző varázsséták számát modulo $10^9 + 7$.

magicforest 1. oldal

A modulo művelet $(a \mod m)$ C++/Python nyelven (a % m) formában írható. Az egész számok túlcsordulás-ának elkerülése érdekében ne feledd, hogy az összes részeredményt csökkentsd a mod művelettel, ne csak a végeredményt!

Megjegyzés: ha $x < 10^9 + 7$, akkor a 2-szerese belefér a C++ int típusába.

Korlátok

- $2 \le N \le 500\,000$.
- $1 \le M \le \min\left(\frac{N(N-1)}{2}, 10^6\right)$.
- $1 \le a_i \ne b_i \le N$ minden $i = 1 \dots M$ esetén.
- $1 \le c_i \le 10^9$ minden $i = 1 \dots M$ esetén.
- Bármely két tisztást legfeljebb egy ösvény köt össze.

Pontozás

- 1. Részfeladat (0 pont) Példák.
 - <u>=</u>8888
- 2. Részfeladat (7 pont) M = N 1 és $a_i = i$ és $b_i = i + 1$ minden $i = 1 \dots N 1$ esetén.
- 3. Részfeladat (9 pont) $c_i \leq 3$ minden $i = 1 \dots M$ esetén.
- 4. Részfeladat (14 pont) $N \le 22$ és $M \le 22$.
- 5. Részfeladat (20 pont) $N \le 1000$ és $M \le 5000$.
 - *88888*
- **6. Részfeladat** (50 pont) Nincs további megkötés.
 - **8**|**8**|**8**|**8**|

Példák

bemenet	kimenet
	10
4 4	10
1 2 1	
2 3 2	
3 4 3	
1 3 2	
4 3	5
1 3 3	
3 4 2	
3 2 1	
3 3	6
1 2 1	
2 3 2	
3 1 3	

magicforest 2. oldal

Magyarázat

Az első tesztesetben 10 varázsséta van.

- 1 hosszúak: 1-2, 2-3, 3-1, 3-4;
- 2 hosszúak: 1-2-3, 2-1-3, 2-3-4, 1-3-4;
- 3 hosszúak: 1-2-3-4, 2-1-3-4.

Vigyázz: a definíció szerint a 2-1 varázsséta nem különbözik az 1-2 varázssétától, mivel a bejárt ösvények sorozata mindkét esetben azonos. A 2-1 varázssétát ezért nem számoltuk külön.

A második tesztesetben 3 darab 1 hosszú és 2 darab 2 hosszú *varázsséta* közül választhatunk.

A harmadik tesztesetben pedig 3 darab 1 hosszú, 2 darab 2 hosszú és 1 darab 3 hosszú varázsséta van.

