

课件下载地址:

http://pan.baidu.com/s/10885tz0

作业网站:

http://120.132.18.213:8080/thrall-web/main#home

递推算法

递推算法是一种简单的算法,即通过已知条件,利用特定关系得出中间推论,直至得到结果的算法。

递推算法分为顺推和逆推两种。

阶乘

i	0	1	2	3	4	5
f(i)	1	1	2	6	24	120

当i为0时	f(0)=1
当i大于0时	f(i)=f(i-1)*i

汉诺塔

f(i)表示i个盘子的汉诺塔要几步完成

i	0	1	2	3	4	5
f(i)	0	1	3	7	15	31

当i为0时	f(0)=0
当i大于0时	f(i)=f(i-1)*2+1

卡特兰数

f(i)表示第i个卡特兰数

i	0	1	2	3	4	5	6
f(i)	1	1	2	5	14	42	132

当i为0时
$$f(0) = 1$$

当i大于0时
$$f(i) = f(i-1) * \frac{4i-2}{i+1}$$

斐波那契数列

f(i)表示第i个斐波那契数

i	0	1	2	3	4	5
f(i)	1	1	2	3	5	8

当i为0时	f(0) = 1
当i为1时	f(1) = 1

当i大于1时 f(i) = f(i-1) + f(i-2)

递推算法 规律小结

当i为0时 f(0) = 1 当i为1时 f(1) = 1

初始 条件

i为0,1,2 等等情况

当i大于1时

$$f(i) = f(i-1) + f(i-2)$$

递推 方程

f(i)可以由已经求解出的 f(i-1),f(i-2),f(i-3)等等推得

例题: 平面划分

平面上n条直线最多可以划分出多少个区域?

输入样例:

2

输出样例:

4

输入样例:

3

输出样例:

7

输入样例:

4

输出样例:

11

解答: 平面划分

f(i)表示i条直线最多划分出的区域数量

i	0	1	2	3	4	5	6	7
f(i)	1	2	4	7	11	16	22	29

当i为0时

$$f(0) = 1$$

当i大于0时

$$f(i) = f(i-1) + i$$

例题:数的计数

我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法 进行处理:

- 1.不作任何处理;
- 2.在它的左边加一个自然数,但该自然数不能超过原数的一半;
- 3.加上数后,继续按此规则进行处理,直到不能再加自然数为止.

输入样例#1: **输出样例#1**: 6

满足条件的数为

6 , 16 , 26 , 126 , 36 , 136

noip2001

解答:数的计数

f(i)表示输入为i时的答案

i	0	1	2	3	4	5	6	7	8	9
f(i)	1	1	2	2	4	4	6	6	10	10

当i为0时	f(0) = 1
当i为1时	f(1) = 1

当i大于1时 f(i) = 1 + f(i/2) + f(i/2 - 1) + ... + f(1)

例题:级数求和

已知: Sn=1+1/2+1/3+...+1/n。显然对于任意一个整数K,当n足够大的时候,Sn大于K。现给出一个整数K(1<=k<=15),要求计算出一个最小的n; 使得Sn>K。

输入样例#1:

1

输出样例#1:

2

解答:级数求和

S(i)表示级数的和

i	0	1	2	3
S(i)	0	1	1+1/2	1+1/2+1/3

当i为0时
$$S(0)=1$$

当i大于0时
$$S(i) = S(i-1) + 1/i$$

小结

一维问题的递推算法

例如: 此页之前的例题都是一维问题

二维问题的递推算法

例如: 此页之后的例题

杨辉三角形

输入n,输出n行的杨辉三角形

输入样例:

4

输出样例:

1

1 1

121

1331

输入样例:

6

输出样例:

1

1 1

121

1331

14641

15101051

解答:杨辉三角形

	j=0	j=1	j=2	j=3	j=4	
i=0	1	0	0	0	0	
i=1	1	1	0	0	0	
i=2	1	2	1	0	0	
i=3	1	3	3	1	0	
i=4	1	4	6	4	1	
当j为0时			C(i, 0)		边界	
	当i <j时< td=""><td></td><td>C(i,j)</td><td>)=0</td><td></td><td>边界 条件</td></j时<>		C(i,j))=0		边界 条件

解答:杨辉三角形

	j=0	j=1	j=2	j=3	j=4
i=0	1	0	0	0	0
i=1	1	1	0	0	0
i=2	1	2	1	0	0
i=3	1	3	3	1	0
i=4	1	4	6	4	1

递推 方程

当i,j大于0时 C(i,j) = C(i-1,j-1)+C(i-1,j)

例题: 组合数

从n个不同物体中取出m个的所有组合有多少种取法,叫做组合数C(n,m)输入n和m,输出C(n,m)

输入样例:

42

输出样例:

6

输入样例:

102

输出样例:

45

输入样例:

63

输出样例:

20

解答: 组合数

c(i,j)表示i个不同物体中取出j个的所有组合数量

	j=0	j=1	j=2	j=3	j=4
i=0	1	0	0	0	0
i=1	1	1	0	0	0
i=2	1	2	1	0	0
i=3	1	3	3	1	0
i=4	1	4	6	4	1

当j为0时

$$C(i,0)=1$$

解答: 组合数

c(i,j)表示i个不同物体中取出j个的所有组合数量

	j=0	j=1		j=2	j=3	j=4
i=0	1	0		0	0	0
当i <j时< th=""><th colspan="3">C(i,j)=0</th><th></th></j时<>			C(i,j)=0			

i=3	1	3	3	,1	0
i=4	1	4	6	4	1

当i,j大于0时
$$C(i,j) = C(i-1,j-1)+C(i-1,j)$$

解答: 组合数

c(i,j)表示i个不同物体中取出j个的所有组合数量

当i大于0时
$$C(i,j) = C(i-1,j-1)+C(i-1,j)$$

i个不同物体中取出j个的所有组合数 = 前(i-1)不同物体中取出(j-1)个的所有组合数 取第i个物体的情况 +前(i-1)不同物体中取出j个的所有组合数 不取第i个物体的情况