Detection of Phishing URL

Predictive Modeling Second Project Presentation- Model Building

Group 14

Mihret Kemal

Tagore Kosireddy

Saket Pawar

Goal of the Project

 To classify URLs as either legitimate or phishing to help prevent phishing attacks

why?

According to Forbes, over 500
 million phishing attacks were
 reported in 2022

Dataset Description

- PhiUSIIL Phishing URL dataset from UCI machine learning repository is used.
- Sample size of the dataset is 235,795
- The dataset contains 56 columns totally (4 columns are extra information about url, namely: filename, URL, Domain, Title)

- Got 51 predictors 33 continuous and 18 categorical
- The response value is called has 2 classes
- Label 1 Legitimate URL
- Label 0 Phishing URL

Data Preprocessing

The dataset contains no missing value(no imputation)

```
> total_missing <- sum(is.na(data))
> # Print the total number of missing values
> total_missing
[1] 0
> |
```

 Added 5 dummy variables from TLD predictor namely: Internationalized_domain, Country_domain, Common_domain, Number_domain

Removal of Near-zero variance predictors

Got 6 Near-zero variance predictors, so we deleted them

Any Correlation?

Removal of highly correlated predictors

Checked for highly correlated predictors (cutoff = 0.75), and found 5

So We deleted this 5 columns

Distributions

DomainLength

URLSimilarityIndex

CharContinuationRate

Applied Box-Cox Transformation

Checking outliers

Applied Spatial sign transformation

Final Number of Predictors we have

- Before removing highly correlated predictors
 51(original) 6(near zero predictors) = 49 predictors
- After removing highly correlated predictors 51(original) -6(near zero predictors - 5(highly correlated predictors) = 44 predictors

Classification statistic used

 Kappa is used as a classification statistics metrics, since our dataset is not perfectly balanced

How we Spend the data?

Spend the data in to training and testing sets,

80/20 split using Stratified Sampling

For Resampling,

K-fold Cross-validation(K=3)

Model Building

Linear Models

- Logistic Regression
- Linear Discriminant Analysis(LDA)
- Partial least squares
 Discriminant
 Analysis(PLSDA)
- Penalized model

Non Linear Models

- Regularized Discriminant Analysis(RDA)
- Mixture Discriminant Analysis(MDA)
- Neural Networks
- Flexible Discriminant Analysis (FDA)
- Support Vector Machines (SVM)
- K- Nearest Neighbors (KNN)
- Naive Bayes

Logistic Regression

Specific preprocessing - none

Generalized Linear Model

188636 samples
49 predictor
2 classes: 'legitimate', 'phishing'

No pre-processing

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125757, 125758, 125757

Resampling results:

Accuracy Kappa 0.8704171 0.7333645

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26917 5475 phishing 53 14714

Accuracy: 0.8828

95% CI: (0.8798, 0.8857)

No Information Rate: 0.5719 P-Value [Acc > NIR]: < 2.2e-16

Kappa: 0.7522

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9980 Specificity: 0.7288 Pos Pred Value: 0.8310 Neg Pred Value: 0.9964 Prevalence: 0.5719

Detection Rate: 0.5708 Detection Prevalence: 0.6869

Balanced Accuracy: 0.8634

LDA

Specific preprocessing - Remove highly correlated variables, Centering and scaling

```
Linear Discriminant Analysis

188636 samples
44 predictor
2 classes: 'legitimate', 'phishing'

Pre-processing: centered (44), scaled (44)

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125758, 125757, 125757

Resampling results:

Accuracy Kappa

0.8689752 0.7218282
```

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26948 6215 phishing 22 13974

Accuracy: 0.8677

95% CI: (0.8647, 0.8708)

No Information Rate: 0.5719 P-Value [Acc > NIR]: < 2.2e-16

Kappa : 0.7191

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9992 Specificity: 0.6922

Pos Pred Value : 0.8126 Neg Pred Value : 0.9984

Prevalence: 0.5719

Detection Rate: 0.5714

Detection Prevalence: 0.7032

Balanced Accuracy: 0.8457

PLSDA

Specific preprocessing - Centering and Scaling

Partial Least Squares

188636 samples 49 predictor

2 classes: 'legitimate', 'phishing'

Pre-processing: centered (49), scaled (49)

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125757, 125758, 125757

Resampling results across tuning parameters:

ncomp	Accuracy	Kappa
1	0.8457611	0.6700676
2	0.8663087	0.7158344
3	0.8716682	0.7279229
4	0.8728186	0.7304395
5	0.8715251	0.7275886
6	0.8702051	0.7246423
7	0.8710798	0.7265330
8	0.8698287	0.7237495
9	0.8699718	0.7240628
10	0.8699877	0.7241075
28	0.8700778	0.7242922
29	0.8700619	0.7242562
30	0.8701149	0.7243748

Kappa was used to select the optimal model using the largest value. The final value used for the model was ncomp = 4.

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26927 5983 phishing 43 14206

Accuracy: 0.8722

95% CI: (0.8692, 0.8752)

No Information Rate: 0.5719 P-Value [Acc > NIR]: < 2.2e-16

Kappa : 0.729

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9984

Specificity: 0.7037

Pos Pred Value : 0.8182

Neg Pred Value : 0.9970

Prevalence: 0.5719

Detection Rate: 0.5710

Detection Prevalence: 0.6979

Balanced Accuracy: 0.8510

Penalized Models

Specific preprocessing - Centering and Scaling

glmnet

188636 samples 49 predictor

2 classes: 'legitimate', 'phishing'

Pre-processing: centered (49), scaled (49) Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125757, 125758, 125757 Resampling results across tuning parameters:

alpha	lambda	Accuracy	Kappa
0.0	0.05000000	0.9084533	0.8079254
0.0	0.06666667	0.9025637	0.7952006
0.0	0.08333333	0.8986885	0.7867997
0.0	0.10000000	0.8945853	0.7778845
0.0	0.11666667	0.8901694	0.7682664
0.0	0.13333333	0.8862677	0.7597466
0.0	0.15000000	0.8834581	0.7535982
0.0	0.16666667	0.8816557	0.7496457
0.0	0.18333333	0.8799646	0.7459350
0.0	0.20000000	0.8783371	0.7423619
0.1	0.05000000	0.9052832	0.8010699
0.1	0.06666667	0.8985719	0.7865341
1.0	0.15000000	0.8211052	0.6143997
1.0	0.16666667	0.8131905	0.5963499
1.0	0.18333333	0.8046078	0.5766757
1.0	0.20000000	0.7939153	0.5520170

Kappa was used to select the optimal model using the largest value. The final values used for the model were alpha = 0 and lambda = 0.05

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26959 4350 phishing 11 15839

Accuracy: 0.9075

95% CI: (0.9049, 0.9101)

No Information Rate: 0.5719
P-Value [Acc > NIR]: < 2.2e-16

Kappa: 0.8059

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9996

Specificity: 0.7845

Pos Pred Value: 0.8611

Neg Pred Value: 0.9993

Prevalence: 0.5719

Detection Rate: 0.5717

Detection Prevalence: 0.6639

Balanced Accuracy: 0.8921

Summary of Linear Models

Model	Best Tuning parameter	Training Kappa	Training Accuracy	Testing Kappa	Testing Accuracy
Logistic regression	2	0.7333645	0.8704171	0.7522	0.8828
LDA	43	0.7218282	0.8689752	0.7191	0.8677
PLSDA	ncomp = 4	0.7304395	0.872818	0.7238	0.8722
Penalized model	alpha = 0, lambda = 0.05	0.8079254	0.9084533	0.8059	0.9075

RDA

Specific preprocessing - Remove highly correlated predictors, Center and Scale

Regularized Discriminant Analysis

188636 samples

44 predictor

2 classes: 'legitimate', 'phishing'

Pre-processing: centered (44), scaled (44)

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125757, 125758, 125757

Resampling results across tuning parameters:

gamma	lambda	Accuracy	Kappa
0.0	0.0100000	0.8839246	0.7551081
0.0	0.1088889	0.8639390	0.7110009
0.0	0.2077778	0.8572065	0.6960433
0.0	0.3066667	0.8518841	0.6841709
0.0	0.4055556	0.8452257	0.6692884
0.0	0.5044444	0.8423949	0.6629323
1.0	0.6033333	0.8334305	0.6459694
1.0	0.7022222	0.8420874	0.6641306
1.0	0.8011111	0.8476378	0.6754625
1.0	0.9000000	0.8529549	0.6865313

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26824 5354 phishing 146 14835

Accuracy: 0.8834

95% CI: (0.8804, 0.8863)

No Information Rate : 0.5719
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.7538

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9946 Specificity: 0.7348 Pos Pred Value: 0.8336 Neg Pred Value: 0.9903 Prevalence: 0.5719

Detection Rate : 0.5688
Detection Prevalence : 0.6823

Balanced Accuracy: 0.8647

'Positive' Class : legitimate

Kappa was used to select the optimal model using the largest value. The final values used for the model were gamma = 0 and lambda = 0.01.

MDA

Specific preprocessing - Remove highly correlated predictors, Center and Scale

Mixture Discriminant Analysis

188636 samples

44 predictor
2 classes: 'legitimate', 'phishing'

Pre-processing: centered (44), scaled (44)

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125757, 125758, 125757

Resampling results across tuning parameters:

subclasses	Accuracy	Kappa
1	0.8688426	0.7215384
2	0.8964514	0.7820573
3	0.9423229	0.8797886
4	0.9434892	0.8820307
5	0.9552525	0.9072315
6	0.9633686	0.9244282
7	0.9429588	0.8814820
19	0.9661412	0.9302595
20	0.9653884	0.9286484

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26927 1812 phishing 43 18377

Accuracy: 0.9607

95% CI: (0.9589, 0.9624)

No Information Rate: 0.5719
P-Value [Acc > NIR]: < 2.2e-16

Kappa : 0.9188

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9984 Specificity: 0.9102 Pos Pred Value: 0.9369

Neg Pred Value : 0.9977 Prevalence : 0.5719

Detection Rate: 0.5710

Detection Prevalence: 0.6094

Balanced Accuracy: 0.9543

'Positive' Class : legitimate

Kappa was used to select the optimal model using the largest value. The final value used for the model was subclasses = 19.

Neural Network

Specific preprocessing - Remove highly correlated predictors, Center and Scale

188636 samples
44 predictor
2 classes: 'legitimate', 'phishing'

Pre-processing: centered (44), scaled (44)

Resampling: Cross-Validated (3 fold)

Neural Network

Summary of sample sizes: 125757, 125758, 125757

Resampling results across tuning parameters:

size	decay	Accuracy	Kappa
1	0.0	0.9968670	0.9935898
1	0.1	0.9997084	0.9994045
1	1.0	0.9994010	0.9987765
1	2.0	0.9990829	0.9981268
2	0.0	0.9999046	0.9993051
2	0.1	0.9949745	0.9896954
2	1.0	0.9992896	0.9985492
2	2.0	0.9991624	0.9982892
3	0.0	0.9990465	0.9994051
3	0.1	0.9996660	0.9993179
10	1.0	0.9993639	0.9987007
10	2.0	0.9992154	0.9983975

Kappa was used to select the optimal model using the largest value. The final values used for the model were size = 3 and decay = 0.

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26969 3 phishing 1 20186

Accuracy: 0.9996

95% CI: (0.9998, 1)

No Information Rate: 0.5719
P-Value [Acc > NIR]: <2e-16

Kappa: 0.9994

Mcnemar's Test P-Value: 0.6171

Sensitivity: 1.0000

Specificity: 0.9999

Pos Pred Value: 0.9999

Neg Pred Value : 1.0000

Prevalence: 0.5719

Detection Rate: 0.5719

Detection Prevalence: 0.5719

Balanced Accuracy: 0.9999

FDA

Specific preprocessing - Remove highly correlated predictors, Spatial Sign transformation

Flexible Discriminant Analysis

188636 samples

44 predictor
2 classes: 'legitimate', 'phishing'

No pre-processing

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125757, 125758, 125757

Resampling results across tuning parameters:

degree	nprune	Accuracy	Kappa
1	2	0.8787135	0.7529593
1	3	0.9431816	0.8834554
1	4	0.9774963	0.9539180
1	5	0.9789860	0.9569607
2	26	0.9953137	0.9904238
2	27	0.9953879	0.9905755
2	28	0.9954940	0.9907926
2	29	0.9955417	0.9908903
2	30	0.9956371	0.9910854

Product Degree

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26919 143 phishing 51 20046

Accuracy: 0.9959

95% CI: (0.9953, 0.9964)

No Information Rate: 0.5719 P-Value [Acc > NIR]: < 2.2e-16

Kappa : 0.9916

Mcnemar's Test P-Value: 6.428e-11

Sensitivity: 0.9981 Specificity: 0.9929

Pos Pred Value: 0.9947

Neg Pred Value: 0.9975

Prevalence: 0.5719

Detection Rate: 0.5708

Detection Prevalence: 0.5738

Balanced Accuracy: 0.9955

SVM

Specific preprocessing - Center and Scale

Support Vector Machines with Radial Basis Function Kernel

188636 samples

49 predictor

2 classes: 'legitimate', 'phishing'

Pre-processing: centered (49), scaled (49)

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125757, 125758, 125757

Resampling results across tuning parameters:

sigma	C	Accuracy	Kappa
0.001	0.1	0.9995017	0.9989823
0.001	1.0	0.9998516	0.9996969
0.001	10.0	0.9998887	0.9997726
0.100	1.0	0.9989769	0.9979099
0.100	10.0	0.9989981	0.9979533

Kappa was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.001 and C = 10.

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26966 5 phishing 4 20184

Accuracy: 0.9998

95% CI: (0.9996, 0.9999)

No Information Rate: 0.5719
P-Value [Acc > NIR]: <2e-16

Kappa : 0.9996

Mcnemar's Test P-Value: 1

Sensitivity: 0.9999
Specificity: 0.9998
Pos Pred Value: 0.9998
Neg Pred Value: 0.9998
Prevalence: 0.5719
Detection Rate: 0.5718
Detection Prevalence: 0.5719
Balanced Accuracy: 0.9998

KNN

Specific preprocessing - Center and Scale

k-Nearest Neighbors

188636 samples 49 predictor

2 classes: 'legitimate', 'phishing'

Pre-processing: centered (49), scaled (49)

Resampling: Cross-Validated (3 fold)

Summary of sample sizes: 125757, 125757, 125758

Resampling results across tuning parameters:

k	Accuracy	Kappa
5	0.9985422	0.9970222
7	0.9983725	0.9966756
9	0.9983248	0.9965780
11	0.9982718	0.9964696
13	0.9981711	0.9962639
15	0.9981287	0.9961772
17	0.9980916	0.9961013
19	0.9980279	0.9959714
21	0.9979749	0.9958631
23	0.9979272	0.9957656

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 26956 44 phishing 14 20145

Accuracy: 0.9988

95% CI: (0.9984, 0.9991)

No Information Rate : 0.5719 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.9975

Mcnemar's Test P-Value: 0.0001402

Sensitivity: 0.9995 Specificity: 0.9978 Pos Pred Value: 0.9984 Neg Pred Value: 0.9993 Prevalence: 0.5719 Detection Rate: 0.5716

Detection Prevalence: 0.5725

Balanced Accuracy: 0.9987

'Positive' Class : legitimate

Kappa was used to select the optimal model using the largest value. The final value used for the model was k=5.

Naive Bayes

Naive Bayes

Specific preprocessing - Remove highly correlated predictors, Center and Scale

```
188636 samples
    44 predictor
     2 classes: 'legitimate', 'phishing'
Pre-processing: centered (44), scaled (44)
Resampling: Cross-Validated (3 fold)
Summary of sample sizes: 125757, 125758, 125757
Resampling results across tuning parameters:
  usekernel Accuracy
                        Kappa
  FALSE
                   NaN
                              NaN
             0.9303155 0.8571713
   TRUE
Tuning parameter 'fL' was held constant at a value of 0
Tuning parameter 'adjust' was held constant at a value of 1
Kappa was used to select the optimal model using the largest value.
The final values used for the model were fL = 0, usekernel = TRUE and
adjust=1.
```

Confusion Matrix and Statistics

Reference

Prediction legitimate phishing legitimate 25688 1903 phishing 1282 18286

Accuracy: 0.9325

95% CI: (0.9302, 0.9347)

No Information Rate: 0.5719
P-Value [Acc > NIR]: < 2.2e-16

Kappa : 0.8615

Mcnemar's Test P-Value : < 2.2e-16

Sensitivity: 0.9525
Specificity: 0.9057
Pos Pred Value: 0.9310
Neg Pred Value: 0.9345
Prevalence: 0.5719
Detection Rate: 0.5447
Detection Prevalence: 0.5851

'Positive' Class : legitimate

Balanced Accuracy: 0.9291

Summary of Nonlinear Models

Model	Best Tuning parameter	Training Kappa	Training Accuracy	Testing Kappa	Testing Accuracy
RDA	gamma = 0 and lambda = 0.01	0.7551	0.88392	0.7538	0.8834
MDA	subclasses= 19	0.93025	0.96614	0.9188	0.9607
Neural Network	size = 3 and decay = 0	0.999405	0.99904	0.9994	0.9996
FDA	degree = 2 and nprune = 30	0.9910854	0.9956371	0.9916	0.9959
SVM	cost=10,sigm a=0.001	0.9997726	0.9998887	0.9996	0.9998
KNN	k = 5	0.9970	0.99854	0.9975	0.9988
Naive Bayes	-	0.8571713	0.9303155	0.8615	0.9325

The Best 2 Models

1. SVM Kappa - 0.9996 , Cost = 10 Sigma = 0.001

2. Neural Network Kappa - 0.9994, size=3, decay=0

Top Ten most Important predictors (SVM)

Lit Review & Comp: Link

V. Vajrobol, B.B. Gupta and A. Gaurav

Table 4
The comparison with previous studies.

Publications	Task	Performance
[5]	phishing-website detection	Accuracy of 98.64%
[11]	phishing attacks detection	Accuracy of 94.612
[20]	phishing URL detection on Kaggle dataset	Accuracy of 96.25%
[31]	phishing URL detection with PhiUSIIL dataset	Accuracy of 99.24%
Our study	phishing URL detection with PhiUSIIL dataset	Accuracy with 99.97%

A. Prasad and S. Chandra

Computers & Security 136 (2024) 103545

Table 1
Comparative summary of related work with proposed work.

Ref.	Features	Detection model	Dataset records	Accu- racy	Limitations
Gupta et al. (2021)	URL features only	Depends on Random forest algorithm	11964	99.57%	Depends solely on URL features, and on single ML algorithm, experimented on small dataset
Pandey and Mishra (2023)	Dominant color features and OCR	Depends on Random forest algorithm	6200	99.13%	Depends solely on single ML algorithm, experimented on small dataset
Ahammad et al. (2022)	URL Features only	RF, DT, Light GBM, LR, and SVM	3000	89.50%	Low prediction performances, experimented on small dataset
Jain et al. (2022)	Static and site popularity features	LR, KNN, SVM, DT, and RF	4000	93.85%	Depends on third party features, low prediction performances, experimented on small dataset
Alani and Tawfik (2022)	URL and third-party features	RF, LR, DT, GNB, and MLP	88646	97.50%	Depends on third party features, low prediction performances
Ding et al. (2019)	URL, HTML and third-party features	Logistic regression	8659	98.90%	Depends on third party features, depends on single ML algorithm, small dataset
Sharma and Singh (2022)	Features from webpage HTML code	TF-IDF and AdaBoost	50000	98.01%	Depends on single ML algorithm, small dataset
Nagunwa et al. (2022)	Features derived from DNS, host, and network	Eight ML and three DL algorithms	11801	98.42%	Computationally expensive model (11 algorithms), small dataset
Sameen et al. (2020)	URL Features only	Boosting-based (2), Ten algorithms	100000	98.00%	Computationally expensive model (10 algorithms)
Rao et al. (2022)	HTML code, and domain specific features	RF, SVM, LR, DT, and XGBoost	10514	99.34%	Experimented on small dataset
Proposed	URL, HTML, and derived features	BernoulliNB, PassiveAggressive, and SGDClassifier	235795	99.79%	Limitation of classifying URLs that download executable file.

Thank You!