Natural Language Processing with Mahout

Casey Stella

June 26, 2013

Table of Contents

Preliminaries

Mahout → An Overview

NLP with Mahout \rightarrow An Example Ingesting Data Topic Models

Questions

Introduction

- I'm a Systems Architect at Hortonworks
- Prior to this, I
 - Did data mining on medical data at Explorys using the Hadoop ecosystem
 - Did signal processing on seismic data at Ion Geophysical using MapReduce
 - Was a graduate student in the Math department at Texas A&M in algorithmic complexity theory
- I'm going to talk about Natural Language Processing in the Hadoop ecosystem.

Apache Mahout

- Apache Mahout is a
 - Library of stand-alone scalable and distributed machine learning algorithms
 - Library of high performance math and primitive collections useful in machine learning
 - Library of primitive distributed statistical and linear algebraic operations useful in machine learning
- The distributed algorithms are able to be run on Hadoop via a set of stand-alone helper utilities as well as providing an API.

Classes of Algorithms Included

- Mahout includes distributed algorithms for
 - Classification
 - Clustering
 - Pattern Matching/Frequent Itemset Mining
 - Recommendation Engines/Collaborative Filtering

Overview of Available Algorithms

Туре	Algorithm
Linear Algebra	Stochastic Gradient Descent
Linear Algebra	Stochastic Singular Value Decomposition
Classification	Random Forests
Classification	Naïve Bayesian
Classification	Hidden Markov Models
Clustering	Normal and Fuzzy K-Means
Clustering	Expectation Maximization
Clustering	Dirichlet Process Clustering
Clustering	Latent Dirichlet Allocation
Clustering	Spectral Clustering
Clustering	MinHash Clustering
Pattern Mining	Parallel FP Growth

Ingesting a Corpus of Documents

- Mahout provides a number of utilities to allow one to ingest data into Hadoop in the format expected by the ML algorithms
- The basic pattern is
 - Convert the documents to SequenceFiles via the seqdirectory command and then create a set of sparse or dense vectors using seq2sparse
 - Create sparse vectors of word counts from the sequence files above with the seq2sparse command

Converting a Sequence File to a set of Vectors

- Create a sparse set of vectors using the mahout utility seq2sparse.
- The seq2sparse command allows you to specify:

-wt	The weighting method used: tf or tfidf
minSupport	The minimum number of times a term has
	to occur to exist in the document
norm	An integer $k > 0$ indicating the L_k metric to
	be used to normalize the vectors.

DEMO

Topic Models

- Topic modeling is intended to find a set of broad themes or "topics" from a corpus of documents.
- Documents contain multiple topics and, indeed, can be considered a "mixture" of topics.
- Probabalistic topic modeling algorithms attempt to determine the set of topics and mixture of topics per-document in an unsupervised way.
- Consider a collection of newspaper articles, topics may be "sports", "politics", etc.

High Level: Latent Dirichlet Allocation

- Topics are determined by looking at how often words appear together in the same document
- Each document is associated a probability distribution over the set of topics
- Latent Dirichlet Allocation (LDA) is a statistical topic model which learns
 - what the topics are
 - o which documents employ said topics and at what distribution

Latent Dirichlet Allocation → Example

- Consider sentences:
 - I like basketball and football.
 - Tim drank gatorade after football practice.
 - o John drank gatorade and thinks it tastes terrible.
- For the topics:
 - \circ *Topic* 1 \rightarrow basketball, football
 - \circ *Topic* $2 \rightarrow \mathsf{gatorade}$, drank
- And sentences:
 - Sentence 1 is 100% Topic 1
 - Sentence 3 is 100% Topic 2
 - Sentence 2 is 50% Topic 1 and 50% Topic 2

LDA in Mahout

- Original implementation followed the original implementation proposed by Blei, Ng and Jordan in 2003
 - The problem, in part, the amount of information sent out of the mappers scaled with the product of the number of terms in the vocabulary and number of topics.
 - On a 1 billion non-zero entry corpus, for 200 topics, original implementation sent 2.5 TB of data from the mappers per iteration.
 - Recently (as of 0.6 [MAHOUT-897]) moved to Collapsed Variational Bayes
 - About 15x faster than original implementation

LDA in Mahout

- The cvb tool will run the LDA algorithm
- Input: sequence file of SparseVectors of word counts weighted by term frequency
- Output: Topic model
- Parameters:

-dict	The term dictionary
-k	The number of topics
-nt	The number of unique features defined by the input document
	vectors
-maxlter	The maximum number of iterations.
-mipd	The maximum number of iterations per document
-a	Smoothing for the document topic distribution; should be about
	$\frac{50}{k}$, with k being the number of topics.
-е	Smoothing for the term topic distribution

DEMO

Questions

Thanks for your attention! Questions?

- Find me at http://caseystella.com
- Twitter handle: @casey_stella
- Email address: cstella@hortonworks.com