UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus CAMPO MOURÃO

ALGORITMOS E ESTRUTURA DE DADOS 2

Semana 5 – Hasing e Tratamento de Colisões

Estudante: Reginaldo Gregório de Souza Neto RA: 2252813

		n = 1000	n = 10000	n = 50000	n = 100000
M Composto	m = 10	110	923	2587	3129
	m = 100	X	109	274	321
	m = 500	X	X	60	66
	m = 1000	X	X	X	33
M Primo	m = 7	148	1267	3686	4472
	m = 97	X	108	280	329
	m = 499	X	X	60	66
	m = 997	X	X	X	33

Figure 1: Comprimento da Lista Mais Longa

		n = 1000	n = 10000	n = 50000	n = 100000
M Composto	m = 10	86	835	2513	3103
	m = 100	X	67	236	302
	m = 500	X	X	39	56
	m = 1000	X	X	X	26
M Primo	m = 7	123	1181	3590	4422
	m = 97	X	66	243	312
	m = 499	X	X	38	53
	m = 997	X	X	X	27

Figure 2: Comprimento da Lista Mais Curta

		n = 1000	n = 10000	n = 50000	n = 100000
M Composto	m = 10	95	861	2556	3115
	m = 100	X	86	255	311
	m = 500	X	X	51	62
	m = 1000	X	X	X	31
M Primo	m = 7	136	1230	3651	4451
	m = 97	X	88	263	321
	m = 499	X	X	51	62
	m = 997	X	X	X	31

Figure 3: Comprimento Médio das Listas

		n = 1000	n = 10000	n = 50000	n = 100000
M Composto	m = 10	100	1000	5000	10000
	m = 100	X	100	500	1000
	m = 500	X	X	100	200
	m = 1000	X	X	X	100
M Primo	m = 7	142	1428	7142	14285
	m = 97	X	103	515	1030
	m = 499	X	X	100	200
	m = 997	X	X	X	100

Figure 4: Comprimento Esperado Diante da Hipótese de Hashing Uniforme

E) Nos casos avaliados houve alguma diferença significativa no comprimentos das listas mais longas e mais curtas entre M primo e M composto? Se sim, em qual(is) caso(s)?

Foi possível notar que o comprimento das listas é INVERSAMENTE proporcional ao tamanho de m, entretanto as comparações entre os comprimentos são bem próximas, pois os valores de m também são bem próximos.

F) Nos casos avaliados houve alguma diferença significativa no comprimento médio das listas entre M primo e M composto? Se sim, em qual(is) caso(s)?

Foi possível notar que com listas maiores e m menores, os valores primos em m obtiveram um pior desempenho. Entretanto quando os valores de m se tornaram maiores, as médias passaram a convergir para um mesmo número.

G) O comprimento médio das listas (Tabela 3) é comparável ao comprimento esperado diante da hipótese de hashing uniforme (Tabela 4)? O que isso quer dizer?

O comprimento médio das listas na tabela 3 é sempre MENOR do que o comprimento idealizado na tabela 4. Isso se deve ao fato de que através da técnica de hasing é possível obtermos um rearranjo mais eficiente, uma vez que as colisões são tratadas e não "ocupam" um espaço a mais no comprimento.