Minkowski sum problems - Theory and definitions

Generator sets and upper bounds.

Mark Lyngesen^a, Sune Lauth Gadegaard^a, Lars Relund nielsen^a

^aDepartment of Economics and Business Economics, BSS, Aarhus University, Fuglsangs Allé 4, Aarhus, 8000, Aarhus Municipality, Denmark

Abstra

1. Introduction

2. Literature review

Review of relevant literaure

- 1. Minkowski sum problems.
- 2. Kerbérénès phd.
- 3. filtering problems
- 4. Coupled problems.

3. Prerequisites/ methodology

- 3.1. General MO
 - Relations (sets and vectors)
 - Bound sets.
 - Operator notation: \oplus , \ominus , \bigoplus ...×
 - Notation $\mathcal{X}, \mathcal{Y}, f, \mathcal{X}_E, \mathcal{Y}_{\mathcal{N}}...$
- 3.2. Minkowski Sum Problem

MSP definition for general p and S

4. Emperical study

***RQ? Formulate major research questions. Consider sweep methods.

- Generate a new point from a subproblem and update all generator sets and upper bound sets.
- Periodically generate a point for each subproblem whereafter all generator sets and upper bound sets are updated.
- Sweep: generate all supported non-dominated points for each subproblem whereafter all generator sets and upper bound sets are updated.
- 4.1. Emperical study of Generator sets

When are generator sets small relative to the non-dominated sets.

4.2. Emperical study of Generator upper bound sets

When are upper bound sets from generators 'good'. (make precise). Test cite (Adelgren et al., 2018)

References

N. Adelgren, P. Belotti, A. Gupte, Efficient storage of pareto points in biobjective mixed integer programming, INFORMS Journal on Computing 30 (2018) 324–338.