Rank of	a matrix A	A is	equal	to
---------	------------	------	-------	----

- \Box the row rank of the matrix A.
- \Box the column rank of the matrix A.
- \Box the nullity of the matrix A.
- \Box the number of dependent variables in the system of equations Ax = 0.
- \Box the number of independent variables in the system of equations Ax = 0.

Score: 0

Accepted Answers:

the row rank of the matrix A.

the column rank of the matrix A.

the number of dependent variables in the system of equations Ax = 0.

Let nullity of the matrix $A_{3\times5}$ be 2. Find the rank of the matrix $A_{3\times5}$.

No, the answer is incorrect.

Score: 0

Accepted Answers:

(Type: Numeric) 3

1 point

Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 2 & 4 & 6 \end{bmatrix}$.

No, the answer is incorrect.

Score: 0

Accepted Answers:

(Type: Numeric) 2

1 point

If A is an $m \times n$ matrix, then which of the following statements is true?

1 point

- \bigcirc rank(A) + nullity(A) = m
- \bigcirc rank(A) + nullity(A) = n
- \bigcirc rank(A) + nullity(A) = mn
- \bigcirc rank(A) + nullity(A) = max{m, n}
- \bigcirc rank(A) + nullity(A) = min{m, n}

No, the answer is incorrect.

Score: 0

Accepted Answers:

rank(A) + nullity(A) = n

Which of the following is true for a homogeneous system of linear equations Ax = 0?

1 point

- ☐ It may have no solution.
- $\ \ \square$ It can have infinitely many solutions.
- ☐ It can have a unique solution.
- ☐ Whenever it has a non-trivial(non zero) solution, it must have infinitely many solutions

No, the answer is incorrect.

Score: 0

Accepted Answers:

It can have infinitely many solutions.

It can have a unique solution.

Whenever it has a non-trivial(non zero) solution, it must have infinitely many solutions

Which of the following options are correct for a square matrix A of order $n \times n$, where n is any natural number?
$\ \square$ If the determinant is non-zero, then the nullity of A must be 0.
$\hfill \square$ If the determinant is non-zero, then the nullity of A may be non-zero.
$\ \square$ If the nullity of A is non-zero, then the determinant of A must be 0.
$\hfill \Box$ If the nullity of A is non-zero, then the determinant of A may be non-zero.
No, the answer is incorrect. Score: 0
Accepted Answers:
If the determinant is non-zero, then the nullity of A must be 0. If the nullity of A is non-zero, then the determinant of A must be 0.
Choose the set of correct statements. 1 point
If nullity of a 3×3 matrix is c for some natural number c , $0\leq c\leq 3$, then the nullity of $-A$ will also be c .
\square Nullity of the zero matrix of order $n \times n$, is n .
 □ Nullity of the zero matrix of order $n \times n$, is n. □ Nullity of the zero matrix of order $n \times n$, is 0.

0, but the nullity of A + B is n.

Score: 0

Accepted Answers:

If nullity of a 3×3 matrix is c for some natural number c, $0 \le c \le 3$, then the nullity of -A will also be c. Nullity of the zero matrix of order $n \times n$, is n.

There exist square matrices A and B of order $n \times n$, such that nullity of both A and B is 0, but the nullity of A + B is n.

The rank of an $n \times n$ matrix all of whose entries are equal to 1 is	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
(Type: Numeric) 1	1 point

If A	is a 3×4 matrix, then which of the following options are true?	1 poin
	rank(A) must be less than or equal to 3.	
	nullity(A) must be greater than or equal to 1.	
	If A has 2 columns which are non-zero and not multiples of each other, while the remaining columns are linear combinations of these 2 columns, then $nullity(A) = 0$	2.
	If A has 2 columns which are non-zero and not multiples of each other, while the remaining columns are linear combinations of these 2 columns, then $nullity(A) = 0$	1.
No,	the answer is incorrect.	
Sco	pre: 0	
Acc	cepted Answers:	
	x(A) must be less than or equal to 3. ity(A) must be greater than or equal to 1.	

If A has 2 columns which are non-zero and not multiples of each other, while the remaining columns are

Level 2

1 point

linear combinations of these 2 columns, then nullity(A) = 2.

Let Ax = 0 be a homogeneous system of linear equations which has infinitely many solutions, where A is an $m \times n$ matrix (where, m > 1, n > 1). Which of the following statements are possible?

- \Box rank(A) = m and m < n.
- \square rank(A) = m and m > n.
- \square rank(A) = m and m = n.
- \square *nullity*(A) = n.
- \square *nullity*(A) \neq 0.

No, the answer is incorrect.

Score: 0

Accepted Answers:

rank(A) = m and m < n. nullity(A) = n.nullity(A) = 0.

Consider the coefficient matrix A of the following system of linear equations to answer questions 11 and 12:

$$3x_1 + 2x_2 + x_3 = 0$$

$$x_1 + x_3 = 0$$

Which one of the following vector spaces represents the null space of \boldsymbol{A} appropriately?

1 point

- $\bigcirc \{(-t,t,t) \mid t \in \mathbb{R}\}$
- $\bigcirc \{(t_1, t_2, \frac{t_2 t_1}{2}) \mid t_1, t_2 \in \mathbb{R}\}$
- $\bigcirc \{(t, -t, t) \mid t \in \mathbb{R}\}\$
- $\bigcirc \{(t_1, t_2, \frac{t_1 + t_2}{2}) \mid t_1, t_2 \in \mathbb{R}\}\$

Score: 0

Accepted Answers:

 $\{(-t, t, t) \mid t \in \mathbb{R}\}$

What will be the rank of A and nullity of A?

1 point

- \bigcirc rank(A) = 3, nullity(A) = 2
- \bigcirc rank(A) = 2, nullity(A) = 1
- \bigcirc rank(A) = 1, nullity(A) = 2
- \bigcirc rank(A) = 2, nullity(A) = 0

No, the answer is incorrect.

Score: 0

Accepted Answers:

rank(A) = 2, nullity(A) = 1

Let Ax = 0 be a homogeneous system of linear equations which has a unique solution, where $A \in \mathbb{R}^{n \times n}$. What is the nullity of A?

No, the answer is incorrect.

Score: 0

Accepted Answers:

(Type: Numeric) 0

1 point

Suppose $x_1 \equiv 0$ solves Ax = 0, where $A \in \mathbb{R}^{2\times 4}$. What is the minimum number of elements in a linearly independent subset of null space of A that also spans the set of solutions of Ax = 0?

Score: 0

Accepted Answers:

(Type: Numeric) 2

1 point

1 point

Consider the following sets:

$$S_1 = \{(1, 2, 3), (4, 5, 6), (8, 9, 10)\}$$

$$S_2 = \{(1, 2, 1), (2, 4, 2), (1, 2, 5)\}$$

$$S_3 = \{(1, 2, 3), (4, 5, 6), (7, 8, 10)\}$$

$$S_4 = \{(1, 2), (4, 5)\}$$

$$S_5 = \{(1, 2), (4, 5), (3, 8)\}$$

Choose the set of correct options

- \square S_1 is a basis of \mathbb{R}^3 .
- \square S_2 is a basis of \mathbb{R}^3 .
- \square S_3 is a basis of \mathbb{R}^3 .
- \square S_4 is a basis of \mathbb{R}^2 .
- \square S_5 is a basis of \mathbb{R}^2 .

No, the answer is incorrect.

Score: 0

Accepted Answers:

 S_3 is a basis of \mathbb{R}^3 .

 S_4 is a basis of \mathbb{R}^2 .