# INTERBUS-S Device Certification

September 1996

## 1. Certification Background

Certification is the guarantee that your device is INTERBUS-S compatible. This process starts in the design stage of a product and continues until the device is finally submitted to the conformance testing body. This data sheet will explain the certification structure, requirements, benefits of certification and design considerations with certification in mind.

## 2. Benefits of Certification

Confidence that your device has been reviewed and deemed compatible with all other INTERBUS-S devices is one of the biggest benefits of certification. Other advantages are as follows:

- Schematic evaluation
- Possible design improvement suggestions
- Use of the INTERBUS-S Club's compatible logo
- Product will be published in the INTERBUS-S Club's Info-Service
- World wide exposure
- Acceptance for projects that mandate INTERBUS-S certified products



Figure 1. INTERBUS-S Certification Structure

## 3. Governing Body

The INTERBUS-S Club is the governing body of the certification process. They have the responsibility of controlling all the test methods, procedures, related specifications and documentation. Along with these duties, the club issues certification certificates and selects / audits test facilities. Figure 1 shows the relationship and responsibilities of the certification organization.

# 4. Certification Requirements

The first step in certifying a device is the scheduling of a test date. The device must be sent on this date along with the following items:

- Schematic drawings of the INTERBUS-S interface
- PCB layout and assembly drawings
- Parts list for the INTERBUS-S interface
- Device user manual / setup instructions
- Data sheets for components not listed in this document
- If the Peripheral Communications Protocol (PCP) is used, send the following files:
   A.) KBL.DAT, VFD.DAT and OV.DAT or the PICS file

After the testing is complete, a report will be sent from the test facility to the submitting party. If this report shows a positive result, the applicant must then send the report to the INTERBUS-S Club. The club is then responsible for issuing the official certificate allowing the applicant to use the "INTERBUS-S Compatible" certification logos on their device (shown in figure 2). This certificate is valid for 3 years. At the end of this period the applicant must resubmit the test report for renewal.





Certification Symbol for Process Data Devices

Certification Symbol for PCP Protocol Devices

Figure 2. INTERBUS-S Certification Logos

# 5. Design Considerations

Certification of INTERBUS-S devices can be virtually assured by using proper design techniques for printed circuit boards, isolating of the protocol chip (SuPI) and the INTERBUS-S network signals and by using components listed on the approved components listing.

## a. Circuit Board Layout

Circuit board layout should be considered when designing an INTERBUS-S bus interface. The use of proper power and grounding techniques for PCB and SMT type boards will greatly increase your chances to pass the external noise immunity test for certification. This external noise immunity test is carried out in accordance with IEC 801-4 and must meet the criteria of test class 3, minimum. Information on layout techniques is available through the INTERBUS-S Club.

### b. Bus Isolation

Isolation is optional for certification but will improve the odds of passing the test. By isolating the incoming bus from the protocol chip (SuPI), bus fidelity will be greatly enhanced. Information for the design can be found in the SuPI manual (IBS SUPI II HB-E, 2758787, available from Phoenix Contact).

#### c. Component Selection



Product certification CANNOT be achieved with the use of nonstandard parts in the INTERBUS-S interface.

If the developer chooses to select unapproved parts there will be extra steps required to have these components added to the list in order to obtain certification. Non-standard parts need to be tested to ensure their functionality. This process is carried out by the INTERBUS-S Club in Germany. The first step for component testing is to arrange a test appointment and pay the testing fee. This fee will be paid for

each component that needs tested and there are no guaranties that your selected component will pass. To be on the safe side, develop with approved components listed in this document. See Tables 1 through 10. Surface mount components are marked with an asterisk.

Table 1. Remote Bus Drivers and Receivers

| Part Number                                        | Functional Description                                                                                                               | Manufacturer                                                            |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| AD485                                              | Differential RS 485 Transceiver                                                                                                      | Analog Devices                                                          |
| AD485*                                             | Differential RS 485 Transceiver                                                                                                      | Analog Devices                                                          |
| DS26C31TN                                          | Quad differential line driver                                                                                                        | National Semiconductor                                                  |
| DS26C31TM*                                         | Quad differential line driver                                                                                                        | National Semiconductor                                                  |
| DS26C32ATN                                         | Quad differential line receiver                                                                                                      | National Semiconductor                                                  |
| DS26C32AIM*                                        | Quad differential line receiver                                                                                                      | National Semiconductor                                                  |
| DS96173N                                           | Quad differential line receiver                                                                                                      | National Semiconductor                                                  |
| SN75172N                                           | Quad differential line driver                                                                                                        | Texas Instruments                                                       |
| SN75173N                                           | Quad differential line receiver                                                                                                      | Texas Instruments                                                       |
| SN75176BP<br>SN75176BD*<br>SN75179BP<br>SN75179BD* | Differential bus transceiver<br>Differential bus transceiver<br>Differential driver and receiver<br>Differential driver and receiver | Texas Instruments Texas Instruments Texas Instruments Texas Instruments |

<sup>\* =</sup> Surface mount component

0666A001

**Table 2. Fiber Optic Transmitters and Receivers** 

| Part Number  | Functional Description  | Manufacturer    |
|--------------|-------------------------|-----------------|
| TORX 104     | Fiber optic receiver    | Toshiba         |
| QFBR-1607    | Fiber optic transmitter | Hewlett Packard |
| HFX 6015-548 | Fiber optic transmitter | Honeywell       |
| HFX 6015-536 | Fiber optic transmitter | Honeywell       |

0666A002

Table 3. Logic ICs

| Part Number | Functional Description       | Manufacturer           |
|-------------|------------------------------|------------------------|
| CD74ACT00E  | Quad 2 input nand gate       | Harris Semiconductor   |
| HD74ACT00P  | Quad 2 input nand gate       | Hitachi                |
| MC74ACT00N  | Quad 2 input nand gate       | Motorola               |
| MM74ACT00PC | Quad 2 input nand gate       | National Semiconductor |
| TC74ACT00P  | Quad 2 input nand gate       | Toshiba                |
| CD74ACT74E  | Dual D type flip flop        | Harris Semiconductor   |
| HD74ACT74P  | Dual D type flip flop        | Hitachi                |
| MC74ACT74N  | Dual D type flip flop        | Motorola               |
| MM74ACT74PC | Dual D type flip flop        | National Semiconductor |
| TC74ACT74P  | Dual D type flip flop        | Toshiba                |
| MC74HC14D   | Hex schmitt-trigger invertor | Motorola               |
| PC74HC14T*  | Hex schmitt-trigger invertor | Phillips               |
| SN74HC14N*  | Hex schmitt-trigger invertor | Texas Instruments      |

<sup>\* =</sup> Surface mount component

0666A006

Table 4. Power Supply Monitors/Supervisors

| Part Number | Functional Description                          | Manufacturer |
|-------------|-------------------------------------------------|--------------|
| MAX700L     | Adjustable power supply monitor with reset      | Maxim        |
| MAX709L     | Power supply monitor with 4.65V reset threshold | Maxim        |

0666A004

**Table 5. Opto Couplers** 

| Part Number | Functional Description | Manufacturer      |
|-------------|------------------------|-------------------|
| HCPL0601    | Opto coupler           | Hewlett Packard   |
| HCPL0611    | Opto coupler           | Hewlett Packard   |
| HCPL2601    | Opto coupler           | Hewlett Packard   |
| HCPL2611    | Opto coupler           | Hewlett Packard   |
| HCPL2630    | Opto coupler           | Hewlett Packard   |
| HCPL2631    | Opto coupler           | Hewlett Packard   |
| HCPL4661    | Opto coupler           | Hewlett Packard   |
| Q62703-N77  | Opto coupler           | Siemens           |
| HCPL2601    | Opto coupler           | Texas Instruments |
| TLP2601     | Opto coupler           | Toshiba           |

0666A005

Table 6. Voltage Regulator

| Part Number | Functional Description    | Manufacturer      |
|-------------|---------------------------|-------------------|
| TL7705ACD*  | Supply voltage supervisor | SGS-Thomson       |
| TL7705ACP   | Supply voltage supervisor | Texas Instruments |
| TL7705ACD*  | Supply voltage supervisor | Texas Instruments |

<sup>\* =</sup> Surface mount component

0666A003

**Table 7. Expansion Output Registers** 

| Part Number  | Functional Description             | Manufacturer           |
|--------------|------------------------------------|------------------------|
| CD74HC164E   | Parallel out serial shift register | Harris Semiconductor   |
| MC74HC164D*  | Parallel out serial shift register | Motorola               |
| PC74HC164T*  | Parallel out serial shift register | Phillips               |
| SN74HC164N   | Parallel out serial shift register | Texas Instruments      |
| CD74HCT164E  | Parallel out serial shift register | Harris Semiconductor   |
| MM74HCT164N  | Parallel out serial shift register | National Semiconductor |
| PC74HCT164P  | Parallel out serial shift register | Phillips               |
| MM74HC594P   | Shift register w/output latches    | National Semiconductor |
| MM74HC594D*  | Shift register w/output latches    | National Semiconductor |
| SN74HC594P   | Shift register w/output latches    | Texas Instruments      |
| SN74HC594D*  | Shift register w/output latches    | Texas Instruments      |
| MC74HC595N   | Shift register w/output latches    | Motorola               |
| MC74HC595AN  | Shift register w/output latches    | Motorola               |
| SN74HC595N   | Shift register w/output latches    | Texas Instruments      |
| SN74HC595D*  | Shift register w/output latches    | Texas Instruments      |
| SN74HC595TP* | Shift register w/output latches    | Texas Instruments      |
| MM74HCT595P  | Shift register w/output latches    | National Semiconductor |
| MM74HCT595D* | Shift register w/output latches    | National Semiconductor |
| SN74HCT595P  | Shift register w/output latches    | Texas Instruments      |
| SN74HCT595D* | Shift register w/output latches    | Texas Instruments      |

<sup>\* =</sup> Surface mount component

0666A007

**Table 11. Phoenix Contact Supplied Component** 

| Part                                                                   | Functional Description                                                          | Order Number                           |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------|
| IBS SµPI PLCC<br>IBS SµPI II PLCC<br>IBS SµPI II QFP*<br>IBS SRE1 QFP* | Slave protocol IC<br>Slave protocol IC<br>Slave protocol IC<br>Micro controlled | 27 59 14 2<br>27 58 40 2<br>27 58 41 5 |
|                                                                        | expansion registers                                                             | 27 52 85 1                             |

<sup>\* =</sup> Surface mount component

0666A013

**Table 8. Expansion Input Registers** 

| Part Number | Functional Description              | Manufacturer           |
|-------------|-------------------------------------|------------------------|
| CD74HC165E  | Parallel-load serial shift register | Harris Semiconductor   |
| CD74HC165M* | Parallel-load serial shift register | Harris Semiconductor   |
| MM74HC165M* | Parallel-load serial shift register | National Semiconductor |
| PC74HC165T* | Parallel-load serial shift register | Phillips               |
| M74HC165M1* | Parallel-load serial shift register | SGS-Thomson            |
| SN74HC165D* | Parallel-load serial shift register | Texas Instruments      |
| CD74HCT165E | Parallel-load serial shift register | Harris Semiconductor   |
| PC74HCT165P | Parallel-load serial shift register | Phillips               |
| M74HC597B1N | Shift register w/input latches      | SGS-Thomson            |
| TC74HC597AP | Shift register w/input latches      | Toshiba                |
| CD74HCT597E | Shift register w/input latches      | Harris Semiconductor   |
| PC74HCT597P | Shift register w/input latches      | Phillips               |

<sup>\* =</sup> Surface mount component

0666A008

## Table 9. Local Bus Buffers, Drivers and Selectors

| Part Number                                               | Functional Description                                                                                               | Manufacturer                                             |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 74ACT240PC<br>CD74ACT240E<br>CD74ACT258E                  | Buffers and line drivers<br>Buffers and line drivers<br>2 to 1 line data selectors                                   | Fairchild Harris Semiconductor Harris Semiconductor      |
| HD74ACT258P<br>MC74ACT258N<br>MM74ACT258PC<br>TC74ACT258P | 2 to 1 line data selectors<br>2 to 1 line data selectors<br>2 to 1 line data selectors<br>2 to 1 line data selectors | Hitachi<br>Motorola<br>National Semiconductor<br>Toshiba |

0666A009

**Table 10. Discrete Component Values** 

| Part Number                                        | Type                                   | Manufacturer    |
|----------------------------------------------------|----------------------------------------|-----------------|
| MCO1400B-16MHz<br>VX-4231-16MHz                    | Quartz Oscillator<br>Quartz Oscillator | TQE<br>JVC      |
| 16MHz +/- 100pp<br>mCL=16PF ESR=50Ω                | Crystal                                |                 |
| 220µF 6.3V 20%<br>LLAG3VB-220(M)TPA(F2.5)          | Capacitor                              | Nippon Chemicon |
| 3.3µF 16V 20%<br>15nF 650V 20%<br>100nF 16V 20%    | Capacitor<br>Capacitor<br>Capacitor    |                 |
| 22-68pF 16V 20%<br>100W 0.25W 1%<br>15W 0.25W 1%   | Capacitor<br>Resistor<br>Resistor      |                 |
| 220W 0.25W 1%<br>390W 0.25W 1%<br>2.7KW 0.125W 10% | Resistor<br>Resistor<br>Resistor       |                 |
| 4.7KW 0.125W 10%<br>1MW 0.125W 10%                 | Resistor<br>Resistor                   |                 |

0666A010