T^3 - Twórca Tablic Tęczowych

Równoległe wyznaczanie tęczowych tablic ("rainbow tables") w zgadnieniach kryptografii dla haseł zaszyfrowanych algorytmem DES: Scala

Bartosz Pieńkowski, Barnaba Turek

16 maja 2011

1 Opis

 T^3 to zestaw programów wyznaczających tablice tęczowe i pozwalających sprawdzić poprawność ich wyznaczenia (przez wyznaczenie funkcji skrótu dla danego ciągu znaków (dalej klucza) i próbę odwrócenia tego procesu).

Tablice tęczowe to sposób przechowywania wcześniej obliczonych danych pozwalających odwracać (analitycznie nieodwracalną) funkcję skrótu¹. Tablice tęczowe pozwalają zmniejszyć wymagania dyskowe (w stosunku do prostego zapisywania wszystkich par klucz-f(klucz)) kosztem wymagań obliczeniowych. Osiągane to jest za pomocą tworzenia tzw. łańcuchów skrótów² i zapisywaniu tylko pierwszego i ostatniego elementu łańcucha.

1.1 Funkcja skrótu

 T^3 wyznacza tablice tęczowe dla funkcji skrótu zgodnej z funkcją crypt (należącą do standardu **POSIX**) działającej w oparciu o standard **DES**.

2 Użycie

2.1 Tworzenie tablic tęczowych

Program generujący tablice teczowe nazywa się t3.

2.1.1 Wywołanie programu

Użytkownik programu t3 podaje trzy argumenty linii poleceń. Pierwszy argument określa długość klucza, dla którego mają być wygenerowane tablice tęczowe (od 1 do 8). Drugi argument określa długość obliczanych łańcuchów. Trzeci argument jest opcjonalny i określa alfabet użyty do generowania kluczy. Domyślnie alfabet to małe litery.

¹inaczej kryptograficzną funkcję mieszającą, ang. hash function

²ang. hash chaining

2.1.2 Wyjście programu

Tablice tęczowe zostaną zapisane w aktualnym katalogu. Program tworzy plik, składający się z wierszy. Każdy wiersz składa się z początkowego i końcowego elementu łańcucha skrótów, oddzielnoych spacją.

2.1.3 Przykładowe wywołania

Wywołanie:

```
1 $ t3 2 10 abc
```

Wygeneruje tablice tęczowe dla haseł o dłguości dwóch znaków z trzyliterowego alfabetu "abc". Łańcuchy skrótów będą miały długość 10.

Aby uprościć podawanie alfabetu można wykorzystać inne, dostępne w systemie narzędzia. Np. w wielu powłokach systemu GNU/Linux można wykorzystać program **perl** w następujący sposób:

```
1 $ t3 2 10 'perl -e 'print join '', a.z,A.Z,0..9''
```

Wywołanie takie jest równoważne wywołaniu:

```
1 $\ t3 2 10 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
```

i generuje tablice tęczowe dla dwuznakowych haseł składających się z kombinacji wielkich liter, małych liter i cyfr.

2.2 Generowanie skrótu

Do generowania i skrótów służy program t3-hash.

2.2.1 Wywołanie programu

Użytkownik programu t3-hash jako argument podaje klucz (1 do 8 znaków), dla którego ma być wygenerowany skrót. Następnie program wypisuje skrót na standardowe wyjście.

2.3 Odwracanie funkcji skrótu

Do odwracania funkcji skrótu służy program t3-reverse.

2.3.1 Wywołanie programu

Użytkownik programu t3-reverse jako argument podaje wartość funkcji skrótu, dla której znaleziona ma być wartość klucza.

Jeżeli program został wywołany z katalogu, w którym nie ma wygenerowanych tablic tęczowych, program zakończy działanie wypisując informację o braku tablic.

Jeżeli program nie znajdzie klucza pasującego do zadanej wartości funkcji skrótu, program zakończy działanie wypisując informację o niepowodzeniu.

3 Rozwiązania

Jeżeli działanie programu zakończy się sukcesem, program wypisze znaleziony klucz. Poprawność znalezionego klucza będzie można sprawdzić korzystając z programu t3-hash.

3 Rozwiązania

Program zostanie wykonany w języku Scala na platformę JVM.

Programy t3-hash i t3-reverse nie będą działać współbieżnie - programy te służą głównie do sprawdzania poprawności wygenerowanych tablic i są znacząco mniej wymagające obliczeniowo.

Zrównoleglenie wyznaczania tablic tęczowych zostanie osiągnięte za pomocą mechanizmu Aktorów oferowanego przez język **Scala**. Mechanizm ten jest zrealizowany na wirtualnej maszynie Javy za pomocą wątków.

Zamierzamy wykorzystać komunikację globalną - jeden wątek będzie zarządzał wszystkimi innymi wątkami.

Naszym zdaniem najlepszą dekompozycją problemu przy tak postawionym zadaniu będzie dekompozycja domenowa, tj. równomierny podział początkowych³ kluczy na wątki.

³zaczynających łańcuch skrótów