МГТУ им. Н.Э. Баумана Кафедра Э9

Отчет о лабораторной работе

«Исследование методов защиты от воздействия ЭМП» Вариант N_2 3

ФН2И – 71Б
(индекс группы)
Сапрыкинс Артёмс

(Ф.И.О. студента)

Материал экрана: нержавеющая сталь, $\rho = 7.5 \cdot 10^{-8} \text{ Ом} \cdot \text{м}, \ \mu = 1.0 \cdot 10^{-3} \text{ Гн/м}.$

Толщины экрана: $d_1 = 0.1$ мм, $d_2 = 1$ мм. Частотный диапазон: $300 \text{ M}\Gamma\text{ц} - 300\Gamma\Gamma\text{ц}$.

Формула для глубины проникновения ЭМП: $\delta = \sqrt{\rho/(\pi \mu f)}$

Формула для эффективности экранирования: $\Im = 36 + 20lg(\delta/\rho) + 8.7(d/\delta)$

Эффективность экранов на нижней граничной частоте заданного частотного диапазона $\Im_{d1} = 3131.58 \; д Б$ $\Im_{d2} = 30888.2 \; д Б$

Графики эффективности экранов в заданном частотном диапазоне

Выводы по результатам проведенных расчетов:

Эффективность экрана выше при большей толщине экрана (при $d_2 = 1$ мм), экранирование эффективно как мера защиты от ЭМИ при высоких частотах.