

TABLEAU 1.1 PRÉFIXES DU SI

préfixes multiplicatifs >1					préfixes multiplicatifs <1			
10 ¹	deca (da)	1012	téra (T)	10-1	déci (d)	10-12	pico (p)	
102	hecto (h)	1015	peta (P)	10-2	centi (c)	10-15	femto (f)	
10 ³	kilo (k)	1018	exa (E)	10-3	milli (m)	10-18	atto (a)	
10 ⁶	mega (M)	10 ²¹	zetta (Z)	10-6	micro (μ)	10-21	zepto (z)	
10 ⁹	giga (G)	1024	yotta (Y)	10-9	nano (n)	10-24	yocto (y)	

TABLEAU 1.2 MASSE VOLUMIQUE DE DIVERS LIQUIDES (kg/m³)

т (°С)	EAU	MÉTHANOL	ÉTHANOL	ÉT. GLYCOL	BENZÈNE
0	1000	810	806		900
10	1000	801	797	1110	889
20	998	792	789	1110	879
30	996	783	780	1110	868
40	992	774	772	1110	858
50	988	765	763	1100	847
60	983	756	754	1090	836
70	978	T _b = 65°C	745	1080	825
80	972		T _b = 78,3°C	1070	815
90	965			1065	T _b = 80,1°C
100	958			1060	

TABLEAU 1.3 DES RADIO-ISOTOPES

Isotope	Demi-vie	Type de désintégration
³ H	12,33 années	β-
¹⁴ ₆ C	5730 années	β-
¹⁸ ₉ F	109,8 minutes	e ⁺
⁶⁰ ₂₇ Co	5,27 années	β-
⁹⁰ ₃₈ Sr	29 années	β-
¹⁰⁹ ₄₈ Cd	453 jours	capture d'électron
¹³¹ ₅₃ I	8,05 jours	β-
¹³³ ₅₄ Xe	5,244 jours	β-
²¹⁴ ₈₄ Po	164 μs	α
²²⁶ ₈₈ Ra	1600 années	α
²³⁸ ₉₂ U	4,46 x 10 ⁹ années	α
²³⁹ ₉₃ Pu	2,41 x 10 ⁴ années	α

TABLEAU 1.4 NOM DES ANIONS MONOATOMIQUES

nom de l'atome	nom de l'anion	symbole
arsenic	arséniure	As^{3-}
brome	bromure	Br^-
carbone	carbure	C^{4-}
chlore	chlorure	Cl^-
fluor	fluorure	F^{-}
hydrogène	hydrure	H^{-}
iode	iodure	I^{-}
azote	nitrure	N^{3-}
oxygène	oxyde	O^{2-}
phosphore	phosphure	P^{3-}
sélénium	séléniure	Se^{2-}
soufre	sulfure	S^{2-}
tellure	tellurure	Te^{2-}

TABLEAU 1.6 PRÉFIXES INDIQUANT LE NOMBRE D'ATOMES

Nombre	Préfixe
1	mono, mon
2	di
3	tri
4	tétra, tétr
5	penta, pent
6	hexa

TABLEAU 1.5 IONS POLYATOMIQUES

anion/cation	nom		
$C_2H_3O_2^-$	acétate		
CO ₃ ²⁻	carbonate		
ClO ₃	chlorate		
ClO ₂	chlorite		
CrO ₄ ²⁻	chromate		
CN -	cyanure		
Cr ₂ O ₇ ²⁻	dichromate		
HCO ₃	hydrogénocarbonate		
OH -	hydroxyde		
ClO -	hypochlorite		
HSO ₄ -	hydrogénosulfate		
NO ₃	nitrate		
NO ₂	nitrite		
ClO ₄	perchlorate		
MnO ₄	permanganate		
PO ₄ 3-	phosphate		
so ₄ ²⁻	sulfate		
so_3^{2-}	sulfite		
S ₂ O ₃ ²⁻	thiosulfate		
NH ₄ +	ammonium		

TABLEAU 1.7 NOMS DE QUELQUES ACIDES

formule	nom
HI	acide iodhydrique
HBr	acide bromhydrique
HCl	acide chlorhydrique
HF	acide fluorhydrique
H ₂ S	acide sulfhydrique
HCIO ₄	acide perchlorique
H ₂ SO ₄	acide sulfurique
HNO ₃	acide nitrique
H ₂ CrO ₄	acide chromique
HIO ₃	acide iodique
H ₂ SO ₃	acide sulfureux
H ₃ PO ₄	acide phosphorique
H ₂ CO ₃	acide carbonique
HCIO	acide hypochloreux
HCN	acide cyanhydrique

TABLEAU 1.8 ALCANES DE 1 À 4 CARBONES

nom	formule moléculaire	formule structurale
méthane	CH ₄	H H-C-H H
éthane	C ₂ H ₆	H H H-C-C-H H H
propane	C₃H ₈	H H H H-C-C-C-H H H H
butane	C ₄ H ₁₀	H H H H H-C-C-C-C-H H H H H

TABLEAU 1.9 PRÉFIXES DES ALCANES DE PLUS DE 4 CARBONES

préfixe	nombre d'atomes
	de C
penta	5
hexa	6
hepta	7
octa	8
nona	9
déca	10
undéca	11
dodéca	12
tridéca	13
tétradéca	14
pentadéca	15
icosa	20
henicosa	21
docosa	22
tricosa	23

TABLEAU 1.10 SUBSTITUANTS ORGANIQUES COURANTS

Groupe	Nom	Groupe	Nom
—CH ₃	méthyle	— F	fluoro
	éthyle	— CI	chloro
	propyle	— Br	bromo
H ₃ C-C-CH ₃	isopropyle	—1	iodo
H H C C C C H	H H C C C D phényle		amino
H H		— NO ₂	nitro

TABLEAU 2.1 PRESSION DE VAPEUR DE QUELQUES LIQUIDES

température		Pression de vapeur (kPa)						
(°C)	eau	éthanol	méthanol	benzène	pentane	hexane	heptane	
0	0,6113	1,545	3,968	3,511	24,439	6,040	1,516	
5	0,8721	2,199	5,431	4,644	30,542	7,850	2,053	
10	1,228	3,082	7,336	6,069	37,819	10,089	2,744	
15	1,705	4,260	9,789	7,841	46,426	12,831	3,621	
20	2,339	5,810	12,912	10,024	56,531	16,158	4,723	
25	3,169	7,826	16,847	12,686	68,309	20,161	6,094	
30	4,246	10,417	21,758	15,906	81,947	24,938	7,781	
35	5,628	13,713	27,830	19,768	97,640	30,595	9,840	
40	7,384	17,864	35,275	24,363	115,591	37,247	12,330	
45	9,593	23,042	44,326	29,792	136,012	45,014	15,318	
50	12,35	29,446	55,248	36,160	159,119	54,026	18,877	
55	15,76	37,298	68,331	43,582	185,137	64,421	23,083	
60	19,94	46,850	83,895	52,179	214,295	76,341	28,023	
65	25,03	58,384	102,290	62,080	246,827	89,939	33,786	
70	31,19	72,213	123,897	73,420	282,970	105,369	40,470	
75	38,58	88,681	149,127	86,340	322,965	122,796	48,178	
80	47,39	108,168	178,426	100,988	367,054	142,388	57,018	
85	57,83	131,089	212,269	117,518	415,481	164,317	67,104	
90	70,14	157,893	251,164	136,087	468,491	188,761	78,557	
95	84,55	189,066	295,651	156,861	526,328	215,902	91,500	
100	101,3	225,134	346,303	180,006	589,236	245,925	106,065	

Été 2022

TABLEAU 2.2 COMPOSITION DE L'AIR SEC (STANDARD)¹ (13 constituants les plus abondants)

Nom du gaz	Symbole chimique	Masse molaire (g/mol)	fraction molaire (en %)
Azote	N_2	28,0135	78.084%
Oxygène	O_2	31,9988	20.946%
Argon	Ar	39,948	0.9340%
Dioxyde de carbone	CO ₂	44,0095	0.039%
Néon	Ne	20,1797	0.001818%
Hélium	He	4,002602	0.000524%
Méthane	CH₄	16,0425	0.000179%
Krypton	Kr	83,80	0.000114%
Hydrogène	H ₂	2,0157	0.000055%
Oxyde de diazote	N_2O	44,0129	0.00003%
Monoxyde de carbone	СО	28,0101	0.00001%
Xénon	Xe	131,29	9 × 10 ⁻⁶ %
Ozone	O ₃	47,9982	7 × 10 ⁻⁶ %

TABLEAU 2.3 PROPRIÉTÉS THERMODYNAMIQUES

Nom	Formule	Tf	Тb	Ср	ΔH_f	ΔH_{V}
		°C	°C	kJ/(kg.K)	kJ/kg	kJ/kg
Eau (solide)	H ₂ O	0		2,09	333	
Eau (liquide)	H ₂ O		100	4,18		2259
Eau (gaz)	H ₂ O			1,87		
Ammoniac (gaz)	NH ₃	- 78	- 33	1,95	313	1300
Benzène (liquide)	С ₆ Н ₆	5,5	80,1	1,75	126	433,3
Propane (liquide)	C ₃ H ₈	- 187,6	- 42,1	2,41	79,9	342,1
Butane (liquide)	C ₄ H ₁₀	- 138,3	- 0,5	2,30	80,2	362
Dioxyde de carbone (gaz)	co ₂		- 78,4	0,851		
Octane (liquide)	C ₈ H ₁₈	- 56,8	125,7	2,42	180,6	363
Ethylène glycol (liquide)	C ₂ H ₆ O ₂	- 11,5	197	2,40	181	800
Méthanol (liquide)	CH ₃ OH	- 97,8	64,7	2,51	99,2	1190
Ethanol (liquide)	C ₂ H ₅ OH	- 114,4	78,3	2,85	107,8	854,6

¹ source : http://en.wikipedia.org/wiki/Atmosphere of Earth, consulté le 5 octobre 2010

TABLEAU 2.4 POLYMÈRES OBTENUS PAR ADDITION

Nom (sigle)	monomère	exemples d'usage	Tg ² (°C)	T _f ¹(°C)	A%³
polyéthylène (PE)	H H H	sacs de plastique, contenants alimentaires	-130 à -80	137	20 à 600
polypropylène (PP)	H CH ₃	contenants divers, pièces d'automobiles, fibres pour les tapis	-17	174 isotactique	250 à 600
chlorure de polyvinyle (PVC)	H C=C H	tuyaux de plomberie, stores	80 (rigide) ³	na	5 à 80
chlorure de polyvinylidène (PVdC)	H CI	« Saran »	-18	200	160 à 250 ⁴
polytétrafluoroéthylène (PTFE) - <i>teflon</i>	F F F	Prothèses, contenants résistants aux attaques chimiques, revêtement antiadhésif	-73	335	250 à 500
polystyrène (PS)	H C=C	gobelets et contenants isolants, ustensiles jetables	90³	na atactique	1 à 4 ³
polyméthacrylate de méthyle (PMMA) - plexiglas	H C=C H C=O O CH ₃	objets décoratifs, fibres optiques, lentilles, lunettes de sécurité	120	na	4 ⁵

http://www.patrick-

roch.com/ingemeca/docs/ genie mecanique/Mat%E9riaux/Plastiques%20et%20composites/plastochimie/Mati%E8res%20thermoplastiques%20-%20Tableaux%20comparatifs.pdf, consulté le 23 octobre.

² Selon <u>http://www.pslc.ws/macrog.htm</u>, consulté le 23 octobre 2012

³ Allongement à la rupture selon <u>http://www.pslc.ws/macrog.htm</u>, consulté le 23 octobre 2012

⁵ Selon <u>http://www.vacour-plastique.com/pdf/standard.pdf</u>, consulté le 23 octobre 2012

TABLEAU 2.5 ENTHALPIES DE FORMATION STANDARD à 25°C en kJ/mol

Substance	h _f o	Substance	h _f o	Substance	h _f o	Substance	h _f o
Al (s)	0	CH ₃ OH (g)	- 200,86	H ₂ O ₂ (I)	- 187,8	P (s, blanc)	0
Al ₂ O ₃ (s)	- 1676	C ₂ H ₅ OH (I)	- 277,7	HF (g)	- 271,1	P (s, rouge)	- 18,4
Ag (s)	0	CH ₃ Cl (g)	- 80,83	HCl (g)	- 92,31	P ₄ O ₁₀ (s)	- 2984
AgBr (s)	- 100,4	CH ₃ Cl (I)	- 102	HBr (g)	- 36,4	POCl ₃ (g)	- 558,5
AgCl (s)	- 127,1	CH ₂ Cl ₂ (g)	- 92,47	HI (g)	26,1	POCL ₃ (I)	- 597,0
Ag ⁺ (aq)	105,6	CH ₂ Cl ₂ (I)	- 121	H ₂ S (g)	- 20,1	PCl ₃ (g)	- 306,4
Ba (s)	0	CHCl ₃ (g)	- 103,1	H ⁺ (aq)	0	PCl ₅ (g)	- 375,0
BaCO ₃ (s)	- 1216	CHCl ₃ (I)	- 134,5	OH ⁻ (aq)	- 230,0	PH ₃ (g)	5,4
BaO (s)	- 553,5	CCI ₄ (g)	- 103	I (g)	106,8	KCl (s)	- 436,7
Ba ⁺⁺ (aq)	- 537,6	CCI ₄ (I)	- 135,4	I ₂ (g)	62,4	KCIO ₃ (s)	- 397,7
Br (g)	111,9	CO (g)	- 110,5	I ₂ (s)	0	K ⁺ (aq)	- 252,4
Br ₂ (g)	30,91	CO ₂ (g)	- 393,5	Mg (s)	0	Na (g)	107,1
Br ₂ (I)	0	CI (g)	121,7	MgO (s)	- 601,7	Na (s)	0
Br ⁻ (aq)	- 121,6	Cl ₂ (g)	0	MgCO ₃ (s)	- 1096	NaHCO ₃ (s)	- 947,7
Ca (s)	0	Cl ⁻ (aq)	- 167,2	Mg ⁺⁺ (aq)	- 466,9	Na ₂ CO ₃ (s)	- 1131,1
CaC ₂ (s)	- 59,8	Cu (s)	0	N (g)	472,6	Na ₂ O (s)	- 418
CaCO ₃ (s)	- 1207	CuO (s)	- 157	N ₂ (g)	0	NaCl (s)	- 411,2
CaO (s)	- 635,1	Cu ₂ O (s)	- 169	NH ₃ (g)	- 46,19	NaBr (s)	- 361,4
CaSO ₄ (s)	- 1434,1	Cu ++ (aq)	64,77	N ₂ H ₄ (I)	50,6	Nal (s)	- 278,8
Ca ++ (aq)	- 542,8	Fe (s)	0	NO (g)	90,37	Na ⁺ (aq)	- 240,1
C(s, diamant)	1,90	Fe ₂ O ₃ (s)	- 824,2	NO ₂ (g)	33,85	S(s, rhomb.)	0
C(s, graphite)	0	Fe ₃ O ₄ (s)	- 1118	N ₂ O (g)	81,55	S(s, mono.)	0,30
CH ₄ (g)	- 74,86	F (g)	78,99	N ₂ O ₄ (g)	9,66	SO ₂ (g)	- 296,8
C ₂ H ₂ (g)	226,7	F ₂ (g)	0	N ₂ O ₄ (I)	-19,50	SO ₃ (g)	- 395,7
C ₂ H ₄ (g)	52,28	F ⁻ (aq)	- 332,6	N ₂ O ₅ (s)	- 41,8	SF ₆ (g)	- 1209,3
C ₂ H ₆ (g)	- 84,68	H (g)	218	NOCI (g)	51,9	SO ₄ (aq)	- 909,3
C ₃ H ₈ (g)	- 103,8	H ₂ (g)	0	O (g)	247,5	Zn (s)	0
C ₆ H ₆ (I)	49,03	H ₂ O (g)	- 241,8	O ₂ (g)	0	ZnO (s)	- 348,3
CH ₃ OH (I)	- 238,7	H ₂ O (I)	- 285,8	O ₃ (g)	142	ZnS (s)	- 206
						Zn ⁺⁺ (aq)	- 153,9

TABLEAU 3.1 SOLUBILITÉ DE QUELQUES SELS DANS L'EAU⁶

	Li* Na* K* Rb* Cs* Fr* (métaux alcalins)	ammonium NH₄⁺	béryllium Be ²⁺	magnésium Mg ²⁺	calcium Ca ²⁺	strontium Sr ²⁺	baryum Ba ²⁺	chrome(III) Cr³+	fer(II) Fe ²⁺	fer(III) Fe³+	nickel(II) Ni ²⁺	cuivre(II) Cu ²⁺	zinc Zn ²⁺	argent Ag⁺	mercure(I) Hg ₂ ²⁺	plomb(II) Pb ²⁺	aluminium Al³+	étain(IV) Sn ⁴⁺
nitrate NO ₃ -	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	
chlorate ClO₃⁻	S	S	S	S	S	S	S				S	S	S	S	S	S	S	S
acétate CH₃COO⁻	S	S	S	S	S	S	S	S	S		S		S	1		S		S
fluorure F⁻	S ⁷	S		ı	I	ı	-1		ı	-	S	S	S	S		I		
chlorure Cl ⁻	S	S	S	S	S	S	S	S	S	S	S	S	S	I	ı	I	S	
bromure Br⁻	S	S	S	S	S	S	S	S	S	S	S	S	S	I	I	I	S	S
iodure I ⁻	S	S	S	S	S	S	S	S	S	S	S	S	S	I	ı	I	S	S
sulfate SO ₄ ²⁻	S	S	S	S		ı	ı	S	S	S	S	S	S	-			S	S
hydroxyde OH ⁻	S	S	S	I	S ⁸	S	S		Ι	Ι	I	I	I	I	I	I	I	-
oxyde O ²⁻			Ι	I	I	Ι	I		Ι	Ι	Ι	I	I		I	I	Ι	Ι
sulfure S ²⁻	S	S	I			1	1		1		I	ı	1	1	I	1		-
carbonate CO ₃ ²⁻	S	S	ı	ı	I		ı	ı	ı		ı	ı	ı	I	ı	ı		
phosphate PO ₄ 3-	S ⁹	S	Ι	-	I	Ι	I		Ι	Ι	I	I	-		-	ı	I	

S: plutôt soluble dans l'eau (solubilité supérieure à 0,1 mol/L à 25°C)

I : plutôt insoluble dans l'eau (solubilité inférieure à 0,1 mol/L à 25°C)

Case vide (grise): le composé n'existe pas ou est instable dans l'eau, ou l'information n'est pas disponible

Table.html;

http://chemistrybyscott.org/Worksheets%20&%20Handouts/Chem%201/Notes/Solutions/Solubility Chart.pdf; http://library.vcc.ca/learningcentre/pdf/vcclc/Chem0861-UserFriendlySolubilityTable.pdf;

⁶ Compilation des sources : http://www2.ucdsb.on.ca/tiss/stretton/Database/solubility.htm; http://faculty.lacitycollege.edu/boanta/paperwork/Solubility%20Chart.pdf; http://mrnorton.com/assignment_calendar/SolubilityChart.pdf; http://www.chemteam.info/Equations/Solubility-

⁷ Sauf le fluorure de lithium, insoluble

⁸ L'hydroxyde de calcium est faiblement soluble dans l'eau

⁹ Sauf le phosphate de lithium, insoluble

TABLEAU 3.2 PROPRIÉTÉS COLLIGATIVES: PROPRIÉTÉS DE QUELQUES SOLVANTS¹⁰

	T_b	$k_{_{b}}$	T_c	k_c
substance	$^{\circ}C$	${}^{\circ}C \cdot \frac{kg}{mol}$	$^{\circ}C$	${}^{\circ}C \cdot \frac{kg}{mol}$
		mol		mol
eau	100	0,51	0	1,86
cyclohexane	80,7	2,79	6,5	20,2
benzène	80,1	2,53	5,5	5,12
trichlorométhane	61,2	3,8	-63,4	4,68
acide éthanoïque	118	3,1	16,6	3,9

TABLEAU 3.3 CONSTANTES DE HENRY (k_H) DANS L'EAU À 20°C¹¹

nom du gaz	symbole ou formule	constante de Henry $\frac{mol}{L \cdot Pa}$
diazote	N ₂	6,5 × 10 ⁻⁹
dioxygène	O ₂	1,4 × 10 ⁻⁸
dioxyde de carbone	CO ₂	3,8 × 10 ⁻⁷
monoxyde de carbone	СО	1,0 × 10 ⁻⁸
dihydrogène	H ₂	7,9 × 10 ⁻⁹
argon	Ar	1,5 × 10 ⁻⁸
hélium	Не	3,7 × 10 ⁻⁹

¹⁰ Données compilées et adaptées de http://www.vaxasoftware.com/doc_eduen/qui/tcriosebu.pdf, McQuarrie, D.A., Rock, P.A., Gallogly, E.A., Chimie générale, 3e édition, De Boeck, 2012, 1021 pages et Atkins, Peter, Jones, Loretta, *Principes de chimie*, traduction de la 4^e édition américaine, De Boeck, 2008, 787 pages.

¹¹ Adapté de http://en.wikipedia.org/wiki/Henry%27s law, consulté le 8 mai 2013