The Terrace | Study Guide \star

Trends and Seasonality: Matching

Draw a line from each definition to the corresponding trend estimate.

Moving
Average
Smoother

 $\hat{m}_t = \sum_{j=0}^{t-2} \alpha (1 - \alpha)^j x_{t-j} + (1 - \alpha)^{t-1} x_1$

Polynomial Regression

 $\hat{m}_t = \frac{1}{2q+1} \sum_{j=-q}^q x_{t-j}$

Exponential Smoother

 $\hat{m}_t = a_0 + a_1 t + a_2 t^2 + \dots + a_p t^p$ Where $\{\mathbf{a_0}, \mathbf{a_1}, \dots, \mathbf{a_p}\}$ minimize: $\sum_{t=1}^N \left(x_t - (a_0 + \dots + a_p t^p)\right)^2$

Trends and Seasonality: Questions

- 1. What does polynomial regression do?
- 2. What does MA smoothing do? What's a "low-pass filter?"
- 3. What does exponential smoothing do?
- 4. What does harmonic regression do?
- 5. What is the S1 method? How does it differ from harmonic regression? (Consider how these techniques make different assumptions about the data.)

White Noise Hypothesis Testing

Suppose a sample ACF plot shows $\hat{\rho}_x(h)$ for $h=0,\dots,30.$ You wish to test if the times series $\{x_t\}$ is white noise, at the $\alpha=0.05$ level.

- 1. Describe the null hypothesis in words. Then write H_0 explicitly, in terms of $\rho(h)$.
- 2. Describe the alternative hypothesis in words. Then write H_A explicitly, in terms of $\rho(h)$.
- 3. How many times is $\hat{\rho}_x$ allowed to enter the plot's rejection region before we reject H_0 ?

Stationarity (Theory)

- 1. Name the three requirements for (weak) stationarity; call them C1,C2, and C3.
- 2. Sketch examples of the following time series, by hand. I've provided some hints.
 - a. A stationary time series
 - b. A time series breaking stationarity condition C1
 - c. A time series breaking C2
 - d. A time series breaking C3

The Fountain | Study Guide *

Linear Filters: Questions

- 1. What is a causal filter? What is a causal process?
- 2. What is a linear process?
- 3. Express an output process X_t in terms of a linear filter $\{a_j\}_{j\in\mathbb{Z}}$ and input process Y_t .
- 4. Design a causal filter $\{a_i\}_{i\in\mathbb{Z}}$, and express it as a piecewise function of j.

Proposition 2.2.1 (Covered in the "Backshift Operator" lecture)

Let Y_t be a zero-mean, stationary series, with ACVF $\gamma_Y(h)$ and variance σ_Y^2 Let X_t be the output of a linear filter with input series Y_t and coefficients $\{a_j\}_{j\in\mathbb{Z}}$

- 1. What is $E[X_t]$?
- 2. Is X_t stationary?
- 3. What is γ_X , the ACVF of X_t , if it exists?
- 4. What is σ_X^2 , the variance of X?
- 5. Assume the input Y_t is white noise. Use proposition 2.2.1 to express σ_X^2 in terms of σ_Y^2 .

Autocorrelation and Stationarity: calculations

- 1. One Star on the midterm will ask you to determine whether a series is stationary, and so forth. Review this kind of problem from Rooms 1 and 2, and review the Covariance slides from class. I've decided to publish select solutions from a previous year's midterm, so that you have a more concrete example to study from. (These are more difficult than what you will encounter on our midterm, as they came from a test with fewer problems.)
- 2. Know what the ACF of an MA process looks like on a plot (see workshop 3)
- Know what the ACF of an MA process looks like on a plot (return to workshop 3, and put your hand-crafted AR(1) into the acf function)
- 4. Consider what ACFs might look like for other kinds of series you've encountered in this class. Try to sketch them by hand on a plot.

Example Problems (with solutions)

- 1. Let $\{s_t\}$ be a seasonal component with period 10 and $\{Y_t\}$ be a weakly stationary process with mean 0 and ACVF $\gamma_Y(h)$. Let $X_t = s_t + Y_t$, $t \in \mathbb{Z}$.
- (a) Is $\{X_t\}$ weakly stationary? If so, compute its ACVF in terms of $\gamma_Y(\cdot)$. [3]
- (b) Let $U_t = X_t X_{t-1}$. Is $\{U_t\}$ weakly stationary? If so, compute its ACVF in terms of $\gamma_Y(\cdot)$. If not, does $\{U_t\}$ still have a seasonal component?
- (a) $\{X_t\}$ is not weakly stationary since $E[X_t] = s_t$, which depends on t.
- (b) $\{U_t\}$ is not weakly stationary. We have $E[U_t] = s_t s_{t-1}$. If this was equal to some constant c for all t, where $c \neq 0$, then we would have $s_t s_{t-10} = \sum_{i=0}^{9} (s_{t-i} s_{t-i-1}) = 10c$, which contradicts $s_t s_{t-10} = 0$, since $\{s_t\}$ has period 10. On the other hand, if c = 0 then we would have s_t equal to some constant for all t, which again contradicts that the period of $\{s_t\}$ is 10.
- 3. Let $\{Z_t\}$ be a sequence of independent and identically distributed normal random variables with mean 0 and variance 1. Let $Y_t = Z_t + Z_{t-1}$ and $X_t = Y_t^2$. Find the variance of X_t and $Cov(X_t, X_{t+h})$ for $h \ge 1$. Is the process $\{X_t\}$ weakly stationary? You may use the fact that $E[Z_t^4] = 3$. Hint: The covariances are all 0 for $h \ge 2$, but you should explain why.

Solution: We have $X_t = Y_t^2 = Z_t^2 + Z_{t-1}^2 + 2Z_tZ_{t-1}$. Since Z_t and Z_{t-1} are independent $E[Z_tZ_{t-1}] = E[Z_t]E[Z_{t-1}] = 0$, and so $E[X_t] = 2$ which does not depend on t. For $t \ge 1$,

$$Cov(X_t, X_{t+h}) = Cov(Z_t^2 + Z_{t-1}^2 + 2Z_t Z_{t-1}, Z_{t+h}^2 + Z_{t+h-1}^2 + 2Z_{t+h} Z_{t+h-1}).$$

For $h \ge 2$ the covariance above is 0 for all t since the indices in $Z_t^2 + Z_{t-1}^2 + 2Z_tZ_{t-1}$ are all different than the indices in $Z_{t+h}^2 + Z_{t+h-1}^2 + 2Z_{t+h}Z_{t+h-1}$, and the Z_t are i.i.d. For h = 1, we have

$$Cov(X_t, X_{t+1}) = Cov(Z_t^2 + Z_{t-1}^2 + 2Z_t Z_{t-1}, Z_{t+1}^2 + Z_t^2 + 2Z_{t+1} Z_t).$$

Upon expanding the above covariance into the sum of 9 covariances using the linearity of the covariance operator, we get that the only nonzero covariance is $Cov(Z_t^2, Z_t^2)$, again since the Z_t are i.i.d. That is, $Cov(X_t, X_{t+1}) = Cov(Z_t^2, Z_t^2) = E[Z_t^4] - \sigma^4 = 3 - 1 = 2$. This again does not depend on t. Finally, for h = 0,

$$Cov(X_t, X_t) = Cov(Z_t^2 + Z_{t-1}^2 + 2Z_tZ_{t-1}, Z_t^2 + Z_{t-1}^2 + 2Z_tZ_{t-1})$$

$$= Cov(Z_t^2, Z_t^2) + Cov(Z_{t-1}^2, Z_{t-1}^2) + 4Cov(Z_tZ_{t-1}, Z_t, Z_{t-1})$$

$$= 2(E[Z_t^4] - 1) + 4E[Z_t^2Z_{t-1}^2]$$

$$= 6 + 2 = 8.$$

This does not depend on t. We have shown that $\{X_t\}$ is stationary with ACVF

$$\gamma_X(h) = \begin{cases} 8 & \text{if } h = 0 \\ 2 & \text{if } |h| = 1 \\ 0 & \text{if } |h| \ge 2 \end{cases}.$$