РК2 "Предел и непрерывность"

Вопрос №1

Семейство $B = \{b_a\}$ подмножеств множества $A: b_a \subseteq A$, называют базой в множестве A, если:

- 1. $\forall b \in B \ b \neq \emptyset$
- 2. $\forall b_1 \in B \ \forall b_2 \in B \ \exists b \in B : b \subset b_1 \cap b_2$

Пусть A — область определения функции, B — база в множестве A. Число d называют пределом функции f(x) по базе B, если

$$\forall \epsilon > 0 \quad \exists b = b(\epsilon) \in B : \quad \forall x \in b \quad |f(x) - d| < \epsilon$$

Вопрос №2

- База B_0 на множестве N состоит из множеств $N_s = \{s, s+1, s+2, ...\}$, $s \in N$. Предел по этой базе есть предел последовательности.
- База B_1 на множестве R состоит из множеств $U_{\delta}(a), \delta \geq 0$. Предел по этой базе есть предел при $x \to a$.
- База B_2 на множестве R состоит из множеств $U_{\delta}(a+)=(a,a+\delta), \delta>0$. Предел по этой базе есть предел при $x\to a+$.
- База B_3 на множестве R состоит из множеств $U_{\delta}(a-)=(a-\delta,a), \delta>0$. Предел по этой базе есть предел при $x\to a-$.
- База B_4 на множестве R состоит из множеств $U_M(\infty) = \{x \in R : |x| > M\}, M > 0.$ Предел по этой базе есть предел при $x \to \infty$.
- База B_5 на множестве R состоит из множеств $U_M(+\infty) = \{x \in R : x > M\}, M > 0.$ Предел по этой базе есть предел при $x \to +\infty$.
- База B_6 на множестве R состоит из множеств $U_M(-\infty) = \{x \in R : x < M\}, M > 0.$ Предел по этой базе есть предел при $x \to -\infty$.

Вопрос №3

Теорема о единственности предела функции. Если функция имеет конечный предел по базе B, то этот предел единственный.

Теорема о сохранении знака.

$$\lim_{B} f(x) = d \neq 0 \implies \exists b \in B : \forall x \in b \quad f(x) > d/2, \ d > 0; \quad f(x) < d/2, \ d < 0$$

Вопрос №4

Функцию $f:A\to \mathbf{R}$ называют **ограниченной на множестве** $D\subseteq A$, если множество f(D) ограничено, т.е. существует константа C>0, такая, что $\forall x\in D\ |f(x)|\le C$

Теорема о локальной ограниченности функции, имеющей предел

 $\lim_{R} f(x) = d$ — число \implies существует множество $b \in \mathbf{B}$, на котором f(x) ограничено.

Вопрос №5

Теорема о предельном переходе в неравенстве

1.
$$\lim_{B} f_{i}(x) = d_{i}, i = 1, 2,$$

2. $\exists b \in B : \forall x \in b \ f_{1}(x) \leq f_{2}(x)$
 $\Rightarrow d_{1} \leq d_{2}$

Вопрос №6

Теорема о пределе промежуточной функции

1.
$$\lim_{B} f_{i}(x) = d, \ i = 1, 2,$$

2. $\exists b \in B : \forall x \in b \ f_{1}(x) \leq g(x) \leq f_{2}(x)$
 $\implies \lim_{B} g(x)$ сущ и равен d

Вопрос №7

Теорема о связи односторонних и двустороннего пределов. Пусть а — предельная точка множеств $A \cap (a, +\infty)$ и $A \cap (-\infty, a)$, $f : A \to \mathbb{R}$. Тогда

$$\lim_{x \to a} f(x)$$
 сущ и равен $d \iff \lim_{x \to a^{-}} f(x)$, $\lim_{x \to a^{+}} f(x)$ сущ и равен d

Вопрос №8

Критерий Коши существования предела функции по базе.

$$\exists \lim_{R} f(x) \iff \forall \epsilon \geq 0 \quad \exists b = b(\epsilon) \in B : \forall x, z \in b \quad |f(x) - f(z)| < \epsilon$$

Вопрос №9

Предел по Коши.

Точка a является предельной точкой множества D.

$$\lim_{x \to a} f(x) = b \iff \forall \epsilon > 0 \quad \exists \delta = \delta(\epsilon) \quad \forall x \in D : \quad 0 < |x - a| < \delta \implies |f(x) - b| < \epsilon$$

Предел по Гейне Пусть $A \subset R$, $f: A \to R$, a — предельная точка A. Точку $d \in R$ называют пределом функции f(x) в точке $a \in R$, если для любой, имеющей пределом точку a последовательности $\{x_n\}$ значений $x_n \in A$ аргумента функции, не совпадающих с a, соответствующая последовательность $\{f(x_n)\}$ значений $f(x_n)$ функции имеет пределом точку d.

Теорема об эквивалентности двух определений

$$\exists \lim_{x \to a} f(x) = d$$
 по Коши $\iff \exists \lim_{x \to a} f(x) = d$ по Гейне

Вопрос №10

Функцию $\alpha(\mathbf{x})$ называют **бесконечно малой (б.м.) по базе** $B\iff\exists\lim_{n}\alpha(\mathbf{x})=0$

Теорема о связи функции, ее предела и бесконечно малой.

$$\lim_{R} f(x) = d \in \mathbb{R} \iff f(x) = d + \alpha(x)$$
, где $\alpha(x)$ - б.м. по базе B

Вопрос №11

Функцию $\alpha(\mathbf{x})$ называют **бесконечно малой (б.м.) по базе** $B\iff\exists \lim \alpha(\mathbf{x})=0$

Функцию $\alpha(\mathbf{x})$ называют **бесконечно большой (б.б.) по базе** $B\iff\exists\lim_{n}\alpha(\mathbf{x})=\infty$

Теорема о связи б.б. и б.м.

$$f(x)$$
 б.б по базе $B \iff \frac{1}{f(x)}$ б.м по базе B

Вопрос №12

Теорема арифметические свойства бесконечно малых. Пусть $\alpha(x)$ — б. м. по базе B. Тогда

- 1. $\beta(x)$ б. м. по базе $B \implies \alpha(x) + \beta(x)$ б. м. по базе B
- 2. z(x) огранич. на некотором $b \in B \implies z(x)\alpha(x)$ б. м. по базе B
- 3. $\beta(x)$ б. м. по базе $B \implies \beta(x)\alpha(x)$ б. м. по базе B
- 4. $u(x) \to d$ по базе $B, d \neq 0 \implies \frac{a(x)}{u(x)}$ б. м. по базе B

Вопрос №13

Арифметические свойства пределов

$$\lim_{B} f(x) = a, \lim_{B} g(x) = d, c \in \mathbb{R}$$

1.
$$\lim_{B} (f(x) + g(x)) = a + d$$

2. $\lim_{B} f(x)g(x) = ad$

$$2. \lim_{x \to a} f(x)g(x) = aa$$

$$3. \lim_{R} cg(x) = cd$$

4.
$$\lim_{R} \frac{f(x)}{g(x)} = \frac{a}{d}, d \neq 0$$

Вопрос №14

Теорема о пределе сложной функции или замена переменной в пределе

1.
$$g:Z\to \mathbb{R}$$
, B_z - база в Z , $\lim_{z\to z}g(z)=d$

1.
$$g:Z\to \mathbb{R}$$
, B_z - база в Z , $\lim_{B_z}g(z)=d$
2. $f:X\to Z$, B_x - база в X $\Longrightarrow \exists \lim_{B_x}g[f(x)]=d$ (d может быть $\pm\infty$)

3.
$$\forall b_z \in B_z \quad \exists b_x \in B_x : \quad f(b_x) \subset b_z$$

Вопрос №15

Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Второй замечательный предел

$$\lim_{x \to 0} \left(1 + \frac{1}{x}\right)^x = e$$

Следствие: $\lim_{x\to 0} (1+z)^{1/z} = e$

Вопрос №16

Сравнение функций при одинаковом стремлении аргумента

1. $\alpha(x)\beta(x)$ эквивалентны по базе B ($\alpha\sim\beta$ по базе B) $\iff\lim_{B}\frac{\alpha(x)}{\beta(x)}=1$

2. $\alpha(x)$ o-малое от $\beta(x)$ по базе B ($\alpha(x) = o(\beta(x))$ по базе B) $\iff \lim_{R} \frac{\alpha(x)}{\beta(x)} = 0$

3. $\alpha(x)$ O-большое от $\beta(x)$ по базе B ($\alpha(x) = o(\beta(x))$ по базе B) \iff функция $\frac{\alpha(x)}{\beta(x)}$ ограничена на некотором элементе $b \in B$

4. $\alpha(x), \beta(x)$ одного порядка по базе $B \iff \lim_{B} \frac{\alpha(x)}{\beta(x)} = c \neq 0$

5. $\alpha(x)$ имеет порядок k относительно $\beta(x)$ по базе $B\iff \lim_{B} \frac{\alpha(x)}{[\beta(x)]^k} = \mathbf{c} \neq 0$

6. $\alpha(x), \beta(x)$ несравнимы по базе $B \iff \lim_{B} \frac{\alpha(x)}{\beta(x)}$ не сущ. и $\neq \infty$

Таблица эквивалентности

$$1 - \cos x \sim \frac{x^2}{2}$$
, $e^x - 1 \sim x$, $\ln(1+x) \sim x$, $\tan x \sim x$
 $\arcsin x \sim x$, $a^x - 1 \sim x \ln a$, $(1+x)^b - 1 \sim bx$, $\sin x \sim x$

Вопрос №17

Определение о малого

Символом о-малое обозначают любую бесконечно малую функцию $\mathrm{o}(f(\mathrm{x}))$ по сравнению с заданной функцией $f(\mathrm{x})$ при аргументе, стремящемся к некоторому конечному или бесконечному числу x_0

Определение О большого

Символом О-большое обозначают любую функцию f(x) = O(g(x)), ограниченную относительно функции g(x) при аргументе, стремящемся к некоторому конечному или бесконечному числу x_0

Свойства о и О

1.
$$o(\alpha) \pm o(\alpha) = o(\alpha)$$

2.
$$\beta = o(\alpha)$$
, $\gamma = o(\beta) \implies \gamma$ есть $o(\alpha)$

3.
$$O(\alpha) \pm O(\alpha) = O(\alpha)$$

Свойство симметричности $\alpha(x) \sim \beta(x)$ по базе $B, \alpha(x) \neq 0$ на нектором $b \in B \implies$ $\beta(x) \sim \alpha(x)$ по базе B

Критерий эквивалентности функций $\alpha(x) \sim \beta(x)$ по базе $B \iff \alpha(x) = \beta(x) + o(\beta(x))$ по базеB

Вопрос №18

Теорема о замене эквивалентных при вычислении пределов.

$$\alpha(x) \sim \beta(x) \implies \begin{cases} (1) \lim_{B} [f(x)\alpha(x)] = \lim_{B} [f(x)\beta(x)] \\ (2) \lim_{B} \frac{f(x)}{\alpha(x)} = \lim_{B} \frac{f(x)}{\beta(x)} \end{cases}$$

Вопрос №19

Типы неопределённостей в переделе

1.
$$\lim_{B} \frac{f(x)}{g(x)}$$
 - неопред. $\left[\frac{0}{0}\right] \iff \lim_{B} f(x) = 0, \ \lim_{B} g(x) = 0$

2.
$$\lim_{B} \frac{f(x)}{g(x)}$$
 - неопред. $\left[\frac{\infty}{\infty}\right] \iff \lim_{B} f(x) = \infty, \ \lim_{B} g(x) = \infty$

3.
$$\lim_{B} [f(x)g(x)]$$
 - неопред. $[0\cdot\infty]\iff \lim_{B} f(x)=0,\ \lim_{B} g(x)=\infty$

4.
$$\lim_{B} [f(x) - g(x)]$$
 - неопред. $[\infty - \infty] \iff \lim_{B} f(x) = 0, \lim_{B} g(x) = \infty$

5.
$$\lim_{R} f(x)^{g(x)}$$
 - неопред. $[0^0] \iff \lim_{R} f(x) = 0, \lim_{R} g(x) = 0$

6.
$$\lim_{B} f(x)^{g(x)}$$
 - неопред. $[\infty^0] \iff \lim_{B} f(x) = \infty, \lim_{B} g(x) = 0$

5.
$$\lim_{B} f(x)^{g(x)}$$
 - неопред. $[0^{0}] \iff \lim_{B} f(x) = 0$, $\lim_{B} g(x) = 0$
6. $\lim_{B} f(x)^{g(x)}$ - неопред. $[\infty^{0}] \iff \lim_{B} f(x) = \infty$, $\lim_{B} g(x) = 0$
7. $\lim_{B} f(x)^{g(x)}$ - неопред. $[1^{\infty}] \iff \lim_{B} f(x) = 1$, $\lim_{B} g(x) = \infty$

Способы раскрытия неопределённостей

$$1. \left[\frac{\infty}{\infty}\right] \to \left[\frac{0}{0}\right] \quad \frac{f(x)}{g(x)} = \frac{1/f(x)}{1/g(x)}$$

1.
$$\left[\frac{\infty}{\infty}\right] \rightarrow \left[\frac{0}{0}\right] \quad \frac{f(x)}{g(x)} = \frac{1/f(x)}{1/g(x)}$$

2. $\left[0 \cdot \infty\right] \rightarrow \left[\frac{0}{0}\right] \quad f(x) \cdot g(x) = \frac{f(x)}{1/g(x)} = \frac{g(x)}{1/f(x)}$

3.
$$[\infty - \infty] \to \begin{bmatrix} \frac{0}{0} \end{bmatrix}$$
 $f(x) - g(x) = \frac{1}{1/f(x)} - \frac{1}{1/g(x)} = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)} \cdot \frac{1}{g(x)}}$

4.
$$[1^{\infty}], [0^{0}], [\infty^{0}] \to [0 \cdot \infty] \quad f(x)^{g(x)} \to \ln f(x)^{g(x)} = g(x) \ln f(x)$$

Вопрос №20

Формулировка непрерывности функции в точке

1.
$$\Delta y \rightarrow 0$$
 при $\Delta x \rightarrow 0$

$$2. \lim_{x \to a} f(x) = f(a)$$

3.
$$\forall \epsilon > 0$$
 $\exists \delta = \delta(\epsilon) > 0$: $\forall x \in E (|x - a| < \delta \implies |f(x) - f(a)| < \epsilon)$

4.
$$\forall V(f(a)) \quad \exists U(a) \quad f(U(a) \cap E) \subseteq V(f(a))$$

Теорма об эквивалентности опеределений непрерывности функции в точке.

- 1. Если a предельная точка E, то условия с (1) по (4) эквивалентны.
- 2. Если a изолированная точка E, то для любой функции f условия (3) и (4) выполняются, а условия (1) и (2) не выполняются.

Вопрос №21

Теорма о непрерывности арифметических операций Если функции f и g непрерывны в точке a, то непрерывны в этой точке их сумма, разность, произведение, а при $g(x) \neq 0$ и частное f/g.

Вопрос №22

Теорема о непрерывности сложной функции. Если функция $g: X \to Z$ непрерывна в точке a, а функция $f: Z \to Y$ непрерывна в точке d = g(a), то сложная функция $f \circ g$ непрерывна в точке a.

Вопрос №23

Теорама о переходе к пределу под знаком непрерывной функции.

1.
$$a = \lim_{B} g(x) \in \mathbb{R}$$

2. f непрерывна в точке $a \implies \lim_{B} f(g(x)) = f(\lim_{B} g(x))$
3. $\exists b \in B : f$ определена на $g(b)$

Вопрос №24

Основными элементарными функциями называют

const,
$$x^a$$
, a^x , $\log_a x$, $\sin x$, $\cos x$, $\operatorname{tg} x$, $\arcsin x$, $\operatorname{arccos} x$, $\operatorname{arctg} x$

Элементарной называют функцию, полученную из основных элементарных путем применения конечного числа арифметических действий и операции композиции.

Вопрос №25

Функция f не прерывна на интервале (a,b), если она непрерывна в каждой точке этого интервала.

Функция f не прерывна на отрезке [a,b], если выполняются два условия:

1. функция
$$f$$
 непрерывна в каждой точке (a,b) 2. $f(a+0) = f(a)$, $f(b-0) = f(b)$

Ограничение отображения $f: X \to Y$ **на подмножество** $A \subseteq X$ есть отображение $f|_A: A \to Y$, где $f|_A(x) = f(x)$ только при $x \in A$.

Теорема о связи непрерывности функции в точке и на отрезке. Функция f непрерывна на отрезке $[a,b] \iff$ ограничение $f|_{[a,b]}$ непрерывно в каждой точке отрезка.

Вопрос №26

Функцию $f:E \to \mathbb{R}$ называют **непрерывной на подмножестве** $A \subseteq E$, если ее ограничение $f|_A$ непрерывно в каждой точке A. Через C(A) обозначают множество всех функций непрерывных на множестве $A \subseteq \mathbb{R}$.

Критерий непрерывности функции на множестве. Функция $f: E \to \mathbf{R}$ непрерывна на $E \iff$ относительно f прообраз любого открытого множества из \mathbf{R} открыт в E.

Вопрос №27

Теорема Больцано-Коши

Функция f непрерывна на [a,b], $f(a)f(b) < 0 \implies \exists c \in (a,b) : f(c) = 0$

Теорема о промежуточном значении. Пусть функция $f(\mathbf{x})$ непрерывна на отрезке $[\mathbf{a},b]$, \mathbf{A} — некоторое число, лежащее между f(a) и f(b). Тогда найдется такая точка $\mathbf{c} \in (\mathbf{a},b)$, что $f(\mathbf{c}) = \mathbf{A}$.

Вопрос №28

Теорема Вейерштрасса об ограниченности.

Непрерывная на компакте функция ограничена на нём

Теорема Вейерштрасса о достижимости наибольшего и наименьшего значений.

Если функция непрерывна на компакте, то на этом компакте есть точка, где функция принимает наибольшее значение на этом компакте, и есть точка, где функция принимает наименьшее значение.

Вопрос №29

Функция $f: E \to \mathbf{R}$ равномерно непрерывна, если

$$\forall \epsilon > 0 \quad \exists \delta = \delta(\epsilon) > 0 : \quad \forall x_1, x_2 \in E \quad (|x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \epsilon)$$

Теорема Кантора о равномерной непрерывности.

Функция, непрерывная на компакте, равномерно непрерывна на нём

Вопрос №30

Точку $a \in \mathbb{R}$ называют **точкой разрыва функции** $f : E \to \mathbb{R}$, если

- 1. она предельная точка множеств $E \cap (-\infty, a)$ и $E \cap (a, +\infty)$
- 2. функция f не является непрерывной в этой точке

Точка разрыва $a\in \mathbf{R}$ функции $f:E\to\mathbf{R}$ называется **точкой устранимого разрыва**, если существует непрерывная функция $\overline{f}:E\cup a\to\mathbf{R}$ такая, что $f\mid_{E\setminus\{a\}}=\overline{f}\mid_{E\setminus\{a\}}$

Точку разрыва $a \in R$ функции $f : E \to R$ называют **точкой разрыва 1-го рода**, если пределы f(a-0) и f(a+0) существуют и конечны.

Точка разрыва $a \in R$ функции $f : E \to R$ есть точка **разрыва 2-го рода**, если предел f(a-0) или предел f(a+0), или они оба не существуют или бесконечны.

Точку разрыва 2-го рода $a \in R$ функции $f : E \to R$ называют **точкой бесконечного разрыва**, если один из пределов f(a-0), f(a+0) бесконечен, а второй конечен или бесконечен.

Вопрос №31

Теорема о точках разрыва монотонной функции.

Монотонная функция может иметь разрывы только 1-го рода.

Теорема критерий непрерывности монотонной функции.

Пусть $f:[a,b] \to \mathbb{R}$ - монотонная функция. Функция f непрерывна на отрезке $[a,b] \iff$ образ f([a,b]) отрезка сам является отрезком с концами f(a) и f(b).

Вопрос №32

Теорема о существовании и непрерывности обратной функции.

- 1. Если функция $f: E \to \mathbb{R}$ строго монотонна на множестве $E \subseteq R$, то f имеет обратную функцию $f^{-1}: Y \to E$, определенную на множестве Y = f(E) значений функции f. Функция f^{-1} монотонна и имеет на Y тот же вид монотонности, какой имеет функция f на множестве E.
- 2. Если, кроме того, E есть промежуток, а функция f непрерывна на нем, то множество Y есть промежуток, и функция f^{-1} непрерывна на Y.