QMBU 450 FINAL PRESENTATION

Kaan Yıldırım Eren Çokyaşar

Description of Problem

- Letters can be A,B,C,D or E.
- We have got 39 samples for each letter as csv files.
- Pixel datas are given as 320 length vectors.
- If value is 1, pixel is black. If value is 0, pixel is white.

Before the Solution..

• 25 sample for training, 14 for testing (for each letter)

• Contribution Matrixes will demonstrate accuracy.

	Α	В	C	D	E
A	25				
В		25			
C			24	1	1
D			1	24	1
E					23

Solution 1: Naive Bayes Method

Probability (j,i) Values
 If the image is letter "i", the probability of j'th pixel is equal to "1".
 For each image

 For each pixel
 ScoreA += pixel_value x log(Probability (pixel number,1)) + (1-pixel_value) x log(1-Probability (pixel number,2))
 ScoreB += pixel_value x log(Probability (pixel number,2)) + (1-pixel_value) x log(1-Probability (pixel number,2))

• The letter with the maximum score is the prediction

Solution 2: Discrimination by Regression

- y = w1*x1 + w2*x2 + w3*x3 + + w320*x320 + w0 (For each class)
- Use sigmoid activation function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{1 + \exp(-\sum_{j} w_{j} x_{j} - b)}$$

How can we find W-values?

Derivation of Error With Respecting to W.

Error = (Y_Truth - Y_Predicted)

$$\frac{\partial \mathcal{E}(\text{ror})}{\partial w} = \frac{\partial \left[\frac{1}{2}(3i^2 - 23iw^{\top}.xi + w^{\top}.xix_{i}^{\top}.w)\right]}{\partial w} + \frac{\partial \left[\frac{1}{2}w^{\top}.xi_{i}^{\top}.x_{i}^{\top}.w\right]}{\partial w} + \frac{\partial \left[\frac{1}{2}w^{\top}.xi_{i}^{\top}.x_{i}^{\top}.w\right]}{\partial w} + \frac{\partial \left[\frac{1}{2}w^{\top}.xi_{i}^{\top}.x_{i}^{\top}.w\right]}{\partial w} + \frac{\partial \left[\frac{1}{2}w^{\top}.xi_{i}^{\top}.w\right]}{\partial w} + \frac{\partial \left[\frac{1}{2}w^{\top}.w\right]}{\partial w} + \frac{\partial \left[\frac{1}{2}w^{\top}.w\right]}$$

$$\Delta w = -2 \cdot \frac{\partial \mathcal{E}_{i} \sim r}{\partial w}$$

$$\Delta w = 2(yi-yi).xi$$

The Algorithm:

- Step 1 : Initialize W-values randomly. (between -0.001 and +0.001)
- Step 2 : Calculate the gradients.
- Step 3 : Update the W-values.
- Step 4: If the error is greater than epsilon, go to Step 2.

Solution 3: Multilayer Perceptron (Neural Network)

$$y = v*z$$

$$z = w^*x$$

Sigmoid vs Softmax

<u>Sigmoid</u>

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{1 + \exp(-\sum_{j} w_{j} x_{j} - b)}$$

Softmax

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for j = 1, ..., K .

Scores (Logits)

Probabilities

Gradient of V-values

$$Error(W, V | X) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \begin{bmatrix} \frac{1}{2} \sqrt{k} \cdot 2ik + V_0 \end{bmatrix})$$

$$\frac{\partial Error}{\partial Vh} = \frac{1}{2} \sum_{i=1}^{N} (y_i - \begin{bmatrix} \frac{1}{2} \sqrt{k} \cdot 2ik + V_0 \end{bmatrix}) \cdot -2ih$$

$$\frac{\partial (\frac{N}{2} \times i, a_i)}{\partial X_3} = a_3$$

$$= -\frac{N}{2} (y_i - y_i) \cdot 2ih$$

$$\frac{\partial \mathcal{E}(\text{ror})}{\partial \text{Whd}} = \begin{bmatrix} \frac{N}{2} \\ \frac{1}{2} \end{bmatrix} \frac{\partial \mathcal{E}(\text{ror})}{\partial \hat{y_i}} \cdot \frac{\partial \hat{y_i}}{\partial \hat{z_i} h_i} \cdot \frac{\partial \hat{z_i} h_i}{\partial \text{Whd}} \cdot \frac{\partial \hat{z_i} h_i}{\partial \text{Whd}} = \frac{1}{2} (y_i - \hat{y_i})^2$$

$$= -(y_i - \hat{y_i}) \quad \forall h \quad 2ih.(1-2ih) \text{ xid}} \quad y_i = \frac{1}{2} (y_i - \hat{y_i})^2$$

$$= -(y_i - \hat{y_i}) \quad \forall h \quad 2ih.(1-2ih) \text{ xid}} \quad 2ih = s. \text{ yenoid} (\text{wh} \cdot \text{xi})$$

$$= \frac{1}{2} (y_i - \hat{y_i}) \cdot \forall h \cdot 2ih.(1-2ih) \cdot \text{xid}} \quad 2ih = s. \text{ yenoid} (\text{wh} \cdot \text{xi})$$

$$= \frac{1}{2} (y_i - \hat{y_i}) \cdot \forall h \cdot 2ih.(1-2ih) \cdot \text{xid}} \quad 2ih = s. \text{ yenoid} (\text{wh} \cdot \text{xi})$$

$$= \frac{1}{2} (y_i - \hat{y_i}) \cdot \forall h \cdot 2ih.(1-2ih) \cdot \text{xid}} \quad 2ih = s. \text{ yenoid} (\text{wh} \cdot \text{xi})$$

The Algorithm:

- Step 1: Initialize V-values and W-values randomly. (between -0.001 and +0.001)
- Step 2 : Calculate the gradients.
- Step 3 : Update the V-values, W-values and Z-values.
- Step 4: If the error is greater than epsilon, go to Step 2.

RESOURCES

David Carlson's Lectures

https://github.com/carlson9/KocPython2019/blob/master/13.NeuralNets/NN1.pdf

Mehmet Gönen's Lectures

http://home.ku.edu.tr/~mehmetgonen/contact.html