

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/results-in-physics

Hexahedral Mesh Quality Improvement via Edge-Angle Optimization

Kaoji Xu^a, Xifeng Gao^{b,1}, Guoning Chen^{a,*}

ARTICLE INFO	A	R	T	I	C	L	Е	Ι	N	F	O	
--------------	---	---	---	---	---	---	---	---	---	---	---	--

ABSTRACT

Article history:

Supplementary Material

Our method can successfully optimize over 50 octree-based meshes, The results are showed in the following tables.

Table 1. Improving Quality of hex-meshes Octree-based method. We use metro tools to compute Hausdorff distance wrt. bounding box diagonal [1]. For each model, the first and second row is input and output, respectively.

Model	#hexes	Err	MSJ	ASJ
airplane1	4972		0.030	0.838
airplane1	4972	0.004393	0.508	0.879
airplane2	6118		0.018	0.848
airplane2	6118	0.003137	0.500	0.882
armadillo	19940		0.013	0.822
armadillo	19940	0.005380	0.238	0.839
armchair	18756		0.157	0.805
armchair	18756	0.002698	0.166	0.824
bimba	25347		0.0609	0.799
bimba	25347	0.007841	0.113	0.816
bird	4247		0.0313	0.820
bird	4247	0.011580	0.553	0.868
blade	10996		0.025	0.845
blade	10996	0.007911	0.312	0.868
block	1624		0.179	0.661
block	1624	0.016877	0.550	0.815
bone	2751		0.154	0.781
bone	2751	0.006475	0.207	0.794

^{*}Only capitalize first word and proper nouns in the title.

Table 2. Improving Quality of hex-meshes Octree-based method. We use metro tools to compute Hausdorff distance wrt. bounding box diagonal [1]. For each model, the first and second row is input and output, respectively.

Model	#hexes	Err	MSJ	ASJ
botijo	15244		0.012	0.786
botijo	15244	0.012756	0.121	0.813
bottle1	10026		0.022	0.801
bottle1	10026	0.046987	0.075	0.796
bottle2	35886		0.129	0.79
bottle2	35886	0.011387	0.200	0.809
bumpy sphere	9903		0.138	0.771
bumpy sphere	9903	0.002958	0.174	0.794
bumpy torus	45619		0.0859	0.811
bumpy torus	45619	0.004873	0.102	0.825
bunny	27670		0.016	0.796
bunny	27670	0.007097	0.106	0.813
buste	19075		0.133	0.852
buste	19075	0.004503	0.161	0.862
camel	12874		0.014	0.779
camel	12874	0.006154	0.201	0.821
camille hand	12247		0.0239	0.812
camille hand	12247	0.005111	0.233	0.829
carter	33202		0.022	0.815
carter	33202	0.006637	0.102	0.830
chair	5464		0.014	0.744
chair	5464	0.013805	0.301	0.819
chair1	11686		0.018	0.843
chair1	11686	0.003276	0.313	0.859
chinese lion	43174		0.029	0.825
chinese lion	43174	0.005000	0.115	0.843
coverrear	37796		0.00849	0.783
coverrear	37796	0.002440	0.056	0.821

^aUniversity of Houston, Houston, TX, USA

^bNew York University, Newyork, NY, USA

^{*}Corresponding author: Tel.: +1-713-743-5788; *e-mail*: gchen16@uh.edu (Guoning Chen)

Table 3. Improving Quality of hex-meshes Octree-based method. We use metro tools to compute Hausdorff distance wrt. bounding box diagonal [1]. For each model, the first and second row is input and output, respectively.

Model #hexes MSJ ASJ Err cup 48341 0.028 0.866 48341 0.005255 0.138 0.874 cup 36235 0.130 0.820 cup1 36235 cup1 0.003580 0.303 0.829 dancer 1473 0.011 0.777 1473 0.007419 dancer 0.553 0.852 dancer2 1385 0.013 0.722 dancer2 1385 0.016464 0.465 0.821 dancing children 25691 0.016 0.842 25691 dancing children 0.005184 0.103 0.856 52905 david 0.012 0.821 david 52905 0.008832 0.106 0.843 deckel 53658 0.0278 0.840 deckel 53658 0.002021 0.0296 0.864 deformed armadillo 25294 0.013 0.834 deformed armadillo 25294 0.008370 0.112 0.850 dente 13655 0.081 0.789 dente 13655 0.010161 0.115 0.806 dilo 4181 0.012 0.824 dilo 4181 0.007767 0.456 0.871 8293 dino 0.00575 0.742 dino 8293 0.013066 0.211 0.820 8799 dino2 0.794 0.023 8799 dino2 0.005613 0.219 0.816 dragon stand 24009 0.015 0.832 dragon stand 24009 0.004775 0.101 0.848 23917 dragonstand2 0.013 0.837 0.004598 dragonstand2 23917 0.304 0.857 16065 0.151 0.82 dtorus dtorus 16065 0.001817 0.169 0.833 duck 4743 0.031 0.808 4743 duck 0.007509 0.239 0.820 72041 duck2 0.0237 0.795 duck2 72041 0.003092 0.159 0.815 4571 0.781 eight 0.169 eight 4571 0.004370 0.201 0.799 eros 25956 0.092 0.820 eros 25956 0.006504 0.115 0.836 fandisk 8941 0.0087 0.705 8941 0.003459 fandisk 0.010 0.753 fertility 21370 0.105 0.845 fertility 21370 0.001644 0.136 0.858 fish1 9537 0.015 0.815 fish1 9537 0.008377 0.308 0.845 fish2 7439 0.012 0.811 7439 0.009266 fish2 0.018 0.808 4724 foot 0.180 0.820 0.012382 foot 4724 0.302 0.835 41610 0.024 0.834 gargoyle gargoyle 41610 0.005247 0.200 0.849 genus3 21468 0.013 0.790 21468 0.114 0.807 genus3 0.007322

Table 4. Improving Quality of hex-meshes Octree-based method. We use metro tools to compute Hausdorff distance wrt. bounding box diagonal [1]. For each model, the first and second row is input and output, respectively.

or each model, the firs	t and second	i row is input a	ma output,	respectively
Model	#hexes	Err	MSJ	ASJ
glass1	5233		0.006	0.707
glass1	5233	0.003856	0.310	0.812
glass2	1855		0.011	0.678
glass2	1855	0.006310	0.301	0.780
grayloc	46490		0.008	0.844
grayloc	46490	0.004810	0.010	0.861
greek sculpture	9848	0.00.010	0.012	0.856
greek sculpture	9848	0.005529	0.138	0.874
hand	8170	0.003327	0.0113	0.782
hand	8170	0.004134	0.108	0.762
head1	17433	0.00+15+	0.121	0.816
head1	17433	0.004628	0.121	0.833
head2	27128	0.004028	0.177	0.833
head2	27128	0.006985	0.0193	0.790
holes3	10140	0.000963	0.120	0.818
	10140	0.008802		
holes3		0.008802	0.305	0.836
homer	11690	0.005001	0.026	0.830
homer	11690	0.005281	0.236	0.845
horse	12159	0.202212	0.0123	0.796
horse	12159	0.203218	0.024	0.816
human1	7075		0.016	0.820
human1	7075	0.006544	0.450	0.863
human2	5363		0.014	0.782
human2	5363	0.022624	0.015	0.788
igea	21661		0.026	0.785
igea	21661	0.007184	0.129	0.803
insect	6780		0.008	0.805
insect	6780	0.006364	0.301	0.846
isidore horse	21695		0.017	0.830
isidore horse	21695	0.005455	0.120	0.849
joint	10118		0.020	0.811
joint	10118	0.001245	0.054	0.848
kiss	18418		0.027	0.844
kiss	18418	0.005075	0.224	0.857
kitten	12713		0.115	0.766
kitten	12713	0.010022	0.146	0.784
lion recon	11922		0.016	0.846
lion recon	11922	0.005836	0.204	0.862
master cylinder	55345		0.025	0.837
master cylinder	55345	0.004908	0.127	0.847
max	17161		0.062	0.799
max	17161	0.008424	0.119	0.815
moai	7320		0.192	0.820
moai	7320	0.009869	0.132	0.836
mouse	25110	3.007007	0.0804	0.8
mouse	25110	0.003043	0.137	0.821
octa flower	26469	0.005075	0.0116	0.746
octa flower	26469	0.005229	0.0110	0.740
oil pump	40227	0.003449	0.0124	0.782
oil pump	40227	0.004835	0.0103	0.798
oni	24787	0.00+033	0.072	0.819
oni	24787	0.006529	0.036	0.819
OIII	24/0/	0.000329	0.143	0.033

References

[1] Guthe, M, Borodin, P, Klein, R. Fast and accurate hausdorff distance calculation between meshes. In: In WSCG. 2; 2005, p. 41–48.

Table 5. Improving Quality of hex-meshes Octree-based method. We use metro tools to compute Hausdorff distance wrt. bounding box diagonal [1]. For each model, the first and second row is input and output, respectively.

				<u>F</u>
Model	#hexes	Err	MSJ	ASJ
part	8266		0.070	0.770
part	8266	0.010065	0.106	0.811
pear	4470		0.220	0.787
pear	4470	0.001373	0.238	0.803
pig	13987		0.021	0.793
pig	13987	0.005379	0.107	0.811
plate	15710		0.0214	0.804
plate	15710	0.484713	0.0254	0.844
red circular box	12247		0.0239	0.812
red circular box	12247	0.005111	0.233	0.829
retinal	6811		0.117	0.758
retinal	6811	0.003071	0.131	0.782
rocker	16608		0.108	0.865
rocker	16608	0.007742	0.241	0.874
rod	3675		0.037	0.770
rod	3675	0.009317	0.203	0.804
rolling stage	42182		0.030	0.828
rolling stage	42182	0.004066	0.127	0.842
santa	18000		0.0225	0.854
santa	18000	0.003881	0.453	0.865
screwdriver	8299		0.008	0.844
screwdriver	8299	0.004890	0.249	0.868
sculpt	20572		0.017	0.714
sculpt	20572	0.012328	0.052	0.758
sediapatch	28379		0.123	0.812
sediapatch	28379	0.007175	0.127	0.824
teaport	16888		0.022	0.793
teaport	16888	0.005232	0.108	0.810
thai statue	14635		0.013	0.852
thai statue	14635	0.006430	0.403	0.878
toy1	18947		0.121	0.806
toy1	18947	0.001506	0.201	0.823
uu-memento	19424		0.0165	0.802
uu-memento	19424	0.002022	0.0296	0.864
venus	4421		0.174	0.778
venus	4421	0.002827	0.226	0.798
woodenfish	19709		0.010	0.796
woodenfish	19709	0.008136	0.210	0.826
wrench	2097		0.0098	0.286
wrench	2097	0.004929	0.0174	0.513

: