A new perspective on comodules of polynomial comonads

BRYCE CLARKE

TalTech, 30 May 2024

Let Poly := Fam (Set op) be the category whose:

· objects are polynomials/containers

$$\xrightarrow{\text{discrete}} \xrightarrow{P} \text{Set}$$

· morphisms are natural transformations

i.e. function $\Psi: I \to J$ and a function $\Psi_i^{\sharp}: Q(\Psi_i) \longrightarrow P(i)$ for each $i \in I$.

There is a monoidal structure (Poly, \triangleleft , *) where $(P: I \rightarrow Set) \triangleleft (Q: J \rightarrow Set)$ is

$$\sum_{i \in I} [P(i), J] \longrightarrow Set$$

$$(i, \alpha: P(i) \rightarrow J) \longmapsto \sum_{x \in P(i)} Q(\alpha x)$$

with unit the polynomial $*: \{*\} \longrightarrow Set$ that selects the singleton set.

For a monoidal category (V, \otimes, I) with reflexive coequalisers that are preserved by $A \otimes (-)$ and $(-) \otimes A$ for each $A \in V$, we may construct a double category $Comod(V, \otimes, I)$ whose:

- · objects are comonoids
- · tight morphisms are comonoid homomorphisms
- · loose morphisms are comodules

GOAL: Construct Comod (Poly, 4,*).

Prop (Ahman-Uustalu, 2016): Comonoids in (Poly, <, *) are precisely small categories.

Given a category A with set of objects Ao, its underlying polynomial is

$$A_{o} \xrightarrow{A[-]} Set$$

$$a \longmapsto \sum_{x \in A_{o}} A(a,x) := A[a]$$

together with counit and comultiplication maps:

<u>Prop (Ibid.)</u>: Comonoid homomorphisms in (Poly, <, *) are precisely retrofunctors (cofunctors).

i.e. a function $\Psi: A_o \longrightarrow B_o$ and a function $\Psi_a^* : B[\Psi a] \longrightarrow A[a]$ for each $a \in A_o$.

$$\frac{\sum_{b \in B_{o}} \beta(\varphi_{a}, b) \xrightarrow{\varphi_{a}^{\#}} \sum_{x \in A_{o}} A(a, x)}{\beta(\varphi_{a}, b) \xrightarrow{\varphi_{a}^{\#}} \sum_{x \in A_{o}} A(a, x)}$$

$$\frac{\beta(\varphi_{a}, b) \xrightarrow{\varphi_{a}^{\#}} \sum_{x \in A_{o}} A(a, x)}{\sum_{x \in A_{o}} x \in \varphi^{-1}\{b\}}$$

Respects the identities and composition in B.

<u>Prop</u>: A retrofunctor $A \longrightarrow B$ is equivalent to a span of functors:

Induced by the (vertical, cartesian)

O.F.S. on Poly.

Let A and B be categories and $P:I_{\bullet} \to Set$ a polynomial.

$$\frac{(B[-]:B_{\circ} \longrightarrow Set) \triangleleft (P:I_{\circ} \longrightarrow Set)}{\sum_{b \in B_{\circ}} [B[b], I_{\circ}] \longrightarrow Set}$$

$$(b, \alpha:B[b] \rightarrow I_{\circ}) \longmapsto_{u \in B[b]} \sum_{c \in B[b]} P(\alpha u)$$

$$(P: T_{\bullet} \to Set) \triangleleft (A[-]: A_{\bullet} \to Set)$$

$$\sum_{i \in T_{\bullet}} [P(i), A_{\bullet}] \longrightarrow Set$$

$$(i, \alpha: P(i) \to A_{\bullet}) \longmapsto \sum_{x \in P(i)} A[\alpha x]$$

A right A-comodule structure on P: I. → Set amounts to the data:

- For each $i \in I_o$, a function $f_i : P(i) \longrightarrow A_o$
- · For each $x \in P(i)$, a function $A[f_i x] \xrightarrow{\mathcal{P}_x} P(i)$

A left B-comodule structure on P: I.→Set amounts to the data:

- · function g: I. B.
- For each $i \in I_o$, a function $\tau_i : B[gi] \longrightarrow I_o$
- For each $u \in B[gi]$, a function $P(\tau_i u) \xrightarrow{\lambda_u} P(i)$

A comodule $P: A \longrightarrow B$ is a compatible right A-comodule and left B-comodule structure on $P: I_o \longrightarrow Set$.

Lemma: A left B-comodule structure on P: I. → Set induces a category I with set of objects Io, and a discrete optibration g: I → B.

A morphism in I(i,j) is a morphism $u: gi \rightarrow b$ in B such that $\tau_i(u) = j$.

Let $\bar{P}(i,a) := f_i^{-1}\{a\}$ where $f_i : P(i) \longrightarrow A_o$ comes from a right A-comodule $P: I \rightarrow Set$.

<u>Lemma</u>: A comodule $P: A \longrightarrow B$ induces a functor $\bar{P}: I^{op} \times A \longrightarrow Set$, $(i,a) \longmapsto \bar{P}(i,a)$.

For $u: i \rightarrow j$ in I, arising from $u: gi \rightarrow b$ in B we obtain .

$$P(\tau_{i}^{\parallel}u) \xrightarrow{\lambda_{u}} P(i)$$

$$f_{j} \downarrow f_{i} \leftarrow commutes$$

$$f_{o} compatibility$$

This induces a function $\bar{P}(j,a) \longrightarrow \bar{P}(i,a)$ for each $a \in A$ and $u: i \rightarrow j$ in I.

For $v: a \rightarrow a'$ in A, we obtain $f_i^{-1}\{a\} = \bar{P}(i,a) \xrightarrow{P_-(v)} P(i,a') = f_i^{-1}\{a'\}$

Compatibility of λ and ρ by comodule axioms makes $\bar{P}: I^{op} \times A \longrightarrow Set$ well-defined.

Prop (Garner, 2019): A comodule $A \xrightarrow{P} B$ of comonoids in (Poly, a, *) is equivalent to a span:

By previous work of Weber, this is the same as a parametric right adjoint

$$[A, Set] \longrightarrow [B, Set].$$

MOTIVATING QUESTIONS:

- 1. How do we compose "comodules as spans"?
- 2. What do cells in the double category Comod(Boly) look like?
- 3. What are the companion and conjoint of a retrofunctor?
- 4. Profunctors A → B are functors A → Set; does a similiar result hold for comodules?

The category of polynomials admits a canonical functor:

$$Poly \xrightarrow{\mathcal{U}} Set$$

$$(P: I \rightarrow Set) \longmapsto I$$

Theorem: A commutative square

$$\begin{array}{cccc}
A^{op} & B & \xrightarrow{P} & Poly & Lan_{\pi} & UP \\
 & & \downarrow & & \downarrow & & \\
B & & & \downarrow & & \\
 & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & & & & \downarrow & & \\
 & & & &$$

is equivalent to a comodule $A \rightarrow B$ in (Poly,4,*).

<u>PROOF</u>: For each $b \in B$, we have a set F(b). For each $a \in A$, $x \in F(b)$, we have a set P(x,a).

$$A^{op} \times B \xrightarrow{P} Poly$$

 $(a,b) \longmapsto F(b) \xrightarrow{P(-,a)} Set$

For each $v: a' \rightarrow a$ we have

$$F(b) \underbrace{v_* \Uparrow}_{P(-,a')} Set \qquad v_* : P(x,a') \rightarrow P(x,a)$$

For each u: b -> b' we have

F(b)
$$P(-,a)$$
 $u_*: F(b) \longrightarrow F(b')$
 $u_*: P(u_*x,a) \longrightarrow P(x,a)$
 $F(b')$
 $P(-,a)$

Commutativity requires that

$$F(b) \qquad P(-,a) \qquad F(b) \qquad P(-,a) \qquad F(b) \qquad V_{*} \qquad F(b') \qquad F(-,a') \qquad$$

Altogether, we obtain a span

where SF is the category of elements of $F: B \longrightarrow Set$. This is a comodule in (Poly, 4,*) by Garner's result.

Conversely, given a span

$$A \overset{Q}{\longleftrightarrow} X \xrightarrow{g} B$$
profunctor discrete optibration

we define

$$A^{op}_{\times} B \longrightarrow Poly$$

 $(a, b) \longmapsto g^{-1}\{b\} \longrightarrow Set$

 $\times \longmapsto Q(x, a)$

For $v: a' \rightarrow a$ and $u: b \rightarrow b'$ we have

Since 9 is a
$$2 \cdot u_*$$
 Q(\hat{u}, v) \uparrow Set $\hat{u}: x \rightarrow u_* x$ discrete optibration $Q^{-1}\{b\}$ Q($-,a^{-1}$) is the operatesian lift of (x,u) .

This completes the proof.

We have a nice parallel between concepts:

module of monads
$$A^{\circ p} \times B \rightarrow Set$$

Every functor f: A -> B induces a companion and conjoint profunctor given by:

$$\mathcal{A}^{\circ P} \times \mathcal{B} \longrightarrow \mathsf{Set}$$
 $\mathcal{B}^{\circ P} \times \mathcal{A} \longrightarrow \mathsf{Set}$ $(a, b) \longmapsto \mathcal{B}(f_{a}, b)$ $(b, a) \longmapsto \mathcal{B}(b, f_{a})$

Given a retrofunctor $\Upsilon: A \rightarrow B$ we have:

$$\begin{array}{cccc}
\mathcal{A}^{op} \times \mathcal{B} & \longrightarrow \mathcal{P}oly \\
(a, b) & \longmapsto & \Psi^{-1}\{b\} \longrightarrow Set \\
& \times & \longmapsto \mathcal{A}(x, a)
\end{array}$$

conjoint
$$\begin{cases} \mathcal{B}^{\circ p} \times \mathcal{A} \longrightarrow \text{Poly} \\ (b, a) \longmapsto \{*\} \longrightarrow \text{Set} \\ * \longmapsto \sum_{\mathbf{x} \in \Psi^{-1}\{b\}} \mathcal{A}(a, \mathbf{x}) \\ (p, p) \end{cases}$$

Suppose we have a comodule $A \xrightarrow{(P,F)} B$ and retrofunctors $\Psi: A \longrightarrow C$ and $\Psi: B \longrightarrow D$.

Then we may construct a comodule $C \longrightarrow D$ given by: $C^{op} \times D \xrightarrow{\varphi^* \triangle (P,F) \triangle \Psi_*} Poly$

$$(c,d) \longrightarrow \sum_{b \in \Psi^{-1}\{d\}} F(b) \longrightarrow Set$$

$$\begin{array}{ccc}
A & \xrightarrow{(P,F)} & B \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow & \downarrow & \downarrow \\
 & \downarrow & \downarrow &$$

Using this construction, a cell in Comod (Poly, 1, *) denoted

$$\begin{array}{ccc}
A & \xrightarrow{(b' e)} B \\
A & \xrightarrow{(b' e)} D
\end{array}$$

corresponds to a natural transformation

$$e^{\varphi^*_{a}(P,F)a\Psi_*}$$
 Poly

whose component at (c,d) is given by:

For each
$$b \in \Upsilon^{-1}\{d\}$$

$$F(b) \qquad \sum_{b \in \Upsilon^{-1}\{d\}} F(b)$$

$$\Theta_b \qquad \simeq \qquad \Theta \qquad O^* \bigcap Set$$

$$G(\Upsilon b) \qquad G(d)$$

$$\Theta_{\mathbf{x}}^{\#}: \mathbb{Q}(\mathcal{Q}_{\mathbf{x}}, \mathbf{c}) \longrightarrow \sum_{\alpha \in \Psi^{-1}\{c\}} P(\mathbf{x}, \alpha)$$

We write Cat # := Comod (Poly, 4,*).

EXAMPLES:

- Restricting to discrete categories we obtain multivaviable polynomials

• A comodule $1 \longrightarrow B$ is a functor $B \longrightarrow Poly$ which is equivalent to:

This is a "left B-comodule".

• A comodule $A \longrightarrow 1$ is a diagram $A^{op} \longrightarrow Poly$ $\downarrow \qquad \qquad \downarrow$ $1 \longrightarrow Set$

which is the same as a functor $A \longrightarrow [X, Set]$

which is equivalent to a span

This is a "right A-comodule".

- Every profunctor $A \rightarrow B$ yields a comodule $B \rightarrow A$ in Poly.
- · Let IRet be the double category of categories, functors, and retrofunctors.

 CONJECTURE: IRet Cat# is fully faithful (depending on choice of cells in IRet).

COMPOSITION OF COMODULES:

If we consider comodules in (Poly, 1, *) as certain spans, how do we compose them?

$$P: T^{\bullet P} \times A \longrightarrow Set$$

$$Q: \mathcal{T}^{\bullet p} \times \mathcal{B} \longrightarrow \mathcal{F}et$$

f, g - discrete opfibrations

Define K to be the category whose:
• objects are pairs $(j \in J, \alpha : Q(j, -) \Rightarrow) f^{-1} \in J$ where $f^{-1} \in J : B \rightarrow Set$ is well-defined since f is a discrete option.

• morphisms $(j,\alpha) \rightarrow (j',\alpha')$ are $\omega: j \rightarrow j'$ in \mathcal{J} such that $\alpha' = \alpha \circ Q(\omega,-)$.

Projection in the first component gives a discrete optibration $\hat{f}: K \rightarrow J$.

We also may construct a functor

$$\hat{Q}: K^{\circ p} \times I \longrightarrow Set$$

$$(j \in J, \alpha : Q(j,-) \Rightarrow f^{-1} \in J, i \in I) \longmapsto$$

$$\hat{Q}(j, \alpha, i) = \{q \in Q(j, fi) \mid \alpha_{fi}(q) = i\}$$

Altogether, we may take the composite gof to obtain a discrete opfibration and the composite

Poâ:
$$K^{op} \times A \longrightarrow Set$$

$$(j,\alpha:Q(j,-)\Rightarrow f^{-1}(-),a) \longmapsto \int \hat{Q}(j,\alpha,i) \times P(i,a)$$
to get the composite of comodules in
$$(Poly,A,*) \text{ viewed as spans.}$$