SUPPLEMENTARY INFORMATION FOR

On the Origin and Spread of Feral Pigeons

George Pacheco ^{1⊠}, Filipe G. Vieira ¹, Michael D. Martin ¹, Morten Tange Olsen ¹, Pavel Hulva ¹, Tânia de Freitas Raso ¹, Peter Njoroge ¹, Concepción Salaberria ¹, Isabel López-Rull ¹, Carles Lalueza-Fox ¹, Oscar Ramírez ¹, María C. Ávila-Arcos ¹, Patricia Rosas Escobar ¹, Rui Faria ¹, Miguel Carneiro ¹, Graciela Sotelo ¹, Jóhannis Danielsen ¹, Nizar Haddad ¹, Fares Khoury ¹, Roi Dor ¹, Ali Halajian ¹, María Belén Arias ¹, Oliver Krone ¹, Susanne Auls ¹, Sampath S. Seneviratne ¹, Kajanka Mathiaparanam ¹, Michael Bunce ¹, Megan L. Coghlan ¹, Jon Fjeldså ¹ & M. Thomas P. Gilbert ^{1⊠}

Suplementary Notes

Sampling effort. To investigate the genomic patterns of current pigeon populations of different evolutionary histories, we intentionally targeted our sampling to cover four distinct categories (Figure 1). Furthermore, to help root the evolutionary relationships between these groups, we also included a small number of individuals representing the Columba livia intermedia (Strickland, 1844) subspecies. Specifically in this regard, we sampled five populations from Sri Lanka, where two of them were from urban localities (Colombo and Trincomalee), one was from a Conservation National Park (Pigeon Island) and two others were captive populations maintained by local breeders (Wattala and Wellawatte) (Supplementary Fig. 1). To check for data reproducibility, we sequenced two of the samples twice (Tehran 16-GBS and Perth 02-GBS) to serve as replicates. Finally, to serve as external outgroups, we also generated data from five samples of (Columba palumbus Linnaeus, 1758) captured in Copenhagen (Denmark), one captive sample of (Streptopelia risoria Linnaeus, 1758), and additionally incorporated previously published whole genome resequence data from a Columba rupestris8. (we also included the WGS library to serve as another replicate) (Supplementary Spreadsheet).

Sequencing data and filtering. Population genetics statistics.

Phylogenetic relationships among feral pigeon populations.

Population structure among pigeon populations.

Contribution of pigeon breeds to current non-domesticated populations.

Discussion

Methods

Sequencing data generation and processing.
Data analysis.
Population genetics statistics.
Phylogenetic reconstruction.
Inference of Population Structure.
Contribution of pigeon breeds to current non-domesticated populations.

¹Section for Evolutionary Genomics, The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. ¹Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark. ¹NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway ¹Department of Zoology, Charles University, Prague, Czech Republic. ¹Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil. ¹Ornithology Section, Department of Zoology, National Museums of Kenya, Nairobi, Kenya. ¹Centro de Investigación en Ecosistemas, Universidad Nacional Autonoma de Mexico, Michoacan, Mexico. ¹Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid, Spain. ¹Avian Evolution Node, Department of Zoology and Environment Sciences, University of Colombo, Colombo, Sri Lanka. ¹Institute of Evolutionary Biology, Universitat Pompeu Fabra, Barcelona, Spain. ¹Department of Animal and Plant Sciences, University of Sheffield, UK. ¹Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal. ¹Institute of Evolutionary Biology, Department of Experimental and Health Sciences, University, Pompeu Fabra, Spain. ¹Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal. ¹University of the Faroe Islands, Tórshavn, Faroe Islands. ¹National Center for Agricultural Research and Extension, Al-Baqah, Jordan. ¹Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan. ¹Department of Biodiversity, Tel Aviv, Israel. ¹Natural History Museum, Imperial College of London, London, United Kingdom. ¹Department of Biodiversity, Turfloop Campus, University of Limpopo, Polokwane, South Africa. ¹Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany. ¹Vetgenomics SL, Edifici Eureka, Campus UAB, Barcelona, Spain. ¹Trace and Environmental DNA (TrEnD) Laboratory, Dep

Feral Pigeon Genomics Pacheco et al. 2021

Fig. 1 Map of sampling effort. This is a trial attempt.

Feral Pigeon Genomics Pacheco et al. 2021

Fig. 2 Map of sampling effort. This is a trial attempt.

Fig. 2 Map of sampling effort. This is a trial attempt.

Feral Pigeon Genomics Pacheco et al. 2021

Fig. 3 Map of sampling effort. This is a trial attempt.

References

Data Availability

All demultiplexed GBS sequencing data is publicly available at SRA (Project Number: PRJNA495951), as well as additional data uploaded to the University of Copenhagen's long term storage (https://sid.erda.dk/wsgi-bin/ls.py?share_id=aKqQoJvH4Y).

Acknowledgements

We would like to thank our local lab managers Charlotte Hansen, Pernille V. S. Olsen and Tina B. Brand at the Centre for GeoGenetics for their prompt support during the execution of the project. We are grateful to the Cornell University Biotechnology Resource Center for its genotyping services, especially to Sharon E. Mitchell and all lab technicians that worked on this project. Moreover, we deeply thank Gary Jakeman and Kristian Murphy Gregersen for their fieldwork assistance regarding the sampling in England and Denmark, respectively. We also thank Vladimir Orduña for his willingness to let us sample some of the Mexico City pigeons kept at his lab facilities.

Author Contributions

M.T.P.G. conceived the project and obtained financial support. M.T.P.G., G.P. and F.G.V. designed the study. G.P. led

the project. M.T.P.G., G.P., M.T.O., T.dF.R., P.H., P.N., C.S., I.L-R., S.S.S., K.M., C. L.-F., G.S., R.F., J.D., J. F., N.H., F.K., R. D., A.H., M.B.A. M. C. A.-A. and P. R. E. contributed to sampling. M.D.S. collected and provided the breed samples. G.P. performed the vast majority of DNA extraction and QC. K.M. performed DNA extraction and QC on Sri Lanka samples. G.P. and F.G.V. conducted the computational analyses assisted by M.D.M. G.P., F.G.V., M.T.O and M.T.P.G. interpreted the results. G.P. wrote the first draft of the manuscript with great input from M.T.P.G. and F.G.V. All authors critically reviewed and approved the final manuscript.

Funding

This project was funded by Lundbeck Foundation (award R52-5062) and European Research Council (Consolidator grant 681396) granted to MTPG. G.P. was supported by a Danish Government Scholarship and Tuition Fee Waiver Grant provided by the Danish Ministry of Science, Innovation and Higher Education and subsequently by a Ciência Sem Fronteiras Full PhD Abroad Scholarship (Grant Number: 201761/2014-9) provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) in Brazil.

Competing Interests

We have no competing interests.

Supplementary Fig. 1. Coverage heatmap. Heatmap based on the presence/absence matrix. Individual samples are represented by each column, whereas clusters of loci are represented by the rows.

Supplementary Fig. 1. Coverage heatmap. Heatmap based on the presence/absence matrix. Individual samples are represented by each column, whereas clusters of loci are represented by the rows.