FACULTY/PRESENTER

FACULTY

BORIS BERNHARDT

RELATIONSHIP WITH COMMERCIAL INTERESTS

NONE

DISCLOSURES

NO CONFLICTS OF INTEREST

MITGATING POTENTIAL BIAS

NO COMMERCIAL BIAS

STATISTICAL TEACHING SESSION

Boris Bernhardt, PhD

http://mica-mni.github.io

INTRODUCTION TO TODAYS SESSION

BORIS BERNHARDT, PHD

COLIN JOSEPHSON, MD

SEOK-JUN HONG, PhD

JORDAN ENGBERS, PhD

CORE CONCEPTS
AND DATA
VISUALIZATION

SYSTEMATIC REVIEWS AND META-ANALYSIS

NEUROIMAGING BASED STATISTICS MACHINE LEARNING TECHNIQUES

CORE CONCEPTS IN STATISTICAL ANALYSIS

AND DATA VISUALIZATION

Boris Bernhardt, PhD http://mica-mni.github.io

LEARNING OBJECTIVES

BASIC CONCEPTS IN DESCRIPTIVE STATISTICS

GENERALIZED LINEAR MODEL

EFFECTIVE AND TRUTHFUL DATA VISUALIZATION

DESCRIBING DATA

PURPOSE OF DESCRIPTIVE STATISTICS

DESCRIBE BASIC FEATURES OF DATA IN A STUDY

PURPOSE OF DESCRIPTIVE STATISTICS

DESCRIBE BASIC FEATURES OF DATA IN A STUDY IN A COMPACT FORM

CENTRAL TENDENCY

OTHER PARAMETERS SUCH AS THE MEDIAN MAY AT TIMES PROVIDE YOU BETTER ESTIMATES OF CENTRAL TENDENCIES

CENTRAL TENDENCY

OTHER PARAMETERS SUCH AS THE MEDIAN MAY AT TIMES PROVIDE YOU BETTER ESTIMATES OF CENTRAL TENDENCIES

WHERE THINGS MAY BREAK

OTHER PARAMETERS SUCH AS THE MEDIAN MAY AT TIMES PROVIDE YOU BETTER ESTIMATES OF CENTRAL TENDENCIES

TAKE HOME #1

DESCRIPTIVE STATISTICS INTENDS TO SUMMARIZE DATA

MEAN/SD ARE POWERFUL PARAMETERS WHEN DATA COME FROM NORMAL DISTRIBUTION

HOWEVER:
THEY BECOME LESS APPROPRIATE
WHEN DATA ARE NOT NORMAL
AND ARE SENSITIVE TO OUTLIERS

→ VERIFY YOUR DATA

INFERENCES

INFERENTIAL STATISTICS

MANY DIFFERENT STATISTICAL PROBLEMS

GROUP DIFFERENCE

TEST FOR SIGNIFICANCE OF CORRELATION

TEST FOR A
DIFFERENCE
IN CORRELATIONS
BETWEEN TWO
GROUPS

INFERENTIAL STATISTICS

CAN BE ADDRESSED WITH THE GENERALIZED LINEAR MODEL (GLM)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2 \times X_1 + \varepsilon$$

$$Y = \beta_0 + \beta_{1*}AGE$$

 $Y=\beta_0 + \beta_1*AGE + \beta_2*GROUP + \beta_3*AGE \times GROUP$

THE MODEL FURTHERMORE ALLOW TO TEST FOR CONTRASTS

$$Y = \beta_0 + \beta_1 * GROUP + \varepsilon$$

CONTRAST = GROUP1-GROUP2

THE MODEL FURTHERMORE ALLOW TO TEST FOR CONTRASTS AND TO CONTROL FOR VARIABLES OF NO INTEREST

$$Y = \beta_0 + \beta_{1*}AGE + \beta_{2*}GROUP + \epsilon$$

CONTRAST = GROUP1-GROUP2

T-STATISTIC MEANING FOR A BETWEEN-GROUP CONTRAST

ESTIMATING THE EFFECT FOR A CONTRAST PROVIDES A T-STATISTIC

T IS

HIGH T

H0: GROUP1=GROUP2

H1: GROUP1≠GROUP2

DIFFERENCE
IN MEANS
NORMALIZED BY
POOLED STANDARD
DEVIATION

DIFFERENCE UNLIKELY TO ARISE BY CHANCE IF GROUP1 AND GROU2 WERE THE SAME

T-STATISTIC MEANING FOR A BETWEEN-GROUP CONTRAST

Entry is $t(A; \nu)$ where $P\{t(\nu) \le t(A; \nu)\} = A$

	A						
	.60	.70	.80	.85	90	.95	.975
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179
13	0.259	0.537	0.870	1.079	1.350	1.771	2.160
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131
16.	0.258	0.535	0.865	1.071	1.337	1.746	2.120
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980
000	0.253	0.524	0.842	1.036	1.282	1.645	1.960

PERCENTILE

DEGREES OF FREEDOM

T-VALUES

SOFTWARE THAT SUPPORTS MODEL BASED INFERENCE

R-PROJECT.ORG

MATH.MCGILL.CA/~KEITH/SURFSTAT

TAKE HOME #2

MANY COMMON STATISTICAL TESTS ARE EXAMPLES OF GLM

GLM ALLOWS YOU TO SPECIFY VARIABLES TO CONTROL FOR

GLM WILL PROVIDE YOU EFFECTS OF CONTRASTS OF INTEREST

EDWARD TUFTE

STATISTICIAN

PIONEER IN FIELD OF DATA VISUALIZATION

PUBLISHED SEMINAL BOOKS:

"THE VISUAL DISPLAY OF QUANTITATIVE INFORMATION"

"BEAUTIFUL EVIDENCE"

"VISUAL EXPLANATIONS"

"THE COGNITIVE STYLE OF POWERPOINT"

PRINCIPLES OF GRAPHICAL EXCELLENCE

COMPLEX IDEAS COMMUNICATED WITH CLARITY, PRECISION, EFFICIENCY

GIVES THE READER THE GREATEST NUMBER OF IDEAS IN SHORTEST TIME WITH LEAST INK IN SMALLEST SPACE

NEARLY ALWAYS MULTIVARIATE

REQUIRES TELLING THE TRUTH ABOUT THE DATA

TUFTE'S DATA INK MEASURES

INK USED TO PORTRAY DATA TOTAL INK

PORTRAY OF A GRAPHICS INK DEVOTED TO PORTRAY OF NON-REDUNDANT INFORMATION

DATA-INK-MAXIMIZATION

DATA-INK-MAXIMIZATION

(a) Military hase in Martin Mar 1 (b) Suffect of North during Markin Mar 1 (a) Williamy hases in Martin Mar II (d) Suffect of North during Markin Mar II (d) Suffect of North during Markin Mar II (d) North American Survey (Markin Markin Mark

Elimination of non-data elements and vibrations

I revision quiets the grid and gives emphasis to the data:

Based on data in Imeirat National de la Statistique et des Érades Économiques, Assuaire statistique de la France, 1968 (Paris, 1968), pp. 32–33; zedawn in Henry S. Sheyock and Jacob S. Siegel, The Methods and Materials of Demography (Washington, D.C., 1973), vol. 1, 242.

PRINCIPLES OF GRAPHICAL INTEGRITY

REPRESENTATION SHOULD REFLECT THE MEASURED QUANTITIES

CLEAR LABELING SHOULD DEFEAT AMBIGUITY AND DISTORTION

SHOW DATA VARIATION AND NOT DESIGN VARIATION

TUFTE'S LIE FACTOR

SIZE OF EFFECT SHOWN IN GRAPHIC SIZE OF EFFECT IN DATA

als line, representing 18 miles per allon in 1978, is 0.6 inches long.

his line, representing 27.5 miles per allon in 1985, is 5.3 inches long.

LIE FACTOR = (5.3/0.6) / (27.5/18) = 8.8/1.5=5.7

EXPLODING BUDGETS?

REMOVING VIBRATION

CONTROLLING FOR INFLATION AND POPULATION GROWTH

TUFTE'S ADVICE

ABOVE ALL ELSE SHOW THE DATA MAXIMIZE DATA-INK RATIO REVISE AND EDIT

SUMMARY

DISPLAY DATA IN THE BEST WAY POSSIBLE AND LOOK AT IT

DETERMINE WHICH VARIABLES INTEREST YOU

EVALUATE VARIABLES YOU NEED TO CONTROL FOR

