

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 February 2002 (28.02.2002)

PCT

(10) International Publication Number
WO 02/16566 A2

- (51) International Patent Classification⁷: **C12N 9/00**
- (21) International Application Number: **PCT/US01/26345**
- (22) International Filing Date: 23 August 2001 (23.08.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
60/226,903 23 August 2000 (23.08.2000) US
- (71) Applicant: **APPLERA CORPORATION [US/US]**
Robert A. Millman, 761 Main Avenue, Norwalk, CT 06859 (US).
- (72) Inventors: **BEASLEY, Ellen, M.**; c/o Celera Genomics, 45 West Gude Drive, Rockville, MD 20850 (US). **LI,**
- Zhenya; c/o Celera Genomics, 45 West Gude Drive, Rockville, MD 20850 (US).
- (74) Agent: **CELERA GENOMICS**; Robert A. Millman, 45 West Gude Drive C2-4, Rockville, MD 20850 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

[Continued on next page]

(54) Title: ISOLATED HUMAN PROTEASE PROTEINS, NUCLEIC ACID MOLECULES ENCODING HUMAN PROTEASE PROTEINS, AND USES THEREOF

1 ATGGAGGGTG TAGGGGGTCT CTGGCCCTGG GTGCTGGGT TGCTCTCCCT
52 GCCAGGTTG ATCTTAGGAG CGGCCCTGGC CTCCAGGTGC CCAGGAGCCT
101 GTGCTACAG CTTCGGAGAT GGCTCTCACCG CTGAGGGAAAC CCAGGCGCTC
151 GGGGACAAAG ACATTCCTGC AATTAAACCAAAGGGCTTCATCC TGAGAGAAAC
201 CCCAGAGAGC AGCTTCCCTCA TGAGGGGGG CATCATCCGG CGAGGCTCT
251 TCCGACTGCT GTAGCACCAG AGCAACAAAT GGCCCCATGGG TGTTAGTGGT
301 GTCTGGAGG TCCCCCTCCG GCTCTCCAGC AGTACAGATG AGCCAGCCG
351 CCAGCTACG CTGGAGGCTT TTGCGGAGTT TGAACGTTCC AGTGCATCA
401 GGTTTGTCACT ATATCAGGAGA CAGAGAGACT TCATTTCCAT CATCCCCATG
451 TATGGGGTGTCTCAGGAGTGTGTTGGGGGGAGTGGAGGGATGC AGGTGGTCTC
501 CCTGGGCCCGG ACCTGGCTCTC AGAAAGGGCCG GGGCATTTGTC CTTCATGAGC
551 TCATGCACTG GTCTGGCTTC TGCCACGGAC ACACGGCGGC CGACCGGGAC
601 CGCTATACTC GTGTCAACTG GAACAGGATTC CTGCCRGGCT TTGAAATCAA
651 CTTCATCAAG TCTCAGGCA GCAARCATGCT GACCTCCCTAT GACTACTCTT
701 CTGTAATGCA CTATGGGAGG CTGGCTCTCA GCGGGGGTGG GTCGCCACC
751 ATGCAACACAC TTTGGGCCCC CAGTGTCCAC ATCGGCCAGC GATGGAACCT
801 GAGTGGCTTCG GACATCACCC GGGTCTCTCAA ACTCTAACGGC TGCGGCCAA
851 GTGGCCCGAG GCCCCGTGGG AGAGGTGAGT GGCATGGCAG GAAGGGTGA
901 TGA

FEATURES:
Start codon: 1
Stop codon: 901

Homologous proteins:
Top 10 BLAST Hits

	Score	E
gi 21340061 pix1 C49826 high choriolytic hatching proteinase (EC... gi 21902971 dbj BA12146.11 (D83950) choriolyisin H (Oryzias lati...	189	3e-47
gi 3998681 sp P31581 HCE2_ORYLA HIGH CHORIOLYTIC ENZYME 2 PRECUR... gi 3998671 sp P31580 HCE1_ORYLA HIGH CHORIOLYTIC ENZYME 1 PRECUR...	187	1e-46
gi 4001721 sp P31579 LCE_ORYLA LOW CHORIOLYTIC ENZYME PRECURSOR ... gi 21902981 dbj BA20403.11 (D83949) choriolyisin L (Oryzias lati...	187	1e-46
gi 1168541 sp P42662 ASTL_COTIA ASTACIN LIKE METALLOENDOPETIDA... gi 22526551 gb BAE62737.1 (D62621) nephrosin precursor: [Cyprinu...	184	1e-45
gi 28285091 sp P42664 UVS2_XENLA EMBRYONIC PROTEIN UVS_2 PRECURS... gi 2661464 emb CA05969.11 (AJ003190) astacus egg astacin [Astac...	180	1e-44
gi 17308971 sp P551121 YPD6_CAEL HYPOTHETICAL ZINC METALLOPROTEI... gi 7498742 pix1 T20658 hypothetical protein F09E8.6 - Caenorhabd...	165	6e-40
gi 17233501 sp F53115 YC92_CAEL HYPOTHETICAL ZINC METALLOPROTEI...	164	1e-39
EST: gi 21663891 gb AA452720.1 AA452720 zx39d07.r1 Soares_total_fetus... gi 4136891 gb AI367146.1 AI367146 qq4le12.x1 Soares_NhMPU_S1 H...	157	2e-37
gi 21663891 gb AA452720.1 AA452720 zx39d07.r1 Soares_total_fetus... gi 4136891 gb AI367146.1 AI367146 qq4le12.x1 Soares_NhMPU_S1 H...	155	4e-37
EXPRESSION INFORMATION FOR MODULATORY USE: library source: gi 21663891 gb AA452720.1 Human fetus gi 4136891 gb AI367146.1 Pooled human melanocyte, fetal heart, and pregnant uterus	153	3e-36
EST: gi 21663891 gb AA452720.1 AA452720 zx39d07.r1 Soares_total_fetus... gi 4136891 gb AI367146.1 AI367146 qq4le12.x1 Soares_NhMPU_S1 H...	152	3e-36
EST: gi 21663891 gb AA452720.1 AA452720 zx39d07.r1 Soares_total_fetus... gi 4136891 gb AI367146.1 AI367146 qq4le12.x1 Soares_NhMPU_S1 H...	151	8e-36

WO 02/16566 A2

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

— *with sequence listing part of description published separately in electronic form and available upon request from the International Bureau*

Published:

- *without international search report and to be republished upon receipt of that report*
- *entirely in electronic form (except for this front page) and available upon request from the International Bureau*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

**ISOLATED HUMAN PROTEASE PROTEINS, NUCLEIC ACID MOLECULES
ENCODING HUMAN PROTEASE PROTEINS, AND USES THEREOF**

FIELD OF THE INVENTION

5 The present invention is in the field of protease proteins that are related to the choriolytic hatching protease subfamily, recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein cleavage/processing/turnover and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and
10 diagnostic compositions and methods.

BACKGROUND OF THE INVENTION

The proteases may be categorized into families by the different amino acid sequences (generally between 2 and 10 residues) located on either side of the cleavage site of the
15 protease.

The proper functioning of the cell requires careful control of the levels of important structural proteins, enzymes, and regulatory proteins. One of the ways that cells can reduce the steady state level of a particular protein is by proteolytic degradation. Further, one of the ways cells produce functioning proteins is to produce pre or pro-protein precursors that are
20 processed by proteolytic degradation to produce an active moiety. Thus, complex and highly-regulated mechanisms have been evolved to accomplish this degradation.

Proteases regulate many different cell proliferation, differentiation, and signaling processes by regulating protein turnover and processing. Uncontrolled protease activity (either increased or decreased) has been implicated in a variety of disease conditions
25 including inflammation, cancer, arteriosclerosis, and degenerative disorders.

An additional role of intracellular proteolysis is in the stress-response. Cells that are subject to stress such as starvation, heat-shock, chemical insult or mutation respond by increasing the rates of proteolysis. One function of this enhanced proteolysis is to salvage amino acids from non-essential proteins. These amino acids can then be re-utilized in the
30 synthesis of essential proteins or metabolized directly to provide energy. Another function is in the repair of damage caused by the stress. For example, oxidative stress has been shown to damage a variety of proteins and cause them to be rapidly degraded.

The International Union of Biochemistry and Molecular Biology (IUBMB) has recommended to use the term *peptidase* for the subset of peptide bond hydrolases (Subclass E.C 3.4.). The widely used term *protease* is synonymous with *peptidase*. *Peptidases* comprise two groups of enzymes: the endopeptidases and the exopeptidases, which cleave peptide bonds at points within the protein and remove amino acids sequentially from either N or C-terminus respectively. The term *proteinase* is also used as a synonym word for *endopeptidase* and four mechanistic classes of proteinases are recognized by the IUBMB: two of these are described below (also see: *Handbook of Proteolytic Enzymes* by Barrett, Rawlings, and Woessner AP Press, NY 1998). Also, for a review of the various uses of proteases as drug targets, see: Weber M, Emerging treatments for hypertension: potential role for vasopeptidase inhibition; Am J Hypertens 1999 Nov;12(11 Pt 2):139S-147S; Kentsch M, Otter W, Novel neurohormonal modulators in cardiovascular disorders. The therapeutic potential of endopeptidase inhibitors, Drugs R D 1999 Apr;1(4):331-8; Scarborough RM, Coagulation factor Xa: the prothrombinase complex as an emerging therapeutic target for small molecule inhibitors, J Enzym Inhib 1998;14(1):15-25; Skotnicki JS, et al., Design and synthetic considerations of matrix metalloproteinase inhibitors, Ann N Y Acad Sci 1999 Jun 30;878:61-72; McKerrow JH, Engel JC, Caffrey CR, Cysteine protease inhibitors as chemotherapy for parasitic infections, Bioorg Med Chem 1999 Apr;7(4):639-44; Rice KD, Tanaka RD, Katz BA, Numerof RP, Moore WR, Inhibitors of tryptase for the treatment of mast cell-mediated diseases, Curr Pharm Des 1998 Oct;4(5):381-96; Materson BJ, Will angiotensin converting enzyme genotype, receptor mutation identification, and other miracles of molecular biology permit reduction of NNT Am J Hypertens 1998 Aug;11(8 Pt 2):138S-142S

25

Metalloprotease

The metalloproteases may be one of the older classes of proteinases and are found in bacteria, fungi as well as in higher organisms. They differ widely in their sequences and their structures but the great majority of enzymes contain a zinc atom which is catalytically active. In some cases, zinc may be replaced by another metal such as cobalt or nickel without loss of the activity. Bacterial thermolysin has been well characterized and its crystallographic structure indicates that zinc is bound by two histidines and one glutamic acid. Many enzymes contain the sequence HEXXH, which provides two histidine ligands for the zinc whereas the third ligand is either a glutamic acid (thermolysin, neprilysin, alanyl aminopeptidase) or a

histidine (astacin). Other families exhibit a distinct mode of binding of the Zn atom. The catalytic mechanism leads to the formation of a non covalent tetrahedral intermediate after the attack of a zinc-bound water molecule on the carbonyl group of the scissile bond. This intermediate is further decomposed by transfer of the glutamic acid proton to the leaving

5 group.

Metalloproteases contain a catalytic zinc metal center which participates in the hydrolysis of the peptide backbone (reviewed in Power and Harper, in *Protease Inhibitors*, A. J. Barrett and G. Salversen (eds.) Elsevier, Amsterdam, 1986, p. 219). The active zinc center differentiates some of these proteases from calpains and trypsins whose activities are

10 dependent upon the presence of calcium. Examples of metalloproteases include carboxypeptidase A, carboxypeptidase B, and thermolysin.

Metalloproteases have been isolated from a number of prokaryotic and eucaryotic sources, e.g. *Bacillus subtilis* (McConn et al., 1964, *J. Biol. Chem.* 239:3706); *Bacillus megaterium*; *Serratia* (Miyata et al., 1971, *Agr. Biol. Chem.* 35:460); *Clostridium bifermentans* (MacFarlane et al., 1992, *App. Environ. Microbiol.* 58:1195-1200), *Legionella pneumophila* (Moffat et al., 1994, *Infection and Immunity* 62:751-3). In particular, acidic metalloproteases have been isolated from broad-banded copperhead venoms (Johnson and Ownby, 1993, *Int. J. Biochem.* 25:267-278), rattlesnake venoms (Chlou et al., 1992, *Biochem. Biophys. Res. Commun.* 187:389-396) and articular cartilage (Treadwell et al., 20 1986, *Arch. Biochem. Biophys.* 251:715-723). Neutral metalloproteases, specifically those having optimal activity at neutral pH have, for example, been isolated from *Aspergillus sojae* (Sekine, 1973, *Agric. Biol. Chem.* 37:1945-1952). Neutral metalloproteases obtained from *Aspergillus* have been classified into two groups, npI and npII (Sekine, 1972, *Agric. Biol. Chem.* 36:207-216). So far, success in obtaining amino acid sequence information from these 25 fungal neutral metalloproteases has been limited. An npII metalloprotease isolated from *Aspergillus oryzae* has been cloned based on amino acid sequence presented in the literature (Tatsumi et al., 1991, *Mol. Gen. Genet.* 228:97-103). However, to date, no npI fungal metalloprotease has been cloned or sequenced. Alkaline metalloproteases, for example, have been isolated from *Pseudomonas aeruginosa* (Baumann et al., 1993, *EMBO J* 12:3357-3364) 30 and the insect pathogen *Xenorhabdus luminescens* (Schmidt et al., 1998, *Appl. Environ. Microbiol.* 54:2793-2797).

Metalloproteases have been divided into several distinct families based primarily on activity and structure: 1) water nucleophile; water bound by single zinc ion ligated to two His

(within the motif HEXXH) and Glu, His or Asp; 2) water nucleophile; water bound by single zinc ion ligated to His, Glu (within the motif HXXE) and His; 3) water nucleophile; water bound by single zinc ion ligated to His, Asp and His; 4) Water nucleophile; water bound by single zinc ion ligated to two His (within the motif HXXEH) and Glu and 5) water nucleophile; water bound by two zinc ions ligated by Lys, Asp, Asp, Asp, Glu.

5 Examples of members of the metalloproteinase family include, but are not limited to, membrane alanyl aminopeptidase (*Homo sapiens*), germinal peptidyl-dipeptidase A (*Homo sapiens*), thimet oligopeptidase (*Rattus norvegicus*), oligopeptidase F (*Lactococcus lactis*), mycolysin (*Streptomyces cacaoi*), immune inhibitor A (*Bacillus thuringiensis*), snapalysin

10 (Streptomyces lividans), leishmanolysin (*Leishmania major*), microbial collagenase (*Vibrio alginolyticus*), microbial collagenase, class I (*Clostridium perfringens*), collagenase 1 (*Homo sapiens*), serralysin (*Serratia marcescens*), fragilysin (*Bacteroides fragilis*), gametolysin (*Chlamydomonas reinhardtii*), astacin (*Astacus fluviatilis*), adamalysin (*Crotalus adamanteus*), ADAM 10 (*Bos taurus*), neprilysin (*Homo sapiens*), carboxypeptidase A

15 (*Homo sapiens*), carboxypeptidase E (*Bos taurus*), gamma-D-glutamyl-(L)-meso-diaminopimelate peptidase I (*Bacillus sphaericus*), vanY D-Ala-D-Ala carboxypeptidase (*Enterococcus faecium*), endolysin (bacteriophage A118), pitrilysin (*Escherichia coli*), mitochondrial processing peptidase (*Saccharomyces cerevisiae*), leucyl aminopeptidase (*Bos taurus*), aminopeptidase I (*Saccharomyces cerevisiae*), membrane dipeptidase (*Homo*

20 *sapiens*), glutamate carboxypeptidase (*Pseudomonas* sp.), Gly-X carboxypeptidase (*Saccharomyces cerevisiae*), O-sialoglycoprotein endopeptidase (*Pasteurella haemolytica*), beta-lytic metalloendopeptidase (*Achromobacter lyticus*), methionyl aminopeptidase I

(*Escherichia coli*), X-Pro aminopeptidase (*Escherichia coli*), X-His dipeptidase (*Escherichia coli*), IgA1-specific metalloendopeptidase (*Streptococcus sanguis*), tentoxilysin (*Clostridium tetani*), leucyl aminopeptidase (*Vibrio proteolyticus*), aminopeptidase (*Streptomyces griseus*),

IAP aminopeptidase (*Escherichia coli*), aminopeptidase T (*Thermus aquaticus*), hycolysin (*Staphylococcus hyicus*), carboxypeptidase Taq (*Thermus aquaticus*), anthrax lethal factor (*Bacillus anthracis*), penicillolysins (*Penicillium citrinum*), fungalysin (*Aspergillus fumigatus*), lysostaphin (*Staphylococcus simulans*), beta-aspartyl dipeptidase (*Escherichia coli*), carboxypeptidase Ss1 (*Sulfolobus solfataricus*), FtsH endopeptidase (*Escherichia coli*),

glutamyl aminopeptidase (*Lactococcus lactis*), cytophagalysin (*Cytophaga* sp.), metalloendopeptidase (*vaccinia virus*), VanX D-Ala-D-Ala dipeptidase (*Enterococcus faecium*), Ste24p endopeptidase (*Saccharomyces cerevisiae*), dipeptidyl-peptidase III (*Rattus*

norvegicus), S2P protease (*Homo sapiens*), sporulation factor SpoIVFB (*Bacillus subtilis*), and HYBD endopeptidase (*Escherichia coli*).

Metalloproteases have been found to have a number of uses. For example, there is strong evidence that a metalloprotease is involved in the in vivo proteolytic processing of the 5 vasoconstrictor, endothelin-1. Rat metalloprotease has been found to be involved in peptide hormone processing. One important subfamily of the metalloproteases are the matrix metalloproteases.

A number of diseases are thought to be mediated by excess or undesired metalloprotease activity or by an imbalance in the ratio of the various members of the 10 protease family of proteins. These include: a) osteoarthritis (Woessner, et al., *J. Biol. Chem.* 259(6), 3633, 1984; Phadke, et al., *J. Rheumatol.* 10, 852, 1983), b) rheumatoid arthritis (Mullins, et al., *Biochim. Biophys. Acta* 695, 117, 1983; Woolley, et al., *Arthritis Rheum.* 20, 1231, 1977; Gravallese, et al., *Arthritis Rheum.* 34, 1076, 1991), c) septic arthritis (Williams, et al., *Arthritis Rheum.* 33, 533, 1990), d) tumor metastasis (Reich, et al., *Cancer Res.* 48, 15 3307, 1988, and Matrisian, et al., *Proc. Nat'l. Acad. Sci., USA* 83, 9413, 1986), e) periodontal diseases (Overall, et al., *J. Periodontal Res.* 22, 81, 1987), f) corneal ulceration (Burns, et al., *Invest. Ophthalmol. Vis. Sci.* 30, 1569, 1989), g) proteinuria (Baricos, et al., *Biochem. J.* 254, 609, 1988), h) coronary thrombosis from atherosclerotic plaque rupture (Henney, et al., *Proc. Nat'l. Acad. Sci., USA* 88, 8154-8158, 1991), i) aneurysmal aortic disease (Vine, et al., *Clin. 20 Sci.* 81, 233, 1991), j) birth control (Woessner, et al., *Steroids* 54, 491, 1989), k) dystrophic epidermolysis bullosa (Kronberger, et al., *J. Invest. Dermatol.* 79, 208, 1982), and l) degenerative cartilage loss following traumatic joint injury, m) conditions leading to inflammatory responses, osteopenias mediated by MMP activity, n) temporo mandibular joint disease, o) demyelinating diseases of the nervous system (Chantry, et al., *J. Neurochem.* 50, 25 688, 1988).

Zinc Proteases

Zinc proteases are a diverse group of enzymes that cleave proteins at specific sites. These enzymes belong to the group of metalloproteases, they contain zinc at their active sites. The protease of the present invention is homologous to hatching proteases of invertebrates 30 and collagenases of mammals.

The protease of the present invention may be involved in cleavage of structural proteins in extracellular reticulum. Its activity may affect cell division and differentiation. Choriolytic hatching enzymes are expressed during development, their production virtually

stops after hatching. There are sometimes isolated from chorioallantoic membrane. Zinc proteases often are synthesized as inactive precursors that are activated by autoproteolysis; twenty to thirty amino acids are removed from their N-termini as a result of activation.

5 Another group of metalloproteases closely related to astacin are meprins. These are expressed in epithelia of kidneys and intestine as well as in developing neural tissue. The meprins are overexpressed in some tumors, which enables their progression into stroma.

10 The protease of the present invention contains a motif present in active site of some metalloproteinases, HExxH. Sequence HELMHVLGFWHEH may represent its active site. Using this information, one can develop competitive inhibitors, which may be used to treat cancers.

For a review of zinc proteases and choriolytic hatching enzymes, see: Yasumasu S, et al., *Dev Biol* 1992 Oct;153(2):250-8; Yasumasu S, et al., *Eur J Biochem* 1996 May 1;237(3):752-8; Kohler D, et al., *FEBS Lett* 2000 Jan 7;465(1):2-7; and Lottaz D, et al., *Cancer Res* 1999 Mar 1;59(5):1127-33.

15 Aspartic protease

Aspartic proteases have been divided into several distinct families based primarily on activity and structure. These include 1) water nucleophile; water bound by two Asp from monomer or dimer; all endopeptidases, from eukaryote organisms, viruses or virus-like organisms and 2) endopeptidases that are water nucleophile and are water bound by Asp and 20 Asn.

Most of aspartic proteases belong to the pepsin family. The pepsin family includes digestive enzymes such as pepsin and chymosin as well as lysosomal cathepsins D and processing enzymes such as renin, and certain fungal proteases (penicillopepsin, rhizopuspepsin, endothiapepsin). A second family comprises viral proteases such as the 25 protease from the AIDS virus (HIV) also called retropepsin. Crystallographic studies have shown that these enzymes are bilobed molecules with the active site located between two homologous lobes. Each lobe contributes one aspartate residue of the catalytically active diad of aspartates. These two aspartyl residues are in close geometric proximity in the active molecule and one aspartate is ionized whereas the second one is unionized at the optimum pH 30 range of 2-3. Retropepsins, are monomeric, i.e carry only one catalytic aspartate and then dimerization is required to form an active enzyme.

In contrast to serine and cysteine proteases, catalysis by aspartic protease do not involve a covalent intermediate though a tetrahedral intermediate exists. The nucleophilic

attack is achieved by two simultaneous proton transfer: one from a water molecule to the diad of the two carboxyl groups and a second one from the diad to the carbonyl oxygen of the substrate with the concurrent CO-NH bond cleavage. This general acid-base catalysis, which may be called a "push-pull" mechanism leads to the formation of a non covalent neutral
5 tetrahedral intermediate.

Examples of the aspartic protease family of proteins include, but are not limited to, pepsin A (*Homo sapiens*), HIV1 retropepsin (human immunodeficiency virus type 1), endopeptidase (cauliflower mosaic virus), bacilliform virus putative protease (rice tungro bacilliform virus), aspergillopepsin II (*Aspergillus niger*), thermopsin (*Sulfolobus acidocaldarius*), nodavirus endopeptidase (flock house virus), pseudomonapepsin (Pseudomonas sp. 101), signal peptidase II (*Escherichia coli*), polyprotein peptidase (human spumaretrovirus), copia transposon (*Drosophila melanogaster*), SIRE-1 peptidase (Glycine max), retrotransposon bs1 endopeptidase (*Zea mays*), retrotransposon peptidase (*Drosophila buzzatii*), Tas retrotransposon peptidase (*Ascaris lumbricoides*), Pao retrotransposon peptidase (*Bombyx mori*), putative proteinase of Skippy retrotransposon (*Fusarium oxysporum*), tetravirus endopeptidase (*Nudaurelia capensis omega virus*), presenilin 1 (*Homo sapiens*).
10
15
20

Proteases and Cancer

Proteases are critical elements at several stages in the progression of metastatic cancer. In this process, the proteolytic degradation of structural protein in the basal membrane allows for expansion of a tumor in the primary site, evasion from this site as well as homing and invasion in distant, secondary sites. Also, tumor induced angiogenesis is required for tumor growth and is dependent on proteolytic tissue remodeling. Transfection experiments with various types of proteases have shown that the matrix metalloproteases play a dominant role in these processes in particular gelatinases A and B (MMP-2 and MMP-9, respectively). For an overview of this field see Mullins, et al., *Biochim. Biophys. Acta* 695, 177, 1983; Ray, et al., *Eur. Respir. J.* 7, 2062, 1994; Birkedal-Hansen, et al., *Crit. Rev. Oral Biol. Med.* 4, 197, 1993.
25
30

Furthermore, it was demonstrated that inhibition of degradation of extracellular matrix by the native matrix metalloprotease inhibitor TIMP-2 (a protein) arrests cancer growth (DeClerck, et al., *Cancer Res.* 52, 701, 1992) and that TIMP-2 inhibits tumor-induced angiogenesis in experimental systems (Moses, et al. *Science* 248, 1408, 1990). For a review,
35

see DeClerck, et al., Ann. N. Y. Acad. Sci. 732, 222, 1994. It was further demonstrated that the synthetic matrix metalloprotease inhibitor batimastat when given intraperitoneally inhibits human colon tumor growth and spread in an orthotopic model in nude mice (Wang, et al. Cancer Res. 54, 4726, 1994) and prolongs the survival of mice bearing human ovarian carcinoma xenografts (Davies, et. al., Cancer Res. 53, 2087, 1993). The use of this and related compounds has been described in Brown, et al., WO-9321942 A2.

5 There are several patents and patent applications claiming the use of metalloproteinase inhibitors for the retardation of metastatic cancer, promoting tumor regression, inhibiting cancer cell proliferation, slowing or preventing cartilage loss associated
10 with osteoarthritis or for treatment of other diseases as noted above (e.g. Levy, et al., WO-9519965 A1; Beckett, et al., WO-9519956 A1; Beckett, et al., WO-9519957 A1; Beckett, et al., WO-9519961 A1; Brown, et al., WO-9321942 A2; Crimmin, et al., WO-9421625 A1; Dickens, et al., U.S. Pat. No. 4,599,361; Hughes, et al., U.S. Pat. No. 5,190,937; Broadhurst, et al., EP 574758 A1; Broadhurst, et al., EP 276436; and Myers, et al., EP 520573 A1.

15 Protease proteins, particularly members of the choriolytic hatching protease subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of protease proteins. The present invention advances the state of the art by providing a previously unidentified human protease proteins that have homology to members of the
20 choriolytic hatching protease subfamily.

SUMMARY OF THE INVENTION

The present invention is based in part on the identification of amino acid sequences of human protease peptides and proteins that are related to the choriolytic hatching protease
25 subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate protease activity in cells and tissues that express the protease. Experimental
30 data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus.

DESCRIPTION OF THE FIGURE SHEETS

FIGURE 1 provides the nucleotide sequence of a cDNA molecule or transcript sequence that encodes the protease protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus.

FIGURE 2 provides the predicted amino acid sequence of the protease of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIGURE 3 provides genomic sequences that span the gene encoding the protease protein of the present invention. (SEQ ID NO:3) In addition structure and functional information, such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

DETAILED DESCRIPTION OF THE INVENTION

20 General Description

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or sequence homology to protein/peptide/domains identified and characterized within the art as being a protease protein or part of a protease protein and are related to the choriolytic hatching protease subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human protease peptides and proteins that are related to the choriolytic hatching protease subfamily, nucleic acid sequences in the form of transcript sequences, cDNA sequences and/or genomic sequences that encode these protease peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the

closest art known protein/peptide/domain that has structural or sequence homology to the protease of the present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology and/or structural relatedness to known protease proteins of the choriolytic hatching protease subfamily and the expression pattern observed. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. The art has clearly established the commercial importance of members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known choriolytic hatching protease family or subfamily of protease proteins.

15

Specific Embodiments

Peptide Molecules

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the protease family of proteins and are related to the choriolytic hatching protease subfamily (protein sequences are provided in Figure 2, transcript/cDNA sequences are provided in Figure 1 and genomic sequences are provided in Figure 3). The peptide sequences provided in Figure 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in Figure 3, will be referred herein as the protease peptides of the present invention, protease peptides, or peptides/proteins of the present invention.

The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the protease peptides disclosed in the Figure 2, (encoded by the nucleic acid molecule shown in Figure 1, transcript/cDNA or Figure 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows 5 for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other 10 proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals 15 that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the protease peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

20 The isolated protease peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. For example, a nucleic acid molecule encoding the protease peptide is cloned into an expression vector, the expression 25 vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the 30 transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:1) and the genomic sequences provided in Figure 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in Figure 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:1) and the genomic sequences provided in Figure 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

The present invention further provides proteins that comprise the amino acid sequences provided in Figure 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in Figure 1 (SEQ ID NO:1) and the genomic sequences provided in Figure 3 (SEQ ID NO:3). A protein comprises an amino acid sequence when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the protease peptides of the present invention are the naturally occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.

The protease peptides of the present invention can be attached to heterologous sequences to form chimeric or fusion proteins. Such chimeric and fusion proteins comprise a protease peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the protease peptide. "Operatively linked" indicates that the protease peptide and the heterologous protein are fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the protease peptide.

In some uses, the fusion protein does not affect the activity of the protease peptide *per se*. For example, the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant protease peptide. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.

- 5 Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel *et al.*, *Current Protocols in Molecular Biology*, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A
10 protease peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protease peptide.

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring
15 recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

Such variants can readily be identified/made using molecular techniques and the
20 sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the protease peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

25 To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or
30 more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the

molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for
5 optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (*Computational Molecular Biology*, Lesk, A.M., ed., Oxford University Press, New York, 1988; *Biocomputing: Informatics and Genome Projects*, Smith, D.W., ed., Academic Press, New York, 1993;
10 *Computer Analysis of Sequence Data, Part 1*, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; *Sequence Analysis in Molecular Biology*, von Heinje, G., Academic Press, 1987; and *Sequence Analysis Primer*, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (*J. Mol. Biol.* (48):444-453
15 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at <http://www.gcg.com>), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences
is determined using the GAP program in the GCG software package (Devereux, J., *et al.*,
20 *Nucleic Acids Res.* 12(1):387 (1984)) (available at <http://www.gcg.com>), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Myers and W. Miller (CABIOS,
4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a
25 PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.* (*J. Mol. Biol.* 215:403-10
30 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to the

proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.* (*Nucleic Acids Res.* 25(17):3389-3402 (1997)). When utilizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

5 Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides of the present invention can readily be identified as having complete sequence identity to one of the protease peptides of the present invention as well as being encoded by the same genetic locus as the protease peptide provided herein.

Allelic variants of a protease peptide can readily be identified as being a human protein
10 having a high degree (significant) of sequence homology/identity to at least a portion of the protease peptide as well as being encoded by the same genetic locus as the protease peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in Figure 3, such as the genomic sequence mapped to the reference human. As used herein, two proteins (or a region of the proteins) have significant homology when the amino
15 acid sequences are typically at least about 70-80%, 80-90%, and more typically at least about 90-95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a protease peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

20 Paralogs of a protease peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the protease peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about
25 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a protease peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a protease peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the protease peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a protease

peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

Non-naturally occurring variants of the protease peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the protease peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a protease peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie *et al.*, *Science* 247:1306-1310 (1990).

Variant protease peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to cleave substrate, ability to participate in a signaling pathway, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. Figure 2 provides the result of protein analysis and can be used to identify critical domains/regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham *et al.*, *Science* 244:1081-1085 (1989)), particularly using the results provided in Figure 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as protease activity or in assays such as an *in vitro* proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic

resonance or photoaffinity labeling (Smith *et al.*, *J. Mol. Biol.* 224:899-904 (1992); de Vos *et al.* *Science* 255:306-312 (1992)).

The present invention further provides fragments of the protease peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising 5 the residues identified in Figure 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a protease peptide. Such fragments can be chosen based on the ability 10 to retain one or more of the biological activities of the protease peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the protease peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. 15 Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in Figure 2.

20 Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in protease peptides are described in basic texts, 25 detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in Figure 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or 30 lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic

processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications,

- 5 glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as *Proteins - Structure and Molecular Properties*, 2nd Ed., T.E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., *Posttranslational Covalent Modification of Proteins*, B.C. Johnson, Ed., Academic
10 Press, New York 1-12 (1983); Seifter *et al.* (*Meth. Enzymol.* 182: 626-646 (1990)) and Rattan *et al.* (*Ann. N.Y. Acad. Sci.* 663:48-62 (1992)).

Accordingly, the protease peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature protease peptide is fused with another
15 compound, such as a compound to increase the half-life of the protease peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature protease peptide, such as a leader or secretory sequence or a sequence for purification of the mature protease peptide or a pro-protein sequence.

20 Protein/Peptide Uses

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological
25 fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a protease-effector protein interaction or protease-ligand interaction), the protein can be used to identify the binding partner/ligand so as to
30 develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", 5 Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, proteases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in 10 modulating a biological or pathological response in a cell or tissue that expresses the protease. Experimental data as provided in Figure 1 indicates that protease proteins of the present invention are expressed in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Specifically, a virtual northern blot shows expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. A large 15 percentage of pharmaceutical agents are being developed that modulate the activity of protease proteins, particularly members of the choriolytic hatching protease subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in Figure 1. 20 Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Such uses can readily be determined using the information provided herein, that which is known in the art, and routine experimentation.

The proteins of the present invention (including variants and fragments that may have 25 been disclosed prior to the present invention) are useful for biological assays related to proteases that are related to members of the choriolytic hatching protease subfamily. Such assays involve any of the known protease functions or activities or properties useful for diagnosis and treatment of protease-related conditions that are specific for the subfamily of proteases that the one of the present invention belongs to, particularly in cells and tissues that express the protease. 30 Experimental data as provided in Figure 1 indicates that protease proteins of the present invention are expressed in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Specifically, a virtual northern blot shows expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus.

The proteins of the present invention are also useful in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally express the protease, as a biopsy or expanded in cell culture. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and 5 pregnant uterus. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the protease protein.

The polypeptides can be used to identify compounds that modulate protease activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the protease. Both the proteases of the present invention and appropriate 10 variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the protease. These compounds can be further screened against a functional protease to determine the effect of the compound on the protease activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate 15 (antagonist) the protease to a desired degree.

Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the protease protein and a molecule that normally interacts with the protease protein, e.g. a substrate or a component of the signal pathway that the protease protein normally interacts (for example, a protease). Such assays 20 typically include the steps of combining the protease protein with a candidate compound under conditions that allow the protease protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the protease protein and the target, such as any 25 of the associated effects of signal transduction such as protein cleavage, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam *et al.*, *Nature* 354:82-84 (1991); Houghten *et al.*, *Nature* 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L- configuration amino acids; 2) 30 phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang *et al.*, *Cell* 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4)

small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant proteases or appropriate fragments containing mutations that affect protease function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) protease activity. The assays typically involve an assay of events in the signal transduction pathway that indicate protease activity. Thus, the cleavage of a substrate, inactivation/activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the protease protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the protease can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly Figure 2. Specifically, a biological function of a cell or tissues that expresses the protease can be assayed. Experimental data as provided in Figure 1 indicates that protease proteins of the present invention are expressed in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Specifically, a virtual northern blot shows expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus.

Binding and/or activating compounds can also be screened by using chimeric protease proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate than that which is recognized by the native protease. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the protease is derived.

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the protease (e.g. binding partners

and/or ligands). Thus, a compound is exposed to a protease polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble protease polypeptide is also added to the mixture. If the test compound interacts with the soluble protease polypeptide, it decreases the amount of complex formed or activity from the protease target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the protease. Thus, the soluble polypeptide that competes with the target protease region is designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the protease protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., ^{35}S -labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of protease-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a protease-binding protein and a candidate compound are incubated in the protease protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the protease protein target molecule, or which are

reactive with protease protein and compete with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Agents that modulate one of the proteases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to use 5 a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.

Modulators of protease protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the protease pathway, by 10 treating cells or tissues that express the protease. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. These methods of treatment include the steps of administering a modulator of protease activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

15 In yet another aspect of the invention, the protease proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos *et al.* (1993) *Cell* 72:223-232; Madura *et al.* (1993) *J. Biol. Chem.* 268:12046-12054; Bartel *et al.* (1993) *Biotechniques* 14:920-924; Iwabuchi *et al.* (1993) *Oncogene* 8:1693-20 1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with the protease and are involved in protease activity. Such protease-binding proteins are also likely to be involved in the propagation of signals by the protease proteins or protease targets as, for example, downstream elements of a protease-mediated signaling pathway. Alternatively, such protease-binding proteins are likely to be protease inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, 25 which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a protease protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the 30 activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, *in vivo*, forming a protease-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a

transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the protease protein.

5 This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a protease-modulating agent, an antisense protease nucleic acid molecule, a protease-specific antibody, or a protease-binding partner) can be
10 used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

15 The protease proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus.
20 The method involves contacting a biological sample with a compound capable of interacting with the protease protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

25 One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

30 The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered protease activity in cell-based or cell-free assay,

alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

5 *In vitro* techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected *in vivo* in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

10 The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (*Clin. Exp. Pharmacol. Physiol.* 23(10-11):983-985 (1996)), and Linder, M.W. (*Clin. Chem.* 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. Thus, the genotype of the individual can determine the way 15 a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug 20 metabolizing enzymes has explained why some patients do not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the 25 phenotype of the poor metabolizer. Accordingly, genetic polymorphism may lead to allelic protein variants of the protease protein in which one or more of the protease functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based 30 treatment, polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are more or less active in substrate binding, and protease

activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, 5 inappropriate, or unwanted expression of the protein. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Accordingly, methods for treatment include the use of the protease protein or fragments.

10 Antibodies

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to 15 selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within 20 the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')₂, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target 25 peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).

In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments 30 are those covering functional domains, such as the domains identified in Figure 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the protease proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or protease/binding partner interaction. Figure 2 can be used to identify particularly important 5 regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond 10 to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see Figure 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, 15 bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of 20 a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^3H .

Antibody Uses

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced 25 protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in Figure 1 indicates that protease proteins of the present invention are expressed in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Specifically, a virtual northern blot shows expression in the human fetus, 30

pooled human melanocyte tissue, fetal heart, and pregnant uterus. Further, such antibodies can be used to detect protein *in situ*, *in vitro*, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the protease peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or 5 antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See Figure 2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a 10 protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single 15 protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.

Nucleic Acid Molecules

The present invention further provides isolated nucleic acid molecules that encode a 20 protease peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the protease peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

As used herein, an "isolated" nucleic acid molecule is one that is separated from other 25 nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding 30 sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations

described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in Figure 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in Figure 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in Figure 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in Figure 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule.

In such a fashion, the nucleic acid molecule can be only the nucleotide sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A brief

description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In Figures 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (Figure 3) and 5 cDNA/transcript sequences (Figure 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' non-coding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in Figures 1 and 3 or can readily be identified using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such 10 as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the 15 mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in situ*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, 20 the sequence encoding the protease peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in 25 transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the 30 form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (anti-sense strand).

The invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the protease proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different 5 locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The 10 variations can produce both conservative and non-conservative amino acid substitutions.

The present invention further provides non-coding fragments of the nucleic acid molecules provided in Figures 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression 15 and in developing screens to identify gene-modulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in Figure 3.

A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can 20 encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

25 A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

Orthologs, homologs, and allelic variants can be identified using methods well known in 30 the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able

to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene.

5 As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such
10 stringent conditions are known to those skilled in the art and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.

15

Nucleic Acid Molecule Uses

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in Figure 2 and to isolate
20 cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in Figure 2.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions,
25 the coding region, and 3' noncoding regions. However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule and are useful to synthesize antisense molecules of desired length and sequence.

30 The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter *in situ* expression of a gene and/or gene

product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

5 The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of *in situ* hybridization methods.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

10 The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

15 The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

20 The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in Figure 1 indicates that protease proteins of the present invention are expressed in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Specifically, a virtual northern blot shows expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The
25 nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in protease protein expression relative to normal results.

30 *In vitro* techniques for detection of mRNA include Northern hybridizations and *in situ* hybridizations. *In vitro* techniques for detecting DNA includes Southern hybridizations and *in situ* hybridization.

Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a protease protein, such as by measuring a level of a protease-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a protease gene has been mutated. Experimental data as provided in Figure 1 indicates that protease proteins of 5 the present invention are expressed in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Specifically, a virtual northern blot shows expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate protease nucleic acid expression.

10 The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the protease gene, particularly biological and pathological processes that are mediated by the protease in cells and tissues that express it. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. The method typically 15 includes assaying the ability of the compound to modulate the expression of the protease nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired protease nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the protease nucleic acid or recombinant cells genetically engineered to express specific nucleic acid sequences.

20 The assay for protease nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the protease protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

25 Thus, modulators of protease gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of protease mRNA in the presence of the candidate compound is compared to the level of expression of protease mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on 30 this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly

less in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate protease nucleic acid expression in cells and tissues that express the protease. Experimental data as provided in Figure 1 indicates that protease proteins of the present invention are expressed in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Specifically, a virtual northern blot shows expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) of nucleic acid expression.

Alternatively, a modulator for protease nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the protease nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in Figure 1 indicates expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the protease gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in protease nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in protease genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the protease gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA,

such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the protease gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a protease protein.

5 Individuals carrying mutations in the protease gene can be detected at the nucleic acid level by a variety of techniques. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR,
10 or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran *et al.*, *Science* 241:1077-1080 (1988); and Nakazawa *et al.*, *PNAS* 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya *et al.*, *Nucleic Acids Res.* 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the
15 sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the
20 normal genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a protease gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Patent No. 5,498,531) can be used to score
25 for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore,
30 sequence differences between a mutant protease gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C.W., (1995) *Biotechniques* 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101;

Cohen *et al.*, *Adv. Chromatogr.* 36:127-162 (1996); and Griffin *et al.*, *Appl. Biochem. Biotechnol.* 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes
5 (Myers *et al.*, *Science* 230:1242 (1985)); Cotton *et al.*, *PNAS* 85:4397 (1988); Saleeba *et al.*, *Meth. Enzymol.* 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita *et al.*, *PNAS* 86:2766 (1989); Cotton *et al.*, *Mutat. Res.* 285:125-144 (1993); and Hayashi *et al.*, *Genet. Anal. Tech. Appl.* 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed
10 using denaturing gradient gel electrophoresis (Myers *et al.*, *Nature* 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the
15 nucleic acid molecules can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the protease gene in an individual in order to select an appropriate compound or dosage regimen for treatment.

20 Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control protease
25 gene expression in cells, tissues, and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene involved in transcription, preventing transcription and hence production of protease protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into protease protein.

30 Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of protease nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired protease nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to

one or more regions in the mRNA that attenuate the ability of the mRNA to be translated.

Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the protease protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing 5 cells that are aberrant in protease gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered *ex vivo* and returned to the patient, are introduced into an individual where the cells produce the desired protease protein to treat the individual.

The invention also encompasses kits for detecting the presence of a protease nucleic acid in a biological sample. Experimental data as provided in Figure 1 indicates that protease 10 proteins of the present invention are expressed in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. Specifically, a virtual northern blot shows expression in the human fetus, pooled human melanocyte tissue, fetal heart, and pregnant uterus. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting protease nucleic acid in a biological sample; means for determining the 15 amount of protease nucleic acid in the sample; and means for comparing the amount of protease nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect protease protein mRNA or DNA.

20 Nucleic Acid Arrays

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in Figures 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct 25 polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in US Patent 5,837,832, Chee *et al.*, PCT application W095/11995 (Chee *et al.*), Lockhart, D. J. *et al.* (1996; Nat. Biotech. 14: 1675-1680) and Schena, M. *et al.* (1996; Proc. Natl. Acad. Sci. 30 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown *et al.*, US Patent No. 5,807,522.

The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 5 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray 10 or detection kit may be oligonucleotides that are specific to a gene or genes of interest.

In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined 15 length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The second oligonucleotide in the pair (mismatched by 20 one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or other type of membrane, filter, chip, glass slide or any other suitable solid support.

In another aspect, an oligonucleotide may be synthesized on the surface of the 25 substrate by using a chemical coupling procedure and an ink jet application apparatus, as described in PCT application W095/251116 (Baldeschweiler *et al.*) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding 30 procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or

more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.

In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is made into hybridization probes. The mRNA is isolated, and 5 cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less 10 complementarity. After removal of nonhybridized probes, a scanner is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other 15 tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for large-scale correlation studies on the sequences, expression patterns, mutations, variants, or polymorphisms among samples.

Using such arrays, the present invention provides methods to identify the expression 20 of the protease proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the protease gene of the present invention.

25 Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome 30 disclosed herein. Examples of such assays can be found in Chard, T, *An Introduction to Radioimmunoassay and Related Techniques*, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. *et al.*, *Techniques in Immunocytochemistry*, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., *Practice and*

Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay 5 format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the 10 necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash 15 reagents, reagents capable of detecting presence of a bound nucleic acid.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the 20 samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect 25 the bound probe. One skilled in the art will readily recognize that the previously unidentified protease gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.

30 Vectors/host cells

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic

acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR MAC.

5 A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

10 The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

15 Expression vectors contain *cis*-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a *trans*-acting factor interacting with the *cis*-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a *trans*-acting factor may be supplied by the host cell. Finally, a *trans*-acting factor can be produced from the vector itself. It is understood, however, that in some embodiments, transcription and/or 20 translation of the nucleic acid molecules can occur in a cell-free system.

25 The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ , the lac, TRP, and TAC promoters from *E. coli*, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

30 In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary

skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual. 2nd. ed.*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

5 A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, pseudorabies viruses, 10 and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual. 2nd. ed.*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

15 The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

20 The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

25 The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, *E. coli*, *Streptomyces*, and *Salmonella typhimurium*. Eukaryotic cells include, but are not limited to, yeast, insect cells such as *Drosophila*, animal cells such as COS and CHO cells, and plant cells.

30 As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a

ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enteroprotease.

Typical fusion expression vectors include pGEX (Smith *et al.*, *Gene* 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann *et al.*, *Gene* 69:301-315 (1988)) and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example *E. coli*. (Wada *et al.*, *Nucleic Acids Res.* 20:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., *S. cerevisiae* include pYEpSec1 (Baldari, *et al.*, *EMBO J.* 6:229-234 (1987)), pMFa (Kurjan *et al.*, *Cell* 30:933-943(1982)), pJRY88 (Schultz *et al.*, *Gene* 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, CA).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith *et al.*, *Mol. Cell Biol.* 3:2156-2165 (1983)) and the pVL series (Lucklow *et al.*, *Virology* 170:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. *Nature* 329:840(1987)) and pMT2PC (Kaufman *et al.*, *EMBO J.* 6:187-195 (1987)).

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular*

Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

10 The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art.

15 These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, *et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989)*.

20 Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-
25 introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement
30 the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be

on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as proteases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with proteases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

25 Uses of vectors and host cells

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a protease protein or peptide that can be further purified to produce desired amounts of protease protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

30 Host cells are also useful for conducting cell-based assays involving the protease protein or protease protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native protease protein is useful for assaying compounds that stimulate or inhibit protease protein function.

Host cells are also useful for identifying protease protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant protease protein (for example, stimulating or inhibiting function) which may not be indicated by 5 their effect on the native protease protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal 10 develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a protease protein and identifying and evaluating modulators of protease protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.

15 A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the protease protein nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.

20 Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the protease protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, 25 particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, both by Leder *et al.*, U.S. Patent No. 4,873,191 by Wagner *et al.* and in Hogan, B., *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based 30 upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes

animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the *cre/loxP* recombinase system of bacteriophage P1. For a description of the *cre/loxP* recombinase system, see, e.g., Lakso *et al.* *PNAS* 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of *S. cerevisiae* (O'Gorman *et al.* *Science* 251:1351-1355 (1991)). If a *cre/loxP* recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the *Cre* recombinase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. *et al.* *Nature* 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter G₀ phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an *in vivo* context. Accordingly, the various physiological factors that are present *in vivo* and that could effect substrate binding, protease protein activity/activation, and signal transduction, may not be evident from *in vitro* cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay *in vivo* protease protein function, including substrate interaction, the effect of specific mutant protease proteins on protease protein function and substrate interaction, and the effect of chimeric protease proteins. It is also possible to assess the effect of null mutations, that is mutations that substantially or completely eliminate one or more protease protein functions.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the

scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled 5 in the field of molecular biology or related fields are intended to be within the scope of the following claims.

Claims

That which is claimed is:

1. An isolated peptide consisting of an amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence shown in SEQ ID NO:2;
 - (b) an amino acid sequence of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said allelic variant is encoded by a nucleic acid molecule that hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
 - (c) an amino acid sequence of an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said ortholog is encoded by a nucleic acid molecule that hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3; and
 - (d) a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids.
2. An isolated peptide comprising an amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence shown in SEQ ID NO:2;
 - (b) an amino acid sequence of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said allelic variant is encoded by a nucleic acid molecule that hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
 - (c) an amino acid sequence of an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said ortholog is encoded by a nucleic acid molecule that hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3; and
 - (d) a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids.
3. An isolated antibody that selectively binds to a peptide of claim 2.

4. An isolated nucleic acid molecule consisting of a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
- (b) a nucleotide sequence that encodes of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (c) a nucleotide sequence that encodes an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (d) a nucleotide sequence that encodes a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids; and
- (e) a nucleotide sequence that is the complement of a nucleotide sequence of (a)-(d).

5. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
- (b) a nucleotide sequence that encodes of an allelic variant of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (c) a nucleotide sequence that encodes an ortholog of an amino acid sequence shown in SEQ ID NO:2, wherein said nucleotide sequence hybridizes under stringent conditions to the opposite strand of a nucleic acid molecule shown in SEQ ID NOS:1 or 3;
- (d) a nucleotide sequence that encodes a fragment of an amino acid sequence shown in SEQ ID NO:2, wherein said fragment comprises at least 10 contiguous amino acids; and
- (e) a nucleotide sequence that is the complement of a nucleotide sequence of (a)-(d).

6. A gene chip comprising a nucleic acid molecule of claim 5.

7. A transgenic non-human animal comprising a nucleic acid molecule of claim 5.
8. A nucleic acid vector comprising a nucleic acid molecule of claim 5.
9. A host cell containing the vector of claim 8.
10. A method for producing any of the peptides of claim 1 comprising introducing a nucleotide sequence encoding any of the amino acid sequences in (a)-(d) into a host cell, and culturing the host cell under conditions in which the peptides are expressed from the nucleotide sequence.
11. A method for producing any of the peptides of claim 2 comprising introducing a nucleotide sequence encoding any of the amino acid sequences in (a)-(d) into a host cell, and culturing the host cell under conditions in which the peptides are expressed from the nucleotide sequence.
12. A method for detecting the presence of any of the peptides of claim 2 in a sample, said method comprising contacting said sample with a detection agent that specifically allows detection of the presence of the peptide in the sample and then detecting the presence of the peptide.
13. A method for detecting the presence of a nucleic acid molecule of claim 5 in a sample, said method comprising contacting the sample with an oligonucleotide that hybridizes to said nucleic acid molecule under stringent conditions and determining whether the oligonucleotide binds to said nucleic acid molecule in the sample.
14. A method for identifying a modulator of a peptide of claim 2, said method comprising contacting said peptide with an agent and determining if said agent has modulated the function or activity of said peptide.
15. The method of claim 14, wherein said agent is administered to a host cell comprising an expression vector that expresses said peptide.

16. A method for identifying an agent that binds to any of the peptides of claim 2, said method comprising contacting the peptide with an agent and assaying the contacted mixture to determine whether a complex is formed with the agent bound to the peptide.

17. A pharmaceutical composition comprising an agent identified by the method of claim 16 and a pharmaceutically acceptable carrier therefor.

18. A method for treating a disease or condition mediated by a human protease protein, said method comprising administering to a patient a pharmaceutically effective amount of an agent identified by the method of claim 16.

19. A method for identifying a modulator of the expression of a peptide of claim 2, said method comprising contacting a cell expressing said peptide with an agent, and determining if said agent has modulated the expression of said peptide.

20. An isolated human protease peptide having an amino acid sequence that shares at least 70% homology with an amino acid sequence shown in SEQ ID NO:2.

21. A peptide according to claim 20 that shares at least 90 percent homology with an amino acid sequence shown in SEQ ID NO:2.

22. An isolated nucleic acid molecule encoding a human protease peptide, said nucleic acid molecule sharing at least 80 percent homology with a nucleic acid molecule shown in SEQ ID NOS:1 or 3.

23. A nucleic acid molecule according to claim 22 that shares at least 90 percent homology with a nucleic acid molecule shown in SEQ ID NOS:1 or 3.

1/7

```

1  ATGGAGGGTG TAGGGGGTCT CTGGCCCTGG GTGCTGGGT TGCTCTCCTT
51  GCCAGGTGTG ATCCTAGGAG CGCCCTGGC CTCCAGCTGC GCAGGAGCCT
101 GTGGTACCAAG CTTCCCAGAT GGCCCTCACCC CTGAGGGAAAC CCAGGCCCTC
151 GGGGACAAGG ACATTCCATGC AATTAACCAA GGCGTCATCC TGGAAAGAAC
201 CCCAGAGAGC AGCTTCCATCA TCGAGGGGGA CATCATCCGG CCGAGTCCT
251 TCCGACTGCT GTCAGCAACC AGCAACAAAT GGCCCATGGG TGGTAGTGGT
301 GTCGTGGAGG TCCCCCTTCCT GCTCTCCAGC AAGTACGATG AGCCCAGCCG
351 CCAGGTCATC CTGGAGGCTC TTGCGGAGTT TGAACGTTCC ACGTGCATCA
401 GGGTTGTCAC CTATCAGGAC CAGAGAGACT TCATTTCCAT CATCCCCATG
451 TATGGGTGCT TCTCGAGTGT GGGGCGCAGT GGAGGGATGC AGGTGGTCTC
501 CCTGGCGCCC ACGTGTCTCC AGAAGGGCCG GGCCATTGTC CTTCATGAGC
551 TCATGCATGT GCTGGGCTTC TGGCACGAGC ACACGCGGGC CGACCGGGAC
601 CGCTATATCC GTGTCAACTG GAACCGAGATC CTGCGCAGGCT TTGAAATCAA
651 CTCATCAAG TCTCGGAGCA GCAACATGCT GACGCCCTAT GACTACTCCT
701 CTGTGATGCA CTATGGGAGG CTCGCGCTTC GCGGGCGTGG GCTGCCACC
751 ATCACACCAAC TTTGGGCCCG CAGTGTCCAC ATCGGCCAGC GATGGAACCT
801 GAGTGCCTCG GACATCACCC GGGTCCCAA ACTCTACGGC TGCAGCCAA
851 GTGGCCCGAG GCCCCGTGGG AGAGGTGAGT GGCATGGCAG GAAGGTGACT
901 TGA

```

FEATURES:

Start codon: 1

Stop codon: 901

Homologous proteins:

Top 10 BLAST Hits

	Score	E
gi 2134006 pir C48826 high choriolytic hatching proteinase (EC...	189	3e-47
gi 2190297 dbj BAA12146.1 (D83950) choriolysin H [Oryzias lati...	188	6e-47
gi 399868 sp P31581 HCE2_ORYLA HIGH CHORIOLYTIC ENZYME 2 PRECUR...	187	1e-46
gi 399867 sp P31580 HCE1_ORYLA HIGH CHORIOLYTIC ENZYME 1 PRECUR...	187	1e-46
gi 400172 sp P31579 LCE_ORYLA LOW CHORIOLYTIC ENZYME PRECURSOR ...	184	1e-45
gi 2190298 dbj BAA20403.1 (D83949) choriolysin L [Oryzias lati...	180	1e-44
gi 1168541 sp P42662 ASTL_COTJA ASTACIN LIKE METALLOENDOPEPTIDA...	165	6e-40
gi 2252655 gb AAB62737.1 (U62621) nephrosin precursor [Cyprinu...	164	1e-39
gi 2828509 sp P42664 UVS2_XENLA EMBRYONIC PROTEIN UVS.2 PRECURS...	157	2e-37
gi 2661464 emb CAA05969.1 (AJ003190) astacus egg astacin [Asta...	155	4e-37
gi 1730897 sp P55112 YPD6_CAEEL HYPOTHETICAL ZINC METALLOPROTEI...	153	3e-36
gi 7498742 pir T20658 hypothetical protein F09E8.6 - Caenorhab...	152	3e-36
gi 1723350 sp P55115 YC92_CAEEL HYPOTHETICAL ZINC METALLOPROTEI...	151	8e-36

EST:

gi 2166389 gb AA452720.1 AA452720 zx39d07.r1 Soares_total_fetus...	46	0.020
gi 4136891 gb AI367146.1 AI367146 qq4le12.x1 Soares_NhHMPu_S1 H...	44	0.078

EXPRESSION INFORMATION FOR MODULATORY USE:

library source:

gi 2166389 gb AA452720.1	Human fetus
gi 4136891 gb AI367146.1	Pooled human melanocyte, fetal heart, and pregnant uterus

FIGURE 1

2/7

1 MEGVGGLWPW VLGLLSLPGV ILGAPLASSC AGACGTSFPD GLTPETQAS
 51 GDKDIPAINQ GLILEETPES SFLIEGDIIR PSPFRLLSAT SNKWPMSGSG
 101 VVEVPFLLSS KYDEPSRQVI LEALAEFERS TCIRFVTYQD QRDFISIIPM
 151 YGCFSVGRS GGMQVVSLAP TCLQKGRGIV LHELMHVLGF WHEHTRADRD
 201 RYIRVNWNEI LPGFEINFIK SRSSNMLTPY DYSSVMHYGR LAFSRRLPT
 251 ITPLWAPS VH IGQRWNLSAS DITRVLKLYG CSPSGPRPRG RGEWHGRKVT

FEATURES:**Functional domains and key regions:****Prosite search results:**

InterPro	Results of FPrintScan against PRINTS	Results of HMMpFam against PFAM-A	Results of PPsearch against PROSITE	Results of ProfileScan against PROSITE profiles
<u>IPR000130</u> Neutral zinc metallopeptidases, zinc-binding region			PS00142 [179-188]	
<u>IPR001506</u> Astacin (Peptidase family M12A) family	PR00480 [120-138] [174-192] [193-210] [229-244] [267-280]	PF01400 [92-283]		
<u>IPR000130</u>	PS00142	ZINC_PROTEASE	Neutral zinc metallopeptidases, zinc-binding region	
<u>IPR001506</u>	PR00480	ASTACIN	Astacin (Peptidase family M12A) family	
PF01400	Astacin			

Membrane spanning structure and domains:

Helix	Begin	End	Score	Certainty
1	6	26	1.850	Certain
2	143	163	0.849	Putative

BLAST Alignment to Top Hit:

```
>gi|2134006|pir||C48826 high choriolytic hatching proteinase (EC
 3.4.24.-) HCE21 precursor - Japanese medaka
Length = 279
```

Score = 189 bits (475), Expect = 3e-47
 Identities = 106/272 (38%), Positives = 148/272 (53%), Gaps = 8/272 (2%)

```
Query: 14 LLSLPGVILGAPLASSCAGACGTSFPDGLTPEGTQASGDKDIPAINQGLILEETPESSFL 73
       LL L G+ P+ + G +G EG + + D ++ L
Sbjct: 11 LLFLLGIAQALPVQNEEGHEEGNK--EGHGEEGVEEGDEDDFVDFTTTRILTSNNNTDQIL 68

Query: 74 IEGDIIRPSPFRLLSATSNSK--WPMGGSGVVVEPFLLSKYDEPSRQVILEALAEFERST 131
       +EGD++ P+ + N W +G V +P++SS+Y I A+ F T
Sbjct: 69 LEGDLVAPTNRNAMEKCWYNCSFWKKASNGFVVIPYVISSQYSRGEVATIEGAMRAFN GRT 128

Query: 132 CIRFVTYQDQRDFISIIPMYGCFSSVGRSGGMQVVSL-APTCLQKGRGIVLHELMHVLGF 190
       CIRFV + DFIS++ GC+S +GR GG Q +SL C+ G I+ HEL H LGF
Sbjct: 129 CIRFVRTNEYDFISVVS KNGCYSELGRKGQQELSLNRGGCMYSG--IIQHELNHALGF 186

Query: 191 WHEHTRADRDRYIRVNWNEILPGFEINFIKSRSNMLTPYDYSSVMHYGRILAFS-RRGLP 249
       HE TR+DRD Y+R+NW I+P NF K ++N+ TPYDYSS+MHYGR AFS G
Sbjct: 187 QHEQTRSDRDSYVRINWQNIIPASAYNFNKHDTNNLNPYDYSSIMHYGRDAFSIAYGRD 246

Query: 250 TITPLWAPS VHIGQRWNLSASDITRVLKLYG 281
       +ITP+ P+V IGQR +S DITR+ LY C
Sbjct: 247 SITPIPNNVPIGQRNGMSRWDITRINVLYNC 278
```

FIGURE 2, page 1 of 2

3/7

Hmmer search results (Pfam):

Model	Description	Score	E-value	N
PF01400	Astacin (Peptidase family M12A)	275.0	5.9e-84	1
CE00424	E00424 meprin_A	70.5	2.4e-18	1
PF00712	DNA polymerase III beta subunit	2.9	7.8	1

Parsed for domains:

Model	Domain	seq-f	seq-t	hmm-f	hmm-t	score	E-value
PF00712	1/1	105	121 ..	376	392]	2.9	7.8
PF01400	1/1	92	283 ..	1	200 []	275.0	5.9e-84
CE00424	1/1	179	284 ..	142	252 ..	70.5	2.4e-18

1 TTCCCTTCAC TGGGTGCAGG TGACTGTGGG GGTGTCCCCA AATGCTGCC
 51 AGCGCTGACA TGCTCCGCCT CTGGGATTTC AATCCAGGTG GGGCCCTGAG
 101 TGACCTGGCT CTGGGGCTCA GGGGTATGGA GGAGGGGGGA TATAGGTAAG
 151 GAGTTTAAAT TTCCAAATCT GTGAAATGGG ATAATAACT GACTGATCAT
 201 GCCAGCTGCT GTGGGATTAG GGGGTGGACT CCCTGCGAGG CTCTGGCAT
 251 CTGGGGGTTT CACCTTCCC ACATGGCAGG CTTCTAGGG TGCTGCACAC
 301 TGTTCAGTTT GTGAAATTC CTGGAGCCCT GTGCTTGTA TAGTGAACCT
 351 TTCTATATGT GTACTAAAT AAAAGCTGTG AAAAGTGCAG TGACCTTTTC
 401 CTCCCTCCGG AGATACACGG GGGGCGCCCG AGGGTCTCAG GCAGCTTTCC
 451 CCATGTCTAA GCACAGGGCG GGGTAGAAA GGGGGTCTCC CTCGCTGGAG
 501 GAATAGGTCT ATACCTGGC TGGGGCTCA GCTAGGCCTG GAGCAACTTT
 551 CTGCGATGTT TCTCTGCCCC CTGGAGGCAG GAAGGAACCT CAGAAGAGCC
 601 ACACTCCCAA CGGGGCCCT CCTGTCTTT ACCTGCTACA GCCAGGAAGG
 651 GGACTGGGCT GGGGTGGGAA CCACAGGTAG GCATCGGAGG GGCTGCCAGT
 701 AGACCTGGTT TGGGTGGCGC TGCCGGTAGA GCTGGTTGGG CGGGGGCTGC
 751 AGGTGGAGCT GGTTGGGGCG GGGCTGCAGG TGGAGGTGGT TGGGGGGGGG
 801 CTGCAGGTGG AGATGTTGG GGCAGGGCTG CAGGTGGAGG TGGTTGGGGC
 851 GGGGCTGCAG STGGAGGGCG TTGAGGGGAG CAAGGTGGGA GGTGGAGCAG
 901 CTGCTATTAA AGAGGGGTG GTGGTGCCGG TTCTGCAATT AGGTTACTGT
 951 GTCTTGCTGG GGCTTGGTCT TGTTGCTGA AGGGGCAGCA GGGCTCTACC
 1001 ATGGAGGGTG TAGGGGGTCT CTGGGCTTGG GTGCTGGGTC TGCTCTCCTT
 1051 GCCAGGTAAG CTGGCTGCCCT GTCCCTCCTG CTGCTGGCTC CAGCCTGGAG
 1101 AAAGCTGGGG AGAGGCTAGA AGGTGTTGGC TGGAGCCTGC AGGGATTGTA
 1151 GCTGAGCTCA GTAGCTCAGA GCACAGAGCT CTCCAGGGTT ATTCTAGAAG
 1201 TCAGCTCCTG GGGGGCCAAG GGGAGGCCTC CTGAAGGCC TGGAAAGCAGA
 1251 GGGCCTGCCT GGCAGAAAGT AAGTGTGTG CCCCAGGCCT ACTTGTCTTG
 1301 GGGTGGGGGT AGGCTGTAAG TCCCCACTCC AGCCTGGTCA GGCAGGGAGT
 1351 CATCCAGGCT GAGCCCATTG TCCAAGAGCC TGGGCTGAGA GAGAGTCATA
 1401 AGGTGGGGTC TGAGGCTGGC CCTGGCCGTC ACGGGCGTCA GAACCCGAGG
 1451 TCTGTCCTGC CTCCTTCTCTT CCTGGCCCTC CTCTACCTCA TAGGTGGGC
 1501 ACATGGTCCC TTTTGGTCCC CCTAAGGGAG CTCCCTCCT GAGGTCACT
 1551 AGACCTTGGC ACCAGTTGGG GTTGAGCAGG GAGGCTGGGA AGGCTCCTTG
 1601 GCTTTGTGCT GGAGGCTACT CTTCTAGGG ACTGAGTCTT ACCGTCTGAT
 1651 CCCCCACACC CACCCCATGT CCTGCTGTCT GGTCTCACCG GTGGGTGCTC
 1701 CAGGCATCTG TGTATGCCCT TGTCGTCTG GACCAAGTGT GATCCTAGGA
 1751 GCGCCCTGG CCTCCAGCTG CGCAGGAGCC TGTGGTACCA GCTTCCCAGA
 1801 TGGCCTCACC CCTGAGGGAA CCCAGGCCTC CGGGGACAAG GACATTCTG
 1851 CAATTAACCA AGGTGAGGGC ACTACATCTT CTCACGGCCT GGAGGGGCAC
 1901 GACGTTATGT AGTGTAAAAA CCACACCGAA CACTCAGAAA TGCAGAGCCT
 1951 GGGAGGAAAT GGACCAGCTT ACTCTGGGCT CTAAGTGGTT TTTAAGAGAT
 2001 GGAGTGGTGT TGCTATATTG CCCCCGGCTGG TCTTGAACTC CTGGCCTTAA
 2051 GTGATCTTCC TGCCTCTGCC TCCCAGCAG CTGGGACTAC AGGTGTGAAT
 2101 GGGTGGAAAT TCTATGGCA ATTGCTTAAG TCTACTCTT CTTTTGTAT
 2151 CTTTCTTAGT GGATTGTAC TTTTATAAGA AAAACCAAGC TCTTAAAGGG
 2201 CCTGGGGCTG GAGCTAACCG GTTACTCGCA GTCTGAGATT GTCAGCCACC
 2251 CTGTGCAGGA CTGTCTGCAG GTGTGATTAA GAAACTTGAA GCTCAGCTGG
 2301 GTGCGGTGGC TCTCGCTGT AGTCCCAGCA CTTTGGGAGG CTGAGGGGG
 2351 CAGATCATGA GGTCAAGGAGA TCGAGACCAT CCTGGCTAAC ACAGTGAAC
 2401 CCCGTCCCCA CAAAAATAC AAAAATTAGC CGGGCGTGGT GGCGGGCGCC
 2451 TGTAGTCCCCA GCTACTCAGG AGGCTGAGGC AGGAGAATGG CATGAACCTG
 2501 GGAGGGCGGAG CTTGCAGTGA GCTGAGATTG CGCCACTGCA CTCCAGCCTG
 2551 GGCAGACAGAG CATCTCACAA AAAACAAAAA ACAAAAGTCA GGCTCAGGGC
 2601 CTTGTCTGTCT GGGGATGTG GCTGAGGAAT GAGGGTGTAT AAATAGCTG
 2651 AACAAAGCCA GTTGAATGG AGACTGGAGT TCAGATGTTG GAGCAATGAG
 2701 GGCCTGAAGCA CTCAGGGTTG AAGCAATCGG GCTGAACAGG GGACAACCTT
 2751 GCCCTAAGGG TGGGTGAGAT CCTACCAAGAT GTGGTAGCCA CTGTGTGATC
 2801 TGCCCCCTTC TTCTCTGTG AGCTGACTTG GGAGGCCAGC GCCAGCTGAG
 2851 CCTTGAGCCC CAGGCACCAT CCCACCCCTG GATCACCGTG AGTGGCTG
 2901 AGGTAACCAG AACCAATGGA GAAAACCTCC AAATGCTGGT GACCCCAACA
 2951 ACTATCCTAT CACCTACGGT GAGGTGTCT CATAAGGGCT GCCCCTGCC
 3001 TACCCAGTGC TTTCTGGGA AGCACCTGCC CATCTCCAGC CACTGTGAAT
 3051 ATGGCTAATG CTGCACAGCT GTCTGCTCC CAAAACGTGGC CCTTGGCCAG
 3101 AAGGAGCTGC CTCAGCCAGA GATGCCCGGG GGCTACTCCC TTGTCTGCC
 3151 AAGGTGGCCT ACTGTGACTT CTAAGGGACA GGAGTCTGGC TCCTGCCTAA

5/7

3201 AGGTGGTACA AGTCAGCGGT GTCATTTGTG GTCAGGGAGCG CCCATGGGAT
 3251 CTTGGCTGAGG CTGTGCCTGG GTTCTTCCCT GCCTTCTCTC CTGCTTCCT
 3301 CACTCCCCCT GTGAGTCACT TGTGGGAGAC CCGGCTCAGG GAGAGATGAG
 3351 AAGCAGAGGG ACTAAGAGGG GAGAGGGGCT TGCGAGAGCC GGTATTGCC
 3401 TGCCCTCTGAT GGTGGAACAA ATTTGTGAA CAAAATTGCC ACCTCAAGGG
 3451 GCCTGAATAT AACAGATGGG TGGGAATAG ATGGGGGATG AGGTGGGCAG
 3501 GAGACCCCAG GGCCTGTTCT GAGGAGTGTG GCTCAGGCTG GAAGAACCA
 3551 CTGCTTCCTG ACAGCAGGGA CCCGGGCTTG GGACTGGATT GCGTGGGTCA
 3601 TGGGCTGTGT TTGAGCAGGG GAAGGCTGCA GTCCAGGCCA GAAGCCTTGC
 3651 ACACTCAGGG ACTGTGTGAC TTCCCTGAGG CCACGCCAGG TCAGTGTCA
 3701 GGGAACCTCTC AGCTCCACAG TCAGGAGAGG GACAGACCCC AAGCCTCAGT
 3751 CTCCCTTGCT TTTGCTCTCA AGCCCCCTCA CACCTGCAGA CAGTCCGCAC
 3801 AGGGTGGCTG ACATTCTCAA ACATCAACTA ATGACTTAAC TAAACACCCA
 3851 GGCTCGGAGA GCCGATGACC TATACTTTA TCAGGCTATT TAAGAACTTA
 3901 TAAAAGTAAC AATCCACTAG GAAAGACACA AGAATAGACT TAAGTAAGTA
 3951 GGGATTTGCT TGGCCTGTCC CACGAGTCAG TGTTCTGGGG GACATGGGCC
 4001 AACACGTCTC TCTTCCTTC CCAGGGCTCA TCCTGGAAAGA AACCCCCAGAG
 4051 AGCAGCTTCC TCATCGAGGG GGACATCATC CGGCCGGTGA GTGCACACAC
 4101 TGACGTGTGT GGGTGCAGGAT AAGCCCACAG TTGGCGACAG GTCCCTGTGAG
 4151 CCCACCCCTGG ATGCCATGGG GCCTGATGTG TGAGGGACAT ACATAGCTG
 4201 GTAGATGCCT CTTTTGTCA AGGTCAAGAGC GACTGTTCTG TTAGGAAATA
 4251 GGAATAAGCC AGCCTGAATG CTAAGGAAGG CTGGTATCTG AAGTGTGGC
 4301 ACAGTCAGCC TGAGAGGGCT TCCTGAAGGA GGAGGTTTGA ACACTTGACC
 4351 CAGCTGGTA CCCTGCCAG GGGAGGTGCT CAGCACTCGG GAGGTGCTCA
 4401 GATAAAGGAA GAGATGAGCA AGGGTTGGCA GAGTGGCCAG TGGCAGATAA
 4451 AGGGCCTGGT GGCAGTGGCG ACCTAGGGAT GGTGAAACAA GGAGTGTG
 4501 TGAGCCTGAC CATCTTGCT GTGGTCGAGG GGCCGCATCT GAAGGGAGAA
 4551 GGTGCTGGG GATTGGGGCG CCTTGCTAAC AGAAAAGGGG AACTGTGCC
 4601 CAGGATGGCA GCCATGTGTT TCAGGCAACT GCGAATGGCA GAAGGCTCCT
 4651 GAATAGGACA GTGACCCAGG GGAAGGCAAG ACTGTCCTGT TGGAGGCTGC
 4701 CACTGACGGC ACAGCCTCTG GCTGGGCAGG AGAGCCAGAG GCTGGCCCAA
 4751 GGCTGCCAG GAACTCCGGG GGCAGGGCAG ACCCTCTGGG TTATGCAGTG
 4801 AGTGTCTGGG CAGGTGGTGT GCGACCACCC GGAGCAGAAAT CAAATGCTC
 4851 CAGCCGATGG CACAGGACAG CTGGGGTGT GTCAGGCTG GGCACCGAAG
 4901 GGCTCTGGTT GCTGGAGAGC AGAAGTAAGC AGCCGAGGGCC AGGGTGTG
 4951 CTCACTTCA CTCCATATGG CTCTGTTCCC ATGATCGTCC CATGTTCAAGG
 5001 GAAGCCTGGT GGCTGTTCCC CTCTGGAAAGG GGCAGCTGTCA ACATGCTGG
 5051 GTGGGGCTGC TGGCCCAAGC CCTTCTGATT CAGGGCACCC TGGGGTGTG
 5101 GCCCTCCTAG CCAACATCT CAGGGACTAA TCTCTTGTGTT GCTTGAGATT
 5151 GAAATTCTTT CATCATAGGC CAAGGGACTG TCTTGTGCAT CAAGGTTCAT
 5201 GTAGCTGGCC CCTTGCCCTC CACAGCTCTG TCCCACATCT AATGGTCCCC
 5251 CATTCCCATG CACACAGGTC CTGACTCCCA CATCTTGGG GTTCTGGTGC
 5301 CCTGGGGTGT GGTACCCCTG GGGCACAAAG CTTGGGTGGC CTCTGTCCCC
 5351 AGGGGTTGAA CTGCTGCTCT CCTCTCAGAG TCCCCTTCCGA CTGCTGTCAG
 5401 CAACCCAGCAA CAAATGGCCC ATGGGTGGTA GTGGTGTGCGT GGAGGTCCCC
 5451 TTCTGCTCT CCAGCAAGTA CGGTGAGTGA GCATGGGCAG CTCCCTCCCT
 5501 GCCTCAGGCC CTTCTCTCTA ATGCCAGCAGG TGTTCTCTC TTCCCTTTTC
 5551 CTCTTACACC ATCACATCCC TTCCACCTCC CCACCCGAAG AACCTGTCCA
 5601 CAGATGGCCT TCTGTTGCTG AAGGTCTCCT GAGTAGGGAG GTTAAAATC
 5651 TGATGGGAAAG GTATGTGAG TGGGGATCTG GTTCCCTTGT AGACCATGCG
 5701 GTGCAGAGGA CAGTGACTA CCCAAGGCCA CACAGCCAGG GTCTGTCCTG
 5751 GGCCCAGCTT CTTCTGGCA CCACATAAGCT GCCCTTTCTT GATGCTATTT
 5801 TGGGAGAGTG AGTTCAGAGC TCTGCTCCCA GACCCCTCAGG TAGAGCTCAA
 5851 AGACCACAG GGCTCTGGGG GCTCAGGCCAG GTGGTGTCTT CCAGATGAGC
 5901 CCAGCCGCCA GGTCTACCTG GAGGCTCTTG CGGAGTTTGA ACGTTCCACG
 5951 TGCATCAGGT TTGTCACCTA TCAGGACCAAG AGAGACTTCA TTTCCATCAT
 6001 CCCCCATGTAT GGGTAAGTGC CGGGGCCAGG ATGCGTATCT CAGCTCGCTT
 6051 CTGCGTTCAAG CCCGGAAATT ACTTGGGCAT TGTCTAAAT GTATTCCCTGG
 6101 GCCCATCCTC CAGGGCTCAG TCTCCCTGCC CACCCCTGAGG GGTCTGCCAA
 6151 GTGTGAGCTG GACCTCCAGG CGGGAAATGTG GGAAAGGGAT GGGAACGGTG
 6201 CTAGACCCCTC CATTACAAA GCCCTCCTCT CCCCAGGGGAC TCCATGAGGT
 6251 GGTGAGGGAGA GGAGGTTTG CGGGCAGAC AGTGCAGTGAG TCACGTGAGTC
 6301 CTGGCAAGTC CCCTAACCTC TGAGGCTCTT CTGTCCTCTC TGGGGTGCAG
 6351 GTGGTGGCGA TACCTGCTTC CTAGCTGTGAGGGGCCTGA GGCAATTGTT

6401 GTGAAAGCCT TGGCTTAGGG CTGACCAGGA GGGTGTGCTC ACTTAGTAAG
 6451 CTGCTCTGT CCTCTGTGTT CATATATCAG TTTCTGCAGC CTCCCTGCAG
 6501 CCCAGGCTGG TGATGGGGGT CCGGTATGGC CATTTCACAG AAGTCCAGGC
 6551 AGTAAAGGGG CCTGGAGAAT GGTGAACCTG AGACTAGAGC CCAGAGTGGG
 6601 GCCTGCCTGT TGGGAGTTTG TCTATCTTGT GTTGTGTGGG GAGGGAGAGC
 6651 CCAGGTCTGT ATGTCCGGAG GGATCTGGGC TGGCACTTAC CCCACTTGCT
 6701 CTCATCACCC TGCAGGTGCT TCTCGAGTGT GGGGCGCAGT GGAGGGATGC
 6751 AGGTGGTCTC CCTGGCGCCC ACGTGTCTCC AGAAGGGCCG GGGCATTGTC
 6801 CTTCATGAGC TCATGCATGT GCTGGGCTTC TGGCACGAGC ACACGCCGGC
 6851 CGACCGGGAC CGCTATATCC GTGTCAACTG GAACGAGATC CTGCCAGGTG
 6901 AGCCAGGCCA CACGCAGGAC AGGCTGGTGC CGGGGAGGGG ACAGCACGGC
 6951 TTGGGCCCAA GTCGCCTGGT CCCCATGGGT GAGGCTATCC ATCCCTCCCCA
 7001 TCACCTGCCT GCTTCCTGTG GGGAAAGGTGG GGGTCTCACT TCTGTCTGGT
 7051 ACCTGGTACCC TGGAGGGTGTG ACTCTGGTG CTGCTCTGGG CCCCAGGCCT
 7101 TCCTCTAACCC ACCTGTAGTT GTGCCCTTAGC TAGGGCGCCA CCACCTGCTT
 7151 TGTCTCGCTT CTCATCCCTG ACACGTGCTT CTCCCTGGCG ATGGGGCAGG
 7201 CAGTGCCAT GATACTGCT TGTGAGTAC TCTAGCAGGG GTCTCATGTA
 7251 CCAGATAACCA CCACCATGGA CTGGGGCTGT GTGCCAGCTT GGGGAGCTGA
 7301 GCCAAAGTGG GACCCCAAGG TAGCAGGCTG CACAAGCCAA GTGCTGGGCC
 7351 ACGGGCTGAG GGCAGCACTG TGGGGCTGGG ACATGTGCCA GTGGTGCCAG
 7401 TGAGCAGGCA GAAGGAACAC AGACTGTGGC CATGGGAGAG TGGAGGCTGG
 7451 AGGCAGGTGG GCTGTGGTTC CTGTCGTGGC AGCGGCTGTG TGGGCCGGG
 7501 GATCAGATCC TGGTGATGGT GGGGTCTCTC TCATTGTGGG CTTGATGGTC
 7551 TGGTTTCAGGA GGCAGGAAGA GCCCCACGAG GGAGGGGCAG AGGAGGTTTG
 7601 GGTGGGAGTC TGGCTTAGGG GTTGGAGCAG GAAGGGCTAC CCCAGGTGGA
 7651 GGCGCTCCAG CACGAGACCT TTCAGGGCTG TCATGTTAGC CAGGTGAGGC
 7701 AGCCAGGGAA GCTGCCTGGG CCCAAGGACC TTCCCAGGCC CAAACACCG
 7751 CTTTCTCACT GGCCTCTCAGC AAACATGAGT CACAGAGAAA GGGGTGACGG
 7801 GGCACGTGGG TAGCACCTCA CAAAGGGGGGA GGGGATGGAT ATTGAATCAG
 7851 ACCAGGCTGG GGAGGTTGTG AGGGGGGTGA CAAGTGAAC TGTACCTGA
 7901 AAACAGACTG ATCCCTCCCA ATGCTCGTGG AACAGTTGTG AAAGTTTACC
 7951 CTGATAATT TATGATATAC CATGAAATGC CATGAAAACC TGCAACTCTG
 8001 AAAGTAGACC AATGTAACAA TTCTGATCAT GATATAAAAGT AGAAACCGAT
 8051 ACATCAAAAC CGAAAGCTTC TCCTATTCAAG AAATTGAAAA AAACAACAAA
 8101 ACTTTCTTTC AGCTCTGGAG TAAAGTACA GCAATTCTAA AAAAAAATCA
 8151 TGAAAGACTA GAAAAGCCAA TGGTTCACAG CTAAGCAAT GCTCAGAGAA
 8201 AATGTCAGA CTTACGTATC AGTAAACAGA ACAAAATTGAG CATGTCAACC
 8251 CAAGTTAAAT GAAAGCAGGA GGGATTTC AAAGGTTAAA GCAGAAATTG
 8301 AGTGGAAAAA CAGCACTAAT AATTATTCCCT AATGATAAAA CAGGCTAAAAA
 8351 CACGGGTTCC CCAAGTGGAAA AAATGAGAAC ATATTGTTC CCATTTAGGT
 8401 TAATATGTT TCATTAGTT AACATGTACA GAAACTGCCA GGGCAGACAC
 8451 ATTAATAACA GTAATTAACT GTTGTGGGGC GGGGAGGTGG GAACTCAGGA
 8501 AGCAGGGGAT GGAATAGACT TTTACTACAT CTCAATATTG GACTTTGAA
 8551 CCAAATGAAT ATACTACTTA TTCAAAAGTA TGTTTAATGA ATTTTTAAAAA
 8601 AGAACTAAGA GCTCAAGAGG CAGCTATGTT AGGCAGGTGG TGGGGTATGA
 8651 AGGTGCTGG AGGCTCATTT GCTCCATGGA GAGGAAGCTG CTGTGACCGA
 8701 GGTGGCGTGT ATGCGTGGCT GGCTGGCTGG ATTTGGGAGG ATGGGGGAG
 8751 CAATCCCTCT GAAGGCCTGG GGGACTTGAG TGAGGGGGAG ATGGGCCCA
 8801 AATCTGGGG AGTGTTGTGG CCTGACACAG GAAGAACAGG TGGGCCCTGTG
 8851 ACTGGGAGCT AGGGCATCAC CACTGAGAT GACAGCGTGG CAGCTTTTA
 8901 AAGCTGGTC AAGGAATAGA CATTTCATCT GGGGTGGGAG GGACATCTGA
 8951 GACCCCTGAGC AGTGTGGGAC CCGTGGCAGC TGTGGCTTAT GCAGAGACCA
 9001 GCCCCGTGCA GACTGAATAT GCAAGGAGGA AGGATGGGTG GAGGGAAACAG
 9051 CTAGGAGGTG ATGGTTGGCC AGCCATGGGG TCCCTGTGCC TCTACCTCAA
 9101 CTACTACAGG TTGGGGATCC TCCCAGGGCT GGGAAAGTGG GACTGGTACC
 9151 AGAAGCAGCA TGGTGGCTGT GGGCTCAGCC CCTCAGCTTG GGTGAGTTAT
 9201 GAGCTCCAG AAGACTCTCC CAGCCATTGC CTGCCCTTTC TTGCTGCC
 9251 TCTTTATATA TCAGTAAGTT GTATTGTTT TGTATTTTA GGCTTGAAA
 9301 TCAACTTCAT CAAGTCTCGG AGCAGCAACA TGCTGACGCC CTATGACTAC
 9351 TCCCTCTGTGA TGCACATGG GAGGTGAGGA CCCTGCCCTTC TTCTCCCTCT
 9401 GCTTCCCCCA GCCTCTCCCG TGGTGATCTG GACTCAGGGG TCTCCCGCTG
 9451 GGTTCCAGGC TCGCCTTCAG CCGGGCTGGG CTGCCCCACCA TCACACCACT
 9501 TTGGGGCCCCC AGTGTCCACA TCGGGCAGCG ATGGAACCTG AGTGCCTCGG
 9551 ACATCACCCCG GGTCTCAAA CTCTACGGCT GCAGCCCAAG TGGCCCCAGG

7/7

```

9601 CCCC GTGGGA GAGGTGAGTG GCATGGCAGG AAGGTGACTT GAACCTGGAG
9651 AAGGCGCCTG TGCTCTAATG GTGTCAGGG AGGTGACAAG GAGGGAGATG
9701 AGGTTGCAGG GGGACGAGG TGAGATCACG GGGGCTTGCC ACAACGACGC
9751 AGAACACAAGCA CTTGAGGAAA GTTAACACTC ACTATGACTC AACTGTAACC
9801 AAAGAGGAAT AGGGCTCACT TGCTTAGCCT AGATAATAAA CATCTACCAA
9851 AACACCTAGAA CAAAAGTTAA GGGTAAAACA TAAAAACTGG GACCAAGACA
9901 AGTTTCCCA CCATTGTCCC ATCTACTCCA CATTGTGTGG CAGTGGAGGT
9951 CCTGGGCACC GAGGTAGAGC CAAAGAAACT AAAGGTCCGA GGATTGGAAA
10001 GGAAGCAAAA AAATCGTTCA TAATAGATGA TTACCTGTAT TGAAAGCAAC
10051 AATCTATAAA CAAGTTATTA GAACTAATAA GAATTAGAAA AGGTAAATAC
10101 AGTTAATATA AAAATCATAT TTCTGTACAC CCAGTTAGAA AACACAATTG
10151 TTAGTAAACA TACCATTTATA ATAGCAATCA TAAAGGTCCC AAGGAATAAA
10201 TCTGACAGCT GTATCAAACA TTTGAGGAAA AATGAACCTT TATTAATTC
10251 GTTAAATAAT ACTTAAATAT AGATAAATCT GTTATTGAAA GGAAGGCAAT
10301 GTTATAAAAA TTCAGTCTTC CCAAATTAAT CTATAAATTC CCACTCAAAA
10351 TAAGTTTGAT CTTGACAGAG TGATTTTTT TTCTTTTTT TTTTTAAAG
10401 ATGGAGTCTC ACTCTGTAC CCAGGCTGGA GTGCAGTGGC ACAATCTCGG
10451 CTCACTGCAG TCTCTGCCTC CGAGGTTCAA GTGATTCTTG TGCTCAATC
10501 TCCTGAGCAG CTGGGCTTAC AGGTGCGTGC CACCACACCC AACTAATTTT
10551 TGTTTTTTA GTGGGGACAG GGTTTCACCA TGTTGGCCAG GCTGGTCTTG
10601 AACTCCTGAC CGCAAGTGAT GCGCCTGCCT TGGCCTCCCG AT

```

FEATURES:

Start:	1001
Exon:	1001-1055
Intron:	1056-1736
Exon:	1737-1862
Intron:	1863-4024
Exon:	4025-4086
Intron:	4087-5378
Exon:	5379-5472
Intron:	5473-5894
Exon:	5895-6012
Intron:	6013-6715
Exon:	6716-6897
Intron:	6898-9291
Exon:	9292-9373
Intron:	9374-9458
Exon:	9459-9642
Stop:	9640

SEQUENCE LISTING

<110> BEASLEY, Ellen M.
LI, Zhenya

<120> ISOLATED HUMAN PROTEASE PROTEINS,
NUCLEIC ACID MOLECULES ENCODING HUMAN PROTEASE PROTEINS, AND
USES THEREOF

<130> CL000757-PCT

<150> 60/226,903
<151> 2001-08-23

<160> 4

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 903
<212> DNA
<213> HUMAN

<400> 1
atggagggtg taggggtct ctggcttgg gtgctggtc tgctctcctt gccaggttg 60
atcctaggag cgcccctggc ctccagctgc gcaggagct gtggtaccag cttcccat 120
ggcctcaccc ctgagggAAC ccaggcctcc ggggacaagg acattcctgc aattaaccaa 180
gggctcatcc tggaaAGAAAC cccagagagc agttcctca tcgaggggaa catcatccgg 240
ccgagtccct tcggactgct gtcagcaacc agcaacaaat ggcccattggg tggtagtgtt 300
gtcgtagggg tcccccttccct gctctccagc aagtacgatg agcccagccg ccaggtcatc 360
ctggaggctc ttgcggagtt tgaacgttcc acgtgcatca ggtttgtcac ctatcagac 420
cagagagact tcatttccat catccccatg tatgggtgct tctcgagtgt ggggcgcagt 480
ggagggatgc aggtggcttc cctggcgccc acgtgtctcc agaaggccg gggcattgtc 540
cttcatgagc tcatgcatgt gctggcttc tggcacgagc acacgcgggc cgaccgggac 600
cgctatatcc gtgtcaactg gaacgagatc ctgccaggtt ttgaaatcaa cttcatcaag 660
tctcgagca gcaacatgtt gacgccttat gactactctt ctgtgtatgca ctatgggagg 720
ctcgccctca gccggcggtgg gctggccacc atcacaccac tttggggcccc cagtgtccac 780
atcgccca gatggaaacct gagtgccctcg gacatcaccc gggtctcaa actctacggc 840
tgcagcccaa gtggcccaag gccccgtggg agaggtgagt ggcatggcag gaaggtgact 900
tga 903

<210> 2
<211> 300
<212> PRT
<213> HUMAN

<400> 2
Met Glu Gly Val Gly Gly Leu Trp Pro Trp Val Leu Gly Leu Leu Ser
1 5 10 15
Leu Pro Gly Val Ile Leu Gly Ala Pro Leu Ala Ser Ser Cys Ala Gly
20 25 30
Ala Cys Gly Thr Ser Phe Pro Asp Gly Leu Thr Pro Glu Gly Thr Gln
35 40 45
Ala Ser Gly Asp Lys Asp Ile Pro Ala Ile Asn Gln Gly Leu Ile Leu
50 55 60
Glu Glu Thr Pro Glu Ser Ser Phe Leu Ile Glu Gly Asp Ile Ile Arg
65 70 75 80
Pro Ser Pro Phe Arg Leu Leu Ser Ala Thr Ser Asn Lys Trp Pro Met
85 90 95
Gly Gly Ser Gly Val Val Glu Val Pro Phe Leu Leu Ser Ser Lys Tyr

	100	105	110												
Asp	Glu	Pro	Ser	Arg	Gln	Val	Ile	Leu	Glu	Ala	Leu	Ala	Glu	Phe	Glu
	115			120					125						
Arg	Ser	Thr	Cys	Ile	Arg	Phe	Val	Thr	Tyr	Gln	Asp	Gln	Arg	Asp	Phe
	130			135					140						
Ile	Ser	Ile	Ile	Pro	Met	Tyr	Gly	Cys	Phe	Ser	Ser	Val	Gly	Arg	Ser
	145				150				155				160		
Gly	Gly	Met	Gln	Val	Val	Ser	Leu	Ala	Pro	Thr	Cys	Leu	Gln	Lys	Gly
					165				170				175		
Arg	Gly	Ile	Val	Leu	His	Glu	Leu	Met	His	Val	Leu	Gly	Phe	Trp	His
					180				185				190		
Glu	His	Thr	Arg	Ala	Asp	Arg	Asp	Arg	Tyr	Ile	Arg	Val	Asn	Trp	Asn
					195				200				205		
Glu	Ile	Leu	Pro	Gly	Phe	Glu	Ile	Asn	Phe	Ile	Lys	Ser	Arg	Ser	Ser
	210				215						220				
Asn	Met	Leu	Thr	Pro	Tyr	Asp	Tyr	Ser	Ser	Val	Met	His	Tyr	Gly	Arg
	225				230						235				240
Leu	Ala	Phe	Ser	Arg	Arg	Gly	Leu	Pro	Thr	Ile	Thr	Pro	Leu	Trp	Ala
					245					250				255	
Pro	Ser	Val	His	Ile	Gly	Gln	Arg	Trp	Asn	Leu	Ser	Ala	Ser	Asp	Ile
					260				265				270		
Thr	Arg	Val	Leu	Lys	Leu	Tyr	Gly	Cys	Ser	Pro	Ser	Gly	Pro	Arg	Pro
					275				280				285		
Arg	Gly	Arg	Gly	Glu	Trp	His	Gly	Arg	Lys	Val	Thr				
					290				295				300		

<210> 3
<211> 10642
<212> DNA
<213> HUMAN

<400> 3

ttcccttcac	tgggtcagg	tgactgtggg	ggtgtccccca	aatgctgcc	agcgctgaca	60
tgctccgcct	ctgggatttc	aatccaggtg	gggcctctag	tgacctggct	ctggggctca	120
gggttatgga	ggagggggga	tatagtaag	gagtttaat	ttccaaatct	tgaaaatggg	180
aataaatact	gactgatcat	gccagctgt	gtgggattag	ggggtggact	ccctgcgagg	240
ctctgggcat	ctgggggttc	cacccccc	acatggcagg	ctttctaggg	tgctgcacac	300
tgttcagttt	gtgaaattc	ctgagccct	gtgcttgta	tagtgaactt	ttctatatgt	360
gtactaaaat	aaaagctgt	gaaagtgcag	tgacctttc	ctccttccgg	agatacacgg	420
ggggcgcggcc	agggtctcag	gcagcttcc	ccatgtctaa	gcacaggccg	gggttaggaaa	480
gggggtctcc	ctcgctggag	gaataggtct	atacctggc	tggggcctca	gctaggcctg	540
gagcaacttt	ctgcgatgtt	tctctgcccc	ctggaggccag	gaaggaacct	cagaagagcc	600
acactcccaa	gcgggccccct	cctgttttc	acctgctaca	gccaggaagg	ggactgggct	660
gggggtggaa	ccacaggtag	gcatcgagg	ggctgccaat	agacctgggt	tgggtggcgc	720
tgccggtaga	gctggttttgg	gcggggctgc	aggtggagct	ggttggggcg	gggctgcagg	780
tggaggtgtt	tggggcgcccc	ctgcaggtgg	agatgggttg	ggcggggctg	caggtggagg	840
tgggtggggc	ggggctgcag	gtggaggccgg	ttgaggggag	caaggtggga	gttggagcag	900
ctgttattta	agaggggggt	gtggtccgg	ttctgcaatt	aggttactgt	gtcttgcgtt	960
ggcttggct	tgtttgtga	agggcagca	gggccttacc	atggagggtg	tagggggct	1020
ctggccttgg	gtgtctgggtc	tgccttcctt	gccaggtaa	ctggctgcct	gtccctctgt	1080
ctgctggctc	cagcctggag	aaagctgggg	agaggctaga	aggttgcgc	tggagcctgc	1140
aggattgtt	gctgagctca	gtagctcaga	gcacagagct	ctccagggtt	attctagaag	1200
tca	ggggccaa	gggaggccct	ctgaaggccc	tggaaagcaga	gggcctgcct	1260
ggcagaagat	aagtgttgt	ccccaggccct	acttgtttt	gggtgggggt	aggctgttaag	1320
tccccactcc	agcctggta	ggcaggaggat	catccaggct	gagcccatgg	tccaagagcc	1380
tggctgaga	gagagtata	aggtggggtc	tgaggctggc	cctgcccgtc	acggggcgtca	1440
gaaccccgagg	tctgtccctgc	ctccttcctt	cctgccccctc	ctctacctca	taggtggggc	1500
acatggcccc	ttttgttcc	cctaaggggag	ctccttcctt	gaggctcatct	agaccttggc	1560
accagtggg	gttggcagg	gaggctggga	aggctcccttgc	gctttgtgtct	ggagccctact	1620
cttccttaggg	actgagtttt	accgtctgtat	cccccacacc	cacccatgt	cctgctgtct	1680

gggtcttacccg gtgggtgctc caggcatctg tggatgcccc tggctgtctg gaccagggt 1740
gatcccttagga gcgcggccctgg cttccagctg cgccaggagcc tgggttacca gcttcccaga 1800
tggccctacc cctgaggaa cccaggcctc cggggacaag gacatttcctg caattaacca 1860
agggtgagggc actacatctt ctcacggct ggaggggcac gacgttatgt agtgtgaaaa 1920
ccacaccgaa cactcagaaa tgcagagcct gggaggaaat ggaccagctt actctggct 1980
ctaagtgggtt tttaagagat ggagtgggt tgcataatttgc ccccggtctt tcttgaactc 2040
ctggccttaa gtgatcttcc tgcctctgccc tcccggcag ctgggactac aggtgtgaat 2100
gggtggaaat tctatggca attgcctaag tctactctt ctttttgat ctttcttagt 2160
ggattgttac ttttataaga aaaaccaaaagc tcttaaaggg cttgggtgt gagctaagcg 2220
gttagtcga gtctgagatt gtcagccacc ctgtgcaggga ctgtctgcag gtgtgattaa 2280
gaagtctgaa gctcagctgg gtgcgggtgc tctgcctgt agtcccacca ctttgggagg 2340
ctgaggcggg cagatcatgaa ggtcaggaga tcgagaccat cctggcttaac acagtggaaac 2400
cccgccccca ccaaaaatac aaaaatttgc cggcgtgtt ggcggggcc tttgtccca 2460
gctactcagg aggctgaggc aggagaatgg catgaacctg ggaggcggag ctgcgtgt 2520
gctgagattt cgcactgca ctccagcctg ggcacagag catctcacaa aaaacaaaaaa 2580
acaaaaagtca ggctcaggc cttgtcttctt gggatgtca gctgagaaat gagggtgtat 2640
aaaatagctg aaaaaagcca gttgaaatgg agactggagt tcagatgtt gagaatgag 2700
ggctgaagca ctcagggtt aagcaatcgg gctgaaacagg ggacaacctt gcccctaaagg 2760
tgggtgagat cctaccatgat gtggtagcca ctgtgtgatc tgccccctt ttcctctgt 2820
agctgacttgg gggccccggc gccagcttag ctttgagccc caggcaccat cccacccctg 2880
gatcaccgtg agtggcttcg aggttaaccag aaccaatggaa gaaaactccc aaatgctgtt 2940
gaccccaaca actatcttat cacctacggt gaggctgtct cataagggtt gcccgtgcct 3000
taccctgtc tttctggca agcacctgcc catctccacg cactgtgaat atggcttaatg 3060
ctgcacacat gtctgcetcc caaaacttggc cttggccag ttgtctgccc aaggagctgc ctcagccaga 3120
gatgccccggg ggctactccc ttgtctgccc aagggtggctt agtgcactt ctaagggaca 3180
ggagtcggc tcctgcctaa aggtggtaca agtgcgggtt gtcatttgcgt gtctggagcg 3240
cccatggat ctggctgagg ctgtgcctgg gtttcttccct gccttctctc ctgttccct 3300
cactccccctt gtggatcact tggggagac ccggctcagg gtagatgttgc aaggagatgag aacagaggg 3360
actaagaggg gagagggggct tgcagagacc ggtatttgc acctcaaggg gcctgaatata 3420
atttgtggaa caaaaatttgc acctcaaggg gcctgaatata gacacccctt gggatgttgc gctcaggctg 3480
atggggatg aggtgggcag gagacccctt ggcctgttctt gggatgttgc gctcaggctg 3540
gaagaagcca ctgttccctg tgggtgtgt ttgagcaggag acagcaggga cccgggtctt gggactggatt gcgtgggtca 3600
actgtgtgac ttccctgagg tggggatgttgc gacacccctt ggcctgttctt gggatgttgc gaccccttgc acactcagg 3660
tcaggagagg gacagaccccc aaccccttgc acacttgc tgggtgttgc gggacccctt agtcccacag 3720
cacttcggcaga cagtcggcaca taaaacccca ggctcgagaa tgggtgttgc acatttcttgc tttgtcttcc agcccccctca 3780
taaaacccca ggctcgagaa taaaacttgc ggcgttgc tataacttttgc acatcaacta atgacttaac 3840
taaaagtaac aatccacttag tggcctgtcc cagcagtcag tgggtgttgc tcaaggctt taagaactta 3900
tggcctgtcc cagcagtcag tgggtgttgc tgggtgttgc tgggtgttgc aacacgttct tcttcccttc 4020
ccagggctca tcctggaaaga cggccgggtga gtgcacacac ggcgttgc tgggtgttgc tcatcgagg ggacatcatc 4080
gtccctctgag cccaccctgg gtagatgttca agtgcatttgc tgggtgttgc aagcccacag ttggcgcacag 4140
gttagatgttca cttttgttca aggtcagacc tgggtgttgc tgggtgttgc tgagggacat acatagctt 4200
agcctgaatg ctaaggaagg tcctgaagga ggagggttgc cggacttgc tgggtgttgc ttaggaataa ggaataagcc 4260
tcctgaagga ggagggttgc cagcactcgg gagggtgtca tggcgttgc tgggtgttgc acagtcaagcc tgaggggtct 4320
cagcactcgg gagggtgtca tggcgttgc tgggtgttgc acacttgc tgggtgttgc ccctgcccag gggaggtgt 4380
tggcagataa agggcttgc tggcgttgc tgggtgttgc aggggttgc gagggttgc gggatgttgc 4440
tgagcctgtac catcttggct gattggggcg ccttgcataac tggcgttgc tgggtgttgc ggttgcacaa ggagtgtatgt 4500
tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc agaaaaggaa acacttgc tgggtgttgc gagggttgc gagggttgc 4560
tcaggcactt gcaaatggca tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc gggatgttgc gggatgttgc 4620
actgtctgtt tggaggctgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc gggatgttgc gggatgttgc 4680
gctggcccaa ggctggccag agtgcctggc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc gctggcagg agagccagag 4740
agtgcctggc tggcgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc accctcttggg ttatgcgtt 4800
cacaggcactt gtcgggtgtca tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc caaatgcctc cagccgtatgg 4860
agaagtaagc agccgaggcc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc ggctctgtt gctggagagc 4920
atgatgttcc catgttccagg acatgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc ctccatatgg ctctgttccc 4980
acatgttgc tggcgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tctctggaaagg ggcactgtca 5040
ggcctcttag ccaacatctt catgttccagg tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc cagggcacc tgggtgtct 5100
catcatagggc caagggacttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc gcttgcactt 5160
cacaaggcttgc tccatcttca tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tggcgttgc 5220
catctttggg ttttgcgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tggcgttgc 5280
gggcacaaaag ctttgggttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tggcgttgc tgggtgttgc tggcgttgc 5340

tcctgtcccc agggttcaa ctgctgtct ctccctcagag tccctccga ctgtgtcag 5400
caaccagcaa caaatggccc atgggtggta gtgggtcggt ggaggcccc ttccctgtct 5460
ccagcaagta cggtgagtga gcatggcgcg ctccctccct gcctcagccc ttcttccta 5520
atgcggcagg tttccctctc ttcccttttct ctcttacacc atcacatccc ttccacctcc 5580
ccacccgaag aacctgtcca cagatgccct tctgttgctg aaggctcct gagtagggag 5640
gtttaaaatc tgatgggaag gtatgtcgag tggggatctg gttcccttg agaccatgcg 5700
gtgcagagga cagtgaccta ccaaggcca cacagccagg gtctgtctgg gccccagtt 5760
cttctggca ccactaaget gccccttttct gatgttattt tgggagagtg agtcagagc 5820
tctgctccca gaccctcagg tagagctcaa agaccaccag ggctctgggg gctcagccag 5880
gtggtgtctt ccagatgagc ccagccgcca ggtcatctg gaggctcttg cgaggtttga 5940
acgttccacg tgcattcagg tttgtcaccta tcaggaccag agagacttca tttccatcat 6000
ccccatgtat gggtaagtgc cggggccagg atgcgtatct cagtcgtt ctcggttcag 6060
cccgaaatta acttggccat tgcataaaat gtattcctgg gcccattc caggcgtcag 6120
tctccctgcc caccctgagg ggtctccaa gtgtgagctg gacccctt cgggaatgtg 6180
ggaaaggat gggAACGGTg ctagaccctc catttacaaa gcccctctt cccggggac 6240
tccatgaggt ggtgaggaga ggagggtttt cggggcagac agtgcgtgag tcactgagtc 6300
ctggcaagtc ccctaacttc tgagcctt ctgtccccctc tgggtgcga gtgtggcga 6360
tacctgttc ctagctgtc aggggcctg ggcattttgt gtgaaagctt tggcttaggg 6420
ctgaccagga ggggtgtc acttagtaag ctgttctgt cctctgtt catatatcag 6480
tttctgcagc ctccctgcag cccaggctgg tgatgggggt cccgtatggc catttcacag 6540
aagtccaggc agtaaaagggg cctggagaat ggtgaacctg agactagagc ccagagtggg 6600
gcctgcctgt tggaggtttg tctatcttgc gttgtgtggg gaggagagc ccaggtctgt 6660
atgtccggag ggtatgggc tggcaatttac cccacttgc tctatcaccc tgcagggtct 6720
tctcgagtgt ggggcgcagt ggagggatgc aggtggctc cctggcgtt acgtgtctcc 6780
agaagggccg gggcattgtc cttcatgagc tcatgcatgt gctgggttcc tggcacgagc 6840
acacgcgggc cgaccgggac cgctatatcc gtgtcaactg gaacgagatc ctgccaggtg 6900
agccaggcca cacgcaggac aggctggc cggggagggg acagcacggc ttggggccaa 6960
gtgcgcctgg ccccatgggt gaggctatcc atccctccca tcacctgcct gcttcctgtg 7020
gggaagggtt gggctctact tctgtctgtt acctggtacc tggaggttgc actctgggtg 7080
ctgctctggg ccccaggctt tcctctaccc acctgttagt gtgccttagc tagggcgcca 7140
ccacctgttt tgcattcgtt ctcatccctg acactgtctt ctccctggcg atggggcagg 7200
cagtgcctat gatacctgtc tggtagtac tctagcagcg gtctcatgtt ccagatacca 7260
ccacccatggc ctggggctgt gtccagctt gggagactg gccaaagtgg gaccccaagg 7320
tagcaggctg cacaagccaa gtgctggcc acgggcttag ggcagcaactg tggggctggg 7380
acatgtgcca gtgtgcccag tgagcaggca gaaggaacac agactgtggc catgggagag 7440
tggaggctgg aggaggctgg gctgtgggtc ctgtgtggc tttgtggc tggcccccggg 7500
gatcagatcc tggtagtggt ggggtctctc tcattgtggg cttgtggc tgggtcagga 7560
ggcaggaaga gccccacagag ggagggggcag aggagggttgc ggtggagatc tggcttaggg 7620
gttggagcag gaaggcttac cgcagggtgg ggggttccag cagagaccc ttcaagggtgt 7680
tcatgttagc caggtgaggc agccaggaa gctgcctggg ccaaggacc ttcccaggcc 7740
ccaaacaccc ctttctcagt ggctctcagc aaacatgagt cacagagaaa ggggtgacgg 7800
ggcacgtggg tagcacctca caaaggggga gggatggat attgaatcag accaggctgg 7860
ggaggttggt aggggggtga caagtgaatc tgcatttgc aacagactg atcttccca 7920
atgcgttgg aacagtgtg aaagtttacc ctgataattt tatgatatac catgaaatgc 7980
catgaaaacc tgcactctg aaagtagacc aatgtaaaca ttctgtatcat gatataaaagt 8040
agaaaccatg acatcaaaac cggaaagcttcc tccattttag catttttttca aaaaaatca 8100
actttcttc agctctggag tttaaagtaca gcaattctaa aaaaatca tgaagacta 8160
gaaaaggccaa tggttcacag ctaaagcaat gctcagagaa aatgtgtaga cttacgtatc 8220
agtaaacaga acaaatttag ctagtcaacc caagttaaat gaaagcagga gggaaattca 8280
aaaggtaaaa gcagaaattt agttggaaaa cagcactaat aattatttctt aatgataaaa 8340
caggctaaaa cacgggttcc ccagtggaaa aaatgagaac atatttgc ccatttagt 8400
taatatgttc tcatttagtt aacatgtaca gaaactgcca gggcagacac attaataaca 8460
gtaattaact gttgtggggc gggggaggtgg gaaactcgaga agcaggggat ggaatagact 8520
tttactacat ctcataattt gacttttggaa ccaaatgaat atactactta ttccaaatgt 8580
tgttaatga atttttaaaa agaagtaaga gctcaagagg cagctatgtt aggagggtgg 8640
tgggtatga aggtgttggg gggctcattt gctccatggaa gggcagacac attaataaca 8700
ggtggcgtgt atgcgttggc ggctggctgg atttggggagg attggggag caatccctt 8760
gaaggcctgg gggactttag tgagggggag atgggtctcca aatctgggg agttgggtgg 8820
cctgacacag gaagaacagg tgggcctgtg acttggggact agggcatcac cactgcagat 8880
gacagcgtgg cagttttta aagctgggtc aaggaataga catttcattt ggggtgggg 8940
ggacatctga gaccctgagc agtgtgggac ccgtggcagc tggcatttgcagacca 9000

gccccgtgca gactgaatat gcaaggagga aggatgggtg gagggAACAG ctaggagggtg 9060
 atggttggcc agccatgggg tccctgtgcc tctaccta ctatCACAGG ttggggatcc 9120
 tcccaggcgtt gggaaagtgg gactggtacc agaAGCAGCA tggtggctgt gggctcagcc 9180
 ccttagctt ggtgagttt gagctcccAG aagactctcc cagccattgc ctgccttcc 9240
 ttgcctgccc tctttatata tcagtaagtt gtattgtttt ttttttggcttggaaa 9300
 tcaacttcat caagtctcg agcagcaaca tgctgacGCC ctatGACTAC tcctctgtGA 9360
 tgcactatgg gaggtgagga ccctgccttc ttctccctt ctgttttttttgcctcc 9420
 tggtgatctg gactcagggg tctcccgctg ggTTCCAGGC tcgccttcAG ccggcgtggg 9480
 ctgcccacca tcacaccact ttggggcccc agtgtccaca tcggccAGCG atggAACCTG 9540
 agtgcctcg acatcacccg ggtcctcaaa ctctacGGCT gcagccccAAAG tggccccagg 9600
 cccctgtggga gaggtgagtg gcatggcagg aaggTGACTT gaacctggag aaggcgcctg 9660
 tgctctaATG gtgtcaggg ggggtgacaAG gagggagatg aggttgcagg gggagcaggg 9720
 tgagatcACG ggggcttgc ACAACGACGC agaacaAGCA cttgagggAAAG tttAAACACTC 9780
 actatgACTC aactgtAACC aaAGAGGAAT agggctcact tgcttagcct agataataAA 9840
 catctacAA aAACCTAGAA caAAAGTTAA gggtaAAACA ttaAAACTGG gaccaAGACA 9900
 agtttccca ccattgtccc atctactcca cattgtgtgg cagtggaggt cctgggcacc 9960
 gaggtagAGC caaAGAAACT aaAGGTCCGA ggattggAAA ggaAGCAAAA aaATCGTTCA 10020
 taatagatGA ttacctgttat tgaaAGCAAC aatctataAA caaggTtATAA gaactaataAA 10080
 gaattagAAA aggtAAATAC agttaatATA aaaatcatAT ttctgtacAC ccagttagAA 10140
 aacacaATTG ttagtAAACA taccattATA atagcaatCA taaAGGTCCC aaggAAATAAA 10200
 tctgacAGCT gtatcaaACA tttgaggAAA aatgaACCTT tattAAATAC gttAAATAAAT 10260
 acttaaatAT agataAAATCT gttattgAAA ggaaggCAAT gttataAAAAA ttcaGTCCTC 10320
 ccaaattaAT ctataAAATTC ccactcaAAAA taagtTTGAT cttgacAGAG tgatTTTTT 10380
 tttctttttt ttttttaAG atggagtCTC actctgtcAC ccaggctGGA gtgcagtGGC 10440
 acaatctcgG ctcaCTGcAG tctctgcCTC cgaggTtCAA gtgattCTG tgcctcaATC 10500
 tcctgagcAG ctgggcttAC aggtgcgtGC caccacACCC aactAAATTt tttttttttt 10560
 gtggggacAG ggttccACCA ttttggccAG gctggtcttG aactcctGAC cgcaAGtGAT 10620
 gcgcctgcct tggcctccCG at 10642

<210> 4
 <211> 268
 <212> PRT
 <213> HUMAN

<400> 4

Leu	Leu	Phe	Leu	Leu	Gly	Ile	Ala	Gln	Ala	Leu	Pro	Val	Gln	Asn	Glu
1															15
Glu	Gly	His	Glu	Glu	Gly	Asn	Lys	Glu	Gly	His	Gly	Glu	Glu	Gly	Val
															20
Glu	Gly	Asp	Glu	Asp	Asp	Phe	Val	Asp	Phe	Thr	Thr	Arg	Ile	Leu	
															35
Thr	Ser	Asn	Asn	Asn	Thr	Asp	Gln	Leu	Leu	Leu	Glu	Gly	Asp	Leu	Val
															50
Ala	Pro	Thr	Asn	Arg	Asn	Ala	Met	Lys	Cys	Trp	Tyr	Asn	Ser	Cys	Phe
															65
Trp	Lys	Lys	Ala	Ser	Asn	Gly	Phe	Val	Val	Ile	Pro	Tyr	Val	Ile	Ser
															85
Ser	Gln	Tyr	Ser	Arg	Gly	Glu	Val	Ala	Thr	Ile	Glu	Gly	Ala	Met	Arg
															100
Ala	Phe	Asn	Gly	Arg	Thr	Cys	Ile	Arg	Phe	Val	Arg	Arg	Thr	Asn	Glu
															115
Tyr	Asp	Phe	Ile	Ser	Val	Val	Ser	Lys	Asn	Gly	Cys	Tyr	Ser	Glu	Leu
															130
Gly	Arg	Lys	Gly	Gly	Gln	Gln	Glu	Leu	Ser	Leu	Asn	Arg	Gly	Gly	Cys
															145
Met	Tyr	Ser	Gly	Ile	Ile	Gln	His	Glu	Leu	Asn	His	Ala	Leu	Gly	Phe
															165
Gln	His	Glu	Gln	Thr	Arg	Ser	Asp	Arg	Asp	Ser	Tyr	Val	Arg	Ile	Asn
															180
Trp	Gln	Asn	Ile	Ile	Pro	Ala	Ser	Ala	Tyr	Asn	Phe	Asn	Lys	His	Asp
															195
															200
															205

Thr Asn Asn Leu Asn Thr Pro Tyr Asp Tyr Ser Ser Ile Met His Tyr
210 215 220
Gly Arg Asp Ala Phe Ser Ile Ala Tyr Gly Arg Asp Ser Ile Thr Pro
225 230 235 240
Ile Pro Asn Pro Asn Val Pro Ile Gly Gln Arg Asn Gly Met Ser Arg
245 250 255
Trp Asp Ile Thr Arg Ile Asn Val Leu Tyr Asn Cys
260 265

