Target Tracking using Drone Swarms

Project Members & Speaking Order

- 1. Benjamin Ireland Drone Trajectory Control & Network Protocol Integration
- 2. Finlay Cross Drone Swarm Lifecycle & Software Porting
- 3. Se Hyun Kim Target Implementation
- 4. Ronniel Padua Drone Management/Visualisation Application

Raith Fullam - Network Communication Protocol (SENG, Assessed Separately)

Project Code: **E24**

Sponsor: Wireless Research Centre (WRC)

Background

Why?

How?

OTHER APPLICATIONS

Search & Rescue, Infrastructure Monitoring, Surveillance

Project Breakdown

<u>Subprojects</u>

- Flight Controller
 - Drone Control System
 - Drone Swarm Lifecycle Manager
- Temporary Target Implementation
- Drone Management Application
- Drone Coordination Protocol ~ SENG

System Hierarchy

Results

Results

Drone Controller & Network Protocol Integration

Sub-project Goals

- Provide reliable target tracking capability.
- Address performance and scalability issues of the previous iteration.
- Decoupling of formation and trajectory.

Sub-project Objectives

- Design of the drone's controller and swarm configuration.
- Integration with the drone coordination protocol.

Swarm Design

Previous Design

- Leader-Follower
- No Target Tracking
- Performance/Scalability
 Issues

Proposed Solution

- Virtual Reference Point
- Target Agnostic
- Improve Performance
- Scalable Config
- Tradeoffs

Software Architecture

Companion Computer

Testing & Integration

Simulation

Gazebo SW – Drone Models

Hardware Integration

- FCU Updates & Configuration
- Companion Computer -> FCU Communications
- Drone Calibration

Field Testing & Validation

- Test Plans
- Flight Logs

Conclusion

Achievements

- Simplified swarm configuration to improve scalability & performance.
- Fully operational simulation of the drone swarm.
- Separation of trajectory and formation activities.
- Shown the target tracking capabilities and formation forming of the swarm using our virtual reference point design.

Future Recommendations

- Complete Network Protocol Integration
- Real World Performance Estimation
- Collision Detection

Config Layout

Constraints

• Heading, Position, and Altitude.

