BSM 420 – BİLGİSAYAR SİSTELERİNİN PERFORMANS DEĞERLENDİRMESİ

9. Hafta: Ortalamalar

Ortalamalar

- Merkezi eğilim göstergeleri
 - Örnek ortalama (Sample mean)
 - Median
 - Mode
- Diğer ortalamalar
 - Aritmetik
 - Harmonik
 - Geometrik
- Değişkenliği belirleme

Neden Ortalama?

- Performansı tek bir sayıya indirgeme isteği
 - Karşılaştırma işlemini kolaylaştırmak
 - İnsanlar «tipik» bir performans ölçütünü tercih eder
- Veriyi özetlerken alternatif usuller sağlar
 - X = f (10 parça A, 25 parça B, 13 parça C, ...)
 - O zaman X nasıl bir performans gösterir ?!

Problem

- Performance çok boyutludur
 - CPU zamanı
 - I/O zamani
 - Ağ zamanı
 - Çeşitli bileşenler arasındaki etkileşimler
 - Vs. vs...

Problem

- Sistemler çoğu kez özelleşmiştir
 - X uygulama tipinde yüksek performans
 - Diğer uygulamalarda berbat
- Farklı kıyas test programları kullanılarak bir sistem üzerinde çok sayıda çalışma zamanı

Problem

- Halbuki, insanlar tek bir sayı görmek isterler!
- Bu kadar çok ölçümü tek bir sayıya nasıl doğru bir şekilde indirgeyebiliriz?

<u>Merkezi Eğilim İndisi</u>

- Değerler dağılımının "merkezini" yakalamaya çalışır
- Genel davranışı özetlemek için bu "merkezi" kullanır
- Gerçek bilgi için önerilmez, ancak...
 - Ortalama değerler sağlamanız gerekir
 - Duruma en uygun türün nasıl seçileceğini öğren
 - Başkalarının kötü sonuçlarını tespit et

Merkezi Eğilim İndisi

- Örnek Ortalama
 - Ortak "ortalama"
- Örnek Medyan
 - Değerlerin ½ si yukarıda, ½ si aşağıda
- Mod
 - En genel

Merkezi Eğilim İndisi

- "Örnek" ile ifade edilmek istenen:
 - Ayrık rasgele X değişkeni için bir rasgele prosesten ölçülen değerler
- Hesaplanan değer, sadece temel sürecin gerçek ortalamasının yaklaşık bir değeridir.
- Gerçek ortalama değer aslında bilinemez
 - Sonsuz sayıda ölçüm gerektirir

Örnek Ortalama

- Beklenen değer X = E[X]
 - x_i = ölçülen değerler

$$p_i = Pr(X = x_i) = Pr(x_i)$$

$$E[X] = \sum_{i=1}^{n} x_i p_i$$

Örnek Ortalama

- İlave bilgi olmadan, varsayalım ki
 - p_i = sabit= 1/n
 - n = ölçüm sayısı
- Aritmetik ortalama
 - Ortak "ortalama"

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Ortalama değerlerin potansiyel problemleri

- Örnek ortalaması tüm ölçümlere eşit ağırlık verir
- Aykırı değerler hesaplanan ortalama değer üzerinde büyük bir etkiye sahip olabilir
- Ölçülen değerlerin merkezi eğilimi hakkında yanlış bilgi verebilir

Ortalama değerlerin potansiyel problemleri

Medyan

- Merkezi eğilim indisi
 - ½ değer daha büyük, ½ si daha küçük
- n ölçümü sırala
- Eğer n tek sayı ise
 - Medyan = orta değer
 - değilse, medyan = ortadaki iki değerin ortalaması
- Aykırı değerlerin endeks değeri üzerindeki eğriltme etkisini azaltır

Örnek

- Ölçülen değerler: 10, 20, 15, 18, 16
 - Ortalama= 15.8
 - Medyan = 16
- Bir tane daha ölçüm al: 200
 - Ortalama = 46.5
 - Medyan = $\frac{1}{2}$ (16 + 18) = 17
- Medyan merkezi eğilimin daha gerçekçi değerini verir

Ortalamanın Potansiyel Problemi

Mod

- En sık gerçekleşen değer
- Var olmayabilir
- Tek olmayabilir
 - Ör. "iki modlu- bi-modal" dağılım
 - İki değer aynı sıklıkla meydana gelir

Ortalama, Medyan, veya Mod?

- Ortalama
 - Tüm değerlerin toplamı anlamlıysa
 - Mevcut tüm bilgileri içerir
- Medyan
 - Aykırı değerlerle gerçekçi merkezi eğilim bilgisi
 - Bir değer kümesinin "tipik" değeri nedir?
- Mod
 - Veri farklı türlerde, kategoriler de gruplandırılabildiğinde

Ortalama, Medyan, veya Mod?

- Bir ağda gönderilen mesajların boyutu
- Önbellek isabet sayısı
- Çalışma zamanı
- MFLOPS, MIPS
- Band genişliği
- Hızlanma
- Maliyet

Diğer Ortalamalar!

- Aritmetik
- Harmonik?
- Geometrik?
- Hangi durumda hangisini kullanmak gerekir ?

Aritmetik ortalama

$$\frac{1}{x_A} = \frac{1}{n} \sum_{i=1}^n x_i$$

Harmonik ortalama

$$\frac{x_H}{\sum_{i=1}^n \frac{1}{x_i}}$$

Geometrik ortalama

$$\overline{X_G} = \sqrt[n]{X_1 X_2 \cdots X_i \cdots X_n}$$

$$= \left(\prod_{i=1}^n x_i\right)^{1/n}$$

Hangi ortalama nerede kullanılır?

- Ortalama değer iyi bir performans metriğinin özelliklerine uymalıdır
 - Doğrusal
 - Güvenilir
 - Tekrarlanabilir
 - Kullanımı kolay
 - Tutarlı
 - Bağımsız
- En iyi performans ölçütü hala çalışma zamanıdır

İyi bir ortalama ne demek ?

- Zamana bağlı ortalama (ör. saniye)
 - Toplam ağırlıklı süre ile doğru orantılı olmalıdır
 - Zaman iki katına çıkarsa, ortalama değer iki katına çıkmalıdır
- Hıza dayalı ortalama (ör. işlemler / sn)
 - Toplam ağırlıklı süre ile ters orantılı olmalıdır
 - Zaman iki katına çıkarsa, ortalama değer yarı yarıya azalmalıdır
- Hangi ortalama bu kriterleri sağlar?

Varsayımlar

 n adet kıyas programının ölçülen çalışma zamanları

$$T_i$$
, $i = 1, 2, ..., n$

- Her kıyas tarafından yerine getirilen toplam iş sabit
 - F = yerine getirilen işlem sayısı
- Çalışma hızı = M_i = F / T_i

Zaman için Aritmetik ortalama

- Toplam süre ile doğru orantılı ortalama bir değer üretir
- → Çalışma zamanını özetlemek için doğru ortalama

$$\overline{T_A} = \frac{1}{n} \sum_{i=1}^n T_i$$

Oranlar için Aritmetik Ortalama

 Zamanların toplamı ile ters orantılı ortalama bir değer üretir

$$\overline{M}_{A} = \frac{1}{n} \sum_{i=1}^{n} M_{i}$$

$$= \sum_{i=1}^{n} \frac{F/T_{i}}{n}$$

$$= \frac{F}{n} \sum_{i=1}^{n} \frac{1}{T_{i}}$$

Oranlar için Aritmetik ortalama

- Zamanın tersinin toplamı ile orantılı ortalama bir değer üretir
- Ancak zaman toplamları ile ters orantılı olmak istiyoruz
- → Oranları özetlemek için aritmetik ortalama uygun değil

Zaman için Harmonik ortalama

 Zamanların toplamı ile doğru orantılı değil

$$\overline{T_H} = \frac{n}{\sum_{i=1}^n \frac{1}{T_i}}$$

Zaman için Harmonik ortalama

- Zamanların toplamı ile doğru orantılı değil
- → Harmonik ortalama zamanları özetlemek için uygun değil

Oranlar için Harmonik ortalama

- (toplam işlem sayısı)(toplam çalışma zamanları)
- Toplam yürütme süresi ile ters orantılı
 → Harmonik ortalama oranları
 özetlemek için uygundur

$$\overline{M}_{H} = \frac{n}{\sum_{i=1}^{n} \frac{1}{M_{i}}}$$

$$= \frac{n}{\sum_{i=1}^{n} \frac{T_{i}}{F}}$$

$$= \frac{Fn}{\sum_{i=1}^{n} T_{i}}$$

Oranlar için Harmonik ortalama

Sec	10 ⁹ FLOPs	MFLOPS
321	130	405
436	160	367
284	115	405
601	252	419
482	187	388

$$\overline{M}_{H} = \frac{5}{\left(\frac{1}{405} + \frac{1}{367} + \frac{1}{405} + \frac{1}{419} + \frac{1}{388}\right)}$$

$$= 396$$

$$\overline{M}_{H} = \frac{844 \times 10^{9}}{2124} = 396$$

Geometrik Ortalama

- Normalize değerlerin ortalaması için doğru ortalama
- SPECmark ı hesaplamak için kullanılır
- Çok çeşitli değerlere sahip ölçümlerin ortalamasını alırken iyi
- Normalize değerleri karşılaştırırken tutarlı
 - Normalize etmek için kullanılan temelden bağımsız

Zamanlı Geometrik Ortalama

	Sistem 1	Sistem 2	Sistem 3
	417	244	134
	83	70	70
	66	153	135
	39,449	33,527	66,000
	772	368	369
Geo ort	587	503	499
Sıra	3	2	1

Sistem 1'e normalize edilmiş Geometrik ortalama

	Sistem 1	Sistem 2	Sistem 3
	1.0	0.59	0.32
	1.0	0.84	0.85
	1.0	2.32	2.05
	1.0	0.85	1.67
	1.0	0.48	0.45
Geo ort	1.0	0.86	0.84
Sıra	3	2	1

Sistem 2'ye normalize edilmiş Geometrik ortalama

	Sistem 1	Sistem 2	Sistem 3
	1.71	1.0	0.55
	1.19	1.0	1.0
	0.43	1.0	0.88
	1.18	1.0	1.97
	2.10	1.0	1.0
Geo ort	1.17	1.0	0.99
Sıra	3	2	1

Toplam çalışma zamanları

	Sistem 1	Sistem 2	Sistem 3
	417	244	134
	83	70	70
	66	153	135
	39,449	33,527	66,000
	772	368	369
Toplam	40,787	34,362	66,798
Arit ort	8157	6872	13,342
Sıra	2	1	3

Ne oldu?!

	Sistem 1	Sistem 2	Sistem 3
Geo ort wrt 1	1.0	0.86	0.84
Sıra	3	2	1
Geo ort wrt 2	1.17	1.0	0.99
Sıra	3	2	1
Arit ort	8157	6872	13,342
Sıra	2	1	3

Zaman için Geometrik Ortalama

 Zaman toplamlarıyla doğru orantılı değil

$$\overline{T_G} = \left(\prod_{i=1}^n T_i\right)^{1/n}$$

Zaman için Geometrik Ortalama

- Zaman toplamlarıyla doğru orantılı değil
- → Geometrik ortalama zamanları özetlemek için uygun değil

Oranlar için Geometrik Ortalama

 Zaman toplamlarıyla doğru orantılı değil

$$\overline{T_G} = \left(\prod_{i=1}^n M_i\right)^{1/n}$$

$$= \left(\prod_{i=1}^n \frac{F}{T_i}\right)^{1/n}$$

Oranlar için Geometrik Ortalama

- Zaman toplamlarıyla doğru orantılı değil
- → Geometrik ortalama oranları özetlemek için uygun değil

Ortamaların Özeti

- Mümkünse ortalamalardan kaçının
 - Bilgi kaybı
- Aritmetik
 - Ham değerlerin toplamının fiziksel anlamı olduğunda
 - Zamanları özetlemek için kullanın (oranları değil)
- Harmonik
 - Oranları özetlemek için kullanın (zaman değil)
- Geometrik ortalama
 - Zaman performansın en iyi ölçüsü olduğunda yararlı değildir

Geometrik Ortalama

- Tutarlı sıralama sağlar
 - Normalizasyon için temelden bağımsız
- Ama sürekli yanlış olabilir!
- Değer hesaplanabilir
 - Ama fiziksel bir anlamı yok

Normalizasyon

- Normalize edilmiş değerlerin ortalamasının alınması matematiksel olarak anlamlı değildir
 - Bir sayı verir
 - Ama sayının fiziksel bir anlamı yok
- İlk önce ortalamayı hesaplayın
 - Sonra normalleştir

Ağırlıklı Ortalamalar

$$\sum_{i=1}^{n} w_i = 1$$

$$\overline{x}_A = \sum_{i=1}^n w_i x_i$$

$$\overline{X}_{H} = \frac{1}{\sum_{i=1}^{n} \frac{W_{i}}{X_{i}}}$$

- Ortalamanın standart tanımı, tüm ölçümlerin eşit derecede önemli olduğunu varsayar
- Bunun yerine, i.
 ölçümün göreceli
 önemini temsil edecek
 ağırlıkları seçin

<u>Değişkenliğin Ölçülmesi</u>

- Değişkenlik hakkında bilgi gizlemek anlamına gelir
- Değerler ne kadar "yayılıyor"?
- Ortalamaya göre ne kadar yayıldı?
- Değerlerin dağılımının şekli nedir?

Histogramlar

- Benzer ortalama değerler
- Yaygın olarak farklı dağılımlar
- Bu değişkenliği tek bir sayı ile nasıl ifade edebilirim?

Dağılma Endeksi (Index of Dispersion)

- Ölçümlerin ne kadar "yayıldığını" belirler
- Aralık
 - (maksimum değer) (minimum değer)
- Ortalamadan maksimum mesafe
 - Maks. | x_i ortalama |
- Her ikisi de mevcut tüm bilgileri verimli bir şekilde içermez

Örnek Varyansı

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

$$= \frac{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)}$$
• *İkinci form "anlı hesaplamak içii*
• *Verilerden bir g*
• *(n-1) serbestlik derecesi*

$$n(n-1)$$

- Rastgele değişken X'in ikinci momenti
- İkinci form "anlık" hesaplamak için iyi
 - Verilerden bir geçiş

<u>Örnek Varyansı</u>

- "Birim karesi" ni verir
- Ortalama ile karşılaştırmak zor
- Standart sapmayı kullan, s
 - s = varyansın karekökü
 - Birimler = ortalama ile aynı

Değişim Katsayısı (Coefficient of Variation - COV)

$$COV = \frac{S}{\overline{x}}$$

- Boyutsuz
- Bağıl değişim boyutu ile ortalamayı karşılaştırır

Önemli Noktalar

- "Ortalama" metrikler tehlikelidir
 - Performansın çok boyutlu yönlerini gizler
 - Ölçüm grubundaki değişkenliği gizler
- Ancak genellikle "tipik" bir değer bildirmeye zorlar

Önemli Noktalar

- Örnek Ortalaması
 - Rasgele prosesin ilk anı
 - Çıkış ortalaması
- Örnek Medyan
 - Orta değer
- Örnek mod
 - En genel değer

Önemli Noktalar

- Aritmetik ortalama
 - Zamanları özetlemek için kullanın
- Harmonik ortalama
 - Oranları özetlemek için kullanın
- Geometrik ortalama
 - Zaman veya oranlar için kullanmayın
- Varyans, standart sapma, değişim katsayısı
 - Değişkenliği ölçün