#### Etablissement de Voiron Z.I. les Blanchisseries 38500 Voiron

Tel.: +33 4 76 65 09:08 Fax : +33 9 76 35 36 00



# Rapport d'essai / Test report

JDE: 60052797 N° 200611-3431C-R1-E

DELIVRE A / ISSUED TO

: EUROCAVE (M. WAROUX) 24 rue Francis de Pressensé

69100 VILLEURBANNE

Objet / Subject

: Essais de compatibilité électromagnétique conformément aux normes :

Electromagnetic compatibility tests according to the standard:

- 47 CFR Part 15 Subpart C - RSS 210 & RSS gene

Matériel testé / Apparatus under test

Produit / Product

Cave à vin radio pilote / Wire cellar radio-controled

Marque / Trade mark

**EUROCAVE** 

Constructeur / Manufacturer

**EUROCAVE** 

Type / Model

ORIGINE Puissance / ORIGINE Afficheur

N° de série / serial number

: information donnée par le client / information given by the customer

Date des essais / Test date

: Le 12 et 15 janvier 2007 / January 12th and 15th 2007

Lieu d'essai / Test location

: LCIE

ZI des Blanchisseries 38500 VOIRON - France

Test réalisé par / Test performed by

: Jacques LORQUIN

Ce document comporte / Composition of document : 20 pages.

VOIRON, LE 28 FEVRIER 2007 / FEBRUARY 28TH, 2007

Ecrit par / Written by Jacques LORQUIN

Approuvé par Approved by NTRAL DES ECTRIQUES Yannick SAVOIE

de Voiron hisseries

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Toute reproduction partielle ou toute insertion de l'évultais dans un texte d'accompagnement en vue de leur diffusion doit recevoir un accord préalable et formel du LCIE. Ce document résulte d'essais effectues sur un spécimen, un échantillon ou une éprouvette. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à l'objet essayé. Il ne préjuge en aucun cas d'une décision de certification. This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested. This document doesn't anticipate any certification decision

LCIE

Laboratoire Central

33, av du Général Leclerc

Tel = +33 1 40 95 60 60 Fax : +33 1 40 95 86 56

Société par Actions Simplifiée

des Industries Electriques

92266 Fontenay-aux-Roses cedex

contact@leae.fr

au capital de 15 745 984 €

Une société de Bureau Veritas

France

www.lcie.fr

RCS Nunterre B 408 363 174



Page: 2/20

#### 1. TEST PROGRAMME

#### Tests have been performed according to following standards:

Standard: 47 CFR Part 15 Subpart C Title 47 – Telecommunication; Part 15- Radio Frequency Devices

RSS 210 & RSS gene

A pre-qualification in anechoic chamber has been performed for find the worst case:

- Measure with remote control (ORIGINE Afficheur) only put on table, on 3 axes (X, Y, Z).
- Measure with ORIGINE puissance with cellar only.
- Measure with ORIGINE puissance and ORIGINE afficheur in the holder.

The worst case is measure with both units; consequently, all test results of test report are for the ORIGNE Afficheur in the holder of ORIGINE puissance.

### 2. SETUP

#### 2.1. Hardware identification:

#### \* Equipment under test (EUT):

ORIGINE Afficheur pn: P-3186-4400631

Size: 90x90x30mmFirmware: none

- RF power output: -8dBm

- Inputs/Outputs:

None

#### \* Equipment under test (EUT) :

ORIGINE Puissance pn: P-3187-4400620

- Size: 75x40x140mm - Firmware: none

- RF power output: -6dBm

Inputs/Outputs:

· Mains power supply input

2x Input/Output relays

#### \* Cables:

- Power supply cord of cellar, unshielded, length: 2.5m (internal cable).

- I/O cable of cellar, unshielded, length: 2.5m (internal cable).



#### 2.2. Auxiliaries or control equipement used for test

The FCC IDs for all equipment, plus description of all cables used in the tested system (including inserted cards, which have grants) are:

| Trade Mark – Model Number (Serial number)    | FCC ID      | Description    | Cable description               |
|----------------------------------------------|-------------|----------------|---------------------------------|
| EUROCAVE                                     | None        | Wire cellar    | Power cord unshielded length 2m |
| EUROCAVE ORIGINE Afficheur<br>P-3186-4400631 | UXLORIGINE1 | Remote control | None                            |
| EUROCAVE ORIGINE Puissance<br>P-3187-4400620 | UXLORIGINE1 | Base           | Unshielded cables               |

#### 2.3. Running mode

The system was configured for testing in a typical fashion (as a customer would normally use it).

• Communication between ORIGINE Afficheur and ORIGINE Puissance.

#### 2.4. Equipment modifications

A capacitor of 1pF is set outside of the RF module see photo for ORIGINE Afficheur and ORIGINE Puissance.





Page: 3 / 20

**ORIGINE Afficheur** 

**ORIGINE** Puissance

### 3. RADIATED EMISSION DATA

#### 3.1. Setup

Mains: 115V@60Hz

The EUT and auxiliaries are set on the floor.

#### Equipment configuration and running mode:

- The cellar is powered by 115V@60Hz
- The ORIGINE Afficheur is set on the remote control holder



Page: 4 / 20

The installation of EUT is identical for pre-characterization measures in a 3 meters full anechoic chamber and for measures on a 3 meters Open site.

#### 3.2. Test sequence and results (Transmit mode)

#### 3.2.1. Pre-characterization at 3 meters from 30MHz to 1GHz

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization, and from 0 to 360° of the EUT. See below for a graph example:

RBW: 120kHz - VBW: 300kHz

#### **RADIATED EMISSION - EUROCAVE**



10:49:00 12 Jan 2007

VBW: 300.00 KHz Device : ORIGINE (Afficheur - Puissance) Serial #: (110V@60Hz) Polar H



Page: 5 / 20

### RADIATED EMISSION - EUROCAVE



RBW: 120.00 KHz VBW: 300.00 KHz Device : ORIGINE (Afficheur - Puissance) Serial #: (110V@60Hz) Polar V

10:39:55 12 Jan 2007



Page: 6 / 20

#### 3.2.2. Pre-characterization at 3 meters below 30MHz of EUT

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber.

The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) axis and the loop antenna position was rotated during the test for maximized the emission measurement. See below for a graph example:



RADIATED EMISSION - EUROCAVE

11:21:04 12 Jan 2007

Frequency [MHz]

#### 3.2.3. Pre-characterization at 3 meters above 1GHz of EUT

10.0

Start: 0.150 Stop: 30.000

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) axis.



Page: 7 / 20

#### 3.2.4. Characterization on 3 meters open site from 30MHz to 1GHz

The product has been tested according to ANSI C63.4-(2003),. Radiated Emission was measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested with 110V@60Hz power line voltage, at a distance of 3 meters from the antenna and compared to the FCC Part 15 Subpart C limits. Measurement bandwidth was 120kHz from 30MHz to 1GHz. Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear

turntable azimuth search was performed with 360 degrees range.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.1.

Frequency list has been created with anechoic chamber pre-scan results.

| No | Frequencies<br>(MHz) | QPeak Lmt<br>(dΒμV/m) | QPeak<br>(dBμV/m) | QPeak-Lmt<br>(dB) | Angle<br>(deg) | Pol | Hgt<br>(cm) | Corr<br>Factor<br>(dB) | Comments |
|----|----------------------|-----------------------|-------------------|-------------------|----------------|-----|-------------|------------------------|----------|
| 1  | 655.027              | 46.0                  | 31.6              | -14.4             | 290            | Н   | 120         | 25.0                   |          |
| 2  | 811.018              | 46.0                  | 34.2              | -11.8             | 245            | Н   | 150         | 27.1                   |          |
| 3  | 863.006              | 46.0                  | 34.1              | -11.9             | 255            | Н   | 140         | 26.9                   |          |
| 4  | 967.020              | 54.0                  | 38.3              | -15.7             | 305            | Н   | 120         | 29.7                   |          |

#### 3.2.5. Characterization on 3 meters open site below 30 MHz

The product has been tested with 110V / 60Hz power line voltage, at a distance of 10 meters from the antenna and compared to the FCC part 15 subpart C §15.209& §15.225 limits. Measurement bandwidth was 9kHz from 150kHz to 30 MHz and 100 Hz from 9 kHz to 150 kHz.

The loop antenna position was rotated to locate the orientation that maximized emission reception during testing. Antenna search was performed for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on clause 2.1.

#### Test results:

| Frequency<br>(MHz) | QPeak Lmt<br>(dBµV/m) | QPeak<br>(dBµV/m) | QPeak-Lmt<br>(dB) | Angle EUT<br>(deg) | Pol      | Angle Ant.<br>(deg) | Tot Corr<br>(dB) |
|--------------------|-----------------------|-------------------|-------------------|--------------------|----------|---------------------|------------------|
|                    |                       |                   |                   |                    |          |                     | _                |
|                    |                       |                   |                   | No traceabl        | e signal |                     |                  |
|                    |                       |                   |                   |                    |          |                     | _                |



Page: 8 / 20

#### 3.2.6. Characterization on 3 meters open site from 1GHz to 9.15GHz

The product has been tested according to ANSI C63.4-(2003),. Radiated Emission was measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested with 110V@60Hz power line voltage, at a distance of 3 meters from the antenna and compared to the FCC Part 15 Subpart C limits. Measurement bandwidth was 1MHz from 1GHz to 9.15GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.1.

Frequency list has been created with anechoic chamber pre-scan results.

| No | Frequencies<br>(MHz) | Average<br>Lmt<br>(dBµV/m) | Av<br>(dBμV/m) | Av-Lmt<br>(dB) | Angle<br>(deg) | Pol | Hgt<br>(cm) | Corr<br>Factor<br>(dB) | Comments |
|----|----------------------|----------------------------|----------------|----------------|----------------|-----|-------------|------------------------|----------|
| 1  | 1.019                | 54                         | (35.9)         | -18.1          | 268°           | Н   | 115         | -7.2                   | _        |
| 2  | 1.032                | 54                         | (35.3)         | -18.7          | 269°           | Н   | 114         | -7.2                   | _        |
| 3  | 1.045                | 54                         | (34.8)         | -19.2          | 269°           | Н   | 116         | -7.2                   | _        |
| 4  | 1.836                | 54                         | 47.6           | -6.4           | 321°           | V   | 114         | -5                     | _        |
| 5  | 2.745                | 54                         | 53.5           | -0.5           | 75°            | V   | 127         | -1.2                   |          |
| 6  | 3.660                | 54                         | (48.3)         | -5.7           | 34°            | Н   | 102         | -0.4                   |          |
| 7  | 4.575                | 54                         | (47.5)         | -6.5           | 295°           | V   | 144         | +1.9                   | _        |
| 8  | 5.489                | 54                         | 53.9           | -0.1           | 126°           | V   | 128         | +2.9                   |          |

Note - Measure inside ( ) are in peak mode.

| No | Frequencies<br>(MHz) | Peak Lmt<br>(dBµV/m) | Peak<br>(dBµV/m) | Pk-Lmt<br>(dB) | Angle<br>(deg) | Pol | Hgt<br>(cm) | Corr<br>Factor<br>(dB) | Comments |
|----|----------------------|----------------------|------------------|----------------|----------------|-----|-------------|------------------------|----------|
| 1  | 1.019                | 74                   | 35.9             | -38.1          | 268°           | Н   | 115         | -7.2                   | _        |
| 2  | 1.032                | 74                   | 35.3             | -38.7          | 269°           | Н   | 114         | -7.2                   |          |
| 3  | 1.045                | 74                   | 34.8             | -39.2          | 269°           | Н   | 116         | -7.2                   |          |
| 4  | 1.836                | 74                   | 52.4             | -21.6          | 321°           | V   | 114         | -5                     |          |
| 5  | 2.745                | 74                   | 55.6             | -18.4          | 75°            | V   | 127         | -1.2                   | _        |
| 6  | 3.660                | 74                   | 48.3             | -25.7          | 34°            | Н   | 102         | -0.4                   |          |
| 7  | 4.575                | 74                   | 47.5             | -26.5          | 295°           | V   | 144         | +1.9                   |          |
| 8  | 5.489                | 74                   | 57.8             | -16.2          | 126°           | V   | 128         | +2.9                   | _        |



Page: 9 / 20

#### 3.3. Test sequence and results (Receive mode)

#### 3.3.1. Pre-characterization at 3 meters from 30MHz to 1GHz

A pre-scan of all the setup has been performed in a 3 meters full anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization, and from 0 to 360° of the EUT. See below for a graph example:

RBW: 120kHz - VBW: 300kHz



| Marker | Frequency<br>[MHz] | Peak<br>[dBuV] | Comments |
|--------|--------------------|----------------|----------|
| 1      | 520,1              | 27,64          |          |

#### 3.3.2. Pre-characterization at 3 meters above 1GHz and below 30MHz

No traceable signal.

#### 3.3.3. Characterization on 3 meters open site from 30MHz to 1GHz

The product has been tested according to ANSI C63.4-(2003),. Radiated Emission was measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested with 110V@60Hz power line voltage, at a distance of 3 meters from the antenna and compared to the FCC Part 15 Subpart C limits. Measurement bandwidth was 120kHz from 30MHz to 1GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.



Page: 10 / 20

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on clause 3.1.

Frequency list has been created with anechoic chamber pre-scan results.

| No | Frequencies<br>(MHz) | •    | QPeak<br>(dBμV/m) | QPeak-Lmt<br>(dB) | Angle<br>(deg) | Pol | Hgt<br>(cm) | Corr<br>Factor<br>(dB) | Comments |
|----|----------------------|------|-------------------|-------------------|----------------|-----|-------------|------------------------|----------|
| 1  | 519.993              | 46.0 | 41.0              | -5.0              | 335            | V   | 200         | 22.0                   | *        |

<sup>\*:</sup> Measures have been done at 10m distance and corrected following requirements of 15.31

### 3.4. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 is added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m.

$$FS = 52.5 + 7.4 + 1.1 - 29 = 32 dB\mu V/m$$

The 32 dB $\mu$ V/m value can be mathematically converted to its corresponding level in  $\mu$ V/m. Level in  $\mu$ V/m = Common Antilogarithm [(32dB $\mu$ V/m)/20] = 39.8  $\mu$ V/m.



#### 4. CONDUCTED EMISSION DATA

The product has been tested according to ANSI C63.4-(2003).

The product has been tested with 110V@60Hz power line voltage and compared to the FCC part 15 Subpart C limits. Measurement bandwidth was 9kHz from 150kHz to 30MHz.

Measurement was initially made with an HP-8591EM Spectrum Analyzer in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement with the Rohde & Schwarz ESH3 receiver for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary.

The Peak data are shown on the following plots. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

# **4.1. Setup** Mains: 110V@60Hz





The EST and auxiliaries are set on the floor. The equipment under test is powered via the LISN.



Page: 12 / 20

#### 4.2. TEST SEQUENCE AND RESULTS

Measures are performed on line 1 and line 2 of the power supply of the cellar.

# 4.2.1. Line conducted emission data (110V@60Hz) (ORIGINE Puissance with ORIGINE Afficheur) RBW: 9kHz - VBW: 30kHz





Page: 13 / 20

# 4.2.2. Neutral conducted emission data (110V@60Hz) (ORIGINE Puissance with ORIGINE Afficheur) RBW: 9kHz - VBW: 30kHz





Page: 14/20

## 5. FIELD STRENGTH OF FUNDAMENTAL §15.249

The polarization of the measurements for the larger power level is vertical (Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.)

Measure has been done at 3m distance.

| No | Frequencies<br>(MHz) |      | QPeak<br>(dBμV/m) | QPeak-Lmt<br>(dB) | Angle<br>(deg) | Pol | Hgt<br>(cm) | Corr<br>Factor<br>(dB) | Comments |
|----|----------------------|------|-------------------|-------------------|----------------|-----|-------------|------------------------|----------|
| 4  | 915.034              | 94.0 | 92.7              | -1.3              | 300            | Н   | 130         | 27.7                   |          |

No significantly variation of the fundamental amplitude during voltage variation testing per 15.31(e). Maximum deviation:

+0 dB -0.1 dB

#### With the following setup:

For ORIGINE puissance:

- Under extreme test condition (voltage variation from 85% to 115%):

For ORIGINE Afficheur:

- With a new batterie

#### Limits Subclause §15.249(a): Operation within the band 902-928MHz

| Frequency (MHz) | Field strength (µV/m) | Measurement distance (m) |
|-----------------|-----------------------|--------------------------|
| 902 - 928       | 50<br>(94 dΒμV/m)     | 3                        |

#### 5.1. Temperature

Temperature has been set at −30°C and +50°C at nominal voltage 110Vac. Operating frequency: 915.013000 MHz

 Voltage
 -30℃
 -20℃
 0℃
 20℃
 +50℃

 Frequency (MHz)
 915.013213
 915.015088
 915.012513
 915.013000
 914.989651



#### 6. **OCCUPIED BANDWIDTH §15.205**

Here is a plot of the occupied bandwidth, which shows that, 608-614 and 960-1240 restricted bands are free of carrier signal.



Stop: 1000,000 10:39:55 12 Jan 2007

Frequency [MHz]

Device : ORIGINE (Afficheur - Puissance) Serial #: (110V@60Hz) Polar V

Page: 15 / 20



### 7. 99% OCCUPIED BANDWIDTH COMPLIANCE

Measures are performed at 99% RBW 3kHz VBW 10kHz span 300kHz





Page: 16 / 20

Occupied bandwidth for ORIGINE Afficheur

Occupied bandwidth for ORIGINE Puissance

Band-edge: 126 kHz

**End of Tests** 

#### 8. CONCLUSION

The Equipment Under Test (ORIGINE Puissance pn: P-3187-4400620 & ORIGINE Afficheur pn: P-3186-4400631) in the configuration described in this report, shows a sufficient margin with the limits of the FCC Part 15 Subpart C & RSS210 limits.



Page: 17 / 20

# LISTE DE MATERIEL / LIST OF EQUIPMENT

|            | N°LCIE     | GENRE                                 | MARQUE           | TYPE           | SERIE      |
|------------|------------|---------------------------------------|------------------|----------------|------------|
|            | A1481006VO | Voltmètre RF                          | BOOTON           | 9200C          | 339301AA   |
|            | A1240169VO | Multimètre                            | Wavetek          | DM15XL         | 40417876   |
|            | C2320056VO | Réseau de couplage découplage         | FCC              | FCC 801 M1 25  | 28         |
|            | C2320057VO | Réseau de couplage<br>découplage      | FCC              | FCC 801 M2 25  | 38         |
|            | C2320058VO | Réseau de couplage<br>découplage      | FCC              | FCC 801 M3 25  | 96         |
|            | A4083040VO | Oscilloscope 100 MHz 500Ms/s          | Tektronix        | TDS30-25       | H712103    |
| EMC        | A2640011VO | Récepteur de mesure<br>9 KHz – 30 MHz | Rohde et Schwarz | ESH3           | 972079/117 |
| EMC        | A4049061VO | Transient limiter                     | Hewlett Packard  | 11947A         | 3107A01596 |
| EMR        | A7102019VO | Amplificateur 9 KHz – 1300 MHz        | Hewlett Packard  | 8447F Opt 64   | 3113A06394 |
| EMC        | A3169049VO | Conducted emission comb generator     | Bardet           |                | CGPR12     |
|            | A2320059VO | Réseau divers (LISN)                  | EMCO             | 3810/2SH       | 9511/1182  |
| EMR        | A3169050VO | Radiated emission comb generator      | Bardet           |                | PR17B      |
| EMR<br>EMC | A4060016VO | Analyseur de spectre 9 –1.8<br>KHz    | Hewlett Packard  | 8591E          | 3536A00384 |
| EMR        | C2040051VO | Antenne bi-log                        | Chase            | CBL6111A       | 1628       |
|            | A5160028VO | Générateur de Burst                   | Schaffner        | NSG2025-1      | 1109       |
|            | C1127003VO | Générateur onde de choc               | Schaffner        | NSG650         | 269        |
|            | A2249072VO | Pince de couplage                     | Schaffner        | CDN 126        | 194        |
|            | A7130044VO | Coupleur directif                     | Schaffner        | CDN 110        | 294        |
|            | C2320060VO | Réseau de couplage                    | Schaffner        | CDN116         | 166        |
|            | A2249019VO | Sonde de champ 30-1000 MHz            | Hewlett Packard  | 11940A         | 2650A05962 |
|            | A2249023VO | Sonde de champ 9 KHz – 30<br>MHz      | Hewlett Packard  | 11941A         | 2807A04302 |
|            | A5322008VO | Pistolet de DES 15 KV                 | Schaffner        | NSG 435        | 1354       |
|            | A5322009VO | Pistolet de DES 25 KV                 | Schaffner        | NSG 432        | 1226       |
|            | A2120003VO | Harmonic/Flickermetre                 | Hewlett Packard  | 6842A          | 3531A00109 |
|            | A7156005VO | Adaptateur 50-150 ohms                | FCC              | FCC-150-50     | 378        |
|            | A7156006VO | Adaptateur 50-150 ohms                | FCC              | FCC-150-50     | 379        |
|            | B2163022VO | Synthétiseur de fréquence             | Marconi          | 2023           | 112158027  |
|            | A2249021VO | Sonde de champ                        | Holaday          | HI-4422        | 90264      |
|            | A7102020VO | Amplificateur 0.01-1000 MHz           | KALMÚS           | 757LC          | 122297-7   |
|            | A7132005VO | Coupleur bi-directionnel 40 dB        | KALMUS           | DC100RHH       | 7330A-1    |
|            | A7122008VO | Attenuateur 6 dB                      | BIRD             | 8343-060       | 2038       |
|            | B4204052VO | Thermo-hygromètre                     | HUGER            |                |            |
| EMR        | D3044009VO | Chambre anéchoïque                    | EUROSHIELD       | RDF-F-60-060   | 1213       |
| EMC        | D3044010VO | Cage de faraday                       | RAY PROOF        |                | 4854       |
|            | A1290016VO | Pince multimètre                      | LEM HEME         | LH240          | 9611006692 |
|            | A5329032VO | Pince d'absorption                    | LUTHI            | MDS21          | 2826       |
|            | A5329033VO | Pince d'injection                     | LUTHI            | EM101          | 35430      |
|            | A5329042VO | Tube de ferrite                       | LUTHI            | FTC 101        | 4485       |
|            | A5322010VO | Station d'essai ESD                   |                  |                |            |
|            | A5329043VO | Câble blindé « IMR&EMR »              | AIRCOM           |                |            |
|            | A7122009VO | Atténuateur 10 dB                     | Hewlett Packard  | 8491A          | 2708A53166 |
|            | A5329034VO | Câble blindé injection IMC            |                  |                |            |
|            | A5329035VO | Câble blindé calibrage IMC            | AIRCOM           |                |            |
|            | A5329036VO | Module d'injection direct             |                  | MID01-100 ohms |            |



# RAPPORT D'ESSAI / *TEST REPORT* N° **200611-3431C-R1-E** Page : 18 / 20

|     | N°LCIE     | GENRE                                 | MARQUE               | TYPE        | SERIE        |
|-----|------------|---------------------------------------|----------------------|-------------|--------------|
|     |            | 100ohms                               |                      |             |              |
| EMR | C2040050VO | Antenne biconique                     | EMCO                 | 3104C       | 9401-4636    |
| EMR | C2040056VO | Antenne logpériodique                 | EMCO                 | 3146        | 2178         |
| EMR | F2000286VO | Contrôleur de table                   | EMCO                 | 1060-10     | 1217         |
| EMR | F2000287VO | Contrôleur de mat d'antenne           | EMCO                 | 1050        | 8811-1295    |
|     | A4049059VO | Adaptateur quasi-peak                 | Hewlett Packard      | HP85650     | 2811A01136   |
|     | A4060017VO | Analyseur de spectre                  | Hewlett Packard      | HP8568B     | 2732A04140   |
|     | A4060019VO | Spectrum analyseur display            | Hewlett Packard      | HP85662A    | 2816A16561   |
|     | A4060027VO | RF preselector                        | Hewlett Packard      | HP85685A    | 2833A00773   |
| EMR | F2000288VO | Mat d'antenne                         | EMCO                 | 1050        |              |
| EMR | F2000289VO | Table tournante                       | EMCO                 | 1060        |              |
| EMR | C4040009VO | Compresseur d'air                     | ATLAS COPCO          | LX111       | 0615-038     |
|     | C1207122VO | Dipole de précision                   | Schwarzbeck          | VHAP        | 211          |
|     | C1207123VO | Dipole de précision                   | Schwarzbeck          | UHAP        | 205          |
|     | C2040054VO | Antenne logpériodique                 | Schwarzbeck          | UHALP 9107  | 910          |
|     | C2040047VO | Antenne biconique                     | Schwarzbeck          | VHA 910     | 911          |
|     | C2040048VO | Antenne biconique                     | EMCO                 | 3104        | 3767         |
|     | C2040049VO | Antenne biconique                     | EMCO                 | 3110        | 1245         |
|     | C2040055VO | Antenne logpériodique                 | EMCO                 | 3146A       | 9011-1151    |
| EMC | C2320061VO | Réseau LISN                           | Telemeter electronic | NNB-2/16Z   | 98010        |
|     | C2320062VO | Réseau LISN triphasé ESH2-Z5          | Rhode et Schwarz     | 33852.19.53 | 841223/008   |
|     | C2320063VO | Réseau LISN triphasé ESH2-Z5          | Rhode et Schwarz     | 33852.19.53 | 841223/007   |
|     | A1240170VO | Multimètre                            | Fluke                | 87          | 75250745     |
|     | C2320064VO | Réseau divers                         | EM TEST              | CDN-M3      | 6219C        |
|     | C2320065VO | Réseau divers                         | EM TEST              | CDN-T8/RJ45 | 9011C        |
|     | C2040057VO | Antenne monopole                      | AH SYSTEM            | SAS-551     | 181          |
|     | A1290017VO | Sonde de courant                      | Schaffner            | CSP9160     | 1097         |
|     | C2320066VO | Réseau RSIL 4 Fils                    | Rhode et Schwarz     | ENY41       | 838119/023   |
|     | C2320067VO | Réseau RSIL 2 x 2 Fils                | Rhode et Schwarz     | ENY22       | 836727/015   |
|     | A5329034VO | Sonde injection de courant            | Schaffner            | CIP8213     | 52           |
|     | C2042027VO | Antenne cornet                        | EMCO                 | 3115        | 6382         |
|     | A4060018VO | Analyseur de spectre 9 KHz – 26.5 GHz | Hewlett Packard      | 8593E       | 3409u00537   |
|     | A4024018VO | Oscilloscope 500 MHz                  | Hewlett Packard      | 54542C      | US36040602   |
|     | A5442021VO | Générateur HF 100 KHz – 3200<br>MHz   | Hewlett Packard      | 8648C       | 3443U00509   |
|     | A4024019VO | Oscilloscope                          | Hewlett Packard      | 54720A      | 0007426600   |
|     | A4089115VO | Active probe 2.5 GHz                  | Hewlett Packard      | 54701A      | 3220A 00325  |
|     | A4089116VO | Active probe 2.5 GHz                  | Hewlett Packard      | 54701A      | 3220A 00329  |
|     | C2040058VO | Close fied probe 30 MHz – 1<br>GHz    | Hewlett Packard      | HP11940A    |              |
|     | C2040059VO | Close fied probe 9 KHz – 30<br>MHz    | Hewlett Packard      | HP11941A    |              |
|     | A4069007VO | High frequency probe                  | Hewlett Packard      | 85024A      | 280 1A 04205 |
|     | A5329044VO | Pince d'absorption 30MHz–<br>1GHz     | Rhode et Schwarz     | 85024A      | 194.0100.50  |
|     | A3169048VO | Field site source                     | EMCO                 | 4610        | 9012-1161    |
|     | A7102021VO | Amplificateur 9 KHz – 1300 MHz        |                      | 8447F       | 2944A04010   |
|     | A7102022VO | Amplificateur 0.5-1000 MHz            | KALMUS               | 706FC       | 7359-1       |
|     | A7122010VO | Atténuateur 70 dB                     | Hewlett Packard      | 8495B       | 3308A17069   |
|     | A7122011VO | Atténuateur 20 dB - 0.1 GHz           | ROLS ESH             | ESH 2Z11    | 349.7518.52  |
|     | A1290018VO | Sonde de courant                      | HF<br>STROMWANDLER   | ESH2-Z1     | 872 545/24   |
|     | A2240015VO | Sonde de champ                        | EMCO                 | 7405        | 9301-2355    |
|     | 1001040    | - Condo do onamp                      |                      |             | 1000. 2000   |



# RAPPORT D'ESSAI / *TEST REPORT* N° **200611-3431C-R1-E** Page : 19 / 20

|     | N°LCIE     | GENRE                                | MARQUE          | TYPE                        | SERIE        |
|-----|------------|--------------------------------------|-----------------|-----------------------------|--------------|
|     | A7132006VO | Coupleur bi-directionnel             | Hewlett Packard | 778D                        | 1144A07705   |
|     | A7102023VO | Amplificateur 2.5 GHz                | Mini-circuits   | ZFL-2500VH AS               |              |
|     | A7102024VO | Amplificateur 8 GHz                  | HEROTEK         | A1080304A                   | 222033       |
|     | D1022117VO | Enceinte climatique                  | BIA CLIMATIC    | CL 6-25                     | 200 105 6    |
|     | A5329045VO | Câble IMR&EMR                        | SMEE            | KX13                        |              |
|     | A5329046VO | Câble EMR FCC                        | RADIALL         | 9542 gd câb. vert           |              |
|     | A5329047VO | Câble EMR FCC                        | RADIALL         | 960603 pt câb.<br>vert      |              |
|     | C2040052VO | Antenne boucle                       | Electro-metrics | EM-6879                     | 690234       |
|     | C2040053VO | Antenne boucle                       | TELEC           | CT2A                        | 140          |
|     | A2322003VO | Outil courant de fuite               | SMEE            | 61010A3&A4                  |              |
|     | A5329048VO | Câble EMR FCC                        | SUCOFLEX        | 106G                        | 553          |
|     | A1500016VO | Wattmètre RF                         | ANRITSU         | ML1437A                     | 03050003     |
|     | A7132007VO | Coupleur bi-directionnel 20 dB       | MCLI            | C36-20                      | 0D2LS 0148   |
|     | A5329038VO | Câble coaxial 3.5 m                  | SUHNER          | SUCOFLEX 106                | 26732/6      |
|     | A2249024VO | Sonde de champ électrique<br>5GHz    | HOLADAY         | HI-6005                     | 107884       |
|     | A7102025VO | Amplificateur 0.8-3GHz               | PRANA           | AP32 SV125A                 | 0310-0573    |
| EMR | A4049060VO | Adaptateur quasi-peak                | Hewlett Packard | HP85650A                    | 2811A01134   |
| EMR | A4060028VO | Spectrum analyseur display           | Hewlett Packard | HP85662A                    | 2816A16603   |
| EMR | A4060029VO | Spectrum analyseur                   | Hewlett Packard | HP8568B                     | 2732A04155   |
| EMR | A4060030VO | Preselcteur RF                       | Hewlett Packard | HP85685A                    | 2837A00784   |
|     | C2042028VO | Antenne cornet                       | Schwarzbeck     | BBHA 9170                   | BBHA9170232  |
|     | A7043036VO | Alimentation DC 300W                 | SODILEC         | 7SDLIN/GB<br>AUTO 300-150.6 | 493711       |
|     | A5320017VO | BEST EMC                             | Schaffner       |                             | 200040-023SC |
|     | A5322011VO | Pistolet de DES                      | Schaffner       | BEST ESD                    | 1033         |
|     | C2320073VO | Pince de couplage TRS                | Schaffner       | CDN8014                     | 074          |
| EMC | C2320068VO | Line impedance stabilisation network | EMCO            | 3825/2                      | 9309/2122    |
|     | C2320069VO | Réseau divers                        | LUTHI           | CDN L-801 M2                | 2076         |
|     | C2320070VO | Réseau divers                        | LUTHI           | CDN L-801 M2                | 2075         |
|     | A7102026VO | Amplificateur                        | ALDETEC         | ALS01452                    | 001          |
|     | A5442022VO | Générateur 2GHz – 18GHz              | Hewlett Packard | 8672A                       | 2104A01703   |
|     | A7122013VO | Burst verification coupler           | Schaffner       | INA 265 A                   | 20935/1      |
|     | A7122014VO | Burst verification coupler           | Schaffner       | INA 266                     | 20935/2      |
|     | A5329040VO | Câble coaxial                        |                 | RG58                        |              |
|     | A2249022VO | HV PROBE (E6N CVH1-100/1)            | Schaffner       | MD200                       | 037005       |
|     | A1092039VO | Pince ampèremétrique                 | Chauvin Arnoux  | P01120040A                  | 100044CAV    |
|     | A1091249VO | Shunt coaxial                        | LEM             | ISM 5P/5                    | 4502         |
|     | A5329041VO | Câble coaxial vert 45cm              |                 | 10111 01 70                 |              |
|     | D2124025VO | Marteau de choc                      | LCIE            | Marteau V01                 | V01          |
|     | A7043037VO | Alimentation DC 30V 10A              | ELC             | AL924                       | 95/00600     |
|     | A4089117VO | Sonde de tension                     | SMEE            |                             |              |
|     | A7156004VO | Adaptateur 100ohms                   | LUTHI           | CR100A                      | 221          |
|     | A1240171VO | Multimètre                           | FLUKE           | 189                         | 89770115     |
|     | C2320071VO | CDN                                  | LUTHI           | L 801 M4 PE                 | 2088         |
|     | A7122012VO | Atténuateur                          | WEINSCHEL       | 48-40-43                    | BT2126       |
|     |            | PINCE                                |                 | 12 12 10                    |              |
|     | A1092041VO | ELECTROMAGNETIQUE                    | LUTHI           | EM101                       | 35758        |
|     | 71032071VO | LLLOTTONIKONIKOTI                    |                 |                             |              |

EMR : Emission rayonnée / Radiated emission EMC : Emission conduite / Conducted emission



Page: 20 / 20

### TABLE DES INCERTITUDES / UNCERTAINTIES CHART

| Type de mesure / Kind of measurement                                  | Incertitude élargie<br>laboratoire /<br>Wide uncertainty<br>laboratory<br>(k=2) ±x(dB) | Incertitude limite<br>du CISPR / CISPR<br>uncertainty limit<br>±y(dB) |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Emission Rayonnée / Radiated emission                                 |                                                                                        |                                                                       |
| Antenne biconique (30MHz - 200MHz) - polarisation horizontale         | ±4.46 dB                                                                               | ±5.2                                                                  |
| Antenne biconique (30MHz - 200MHz) - polarisation verticale           | ±5.15 dB                                                                               | ±5.2                                                                  |
| Antenne log-périodique (200MHz - 1GHz) - polarisation horizontale     | ±4.48 dB                                                                               | ±5.2                                                                  |
| Antenne log- périodique (200MHz - 1GHz) - polarisation verticale      | ±5.04 dB                                                                               | ±5.2                                                                  |
| Emission conduite RSIL / Conducted emission LISN                      |                                                                                        |                                                                       |
| Estimation de l'incertitude pour des mesures de 150kHz à 30MHz        | ±3.40 dB                                                                               | ±3.6                                                                  |
| Emission conduite RSI / Conducted emission LIS                        |                                                                                        |                                                                       |
| Estimation de l'incertitude pour des mesures de 150kHz à 30MHz        | ±3.20 dB                                                                               | ±3.6                                                                  |
| Emission conduite sonde de courant / Conducted emission current probe |                                                                                        |                                                                       |
| Estimation de l'incertitude pour des mesures de 150kHz à 30MHz        | ±2.68 dB                                                                               | ±3.6                                                                  |

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par le CISPR, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values.