KEEI ISSUE PAPER

이슈페이퍼

정책 이슈페이퍼 17-02

에너지빈곤층 추정 및 에너지 소비특성 분석

윤태연, 박광수

목 차

- I. 서론 / 1
- Ⅱ. 가구 연료비 지출 분석 / 2
- Ⅲ. 에너지빈곤층 추정 / 10
- Ⅳ. 정책 시사점 / 19
- 〈참고자료〉 / 22

Ⅰ. 서론

- □ 2000년대 들어 경제성장률이 둔화되고 소득양극화 현상이 심화되는 가운데 에너지가격이 급등함에 따라 가구의 에너지소비 여건은 크게 악화됨.
- 특히 저소득층에서 주로 사용하는 등유의 가격이 가장 큰 폭으로 상승하는 등 취약계층을 중심으로 에너지 구입비용에 대한 부담이 크게 증가
- □ 에너지소비에 어려움을 겪는 가구가 늘어감에 따라 정부를 중심으로 다양 한 에너지지원 프로그램이 도입되기 시작
 - 저소득층을 비롯한 취약가구에 대한 에너지지원사업은 크게 소득지원사업, 가격할인사업, 효율개선사업 등의 세 가지 범주로 구분할 수 있으며, 현재 각 범주 내에서 다양한 사업들이 시행되고 있음.
- 에너지지원사업의 규모도 지속적으로 확대되어 왔는데, 최근 에너지바우처 의 도입으로 현재 총 지원규모는 연간 5천억 원을 넘는 것으로 추정됨.
- □ 그러나 막대한 지원규모에도 불구하고 에너지지원사업의 성과를 종합적으 로 평가할 수 있는 지표는 부재한 실정
 - 에너지복지와 관련한 연구의 대부분은 기존 지원사업의 문제점을 분석하고 개선방안을 제시하거나, 필요한 새로운 사업을 개발하고 설계하는데 중점 을 두고 수행됨.
 - 일부 사업의 경우 지원가구수와 같은 단순한 통계를 성과지표로 활용하고 있는 상황

- □ 본 연구는 에너지빈곤충 추정을 위해 필요한 사전연구로서, 에너지빈곤충에 대한 추정방법을 검토하고 평가하는데 목적을 둠.
 - 에너지빈곤층이 한 나라의 에너지복지 상태를 나타내고 에너지지원사업의 성과를 평가할 수 있는 지표는 아니지만 향후 에너지지원사업의 방향을 설 정하는데 주요한 참고지표로 활용이 가능
 - 에너지빈곤층 규모에 대한 장기적인 국가목표를 설정하고, 이를 토대로 에 너지빈곤층을 줄여나가기 위한 구체적인 정책을 수립하는 등 정부의 에너 지복지 관련 정책에 직접적으로 활용할 수도 있음.
 - 이러한 점에서 에너지빈곤층은 에너지복지와 관련하여 파악하고 관리해야 할 가장 기초적인 지표라 할 수 있음.
- □ 본 연구는 다양한 방법으로 에너지빈곤충을 추정하고 비교를 통해 추정방 법들 각각의 장점과 한계에 대해 논의함.
- 이를 토대로 최종적으로는 추정방법별로 정책적 활용가능성에 대해 평가하 고 정책적 시사점을 도출

Ⅱ. 가구 연료비 지출 분석

- 1. 가구 연료비 추이
- □ 2006년에서 2015년까지 10년간 가구당 월평균 연료비 지출은 10만7,395 원을 기록하였고 2013년까지 증가하다 이후 하락 추세로 전환됨.

- 국제유가 급등으로 인한 에너지 가격 상승의 영향으로 가구의 월평균 연료 비 지출은 2013년까지 증가
 - 월평균 연료비는 2006년 83,121원에서 2013년 114,188원으로 37.4% 증가
- 전체 연료비에서 각 에너지원이 차지하는 지출 비중은 2015년 기준으로 전 기료와 도시가스비가 각각 44.0%와 41.6%로 두 연료를 합쳐 85.6%에 달함.

<표 1> 에너지원별 가구당 연료비 추이

(단위 : 원/월)

연도	전기	LNG	LPG	등유	연탄	공동난방	기타	계
2006	37,164	26,754	3,415	8,644	365	5,664	1,115	83,121
2007	37,852	26,109	3,222	7,300	415	5,056	1,123	81,078
2008	40,008	29,998	4,028	6,938	511	5,197	1,212	87,892
2009	40,736	32,314	4,647	7,119	738	5,448	613	91,616
2010	44,662	38,095	4,993	9,254	1,040	5,728	406	104,179
2011	44,900	40,528	5,740	9,464	901	5,561	401	107,495
2012	46,429	44,696	5,621	9,489	805	5,335	358	112,734
2013	47,366	46,500	4,945	8,320	915	5,641	501	114,188
2014	44,590	44,005	4,306	7,098	559	4,762	589	105,908
2015	43,909	41,476	3,705	5,597	575	3,860	585	99,708

주 : 공동난방은 공동주택난방비를, 기타는 경유 및 기타연료의 비용을 의미

- 2013년 이후 연료비 하락은 에너지 가격 하락과 겨울철 온난한 기온의 영 향이 복합적으로 작용한 결과
 - 2014년의 경우 난방도일과 냉방도일은 2013년 대비 각각 13.5%와 35.6% 감소하여 연료비 하락에 크게 기여
 - 난방도일과 냉방도일의 연료비와의 상관관계 역시 직접 영향을 주는 연료 가격 보다는 낮지만 각각 0.723과 0.697로 상당히 높은 수준임.

2 -(2006=100) 160 150 140 137.4 33 120 110 8 97.5 8 8 2008 2011 2012 2006 2007 2009 2010 2013 2014 2015 - 연료비 연료가격 냉방도일 난방도일 (0.697)

[그림 1] 연료비 관련 주요 변수 추이

주 : 2006년 해당 변수의 값을 기준으로 지수화

2. 가구소득 대비 연료비 비율

- □ 가구소득 대비 연료비 비율을 보면 전체 비율은 2010년에 최대를 기록한 이후 하락 추세를 보이고 있고, 평균 비율은 2013년에 최대를 기록함.
 - 전체 비율은 전체 가구의 평균 연료비를 평균 소득으로 나누어 준 값이며, 평균 비율은 가구별로 소득 대비 연료비 비율을 구한 후 이를 평균한 값 을 의미함.
 - 전체 비율에서는 연료비 지출이나 소득이 많은 가구일수록 일종의 가중치 가 주어지게 되므로 표에서와 같이 평균 비율 보다 작은 값을 보임.
 - 지난 십년간 평균적으로 소득의 5.44%를 연료비로 지출하였고 가장 높았 던 2013년과 가장 낮았던 2015년간의 격차는 1.22%p로 나타남.

4 정책 이슈페이퍼 17-02

<표 2> 연도별 가구소득 대비 연료비 비율

(단위 : 원/월)

				(211 · 2/2/
조사연도	가구소득	연료비	전체 비율	평균 비율
2006	3,201,357	103,639	3.24%	5.23%
2007	3,296,760	98,593	2.99%	4.93%
2008	3,311,788	102,107	3.08%	5.08%
2009	3,258,516	103,577	3.18%	5.47%
2010	3,339,450	114,399	3.43%	5.81%
2011	3,352,612	113,500	3.39%	5.91%
2012	3,423,962	116,478	3.40%	5.87%
2013	3,447,205	116,457	3.38%	<u>5.97%</u>
2014	3,442,823	106,656	3.10%	5.41%
2015	3,457,454	99,708	2.88%	<u>4.75%</u>
평균	3,347,855	107,395	3.21%	<u>5.44%</u>
중위값	2,965,300	96,886	-	3.31%

주 : 가구소득과 연료비 지출액은 소비자물가지수로 보정한 실질 금액

- □ 다음의 표는 소득분위별로 해당 분위에 속하는 가구들의 가구소득, 연료비, 그리고 연료비 비율 각각의 평균값을 나타냄.
 - 두드러진 특징은 분위 간 가구소득의 격차에 비해 연료비 차이가 미미하다 는 점임.
 - 1분위 대비 10분위 가구의 연료비와 소득을 비교하면 소득의 차이는 20배 이상인 반면 연료비 지출액은 2배 정도에 그침. 연료비가 전형적인 필수재 임을 의미함.
 - 가구소득 대비 연료비 비율은 소득이 높을수록 낮아지는 모습을 보임.

- 소득 1분위 가구의 경우 가구소득의 18.55%를 연료비로 지출하고 있으며, 이러한 수치는 2분위 가구에 비해서도 두 배 이상 높고, 소득 10분위에 비 해서는 10 배 이상 높은 결과

<표 3> 소득분위별 가구소득, 연료비, 연료비 비율

(단위 : 원/월)

소득분위	가구소득		연료비		연료비 비율
1분위	400,611	(100.0)	64,183	(100.0)	18.55%
2분위	992,474	(247.7)	77,499	(120.7)	7.98%
3분위	1,577,213	(393.7)	89,319	(139.2)	5.70%
4분위	2,149,846	(536.6)	99,305	(154.7)	4.63%
5분위	2,694,959	(672.7)	106,568	(166.0)	3.96%
6분위	3,241,231	(809.1)	114,885	(179.0)	3.55%
7분위	3,835,999	(957.5)	119,896	(186.8)	3.13%
8분위	4,564,099	(1,139.3)	124,450	(193.9)	2.73%
9분위	5,610,921	(1,400.6)	131,329	(204.6)	2.35%
10분위	8,414,625	(2,100.4)	146,547	(228.3)	1.81%

주 : () 안의 숫자는 소득 1분위 가구를 기준으로(=100.0) 지수화한 수치이다.

- □ 가구원수가 많아질수록 연료비 지출액 역시 증가하나 가구원수와 연료비가 비례하여 증가하는 것은 아님.
- 1인 가구의 연료비 지출액은 3인이나 4인 가구의 절반 수준이고 2인 가구 와 비교하여서도 61.5% 수준에 그친 것으로 나타남.
 - 연료비 지출액이 1인 가구에서 상대적으로 큰 폭으로 떨어지는 이유는 1인 가구에서 소득수준이 낮고 에너지 소비가 적은 노인가구의 비중이 40.8% 로 높기 때문

- 연료비 비율도 1인 가구가 8.18%로 가장 높고 가구원수가 증가하면서 비 율이 하락함. 4인 가구는 3.73%로 1인 가구의 1/2 수준을 하회

<표 4> 가구원수별 가구소득, 연료비, 연료비 비율

(단위 : 원/월)

가구원수	비율	가구소득		연료비	연료비 비율
1명	17.0%	1,466,381	(100.0)	59,360 (100.0)	8.18%
2명	26.8%	2,645,290	(180.4)	96,433 (162.5)	6.67%
3명	23.4%	3,877,247	(264.4)	117,963 (198.7)	4.36%
4명	25.3%	4,470,861	(304.9)	129,287 (217.8)	3.73%
5명 이상	7.5%	4,677,671	(319.0)	148,456 (250.1)	4.01%

주 : '비율'은 가구원수별 해당되는 가구의 비율을 의미

- □ 연료비 지출은 아파트 가구가 단독주택보다 11.9% 많은 반면, 소득에서의 차이로 연료비 비율은 오히려 단독주택 가구가 2% 포인트 이상 높음.
- 단독주택과 아파트 가구의 소득 차이에 비해 연료비 차이가 적은 것은 단 독주택의 경우 에너지효율이 상대적으로 열악하고 가격이 높은 등유 난방 비중이 높기 때문임.

<표 5> 주거형태별 가구소득, 연료비, 연료비 비율

(단위 : 원/월)

주택유형	비율	가구소득		연료비		연료비 비율
단독주택	33.6%	2,477,322	(100.0)	100,062	(100.0)	6.83%
아파트	48.1%	4,072,622	(164.4)	111,942	(111.9)	4.34%
연립·다세대	17.1%	3,050,560	(123.1)	109,039	(109.0)	5.79%
기타	1.2%	2,971,668	(120.0)	107,394	(107.3)	5.62%

주 : 기타는 비주거용 건물 및 주택 이외의 거처를 의미

□ 월별 연료비를 보면 동절기에 지출이 많고 여름이 적은 계절성을 보임.

- 12월부터 다음해 3월까지 겨울철 기간 연료비 지출액은 여름철에 비해 두 배 이상 증가. 연료비 지출이 가장 많은 달은 2월로, 가장 적은 7월 대비 2.7배 수준
- 에너지원별로는 대부분의 에너지원에서 겨울에 지출이 크게 증가하는 계절 성을 보이나 전력은 상대적으로 계절적 차이가 적은 것으로 나타남. 다양 한 가전기기의 사용과 냉방용 소비 등의 영향이 작용

<표 6> 월별 연료비 지출액과 연료비 비율

(단위 : 원/월)

조사월	연료비	전기	LNG	LPG	등유	공동	연탄	기타	연료비 비율
1	160,434	53,757	66,837	7,681	18,409	11,811	872	1,068	8.31%
2	167,166	56,934	74,846	7,345	13,509	12,986	619	927	8.61%
3	145,777	52,311	65,726	6,519	9,078	10,567	664	911	7.71%
4	118,564	45,916	52,153	5,557	5,329	8,390	431	787	6.10%
5	94,103	43,582	37,657	4,436	2,549	4,950	233	695	4.91%
6	72,110	40,464	23,801	3,551	1,572	2,057	138	527	3.89%
7	61,974	40,406	15,797	3,004	1,146	982	134	505	3.45%
8	64,517	46,005	12,934	2,721	1,321	759	208	569	3.64%
9	71,751	50,982	11,885	2,838	3,976	667	761	642	3.79%
10	71,766	42,945	14,883	3,164	7,433	1,037	1,627	676	3.94%
11	87,577	41,908	24,935	4,062	11,461	2,797	1,606	808	4.78%
12	124,334	47,537	45,419	5,902	16,724	6,536	1,211	1,005	6.58%
평균	103,569	46,933	37,365	4,742	7,737	5,321	710	761	5.49%

- □ 월별 연료비 비율을 소득분위별로 다시 정리하면 확연한 편차를 보이는 가구는 소득 1분위 가구로, 겨울철 자신의 소득 사분의 일 가까이를 연료 비로 지출
 - 연간자료 수치와 비교할 경우 분위별로 차이는 있지만 1분위를 제외하고 는 대부분 유사한 비율이 확인됨.

<표 7> 월별 소득분위별 연료비 비율

조사월	1분위	2분위	3분위	4분위	5분위	6분위	7분위	8분위	9분위	10분위
1	27.75%	12.76%	8.82%	6.90%	6.03%	5.23%	4.56%	4.00%	3.41%	2.39%
2	28.14%	12.97%	9.02%	7.23%	6.22%	5.54%	4.85%	4.21%	3.59%	2.60%
3	24.76%	11.18%	7.76%	6.37%	5.50%	4.89%	4.30%	3.80%	3.24%	2.42%
4	20.44%	8.59%	6.28%	5.15%	4.49%	3.96%	3.50%	3.10%	2.65%	2.01%
5	17.55%	6.88%	4.97%	4.06%	3.53%	3.17%	2.79%	2.47%	2.12%	1.61%
6	14.55%	5.50%	3.85%	3.14%	2.72%	2.39%	2.12%	1.88%	1.59%	1.20%
7	13.78%	4.73%	3.34%	2.70%	2.33%	2.04%	1.82%	1.59%	1.37%	0.99%
8	14.50%	4.90%	3.49%	2.81%	2.42%	2.15%	1.88%	1.65%	1.41%	1.09%
9	15.39%	5.53%	3.87%	3.09%	2.67%	2.36%	2.05%	1.79%	1.55%	1.15%
10	15.38%	6.06%	4.10%	3.17%	2.67%	2.36%	2.05%	1.82%	1.53%	1.13%
11	18.11%	7.52%	5.14%	3.84%	3.26%	2.86%	2.54%	2.15%	1.87%	1.40%
12	23.59%	10.43%	7.03%	5.55%	4.61%	4.08%	3.59%	3.13%	2.63%	1.85%
평균	19.76%	8.11%	5.65%	4.52%	3.87%	3.41%	2.99%	2.61%	2.23%	1.67%

Ⅲ. 에너지빈곤층 추정

1. 에너지빈곤충 추정방법

- □ 에너지빈곤(fuel poverty 또는 energy poverty)¹)이 본격적으로 주목받기 시 작한 시기는 1970년대 오일쇼크로 인해 에너지가격이 급등하면서부터임.
- 영국에서는 당시 겨울철 폐렴으로 인한 노인들의 인명피해가 급증하면서 에너지빈곤이 심각한 사회문제로 대두되기 시작(Healy, 2003:pp.1-2)
- 에너지빈곤을 명시적으로 정의한 최초의 문헌은 Isherwood and Hancock (1979)으로(Liddell et al, 2012), 그들은 "연료, 조명, 그리고 전기 사용을 위해 중위소득 가구가 지출하는 금액의 2배 이상을 지출하는 가구"로 에너지빈곤층을 정의
 - 1977년 영국의 Family Expenditure Survey (FES) 자료를 통해 산정된 에 너지빈곤의 기준은 가구소득 대비 연료비 비율이 11%가 넘는 가구이었고, 이후 '2배 중위소득' 개념은 Boardman의 91년 저서 "Fuel Poverty"에서 '연료비 10%' 기준으로 구체화됨.
- '연료비 10%' 기준에 대한 문제점들이 꾸준히 지적되자 영국 정부에서는 11년 London School의 Hills교수에게 에너지빈곤의 기준에 대해 재검토해 줄 것을 공식요청.

¹⁾ 관련 해외문헌에서 사용되는 'fuel poverty'와 'energy poverty' 두 용어 모두 국내에서는 '에너지빈 곤'으로 번역되어 사용됨. 두 용어를 혼용하여 쓰는 학자들도 있는 반면(예, Thomson et al., 2016), 일부 학자들은 'energy poverty'는 에너지서비스에 대한 접근가능성(accessibility)을, 'fuel poverty'는 에너지비용에 대한 부담정도(affordability)를 의미하는 용어로 구분하여 사용하기도 함 (예, Li et al., 2014).

- Hills교수는 11년과 12년 두 권의 보고서를 통해 'Low Income High Cost (LIHC)'라는 기준을 새롭게 제안하였으며, 13년부터 잉글랜드 정부에서는 기존의 10% 기준을 대체하여 사용
- 구체적인 수치를 제시하지는 않지만 아일랜드(2007년), 프랑스(2009년), 슬 로바키아(2014년)에서도 최근 법령을 통해 에너지빈곤층을 명시
- 우리나라의 경우 에너지빈곤에 대한 공식적인 정의가 부재하며, 연구자에 따라 상이한 기준을 적용하여 에너지빈곤층 규모를 추정
 - 2006년「에너지법」설립 이후 국내에서도 에너지빈곤층을 추정하기 위한 연구들이 이어지고 있으나, 대부분이 해외의 기준들을 연구자 임의로 차용 하여 적용
 - 2009년「녹색성장 5개년계획」에서"에너지빈곤 개념 및 에너지빈곤층 선정 기준 확립"을 주요 국가전략 중 하나로 선정한바 있으나, 그 후 관련한 논 의가 진행된 바는 없음.
 - 2014년 에너지복지사업지원의 근거를 마련하기 위해 신설된「에너지법」제 16조의2에서"저소득층 등 에너지이용에서 소외되기 쉬운 계층"을"에너지이 용 소외계층"으로 밝히고 있으나, 구체적인 정의 부재
- □ 본 연구에서는 국내에서 에너지빈곤충 추정에 주로 사용되어 온 '연료비 비 율'과 '최소에너지' 기준 외에 '에너지바우처'와 '부담가능비용' 기준을 포함 하여 총 4가지 기준들에 대해 검토
 - 연료비 비율 기준 : 이 방법은 영국을 비롯하여 현재 세계적으로 가장 광 범위하게 사용되는 기준임
 - 본 연구에서는 가구의 경상소득 대비 연료비 지출액의 비율이 10% 이상인 가구를 에너지빈곤층으로 규정

- 최소에너지 기준 : 일반 빈곤을 평가하는데 사용되는 개념을 에너지빈곤에 활용한 경우로, 최소한의 에너지소비 기준을 설정함.
- 본 연구에서는 가구원수별로 평균 연료비의 70% 이하를 연료비로 지출하는 가구를 대상으로 함.
- 에너지바우처 기준 : 현행 에너지바우처사업의 지원대상 선정기준을 자료에 맞게 변경
- 가구 경상소득이 기준 중위소득의 40%이하인 가구로, 노인(만 65세 이상)이나 영유아(만 6세 미만)를 포함하는 가구
- 부담가능비용 기준 : 주거비용에 대한 부담을 평가하는 사용되는"잔여소득 접근법"을 에너지비용에 응용한 사례
- 가구 경상소득에서 연료비 지출액을 제외한 비용이 최저생계비에서 최소 광열비를 제외한 비용 보다 적은 가구

2. 에너지빈곤층 추정결과

- □ 최소에너지 기준을 제외한 나머지 기준들의 경우 10% 내외의 가구비율을 나타내는 반면, '최소에너지' 기준을 적용한 경우 에너지빈곤충은 전체 가 구의 삼분의 일을 초과
 - 이러한 결과는 최소에너지비용으로 4인 가구 평균 연료비의 70%를 기준선 으로 설정하였기 때문.2)
 - 다른 기준은 대부분 2013년까지 에너지빈곤층 가구 비율이 증가하고 이후 하락하는 것으로 나타나지만 최소에너지 기준의 경우 반대의 패턴을 보임.

^{2) &#}x27;최소에너지' 기준의 정책적 활용을 위해서는 규범적 기준을 통한 필요 에너지소비량을 산정할 필요가 있음.

			11.11.	12 (L000) L	-010 <i>L</i>)
면도	연료비 비율	최소에너지	에너지바우처	부담가능비용	가구소득

<표 8> 연도벽 에너지빈곤층 가구비육 (2006년~2015년)

연도	연료비 비율	최소에너지	에너지바우처	부담가능비용	가구소득	연료가격
2006	9.5%	38.2%	7.2%	12.7%	100.0	100.0
2007	8.2%	36.4%	7.4%	12.1%	103.0	95.1
2008	9.0%	35.8%	7.4%	12.1%	103.4	98.5
2009	10.2%	35.9%	7.7%	13.7%	101.8	99.9
2010	11.3%	34.7%	7.7%	13.3%	104.3	110.4
2011	11.6%	35.1%	8.8%	13.7%	104.7	109.5
2012	12.3%	33.4%	9.7%	13.8%	107.0	112.4
2013	12.5%	36.1%	10.7%	14.3%	107.7	112.4
2014	10.9%	35.6%	10.6%	14.8%	107.5	102.9
2015	8.7%	38.3%	10.2%	13.6%	108.0	96.2
평균	10.4%	36.0%	8.7%	13.4%	104.7	103.7

주 : 가구소득과 연료가격은 2006년을 기준(=100.0)으로 가구의 경상소득과 연료비 지출액 각각의 가 중 평균값을 지수화한 수치

- □ 소득분위별로 보면 최소에너지 기준을 제외한 나머지 방법의 경우 에너지 빈곤층이 대부분 소득 1분위와 2분위에 집중됨.
 - 에너지바우처 기준과 부담가능비용 기준의 경우 소득 5분위부터는 에너지 빈곤층이 발생하지 않음.
 - 부담가능비용 기준의 경우 소득 1분위 가구의 88%가 에너지빈곤층으로 다 른 기준보다 훨씬 높은 것으로 나타남.
 - 대부분의 기존 연구에서는 소득이 일정수준 이상인 가구를 에너지빈곤층 에서 배제. 예를 들어 Hills교수는 중위소득의 60% 이하로 에너지빈곤층의 소득수준을 제한

- 고소득 가구에서 연료비 비율이 높은 것은 과소비에 따른 결과일 가능성도 있음.3)

<표 9> 소득분위별 에너지빈곤층 가구비율

소득분위	연료비 비율	최소에너지	에너지바우처	부담가능비용
1분위	60.2%	63.0%	60.2%	88.0%
2분위	26.1%	53.3%	22.7%	38.1%
3분위	10.0%	45.0%	3.4%	7.1%
4분위	4.1%	40.2%	0.3%	0.4%
5분위	1.9%	35.8%	0.0%	0.0%
6분위	0.8%	30.7%	0.0%	0.0%
7분위	0.4%	28.0%	0.0%	0.0%
8분위	0.2%	25.7%	0.0%	0.0%
9분위	0.0%	21.6%	0.0%	0.0%
10분위	0.0%	16.6%	0.0%	0.0%

주 : 가구비율은 해당 분위에 속하는 전체 표본가구 중 각각의 에너지빈곤층 기준에 의해 에너지 빈곤층으로 추정된 가구의 비율을 의미

- □ 가구원수별 에너지빈곤충 비율을 보면 4가지 기준 모두에서 1, 2인 가구에 비해 3인 이상 가구에서 가구비율은 낮게 나타나지만 '최소에너지' 기준에 서는 상대적으로 떨어지는 폭이 완만함.
 - 3인 이상부터 에너지빈곤층이 급격하게 줄어드는 이유는 연료비 지출액 보다는 가구원수에 따른 가구소득 차이에서 그 원인을 찾을 수 있음.

³⁾ 이건민(2015)은 가구소득에 대해 또 다른 기준선을 적용하는 것은 연구자의 자의적인 판단으로, 오 히려 해당 기준 자체가 부적절하다고 지적

<표 10> 가구원수별 에너지빈곤층 가구비율

가구원수	분포	연료비 비율	최소에너지	에너지바우처	부담가능비용
1명	17.0%	22.8%	58.4%	19.6%	29.6%
2명	26.8%	15.3%	40.3%	13.9%	19.4%
3명	23.4%	5.8%	30.2%	3.5%	6.9%
4명	25.3%	3.1%	26.1%	1.9%	4.1%
5명 이상	7.5%	3.6%	21.5%	4.1%	6.2%

- □ 주택형태별로는 단독주택 가구에서 에너지빈곤충 비율이 높은 것으로 추정 된 반면 아파트 가구의 비율은 모든 방법에서 가장 낮은 것으로 추정됨.
 - 최소에너지 기준과 나머지 기준들 간의 차이로 볼 때 가구 특성들에서와 마찬가지로 가구소득의 영향일 것으로 예상
 - 아파트 가구의 소득은 단독주택 가구에 비해 1.64배 높았으며, 소득 3분위 이하 가구의 비율 역시 단독주택 45.9%에 비해 아파트 가구는 18.7%에 그 친 것으로 나타남.

<표 11> 주택형태별 에너지빈곤층 가구비율

주택유형	분포	연료비 비율	최소에너지	에너지바우처	부담가능비용
단독주택	33.6%	16.1%	43.5%	14.5%	21.6%
아파트	48.1%	6.1%	31.4%	4.5%	7.5%
연립·다세대	17.1%	11.3%	33.7%	8.8%	13.6%
기타	1.2%	11.9%	40.2%	8.8%	13.1%

- □ 거주면적이 늘수록 에너지빈곤충의 가구비율은 낮아지는 반면, 앞서의 특성들과는 달리 큰 격차를 보이는 구간은 확인되지 않음.
- 다른 기준들에서는 1/3 수준까지 가구비율은 떨어지는데 반해, 연료비 비율 기준의 경우 100m² 이상에 거주하는 가구에서도 50m² 미만 대비 2/3 수준을 유지

<표 12> 거주면적별 에너지빈곤층 가구비율

거주면적	분포	연료비 비율	최소에너지	에너지바우처	부담가능비용
50m² 미만	19.1%	13.5%	55.7%	13.2%	22.2%
75m² 미만	41.9%	10.3%	38.9%	8.9%	13.5%
100m² 미만	31.2%	9.1%	24.6%	6.5%	9.5%
100m² 이상	7.7%	8.7%	17.0%	4.8%	7.0%

- □ 연료비 지출액이 뚜렷한 계절성을 보이나 에너지빈곤충은 추정 방법에 따라 차이를 보임.
 - 에너지바우처와 부담가능비용 기준의 경우 겨울철 기간에 빈곤층 가구비율 이 조금 상승하기는 하였지만 큰 차이를 보이지는 않음.
 - 연료비 비율과 최소에너지 기준에서는 에너지빈곤층의 겨울철 가구비율은 서로 반대 방향의 움직임을 보임.
 - 연료비 비율 기준은 연료비 지출액과 마찬가지로 겨울에 에너지빈곤층 가 구 비율이 크게 증가하나 최소에너지 기준에서는 여름에 비율이 높고 겨울 에 비율이 낮은 모습을 보임.

조사월	연료비 비율	최소에너지	에너지바우처	부담가능비용
1	20.5%	23.0%	9.1%	16.7%
2	21.9%	21.6%	9.2%	17.0%
3	18.6%	26.2%	9.6%	16.8%
4	12.9%	34.4%	9.1%	15.3%
5	9.1%	47.8%	8.6%	14.1%
6	6.6%	67.9%	8.8%	14.1%
7	5.4%	78.1%	8.6%	13.9%
8	6.0%	76.0%	8.8%	13.9%
9	6.4%	71.2%	8.2%	13.1%
10	7.0%	73.8%	8.2%	13.3%
11	9.1%	59.2%	8.5%	13.7%
12	14.5%	34.1%	8.9%	15.1%
평균	11.5%	51.0%	8.8%	14.8%

<표 13> 월별 에너지빈곤층 가구비율

- □ 에너지빈곤충 추정 기준 간 중복 가구 수를 보면 부담가능비용 기준에 의 한 에너지빈곤충 가구가 다른 기준에 의한 에너지빈곤충 가구와 가장 많이 중복되는 것으로 추정됨.
- 연료비 비율 기준에 의한 에너지빈곤 가구는 11,103 가구로 추정되는데 이 중 75.0%에 해당하는 8,328 가구가 부담가능비용 기준에 의한 에너지빈곤 층 가구임.
- 에너지바우처 기준에 의한 에너지빈곤 가구 대부분은 부담가능비용 기준의 에너지빈곤 가구에 포함된 반면 부담가능비용 기준의 에너지빈곤 가구 중 63.8%만 에너지바우처 기준의 에너지빈곤층 가구로 분류되어 부담가능비 용 기준이 보다 포괄적인 기준으로 판단됨.

- 최소에너지 기준의 에너지빈곤 가구는 다른 기준의 에너지빈곤 가구와 중 복되는 비율이 크게 낮은데 이는 최소에너지 기준을 높이 설정하여 이 기 준에 의해 에너지빈곤층으로 분류된 가구가 38,452 가구나 되었기 때문
 - 다른 기준과 중복된 가구의 수는 다소 적지만 비율의 차이만큼 크지는 않은 것으로 나타남.

<표 14> 에너지빈곤층 기준 간 에너지빈곤층 중복 가구수

기 준	연료비 비율	최소에너지	에너지바우처	부담가능비용
연료비 비율	11,103 -	2,621 (6.8)	5,079 (54.9)	8,328 (58.3)
최소에너지	2,621 (23.6)	38,452 -	5,543 (59.9)	7,787 (54.5)
에너지바우처	5,079 (45.7)	5,543 (14.4)	9,255 -	9,118 (63.8)
부담가능비용	8,328 (75.0)	7,787 (20.3)	9,118 (98.5)	14,291 -

주 : 1) 대각선에 위치하는 가구수는 해당 기준의 전체 에너지빈곤층 가구수이며, 그 외에 가구수들은 해당 기준의 에너지빈곤층 중 상대가 되는 다른 기준들의 에너지빈곤층과 중첩되는 가구수를 의미

- □ 에너지빈곤층 기준별 가구 특성을 보면 최소에너지 기준을 제외하고는 큰 차이가 없은 것으로 나타남.
 - 가구소득은 연료비 비율 기준이 에너지바우처와 부담가능비용 기준보다 많고 에너지바우처와 부담가능비용 기준은 비슷한 수준을 보임.

^{2) ()}의 숫자는 다른 기준들의 에너지빈곤층과 중첩되는 가구수의 비율을 의미

	1	:			
구 분	단위	연료비 비율	최소에너지	에너지바우처	부담가능비용
연료비	원	131,784	51,177	73,228	80,832
가구소득	원	771,037	2,529,762	572,766	593,262
가구원수	명	1.99	2.43	1.95	2.02
연령	만	61.6	51.6	69.8	63.1
노인가구	비율	42.0%	20.0%	70.2%	47.3%
모자가구	비율	3.1%	3.2%	0.9%	3.3%
유아가구	비율	6.3%	14.7%	9.2%	6.3%
아파트거주	비율	28.0%	41.9%	25.2%	27.1%
등유+연탄	비율	26.5%	10.4%	22.0%	20.5%
전기+기타+연료비=0	비율	5.7%	13.6%	13.9%	13.0%
거주면적	m^2	65.2	59.8	61.3	60.0
도시거주	비율	70.3%	78.0%	66.0%	70.3%

<표 15> 에너지빈곤층 기준별 가구 특성

- 주 : 1) '아파트거주'는 전체 표본가구 중 아파트에 거주하는 에너지빈곤층의 비율을 의미
 - 2) '등유+연탄'은 전체 표본가구 중 난방연료로 등유 또는 연탄을 사용하는 에너지빈곤층의 비율을
 - 3) '전기+기타+연료비=0'은 전체 표본가구 중 난방연료로 전기, '기타', 또는 '연료비=0'을 사용 하는 에너지빈곤층의 비율을 의미

Ⅳ. 정책 시사점

- □ 에너지복지 상황을 정확히 파악하기 위해서는 현재 어떤 상태에 있는지 또 한 어떻게 변하고 있는지를 파악할 수 있는 지표가 필요
- 최근 에너지복지 사업 규모가 연 5천억 원을 초과할 정도로 증가하였으나 에너지복지 상태를 정확히 파악하지 못하고 있음.

- 현재 에너지복지와 관련해서 가장 빈번히 거론되고 이용되는 지표는 에너 지빈곤층임.
 - 에너지빈곤층의 정의에 대한 사회적 합의가 없고 연구자마다 다양한 방법으로 에너지빈곤층을 추정하고 있어 객관적으로 상황을 파악하기 어렵지만 현재로서는 가장 활용 가능성이 높은 지표로 인식됨.
- □ 본 연구에서 이용한 네 가지 추정방법 모두 공식적인(또는 정책적인) 에너 지빈곤층 추정 지표로 사용하기에는 한계가 분명
 - '연료비 비율'기준은 연료비 부담이 극심하여 필요이상으로 연료비를 줄이는 에너지 소비 박탈가구를 오히려 배제
 - '최소에너지'기준은 주거환경이 양호하여 에너지비용을 줄일 수 있는 고소 득 가구를 다수 포함.
 - 가구유형에 제한을 두는'에너지바우처'기준에서는 선정에서 제외되는 사각 지대에 위치하는 가구가 상당수 발생
 - '부담가능비용'기준에서 추정하는 가구의 경우 일반 빈곤에는 해당되는 반 면 에너지빈곤에 특정된 가구로 보기는 어려움.
- □ 각 방법의 한계에도 불구하고 네 가지 방법으로 에너지빈곤층을 추정한 결과 방법에 따라 매우 다른 결과가 도출되었으나 추이는 유사한 것으로 나타남.
 - 추정방법에 따라 에너지빈곤층 규모의 차이가 발생함에도 불구하고 에너지 빈곤층 변화 추이는 비슷한 패턴을 보임.
 - 에너지빈곤층 규모 변화에 가장 큰 영향을 준 요인은 연료가격과 기온의 변화로 판단됨.

- □ 에너지빈곤에 대한 사회적으로 합의된 정의가 필요하고 이를 분석할 수 있 는 다양한 자료의 축적 필요
 - 대부분의 연구는 에너지빈곤을 에너지비용 과부담 가구로 한정. 그러나 적 절한 에너지를 소비하지 못하는 박탈가구도 포함되어야 할 것임.
 - 현재 이용이 가능한 자료에서는 박탈가구에 대한 충분한 정보를 얻는 것이 불가능하므로 필요한 자료의 축적이 선결되어야 함.
 - 에너지빈곤층에 대한 에너지복지 사업의 효과를 파악하기 위해서도 다양한 자료의 개발과 주기적인 실태조사 필요

< 참고자료 >

- 김하나, 임미령, "사회·경제적 요인의 에너지 빈곤 영향 분석: 노인포함가구를 중심으로," 환경사회학연구, 19(2), 2015, pp.133-164.
- 김현경, 저소득층 에너지효율개선사업 체계화 방안, 한국보건사회연구원 정책 보고서 2015-03, 2015.
- 박광수, 사회적 약자에 대한 에너지 지원제도 개선방안 연구, 에너지경제연구 원 기본연구보고서 06-01, 2006.
- _____, 저소득층 에너지소비 실태조사 및 최소에너지소비 산정기준, 에너지경 제연구원, 2011.
- ____, 에너지복지 정책 및 사업의 성과 평가 방안 개발을 위한 선행연구, 산 업통상자원부·에너지경제연구원, 2015.
- 박광수, 정윤경, 맞춤형 에너지지원을 위한 가구 특성별 에너지 소비지출 결정 요인 분석, 에너지경제연구원 기본연구보고서 14-04, 2015.
- 산업통상자원부, 한국에너지공단, "난방카드 에너지바우처 사업안내", 2016.
- 신정수, 한국의 에너지 빈곤 규모 추정에 관한 연구, 에너지경제연구원 기본연구보고서 11-18, 2011.
- 윤순진, "사회적 일자리를 통한 환경·복지·고용의 연결: 에너지빈민을 위한 에너지효율향상사업을 중심으로," 환경사회연구, 10(2), 2006, pp.167-206.
- 윤태연, 남수현, 공동주택의 가구별 난방비 영향 요인 분석, 에너지경제연구원 기본연구보고서 15-09, 2015.
- 이건민, "한국 에너지빈곤 정의의 비판적 검토 및 대안적 접근," 비판사회정책, 48, 2015, pp.248-284..
- 이성근, 가정부문 용도별 에너지소비량 및 소급추정에 관한 연구, 에너지경제 연구원 기본연구보고서 10-05, 2010.

- 이용만, 주거안정 정책 관련 실태조사, 국회예산정책처, 2015.
- 이준서, "영국과 호주의 에너지빈곤층 지원법제 분석,"에너지포커스, 11(2), 에 너지경제연구원, 2014, pp.98-124.
- 이현주, 강신욱, 박광수, 손병돈, 박수진, 에너지복지 현황분석 및 체계화 방안, 한국보건사회연구원 정책보고서 2012-13, 2012A.
- 이현주, 에너지바우처 도입방안 연구, 한국보건사회연구원 정책보고서 2013-20, 2013.
- 이현주, 정은희, 이병희, 주영선, 빈곤에 대한 대안적 접근: 욕구범주를 고려한 다차원성에 대한 분석, 한국보건사회연구원 연구보고서 2012-32, 2012B.
- 정윤경, 박광수, 가구특성별 에너지 소비지출 분석 연구, 에너지경제연구원 수 시연구보고서 13-11, 2013.
- 진상현, 박은철, 황인창, "에너지빈곤의 개념 및 정책대상 추정에 관한 연구," 한국정책학회보, 19(2), 2010, pp.161-181.
- Boardman, B., Fuel poverty: From cold homes to affordable warmth, Belhaven Press, London, 1991.
- Clinch, J. P., Healy, J. D., "Alleviating fuel poverty in Ireland: a program for the 21st century," [International Journal for Housing Science], 23(4), 1999, pp.203-15.
- Department of Energy and Climate Change (DECC), Fuel Poverty Methodology Handbook, DECC, London, 2010.
- Heffner, G., Campbell, N., Evaluating the co-benefits of low-income energy-efficiency programmes, Workshop Report, OECD/IEA, 2011.

- Healy, J., Fuel poverty and policy in Ireland and the european union, Studies in Public Policy 12, The Policy Institute, Dublin, 2003.
- Hills, J., Fuel poverty: The problem and its measurement, CASE report 69, DECC, London, 2011.
- ______, Getting the measure of fuel poverty, CASE report 72, DECC, London, 2012.
- Isherwood, B., Hancock, R., Household expenditure on fuel: Distribution aspects, Economics Adviser's Office, DHSS, London, 1979.
- Li, K., Lloyd, B., Liang, X., Wei, Y., "Energy poor or fuel poor: What are the differences?" 「Energy Policy」, 68, 2014, pp.476-481.
- Liddell, C., Morris, C., McKenzie, S., Rae, G., "Measuring and monitoring fuel poverty in the UK: National and regional perspectives," 「Energy Policy」, 49, 2012, pp.27-32.
- Moore, R., "Definitions of fuel poverty: Implications for policy," 「Energy Policy」, 49, 2012, pp.19-26.
- O'Sullivan, K., Howden-Chapman, P., Fougere, G., "Fuel poverty, policy, and equity in New Zealand: The promise of prepayment metering," [Energy Research & Social Science], 7, 2015, pp.99-107.
- Okushima, S., "Measuring energy poverty in Japan, 2004-2013," ^FEnergy Policy, 98, 2016, pp.557-564.
- Stone, M., One-third of a nation: A new look at housing affordability in America, Economic Policy Institute, 1990.
- ______, M., "What is housing affordability? The case for the residual income approach," Housing Policy Debate, 17(1), 2006, pp.151-184.

정책 이슈페이퍼 17-02 에너지빈곤층 추정 및 에너지 소비특성 분석

2017년 3월 31일 인쇄

2017년 3월 31일 발행

저 자 윤태연, 박광수

발행인 박주헌

발행처 에너지경제연구원

44543 울산광역시 종가로 405-11

전화: (052)714-2114(代) 팩시밀리: (052)714-2028

등 록 1992년 12월 7일 제7호

인 쇄 (사)한국척수장애인협회 인쇄사업소 (031)424-9347