

Reproducible Research: Lessons from the Madagascar Project

Sergey Fomel

Jackson School of Geosciences The University of Texas at Austin

March 5, 2011

Outline

Reproducible Research

History of Madagascar

What is Science?

What is Science?

Science is the systematic enterprise of gathering knowledge about the universe and organizing and condensing that knowledge into testable laws and theories. The success and credibility of science are anchored in the willingness of scientists to independent testing and replication by other scientists. This requires the complete and open exchange of data, procedures and materials.

American Physical Society, What is Science?

From Science to Open-Source Software

Abandoning the habit of secrecy in favor of process transparency and peer review was the crucial step by which alchemy became chemistry. In the same way, it is beginning to appear that open-source development may signal the long-awaited maturation of software development as a discipline.

Eric Raymond, TAUP, 2004

Communicating to a Skeptic

DIALOGO

GALILEO GALILEI LINCEO

MATEMATICO SOPRAORDINARIO DELLO STVDIO DI PISA.

E Filosofo, e Matematico primario del

SERENISSIMO

GR.DVCA DITOSCANA.

Doue ne i congressi di quattro giornate si discorre sopra i due

MASSIMI SISTEMI DEL MONDO TOLEMAICO, E COPERNICANO;

Proponendo indeterminatamente le ragioni Filosofiche, e Naturali tanto per l'una , quanto per l'altra parte .

VILEGI.

IN FIORENZA, Per Gio:Batifia Landini MDCXXXII.

CON LICENZA DE SYPERIORI.

What is Reproducible Research?

- Attaching software code and data to publications
- Communicating computational results to a skeptic

An article about computational science in a scientific publication is not the scholarship itself, it is merely advertising of the scholarship. The actual scholarship is the complete software development environment and the complete set of instructions which generated the figures. J. Buckheit and D. Donoho, WaveLab

Reproducible Research Discussions

ICASSP 2007 Berlin-6 2008 CiSE 2009

- Donoho et al.
- LeVeque
- Ping & Eckel
- Stodden

IEEE Signal Processing Magazine 2009

Vandewalle et al.

Yale Roundtable 2009

NSF Archive Workshop 2010

▶ http://www.reproducibleresearch.net

Reproducible Research Discussions

SIAM CS&E 2011

 Verifiable, Reproducible Research and Computational Science

SIAM GS 2011

Reproducible Science and Open-Source Software in the Geosciences

AMP 2011

- Reproducible Research: Tools and Strategies for Scientific Computing
- ▶ http://www.mitacs.ca/goto/amp_reproducible

ICIAM 2011

Reproducible Research in Computational Science: What, Why and How

Outline

Reproducible Research

History of Madagascar

Jon Claerbout's Story

1987 Sunview experience

Interactive programs are slavery

1992 LATEX + cake

Building books by a single command

1990s Ph.D. students

cake to make, CD-Rom to WWW

2001 Reproducible research paper in CiSE

The principal beneficiary is the author

Lesson 1

The principal beneficiary is the author.

http://reproducibility.org/
http://ahay.org/

Ohloh.net about MADAGASCAR

- men / many ene - annimary

Mostly written in C

- Mature, well-established codebase
- Increasing year-over-year development activity
- Large, active development team

Updated 03 Mar 2011 15:52 UT

GNU General Public License 2	1482 files
New BSD License	13 files
GNU Library or "Lesser" GPL (LGPL)	3 files

c	61%	
TeX/LaTeX	29%	
Python	7%	
Other	3%	

-1	in	00	of	0	ahr	١

■ b	anks		■com	ments		9	code		
500,000									
400,000									
300,000									
000 000					-	-			
200,000									
100,000			-						

Language	Code Lines	Comment Lines
<u>c</u>	199,655	51,414
<u>TeX/LaTeX</u>	94,806	8,573
Python	21,907	10,744
Fortran (Fixed-format)	4,002	8
<u>C++</u>	2,996	688
Matlab	1,366	709
Make	740	13
Java	704	31
Fortran (Free-format)	370	41

Lesson 2

▶ http://www.ahay.org/wiki/Reproducible_Documents

Each computation is a test.

Thanks

► Tariq Alkhalifah, Vladimir Bashkardin, Jules Browaeys, William Burnett, Cody Brown, Maria Cameron, Lorenzo Casasanta, Joseph Dellinger, Jeff Godwin, Gilles Hennenfent, Trevor Irons, Jim Jennings, Long Jin, Roman Kazinnik, Siwei Li, Guochang Liu, Yang Liu, Doug McCowan, Henryk Modzelewski, Colin Russell, Paul Sava, Jeffrey Shragge, Xiaolei Song, Eduardo Filpo Silva, Ioan Vlad, Jia Yan, Lexing Ying

School and Workshop: Vancouver 2006

School and Workshop: Houston 2010

Lessons 3 and 4

Reproducibility requires maintenance.

Maintenance requires an open community.

MADAGASCAR Design

Multidimensional arrays as files

Write programs that do one thing and do it well. Write programs to work together. Write programs to handle text streams, because that is a universal interface.

Doug McIlroy, Unix

MADAGASCAR filter in C

```
#include <rsf.h>
int main(int argc, char* argv[])
    int n1, n2, i1, i2:
    float clip, *trace;
    sf file in. out:
    sf_init(argc,argv);
    in = sf_input("in");
    out = sf output("out"):
    sf_histint(in, "n1", &n1); /* trace length */
    n2 = sf leftsize(in.1): /* number of traces */
    if (!sf getfloat("clip",&clip)) sf error("Need clip=");
    trace = sf floatalloc (n1):
    for (i2=0: i2 < n2: i2++) {
        sf_floatread(trace,n1,in);
        for (i1=0: i1 < n1: i1++) {
            if (trace[i1] > clip) trace[i1] = clip;
            else if (trace[i1] < -clip) trace[i1]=-clip;
        sf floatwrite(trace.n1.out):
    exit(0):
```


MADAGASCAR filter in Python

```
#!/usr/bin/env python
import numpy
import m8r
par = m8r.Par()
input = m8r.Input()
output = m8r.Output()
n1 = input.int("n1") # trace length
n2 = input.size(1) # number of traces
clip = par.float("clip")
trace = numpy.zeros(n1,'f')
for i2 in xrange(n2): # loop over traces
    input.read(trace)
    trace = numpy.clip(trace,-clip,clip)
    output.write(trace)
```


MADAGASCAR SConstruct script

```
from rsf.proj import Flow
Flow('spike',None,'spike n1=1000 n2=100 | bandpass fhi=10')
Flow('cliped','spike','clip clip=0.5')
```

```
bash$ scons
scons: Building targets ...
/usr/bin/sfspike n1=1000 n2=100 | /usr/bin/sfbandpass fhi=10 > spike.rsf
< spike.rsf /usr/bin/sfclip clip=0.5 > cliped.rsf
scons: Done building targets.
bash$ sed -i' -e's/0.5/0.25/' SConstruct
bash$ scons -Q
< spike.rsf /usr/bin/sfclip clip=0.25 > cliped.rsf
```

▶ http://www.scons.org/

- Reproducible research
 - Attaching software and data to publications
 - Computational experiments communicated to a skeptic
- MADAGASCAR Lessons
 - 1. The principal beneficiary is the author.
 - 2. Each computation is a test.
 - 3. Reproducibility requires maintenance.
 - 4. Maintenance requires an open community.

