Capítulo 2

Cor e Visão Humana Sistema de Visão Humana

Capítulo 2

- 2.1. Sistema de Visão Humana
- 2.2. Características ópticas da luz
- 2.3. Percepção de Cor
- 2.4. Iluminação
- 2.5. Modelos de Cores
- 2.6. Características das Cores
- 2.7. Percepção e Cognição

Esclerótica - membrana elástica, conhecida como 'branco do olho'.

Córnea - atua como uma lente simples, captando e concentrando a luz.

Íris – membrana colorida com um orifício negro no centro (pupila).

Figura 2.3. Elementos do olho em corte.

Cristalino - parte da visão humana responsável pelo foco, sendo também chamado de lente.

Humor vítreo – substância gelatinosa localizada atrás do cristalino.

Figura 2.3. Elementos do olho em corte.

Humor aquoso –

encontra-se atrás da córnea em uma pequena câmara preenchida (fluido gelatinoso).

Pupila - a luz passa através deste orifício (ponto negro do olho).

Figura 2.4. Principais elementos do olho humano.

Figura 2.4. Principais elementos do olho humano.

Retina - composta de cerca de 120 milhões de bastonetes e 6 milhões de cones (sensores), converte o estímulo luminoso em sinais elétricos.

Nervo ótico - transmite para o cérebro os sinais.

Figura 2.5 – Relações de tamanho

Células Cones e Bastonetes

Esquema x real

Características do processo de visão

- Acomodação
- Adaptação
- Campo de visão
- Acuidade
- Persistência visual
- Visão de cores

Visão Escotópica e Fotópica

Figura 2.7 – Intensidade Luminosa da visão escotópica e fotópica

A luz é uma radiação eletromagnética que interage com as superfícies por:

- reflexão
- absorção
- transmissão

comprimento de onda

Radiação Eletromagnética

Figura 2.8 – Espectro eletromagnético e comprimentos de onda.

Limites de sensibilidade

- Os limites do espectro visível e das faixas de cores não são bem definidos (dependem da sensibilidade dos órgãos visuais e da intensidade luminosa)
- As curvas de sensibilidade se aproximam assintoticamente do eixo horizontal nos limites, tanto para os maiores quanto para os menores comprimentos de onda.

Pode-se detectar radiações além de 380 e 700 se elas forem

suficientemente intensas.

Imagem Térmica

Exemplo de uma cena exibida em RGB e a mesma cena captura por um sensor térmico e representada associando o nível de temperatura a cores (false color)

Tabela 2.1-Radiações do espectro eletromagnético.

	RADIAÇÃO	COMPRIMENTO
		DE ONDA (nm)
	Ondas curtas UV - C	100 a 280
ACTÍNEO	Ondas médias UV - B	280 a 315
	Ondas longas UV –A	315 a 400
VISÍVEL	Espectro visível	400 a 700
	Ondas curtas IV - A	700 a 1400
TÉRMICO	Ondas médias IV – B	1400 a 3000
	Ondas longas IV - C	mais de 3000

Teoria Tricromática

Apenas três tipos de receptores da retina são necessários operando com sensibilidades a diferentes comprimentos de onda. É baseada na existência de três tipos de cores primárias.

Teoria de Maxwell

Os três cones existentes na retina são sensíveis respectivamente ao vermelho (R), ao verde (G) e ao azul (B), chamadas *cores primárias de luz*.

Tabela 2.3 – Cores criadas com o vetor cromático R,G,B

Cor	R (%)	G (%)	B (%)	
vermelho puro	100	0	0	
azul puro	0	0	100	
amarelo	100	100	0	
laranja	100	50	0	
verde musgo	0	25	0	
salmão	100	50	50	
cinza	50	50	50	

Discromatopsias: defeitos de visão de cores

 Combinando luzes vermelhos, verdes e azuis em intensidades adequadas, os indivíduos normais enxergarão a cor branca - são os <u>tricromatas</u> normais.

• Algumas pessoas necessitam das 3 cores, porém de intensidade maior de uma dessas cores e menor nas outras - são chamadas de tricromatas anormais.

Tricromatas anormais

- Produzem os 3 pigmentos, mas com sensibilidade anormal.
- Podemos identificar dois tipos principais de tricromatas anormais :
 - protanômalos e
 - deuteranômalos,

conforme necessitem de um excesso de **vermelho** ou **verde**.

Dicromatas:

- Outras pessoas, os <u>dicromatas</u>, são capazes vêem branco com mistura de apenas duas das três cores citadas.
- Dicromatismo é consequência da **ausência de síntese** de um desses pigmentos.
- Mais comuns pessoas protanópsicas ou deuteranópsicas, caso a confusão se faça em relação ao vermelho ou ao verde, respectivamente

Monocromatas:

• Uma fração muito pequena das pessoas e constituída de **monocromatas**; esses vêem qualquer luz como apenas branco, seja ela de qualquer uma das três cores.

Problemas com as cores verde e vermelho são mais comuns:

- Por apresentarem afinidades fisiológicas, os protanômalos e protanópsicos são reunidos sob o nome de protanóides.
- O mesmo ocorre com os deuteranômalos e deuteranópsicos: constituem o grupo dos deuteranóides.

Em resumo, tem-se:

- 1. TRICROMATAS 1.1 NORMAIS
 - 1.2 ANORMAIS
- 1.2.1 **PROTANÔMALOS** (déficit para o Vermelho)
- 1.2.2 **DEUTERANÔMALOS** (déficit para o Verdes)
- 1.2.3 TRITANÔMALOS (déficit para o Azul)
 - 2. DICROMATAS
 - 2.1 **PROTANÓPISICOS** (sem fotopigmento Vermelho)
 - 2.2 DEUTERANÓPISICOS (sem fotopigmento Verdes)
 - 2.3 TRITANOPISICOS (sem fotopigmento Azul)
 - 3. MONOCROMATAS OU ACROMATAS

Daltonismo.

O primeiro tratado cientifico sobre a deficiência na visão de cores foi publicado em 1798 pelo químico Inglês John Dalton [1766-1844] por isso os problemas de visão a cores são também chamados de Daltonismo.

Mais sobre as deficiências cromáticas em:

http://en.wikipedia.org/wiki/Color_blindness#Clinical_forms_of_color_blindness

2.4. Iluminação

Fontes: - naturais (sol, fogo, estrelas)

- artificiais (vídeo, TV, lâmpadas).

Tabela 2.4. Classificação das lâmpadas

Classificação Geral	Tipos Especiais Modelos		
Incandescentes	Refletoras	Vidro prensado	
		Vidro soprado	
		Com refletor na	
		parte esférica	
	Halógenas	-	
Descarga	Baixa pressão	Com starter	
	(fluorescentes)	Sem starter	
	De alta pressão	Vapor de Mercúrio	
		Vapor metálico	
		Luz mista	
		Vapor de sódio	

2.4. Fontes de Iluminação

A iluminação e as cores

As características da cor de uma lâmpada são definidas por:

- sua aparência de cor (atributo da temperatura de cor);
- sua capacidade de reprodução de cor (atributo que afeta a aparência de cor dos objetos iluminados).

Tabela 2.5 – Associação entre temperatura e aparência de cor de uma lâmpada

Temperatura de cor (K)	Aparência de cor
T > 5000	Fria (branca- azulada)
3300< T< 5000	Intermediária (branca)
T < 3300	Quente (branca – avermelhada)

2.4. Fontes de Iluminação

Gráficos intensidade x comprimento de onda de diversas luzes

IRC=Indice de Reprodução de Cores

2.4. Fontes de Iluminação

Diferenca da reproducão de cor em função do iluminante

Figura 2.12. Objetos iluminados com **MVM** (multi vapor metalico) de **IRC=75** e **VS** (Vapor de Sodio) **IRC=22**. Repare especialmente nas cores com mesmo numero em ambas as fotos.

2.5. Modelos de Cores

Figura 2.13 – Níveis de abstração de cores.

Elementos que descrevem a cor:

• matiz;

• saturação;

• intensidade.

Figura 2.14. Variações no matiz, saturação e intensidade.

Uso diagnóstico das radiações não visíveis : mamo termo gramas

Matiz (Hue) = f (temperatura)

Imagem ultra-som 3D

• A **intensidade** da luz é usada para dar a idéia da tridimensionalidade

Matiz, saturação e intensidade

Figura 2.15. Conceitos de matiz, saturação e intensidade.

Representação da cor

- Refletivos não emitem energia luminosa, utilizam de luz proveniente de uma outra fonte produzindo a informação de cor.
- Emissivos são fontes de energia radiante que produzem diretamente a informação de cor.

Figura 2.16 – Cores aditiva obtidas pela combinação de luzes RGB

RGB

- Base de primárias do sistema:
 - $-R(\lambda)$ vermelho com comprimento de onda de 700 nm
 - $-G(\lambda)$ verde com comprimento de onda de 546 nm
 - $-B(\lambda)$ azul com comprimento de onda de 435.8 nm

Sistema RGB

Normalizado entre 0 e 1

Cores visíveis

• Diagrama de Cromacidade CIE

Sistema XYZ

conversão entre os sistemas CIE-RGB e CIE-XYZ

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.489989 & 0.310008 & 0.200003 \\ 0.176962 & 0.812400 & 0.010638 \\ 0.000000 & 0.009999 & 0.990001 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix},$$

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 2.364666 & -0.896583 & -0.468083 \\ -0.515155 & 1.426409 & 0.088746 \\ 0.005203 & -0.014407 & 1.009204 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}.$$

CIE (Comission Internationale de l' Eclairage)

Sólidos de cores visíveis e diagramas de cromaticidade

Figura 2.17. Os pigmentos se combinam, subtraindo intensidades luminosas da luz que atinge os objetos.

Sistemas de cores subtrativos CMY

Contraste Simultâneo

Figura 2.18 – Exemplo do efeito de contraste simultâneo.

Contraste Excessivo

Figura 2.19. Contraste excessivo em A e redução de contraste em B

Contraste Sucessivo

Figura 2.20 – Saturação na percepção de cores.

Contraste fundo-letra

Figura 2.21 – Contrastes ideais de cores

Invariância percetptiva de cor

ZUL ROXO AZUL VERDE AMARELO SA PRETO LARANJA ROSA VERN MARELO VERMELHO MARROM A ZUL VERDE PRETO LARANJA RO

Figura 2.22. Invariância perceptiva da cor associada a palavras.

2.7. Percepção e Cognição

- Processo Informativo
- Detecção
- Reconhecimento
- Discriminação

Figura 2.23 – Ilusão.

Bibliografia Complementar (cap. 2)

- Kaiser, PeterK. The Joy of Visual Perception: A Web Book, York University, http://www.yorku.ca/eye/
- Smal, James; Hilbert, D.S. (1997). *Readings on Color, Volume 2: The Science of Color*, 2nd ed., Cambridge, Massachusetts: MIT Press. ISBN 0-262-52231-4.
- Kaiser, Peter K.; Boynton, R.M. (1996). *Human Color Vision*, 2nd ed., Washington, DC: Optical Society of America. ISBN 1-55752-461-0.
- Wyszecki, Günther; Stiles, W.S. (2000). *Color Science: Concepts and Methods, Quantitative Data and Formulae*, 2nd edition, places: Wiley-Interscience. ISBN 0-471-39918-3.
- McIntyre, Donald (2002). *Colour Blindness: Causes and Effects*. UK: Dalton Publishing. ISBN 0-9541886-0-8.
- Shevell, Steven K. (2003). *The Science of Color*, 2nd ed., Oxford, UK: Optical Society of America, 350. <u>ISBN 0-444-512-519</u>.
- Content-Based Image Retrieval from Digital libraries: http://www.cs.sfu.ca/cbird