	2	2023 Digital IO	C De	esign Homewoi	rk 4	
NAME 劉兆軒						
Student ID	N26112437					
		Simu	ılatio	on Result		
Functional			Gate-level			
simulation		pass	simulation			pass
S U M M A R Y				SUMMARY		
Congratulations! Layer 0 data have been generated successfully! The result is PASS!!				* Congratulations! Layer 0 data have been generated successfully! The result is PASS!!		
Congratulations! Layer 1 data have been generated successfully! The result is PASS!!				Congratulations! Layer 1 data have been generated successfully! The result is PASS!!		
terminate at 179205 cycle				terminate at 179205 cycle		
				Flow Status Quartus Prime Version Revision Name Top-level Entity Name Family Device Timing Models Total logic elements Total registers Total prins Total virtual pins Total memory bits Embedded Multiplier 9-bit elements Total PLLs	20.1.1 E ATCON' ATCON' Cyclone EP4CE5 Final 532 / 58 269 82 / 328 0	V IV E 5523A7 5,856 (<1%) 5 (25%) 6,160 (0%) (<1%)
		Syn	thesi	s Result		
Total logic el	ements		532			
Total memory bits			0			
Embedded multiplier 9-bit elements			2			
Total cycle used			179205			
主要分成兩	部分,第	等一部分處理 la	yer0	,分成 Padding、	Ro	w_major
Readmem1 >	Atrous_	conv · ReLU ·	Writ	emem 等階段,	進行	padding
Atrous_conv	和 ReL	U的 function;	第二	部分處理 layerl	,分	·成
Maxpooling_	_addr \ N	Maxpooling \ Re	adm	em2 · Maxpooli	ing	Max
Writemem2	、Stop 等	階段,進行 ma	axpo	oling 的 function	0	
Row_major:	将 2 維知 :進行 co	轉成 68*68 對原 巨陣轉成 1 維矩 onv 運算 [,小於 0 為 0		問題		
Maxpooling_	_addr:找	到 pooling 對應	4個	值的 addr		
Maxpooling:	4個取出	出前兩個大				
Max:取出最	大					

Description of your design

這次作業主要麻煩的地方是要去處理 padding 的部分,因為有 logic element 限制,所以無法將整個 memory 的值存到 reg 內,這時就要去想辦法利用有限的硬體資源去完成,我的想法是設一個 padding68*68 矩陣,用 i,j 走遍所有位置,其中當 i<2 時,則表示該位置的值是對應原 img64*64 矩陣的 ii=0 位置;若 i>=65,則表示該位置是對應原 img64*64 矩陣的 ii=65 位置。而 j 同理,這樣就可以解決遇到 padding 的問題了,只需要使用 9 個 reg 去 memory 存目前走到位置的值即可,不用將整個 memory 存到 reg 內。

如上述,原本使用的是二維矩陣去對應目前走訪到的位置,所以要去memory 找對應位置時,要先轉成 row_major 的形式。轉完後,我是使用temp 累加 9 次 field 和 kernel 相乘值的方式,最後再進行 relu。

```
ReLU: begin
    //走到最右
    if(j_begin == 63) begin
         i_begin <= i_begin + 1;
         j_begin <= 0;</pre>
        end
    else
         j_begin <= j_begin + 1;</pre>
    caddr_wr <= mem_addr;</pre>
    mem_addr <= mem_addr + 1;</pre>
    down <= 0;
    right <= 0;
    if(temp >= 4096)
        cdata_wr <= 0;
    else
         cdata_wr <= temp;</pre>
end
```

Maxpooling:

```
Maxpooling:begin
  if(maxpooling_matrix[maxpooling_index]<maxpooling_matrix[maxpooling_index+1])
    out1 <= maxpooling_matrix[maxpooling_index+1];
  else
    out1 <= maxpooling_matrix[maxpooling_index];

if(maxpooling_matrix[maxpooling_index+2]<maxpooling_matrix[maxpooling_index+3])
    out2 <= maxpooling_matrix[maxpooling_index+3];
  else
    out2 <= maxpooling_matrix[maxpooling_index+2];
  caddr_wr <= mem_addr2;
  mem_addr2 <= mem_addr2 + 1;
end</pre>
```

這裡主要是最後存值的時候,要注意無條件進位,把剩餘小數點透過 shift 給清掉,無條件進位的寫法要注意。

 $Scoring = (Total\ logic\ elements + Total\ memory\ bits + 9*Embedded\ multipliers\ 9-bit\ elements)\ X\ Total\ cycle\ used$

* Total logic elements must not exceed 1000.