Probabilités II

STEP, MINES ParisTech

9 décembre 2020 (#a46c5a3)

Question 1 (réponse multiple) Soit $\lambda \in \mathbb{R}$ et X une variable aléatoire de loi $\mathbb{P}_X(\{\lambda\}) = \mathbb{P}(X=\lambda) = 1$
□ A : X admet une densité. □ B : X admet une fonction de répartition. □ C : X admet une espérance et $\mathbb{E}(X) = \lambda$. □ D : X est de variance nulle.
Question 2 Soit X une variable aléatoire réelle suivant une loi normale de paramètres μ et σ^2 , quelle est la loi de $X+\gamma$?
$\square \ \mathrm{A} : \mathcal{N}(\mu, \sigma^2) \ \square \ \mathrm{B} : \mathcal{N}(\mu + rac{\gamma}{2}, \sigma^2)$
$\Box \ \mathbf{C} : \mathcal{N}(\mu + \stackrel{2}{\gamma}, \sigma^2)$ $\Box \ \mathbf{D} : \mathcal{N}(\mu + \gamma, (\sigma + \gamma)2)$
Question 3 Soient X et Y deux variables aléatoires indépendantes de loi uniforme sur $[0,1]$. La probabilité $\mathbb{P}(Y\leq 2X)$ vaut :
□ A : 1/2 □ B : 2/3 □ C : 3/4 □ D : 4/5
Question 4 Soient X et Y deux variables aléatoires de densité f_X et f_Y . Si les ensembles $\{x \in \mathbb{R} \mid f_X(x) > 0\}$ et $\{y \in \mathbb{R} \mid f_Y(y) > 0\}$ sont disjoints, alors
\square A : X et Y sont nécessairement indépendantes, \square B : La covariance $\mathrm{Cov}(X,Y)$ est nécessairement nulle, \square C : Ni l'un ni l'autre.
Question 5 Soit U une variable aléatoire réelle de loi uniforme sur [-1,1]. Quelle est la densité de U^2 ?
$\Box \ A: \frac{1}{2\sqrt{x}} 1_{[0,1]}(x) \Box \ B: \frac{1}{4\sqrt{x}} 1_{[0,1]}(x)$
$\Box \text{ C: } \frac{1}{2} 1_{[-1,1]}(x)$