

# Description:

This element implements a semiconductor resistor based on the poly subtype of the Cadence physical resistor model.

Form: resistorPhyPoly: <instance name> n<sub>0</sub> n<sub>1</sub> n<sub>2</sub><parameter list>

instance name is the model name

 $n_0$  is the positive element terminal,

 $n_1$  is the negative element terminal,

 $n_2$  is the substrate terminal.

# Parameters:

| Parameter                                 | Type    | Default value | Required? |
|-------------------------------------------|---------|---------------|-----------|
| r: Resistance (ohms)                      | DOUBLE  | 1E+9          | no        |
| coeff0: Constant term of conductance      | DOUBLE  | 1             | no        |
| polynomial                                |         |               |           |
| coeff1: First order coefficient of        | DOUBLE  | 0             | no        |
| conductance polynomial                    |         |               |           |
| coeff2: Second order coefficient of       | DOUBLE  | 0             | no        |
| conductance polynomial                    |         |               |           |
| coeff3: Third order coefficient of        | DOUBLE  | 0             | no        |
| conductance polynomial                    |         |               |           |
| coeff4: Fourth order coefficient of       | DOUBLE  | 0             | no        |
| conductance polynomial                    |         |               |           |
| coeff5: Fifth order coefficient of        | DOUBLE  | 0             | no        |
| conductance polynomial                    |         |               |           |
| polyarg: Polynomial model argument type   | BOOLEAN | 1 (TRUE)      | no        |
| tc1: Linear temperature coefficient of    | DOUBLE  | 0             | no        |
| resistor (1/C)                            |         |               |           |
| tc2: Quadratic temperature coefficient of | DOUBLE  | 0             | no        |
| resistor (1/C^2)                          |         |               |           |
| tc1c: Linear temperature coefficient of   | DOUBLE  | 0             | no        |

| linear capacitor (1/C)                     |        |     |    |
|--------------------------------------------|--------|-----|----|
| tc2c: Quadratic temperature coefficient of | DOUBLE | 0   | no |
| linear capacitor (1/C^2)                   |        |     |    |
| tnom: Parameter measurement                | DOUBLE | 300 | no |
| temperature (K)                            |        |     |    |
| tdev: Device operating temperature (K)     | DOUBLE | 300 | no |
| c: Linear capacitance (F)                  | DOUBLE | 0   | no |

# Example:

phyrespoly:r1 1 2 0 r=1000.0 coeff0=1.0 coeff1=0.1 coeff2=0.0 coeff3=0.002 coeff4=0.0 + coeff5=0.00004 polyarg=0 tc1=0.0 tc2=0.0 tc1c=0.0 tc2c=0.0 tnom=300.0 tdev=300.0 + c=0.0

#### Model Documentation:

For polyarg=true:

The controlling voltage for the resistance is:

$$V = (\ (\ V(t0) - V(t2)\ ) + (\ V(t1) - V(t2)\ )\ )\ /\ 2$$
 and the resistance is: 
$$R(V) = r\ /\ (coeff0 + coeff1*V + coeff2*V^2 + coeff3*V^3 + coeff4*V^4 + coeff5*V^5)$$

For polyarg=false:

The controlling voltage for the resistance is:

$$\begin{split} V &= V(t0) - V(t1) \\ \text{and the resistance is:} \\ R(V) &= r \, / \, (coeff0 + 1/2*coeff1*V + 1/3*coeff2*V^2 + 1/4*coeff3*V^3 + \\ &\quad 1/5*coeff4*V^4 + 1/6*coeff5*V^5) \end{split}$$

Note that the code does not prevent a negative resistance value; care should be taken in selecting coefficients to ensure that the resulting resistance is positive for all anticipated values of the controlling voltage.

Resistance as a function of temperature is:

```
R(tdev) = R(tnom) * (1 + tc1*(tdev-tnom) + tc2*(tdev-tnom)^{2})
```

Capacitance as a function of temperature is:

$$C(tdev) = C(tnom) * (1 + tc1c*(tdev-tnom) + tc2c*(tdev-tnom)^{2})$$

See physren for more documentation.

# References:

This model is based on a description of the Cadence Spectre physical resistor model found at http://www.uta.edu/ronc/cadence/ResistorModels.pdf.

Sample Netlist:

\*\*\*\* resistorPhyPoly dc characteristic \*\*\*\*

- \* This choice of conductance coefficients should result in positive resistor
- \* values for Vctrl down to about -5V for polyarg = true or false.

.dc sweep="vsource:vbias" start=-3.0 stop=3.0 step=0.2

resistorPhyPoly:r1 1 2 0 r=1000.0 coeff0=1.0 coeff1=0.1 coeff2=0.0 coeff3=0.002 coeff4=0.0

+ coeff5=0.00004 polyarg=0 tc1=0.0 tc2=0.0 tc1c=0.0 tc2c=0.0 tnom=300.0 tdev=300.0 c=0.0

res: $r2\ 2\ 0\ r = 1000.0$ 

vsource: vbias 1.0 vdc = -3.0

.out write term 1 vt in "poly\_dc\_vt1.out" .out write term 2 vt in "poly\_dc\_vt2.out"

.end

Known Bugs:

None.

Credits:

Name Affiliation Date Links ECE718 Student NC State University May 2003 www.ncsu.edu