from sklearn import datasets
from sklearn.model_selection import train_test_split, cross_val_score, KFold
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, confusion_matrix
from sklearn.preprocessing import StandardScaler
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Load the Iris dataset
iris = datasets.load_iris()

iris_df = pd.DataFrame(data= iris.data, columns=iris.feature_names)
iris_df

0 5.1 3.5 1.4 1 4.9 3.0 1.4 2 4.7 3.2 1.3 3 4.6 3.1 1.5	0.2
2 4.7 3.2 1.3	
	0.2
3 4.6 3.1 1.5	0.2
	0.2
4 5.0 3.6 1.4	0.2
145 6.7 3.0 5.2	2.3
146 6.3 2.5 5.0	1.9
147 6.5 3.0 5.2	2.0
148 6.2 3.4 5.4	2.3
149 5.9 3.0 5.1	1.8

150 rows × 4 columns

iris_df['target'] = iris.target
iris_df

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	
0	5.1	3.5	1.4	0.2	0	11
1	4.9	3.0	1.4	0.2	0	1
2	4.7	3.2	1.3	0.2	0	
3	4.6	3.1	1.5	0.2	0	
4	5.0	3.6	1.4	0.2	0	
145	6.7	3.0	5.2	2.3	2	
146	6.3	2.5	5.0	1.9	2	
147	6.5	3.0	5.2	2.0	2	
148	6.2	3.4	5.4	2.3	2	
149	5.9	3.0	5.1	1.8	2	

150 rows × 5 columns

#finding null values in dataset
iris_df.isnull()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	
0	False	False	False	False	False	th.
1	False	False	False	False	False	
2	False	False	False	False	False	
3	False	False	False	False	False	
4	False	False	False	False	False	
145	False	False	False	False	False	
146	False	False	False	False	False	
147	False	False	False	False	False	
148	False	False	False	False	False	
149	False	False	False	False	False	

150 rows × 5 columns

ax.set_xlabel("sepal length (cm)")
ax.set_ylabel("sepal width (cm)")

ax.set_title("Data Distribution")

ax.grid()

ax.legend()

```
# Counting null values
null_values = iris_df.isnull().sum()
print(null_values)
     sepal length (cm)
     sepal width (cm)
                          0
     petal length (cm)
                         0
     petal width (cm)
                          9
     target
                          0
     dtype: int64
# Data Visualization
X = iris.data[:, [0,1]] \# Using petal length and petal width for easy visualization
y = iris.target
fig, ax = plt.subplots()
fig.set_size_inches(13, 7) # adjusting the length and width of plot
# lables and scatter points
ax.scatter(X[y == 0,0], X[y == 0,1], label="Setosa", facecolor="black")
ax.scatter(X[y == 1,0], X[y == 1,1], label="Versicolor", facecolor="blue")
ax.scatter(X[y == 2,0], X[y == 2,1], label="Virginica", facecolor="violet")
```

<matplotlib.legend.Legend at 0x7a419f6d1f60>


```
# Step 1: Data Exploration and Preparation
# Check for missing values (not needed for the Iris dataset)
# Scaling Features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(iris.data)
X = X_scaled
y = iris.target
# Split the scaled dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# SVM Implementation, metrics evaluation, cross-validation score
kernels = ['linear', 'poly', 'rbf']#List of kernels
for kernel in kernels:
    # Create an SVM classifier with the given kernel
    svm = SVC(kernel=kernel)
    # Train the classifier
    svm.fit(X_train, y_train)
    # Make predictions on the test set
   y_pred = svm.predict(X_test)
    # Evaluate the performance
    print(f"Kernel: {kernel}")
    print("Confusion Matrix:")
    print(confusion_matrix(y_test, y_pred))
    print("Classification Report:")
    print(classification_report(y_test, y_pred))
    # Apply K-fold cross-validation
    kf = KFold(n_splits=5, shuffle=True, random_state=42)
    cv_scores = cross_val_score(svm, X_train, y_train, cv=kf)
    print(cv_scores)
    print("Mean CV accuracy:", cv_scores.mean())
```

```
Kernel: linear
Confusion Matrix:
[[19 0 0]
 [ 0 12 1]
[ 0 0 13]]
Classification Report:
              precision
                           recall f1-score
                                              support
           0
                   1.00
                             1.00
                                       1.00
                                                   19
           1
                   1.00
                             0.92
                                       0.96
                                                   13
           2
                   0.93
                             1.00
                                       0.96
                                                   13
    accuracy
                                       0.98
                                                   45
  macro avg
                   0.98
                             0.97
                                       0.97
                                                   45
weighted avg
                   0.98
                             0.98
                                       0.98
                                                   45
[0.95238095 0.9047619 1.
                                  0.95238095 0.95238095]
Mean CV accuracy: 0.9523809523809523
Kernel: poly
Confusion Matrix:
[[19 0 0]
[ 0 13 0]
 [ 0 1 12]]
Classification Report:
                           recall f1-score
              precision
                                              support
           0
                   1.00
                             1.00
                                       1.00
                                                   19
           1
                   0.93
                             1.00
                                       0.96
                                                   13
           2
                   1.00
                             0.92
                                       0.96
                                                   13
   accuracy
                                       0.98
                                                   45
                   0.98
                             0.97
                                       0.97
                                                   45
  macro avg
weighted avg
                   0.98
                             0.98
                                       0.98
                                                   45
[0.95238095 0.95238095 0.9047619 0.80952381 0.9047619 ]
Mean CV accuracy: 0.9047619047619048
Kernel: rbf
Confusion Matrix:
[[19 0 0]
[ 0 13 0]
 [ 0 0 13]]
Classification Report:
              precision
                           recall f1-score
                                              support
           0
                   1.00
                             1.00
                                       1.00
                                                   19
           1
                   1.00
                             1.00
                                       1.00
                                                   13
           2
                   1.00
                             1.00
                                       1.00
                                                   13
                                                   45
   accuracy
                                       1.00
                   1.00
                             1.00
                                       1.00
   macro avg
                                                   45
weighted avg
                   1.00
                             1.00
                                       1.00
                                                   45
[0.9047619 0.9047619 1.
                                 0.9047619 0.95238095]
Mean CV accuracy: 0.933333333333333
```

```
# SVM Classification
X = iris.data[:, :2] # We only take the first two features for visualization
y = iris.target
# Split the scaled dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
kernels = ['linear', 'poly', 'rbf']
# Create a mesh to plot the decision boundaries
x_{min}, x_{max} = X[:, 0].min() - 1, X[:, 0].max() + 1
y_{min}, y_{max} = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))
# Plot the decision boundaries for each kernel
fig, axes = plt.subplots(3, 1, figsize=(12, 8))
for kernel, ax in zip(kernels, axes.ravel()):
    # Create an SVM classifier with the given kernel
    svm = SVC(kernel=kernel)
    # Fit the classifier to the training data
    svm.fit(X_train, y_train)
    # Plot the decision boundary
    Z = svm.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    ax.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8)
    # Plot the training data
    ax.scatter(X\_train[:,\; 0],\; X\_train[:,\; 1],\; c=y\_train,\; cmap=plt.cm.coolwarm,\; edgecolors='k')
    ax.set_title(f'Kernel: {kernel}')
    ax.set_xticks(())
    ax.set_yticks(())
plt.show()
```

Kernel: linear