Quantum Mechanics

José R. Valverde EMBnet/CNB

Introduction

- ~A molecule is not a string/network of atoms
 - ~It is a cloud of electrons in a field of nuclei
 - ~Molecular orbitals
- ~QM deals with electrons and nuclei
 - May account for bond-breaking / formation
 - ~Explore the fine structure of species
 - ~Explores electronic behaviour (excited states)
- Quantum Dynamics may explore system evolution in time

The wave equation

- ~A particle is a wave is a particle is a wave is...
- ∼The core of QM is Schroedinger's equation

$$H\Psi = E\Psi$$

- ~Ψ is a continuous natural function (3D [+ time]) in *all* the space
- ~In practice we have a <u>system of equations</u> with many Ψ for many E levels
- ∼Given Ψ we can compute observables
 - ~Observable = $\int \Psi^*$ Operator $\Psi d\tau / \int \Psi^* \Psi d\tau$

Atomic orbitals: H

- ∼Schroedinger equation can be solved for H (1s¹)
 - ~Electrons are in orbitals
 - ~Orbitals are probabilistic *electron density clouds*

~Higher probability regions have a higher *charge*

density

Atomic orbitals: polielectronic

- ∼We consider each electron separately:
 - ∼With its own wave function X_i
 - The total wave function is $\Psi = X_i X_2 \cdots X_n$
 - ~Electrons have spin ($\frac{1}{2}$ - $\frac{1}{2}$, α β)
 - ightharpoonupHe: $1s^2 = 1s^{\alpha} 1s^{\beta} \rightarrow \Psi = X^{\alpha} X^{\beta}$
 - ~Pauli's exclusion principle: if we exchange two electrons the function must change sign
 - Rewrite the equation as *a determinant* to account for all combinations and normalize with $1/\sqrt{n!}$
 - **Simplify notation** as $\Psi = X1 X2 ... Xn$

Solving the equation

- Assign a value to orbitals (e. g. STO functions defined by Hartree and simplified by Slater)
- ~Apply the *variational principle*:
 - As the function gets better, the energy will be lower
- ∼Orbitals should be ortonormal
 - $\sim \int XiXj d\tau = 0 \text{ if } i \neq j$
 - ~But as we use approximations we must account for overlap integrals:
 - $\sim \int XiXj d\tau = Sij$

Molecular orbitals

The total wave function for the molecule will be again the product of individual electron wave functions

$$\Psi = \Phi 1 \Phi 2 ... \Phi n$$

~Invidual orbital wave functions are computed from atomic orbitals X_k as a LCAO

$$\Phi_{i} = \sum_{k} c_{ik} X_{k}$$

- \sim We know X_k so we need to find c_{ik}
 - ~Use variational principle

Computing **Y**

∼We have

- $\Psi = \Phi_1 \Phi_2 ... \Phi_n$ (a normalized determinant) where $\Phi_i = \sum_k c_{ik} X_k$, with X_i known and the only unknowns are c_{ik} .
- ~Can be written as a system of equations
 - ∼In matrix form
 - \sim We can solve the system of equations to find c_{ik}
- ~Born-Oppenheimer approximation
 - ~Nuclear movement is too slow w.r.t. Electrons
 - ~Nuclear movement effects can be ignored.

The Self Consistent Field

~We can exploit the variational principle:

- ∼Start we a guess for c_{ik}
- ~Substitute guessed values into the set of equations
- Compute energy
- ∼Use this energy to define a new set of values for c_{ik}
- Continue until the set of values stabilizes (becomes self-consistent)

~Problems

- There are factors we haven't considered
- ∼We start from approximations to atomic orbitals

Relativity

- ~In general we ignore it
 - Its effects are negligible for most biological atoms/molecules
- ~Relevant for heavy atoms
 - External electrons repel internal electrons towards the nucleus
 - Inner electrons speed increases and becomes relativistic
 - ~Cr, Fe, Zn... owe relevant properties to relativity

Basis sets

~LCAO: MOs as a linear combination of AOs

- ~X_k are represented by approximate functions:
 - ∼Basis functions/basis set
- ~STO: spherical harmonics
 - Good for diatomics and semiempirical methods
- ∼GTO: Gaussian curves
 - → Bad close and far from nucleus
 - ~Can be enhanced by sums of gaussians

Basis sets

- ∼Minimal set
 - ~One STO function (or GTO set) for each AO
- ~N-Zeta
 - ~DZ: double number of functions for each AO
 - ~TZ: three functions, QZ, 5Z...
 - Split valence: one function for core, two for valence orbitals
 - ~Polarization functions: DZP, QZP ...
- Contracted sets
 - ~Compute core orbitals once from and fix them

Common basis sets

- ~STO-nG
 - \sim STOs approximated by n gaussian functions.
 - ~Minimal basis set
- ~k-nlmG
 - ~Split valence basis set
 - ~k: number of PGTOs used to approximate core e-
 - ~nlm: GTOs used for valence orbitals
 - May add diffusion (+) and polarization functions (d, p orbitals)

Common Basis sets

- ~STO-3G
 - ∼Minimal basis set
- ~3-21G:
 - ~core is a contraction of 3 PGTOs, valence is divided in two parts, one uses 2 PGTOs and the other 1 GTO
 - Similar to STO-3G but uses double PGTOs in the valence section
- ~6-31G
 - ~Similar to 3-21G but higher precision

Common basis sets

- ~6-311G
 - ~Splits valence in three levels, with 3 PGTOs for inner valence orbital and two levels for variation
- \sim 6-311++G(3d,2p)
 - ~6 PGTOs for contracted (compute once) core
 - ~3 GTOs for inner valence
 - ~ 2 additional valence levels
 - ~2 diffusion functions (++)
 - ~3 polarization functions for d orbitals and 2 for p orbitals

Ab initio methods

Hartree-Fock

- ~SCF or HF uses the variational principle as described. N⁴
- ~RHF: use same orbitals irrespective of spin
 - Good for full occupancy (singlet)
- ~UHF: different orbitals for different spins
 - ∼Good for unpaired electrons (doublet..)
 - ~Spin contamination
- ~ROHF: compute spins separately by force same orbitals
- ~Recovers 99% of the energy

Electron correlation

- ~Electron clouds do not consider correlation
- ~Picture a single voxel:
 - There is a probability that two electrons will be there simultaneously at any time
 - ∼But it is unlikely as they repel each other
 - ~Electron movement is correlated
- Including correlation increases precision
 - ∼But takes more time

Møller-Plesset Perturbation Theory

- Uses many body perturbation theory
- Count twice electron repulsion and apply a correction
 - ~MP0, MP1, MP2... (depending on the correction order)
 - ∼MP2 is N⁵ and recovers 80% of the correlation energy
 - \sim MP3 is N⁶, MP4 N⁷, MP5 N⁸⁻¹⁰...
- ∼MP is non-variational
 - May give energies too low.

Configuration interaction

~Add a new linear combination:

$$\Psi_{\text{enhanced}} = a\Psi_0 + b\Psi_1 + \dots$$

- ~Where Ψ_0 is the function for a basic configuration, and Ψ_i are functions for excited states with the same geometry
- ∼We compute many times the wave function for different excited states.. how many? N⁸
 - ∼CIS (single excited state)
 - CISD (single and double)
 - ~CISDT (... and triple), CISDTQ (..and quadruple)

Multiconfiguration SCF

- ~It is a king of CI where we optimize
 - the wave function coefficients
 - ~and the MOs used
 - May be more precise at a higher cost
 - ~Run an HF method
 - ~Run a CI method
 - ∼If HF < 0.9 CI (correlation effect > 10%) then consider MCSCF
 - ~Requires manual intervention to select excited MOs to include

Coupled Cluster

~Similar to CI

- ~Instead of including all corrections to a given order, compute one kind of corrections to infinite order.
- ~As for CI we need to truncate corrections
 - ~CCS, CCSD, CCSDT...
- ∼Precision is similar to CI
- Method is extensive in size

Localized methods

- \sim As we have seen we move in N⁵-N⁸
- Most interactions are mainly local
 - Consider only local contributions of atomic orbitals to MOs
 - ~Used for MP and CC
 - ∼May scale linearly

As a general rule

Semiempirical methods

Semiempirical methods

- ~Based on valence bond
 - ~Substitute known values to speed up calculus
 - ~From experimental data (includes correlation)
 - ~From previous *ab initio* calculations
 - ~Hückel
 - ~Very simple, imprecise, good start guess
 - ~NDO: neglect of differential overlap
 - ~CNDO (complete neglect of differential overlap)
 - ∼MNDO (modified neglect)
 - ~AM1 (Austin Model 1)
 - ~PM1, PM2, PM3... PM6 (Parameter model n)

As a rule

CNDO < MNDO < AM1 < PM3 < PM6

Density Functional Theory

The basics

- ~Energy may be computed from electron density (Hoenburg and Kohn) using a *functional*
 - ~A function that takes functions as arguments
- ~Density may be computed as a linear combination of *orbitals* (Kohn and Sham)
- We need to identify the function of density that is to be feeded the functional to compute the energy

Computing DFT

- ∼Cost is N³
 - ~Assuming we can identify the function
 - ~Which we do not know!
 - ~Approximations
 - ~LDA and LSDA depend on density
 - ~Gradient corrected methods
 - ~Hybrid methods (with HF): B3LYP
 - There are now <u>linear scaling DFT methods</u>
 - ~FMM, CFMM...

Applications

Electronic structure

- ~Orbitals
- ~HOMO (highest occupied)
 - ~nucleophiles
- ~LUMO (lowest unoccupied)
 - ~electrophiles
- ~Frontier orbital theory

Population analysis

- Charge distribution in space
- ~Assignment to nuclei (atoms)
 - Theory of atoms in molecules
 - ~Partial charges
 - ~Bond order
- ~Mulliken
- ~Lowdin
- ~NBO

Charge distribution

- ~Simplifications:
 - ~Dipoles
 - ~Multipoles
 - ∼Used in QSAR
- ~Electrostatic field
 - ∼Map over VdW surface
 - ~ESP
- ChelpG method

Other properties

- ~Structure
- Molecular size and dimensions
- ~Energy and tensions
 - Vibration states (phonons)
 - ~Forces for MD simulations
- ~Electroaffinity
- ~Additive properties (to build molecules)...

Reactions

- ~Saddle point calculations
- ~Transition state calculations
- ~IRC (Internal reaction coordinates)
- ~Reaction coordinate path

QM/MM QM/MD QD

- ~QM/MM
 - Minimize complex structures
- ~QM/MD
 - Model dynamical behavior of complex structures
 - ∼Interest region modeled by QM
 - ~Rest modeled by MD
 - ∼Border region needs special treatment (ghost atoms)
 - ∼ONIOM, Carr-Parrinello
- ~QD
 - ~Full quantum dynamical modeling

In practice

- ~Select a basis set approximation to AOs
- Select a method to compute MOs
 - ~Ab initio
 - ~Semiempirical
- ~Build model
- ~Launch program
- ∼Wait...

In biological practice

- ~Usually use a semiempirical method
 - **~**MNDO, AM1, PM3, PM6
- ∼It is now feasible to use *ab initio*
 - ∼With STO-3G (minimal) or 6-311G or better
 - ~RHF for singlet
 - ~UHF/ROHF for unpaired electrons
 - ∼If correlation is relevant, use MP or CI
 - ∼If size is too big, use QM/MD
- Consider DFT and Carr-Parrinello MD.

<u>Method</u>	<u>Time</u>
NA ala avilar NA a ala araisa a	N 12
Molecular Mechanics	N^2
Molecular Dynamics	N^2
Hartree-Fock (HF)	N ² - N ⁴ (depending on symmetry and cutoff use)
MP2	N^5
MP3, MP4	N^6
MP5	N^8
CC2	N^5
CCSD	N^6
CISD	N^6
CASSF	A! (depends on the number of orbitals)
CI complete	N!
Semiempirical methods	N ² (for small systems)
Semiempirical methods	N³ (for large systems)
DFT	N^3
DFT with linear scaling algorithms	N

Note: adapted from Computational Chemistry: A Practical Guide for applying Techniques to Real-World Problems. David C. Young. Wiley & Sons. 2001.