MSO202A COMPLEX ANALYSIS Assignment 5

Exercise Problems:

- 1. Evaluate the integral $\frac{1}{2\pi i} \int_C \frac{ze^{zt}}{(z+1)^3} dz$ where C is a counter-clockwise oriented simple closed contour enclosing z=-1.
- 2. Write down the Taylor series centred at the given point for the following functions and find its disc of convergence:

(i)
$$f(z) = \frac{1}{z^2} \text{ at } z_0 \neq 0$$
 (ii) $f(z) = \frac{6z+8}{(2z+3)(4z+5)}$ at $z_0 = 1$

(iii)
$$f(z) = \frac{e^z}{z+1}$$
 at $z_0 = 1$.

- 3. Let $f, g: \mathbb{C} \to \mathbb{C}$ be analytic functions such that $f(a_n) = g(a_n), n = 1, 2, ...$ for a bounded sequence of distinct complex numbers. Show that $f \equiv g$ on \mathbb{C} .
- 4. Derive the Taylor series representation of $\frac{1}{1-z}$ around i.

$$\frac{1}{1-z} = \sum_{n=1}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}} \text{ where } |z-i| < \sqrt{2}.$$

- 5. Let f be analytic in a simply connected domain D and γ be a simple closed curve in D oriented counterclockwise. Suppose z_0 is the only zero of f in the region enclosed by γ . Show that $\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i m$ where m is the order of zero of f at z_0 . (If $f(z) = (z z_0)^m g(z)$ where g(z) is analytic at z_0 and $g(z_0) \neq 0$ then f is said to have a zero of order m.)
- 6. (Mean Value Theorem) Let D be a simply connected domain and $f: D \to \mathbb{C}$ be an analytic function. Then prove that $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$ for every r > 0 such that $B(z_0, r)$ is contained in D.
- 7. Find the maximum of the function |f| on $\overline{\mathbb{D}}$ if (a) $f(z) = z^2 z$ (b) $f(z) = \sin z$.

Problem for Tutorial:

- 8. Let f be entire and $|f(z)| \le a + b|z|^n$ for some positive real numbers a and b and $n \in \mathbb{N}$. Show that f is a polynomial of degree at most n.
- 9. Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Let $z_0 \in \mathbb{C}$ and r > 0 be arbitrary. Show that the image of f intersects the disc $B_r(z_0) = \{z : |z z_0| < r\}$. (Hence image of a non-constant analytic function intersects every disc in \mathbb{C} .)
- 10. Let f and g be nonzero analytic functions defined on the disc \mathbb{D} with $|f(z)| \leq |g(z)| \forall z$. Assume that z_0 is a zero for g(z) of order n. Show that z_0 is a zero for f(z) of order at least n.