Support Vector Machines and Neural Networks

Lesson 8

PROFESSIONAL & CONTINUING EDUCATION

Lecture Overview

Support Vector Machines

- Basic Description
- The "Kernel Trick"
- Python Notebook
- Choosing a Kernel Function

Artificial Neural Networks

- Structure
- Gradient Descent and Learning Rate
- Python Notebook
- Momentum,
 Convergence, and
 Overfitting PROFESSIONAL & CONTINUING EDUCATION UNIVERSITY of WASHINGTON

Support Vector Machine--History

- The mathematical idea of an SVM has been around since the 60's (V. Vapnik, 1963) the first robust application was published in 1992 by Boser, Guyon and Vapnik
- SVMs are considered one of the best "off the shelf" machine learning algorithms
 - –They are less likely to overfit the data
 - -Can be used for both classification and regression
 - Applications range from information retrieval to bioinformatics
- They attempt to "regulate" the hypothesis space to ensure maximum accuracy

Applications in Literature

- Medical imaging classification
- Face recognition
- Emotion classification
- Air quality analysis
- Page ranking algorithms in online search
- Time series prediction
- Outlier identification (potentially good as a filter mechanism for other types of machine learning methods)

SVM in a Nutshell

Robust binary classifiers

Support Vector Machines

Similar to linear regression these algorithms are used to find a hyperplane that separates data points into

two classes

PROFESSIONAL & CONTINUING EDUCATION

SVM in a Nutshell

- The model is a representation of these points in "space" which is why we consider them **vectors**—
 they have a value and a location
- They are divided by a clear gap (margin)—as wide as possible given all known points—known as a hyperplane
- The **margin** is the space *between* the closest individual data points (**support vectors**).

PROFESSIONAL & CONTINUING EDUCATION

SVMs in a Nutshell...

- SVM views the input data points as two sets of vectors in an n-dimensional space (where n is the number of features)
- It constructs two vectors that maximize the margin (distance) between the inner most training data points based on their "similarity"
- The optimal solution boundary is an equidistant line in between the two margins called a hyperplane

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Linear Regression vs. Linear SVMs

- Similar to Linear Regression, SVMs, are a supervised ML algorithms for identifying a hyperplane to linearly separate a set of data points
- The problem with linear regression is that it may identify several possible hyperplanes with the same data, of which none are optimal

PROFESSIONAL & CONTINUING EDUCATION

Representation of Samples Geometrically

- Assume that a subject (e.g., synthetic or petroleum-based motor) is described by n characteristics (features)
- Representation: every oil tested has a vector in an n-dimensional space
 - Tail at point with 0 (zero) coordinates
 - Arrow-head defined by feature values
 - Direction is + or value away from the origin
- E.g.: a oil can be represented by saturate level and sulfur.
- 0,A is the distance of the vector or the hypotenuse of a triangle

Representation of Samples Geometrically

- More samples populate the ndim space (Rⁿ)
- New features refine the datapoint's location (positive or negative) in the feature space
- Works for large feature sets
- Once all of the vectors are plotted in Rⁿ determine the best boundary between them

Find an Optimum Decision Boundary

- Decision boundaries classify all the data points correctly
- Several hyperplane may satisfy this requirement
- For SVMs, we are looking for the Euclidean dot product calculated as follows:

$$\sum_{t=1}^{d} w_1 x_1 = w^T x$$

Find the Maximum Margin

- Calculate the distances from each data vector
- Maximum distance between any two points is ||p||
- And we know that ||p|| is midway between the two closest points
- Therefore, the distance between the margins are two parallel vectors to the hyperplane $2\|p\|$ distance apart

Find the Optimal Hyperplane

The optimal hyperplane is the orthogonal projection of a perpendicular line that is the maximum distance from **all** of the vectors

Find the Optimal Hyperplane

At each new datapoint

- Select two hyperplanes which separate the datapoint with no points between them
- maximize their distance (the margin)
- Half the distance is the optimal hyperplane

PROFESSIONAL & CONTINUING EDUCATION UNIVERSITY of WASHINGTON

Find the Optimal Hyperplane

At each new datapoint

- 1. Select two hyperplanes which separate the datapoint with no points between them
- maximize their distance (the margin)
- Half the distance is the optimal hyperplane

PROFESSIONAL & CONTINUING EDUCATION

Find the Optimal Hyperplane

PROFESSIONAL & CONTINUING EDUCATION

PROFESSIONAL & CONTINUING EDUCATION

Find the Optimal Hyperplane

Modified SVM

Modified SVM with Slack Variables

- Also known as "Soft Margin" or "Hard Margin"
- Lower ζ_i relaxes constraints to allow the SVM to generalize better on "unseen" data points.

$$w^T x + b \ge 1$$

Becomes:

$$w^T x + b \ge 1 - \zeta_i$$

- Where ζ_i is an error or "cost" function that can be tightened or relaxed.
- Relaxing cost allows for mapping a data point when it is too close from the hyperplane, or it is not on the correct side of the hyperplane.

PROFESSIONAL & CONTINUING EDUCATION

ONIVERSITI BY WASHING!

Slack Variables

Slack variables relax the constraints to give a broader and less overfitted prediction boundary

Downsides of LSVM

- LSVM only works well when you have linear separability
 - LSVMs, like regression, are parametric
- Each new training data point can result in the need to regenerate the "support vectors"
- Although, there are multi-class SVMs, the typical implementation is "one vs. all"—which means we'd have to train an SVM model for every class

PROFESSIONAL & CONTINUING EDUCATION