2024.07.04 数学分析开局测试

约定 N 表示所有非负整数的集合, \mathbb{N}_+ 表示所有正整数的集合。设 $n, m \in \mathbb{N}_+$, 对于可微映射 $f: \mathbb{R}^n \to \mathbb{R}^m$, f' 表示 f 的 Jacobi 矩阵。实值函数 f 在区间 I 上是凸函数,意思是对于任何 $x, y \in I, \lambda + \mu = 1, \lambda, \mu \geq 0$, 都有 $f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y)$.

- 1. 叙述实数系基本定理。
- 2. 证明 Toeplitz 定理: 设有一族非负实数 $\{\{t_{n,k}\}_{k=1}^n\}_{n=1}^{\infty}$ 满足 $\sum_{k=1}^n t_{n,k} = 1$, $\lim_{n \to \infty} t_{n,k} = 0$, 另有实数列 $\{a_n\}_{n=1}^{\infty}$ 收敛到 $a \in \mathbb{R}$, 那么就有

$$\lim_{n \to \infty} \sum_{k=1}^{n} t_{n,k} a_k = a.$$

3. 设实数列 $\{a_n\}_{n=1}^{\infty}$ 的每一项都大于 0, 试比较

$$\liminf_{n\to\infty}\sqrt[n]{a_n}, \qquad \limsup_{n\to\infty}\sqrt[n]{a_n}, \qquad \liminf_{n\to\infty}\frac{a_{n+1}}{a_n}, \qquad \limsup_{n\to\infty}\frac{a_{n+1}}{a_n}$$

的大小关系。

- 4. 有限区间上的一致连续函数是否一定有界?
- 5. 设 $-\infty < a < b < \infty$, $f: [a, b] \to \mathbb{R}$ 为凸函数。试证明,如果存在 $c \in (a, b)$ 使得 f(a) = f(c) = f(b), 那么 f 恒取常值。
- 6. Dirichlet 函数和 Riemann 函数在 [0,1] 上的 Riemann 可积性如何,Lebesgue 可积性又如何?可积的情况中,积分值分别是多少?
- 7. 导出带积分余项的 Taylor 公式: 设 $n \in \mathbb{N}$, $f \in C^{n+1}(a,b)$, $x_0 \in (a,b)$, 则有

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

8. 对于 $n ∈ \mathbb{N}$ 计算积分

$$\int_0^{\pi/2} (\sin x)^n \, \mathrm{d}x.$$

9. 计算极限

$$\lim_{n \to \infty} \frac{(n!)^2 2^{2n}}{(2n)! \sqrt{n}}.$$

10. 写出 Young 不等式、Hölder 不等式和 Minkowski 不等式。

- 11. 设 $n \in \mathbb{N}_+$. 给出 \mathbb{R}^n 中开集、闭集、导集、闭包、完全集、紧集、列紧集、连通集、道路 连通集、凸集、区域的定义。
- 12. 设 $n \in \mathbb{N}_+$. 在 \mathbb{R}^n 的所有子集中,是否存在既不是开集又不是闭集的集合?是否存在既 开又闭的集合?有哪些既开又闭的集合?这体现了 \mathbb{R}^n 的什么性质?
- 13. 设 $n \in \mathbb{N}_+$. \mathbb{R}^n 中的区域是否一定是道路连通的?
- 14. 设 $n, m \in \mathbb{N}_+$. 问: $\mathbb{R}^n \to \mathbb{R}^m$ 的连续映射
 - (a) 是否一定把开集映成开集?
- (b) 是否一定把闭集映成闭集?
- (c) 是否一定把紧集映成紧集?
- (d) 是否一定把连通集映成连通集?
- 15. 设 $n, m \in \mathbb{N}_+$. 试用开集来刻画 $\mathbb{R}^n \to \mathbb{R}^m$ 的连续映射。又问: $\mathbb{R}^n \to \mathbb{R}$ 的 Lebesgue 可 测映射有没有类似的刻画?
- 16. 设

$$\begin{cases} u^2 - v \cos xy + w^2 = 0, \\ u^2 + v^2 - \sin xy + 2w^2 = 2, \\ uv - (\sin x)(\cos y) + w = 0. \end{cases}$$

在 $(x,y) = (\pi/2,0), (u,v,w) = (1,1,0)$ 处计算 Jacobi 矩阵

$$\frac{\partial(u,v,w)}{\partial(x,y)}.$$

17. (多元函数的中值定理)设 $n\in\mathbb{N}_+$, 凸区域 $D\subseteq\mathbb{R}^n$, 函数 $f\colon D\to\mathbb{R}$ 可微,则对任何两点 $a,b\in D$, 在这两点的连线上存在一点 ξ , 使得

$$f(b) - f(a) = f'(\xi)(b - a).$$

18. (拟微分平均值定理)设 $n, m \in \mathbb{N}_+$, 凸区域 $D \subseteq \mathbb{R}^n$, 函数 $f: D \to \mathbb{R}^m$ 可微,则对任何两点 $a, b \in D$, 在这两点的连线上存在一点 ξ , 使得

$$||f(b) - f(a)||_2 \le ||f'(\xi)||_F ||(b-a)||_2$$

其中 $\|\cdot\|_2$ 表示列向量的 2 范数(也即由 Euclid 空间上的标准内积诱导的范数), $\|\cdot\|_F$ 表示矩阵的 Frobenius 范数。

19. 叙述 Newton-Leibniz 公式、Green 公式、Gauss 公式和 Stokes 公式。对于有限区间上的 Lebesgue 积分,Newton-Leibniz 公式何时成立?

- 20. 尽可能多地说出数项级数判敛的方法。
- 21. 尽可能多地说出判断函数项级数是否一致收敛的办法。
- 22. 尽可能多地说出积分与极限换序的条件,产生的结果是等式或者不等式都可以。
- 23. 设有函数列 $\{f_n\}_{n=1}^{\infty} \subset C[a,b], \mathbb{R}$. 试证明,如果 $\{f_n\}_{n=1}^{\infty}$ 在 [a,b) 内逐点收敛,但 $\{f_n(b)\}_{n=1}^{\infty}$ 发散,那么 $\{f_n\}_{n=1}^{\infty}$ 在 [a,b) 上不可能一致收敛。
- 24. 说说 Fourier 系数定义式的思想。
- 25. 证明 Riemann-Lebesgue 引理 (的一部分): 设 f 是有限闭区间 [a,b] 上的 (常义) Riemann 可积实值函数,那么

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(x) \cos(\lambda x) \, \mathrm{d}x = 0.$$