INTRODUCTION TO BIOINFORMATICS

Lecture – 1

Department of CSE, DIU

CONTENTS

- 1. Basics
 - Cell
 - Nucleus
 - Chromosome
 - DNA
 - RNA
 - Gene
 - Genome
- 2. Brief History
- 3. Present and Future Scopes

1. Begin With Basics

Let's start with the very basics and learn step by step, TOGETHER!

▶ Cell Types –

- Prokaryote no nucleus or membrane-bounded organelles. Ex- Bacteria
- Eukaryote have nucleus and other membrane-bounded organelles. Ex- Human

▶ Cell Contents -

- Mitochondria Power House of Cell
- Lysosomes Holds enzymes created by a cell
- Golgi Apparatus (body) Processes protein and lipids
- Endoplasmic Reticulum Involved in protein and lipid synthesis
- Nucleus Brain of the cell
- Cytoplasm liquid inside cell where organelles float

Copyright www.healthhype.com

NUCLEUS •

- Nuclear membrane 2 layered membrane
- Nucleolus dense object inside nucleus
- Chromatin Packed inside the nucleus of every human cell is nearly 6 feet of DNA, which is divided into 46 individual molecules, one for each chromosome and each about 1.5 inches long. 23 pairs of chromosome, 22 pairs of common autosome, 1 pair sex chromosome
- Nucleoplasm dense liquid inside nucleus

Chromosome

NUCLEIC ACID (DNA & RNA)

GENE •

- A gene is the basic physical and functional unit of heredity.
- Portion of DNA which acts as instruction to make proteins.
- Human gene can have few hundred to 2 million base pairs.
- The Human Genome Project has estimated that humans have between 20,000 and 25,000 genes.
- Every person has two copies of each gene, one inherited from each parent.
- Most genes are the same in all people, but a small number of genes (less than 1 percent of the total) are slightly different between people (called allele).
- These small differences contribute to each person's unique physical features.

GENOME •

- A genome is an organism's complete set of DNA, including all of its genes.
- Each genome contains all of the information needed to build and maintain that organism.
- In humans, a copy of the entire genome—more than 3 billion DNA base pairs—is contained in all cells that have a nucleus.

Overview of organizations of life

- Nucleus = library
- Chromosomes = bookshelves
- Genes = books
- Almost every cell in an organism contains the same libraries and the same sets of books.
- Books represent all the information (DNA) that every cell in the body needs so it can grow and carry out its various functions.
- Moreover, more recent discoveries suggest that the books, bookshelves and libraries are not passive waiting to be read but are, sometimes, rewriting and rewiring themselves!

2. HISTORY

A Journey from Biology to Bioinformatics

WHAT IS BIOINFORMATICS?

- ▶ Bioinformatics is the discipline that uses computers to store, retrieve, manipulate and distribute information related to biological macromolecules such as RNA, DNA and proteins
- ▶ Bringing biological themes to computers

The field of science in which biology, computer science and information technology merge into a single discipline

Biologists

collect molecular data: DNA & Protein sequences, gene expression, etc.

Bioinformaticians

Study biological questions by analyzing molecular data

Computer scientists

(+Mathematicians, Statisticians, etc.) Develop tools, softwares, algorithms to store and analyze the data.

SYNONYMS

Molecular Bioinformatics, Computational Biology, Biocomputing

FROM BIOLOGY TO BIOINFORMATICS

- ▶ From Academic Interest to Commercial Interest
- From Knowledge Discovery to Industrial Development
- Added Pursuit for Longer Life and Cure for Diseases
- ▶ Tremendous recent progress in Biology and Engineering

HUMAN GENOME PROJECT

- Completed between 1986 to April 2003
- Identify all genes of Human DNA
- Around 3 Billion Nucleutide Bases (A, T, G, C) in a human body
- Average gene consists 3000 bases, varies in size (Largest Gene – 2.4 Million Bases)
- Total Number of Genes around 30,000
- Functions are unknown of almost 50% discovered genes

3. BIOINFORMATICS – PRESENT & FUTURE SCOPES

What's happening now and what might happen in the upcoming years?

SCOPE OF RESEARCH

Sequence Alignment

Arranging DNA/RNA/Protein Sequences to identify regions of similarity.

Evolution Phylogenetics

Studying evolutionary relationships among bilogical entities.

Genome Assembly

Merging long/short reads by aligning and produce original ancestral gene.

Statistical Phylogenetics

Performing statistical analysis for finding evolutionary relationships between biological entities.

Read Mapping

Mapping generated long/short reads to a reference sequence.

Population Genetics

Study of genetic variation within populations.

SCOPE OF RESEARCH (CONT.)

Genome Annotation

Process of identifying location of genes and all other coding regions in a genome.

Structure Prediction (RNA, Protein)

Predicting 3D structures of RNA and Protein.

Gene Expression Analysis

Gene expression analysis is the process by which information from a gene is used in the synthesis of a functional gene product.

Association Mapping

Linkage Analysis and disequilibrium mapping. Basically links phenotypes with genotypes.

Computer Aided Drug (CAD) Design

Designing new medications with knowledge of a biological target and with help of computer tools.

Systems Biology

Study of systems of biological components.

CURRENT POPULATION

70 Miles per Hour Nerve Impulses run to and from Brain

5x Times

Brain's storage capacity compared to Encyclopedia Britannica

20% Oxygen

Brain uses 20% of Oxygen entered into the blood

80% Water

Human brain has 80% water

