Теорія інформації та кодування

Лекція 6

Кодування сигналів. Методи оптимального кодування. Метод Шеннона-Фано

Доцент, к.т.н. Колісник М.О.

Кафедра комп'ютерних систем, мереж і кібербезпеки НАУ ХАІ

1

У чому полягає ідея першої теореми Шеннона?

При будь-якій продуктивності джерела повідомлень, меншої пропускної спроможності каналу, існує спосіб кодування, що дозволяє передавати по каналу всі повідомлення, що виробляються джерелом.

Важливе зауваження.

Мінімальна середня кількість елементів на виході кодуючого пристрою, що відповідає одному символу дискретного повідомлення, можна зробити як завгодно близьким до максимальної ентропії джерела.

Оптимальне (ефективне) кодування (1)

Визначення.

Кодування, яке здійснює видалення або зменшення надмірності із закодованих повідомлень, називається **ефективним**.

Основними вимогами до ефективного коду ϵ :

- •однозначність декодування, тобто кожному символу кодованого повідомлення має відповідати своя кодова комбінація та для всіх символів комбінації повинні бути різні;
- •в середньому на один символ повідомлення має припадати мінімальна кількість елементів кодової комбінації ефективного коду;
- жодна коротша комбінація ефективного коду не повинна бути початком іншої, довшої комбінації.

Оптимальне (ефективне) кодування (2)

Якщо елемент повідомлення хі представлений кодовою послідовністю символів, що складається з І(К(хі)) символів, то середня кількість символів Іср (К (хі)) у кодовій послідовності, що припадає на один елемент, так само:

$$l_{cp}\{K(x_i)\} = \sum p(x_i)l\{K(x_i)\}$$

Максимальна ентропія кодової послідовності, що припадає на один символ, дорівнює log m, де m— число різних кодових символів.

Hmax = log m

Оптимальне (ефективне) кодування (3)

Ентропія кодової послідовності К(хі), що припадає в середньому на одну комбінацію (відповідну елементу повідомлення):

$$l_{cp}\{K(x_i)\} * H(Y) \le l_{cp}\{K(x_i)\} * H_{\max}(Y) == \sum p(x_i)l\{K(x_i)\} * \log m$$

Основна вимога, що висувається до будь-якого коду, полягає в можливості однозначного декодування кодової послідовності, що призводить до умови

$$l_{cp}\{K(x_i)\}*H(Y)=H(X)$$

$$l_{cp}\{K(x_i)\} = \frac{H(X)}{H(Y)} \ge \frac{H(X)}{H_{\max}(Y)} = \frac{1}{\log m} \sum p(x_i) \log \frac{1}{p(x_i)}$$

Оптимальне (ефективне) кодування (4)

Надмірністю ефективного коду називається показник, що визначається виразом

$$D_k = \frac{l_{cp}\{K(X)\} - l_{\min}\{K(X)\}}{l_{cp}\{K(X)\}} = \frac{\sum_{i=1}^n p(x_i) l\{K(x_i)\} - H(X)}{\sum_{i=1}^n p(x_i) l\{K(x_i)\}}.$$

Оптимальне (ефективне) кодування (5)

Ефективністю ефективного коду називається показник η , який визначається виразом

$$\eta = \frac{l_{\min}\{K(X)\}}{l_{cp}\{K(X)\}} = \frac{H(X)}{\sum_{i=1}^{n} p(x_i) l\{K(x_i)\}}.$$

Задача

Задана матриця імовірностей системи, об'єднаної в одну систему з двох взаємозалежних систем В і А:

$$p(A, B) = \begin{vmatrix} 0.3 & 0 & 0 \\ 0.2 & 0.3 & 0.1 \\ 0 & 0.1 & 0 \end{vmatrix}.$$

Визначити повні умовні ентропії Н(В/А) та Н(А/В)

Рішення

Обчислюємо безумовні імовірності як суми сумісних імовірностей по рядках та стовпцях вихідної матриці:

$$p(A, B) = \begin{vmatrix} 0.3 & 0 & 0 & p(a_i) \\ 0.2 & 0.3 & 0.1 & 0.6 \\ 0 & 0.1 & 0 & 0.1 \\ \hline p(b) & 0.5 & 0.4 & 0.1 \end{vmatrix}$$

Визначаємо умовні ймовірності та складаємо матрицю умовних імовірностей:

$$p(a_i/b_i) = \frac{p(a_i, b_j)}{p(b_j)}; \quad p(a_1/b_1) = \frac{0.3}{0.5} = 0.6; \quad p(a_2/b_1) = \frac{0.2}{0.5} = 0.4; \quad p(a_2/b_2) = \frac{0.3}{0.4} = 0.75; \quad p(a_3/b_2) = \frac{0.1}{0.4} = 0.25;$$

$$p(a_2/b_3) = \frac{0.1}{0.1} = 1; \quad p(a_3/b_1) = p(a_1/b_2) = p(a_1/b_3) = p(a_3/b_3) = 0;$$

08.07.2022

$$p\left(a_{i}/b_{j}\right) = \begin{vmatrix} 0,6 & 0 & 0 \\ 0,4 & 0,75 & 1 \\ 0 & 0,25 & 0 \end{vmatrix}.$$

$$H(A/B) = -\sum_{i} \sum_{j} p(b_{j}) p(a_{i}/b_{j}) \log_{2} p(a_{i}/b_{i}) =$$

$$= -[0.5 (0.6 \log_{2} 0.6 + 0.4 \log_{2} 0.4) + 0.4 (0.75 \log_{2} 0.75 + 0.25 \log_{2} 0.25) + 0.1 (1 \log_{2} 1)] \approx 0.485 + 0.324 =$$

$$= 0.809 \ 6um/cm$$

$$H(A/B) = -\sum_{i} \sum_{j} p(a_{i}, b_{j}) \log_{2} p(a_{i}/b_{j}) = -(0.3 \log_{2} 0.6 + 0.2 \log_{2} 0.4 + 0.3 \log_{2} 0.75 + 0.1 \log_{2} 0.25) = 0.3 \cdot 0.736 + 0.2 \cdot 1.321 + 0.3 \cdot 0.415 + 0.1 \cdot 2 \approx 0.809 \ \text{fum/cm}$$

<u>Рішення</u>. Швидкість передачі сигналів

$$V = \frac{1}{\tau} = \frac{1}{0.02} = 50$$
 символ/сек.

Швидкість передачі інформації

$$C = \frac{H}{\tau} = \frac{\log_2 m}{\tau} = \frac{\log_2 5}{0.02} = \frac{2.32}{0.02} = 116 \text{ fum/cex.}$$

12 тча. Повідомлення передаються в двійковому коді (m=2). Час передачі 0 дорівнює $\tau 0 = 1$ с, тривалість імпульсу, що відповідає 1, $\tau 1 = 5$ с. Необхідно визначити швидкість передачі інформації для випадків: а) коли символи рівноімовірні та незалежні; б) імовірність появи символу 0 р0 = 0,37, імовірність появи символу 1 р1 = 0,63; в) р0 = 0,2; р1 = 0,8; г) р0 = 0,02; р1 = 0,98.

$$C = \frac{H}{\tau_{\rm cp}} = \frac{\log_2 2}{\frac{1}{2} (\tau_0 + \tau_1)} = \frac{1}{3} \approx 0.33 \text{ fum/cex.}$$

6)
$$C = \frac{H_i}{\tau_{cp}} = \frac{-\sum_{i=1}^{m} p_i \log_2 p_i}{\sum_{i=1}^{m} \tau_i p_i} =$$

$$= \frac{-(0,37\log_2 0,37 + 0,63\log_2 0,63)}{0,63 \cdot 5 + 0,37 \cdot 1} = 0,27 \text{ fum/cex.}$$

B)
$$C = \frac{H_2}{\tau_{cp}} = \frac{-(0.8 \log_2 0.8 + 0.2 \log_2 0.2)}{0.8 \cdot 5 + 0.2 \cdot 1} = 0.4 \text{ } 6um/ce\kappa.$$

r)
$$C = \frac{H_3}{\tau_{cp}} = \frac{-(0.98 \log_2 0.98 + 0.02 \log_2 0.02)}{0.98 \cdot 5 + 0.02 \cdot 1} \approx 0.3 \text{ } 6um/ce\kappa.$$

- 13 ровідомлення складаються з алфавіту а, b, c, d. Імовірність появи літер алфавіту в текстах дорівнює відповідно: pa = 0,2; pb = 0,3; pc = 0,4; pd = 0,1. Необхідно знайти надмірність повідомлень, що складаються з даного алфавіту.
- Рішення: Надмірність

$$D=1-\frac{H}{H_{\text{make}}}.$$

Максимальна ентропія для алфавіту з 4 символів $H_{\text{макс}} = \log_2 m = \log_2 4 = 2 \ \textit{бит/символ}.$

$$H = -\sum_{i} p_{i} \log_{2} p_{i} = -(0.2 \log_{2} 0.2 + 0.3 \log_{2} 0.3 + 0.4 \log_{2} 0.4 + 0.1 \log_{2} 0.1) = 0.4644 + 0.5211 + 0.5288 + 0.3322 = 1.8465$$
 бит/символ.

$$D = 1 - \frac{1,8465}{2} = 1 - 0,9232 = 0,07688.$$

1. Задати джерело дискретної інформації, описавши його в стандартній формі $X = \left\{x_i : p(x_i); i = \overline{1,n}\right\}$ та характеризуючи його значенням ентропії H(x), що обчислюється в силу визначення

$$H(X) = -\sum_{i=1}^{n} p(x_i) log_2 p(x_i);$$

- 2. Скласти таблицю формування ефективного коду символів джерела дискретної інформації (ДДІ), що має (n+1) рядків та не більше (n+3) стовпців;
- 3. Виписати в порядку спадання значення імовірностей $p(x_i); i = \overline{1,n}$ символи $x_i; i = \overline{1,n}$, розмістивши їх у другому стовпці, а значення імовірностей їх з'явлення на виході ДДІ в третьому;
- 4. Провести перший крок процедури ефективного кодування, для чого символи розділити на дві групи з можливо рівними сумами імовірностей символів груп, після чого всім символам верхніх підгруп в розряд коду, що слідує за старшим, в четвертому стовпці вписати одиницю (1), а нижніх груп нуль (0).

- 5. Провести другий крок процедури ефективного кодування, для чого символи кожної з двох груп, отриманих в п.4 алгоритму, розділити на дві підгрупи з можливо рівними сумами імовірностей символів суміжних підгруп, після чого всім символам підгруп зверху в розряд коду, що слідує за старшим, в п'ятому стовпці вписати одиницю (1), а нижніх груп нуль (0).
- 6. Провести кроки процедури ефективного кодування за схемою, наведені вищеп в п.п.4 та 5 алгоритму, вписуючи кожного разу в наступний розряд коду символів верхніх підпідгруп одиницю (1), а нижніх підпідгруп нуль (0), причому процедуру проводити до тих пір, поки не будуть закодовані всі символи алфавіту, кількість ітерацій якої в залежності від кількості п символів, що кодуються ДДІ та структури розподілення імовірностей р(хі) по символам може складати від одиниці до (n -1).
- 7. Виписати в останній правий стовпець таблиці значення чисел розрядів сформованих ефективних кодів, які представляють собою символ кількість двійкових розрядів коду за допомогою співвідношення

$$l_{cp}\{K(X)\} = \sum_{i=1}^{n} p(x_i) l\{K(x_i)\};$$

8. Оцінити ступінь близькості $I_{cp}\{K(x)\}$ до ентропії H(x) ДДІ шляхом контролю виконання нерівності

$$\frac{l_{cp}\{K(X)\}-H(X)}{H(X)} \le \delta_l = (0.05 \div 0.1).$$

Якщо нерівність виконується, то здійснити перехід до п.14 алгоритму, якщо не виконується, то здійснити перехід по п.9 алгоритму.

9. Модифікувати джерело шляхом введення агрегованих символів $\widetilde{x}_l = x_i x_j$, $(i,j=\overline{1,n};l=\overline{1,n^2})$, що характеризуються імовірностями появи символу $p(\widetilde{x}_l)$ на виході модифікованого ДДІ, що дорівнюють $p(\widetilde{x}_l) = p(x_i)p(x_j)$

- 10. Здійснити ефективне кодування агрегованих символів модифікованого ДДІ за схемою, представленою п.2-7 алгоритму;
- 11. Оцінити за допомогою співвідношення середню довжину коду на агрегований символ,

$$\frac{l_{cp}\{K(X)\} - H(X)}{H(X)} \le \delta_l = (0.05 \div 0.1).$$

- з майбутнім перерахунком її шляхом ділення отриманої довжини на кількість елементів в агрегованому символі – блоці;
- 12. Виконати перевірку виконання нерівності. Якщо нерівність виконується, то здійснити перехід до п.14 алгоритму, якщо ні, то здійснюється перехід до п.13 алгоритму;
- 13. Здійснити чергову модифікацію ДДІ, збільшивши кількість вхідних символів в блоках на одиницю, і виконати п.2-7 та п.10-12 алгоритму;

Приклад кодування методом Шеннона-Фано

Елемент повідомлення		Ділення повідомлення на групи та підгрупи	Код
Б	0,25	} 1	11
Д	0,25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10
A	0,15)],}!	011
Γ	0,13	[010
Е	0,12	} 1	001
В	0,1		000

Приклад

За наведеними даними необхідно здійснити ефективне кодування кодом Шеннона-

Фано

Символ	Імовірність	
a_i	p(a _i)	
aı	0,25	
а4	0,25	
a ₅	0,125	
aą	0,125	
a ₂	0,0625	
аз	0,0625	
a _{6.}	0,0625	
a ₈	0,0625	

Приклад

Приклад. Здійснимо ефективне кодування символів ДДІ, що генерує алфавіт

$$X = \{x_i; i = 1 \div 8 : p(x_i) = (2^{-i}), i = 1 \div 7; p(x_8) = p(x_7)\}.$$

$$H(X) = -\sum_{i=1}^{8} p(x_i) log_2(p(x_i)) = \sum_{i=1}^{8} p(x_i) log_2(p(x_i)^{-1}) = \frac{1}{2} 1 + \frac{1}{4} 2 + \frac{1}{8} 3 + \frac{1}{16} 4 + \frac{1}{32} 5 + \frac{1}{64} 6 + \frac{1}{128} 7 + \frac{1}{128} 7 = \frac{127}{64} [6um/cumbon];$$

№	x_i	$p(x_i)$		$K\left(x_{i}\right)$									
п/п			1	2	3	4	5	6	7				
1.	x_1	1/2	1							1			
2.	x_2	1/4	0	1						2			
3.	x_3	1/8	0	0	1					3			
4.	x_4	1/16	0	0	0	1				4			
5.	<i>x</i> ₅	1/32	0	0	0	0	1			5			
6.	x_6	1/64	0	0	0	0	0	1		6			
7.	<i>x</i> ₇	1/128	0	0	0	0	0	0	1	7			
8.	x_8	1/128	0	0	0	0	0	0	0	7			

$$l_{cp}\{K(X)\} = \sum_{i=1}^{n} p(x_i) l\{K(x_i)\} = \frac{1}{2} 1 + \frac{1}{4} 2 + \frac{1}{8} 3 + \frac{1}{16} 4 + \frac{1}{32} 5 + \frac{1}{64} 6 + \frac{1}{128} 7 + \frac{1}{128} 7 = \frac{127}{64} [\delta um/cumson];$$

$$\frac{l_{cp}\{K(X)\}-H(X)}{H(X)} = \frac{127/64-127/64}{127/64} = 0 \le \delta_l = (0.05 \div 0.1);$$

Приклад 2

Приклад. Здійснимо ефективне кодування символів ДДІ, що генерує алфавіт

$$X = \{x_1, x_2 : p(x_1) = 0.9; p(x_2) = 0.1\}$$

$$H(X) = -\sum_{i=1}^{2} p(x_i) log_2(p(x_i)) = -0.9 (log_2 0.9) - 0.1 (log_2 0.1) = 0.9 (0.14) + 0.1 (0.32) = 0.47 [6um| cumbo];$$

24

№ п/п	x_i	$p(x_i)$		$K\left(x_{i}\right)$								
п/п			1	2	3	4	5	6	7			
1.	x_1	0.9	1							1		
2.	x_2	0.1	0							1		

$$l_{cp}\{K(X)\} = \sum_{i=1}^{n} p(x_i) l\{K(x_i)\} = 0.9 \cdot 1 + 0.1 \cdot 1 = l[\delta um/cumbon];$$

$$\frac{l_{cp}\{K(X)\}-H(X)}{H(X)} = \frac{1-0.47}{0.47} = 2.128-1 = 1.128 >> \delta_l = (0.05 \div 0.1);$$

- 5. У зв'язку з невиконанням нерівності здійснимо перехід до п.9 алгоритму з метою модифікації вхідного ДДІ шляхом введення мультипликативно агрегованих символів (блоків) $\widetilde{x}_l = x_i x_j$, $(i, j = \overline{1, n}; l = \overline{1, n^2})$, що характеризуються $p(\widetilde{x}_l)$ імовірностями появи на виході ДДІ, що дорівнюють $p(\widetilde{x}_l) = p(x_i) p(x_j)$.
- 6. Виконаємо п.2-7 алгоритму, заповнюючи таблицю ефективними кодами блоків символів та значеннями їх довжин.

№	\tilde{x}_i	$p(\widetilde{x}_i)$		$K\left(\widetilde{x}_{i}\right)$							
п/п			1	2	3	4	5	6	7		
1.	$\widetilde{x}_1 = x_1 x_1$	0.81	1							1	
2.	$\widetilde{x}_2 = x_1 x_2$	0.09	0	1						2	
3.	$\widetilde{x}_3 = x_2 x_1$	0.09	0	0	1					3	
4.	$\widetilde{x}_4 = x_2 x_2$	0.01	0	0	0					3	

$$l_{cp\delta}\left\{K(\widetilde{X})\right\} = \sum_{i=1}^{n} p(\widetilde{x}_{i}) l\{K(\widetilde{x}_{i})\} = 0.81 \cdot 1 + 0.09 \cdot 2 + 0.09 \cdot 3 + 0.01 \cdot 3 = 1.29 \left[\delta um/\delta no\kappa\right];$$

$$l_{cp}\{K(X)\} = \frac{l_{cp\delta}\{K(\tilde{X})\}}{n_{\delta}} = \frac{1.29}{2} = 0.645[\delta um/cumbon];$$

$$\frac{l_{cp}\{K(X)\}-H(X)}{H(X)} = \frac{0.645-0.47}{0.47} = 1.37-1 = 0.37 > \delta_l = (0.05 \div 0.1);$$

No	$\widetilde{\widetilde{x}}_i$	$p(\tilde{\tilde{x}}_i)$		$K\left(\widetilde{\widetilde{x}}_{i}\right)$							
п/п			1	2	3	4	5	6	7		
1.	$\widetilde{\widetilde{x}}_1 = x_1 x_1 x_1$	0.729	1							1	
2.	$\widetilde{\widetilde{x}}_2 = x_1 x_1 x_2$	0.081	0	1	1					3	
3.	$\widetilde{\widetilde{x}}_3 = x_1 x_2 x_1$	0.081	0	1	0					3	
4.	$\widetilde{\widetilde{x}}_4 = x_2 x_1 x_1$	0.081	0	0	1					3	
5.	$\widetilde{\widetilde{x}}_1 = x_1 x_2 x_2$	0.009	0	0	0	1	1	e.		5	
6.	$\widetilde{\widetilde{x}}_1 = x_2 x_1 x_2$	0.009	0	0	0	1	0			5	
7.	$\widetilde{\widetilde{x}}_1 = x_2 x_2 x_1$	0.009	0	0	0	0	1			5	
8.	$\widetilde{\widetilde{x}}_1 = x_2 x_2 x_2$	0.001	0	0	0	0	0	0.		5	

$$l_{cp6} \left\{ K\left(\tilde{\tilde{X}}\right) \right\} = \sum_{i=1}^{n} p\left(\tilde{\tilde{x}}_{i}\right) l\left\{ K\left(\tilde{\tilde{x}}_{i}\right) \right\} = 0.729 \cdot 1 + 3 \cdot 0.081 \cdot 3 + 3 \cdot 0.009 \cdot 5 + 0.001 \cdot 5 = 1.59 \left[\delta um / \delta \pi o \kappa \right];$$

$$l_{cp}\{K(X)\} = \frac{l_{cp\delta}\{K(\tilde{X})\}}{n} = \frac{1.29}{2} = 0.53[\delta um/cumbon];$$

$$\frac{l_{cp}\{K(X)\}-H(X)}{H(X)} = \frac{0.53-0.47}{0.47} = 1.127-1=0.127 \approx \delta_l = (0.05 \div 0.1);$$

Спрощений варіант кодування кодом Шеннона-Фано

- 1.Всі символи дискретного джерела розміщуються в порядку зменшення ймовірностей їх появи.
- 2. Утворений стовпець символів поділяється на дві групи таким чином, щоб сумарні ймовірності кожної групи мало відрізнялися один від друга.
- 3. Верхня група кодується символом "1", а нижня "0".
- 4. Кожна група поділяється на дві підгрупи з близькими сумарними ймовірностями; верхня підгрупа кодується символом "1", а нижня "0".
- 5. Процес розподілу та кодування триває доти, доки в кожній підгрупі не виявиться по одному символу повідомлення джерела.
- 6. Записується код кожного символу джерела; зчитування коду здійснюється зліва направо.

Дякую за увагу!