COSC175 (Systems I): Computer Organization & Design

Professor Lillian Pentecost Fall 2024

Warm-Up September 10

- Where we were
 - Syllabus questions
 - More gates, boolean expressions
 - Introducing <u>combinational logic</u>
 - Tools and techniques for constructing and simplifying our circuits
- Where we are going
 - o Picking up with <u>simplifying</u> boolean equations and <u>proving</u> equality
 - Hardware Description Languages (HDLs) to preview tomorrow's lab!
- Logistics, Reminders
 - Evening help sessions 7-9PM on Sundays, Tuesdays, Thursdays in C107
 - Weekly Exercises Due Friday 5PM
 - Pre-Lab for tomorrow, Lab 1 meeting time for hardware prototyping!!
 - LAB SECTION 02: PLEASE PLEASE SWITCH LAB TIME IF YOU CAN
 - It'll be a better, cozier experience for you, and will improve my life and the TAs' lives
- Textbook Tags: 2.3, 4.1

Syllabus Annotation – Closing the loop!

- I'm looking for **your** thoughts and questions on our syllabus
- I answered your questions at <u>THIS GOOGLE DOC</u>

- Some common themes in the doc and discussions are:
 - a. What's up with the random partners?
 - b. What does collaboration mean or look like?
 - c. How to use the textbook?

- There are <u>axioms</u> and <u>theorems</u> of Boolean Algebra that you can apply to your equations to simplify them
- The <u>Dual</u> simply replaces * with + and 0 with 1!

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	1 = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	<u>B</u> = B		Involution
T5	B • B = 0	B + B = 1	Complements

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	<u>B</u> = B		Involution
T5	B • B = 0	B + B = 1	Complements

$$B \longrightarrow B \longrightarrow$$

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
Т2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	<u>B</u> = B		Involution
T5	B • B = 0	B + B = 1	Complements

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	<u>B</u> = B		Involution
T5	B • B = 0	B + B = 1	Complements

$$B = B$$

$$B \rightarrow B \rightarrow B \rightarrow B$$

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	<u>ਸ</u> = B		Involution
T5	B • B = 0	B + B = 1	Complements

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	<u>B</u> = B		Involution
T5	B • B = 0	B + B = 1	Complements

$$\frac{B}{B}$$
 $=$ 0 $=$ 0

$$\frac{B}{B}$$
 \rightarrow 1 \rightarrow

How do we *prove a theorem*?

Boolean Theorems of one Variable:

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4	<u>B</u> = B		Involution
T5	B • B = 0	B + B = 1	Complements

Method 1: Perfect Induction

- I.e., exhaustively list every input value; if two expressions produce the same output for every possible input, they are equivalent
- o I.e., use a truth table
- Method 2: Use other theorems and axioms to make two sides of an equation look like one another
 - Iterative simplification, reformulation

Boolean Theorems of Multiple Variables

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	(B•C) • D = B • (C•D)	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet C) = B$	(B+C) • (B+C) = B	Combining
T11	$(B \cdot C) + (B \cdot D) + (C \cdot D) = (B \cdot C) + (B \cdot D)$	(B+C) • (B+D) • (C+D) = (B+C) • (B+D)	Consensus

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (●)

Prove a Theorem: Example

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	<u>=</u> B= B		Involution
T5	B • B = 0	B + B = 1	Complements

Combining

Method 1: show with a truth table

Method 2: Use other axioms & theorems

#	Theorem	Dual	Name
Т6	B•C = C•B	B+C = C+B	Commutativity
T7	(B•C) • D = B • (C•D)	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+ C) = B	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	B•C•D = B+C+D	B+C+D= B•C•D	De Morgan's

Prove a Theorem: Example

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	<u>=</u> B= B		Involution
T5	B • B = 0	B + B = 1	Complements

Combining

T8: Distributivity

= B•(1) T5': Complements

= B T1: Identity

 $= B \bullet (C + \overline{C})$

#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	(B•C) • D = B • (C•D)	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+ C) = B	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \cdot (\overline{B}+D) \cdot (C+D) =$ $(B+C) \cdot (\overline{B}+D)$	Consensus
T12	B•C•D = B+C+D	B+C+D= B • C • D	De Morgan's

One more theorem! An extra useful one

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4			Involution
T5	B • B = 0	B + B = 1	Complements

De Morgan's Theorem: The **complement** of the **product** is the **sum** of the **complements**. **Dual:**

The **complement** of the **sum** is the **product** of the **complements**.

Method 1: show with a truth table

		·	
#	Theorem	Dual	Name
Т6	$B \bullet C = C \bullet B$	B+C = C+B	Commutativity
T7	$(B \hspace{5mm}\bullet\hspace{5mm} C) \hspace{5mm}\bullet \hspace{5mm} D = B \hspace{5mm}\bullet \hspace{5mm} (C \hspace{5mm}\bullet\hspace{5mm} D)$	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+C) = B	Combining
T11	$(B \cdot C) + (\overline{B} \cdot D) + (C \cdot D) =$ $(B \cdot C) + (\overline{B} \cdot D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	B•C•D = B+C+D	B+C+D= B•C•D	De Morgan's

Draw the gates, and know the appropriate substitutions!

If it helps to remember: "Break the line, change the sign"

Check-In Activity *in pairs, on notecard*:

- A. Prove T9 (*covering*) theorem using each method (TT, other theorems)
- B. Simplify the following expressions into *two or fewer terms*, each with *two or fewer literals*, then check your work with a truth table:

a.
$$Y = AC + BC + ABC$$

b.
$$Y = \overline{AB} + \overline{ABC} + \overline{(A + \overline{C})}$$

Number	Theorem	Dual	Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
Т3	B • B = B	B + B = B	Idempotency
T4	= B= B		Involution
T5	B • B = 0	B + B = 1	Complements

#	Theorem	Dual	Name
Т6	B•C = C•B	B+C = C+B	Commutativity
T7	(B•C) • D = B • (C•D)	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	(B+C) • (B+ C) = B	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	B•C•D = B+C+D	B+C+D= B • C • D	De Morgan's

Hardware Description Languages (HDLs)

- To deploy & test our hardware designs in this course, we will learn some
 SystemVerilog, a prominent and industry-preferred HDL
- We will use SystemVerilog to describe HW that we can then <u>simulate</u>, or even <u>synthesize</u> into a deployable + testable circuit diagram
- There is one **IMPORTANT thing to remember** before we start this journey:
 - When writing SystemVerilog, you should be thinking about the **hardware** the HDL should produce, then write the appropriate description or procedure that implies that hardware.

Beware of treating HDL like software – you cannot write SystemVerilog like you write code,
 and you cannot write it without thinking of the hardware.

Example Module

- module/endmodule: required to begin/end module
- **example**: name of the module
- Operators:
 - .
 ~: NOT
 &: AND
 !: OR
- SystemVerilog is case sensitive: "reset" and "Reset" are not the same signal.
- No names that start with numbers (e.g., "3and" is an invalid name)
- Whitespace is ignored, // for single line comment /* for multiline comment */

Wrap-Up September 10

- Coming up next!
 - Bigger, better, multi-component designs → **doing actual computation**
- Logistics, Reminders
 - Weekly Exercises due Friday
 - Complete Pre-Lab (Read DDCA 4.1 + setting up GitLab) before tomorrow
 - Weekly reading, Lab 1 released later today
 - LAB SECTION 02: PLEASE PLEASE SWITCH IF YOU CAN
 - It'll be a better, cozier experience for you, and will improve my life and the TAs' lives
- FEEDBACK
 - https://forms.gle/5Aafcm3iJthX78jx6

