# On Kernel Mengerian Orientations of Line Multigraphs

Han Xiao \*

Department of Mathematics, The University of Hong Kong, Hong Kong, China

#### Abstract

We present a polyhedral description of kernels in orientations of line multigraphs. Given a digraph D, let FK(D) denote the fractional kernel polytope defined on D, and let  $\sigma(D)$  denote the linear system defining FK(D). A digraph D is called kernel perfect if every induced subdigraph D' has a kernel, called kernel ideal if FK(D') is integral for each induced subdigraph D', and called kernel Mengerian if  $\sigma(D')$  is TDI for each induced subdigraph D'. We show that an orientation of line multigraph is kernel perfect iff it is kernel ideal iff it is kernel Mengerian. Our result strengthens the theorem of Borodin  $et\ al.\ [3]$  on kernel perfect digraphs and generalizes the theorem of Király and Pap [9] on stable matching problem.

AMS subject classifications: 90C10, 90C27, 90C57.

**Key words:** kernel, stable matching, line graph, polytope, total dual integrality.

<sup>\*</sup>hxiao.math@connect.hku.hk

## 1 Introduction

A graph is called *simple* if it contains neither loops nor parallel edges, and is called a *multigraph* if it has parallel edges. A *simple* digraph is an orientation of simple graph. A *multi-digraph* is an orientation of multigraph.

Let G be a graph. The *line graph* of G, denoted by L(G), is a graph such that: each vertex of L(G) corresponds to an edge of G, and two vertices of L(G) are adjacent if and only if they are incident as edges in G. We call L(G) the *line multigraph* of G if any two vertices of L(G) are connected by as many edges as the number of their common ends in G. We call G a root of L(G).

Let D = (V, A) be a digraph. For  $U \subseteq V$ , we call U an *independent* set of D if no two vertices in U are connected by an arc, call U a *dominating* set of D if for each vertex  $v \notin U$ , there is an arc from v to U, and call U a *kernel* of D if it is both independent and dominating. We call D *kernel perfect* if each of its induced subdigraphs has a kernel. A *clique* of D is a subset of V such that any two vertices are connected by an arc. We call D *clique-acyclic* if for each clique of D the induced subdigraph of one-way arc is acyclic, and call D *good* if it is clique-acyclic and every directed odd cycle has a (pseudo-)chord<sup>1</sup>.

**Theorem 1.1** (Borodin et al. [3]). Let G be a line multigraph. The orientation D of G is kernel perfect if and only if it is good.

A subset P of  $\mathbb{R}^n$  is called a polytope if it is the convex hull of finitely many vectors in  $\mathbb{R}^n$ . A point x in P is called a vertex or an extreme point if there exist no distinct points y and z in P such that  $x = \alpha y + (1 - \alpha)z$  for  $0 < \alpha < 1$ . It is well known that P is the convex hull of its vertices, and that there exists a linear system  $Ax \leq b$  such that  $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ . We say P is 1/k-integral if its vertices are 1/k-integral vectors, where  $k \in \mathbb{N}$ . By a theorem in linear programming, P is 1/k-integral if and only if  $\max\{c^Tx : Ax \leq b\}$  has an optimal 1/k-integral solution for every integral vector c for which the optimum is finite. If, instead,  $\max\{c^Tx : Ax \leq b\}$  has a dual optimal 1/k-integral solution, we say  $Ax \leq b$  is totally dual 1/k-integral (TDI/k). It is easy to verify that  $Ax \leq b$  is TDI/k if and only if  $Bx \leq b$  is TDI, where B = A/k and  $k \in \mathbb{N}$ . Thus from a theorem of Edmonds and Giles [8], we deduce that if  $Ax \leq b$  is TDI/k and b is integral, then  $P = \{x \in \mathbb{R}^n : Ax \leq b\}$  is 1/k-integral.

 $<sup>^1{\</sup>rm A}$  pseudo-chord is an arc  $(v_i,v_{i-1})$  in a directed cycle  $v_1v_2\dots v_lv_1.$ 

Let  $\sigma(D)$  denote the linear system consisting of the following inequalities:

$$x(v) + x(N^+(v)) \ge 1 \qquad \forall \ v \in V, \tag{1.1}$$

$$x(Q) \le 1 \qquad \forall \ Q \in \mathcal{Q},$$
 (1.2)

$$x(v) \ge 0 \qquad \forall \ v \in V, \tag{1.3}$$

where  $x(U) = \sum_{u \in U} x(u)$  for any  $U \subseteq V$ ,  $N^+(v)$  denotes the set of all out-neighbors of vertex v, and  $\mathcal{Q}$  denotes the set of all cliques of D. Observe that incidence vectors of kernels of D are precisely integral solutions  $x \in \mathbb{Z}^A$  to  $\sigma(D)$ . The kernel polytope of D, denoted by K(D), is the convex hull of incidence vectors of all kernels of D. The fractional kernel polytope of D, denoted by FK(D), is the set of all solutions  $x \in \mathbb{R}^A$  to  $\sigma(D)$ . Clearly,  $K(D) \subseteq FK(D)$ . We call D kernel ideal if FK(D') is integral for each induced subdigraph D', and kernel Mengerian if  $\sigma(D')$  is TDI for each induced subdigraph D'.

As described in Egres Open [1], the polyhedral description of kernels remains open. Chen et al. [5] attained a polyhedral characterization of kernels by replacing clique constraints  $x(Q) \leq 1$  for  $Q \in \mathcal{Q}$  with independence constraints  $x(u) + x(v) \leq 1$  for  $(u, v) \in A$ . In this paper we show that kernels in orientations of line multigraph can be characterized polyhedrally.

**Theorem 1.2.** Let D be an orientation of a line multigraph. Then the following statements are equivalent:

- (i) D is good;
- (ii) D is kernel perfect;
- (iii) D is kernel ideal;
- (iv) D is kernel Mengerian.

The equivalence of (i) and (ii) was established by Borodin *et al.* [3] (Maffray [10] proved the case when D is perfect). Király and Pap [9] proved Theorem 1.2 for the case when the root of D is bipartite. Our result strengthens the theorem of Borodin *et al.* [3] and generalizes the theorem of Király and Pap [9] to line multigraphs.

#### 2 Preliminaries

Kernels are closely related to stable matchings. Before proceeding, we introduce the notation of stable matching and some results that will be used later. Let G = (V, E) be a graph. For  $v \in V$ , let  $\delta(v)$  denote the set of edges incident to v and  $\prec_v$  be a strict linear order on  $\delta(v)$ . We call  $\prec_v$ 

the preference of v, and for edges e and f incident to v we say v prefers e to f or e dominates f if  $e \prec_v f$ . Let  $\prec$  be the set of linear order  $\prec_v$  for  $v \in V$ . We call the pair  $(G, \prec)$  preference system, and call  $(G, \prec)$  simple if G is simple. For  $e \in E$ , let  $\varphi(e)$  denote the set consisting of e itself and edges that dominate e in  $(G, \prec)$ , and let  $\varphi_v(e)$  denote the set of edges that dominate e at vertex v in  $(G, \prec)$ . Given a matching M in G, we call M stable in  $(G, \prec)$  if every edge of G is either in M or is dominated by some edge in M.

Let  $\pi(G, \prec)$  denote the linear system consisting of the following linear inequalities:

$$x(\varphi(e)) \ge 1 \qquad \forall \ e \in E,$$
 (2.1)

$$x(\delta(v)) \le 1 \qquad \forall \ v \in V,$$
 (2.2)

$$x(e) \ge 0 \qquad \forall \ e \in E. \tag{2.3}$$

As observed by Abeledo and Rothblum [2], incidence vectors of stable matchings of  $(G, \prec)$  are precisely integral solutions  $x \in \mathbb{Z}^E$  to  $\pi(G, \prec)$ . The *stable matching polytope*, denoted by  $SM(G, \prec)$ , is the convex hull of incidence vectors of all stable matchings of  $(G, \prec)$ . The *fractional stable matching polytope*, denoted by  $FSM(G, \prec)$ , is the set of all solutions  $x \in \mathbb{R}^E$  to  $\pi(G, \prec)$ . Clearly,  $SM(G, \prec) \subseteq FSM(G, \prec)$ .

**Theorem 2.1** (Rothblum [11]). Let  $(G, \prec)$  be a simple preference system. If G is bipartite, then  $SM(G, \prec) = FSM(G, \prec)$ .

**Theorem 2.2** (Király and Pap [9]). Let  $(G, \prec)$  be a simple preference system. If G is bipartite, then  $\pi(G, \prec)$  is totally dual integral.

Given a cycle  $C = v_1 v_2 \dots v_l v_1$  in G, we call C of cyclic preferences in  $(G, \prec)$  if  $v_{i-1} v_i \prec v_i v_i v_{i+1}$  for  $i = 1, 2, \dots, l$  or  $v_{i-1} v_i \succ_{v_i} v_i v_{i+1}$  for  $i = 1, 2, \dots, l$ , where indices are taken modulo l. For  $x \in FSM(G, \prec)$ , let  $E_{\alpha}(x)$  denote the set of all edges with  $x(e) = \alpha$  where  $\alpha \in \mathbb{R}$  and  $E_+(x)$  denote the set of all edges with x(e) > 0.

**Theorem 2.3** (Abeledo and Rothblum [2]). Let  $(G, \prec)$  be a simple preference system. Then  $FSM(G, \prec)$  is 1/2-integral. Moreover, for each 1/2-integral point x in  $FSM(G, \prec)$ ,  $E_{1/2}(x)$  consists of vertex disjoint cycles with cyclic preferences.

**Theorem 2.4** (Chen et al. [6]). Let  $(G, \prec)$  be a simple preference system. Then  $\pi(G, \prec)$  is totally dual 1/2-integral. Moreover,  $\pi(G, \prec)$  is totally dual integral if and only if  $SM(G, \prec) = FSM(G, \prec)$ .

### 3 Reductions

Given a clique-acyclic orientation D of line multigraph L(H), let  $e \prec_v f$  if (f,e) is an arc in D for any two incident edges e and f with common end v in H. Hence D is associated with a preference system  $(H, \prec)$ . Recall that  $\sigma(D)$  denotes the linear system which defines FK(D). Consequently,  $\sigma(D)$  can be viewed as a linear system defined on preference system  $(H, \prec)$ . The equivalence of constraints (1.3) and constraints (2.3) follows directly. Constraints (1.1) can be viewed as constraints (2.1) because of the one to one correspondence between dominating vertex set  $\{v\} \cup N_D^+(v)$  for  $v \in V(D)$  and stable edge set  $\varphi(e)$  for  $e \in E(H)$ . Observe that cliques of D correspond to three types of edge set in H:

- $\delta(v)$  for  $v \in V(H)$ ,
- nontrivial subsets of  $\delta(v)$  for  $v \in V(H)$ ,
- complete subgraphs of H induced on three vertices,

and all three types allow parallel edges. Hence constraints (1.2) can be viewed as constraints (2.2) together with some extra constraints on  $(H, \prec)$ . Let  $\mathcal{O}(H)$  denote the set of all complete subgraphs of H induced on three vertices. Then  $\sigma(D)$  can be reformulated in terms of preference system  $(H, \prec)$ :

$$x(\varphi(e)) \ge 1$$
  $\forall e \in E(H),$  (3.1)

$$x(\delta(v)) \le 1$$
  $\forall v \in V(H),$  (3.2)

$$x(S) \le 1$$
  $\emptyset \subset S \subset \delta(v), \quad \forall \ v \in V(H),$  (3.3)

$$x(O) \le 1$$
  $\forall O \in \mathcal{O}(H),$  (3.4)

$$x(e) \ge 0 \qquad \forall \ e \in E(H). \tag{3.5}$$

Notice that constraints (3.1), (3.2) and (3.5) form the Rothblum system  $\pi(H, \prec)$  which defines  $FSM(H, \prec)$ . Constraints (3.3) are redundant with respect to  $\pi(H, \prec)$  due to constraints (3.2). As we shall see, constraints (3.4) are also redundant with respect to  $\pi(H, \prec)$  when D is good. Hence FK(D) is essentially defined by Rothblum system  $\pi(H, \prec)$ , or equivalently, that  $FK(D) = FSM(H, \prec)$ , when D is good.

Observe that H is a multigraph. To bridge the gap between simple preference system and  $(H, \prec)$ , we exploit the gadget introduced by Cechlárová and Fleiner [4]. We define a simple preference system  $(H', \prec')$  from  $(H, \prec)$  by substituting each parallel edge e with endpoints u and v in H by a 6-cycle with two hanging edges as in Figure 1 such that  $uu_0$  (resp.  $vv_0$ ) has



Figure 1: The gadget introduced for parallel edges

the same order with uv in  $\prec_u (resp. \prec_v)$ . Observe that the construction preserves the parity of all cycles with cyclic preferences in H.

**Lemma 3.1.** If  $FSM(H', \prec')$  is integral, then so is  $FSM(H, \prec)$ .

*Proof.* We show that  $FSM(H, \prec)$  is a projection of  $FSM(H', \prec')$ . Take  $x \in FSM(H, \prec)$ . For each parallel edge e with endpoints u and v in H, we define the value of edges in the gagdet corresponding to e as follows:

- 1. Set  $x'_{uu_0} = x'_{vv_0} := x_e;$
- 2. Set  $x'_{u_0u_1} = x'_{v_0v_2} := 1 x_e x(\varphi_u(e));$
- 3. Set  $x'_{u_0u_2} = x'_{v_0v_1} := x(\varphi_u(e));$
- 4. Set  $x'_{u_1v_2} := x_e + x(\varphi_u(e));$
- 5. Set  $x'_{u_2v_1} := 1 x(\varphi_u(e))$ .

Next for each edge f without parallel edges in H, set  $x'_f := x_f$ . It is easy to check that  $x' \in FSM(H', \prec')$ . Hence  $FSM(H, \prec)$  is a projection of  $FSM(H', \prec')$  and the lemma follows.  $\square$ 

**Lemma 3.2.** If  $\pi(H', \prec')$  is totally dual integral, then so is  $\pi(H, \prec)$ .

Proof. We show that  $\pi(H, \prec)$  can be obtained from  $\pi(H', \prec')$  after a series of Fourier-Motzkin elimination. It suffices to demonstrate one elimination process from a gadget to a edge. Given a gadget arising from edge e as in Figure 1, eliminate  $u_1v_2$  from  $\pi(H', \prec')$  first. Then all constraints involving  $x_{u_1v_2}$  are replaced by equality  $x_{u_0u_1} = x_{v_0v_2}$ . Similarly, eliminating  $u_2v_1$  yields equality  $x_{v_0v_1} = x_{u_0u_2}$ . Next eliminating  $u_0$  gives  $x(\delta(u)\setminus\{uu_0\}) \leq x_{u_0u_1} + x_{u_0u_2}$  and  $x_{u_0u_2} \leq x(\varphi_u(uv))$ . After eliminating  $u_0u_1$  and  $u_0u_2$ , we arrive at  $x(\delta(u)\setminus\{uu_0\}) \leq x_{v_0v_1} + x_{v_0v_2}$ 

and  $x_{v_0v_1} \leq x(\varphi_u(uv))$ . In the end, canceling  $v_0v_1$  and  $v_0v_2$  gives  $x_{vv_0} + x(\varphi_v(u_0v) + x(\varphi_u(uv_0)) \geq 1$  and  $x_{vv_0} + x(\delta(u) \setminus \{uu_0\}) \leq 1$ . Besides,  $x_{vv_0} + x(\delta(v) \setminus \{vv_0\}) \leq 1$  is unchanged. Notice that  $x_{vv_0} + x(\varphi_v(u_0v) + x(\varphi_u(uv_0)) \geq 1$  can be viewed as  $x(\varphi(e)) \geq 1$ ,  $x_{vv_0} + x(\delta(u) \setminus \{uu_0\}) \leq 1$  can be viewed as  $x(\delta(u)) \leq 1$ , and  $x_{vv_0} + x(\delta(v) \setminus \{vv_0\}) \leq 1$  can be viewed as  $x(\delta(v)) \leq 1$ . Hence we reduce the linear system involving the gadget to a linear system only related to its corresponding edge e. Performing Fourier-Motzkin elimination in such an order for each gadget in H' leads to a linear system defined on  $(H, \prec)$ , which is precisely the same with  $\pi(H, \prec)$  (renaming variables and removing redundant constraints if necessary). As proved by Cook [7], total dual integrality is preserved under Fourier-Motzkin elimination, hence the lemma follows.

We end this section with a summary. When D is clique-acyclic, it is associated with a preference system  $(H, \prec)$  and a simple preference system  $(\hat{H}, \hat{\prec})$ , where  $\hat{H}$  is a simple spanning subgraph of H maximizing the edge set and  $\hat{\prec}$  is the restriction of  $\prec$  on  $\hat{H}$ . Hence constraints (3.3) and (3.4) are redundant in  $\sigma(D)$  with respect to  $\pi(H, \prec)$  and  $FK(D) = FSM(H, \prec)$  follows. To show FK(D) is integral, by Lemma 3.1 it suffices to show that  $FSM(\hat{H}, \hat{\prec})$  is integral. To show  $\sigma(D)$  is TDI, by Lemma it suffices to show  $\pi(\hat{H}, \hat{\prec})$  is TDI. Moreover, when D is good both  $(H, \prec)$  and  $(\hat{H}, \hat{\prec})$  admit no odd cycles with cyclic preferences.

# 4 Proofs

Before presenting our proof of the main theorem, we exhibit some properties of simple preference systems admitting no odd cycles with cyclic preferences.

**Lemma 4.1.** Let  $(G, \prec)$  be a simple preference system. If  $(G, \prec)$  admits no odd cycles with cyclic preferences, then  $SM(G, \prec) = FSM(G, \prec)$ .

By Theorem 2.4, integrality of  $FSM(G, \prec)$  is equivalent to total dual integrality of  $\pi(G, \prec)$ , where  $(G, \prec)$  is a simple preference system. A corollary follows directly.

**Corollary 4.2.** Let  $(G, \prec)$  be a simple preference system. If  $(G, \prec)$  admits no odd cycles with cyclic preferences, then  $\pi(G, \prec)$  is totally dual integral.

Proof of Lemma 4.1. By Theorem 2.3,  $FSM(G, \prec)$  is 1/2-integral as  $(G, \prec)$  is a simple preference system. Let x be a 1/2-integral point in  $FSM(G, \prec)$ . Since  $(G, \prec)$  admits no odd cycles with cyclic preferences,  $E_{1/2}(x)$  consists of even cycles  $C_1, C_2, \ldots, C_r$  with cyclic preferences. For  $i = 1, 2, \ldots, r$ , label vertices and edges of  $C_i \in E_{1/2}(x)$  such that  $C_i = v_1^i v_2^i \ldots v_l^i$  and  $e_k^i \prec_{v_{k+1}^i} e_{k+1}^i$  for  $k = 1, 2, \ldots, l$ , where  $e_k^i = v_k^i v_{k+1}^i$  and indices are taken modulo l. We remark



Figure 2: Case 2

that the parity of vertices and edges refers to the parity of their indices. Define  $z \in \mathbb{R}^{E(G)}$  by

$$z(e) := \begin{cases} 1 & e \text{ is an even edge in some } C \in E_{1/2}(x), \\ -1 & e \text{ is an odd edge in some } C \in E_{1/2}(x), \\ 0 & \text{otherwise.} \end{cases}$$

We are going to exclude x from vertices of  $FSM(G, \prec)$  by adding perturbation  $\epsilon z$  for small  $\epsilon$  to x and showing that  $x \pm \epsilon z \in FSM(G, \prec)$ . Tight constraints in (2.1)-(2.3) under perturbation  $\epsilon z$  play a key role here. Observe that tight constraints in (2.2) and (2.3) are invariant under perturbation  $\epsilon z$ . It remains to show that perturbation  $\epsilon z$  does not affect tight constraints in (2.1) either. Let e be an edge with  $x(\varphi(e)) = 1$ . Clearly,  $|\varphi(e) \cap E_+(x)| \in \{1, 2\}$ . When  $|\varphi(e) \cap E_+(x)| = 1$ , x(e) = 1 follows, which is trivial. When  $|\varphi(e) \cap E_+(x)| = 2$ , we claim that the parity of dominating edges in  $E_{1/2}(x)$  of e does not agree (relabeling vertices and edges in  $E_{1/2}(x)$  if necessary). Hence corresponding tight constraints in (2.1) are also invariant under perturbation  $\epsilon z$ . To justify this claim, we distinguish four cases.

Case 1. Edge e is an edge from some  $C \in E_{1/2}(x)$ . This case is trivial since C admits cyclic preferences.

Case 2. Edge e is a chord in some  $C \in E_{1/2}(x)$ . We first show that endpoints of e have different parity in C. We prove it by contradiction. Without loss of generality, let  $e = v_{2i}v_{2j}$ .

If  $e_{2i} \prec e$ , then  $e_{2i-1} \prec e$ . Since  $x(\varphi(e)) = 1$ , it follows that  $e \prec e_{2j-1}$  and  $e \prec e_{2j}$ . However,  $v_{2i}ev_{2j}e_{2j}v_{2j+1}\dots v_{2i-1}e_{2i-1}v_{2i}$  form an odd cycle with cyclic preferences, a contradiction. Hence  $e \prec e_{2i}$ .

Similarly, if  $e_{2j} \prec e$ , then  $e_{2j-1} \prec e$ . Equality  $x(\varphi(e)) = 1$  implies that  $e \prec e_{2i}$  and  $e \prec e_{2i-1}$ . However,  $v_{2i}e_{2i}v_{2i+1}\dots v_{2j-1}e_{2j-1}v_{2j}ev_{2i}$  form an odd cycle with cyclic preferences, a contradiction. Hence  $e \prec e_{2j}$ .



Figure 3: Case 4

Now  $e \prec e_{2i}$  and  $e \prec e_{2j}$ , it follows that  $e_{2i-1} \prec e$  and  $e_{2j-1} \prec e$  since  $x(\varphi(e)) = 1$ . But in this case two odd cycles with cyclic preferences mentioned above occur at the same time. Therefore, endpoints of e have different parity in C. Hence let  $e = v_{2i}v_{2j+1}$ . If  $e_{2i} \prec e$  (resp.  $e_{2j+1} \prec e$ ), it follows that  $e_{2i-1} \prec e$  (resp.  $e_{2j} \prec e$ ). Then e is dominated by two consecutive edges from C, which is trivial. So assume that  $e \prec e_{2i}$  and  $e \prec e_{2j+1}$ . Since  $x(\varphi(e)) = 1$ , it follows that  $e_{2i+1} \prec e$  and  $e_{2j} \prec e$ . Therefore e is dominated by two edges with different parity.

Case 3. Edge e is a hanging edge of some  $C \in E_{1/2}(x)$  and dominated by two edges from C. This case is trivial.

Case 4. Edge e is a connecting edge between  $C_i$  and  $C_j$  and dominated by one edge from  $C_i$  and one edge from  $C_j$  respectively, where  $C_i, C_j \in E_{1/2}(x)$ . For k = 1, 2, ..., r, let  $F_k$  be the subset of edges in this case and incident to  $C_k$ . Then  $\bigcup_{i=1}^{i=r} F_i \cup C_i$  induces a subgraph of G. It suffices to work on a component of the induced subgraph. We apply induction on the number  $\alpha$  of cycles from  $E_{1/2}(x)$  in a component.

When  $\alpha=1$ , it is trivial. Hence assume the claim holds for components with  $\alpha\geq 1$  cycles from  $E_{1/2}(x)$ . We consider a component with  $\alpha+1$  cycles  $C_1,\ldots,C_\alpha,C_{\alpha+1}$  from  $E_{1/2}(x)$ . Without loss of generality, assume that deleting  $C_{\alpha+1}$  yields a new component with  $\alpha$  cycles. By induction hypothesis, the claim holds for the resulting component. It remains to check edges in  $F_{\alpha+1}$ . If there exists an edge in  $F_{\alpha+1}$  violating the claim, relabel vertices and edges in  $C_{\alpha+1}$ . After at most one relabeling, all edges in  $F_{\alpha+1}$  satisfy the claim. We prove it by contradiction. Let  $f_1, f_2 \in F_{\alpha+1}$  be edges such that  $f_1$  satisfies the claim but  $f_2$  violates the claim. For i=1,2, let  $f_i=u_iw_i$ , where  $u_i$  is the endpoint in the resulting component and  $w_i$  is the endpoint in  $C_{\alpha+1}$ . By assumption,  $u_1$  and  $u_1$  have different parity and  $u_2$  and  $u_2$  have the same parity. Analogous to the definition of cycles with cyclic preferences, we call path  $P=v_1v_2\ldots v_l$  a  $v_1v_l$ -path with linear preferences if  $v_iv_{i+1} \prec_{v_{i+1}} v_{i+1}v_{i+2}$  for  $i=1,2,\ldots,l-2$ . Clearly, for any two vertices in the same component, there exists a path with linear preferences between them. Hence there exist a  $u_1u_2$ -path  $P_\alpha$  and a  $w_2w_1$ -path  $P_{\alpha+1}$ , both of which admit linear preferences. Moreover,  $u_1P_\alpha u_2f_2w_2P_{\alpha+1}w_1f_1u_1$  form a cycle with cyclic preferences. We justify this cycle is odd by

showing that the  $u_1u_2$ -path  $P_{\alpha}$  is even (resp. odd) if  $u_1$  and  $u_2$  have the same (resp. different) parity.

If  $u_1$  and  $u_2$  belong to the same cycle from  $E_{1/2}(x)$ , it is trivial. Hence assume  $u_1 \in C_s$  and  $u_2 \in C_t$ , where  $s, t \in \{1, 2, \dots, \alpha\}$  and  $s \neq t$ . We apply induction on the number  $\tau$  of cycles from  $E_{1/2}(x)$  involved in  $P_{\alpha}$ . Clearly,  $\tau \geq 2$ . When  $\tau = 2$ . Take  $v^s v^t \in F_s \cap F_t$  on  $P_{\alpha}$ . Let  $P_s$  be the part of  $P_{\alpha}$  from  $u_1$  to  $v^s$  in  $C_s$  and  $P_t$  be the part of  $P_{\alpha}$  from  $v^t$  to  $u_2$  in  $C_t$ . It follows that  $u_1 P_s v^s v^t P_t u_2$  form  $P_{\alpha}$ . By primary induction hypothesis,  $v^s$  and  $v^t$  have different parity since  $v^s v^t \in F_s \cap F_t$ . If  $u_1$  and  $u_2$  have the same parity, then  $P_s$  and  $P_t$  have the same parity, implying that  $P_{\alpha}$  is even; if  $u_1$  and  $u_2$  have different parity, then  $P_s$  and  $P_t$  have the same parity, implying that  $P_{\alpha}$  is odd. Now assume  $\tau \geq 2$ . Let  $C_{k_1}, \dots, C_{k_{\tau}}, C_{k_{\tau+1}}$  be cycles from  $E_{1/2}(x)$  involved along  $P_{\alpha}$ . Take  $v^{k_{\tau}}v^{k_{\tau+1}} \in F_{k_{\tau}} \cap F_{k_{\tau+1}}$  on  $P_{\alpha}$ . Let  $P_{s,k_{\tau}}$  denote the part of  $P_{\alpha}$  from  $u_1$  to  $v^{k_{\tau}}$  and  $P_{k_{\tau,t}}$  denote the part of  $P_{\alpha}$  from  $v^{k_{\tau}}$  to  $v^{k_{\tau}}$  denote the parity of endpoints. It follows that  $P_{\alpha}$  is even when  $v^{k_{\tau}}$  have the same parity, and  $v^{k_{\tau}}$  is odd when  $v^{k_{\tau}}$  have different parity.

Hence when  $u_1$  and  $u_2$  have the same parity,  $w_1$  and  $w_2$  have different parity, implying that  $P_{\alpha}$  is even and  $P_{\alpha+1}$  is odd; when  $u_1$  and  $u_2$  have different parity,  $w_1$  and  $w_2$  have the same parity, implying that  $P_{\alpha}$  is odd and  $P_{\alpha+1}$  is even. Either case yields an odd cycle with cyclic preferences, a contradiction.

Therefore 1/2-integral points are not vertices of  $FSM(G, \prec)$  as they can be perturbed by  $\epsilon z$  for small  $\epsilon$  without leaving  $FSM(G, \prec)$ . By Theorem 2.3,  $SM(G, \prec) = FSM(G, \prec)$  follows.  $\square$ 

Now we are ready to present a proof of our main theorem.

Proof of Theorem 1.2. It suffices to show the equivalence of (i), (iii) and (iv). Let D be an orientation of line multigraph L(H) such that parallel edges in L(H) are orientated oppositely. When D is good, D is associated with a preference system  $(H, \prec)$  and a simple preference system  $(\hat{H}, \hat{\prec})$ , both of which admit no odd cycles with cyclic preferences, where  $\hat{H}$  is a simple spanning subgraph of H maximizing the edge set and  $\hat{\prec}$  is the restriction of  $\prec$  on  $\hat{H}$ . Hence  $\sigma(D)$  can be viewed as a linear system defined on preference system  $(H, \prec)$  and consisting of constraints (3.1)-(3.5), where constraints (3.1), (3.2) and (3.5) form the Rothblum system  $\pi(H, \prec)$ .

By Lemma 4.1,  $FSM(\hat{H}, \hat{\prec})$  is integral. Integrality of  $FSM(H, \prec)$  follows from Lemma 3.1. Hence constraints (3.3) and (3.4) are both redundant in  $\sigma(D)$  with respect to  $\pi(H, \prec)$ . Therefore  $FK(D) = FSM(H, \prec)$ , implying that FK(D) is integral. Similar arguments apply to any induced subdigraphs of D. Hence  $(i) \implies (iii)$ .

By Corollary 4.2,  $\pi(\hat{H}, \hat{\prec})$  is TDI. Total dual integrality of  $\pi(H, \prec)$  follows from Lemma. Since  $\pi(H, \prec)$  is part of  $\sigma(D)$  and the other constraints (3.3)-(3.4) are redundant in  $\sigma(D)$  with respect to  $\pi(H, \prec)$ , total dual integrality of  $\sigma(D)$  follows. Similar arguments apply to any induced subdigraphs of D. Hence  $(iii) \implies (iv)$ .

By a theorem of Edmonds and Giles [8], implication  $(iv) \implies (iii)$  follows directly.

To prove implication  $(iii) \implies (i)$ , we assume the contrary. Observe that strong kernel idealness of D implies the existence of kernels for any induced subdigraphs of D. Let D be a digraph such that D is kernel ideal but not good. Then there exists either a clique containing directed cycles or a directed odd cycle without (pseudo-)chords in D. We show that neither case is possible. If D has a clique containing directed cycles, we consider the subdigraph induced on this clique. There is no kernel for this induced subdigraph, a contradiction. If D contains a directed odd cycle without (pseudo-)chords, we restrict ourselves to the subdigraph induced on this directed odd cycle. There is no kernel for this induced subdigraph either, a contradiction.  $\Box$ 

# 5 Discussions

Super-orientations do not apply. A counter example is attched.

#### Acknowledgments

The author is grateful to Wenan Zang for his invaluable suggestions.

### References

- [1] Egres Open. Available from http://lemon.cs.elte.hu/egres/open.
- [2] H. G. Abeledo and U. G. Rothblum, Stable matchings and linear inequalities, Discrete Appl. Math., 54 (1994), pp. 1–27.
- [3] O. V. Borodin, A. V. Kostochka, and D. R. Woodall, On kernel-perfect orientations of line graphs, Discrete Math., 191 (1998), pp. 45–49.
- [4] K. CECHLÁROVÁ AND T. FLEINER, On a generalization of the stable roommates problem, ACM Trans. Algorithms, 1 (2005), pp. 143–156.
- [5] Q. Chen, X. Chen, and W. Zang, A polyhedral description of kernels, Math. Oper. Res., to appear.

- [6] X. Chen, G. Ding, X. Hu, and W. Zang, The maximum-weight stable matching problem: duality and efficiency, SIAM J. Discrete Math., 26 (2012), pp. 1346–1360.
- [7] W. COOK, Operations that preserve total dual integrality, Oper. Res. Lett., 2 (1983), pp. 31–35.
- [8] J. Edmonds and R. Giles, A min-max relation for submodular functions on graphs, Ann. of Discrete Math., 1 (1977), pp. 185–204.
- [9] T. Király and J. Pap, Total dual integrality of Rothblum's description of the stablemarriage polyhedron, Math. Oper. Res., 33 (2008), pp. 283–290.
- [10] F. Maffray, Kernels in perfect line-graphs, J. Combin. Theory Ser. B, 55 (1992), pp. 1–8.
- [11] U. G. Rothblum, Characterization of stable matchings as extreme points of a polytope, Math. Programming, 54 (1992), pp. 57–67.
- [12] A. Schrijver, *Theory of Linear and Integer Programming*, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, 1986.