Quantum Mechanics – Homework assignment 5 Due November 20, 2019, in class

Born approximation and the optical theorem [6pt]

For a spherically symmetric potential, prove the optical theorem to lowest order in the Born approximation. Namely, do the following.

a) [3pt] Using the first-order Born approximation, show that the total cross section is

$$\sigma_{\rm tot} = \frac{m^2}{\pi \hbar^4} \int d^3x \ d^3x' \ V(r)V(r') \frac{\sin^2(k|\mathbf{x} - \mathbf{x}'|)}{k^2|\mathbf{x} - \mathbf{x}'|^2} \ .$$

b) [3pt] Find the imaginary part of the forward scattering amplitude to the lowest non-vanishing order in the expansion of $f(\theta)$ in powers of V, and show that $\text{Im} f(\theta=0)$ is equal to $\frac{k}{4\pi}\sigma_{\text{tot}}$ where σ_{tot} is given by the expression above.

Scattering by a hard sphere [5pt]

Scattering by a hard sphere is a simple toy model for scattering in three dimensions (like the infinite square well is a toy model for bound states). The potential for the hard sphere is $V = \infty$ for r < R, and V = 0 for r > R. The phase shifts δ_{ℓ} for the hard sphere scattering are determined by

$$\tan \delta_{\ell} = \frac{j_{\ell}(kR)}{n_{\ell}(kR)}.$$

- a) [2pt] Plot the total (integrated over all angles) cross section σ_{tot} as a function of kR. Give a physical interpretation to your plot.
- b) [3pt] Plot the differential cross section $d\sigma/d\Omega$ as a function of the scattering angle θ for several different energies, from low $kR \ll 1$ to high $kR \gg 1$. Produce plots for kR = 0.1, 0.5, 1, 2, 10. For kR = 10, produce a semi-logarithmic plot. Compare your high-energy cross section with the high-energy cross section for scattering of classical electromagnetic waves by a conducting sphere (Jackson's E&M, Figure 10.16), and give a physical interpretation to your plot of $d\sigma/d\Omega$.

Attractive potential: One-dimensional scattering [6pt]

Consider scattering in one dimension. A particle with energy E in incident from $x = -\infty$ upon the potential well of depth V_0 , namely $V(x) = -V_0 < 0$ for |x| < a, and V(x) = 0 for |x| > a.

- a) [2pt] Find the transmission probability T as a function V_0 , a, and E.
- b) [2pt] For some fixed value of V_0 , plot your transmission probability as a function of E (or rather of $2ma^2E/\hbar^2$). Which values of E give T=1 (perfect transmission)? For a fixed small value of E, plot your transmission probability as a function of V_0 (or rather of $2ma^2V_0/\hbar^2$). Your plot $T(V_0)$ should have peaks. Determine the locations of these peaks and comment on their physical interpretation.

c) [2pt] Write your wave function for |x| > a as $\psi(x) = e^{ikx} + f(\theta)e^{ikr}$, where $r \equiv |x|$, and $\theta = 0$ corresponds to x > 0, while $\theta = \pi$ corresponds to x < 0. The analogue of the total cross section in one dimension is $\sigma_{\text{tot}} = |f(0)|^2 + |f(\pi)|^2$. Pick a value of V_0 , and plot σ_{tot} as a function of E (or rather of $2ma^2E/\hbar^2$). Pick a value of E, and plot σ_{tot} as a function of V_0 (or rather of $2ma^2V_0/\hbar^2$).

Attractive potential: three-dimensional scattering [7pt]

Consider now scattering by the attractive potential well in three dimensions, $V = -V_0 < 0$ for r < R, and V = 0 for r > R. Recall that both the differential cross section $d\sigma/d\Omega$ and the total cross section $\sigma_{\rm tot}$ can be expressed in terms of phase shifts δ_{ℓ} .

- a) [2pt] Derive the expression for $\tan \delta_{\ell}$ in terms of V_0 , R, and kR.
- b) [2pt] For some fixed value of V_0 , plot the total (integrated over all angles) cross section σ_{tot} as a function of kR. Give a physical interpretation to your plot. Comment on how the energy dependence of the total cross section changes as you vary V_0 .
- c) [3pt] Now consider low-energy scattering, i.e. small kR. Find the s-wave phase shift δ_0 for small kR. For a fixed small value of kR, plot the total cross-section σ_{tot} as a function of V_0 (or rather of $2mR^2V_0/\hbar^2$). Your plot $\sigma_{\text{tot}}(V_0)$ should have peaks. Find the locations of these peaks and comment on their physical interpretation.