

NITTE MEENAKSHI INSTITUTE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTE AFFILIATED TO VTU, BELAGAVI)

6th Mid-Semester Examination BE Degree (MSE-3 Scheme)

Department of Electronics and Communication Engineering

Semester: VI	Course Name: Control System	
Course code: 21 ECG62	Section A: Section B: Section C: Mr. Div	م
Date:	Max. Marks 30	

Q.No.	Scheme	Marks	CO;BL
10)	The Gain Margin: - Margin in gain allowable by which gain care be increased till system reacher on the verge of instability/2m - 6M = 16(100) +(100) w=wpc 1/2M - 1/	in.	
	The amount of additional phase log which can be introduced in the nextern till sustemn reacher on the verge of instability is called phase margin P.M 12M - 12M - 180+ 16(in) + (in) 100 = 100 - 12M - 100 stability PM should be the -12M - 12M	IM.	
\	N=-P. — IM— It states that for absolute stability of the system, the no of encirclements of the system, the no of encirclements of New origin of F-plane by Hyquist plot must be equal to no of poles of 1+ a(s) A(s) Re equal to no of poles of 1+ a(s) A(s) if e polysof a(s) H(s) which must be one in the right half of s plane and in clock wise direction — IM—	Jw.	

K) Mapping theorem states that the makind	
land is ancircle the new origin of t-pla	
do record lines do the difference percoser	
I IND of a second of the first	1 1
encircled by ZCS) posts in spread	
N=Z-P where N= Encirclement of origin of Fplane	
p= no of polin of F(s) encircled by E(s)	
peak (1 3plus	
Z= no of Tenos of FTS) encircled by Els	
path in s-plane:	,
$\frac{2cl}{5(5+2)(5+20)} = \frac{2}{5(1+\frac{9}{2})(1+\frac{9}{20})} - \frac{1}{1}$	zale
i) K=2 ii) Dole at origin.	
iii) simple poles at T= 1/2 wei= 2 & 2M.	
ii) simple poles at $T_1 = y_2$ $cue_1 = 2$ \(2M. iv) simple poles at $T_2 = 1_{20}$ $cue_2 = 20.0$	
we tout of tail of the	4 4
0.2 -90 -5.70 -0.510 -96.27	
2 -90 -450 -5.7° -140.7	
8 -90 -75.96 - 21.8 -187.8	2M.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
40 _40	10 M
-90 -270	.
070	,
-40dito -60doldic - 1 M	
26000-72	
-120 p.m.	Page 2 of 4
-140 IM-	1 48C & UI 4
G.M = + 21 dB - XM P.M = 38 - XM -> Stahity -> System ugc = 2-1 rod/sec - VLM - Stahity -> System stahity -> System) m ('
ing c = 2-1 rodisc - Vem-	IM

	MSE Coordinators Dr. B.S. Pavan&Ms. Kushalatha M R	Dr. Parameshachari B D HoD, ECE, NMIT
--	--	--

4) we = 1 f 1m. The shift at well is odB so rologk = odB :. K=1. (1+ 725) = (1+0.15) as simple guod IM $\omega_{C2} = \omega_{2} = 10$. $T_{2} = /\omega_{C2} = 0.1$ T3= 1001 Wc3 = 100 Ty = 1004 = 0.001. G(s) + (s) = (1+0.15)(1+0.015) $C(1+5)(1+0.0015) \cdot 6$ IM