Gaussian Process Optimization in the Bandit Setting

Pedram Daee

Outline

- Multi-armed Bandit problem
 - Exploration exploitation trade-off
 - Examples
- Contextual Bandits
 - Dependent arms
- Gaussian Process for bandits
 - GP-UCB
 - Thompson Sampling
- Summary

Multi-armed Bandit problem

Play #2

Multi-armed Bandit problem

4

Multi-armed Bandit problem

 R_1

 R_2

 R_n

After T step: $Total\ reward = r_1 + r_2 + \cdots + r_T$

Goal: maximize the cumulative reward = Minimize expected regret

$$R_T = T\mu^* - \sum_{t=1}^T E[r_t]$$

Exploration vs Exploitation

- Search for a balance between exploring the environment to find profitable actions while taking the empirically best action as often as possible.
- Balance between staying with the option that gave highest payoffs in the past and exploring new options that might give higher payoffs in the future.

Multi-Armed Bandits: Examples

- Pure bandit problems arise in many applications
- Applicable whenever:
 - We have a set options with unknown utilities
 - There is a cost for sampling options or a limit on total samples
 - Want to find the best option or maximize utility of our samples

Examples:

- Mining for valuable resources (such as gold or oil): exploit good wells, or start digging at a new location.
- Marketing (e.g. send catalogues to good customers or random people).
- In most practical applications Arms are not independent

Multi-Armed Bandits: Examples (2/2)

Goal: optimize the beer you drink before you get drunk...

Contextual Bandit

- When there is a large number of arms
 - Idea: Define arms in a feature (context) space where arms that are close to each other have similar expected rewards

At each time step:

- 1. Algorithm observes:
 - a set of arms A
 - Feature vector x_a for each $a \in A$
- 2. Algorithm chooses $a_t \in A$, and receives r_{a_t} , where:

$$E[r_a] = f(x_a, \theta)$$

3. Improve strategy based on observed:

$$(x_{a_t}, r_{a_t})$$

T-trial payoff: $\sum_{t=1}^{T} r_{a_t}$

Expected T-trial regret

$$R(T) = E\left[\sum_{t=1}^{T} r_{a_t^*}\right] - E\left[\sum_{t=1}^{T} r_{a_t}\right]$$

Gaussian Process Bandit (1/5)

- Optimizing an unknown, noisy function that is expensive to evaluate
 - Minimizing sampling
 - Exploitation vs exploration

Assumptions:

- Playing arm $x \in \mathbb{R}^d$, reward value $r = f(x) + \varepsilon$ is observed
 - $\varepsilon \sim N(0, \sigma^2), f \sim GP(0, k(x, x'))$
- Goal: minimize the expected regret: $Tf(x^*) \sum_{t=1}^{T} f(x_t)$
 - $x^* = \arg\max_{x \in X} f(x)$
 - Perform essentially as well as x^*
 - Regret: the loss in reward due to not knowing f s maximum points beforehand

Gaussian Process Bandit (2/5)

• After playing a set of arms X_{obs} and observing their corresponding reward values R_{obs}

- Posterior:
 - $f|X_{obs}, R_{obs}, X \sim GP(\mu_t(x), k_t(x, x'))$
- $\mu_t(x) = k(X_{obs}, x)^T (k(X_{obs}, X_{obs}) + \sigma^2 I)^{-1} R_{obs}$
- $k_t(x, x') = k(x, x')$ - $k(X_{obs}, x)^T (k(X_{obs}, X_{obs}) + \sigma^2 I)^{-1} k(X_{obs}, x')$

- Which arm to play (which point to sample)?
 - GP-UCB
 - Thompson sampling

Gaussian Process Bandit (3/5) GP-UCB

- $f|X_{obs}, R_{obs}, X \sim GP(\mu_t(x), k_t(x, x'))$
- GP-UCB: select arm with greatest upper bound

$$x_{t+1} = \arg\max_{x \in X} \mu_t(x) + \beta_t^{\overline{2}} k_t(x, x)$$

Gaussian Process Bandit (4/5) GP-UCB

- GP-UCB regret bounds (up to polylog factors) for linear, radial basis, and Matern kernels
 - d is the dimension, T is the time horizon, and ν is a Matern parameter.

Kernel	Linear	RBF	Matérn
Regret R_T	$d\sqrt{T}$	$\sqrt{T(\log T)^{d+1}}$	$T^{\frac{\nu+d(d+1)}{2\nu+d(d+1)}}$

•
$$R_T = Tf(x^*) - \sum_{t=1}^T f(x_t)$$

- Thompson sampling:
 - Draw $f \sim GP(\mu_t(x), k_t(x, x'))$
 - Play $x_{t+1} = \arg \max_{x \in X} f(x)$

- Thompson sampling:
 - Draw $f \sim GP(\mu_t(x), k_t(x, x'))$
 - Play $x_{t+1} = \arg \max_{x \in X} f(x)$

- Thompson sampling:
 - Draw $f \sim GP(\mu_t(x), k_t(x, x'))$
 - Play $x_{t+1} = \arg \max_{x \in X} f(x)$

- Thompson sampling:
 - Draw $f \sim GP(\mu_t(x), k_t(x, x'))$
 - Play $x_{t+1} = \arg \max_{x \in X} f(x)$

- Thompson sampling:
 - Draw $f \sim GP(\mu_t(x), k_t(x, x'))$
 - Play $x_{t+1} = \arg \max_{x \in X} f(x)$

Summary

- Multi-armed Bandit problem
 - Exploration exploitation trade-off
 - Examples
- Contextual Bandits
 - Dependent arms
- GP for bandits
 - GP-UCB
 - Thompson Sampling
- Summary

References

- Srinivas, Niranjan, et al. "Gaussian process optimization in the bandit setting: No regret and experimental design." *arXiv preprint arXiv:0912.3995* (2009).
- Brochu, Eric, Vlad M. Cora, and Nando De Freitas.
 "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning." arXiv preprint arXiv:1012.2599 (2010).