2.11. Bivariate continuous probability measures

Definition 2.7

Let P be a probability measure on a sample space S. We shall say P is discrete if every subset $A\subset S$ is an event and there is a function $p:S\to\mathbb{R}$ with discrete support such that

$$P(A) = \sum_{s \in A} p(s), \tag{2.2}$$

for all events A. In this case, the function p is called the *probability mass* function (PMF) of the probability measure P (or sometimes just the *probability function*), and S is called a discrete probability space (when equipped with P).

Definition 2.9

Let P be a probability measure on $\mathbb R.$ We shall say P is *continuous* if there is a function $f:\mathbb R\to\mathbb R$ such that

$$P(A) = \int_A f(s) \, \mathrm{d}s \tag{2.4}$$

for all events $A\subset\mathbb{R}$. In this case, the function f(s) is called the *probability* density function (PDF) of the probability measure P, and \mathbb{R} is called a continuous probability space (when equipped with P).

Definition 2.12

Let P be a probability measure on \mathbb{R}^2 . We shall say P is *continuous* if there is a function $f:\mathbb{R}^2 \to \mathbb{R}$ such that

$$Pig(Cig) = \iint_C f(s,t) \; \mathrm{d}s \mathrm{d}t$$

for all events $C \subset \mathbb{R}^2$. In this case, the function f is called the *probability* density function (PDF) of the probability measure P, and \mathbb{R}^2 is called a continuous probability space (when equipped with P).

Problem Prompt

Do problems 20 and 21 on the worksheet.

Theorem 2.9 (Properties of Probability Density Functions (bivariate version))

Let f(s,t) be the probability density function of a continuous probability measure P on \mathbb{R}^2 . Then:

- 1. $f(s,t) \geq 0$ for all $s,t \in \mathbb{R}$, and 2. $\iint_{\mathbb{R}^2} f(s,t) \ \mathrm{d} s \mathrm{d} t = 1.$

Theorem 2.10 (Continuous Probability Construction Lemma (bivariate version))

Let $f:\mathbb{R}^2 o\mathbb{R}$ be a function such that

- 1. $f(s,t) \geq 0$ for all $s,t \in \mathbb{R}$, and
- 2. $\iint_{\mathbb{R}^2} f(s,t) \ \mathrm{d} s \mathrm{d} t = 1.$

Then there is a unique continuous probability measure P on \mathbb{R}^2 such that

$$Pig(Cig) = \iint_C f(s,t) \, \mathrm{d}s \mathrm{d}t$$

for all events $C \subset \mathbb{R}^2$.

Problem Prompt

Do problem 22 on the worksheet.

2.12. Probability density graphs (bivariate versions)

$$f(s,t) = egin{cases} rac{1}{8}(s+t) &: 0 \leq s, t \leq 2, \ 0 &: ext{otherwise}. \end{cases}$$

$$f(s,t) = egin{cases} e^{-(s+t)} &: s,t>0, \ 0 &: ext{otherwise}, \end{cases}$$