SVEUČILIŠTE U ZAGREBU Fakultet elektrotehnike i računarstva

Predmet: Teorija informacije (34315)

Ak. godina: 2012./2013. Predavač: doc.dr.sc. željko *i*lić

Peta i šesta domaća zadaća

Zadatak /zi 22/:

Dan je linearni binarni ciklični kôd K, [n, k] = [?, 11]. Poznato je da kodne riječi [0011111111111000] i [111111111111111] pripadaju danom kodu.

- i) Odredite kodnu brzinu danog koda.
- ii) Odredite generirajući polinom, g(x), koda K.
- iii) Skicirajte koder kanala danog cikličnog koda.
- iv) Na ulazu kodera kanala koda *K* pojavljuje se poruka [0000000111]. Odredite cikličnu provjeru zalihosti za danu poruku u polinomskom i binarnom zapisu.
- v) Odredite cikličnu provjeru zalihosti za <u>prvu kodnu riječ</u> koja se pojavljuje na izlazu kodera kanala dualnog koda K^{\perp} , ako se na njegovom ulazu pojavljuje slijed bitova 00010001000...

Rješenje: [i) 0,7333; ii) $g(x) = x^4 + x^3 + x^2 + x + 1$; iii) vidi niže danu sliku; iv) $r(x) = x^3 + x^2$ ili $\mathbf{r} = [1100]$; v) 10001100011]

Zadatak /zi 29/:

Dan je binarni ciklični blok kôd K [15, 7] s generirajućim polinomom $g(x)=x^8+x^7+x^6+x^4+1$.

- i) Odredite kodnu brzinu danog koda.
- ii) Dokažite da g(x) može biti generirajući polinom koda K.
- iii) Na ulazu kodera danog koda pojavljuje se poruka čiji je polinomski zapis $d(x)=x^4+x+1$. Odredite polinomski i binarni zapis kodne riječi u sistematičnom obliku
- iv) Je li $c(x) = x^{14} + x^5 + x + 1$ kodna riječ koda K?
- v) Skicirajte koder danog cikličnog koda.

Rješenje: [i) 0,4667: ii) $x^{15}+1$ je djeljivo s g(x); iii) $x^{12}+x^9+x^8+x^7+x^4+x^3$ ili 001 0011 1001 1000]; iv) ne jer je sindrom od c(x) različit od nule; v) ...]

Zadatak /zi_23/:

Za neki binarni blok kôd K dani su svi njegovi sindromi, \mathbf{s} , i njima pripadajući vodeći članovi razreda (tzv. reprezenti razreda) standardnog niza koda K.

S	Vodeći članovi razreda
000	00000
001	10000
010	01000
011	00011
100	00100
101	00010
110	00001
111	10001

Odredite za dani kôd *K*:

- i) koje pogreške (u cjelosti) može ispraviti. Dokaz!
- ii) matricu provjere pariteta, H.
- iii) generirajuću matricu, G.
- iv) minimalnu udaljenost, d_{\min} .

Napomena: Matrice G i H ne smiju biti u standardnom obliku.

Rješenje: [i) sve jednostruke pogreške; ii) dana niže; iii) dana niže; iv) 3]

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}; \mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Zadatak /zi 25/:

Odredite sve binarne ciklične kodove čija je duljina kodne riječi n = 7, a koji sadrže kodnu riječ 1111000.

Rješenje: $[g_0(x)=1, g_1(x)=x+1]$

Zadatak /zi 26/:

Dan je binarni blok kôd K. Na ulazu kodera kanala danog koda pojavljuju se tri poruke, i to: \mathbf{d}_1 =[101], \mathbf{d}_2 =[011] i \mathbf{d}_3 =[111]. Na izlazu kodera kanala, za dane tri poruke \mathbf{d}_1 , \mathbf{d}_2 i \mathbf{d}_3 pojavljuju se sljedeće tri kodne riječi \mathbf{c}_1 =[100101], \mathbf{c}_2 =[001011] i \mathbf{c}_3 =[010110], slijedno gledano. Odredite 5. i 6. bit u kodnoj riječi koja odgovara poruci \mathbf{d}_4 =[110].

Rješenje: [xxxx10]

Zadatak /zi 27/:

Slijed bita $\mathbf{x} = [1010101...]$ ulazi u Hammingov koder [n, k] = [7, 4] i nakon toga se prenosi prijenosnim kanalom u kojem je vjerojatnost pogrešnog prijenosa bita 0,004. Odredite za koliko se smanji vjerojatnost ispravnog dekodiranja slijeda \mathbf{x} ako se umjesto Hammingovog kodera kao zaštita uporabi paritet (parni!).

Rješenje: [0,01951]

Zadatak /zi 13/:

Dan je binarni blok kôd K s generirajućom matricom

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- i) Odredite minimalnu Hammingovu udaljenost koda.
- ii) Neka je primljena kodna riječ [1111100x] koja ima najviše jedan pogrešan simbol i jedan obrisan (x). Odredite kodnu riječ koja je poslana.

Rješenje: [i) 4; ii) 11101000]

Zadatak /zi 24/:

Izvorište generira 16 poruka, iz skupa od 16 jednako vjerojatnih simbola $X = \{x_0...,x_{15}\}$, koje se kodiraju binarnim kodom (Shannon-Fano!). Poruke se prije odašiljanja u kanal kodiraju Hammingovom metodom zaštitnog kodiranja. Na ulazu dekodera kanala pojavljuje se slijed bitova 10010101101... Odredite <u>prvu</u> poruku (**d**) koja je odaslana. **Napomena:** Kontrolni bitovi u kodnoj riječi nalaze se na pozicijama 1, 2, 4, 8,...

Rješenje: [1010]