Logistic regression to Feed-forward network

Taehoon Ko (thoon.koh@gmail.com)

목표

- Logistic regression의 분류 경계를 이해한다.
- Feed-forward network가 어떠한 원리로 비선형 분류 경계를 만들어내는지 이해한다.

Limitation of linear models

• 단 하나의 직선을 그어서 파란색 원과 붉은색 사각형을 분류할 수 있는가?

Logistic regression (revisited)

- Logistic regression은 학습 알고리즘을 통해 2-class points를 분류하는 초평면(hyper-plane)을 찾는 것
- 선형적인 의사결정경계(linear decision boundary)만 생성 가능

Classifier
$$y = \frac{1}{\left(1 + \exp(-\beta^{T} x)\right)} \quad \begin{cases} y \to 1 & \text{if} \quad \beta^{T} x \to \infty \\ y = \frac{1}{2} & \text{if} \quad \beta^{T} x = 0 \\ y \to 0 & \text{if} \quad \beta^{T} x \to -\infty \end{cases}$$

Exclusive OR (XOR) problem

XOR

Exclusive-OR gate

A	В	Output			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

XOR classification by logistic regression model

$$y = Pr(class = 1)$$

$$=\frac{1}{1+e^{-(X_1+X_2-0.5)}}$$

$$= \sigma(X_1 + X_2 - 0.5)$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Logistic function (a.k.a. softmax func., sigmoid function)

(Revisited) Logistic function

- Logistic function
 - $\circ -\infty < x < \infty$ 일 때, logistic function f(x) 은 다음과 같이 정의됨.

$$f(x) = \frac{1}{1 + e^{-x}}$$

- 0 < f(x) < 1
- x = 0일 때, 함수값은 f(0) = 0.5
- 위의 점을 기준으로 함수가 대칭 (symmetric)

f(x)는 특정사건이 일어날 확률과 매우 유사하므로, 확률을 logistic function으로 모델링하는 것이 가능함.

XOR classification by logistic regression model

$$y = \frac{1}{1 + e^{-(X_1 + X_2 - 0.5)}}$$
$$= \sigma(X_1 + X_2 - 0.5)$$

```
In [1]:
         import numpy as np
In [2]:
         def logistic(x):
             return 1 / (1 + np.exp(-x))
In [3]:
         logistic(0 + 0 - 0.5)
        0.37754066879814541
Out [3]:
         logistic(1 + 1 - 0.5)
In [4]:
Out [4]:
        0.81757447619364365
In [5]:
         logistic(0 + 1 - 0.5)
Out [5]:
        0.62245933120185459
         logistic(1 + 0 - 0.5)
In [6]:
Out [6]:
        0.62245933120185459
```

XOR classification by logistic regression model

Logistic regression as a network

• Logistic regression을 network로 표현하면 다음과 같다.

$$y = \frac{1}{1 + e^{-(w_1 X_1 + w_2 X_2 + b)}}$$

$$= \sigma(w_1 X_1 + w_2 X_2 + b)$$

$$X_1 \longrightarrow w_1$$

$$X_2 \longrightarrow b$$

$$y = \sigma(x)$$

$$y$$

XOR classification by logistic regression model

How about this model? → Feed-forward network


```
In [1]:
         import numpy as np
In [2]:
         def logistic(x):
             return 1 / (1 + np.exp(-x))
         logistic(0 + 0 - 0.5)
In [3]:
        0.37754066879814541
Out [3]:
        logistic(1 + 1 - 0.5)
In [4]:
Out [4]: 0.81757447619364365
In [5]:
        logistic(0 + 1 - 0.5)
Out [5]:
        0.62245933120185459
        logistic(1 + 0 - 0.5)
In [6]:
Out [6]:
        0.62245933120185459
```



```
In [1]:
         import numpy as np
In [2]:
         def logistic(x):
             return 1 / (1 + np.exp(-x))
In [3]:
         logistic(0 + 0 - 1.5)
         0.18242552380635635
Out [3]:
         logistic(1 + 1 - 1.5)
In [4]:
         0.62245933120185459
Out [4]:
         logistic(0 + 1 - 1.5)
In [5]:
Out [5]:
         0.37754066879814541
        logistic(1 + 0 - 1.5)
In [6]:
Out [6]:
         0.37754066879814541
```


FFN changes data representation

ID	class		X1	X2
1	0		0	0
2	1		0	1
3	1		1	0
4	0		1	1

ID	class	Z 1	Z2
1	0	0.38	0.18
2	1	0.62	0.38
3	1	0.62	0.38
4	0	0.82	0.62

FFN changes data representation

ID	class		X1	X2
1	0		0	0
2	1		0	1
3	1		1	0
4	0		1	1

ID	class	Z 1	Z 2	
1	0	0.38	0.18	
2	1	0.62	0.38	
3	1	0.62	0.38	
4	0	0.82	0.62	1

	ID	class	У
	1	0	0.4975
>	2	1	0.5075
	3	1	0.5075
	4	0	0.4975

- 쉽게 말로 풀어서 쓰자면,
 - 관측된 (X1, X2) 라는 포인트들이
 - 네트워크의 다음 층(layer)에서 (Z1, Z2)의 형식으로 표현이 바뀐 후,
 - 마지막 층에서 클래스가 분류되었다.

A Neural network playground (by TensorFlow)

http://playground.tensorflow.org/

XOR Problem: Revisited

$z - \alpha(h) -$	1	if $h_1 \ge 0$
$z_1 = g(h_1) = \langle$	$\lfloor -1 \rfloor$	if $h_1 < 0$

X ₁	x ₂	h ₁	z ₁
1/2	1/2	-1/2	-1
3/2	1/2	1/2	1
1/2	3/2	1/2	1
3/2	3/2	3/2	1

XOR Problem: Revisited

$z_2 = g(h_2) = \langle$	1	if $h_2 \ge 0$
$z_2 - g(n_2) - \gamma$	$\lfloor -1 \rfloor$	if $h_2 < 0$

X ₁	X ₂	h ₂	Z_2
1/2	1/2	-3/2	-1
3/2	1/2	-1/2	-1
1/2	3/2	-1/2	-1
3/2	3/2	1/2	1

XOR Problem: Revisited

X ₁	X ₂	h ₁	z ₁	h ₂	Z ₂	01	z
1/2	1/2	-1/2	-1	-3/2	-1	-1	-1
3/2	1/2	1/2	1	-1/2	-1	1	1
1/2	3/2	1/2	1	-1/2	-1	1	1
3/2	3/2	3/2	1	1/2	1	-1	-1

$$o_{1} = z_{1} - z_{2} - 1 \qquad z = g(o_{1}) = \begin{cases} 1 & \text{if } o_{1} \ge 0 \\ -1 & \text{if } o_{1} < 0 \end{cases}$$

(출처: 고려대 강필성 교수님 강의노트)