2. Übungsblatt

- 1. Sei $\mathcal{P}(A) =_{\text{def}} \{B \mid B \subseteq A\}$ die Potenzmenge von A. Ist z.B. $A = \{2,3,5,7\}$, so ist $\mathcal{P}(A) = \{\emptyset,\{2\},\{3\},\{5\},\{7\},\{2,3\},\{2,5\},\{2,7\},\{3,5\},\{3,7\},\{5,7\},\{2,3,5\},\{2,3,7\},\{2,5,7\},\{3,5,7\},\{2,3,5,7\}\}$. Sei nun A eine beliebige Menge mit n Elementen. Zeigen Sie, dass dann 2^n Elemente in $\mathcal{P}(A)$ enthalten sind. Können Sie mehrere (also mindestens zwei) verschiedene Beweise für diese Tatsache finden?
- 2. Sei das L-System $G = (\{F, -, +\}, -F, \{F \to F + F F F + F\})$ gegeben. Bestimmen Sie die Wörter, die sich ergeben, wenn man zwei Ableitungschritte durchführt. Welche graphische Repräsentation dieser Strings ergibt sich mit der Turtle-Interpretation für $\delta = 90^{\circ}$?
- 3. Gegeben sei ein Alphabet Σ . Eine Sprache $L \subseteq \Sigma^*$ heißt entscheidbar, falls ein Algorithmus existiert, der für jede Eingabe stoppt und der für jedes $w \in \Sigma^*$ feststellt, ob entweder $w \in L$ oder $w \notin L$ gilt. Entwerfen Sie Algorithmen (in Pseudocode), die zeigen, dass die Sprachen L_1 , **PRIM** und **COMPOSITE** entscheidbar sind:
 - i) $\Sigma = \{a, b\}$ und $L_1 =_{\text{def}} \{v \in \Sigma^* \mid v = ww^R\}$, wobei $w^R =_{\text{def}} w_n w_{n-1} \dots w_2 w_1$ für $w = w_1 w_2 \dots w_{n-1} w_n$ (d.h. w^R ist das Spiegelbild von w).
 - ii) $\Sigma = \{0, 1\}$, **PRIM** =_{def} $\{p \mid p \text{ ist Primzahl}\}$ und **COMPOSITE** = **PRIM**.

Besprechung in den Übungen am 26. April 2023.