

Cheat sheet for Knowledge Representation

Knowledge Representation (Vrije Universiteit Amsterdam)

Cheat sheet

Frequently occurring symbols

$$\in$$
, \notin , \sum , \sqsubseteq , \sqcup , \sqcap , \neg , \exists , \forall

There is a chance that you cannot copy-paste those symbols from the provided pdf. In that case use symbols that are alike the intended ones, and define their meaning. E.g. if use E instead of \exists and mention briefly you use E as symbol for the existential quantifier.

Rules for rewriting a statement into CNF

- 1. $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$
- 2. $P \rightarrow Q \equiv \neg P \lor Q$
- 3. ¬(¬P)≡P
- 4. $\neg (P \land Q) \equiv \neg P \lor \neg Q$
- 5. $\neg (P \lor Q) \equiv \neg P \land \neg Q$
- 6. $(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$

Rules for rewriting a DL concept into NNF

To reduce the number of tableau rules we can assume that all concepts in the input appear in *Negation Normal Form* (*NNF*).

$$\neg \top \Rightarrow \bot$$

$$\neg \bot \Rightarrow \top$$

$$\neg A \Rightarrow \neg A$$

$$\neg (\neg C) \Rightarrow C$$

$$\neg (C \sqcap D) \Rightarrow \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \Rightarrow \neg C \sqcap \neg D$$

$$\neg \exists r. C \Rightarrow \forall r. \neg C$$

$$\neg \forall r. C \Rightarrow \exists r. \neg C$$

Tableau Rules for ABoxes and TBoxes

⇒_□ **IF**
$$(a: C \sqcap D) \in S$$
 THEN $S' := S \cup \{a: C, a: D\}$
⇒_□ **IF** $(a: C \sqcup D) \in S$ **THEN** $S' := S \cup \{a: C\}$ **or** $S' := S \cup \{a: D\}$
⇒_∃ **IF** $(a: \exists r.C) \in S$ **THEN** $S' := S \cup \{(a,b): r, b: C\}$
where b is a 'fresh' individual name in S
⇒_∀ **IF** $(a: \forall r.C) \in S$ **and** $(a,b): r \in S$ **THEN** $S' := S \cup \{b: C\}$
⇒_× **IF** $\{a: A, a: \neg A\} \subseteq S$ **or** $(a: \bot) \in S$ **THEN** mark the branch as CLOSED

$$\Rightarrow_{\equiv}$$
 IF $(\top \equiv C) \in S$ **and** an individual a occurs in S **THEN** $S' := S \cup \{a : C\}$

