Power analysis

Miaoyan Wang

Department of Statistics UW Madison

Review of one-sample testing

- i.i.d. sample: $Y_1, Y_2, \dots, Y_n \sim N(\mu, \sigma^2)$
- Parameter of interest: μ or σ .
- H_0 versus H_A
- Testing $H_0: \mu = \mu_0$
 - Normal population σ^2 known:

$$Z = rac{ar{Y} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

▶ Normal population σ^2 unknown:

$$T = rac{ar{Y} - \mu_0}{\hat{\sigma}/\sqrt{n}} \sim T_{n-1}, \quad ext{where } \hat{\sigma} = \sqrt{rac{1}{n-1} \sum_{i=1}^n (Y_i - ar{Y})^2},$$

• Testing for σ^2 : $H_0: \sigma^2 = \sigma_0^2$

$$V^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

p-value and conclusion

Example:
$$H_0$$
: $\mu = 60$ vs. H_A : $\mu \neq 60$

Consider testing

$$H_0: \mu = 60 \text{ vs. } H_A: \mu \neq 60.$$

- Suppose that an i.i.d. sample of size n=16 is available and that the population distribution is $N(\mu, 36)$.
- Under H_0 , what is the distribution of the sample mean \bar{Y} ? $\bar{Y} \sim N(\mu_0 = 60, \frac{\sigma^2}{n} = \frac{36}{16} = (1.5)^2)$

- Suppose $\alpha = 0.05$. That is, we reject H_0 if the p-value is less than or equal to 0.05.
- What values of \bar{Y} would lead to a rejection of H_0 ?
- Can we answer this question before even having the data?

Rejection Region

• Note $z_{0.025}=1.96$ (from R or Z-table). We would reject H_0 if the observed \bar{y} is more than 1.96 standard deviation (of the sample mean!) away from the hypothesized mean $\mu=60$.

• We would reject H_0 if the observed \bar{y} is less than 57.06 or more than 62.94. [Why?]

$$0.05 = P(Z \le -1.96) + P(Z \ge 1.96)$$

$$= P\left(\frac{\bar{Y} - 60}{1.5} \le -1.96\right) + P\left(\frac{\bar{Y} - 60}{1.5} \ge 1.96\right)$$

$$= P(\bar{Y} \le 60 - 1.96 \times 1.5) + P(\bar{Y} \ge 60 + 1.96 \times 1.5)$$

$$= P(\bar{Y} \le 57.06) + P(\bar{Y} \ge 62.94)$$

Type I and II Error

- For a given rejection region, the rule is to reject H_0 if the observed \bar{y} falls in the rejection region and do not reject H_0 otherwise.
- ullet Because $ar{Y}$ is random, it is possible to make two types of errors.
 - ▶ A **Type I error** occurs if we reject H_0 when H_0 is true.
 - ▶ A **Type II error** occurs if we accept H_0 when H_0 is false.
- In our example, what is the probability of Type I error?

$$P(\text{Reject } H_0|H_0) = P(ar{Y} \le 57.06 \text{ or } ar{Y} \ge 62.94 | \mu = 60)$$

Types of Error and Statistical Power

There are four possible outcomes that could be reached as a result of the null hypothesis being either true or false and the decision being either "fail to reject" or "reject".

Doolitu	Our Decision	
Reality	H_0	H_a
H ₀		Type I Error
H _a	Type II Error	\checkmark

Types of Error and Statistical Power

Doolity	Our Decision	
Reality	H_0	H_a
H ₀ (Type I Error
	$(Prob = 1 - \alpha)$	$(Prob = \alpha)$
H _a	Type II Error	
	$(Prob = \beta)$	$(Prob = 1 - \beta)$

- \bullet The significance level α of any fixed level test is the probability of a Type I error.
- The **power** of a fixed level test against a particular alternative is $1-\beta$ for that alternative.
- In practice, we first choose an α and consider only tests with probability of Type I error no greater than α . Then we select one that makes the probability of Type II error as small as possible (i.e. the most powerful possible test).

Power

- For a given rejection rule and for any given value of μ , the **power** is the probability of rejecting H_0 given the value of μ .
- In the example above, what is the power for $\mu = 60$?

$$P(\text{Reject } H_0 | \mu = 60) = P(\bar{Y} \le 57.06 \text{ or } \bar{Y} \ge 62.94 | \mu = 60)$$

• What is the power for $\mu = 62$?

$$P(\text{Reject } H_0 | \mu = 62) = P(\bar{Y} \le 57.06 \text{ or } \bar{Y} \ge 62.94 | \mu = 62)$$

$$= P(Z \le -3.29) + P(Z \ge 0.63) = 0.0005 + 0.2643 = 0.2648$$

• What is the power for $\mu = 64$?

$$P(\text{Reject } H_0 | \mu = 64) = P(\bar{Y} \le 57.06 \text{ or } \bar{Y} \ge 62.94 | \mu = 64)$$

$$= P(Z \le -6.94) + P(Z \ge -0.71) = 0 + (1 - 0.2389) = 0.7611$$