Prova de graduação em Ciência da Computação — 11/12/2018 Teoria da Computação — Prof. Stéphane Julia

Duração: 01 hora e 30 minutos – sem consulta – valor: 60 pontos	
No	ome: Número:
In	dicar as respostas no espaço deixado em cada questão
1.	As máquinas de Turing não determinísticas de complexidade polinomial em tempo são um modelo de formalização de uma classe de problemas práticos encontrados em Ciência da Computação. Qual é essa classe? Qual seria o impacto, em termos de complexidade, caso os problemas dessa classe fossem representados por uma máquina de Turing determinística? (4 pontos)
2.	Fornecer a definição da classe NP-Hard. (4 pontos)
3.	Fornecer a definição da classe NP-Completa. (4 pontos)

4.	Fornecer dois exemplos de classes de equivalência polinomial. (4 pontos)
5.	Mostrar que as linguagens regulares pertencem à classe P. (4 pontos)
6.	Qual é o significado das classes de equivalência polinomial na prática? (4 pontos)

7. O problema do circuito mais longo é o seguinte. Os dados do problema são um grafo G=(V,E), os comprimentos l(e) > 0 para cada arco e que pertence a E, e um inteiro J. O problema é de determinar se existe um circuito fechado que não passa duas vezes pelo mesmo vértice tal que a soma dos comprimentos dos arcos é maior ou igual a J. Sabendo que o problema do circuito Hamiltoniano é NPC, mostar que o problema do circuito mais longo é também NPC. (8 pontos)

8. Qual é o significado das classes de equivalência polinomial na prática? (4 pontos)

12. Defina : " conjunto infinito enumerável" . (5 pontos)
13. Qual é a diferença fundamental entre a classe das linguagens recursivas e das linguagens enumeráveis recursivamente? Apresentar o funcionamento das máquinas de Turing correspondentes em cada caso (para R e para RE). (5 pontos)
14. A tese de Turing não pode ser formalmente provada, mas pode ser refutada caso seja descoberta uma máquina teórica "mais poderosa" que a máquina de Turing. Explicar o termo "mais poderosa" no contexto da tese de Turing. (5 pontos)