

### RV Educational Institutions RV College of Engineering

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Semester: I

### CHEMISTRY OF SMART MATERIALS AND DEVICES

**Category: Applied Science Course** 

Stream: Computer Science (Common to AI, BT, CS, CY, CD & IS Programs)

(Theory and Practice)

| Course Code        | : | CHY211AI | CIE          | : | 100 Marks |
|--------------------|---|----------|--------------|---|-----------|
| Credits: L:T:P     | : | 3:0:1    | SEE          | : | 100 Marks |
| <b>Total Hours</b> | : | 42L+ 30P | SEE Duration | : | 3 Hours   |

Unit-I 08 Hrs

**Sustainable chemistry and E-waste management: Biomaterials:** Introduction, bio-degradable and biocompatible polymeric materials: synthesis and applications (Polymers and hydrogels in drug delivery).

Green Chemistry: Introduction, 12 principles with real life examples, validation of greenness.

**E-waste:** Hazards and toxicity, segregation and recycling (Hydrometallurgy, pyrometallurgy and direct recycling). Extraction of valuable metals from E-waste. Battery waste management and recycling, circular economy- case studies.

Unit – II 08 Hrs

**Computational chemistry:** Scope, cost and efficiency of computational modeling. Stabilizing interactions: Bonded and non-bonded interactions. Molecular topology, topological matrix representation, topological indices, QSAR/QSPC concept for insilico prediction of properties. 3D co-ordinate generation for small molecules, geometry optimization.

Unit –III 08 Hrs

Materials for memory and display technology: Materials for memory storage: Introduction to materials for electronic memory, classification (organic, polymeric and hybrid materials), manufacturing of semiconductor chips. Green computing: Bio-composite based memory devices.

**Fabrication of smart materials and devices:** photo and electro active materials for memory devices, materials for display technology (Liquid crystals display, organic light emitting diode and light emitting electrochemical cells).

Unit –IV 09 Hrs

#### **Smart sensors and devices**

**RFID and IONT materials:** Synthesis, properties and applications in logistic information, intelligent packaging systems (Graphene oxide, carbon nanotubes (CNTs) and polyaniline).

**Sensors:** Introduction, types of sensors (Piezoelectric and electrochemical), nanomaterials for sensing applications (Strain sensors, gas sensor, biomolecules and volatile organic compounds).

Unit-V 09 Hrs

#### Advanced energy systems

**Battery technology:** Introduction to electrochemistry, characteristics of battery, Lithium-ion battery metal air batteries. Battery technology for e-mobility.

**Super capacitors:** Storage principle, types (EDLC, pseudo and asymmetric capacitor) with examples and applications.

Photovoltaics: Inorganic solar cells, organic solar cells, quantum dot sensitized (QDSSC's). Green hydrogen

| Course Outcomes: After completing the course, the students will be able to |                                                                                                      |  |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| CO1                                                                        | Identify the materials, conventional & non-conventional energy systems for engineering applications. |  |  |
| CO2                                                                        | Investigate chemical properties of materials for various technological applications.                 |  |  |
| CO3                                                                        | Apply the knowledge of material property and energy to analyze environmental issues.                 |  |  |
| CO4                                                                        | Develop solutions in the areas of applied materials and energy systems for sustainable engineering   |  |  |
|                                                                            | application.                                                                                         |  |  |



# RV Educational Institutions \*\* RV College of Engineering \*\*

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| Refere | Reference Books                                                                                              |  |  |
|--------|--------------------------------------------------------------------------------------------------------------|--|--|
| 1      | E-waste recycling and management: present scenarios and environmental issues, Khan, Anish, and               |  |  |
|        | Abdullah M. Asiri. 2019, Springer, Vol. 33. ISBN: 978-3-030-14186-8.                                         |  |  |
| 2      | Essentials of computational chemistry: theories and models, Christopher J Cramer, 2013, John Wiley &         |  |  |
|        | Sons. ISBN: 978-0-470-09182-1.                                                                               |  |  |
| 3      | Energy storage and conversion devices: Supercapacitors, batteries and hydroelectric cells, Anurag Gaur,      |  |  |
|        | A. L. Sharma, Anil Arya. 2021, CRC press, 1 <sup>st</sup> edition, ISBN: 978-1-003-14176-1.                  |  |  |
| 4      | Fundamentals of analytical chemistry: An introduction, Douglas A. Skooget etal., 2004 Thomson Asia pte       |  |  |
|        | Ltd., 8 <sup>th</sup> , ISBN: 978-0-495-55828-6                                                              |  |  |
| E-book | KS .                                                                                                         |  |  |
| 5      | Functional and smart materials, Chander Prakash, Sunpreet Singh, J. Paulo Davim, 2020, CRC Press,            |  |  |
|        | ISBN: 978-036-727-510-5.                                                                                     |  |  |
| 6      | Electrical and electronic devices, circuits and materials: Technological challenges and solutions. Tripathi, |  |  |
|        | S. L., Alvi, P. A., & Subramaniam, U, 2021, John Wiley & Sons, ISBN: 978-0367564261.                         |  |  |

|    | Laboratory Experiments                                                                                |  |
|----|-------------------------------------------------------------------------------------------------------|--|
| 1  | Estimation of copper from PCB.                                                                        |  |
| 2  | Determination of total acidity of the soft drinks using pH sensors.                                   |  |
| 3  | Potentiometric estimation of iron.                                                                    |  |
| 4  | Conductometric estimation.                                                                            |  |
| 5  | Determination of viscosity coefficient of a given liquid using Ostwald's viscometer.                  |  |
| 6  | Flame photometric estimation of sodium.                                                               |  |
| 7  | Colorimetric estimation of copper from E-waste.                                                       |  |
| 8  | Electroplating of copper.                                                                             |  |
| 9  | Synthesis and fabrication of conducting polyaniline and its application in gas sensing (Demonstration |  |
|    | experiment).                                                                                          |  |
| 10 | Study the surface morphology of nanomaterials using scanning electron microscopy (Demonstration       |  |
|    | experiment).                                                                                          |  |
| 11 | Fabrication of thin-film gas sensors using spin coating and electro-spinning technique (Demonstration |  |
|    | experiment).                                                                                          |  |
| 12 | Separation of organic compounds using column chromatographic technique and monitoring by thin layer   |  |
|    | chromatographic technique (Demonstration experiment).                                                 |  |
| 13 | Synthesis of metal oxide nanomaterials using solution combustion synthesis.                           |  |
| 14 | Green synthesis of nanomaterials.                                                                     |  |



# RV Educational Institutions <sup>®</sup> RV College of Engineering <sup>®</sup>

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

| ш | RUBRIC FOR THE CONTINUOUS INTERNAL EVALUATION (THEORY WITH LAB)                                                                                                                                                                                                                                                                                                     |       |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| # | COMPONENTS                                                                                                                                                                                                                                                                                                                                                          | MARKS |
| 1 | QUIZZES: Quizzes will be conducted in online/offline mode. TWO QUIZZES will be conducted & Each Quiz will be evaluated for 10 Marks. THE AVERAGE OF TWO                                                                                                                                                                                                             | 10    |
|   | QUIZZES WILL BE THE FINAL QUIZ MARKS.                                                                                                                                                                                                                                                                                                                               |       |
| 2 | <b>TESTS:</b> Students will be evaluated in test, descriptive questions with different complexity levels (Revised Bloom's Taxonomy Levels: Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating). <b>TWO tests will be conducted</b> . Each test will be evaluated for <b>50 Marks</b> . <b>FINAL TEST MARKS WILL BE REDUCED TO 30 MARKS</b> . | 30    |
| 3 | <b>EXPERIENTIAL LEARNING:</b> Students will be evaluated for their creativity and practical implementation of the problem. Case study based teaching learning (10), Program specific requirements (10), Video based seminar/presentation/demonstration (10) <b>ADDING UPTO 30 MARKS</b> .                                                                           | 30    |
| 4 | LAB: Conduction of laboratory exercises, lab report, observation and analysis (30 Marks), lab test (10 Marks) and Innovative Experiment/ Concept Design and Implementation (10 Marks) adding up to 50 Marks. THE FINAL MARKS WILL BE REDUCED TO 30 MARKS                                                                                                            | 30    |
|   | MAXIMUM MARKS FOR THE CIE THEORY                                                                                                                                                                                                                                                                                                                                    | 100   |

| RUBRIC FOR SEMESTER END EXAMINATION (THEORY) |                                                   |       |  |  |  |
|----------------------------------------------|---------------------------------------------------|-------|--|--|--|
| Q. NO.                                       | CONTENTS                                          | MARKS |  |  |  |
|                                              | PART A                                            |       |  |  |  |
| 1                                            | Objective type questions covering entire syllabus | 10    |  |  |  |
|                                              | PART B                                            |       |  |  |  |
| (Maximum of TWO Sub-divisions only)          |                                                   |       |  |  |  |
| 2                                            | Unit 1 : (Compulsory)                             | 14    |  |  |  |
| 3 & 4                                        | Unit 2: Question 3 or 4                           | 14    |  |  |  |
| 5 & 6                                        | Unit 3: Question 5 or 6                           | 14    |  |  |  |
| 7 & 8                                        | Unit 4: Question 7 or 8                           | 14    |  |  |  |
| 9 & 10                                       | Unit 5 : Question 9 or 10                         | 14    |  |  |  |
| 11                                           | Lab Component (Compulsory)                        | 20    |  |  |  |
|                                              | MAXIMUM MARKS FOR THE SEE THEORY                  | 100   |  |  |  |