STA2001 Home Assignment 10

- 1. 5.4-22. Let X_1 and X_2 be two independent random variables. Let X_1 and $Y = X_1 + X_2$ be $\chi^2(r_1)$ and $\chi^2(r)$, respectively, where $r_1 < r$.

 (a) Find the mgf of X_2 .

 - (b) What is its distribution?

2. 5.4-23. Let X be N(0, 1). Use the mgf technique to show that $Y = X^2$ is $\chi^2(1)$. Hint: Evaluate the integral representing $E(e^{tX^2})$ by writing $w = x\sqrt{1-2t}$.

- 3. 5.5-2. Let X be N(50, 36). Using the same set of axes, sketch the graphs of the probability density functions of
 - (a) X.
 - (b) \bar{X} , the mean of a random sample of size 9 from this distribution.
 - (c) \bar{X} , the mean of a random sample of size 36 from this distribution.

- 4. 5.5-4. Let X equal the weight of the soap in a 6-pound box. Assume that the distribution of X is N(6.05, 0.0004).
 - (a) Find P(X < 6.0171).
 - (b) If nine boxes of soap are selected at random from the production line, find the probability that at most two boxes weigh less than 6.0171 pounds each. Hint: Let Y equal the number of boxes that weigh less than 6.0171 pounds.
 - (c) Let \bar{X} be the sample mean of the nine boxes. Find $P(\bar{X} \leq 6.035)$.

- 5. 5.5-13. Let $Z_1, Z_2,$ and Z_3 have independent standard normal distributions, N(0,1).
 - (a) Find the distribution of

$$W = \frac{Z_1}{\sqrt{((Z_2)^2 + (Z_3)^2)/2}}$$

(b)Show that

$$V = \frac{Z_1}{\sqrt{((Z_1)^2 + (Z_2)^2)/2}}$$

has pdf

$$f(v) = \frac{1}{(\pi\sqrt{2-v^2})}, -\sqrt{2} < v < \sqrt{2}$$

- (c) Find the mean of V.
- (d)Find the standard deviation of V.
- (e) Why are the distribution of W and V so different?

6. 5.5-14. Let T have a t distribution with r degrees of freedom. Show that E(T)=0 provided that $r\geq 2$, and Var(T)=r/(r-2) provided that $r\geq 3$, by first finding E(Z), $E(1/\sqrt{U}),\ E(Z^2)$, and E(1/U).

- 7. 5.5-16. Let n=9 in the T statistic defined in Equation 5.5-2.

 - (a) Find $t_{0.025}$ so that $P(-t_{0.025} \le T \le t_{0.025}) = 0.95$. (b) Solve the inequality $[-t_{0.025} \le T \le t_{0.025}]$ so that μ is in the middle.

- 8. 5.6-5. Let $X_1, X_2, ..., X_{18}$ be a random sample of size 18 from a chi-square distribution with r=1. Recall that $\mu=1$ and $\sigma^2=2$.

 (a) How is $Y=\sum_{i=1}^{18} X_i$ distributed?
 (b) Using the result of part (a), we see from Table IV in Appendix B that

$$P(Y \le 9.390) = 0.05$$

and

$$P(Y \le 34.80) = 0.99.$$

Compare these two probabilities with the approximations found with the use of the central limit theorem

- 9. 5.6-8. Let X equal the weight in grams of a miniature candy bar. Assume that μ = E(X) = 24.43 and $\sigma^2 = Var(X) = 2.20$. Let \bar{X} be the sample mean of a random sample of n = 30 candy bars. Find
 - (a) $E(\bar{X})$.

 - (b) $Var(\bar{X})$. (c) $P(24.17 \le \bar{X} \le 24.82)$, approximately.

10. 5.6-14. Suppose that the sick leave taken by the typical worker per year has μ = 10, σ = 2, measured in days. A firm has n = 20 employees. Assuming independence, how many sick days should the firm budget if the financial officer wants the probability of exceeding the number of days budgeted to be less than 20%?