

Pilani Campus

Artificial & Computational Intelligence AIML CLZG557

M1: Introduction

&

M2: Problem Solving Agent using Search

Raja vadhana P

Assistant Professor,

BITS - CSIS

Course Plan

M1	Introduction to AI				
M2	Problem Solving Agent using Search				
M3	Game Playing				
M4	Knowledge Representation using Logics				
M5	Probabilistic Representation and Reasoning				
M6	Reasoning over time				
M7	Ethics in AI				

Traveller's Problem

Traveller's Problem

Traveller's Problem

Rational Agents

Rational Agent

Design Principles & Techniques

	Thought / Reasoning	Acting		
Human Performance	"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving,	"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil,		
Rational Performance	THINKING RATIONALLY "The study of computations that make it possible to perceive, reason, and act" (Winston, 1992)	1990) ACTING RATIONALLY "Computational intelligence is the study of the design of intelligent agents" (Poole et al., 1998)		

Acting Rationally

The Rational Agent Approach

•An agent is an entity that perceives and acts

This course is about designing rational agents

- Abstractly, an agent is a function from percept histories to actions: [f: P* →
 A]
- •For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance
- Computational limitations make perfect rationality unachievable
- Design best program for given machine resources

Properties of Rational Agent

- ➤ Omniscience : Expected Vs Actual Performance
- Learning Capability : Apriori Knowledge
- Autonomous in decision making: An agent is autonomous if its behaviour is determined by its own experience (with ability to learn and adapt)

Intelligent Agent

Rational Agent is one that acts to achieve the best outcome or the best expected outcome even under uncertainty

Intelligent Agent

- Percepts: location and contents, e.g., [A, Dirty]
- · Actions: Left, Right, Suck, NoOp

Performance measure: An objective criterion for success of an agent's behaviour

E.g., performance measure of a vacuum-cleaner agent

- » amount of dirt cleaned up
- » amount of time taken
- » amount of electricity consumed
- » amount of noise generated, etc.

PEAS Design

Intelligent Agent

Percept sequence			
[A, Clean] [A, Dirty] [B, Clean] [B, Dirty] [A, Clean], [A, Clean] [A, Clean], [A, Dirty]	A 00000	В	Right Suck Left Suck Right Suck
: [A, Clean], [A, Clean], [A, Clean] [A, Clean], [A, Clean], [A, Dirty]			

Vacuum World Problem

PEAS Environment

Design on what an application wants the agent to do in the environment

Agent	Performance	Environment	Sensors	Actuators
Medical diagnosis system	Healthy patient, reduced costs	Patient, hospital, staff	Keyboard entry of symptoms, findings, patient's answers	Display of questions, tests, diagnosis, treatments, referrals
Satellite Image analysis system		Downlink from orbiting satellite	Color pixel analysis	Display of scene categorization
Interactive English tutor	Student's score on test	Set of students, testing agency	Keyboard entry	Display of exercises, suggestions, corrections

Path finding Robot - Lab Example

PEAS Environment

Agent

Performance

Environment

Sensors

Dimensions of Task Environment

Sensor Based:

Observability : Full Vs Partial

Action Based:

Dependency : Episodic Vs Sequential

State Based:

No.of.State : Discrete Vs Continuous

Agent Based:

> Cardinality : Single Vs MultiAgent

Action & State Based:

> State Determinism : Deterministic Vs Stochastic | Strategic

Change in Time : Static Vs Dynamic

A rational agent is built to solve a specific task. Each such task would then have a different environment which we refer to as Task Environment

Based on the applicability of each technique for agent implementation its task environment design is determined by multiple dimension

Sensor Based:

➤ Observability: Full Vs Partial

Action Based:

➤ Dependency : Episodic Vs Sequential

State Based:

No.of.State : **Discrete** Vs Continuous

State Based:

➤ No.of.State : Discrete Vs Continuous

VS.

Action & State Based:

➤ State Determinism: Deterministic Vs Stochastic | Strategic (If the environment is deterministic except for the actions of other agents, then the environment is strategic)

Agent Based:

> Cardinality : Single Vs MultiAgent

Action & State Based:

- ➤ Change in Time : Static Vs Dynamic
- ➤ (The environment is semi dynamic if the environment itself does not change with the passage of time but the agent's performance score does)

Task Environment	Fully vs Partially Observable	Single vs Multi- Agent	Deterministic vs Stochastic	Episodic vs Sequential	Static vs Dynamic	Discrete vs Continuous
Medical diagnosis system	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Satellite Image Analysis System	Fully	Single	Deterministic	Episodic	Static	Continuous
Interactive English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete

Path finding Robot - Lab Example

No.of.Agents

No.of.States

Determinism

Dynamicity

Output Dependency

Learning Objective Achieved

At the end of this class, students Should be able to:

- 1. Identify the requirement for AI solutions for given problem
- 2. Understand the significance of State based representations
- 3. Design the PEAS (Performance, Environment, Actuators, Sensors) for given problem
- 4. Identify dimensions of TASK environment

Next Class Plan

Structure of Agents-Architectures

Problem Solving Agents

Problem Formulation

Uninformed Search Algorithms

Required Reading: AIMA - Chapter #2

Note: Some of the slides are adopted from AIMA TB materials

Thank You for all your Attention