1 Introduction

In number theory we are interested in studying \mathbb{Q} and its finite extensions (known as **number fields**). This is primarily done using Galois theory and, in particular, the absolute Galois group $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. This is an infinite topological group which is built up from finite Galois extensions K/\mathbb{Q} in a way that can be made precise (more specifically, $G_{\mathbb{Q}}$ is a key example of a profinite group). Since $G_{\mathbb{Q}}$ itself is rather unwieldy, we get at its structure by way of (continuous) representations $\rho: G_{\mathbb{Q}} \to \operatorname{GL}(V)$ for V some finite dimensional (topological) vector space. Several possibilities exist for the space V or, rather, its underlying topological ground field F. Of course, we may take F to be \mathbb{C} (with its Euclidean topology) or a finite field \mathbb{F}_q (equipped with the discrete topology). But there is often also reason to consider \mathbb{Q}_ℓ (and its finite extensions) for ℓ prime, giving rise to so-called ℓ -adic Galois representations. At the same time, we don't just want to consider representations of $G_{\mathbb{Q}}$ but also of $G_{\mathbb{Q}_p}$. This is in part because the Galois theory of \mathbb{Q}_p is nice and in part because \mathbb{Q}_p captures important "local" information about \mathbb{Q} relative to the prime p. The (topological) field \mathbb{Q}_p provides the simplest example of a so-called local field, and it is exactly these kinds of fields that we are interested in studying in these notes.

2 Basic Theory of Local Fields

We begin by recalling some general notions.

Definition 1. Let K be a field. An **absolute value** on K is a map $|\cdot|: K \to \mathbb{R}^{\geq 0}$ such that, for every $x, y \in K$,

- (i) $|x| = 0 \iff x = 0;$
- (ii) |xy| = |x||y|;
- (iii) $|x + y| \le |x| + |y|$.

We say that $|\cdot|$ is nonarchimedean or ultrametric if $|x+y| \leq \max\{|x|, |y|\}$ for every $x, y \in K$, and archimedean otherwise.² A discrete valuation³ on K is a map $v : K \to \mathbb{Z} \cup \{\infty\}$ such that, for every $x, y \in K$,

- (i) $v(x) = \infty \iff x = 0;$
- (ii) v(xy) = v(x) + v(y);
- (iii) $v(x+y) \ge \min\{v(x), v(y)\}.$

The data of the pair $(K, |\cdot|)$ is called a **valued field** (we often suppress $|\cdot|$ when it is clear from context). K is then naturally a topological field with respect to the metric topology induced by $|\cdot|$. There is a natural equivalence relation \sim on the set of absolute values on K given by $|\cdot|_1 \sim |\cdot|_2$ if $|\cdot|_2 = |\cdot|_1^c$ for some $c \in \mathbb{R}^{>0}$, which precisely captures when two absolute values on K induce the

¹We impose continuity constraints on ρ so that it properly captures the topology on $G_{\mathbb{Q}}$.

²For technical reasons we don't consider the trivial absolute value (given by |x| = 1 for every nonzero $x \in K$) to be nonarchimedean.

³The word 'discrete' here comes from the appearance of \mathbb{Z} in the codomain of v.

⁴The symbol ∞ behaves as one would expect, satisfying $\infty + \infty = \infty$, $a + \infty = \infty = \infty + a$, and $a \leq \infty$ for every $a \in \mathbb{Z}$.

same (metric) topology. Let S_K denote the set of equivalence classes of \sim (known as **places** and sometimes **primes**). Note that the notions of archimedean and nonarchimedean extend to places.

Let $(K, |\cdot|)$ be a nonarchimedean valued field. The **ring of integers** or **valuation ring** of K is

$$\mathcal{O}_K := \{ x \in K : |x| \le 1 \},\$$

which the reader can verify is a local PID that sits inside of \mathcal{O}_K as a compact open subgroup. Moreover, \mathcal{O}_K has fraction field K, unique maximal ideal $\mathfrak{m}_K := \{x \in K : |x| < 1\}$, and unit group $\mathcal{O}_K^{\times} = \{x \in K : |x| = 1\}$. Any generator of \mathfrak{m}_K is called a **uniformizer** for K and is typically denoted π_K or ϖ_K (with the subscript K often omitted). Associated to this is the discrete valuation $v_K : K \to \mathbb{Z} \cup \{\infty\}$ recording order of divisibility by π_K (which is independent of the choice of uniformizer). This fits into a short exact sequence

$$1 \longrightarrow \mathcal{O}_K^{\times} \longrightarrow K^{\times} \stackrel{v}{\longrightarrow} \mathbb{Z} \longrightarrow 0$$

with a choice of uniformizer π_K inducing a splitting – i.e., a (non-canonical) isomorphism $K^{\times} \cong \mathcal{O}_K^{\times} \times \mathbb{Z}$. For the future, we want to keep track of the **residue field** $k_K := \mathcal{O}_K/\mathfrak{m}_K$.

Definition 2. A local field is a valued field K such that the induced metric topology makes K into a (non-discrete) locally compact topological field.⁸

We immediately see that \mathbb{R} and \mathbb{C} are examples of (archimedean) local fields.

Proposition 3. Let K be a nonarchimedean valued field. Then, K is local if and only if K is (Cauchy) complete and k_K is finite.

It follows that K a nonarchimedean valued field has a unique discrete valuation v_K such that $v_K(\pi_K) = 1$ for any choice of uniformizer π_K . We readily see that \mathbb{Q}_p and \mathbb{F}_q ((t)) (the field of Laurent series in t over \mathbb{F}_q) are examples of nonarchimedean local fields.

Theorem 4. Let K be a valued field. Then, K is described up to isomorphism as a topological ring by one of the following (where p > 0 is prime).

Case	char(K)	$char(k_K)$	Isomorphism Type
Equichar. 0	0	0	\mathbb{R},\mathbb{C}
Mixed char.	0	p	Finite extension of \mathbb{Q}_p
Equichar. p	p	p	Finite extension of $\mathbb{F}_p((t))$

Notice how \mathbb{R} arises from \mathbb{Q} by completing with respect to the usual Euclidean absolute value $|\cdot| = |\cdot|_{\infty}$. Similarly, \mathbb{Q}_p arises from \mathbb{Q} via $|\cdot|_p$ and $\mathbb{F}_q(t)$ arises from $\mathbb{F}_q(t)$ via $|\cdot|_t$. This is no coincidence.

⁵Technically these things depend on $|\cdot|$ and not just K but it is customary to omit $|\cdot|$ from the notation. Hopefully some reassurance comes from the fact that only the associated place of $|\cdot|$ matters.

⁶Geometrically, we think of the 1-dimensional object \mathcal{O}_K as a curve and π_K as a choice of (affine) local coordinate.

⁷The discrete valuation v_K can be more intrinsically defined in terms of \mathfrak{m}_K itself. One first defines v_K on \mathcal{O}_K and then extends to K via $x/y \mapsto v_K(x) - v_K(y)$.

 $^{^{8}}$ In particular, K is a Hausdorff space such that every point has a compact neighborhood).

⁹In line with an earlier comment, v_K depends on the chosen place associated to K.

Definition 5. Let K be a field and $v \in S_K$. Given $|\cdot|$ representing v, define the **completion** K_v of K at v to be the (Cauchy) completion of K with respect to the metric topology induced by $|\cdot|$. This is a well-defined object since choosing a different representative for v changes K_v by a unique isomorphism.¹⁰

Corollary 6. Let K be a global field (i.e., a finite extension of either \mathbb{Q} or $\mathbb{F}_p(t)$). Then, the completions of K correspond precisely with the local fields – i.e., every completion of a global field is a local field and every local field arises as a completion of a global field.

This explains one way in which local fields are "local." We could say a lot more about the connections between local and global fields, but let's leave it at that for right now.

Proposition 7. Let $(K, |\cdot|)$ be a compete nonarchimedean valued field and L a finite extension field of K. Then, $|\cdot|$ admits a unique extension to L via the formula

$$|\alpha| := |N_{L/K}(\alpha)|^{1/[L:K]},$$

where $N_{L/K}(\alpha)$ is the norm of $\alpha \in L$ with respect to K.¹¹

Note that, given $\alpha \in L$ as above, we have a tower of field extensions $K \subseteq K(\alpha) \subseteq L$ and so $N_{L/K} = N_{K(\alpha)/K} \circ N_{L/K(\alpha)}$ and $[L:K] = [L:K(\alpha)][K(\alpha):K]$. Hence, the extension of $|\cdot|$ to L can be defined relative to each element of L. We obtain the following result.

Corollary 8. $(K, |\cdot|)$ be a compete nonarchimedean valued field and L an algebraic extension field of K. Then, $|\cdot|$ admits a unique extension to L via the formula

$$|\alpha| := |N_{K(\alpha)/K}(\alpha)|^{1/[K(\alpha):K]}.$$

In particular, we can extend $|\cdot|$ all the way to \overline{K} .

Remark 9. The extended absolute value $|\cdot|: \overline{K} \to \mathbb{R}^{\geq 0}$ is nonarchimedean and so we can define a (rank 1) valuation

$$v_c: \overline{K} \to \mathbb{R} \cup \{\infty\}, \qquad \alpha \mapsto \frac{\log |\alpha|}{\log c},$$

where 0 < c < 1. This is, however, not a discrete valuation – i.e., $v(\overline{K}^{\times})$ is not a discrete subgroup of \mathbb{R}^{13} .

Theorem 10 (Ax-Sen-Tate). Let K be a complete nonarchimedean valued field. Choose compatible separable and algebraic closures K^{sep} and \overline{K} , and let be \mathbb{C}_K the completion of \overline{K} . Then, \mathbb{C}_K is

 $^{^{10}}$ In fact, K_v has a universal property that gives us this result for free. Note also that we can describe K_v in a more algebraic way using the process of adic completion.

¹¹Recall that that $N_{L/K}(\alpha)$ is by definition the determinant of the K-linear (left) multiplication map $\mu_{\alpha}: L \to L$. This can also be expressed in terms of the Galois conjugates of α in the case that L/K is separable.

¹²For the future, we will tacitly assume that \overline{K} is equipped with this extended absolute value.

¹³An easy way to see this is to note that $p \in K$ and then consider all the rational powers of p (which must be contained in \overline{K}).

algebraically closed, K^{sep} is dense in \mathbb{C}_K , and G_K acts continuous on \mathbb{C}_K identifying G_K with $\operatorname{Aut_{cont}}(\mathbb{C}_K/K)$.¹⁴

Definition 11. Let L/K be a finite extension of nonarchimedean local fields with uniformizers π_K and π_L . To this we associate the **ramification index** $e(L/K) := v_L(\pi_K)$ and **inertia degree** $f(L/K) := [k_L : k_K]$. We say that L/K is **unramified** if e(L/K) = 1 and **totally ramified** if e(L/K) is as large as possible – i.e., e(L/K) = [L : K] since e(L/K)f(L/K) = [L : K].¹⁵

The extension L/K is unramified if and only if \mathfrak{m}_K is inert in \mathcal{O}_L – i.e., $\mathfrak{m}_K \mathcal{O}_L = \mathfrak{m}_L$. Equivalently, any uniformizer for K is a uniformizer for L.

Example 12.

- (1) Let $L := \mathbb{Q}_p[x]/(x^e p) \cong \mathbb{Q}_p(p^{1/e})$. Then, L/\mathbb{Q}_p is totally ramified of degree e.
- (2) Let $L := \mathbb{Q}_p(\zeta_{p^n})$. Then, L/\mathbb{Q}_p is totally ramified of degree $\phi(p^n) = p^{n-1}(p-1)$. A uniformizer π_L is given by $1 \zeta_{p^n}$.
- (3) Let $L := \mathbb{Q}_p(\zeta_{p^n-1})$. Then, L/\mathbb{Q}_p is unramified of degree n.

The following result illustrates one way in which unramified extensions are nice.

Theorem 13. Let K be a nonarchimedean local field. The correspondence $L \mapsto k_L$ induces an equivalence of categories between the category of finite unramified extensions of K and the category of finite extensions of k_K .¹⁶ This correspondence preserves, among other things, composita, Galois groups, and splitting fields of polynomials admitting lifts to $\mathbb{Z}[x]$.

This has several important consequences which we record here.

- K has a unique (up to isomorphism) unramified extension K_n of degree n. This corresponds to the degree n extension of k_K , which is obtained as the splitting field of $x^{p^n} x$ over k_K . Hence, $K_n = K(\zeta_{p^n-1})$ for $\zeta_{p^n-1} \in K^{\text{sep}}$.
- The compositum of unramified extensions of K is unramified.¹⁷ Hence, K has a maximal unramified extension K^{unr} given by

$$K^{\mathrm{unr}} = \bigcup_{n \ge 1} K_n = \bigcup_{\gcd(a,p)=1} K(\zeta_a)$$

corresponding to the algebraic closure $\overline{k_K}$.

We can also give a nice characterization of totally ramified extensions of K.

Proposition 14. Let L/K be a finite extension of nonarchimedean local fields.

¹⁴Part of this follows from a result called Krasner's lemma. The notation $\operatorname{Aut_{cont}}(\mathbb{C}_K/K)$ denotes continuous automorphisms of \mathbb{C}_K that fix K.

¹⁵Note that the extension k_L/k_K of finite residue fields is always separable and so this notion of being unramified agrees with more general notions.

¹⁶One of the key results used in establishing this correspondence is Hensel's lemma.

 $^{^{17}}$ In fact, unramified extensions of K form a so-called distinguished class.

- (a) Suppose L/K is totally ramified of degree n. Then, the minimal polynomial over K of any uniformizer π_L is Eisenstein at \mathfrak{m}_K .¹⁸
- (b) Conversely, suppose that $\alpha \in \overline{K}$ is a root of an Eisenstein polynomial over K of degree n. Then, $K(\alpha)/K$ is totally ramified of degree n and α is a uniformizer for $K(\alpha)$.

Definition 15. Let L/K be a finite extension of nonarchimedean local fields. Then, L/K is **tamely ramified** if e(L/K) is coprime to p and **wildly ramified** otherwise. We say that L/K is **totally tamely ramified** if it is both totally ramified and tamely ramified. Similarly, L/K is **totally wildly ramified** if it is both totally ramified and wildly ramified.

Note that K admits a maximal totally tamely ramified extension which we will denote K^{tam} . The following gives one reason why totally tamely ramified extensions are nice.

Proposition 16. Let L/K be totally tamely ramified of degree n. Then, there exists a uniformizer $\pi_K \in K$ and an nth root $\pi_K^{1/n} \in L$ such that $L = K(\pi_K^{1/n})$.

It follows that $K^{\mathrm{tam}} = \bigcup_{n \geq 1} K(\pi_K^{1/n})$, which should be understood as containing all nth roots of all uniformizers for K. In particular, K^{tam} contains all nth roots of unity and so contains K^{unr} . Explicitly, the extension $K^{\mathrm{tam}}/K^{\mathrm{unr}}$ is generated by $\pi_K^{1/n}$ for $\gcd(p,n)=1$.

3 Galois Theory of Local Fields

Let K be a nonarchimedean local field. Our ultimate goal is to understand the absolute Galois group $G_K := \operatorname{Gal}(K^{\operatorname{sep}}/K)$. 19 Let $q := |k_K|$. As above we have maximal unramified and totally tamely ramified extensions K^{unr} and K^{tam} . Let L/K be a finite Galois extension of nonarchimedean local fields with $G := \operatorname{Gal}(L/K)$. We can understand a lot about L/K by breaking G into more manageable pieces.

Definition 17. The (lower)²⁰ ramification series of L/K is

$$G = G_{-1} \supseteq G_0 \supseteq G_1 \supseteq \cdots$$

with $G_i := \{ \sigma \in G : v_L(\sigma(x) - x) \ge i + 1 \text{ for every } x \in \mathcal{O}_L \}.^{21}$ Of these ramification groups, $I_{L/K} := G_0 \text{ is called the inertia subgroup and } P_{L/K} := G_1 \text{ is called the wild inertia subgroup (we will see where these names come from in a moment).}$

The valuation v_L is G-invariant and so the action of G preserves \mathfrak{m}_L .²² It follows that G_i consists of $\sigma \in G$ acting trivially on $\mathcal{O}_L/\mathfrak{m}_L^{i+1}$. We conclude that $G_i \subseteq G$ and $G_i = 1$ for $i \gg 0$. There is a natural short exact sequence

¹⁸One way to see this is through the theory of Newton polygons.

¹⁹Putting K^{sep} instead of \overline{K} makes a difference in the case that K has positive characteristic. Note that Galois extensions are required to be separable by definition.

²⁰There is a somewhat more complicated theory of upper ramification series which we will not comment on in these notes.

²¹Using Hensel's lemma one can find $\alpha \in L$ such that $\mathcal{O}_L = \mathcal{O}_K[\alpha]$. Then, $G_i = \{\sigma \in G : v_L(\sigma(\alpha) - \alpha) \ge i + 1\}$.

²²The fact that v_L is G-invariant follows from the fact that the absolute value on L (which is closely linked to v_L) is built from the absolute value on K and $N_{L/K}$ (which is G-invariant).

$$1 \longrightarrow G_0 \longrightarrow G \longrightarrow \operatorname{Gal}(k_L/k_K) \longrightarrow 1$$

Remark 18. At the same time, we have

$$G_0 \to k_L^{\times}, \qquad \sigma \mapsto \frac{\sigma(\pi_L)}{\pi_L}$$

inducing an injection $G_0/G_1 \hookrightarrow k_L^{\times}$ (hence $G_1 \leq G_0$) and

$$G_i \to k_L, \qquad \sigma \mapsto \frac{\sigma(\pi_L) - \pi_L}{\pi_L^{i+1}}$$

inducing an injection $G_i/G_{i+1} \hookrightarrow k_L$ (hence $G_{i+1} \subseteq G_i$, where $i \ge 1$).

Let L_{unr} and L_{tam} respectively denote the maximal unramified and tamely ramified subextensions of L/K. L_{unr}/K is Galois with $\text{Gal}(L_{\text{unr}}/K) \cong \text{Gal}(k_L/k_K)$. Since $G/G_0 \cong \text{Gal}(k_L/k_K)$ it follows that $L_{\text{unr}} = L^{G_0}$. A similar argument shows that $L_{\text{tam}} = G_1$ with $\text{Gal}(L_{\text{tam}}/K) \cong G/G_1$ (which has order f(L/K)). For this reason the notation $K_0 := L_{\text{unr}}$ and $K_1 := L_{\text{tam}}$ is common (more generally we have $K_i := L^{G_i}$).

Corollary 19.

- (a) $|I_{L/K}| = e(L/K)$. In particular, L/K is unramified if and only if $I_{L/K} = 1$.
- (b) Write $e(L/K) = q^r m$ with gcd(q, r) = 1. Then, $|P_{L/K}|$ divides $|k_L|$ with order p^r . In particular, L/K is tamely ramified if and only if $P_{L/K} = 1$.

Pictorially, the extension L/K factors as

$$L$$
 $G_1 \left| ext{totally wildly ramified}
ight.$
 $L_{ ext{tam}} = K_1$
 $G_0/G_1 \left| ext{totally tamely ramified}
ight.$
 $L_{ ext{unr}} = K_0$
 $G/G_0 \left| ext{unramified}
ight.$

Motivated by this diagram, we sometimes call G_0/G_1 the **tame quotient** of L/K. Suppose now that L/K is unramified. Then, there is a natural isomorphism $G \cong \operatorname{Gal}(k_L/k_K)$ and so G is cyclic generated by the **Frobenius element** $\operatorname{Fr}_{L/K}$ corresponding to the canonical generator of $\operatorname{Gal}(k_L/k_K)$ and characterized by $\operatorname{Fr}_{L/K}(x) \equiv x^q \pmod{\pi_K}$ for every $x \in \mathcal{O}_L$ (where we have identified π_K as a uniformizer of L). Continuing in this manner lets us describe the Galois group $G_K^{\text{unr}} := \operatorname{Gal}(K^{\text{unr}}/K)$. Namely, $G_K^{\text{unr}} \cong G_{k_K} \cong \widehat{\mathbb{Z}}$ is topologically cyclic with 1 corresponding to Fr_K characterized by $\operatorname{Fr}_K(x) \equiv x^q \pmod{\pi_K}$ for every $x \in \mathcal{O}_{K^{\text{unr}}}$ or, equivalently, $\operatorname{Fr}_K|_L = \operatorname{Fr}_{L/K}$ for every finite unramified extension L/K.²³ What about $G_K^{\text{tam}} := \operatorname{Gal}(K^{\text{tam}}/K)$? We have a natural short exact sequence

²³It's not hard to see from this that $\mathcal{O}_{K^{\text{unr}}}$ is a DVR with perfect residue field $\overline{k_K}$. In case it isn't clear, a topological group is topologically cyclic if it has a dense cyclic subgroup.

$$1 \longrightarrow \operatorname{Gal}(K^{\operatorname{tam}}/K^{\operatorname{unr}}) \longrightarrow \operatorname{Gal}(K^{\operatorname{tam}}/K) \longrightarrow \operatorname{Gal}(K^{\operatorname{unr}}/K) \longrightarrow 1$$

Recalling that $K^{\text{tam}} = \bigcup_{\gcd(p,n)=1} K^{\text{unr}}(\pi_K^{1/n})$, we have

$$\operatorname{Gal}(K^{\operatorname{tam}}/K^{\operatorname{unr}}) \cong \prod_{\ell \neq p} \mathbb{Z}_{\ell}$$

with topological generator τ_K .²⁴ Let $\widehat{Fr}_K \in \operatorname{Gal}(K^{\operatorname{tam}}/K)$ be a lift of $\operatorname{Fr}_K \in \operatorname{Gal}(K^{\operatorname{unr}}/K)$.

Theorem 20 (Iwasawa). $Gal(K^{tam}/K)$ is topologically generated by \widehat{Fr}_K and τ_K with sole relation $\widehat{Fr}_K \tau_K \widehat{Fr}_K = \tau_K^q$.

Analogous to before we have a factorization

with I_K the absolute inertia group of K and P_K the absolute wild inertia group of K. When K has positive characteristic G_K can be described relatively succinctly in terms of P_K and G_K^{tam} . When K has characteristic 0 things are much more difficult, though a result of Jannsen and Wingberg does give a relatively small set of generators and relations in the p-adic case for $p \neq 2$.

Remark 21. It's worth saying a little more about extensions and valuations. Let L/K be a degree n extension of nonarchimedean local fields. Choose valuations v_L, v_K and uniformizers π_L, π_K with $v_L(\pi_L) = 1 = v_K(\pi_K)$. Fix 0 < c < 1. We obtain

$$|\cdot|_{K,c}: K \to \mathbb{R}^{\geq 0}, \qquad x \mapsto c^{v_K(x)}$$

and similarly get $|\cdot|_{L,c}$. Then, $|\pi_K|_{K,c} = c = |\pi_L|_{L,c}$. Now, consider the unique extension $|\cdot|_c$ of $|\cdot|_{K,c}$ to L and write $\pi_L = u\pi_K^e$ for $u \in \mathcal{O}_L^{\times}$. Then,

$$|\pi_L|_c = |N_{L/K}(\pi_L)|_{K,c}^{1/n} = |N_{L/K}(u\pi_K^e)|_{K,c}^{1/n} = |N_{L/K}(\pi_K)|_{K,c}^{e/n} = c^e$$

and so $|\cdot|_c$ and $|\cdot|_{L,c}$ don't agree. What this does show is that $|\cdot|_{L,c}^e = |\cdot|_c$.

4 Differents

Let L/K be a finite extension of nonarchimedean local fields. Then, L/K is separable if and only if the trace pairing

$$t_{L/K}: L \times L \to K, \qquad (x,y) \mapsto \operatorname{tr}_{L/K}(xy)$$

²⁴Note that $\widehat{\mathbb{Z}} \cong \prod_{\ell} \mathbb{Z}_{\ell}$.

is nondegenerate. Assume L/K is separable. Then,

$$\mathcal{O}'_L := \{ x \in L : t_{L/K}(x, y) \in \mathcal{O}_K \text{ for every } y \in \mathcal{O}_L \}$$

is a fractional ideal of \mathcal{O}_L (i.e., $\mathcal{O}'_L \in \mathcal{I}_L$). Its inverse

$$\mathcal{D}_{L/K} := (\mathcal{O}'_L)^{-1} = \{ x \in L : x \mathcal{O}'_L \subseteq \mathcal{O}_L \}$$

is called the **different** of L/K and is an ideal of \mathcal{O}_L . The different is well behaved with respect to extensions – given a tower $K \subseteq L \subseteq M$, we have

$$\mathcal{D}_{M/K} = \mathcal{D}_{M/L} \mathcal{D}_{L/K}.$$

For convenience let $v_L(\mathcal{D}_{L/K}) := \inf\{v_L(x) : x \in \mathcal{D}_{L/K}\}$. The utility of the different comes from its ability to capture ramification.

Proposition 22. Let L/K be a finite separable extension of nonarchimedean local fields with ramification index e.

- (i) $\mathcal{O}_L = \mathcal{O}_K[\alpha]$ for some $\alpha \in L$ and $\mathcal{D}_{L/K} = m'_{\alpha}(\alpha)$ for $m_{\alpha}(x)$ the minimal polynomial of α over K.
- (ii) $\mathcal{D}_{L/K} = \mathcal{O}_L$ if and only if L/K is unramified.
- (iii) $v_L(\mathcal{D}_{L/K}) \leq e 1$.
- (iv) $v_L(\mathcal{D}_{L/K}) = e 1$ if and only if L/K is tamely ramified.

In terms of ramification groups, we have

$$v_L(\mathcal{D}_{L/K}) = \sum_{i>0} (|G_i| - 1).$$

5 Local-to-Global

Fix a number field K. Let L be a finite Galois extension field of K and \mathfrak{q} a prime of L lying above a prime \mathfrak{p} of K (i.e., $\mathfrak{p} = \mathfrak{q} \cap K$). Denote the associated residue fields by $k_{\mathfrak{q}} := \mathcal{O}_L/\mathfrak{q}$ and $k_{\mathfrak{p}} := \mathcal{O}_K/\mathfrak{p}$. Let $D_{\mathfrak{q}}$ and $I_{\mathfrak{q}}$ denote the associated decomposition and inertia group.²⁵ We have a natural short exact sequence

$$1 \longrightarrow I_{\mathfrak{q}} \longrightarrow D_{\mathfrak{q}} \longrightarrow \operatorname{Gal}(k_{\mathfrak{q}}/k_{\mathfrak{p}}) \longrightarrow 1$$

which is in fact isomorphic to the short exact sequence

$$1 \longrightarrow I_{L_{\mathfrak{q}}/K_{\mathfrak{p}}} \longrightarrow D_{L_{\mathfrak{q}}/K_{\mathfrak{p}}} \longrightarrow \operatorname{Gal}(k_{L_{\mathfrak{q}}}/k_{K_{\mathfrak{p}}}) \longrightarrow 1$$

in the sense that we have a commutative diagram

²⁵Recall that the former is defined to be the stabilizer of \mathfrak{q} under the action of $\operatorname{Gal}(L/K)$.

This follows from the fact that $\sigma \in D_{\mathfrak{q}}$ induces a commutative diagram

