

Semi-automatic Generation of Active Ontologies from Web Forms

Martin Blersch, Mathias Landhäußer, and Thomas Mayer

Institute for Program Structures and Data Organization (IPD) - Programming Systems, Chair Tichy

EASIER: A Framework to Connect Intelligent Assistants with Arbitrary Web Forms

- Generates 65% of the software automatically
- Correctly answers 70% of the queries with the generated software

Active Ontologies / Active Semantic Network

City(Gothenburg), Departure(Monday), Arrival(Tuesday)

- Combine the modelling of domain knowledge with an execution environment
- Different node types
 - Leaf nodes
 - Non-terminal nodes
- Bottom-up processing of utterances

"I need a hotel room In <u>Gothenburg</u> from <u>Monday</u> to <u>Tuesday</u>."

- Supporting new features requires extending the ontologies or even building new ones
- → Manual & labor-intensive steps

EASIER – Big Picture

Related Work

WISE: Automatic Integrator for Web Search Interfaces (He et al.)

Automatically Creating Active Ontologies: Overview

Form A			
Origin*			
Destination*			
Departure*			
Food	Regular \blacktriangledown		
	Vegan		
	Halal		

Automatically Creating Active Ontologies: Grouping Related Form Elements

- Grouping similar form elements
 - Uses linguistic and structural similarities
 - Hierarchical Clustering of similar form elements
- Generation of meta form elements (global objects)
 - Merge form elements

Automatically Creating Active Ontologies: Deriving the Ontology

- One Active Ontology for each meta form (i.e., one per category)
 - Value range unclear → ask developer
 - Select AO node type

Evaluation

- Three evaluation questions
 - How good is the field matching?
 - What is the degree of automation?
 - Are the generated AOs capable to answer user queries?

- Data Source
 - 58 web forms from the UIUC Web Integration Repository
 - Three categories: airfare, automobile, and book search
- Queries

- 61 queries for the airfare domain
- 40 subjects (20 of them are native English speaker)

Evaluation: Field Matching

Category	Precision	Recall	F _{0,5} Measure
Airfare	90.6	21.0	54.4
Automobile	90.6	37.3	70.5
Book	98.4	46.4	80.4

- Highest precision for the book search domain
- Recall of clustering must be improved

Evaluation: Degree of Automation

	Nodes			
Category	Total	Manual	Autom.	Autom. [%]
Airfare	126	29	97	77%
Automobile	41	23	18	44%
Book	49	24	25	51%
Total	216	76	140	65%

- Automatically generated 77% of the elements needed for the airfare domain
- Needed the help of developers in only 35% of the cases

Evaluation: Query Answering

- How many query elements were correctly identified by the sensor nodes?
 - 61 queries from airfare domain
 - E.g. "Book a flight from Frankfurt to Paris."
 - Post-processing of given values
 - Expected: origin, destination, departure
 - Ask user for missing information
 - Results
 - Recall: 75%
 - Queries Completely recognized
 - Only mandatory information: 77.4%
 - Mandatory and optional information: 35.5%

Evaluation: Query Answering (2)

Field	Correct	Wrong	Missing
Origin	191	9	0
Destination	185	15	0
Departure	124	24	52
Total	500	48	52

- How many queries were correctly identified by the sensor nodes?
 - 26 complete queries (out of 61 queries)
 - 10 analyzed
 - 20 web forms (airfare domain)

Results

- 7 queries were recognized correctly
- 2 were not recognized (EASIER asked the user)
- 1 was recognized incorrectly

Conclusion and Future Work

- EASIER automates the process of building AOs
 - Automatically generates 65% of the AO's sensor nodes
 - High precision in field matching (90.6 98.4%)
- Queries
 - Correctly answers 70% of the queries
 - Asks for missing information
- Future Work
 - Improve field matching performance (HTML5, ARIA, ...)
 - Integrate complex field mappings
 - Better domain knowlege (Wikipedia, Cyc)

References

- Berlanga, Rafael, Ernesto Jimenez-Ruiz, Victoria Nebot, und Ismael Sanz. "Faeton: Form analysis and extraction tool for ontology construction". *International Journal of Computer Applications in Technology* 39, Nr. 4 (2010): 224–33.
- Guzzoni, Didier. "Active: A Unified Platform for Building Intelligent Applications". PhD Thesis, École Polytechnique Fédérale De Lausanne, 2008.

http://biblion.epfl.ch/EPFL/theses/2008/3990/3990_abs.pdf.

He, Hai, Weiyi Meng, Clement Yu, und Zonghuan Wu. "Automatic Integration of Web Search Interfaces with WISE-Integrator". *The VLDB Journal* 13, Nr. 3 (1. September 2004): 256–73. https://doi.org/10.1007/s00778-004-0126-4.

References

- He, Hai, Weiyi Meng, Clement Yu, und Zonghuan Wu. "Wise-Integrator: An automatic integrator of web search interfaces for e-commerce". In Proceedings of the 29th international conference on Very large data bases-Volume 29, 357–368. VLDB Endowment, 2003. http://dl.acm.org/citation.cfm?id=1315483.
- Madhavan, Jayant, Philip A. Bernstein, und Erhard Rahm. "Generic schema matching with cupid". Technical Report. Microsoft Research, August 2001. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2001-58.pdf.
- Roitman, Haggai, und Avigdor Gal. "Ontobuilder: Fully automatic extraction and consolidation of ontologies from web sources using sequence semantics". In *Current Trends in Database Technology--EDBT 2006*, 573–76. Springer, 2006.

References

Wu, Wensheng, Clement Yu, AnHai Doan, und Weiyi Meng. "An Interactive Clustering-based Approach to Integrating Source Query Interfaces on the Deep Web". In *Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data*, 95–106. SIGMOD '04. Paris, France: ACM, 2004. https://doi.org/10.1145/1007568.1007582.

BACKUP

The EASIER Active Server Architecture

Inspired by [Guz08]