Bootstrap aggregated sparse FPCA for classification

Hyunsung Kim January 20, 2020

Department of Statistics Chung-Ang University

Simulations with 2 datasets

- The growth data
 - 93 observations(60 training set, 33 test set)
 - Dense data ⇒ randomly sparsify with 2~6 observations
- The bone mineral density
 - 160 observations(100 training set and 60 test set)
 - On the robust bagging, 60 training set, 40 validation set and 60 test set
 - Sparse data

Simulation 1

Figure 1: The growth data

Table 1: The accuracy of classifiers

	Logistic	SVM	SVM	SVM				Naive
Method	Regression	(Linear)	(Gaussian)	(Sigmoid)	KNN	LDA	QDA	Bayes
Single	0.758	0.727	0.727	0.727	0.606	0.727	0.697	0.727
Majority	0.818	0.788	0.758	0.818	0.576	0.818	0.758	0.758

Simulation 2

Figure 2: The bone mineral density data

Table 2: The accuracy of classifiers with each tuned hyperparameters

	Logistic	SVM	SVM	SVM				Naive
Method	Regression	(Linear)	(Gaussian)	(Sigmoid)	KNN	LDA	QDA	Bayes
Single	0.767	0.717	0.717	0.733	1.00	0.767	0.750	0.767
Majority	0.750	0.683	0.567	0.717	1.00	0.750	0.717	0.717
OLS	0.717	0.700	0.533	0.583	0.00	0.233	0.417	0.383
Logit	0.517	0.750	0.567	0.683	1.00	0.433	0.733	0.667

Table 3: The accuracy of classifiers with overall tuned hyperparameters

	Logistic	SVM	SVM	SVM				Naive
Method	Regression	(Linear)	(Gaussian)	(Sigmoid)	KNN	LDA	QDA	Bayes
Single	0.767	0.717	0.717	0.733	1.00	0.767	0.750	0.767
Majority	0.733	0.700	0.700	0.683	1.00	0.717	0.733	0.733
OLS	0.650	0.717	0.617	0.700	1.00	0.650	0.567	0.533
Logit	0.617	0.367	0.700	0.600	1.00	0.600	0.583	0.500
Ridge-logit	0.667	0.650	0.667	0.667	1.00	0.667	0.733	0.700
OOB error	0.733	0.700	0.700	0.683	1.00	0.717	0.733	0.733

Table 4: The accuracy of classifiers with overall tuned hyperparameters and random subspace method

	Logistic	SVM	SVM	SVM				Naive
Method	Regression	(Linear)	(Gaussian)	(Sigmoid)	KNN	LDA	QDA	Bayes
Single	0.767	0.717	0.717	0.733	1.00	0.767	0.750	0.767
Majority	0.717	0.650	0.650	0.650	1.00	0.700	0.750	0.717
OOB error	0.717	0.667	0.683	0.683	1.00	0.717	0.717	0.750

Table 5: The accuracy of classifiers with overall tuned hyperparameters and BIC

	Logistic	SVM	SVM	SVM				Naive
Method	Regression	(Linear)	(Gaussian)	(Sigmoid)	KNN	LDA	QDA	Bayes
Single	0.767	0.717	0.717	0.733	1.00	0.767	0.750	0.767
Majority	0.717	0.667	0.700	0.700	1.00	0.717	0.717	0.767
OOB error	0.733	0.667	0.667	0.683	1.00	0.733	0.717	0.717

Simulation results of robust bagging

Table 6: The accuracy of classifiers with each tuned hyperparameters

	Logistic	SVM	SVM	SVM				Naive
Method	Regression	(Linear)	(Gaussian)	(Sigmoid)	KNN	LDA	QDA	Bayes
Single	0.733	0.767	0.700	0.567	1.00	0.783	0.667	0.750
Majority	0.800	0.767	0.650	0.767	1.00	0.783	0.733	0.750
OOB error	0.800	0.767	0.650	0.767	1.00	0.783	0.733	0.750
Robust	0.733	0.733	NA	0.750	NA	0.733	0.733	0.717

Simulation results of robust bagging

Table 7: The accuracy of classifiers with overall tuned hyperparameters

	Logistic	SVM	SVM	SVM				Naive
Method	Regression	(Linear)	(Gaussian)	(Sigmoid)	KNN	LDA	QDA	Bayes
Single	0.733	0.767	0.700	0.567	1.00	0.783	0.667	0.750
Majority	0.817	0.767	0.733	0.767	1.00	0.783	0.733	0.767
OOB error	0.817	0.750	0.733	0.800	1.00	0.817	0.750	0.750
Robust	0.750	0.750	0.733	0.783	NA	0.750	0.783	0.733