Contrôle M2 Datascience Optimisation avancée 06 mars 2017

Course book and written notes are authorized.
All electronic devices are prohibited.

The sets \mathcal{X} and \mathcal{Y} respectively represent the Euclidean spaces \mathbb{R}^d and \mathbb{R}^m respectively, where d, m are positive integers. The sets $\Gamma_0(\mathcal{X})$ represents the set of proper, lower semi-continuous and convex functions on $\mathcal{X} \to (-\infty, +\infty]$. The spectral norm of a linear operator $A: \mathcal{X} \to \mathcal{Y}$ is defined by

$$|||A||| = \sup_{x \in \mathcal{X}, x \neq 0} \frac{||Ax||}{||x||}.$$

One has $||A|| = ||A^T||$. We recall the Moreau identity for every $f \in \Gamma_0(\mathcal{X})$, $x \in \mathcal{X}$ and $\tau > 0$:

 $\operatorname{prox}_{\tau f}(x) + \tau \operatorname{prox}_{\tau^{-1} f^*} \left(\frac{x}{\tau}\right) = x.$

Exercice 1. Consider the problem

$$\min_{x \in \mathcal{X}} f(x) + g(Ax)$$
, where

- $f \in \Gamma_0(\mathcal{X})$ is μ -strongly convex, for some $\mu > 0$;
- $-g \in \Gamma_0(\mathcal{Y});$
- $A: \mathcal{X} \to \mathcal{Y}$ is a linear operator.

We recall that since f is μ -strongly convex, then f^* is μ^{-1} -smooth *i.e.*, ∇f^* exists and is μ^{-1} -lipschitz continuous.

- 1. Recall the Lagrangian function and the expression of the dual problem. We assume from now on that the Lagrangian function has a saddle point.
- 2. Prove that the mapping $F: \lambda \mapsto f^*(-A^T\lambda)$ is L-smooth, for $L = \mu^{-1} |||A|||^2$.
- 3. Consider the iterates

$$\lambda^{k+1} = \operatorname{prox}_{\gamma g^*} \left(\lambda^k - \gamma \nabla F(\lambda^k) \right) .$$

Provide a sufficient condition under which the iterates converge. To which point does the algorithm converge?

4. Prove that the algorithm rewrites

$$\lambda^{k+1} = \operatorname{prox}_{\gamma q^*} \left(\lambda^k + \gamma A x^{k+1} \right) .$$

where $x^{k+1} = \arg\min_{x \in \mathcal{X}} f(x) + \langle \lambda^k, Ax \rangle$

5. Prove that the algorithm rewrites

$$\begin{split} x^{k+1} &= & \arg\min_{x \in \mathcal{X}} f(x) + \langle \lambda^k, Ax \rangle \ , \\ z^{k+1} &= & \arg\min_{z \in \mathcal{Y}} g(z) - \langle \lambda^k, z \rangle + \frac{\gamma}{2} \left\| z - Ax^{k+1} \right\|^2 \ , \\ \lambda^{k+1} &= & \lambda^k + \gamma (Ax^{k+1} - z^{k+1}) \ . \end{split}$$

- 6. Compare with the ADMM.
- 7. We consider the case where $f(x) = ||x b||^2$, where b is some fixed vector, and g is the indicator function of a non-empty closed convex set \mathcal{C} . Explicit the algorithm as a function of b, A and the projector onto \mathcal{C} .

Exercice 2. Let A be a $n \times p$ matrix and let b be a $n \times 1$ vector. Set $\eta > 0$. Consider the problem :

$$\min_{x \in \mathbb{R}^p} \eta \|x\|_1 + \frac{1}{2} \|Ax - b\|^2 \tag{1}$$

where $||x||_1 = \sum_{i=1}^p |x_i|$ if x_1, \dots, x_p represent the components of x and where ||.|| is the Euclidean norm.

1. What name is often given to Problem (1)?

The above problem rewrites:

$$\min_{\substack{x \in \mathbb{R}^p, z \in \mathbb{R}^n \\ Ax = z}} \eta \|x\|_1 + \frac{1}{2} \|z - b\|^2.$$
 (2)

- 2. Write the Lagrangian $L((x,z);\lambda)$ associated to Problem (2).
- 3. Set $f(x) = ||x||_1$. Prove that the saddle point $((x^*, z^*); \lambda^*)$ of the Lagrangian are characterized by :

$$0 \in \partial f(x^*) + \frac{A^T \lambda^*}{\eta}$$
$$\lambda^* = Ax^* - b$$
$$z^* = Ax^*.$$

We remind the reader that $\partial f(x) = \operatorname{sign}(x_1) \times \cdots \times \operatorname{sign}(x_n)$. This means that an element u satisfies $u \in \partial f(x)$ if and only if for every $i = 1, \ldots, p, u_i \in \operatorname{sign}(x_i)$. We note $A = (a_1, \ldots, a_p)$ where a_1, \ldots, a_p are the columns of the matrix A.

4. Let $((x^*, z^*); \lambda^*)$ be a saddle point of the Lagrangian. Using Question 3, show that for every $i = 1, \ldots, p$,

$$|a_i^T \lambda^*| < \eta \implies x_i^* = 0$$
.

- 5. Set $\eta_0 = \max_{i=1...p} |a_i^T b|$. Verify that ((0,0); -b) is a saddle point of the Lagrangian when $\eta = \eta_0$.
- 6. When $\eta = \eta_0$, provide explicitly the expression of a minimizer of (1).

We now assume that $\eta < \eta_0$. We denote by Φ the dual function i.e., $\Phi(\lambda) = \inf_{x,z} L((x,z); \lambda)$. We define

$$G(\lambda) = -\frac{\|\lambda + b\|^2}{2} + \frac{\|b\|^2}{2} \,.$$

7. Prove that

$$\Phi(\lambda) = \begin{cases} G(\lambda) & \text{if } \forall i, |a_i^T \lambda| \le \eta \\ -\infty & \text{otherwise.} \end{cases}$$
 (3)

- 8. Define $\gamma = \Phi(-\frac{\eta}{\eta_0}b)$. Prove that $\gamma > -\infty$. Express γ as a function of η , η_0 and b.
- 9. Justify that any dual solution λ^* belongs to the set

$$S = \{ \lambda \in \mathbb{R}^n : G(\lambda) \ge \gamma \}.$$

From now on, we set a fixed index $i \in \{1, ..., p\}$. We define $T_i = \max_{\lambda \in S} |a_i^T \lambda|$.

10. Using one of the previous questions, prove that if $T_i < \eta$, then every solution x to (1) satisfies $x_i = 0$.

A direct derivation shows that

$$T_i = |a_i^T b| + ||a_i|| \sqrt{||b||^2 - 2\gamma}.$$
(4)

- 11. Before solving numerically (1), an engineer decides, for every i, to compare the quantity (4) to the threshold η . What practical interest this test might have?
- 12. **[Bonus]** Prove equality (4).

 Hint: write that $T_i = \max(P, Q)$ where $P = \max_{\lambda \in S} a_i^T \lambda$ and $Q = \max_{\lambda \in S} -a_i^T \lambda$, then calculate P and Q.