```
# Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, classification_report
file_path ='/content/sample_data/project (2).csv'
df = pd.read_csv(file_path)
# Explore the dataset (optional)
print(df.head())
# Separate features (X) and target variable (y)
X = df.drop('Species', axis=1) # Assuming 'species' is the target variable
y = df['Species']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Choose a machine learning algorithm (Decision Trees in this example)
model = DecisionTreeClassifier(random_state=42)
# Train the model
model.fit(X_train, y_train)
# Make predictions on the test set
predictions = model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, predictions)
precision = precision_score(y_test, predictions, average='weighted')
recall = recall_score(y_test, predictions, average='weighted')
# Additional metrics and detailed report
classification_report_result = classification_report(y_test, predictions)
# Print results
print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
print("Classification Report:\n", classification_report_result)
        Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                         Species
                                                          0.2 Iris-setosa
     0
        1
                     5.1
                                   3.5
                                                  1.4
     1
                     4.9
                                   3.0
                                                  1.4
                                                                0.2 Iris-setosa
     2
        3
                     4.7
                                   3.2
                                                  1.3
                                                                0.2 Iris-setosa
     3
        4
                                                 1.5
                                                               0.2 Iris-setosa
                     4.6
                                   3.1
                      5.0
                                   3.6
                                                  1.4
                                                                0.2 Iris-setosa
     Accuracy: 1.00
     Precision: 1.00
     Recall: 1.00
     Classification Report:
                      precision
                                   recall f1-score support
        Iris-setosa
                          1.00
                                    1.00
                                              1.00
                                                          10
     Iris-versicolor
                          1.00
                                    1.00
                                              1.00
                                                           9
      Iris-virginica
                          1.00
                                              1.00
                                                          11
                                    1.00
           accuracy
                                              1.00
                                                          30
                          1.00
                                     1.00
                                              1.00
                                                          30
           macro avg
        weighted avg
                                    1.00
                                              1.00
                                                          30
                          1.00
```

New Section

```
import os

if os.path.isfile(r'C:\Users\Rehan Shariff S M\Downloads\project (2).csv'):
    print("The file exists in the same directory as your notebook.")

else:
    print("The file does not exist in the same directory as your notebook.")

The file does not exist in the same directory as your notebook.
```

Double-click (or enter) to edit

```
import os
os.listdir()
    ['.config', 'sample_data']

data=pd.read_csv("/content/sample_data/project (2).csv")
```

data.head()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

data.shape

(150, 6)

data.describe()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

data.columns

Exploratory Data Analysis

```
data['PetalLengthCm'].unique()
```

```
array([1.4, 1.3, 1.5, 1.7, 1.6, 1.1, 1.2, 1. , 1.9, 4.7, 4.5, 4.9, 4. , 4.6, 3.3, 3.9, 3.5, 4.2, 3.6, 4.4, 4.1, 4.8, 4.3, 5. , 3.8, 3.7, 5.1, 3. , 6. , 5.9, 5.6, 5.8, 6.6, 6.3, 6.1, 5.3, 5.5, 6.7, 6.9, 5.7, 6.4, 5.4, 5.2])
```

data['SepalLengthCm'].unique()

```
array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.4, 4.8, 4.3, 5.8, 5.7, 5.2, 5.5, 4.5, 5.3, 7. , 6.4, 6.9, 6.5, 6.3, 6.6, 5.9, 6. , 6.1, 5.6, 6.7, 6.2, 6.8, 7.1, 7.6, 7.3, 7.2, 7.7, 7.4, 7.9])
```

Cleaning data

```
import seaborn as sns
```

data.isnull().sum()

```
Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
```

Relationship Analysis

corelation=data.corr()
sns.heatmap(corelation,xticklabels=corelation.columns,yticklabels=corelation.columns,annot=True)

<ipython-input-65-8cd259c7fbe3>:1: FutureWarning: The default value of numeric_only i
 corelation=data.corr()

sns.pairplot(data)

<seaborn.axisgrid.FacetGrid at 0x7fc1284039a0>

 $\verb|sns.relplot(x='PetalLengthCm',y='PetalWidthCm',hue='SepalLengthCm',data=data)| \\$

 $\verb|sns.relplot(x='PetalLengthCm',y='PetalWidthCm',hue='Species',data=data)|$

<seaborn.axisgrid.FacetGrid at 0x7fc12829cf10>

sns.relplot(x='SepalLengthCm',y='SepalWidthCm',hue='Species',data=data)

sns.histplot(data['PetalLengthCm'], kde=True)

<Axes: xlabel='PetalLengthCm', ylabel='Count'>

sns.histplot(data['SepalLengthCm'], kde=True)

<Axes: xlabel='SepalLengthCm', ylabel='Count'>

sns.histplot(data['Species'], kde=True)

<Axes: xlabel='PetalWidthCm', ylabel='Count'>

sns.histplot(data['SepalWidthCm'], kde=True)

<Axes: xlabel='SepalWidthCm', ylabel='Count'>

sns.distplot(data['PetalWidthCm'])

<ipython-input-27-5f29ad1397c0>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data['PetalWidthCm'])
<Axes: xlabel='PetalWidthCm', ylabel='Density'>

sns.distplot(data['PetalLengthCm'])

<ipython-input-29-888e02e458eb>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(data['PetalLengthCm'])
<Axes: xlabel='PetalLengthCm', ylabel='Density'>

sns.distplot(data['SepalLengthCm'])

```
→ <ipython-input-30-cc4dca1bb6c5>:1: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(data['SepalLengthCm'])
<Axes: xlabel='SepalLengthCm', ylabel='Density'>
```



```
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
```

```
# Load data from CSV file
data = pd.read_csv('')
```

```
# Extract data columns
Species = df['Species']
PetalLengthCm = df['PetalLengthCm']
SepalLengthCm = df['SepalLengthCm']
PetalWidthCm = df['PetalWidthCm']
SepalWidthCm = df['SepalWidthCm']
```

```
# Create a 3D plot
fig = plt.figure(figsize=(17,6))
ax = fig.add_subplot(111, projection='3d')
```

Scatter plot