Name: CHAN King Yeung

SID: 1155119394

STAT3008 Assignment 1

 $\hat{\beta} = \frac{\sum_{i=1}^n x_i^2 y_i}{\sum_{i=1}^n x_i^4}$

Question 1

a)
$$y_{i} = \beta x_{i}^{2} + e_{i} \implies e_{i} = y_{i} - \beta x_{i}^{2}$$
 $g(\beta) = \sum_{i=1}^{n} (y_{i} - \beta x_{i}^{2})^{2}$ $\frac{dg}{d\beta} = -2 \sum_{i=1}^{n} (y_{i} - \beta x_{i}^{2}) x_{i}^{2}$ $\frac{dg}{d\beta} \Big|_{\widehat{\beta}} = 0$ $RSS = \sum_{i=1}^{n} (y_{i} - \hat{\beta} x_{i}^{2})^{2}$ $E(RSS) = (n-1)\sigma^{2}$ $= \sum_{i=1}^{n} x_{i}^{2} y_{i} - \hat{\beta} \sum_{i=1}^{n} x_{i}^{4}$ $\hat{\sigma}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \hat{\beta} x_{i}^{2})^{2}$

b)
$$E(\hat{\beta}) = E\left(\frac{\sum_{i=1}^{n} x_i^2 y_i}{\sum_{i=1}^{n} x_i^4}\right) = \frac{E(\sum_{i=1}^{n} x_i^2 y_i)}{\sum_{i=1}^{n} x_i^4} = \frac{\sum_{i=1}^{n} x_i^2 E(y_i)}{\sum_{i=1}^{n} x_i^4} = \frac{\sum_{i=1}^{n} x_i^2 E(\beta x_i^2)}{\sum_{i=1}^{n} x_i^4} = \frac{\beta \sum_{i=1}^{n} x_i^4}{\sum_{i=1}^{n} x_i^4} = \beta$$

 $\therefore \hat{\beta}$ is an unbiased estimator for β

c)
$$\hat{y} = \hat{\beta}x_i^2 = \frac{\sum_{i=1}^n x_i^2 y_i}{\sum_{i=1}^n x_i^4} \left(\sqrt{\overline{x^4}}\right)^2 = \frac{\sum_{i=1}^n x_i^2 y_i}{n} = \overline{x^2 y}$$

$$\hat{y} = \hat{\beta}x_i^2 = \frac{\sum_{i=1}^n x_i^2 y_i}{\sum_{i=1}^n x_i^4} (\bar{x})^2 = \frac{\sum_{i=1}^n x_i^2 y_i \sum_{j=1}^n x_j^2}{n^2 \sum_{i=1}^n x_i^4} = \frac{\overline{x^2 y} \cdot \overline{x^2}}{\sum_{i=1}^n x_i^4}$$
 The regression passes through $(\sqrt{\overline{x^4}}, \overline{x^2 y})$

$$\begin{aligned} \text{d)} \quad y_i &= \beta x_i^2 + e_i \sim N(\beta x_i^2, \sigma^2) \\ & \left. L(\beta, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{\sum_{i=1}^n \left(y_i - \beta x_i^2 \right)^2}{-2\sigma^2}} \right. \\ & \left. l(\beta, \sigma^2) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \beta x_i^2 \right)^2 \\ & \left. \frac{\partial l}{\partial \beta} \right|_{\widetilde{\beta}, \widetilde{\sigma}^2} = 0 \\ & 0 &= \frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - \widetilde{\beta} x_i^2 \right) x_i^2 \\ &= \sum_{i=1}^n x_i^2 y_i - \widetilde{\beta} \sum_{i=1}^n x_i^4 \\ & \widetilde{\beta} = \frac{\sum_{i=1}^n x_i^2 y_i}{\sum_{i=1}^n x_i^4} \\ & \widetilde{\beta} &= \frac{\sum_{i=1}^n x_i^2 y_i}{\sum_{i=1}^n x_i^4} \\ & \widetilde{\sigma}^2 &= \frac{1}{n} \sum_{i=1}^n \left(y_i - \widetilde{\beta} x_i^2 \right)^2 \end{aligned}$$

Since
$$\frac{\partial^2 l}{\partial \beta} = -\frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - \beta x_i^2 \right) x_i^4 < 0$$
, β is maximised; Since $\frac{\partial^2 l}{\partial \sigma^2} = \frac{n}{2\sigma^4} - \frac{4 \sum_{i=1}^n \left(y_i - \tilde{\beta} x_i^2 \right)^2}{\sigma^6} < 0$, σ^2 is maximised.

e)
$$\sum_{i=1}^{n} x_i^2 y_i = 72$$
 $\sum_{i=1}^{n} x_i^4 = 34$ $\sum_{i=1}^{n} y_i^2 = 156$ $\sum_{i=1}^{n} x_i^2 = 10$ $\sum_{i=1}^{n} y_i = 22$ $\hat{\beta} = \frac{72}{34} \approx 2.1176$ $\hat{\sigma}^2 = \frac{1}{n-1} \left(\sum y_i^2 - 2\hat{\beta} \sum x_i^2 y_i + \hat{\beta}^2 \sum x_i^4 \right) = \frac{1}{4} \left[156 - 2 \left(\frac{72}{34} \right) (72) - \left(\frac{72}{34} \right)^2 (34) \right] \approx 0.8824$ $\sum_{i=1}^{n} \hat{e}_i = \sum_{i=1}^{n} \left(y_i - \hat{\beta} x_i^2 \right) = \sum_{i=1}^{n} y_i - \hat{\beta} \sum_{i=1}^{n} x_i^2 = 22 - \frac{72}{34} (10) \approx 0.8235$ \therefore The sum of residuals does not equal to zero

Question 2

$$\sum_{i=1}^{n} \hat{e}_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = \sum_{i=1}^{n} (y_{i} - \bar{y}) + \hat{\beta}_{1} \sum_{i=1}^{n} (\bar{x} - x_{i}) = 0$$

$$\sum_{i=1}^{n} x_{i} \hat{e}_{i} = \sum_{i=1}^{n} x_{i} y_{i} - n\bar{x}\bar{y} - \hat{\beta}_{1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right) = SXY - \frac{SXY}{SXX} SXX = 0$$

$$\hat{\rho}(x,\hat{e}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) \left(\hat{e}_i - \bar{\hat{e}} \right) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i \hat{e}_i - \bar{\hat{e}} \sum_{i=1}^{n} x_i - \bar{x} \sum_{i=1}^{n} \hat{e}_i + n\bar{x}\bar{\hat{e}} \right) = -\frac{1}{n-1} \bar{\hat{e}} \sum_{i=1}^{n} (x_i - \bar{x}) = 0$$

Question 4

- a) $SXY = 3373.75 11(73.14545)(3.95455) \approx 191.9193$ $SXX = 60961.94 - 11(73.14545)^2 \approx 2109.1146$ $SYY = 202.25 - 11(3.95455)^2 \approx 30.2269$
- b) $\hat{\beta}_1 = \frac{191.9193}{2109.1146} \approx 0.091$ $\hat{\beta}_0 = 3.95455 - 0.091(73.14545) \approx -2.7017$ $\hat{\sigma}^2 = \frac{1}{9} \left(30.2269 - \frac{191.9193^2}{2109.1146} \right) \approx 1.4181$
- c) $\hat{V}ar(\hat{\beta}_0|X) = 1.4181 \left(\frac{1}{11} + \frac{73.14545^2}{2109.1146}\right) \approx 3.7263$ $\hat{V}ar(\hat{\beta}_1|X) = 1.4181 \left(\frac{1}{2109.1146}\right) \approx 0.0007$
- d) $\hat{e}_{74.5,2} = 2 (-2.7017) 0.91(74.5) = -2.0778$ $2\hat{\sigma} = 2\sqrt{1.4181} \approx 2.3817$ $\left|\hat{e}_{74.5,2}\right| < 2\hat{\sigma}$
 - : The observation is not an outlier
- e) n=12 $\bar{x}^*=71.2416625$ $\bar{y}^*=3.875004167$ $\sum_{i=1}^n x_i^{*2}=63492.03$ $\sum_{i=1}^n y_i^2=211.25$ $\sum_{i=1}^n x^*y^*=3524.65$ SXY=211.9091314 SXX=2587.536291 SYY=31.06211247 $\hat{\beta}_1^*=\frac{211.9091314}{2587.536291}\approx 0.0819$
- f) $\hat{\beta}_0^* = 3.875004167 0.0819(71.2416625) \approx -1.9597$ $\hat{\sigma}^{*2} = \frac{1}{10} \left(31.06211247 \frac{211.9091314^2}{2587.536291} \right) \approx 1.3708$

