PROBLEMES OSCIL·LACIONS (amb resultats)

PROBLEMA 2.1

Per a un moviment harmònic simple calculeu les mitjanes al llarg del temps de x, x^2 , energia cinètica i energia potencial, així com les mitjanes que fan referència a la posició de les dues classes d'energia.

RESULTATS

$$\vec{x} = 0; \ \vec{x^2} = A^2/2; \ \vec{E_c} = kA^2/4; \ \vec{E_p} = kA^2/4; \ \vec{E_c} = kA^2/3; \ \vec{E_p} = kA^2/6$$

PROBLEMA 2.2

Trobeu l'equació que resulta de la superposició de dos moviments harmònics simples paral·lels, les equacions dels quals són: $x_1 = 2\cos\left(\omega t + \frac{\pi}{3}\right)$ $x_2 = 3\cos\left(\omega t + \frac{\pi}{2}\right)$.

RESULTATS:

PROBLEMA 2.3

Una partícula de 2,4 g realitza oscil·lacions harmòniques amb un període de 1/6 de segon i una amplitud de 4 cm. Calculeu-ne l'energia cinètica màxima.

RESULTATS:

PROBLEMA 2.4

Trobeu el període i l'amplitud de les oscil·lacions que experimenta una massa m sotmesa a l'acció de dues molles associades en paral·lel i condicions inicials x = 10 m i x = 10 m/s.

RESULTATS:

PROBLEMA 2.5

Estudieu l'amortiment de Coulomb en el cas del bloc de la figura, si f és el coeficient de fregament i K/2 la constant de cada ressort. El bloc es separa de la posició d'equilibri una distància x₀ i després se'n deixa anar. Determineu l'equació del moviment i integreu-la. Representeu gràficament la vibració que en resulta.

PROBLEMA 2.6

Calculeu la mitjana durant un cicle de la potència perduda a causa de la dissipació d'energia per fregament en un oscil·lador lineal amb fregament viscós. La força excitadora és F_0 sin ωt .

PROBLEMA 2.7

Determineu l'amplitud de la vibració vertical del remolc muntat damunt de ressorts quan avança a una velocitat de $25 \, \text{km/h}$ per un camí de troncs que tenen un contorn semblant a una sinusoide (o cosinusoide). El remolc pesa $363 \, \text{kg}$ i la massa de les rodes és negligible. Durant la càrrega cada increment de $50 \, \text{kg}$ comprimia $3.5 \, \text{mm}$ les molles del remolc. Si suposem que les rodes estan en contacte amb el camí en tot moment i no tenim en compte l'amortiment, a quina velocitat crítica V_c serà màxima la vibració del remolc?

PROBLEMA 2.8

Determineu l'amplitud final de les oscil·lacions d'un sistema sota l'acció d'una força exterior igual que la de la figura. En l'instant inicial el sistema es troba en repòs i en equilibri.

PROBLEMA 2.9

Un bloc de 5 kg de m inclou unes petites rodetes, està lligat a la paret amb un ressort com podem veure al dibuix, de manera que oscil·laria al voltant seu punt d'equilibri amb un període de 20 s. El separem 20 m de la seva posició d'equilibri i el deixen anar. Al cap de 10 s d'haver iniciat el moviment el bloc perd la rodeta, amb la qual cosa continua el moviment fregant el terra amb un coeficient de fregament f = 0,1. Calculeu:

- a) La constant K del ressort.
- b) La posició, la velocitat i acceleració al cap de 15 s d'haver començat el moviment.
- c) El punt més proper de la posició de sortida, al qual ha arribat després de perdre les rodetes ($g = 10 \text{ m/s}^2$, $\pi^2 = 10$).

RESULTATS:

PROBLEMA 2.10

Si composem dos moviment harmònics simples de direccions perpendiculars, quant de temps trigarà a completar-se una figura de Lissajous? Quants punts de contacte tindrà aquesta corba amb els costats del rectangle en el qual està inscrit?

PROBLEMA 2.11

Determineu la posició en un instant t >> 0 d'una massa m sotmesa a l'acció de les següents forces: -bx, -Kx i també una força exterior que respon a la següent gràfica.

$$\times (t \gg 0) = \frac{1}{k} \left(\overline{f_0} - \frac{b\alpha}{k} \right) + \frac{\alpha}{k} t$$

PROBLEMA 2.12

Tenim una massa de 720 g que està subjectada a l'acció d'un ressort $K=6000~N\cdot m^{-1}$ i que es mou en un medi que esmorteeix el seu moviment. Fem que actuï sobre l'esmentada massa una força exterior del tipus $f=F_0$ cos wt i es pot observar que si $F_0=6.5~N$ i W=100~rad/s l'amplitud de les oscil·lacions és 0.5~cm. En aquestes circumstàncies se'ns demana:

- a) Quin valor ha de tenir per a què es produeixi ressonància?
- El valor de la constant b de fregament tenint en compte que les dades de l'enunciat són condicions estacionàries.
- c) L'amplitud de les oscil·lacions de la ressonància.

RESULTATS:
a)
$$\omega = 94.3 \text{ rad/s}$$
; b) $b = 5 \text{ N.s/m}$; c) $A = 14.2 \times 10^{-3} \text{ m}$

PROBLEMA 2.13
$$E_{P} = D \left[1 - e^{-\alpha(r-r_{o})} \right]^{2}$$

L'energia potencial d'interacció entre dos àtoms en una molècula diatòmica pot expressar-se amb una bona aproximació pel potencial de Morse: Si D, a i r₀ són constants característiques de la molècula.

- a) Feu una gràfica del potencial i trobeu la posició d'equilibri.
- b) Feu un desenvolupament en sèrie de potències de (r r₀) i determineu la relació del primer terme no harmònic al primer terme harmònic.
- c) Trobeu en funció de D i a la frequència de la vibració relativa dels àtoms en una baixa energia.

RESULTATS:

a)
$$r_0 = ex la posició del minim del potencialb) Relació = $-a(r-r_0)$; c) $D = (a/r_0)\sqrt{D/2m}$$$

PROBLEMA 2.14

Obteniu la constant elàstica de les oscil·lacions moleculars corresponents al següent potencial intermolecular. $E_{p}(r) = -E_{o} \left[2 \left(\frac{r_{o}}{r} \right)^{6} - \left(\frac{r_{o}}{r} \right)^{12} \right]$

RESULTATS:

PROBLEMA 2.15

Un cilindre flota amb l'eix en posició vertical en un líquid de densitat p. L'empenyem lleument cap a baix i després el deixem lliure. Trobeu el període de les oscil·lacions si el cilindre té un pes P i la seva secció transversal és S.

RESULTATS:
$$T = 2R \sqrt{\frac{P}{g \cdot \rho \cdot S}}$$