Appunti di Analisi Matematica I

Ettore Forigo

Chapter 1

1.1 Insiemi Famosi

```
\mathbb{N} = \text{Numeri Naturali} = \{0, 1, 2, 3, ...\}
```

 $\mathbb{Z}=$ Numeri Interi

 $\mathbb{Q} = \text{Numeri Razionali}$

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}$

Su \mathbb{Q} è definita una relazione d'ordine totale (\leq)

Gli insiemi con relazioni d'ordine totale si chiamano totalmente ordinati.

1.2 Dimostrazioni

1.2.1 Componenti delle Dimostrazioni

I 3 termini seguenti, in ordine di importanza crescente, sono abbastanza sinonimi; cambia solo l'importanza nell'ambito dell'esposizione di una teoria formale:

Lemma

Proposizione

Teorema

Congettura dimostrata.

Corollario

Dimostrato a partire da un teorema.

2 CHAPTER 1.

1.2.2 Forma dei Teoremi

$$A \implies B$$

Dove A è detta ipotesi e B è detta tesi.

1.2.3 Implicazioni

$$P \implies Q$$

Dove P è detto antecedente e Q è detto conseguente.

1.2.4 Dimostrazione di una Implicazione

Si assume l'antecedente (o premessa) e si dimostra il conseguente.

1.2.5 Dimostrazione per Assurdo

Si suppone l'ipotesi e per assurdo si suppone il contrario della tesi, e si trova una contraddizione.

1.3 Definizione del Principio di Induzione

$$P(n_0) \wedge (P(n) \implies P(n+1)) \implies \forall n \in \mathbb{N}. P(n)$$

Il caso base nell'induzione può essere anche un numero $\neq 0$.

1.4 Campo Ordinato dei Razionali

 (\mathbb{Q},\leq) formano un Campo Ordinato.

1.5 Definizione di Completezza di un Campo

Un campo totalmente ordinato (\mathbb{K}, \leq) si dice completo se vale il seguente assioma di completezza (Assioma di Dedekin):

$$\forall A,B,A\subseteq\mathbb{K},B\subseteq K,A\neq\varnothing,B\neq\varnothing$$

$$\forall x \in A, \forall y \in B. \ x \leq y \implies \exists c \in \mathbb{K} : \forall x \in A, \forall y \in B. \ x \leq c \leq y$$

cè chiamato elemento separatore tra gli insiemi ${\bf A}$ e B.

Il campo (\mathbb{Q}, \leq) è totalmente ordinato ma non completo.

1.6 Definizione dei Numeri Reali

 \mathbb{R} è una estensione di \mathbb{Q} tale che il campo (\mathbb{R},\leq) è totalmente ordinato e completo.

1.6.1 Interpretazione Geometrica

Ogni numero reale può essere univocamente associato ad un punto della retta reale e viceversa

1.7 Definizione Numeri Irrazionali

 $\mathbb{R} \setminus \mathbb{Q} = \text{Numeri Irrazionali}$

1.8 Definizione di Massimi e Minimi

$$\begin{split} \mathbb{E} &\subseteq \mathbb{R}, \mathbb{E} \neq \varnothing \\ \exists a \in \mathbb{E} : \forall x \in \mathbb{E}. \ a \leq x \implies a \ \text{\`e} \ \text{un minimo di } \mathbb{E} \\ \exists b \in \mathbb{E} : \forall x \in \mathbb{E}. \ x \leq b \implies b \ \text{\`e} \ \text{un massimo di } \mathbb{E} \\ \min(\mathbb{E}) &= a \\ \max(\mathbb{E}) &= b \end{split}$$

Esistono insiemi limitati che non ammettono né massimo né minimo.

$$\mathbb{E} = \{ x \in \mathbb{R} : 0 < x < 1 \}$$

1.8.1 Lemma: Unicità di min e max

Se $\mathbb{E} \subseteq \mathbb{R}$ ammette minimo o massimo, allora è unico.

Dimostrazione Unicità del Minimo

$$a \in \mathbb{E}, a' \in \mathbb{E}$$

 $\forall x \in \mathbb{E}. \ a \leq x \land a' \leq x \text{ per assurdo.}$

Ponendo
$$x = a$$
 ottengo $a' \le a$
Ponendo $x = a'$ ottengo $a \le a'$

Siccome devono valere entrambe, a = a'. Q.E.D.

4 CHAPTER 1.

1.9 Definizione di Maggioranti e Minoranti

 $\mathbb{E} \subseteq \mathbb{R}, \mathbb{E} \neq \emptyset$

 $a \in \mathbb{R}$ è un **maggiorante** di \mathbb{E} se $\forall x \in \mathbb{E}$. $a \leq x$

 $b \in \mathbb{R}$ è un **maggiorante** di \mathbb{E} se $\forall x \in \mathbb{E}$. $x \leq b$

Non sono unici!

 $M(\mathbb{E}) =$ Insieme dei maggioranti di \mathbb{E}

 $m(\mathbb{E}) =$ Insieme dei minoranti di \mathbb{E}

1.10 Definizione di Insieme Limitato

 $E \subseteq \mathbb{R}, \mathbb{E} \neq \emptyset$

 $M(\mathbb{E}) \neq \varnothing \implies \mathbb{E}$ è superiormente limitato

 $m(\mathbb{E}) \neq \emptyset \implies \mathbb{E}$ è inferiormente limitato

 $M(\mathbb{E}) \neq \emptyset \land m(\mathbb{E}) \neq \emptyset \implies \mathbb{E}$ è limitato

1.11 Teorema

 $\mathbb{E} \subseteq \mathbb{R}, \mathbb{E} \neq \emptyset$

 \mathbb{E} è superiormente limitato $\Longrightarrow M(\mathbb{E})$ ammette minimo (estremo superiore di \mathbb{E})

 \mathbb{E} è inferiormente limitato $\implies m(\mathbb{E})$ ammette massimo (estremo inferiore di \mathbb{E})

1.11.1 Dimostrazione

$$\mathbb{E} \neq \emptyset, M(\mathbb{E}) \neq \emptyset$$

$$\forall x \in \mathbb{E}, y \in M(\mathbb{E}). x \leq y$$

Quindi per l'assioma di completezza:

$$\exists c \in \mathbb{R} : \forall x \in \mathbb{E}, y \in M(\mathbb{E}). x \leq c \leq y$$

$$\forall x \in \mathbb{E}. \, x \le c \implies c \in M(\mathbb{E})$$

$$\forall y \in M(\mathbb{E}). c \leq y \implies x = \min M(\mathbb{E})$$

1.12 Definizione di Estremo Superiore ed Inferiore

 \mathbb{E} è superiormente limitato $\implies sup(\mathbb{E}) = sup \mathbb{E} = min(M(\mathbb{E}))$

 \mathbb{E} è inferiormente limitato $\implies inf(\mathbb{E}) = inf \mathbb{E} = max(m(\mathbb{E}))$

1.12.1 Proprietà

$$\begin{array}{l} \sup \ \mathbb{E} \in \mathbb{E} \implies \sup \ \mathbb{E} = \max \ \mathbb{E} \\ \inf \ \mathbb{E} \in \mathbb{E} \implies \inf \ \mathbb{E} = \min \ \mathbb{E} \\ \sup \ \mathbb{E} \ \mathrm{e} \ \inf \ \mathbb{E} \ \mathrm{sono \ unici.} \end{array}$$

1.13 Caratterizzazione di sup e inf

 $\mathbb{E} \subseteq \mathbb{R}, \mathbb{E} \neq \emptyset, \mathbb{E}$ superiormente limitato

N.d.r.

Tutti gli ε nelle definizioni e dimostrazioni sono da considerarsi $\in \mathbb{R}$ salvo diversamente specificato.

1.13.1 Caratterizzazione di sup

$$\iota = \sup \mathbb{E} \iff \forall x \in \mathbb{E} : x \le \iota \land \forall \varepsilon > 0 \ \exists x \in \mathbb{E} : x > \iota - \varepsilon$$

1.13.2 Caratterizzazione di inf

$$\iota = \inf \, \mathbb{E} \iff \forall x \in \mathbb{E} : \iota \leq x \, \land \, \forall \varepsilon > 0 \, \, \exists x \in \mathbb{E} : x < \iota + \varepsilon$$

1.14 Definizione di $\overline{\mathbb{R}}$

Insieme dei numeri reali estesi:

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

1.14.1 Relazione d'ordine \leq e le operazioni somma e prodotto su $\overline{\mathbb{R}}$

Relazione \leq

$$\forall x \in \overline{\mathbb{R}} : -\infty \le x \le +\infty$$
$$\forall x \in \mathbb{R} : -\infty < x < +\infty$$

1.14.2 Somma

$$\forall x \in \mathbb{R} : x + \infty = +\infty$$

 $\forall x \in \mathbb{R} : x + (-\infty) = -\infty$

6

CHAPTER 1.

1.14.3 Prodotto

$$\forall x > 0, x \in \mathbb{R}$$

$$x \cdot (+\infty) = +\infty$$

$$x \cdot (-\infty) = -\infty$$

$$\forall x < 0, x \in \mathbb{R}$$

$$x \cdot (+\infty) = -\infty$$

$$x \cdot (-\infty) = +\infty$$

N.B.

Non sono definite le operazioni:

$$0 \cdot (\pm \infty), +\infty - \infty$$

1.15 Intervalli

 $I \subseteq \overline{\mathbb{R}} : \forall x, y \in I : x < z < y \implies z \in I$

I è un detto **intervallo**.

$$a,b \in \overline{\mathbb{R}}, a < b$$

1.15.1 Intervallo aperto di estremi a e b

$$(a,b) =]a,b[= \left\{ x \in \overline{\mathbb{R}} : a < x < b \right\}$$

1.15.2 Intervallo semi-aperto a destra di estremi $a \in b$

$$[a, b) = \left\{ x \in \overline{\mathbb{R}} : a \le x < b \right\}$$

1.15.3 Intervallo semi-aperto a sinistra di estremi $a \in b$

$$(a,b] = \left\{ x \in \overline{\mathbb{R}} : a < x \le b \right\}$$

1.15.4 Intervallo chiuso di estremi $a \in b$

$$[a,b] = \{x \in \overline{\mathbb{R}} : a \le x \le b\}$$

1.16. FUNZIONI 7

1.15.5

$$\mathbb{E}\subseteq\mathbb{R},\,\mathbb{E}\neq\varnothing,\,M(\mathbb{E})=\varnothing$$

$$\sup\,\mathbb{E}=+\infty$$

$$\mathbb{E} \subseteq \mathbb{R}, \ \mathbb{E} \neq \varnothing, \ m(\mathbb{E}) = \varnothing$$
$$\inf \ \mathbb{E} = -\infty$$

1.16 Funzioni

Una funzione è definita da una terna (f, A, B) dove:

$$A \subseteq \overline{\mathbb{R}}, B \subseteq \overline{\mathbb{R}}, A \neq \emptyset, B \neq \emptyset$$

fè una legge che ad ogni elemento $x\in A$ associa univocamente un elemento $f(x)\in B.$

Notazione:

$$A = dom(f)$$
 (dominio di f)
 $B = codom(f)$ (codominio di f)

Si scrive: $f: A \to B$

N.B.

Il codominio B non è determinato univocamente da f. Se B è codominio di f e $B\subseteq C$ allora anche C è codominio di f.

Due funzioni
$$f_1: A_1 \to \mathbb{R}$$
 e $f_2: A_2 \to \mathbb{R}$
sono uguali $\iff A_1 = A_2 \land \forall x \in A_1 = A_2: f_1(x) = f_2(x)$

1.16.1 Definizione di Insieme Immagine

$$f: A \to B$$

$$im(f) = f[A] = \operatorname{Im} f = \{ y \in B : \exists x \in A : y = f(x) \}$$

$$im(f) \subseteq codom(f)$$

1.16.2 Definizione di Iniettività

Una funzione da A a B si dice **iniettiva** se:

$$\forall x, x' \in A. f(x) = f(x') \implies x = x'$$

1.16.3 Definizione di Suriettività

$$im(f) = codom(f)$$

8 CHAPTER 1.

Interpretazione Geometrica

 $\forall y_0 \in codom(f)$ la retta $y = y_0$ interseca il grafico di f in almeno un punto.

Equivalentemente:

$$\forall y \in codom(f)$$
$$f^{-1}(y) \neq \varnothing$$

Se $f:A\to B$ non è suriettiva si può rendere suriettiva restringendo il suo codominio alla sua immagine (Troncatura).

Si può restringere anche il dominio per rendere la funzione iniettiva (Restrizione).

1.16.4 Definizione di Biiettività

Una funzione si dice **biiettiva** (o biiezione, o anche corrispondenza 1 a 1 o biunivoca) se è sia iniettiva che suriettiva.

1.17 Definizione di Invertibilità

 $\forall y \in B \ \exists ! x \in A : y = f(x) \implies f : A \to B \ \text{è invertibile}.$

 $f:A\to B$ è invertibile $\implies f^{-1}:im(f)\to dom(f)$ è la funzione inversa di f

$$\forall y \in (B = im(f)): y = f(x) \iff x = f^{-1}(y)$$

Osservazione:

$$\forall y \in im(f) : y = f(f^{-1}(y))$$

f è invertibile \iff f è biiettiva

Il grafico della funzione inversa:

 $graf(f^{-1})$

$$= \{(y, x) \in B \times A : x = f^{-1}(y)\}\$$

$$= \{(y, x) \in B \times A : y = f(x)\}\$$

$$= \{(y, x) \in B \times A : (x, y) \in graf(f)\}\$$

$$(y,x) \in graf(f^{-1}) \iff (x,y) \in graf(f)$$

 $graf(f^{-1})$ è simmetrico di graf(f) rispetto alla retta y = x

1.18 Definizione di Restrizione

$$f: A \to B, E \subseteq A$$

$$f|_E : E \to B$$

$$f|_E(x) = f(x) \ \forall x \in E$$

 $f|_E$ è chiamata **restrizione** di f ad E.

Una funzione non iniettiva si può rendere iniettiva considerandone opportune restrizioni.

1.19 Proprietà della Composizione di Funzioni

Se f è invertibile, allora:

$$\forall x \in dom(f). (f^{-1} \circ f)(x) = x$$

$$\forall x \in im(f). (f \circ f^{-1})(x) = x$$

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

1.20 Nozioni di Topologia in $\mathbb R$

Il valore del limite di una funzione può andare oltre il dominio della funzione, ma bisogna definire delle condizioni.

1.20.1 Definizione di Intorno

Dato $x_0 \in \mathbb{R}$ e dato r > 0

$$I_r(x_0) = (x_0 - r, x_0 + r)$$

È chiamato l'**intorno** di centro x_0 e raggio r.

Nota:

 x_0 è detto "x con zero"

1.20.2 Definizione di Intorno di Infinito

Sia $x_0 \in \{-\infty, +\infty\}$ e sia $a \in \mathbb{R}$, si chiama:

 $(a, +\infty)$ intorno di infinito di estremo inferiore a $(-\infty, a)$ intorno di meno infinito di estremo superiore a

10 CHAPTER 1.

1.20.3 Definizione di Punto Interno di un Insieme

$$A \subseteq \mathbb{R}, x_0 \in \mathbb{R}$$

$$\exists \varepsilon > 0 : I_{\varepsilon}(x_0) \subseteq A \implies x_0 \text{ è punto interno di } A$$

1.20.4 Definizione di Punto di Accumulazione

$$A \subseteq \mathbb{R}, x_0 \in \mathbb{R}$$

$$\forall \varepsilon > 0. \, I_{\varepsilon}(x_0) \cap (A \setminus \{x_0\}) \neq 0 \implies x_0 \text{ è punto di accumulazione di } A$$

Notazione:

p.a. di A = punto di accumulazione di A

Osservazioni:

La definizione di punto di accumulazione non richiede che $x_0 \in A$ Ogni punto interno è anche un punto di accumulazione.

1.20.5 Definizione di Punto Isolato

$$A \subseteq \mathbb{R}, x_0 \in \mathbb{R}$$

$$\exists \varepsilon > 0 : I_{\varepsilon}(x_0) \cap A = \{x_0\} \implies x_0$$
è un **punto isolato** di A

1.20.6 Definizione di Punto Aderente

 x_0 è un punto di accumulazione di $A\vee x_0$ è un punto isolato di $A\Longrightarrow x_0$ è un **punto aderente** ad A

1.20.7 Definizione di Parte Interna

 $A \subseteq \mathbb{R}$

$$\mathring{A} = \{x \in A : x \text{ è un punto interno di } A\}$$

1.20.8 Definizione di Chiusura

 $A \subseteq \mathbb{R}$

$$\overline{A} = \{x \in A : x \text{ aderente ad } A\}$$

N.B.

$$\mathring{A} \subseteq A \subseteq \overline{A}$$

1.20.9 Definizione di Frontiera

 $A\subseteq \mathbb{R}$

$$\partial A = \overline{A} \setminus \mathring{A} = \left\{ x \in \overline{A} : x \not \in \mathring{A} \right\}$$

1.20.10 Definizione di Insieme Aperto

 $A\subseteq \mathbb{R}$

$$A = \mathring{A} \implies A$$
 è **aperto** (contiene solo punti interni)

1.20.11 Definizione di Insieme Chiuso

$$A = \overline{A} \implies A$$
è chiuso

12 CHAPTER 1.

Chapter 2

Limiti

2.1 Definizione di Limite

 $A \subseteq \mathbb{R}, x_0 \in \mathbb{R}$ punto di accumulazione di $A, f: A \to \mathbb{R}$

f converge a $L \in \mathbb{R}$ per x che tende ad x_0 scritto:

$$\lim_{x \to x_0} f(x) = L$$

se:

$$\forall \varepsilon > 0. \, \exists \delta > 0: \forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}. | f(x) - L | < \varepsilon$$

N.d.r.

Tutti i δ nelle definizioni e dimostrazioni sono da considerarsi $\in \mathbb{R}$ salvo diversamente specificato.

Osservazioni:

La definizione non richiede che $x_0 \in A$

Anche se $x_0 \in dom(f) = A$ il valore della funzione in questo punto non ha nessuna influenza sul valore del limite.

 x_0 deve essere un p.a. di A perché x deve potersi avvicinare a x_0 indefinitamente rimanendo in A = dom(f).

2.2 Estensione della Definizione del Limite

Estensione della definizione di:

$$\lim_{x \to x_0} f(x) = L$$

nei casi in cui $x_0 \in \{+\infty, -\infty\}$ e/o $L \in \{+\infty, -\infty\}$

N.d.r.

Tutte le definizioni possono essere riscritte equivalentemente sostituendo l'intorno di \pm infinito $I_{\pm\infty}(a)$ dove compaiono gli intervalli $(a, +\infty)$ e $(-\infty, a)$.

2.2.1
$$x_0 \in \mathbb{R}, L \in \{+\infty, -\infty\}$$

$$f: A \to \mathbb{R}, x_0$$
 p.a. di A

$$L = +\infty$$

Si scrive
$$\lim_{x\to x_0} = +\infty$$
 se:

$$\forall M \in \mathbb{R}. \, \exists \delta > 0 : \forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}). \, f(x) > M$$

f diverge positivamente per $x \to x_0$

$$L = -\infty$$

Si scrive
$$\lim_{x\to x_0} = -\infty$$
 se:

$$\forall M \in \mathbb{R}. \, \exists \delta > 0 : \forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}). \, f(x) < M$$

f diverge negativamente per $x \to x_0$

2.2.2
$$x_0 \in \{+\infty, -\infty\}, L \in \mathbb{R}$$

$$f: [R, +\infty) \to \mathbb{R}, R \in \mathbb{R}$$

Si scrive
$$\lim_{x\to x_0} = L$$
 se:

$$\forall \varepsilon > 0. \, \exists a > R : \forall x \in (a, +\infty). \, |f(x) - L| < \varepsilon$$

$$f:(-\infty,R]\to\mathbb{R},\ R\in\mathbb{R}$$

Si scrive
$$\lim_{x\to x_0} = L$$
 se:

$$\forall \varepsilon > 0. \, \exists a < R : \forall x \in (-\infty, a). \, |f(x) - L| < \varepsilon$$

$$|f(x) - L| < \varepsilon \iff f(x) \in (L - \varepsilon, L + \varepsilon) = I_{\varepsilon}(L)$$

2.2.3
$$x_0 \in \{+\infty, -\infty\}, L \in \{+\infty, -\infty\}$$

$$x_0 = +\infty, L = +\infty, f: [R, +\infty) \to \mathbb{R}, R \in \mathbb{R}$$

Si scrive
$$\lim_{x\to x_0} f(x) = +\infty$$
 se:

$$\forall M \in \mathbb{R}. \exists a > R : \forall x \in (a, +\infty). f(x) > M$$

$$x_0 = +\infty, L = -\infty, f: [R, +\infty) \to \mathbb{R}, R \in \mathbb{R}$$

Si scrive
$$\lim_{x \to x_0} f(x) = -\infty$$
 se:

$$\forall M \in \mathbb{R}. \, \exists a > R : \forall x \in (a, +\infty). \, f(x) < M$$

$$x_0 = -\infty, L = +\infty, f: (-\infty, R] \to \mathbb{R}, R \in \mathbb{R}$$

Si scrive
$$\lim_{x \to x_0} f(x) = +\infty$$
 se:

$$\forall M \in \mathbb{R}. \exists a < R : \forall x \in (-\infty, a). f(x) > M$$

$$x_0 = -\infty, L = -\infty, f: (-\infty, R] \to \mathbb{R}, R \in \mathbb{R}$$

Si scrive
$$\lim_{x \to x_0} f(x) = -\infty$$
 se:

$$\forall M \in \mathbb{R}. \exists a < R : \forall x \in (-\infty, a). f(x) < M$$

2.3 Definizione Disuguaglianza Triangolare

$$\forall a, b \in \mathbb{R}. |a+b| \le |a|+|b|$$

$$\forall x \in \mathbb{R}. \, x \leq |x| \land -x \leq |x|$$

2.4 Teorema di Unicità del Limite

$$f: A \to \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di A

Supponendo che esistano due limiti $L \in \mathbb{R}$ e $L' \in \mathbb{R}$ tali che $\lim_{x \to x_0} f(x) = L$ e contemporaneamente $\lim_{x \to x_0} f(x) = L'$.

Allora
$$L = L'$$

2.4.1 Dimostrazione

Sia $\varepsilon > 0$ arbitrario.

Supponendo per assurdo che estano due limiti L ed L', con $L \neq L'$:

$$\lim_{x \to x_0} f(x) = L \implies \exists \delta_1 > 0 : \forall x \in I_{\delta_1}(x_0) \cap (A \setminus \{x_0\}). |f(x) - L| < \varepsilon$$

$$\lim_{x \to x_0} f(x) = L' \implies \exists \delta_2 > 0 : \forall x \in I_{\delta_2}(x_0) \cap (A \setminus \{x_0\}). |f(x) - L'| < \varepsilon$$

$$I_{min(a,b)}(x_0) \subseteq I_{max(a,b)}(x_0)$$

Equivalentemente:

$$I_a(x_0) \cap I_b(x_0) = I_{min(a,b)}(x_0)$$

Ponendo $\delta = min(\delta_1, \delta_2)$, nel risultante intorno:

$$I_{\delta}(x_0) \cap (A \setminus \{x_0\})$$

valgono entrambe le definizioni dei limiti:

$$\forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}).$$

$$|f(x) - L| < \varepsilon$$

 $|f(x) - L'| < \varepsilon$

La differenza assoluta è commutativa, quindi la prima si può riscrivere come:

$$\forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}).$$

$$|L - f(x)| < \varepsilon$$

e applicando la disuguaglianza triangolare si ottiene:

$$\forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}).$$

$$|L - L'| = |L - f(x) + f(x) - L'| \le |L - f(x)| + |f(x) - L'|$$

Viste le disuguaglianze:

$$\forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}).$$

$$|f(x) - L| < \varepsilon$$

 $|f(x) - L'| < \varepsilon$

e dato che:

$$a \ge 0, b \ge 0, c > 0$$

 $a < c \land b < c \implies a + b < 2c$

è sicuramente vero che:

$$\forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}).$$

$$|L - L'| \le |L - f(x)| + |f(x) - L'| < 2\varepsilon$$

Dunque $\forall \varepsilon > 0$ si ha:

$$0 \le |L - L'| < 2\varepsilon \implies |L - L'| = 0$$

 $|L - L'| = 0 \implies L = L'$

C.V.D.

2.5 Algebra dei Limiti

 $f,g:A\to\mathbb{R},\,x_0\in\overline{\mathbb{R}},\,L,M\in\overline{\mathbb{R}}$ tali che x_0 è un p.a. di Ae:

$$\lim_{x \to x_0} f(x) = L$$
$$\lim_{x \to x_0} g(x) = M$$

Allora le seguenti identità:

$$\lim_{\substack{x \to x_0 \\ \lim_{x \to x_0} (f(x) + g(x)) = L + M}} (f(x)g(x)) = L \cdot M$$

$$\lim_{\substack{x \to x_0 \\ x \to x_0}} (\frac{f(x)}{g(x)}) = \frac{L}{M}$$

valgono in assenza di forme indeterminate $(\infty-\infty,0\cdot(\pm\infty),\frac{\pm\infty}{\pm\infty})$

2.5.1 Caso Particolare di $\lim_{x\to x_0} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}$

Supponendo
$$\lim_{x\to x_0} f(x) = L \neq 0 \land \lim_{x\to x_0} g(x) = 0$$

Allora valgono le seguenti regole:

Se $\exists \delta > 0 : \forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}), g(x) > 0$ allora:

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) =$$

$$+\infty$$
 se $L>0$

$$-\infty$$
 se $L<0$

Se $\exists \delta > 0 : \forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}), g(x) < 0$ allora:

$$\lim_{x\to x_0}(\tfrac{f(x)}{g(x)}) =$$

$$-\infty$$
 se $L>0$

$$+\infty$$
 se $L<0$

Se la funzione cambia segno in ogni intorno di x_0 , ovvero: $\forall \delta > 0$. $\exists x_1, x_2 \in I_\delta(x_0) \cap (A \setminus \{\overline{x_0}\}) : g(x_1)g(x_2) < 0$ allora:

$$\lim_{x\to x_0}(\frac{f(x)}{g(x)})$$
 non esiste

2.6 Teorema della Permanenza del Segno

$$A \subseteq \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di $A, f: A \to \mathbb{R}$

Suppongo che:

$$\lim_{x \to x_0} f(x) = L \neq 0$$

allora $\exists \delta > 0 : \forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}). f(x)$ ha lo stesso segno di L.

2.6.1 Dimostrazione

Supponendo che L>0 si pone nella definizione di $\lim_{x\to x_0}=L$ $\varepsilon=\frac{L}{2}>0$.

Quindi
$$\exists \delta > 0 : \forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}). |f(x) - L| < \frac{L}{2} \iff f(x) \in (\frac{L}{2}, \frac{3L}{2}) \implies f(x) > 0$$

Q.E.D.

2.7 Teorema del confronto

$$f, g: A \to \mathbb{R}, x_0$$
 p.a. di A .

Supponendo che:

$$\forall x \in A. f(x) \leq g(x)$$

Se i limiti:

$$\lim_{x \to x_0} f(x) = L$$
$$\lim_{x \to x_0} g(x) = M$$

esistono e sono finiti, allora $L \leq M$

2.7.1 Dimostrazione

Supponendo per assurdo che L > M si considera la funzione f(x) - g(x) in A e si osserva che:

$$\lim_{x \to x_0} (f(x) - g(x)) = L - M > 0$$

Quindi per il teorema della permanenza del segno:

$$\exists \delta > 0 : \forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\}). f(x) - g(x) > 0$$

Contraddizione con l'ipotesi! Q.E.D.

Attenzione

Da f(x) < g(x) non segue che:

$$\lim_{x\to x_0} f(x) < \lim_{x\to x_0} g(x)$$

2.8 Teorema dei Due Carabinieri

$$f, g, h: A \to \mathbb{R}, x_0$$
 p.a. di A .

Supponendo che:

$$\forall x \in A. h(x) \le f(x) \le g(x)$$

$$\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = L \implies \lim_{x \to x_0} f(x) = L$$

2.8.1 Dimostrazione

 ε arbitrario.

$$\lim_{x \to x_0} h(x) = L \implies \exists \delta_1 > 0 : \forall x \in I_{\delta_1}(x_0) \cap (A \setminus \{x_0\}). |h(x) - L| < \varepsilon$$
$$\lim_{x \to x_0} g(x) = L \implies \exists \delta_2 > 0 : \forall x \in I_{\delta_2}(x_0) \cap (A \setminus \{x_0\}). |g(x) - L| < \varepsilon$$

Ponendo $\delta = min(\delta_1, \delta_2)$ si ha che:

$$\forall x \in I_{\delta}(x_0) \cap (A \setminus \{x_0\})$$

valgono:

$$f(x) - L \le g(x) - L < \varepsilon$$

$$f(x) - L \ge h(x) - L \ge -|h(x) - L| > -\varepsilon$$

Che implicano:

$$-\varepsilon < f(x) - L < \varepsilon \iff |f(x) - L| < \varepsilon$$

Q.E.D.

2.8.2 Corollario

$$f, g: A \to \mathbb{R}, x_0$$
 p.a. di A .

Supponendo che:

$$\lim_{x \to x_0} f(x) = 0$$

la funzione g è limitata in A, cioè:

$$\exists M \in R : \forall x \in A. |g(x)| \leq M$$

Allora:

$$\lim_{x \to x_0} f(x)g(x) = 0$$

Dimostrazione

Siccome $\forall x \in A. |g(x)| \leq M$ si ha che:

$$\forall x \in A. \ 0 \le |f(x)g(x)| \le M |f(x)|$$

Applico il teorema dei due carabinieri con h(x) = 0 e g(x) = M|f(x)|.

Si ha
$$\lim_{x\to x_0} M \, |f(x)| = M \lim_{x\to x_0} |f(x)| = 0$$

$$\lim_{x \to x_0} |f(x)| = 0$$

21

Quindi:

$$\lim_{x \to x_0} |f(x)g(x)| = 0 \text{ da cui la tesi.}$$

Q.E.D

2.9 Limiti Unilaterali

2.9.1 Limite Destro

$$f: A \to \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di $A \cap (x_0, +\infty)$

f ammette **limite destro** in x_0 , scritto:

$$\lim_{x \to x_0^+} f(x) = L \in \mathbb{R}$$

se:

$$\forall \varepsilon > 0. \, \exists \delta > 0: \forall x \in (x_0, x_0 + \delta) \cap A. \, |f(x) - L| < \varepsilon$$

N.B.

Se A=(a,b) allora b è un p.a. di A, ma non è un p.a. di $A\cap(b,+\infty)=\varnothing$

2.9.2 Limite Sinistro

$$f: A \to \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di $A \cap (-\infty, x_0)$

f ammette **limite sinistro** in x_0 , scritto:

$$\lim_{x \to x_0^-} f(x) = L \in \mathbb{R}$$

se:

$$\forall \varepsilon > 0. \, \exists \delta > 0: \forall x \in (x_0 - \delta, x_0) \cap A. \, |f(x) - L| < \varepsilon$$

2.9.3 Caso $L \in \{+\infty, -\infty\}$

Limite Destro

$$f: A \to \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di $A \cap (x_0, +\infty)$

Si scrive:

$$\lim_{x\to x_0^+}f(x)=+\infty$$

se:

$$\forall M \in \mathbb{R}. \, \exists \delta > 0 : \forall x \in (x_0, x_0 + \delta) \cap A. \, f(x) > M$$

Analogamente, si scrive:

$$\lim_{x \to x_0^+} f(x) = -\infty$$

se:

$$\forall m \in \mathbb{R}. \, \exists \delta > 0 : \forall x \in (x_0, x_0 + \delta) \cap A. \, f(x) < m$$

2.9.4 Limite Sinistro

$$f: A \to \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di $A \cap (-\infty, x_0)$

Si scrive:

$$\lim_{x \to x_0^-} f(x) = +\infty$$

se:

$$\forall M \in \mathbb{R}. \, \exists \delta > 0 : \forall x \in (x_0 - \delta, x_0) \cap A. \, f(x) > M$$

Analogamente si scrive:

$$\lim_{x \to x_0^-} f(x) = -\infty$$

se:

$$\forall m \in \mathbb{R}. \exists \delta > 0 : \forall x \in (x_0 - \delta, x_0) \cap A. f(x) < m$$

2.9.5 Legame con il Limite

$$f: A \to \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di $A \cap (x_0, +\infty)$ e di $A \cap (-\infty, x_0)$

Allora f ammette limite per $x \to x_0$ se e solo se:

$$\exists \lim_{x \to x_0^+} f(x) = L^+ \in \overline{\mathbb{R}}$$

$$\exists \lim_{x \to x_0^-} f(x) = L^- \in \overline{\mathbb{R}}$$

$$L^+ = L^-$$

In tal caso:

$$\lim_{x \to x_0} f(x) = L^+ = L^-$$

N.B.

Il teorema implica che:

$$\lim_{x\to x_0} f(x)$$
 non esiste se:

Almeno uno fra:

$$\lim_{x \to x_0^+} f(x)$$

$$\lim_{x \to x_0^+} f(x)$$

$$\lim_{x \to x_0^-} f(x)$$

non esiste, oppure se:

$$\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x)$$

2.10 Funzioni Monotone

Si dice che $f:A\to\mathbb{R}$ è:

Crescente in A se:

$$\forall x, y \in A. \ x < y \implies f(x) \le f(y)$$

Decrescente in A se:

$$\forall x, y \in A. \ x < y \implies f(x) \ge f(y)$$

Strettamente Crescente in A se:

$$\forall x, y \in A. \ x < y \implies f(x) < f(y)$$

Strettamente Decrescente in A se:

$$\forall x, y \in A. \ x < y \implies f(x) > f(y)$$

N.B.

f è strettamente monotona $\implies f$ è iniettiva

f è crescente e decrescente $\implies f$ è costante

2.10.1 Teorema

$$f: A \to \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di $A \cap (x_0, +\infty)$ e di $A \cap (-\infty, x_0)$

f è crescente in $A \implies f$ ammette in x_0 entrambi i limiti unilaterali e vale:

$$\lim_{x \to x_0^+} f(x) = \inf \{ f(x) : x > x_0, x \in A \}$$
$$\lim_{x \to x_0^-} f(x) = \sup \{ f(x) : x < x_0, x \in A \}$$

Dimostrazione

$$l = inf \{ f(x) : x > x_0, x \in A \}$$

Quindi:

$$\forall x > x_0, x \in A. l \le f(x)$$

$$\forall \varepsilon > 0. \, \exists x_{\varepsilon} > x_0, x_{\varepsilon} \in A : f(x_{\varepsilon}) < l + \varepsilon$$

 $\varepsilon > 0$, ponendo $\delta = x_{\varepsilon} - x_0 > 0$ allora:

$$\forall x \in (x_0, x_0 + \delta) \cap A = (x_0, x_{\varepsilon}) \cap A.$$

$$0 \le f(x) - l \le f(x_{\varepsilon}) - l < \varepsilon$$

f è crescente, quindi:

$$|f(x) - l| < \varepsilon$$

$$\lim_{x \to x_0^+} f(x) = l$$

$$L = \sup \{ f(x) : x < x_0; x \in A \}$$

Quindi:

$$\forall x < x_0, x \in A. f(x) \leq L$$

$$\forall \varepsilon > 0. \, \exists x_{\varepsilon} < x_0, x_{\varepsilon} \in A : f(x_{\varepsilon}) > L - \varepsilon$$

 $\varepsilon > 0$, ponendo $\delta = x_0 - x_{\varepsilon} > 0$ allora:

$$\forall x \in (x_0 - \delta, x_0) \cap A = (x_{\varepsilon}, x_0) \cap A.$$

$$0 \le L - f(x) \le L - f(x_{\varepsilon}) < \varepsilon$$

f è crescente, quindi:

$$x_{\varepsilon} < x \implies f(x_{\varepsilon}) < f(x)$$

$$|f(x) - L| < \varepsilon$$

$$\lim_{x \to x_0^-} f(x) = L$$

Q.E.D.

N.B.

L e l possono essere diversi.

2.10.2 Teorema

$$f: A \to \mathbb{R}, x_0 \in \mathbb{R}$$
 p.a. di $A \cap (x_0, +\infty)$ e di $A \cap (-\infty, x_0)$

f è decrescente in $A \implies f$ ammette in x_0 entrambi i limiti unilaterali e vale:

$$\lim_{x \to x_0^+} f(x) = \sup \{ f(x) : x > x_0, x \in A \}$$

$$\lim_{x \to x_0^-} f(x) = \inf \{ f(x) : x < x_0, x \in A \}$$

"La monotonia è madre dei limiti unilaterali"

2.11 Limiti Notevoli

$$\forall a \in \mathbb{R}. \lim_{x \to 0} \frac{\sin(ax)}{x} = a$$

$$\forall a \in \mathbb{R}. \lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$$

$$\forall a \in \mathbb{R}. \lim_{x \to 0} \frac{\log(1+ax)}{x} = a$$

$$\forall a \in \mathbb{R}. \lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a$$

$$\forall a \in \mathbb{R}. \lim_{x \to +\infty} (1 + \frac{a}{x})^x = e^a$$

e =costante di Eulero.

2.12 Limiti di Funzioni Composte

$$f: A \to B \subseteq \mathbb{R}, g: B \to \mathbb{R}$$

$$\lim_{x \to x_0} f(x) = y_0$$

$$\lim_{y \to y_0} g(y) = L$$

$$\exists \delta > 0: 0 < |x - x_0| < \delta \implies f(x) \neq y_0$$

$$\lim_{x \to x_0} g(f(x)) = L$$