

Health Monitoring System for Senior Citizens

Group Members

Javairia Rehman (P19-0020)

Matti Ur Rehman (P19-0048)

Muhammad Mohsin Raza (P19-0072)

Project Supervisor

Dr. Hafeez Ur Rehman

Introduction/Idea

A World is a Global Village, Right?

Also, Impossible that you are 24/7 Home, Well COVID-19 gone "ALMOST"

Someone at Home, Needs an Attention

Literature Reference	Basic Idea	Methodologies	Results	Limitations
Sensor and vision-based HAR [1]	Introduces a classification of HAR methodologie s	Compare both approaches by using previous researches	HAR methods are classified into two main groups.	Don't discuss their use
Skeleton-base d human activity recognition for Eldery People[2]	Propose a new skeleton-bas ed approach	Use Extremely Randomised Trees algorithm.	Mis-estimate body-poses	Recognize only regular activities

Literature Reference	Basic Idea	Methodologies	Results	Limitations
A Smart Health Care Monitor System in IoT Based Human Activities of Daily Living: A Review[3]	Reviewing and compare a prediction accuracy from the data coming from sensors, videos	Study and compare previous methods	Maximum prediction accuracy of 99.89% in Random forest and SVM	Models have been able to predict in offline

Literature Reference	Basic Idea	Methodologies	Results	Limitations
Vision-Based Human Activity Recognition System Using Depth Silhouettes[4]	Recognize daily activities of elderly people in indoor environmen ts.	Utilize joints points of the skeleton model and HMMs for activity rec- ognition	Recognizing 84.33% for nine daily routine activities of the elderly	Detecting only normal activity.

Literature Reference	Basic Idea	Methodologies	Results	Limitations
Real-Time Elderly Monitoring for Senior Safety [5]	Monitoring eldery people from distance	Use captured skeleton images and indRNN	Able to recognize activities	Just trigger the alarm.

An eldery people need to be monitored 24/7. If you are at work space and they are alone.

Figure 1: Use Case Diagram

Figure 2:Displaying Main Screen

Figure 2: Swimlane Diagram

Health Sensitive Activities

SNEEZE/COUGH

CHEST PAIN

FAN SELF

STAGGERING

BACK PAIN

YAWN

FALLING DOWN

NECK PAIN

STRETCH ONESELF

HEADACHE

NAUSEA/VOMITING 12

BLOW NOSE

Figure 3: Methodology

Skeleton Image:

- 1.Hip center
- 2.Middle-spine
- 3. Shoulder center
- 4.Head
- 5.Left Shoulder
- 6.Left-elbow
- 7.Left-wrist
- 8.Left-hand
- 9. Right-shoulder
- 10.Right Elbow

11.Right-wrist

- 12.Right-hand
- 13.Left-hip
- 14.Left-knee
- 15.Left Ankle
- 16.Left-root
- 17.Right-hip
- 18.Right-knee
- 19.Right-ankle
- 20.Rightfoot

3D Matrix Representation:

P(x, y, z)

f = pn - phip(n = 2, 3,N). x = abscissay = ordinatez = Distance from the

human body to the camera

pn = other nodes except the
hip joint
phip = the hip-center joint.

$$f = pn - phip$$

(n = 2, 3,N).

x = abscissa
 y = ordinate
 z = Distance from the
 human body to the camera

pn = other nodes except the
hip joint
phip = the hip-center joint.

DATASET

Sample Videos from NTU-RGB-D and NTU-RGB-D 120 Dataset[6]

• Javairia Rehman

UML Diagrams

References

- [1] Beddiar, D.R., Nini, B., Sabokrou, M. et al. Vision-based human activity recognition: a survey. Multimed Tools Appl 79, 30509–30555 (2020). https://doi.org/10.1007/s11042-020-09004-3
- [2] Hbali, Y., Hbali, S., Ballihi, L., & Sadgal, M. (2018). Skeleton-based human activity recognition for elderly monitoring systems. IET Computer Vision, 12(1), 16-26.
- [3] Reena, J. K., & Parameswari, R. (2019, February). A smart health care monitor system in IoT based human activities of daily living: a review. In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) (pp. 446-448). IEEE.
- [4] Kim, K., Jalal, A., & Mahmood, M. (2019). Vision-based human activity recognition system using depth silhouettes: A smart home system for monitoring the residents. Journal of Electrical Engineering & Technology, 14(6), 2567-2573.
- [5] Sun, H., & Chen, Y. (2022, May). Real-Time Elderly Monitoring for Senior Safety by Lightweight Human Action Recognition. In 2022 IEEE 16th International Symposium on Medical Information and Communication Technology (ISMICT) (pp. 1-6). IEEE.
- [6] https://rosel.ntu.edu.sg/dataset/actionRecognition/