Q1. MDPs: Dice Bonanza (15 pts)

A casino is considering adding a new game to their collection, but need to analyze it before releasing it on their floor. They have hired you to execute the analysis. On each round of the game, the player has the option of rolling a fair 6-sided die. That is, the die lands on values 1 through 6 with equal probability. Each roll costs 1 dollar, and the player **must** roll the very first round. Each time the player rolls the die, the player has two possible actions:

- 1. Stop: Stop playing by collecting the dollar value that the die lands on, or
- 2. Roll: Roll again, paying another 1 dollar.

You decide to model this problem using an infinite horizon Markov Decision Process (MDP). The player initially starts in state Start, where the player only has one possible action: Roll. State s_i denotes the state where the die lands on i. Once a player decides to Stop, the game is over, transitioning the player to the End state.

(a) In solving this problem, you consider using policy iteration. Your initial policy π is in the table below. Evaluate the policy at each state, with $\gamma = 1$.

State	s_1	s_2	s_3	s_4	s_5	s_6
$\pi(s)$	Roll	Roll	Stop	Stop	Stop	Stop
$V^{\pi}(s)$						

(b) Having determined the values, perform a policy update to find the new policy π' . The table below shows the old policy π and has filled in parts of the updated policy π' for you. If both Roll and Stop are viable new actions for a state, write down both Roll/Stop. In this part as well, we have $\gamma = 1$.

State	s_1	s_2	s_3	s_4	s_5	s_6
$\pi(s)$	Roll	Roll	Stop	Stop	Stop	Stop
$\pi'(s)$	Roll					Stop

(c) Is $\pi(s)$ from part (a) optimal? Explain why or why not.

Q2. Reinforcement Learning (20 pts)

Imagine an unknown game which has only two states $\{A, B\}$ and in each state the agent has two actions to choose from: $\{\text{Up, Down}\}$. Suppose a game agent chooses actions according to some policy π and generates the following sequence of actions and rewards in the unknown game:

t	s_t	a_t	s_{t+1}	r_t
0	A	Down	В	2
1	В	Down	В	-4
2	В	Up	В	0
3	В	Up	A	3
4	A	Up	A	-1

Unless specified otherwise, assume a discount factor $\gamma = 0.5$ and a learning rate $\alpha = 0.5$

(a) Recall the update function of Q-learning is:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a'))$$

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with the above experience sequence?

$$Q(A, Down) = \underline{\qquad}, \qquad Q(B, Up) = \underline{\qquad}$$

Reasoning:

(b) In model-based reinforcement learning, we first estimate the transition function T(s, a, s') and the reward function R(s, a, s'). Fill in the following estimates of T and R, estimated from the experience above. Write "n/a" if not applicable or undefined.

$$\hat{T}(A, Up, A) = \underline{\hspace{1cm}}, \quad \hat{T}(B, Up, A) = \underline{\hspace{1cm}}, \quad \hat{T}(B, Up, A) = \underline{\hspace{1cm}}, \quad \hat{T}(B, Up, B) = \underline{\hspace{1cm}}$$

$$\hat{R}(A, Up, A) = \underline{\hspace{1cm}}, \quad \hat{R}(A, Up, B) = \underline{\hspace{1cm}}, \quad \hat{R}(B, Up, A) = \underline{\hspace{1cm}}, \quad \hat{R}(B, Up, B) = \underline{\hspace{1cm}}$$

(c) To decouple this question from the previous one, assume we had a different experience and ended up with the following estimates of the transition and reward functions:

s	a	s'	$\hat{T}(s, a, s')$	$\hat{R}(s, a, s')$
A	Up	A	1	10
A	Down	A	0.5	2
A	Down	В	0.5	2
В	Up	A	1	-5
В	Down	В	1	8

(i) Give the optimal policy $\hat{\pi}^*(s)$ and $\hat{V}^*(s)$ for the MDP with transition function \hat{T} and reward function \hat{R} . Hint: for any $x \in \mathbb{R}$, |x| < 1, we have $1 + x + x^2 + x^3 + x^4 + \cdots = 1/(1-x)$.

 $\hat{\pi}^*(A) = \underline{\qquad}, \qquad \hat{\pi}^*(B) = \underline{\qquad}, \qquad \hat{V}^*(A) = \underline{\qquad}, \qquad \hat{V}^*(B) = \underline{\qquad}.$

- (ii) If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it converge to? Assume the learning rate α_t is properly chosen so that convergence is guaranteed.
 - \bigcirc the values found above, \hat{V}^*
 - \bigcirc the optimal values, V^*
 - \bigcirc neither \hat{V}^* nor V^*
 - O not enough information to determine

Reasoning:

Q3. Policy Evaluation (15 pts)

In this question, you will be working in an MDP with states S, actions A, discount factor γ , transition function T, and reward function R.

We have some fixed policy $\pi:S\to A$, which returns an action $a=\pi(s)$ for each state $s\in S$. We want to learn the Q function $Q^{\pi}(s,a)$ for this policy: the expected discounted reward from taking action a in state s and then continuing to act according to $\pi: Q^{\pi}(s,a) = \sum_{s'} T(s,a,s')[R(s,a,s') + \gamma Q^{\pi}(s',\pi(s'))]$. The policy π will not change while running any of the algorithms below.

- (a) Can we guarantee anything about how the values Q^{π} compare to the values Q^{*} for an optimal policy π^{*} ?
 - $\bigcirc Q^{\pi}(s,a) \leq Q^{*}(s,a)$ for all s,a
 - $\bigcirc Q^{\pi}(s,a) = Q^*(s,a)$ for all s,a
 - $\bigcirc Q^{\pi}(s,a) \geq Q^{*}(s,a)$ for all s,a
 - O None of the above are guaranteed

Reasoning:

- (b) Suppose T and R are unknown. You will develop sample-based methods to estimate Q^{π} . You obtain a series of samples $(s_1, a_1, r_1), (s_2, a_2, r_2), \dots (s_T, a_T, r_T)$ from acting according to this policy (where $a_t = \pi(s_t)$, for all t).
 - (i) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

$$V(s_t) \leftarrow (1 - \alpha)V(s_t) + \alpha(r_t + \gamma V(s_{t+1}))$$

which approximates the expected discounted reward $V^{\pi}(s)$ for following policy π from each state s, for a learning rate α .

Fill in the blank below to create a similar update equation which will approximate Q^{π} using the samples. You can use any of the terms $Q, s_t, s_{t+1}, a_t, a_{t+1}, r_t, r_{t+1}, \gamma, \alpha, \pi$ in your equation, as well as \sum and max with any index variables (i.e. you could write \max_a , or \sum_a and then use a somewhere else), but no other terms.

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha [\underline{\hspace{2cm}}$$

(ii) Now, we will approximate Q^{π} using a linear function: $Q(s,a) = \sum_{i=1}^{d} w_i f_i(s,a)$ for weights w_1, \ldots, w_d and feature functions $f_1(s,a), \ldots, f_d(s,a)$.

To decouple this part from the previous part, use Q_{samp} for the value in the blank in part (i) (i.e. $Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha Q_{samp}$).

Which of the following is the correct sample-based update for each w_i ?

- $\bigcirc w_i \leftarrow w_i + \alpha[Q(s_t, a_t) Q_{samp}]$
- $\bigcirc w_i \leftarrow w_i \alpha[Q(s_t, a_t) Q_{samp}]$

	\bigcirc	$w_i \leftarrow w_i + \alpha [Q(s_t, a_t) - Q_{samp}] f_i(s_t, a_t)$
	\bigcirc	$w_i \leftarrow w_i - \alpha [Q(s_t, a_t) - Q_{samp}] f_i(s_t, a_t)$
	\bigcirc	$w_i \leftarrow w_i + \alpha [Q(s_t, a_t) - Q_{samp}] w_i$
	\bigcirc	$w_i \leftarrow w_i - \alpha[Q(s_t, a_t) - Q_{samp}]w_i$
(iii)	The alg	orithms in the previous parts (part i and ii) are:
		model-based \square model-free
Door	oning.	

Reasoning: