Unsupervised Learning: Clustering

K-means, Hierarchical Clustering, DBSCAN, and Evaluation Metrics

Sarwan Ali

Department of Computer Science Georgia State University

Today's Learning Journey

- Introduction to Unsupervised Learning
- Clustering Fundamentals
- K-Means Clustering
- 4 Hierarchical Clustering
- **5** DBSCAN
- 6 Clustering Evaluation Metrics
- Practical Considerations
- Real-World Applications
- Summary and Key Takeaways

What is Unsupervised Learning?

Definition: Learning patterns from data without labeled examples

Supervised Learning:

- Has target labels
- Goal: Predict outcomes
- Examples: Classification, Regression

Unsupervised Learning:

- No target labels
- Goal: Discover hidden patterns
- Examples: Clustering, Dimensionality Reduction

Key Insight

Unsupervised learning helps us understand the structure and relationships within data

Types of Unsupervised Learning

Today's Focus: Clustering - grouping similar data points together

What is Clustering?

Definition: Partitioning data into groups (clusters) where:

- Points within a cluster are similar
- Points in different clusters are dissimilar

Applications:

- Customer segmentation
- Gene sequencing
- Image segmentation
- Social network analysis
- Market research

Similarity and Distance Measures

How do we measure similarity? Through distance metrics!

1. Euclidean Distance:

$$d(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2. Manhattan Distance:

$$d(\mathbf{x},\mathbf{y})=\sum_{i=1}^n|x_i-y_i|$$

3. Cosine Similarity: $sim(x, y) = \frac{x \cdot y}{|x||y|}$

Distance Visualization

Kev Point

Choice of distance metric significantly affects clustering results!

K-Means Algorithm Overview

Goal: Partition *n* data points into *k* clusters

Key Idea: Minimize within-cluster sum of squares (WCSS)

$$\mathsf{WCSS} = \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} |\mathbf{x} - \boldsymbol{\mu}_i|^2$$

where C_i is cluster i and μ_i is the centroid of cluster i.

Advantages:

- Simple and fast
- Works well with spherical clusters
- Scales well to large datasets

Disadvantages:

- Need to specify k
- Sensitive to initialization
- Assumes spherical clusters

K-Means Algorithm Steps

- **1 Initialize:** Choose k and randomly place k centroids
- Assign: Assign each point to nearest centroid
- **Output** Update: Move centroids to center of assigned points
- Repeat: Steps 2-3 until convergence

K-Means: Mathematical Formulation

Objective Function:

$$J = \sum_{i=1}^k \sum_{\mathbf{x} \in C_i} |\mathbf{x} - \boldsymbol{\mu}_i|^2$$

Centroid Update Rule:

$$\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$$

Assignment Rule:

$$C_i = \{\mathbf{x} : |\mathbf{x} - \boldsymbol{\mu}_i| \le |\mathbf{x} - \boldsymbol{\mu}_i| \text{ for all } j\}$$

Convergence

Algorithm converges when centroids stop moving or maximum iterations reached

Choosing the Right K

The Elbow Method:

- Run K-means for different values of k
- Plot WCSS vs k
- Look for the "elbow" point
- Choose k at the elbow

Other Methods:

- Silhouette analysis
- Gap statistic
- Domain knowledge

Hierarchical Clustering Overview

Builds a hierarchy of clusters without specifying k in advance Agglomerative (Bottom-up):

- Start: Each point is a cluster
- Iteratively merge closest clusters
- End: One big cluster

Divisive (Top-down):

- Start: All points in one cluster
- Iteratively split clusters
- End: Each point is a cluster

Key Advantage

Produces a complete clustering hierarchy - can choose any number of clusters

Linkage Criteria

How do we measure distance between clusters? 1. Single Linkage (MIN):

$$d(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{y} \in C_i} d(\mathbf{x}, \mathbf{y})$$

2. Complete Linkage (MAX):

$$d(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} d(\mathbf{x}, \mathbf{y})$$

Linkage Types

3. Average Linkage:

$$d(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{x} \in C_i} d(\mathbf{x}, \mathbf{y})$$

- Single: Tends to create elongated clusters (chaining effect)
- Complete: Creates compact, spherical clusters
- **Average:** Balanced approach

Hierarchical Clustering Algorithm

Agglomerative Clustering Steps:

- Start with n clusters (each point is a cluster)
- Compute distance matrix between all pairs of clusters
- Merge the two closest clusters
- Update distance matrix
- Repeat until one cluster remains

Time Complexity: $O(n^3)$ - expensive for large datasets

Example: Distance Matrix Update

When merging clusters C_i and C_i into C_{ii} :

$$d(C_{ij}, C_k) = \alpha_i d(C_i, C_k) + \alpha_j d(C_j, C_k) + \beta d(C_i, C_j) + \gamma |d(C_i, C_k) - d(C_j, C_k)|$$

Different linkage criteria use different values of $\alpha_i, \alpha_i, \beta, \gamma$

DBSCAN: Density-Based Clustering

Density-Based Spatial Clustering of Applications with Noise

Key Idea: Clusters are dense regions separated by sparse regions

Parameters:

- ϵ (eps): Maximum distance for neighborhood
- MinPts: Minimum points to form dense region

Advantages:

- Finds arbitrary shaped clusters
- Handles noise and outliers
- No need to specify number of clusters

DBSCAN Result

DBSCAN: Point Classifications

Three types of points:

1. Core Points:

- Have at least MinPts points in ϵ -neighborhood
- Form the "interior" of clusters

2. Border Points:

- Have fewer than MinPts neighbors
- But are in neighborhood of core point

3. Noise Points:

- Neither core nor border points
- Considered outliers

Density Connectivity

Two points belong to same cluster if there's a path of core points between them

Point Types

Noise ighborhood

DBSCAN Algorithm

Algorithm Steps:

- For each unvisited point p:
 - Mark p as visited
 - **2** Find all points in ϵ -neighborhood of p
 - If neighborhood has ≥ MinPts points:
 - Mark p as core point
 - Create new cluster with p
 - 3 Add all density-reachable points to cluster
 - Else if p is in neighborhood of core point: mark as border
 - 5 Else: mark p as noise

Time Complexity: $O(n \log n)$ with spatial indexing, $O(n^2)$ without

Parameter Selection

- MinPts: Usually set to 2 × dimensions
- ϵ : Use k-distance graph (elbow method)

Why Evaluate Clustering?

Challenge: No ground truth labels in unsupervised learning

Two Types of Evaluation: Internal Measures:

- Use only the data itself
- Measure cluster cohesion and separation
- Examples: Silhouette, Davies-Bouldin

External Measures:

- Compare with ground truth (if available)
- Measure agreement with true clusters
- Examples: ARI, NMI, Purity

Goal

Find clustering that maximizes intra-cluster similarity and minimizes inter-cluster similarity

Silhouette Analysis

Most popular internal clustering evaluation metric

- For each point *i*:
 - a(i) = average distance to points in same cluster
 - b(i) = average distance to points in nearest cluster

Silhouette coefficient:

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

Interpretation:

- $s(i) \approx 1$: Well clustered
 - $s(i) \approx 0$: On cluster boundary
 - $s(i) \approx -1$: Poorly clustered

Overall Score:

$$Silhouette = \frac{1}{n} \sum_{i=1}^{n} s(i)$$

Davies-Bouldin Index

Measures average similarity between clusters

For clusters *i* and *j*:

$$R_{ij} = \frac{S_i + S_j}{M_{ij}}$$

where:

- S_i = average distance from points in cluster i to centroid
- $M_{ij} =$ distance between centroids of clusters i and j

Davies-Bouldin Index:

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} R_{ij}$$

Properties:

- Lower values indicate better clustering
- Range: $[0, \infty)$
- Considers both cohesion and separation

External Evaluation Metrics

When ground truth labels are available

1. Adjusted Rand Index (ARI):

$$ARI = \frac{RI - E[RI]}{\max(RI) - E[RI]}$$

- Range: [-1,1], higher is better
- Adjusts for chance agreement
- 2. Normalized Mutual Information (NMI):

$$NMI = \frac{2 \times MI(C, T)}{H(C) + H(T)}$$

- Range: [0,1], higher is better
- Based on information theory
- **3. Purity:** Purity = $\frac{1}{n} \sum_{i=1}^{k} \max_{j} |C_i \cap T_j|$
 - ullet Range: [0,1], higher is better
 - Simple but biased toward many clusters

Algorithm Comparison

Algorithm	Advantages	Disadvantages	Time	Clusters	Best For
K-Means	Simple, Fast, Scalable	Need to specify k , Spherical clusters	O(nkt)	Spherical	Large datasets
Hierarchical	No <i>k</i> needed, Hierarchy	Expensive, Sensitive to noise	$O(n^3)$	Any shape	Small datasets, Hierarchy
DBSCAN	Arbitrary shapes, Han- dles noise	Parameter sensitive	$O(n \log n)$	Any shape	Irregular clusters

Selection Guidelines:

- Dataset size: K-means for large, Hierarchical for small
- Cluster shape: K-means for spherical, DBSCAN for irregular
- Noise tolerance: DBSCAN best, K-means worst
- Parameter sensitivity: Hierarchical least, DBSCAN most

Data Preprocessing for Clustering

Critical preprocessing steps:

1. Feature Scaling:

- Min-Max: $x' = \frac{x \min}{\max \min}$
- Z-score: $x' = \frac{x-\mu}{\sigma}$
- Robust: $x' = \frac{x \text{median}}{IOR}$

2. Handle Missing Values:

- Remove incomplete records
- Impute with mean/median/mode
- Use algorithms that handle missing data

3. Dimensionality Reduction:

- PCA for linear relationships
- t-SNE for visualization
- Feature selection methods

4. Outlier Detection:

- Statistical methods (Z-score, IQR)
- Distance-based methods
- Consider domain knowledge

Warning

Different preprocessing can lead to completely different clustering results!

Common Pitfalls and Best Practices

Common Pitfalls:

- Not scaling features
- Using wrong distance metric
- Poor parameter selection
- Ignoring domain knowledge
- Over-interpreting results
- Not validating clusters

Validation Strategy

- Internal metrics (Silhouette, DB Index)
- Visual inspection (when possible)
- Omain expert validation
- Stability analysis (multiple runs)
- External validation (if labels available)

Best Practices:

- Always scale your data
- Try multiple algorithms
- Use multiple evaluation metrics
- Visualize results when possible
- Validate with domain experts
- Document parameter choices

Clustering Applications

Business & Marketing:

- Customer segmentation
- Market basket analysis
- Recommendation systems
- Fraud detection

Biology & Medicine:

- Gene expression analysis
- Drug discovery
- Medical image segmentation
- Disease classification

Technology:

- Image segmentation
- Social network analysis
- Web search results
- Anomaly detection

Science & Research:

- Astronomy (star classification)
- Climate modeling
- Ecology (species grouping)
- Psychology (behavioral patterns)

Key Success Factor

Understanding the domain and having clear objectives for clustering

Case Study: Customer Segmentation

Problem: E-commerce company wants to segment customers for targeted marketing

Data: Customer purchase history, demographics, website behavior

Approach:

- Feature Engineering: RFM analysis (Recency, Frequency, Monetary)
- Preprocessing: Scale features, handle missing values
- Algorithm Selection: Try K-means, Hierarchical, DBSCAN
- Evaluation: Silhouette analysis, business metrics
- **Interpretation:** Profile each segment

Results:

- High-value customers (10%)
- Regular customers (45%)
- Occasional buyers (35%)
- At-risk customers (10%)

Business Impact:

- Personalized marketing
- Retention campaigns
- Product recommendations
- Resource allocation • • • • •

Summary

What we learned today:

- Unsupervised Learning: Finding patterns without labels
- V-Means: Fast, simple, works well for spherical clusters
- Mierarchical: Creates cluster hierarchy, expensive but flexible
- **OBSCAN:** Handles noise and arbitrary shapes
- **Section**: Internal (Silhouette, DB) and External (ARI, NMI) metrics

Key Principles:

- No single "best" clustering algorithm
- Preprocessing is crucial
- Always validate results
- Domain knowledge is essential
- Multiple metrics provide better insight

Remember

Clustering is exploratory - the goal is to discover meaningful patterns that provide actionable insights

26 / 28

Next Steps

To master clustering:

Practice:

- Implement algorithms from scratch
- Work with real datasets
- Experiment with different parameters
- Compare algorithm performance

Advanced Topics:

- Spectral clustering
- Gaussian mixture models
- Fuzzy clustering
- Online clustering

Tools & Libraries:

- scikit-learn (Python)
- cluster (R)
- WEKA (Java)
- Apache Spark MLlib

Resources:

- "Pattern Recognition and Machine Learning" - Bishop
- "The Elements of Statistical Learning" -Hastie et al.
- Online courses and tutorials
- Kaggle competitions

Thank You!

Questions & Discussion

Properties • Remember: Clustering is an art as much as it is a science

≥ sali85@student.gsu.edu