3. 기본 데이터 형태, 변수 사용

기본 데이터 형태

R코드에서 다루는 Data의 형태는 하기와 같다.

	설명	예제
Vectors	1차원 배열(숫자, 문자, 논리형 Data) Type은 반드시 동일한 형태의 Data를 갖고 있어야 함	Height<-c(58, 59, 60, 61) v<-seq(0, 100, by=25)
Matrices	2차원 배열(숫자, 문자, 논리형 Data) Type은 반드시 동일한 형태의 Data를 갖고 있어야 함	m<-matrix(1:20, nrow=5, ncol=4) dimnames(m)<-list(c('a', 'b', 'c', 'd', 'e'),c('p', 'q', 'r', 's')
Arrays	2차원 이상의 벡터형 데이터	a<-array(1:24, c(2,3,4))
Factors	이산형 데이터에 대한 표현 (명목형, 순서형 데이터)	colors<-c('green', 'red', 'blue') factor(colors)
Data Frames	동일한 길이의 여러 벡터형 데이터를 갖고 있는 리스트	team<-c('Man city', 'Man Utd', 'Arsenal', 'Chelsea') home_wins<-c(14, 10, 10, 9) home_draws<-c(0, 1, 2, 2) league_table<-data.frame(team, home_wins, home_draws)
Lists	각 Item의 명칭을 갖고 있는 Vector Type은 여러 개로 구성될 수 있음	peter<-list(name='peter', age=30, glasses=TRUE)

기본데이터 형태

□ 벡터(동일한 데이터 형)

□ 리스트(다른 데이터 형)

□ 어레이(동일한 데이터 형)

□ 매트릭스(동일한 데이터 형)

□ 데이터프레임(다른 데이터 형)

R 언어에서 가장 많이 사용되고 기본적인 R-Object는 Vectors이다. 여러 개의 데이터가 나열되어 있는 데이터 형태이다. Vectors는 c() 함수를 사용하여 만들 수 있다. 벡터를 만드는 c()함수의 c는 concatenate(붙이다)를 의미한다.

코드 #벡터 생성 apple <- c('red','green',"yellow") print(apple) # 벡터변수의 유형 확인하기 print(class(apple)) #벡터연산 # a<-c(1,3,5) == c(1, 3, 5) + c(100, 100, 100) a<-c(1, 3, 5) print(a+100)

실행결과

[1] "red" "green" " yellow"

[1] "character"

[1] 101 103 105

벡터 데이터는 다양한 방법으로 다룰 수 있다.

특정 위치값 제어

```
#벡터생성
> a<-c(1:5)
#특정 요소값만 조회
> a[3]
[1] 3
#특정 요소값만 제외하고 조회
> a[-3]
[1] 1 2 4 5
#1번~3번까지 요소값만 제외하고 조회
> a[-1:-3]
[1] 4 5
# 2번째에서 4번째까지 요소값만 조회
> a[2:4]
[1] 2 3 4
#2번째 값을 변경
> a[2]<-6
> a
[1] 16345
```

신규값 추가

```
# 신규값을 추가한다.
> a<-c(a,7)
> a
[1] 1 6 3 4 5 7
# 벡터길이보다 큰 위치에 신규값 추가하면 NA를 채운후 값을 추가한다.
# Null값이 아닌 NA가 추가된다.
> a[9]<-9
> a
[1] 1 6 3 4 5 7 NA NA 9
# append명령을 이용하여 3번째 값 다음에 10을 추가한다.
> append(a,10,after=3)
[1] 1 6 3 10 4 5 7 NA NA 9
```

벡터 데이터는 다양한 방법으로 연산을 할 수 있다.

숫자값 연산

- # 벡터와 벡터 연산하기
- > c(1,2,3)+c(4,5,6)

[1] 5 7 9

#벡터와 값을 연산하기

> c(1,2,3)+1

[1] 2 3 4

- # 숫자와 문자로 되어 있으나
- # union연산 결과 벡터내 요소값이 모두 문자로 변경된다.
- > union(c('1','2',3),c(4,5,6))
- [1] "1" "2" "3" "4" "5" "6"

집합연산

- > var1 < -c(1,2,3)
- > var2 < -c(3,4,5)
- > var1-var2

[1] -2 -2 -2

var1에 있으나 var2에 없는 요소 출력하기

> setdiff(var1,var2)

[1] 1 2

var1과 var2에 교집합 구하기

> intersect(var2,var1)

[1] 3

- # var1과 var2의 합집합 구하기
- > union(var1,var2)

[1] 1 2 3 4 5

벡터에 연속 or 반복값을 할당하는 방법과 길이를 계산하는 방법은 하기와 같다.

연속 데이터 설정하기

1에서 5까지의 값을 설정

> a<-seq(1,5);a

[1] 1 2 3 4 5

#2에서 -2까지의 값을 설정

> b < -seq(2,-2);b

[1] 2 1 0 -1 -2

#1에서 10까지 2씩 증가시키면서 값을 설정

> c < -seq(1,10,2);c

[1] 1 3 5 7 9

반복 데이터 할당하기, 벡터길이 계산하기

#1에서 3까지 값을 2회 반복 설정하기

> d < -rep(1:3,2);d

[1] 1 2 3 1 2 3

#1에서 3까지 값을 각각 2회 반복 설정하기

> e<-rep(1:3,each=2);e

[1] 1 1 2 2 3 3

#벡터 e의 길이 구하기

> length(e)

[1] 6

벡터에 특정 문장가 포함되어 있는지를 알아내기 위해서는 %in%을 이용한다.

숫자값 존재 여부 확인

> a < -c(1:5)

> a

[1] 1 2 3 4 5

#값 4가 벡터 a에 존재하는지 확인

> 4 %in% a

[1] TRUE

#값 9가 벡터 a에 존재하는지 확인

> 9 %in% a

[1] FALSE

문자값 존재 여부 확인

> b<-c("apple","pear","potato","grape","pineapple")

문자값 pear가 벡터 b에 존재하는지 확인

> "pear" %in% b

[1] TRUE

#문자일부는 적용되지 않음

> "p" %in% b

[1] FALSE

매트릭스(matrix)

2차원의 데이터셋이다. 매트릭스 함수에 벡터를 제공하여 만들 수 있다. 모든 행과 열의 데이터 형태는 동일해야 한다.

<u>코드</u> 	실행결	과
# 벡터데이터에 행과 열의 개수를 지정하여 매트릭스를 만든다. # byrow를 이용하여 데이터가 채워지는 방향을 지정한다. M = matrix(c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE) print(M) print(class(M)) M = matrix(c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = FALSE) print(M)	[,1] [,2] [,3] [1,] "a" "a" "b" [2,] "c" "b" "a" [1] "matrix" [,1] [,2] [,3] [1,] "a" "b" "b" [2,] "a" "c" "a"	
<pre>a<- matrix(1:9, nrow=3, ncol=3) a[1,] a[,-1] sum(a); mean(a); median(a[,3]); mean(a[,2])</pre>	[1] 1 4 7 [,1] [,2] [1,] 4 7 [2,] 5 8 [3,] 6 9	[1] 45 [1] 5 [1] 8 [1] 5

매트릭스(matrix)

매트릭스 형태의 데이터는 행과 열을 설정하여 조회할 수 있다.

<u>코드</u>	실행결	곽
> M = matrix(c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE)	[,1] [,2] [,3]	
> M	[1,] "a" "a" "b"	
[,1] [,2] [,3]	[2,] "c" "b" "a"	
[1,] "a" "b" "b"	[1] "matrix"	
[2,] "a" "c" "a"	[,1] [,2] [,3]	
# 1열의 모든값을 출력	[1,] "a" "b" "b"	
> M[,1]	[2,] "a" "c" "a"	
[1] "a" "a"		
# 1행의 모든값을 출력	[1] 1 4 7	[1] 45
> M[1,]	[,1] [,2]	[1] 5
[1] "a" "b" "b"	[1,] 4 7	[1] 8
#1행과 1열의 값을 출력	[2,] 5 8	[1] 5
> M[1,1]	[3,] 6 9	
[1] "a"		

매트릭스(matrix)

매트릭스에서 서브매트릭스를 추출하는 방법은 하기와 같다.

코드

- > M<-matrix(c(1:12),nrow=3)
- > M
- > M[c(1:2),c(2:3)]

실행결과

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

[,1] [,2]

[1,] 4 7

[2,] 5 8

어레이(Arrays)

매트릭스는 2차원에 한정되고 arrays는 어떠한 차원으로도 만들 수 있다.

<u>코드</u> 	실행결과
# Create an array.	, , 1
a <- array(c('green','yellow'),dim = c(3,3,2))	[,1] [,2] [,3]
print(a)	[1,] "green" "yellow" "green"
	[2,] "yellow" "green" "yellow"
	[3,] "green" "yellow" "green"
	, , 2
	[,1] [,2] [,3]
	[1,] "yellow" "green" "yellow"
	[2,] "green" "yellow" "green"
	[3,] "yellow" "green" "yellow"

팩터(Factors)

Factors는 주로 빈도분석에 활용하는 변수형태이다.

vector로 만들어지는 R-object이며, vector에 있는 element들의 고유값(distinct value)을 레이블로 저장한다. Factors는 factor()함수를 사용하여 만들 수 있으며, nlevels() 함수를 통해 factors의 레벨을 알 수 있다.

코드

실행결과

#벡터 생성

apple_colors <- c('green','green','yellow','red','red','red','green')

factor()함수를 이용하여 vector을 factor으로 만들기

factor_apple <- factor(apple_colors)

factor와 factor의 레벨을 출력하기

print(factor_apple)

print(nlevels(factor_apple))

factor의 빈도 보여주기

summary(factor_apple)

[1] green green yellow red red green

Levels: green red yellow

[1] 3

green red yellow

3 3 1

데이터프레임(Dataframe)

데이터프레임은 구조화된 데이터 오브젝트이다. 매트릭스와 다른점은 데이터프레임은 컬럼으로 어떠한 데이터타입이든 넣을 수 있다. 첫 번째 컬럼은 numeric, 두 번째 컬럼은 문자열, 세 번째 컬럼은 논릿값 등 자유롭게 지정할 수 있다. 이것은 같은 길이의 vector들의 list로 볼 수 있다. 데이터 프레임은 data.frame() 함수를 통해 생성할 수 있다.

코드 # Create the data frame BMI <- data.frame(gender = c("Male", "Male", "Female"), height = c(152, 171.5, 165), weight = c(81,93,78), Age = c(42,38,26)print(BMI)

실행결과

,	gender	height	weight	Age
1	Male	152.0	81	42
2	Male	171.5	93	38
3	Female	165.0	78	26

데이터프레임(Dataframe)

행렬을 데이터프레임으로 변환하는 것도 가능하다. 이 때 열이름을 지정해주지 않으면 "X"를 접미사로 하여 X1, X2, 이런 식으로 열 이름이 붙는다. 행 이름은 지정하지 않으면 별도로 생성되지 않으며 표시되지도 않는다.

코드	실행결과	
m <- matrix(1:6, nrow=3)	> df2	> df3
df2 <- data.frame(m)	X1 X2	X1 X2
Df2	1 1 4	r1 1 4
	2 2 5	r2 2 5
df3 <- data.frame(m, row.names=c("r1", "r2", "r3"))	3 3 6	r3 3 6
df3		

데이터프레임(Dataframe)

여러 개의 데이터 프레임은 merge()명령을 이용하여 합칠 수가 있다.

<u>코드</u> 	실행결과	
df1<-data.frame(name=c('apple','grape','pear'),price=c(100,200,300))	name price	name price
df2<-data.frame(name=c('apple','berry','banana'),price=c(400,500,600))	1 apple 100	1 apple 400
df1	2 grape 200	2 berry 500
df2	3 pear 300	3 banana 600
#데이터가 없는 것도 모두 나오도록		
merge(df1,df2,all=T)	name price	
	1 apple 100	
	2 apple 400	
	3 grape 200	
	4 pear 300	
	5 banana 600	
	6 berry 500	

리<u>스트(List)</u>

List1[1:2]

키, 값의 형태로 데이터를 저장하는 일종의 배열 데이터 형태이다. 서로 다른 데이터 유형을 저장할 수 있다.

<u>코드</u> 	실행결과	
list1 <- list(name='jenny',	\$name	[1] "jenny"
address='Seoul',	[1] "jenny"	
tel='010-7777-8888',	\$address	
pay=500)	[1] "Seoul"	
list1	\$tel	\$name
	[1] "010-7777-8888"	[1] "jenny"
#name열만 조회하고 싶은 경우	\$pay	\$address
list1\$name	[1] 500	[1] "Seoul"

변수사용규칙

R에서 변수를 사용하기 위해서는 하기규칙을 따라야 한다.

변수 사용 규칙

- □ 변수명칭: 영어/한글 모두 가능하며 문자로 시작한다.
 - 숫자로 시작하지 않도록 한다.
 - 예1) var1, hflight,
 - 예2) 100var, 3hf, ...
- □ 변수명칭 : 대소문자를 구분한다.
 - 윈도우내 개발 솔루션과 다른점
 - ABC ≠ abc

□ 변수에 값 설정 방법

- 방법: '<-', '='
- 추천 : ' <- ' 사용을 권장한다.
- 예) var1 <- 100
- 참고: '-> '으로도 변수 값 설정이 가능하다.
- 예) 100 -> var1

변수 사용 금지어

R에서 변수를 설정할 때 아래와 같은 예약어는 사용하지 않도록 주의한다.

R에서 사용되는 예약어

- break : loop문을 빠져나오는 명령어로 사용

- else : 조건문에서 사용

- FALSE : boolean값으로 사용

- for : 반복문에서 사용

- function : 사용자 함수 정의할 때 사용

- if: 조건문에서 사용

- in : 반복문에서 사용

- Inf: infinite의 약어로 무한대를 의미하는 용도로 사용

- NA: Not Available의 약어로 결측값을 의미하는 용도로 사용

- NaN : Not a Number의 약어로 0/0과 같이 수학적으로 정의되지 않음을 의미하는 용도로 사용

- next : 반복문에서 사용

- NULL: 결측치를 의미하는 용도로 사용

- repeat : 반복문을 의미하는 용도로 사용

- TRUE: boolean값으로 사용

- while : 반복문에서 사용

변수에 값 대입

R에서 변수값은 다양한 방법으로 설정할 수 있다.

연속 변수값 설정

□ 연속적인 값 대입하기

> seq1 <-1:6

> seq1

[1] 1 2 3 4 5 6

□ 문자는 연속적인 값 대응이 안됨

> seq2<-"a":"c"

Error in "a":"c" : NA/NaN argument

In addition: Warning messages:

1: NAs introduced by coercion

2: NAs introduced by coercion

연속 시간데이터 설정

□ 시간데이터를 연속으로 대입하기(日 기준)

- > date1<-seq(from=as.Date('2018-09-01'),to=as.Date('2018-09-10'),by=2)
- > date1

[1] "2018-09-01" "2018-09-03" "2018-09-05" "2018-09-07" "2018-09-09"

□ 시간데이터를 연속으로 대입하기(月 기준)

- > date2<-seq(from=as.Date('2018-09-01'),to=as.Date('2018-12-10'),by='month')
- > date2

[1] "2018-09-01" "2018-10-01" "2018-11-01" "2018-12-01"

□ 시간데이터를 연속으로 대입하기(年 기준)

- > date3<-seq(from=as.Date('2018-09-01'),to=as.Date('2022-12-10'),by='year')
- > date3

[1] "2018-09-01" "2019-09-01" "2020-09-01" "2021-09-01" "2022-09-01"

변수목록 조회 및 제거

현재 R에 설정되어 존재하는 변수 목록을 조회하고 삭제하는 방법은 하기와 같다.

변수목록 조회 및 삭제 □ objects() > a<-iris > b<-"i am korean" > objects() [1] "a" "b" □ rm(삭제 대상변수명) > a<-iris > b<-"i am korean" > objects() [1] "a" "b" > rm(a) > objects() [1] "b"

모든 변수 삭제

- ☐ rm(list=ls())
- > a<-iris
- > b<-"i am korean"
- > objects()
- [1] "a" "b"
- > rm(list=ls())
- > objects()
- character(0)

변수 연산자

R에서 사용가능한 산술 연산자는 다음과 같다.

산술연산자	산술연산자
□ 더하기:+ > 1+2	□ 정수나누기 : %/% > 5%/%2
[1] 3	[1] 2
그 빼기 : - > 2-1	□ 나머지 구하기 : %%
[1] 1	> 5%%2 [1] 1
□ 곱하기 : *	י נין י
> 3*9 [1] 27	□ 승수 구하기 : ^, **
□ 나누기(실수가능) : /	> 2^3
> 5/2 [1] 2.5	[1] 8

변수값표시

0의 개수에 따라서 큰 값은 e(지수) 표기법을 적용한다.

숫자 크기에 따른 표기법

□ 작은수의 경우 표기

> 50000

[1] 50000

□ 큰수(0이 5개 이상)의 경우는 지수표기 적용

> 500000

[1] 5e+05

지수 표기법 사용

□ 지수표기법을 이용한 숫자값 설정

> 5e2

[1] 500

> 5e-1

[1] 0.5

NA와 NULL의 의미

[1] 6

Na와 NULL의 정확한 의미는 서로 다르다.

NA의 의미 NULL의의미 □ NA는 값을 모르는 경우를 의미한다. □ NULL은 값이 없는 경우를 의미한다. - Not Applicable - 결측치를 의미한다. - Not Available □ sum연산에 NA가 사용되는 경우 □ sum, mean연산에 NULL이 사용되는 경우 > sum(1,3,5)>#NULL을 제외한 합을 구한다. [1] 9 > sum(1,NULL,5) > sum(1,NA,5)[1] 6 [1] NA #NULL을 제외한 평균값을 구한다. > a<-c(1,NULL,5) □ NA를 빼고 sum연산을 하는 방법 > mean(a) > sum(1,NA,5,na.rm=TRUE)

[1] 3

R Cheat sheet

Base R

Cheat Sheet

Getting Help

Accessing the help files

?mean

Get help of a particular function.

help.search('weighted mean')

Search the help files for a word or phrase.

help(package = 'dplyr')

Find help for a package.

More about an object

str(iris)

Get a summary of an object's structure.

class(iris)

Find the class an object belongs to.

Using Libraries

install.packages('dplyr')

Download and install a package from CRAN.

library(dplyr)

Load the package into the session, making all its functions available to use.

dplyr::select

Use a particular function from a package.

data(iris)

Load a built-in dataset into the environment.

Working Directory

getwd()

Find the current working directory (where inputs are found and outputs are sent).

setwd('C://file/path')

Change the current working directory.

Use projects in RStudio to set the working directory to the folder you are working in.

Vectors

Creating Vectors Join elements into c(2, 4, 6) 2 4 6 a vector An integer 2:6 2 3 4 5 6 sequence A complex 2.0 2.5 3.0 seg(2, 3, by=0.5) sequence rep(1:2, times=3) 121212 Repeat a vector Repeat elements 111222 rep(1:2, each=3) of a vector

Vector Functions

sort(x) rev(x)
Return x sorted. Return x reversed.

table(x) unique(x)
See counts of values. See unique values.

Selecting Vector Elements

By Position

x[4] The fourth element.

x[-4] All but the fourth.

x[2:4] Elements two to four.

x[-(2:4)] All elements except two to four.

x[c(1, 5)] Elements one and five.

By Value

x[x == 10] Elements which
are equal to 10.

x[x < 0] All elements less
than zero.

x[x %in% Elements in the set
c(1, 2, 5)] 1, 2, 5.</pre>

Named Vectors

x['apple'] Element with name 'apple'.

Programming

for Loop for (variable in sequence){ Do something } Example for (i in 1:4){ j <- i + 10</pre>

while (condition){ Do something } Example while (i < 5){ print(i) i <- i + 1</pre>

While Loop

print(j)

Input

Description

file type special for R.

Functions

Reading and Writing Data

Ouput

<pre>df <- read.table('file.txt')</pre>	<pre>write.table(df, 'file.txt')</pre>	Read and write a delimited text file.
<pre>df <- read.csv('file.csv')</pre>	write.csv(df, 'file.csv')	Read and write a comma separated value file. This is a special case of read.table/ write.table.
<pre>load('file.RData')</pre>	<pre>save(df, file = 'file.Rdata')</pre>	Read and write an R data file, a

a == b Are equal a > b Greater than a >= b Greater than or equal to a != b Not equal a < b Less than a <= b Less than or equal to is.null(a) Is missing

R Cheat sheet

log(x)

Also see the stringr library.

Join elements of a vector together.

cut(x, breaks = 4)

Types

Converting between common data types in R. Can always go from a higher value in the table to a lower value.

as.logical	TRUE, FALSE, TRUE	Boolean values (TRUE or FALSE)
as.numeric	1, 0, 1	Integers or floating point numbers.
as.character	'1', '0', '1'	Character strings. Generally preferred to factors.
as.factor	'1', '0', '1', levels: '1', '0'	Character strings with preset levels. Needed for some statistical models.

Maths Functions

sum(x)

Sum

Natural log.

exp(x)	Exponential.	mean(x)	Mean.
max(x)	Largest element.	median(x)	Median.
min(x)	Smallest element.	quantile(x)	Percentage quantiles.
round(x, n)	Round to n decimal places.	rank(x)	Rank of element
signif(x, n)	Round to n significant figures.	var(x)	The variance.
cor(x, y)	Correlation.	sd(x)	The standard deviation.

Variable Assignment

> a	<- 'apple'
> a	
[1]	'apple'

The Environment

List all variables in the environment.
Remove x from the environment.
Remove all variables from the environment.

You can use the environment panel in RStudio to browse variables in your environment.

Matrixes

 $m \leftarrow matrix(x, nrow = 3, ncol = 3)$ Create a matrix from x.

Lists

 $l \leftarrow list(x = 1:5, y = c('a', 'b'))$ A list is collection of elements which can be of different types.

1[[2]] Second element of L

1[1] New list with only the first element.

1\$x Element named

New list with only element named v.

1['v']

Also see the dplyr library.

Data Frames

 $df \leftarrow data.frame(x = 1:3, y = c('a', 'b', 'c'))$ A special case of a list where all elements are the same length.

dim(df)

Number of

rows.

columns and

×	У
1	а
2	b
3	с

Matrix subsetting df[, 2]

Understanding a data frame See the full data View(df) frame. See the first 6 head(df) rows.

nrow(df) cbind - Bind columns. Number of rows. ncol(df) Number of columns.

rbind - Bind rows.

Strings

paste(x, y, sep = ' ') Join multiple vectors together.

paste(x, collapse = ' ')

grep(pattern, x) Find regular expression matches in x.

gsub(pattern, replace, x) Replace matches in x with a string.

> toupper(x) Convert to uppercase. tolower(x) Convert to lowercase.

nchar(x) Number of characters in a string.

Factors

factor(x) Turn a vector into a factor. Can

Turn a numeric vector into a set the levels of the factor and factor but 'cutting' into the order. sections.

Statistics

 $lm(x \sim y, data=df)$ Linear model.

 $glm(x \sim y, data=df)$ Generalised linear model.

summary Get more detailed information out a model.

t.test(x, y) Preform a t-test for difference between means.

pairwise.t.test Preform a t-test for paired data.

proportions. aov Analysis of

variance.

prop.test

Test for a

difference

between

Distributions

	Random Variates	Density Function	Cumulative Distribution	Quantile
Normal	rnorm	dnorm	pnorm	qnorm
Poison	rpois	dpois	ppois	qpois
Binomial	rbinom	dbinom	pbinom	qbinom
Uniform	runif	dunif	punif	qunif

Plotting

Also see the ggplot2 library.

plot(x, y) Values of x against y.

Histogram of

Dates

See the lubridate library.