

Modélisation et Simulation Robotique Projet de Conception, Modélisation et Commande d'un robot parallèle 3RRR

...

1 Objectif

L'objectif du projet est de concevoir, modéliser et commander un robot manipulateur parallèle plan à 3 dll. Ce robot possède 3 branches identiques, chacune de type RRR. Chaque branche relie le bâti (0) à l'effecteur (E) par 3 liaisons rotoïde et deux corps rigides intermédiaires.

2 Modèle géométrique

Le modèle géométrique inverse, utile pour la commande, consiste à calculer les angles articulaires, en particulier ceux des actionneurs (α_i) , pour une pose désirée de l'effecteur (x_E, y_E, θ_E) .

Deux fonctions codes sont données en langage matlab.

- 1. La première utilise une résolution numérique d'équations non-linéaires principalement basée sur l'algorithme itératif de Newton-Raphson. Ces équations expriment que les positions des points extrémités des bras B_i rejoignent celles des points E_i de l'effecteur. Le problème étant plan, il y a deux coordonnées x,y pour chaque contrainte. On se retrouve donc avec un problème à 6 équations et 6 inconnus (α_i, β_i) . Cette première méthode nécessite une solution initiale, qui conditionne la solution trouvée.
- 2. La deuxième donne les solutions analytiques du problème inverse. Elle est basée sur le modèle inverse d'un 2R plan. Le signe de β_i est à définir en fonction de la configuration recherchée, coude en haut ou en bas.

3 Modèle cinématique

Le modèle cinématique d'un robot parallèle relie les vitesses des actionneurs $\dot{\alpha}_i$ au torseur des vitesses de l'effecteur (v_x, v_y, ω_z) exprimé dans le repère local \mathcal{R}_E . On démontre la forme suivante du modèle cinématique

$$\underbrace{\begin{pmatrix}
\cos \gamma_1 & \sin \gamma_1 & d_1 \\
\cos \gamma_2 & \sin \gamma_2 & d_2 \\
\cos \gamma_3 & \sin \gamma_3 & d_3
\end{pmatrix}}_{\mathbf{A}} \begin{pmatrix}
v_x \\
v_y \\
\omega_z
\end{pmatrix} = \underbrace{\begin{pmatrix}
e_1 & 0 & 0 \\
0 & e_2 & 0 \\
0 & 0 & e_3
\end{pmatrix}}_{\mathbf{B}} \begin{pmatrix}
\dot{\alpha}_1 \\
\dot{\alpha}_2 \\
\dot{\alpha}_3
\end{pmatrix} \tag{1}$$

Les variables γ_i, d_i, e_i dans les deux matrices \mathbf{A}, \mathbf{B} sont définies sur la figure 3. Toutes ces variables sont algébriques (positives ou négatives). Les distances d_i, e_i sont des bras de

FIGURE 1 – Vue de dessus du robot parallèle 3RRR en position nominale. Différents repères et paramétrage articulaire.

Figure 2 – Dimensions et paramètres opérationnels de l'effecteur.

leviers aux aux points E et O_i respectivement et peuvent être calculées avec l'expression d'un moment.

Ces deux Jacobiennes du modèle cinématique permettent de détecter aisément les singularités. Deux types de singularités sont définies,

- 1. les singularités de la matrice A dite parallèle,
- 2. les singularités de la matrice **B** dite série.

Les figures 4 et 5 illustrent deux singularités de type parallèle. La figure 6 illustre une singularité de type série.

4 Travail demandé

4.1 Conception

Concevoir sous SolidWorks le robot parallèle en essayant de

- maximiser l'espace de travail,
- réduire les collisions entre les pièces,
- prendre en compte les contraintes de l'impression 3D,
- prendre en compte la puissance des actionneurs disponibles (servomoteur de type AX12 de chez Dynamixel),
- réduire au maximum les flexibilités, les jeux et les frottements,
- prévoir l'emplacement d'un crayon pour tracer.

4.2 Simulation

Ecrire les fonctions qui permettent de

- 1. simuler le mouvement de l'ensemble,
- 2. tracer sur l'écran la configuration,
- 3. tracer la trajectoire de l'effecteur,
- 4. suivre une trajectoire désirée de l'effecteur,
- 5. et calculer l'orientation θ_E de l'effecteur de telle sorte à éviter les singularités (et voire les collisions).

4.3 Facultatif: Réalisation

Réaliser avec l'aide du FabLab votre conception, l'assembler, la programmer et valider votre modèle de génération de trajectoire. Nous pouvons vous mettre à disposition 3 servomoteurs AX12 et un kit Dynamixel Starter Set (composé d'un U2D2, U2D2 PHB et son adaptateur secteur).

4.4 Rendu

A déposer sur moodle au plus tard le xx/05/2025

- Un rapport au format pdf de 5 pages environ.
- Les programmes sources.
- Une vidéo simulation et/ou réalisation.

FIGURE 3 – Paramètres du modèle cinématique. Les droites A_iB_i agissent comme des forces motrices sur l'effecteur. Dans cette figure, d_i sont toutes négatives (bras de levier des moments des glisseurs $\frac{\overrightarrow{A_iB_i}}{||A_iB_i||}$ au centre de l'effecteur) et e_i sont toutes positives (bras des leviers des moments des glisseurs $\frac{\overrightarrow{A_iB_i}}{||A_iB_i||}$ aux points O_i centres des liaisons actives respectives).

FIGURE 4 – Singularité parallèle ($\det(\mathbf{A}) = 0$, $\gamma_i = \mathrm{Cte}[\pi]$) : les trois droites A_iB_i sont parallèles. La vitesse linéaire de l'effecteur orthogonale à A_iB_i est incontrôlable.

FIGURE 5 – Singularité parallèle $(\det(\mathbf{A}) = 0)$: les trois droites A_iB_i sont concourantes en un point unique. La vitesse angulaire de l'effecteur suivant z est incontrôlable.

FIGURE 6 – Singularité série $(\det(\mathbf{B}) = 0)$: le bras 3 est à la limite de son espace de travail. La vitesse linéaire du point B_3 suivant la direction de ce bras est nulle (blocage).