ĐỀ CHÍNH THỨC

$(D\hat{e} \ thi \ g\hat{o}m \ 5 \ trang)$

-o0o-

ĐỀ KIỂM TRA HỌC KỲ II

Năm hoc 2019 - 2020

Môn: Toán 10.

Thời gian làm bài: 90 phút

Ho và tên thí sinh:

Số báo danh:.....

Mã đề thi 102

CHÚ Ý: Lớp chuyên Toán làm phần A và C, các lớp còn lại làm phần A và B. A. PHẨN CHUNG

Câu 1. Viết phương trình đường tròn tâm I(3;-2) và tiếp xúc với đường thẳng 2x-y+1=0.

A.
$$(x-3)^2 + (y+2)^2 = \frac{9}{\sqrt{5}}$$
.

B.
$$(x-3)^2 + (y+2)^2 = \frac{9}{5}$$
.

C.
$$(x-3)^2 + (y+2)^2 = \frac{\sqrt{3}}{\sqrt{5}}$$
.

D.
$$(x-3)^2 + (y+2)^2 = \frac{81}{5}$$

Câu 2. Xác định tâm I và tính bán kính R của đường tròn có phương trình $x^2 + y^2 + 4x = 0$.

A.
$$I(2;0), R=2.$$

B.
$$I(-2;0), R=2$$

C.
$$I(2;0), R = \sqrt{2}$$
.

B.
$$I(-2;0), R=2.$$
 C. $I(2;0), R=\sqrt{2}.$ **D.** $I(-2;0), R=\sqrt{2}.$

Câu 3. Bộ số (x;y) nào dưới đây **KHÔNG** phải là nghiệm của bất phương trình 2x - 5y > 1?

A.
$$(0; 2)$$
.

B.
$$(-2; -6)$$
.

$$C. (1; -3).$$

D.
$$(-2; -7)$$
.

Câu 4. Điểm nào dưới đây **KHÔNG** thuộc đường thẳng d: 3x + y - 1 = 0?

A.
$$(2; -5)$$
.

B.
$$(1;0)$$
.

D.
$$\left(\frac{1}{3}; 0\right)$$

Câu 5. Giải bất phương trình $\frac{(x+1)(x-2)}{2x-1} \le 0$.

A.
$$\begin{bmatrix} x < -1 \\ \frac{1}{2} < x < 2 \end{bmatrix}$$

$$\mathbf{B.} \quad \left[\begin{array}{l} x \le -1 \\ \frac{1}{2} < x \le 2 \end{array} \right]$$

$$\mathbf{C.} \begin{bmatrix} -1 \le x \le \frac{1}{2} \\ x > 2 \end{bmatrix}$$

A.
$$\begin{bmatrix} x < -1 \\ \frac{1}{2} < x < 2 \end{bmatrix}$$
 B.
$$\begin{bmatrix} x \le -1 \\ \frac{1}{2} < x \le 2 \end{bmatrix}$$
 C.
$$\begin{bmatrix} -1 \le x \le \frac{1}{2} \\ x \ge 2 \end{bmatrix}$$
 D.
$$\begin{bmatrix} -1 \le x < \frac{1}{2} \\ x \ge 2 \end{bmatrix}$$

Câu 6. Chuyển phương trình đường thẳng sau về dạng tổng quát: $\begin{cases} x = 1 + 2t \\ y = 2 + t \end{cases}$

A.
$$x + 2y - 5 = 0$$
. **B.** $x - 2y + 3 = 0$.

B.
$$x - 2y + 3 = 0$$
.

C.
$$2x - y = 0$$
.

D.
$$2x + y - 4 = 0$$

Câu 7. Cho hai đường thẳng: 2x - y - 1 = 0 và x + 2y + 2 = 0. Khi nói về vị trí tương đối của chúng, khẳng định nào ĐÚNG?

- A. Cắt nhau nhưng không vuông góc.
- **B.** Trùng nhau.

C. Song song.

D. Vuông góc.

Câu 8. Giải bất phương trình $\frac{x+2}{2x-1} > 1$.

A.
$$\frac{1}{2} < x < 3$$
.

B.
$$x > 3$$
.

C.
$$\begin{bmatrix} x > 3 \\ x < \frac{1}{2} \end{bmatrix}$$
. D. $\frac{1}{2} < x \le 3$.

D.
$$\frac{1}{2} < x \le 3$$
.

Câu 9. Công thức nào dưới đây là $\mathbf{D}\mathbf{\dot{U}NG}$ về giá trị lượng giác của góc lượng giác α ? Giả sử các điều kiện xác định được thỏa mãn.

A.
$$\tan \alpha . \cot \alpha = 1.$$

$$\mathbf{B.} \sin^2 \alpha + \cos^2 \alpha = 2.$$

B.
$$\sin^2 \alpha + \cos^2 \alpha = 2$$
. **C.** $\cos \alpha = \tan \alpha \cdot \sin \alpha$. **D.** $\frac{1}{\sin^2 \alpha} = \tan^2 \alpha + 1$.

$$\mathbf{D.} \; \frac{1}{\sin^2 \alpha} = \tan^2 \alpha + 1$$

Câu 11. Viết phương trình tổng quát của đường thẳng đi qua $M(3;6)$ và có một vectơ pháp tuyến					
(2;1).					
A. $2x - y = 0$.	B. $3x + 6y = 0$.	C. $x + 2y - 15 = 0$.	D. $2x + y - 12 = 0$.		
Câu 12. Công thức lượng giác nào dưới đây là SAI? Giả sử các điều kiện xác định được thỏa mãn.					
A. $\tan 2a = \frac{2 \tan a}{1 - \tan^2 a}$.		$\mathbf{B.}\sin(a-b) = \sin a \cos b - \sin b \cos a.$			
_ ***		D. $\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$.			
Câu 13. Tìm tất cả các giá trị của tham số m để bất phương trình $mx - 2 < x - m$ có tập nghiệm					
là R.	D < 1	C 1	D Van C ID		
A. $m = 1$.	B. $m \le 1$.		$\mathbf{D}. \ \forall m \in \mathbb{R}.$		
Câu 14. Viết phương trình đoạn chắn của đường thẳng đi qua $M(5;0)$ và $N(0;3)$.					
9	B. $\frac{x}{5} + \frac{y}{3} = 0.$	9 9	D. $\frac{\pi}{3} + \frac{9}{5} = 0.$		
Câu 15. Giải hệ bất phương trình $\begin{cases} 2x - 5 < 4 - x \\ x^2 - 4x - 5 \le 0 \end{cases}$. A. $-1 < x < 3$. B. $x < 3$. C. $x \ge -1$. D. $-1 \le x < 3$.					
A. $-1 < x < 3$.	B. $x < 3$.	C. $x \ge -1$.	D. $-1 \le x < 3$.		
Câu 16. Góc lượng giác co					
	B. $\frac{2\pi}{3}$.		D. $\frac{3\pi}{4}$.		
0	9	U	4		
Câu 17. Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng $\begin{cases} x = 1 + 2t \\ y = 3 + t \end{cases}$?					
A. $(-2;1)$.	B. $(1; -2)$.	C. (1; 2).	$\mathbf{D.}(-4;2).$		
Câu 18. Viết phương trìn	h đường thẳng đi qua M	Y(3;4) và có hệ số góc k	=2.		
A. $y = 2x - 10$.	B. $y = 2x - 2$.	C. $y = 2x + 2$.	D. $y = 2x + 10$.		
Câu 19. Tìm tất cả các giá trị của tham số m để phương trình $2x^2 + (m-1)x + m - 1 = 0$ có hai					
nghiệm dương phân biệt.					
$\mathbf{A.} \left[\begin{array}{c} m > 9 \\ m < 1 \end{array} \right].$	B. $m > 9$.	${f C}.$ Không tồn tại $m.$	D. $1 < m < 9$.		
Câu 20. Tính khoảng cách từ điểm $M(2;1)$ đến đường thẳng $3x - 4y + 1 = 0$.					
A. $\frac{3}{5}$.	B. $\frac{9}{5}$.	C. $\frac{2}{5}$.	D. $\frac{8}{5}$.		
Câu 21. Tính giá trị biểu thức $A = \frac{\sin\frac{\pi}{6} \cdot \cos\frac{\pi}{6}}{2\sin\frac{\pi}{3} \cdot \cos\frac{\pi}{3}}$.					
A. $\frac{\sqrt{3}}{2}$.	B. $\frac{1}{2}$.	C. $\frac{1}{\sqrt{3}}$.	D. 1.		

Câu 10. Hai góc lượng giác nào dưới đây được biểu diễn bởi cùng một điểm trên đường tròn lượng

B. $\frac{\pi}{3}$ và $-\frac{\pi}{3}$. **C.** $\frac{\pi}{2}$ và $\frac{5\pi}{2}$.

giác?

A. $\frac{\pi}{6}$ và $\frac{5\pi}{6}$.

 \mathbf{D} . 0 và 3π .

Câu 22. Giải bất phương trình $x^2 - 4 \le 0$.

A.
$$\begin{bmatrix} x > 2 \\ x < -2 \end{bmatrix}$$
 B. $-2 \le x \le 2$. **C.** $-2 < x < 2$.

B.
$$-2 \le x \le 2$$
.

C.
$$-2 < x < 2$$
.

$$\mathbf{D.} \left[\begin{array}{c} x \ge 2 \\ x \le -2 \end{array} \right].$$

Câu 23. Tính chất nào dưới đây là $\mathbf{D}\mathbf{U}\mathbf{N}\mathbf{G}$ với mọi góc lượng giác α bất kỳ và mọi số nguyên kthỏa mãn các biểu thức xác định?

A.
$$\sin(\alpha + k\pi) = \sin \alpha$$
.

B.
$$\cos(\alpha + k2\pi) = \cos \alpha$$
.

C.
$$\cos(\alpha + k\pi) = \cos \alpha$$
.

D.
$$-1 \le \tan \alpha \le 1$$
.

Câu 24. Viết phương trình tổng quát của đường thẳng đi qua M(3;0) và song song với đường thẳng 2x + y + 100 = 0.

A.
$$x + 2y - 6 = 0$$
.

B.
$$2x + y - 6 = 0$$
.

A.
$$x + 2y - 6 = 0$$
. **B.** $2x + y - 6 = 0$. **C.** $x - 2y - 6 = 0$. **D.** $2x - y - 6 = 0$.

D.
$$2x - y - 6 = 0$$

Câu 25. Viết phương trình tiếp tuyến của đường tròn $(x+1)^2 + (y+5)^2 = 5$ tại điểm M(-3; -4)thuộc đường tròn.

A.
$$2x - y + 2 = 0$$
.

B.
$$x - 2y - 5 = 0$$
.

A.
$$2x - y + 2 = 0$$
. **B.** $x - 2y - 5 = 0$. **C.** $2x + y + 10 = 0$. **D.** $x + 2y + 11 = 0$.

D.
$$x + 2y + 11 = 0$$
.

Câu 26. Viết phương trình đường tròn đường kính AB với A(-1; -2), B(-3; 0).

A.
$$(x+2)^2 + (y+1)^2 = 4$$
.

B.
$$(x+2)^2 + (y+1)^2 = 16$$
.

C.
$$(x+2)^2 + (y+1)^2 = 8$$
.

D.
$$(x+2)^2 + (y+1)^2 = 2$$
.

Câu 27. Viết phương trình tổng quát của đường cao đỉnh A của tam giác ABC biết tọa độ các đỉnh A(3;4), B(-2;5), C(7;7).

A.
$$9x - 2y - 19 = 0$$
. **B.** $9x + 2y - 35 = 0$. **C.** $2x + 9y - 42 = 0$. **D.** $2x - 9y + 30 = 0$.

B.
$$9x + 2y - 35 = 0$$

$$\mathbf{C.} \ 2x + 9y - 42 = 0.$$

D.
$$2x - 9y + 30 = 0$$
.

Câu 28. Giải bất phương trình $3x - 1 \le 0$.

A.
$$x \leq \frac{1}{3}$$
.

B.
$$x < \frac{1}{3}$$
.

C.
$$x \le -\frac{1}{3}$$
. D. $x \ge \frac{1}{3}$.

D.
$$x \ge \frac{1}{3}$$
.

Câu 29. Tìm điều kiện xác định của bất phương trình $\frac{1}{x-3} - \sqrt{x} \le 1$. **A.** $0 < x \ne 3$. **B.** $x \ge 0$. **C.** $0 \le x < 3$. **D.** $0 \le x \ne 3$.

A.
$$0 < x \neq 3$$

B.
$$x > 0$$

C.
$$0 \le x < 3$$
.

D
$$0 < x \neq 3$$

Câu 30. Giải bất phương trình (x-1)(x+2)(x-3) > 0.

B.
$$1 < x < 3$$
.

C.
$$\begin{bmatrix} -2 < x < 1 \\ x > 3 \end{bmatrix}$$
 D.
$$\begin{bmatrix} x < -2 \\ 1 < x < 3 \end{bmatrix}$$

$$\mathbf{D.} \left[\begin{array}{l} x < -2 \\ 1 < x < 3 \end{array} \right]$$

Câu 31. Viết phương trình tổng quát của đường thẳng đi qua M(3;-1) và có một vectơ chỉ phương (2;-1).

A.
$$x + 2y - 1 = 0$$
.

B.
$$2x - y - 7 = 0$$
.

A.
$$x + 2y - 1 = 0$$
. **B.** $2x - y - 7 = 0$. **C.** $x - 2y - 5 = 0$. **D.** $2x + y - 5 = 0$.

D.
$$2x + y - 5 = 0$$

Câu 32. Cho $\alpha \in \left(\frac{\pi}{2}; \pi\right)$, $\tan \alpha = -3$. Tính $\cos \alpha$. A. $\frac{-2}{\sqrt{10}}$. B. $\frac{-1}{\sqrt{10}}$. C. $\frac{1}{\sqrt{10}}$.

A.
$$\frac{-2}{\sqrt{10}}$$
.

B.
$$\frac{-1}{\sqrt{10}}$$
.

C.
$$\frac{1}{\sqrt{10}}$$
.

D.
$$\frac{2}{\sqrt{10}}$$
.

Câu 33. Giải bất phương trình $2x^2 + 5x - 3 \ge 0$.

A.
$$-3 < x < \frac{1}{2}$$
.

B.
$$-\frac{1}{2} \le x \le 3$$
.

A.
$$-3 < x < \frac{1}{2}$$
. **B.** $-\frac{1}{2} \le x \le 3$. **C.** $-3 \le x \le \frac{1}{2}$.

$$\mathbf{D.} \left[\begin{array}{c} x \le -3 \\ x \ge \frac{1}{2} \end{array} \right].$$

Câu 34. Tính độ	dài cung tròn có số đo góc	ở tâm bằng $\frac{\pi}{6}$ của ở	lường tròn lượng giác.
	B. $\frac{\pi}{24}$.	()	
Câu 35. Cho phư	ong trình $(m-1)x^2 - 2(m-1)x^2 - 2(m-1)x$	(n+2)x + m = 0, với	m là tham số. Tìm tất

t cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt.

A.
$$m > -\frac{4}{5}$$
.

B.
$$m \ge -\frac{4}{5}$$
. **C.** $m < -\frac{4}{5}$.

C.
$$m < -\frac{4}{5}$$
.

D.
$$-\frac{4}{5} < m \neq 1$$
.

Câu 36. Cho phương trình $x^2 - (3m-2)x + m - 1 = 0$, với m là tham số. Tìm tất cả các giá trị của m để phương trình đã cho có nghiệm.

A.
$$m \leq \frac{8}{9}$$
.

$$\mathbf{B.}\ m \neq \frac{8}{9}.$$

$$\mathbf{C}. \ \forall m \in \mathbb{R}.$$

D. Không tồn tại m.

Câu 37. Cho $\alpha \in \left(0; \frac{\pi}{2}\right), \sin \alpha = \frac{1}{3}$. Tính $\tan \alpha$.

A.
$$\frac{\sqrt{2}}{4}$$
.

B.
$$\frac{-1}{\sqrt{3}}$$
.

C.
$$\frac{\sqrt{2}}{2}$$
.

D.
$$\frac{1}{\sqrt{3}}$$

Câu 38. Tính khoảng cách giữa hai điểm M(3;4) và N(1;0).

A.
$$\sqrt{21}$$
.

B.
$$4\sqrt{2}$$
.

C.
$$2\sqrt{5}$$
.

D. 20.

Câu 39. Tính cosin của góc giữa hai đường thẳng 3x - y - 10 = 0 và 2x + 4y - 5 = 0.

A.
$$\frac{\sqrt{2}}{5}$$
.

B.
$$\frac{\sqrt{2}}{10}$$
.

C.
$$\frac{\sqrt{2}}{20}$$
.

D.
$$\frac{\sqrt{2}}{2}$$
.

Câu 40. Tìm tọa độ giao điểm của hai đường thẳng: 3x - y - 1 = 0 và 6x + y + 1 = 0.

A.
$$\left(-\frac{1}{3};0\right)$$
.

B.
$$\left(\frac{1}{3};0\right)$$
.

$$C. (0; -1).$$

D. (0;2).

Câu 41. Viết phương trình đường tròn tâm I(2;3), bán kính R=2.

A.
$$(x-2)^2 + (y-3)^2 = 4$$
.

B.
$$(x+2)^2 + (y+3)^2 = 4$$
.

C.
$$(x-2)^2 + (y-3)^2 = 2$$
.

D.
$$(x+2)^2 + (y+3)^2 = 2$$
.

Câu 42. Cho góc lượng giác $\alpha \in (0; \frac{\pi}{2})$ có $\sin \alpha = \frac{1}{3}$. Tính $\sin 2\alpha$.

A.
$$\frac{2\sqrt{2}}{3}$$
.

B.
$$\frac{4\sqrt{2}}{9}$$
.

B.
$$\frac{4\sqrt{2}}{9}$$
. **C.** $\frac{-2\sqrt{2}}{9}$.

D.
$$\frac{2\sqrt{2}}{9}$$
.

Câu 43. Viết phương trình tổng quát của đường thẳng đi qua hai điểm M(3;4) và N(0;1).

A.
$$x - y - 7 = 0$$
.

B.
$$x + y - 1 = 0$$
.

C.
$$x - y + 1 = 0$$
.

A.
$$x - y - 7 = 0$$
. **B.** $x + y - 1 = 0$. **C.** $x - y + 1 = 0$. **D.** $4x + 4y - 3 = 0$.

Câu 44. Tìm tập nghiệm bất phương trình $x^2 + 4x + 3 < 0$.

A.
$$(-\infty; -3) \cup (-1; +\infty)$$
.

B.
$$[-3; -1]$$
.

C.
$$(-\infty; -3] \cup [-1; +\infty)$$
.

D.
$$(-3; -1)$$
.

Câu 45. Tìm tất cả các giá trị của tham số m để $f(x) = mx^2 + (m-1)x + m - 1 > 0, \forall x \in \mathbb{R}$.

A. $\begin{bmatrix} m > 0 \\ m < -\frac{1}{3} \end{bmatrix}$ B. $m \neq 0$.
C. m > 1.
D. $\begin{bmatrix} m > 1 \\ m < -\frac{1}{2} \end{bmatrix}$

$$\mathbf{A.} \left[\begin{array}{c} m > 0 \\ m < -\frac{1}{3} \end{array} \right]$$

B.
$$m \neq 0$$
.

C.
$$m > 1$$
.

$$\mathbf{D.} \left[\begin{array}{c} m > 1 \\ m < -\frac{1}{3} \end{array} \right].$$

PHÂN RIÊNG

B. CÁC LỚP KHÔNG CHUYÊN TOÁN

Câu 46. Tìm tất cả giá trị của tham số m để hệ bất phương trình $\begin{cases} 2x - 1 < x + 3 \\ x > m \end{cases}$ có nghiệm.

A.
$$m \ge 4$$
.

B.
$$m < 4$$
.

C.
$$m \le 4$$
.

D.
$$m \neq 4$$
.

Câu 47. Tìm tọa độ các	giao điểm của đường trò	on (C) : $(x+1)^2 + (y+1)^2 + (y+1$	$3)^2 = 4$ và đường thẳng
d: x - y - 4 = 0.			
A. $(1; -3)$.	B. Không có giao điểm	n. \mathbf{C} . $(1; -3); (-1; -5)$.	D. $(-1; -5)$.
Câu 48. Cho tứ giác AB	CD có A(-1;7), B(-1;1)), $C(5;1)$, $D(7;5)$. Tim to	ọa độ giao điểm I của hai
đường chéo của tứ giác.			
A. $I(4;2)$.	B. $I(2;4)$.	C. I(2;3).	D. $I(3;3)$.
Câu 49. Trong tam giác	ABC , hệ thức nào \mathbf{SAI} ?	•	
$\mathbf{A.}\sin(A+B)=-\sin^2\theta$	C.	$\mathbf{B.}\cos(A+B) = -\cos(A+B)$	sC.
A. $\sin(A+B) = -\sin C$ C. $\tan \frac{A+B}{2} = \cot \frac{C}{2}$! 	B. $\cos(A + B) = -\cos A$ D. $\sin \frac{A + B}{2} = \cos \frac{C}{2}$	
Câu 50. Giải bất phương	$ \text{trình } \frac{x^2 - 3x - 2}{x - 1} \le 2x $	+ 2.	
Câu 50. Giải bất phương $\mathbf{A.} \begin{bmatrix} x \leq -3 \\ x > 1 \end{bmatrix}.$	B. $-3 \le x < 1$.	$\mathbf{C.} \left[\begin{array}{c} -3 \le x \le 0 \\ x > 1 \end{array} \right].$	$\mathbf{D.} \left[\begin{array}{l} x \le -3 \\ 0 \le x < 1 \end{array} \right].$
C. LỚP CHUYÊN TO	ÁN		
Câu 46. Cho tam giác A	BC thỏa mãn: $\sin B \cos G$	$C + \sin C \cos B + \sin A =$	= 2. Tính số đo góc A .
A. 30° .	B. 45°.	C. 60^{o} hoặc 120^{o} .	
Câu 47. Bất phương trìn	$h \frac{ x-1 }{x^2 - 3x + 2} \ge 3 \text{ có tập}$	nghiệm là $S = \left(a; \frac{b}{c}\right]$ v	với a,b,c là các số nguyên
dương, $\frac{b}{c}$ tối giản. Tính b	+c.		
A. 13.	B. 12.	C. 10.	D. 11.
Câu 48. Cho tam giác nh điểm $E\left(\frac{31}{13}; -\frac{1}{13}\right)$ là hìn	nọn ABC nội tiếp đường h chiếu vuông góc của E	tròn tâm I . Điểm $M(2; -3)$ 8 trên đường thẳng AI .	-1) là trung điểm BC và Biết đường thẳng AC có
$\begin{pmatrix} 13 & 13 \end{pmatrix}$ phương trình: $3x + 2y - 1$	3 = 0 tìm toa đô đỉnh A		
	B. $A(1;5)$.	/ = \	D. $A(3;2)$.
Câu 49. Bất phương trìn	h $x.(x+3) < 5\sqrt{x^2 + 3x}$	$\overline{z+24}$ có tập nghiệm là S	S = (a; b). Tính $b - a$.
A. 11.	B. 12.	C. 10.	D. 13.
Câu 50. Khẳng định nào	dưới đây là SAI ?		
A. $\forall m \in [0; 1]$, tồn tại	duy nhất $\alpha \in [0; \pi]$ thỏa	a mãn $\sin \alpha = m$.	
B. $\forall m \in [0; 1]$, tồn tại	duy nhất $\alpha \in \left[0; \frac{\pi}{2}\right]$ th	nỏa mãn $\cos \alpha = m$.	
	eại duy nhất $\alpha \in [0; \pi]$ th		
	vai duy nhất $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$		

[-1;1],tồn tại duy nhất $\alpha\in\left[-\frac{n}{2};\frac{n}{2}\right]$ thỏa mân sin current hếT----- HếT-----