ECON7103 HW6

Sedat Ors

17 February 2023

1)

• a)

. rdbwselect price rd, bwselect(mserd)

Bandwidth estimators for sharp RD local polynomial regression.

Cutoff c =	Left of c	Right of c			
			Kernei	=	Triangular
Number of obs	720	280	VCE method	=	NN
Min of rd	-181.037	0.087			
Max of rd	-0.157	96.893			
Order est. (p)	1	1			
Order bias (q)	2	2			
	Number of obs Min of rd Max of rd Order est. (p)	Number of obs 720 Min of rd -181.037 Max of rd -0.157 Order est. (p) 1	Min of rd -181.037 0.087 Max of rd -0.157 96.893 Order est. (p) 1 1	Number of obs 720 280 VCE method Min of rd -181.037 0.087 Max of rd -0.157 96.893 Order est. (p) 1 1	Number of obs 720 280 VCE method = Min of rd -181.037 0.087 Max of rd -0.157 96.893 Order est. (p) 1 1

Outcome: price. Running variable: rd.

	BW es	st. (h)	BW bias (b)		
Method	Left of c	Right of c	Left of c	Right of c	
mserd	23.836	23.836	36.019	36.019	

Sharp RD estimates using local polynomial regression.

Cutoff $c = 0$	Left of c	Right of c	Number of obs	=	1000
			BW type	=	mserd
Number of obs	720	280	Kernel	=	Triangular
Eff. Number of obs	206	159	VCE method	=	NN
Order est. (p)	1	1			
Order bias (q)	2	2			
BW est. (h)	23.836	23.836			
BW bias (b)	36.019	36.019			
rho (h/b)	0.662	0.662			

Outcome: price. Running variable: rd.

Method	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Conventional Robust	l	894.8 -			-3089.62 -3406.62	417.925 819.715

	(1)		
VARIABLES	2SLS Results: 2sls Estimator		
mpg	162.4***		
	(35.14)		
car	-4,778***		
	(395.0)		
Constant	17,290***		
	(1,009)		
Observations	1,000		
R-squared	0.092		

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

	(1)	(2)	(3)	(4)
VARIABLES	ATE	ATE	ATE	ATE
car			-2,794***	-2,553***
			(292.7)	(509.7)
mpg			-110.5***	-219.7***
			(22.33)	(40.71)
r1vs0.rd1	-3,342***			
	(364.7)			
0. rd1		20,868***		
		(152.3)		
Constant			25,843***	25,920***
			(727.4)	(968.3)
Observations	1,000	1,000	1,000	1,000

Robust standard errors in parentheses *** p<0.01, |** p<0.05, * p<0.1

• b)

2)

In the RD design, the treatment variable is determined by a threshold or cutoff point, which creates exogenous variation in the treatment variable for observations that are just above or below the threshold. This exogenous variation can be used as an instrument to estimate the causal effect of the treatment variable on the outcome variable the vehicle's sale price) if the RD design satisfies the necessary assumptions of an IV strategy.

The main assumption for using RD as an IV strategy is that the treatment variable is continuous around the cutoff point, and that there is no other confounding variable that changes discontinuously at the cutoff point. If this assumption is satisfied, the RD design can provide consistent estimates of the causal effect of the treatment variable on the outcome variable.

The IV should be correlated with the endogenous variable of interest. In other words, the IV should be able to explain some of the variations in the treatment variable and The IV should not be correlated with the error term in the outcome equation, after controlling for other covariates. This assumption is necessary to avoid omitted variable bias and to ensure that the IV is not capturing some other confounding effect on the outcome. I think mpg is statis-

tically significant and there is no endogeneity after 2SLS, we can say that this rd design is a good instrument.