Ficha	TER040: Sustitución de generador de climatización por bomba de calor de accionamiento eléctrico.	
Código	TER040	
Versión	V1.1	
Sector	Terciario	

1. ÁMBITO DE APLICACIÓN

Sustitución total del equipo o los equipos de climatización (calefacción y/o refrigeración) y/o agua caliente sanitaria (ACS) y/o calentamiento de piscinas o similares en un edificio del sector terciario (hoteles, restaurantes, hospitales, centros educativos, bibliotecas, centros culturales, oficinas, centros comerciales etc.) por una bomba de calor tipo aire-aire, aire-agua o agua-agua, tierra-agua o tierra-aire accionada eléctricamente, no afectando la actuación a los elementos que configuran la instalación térmica.

No son aplicables las bombas de calor cuyo compresor esté accionado térmicamente.

2. REQUISITOS

Esta ficha no establece requisitos específicos, lo que en ningún caso exonera del cumplimiento de los requisitos de obligado cumplimiento establecidos en la normativa vigente: Reglamento de Instalaciones Térmicas en los Edificios (RITE), Reglamento europeo sobre los gases fluorados¹ u otras disposiciones en este ámbito de aplicación.

3. CÁLCULO DEL AHORRO DE ENERGÍA

En calefacción

El ahorro de energía se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

¹ Reglamento (UE) n ° 517/2014 del Parlamento Europeo y del Consejo, de 16 de abril de 2014 sobre los gases fluorados de efecto invernadero y por el que se deroga el Reglamento (CE) n ° 842/2006.

$$AE_{C} = \sum_{i=1}^{N} \left[P_{Ci} \cdot \left(\frac{1}{SCOP_{si}} - \frac{1}{SCOP_{ni}} \right) \cdot h_{Ci} \right]$$

Donde:

Ν Número de equipos sustituidos

 P_{ci} Potencia nominal² de calefacción del equipo sustituido kW

Coeficiente de rendimiento estacional sobre energía **SCOPsi** final, en calefacción del equipo N inicial sustituido³

Coeficiente de rendimiento estacional sobre energía **SCOPni**

final, en calefacción, de la nueva4 bomba de calor

Horas de funcionamiento al año5 en calefacción, a 1.152 hci potencia nominal h/año

AEc Ahorro anual de energía final total en calefacción kWh/año

En refrigeración

El ahorro de energía se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

$$AE_{R} = \sum_{i=1}^{N} \left[P_{F_{i}} \cdot \left(\frac{1}{SEER_{si}} - \frac{1}{SEER_{ni}} \right) \cdot h_{Ri} \right]$$

² Potencia nominal definida como capacidad de refrigeración o de calefacción del ciclo de compresión o del ciclo de sorción del vapor de la unidad en condiciones estándar. Definición según apartado 2 Anexo Decisión de la Comisión de 1 de marzo de 2013, por la que se establecen las directrices para el cálculo por los Estados miembros de la energía renovable procedente de las bombas de calor diferentes tecnologías, conforme a lo dispuesto en el artículo 5 de la Directiva 2009/28/CE del Parlamento Europeo y del Consejo.

³ Ver Anexo II.

⁴ Ver Anexo III y IV. En caso de secuencia de varias bombas de calor, el SCOP utilizado en esta expresión será el ponderado, en el caso de ser de diferentes características.

⁵ Valor de referencia. Dicho valor podrá ser sustituido previa justificación por cualquier medio o prueba que ofrezcan al verificador evidencias sobre el valor aportado.

Donde:

N	Número de equipos sustituidos	
P _{Fi}	Potencia de refrigeración nominal ⁶ demandada o la potencia nominal del equipo sustituido	kW
SEERsi	Factor de eficiencia energética estacional en refrigeración, sobre energía final, del equipo N sustituido ⁷	W/W
SEERni	Factor de eficiencia energética estacional en refrigeración, sobre energía final, de la bomba de calor N nueva ⁸	W/W
h _{Ri}	Horas de funcionamiento al año ⁵ en refrigeración, a potencia nominal	768 horas/año
AE_R	Ahorro anual de energía final total en refrigeración	kWh/año

En agua caliente sanitaria (ACS)9

En ahorro de energía en ACS se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula, según el generador existente esté basado en combustible fósil o sea una bomba de calor:

$$AE_{ACS} = \left(\frac{1}{SCOP_{sdhw}} - \frac{1}{SCOP_{dhw}}\right) \cdot D_{ACS} \cdot F_{P}$$

٠

⁶ Potencia nominal definida como capacidad de refrigeración o de calefacción del ciclo de compresión o del ciclo de sorción del vapor de la unidad en condiciones estándar.

⁷ Para equipos anteriores a la entra en vigor de los reglamentos de ecodiseño se tomará el valor para el SEER=3.

⁸ Ver Anexos III y IV. En caso de secuencia de varias bombas de calor, el SEER utilizado en esta expresión será el ponderado, en el caso de ser de diferentes características

⁹ Ver anexo VI de condiciones generales para cálculo de ACS.

Donde:

SCOP_{sdhw} Rendimiento estacional de la bomba de calor existente

SCOP_{dhw} Rendimiento estacional de la bomba de calor nueva

D_{ACS} Demanda anual de energía en ACS kWh/año

F_p Factor de ponderación¹⁰

AEACS Ahorro energía final al año cuando el generador a kWh/año

sustituir es una bomba de calor

Calentamiento de piscinas (CAP)

En ahorro de energía en calentamiento de piscinas o similares se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

$$AE_{CAP} = \left(\frac{1}{SCOP_{sowh}} - \frac{1}{SCOP_{nowh}}\right) \cdot D_{CAP} \cdot F_{P}$$

Donde:

SCOP_{spwh} Coeficiente de rendimiento estacional¹¹ de la bomba de

calor existente

SCOP_{npwh} Coeficiente de rendimiento estacional¹² de la nueva

bomba de calor.

D_{CAP} Demanda anual de energía térmica en calentamiento kWh/año

de piscina¹³

Fp Factor de ponderación¹⁴

AECAP Ahorro anual de energía final en calentamiento de kWh/año

piscina

¹⁰ Factor de ponderación para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del consumo real de energía final.

¹¹ Ver Anexo VIII.

¹² Ver Anexo VIII.

¹³ Según número de horas y datos históricos de la instalación existente o según la metodología de cálculo indicada en el Pliego de Condiciones Técnicas de Instalaciones de Baja Temperatura, Anexo IV, de IDAE.

https://www.idae.es/uploads/documentos/documentos_5654_ST_Pliego_de_Condiciones_Tecnicas_Baja_Temperatura_0_9_082ee24a.pdf

¹⁴ Factor de ponderación para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del consumo real de energía final.

CALCULOS

IberCAE 4 de septiembre de 2024