T05: Exploração de Marte

Agentes e Inteligência Artificial Distribuída

Novembro 2016

Marina Camilo - up201307722 - up201307722@fe.up.pt Diogo Ferreira - up201502853 - diogoff@fe.up.pt Ângela Cardoso - up200204375 - angela.cardoso@fe.up.pt

Conteúdo

1	Enu	ınciado	3										
	1.1												
	1.2	Objectivos do trabalho	4										
	1.3	Resultados esperados e forma de avaliação	4										
2	Plataforma/Ferramenta 5												
	2.1	Para que serve	5										
		2.1.1 Jade	5										
		2.1.2 Repast 3	5										
		2.1.3 SAJaS	5										
	2.2	Descrição das características principais	5										
		2.2.1 Jade	5										
		2.2.2 Repast 3	6										
		2.2.3 SAJaS	6										
	2.3	Realce das funcionalidades relevantes para o trabalho	6										
3	Especificação 7												
	3.1	•											
	0.1	portamento, estratégias)	7										
	3.2	Protocolos de interacção	7										
	0.2	3.2.1 Divisão de espaços	7										
		3.2.2 Afetação de Producers	9										
		3.2.3 Afetação de Transporters	10										
	3.3		11										
	5.5	Faseamento do projecto	11										
4	Rec	cursos	12										
	4.1	Bibliografia	12										
	4.2	Software	12										

A Anexos 13

Enunciado

1.1 Descrição do cenário

No âmbito da unidade curricular de Agentes e Inteligência Artificial Distribuída, o nosso grupo propôs-se a implementar um Sistema Multi-Agente para simulação de um cenário de extração de minérios em Marte. Para tal, é necessário descobrir os minérios, extraí-los e transportá-los para a base. Sendo assim, no nosso sistema existem três tipos de Agentes:

- Spotter Procura fontes de minérios e inspeciona-as para determinar se podem ser exploradoas.
- Producer É chamado a uma fonte de minério por um spotter para extrair o máximo de minério possível nessa fonte.
- Transporter É alocado pelo producer para carregar o minério obtido para a base.

De forma a facilitar a procura, todos os agentes podem localizar fontes de minérios e enviar a sua localização para os *spotter* que os analisarão. A escolha do *producer* por parte do *spotter* segue um protocolo de negociação. A alocação dos *transporters* a uma determinada fonte segue também um protocolo de negociação, iniciado pelo *producer*. Esta alocação, terá em conta a quantidade de minério a transportar, de modo a determinar mais corretamente o número necessário de *transporters*.

1.2 Objectivos do trabalho

Um dos objetivos deste trabalho é implementar os agentes de forma a que a simulação da exploração seja tão eficiente quanto possível. Para tal serão estudadas várias alternativas de implementação, de forma a determinar qual a melhor abordagem. No caso dos agentes do tipo *spotter*, tencionamos usar algoritmos de distribuição do espaço a explorar entre eles, para que cubram toda a região mais rapidamente. Em relação aos *producers* e *transporters*, o objetivo é instalar protocolos de negociação que garantam que o melhor agente é escolhido para a tarefa.

1.3 Resultados esperados e forma de avaliação

Inicialmente serão implementadas apenas as funcionalidades básicas de cada Agente como tal: A 1º fase de avaliação será verificar o sucesso da implementação do comportamento de cada agente. Após se garantir que todos os agentes realizam o seu papel corretamente passamos para a fase seguinte, a fase de implementação de restrições. Nesta 2º fase, irá avaliar—se se os transporters chamados não ultrapassam a sua capacidade, se o transporters chamados conseguem recolher todo o minério presente. Após estas fases, implementaremos algoritmos de forma a tornar mais eficiente esta demanda, avaliando se as alocações dos demais agentes correspondem ao mais disponível na altura. Se o mapa fica corretamente dividido entre os spotters e se o tempo de simulação foi o mínimo para o caso em questão.

Plataforma/Ferramenta

2.1 Para que serve

2.1.1 Jade

Permite desenvolver agentes distruídos por *containers* que podem estar em máquinas diferentes. Cada um destes agentes utiliza uma *thread*.

2.1.2 Repast 3

Permite construir simulações locais à máquina com diversos agentes. O processamento de cada agente é distribuído pelas *threads*.

2.1.3 SAJaS

Junta estas duas plataformas e toma vantagem dos benefícios de ambas.

2.2 Descrição das características principais

2.2.1 Jade

Suporta troca de mensagens ACL que seguem a especificação FIPA e permite ter agentes remotos.

2.2.2 Repast 3

Suporta simulação de espaços físicos, representação 2D e 3D e análise em tempo real.

2.2.3 SAJaS

Permite manter o código exatamente igual apenas necessitando trocar as packages usadas.

2.3 Realce das funcionalidades relevantes para o trabalho

Com o suporte do Jade são feitos os protocolos de comunicação entre os diferentes agentes utilizando mensagens ACL. Usando o Repast 3 torna-se fácil simular um espaço físico, popular o espaço com agentes, desenhá-los e finalmente vê-los em ação. A ferramenta **massim2dev**¹ automaticamente adapta as *packages* utilizadas num projecto Jade para as disponibilizadas pelo SAJaS de modo a funcionar juntamente com o Repast 3.

¹https://web.fe.up.pt/ hlc/doku.php?id=massim2dev

Especificação

- 3.1 Identificação e caracterização dos agentes (arquitectura, comportamento, estratégias)
- 3.2 Protocolos de interacção

3.2.1 Divisão de espaços

Inicialmente cada *spotter* deve comunicar e acordar com os restantes *spotters* o espaço reservado para este explorar. É assumido que o espaço físico se trata sempre de uma matriz quadrada.

Figura 3.1: Alocação simples por linhas

Inicialmente o espaço é divido por linhas e repartido pelos diferentes *spotters*. Estes ficam encarregues de confirmar esta afetação com os *spotters* restantes.

Figura 3.2: Diagrama temporal das comunicações entre spotters

- 1. Spotter
1 comunica ao restantes $\mathit{spotters}$ o espaço que este pretende explorar.
- 2. Spotter1 recebe confirmação dos *spotters* e fica afecto ao espaço que o mesmo pretendia.
- 3. Spotter3 comunica ao restantes *spotters* o espaço que este pretende explorar.
- 4. Spotter
2 comunica ao restantes $\mathit{spotters}$ o espaço que este pretende explorar.
- 5. Spotter3 recebe confirmação dos *spotters* e fica afecto ao espaço que o mesmo pretendia.
- 6. Spotter2 recebe confirmação dos *spotters* e fica afecto ao espaço que o mesmo pretendia.

3.2.2 Afetação de Producers

Uma vez encontrado minério é necessário chamar um producer para o extrair. O spotter envia então a posição do minério a todos os producers e espera que lhe respondam com um valor indicante do esforço necessário a cada producer. O spotter escolhe o producer com o menor esforço e comunica de novo pedindo para confirmar a afetação do mesmo. Caso seja recusado, porque o producer foi afeto a outro minério entretanto, o spotter pede de novo o valor do esforço e repete o processo anterior.

Figura 3.3: Exemplo de afetação de *Producers*

Os *Producers* guardam numa *queue* os diferentes minérios que vão extrair. Com esta *queue* o calculo do esforço para extrair um minério baseia-se em somar a distância entre cada um dos minérios, a distância do ponto corrente para o primeiro minério e a distância do ultimo minério ao potencial minério.

3.2.3 Afetação de Transporters

Após a extração do minério é necessário transportá-lo para a nave-mãe. O producer que acabou de extrair o minério tem que selecionar um transporter, do mesmo modo que o spotter seleciona um producer. Cada transporter comunica o valor do esforço e o minério que consegue transportar possibilitando o producer de escalonar os diferentes agentes.

Figura 3.4: Exemplo de afetação de *Transporters*

3.3 Faseamento do projecto

OD 1 1	0	1		• ,			. ,
Tabela	3	۱٠	Hageg	previstas	nara	\cap	projecto
Labora	· • • • • • • • • • • • • • • • • • • •	1.	I abcb	DICVIDUAD	Data	v	DIOLOGIO

1º Ponto	Construir ambiente de simulação na tecnologia Repast
2º Ponto	Criação do spotter com as função de explorar e dividir ter-
	ritório a explorar.
3º Ponto	Criação do <i>producer</i> com a função básica de produzir. Me-
	lhoramento do spotter para chamar producers.
4º Ponto	Criação do transporter sem limite de capacidade e apenas com
	a função básica de transportar. Melhoramento do <i>producei</i>
	para chamar transporters.
5° Ponto	Melhoria dos Agentes spotter, producer e transporter.
6° Ponto	Defenir estratégias de forma a tornar a exploração de Marte
	o mais eficiente possível.

Recursos

- 4.1 Bibliografia
- 4.2 Software

Apêndice A Anexos

Dicas úteis e waypoints