

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 10. Präsenzblatt

Julian Dörfler

Aufgabe P10.1 (Konstruierbarkeit)

Seien $f(n), g(n) \ge n$ zeitkonstruierbare Funktionen. Zeigen Sie dann die folgenden Aussagen:

- (a) f + g ist zeitkonstruierbar.
- (b) $f \cdot g$ ist zeitkonstruierbar.
- (c) $f \circ g$ ist zeitkonstruierbar. Zur Erinnerung: $(f \circ g)(n) := f(g(n))$.
- (d) $\max(f, g)$ ist zeitkonstruierbar.

Hinweis: Verwenden Sie der Einfachheit halber die unäre Charakterisierung der Zeitkonstruierbarkeit aus der Aufgabe A10.1 vom aktuellen Übungsblatt.

Lösung P10.1 (Konstruierbarkeit) Wir verwenden für alle Aufgabenteile die Aufgabe A10.1. Seien also M_f und M_g Turingmaschinen, die auf Eingabe 1^n in Zeit O(f) bzw. O(g) die Ausgabe $1^{f(n)}$ bzw. $1^{g(n)}$ produzieren. Unsere konstruierten Maschinen geben die Ausgabe immer unär aus.

- (a) Wir benutzen M_f und M_g um $1^{f(n)}$ und $1^{g(n)}$ auf unterschiedlichen Bändern zu produzieren. Danach kopieren wir das eine Band hinter das andere und erhalten $1^{f(n)+g(n)}$ in Zeit O(f) + O(g) = O(f+g).
- (b) Wir benutzen M_f und M_g um $1^{f(n)}$ und $1^{g(n)}$ auf unterschiedlichen Bändern zu produzieren. Danach kopieren wir für jede 1 auf dem ersten Band das zweite Band auf das Ausgabeband und erhalten somit $1^{f(n)\cdot g(n)}$ in Zeit $O(f)\cdot O(g)=O(f\cdot g)$.
- (c) Wir benutzen zuerst M_g um $1^{g(n)}$ auf einem Band zu produzieren. Anschließend lassen wir M_f laufen um $1^{f(g(n))}$ auf dem Ausgabeband zu produzieren. All dies lässt sich berechnen in Zeit $O(g) + O(f \circ g) = O(f \circ g)$, da $f(n) \geq n$, also $f(g(n)) \geq g(n)$.
- (d) Wir benutzen M_f und M_g um $1^{f(n)}$ und $1^{g(n)}$ auf unterschiedlichen Bändern zu produzieren. Danach kopieren wir das längere der beiden Worte auf das Ausgabeband und erhalten $1^{\max(f(n),g(n))}$ in Zeit $O(f) + O(g) = O(f+g) = O(\max(f,g))$.

Aufgabe P10.2 (Explizite Konstruierbarkeit)

Entscheiden Sie, welche der folgenden Funktionen zeitkonstruierbar sind und beweisen Sie Ihre Antwort.

- (a) $f(n) = \lceil \log n \rceil$
- (b) $g(n) = n^2 \cdot \lceil \log n \rceil$

Lösung P10.2 (Explizite Konstruierbarkeit)

(a) f ist nicht zeitkonstruierbar. Nehmen wir an, es gäbe eine Turing-Maschine M, die f konstruieren würde, wobei M bei Eingabe 1^n nach f'(n) = O(f(n)) Schritten terminiert. Dann gibt es ein $n_0 \in \mathbb{N}$, das dass für alle $n \geq n_0$ f'(n) < n gilt. Dann kann bei Eingabe 1^{n_0} M nur die ersten $f'(n_0) < n_0$ Zeichen der Eingabe lesen, da M nach $f'(n_0)$ Schritten terminiert. Nun muss sich die Turing-Maschine auf Eingabe 1^{2n_0} aber identisch verhalten, da sie genau die gleichen Zeichen der Eingabe lesen kann, sie muss also insbesondere die gleiche Ausgabe produzieren. Es gilt aber

$$\lceil \log 2n_0 \rceil = 1 + \lceil \log n_0 \rceil \neq \lceil \log n_0 \rceil$$

Also kann M nicht korrekt gewesen sein und f ist nicht zeitkonstruierbar.

(b) M konstruiert g wie folgt:

Auf Eingabe 1^0 gebe direkt 0 aus. Auf Eingabe 1^n für n > 0 zählen wir auf einem Band A einen binären Zähler auf n - 1 hoch. Dies kostet uns O(n) Schritte (amortisierte Analyse!). Auf Band A steht nun ein String der Länge $\lceil \log n \rceil$. Ersetze darin jedes Zeichen durch 1.

Wir kopieren nun 1^n auf ein Band B. Anschließend gehen wir von links nach rechts auf Band B entlang, bis wir das Ende von 1^n erreicht haben. Bei jedem Schritt nach rechts kopieren wir 1^n auf ein Band C. Wenn wir das Ende von 1^n erreicht haben, steht 1^{n^2} auf Band C.

Wir gehen von links nach rechts auf Band C entlang, bis wir das Ende von 1^{n^2} erreicht haben. Bei jedem Schritt nach rechts kopieren wir Band A auf ein Band D. Am Ende von 1^{n^2} steht $1^{n^2 \cdot \lceil \log n \rceil}$ auf Band D.

Für Teil (i) benötigen wir O(n) Schritte. Für Teil (ii) benötigen wir $O(n^2)$ Schritte. Für Teil (iii) benötigen wir $O(n^2 \cdot \lceil \log n \rceil)$ Schritte. Insgesamt benötigen wir also $O(n + n^2 + n^2 \cdot \lceil \log n \rceil) = O(n^2 \cdot \lceil \log n \rceil)$ Schritte.