清华大学 2023 暑期福州支教

(热力学+电化学初步)

1. 化学反应速率: $V = \frac{\Delta c}{\Delta t}$ —平均速率—图线割线斜率 $V = \frac{dc}{dt}$ —瞬时速率——切线斜率

2. 影响反应速率的因素:浓度、温度、催化剂、其他(固液体:接触面积) e.g.生产工艺中某一步控制温度:

实验过程中通入气体:①

(2)

研磨/粉碎原料/雾化(针对液体):

加压 (对气体):

对例如 $2SO_2+O_2$ $\stackrel{\text{($d^4$)}}{\longleftarrow} 2SO_3$ 反应,当某因素(温度、pH 等)变化,导致产物 占比 ω **下降显著,**则考虑催化剂因素:

*阿伦尼乌斯方程:

$$k = Ae^{-E_a/RT}$$

直观反映:速率倍数变化;温度对反应速率的影响;活化能与速率关系

3. 速率计算: 和系数比关系:
$$\frac{\mathbf{v}_a}{A} = \frac{\mathbf{v}_b}{B} = \frac{\mathbf{v}_c}{C} = \frac{\mathbf{v}_d}{D}$$

*反应浓度半衰期: 多见于表格信息题

4. 反应限度: 化学平衡问题——

影响平衡的因素:温度、浓度(压强:改变反应物分子数密度,即分压) 平衡移动方向:勒夏特列原理

*定量考察: 平衡常数

能量变化

焓变的计算公式: 键能关系: ΔH=反应物总键能-生成物总键能

燃烧热: 1mo1 可燃物(101kPa)

产物需稳定氧化物且稳定燃烧(CO₂、H₂O(1))

盖斯定律: $\Delta H_3 = \Delta H_1 \pm \Delta H_2$ (若反应 3=反应 1±反应 2)

图像:

电化学

1. 原电池&电解池:正负极判断:关注物质氧化还原性,以及得失电子情况物理性质:①电势:正大负小;正阳高(蒸羊羔)

②串联:正负相接,正负交替

③带电粒子走向:原电池:各回各家

电解池: 阴阳调和

电池类型判断: ①有无外电源

②反应是否自发进行

拓展: 电渗析法(外加直流电+离子交换膜)用于海水淡化