Решения домашнего задания 5

И. Хованская, Б. Бычков, И. Тельпуховский 13 марта 2015 г.

Здесь и далее разбираем один из трех предлагавшихся вариантов для каждой задачи.

Задача 1.

Пусть
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$
 Отметьте матрицу $A \cdot B$.

Явно перемножим матрицы по правилу «строка на столбец»:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 0 & 1 \cdot 2 + 2 \cdot 0 + 3 \cdot 0 & 1 \cdot 3 + 2 \cdot 3 + 3 \cdot 0 \\ 1 \cdot 1 + 0 \cdot 1 + 3 \cdot 0 & 1 \cdot 2 + 0 \cdot 0 + 3 \cdot 0 & 1 \cdot 3 + 0 \cdot 3 + 3 \cdot 0 \\ 0 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 & 0 \cdot 2 + 0 \cdot 0 + 0 \cdot 0 & 0 \cdot 3 + 0 \cdot 3 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 9 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

Задача 2.

Пусть а $u\,b$ — базис линейного пространства \mathbb{R}^2 . Известно, что $c=a+b,\ d=a-b.$ Отметьте все верные утверждения:

Координаты векторов c u d s базисе a, b равны (1;1) u (1;-1) соответственно. Векторы c u d образуют базис линейного пространства \mathbb{R}^2 .

Первое утверждение верно, так как координаты в скобках — это в точности коэффициенты перед a и b в выражениях для c и d.

Второе утверждение верно, так как если $\alpha c + \beta d = 0$, то $(\alpha + \beta)a + (\alpha - \beta)b = 0$, а тогда $\alpha + \beta = \alpha - \beta = 0$, откуда $\alpha = \beta = 0$. Значит, c и d линейно независимы. А два линейно независимых вектора в двумерном линейном пространстве образуют базис.

Отсюда, так как вектор выражается через базис однозначно, получаем, что третье утверждение неверно.

Задача 3.

Пусть (1;2) — координаты вектора v в стандартном базисе $e_1=(1;0), e_2=(0;1)$ линейного пространства \mathbb{R}^2 . Пусть в этом же базисе даны вектора $h_1=(1;1), h_2=$

(3; 2). Выберите верное утверждение:

Координаты вектора v в базисе h_1 , h_2 равны (4;-1).

Векторы h_1 и h_2 не образуют базис.

Koopduнаты вектора v в базисе h_1 , h_2 равны (2;3).

Действительно, $4h_1 - h_2 = 4(1;1) - (3;2) = (1;2) = v$. Второе утверждение неверно, доказывается так же, как в предыдущей задаче: пусть $\alpha h_1 + \beta h_2 = (\alpha + 3\beta, \alpha + 2\beta) = (0;0)$. Тогда $\alpha = \beta = 0$. Отсюда, так как вектор выражается через базис однозначно, получаем, что третье утверждение неверно.

Задача 4.

Пусть $f: \mathbb{R}^2 \to \mathbb{R}^2$ линейный оператор, переводящий вектор с координатами (x; y) в вектор с координатами (x; 0). Какое из следующих подпространств является ядром оператора f?

Множество векторов с координатами (0; y), где y — любое действительное число. Множество векторов с координатами (x; 0), где x — любое действительное число. Вектор (0; 0).

Ядро, по определению, есть множество векторов, которые переходят в нулевой вектор. Какие в данном случае это будут вектора? Мы знаем, что (x; y) переходит в (x; 0). Значит, мы хотим, чтобы x был равен нулю, ведь в \mathbb{R}^2 нулевым вектором является начало координат (0; 0). Тогда в ноль переходят вектора вида (0; y), где y — любое действительное число.

Задача 5.

 $\Pi y cm b \ f$ — линейный оператор, переводящий многочлен степени не выше $2\ b$ его коэффициент при x^2 . Найдите размерность ядра оператора f.

На лекции было доказано, что для линейного отображения линейных пространств $\dim V = \dim Kerf + \dim Imf$. В данном случае, V — множество многочленов степени не выше 2, оно имеет размерность 3 как векторное пространство. Образом f будут все действительные числа (действительно, коэффициент при x^2 может быть любым) — одномерное линейное пространство $\mathbb R$. Тогда, по формуле, ядро имеет размерность 2.