NASA TM X- 68218

NASA TECHNICAL MEMORANDUM

NASA TM X-68218

THE PRELIMINARY DESIGN OF BEARINGS FOR THE CONTROL SYSTEM OF A HIGH-TEMPERATURE LITHIUM-COOLED NUCLEAR REACTOR

by H. G. Yacobucci, W. D. Waldron, and J. A. Walowit Lewis Research Center Cleveland, Ohio 44135 April, 1973

ABSTRACT

The design of bearings for the control system of a fast reactor concept is presented. The bearings are required to operate at temperatures up to 2200° F in one of two fluids, lithium or argon. Basic bearing types are the same regardless of the fluid. Crowned cylindrical journals were selected for radially loaded bearings and modified spherical bearings were selected for bearings under combined thrust and radial loads. Graphite and aluminum oxide are the materials selected for the argon atmosphere bearings while cermet compositions (carbides or nitrides bonded with refractory metals) were selected for the lithium lubricated bearings. Mounting of components is by shrink fit or by axial clamping utilizing differential thermal expansion.

THE PRELIMINARY DESIGN OF BEARINGS FOR THE CONTROL SYSTEM OF A

HIGH-TEMPERATURE LITHIUM-COOLED NUCLEAR REACTOR

by H. G. Yacobucci, W. D. Waldron, and J. A. Walowit

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

SUMMARY

This paper describes the designs of the bearings used to guide and support the fueled control drum system for a compact fast spectrum nuclear reactor concept. The bearings are required to operate for about 5 years at temperatures up to 2200° F in one of two fluids, lithium or argon. The bearing types selected are essentially the same for both fluids. Crowned cylindrical journals (rotating members) and cylindrical bearings (stationary members) were selected for those bearing sets subjected to pure radial loads. Spherical journals in modified spherical bearings were selected for those bearing sets supporting thrust as well as radial loads.

All bearings are designed to avoid loads near an edge. Since the load vector rotates during control drum movement, split bearing configurations were avoided to eliminate the possibility of the load vector passing over the bearing split line causing high edge loads and potential failure.

Aluminum oxide coated T-111 (T_s -8W-2H_f) and graphite were the materials selected for the argon atmosphere bearing sets. Potential candidate materials for the lithium environment bearing sets are cermets. Typical compositions are hafnium nitride, hafnium carbide, or zirconium carbide bonded with tungsten or molybdenum.

Graphite and aluminum oxide properties are well documented but the cermet properties were unknown and "best estimate" values had to be used in the designs.

Shrink fit type mounting methods are used to lock the bearings and journals in place. No mounting problems are anticipated over the entire operating temperature range for either the graphite bearings or the cermet journals mounted on TZM (Mo-0.5 Ti-0.08 Zr-0.02 C) shafts. The final dimensions of the cermet bearings mounted in T-111 housings and the cermet journal mounted on the T-111 shaft cannot be set until the thermal expan-

^{*}W. D. Waldron and Dr. J. A. Walowit are employees of Mechanical Technology Incorporated (MTI), Latham, N.Y. The design work presented in this paper was done by MTI under subcontract to the General Electric Co. (G.E.), Cincinnati, Ohio. This work was part of a program conducted by G.E. for NASA under contract NAS3-13447.

sion coefficients of the cermets are known. However, once the coefficients are known a proper fit can be determined.

INTRODUCTION

The NASA Lewis Research Center has recently terminated work on a technology program for a compact, fast-spectrum nuclear reactor for space electric power generation. This report covers a part of the work performed under that program. Reference 1 describes the liquid-metal cooled reactor concept used to identify problems associated with advanced, high temperature reactors of this type. During the course of this study several reactivity control methods were considered. These were movable fuel, movable poison, and movable reflector.

The movable fuel method employing rotatable drums (see fig. 1) cooled by flowing lithium offers a large amount of reactivity control regardless of reactor size. However, it requires a moving lithium-to-gas seal and high temperature (up to 2200° F) bearings that operate in lithium or in an inert gas. The design of these bearings, which represents an important step in the development of this control system, is presented in this paper.

Each of the six control drums contains asymmetrically positioned fuel pins which are rotated into or out of the core to control the amount of reactivity. Rotational torque is transmitted to a control drum through the bellows-sealed rotary drive mechanism labeled "penetration device" in figure 1. Hermetic sealing is accomplished by a double bellows assembly through which passes a torque transmitting sutating rod as shown in figure 2. Argon gas, which is used to monitor the double bellows for leaks, occupies the space to the left of the bellows assembly in figure 2.

A schematic of the control drum and penetration device system with its nine bearing sets is shown in figure 3. Separation of the two fluids by the bellows assembly is not shown in figure 3 but bearing sets numbered 5, 6, and 9 are immersed in lithium while the rest operate in argon. Obviously, the environment and the high temperature requirement present difficult materials problems for this application.

Final verification of the materials selected for these bearings can only be accomplished through rigorous testing under simulated operating conditions but the bearing designs must be tailored to the materials characteristics. Graphite and aluminum oxide (Al_2O_3) were selected for the argon atmosphere bearings. These are the same materials chosen for the SNAP-8 and advanced Z_TH reactors (ref. 2). The highly corrosive nature of lithium and elevated temperatures greatly limit the number of materials that could be used in the liquid metal (ref. 3).

Six cermet compositions were selected for development as candidate materials for the lithium lubricated bearings:

- 1. HfN + 10 w/o W
- 2. HfC + 10 w/o TaC + 10 w/o W
- 3. HfC + 10 w/o W
- 4. ZrC + 17 w/o W
- 5. HfC + 2 w/o NbC + 8 w/o Mo
- 6. HfN + 10 w/o TaN + 10 w/o W

A companion program (ref. 4) was initiated to determine the candidate cermet material properties, corrosion resistance and fabricability. However, the bearing design work was completed before the properties were obtained so all of the cermet properties used in this study are conservative "best estimate" values. It will be shown that satisfactory bearing designs can be accomplished as long as the properties fall within the assumed range of values. It is only the final dimensions of certain bearing components that cannot be exactly specified until properties such as thermal expansion coefficients are established.

BEARING DESIGN PHILOSOPHY

During the course of the bearing design work, several analyses were made of the control drum drive system to establish the maximum potential bearing loads and the nature of these loads. Also investigated were various methods of decelerating the drum, different bearing material friction coefficients, and the effect of bearing misalinement. The general approach was to first determine the maximum potential bearing loads, then to provide bearing designs that would support these loads within specified stress limits. Vibration loads during launch were neglected in this study. The reactor would probably be launched cold with solidifed lithium in the core. This should prevent relative motion between bearing components. If necessary mechanical locking devices could be employed to accomplish the same result.

For the bearings required to take thrust as well as radial loads, a spherical journal (rotating member) inside a modified spherical bearing (stationary member) were selected. Some ellipticity was introduced into the spherical bearing member to insure that the spherical journal did not contact the bearing lower edge under pure thrust load conditions. For the purely radial bearings, crowned cylindrical journals in cylindrical bearings were selected. Crowning of the journal together with proper selection of radial clearance provides misalignment capability and eliminates bearing edge loading which can lead to failure with the relatively brittle materials used in this application. Because the load vector rotates during control drum movement, split bearing configurations were avoided to eliminate the possibility of the load vector passing over the bearing split line which could also cause high edge loads.

The brittleness of the cermet materials also precluded the use of stress riser type fasteners such as keyed slots to mount the bearing components. The bearings are held in the T-111 housing members by simple interference fits. This is readily accomplished with the graphite bearings with no stress problems over the design temperature range (70° to 2200° F). The cermet bearings, on the other hand, do present a problem because the thermal expansion coefficient is not accurately known and it is not possible to design a fit to accommodate a range in coefficients from 3.5×10^{-6} to 4.0×10^{-6} in./in.- F which was assumed for design purposes. It is shown, however, that once the expansion coefficient is defined, an acceptable fit can be established.

Also, because of the low coefficient of thermal expansion for the TZM control drum shaft, the cermet journals grow away from the shaft with temperature. To insure that the journals do not move radially when load directions reverse, journals 6 and 9 are axially clamped by means of TZM tubes around the shaft. The clamping force is generated by the relative expansion of the cermet. Unlike the other cermet to refractory mounts, this concept is not stress limited over the assumed expansion coefficient and design temperature ranges.

Journal 5 is held on the T-111 nutating rod with the same axial clamp concept with a T-111 sleeve. However, in this case the axial clamping force decreases as the temperature increases. As is the case with the cermet bearings, once the expansion rate of the cermet is defined an acceptable fit can be established.

BEARING LOAD ANALYSIS

The reactor control drum is designed to rotate 180° and may be stationary in any position within the 180° arc. The two extreme positions (zero and 180°) are defined as the "full-in" and "full-out" positions. A scram cycle is defined as the rotation of the control drum from any position to a "full-out" position (the position of minimum power). However, for design purposes a scram cycle was defined as the total 180° rotation from a full-in to a full-out position. The specified period of the 180° scram cycle was 0.4 second.

To accomplish a scram cycle, torque must be applied to accelerate the control drum to some prescribed velocity; then a reverse torque must be applied to decelerate the drum and bring it to rest at the end of the cycle. The maximum velocity during the scram cycle was specified at 15.7 rad/sec. Two acceleration rates, 49.1 and 58.8 rad/sec² and two deceleration rates 196.4 and 118.0 rad/sec² were considered in the design analysis.

The torque required to accelerate the control drum is delivered through the penetration device by means of an actuator which drives the input shaft supported on bearings 1 and 2 (see fig. 3). Different methods of decelerating the control drum were considered during the course of the

design effort. These methods included absorption of the deceleration torque through the penetration device and absorption by the use of a dashpot (see fig. 1).

The conceptual dashpot is a single vane rotary actuator with a shaped chamber which allows free vane rotation through the first 120° of travel. A decelerating torque is developed in the final 60° by a gradual reduction in the clearance between the vane and the chamber wall. The force acting on the vane causes a bearing reaction force which is dependent on the angular orientation of the vane with respect to the penetration device crankarm. In this study the two extreme vane orientations were used: (1) in-phase with the crankarm and (2) 180° out-of-phase with the crankarm. In addition to vane orientation, loads were also analyzed with the dashpot located above or below the control drum. The latter case has the dashpot and penetration device on the same end of the control drum as depicted in figure 1.

The loads on the control drum and penetration device journal bearings are derived from two sources. One source is the reaction of the torque required to accelerate and decelerate the control drum and the other is reaction of the friction torque in the bearings. Additional friction forces are generated by the misalinement of the control drum bearings (numbers 6 and 9), and the axis defined by bearings numbers 1 and 2. Noncoincidence of these two centerlines causes slipping to occur in bearings 7 and 8 plus rotation in bearings 3 and 5. The friction force produced by this slippage is independent of the magnitude of misalinement since magnitude affects only the distance of sliding travel.

Several load analyses were made in order to establish the maximum bearing loads for each of the scram cycles and to determine the most favorable location of the dashpot and orientation of its vane. A summary of the different load analyses that were performed is given in table I. The geometries and inertias assumed for these analyses are shown in figure 3 which depicts the entire rotating assembly comprised of the penetration device and the control drum. The coefficient of friction of all the graphite-aluminum oxide bearings was assumed to be 0.3. The other properties of the cermet and graphite bearing materials that were used in the design analyses are given in tables II and III. The properties of graphite are well documented but those of the cermets were unknown at the time of the design work; therefore, those properties shown in table II are "best estimate" values.

The results of the analyses of the forces on each bearing for the case where the acceleration and deceleration torque is supplied through the penetration device (case A per table I) are given in appendix A. The results for the analyses with the deceleration torque absorbed by a dashpot (case B per table I) are summarized in tables IV and V.

The analysis for Cases IB1 to IVB4 neglects misalinement and considers only the cermet bearings (numbers 5, 6, and 9) with the drive torque supplied by a reaction imposed perpendicular to the crankarm at

bearing 5. This simplification introduces some error in the absolute value of the bearing reactions but does not compromise the comparative conclusions since the primary result of the analysis was to establish the best location of the dashpot. Also, as is shown later, the maximum loads (which were used for design purposes) resulted from the analysis of Case IVA in which misalinement was considered.

The results of Cases IB1 to IVB4* lead to the conclusion that, if a dashpot is to be utilized to decelerate the control drum, it should be located below the control drum and out-of-phase with the crank arm (B4 cases). This will decrease the loads on the cermet bearings, particularly bearings 5 and 6, but more importantly, it will eliminate load reversals so that the journal does not slam through the clearance space at the point where the drum mode changes from acceleration to deceleration.**

The loads calculated by these analyses are conservative since they are calculated assuming the scram cycles consist of a constant acceleration then an instantaneous change to a constant deceleration. Also, the highest assumed coefficient of friction was used for the cermet. A summary of the maximum resultant bearing loads used for design purposes is given in table VI. For each assumed case there were four calculations made for each of the following conditions during the scram cycle: zero and maximum velocity while accelerating and maximum and zero velocity while decelerating. All the values in table VI are for a drum acceleration of 58.8 rad/sec² at the maximum velocity of 15.7 rad/sec and a cermet coefficient of friction of 0.7.

The maximum radial load of bearing number 4 is given as 340 pounds in table VI. This corresponds to a radial load of 680 pounds in Case IVA since the load is shared by two bearings in the gimbal design. Also, the maximum radial load at bearing number 6 is 500 pounds in table VI and 377 pounds in appendix A, Case IVA. This discrepancy is due to the fact that 500 pounds was used to size bearing number 6 early in the design phase and when the final analysis determined the maximum load to be 377 pounds, the bearing size was not changed.

BEARING DESIGN DETAILS

The details of the penetration device and control drum bearings are

^{*}For B3 and B4 cases, the control drum span was increased by 2.0 inches to accommodate the dashpot.

^{**}In the case of the bottom located dashpot with the vane in phase with the crank arm and engagement at 0.267 sec (Cases IIIB3 and IVB3), the radial load reversal is less than the 250 pound thrust load; thus violent motion through the clearance is not probable. However, in a zero g environment the thrust load is not present and adequate axial positioning is not maintained.

delineated in figure 2. All bearings except the two required to take an axial load (numbers 2 and 6) are made up of a straight cylindrical bearing member and a crowned cylindrical journal member. The crowned journals together with radial clearance permit accommodation of misalinement without imposing high bearing edge loads.

Thrust loads resulting from the weight of the control drum (on bearing 6) and the penetration device input shaft (on bearing 2) are taken on modified spherical combination journal-thrust bearings. The rotating journal member is spherical in shape while the stationary bearing member can be described as "football" shaped. This bearing geometry is shown schematically in figure 4.

It can be seen by examining figure 4 that if (e) were set at zero, the stationary bearing member would be a sphere and the journal would contact the bearing (with pure thrust load) at the lower edge resulting in excessive contact stresses and probable severe damage. This situation is prevented by making the bearing elliptical in shape (displacing the center of radius (R_B) a distance (e) from the center of rotation) which causes the line of contact to move up on the sphere. Since the minimum contact stress occurs when the contact is at 45° (see appendix B) from the centerline, the values of radial clearance (c), ellipticity (e), and radius (R_B) have been set to nominally achieve the 45° contact for bearings 2 and 6.

As radial load is applied to the combination journal-thrust bearings the contact changes from a uniform circumferential line at 45° to a partial circumferential line at an angle greater than 45° . As the contact point moves up the bearing surface (greater than 45°) the contact stress for a constant force vector increases as a result of the reduced member conformity. This can be seen in figure 4 where moving up the bearing surface causes R_2 to be greater than R_1 . Since the contact stress is a function of $R/R_{\rm S}$, larger values of R result in larger contact stress. The limiting case is that of zero thrust and pure radial load where the contact is at 90° and the stress is a maximum. These two bearings have been sized for this limiting maximum stress case (zero thrust load, maximum radial load).

The bearing size, geometry, and clearance relations were established to satisfy the following criteria.

- 1. Maximum Hertzian compressive stress less than 30 000 psi on cermet bearings and 20 000 psi on graphite bearings (tables II and III).
- 2. Maximum Hertzian shear stress less than 10 000 psi on cermet bearings and 6667 psi on graphite bearings. It should be noted that for frictionless Hertz contact the maximum stresses will be compressive. The maximum shear stress will occur below the surface at a value approximately 30 percent of the maximum compressive stress, thus the compressive stress criteria would dominate. However, when the coefficient of friction is greater than 0.3, the maximum shear stress occurs at the center of contact

of the surface and it can be shown to be very nearly equal to the coefficient of friction times the maximum Hertzian stress. In general, for the higher coefficients of friction under consideration for the cermet bearings (μ = 0.7) the maximum allowable shear stress will be first to be reached. Hence the maximum allowable compressive stresses allowable to satisfy the above shear stress criteria are:

$$S_{c max} = \frac{S_{s max}}{\mu_{max}} = 14 300 \text{ psi (cermet)}$$
 and 22 200 psi (graphite)

Since the value for graphite (assuming $\mu_{max} = 0.3$) exceeds the aforementioned compressive stress criteria (number 1), the 22 200 psi value is disregarded. The maximum allowable compressive stress for the cermet bearings becomes 14 300 psi because of the 0.7 value for μ_{max} .

- 3. Bearing diametral clearance larger than the maximum particle size of the powder used to fabricate the bearing material which is assumed to be 0.001 inch for the graphite and 0.004 inch for the cermet. This permits sufficient space for the strongest of the wear debris particles to be accommodated within the bearing confines without jamming.
- 4. Maximum area of contact angle of 120° for crowned journal bearings which is close to the limit of the applicability of the theory used to calculate the contact stresses.
- 5. A minimum distance equivalent to a third of the Hertzian contact area half width in the axial direction remaining between the bearing edge and the contact area. This is to provide adequate bearing edge structure as shown in figure 5.

As was indicated above, the details of the bearings are shown in figure 2. In addition the significant design parameters are indicated in table VII which summarizes the bearing size, geometry, clearance, design load (from table VI) maximum stress, contact angle, and misalinement tolerance.

The maximum compressive stress values given are for the design load case and maximum clearance conditions which result in minimum bearing conformity (highest stresses). In the case of the graphite bearings (1, 2, 3, 4, 7, and 8) the stress shown is for 2200° F where the modulus of elasticity is highest (see table III). In all cases, the compressive stresses are lower than those indicated in the aforementioned design criteria 1 and 2.

The circumferential extent of the contact area is based upon the minimum clearance cases where the conformity and contact area are the greatest. In all cases this value is less than 120° . Likewise the tolerance to misalinement is based upon the minimum clearance where the large contact area limits the axial misalinement.

It should be noted that for the crowned journal bearings, the allowable misalinements shown assume only one type at a time. For example, if the axial centerline of bearing number 1 is misalined by 0.191 inch, no angular misalinement is allowed because the axial extent of the contact area would fall outside of the 1/3 half width confine. This is not considered a problem however, since the magnitude of the tolerance misalinements are quite large. In the case of spherical bearings 2 and 6, the degree of misalinement is limited only by the reverse thrust bearing clearance.

As the design of the bearing evolved, the sizes and configurations changed. All of the load analyses conducted to establish the design loads were based upon the original bearing sizes and configurations. After completing the bearing designs described in this report, a load analysis duplicating the original analysis worst case conditions (Case IVA) was made using the final bearing geometries. The results are summarized on table VIII where it can be seen that, for all bearings, the final load values are lower than used for design purposes.

BEARING MOUNTING

Graphite Bearings (Numbers 1, 2, 3, 4, 7, and 8)

The graphite bearing pieces are held in the T-111 housings by means of a simple shrink fit. The expansion coefficient of the graphite is greater than that of T-111 (see fig. 6 and table III). Thús, the fit grows tighter with increased temperature. The low modulus of elasticity of the graphite readily accommodates the differential thermal expansion and the resulting thermal stresses are small. The assembly fits, room temperature, and 2200° F member stresses, and friction torque values are summarized in table IX. For all bearings except number 4, the minimum torque restraint is greater than the maximum bearing friction torque so that the bearing will not turn in the T-111 housing during operation. However, for bearing number 4, a pin is used to lock the bearing from turning.

Aluminum Oxide Journals (Numbers 1, 2, 3, 4, 7, and 8)

The aluminum oxide surface is plasma sprayed upon the T-111 base metal; therefore, no mechanical fasteners are involved with these bearing components.

Cermet Bearings (Numbers 5, 6, and 9)

All three cermet bearings are held in the T-111 housings by means of a cylindrical interference fit. This interference will change with a change in temperature depending on the expansion rates of the two materials. The coefficient of thermal expansion of T-111 and cermet is given

in figure 6. Although the cermet expansion rate has not been measured at this time, it is expected to be in the range of 3.5×10^{-6} in./in. F to 4.0×10^{-6} in./in. F. Hence the design is based on accommodating any rate in this range. As can be seen from examining figure 6, if the thermal expansion rate of the cermet is 4.0×10^{-6} in./in. F, the amount of interference will increase as the temperature is increased throughout the temperature range of zero degrees to 2200° F. However, if the thermal expansion rate of the cermet is 3.5×10^{-6} in./in. F, the amount of interference will increase with increased temperature up to 975° F and then decrease with increasing temperature from 975° to 2200° F. This situation makes it impossible for one interference fit to meet all the design criteria for all assumed cermet expansion rates.

A design that meets all design criteria, i.e., a tight fit and all members within design stress limits throughout the operating temperature range, is possible with a known value of cermet expansion rate between 3.5×10^{-6} to 4.0×10^{-6} in./in. F. The amount of room temperature interference for all three bearings as a function of cermet expansion rate is shown in figure 7.

Cermet Journals (Numbers 6 and 9)

Since the thermal expansion coefficient of TZM (see fig. 6) is in all cases lower than the assumed expansion of the cermet (3.5×10^{-6}) to 4.0×10^{-6} in./in. F) the journal member grows away from the shaft. The magnitude of growth precludes the use of an interference fit at assembly of sufficient magnitude to insure a tight fit at 2200° F because the room temperature tensile stress in the cermet would exceed the 10 000 psi design limit. In the design shown in figure 2, the journal is assembled loose on the shaft and incorporates an axial clamping tube on the shaft which generates enough force over the 450° F to 2200° F operating range to maintain the radial position of the journal member by friction between the end of the clamp tube and cermet journal. This clamping force is generated by the axial growth of the cermet journal with themperature. The clamping force and resultant significant stresses imposed on the bearing and shaft members are summarized in table X. The clamping forces shown are sufficient to locate the bearing radially and maintain its position during a load reversal equivalent to the design load assuming the friction coefficient between the cermet and TZM is in excess of 0.55. Although the force is also sufficient to prevent rotation of the journal on the shaft, a polygon spline is provided as a back-up antirotation device.

As can be seen from table X, the clamping force decreases with increasing temperature for the low cermet expansion rates and increases with increasing temperature for the high cermet expansion rates. This is explained by examining figure 6 (thermal coefficient of expansion of TZM and cermets) and the fact that the cermet expansion rate was assumed to remain constant throughout the temperature range. By examining figure 6,

it is evident that there is a substantial difference between the expansion rates at 450° F regardless of the assumed cermet rate. However, at 2200° F there is very little difference between TZM and the 3.5×10^{-6} cermet rate but a substantial difference between TZM and 4.0×10^{-6} . Thus, as can be seen from table X the clamping forces at 2200° F is less than those at 450° F for the cermet expansion rates of 3.5×10^{-6} in./in. $^{\circ}$ F. However, for cermet expansion rates of 4.0×10^{-6} in./in. $^{\circ}$ F, the clamping forces increase with increasing temperatures.

Cermet Journal (Number 5)

The mounting design of journal number 5, is shown in figure 2. This design of the cermet journal on the T-lll nutating rod utilizes the same "axial clamp" concept that is used in mounting journals 6 and 9. However, there is a basic difference since the internal member in this case is T-lll whereas it was TZM for journals 6 and 9. Because the internal member is T-lll the axial clamp does not always get tighter with increasing temperature, as was the case with journals 6 and 9. In fact, the axial clamping force will decrease with increasing temperature for any cermet expansion rate below 3.95×10^{-6} in./in. $^{\circ}$ F.

As was the case with the cylindrical fit of the cermet bearings, it is not possible to have one interference fit accommodate all cermet expansion rates. However, once the cermet expansion rate is known, a design with sufficient clamping force and acceptable stresses in all members is possible.

The proper initial interference at room temperature for various cermet expansion rates are given in table XI. Also tabulated in table XI is the minimum axial clamping forces and the stresses in all three members at 70° , 450° , and 2200° F. The stress in the T-111 post is a tensile stress while the T-111 sleeve and cermet journal are in compression.

SUMMARY OF RESULTS

The bearings in the control drum and penetration device system are designed for operation at temperatures up to 2200° F in one of two fluids, lithium or argon. The basic bearing types selected are the same for each fluid. Bearing sets subjected to pure radial loads consist of crowned cylindrical journals (rotating members) mated with cylindrical bearings (stationary members). For the bearing sets required to take thrust as well as radial loads, a spherical journal inside of a modified spherical bearing was selected.

The crowned and the spherical configurations provide for a substantial amount of misalinement between the control drum shaft and the penetration device input shaft. Furthermore, these configurations lend themselves to elimination of edge loads which must be avoided with the relatively brittle materials being contemplated for this application. The

edge loading problem also precluded split bearing designs since the load vector rotates through as much as 180° .

Graphite and aluminum oxide are the materials selected for the bearing sets operating in argon. Six candidate cermet compositions were selected for the lithium lubricated bearings. These compositions consist of ceramics (primarily hafnium nitride, hafnium carbide, or zirconium carbide) bonded with tungsten or molybdenum.

Mounting of the cermet bearings presents some problems because of the brittleness of the material and because of the unknown coefficients of thermal expansion. Stress riser type fasteners such as keyed slots or fasteners that could put tension loads on the cermets were avoided. Simple interference fits are used to hold the bearings in the T-111 housing members. A range of coefficients of expansion was assumed for design purposes and although it is not possible to design a fit to accommodate the entire range, it is shown that once the coefficient is known, a proper fit can be established.

The cermet journals are held on their shafts by means of axial clamps which rely on differential thermal expansion for their clamping forces. When the shaft material is TZM there is no problem because the low TZM expansion coefficient causes increasing clamping pressure with increasing temperature. However, for the cermet journal mounted on the T-111 nutating rod, the clamping pressure decreases with increasing temperature. For this case, the expansion coefficient must be known before the room temperature fit can be established which will provide the proper clamping pressure over the entire operating temperature range.

The graphite bearings present no obvious mounting problems over the entire operating temperature range and since their journals consist of an aluminum oxide coating on a T-111 shaft there is no mechanical fastener involved.

If the control drum is to be decelerated during a scram by means of a single vane rotary dashpot, the dashpot and the penetration device should be located on the same end of the control drum. Furthermore, the vane of the dashpot should be oriented 180° out-of-phase with the penetration device crank arm. This not only reduces cermet bearing loads (compared to deceleration through the penetration device) but also prevents the cermet journals from slamming through the clearance space at the point in time where the control drum mode changes from acceleration to deceleration.

APPENDIX A

PENETRATION DEVICE AND CONTROL DRUM BEARING LOADS FOR ACCELERATION

AND DECELERATION FORCES PROVIDED BY ACTUATOR

Figure 8 shows the penetration device shafts as free bodies with the various force and moment vectors indicated by arrows. The angle between the nutating shaft (Body C) and the control drum centerline is α . The equilibrium force and moment equations for the various bodies are:

Body A

$$\Sigma FX$$
, $FX1 + FX2 - FX7 - FX8 = 0$

$$\Sigma FY$$
, $FY1 + FY2 + FW7(\sin \alpha) + FWB(\sin \alpha) = FV7(\cos \alpha) + FV8(\cos \alpha)$

EMX, FY2(LZ2) - FW7(cos
$$\alpha$$
)(LY7) + FW8(cos α)(LY8) + FW7(sin α)(LZ7)

+ FW8(
$$\sin \alpha$$
)(LZ8) = FV7($\cos \alpha$)(LZ7) + FV8($\cos \alpha$)(LZ8)

+ FV7(
$$\sin \alpha$$
)(LY7) - FV8($\sin \alpha$)(LY8)

EMY,
$$-FX2(LZ2) + FX7(LZ7) + FX8(LZ8) - MV7(\cos \alpha) - MV8(\cos \alpha) = 0$$

$$\Sigma MZ$$
, $T + FX7 - FX8(LY8) - MV7(sin α) - MV8(sin α) = -MZ1 - MZ2$

Body B

$$\Sigma FV$$
, $FV3 = FV7 + FV8$

$$\Sigma FW$$
, $FW3 = FW7 + FW8$

$$\Sigma FX$$
, $FX7 + FX8 - FX3 = 0$

$$\Sigma MV$$
, $MV7 + MV8 = MV3$

EMW,
$$-FX7(LY7)/(\cos \alpha) + FX8(LY8)/(\cos \alpha) - FX3(LY3)/(\cos \alpha) = MW3$$

Body C

$$\Sigma FV$$
, $FV3 + FY4(\cos \alpha) + FZ4(\sin \alpha) - FV5 = -FVB$

$$\Sigma FW$$
, $FZ4(\cos \alpha) - FY4(\sin \alpha) = -FWB - FW3 + FW5$

$$\Sigma FX$$
, $FX3 + FX4 - FX5 = 0$

EMV,
$$FX3(LR) + MZ4(\sin \alpha) + FX5(LR) = -MV3 - MY4(\cos \alpha) + MV5$$

$$\Sigma MZ$$
, $-FX5(LY5) = -MZD - MZ6 - MZ9 - MW5(cos α) - MV5(sin α)$

A computer program was used to solve the above sets of simultaneous equations for various friction and acceleration conditions. The results of these calculations are presented in the remaining pages of this appendix.

NUTATING ROD FORCE ANALYSIS

CASE	3	ACCEL	49.1	RADISEC2.	OMFG=0
017-01.	•	F-1 (a (a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a		ハロレノ ひにいこう	J U- U

CASE 3 ACCEL	. 49 • 1 RAD/SS	ECS. OMEG=	: O			
LZ2	LZ3	LZ7	7	LZ8	LR	LB
6.300	9•693		413	9•243	6.250	5•375
LZ5 32.700	LZ6 . 30.850	LD 15.5				
LY3 1.880	LY5 1.880	LY:	7	LY8 0.450	LØD 0.670	WTD 250 • 000
-38 • 400	FWB	MXB	FYD	FXD	FZD	MZD
	88•500 1	49 • 000	0.000	0.000	-26.000	-129.000
MU1 0•300		MU6 0.300	MU9 0•300	MU3 0•300	MU5 0•300	
MU04	MUI 4	MUB3	MUB5	MU78	MUT6	
0•300	0•300	0.300	0+300	0•300	0.300	
R1	R2	R6	R9	R3	R5	
0•375	0 • 437	0 • 437	0•437	0•312	0•312	
RØ4	RI 4	RB3	RB5	R78	RT6	
1∙000	0 • 687	0,500	0+500	0•312	0.700	
ERØ FRICTION	! LOADS	•		•	· · · .	
FY1	FX1	MZ	1	FY2	FX2	FZ2
0.000	-36.988	0•0	000	0.000	105•605	0.000
MZ2	FV3	FX:	3	FW3	MV3	MX3

ZE

FY1	FX1	MZ1	FY2	FX2	FZ2
0.000	-36•988	0.000	0.000	105•605	0•000
MZ2 0.000	FV3 0.000	FX3 68•617	F W3	MV3	MX3 0.000
MW3	FY4	FX4	FZ4	MY4	MX4
0•000	54•484	-137•234	-75•613	0•000	0.000
MZ4	FV5	FX5	FW5	MV5	MX5
0•000	-9•184	-68.617	0.000	0.000	0.000
MW5	FY6	FX6	FZ6	MZ6	FV7
0.000	9•116	78 • 161	-221•237	0.000	0.000
FX7 -37•451	F97 0•000	NV7 0+000	FV8 0•000	FX8	F W8
MV8	FY9 357	FX9	MZ9	T 129.000	

CASE 3 ACCEL 49.1 RAD/SEC2, 9MEG=0

WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	FY1 0.000	FX1 -65•673	MZ1 -7.388	FY2 0.000	FX2 186•499	FZ2 0.000
		•				
	MZ2 -24.450	FV3 0•000	FX3 120•825	FW3 0•000	MV3 0.000	MX3 0.000
	MW3 .	FY4	FX4	FZ4	MY4	MX4
	11-309	54-484	-228 • 458	-75.613	-72 • 194	0.000
	MZ4	FV5	FX5	FW5	MV5	MX5
	-45-230	-9-184	-107-633	0.000	0.000	0.000
:	MWS	FY6	FX6	FZ6	MZ6	FV7
	-10-111	9-116	119 • 418	-221 • 237	-62 • 161	0.000
	FX7	FW7	MV7	FV8	FX8	FW8
1.	-70-063	0.000	0.000	0.000	190-889	0.000
	MV8	FY9	FX9	MZ9	τ	
	0.000	-•357	-11.785	-1.546	269 • 775	
WITH	FRICTION,	BEARINGS MI	SALIGNED	,		
	FY1	FX1	MZ 1	FY2	FX2	FZ2
	-20-164	-71-671	-8.376	92.028	199•785	56.941
	MZ2	FV3	FX3	FW3	MV3	мхз
	-28-837	85 • 664	128 - 114	32•688	-14.022	-9.724
	миз	FY4	FX4	FZ4	MY4	MX4
	10-199	-117-472	-237 • 397	-130-567	-81.280	-36.198
	MZA	FV5	FX5.	FW5	MVS	MX5
	-46-800	-104-042	-109-283	32.004	12.076	11.544
. *	MWS	FY6	FX6	FZ6	MZ6	FV7
	-9•985 .	115.705	120.796	-223-225	-68.806	23.003
	FX7	FW7	MV7	F V8	FX8	F W8
	-73.637	-21-380	-7.011	62•661	201 • 751	54.068
	MV8	FY9	FX9	MZ9	τ	
•	-7-011	-6.854	-11-512	-1.757	283.575	
		•	•			•

STOP CP: 17.7 SEC 1/0:

FV7

F 98

0.000

0.000

NUTROD

15:06

FRIDAY 08/07/70

"NUTATING ROD FORCE ANALY	TATING	ROD	FORCE	ANALYSIS-
---------------------------	--------	-----	-------	-----------

MWS

FX7

-37 - 451

BVM

0.000

0.000

FY6

FW7

FY9

-.357

9.116

0.000

RATUK	ING ROD F	FORCE ANALYS	SIS-				: .
CASE	3 ACCEL	49 • 1 RAD/SE	:03MC . SD	= 15.7 RAD	/SEC		
	LZ2 6.300	LZ3 9.693		7. 413	LZ3 9•243	LR 6•250	LB 5•375
•	LZ5 32.700	LZ6 30•850	L0 15•				
	LY3 1.880	LY5 1.880	LY'	7 170	LY8 0.450	LOD 0.670	WTD 250•000
- (FVB 38 • 400		MXB 49•000	FYD 0.000	FXD 107.000		MZD -129.000
	NU1 0-300	MU2 0.• 300	MU6 0•300	MU9 0•300	MU3 0•300	MU5 0•300	
•	MU94 0.300	MUI 4 0•300	MUB3 0.300	MUB5 0•300	MU78 0•300	MUT6 0.300	
	R1 0-375	R2 0•437	R6 0•437	R9 0 • 437	R3 0•312	R5 0•312	
	R04 1.000	RI4 0•687	RB3 0•500	RB5 0•500	.R78 0•312	RT6 0.700	
ZERØ	FRICTION	LOADS			•	•	
	FY1 0.000	FX1 -36•988	MZ O•	1 000	FY2 0.000	FX2 105-605	FZ2 0•000
	MZ2 0.000	FV3 0.000	FX 68•		FW3 0.000	MV3 0.000	MX3 0•000
•	0.000 MM3	FY4 30•029	FX -137.		FZ4 1.922	MY4 0.000	%X4 0•000
	MZ4 0•000	FV5 -9.184	FX -68•		FW5 0.000	MV5 0.000	MX5 0.000

FX6

24.401

MV7

FX9

-62.734

0.000

FZ6 -221-237

FV3

MZ9

0.000

0.000

MZ6

FX8

106.068

129.000

T

0.000

CASE 3 ACCEL 49.1 RAD/SEC2. GMEG=15.7 RAD/SEC WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	FY1	FX1	MZ 1	FY2	FX2	FZ2
	0.000	~65•309	-7.347	0.000	185 • 465	0.000
	MZ2	FV3	FX3	FW3	MV3	ехм
•	-24-314	0.000	120-155	0.000	0.000	0.000
	MW3	FY4	FX4	FZ4	MY4	MX 4
	11-247	30.029	-227 • 769	1.922	-68-333	0.000
	MZ4	FV5	FX5	FW5	MV5	MX5
٠.	-43.946	-9 • 184	-107.613	0.000	0.000	0.000
	MWS	FY6	FX6	FZ6	MZ6	FV7
	-10-109	9.116	65-638	-221-237	-55-148	0.000
	FX7	FW7	MV7	FV8	FX8	F W8
	-69.675	0.000	0.000	0.000	189.830	0.000
	MV8	FY9	FX9	MZ9	τ	· .
*	0.000	357	-65-024	-8.525	268 • 279	
WITH	FRICTION,	BEARINGS MI	SALIGNED			•
•	FY1	FX1	MZ 1	FY2	FX2	FZ2
	-20-162	-71-664	-8-375	92.019	199.765	56.935
	MZ2	FV3	FX3	FW3	. MV3	MX3
	-28-834	85-655	128 - 101	32 • 68 4	-14-020	-9.723
	MW3	FY4	FX4	FZ4	MY4	MX4
•	10-198	-141-136	-238-683	-52-698	-73-329	-31.050
	MZ4	FV5	FX5	FW5	MV5	MX5
	-44-316	-103-196	-110-582	32.081	12.211	11 • 46 i
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-10-009	114-891	68 • 408	-223.553	-64.476	23.001
	FX7	FW7	MV7	FV8	FX8	F WS
	-73-630	-21-378	-7.010	62.655	201.731	54.062
	MV8	FY9	FX9	MZ9	Ť	
	-7-010	-6-825	-64.826	-8.546	283.547	
	_	,	•		•	

STOP CP: 18-2 SEC I/J:

NUTROD

14:29

FRIDAY 08/07/70

NUTATING ROD FORCE ANALYSIS

CASE	1	DECEL	106.4	RAD/SEC2	OMEG	15.7	DADICED
UHDE	1	レニいたし	170 44	ベベシノ ろとしこう	JULE	1301	- バロロノ つにひ

LZ2	LZ3		.7	LZ8	LR	LB
6•300	9.693		7413	9•243	6•250	5•375
LZ5 32•700	LZ6 30.850	LE 15.) 500			•
LY3	LY5		77	LY8	LOD	WTD
1•880	1.880		170	0.450	0.670	250.000
FVB	FWB	MXB	FYD		FZD	MZD
-38.400	7.200 14	19 • 000	0.000		-26.000	517.000
0•300	MU2	MU6	MU9	MU3	MU5	
MU1	0.300	0•300	0•300	0•300	0.300	
MU94	MUI4	MUB3	MUB5	MU78	MUT6	
0-300	0.300	0.300	0.300	0•300	0•300	
R1	R2	R6	R9 *	R3	R5	
0•375	0•437	0•437	0 • 437	0•312	0•312	
R94	RI.4	RE3	RB5	R78	RT6	
1•000	0.687	0.500	0.500	0`•312	0.700	
ZERG FRICTION	LEADS					
FY1	FX1	112		FY2	FX2	FZ2
0.000	148•239	0 •	.000	0.000	-423•239	0.000
. MZ2 0•000	FV3 0•000	FX -275	000	FW3 0.000	MV3 0•000	MX3

FY1	FX1	MZ1	FY2	FX2	FZ2
0.000	148•239	0•000	0.000	-423•239	0.000
MZ2	FV3	FX3	FW3	MV3	MX3
0•000	0-000	~275•000	0.000	0•000	0.000
MW3	FY4	FX4	FZ4	MY4	MX4
0•000	30•029	550•000	1•922	0•000	0•000
MZ4	FV5	FX5	FW5	MV5	MX5
D•000	-9 • 18 4	275•000	0.000	0•000	0.000
MW5	FY6	FX6	FZ6	MZ6	FV7
0•000	9•116	-339.822	-221-237	0•000	0.000
FX7	FW7	MV7	FV8	FX8	F∜8
150•095	0•000	0.000	0.000	-425•095	0•000
0.000	FY9 -•357	FX9 -42-178	MZ9 0+000	T -517.000	

CASE 1 DECEL 196.4 RAD/SEC2. OMEG 15.7 RAD/SED WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	•••				
FY1	FX1	MZ 1	FY2	FX2	FZ2
0.000	104-052	-11-706	0.000	-298 - 701	0.000
MZ2	FV3	FX3	FW3	MV3	MX3
-39 • 160	0.000	-194.649	0.000	0.000	0.000
	:				
MW3	FY4	FX4	FZ4	MY4	MX4
.18-219	30.029	411-980	1.922	-123-595	0.000
MZ4	FV5	FX5	FW5	MV5	MX5
-79 • 436	-9 • 18 4	217.331	0.000	0.000	0.000
	,				•
MWS	FY6	FX6	FZ6	MZ6	FV7
-20-360	9•116	-278 -893	-221.237	-83•042	0.000
FX7	FW7	MV7	FV8	FX8	F W8
99•608	0.000	0.000	0.000	-294.257	0.000
		~		2,423.	0,000
BVM	FY9	FX9	MZ9	T ·	
0.000	357	-45 • 438	-5-957	-297-699	· .
WITH FRICTION,	BEARINGS MI	SALIGNED			
FY1	FX1	MZ1	FY2	FX2	FZ2
-27 • 416	97•887	-11-436	127.365	-286.589	81.230
MZ2	FV3	FX3	FW3	MV3	MX3
-41-115	119.754	-188 -702	47 • 403	-20-634	-13.659
		1001702	4,14,00	200004	101007
MW3	FY4	FX4	F24	MY4	MX4
14.790	-212-232	406 • 888	-66-416	-123.682	-45.833
MZ4	FV5	FX5	FW5	MV5	MX5
-72-545	-141.026	218 • 186	55 • 103	23.865	16.057
			001.00		
MWS	FY6	FX6	FZ6	MZ6	F V7
-17.192	161.267	-280.506	-234-130	-91-586	30.710
FX7	FW7	MU7	FV8	FX8	F W8
97.610	-30-845	-10-317	89 • 044	-286.312	78 • 248
	<u> </u>				• • • • • •
MV8	FY9	FX9	MZ9	T	
-10-317	-10-197	-44.680	-6.008	-294-309	•
STØP	•				e e e e e e e e e e e e e e e e e e e

CP: 18.2 SEC I/O: 29.7 SEC

NUTATING ROD FORCE ANALYSIS

CASE 1 DECEL	196.4 RAD/SE	CS > DNEG=0 RAI	OVSEC		
LZ2	LZ3	LZ7	LZ8	LR	LB
6•300	9.693	8•413	9•243	6•250	5•375
LZ5 32•700	LZ6 30.850	LD 15.500		•	
LY3	LY5	LY7	LY8	L9D	WTD
1-880	1•880	2•170	0•450	0.670	250.000
FVB	FWB	MXB FYD		FZD	MZD
-38 • 400	88-500 149	•000 0•000		-26.000	517-000
MU1 0•300	· ·	MU6 MU9		MU5 0•300	
MUO4 0•300	MUI4 0•300 0	MUB3 MUB 0.300 0.300		MUT6 0•300	
R1 0•375		R6 R9 0•437 0•437		R5 0•312	
R04	RI 4	RE3 RE5	R78	RT6	
1 • 000	0 • 687	0.500 0.500	0•312	0•700	
ZERO FRICTION	LOADS		•		
FY1	FX1	MZ1	FY2	FX2	FZ2
0.000	148•239	0.000	0•000	-423•239	0.000
MZ2	FV3	FX3	FW3	MV3	MX3
0•000	0•000	-275.000	0•000	0•000	0.000
MW3	FY4	FX4	FZ4	MY4	0.000
0+000	54•484	550•000	-75•613	0•000	
MZ4	FV5	FX5	FW5	MV5	MX5
0.000	-9•184	275•000	0+000	0•000	0.000
M₩5	FY6	FX6	FZ6	MZ6	FV7
0•000	9•116	-286.062	-221•237	0.000	0.000
FX7	FW7	MV7	FV8	FX8	F #8
150•095	0•000	0•000	0•000	-425.095	0 • 000
MV8	FY9	FX9	MZ9	T	
0-000	357	11•062	0•000	-517.000	

CASE 1 DECEL 196.4 RAD/SEC2 , OMEG=O RAD/SEC
WITH FRICTION, BEARINGS PERFECTLY ALIGNED

FY1 0.000 MZ2 -40.115	FX1 106•590	MZ1 -11•991	FY2 0.000	FX2 -305•988	FZ2
MZ2	106-590	-11-991	0.000	-305-988	. 0 000
	•			303-700	0.000
	FV3	FX3	FW3	мvз	MX3
70-113	0.000	-199 • 398	0.000	0.000	0.000
		•			•
MW3	FY4	FX4	FZ4	MY4	MX4
18-664	54 • 48 4	422•389	-75.613	-128.731	0.000
MZ4	FV5	FX5	FW5	MV5	MX5
-82.077	-9.184	222.991	0.000	0.000	0.000
3411P	. 544		F7.	M	54.5
MW5	FY6	FX6	FZ6	MZ6	FV7
-20-890	9-116	-231-137	-221-237	-76.786	0.000
FX7	FW7	MV7	FV8	FX8	F W8
102.038	0.000	0.000	0.000	-301 - 436	0.000
Muc	EVO	FX9	MZ9	•	
MV8 0•000	FY9 -•357	8 • 1 4 6	-1.069	T -304.962	
		2 7 7 7 7			
WITH FRICTION, 1	BEARINGS MI	SALIGNED			
FY1	FX1	MZ1	FY2	FX2	FZ2
-27.894	99.594	-11-636	129 • 586	· · · · -	82.647
			•	•	•
MZ2	FV3	FX3	FW3	EVM	MX3
-41-832	121.843	-191-993	48+230	-20.993	-13-897
MW3	FY4	FX4	FZ4	MY4	MX4
15.048	-192-541	415.022	-145.078	-131-895	-49.687
					• .
MZ4	FV5	FX5	FW5	MV5	MX5
-75-794	-143-821	223 • 029	56•287	24.394	16.379
MWS	FY6	FX6	FZ6	MZ6	FV7
-17-562	164 • 498	-231-899		-86.502	31.246
				. ,	
FX7	FW7	MV7	FV8	FX8	F W8
99+313	-31-383	-10-497	90-597	-291-306	79.612
MV8	FY9	FX9	MZ9	Ť	
-10-497	-10-406	8.870	-1.793	-299 - 444	
100-77	.01700	3,013			•

STOP

P: 17.5 SEC I/0: 24.7 SEC

NUTROD

16:25

FRIDAY 08/07/70

NUTATING ROD FORCE ANALYSIS

CASE 4	ACCEL	49.1	RAD/SEC2>	OMEG=0
--------	-------	------	-----------	--------

	LZ5			8.413	9 • 2 4 3	6.250	5.375
	32.700	L26 30•3		LD 15.500	· · · · · · · · · · · · · · · · · · ·		
	LY3. 1•880	LY5 1•8		LY7 2•170	LY8 0.450	LOD 0.670	WTD 250•000
~ 3	FVB	FWB 88•500	MXB 149 • 000		FXD 0.000	FZD -26.000	MZD -129.000
	MU1 0+300	MU2 0•300	MU6 0• 7 00	MU9 0•700	MU3 0•300	MU5 0•700	
	MU34 0•300	MUI ^ 0.300	MUB3 0•300	_	MU78 0•300	MUT6 0.700	
	R1 0 • 375	R2 0•437	R6 0•437	R9 0 • 437	R3 0•312	R5 0•312	
	R04 1 • 000	RI 4 0•687	RB3 0•500		. R78 0∙312	RT6 0•700	

ZERO FRICTION LOADS

		_			
FY1	FX1	MZ1	FY2 0.000	FX2. 105•605	FZ2 0•000
0.000	-36-988	0.000	0.000	103.603	. 0.000
MZ2	FV3	FX3	FW3	MV3	MX3
0.000	0.000	68 • 617	0.000	0.000	0.000
MW3	FY4	FX4	FZ4	MY4	MX4
0.000	54-484	-137-234	-75.613	0.000	0.000
MZA	FV5	FX5	FW5	MV5	MX5
0.000	-9.184	-68.617	0.000	0.000	0.000
MWS	FY6	FX6	F26	MZ6	FV7
0.000	9,•116	78 - 161	-221 • 237	0.000	0.000
FX7	FU7	MV7	* F V8 1	FX8	FW8
-37 - 451	0.000	0.000	0.000	106 • 068	0.000
MV8	FY9	FX9	MZ9	Т	•
0.000	357	-9.544	0.000	129.000	

CASE 4 ACCEL 49.1 RAD/SEC2. @MEG=0

WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	FY1	FX1	MZ1	FY2	FX2	FZ2
	0.000	-110.730	-12.457	0.000	314.450	0.000
	MZ2	FV3	FX3	FW3	MV3	мхз
	-41.224	0.000	203.720	0.000	0.000	0.000
	MW3	FY4	FX4	FZ4	MY4	MX4
*AL	19.068	54-484	-384-746	-75-613	-117-632	0.000
	MZ4	FV5	FX5	FW5	MV5	MXS
	-98.605	-9.184	-181.025	0.000	0.000	0.000
	MWS	FY6	FX6	FZ6	MZ6	FV7
·* .	-39.587	9.116	196.924	-221.237	-168.710	0.000
	FX7	FW7	MV7	FV8	FX8	FW8
	-118.132	0.000	0.000	0.000	321.852	0.000
• • •	MV8	FY9	FX9	MZ9	т	
٠.	0.000	357	-15-899	-4.865	454.860	•
WITH	FRICTION,	BEARINGS MI	SALIGNED			
	FY1	FX1	MZ1	FY2	FX2	FZS
٠.	-42-696	-151.760	-17-736	194.864	423 • 032	120.570
•	MZ2	FV3	FX3	FW3	MV3	MX3
	-61.061	181-388	271-273	69.214	-29.690	-20.589
	MW3	FY4	FX4	FZ4	MY4	MX 4
	21.595	-341.770	-497-738	-110.679	-152.968	-74.040
•	MZ4	FV5	FX5	. F₩5	MV5	MX5
٠	-121-588	-216.246	-226 • 465	154.967	67.903	65.831
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-48-350	275.183	242.904	-306.742	-262.585	48 • 7 08
•	FX7	FW7	MV7	FV8	FX8	F W8
. •	-155.922	-45.272	-14.845	132.681	427 • 195	114.486
:	MVB	FY9	FX9	MZ9	Т	
	-14.845	-22 - 339	-16-440	-8 - 48 4	600•453	

STOP

22.2 SEC I/G: 30.6 SEC

NUTROD

14:55

FRIDAY 08/07/70

NUTATING	PCD	FORCE	AMALYS	IS

*			:			
LZ2	LZ3	LZ7	/	LZ8	LR	LB
6.300	9 • 693	8:• -4	13 -	9 • 243	6.250	5.375
LZ5	LZ6	. LD			•	
32.700	. 30.850	15.5	Ō0	· - ·	• .	
LY3	LY5	LY7		LY8	LOD	WTD
1.880	1.880	2.1	70	0 • 450	0.670	250.000
FVB	FWB	MXB	FYD	FXD	FZD	MZD
-38-400	7.200 1	49 • 000	0.000	107 - 000	-26.000	-129.000
មហ	. MU2	MU6	MU9	миз	MUS	
0.300		0.700	0.700	0.300	0.700	
MU9.4	MULA	MUB3	MUB5	MU78	MUT6	•
0.300	0.300	0.300	0.700	0.300	0.700	
	DÓ.		200		D.E.	•
R1 0•375	R2 0 • 437	R6 0•437	R9 0 • 437	R3 0•312	R5 0.312	
• •						
R04 1•000	RI4 0•687	RB3 0•500	RB5 0•500	R78 0•312	RT6 0•700	
1.000	. 0.087	0.300	0.300	0.312	0.700	
ERØ FRICTION	LOADS					٠.
FY1	FX1	MZ1		FY2	FX2	FZ2
0.000	-36.988	0.0	00	0.000	105-605	0.000
MZ2	FV3	FX3	,	FW3	MV3	MX3
0.000	0.000	-		0.000	0.000	0.000
MW3	FY4	FX 4	,	FZ4	MYA	MX4
0.000	30.029			1.922	0.000	0.000
MZ4	EV5	Eve		FW5	MV5	MX5
0.000	-9 • 184	FX5		0.000	0.000	0.600
						erie .
MW5 0.000	FY6 9•116	FX6 24•7		FZ6 221•237	MZ6 0.000	FV7 0.000
	, , , , ,	2-, 4 -,		2211201	01303	
FX7	F.97	1477		FV8	FXB	F V8
-37.451	0.000	0.0	100	0.000	106.068	0.000
MV8	FY9	FX9		MZ9	T	
0.000	·357	-62.7	84	0.000	129.000	

CASE 4 ACCEL 49.1 RAD/SEC2, OMEG=15.7 RAD/SEC WITH FRICTION. BEARINGS FERFECTLY ALIGNED

	and the second s			•		
	FY1	FX1	MZ 1	FY2	FX2	FZ2
	0.000	-110-455	-12.426	0.000	313.668	0.000
		~			WUA	MYO
	MZ2	FV3	FX3	FW3 0.000	MV3 0•000	MX3 0.000
•	-41.122	0.000	203•214	0.000	0.000	0.000
	MW3	FY4	FX4	FZ4	MY 4	MXA
	19.021	30.029	-384-137	1.922	-115-243	0.000
	MZ4	FV5	FX5	FW5	MVS	MX5
100	-97.778	-9 • 18 4	-180.923	0.000	· -	0.000
	714110	->-10-	1000720	0,000		
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-39.565	9-116	143.056	-221.237	-152-256	0.000
	FX7	FW7	MV7	FV8	FX8	FW8
	-117.838	0.000	0.000	0.000	321.052	0.000
	1111000	0000	0.000		33.	
	MV8	FY9	FX9	MZ9	T	•
	0.000	357	-69 • 133	-21.148	453•729	
LITT	u Enicatos	BEARINGS WI	CALICNED			
MII	u tricitans	DEMRINGS WIL	SALIGNED		, 1	
	FYI	FX1	MZ 1	FY2	FX2	FZ2
*	-43-239	-153-691	-17.961	197.344	428 • 416	122-104
: .	W70	Euo	EVO	F W3	MV3	мхз
	MZ2	FV3	FX3 274•725	70.095	-30-068	-20-851
	-61-838	183•69 6	214.123	10.073	-30•088	-20.031
	MW3	FYA	FX4	FZ4	MY4	MXA
•	21-870	-371-649	-504.583	-33-445	-151.707	-76.906
		F1.00	Eve	euc	MV5	MX5
	MZ4	FV5	.FX5	FW5 157•191	68 • 907	66.746
	-122.206	-219-201	-229 •858	15/•191	80 + 70 /	00 • 140
	MWS	FY6	FX6	FZ6	MZ6	FV7
	-49.044	278 • 985	192.704	-307.975	-254-629	49 • 328
				•		-
	FX7	F1:17	MV7	FV8	FXB	F WB
	-157.906	-45.848	-15.034	134.369	432-631	115.942
	MV8	FY9	FX9	MZ9	Т	
	-15-034	-22-653	-69.845	-22.461	608 • 09 4	•
			,			

CP: 22.2 SEC I/G: 36-7 SEC

DCSTUK

14:40

FRIDAY 08/07/70

NUTATING ROD FORCE ANALYSIS

MW5

FX7

150.095

MVB

0.000

0.000

FY6

F !: 7

FY9

9,116

0.000

- . 357

CASE 2 196	A RADISECS.	OMEG 15.7	RADISEC			
LZ2	LZ3	<u>LZ</u>	7	LZ8	LR	LB
6.300	9.693		//13	9.243	6.250	5.375
LZ5 32.700	LZ6 30.850	LD 15.	500	• • • • • • • • • • • • • • • • • • • •		
LY3	LY5	LY	7	LY8	LOD	WTD
1.880	1.880	2.	170	0.450	0.670	250.000
FVB	FWB	MXB 49,000	FYD	FXD	FZD	MZD
=38,400	7.200 1		0.000	107.000	-26.000	517.000
MU1 0,300	MU2 0.300	MU6 0.700	MU9 0.700	0.300	MU5 0.700	
MU04	MU14	MUB3	MUB5	MU78	MUT6	
0.300	0.300	0.300	0.•700	0.300	0.700	
R1	R2	R6	R9	R3	R5	
0,375	0•437	0.437	0 • 437	0.312	0•312	
. R04	RIA	RB3	RB5	R78	RT6	
1.000	0.687	0.500	0.500	0.312	0•700	
ZERO FRICTI	ON LOADS	•		•	· ·	
FY 1	FX1	M <u>Z</u>	1 000	FY2 0.000	FX2 -423.239	FZ2 0.000
MZ2	FV3	FX	•	FW3	MV3	MX3
0.00	0.000	+275•		0.000	0.000	0.000
MW3 0+0 00	0 30.029	FX 550.	•	FZ4 1.922	MY4 0.000	MX4 0.000
MZA	FV5	FX	5	FW5	MV5	MX5
0.00	9 • 184	275•	000	0•000	0.000	0•000

FX6 -

-339.522

1477

FX9

-42.178

0.000

FZ6

-221.237

F V8

MZ9

0.000

0.000

M26

FX8

-425.095

-517.000

0,000

FV7

F 1/18

0.000

CASE 2 196.4 RAD/SEC2, OMEG 15.7 RAD/SEC WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	FY1	FX1	MZ 1	FY2	FX2	FZ2
	0.000	74-637	-8.397	0.000	-214-260	0.000
	MZ2	FV3	FX3	FW3	мvз	мхз
	-28.089	0.000	-139.623	0.000	0.000	0.000
	MM3	FY4	FX4	FZ4	MY4	MX4
	13-069	30.029	296 • 565	1.922	-88-971	0.000
	MZ4	FV5	FX5	FW5	MV5	MX5
•	-77.767	-9 - 184	156.942	0.000	0.000	0.000
	MWS	FY6	FX6	FZ6	MZ6	FV7
	-34-335	9 • 1 1 6	-215.019	-221-237	-174.240	0.000
	FX7	FW7	MV7	FV8	FX8	FW8
•	71-449	0.000	0.000	0.000	-211-072	0.000
. 5 .	MV8	FY9	FX9	MZ9	т	
·	0.000	-•357	-48.923	-14-966	-213.542	
WITH	FRICTION,	BEARINGS MI	SALIGNED			
	FY1	FX1	MZ 1	FY2	FX2	FZ2
	-17-877	63-828	-7 - 457	83.049	-186-873	52.966
• -	MZ2	FV3	FX3	FW3	MV3	MX3
. :	-26-809	78 • 08 6	-123.045	30-910	-13-454	-8-906
	MW3 .	FY4	FX4	FZ4	MY4	MX4
	9.644	-147.015	270.528	5.784	-81-177	-30-323
	MZ4	FV5	FX5	F W5	MV5	MX5
1.00	-64-455	-98-781	147 - 483	87.848	42 - 478	32-711
	MUE	EV/	EVA	F2.4	W7.4	
:	MW5 -27-409	FY6 132•219	FX6 -206•238	FZ6 -278•066	MZ6 -211•192	FV7 20•025
	FX7	FW7	MV7	FV8	FX8	F W8
	63-648	-20-112	-6.727	58 • 062	-186.693	51•022
	MUD	FY9	570	W70	•	
,	MV8 -6.727	-11-589	FX9 -48•245	MZ9 -15•178	T -191•908	
CTA S	•			•		

STOP CP: 18:7 SEC I/O: 32 • 1 SEC

NUTROD

16:56

FRIDAY 08/07/70

NUTATING ROD FORCE ANALYSIS

CASE	S DECI	1 196.4	-RAD/SEC2	. OMFG=0	PADZSEC

	300 S	LZ3 9•69		_Z7 3•413 - /	LZ8 9•243	LR 6.250	LB 5.375
LZ 32•	5 700	LZ6 30.85	*	_D 5•500			•
LY 1.	3 880	LY5 1•88		_Y7 2•170	LY8 0•450	L5D 0.670	WTD 250•000
FV -38 • 40		FVB •500	MXB 149.000	FYD 0.000	FXD 0.000	FZD -26.000	MZD 517.000
MU 0•30		.300 MU2	MU6 0.7 00	MU9 0•700	MU3 0•300	MU5 0.700	
MU 0 • 3 0	•	MUI 4 • 300	MUB3 0.300	MUB5 0•700	MU78 C•300	MUT6 0.700	
R1 0•37		R2 • 437	R6 0•437	R9 · 0 • 437	R3 0•312	R5 0•312	
R0 1 • 00		RI 4 •687	RB3 0•500	RB5 Q•500	R78 0•312	RT6 0•700	

ZER9 FRICTION LOADS

FY1	FX1	MZ 1	FY2	FX2	FZ2
0.000	148•239	0 • 000	0.000	-423•239	0.000
0.000	FV3	FX3	FW3	MV3	MX3
MZ2	0.000	-275.000	0.000	0•000	0.000
MW3	FY4	FX1	FZ4	MY4	0•000
0.000	54•484	550.000	-75•613	0•000	WX4
MZ4`	FV5	FX5	FW5	MV5	MX5
0.000	-9 • 18 4	275.000	0.000	0•000	0•000
MW5	FY6	FX6	FZ6	MZ6	FV7
0.000	9•116	-286.062	-221.237	0.000	0.000
FX7	FW7	MV7	FV8	FX8	F W8
150•095	0.000	0.000	0.000	- 425 • 09 5	0 • 000
MV8	FY9	FX9	MZ9	T	
0•000	-•357	11•062	0.000	-517.000	

CASE 2 DECEL 196.4 RAD/SEC2, SMEG=0 RAD/SEC

WITH FRICTION, BEARINGS PERFECTLY ALIGNED

and the second s		•			
FY I	FX1	MZ 1	FY2	FX2	FZ2
0.000	80.293	-9.033	0.000	-230 • 497	0.000
MZ2	FV3	FX3	F W3	MV3	MX3
-30-218	0.000	-150-204	0.000	0.000	0.000
MW3	FY4	FX4	FZ4	MY4	MX4
14-059	54.484	319.512	-75-613	-98-501	0.000
MZ4	FV5	FX5	FW5	MV5	MX5
-84-640	-9.184	169.308	0.000	0.000	0.000
MWS	FY6	FX6	FZ6	MZ6	FV7
-37.031	9 • 116	-174.392	-221-237	-161-826	0.000
FX7	FW7	MV7	FV8	FX8	F ₩8
76.864	0.000	0.000	0.000	-227.068	0.000
MV8	FY9	FX9	MZ9	T - F	
0.000	357	5.085	-1-559	-229 • 724	
WITH FRICTION,	BEARINGS MI	SALIGNED			
FY1	FX1	MZ 1	FY2	FX2	FZ2
-18.973	67.742	-7.914	88 • 1 43	-198•333	56.215
MZ2	FV3	FX3	FW3	MV3	MX3
-28 • 454	82.876	-130-591	32.805	-14-279	-9 • 452
MW3	FY4	FX4	FZ4	MY4	MX 4
10-235	-133-239	287.595	-71-467	-88 • 9 0 3	-31-161
MZ4	FV5	FX5	FW5	MV5	MX5
-69.272	-104.090	157.004	93-227	45 • 184	34-577
MW5	FY6	FX6	FZ6	MZ6	FV7
-29 • 087	139 • 577	-162-670	-281-599	-203-551	21.253
FX7	FW7	MV7	FV8	FX8	F W8
67 • 551	-21.346	-7 • 1 40	61-622	-198 • 142	54 • 151
MV8	FY9	FX9	MZ9	T	
-7.140	-12-265	5.666	-4-133	-203-677	
CTOP	•				•

STØP

CP: 19.4 SEC 1/0: 26.3 SEC

SO:91

0.000 8VM

FRIDAY 08/07/70

40110	.50	,					
ATUK	TING ROD	FØRCE ANALYS	SIS	•			
CAS	E 3 ACCEL	58.8 RAD/SE	CC2. OMEG=	0			
	LZ2 6.300	LZ3 9•693	L27 8.4		LZ8 9•243	LR 6.250	LB 5•375
	LZ5 32.700	LZ6 30.350	LD 15.5	00			
	LY3 1.880	LY5 1-880	LY7 2•1		LY8 0.450	LOD 0.670	WTD 250 • 000
	FVB 33•400	FWB 88•500 1		FYD 0.000	FXD 0.000 ·	FZD -26.000	MZD -155.000
	MU1 0+300	MU2 0•300	MU6 0.300	MU9 0•300	MU3 0•300	MU5 0•300	
	MU34 0•300	MUI 4 0•300	MUB3 0.300	MUB5 0•300	MU78 0•300	MUT6 0.300	
	R1 0•375	R2 0•437	R6 0•437	R9 0•437	F3 0•312	R5 0.312	•
	R94 1•000	R14 0.687	RB3 0•500	RB5 0•500	K78 0•312	RT6 0.700	
ZERØ	FRICTION	LOADS			· .	•	
٠.	FY1 0.000	FX1 - 44. 443	MZ 1 0 • 0	000	FY2 0.000	FX2 126•690	FZ2 0•000
•	0.000 0.000	FV3 0.000	FX3		FW3 0.000	MV3 0.000	0.000 0.000
	0.000	FY4 54•484	FXZ -164•8		FZ4 -75•613	MY4 0.000	MX4 0.000
	MZ4 0•000	FV5 -9•184	FX5 -82•4		FW5 0•000	MV5 0•000	MX5 0.000
	MW5 0.000	FY6 9•116	FX6 92•8		F26 221 • 237	MZ6 0.000	FV7 0.000
	FX7 -45.000	FW7 0.000	MV7 0+0		EV8 0.000	FX8 127•446	F ₩8 0•000

-10-374

MZ9 0•000

T 155.000

CASE 3 ACCEL 58.8 RAD/SEC2. GMEG=0

WITH FRICTION, BEARINGS PERFECTLY ALIGNED.

	FYI	FX1	MZ1	FY2	FX2	FZ2
	0.000	-75-223	-8 • 463	0.000	213-619	0.000
	MZ2	FV3	FX3	F W3	MV3	MX3
1	-28.005	0.000	138 • 396	0.000	0.000	0.000
	MW3	FY4	FX4	FZ4	MY4	MX4
٠	12.954	54 • 48 4	-261.836	-75.613	-81.761	0.000
. •	MZ4	FV5	FX5	F W5	MV5	MX5
-:	-51-519	-9-184	-123-440	0.000	0.000	0.000
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-11-586	9 • 116	136 • 159	-221-237	-64+350	0.000
. •	FX7	FW7	MV7	FV8	FX8	FW8
	-80.252	0.000	0.000	0.000	218 • 647	0.000
÷	MV8	FY9	FX9	MZ9	T	
	0.000	357	-12-719	-1.668	309 • 006	
WITH	FRICTION,	BEARINGS M	ISALIGNED		•	
	FY1	FX1	MZ I	FY2	FX2	FZ2
	-23.059	-81-960	-9 • 578	105-239	228 • 465	65-115
	MZ2	FV3	FХЗ	• FW3	MV3	МХЗ
	-32.977	97.961	146.505	37.380	-16.035	-11-119
	MW3	FY4	FX4	FZ4	MY4	MX4
	11-663	-142.007	-271-718	-138.586	-91.506	-40.895
	MZ4	FV5	FX5	F ₩5	MVS	MXS
	-53.008	-117.555	-125-213	36 • 428	13.829	13-052
	MWS	FY6	FX6	F26	MZ6	F V 7
	-11-365	130.834	137-613	-223.380	-71-803	26.306
	FX7	FW7	MV7	FV8	FX8	F W8
	-84-208	-24-449	-8.017	71.656	230.713	61.829
	MV8	FY9	FX9	MZ9	T	
	-8-017	-7.765	-12-400	-1-918	324-283	
STOP	·			•	•	

CP: 17.6 SEC I/0: 28.3 SEC

ŖEADY

NUTRED

10:39

WEDNESDAY 07/01/70

NUITATING	חמס	FUDGE	ANIA	YCI	~

CASE	3	ACCEL	58 . 8	RAD/SEC2,	OMFG=	15.7	RADISEC

•	LZ2	LZ3		LZ7	LZ8	LR	LB
	. 6 • 3 00	9 • 69	93	8.413	9 • 243	6.250	5-375
	LZ5	. LZ6		LD	•		•
•	32.700	30.8	50	15.500	•	•	
•	LY3	LY5		LY7	LY8	LOD	WTD
	1.880	1 • 88	30 -	2.170	0.450	0.670	250.000
	FVB	FWB	MXB	FYD	FXD	FZD	MZD
-	38 • 400	88 • 500	149.000		107.000	-26.000	-155.000
	MUI	MU2	MU6	MU9	мuз	MU5	MU4
	0.300	0.300	0.300	0.300	0.300	0.300	0.300
	MUB3	MUB5	MU7	MU8			
	0.300	0.300	0•,300	0.300			
	R1	RŻ	R6	R9 .	R3	R5	
•	0.375	0.437	0.437	0.437	0.312	0.312	
	RØ4	RI 4	RB3	RB5	. R78	RT6	•
•	1.000	0.687	0.500		0.312	0.700	
ERØ	FRICTION	N LOADS			•		
	FY1	FXI		M7 1	FY2	FX2	FZ2

ZE

FY1	FX1	MZ 1	FY2	FX2	FZ2
0.000	-44.443	0.000	0.000	126-890	0.000
MZ2	FV3.	FX3	FW3	MV3	МХЗ
0.000	0.000	82 • 447	0.000	0.000	0.000
MW3	FY4	FX4	FZ4	MY4	MX4
0.000	54.484	-164.894	-75.613	0.000	0.000
MZ 4	FV5	FX5	FW5	MV5	MX5
0.000	-9-184	-82.447	0.000	0.000	0.000
MW5	·FY6	FX6	FZ6	MZ6	FV7
0.000	9.116	39.060	-221-237	0.000	0.000
FX7	FW7	. MV7	FV8	FX8	F W8
-45.000	0.000	0.000	0.000	127 • 446	0.000
MV8	FY9	FX9	MZ9	Ť	
0 000	357	-62 614	0 000	155 000	

CASE 3 ACCEL 58.8 RAD/SEC2, 0MEG=15.7 RAD/SEC

WITH FRICTION, BEARINGS PERFECTLY ALIGNED

FY1	FX1	MZ1	FY2	FX2	FZ2
0.000	-75•224	-8 • 463	0.000	213-620	0.000
MZ2	FV3	FX3	FW3	MV3	MX3
-28 • 038	0.000	138•396	0•000	0.000	0.000
MW3	FY4	FX4	FZ4	MY <i>4</i>	MX4
- 12.975	54•484	-261-834	-75-613	-81•760	0+000
MZ4	FV5	FX5	FW5	MV5	MX5
-51-560	-9.184	-123-439	0.000	0.000	0.000
MW5	FY6	FX6	FZ6	MZ6	. FV7
-11.604	9.116	82-397	-221 • 237	-57.340	
FX7	FW7	MV7	FV8	FX8	FW8
-80-259	0.000	0•000	0•000	218 • 655	0.000
0.000	FY9 357	FX9 -65.959	MZ9 -8.657	T 309 • 058	
WITH FRICTION,	BEARINGS MI	SALIGNED		÷	
FY1	FX1	MZ1	FY2	FX2	FZ2
-23-313	-82•859	-9•684	106•398	230•970	65•831
MZ2	FV3	FX3	FW3	MV3	MX3
-33.377	99•039	148•111	37•790	-16-210	-11-242
MW3	FY4	FX4	FZ4	MY4	MX4
11•810	-144-158	-274•713	-139 •289	-92•402	-41-314
MZ4	FV5	FX5	FW5	MV5	MX5
~53∙ 590	-118•741	-126.602	36•815	13•982	13•184
MW5	FY6	FX6	FZ6	MZ6	FV7
-11-505	132•161	85•318	-223•392	-67.559	26•596
FX7	FW7	MV7	FV8	FX8	F W8
-85•138	-24.718	-8•105	72•444	233•249	62 • 508
MV8	FY9	FX9	MZ9	Ť	
-8•105	~7.845	-65-717	-8•687	327•895	

STØP

CP: 17-9 SEC I/0: 41-1 SEC

NUTATING ROD FORCE ANALYSIS

				and the second s	
CASE 1	DECEL	118	RAD/SEC2,	OMFG=15.7	' RAD/SEC

•					•	•
LZ2 6.300	LZ3 9•69;		LZ7 8•413	LZ8 9•243	LR 6.250	L8 5.375
0.300	2.07.	_	4	9.243	6.230	3.313
LZ5	LZ6		LD			
32.700			5.500	•		
LY3	LY5	• .	LY7	LY8	LOD	WTD
1.•880	1.880	0	2.170	0.450	0.670	250.000
FVB	END	, MVD	.cvo	EVA	575 °	W2D
	FWB 88.500	1 40 000 °	0.000	107 000	FZD	
-36 • 400	884300	149.4000	0.000	107.000	-26.000	310.000
MUI	MU2	MU6	MU9	миз	MUS	MU4
0.300	0.300		0.300		0.300	
	•			1 1 1 1 1		
MUB3	MUB5		MU8			
0.300	0.300	0.300	0.300			
R1	R2	D.	DO.	Do.	. 95	
0.375		R6	R9 0 • 437	R3	R5 0•312	
0.313	0.431	0.437	0 • 43.7	. 0.312	0.312	
R04	R14	RB3	RB5	R78	RT6	
1.000			0.500			•
ERØ FRICTIO	N LOADS					
FÝ1	FX1		M7 1	FY9	EXO	LZ5
				•		0.000
FY1 0.000	FX1 88•88		MZ 1 0 • 000	FY2	FX2 -253.780	

FY1	FX1	MZ 1	FY2	FX2	0.000
0•000	88•886	0 • 000	0.000	-253•780	LSS
MZ2	FV3	FX3	FW3	MV3	MX3
0•000	0.000	-164.894		0•000	0.000
MW3	FY4	FX4	FZ4	MY4	MX4
0•000	54•484	329•787	-75-613	0.000	0•000
MZ4	FV5	FX5	F W5	MV5	MX5
0•000	-9•184	164•894	0 • 000	0.000	0 • 000
.0+000	FY6	FX6	FZ6	MZ6	FV7
	9•116	-223-113	-221 • 237	0.000	0.000
FX7	FW7	MV7	FV8	FX8	F W8
89•999	0.000	0.000	0•000	-254•893	
MV8	FY9	FX9	MZ9	T	
0 • 000	357	-48•781	0.000	-310.000	

CASE 1 DECEL 118 RAD/SEC2, OMEG=15.7 RAD/SEC WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	FY1	FX1	MZ1	FY2	FX2	FZ2
	0.000	56.531	-6.360	0.000	-162.285	0.000
5 9	MZ2	FV3	FX3	FW3	MV3	мхз
	-21-300	0.000	-105.754	0.000	0.000	0.000
	MW3	FY4	FX4	FZ4	MY4	MX4
	9.914	54-484	224.494	-75-613	-71.066	0.000
	MZ4	FV5	FX5	FWS	MVS	MXS
	-44-518	-9-184	118.741	0.000	0.000	0.000
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-11-165	9-116	-174-301	-221-237	-69 • 368	0.000
	FX7	FW7	MV7	FV8	FX8	F W8
•	54-112	0.000	0.000	0.000	-159.866	0.000
	MV8	FY9	FX9	MZ9	τ	•
•	0.000	357	-51 - 440	-6-752	-161.702	•
WITH	FRICTION.	BEARINGS MI	SAL I GNED			•
•	FYI	FX1	MZ 1	FY2	FX2	FZ2
.•	-14-810	52.882	-6.178	68 • 805	-154-827	43-883
	MZ2	FV3	FX3	FW3	MV3	мхз
	-22.237	64-694	-101-945	25 • 609	-11-147	-7.379
•	MW3	FY4	FX4	FZ4	MY4	MX4
	8.003	÷77•207	221-121	-111-953	-74-354	-28.028
	MZ4	FV5	FX5	FWS	MVS	MX5
	-41.859	-81-012	119-176	30.564	13.048	9 • 182
	MWS	FY6	FX6	FZ6	MZ6	FV7
	-9-551	92.228	-175-150	-228 - 781	-74-025	16.590
	FX7	FW7	MV7	FVB	FX8	F W8
	52.728	-16.664	-5-574	48 - 104	-154.673	42.273
	8VM	FY9	FX9	MZ9	τ	
	-5.574	-5.773	-51-026	-6.740	-158.961	

STØP

19.1 SEC 1/0: 34.0 SEC

CASE IIIA

NUTATING ROD FOR	RCE ANALYSIS	
------------------	--------------	--

CASE 1	DECEL	118	RADISEC2.	CMFG=O	PADZSEC

·H 25	L I DECLE	110 KMD7	SISCEP ONE	LONG KADY SID			
	LZ2 6•300		93.	LZ7 8 • 413	LZ8 9•243	LR 6•250	LB 5.375
· .	LZ5 32.700	LZ6 30•8		LD			
•	LY3 1•880			LY7 2•170		LGD 0.670	WTD 250.000
- ;				FYD 0.000			
•	MU1 0•300			MU9 0•300			
				3 MUB5 0•300			
		R2 0 • 437	R6 0•437	R9 0•437	R3 0•312		
·	R04 1.000	RI 4 0 • 687	RB3 0•500	RB5 0•500	R78 0•312		
ERØ	FRICTION	LOADS					
	FY1 0.000	FX1 88•8		MZ1 0+000	FY2 0.000		FZ2 0.000

ZE

FY1	FX1	MZ 1	FY2	FX2	FZ2
0.000	88 • 886	0.000	0.000	-253.780	0.000
MZ2	FV3	FX3	FN3	MV3	·MX3 .
0.000	0.000	-164-894	0.000	0.000	0.000
миз	FY4	FX4	FZ4	MYA	MX4
0.000	54.484	329 • 737	-75.613	0.000	0.000
MZ4	FV5	FX5	F W5	MV5	MX5
0.000	-9-184	164.894	0.000	0.000	.0.000
- MW5	FY6	FX6 1	FZ6	MZ6	FV7
0.000	9•116	-169-352	-221-237	0.000	0.000
FX7	FU7	MV7	FV8	FX8	FW8
89.999	0.000	0.000	0.000	-254.893	0.000
MV8	FY9	FX9	MZ9	T	
0.000	357	4.459	0.000	-310.000	

CASE 1 DECEL 118 RAD/SEC2, OMEG=0 RAD/SEC WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	FY1	FX1	MZ1	FY2	FX2	FZ2
	0.000	59.624	-6.708	0.000	-171-161	0.000
	. MZ2	FV3	FX3	FW3	MV3	мхз
	-22 • 439	0.000	-111.537	0.000	0.000	0.000
	. MW3	FY4	FX4	FZ4	MY4	MX4
•	10-440	54 • 48 4	236•701	-75-613	-74.545	0.000
	MZ4	FV5	FX5	FW5	MV5	MX5
•. • .	-46-776	-9 - 184	125-164	0.000	0.000	0.000
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-11-747	9-116	-127-354	-221-237	-63-199	0.000
	FX7	FN7	MV7	FV8	FX8	FW8
	57.077	0.000	0.000	0.000	-168-614	0.000
	MV8	FY9	FX9	MZ9	T	-
	0.000	357	2-191	- • 29 1	-170.587	
WITH	FRICTION,	BEARINGS MI	SALIGNED		•	
	FY1	FX1	MZ1	FY2	FX2	FZ2
	-15.526	55.437	-6 • 477	72.131	-162-305	46.003
	MZ2	FV3	FX3	FW3	MV3	мхз
	-23.285	67.820	-106-868	26.846	-11-685	-7.735
	. MW3	FY4.	FX4	. FZ4	MY4	MX4
	8 • 376	-83-495	231.710	-113-764	-77 - 440	-29-084
	MZ4	FV5	FX5	. FWS	MV5	MX5
<i>:</i> , <i>'</i>	- 43∙665	-84.427	124-842	31.966	13.667	9.574
	MWS	FY6	FX6	FZ6	MZ6	FV7
5	-9.973	96 • 158	-127 - 419	-229 • 09 0	-69.036	17-392
	FX7	FW7	MV7 .	FV8	FX8	F W8
	55.280	-17-468	-5.843	50 • 428	-162-148	44.314
	MV8	FY9	FX9	MZ9	Ť	• .
	-5-843	-6.026	2.577	859	-166.677	
	• •	•		• ;	•	

STOP CP:

19-1 SEC I/O: 26-7 SEC

NUTATING ROD FORCE ANALYSIS

CASE A	ACCEL.	58 • 8	RAD/SEC2>	OMEG=0
--------	--------	--------	-----------	--------

CASE 4 ACCEL	58.8 RADISEC	. OMEG=O			
LZ2 6.300	LZ3 9•693	LZ7 8 • 413	LZ8 9.243	LR 6•250	LB 5.375
LZ5 32•700	LZ6 30•850	LD 15.500			
LY3 1.880	LY5 1.880	LY7 2•170	LY8 0.450	LGD 0.670	WTD 250.000
FVR -38.400	FWB 88•500 149	MXB FY			MZD 155.000
MU1 0.300	0.300 0		J9 MU3 J0 0•300		
MU94 0•300			UB5 MU78		
	R2 0•437 0		9 R3 37 0.312	R5 0•312	
R04 1.000	RI 4 0 • 68 7 0		35 R78 00 0•312	RT6 0.700	
ZERO FRICTION	LOADS	•		•	
FY1 0.000	•	MZ1 0.000	FY2 0.000	FX2 126.890	FZ2 0.000
MZ2 0.000	FV3 0.000	FX3 82•447	FW3 0.000	MV3 0.000	MX3 0.000
MW3 0∙000	FY4 54•484	FX4 -164.894	FZ4 -75•613	MY4 0.000	MX4 0•000
MZ4 0•000	FV5 -9 • 184	FX5 -82•447	FW5 0.000	MV5 0.000	MX5 0.000
MW5- 0-000	FY6 9•116	FX6 92•820	FZ6 -221 • 237	MZ6 0.000	FV7 0.000
FX7 ~45.000	FW7 0.000	MV7 0•000	FV8 0•000	FX8 127•446	FW8 0.000
MVB	FY9	FX9	MZ9	Т	

CASE 4 ACCEL 58.8 RAD/SEC2. DMEG=0

WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	•				
FY1 0.000	FX1 -122.635	MZ1 -13•796	FY2 0•000	FX2 348•258	FZ2 0.000
0.000	-122+633	-13-176	. 04000	340 4 2 3 0	0.000
MZ2	FV3	FX3	FW3	EVM	MX3
-45-657	0.000	225 • 623	0.000	0.000	0.000
MW3	FY4	FX4	FZ4	MY4	MX4
21-118	54.484	-426 • 183	-75-613	-129.852	0.000
MZ4	FV5	FX5	FW5	MV5	MX5
-109-077	-9.184	-200.560	0.000	0.000	0.000
MW5	FY6	FX6	FZ6	MZ6	FV7
-43. 848	9-116	217.589	-221-237	-175.025	0.000
FX7	FW7	MV7	FV8	FX8	F W8
-130-833	0.000	0.000	0.000	356 • 456	0.000
MV8	FY9	FX9	MZ9	T	•
0.000	357	-17-029	-5-210	503•764	
WITH FRICTION.	BEARINGS MI	SALIGNED			
FY1	FX1	MZ 1	FY2	FX2	FZ2
-47.224	-167-853	-19-617	215.528	467.893	133-356
MZ2	FV3	FХЗ	FW3	мVЗ	мхз
-67.536	200.624	300-040	76.554	-32-839	-22.772
MW3	FYA	FX4	FZ4	MY4	MX4
23-885	-383-774	-550-605	-114-683	-168.727	-82-552
MZ4	FV5	FX5	F W5	MV5	MX5
-134-245	-238-274	-250-566	171-122	75.082	72 - 591
MW5	FY6	FX6	FZ6	MZ6	FV7
-53-390	303-356	268 • 179	-315-523	-278 - 466	53-874
FX7	FW7	MV7	FV8	FX8	FW8
-172-456	-50-072	-16-419	146.751	472-496	126.626
MV8	FY9	FX9	MZ9	Ť	
-16-419	-24.644	-17-614	-9.266	664-127	
			•		•

STOP CP:

CP: 22.7 SEC I/O: 30.7 SEC

NUTRØD

10:23

WEDNESDAY 07/01/70

NUTATING ROD FORCE ANALYSIS

CV GE V	VCCEI	50.0	RAD/SEC2	OMEC-1	15.7	DADICEC
CHSE 4	ALLEL	. ⊃ర • ర	ドバリノ 5としと す	OMEGE	13.1	KADI SEU

LZ2 6.300	LZ3 9.693		LZ7 8 • 413		LZ8 9•243	LR 6.250	LB 5.375
LZ5 32.700	LZ6 30.850	· · · · · · · · · · · · · · · · · · ·	LD 15•500				
LY3 1•880	LY5 1•880		LY7 2.170		Y8 9 • 450	L0D 0.670	WTD 250 • 000
FVB -38.400	FWB 88.500 1	MXE		FYD 000	FXD 107.000	FZD -26.000	MZD -155.000
MU1 0•300	MU2 0•300	MU6		MU9 700	MU3 0•300	MU5 0.700	MU4 0•300
MUB3 0.300	MUB5 0.700	MU7 0 • 300		MU8 300			
R1 0•375	R2 0•437	R6 0 • 437		R9 437	R3 0•312	R5 0•312	
RØ4 1•000	RI 4 0•687	RB3		RB5 500	R78 0•312	RT6 0.7 00	
•	-						

ZERØ FRICTION LOADS

FY1	FX1	MZ1	FY2	FX2	FZ2
0.000	-44.443	0.000	0.000	126 •890	0.000
MZ2	FV3	FX3	FW3	MV3	MX3
0.000	0•000	82•447	0.000	0.000	0.000
MW3	FY4	FX4	FZ4	MY4	MX 4
0.000	54•484	-164.894	-75•613	0.000	0 • 000
MZ4	FV5	FX5	FW5	MV5	MX5
0•000	-9•184	-82•447	0.000	0.000	0.000
MW5 0 • 000	FY6 .9•116	FX6 39•060	FZ6 -221 • 237	MZ6 0.000	FV7 0•000
FX7	FW7	MV7	FV8	FX8	FW8
-45.000	0.000	0•000	0•000	127•446	
MV8	FY9	FX9	MZ9	T	
0•000	357	-63.614	0•000	155•000	

CASE 4 ACCEL 58.8 RAD/SEC2. 0MEG=15.7 RAD/SEC

WITH FRICTION, BEARINGS PERFECTLY ALIGNED

	,	/			
FY1	FX1	MZ1	FY2	FX2	FZ2
	00 -122-643	-13.797	0.000	348•278	0.000
MZ2 -45.71		FX3 225•635	FW3	MV3 0.000	MX3
MW3	FY4	FX4	FZ4	MY 4	MX4
21•15	53 54•484	-426•201	-75•613	- 129 • 857	0•000
- MZ 4	FV5	FX5	F W5	MV5	MX5
- 109 • 19	-9•184	-200•565	0•000	0.000	0•000
MW5	FY6	FX6	FZ6	-MZ6	FV7
-43•98	9•116	163•834	-221•237	-158 • 658	0.000
FX7	FW7	MV7	FV8	FX8	FW8
-130-85		0.000	P 0.000	356 • 487	0.000
MV8.	FY9	FX9 -70•269	MZ9	T 503•876	
	ON, BEARINGS M	÷	-21.320	303+876	
FY1	FX1	MZ1	FY2	FX2	FZ2
-47-86	66 -170-128	-19•882	218•458	474•231	135•165
MZ2	FV3	FX3	FW3	MV3	MX3
-68•52	29 203 •349	304•103	77•592	-33.283	-23.082
MW3	FY4	FX4	FZ4	MY4,	MX4
24•2	47 -3 89•725	-558.066	-115•254	-170•953	-83•761
MZ4 -136-16	FV5	FX5 -253.963	FW5	MV5 76•095	MX5 73·547
• MW5	FY6	FX6	FZ6	MZ6	FV7
•54•18		217•982	-316.762	-270.608	54.607
FX7	· FW7	MV7	FV8	FX8	F W8
-174.80 MV8	FY9	-16.642 FX9	148 • 742 MZ9	478 • 9 0 9	128 • 343
-16.64	12 -24.970	-71.018	-23.055	673 • 238	

STØP

CP: 22.4 SEC I/0: 36.3 SEC

5.375

250.000

MZD

MU4

0.300

310.000

READY CASE IVA RUN: NUTROD NUTRØD 10:08 WEDNESDAY 07/01/70 NUTATING ROD FORCE ANALYSIS CASE2 DECEL 118 RAD/SEC2, OMEG=15.7 RAD/SEC LZ2 LZ3 LZ7 LZ8 6.300 8 • 413 9 • 693 9 • 243 6.250 LD · LZ5 LZ6 30-850 32.700 15.500 LY5 LY7 LY8 1.880 2.170 0.450 LY3 LOD 1.880 0.670 MXB FWB MXB 88.500 149.000 FVB FYD. FXD FZD 0.000 107.000 -38 - 400 -26.000 MUS MU6 ` MU9 MUS MU1 MU2 0.300 0.300 0.300 0.700 0.700 0.700 MU7 MUB3 MUB5 MU8 0.300 0.700 0.300 0.300 R9 R1 R3 R2. R6 0.375 0.437 0.437 0.437 0.312 RI4 RB3 RB5 R78 0.500 0.500 1.000 0.687 0.312 0.700 ZERO FRICTION LOADS

FY1	FX1	MZ 1	FY2	FX2	FZ2
0.000	88 • 886	0.000	0.000	-253.780	0.000
MZ2	FV3	FX3	FW3	мvз	вха
0.000	0.000	-164-894	0.000	0.000	0.000
мwз	FY4	FX4	FZ4	MY4	MX4
0.000	54.484 .	329 • 787	-75.613	0.000	0.000
MZ4	FV5	FX5	FW5	MV5	MX5
0.000	-9-184	164.894	0.000	0.000	0.000
MW5	FY6	FX6	FZ6	MZ6	FV7
0.000	9-116	-223-113	-221-237	0.000	0.000
FX7	FW7	MV7	FV8	FX8	FW8
89.999	0.000	0.000	0.000	-254.893	0.000
MV8 ·	FY9	FX9	MZ9	T	
0.000	357	-48.781	0.000	-310.000	

CASE2 DECEL 118 RAD/SEC2, OMEG=15.7 RAD/SEC WITH FRICTION, BEARINGS PERFECTLY ALIGNED

			•			
	FY1	FX1	MZ1	FY2	FX2	FZ2
	0-000	32•96 3	-3.708	0•000	-94.628	0.000
	MZ2 -12.420	FV3 0•000	FX3 -61.665	FW3	MV3 0.000	MX3 0.000
	MW3	FY4	FX4	FZ4	MY4	MX4
	5•781	54•484	132•064	-75•613	-45.654	0.000
	MZ4	FV5	FX5	FW5	MV5	MX5
•	-36.745	-9·184	70•399	0•000	0.000	0.000
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-15.530	9•116	-123-103	-221 • 237	-146.210	0.000
	FX7	FW7	MV7	FV8	FX8	FW8
•	31.552	0.000	0.000	0.000	-93.217	0.000
	MV8 0.000	FY9 -•357	FX9 -54-296	MZ9 -16 • 629	T -94•289	•
WITH	FRICTION,	BEARINGS MI	SALIGNED			
	FY1	FX1	MZ1	• FY2	-85•085	FZ2
	-7.852	28 • 036	-3•275	36•476	-85•085	23•264
•	MZ2	FV3	FX3	FW3	MV3	MX3
	-11.789	34•297	-54•046	13•577	-5.910	-3.912
	MW3	FY4	FX4	FZ4	MY4	MX 4
	4-243	-24•496	120•009	-72•073	-41.996	-15 • 689
	MZ4	FV5	FX5	FW5	MV5	MX5
	-31.034	-49•144	65•963	40•709	19•181	15•791
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-12•722	64•635	-118•966	-248.042	-163.004	8•795
	FX7	FW7	MV7	FV8	FX8	FW8
	27 • 954 MV8	-8•834 FY9	-2•955 FX9	25•502 MZ9	-82•000 T	22.411
•. •	-2-955	-5.522	-53.997	-16.623	-84-274	

Støp

P: 18.8 SEC I/0: 34.2 SEC

CHOL IVA

CONTUN

15:23

FRIDAY 08/07/70

NUTATING ROD FORCE ANALYSIS

CASE 2 DECEL 118 RAD/SEC2, SMEG=0 RAD/SEC

LZ2 6•300	LZ3 9.6		7 413	LZ8 9•243	LR 6•250	LB 5.375
LZ5 32.700	LZ6 30.8		500			
32.700	00.0				•	
LY3 1•880	LY5 1•8		7 170	LY8 0-450	LOD 0.670	₩TD 250•000
FVB	FWB	мхв	FYD	FXD.	FZD	MZD
-38.400	88.500	149.000	0.000	0.000	-86.000	310.000
MU1	MU2	MU6	MU9	MU3	MU5	
0.300	0.300	0.700	0.700	0.300	0.700	
MUC4	MUI 4	MUB3	MUB5	MU78	MUT6	
0.300	0.300	0.300	0.700	0.300	0.700	•
R1	R2	R6	R9	R3	R5	•
0.375	0.437	0.437	0.437	0.312	0.312	
R04	RI4	RE3	RB5	. R 7 8	RT6	. :
1.000		0.500	0.500	0.312	0.700	
EDA EDICTICS						

ZERO FRICTION LOADS

		•		•	* *
FY1	FX1	MZ 1	FY2	FX2	FZ2
0.000	88 • 886	0.000	0.000	-253.780	0.000
MZ2	. FV3	FX3	FW3	MV3	MX3
0. 000	0.000	-164.894	0.000	0.000	0.000
MN3	FY4	FX4	FZ4	MYA	MXA
0.000	54.484	329 • 787	-75.613	0.000	0.000
MZ4	FV5	FX5	F V/5	MV5	MX5
0.000	-9.184	164.894	0.000	0.000	0.000
MW5-	FY6	FX6	FZ6	MZ6	FV7
0.000	9 • 116	-169.352	-221.237	0.000	0.000
FX7	FW7	MV7	FV8	FX8	F 98
89 • 999	0.000	0.000	0.000	-254-893	0.000
MV8	FY9	FX9	MZ9	T	
0.000	_ 257		. 0.000	-310-000	

CASE 2 DECEL 118 RAD/SEC2, OMEG=0 RAD/SEC WITH FRICTION, BEARINGS PERFECTLY ALIGNED

W						•
	FY1	FXI	MZ1	FY2	FX2	FZ2
•	0.000	39 • 541	-4-448	0.000	-113-511	0.000
	MZ2	FV3	FX3	FW3	MV3	мхз
	-14.881	0.000	-73-970	0.000	0.000	0.000
•	MW3	FY4	FX4	FZ4	MY4	MX4
	6.924	54-484	158 • 038	-75-613	-52.559	0.000
	MZ4	FV5	FX5	F W5	MV5	MX5
	-43.203	-9 - 18 4	84.069	0.000	0.000	0.000
	MW5	FY6	FX6	FZ6	MZ6	FV7
	-18.470	9-116	-83.861	-221.237	-134-210	0.000
	FX7	FW7	MV7	FV8	FX8	F 1/18
	37.853	0.000	0.000	0.000	-111.822	0.000
	MV8	FY9	FX9	MZ9	T	
	0.000	- • 357	-•208	126	-113-131	
WIT	H FRICTION.	BEARINGS MI	SALIGNED		•	
	FY1	FX1	MZI	FY2	FX2	FZ2
	-9.205	32-865	-3.840	42.762	-96.219	27.272
	MZ2	FV3	FX3	FW3	MV3	мхз
	-13-804	40 • 206	-63-355	15.915	-6.928	-4.586
	миз	FY4	FX4	FZ4	MY4	MX4
	4.966	-37.566	140-318.	-72.037	-47-319	-16-744
	MZ4	FVS	FX5	FW5	MV5	MX5
	-35.512	-55.688	76-963	47 • 014	22.317	18 • 03 4
	. MW5	FY6	FX6	FZ6	MZ6	FV7
	-14.668	73 • 580	-76.982	-252.086	-156.097	10.311

STOP CP: FX7

MV8

32.772

-3-464

18.7 SEC I/O: 25.9 SEC

FW7

-10-356

FY9

-6-329

MV7

FX9

-3-464

0.019

FV8

MZ9

-1.936

29.895

FX8

-96 - 126

-98.812

T

FW8

26.271

APPENDIX B

CONTACT ANGLE OPTIMIZATION FOR THRUST BEARINGS 2 AND 6

The line of contact under thrust load is a circle whose circumference is

$$C_{T} = 2\pi R_{s} \sin \theta$$

The normal reaction load per unit length of contact is F. Summing forces in the direction of thrust load gives:

$$T = C_T^F \cos \theta = (2\pi R_S^F \sin \theta)(F \cos \theta) = \pi R_S^F \sin 2\theta$$

or

$$F = \frac{T}{\pi R_{s} \sin 2\theta}$$

Therefore, for a given T and R_s, F is a minimum when $\theta = \pi/4$. Also from the above figure,

$$R_B = R_s + C + e$$

and

$$R_B \sin \theta = R_S \sin \theta + e$$

Therefore,

$$\sin \theta = \frac{e}{C + e}$$

So, for a specified angle $\,\theta\,$ and clearance C, eccentricity e is fixed.

REFERENCES

- Krasner, Morton H.; Davison, Harry W.; and Diaguila, Anthony J.: Conceptual Design of a Compact Fast Reactor for Space Power. NASA TM X-67859, 1971.
- 2. Kurzeka, W. J.: Development of Bearings for Nuclear Reactors in Space. Proceedings of the third Aerospace Mechanism Symposium. Rep. TM-33-382, Jet Propulsion Lab., California Inst. Tech. (NASA CR-97758), Oct. 1, 1968, pp. 85-91.
- 3. Balkwill, J. K.: Mechanical Elements Operating in Sodium and Other Alkali Metals. Vol. 1 Literature Survey. Rep. LMEC 68-5, vol. 1, Atomics International, 1968.
- 4. Gluyas, R. E.; and Lietzke, A. F.: Materials Technology Program for a Compact Fast Reactor for Space Power. NASA TM X-67869, 1971.

TABLE I. - SUMMARY OF LOAD ANALYSES

15.7	rate, velocity rad/sec	velocity velocity, rad/sec deg c	friction coefficient	Graphice friction coefficient
	196.4 15 196.4 15 118.0 15	5.7 144 5.7 144 5.7 120	0.3	e. 0 e. e. e.

For each above "Base case" the following variations were analyzed.

- Acceleration and deceleration torque supplied by an actuator attached to the penetration device input shaft. Ą
- Acceleration torque supplied by constant force spring attached to the penetration device input shaft. The force provided by the accelerating spring Deceleration torque supplied by a dashpot located within the reactor and located: is assumed to be applied throughout the scram cycle. æ,
- 1. Above control drum in-phase with crank arm
- 2. Above control drum out-of-phase with crank arm
- 3. Below control drum in-phase with crank arm
- 4. Below control drum out-of-phase with crank arm

TABLE II. - CERMET BEARING MATERIAL PROPERTIES FOR BEARING DESIGN

TABLE III. - GRAPHITE BEARING MATERIAL PROPERTIES FOR BEARING DESIGN

Property	70° F	2200 ⁰ F
Compression strength Tensile strength Modulus of elasticity Poisson's ratio	20 000 psi 10 000 psi 1.68×10 ⁶ psi 0.15	20 000 psi 10 000 psi 1.96×10 ⁶ psi 0.20
Coefficient of thermal expansion	3.7×10 ⁻⁶ in./in. °F	4.5×10 ⁻⁶ in./in. ^o F
Thermal conductivity	68 Btu/(hr)(ft)(^o F)	18 Btu/(hr)(ft)(^O F)
Apparent density Maximum particle size	1.80 to 1.88 gms/cc 0.001 in.	

TABLE IV. - EFFECT OF DASHPOT LOCATION ON CONTROL

DRUM BEARING RADIAL LOADS

[Cases IB1 through 4 and IIB1 through 4 at ω = 15.7 rad/sec; α_{accel} = 49.1 rad/sec²; α_{decel} = 196.4 rad/sec²; t = 0.32 sec; θ_c = 144°]

Case	IB1	IIB1	IB2	IIB2	IB3	IIB3	IB4	IIB4
Dashpot location	Abo	ve con	trol d	rum	Below control drum			
Dashpot angle ^a	0 180°		0		18	00		
Friction coefficient	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7
Bearing 5 Load (1b) accel Load (1b) decel Load reversal	102 102 No	157 157 No	102 102 No	157 157 No	103 103 No	157 157 No	103 103 No	157 157 No
Bearing 6 Load (lb) accel Load (lb) decel Load reversal	60 89 No	118 144 No	60 30 No	118 89 No	63 -302 Yes	121 -238 Yes	63 422 No	121 451 No
Bearing 9 Load (1b) accel Load (1b) decel Load reversal	65 475 No	68 437 No	65 -360 Yes	68 -333 Yes	67 96 No	71 99 No	67 39 No	71 45 No

a"Dashpot angle" indicates the angle between the vane of the dashpot and the penetration device crank arm.

TABLE V. - EFFECT OF DASHPOT LOCATION ON CONTROL

DRUM BEARING RADIAL LOADS

[Cases IIIB1 through 4 and IVB1 through 4 at ω = 15.7 rad/sec; α_{accel} = 58.8 rad/sec²; α_{decel} = 118.0 rad/sec²; t = 0.267 sec; θ_c = 120°]

Case	IIIB1	IVB1	IIIB2	IVB2	IIIB3	IVB3	IIIB4	IVB4
Dashpot location	Above control drum Below control dr							um
Dashpot angle ^a	0 180°			0	0		180°	
Friction coefficient	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7
Bearing 5 Load (1b) accel Load (1b) decel Load reversal	117 117 No	174 174 No	117 117 No	174 174 No	117 117 No	175 175 No	117 117 No	175 175 No
Bearing 6 Load (1b) accel Load (1b) decel Load reversal	76 97 No	136 155 No	76 54 No	136 115 No	79 -188 Yes	139 -135 Yes	79 338 No	139 376 No
Bearing 9 Load (1b) accel Load (1b) decel Load reversal	66 361 No	69 335 No	66 -243 Yes	69 -227 Yes	68 89 No	71 92 No	68 48 No	71 53 No

^aSee footnote table IV.

TABLE VI. - SUMMARY OF BEARING DESIGN LOADS

Bearing number	Maximum radial load, lb	Maximum thrust load, 1b
1 2 3 4 5 6	177 522 314 340 350 500 181	0 140 0 0 0 250
8 9	495 75	0 0

TABLE VII. - SUMMARY OF BEARING DESIGNS

j					 									۰,
rable	Tolerable misalinement		Angular,		0.0048	NA	0.0045	.0018	.0015	NA	0.0055	.0035	.011	
Tole	misal		Axial,	in.	0.191	NA	0.181	.072	.185	NA	0.219	.139	.458	
Maximum	contact	angle,	deg		80.5	NA	104.0	106.0	64.8	NA	81.6	117.4	16.8	
Maximum	compressive		psi		3 000	2 380					3 900		11 930	
Radial	clearance,	in.×103			1.0 to 1.5	1.0 to 1.5	1.0 to 1.5	1.0	2.0 to 2.5	2.0	1.0 to	1.0 to 1.5	2.0	
R _c or e,(b)					07	0.0015 to 0.0038	707	40	125	0.005 to 0.006	40	40	40	
Length,	in.										.75			
Diameter,	in.				1.00	1.40	0.75	0.50	1.20	2.00	.625	.625	1.200	·
Design	load,	9 7			177	522	314	340	350	200	181	495	75	
Type (a)					CJ	JT	2	CJ	3	Tr	CJ	2	CJ	
Bearing	numper				Н	2	က	4	Ŋ	9	7	∞	6	a

 a CJ = crowned journal bearing JT = spherical journal thrust bearing b R_c = crown radius for CJ e = ellipticity for JT

TABLE VIII. - COMPARISON OF RESULTANT RADIAL LOADS (POUNDS) FOR ORIGINAL AND FINAL DESIGN BEARING CONFIGURATION

[α = 58.8 rad/sec²; ω = 15.7 rad/sec; μ cermet = 0.7; μ carbon = 0.3]

Bearing number	Original design	Final design
1	177	137
2	522	405
3	314	284
4	680	540
5	350	279
6	377	292
7	181	143
8	495	390
9	75	71

TABLE IX. - SUMMARY OF JOINT DESIGNS GRAPHITE IN T-111

						i
Maximum bearing friction	torque, ^D in1b	20	89	33	86	16
Minimum torque resistant	150	310	294	54	462	
Maximum stress T-111, psi	22000£	9079	1154	4315	6208	8358
Maximum st T-111, psi	Rt	2962	206	2285	1053	4365
stress ite,	2200°F	6457	5524	7950	8450	8512
Maximum stress graphite, psi	Rt	2990	2423	4208	1434	9777
Diametrical interference, mils		1-2	1-2	1-2	0.5-1.5	1-2
Fit diameter, in.		1.500	1.800	1.250	006.	1.125
Bearing number		н	7	ო	4	7 &8

Based upon a coefficient of friction between the graphite and T-111 equal to 0.30. $^{
m b}$ Based upon a coefficient of friction in the bearing of 0.30.

TABLE X. - SUMMARY OF CLAMPING LOADS AND STRESSES JOURNALS 6 AND 9

	Jour	nal 6	Journ	Journal 9		
α(cermet),in./inOF	3.5×10 ⁻⁶	4.0×10 ⁻⁶	3.5×10 ⁻⁶	4.0×10 ⁻⁶		
Shaft diameter, in.	0.	875	0.8125			
Clamp tube o.d., in.	1.	250	1.1	.50		
Clamp tube length, in.	2.	75	2.0	0		
Clamp force, 1b:		i		ı		
R.T.	0	0	0	0		
450 ^o F	900	1590	560	992		
2200 [°] F	489	2930	483	2900		
Cermet stress, psi:						
450° F	498	882	915	1620		
2200 ⁰ F	271	1630	789	4730		
Maximum shaft stress, psi:						
450° F	2930	5180	1510	2670		
2200 ⁰ F	1590	9650	1300	7810		
Clamp tube stress, psi:		ĺ				
450° F	1440	2540	1070	1910		
2200 ⁰ F	781	2930	929	5570		

2200° Cermet 1 450° 21211 27211 2721 6 R.T. 1.4 1.2 1.2 9. Ś - SUMMARY OF AXIAL CLAMP DESIGN FOR CERMET JOURNAL NUMBER ſτι 2200° Stress, ksi Œ Sleeve 450° R.T. 5.4 ſΞι 2200° 44.9 45.5 4.2 9.2 9.3 Post 江 450° 9.8 7.8 7.8 7.8 7.8 7.8 7.8 10.9 8.4 6.8 5.9 7.9 R.T. 江 2200° 630 560 660 690 690 630 axial clamping force, 1b Minimum 450° F 1620 1220 1200 920 810 810 500 TABLE XI. 1820 1490 1320 990 830 830 490 R.T. ference, inter-Initial mils +0.1 1.2 1.0 6. of cermet, in./in. $\Omega_{\rm Fx10}^{\circ}$ Coefficient expansion of thermal 3.5 3.6 3.7 3.9 4.0 4.0

FIGURE 1. COMPACT FAST REACTOR - REFERENCE DESIGN

Fig. 2 Penetration Device

CONTROL DRUM:

WEIGHT = 250. LBS I = 0.22 LB-SEC²-FT ω (MAX) = 15.7 RAD/SEC α (MAX) = 49.1 RAD/SEC² α (MIN) = -196.4 RAD/SEC² $P_1 - P_2 = 1.0 PS1$

Fig. 3 Control Drum and Penetration Device Schematic

Fig. 4 Combined Journal and Thrust Bearing

- 1/3 HALF WIDTH MINIMUM

HALF WIDTH

CROWNED JOURNAL

EEAKING

HIG. 5 HERTZIAN COMPACT AREA

Fig. 6 Linear Coefficient of Thermal Expansion of TZM, T-111 and Cermet Materials. Average Rate From 20°F to Temperature Indicated

FIG. 7 Initial interference fits for cermet bearing components over the assumed range of thermal expansion coefficients.

FIG. 8 PENETRATION DEVICE FREE BODY DIAGRAM