X. Konvergence posloupností a řad funkcí

7.1. Bodová a stejnoměrná konvergence posloupnosti funkcí

Definice. Nechť $J \subset \mathbf{R}$ je interval a nechť máme funkce $f: J \to \mathbf{R}$ a $f_n: J \to \mathbf{R}$ pro $n \in \mathbf{N}$. Řekneme, že posloupnost funkcí $\{f_n\}$:

• konverguje bodově k f na J, pokud pro každé $x \in J$ platí $\lim_{n\to\infty} f_n(x) = f(x)$, neboli

$$\forall x \in J \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbf{N} \ \forall n \ge n_0 : \ |f_n(x) - f(x)| < \varepsilon.$$

Značíme $f_n \to f$ na J.

 \bullet konverguje stenoměrně k f na J, pokud

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbf{N} \ \forall n \ge n_0 \ \forall x \in J : \ |f_n(x) - f(x)| < \varepsilon.$$

Značíme $f_n \rightrightarrows f$ na J.

• konverguje lokálně stejnoměrně, pokud pro každý omezený uzavřený interval $[a,b]\subset J$ platí: $f_n\rightrightarrows f$ na [a,b]. Značíme $f_n\stackrel{\mathrm{loc}}{\rightrightarrows} f$ na J.

Věta L 1 (kritérium stejnoměrné konvergence). Nechť $f, f_n : J \to \mathbf{R}$. Pak

$$f_n \rightrightarrows f \text{ na } J \Leftrightarrow \lim_{n \to \infty} \sup\{|f_n(x) - f(x)|; x \in J\} = 0.$$

Věta T 2 (Bolzano-Cauchyho podmínka pro stejnoměrnou konvergenci). *Nechť* $f, f_n : J \to \mathbf{R}$. *Pak*

$$f_n \rightrightarrows f \ na \ J \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 \ \forall x \in J : \ |f_n(x) - f_m(x)| < \varepsilon.$$

Věta T 3 (Moore-Osgood). Nechť x_0 je krajní bod intervalu J (může být $i \pm \infty$). Nechť $f, f_n : J \to \mathbf{R}$ splňují

- (i) $f_n \rightrightarrows f$ na J,
- (ii) existuje $\lim_{x \to x_0} f_n(x) = a_n \in \mathbf{R}$ pro všechna $n \in \mathbf{N}$.

Pak existují $\lim_{n\to\infty} a_n$ a $\lim_{x\to x_0} f(x)$ a jsou si rovny, neboli

$$\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x).$$

Důsledek: Nechť $f_n \rightrightarrows f$ na I a nechť f_n jsou spojité na I. Pak f je spojitá na I.

Věta L 4 (o záměně limity a integrálu). Nechť funkce $f_n \rightrightarrows f$ na [a,b] a nechť $f_n \in R([a,b])$. Pak $f \in R([a,b])$ a

$$(R) \int_a^b f(x) \ dx = \lim_{n \to \infty} (R) \int_a^b f_n(x) \ dx.$$

Věta T 5 (o záměně limity a derivace). Nechť funkce f_n , $n \in \mathbb{N}$, mají vlastní derivaci na intervalu (a,b) a nechť

- (i) existuje $x_0 \in (a,b)$ tak, že $\{f_n(x_0)\}_{n=1}^{\infty}$ konverguje,
- (ii) pro derivace f'_n platí $f'_n \stackrel{\text{loc}}{\Rightarrow} na (a, b)$.

Potom existuje funkce f tak, že $f_n \stackrel{\text{loc}}{\Rightarrow} f$ na (a,b), f má vlastní derivaci a platí $f'_n \stackrel{\text{loc}}{\Rightarrow} f'$ na (a,b).

7.1. Stejnoměrná konvergence řady funkcí

Definice. Řekneme, že řada funkcí $\sum_{k=1}^{\infty}u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na intervalu J, pokud posloupnost částečných součtů $s_n(x) =$ $\sum_{k=1}^{n} u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na J.

Věta L 6 (nutná podmínka stejnoměrné konvergence řady). Necht $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu J. Pokud $\sum_{n=1}^{\infty} u_n \rightrightarrows$ na J, pak posloupnost $funkci\ u_n(x) \rightrightarrows 0 \ na \ J.$

Věta L 7 (Weirstrassovo kritérium). Nechť $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu J. Pokud pro

$$a_n := \sup\{|u_n(x)|: x \in J\}$$
 platí, že číselná řada $\sum_{n=1}^{\infty} a_n$ konverguje,

Věta L 8 (o spojitosti a derivování řad funkcí). Nechť $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovan'a na intervalu (a,b).

a) Nechť u_n jsou spojité na (a,b) a nechť $\sum_{n=1}^{\infty} u_n(x) \stackrel{\text{loc}}{\rightrightarrows}$ na (a,b). Pak $F(x) = \sum_{n=1}^{\infty} u_n(x)$ je spojitá na (a,b).
b) Nechť funkce u_n , $n \in \mathbf{N}$, mají vlastní derivaci na intervalu (a,b) a nechť

(i) existuje
$$x_0 \in (a,b)$$
 tak, že $\sum_{n=1}^{\infty} u_n(x_0)$ konverguje,

$$(ii) \ \textit{pro derivace} \ u_n' \ \textit{plati} \ \sum_{n=1}^{\infty} u_n'(x) \overset{\text{loc}}{\rightrightarrows} \ \textit{na} \ (a,b).$$

Potom je funkce $F(x) = \sum_{n=1}^{\infty} u_n(x)$ dobře definovaná a diferencovatelná a navíc $\sum_{n=1}^{\infty} u_n(x) \stackrel{\text{loc}}{\rightrightarrows} F(x)$ a $\sum_{n=1}^{\infty} u'_n(x) \stackrel{\text{loc}}{\rightrightarrows} F'(x)$ na (a,b).

Vratme se ke konvergenci obyčejných řad. Následující kritérium bude užitečné v kapitole Fourierovy řady. Existuje i varianta tohoto tvrzení pro stejnoměrnou konvergenci, tu však nebudeme potřebovat.

Věta T 9 (Abel-Dirichletovo kritérium - bez důkazu). Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost reálných čísel a $\{b_n\}_{n=1}^{\infty}$ je nerostoucí posloupnost nezáporných čísel. Jestliže je některá z následujících podmínek splněna, pak je $\sum_{n=1}^{\infty} a_n b_n$ konvergentní.

(A)
$$\sum_{n=1}^{\infty} a_n$$
 je konvergentní,

(D)
$$\lim_{n\to\infty} b_n = 0$$
 a $\sum_{n=1}^{\infty} a_n$ má omezené častečné součty, tedy

$$\exists K > 0 \ \forall m \in \mathbf{N} : \quad |s_m| = \left| \sum_{i=1}^m a_i \right| < K.$$