Notes on "The Core Model Induction"

Stefan Mesken

February 16, 2019

1 The Successor Case

1.4 Capturing, Correctness and Genericity Iterations

Exercise 1.4.5. Suppose that (\mathcal{M}, Σ) absorbs reals at δ and $\mathcal{M} \models \mathrm{ZFC}^- \wedge \delta^+$ exists. Then δ is either Woodin or a limit of Woodins in \mathcal{M} .

Proof. By taking a countable hull

$$\sigma \colon \mathcal{N} \prec \mathcal{M}$$

of \mathcal{M} and considering $(\mathcal{N}, \Sigma^{\sigma})$ we may and shall assume that \mathcal{M} is countable. Let $x \in \mathbb{R}$ code \mathcal{M} and suppose that δ is neither Woodin nor a limit of Woodins in \mathcal{M} .

Claim. δ is a limit of measurable cardinals in \mathcal{M} .

Proof. Otherwise let κ be the largest cardinal below δ , let $\eta = \kappa + 1$. Then there is no iteration above η that absorbs a real coding o(M).

We may hence fix $\eta < \delta$ inaccessible (or measurable) in \mathcal{M} such that

$$\mathcal{M} \models \forall \xi \in [\eta, \delta] : \xi \text{ is not Woodin.}$$

Let $\mathcal{T} \in \mathcal{M}$ be the linear iteration of \mathcal{M} that applies the least measure of \mathcal{M} η -many times. Let κ be the least measureable cardinal of \mathcal{M} . Note that $i_n^{\mathcal{T}} \in \mathcal{M}$ and $i^{\mathcal{T}}(\kappa) = \eta$.

Let $\delta^* \leq \delta$ be minimal such that for every real y there is some iteration tree \mathcal{U} on $\mathcal{M}_{\eta}^{\mathcal{T}}$ that lives on $(\eta, i^{\mathcal{T}}(\delta))$ and absorbs y.

In V fix $(\xi_n \mid n < \omega)$ cofinal in δ^* and for every n fix some real x_n such that x_n cannot be absorbed by a tree living below ξ_n . Now let

$$z = x \oplus \bigoplus_{n < \omega} x_n.$$

Notice that any iteration that absorbs z must use unboundedly long extenders below δ^* . Let $\mathcal U$ be such an iteration tree. Since $\mathcal M$ has no Woodin cardinals in the interval $[\eta,\delta]$, $\mathcal U$ is guided by $\mathcal Q$ -structures in $\mathcal M$, so that $\mathcal U$ and $i^{\mathcal U}$ are in fact members of $\mathcal M$. Let g be $\operatorname{Coll}(\omega,i^{\mathcal U}(\delta^*))$ -generic such that $z\in\mathcal M^{\mathcal U}_\infty[g]$. Since x codes $\mathcal M$ and $x\leq_T z$, we have $\mathcal M\in\mathcal M^{\mathcal U}_\infty[g]$ and hence $i^{\mathcal U}\upharpoonright(\delta^*)^{+\mathcal M}\in\mathcal M^{\mathcal U}_\infty[g]$. But $i^{\mathcal U}\upharpoonright(\delta^*)^{+\mathcal M}$ is cofinal in $i^{\mathcal U}(\delta^*)^{+\mathcal M^{\mathcal U}_\infty}$, so that

$$\mathcal{M}^{\mathcal{U}}_{\infty}[g] \models i^{\mathcal{U}}(\delta^*)^{+\mathcal{M}^{\mathcal{U}}_{\infty}}$$
 is singular.

Since $i^{\mathcal{U}}(\delta^*)^{+\mathcal{M}^{\mathcal{U}}_{\infty}}$ is regular in $\mathcal{M}^{\mathcal{U}}_{\infty}$ and $\operatorname{Coll}(\omega, i^{\mathcal{U}}(\delta^*))$ has the $i^{\mathcal{U}}(\delta^*)^+$ -c.c., this is a contradiction!

It is here that we use that $\mathcal{M} \models \mathrm{ZFC}^- \wedge \delta^+$ exists.