

CCNAv7 ENSA

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
R1	S/0/0/0	10.67.254.2	255.255.255.0	N/A
	G0/0	192.168.1.1	255.255.255.0	N/A
	Tunnel 0	172.16.1.1	255.255.255.252	NA
R2	S0/0/1	10.67.253.2	255.255.255.252	N/A
RD	G0/0	10.10.1.1	255.255.255.0	N/A
	Tunnel 0	172.16.1.2	255.255.255.252	NA
S1	VLAN 1	192.168.1.2	255.255.255.0	192.168.1.1
S2	VLAN 1	10.10.1.2	255.255.255.0	10.10.1.1

Assessment Objectives

Part 1: Initialize, Reload and Configure Basic Device Settings

Part 2: Configure GRE tunnel

Part 3: Configure and Single Area OSPFv2

Part 4: Optimize Single Area OSPFv2

Part 5: Configure Access Control, NAT, and perform configuration backup

Scenario

In this Case Study (CS) you will configure the devices in a small network. You must configure a router, switch and PCs to support IPv4 connectivity for supported hosts. Your router and switch must also be managed securely. You will configure Single-Area OSPFv2, NAT, GRE, and access control lists. Further, you will backup up your working configurations to a TFTP server.

Required Resources

□ Packet Tracer 8.0 or later

Instructions Part 1: Initialize, Reload and Configure Basic Device Settings

Step 1: Initialize and reload routers and switches.

Erase the startup configurations and VLANs from the router, switch, and reload the devices.

- R1 Router#erase startup-config
- R1 Router#reload
- R2 Router#erase startup-config
- R2 Router#reload
- S1 Switch#delete vlan.dat
- S1 Switch#erase startup-config
- S1 Switch#reload
- S2 Switch#delete vlan.dat
- S2 Switch#erase startup-config
- S2 Switch#reload

Step 2: Configure the routers.

Configuration tasks for R1 and R2 include the following:

Task	Specification
Disable DNS lookup	
Router name (case sensitive)	R1 or R2, as appropriate
Domain name (case sensitive)	ccna-lab.com
Encrypted privileged EXEC password (case sensitive)	ciscoenpass
Console access password (case sensitive)	ciscoconpass
Create a user with an encrypted password in the local database (case sensitive)	Username: admin Encrypted Password: admin1pass
Set login on VTY lines 0 to 4 to use local database	
Set VTY lines 0 to 4 to accept SSH connections only	
Encrypt the clear text passwords	
Configure an MOTD Banner (case sensitive)	Warning! Copying during test is Plagiarism.
Configure interface S0/0/0 – R1 Configure interface S0/0/1 – R2	Set the description Set the Layer 3 IPv4 address Activate Interface

CCNAv7 ENSA

Configure interface G0/0	Set the description Set the Layer 3 IPv4 address Activate Interface
Generate an RSA crypto key	1024 bits modulus
Configure default route to ISP	Use the exit interface

- R1 Router>en
- R1 Router#conf t
- R1 Router(config)#no ip domain lookup
- R1 Router(config)#hostname R1
- R1 R1(config)#ip domain-name ccna-lab.com
- R1 R1(config)#enable secret ciscoenpass
- R1 R1(config)#line console 0
- R1 R1(config-line)#password ciscoconpass
- R1 R1(config-line)#login
- R1 R1(config-line)#exit
- R1 R1(config)#username admin secret admin1pass
- R1 R1(config)#line vty 0 4
- R1 R1(config-line)#login local
- R1 R1(config-line)#transport input ssh
- R1 R1(config-line)#exit
- R1 R1(config)#service password-encryption
- R1 R1(config)#banner motd "Warning! Copying during test is Plagiarism."
- R1 R1(config)#int s0/0/0
- R1 R1(config-if)#description Connection to R3
- R1 R1(config-if)#ip address 10.67.254.2 255.255.255.0
- R1 R1(config-if)#no shut
- R1 R1(config-if)#int g0/0
- R1 R1(config-if)#ip address 192.168.1.1 255.255.255.0
- R1 R1(config-if)#description Connection to S1
- R1 R1(config-if)#no shut
- R1 R1(config-if)#exit
- R1 R1(config)#crypto key generate rsa
- R1 R1(config)#ip route 0.0.0.0 0.0.0.0 s0/0/0

- R2 Router>en
- R2 Router#no ip domain lookup
- R2 Router#conf t
- R2 Router(config)#no ip domain lookup
- R2 Router(config)#hostname R2
- R2 R2(config)#ip domain-name ccna-lab.com
- R2 R2(config)#enable secret ciscoenpass
- R2 R2(config)#line console 0
- R2 R2(config-line)#password ciscoconpass
- R2 R2(config-line)#login
- R2 R2(config-line)#exit
- R2 R2(config)#username admin secret secret1pass
- R2 R2(config)#line vty 0 4
- R2 R2(config-line)#login local
- R2 R2(config-line)#transport input ssh
- R2 R2(config-line)#exit
- R2 R2(config)#service password-encryption
- R2 R2(config)#banner motd "Warning! Copying during test is Plagiarism."
- R2 R2(config)#int s0/0/1
- R2 R2(config-if)#ip address 10.67.253.2 255.255.255.252
- R2 R2(config-if)#description Connection to A
- R2 R2(config-if)#no shut
- R2 R2(config-if)#int g0/0
- R2 R2(config-if)#description Connection to S2
- R2 R2(config-if)#ip address 10.10.1.1 255.255.255.0
- R2 R2(config-if)#no shut
- R2 R2(config-if)#exit
- R2 R2(config)#crypto key generate rsa
- R2 R2(config)#ip route 0.0.0.0 0.0.0.0 s0/0/1

Step 3: Configure S1 and S2.

Configuration tasks for the switches include the following:

Task	Specification
Disable DNS lookup	
Switch name (case sensitive)	S1 or S2, as appropriate
Domain name (case sensitive)	ccna-lab.com
Encrypted privileged EXEC password (case sensitive)	ciscoenpass
Console access password (case sensitive)	ciscoconpass
Shutdown all unused interfaces	
Create a user with an encrypted password in the local database (case sensitive)	Username: admin Encrypted Password: admin1pass
Set login on VTY lines 0 to 15 to use local database	
Set all VTY lines to accept SSH connections only	
Encrypt the clear text passwords	
Configure an MOTD Banner (case sensitive)	Warning! Copying during test is Plagiarism.
Generate an RSA crypto key	1024 bits modulus
Configure Management Interface (SVI) for VLAN 1 (the Management VLAN)	Set the Layer 3 IPv4 address
Configure Default Gateway	

- S1 Switch>en
- S1 Switch#conf t
- S1 Switch(config)#no ip domain lookup
- S1 Switch(config)#hostname S1
- S1 S1(config)#ip domain-name ccna-lab.com
- S1 S1(config)#enable secret ciscoenpass
- S1 S1(config)#line console 0
- S1 S1(config-line)#password ciscoconpass
- S1 S1(config-line)#login

CCNAv7 ENSA

- S1 S1(config-line)#exit
- S1 S1#sh ip interface br
- S1 S1#conf t
- S1 S1(config)#int range f0/3-24,g0/2
- S1 S1(config-if-range)#shut
- S1 S1(config-if-range)#exit
- S1 S1(config)#username admin secret admin1pass
- S1 S1(config)#line vty 0 15
- S1 S1(config-line)#login local
- S1 S1(config-line)#transport input ssh
- S1 S1(config-line)#exit
- S1 S1(config)#service password-encryption
- S1 S1(config)#banner motd "Warning! Copying during test is Plagiarism."
- S1 S1(config)#crypto key generate rsa
- S1 S1(config)#interface vlan 1
- S1 S1(config-if)#ip address 192.168.1.2 255.255.255.0
- S1 S1(config-if)#no shut
- S1 S1(config-if)#exit
- S1 S1(config)#ip default-gateway 192.168.1.1
- S2 Switch>en
- S2 Switch#conf t
- S2 Switch(config)#no ip domain lookup
- S2 Switch(config)#hostname S2
- S2 S2(config)#ip domain-name ccna-lab.com
- S2 S2(config)#enable secret ciscoenpass
- S2 S2(config)#line console 0
- S2 S2(config-line)#password ciscoconpass
- S2 S2(config-line)#login
- S2 S2(config-line)#end
- S2 S2#sh ip int br
- S2 S2#conf t
- S2 S2(config)#int range f0/2-24,g0/2
- S2 S2(config-if-range)#shut
- S2 S2(config-if-range)#exit
- S2 S2(config)#username admin secret admin1pass
- S2 S2(config)#line vty 0 15
- S2 S2(config-line)#login local
- S2 S2(config-line)#transport input ssh
- S2 S2(config-line)#exit
- S2 S2(config)#service password-encryption
- S2 S2(config)#banner motd "Warning! Copying during test is Plagiarism."
- S2 S2(config)#crypto key generate rsa
- S2 S2(config)#interface vlan 1
- S2 S2(config-if)#ip address 10.10.1.2 255.255.255.0
- S2 S2(config-if)#no shut
- S2 S2(config-if)#exit
- S2 S2(config)#ip default-gateway 10.10.1.1

Part 2: Configure GRE tunnel

Step 1: Configure R1 and R2.

Configuration Tasks for R1 and R2 include the following:

Task	Specification
Configure the GRE tunnel interface Tunnel 0	Set the Layer 3 IPv4 address Set tunnel source and tunnel destination

- R1 R1#conf t
- R1 R1(config)#int tunnel 0
- R1 R1(config-if)#ip address 172.16.1.1 255.255.255.252
- R1 R1(config-if)#tunnel source s0/0/0
- R1 R1(config-if)#tunnel destination 10.67.253.2
- R1 R1(config-if)#no shut
- R2 R2#conf t
- R2 R2(config)#int tunnel 0
- R2 R2(config-if)#ip address 172.16.1.2 255.255.255.252
- R2 R2(config-if)#tunnel source s0/0/1
- R2 R2(config-if)#tunnel destination 10.67.254.2
- R2 R2(config-if)#no shut

Part 3: Configure Single Area OSPFv2

Configuration tasks for R1 and R2 include the following:

Task	Specification	
Configure the OSPF routing process	Use process id 1	
Manually configure the router id	Use 0.0.0.1 for R1 and 0.0.0.2 for R2	
Task	Specification	
Configure network statements	Use the network command to advertise local area (LAN) networks and use the wild card mask that matches each network's subnet mask. Note: Ensure R1 and R2 is neighbored via the tunnel.	

- R1 R1(config)#router ospf 1
- R1 R1(config-router)#router-id 0.0.0.1
- R1 R1(config-router)#do sh ip route conn
- R1 R1(config-router)#network 172.16.1.0 0.0.0.3 area 0
- R1 R1(config-router)#network 192.168.1.0 0.0.0.255 area 0
- R2 R2(config)#router ospf 1
- R2 R2(config-router)#router-id 0.0.0.2
- R2 R2(config-router)#do sh ip route conn
- R2 R2(config-router)#network 10.10.1.0 0.0.0.255 area 0
- R2 R2(config-router)#network 172.16.1.0 0.0.0.3 area 0

Part 4: Optimize Single-Area OSPFv2

Step 1: Configure R1 and R2.

Configuration Tasks for R1 and R2 include the following:

Task	Specification
Configure passive interfaces	Configure all interfaces that are not connected to an OSPF router.

- R1 R1(config-router)#passive-interface g0/0
- R1 R1(config-router)#passive-interface s0/0/0
- R2 R2(config-router)#passive-interface q0/0
- R2 R2(config-router)#passive-interface s0/0/1

Part 5: Configure Access Control, NAT, and perform configuration backup Step 1: Configure NAT on R1.

Task	Specification
Create an ACL to identify hosts allowed to be translated	Create a numbered ACL 1 that matches the 192.168.1.0/24 network
Configure Port Address Translation on the outside interface of R1	Configure the NAT association between the ACL and the interface S0/0/0 so that it uses port address translation - PAT
Identify the interfaces involved in NAT	Specify the NAT inside or the NAT outside on the appropriate interfaces.

- R1 R1(config)#access-list 1 permit 192.168.1.0 0.0.0.255
- R1 R1(config)#ip nat inside source list 1 int s0/0/0 overload
- R1 R1(config)#int g0/0
- R1 R1(config-if)#ip nat inside
- R1 R1(config)#int S0/0/0
- R1 R1(config-if)#ip nat outside

Step 2: Configure NAT on R2.

Task	Specification	
Create an ACL to identify hosts allowed to be translated	Create a numbered ACL 1 that matches the 10.10.1.0 network	
Configure Port Address Translation on the outside interface of R2	Configure the NAT association between the ACL and the interface S0/0/1 so that it uses port address translation - PAT	
Task	Specification	
Identify the interfaces involved in NAT	Specify the NAT inside or the NAT outside on the appropriate interfaces.	

- R2 R2(config)#access-list 1 permit 10.10.1.0 0.0.0.255
- R2 R2(config)#ip nat inside source list 1 int s0/0/1 overload
- R2 R2(config)#int g0/0
- R2 R2(config-if)#ip nat inside
- R2 R2(config)#int s0/0/1
- R2 R2(config-if)#ip nat outside

Step 3: Configure host computers.

Configure the host computers PC-A and PC-B with IPv4 addresses.

Description	PC-A	Backup	PC-B
IP Address	192.168.1.50	192.168.1.51	10.10.1.50
Subnet Mask	255.255.255.0	255.255.255.0	255.255.255.0
Default Gateway	192.168.1.1	192.168.1.1	10.10.1.1
DNS Server	209.165.201.2		209.165.201.2

Step 4: Test connectivity

Source	Target	Protocol	Expected Result
PC-A	РС-В	Ping	Success
PC-A	8.8.8.8	Ping	Success
PC-A	www.cisco.com	НТТР	Success
РС-В	8.8.8.8	Ping	Success

Step 5: Configure Access Control on R2.

Create and apply an access control list on R2 named R2-SECURITY to do the following:

Task	Specification
Create an access control list	R2-SECURITY(case sensitive)
Control HTTP and HTTPS specific traffic	The hosts from the 10.10.1.0/24 network are not allowed to reach the webserver at 209.165.201.2
Permit traffic	Allow all other traffic, regardless of protocol.
Apply the ACL	Filter traffic originating from R2(apply the best practice)

R2:

ip access-list extended R2-SECURITY deny tcp 10.10.1.0 0.0.0.255 host 209.165.201.2 eq www deny tcp 10.10.1.0 0.0.0.255 host 209.165.201.2 eq 443 permit ip any any

int g0/0

ip access-group R2-SECURITY in

After configuring and applying the ACL, perform the following tests:

Source	Target	Protocol	Expected Result
PC-A	РС-В	Ping	Success
РС-В	R1	SSH	Success
РС-В	www.cisco.com	НТТР	Failure

If you get different results, double-check your ACL configuration and application.

Step 6: Backup all device configurations.

Task	Specification
Using the Backup server on LAN A, backup the startup configuration of all of your devices to Backup server using the TFTP protocol	Use the following filename (case sensitive) when saving the configuration at the server. R1-confg R2-confg S1-confg S2-confg

R1 R1#copy running-config tftp S1 S1#copy running-config tftp R2 R2#copy running-config tftp S2 S2#copy running-config tftp

Part 6: Save your Packet Tracer and upload to NetAcad

- a. Save the configuration of each device in your Packet Tracer
- b. Save the Packet Tracer file itself.
- c. Upload to NetAcad. (Upload only the Packet Tracer file). DO NOT COMPRESS.