EXAMEN CALCUL DIFERENTIAL SI INTEGRAL SERIA 13

OFICIU: 1 punct

SUBIECTUL 1. (2 puncte)

Sa se studieze natura seriei $\sum_{n=1}^{\infty} \frac{\sqrt{n!}}{(a+\sqrt{1})(a+\sqrt{2})\cdots(a+\sqrt{n})}$, unde a>0. SUBIECTUL 2. (2 puncte)

Sa se determine punctele de extrem local ale functiei $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) =$ $x^3 + 3xy^2 - 15x - 12y \ \forall (x, y) \in \mathbb{R}^2.$

SUBIECTUL 3. (2 puncte)

Sa se studieze convergenta simpla si uniforma a sirului de functi
i $\ f_n:\mathbb{R}\to$ $\mathbb{R}, f_n(x) = \frac{2nx}{n^2 + x^2} \ \forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*.$

- SUBIECTUL 4. (3 puncte) a) Sa se calculeze $\iint_D xe^y dxdy$, unde $D = \{(x,y) \in \mathbb{R}^2 \mid y \ge x^2, y \le -2x\}$.
- b) Se considera o functie continua $f:[0,1]\to\mathbb{R}$. Sa se arate ca $\int_{0}^{\pi}xf(\sin x)\,dx=$ $\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) dx.$