D'après le corrigé de M. Gentès

- 1. (a) La fonction f est définie sur \mathbf{R} en tant que somme et produit de telles fonctions.
 - (b) Un calcul direct en utilisant les valeurs remarquables des fonctions trigonométriques donne :

x =	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π
f(x) =	1	$-\frac{1}{4}$	$-\frac{5}{4}$	-1

La fonction f est définie sur \mathbf{R} .

Ainsi : $\forall x \in \mathbf{R}, x + 2\pi \in \mathbf{R}$ et :

$$f(x+2\pi) = \cos(x+2\pi) - (\sin(x+2\pi))^2 = \cos x - \sin^2 x$$

la dernière égalité étant vraie car cos et sin sont 2π -périodiques.

Conclusion :
$$f$$
 est 2π -périodique.

- **Remarque 1.** Plus rapidement, f est 2π -périodique en tant que somme et produit de telles fonctions.
- (c) L'ensemble de définition de f est clairement symétrique par rapport à 0.

Soit $x \in \mathbf{R}$. On a :

$$f(-x) = \cos(-x) - (\sin(-x))^2 = \cos x - (-\sin x)^2 = \cos x - \sin^2 x = f(x).$$

Ce qui montre bien que f est paire.

(d) La fonction f étant 2π -périodique, on peut restreindre son étude à un intervalle de longueur 2π , par exemple l'intervalle $[-\pi, \pi]$. De plus, la fonction f étant paire, on peut restreindre encore son étude à l'intervalle $[0, \pi]$.

Ainsi, connaissant la courbe de f sur $[0,\pi]$, on obtient sa courbe sur $[-\pi,\pi]$ par symétrie par rapport à l'axe des ordonnées (f paire). On obtient enfin la courbe de f sur \mathbf{R} par translations de vecteurs $2k\pi \vec{i}$, k désignant un entier quelconque.

2. (a) Comme la fonction f est dérivable sur \mathbf{R} en tant que somme et produit de fonctions dérivables sur \mathbf{R} , on a ensuite par règles de calcul sur la dérivation :

$$\forall x \in \mathbf{R}, \quad f'(x) = -\sin x - 2\sin x \cos x = -\sin x (1 + 2\cos x).$$

Conclusion:
$$\forall x \in \mathbb{R}, f'(x) = -\sin x(1 + 2\cos x).$$

(b) Soit $x \in [0, \pi]$. Sur cet intervalle, $\sin x > 0$ sauf en x = 0 et $x = \pi$ (en particuler f' s'annule en ces points). Ainsi :

$$f'(x) > 0 \iff 1 + 2\cos x > 0$$

 $\iff \cos x = > \frac{1}{2}$
 $\iff x > \frac{2\pi}{3}$

Enfin, la seule solution dans $[0; \pi]$ à l'équation $1 + 2\cos x = 0$ étant $x = 2\pi 3$ on a tous les zéros de f' sur $[0; \pi]$. En synthétisant tous ces résultats, on obtient le tableau de variations suivant :

X	0		$\frac{2\pi}{3}$		π
f'(x)	0	_	0	+	0
f	1		$-\frac{5}{4}$		_* -1

3. (a) Soit $x \in [0, \pi]$. On a:

$$f(x) - g(x) = \cos x - \sin^2 x - \cos x = -\sin^2 x \le 0,$$

avec égalité si et seulement si x = 0 ou $x = \pi$.

(b) Compte-tenu du résultat de la question précédente, \mathscr{C}_f est en dessous de \mathscr{C}_g sur $[0,\pi]$ (et donc sur $\mathbf R$ par parité et périodicité), ce qui donne les courbes suivantes :

