Sadržaj

- 1. Zadaci
- 2. Rješenja

Zadaci

- 1. Koji od navedenih jezika je regularan?
 - a. $\{0^m1^n\mid m\neq n\}$
 - b. $\{ww^R\mid w\in\{0,1\}^*\}$
 - c. $\{ww \mid w \in (01)^*\}$
 - d. $\{0^n 1^m 0^n \mid n, m \ge 0\}$
 - e. nijedan nije regularan
- 2. Neka je zadan regularan jezik $L=\{0^{3k}\mid k\geq 1\}$. Odredite najmanji niz $z=uvw\in L$ za koji vrijedi svojstvo napuhavanja.
 - a. 0^3
 - b. 0^5
 - c. 0^6
 - ${\rm d.}\ 0^7$
 - $\mathsf{e.}\ 0^9$
- 3. Koliko ukupno produkcija ima Chomskyjev normalni oblik sljedeće gramatike.
 - $S \rightarrow aB \mid AC; \ B \rightarrow bA; \ B \rightarrow \varepsilon; \ A \rightarrow aB; \ C \rightarrow bC.$
 - a. 6
 - b. 7
 - c. 8
 - d.9
 - e. 10
- 4. Koji regularni izraz opisuje jezik $L \{w \in \{a,b\}^* \mid \text{nakon svakog znaka } a \text{ slijedi barem jedan znak } b\}$?
 - a. $b^st(ab^+)^st$
 - b. $a^*(ab^+)^*$
 - c. $a^*(ba^+)^*$
 - d. $b^*(ba^+)^*$
 - e. $b^*(ab^*)^*$
- 5. Kojim nizom je potrebno nadopuniti sljedeću gramatiku na mjestu \square da bi gramatika generirala sve nizove nad abecedom $\{a,b\}$ koji imaju više znakova a od znakova b.
 - $S
 ightarrow \square; \ T
 ightarrow TT \mid aTb \mid bTa \mid a \mid arepsilon$.
 - a. aT
 - b. Ta
 - c. TbT
 - d. Tb
 - e. TaT
- 6. Odredite koji niz pripada regularnom izrazu $((arepsilon+a)^*)^+(a+c)^+b(bb+bc)^*$.
 - a. cbbcbbb
 - b. aabbbc
 - c. acbbbcbc
 - d. acbbbbc
 - e. cbbbcbcc

7. Neka je M minimizirani DKA koji prepoznaje sve nizove $w \in \{0,1\}^*$ za koje vrijedi **barem jedan** od uvjeta: 1) w sadrži dva ili više uzastopna znaka 0; 2) w započinje znakom 0. DKA M sadrži:

- a. dva prihvatljiva stanja
- b. jedno prihvatljivo stanje
- c. tri neprihvatljiva stanja
- d. jedno neprihvatljivo stanje
- e. ništa od navedenog
- 8. Uvjet podudarnosti za stanja p i q jest:

a.
$$(p \in F \land q \not\in F) \lor (p \not\in F \land q \in F)$$

b.
$$(p \in F \lor q \in F) \land (p \notin F \lor q \notin F)$$

c.
$$(p \in F \land q \in F) \lor (p \not\in F \land q \not\in F)$$

- d. $\delta(p,a)$ i $\delta(q,a)$ su istovjetna stanja
- e. $\delta(p,a)$ i $\delta(q,a)$ su prihvatljiva stanja
- 9. Koliko produkcija preostaje eliminacijom produkcija s mrtvim znakovima u sljedećem skupu produkcija.

$$S \rightarrow aSa; \ S \rightarrow bAd; \ S \rightarrow c; \ A \rightarrow cBd; \ A \rightarrow aAd; \ S \rightarrow dAf$$
 .

- a. 2
- b. 3
- c. 4
- d. 5
- e. 6
- 10. Tijekom konstrukcije Mealyevog automata $M'=(Q',\Sigma',\Delta',\delta',\lambda',q'_0)$ iz zadanog Mooreovog automata $M=(Q,\Sigma,\Delta,\delta,\lambda,q_0)$, broj elemenata skupa stanja Q' Mealyevog automata (prije eventualne minimizacije) jednak je:
 - a. |Q|
 - b. $|\Sigma|$
 - c. $|\Delta|$
 - d. $|Q|*|\Sigma|$
 - e. $|Q|*|\Delta|$
- 11. Znak A u gramatici definiranoj sljedećim produkcijama je (odaberite najveći skup pojmova koji je točan):

$$S
ightarrow B; \ B
ightarrow AC; \ A
ightarrow a; \ C
ightarrow B$$
 .

- a. živ
- b. dohvatljiv
- c. živ i dohvatljiv
- d. mrtav
- e. živ, dohvatljiv i koristan
- 12. Kontekstno neovisni jezici su zatvoreni s obzirom na operacije (odaberite točnu tvrdnju):
 - a. unije i komplementa
 - b. nadovezivanja i presjeka
 - c. supstitucije i komplementa
 - d. Kleeneovog operatora i unije
 - e. presjeka i Kleeneovog operatora

13. Neka je L-kontekstno neovisan jezik. Prema svojstvu napuhavanja postoji konstanta n-koja ovisi o jeziku L-takva da za svaki niz- $z \in L$, $|z| \ge n$ -vrijede svojstva napuhavanja. Konstanta n-ovisi o

5/30/2022

- a. broju čvorova generativnog stabla od z;
- b. broju nezavršnih znakova gramatike jezika L_i
- c. duljini niza z;
- d. broju završnih znakova gramatike jezika L_i
- e. broju produkcija gramatike jezika L.
- 14. Za jezik zadan potisnim automatom $M=(\{q_1,q_2,q_3\},\{a,b,c,d,e\},\{I,N,K,M\},\delta,q_1,K,\emptyset)$ konstruira se kontekstno neovisna gramatika. Koliko produkcija nastaje prilikom pretvorbe prijelaza $\delta(q_1,d,I)-\{(q_2,NI)\}$ u produkcije gramatike?
 - a. 2
 - b. 3
 - c. 4
 - d. 8
 - e. 9
- 15. Kod parsiranja niza LR(k) parserom potrebno je pročitati najviše k znakova unaprijed kako bi se odredilo:
 - a. koliko znakova se preskače u ulaznom nizu;
 - b. u koje stanje parser prelazi;
 - c. koliko znakova se stavlja na stog;
 - d. prihvaća li se ulazni niz;
 - e. koju redukciju primjeniti.
- I. Zadani DKA pretvoriti u DKA s minimalnim brojem stanja.

δ	a	b	c	F
p0	p1	p2	p0	0
p1	p0	p2	p3	1
p2	p0	p1	p4	1
p3	p3	p5	p4	0
p4	p5	p4	p3	0
p5	p3	p4	p7	0
p6	p7	p5	p6	1
p7	p7	p5	p3	0

- 16. Koliko dohvatljivih stanja ima zadani DKA?
 - a. 8
 - b. 7
 - c. 6
 - d. 5
 - e. 4
- 17. Označite par istovjetnih stanja:
 - a. $\{p_0,p_3\}$
 - b. $\{p_1,p_3\}$
 - c. $\{p_0,p_4\}$
 - d. $\{p_3,p_4\}$
 - e. nije naveden par istovjetnih stanja

MI2022rjesenja.md

- 18. Koliko stanja ima minimalni DKA?
 - a. 7
 - b. 6
 - c. 5
 - d. 4 e. 3
- II. Neka je zadana gramatika $G = \{\{A,B,C,S\},\{a,b\},P,S\}$ sa skupom produkcija P:

$$S \rightarrow C; \ C \rightarrow ACA \mid aB; \ A \rightarrow B \mid C; \ B \rightarrow b \mid \varepsilon$$
 .

- G pojednostavljujemo tako da prvo izbacimo ε -produkcije, a nakon toga jedinične produkcije.
 - 19. Koliko produkcija ostaje izbacivanjem ε -produkcija?
 - a. 10
 - b. 8
 - c. 9
 - d. 7
 - e. 11
 - 20. Koliko produkcija ostaje izbacivanjem jediničnih produkcija?
 - a. 9
 - b. 13
 - c. 17
 - d. 10
 - e. 18
 - 21. Koliko produkcija gramatika ima u Chomskyjevom normalnom obliku?
 - a. 16
 - b. 17
 - c. 18
 - d. 19
 - e. 20
- III. Jezik L sadrži neprazne nizove znakova iz skupa $\{0,1,2,3,4,5,6,7,8,9,.,-,\hat{},\cdot\}$ koji predstavljaju decimalne brojeve zapisane u znanstvenoj notaciji. Znanstvena notacija podrazumijeva decimalni broj x, za kojeg vrijedi $1 \leq |x| < 10$ ili x = 0. Decimalni broj ne smije završiti s nulom osim ako je nula jedina znamenka ili ako je riječ o prirodnom broju. Nakon decimalnog dijela, slijedi množenje s brojem deset eksponencirano s nekim cijelim brojem. Množenje možete prikazati znakom \cdot , a eksponenciranje znakom $\hat{}$. Primjeri brojeva u znanstvenom zapisu su $1.2 \cdot 10^{\hat{}}-20$, $1.0 \cdot 10^{\hat{}}1$ i 0. Konstruirajte regularni izraz koji opisuje jezik L i ε -NKA koji prihvaća jezik L.
- IV. Konstruirati potisni automat koji **prihvatljivim stanjem** prihvaća jezik $L = \{(^n a)^n \mid n \geq 0\}$.

Rješenja

1. Koji od navedenih jezika je regularan?

```
a. \{0^m 1^n \mid m \neq n\}
b. \{ww^R\mid w\in\{0,1\}^*\}
```

c. $\{ww \mid w \in (01)^*\}$

- d. $\{0^n 1^m 0^n \mid n, m \geq 0\}$
- e. nijedan nije regularan

Prvi je jezik deterministički kontekstno neovisan, drugi je kontekstno neovisan, treći je regularan, a četvrti je deterministički kontekstno neovisan.

- 2. Neka je zadan regularan jezik $L=\{0^{3k}\mid k\geq 1\}$. Odredite najmanji niz $z=uvw\in L$ za koji vrijedi svojstvo napuhavanja.
 - a. 0^3
 - ${\rm b.}\ 0^5$
 - c. 0^6
 - $d.0^7$
 - e. 0^{9}

Ako su zadani n i m te regularni jezik $L=\{0^{nk}\mid k\geq m\}$, najmanji niz z jest $0^{n(m+1)}$. Na primjer, u ovom su zadatku n=3 i m=1.

3. Koliko ukupno produkcija ima Chomskyjev normalni oblik sljedeće gramatike.

$$S \rightarrow aB \mid AC; \ B \rightarrow bA; \ B \rightarrow \varepsilon; \ A \rightarrow aB; \ C \rightarrow bC.$$

- a. 6
- b. 7
- c. 8
- d. 9 e. 10

Te su produkcije: $S \rightarrow [a]B$; $S \rightarrow a$; $A \rightarrow a$; $A \rightarrow [a]B$; $[a] \rightarrow a$; $B \rightarrow [b]A$; $[b] \rightarrow b$.

4. Koji regularni izraz opisuje jezik $L - \{w \in \{a,b\}^* \mid \text{nakon svakog znaka } a \text{ slijedi barem jedan znak } b\}$?

a. $b^*(ab^+)^*$ b. $a^*(ab^+)^*$

- c. $a^*(ba^+)^*$
- d. $b^*(ba^+)^*$
- e. $b^*(ab^*)^*$

Protuprimjer za drugi i treći je a. Protuprimjer za četvrti i peti je ba.

5. Kojim nizom je potrebno nadopuniti sljedeću gramatiku na mjestu \square da bi gramatika generirala sve nizove nad abecedom $\{a,b\}$ koji imaju više znakova a od znakova b.

$$S
ightarrow \square; \ T
ightarrow TT \mid aTb \mid bTa \mid a \mid arepsilon$$
 .

- a. aT
- b. Ta
- c. TbT
- d. Tb
- e. TaT

Prvi ne generira baa, drugi ne generira aab. Treći i četvrti generiraju b.

- 6. Odredite koji niz pripada regularnom izrazu $((arepsilon+a)^*)^+(a+c)^+b(bb+bc)^*$.
 - a. cbbcbbb
 - b. aabbbc
 - c. acbbbcbc
 - d. acbbbbc
 - e. cbbbcbcc
- 7. Neka je M minimizirani DKA koji prepoznaje sve nizove $w \in \{0,1\}^*$ za koje vrijedi **barem jedan** od uvjeta: 1) w sadrži dva ili više uzastopna znaka 0; 2) w započinje znakom 0. DKA M sadrži:
 - a. dva prihvatljiva stanja

b. jedno prihvatljivo stanje

- c. tri neprihvatljiva stanja
- d. jedno neprihvatljivo stanje
- e. ništa od navedenog

8. Uvjet podudarnosti za stanja p i q jest:

- a. $(p \in F \land q
 otin F) \lor (p
 otin F \land q \in F)$
- b. $(p \in F \lor q \in F) \land (p
 otin F \lor q
 otin F)$

c. $(p \in F \land q \in F) \lor (p otin F \land q otin F)$

- d. $\delta(p,a)$ i $\delta(q,a)$ su istovjetna stanja
- e. $\delta(p,a)$ i $\delta(q,a)$ su prihvatljiva stanja

9. Koliko produkcija preostaje eliminacijom produkcija s mrtvim znakovima u sljedećem skupu produkcija.

 $S o aSa; \ S o bAd; \ S o c; \ A o cBd; \ A o aAd; \ S o dAf$.

- a. 2
- b. 3
- c. 4
- d. 5
- e. 6

Preostaju samo produkcije S o aSa; S o c.

- 10. Tijekom konstrukcije Mealyevog automata $M'=(Q',\Sigma',\Delta',\delta',\lambda',q'_0)$ iz zadanog Mooreovog automata $M=(Q,\Sigma,\Delta,\delta,\lambda,q_0)$, broj elemenata skupa stanja Q' Mealyevog automata (prije eventualne minimizacije) jednak je:
 - a. |Q|
 - b. $|\Sigma|$
 - c. $|\Delta|$
 - $\operatorname{d.}|Q|*|\Sigma|$
 - e. $|Q|*|\Delta|$

Tijekom obrnute konstrukcije točan bi odgovor bio $|Q|*|\Delta|$.

11. Znak A u gramatici definiranoj sljedećim produkcijama je (odaberite najveći skup pojmova koji je točan):

$$S \rightarrow B; \ B \rightarrow AC; \ A \rightarrow a; \ C \rightarrow B$$
.

- a. živ
- b. dohvatljiv

c. živ i dohvatljiv

- d. mrtav
- e. živ, dohvatljiv i koristan
- 12. Kontekstno neovisni jezici su zatvoreni s obzirom na operacije (odaberite točnu tvrdnju):
 - a. unije i komplementa
 - b. nadovezivanja i presjeka
 - c. supstitucije i komplementa

d. Kleeneovog operatora i unije

e. presjeka i Kleeneovog operatora

KNJ su zatvoreni s obzirom na operacije unije, nadovezivanja i Kleeneovog operatora.

- 13. Neka je L kontekstno neovisan jezik. Prema svojstvu napuhavanja postoji konstanta n koja ovisi o jeziku L takva da za svaki niz- $z \in L$, $|z| \ge n$ -vrijede svojstva napuhavanja. Konstanta n -ovisi o
 - a. $\frac{\text{broju čvorova generativnog stabla od }z}{\text{constant}}$
 - b. broju nezavršnih znakova gramatike jezika L_i
 - c. $\frac{\text{duljini niza}}{z}$;
 - d. $\frac{1}{2}$ d.
 - e. broju produkcija gramatike jezika L:

- 14. Za jezik zadan potisnim automatom $M=(\{q_1,q_2,q_3\},\{a,b,c,d,e\},\{I,N,K,M\},\delta,q_1,K,\emptyset)$ konstruira se kontekstno neovisna gramatika. Koliko produkcija nastaje prilikom pretvorbe prijelaza $\delta(q_1,d,I)-\{(q_2,NI)\}$ u produkcije gramatike?
 - a. 2
 - b. 3
 - c. 4
 - d. 8
 - e. 9

Postoje 3 stanja, a duljina od NI jest 2, pa je rješenje $3^2=9$.

$$[q_1,I,q_1] o d[q_2,N,q_1][q_1,I,q_1]$$

$$[q_1,I,q_2]
ightarrow d[q_2,N,q_1][q_1,I,q_2]$$

$$[q_1,I,q_3] o d[q_2,N,q_1][q_1,I,q_3]$$

$$[q_1,I,q_1] o d[q_2,N,q_2][q_2,I,q_1]$$

$$[q_1,I,q_2]
ightarrow d[q_2,N,q_2][q_2,I,q_2]$$

$$[q_1,I,q_3] o d[q_2,N,q_2][q_2,I,q_3]$$

$$[q_1,I,q_1] o d[q_2,N,q_3][q_3,I,q_1]$$

$$[q_1,I,q_2] o d[q_2,N,q_3][q_3,I,q_2]$$

$$[q_1,I,q_3] o d[q_2,N,q_3][q_3,I,q_3]$$

- 15. Kod parsiranja niza LR(k) parserom potrebno je pročitati najviše k znakova unaprijed kako bi se odredilo:
 - a. koliko znakova se preskače u ulaznom nizu;
 - b. u koje stanje parser prelazi;
 - c. koliko znakova se stavlja na stog;
 - d. prihvaća li se ulazni niz;
 - e. koju redukciju primjeniti.
- I. Zadani DKA pretvoriti u DKA s minimalnim brojem stanja.

δ	a	b	c	F
p0	p1	p2	p0	0
p1	p0	p2	p3	1
p2	p0	p1	p4	1
p3	p3	p5	p4	0
p4	p5	p4	p3	0
p5	p3	p4	p7	0
p6	p7	p5	p6	1
p7	p7	p5	p3	0

- 16. Koliko dohvatljivih stanja ima zadani DKA?
 - a. 8
 - b. 7
 - c. 6
 - d. 5
 - e. 4

Sva su stanja dohvatljiva osim p_6 .

17. Označite par istovjetnih stanja:

- a. $\{p_0,p_3\}$
- b. $\{p_1,p_3\}$
- c. $\{p_0,p_4\}$

d. $\{p_3,p_4\}$

e. nije naveden par istovjetnih stanja

18. Koliko stanja ima minimalni DKA?

- a. 7
- b. 6
- c. 5
- d. 4

e. 3

II. Neka je zadana gramatika $G = \{\{A,B,C,S\},\{a,b\},P,S\}$ sa skupom produkcija P:

$$S \to C; \; C \to ACA \; | \; aB; \; A \to B \; | \; C; \; B \to b \; | \; \varepsilon \; \; .$$

G pojednostavljujemo tako da prvo izbacimo ε -produkcije, a nakon toga jedinične produkcije.

19. Koliko produkcija ostaje izbacivanjem arepsilon-produkcija?

- a. 10
- b. 8
- c. 9
- d. 7
- e. 11

Ostaju produkcije:

$$S \to C$$

$$C \to ACA \mid aB \mid AC \mid C \mid CA \mid a$$

$$A \to B \mid C$$

$$B \to b$$

20. Koliko produkcija ostaje izbacivanjem jediničnih produkcija?

- a. 9
- b. 13
- c. 17
- d. 10
- e. 18

Ostaju produkcije:

$$S \rightarrow ACA \mid CA \mid AC \mid aB \mid a$$

$$C \rightarrow ACA \mid aB \mid AC \mid CA \mid a$$

$$A \rightarrow aB \mid a \mid b \mid AC \mid ACA \mid CA$$

$$B \rightarrow b$$

21. Koliko produkcija gramatika ima u Chomskyjevom normalnom obliku?

- a. 16
- b. 17
- c. 18
- d. 19
- e. 20

Ostaju produkcije:

$$S
ightarrow AD_1\mid CA\mid AC\mid [a]B\mid a$$
 $C
ightarrow AD_1\mid [a]B\mid AC\mid CA\mid a$ $A
ightarrow [a]B\mid a\mid b\mid AC\mid AD_1\mid CA$ $B
ightarrow b$ $D_1
ightarrow CA$ $[a]
ightarrow a$

III. Jezik L sadrži neprazne nizove znakova iz skupa $\{0,1,2,3,4,5,6,7,8,9,.,-,^{\cdot}\}$ koji predstavljaju decimalne brojeve zapisane u znanstvenoj notaciji. Znanstvena notacija podrazumijeva decimalni broj x, za kojeg vrijedi $1 \leq |x| < 10$ ili x = 0. Decimalni broj ne smije završiti s nulom osim ako je nula jedina znamenka ili ako je riječ o prirodnom broju. Nakon decimalnog dijela, slijedi množenje s brojem deset eksponencirano s nekim cijelim brojem. Množenje možete prikazati znakom \cdot , a eksponenciranje znakom $^{\cdot}$. Primjeri brojeva u znanstvenom zapisu su $1.2 \cdot 10^{\hat{}} - 20$, $1.0 \cdot 10^{\hat{}} 1$ i 0. Konstruirajte regularni izraz koji opisuje jezik L i ε -NKA koji prihvaća jezik L.

$$\bigg((-+\varepsilon)(1+\cdots+9).\left(\big((0+1+\cdots+9)^*(1+\cdots+9)\big)+0\right)\cdot 10^{\smallfrown} \Big(\big((-+\varepsilon)(1+\cdots+9)(0+1+\cdots+9)^*\big)+0\bigg)\bigg)+0$$

IV. Konstruirati potisni automat koji **prihvatljivim stanjem** prihvaća jezik $L = \{(^n a)^n \mid n \geq 0\}$.

$$M = (\{q_0,q_1,q_2\},\{a,(,)\},\{Z,A\},\delta,q_0,Z,\{q_2\})$$

