Extending Rosie to the Mobile Domain

Aaron Mininger 2016 Soar Workshop

Mobile ITL agent

We want the same ITL agent to work in different environments with minimal changes

Mobile ITL agent

- We want the same ITL agent to work in different environments with minimal changes
 - Different set of starting actions
 - Different ways of handling perception
 - Same world representations

Actions

Soar sends discrete commands which are executed by a motor controller

- turn(radians)
- orient(heading)
- □ drive-to(x, y)
- drive-forward(distance)
- □ stop

The controller sends back the status (executing, complete, failure)

Actions

Some actions are done through language

- say(message)
- pick-up(object)
- put-down(object)
- give(object, person)

Start with a metric map used for localization

Add a set of regions

Add waypoints for navigation

Robot reports current region and position

Agent navigates through a sequence of go-to(x,y) commands

Perception

- Object detection and recognition through fiducials
- Perceptual ids are tracked while in view
- The soar agent receives both
 - Metric info (pos/bbox) in SVS
 - Predicates (color/shape) in WM

Perception

Simulated Robot

SVS View

Object Representation

Objects are represented as a set of unary predicates

```
O_3: {red(O_3), ball(O_3), visible(O_3)}

O_7: {Bob(O_7), person(O_7), visible(O_7)}

O_9: {lab(O_9), location(O_9), current(O_9)}
```

Relations are represented as binary predicates: $in(O_3, O_9)$, $holding(O_7, O_3)$

Object Representation

World

SVS


```
O_1: {robot(O_1), stopped(O_1)} in(O_1, O_3) O_2: {red(O_2), soda(O_2), visible(O_2)} in(O_2, O_3) O_3: {kitchen(O_3), location(O_3), current(O_3)} in(O_4, O_3) O_4: {brown(O_4), package(O_4), not-visible(O_4)} in(O_5, O_3) O_7: {Bob(O_7), person(O_7), visible(O_7)}
```

Location Changing

- Locations help divide the environment
- Changing locations triggers a context change
 - All objects in the previous location are removed
 - Metric information is stored in episodic memory
 - Previous objects in the new location are retrieved

Nuggets + Coal

Nuggets

- Sufficient for our initial set of tasks
- Can navigate in a partially observable, multi-room environment
- Supports the same task learning agent

Coal

- Simple perception
- Not robust to perceptual noise/errors
- Coarse navigation primitives