PARISHRAM 2026

Mathematics

DPP: 5

Inverse Trigonometric Functions

- Q1 $\tan(2\tan^{-1}\frac{1}{5})$ =

- Q2 $2\sin^{-1}\frac{3}{5} \tan^{-1}\frac{17}{31} =$

- (D) $-\frac{\pi}{3}$
- **Q3** The value of $\sin \left(2 \tan^{-1} \frac{12}{5}\right)$ is equal to
- (C) $\frac{121}{169}$
- **Q4** The value of $\cos\left(2\sin^{-1}\frac{3}{5}\right)$ is equal to
 - (A) $\frac{7}{25}$

(C) $\frac{16}{25}$

- (D) 1
- Q5 $\tan\{2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}\}=$

- Q6 $\sin(2\tan^{-1}\frac{2}{3}) + \cos(\tan^{-1}\sqrt{3}) =$

(A) $\frac{23}{27}$

(C) $\frac{26}{27}$

- (D) $\frac{37}{26}$
- Q7 $\sin(2\sin^{-1}0.6)$ =
 - (A) 0.81
- (B) 0.6
- (C) 0.96
- (D) 1
- Q8 $\sin(3\sin^{-1}0.4) =$
 - (A) 1.2
- (B) **0.256**
- (C) 0.944
- (D) None of these

- Q9 $\frac{1}{2} \tan^{-1} \frac{12}{5} =$ (A) $\tan^{-1} \frac{3}{2}$ (B) $\tan^{-1} \frac{2}{3}$ (C) $\tan^{-1} \frac{1}{2}$ (D) None of these **Q10** If $3\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, then x is $+2\tan^{-1}\left(rac{2x}{1-x^2}
 ight)=rac{\pi}{3}$

equal

- $(C)\sqrt{3}$
- (B) $-\frac{1}{\sqrt{3}}$ (D) $-\frac{\sqrt{3}}{4}$

Answer Key

Q1 D Q2 В Q3 B

Q6 D Q7 C Q8 C Q9 B Q10 A

Q4 A Q5 В

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Text Solution:

We have,

$$egin{aligned} anig(2 an^{-1} frac{1}{5}ig) &= anigg\{ an^{-1}igg(frac{2 imes frac{1}{5}}{1- frac{1}{25}}igg)igg\} \ &= anig(an^{-1} frac{5}{12}ig) &= frac{5}{12} \end{aligned}$$

Video Solution:

O2 Text Solution:

$$\begin{aligned} &2\sin^{-1}\frac{3}{5} - \tan^{-1}\frac{17}{31} \\ &= 2\tan^{-1}\frac{3}{4} - \tan^{-1}\frac{17}{31} \\ &\left[\because \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4}\right] \\ &= \tan^{-1}\left\{\frac{2\times\frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right\} - \tan^{-1}\frac{17}{31} \\ &\left[\because 2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^{2}} \text{ for } \left|x\right| < 1\right] \\ &= \tan^{-1}\frac{24}{7} - \tan^{-1}\frac{17}{13} \\ &= \tan^{-1}\left(\frac{\frac{24}{7} - \frac{17}{31}}{1 + \frac{24}{7} \times \frac{17}{12}}\right) = \tan^{-1}1 = \frac{\pi}{4} \end{aligned}$$

Video Solution:

Q3 Text Solution:

Let
$$\tan^{-1} \frac{12}{5} = \theta$$

$$\Rightarrow \tan \theta = \frac{12}{5}$$

$$\therefore \sin(2 \tan^{-1} \frac{12}{5}) = \sin 2\theta$$

$$= \frac{2 \tan \theta}{1 + \tan^2 \theta}$$

$$= \frac{2 \times \frac{12}{5}}{1 + \left(\frac{12}{5}\right)^2}$$

$$= \frac{\frac{24}{5}}{\frac{169}{25}}$$

$$= \frac{24}{5} \times \frac{25}{169}$$

$$= \frac{120}{169}$$

Video Solution:

Q4 Text Solution:

Let
$$\sin^{-1} \frac{3}{5} = \theta$$

$$\Rightarrow \sin \theta = \frac{3}{5}$$

$$\therefore \cos \left(2 \sin^{-1} \frac{3}{5}\right) = \cos(2\theta)$$

$$= 1 - 2 \sin^2 \theta$$

$$= 1 - 2\left(\frac{3}{5}\right)^2$$

$$= 1 - \frac{18}{25}$$

$$= \frac{7}{25}$$

Video Solution:

Q5 Text Solution:

$$egin{aligned} an & \left\{ 2 an^{-1} \, rac{1}{5} - rac{\pi}{4}
ight\} \ &= an \left\{ an^{-1} \left(rac{2 imes rac{1}{5}}{1 - rac{1}{25}}
ight) - an^{-1} \, 1
ight\} \ &\left[\because 2 an^{-1} \, x = an^{-1} \left(rac{2x}{1 - x^2}
ight), ext{ if } \left| x
ight| < 1
ight] \end{aligned}$$

$$= \tan\left\{\tan^{-1}\frac{5}{12} - \tan^{-1}1\right\}$$

$$= \tan\left\{\tan^{-1}\left(\frac{\frac{5}{12} - 1}{1 + \frac{5}{12}}\right)\right\}$$

$$= \tan\left\{\tan^{-1}\left(\frac{-7}{17}\right)\right\} = \frac{-7}{17}$$

Video Solution:

Q6 Text Solution:

$$\begin{split} & \sin\left(2\tan^{-1}\frac{2}{3}\right) + \cos\left(\tan^{-1}\sqrt{3}\right) \\ & = \sin\left[\sin^{-1}\left(\frac{2\times\frac{2}{3}}{1+\left(\frac{2}{3}\right)^{2}}\right)\right] \\ & + \cos\left(\tan^{-1}\left(\tan\frac{\pi}{3}\right)\right) \\ & = \sin\left[\sin^{-1}\left(\frac{12}{13}\right)\right] + \cos\frac{\pi}{3} \\ & = \frac{12}{13} + \frac{1}{2} = \frac{37}{26} \end{split}$$

Video Solution:

Q7 Text Solution:

$$\sin(2\sin^{-1}0.6)$$

$$= \sin\left[\sin^{-1}\left\{2 \times 0.6 \times \sqrt{1 - (0.6)^2}\right\}\right]$$

$$\left[\because 2\sin^{-1}x = \sin^{-1}\left(2x\sqrt{1 - x^2}\right)\right]$$

$$= \sin(\sin^{-1}0.96) = 0.96$$

Video Solution:

Q8 Text Solution:

Using
$$(3\sin^{-1}x = \sin^{-1}(3x - 4x^3))$$
, we obtain $\sin(3\sin^{-1}0.4)$ $= \sin\left[\sin^{-1}\left\{3\times0.4 - 4\times(0.4)^3\right\}\right]$ $= \sin\left\{\sin^{-1}\left(1.2 - 0.256\right)\right\}$ $= \sin\left\{\sin^{-1}\left(0.944\right)\right\} = 0.944$

Video Solution:

Q9 Text Solution:

Let
$$\frac{1}{2} \tan^{-1} \frac{12}{5} = \theta$$
 $\Rightarrow \tan^{-1} \frac{12}{5} = 2\theta$
 $\Rightarrow \frac{12}{5} = \tan(2\theta)$
 $\Rightarrow \frac{12}{5} = \frac{2 \tan \theta}{1 - \tan^2 \theta}$
 $\Rightarrow 12 - 12 \tan^2 \theta = 10 \tan \theta$
 $\Rightarrow 6 \tan^2 \theta + 5 \tan \theta - 6 = 0$
 $\Rightarrow (3 \tan \theta - 2)(2 \tan \theta + 3) = 0$
 $\Rightarrow \tan \theta = \frac{2}{3} \text{ or } \tan \theta = -\frac{3}{2}$
 $\theta = \tan^{-1} \frac{2}{3} \text{ or } \theta = \tan^{-1} \left(-\frac{3}{2}\right)$
 $\therefore \frac{1}{2} \tan^{-1} \frac{12}{5} = \tan^{-1} \frac{2}{3}$

($\therefore \tan^{-1} x > 0 \text{ when } x > 0$)

Video Solution:

Q10 Text Solution:

We know
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x$$
 $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = 2\tan^{-1}x$ $\tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}x$ $\therefore 3\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ $+ 2\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3}$

$$\begin{array}{l} \Rightarrow 3 \big(2 \tan^{-1} x \big) - 4 \big(2 \tan^{-1} x \big) \\ + 2 \big(2 \tan^{-1} x \big) = \frac{\pi}{3} \\ \Rightarrow 6 \tan^{-1} x - 8 \tan^{-1} x + 4 \tan^{-1} x = \frac{\pi}{3} \\ \Rightarrow 2 \tan^{-1} x = \frac{\pi}{3} \\ \Rightarrow \tan^{-1} x = \frac{\pi}{6} \\ \Rightarrow x = \tan \frac{\pi}{6} \\ \Rightarrow x = \frac{1}{\sqrt{3}} \end{array}$$

Video Solution:

Android App | iOS App | PW Website