HW1 Math 4540

Anthony Jones

January 2022

1 Exercises

1. Fix a prime number p. Then we can write any (non zero) rational number $r \in Q$ uniquely as $\frac{a}{b}p^n$ where the fraction is in lowest terms such that $a, n \in Z, b \in N$, and a and b are coprime to p. The p-valuation $v_p(r)$ of a rational r is defined by $v_p(r) := n$, if $r \neq 0$ is presented as before and $v_p(0) := \infty$. Show the following properties of $v_p(r)$ for $x, y \in Q$:

(a)
$$v_p(xy) = v_p(x) + v_p(y)$$

Let $x,y\in Q$ be represented as $x=\frac{a}{b}p^n$ and $y=\frac{c}{d}p^m$ respectively, for some fixed prime p. Then $xy=\left(\frac{a}{b}p^n\right)\left(\frac{c}{d}p^m\right)=\frac{ac}{bd}p^{n+m}$. As a,b,c,d are all coprime to p, we can reduce xy to the form $\frac{\alpha}{\beta}p^{n+m}$, for which α and β define xy by the lowest terms such that $\alpha\in Z$, $\beta\in N$, and α and β are coprime to p, as above. Thus we have $v_p(xy)=n+m=v_p(x)+v_p(y)$.

(b) $v_p(x+y) \ge \min(v_p(x), v_p(y))$

Let $x,y\in Q$ be represented as $x=\frac{a}{b}p^n$ and $y=\frac{c}{d}p^m$, as above. Assume, without any loss of generality, that $n\leq m$. Then $x+y=\frac{a}{b}p^n+\frac{c}{d}p^m=p^n(\frac{ad+bcp^{m-n}}{bd})$. Observe that $\frac{ad+bcp^{m-n}}{bd}$ is rational and nonzero, and can therefore be written itself as $\frac{\alpha}{\beta}p^{\omega}$ where the fraction is in lowest terms such that $\alpha,\omega\in Z,\,\beta\in N$, and α and β are coprime to p. Furthermore, because by assumption $n\leq m$ and a,b,c,d are all coprime to p, it follows that $\omega\geq m-n\geq 0$. Thus $x+y=\frac{a}{b}p^n+\frac{c}{d}p^m=p^n(\frac{\alpha}{\beta}p^{\omega})=\frac{\alpha}{\beta}p^{n+\omega}$, and hence $v_p(x+y)=n+\omega\geq n$. Since we assumed in the beginning that $n\leq m$, this is equivalent to $v_p(x+y)\geq \min(v_p(x),v_p(y))=n$.

2. Now define the *p-norm* $|r|_p$ of a rational $r \neq 0$ to be $p^{-v_p(r)}$ and to be 0 if r = 0. Use the properties of the valuation from the previous problem to show that $|r|_p$ has the following properties:

(a) $|xy|_p = |x|_p |y|_p$

Using the first property $v_p(xy) = v_p(x) + v_p(y)$, it follows that $|xy|_p = p^{-v_p(xy)} = p^{-v_p(x)-v_p(y)} = p^{-v_p(x)}p^{-v_p(y)} = |x|_p|y|_p$ in the case that neither x, y are 0, and that $|xy|_p = |0|_p = 0$ otherwise.

(b) $|x+y|_p \le \max(|x|_p, |y|_p)$

Using the second property $v_p(x+y) \ge \min(v_p(x),v_p(y))$, it follows that $-v_p(x+y) \le -\min(v_p(x),v_p(y))$. Assume, without any loss of generality, that $v_p(x) = n = \min(v_p(x),v_p(y))$. Then by assumption $-v_p(x+y) \le -n$, and therefore $|x+y|_p = p^{-v_p(x+y)} \le p^{-n} = p^{-v_p(x)} = |x|_p$. Since we assumed that $v_p(x) = \min(v_p(x),v_p(y))$, this implies $|x|_p = \max(|x|_p,|y|_p)$ as $|y|_p = p^{-v_p(y)} \le p^{-v_p(x)} = |x|_p$. Thus we have $|x+y|_p \le \max(|x|_p,|y|_p)$.

(c) Finally define the *p-adic distance* to be $d_p(x,y) := |x-y|_p$. Use the properties of $|r|_p$ to show that d_p is a *metric* on Q.

To prove $d_p(x,y) := |x-y|_p$ is a metric on Q, we must show that for every $x,y \in Q$:

- i. $d_p(x,y) > 0$ if $x \neq y$ and $d_p(x,y) = 0$ if x = y,
- ii. $d_p(x,y) = d_p(y,x)$, and
- iii. $d_p(x,y) \leq d_p(x,q) + d_p(q,y)$, for any $q \in Q$.

Let $x,y\in Q$, and suppose x=y. Then $|x-y|_p=|0|_p=0$ by definition, and hence the first condition of (i.) is met. Now suppose $x\neq y$. Then $x-y\neq 0$, and therefore $|x-y|_p=p^{-v_p(x-y)}>0$, as $v_p(x-y)\in Z$ and $p^i>0$ for all primes p and $i\in Z$. Hence both of the conditions of (i.) are met. For (ii.), observe that $|-1|_p=p^{-v_p(-1)}=p^0=1$, and by the property $|xy|_p=|x|_p|y|_p$ it follows that $|x-y|_p*|-1|_p=|-(x-y)|_p$. Therefore, $d_p(x,y)=|x-y|_p=(|x-y|_p)*1=|x-y|_p*|-1|_p=|-(x-y)|_p=|y-x|_p=d_p(y,x)$. Finally, for (iii.), observe that by the property $|x+y|_p\leq \max(|x|_p,|y|_p)$ it follows that, for any $q\in Q$, $d_p(x,y)=|x-y|_p=|(x-q)+(q-y)|_p\leq \max(|x-q|_p,|q-y|_p)<|x-q|_p+|q-y|_p$. Therefore (iii.) is met, and hence d_p is a metric on Q.

3. As usual denote the *p-adic ball of radius* r centered at $x \in Q$ by $B_r^p(x) := \{y \in Q : d_p(x,y) < r\}$. Show that for any $x_0 \in B_r^p(x)$ we have $B_r^p(x_0) = B_r^p(x)$. In other words every point in a p-adic ball is a center point.

Let $B_r^p(x) := \{ y \in Q : d_p(x,y) < r \}$ for some $x \in Q$, and suppose $x_0 \in B_r^p(x)$. Then by definition $d_p(x,x_0) = |x - x_0|_p < r$. Let $B_r^p(x_0) := \{ z \in Q : d_p(x_0,z) < r \}$, and suppose $q \in B_r^p(x_0)$. Then by definition $d_p(x_0,q) = |x_0 - q|_p < r$. Observe that $|x - q|_p = |x - x_0 + x_0 - q|$.

Using the second property of the *p-norm*, it then follows that $|x-q|_p = |x-x_0+x_0-q| \le \max(|x-x_0|_p,|x_0-q|_p|)$. However, given that both $|x-x_0|_p$ and $|x_0-q|_p$ are less than r, this implies that $|x-q|_p < r$, and hence $q \in B_r^p(x)$ for all $q \in B_r^p(x_0)$. Using the same argument, this also implies that $s \in B_r^p(x_0)$ for any $s \in B_r^p(x)$; thus $B_r^p(x_0) = B_r^p(x)$.

4. Show by a direct estimate that for any $n \ge 1$ and M > 0 the function $f(x) = x^n$ is continuous on the interval [-M, M], and conclude that it is continuous for all real numbers.

Let $n \geq 1$, M > 0, and $f(x) = x^n$ for all $x \in [-M, M]$. We want to show that for any arbitrarily small $\epsilon > 0$ and $x, p \in [-M, M]$, there exists some $\delta > 0$ such that $|x-p| < \delta \Longrightarrow |x^n-p^n| < \epsilon$. Let $\epsilon > 0$, and choose $\delta = \frac{\epsilon}{(n+1)M^n}$. Observe that because $x, p \in [-M, M]$, $|x| \leq M$ and $|p| \leq M$, and hence $|x^n| \leq M^n$ and $|p^n| \leq M^n$. Then, taking advantage of the triangle inequality, $|x^n-p^n| = |\sum_{k=1}^n p^k x^{n-k}| * |x-p| \leq (\sum_{k=1}^n |p^k x^{n-k}|) * |x-p| \leq (\sum_{k=$

5. Consider the function $f(x) = x\sin(1/x)$ for $x \neq 0$ continued into x = 0 by f(0) = 0. Show that this function is continuous on R.

First, we show that f(x) is continuous at x = 0. Let $\epsilon > 0$, and suppose $|x-0|=|x|<\delta=\epsilon$. We want to show that this implies |f(x)-f(0)|= $|x\sin(1/x)| < \epsilon$. Note that if x = 0, $|f(0) - f(0)| = 0 < \epsilon$ by definition. Otherwise, observe that $|\sin(1/x)| \leq 1$, for all $x \neq 0 \in R$. Thus $|x\sin(1/x)| = |x||\sin(1/x)| \le |x| < \epsilon$, and f(x) is therefore continuous at zero. Next, we show that both g(x) = x and $h(x) = \sin(1/x)$ are continuous for all $x \neq 0$, and hence their product f(x) = g(x)h(x) is continuous by the algebraic property of continuity. Note that g(x) is continuous is trivial, as $|x-p| < \epsilon$ implies $|g(x) - g(p)| = |x-p| < \epsilon$ for all $x, p \in R$. To show that h(x) is continuous, we consider another property of continuity, that the composition of two continuous functions are also continuous, and write $h(x) = \psi \circ \pi(x)$ where $\psi(x) = \sin(x)$ and $\pi(x) = 1/x$. We now show $\pi(x)$ is continuous. However, this is also trivial, as the inverses of continuous functions are themselves continuous, and $\pi^{-1}(x) = q(x)$. Thus $\pi(x)$ is continuous for all $x \neq 0$. Finally, we show that $\psi(x)$ is continuous. Let $\epsilon > 0$, and suppose $|x - p| < \delta = \epsilon$. Consider that $|\cos(\lambda)| \le 1$ and $|sin(\lambda)| \le |\lambda|$ for all $\lambda \in R$. Then $|\psi(x) - \psi(p)| = |sin(x) - sin(p)| =$ $2|\cos(\frac{p+x}{2})||\sin(\frac{p-x}{2})| \le 2|\frac{p-x}{2}| = |x-p| < \epsilon$, and hence ψ is continuous for all $x \neq 0$ and $p \neq 0$. Therefore $h(x) = \psi \circ \pi(x) = \sin(1/x)$, and hence $f(x) = g(x)h(x) = x\sin(1/x)$ is continuous on R.