Verfahren zum Zerspanen eines Werkstücks aus einer Titan-Basislegierung

5 Die Erfindung betrifft ein Verfahren zum Zerspanen eines Werkstücks aus einer Titan-Basislegierung.

Titan und Titanlegierungen haben drei charakteristische Eigenschaften, die ihnen ihre technische Bedeutung geben: hohe Festigkeit bei guter Duktilität, niedriges spezifisches Gewicht und gute Korrosionsbeständigkeit gegen oxidierende Säuren. Aufgrund dieser günstigen Kombinationen von Eigenschaften werden Titanlegierungen u. a. in der Luftund Raumfahrt, in Strahltriebwerken und Hochleistungsmotoren und im chemischen Apparatebau eingesetzt.

15

20

25

30

10

Eine typische Legierung ist TiAl6V4 mit einer Zugfestigkeit von 900 – 1200N/mm² bei einer Bruchdehnung von etwa 10 %. In der Luft- und Raumfahrt wird dieser beliebte Titanwerkstoff für Kompressorschaufeln, Nieten, Schrauben, über Schaltzellen, über Antriebswellen, Getriebeteile, Rotorköpfe bis hin zu Treibstoffbehältern und Brennkammergehäusen eingesetzt.

Titan und seine Legierungen sind zäh und schwer zerspanbar, so dass nur Schnittgeschwindigkeiten erzielt werden können, die etwa einem 20tel der erreichbaren Schnittgeschwindigkeiten von unlegiertem Stahl entsprechen.

Um in Großdieselmotoren, wie sie beispielsweise für Schiffe oder Lokomotiven verwendet werden, einen besseren Wirkungsgrad bzw. eine höhere Leistung zu erzielen, wird die einströmende Luft durch einen

2

Turbolader vorverdichtet. Die Turboladerverdichterräder werden dabei in der Regel aus Aluminiumlegierungen hergestellt. Soll der Wirkungsgrad der Motoren weiter verbessert werden, muss das Verdichtungsverhältnis noch weiter erhöht werden. Bedingt durch die noch stärker erwärmte komprimierte Luft bewirken hohe Verdichtungsverhältnisse dann hohe Temperaturen an den Verdichterrädern. Aluminiumlegierungen eignen sich wegen ihrer zu geringen Warmfestigkeit nicht mehr für den Einsatz in solchen Turboladern. Aus diesem Grund wird TiAl6V4 eingesetzt. Die schlechte Zerspanbarkeit stellt aber ein großes Problem dar und erhöht die Fertigungskosten drastisch, muss aber in Kauf genommen werden.

Die Verdichterräder haben einen Durchmesser von bis zu 2 m. Zur Herstellung wird aus einem Materialblock ein Rohling geschmiedet. Die Endkontur der Verdichterschaufeln wird durch spanabhebende Fertigung aus dem Rohling durch einen Fräsprozess herausgearbeitet. Die Bearbeitungszeit des Werkstücks aus der Titanlegierung ist gegenüber eines aus Aluminium etwa verzehnfacht. Auf die spanende Bearbeitung entfällt daher ein hoher Anteil der Herstellkosten.

20

5

10

15

In Folge der hohen Schnittkräfte werden außerdem die Spanwerkzeuge thermisch sehr hoch belastet und sind einem hohen Verschleiss unterworfen.

Von dieser Problemstellung ausgehend soll ein Verfahren und eine Legierung zum Zerspanen eines Werkstücks aus einer Titan-Basislegierung, insbesondere aus TiAl6V4, angegeben werden, das bzw. die höhere Schnittgeschwindigkeiten gestattet. WO 2005/007338

Zur Problemlösung zeichnet sich das Verfahren durch folgende Schritte aus:

- a) Erhitzen des Werkstücks in einer wasserstoffhaltigen Atmosphäre, wobei das Werkstück Wasserstoff aufnimmt;
 - b) Abkühlen des Werkstücks;
 - c) spanabhebende Bearbeitung des Werkstücks;

10

25

- d) Erhitzen des Werkstücks in einer wasserstoffreien Atmosphäre, insbesondere im Vakuum, wobei Wasserstoff herausgelöst wird.
- Durch die in das Werkstück diffundierten Wasserstoffatome wird der Werkstoff gut zerspanbar. Insbesondere bei hohen Schnittgeschwindigkeiten nimmt die Schnittkraft um über 50 % gegenüber der herkömmlichen Titanlegierung ab. Beim erneuten Erhitzen des Werkstücks im Vakuum nach der Bearbeitung diffundieren die Wasserstoffatome aus dem Werkstoff wieder heraus und es wird die ursprüngliche Duktilität wieder hergestellt.

Die Herstellkosten werden aufgrund der verminderten Bearbeitungszeit, insbesondere bei großen Bauteilen, drastisch reduziert. Auch der Werkzeugverschleiss wird reduziert. Erste Versuche haben eine Reduktion von 15% ergeben. Es hat sich insbesondere herausgestellt, dass die Abnahme der Schnittkraft bei höheren Schnittgeschwindigkeiten größer ist als bei niedrigen Schnittgeschwindigkeiten.

Zur Aufnahme des Wasserstoffs wird das Werkstück vorzugsweise auf 973 K erhitzt. Das spätere Abkühlen erfolgt im außer Betrieb genommenen Glühofen. Nach dem Abkühlen soll die Wasserstoffkonzentration im Werkstück unter 1,5 Gewichtsprozent Wasserstoff (H) in Titan (Ti) betragen.

4

Die wasserstoffhaltige Atmosphäre steht im Glühofen unter einem Druck von 5·10³ Pa. Dies entspricht einer Gleichgewichtskonzentration von etwa 0,5 Gew.-% Wasserstoff in Titan.

10

15

5

Die Glühzeit hängt prinzipiell von der Bauteilgeometrie ab. Sie beträgt in der wasserstoffhaltigen Atmosphäre aber mindestens 2 Stunden.

Vorzugsweise bleibt das Werkstück auch beim Abkühlen der wasserstoffhaltigen Atmosphäre ausgesetzt.

Damit der Wasserstoff möglichst rasch aus dem Werkstück wieder herausdiffundiert, beträgt das Vakuum vorzugsweise 2·10⁻³ Pa. Die Glühtemperatur im Vakuum beträgt vorzugsweise wieder 973 K.

20

25

Das Aufheizen des Werkstücks erfolgt insbesondere vorzugsweise induktiv. Oberflächenoxide und/oder weitere Deckschichten werden von dem Werkstück vor dem Erhitzen zumindest in den Bereichen entfernt, die später spanend bearbeitet werden sollen. Die Befreiung von Oberflächenoxiden oder Deckschichten erfolgt vorzugsweise mittels einer Ätzlösung, die insbesondere vorzugsweise aus einer Mischung aus H_2O_2 , HNO_3 und HF sowie H_2O_2 besteht.

5

Der Titan-Basislegierung, insbesondere der TiAl6V4-Basislegierung, kann Lanthan beigemischt werden, wobei der Lanthan-Anteil 0,3 – 3 Atom-% beträgt.

5 Der Titan-Basislegierung kann auch Cer in geringen Mengen zugesetzt sein.

Überraschenderweise hat sich gezeigt, dass eine Titan-Basislegierung, der Lanthan beigemischt ist, sich durch eine erhöhte Wärmeleitfähigkeit auszeichnet, was die beim Zerspanen entstehende Reibungswärme reduziert. Bei Werkstücken aus einer Titan-Basislegierung mit Lanthan-Beimischung können folglich höhere Zerspangeschwindigkeiten realisiert werden als bei Werkstücken aus einer bisher bekannten Titan-Basislegierung. Diese höheren Schnittgeschwindigkeiten werden erreichbar, ohne dass das Werkstück vor dem Zerspanen mit Wasserstoff beladen wird.

10

Anhand der beigefügten Figuren soll ein Ausführungsbeispiel der Erfindung nachfolgend näher erläutert werden.

Es	zeig	ıt:

5

- Figur 1 einen Vergleich des Schnittkraftverlaufs zwischen herkömmlichem TiAl6V4 und mit Wasserstoff beladenem Ti-Al6V4 mit einer Spanungsdicke von 40 μ m,
- 10 Figur 2 einen Vergleich des Schnittkraftverlaufs zwischen herkömmlichem TiAl6V4 und mit Wasserstoff beladenem Ti-Al6V4 mit einer Spanungsdicke von 80 μ m,
- Figur 3a das Zugversuchsdiagramm zwischen TiAl6V4, mit Wasserstoff beladenem TiAl6V4 und von Wasserstoff entladenem TiAl6V4 bei 293 K,
- Figur 3b das Zugversuchsdiagramm zwischen TiAl6V4, mit Wasserstoff beladenem TiAl6V4 und von Wasserstoff entladenem TiAl6V4 bei einer Temperatur 773 K,
 - Figur 4 das Zustandsdiagramm Titan-Wasserstoff,
 - Figur 5 ein Diagramm zur Spananalyse,

- Figur 6a eine Gefügeanalyse von TiAl6V4,
- Figur 6b eine Gefügeanalyse von beladenem TiAl6V4,
- 30 Figur 6c eine Gefügeanalyse von entladenem TiAl6V4,

7

Figur 7a den Verlauf der Schnittkraft und der Härte von TiAl6V4 in Abhängigkeit vom Lanthan-Anteil,

Figur 7 b die verschiedenen Spanformen von TiAl6V4 in Abhängigkeit von dem Lanthan-Anteil.

Die Titan-Basislegierung TiAl6V4 wird herkömmlich hergestellt, d. h. Gießen, Schmieden, sowie die erforderlichen Wärmebehandlungen erfolgen nach dem Stand der Technik, so dass ein Werkstoff mit Duplexgefüge und hohen Zugfestigkeiten bei guter Duktilität entsteht und nach Herstellung des Rohlings aus der Legierung dieser auf herkömmliche Art umgeformt werden kann.

10 [°]

15

20

25

30

Vor dem Zerspanen des Werkstücks wird die Legierung entweder vollständig oder nur in den zu zerspanenden Bereichen mit einer Ätzlösung, die beispielsweise besteht aus 50 ml H₂O, 50 ml HNO₃, 10 ml der Lösung [12 ml HF+70ml H₂O₂], 5 - 10 Minuten gereinigt, so dass Oberflächenoxide und mögliche Deckschichten an der Werkstückoberfläche entfernt werden. Anschließend wird das Werkstück in einem Induktionsofen, in dem eine wasserstoffhaltige Atmosphäre mit einem Druck von 5·10³ Pa herrscht, auf eine Temperatur von 973 K (700°C) gebracht und mindestens 2 Stunden geglüht, wodurch Wasserstoffatome in das Werkstück diffundieren und sich in dem Grundwerkstoff einlagern. Die Diffusionsgeschwindigkeit von Wasserstoff in Titan ist im Vergleich zu anderen Metallen hoch. Bei 973 K etwa 0,1 mm/min. Das bedeutet, dass bei einer Stunde Glühzeit eine Eindringtiefe des Wasserstoffs in das Titanwerkstück von 6 mm zu erwarten ist. Die Eindringtiefe erhöht sich mit steigender Temperatur. Da das zu zerspanende Volumen bekannt ist, kann die Beladungszeit entsprechend angepasst werden, so dass nur die zu zerspanenden Bereiche mit Was5

10

25

serstoff angereichert sind. Die Glühzeit hängt prinzipiell von der Bauteile teilgeometrie ab. Je größer die zu zerspanenden Bereiche der Bauteile sind, um so länger muss das Werkstück geglüht werden. Die Wasserstoffkonzentration im Werkstück soll nach dem Abkühlen 0,5 Gew.-% im Titan betragen.

Zum Abkühlen wird der Induktionsofen ausgeschaltet und das Werkstück sich selbst überlassen. Wenn es eine Temperatur erreicht hat, die eine weitere Bearbeitung gestattet, wird das mit Wasserstoff beladene Werkstück spanabhebend bearbeitet. Figur 5 zeigt den Segmentierungsgrad G über der Schnittgeschwindigkeit v_c für einen beladenen und einen unbeladenen Werkstoff bei einer Spanungsdicke a_p von 40 μ m und von 80 μ m.

15 Der Segmentierungsgrad bestimmt sich nach der Formel:

$$G = \frac{h_{\text{max}} - h_{\text{min}}}{h_{\text{max}}}$$

wobei bei 0 <G<0,3 ein Fließspan vorliegt, bei G≈0,3 ein Über-20 gangsspan und bei G>0,3 ein Segmentspan vorliegt.

Dem linken Bereich der Figur 5 ist entnehmbar, dass nach der Beladung des Werkstoffs mit Wasserstoff sich bei der Zerspanung ein schnittgewindigkeitsabhängiger Übergang vom Fließ- zum Segmentspan einstellt, der beispielsweise auch bei der Zerspanung von Stählen und Aluminiumlegierungen beobachtet werden kann, nicht jedoch bei unbeladenem TiAl6V4.

9

Segmentspäne haben ein sägeblattartiges Aussehen, während Fließspäne Späne mit konstantem Querschnitt über der Spanlänge sind.

5

10

15

20

25

30

Nach dem Zerspanen wird das Werkstück erneut geätzt und dann geglüht. Diesmal wird ein Vakuum von 2·10⁻³ Pa angelegt. Das Werkstück wird wieder bei 773 K geglüht, damit die Wasserstoffatome aus dem Werkstück wieder herausdiffundieren können, wodurch die ursprüngliche Duktilität des Werkstücks hergestellt wird. Wenn die Duktilität des mit Wasserstoff beladenen Werkstücks im Ausnahmefall für bestimmte Einsatzzwecke ausreichend hoch ist, kann auf das erneute Glühen nach dem Zerspanen verzichtet werden.

Wie Figuren 3a und 3b zeigen, sind die Anforderungen an die Festigkeit und die Duktilität des Werkstoffs bei Raumtemperatur (293 K) als auch bei 973 K durch die modifizierte Legierung gewährleistet. Die erreichte Festigkeit der wasserstoffbeladenen Proben lag innerhalb der vom α -Phasenanteil abhängigen Schwankungsbreite verschiedener Duplexgefüge. Wie Figur 3a zeigt, führt das Beladen des Werkstoffes (Werkstück) bei einer Abnahme der Festigkeit um etwa 8 % zu einer Verminderung der Bruchdehnung, die in einer abnehmenden Bruchdehnung von 20 % auf 8 % resultiert. Durch die nachgestellte Entladungsbehandlung kann bei gleichbleibender Festigkeit die Zähigkeit wieder auf etwa 16 %, also deutlich gesteigert werden. Alle drei Werkstoffe zeigen ein duktiles Bruchverhalten mit einer wabenartigen Bruchfläche. An den Proben war eine deutliche Brucheinschnürung zu erkennen.

Figur 3b ist entnehmbar, dass die Festigkeit der beladenen Probe gegenüber der Referenzprobe bei 773 K (500 °C) geringfügig erhöht ist, was durch eine erhöhte Diffusionsgeschwindigkeit des Wasserstoffs in

10

Titan bei dieser Temperatur zu erklären ist, so dass es zu einer Behinderung der Versetzungsbewegung kommt. Bei der Bruchdehnung lassen sich hingegen keine Unterschiede messen.

Wasserstoff stabilisiert bekanntlich die kubisch raumzentrierte β -5 Phase in Titan. Entsprechend wird gemäß dem in Figur 4 dargestellten Zustandsdiagramm Ti-H die Phasenumwandlung lpha
ightarrow eta durch Zulegieren von Wasserstoff zu tieferen Temperaturen hin verschoben, so dass bei einer Wärmebehandlung bei 700°C (973 K) in wasserstoffhaltiger Atmosphäre mit der Umwandlung in ein reines eta-Titangefüge zu 10 rechnen wäre. Wärmebehandlungen im Einphasengebiet führen in der Regel zu einem grobkörnigen Gefüge. An drei verschiedenen Proben wurde eine Gefügeanalyse durchgeführt. Die Figuren 6a bis 6c zeigen, dass es nicht zu einer unerwünschten Gefügeveränderung durch 15 Kornwachstum kommt, also völlig überraschend nach der Dotierung offensichtlich kein einphasiges β -Titan vorliegt. Wahrscheinlich ist dies auf die Wirkung des Legierungselementes Aluminium als lpha -Stabilisator zurückzuführen. Ein grobkörniges Gefüge würde die mechanischen Eigenschaften des Werkstoffs deutlich verschlechtern. Erfindungsgemäß ist aber die Stabilität des Gefüges sichergestellt. 20

Der Titan-Basislegierung, insbesondere der Legierung TiAl6V4, kann Lanthan in einer Menge von 0,3 bis 3 Atom-% beigemischt werden. Bis zu einem Lanthan-Gehalt von 1,5 Atom-% findet eine vollständige Ausscheidung des Lanthans im Grundgefüge statt. Die Partikel haben eine durchschnittliche Größe von 12 μ m. Die Verteilung der Lanthanausscheidungen beschränkt sich auf die Korngrenzen und das Korninnere zwischen den Dendriten des Gussgefüges. Untersuchungen haben ergeben, dass die Ausscheidungen als nahezu reines Lanthan identifiziert werden. Sauerstoff oder Stickstoff sind nicht nachzuwei-

25

sen. Bei Lanthangehalten ab 2 Atom-% bildet sich neben den Lanthanausscheidungen eine zweite Phase. Das Gefüge der zweiten Phase besteht aus einer Lanthanmatrix (80 % des Gefüges) mit meanderförmigen Titaneinschlüssen (etwa 20 %). Aluminium oder Vanadium lassen sich nicht nachweisen. Ein nahezu gleiches Aussehen des Gefüges ist erreichbar, wenn der Legierung anstatt Lanthan Cer beigemischt wird.

5

10

15

20

25

30

11

Die Legierung TiAl6V4 mit Lanthan wird in einem Vakuum-Lichtbogenofen hergestellt. Als Vorlegierung wird die herkömmliche TiAl6V4-Legierung verwendet, die mit elementarem Lanthan als Block zusammen in den Ofen verbracht wird. Vor dem Schmelzen wird zunächst ein Vakuum von beispielsweise 10⁻³ Pa erzeugt, um Sauerstoff aus der Ofenkammer zu entfernen. Der Zündvorgang des Lichtbogens erfolgt dann bei cirka 6.10⁴ Pa in der Ofenkammer. Da Titan bei Raumtemperatur nur sehr geringe Mengen von Lanthan lösen kann, entsteht bei der Herstellung der Legierung ein Gefüge aus TiAl6V4 mit diskret ausgeschiedenen Lanthan-Partikeln. Vor dem Einschmelzen muss die Oxidschicht auf dem Lanthanblock entfernt werden. Dies geschieht zum Beispiel mechanisch mit einer Feile mit anschließender Reinigung und Lagerung in Alkohol oder Azeton bis zum Verbringen des Lanthans in den Ofen. Bei Schmelzen der Legierung zeigt sich überraschenderweise, dass sich die Wärmeleitfähigkeit der lanthanhaltigen Legierung gegenüber der Standardlegierung erhöht, da die Schmelze deutlich schneller abkühlt als die Legierung ohne Lanthanzusatz. Damit die technische Anwendbarkeit der Legierung gewährleistet ist, muss die Legierung thermo-mechanisch behandelt werden, um ein Duplexgefüge herzustellen. Die Legierung lässt sich hierzu in einem Temperaturbereich zwischen 973 K und 1023 K beispielsweise durch Strangpressen umformen. Im stranggepressten Zustand erreicht diese Legierung eine

12

Zugfestigkeit von etwa 1000 N/mm² und ist damit mit der Basislegierung TiAl6V4 vergleichbar.

Wie Figur 7a zeigt, vermindert sich die Schnittkraft in Abhängigkeit des Lanthangehalts. Sie setzt ab einem Lanthangehalt von 0,3 Atom- % ein und reduziert die Schnittkraft um 20 % bei einem Lanthangehalt von 0,5 Atom-%. Wie die Figur weiterhin zeigt, ändert sich die Härte des Werkstoffs durch Zulegieren von Lanthan so gut wie nicht.

5

10 Figur 7b zeigt, dass bei der Zerspanung von TiAl6V4 ohne Lanthan-Zusatz ein Band- oder Wirrspan entsteht. Durch das Zulegieren von Lanthan ergeben sich bei der Zerspanung kurzbrechende Späne, wie sie zum Beispiel von Automatenstählen bekannt sind, jedoch nicht von TiAl6V4. Erklärbar ist dies durch die Anwesenheit der Lanthanpartikel 15 im Gefüge. Der kurzbrechende Span hat den Vorteil, dass die Kontaktfläche und damit die Kontaktzeit zwischen Span und Schneidfläche des Werkzeugs verringert wird, wodurch sich die in der Kontaktzone entstehende Reibungswärme deutlich vermindert. Durch die erhöhte Wärmeleitfähigkeit wird die entstehende Reibungswärme zu einem 20 wesentlich größeren Teil als bei TiAl6V4 in den Span abgeleitet, wodurch die thermische Belastung des Werkzeugs herabgesetzt wird und sich damit die Standzeit erhöht, was die Bearbeitungskosten reduziert.

Patentansprüche

 Verfahren zum Zerspanen eines Werkstücks aus einer Titan-Basislegierung mit folgenden Schritten:

5

WO 2005/007338

- a) Erhitzen des Werkstücks in einer wasserstoffhaltigen
 Atmos-phäre, wobei das Werkstück Wasserstoff aufnimmt;
- 10 b) Abkühlen des Werkstücks;
 - c) spanabhebende Bearbeitung des Werkstücks;
- d) Erhitzen des Werkstücks in einer wasserstofffreien Atmosphäre, wobei Wasserstoff herausgelöst wird.
 - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstück zum Herauslösen von Wasserstoff im Vakuum erhitzt wird.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstück zur Aufnahme von Wasserstoff auf etwa 973 K erhitzt wird.
- 25 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die wasserstoffhaltige Atmosphäre unter einem Druck von etwa 5·10³ Pa steht.

14

- Verfahren nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Glühzeit in der wasserstoffhaltigen Atmosphäre mindestens 2 Stunden beträgt.
- 5 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstück in der wasserstoffhaltigen Atmosphäre abgekühlt wird.
- 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das
 10 Vakuum mindestens 2·10⁻³ Pa beträgt.
 - Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Glühtemperatur in der wasserstofffreien Atmosphäre, insbesondere im Vakuum mindestens 773 K beträgt.

15

- Verfahren nach Anspruch 1 oder 8, dadurch gekennzeichnet, dass die Erhitzung induktiv erfolgt.
- Verfahren nach einem oder mehreren der vorstehenden
 Ansprüche, dadurch gekennzeichnet, dass die
 Wasserstoffkonzentration im Werkstück nach dem Abkühlen weniger als 1,5 Gew.-% in Titan beträgt.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die
 Wasserstoffkonzentration 0,5 Gew.-% beträgt.
 - 12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Werkstück vor dem Erhitzen zumindest bereichsweise von Oberflächenoxiden und/oder weiteren Deckschichten befreit wird.

15

- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Oberflächenoxide und/oder weitere Deckschichten mittels einer Ätzlösung entfernt werden.
- 5 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass als Ätzlösung eine Mischung bestehend aus H₂O, HNO₃, HF und H₂O₂ verwendet wird.
- Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass als
 Ätzlösung ein Gemisch aus 50 ml H₂O, 50 ml HNO₃, 10 ml der Lösung [12 ml HF+70ml H₂O₂] verwendet wird.
- Werkstück zu der Verwendung in dem Verfahren nach einem oder mehreren der vorstehenden Ansprüche, bestehend aus Ti Al6V4.
 - 17. Werkstück nach Anspruch 16, dadurch gekennzeichnet, dass der Legierung TiAl6V4 Lanthan beigemischt ist.
- 20 18. Werkstück nach Anspruch 17, dadurch gekennzeichnet, dass der Lanthan-Anteil 0,3 3 Atom-% beträgt.

- Werkstück nach Anspruch 16, dadurch gekennzeichnet, dass der Legierung Cer beigemischt ist.
- 20. Werkstück nach Anspruch 19, dadurch gekennzeichnet, dass der Cer-Anteil weniger als 3 Atom-% beträgt.

16

 Legierung zur Herstellung eines Werkstücks aus einer Titan-Basislegierung, gekennzeichnet durch einen Lanthananteil von 0,3 – 3 Atom-%.

Fig.1

Fig.2

Ti6Al4V Ti6Al4V0.5La Ti6Al4V1.5La

Fig. 7b

INTERNATIONAL SEARCH REPORT

International Application No T/DE2004/001496

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B23P25/00 B23 B23B1/00 C22C14/00 C22F1/18 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 B23P B23B C22C C22F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 9 Chatlon of document, with indication, where appropriate, of the relevant passages Relevant to claim No. χ PATENT ABSTRACTS OF JAPAN 16 vol. 0100, no. 96 (M-469) 12 April 1986 (1986-04-12) & JP 60 232801 A (SEIKO DENSHI KOGYO KK), 19 November 1985 (1985-11-19) abstract 1 - 15X US 5 091 148 A (PRASAD ARUN) 16-21 25 February 1992 (1992-02-25) abstract; claims 1,3 column 2, line 48 - line 51 χ US 3 963 525 A (BOMBERGER JR HOWARD B ET 16,17,19 AL) 15 June 1976 (1976-06-15) claims 1.7 -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 24 November 2004 03/12/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Watson, S

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International Application No T/DE2004/001496

		TeT/DE2004/001496
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Calegory °	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 3 605 551 A (STEWARD RICHARD B) 20 September 1971 (1971-09-20)	16
A	column 4, line 25 - line 74	1-15
X	EP 1 162 282 A (NIKKIN MATERIAL INC; SUPER MATERIAL APPLIC LAB (JP)) 12 December 2001 (2001-12-12) paragraph '0001! paragraph '0014! - paragraph '0015!	21
A	US 4 595 817 A (BOBROV ALEXANDR V ET AL) 17 June 1986 (1986-06-17) abstract	1–15
Α	US 4 810 465 A (NAKAMURA SADAYUKI ET AL) 7 March 1989 (1989-03-07) abstract	16-21
A	EP 0 479 212 A (SUMITOMO METAL IND) 8 April 1992 (1992-04-08) abstract	1-21
	!	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No T/DE2004/001496

	tent document In search report		Publication date	!	Patent family member(s)	Publication date
JP	60232801	Α	19-11-1985	NONE		
US	5091148	Α	25-02-1992	DE	4143230 A1	09-07-1992
US	3963525	A	15-06-1976	CA DE FR GB IT JP JP	1044122 A1 2543893 A1 2286887 A1 1522837 A 1055619 B 1330325 C 51066214 A 60053099 B	12-12-1978 08-04-1976 30-04-1976 31-08-1978 11-01-1982 14-08-1986 08-06-1976 22-11-1985
US	3605551	Α	20-09-1971	NONE		
EP	1162282	A	12-12-2001	JP EP US	2001348635 A 1162282 A2 2002033717 A1	18-12-2001 12-12-2001 21-03-2002
US	4595817	A	17-06-1986	WO GB JP	8403648 A1 2147235 A ,B 60501450 T	27-09-1984 09-05-1985 05-09-1985
US	4810465	А	07-03-1989	JP JP JP JP JP EP	6099764 B 61257445 A 1927863 C 6053902 B 62089834 A 0199198 A1	07-12-1994 14-11-1986 12-05-1995 20-07-1994 24-04-1987 29-10-1986
EP	0479212	A	08-04-1992	DE DE EP JP JP US	69107758 D1 69107758 T2 0479212 A1 2626344 B2 5001343 A 5156807 A	06-04-1995 12-10-1995 08-04-1992 02-07-1997 08-01-1993 20-10-1992

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
T/DE2004/001496

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES 1PK 7 B23P25/00 B23B1/00 C22C14/00 C22F1/18 Nach der Internationalen Palentkiassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) B23P B23B C22C C22F Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, PAJ, WPI Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie® Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. χ PATENT ABSTRACTS OF JAPAN 16 Bd. 0100, Nr. 96 (M-469), 12. April 1986 (1986-04-12) & JP 60 232801 A (SEIKO DENSHI KOGYO KK), 19. November 1985 (1985-11-19) Zusammenfassung 1 - 15χ US 5 091 148 A (PRASAD ARUN) 16-21 25. Februar 1992 (1992-02-25) Zusammenfassung; Ansprüche 1,3 Spalte 2, Zeile 48 - Zeile 51 X US 3 963 525 A (BOMBERGER JR HOWARD B ET 16, 17, 19 AL) 15. Juni 1976 (1976-06-15) Ansprüche 1,7 -/--Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden jst Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) Veröffentillchung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beansprüchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamille ist Datum des Abschlusses der internationalen Recherche Absendedatum des Internationalen Recherchenberichts 24. November 2004 03/12/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europälsches Patentami, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx, 31 651 epo nl, Fax: (+31-70) 340-3016 Watson, S

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
(ategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
(US 3 605 551 A (STEWARD RICHARD B) 20. September 1971 (1971-09-20)	16
A	Spalte 4, Zeile 25 - Zeile 74	1-15
X	EP 1 162 282 A (NIKKIN MATERIAL INC; SUPER MATERIAL APPLIC LAB (JP)) 12. Dezember 2001 (2001-12-12) Absatz '0001! Absatz '0014! - Absatz '0015!	21
A	US 4 595 817 A (BOBROV ALEXANDR V ET AL) 17. Juni 1986 (1986-06-17) Zusammenfassung	1-15
A	US 4 810 465 A (NAKAMURA SADAYUKI ET AL) 7. März 1989 (1989-03-07) Zusammenfassung	16-21
A	EP 0 479 212 A (SUMITOMO METAL IND) 8. April 1992 (1992-04-08) Zusammenfassung	1-21
	<u> </u>	
		ļ

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Januar 2004)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlingen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen T/DE2004/001496

		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung	
JP 60232801	Α	19-11-1985	KEIN	E .		
US 5091148	A	25-02-1992	DE	4143230 A1	09-07-1992	
US 3963525	A	15-06-1976	CA DE FR GB IT JP JP	1044122 A1 2543893 A1 2286887 A1 1522837 A 1055619 B 1330325 C 51066214 A 60053099 B	12-12-1978 08-04-1976 30-04-1976 31-08-1978 11-01-1982 14-08-1986 08-06-1976 22-11-1985	
US 3605551	Α	20-09-1971	KEIN			
EP 1162282	Α	12-12-2001	JP EP US	2001348635 A 1162282 A2 2002033717 A1	18-12-2001 12-12-2001 21-03-2002	
US 4595817	Α	17-06-1986	WO GB JP	8403648 A1 2147235 A ,B 60501450 T	27-09-1984 09-05-1985 05-09-1985	
US 4810465	Α	07-03-1989	JP JP JP JP JP EP	6099764 B 61257445 A 1927863 C 6053902 B 62089834 A 0199198 A1	07-12-1994 14-11-1986 12-05-1995 20-07-1994 24-04-1987 29-10-1986	
EP 0479212	A	08-04-1992	DE DE EP JP JP US	69107758 D1 69107758 T2 0479212 A1 2626344 B2 5001343 A 5156807 A	06-04-1995 12-10-1995 08-04-1992 02-07-1997 08-01-1993 20-10-1992	

Feld Nr. VIII (iv) ERKLÄRUNG: ERFINDERERKLÄRUNG (nur im Hinblick auf die Bestimmung der Vereinigten Staaten

von Amerika)

Die Erklärung nuß dem in Abschultt 214 vorgeschriebenen Wordaut entsprechen; siehe Anmerkungen zu den Feldern VIII, VIII (1) bis (v) (allgemein) und insbesondere die Anmerkungen zum Feld Nr. VIII (iv). Wird dieses Feld nicht bemutzt, so sollte dieses Blatt dem Antrag nicht beigefügt werden.

Erfindererklärung (Regeln 4.17 Ziffer iv und 51bis.1 Absatz a Ziffer iv) im Hinblick auf die Bestimmung der Vereinigten Staaten von Amerika:

Ich erkläre hiermit an Eides Statt, daß ich nach bestem Wissen der ursprüngliche, erste und alleinige Erfinder (falls nachstehend nur ein Erfinder angegeben ist) oder Miterfinder (falls nachstehend mehr als ein Erfinder angegeben ist) des beanspruchten Gegenstandes bin, für den ein Patent beantragt wird.

Diese Erklärung wird im Hinblick auf und als Teil dieser internationalen Anmeldung abgegeben (falls die Erklärung zusammen mitder Anmeldung eingereicht wird).

Diese Erklärung wird im Hinblick auf die internationale Anmeldung Nr. PCT/.DE..2004/.001.496..... abgegeben (falls diese Erklärung nach Regel 26ter eingereicht wird).

Ich erkläre hiermit an Eides Statt, daß mein Wohnsitz, meine Postanschrift und meine Staatsangehörigkeit den neben meinem Namen aufgeführten Angaben entsprechen.

Ich bestätige hiermit, daß ich den Inhalt der oben angegebenen internationalen Anmeldung, einschließlich ihrer Ansprüche, durchgesehen und verstanden habe. Ich habe im Antragsformular dieser internationalen Anmeldung gemäß PCT Regel 4.10 sämtliche Auslandsammeldungen angegeben und habe nachstehendunter der Überschrift "Frühere Anmeldungen", unter Angabe des Akteuzeichens, des Staates oder Mitglieds der Welthandelsorganisation, des Tages, Monats und Jahres der Anmeldung, sämtliche Anmeldungen für ein Patent bzw. eine Erfinderurkunde in einem anderen Staat als den Vereinigten Staaten von Amerika angegeben, einschließlich aller internationalen PCT-Anmeldungen, die wenigstens ein anderes Land als die Vereinigten Staaten von Amerika bestimmen, deren Anmeldetag dem der Anmeldung, deren Priorität beansprucht wird, vorangeht.
Frühere Anmeldungen:
Icherkenne hiermit meine Pflicht zur Offenbarung jeglicher Informationen an, die nach meinem Wissen zur Prüfung der Patentfähigkei in Einklang mit Title 37, Code of Federal Regulations, § 1.56 von Belang sind, einschließlich, im Hinblick aus Teilfortsetzungsammeldungen, Informationen, die im Zeitraum zwischen dem Anmeldetag der früheren Patentanmeldung und dem internationalen PCT-Anmeldedatum der Teilfortsetzungsammeldung bekannt geworden sind.
Ich erkläre hiermit, daß alle in der vorliegenden Erklärung von mir gemachten Angaben nach bestem Wissen und Gewissen der Wahrhei entsprechen, und ferner, daß ich diese eidesstattliche Erklärung in Kenntnis dessen ablege, daß wissentlich und vorsätzlich falsche Angaben oder dergleichen gemäß § 1001, Title 18 des US-Codes strafbar sind und mit Geldstrafe und/oder Gefängnis bestraft werder können und daß derartige wissentlich und vorsätzlich falsche Angaben die Rechtswirksamkeit der vorliegenden Patentanmeldung ode eines aufgrund deren erteilten Patentes gefährden können.
Name: Joachim RÖSLER, Lammer Heide 161
Wohnsitz:
Postanschrift:
Staatsangehörigkeit: DE.

Postanschrift:	
Staatsangehörigkeit: Unterschrift des Erfinders (falls nicht bereits das Antægsformular unterschrieben wird oder falls die Erklärungnach Einreichung der internationalen Anmeldung nach Regel 26ter berichtigt oder hinzugefügt wird. Die Unterschrift muß die des Erfinders sein, nicht die des Anwalts)	Datum: 23. & 2005 (der Unterschrift, falls das Antragsformular nichtunterschrieben wird oder der Erklärung, die nach Regel 26ter nach Einreichung der internationalen Anmeldung berichtigt oder hinzugefügt wird)
Name: Martin BÄKER S Wohnsitz: Breitenhop 10, 38110	andvamp 32
(Stadt und US-Staat, falls anwendbar, sonst Land)	
Staatsangehörigkeit: DE. Unterschrift des Erfinders: \(\text{DUT} \)	Datum: 4.8.2004. (der Unterschrift, falls das Antragsformular nichtunterschrieben
(falls nicht bereits das Antragsformular unterschrieben wird oder falls die Erklärungnach Einreichung der internationalen Anmeldung nach Regel 26ter berichtigt oder hinzusgefügt wird. Die Unterschrift	(der Unterschritt, falls das Antragstormular intentunterschnieben wird oder der Erklärung, die nach Regel 26 <i>ter</i> nach Einreichung der internationalen Anweldung berichtigt oder hinzuereftet

wird)

Diese Erklärung wird auf dem folgenden Blatt fortgeführt, "Fortsetzungsblatt für Feld Nr. VIII (iv)".

muß die des Erfinders sein, nicht die des Anwalts)

Fortsetzungsblatt für Felder VIII (i) bis (v) ERKLÄRUNG

Falls der Platz in einem der Felder VIII (i) bis (v) nicht für alle Angaben ausreicht, insbesondere im Falle, daß mehr als zwei Erfinder in Feld Nr. VIII (iv) aufgeführt werden: schreiben Sie "Fortsetzung von Feld Nr. VIII ..." (geben Sie die Ziffer des Feldes an) und machen Sie die erforderlichen Angaben entsprechend der in dem Feld, in dem der Platznicht ausreicht, vorgeschriebenen Art und Weise. Falls hinsichtlich zweier oder mehr Erklärungen der Platz nicht ausreicht, sollten Sie jeweils ein separates Fortsetzungsblatt für jede Erklärung einreichen. Wird dieses Fortsetzungsblatt nicht bemutzt, so sollte es dem Antrag nicht beigefügt werden.

Fortsetzung von Feld Nr. VIII (iv) Erklärung: Erfindererklärung (nur im Hinblick auf die Bestimmung der Vereinigten Staaten von Amerika)

Name:

Carsten SIEMERS

Wohnsitz:

Friedrich-Voigtländer-Straße 4, 38104 Braunschweig,

Unterschrift des Erfinders: ..

4.8.2004

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.