LECTURE 13 HYPOTHESIS TESTING: INDEPENDENT-SAMPLES t-TEST

PSY2002

Hye Won Suk

RESEARCH DESIGNS

- There are two general research designs that can be used to obtain the two sets of data to be compared:
 - Repeated-measures design or within-subject design
 - → Paired-samples *t*-test
 - Independent-groups design or between-subjects design
 - → Independent-samples t-test (today's topic)

- Eyewitness Memory Example (Loftus & Palmer, 1974)
 - To investigate whether phrasing of a question can influence eyewitness memory of an event
 - Laboratory experiment with independent-groups design
 - 45 students; each student was randomly assigned to one of 5 experimental conditions.

- Procedure
 - All 45 students watched seven films of traffic accidents.
 https://www.youtube.com/watch?v=Rg5bBJQOL74
 - After each film, participants were given a questionnaire that embedded one critical question that was the main interest of this study.

Critical question was:

How fast were the cars going when they hit each other?

- Other verbs substituted for 'hit'
 - Smashed
 - Collided
 - Bumped
 - Contacted
- There were 5 different conditions.

- Results
 - Mean speed estimates

•	Smashed	40.8 mph
•	Smashed	40.8 mph

- Collided 39.3 mph
- Bumped 38.1 mph
- Hit 34.0 mph
- Contacted 31.8 mph
- Conclusions
 - The wording of a question can significantly affect an eyewitness memory.

WORKING EXAMPLE

 A researcher wanted to replicate this study with a sample of today's college students. A total of 30 students participated.
 15 students were assigned to 'smash' condition and the other
 15 students were assigned to 'hit' condition. The results are as follows:

Condition	Sample Size (n)	Mean (\overline{X})	Standard Deviation (s)
SMASH	15	43.07	6.78
HIT	15	36.96	5.10

 Can he conclude that the two groups have significantly different mean estimates of speed?

WORKING EXAMPLE

- The data of the two conditions were collected using the independent-groups design or between-subjects design.
- Therefore, an independent-samples t-test should be used to compare the two conditions (or groups) in terms of the population mean estimated speed.
- It will be assumed that the original scores (estimated speed) are normally distributed in both conditions.

INDEPENDENT-SAMPLES t-Test

- Again, follow the five steps of hypothesis testing.
 - Step I: State the hypotheses
 - Step 2: Set the criteria for a decision
 - Step 3: Collect data and compute test statistics
 - t-test: calculate a t-statistic
 - Step 4: Make a decision
 - Step 5: State a conclusion
- Let's do the example!

STEP I: STATE THE HYPOTHESES

- Null hypothesis (H₀)
 - The wording of a question does not affect the estimation of the speed.
 - The population mean of the estimated speed of the SMASH group (group I) is equal to that of the HIT group (group 2).
 - $\mu_1 = \mu_2$; $\mu_1 \mu_2 = 0$

- Alternative hypothesis (H₁)
 - The wording of a question *affects* the estimation of the speed.
 - The population mean of the estimated speed of the SMASH group (group I) is different from that of the HIT group (group 2).
 - $\mu_1 \neq \mu_2$; $\mu_1 \mu_2 \neq 0$

STEP 2: SET THE CRITERIA

- $\alpha = 0.05$
 - The alpha level (or level of significance) is a probability value that is used to define the concept of "very unlikely" in a hypothesis test.
 - By convention, we use $\alpha = 0.05$ unless otherwise specified. $\alpha = 0.05$ indicates that we will treat extreme 5% of the values as being unlikely to be observed under the null hypothesis.

STEP 3: COMPUTE TEST STATISTICS

One-sample t-test

$$t = \frac{\overline{X} - \mu_{\overline{X}}}{s_{\overline{X}}} = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

Expected value of mean (mean of means)

Estimated standard error of mean (estimated standard deviation of means)

• Independent-samples *t*-test

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - \mu_{\bar{X}_1 - \bar{X}_2}}{s_{\bar{X}_1 - \bar{X}_2}}$$

Expected value of mean difference (mean of mean differences)

Estimated Standard error of mean difference (Estimated standard deviation of mean differences)

- Expected value of mean difference: mean of these mean differences
- Standard error of mean difference: standard deviation of these mean differences

SAMPLING DISTRIBUTION OF MEAN DIFFERENCE

- Expected value of mean difference: $\mu_{\bar{X}_1 \bar{X}_2} = \mu_1 \mu_2$
- Standard error of mean difference:

$$\sigma_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

HOMOGENEITY OF VARIANCES

• When performing an independent-samples t-test, we assume that the population variances of the two groups are equal.

HOMOGENEITY OF VARIANCES

- This assumption should be tested. (We will test it using SAS).
- Homogeneity of variances test is performed using the following hypotheses:
 - $H_0: \sigma_1^2 = \sigma_2^2$ (equal variances)
 - $H_1: \sigma_1^2 \neq \sigma_2^2$ (non-equal variances)
 - If the null hypothesis is rejected, the homogeneity of variance assumption is violated.
 - If we fail to reject the null hypothesis, the homogeneity of variance assumption is not violated.

HOMOGENEITY OF VARIANCES

- If the null hypothesis is rejected, the homogeneity of variance assumption is violated.
 - In this case, the independent-samples *t*-test procedure given in the following slides will not be accurate. Therefore, some adjustment should be made on the degree of freedom to make the test more accurate.
 - SAS will do the adjustment.
- If we fail to reject the null hypothesis, the homogeneity of variance assumption is not violated.
 - In this case, the independent-sample t-test procedure given in the following slides will be accurate. No adjustment is required.

SAMPLING DISTRIBUTION OF MEAN DIFFERENCE UNDER HOMOGENEITY OF VARIANCES ASSUMPTION

- Expected value of mean difference: $\mu_{\bar{X}_1 \bar{X}_2} = \mu_1 \mu_2$
- Standard error of mean difference when the homogeneity of variance assumption is satisfied:

$$\sigma_{\bar{X}_1 - \bar{X}_2} = \sqrt{\sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

• To estimate the standard error of mean difference, we need to estimate the common variance, σ^2 .

POOLED VARIANCE

• The common population variance, σ^2 , can be estimated by the pooled variance, s_p^2 .

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{\sum_{i=1}^{n_1} (X_{1i} - \overline{X}_1)^2 + \sum_{i=1}^{n_2} (X_{2i} - \overline{X}_2)^2}{n_1 + n_2 - 2}$$

Therefore, the t-statistic becomes:

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - \mu_{\bar{X}_1 - \bar{X}_2}}{s_{\bar{X}_1 - \bar{X}_2}} = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

STEP 3: COMPUTE TEST STATISTICS

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - \mu_{\bar{X}_1 - \bar{X}_2}}{s_{\bar{X}_1 - \bar{X}_2}} = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Estimated Standard error of mean difference under homogeneity of variances

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{(14)(6.78^2) + (14)(5.10^2)}{15 + 15 - 2} = 35.99$$

$$t = \frac{(43.07 - 36.96) - 0}{\sqrt{(35.99)\left(\frac{1}{15} + \frac{1}{15}\right)}} = \frac{6.11}{\sqrt{4.80}} = \frac{6.11}{2.19} = 2.79$$

STEP 3: COMPUTE TEST STATISTICS

• Step 3: Compute a test statistic.

$$t = \frac{(43.07 - 36.96) - 0}{\sqrt{(35.99)\left(\frac{1}{15} + \frac{1}{15}\right)}} = \frac{6.11}{\sqrt{4.80}} = \frac{6.11}{2.19} = 2.79$$

When the null hypothesis is true (and the homogeneity of variance assumption is satisfied), the *t*-statistic is known to form a *t*-distribution with df = n_1 + n_2 - 2.

$$df = n_1 + n_2 - 2 = 15 + 15 - 2 = 28$$

$$t(28) = 2.79$$

STEP 4: MAKE A DECISION

- Look up the t-critical value in the table.
- $\alpha = 0.05$ (two-tailed), df = 28
- The t critical value is 2.048.

STEP 4: MAKE A DECISION

- |My t-value| > t_c ; 2.79 > 2.048
- My t-value is in the extreme zone (or in the critical region). My t-value is a strong evidence against H_0 . \rightarrow Reject H_0 .

STEP 5: STATE A CONCLUSION

- The mean of the estimated speed of the SMASH group and that of the HIT group are significantly different (t(28) = 2.79, p<.05). This result implies that the wording used to ask a question can influence eyewitness's memory.
- If you obtain the exact p-value from SAS (p = .0094), report it as follows.
 - The mean of the estimated speed of the SMASH group and that of the HIT group are significantly different (t(28) = 2.79, p=.0094). This result implies that the wording used to ask a question can influence eyewitness's memory.

 First, find the following table to test the homogeneity of variance assumption.

	Equality of Variances						
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	14	14	1.77	0.2988			

- Using this table, we are testing the following hypotheses.
 - $H_0: \sigma_1^2 = \sigma_2^2$ (equal variances)
 - $H_1: \sigma_1^2 \neq \sigma_2^2$ (non-equal variances)
- Use the p-value (p = .2988) to decide whether to reject the null hypothesis or not.

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	14	14	1.77	0.2988			

- In this example, $p > \alpha$; .2988 > .05
- Therefore, the null hypothesis is not rejected.
- In other word, the homogeneity of variance assumption is not violated.
- In this case, the independent-samples *t*-test procedure that we learned will be accurate.
- Read the "Pooled" line in the result table.

- If $p < \alpha$ (which is not the case in our example), the null hypothesis is rejected.
- In other word, the homogeneity of variance assumption is violated.
- In this case, the independent-samples t-test procedure that we learned will not be accurate, and some adjustment is required.
- Read the "Satterthwaite" line in the result table. This result is obtained by adjusting the degree of freedom for significance test taking the non-equal variances into account.

The TTEST Procedure

Descriptive statistics

Variable: speed

group	N	Mean	Std Dev	Std Err	Minimum	Maximum
1	15	43.0707	6.7814	1.7509	28.5700	57.6800
2	15	36.9580	5.1020	1.3173	23.5400	43.7500
Diff (1-2)		6.1127	6.0007	2.1911		

group	Method	Mean	95% CL Mean		Std Dev	95% CL	Std Dev
1		43.0707	39.3153	46.8261	6.7814	4.9648	10.6949
2		36.9580	34.1326	39.7834	5.1020	3.7353	8.0463
Diff (1-2)	Pooled	6.1127	1.6243	10.6010	6.0007	4.7620	8.1157
Diff (1-2)	Satterthwaite	6.1127	1.6087	10.6166			

• When homogeneity of variance assumption is not violated, read the "Pooled" line.

• When homogeneity of variance assumption is violated (this is not the case in our example), read the "Satterthwaite" line.

SUMMARY

- An independent-samples *t*-test is used when two samples of data are collected using the independent-groups design or between-subject design and the researcher wants to examine the difference between the two groups.
- An independent-sample t-test is based on the assumption of homogeneity of variances. This assumption should be tested before performing the independent-sample t-test.