ALEC HEWITT

These are the derivations that I have been transferring to a Latex document and I plan to add as many as possible throughout my gap year and review them along the way.

QUANTUM MECHANICS (SAKURAI)

$$\begin{split} |S_y;\pm\rangle &= \tfrac{1}{\sqrt{2}}|S_z;+\rangle \pm \tfrac{i}{\sqrt{2}}|S_z;-\rangle \\ |S_x;\pm\rangle &= \tfrac{1}{\sqrt{2}}|S_z;+\rangle \pm \tfrac{1}{\sqrt{2}}|S_z;-\rangle \\ S_z.|S_z;\pm\rangle &= \pm \tfrac{\hbar}{2}|S_z;\pm\rangle \end{split}$$

nothing special about z direction

Note: $S_x|S_x;\pm\rangle = \pm \frac{\hbar}{2}|S_x;\pm\rangle$ for example Note: $|S_z;+\rangle = |+\rangle$; $|S_z;-\rangle = |-\rangle$

$$(785) \begin{array}{l} X = \sum_{a''} \sum_{a'} |a''\rangle\langle a''|X|a'\rangle\langle a'| \\ \hline \underline{\text{recall:}} \ 1 = \sum_{a'} |a'\rangle\langle a'| (completeness) \\ X = (\sum_{a''} |a''\rangle\langle a''|)X(\sum_{a'} |a'\rangle\langle a'|) \\ = \sum_{a''} \sum_{a'} (|a''\rangle\langle a''|)X(|a'\rangle\langle a'|) \\ = \sum_{a''a'} (|a''\rangle\langle a''|)(X|a'\rangle)(\langle a'|) \\ = \sum_{a''a'} |a''\rangle\langle a''|X|a'\rangle\langle a'| \end{array}$$

Note:
$$S_+ \equiv \hbar |+\rangle \langle -|; S_- \equiv \hbar |-\rangle \langle +| S_+ turns |-\rangle into |+\rangle and |+\rangle \to 0$$
, etc.

Note: these objects can also be written in matrix notation, in z basis

$$|+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ |-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$S_z \doteq \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \ S_+ \doteq \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \ S_- \doteq \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

 $\doteq \sim$ means "represented by"

```
(786) \frac{\langle A \rangle = \sum_{a'} a' | \langle a' | \alpha \rangle |^{2}}{\langle A \rangle = \langle \alpha | A | \alpha \rangle = \langle \alpha | (\sum_{a''} | a'' \rangle \langle a'' |) A(\sum_{a'} | a' \rangle \langle a' |) | \alpha \rangle}
= \sum_{a'a''} \langle \alpha | a'' \rangle \langle a'' | A | a' \rangle \langle a' | \alpha \rangle
= \sum_{a'a''} \langle \alpha | a'' \rangle \langle a' | \alpha \rangle
= \sum_{a'} a' \langle \alpha | a' \rangle \langle a' | \alpha \rangle
= \sum_{a'} a' | \langle \alpha' | \alpha \rangle |^{2}
= \sum_{a'} a' | \langle a' | \alpha \rangle |^{2}
Note: \langle \alpha' | \alpha \rangle = \langle \alpha | \alpha' \rangle^{*}
                       Note: \langle a' | \alpha \rangle = \langle \alpha | a' \rangle^*
                               \Lambda_{a'}|\alpha\rangle = |a'\rangle\langle a'|\alpha\rangle (Projection operator)
 (787) S_x = \frac{\hbar}{2}[|+\rangle\langle-|) + (|-\rangle\langle+|)
                       \overline{z} not special
                      \implies S_x = \frac{\hbar}{2}[(|S_x; +\rangle\langle S'_x + | - (|S_x; -\rangle\langle S_x; -1|)]
                      insert |S_x;\pm\rangle = \frac{1}{\sqrt{2}}|+\rangle \pm \frac{1}{\sqrt{2}}|-\rangle
                      \implies S_x = \frac{\hbar}{2} [(|+\rangle \langle -|) + (|-\rangle \langle +|)]
(788) \frac{S_y = \frac{\hbar}{2} [-i(|+\rangle\langle-|) + i(|-\rangle\langle+|)}{y \text{ ain't special}}
                      S_y = \frac{\hbar}{2} [(|S_y; +\rangle \langle S_y; +|) - (|S_y; -\rangle \langle S_y; -|)]
<u>recall:</u> |S_y; \pm\rangle = \frac{1}{\sqrt{2}} |+\rangle \pm \frac{i}{\sqrt{2}} |-\rangle
                      \implies S_y = \frac{\hbar}{2} [-i(|+\rangle\langle -|) + i(|-\rangle\langle |)]
                              Note: \vec{S} = (S_x, S_y, S_z) can be measured along any direction
                      with \vec{S} \cdot \hat{n} = (S_x, S_y, S_z) \cdot (n_x, n_y, n_z)
                      |\langle +|\alpha\rangle|^3 \sim \text{probability } |\alpha\rangle \text{ will be in } |+\rangle \text{ state}
                       \Delta S_x = S_x - \langle S_x \rangle
(789) \frac{\langle (\Delta S_x)^2 \rangle = \langle S_x^2 \rangle - \langle S_x \rangle^2}{\langle (\Delta S_x)^2 \rangle = \langle (S_x - \langle S_x \rangle)^2 \rangle} = \langle S_x^2 - 2S_x \langle S_x \rangle + \langle S_x \rangle^2 \rangle= \langle S_x^2 \rangle - 2\langle S_x \rangle^2 + \langle S_x \rangle^2 = \langle S_x^2 \rangle - \langle S_x \rangle^2
```

$$(790) \begin{array}{c} [S_{i},S_{j}] = i\hbar\epsilon_{ijk}S_{k} \\ \overline{[S_{x},S_{y}]} = S_{x}S_{y} - S_{y}S_{x} \\ \frac{\hbar^{2}}{4}i[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}] \\ = \frac{\hbar^{2}}{4}i[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}] \\ = \frac{2\hbar^{2}}{4}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = i\hbar\frac{\hbar}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ = i\hbar S_{z} = i\hbar\epsilon_{xyz}S_{z} \\ \text{now } x \to y, \ y \to z, \ z \to x \\ \Longrightarrow [S_{y},S_{z}] = i\hbar\epsilon_{yzx}S_{x} \\ \text{so on so forth, by cyclic permutations} \\ [S_{i},S_{j}] = i\hbar\epsilon_{ijk}S_{k} \\ \hline \{S_{i},S_{j}\} = \frac{\hbar^{2}}{2}\delta_{ij} \\ \text{Note: degenerate eigen functions are in general not orthogonal} \\ \hline B = UAU^{-1}A(diagonal)U \sim \text{unitary} \\ U \text{ has columns that are eigenvectors of } B, A \text{ has eigenvalues, i.e., } U \sim (\vec{v}_{1}, \vec{v}_{2}, \dots) \\ A \sim \begin{pmatrix} \lambda_{1} & \dots & 0 \\ \vdots & \lambda_{i} & \vdots \\ 0 & \dots & \lambda_{n} \end{pmatrix} \\ \hline Note: det(e^{A}) = e^{trA} \\ \hline (791) \underbrace{[x, F(p_{x})] = \frac{\partial F}{\partial p_{x}}}_{\text{recall:}} \underbrace{[f, g] = \sum_{i=1}^{N} (\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}})}_{\partial p_{i}} \underbrace{\partial f}_{\partial p_{i}} = \frac{\partial F}{\partial p_{x}} \\ \hline \Rightarrow [x, F(p_{x})] = \frac{\partial x}{\partial x} \frac{\partial F}{\partial p_{x}} - \frac{\partial F}{\partial x} \frac{\partial x}{\partial p_{x}} = \frac{\partial F}{\partial p_{x}} \\ \hline \frac{\partial F}{\partial x} = \frac{\partial F}{\partial p_{x}} \\ \hline \Rightarrow [x, F(p_{x})] = \frac{\partial x}{\partial x} \frac{\partial F}{\partial p_{x}} - \frac{\partial F}{\partial x} \frac{\partial x}{\partial p_{x}} = \frac{\partial F}{\partial p_{x}} \\ \hline \frac{\partial F}{\partial x} = \frac{\partial F}{\partial p_{x}} \\ \hline \end{array}$$

Note: with commutators to get to quantum just insert $i\hbar$, i.e., $[x, F(p_x)] =$

(792)
$$\frac{[x_i, p_j] = i\hbar \delta_{ij}}{[x, p_x]f = (xp_x - p_x x)f}$$

 $i\hbar \frac{\overline{\partial F}}{\partial p_x}$

$$= -i\hbar(x\frac{\partial f}{\partial x} - \frac{\partial}{\partial x}(xf)) = -i\hbar(x\frac{\partial f}{\partial x} - f - x\frac{\partial f}{\partial x})$$

$$= i\hbar$$

$$\Longrightarrow [x_i, p_j] = i\hbar\delta_{ij}$$

$$(793) \quad \underline{\left[x_{i},G(\hat{\vec{p}})\right]} = i\hbar \frac{\partial G}{\partial p_{i}} \text{ (quantum)}$$

$$assume WLOG \ G(\hat{\vec{p}}) = \sum_{nm\ell} a_{nm\ell} p_{i}^{n} p_{j}^{m} p_{k}^{\ell}$$

$$i,j,k \text{ not equal}$$

$$\implies x_{i}G(\hat{\vec{p}}) = \sum_{nm\ell} a_{nm\ell} x_{i} p_{i}^{n} p_{k}^{m} p_{k}^{\ell}$$

$$\underline{\text{recall:}} \left[x_{i},p_{j}\right] = i\hbar \delta_{ij} \implies \left[x_{i},p_{j}\right] = i\hbar$$

$$x_{i}p_{i}^{n} = \left(x_{i}p_{i}\right)p_{i}^{n-1} = \left(i\hbar + p_{i}x_{i}\right)p_{i}^{n-1}$$

$$= i\hbar p_{i}^{n-1} + p_{i}x_{i}p_{i}^{n-1} = i\hbar p_{i}^{n-1} + p_{i}x_{i}p_{i}p_{i}^{n-2}$$

$$= i\hbar p_{i}^{n-1} + p_{i}\left(i\hbar + p_{i}x_{i}\right)p_{i}^{n-2}$$

$$= i\hbar p_{i}^{n-1} + i\hbar p_{i}^{n-1} + p_{i}^{2}x_{i}p_{i}^{n-2}$$

$$= 2i\hbar p_{i}^{n-1} + p_{i}^{2}x_{i}p_{i}^{n-2} = \dots$$

$$= ni\hbar p_{i}^{n-1} + p_{i}^{2}x_{i}p_{i}^{n-2} = \dots$$

$$= ni\hbar p_{i}^{n-1} + p_{i}^{n}x_{i}p_{i}^{n-n} = i\hbar np_{i}^{n-1} + p_{i}^{n}x_{i}$$

$$\implies \left[x_{i}, G(\hat{\vec{p}})\right] = \sum_{nm\ell} a_{nm\ell}\left(x_{i}p_{i}^{n} - p_{i}^{n}x_{i}\right)p_{j}^{m}p_{k}^{\ell}$$

$$= \sum_{nm\ell} a_{nm\ell}\left(i\hbar np_{i}^{n-1} + p_{i}^{n}x_{i} - p_{i}^{n}x_{i}\right)p_{j}^{m}p_{k}^{\ell}$$

$$= \sum_{nm\ell} a_{nm\ell}i\hbar np_{i}^{n-1}p_{j}^{m}p_{k}^{\ell}$$

$$= i\hbar \sum_{nm\ell} a_{nm\ell}\frac{\partial(p_{i}^{n}p_{j}^{m}p_{k}^{\ell})}{\partial p_{i}}$$

$$= i\hbar \frac{\partial}{\partial p_{i}}G(\hat{\vec{p}})$$
likewise $[p_{i}, F(\hat{\vec{x}}) = -i\hbar \frac{\partial F}{\partial x_{i}}$

Note: p' are eigenvalues p is an operator

(794)
$$\frac{\langle x'|p'\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp(\frac{i}{\hbar}p'x')}{\langle x'|p|p'\rangle = -i\hbar \frac{\partial}{\partial x'} \langle x'|p'\rangle} = p'\langle x'|p'\rangle$$
ODE $\Longrightarrow \langle x'|p'\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp(\frac{i}{\hbar}p'x')$

$$\Phi(p') = \langle p' | \alpha \rangle; \ \psi(x') = \langle x' | \alpha \rangle$$

$$(795) \Phi(p') = \frac{1}{\sqrt{2\pi\hbar}} \int dx' \exp(-\frac{i}{\hbar}p'x')\psi(x') \\ \langle p'|\alpha\rangle = \langle p'|(\int dx'|x')\langle x'|\alpha\rangle \\ = \int dx'\langle p'|x'\rangle\langle x'|\alpha\rangle \\ = \int dx'\langle p'|x'\rangle\langle x'|\alpha\rangle \\ = \int dx' \frac{1}{\sqrt{2\pi\hbar}} \exp(-\frac{i}{\hbar}p'x')\psi(x') \\ = \frac{1}{\sqrt{2\pi\hbar}} \int dx' \exp(-\frac{i}{\hbar}p'x')\psi(x') \\ = \frac{1}{\sqrt{2\pi\hbar}} \int dx' \exp(-\frac{i}{\hbar}p'x')\Phi_p(p') \\ \psi(x') = \langle x'|\alpha\rangle = \langle x'|(\int dp'|p')\langle p'|)|\alpha\rangle \\ = \int dp'\langle x'|p'\rangle\langle p'|\alpha\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int dp'(\frac{i}{\hbar}p'x')\Phi_p(p') \\ \frac{Note:}{E|E\rangle} \text{ in which case } |\alpha\rangle \text{ is an eigen function of } H$$

$$(797) \frac{\langle x'|p|\alpha\rangle = -i\hbar\frac{\partial}{\partial x'}\langle x'|\alpha\rangle}{\langle x'|p|\alpha\rangle = \langle x'|p(\int dp'|p')\langle p'|)|\alpha\rangle} \\ = \int dp'p'\langle x'|p'\rangle\langle p'|\alpha\rangle \\ = \int dp'p'\langle x'|p'\rangle\langle p'|\alpha\rangle \\ = \int dp'p'\sqrt{\langle x'|p'\rangle\langle p'|\alpha\rangle} \\ = \int dp'p'\frac{1}{\sqrt{2\pi\hbar}} \exp(\frac{i}{\hbar}p'x')\Phi(p') \\ = \frac{i}{\hbar}\frac{\partial}{\partial x'}(\int dp'\frac{1}{\sqrt{2\pi\hbar}} \exp(\frac{i}{\hbar}p'x')\Phi(p')) \\ = -i\hbar\frac{\partial}{\partial x'}\psi(x') = -i\hbar\frac{\partial}{\partial x'}\langle x'|\alpha\rangle$$

$$(798) \frac{\langle p'|x|\alpha\rangle = \langle p'|x(\int dx'|x')\langle x'|\alpha\rangle}{\langle p'|x|\alpha\rangle = \langle p'|x(\int dx'|x')\langle x'|\alpha\rangle} \\ = \int dx' - \frac{i}{\hbar}\frac{\partial}{\partial p'}\langle x'|p'\rangle^*\langle x'|\alpha\rangle \\ = \int dx' - \frac{i}{\hbar}\frac{\partial}{\partial p'}\langle x'|p'\rangle^*\langle x'|\alpha\rangle \\ = i\hbar\frac{\partial}{\partial p'}\langle p'|\alpha\rangle$$

$$\frac{Note:}{\Phi} U(t,t_0) \exp(-\frac{i}{\hbar}H(t_0-t_0))(ifH(t) = H)$$

$$\Rightarrow x(t) = U(t,t_0)xU(t,t_0) = U^{\dagger}xU$$

 $\langle A \rangle(t) = \langle \psi | U^{\dagger} A U | \psi \rangle$

 $N \equiv a^{\dagger}a, \ H = \hbar\omega(N + \frac{1}{2})$

(799)
$$\frac{H|n\rangle = E_n|n\rangle \implies N|n\rangle = n|n\rangle$$

Proof:

 $Assume H|n\rangle = E_n|n\rangle$ $H|n\rangle = \hbar\omega(N+\frac{1}{2})|n\rangle = \frac{\hbar\omega}{2}|n\rangle + \hbar\omega N|n\rangle = E_n|n\rangle$ $\Rightarrow \hbar\omega N|n\rangle = (E_n - \frac{\hbar\omega}{2})|n\rangle$ $\Rightarrow N|n\rangle = \frac{1}{\hbar\omega}(E_n - \frac{\hbar\omega}{2})|n\rangle \equiv n|n\rangle$

 $a = \sqrt{\frac{m\omega}{2\hbar}}(x + \frac{ip}{m\omega}), \ a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}}(x - \frac{ip}{m\omega})$

$$\begin{array}{l} (800) \ \ \underline{[a,a^\dagger]=1} \\ \hline [a,a^\dagger]=aa^\dagger-a^\dagger a=\frac{m\omega}{2\hbar}[(x+\frac{ip}{m\omega})(x-\frac{ip}{m\omega})-(x-i\frac{p}{m\omega})(x+\frac{ip}{m\omega})] \\ =\frac{m\omega}{2\hbar}[x^2-\frac{i}{m\omega}xp+\frac{i}{m\omega}px+(\frac{1}{m\omega})^2p^2-x^2-\frac{i}{m\omega}xp+\frac{i}{m\omega}px-\frac{p^2}{(m\omega})^2] \\ =\frac{m\omega}{2\hbar}[-\frac{2i}{m\omega}xp+\frac{2i}{m\omega}px] \\ =-\frac{2im\omega}{2\hbar}\frac{1}{m\omega}[x,p]=-\frac{i}{\hbar}i\hbar=1 \end{array}$$

(801)
$$\frac{[N, a] = -a; \ [N, a^{\dagger} = a^{\dagger}]}{[N, a] = [a^{\dagger}a, a] = a^{\dagger}[a, a] + [a^{\dagger}, a]a}$$
$$= -a$$

(802)
$$\frac{Na^{\dagger}|n\rangle = (n+1)a^{\dagger}|n\rangle; \ Na|n\rangle = (n-1)a|n\rangle}{Na^{\dagger}|n\rangle = a^{\dagger}aa^{\dagger}|n\rangle = a^{\dagger}(1+a^{\dagger}a)|n\rangle}$$

$$= a^{\dagger}|n\rangle + a^{\dagger}N|n\rangle = .a^{\dagger}|n\rangle + na^{\dagger}|n\rangle$$

$$= (n+1)a^{\dagger}|n\rangle$$

this tells us that $Na^{\dagger}|n\rangle$

results in $a^{\dagger}|n\rangle$ with an eigenvalue increased by 1 and justifies labeling the eigenstate $a^{\dagger}|n\rangle by|n+1\rangle$

or actually $a^{\dagger}|n\rangle \propto |n+\rangle$, need to normalize $|n+1\rangle$

(803)
$$\frac{a|n\rangle = \sqrt{n}|n-1\rangle; \ a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle}{\underbrace{\text{Note:}} \ Na^{\dagger}|n\rangle = (n+1)a^{\dagger}|n\rangle \implies a^{\dagger}|n\rangle = c|n+1\rangle} \\ \Longrightarrow \langle n|aa^{\dagger}|n\rangle = |c|^{2} \\ \text{but } \langle n|aa^{\dagger}|n\rangle = \langle n|(1+a^{\dagger}a)|n\rangle = 1 + \langle n|N|n\rangle = 1 + n \\ \Longrightarrow c = \sqrt{n \cdot + 1} \\ \therefore a^{\dagger}|n\rangle = c|n+1\rangle$$

$$(804) \ \frac{\frac{dp}{dt} = -m\omega^2 x}{\text{recall: } \frac{d\langle p \rangle}{dt} = \frac{i}{\hbar} \langle [H, p] \rangle \implies \frac{dp}{dt} = \frac{i}{\hbar} [H, p]}$$

$$\frac{\text{recall: } H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2}{[H, p] = \frac{1}{2m} [p^2, p] + \frac{1}{2}m\omega^2 [x^2, p]}$$

$$= \frac{1}{2}m\omega^2 (x[x, p] + [x, p]x)$$

$$= \frac{1}{2}m\omega^2 (2i\hbar x) = i\hbar m\omega^2 x$$

$$\implies \frac{dp}{dt} = \frac{i}{\hbar} i\hbar m\omega^2 x = -m\omega^2 x$$

$$(805) \ \underline{\frac{dx}{dt} = \frac{p}{m}}$$

$$\underline{\text{recall: }} \frac{dx}{dt} = \frac{i}{\hbar}[H, x]; \ H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2$$

$$[H, x] = \frac{1}{2m}[p^2, x] = \frac{1}{2m}(p[p, x] + [p, x]p)$$

$$= \frac{1}{2m}(-2i\hbar p) = -i\hbar \frac{p}{m}$$

$$\Longrightarrow \frac{dx}{dt} = \frac{i}{\hbar}(-i\hbar \frac{p}{m}) = \frac{p}{m}$$

(806)
$$\frac{a(t) = a(0)exp(-i\omega t); \ a^{\dagger}(t)a^{\dagger}(0)exp(i\omega t)}{\frac{\operatorname{recall}: \ da}{dt} = \frac{i}{\hbar}[H, a]; \ H = \hbar\omega(a^{\dagger}a + \frac{1}{2})}{[H, a] = ([a^{\dagger}a, a] + [\frac{1}{2}, a])\hbar\omega}$$

$$= \hbar\omega(a^{\dagger}[a, a] + [a^{\dagger}, a]a) = \hbar\omega[a^{\dagger}, a]a = \hbar\omega a$$

$$\Longrightarrow \frac{da}{dt} = -\frac{i}{\hbar}\hbar\omega a = -i\omega a$$
likewise
$$\frac{da^{\dagger}}{dt} = i\omega a^{\dagger}$$
Solve
$$\Longrightarrow a(t) = a(0)\exp(-i\omega t); \ a^{\dagger}(t) = a^{\dagger}(0)\exp(i\omega t)$$

(807)
$$x(t) = x(0)\cos\omega t + \frac{p(0)}{m\omega}\sin\omega t; \ p(t) = -m\omega x(0)\sin\omega t + p(0)\cos\omega t$$

$$\underline{\text{recall:}} \ a = \sqrt{\frac{m\omega}{2\hbar}}(x + \frac{ip}{m\omega}); \ a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}}(x - \frac{ip}{m\omega})$$

$$a(t) = a(0)\exp(-i\omega t)$$

$$\sqrt{\frac{m\omega}{2\hbar}}(x(t) + \frac{ip(t)}{m\omega}) = \sqrt{\frac{m\omega}{2\hbar}}(x + \frac{ip}{m\omega})\exp(-i\omega t)$$

$$\implies x(t) + \frac{ip(t)}{m\omega} = x\cos\omega t - ix\sin\omega t + \frac{ip}{m\omega}\cos\omega t + \frac{p}{m\omega}\sin\omega t$$

$$\implies x(t) + \frac{ip(t)}{m\omega} = (x\cos\omega t + \frac{p}{m\omega}\sin\omega t) + i(-x\sin\omega t + \frac{p}{m\omega}\cos\omega t)$$

$$\implies x(t) = x(0)\cos\omega t + \frac{p(0)}{m\omega}\sin\omega t; \ p(t) = -m\omega x(0)\sin\omega t + p(0)\cos\omega t$$

$$(808) \ \, \frac{\frac{dN}{d\epsilon} = \frac{mL^2}{\pi\hbar^2}}{N = \sum_{n_X, n_y}} = 2 \int_0^{\pi/2} \int_0^n n dn d\theta$$
 only positive n_x, n_y , and $2 \sim \text{spin}$
$$\Rightarrow N = \frac{\pi}{2} \frac{1}{2} n^2 = \frac{\pi n^2}{2}$$

$$\psi(0) = \psi(L), \ \psi(x) = A e^{ikx} + B e^{-ikx}$$

$$\Rightarrow \sin kL = 0 \Rightarrow k = \frac{npi}{L}$$

$$\epsilon = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2 n^2 \pi^2}{2mL^2} \Rightarrow n^2 = \frac{2mL^2 \epsilon}{\hbar^2 \pi^2}$$

$$\Rightarrow \frac{dN}{d\epsilon} = \frac{\pi}{2} \frac{2mL^2}{\hbar^2 \pi^2} = \frac{mL^2}{\pi\hbar^2}$$

spose
$$J^2|a,b\rangle = a|a,b\rangle; \ J_z|a,b\rangle = b|a,b\rangle$$

i.e. simultaneous eigenkets of J^2 and J_z

J is generalized angular momenta, i.e. either $\vec{L}or\vec{S}$ or a combination of both

 $J_+|a,b\rangle$ is an eigenket whose J_z eigenvalue increased by $n\hbar$ J^2 eigenvalue unaltered this process cannot continue forever

(809) $\underline{a \ge b^2} b$ upper limit

recall:
$$J^2 - J_z^2 = \frac{1}{2}(J_+J_+^{\dagger} + J_+^{\dagger}J_+)$$

 $J_{+}J_{+}^{\dagger}$, $J_{+}^{\dagger}J_{+}$ have non negative expectation values because

$$J_{+}^{\dagger}|a,b\rangle \stackrel{\mathrm{DC}}{\leftrightarrow} \langle a,b|J_{+},\ J_{+}|a,b\rangle \stackrel{\mathrm{DC}}{\leftrightarrow} \langle a,b|J_{+}^{\dagger}$$

so for example
$$J_{+}^{\dagger}|a,b\rangle = |\lambda\rangle$$

then
$$\langle \lambda | \lambda \rangle = \langle a, b | J_+ J_+^{\dagger} | a, b \rangle > 0$$

$$\implies \langle a, b | (J^2 - J_z^2) | a, b \rangle \ge 0$$

$$\implies \langle a, b | J^2 | a, b \rangle \ge \langle a, b | J_z^2 | a, b \rangle$$

$$\implies a \ge b^2 \implies \sqrt{a} \ge b \implies \text{upper bound for } b$$
 call it $b_{max} \implies J_+|a,b_{max}\rangle = 0$

```
(810) a = b_{max}(b_{max} + \hbar)
          \overline{J_+|a,b_{max}\rangle} = 0 \implies J_-J_+|a,b_{max}\rangle = 0
          recall: J_{-}J_{+} = J_{x}^{2} + J_{y}^{2} - i(J_{y}J_{x} - J_{x}J_{y})
          = J^2 - J_z^2 - \hbar J_z
\Longrightarrow (J^2 - J_z^2 - \hbar J_z) |a, b_{max}\rangle = 0
          \implies a - b_{max}^2 - \hbar b_{max} = 0
           \implies a = b_{max}(b_{max} + \hbar)
               similarly J_{-}|a,b_{min}\rangle=0
(811) a = b_{min}(b_{min} - \hbar); -b_{max} \le b \le b_{max}
           \overline{J_-|a,b_{min}\rangle} = 0 \implies J_+J_-|a,b_{min}\rangle = 0
          \underline{\text{recall:}} \ J_+ J_- = J^2 - J_z^2 + \hbar J_z
          \Longrightarrow (J^2 - J_z^2 + \hbar J_z) |\tilde{a}, b_{min}\rangle = 0
          \implies a - b_{min}^2 + \hbar b_{min} = 0
          \implies a = b_{min}(b_{min} - \hbar)
           \implies b_{min}(b_{min} - \hbar) = b_{max}(b_{max} + \hbar)
           \implies b_{min} = -b_{max}, \ b_{min} = b_{max} + \hbar
           but b_{min} cannot be greater than b_{max}
           \implies b_{min} = -b_{max}
           \implies -b_{max} \le b \le b_{max}
(812) \frac{b_{max} = b_{min} + n\hbar}{b \text{ increases in units of } \hbar}; b_{max} = \frac{n\hbar}{2}
           \implies b_{max} = b_{min} + n\hbar = -b_{max} + n\hbar
           \implies 2b_{max} = n\hbar \implies b_{max} = \frac{n\hbar}{2}
(813) J^2|j,m\rangle = j(j+1)\hbar^2|j,m\rangle; J_z|j,m\rangle = m\hbar|j,m\rangle
           define j = \frac{b_{max}}{b} = \frac{n}{2}
           \implies a = \hbar^2 j(j+1), \ b \equiv m\hbar (convenient since b increases in
           units of \hbar)
           m = -j, -j + 1, \dots, j - 1, j(2j + 1state)
           \underline{recall}: J^2|a,b\rangle = a|a,b\rangle; \ a = b_{max}(b_{max} + \hbar)
          \overline{b_{max}} = \frac{n\hbar}{2}
\implies a = \frac{n}{2}\hbar^2(\frac{n}{2} + 1); \ motivatesj \equiv \frac{n}{2}
           \implies a = j\hbar^2(j+1)
          \underline{recall:}b_{min} = b_{max} - n\hbar; \ b_{max} = \frac{n\hbar}{2}
```

$$\implies b_{min} = \frac{n\hbar}{2} - n\hbar = -\frac{n}{2}\hbar = -j\hbar$$

$$andb_{min}increases in units of \hbar \implies b = m\hbar$$

$$(jisahal finteger or integer and all mvalues will be either half integers or integers) \implies$$

$$\begin{cases} J^{2}|j,m\rangle = j(j+1)\hbar^{2}|j,m\rangle \\ J_{z}|j,m\rangle = m\hbar|j,m\rangle \end{cases}$$

(814) $\mathcal{J}(d\vec{x}')|\vec{x}'\rangle \equiv |\vec{x}' + d\vec{x}'\rangle$

Properties:

$$|\alpha\rangle \to \mathcal{J}(d\vec{x}')|\alpha\rangle = \mathcal{J}(d\vec{x}') \int d^3x' |\vec{x}'\rangle \langle \vec{x}' |\alpha\rangle$$

$$= \int d^3x' |\vec{x}' + d\vec{x}'\rangle \langle \vec{x}' |\alpha\rangle$$
or
$$\int d^3x' |\vec{x}' + d\vec{x}'\rangle \langle \vec{x}' |\alpha\rangle = \int d^3x' |\vec{x}'\rangle \langle \vec{x}' - d\vec{x}' |\alpha\rangle$$

$$\langle \alpha |\alpha r \angle = \langle \alpha \mathcal{J}^{\dagger}(d\vec{x}') \mathcal{J}(d\vec{x}') |\alpha\rangle$$
(translated state must be normalized)
$$\implies \mathcal{J}^{\dagger}(d\vec{x}') \mathcal{J}(d\vec{x}') = 1(unitary)$$

$$\mathcal{J}(d\vec{x}'') \mathcal{J}(d\vec{x}') = \mathcal{J}(d\vec{x}' + d\vec{x}'')$$

$$\mathcal{J}(-d\vec{x}') = \mathcal{J}^{-1}(d\vec{x}')$$

$$\lim_{d\vec{x}' \to 0} \mathcal{J}(d\vec{x}') = 1$$

(815) $\underbrace{\mathcal{J}(d\vec{x}') = 1 - i\vec{K} \cdot d\vec{x}'}_{\text{we show this operator satisfies defining operators for } \mathcal{J}(d\vec{x}')$ we show this operator satisfies defining operators for $\mathcal{J}(d\vec{x}') = (1 + i\vec{K}^{\dagger} \cdot d\vec{x}')(1 - i\vec{K} \cdot d\vec{x}')$ $= 1 - i\vec{K} \cdot d\vec{x}' + i\vec{K}^{\dagger} \cdot d\vec{x}' + O[(d\vec{x}')^2]$ $\approx 1 - i(\vec{K} - \vec{K}^{\dagger}) \cdot d\vec{x}' \approx 1$

$$\mathcal{J}(d\vec{x}'')\mathcal{J}(d\vec{x}') = (1 - i\vec{K} \cdot d\vec{x}'')(1 - i\vec{K} \cdot d\vec{x}')$$

$$\approx 1 - i\vec{K} \cdot (d\vec{x}' + d\vec{x}'') = \mathcal{J}(d\vec{x}' + d\vec{x}'')$$

(816) $\begin{aligned} & [\vec{x}, \mathcal{J}(d\vec{x}')] = d\vec{x}'I \text{ see page 76 in Sakuri} \\ & \vec{x} \mathcal{J}(d\vec{x}')|\vec{x}'\rangle = \vec{x}|\vec{x}' + d\vec{x}'\rangle = (\vec{x}' + d\vec{x}')|\vec{x}' + d\vec{x}'\rangle \\ & \mathcal{J}(d\vec{x}')\vec{x}|\vec{x}'\rangle = \vec{x}' \mathcal{J}(d\vec{x}')|\vec{x}'\rangle = \vec{x}'|\vec{x}' + d\vec{x}'\rangle \\ & \Longrightarrow [\vec{x}, \mathcal{J}(d\vec{x}')]|\vec{x}'\rangle = d\vec{x}'|\vec{x}'d\vec{x}'\rangle \approx d\vec{x}'|\vec{x}'\rangle \\ & \Longrightarrow [\vec{x}, \mathcal{J}(d\vec{x}')] = d\vec{x}' \end{aligned}$

(817) $\underbrace{[x_{i}, K_{j}] = i\delta_{ij}I}_{\text{racall:}} [\vec{x} \mathcal{J}(d\vec{x}')] = d\vec{x}' \\
\text{Choose } d\vec{x}' \text{ in direction of } \hat{x}_{j}, \text{ take scalar product } \hat{x}_{i} \\
\underline{\text{Note:}} \hat{x}_{i} \text{ is a unit vector not an operator} \\
\Rightarrow \hat{x}_{i} \cdot [\vec{x}, \mathcal{J}(d\vec{x}')] = \hat{x}_{i} \cdot [\vec{x}, 1 - i\vec{K} \cdot d\vec{x}'] \\
= -i\hat{x}_{i} \cdot [\vec{x}, \vec{K} \cdot d\vec{x}'] = -i(x_{i}\vec{K} \cdot d\vec{x}' - \vec{K} \cdot d\vec{x}'x_{i})$

$$= -i(x_{i}K_{j} - K_{j}x_{i})dx'_{j} = \hat{x}_{i} \cdot d\vec{x}' = dx'_{j}\delta_{ij}$$

$$\Rightarrow [x_{i}, K_{j}] = i\delta_{ij}$$

$$(818) \underbrace{\int (d\vec{x}') = 1 - i\vec{p} \cdot d\vec{x}'/h}_{\text{it appears we cans et}}$$

$$\vec{K} = \frac{\vec{p}}{universalconstant with units of action} = \frac{\vec{p}}{h}$$

$$\Rightarrow \int (d\vec{x}') = 1 - i\frac{\vec{p} \cdot d\vec{x}'}{h}$$

$$\int (\Delta x'\hat{x}) = \lim_{N} \to \infty (1 - \frac{ip_{x}\Delta x'}{Nx})^{N} = \exp(-\frac{ip_{x}\Delta x'}{h})$$

$$|\alpha, t_{0}; t\rangle = \mathcal{U}(t, t_{0})|\alpha, t_{0}\rangle$$
has similar properties to translation operator
$$\int (d\vec{x}')$$

$$\mathcal{U}(t_{0} + dt, t_{0}) = 1 - i\Omega dt$$

$$\Omega = \frac{H}{h}$$

$$\mathcal{U}(t_{0} + dt, t_{0}) = H\mathcal{U}(t, t_{0}); i\hbar \frac{\partial}{\partial t}|\alpha, t_{0}; t\rangle = H|\alpha, t_{0}; t\rangle$$

$$\mathcal{U}(t + dt, t_{0}) = \mathcal{U}(t + dt, t)\mathcal{U}(t, t_{0}) = (1 - \frac{iHdt}{h})\mathcal{U}(t, t_{0})$$

$$\mathcal{U}(t + dt, t_{0}) = \mathcal{U}(t, t_{0}) = -i\frac{H}{h}dt\mathcal{U}(t, t_{0})$$

$$i\hbar \frac{\partial}{\partial t}\mathcal{U}(t, t_{0})|\alpha, t_{0}\rangle = H\mathcal{U}(t, t_{0})$$

$$i\hbar \frac{\partial}{\partial t}\mathcal{U}(t, t_{0})|\alpha, t_{0}\rangle = H\mathcal{U}(t, t_{0})|\alpha, t_{0}\rangle$$

$$i\hbar \frac{\partial}{\partial t}|\alpha, t_{0}; t\rangle = H|\alpha, t_{0}; t\rangle$$

$$|\alpha\rangle_{R} = \mathcal{D}(R)|\alpha\rangle$$

$$(820) \underbrace{\mathcal{D}(\hat{n}, d\phi)}_{U_{\varepsilon}} = 1 - iG_{\varepsilon} \text{ (general infititesimal operator)}$$

$$G \to \frac{J_{k}}{h} \varepsilon \to d\phi, \ U_{\varepsilon} \to \mathcal{D}(\hat{x}_{k}, d\phi)$$

$$\Rightarrow \mathcal{D}(\hat{x}_{k}, d\phi) = 1 - i\frac{J_{-\hat{n}k}}{h}d\phi$$
or let $\hat{n} = \hat{x}_{k}$

$$\therefore \mathcal{D}(\hat{n}, d\phi) 1 - i(\frac{J_{-\hat{n}k}}{h})d\phi$$

Note: $\vec{J}canbe\vec{L} = \vec{x} \times \vec{p}or\vec{S}$ or both

Note: $\forall R3 \times 3$ rotation matrix acting on $\vec{v} = \Im \mathcal{D}(R)$ acting on a ket in ket space

(821)
$$\frac{\mathscr{D}_{\hat{n}}(\phi) = \lim_{N \to \infty} [1 - i(\frac{\vec{J} \cdot \hat{n}}{\hbar})(\frac{\phi}{N})]^{N}}{\mathscr{D}_{\hat{n}}(\phi) = \lim_{N \to \infty} [1 - i(\frac{\vec{J} \cdot \hat{n}}{\hbar})(\frac{\phi}{\hbar})]^{N}} = \exp(-i\frac{\vec{J} \cdot \hat{n}}{\hbar}\phi)$$

$$(822) \quad \frac{\exp(\frac{-i\vec{\sigma}\cdot\hat{n}\phi}{2}) = \mathbf{1}\cos(\frac{\phi}{2}) - i\vec{\sigma}\cdot\hat{n}\sin\frac{\phi}{2}}{\operatorname{recall:}} \frac{1}{2} \frac$$

$$(823) \quad \underbrace{(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + i\vec{\sigma} \cdot (\vec{a} \times \vec{b})}_{(\vec{\sigma} \cdot \vec{a})^2 = |\vec{a}|^2}$$

$$(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \sum_{i,j} \sigma_i a_i \sigma_i b_j = \sum_{i,j} (\frac{1}{2} \{\sigma_i, \sigma_j\} + \frac{1}{2} [\sigma_i, \sigma_j]) a_i b_j$$

$$\underline{\text{recall:}}_{i} \{\sigma_i, \sigma_j\} = 2\delta_{ij} \mathbf{1}; \ [\sigma_i, \sigma_j] = 2i\epsilon_{ijk} \sigma_k;$$

$$\Longrightarrow (\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \sum_{i,j} (\delta_{jk} + i\epsilon_{ijk} \sigma_k) a_i b_j, \ (\vec{a} \times \vec{b})_k = \epsilon_{ijk} a_i b_j$$

$$= \sum_{i,j} (\delta_{ij} a_i b_j + i a_i b_j \epsilon_{ijk} \sigma_k)$$

$$= \sum_{i,j} (\delta_{ij} a_i b_j + i (\vec{a} \times \vec{b}_k \sigma_k)$$

$$= \vec{a} \cdot \vec{b} + i \vec{\sigma} \cdot (\vec{a} \times \vec{b})$$

 $(824) \ |n\rangle = |n^{(0)}\rangle + \lambda \sum_{k \neq n} |k^{(0)}\rangle \frac{V_{kn}}{E_n^{(0)} - E_k^{(0)}} + \lambda^2 \left(\sum_{k \neq n} \sum_{\ell \neq n} \frac{|k^{(0)}\rangle V_{k\ell} V_{\ell n}}{(E_n^{(0)} - E_k^{(0)})(E_n^{(0)} - E_\ell^{(0)})} - \sum_{k \neq n} \frac{|k^{(0)}\rangle V_{nr}}{(E_n^{(0)} - E_\ell^{(0)})} \right)$

$$(825) \frac{(E_n^{(0)} - H_0)|n\rangle = (\lambda V - \Delta_n)|n\rangle}{H_0|n^{(0)}\rangle = E_n^{(0)}|n^{(0)}\rangle}$$

$$(H_0 + \lambda V)|n\rangle_{\lambda} = E_n^{(\lambda)}|n\rangle_{\lambda}; |n\rangle \equiv |n\rangle_{\lambda}, E_n^{(\lambda)} = E_n$$

$$\Delta_n \equiv E_n - E_n^{(0)}$$

$$(E_n - H_0)|n\rangle = \lambda V|n\rangle$$

$$\Longrightarrow (\Delta_n + E_n^{(0)} - H_0)|n\rangle = \lambda V|n\rangle$$

$$\implies (E_n^{(0)} - H_0)|n\rangle = (\lambda V - \Delta_n)|n\rangle$$

$$(826) \frac{\langle n^{(0)}|(\lambda V - \Delta_n)|n\rangle = 0}{\underline{\text{recall:}} (E_n^{(0)} - H_0)|n\rangle = (\lambda V - \Delta_n)|n\rangle}$$

$$\frac{\langle n^{(0)}|(E_n^{(0)} - H_0)|n\rangle = E_n^{(0)}\langle n^{(0)}|n\rangle - E_n^{(0)}\langle n^{(0)}|n\rangle = 0}{= \langle n^{(0)}|(\lambda V - \Delta_n)|n\rangle = \lambda\langle n^{(0)}|V|n\rangle - \Delta_n\langle n^{(0)}|n\rangle}$$

$$\Longrightarrow \langle n^{(0)}|n\rangle = 0????$$

$$\frac{(828)}{(828)} \frac{|n\rangle = c_n(\lambda)|n^{(0)}\rangle + \frac{1}{E_n^{(0)} - H_0} \phi_n(\lambda V - \Delta_n)|n\rangle}{\phi_n \equiv 1 - |n^{(0)}\rangle\langle n^{(0)}| = \sum_k |k^{(0)}\rangle\langle k^{(0)}| - |n^{(0)}\rangle\langle n^{(0)}|}$$

$$= \sum_{k \neq n} |k^{(0)}\rangle\langle k^{(0)}|$$

we would like to invert $(E_n^{(0)} - H_0)$

but we cant do this if $(E_n^{(0)} - H_0)$ acts on $|n^{(0)}\rangle$ Note: $\frac{1}{E_n^{(0)} - H_0} |n^{(0)}\rangle = \frac{1}{E_n^{(0)} - E_n^{(0)}} |n^{(0)}\rangle = \text{undefined but we just}$ showed $\langle n^{(0)}|(\lambda V - \Delta_n)|n\rangle = 0$ so I'm not sure why $\frac{1}{E_n^{(0)} - H_0}$ is not well defined since it wont act on $|n^{(0)}\rangle$, but whatever.

Since $\frac{1}{E_n^{(0)}-H_0}$ might act on $|n^{(0)}\rangle$ lets take out $|n^{(0)}\rangle$, recall we can define an operator $H = \sum_{k,k'} \langle k' | H | k \rangle$ but if it is diagonal in this basis then $H = \sum_{k} \langle |H|k \rangle = \sum_{k} H|k \rangle \langle k|$

so let's do

$$\begin{split} &\frac{\phi_n}{E_n^{(0)}-H_0} = \sum_{k \neq n} \frac{1}{E_n^{(0)}-E_k^{(0)}} |k^{(0)}\rangle \langle k^{(0)}| \\ &\underline{\text{Note:}} \ \phi(\lambda V - \Delta_n) |n\rangle = (1-|n^{(0)}\rangle \langle n^{(0)}|) (\lambda V - \Delta_n) |n\rangle \\ &= (\lambda V - \Delta_n) |n\rangle - |n^{(0)}\rangle \langle n^{(0)}| (\lambda V - \Delta_n) |n\rangle \\ &= \underline{\text{recall:}} \ \langle n^{(0)} |(\lambda V - \Delta_n) |n\rangle = 0 \\ &\Longrightarrow \ \phi_n (\lambda V - \Delta_n) |n\rangle = (\lambda V - \Delta_n) |n\rangle \\ &\text{Ansatz:} \ (E_n^{(0)} - H_0) |n\rangle = \phi_n (\lambda V - \Delta_n) |n\rangle \\ &\Longrightarrow \ |n\rangle = \frac{1}{E_n^{(0)}-H_0} \phi_n (\lambda V - \Delta_n) |n\rangle \end{split}$$

this doesn't work because we need $|n\rangle \rightarrow |n^{(0)}\rangle$

as
$$\lambda \to 0$$
 but $|n\rangle \to 0$ currently so force it to work $|n\rangle = c_n(\lambda)|n^{(0)}\rangle + \frac{1}{E_n^{(0)} - H_0}\phi_n(\lambda V - \Delta_n)|n\rangle$

Note: $\lim_{\lambda \to 0} c_n(\lambda) = 1$; $\langle n^{(0)} | n \rangle = c_n(\lambda) + \langle n^{(0)} | \frac{1}{E^{(0)} - H_{\lambda}} \phi_n(\lambda V - V) \rangle$

$$\begin{array}{l} \Delta_n |n\rangle \\ = c_n(\lambda) + \langle n^{(0)} | \frac{1}{E_n^{(0)} - E_L^{(0)}} \sum_{k \neq n} |k^{(0)}\rangle \langle k^{(0)} | \end{array}$$

(I don't think
$$\frac{1}{E_n^{(0)}-H_0}$$
 is Hermitean?)
 $(\lambda V - \Delta_n)|n\rangle$
 $= c_n(\lambda) + 0 = c_n(\lambda)$
set $c_n(\lambda) = 1$
 $\therefore |n\rangle = |n^{(0)}\rangle + \frac{\phi_n}{E_n^{(0)}-H_0}(\lambda V - \Delta_n)|n\rangle$

(829)
$$\frac{\Delta_n = \lambda \langle n^{(0)} | V | n \rangle}{\text{recall:} \langle n^{(0)} | (\lambda V - \Delta_n) | n \rangle = 0}$$
$$\therefore \lambda \langle n^{(0)} | V | n \rangle = \Delta_n$$

$$(830) \frac{\Delta_{n}^{(N)} = \langle n^{(0)} | V | n^{(N-1)} \rangle}{|n\rangle = |n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \lambda^{2} |n^{(2)}\rangle + \cdots}$$

$$\Delta_{n} = \lambda \Delta_{n}^{(1)} + \lambda^{2} \Delta_{n}^{(2)} + \cdots$$

$$\underline{\operatorname{recall:}} \Delta_{n} = \lambda \langle n^{(0)} | V | n \rangle$$

$$= \lambda \langle n^{(0)} | V (|n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \lambda^{2} |n^{(2)}\rangle + \cdots)$$

$$= \lambda \langle n^{(0)} | V |n^{(0)}\rangle + \lambda^{2} \langle n^{(0)} | V |n^{(1)}\rangle + \lambda^{3} \langle n^{(0)} | V |n^{(2)}\rangle + \cdots$$

$$\operatorname{compare with} \Delta_{n} \operatorname{expansion}$$

$$\therefore \Delta_{n}^{(N)} = \langle n^{(0)} | V |n^{(N-1)}\rangle$$

$$(831) \frac{|n^{(1)}\rangle = \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle}{\operatorname{recall:} |n\rangle = |n^{(0)}\rangle + \frac{\phi_n}{E_n^{(0)} - H_0} (\lambda V - \Delta_n) |n\rangle}$$
plug in Δ_n and $|n\rangle$ expansion
$$\Rightarrow |n\rangle = |n^{(0)}\rangle + \frac{\phi_n}{E_n^{(0)} - H_0} (\lambda V - \lambda \Delta_n^{(1)} - \lambda^2 \Delta_n^{(2)} - \cdots) (|n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \cdots)$$

$$= |n^{(0)}\rangle + \frac{\phi_n}{E_n^{(0)} - H_0} \lambda V |n^{(0)}\rangle - \frac{\phi_n}{E_n^{(0)} - H_0} \lambda \Delta_n^{(1)} |n^{(0)}\rangle + \frac{\phi_n}{E_n^{(0)} - H_0} \lambda^2 V |n^{(1)}\rangle - \frac{\phi_n}{E_n^{(0)} - H_0} \lambda^2 \Delta_n^{(2)} |n^{(0)}\rangle$$

$$= |n^{(0)}\rangle + \lambda (\frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle - \frac{\phi_n}{E_n^{(0)} - H_0} \Delta_n^{(1)} |n^{(0)}\rangle + \lambda (\frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle - \frac{\phi_n}{E_n^{(0)} - H_0} \Delta_n^{(1)} |n^{(0)}\rangle$$
but $\phi_n |n^{(0)}\rangle = (\sum_{k \neq n} |k^{(0)}\rangle \langle k^{(0)}|) |n^{(0)}\rangle = 0$

$$\therefore |n^{(1)}\rangle = \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle + \lambda^2 \frac{\phi_n}{E_n^{(0)} - H_0} (V - \Delta_n^{(1)}) n^{(1)}\rangle$$

$$|n\rangle = |n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \lambda^2 |n^{(2)}\rangle + \cdots$$

$$\Delta_n = \lambda_n^{(1)} + \lambda^2 \Delta_n^{(2)} + \cdots$$

$$|n\rangle = |n^{(0)}\rangle + \sim (\lambda V - \Delta_n) |n\rangle$$

$$= |n^{(0)}\rangle + \sim (\lambda V - \lambda \Delta_n^{(1)} - \lambda^2 \Delta_n^{(2)} - \cdots) (|n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \lambda^2 |n^{(2)}\rangle + \cdots)$$

$$= |n^{(0)}\rangle + \sim (\lambda V - \lambda \Delta_n^{(1)}) + \sim (\lambda^2 V | n^{(1)}\rangle \Delta_n^2 \lambda^2 | n^{(1)}\rangle)$$

$$= |n^{(0)}\rangle + \sim (\lambda V - \lambda \Delta_n^{(0)}) + \sim \lambda^2 (V - \Delta_n^{(1)}) | n^{(1)}\rangle + \cdots$$

$$|n^{(2)}\rangle = \sim (V - \Delta_n^{(1)}) | n^{(1)}\rangle$$

$$= \sim V |n^{(1)}\rangle - \sim \Delta_n^{(1)} | n^{(1)}\rangle$$

$$= \frac{\phi_n}{E_n^{(0)} - H_0} V \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle - \frac{\Phi_n}{E_n^{(0)} - H_0} \langle N^{(0)} | V | N^{(0)}\rangle |n^{(1)}\rangle$$

$$= \frac{\phi_n}{E_n^{(0)} - H_0} V \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle - \frac{\phi_n}{E_n^{(0)} - H_0} \langle n^{(0)} | V |n^{(0)}\rangle \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle$$

 $(832) \frac{|n^{(2)}\rangle = \frac{\phi_n}{E_n^{(0)} - H_0} V \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle - \frac{\phi_n}{E_n^{(0)} - H_0} \langle n^{(0)} | V | n^0 \rangle \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle}{\underline{\operatorname{recall:}} |n^{(2)}\rangle = \frac{\phi_n}{E_n^{(0)} - H_0} (V - \Delta_n^{(1)}) |n^{(1)}\rangle; l, |n^{(1)}\rangle = \frac{\phi_n}{E_n^{(0)} - H_0} V |n^0\rangle} \\ \Delta_n^{(1)} = \langle n^{(0)} | V |n^{(0)}\rangle \\ \underline{\operatorname{Plug in}} \\ \therefore |n^{(2)}\rangle = \frac{\phi_n}{E_n^{(0)} - H_0} V \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle - \frac{\phi_n}{E_n^{(0)} - H_0} \langle n^{(0)} | V |n^{(0)}\rangle \frac{\phi_n}{E_n^{(0)} - H_0} V |n^{(0)}\rangle$

(833)
$$\frac{\Delta_n^{(1)} = \langle n^{(0)} | V | n^{(0)} \rangle; \ \Delta_n^{(2)} = \langle n^{(0)} | V \frac{\phi_n}{E_n^{(0)} - H_0} V | n^{(0)} \rangle}{\text{recall: } \Delta_n^{(2)} = \langle n^{(0)} | V | n^{(1)} \rangle \\ = \langle n^{(0)} | V \frac{\phi_n}{E_n^{(0)} - H_0} V | n^{(0)} \rangle }$$

(834) $\Delta_{n} \equiv E_{n} - E_{n}^{(0)} = \lambda V_{nn} + \lambda^{2} \sum_{k \neq n} \frac{|V_{nk}|^{2}}{E_{n}^{(0)} - E_{k}^{(0)}} + \cdots$ $\underline{\operatorname{recall:}} \Delta_{n} = \lambda \langle n^{(0)} | V | n \rangle; \ | n \rangle = |n^{(0)} \rangle + \lambda \frac{\phi_{n}}{E_{n}^{(0)} - H_{0}} V | n^{(0)} \rangle + \cdots$ $\Longrightarrow \Delta_{n} = \lambda \langle n^{(0)} | V (|n^{(0)} \rangle + \lambda \frac{\phi_{n}}{E_{n}^{(0)} - H_{0}} V | n^{(0)} \rangle + \cdots)$ $= \lambda \langle n^{(0)} | V | n^{(0)} \rangle + \lambda^{2} \langle n^{(0)} | V \frac{\phi_{n}}{E_{n}^{(0)} - H_{0}} V | n^{(0)} \rangle + \cdots$ $\langle n^{(0)} | V \frac{\phi_{n}}{E_{n}^{(0)} - H_{0}} V | n^{(0)} \rangle$ $= \langle n^{(0)} | V \frac{1}{E_{n}^{(0)} - H_{0}} (\sum_{k \neq n} |k^{90}\rangle \langle k^{(0)}|) V | n^{(0)} \rangle$ $= \sum_{k \neq n} \frac{1}{E_{n}^{(0)} - E_{k}^{(0)}} \langle n^{(0)} | V | k^{(0)} \rangle \langle k^{(0)} | V | n^{(0)} \rangle$ $= \sum_{k \neq n} \frac{1}{E_{n}^{(0)} - E_{k}^{(0)}} V_{nk} V_{nk}^{*}$ $= \sum_{k \neq n} \frac{|V_{nk}|^{2}}{E_{n}^{(0)} - E_{k}^{(0)}}$ $\therefore \Delta_{n} = \lambda V_{nn} + \lambda^{2} \sum_{k \neq n} \frac{|V_{nk}|^{2}}{E_{n}^{(0)} - E_{k}^{(0)}} + \cdots$ $\text{where } V_{nk} \equiv \langle n^{(0)} | V | k^{(0)} \rangle$

$$(835) |n\rangle = |n^{(0)}\rangle + \lambda \sum_{k \neq n} |k^{(0)}\rangle \frac{V_{kn}}{E_{n}^{(0)} - E_{k}^{(0)}}$$

$$(836) + \lambda^{2}(\sum_{k \neq n} \sum_{\ell \neq n} \frac{|k^{(0)}\rangle V_{k\ell} V_{\ell n}}{(E_{n}^{(0)} - E_{k}^{(0)})(E_{n}^{(0)} - E_{\ell}^{(0)})} - \sum_{k \neq n} \frac{|k^{(0)}\rangle V_{nn} V_{kn}}{(E_{n}^{(0)} - E_{k}^{(0)})^{2}}) + \cdots$$

$$\underline{\operatorname{recall:}} |n\rangle = |n^{90}\rangle + \lambda \frac{e^{(n)}}{E_{n}^{(0)} - H_{0}} V |n^{(0)}\rangle$$

$$+ \lambda^{2}(\frac{\phi_{n}}{E_{n}^{(0)} - H_{0}} V \frac{\phi_{n}}{E_{n}^{(0)} - H_{0}} V |n^{(0)}\rangle - \frac{\phi_{n}}{E_{n}^{(0)} - H_{0}} \lambda n^{(0)} |V| n^{(0)}\rangle$$

$$\underline{e^{(n)}} |V| = |n^{(0)}\rangle + \lambda \frac{1}{E_{n}^{(0)} - H_{0}} (\sum_{k \neq n} |k^{(0)}\rangle \langle k^{(0)}|) V |n^{(0)}\rangle$$

$$+ \lambda^{2}(\frac{1}{E_{n}^{(0)} - H_{0}} (\sum_{k \neq n} |k^{(0)}\rangle \langle k^{(0)}|) V \frac{1}{E_{n}^{(0)} - H_{0}} (\sum_{k \neq n} |k^{(0)}\rangle \langle k^{(0)}|) V |n^{(0)}\rangle$$

$$- \frac{1}{E_{n}^{(0)} - H_{0}} (\sum_{k \neq n} |k^{(0)}\rangle \langle k^{(0)}|) \langle n^{(0)}| V |n^{(0)}\rangle$$

$$- \frac{1}{E_{n}^{(0)} - H_{0}} (\sum_{k \neq n} |k^{(0)}\rangle \langle k^{(0)}|) \langle n^{(0)}| V |n^{(0)}\rangle$$

$$= |n^{(0)}\rangle + \lambda \sum_{k \neq n} \frac{|k^{(0)}\rangle V_{kn}}{|E_{n}^{(0)} - E_{k}^{(0)}|}$$

$$+ \lambda^{2}(\sum_{k \neq n} \frac{|k^{(0)}\rangle \langle k^{(0)}|}{|E_{n}^{(0)} - E_{k}^{(0)}|}) V (\sum_{\ell \neq n} \frac{|\ell^{(0)}\rangle \langle \ell^{(0)}|}{|E_{n}^{(0)} - E_{\ell}^{(0)}|}) V |n^{(0)}\rangle$$

$$- (\sum_{k \neq n} \frac{|k^{(0)}\rangle \langle k^{(0)}|}{|E_{n}^{(0)} - E_{k}^{(0)}|}) V \sum_{k \ell \neq n} \frac{|\ell^{(0)}\rangle \langle \ell^{(0)}|}{|E_{n}^{(0)} - E_{\ell}^{(0)}|}) V |n^{(0)}\rangle$$

$$- (\sum_{k \neq n} \frac{|k^{(0)}\rangle \langle k^{(0)}|}{|E_{n}^{(0)} - E_{k}^{(0)}|}) V \sum_{k \ell \neq n} \frac{|\ell^{(0)}\rangle \langle \ell^{(0)}|}{|E_{n}^{(0)} - E_{\ell}^{(0)}|}) V |n^{(0)}\rangle$$

$$- \sum_{k \neq n} \sum_{\ell \neq n} \frac{|k^{(0)}\rangle \langle k^{(0)}\rangle \langle k$$

CLASSICAL MECHANICS

(837)
$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} - \frac{\partial T}{\partial q_{j}} = Q_{j} \right)$$
System in equillibrium
$$\Rightarrow \vec{F}_{i} = 0 \text{ (net force on each particle)}$$

$$\Rightarrow \sum_{i} \vec{F}_{i} \cdot \delta \vec{r}_{i} = 0$$

$$\vec{F}_{i} = \vec{F}_{i}^{(a)} + \vec{f}_{i}, \ \vec{F}_{i}^{(a)} \sim applied, \ \vec{F}_{i} \sim \text{constraint}$$

$$\Rightarrow \sum_{i} \vec{F}_{i}^{(a)} \cdot \delta \vec{r}_{i} + \sum_{i} \vec{f}_{i} \delta \vec{r}_{i} = 0$$
only consider
$$\sum_{i} \vec{f}_{i} \cdot \delta \vec{r}_{i} = 0$$
(think of a particle sliding on a table top, the normal force is perpendicular to the displacement)

$$\begin{split} &\Longrightarrow \sum_{i} \vec{k}_{i}^{\vec{k}(a)} \cdot \delta \vec{r}_{i} = 0 \\ \vec{F}_{i} &= \vec{p}_{i} \text{ (not in equillibrium)} \\ &\Longrightarrow \vec{F}_{i} - \vec{p}_{i} = 0 \text{ (new "effective" force)} \\ &\Longrightarrow \sum_{i} (\vec{F}_{i} - \vec{p}_{i}) \cdot \delta \vec{r}_{i} = 0; \ \vec{F}_{i} = \vec{F}_{i}^{(a)} + \vec{f}_{i} \\ &\Longrightarrow \sum_{i} (\vec{F}_{i}^{(a)} + \vec{f}_{i} - \vec{p}_{i}) \cdot \delta \vec{r}_{i} = 0 \\ &\Longrightarrow \sum_{i} (\vec{F}_{i}^{(a)} + \vec{f}_{i} - \vec{p}_{i}) \cdot \delta \vec{r}_{i} = 0 \\ &\Longrightarrow \sum_{i} (\vec{F}_{i}^{(a)} - \vec{p}_{i}) \cdot \delta \vec{r}_{i} = 0 \\ &\Longrightarrow \sum_{i} (\vec{F}_{i}^{(a)} - \vec{p}_{i}) \cdot \delta \vec{r}_{i} = 0 \\ &\Longrightarrow \vec{v}_{i} \equiv \frac{d\vec{r}_{i}}{dt} = \sum_{k} \frac{\partial \vec{r}_{i}}{\partial q_{k}} \dot{q}_{k} + \frac{\partial \vec{r}_{i,i}}{\partial t} \\ &\Longrightarrow \vec{v}_{i} \equiv \frac{d\vec{r}_{i}}{dt} = \sum_{k} \frac{\partial \vec{r}_{i}}{\partial q_{k}} \dot{q}_{k} + \frac{\partial \vec{r}_{i,i}}{\partial t} \\ &\Longrightarrow \vec{v}_{i} \equiv \frac{d\vec{r}_{i}}{dt} = \sum_{k} \frac{\partial \vec{r}_{i}}{\partial q_{k}} \dot{q}_{k} + \frac{\partial \vec{r}_{i,i}}{\partial t} \\ &\Longrightarrow \vec{v}_{i} \equiv \vec{r}_{i} \vec{r}_{i} \cdot \vec{r}_{i} = \sum_{i} \vec{r}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{i}} \dot{q}_{i} \\ &\Longrightarrow \vec{r}_{i} \vec{r}_{i} \cdot \vec{r}_{i} = \sum_{i} \vec{r}_{i} \vec{r}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{i}} \dot{q}_{i} \\ &\Longrightarrow \vec{r}_{i} \vec{r}_{i} \cdot \vec{r}_{i} = \sum_{i} \vec{r}_{i} \vec{r}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{i}} \dot{q}_{i} \\ &\Longrightarrow \vec{r}_{i} \vec{r}_{i} \cdot \vec{r}_{i} = \sum_{i} \vec{r}_{i} \vec{r}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{i}} \dot{q}_{i} \\ &\Longrightarrow \vec{r}_{i} \vec{r}_{i} \cdot \vec{r}_{i} = \sum_{i} \vec{r}_{i} \vec{r}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{i}} \dot{q}_{i} \\ &\Longrightarrow \vec{r}_{i} \vec{r}_{i} \cdot \vec{r}_{i} = \sum_{i} \vec{r}_{i} \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} = \vec{r}_{i} \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} = \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \cdot \vec{r}_{i} \\ &\Longrightarrow \vec{r}_{i} \cdot \vec{r}_$$

$$(838) \ \underline{L = \frac{m_1 + m_2}{2} \dot{\vec{R}}^2 + \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \dot{\vec{r}}^2 - U(\vec{r}, \dot{\vec{r}}, \dots)}{\text{assume } L = T(\vec{r}_1, \vec{r}_2) - U(\vec{r}_2 - \vec{r}_1, \dot{\vec{r}}_2 - \dot{\vec{r}}_1)} \\ \Longrightarrow 6 \text{ deg of freedom, choose generalized coordinates to be } \\ \vec{R} = \vec{R}_{cm} and \vec{r} = \vec{r}_2 - \vec{r}_1 \\ \Longrightarrow L = T(\dot{\vec{R}}, \dot{\vec{r}}) - U(\vec{r}, \dot{\vec{r}}, \dots) \\ T = \frac{1}{2} (m_1 + m_2) \dot{\vec{R}}^2 + T' \\ T' = \frac{1}{2} m_1 \dot{\vec{r}}_1^{'2} + \frac{1}{2} m_2 \dot{\vec{r}}_2^{'2}, \ \vec{r}_1' (relative to cm) \\ use \vec{r}_1 = \vec{R} + \vec{r}_1 \ \vec{r}_2 = \vec{R} + \vec{r}_2'; \ \vec{R} = \frac{1}{m_1 + m_2} (m_1 \vec{r}_1 + m_2 \vec{r}_2) \\ \text{then solve first 2 for } \vec{r}_1', \ \vec{r}_2' \\ \Longrightarrow \begin{cases} \vec{r}_1' = \frac{m_2}{m_1 + m_2} (\vec{r}_1 - \vec{r}_2) = -\frac{m_2}{m_1 + m_2} \vec{r} \\ \vec{r}_2' = \frac{m_1}{m_1 + m_2} (\vec{r}_2 - \vec{r}_1) \\ \text{plug into T' (mathematica)} \\ \Longrightarrow T' = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \dot{\vec{r}}^2 \\ \therefore L = \frac{m_1 + m_2}{2} \vec{R}^2 + \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \dot{\vec{r}}^2 - U(\vec{r}, \dot{\vec{r}}, \dots) \end{cases}$$

Note: \vec{R} is at rest or moving uniformly due to U and will not appear in EOM for \vec{r} , so drop it $\implies L = \frac{1}{2}\mu\dot{\vec{r}}^2 - U(\vec{r},\dot{\vec{r}},\dots)$

(839) $\frac{\ell = mr^2\dot{\theta} = const.}{L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r) \text{ (central force } \frac{\partial L}{\partial \theta} = \frac{dx}{Dt}\frac{\partial L}{\partial \dot{\theta}}$

 $\implies \frac{d}{dt}p_{\theta} = 0 \implies p_{\theta} = \ell = \frac{\partial L}{\partial \dot{\theta}} = mr^2\dot{\theta}$ $\therefore \ell = mr^2\dot{\theta} \text{ Note: } \ell = |\vec{r} \times \vec{p}| = rm(v\sin\theta) = mrv_{\theta} = mr^2\dot{\theta}$

(840) $\frac{m\ddot{r} - \frac{\ell^2}{mr^3} = f(r)}{\frac{\partial L}{\partial r} = \frac{d}{dt}\frac{\partial L}{\partial \dot{r}}}$ $\implies mr\dot{\theta}^2 - V'(r) = m\ddot{r}$ $m\ddot{r} - mr\dot{\theta}^2 = -V'(r) = f(r), \ f(r) \sim \text{ force along } \hat{r}$ $\frac{\text{recall: } \ell = mr^2\dot{\theta} \implies \dot{\theta} = \frac{\ell}{mr^2}, \ plugin$ $\implies m\ddot{r} - \frac{\ell^2}{mr^3} = f(r)$

 $(841) \ \frac{\frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r) = const.}{\underbrace{recall:} \ m\ddot{r} - \frac{\ell^2}{mr^3} = -\frac{\partial V}{\partial r} = f(r)}$ $\implies m\ddot{r} = -\frac{d}{dr}(V + \frac{1}{2}\frac{\ell^2}{mr^2})$

$$\implies m\dot{r}\ddot{r} = -\dot{r}\frac{d}{dr}\left(V + \frac{1}{2}\frac{\ell^2}{mr^2}\right)$$

$$\implies \frac{d}{dt}\left(\frac{1}{2}m\dot{r}^2\right) = -\frac{d}{dt}\left(V + \frac{1}{2}\frac{\ell^2}{mr^2}\right)$$

$$\implies \frac{d}{dt}\left(\frac{1}{2}m\dot{r}^2 + \frac{1}{2}\frac{\ell^2}{mr^2} + V\right) = 0$$

$$\implies \frac{1}{2}m\dot{r}^2 + \frac{1}{2}\frac{|el^2|}{mr^2} + V = \text{const.}$$
but $\frac{\ell^2}{mr^2} = \frac{m^2r^4\dot{\theta}^2}{mr^2} = mr^2\dot{\theta}^2$

$$\therefore \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r) = E = \text{const.}$$

 $\frac{\dot{r} = \sqrt{\frac{2}{m}(E - V - \frac{\ell^2}{2mr^2})}}{\frac{\text{recall:}}{2} \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r) = E}$ $\Rightarrow \frac{1}{2}m\dot{r}^2 + \frac{1}{2}\frac{\ell^2}{mr^2} + V = E$ $\Rightarrow \frac{1}{2}m\dot{r}^2 = E - V - \frac{1}{2}\frac{\ell^2}{mr^2}$ $\therefore \dot{r} = \sqrt{\frac{2}{m}(E - V - \frac{\ell^2}{2mr^2})}$ $\Rightarrow dt = \frac{dr}{\sqrt{\frac{2}{m}(E - V - \frac{\ell^2}{2mr^2})}}$ $\therefore t = \int_{r_0}^r \frac{dr}{\sqrt{\frac{2}{m}(E - V - \frac{\ell^2}{2mr^2})}}$

$$(843) \ d\theta = \frac{\ell dr}{\sqrt{mr^2 \frac{2}{m} (E - V(r) - \frac{\ell^2}{2mr^2})}}$$

$$\underline{\operatorname{recall:}} \ \ell = mr^2 \dot{\theta} \implies \ell dt = d\theta; \ dt = \frac{dr}{\sqrt{\frac{2}{m} (E - V - \frac{\ell^2}{2mr^2})}}$$

$$\therefore d\theta = \frac{\ell dr}{\sqrt{mr^2 \frac{2}{m} (E - V(r) - \frac{\ell^2}{2mr^2})}}$$

$$\therefore d\theta = \frac{\ell dr}{\sqrt{mr^2 \frac{2}{m} (E - V(r) - \frac{\ell^2}{2mr^2})}}$$

$$(844) \quad \theta = \theta_0 - \int_{u_0}^{u} \frac{du}{\sqrt{\frac{2mE}{\ell^2} - \frac{2ma}{\ell^2} u^{-n-1} - u^2}}} \text{ (potential } \sim r^{n+1})$$

$$d\theta = \frac{\ell dr}{mr^2 \sqrt{\frac{2}{m} (E - V(r) - \ell^2} 2mr^2)}}$$

$$= \frac{\ell dr}{mr^2 \sqrt{\frac{2}{m} \frac{\ell^2}{2m} (\frac{2mE}{\ell^2} - \frac{2mV}{\ell^2} - \frac{1}{r^2})}}}$$

$$= \frac{dr}{r^2 \sqrt{\frac{2mE}{\ell^2} - \frac{2mV}{\ell^2} - \frac{1}{r^2}}}}$$

$$u - \frac{1}{r}, \quad du = -\frac{1}{r^2} dr$$

$$\therefore \theta = \theta_0 - \int_{u_0}^{u} \frac{du}{\sqrt{\frac{2mE}{\ell^2} - \frac{2m}{\ell^2} V - u^2}}}$$
most important potentials: $V = ar^{n+1} (force \sim r^n)$

$$n = 0, 1, \dots$$

$$\therefore \theta = \theta_0 - \int_{u_0}^{u} \frac{du}{\sqrt{\frac{2mE}{\ell^2} - \frac{2ma}{\ell^2} u^{-n-1} - u^2}}}$$

$$(845) \frac{\frac{1}{r} = \frac{mk}{\ell^2} (1 + \sqrt{1 + \frac{2E\ell^2}{mk^2}} \cos(\theta - \theta')) (\text{gtravitational force})}{\theta(u) \text{ equation above set } n = -2, a = k}$$

$$\implies \theta = \theta' - \int \frac{du}{\sqrt{\frac{2mE}{\ell^2} - \frac{2mku}{\ell^2} - u^2}}$$

$$\frac{\text{Note: } \theta' \neq \theta_0}{\text{use } \int \frac{dx}{\sqrt{\alpha + \beta x + \gamma x^2}} = \frac{1}{\sqrt{-\gamma}} \arccos - \frac{\beta + 2\gamma x}{\sqrt{q}}$$

$$q = \beta^2 - 4\alpha\gamma$$

$$\implies \theta = \theta' - \arccos \frac{\ell^2 u}{\sqrt{1 + \frac{2E\ell^2}{mk^2}}} \text{ (solve for } u = \frac{1}{r})$$

$$\therefore \frac{1}{r} = \frac{mk}{\ell^2} (1 + \sqrt{1 + \frac{2E\ell^2}{mk^2}} \cos(\theta - \theta')) \text{ (orbit equation)}$$

Note: general equation of conic w one focus at origin

$$\frac{1}{r} = C[1 + e\cos(\theta - \theta')], \ e \sim \text{eccentricity}$$

$$\implies e = \sqrt{1 + \frac{2E\ell^2}{mk^2}}$$

$$e > 1$$
 (hyperbola) $\Longrightarrow E > 0$

$$e = 1$$
 (parabola) $\Longrightarrow E = 0$

$$e < 1(ellipse) \implies E < 0$$

$$e = 0(circle) \implies E = -\frac{mk^2}{2\ell^2}$$

 $\implies \frac{1}{r} = \frac{mk}{\ell^2} (1 + e\cos(\theta - \theta'))$

(846)
$$\frac{V' = -\frac{k}{r} + \frac{\ell^2}{2mr^2}; \ w/f' = -\frac{\partial V'}{\partial r}}{\text{recall: } m\ddot{r} - \frac{\ell^2}{mr^3} = f(r) = -\frac{\partial V}{\partial r}}$$

$$\implies m\ddot{r} = -\frac{\partial V}{\partial r} - \frac{\partial}{\partial r} \frac{\ell^2}{2mr^2} = -\frac{\partial}{\partial r} (V + \frac{\ell^2}{2mr^2})$$

$$\implies f' \equiv m\ddot{r} = -\frac{\partial}{\partial r} (V + \frac{\ell^2}{2mr^2}) \equiv -\frac{\partial}{\partial r} V'$$

$$f' = f + \frac{\ell^2}{mr^2} Let f = -\frac{k}{r^2}$$

$$\implies V' \equiv -\frac{k}{r} + \frac{\ell^2}{2mr^2}$$

$$\beta^2 = 3 + \frac{r}{f} \frac{df}{dr}|_{r=r_0}$$
 (derive)

spose we shoot a beam of particles at V repulsive, fixed particle

 $s \sim impact param$

 $\ell = mv_0s = s\sqrt{2mE}$

______ $(847) \ \ell = mv_0 s = s\sqrt{2mE}$ $\ell = |\vec{r} \times \vec{p} = rp\sin\theta = mv_0s$ $E = \frac{1}{2}mv_0^2 \text{ (at } r = \infty V(\infty) = 0)$ $\implies v_0 = \sqrt{\frac{2E}{m}}$ $\implies mv_0s = s\sqrt{2mE}$

(848)
$$\sigma(\Theta) = \frac{s}{\sin\Theta} |\frac{ds}{d\Theta}|$$

Note: Θ is the scattering angle from horizontal and is $0 < \Theta < \Theta$ $\pi\Theta$ is similar to spherical angle θ so this tells us scattering can happen in any direction

$$\frac{dN}{dt} \propto I$$

constant of proportionality is $d\sigma$ or $\sigma d\Omega$ $\sigma(\Omega)d\Omega = \frac{\text{Number of particles scattered into } d\Omega \text{ per unit time}}{\text{incident intensity}}$

Note: the beam incident intensity is the intensity (or flux) perpendicular to beam

$$d\Omega = \frac{dA}{r^2} = 2\pi \sin\Theta d\Theta$$

incoming particles in a shell corresponds to an outgoing shell / time

 $2\pi sI|ds|$ is a ring of incoming particles, s is the impact parameter $2\pi s I |ds| = I\sigma(\Omega)|d\Omega| = I2\pi \sin\Theta|d\Theta|\sigma(\Theta)$ $\implies \sigma(\Theta) = \frac{s}{\sin\Theta}|\frac{ds}{d\Theta}|$

(849)
$$\Theta(s) = \pi - 2 \int_0^{u_m} \frac{s du}{\sqrt{1 - \frac{V(u)}{E} - s^2 u^2}}$$

Note: draw a line to closest approach, the angle to incoming angle to outgoing angle are equal due to time symmetry

$$\Rightarrow 2\Psi + \Theta = \pi \Rightarrow \Theta = \pi - 2\Psi$$
recall: $\theta = \int_{r_0}^r \frac{dr}{r^2 \sqrt{\frac{2mE}{\ell^2} - \frac{2mV}{\ell^2} - \frac{1}{r^2}}} + \theta_0$

 ψ is angle between incoming direction $\theta_0 = \pi$ and r_m (distance of closest approach) thus

$$\theta_0 = \pi \implies r_0 = \infty when r = r_m \implies \theta = \pi - \Psi$$

$$\implies \pi - \Psi = -\int_{r_m}^{\infty} \frac{dr}{r^2 \sqrt{\frac{2mE}{\ell^2} - \frac{2mV}{\ell^2} - \frac{1}{r^2}}} + \pi$$

$$\implies \Psi = \int_{r_m}^{\infty} \frac{dr}{r^2 \sqrt{\frac{2mE}{\ell^2} - \frac{2mV}{\ell^2} - \frac{1}{r^2}}}$$

Note: Θ and θ are similar but Θ is fixed (angle of outgoing radius) θ describes its path.

$$\frac{\text{recall: }\Theta = \pi - 2\Psi}{\therefore \Theta(s) = \pi - 2\int_{r_m}^{\infty} \left(\frac{dr}{r^2\sqrt{\frac{2mE}{\ell^2} - \frac{2mV}{\ell^2} - \frac{1}{1}r^2}}\right)}$$

$$\frac{\text{recall: }s = \frac{\ell}{\sqrt{2mE}}$$

$$\frac{dr}{r^2\sqrt{\frac{2mE}{\ell^2} - \frac{2mVE}{\ell^2E} - \frac{1}{r^2}}} = \frac{dr}{\frac{r^2}{r^2}\sqrt{\frac{r^2}{s^2} - \frac{r^2}{Es^2} - 1}}$$

$$= \frac{sdr}{r\sqrt{r^2 - \frac{Vr^2}{E} - s^2}} = \frac{sdr}{rr^2(1 - \frac{V(r)}{E}) - s^2}$$

$$r \to \frac{1}{u}$$

$$\therefore \Theta(s) = \pi - 2\int_0^{u_m} \frac{sdu}{\sqrt{1 - \frac{V(u)}{E} - s^2u^2}}$$

(850) $\frac{\epsilon = \sqrt{1 + (\frac{2Es}{ZZ'e^2})^2}}{\text{use } f = \frac{ZZ'e^2}{r^2} \text{ (repulsive)}}$ $\implies k = -ZZ'e^2$ $\underline{\text{recall: } \epsilon = \sqrt{1 + \frac{2E\ell^2}{mk^2}}; \ \ell = \sqrt{2mEs}$ $\implies \epsilon = \sqrt{1 + \frac{2E\ell^2}{m(ZZ'e^2)^2}} = \sqrt{1 + \frac{2E(2mE)r^2}{m(ZZ'e^2)^2}}$ $= \sqrt{1 + (\frac{2Es}{ZZ'e^2})^2}$

$$(851) \frac{\frac{1}{r} = \frac{mZZ'e^2}{\ell^2} (\epsilon \cos \theta - 1)}{\frac{\text{recall: } \frac{1}{r} = \frac{mk}{\ell^2} (1 + \epsilon \cos(\theta - \theta'))}{\theta' = \pi} \implies \theta = 0 \text{ is pariapsis (this is because } k < 0 \text{ here})$$

$$k = -ZZ'e^2$$

$$\implies \frac{1}{r} = \frac{mZZ'e^2}{\ell^2} (\epsilon \cos \theta - 1)$$

(852) $\cos \Phi = \frac{1}{\epsilon}$

when
$$r \to \infty$$
, $\theta = \Psi$ (see my diagram in book)
 $\Rightarrow \epsilon \cos \theta - 1 = 0$
 $\Rightarrow \cos \Phi = \frac{1}{\epsilon}$
Math Phys

turning differential operator into matrix example Suppose we have the differential operator

 $\hat{p} = \frac{d}{dx} + a$ acting on the space spanned by (1, x) then the matrix is obtained by acting on the basis, extracting the matrix then transposing the result, we transpose it because it works (lol) $(\frac{d}{dx} + a)1 = a \cdot 1 + 0 \cdot x$; $(\frac{d}{dx} + a)x = 1 + a \cdot x$

$$(\frac{dx}{dx} + a)\mathbf{1} = a \cdot \mathbf{1} + 0 \cdot x, (\frac{dx}{dx} + a)$$

$$\implies M = \begin{pmatrix} a & 0 \\ 1 & a \end{pmatrix}$$

$$\text{now } M \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \hat{p} \cdot 1 \neq a$$

$$\text{but } M^{\dagger} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = a$$

$$\text{so } \hat{p} \to M^{\dagger}$$

greens functions (ODE's)

initial value

$$L_t y(t) = f(t) solve L_t g[t; t_p] = \delta(t - t_p)$$

$$\implies y(t) = \int_{-\infty}^t g[t; t_p] f(t_p) dt_p$$

(853) Example

$$m''(t) = -kx(t) + f(t)$$

$$x(0) = 0, \ x'(0) = 0, \ f(t) = 0, \ t < 0$$

$$mg''(t, t_p) + kg(t, t_p) = \delta(t - t_p)$$

$$ift \neq t_p$$

$$\implies mg''(t, t_p) + kg(t, t_p) = 0$$

$$\implies g(t, t_p) = A\cos(\sqrt{\frac{k}{m}}t) + B\sin(\sqrt{\frac{k}{m}}t)t > t_p$$
Note: t is the time the pulse is delivered so for t

Note: t_p is the time the pulse is delivered so for $t < t_p$ $g(t, t_p) = 0t < t_p$

to balance $\delta g''$ must be delta function g' is step and g is cts (kink), at $t=t_p$

$$\implies g(t, t_p) = \begin{cases} 0t < t_p \\ A\cos\sqrt{\frac{k}{\parallel}}mt + B\sin\sqrt{\frac{k}{m}}t \end{cases}$$

integrate $L_t g = \delta(t - t_p)$ to get discontinuity condition t_p and another condition $g(t_p - \epsilon =; t_p) = g(t_p + \epsilon; t_p) as \epsilon \to 0$ which allows us to solve for A, B

$$\implies y(t) = \int_{-\infty}^{t} g(t; t_p) f(t_p) dt_p$$

greens function, boundary cond
$$L_x y(x) = q(x); \ y(0) = 0, \ y(L) = 0$$

$$L_x g(x; x_p) = \delta(x - x_p); \ g(0; x_p) = 0, \ g(L; x_p) = 0$$

$$y(x) = \int_0^L g(x; x_p) q(x_p) dx_p$$
easy to show this satisfies boundary condition
and $L_x y(x) = \int_0^L \delta(x - x_p) q(x_p) dx_p = q(x)$

$$\frac{d^2T}{dx^2} = -\frac{1(x)}{\kappa}T(0) = 0, \ T(L) = 0$$

$$-\kappa \frac{d^2}{dex} g(x; x_p) = \delta(x - x_p), \ g(0; x_p) = 0, \ g(L; x_p) = 0$$
solve for $x < x_p$:
$$\Rightarrow g''(x; x_p) = 0; \ g(0; x_p) = 0$$

$$\Rightarrow g(x; x_p) = cx$$
solve for $x > x_p$:
$$g''(x; x_p)g(L; x_p) = 0$$

$$ax + b = g(x; x_p)$$

$$g(L; x_p) = aL + b = 0 \Rightarrow b = -aL$$

$$\Rightarrow g(x; x_p) = ax - aL = a(x - L), \ x > x_p$$

$$g''(x; x_p)mustbe\delta function \Rightarrow g'stepgctsatx_p$$

$$\Rightarrow -\kappa \int_{x_p - \epsilon}^{x_p + \epsilon} g''(x; x_p)dx = 1$$

$$\Rightarrow g'(x_p + \epsilon; x_p) - g'(x_p - \epsilon; x_p) = -\frac{1}{\kappa}$$

$$\Rightarrow a - c = -\frac{1}{\kappa}$$

$$g(x_p + \epsilon; x_p) = g(x_p - \epsilon; x_p)$$

$$\Rightarrow a(x_p - L) = cx_p, solve for a, c$$

$$\Rightarrow a = -\frac{x_p}{L\kappa}, \ c = \frac{-L + x_p}{L\kappa}$$

$$g(x; x_p) = \begin{cases} \frac{L - x_p}{L\kappa} x, \ x < x_p \\ -\frac{x_p}{L\kappa} (x - L), \ x > x_p \end{cases}$$

(855) greens functions using eigenfunctions

$$L_x \text{ hermitian } w / \langle y_2, L_x y_1 \rangle = \langle L_x y_2, y_1 \rangle$$

$$\implies L_x \text{ has orthonormal eigenfunctions } e_i(x) \text{ s.t.}$$

$$L_x e_i(x) = \lambda_i e_i(x) w / e_i(0) = 0, \ e_i(L) = 0$$

$$\langle e_i(x), e_j(x) \rangle = \delta_{ij}, \ e_i(x) \text{ complete}$$

$$\implies y(x) = \sum_i a_i e_i(x) = a_i e_i(x)$$

$$\stackrel{\text{recall:}}{=} L_x y(x) = q(x)$$

$$\implies a_i \lambda_i \langle e_i, e_j \rangle = \langle q(x), e_j(x) \rangle$$

$$\implies a_j \lambda_j = \langle q(x), e_j(x) \rangle$$

$$\implies a_j = \frac{\langle q(x), e_j(x) \rangle}{\lambda_j}$$

$$\implies y(x) = \frac{\langle q(x), e_i(x) \rangle}{\lambda_i} e_i(x)$$

$$q(x) = \delta(x - x_p)$$

$$\implies g(x; x_p) = \frac{\langle \delta(x - x_p), e_i(x) \rangle}{\lambda_i} e_i(x) = \frac{e_i(x_p)e_i(x)}{\lambda_i}$$

(856) Example
$$\frac{d^2T}{dx^2} = -\frac{q(x)}{\kappa} \implies -\kappa e''(x) = \lambda e(x), \ e(0) = 0 \implies e(x) = C \sin(\sqrt{\frac{\lambda}{\kappa}}x)$$

$$e(L) = 0 \implies \lambda = n\pi$$

$$e_n(x) \text{ are not normalized i.e. } \langle e_n, e_n \rangle \neq \delta_{ij}$$
after normalizing obtain
$$e_n(x) = \sqrt{\frac{2}{L}}\sin(\frac{n\pi x}{L})$$

$$\implies g(x; x_p) = \frac{e_n(x_p)e_n(x)}{\lambda_n} = \sum_n \frac{2}{L} \frac{\sin \frac{n\pi x_p}{L} \sin \frac{n\pi x}{L}}{n\pi}$$
this is essentially a fourier series of the previous method and

this is essentially a fourier series of the previous method and approaches the greens function as $n \to \infty$

 $(857) \quad g(z,w) = \sum_{n} \frac{e_{n}(w,z)e_{n}^{*}(w_{s},z_{s})}{\lambda_{n}}$ $Lg(w,z) = \delta(w-w_{s})\delta(z-z_{s})$ find complete set of eigenfunctions $Le_{n}(w,z) = \lambda_{n}e_{n}(w,z) \implies g(z,w) = \sum_{n} g_{n}e_{n}(w,z)$ $\implies Lg(w,z) = \sum_{n} g_{n}Le_{n}(w,z) = \sum_{n} g_{n}\lambda_{n}e_{n}(w,z)$ $= \delta(w-w_{s})\delta(z-z_{s})$ $\implies \sum_{n} g_{n}\lambda_{n}\langle e_{n}, e_{m}\rangle = \langle \delta(w-w_{s})\delta(z-z_{s}), e_{m}\rangle$ $= e_{m}^{*}(w_{s},z_{s}) = g_{m}\lambda_{m}$ $\implies g_{m}(w_{s},z_{s}) = \frac{e_{m}^{*}(w_{s},z_{s})}{\lambda_{m}}$ $\implies g(z,w) = \sum_{n} \frac{e_{n}(w,z)e_{n}^{*}(w_{s},z_{s})}{\lambda_{n}}$

separable case $L = L_w + L_z$, $L_w w_n(w) = \lambda_n W_n(w)$, $\langle W_n, W_m \rangle = \delta_{nm}$ $L_z Z_n(z) = \mu_n Z_n(z)$; $\langle Z_n, Z_m \rangle = \delta_{nm}$ $\implies L(W_n(w) Z_n(z)) = (L_w + L_z)(W_n(w) Z_n(z))$ $= \lambda_n W_n(w) Z_n(z) + \mu_n W_n(w) Z_n(z) = (\lambda_n + \mu_n) W_n(w) Z_n(z)$ choose w_n or Z_n and expand g in it $\implies g(w, z) = \sum_n g_n(z) W_n(w)$ $\implies (L_w + L_z) \sum_n g_n(z) W_n(w) = \sum_n (\lambda_n g_n W_n + W_n L_z g_n)$ $= \delta(w - w_s) \delta(z - z_s)$ $\implies \sum_n [\lambda_n g_n \langle W_n, W_m \rangle + \langle W_n, W_m \rangle L_z g_n] = \langle \delta(w - w_s), W_m \rangle \delta(z - w_s)$

ELECTROWEAK THEORY (REDO)

$$L_i = \frac{1-\gamma_5}{2} \begin{pmatrix} \psi_{\nu_i} \\ \psi_i \end{pmatrix}; \ R_i = \frac{1+\gamma_5}{2} \psi_i, \ i = e, \mu, \tau$$

$$(858) \frac{\gamma^{\alpha}(1-\gamma_{5}) = 2\frac{1+\gamma_{5}}{2}\gamma^{\alpha}\frac{1-\gamma_{5}}{2}}{\gamma^{\alpha}(1-\gamma_{5}) = \frac{1}{2}\gamma_{5}\gamma^{\alpha}(1-\gamma_{5}) - \frac{1}{2}\gamma_{5}\gamma^{\alpha}(1-\gamma_{5}) + \frac{1}{2}\gamma^{\alpha}(1-\gamma_{5}) + \frac{1}{2}\gamma^{\alpha}(1-\gamma_{5})} + \frac{1}{2}\gamma^{\alpha}(1-\gamma_{5})$$

$$= \frac{1}{2}(1+\gamma_{5})\gamma^{\alpha}(1-\gamma_{5}) + \frac{1}{2}(1-\gamma_{5})\gamma^{\alpha}(1-\gamma_{5})$$
but $(1-\gamma_{5})\gamma^{\alpha}(1-\gamma_{5}) = (1-\gamma_{5})(\gamma^{\alpha}+\gamma_{5}\gamma^{\alpha})$

$$= \gamma^{\alpha} + \gamma_{5}\gamma^{\alpha} - \gamma_{6}\gamma^{\alpha} - \gamma_{5}^{2}\gamma^{\alpha} = \gamma^{\alpha} - \gamma^{\alpha} = 0$$
here $\gamma_{5}\gamma^{\alpha} = -\gamma^{\alpha}\gamma_{5}$; $\gamma_{5}^{2} = 1$ was used
$$\therefore \gamma^{\alpha}(1-\gamma_{5}) = 2(\frac{1+\gamma_{5}}{2})\gamma^{\alpha}(\frac{1-\gamma_{5}}{2})$$

$$(859) \ \frac{J_{-}^{(e)\alpha} = 2\bar{L}_{e}\gamma^{\alpha}\hat{T}_{-}L_{e}}{J_{-}^{(e)\alpha} = \bar{\psi}_{e}\gamma^{\alpha}(1 - \gamma_{5})\psi_{\nu_{e}} = 2\bar{\psi}_{e}\frac{1 + \gamma_{5}}{2}\gamma^{\alpha}\frac{1 - \gamma_{5}}{2}\psi_{\nu_{e}}}$$

$$\underline{Note:} \ (\bar{\psi}_{e}\ \bar{\psi}_{\nu_{e}} = (\bar{\psi}_{\nu_{e}}\bar{\psi}_{e})\begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix}\begin{pmatrix} \psi_{\nu_{e}}\\ \psi_{e} \end{pmatrix}$$

$$\Longrightarrow J_{-}^{(e)\alpha} = 2(\bar{\psi}_{\nu_{e}}\ \bar{\psi}_{e})\frac{1 + \gamma_{5}}{2}\gamma^{\alpha}\begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix}\frac{1 - \gamma_{5}}{2}\begin{pmatrix} \psi_{\nu_{e}}\\ \psi_{e} \end{pmatrix}$$

$$= 2\bar{L}_{e}\gamma^{\alpha}\begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix}L_{e} = 2\bar{L}_{e}\gamma^{\alpha}\hat{T}_{-}L_{e}$$

$$\underbrace{\text{Note:}}_{} (\hat{P}u) = (\hat{P}u)^{\dagger} \gamma_{0}
\Rightarrow \bar{L}_{e} = (\frac{1-\gamma_{5}}{2} \begin{pmatrix} \psi_{\nu_{e}} \\ \psi_{e} \end{pmatrix}) = (\frac{1-\gamma_{5}}{2} \begin{pmatrix} \psi_{\nu_{e}} \\ \psi_{e} \end{pmatrix})^{\dagger} \gamma_{0}
= (\psi_{\nu_{e}} \psi_{e}) (\frac{1-\gamma_{5}}{2}) \gamma_{0} = (\psi_{\nu_{e}} ll \psi_{e}) \gamma_{0} \frac{1+\gamma_{5}}{2} = (\bar{\psi}_{\nu_{e}} \bar{\psi}_{e}) \frac{1+\gamma_{5}}{2}
\hat{T}_{\pm} = \hat{T}_{1} \pm i \hat{T}_{2}; \quad \hat{\vec{T}} = (\hat{T}_{1}, \hat{T}_{2}, \hat{T}_{3})
\hat{T}_{i} = \frac{1}{2} \sigma_{i}; \quad \sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(860)
$$\frac{L_{int}^{(e)} = g(\bar{L}_e \gamma^\alpha \hat{T} L_e) \cdot \bar{A}_\alpha - g'[\frac{1}{2}(\bar{L}_e \gamma^\alpha L_e) + (\bar{R}_e \gamma^\alpha R_e)] B_\alpha}{\text{from } J_-^{(e)\alpha}, \ J_+^{(e)\alpha}, \ J_{EM}^{(e)\alpha} \text{ we see there are 2 types of current involved, i.e. isptriplets } \bar{L}_e \gamma^\alpha \hat{T}_i L_e \text{ and isosinglet } \frac{1}{2}(\bar{L}_e \gamma^\alpha L_e) + (\bar{R}_e \gamma^\alpha R_e) \text{Analogous to EM where we take } J_{EM}^\alpha A_\alpha = \mathcal{L}_{int} \text{ we can take a linear combination of couplets } gg_i(\bar{L}_e \gamma^\alpha \hat{T}_i L_e) \cdot A_{i,\alpha} - g'[\frac{1}{2}(\bar{L}_e \gamma^\alpha L_e) + (\bar{R}_e \gamma^\alpha R_e)] B_\alpha \text{ Let } g_i A_i \to A_i \text{ (can we do this?)}$$

```
(dont understand why we dont just g\vec{A}_{\mu} \to \vec{A}_{\mu})
                \therefore L_{int}^{(e)} = g(\bar{L}_e \gamma^\alpha \hat{\vec{T}} L_e) \cdot \vec{A}_\alpha - g'[\frac{1}{2}(\bar{L}_e \gamma^\alpha L_e) + (\bar{R}_e \gamma^\alpha R_e)]B_\alpha
(861) \underline{A_{\mu} = \cos \theta B_{\mu} + \sin \theta A_{\mu}^{3}} (A_{\mu} \sim \text{photon field (dont know how to}
                 derive/justify?)
                A_{\mu} is not equal to \vec{A}_{|mu}, B_{\mu} since it couples to J_{EM}^{(e)\alpha}
                recall: J_{EM}^{(e)\alpha}A_{\alpha} = (g\bar{L}_e gamma^{\alpha}\hat{T}_3L_eA_{\alpha}^3 - g'[\frac{1}{2}(\bar{L}_e\gamma^{\alpha}L_e) + (\bar{R}_e\gamma^{\alpha}R_e)]B_{\alpha}
                 (don't know how to transform one into the other, it gets into
                 Weinberg mixing angles but I don't know how to derive it)
                      photon field (A_{\mu}) couples to \bar{\psi}\gamma^{\alpha}\psi
                \implies A_{\mu} = \cos B_{\mu} + \sin \theta A_{\mu}^{3},
                Z_{\mu} = -\sin\theta B_{\mu} + \cos\theta A_{\mu}^{3}(Z_{\mu}isorthotoA_{\mu})
i.e. Z_{\mu}A^{\mu} = 0 (don't understand where A_{|mu}, Z_{\mu} come from)
                Also W_{\mu}^{(\pm)} = \frac{1}{\sqrt{2}} (A_{\mu}^1 \mp i A_{\mu}^2)
(862) \ \bar{L}_{int}^{(e)} \equiv \frac{g}{2\sqrt{2}} (J_{-}^{(e)\alpha} W_{\alpha}^{(-)} + J_{+}^{(e)\alpha} W_{\alpha}^{(+)} + J_{0}^{(e)\alpha} Z_{\alpha}) - e J_{EM}^{(e)\alpha} A_{\alpha}
                \underline{\underline{\text{recall: }} L_{int}^{(e)} = g(\bar{L}_e \gamma^{\alpha} \hat{\vec{T}} L_e) \cdot \vec{A}_{\alpha} - g'[\frac{1}{2}(\bar{L}_e \gamma^{\alpha} L_e) + (\bar{R}_e \gamma^{\alpha} R_e)] B_{\alpha}}
               insert \vec{A}_{\alpha}, B_{\alpha} and Note: W_{mu}^{(\pm)} \implies A_{\mu}^{1} = \frac{1}{\sqrt{2}}(W_{\mu}^{(+)} + W_{\mu}^{(-)}); A_{\mu}^{2} = \frac{i}{\sqrt{2}}(W_{\mu}^{(+)} - W_{\mu}^{(-)})
                W_{u}^{(-)}
                \Longrightarrow L_{int}^{(e)} = \frac{g}{\sqrt{2}} \bar{L}_e \gamma^\alpha (\hat{T}_- W_\alpha^{(-)} + \hat{T}_+ W_\alpha^{(+)}) L_e + [g \cos \theta \bar{L}_e \gamma^\alpha \hat{T}_3 L_e +
                q''\sin\theta(\frac{1}{2}\bar{L}_e\gamma^{\alpha}L_e+\bar{R}_e\gamma^{\alpha}R_e)]Z_{\alpha}+[-q'\cos\theta(\frac{1}{2}\bar{L}_e\gamma^{\alpha}L_e+\bar{R}_e\gamma^{\alpha}R_e)+
                g \sin \theta \bar{L}_e \gamma^{\alpha} \hat{T}_3 L_e ] A_{\alpha} (mathematica)
               \frac{\text{recall:}}{J_{EM}^{(e)\alpha}} J_{EM}^{(e)\alpha} = \bar{L}_e \gamma^{\alpha} (\frac{1}{2} - \hat{T}_3) L_e + \bar{R}_e \gamma^{\alpha} R_e;
J_{-}^{(e)\alpha} = 2 \bar{L}_e \gamma^{\alpha} \hat{T}_{-} L_e; J_{+}^{(e)\alpha} = 2 \bar{L}_e \gamma^{\alpha} \hat{T}_{+} L_e
\implies L_{int}^{(e)} = \frac{g}{2\sqrt{2}} (J_{-}^{(e)\alpha} W_{\alpha}^{(-)} + J_{+}^{(e)\alpha} W_{\alpha}^{(+)} + J_{0}^{(e)\alpha} Z_{\alpha} - e J_{EM}^{(e)\alpha} A_{\alpha}
                this defines
                J_0^{(e)\alpha} = 2\sqrt{2}[\cos\theta \bar{L}_e \gamma^\alpha \hat{T}_3 L_e + \frac{g'}{g}\sin\theta (\frac{1}{2}\bar{L}_e \gamma^\alpha L_e + \bar{R}_e \gamma^\alpha R_e)]
(863) \frac{L = i\bar{\Psi}\gamma^{\mu}(\partial_{\mu} - ig\vec{A}_{\mu} \cdot \hat{\vec{T}})\Psi = i\bar{\Psi}\gamma^{\mu}\hat{D}_{\mu}\Psi}{\text{start with ansats } i\bar{\Psi}\gamma^{\mu}\partial_{\nu}\Psi}
                forcing local symmetry, i.e. \Psi \to U \Psi = e^{i\theta} e^{ig\hat{T}\cdot\vec{\lambda}}
                e^{i\theta} is automatically satisfied
                \implies \Psi \rightarrow e^{ig\hat{T}\cdot\vec{\lambda}}\Psi; \ e^{i\theta(x)} symmetry automatifically obeyed (dont
```

understand)

$$\partial_{\mu} \rightarrow \partial_{\mu} - ig\vec{A}_{\mu} \cdot \hat{\vec{T}}$$
 (analogous to QED)

$$\therefore i\bar{\Psi}\gamma^{\mu}(\partial_{\mu} - i\vec{A}_{\mu} \cdot \hat{\vec{T}})\Psi = L$$

Note: This implies $L = i\bar{\Psi}\gamma^{\mu}D_{\mu}\Psi = L' = i\bar{\Psi}'\gamma^{\mu}(\partial_{\mu} - i\vec{A}'_{\mu}\cdot\hat{\vec{T}})\Psi'$

Next lets figure out how \vec{A}_{μ} transforms to make this true

 $(864) \underline{\vec{A}'_{\mu} \cdot \hat{T}} = \hat{U} \vec{A}_{\mu} \cdot \hat{T} U^{-1} + \frac{i}{g} \hat{U} (\partial_{\mu} \hat{U}^{-1})$ $L = i \bar{\Psi} \gamma^{\mu} \partial_{\mu} \Psi + g \bar{\Psi} \gamma^{\mu} \vec{A}_{\mu} \cdot \hat{T} \Psi$ $= i \bar{\Psi} U^{-1} U \gamma^{\mu} \partial_{\mu} U^{-1} U \Psi + g \bar{\Psi} U^{-1} U \gamma^{\mu} \vec{A}_{\mu} \cdot \hat{T} U^{-1} U \Psi$ $= i \bar{\Psi}' U \gamma^{\mu} \partial_{\mu} (U^{-1} \Psi') + g \bar{\Psi}' U \gamma^{\mu} \vec{A}_{\mu} \cdot \hat{T} U^{-1} \Psi'$ $= i \bar{\Psi}' U \gamma^{\mu} U^{-1} \partial_{\mu} \Psi' + i \bar{\Psi}' U \gamma^{\mu} (\partial_{\mu} U^{-2}) \Psi + g \bar{\Psi}' U \gamma^{\mu} \vec{A}_{\mu} \cdot \hat{T} U^{-1} \Psi'$ $= i \bar{\Psi}' \gamma^{\mu} \partial_{\mu} \Psi' + g \bar{\Psi}' \gamma^{\mu} U \vec{A}_{\mu} \cdot \hat{T} U^{-1} + \frac{i}{g} U (\partial_{\mu} U^{-1})] \Psi'$ $= L' = i \bar{\Psi}' \gamma^{\mu} \partial_{\mu} \Psi' + g \bar{\Psi} \gamma^{\mu} \vec{A}'_{\mu} \cdot \hat{T} \Psi'$ $\therefore \vec{A}'_{\mu} \cdot \hat{T} = U \vec{A}_{\mu} \cdot \hat{T} U^{-1} + \frac{i}{g} U \partial_{\mu} (U^{-1})$

 $(865) \quad \frac{\vec{F}_{\mu\nu} = \partial_{\mu}\vec{A}_{\nu} - \partial_{\nu}\vec{A}_{\mu} + \frac{2q}{\hbar c}(\vec{A}_{\nu} \times \vec{A}_{\mu})}{\vec{P}_{\mu\nu}} (QCD)$ $\underline{recall:} \quad [D_{\mu}, D_{\nu}] = \frac{iq}{\hbar c} \vec{\tau} \cdot \vec{F}_{\mu\nu}$ $D_{\mu} = \partial_{\mu} + i \frac{q}{\hbar c} \vec{\tau} \cdot \vec{A}_{\mu} = \partial_{\mu} + i q \vec{\tau} \cdot \vec{A}_{\mu}$ $[D_{\mu}, D_{\nu}] = [\partial_{\mu} + i q \vec{\tau} \cdot \vec{A}_{\mu}, \partial_{\nu} + i q \vec{\tau} \cdot \vec{A}_{\nu}]$ $= [\partial_{\mu}, \partial_{\nu}] + [\partial_{\mu}, i q \vec{\tau} \cdot \vec{A}_{\nu}] + [i q \vec{\tau} \cdot \vec{A}_{\mu}, \partial_{\nu}] + [i q \vec{\tau} \cdot \vec{A}_{\mu}, i q \vec{\tau} \cdot \vec{A}_{\nu}]$ $= 0 + i \vec{\tau} \cdot [\partial_{\mu}, \vec{A}_{\nu}] + i q \vec{\tau} \cdot [\vec{A}_{\mu}, \partial_{\nu}] - q^{2}[\tau_{i}, \tau_{j}] A_{\mu}^{i} A_{\nu}^{j}$ $= i q \vec{\tau} \cdot (\partial_{\mu} \vec{A}_{\nu} - \partial_{\nu} \vec{A}_{\mu}) - q^{2}[\tau_{i}, \tau_{j}] A_{\mu}^{i} A_{\nu}^{j}$ $= i q \vec{\tau} \cdot (\partial_{\mu} \vec{A}_{\nu} - \partial_{\nu} \vec{A}_{\mu}) - q^{2}[\tau_{i}, \tau_{j}] A_{\mu}^{i} A_{\nu}^{j}$ $= 2i \vec{\tau} \cdot (\vec{A}_{\mu} \times \vec{A}_{\nu})$ $\therefore [D_{\mu}, D_{\nu}] = \frac{iq}{\hbar c} \vec{\tau} \cdot (\partial_{\mu} \vec{A}_{\nu} - \partial_{\nu} \vec{A}_{\mu} - \frac{2q}{\hbar c} \vec{A}_{\mu} \times \vec{A}_{\nu})$ $\therefore [D_{\mu}, D_{\nu}] = \frac{iq}{\hbar c} \vec{\tau} \cdot (\partial_{\mu} \vec{A}_{\nu} - \partial_{\nu} \vec{A}_{\mu} - \frac{2q}{\hbar c} \vec{A}_{\mu} \times \vec{A}_{\nu})$ $\therefore \vec{F}_{\mu\nu} = \partial_{\mu} \vec{A}_{\nu} - \partial_{\nu} \vec{A}_{\mu} - \frac{2q}{\hbar c} \vec{A}_{\mu} \times \vec{A}_{|nu}$ factor of $\frac{1}{\hbar c}$ comes from q^{2} term

QFT

(866)
$$\frac{\hat{H} = \sum_{k=1}^{N} \hbar \omega_{\vec{k}} (\hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}} + \frac{1}{2})}{\text{recall: } \hat{H} = \sum_{j} \frac{\hat{p}_{j}^{2}}{2m} + \frac{1}{2} K (\hat{x}_{j+1} - \hat{x}_{j})^{2}}$$

$$\begin{array}{l} \operatorname{recall:} \psi(x) = \int_{-\infty}^{\infty} e^{ikx} \phi(k) dk \to \sum e^{ikx} \tilde{\psi} \\ \text{on a lattice } \psi \to x_j \\ \Longrightarrow \begin{cases} x_j - = \frac{1}{\sqrt{N}} \sum_k \tilde{x}_k e^{ikja} \\ p_j = \frac{1}{\sqrt{N}} \sum_k \tilde{p}_k e^{ikja} \end{cases} \\ \left(\operatorname{could understand this part better and i dont understand } \frac{1}{\sqrt{N}} \Longrightarrow \begin{cases} \tilde{x}_k = \frac{1}{\sqrt{N}} \sum_j x_j e^{-ikja} \\ \tilde{p}_k = \frac{1}{\sqrt{N}} \sum_j p_j e^{-ikja} \end{cases} \\ \tilde{p}_k = \frac{1}{\sqrt{N}} \sum_j p_j e^{-ikja} \end{cases} \\ \operatorname{force periodic boundary condition } e^{ikja} = e^{ik(j+N)a} \Longrightarrow k = \frac{2\pi m}{N} \\ \frac{2\pi m}{N} \\ \frac{N - 2}{N} \le \frac{N}{2} \\ \operatorname{Note:} \sum_j e^{ikja} = N \delta_{k0} \\ \Longrightarrow \left[x_j, p_{j'} \right] = i\hbar \delta_{jj'} \\ \left[\tilde{x}_k, \tilde{p}_k \right] = i\hbar \delta_{k,-k'} \text{ (verify)} \\ \sum_j p_j T^2 = \sum_k \tilde{p}_k \tilde{p}_{-k} \text{ (verify)} \\ \sum_j (x_{j+1} - x_j)^2 = \sum_k \tilde{x}_k \tilde{x}_{-k} (4 \sin \frac{ka^2}{2}) \text{ (verify)} \\ \text{and so} \\ \hat{H} = \sum_j \frac{1}{2m} \tilde{p}_k \tilde{p}_{-k} + \frac{1}{2} k \tilde{x}_k \tilde{x}_{-k} (4 \sin^2 \frac{ka}{2}) \\ k4 \sin^2 \frac{ka}{2} = m\omega^2 \\ \Longrightarrow \omega = \sqrt{\frac{4k \sin^2 \frac{ka}{2}}{m}} \\ \Longrightarrow \hat{H} = \sum_k \frac{1}{2m} (\tilde{p}_k \tilde{p}_{-k} + \frac{1}{2} m \omega_k^2 \tilde{x}_k \tilde{x}_{-k}) \\ \text{ (we require } p_k^1 = p_{-k} \hat{x}_k^1 = \hat{x}_{-k} \text{ (since } x_j p_j \text{ are hermiatian?)} \\ \operatorname{recall expressions for } a, \ a^t \\ \operatorname{invert them } \operatorname{and } \operatorname{plug in } \operatorname{for } x, p \\ \Longrightarrow \hat{H} = \sum_{k=1}^N \hbar \omega_k (a_k^1 a_k + \frac{1}{2}) \\ \Longrightarrow H = \int d^3 p E_p a_p^1 a, \text{ pretty sure } \frac{\hbar \omega}{2} \text{ term gets subtracted off because it diverges when we go to the oscillator picture} \\ \underbrace{\operatorname{Note:}} a_p = \frac{1}{2} \left(\sqrt{2\omega_p} \tilde{\phi}(\vec{p}) + i \sqrt{\frac{2}{\omega_p}} \tilde{\pi}(\vec{p}) \right) \\ a_p^1 = \frac{1}{2} \left(\sqrt{2\omega_p} \tilde{\phi}(-\vec{p}) - i \sqrt{\frac{2}{\omega_p}} \tilde{\pi}(-\vec{p}) \right) \\ \phi(\vec{x}) = \int \frac{d^3 p}{(2\pi)^3} \sqrt{\frac{\omega_p}{2}} e^{i\vec{p}\cdot\vec{x}} (a_{\vec{p}} + a_{-\vec{p}}^1) \text{ (dont understand how to get here, should ask for help)} \\ \pi(\vec{x}) = -i \int \frac{d^3 p}{(2\pi)^3} \sqrt{\frac{\omega_p}{2}} e^{i\vec{p}\cdot\vec{x}} (a_{\vec{p}} - a_{-\vec{p}}^1) \\ \operatorname{derive } L = \int d^3 x |_2^1 p b \text{ bla ba see pg 56 in amateur} \end{cases}$$

Schrodinger
$$\rightarrow$$
 Interaction

Operator $O \rightarrow O_t^I = e^{iH_0t}Oe^{-iH_0t}$ (interaction part gets absorbed into $|\psi\rangle$

state
$$|\psi_t\rangle = e^{-iHt}|\psi\rangle \rightarrow |\psi_t^I\rangle = e^{iH_0t}e^{-iHt}|\psi\rangle$$

Note: $e^{iH_0t-iHt} \Longrightarrow H_0 - H = H_{ont}$

$$t = 0 \rightarrow t'$$

$$\implies |\psi_{t'}^I\rangle = e^{iH_0t}e^{-iHt'}|\psi|$$

$$\implies |\psi_{t'}^I\rangle = e^{iH_0t}e^{-iHt'}|\psi\rangle$$

$$\implies \psi_{t'}^I\rangle = e^{iH_0t'}e^{-iH(t'-t)}e^{-iH_0t}(e^{iH_0t}e^{-iHt})|\psi\rangle$$

$$=U(t',t)(|\psi_t^I\rangle)$$

Let
$$\Delta = \frac{t'-t}{2}$$

$$U(t',t) = \stackrel{?}{U}(t',t'-\Delta)U(t-\Delta,t'-2\Delta)\cdots U(t+\Delta,t)$$

$$\Longrightarrow U(t+\Delta,t) = e^{iH_0(t+\Delta)}e^{-iH\Delta}e^{-iH_0t} = e^{iH_0t}e^{-H_{int}\Delta}e^{-iH_0t}$$

$$\Longrightarrow U(t+\Delta,t) = e^{iH_0(t+\Delta)}e^{-iH\Delta}e^{-iH_0t} = e^{iH_0t}e^{-H_{int}\Delta}e^{-iH_0t}$$

$$= e^{-iH_{int}(t)\Delta} \text{ (time evolved)}$$

Note: $e^A e^B \neq e^{A+B}$ you must use Baker - campbell hausdorff formula

(867) $\frac{U(t',t) = T \exp(-i \int_t^{t'} d\tau H_{int}^I(\tau)), \ n \to \infty}{U(t+\Delta,t) = e^{-iH_{int}^I(t)\Delta} \implies U(t',t'-\Delta)} = e^{-iH_{int}^I(t'-\Delta)\Delta}$ $\implies U(t',t) = e^{-iH'_{int}(t-\Delta)\Delta} \cdot e^{-iH'_{int}(t'-2\Delta)\Delta} \cdot \cdot \cdot e^{-iH'_{int}(t)\Delta}$ $= Te^{-iH_{int}^{I}(t'-\Delta)\Delta}e^{-iH_{int}^{I}(t'-2\Delta)\Delta} \cdots e^{-iH_{int}^{I}\Delta}$ $= Te^{-iH_{int}^{I}(t'-\Delta)\Delta-iH_{int}^{I}(t'-2\Delta)\Delta+\cdots-iH_{int}^{I}(t)\Delta}$ $= T \exp(-i \int_{t}^{t'} d\tau H_{int}^{I}(\tau)) n \to \infty$

Note: $T\phi(t_1)\phi(t_2) = \begin{cases} \phi(t_1)\phi(t_2)t_1 \ge t_2\\ \phi(t_2)\phi(t_1)t_2 > t_1 \end{cases}$

(868) $H_{int}^I(t) = \int d^3x \frac{\lambda}{4!} (\phi^I(x))^4$

we've already discussed $V(\phi) = \frac{m^2}{2}\phi^2$

now consider next term which is symmetric under $\phi \to -\phi$; $\mathcal{H}_{int} =$ $-\mathcal{L}_{int} = \frac{\lambda}{4!} \phi^4$

$$H_{int}^{III}(t) = e^{iH_0t} \int d^3x (\frac{\lambda}{4!} (\phi(\vec{x}))^4) e^{-iH_0t}$$

$$= \int d^3x \frac{\lambda}{4!} e^{iH_0t} \phi e^{-iH_0t} e^{H_0t} \cdots \phi e^{-iH_0t}$$

$$= \int d^3x \frac{\lambda}{4!} (\phi^I(x))^4$$

 H^I includes terms like $a^\dagger_{\vec{p_1}}a^\dagger_{\vec{p_2}}a_{\vec{p_1}}a_{\vec{p_2}}$ so 2-2 scattering is expected at leading order

$$S = \lim_{(t',t)\to(\infty,-\infty)} = T \exp(-i \int_{-\infty}^{\infty} dt H_{int}^{I}(t))$$

$$= T \exp(i \int d^{4}x \mathcal{L}_{int}^{I}(x))$$

$$S_{fi} = \langle p'_{1}p'_{2}|T \exp(i \int d^{4}x \mathcal{L}_{int}^{I})|p_{1}p_{2}\rangle$$
(matrix elements)
(I don't understand motivation for this?)

THERMODYNAMICS

(869)
$$\frac{\int_0^{\epsilon_F} a(\epsilon) d\epsilon = N}{N = 2 \sum_{\vec{k}} = 2 \frac{V}{(2\pi)^3} \int d\vec{k} = \frac{2 \cdot 4\pi V}{(2\pi)^3} \int_0^{k_F} k^2 dk }$$

$$= \frac{2 \cdot 4\pi V}{h^3} \int_0^{p_F} p^2 \frac{dp}{d\epsilon} d\epsilon$$

$$a(\epsilon) = \frac{2 \cdot 4\pi V}{h^3} p^2 \frac{dp}{d\epsilon}$$
in general
$$a(\epsilon) = \frac{g \cdot 4\pi V}{h^3} p^2 \frac{dp}{d\epsilon}$$

(870) $\underline{E_0} = \frac{4\pi gV}{h^3} \int_0^{p_F} \frac{p^2}{2m} p^2 dp$ (fermion gas, ground state) $\overline{E_0 = 2\sum_{\vec{k}} \epsilon(\vec{k}) = \frac{2V}{(2\pi)^3}} \int \epsilon d\vec{k}$ $=\frac{2V}{(2\pi)^3}4\pi\int\epsilon k^2dk=\frac{2V}{h^3}4\pi\int\epsilon p^2dp$ $= \frac{2V}{h^3} 4\pi \int_0^{p_F} \left(\frac{p^2}{2m}\right) p^2 dp$ $= \int_0^{p_F} \epsilon a(\epsilon) d\epsilon$

(871)
$$\frac{\partial S}{\partial V}|_{T,N} = \frac{\partial P}{\partial T}|_{V,N}$$
 (a maxwell's relation) we want to find the maxwell relation involving $\frac{\partial S}{\partial V}|_{T,N}$ we look for a thermo Identity that involes S alone and dV recall: $dF = -SdT - PdV + \mu dN$ $\Rightarrow \frac{\partial F}{\partial T}|_{V,N} = -S, \frac{\partial F}{\partial V}|_{T,N} = -P$ $\Rightarrow \frac{\partial^2 F}{\partial V \partial T}|_{N} = -\frac{\partial S}{\partial V}|_{T,N}; \frac{\partial^2 F}{\partial T \partial V}|_{N} = -\frac{\partial P}{\partial T}|_{V,N}$ $\therefore \frac{\partial S}{\partial V}|_{T,N} = \frac{\partial P}{\partial T}|_{V,N}$

(872) $f(\vec{p}) = \frac{n}{(2\pi m k_B T)^{3/2}} \exp(-p^2/2m k_B T)$ Note: f = PN, $\mathcal{P} \sim \text{probability}$ $\mathcal{P} = \frac{1}{Z} \exp(-p^2/2mk_BT)$ $Z = V \int d^3p \exp(-p^2/2mk_BT) = V4\pi \int_0^\infty p^2 dp \exp(-p^2/2mk_BT)$ $= 4\pi V \sqrt{\frac{\pi}{2}} (mk_BT)^{3/2} = V(2\pi mk_BT)^{3/2}$ $\implies \mathcal{P} = \frac{1}{(2\pi m k_B T)^{3/2}} \exp(-p^2/2m k_B T)$

$$(873) \quad S(E,N) = -Nk_B[\left(\frac{E}{N\epsilon}\right)\ln\left(\frac{E}{N\epsilon}\right) + \left(1 - \frac{E}{N\epsilon}\right)\ln\left(1 - \frac{E}{N\epsilon}\right)}{\text{(two state system w/ } E = 0, \epsilon)}$$

$$\Omega(E,N) = \frac{N!}{N_1!(N-N_1)!} \text{ (number of ways to choose } N_1 \text{ impurities to be excited)}$$

$$\Rightarrow \ln \Omega = \ln N! - \ln N! - \ln(N-N_1)!$$

$$\frac{\text{recall: } \ln N! = N \ln N - N$$

$$\Rightarrow \ln \Omega = N \ln N - N - N_1 \ln N_1 + N_1 - (N-N_1) \ln(N-N_1) + N_1 + N_2 - (N-N_1) \ln(N-N_1) + N_2 - N_1 \ln N_1 - (N-N_1) \ln(N-N_1) + (N-N_1) \ln N - (N-N_1) \ln N - (N-N_1) \ln N - (N-N_1) \ln N - (N-N_1) \ln N$$

$$= N \ln N - N_1 \ln N_1 - (N-N_1) \ln \frac{N-N_1}{N} - (N-N_1) \ln N - (N-N_1) \ln \frac{N-N_1}{N} - (N-N_1) \ln \frac{N-N_1}{N} = -N_1 \ln \frac{N_1}{N} - (N-N_1) \ln \frac{N-N_1}{N} = -N_1 \ln \frac{N_1}{N} + \frac{(N-N_1)}{N} \ln \frac{N-N_1}{N} = -N(\frac{N_1}{N} \ln \frac{N_1}{N} + \frac{(N-N_1)}{N} \ln \frac{N-N_1}{N})$$

$$\Rightarrow S \approx -Nk_B(\frac{N_1}{N} \ln \frac{N_1}{N} + \frac{(N-N_1)}{N} \ln \frac{N-N_1}{N})$$

$$= -Nk_B(\frac{E}{N\epsilon} \ln(\frac{E}{N\epsilon}) + \frac{(N-\frac{E}{\epsilon})}{N} \ln \frac{N-\frac{E}{\epsilon}}{N})$$

(874) $E(T) = \frac{N\epsilon}{(\exp(\frac{\epsilon}{k_BT})+1)}$ $\overline{\text{recall: } S(E,N) = -Nk_B[(\frac{E}{N_{\epsilon}})\ln(\frac{E}{N_{\epsilon}}) + (1 - \frac{E}{N_{\epsilon}})\ln(1 - \frac{E}{N_{\epsilon}})$ $dE = TdS - PdV + \mu dN$ $\Rightarrow \frac{\partial S}{\partial E}|_{V,N} = \frac{1}{T}$ $\Rightarrow k_B N \{ \frac{1}{N\epsilon} \ln(\frac{E}{\epsilon N}) - \frac{1}{N\epsilon} \ln(1 - \frac{E}{\epsilon N}) \} = \frac{\partial S}{\partial E} = \frac{1}{T}$ (Mathematica) now solve for E $\implies E(T) = \frac{N\epsilon}{1 + \exp(\epsilon\beta)}$

Note: $C_V = \frac{\partial E}{\partial T}|_V$ but E(T) (above does not depend on volume so $\frac{\partial E}{\partial T} = \frac{dE}{dT} = C$ Note: $E(T) \to \frac{N\epsilon}{2}$ as $T \to \infty$ If we started with $\frac{N}{2} + 1$ excited

atoms this would give negative temperature

we can see this from

$$\begin{array}{l} \frac{1}{T} = -\frac{k_B}{\epsilon} \ln(\frac{E}{N\epsilon - E}) \text{ is } \frac{E}{n\epsilon - E} > 1 \\ \Longrightarrow E > N\epsilon - E, E > \frac{N\epsilon}{2} \\ \Longrightarrow E > \frac{N\epsilon}{2} \implies \text{negative temperature}. \end{array}$$

$$\mathcal{P}(n_1) = \frac{\Omega(E - n_1 \epsilon, N - 1)}{\Omega(E, N)}$$
 (Probability of exciting an impurity)

ELECTRODYNAMICS

$$(875) \frac{1}{|\vec{x}-\vec{x}'|} = \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}(\cos \gamma)$$

$$r_{<} \text{ is the smaller of } |\vec{x}| \text{ and } |\vec{x}'|$$

$$\text{while } r_{>} \text{ is the larger of } |\vec{x}| \text{ and } |\vec{x}'|$$

$$\frac{\text{recall:}}{|\vec{x}-\vec{x}'|} = \frac{1}{\sqrt{x^2 + x'^2 - 2xx'\cos \gamma}} = \sum_{\ell=0}^{\infty} \frac{(x')^{\ell}}{x^{\ell+1}} P_{\ell}(\cos \gamma)$$

$$\text{if } x >> x' \text{ but the middle expression is } x, x'$$

$$\text{symmetric so}$$

$$\frac{1}{|\vec{x}-\vec{x}'|} = \sum_{\ell=0}^{\infty} \frac{x^{\ell}}{x^{\ell+1}} P_{\ell}(\cos \gamma) \text{ if } x < x'$$

$$\therefore \frac{1}{|\vec{x}-\vec{x}'|} = \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}(\cos \gamma)$$

$$(876) \frac{\frac{1}{|\vec{x}-\vec{x}'|} = 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{1}{2\ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}^{*}(\theta', \phi') Y_{\ell m}(\theta, \phi)}{\frac{\text{recall:}}{\text{Pecall:}} P_{\ell}(\cos \gamma) = \frac{4\phi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{\ell m}^{*}(\theta', \phi') Y_{\ell m}(\theta, \phi)}{\text{(Addition theorem for spherical harmonics)}}$$

$$\frac{1}{|\vec{x}-\vec{x}'|} = \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}(\cos \gamma)$$

$$= \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{\ell m}^{*}(\theta', \phi') Y_{\ell m}(\theta, \phi)$$

$$= 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{1}{2\ell+1} Y_{\ell m}^{*}(\theta', \phi') Y_{\ell m}(\theta, \phi) \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}}$$

Note: γ is the angle between \vec{x} and \vec{x}' which does not necessarily need to be θ

(877)
$$\frac{P_{\ell}(\cos\gamma) = \frac{4\pi}{2\ell+1} \sum_{m=-\ell}^{\ell} Y_{\ell m}^{*}(\theta', \phi') Y_{\ell m}(\theta, \phi)}{\text{recall: } Y_{\ell m}(\theta, \phi) \text{ are complete;}}$$

$$\implies g(\theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} A_{\ell m} Y_{\ell m}(\theta, \phi);$$

$$A_{\ell m} = \int d\Omega Y_{\ell m}^{*}(\theta, \phi) g(\theta, \phi); \cos \gamma = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos(\phi - \phi')$$

$$\implies P_{\ell}(\cos\gamma) = \sum_{\ell'=0}^{\infty} \sum_{m=-\ell'}^{\ell'} A_{\ell m} Y_{\ell' m}(\theta, \phi)$$

$$\frac{\text{claim: only } \ell' = \ell \text{ term appears}}{\text{proof:}}$$

$$\frac{\text{recall: the PDE for spherical harmonics is}}{\nabla^{2} Y_{\ell m}(\theta, \phi) + \frac{\ell(\ell+1)}{r^{2}} Y_{\ell m}(\theta, \phi) = 0}$$

$$\text{fix } \vec{x'} \text{ on the } zaxis \implies \gamma \to \theta$$

$$\Rightarrow \nabla'^2 P_{\ell}(\cos \gamma) + \frac{\ell(\ell+1)}{r^2} P_{\ell}(\cos \gamma) = 0$$

$$\nabla'^2 = \nabla^2, \text{ since } \nabla \cdot \nabla f = \nabla' \cdot \nabla' f, \text{ i.e. scalar products are invariant under rotation so we can rotate it so that } \vec{x}' \text{ doesnt have to be on the z- axis}$$

$$\Rightarrow \nabla^2 P_{\ell}(\cos \gamma + \frac{\ell(\ell+1)}{r^2} P_{\ell}(\cos \gamma) = 0$$

$$\Rightarrow P_{\ell} \text{ is a spherical harmonic of order } \ell$$

$$\Rightarrow P_{\ell}(\cos \gamma) = \sum_{m=-\ell}^{\ell} A_m(\theta', \phi') Y_{\ell m}(\theta, \phi)$$

$$\int P_{\ell}(\cos \gamma) Y_{\ell'm'}^*(\theta, \phi) d\Omega = \sum_{m=-\ell}^{\ell} A_m(\theta', \phi') \int Y_{\ell m}(\theta, \phi) Y_{\ell'm'}(\theta, \phi) d\Omega$$

$$\Rightarrow \sum_{m=-\ell}^{\ell} \delta_{\ell\ell'} \delta_{mm'} A_m = \delta_{\ell\ell'} A_m = \int P_{\ell}(\cos \gamma) Y_{\ell m'}^*(\theta, \phi) d\Omega$$

$$\ell = \ell' \Rightarrow A_m = \int P_{\ell}(\cos \gamma) Y_{\ell'm'}^*(\theta, \phi) d\Omega$$
this gives a vague way to also see that above claim is true.

(878)
$$\frac{\nabla^{2}\phi_{m} = \rho_{m}; \ \Phi_{M}(\vec{x}) = -\frac{1}{4\pi} \int \frac{\nabla' \cdot \vec{M}(\vec{x}')}{|\vec{x} - \vec{x}'|} d^{3}x'}{\text{recall: } \vec{H} = -\nabla\phi_{m} \\ \text{recall: } \nabla \cdot \vec{B} = 0 = \mu_{0}\nabla \cdot (\vec{H} + \vec{M}) = 0 \\ \Longrightarrow \nabla \cdot \vec{H} = -\nabla \cdot \vec{M} \implies \nabla^{2}\phi_{M} = -\nabla \cdot \vec{M} \\ \rho_{M} = -\nabla \cdot \vec{M} \\ \Longrightarrow \phi_{m} = -\frac{1}{4\pi} \int \frac{\nabla' \cdot \vec{M}(\vec{x}')}{|\vec{x} - \vec{x}'|} d^{3}x' \text{ (no boundary surfaces)}$$

(879)
$$\Phi_{M} = -\frac{1}{4\pi} \int_{V} \frac{\nabla' \cdot \vec{M}(\vec{x}')}{|\vec{x} - \vec{x}'|} d^{3}x' + \frac{1}{4\pi} \oint_{S} \frac{\hat{n}' \cdot \vec{M}(\vec{x}')}{|\vec{x} - \vec{x}'|} da' \\
\underline{\text{recall:}} \ \sigma_{M} = \hat{n} \cdot \vec{M}; \ \rho_{M} = -\nabla \cdot \vec{M} \\
\Phi_{m} = \frac{1}{4\pi} \oint_{|\vec{x} - \vec{x}'|} \frac{\rho_{M}}{|\vec{x} - \vec{x}'|} d^{3}x' + \frac{1}{4\pi} \oint_{|\vec{x} - \vec{x}'|} \frac{\sigma_{M}}{|\vec{x} - \vec{x}'|} da' \\
= -\frac{1}{4\pi} \int_{V} \frac{\nabla' \cdot \vec{M}(\vec{x}')}{|\vec{x} - \vec{x}'|} d^{3}x' + \frac{1}{4\pi} \oint_{S} \frac{\hat{n}' \cdot \vec{M}(\vec{x}')}{|\vec{x} - \vec{x}'|} da'$$

 $\vec{F} = \int \vec{J}(\vec{x} \times \vec{B}(\vec{x})d^3; \ \vec{N} = \vec{x} \times (\vec{J} \times \vec{B})d^3x$ $(880) \ \underline{\vec{F} = \nabla(\vec{m} \cdot \vec{B}) - m(\nabla \cdot \vec{B})}$ <u>recall</u>: $(\vec{J} \times \vec{B})_i = \epsilon_{ijk} J_j B_k$; $\vec{F} = \int \vec{J}(\vec{x}) \times \vec{B}(\vec{x}) d^3x$ $B_k(\vec{x}) = B_k(0) + \vec{x} \cdot \nabla B_k(0) + \cdots$ $F_i = \int \epsilon_{ijk} J_i B_k d^3x$ $= \sum_{jk} \epsilon_{ijk} \int J_j B_k d^3 x$ $= \sum_{jk} \sum_{ijk} \left[\int_{ijk} J_j(B_k(0) + \vec{x} \cdot \nabla B_k(0) + \cdots) d^3 x' \right]$ = $\sum_{jk} \sum_{ijk} \left[B_k(0) \int_{ijk} J_j(\vec{x}') d^3 x' + \int_{ijk} J_j(\vec{x}') \vec{x}' \cdot \nabla B_k(0) d^3 x' \right]$ $\int J_i(\vec{x}')d^3x' = 0$ (steady current) $F_i \approx \sum_{ik} \epsilon_{ijk} \int J_i(\vec{x}') \vec{x}' \cdot \nabla B_k(0) d^3 x'$ $=\int \vec{x}\cdot [\vec{J}\times\nabla B_k(0)]d^3x'$

$$= -\int \vec{x} \cdot [\nabla B_k(0) \times \vec{J}] d^3x'$$

= $-\int \nabla B_k(0) \cdot [\vec{J} \times \vec{x}] d^3x'$
= $-2\int \nabla B_k(0) \cdot \vec{m} d^3x'$

(881) $\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int \vec{J}(\vec{x}') \frac{e^{ik|\vec{x} - \vec{x}'|}}{|\vec{x} - \vec{x}'|} d^3x'$ recall: $\vec{J}(\vec{x},t) = \vec{J}(\vec{x})e^{-i\omega t}$ $\underline{\text{recall:}} \ \vec{A}(\vec{x},t) = \tfrac{\mu_0}{4\pi} \int d^3x' \int dt' \tfrac{\vec{J}(\vec{x'},t')}{|\vec{x}-\vec{x'}|} \delta(t' + \tfrac{|\vec{x}-\vec{x'}|}{c} - t)$ $=\frac{\mu_0}{4\pi} [\int d^3x' \frac{\vec{J}(\vec{x}')}{|\vec{x}-\vec{x}'|} e^{ik|\vec{x}-\vec{x}'|}] e^{-i\omega t}$ $= \vec{\vec{A}}(\vec{x}e^{-i\omega t})$ $\vec{A}(\vec{x} = \frac{\mu_0}{4\pi} \int d^3x' \frac{\vec{J}(\vec{x}')e^{ik|\vec{x} - \vec{x}'|}}{|\vec{x} - \vec{x}'|} d^3x'$

(882)
$$\lim_{kr\to 0} \vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \sum_{\ell,m} \frac{4\pi}{2\ell+1} \frac{Y_{\ell m}(\theta,\phi)}{r^{\ell+1}} \int \vec{J}(\vec{x}') r'^{\ell} Y_{\ell m}^*(\theta',\phi') d^3 x' \text{ (near field)}$$

$$\underbrace{\operatorname{recall:}}_{\text{field}} \vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int \vec{J}(\vec{x}') \frac{e^{ik|\vec{x}-\vec{x}'|}}{|\vec{x}-\vec{x}'|} d^3 x';$$

$$\frac{1}{|\vec{x}-\vec{x}'|} = 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{1}{2\ell+1} \frac{r_{\ell}^{\ell}}{r_{>}^{*\ell+1}} Y_{\ell m}^{*}(\theta',\phi') Y_{\ell m}(\theta,\phi)$$

$$\implies \vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int \vec{J}(\vec{x}') e^{ik|\vec{x}-\vec{x}'|} (4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{1}{2\ell+1} \frac{r_{\ell}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}^{*}(\theta',\phi') Y_{\ell m}(\theta,\phi)) d^3 x'$$

$$\underbrace{\operatorname{recall:}}_{\text{ceall:}} |\vec{x} - \vec{x}'| \approx r - \hat{n} \cdot \vec{x}'$$

$$\implies \lim_{kr\to 0} \vec{A}(\vec{x}) = \lim_{kr\to 0} \frac{\mu_0}{4\pi} \int \vec{J}(\vec{x}') e^{ikr} e^{-ik\hat{n}\cdot\vec{x}'} (4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{1}{2\ell+1} \frac{r_{\ell}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}^{*}(\theta',\phi') Y_{\ell m}$$

$$0 \implies r < r'$$

$$= \frac{\mu_0}{4\pi} \sum_{\ell,m} \frac{4\pi}{2\ell+1} Y_{\ell m}(\theta,\phi)$$
don't understand this step we might have to take a detour

through Griffiths.