Álgebra y Álgebra II - Segundo Cuatrimestre 2018 Práctico 6 - Autovalores y Autovectores

(1) Hallar los autovalores, autovectores y autoespacios de la siguientes matrices A_i , i = 1, ..., 4 y decidir si son semejantes o no a una matriz diagonal D_i , i = 1, ..., 4. Cuando sí lo sean, dar una P_i tal que $D_i = P_i^{-1}A_iP_i$. Considerarlas primero como matrices reales y luego como complejas.

$$A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} \qquad A_3 = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix}.$$

- (2) Para cada una de las siguientes transformaciones lineales T hallar sus autovalores y para cada uno de ellos dar una base de autovectores del espacio propio asociado. Luego decir si la transformación considerada es o no diagonalizable.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (y, 0).
 - (b) $T: \mathbb{R}^4 \to \mathbb{R}^4$, T(x, y, z, w) = (2x y, x + 4y, z + 3w, z w).
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + 2z, z x y, x + 2y + z).
 - (d) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (4x + y + 5z, 4x y + 3z, -12x + y 11z).
- (3) (a) Sea $A \in \mathbb{C}^{n \times n}$. Probar que el término independiente del polinomio característico de A es $(-1)^n \det(A)$ y que el coeficiente de grado (n-1) es $-\operatorname{tr}(A)$.
 - (b) Concluir que si A es una matriz 2×2 entonces el polinomio característico de A es $x^2 \operatorname{tr}(A)x + \operatorname{det}(A)$ y por lo tanto, si A no es invertible, entonces A tiene autovalores 0 y $\operatorname{tr}(A)$.
- (4) Sea $A \in \mathbb{C}^{n \times n}$. Probar que si c_1, \ldots, c_n son los autovalores de A (posiblemente repetidos), entonces $\det(A) = c_1 \ldots c_n$ y $\operatorname{tr}(A) = c_1 + \cdots + c_n$.
- (5) Probar que hay una única transformación lineal T de \mathbb{R}^2 en \mathbb{R}^2 tal que (1,1) es autovector de autovalor 2 y (-2,1) es autovector de autovalor 1. Calcular $\det(T)$ y dar la matriz de T en la base canónica de \mathbb{R}^2 .

1