

HCC4020B/24B/40B HCF4020B/24B/40B

RIPPLE-CARRY BINARY COUNTER/DIVIDERS

4020B - 14 STAGE 4024B - 7 STAGE 4040B - 12 STAGE

- MEDIUM-SPEED OPERATION
- FULLY STATIC OPERATION
- COMMON RESET
- BUFFERED INPUTS AND OUTPUTS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED SYMMETRICAL OUTPUT
- CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD No. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4XXXB** (extended temperature range) and **HCF4XXXB** (intermediate temperature range) are monolithic integrated circuits, available in 14-lead dual in-line for **4024B** and 16-lead dual in-line for **4020B**, **4040B** plastic or ceramic package and plastic micropackage.

The HCC/HCF4020B, 4024B, and 4040B are ripple-carry binary counters. All counter stages are master-slave flip-flops. The state of a counter advances one count on the negative transition of each input pulse; a high level on the RESET line resets the counter to its all zeros stage. Schmitt trigger action on the input-pulse line permits unlimited clock rise and fall times. All inputs and outputs are buffered.

PIN CONNECTIONS

March 1989 1/11

FUNCTIONAL DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
VI	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T _{op} = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types	3 to 18	٧
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types	- 55 to + 125	°C
	HCF Types	– 40 to + 85	°C

^{*} All voltage values are refered to V_{SS} pin voltage.

LOGIC DIAGRAMS

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s			Value					
Symbol	Parame	ter	٧ı	٧o	$ I_0 $	V_{DD}	ΤL	o w*		25°C		T _{Hi}	gh [*]	Unit
			(V)	(V) (V)	(μA) (V)		Min.	Max.	Min.	Тур.	Max.	Min.	Max.	1
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		Турез	0/15			15		80		0.04	80		600	
V _{OH}	Output Higl	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	ı	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V _{IL}	V _{IL} Input Low Voltage			4.5/0.5	< 1	5		1.5			1.5		1.5	V
				9/1	< 1	10		3			3		3	
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	нсс	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		A
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		mA
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink	HCC	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	Types	0/15	1.5		15	4.2		3.4	6.8		2.4		
			0/ 5	0.4		5	0.52		0.44	1		0.36		mA
		HCF	0/10	0.5		10	1.3		1.1	2.6		0.9		
		Types	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18		nt	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	, . A
	Current HCF		0/15	Any In	put	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΑ
Cı	Input Capa			Any In	put					5	7.5			pF

^{*} T_{Low} = - 55°C for **HCC** device : - 40°C for **HCF** device. * T_{High} = + 125°C for **HCC** device : + 85°C for **HCF** device. The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5 V min. with V_{DD} = 15V.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all $V_{DD} = 0.3\%$ °C values, all input rise and fall time = 20ns).

0	B	Test Conditions			11 14		
Symbol	Parameter	V _{DD} (V)					Unit
INPUT-P	ULSE OPERATION	•					
t _{PLH} , t _{PHL}	Propagation Delay Time	5	;		180	360	
	(Ø to Q1 Out)	10)		80	160	ns
		15	5		65	130	
t _{PLH} , t _{PHL}	Propagation Delay Time	5	;		100	200	
	Qn to Q _{n+1}	10)		40	80	ns
		1	5		30	60	
t_{TLH},t_{THL}	Transition Time	5	;		100	200	
		10)		50	100	ns
		15	5		40	80	
tw	Minimum Input Pulse Width	5			70	140	
		10)		30	60	ns
		15	5		20	40	
t _r , t _f	Input Pulse Rise and Fall Time	5					
		10)	Unlimited			μs
		1	5				
f _{max}	Maximum Clock Input Frequency	5		3.5	7		
		10)	8	16		MHz
		19	5	12	24		
RESET (OPERATION						
t _{PHL}	Propagation Delay Time	5			140	280	
		10)		60	120	ns
		1:	5		50	100	
t _W	Minimum Reset Pulse Width	5			100	200	
		10)		40	80	ns
		1:	5		30	60	
t _{rem}	Reset Removal Time	5			175	350	
		10	0		75	150	ns
		1:	5]		50	100	

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Details of Typical Flip-flop Stage.

Typical Output High (sink) Current Characteristics.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
ı			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (r	nax.)		

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	_

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

