

	Paul Downen (cecture 9) [2018/07/08] (2)
•	Theorem: It o re: T is derivable, then Ie' e - Je' +>
	Proof: (First try) By induction on the derivation Dof o Fest.
	Dd o hest.
	Consider all the possible
	derivations that could
	Consider all the possible derivations that could have led to
	Stration buse sale of £21/2
	Show that, in each case, we have enterings for some e.
	o case: e a variable - impossible because there's no
	rule that ends with . + x = 2.
	o case: N= - True: T Let e=e'=tire V
	(Folse 15 similar)
	e case: A = 0 + e,: Bool 0 + ezit 0 + ezit v + ife, thenezelse ez: €
	* + ife, thenezelse es: T
	IH For i=1,2,3,] i' st. e; 1-5*e!1/5
	2 · · · · · · · · · · · · · · · · · · ·
	Show: I e if e, then ez else e3 1-> e 1->.
	if e, thenezelse ez i if e, then ez else ez by IH

Paul Dornen (Leet 9) [2018/07/08] 3
Suppose $e_i^* = b$ then the ite expr evaluates to whatever e_2 (or e_3) evaluates to. Let $j=2$ if $b=Tre$ $j=3$ if $b=Folse$.
Let $j=2$ if $b=True$ $j=3$ if $b=False$.
Then if e, thenezelse e3 - 2 e'; ->.
NB. "terminating" just means we don't get stuck.
"Terminating" + "Type Salaty" means not only
"Terminating" + "Type Salaty" means not only do we not get stuck, but also we get a value of the expected type.
Here we are only concerned with termination. So we also consider the case $e_i^2 \neq b:Boot$.
Futhis case, then [If e, then ez else e3]
cannot take a step, so it has already terminated.
(Alternatively, we could argue by Type Safety that the case e' + b: Bool won't happen.)
This care dros +
Case locant Naysen.
Call DE XIT EIT Maypen.
e ⊢ λx:τ.e; τ→τ' (wy;)
·

[2018/07/08] Par Downen Case D= 0 - e, ez; ~ + ez; ~ IH: for i=1,2 e; - *e; -> Suppose e,'= \x.e': e,ez (-->* (\lambda x.e') ez (--> \earlie[e2/x] Poblem: The IH is too wede to help here. I Logical Relations to the rescue, Reducible Book Box - W Reducibility irredicible will mean that not only does the evaluation terminate but also

Paul Downen (Lecture 9) [2018/87/88] Terminating: {e|]e'e| = fe' | /> } Definition of "meaning" (denoted by [[-]]) [Bost] = {True, Folse}

where * means include expressions that
reduce to a Boolean. Formally, C*=Ze] = e' (C. e = \$ e') example If Folse hun 2x.x else TRUE is in [[Boot]]. Properties of expansion (Homework: Prove these) o if C = terminating then C* = terminating

o C = C*

(Notice: * is a)

closure aperator. [7, -> 72] = { e ∈ Terminating ∀ e'∈[[7,] ee'∈[[72]]} We want to define [F + e: T] First deline [[[]

Paul Downen (Lect 9) [2018/07/08]
Lemma: [7] = Terminating Lemma: (Expansion) externating Then e = [7]
ie, ITT = ITT
Corollary of Fundamental Lemma If o Fe37 is derivable then e \in [7], thus e is terminating,
ee[7], thus e is terminating,