Overview

The purpose of this analysis is to create a model that will help Alphabet Soup determine if applicants for funding will be successful or not; with historical data containing quantitative and qualitative values we are going to determine which values are pertinent to be used as features and what is the target value wea are looking at.

Results

This are the details for the First Model

FEATURES	TARGET	Model Spec
'APPLICATION_TYPE',	IS_SUCCESSFUL	3 Layers,
'AFFILIATION',	(YES OR NO)	
'CLASSIFICATION',		Units: 50 > 25 > 1
'USE CASE',		Omts: 50 > 25 > 1
'ORGANIZATION',		
'STATUS',		
'INCOME AMT',		
'SPECIAL CONSIDERATIONS',		
'ASK_AMT',		

Model: "sequential"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 50)	2300
dense_1 (Dense)	(None, 25)	1275
dense_2 (Dense)	(None, 1)	26
Total params: 3,601 Trainable params: 3,601 Non-trainable params: 0		

<pre>nn = tf.keras.models.Sequential()</pre>	
# First hidden layer nn.add(tf.keras.layers.Dense(units=50, activation	e"relu", input_dim=len(X_train_scaled[0])))
# Second hidden layer nn.add(tf.keras.layers.Dense(units=25, activation	:"relu"))
# Output layer nn.add(tf.keras.layers.Dense(units=1, activation=	"sigmoid"))
# Check the structure of the model nn.summary()	

Results:

Loss: 0.559521496295929, Accuracy: 0.7278134226799011

After the first model we decided to do different iterations and try different models and combination of features

Here are the details to the 3 models we try afterwards:

MODEL	FEATURES	TARGET	MODEL Spec.
1	'APPLICATION_TYPE', 'AFFILIATION',	IS_SUCCESSFUL (YES OR NO)	2 layers
	'CLASSIFICATION', 'USE_CASE',		Units: 50 > 1
	'STATUS', 'INCOME_AMT', 'ASK AMT',		relu > sigmoid
	'APPLICATION_TYPE', 'AFFILIATION',	IS_SUCCESSFUL (YES OR NO)	3 layers
2	'CLASSIFICATION', 'USE_CASE',		Units: 25 > 50 > 1
	'STATUS', 'INCOME_AMT', 'ASK AMT',		relu>softsign>sigmoid
3	'APPLICATION_TYPE', 'AFFILIATION',	IS_SUCCESSFUL (YES OR NO)	3 layers
	'CLASSIFICATION', 'USE_CASE',		Units: 25 > 50 > 1
	'STATUS', 'INCOME_AMT',		selu>selu>sigmoid
	'ASK_AMT',		

This is how the models performed

	Model	Model Loss	Model Accuracy
0	1	0.557543	0.729329
1	2	0.555614	0.730029
2	3	0.555962	0.728163

Using different features, and reducing the numbers of unique values for other in combination with different models using different number of layers, and activation modes; we were able to achieve better results. This points to a good direction and with more time and iteration we should be able to find a model that provides higher accuracy.

Given that 75% accuracy was not achieved no-new model has been saved.