Sistemi Operativi: Prof.ssa A. Rescigno	Anno Acc. 2017-2018
Esame – 25 Gennaio 20 (teoria)	18

1. Codice comportamentale. Durante questo esame si deve lavorare da soli. Non si puó consultare materiale di nessun tipo. Non si puó chiedere o dare aiuto ad altri studenti.

2. **Istruzioni.** Rispondere alle domande. Per la brutta usare i fogli posti alla fine del plico (NON si possono usare fogli aggiuntivi); le risposte verranno corrette solo se inserite nello spazio ad esse riservate oppure viene indicata con chiarezza la posizione alternativa. Per essere accettata per la correzione la risposta deve essere ordinata e di facile lettura. TUTTE le risposte vanno GIUSTIFICATE. Ciascuna risposta non giustificata vale ZERO.

Nome e Cognome:	
Matricola:	
Firma	

Università di Salerno

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	Tot
/15	/15	/10	/10	/50

1. 15 punti

Un hard disk ha la capienza di 2⁴² byte ed è formattato in blocchi da 1Kb. Si assuma che un file pluto la cui taglia é 257Kb sia allocato su tale hard disk. Si determini il **numero totale di blocchi necessari a memorizzare** pluto in ciascuna delle seguenti diverse tecniche di allocazione dei file. GIUSTIFICARE LE RISPOSTE

1) Allocazione contigua

2) Allocazione linkata

3) Allocazione indicizzata

4) Allocazione simile a Unix con FCB del tipo seguente:

attributi

ind. blocco 0

ind. blocco 1

ind. blocco indirizzi indirezione singola

ind. blocco indirizzi indirezione doppia

2. 15 punti

Quattro processi P_1, P_2, P_3, P_4 , possono richiedere anche più di un CPU burst; appena un CPU burst di un processo ha terminato la propria esecuzione, il processo é pronto per l'esecuzione del successivo CPU burst.

I tempi di arrivo ed i CPU burst (espressi in msec) sono descritti nella seguente tabella

Processo	T. di Arrivo	1º CPU burst	2º CPU burst	3° CPU burst
P_1	0	7	-	-
P_2	4	4	2	-
P_3	5	1	3	1
P_4	6	1	1	4

Si assuma che nel sistema in cui sono attivati i precedenti processi lo scheduling della CPU sia gestito mediante 3 code multiple con feedback denominate A, B, C.

La coda di arrivo di un processo sia A; alla fine del primo CPU burst, un processo approda nella coda B e se ci sono ulteriori CPU burst il processo passa alla coda C.

Inoltre, gli algoritmi di scheduling adottati all'interno di ciascuna coda sono i seguenti:

- la coda A adotta lo **SJF con prelazione**;
- la coda B adotta il RR con quanto di tempo di 2msec;
- la coda C adotta il **FCFS**.
- a) Si descriva la sequenza di esecuzione dei processi utilizzando il diagramma di Gantt.
- b) Si calcoli il tempo di attesa in coda di ciascun processo.

3. 10 punti

Un gruppo di studenti é in coda davanti alla segreteria per ritirare un modulo di richiesta di borsa di studio. Inizialmente, su un tavolo, vi é una pila di 50 moduli. Quando uno studente raggiunge la testa della fila, controlla se ci sono ancora moduli disponibili. In caso affermativo, ne ritira uno e se ne va. Viceversa, lo studente suona un campanello per segnalare il problema al personale della segreteria. Un impiegato arriva e depone sul tavolo una nuova pila di 50 moduli. Si scrivano le procedure (in pseudocodice) che descrivono il comportamento dei due processi studente ed impiegato.

4. 10 punti

Si consideri un processo che fa riferimento alle seguenti pagine logiche nel ordine che segue:

dove la pagina 3 è acceduta sempre in scrittura.

Si consideri una memoria fisica (inizialmente vuota) di 3 frame e si mostri

1. il funzionamento degli algoritmo **First In First Out (FIFO)** e si determini il numero di accessi a disco,

2. il funzionamento degli algoritmo **Ottimo** e si determini il numero di accessi a disco