HOMEWORK 6 – MATH 4341 DUE DATE: MONDAY 10/16/2023

- **Problem 1**. (a) Show that all metric spaces (with the metric topology) are Hausdorff.
 - (b) Show that all metric spaces (with the metric topology) are first-countable.
- **Problem 2**. (a) Show that $\mathcal{B} = \{(a, \infty) \mid a \in \mathbb{R}\}$ is a basis for some topology on \mathbb{R} .
 - (b) Is \mathbb{R} Hausdorff in the topology generated by \mathcal{B} ?
- **Problem 3**. Let \mathbb{R}^{ω} be the countably infinite product of \mathbb{R} , i.e., $\mathbb{R}^{\omega} = \prod_{i=1}^{\infty} X_i$ where each $X_i = \mathbb{R}$. We equip \mathbb{R}^{ω} with the product topology. Let A be the subset of \mathbb{R}^{ω} consisting of all points whose coordinates are positive, i.e. $A = \{(x_1, x_2, \dots) \mid x_i > 0 \ \forall i = 1, 2, \dots\}$.
 - (a) Show that the origin $\mathbf{0} = (0, 0, \cdots)$ is a limit point of A.
 - (b) Construct an explicit sequence in A converging to $\mathbf{0}$ in \mathbb{R}^{ω} .