NUMBER SYSTEM Lesson 1

INTRODUCTION TO NUMBERING SYSTEMS

• We are all familiar with the decimal number system (Base 10). Some other number systems that we will work with are:

- Binary → Base 2
- Octal \rightarrow Base 8
- Hexadecimal \rightarrow Base 16

Characteristics of Numbering Systems

- 1) The digits are consecutive.
- 2) The number of digits is equal to the size of the base.
- 3) Zero is always the first digit.
- 4) The base number is never a digit.
- 5) When 1 is added to the largest digit, a sum of zero and a carry of one results.
- 6) Numeric values are determined by the implicit positional values of the digits.

The Decimal Number System

Name

• "decem" (Latin) => ten

Characteristics

- Ten symbols
 - 0123456789
 - Positional
 - $2945 \neq 2495$

•
$$2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$$

(Most) people use the decimal number system

The Binary Number System

Name

• "binarius" (Latin) => two

Characteristics

- Two symbols
 - 0 1
 - Positional
 - $1010_{\rm B} \neq 1100_{\rm B}$

Most (digital) computers use the binary number system

Terminology

- Bit: a binary digit
- **Byte**: (typically) 8 bits

Memory cell used by a computer

- One switch can be in one of 2 states
- A row of n switches:

can be in one of 2ⁿ states!

A row of 3 switches can be in one of $2^3 = 8$ states.

The 8 possible states are given in the figure above.

Memory cell used by a computer

- We saw how information can be represented by *number* by using a code (agreement)
- Recall: we can use numbers to represent marital status information:

 - 0 = single
 1 = married
 2 = divorced
 3 = widowed

BINARY NUMBER SYSTEM

- Also called the "Base 2 system"
- The binary number system is used to model the series of electrical signals computers use to represent information
- 0 represents the no voltage or an off state
- 1 represents the presence of voltage or an on state

Binary Numbering Scale

Base 2 Number	Base 10 Equivalent	<u>Power</u>	Positional Value
000	0	20	1
001	1	21	2
010	2	2^2	4
011	3	23	8
100	4	2^4	16
101	5	2 ⁵	32
110	6	26	64
111	7	27	128

Decimal to Binary Conversion

- The easiest way to convert a decimal number to its binary equivalent is to use the Division Algorithm
- This method repeatedly divides a decimal number by 2 and records the quotient and remainder
 - The remainder digits (a sequence of zeros and ones) form the binary equivalent in least significant to most significant digit sequence

Decimal to Binary Conversion

Convert 67 to its binary equivalent:

Decimal to Binary Conversion

Binary Number = 11001

Example

Find what is binary value of following decimals?

- a) 75
- b) 133
- c) 1573

Binary Number Addition

Addition

Start at right column
Proceed leftward
Carry 1 when necessary

```
11
7 0111<sub>B</sub>
+ 10 + 1010<sub>B</sub>
---
1 10001<sub>B</sub>
```

Results are mod 2⁴

Binary Number Subtraction

Subtraction

```
12

0202

10 1010<sub>B</sub>

- 7 - 0111<sub>B</sub>

--- ----

3 0011<sub>B</sub>
```

Start at right column
Proceed leftward
Borrow 2 when necessary

```
2
3 0011<sub>B</sub>
- 10 - 1010<sub>B</sub>
---
9 1001<sub>B</sub>
```

Results are mod 2⁴

• Example

Find addition of following binary numbers?

- a) $101_2 + 110_2$
- b) $10101_2 + 11100_2$
- c) $111011_2 + 110110_2$

Find substraction of following binary numbers?

- a) $111111_2 10011_2 = 1100$
- b) $101100_2 100110_2 = 110$
- c) $1111111_2 100111_2 = 11000$

Binary to Decimal Conversion

- The easiest method for converting a binary number to its decimal equivalent is to use the *Multiplication Algorithm*
- Multiply the binary digits by increasing powers of two, starting from the right
- Then, to find the decimal number equivalent, sum those products

Binary to Decimal Conversion

Convert $(10101101)_2$ to its decimal equivalent:

Binary to Decimal Conversion

$$1100110_2 = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 0^2 \times 2^3 + 1^2 \times 2^1 + 0^2 \times 2^0 = 64 + 32 + 4 + 2 = 102.$$

Example

Find what is Decimal value of following binary numbers?

- a) 10110 =22
- b) 100101 = 37
- c) 110101 =53

$$(10110)_2 = (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) +$$

 $(1 \times 2^1) + (0 \times 2^0) = 22_{10}$

$$(100101)_2 = (1 \times 2^5) + (0 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 37_{10}$$

$$(110101)_2 = (1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 53_{10}$$

OCTAL NUMBER SYSTEM

- Also known as the Base 8 System
- Uses digits **0 7**
- Readily converts to binary
- Groups of three (binary) digits can be used to represent each octal digit
- Also uses multiplication and division algorithms for conversion to and from base 10

Decimal-Octal Equivalence

Decimal	<u>Octal</u>	<u>Decima</u>	<u>l Octal</u>	<u>Decimal</u>	<u>Octal</u>
0	0	16	20	32	40
1	1	17	21	33	41
2	2	18	22	34	42
3	3	19	23	35	43
4	4	20	24	36	44
5	5	21	25	37	45
6	6	22	26	38	46
7	7	23	27	39	47
8	10	24	30	40	50
9	11	25	31	41	51
10	12	26	32	42	52
11	13	27	33	43	53
12	14	28	34	44	54
13	15	29	35	45	55
14	16	30	36	46	56
15	17	31	37	47	57
				•••	• • •

21

Decimal-Octal Conversion

Octal to decimal: expand using positional notation

$$37_0 = (3*8^1) + (7*8^0)$$

= 24 + 7
= 31

Decimal to octal: use the shortcut

• Example

Find what is Octal value of following decimals?

- a) 756₁₀
- b) 1351₁₀
- c) 352₁₀

Find what is decimal value of following Octals?

- a) 351₈
- b) 2136₈
- c) 157₈

		Remaind
Division		er
by 8	Quotient	(Digit)
(756)/8	94	4
(94)/8	11	6
(11)/8	1	3
(1)/8	0	1

Division		Remaind er
by 8	Quotient	(Digit)
(352)/8	44	0
(44)/8	5	4
(5)/8	0	5

Division		Remaind er
by 8	Quotient	(Digit)
(1351)/8	168	7
(168)/8	21	0
(21)/8	2	5
(2)/8	0	2

$$351 = (3 \times 8^2) + (5 \times 8^1) + (1 \times 8^0) = 233$$

$$2136 = (2 \times 8^3) + (1 \times 8^2) + (3 \times 8^1) + (6 \times 8^0) = 1118$$

$$157 = (1 \times 8^2) + (5 \times 8^1) + (7 \times 8^0) = 111$$

Octal Number Addition

Addition

$$2036_8$$
 4210_8 $+ 5762_8$ $+ 2671_8$ $--- 10020_8$ 7101_8

Example

Find addition of following Octal numbers?

- a) $5376_8 + 3657_8 = 11255_8$
- b) $435_8 + 342_8 = 777_8$
- c) $471_8 + 242_8 = 733_8$

Octal Number Subtraction

Subtraction

$$375_8$$
 471_8 $- 126_8$ $- 536_8$ $--- 652_8$ 242_8

Example

Find addition of following Octal numbers?

- a) $1463_8 1102_8 = 361$
- b) $25616_8 17520_8 = 6076$
- c) $15677_8 7260_8 = 6417$

HEXADECIMAL NUMBER SYSTEM

- Base 16 system
- Uses digits 0-9 & letters A,B,C,D,E,F
- Groups of four bits represent each base 16 digit

Decimal	Hexadecimal
0	0
1	1
2	
3	2 3
4	4
5	5
6	6
7	7
8	8
9	9
10	A
11	В
12	С
13	D
14	E
15	F

Decimal to Hexadecimal Conversion

Convert 830_{10} to its hexadecimal equivalent:

$$830 / 16 = 51 R14$$
 $51 / 16 = 3 R3$
 $3 / 16 = 0 R3$

$$33E_{16}$$

Hexadecimal to Decimal Conversion

Convert $3B4F_{16}$ to its decimal equivalent:

15,183₁₀

• Example

Find what is Hexadecimal value of following decimals?

- a) 751₁₀
- b) 5067₁₀
- c) 936₁₀

Find what is decimal value of following Hexadecimals?

- a) $A3F_{16}$
- b) 29FC₁₆
- c) 8C6₁₆

Division by 16	Quotient	Remainder (Digit)
(751)/16	46	15
(46)/16	2	14
(2)/16	0	2

$$= (2EF)_{16}$$

Division by 16	Quotient	Remainder (Digit)
(936)/16	58	8
(58)/16	3	10
(3)/16	0	3

$$=(3A8)_{16}$$

Division by 16	Quotient	Remainder (Digit)
(5067)/16	316	11
(316)/16	19	12
(19)/16	1	3
(1)/16	0	1

$$(A3F)_{16} = (10 \times 16^{2}) + (3 \times 16^{1}) + (15 \times 16^{0}) = (2623)_{10}$$

$$(29FC)_{16} = (2 \times 16^3) + (9 \times 16^2) + (15 \times 16^1) + (12 \times 16^0) = (10748)_{10}$$

$$(8C6)_{16} = (8 \times 16^{2}) + (12 \times 16^{1}) + (6 \times 16^{0}) = (2246)_{10}$$

Hexadecimal Number Addition

Addition

$$A34_{16}$$
 $25D3_{16}$ $+ 8E9_{16}$ $+ C85F_{16}$ $-- -- 131D_{16}$ $EE32_{16}$

• Example

Find addition of following Octal numbers?

- a) $9D3_{16} + 2EF_{16}$
- b) $A301_{16} + 489_{16}$
- c) $EAB58_{16} + B287_{16}$

Hexadecimal Number Subtraction

Subtraction

$$B3CD_{16}$$
 $85AD_{16}$
+ $849A_{16}$ + $5EOF_{16}$
---- $2F33_{16}$ $279E_{16}$

• Example

Find addition of following Octal numbers?

- a) F2CD3₁₆ 846C₁₆
- b) 824₁₆ A35₁₆
- c) $A2CD_{16} 9BFC_{16}$

Binary-Hexadecimal Conversion

Observation: $16^1 = 2^4$

• Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

```
1010000100111101
B A 1 3 DH
```

Digit count in binary number not a multiple of 4 => pad with zeros on left

Hexadecimal to binary

```
A 1 3 D<sub>H</sub>
1010000100111101
```

Discard leading zeros from binary number if appropriate

Binary-Hexadecimal Conversion

- The easiest method for converting binary to hexadecimal is to use a substitution code
- Each hex number converts to 4 binary digits

Substitution Code			
0000 = 0	0100 = 4	1000 = 8	1100 = C
0001 = 1	0101 = 5	1001 = 9	1101 = D
0010 = 2	0110 = 6	1010 = A	1110 = E
0011 = 3	0111 = 7	1011 = B	1111 = F

Binary-Octal Conversion

Observation: $8^1 = 2^3$

Every 1 octal digit corresponds to 3 binary digits

Binary to octal

```
001010000100111101<sub>B</sub>
1 2 0 4 7 5<sub>O</sub>
```

Digit count in binary number not a multiple of 3 => pad with zeros on left

Octal to binary

```
1 2 0 4 7 5<sub>0</sub> 001010000100111101<sub>B</sub>
```

Discard leading zeros from binary number if appropriate

THANK YOU