

MA211 - Lista 05

Valores Máximos e Mínimos e Multiplicadores de Lagrange

18 de setembro de 2016

EXERCÍCIOS RESOLVIDOS

- 1. \bigstar ([1], seção 14.7) Nos itens abaixo, determine os valores máximos e mínimos locais e pontos de sela da função.
 - a) $f(x,y) = x^3 12xy + 8y^3$
 - **b)** $f(x,y) = y \cos x$

Solução:

a) Sendo $f(x,y) = x^3 - 12xy + 8y^3$, vamos inicialmente localizar seus pontos críticos:

$$f_x(x,y) = 3x^2 - 12y$$
 e $f_y(x,y) = -12x + 24y^2$.

Igualando essas derivadas parciais a zero, obtemos as equações

$$x^2 - 4y = 0$$
 e $2y^2 - x = 0$.

Para resolvê-las, substituímos $x=2y^2$ da segunda equação na primeira. Isso resulta em

$$0 = y^4 - y = y(y^3 - 1)$$

e existem duas raízes reais y=0 e y=1. Os dois pontos críticos de f são (0,0) e (2,1).

Agora vamos calcular as segundas derivadas parciais e D(x, y):

$$f_{xx}(x,y) = 6x \quad f_{xy}(x,y) = -12 \quad f_{yy}(x,y) = 48y$$
$$D(x,y) = f_{xx}(x,y) \cdot f_{yy}(x,y) - (f_{xy}(x,y))^{2}$$
$$= (6x) \cdot (48y) - (-12)^{2} = 288xy - 144.$$

Como D(0,0) = -144 < 0, segue do Teste da Derivada Segunda que (0,0) é um ponto de sela, ou seja, f não tem nem máximo local nem mínimo local em (0,0). Como D(2,1) = 432 > 0 e $f_{xx}(2,1) = 12 > 0$, vemos do Teste da Derivada Segunda que f(2,1) = -8 é um mínimo local.

b) Sendo $f(x,y) = y \cos x$, vamos inicialmente localizar seus pontos críticos:

$$f_x(x,y) = -y \operatorname{sen} x$$
 e $f_y(x,y) = \cos x$.

Igualando essas derivadas parciais a zero, obtemos as equações

$$y \operatorname{sen} x = 0$$
 e $\cos x = 0$.

Da segunda equação obtemos que $x = \left(\frac{\pi}{2} + n\pi\right)$, $n \in \mathbb{Z}$. Da primeira equação temos que y = 0 para todos essas x-valores. Assim, os pontos críticos são $\left(\frac{\pi}{2} + n\pi, 0\right)$. Agora,

$$f_{xx}(x,y) = -y \cos x,$$
 $f_{xy}(x,y) = -\sin x$ e $f_{yy}(x,y) = 0.$

Então

$$D(x,y) = (f_{xx}(x,y)) \cdot (f_{yy}(x,y)) - (f_{xy}(x,y))^{2}$$

$$\Rightarrow D\left(\frac{\pi}{2} + n\pi, 0\right) = 0 - \sin^{2} x = -\sin^{2} x < 0.$$

Portanto, cada ponto crítico é ponto de sela.

2. ♦ ([1], seção 14.7) Determine o volume máximo da maior caixa retangular no primeiro octante com três faces nos planos coordenados e com um vértice no plano

$$x + 2y + 3z = 6.$$

Solução: Vamos maximizar a função

$$f(x,y) = x \cdot y \cdot \left(\frac{6 - x - 2y}{3}\right) = \frac{6xy - x^2y - 2xy^2}{3},$$

então o volume máximo é $V = x \cdot y \cdot z$. Para encontrar os pontos críticos devemos encontrar as derivadas parciais f_x e f_y . Assim,

$$f_x(x,y) = \frac{6y - 2xy - 2y^2}{3}$$
 e $f_y(x,y) = \frac{6x - x^2 - 4xy}{3}$.

Fazendo $f_x = 0$ e $f_y = 0$, obtemos o seguinte sistema de equações

$$\begin{cases} 6y - 2xy - 2y^2 = 0\\ 6x - x^2 - 4xy = 0 \end{cases}$$

Da primeira equação obtemos

$$y = 0$$
 ou $y = 3 - x$.

Como, y = 0 não satifaz as condições, vamos analisar o caso onde y = 3 - x. Substituindo esse valor na segunda equação obtemos

$$x = 0$$
 ou $3x^2 - 6x = 0$.

Novamente, como x=0 não satisfaz as condições, vamos analisar o caso onde $3x^2-6=0$. Logo, obtemos

$$x = 0$$
 ou $x = 2$.

Novamente, x=0 não nos interessa. Assim, sendo x=2 obtemos que y=1 e $z=\frac{2}{3}$. Portanto, o volume máximo da maior caixa, nas condições do exercício, será

$$V = (2) \cdot (1) \cdot \frac{2}{3} = \frac{4}{3}.$$

2

3. \blacklozenge ([1], seção 14.8) Use multiplicadores de Lagrange para demonstrar que o triângulo com área máxima, e que tem um perímetro constante p, é equilátero. (Sugestão: Utilize a fórmula de Heron para a área:

$$A = \sqrt{s(s-x)(s-y)(s-z)},$$

em que s = p/2 e x, y e z são os comprimentos dos lados.)

Solução: Utilizando a fórmula de Heros temos que a área e um triânulo é

$$A = \sqrt{s(s-x)(s-y)(s-z)},$$

com s = p/2 e x, y, z lados do triângulo. Mas a álgebra fica mais simples se maximizarmos o quadrado da área, isto é,

$$A^{2} = f(x, y, z) = s(s - x)(s - y)(s - z).$$

A restrição é que o triângulo têm perímetro constante p, ou seja,

$$g(x, y, z) = x + y + z = p.$$

De acordo com o método dos multiplicadores de Lagrange, resolvemos $\nabla f = \lambda \nabla g$ e g=p. Então

$$\nabla f(x, y, z) = (-s(s - y)(s - z), -s(s - x)(s - z), -s(s - x)(s - y))$$

e

$$\lambda \nabla g(x,y,z) = \lambda(1,1,1) = (\lambda,\lambda,\lambda).$$

Logo temos as seguintes equações

$$-s(s-y)(s-z) = \lambda$$

$$-s(s-x)(s-z) = \lambda$$

$$-s(s-x)(s-y) = \lambda$$

$$x+y+z = p$$

Assim, das três primeiras equações, temos que

$$-s(s-y)(s-z) = -s(s-x)(s-z) = -s(s-x)(s-y).$$

Da primeira igualdade obtemos que $s-y=s-x\Rightarrow y=x$ e da segunda igualdade obtemos que $s-z=s-y\Rightarrow z=y$, resultando que x=y=z. Portanto, o triângulo com área máxima e perímetro constante p é um triângulo equilátero.

4. \blacklozenge (Prova, 2014) Encontre os pontos da elipse $x^2 + xy + y^2 = 3$ mais próximos e mais distantes da origem.

Solução: A distância entre um ponto (x, y) e a origem (0, 0) é

$$d = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}.$$

Mas a álgebra fica mais simples se maximizarmos e minimizarmos o quadrado da distância:

$$d^2 = f(x, y) = x^2 + y^2.$$

A restrição é que os pontos pertencem a elipse, ou seja,

$$g(x,y) = x^2 + xy + y^2 = 3$$

De acordo com os multiplicadores de Lagrange, resolvemos $\nabla f = \lambda \nabla g$ e g=3. Então

$$\nabla f(x,y) = (2x,2y)$$

e

$$\lambda \nabla g(x,y) = \lambda (2x + y, x + 2y) = (2x\lambda + y\lambda, 2y\lambda + x\lambda).$$

Logo temos,

$$2x = 2x\lambda + y\lambda \tag{1}$$

$$2y = 2y\lambda + x\lambda \tag{2}$$

$$x^2 + xy + y^2 = 3 (3)$$

Se $\lambda=0$ teremos que x=0 e y=0, mas esses valores não satisfazem equação (3). Logo $\lambda\neq 0$ e multiplicando ambos os lados da equação (1) por $\frac{y}{\lambda}$ e ambos os lados da equação (2) por $\frac{x}{\lambda}$, obtemos que

$$\frac{2xy}{y} = 2xy + y^2 \qquad e \qquad \frac{2xy}{y} = 2xy + x^2.$$

Logo,

$$y^2 = x^2 \Rightarrow y = x$$
 ou $y = -x$.

Se y = x temos que da equação (3) que $x^2 + x^2 + x^2 = 3 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1$. Logo temos os pontos (1, 1) e (-1, -1).

Se y = -x temos que da equação (3) que $x^2 - x^2 + x^2 = 3 \Rightarrow x^2 = 3 \Rightarrow x = \pm \sqrt{3}$. Logo temos os pontos $(\sqrt{3}, -\sqrt{3})$ e $(-\sqrt{3}, \sqrt{3})$.

Os valores de f nesses pontos são:

$$f(1,1) = f(-1,-1) = 2$$
 e $f(\sqrt{3}, -\sqrt{3}) = f(-\sqrt{3}, \sqrt{3}) = 6$.

Portanto, (1,1) e (-1,-1) são os pontos mais próximos e $(\sqrt{3},-\sqrt{3})$ e $(-\sqrt{3},\sqrt{3})$ os pontos mais afastados da origem (0,0).

EXERCÍCIOS PROPOSTOS

5. ([1], seção 14.7) Suponha que (0,2) seja um ponto crítico de uma função g com derivadas de segunda ordem contínuas. Em cada caso, o que se pode dizer sobre g?

a)
$$g_{xx}(0,2) = -1$$
, $g_{xy}(0,2) = 6$, $g_{yy}(0,2) = 1$.

b)
$$g_{xx}(0,2) = -1$$
, $g_{xy}(0,2) = 2$, $g_{yy}(0,2) = -8$.

c)
$$g_{xx}(0,2) = 4$$
, $g_{xy}(0,2) = 6$, $g_{yy}(0,2) = 9$.

6. ([1], seção 14.7) Nos itens abaixo. Utilize as curvas de nível da figura para predizer a localização dos pontos críticos de f e se f tem um ponto de sela ou um máximo ou mínimo local em cada um desses pontos. Explique seu raciocínio. Em seguida, empregue o Teste da Segunda Derivada para confirmar suas predições.

a)
$$f(x,y) = 4 + x^3 + y^3 - 3xy$$

b)
$$f(x,y) = 3x - x^3 - 2y^2 + y^4$$

- 7. \blacklozenge ([1], seção 14.7),([2], seção 16.3),(Provas, 2007, 2014) Nos itens abaixo, determine os valores máximos e mínimos locais e pontos de sela da função.
 - a) $f(x,y) = 9 2x + 4y x^2 4y^2$
 - c) $f(x,y) = e^{4y-x^2-y^2}$
 - e) $f(x,y) = x^2 + y^2 + x^2y + 4$
 - **g)** f(x,y) = xy 2x y
 - $i) f(x,y) = e^x \cos y$
 - 1) $f(x,y) = (x^2 + y^2)e^{y^2 x^2}$
 - n) $f(x,y) = x^4 + y^4 2x^2 2y^2$
 - **p)** $f(x,y) = x^4 + y^4 + 4x + 4y$
 - r) $f(x,y) = x^3 12xy + 8y^3$
 - t) $f(x,y) = x^3 + 2xy + y^2 5$
 - v) $f(x,y) = 4 + x^3 + y^3 3xy$

- **b)** $f(x,y) = x^2 + 3xy + 4y^2 6x + 2y$
- d) $f(x,y) = x^3 + 2xy + y^2 5x$
- f) $f(x,y) = x^3 3x^2 + 27y$
- h) $f(x,y) = \sqrt[3]{x^2 + 2xy + 4y^2 6x 12y}$
- j) $f(x,y) = x^4 + xy + y^2 6x 5y$
- **m)** $f(x,y) = x^5 + y^5 5x 5y$
- o) $f(x,y) = x^2 + y^3 + xy 3x 4y + 5$
- q) $f(x,y) = -x^2 + y^2 + 2xy + 4x 2y$
- s) $f(x,y) = x^2 4xy + 4y^2 x + 3y + 1$
- **u)** $f(x,y) = \frac{1}{x^2} + \frac{1}{y} + xy, x > 0 \text{ e } y > 0$
- **w)** $f(x,y) = xy + 2x \ln(x^2y)$
- 8. ([1], seção 14.7) Mostre que $f(x,y) = x^2 + 4y^2 4xy + 2$ tem um número infinito de pontos críticos e que $f_{xx}f_{yy} (f_{xy})^2 = 0$ em cada um. A seguir, mostre que f tem um mínimo local (e absoluto) em cada ponto crítico.
- 9. \blacklozenge ([1], seção 14.7),([2], seção 16.4),(Prova, 2006) Nos itens abaixo, determine os valores máximo e mínimo absolutos de f no conjunto D.
 - a) $\bigstar f(x,y) = 3 + xy x 2y$, D é a região triangular fechada com vértices (1,0), (5,0) e (1,4).
 - **b)** $f(x,y) = x^2 + y^2 + x^2y + 4$, $D = \{(x,y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}$.
 - c) $f(x,y) = xy^2$, $D = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$.
 - d) $f(x,y) = 2x^3 + y^4$, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$.
 - e) $f(x,y) = x^3 3x y^3 + 12y$, D é o quadrilátero cujos vértices são (-2,3), (2,3), (2,2) e (-2,-2).
 - f) $f(x,y) = (2x x^2)(2y y^2)$, D é a região do plano xy dada por $0 \le y \le 2(2x x^2)$.
 - g) f(x,y) = 3x y no conjunto D de todas (x,y) tais que $x \ge 0$, $y \ge 0$, $y x \le 3$, $x + y \le 4$ e $3x + y \le 6$.
 - **h)** f(x,y) = 3x y em $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$
 - i) $f(x,y) = x^2 + 3xy 3x$ em $D = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0 \text{ e } x + y \le 1\}.$
 - **j**) $f(x,y) = xy \text{ em } D = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0 \text{ e } 2x + y \le 5\}.$
 - 1) $f(x,y) = y^2 x^2$ em $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$
 - m) $f(x,y) = x^2 2xy + 2y^2$ em $D = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}.$
- 10. ([1], seção 14.7) Determine a menor distância entre o ponto (2,1,-1) e o plano x+y-z=1.
- 11. ([2], seção 16.4) Determine (x,y), com $x^2+4y^2\leq 1$, que maximiza a soma 2x+y.

- 12. \blacklozenge ([2], seção 16.4) Suponha que $T(x,y)=4-x^2-y^2$ represente uma distribuição de temperatura no plano. Seja $D=\{(x,y)\in\mathbb{R}^2:x\geq 0,\ y\geq x$ e $2y+x\leq 4\}$. Determine o ponto de D de menor temperatura.
- 13. \blacklozenge ([2], seção 16.4) Determine o valor máximo de f(x,y) = x + 5y, onde x e y estão sujeitos às restrições: $5x + 6y \le 30$, $3x + 2y \le 12$, $x \ge 0$ e $y \ge 0$.
- 14. \bigstar ([1], seção 14.7) Determine os pontos do cone $z^2=x^2+y^2$ que estão mais próximos do ponto (4,2,0).
- 15. ([1], seção 14.7) Determine os pontos da superfície $y^2 = 9 + xz$ que estão mais próximos da origem.
- 16. ([1], seção 14.7) Determine três números positivos cuja soma é 100 e cujo produto é máximo.
- 17. ([1], seção 14.7) Encontre o volume máximo de uma caixa retangular que está inscrita em uma esfera de raio r.
- 18. ([1], seção 14.7) Determine as dimensões de uma caixa retangular de volume máximo tal que a soma dos comprimentos de suas 12 arestas seja uma constante c.
- 19. ([1], seção 14.7) Uma caixa de papelão sem tampa deve ter um volume de $32000~cm^3$. Determine as dimensões que minimizem a quantidade de papelão utilizado.
- 20. ([1], seção 14.7) Três alelos (versões alternativas de um gene) A, B e O determinam os quatro tipos de sangue: A (AA ou AO), B (BB ou BO), O (OO) e AB. A Lei de Hardy-Weinberg afirma que a proporção de indivíduos em uma população que carregam dois alelos diferentes é P = 2pq + 2pr + 2rq, onde p, q e r são as proporções de A, B e O na população. Use o fato de que p + q + r = 1 para mostrar que P é no máximo $\frac{2}{3}$.
- 21. ([1], seção 14.7) Suponha que um cientista tenha razões para acreditar que duas quantidades x e y estejam relacionadas linearmente, ou seja, y = mx + b, pelo menos aproximadamente, para algum valor de m e de b. O cientista realiza uma experiência e coleta os dados na forma de pontos $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, e então coloca-os em um gráfico. Os pontos não estão todos alinhados, de modo que o cientista quer determinar as constantes m e b para que a reta y = mx + b "ajuste" os pontos tanto quanto possível (veja a figura). Seja $d_i = y_i (mx_i + b)$ o desvio vertical do ponto (x_i, y_i) da reta. O **método dos mínimos quadrados** determina m e b de modo a minimizar $\sum_{i=1}^{n} d_i^2$, a soma dos quadrados dos desvios. Mostre que, de acordo com esse método, a reta de melhor ajuste é obtida quando

$$m\sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i$$

$$m\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i$$

Assim, a reta é determinada resolvendo esse sistema linear de duas equações nas incógnitas m e b.

- 22. ([3], seção 11.7) Mostre que (0,0) é um ponto crítico de $f(x,y) = x^2 + kxy + y^2$, não importando o valor da constante k.
- 23. ([3], seção 11.7) Entre todos os pontos do gráfico de $z = 10 x^2 y^2$ que estão acima do plano x + 2y + 3z = 0, encontre o ponto mais afastado do plano.
- 24. ([3], seção 11.7) Considere a função $f(x,y)=x^2+y^2+2xy-x-y+1$ no quadrado $0 \le x \le 1$ e $0 \le y \le 1$.
 - a) Mostre que f tem um mínimo absoluto ao longo do segmento de reta 2x + 2y = 1 nesse quadrado. Qual é o valor mínimo absoluto?
 - b) Encontre o valor máximo absoluto de f no quadrado.
- 25. ([5], seção 16.8) Determine a menor distância entre os planos paralelos 2x + 3y z = 2 e 2x + 3y z = 4.
- 26. ([5], seção 16.8) Determine os pontos do gráfico de $xy^3z^2=16$ mais próximos da origem.
- 27. ([5], seção 16.8) Determine as dimensões da caixa retangular de volume máximo, com faces paralelas aos planos coordenados, que possa ser inscrita no elipsóide $16x^2 + 4y^2 + 9z^2 = 144$.
- 28. (Prova, 2008) Seja

$$f(x,y) = k(x-y)^2 + \frac{y^4}{2} - \frac{y^2}{2}, \quad k \neq 0.$$

- a) Encontre os pontos críticos da função f.
- b) Classifique os pontos críticos da função f no caso em que k>0.

8

- 29. (Prova, 2010)
 - a) Determine os pontos críticos da função

$$f(x,y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2.$$

- b) Calcule os valores assumidos por f nos pontos críticos. É possível classificar os pontos críticos sem utilizar o críterio da derivada segunda? Se for possível, classifique-os e justifique a resposta.
- 30. (Prova, 2010) Considere a função

$$f(x,y) = -\frac{y^2}{2} + 3x^2 - 2x^3.$$

- a) Determine e classifique os pontos críticos de f.
- b) Mostre que a curva de nível f(x,y) = 0 com $x \ge 0$ é uma curva fechada, isto é, é a fronteira de uma região R limitada do plano xy. Calcule o valor máximo de f nessa região R.
- 31. ♦ ([2], seção 16.5) Estude com relação a máximos e mínimos a função dada com as restrições dadas.
 - a) $f(x,y) = 3x + y e^{2x} + 2y^{2} = 1$.
 - **b)** \bigstar $f(x,y) = 3x + y \in x^2 + 2y^2 \le 1$.
 - c) $f(x,y) = x^2 + 2y^2 e^{3x} + y = 1$.
 - d) $f(x,y) = x^2 + 4y^2$ e xy = 1, x > 0 e y > 0.
 - e) $f(x,y) = xy e x^2 + 4y^2 = 8$.
 - f) $f(x,y) = x^2 + 2xy + y^2$ e x + 2y 1 = 0.
 - g) $f(x,y) = x^2 2xy + y^2$ e $x^2 + y^2 = 1$.
 - h) $f(x,y) = x^2 2y^2 e^{2x} + y^2 2x = 0$.
 - i) $f(x,y) = x^3 + y^3 3x 3y e x + 2y = 3$.
 - j) $f(x,y) = x^2 2xy + 3y^2 e^{2x^2} + 2y^2 = 1$.
- 32. ♦ ([1], seção 14.8) Utilize os multiplicadores de Lagrange para determinar os valores máximo e mínimo da função sujeita à(s) restrição(ões) dada(s).
 - a) $f(x,y) = x^2 + y^2$; xy = 1.
 - **b)** f(x,y) = 4x + 6y; $x^2 + y^2 = 13$.
 - c) $f(x,y) = x^2y$; $x^2 + 2y^2 = 6$.
 - d) f(x, y, z) = 2x + 6y + 10z; $x^2 + y^2 + z^2 = 35$.
 - e) $f(x, y, z) = x^4 + y^4 + z^4$; $x^2 + y^2 + z^2 = 1$.
 - f) $f(x_1, x_2, ..., x_n) = x_1 + x_2 + ... + x_n; \quad x_1^2 + x_2^2 + ... + x_n^2 = 1.$

9

g) f(x, y, z) = yz + xy; xy = 1, $y^2 + z^2 = 1$.

- 33. ([3], seção 11.8) Embora $\nabla f = \lambda \nabla g$ seja uma condição necessária para a ocorrência de um valor extremo de f(x,y) sujeito à restrição g(x,y)=0, ela não garante por si só que ele exista. Como um exemplo, tente usar o método dos multiplicadores de Lagrange para encontrar um valor máximo de f(x,y)=x+y sujeito à restrição xy=16. O método identificará os dois pontos (4,4) e (-4,-4) como candidatos para a localização dos valores extremos. Ainda assim, a soma x+y não tem valor máximo sobre a hipérbole. Quanto mais distante você está da origem nessa hipérbole no primeiro quadrante, maior se torna a soma f(x,y)=x+y.
- 34. ([1], seção 14.8) Determine os valores extremos de $f(x,y)=2x^2+3y^2-4x-5$ na região descrita por $x^2+y^2\leq 16$.
- 35. ([1], seção 14.8) A produção total P de certo produto depende da quantidade L de trabalho empregado e da quantidade K de capital investido. Nas Seções 14.1 e 14.3 de [1], foi discutido o modelo Cobb-Douglas $P = bL^{\alpha}K^{1-\alpha}$ seguido de certas hipóteses econômicas, em que b e α são constantes positivas e $\alpha < 1$. Se o custo por unidade de trabalho for m e o custo por unidade de capital for n, e uma companhia puder gastar somente uma quantidade p de dinheiro como despesa total, então a maximização da produção P estará sujeita à restrição mL + nK = p. Mostre que a produção máxima ocorre quando

$$L = \frac{\alpha p}{m}$$
 e $K = \frac{(1-\alpha)p}{n}$.

- 36. ([3], seção 11.8)
 - a) Mostre que o valor máximo de $a^2b^2c^2$ sobre uma esfera de raio r centrada na origem de um sistema de coordenadas cartesianas (a, b, c) é $(r^2/3)^3$.
 - b) Usando o item (a), mostre que, para números não negativos $a,\,b$ e $c,\,$

$$(abc)^{\frac{1}{3}} \le \frac{a+b+c}{3},$$

isto é, a *média geométrica* de três números não negativos é menor que ou igual à *média aritmética*.

- 37. ([1], seção 14.8) O plano x + y + 2z = 2 intercepta o paraboloide $z = x^2 + y^2$ em uma elipse. Determine os pontos dessa elipse que estão mais próximo e mais longe da origem.
- 38. \blacklozenge ([1], seção 14.8) O plano 4x 3y + 8z = 5 intercepta o cone $z^2 = x^2 + y^2$ em uma elipse.
 - a) Faça os gráficos do cone, do plano e da elipse.
 - **b)** Use os multiplicadores de Lagrange para achar os pontos mais alto e mais baixo da elipse.
- 39. ([2], seção 16.5) Determine a curva de nível de $f(x,y) = x^2 + 16y^2$ que seja tangente à curva xy = 1, x > 0 e y > 0. Qual o ponto de tangência?

- 40. ([2], seção 16.5) Determine o ponto da reta x+2y=1 cujo produto das coordenadas seja máximo.
- 41. ([2], seção 16.5) Determine o ponto da parábola $y=x^2$ mais próximo de (14, 1).
- 42. ([2], seção 16.5) Determine o ponto do elipsóide $x^2 + 4y^2 + z^2 = 1$ que maximiza a soma x + 2y + z.
- 43. ([2], seção 16.5) Encontre o ponto da curva $x^2 2xy + y^2 2x 2y + 1 = 0$ mais próximo da origem.
- 44. ([2], seção 16.5) Encontre os pontos da curva $x^2 6xy 7y^2 + 80 = 0$ mais próximos da origem. Desenhe a curva.
- 45. ([2], seção 16.5) Determine o plano tangente à superfície $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 1$, com x > 0, y > 0 e z > 0, que forma com os planos coordenados um tetraedro de volume mínimo. (Dica: O volume do tetraedro formado pelos planos coordenados e o plano ax + by + cz = d no primeiro octante é dado por $V = d^3/(6abc)$.)
- 46. \blacklozenge (Prova, 2014) Determine os pontos da elipse $\mathcal{D} = \left\{ (x,y) \in \mathbb{R}^2 : \frac{x^2}{8} + \frac{y^2}{2} = 1 \right\}$ que fornecem o maior e o menor valor da função f(x,y) = xy.
- 47. (Prova, 2013) Determine o valor máximo de f(x, y, z) = 6x + z sobre a curva de interseção das superfícies $x^2 + y^2 = 4$ e $z = x^2 2y^2$.
- 48. (Prova, 2013) Use o método dos multiplicadores de Lagrange para determinar o ponto sobre a parábola $y=x^2$ que se encontra mais próximo do ponto $(0,1)\in\mathbb{R}^2$.
- 49. (Prova, 2010) Determine os valores de máximo e mínimo de $f(x, y, z) = x^2 yz$ em pontos da esfera $x^2 + y^2 + z^2 = 1$.
- 50. (Prova, 2014) Determine os valores máximo e mínimo absolutos de

$$f(x,y) = x^2 + 2y^2 - x$$

no conjunto $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$

51. (Prova, 2007) Determine os pontos da superfície xyz=1 que estão mais próximos da origem.

11

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

- 5. a) g possui um ponto de sela em (0,2).
 - b) g possui um ponto de máximo local em (0,2).
 - c) Não se pode afirmar algo sobre g pelo Teste da Segunda Derivada.
- 6. a) f possui um ponto de sela em (0,0) e um mínimo local em (1,1).
 - **b)** f possui um ponto de máximo local em (1,0), pontos de sela em (1,1), (1,-1) e (-1,0) e pontos de mínimo local em (-1,1) e (-1,-1).
- 7. a) Ponto de máximo: $\left(-1, \frac{1}{2}\right)$.
 - **b)** Ponto de mínimo: $\left(\frac{54}{7}, -\frac{22}{7}\right)$.
 - c) Ponto de máximo: (0,2).
 - **d)** Ponto de mínimo: $\left(\frac{5}{3}, -\frac{5}{3}\right)$; ponto de sela: (-1, 1).
 - e) Pontos de mínimo: (1,1) e (-1,-1); ponto de sela: (0,0).
 - **f**) Pontos de sela: $\left(3, \frac{3}{2}\right) \in \left(-3, -\frac{3}{2}\right)$.
 - g) Ponto de mínimo: (2,1); ponto de sela: (0,0).
 - **h)** Ponto de mínimo: (2,1).
 - i) Não há pontos críticos.
 - \mathbf{j}) Ponto de mínimo: (1,2).
 - 1) Ponto de mínimo: (0,0); pontos de sela: (1,0) e (-1,0).
 - **m)** Ponto de mínimo: (1,1); ponto de máximo: (-1,-1); pontos de sela: (1,-1) e (-1,1).
 - n) Pontos de mínimo: (-1,1) e (-1,-1); ponto de máximo: (0,0); pontos de sela: (0,1), (0,-1), (1,0) e (-1,0).
 - o) Ponto de mínimo : (1,1); ponto de sela: $\left(\frac{23}{12}, -\frac{5}{6}\right)$.
 - **p)** Ponto de mínimo : (-1, -1).
 - **q**) Ponto de sela: $\left(\frac{3}{2}, -\frac{1}{2}\right)$.
 - **r)** Ponto de mínimo : (2,1); ponto de sela: (0,0).
 - s) Não há pontos críticos.
 - t) Ponto de mínimo : $\left(\frac{5}{3}, -\frac{5}{3}\right)$; ponto de sela: (-1, 1).
 - **u)** Ponto de mínimo: $(2^{2/5}, 2^{-1/5})$.
 - \mathbf{v}) Ponto de mínimo: (1,1); ponto de sela: (0,0).
 - **w)** Ponto de mínimo: $\left(\frac{1}{2}, 2\right)$.

- 8. Note que todos os pontos críticos são da forma $\left(x, \frac{1}{2}x\right)$ e que $f(x,y)=(x-2y)^2+2\geq 2$, com igualdade justamente se $y=\frac{1}{2}x$.
- 9. a) Valor máximo: 2; valor mínimo: -2.
 - b) Valor máximo: 7; valor mínimo: 4.
 - c) Valor máximo: 2; valor mínimo: 0.
 - d) Valor máximo: 2; valor mínimo: -2.
 - e) Valor máximo: 18; valor mínimo: -18.
 - f) Valor máximo: 1; valor mínimo: 0.
 - g) Valor máximo: 6; valor mínimo: -3.
 - **h)** Valor máximo: $\frac{8\sqrt{10}}{10}$; valor mínimo: $-\sqrt{10}$.
 - i) Valor máximo: 0; valor mínimo: -2.
 - **j)** Valor máximo: $\frac{25}{8}$; valor mínimo: 0.
 - 1) Valor máximo: 4; valor mínimo: -4.
 - m) Valor máximo: 2; valor mínimo: 0.
- 10. $\sqrt{3}$.
- 11. $\left(\frac{4\sqrt{17}}{17}, \frac{\sqrt{17}}{34}\right)$.
- 12. (0,2).
- 13. 25.
- 14. $(2, 1, \sqrt{5})$ e $(2, 1, -\sqrt{5})$.
- 15. $(0,3,0) \in (0,-3,0)$.
- 16. $x = y = z = \frac{100}{3}$.
- 17. $\frac{8}{3\sqrt{3}}r^3$.
- 18. A caixa é um cubo com arestas de comprimento $\frac{c}{12}$.
- 19. $40 \text{cm} \times 40 \text{cm} \times 20 \text{cm}$.
- 20. É preciso maximizar de $P=2q-2q^2+2r-2r^2-2rq$ no conjunto delimitado pelas retas $q=0,\,r=0$ e q+r=1. O ponto de máximo ocorre em $\left(\frac{1}{3},\frac{1}{3}\right)$, no qual o valor de P é justamente $\frac{2}{3}$.

- 21. As duas equações são obtidas como pontos críticos da função $\sum_{i=1}^n d_i^2 = \sum_{i=1}^n \left(y_i (mx_i + b)\right)^2 = f(m,b).$ Note que de fato pontos satisfazendo as equações são pontos de mínimo de f.
- 22. Note que $f_x(0,0) = f_y(0,0) = 0$.
- 23. $\left(\frac{1}{6}, \frac{1}{3}, \frac{355}{36}\right)$.
- 24. **a**) $\frac{3}{4}$.
 - **b)** f(1,1) = 3.
- 25. $\frac{\sqrt{14}}{7}$.

$$26. \left(\frac{2}{\sqrt[4]{12}}, \sqrt[4]{12}, \frac{2\sqrt{2}}{\sqrt[4]{12}}\right), \quad \left(\frac{2}{\sqrt[4]{12}}, \sqrt[4]{12}, -\frac{2\sqrt{2}}{\sqrt[4]{12}}\right), \quad \left(-\frac{2}{\sqrt[4]{12}}, \sqrt[4]{12}, \frac{2\sqrt{2}}{\sqrt[4]{12}}\right) \quad \left(-\frac{2}{\sqrt[4]{12}}, \sqrt[4]{12}, -\frac{2\sqrt{2}}{\sqrt[4]{12}}\right).$$

- 27. $\frac{8}{\sqrt{3}} \times \frac{6}{\sqrt{3}} \times \frac{12}{\sqrt{3}}$.
- 28. **a)** $(0,0),(1,1) \in (-1,-1).$
 - **b)** Pontos de mínimo: (1,1) e (-1,-1); ponto de sela: (0,0).
- 29. **a)** (1,2) e (-1,0).
 - b) f(1,2) = f(-1,0) = 0. Note que $f(x,y) \le 0$, o que implica que (1,2) e (-1,0) são pontos de máximo.
- 30. a) Pontos críticos: (0,0) e (1,0). Ponto de máximo: (1,0); ponto de sela: (0,0).
 - **b**) 1.
- 31. a) Ponto de máximo: $\left(\frac{6}{\sqrt{38}}, \frac{1}{\sqrt{38}}\right)$; ponto de mínimo: $\left(-\frac{6}{\sqrt{38}}, -\frac{1}{\sqrt{38}}\right)$.
 - **b)** Ponto de máximo: $\left(\frac{6}{\sqrt{38}}, \frac{1}{\sqrt{38}}\right)$; ponto de mínimo: $\left(-\frac{6}{\sqrt{38}}, -\frac{1}{\sqrt{38}}\right)$.
 - c) Ponto de mínimo: $\left(\frac{6}{19}, \frac{1}{19}\right)$.
 - **d)** Ponto de mínimo: $\left(\sqrt{2}, \frac{\sqrt{2}}{2}\right)$.
 - e) Pontos de máximo: (2,1) e (-2,-1); pontos de mínimo: (-2,1) e (2,-1).
 - f) Ponto de mínimo: (-1,1)

- g) Pontos de máximo: $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ e $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$; ponto de mínimo: $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
- h) Ponto de máximo: (2,0); pontos de mínimo: $\left(\frac{2}{3},\frac{2\sqrt{2}}{3}\right)$ e $\left(\frac{2}{3},\frac{-2\sqrt{2}}{3}\right)$.
- i) Ponto de máximo local: $\left(-\frac{13}{7}, \frac{17}{7}\right)$; ponto de mínimo local: (1, 1).
- **j)** Pontos de máximo: $\left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$ e $\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$; pontos de mínimo: $\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$ e $\left(-\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$.
- 32. a) Não há valor máximo; valor mínimo: 2.
 - **b)** Valor máximo: 26; valor mínimo: -26.
 - c) Valor máximo: 4; valor mínimo: -4.
 - d) Valor máximo: 70; valor mínimo: -70.
 - e) Valor máximo: 1; valor mínimo: $\frac{1}{3}$.
 - f) Valor máximo: \sqrt{n} ; valor mínimo: $-\sqrt{n}$.
 - g) Valor máximo: $\frac{3}{2}$; valor mínimo: $\frac{1}{2}$.
- 33. Note que quando $x \to 0$, tem-se $y \to \infty$ e $f(x,y) \to \infty$; e quando $x \to -\infty$, tem-se $y \to 0$ e $f(x,y) \to -\infty$, logo não há valores máximo e mínimo de f sujeito a esta restrição.
- 34. Valor máximo: $f(-2, \pm 2\sqrt{3}) = 47$ e valor mínimo f(1,0) = -7.
- 35. Use multiplicadores de Lagrange para determinar o máximo de $P(L,K)=bL^{\alpha}K^{1-\alpha}$ sujeita a restrição g(L,K)=mL+nK=p e encontrar $L=\frac{Kn\alpha}{m(1-\alpha)}$. Substitua em mL+nK=p.
- 36. a) Use multiplicadores de Lagrange para maximizar $f(a,b,c)=a^2b^2c^2$ sujeita a restrição $a^2+b^2+c^2=r^2$.
 - **b)** Como $(\sqrt{a}, \sqrt{b}, \sqrt{c})$ está na esfera $a+b+c=r^2$, pelo item (a) segue que $abc=f(\sqrt{a}, \sqrt{b}, \sqrt{c}) \leq \left(\frac{r^2}{3}\right)^3 = \left(\frac{a+b+c}{3}\right)^3$.
- 37. Mais próximo: $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ e mais distante: (-1,-1,2).

38. a) Gráficos em um mesmo sistema:

b) Ponto mais alto: $\left(-\frac{4}{3}, 1, \frac{5}{3}\right)$ e ponto mais baixo: $\left(\frac{4}{13}, -\frac{3}{13}, \frac{5}{13}\right)$.

39. $x^2 + 16y^2 = 8$; o ponto de tangência é $\left(2, \frac{1}{2}\right)$.

40.
$$\left(\frac{1}{2}, \frac{1}{4}\right)$$
.

41. (2,4).

42.
$$\left(\frac{1}{\sqrt{3}}, \frac{1}{2\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
.

43. $\left(\frac{1}{4}, \frac{1}{4}\right)$.

44. (1,3) e (-1,-3). Realizando a mudança de coordenadas $x=\frac{1}{\sqrt{10}}u-\frac{3}{\sqrt{10}}v$ e $y=\frac{3}{\sqrt{10}}u+\frac{1}{\sqrt{10}}v$, a equação da curva inicial é transformada em $\frac{u^2}{10}-\frac{v^2}{40}=1$, cujo gráfico é:

 $45. \ 6x + 4y + 3z = 12\sqrt{3}.$

46. Pontos de máximo: (2,1) e (-2,-1); pontos de mínimo: (-2,1) e (2,-1).

16

47. 16.

48. $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right) e\left(-\frac{1}{\sqrt{2}}, \frac{1}{2}\right)$.

49. Valor máximo: 1; valor mínimo: $-\frac{1}{2}$.

- 50. Valor máximo: $\frac{9}{4}$; valor mínimo: $-\frac{1}{4}$.
- 51. (1,1,1), (1,-1,-1), (-1,1,-1) e (-1,-1,1).

Referências

- [1] J. Stewart. *Cálculo*, Volume 2, 6^a Edição, São Paulo, Pioneira/ Thomson Learning.
- [2] H. L. Guidorizzi. Um~Curso~de~C'alculo, Volume 2, 5^a Edição, 2002, Rio de Janeiro.
- [3] G. B. Thomas. *Cálculo*, Volume 2, 10^a edição, São Paulo, Addison-Wesley/Pearson,2002.
- [4] C.H Edwards Jr; D. E. Penney. Cálculo com Geometria Analítica, Volumes 2 e 3, Prentice Hall do Brasil, 1997.
- [5] E. W. Swokowski, *Cálculo com Geometria Analítica*, Volume 2, 2^a Edição, Markron Books, 1995.