第七章: 根轨迹法

2022年12月2日

根轨迹控制器设计的基本思想

开环零极点的位置(控制器) 闭环系统根轨迹的形状 闭环控制系统的性能要求

确定预期主导极点

控制器根轨迹设计的基本思想

开环零极点的位置(控制器)

Î

确定<mark>控制器结构</mark>, 使根轨迹<mark>通过</mark>系统 主导极点

闭环系统根轨迹的形状

确定预期主导极点

闭环控制系统的性能要求

控制器根轨迹设计的基本思想

确定控制器参数, 使主导极点配置在 预期主导极点上, 验证其他设计要求

开环零极点的位置(控制器)

确定控制器结构, 使根轨迹通过系统 主导极点

闭环系统根轨迹的形状

确定预期主导极点

闭环控制系统的性能要求

控制器根轨迹设计的基本思路

内容安排

	MATLAB在根轨迹中的应用
7.4	基于根轨迹的控制系统设计
7.3	基于根轨迹的控制系统分析
7.2	根轨迹绘制的基本方法
7.1	根轨迹的基本概念

2022/11/18

1. 绘制根轨迹

1. rlocus (sys)

绘制系统的根轨迹。

其中sys定义了系统的开环传递函数对象G(s)。

2. [r, K] = rlocus (sys)

返回闭环根的位置矩阵及相应的增益向量。

特征方程的标准格式

例

考虑下图所示的闭环控制系统

其闭环传递函数为

$$T(s) = \frac{Y(s)}{R(s)} = \frac{K(s+1)(s+3)}{s(s+2)(s+3) + K(s+1)}$$

其特征方程为

$$1 + K \frac{s+1}{s(s+2)(s+3)} = 0$$

特征方程的标准格式: $1 + KG(s) = 1 + K\frac{p(s)}{g(s)} = 0$

$$1 + K \frac{s+1}{s(s+2)(s+3)} = 0$$

$$p(s) = s + 1$$
$$q(s) = s^3 + 5s^2 + 6s$$

利用计算机绘制根轨迹的步骤:

- 1. 将系统的特征方程改写为标准格式
- 2. 调用函数rlocus绘制根轨迹

>>p=[1 1]; q=[1 5 6 0]; sys=tf(p,q); rlocus(sys)

生成根轨迹

>>p=[1 1]; q=[1 5 6 0]; sys=tf(p,q); [r,K]=rlocus(sys);

生成闭环根位置向量r及对应的增益K的不同取值

2. 分析根轨迹

rlocfind (sys)

确定与特定的复根对应的增益K的取值

3. 基于Matlab/Sisotool的控制器设计

Step 1: 启动sisotool窗口,选择控制系统的结构,输入开环传递函数。

$$>> G = tf([1], [1 2 0]);$$

>> sisotool(G);

$$G(s) = \frac{1}{s(s+2)}$$

$$F(s) = 1$$

$$G_c(s) = 1$$

$$H(s) = 1$$

H(s)

极点位置不 同,阶跃响 应也不同

Step 2: 在根轨迹图上增加控制系统指标约束条件,确定预期主导极点的可行域,选择预期极点。

Step 3: 增加一对零极点,使得根轨迹通过期望的主导极点,调整增益系数的值,将主导极点配置到期望的位置。

Step 4: 将控制器参数输出到Matlab工作空间,得到闭环传递函数,根据第三个零点和极点构造前置滤波器F,然后将F导入到sisotool模型。

>> F = tf([4 64], [16 64]);

♦ SISO Tool Export								
Select design: (current)		~						
Select models to export:								
Component	Export As	^						
Compensator C	С		Export to Workspace					
Prefilter F	F		Export to Disk					
Plant G	G	∄						
Sensor H	Н							
Closed Loop r to y	T_r2y							
Closed Loop r to u	T_r2u							
Input Sensitivity	S_in							
Output Sensitivity	S_out							
Noise Sensitivity	S_noise		Cancel					
Open Loop L	L		Caricei					
MIMO Closed Loop	Т	v	Help					
<u> </u>								

Step 5: 分析闭环系统的阶跃响应曲线,根据性能指标调整主导极点位置,直至满足设计要求,最后将控制器参数输出到Matlab工作空间,完成控制器设计。

性能分析

与评价

性能调节与改进:

调参数、调结构等等

控制工程的循环主题

规范的对象动态机理的描述能力:微分方程、传递函数、框图、信号流图;

按程式(三部曲)求解微分方程,求取受控量的动态行为的数学解析能力;

系统性能分析与评价能力:稳、快、准!

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

极点位置

核心技能!

性能要求

$$P.O. = e^{-\pi \zeta / \sqrt{1 - \zeta^2}} \cdot 100\%$$

$$T_s \approx \frac{4}{\zeta \omega_n} (2\%)$$

$$T_n = \frac{\pi}{\sqrt{1 - \zeta^2}}$$

集大成者: 根轨迹!

根轨迹是有效的分析工具!

- 1、调参数时,系统极点和性能如何变化
- 2、调典型结构时,系统极点和性能如何变化

根轨迹也是有效的设计工具!

PID控制器: 聪明的选择

PID控制器

$$G_c(s) = K_P + K_I \frac{1}{s} + K_D s$$

PID控制器参数对系统阶跃响应性能的影响效果

PID增益系数	超调量	调节时间	稳态误差
增大K _P	增大	影响小	减小
增大K _D (强化微分)	减小	减小	无影响
增大K _I (强化积分)	增大	增大	减小 直至零

确定控制目标、辨识受控变量、确定设计要求

系统结构、参数配置(方案)

建立数学模型与模型求解 (数学解析)

动态行为性能分析 (工程解析、仿真评价)

满足要求,可接受方案

不满足要求

以线性二阶对象为蓝本,

对二阶系统了如指掌,调控自如。

不可接受的二阶系统 ——

可接受的二阶系统

CP7.1 考虑图 CP7.1 所示的系统, 其开环传递函数为

(a)
$$G(s) = \frac{10}{s^3 + 14s^2 + 43s + 30}$$

(b)
$$G(s) = \frac{s+20}{s^2+4s+20}$$

(d)
$$G(s) = \frac{s^5 + 4s^4 + 6s^3 + 10s^2 + 6s + 4}{s^6 + 4s^5 + 4s^4 + s^3 + s^2 + 10s + 1}$$

试利用函数 rlocus, 当 K 在 0 到 + ∞ 之间变化时, 分别绘制各系统的根轨迹。

图 CP7.1 含有参数 K 的单回路控制系统

CP7.4 某单位负反馈系统的开环传递函数为

$$G_c(s)G(s) = \frac{(1+p)s - p}{s^2 + 4s + 10}$$

编写 m 脚本程序, 绘制 p 变化时(0 系统的根轨迹, 并确定使闭环系统稳定的 <math>p 的取值范围。

- **CP7.6** 图 CP7.6(a) 所示的大型天线用于接收卫星信号,为此,它必须能够对太空中运行的卫星进行精确 跟踪。如图 CP7.6(b) 所示,天线的控制系统中包括一个电枢控制式电机和一个控制器 $G_e(s)$ 。系 统性能设计指标要求为:(1) 对斜坡输入信号 r(t) = Bt 的稳态误差小于等于 0.01B(B 为常数); (2) 针对阶跃输入信号的超调量 P. O. $\leq 5\%$,调节时间 $T_s \leq 2$ s。
 - (a) 利用根轨迹法,编写 m 脚本程序,为控制器 $G_c(s)$ 选择合适的参数;
 - (b) 针对设计的控制器, 绘制系统的单位阶跃响应曲线, 计算超调量和调节时间, 并在图上标注出来;
 - (c) 分析扰动 $T_d(s) = Q/s(Q)$ 为常数)对于输出 Y(s)的影响。

图 CP7.6 天线位置控制系统

- CP7.7 考虑图 CP7.7 所示的反馈系统,并考虑下面三个可选的控制器:
 - (1) $G_c(s) = K($ 比例控制器);
 - (2) $G_c(s) = K/s$ (积分控制器);
 - (3) $G_c(s) = K(1 + 1/s)$ (比例积分控制器, 即 PI 控制器)。

设系统的设计指标是:单位阶跃响应的调节时间 $T_s \leq 10 \text{ s}$,超调量 P. O. $\leq 10\%$ 。

- (a) 当采用比例控制器时,编写 m 脚本程序,绘制 $0 < K < + \infty$ 时的根轨迹,并确定 K 的取值,使系统能满足指标设计要求。
- (b) 当采用积分控制器时, 重复(a)的问题。
- (c) 当采用 PI 控制器时, 重复(a)的问题。
- (d) 考虑(a)~(c)中所设计的闭环系统, 在同一张图中绘制它们的单位阶跃响应曲线。
- (e) 以稳态误差和瞬态性能为重点,讨论比较(a)~(c)所得的结果。

图 CP7.7 带有控制器 $G_c(s)$ 的单回路反馈控制系统

CP7.8 考虑图 CP7.8 所示的飞行器单轴姿态控制系绕,其中比例微分控制器的 $K_P/K_D = 5$ 。编写 m 脚本程序绘制根轨迹,并求出 K_D/J 和 K_P/J 的值,使系统单位阶跃响应的调节时间 $T_s \le 4$ s(按 2% 准则),超调量 P. O. $\le 10\%$ 。

图 CP7.8 带有 PD 控制器的飞行器姿态控制系统

CP7.9 考虑图 CP7.9 所示的控制系统,编写 m 脚本程序,当 $0 < K < + \infty$ 时,绘制系统的根轨迹,当闭环根的阻尼比为 0.707 时,确定 K 的取值。

图 CP7.9 含有参数 K 的单位负反馈系统