1/21: I) Do the following (VSEPR) problems from your text (Miessler et al. (2014)): Chapter 3: #8, 9f-i, 20, 29.

- 3.8 Give Lewis dot structures and sketch the shapes of the following:
 - **a.** $SeCl_4$

b. I₃

$$[: \ddot{\mathbf{I}} - \ddot{\mathbf{I}} - \ddot{\mathbf{I}}:]^-$$

c. PSCl₃

d. $\operatorname{IF_4}^-$

e. PH₂⁻

$$^{\mathrm{P}}_{\mathrm{H}}$$

f. TeF_4^{2-}

g. N_3^-

$$[\dot{N} = N = N\dot{]}^-$$

$$N = N = N$$

 $h. SeOCl_4$

i. PH₄⁺

- **3.9** Give Lewis dot structures and sketch the shapes of the following.
 - f. $IO(OH)_5$

 \mathbf{g} . $SOCl_2$

h. $ClOF_4^{-[1]}$

i. XeO_2F_2

¹Note that it is unclear whether the equatorial fluorines will be bent away from the lone pair and toward the oxygen, or the other way around. Hence, I arbitrarily chose to show them pointed away from the lone pair.

3.20 Predict and sketch the structure of the (as yet) hypothetical ion IF₃²⁻.

3.29 Sketch the most likely structure of PCl_3Br_2 and explain your reasoning.

Answer. Bromine is more electropositive than chlorine. Thus, by Bent's rule, the bromines will bond to the hybrid orbitals with greater s-character (the equatorial sp^2 ones) first.

II) Assign the symmetry point group to the 13 ions and molecules in problems #8, 9f-i in Chapter 3 of your text. 3.8 **a.** $SeCl_4$ Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes. Therefore, SeCl₄ is of the C_{2v} point group. **b.** I₃ Answer. I_3^- is of the $D_{\infty h}$ point group. c. PSCl₃ Answer. Not low or high symmetry. Has a C_3 axis. No perpendicular C_2 axes. No σ_h . Has three σ_v planes all offset by 60°. Therefore, PSCl₃ is of the $|C_{3v}|$ point group. \mathbf{d} . IF₄ Answer. Not low or high symmetry. Has a C_4 axis. Has 4 perpendicular C_2 axes. Has σ_h . Therefore, IF_4^- is of the $|D_{4h}|$ point group. e. PH_2 Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes. Therefore, PH_2^- is of the C_{2v} point group. **f.** TeF_4^{2-} Answer. Not low or high symmetry. Has a C_4 axis. Has 4 perpendicular C_2 axes. Has σ_h . Therefore, TeF_4^{2-} is of the $|D_{4h}|$ point group. $\mathbf{g}. N_3$ Answer. N_3^- is of the $D_{\infty h}$ point group. Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes. Therefore, SeOCl₄ is of the C_{2v} point group. **i.** PH₄⁺ Answer. PH_4^+ is of the T_d point group. 3.9f. $IO(OH)_5$ Answer. Not low or high symmetry. Has a C_4 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes and two perpendicular σ_d planes. Therefore, $IO(OH)_5$ is of the $|C_{4v}|$ point group. $\mathbf{g}. \text{ SOCl}_2$ Answer. SOCl₂ is of the C_s point group. \mathbf{h} . ClOF₄ Answer. Not low or high symmetry. Has a C_4 axis. No perpendicular C_2 axes. No σ_h . Has two perpendicular σ_v planes and two perpendicular σ_d planes. Therefore, $ClOF_4^-$ is of the $|C_{4v}|$ point group. i. XeO_2F_2

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . Has

two perpendicular σ_v planes.

Therefore, XeO_2F_2 is of the C_{2v} point group.

- III) Assign the symmetry point group of the following molecules and objects. Ignore the H atoms in (a), (e), and (g). Note that (e) has pseudooctahedral geometry and (g) is square-planar.
 - a) The molecule pictured below.

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. Has a σ_h . Therefore, the above molecule is of the C_{2h} point group.

b) The molecule pictured below.

Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. Has a σ_h Therefore, the above molecule is of the C_{2h} point group.

c) POCl₃

Answer. Not low or high symmetry. Has a C_3 axis. No perpendicular C_2 axes. No σ_h . Has three σ_v planes all offset by 60° .

Therefore, POCl₃ is of the C_{3v} point group.

d) Tennis ball (including the seam)

Answer. Not low or high symmetry. Has a C_2 axis. Has 2 perpendicular C_2 axes. No σ_h . Has two perpendicular σ_d planes.

Therefore, a tennis ball is of the D_{2d} point group.

e) trans-[CrCl₂(H₂O)₄]⁺

Answer. Not low or high symmetry. Has a C_4 axis. Has 4 perpendicular C_2 axes. Has σ_h . Therefore, trans- $[CrCl_2(H_2O)_4]^+$ is of the $\boxed{D_{4h}}$ point group.

f) 1,3,5-trichlorobenzene.

Answer. Not low or high symmetry. Has a C_3 axis. Has 3 perpendicular C_2 axes. Has σ_h . Therefore, 1,3,5-trichlorobenzene is of the $\boxed{D_{3h}}$ point group.

g) trans-Pt(NH₃)₂Cl₂

Answer. Not low or high symmetry. Has a C_2 axis. Has 2 perpendicular C_2 axes. Has σ_h . Therefore, trans-Pt(NH₃)₂Cl₂ is of the D_{2h} point group.

h)	$\mathrm{SF_{5}Cl}$	
	Answer. Not low or high symmetry. Has a C_4 axis. No perpendicular C_2 axes. No σ_h . Perpendicular σ_v planes and two perpendicular σ_d planes.	Has two
	Therefore, SF_5Cl is of the C_{4v} point group.	
i)	BFClBr	
	Answer. BFClBr is of the C_s point group.	
j)	$\mathrm{PF_2}^+$	
	Answer. Not low or high symmetry. Has a C_2 axis. No perpendicular C_2 axes. No σ_h . I perpendicular σ_v planes.	Has two
	Therefore, PF_2^+ is of the C_{2v} point group.	

IV) In the octahedral ion ${\rm FeF_6}^{3-}$, what symmetry elements are destroyed if two *trans* F ions are moved away from the ${\rm Fe^{3+}}$ center in an equidistant fashion?

Answer. From the O_h character table, we have that the O_h symmetry operations are

 $E = 8C_3 = 6C_2 = 6C_4 = 3C_2 (= C_4^2)$ $i = 6S_4 = 8S_6 = 3\sigma_h = 6\sigma_d$

Most of these operations are in one-to-one correspondence with a symmetry element. For example, each of the six C_2 rotations happens about a different C_2 axis. However, some symmetry elements have multiple symmetry operations happen about them. For example, each of the four C_3 axes has two (conjugate) C_3 symmetry operations (C_3 and ${C_3}^2$) occur about it. Thus, accounting for changes like this, we have that the O_h symmetry elements are

 $E 4C_3 6C_2 3C_4 3C_2 (= C_4^2) i 3S_4 4S_6 3\sigma_h 6\sigma_d$

Similarly, we can determine that the \mathcal{D}_{4h} symmetry elements are

 $E \qquad C_4 \qquad C_2 (= C_4^2) \qquad 2 C_2' \qquad 2 C_2'' \qquad i \qquad S_4 \qquad \sigma_h \qquad 2 \sigma_v \qquad 2 \sigma_d$

Between the two sets of symmetry elements, some are relabeled and some are lost entirely.

We will first discuss the relabeled ones. In particular...

- The two C_2 axes that lie in the xy plane become $2C_2'''$;
- The two $C_2(=C_4^2)$ axes that do not become the principal axis of the D_{4h} molecule become $2 C_2^{\prime [2]}$;
- The two σ_h planes that are not perpendicular to the principal axis of the D_{4h} molecule become $2 \sigma_v$.

We now discuss the ones that are lost entirely. These include (of the O_h molecule)...

- All four C_3/S_4 axes;
- The four C_2 axes that do not lie in the xy plane;
- The two C_4/S_4 axes that do not become the principal axis of the D_{4h} molecule;
- The four σ_d planes that do not contain the principal axis of the D_{4h} molecule.

²The prime notation is explained in the discussion associated with Figure II.6b of my notes.