axle

Adam Pingel May 23, 2015

Typical CS Abstractions

Set, Relation, Graph

Chomsky Hierarchy (Regex, CFG, ...)

. . .

Lattice

. . .

Monad

Category

Monoids

Scalaz's Nick Partridge derives Monoid, Foldable, and more at vimeo.com/10482466

learnyouahaskell.com

Post-Monoid

Nov 12, 2012 Oscar Boykin and Sam Ritchie took questions about Algebird at Cascading meetup (Twitter)

February 2013 "Life After Monoids" Tom Switzer (NE Scala) youtube.com/watch?v=xO9AoZNSOH4

August 2014 "Reasoning with Types" Adelbert Chang (Scala by the Bay) youtube.com/watch?v=TbASMeJSh9s

Algebra: MacLane & Birkhoff

- I. Sets, Functions, and Integers
- II. Groups
- III. Rings
- IV. Universal Constructions
- V. Modules
- VI. Vector Spaces
- VII. Matrices
- VIII. Special Fields
 - IX. Determinants and Tensor Products
 - X. Bilinear and Quadratic Forms
- XI. Similar Matrices and Finite Abelian Groups
- XII. Structure of Groups
- XIII. Galois Theory
- XIV. Lattices
- XV. Categories and Adjoint Functors
- XVI. Multilinear Algebra

Structure	Composed of	Examples
Semigroup	an associative binary operator	Integer +, string concat
Monoid	a semigroup with identity element	(+, 0), (*, 1), (concat, "")
Group	a set of elements together with an operation that combines any two elements to form a third element. The operation satisfies closure, associativity, identity and invertibility.	Integer + Rubik's Cube group
Abelian Group	a group in which the result of applying the group operation to two group elements does not depend on their order	Integer +
Ring	an abelian group with a second binary operation that is associative, is distributive over the abelian group operation and has an identity element	2x2 matrix + and *
Field	a nonzero commutative ring that contains a multiplicative inverse for every nonzero element	(+, -, *, /) for R, C, and Q
Vector Space	a collection of objects called vectors , which may be addedtogether and multiplied ("scaled") by numbers, called <i>scalars</i> in this context	\mathbb{R}^2
	·	
		source: wikipedia

Diverse Algorithms

Units of Measurement	Algebra	
Machine Learning	Games	
Visualization	Statistics	
Probabilistic Graphical Models	Bioinformatics	
Natural Language Processing		

Diverse Platform

Docs (axle-lang.org)

```
val classifier = KMeans[Iris, List, DoubleMatrix](
           irises.
  9
           (iris: Iris) => List((iris.sepalLength in cm).magnitude.toDouble, (iris.sepalWidth in cm).magnitude.⁻
           (PCAFeatureNormalizer[DoubleMatrix] _).curried.apply(0.98),
           (features: Seq[Double]) => Iris(1 *: cm, 1 *: cm, 1 *: cm, 1 *: cm, ""),
 11
 12
           K = 3
           iterations = 20)
 13
Produce a "confusion matrix"
      import axle.ml.ConfusionMatrix
      import spire.implicits.IntAlgebra
  2
3
4
      val confusion = ConfusionMatrix[Iris, Int, String, Vector, DoubleMatrix](classifier, irises.toVector, _
      string(confusion)
                       50 Iris-setosa
                       50 Iris-versicolor
                34 : 50 Iris-virginica
                                                                                                                                              7.0
        51 49
                50
```

... and ...

Correct	Some ScalaCheck properties (to be organized with Discipline)
Complete	20k lines of code, but lots of "???" yet
Fast	No benchmarking yet
Diverse Data	A few small datasets available in axle.data

Feedback welcome!

@axlelang
axle-lang.org

@pingel

gitter.im/axlelang/axle github.com/axlelang/axle

"org.axle-lang" %% "axle-core" % "0.2.0-SNAPSHOT"