(iii) for preparation of (I)-containing extracts or for preparing food/feed supplements (claimed), e.g., especially where (I) is astaxanthin, as pluvialis and a terminator. It was used to transform tomato cells, using The transgenic plants produce fruits with increased content of (I). rbcs chloroplast transit peptide; the ketolase gene from Haemococcus plants conventionally. One of the resulting transgenic lines, CS13-24, Vector pS3KETO2 comprises, in pSUN5, a cassette containing the constitutive double 35S cauliflower mosaic virus promoter; the produced fruits that contained lycopene, β-carotene, canthaxanthin, Agrobacterium tumefaciens, and the infected cells regenerated to The modified plants with increased (II) activity are used: D(3-G4, 3-H1E, 5-H8, 5-H12D5, 5-H12E, 5-H16B, 5a pigment for coloring trout, salmon and shrimps. (ii) as food or animal feed; and (i) as ornamentals; <u>ADVANTAGE</u> H17B3) E(3) EXAMPLE USE Method for preparing ketocarotenoids, useful e.g. as food or feed supplements, by increasing, or introducing, ketolase activity in the *DE 10238978-A1 SUNG- 2002.08.20 Method for preparing ketocarotenoids (I) by culturing genetically modified plants that, in comparison with the wild-type, have altered INDEPENDENT CLAIMS are also included for the following: (1) nucleic acid construct comprising a fruit-specific promoter linked 2002.08.20 2002-1038978(+2002DE-1038978) (2004.03.04) A01H 5/08, A23K 1/00, A23L 1/00, 1/303, C07H 21/00, C12N 9/02, 15/52, (2) genetically modified plants in which the fruits have (II) activity; fruits of transgenic plants, also new nucleic acid constructs functionally to a sequence that encodes (II); (3) method for preparing the plants of (2). ketolase (II) activity in the fruits. SUNGENE GMBH & CO KGAA DETAILED DESCRIPTION C2004-085423 C12P 23/00 NOVELTY

DE 10238978-A+

adonirubin or astaxanthin, but the last three were absent from wildtype fruits (which additionally contained lutein, not detected in transgenic fruits).

TECHNOLOGY FOCUS

Biotechnology - Preferred Plants: These contain at least one nucleic acid sequence that encodes (II), especially under control of a fruit-specific promoter, and particularly they contain chromoplasts in the fruit. Especially (II) is a 329 amino acid (aa) protein (2) from Haematococcus pluvialis or a 258 aa protein (16) from Nostoc sp., or sequences derived from them by substitution, insertion or deletion, but retaining at least 20% homology at the aa level and enzymatic activity. Especially it is encoded by 1771 or 777 bp sequences. Optionally the plants also have (increased) hydroxylase activity. About 80 suitable genera are listed, e.g. Ananas; Citrus, Lycopersicon; Ribes and Vitis. Preferred Process: The (II)-encoding nucleic acid is inserted by standard methods, then the transgenic plants are cultivated, harvested and (I) isolated from their fruits.

Preferred Carotenoids: These are astaxanthin; canthaxanthin;

echinenone (or its 3- or 3'-hydroxy derivatives); adonirubin or adonixanthin.

(77pp1251DwgNo.0/9)

DE 10238978-A

THIS PAGE BLANK (USPIE),

(12)

Offenlegungsschrift

(21) Aktenzeichen: 102 38 978.0

(22) Anmeldetag: 20.08.2002

(43) Offenlegungstag: 04.03.2004

(51) Int Cl.7: A01H 5/08

C12N 15/52, C12N 9/02, C12P 23/00, A23K 1/00, A23L 1/00, A23L 1/303,

C07H 21/00

(71) Anmelder:

SunGene GmbH & Co. KGaA, 06466 Gatersleben, DE

(72) Erfinder:

Erfinder wird später genannt werden

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Bezeichnung: Verfahren zur Herstellung von Ketocarotinoiden in Früchten von Pflanzen

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die in Früchten eine Ketolase-Aktivität aufweisen.

Service Phytoen

Lycopin

ε- Cyclase

β- Cyclase

α-Carotin

β -Carotin

Lutein

Zeaxanthin

Violaxanthin

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die in Früchten eine Ketolase-Aktivität aufweisen, diegenetisch veränderten Pflanzen, sowie deren Verwendung als Nahrungs- oder Futtermittel und zur Herstellung von Ketocarotinoidextrakten.

[0002] Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflanzen synthetisiert. Ketocarotinoide, also Carotinoide, die mindestens eine Keto-Gruppe enthalten, wie beispielsweise Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin oder Adonixanthin sind natürliche Antioxidantien und Pigmente, die von einigen Algen und Mikroorganismen als Sekundarmetabolite produziert werden.

[0003] Aufgrund ihrer farbgebenden Eigenschaften werden die Ketocarotinoide und insbesondere Astaxanthin als Pigmentierhilfsstoffe in der Tierernährung, insbesondere in der Forellen-, Lachs- und Shrimpszucht verwendet.

[0004] Die Herstellung von Astaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren. Natürliche Ketocarotinoide, wie beispielsweise natürliches Astaxanthin, werden heutzutage in biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Algen, beispielsweise Haematococcus pluvialis, oder durch Fermentation von gentechnologisch optimierten Mikroorganismen und anschließender Isolierung gewonnen.

[0005] Ein wirtschaftliches biotechnologisches Verfahren zur Herstellung von natürlichen Ketocarotinoiden ist daher von großer Bedeutung.

[0006] WO 98/18910 beschreibt die Synthese von Ketocarotinoiden in Nektarien von Tabakblüten durch Einbringen eines Ketolase-Gens in Tabak.

[0007] WO 01/20011 beschreibt ein DNA Konstrukt zur Produktion von Ketocarotinoiden, insbesondere Astaxanthin, in Samen von Ölsaatpflanzen wie Raps, Sonnenblume, Sojabohne und Senf unter Verwendung eines Samen-spezifischen Promotors und einer Ketolase aus Haematococcus.

[0008] Die im Stand der Technik offenbarten Verfahren liefern zwar genetisch veränderte Pflanzen, die in spezifischen Geweben einen Gehalt an Ketocarotinoiden aufweisen, weisen jedoch den Nachteil auf, dass die Höhe des Gehalts an Ketocarotinoiden und die Reinheit, insbesondere an Astaxanthin, noch nicht zufriedenstellend ist.

[0009] Der Erfindung lag daher die Aufgabe zugrunde, ein alternatives Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von Pflanzen zur Verfügung zu stellen, bzw. weitere transgene Pflanzen, die Ketocarotinoide herstellen, zur Verfügung zu stellen, die optimierte Eigenschaften, wie beispielsweise einen höheren Gehalt an Ketocarotinoiden, aufweisen und den geschilderten Nachteil des Standes der Technik nicht aufweisen.

[0010] Demgemäß wurde ein Verfahren zur Herstellung von Ketocarotinoiden gefunden, indem man genetisch veränderte Pflanzen kultiviert, die in Früchten eine Ketolase-Aktivität aufweisen.

[0011] Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.

[0012] Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β-lonon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

[0013] Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Canthaxanthin umzuwandeln.

[0014] Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge β-Carotin bzw. gebildete Menge Canthaxanthin verstanden.

[0015] Um in den Früchten der genetisch veränderten Pflanzen eine Ketolaseaktivität aufzuweisen, werden in einer bevorzugten Ausführungsform genetisch veränderte Pflanzen verwendet, die in-Früchten eine Ketolase exprimieren.

[0016] Vorzugsweise werden daher im erfindungsgemäßen Verfahren genetisch veränderte Pflanzen verwendet, die in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase, enthalten.

[0017] Es sind keine Pflanzen bekannt, die als Wildtyp in Früchten eine Ketolase-Aktivität aufweisen. Insbesondere weisen die nachstehend beschriebenen, bevorzugten Pflanzen in Früchten als Wildtyp keine Ketolase-Aktivität auf.

[0018] In der vorliegenden Erfindung wird die Ketolase-Aktivität in Früchten der genetisch veränderten Pflanzen durch die genetische Veränderung der Ausgangspflanze verursacht. Die erfindungsgemäße genetisch veränderte Pflanze weist somit, im Vergleich zur genetisch nicht veränderten Ausgangspflanze eine Ketolase-Aktivität in Früchten auf und ist somit vorzugsweise in der Lage, in Früchten eine Ketolase zu exprimieren.

[0019] Unter dem Begriff "Ausgangspflanze" oder "Wildtyp" wird die entsprechende nicht genetisch veränderte Ausgangspflanze verstanden.

[0020] Unter dem Begriff "genetisch veränderte Pflanze" wird vorzugsweise eine im Vergleich zur Ausgangspflanze genetisch veränderte Pflanze verstanden.

[0021] Je nach Zusammenhang kann unter dem Begriff "Pflanze" die Ausgangspflanze (Wildtyp) oder eine erfindungsgemäße, genetisch veränderte Pflanze oder beides verstanden werden.

[0022] Die Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, in den Früchten der Pflanzen erfolgt vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, in die Ausgangspflanze.

[0023] Die Erfindung betrifft daher insbesondere das vorstehend beschriebene Verfahren, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, in die man ausgehend von einer Ausgangspflanze, mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.

[0024] Dazu kann prinzipiell jedes Ketolase-Gen, also jede Nukleinsäure die eine Ketolase kodiert, verwendet werden.

[0025] Alle in der Beschreibung erwähnten Nukleinsäuren können beispielsweise eine RNA-, DNA- oder cD-NA-Sequenz sein.

[0026] Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall, dass die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden kann, die entsprechenden Ketolase zu exprimieren, bevorzugt bereits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs, zu verwenden.

[0027] Beispiele für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen, die im erfindungsgemäßen Verfahren bzw. in den nachstehend beschriebenen erfindungsgemäßen genetisch veränderten Pflanzen verwendet werden können, sind beispielsweise Sequenzen aus

Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Accession No. X86782; Nukleinsäure: SEQ ID No. 1, Protein SEQ ID No. 2),

Haematoccus pluvialis, NIES-144 (Accession No. D45881; Nukleinsäure: SEQ ID No. 3, Protein SEQ ID No. 4),

Agrobacterium aurantiacum (Accession No. D58420; Nukleinsäure: SEQ. ID. No. 5, Protein SEQ ID No. 6), Alicaligenes spec. (Accession No. D58422; Nukleinsäure: SEQ ID No. 7, Protein SEQ ID No. 8),

Paracoccus marcusii (Accession No. Y15112; Nukleinsäure: SEQ ID No. 9, Protein SEQ ID No. 10).

Synechocystis sp. Strain PC6803 (Accession No. S76617, NP442491; Nukleinsäure: SEQ ID No. 11, Protein SEQ ID No. 12).

Bradyrhizobium sp. (Accession No. AF218415, BAB 74888; Nukleinsäure: SEQ ID No. 13, Protein SEQ ID No. 14).

Nostoc sp. Strain PCC7120 (Accession No. AP003592; Nukleinsäure: SEQ ID No. 15, Protein SEQ ID No. 16). [0028] Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomische Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen Sequenzen und insbesondere mit den Sequenzen SEQ ID NO. 2 und/oder SEQ ID NO. 16 leicht auffinden.

[0029] Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID. No 1 und/oder SEQ ID NO. 15 aus verschiedenen Organismen, deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden.

[0030] Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.

[0031] Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31–9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1–6.3.6 beschrieben.

[0032] Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50°C, bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

[0033] Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten Bedingungen bei 65°C angehoben werden.

[0034] Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

[0035] Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:

- (1) Hybridisierungsbedingungen mit zum Beispiel
- (i) 4X SSC bei 65°C, oder
- (ii) 6X SSC bei 45°C, oder

- (iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder
- (iv) 6X SSC, 0,5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
- (v) 6XSSC, 0,5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42°C, oder
- (vi) 50 % Formamid, 4X SSC bei 42°C, oder
- (vii) 50 % (vol/vol) Formamid, 0,1 % Rinderserumalbumin, 0,1 % Ficoll, 0,1 % Polyvinylpyrrolidon, 50 mM Natriumphosphatpuffer pH 6,5, 750 mM NaCl, 75 mM Natriumcitrat bei 42°C, oder
- (viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder
- (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42° (moderate Bedingungen).
- (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
- (i) 0,015 M NaCl/0,0015 M Natriumcitrat/0,1 % SDS bei 50°C, oder
- (ii) 0,1X SSC bei 65°C, oder
- (iii) 0,1X SSC, 0.5 % SDS bei 68°C, oder
- (iv) 0,1X SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder
- (v) 0,2X SSC, 0.1 % SDS bei 42°C, oder
- (vi) 2X SSC bei 65°C (moderate Bedingungen).

[0036] In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens bringt man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Ketolase aufweist.

[0037] Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO. 2 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

[0038] In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40%, bevorzugter mindestens 40%, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 16 und die enzymatische Eigenschaft einer Ketolase aufweist.

[0039] Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO. 16 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

[0040] Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gln durch Asn, Val durch Ile, Leu durch Ile, Ser durch Thr. [0041] Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen. [0042] Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.

[0043] Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden, insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, inc.Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:

Multiple alignment parameter:

Gap penalty	. 10
Gap length penalty	10
Pairwise alignment parameter:	
K-tuple	1
Gap penalty	3
Window	. 5
Diagonals saved	5

[0044] Unter einem Protein, das eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 oder 16 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO. 2 oder 16, insbesondere nach obigen Programmalgorithmus mit obigem Parametersatz eine Identität von mindestens 20 % aufweist.

[0045] Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code erhältlich.

[0046] Bevorzugt werden dafür solche Kodons verwendet, die entsprechend der pflanzespezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, bekannter Gene der betreffenden Organismen leicht ermitteln.

[0047] In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO. 1, in den Pflanze ein.

[0048] In einer weiteren besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO. 15, in den Pflanze ein.

[0049] Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896–897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

[0050] In einer besonderes bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.

[0051] Vorzugsweise wird dies dadurch erreicht, dass die Genexpression der Ketolase unter Kontrolle eines fruchtspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt, funktionell verknüpft mit einem fruchtspezifischen Promotor, in die Pflanze eingebracht.

[0052] Unter Pflanzen werden erfindungsgemäß vorzugsweise Pflanzen verstanden, die als Wildtyp in Früchten Chromoplasten aufweisen.

[0053] Weiter bevorzugte Pflanzen weisen als Wildtyp in den Früchten zusätzlich Carotinoide, insbesondere β-Carotin, Zeaxanthin, Neoxanthin, Violaxanthin oder Lutein auf.

[0054] Weiter bevorzugte Pflanzen weisen als Wildtyp in den Früchten zusätzlich eine Hydroxylase-Aktivität auf.

[0055] Unter Hydroxylase-Aktivität wird die Enzymaktivität einer Hydroxylase verstanden.

[0056] Unter einer Hydroxylase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β-Ionon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

[0057] Insbesondere wird unter einer Hydroxylase ein Protein verstanden, das die enzymatische Aktivität aufweist, β-Carotin in Zeaxanthin oder Canthaxanthin in Astaxanthin umzuwandeln.

[0058] Dementsprechend wird unter Hydroxyase-Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge β-Carotin oder Canthaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.

[0059] Besonders bevorzugte Pflanzen sind Pflanzen, ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis.

[0060] Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen erfolgt in Anlehnung an die Methode von Frazer et al., (J. Biol. Chem. 272(10): 6128–6135, 1997). Die Ketolase-Aktivität in pflanzlichen Extrakten wird mit den Substraten beta-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/ Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

[0061] Im erfindungsgemäßen Verfahren zur Herstellung von Ketocarotinoiden wird vorzugsweise dem Kultivierungsschritt der genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, ein Ernten der Pflanzen und ein Isolieren von Ketocarotinoiden aus den Früchten der Pflanzen angeschlossen.

[0062] Die transgenen Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet.

[0063] Die Isolierung von Ketocarotinoiden aus den geernteten Früchten erfolgt in an sich bekannter Weise, beispielsweise durch Trocknung und anschließender Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennverfahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von Ketocarotinoiden aus den Früchten erfolgt beispielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Ether oder tert.-Methylbutylether.

[0064] Weitere Isolierverfahren von Ketocarotinoiden sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437–440) und Egger (Phytochemistry (1965) 4, 609–618) beschrieben.

[0065] Vorzugsweise sind die Ketocarotinoide ausgewählt aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.

[0066] Ein besonders bevorzugtes Ketocarotinoid ist Astaxanthin.

[0067] Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das die vorstehend beschriebenen Nukleinsäuren, kodierend eine Ketolase, enthält, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.

[0068] Diese Nukleinsäurekonstrukte, in denen die kodierende Nukleinsäuresequenz mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.

[0069] Vorzugsweise enthalten die Regulationssignale einen oder mehrere Promotoren, die die Transkription und Translation in Pflanzen gewährleisten.

[0070] Die Expressionskassetten beinhalten Regulationssignale, also regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.

[0071] Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekonstrukte, Expressionskassetten und Vektoren für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen, sowie die transgenen Pflanzen selbst beschrieben.

[0072] Die zur operativen Verknüpfung bevorzugten aber nicht darauf beschränkten Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693–8711).

[0073] Als Promotoren der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann.

[0074] "Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.

[0075] Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285–294; Odell et al. (1985) Nature 313:810–812; Shewmaker et al. (1985) Virology 140:281–288; Gardner et al. (1986) Plant Mol Biol 6:221–228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8:2195–2202).

[0076] Ein weiterer geeigneter konstitutiver Promotor ist der pds Promoter (Pecker et al. (1992) Proc. Natl. Acad. Sci USA 89: 4962–4966) oder der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der

TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtoff S et al. (1995) Plant Mol Biol 29:637–649), den Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675–689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692–9696), den Smas Promotor, den Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), der Pnit-Promoter (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89–99, Hillebrand et al. (1996), Gene, 170, 197–200) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.

[0077] Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89–108), durch den die Expression des Ketolase-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361–366), durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397–404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.

[0078] Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogeninduzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol Biol 22:361–366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierbare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814), der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinII-Promoter (EP375091).

[0079] Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR-Proteinen, b-1,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth J Plant Pathol 89:245–254; Uknes, et al. (1992) The Plant Ce114:645–656; Van Loon (1985) Plant Mol Viral 4:111–116; Marineau et al. (1987) Plant Mol Biol 9:335–342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sci USA 83:2427–2430; Somssich et al. (1988) Mol Gen Genetics 2:93–98; Chen et al. (1996) Plant J 10:955–966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507–2511; Warner, et al. (1993) Plant J 3:191–201; Siebertz et al. (1989) Plant Cell 1:961–968(1989).

[0080] Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinII Gens (Ryan (1990) Ann Rev Phytopath 28:425–449; Duan et al. (1996) Nat Biotech 14:494–498), des wun1 und wun2-Gens (US 5,428,148), des win1- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200–208), des Systemin (McGurl et al. (1992) Science 225:1570–1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22:783–792; Ekelkamp et al. (1993) FEBS Letters 323:73–76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141–150) und dergleichen.

[0081] Weitere geeignete Promotoren sind beispielsweise fruchtreifungspezifische Promotoren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwicklungsabhängige Promotoren schlieflen zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.

[0082] Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Ketocarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel, Wurzeln und Früchte und Kombinationen hieraus.

[0083] Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren sind beispielsweise der Patatin Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kartoffel.

[0084] Blattspezifische Promotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), der SSU Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445–2451).

[0085] Blütenspezifische Promotoren sind beispielsweise der Phytoen Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593).

[0086] Antheren-spezifische Promotoren sind beispielsweise der 5126-Promotor (US 5,689,049, US 5,689,051), der glob-l Promotor oder der g-Zein Promotor.

[0087] Fruchtspezifische Promotoren sind beispielsweise

der Pds-Promoter aus Tomate (Genbank-ACCESSION U46919; Corona, V., Aracri, B., Kosturkova, G., Bartley, G.E., Pitto, L., Giorgetti, L., Scolnik, P.A. and Giuliano, G., Regulation of a carotenoid biosynthesis gene promoter during plant development Plant J. 9 (4), 505–512 (1996)), SEQ ID NO.17,

der 2A11 Promoter aus Tomate (Pear, J.R., Ridge, N., Rasmussen, R., Rose, R.E. and Houck, C.M. Isolation and characterization of a fruit-specific cDNA and the corresponding genomic clone from tomatoPlant Mol. Biol. 13 (6), 639–651 (1989), SEQ ID NO. 18,

der Cucumisin Promoter (Yamagata, H., Yonesu, K., Hirata, A. and Aizono, Y., TGTCACA Motif Is a Novel cis-Regulatory Enhancer Element Involved in Fruit-specific Expression of the cucumisin Gene J. Biol. Chem.

277 (13), 11582-11590 (2002), SEQ ID NO. 19,

der Promoter des Endogalacturonasegens (Redondo-Nevado, J., Medina-Escobar, N., Caballero-Repullo, J.L. and Munoz-Blanco, J.

A fruit-specific and developmentally regulated endo-polygalacturonase gene from strawberry (Fragaria x ananassa c.v. Chandler), J Experimental Botany 52 (362) 1941–1945 (2001), SEQ ID NO. 20,

der Polygalacturonase Promoter aus Tomate (Nicholass, F.J., Smith, C.J., Schuch, W., Bird, C.R. and Grierson, D., High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions, Plant Mol. Biol. 28 (3), 423–435 (1995)), SEQ ID NO. 21,

die TMF7 und TMF9 Promotoren (US 5608150),

der Promotor E4 (Cordes S. Deikman J. Margossian LJ. Fischer RL. Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato (1989), Plant Cell 1, 1025–1034) und

der Promotor E8 (Deikman and Fisher, Interaction of a DNA binding factor with the 5'-flanking region of an ethylene-responsive fruit ripening gene from tomato (1988), EMBO J. 7, 3315–3320). Weitere zur Expression in Pflanzen geeignete Promotoren sind beschrieben (Rogers et al. (1987) Meth in Enzymol 153:253–277; Schardl et al. (1987) Gene 61:1–11; Berger et al. (1989) Proc Natl Acad Sci USA 86:8402–8406).

[0088] Alle in der vorliegenden Anmeldung beschriebenen Promotoren ermöglichen in der Regel die Expression der Ketolase in Früchten der erfindungsgemäßen Pflanzen.

[0089] Besonders bevorzugt im erfindungsgemäßen Verfahren sind konstitutive sowie insbesondere fruchtspezifische Promotoren.

[0090] Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor, besonders bevorzugt einen oben beschriebenen fruchtspezifischen Promotor, und eine Nukleinsäure, kodierend eine Ketolase.

[0091] Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit einer vorstehend beschriebenen Nukleinsäure kodierend eine Ketolase und vorzugsweise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.

[0092] Die vorzugsweise insertierte Nukleinsäuren, kodierend ein plastidäres Transitpeptid, gewährleisten die Lokalisation in Plastiden und insbesondere in Chromoplasten.

[0093] Es können auch Expressionskassetten verwendet werden, deren Nukleinsäure-Sequenz für ein Ketolase-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Ketolase in die Chromoplasten vom Ketolase-Teil enzymatisch abgespalten werden.

[0094] Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana tabacum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat Isomerase-2) oder dessen funktionellem Äquivalent abgeleitet ist.

[0095] Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als Kpnl/BamHI Fragmente mit einem ATG-Kodon in der Ncol Schnittstelle:

pTP09

pTP10

TAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTGGATCC_Bamhi

pTP11

[0096] Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat Isomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der kleinen Untereinheit der Ribulosebisphospaht Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cassette for targeting foreign proteins into the chloroplstas. Nucl. Acids Res. 16: 11380). [0097] Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure-Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.

[0098] Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden.

[0099] Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

[0100] Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.

[0101] Ein Beispiel für einen Terminator ist der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet. 1982;1(6):561–73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5. EMBO J. 3: 835–846). [0102] Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, "primerrepair", Restriktion oder Ligation verwendet werden.

[0103] Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewingback" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden. [0104] Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente.

[0105] Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.

[0106] Dazu können an sich bekannte Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.

[0107] Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone – die sogenannte particle bombardment Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993),

128–143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205–225) beschrieben. [0108] Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711)

oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900).

- [0109] Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
- [0110] Zur bevorzugten Herstellung von genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette, die eine Ketolase exprimiert, in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN2 kloniert, der geeignet ist, in Agrobacterium tumefaciens transformiert zu werden
- [0111] Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.
- [0112] Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15–38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein in die Expressionskassette integriertes Gen für die Expression einer Nukleinsäure codierend eine Ketolase enthalten.
- [0113] Zur Transformation einer Wirtspflanze mit einer für eine Ketolase kodierenden Nukleinsäure wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71–119 (1993) beschrieben.
- [0114] Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in E. coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a. pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16:11380), pBR332, pUC-Serien, M13mp-Serien, pACYC184, pMC1210, pMcl 210 und pCL1920. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.
- [0115] Dabei kann je nach Wahl des Promotors die Expression konstitutiv oder vorzugsweise spezifisch in den Früchten erfolgen.
- [0116] Dementsprechend betrifft die Erfindung ferner ein Verfahren zur Herstellung von genetisch veränderten Pflanzen, dadurch gekennzeichnet, dass man ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und Nukleinsäuren kodierend eine Ketolase in das Genom der Ausgangspflanze einführt.
- [0117] Die Erfindung betrifft ferner die genetisch veränderten Pflanzen, die im Vergleich zur Ausgangspflanze in Früchten eine Ketolase-Aktivität aufweist.
- [0118] Die Ketolaseaktivität wird in einer bevorzugten Ausführungsform dadurch erreicht, dass die genetisch veränderte Pflanze in den Früchten eine Ketolase exprimiert.
- [0119] Die bevorzugten, genetisch veränderten Pflanzen enthalten daher in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase.
- [0120] In einer weiter bevorzugten Ausführungsform erfolgt, wie vorstehend ausgeführt, die Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, durch Einbringen von Nukleinsäuren, kodierend eine Ketolase, in die Ausgangspflanze.
- [0121] Der Erfindung betrifft daher besonders bevorzugt eine vorstehend beschriebene genetisch veränderte Pflanze, dadurch gekennzeichnet, dass man in die Pflanze ausgehend von einer Ausgangspflanze mindestens eine Nukleinsäure, kodierend eine Ketolase eingebracht hat.
- [0122] Die Erfindung betrifft insbesondere genetisch veränderte Pflanzen, ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis, enthaltend mindestens eine Nukleinsäure, kodierend eine Ketolase.
- [0123] Ganz besonders bevorzugte Pflanzengattungen sind Ananas, Asparagus, Capsicum, Citrus, Cucumis,

Cucurbita, Citrullus, Lycopersicum, Passiflora, Prunus, Physalis, Solanum, Vaccinium und Vitis, enthaltend mindestens eine transgene Nukleinsäure, kodierend eine Ketolase.

[0124] Wie vorstehend erwähnt wird in bevorzugten transgenen Pflanzen die Ketolase in den Früchten exprimiert, besonderes bevorzugt ist die Expression der Ketolase in den Früchten am höchsten.

[0125] Die transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, -gewebe oder -teile, insbesondere deren Früchte sind ein weiterer Gegenstand der vorliegenden Erfindung.

[0126] Die genetisch veränderten Pflanzen können, wie vorstehend beschrieben, zur Herstellung von Ketocarotinoiden, insbesondere Astaxanthin, verwendet werden.

[0127] Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Pflanzen mit erhöhtem Gehalt an Ketocarotinoiden können auch beispielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel oder als Futter- und Nahrungsergänzungsmittel verwendet werden. Ferner können die genetisch veränderten Pflanzen zur Herstellung von Ketocarotinoid-haltigen Extrakten der Pflanzen und/oder zur Herstellung von Futter- und Nahrungsergänzungsmitteln verwendet werden.

[0128] Die genetisch veränderten Pflanzen weisen im Vergleich zum Wildtyp einen erhöhten Gehalt an Ketocarotinoiden auf.

[0129] Unter einem erhöhten Gehalt an Ketocarotinoiden wird in der Regel ein erhöhter Gehalt an Gesamt-Ketocarotinoid verstanden.

[0130] Unter einem erhöhten Gehalt an Ketocarotinoiden wird aber auch insbesondere ein veränderter Gehalt der bevorzugten Ketocarotinoide verstanden, ohne dass zwangsläufig der Gesamt-Carotinoidgehalt erhöht sein muss.

[0131] In einer besonders bevorzugten Ausführungsform weisen die erfindungsgemäßen, genetisch veränderten Pflanzen im Vergleich zum Wildtyp einen erhöhten Gehalt an Astaxanthin auf.

[0132] Unter einem erhöhten Gehalt wird in diesem Fall insbesondere ein verursachter Gehalt an Ketocarotinoiden, bzw. Astaxanthin verstanden.

[0133] Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt: Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA

[0134] Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma Licor (Vertrieb durch MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463–5467).

Beispiel 1: Amplifikation einer cDNA, die die gesamte Primärsequenz der Ketolase aus Haematococcus pluvialis Flotow em. Wille kodiert

[0135] Die cDNA, die für die Ketolase aus Haematococcus pluvialis kodiert, wurde mittels PCR aus Haematococcus pluvialis (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") Suspensionskultur amplifiziert.

[0136] Für die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus pluvialis (Stamm 192.80), die 2 Wochen mit indirektem Tageslicht bei Raumtemperatur in Haematococcus Medium (1.2 g/l Natriumacetat, 2 g/l Hefeextrakt, 0.2 g/l MgC12×6H2O, 0.02 CaCl2×2H2O; pH 6.8; nach Autoklavieren Zugabe von 400 mg/l L-Asparagin, 10 mg/l FeSO4×H2O) gewachsen war, wurden die Zellen geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend wurden 100 mg der gefrorenen, pulverisierten Algenzellen in ein Reaktionsgefäß überführt und in 0,8 ml Trizol-Puffer (Life Technologies) aufgenommen. Die Suspension wurde mit 0,2 ml Chloroform extrahiert. Nach 15minütiger Zentrifugation bei 12000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75 % Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt.

[0137] Für die cDNA-Synthese wurden 2.5 µg Gesamt-RNA für 10 min bei 60°C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-prime-beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PR1 SEQ ID No. 29) in cDNA umgeschrieben. [0138] Die Nukleinsäure codierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers (PR2 SEQ ID No. 30) und eines antisense spezifischen Primers (PR1 SEQ ID No. 29) amplifiziert

[0139] Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 4 μl einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 mM PR1 (SEQ ID No. 29)

- 0,2 mM PR2 (SEQ ID No. 30)
- 5 µI 10X PCR-Puffer (TAKARA)
- 0,25 µl R Taq Polymerase (TAKARA)
- 25,8 µl Aq. Dest.

[0140] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X	94°C	. 2	Minuten
35X	94°C	1	Minute
	53°C	2	Minuten
	72°C	3	Minuten
1X	72°C	10	Minuten

[0141] Die PCR-Amplifikation mit SEQ 29 No. 29 und SEQ ID No. 30 resultierte in einem 1155 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 22). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO2 erhalten.

[0142] Sequenzierung des Klons pGKETO2 mit dem T7- und dem SP6-Primer bestätigte eine Sequenz, die sich lediglich in den drei Kodons 73, 114 und 119 in je einer Base von der publizierten Sequenz X86782 unterscheidet. Diese Nukleotidaustausche wurden in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz im verwendeten Haematococcus pluvialis Stamm 192.80 (**Abb.** 3 und 4, Sequenzvergleiche).

[0143] Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet. Die Klonierung erfolgte durch Isolierung des 1027 Bp SpHI-Fragmentes aus pGKETO2 und Ligierung in den SpHI geschnittenen Vektor pJIT117. Der Klon, der das Haematococcus pluvialis Ketolasegen in der korrekten Orientierung als N-terminale translationale Fusion mit der rbcs Transit-peptidsequenz enthält, heißt pJKETO2.

Beispiel 2: Amplifikation einer cDNA, die die Ketolase aus Haematococcus pluvialis Flotow em. Wille mit einem um 14 Aminosäuren verkürztem N-terminus kodiert

[0144] Die cDNA, die für die Ketolase aus Haematococcus pluvialis (Stamm 192.80) mit einem um 14 Aminosäuren verkürztem N-Terminus kodiert, wurde mittels PCR aus Haematococcus pluvialis Suspensionskultur (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") amplifiziert.

[0145] Die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus pluvialis (Stamm 192.80) erfolgte wie in Beispiel 1 beschrieben.

[0146] Die cDNA-Synthese erfolgte wie unter Beispiel 1 beschrieben.

[0147] Die Nukleinsäure, kodierend eine Ketolase, aus Haematococcus pluvialis (Stamm 192.80) mit einem um 14 Aminosäuren verkürztem N-Terminus wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers (PR3 SEQ ID No. 31) und eines antisense spezifischen Primers (PR1 SEQ ID No. 29) amplifiziert.

[0148] Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNR, die für ein Ketolase Protein mit um 14 Aminosäuren verkürztem N-Terminus kodiert, erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 4 μI einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 mM PR1 (SEQ ID No. 29)
- -0,2 mM PR3 (SEQ ID No. 31)
- 5 µl 10X PCR-Puffer (TAKARA)
- 0,25 µl R Taq Polymerase (TAKARA)
- 25,8 µl Aq. Dest.

[0149] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X	94°C	2	Minuten
35X	94°C	1	Minute
,	53°C	2	Minuten
	72°C	. 3	Minuten
1X	72°C	10	Minuten

[0150] Die PCR-Amplifikation mit SEQ ID No. 29 und SEQ ID No. 31 resultierte in einem 1111 Bp Fragment, das für ein Ketolase Protein kodiert, bei dem N-terminalen Aminosäuren (Position 2–16) durch eine einzige Aminosäure (Leucin) ersetzt sind.

[0151] Das Amplifikat wurde unter Verwendung von Standardmethoden in den PCR.-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO3 erhalten. Sequenzierungen mit den Primern T7- und SP6 bestätigten eine zur Sequenz SEQ ID No. 22 identische Sequenz, wobei die 5'Region (Position 1-53) der SEQ ID No. 22 im Amplikikat SEQ ID No. 24 durch eine in der Sequenz abweichende Nonamersequenz ersetzt wurde. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

[0152] Die Klonierung erfolgte durch Isolierung des 985 Bp SpHI Fragmentes aus pGKETO3 und Ligierung mit dem SpHI geschnittenen Vektor pJIT117. Der Klon, der die Haematococcus pluvialis Ketolase mit einem um 14 Aminosäuren verkürztem N-Terminus in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcs Transitpeptid enthält, heißt pJKETO3.

Beispiel 3: Amplifikation einer cDNA, die die Ketolase aus Haematococcus pluvialis Flotow em. Wille (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag kodiert

[0153] Die cDNA, die für die Ketolase aus Haematococcus pluvialis (Stamm 192.80) bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag kodiert, wurde mittels PCR unter Verwendung des Plasmids pGKETO2 (in Beispiel 1 beschrieben) und des Primers PR15 (SEQ ID No. 32) hergestellt. Der Primer PR15 setzt sich zusammen aus einer antisense spezifischen 3'Region (Nucleotide 40–59) und einer myc-Tag kodierenden 5'Region (Nucleotide 1-39).

[0154] Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) von pGKETO2 und PR15 erfolgte in einem 11,5 µl Reaktionsansatz, in dem enthalten war:

- 1 µg pGKETO2 PlasmidDNA
- 0,1 μg PR15 (SEQ ID No. 32)

[0155] Das Auffüllen der 3'Enden (30 min bei 30°C) erfolgte in einem 20 µl Reaktionsansatz, in dem enthalten war:

- 11,5 μl pGKETO2/PR15-Annealingsreaktion (hergestellt wie oben beschrieben)
- 50 µM dNTPs
- 2 µl 1X Klenow Puffer
- 2U Klenow Enzym

[0156] Die Nukleinsaure kodierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers (PR2 SEQ ID No. 30) und eines antisense spezifischen Primers (PR15 SEQ ID No. 32) amplifiziert.

[0157] Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein mit fusioniertem C-terminalem myc-Tag kodiert, erfolgte in einem 50 μl Reaktionsansatz, in dem enthalten war:

- 1 μl einer Annealingsreaktion (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 µM PR15 (SEQ ID No. 32)
- 0,2 µM PR2 (SEQ ID No. 30)
- 5 µl 10X PCR-Puffer (TAKARA)
- 0,25 µl R Taq Polymerase (TAKARA)
- 28,8 µl Aq. Dest.

[0158] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X	94°C	2 Minuten
35X	94°C	1 Minute
	53°C	1 Minute
	72°C	1 Minute
1X	72°C	10 Minuten

[0159] Die PCR-Amplifikation mit SEQ ID No. 32 und SEQ ID No. 30 resultierte in einem 1032 Bp-Fragment, das für ein Protein kodiert, bestehend aus der gesamten Primärsequenz der Ketolase aus Haematococcus pluvialis als zweifache translationale Fusion mit dem rbcS Transitpeptide am N-Terminus und dem myc-Tag am C-Terminus.

[0160] Das Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO4 erhalten. Sequenzierungen mit den Primern T7- und SP6 bestätigten eine zur Sequenz SEQ ID No. 22 identische Sequenz, wobei die 3'Region (Position 993-1155) der SEQ ID No. 22 im Amplifikat SEQ ID No. 26 durch eine in der abweichende Sequenz aus 39 Bp ersetzt wurde. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

[0161] Die Klonierung erfolgte durch Isolierung des 1038 Bp EcoRI-SpHI Fragmentes aus pGKETO4 und Ligierung mit dem EcoRI-SpHI geschnittenen Vektor pJITI17. Durch die Ligation entsteht eine translationale Fusion zwischen dem C-Terminus der rbcS Transitpeptidsequenz und dem N-Terminus der Ketolase Sequenz. Der Klon, der die Haematococcus pluvialis Ketolase mit fusioniertem C-terminalem myc-Tag in der korrekten Orientierung als translationale N-terminale Fusion mit dem rbcs Transitpeptid enthält, heißt pJKET4.

Beispiel 4: Herstellung von Expressionsvektoren zur konstitutiven Expression der Haematococcus pluvialis Ketolase in Lycopersicon esculentum

[0162] Die Expression der Ketolase aus Haematococcus pluvialis in L. esculentum erfolgte unter Kontrolle des konstitutiven Promoters d35S aus CaMV (Franck et al. 1980, Cell 21: 285–294). Die Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709–715).

[0163] Die Herstellung eines Expressionsplasmides für die Agrobacteriumvermittelte Transformation der Ketolase aus Haematococcus pluvialis in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (W002/00900).

- Zur Herstellung des Expressionsvektors pS3KETO2 wurde das 2.8 Kb Sacl-Xhol Fragment aus pJKETO2 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert (**Abb.** 5, Konstruktkarte). In der **Abb.** 5 beinhaltet Fragment d35S den duplizierten 35S Promoter (747 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO2 (1027 bp) die gesamte Primärsequenz kodierend für die Haematococcus pluvialis Ketolase, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.
- Zur Herstellung des Expressionsvektors pS3KETO3 wurde das 2.7 Kb bp Sacl-Xhol Fragment aus pJKETO3 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert. (**Abb.** 6, Konstruktkarte). In der **Abb.** 6 beinhaltet Fragment d35S den duplizierten 35S Promoter (747 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO3 (985 bp) die um 14 N-terminale Aminosäuren verkürzte Primärsequenz kodierend für die Haematococcus pluvialis Ketolase, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.

[0164] Zur Herstellung des Expressionsvektors pS3KETO4 wurde das 2.8 Kb Sacl-Xhol Fragment aus pJKETO4 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert. (**Abb.** 7, Konstruktkarte). In der **Abb.** 7 beinhaltet Fragment d35S den duplizierten 35S Promoter ((747 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO4 (1038 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase mit C-terminalem myc-Tag, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.

Beispiel 5: Herstellung von Expressionsvektoren zur Expression der Haematococcus pluvialis Ketolase in Lycopersicon esculentum

[0165] Die Expression der Ketolase aus Haematococcus pluvialis in L. esculentum erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709–715). Die Expression erfolgte unter Kontrolle einer modifizierten Version AP3P des Promoters AP3 aus Arabidopsis thaliana (AL132971: Nukleotidregion 9298-10200; Hill et al. (1998) Development 125: 1711–1721).

[0166] Das DNA Fragment, das die AP3 Promoterregion –902 bis +15 aus Arabidopsis thaliana beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis thaliana isoliert) sowie der Primer PR7 (SEQ ID No. 33) und PR10 (SEQ ID No. 36) hergestellt.

[0167] Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (–902 bis +15) beinhaltet, erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 100 ng genomischer DNA aus A thaliana
- 0,25 mM dNTPs
- 0,2 mM PR7 (SEQ ID No. 33)
- 0,2 mM PR10 (SEQ ID No. 36)
- 5 µl 10X PCR-Puffer (Stratagene)
- 0,25 µl Pfu Polymerase (Stratagene)
- 28,8 µl Aq. Dest.

[0168] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X	94°C	2	Minuten
35X	94°C	1	Minute
	50°C	1	Minute
	72°C	1	Minute
1X	72°C	10	Minuten

[0169] Das 922 Bp Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pTAP3 erhalten.

[0170] Sequenzierung des Klons pTAP3 bestätigte eine Sequenz, die sich lediglich in durch eine Insertion (ein G in Position 9765 der Sequenz AL132971) und einen Basenaustausch (ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3 Sequenz (AL132971, Nukleotidregion 9298-10200) unterscheidet. Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die tatsächliche Nukleotidsequenz in den verwendeten Arabidopsis thaliana Pflanzen. [0171] Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids

pTAP3 hergestellt. Die Region 10200-9771 wurde mittels rekombinanter PCR unter Verwendung des Plasmids pTAP3 hergestellt. Die Region 10200-9771 wurde mit den Primern PR7 (SEQ ID No. 33) und Primern PR9 (SEQ ID No. 35) amplifiziert (Amplifikat A7/9), die Region 9526-9285 wurde mit den PR8 (SEQ ID No. 34) und PR10 (SEQ ID No. 36) amplifiziert (Amplifikat A8/10).

[0172] Die PCR-Bedingungen waren die folgenden:

Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die die Regionen Region 10200-9771 und Region 9526-9285 des AP3 Promoters beinhalten, erfolgte in 50 µl Reaktionsansätzen, in denen enthalten war:

- 100 ng AP3 Amplifikat (oben beschrieben)
- 0.25 mM dNTPs
- 0,2 mM sense Primer (PR7 SEQ ID No. 33 bzw. PR8 SEQ ID No. 35)
- 0,2 mM antisense Primer (PR9 SEQ ID No. 35 bzw. PR10 SEQ ID No. 36)
- 5 µl 10X PCR-Puffer (Stratagene)
- 0,25 µl Pfu Taq Polymerase (Stratagene)
- 28.8 µl Aq. Dest.

[0173] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X	94°C	2	Minuten
35X	94°C	1	Minute
	50°C	1 :	Minute
	72°C	1	Minute
1X ·	72°C	10	Minuten

[0174] Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A7/9 und A8/10, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des AP3 Promoters, AP3P, in dem die Positionen 9670-9526 deletiert sind. Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) beider Amplifikate A7/9 und A8/10 erfolgte in einem 17.6 ∞l Reaktionsansatz, in dem enthalten war:

- 0,5 µg A7/9 Amplifikat
- 0,25 µg A8/10 Amplifikat

[0175] Das Auffüllen der 3'Enden (30 min bei 30°C) erfolgte in einem 20 ∞l Reaktionsansatz, in dem enthalten

war:

- 17,6 μl A7/9 und A8/10-Annealingsreaktion (hergestellt wie oben beschrieben)
- 50 µM dNTPs
- 2 µl 1X Klenow Puffer
- 2U Klenow Enzym

[0176] Die Nukleinsäure, kodierend für die modifizierte Promoterversion AP3P, wurde mittels PCR unter Verwendung eines sense spezifischen Primers (PR7 SEQ ID No. 28) und eines antisense spezifischen Primers (PR10 SEQ ID No. 36) amplifiziert.

[0177] Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem 50 µl Reaktionsansatz, in dem enthalten war:

- 1 µl Annealingsreaktion (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 0,2 mM PR7 (SEQ ID No. 33)
- -0,2 mM PR10 (SEQ ID No. 36)
- 5 µl 10X PCR-Puffer (Stratagene)
- 0,25 µl Pfu Taq Polymerase (Stratagene)
- 28,8 μl Aq. Dest.

[0178] Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

1X	94°C	2	Minuten
35X	94°C	1	Minute
	50°C	1	Minute
	72°C	1	Minute
-1X	72°C	10	Minuten

[0179] Die PCR-Amplifikation mit SEQ ID No. 33 und SEQ ID No. 36 resultierte in einem 778 Bp Fragment, das für die modifizierte Promoterversion AP3P kodiert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pTAP3P erhalten. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971, Region 10200-9298 identische Sequenz, wobei die interne Region 9285-9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

[0180] Die Klonierung erfolgte durch Isolierung des 771 Bp Sacl-HindIII Fragmentes aus pTAP3P und Ligierung in den Sacl-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heißt pJAP3P.

[0181] Zur Herstellung einer Expressionskassette pJAP3PKETO2 wurde das 1027 Bp SpHI-Fragment KETO2 (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor pJAP3P kloniert. Der Klon, der das Fragment KETO2 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heiflt pJAP3PKETO2.

[0182] Zur Herstellung einer Expressionskassette pJAP3PKETO4 wurde das 1032 Bp SpHI-EcoRI Fragment KETO4 (in Beispiel 3 beschrieben) in den SpHI-EcoRI geschnittenen Vektor pJAP3P kloniert. Der Klon, der das Fragment KETO4 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heißt pJAP3PKETO4.

[0183] Die Herstellung eines Expressionsvektors für die Agrobacteriumvermittelte Transformation der AP3P-kontrollierten Ketolase aus Haematococcus pluvialis in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (W002/00900).

– Zur Herstellung des Expressionsvektors pS3AP3PKETO2 wurde das 2.8 KB bp Sacl-Xhol Fragment aus pJAP3KETO2 mit dem Sacl-Xhol geschnittenen Vektor pSUN3 ligiert (**Abb.** 8, Konstruktkarte). In der **Abb.** 8 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO2 (1027 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase, Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.

– Zur Herstellung des Expressionsvektors pS3AP3PKETO4 wurde das 2.8 KB SacI-Xhol Fragment aus pJAP3PKETO4 mit dem SacI-Xhol geschnittenen Vektor pSUN3 ligiert. (Abb. 9, Konstruktkarte). In der Abb. 9 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO4 (1038 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase mit C-terminalem myc-Tag, Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.

Beispiel 6: Herstellung transgener Lycopersicon esculentum Pflanzen

[0184] Transformation und Regeneration von Tomatenpflanzen erfolgte nach der publizierten Methode von Ling und Mitarbeitern (Plant Cell Reports (1998), 17:843–847). Für die Varietät Microtom wurde mit höherer Kanamycin-Konzentration (100mg/L) selektioniert.

[0185] Als Ausgangsexplantat für die Transformation dienten Kotyledonen und Hypokotyle sieben bis zehn Tage alter Keimlinge der Linie Microtom. Für die Keimung wurde das Kulturmedium nach Murashige und Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15, 473-) mit 2 % Saccharose, pH 6.1 verwendet. Die Keimung fand bei 21°C bei wenig Licht (20 bis 100 µE) statt. Nach sieben bis zehn Tagen wurden die Kotyledonen quer geteilt und die Hypokotyle in ca. 5 bis 10 mm lange Abschnitte geschnitten und auf das Medium MSBN (MS, pH 6,1, 3 % Saccharose + 1 mg/l BAP, 0,1 mg/l NAA) gelegt, das am Vortag mit suspensionskultivierten Tabakzellen beschickt wurde. Die Tabakzellen wurden luftblasenfrei mit sterilem Filterpapier abgedeckt. Die Vorkultur der Explantate auf dem beschriebenen Medium erfolgte für drei bis fünf Tage. Zellen des Stammes Agrobakterium tumefaciens LBA4404 wurden einzeln mit den Plasmiden pS3KETO2, pS3KETO3 bzw. pS3AP3KETO2 transformiert. Von den einzelnen mit den Binaervektoren pS3KETO2, pS3KETO3 bzw. pS3KETO2 transformierten Agrobakterium-Stämmen wurde jeweils eine Übernachtkultur in YEB Medium mit Kanamycin (20 mg/l) bei 28 Grad Celsius kultiviert und die Zellen zentrifugiert. Das Bakterienpellet wurde mit flüssigem MS Medium (3 % Saccharose, pH 6,1) resuspendiert und auf eine optische Dichte von 0,3 (bei 600 nm) eingestellt. Die vorkultivierten Explantate wurden in die Suspension überführt und für 30 Minuten bei Zimmertemperatur unter leichtem Schütteln inkubiert. Anschließend wurden die Explantate mit sterilem Filterpapier getrocknet und für die dreitägige Co-Kultur (21°C) auf ihr Vorkulturmedium zurück gelegt.

[0186] Nach der Co-kultur wurden die Explantate auf MSZ2 Medium (MS pH 6,1 + 3 % Saccharose, 2 mg/l Zeatin, 100 mg/l Kanamycin, 160 mg/l Timentin) transferiert und für die selektive Regeneration bei 21°C unter Schwachlicht Bedingungen (20 bis 100 ∞E, Lichtrhythmus 16 h / 8 h) aufbewahrt. Aller zwei bis drei Wochen erfolgte der Transfer der Explantate bis sich Sprosse bildeten. Kleine Sprosse konnten vom Explantat abgetrennt werden und auf MS (pH 6,1 + 3 % Saccharose) 160 mg/l Timentin, 30 mg/l Kanamycin, 0,1 mg/l IAA bewurzelt werden. Bewurzelte Pflanzen wurden ins Gewächshaus überführt.

[0187] Gemäß der oben beschriebenen Transformationsmethode wurden mit folgenden Expressionskonstrukten folgende Linien erhalten: Mit pS3KETO2 wurde erhalten: cs13-24, cs13-30, cs13-40.

[0188] Mit pS3KETO3 wurde erhalten: cs14-2, cs14-3, cs14-9, cs14-19.

[0189] Mit pS3AP3PKETO2 wurde erhalten: cs16-15, cs16-34, cs16-35, cs16-40.

Beispiel 8: Charakterisierung der transgenen Früchte

[0190] Das Fruchtmaterial der transgenen Pflanzen wurde in flüssigem Stickstoff gemörsert und das Pulver (etwa 250 bis 500 mg) mit 100 % Aceton extrahiert (dreimal je 500 ul). Das Lösungsmittel wurde evaporiert und die Carotinoide in 100 ul Aceton resuspendiert.

[0191] Mittels einer C30-reverse phase-Säule konnte zwischen Mono- und Diestern der Carotinoide unterschieden werden. HPLC-Laufbedingungen waren nahezu identisch mit einer publizierten Methode (Frazer et al. (2000), Plant Journal 24(4): 551–558).

[0192] Eine Identifizierung der Carotinoide war aufgrund der W-VIS-Spektren möglich.

[0193] Tabelle 1 zeigt das Carotinoidprofil in Tomatenfrüchten der gemäß der vorstehend beschriebenen Beispiele hergestellten transgenen Tomaten und Kontrolltomatenpflanzen. Im Vergleich zur genetisch nicht veränderten Kontrollpflanze weisen die genetisch veränderten Pflanzen einen Gehalt an Ketocarotinoiden und insbesondere einen Gehalt an Astaxanthin auf.

Tabelle 1

Pflanze	Lutein	Lycopin	beta-Carotin	Cryptoxanthin	Canthaxanthin	Adonirubin	Astaxanthin
Kontrolle	+	+	+	(+)	-	-	_
Kontrolle	+	+	+	(+)	-	-	_
CS13-24	_	+	+	(+)	+	+	+
CS13-30	_	+	+	(+)	+	+	+
CS13-40	_	+	+	(+)	+	+	+
CS14-2	_	+	+	(+)	+	+	+
CS14-3	_	+	+	_	+	+	+
CS14-9	_	+	+	(+)	+	+	+
CS14-19	_	+	+	_	+	.+	+
CS16-15	_	+	+	(+)	+	+	+
CS16-34	-	+	+	(+)	+	+	+
CS16-35	_	+	+	_	+	+	+
CS16-40		+	(+)	(+)	+	+	+

- + bedeutet Carotinoid nachweisbar
- bedeutet Carotinoid nicht detektiert
- (+) bedeutet Carotinoidkonzentration an der Nachweisgrenze

SEQUENCE LISTING

<110>	SunGene	e GmbH	Co. K	SaA										
<120>	Verfahi	cen zur	herst	ellun	g vor	n Ast	axar	nthir	n in	Frue	echte	en von	Pfl	anzer
<130>	NAE 365	5/02		•			· ·							
<160>	36						•		·			•		
<170>	Patent	In vers	sion 3	.1								٠		
<210>	1					•						•		
<211>	1771										•	•		
<212>				*				-						
	Haemato	ococcus	nling	alic	•				•					
12137	11acmac	Jeocean	, prav.	LUIIS										
<220>					•					•	-			
<221>	CDS								•					
<222>	(166).	· (TT22)												
<223>														
												•		
<400>	1													
ggcaco	agct tgo	cacgcaa	ig tcag	gegege	g caa	agtca	aca	ccto	accad	gtc d	cacag	gcctca		60
	•													
aataat	aaag ago	ctcaago	g titte	gtgcgc	c tco	gacgt	ggc	cagt	ctgo	cac t	tgcct	tgaac		120
ccgcga	igtet eed	cgccgca	ic tgad	ctgcca	t ago	cacac	gcta	gac	-	_	-	-		177
									Me	et GI	ln Le	eu Ala		
									1					
gcg ac	a gta at	tg ttg	gag ca	ag ctt	acc	gga	agc	gct	gag	gca	ctc	aag		225
Ala Th	r Val Me	et Leu	Glu G	ln Leu	Thr	Gly	Ser	Ala	Glu	Ala	Leu	Lys		
5		•	10				15					20		
											•			
gag aa	g gag aa	ag gag	att a	ca qqc	agc	tct	gac	ata	tta	cat	aca	taa		273
	s Glu Ly													
U	D 014 D	25.				30				9	35		•	
		23				30					رد			
777 D	c cag ta	a tax	att a	ar toa	~~~	~=~	+ < =	~~~	~~~	~~~	000	-		321
														J21
Ala II	r Gln Ty		Leu P	ro ser		GIU	ser	ASD	Ala		Arg	Pro		
•	4(J	*		45					50				
	g aag aa	_		-				-		_				369
Gly Le	u Lys As	sn Ala	Tyr Ly	_	Pro	Pro	Ser	Asp		Lys	Gly	Ile		
	55			60		•			65					
aca at	g gcg ct	ta cgt	gtc a	tc ggc	tcc	tgg	gcc	gca	gtg	ttc	ctc	cac		417
Thr Me	t Ala Le	eu Arg	Val I	le Gly	Ser	Trp	Ala	Ala	Val	Phe	Leu	His		
70		_	7	-		_		80						
gcc at	t ttt ca	aa atc	aag c	tt cca	acc	tcc	tta	gac	cao	cta	cac	taa		465
_	e Phe G		_						_	_				-
	.c rife G.		90				95	ىرى				100		
85			30				٠ .					100		
ct~ c	c ata +	-a ~a+	acc =		cac	cta	at t	200	~~~	200	200	200		512
ceg co	c gtg to	a gat	gcc a	a gct	cag	cug	git	agc	ggc	acg	agc	agc		513

Leu	Pro	Val	Ser	Asp 105	Ala	Thr	Ala	Gln	Leu 110	Val	Ser	Gly	Thr	Ser 115	Ser	•	
ctg Leu	ctc Leu	gac Asp	atc Ile 120	gtc Val	gta Val	gta Val	ttc Phe	ttt Phe 125	gtc Val	ctg Leu	gag Glu	ttc Phe	ctg Leu 130	tac Tyr	aca Thr		561
ggc Gly	ctt Leu	ttt Phe 135	atc Ile	acc Thr	acg Thr	cat His	gat Asp 140	gct Ala	atg Met	cat His	ggc Gly	acc Thr 145	atc Ile	gcc Ala	atg Met		609
					aat Asn												657
					tac Tyr 170												705
cac His	aac Asn	cac His	act Thr	ggc Gly 185	gag Glu	gtg Val	ggc Gly	aag Lys	gac Asp 190	cct Pro	gac Asp	ttc Phe	cac His	agg Arg 195	gga Gly		753
					ccc Pro												801
					gcg Ala												849
					atg Met												897
					ttc Phe 250												945
cac His	aag Lys	cct Pro	gag Glu	cct Pro 265	ggc Gly	gcc Ala	gcg Ala	tca Ser	ggc Gly 270	tct Ser	tca Ser	cca Pro	gcc Ala	gtc Val 275	atg Met		993
					cgc Arg												1041
					ttc Phe												1089
					gag Glu							Leu				·	1137
	ctg Leu	_		-	tag	ctg	gaca	cac	tgca	gtgg	gc c	ctgc	tgcc	a			1185

~	$\overline{}$	_
٠.	•	٠,

gctgggcatg	caggttgtgg	caggactggg	tgaggtgaaa	agctgcaggc	gctgctgccg	1245
gacacgctgc	atgggctacc	ctgtgtagct	gccgccacta	ggggagggg	tttgtagctg	1305
tcgagcttgc	cccatggatg	aagctgtgta	gtggtgcagg	gagtacaccc	acaggccaac	1365
acccttgcag	gagatgtctt	gcgtcgggag	gagtgttggg	cagtgtagat	gctatgattg	1425
tatcttaatg	ctgaagcctt	taggggagcg	acacttagtg	ctgggcaggc	aacgccctgc	1485
aaggtgcagg	cacaagctag	gctggacgag	gactcggtgg	caggcaggtg	aagaggtgcg	1545
ggagggtggt	gccacaccca	ctgggcaaga	ccatgctgca	atgctggcgg	tgtggcagtg	1605
agagctgcgt	gattaactgg	gctatggatt	gtttgagcag	tctcacttat	tctttgatat	1665
agatactggt	caggcaggtc	aggagagtga	gtatgaacaa	gttgagaggt	ggtgcgctgc	1725
ccctgcgctt	atgaagctgt	aacaataaag	tggttcaaaa	aaaaaa		1771

<210> 2

<211> 329

<212> PRT

<213> Haematococcus pluvialis

<400> 2

Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala 1 5 10 15

Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val 20 25 30

Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp 35 40 45

Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp 50 55 60

Thr Lys Gly Ile Thr Met Ala Leu Arg Val Ile Gly Ser Trp Ala Ala 65 70 75 80

Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp 85 90 95

Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser 100 105 110

Gly	Thr	Ser 115	Ser	Leu	Leu	Asp	Ile 120	Val	Val	Val	Phe	Phe 125	Val	Leu	Glu
Phe	Leu 130	Tyr	Thr	Gly	Leu	Phe 135	Ile	Thr	Thr	His	Asp 140	Ala	Met	His	Gly
Thr 145	Ile	Ala	Met	Arg	Asn 150	Arg	Gln	Leu	Asn	Asp 155	Phe	Leu	Gly	Arg	Val 160
Cys	Ile	Ser	Leu	Tyr 165	Ala	Trp	Phe	Asp	Tyr 170	Asn	Met	Leu	His	Arg 175	Lys
His	Trp	Glu	His 180	His	Asn	His	Thr	Gly 185	Glu	Val	Gly	Lys	Asp 190	Pro	Asp
Phe	His	Arg 195	Gly	Asn	Pro	Gly	Ile 200	Val	Pro	Trp	Phe	Ala 205	Ser	Phe	Met
Ser	Ser 210	Tyr	Met	Ser	Met	Trp 215	Gln	Phe	Ala	Arg	Leu 220	Ala	Trp	Trp	Thr
Val 225	Val	Met	Gln	Leu	Leu 230	Gly	Ala	Pro	Met	Ala 235	Asn	Leu	Leu	Val	Phe 240
Met	Ala	Ala	Ala	Pro 245	Ile	Leu	Ser	Ala	Phe 250	Arg	Leu	Phe	Tyr	Phe 255	Gly
Thr	Tyr	Met	Pro 260	His	Lys	Pro	Glu	Pro 265	Gly	Ala	Ala	Ser	Gly 270	Ser	Ser
Pro	Ala	Val 275	Met	Asn	Trp	Trp	Lys 280	Ser	Arg	Thr	Ser	Gln 285	Ala	Ser	Asp
Leu	Val 290	Ser	Phe	Leu	Thr	Cys 295	Tyr	His	Phe	Asp	Leu 300	His	Trp	Glu	His
His 305	Arg	Trp	Pro	Phe	Ala 310	Pro	Trp	Trp	Glu	Leu 315	Pro	Asn	Cys	Arg	Arg 320
Leu	Ser	Gly	Arg	Gly 325	Leu	Val	Pro	Ala							

```
<210>
<211>
       1662
<212>
       DNA
<213>
       Haematococcus pluvialis
<220>
<221>
       CDS
<222> (168)..(1130)
<223>
<400> 3
cggggcaact caagaaattc aacagctgca agcgcgcccc agcctcacag cgccaagtga
                                                                       60
gctatcgacg tggttgtgag cgctcgacgt ggtccactga cgggcctgtg agcctctgcg
                                                                      120
ctccgtcctc tgccaaatct cgcgtcgggg cctgcctaag tcgaaga atg cac gtc
                                                                      176
                                                    Met His Val
gca tcg gca cta atg gtc gag cag aaa ggc agt gag gca gct tcc
                                                                      224
Ala Ser Ala Leu Met Val Glu Gln Lys Gly Ser Glu Ala Ala Ala Ser
age eca gae gte ttg aga geg tgg geg aca eag tat eac atg eca tee
                                                                      272
Ser Pro Asp Val Leu Arg Ala Trp Ala Thr Gln Tyr His Met Pro Ser
                                        30
gag tog toa gac gca gct cgt cct gcg cta aag cac gcc tac aaa cct
                                                                      320
Glu Ser Ser Asp Ala Ala Arg Pro Ala Leu Lys His Ala Tyr Lys Pro
cca gca tct gac gcc aag ggc atc acg atg gcg ctg acc atc att ggc
                                                                      368
Pro Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr Ile Ile Gly
acc tgg acc gca gtg ttt tta cac gca ata ttt caa atc agg cta ccg
                                                                      416
Thr Trp Thr Ala Val Phe Leu His Ala Ile Phe Gln Ile Arg Leu Pro
aca tee atg gae cag ett cae tgg ttg eet gtg tee gaa gee aca gee
                                                                      464
Thr Ser Met Asp Gln Leu His Trp Leu Pro Val Ser Glu Ala Thr Ala
    85
                        90
                                            95
cag ctt ttg ggc gga agc agc cta ctg cac atc gct gca gtc ttc
                                                                      512
Gln Leu Leu Gly Gly Ser Ser Ser Leu Leu His Ile Ala Ala Val Phe
100
                    105
                                        110
att gta ctt gag ttc ctg tac act ggt cta ttc atc acc aca cat gac
Ile Val Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp
                120
gca atg cat ggc acc ata gct ttg agg cac agg cag ctc aat gat ctc
                                                                      608
Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu Asn Asp Leu
            135
ctt ggc aac atc tgc ata tca ctg tac gcc tgg ttt gac tac agc atg
                                                                      656
```

Leu Gly A	Asn Ile 150	Cys Ile		eu Tyr 55	Ala Ti	rp Phe	Asp '	Tyr	Ser	Met	
ctg cat c Leu His A 165											704
aaa gac c Lys Asp H 180					Pro G						752
gcc agc t Ala Ser E											800
gca tgg t Ala Trp T							Pro I				848
ctc cta c Leu Leu V			Ala A								896
ttc tac t Phe Tyr I 245											944
gca ggc t Ala Gly S 260					Arg Al						992
tct gat <u>c</u> Ser Asp \											1040
gag cac o Glu His H							Leu				1088
cgc cgc c			Gly L					tga			1130
cctggtcc	ct ccgc	tggtga c	ccagcg	tct gc	acaaga	gt gtc	atgct	ac a	agggt	gctgc	1190
ggccagtg	gc agcg	cagtgc a	ctctca	gcc tg	tatggg	gc tac	cgctg	tg d	ccact	tgagca	1250
ctgggcat	gc cact	gagcac t	gggcgt	gct ac	tgagca	at ggg	cgtgc	ta d	ctga	gcaatg	1310
ggcgtgcta	ac tgac	aatggg c	gtgcta	ctg gg	gtctgg	ca gtg	gctag	ga 1	tgga	gtttga	1370
tgcattcag	gt agcg	gtggcc a	acgtca	tgt gg	atggtg	ga agt	gctga	.gg (ggtt	taggca	1430
gccggcati	tt gaga	gggcta a	gttata	aat cg	catgct	gc tca	tgcgc	ac a	atat	ctgcac	1490
acagccagg	gg aaat	cccttc g	agagtg	att at	gggaca	ct tgt	attgg	tt 1	tcgt	gctatt	1550

1610

1662

gtti	ttati	tca q	gcago	cagta	ac t	cagt	gagg	g tga	agago	cagg	gtg	gtga	gag	tgga	gtgagt
gagt	tatga	aac (etggi	cago	cg ag	ggtga	aacag	g cct	tgtaa	atga	atga	actci	tgt	ct	
<210 <211 <211 <211	1> : 2> :	4 320 PRT Haema	atoc	occus	s plu	ıvia	lis								·
<400	0> 4	4											•	٠.	
Met 1	His	Val	Ala	Ser 5	Ala	Leu	Met	Val	Glu 10	Gln	Lys	Gly	Ser	Glu 15	Ala
Ala	Ala	Ser	Ser 20	Pro	Asp	Val	Leu	Arg 25	Ala	Trp	Ala	Thr	Gln 30	Tyr	His
Met	Pro	Ser 35	Glu	Ser	Ser	Asp	Ala 40	Ala	Arg	Pro	Ala	Leu 45	Lys	His	Ala
Tyr	Lys 50	Pro	Pro	Ala	Ser	Asp 55	Ala	Lys	Gly	Ile	Thr 60	Met	Ala	Leu	Thr
Ile 65	Ile	Gly	Thr	Trp	Thr 70	Ala	Val	Phe	Leu	His 75	Ala	Ile	Phe	Gln	Ile 80
Arg	Leu	Pro	Thr	Ser 85	Met	Asp	Gln	Leu	His 90	Trp	Leu	Pro	Val	Ser 95	Glu
Ala	Thr	Ala	Gln 100	Leu	Leu	Gly	Gly	Ser 105	Ser	Ser	Leu	Leu	His 110	Ile	Ala
Ala	Val	Phe 115	Ile	Val	Leu	Glu	Phe 120	Leu	Tyr	Thr	Gly	Leu 125	Phe	Ile	Thr
Thr	His 130	Asp	Ala	Met	His	Gly 135	Thr	Île	Ala	Leu	Arg 140	His	Arg	Gln	Leu
Asn 145	Asp	Leu	Leu	Gly	Asn 150	Ile	Cys	Ile	Ser	Leu 155	Tyr	Ala	Trp	Phe	Asp 160
Tyr	Ser	Met	Leu	His 165	Arg	Lys	His	Trp	Glu 170	His	His	Asn	His	Thr 175	Gly
Glu	Val	Gly	Lys	Asp	Pro	Asp	Phe	His	Lys	Gly	Asn	Pro	Gly	Leu	Val

190

185

180

Pro Trp Phe Ala Ser Phe Met Ser Ser Tyr Met Ser Leu Trp Gln Phe 200 195 Ala Arg Leu Ala Trp Trp Ala Val Val Met Gln Met Leu Gly Ala Pro 220 210 215 Met Ala Asn Leu Leu Val Phe Met Ala Ala Pro Ile Leu Ser Ala 235 240 225 230 Phe Arg Leu Phe Tyr Phe Gly Thr Tyr Leu Pro His Lys Pro Glu Pro 250 245 Gly Pro Ala Ala Gly Ser Gln Val Met Ala Trp Phe Arg Ala Lys Thr 260 265 Ser Glu Ala Ser Asp Val Met Ser Phe Leu Thr Cys Tyr His Phe Asp 280 285 Leu His Trp Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Gln Leu 290 295 300 Pro His Cys Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Leu Ala 305 310 315 <210> 5 <211> 729 <212> DNA <213> Agrobacterium aurantiacum <220> <221> CDS <222> (1)..(729) <223> <400> 5 atg age gea cat gee etg eec aag gea gat etg ace gee age etg 48 Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu ate gte teg gge gge ate ate gee get tgg etg gee etg cat gtg cat 96 Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30 gcg ctg tgg ttt ctg gac gca gcg gcg cat ccc atc ctg gcg atc gca 144 Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala

	•		35			• .		40		•	•	•	45				
		ttc Phe 50															192
	cat His 65	gac Asp	gcg Ala	atg Met	cac His	ggg Gly 70	tcg Ser	gtg Val	gtg Val	ccg Pro	ggg Gly 75	cgt Arg	ccg Pro	cgc	gcc Ala	aat Asn 80	240
		gcg Ala															288
		aag Lys															336
		gac Asp															384
		ttc Phe 130															432
	gtc Val 145	atc Ile	gtg Val	acg Thr	gtc Val	tat Tyr 150	gcg Ala	ctg Leu	atc Ile	ctt Leu	ggg Gly 155	gat Asp	cgc Arg	tgg Trp	atg Met	tac Tyr 160	480
		gtc Val															528
-		ttc Phe															576
		cgc Arg															624
		acc Thr 210															672
		acg Thr															720
	acc Thr	gca Ala	tga														729

<210> 6 <211> 242

					[DE 1	102 :	38 9	78 <i>F</i>	11 2	004.	03.0)4		
<212 <213	_	PRT Agrol	oacte	eriur	n aui	rant:	iacur	n							
<400)> (5													
Met 1	Ser	Ala	His	Ala 5	Leu	Pro	Lys	Ala	Asp 10	Leu	Thr	Ala	Thr	Ser 15	Leu
Ile	Val	Ser	Gly 20	Gly	Ile	Ile	Ala	Ala 25	Trp	Leu	Ala	Leu	His 30	Val	His
Ala	Leu	Trp 35	Phe	Leu	Asp	Ala	Ala 40	Ala	His	Pro	Ile	Leu 45	Ala	Ile	Ala
Asn	Phe 50	Leu	Gly	Leu	Thr	Trp 55	Leu	Ser	Val	Gly	Leu 60	Phe	Ile	Ile	Ala
His 65	Asp	Ala	Met	His	Gly 70	Ser	Val	Val	Pro	Gly 75	Arg	Pro	Arg	Ala	Asn 80
Ala	Ala	Met	Gly	Gln 85	Leu	Val	Leu	Trp	Leu 90	Tyr	Ala	Gly	Phe	Ser 95	Trp
Arg	Lys	Met	Ile 100	Val	Lys	His	Met	Ala 105	His	His	Arg	His	Ala 110	Gly	Thr
Asp	Asp	Asp 115	Pro	Asp	Phe	Asp	His 120	Gly	Gly	Pro	Val	Arg 125	Trp	Tyr	Ala
Arg	Phe 130	Ile	Gly	Thr	Tyr	Phe 135	Gly	Trp	Arg	Glu	Gly 140	Leu	Leu	Leu	Pro

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220	
Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235 240	
Thr Ala	
<210> 7 <211> 1631 <212> DNA	
<213> Alcaligenes sp.	
<220> <221> CDS <222> (99)(827) <223>	
<400> 7 ctgcaggccg ggcccggtgg ccaatggtcg caaccggcag gactggaaca ggacggcggg	60
ccggtctagg ctgtcgccct acgcagcagg agtttcgg atg tcc gga cgg aag cct Met Ser Gly Arg Lys Pro 1	116
ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 10 15 20	164
ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile	164 212
ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 10 15 20 ctg ctg tgc tgg ctg gtc ctg cac gcc ttt acg cta tgg ttg cta gat Leu Leu Cys Trp Leu Val Leu His Ala Phe Thr Leu Trp Leu Leu Asp	
ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 10 15 20 ctg ctg tgc tgg ctg gtc ctg cac gcc ttt acg cta tgg ttg cta gat Leu Leu Cys Trp Leu Val Leu His Ala Phe Thr Leu Trp Leu Leu Asp 25 30 35 gcg gcc gcg cat ccg ctg ctt gcc gtg ctg tgc ctg gct ggg ctg acc Ala Ala Ala His Pro Leu Leu Ala Val Leu Cys Leu Ala Gly Leu Thr	212
ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 10 15 20 ctg ctg tgc tgg ctg gtc ctg cac gcc ttt acg cta tgg ttg cta gat Leu Leu Cys Trp Leu Val Leu His Ala Phe Thr Leu Trp Leu Leu Asp 25 30 35 gcg gcc gcg cat ccg ctg ctt gcc gtg ctg tgc ctg ggc ctg acc Ala Ala Ala His Pro Leu Leu Ala Val Leu Cys Leu Ala Gly Leu Thr 40 45 50 tgg ctg tcg gtc ggg ctg ttc atc atc gcg cat gac gca atg cac ggg Trp Leu Ser Val Gly Leu Phe Ile Ile Ala His Asp Ala Met His Gly	212
ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 10	212 260 308

ggt cac gga ggg ccc gtg cgc tgg tac ggc agc ttc gtc tcc acc tat Gly His Gly Gly Pro Val Arg Trp Tyr Gly Ser Phe Val Ser Thr Tyr 120 125 130	500
ttc ggc tgg cga gag gga ctg ctg cta ccg gtg atc gtc acc acc tat Phe Gly Trp Arg Glu Gly Leu Leu Pro Val Ile Val Thr Thr Tyr 135 140 145 150	548
gcg ctg atc ctg ggc gat cgc tgg atg tat gtc atc ttc tgg ccg gtc Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr Val Ile Phe Trp Pro Val 155 160 165	596
ccg gcc gtt ctg gcg tcg atc cag att ttc gtc ttc gga act tgg ctg Pro Ala Val Leu Ala Ser Ile Gln Ile Phe Val Phe Gly Thr Trp Leu 170 175 180	644
ccc cac cgc ccg gga cat gac gat ttt ccc gac cgg cac aac gcg agg Pro His Arg Pro Gly His Asp Asp Phe Pro Asp Arg His Asn Ala Arg 185 190 195	692
tcg acc ggc atc ggc gac ccg ttg tca cta ctg acc tgc ttc cat ttc Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu Leu Thr Cys Phe His Phe 200 205 210	740
ggc ggc tat cac cac gaa cat cac ctg cat ccg cat gtg ccg tgg tgg Gly Gly Tyr His His Glu His His Leu His Pro His Val Pro Trp Trp 215 220 225 230	788
cgc ctg cct cgt aca cgc aag acc gga ggc cgc gca tga cgcaattcct Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly Arg Ala 235 240	837
cattgtcgtg gcgacagtcc tcgtgatgga gctgaccgcc tattccgtcc accgctggat	897
tatgcacgge cecetagget ggggetggea caagteecat caegaagage aegaceaege	957
gttggagaag aacgacetet acggegtegt ettegeggtg etggegaega teetetteae	1017
cgtgggcgcc tattggtggc cggtgctgtg gtggatcgcc ctgggcatga cggtctatgg	1077
gttgatctat ttcatcctgc acgacgggct tgtgcatcaa cgctggccgt ttcggtatat	1137
teegeggegg ggetatttee geaggeteta ceaageteat egeetgeace aegeggtega	1197
ggggcgggac cactgcgtca gcttcggctt catctatgcc ccacccgtgg acaagctgaa	1257
gcaggatctg aagcggtcgg gtgtcctgcg cccccaggac gagcgtccgt cgtgatctct	1317
gateceggeg tggeegeatg aaateegaeg tgetgetgge aggggeegge ettgeeaacg	1377
gactgatcgc gctggcgatc cgcaaggcgc ggcccgacct tcgcgtgctg ctgctggacc	1437
gtgcggcggg cgcctcggac gggcatactt ggtcctgcca cgacaccgat ttggcgccgc	1497
actggctgga ccgcctgaag ccgatcaggc gtggcgactg gcccgatcag gaggtgcggt	1557

tcc	caga	cca	ttcg	cgaa	gg c	tccg	ggcc	g ga	tatg	gctc	gat	cgac	ggg	cggg	ggctga	16
tgc	gtgc	ggt	gacc													16
<21 <21 <21 <21	1> 2>	8 242 PRT Alca	lige	nes	sp.			•					-			
<40	0>	8				•							•			
Met 1	Ser	Gly	Arg	Lys 5	Pro	Gly	Thr	Thr	Gly 10	Asp	Thr	Ile	Val	Asn 15	Leu	
Gly	Leu	Thr	Ala 20	Ala	Ile	Leu	Leu	Cys 25	Trp	Leu	Val	Leu	His 30	Ala	Phe	
Thr	Leu	Trp 35	Leu	Leu	Asp	Ala	Ala 40	Ala	His	Pro	Leu	Leu 45	Ala	Val	Leu	
Cys	Leu 50	Ala	Gly	Leu	Thr	Trp 55	Leu	Ser	Val	Gly	Leu 60	Phe	Ile	Ile	Ala	
His 65	Asp	Ala	Met	His	Gly 70	Ser	Val	Val	Pro	Gly 75	Arg	Pro	Arg	Ala	Asn 80	
Ala	Ala	Ile	Gly	Gln 85	Leu	Ala	Leu	Trp	Leu 90	Tyr	Ala	Gly	Phe	Ser 95	Trp	
Pro	Lys	Leu	Ile 100	Ala	Lys	His	Met	Thr 105	His	His	Arg	His	Ala 110	Gly	Thr	
Asp	Asn	Asp 115	Pro	Asp	Phe	Gly	His 120	Gly	Gly	Pro	Val	Arg 125	Trp	Tyr	Gly	
Ser	Phe 130	Val	Ser	Thr	Tyr	Phe 135	Gly	Trp	Arg	Glu	Gly 140	Leu	Leu	Leu	Pro	
Val 145	Ile	Val	Thr	Thr	Туг 150	Ala	Leu	Ile	Leu	Gly 155	Asp	Arg	Trp	Met	Tyr 160	
Val	Ile	Phe	Trp	Pro 165	Val	Pro	Ala	Val	Leu 170	Ala	Ser	Ile	Gln	Ile 175	Phe	
17 - I	Dhe	Clar	mb.~	Ш	Ton	Dwc	ui.	7 ~~	Pro	C11-	ui c	7	N	Db -	Desa	

190 180 185 Asp Arg His Asn Ala Arg Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu 195 200 Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 Pro His Val Pro Trp Trp Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly 225 230 235 240 Arg Ala <210> 9 <211> 729 <212> DNA <213> Paracoccus marcusii <220> <221> CDS <222> (1)..(729) <223> <400> 9 atg age gea cat gee etg eec aag gea gat etg ace gee aca age etg 48 Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu atc gtc tcg ggc ggc atc atc gcc gca tgg ctg gcc ctg cat gtg cat 96 Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 gcg ctg tgg ttt ctg gac gcg gcc cat ccc atc ctg gcg gtc gcg 144 Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala 40 aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc atc gcg 192 Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala cat gac gcg atg cac ggg tcg gtc gtg ccg ggg cgt ccg cgc gcc aat 240 His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn geg geg atg ggc cag ctt gtc ctg tgg ctg tat gcc gga ttt tcg tgg 288 Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp

336

cgc aag atg atc gtc aag cac atg gcc cat cac cgc cat gcc gga acc

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr

			100			•		105		•		٠.	110					
					ttc Phe										gcc Ala		384	
cgc Arg	ttc Phe 130	atc Ile	ggc Gly	acc Thr	tat Tyr	ttc Phe 135	ggc Gly	tgg Trp	cgc Arg	gag Glu	ggg Gly 140	ctg Leu	ctg Leu	ctg Leu	ccc Pro		432	
					tat Tyr 150												480	
					ttg Leu												528	
					ctg Leu										ccg Pro		576	•
					cgg Arg												624	
		Cys			ttt Phe										cac His		672	
					tgg Trp 230												720 .	
acc Thr	gca Ala	tga									. •						729	
<210 <211 <212 <213	l> 2 2> I	LO 242 PRT Parac	cocci	ıs ma	arcus	sii į									•	·		
<400)> 1	LO			•													
Met 1	Ser	Ala		Ala 5	Leu	Pro	Lys	Ala	Asp 10	Leu	Thr	Ala	Thr	Ser 15	Leu	, .		
Ile	Val	Ser	Gly 20	Gly	Ile	Ile	Ala	Ala 25	Trp	Leu	Ala	Leu	His 30	Val	His			
Ala	Leu	Trp	Phe	Leu	Asp	Ala	Ala	Ala	His	Pro	Ile	Leu	Ala	Val	Ala			

Asn	Phe 50	Leu	Gly	Leu	Thr	Trp 55	Leu	Ser	Val	Gly	Leu 60	Phe	Ile	Ile	Ala
His 65	Asp	Ala	Met	His	Gly 70	Ser	Val	Val	Pro	Gly 75	Arg	Pro	Arg		Asr 80
Ala	Ala	Met	Gly	Gln 85	Leu	Val	Leu	Trp	Leu 90	Tyr	Ala	Gly	Phe	Ser 95	Trp
Arg	Lys	Met	Ile 100	Val	Lys	His	Met	Ala 105	His	His	Arg	His	Ala 110	Gly	Thr
Asp	Asp	Asp 115	Pro	Asp	Phe	Asp	His 120	Gly	Gly	Pro	Val	Arg 125	Trp	Tyr	Ala
Arg	Phe 130	Ile	Gly	Thr	Tyr	Phe 135	Gly	Trp	Arg	Glu	Gly 140	Leu	Leu	Leu	Pro
Val 145	Ile	Val	Thr	Val	Tyr 150	Ala	Leu	Ile	Leu	Gly 155	Asp	Arg	Trp	Met	Tyr 160
	Val			165					170					175	
	Phe		180					185					190		
	Arg	195					200					205			
	Thr 210	_				215		_			220				
225	Thr	Val	Pro	Trp	Trp 230	Arg	Leu	Pro	Ser	Thr 235	Arg	Thr	Lys	Gly	Asp 240
Thr	Ala														

<213> Synechococcus sp.

<210>

<211> 1629 <212> DNA

11

1629

<22 <22 <22 <22	1> 2>	CDS	. (16	29)												
<40 atg Met 1	atc	11 acc Thr	acc Thr	gat Asp 5	gtt Val	gtc Val	att Ile	att Ile	ggg Gly 10	gcg Ala	ggg	cac His	aat Asn	ggc Gly 15	tta Leu	48
gtc Val	tgt Cys	gca Ala	gcc Ala 20	tat Tyr	ttg Leu	ctc Leu	caa Gln	cgg Arg 25	ggc Gly	ttg Leu	ggg	gtg Val	acg Thr 30	tta Leu	cta Leu	96
gaa Glu	aag Lys	cgg Arg 35	gaa Glu	gta Val	cca Pro	ggg Gly	ggg Gly 40	gcg Ala	gcc Ala	acc Thr	aca Thr	gaa Glu 45	gct Ala	ctc Leu	atg Met	144
ccg Pro	gag Glu 50	icta Leu	tcc Ser	ccc Pro	cag Gln	ttt Phe 55	cgc Arg	ttt Phe	aac Asn	cgc Arg	tgt Cys 60	gcc Ala	att Ile	gac Asp	cac His	192
gaa Glu 65	ttt Phe	atc Ile	ttt Phe	ctg Leu	ggg Gly 70	ccg Pro	gtg Val	ttg Leu	cag Gln	gag Glu 75	cta Leu	aat Asn	tta Leu	gcc Ala	cag Gln 80	240
tat Tyr	ggt Gly	ttg Leu	gaa Glu	tat Tyr 85	tta Leu	ttt Phe	tgt Cys	gac Asp	ccc Pro 90	agt Ser	gtt Val	ttt Phe	tgt Cys	ccg Pro 95	Gly	288
ctg Leu	gat Asp	ggc Gly	caa Gln 100	gct Ala	ttt Phe	atg Met	agc Ser	tac Tyr 105	cgt Arg	tcc Ser	cta Leu	gaa Glu	aaa Lys 110	acc Thr	tgt Cys	336
gcc Ala	cac His	att Ile 115	gcc Ala	acc Thr	tat Tyr	agc Ser	ccc Pro 120	cga Arg	gat Asp	gcg Ala	gaa Glu	aaa Lys 125	tat Tyr	cgg Arg	caa Gln	384
ttt Phe	gtc Val 130	aat Asn	tat Tyr	tgg Trp	acg Thr	gat Asp 135	ttg Leu	ctc Leu	aac Asn	gct Ala	gtc Val 140	cag Gln	cct Pro	gct Ala	ttt Phe	432
aat Asn 145	gct Ala	ccg Pro	ccc Pro	cag Gln	gct Ala 150	tta Leu	cta Leu	gat Asp	tta Leu	gcc Ala 155	ctg Leu	aac Asn	tat Tyr	ggt Gly	tgg Trp 160	480
gaa Glu	aac Asn	tta Leu	aaa Lys	tcc Ser 165	gtg Val	ctg Leu	gcg Ala	atc Ile	gcc Ala 170	ggg Gly	tcg Ser	aaa Lys	acc Thr	aag Lys 175	gcg Ala	528
ttg Leu	gat Asp	ttt Phe	atc Ile 180	cġc Arg	act Thr	atg Met	atc Ile	ggc Gly 185	tcc Ser	ccg Pro	gaa Glu	gat Asp	gtg Val 190	ctc Leu	aat Asn	576
gaa	tgg	ttc	gac	agc	gaa	cgg	gtt	aaa	gct	cct	tta	gct	aga	cta	tgt	624

Glu	Trp	Phe 195	Asp	Ser	Glu	Arg	Val 200	Lys	Ala	Pro	Leu	Ala 205	Arg	Leu	Cys	
					ccc Pro											672
					cgg Arg 230											720
					aca Thr											768
					act Thr											816
					Gly ggg											864
_					att Ile				_	_	_	_			_	912
					ggg Gly 310											960
	_	_		-	cgc Arg						-	-				1008
					tcc Ser											1056
					gga Gly											1104
					gcc Ala											1152
					ttg Leu 390											1200
					cac His											1248
					gaa Glu											1296

	,			420					425					430				
	gat Asp	Glu	tta Leu 435	aag Lys	gaa Glu	aaa Lys	gtg Val	gcg Ala 440	gat Asp	cgg Arg	gtg Val	att Ile	gat Asp 445	aaa Lys	tta Leu	acg Thr		1344
						cta Leu												1392
						gcc Ala 470												1440
						agt Ser										cta Leu	•	1488
						tac Tyr				Ile								1536
						ccc Pro										aga Arg	-	1584
						ttt Phe									taa			1629
	<210 <211 <212 <213	L> 5 2> I	PRT	choco	occus	s sp.						٠						
,	<400)> 1		٠		•		-										
	Met 1	Ile	Thr	Thr	Asp 5	Val	Val	Ile	Ile	Gly 10	Ala	Gly	His	Asn	Gly 15	Leu		
	Val	Cys	Ala	Ala 20	Туг	Leu	Leu	Gln	Arg 25	Gly	Leu	Gly	Val	Thr 30	Leu	Leu		
	Glu	Lys	Arg 35	Glu	Val	Pro	Gly	Gly 40	Ala	Ala	Thr	Thr	Glu 45	Ala	Leu	Met		
	Pro	Glu 50	Leu	Ser	Pro	Gln	Phe 55	Arg	Phe	Asn	Arg	Cys 60	Ala	Ile	Asp	His		
	Glu	Phe	Ile	Phe	Leu	Gly	Pro	Val	Leu	Gln	Glu	Leu	Asn	Leu	Ala	Gln		

75

80

Tyr	GIŸ	Leu	GIU	85	Leu	Pne	cys	Asp	90	Set	Val	rne	Cys	95	GIY
Leu	Asp	Gly	Gln 100	Ala	Phe	Met	Ser	Туг 105	Arg	Ser	Leu	Glu	Lys 110	Thr	Cys
Ala	His	Ile 115	Ala	Thr	Tyr	Ser	Pro 120	Arg	Asp	Ala	Glu	Lys 125	Tyr	Arg	Gln
Phe	Val 130	Asn	Tyr	Trp	Thr	Asp 135	Leu	Leu	Asn	Ala	Val 140	Gln	Pro	Ala	Phe
Asn 145	Ala	Pro	Pro	Gln	Ala 150	Leu	Leu	Asp	Leu	Ala 155	Leu	Asn	Tyr	Gly	Trp 160
Glu	Asn	Leu	Lys	Ser 165	Val	Leu	Ala	Ile	Ala 170	Gly	Ser	Lys	Thr	Lys 175	Ala
Leu	Asp	Phe	Ile 180	Arg	Thr	Met	Ile	Gly 185	Ser	Pro	Glu	Asp	Val 190	Leu	Asn
Glu	Trp	Phe 195	Asp	Ser	Glu	Arg	Val 200	Lys	Ala	Pro	Leu	Ala 205	Arg	Leu	Cys
Ser	Glu 210	Ile	Gly	Ala	Pro	Pro 215	Ser	Gln	Lys	Gly	Ser 220	Ser	Ser	Gly	Met
Met 225	Met	Val	Ala	Met	Arg 230	His	Leu	Glu	Gly	Ile 235	Ala	Arg	Pro	Lys	Gly 240
Gly	Thr	Gly	Ala	Leu 245	Thr	Glu	Ala	Leu	Val 250	Lys	Leu	Val	Gln	Ala 255	Gln
Gly	Gly	Lys	Ile 260	Leu	Thr	Asp	Gln	Thr 265		Lys	Arg	Val	Leu 270	Val	Glu
Asn	Asn	Gln 275	Ala	Ile	Gly	Val	Glu 280	Val	Ala	Asn	Gly	Glu 285	Gln	Tyr	Arg
Ala	Lys 290	Lys	Gly	Val	Ile	Ser 295		Ile	Asp	Ala	Arg 300	Arg	Leu	Phe	Leu

Gln 305	Leu	Val	Glu	Pro	Gly 310	Ala	Leu	Ala	Lys	Val 315	Asn	Gln	Asn	Leu	Gly 320
Glu	Arg	Leu	Glu	Arg 325		Thr	Val	Asn	Asn 330	Asn	Glu	Ala	Ile	Leu 335	Lys
Ile	Asp	Cys	Ala 340	Leu	Ser	Gly	Leu	Pro 345	His	Phe	Thr	Ala	Met 350	Ala	Gly
Pro	Glu	Asp 355	Leu	Thr	Gly	Thr	Ile 360	Leu	Île	Ala	Asp	Ser 365	Val	Arg	His
Val	Glu 370	Glu	Ala	His	Ala	Leu 375	Île	Ala	Leu	Gly	Gln 380	Ile	Pro	Asp	Ala
Asn 385	Pro	Ser	Leu	Tyr	Leu 390	Asp	Ile	Pro	Thr	Val 395	Leu	Asp	Pro	Thr	Met 400
Ala	Pro	Pro	Gly	Gln 405	His	Thr	Leu	Trp	Ile 410	Glu	Phe	Phe	Ala	Pro 415	Tyr
			420	Leu				425					430		
		435		Glu			440					445			
	450			Asn		455			-	•	460				
465				Leu	470					475					480
				Met 485					490				_	495	
			500	Asn				505					510		
		515		His			520	•				525		Gly	Arg
Asn	Cys	Ala	Arg	Val	Phe	Leu	Lys	Gln	Gln	Arg	Arg	Phe	Trp		

535

530

540

<210> 13 <211> 776 <212> DNA	
<213> Bradyrhizobium sp.	
<220> <221> CDS <222> (1)(774) <223>	
<400> 13	
atg cat gca gca acc gcc aag gct act gag ttc ggg gcc tct cgg cgc Met His Ala Ala Thr Ala Lys Ala Thr Glu Phe Gly Ala Ser Arg Arg 1 5 10 15	48
gac gat gcg agg cag cgc cgc gtc ggt ctc acg ctg gcc gcg gtc atc Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile 20 25 30	96
atc gcc gcc tgg ctg gtg ctg cat gtc ggt ctg atg ttc ttc tgg ccg Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro 35 40 45	144
ctg acc ctt cac agc ctg ctg ccg gct ttg cct ctg gtg gtg ctg c	192
acc tgg ctc tat gta ggc ctg ttc atc atc gcg cat gac tgc atg cac Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His 65 70 75 80	240
ggc tcg ctg gtg ccg ttc aag ccg cag gtc aac cgc cgt atc gga cag Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln 85 90 95	288
ctc tgc ctg ttc ctc tat gcc ggg ttc tcc ttc gac gct ctc aat gtc Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val 100 105 110	336
gag cac cac aag cat cac cgc cat ccc ggc acg gcc gag gat ccc gat Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp 115 120 125	384
ttc gac gag gtg ccg ccg cac ggc ttc tgg cac tgg ttc gcc agc ttt Phe Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130 135 140	432
ttc ctg cac tat ttc ggc tgg aag cag gtc gcg atc atc gca gcc gtc Phe Leu His Tyr Phe Gly Trp Lys Gln Val Ala Ile Ile Ala Ala Val 145 150 155 160	480
tcg ctg gtt tat cag ctc gtc ttc gcc gtt ccc ttg cag aac atc ctg Ser Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn Ile Leu	528

								•			•	•	
		165			170	•				175	. •		
ctg ttc t Leu Phe T												576	
ttc ggc a Phe Gly T				Pro								624	
cgc cac a Arg His A 210												672	
acc tgc t Thr Cys P 225												720	
gcg ccg t Ala Pro T												768	
cgt gac t Arg Asp	a										· .	776	
<210> 14 <211> 25 <212> PR <213> Br	8 T	obium sp	o.										
<400> 14													
Met His A	la Ala	Thr Ala 5	Lys Ala	Thr	Glu 10	Phe	Gly	Ala	Ser	Arg 15	Arg		
Asp Asp A	la Arg 20	Gln Arg	Arg Val	Gly 25	Leu	Thr	Leu	Ala	Ala 30	Val	Ile		
Ile Ala A 3		Leu Val	Leu His	Val	Gly	Leu	Met	Phe 45	Phe	Trp	Pro		
Leu Thr L 50	eu His	Ser Leu	Leu Pro	Ala	Leu	Pro	Leu 60	Val	Val	Leu	Gln		
Thr Trp L 65	eu Tyr	Val Gly 70	Leu Phe	: Ile	Ile	Ala 75	His	Asp	Cys	Met	His 80	· .	
Gly Ser L	eu Val	Pro Phe 85	Lys Pro	Gln	Val 90	Asn	Arg	Arg	Ile	Gly 95	Gln		

Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val 100 105 Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp Phe Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130 135 140 Phe Leu His Tyr Phe Gly Trp Lys Gln Val Ala Ile Ile Ala Ala Val 150 155 Ser Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn Ile Leu 170 165 175 Leu Phe Trp Ala Leu Pro Gly Leu Leu Ser Ala Leu Gln Leu Phe Thr 180 185 190 Phe Gly Thr Tyr Leu Pro His Lys Pro Ala Thr Gln Pro Phe Ala Asp 195 200 Arg His Asn Ala Arg Thr Ser Glu Phe Pro Ala Trp Leu Ser Leu Leu Thr Cys Phe His Phe Gly Phe His His Glu His His Leu His Pro Asp 230 235 Ala Pro Trp Trp Arg Leu Pro Glu Ile Lys Arg Arg Ala Leu Glu Arg 245 250 Arg Asp <210> 15 <211> 777 <212> DNA <213> Nostoc sp. <220> <221> CDS <222> (1)..(777) <223> <400> 15

							•									
				caa Gln 5												48
				atc Ile												96
				atc Ile												144
				aca Thr					_						_	192
				acc Thr												240
				ggc Gly 85		_						_				288
				ctc Leu												336
				aaa Lys							His				-	384
				tat Tyr												432
				atg Met												480
			Ile	ttt Phe 165						_					_	528
				ata Ile												576
				ttt Phe												624
				ccc Pro												672
tgg	tct	ttt	gtt	act	tgt	tat	cac	ttc	ggc	tac	cac	aag	gaa	cat	cac	7.20

Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His 230 235 240 225 768 gaa tac cct caa ctt cct tgg tgg aaa tta cct gaa gct cac aaa ata Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile 245 tct tta taa 777 Ser Leu <210> 16 <211> 258 <212> PRT <213> Nostoc sp. <400> 16 Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu 5 Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe 25 Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser Leu Ile Leu Leu 40 Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala 50 55 60 Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His 65 70 75 Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn 90 85 Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys 100 105 110 Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp 115 120 125 Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn Phe Phe Leu Trp 130 Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr Gln Ile Phe Gly 160

155

150

145

Deu	vai	Mec	тте	165	HIS	GIÀ	Leu	гÀг	170	Leu	Val	Hls	lle	175	GIU	
Asn A	Asn	Leu	Ile 180	Ile	Phe	Trp	Met	Ile 185	Pro	Ser	Ile	Leu	Ser 190		Val	
Gln 1	Leu	Phe 195	Tyr	Phe	Gly	Thr	Phe 200	Leu	Pro	His	Lys	Lys 205	Leu	Glu	Gly	
Gly :	Tyr 210	Thr	Asn	Pro	His	Cys 215	Ala	Arg	Ser	Ile	Pro 220	Leu	Pro	Leu	Phe	· ·
Trp :	Ser	Phe	Val	Thr	Cys 230	Tyr	His	Phe	Gly	Tyr 235	His	Lys	Glu	His	His 240	
Glu '	Tyr	Pro	Gln	Leu 245	Pro	Trp	Trp	Lys	Leu 250	Pro	Glu	Ala	His	Lys 255	Ile	
Ser 1	Leu						* :	·					·•			
<210: <211: <212: <213:	> 2 > D	.7 :093 :NA :omat	te ,		-		÷									
<220: <221: <222: <223:	<pre>p</pre>		oter .(209	93)												
<400:		.7 rta t	taca	aacag	gc ti	atat	gttg	, ago	aggt	aaa	agct	tcaa	atg (cccta	attett	60
tctac	cagt	ta t	caat	gttg	gc to	gtct	aata	tct	ggtg	ttc	ttct	cgaa	aat	gtcaa	attggc	120
ttgca	agca	ca t	tgto	cctct	a at	atco	catto	aaç	gctto	tta	gato	gatga	aaa (catt	gtcaa	180
attta	atta	at t	tcat	agto	gt to	cagto	ctcaa	tto	ettta	igct	ggtt	cct	cat a	agtaa	agttg	240
tctaa	atat	ga a	aatga	aaaat	g ti	ctgt	gtgt	tgt:	acta	ata	cctt	ttca	atg (gttgt	ctata	300
gaacg	gtcg	at g	gaaga	agcca	aa a	agaa	acta	ttt	tggg	ctg	cgat	ttct	ga 1	tacca	attgta	360
tctga	aatg	ct g	gggtg	ggag	gc to	catca	agaag	ctt	taca	atg	ggto	cacat	tat a	atgga	agccgg	420
tatga	agga	at g	gctgg	gaat	c ag	gttgo	gttt	cgc	gtgo	tag	gact	tttc	cct	tcctq	gtatt	480

tctgcccaca	gcccagttga	ttacgtgaac	tccgtcagac	ttggaaagga	gagaagtacc	540
caaatgtcgt	ctttttagaa	atacttttgt	cacaaaatag	cggggtttac	agctacagaa	600
gatcatgcag	aaggcgtcca	gtttagtttt	tgaaggttgt	ttggagttta	tttatctaaa	660
gtaaacttaa	atcagctttt	tgtttatgag	ttcagtgaac	tatatgttca	aataagactt	720
ccctttgtag	atatgtgttt	tttttgttgt	tgagcacttt	gtgtgcattg	gataaacccc	780
caacgtgtaa	tagctaccat	acaagagaag	taactcgcac	tgtccatgtc	ttatgtggct	840
cgactcagaa	agcattcagg	gggattgata	accaccctcc	aaaccaactg	aaccattgtg	900
aataaccacc	cttcaaatca	accgagtcct	cgtgaaggac	aaatatgtgg	ttttatatac	960
attaaatttt	gtttttacat	gcttcctctt	acttctttag	ttttcttgac	catatcttgc	1020
gtttttccct	tctgtaattg	acacttttct	tcaaaccatc	cagcaatgtg	gaagcttgac	1080
gattttcctt	cagagtagaa	attgaaaaga	atcaactaaa	aaggatagtc	cttcgatttg	1140
atttccggct	taaaaataaa	ctaataagaa	tgagagagcg	aataatagaa	tattttgaaa	1200
ttttaaagat	attcaactat	gttaaattgc	gttataaatt	tcttaaatta	gtagcaccta	1260
atagtttagt	tctcaaaagt	caaaactact	acataatgtg	ctcatttttc	acattaaaat	1320
gcctacatga	tgtaaaagta	aaactcgtag	cattctacgt	gttttactca	actcaaacat	1380
cctgttcatt	ttaataaacg	tacgatgagc	ttctctctcc	aattttcttt	tctttttt	1440
ttttaaaaaa	atatttttt	ttatatcaat	ccaaatgggc	tccaatttat	cataaattag	1500
gtagaaactt	agatattaaa	gaaagaaaag	ggtttatctc	gcaagtgtgg	ctatggtggg	1560
acgtgtcaaa	ttttggattg	tagccaaaca	tgagatttga	tttaaaggga	attggccaaa	1620
tcaccgaaag	caggcatctt	catcataaat	tagtttgttt	atttatacag	aattatacgc	1680
ttttactagt	tatagcattc	ggtatctttt	tctgggtaac	tgccaaacca	ccacaaattt	1740
caagtttcca	tttaactctt	caacttcaac	ccaaccaaat	ttatttgctt	aattgtgcag	1800
aaccactccc	tatatcttct	aggtgctttc	attcgttccg	aggtaagaaa	agatttttgt	1860
ttctttgaat	gctttatgcc	actcgtttaa	cttctgaggt	ttgtggatct	tttaggcgac	1920
tttttttt	tttgtatgta	aaatttgttt	cataaatgct	tctcaacata	aatcttgaca	1980
aagagaagga	attttaccaa	gtatttaggt	tcagaaatgg	ataattttct	tactgtgaaa	2040
tatccttatg	gcaggtttta	ctgttatttt	tcagtaaaat	gcctcaaatt	gga	2093

<210> 18

<211> 4760 <212> DNA <213> Tomate <220> <221> promoter <222> (1)..(4760) <223>

<400>

tctagattga aataaacctt attgcattta gtatatgaga atgcatctat aaaataatgt 60 ctatttttgg tggaaaatat ttgtgcgcca aagcacggtt tgtattttat attttacaat 120 atttttgcac ggtaatatag ttgcaaggtt ttacaaacga attatctctt gaactttaaa 180 ttaagttcac agtttattcc aaaaataatg ttcaacttct aatcatatct ccccctattg 240 ctagaaaaat ataacattta cgcccaactt catttaggat ccatttttat gcatggtgga 300 gcaattggat catatactac atatttttt aaaaaaaata gatagaaatt atttaatctt 360 gattccgaat caattgtgat gggaaaacct tattagtttg atgtgtacat ataatgtttt 420 atgtcaaata aatttatttt atactaaatt ttatttgaaa gtatttttct cataacaaat 480 aatttaacta tattggagac atgaaaattc tacaaaacca acttgcatta tcaacataat 540 tttatagttt gaaattgtgc tcttaattaa acaattcaag ataacaatct ggtaaaatta 600 aaattacaag ttgataacaa acatatacat atgtacatct catagatgca ttcattaaat 660 catataatag taaatgcttc acaatagaag ggtctatatt cattttttt ttatgtgtca 720 aacaattttg aggaattcaa tttcatcttt aactggtaca ataatcattt tatcatgaaa 780 ataagcagct caagagaatt tttgaagaat cttttatttc tttaacattt aaccacatga 840 atttttaatt tttttttgca atacatttaa accgaaatgg tcaaacgatc aaccaactga 900 tctttattct aataaacttc tagtttacat ttgcatgtga gtgcatcatc attatcatat 960 ttgtacacaa caaacaagaa aaaaatataa acaatatttt atttaaatat ttatattcca 1020 ctttgactgt agatattaaa tcttgtcatc atttatagtc tcaatattat aattttttta 1080 ttttttcaaa attcaaaagt ttacaattat ttttttgaac tataatatta tccaagatga 1140 acatctcaag aagaaaatta ttaatattgt tatggttaaa attttacata caatacttgt 1200 tttttgcttt acttttatct taccgtagat acacaatcga cgataactta gtgatcacac .1260 aataataatt attttgttca tgacacaata tttataagaa atacttattt ctttcttta 1320 tccttcagta gttcataata aaaacatacc ataatatttg tgatgcattc atagtacgta 1380

atgaaatgac	aatttatgtc	aaattatttt	cttttatact	ctcaaacctc	ccgtaaaggt	1440
gagatgagtc	atttatccaa	ttatacataa	atatgtcttt	attcatgctc	tttatcacat	1500
tctgacacat	tcacttaatt	tcaagagtaa	gcaagcatga	taactgaaac	tatttatgcg	1560
tatcttacct	tgatatttga	cacattacat	gacacacctc	aacatcactt	tcaaagatta	1620
agcgcaccac	catattatct	ttctttttt	ttttatgaag	gttttataaa	attattaaat	1680
taggtccaaa	aaattgtttg	tcaaataacc	ttttatacta	gattgatgac	aaaaattacc	1740
tttacgtttt	gaaagaccat	tttaagacct	aatctatcag	tgactcctta	aagttggcac	1800
aatatttcac	ttagacaccc	taattgaatg	atgttcattt	taaacaccca	atgtagggtt	1860
ccgctatatc	attttgacac	atttcttaac	atcaacaaaa	atatataatg	agtatgtgat	1920
atactcgcga	atgacgtgaa	aaatgaagac	atttgttatt	tgtatcaaag	tagttactaa	1980
ataattaatt	ttgaataaaa	ataaaagctg	accagtaaat	caataacaca	taatattttc	2040
cacctaataa	ttaaaatata	aaataaaaaa	gagccatctc	agggtcatct	gcccaccatt	2100
gctatttcaa	agaaatttgt	acgttagttt	atagaaattg	atgttaaaat	tctttcaaga	2160
aaaatttatg	aatgaattta	ttctctaatt	taaaaatatt	ttctgttatt	tttgttgaaa	2220
gaaatttaac	ttggataaaa	tggtggttaa	aactggaaag	aagaaaagag	aaaaaataat	2280
taaaaatcat	ttcacgctct	aatcaatgag	cgtatcacat	tcattatgtt	atataagcaa	2340
aagtgacaaa	acgaaaataa	tatattacat	gaaatgtcta	aaataaatat	cgtctaatta	2400
aaatatctaa	gtaacatatt	gtgcctaact	ttagagggat	catcaataag	ttaaacccca	2460
ttttaataac	tcataattgt	cctttttatt	taatattgtc	acaaatcaca	atgataatta	2520
acattaattt	gtcctttgtg	acgtccatat	tcatgcattt	aaccaatcat	cttcatttgg	2580
acttattatc	acaattatcc	cactttcctc	acaaaatgga	gcattcaagt	ggaatagact	2640
acacgatttt	taatttcatc	aaaaacatct	ttttgcttta	ttcattatta	tattgtcgct	2700
attgttgaat	tttatttgcc	ctaaatttct	taccataaat	agatttttct	tttagaaaaa	2760
ggagattgac	taattctttt	cttgtaggaa	aaggtttagg	actctataaa	tagagacata	2820
ttccttctaa	cttaatcaac	atttacaatg	tagtcttaaa	gactttgaaa	gtttttggtt	2880
agggggagaa	attgtgggtc	acaagcttga	tacgttatca	attgtgtaaa	cctcccatgt	2940
attctgagtg	aatttggttg	aggttgtttc	cctctgtatt	ttgtactctc	atatttatag	3000
tggattgttc	atctctttcg	tggacgtagg	tcgattgacc	gtcgattgac	cgaaccacgt	3060
taaatctttg	tattttttga	tatatttctc	attatcttct	tactcgtgat	ctttcaaggt	3120

ttgcattgct	atcttccgcg	ttacaccaac	ttatttacga	tcctaacagc	tatggtgtgg	3180
aaacataaat	caaacatttt	actgatataa	acacatcttt	gattataaca	tgatagaaat	3240
ttgagcccaa	ctttttatca	tcattatata	caaaaagttc	taaattttt	ttttgatgta	3300
gtaaaactta	aatccatagt	cttgccccta	aaccaatgac	ataatatata	acccaaaata	3360
tactagtttt	cgccctcgag	ccctttaaaa	agtatagtca	atatttacgg	tgaccgtgaa	3420
tttcttaatt	atgatatata	atttaaaaga	aatcatgatc	acattctact	gatgagaaca	3480
tgtgctaatc	aagggaaaac	atggatgtga	aaaatacttt	ttgttaaaag	taaaaaaaaa	3540
tgtgaaattt	tgttagttat	ttactaccta	tacattattt	gagcatgtgc	aaactttaca	3600
aatacctaat	agaagatttt	cacctgcctg	tatatatgta	aattaattat	aatgaacact	3660
ctcacataaa	ataattatca	gtatatacat	taatacttgc	cctccacaat	gaattaaata	3720
aaatgtagaa	catgatctac	acttcaataa	aactaagacc	ataaagaata	atttcaaaat	3780
atacacatgt	caacaataaa	ttatttgcat	attatattaa	cttactaaac	aatctttact	3840
tttgaaatat	aaaaataatc	aagttataag	tctgctcaaa	gtaaagcact	tgttagactc	3900
atctgatttt	gagaaggtaa	gcaaattgat	ggtgcataat	agtcacaagt	aaaatataaa	3960
atagatttca	ttagtaaaat	tgtttttac	tttctttata	tataattatc	aatatccttc	4020
aatggtaggt	taattatatt	gttaacttct	tgttgaatta	aagcaataag	acaagaatat	4080
taaagataaa	agaacaataa	aaatagaaag	actaagagat	aagagttttc	ttattcttct	4140
ttcaataagt	atcatcaagt	gtatacaata	taaatttttg	tatttttgat	ctatctattt	4200
ataatgttat	atataagcat	acaaaagatc	agtcataaat	atgactttaa	tcatgaaaat	4260
aatgaaagag	attatgaagg	cgtaaggtta	ctagaataat	agtcattaaa	aaaaggggtt	4320
atctttataa	ttgaataatt	gatgaagtaa	tggagataat	tagtgagcat	aaatttttt	4380
aaaaaaatgg	acatttacac	tataatattt	tataacactt	tcccttaaac	atctaggtat	4440
aaataatgag	tcttgtcaaa	atcttagtag	gaaaaattct	gtgaaatttt	tttagtgaaa	4500
acaaatgata	taaatatctt	gaatactcat	tatttgttgt	ctcattaaaa	atcttatctg	4560
acctataaaa	taaattattt	gctcaactca	aaatagtttt	tcattctaaa	attagtataa	4620
ttattagtga	atatttaatt	aacataattg	tatactaagg	ggcctataaa	ttggattctt	4680
ctcaaagaaa	aataaaatca	ccacacaact	ttcttcttct	gctcatcaat	tagcaattaa	4740
tccaaaacca	ttatggctgc	. :				4760

<210> 19 <211> 1229 <212> DNA <213> Tomate <220> <221> promoter <222> (1)..(1229) <223>

<400> gatcttactt taccataatg gtgaaaagga tagagaccca catggttttt acttcgttat 60 agagacaaga tgaaaacaaa tctaaaattt aatattatag atggatagat gatggacaac 120 aaaaagagaa aagaagatac tggtcattgg tccaaaacag ccacccgaat caatatatga 180 ccgaaaaaca aaagctacag aatcatatct gtgcaacggt gccacagtgc tataggatag 240 cacaaccaca ctgtcacata aaaaagagga ttttgcactc gttttagatg gagtttcgta 300 attttcgggt ctttcaagct taaatatata cttcattaaa gcttcgaatt ttgtaatgtt 360 420 caattctacc tctttgatgt tcgataccta taaaataatt aaataaacgt atagacgtag 480 gaacaattaa gcggagttag atagtgcatt tatgattcta cctgtgagtg caatggtaaa 540 atggacatta taaaagagta ggggcaaaga gggaagtgaa aaattctccc cacttagcca tgtttaatat agtagggata ggaatatgta ataagtagtg ttttttctat ttaattttct 600 660 gtatacttct tccatctcct ttaattatta aaaggttttc ctctctttac tctttctctc taaattacta ttctgaagta tattttcttt tataaaaaga gtaataaact ttatttccat 720 taaaagaaca aacaacaaga aatgataatc aaatacacat tcatattttt aaaaaaaaag 780 ttaaacaaga tatagaaata gttatcaaat atatttatgt tgtcattcct tgtatacaat 840 ggcattcctt tagctttgtt tatgtatttc ctgagcttct cttagtgtac tatatccttt 900 aatattaatg catctttcga tcttgctaag atatgataaa aatagacgac acgtgtcaca 960 acctaattga gatatttcga tgtactttct atccgtctta gcttgtaatt aattattgtt 1020 1080 aaaaaagaat actcaattaa ctagaaacaa gaaataagaa acgaaaacat tacaaaacgg 1140 agttgaagcg tgcaaatttg tggaaatgat tgttatcatg aaccagaaaa cattaaataa ctcttcctat aaaaggccct tattcttcac tttctcaaat cacgtcctaa agatatcaaa 1200 1229 gatttcaact gatagcaaaa agcactact

<210> 20

<211>

845

```
<212>
      DNA
<213>
      Tomate
<220>
<221> promoter
<222> (1)..(845)
<223>
<400> 20
ctgttattga atttctataa aatgttataa tattgatttc ttaatgatca gttaactacg
                                                                       60
tgattatttg atatgttttt aatctaaaat gtgatatgta aaatatagaa gaaaaaaaat
                                                                      120
taaaaagaac tttaagaaaa aaatttcaac ccaccccaac ctaaaatcct aggtccgcca
                                                                      180
tggtaattat agatatatga tgatgaaggg caaatattgg tctatgagaa tttcggtgat
                                                                      240
actaccgctt gaagagcaat aatggttttg ggactccgat gagggaaaca ttcaaatatg
                                                                      300
atggattttg gtgatactat gtttacccga gctagctatc acagaataat ctacatccca
                                                                      360
caaatgaaat atgttatagg ctaccaatta ggaagtagtg gaattatgaa gaagtaggga
                                                                      420
tgtgcaaata taagagaaaa tttgaaaatt atgattgaaa caagttatgt ttttttaact
                                                                      480
agatgaatta aatggtttaa agatttgtag atttataatc aaacaattac cgctactcta
                                                                      540
tcggtgacta ccaattccat cattgtaaat aacaaataac agattcgttg ctggatgtct
                                                                      600
tagtgccgtg aagcctacaa atcacactat aaactgctta gctctcgagc gttactaatt
                                                                      660
tggtgattac caattccaac attgcgactt cttctactag tagtactaaa atagcaagta
                                                                      720
atatgcattt gtggtaagat gtttggtgtt aacctttcct aaccagacta taaatgacct
                                                                      780
caacactata gtggagtttc atcgatcatc attctaaacg aaaaacttga agtgaaagca
                                                                      845
tcaag
<210>
       21
<211> 3417
<212>
       DNA
<213>
       Tomate
<220>
<221>
      promoter
<222>
       (1)..(3417)
<223>
<400> 21
aagettgget geaggtegae etgeaggtea aeggateaat geettgttaa taatatgaaa
                                                                       60
ataagacgta aaagaagtct tgcatatgca ccataatatt agacttatgg acaaaagtaa
                                                                      120
```

gttggttcaa	attacgcttt	tatttatcca	catagcaaga	aaataatact	caaaatccaa	180
cggtatcggt	tattttatat	tttactctac	atgtatatat	gtagtataat	ggacataaat	240
tctgtcgtaa	ttatacatat	attaataatg	aggattgtaa	aataatatgc	aaaaacgtcg	300
tatttgacat	actaatagct	aaaatactac	ctactatcat	atataattag	ttaactatgt	360
gccttttaag	aaaaattacg	tgaaataaca	aatatttaga	gcatattatg	taatatagct	420
gtagttttat	tattttttgt	taatggctac	aatttcgcaa	aattttccta	ttttgtttct	480
taatcgtata	aatccaaatt	ttgtataatt	atgaccttaa	ttgtttaatt	cagatttcgt	540
ataaaattcg	atttttgatt	ttataaatta	aaatttatac	ttactttagc	tacttgttta	600
tgatttatca	aaaaattcat	attaatctat	ttgtatatgg	acaagcaaaa	tatacaaatg	660
gagttctgaa	aatttctaaa	tgcatatact	taatatcttt	gatggtcact	caactatcaa	720
ctttttccat	aaaaagtcac	ttaacattga	ttttcaactc	gaaaatcact	caactatgaa	780
atctttgtat	agaaagtcac	tcaacctatt	taattatttt	tttccattat	atctgttgtc	840
acgaaatatt	atttctaact	aatattctaa	gaataaacat	acatccattt	aaatcattta	900
ataaacccgc	ccacttgacc	taacccacat	aatattaaca	cttttgtttt	acttttattc	960
tccaaaatta	ttttcttggt	ttcccattct	ttctcctttg	cttttttt	cttcttctca	1020
atttcagcct	ttttcttcct	ttttttagta	aacctcagtc	aaataggaat	tagattgtga	1080
ttaaaatatt	attagaagga	tgcagggttg	tacaaagaga	gtttattaag	agataatcta	1140
taaaaaaaaa	aaagtcagat	aatgcatatt	cagattcaga	gatcattaaa	tgatgacttt	1200
tttcgtaata	ggttttcttt	aaatcctttc	gccttcatac	gacgactctc	gataataaca	1260
tcgtttaaag	ctaataatgc	taatgaacaa	taatcaaaat	aaaaaagaat	tcggatacaa	1320
gagaaaatga	tttagtgaga	gaaaaaattg	agatattcct	tattcctaac	taaacgaagg	1380
aagaagaggc	taaaattgag	attcagttaa	aaaaaaaaaa	caaagaaaaa	cgcaatggag	1440
atgagagaaa	gtaattttga	aaaataaaaa	taaattaaga	gggtaaatat	tttattttta	1500
gcgagttggg	ttaagtggtg	ccggtcatta	aatggatata	tgtttatttc	ttaaaatttt	1560
agttagaaat	acaaatttca	aatcaacaaa	ttttaatgaa	aaaataatta	aataggttga	1620
gtggctttct	atgcaaagat	ctcatagttg	agtgatttt	gagtagaaaa	tcatagttaa	1680
gtgagtttct	gtgaaaaaaa	attgatagtt	gagtgactat	caaagatatt	aactctagac	1740
ttgtcatatt	cgtatactta	catacgaaat	atacaaacct	ctgcctccat	gacaagcaaa	1800

aaactataac	tatgaaacaa	tattttcgaa	atcatagcta	taaagtetta	ttatatctaa	1860
tatctttact	atttttaaaa	atttcacata	attttaatac	ataaataatt	tacttttaac	1920
taacgaaaaa	ggacattttt	atgtcacctg	agagcccatc	ggtagattca	tcacattttt	1980
tcgtttcttg	taataaactg	tacacatata	aggagaaatt	aaattagaga	ttatttttcc	2040
attttgagga	gattaataaa	tttaaaatgt	aacttaacat	gtaaactgct	ataaaggtaa	2100
caaaacacgt	aaactgctat	aaaggtaatt	ctatttaaaa	gataaataaa	tgcttaaaag	2160
aagtgccaaa	aaaacacaaa	caaacaaatg	aaactaaacc	tacttcaagg	gaagttcttg	2220
tagtataaaa	ataaataaag	tcaacttatt	cacgacattt	ctttttggtt	ttcttttggc	2280
tacgtattca	tatttaagtc	tgactaattt	agattctcgc	tatatataaa	agattcaggg	2340
gtggctcaac	gcaattggag	gcctagagca	aaatttcaat	tcgcggccta	atatattata	2400
tactttatat	acctatttat	tcaaaattta	tttttttac	actatttaga	tggaaattat	2460
tagtacttaa	tattgttttt	tcagttatta	gttttaggta	aaattttatt	aatacaacat	2520
tgaaaaacat	cctttaagtg	agacaattat	tatatgtatt	gttaacatag	tgctataagt	2580
aataagtaaa	taaatattaa	ataaaaataa	gagtaagaac	catagaattt	gacacaagaa	2640
gttgatgact	tggtatacct	cattttaaca	tgcttgtact	ttagtaatgc	ttgaatctaa	2700
aatttaaaaa	gaaataaaaa	agaatttgta	atccactttt	tccaacactt	ttcactgtta	2760
attcttattt	ttaacatagt	acaaaaaata	ttaaaatgga	taaaataatt	tattttataa	2820
aagattatat	atatatttt	ttatcatata	taactaattt	ttctataaaa	atttaaacac	2880
ataatttaat	tttaaaaaaa	atttggggct	ttggggccta	agacaaaggc	cttaaaggac	2940
aaaacataga	gccgcccctg	aaaagatctc	attcgaaaga	aaatatgcat	taccaatgat	3000
ttttcgtacc	cagageteaa	aatcaaaatt	gtactgttat	tttttaaaa	aatttcatct	3060
cagactaaat	ggaattttt	tctttggtta	acctgtttga	tcaatctttt	ggaatcagtt	3120
aattttgaaa	aataaattaa	tgagaaataa	tttgtatttg	tccagcttat	ttaagaatta	3180
tttttgagca	acaatttata	tttagtcacg	cttttaagtg	tatttttaa	aataaaatta	3240
aggtattatt	tgaaaaaatt	acttttaaaa	aaattgaatt	aaattctgtt	actcttatta	3300
tatactccta	tataatttga	ttgccaaaaa	tatcaaacgt	ttaatatttg	aagttgatgt	3360
gagggattac	ttcttgatta	aattgtacta	caatgtaata	ttatcaaatt	aaagctt	3417

<210> 22 <211> 1155

<212> DNA <213> Haematococcus pluvialis														
<220> <221> CDS <222> (6)(995) <223>														
<pre><400> 22 gaagc atg cag cta gca gcg aca gta atg ttg gag cag ctt acc gga agc 50 Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser 1</pre>														
gct gag gca ctc aag gag aag gag aag gag gtt gca ggc agc tct gac 98 Ala Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp 20 25 30														
gtg ttg cgt aca tgg gcg acc cag tac tcg ctt ccg tca gag gag tca Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser 35 40 45														
gac gcg gcc cgc ccg gga ctg aag aat gcc tac aag cca cca cct tcc Asp Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser 50 55 60														
gac aca aag ggc atc aca atg gcg cta gct gtc atc ggc tcc tgg gcc Asp Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser Trp Ala 65 70 75														
gca gtg ttc ctc cac gcc att ttt caa atc aag ctt ccg acc tcc ttg Ala Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu 80 85 90 95														
gac cag ctg cac tgg ctg ccc gtg tca gat gcc aca gct cag ctg gtt Asp Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val 100 105 110														
agc ggc agc agc ctg ctg cac atc gtc gta gta ttc ttt gtc ctg Ser Gly Ser Ser Ser Leu Leu His Ile Val Val Phe Phe Val Leu 115 120 125														
gag ttc ctg tac aca ggc ctt ttt atc acc acg cat gat gct atg cat Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His 130 135 140														
ggc acc atc gcc atg aga aac agg cag ctt aat gac ttc ttg ggc aga 482 Gly Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg 145 150 155														
gta tgc atc tcc ttg tac gcc tgg ttt gat tac aac atg ctg cac cgc Val Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg 160 175														
aag cat tgg gag cac cac aac cac act ggc gag gtg ggc aag gac cct 578 Lys His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro 180 185 190														

gac ttc cac agg gga aac cct ggc att gtg ccc tgg ttt gcc agc ttc Asp Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe 195 200 205	626
atg tcc agc tac atg tcg atg tgg cag ttt gcg cgc ctc gca tgg tgg Met Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp 210 215 220	674
acg gtg gtc atg cag ctg ctg ggt gcg cca atg gcg aac ctg ctg gtg Thr Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val 225 230 235	722
ttc atg gcg gcc gcg ccc atc ctg tcc gcc ttc cgc ttg ttc tac ttt Phe Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe 240 245 250 255	770
ggc acg tac atg ccc cac aag cct gag cct ggc gcc gcg tca ggc tct Gly Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser 260 265 270	818
tca cca gcc gtc atg aac tgg tgg aag tcg cgc act agc cag gcg tcc Ser Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser 275 280 285	866
gac ctg gtc agc ttt ctg acc tgc tac cac ttc gac ctg cac tgg gag Asp Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu 290 295 300	914
cac cac cgc tgg ccc ttt gcc ccc tgg tgg gag ctg ccc aac tgc cgc His His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg 305 310 315	962
cgc ctg tct ggc cga ggt ctg gtt cct gcc tag ctggacacac tgcagtgggc Arg Leu Ser Gly Arg Gly Leu Val Pro Ala 320 325	1015
cctgctgcca gctgggcatg caggttgtgg caggactggg tgaggtgaaa agctgcaggc	1075
gctgctgccg gacacgctgc atgggctacc ctgtgtagct gccgccacta ggggaggggg	1135
tttgtagctg tcgagcttgc	1155
<210> 23 <211> 329	•
<212> PRT <213> Haematococcus pluvialis	
<400> 23	
Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala 1 5 10 15	
Glu Ala Leu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val 20 25 30	

Leu	Arg	Thr 35	Trp	Ala	Thr	Gln	Tyr 40	Ser	Leu	Pro	Ser	Glu 45	Glu	Ser	Asp
Ala	Ala 50	Arg	Pro	Gly	Leu	Lys 55	Asn	Ala	Tyr	Lys	Pro 60	Pro	Pro	Ser	Asp
Thr 65	Lys	Gly	Ile	Thr	Met 70	Ala	Leu	Ala	Val	Ile 75	Gly	Ser	Trp	Ala	Ala 80
Val	Phe	Leu	His	Ala 85	Ile	Phe	Gln	Ile	Lys 90	Leu	Pro	Thr	Ser	Leu 95	Asp
Gln	Leu	His	Trp 100	Leu	Pro	Val	Ser	Asp 105	Ala	Thr	Ala	Gln	Leu 110	Val	Ser
Gly	Ser	Ser 115	Ser	Leu	Leu	His	Ile 120	Val	Val	Val	Phe	Phe 125	Val	Leu	Glu
Phe	Leu 130	Tyr	Thr	Gly	Leu	Phe 135	Ile	Thr	Thr	His	Asp 140	Ala	Met	His	Gly
Thr 145	Ile	Ala	Met	Arg	Asn 150	Arg	Gln	Leu	Asn	Asp 155	Phe	Leu	Gly	Arg	Val 160
Cys	Ile	Ser	Leu	Туг 165	Ala	Trp	Phe	Asp	Tyr 170	Asn	Met	Leu	His	Arg 175	Lys
His	Trp	Glu	His 180	His	Asn	His	Thr	Gly 185	Glu	Val	Gly	Lys	Asp 190	Pro	Asp
Phe	His	Arg 195	Gly	Asn	Pro	Gly	Ile 200	Val	Pro	Trp	Phe	Ala 205	Ser	Phe	Met
Ser	Ser 210	_	Met	Ser	Met	Trp 215		Phe	Ala	Arg	Leu 220	Ala	Trp	Trp	Thr
Val 225		Met	Gln	Leu	Leu 230	Gly	Ala	Pro	Met	Ala 235		Leu	Leu	Val	Phe 240
Met	Ala	Ala	Ala	Pro 245	Ile	Leu	Ser	Ala	Phe 250		Leu	Phe	Tyr	Phe 255	Gly

Thr Tyr Met	Pro His 260	Lys Pro		Pro G 265	ly Ala	Ala	Ser	Gly 270	Ser	Ser	
Pro Ala Val 275		Trp Trp	Lys 280	Ser A	rg Thr	Ser	Gln 285	Ala	Ser	Asp	
Leu Val Ser 290	Phe Leu	Thr Cys		His Pl	he Asp	Leu 300	His	Trp	Glu	His	
His Arg Trp 305	Pro Phe	Ala Pro	Trp	Trp G	lu Leu 315	Pro	Asn	Суѕ	Arg	Arg 320	
Leu Ser Gly	Arg Gly 325	Leu Val	Pro	Ala							
<210> 24 <211> 1111 <212> DNA <213> Haem	atococcu	s pluvia	lis								
<220> <221> CDS						·					
<222> (4). <223>	. (951)								-		
<223>	. (951)							-			
<223> <400> 24 tgc atg cta		ctc aag Leu Lys 5	gag Glu	aag ga Lys Gl	ag aag lu Lys 10	gag Glu	gtt Val	gca Ala	ggc	agc Ser 15	48
<223> <400> 24 tgc atg cta Met Leu	gag gca Glu Ala ttg cgt	Leu Lys 5 aca tgg	Glu	Lys G	lu Lys 10 ag tac ln Tyr	Glu tcg	Val ctt	Ala ccg	Gly	Ser 15 gaa	48 96
<223> <400> 24 tgc atg cta Met Leu 1 tct gac gtg	gag gca Glu Ala ttg cgt Leu Arg 20 gcg gcc	Leu Lys 5 aca tgg Thr Trp cgc ccg	gcg Ala gga Gly	acc ca Thr Gi 25	lu Lys 10 ag tac ln Tyr 5 ag aat	tcg Ser	Ctt Leu tac Tyr	CCG Pro	tca Ser 30	Ser 15 gaa Glu cca	
<223> <400> 24 tgc atg cta Met Leu 1 tct gac gtg Ser Asp Val gag tca gac	gag gca Glu Ala ttg cgt Leu Arg 20 gcg gcc Ala Ala 35 aca aag	Leu Lys 5 aca tgg Thr Trp cgc ccg Arg Pro	gcg Ala gga Gly	acc ca Thr Gl 25 ctg aa Leu Ly 40	lu Lys 10 ag tac ln Tyr 5 ag aat ys Asn cg cta	tcg Ser gcc Ala	Ctt Leu tac Tyr	CCG Pro aag Lys 45	tca Ser 30 cca Pro	Ser 15 gaa Glu cca Pro	96
<223> <400> 24 tgc atg cta Met Leu 1 tct gac gtg Ser Asp Val gag tca gac Glu Ser Asp cct tcc gac Pro Ser Asp	gag gca Glu Ala ttg cgt Leu Arg 20 gcg gcc Ala Ala 35 aca aag Thr Lys	Leu Lys 5 aca tgg Thr Trp cgc ccg Arg Pro ggc atc Gly Ile ctc cac	gcg Ala gga Gly aca Thr 55	acc ca Thr Gi 25 ctg aa Leu Ly 40 atg go Met Ai	lu Lys 10 ag tac ln Tyr 5 ag aat ys Asn cg cta la Leu tt caa	tcg Ser gcc Ala gct Ala	Ctt Leu tac Tyr gtc Val 60	CCG Pro aag Lys 45 atc Ile	tca Ser 30 cca Pro ggc Gly	Ser 15 gaa Glu cca Pro tcc Ser	96 144

	ctg Leu	gtt Val	agc Ser	ggc Gly	agc Ser 100	agc Ser	agc Ser	ctg Leu	ctg Leu	cac His 105	atc Ile	gtc Val	gta Val	gta Val	ttc Phe 110	ttt Phe	336
	gtc Val	ctg Leu	gag Glu	ttc Phe 115	ctg Leu	tac Tyr	aca Thr	ggc Gly	ctt Leu 120	ttt Phe	atc Ile	acc Thr	acg Thr	cat His 125	gat Asp	gct Ala	384
	atg Met	cat His	ggc Gly 130	acc Thr	atc Ile	gcc Ala	atg Met	aga Arg 135	aac Asn	agg Arg	cag Gln	ctt Leu	aat Asn 140	gac Asp	ttc Phe	ttg Leu	432
			gta Val														480
			aag Lys														528
			gac Asp														576
	_		atg Met		-												624
			acg Thr 210														672
•	_		ttc Phe	_		_	-					-		_	-		720
			ggc Gly	_		_			_					_			768
			tca Ser													cag Gln	816
			gac Asp														864
			cac His 290														912
	-	_	cgc Arg	_			-					_	tag	ctg	gaca	cac	961
	tgca	agtg	ggc (cctg	ctgc	ca go	ctgg	gcat	g ca	ggtt	gtgg	cag	gact	ggg '	tgag	gtgaaa	1021

1081

agctgcaggc gctgctgccg gacacgttgc atgggctacc ctgtgtagct gccgccacta

gggg	gagg	ggg 1	ttgt	tagci	tg to	cgago	cttg	3 .								13	111
<210 <210 <210 <210	L> :	25 315 PRT Haema	atoco	occus	s plu	ıvia	lis						•				
<400)> :	25								· . ·	.'		,				
Met 1	Leu	Glu	Ala	Leu 5	Lys	Glu	Lys	Glu	Lys 10	Glu	Val	Ala	Gly	Ser 15	Ser		
Asp	Val	Leu	Arg 20	Thr	Trp	Ala	Thr	Gln 25	Tyr	Ser	Leu	Pro	Ser 30	Glu	Glu		
Ser	Asp	Ala 35	Ala	Arg	Pro		Leu 40	Lys	Asn	Ala	Tyr	Lys 45	Pro	Pro	Pro		
Ser	Asp 50	Thr	Lys	Gly	Ile	Thr 55	Met	Ala	Leu	Ala	Val	Ile	Gly	Ser	Trp		
Ala 65	Ala	Val	Phe	Leu	His 70	Ala	Ile	Phe	Gln	Ile 75	Lys	Leu	Pro	Thr	Ser 80		
	Asp	Gln	Leu	His 85	Trp	Leu	Pro	Val	Ser 90	Asp	Ala	Thr	Ala	Gln 95	Leu		
Val	Ser	Gly	Ser 100	Ser	Ser	Leu	Leu	His 105	Ile	Val	Val	Val	Phe 110	Phe	Val		
Leu	Glu	Phe 115	Leu	туr	Thr	Gly	Leu 120	Phe	Ile	Thr	Thr	His 125	Asp	Ala	Met		
His	Gly 130	Thr	Ile	Ala	Met	Arg 135	Asn	Arg	Gln	Leu	Asn 140	Asp	Phe	Leu	Gly		
Arg 145	Val	Cys	Ile	Ser	Leu 150	Tyr	Ala	Trp	Phe	Asp 155	Tyr	Asn	Met	Leu	His 160		
Arg	Lys	His	Trp	Glu	His	His	Asn	His	Thr	Gly	Glu	Val	Gly	Lys	Asp		

	Pro	Asp	Phe	His 180	Arg	Gly	Asn	Pro	Gly 185	Ile	Val	Pro	Trp	Phe 190	Ala	Ser	
•	Phe	Met	Ser 195	Ser	Tyr	Met	Ser	Met 200	Trp	Gln	Phe	Ala	Arg 205	Leu	Ala	Trp	
	Trp	Thr 210	Val	Val	Met	Gln	Leu 215	Leu	Gly	Ala	Pro	Met 220	Ala	Asn	Leu	Leu	
	Val 225	Phe	Met	Ala	Ala	Ala 230	Pro	Ile	Leu	Ser	Ala 235	Phe	Arg	Leu	Phe	Tyr 240	
	Phe	Gly	Thr	Tyr	Met 245	Pro	His	Lys	Pro	Glu 250	Pro	Gly	Ala	Ala	Ser 255	Gly	
	Ser	Ser	Pro	Ala 260	Val	Met	Asn	Trp	Trp 265	Lys	Ser	Arg	Thr	Ser 270	Gln	Ala	
	Ser	Asp	Leu 275	Val	Ser	Phe	Leu	Thr 280	Суѕ	Tyr	His	Phe	Asp 285	Leu	His	Trp	
	Glu	His 290	His	Arg	Trp	Pro	Phe 295	Ala	Pro	Trp	Trp	Glu 300	Leu	Pro	Asn	Cys	
٠	Arg 305		Leu	Ser	Gly	Arg 310	Gly	Leu	Val	Pro	Ala 315						
	<21		26														
	<21:	2> :	1031 DNA														
	<21	3> 1	Haem	atoc	occu	s pl	uvia	lis									
	<22 <22		CDS														
	<22: <22:	2>		.(10	31)												
	<40	0>	26														
	gaa		et G									lu G				ga agc ly Ser 15	
																gac Asp	98
	gtg	ttg	cgt	aca	tgg	gcg	acc	cag	tac	tcg	ctt	ccg	tca	gag	gag	tca	146

Val	Leu	Arg	Thr 35	Trp	Ala	Thr	Gln	Tyr 40	Ser	Leu	Pro	Ser	Glu 45	Glu	Ser	
														cct Pro		194
														tgg Trp		242
														tcc Ser		290
					Leu									ctg Leu 110		338
														gtc Val		386
														atg Met		434
														ggc Gly		482
														cac His		530
aag Lys	cat His	tgg Trp	gag Glu	cac His 180	cac His	aac Asn	cac His	act Thr	ggc Gly 185	gag Glu	gtg Val	ggc Gly	aag Lys	gac Asp 190	cct Pro	578
gac Asp	ttc Phe	cac His	agg Arg 195	gga Gly	aac Asn	cct Pro	ggc Gly	att Ile 200	gtg Val	ccc Pro	tgg Trp	ttt Phe	gcc Ala 205	agc Ser	ttc Phe	626
														tgg Trp		674
acg Thr														ctg Leu		722
														tac Tyr		770
ggc Gly	acg Thr	tac Tyr	atg Met	ccc Pro	cac His	aag Lys	cct Pro	gag Glu	cct Pro	ggc Gly	gcc Ala	gcg Ala	tca Ser	ggc Gly	tct Ser	818

	260	265	270
		tcg cgc act agc cag Ser Arg Thr Ser Gln 285	
		cac ttc gac ctg cac His Fhe Asp Leu His 300	
		tgg gag ctg ccc aac Trp Glu Leu Pro Asn 315	
		gcc gag caa aaa ctc Ala Glu Gln Lys Leu 330	
gaa gag gat ctg Glu Glu Asp Leu			1031
<210> 27 <211> 341 <212> PRT <213> Haematoco	occus pluvialis		
<400> 27			
Met Gln Leu Ala 1	Ala Thr Val Met Let 5	Glu Gln Leu Thr Gly 10	Ser Ala 15
1	5	_	15
1 Glu Ala Leu Lys 20	5 Glu Lys Glu Lys Glu 25	10 Val Ala Gly Ser Ser	15 Asp Val
1 Glu Ala Leu Lys 20 Leu Arg Thr Trp 35	Glu Lys Glu Lys Glu 25 Ala Thr Gln Tyr Ser 40	10 Val Ala Gly Ser Ser 30 Leu Pro Ser Glu Glu	Asp Val Ser Asp
Glu Ala Leu Lys 20 Leu Arg Thr Trp 35 Ala Ala Arg Pro 50	Glu Lys Glu Lys Glu 25 Ala Thr Gln Tyr Sen 40 Gly Leu Lys Asn Ala 55	Val Ala Gly Ser Ser 30 Leu Pro Ser Glu Glu 45 Tyr Lys Pro Pro Pro	Asp Val Ser Asp
Glu Ala Leu Lys 20 Leu Arg Thr Trp 35 Ala Ala Arg Pro 50 Thr Lys Gly Ile 65	Glu Lys Glu Lys Glu 25 Ala Thr Gln Tyr Sen 40 Gly Leu Lys Asn Ala 55 Thr Met Ala Leu Ala 70	Val Ala Gly Ser Ser 30 Leu Pro Ser Glu Glu 45 Tyr Lys Pro Pro Pro 60 Val Ile Gly Ser Trp	Asp Val Ser Asp Ser Asp Ala Ala 80

G1;	y Ser	Ser 115	Ser	Leu	Leu	His	Ile 120	Val	Val	Val	Phe	Phe 125	Val	Leu	Glu
Ph	e Leu 130		Thr	Gly	Leu	Phe 135	Ile	Thr	Thr	His	Asp 140	Ala	Met	His	Gly
Th:	r Ile 5	Ala	Met	Arg	Asn 150		Gln	Leu	Asn	Asp 155		Leu	Gly	Arg	Val 160
Су	s Ile	Ser	Leu	Tyr 165	Ala	Trp	Phe	Asp	Tyr 170	Asn	Met	Leu	His	Arg 175	Lys
Hi	s Trp	Glu	His 180	His	Asn	His	Thr	Gly 185	Glu	Val	Gly	Lys	Asp 190	Pro	Asp
Ph	e His	Arg 195	Gly	Asn	Pro	Gly	Ile 200	Val	Pro	Trp	Phe	Ala 205	Ser	Phe	Met
Se	r Ser 210	Tyr	Met	Ser	Met	Trp 215	Gln	Phe	Ala	Arg	Leu 220	Ala	Trp	Trp	Thr
Va. 22!	l Val	Met	Gln	Leu	Leu 230	Gly	Ala	Pro	Met	Ala 235	Asn	Leu	Leu	Val	Phe 240
Me	t Ala	Ala	Ala	Pro 245	Ile	Leu	Ser	Ala	Phe 250	Arg	Leu	Phe		Phe 255	Gly
Th	r Tyr	Met	Pro 260	His	Lys	Pro	Glu	Pro 265	Gly	Ala	Ala	Ser	Gly 270	Ser	Ser
Pro	o Ala	Val 275	Met	Asn	Trp	Trp	Lys 280	Ser	Arg	Thr	Ser	Gln 285	Ala	Ser	Asp
Le	ı Val 290	Ser	Phe	Leu	Thr	Cys 295	Tyr	His	Phe	Asp	Leu 300	His	Trp	Glu	His
His 305	s Arg	Trp	Pro	Phe	Ala 310	Pro	Trp	Trp	Glu	Leu 315	Pro	Asn	Cys	Arg	Arg 320
Let	ı Ser	Gly	Arg	Gly 325	Leu	Val	Pro	Ala	Glu 330	Gln	Lys	Leu	Ile	Ser 335	Glu

Glu Asp Leu Asn Ser 340

<400> 28

<210>	28
<211>	777
<212>	DNA
<213>	Arabidopsis thaliana
<220>	
<221>	promoter
<222>	(1)(777)
<223>	
	•

gageteacte aetgatttee attgettgaa aattgatgat gaactaagat caatecatgt 60 tagtttcaaa acaacagtaa ctgtggccaa cttagttttg aaacaacact aactggtcga 120 agcaaaaaga aaaaagagtt tcatcatata tctgatttga tggactgttt ggagttagga 180 ccaaacatta tctacaaaca aagacttttc tcctaacttg tgattccttc ttaaacccta 240 ggggtaatat totattttoc aaggatottt agttaaaggo aaatooggga aattattgta 300 atcatttggg gaaacatata aaagatttga gttagatgga agtgacgatt aatccaaaca 360 tatatatete tttettetta ttteecaaat taacagacaa aagtagaata ttggetttta 420 acaccaatat aaaaacttgc ttcacaccta aacacttttg tttactttag ggtaagtgca 480 aaaagccaac caaatccacc tgcactgatt tgacgtttac aaacgccgtt aagtcgatgt 540 ccgttgattt aaacagtgtc ttgtaattaa aaaaatcagt ttacataaat ggaaaattta 600 tcacttagtt ttcatcaact tctgaactta cctttcatgg attaggcaat actttccatt 660 tttagtaact caagtggacc ctttacttct tcaactccat ctctctctt ctatttcact 720 totttottot cattatatot ottgtoctot coaccaaato tottcaacaa aaagott 777

```
<210> 29
<211> 22
<212> DNA
<213> kuenstlich
<220>
<221> primer_bind
<222> (1)..(22)
<223>
```

<400> 29 gcaagetega cagetacaaa ce

22

```
<210>
       30
<211>
       24
<212>
       DNA
<213>
       kuenstlich
<220>
<221>
      primer_bind
<222> (1)..(24)
<223>
<400>
                                                                        24
gaagcatgca gctagcagcg acag
<210> 31
<211>
       30
<212>
       DNA
<213>
      kuenstlich
<220>
<221> primer_bind
<222>
       (1)..(30)
<223>
<400> 31
tgcatgctag aggcactcaa ggagaaggag
                                                                        30
<210>
       32
<211>
       59
<212>
       DNA
       kuenstlich
<213>
<220>
<221>
      primer_bind
<222>
       (1)..(59)
<223>
<400>
ctagctattc agatcctctt ctgagatgag tttttgctcg gcaggaacca gacctcggc
                                                                        59
<210>
       33
<211>
       28
<212>
       DNA
<213>
       kuenstlich
<220>
<221> primer_bind
<222>
      (1)..(28)
<223>
```

```
<400> 33
                                                                       28
gageteacte actgatttee attgettg
<210>
       34
<211>
       37
<212>
       DNA
<213>
       kuenstlich
<220>
<221>
      primer_bind
<222>
       (1)..(37)
<223>
<400>
       34
                                                                       37
cgccgttaag tcgatgtccg ttgatttaaa cagtgtc
<210>
       35
<211>
       34
<212> DNA
<213> kuenstlich
<220>
<221> primer_bind
       (1)..(34)
<222>
<223>
<400> 35
                                                                        34
atcaacggac atcgacttaa cggcgtttgt aaac
<210>
       36
<211>
       25
<212>
      DNA
<213> kuenstlich
<220>
<221> primer_bind
      (1)..(25)
<222>
<223>
<400>
       36
                                                                        25
taagcttttt gttgaagaga tttgg
```

Patentansprüche

- 1. Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die in Früchten eine Ketolase-Aktivität aufweisen.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten eine Ketolase exprimieren.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase, enthalten.

- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, in die man ausgehend von einer Ausgangspflanze mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren einbringt, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Ketolase aufweist.
- 6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO. 1 einbringt.
- 7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren einbringt die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO. 16 und die enzymatische Eigenschaft einer Ketolase aufweist.
- 8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO. 15 einbringt.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Genexpression der Ketolase unter Kontrolle eines fruchtspezifischen Promotors erfolgt.
- 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze verwendet, die in Früchten Chromoplasten aufweist.
- 12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis verwendet.
- 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man nach dem Kultivieren die genetisch veränderten Pflanzen erntet und anschließend die Ketocarotinoide aus den Früchten der Pflanzen isoliert.
- 14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Ketocarotinoide ausgewählt sind aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.
- 15. Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und eine Nukleinsäure kodierend eine Ketolase.
 - Genetisch veränderte Pflanze, die in Früchten eine Ketolase-Aktivität aufweist.
- 17. Genetisch veränderte Pflanze nach Anspruch 16, dadurch gekennzeichnet, dass die genetisch veränderte Pflanze in den Früchten eine Ketolase exprimiert.
- 18. Genetisch veränderte Pflanze nach Anspruch 16 oder 17, enthaltend in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase.
 - 19. Genetisch veränderte Pflanze nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet dass

man in die Pflanze ausgehend von einer Ausgangspflanze mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.

- 20. Genetisch veränderte Pflanze, ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis, enthaltend mindestens eine Nukleinsäure, kodierend eine Ketolase.
- 21. Genetisch veränderte Pflanze nach Anspruch 20, dadurch gekennzeichnet, dass die Ketolase in Früchten exprimiert wird.
- 22. Genetisch veränderte Pflanze nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, dass die Expressionsrate einer Ketolase in Früchten am höchsten ist.
- 23. Verwendung der genetisch veränderten Pflanzen nach einem der Ansprüche 16 bis 22 als Futter- oder Nahrungsmittel.
- 24. Verwendung der Früchte der genetisch veränderten Pflanzen nach einem der Ansprüche 17 bis 23 zur Herstellung von Ketocarotinoid-haltigen Extrakten oder zur Herstellung von Futter- oder Nahrungsergänzungsmittel.
- 25. Verfahren zur Herstellung von genetisch veränderten Pflanzen gemäß Anspruch 22, dadurch gekennzeichnet, dass man ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und Nukleinsäuren kodierend eine Ketolase in das Genom der Ausgangspflanze einführt.

Es folgen 9 Blatt Zeichnungen

Anhängende Zeichnungen

Abbildung 1: Biosyntheseschema von Carotinoiden in Tomatenfrüchten

Abbildung 2: Biosyntheseschema von Astaxanthin in genetisch veränderten Tomatenfruechten

Abbildung 3: Nukleotidsequenzvergleich

KETO2.seq X86782.seq	ATCCACCTACCACCGACAGTAATGITTCCACCACCTTACCCGAACCCCTCACCGACGACGACGACGACGTTCCACCCAC	100
KETO2.seq X86782.seq	GTACATGGGGGAGGCAGTACTGGCTTGCGTCAGAGGAGTCAGAGGGGTCAGAGGGGGGGG	
KETO2.seq	CATCACAATGCCCCTAGCTIGTCATCCCCTCCTGGCCCCAGTGTTCCTCCACCCCATTTTTTCAAATCAAGCTTCCGACCTCCTTGGACCAGCTGCACTGC	300
X86782.seq	CATCACAATGGGGCTACGTGTCATGGGGCCGCAGGGTTCCTCCACGCCATTTTTCAAATCAAGCTTCCGACCTCCTTCGACCACCTGCACTGC	
KETO2.seq X86782.seq	CTGCCCGTGTCAGATGCCACAGCTCAGCTGGTTAGCCCCAGCAGCAGCCTCCTCCACATCGTCGTAGTATTCTTTGTCCTCGAGTTCCTGTACACAGCCCCCCCGGCATCGTCGTAGTATTCTTTGTCCTCGAGTTCCTGTACACAGCCCCCCGGCATCGTCGTAGTATTCTTTGTCCTCGAGTTCCTGTACACAGCCC	
KETO2.seq X86782.seq	TTTTTATCACCACCATGATCCTATCCATCCCACCATCCCCATCGCAAACACCCCCATTAATGACTTCTTGCCCAGAGTATCCATCTCCTTGTACCCCTCTTTTTATCACCACCATGACTATCTCATCCATC	
KETO2.seq X86782.seq	GITTGATTACAACATGCTGCACCCCAAGCATTGGGACCACCACAACCACCACCACGGGGGGGG	
KETO2.seq X86782.seq	GTGCCCTGGTTTGCCACCTTCATGTGCACCTACATGTGCATGTGGCAGTTTGCCCCCCTGCCATGGTGGACGGTGGTCATGCACCTGCTGGGTGGG	
KETO2.seq X86782.seq	TGGGGAACCTGCTGGTGTTCATGGCGGCCCCCATCCTGTCCCCCTTGGTTCTACTTTGGCACGTACATGCCCCACAACCCTGAGCCTGCGCCTGCCCCTGGTGTTCTACTTTTGGCACGTACATGCCCCACAACCCTGAGCCTGCCCCTGGTGTTCTACTTTTGGCACGTACATGCCCCACAACCCTGAGCCTGCCCCCCCC	800 800
KETO2.seq X86782.seq	$\begin{array}{c} CCCGTCAGCCTCTTCACCAGCCGTCATGAACTGGTGGAAGTCGCCACTAGCCACTGGTCGGCCTTTCTGACCTGTCACCTTTCGACCTGTCACCTTTCGACCTGTCACCTTTCGACCTGTCACCTTTCGACCTGTCACCTTTCGACCTGTCACCTTTCGACCTGTCACCTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCACTTTCGACCTGTCACCTTTCGACCTGTCACCACTTTCGACCTTCACCACTTCGACCTTCACCACTTCGACCTTCGACCTTCGACCTTCGACCACTTCGACCTTCACACACTTCGACCACTTCACACACTTCACACACA$	
KETO2.seq X86782.seq	CACTOGGAGGAGGAGCACCACCTTTTGCCCCCTGGTGGGAGCTGCCCAACTGCCCCCTGTCTGCCCGAGGTCTGGTTGCTGCTTAG CACTGGGAGCACCACCCCTGGCCCTTGGCGGGGGGGGGG	990 990

Abbildung 4: Proteinsequenzvergleich

KETO2.pro X86782.pro	MQLAAT V MLE QLT G S A E A L K E K E K E V A G S S D V L R T WAT Q Y S L P S E E S D A A MQLAAT V MLE QLT G S A E A L K E K E K E V A G S S D V L R T WAT Q Y S L P S E E S D A A	50 50
KETO2.pro	RPGLKNAYKPPPS DTKGI TMALAVI GS WAAVFLHAI FQI KLPTS LDQLHW	/ 100
X86782.pro	RPGLKNAYKPPPS DTKGI TMALRVI GS WAAVFLHAI FQI KLPTS LDQLHW	/ 100
KETO2.pro	L P V S D A T A Q L V S G S S S L L H I V V V F F V L E F L Y T G L F I T T H D A M H G T I A M R N	150
X86782.pro	L P V S D A T A Q L V S G T S S L L D I V V V F F V L E F L Y T G L F I T T H D A M H G T I A M R N	150
KETO2.pro	R Q L N D F L G R V C I S L Y A W F D Y N M L H R K H W E H H N H T G E V G K D P D F H R G N P G I	200
X86782.pro	R Q L N D F L G R V C I S L Y A W F D Y N M L H R K H W E H H N H T G E V G K D P D F H R G N P G I	200
KETO2.pro	V P W F A S F M S S Y M S M W Q F A R L A W W T V V M Q L L G A P M A N L L V F M A A A P I L S A F	250
X86782.pro	V P W F A S F M S S Y M S M W Q F A R L A W W T V V M Q L L G A P M A N L L V F M A A A P I L S A F	250
KETO2.pro	R L F Y F G T Y M P H K P E P G A A S G S S P A V M N W W K S R T S Q A S D L V S F L T C Y H F D L	300
X86782.pro	R L F Y F G T Y M P H K P E P G A A S G S S P A V M N W W K S R T S Q A S D L V S F L T C Y H F D L	300
KETO2.pro	H WE H H R WP F A P WWE L P N C R R L S G R G L V P A	329
X86782.pro	H WE H H R WP F A P WWE L P N C R R L S G R G L V P A	329

Abbildung 5: Konstrukt zur Überexpression des β -C-4-Oxygenase Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse unter Kontrolle des d35S-Promoters (Tomatentransformationskonstrukt)

Abbildung 6: Konstrukt zur Überexpression des N-terminal verkürzten Ketolase (β -C-4-Oxygenase) Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse unter Kontrolle des d35S-Promoters.

Abbildung 7: Konstrukt zur Überexpression des Ketolase (β -C-4-Oxygenase) Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse und C-terminalem myc-Tag unter Kontrolle des d35S-Promoters.

Abbildung 8: Konstrukt zur Überexpression der β -C-4-Oxygenase Protein aus H. pluvialis mit rbcS Transitpeptide aus Erbse unter Kontrolle des AP3P-Promoters (Tomatentransformationskonstrukt).

Abbildung 9: Konstrukt zur Überexpression des Ketolase (β -C-4-Oxygenase) Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse und C-terminalem myc-Tag unter Kontrolle des AP3P-Promoters.

THIS PAGE BLANK (USPTO)