Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

9 de abril de 2025

Agenda

- Revisitando los Modos normales de oscilación
- Ejemplo: Osciladores Acoplados
 - Los osciladores
 - Las ecuaciones de movimiento y sus modos nomales
- Ejemplo: Modos Normales Oscilación para el CO2
 - Descripción del sistema CO2
 - Energías cinética y potencial
 - Las frecuencias de oscilación ω_n
 - ullet Ecuaciones generales y modo normal de oscilación para $\omega_1=0$
 - Modos normales para $\omega_2 = \sqrt{\frac{k}{m}} \; \text{y} \; \omega_3 = \sqrt{\frac{k}{m}} \left(1 + \frac{2m}{M}\right)$

• Las s ecuaciones de movimiento para un sistema con pequeñas oscilaciones $\{\eta_1,\ldots,\eta_s\}$ alrededor del equilibrio de $\{q_{01},\ldots,q_{0s}\}$ son $\sum_i \left(T_{ij}\ddot{\eta}_i + V_{ij}\eta_i\right) = 0, \quad i=1,2,\ldots,s$

- Las s ecuaciones de movimiento para un sistema con pequeñas oscilaciones $\{\eta_1,\ldots,\eta_s\}$ alrededor del equilibrio de $\{q_{01},\ldots,q_{0s}\}$ son $\sum_j (T_{ij}\ddot{\eta}_j + V_{ij}\eta_j) = 0, \quad i=1,2,\ldots,s$
- Si suponemos una solución de la forma $\eta_j(t) = a_j e^{i\omega t}$ tendremos $\sum_j \left(V_{ij} \omega^2 T_{ij}\right) a_j = 0 \quad i = 1, 2, \dots, s$

- Las s ecuaciones de movimiento para un sistema con pequeñas oscilaciones $\{\eta_1,\ldots,\eta_s\}$ alrededor del equilibrio de $\{q_{01},\ldots,q_{0s}\}$ son $\sum_j (T_{ij}\ddot{\eta}_j + V_{ij}\eta_j) = 0, \quad i=1,2,\ldots,s$
- Si suponemos una solución de la forma $\eta_j(t)=a_je^{i\omega t}$ tendremos $\sum_j \left(V_{ij}-\omega^2 T_{ij}\right)a_j=0 \quad i=1,2,\ldots,s$
- La condición det $\left|V_{ij} \omega^2 T_{ij}\right| = 0$ es decir

$$\begin{vmatrix} V_{11} - \omega^2 T_{11} & V_{12} - \omega^2 T_{12} & \dots \\ V_{21} - \omega^2 T_{21} & V_{22} - \omega^2 T_{22} \\ V_{31} - \omega^2 T_{31} & \vdots \end{vmatrix} = 0$$

- Las s ecuaciones de movimiento para un sistema con pequeñas oscilaciones $\{\eta_1,\ldots,\eta_s\}$ alrededor del equilibrio de $\{q_{01},\ldots,q_{0s}\}$ son $\sum_i (T_{ij}\ddot{\eta}_j + V_{ij}\eta_j) = 0, \quad i=1,2,\ldots,s$
- Si suponemos una solución de la forma $\eta_j(t) = a_j e^{i\omega t}$ tendremos $\sum_i \left(V_{ij} \omega^2 T_{ij}\right) a_j = 0$ $i = 1, 2, \dots, s$
- La condición det $\left|V_{ij} \omega^2 T_{ij}\right| = 0$ es decir

$$\begin{vmatrix} V_{11} - \omega^2 T_{11} & V_{12} - \omega^2 T_{12} & \dots \\ V_{21} - \omega^2 T_{21} & V_{22} - \omega^2 T_{22} \\ V_{31} - \omega^2 T_{31} & \vdots \end{vmatrix} = 0$$

• Esto permite calcular las s frecuencias de pequeñas oscilaciones $\omega_n, \quad n=1,2,\ldots,s$ como soluciones al polinomio característico

• Para cada ω_n , existe un sistema de s ecuaciones para $a_j(\omega_n)$.

Si
$$s=2$$
 $i=1: (V_{11}-\omega_n^2T_{11})$ $a_1+(V_{12}-\omega_n^2T_{12})$ $a_2=0$ $i=2: (V_{21}-\omega_n^2T_{21})$ $a_1+(V_{22}-\omega_n^2T_{22})$ $a_1=0$ Para cada ω_n tendremos 2 ecuaciones lineales para $a_1(\omega_n)$ y $a_2(\omega_n)$

• Para cada ω_n , existe un sistema de s ecuaciones para $a_j(\omega_n)$.

Si
$$s=2$$
 $i=1: (V_{11}-\omega_n^2T_{11})$ $a_1+(V_{12}-\omega_n^2T_{12})$ $a_2=0$ $i=2: (V_{21}-\omega_n^2T_{21})$ $a_1+(V_{22}-\omega_n^2T_{22})$ $a_1=0$ Para cada ω_n tendremos 2 ecuaciones lineales para $a_1(\omega_n)$ y $a_2(\omega_n)$

• Para cada ω_n , existe un sistema de s ecuaciones para $a_j(\omega_n)$.

Si
$$s=2$$
 $i=1: (V_{11}-\omega_n^2T_{11}) a_1 + (V_{12}-\omega_n^2T_{12}) a_2 = 0$ $i=2: (V_{21}-\omega_n^2T_{21}) a_1 + (V_{22}-\omega_n^2T_{22}) a_1 = 0$ Para cada ω_n tendremos 2 ecuaciones lineales para $a_1(\omega_n)$ y $a_2(\omega_n)$

• La solución general, $\eta_j(t)$, será la superposición de las soluciones $\eta_j(t) = \sum_n c_n a_j(\omega_n) e^{i\omega_n t}$, donde c_n son las fases complejas.

• Para cada ω_n , existe un sistema de s ecuaciones para $a_j(\omega_n)$.

Si
$$s=2$$
 $i=1: (V_{11}-\omega_n^2T_{11}) a_1 + (V_{12}-\omega_n^2T_{12}) a_2 = 0$ $i=2: (V_{21}-\omega_n^2T_{21}) a_1 + (V_{22}-\omega_n^2T_{22}) a_1 = 0$ Para cada ω_n tendremos 2 ecuaciones lineales para $a_1(\omega_n)$ y $a_2(\omega_n)$

- La solución general, $\eta_j(t)$, será la superposición de las soluciones $\eta_j(t) = \sum_n c_n a_j(\omega_n) e^{i\omega_n t}$, donde c_n son las fases complejas.
- Si $\xi_n \equiv c_n e^{i\omega_n t}$, n = 1, 2, ..., s, tendremos $\eta_j(t) = \sum_n a_j(\omega_n) \xi_n$ la solución es una combinación lineal de las coordenadas normales

• Para cada ω_n , existe un sistema de s ecuaciones para $a_j(\omega_n)$.

Si
$$s=2$$
 $i=1: (V_{11}-\omega_n^2T_{11}) a_1 + (V_{12}-\omega_n^2T_{12}) a_2 = 0$ $i=2: (V_{21}-\omega_n^2T_{21}) a_1 + (V_{22}-\omega_n^2T_{22}) a_1 = 0$ Para cada ω_n tendremos 2 ecuaciones lineales para $a_1(\omega_n)$ y $a_2(\omega_n)$

- La solución general, $\eta_j(t)$, será la superposición de las soluciones $\eta_j(t) = \sum_n c_n a_j(\omega_n) e^{i\omega_n t}$, donde c_n son las fases complejas.
- Si $\xi_n \equiv c_n e^{i\omega_n t}$, $n=1,2,\ldots,s$, tendremos $\eta_j(t) = \sum_n a_j(\omega_n) \, \xi_n$ la solución es una combinación lineal de las coordenadas normales
- Cada coordenada normal ξ_n satisface la ecuación $\ddot{\xi}_n + \omega_n^2 \xi_n = 0$.

• Para cada ω_n , existe un sistema de s ecuaciones para a_j (ω_n).

Si
$$s=2$$
 $i=1: (V_{11}-\omega_n^2 T_{11}) a_1 + (V_{12}-\omega_n^2 T_{12}) a_2 = 0$ $i=2: (V_{21}-\omega_n^2 T_{21}) a_1 + (V_{22}-\omega_n^2 T_{22}) a_1 = 0$ Para cada ω_n tendremos 2 ecuaciones lineales para $a_1(\omega_n)$ y $a_2(\omega_n)$

- La solución general, $\eta_j(t)$, será la superposición de las soluciones $\eta_j(t) = \sum_n c_n a_j(\omega_n) e^{i\omega_n t}$, donde c_n son las fases complejas.
- Si $\xi_n \equiv c_n e^{i\omega_n t}$, $n=1,2,\ldots,s$, tendremos $\eta_j(t) = \sum_n a_j(\omega_n) \, \xi_n$ la solución es una combinación lineal de las coordenadas normales
- Cada coordenada normal ξ_n satisface la ecuación $\ddot{\xi}_n + \omega_n^2 \xi_n = 0$.
- En el caso de s=2, las soluciones generales para los pequeños desplazamientos son

$$\eta_1 = a_1(\omega_1)\xi_1 + a_1(\omega_2)\xi_2, \quad \eta_2 = a_2(\omega_1)\xi_1 + a_2(\omega_2)\xi_2$$

• Para cada ω_n , existe un sistema de s ecuaciones para a_j (ω_n).

Si
$$s=2$$

 $i=1: (V_{11}-\omega_n^2 T_{11}) a_1 + (V_{12}-\omega_n^2 T_{12}) a_2 = 0$
 $i=2: (V_{21}-\omega_n^2 T_{21}) a_1 + (V_{22}-\omega_n^2 T_{22}) a_1 = 0$
Para cada ω_n tendremos 2 ecuaciones lineales para $a_1(\omega_n)$ y $a_2(\omega_n)$

- La solución general, $\eta_j(t)$, será la superposición de las soluciones $\eta_j(t) = \sum_n c_n a_j(\omega_n) e^{i\omega_n t}$, donde c_n son las fases complejas.
- Si $\xi_n \equiv c_n e^{i\omega_n t}$, $n=1,2,\ldots,s$, tendremos $\eta_j(t) = \sum_n a_j(\omega_n) \, \xi_n$ la solución es una combinación lineal de las coordenadas normales
- Cada coordenada normal ξ_n satisface la ecuación $\ddot{\xi}_n + \omega_n^2 \xi_n = 0$.
- ullet En el caso de s=2, las soluciones generales para los pequeños desplazamientos son

$$\eta_1 = a_1(\omega_1)\xi_1 + a_1(\omega_2)\xi_2, \quad \eta_2 = a_2(\omega_1)\xi_1 + a_2(\omega_2)\xi_2$$

• Para ξ_2 tenemos $\eta_1 = a_1(\omega_2)\xi_2$, $\eta_2 = a_2(\omega_2)\xi_2$, 2 pequeños desplazamientos que oscilas con la frecuencia ω_2 alrededor de su posición de equilibrio con amplitudes $a_1(\omega_2)$ y $a_2(\omega_2)$.

Encontrar las frecuencias de oscilación para un sistema de dos partículas de masa m conectadas com resortes horizontales, de constantes k y longitud en reposo I.

• El sistema tiene dos grados de libertad (s=2). Para pequeños desplazamientos η_1 y η_2 , con $x_i=x_{0i}+\eta_i$,

Encontrar las frecuencias de oscilación para un sistema de dos partículas de masa m conectadas com resortes horizontales, de constantes k y longitud en reposo I.

- El sistema tiene dos grados de libertad (s=2). Para pequeños desplazamientos η_1 y η_2 , con $x_i=x_{0i}+\eta_i$,
- La energía cinética para pequeños desplazamientos del equilibrio es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}m\dot{\eta}_2^2=\frac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$, con $T_{11}=m,\quad T_{22}=m,\quad T_{12}=T_{21}=0$

Encontrar las frecuencias de oscilación para un sistema de dos partículas de masa m conectadas com resortes horizontales, de constantes k y longitud en reposo I.

- El sistema tiene dos grados de libertad (s=2). Para pequeños desplazamientos η_1 y η_2 , con $x_i=x_{0i}+\eta_i$,
- La energía cinética para pequeños desplazamientos del equilibrio es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}m\dot{\eta}_2^2=\frac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$, con $T_{11}=m,\quad T_{22}=m,\quad T_{12}=T_{21}=0$
- La energía potencial del sistema para pequeños desplazamientos es $V = \frac{1}{2}k\eta_1^2 + \frac{1}{2}k\left(l'-l\right)^2 + \frac{1}{2}k\eta_2^2 = \frac{1}{2}k\left[\eta_1^2 + (\eta_2 \eta_1)^2 + \eta_2^2\right]$

Encontrar las frecuencias de oscilación para un sistema de dos partículas de masa m conectadas com resortes horizontales, de constantes k y longitud en reposo I.

- El sistema tiene dos grados de libertad (s=2). Para pequeños desplazamientos η_1 y η_2 , con $x_i=x_{0i}+\eta_i$,
- La energía cinética para pequeños desplazamientos del equilibrio es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}m\dot{\eta}_2^2=\frac{1}{2}\sum_{i,j}T_{ij}\dot{\eta}_i\dot{\eta}_j$, con $T_{11}=m,\quad T_{22}=m,\quad T_{12}=T_{21}=0$
- La energía potencial del sistema para pequeños desplazamientos es $V = \frac{1}{2}k\eta_1^2 + \frac{1}{2}k\left(l'-l\right)^2 + \frac{1}{2}k\eta_2^2 = \frac{1}{2}k\left[\eta_1^2 + (\eta_2 \eta_1)^2 + \eta_2^2\right]$
- Donde $I' I = (x_2 x_1) (x_{02} x_{01}) = \eta_2 \eta_1 \eta_2 \eta_1$

• Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 - 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.

- Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.
- $\bullet \ \, \text{Por lo tanto} \, \left| \begin{array}{cc} V_{11} \omega^2 T_{11} & V_{12} \omega^2 T_{12} \\ V_{21} \omega^2 T_{21} & V_{22} \omega^2 T_{22} \end{array} \right| = 0$

- Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.
- Por lo tanto $\left| \begin{array}{cc} V_{11} \omega^2 T_{11} & V_{12} \omega^2 T_{12} \\ V_{21} \omega^2 T_{21} & V_{22} \omega^2 T_{22} \end{array} \right| = 0$
- Es decir $\begin{vmatrix} 2k \omega^2 m & -k \\ -k & 2k \omega^2 m \end{vmatrix} = 0$

- Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.
- $\bullet \ \, \text{Por lo tanto} \, \left| \begin{array}{cc} V_{11} \omega^2 T_{11} & V_{12} \omega^2 T_{12} \\ V_{21} \omega^2 T_{21} & V_{22} \omega^2 T_{22} \end{array} \right| = 0$
- Es decir $\begin{vmatrix} 2k \omega^2 m & -k \\ -k & 2k \omega^2 m \end{vmatrix} = 0$
- La ecuación característica resultante es $(2k \omega^2 m)^2 k^2 = 0 \Rightarrow 2k \omega^2 m = \pm k \Rightarrow \omega^2 = \frac{2k \pm k}{m}$

- Entonces $V = \frac{1}{2} \left[2k\eta_1^2 + 2k\eta_2^2 2k\eta_1\eta_2 \right] = \frac{1}{2} \sum_{i,j} V_{ij}\eta_i\eta_j$ con $V_{11} = 2k$, $V_{22} = 2k$, $V_{12} = V_{21} = -k$.
- $\bullet \ \, \text{Por lo tanto} \, \left| \begin{array}{cc} V_{11} \omega^2 T_{11} & V_{12} \omega^2 T_{12} \\ V_{21} \omega^2 T_{21} & V_{22} \omega^2 T_{22} \end{array} \right| = 0$
- Es decir $\begin{vmatrix} 2k \omega^2 m & -k \\ -k & 2k \omega^2 m \end{vmatrix} = 0$
- La ecuación característica resultante es $\left(2k \omega^2 m\right)^2 k^2 = 0 \Rightarrow 2k \omega^2 m = \pm k \Rightarrow \omega^2 = \frac{2k \pm k}{m}$
- Finalmente $\omega_1 = \sqrt{\frac{3k}{m}}, \quad \omega_2 = \sqrt{\frac{k}{m}}$

Descripción del sistema CO2

Consideremos el siguiente sistema que representa la molécula de CO2

M masa del átomo C; m masa de los átomos O; l la separación entre posiciones de equilibrio; la constante elástica k de interacción C-O; l_1 , l_2 , las distancias de los átomos fuera del equilibrio.

Descripción del sistema CO2

Consideremos el siguiente sistema que representa la molécula de CO2

M masa del átomo C; m masa de los átomos O; l la separación entre posiciones de equilibrio; la constante elástica k de interacción C-O; l_1 , l_2 , las distancias de los átomos fuera del equilibrio.

• Sean x_{01}, x_{02}, x_{03} las posiciones de equilibrio de las tres partículas y $\eta_i = x_i - x_{0i}$, con i = 1, 2, 3 los desplazamientos del equilibrio.

• La energía cinética es $T=rac{1}{2}m\dot{\eta}_1^2+rac{1}{2}M\dot{\eta}_2^2+rac{1}{2}m\dot{\eta}_3^2$

- La energía cinética es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}M\dot{\eta}_2^2+\frac{1}{2}m\dot{\eta}_3^2$
- La energía potencial es $V = \frac{1}{2}k\left(I_1 I\right)^2 + \frac{1}{2}k\left(I_2 I\right)^2$.

- La energía cinética es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}M\dot{\eta}_2^2+\frac{1}{2}m\dot{\eta}_3^2$
- La energía potencial es $V = \frac{1}{2}k(l_1 l)^2 + \frac{1}{2}k(l_2 l)^2$.
- Como $I_1 I = (x_2 x_1) (x_{02} x_{01}) = \eta_2 \eta_1$ y $I_2 I = (x_3 x_2) (x_{03} x_{02}) = \eta_3 \eta_2$

- La energía cinética es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}M\dot{\eta}_2^2+\frac{1}{2}m\dot{\eta}_3^2$
- La energía potencial es $V = \frac{1}{2}k(l_1 l)^2 + \frac{1}{2}k(l_2 l)^2$.
- Como $I_1 I = (x_2 x_1) (x_{02} x_{01}) = \eta_2 \eta_1$ y $I_2 I = (x_3 x_2) (x_{03} x_{02}) = \eta_3 \eta_2$
- Tendremos $V = \frac{1}{2}k(\eta_2 \eta_1)^2 + \frac{1}{2}k(\eta_3 \eta_2)^2 \Rightarrow V = \frac{1}{2}k(\eta_1^2 + 2\eta_2^2 + \eta_3^2 2\eta_1\eta_2 2\eta_2\eta_3)$
- Entonces, como $T = \frac{1}{2} \sum_{i,j} T_{ij} \dot{\eta}_i \dot{\eta}_j$, y $V = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$

- La energía cinética es $T=\frac{1}{2}m\dot{\eta}_1^2+\frac{1}{2}M\dot{\eta}_2^2+\frac{1}{2}m\dot{\eta}_3^2$
- La energía potencial es $V = \frac{1}{2}k(l_1 l)^2 + \frac{1}{2}k(l_2 l)^2$.
- Como $I_1 I = (x_2 x_1) (x_{02} x_{01}) = \eta_2 \eta_1$ y $I_2 I = (x_3 x_2) (x_{03} x_{02}) = \eta_3 \eta_2$
- Tendremos $V = \frac{1}{2}k(\eta_2 \eta_1)^2 + \frac{1}{2}k(\eta_3 \eta_2)^2 \Rightarrow V = \frac{1}{2}k(\eta_1^2 + 2\eta_2^2 + \eta_3^2 2\eta_1\eta_2 2\eta_2\eta_3)$
- Entonces, como $T = \frac{1}{2} \sum_{i,j} T_{ij} \dot{\eta}_i \dot{\eta}_j$, y $V = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$

• Tendremos
$$T_{ij} = \begin{pmatrix} T_{11} = m & T_{12} = 0 & T_{13} = 0 \\ T_{21} = 0 & T_{22} = M & T_{23} = 0 \\ T_{31} = 0 & T_{32} = 0 & T_{33} = m \end{pmatrix}$$

- La energía cinética es $T=rac{1}{2}m\dot{\eta}_1^2+rac{1}{2}M\dot{\eta}_2^2+rac{1}{2}m\dot{\eta}_3^2$
- La energía potencial es $V = \frac{1}{2}k(l_1 l)^2 + \frac{1}{2}k(l_2 l)^2$.
- Como $l_1 l = (x_2 x_1) (x_{02} x_{01}) = \eta_2 \eta_1$ y $l_2 l = (x_3 x_2) (x_{03} x_{02}) = \eta_3 \eta_2$
- Tendremos $V = \frac{1}{2}k(\eta_2 \eta_1)^2 + \frac{1}{2}k(\eta_3 \eta_2)^2 \Rightarrow V = \frac{1}{2}k(\eta_1^2 + 2\eta_2^2 + \eta_3^2 2\eta_1\eta_2 2\eta_2\eta_3)$
- Entonces, como $T = \frac{1}{2} \sum_{i,j} T_{ij} \dot{\eta}_i \dot{\eta}_j$, y $V = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$
- Tendremos $T_{ij} = \begin{pmatrix} T_{11} = m & T_{12} = 0 & T_{13} = 0 \\ T_{21} = 0 & T_{22} = M & T_{23} = 0 \\ T_{31} = 0 & T_{32} = 0 & T_{33} = m \end{pmatrix}$
- y $V_{ij} = \begin{pmatrix} V_{11} = k & V_{12} = -k & V_{13} = 0 \\ V_{21} = -k & V_{22} = 2k & V_{23} = -k \\ V_{31} = 0 & V_{32} = -k & V_{33} = k \end{pmatrix}$

Las frecuencias de oscilación ω_n

• La condición det
$$\begin{vmatrix} V_{ij} - \omega^2 T_{ij} \end{vmatrix} = 0$$
, implica
$$\begin{vmatrix} k - \omega^2 m & -k & 0 \\ -k & 2k - \omega^2 M & -k \\ 0 & -k & k - \omega^2 m \end{vmatrix} = 0$$
 para las frecuencias ω_n

Las frecuencias de oscilación ω_n

• La condición det $\left|V_{ij} - \omega^2 T_{ij}\right| = 0$, implica

$$\begin{vmatrix} k - \omega^2 m & -k & 0 \\ -k & 2k - \omega^2 M & -k \\ 0 & -k & k - \omega^2 m \end{vmatrix} = 0 \text{ para las frecuencias } \omega_n$$

• La ecuación característica cúbica para ω_n , es $\left(k - \omega^2 m\right) \left[\left(2k - \omega^2 M\right) \left(k - \omega^2 m\right) - k^2\right] - k^2 \left(k - \omega^2 m\right) = 0$ $\Rightarrow \quad \omega^2 \left(k - \omega^2 m\right) \left[k(M+2m) - \omega^2 M m\right] = 0$

Las frecuencias de oscilación ω_n

• La condición det $\left|V_{ij} - \omega^2 T_{ij}\right| = 0$, implica

$$\begin{vmatrix} k - \omega^2 m & -k & 0 \\ -k & 2k - \omega^2 M & -k \\ 0 & -k & k - \omega^2 m \end{vmatrix} = 0 \text{ para las frecuencias } \omega_n$$

- La ecuación característica cúbica para ω_n , es $\left(k \omega^2 m\right) \left[\left(2k \omega^2 M\right) \left(k \omega^2 m\right) k^2\right] k^2 \left(k \omega^2 m\right) = 0$ $\Rightarrow \quad \omega^2 \left(k \omega^2 m\right) \left[k(M + 2m) \omega^2 Mm\right] = 0$
- Con soluciones $\omega_1=0, \quad \omega_2=\sqrt{\frac{k}{m}}, \quad \omega_3=\sqrt{\frac{k}{m}\left(1+\frac{2m}{M}\right)}$

Modo normal de oscilación para $\omega_1=0$

• Las amplitudes a_i surgen de las 3 ecuaciones para cada ω_n ,

$$i = 1$$
: $(k - \omega_n^2 m) a_1 - k a_2 = 0$
 $i = 2$: $-k a_1 + (2k - \omega_n^2 M) a_2 - k a_3 = 0$
 $i = 3$: $-k a_2 + (k - \omega_n^2 m) a_3 = 0$

Modo normal de oscilación para $\omega_1=0$

• Las amplitudes a_i surgen de las 3 ecuaciones para cada ω_n ,

$$i = 1$$
: $(k - \omega_n^2 m) a_1 - k a_2 = 0$
 $i = 2$: $-k a_1 + (2k - \omega_n^2 M) a_2 - k a_3 = 0$
 $i = 3$: $-k a_2 + (k - \omega_n^2 m) a_3 = 0$

• La frecuencia angular $\omega_1=0$ es una traslación uniforme de la molécula ya que $\dot{\zeta_1}=0\Rightarrow\dot{\zeta_1}=\$ cte $\ \Rightarrow\$ reposo o velocidad constante

Modo normal de oscilación para $\omega_1 = 0$

• Las amplitudes a_i surgen de las 3 ecuaciones para cada ω_n ,

$$i = 1:$$
 $(k - \omega_n^2 m) a_1 - k a_2 = 0$
 $i = 2:$ $-k a_1 + (2k - \omega_n^2 M) a_2 - k a_3 = 0$
 $i = 3:$ $-k a_2 + (k - \omega_n^2 m) a_3 = 0$

- La frecuencia angular $\omega_1=0$ es una traslación uniforme de la molécula ya que $\ddot{\zeta}_1=0\Rightarrow \dot{\zeta}_1=$ cte \Rightarrow reposo o velocidad constante
- Entonces para $\omega_1=0$, tenemos $a_1(\omega_1)=a_2(\omega_1)=a_3(\omega_1)$

Modos para $\omega_2 = \sqrt{\frac{k}{m}}$ y $\omega_3 = \sqrt{\frac{k}{m}} \left(1 + \frac{2m}{M}\right)$

• Entonces para $\omega_2=\sqrt{\frac{k}{m}}$, Tenemos $a_1(\omega_2)=-a_3(\omega_2)$ y $a_2(\omega_2)=0$

Modos para $\omega_2 = \sqrt{\frac{k}{m}} \text{ y } \omega_3 = \sqrt{\frac{k}{m}} \left(1 + \frac{2m}{M}\right)$

• Entonces para $\omega_2=\sqrt{\frac{k}{m}}$, Tenemos $a_1(\omega_2)=-a_3(\omega_2)$ y $a_2(\omega_2)=0$

• Ahora para $\omega_3 = \sqrt{\frac{k}{m} \left(1 + \frac{2m}{M}\right)}$,

Tenemos $a_1(\omega_3)=a_3(\omega_3)$ y $a_2(\omega_3)=rac{k-\omega_3^2m}{k}a_1(\omega_3)\equiv -rac{2m}{M}a_1(\omega_3)$

Modos para $\omega_2 = \sqrt{\frac{k}{m}} \text{ y } \omega_3 = \sqrt{\frac{k}{m}} \left(1 + \frac{2m}{M}\right)$

• Entonces para $\omega_2=\sqrt{\frac{k}{m}}$, Tenemos $a_1(\omega_2)=-a_3(\omega_2)$ y $a_2(\omega_2)=0$

• Ahora para $\omega_3 = \sqrt{\frac{k}{m} \left(1 + \frac{2m}{M}\right)}$,

Tenemos
$$a_1(\omega_3)=a_3(\omega_3)$$
 y $a_2(\omega_3)=rac{k-\omega_3^2m}{k}a_1(\omega_3)\equiv -rac{2m}{M}a_1(\omega_3)$

 Los modos normales reflejan que el momento lineal total de la molécula es constante, puesto que la fuerza externa total sobre la molécula es cero.