PRACTICAL EXERCISES 1 (3 p. maximum)					
	: TCPT : 2018-2019 : SUMMER : 03.04.2019 : 30 min	Last Name : Name : Student ID : Signature :			
Duration		2 QUESTIONS ON 1 PAGE			
1. 2.					

No calculators, cell-phones, computers and books allowed.

If H = 1 then

- Ex.1: j = 1, s = 3

- Ex.2: j = 1

If H = 2 then

- Ex.1: j = 2, s = 4

- Ex.2: j = 2

Exercise 1. Graph Theory

(a) write G_j in formula (j is give above).

Proof. Solution for
$$j = 1$$
. $G_1 = (\{1, 2, 3, 4, 5\}, \{(1, 4), (2, 3), (2, 4), (2, 5), (4, 5)\})$

(b) draw G_s , where (s is given above) $G_3 = (\{1,2,3,4,5\}, \{(1,3),(2,4),(2,3),(1,4),(4,5)\})$ $G_4 = (\{1,2,3,4,5\}, \{(1,2),(2,3),(3,4),(1,4),(4,5)\})$

Proof. Solution for s = 3.

 $1.2\,\mathrm{P}.$

(c) are G_j and G_s isomorphic? Justify your answer.

Proof. Solution for j = 1 and s = 3.

No they are not isomorphic. In fact,

# vertices	5	5	same
# edges		5	same
degree		3	same
# vertices of degree 3		1	different

 G_1 has two vertices of degree 3 (i.e. "2" and "4") and G_3 has only 1 vertex of degree 3 (i.e. "4").

Note: this $\pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ represents a permutation and this $G_1 = (\{1, 2, 3, 4\}, \{(1, 2), (2, 3), (3, 4), (2, 4)\})$ a graph. This notation (1, 2, 3, 4, 2) has no meaning. If we apply a permutation to a graph we obtain another graph, which means that you have to write it as a graph. In particular, for $G_1 = (V, E)$, $E = \{(1, 2), (2, 3), (3, 4), (2, 4)\}$ represents the connections of the vertices V.

Exercise 2. $1.8\,\mathrm{P}$.

Zero-Knowledge Protocol

Let $G_0 = \{\{1, 2, 3, 4\}, \{(1, 2), (1, 3), (2, 4), (3, 4), (1, 4)\}\},$ where $\phi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$ and $\phi_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ (a) write a permutation different from ϕ_1 , ϕ_2 and identity,

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \dots & \dots & \dots \end{pmatrix}$$

Proof. For example, I choose $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$

(b) compute $G_1 = \pi(G_0)$ in formula.

Proof. We apply π to each edge of G_0 : $\pi(1,2)=(4,3),\,\pi(1,3)=(4,1),\,\pi(2,4)=(3,2),\,\pi(3,4)=(1,2)\text{ and }\pi(1,4)=(4,2).$ Therefore, $G_1 = \pi(G_0) = (\{1, 2, 3, 4\}, \{(3, 4), (1, 4), (2, 3), (1, 2), (2, 4)\}).$

(c) set $\phi = \phi_j$ and compute ϕ^{-1} (j is given above).

Proof. Solution for j=2. that is $\phi_2=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$. We switch the rows: $\begin{pmatrix}2&3&4&1\\1&2&3&4\end{pmatrix}$ then we sort the first row maintaining the correspondences. $\phi_2^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$.

(d) compute
$$\pi \circ \phi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \dots & \dots & \dots \end{pmatrix}$$

Proof. Solution for
$$j = 2$$
. $\pi \circ \phi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$ We have to Apply before ϕ^{-1} , then π :
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$
.

(e) apply Zero-Knowledge Protocol for one iteration.

Prover Verifier

System parameters: $G_0 = (\{1, 2, 3, 4\}, \{(1, 2), (1, 3), (2, 4), (3, 4), (1, 4)\}),$ $G_1 = (\{1,2,3,4\},\{(3,4),(1,4),(2,3),(1,2),(2,4)\})$

•
$$G_1 = \pi(G_0)$$
 where $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$

• generates
$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$
, and compute $G_2 = \phi(G_0) = (\{1,2,3,4\},\{(2,3),(2,4),(3,1),(4,1),(2,1)\})$

• chooses a bit
$$b \in_R \{0, 1\}$$
 $b = 1$

$$\bullet$$
 sends back
$$\psi=\pi\circ\phi^{-1}=\begin{pmatrix}1&2&3&4\\2&4&3&1\end{pmatrix}$$

$$\xrightarrow{\psi}$$

• checks $G_1 \stackrel{?}{=} \psi(G_2)$ $\phi(G_2) = (\{1,2,3,4\},\{(4,3),(1,4),(2,3),(1,2),(2,4)\})$

Proof.

Note that $G_2 = \phi(G_0)$ and $G_1 = \phi(G_2)$ are computed as in (b).