Capítulo 2-Projeto Lógico Combinacional B

Profa. Eliete Caldeira

Operadores:

- NOT(a) é escrito como a' (lê-se alinha), também conhecido como complemento de a ou inverso de a
- a OR b é escrito como a+b (lê-se a OU b)
- a AND b é escrito como a.b (lê-se a E b). Pode-se usar ab desde que fique claro que a e b são variáveis separadas

Precedência dos operadores:

TABLE 2.1 Boolean algebra precedence, highest precedence first.

Symbol	Name	Description	
()	Parentheses	Evaluate expressions nested in parentheses first	
,	NOT	Evaluate from left to right	
*	AND	Evaluate from left to right	
+	OR	Evaluate from left to right	

- Definições usando a equação
 F(a,b,c) = a'bc+abc'+ab+c
 - Variável representa uma quantidade (0 ou 1).
 - Na equação as variáveis são a, b e c
 - Literal é a expressão de uma variável na forma normal ou complementada.
 - · A equação tem 9 literais a', b, c, a, b, c', a, b, c
 - Termo de produto- um termo de produto é um produto de literais.
 - · Na equação a'bc, abc', ab e c são os termos de produto
 - Soma de produtos uma expressão com um OR de termos de produto.
 - A equação apresenta F na forma de soma de produtos

- Propriedades da álgebra de Boole
 - Comutativa
 - a+b = b+a
 - a.b = b.a
 - Distributiva
 - a.(b+c) = a.b + a.c
 - a+(b.c) = (a+b).(a+c)
 - Elemento neutro aditivo e multiplicativo
 - 0+a = a+0 = a
 - 1.a = a.1 = a
 - Complemento
 - a+a'=1
 - a.a' = 0

- Propriedades da álgebra de Boole (cont.)
 - Princípio de dualidade toda expressão algébrica dedutível dos postulados da álgebra de Boole permanece válida se:
 - As operações (+) e (.) forem intercambiadas entre si em toda a expressão e,
 - Os elementos de identidade 0 e 1 forem intercambiados entre si em toda a expressão
 - Elementos nulos
 - a+1=1
 - a.0 = 0
 - Identidade
 - 0+a = a+0 = a
 - 1.a = a.1 = a

- Propriedades da álgebra de Boole (cont.)
 - Lei da Idempotência
 - a+a = a
 - a.a = a
 - Lei da Involução
 - (a')' = a
 - Lei da absorção
 - a+ab=a
 - a.(a+b) = a
 - Simplificação
 - a+a'b = a+b
 - a.(a'+b) = a.b

- Propriedades da álgebra de Boole (cont.)
 - Associativa
 - (a+b)+c = a+(b+c)
 - (a.b).c = a.(b.c)
 - Lei de DeMorgan
 - (a+b)'=a'.b'
 - (a.b)'=a'+b'
 - Lei de DeMorgan generalizada
 - (a+b+...+j)'=a'.b'.j'
 - (a.b.j)' = a' + b' + ... + j'

 Use as propriedades da Álgebra de Boole para simplificar o circuito

Figure 2.23 Initial door opener circuit.

- Use as propriedades da Álgebra de Boole para mostrar que f = c'hp + c'hp'+c'h'p é equivalente a g = hc'+h'pc'
- Determine se F=a.(a+b)' e G=a+b' são equivalentes usando as propriedades da álgebra de Boole
- Se F=(ab'+c), determine a expressão para
 G=F' em forma de soma de produtos

Conjunto universal de portas

- Um conjunto universal ou conjunto lógico completo é capaz de implementar qualquer função combinacional
- Como qualquer expressão booleana pode ser implementada usando portas AND, OR e NOT, este é um conjunto universal
- Um conjunto de portas é universal se é possível implementar AND, OR e NOT com as suas portas

Conjunto universal de portas

- Conjuntos universais:
- NAND
- NOR
- AND e NOT
- OR e NOT

Conjunto universal de portas

(c)

- Implemente f(A,B,C,D,E)=A+(B'+C).(D'+BE') usando apenas portas NAND de duas entradas
- Passo 1:obtenha o circuito lógico com portas OR e AND

Passo 2: acrescente negações nas saídas das portas AND e no final da mesma linha de conexão para não mudar a lógica

 Passo3: acrescente negações nas demais entradas das portas OR que já receberam alguma negação

Passo 4: Negue as entradas das portas OR que ainda não foram alteradas

Passo 5: Converta as portas OR com entradas negadas por portas NAND

I – Implemente o circuito da função booleana f usando apenas portas NAND de 2 entradas f(a, b, c, d) = abc + ad + c'd'

I – Implemente o circuito da função booleana f usando apenas portas NAND de 2 entradas f(a, b, c, d) = abc + ad + c'd'

 2- Encontre a equação da função lógica representada pelo circuito abaixo

 2- Encontre a equação da função lógica representada pelo circuito abaixo

Resposta: f=(A'+B)(C.D+E)

Implemente o circuito da função booleana g usando apenas portas NOR de 2 entradas g(a, b, c, d, e, f) = ae + bde + bcef

 3- Implemente o circuito da função booleana g usando apenas portas NOR de 2 entradas g(a, b, c, d, e, f) = ae + bde + bcef

 Uma função booleana F é um mapeamento de cada uma das combinações possíveis de valores das variáveis da função (as entradas) para 0 ou 1 (a saída)

- Uma função booleana pode ser representada por meio de uma descrição:
 - A função f das variáveis a e b é 1 quando a é 0 e b é
 0 ou quando a é 0 e b é 1.
 - A função f é 1 quando a é 0, independente do valor de b
- A função pode ser representada por uma destas expressões booleanas
 - F = a'b' + a'b
 - $\circ F = a'$

A função pode ser representada or meio de uma tabela verdade

 A função pode ser representada por um destes circuitos lógicos

Tendo uma representação é possível passar para outra

Figure 2.31 Possible conversions from one Boolean function representation to another.

- 1 Equações em circuitos
 - Usando uma porta AND para cada operador (.), uma porta OR para cada (+) e uma porta NOT para cada (').
- 2-Circuitos em equações
 - Começando com as entradas e, então, escrevendo a saída de cada porta como uma expressão que contém as entradas da porta. Isto é feito até alcançar a saída do circuito.

- 3 Equações em tabela-verdade
 - Montando uma tabela com as entradas em todas as combinações possíveis e calculando o valor da expressão para cada combinação.

Inp	uts			Output
а	b	a' b'	a' b	F
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	0	0	0

Figure 2.34 Truth table for F(a,b)=a'b'+a'b with intermediate columns.

4– Tabela-verdade em equação

 Criando um termo de produto para cada linha na tabela e aplicando um OR a todos os termos de

produto.

Inp	uts	Outputs	Term
а	b	F	F = sum of
0	0	1	a' b'
0	1	1	a' b
1	0	0	
1	1	0	

Figure 2.35 Converting a truth table to an equation.

- 5 Circuito em tabela-verdade
 - Convertendo o circuito em uma equação e depois a equação em tabela verdade.
 - Avaliar no circuito o valor da saída para cada combinação das entradas é uma operação muito propensa a erros.
- ▶ 6- Tabela-verdade em circuito
 - Convertendo a tabela em equação e depois em circuito.

- Descreva uma função que gera um bit de paridade par P para 3 bits de dados a, b e c.
 O bit de paridade deve ser 1 se o número de 1s em abc for ímpar e deve ser 0 caso contrário.
- Qual é a representação mais fácil de usar para descrever a função booleana?

 Represente a função booleana do circuito da figura em uma tabela-verdade

 Neste caso é melhor escrever a expressão booleana antes e depois montar a tabelaverdade

Para ser continuado...