facebook

Social Hash:

an Assignment Framework for Optimizing Distributed Systems Operations on Social Networks

Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro Presta, Aaron Adcock, Herald Kllapi, and Michael Stumm

March 2016

Assignment Problem

Alon's HTTP requests

Igor's HTTP requests

Assignment Problem

Alon's HTTP requests

Igor's HTTP requests

Point-of-Presence (PoP)

Front-end clusters

Cache

Assignment Problem Optimization

Front-end clusters

Alon's HTTP requests

Point-of-Presence (PoP)

Stable

Front-end clusters

Alon's HTTP requests

Point-of-Presence (PoP)

Fast decision

Front-end clusters

Social Hash framework

Social Hash framework

Objects (e.g., data records or HTTP requests)

Static assignment

- Goal: assign similar objects sent to the same group
 - Data access pattern -> represent as graph -> graph partitioning
 - Large-scale optimization: slow, time-consuming

Dynamic assignment

- Goal: adapt to maintain load balance by altering group -> component
 - hardware changes
 - dynamic workload
 - addition and removal of objects

- Two-level framework separates optimization from adaptation
 - Slow optimization -> static
 - Fast adaptation -> dynamic
- Group-to-component ratio controls tradeoff

Social Hash framework

HTTP Request Routing

Social Hash for Facebook's web routing

Objects: HTTP request identified by user, Components: front-end clusters

Edge locality for Facebook's web routing

- Production routing:
 21k groups for 10's of front-end clusters
- Over half of friendships are within groups
- Updated on a weekly basis (~1% movement)

Live traffic experiment: TAO miss rate

Orange: traffic shifts

Red: duration of test

 Green: updated Social Hash table

Storage Sharding

Assignment Problem 2: Storage sharding

Assignment Problem 2: Storage sharding

Arun's query

Objects: data records
Components: storage machines

Static assignment

- Minimize fanout through bipartite graph partitioning
- Graph contains recent queries and data records
 - edge => query accesses data record
- Dotted: edge locality optimization
- Solid: fanout optimization

Storage sharding deployment

- Graph database with thousands of storage servers
 - Group-to-component ratio of 8
 - Static assignment every few months

Results:

- Average latencies decreased by over 50%
- CPU utilization decreased by over 50%

Summary

Assignment problems are common in distributed systems design

- Proposed Social Hash framework for solving assignment problems
 - Two-level design optimizes performance with graph partitioning

- Two Facebook integrations in production for over a year
 - HTTP Request Routing: > 25% reduction in TAO miss rate
 - Storage Sharding: Latency and CPU utilization reduced by over 50%