

Feature Selection for Classification

Jyh-Shing Roger Jang (張智星) MIR Lab, CSIE Dept.

National Taiwan University

jang@csie.ntu.edu.tw , http://mirlab.org/jang

2023/11/29

Outlines

- Introduction to feature selection
- Heuristic search
 - One-pass ranking
 - Sequential forward selection
- Exhaustive search
- Examples

Intro. to Feature Selection

- Feature selection
 - Also known as input selection
- Goal
 - To select a subset from the original feature set for better accuracy
- Items to be specified before feature selection

- Classifier, such as KNNC
- Performance index, such as accuracy
- Performance evaluation method, such as k-fold CV
- Benefits
 - Better accuracy
 - Less computation
 - Explainability between features and outputs

Feature Selection vs. Extraction

- Common part
 - Both known collectively as dimensionality reduction
 - Goal: Reduced model complexity with improved accuracy
- Feature selection: select the best subset from the original features
- Feature extraction: Extract new features by a linear or nonlinear combination of all original features
 - Extracted features may not have physical meanings
 - Examples of linear feature extraction
 - PCA (unsupervised)
 - LDA (supervised)

Heuristic Search

- A number of heuristic search for feature selection
 - One-pass ranking
 - Sequential forward selection (SFS)
 - Sequential backward selection (SBS)
 - Generalized sequential forward selection
 - Select the best k features at each iteration (k=1 for SFS)
 - Generalized sequential backward selection
 - Delete the best k features at each iteration (k=1 for SBS)
 - Sequential forward floating selection (SFFS)
 - Sequential backward floating selection (SBFS)
 - 'Add m, remove n' selection
 - Generalized 'add m, remove n' selection

One-pass Ranking

Steps

- Sort the given d features in descending order of their accuracy based on a single feature only
- Select the top m features from the sorted list that has the best performance
- Complexity

- If the dataset has d features, we need to perform 2d-1 CV.
- Properties Quiz!
 - Advantage: Extremely fast
 - Disadvantage:
 - Feature correlation is not considered
 - Selected features are not always optimal

Example of One-Pass Ranking

SFS with 4 features

Sequential Forward Selection (SFS)

- Steps for sequential forward selection
 - 1. Select the first feature that has the best accuracy.
 - Select the next feature (among all unselected features) that, together with the selected features, gives the best accuracy.
 - Repeat the previous step until all features are selected.
- Complexity

- If the dataset has d features, we need to perform d(d+1)/2 CV.
- Properties Quiz!
 - Advantage: Fast
 - Disadvantage: Selected features are not always optimal.

Example of SFS

. . .

9/14

Exhaustive Search

- •Steps for exhaustive search (ES)
 - Generate all combinations of features and evaluate them one-by-one
 - Select the feature combination that has the best accuracy.

ODrawback

- d features \rightarrow 2^d-1 CV for performance evaluation
- $d = 10 \rightarrow 1023$ CV for evaluation \rightarrow Time consuming!
- •Properties
 - Advantage: Optimal feature set can be identified.
 - Disadvantage: Extremely slow if no. of features is large.

Exhaustive Search

Direct exhaustive search

One-pass Ranking

- - -

Summary of Computational Complexity

- No. of CV required for feature selection in a dataset of d features
 - One-pass ranking \rightarrow 2*d*-1
 - Sequential forward selection $\rightarrow d(d+1)/2$
 - Sequential backward selection $\rightarrow d(d+1)/2$
 - Exhaustive search \rightarrow 2^d-1
- No. of CV required for selecting up to m features in a dataset of d features
 - One-pass ranking → d+m-1
 - Sequential forward selection → ???
 - Sequential backward selection → ???
 - Exhaustive search → ???

Feature Selection for Iris Dataset

SFS

Exhaustive search

Feature Selection for Wine Dataset

SFS

SFS with input normalization

Summary

- SFS → 3 selected features, LOO accuracy=93.8%
- SFS with feature normalization -> 6 selected features, LOO accuracy=97.8%
- ES with feature normalization -> 8 selected features, LOO accuracy=99.4%

Proper Use of Feature Selection

- Common use of feature selection
 - Increase model complexity sequentially by adding more features
 - Select the model that has the least validation error
- Typical curve of error vs. model complexity
 - Determine the model's complexity with the least validation error

