H.T NO.												MLR20
---------	--	--	--	--	--	--	--	--	--	--	--	-------

Course Code: A5BS02

MLR INSTITUTE OF TECHNOLOGY

(An Autonomous Institute)

I B.Tech. I Semester Supplementary Examination September-2023

LINEAR ALGEBRA AND CALCULUS

(Common to AIML, CSC, CSD, CSE, CSIT, CSM & IT)

Time: 3 Hours.Note: 1. This question paper contains two parts A and B.

- 2. Part -A is Compulsory which carries 20 marks. Answer all Questions in part A.
- 3. Part -B consists 5units. Answer any one question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

$10 \times 2M = 20Marks$

Max. Marks: 70

	a)	Find Integrating factor of $\frac{dy}{dx} - \frac{y}{x} = x$	2M	CO1	BL3
-	b)	Solve $(D^2 + 4)y = \sin 2x$	2M	CO1	BL3
	c)	Test for convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.	2M	CO2	BL4
	d)	Test for convergence of the series $\sum_{n=1}^{\infty} ne^{-n^2}$.	2M	CO2	BL4
-	e)	Find the value of k such that the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2.	2M	CO3	BL1
1.	f)	Define Orthogonal matrix and Unitary matrix.	2M	CO3	BL1
	g)	Explain, Why the set $S = \{(2,1,-2), (-2,-1,2), (4,2,-4)\}$ is not a basis of \mathbb{R}^3 .	2M	CO4	BL2
	h)	Find the nullity of the matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix}$	2M	CO4	BL2
i)	:)	Find a unit vector which is orthogonal to the vector α =	2M	CO5	BL2
	1)	$(2,-1,6)$ of $V_3(R)$ with respect to standard inner product.	Z1V1	200	DL2
	j)	Find the eigen values of A, Where $A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$	2M	CO5	BL1

PART- B

$5 \times 10M = 50Marks$

	a)	Solve $(2x - y + 1)dx + (2y - x - 1)dy = 0$	5M	CO1	L3					
2	b)	If the population of a country doubles in 50 years, in how many years will it be three times, assuming that the rate of increase is proportional to the number of inhabitants?	5M	CO1	L3					
	OR									
3		Solve $D^2 + 3D + 2$) $y = e^x sin x$.	10M	CO1	L3					
4	a)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2 \cdot 5^2 \cdot 9^2 \dots (4n-3)^2}{4^2 \cdot 8^2 \cdot 12^2 \dots (4n)^2}$	5M	CO2	L4					
4		Test the convergence of the series $\sum_{n=1}^{\infty} (1 + \frac{1}{\sqrt{n}})^{-n^{\frac{3}{2}}}$.	5M	CO2	L4					
	OR									
	a)	Test the convergence of the series $\frac{2}{1} + \frac{3}{2} + \frac{4}{3} + \frac{5}{4} \dots \dots \dots$	5M	CO2	L4					
5	b)	Show that $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots$ is absolutely	5M	CO2	L4					
		convergent.	I I	l Page 1	of 2					

6	a)	If $A = \begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$ then show that matrix A is Hermitian and matrix iA is Skew-Hermitian.	5M	CO3	L3						
0	b)	Convert the given matrix into Normal form and hence find it's rank where $A = \begin{bmatrix} 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$	5M	СОЗ	L5						
OR											
7	a)	Solve the following system of equations $x + y - 3z + 2w = 0$, $2x - y + 2z - 3w = 0$, $3x - 2y + z - 4w = 0$, $-4x + y - 3z + w = 0$.	5M	СОЗ	L3						
	b)	Test for consistency and solve the system of equations $x - 2y - 3z = 1$, $3x + 4y - 6z = -2$, $4x + 2y - 3z = 5$.	5M	СОЗ	L4						
8		The linear transformation $T: V_2 \to V_3$ is defined as $T(x,y) = (x,x+y,y)$ then find the Range, Kernel, Rank and Nullity of T. and also find whether T is one-one or not?	10M	CO4	L3						
		OR									
9		Find the matrices of the linear transformation T on $V_3(R)$ defined as $T(a,b,c)=(2b+c,a-4b,3a)$ with respect to standard ordered basis $B=\{(1,0,0),(0,1,0),(0,0,1)\}$ and ordered basis $B^1=\{(1,1,1),(1,1,0),(1,0,0)\}$.	10M	CO4	L4						
					•						
10		Diagonalize the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$	10M	CO5	L3						
	OR										
11		Apply Gram-Schmidt orthogonalization process to the vectors $\boldsymbol{\beta}_1$ = (1,0,1), $\boldsymbol{\beta}_2$ = (1,0,-1), $\boldsymbol{\beta}_3$ = (0,3,4) to obtain an orthonormal basis ($\alpha_1,\alpha_2,\alpha_3$) for R ³ With Standard inner product.	10M	CO5	L3						

---00000---