

مبانی رمزنگاری و امنیت شبکه

امنیت وب (در سطح لایه انتقال)

Web Security (Transport-Level Security)

مهتاب ميرمحسني

نیمسال دوم (بهار) ۹۹–۹۹

مدل (Open System Interconnection) OSI

OSI Jan

- لايه فيزيكي
- انتقال بیت ها به صورت سیگنال الکتریکی و ارسال آن بر روی کانال
 - استانداردهای انتقال: RS-232, RS-422
 - (Data link layer) لايه پيوند دادهها
 - ارسال فريمها
 - ارسال مطمئن (کشف و تصحیح خطا)
 - کنترل شار
 - لاوتكلهاى معروف: SDLC و SDLC
 - لايه شبكه
 - (packet) ارسال بستهها
- \bigcirc مسیریابی و کنترل ازدحام (Congestion)

OSI Jan

- لايه انتقال
- مديريت اتصال
- لایه انتها-به-انتها (از منبع به مقصد)
 - تقسیم دنباله پیام به بستهها
 - كنترل شار
 - لايه نشست: مديريت نشست
- ورود به سیستم از راه دور، احراز اصالت طرفین، احراز اصالت پیامها، اتمام نشست، حسابداری کارخواهها
 - لايه ارائه(نمايش)
- فشرده سازی، رمزنگاری، تبدیل اطلاعات به کدهای ASCII, Unicode
- لایه کاربرد: پروتکلهای کاربردی معمول
 - مانند FTP، E-mail و ...

- لايه فيزيكي
- انتقال بیت ها به صورت سیگنال الکتریکی و ارسال آن بر روی کانال
 - استانداردهای انتقال: RS-232, RS-422
 - (Data link layer) لايه پيوند دادهها
 - 🔾 ارسال فريمها
 - ارسال مطمئن (کشف و تصحیح خطا)
 - كنترل شار
 - O پروتكلهاى معروف: SDLC و SDLC
 - لايه شبكه
 - O ارسال بستهها (packet)
- \bigcirc مسیریابی و کنترل ازدحام (Congestion)

OSI Jao

TCP/IP Jan

Application Layer

Transport Layer

Internet Layer

Network Interface Layer

- توسط ARPA NET
 - لايه واسط شبكه
 - لایه اینترنت (شبکه)

 - لايه انتقاللايه كاربرد

TCP/IP Jan

- لايه كاربرد
- مخفی کردن پیچیدگیهای لایههای پایینتر از
 دید کاربر و ارتباط با کاربر
 - TELNET: virtual terminal o
 - FTP: file transfer protocol o
 - SMTP: simple mail transfer protocol o
 - DNS: domain name service o
- NNTP: network news transfer protocol o
 - HTTP: hypertext transfer protocol o
 - SNMP: simple network management protocol

- مهمترین لایه: لایه اینترنت (شبکه)
 - (internet protocol) IP
 - بدون اتصال
 - مسیریابی بستهها
 - TCP / IP لايه انتقال
 - ارسال انتها-به-انتها
 - TCP: transmission control protocol o
 - UDP: user datagram protocol o

مقايسه مدلها

ملاحظات امنیت وب

• World Wide Web: برنامه کاربردی از نوع Client/server برنامه کاربردی از نوع TCP / IP

مشكلات:

- برخلاف سادگی استفاده از مرورگرها و ایجاد محتوای تحت وب، ساختار زیرین از پیچیدگی بالایی برخوردار است که موجب مخفی شدن آسیبپذیریهای امنیتی میشود
 - حمله به اطلاعات مخلی از طریق پایانههای متصل به شبکه
 - وجود کاربرهای ناآشنا به امور امنیتی

تهدیدهای امنیتی وب

	Threats	Consequences	Countermeasures
Integrity	 Modification of user data Trojan horse browser Modification of memory Modification of message traffic in transit 	 Loss of information Compromise of machine Vulnerabilty to all other threats 	Cryptographic checksums
Confidentiality	 Eavesdropping on the net Theft of info from server Theft of data from client Info about network configuration Info about which client talks to server 	Loss of information Loss of privacy	Encryption, Web proxies
Denial of Service	 Killing of user threads Flooding machine with bogus requests Filling up disk or memory Isolating machine by DNS attacks 	Disruptive Annoying Prevent user from getting work done	Difficult to prevent
Authentication	Impersonation of legitimate users Data forgery	Misrepresentation of user Belief that false information is valid	Cryptographic techniques

تهدیدهای امنیتی وب

- تقسیمبندی بر اساس هدف مهاجم:
 - حمله غيرفعال (Passive attack)
- شنود (eavesdropping) ترافیک شبکه میان مرورگر و کارگزار و دسترسی به اطلاعات پایگاه وب که مخفی بوده
 - حمله فعال (Active attack)
- جعل هویت کاربر دیگر، تغییر پیام میان کارخواه و کارگزار، تغییر اطلاعات در یک پایگاه وب
 - تقسیمبندی بر اساس مکان حمله:
 - حمله به کارگزار وب
 حمله به مرورگر وب

 - حمله به ترافیک میان کارگزار و مرورگر (ترافیک شبکه وب)
 - 0 امنیت شبکه

روشهای تامین امنیت ترافیک وب

- خدمات یکسان و ساز و کارهای تقریباً مشابه
- تفاوت اصلی: مکان قرار داشتن در مدل TCP / IP و کاربرد آنها
 - سطح شبکه (استفاده از IPsec)
 - پنهان از دید کاربرهای انتهایی و برنامههای کاربردی
 - ۵ همه منظوره
 - O خاصیت فیلترینگ به منظور کاهش سربار پردازشی IPsec

НТТР	FTP	SMTP		
ТСР				
IP/IPSec				

HTTP	FTP	SMTP		
SSL or TLS				
ТСР				
IP				

	S/MIME	
Kerberos	os SMTP HTTP	
UDP	TCP	
IP		

(a) Network level

(b) Transport level

(c) Application level

روشهای تامین امنیت ترافیک وب

- سطح انتقال (بالاي TCP)
- Transport Layer Security (TLS) استانداره اینترنتی Secure Sockets Layer (SSL) 🔾
 - پشتیبانی بسیاری از سرورهای وب و تمامی مرورگرها
 - سطح کاربرد
 - برآورد کردن تقاضای امنیتی خاص برای کاربردهای خاص

HTTP FTP SMTP				
TCP				
IP/IPSec				

HTTP FTP SMTP			
SSL or TLS			
TCP			
IP			

	S/MIME		
Kerberos	SMTP HTTI		
UDP	TCP		
	IP		

(a) Network level

(b) Transport level

(c) Application level

Transport Layer Security (TLS)

- نسخه کنونی ۱.۲
- استاندارد امنیتی برپایه پروتکل تجاری لایه دریچه امن (Secure Sockets Layer (SSL)
 - لایه امنیتی در بالای TCP جهت ایجاد خدمت امن انتها-به-انتها

• دو لایه پروتکلی

TCP = پروتکل	لایه اول در بالای	0
	Record	

- ◄ محرمانگی و احراز اصالت پیام
- \circ لایه دوم در لایه کاربرد = Υ پروتکل مدیریت مبادلات TLS
 - Handshake Protocol **×**
 - Change Cipher Spec Protocol
 - Alert Protocol ×

Handshake protocol	Change cipher spec protocol	Alert protocol	НТТР	Heartbeat protocol
Record protocol				
TCP				
IP				

مفهوم ارتباط در TLS

- اتصال (Connection)
- یک انتقال (به مفهوم OSI) برای تامین خدمت مشخص \bigcirc
 - رابطه همتا−به-همتا (peer-to-peer) رابطه
- هر اتصال به یک نشست نگاشت می شود (نگاشت چند به یک)
 - نشست (Session)
 - هر نشست، یک ارتباط میان کلاینت و سرور است
- هر نشست، توسط پروتکل دستداد (Handshake) شکل می گیرد
- هر نشست، مجموعهای از پارامترهای رمزنگاری را تعریف میکند که میتواند میان چندین
 اتصال مشترک باشد
 - 🗶 جهت کاهش هزینه

حالت نشست (session state)

- نشست دارای (پارامترهای) حالت است که در پروتکل دستداد به روز میشوند
 - پارامترهای حالت نشست:

Session identifier	An arbitrary byte sequence chosen by the server to identify an active or resumable session state.
Peer certificate	An X509.v3 certificate of the peer. This element of the state may be null.
Compression method	The algorithm used to compress data prior to encryption.
Cipher spec	Specifies the bulk data encryption algorithm (such as null, AES, etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation. It also defines cryptographic attributes such as the hash_size.
Master secret	48-byte secret shared between the client and server.
Is resumable	A flag indicating whether the session can be used to initiate new connections.

حالت اتصال (connection state)

Server and client random	Byte sequences that are chosen by the server and client for each connection.
Server write MAC secret	The secret key used in MAC operations on data sent by the server.
Client write MAC secret	The secret key used in MAC operations on data sent by the client.
Server write key	The secret encryption key for data encrypted by the server and decrypted by the client.
Client write key	The symmetric encryption key for data encrypted by the client and decrypted by the server.
Initialization vectors	When a block cipher in CBC mode is used, an initialization vector (IV) is maintained for each key.
Sequence numbers	Each party maintains separate sequence numbers for transmitted and received messages for each connection.

پروتکل TLS Record

دو خدمت را برای TLS تامین می کند:

- محرمانگی
- با استفاده از یک کلید مخفی (رمزنگاری متقارن) که در پروتکل دستداد به اشتراک گذاشته شده است
 - یکپارچگی پیام
 - \circ با استفاده از کد احراز اصالت پیام (MAC) که کلید مخفی آن نیز در پروتکل دستداد به اشتراک گذاشته شده است
 - شامل مراحل زیر:
- تکهتکه کردن (fragmentation)، فشردهسازی، افزودن MAC، رمزگذاری و الصاق سرآیند (header)

پروتکل TLS Record

پروتکل TLS Record پروتکل MAC افزودن

افزودن کد احراز اصالت پیام (MAC) با استفاده از یک کلید مخفی مشترک
 الگوریتم HMAC با استفاه از تابع چکیدهساز MD5 یا SHA-1

 $HMAC_K(M) = H[(K^+ \oplus opad) || H[(K^+ \oplus ipad) || M]]$

○ بر روی: شماره دنباله، نوع فشردهسازی، طول تکه و محتوای تکه فشرده شده

HMAC_hash(MAC_write_secret, seq_num || TLSCompressed.type || TLSCompressed.version || TLSCompressed.length || TLSCompressed.fragment)

پروتکل TLS Record رمزگذاری

• پیام فشرده شده همراه با MAC، رمزگذاری میشود Opadding) باشد در رمز قالبی، ممکن است نیاز به دنباله زدن (padding) باشد

Block Cipher		Stream Cipher	
Algorithm	Key Size	Algorithm	Key Size
AES	128, 256	RC4-128	128
3DES	168		

پروتکل TLS Record پروتکل (header) الصاق سر آیند

• سرآیند=نوع محتوا، نسخه TLS، طول تکه فشرده شده (متن اصلی قبل از رمز)

Figure 17.4 TLS Record Format

- نوع محتوا (۸ بیت): پروتکل لایه بالاتر که تکه را پردازش می کند
- change_cipher_spec, alert, handshake, application_data
 - O کاربرد مانند HTTP
- نسخه اصلی و فرعی TLS مورد استفاده: برای TLSv2
 - اصلی=3، فرعی=1

پروتکل Change Cipher Spec

- یکی از ۴ پروتکل لایه دوم که از پروتکل TLS Record استفاده می کنند
 ساده ترین آنها
 - دارای یک پیام ۱ بایتی با مقدار ۱
- در پایان پروتکل دستداد، منجر به جایگزینی CipherSpec در حالت نشست فعلی با یک حالت نشست جدید (حالت در انتظار (pending)) می شود
 - برای استفاده در اتصال جدید

1 byte

1

(a) Change Cipher Spec Protocol

پروتکل هشدار (alert)

- هشدارهای (خطا) TLS را به همتا ارسال می کند
 - پیامها فشرده شده و رمز شده = ۲ بایت
- o بایت اول = شدت (Level): (Level) یا (2) warning
- \circ پس از دریافت هشدار fatal، اتصال TLS خاتمه مییابد و اتصال جدیدی در نشست همراه آن برقرار نمی شود
 - بایت دوم (Alert): شامل کدی است که نوع هشدار را مشخص می کند

1 byte 1 byte

Level Alert

(b) Alert Protocol

برخی از هشدارها

	A		
unexpected_message	An inappropriate message was received.		
bad_record_mac	An incorrect MAC was received.		
decompression_failure	The decompression function received improper input.		
handshake_failure	Sender was unable to negotiate an acceptable set of security parameters given the options available.		
illegal_parameter	A field in a handshake message was out of range or inconsistent with other fields.		
close_notify	Notifies the recipient that the sender will not send any more messages on this connection.		
no_certificate	May be sent in response to a certificate request if no appropriate certificate is available.		
bad_certificate	A received certificate was corrupt (e.g., contained a signature that did not verify).		
unsupported_certificate	The type of the received certificate is not supported.		
certificate_revoked	A certificate has been revoked by its signer.		
certificate_expired	A certificate has expired.		
certificate_unknown	Some other unspecified issue arose in processing the certificate, rendering it unacceptable.		

پروتکل دستداد (Handshake)

- پیچیدهترین پروتکل TLS است که در آن کلاینت و سرور:
 - ۰ یکدیگر را احراز اصالت میکنند
- بر روى الگوريتم رمزنگارى، الگوريتم MAC و كليدهاى مورد نياز توافق مى كنند
 - پیش از هر ارسال داده (لایه کاربرد) صورت می گیرد
 - تعدادی پیام میان کارخواه و کارگزار رد و بدل میشود ۲۰۰۰ فاز

پیامهای پروتکل دستداد

Message Type	Parameters	
hello_request	null	
client_hello	version, random, session id, cipher suite, compression method	
server_hello	version, random, session id, cipher suite, compression method	
certificate	chain of X.509v3 certificates	
server_key_exchange	parameters, signature	
certificate_request	type, authorities	
server_done	null	
certificate_verify	signature	
client_key_exchange	parameters, signature	
finished	hash value	

فازهای پروتکل دستداد

- شامل ۴ فاز
- 1. تعیین توانمندیهای امنیتی کلاینت و سرور
- 2. احراز اصالت سرور به کلاینت و مبادله کلیدهای آن
- 3. احراز اصالت کلاینت به سرور و مبادله کلیدهای آن
 - 4. پایان: تکمیل ایجاد اتصال امن با جایگذاری حالت

پروتکل دستداد: فاز ۱ تعیین توانمندیهای امنیتی کلاینت و سرور

• ارسال توسط كلاينت:

client_hello=version, random, session id, cipher suite, compression method

آخرین نسخه پشتیبانی شده توسط کلاینت عدد تصادفی استفاده برای تکشمار در توافق کلید جلوگیری از حمله تکرار

0: نشست جدید i: به روز کردن پارامترهای نشست iام فهرست الگوریتمهای رمزنگاری پشتیبانی شده توسط کلاینت همراه با روش توافق کلید آنها فهرست الگوریتمهای فشردهسازی پشتیبانی شده توسط کلاینت

• پاسخ سرور با پیامی مشابه ولی با انتخاب الگوریتمهای مناسب از فهرستها

cipher suite

توافق كليد

RSA	The secret key is encrypted with the receiver's RSA public key. A public key certificate for the receiver's key must be made available.
Fixed Diffie-Hellman	Diffie-Hellman key exchange in which the server's certificate contains the Diffie-Hellman public parameters signed by the certificate authority (CA)
Ephemeral Diffie-Hellman	To create ephemeral (temporary, one-time) secret keys
Anonymous Diffie-Hellman	Diffie-Hellman algorithm is used with no authentication

		CipherSpec
CipherAlgorithm	RC4, RC2, DES, 3DES, DES40, IDEA	1 1
MACAlgorithm	MD5 or SHA-1	
CipherType	Stream or Block	
IsExportable	True or False	
HashSize	0, 16 (for MD5), or 20 (for SHA-1) bytes	
Key Material	A sequence of bytes used in generating the write keys	
IV Size	Size of the Initialization Value for Cipher Block Chaining	ng (CBC) encryption

پروتکل دستداد: فاز ۲ احراز اصالت سرور به کلاینت و مبادله کلیدهای آن

• ارسال گواهی سرور به کلاینت

Certificate = chain of X.509v3 certificates

همیشه لازم نیست → server_key_exchange = parameters, signature

امضا با استفاده از چکیده:

hash(ClientHello.random | ServerHello.random | ServerParams)

پروتکل دستداد: فاز ۳ احراز اصالت کلاینت به سرور و مبادله کلیدهای آن

- کلاینت گواهی سرور را بررسی می کند و در صورت تایید پیامهای این فاز را می فرستد
 - در صورت درخواست گواهی از طرف سرور، ابتدا کلاینت گواهی خود را میفرستد
 - پيام مبادله کليد وابسته به الگوريتم انتخاب شده است:
 - RSA: کلید مخفی را تولید و با کلید همگانی سرور (گواهی) رمز کرده و میفرستد
 - دیفی-هلمن: پارامترهای همگانی کلاینت ارسال میشود
 - کلاینت چکیده تمامی پیامهای قبلی را امضا کرده و میفرستد
 - تا سرور مطمئن شود که گواهی متعلق به کلاینت است

پروتکل دستداد: فاز ⁴ پایان: تکمیل ایجاد اتصال امن با جایگذاری حالت

- کلاینت پیام change_cipher_spec را میفرستد و مقدار CipherSpec را در حالت به روز می کند
 - Change Cipher Spec در اصل پیامی از پروتکل ○
 - پیام پایان (finished) با الگوریتمها و کلیدهای جدید ارسال میشود

PRF(master_secret, finished_label, MD5(handshake_messages) || SHA-1 (handshake_messages))

- چکیده تمام پیامهای قبلی رمز و ارسال میشود
 - تایید موفقیت مبادله کلید و احراز اصالت

HTTPS

- تركيب HTTP و SSL (و يا TLS) است
 - RFC 2818, HTTP Over TLS o
- پیادهسازی ارتباط امن میان مرورگر وب و سرور وب
 - پیادهسازی شده در تمامی مرورگرهای مدرن
 - استفاده از آن بستگی به کارگزار وب دارد
- به عنوان مثال، برخی از موتورهای جستجو از HTTPS پشتیبانی نمی کنند
 - HTTP: پورت 80
 - HTTPS: پورت 443 که SSL را فرا میخواند
 - موارد زیر **رمز** میشود:

URL of the requested document
Contents of the document
Contents of browser forms (filled in by browser user)
Cookies sent from browser to server and from server to browser
Contents of HTTP header

Secure Shell (SSH)

Remote login and X tunneling

SSH User Authentication Protocol

Authenticates the client-side user to the server.

SSH

Connection Protocol

Multiplexes the encrypted tunnel into several logical channels.

SSH Transport Layer Protocol

Provides server authentication, confidentiality, and integrity. It may optionally also provide compression.

TCP

Transmission control protocol provides reliable, connectionoriented end-to-end delivery.

IP

Internet protocol provides datagram delivery across multiple networks.