Permutações em Espaços Densos

1 Permutações em espaços densos

Dado $(M,+,\leq)$ um monóide de adição, ordenado e denso de forma que para quaisquer $a,b\in M$ com a < b, existe $c \in M$ tal que a < c < b, definimos a operação p de permutação de par de intervalos para espaços densos que é uma bijeção $p_{\alpha,\beta}: M \to M$ onde $x \in M$ e $\alpha,\beta \in \mathbb{N}$ e escolhemos 2 intervalos arbitrários I_{α} e I_{β} de forma que:

$$p_{\alpha,\beta}(x) = \begin{cases} x & x \notin I_{\alpha} \land x \notin I_{\beta} \\ x - \min(I_{\alpha}) + \min(I_{\beta}), & x \in I_{\alpha}, \\ x - \min(I_{\beta}) + \min(I_{\alpha}), & x \in I_{\beta} \end{cases}$$
(1)

Outra definição equivalente seria:

$$p_{\alpha,\beta}(x) = \begin{cases} x & x \notin I_{\alpha} \land x \notin I_{\beta} \\ x - \max(I_{\alpha}) + \max(I_{\beta}), & x \in I_{\alpha}, \\ x - \max(I_{\beta}) + \max(I_{\alpha}), & x \in I_{\beta} \end{cases}$$
(2)

Se $I_{\alpha} = I_{\beta}$ temos a permutação identidade de par de intervalos para espaços densos. É facilmente verificável que a fórmula se reduz à seguinte forma: $p_{\beta,\beta}(x) = p_{\alpha,\alpha}(x) = x$.

Repare que também para todo $\alpha, \beta \in \mathbb{N}$ temos $p_{\alpha,\beta} = p_{\beta,\alpha}$ e também que $p_{\alpha,\beta} \circ p_{\alpha,\beta} = \mathrm{id}_M$.

2 Função de permutação de espaços densos

Com isso podemos definir a função de permutação de espaços densos σ onde $\sigma: M \to M$ de forma que dada uma sequência de intervalos arbitrários $\{I_n\}_{n\in\mathbb{N}}$ e duas sequências de números naturais $\{a_n\}_{n\in\mathbb{N}}$ e $\{b_n\}_{n\in\mathbb{N}}$, temos então:

$$\sigma = \prod_{n=1}^{\infty} p_{a_n, b_n} \tag{3}$$

De forma intuitiva, a função pode ser tanto composta de infinitas permutações de pares de elementos (é um produtório de composição de funções) ou também pode ser definida de forma que $\exists m \in \mathbb{N}$ onde $\forall n > m : a_n = b_n$, também implicando que $p_{a_n,b_n} = id_M$, fazendo assim que seja composta de uma quantidade limitada de permutação de pares de intervalos. É claro que com esse fato podemos simplificar a equação para:

$$\sigma = \prod_{n=1}^{m} p_{a_n, b_n} \tag{4}$$

3 Exemplo

Considere $M = \mathbb{R}$ (conjunto dos números reais)

3.1Permutação de par de intervalos

Vamos definir dois intervalos:

- $I_1 = [0, 1]$
- $I_2 = [2, 3]$

Agora, vamos aplicar a permutação $p_{1,2}(x)$:

$$p_{1,2}(x) = \begin{cases} x & x \notin [0,1] \land x \notin [2,3] \\ x - \min(I_1) + \min(I_2) = x + 2, & x \in [0,1], \\ x - \min(I_2) + \min(I_1) = x - 2, & x \in [2,3] \end{cases}$$
(5)

Exemplos:

1.
$$p_{1,2}(0.5) = 0.5 + 2 = 2.5$$

2.
$$p_{1.2}(2.5) = 2.5 - 2 = 0.5$$

3. $p_{1,2}(4) = 4$ (não está em nenhum dos intervalos)

3.2 Função de permutação de espaços densos

Vamos criar uma sequência finita de intervalos e duas sequências finitas de números naturais:

Intervalos: $(I_n)_{n=1}^3 = ([0,1],[2,3],[4,5])$ Sequência a: $(a_n)_{n=1}^3 = (1,2,3)$

Sequência b: $(b_n)_{n=1}^3 = (2,3,1)$

Agora, definimos $\sigma = p_{1,2} \circ p_{2,3} \circ p_{3,1}$

Formalmente, podemos escrever:

$$\sigma = \prod_{n=1}^{3} p_{a_n, b_n} = p_{1,2} \circ p_{2,3} \circ p_{3,1} \tag{6}$$

Vamos aplicar σ a alguns pontos:

- 1. $\sigma(0.5)$:
 - $p_{3.1}(0.5) = 0.5$ (não está em I_3 nem em I_1)
 - $p_{2,3}(0.5) = 0.5$ (não está em I_2 nem em I_3)
 - $p_{1,2}(0.5) = 2.5$ (está em I_1)

Resultado: $\sigma(0.5) = 2.5$

- 2. $\sigma(2.5)$:
 - $p_{3.1}(2.5) = 2.5$ (não está em I_3 nem em I_1)
 - $p_{2.3}(2.5) = 4.5$ (está em I_2)
 - $p_{1,2}(4.5) = 4.5$ (não está em I_1 nem em I_2)

Resultado: $\sigma(2.5) = 4.5$

- 3. $\sigma(4.5)$:
 - $p_{3.1}(4.5) = 0.5$ (está em I_3)

• $p_{2,3}(0.5) = 0.5$ (não está em I_2 nem em I_3)

• $p_{1,2}(0.5) = 2.5$ (está em I_1)

Resultado: $\sigma(4.5) = 2.5$

Observe que esta permutação σ efetivamente "rotaciona" os elementos entre os três intervalos:

 \bullet Elementos de I_1 são movidos para I_2

 \bullet Elementos de I_2 são movidos para I_3

 \bullet Elementos de I_3 são movidos para I_1

Elementos fora desses intervalos permanecem inalterados, ou seja, $\forall x \notin I_1 \cup I_2 \cup I_3$, $\sigma(x) = x$. Podemos verificar que σ é uma bijeção, pois cada elemento tem uma imagem única e todo elemento do conjunto é atingido pela função. Além disso, podemos observar que $\sigma \circ \sigma \circ \sigma = id_{\mathbb{R}}$, ou seja, aplicar σ três vezes resulta na função identidade.