MATH 2C03 - Differntial Equations

Sang Woo Park

January 13, 2017

Course Outline

- $\bullet \ \ Website: \ https://ms.mcmaster.ca/lovric/2C3.html$
- \bullet Textbook: Elementary Differential Equations with Boundary-Value Problems
- Course pack must be bought.
- Assignments are online assignments.

Contents

1	Introduction		
	1.1	Differential equations	2
	1.2	Ordinary differential equations	3
_		st order ODEs Initial Value Problems	5

1 Introduction

1.1 Differential equations

Definition 1.1. Differential equation is an equation where the unknown object is a function or a set of functions, and which involve their derivaties.

Definition 1.2. An ordinary differential equation (ODE) is a differential equation involving one variable: f'(x)

Example 1.1.1 (ODE). The following differential equation represents exponential growth:

$$P'(t) = kP(t), k > 0$$

Definition 1.3. If a function, f(x, y, z, ...), involves more than one variable, we must use partial derivatives, e.g. $\partial f/\partial x, \partial^2 f/\partial x \partial y, ...$ This is called a partial differential equation (PDE).

Example 1.1.2 (PDE). Let c(x,t) represent the concentration at a location that is x units away from the source at time t. Then, we have

$$c_t(x,t) = Ac_{xx}(x,t)$$

Remark. Note that example 1.1.1 can be rearranged as follows:

$$\frac{P'(t)}{P(t)} = k$$

P'(t)/P(t) represents the relative rate of change.

More often, k is not a constant. For example, we can incorporate seasonal variation to the exponential growth model.

Example 1.1.3.

$$\frac{P'(t)}{P(t)} = k\sin(at)$$

Definition 1.4. If a model does not involve any chance effecs, it's a deterministic model. Otherwise, it's a stochastic model.

Example 1.1.4 (Deterministic model). Example 1.1.1 is a deterministic model.

Example 1.1.5 (Stochastic model). Going back to example 1.1.1, we may define k as follows:

$$k = \begin{cases} 0.6 & 35\% \text{chance} \\ 0.5 & 65\% \text{chance} \end{cases}$$

This is a stochastic model.

1.2 Ordinary differential equations

All ordinary differential equations (ODEs) contain the following:

- An independent variable
- Unknown function
- Derivative of the function

In other words, all ordinary equations have the following form:

$$F(x, y, y', y'', \dots, y^{(n)}) = 0.$$

Example 1.2.1. If $F(s,t) = s^2 + 2t - 4$, then

$$F(x,y) = x^2 + 2y - 4.$$

Note that this function is defined *implicitly*.

Example 1.2.2. If $F(s, t, u) = e^{su} - t^2$, then

$$F(x, y, y') = e^{xy'} = y^2.$$

This is a first order ODE.

Example 1.2.3. If $F(s, t, u, v, w) = w^2 - s + 4u$, then

$$F(x, y, y', y'', y''') = (y''')^2 - xy + 4y' = 0$$

This is a third order ODE.

Definition 1.5 (Order of an ODE). Order of an ODE is determined by the highest non-zero derivative. If the highest non-zero derivative is the n-th derivative, the ODE also has an order of n.

Remark. We categorize differential equations because each category requires a different methods to find its solution.

Example 1.2.4. Consider the following differential equation:

$$y'' - 3x^2y' + xy - 7e^x = 0$$

Since the highest non-zero derivative is the second derivative, this is a second order ODE. Note that this equation has the following form:

$$F(x, y, y', y'') = 0$$

We can rearrange this equation by solving for the highest derivative:

$$y'' = 3x^2y' - xy + 6e^x$$

We can also decide to put all y terms on LHS:

$$y'' - 3x^2y' + xy = 7e^x$$

Here, $7e^x$ is referred to as a homogeneous term since it does not contain y.

Definition 1.6 (Homogeneous ODE). If the homogeneous term of an ODE is equal to 0, the ODE is called homogeneous.

Definition 1.7 (Linear ODE). Let $y^{(n)}(x)$ be the n-th derivative of y(x). If an ODE can be written in the following form,

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = p(x),$$

it is a linear.

Example 1.2.5. Consider the following equations:

1.
$$y''' - 3x^2y'' + 4y' = 76\sin x$$

2.
$$y'' - 3x^2\sqrt{y} = 76\sin x$$

3.
$$4y'' - 3y' + 4y = 6$$

4.
$$y^{(4)} - 3y''y' - 4x^3y = 0$$

Only equation 1 and 3 are linear.

Equation 1

$$\begin{cases} a_3(x) = 1 \\ a_2(x) = -3x^2 \\ a_1(x) = 4 \\ a_0(x) = 0 \end{cases}$$

Equation 2

 \sqrt{y} is not linear.

Equation 43

$$\begin{cases} a_3(x) = 4 \\ a_2(x) = -3 \\ a_0(x) = 4 \\ p(x) = 6 \end{cases}$$

Equation 4

y''y' is not linear.

2 First order ODEs

2.1 Initial Value Problems

Commonly, first order ordinary equations are written as

$$y' = G(x, y)$$

Example 2.1.1. $y' = 3x^3y^4 + 7 \ln x$.

Definition 2.1 (Pure time ODE). y' = f(x)

Definition 2.2 (Autonomous ODE). y' = f(y)

Example 2.1.2 (Pure time ODE). Consider the following ODE:

$$y' = 3x^2 - e^x$$

Since this is a pure time ODE, we can solve this ODE by integrating both sides with respect to the time variable x.

$$y = \int (3x^2 - e^x)dx$$
$$= x^3 - e^x + C$$

Note that this solution gives a *family* of curves (we get a different curve for each value of C). Note that changing c shifts the curve vertically. To identify one solution from the family (i.e. to find the exact value of C), we need to know *initial condition*. If y(0) = 4, we have C = 5.

Definition 2.3 (General solution). Integrating the ordinary differential equation gives us a solution with integration constant. This solution is called a general solution.

Definition 2.4 (Particular solution). Once we are given the initial condition, we can determine the exact value of the integration constant. Solution obtained by solving the Initial Value Problem is called a particular solution.

Example 2.1.3. Consider the following ODE:

$$y'' = 4x^2$$

where y(0) = 3 and y'(0) = -7. Since both values are given at x = 0, they are called *initial conditions*. We can also be asked to find the particular solution where y(0) = 2 and y(4) = -3. Since they occur at different x values, they are called *boundary conditions*.

When we're given the initial conditions, we can find the particular solution by integrating the ODE once:

$$y' = \frac{4}{3}x^3 + C.$$

However, when we're given the boundary conditions, we must integrate the ODE twice:

$$y = \frac{1}{3}x^4 + Cx + D$$

Definition 2.5 (General IVP). Consider the following ODE:

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

IVP requires us to find the particular solution of the ODE given the initial conditions: $y(x_0) = y_0, y(x_1) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$. Note that the solution of an IVP, BVP is a function, and it can be algebraic, geometric, numeric, and/or qualitative.

Example 2.1.4. Show that

$$y = 1 - x + 4x \ln x$$

is a solution of the following IVP:

$$x^{2}y'' - xy' + y = 1$$
$$y(1) = 0$$
$$y'(1) = 3$$

Proof. First, we start by differentiating y:

$$y' = -1 + 4 \ln x + 4x \frac{1}{x} = 4 \ln x + 3$$
$$y'' = \frac{4}{x}$$

Then, by substitution, we have

$$x^{2}y'' - xy' + y$$

$$= x^{2} \left(\frac{4}{x}\right) - x(4\ln x + 3) + 4\ln x + 3$$

$$= 1$$

It is also easy to verify that y(1) = 0 and y(1) = 3.

Example 2.1.5. Show that $x = a \sin 2t, a \in \mathbb{R}$ is a solution of

$$x''(t) + 4x(t) = 0$$
$$x(0) = 0$$
$$x(\pi) = 0$$

Proof. Note that this is a homogeneous ODE with constant coefficients. Also, since we are given two values at different points, we have a boundary condition problem.

First, we start by taking the derivatives:

$$x' = 2a\cos 2t$$
$$x'' = -4a\sin 2t$$

Then, we have

$$x''(t) + 4x(t) = -4a\sin 2t + 4(a\sin 2t) = 0$$

Finally, it is easy to check that the boundary conditions also hold. Therefore, $x = a \sin 2t$ is a solution of a given system.

Example 2.1.6. Show that $e^{x^2y} = y - x$ is a solution of

$$(x^2e^{x^2y} - 1)y' = -1 - 2xye^{x^2y}$$

Proof. Since we are given an implicit function in this problem, we must work with implicit differentiation:

$$\frac{d}{dx} \left(e^{x^2 y} \right) = \frac{d}{dx} (y - x)$$

$$e^{x^2 y} \left((x^2)' y + x^2 y' \right) = y' - 1$$

$$e^{x^2 y} \left(2xy + x^2 y' \right) = y' - 1$$

$$\left(x^2 e^{x^2 y} - 1 \right) y' = -1 - 2xy e^{x^2 y}$$

Example 2.1.7. Show that $f(x) = \int_0^x te^{-t^2} dt$ satisfies the IVP

$$f''(x) + 2xf'(x) - e^{-x^2} = 0$$

$$f(0) = 0$$

$$f'(0) = 0$$

Proof. Recall fundamental theorem of calculus:

$$\frac{d}{dx}\left(\int_{a}^{x} f(t)dt\right) = f(x)$$

Using FTA, we have

$$f(x) = \int_0^x t e^{-t^2} dt$$

$$f'(x) = x e^{-x^2}$$

$$f''(x) = e^{-x^2} + x e^{-x^2} (-2x)$$

Then, it is easy to verify that f satisfies the given IVP.

Remark (Chain rule in FTC). Note the following:

$$\left(\int_0^{\sin x} te^{-t^2} dt\right)' = \sin x e^{-(\sin x)^2} \cos x.$$

Example 2.1.8. Show that

$$y = Ce^{-\int P(x)dx}$$

is a solution of y' + P(x)y = 0.

Proof. Note that y' + P(x)y is a first order, linear, and non-constant coefficient ODE. We start the proof by differentiating the equation:

$$y' = C \left(e^{-\int P(x)dx} \right)'$$

$$= C \left(e^{-\int P(x)dx} \right) \left(-\int P(x)dx \right)'$$

$$= C e^{-\int P(x)dx} \left(-P(x) \right)$$

Thus, y' + P(x)y = 0.

Example 2.1.9. Show that $f(x) = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$ is a solution of IVP:

$$f'(x) - 2f(x) = 0,$$

$$f(0) = 1.$$

Proof. Before we begin the proof, we note that 0! = 1 and $0^0 = 1$. The latter result follows from the l'Hospital rule:

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{\ln x^x} = \lim_{x \to 0^+} e^{x \ln x} = \dots = 1,$$

Also, note that we can differentiate and integrate power series (term-wise), and radius of convergence does not change. If $x \in \mathbb{R}$, $R = \infty$.

First, we observe that the series can be expanded as follows:

$$f(x) = \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n = 1 + 2x + 2x^2 + \frac{8}{6}x^3 + \dots$$

By taking the derivative, we have

$$f'(x) = \sum_{n=1}^{\infty} \frac{2^n}{n!} n x^{n-1} = 2 \sum_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} x^{n-1} = 2 \sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$$

Therefore, we have f'(x) - 2f(x) = 0. It is easy to confirm that f(0) = 1. Note that this problem can also be solved by using the fact that $f(x) = e^{2x}$.

Example 2.1.10. Intensity, I(t), decreases linearly with depth, d, and intensity at surface is I_0 . This problem can be written into the following IVP:

$$I'(d) = -K$$
$$I(0) = I_0$$

Example 2.1.11. Consider the following:

$$my'' = mg - Dy'$$

What are the units of D if y is in metres, m is in kilograms, and t is in time? Note that y' has units of m/s and y" has units of m/s^2 . Since my'' has units of $kg \cdot \frac{m}{s^2}$, D should have units of kg/s.

Example 2.1.12. We can think about the geometric aspect of a curve:

First, we can look at its derivatives:

Х

When y' = 0 we can a local maximum/minimum. We can also look at its second derivatives. Note than y'' = 0 occurs where the curve has a horizontal tangent.

From these observations, we can attempt to draw the curve of y.

х

This is called a qualitative analysis.

Example 2.1.13. Perform a qualitative analysis on the following ODE:

$$P'(t) = KP(t),$$

where $P(t) \geq 0$ and K > 0.

First, we observe that P'(t) > 0. This indicates that P(t) is a monotonically increasing function. Now, we can also look at the second derivative:

$$P^{\prime\prime}(t)=KP^{\prime}(t)=K\left(KP(t)\right)=K^{2}P(t)>0$$

Therefore, this function is always concave up.