Respiration Related Death Cause show Signficant Relation to Increasing*

My subtitle if needed

Vanshika Vanshika Shivank Goel Navya Hooda

March 14, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

1 Introduction

You can and should cross-reference sections and sub-sections. We use R Core Team (2023) and Wickham et al. (2019).

The remainder of this paper is structured as follows. Section 2....

2 Data

Some of our data is of penguins (?@fig-bills), from Horst, Hill, and Gorman (2020).

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

^{*}Code and data are available at: https://github.com/shivankgoel003/Mortality-in-Alberta.

Figure 1: Provincial Average PM2.5 Quantity Vs Total Deaths

Figure 2: Lung Related Causes Mortality Rates vs Average PM2.5 Quantity

Figure 3: Heart Related Causes Mortality Rates vs Average PM2.5 Quantity

Figure 4: Annual Trends of PM2.5 Concentrations in Alberta

Figure 5: Mortality Rates vs. Air Quality Health Index

Figure 6: Model data

Figure 7: Prediction of deaths based on the model

Figure 8: Relationship between wing length and width

Figure 9: Total Deaths by Year for Each Cause

Figure 10: Average Air Quality Health Index by Year

Figure 11: Average Air Quality Health Index by Year

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained a loft. Then β_i is the wing width and γ_i is the wing length, both measured in millimeters.

$$y_i|\mu_i, \phi \sim \text{NegBin}(\mu_i, \phi)$$
 (1)

$$\mu_i = \exp(\alpha + \beta x_i) \tag{2}$$

$$\alpha \sim \text{Normal}(0, 2.5)$$
 (3)

$$\beta \sim \text{Normal}(0, 2.5)$$
 (4)

$$\phi \sim \text{Exponential}(1)$$
 (5)

Table 1: Different causes of mortality and their death counts

	Poisson	Negative binomial
Ischemic Heart Disease	0.510	0.510
		(0.002)
Trachea/Bronchus/Lung Cancer	0.353	0.353
		(0.002)
COPD	0.004	0.004
		(0.002)
Num.Obs.	9048	9048
Log.Lik.	-69064.136	-53402.269
ELPD	-69078.6	-53405.5
ELPD s.e.	468.1	70.9
LOOIC	138157.2	106811.0
LOOIC s.e.	936.3	141.9
WAIC	138157.2	106811.0
RMSE	97.30	97.30

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in ?@tbl-modelresults.

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

Table 2: Heart related causes death count and the air quality

	heart causes model
(Intercept)	8.02
	(0.18)
provincial_average	0.00
	(0.01)
Num.Obs.	21
Log.Lik.	-163.733
ELPD	-164.5
ELPD s.e.	0.5
LOOIC	329.0
LOOIC s.e.	1.0
WAIC	328.9
RMSE	142.90

Table 3: Lung related causes death count and the air quality

	Lung Causes model	
(Intercept)	7.57	
	(0.20)	
provincial_average	0.01	
	(0.01)	
Num.Obs.	21	
Log.Lik.	-160.858	
ELPD	-161.6	
ELPD s.e.	0.8	
LOOIC	323.3	
LOOIC s.e.	1.6	
WAIC	323.2	
RMSE	248.30	

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In **?@fig-ppcheckandposteriorvsprior-1** we implement a posterior predictive check. This shows...

In **?@fig-ppcheckandposteriorvsprior-2** we compare the posterior with the prior. This shows...

(a) Posterior prediction check

Figure 12: Examining how the model fits, and is affected by, the data

B.2 Diagnostics

Figure 18a is a trace plot. It shows... This suggests...

Figure 18b is a Rhat plot. It shows... This suggests...

(a) Posterior prediction check

Figure 13: Examining how the model fits, and is affected by, the data

(a) Posterior prediction check

Figure 14: Examining how the model fits, and is affected by, the data

(a) Posterior prediction check

Figure 15: Examining how the model fits, and is affected by, the data

(a) Posterior prediction check

Figure 16: Examining how the model fits, and is affected by, the data

(a) Posterior prediction check

Figure 17: Examining how the model fits, and is affected by, the data

Figure 18: Checking the convergence of the MCMC algorithm

References

- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data. https://doi.org/10.5281/zenodo.3960218.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.