

HULL DETECTION BASED ON LARGEST EMPTY SECTOR ANGLE WITH APPLICATION TO ANALYSIS OF REALTIME MR IMAGES

Naveen Kumar, Shrikanth Narayanan

Signal Analysis and Interpretation Laboratory (SAIL), University of Southern California, Los Angeles, CA-900089 komathnk@usc.edu, shri@sipi.usc.edu

Hull Detection

Definition. Given a set of points X, the subset $S \subset X$ such that the polygon defined by the points in S contains all points in X, is called the hull of X.

Hull for a set of points can be defined based on

- Convexity
- Minimum footprint/ area
- Shape templates

We define based on Largest Empty Sector Angle (LESA) criterion.

Largest Empty Sector Angle

The largest angular sector (δ) around a point x that is empty.

Suppose $\theta_i, i = 1 \cdots n - 1$ are the angles subtended by each point. $\max_{\alpha,\beta} \delta = |\alpha - \beta|$

s.t. $(\theta_i - \alpha)(\theta_i - \beta) \ge 0, \forall i = 1 \dots n-1$

Example

Image with detected edge points 10 20 30 40

Geometry of the Hull

 $H(\theta) = \{x \mid x \in X, \delta(x) \ge \theta\}$

- It can be shown that $H(180^{\circ})$ is a convex hull.
- $H(\theta), \theta < 180^{\circ}$ is a hull of increasing convexity
- $H(\theta), \theta > 180^{\circ}$ is not a hull but highlight sharp points

Application to vocal tract realtime MR images

Data:

- The *USC-TIMIT* corpus comprising moving vocal tract images
- Common problem is the subject's **head motion**

Approach:

- Detect **nosetip** and **chin** as sharp points in rtMRI contour
- Estimate rotation and translation to correct for head motion

Algorithm:

- $\delta(x) \ge 195^{\circ} \to H_1, H_2 \dots$
- Center of points in $H \to H_0$
- Sort by angle at H_0
- Choose nosetip and chin by sorting index

Nosetip and Chin Detection Tracking Tracking Nosetip and Chin Detection Tracking Nosetip Nosetip Nosetip Chin

Head motion correction

Check a demo of the algorithm at work.

a) First frame b)Frame with head movement c) Frame corrected for head movement **Head movement correction algorithm**

- Match nosetip points
- Estimate angle of rotation about matched nosetip points

Discussion and Future Work

- Chin point is on a non-rigid structure
- Vocal tract shape changes during head motion
- Use nosetip and chin to find other landmark points e.g. lips
- Direct adaptive tracking of the vocal tract

