

2006-2007 学年第 2 学期

考试统一用答题册(A卷)

题号	 1	三(1)	三(2)	三(3)	三(4)	总分
成绩						
阅卷人签字						
校对人签字						

考试	课程	基础物理学(1)	i
班	级	学号	
姓	名	成 绩	

2007年7月16日

- 一. 选择题 (每题 3 分, 共 30 分)
- 1.下列几个说法中哪一个是正确的?
 - (A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.
 - (B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.
 - (C) 场强可由 $\bar{E} = \bar{F}/q$ 定出,其中 q 为试验电荷,q 可正、可负, \bar{F} 为试验电荷所受 的电场力.
 - (D) 以上说法都不正确.

2.如图所示,半径为R的均匀带电球面,总电荷为Q,设无穷远处的电 势为零,则球内距离球心为r的P点处的电场强度的大小和电势为:

(C)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 r}$.

(D)
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
, $U = \frac{Q}{4\pi\varepsilon_0 R}$.

7

- 3. 根据高斯定理的数学表达式 $\oint_{\mathcal{E}} \dot{\mathbf{r}} \, \mathrm{d} \bar{\mathbf{S}} = \sum q/\varepsilon_0$ 可知下述各种说法中,正确的是:
 - (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.
 - (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.
 - (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.
 - (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.

Γ

- 4. 选无穷远处为电势零点,半径为R的导体球带电后,其电势为 U_0 ,则球内离球心距离为 r 处的电场强度的大小为
 - $(A) \quad 0.$
- (B) $\frac{U_0}{r}$.
- (C) $\frac{RU_0}{r^2}$. (D) $\frac{U_0}{R}$.

Γ

٦

7

- 5. 一导体球外充满相对介电常量为 ε 的均匀电介质,若测得导体表面附近场强为E,则导体 球面上的自由电荷面密度 σ 为
 - (A) $\varepsilon_0 E$.
- (B) $\varepsilon_0 \varepsilon_r E$.
- (C) $\varepsilon_r E$.
- (D) $(\varepsilon_0 \varepsilon_r \varepsilon_0)E$.

Γ

6. 边长为l,由电阻均匀的导线构成的正三角形导线框abc, 通过彼此平行的长直导线1和2与电源相连,导线1和2分 别与导线框在 a 点和 b 点相接,导线 1 和线框的 ac 边的延 长线重合. 导线1和2上的电流为1,如图所示. 令长直导 线 1、2 和导线框中电流在线框中心 0 点产生的磁感强度分 别为 \vec{B}_1 、 \vec{B}_2 和 \vec{B}_3 ,则O点的磁感强度大小

- (C) $B \neq 0$,因为虽然 $\vec{B}_1 + \vec{B}_2 = 0$,但 $B_3 \neq 0$. (D) $B \neq 0$, 因为虽然 $B_3 = 0$, 但 $\vec{B}_1 + \vec{B}_2 \neq 0$. 7. 两根无限长载流直导线相互正交放置,如图所示. I_1 沿 y 轴 的正方向, I_2 沿Z轴负方向. 若载流 I_1 的导线不能动,载流 I_2 的导线可以自由运动,则载流 12的导线开始运动的趋势是 (B) 沿 x 方向平动。(D) 无法判断。 (A) 绕 *x* 轴转动. (C) 绕 v 轴转动.] 8. 磁介质有三种,用相对磁导率 μ r表征它们各自的特性时, (A) 顺磁质 $\mu_r > 0$, 抗磁质 $\mu_r < 0$, 铁磁质 $\mu_r > > 1$. (B) 顺磁质 $\mu_r > 1$, 抗磁质 $\mu_r = 1$, 铁磁质 $\mu_r > > 1$. (C) 顺磁质 $\mu_r > 1$, 抗磁质 $\mu_r < 1$, 铁磁质 $\mu_r > > 1$. (D) 顺磁质 $\mu_r < 0$, 抗磁质 $\mu_r < 1$, 铁磁质 $\mu_r > 0$. 9. 两根无限长平行直导线载有大小相等方向相反的电流 I, 并各以 dI /dt(>0) 的变化率增长,一矩形线圈位于导线平面内(如图),则: (A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向. (D) 线圈中感应电流方向不确定. 10. 在感应电场中电磁感应定律可写成 $\oint_{t} \vec{E}_{K} \cdot d\vec{l} = -\frac{d\Phi}{dt}$, 式中 \vec{E}_{K} 为感应电场的电场强 (A) 闭合曲线 $L \perp \bar{E}_{\kappa}$ 处处相等. (B) 感应电场是保守力场. (C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. Γ 7
- 度. 此式表明:

二. 填空题 (每题 3 分, 共 30 分)

1. 两个平行的"无限大"均匀带电平面, 其电荷面密度分别为 $+\sigma$ 和 $+2\sigma$, 如图所示,则A、B、C三个区域的电场强度分别为:

____(设方向向右为正).

2. 静电场的环路定理的数学表示式为: 该	式的物理意义是:
该定理表明,静电场是	
3. 一平行板电容器, 充电后与电源保持联接, 然后使两极板间充满机	目对介电常量为& 的各
向同性均匀电介质,这时两极板上的电荷是原来的倍;电场强	度是原来的
倍; 电场能量是原来的倍.	
4. 在两种介质的分界面上不存在自由电荷时,界面两侧的电位移 $ar{m{D}}$	和场强 \hat{E} 必须同时满足
的边界条件是:	
5. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂	/ /
度上流过的电流)为 i ,则圆筒内部的磁感强度的大小为 $B =$	$,$ 方 \bigcup
向	
6. 一带电粒子平行磁感线射入匀强磁场,则它作	运动.
一带电粒子垂直磁感线射入匀强磁场,则它作	运动.
一带电粒子与磁感线成任意交角射入匀强磁场,则它作	运动.
7. 在国际单位制中,磁场强度 H 的单位是,磁导率 μ 的	5单位是
8. 一根直导线在磁感强度为 $ar{B}$ 的均匀磁场中以速度 $ar{v}$ 运动切割磁力	线. 导线中对应于非静
电力的场强(称作非静电场场强) $\vec{E}_{\scriptscriptstyle K}=$	0
9. 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴 00′上,	
则直导线与矩形线圈间的互感系数为	<i>O'</i>
10. 一平行板空气电容器的两极板都是半径为 R 的圆形导体片,在充时,板间电场强度的变化率为 dE/dt . 若略去边缘效应,则两板间的	

三. 计算题 (每题 10 分, 共 40 分)

1. 一环形薄片由细绳悬吊着,环的外半径为R,内半径为R/2,并有电荷Q均匀分布在环面上.细绳长 3R,也有电荷Q均匀分布在绳上,如图所示,试求圆环中心Q处的电场强度(圆环中心在细绳延长线上).

2. 一圆柱形电容器,外柱的直径为 4 cm,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为 $E_0=200~{\rm KV/cm}$. 试求该电容器可能承受的最高电压. (自然对数的底 e=2.7183)

3.如图两共轴线圈,半径分别为 R_1 、 R_2 ,电流为 I_1 、 I_2 . 电流的方向相反,求轴线上相距中点 O 为 x 处的 P 点的磁感强度.

4. 如图所示,有一弯成 θ 角的金属架 COD 放在磁场中,磁感强度 \bar{B} 的方向垂直于金属架 COD 所在平面. 一导体杆 MN 垂直于 OD 边,并在金属架上以恒定速度 \bar{v} 向右滑动, \bar{v} 与 MN 垂直. 设 t=0 时,x=0. 求下列两情形,框架内的感应电动势s.

- (1) 磁场分布均匀,且 \bar{B} 不随时间改变.
- (2) 非均匀的时变磁场 $B = Kx \cos \omega t$. (K, ω) 常数)