Wang Xiyu

1 Overview

- Week 1-3: Classical AI, search algorithms
 - 1. Uninformed search
 - 2. Local search: hill climbing
 - 3. Informaed search: A*
 - 4. Adversarial search Minimax
- Week 4-7: Classical ML
 - 1. Decision trees
 - 2. Linear/Logistic regression
 - 3. Kernels and support vector machines
 - 4. "Classical" unsuperivese learning
- Week 10-12: Modern ML
 - 1. Neural networks
 - 2. Deep learning
 - 3. Sequential data
- Week 13: Misc.

2 AI: Computers Trying to Behave Like Humans

- PEAS Framework:
 - Performance measure: define "goodness" of a solution
 - Environment: define what the agent can and cannot do
 - **Actuators:** outputs
 - **Sensors:** inputs
- Agent function is sufficient.
- Common agent structures (to define an AI agent):
 - Reflex
 - Goal-based
 - Utility-based
 - Learning
 - (Others possible; can mix and match!)
- Exploration vs exploitation

3 Problem Statement

fully observable \land deterministic \land static \land discrete \implies only need to observe once To solve a prob using search:

- A goal or a set of goals
- a model of the enironment
- a search algorithm

goal formulation -> problem formulation -> search -> execute

- 1. goal formulation
- 2. problem formulation, eg. path finding
 - states: nodes representation invariant:: abstract states should correspond to concrete states
 - initial state: starting node
 - goal states/test: dest node
 Goal test: define the goal using a function is _goal
 - actions: move along an edge :: $|actions(state)| \le (branching_factor)$
 - transition model: $(curr_state, action) \implies next_state$
 - action cost function: see edges

3.

Search

Uninformed search

No information that could guide the seaech: mo clue how good a state is

```
create frontir,
```

frontier: queue: BFS

Depth limited search

limit the search to depth l backtrack when the limit is hit.

time complexity: exponential to search depth

space complexity: size of the frontier

Iterative deeptening search

seatch with depth from 0 to inf return soln when found. Both complete

Concept Proof

Solution

Easy