

Apr 06, 2022

solution and extraction of plant nuclei in plug

Karine Labadie¹, Benoît Vacherie¹

¹Genoscope/CEA

dx.doi.org/10.17504/protocols.io.6qpvr6632vmk/v1

Benoit

Method for isolation and extraction of plant cell nuclei.

Protocol for obtaining UHMW DNA (> 150kb) allowing the production of optical cards with Bionano technology.

DOI

dx.doi.org/10.17504/protocols.io.6qpvr6632vmk/v1

Karine Labadie, Benoît Vacherie 2022. isolation and extraction of plant nuclei in plug. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.6qpvr6632vmk/v1

dna extraction, HMW, UHMW, Plug, optic card, bionano, extraction, plants, nuclei

_____ protocol,

Feb 03, 2022

Apr 06, 2022

57758

Never use a vortex in order to maintain a good molecule size.

Use only wide bore tips.

Allow the DNA to resuspend for a minimum of 48 hours before proceeding with QC. The nuclei isolation part should be done in a chemical hood because of the use of 2-mercaptoethanol

Reagents:

1

Citation: Karine Labadie, Benoît Vacherie isolation and extraction of plant nuclei in plug https://dx.doi.org/10.17504/protocols.io.6gpvr6632vmk/v1

- **⊠**Tris HCl **P212121**
- **EDTA** (0.5 M), pH 8.0 **Life**

Technologies Catalog #AM9260G

- **⊠** KCl Contributed by users
- Sucrose **P212121**
- **⊠**PVP **Sigma**
- Spermine Contributed by users
- Spermidine Contributed by users
- XTriton X-100 Sigma

Aldrich Catalog #T8787-50ML

- 2-Mercaptoethanol Sigma Aldrich
- ⊠ N-lauryl sarcosine Sigma

Aldrich Catalog #L5125-50G

- NaCl Contributed by users
- **⊠** UltraPure[™] Low Melting Point Agarose **Contributed by**

users Catalog #16520-100 Step 20

⊠ Agarase (0.5 U/μL) **Thermo**

Fisher Catalog #E00461

- ☑ Dialysis membrane, 44mm Bio Basic

Inc. Catalog #TX0112.SIZE.2m

Consumables:

⊠ MBP[™] Wide Bore Pipette Tips **Thermo**

Fisher Catalog #02707600

⊠ CHEF Disposable Plug Molds **BioRad**

Sciences Catalog ##1703713 Step 21

Certified Cheesecloth Thermo

Fisher Catalog #22055053 Step 10

Miracloth Merck

Millipore Catalog #475855 Step 10

2

Strainer Corning Catalog #352340 Step 10

Equipment:

C1 Platform Shaker Platform Shaker New Brunswick Scientific SKU unknown

preparation of reagents

1 NIB Buffer: 200 ml: freshly prepared

Reagent	Final concentration		
Tris ph8	10 mM		
EDTA	10 mM		
KCI	80 mM		
Sucrose	0.5 M		
PVP 40	2 %		
Spermine	1 mM		
Spermidine	1 mM		
H2O	qsp 200 ml		

Adjust the Ph to 9.4 then filter at 0.22 μm

2 NIBT Buffer: 160 ml

Α	В
NIB Buffer	160 ml
Triton X100	0.5%

3 NIBTM Buffer: 40 ml

Α	В
NIBT Buffer	40 ml
2-Mercaptoethanol	0.75 %

4 **Cell suspension Buffer**: Can be stored for 1 year at 4°C.

Α	В
Tris ph8	10 mM
EDTA	50 mM
NaCl	2 mM
H20	Qsp 100ml

5 Lysis Buffer: Can be stored for 1 year at RT.

Α	В
EDTA 0.5M	100 ml
N-Lauroylsarcosine	1 %

Nuclei isolation 3h

Putting a mortar in ice

protocols.io

- 6 Cool a mortar/pestle with liquid nitrogen until the bubbling stops.
- 7 Place a beaker in ice and add a magnetic stirrer. Add 20 ml of NIBTM (10 ml/g of leaves) and stir gently

■20 mL NIBTM

8 Grind 2g of frozen sample for without adding liquid nitrogen, until a fine powder is obtained (approx. 2 min)

■2 g ⑤ 00:02:00

Before grinding

After grinding

9 Transfer the powder to the beaker and **shake gently for 10 minutes** in ice.

10m

© 00:10:00

10 **Filter the mixture** into a 50ml tube through autoclaved filters (2 cheese cloth + 2 Mira cloth) on a funnel (squeeze the filters at the end of filtration to recover more of the solution containing the nuclei).

Filter through a 40µm cell stariner into a new 50ml tube.

□ Certified Cheesecloth Thermo

Fisher Catalog #22055053

Millipore Catalog #475855

Strainer Corning Catalog #352340

11 Pelleting the homogenate by centrifugation.(acceleration and deceleration at level 3)

20m

800 x g, 4°C, 00:20:00 , Acc 3 / Dec 3

12 Remove the supernatant and gently **resuspend the pellet** in ice (use a brush if the pellet does not recover).

Add 20ml of cold NIBTM

■20 mL NIBTM

13 Pelleting the homogenate by centrifugation to remove residues and unlysed cells.

2m

@60 x g, 4°C, 00:02:00 , Acc 3 / Dec 3

14 Filter the supernatant through a 40 μm cell sieve into a new 50 ml tube.

15 Pellet the nuclei by centrifugation.

15m

\$\colon 800 x g, 4°C, 00:15:00 , Acc 3 / Dec 3

16 Wash the pellet 3 times in NIBT buffer:

- Remove the supernatant
- Gently resuspend the pellet
- Add 40 ml of cold NIBT buffer 40 mL NIBT
- Centrifuge **800** x g, 4°C, 00:15:00 , Acc 3 / Dec 3

15m

15m

1st wash

2nd wash

3rd wash

17 Make a final wash in 30 ml of cold NIB buffer.

300 x g, 4°C, 00:15:00 , Acc 3 / Dec 3

Final wash

18 Resuspend the last pellet in the residual buffer (approx. 200 μ l) and transfer the homogenate to a 1.5 ml tube.

Centrifuge.

300 x g, 4°C, 00:15:00 , Acc3 / Dec 3

7

Remove the supernatant with a pipette and resuspend the pellet in an appropriate volume of **cell suspension buffer**:

60µl / plug

Adjust the number of plugs to be made according to the size of the pellet.

- 19.1 optional: microscopic observation
 - Take an aliquot of 100 µl of suspension
 - Stain with DAPI
 - Observe the presence of nuclei

30m

Embedding in agarose

20

Nb plugs	1	2	3
Nuclei suspension	60 µl	120 μΙ	180 µl
Agarose 2%	40 µl	80 µl	120 µl

Use Low Melting agarose for a final agarose concentration of 0.8 %

⊠UltraPure[™] Low Melting Point Agarose **Contributed by**

users Catalog #16520-100

21 Put a CHEF Disposable Plug Molds on ice

⊠CHEF Disposable Plug Molds BioRad

Sciences Catalog ##1703713

22 Melt agarose at 70°C for 5 min then equilibrate at 43°C for 5 min

10m

©00:05:00 & 70 °C

© 00:05:00 & 43 °C

Preheat the nuclei suspension to 43°C for 3min and then add the appropriate amount of $\frac{3m}{2}$ agarose (see table).

Mix gently with a wide-bore tip, avoiding bubbles.

©00:03:00 & 43 °C

15m

24 Immediately **dispense 100μl** of mixture per well using wide-bore tips. Allow to polymerise for 15 minutes on ice.

protocols.io

७00:15:00 ♦ On ice

Proteinase K digestion 18h

- Prepare a fresh proteinase K digestion solution by mixing **200 μl of proteinase K** enzyme (20mg/ml) with **2.5 ml of lysis buffer** in a 50 ml tube.
 - **■200** μL Prot. K **■2.5** mL Lysis Buffer
- **Transfer plugs** to the 50ml tube containing Proteinase K digestion solution.
- 27 Incubate in thermomixer for 2 hours at 50 °C with intermittent mixing Mixing cycle: 10 seconds at 450 rpm followed by 10 minutes at 0 rpm © 02:00:00 § 50 °C

2h

28 Screw a sieve caps onto the tube and empty the solution. Change the proteinase K Solution bath as before

Incubate in thermomixer overnight at 50 °C with intermittent mixing **Mixing cycle**: 10 seconds at 450 rpm followed by 10 minutes at 0 rpm

♦ Overnight § 50 °C

RNase Digestion 1h 30m

29 Prepare the wash solutions:

TE 10:50 (Wash Buffer)

Reagent	For 500ml	Final concentration
Tris 1M ph8	5 ml	10 mM
EDTA 0.5M	50 ml	50 mM
H2O qsp 500ml	445 ml	

TE 10:5 (For Rnase)

9

Reagent	For 500ml	Final concentration
Tris 1M ph8	5 ml	10 mM
EDTA 0.5M	5 ml	5 mM
H2O qsp 500ml	490 ml	

30 Empty the tube using a vent cap.

Nunc™ Cell Factory™ System Accessories, vent cap **Thermo**

Fisher Catalog #146008

Rinse the plugs 3 times with 10ml of wash buffer.

Wash 2 times with 10ml wash buffer for 15 min at RT with gentle agitation (15 rpm) on a horizontal platform mixer.

△15 rpm, Room temperature, 00:15:00

31 Rinse the plugs 3 times with 10ml of TE 10:5

1h

X RNase

Add 2.5ml of TE 10:5 and 50 µl of **Rnase** Solution A **Qiagen Catalog #19101**

Incubate 1hour at 37°C with intermittent mixing

©01:00:00 & 37 °C

32 Rinse the plugs 3 times with 10ml of Wash Buffer.

NB: The plugs can be stored at 4°C in a wash buffer at this stage

Agarase treatment 2h

©00:02:00 & 70 °C

Wash 4 times with 10ml wash buffer for 15 min at RT with gentle agitation (15 rpm) on a horizontal platform mixer.

△15 rpm, Room temperature, 00:15:00

- 34 Transfer the plug to a 1.5 ml tube with a sterile spatula
- 35 **Melt the plug** in a water bath at 70°C for 2 minutes

36 Transfer the tube to a water bath at 43°C for 5 minutes

2m

5m

protocols.io

© 00:05:00 & 43 °C

37 Add 2µI of agarase and mix gently by rotating with the tip.

Incubate 45 minutes at 43 °C

७00:45:00 843°C

38 Place 10 ml of 1x TE Buffer in a 6 cm Petri dish.

15m

Float a 0.1 μm dialysis membrane on the surface of the 1x TE Buffer. Place a cover on the Petri dish and let the membrane equilibrates for 15 minutes.

© 00:15:00

39 **Deposit the entire sample** in the centre of the membrane using a wide-bore tip.

Place cover on the Petri dish and let the sample dialyze for **45 minutes at room temperature**.

© 00:45:00 ♦ Room temperature

- **40** Transfer DNA to a 1.5 ml microfuge tube with a Wide Bore Tip.
- 41 Allow the **DNA to resuspend overnight** at RT then 2 days at 4°C before performing quality control.
 - **⊙Overnight** § Room temperature

Sample QC

42

Quantify your sample with a Qubit HS.

NB: Before quantification, sonicate the DNA aliquot for 10 min to obtain a more reliable result

Visualise 1 μ L of sample to estimate the molecular weight. (**Tapestation** or/and **pipin pulse** or/and **Femto pulse**)

Résults

43 QC results obtained on different plant species, using different technologies to estimate the size of the molecules.

plant species	[c] ng/µl	yield μg/g	Size	profiles	Technology
Arabidopsis halleri	28,6	5,4	160 kb	00.0511	F e m
lactuca sativa	190	5,6	144 kb	197/19 10	t o p u
Silene latifolia	127	18	149 kb) dissertion	I s e
Musa acuminata	156	19,6	50-200 kb	ll (index	P i p
Musa textilis	38,5	4,3	50-200 kb	1	i n p u
Fagus slvatica	93,6	6,2	50-200 kb	J	l s e
Fallopia multiflora	155	24	50-250 kb		Q c a
Citrus australasica	107,5	13	50-200 kb		r d A R
Spartina maritima	207	18,2	50-150 kb		G U S