Análise Numérica Aula 9 — Métodos de Jacobi e Gauss-Seidel

Prof. Adriano Barbosa

FACET — UFGD

20 de fevereiro de 2017

Método de Jacobi

Objetivo: resolver sistemas lineares de forma iterativa.

Diferente dos métodos de Gauss e LU, não apresenta a solução exata. A cada iteração o método encontra uma aproximação melhor para a solução do sistema.

Método de Jacobi

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ -a_{21} & \ddots & & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & -a_{n-1,n} \\ 0 & \cdots & \cdots & 0 \end{bmatrix}$$

$$A = D - L - U$$

Método de Jacobi

Com

$$A = D - L - U$$

Temos

$$Ax = b$$

$$\Rightarrow (D - L - U)x = b$$

$$\Rightarrow Dx = (L + U)x + b$$

Se D é invertível, ou seja, $a_{ii} \neq 0$, $\forall i = 1, \ldots, n$:

$$x = D^{-1}(L + U)x + D^{-1}b$$

Método de Jacobi

O Método de Jacobi calcula as iterações usando a equação

$$x^{(k)} = D^{-1}(L+U)x^{(k-1)} + D^{-1}b$$

ou

$$x_i^{(k)} = rac{1}{a_{ii}} \left[\sum_{\substack{j=1\j
eq i}}^n \left(-a_{ij} x_j^{(k-1)}
ight) + b_i
ight]$$

 $com k = 1, 2, \dots$

Critério de parada

Uma norma em \mathbb{R}^n é uma função $\|\cdot\|:\mathbb{R}^n \to \mathbb{R}$ tal que:

- 1. $||x|| \geq 0$, $\forall x \in \mathbb{R}^n$;
- 2. ||x|| = 0 se, e somente se, x = 0;
- 3. $\|\alpha x\| = |\alpha| \|x\|$, $\forall \alpha \in \mathbb{R}$ e $x \in \mathbb{R}^n$;
- 4. $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$.

Critério de parada

São normas em \mathbb{R}^n :

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^2$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$

onde $x = (x_1, x_2, ..., x_n)$.

Critério de parada

Nosso critério de parada será

$$\frac{\|x^{(k)} - x^{(k-1)}\|_{\infty}}{\|x^{(k)}\|_{\infty}} < \varepsilon$$

Exemplo

Resolver o sistema

$$\begin{cases}
10x_1 - x_2 + 2x_3 & = 6 \\
-x_1 + 11x_2 - x_3 + 3x_4 & = 25 \\
2x_1 - x_2 + 10x_3 - x_4 & = -11 \\
3x_2 - x_3 + 8x_4 & = 15
\end{cases}$$

com $x^{(0)} = (0, 0, 0, 0)$ e precisão de 10^{-3} .

Exemplo

k	0	1	2	3	4	5	6	7	8	9	10
$x_1^{(k)}$	0.0000	0.6000	1.0473	0.9326	1.0152	0.9890	1.0032	0.9981	1.0006	0.9997	1.0001
$x_2^{(k)}$	0.0000	2.2727	1.7159	2.053	1.9537	2.0114	1.9922	2.0023	1.9987	2.0004	1.9998
$x_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0493	-0.9681	-1.0103	-0.9945	-1.0020	-0.9990	-1.0004	-0.9998
$x_4^{(k)}$	0.0000	1.8750	0.8852	1.1309	0.9739	1.0214	0.9944	1.0036	0.9989	1.0006	0.9998

$$\frac{\|x^{(10)} - x^{(9)}\|_{\infty}}{\|x^{(10)}\|_{\infty}} = \frac{\|(0.0004, -0.0006, 0.0006, -0.0008\|_{\infty}}{\|(1.0001, 1.9998, -0.9998, 0.9998)\|_{\infty}}$$
$$= \frac{8 \times 10^{-4}}{1.9998} \approx 0.0004 < 10^{-3}$$

A solução exata é x = (1, 2, -1, 1).

Método de Gauss-Seidel

Aperfeiçoamento do método de Jacobi.

Usamos os valores de $x_i^{(k)}$ (na iteração k) que já foram calculados para calcular outros $x_i^{(k)}$ da mesma iteração ao invés de usar os valores de $x_i^{(k-1)}$ (da itereção anterior).

Método de Gauss-Seidel

Analogamente ao método de Jacobi, A = D - L - U:

$$Ax = b$$

$$\Rightarrow (D - L - U)x = b$$

$$\Rightarrow (D - L)x = Ux + b$$

Se D - L é invertível:

$$x = (D - L)^{-1}Ux + (D - L)^{-1}b$$

Método de Gauss-Seidel

Portanto,

$$x^{(k)} = (D-L)^{-1}Ux^{(k-1)} + (D-L)^{-1}b$$

ou

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} + b \right]$$

com k = 1, 2, ...

Exemplo

Resolver o sistema

$$\begin{cases}
10x_1 - x_2 + 2x_3 & = 6 \\
-x_1 + 11x_2 - x_3 + 3x_4 & = 25 \\
2x_1 - x_2 + 10x_3 - x_4 & = -11 \\
3x_2 - x_3 + 8x_4 & = 15
\end{cases}$$

com $x^{(0)} = (0, 0, 0, 0)$ e precisão de 10^{-3} .

Exemplo

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_2^{(k)} \\ x_3^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_3^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

$$\frac{\|x^{(5)} - x^{(4)}\|_{\infty}}{\|x^{(5)}\|_{\infty}} = \frac{\|(-0.0008, -0.0003, 0.0003, 0.0001)\|_{\infty}}{\|(1.0001, 2.0000, -1.0000, 1.0000)\|_{\infty}}$$
$$= \frac{8 \times 10^{-4}}{2} = 0.0004 < 10^{-3}$$

Trabalho

O primeiro parágrafo da Seção 7.3 afirma que os métodos de Jacobi e Gauss-Seidel são mais eficientes em termos de armazenamento e cálculos que a eliminação de Gauss para sistemas lineares esparsos (com grande número de zeros). Verifique essa afirmação através de exemplos. Use o computador e sistemas de pelo menos 10×10 .