Funções trigonométricas e o "primeiro limite fundamental"

Nesta aula estaremos fazendo uma pequena revisão de funções trigonométricas e apresentando um limite que lhes determina suas derivadas.

11.1 Pequena revisão de trigonometria

11.1.1 Trigonometria geométrica

Consideremos os triângulos ABC e A'B'C' da figura 11.1. Os dois triângulos são semelhantes, pois seus ângulos internos são iguais (congruentes). Assim, temos

$$\frac{AB}{AC} = \frac{AB'}{AC'}, \quad \frac{BC}{AC} = \frac{B'C'}{AC'}, \quad \frac{BC}{AB} = \frac{B'C'}{AB'}$$

Assim, sendo ABC um triângulo retângulo, como na figura 11.1 as razões $\frac{AB}{AC}$, $\frac{BC}{AC}$ e $\frac{BC}{AB}$ dependem somente da abertura $\theta = \hat{A}$.

Figura 11.1. ABC e AB'C' são triângulos retângulos semelhantes.

Chamamos

cosseno de
$$\theta = \cos \theta = \frac{AB}{AC} = \frac{\text{cateto adjacente ao ângulo } \theta}{\text{hipotenusa}}$$
 seno de $\theta = \sin \theta = \frac{BC}{AC} = \frac{\text{cateto oposto ao ângulo } \theta}{\text{hipotenusa}}$ tangente de $\theta = \text{tg } \theta = \frac{BC}{AB} = \frac{\text{cateto oposto ao ângulo } \theta}{\text{cateto adjacente ao ângulo } \theta}$

Deduz-se imediatamente que $tg \theta = \frac{sen \theta}{cos \theta}$.

Da trigonometria do ensino médio, são bem conhecidos os valores

θ	$\cos \theta$	$\operatorname{sen} \theta$	$\operatorname{tg} \theta$
0	1	0	0
30°	$\sqrt{3}/2$	1/2	$1/\sqrt{3}$
45°	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	1/2	$\sqrt{3}/2$	$\sqrt{3}$
90°	0	1	não se define

Se \widehat{PQ} é um arco de um círculo de raio r, correspondente a um ângulo central de abertura α , o comprimento c de \widehat{PQ} é dado por

$$c = r \cdot (\text{medida de } \alpha \text{ em radianos})$$

Figura 11.2. O é o centro do círculo e $P\hat{O}Q$ é o ângulo central do arco \widehat{PQ} .

Assim, o comprimento c do arco \widehat{PQ} é diretamente proporcional a r e a α . Quando $\alpha = 360^\circ$, temos

$$c = comprimento da circunferência = 2\pi \cdot r$$

Assim sendo,

$$360^{\circ} = 360$$
 graus = 2π radianos, ou seja $180^{\circ} = \pi$

Se r = 1 = uma unidade de comprimento, o comprimento c do arco \widehat{PQ} é simplesmente a medida de α em radianos.

A área do setor circular de ângulo central α também é proporcional a α . Quando $\alpha=2\pi$, temos a área de um círculo de raio r: $A=\pi r^2$. Assim, um setor circular de abertura α , tem área $A_{\alpha}=\frac{\alpha}{2}\cdot r^2$ (α em radianos).

11.1.2 Trigonometria analítica

Para definir as funções trigonométricas de variável real, consideramos um sistema cartesiano ortogonal de coordenadas no plano. Nele, consideramos a circunferência de equação $x^2 + y^2 = 1$ (de centro em (0,0) e raio 1). Esta circunferência é o que chamaremos de círculo trigonométrico.

Dado um número real α , tomamos A=(1,0) e demarcamos, no círculo trigonométrico, um ponto P_{α} tal que a medida do percurso de A a P_{α} , sobre o círculo trigonométrico, é igual a $|\alpha|$ (figura 11.3). Teremos o percurso AP_{α} passando uma ou várias vezes pelo ponto A, quando $|\alpha|>2\pi$.

A partir do ponto A, o percurso \widehat{AP}_{α} é feito no sentido *anti-horário* (contrário ao sentido do movimento dos ponteiros do relógio) se $\alpha > 0$, e é feito no sentido *horário* (no mesmo sentido do movimento dos ponteiros do relógio) se $\alpha < 0$. Tal percurso é um *arco orientado*. Dizemos que α é a medida algébrica do arco orientado AP_{α} .

Assim, por exemplo,
$$P_{\pi} = P_{-\pi} = (-1,0)$$
, $P_{\pi/2} = (0,1)$, $P_{-\pi/2} = (0,-1)$, $P_{\pi/4} = (\sqrt{2}/2,\sqrt{2}/2)$, $P_{\pi/3} = (\sqrt{3}/2,1/2)$, e $P_0 = (1,0) = P_{2\pi} = P_{2n\pi}$, para cada inteiro n.

Sendo $\alpha \in \mathbb{R}$, consideremos $P_{\alpha} = (x_{\alpha}, y_{\alpha})$, definido como acima. Definimos

$$x_{\alpha} = \cos \alpha = \text{cosseno de } \alpha,$$

 $y_{\alpha} = \text{sen } \alpha = \text{seno de } \alpha$

Para estendermos a definição de tangente de α a arcos orientados α , tomamos um eixo y', paralelo ao eixo y, de origem O'=A, orientado positivamente "para cima", no qual usaremos a mesma escala de medidas do eixo y. Sendo $\alpha \in \mathbb{R}$, consideramos a reta OP_{α} . Se $\alpha \neq \frac{\pi}{2} \pm n\pi$, para todo $n \in \mathbb{Z}$, esta reta intercepta o eixo y' em T_{α} .

Sendo t_{α} a abcissa de T_{α} no eixo y', ou alternativamente a ordenada do ponto $P_{\alpha}=(1,t_{\alpha})$ no sistema Oxy, definimos

$$t_{\alpha} = tg \alpha = tangente de \alpha$$

Figura 11.3. Sendo α a medida algébrica do arco orientado AP_{α} , temos $x_{\alpha}=\cos\alpha$, $y_{\alpha}=\sin\alpha$.

Assim sendo, como $\frac{t_{\alpha}}{1} = \frac{y_{\alpha}}{x_{\alpha}}$, temos $tg \alpha = \frac{sen \alpha}{cos \alpha}$.

Se $0 < \alpha < \pi/2$, os valores $\cos \alpha$, $\sin \alpha$, e $\tan \alpha$ coincidem com aqueles das definições geométricas de cosseno, seno e tangente, dadas na seção 11.1.1.

Figura 11.4. No sistema Oxy, $T_{\alpha} = (1, \operatorname{tg} \alpha)$.

Também definem-se as funções trigonométricas

cotangente de
$$\alpha = \cot \alpha = \frac{\cos \alpha}{\sec \alpha}$$
 $(\alpha \neq n\pi, \forall n \in \mathbb{Z})$ secante de $\alpha = \sec \alpha = \frac{1}{\cos \alpha}$ $(\alpha \neq \pi\pi, \forall n \in \mathbb{Z})$ cossecante de $\alpha = \csc \alpha = \frac{1}{\sec \alpha}$ $(\alpha \neq n\pi, \forall n \in \mathbb{Z})$

Na figura 11.5, ilustramos geometricamente as seis funções trigonométricas de um arco α no primeiro quadrante, isto é, satisfazendo $0 < \alpha < \pi/2$.

Figura 11.5. Geometria das seis funções trigonométricas, no primeiro quadrante.

Listamos abaixo algumas fórmulas úteis, envolvendo as funções trigonométricas. Aqui e sempre, $\cos^2\alpha = (\cos\alpha)^2$, $\sin^2\alpha = (\sin\alpha)^2$, $\tan^2\alpha = (\tan\alpha)^2$, etc.

- 1. $\cos^2 \alpha + \sin^2 \alpha = 1$ (isto porque $x_\alpha^2 + y_\alpha^2 = 1$)
- 2. $1 + tg^2 \alpha = sec^2 \alpha$ (dividindo-se ambos os membros da equação 1 por $cos^2 \alpha$) $1 + cotg^2 \alpha = cosec^2 \alpha$ (dividindo-se ambos os membros da equação 1 por $sen^2 \alpha$)
- 3. sen(a + b) = sen a cos b + sen b cos a sen(a - b) = sen a cos b - sen b cos a cos(a + b) = cos a cos b - sen a sen bcos(a - b) = cos a cos b + sen a sen b
- 4. $\cos(-\alpha) = \cos \alpha$, $\sin(-\alpha) = -\sin \alpha$ $\tan(-\alpha) = \frac{\sin(-\alpha)}{\cos(-\alpha)} = \frac{-\sin \alpha}{\cos \alpha} = -\tan \alpha$
- 5. $sen 2\alpha = sen(\alpha + \alpha) = 2 sen \alpha cos \alpha$ $cos 2\alpha = cos(\alpha + \alpha) = cos^2 \alpha - sen^2 \alpha$
- 6. $\cos \alpha = \sin \left(\frac{\pi}{2} \alpha\right)$, $\sin \alpha = \cos \left(\frac{\pi}{2} \alpha\right)$

Figura 11.6. Gráficos das funções seno, cosseno e tangente.

O "primeiro limite fundamental" 11.2

Vamos admitir que as seis funções trigonométricas são contínuas nos pontos em que estão definidas.

Na próxima aula estaremos definindo as funções trigonométricas inversas e calculando as derivadas de todas as funções trigonométricas. Para calcular a derivada de sen x, e então calcular as derivadas das demais funções trigonométricas, deduziremos primeiramente o seguinte resultado, chamado na literatura do cálculo de primeiro limite fundamental.

Proposição 11.1 (Primeiro limite fundamental).

$$\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$$

Figura 11.7. Diagrama para a demonstração da proposição 11.1.

Demonstração. Seja α um número real, $0<\alpha<\pi/2$, e consideremos, no primeiro quadrante do círculo trigonométrico, o arco \widehat{AP} de comprimento α , sendo A=(1,0) e $P=P_{\alpha}$.

Sejam P' a projeção ortogonal do ponto P no eixo x (PP' \perp Ox), e T a interseção da reta OP com o eixo y' das tangentes, tal como esboçado no diagrama da figura 11.7.

Temos então $PP' < \widehat{AP}$, ou seja sen $\alpha < \alpha$.

Além disso, a área do setor circular AOP é dada por $A_{\alpha} = \frac{\alpha}{2}r^2 = \frac{\alpha}{2}$.

A área do triângulo OAT é dada por $\Delta = \frac{1}{2}OA \cdot AT = \frac{tg \alpha}{2}$.

Obviamente $A_{\alpha} < \Delta$, daí $\frac{\alpha}{2} < \frac{tg \, \alpha}{2}$, e portanto $\alpha < tg \, \alpha$.

Sumarizando, sendo $0 < \alpha < \pi/2$,

$$sen \alpha < \alpha < tg \alpha$$

Como sen $\alpha > 0$, temos então $1 < \frac{\alpha}{\sin \alpha} < \frac{\operatorname{tg} \alpha}{\sin \alpha} = \frac{1}{\cos \alpha}$. Comparando os inversos dos três termos, obtemos

$$\cos \alpha < \frac{\sin \alpha}{\alpha} < 1$$

Para $-\pi/2 < \alpha < 0$ também valem as designaldades acima, já que, se $0 < \alpha < \pi/2$, $\cos(-\alpha) = \cos \alpha$ e $\frac{\sin(-\alpha)}{-\alpha} = \frac{-\sin \alpha}{-\alpha} = \frac{\sin \alpha}{\alpha}$.

Agora faremos uso de um teorema sobre limites (que só pode ser demonstrado a partir de um tratamento formal da teoria de limites), o *teorema do confronto* ou *teorema do sanduíche*:

Teorema 11.1 (Teorema do confronto, ou teorema do sanduíche). Sendo $I \subset \mathbb{R}$ um intervalo, sendo $\alpha \in I$, e f, g e h funções definidas para $x \in I$, $x \neq \alpha$, se $f(x) \leq g(x) \leq h(x)$ para todo $x \in I$, $x \neq \alpha$, e se $\lim_{x \to \alpha} f(x) = \lim_{x \to \alpha} h(x) = L$, então $\lim_{x \to \alpha} g(x) = L$. Vale o mesmo resultado para limites laterais (neste caso, α pode ser o extremo inferior ou superior do intervalo I). Vale o mesmo resultado se $\alpha = +\infty$ ou $-\infty$.

No nosso caso, temos $f(\alpha) = \cos \alpha$, $g(\alpha) = \frac{\sin \alpha}{\alpha}$ e $h(\alpha) = 1$, todas definidas para $-\pi/2 < \alpha < \pi/2$, $\alpha \neq 0$, satisfazendo $f(\alpha) < g(\alpha) < h(\alpha)$.

Temos
$$\lim_{\alpha \to 0} f(\alpha) = \lim_{\alpha \to 0} \cos \alpha = 1$$
, $e \lim_{\alpha \to 0} h(\alpha) = \lim_{\alpha \to 0} 1 = 1$.

Portanto $\lim_{\alpha \to 0} g(\alpha) = 1$, ou seja,

$$\lim_{\alpha \to 0} \frac{\operatorname{sen} \alpha}{\alpha} = 1$$

Veremos adiante que o resultado $\lim_{x\to 0}\frac{\operatorname{sen} x}{x}=1$, primeiro limite fundamental, é imprescindível para a dedução da derivada da função seno e das demais funções trigonométricas. Note que as desigualdades $\operatorname{sen} x < x < \operatorname{tg} x$, empregadas no cálculo desse limite, só fazem sentido se $x\in\mathbb{R}$, quando então |x| é a medida de um arco orientado (em radianos), em um círculo trigonométrico.

O segundo limite fundamental é aquele já visto na aula 9, $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = e$.

Vamos agora a um exemplo de cálculo de um limite em que aplicamos o primeiro limite fundamental.

Exemplo 11.1. Calcular $\lim_{x\to 0} \frac{\operatorname{tg} 4x}{x}$

Solução. Temos o limite $\lim_{x\to 0} \frac{\operatorname{tg} 4x}{x}$ indeterminado na forma $\frac{0}{0}$.

Fazemos

$$\lim_{x \to 0} \frac{\operatorname{tg} 4x}{x} = \lim_{x \to 0} \frac{\frac{\operatorname{sen} 4x}{\cos 4x}}{x} = \lim_{x \to 0} \left(\frac{\operatorname{sen} 4x}{x} \cdot \frac{1}{\cos 4x} \right)$$

$$= \lim_{x \to 0} \frac{4 \operatorname{sen} 4x}{4x} \cdot \lim_{x \to 0} \frac{1}{\cos 4x} = 4 \cdot \lim_{\theta \to 0} \frac{\operatorname{sen} \theta}{\theta} \cdot \lim_{x \to 0} \frac{1}{\cos 4x} = 4 \cdot 1 \cdot \frac{1}{1} = 4$$

Portanto
$$\lim_{x\to 0} \frac{\operatorname{tg} 4x}{x} = 4$$
.

11.3 Problemas

Calcule os seguintes limites, lembrando-se de que $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

(a)
$$\lim_{x\to 0} \frac{\operatorname{sen}(x/3)}{x}$$

(b)
$$\lim_{x\to 0} \frac{\sin ax}{bx}$$

(c)
$$\lim_{t\to 0} \frac{\text{sen}^2 2t}{t^2}$$

(d)
$$\lim_{x \to \pi} \frac{\sin x}{x - \pi}$$

(e)
$$\lim_{t\to 0} \frac{\sin^2 t}{1-\cos t}$$

(f)
$$\lim_{x\to 0} x \cot x$$

(g)
$$\lim_{x\to 0} \frac{1-\cos\alpha x}{bx}$$

(h)
$$\lim_{x\to 0} \frac{\sin 3x}{\sin 5x}$$

(i)
$$\lim_{x \to +\infty} x \operatorname{sen} \frac{2}{x}$$

(j)
$$\lim_{x\to +\infty} \frac{\sin x}{x}$$

(k)
$$\lim_{x\to 0} x \cdot \cos(1/x)$$

Respostas.

(a) 1/3. Sugestão. Faça
$$\lim_{x\to 0} \frac{\operatorname{sen}(x/3)}{x} = \lim_{x\to 0} 3 \cdot \frac{\operatorname{sen}(x/3)}{x/3}$$
 (b) a/b

(c) 4 (d) –1. Sugestão. Faça primeiramente a mudança de variável $x-\pi=y$.

(e) 2.
$$Sugest\~ao$$
. $\lim_{t\to 0} \frac{\sec^2 t}{1-\cos t} = \lim_{t\to 0} \frac{\sec^2 t(1+\cos t)}{(1-\cos t)(1+\cos t)}$ (f) 1 (g) 0 (h) 3/5 (i) 2

(j) 0. Sugestão. Se
$$x > 0$$
, $-\frac{1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$

(k) 0. Sugestão. Mostre que $\lim_{x\to 0} |x\cos(1/x)| = 0$, considerando que $|x\cos(1/x)| \le |x|$, e use o teorema do confronto (teorema 11.1).