# 运筹学

主讲:宋雷,副教授

中山大学

#### 参考书:

运筹学通论(第三版), 魏权龄 胡显佑 严颖 编著, 中国人民大学出版社

教学计划: 第1, 2, 4, 5, 7, 9章

**成绩评定(暂定)**:课后作业 3次(30%)+期末闭卷考试(30%)+论文报告(40%)

# 第一章: 线性规划简介

- 1.1 基本概念
- 1.2 线性规划问题解的性质
- 1.3 单纯形表
- 1.4 单纯形方法
- 1.5 对偶线性规划
- 1.6 对偶单纯型方法
- 1.7 对偶线性规划的应用

# 1.1 基本概念

### 1.1.1 线性规划问题的一般形式

**例 1** 某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示。

| 资源 产品 | I | II | 拥有量   |
|-------|---|----|-------|
| 设备    | 1 | 2  | 8台时   |
| 原材料 A | 4 | 0  | 16 kg |
| 原材料 B | 0 | 4  | 12 kg |

每生产一件产品I可获利2元,每生产一件产品II可获利3元。该工厂应该如何安排生产才能获利最大?

• 设  $x_1, x_2$ 分别表示计划生产I,II产品的数量,称它们为决策变量.

- 生产 $x_1, x_2$ 的数量多少,受资源拥有量的限制,这是约束条件, 即 $x_1 + 2x_2 \le 8$ ;  $4x_1 \le 16$ ;  $4x_2 \le 12$
- 生产的产品不能是负值, 即 $x_1, x_2 \ge 0$ .
- •如何安排生产,使利润最大,这是目标.

### 得到本问题的数学模型为:

目标函数:

$$\max z = 2x_1 + 3x_2$$

约束条件:

$$\begin{cases} x_1 + 2x_2 & \leq 8 \\ 4x_1 & \leq 16 \\ 4x_2 & \leq 12 \\ x_1, x_2 & \geq 0 \end{cases}$$

这就是一个最简单的线性规划模型。

### 1.1 基本概念

例2 靠近某河流有两个化工厂(见图1-1),流经第一化工厂的河流流量为每天500万立方米,在两个工厂之间有一条流量为每天200万立方米的支流.



10图1-1

化工厂1每天排放含有某种有害物质的工业污水2万立方米,化工厂2每天排放的工业污水为1.4万立方米. 从化工厂1排出的污水流到化工厂2前,有20%可自然净化. 根据环保要求,河流中工业污水的含量应不大于0.2%. 因此两个工厂都需处理一部分工业污水. 化工厂1处理污水的成本是1000元/万立方米, 化工厂2处理污水的成本是800元/万立方米. 问:

在满足环保要求的条件下,每厂各应处理多少工业污水, 使两个工厂处理工业污水的总费用最小。

# 1.1 基本概念

#### 建模型之前的分析和计算

#### 设:

化工厂1每天处理的污水量为 $x_1$ 万立方米; 化工厂2每天处理的污水量为 $x_2$ 万立方米

经第2工厂前的水质要求: 
$$\frac{2-x_1}{500} \le \frac{2}{1000}$$

经第2工厂后的水质要求: 
$$\frac{0.8(2-x_1)+(1.4-x_2)}{700} \le \frac{2}{1000}$$

### 得到本问题的数学模型为:

目标函数: 
$$\min z = 1000x_1 + 800x_2$$

约束条件: 
$$x_1 \geq 1$$
  $0.8x_1 + x_2 \geq 1.6$   $x_1 \leq 2$   $x_2 \leq 1.4$   $x_1, x_2 \geq 0$ 

## 1.1 基本概念

### 上述两个问题具有的共同特征:

- 每一个线性规划问题都用一组决策变量 (x<sub>1</sub>,x<sub>2</sub>,…x<sub>n</sub>) 表示某一方案,这组决策变量的值代表一个具体方案. 一般这些变量的取值是非负且连续的;
- 都有关于各种资源和资源使用情况的技术数据,创造新价值的数据;  $a_{ij}$ ;  $c_{j}$  ( $i = 1, \dots m$ ;  $j = 1, \dots n$ )
- 存在可以量化的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示;
- 都有一个达到某一目标的要求,可用决策变量的线性函数(称为目标函数)来表示.按问题的要求不同,要求目标函数实现最大化或最小化.

#### 线性规划模型的一般形式

#### 目标函数

$$\max(\min)z = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

### 约束条件

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & \leq (=, \geq) & b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & \leq (=, \geq) & b_2 \\ & \cdots & \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n & \leq (=, \geq) & b_m \\ x_j \geq 0, & \text{for } j = 1, 2, & \cdots, n \end{cases}$$

## 1.1 基本概念

### 1.1.2 图解法

例1是一个二维线性规划问题,因而可用作图法直观地进行求解。



$$\max z = 2x_1 + 3x_2$$

$$\begin{cases} x_1 + 2x_2 \le 2 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$



10目标值在(4,2)点,达到最大值14

通过图解法,可观察到线性规划的解可能出现的几种情况:

- (1) 无穷多最优解(多重最优解),见图1-2。
- (2) 无界解, 见图1-3。
- (3) 无可行解, 见图1-4。



⑩图1-2 无穷多最优解(多重最优解)



图1-3 无界解

#### 无可行解的情形

当存在相互矛盾的约束条件时,线性规划问题的可行解集为空集. 例如, 如果在例1的数学模型中增加一个约束条件:

$$x_1 + 1.5x_2 \ge 8$$

则该问题的可行解集即为空集,即无可行解.



图1-4 不存在可行域

#### 1.2.1 线性规划问题的标准型式

目标函数: 
$$\min f = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$

约束条件: 
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\ & \cdots & \cdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m \\ x_j \ge 0, & \text{for } j = 1, 2, & \cdots, & n \end{cases}$$

# 1.2.1 线性规划问题的标准型式

⑩线性规划问题的几种表示形式

#### 用矩阵形式表示的标准形式线性规划

目标函数:  $\min f = c^T x$ 

约束条件:  $\begin{cases} Ax = b \\ x > 0 \end{cases}$ 

这里,
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

#### 将一般线性规划问题转化为标准形式:

- (1) 若要求目标函数实现最大化即  $\max z = c^T x$ ,则只需令z' = -z,于是求  $\min z' = -c^T x$ .
- (2) 约束条件为不等式. 分两种情况讨论:
  - ●若约束条件为"≤"型不等式,则可在不等式左端加入非负的松弛变量, 把原"≤"型不等式变为等式约束;
  - ●若约束条件为"≥"型不等式,则可在不等式左端减去一个非负的剩余变量(也称松弛变量), 把不等式约束条件变为等式约束.
- (3) 若存在取值无约束的变量 $x_{k}$ , 可令  $x_{k} = x'_{k} x''_{k}$ ,  $x''_{k} \geq 0$ .

**例3** 将例1的数学模型化为标准形式的线性规划. 例1的数学模型在加入了松驰变量后变为

$$\max z = 2x_1 + 3x_2 \implies \min z' = -2x_1 - 3x_2$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 & \le 16 \\ & 4x_2 \le 12 \\ x_1 & , & x_2 \ge 0 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_3 & = 8 \\ 4x_1 & + x_4 & = 16 \\ & 4x_2 & + x_5 = 12 \\ x_1 & , & x_2 & , & x_3 & , & x_4 & , & x_5 \ge 0 \end{cases}$$

#### 例4 将下述线性规划问题化为标准形式线性规划

$$\max f = 3x_1 - 2x_2 + x_3$$

$$\begin{cases} 2x_1 + x_2 + x_3 & \leq 10 \\ 3x_1 + 4x_2 - x_3 & \geq 2 \\ x_1 \geq 0, x_2 \geq 0, x_3 & \text{no restriction} \end{cases}$$

#### 解:

- (1) 用 $x_4$ - $x_5$ 替换 $x_3$ , 其中 $x_4$ ,  $x_5 \ge 0$ ;
- (2) 在第一个约束不等式左端加入松弛变量x6:
- (3) 在第二个约束不等式左端减去剩余变量x7:
- (4) 令 f' = -f,将求  $\max f$  改为求  $\min f'$  即可得到该问题的标准型.

#### 例4的标准型形式为:

$$\min f' = -3x_1 + 2x_2 - x_3' + x_3''$$

$$\begin{cases} 2x_1 + x_2 + x_3' - x_3'' + x_4 & = 10 \\ 3x_1 + 4x_2 - x_3' + x_3'' - x_3'' - x_5 & = 2 \\ x_1 \ge 0, & x_2 \ge 0, & x_3' \ge 0, & x_3'' \ge 0, & x_4 \ge 0, & x_5 \ge 0 \end{cases}$$

### 1.2 线性规划问题解的性质

### 1.2.2 线性规划问题解的概念

- **❖ 1.**可行解
- \* 2.基
- \* 3.基可行解
- ❖ 4.可行基

# 1.2.2 线性规划问题的解的概念

#### 1. 可行解

- 定义
  - 满足约束条件(1),(2)式的解 $X=(x_1,x_2, ..., x_n)^T$ ,称为线性规划问题的**可行解**,其中使目标函数达到最小值的可行解称为**最优解**.

$$\min f = \sum_{j=1}^{n} c_{j} x_{j}$$

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, & i = 1, 2, \dots, m \\ x_{j} \geq 0, & j = 1, 2, \dots, n \end{cases}$$
 (1)

#### 2. 基,基向量,基变量

系数矩阵A中的任何 $m \times m$ 阶非奇异子矩阵 $B(|B| \neq 0)$ , 称为问题(LP)的一个基.

#### 不妨设:

$$B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{bmatrix} = \begin{bmatrix} P_1, & P_2, & \cdots & p_m \end{bmatrix}$$

$$P_j(j = 1, 2, \dots, m)$$
 为基向量,  $x_j(j = 1, 2, \dots, m)$  为基变量.

#### 3. 基础可行解

设  $x_B = (x_1, x_2, \dots, x_m)^T$ 是线性规划问题的基变量,  $x_N = (x_{m+1}, x_{m+2}, \dots, x_n)^T$ 是非基变量.

称  $x_B = B^{-1}b, x_N = 0$  为对应基 B 的基础解.



0, Q<sub>1</sub>, Q<sub>2</sub>, Q<sub>3</sub>, Q<sub>4</sub> 是基可行解

### 4可行基

- 对应于基可行解的基, 称为可行基.
- 约束方程组(1)具有的基解的数目最多是*Cm*<sup>m</sup>个,一般基可行解的数目要小于基解的数目.
- 以上提到了几种解的概念,它们之间的关系可用下图表明.

说明: 当基解中的非零分量的个数小于m时, 该基解是退化解. 在以下讨论时, 假设不出现退化的情况.

### 不同解之间的关系



# 凸集相关基本概念

- 1. 凸集
- 2. 凸组合
- 3. 顶点

### 1.凸集

### • 定义

• 设K是n维欧氏空间的一点集,若任意两点 $X^{(1)} \in K$ ,  $X^{(2)} \in K$ 的连线上的所有点 $\alpha X^{(1)} + (1-\alpha)X^{(2)} \in K$ ,  $(0 \le \alpha \le 1)$ , 则称K为凸集。



- 实心圆,实心球体,实心立方体等都是凸集,圆环不是凸集. 从直观上讲,凸集没有凹入部分,其内部没有空洞.图1-5中的(a)(b)是凸集,(c)不是凸集.
- 图1-2中的阴影部分是凸集.
- 任何两个凸集的交集是凸集,见图1-5(d)



### 2. 凸组合

• 设 $X^{(1)}$ ,  $X^{(2)}$ , ...,  $X^{(k)}$ 是n维欧氏空间 $E^n$ 中的k个点. 若存在  $\mu_1$ ,  $\mu_2$ , ...,  $\mu_k$ , 且 $0 \le \mu_i \le 1$ , i = 1, 2, ..., k

$$\sum_{i=1}^k \mu_i = 1$$

使  $X=\mu_1 X^{(1)}+\mu_2 X^{(2)}+\ldots+\mu_k X^{(k)}$ 

则称X为 $X^{(1)}$ ,  $X^{(2)}$ , ...,  $X^{(k)}$ 的一个凸组合(当 $0 < \mu_i < 1$ 时,称为严格凸组合).

### 3. 顶点

• 设K是凸集, $X \subseteq K$ . 若X不能用不同的两点 $X^{(1)} \subseteq K$ 和 $X^{(2)} \subseteq K$ 的线性组合表示为

$$X = \alpha X^{(1)} + (1 - \alpha)X^{(2)}, \quad (0 < \alpha < 1)$$

则称X为K的一个顶点(或极点).

图中的0,  $Q_{1,2,3,4}$ 都是顶点.



# 几个定理

• 定理1 若线性规划问题存在可行解,则其可行解集合

$$R = \{x | Ax = b, x \ge 0\}$$

是凸集.

# 几个定理

- 定理2 线性规划问题的基础可行解X对应于可行解集R的顶点.
- 引理 1 线性规划问题的可行解 $X=(x_1,x_2,...,x_n)^T$ 为基可行解的充要条件是: X的正分量所对应的系数列向量是线性独立的.

定理证明:不失一般性,假设基可行解X的前m个分量为正。

故

$$\sum_{j=1}^{m} P_j x_j = b$$

现分两步来讨论,分别用反证法.

(1) 若X不是基可行解,则它一定不是可行解集R的顶点.

根据引理1,若X不是基可行解,则其正分量所对应的系数列向量 $P_1$ , $P_2$ ,…, $P_m$ 线性相关,即存在一组不全为零的数 $\alpha_i$ , i=1,2,...,m,使得

$$\alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_m P_m = 0$$
 (1-9)

用一个数 $\mu > 0$ 乘(1-9)式再分别与(1-8)式相加和相减,得  $(x_1 - \mu \alpha_1)P_1 + (x_2 - \mu \alpha_2)P_2 + ... + (x_m - \mu \alpha_m)P_m = b$ 

$$(x_1 + \mu \alpha_1)P_1 + (x_2 + \mu \alpha_2)P_2 + \dots + (x_m + \mu \alpha_m)P_m = b$$

所以

$$X^{1} = (x_{1} - \mu a_{1}, x_{2} - \mu a_{2}, \cdots, x_{m} - \mu a_{m}, 0, \cdots, 0)^{T} \in R$$

$$X^{2} = (x_{1} + \mu a_{1}, x_{2} + \mu a_{2}, \cdots, x_{m} + \mu a_{m}, 0, \cdots, 0)^{T} \in R$$

$$X = \frac{1}{2}X^1 + \frac{1}{2}X^2$$

(2) 若X不是R的顶点,则它一定不是基础可行解.

因X 不是可行可行解集R的顶点,故在R中可找到不同的两点

$$X^{(1)} = (x_1^{(1)}, x_2^{(1)}, \dots, x_n^{(1)})^{\mathrm{T}}$$

$$X^{(2)} = (x_1^{(2)}, x_2^{(2)}, \dots, x_n^{(2)})^{\mathrm{T}}$$

使得

$$X = \alpha X^{(1)} + (1 - \alpha) X^{(2)}$$
,  $0 < \alpha < 1$ 

设X是基可行解,对应的向量组 $P_1...P_m$ 线性独立,故当j>m时,有 $x_i=x_i^{(1)}=x_i^{(2)}=0$ 。由于 $X^{(1)}$ , $X^{(2)}$ 是R的两点,因而满足

$$\sum_{j=1}^{m} P_j x_j^{(1)} = b \quad \Rightarrow \quad \sum_{j=1}^{m} P_j x_j^{(2)} = b$$

将两式相减,得

$$\sum_{j=1}^{m} P_j \left( x_j^{(1)} - x_j^{(2)} \right) = 0$$

因 $X^{(1)} \neq X^{(2)}$ ,所以上式中的系数不全为零,故向量组 $P_1, P_2, ..., P_m$ 线性相关,与假设矛盾,即X不是基可行解.

# 几个定理

本引理的证明从略,用以下例子说明本引理的结论.

• <u>例5</u> 设*X*是三角形中任意一点, *X*<sup>(1)</sup>, *X*<sup>(2)</sup>和*X*<sup>(3)</sup>是三角形的三个顶点, 试用三个顶点的坐标表示*X*(见图1-6)



# 几个定理

• 定理 3 若可行解集R有界,则线性规划问题的目标函数一 定可以在其R的顶点上达到最优.

**证:** 设 $X^{(1)}$ , $X^{(2)}$ , ...,  $X^{(k)}$ 是R的顶点. 若 $X^{(0)}$ 不是顶点,且目标函数在 $X^{(0)}$ 处达到最优  $z^* = c^T X^{(0)}$  .

因 $X^{(0)}$ 不是顶点,由引理2,它可以由R的顶点线性表示为

$$X^{(0)} = \sum_{i=1}^{k} \alpha_i X^{(i)}, \alpha_i > 0, \sum_{i=1}^{k} \alpha_i = 1.$$

代入目标函数得

$$c^{T}X^{(0)} = c^{T}\sum_{i=1}^{k} \alpha_{i}X^{(i)} = \sum_{i=1}^{k} \alpha_{i}c^{T}X^{(i)}.$$

在所有的顶点中必然能找到某一个顶点 $X^{(m)}$ ,使  $c^T X^{(m)}$  是所有  $c^T X^{(i)}$  中最小者. 有

$$c^T X^{(0)} = \sum_{i=1}^k \alpha_i c^T X^{(i)} \ge \sum_{i=1}^k \alpha_i c^T X^{(m)} = c^T X^{(m)}$$

根据假设  $c^T X^{(0)}$  是最小值,所以只能有  $c^T X^{(0)} = c^T X^{(m)}$ . 即目标函数在顶点 $X^{(m)}$ 处也取到最小值. 证毕

# 几个定理

有时,目标函数可能在多个顶点处达到最大,这时在这些顶点的凸组合上也达到最大值,这时线性规划问题有无限多个最优解。

假设

$$\hat{X}^{(1)}$$
,  $\hat{X}^{(2)}$ , ...,  $\hat{X}^{(k)}$ 

是目标函数达到最小值的顶点.则对这些顶点的凸组合,有

$$\hat{X} = \sum_{i=1}^{k} \alpha_i \hat{X}^{(i)}, \quad \alpha_i > 0, \quad \sum_{i=1}^{k} \alpha_i = 1$$

$$c^T \hat{X} = c^T \sum_{i=1}^{k} \alpha_i \hat{X}^{(i)} = \sum_{i=1}^{k} \alpha_i c^T \hat{X}^{(i)}.$$

设

$$c^T \hat{X}^{(i)} = m, i = 1, 2, \cdots, k$$

于是

$$c^T \hat{X} = \sum_{i=1}^k \alpha_i m = m.$$

另外,若可行域为无界,则可能无最优解,也可能有最优解,若有最优解,也必定在某顶点上得到.

定理 4 若线性规划问题有最优解,则必有基础最优解,即目标函数一定可以在R的某个顶点上达到最优.

# 基本结论

- ●线性规划问题的所有可行解构成的集合是凸集(也可能为无界域),它们有有限个顶点,线性规划问题的每个基可行解对应可行解集的一个顶点。
- ●若线性规划问题有最优解,必在某顶点上得到. 顶点数目是有限的,若采用"枚举法"找所有基可行解,然后一一比较,最终必然能找到最优解. 但当n, m较大时,这种办法是低效的,所以要继续讨论如何有效寻找最优解的方法. 本课程将主要介绍单纯形法。