This portion of the code is for the EDA and summary statistics for the shipment/prescription data

```
# import the packages
import pandas as pd
import numpy as np
import altair as alt
import matplotlib.pyplot as plt
import seaborn as sns
import os
import sys
import warnings
warnings.filterwarnings('ignore')
```

fa = pd.read_csv('https://raw.githubusercontent.com/MIDS-at-Duke/pds-2022-turquoise-team/m
fa.head()

	Year	State	BUYER_STATE	BUYER_COUNTY	Population	T_YEAR	MME
0	2007	Florida	FL	ALACHUA	242685	2007	95259.627977
1	2007	Florida	FL	BAKER	26212	2007	13793.788183
2	2007	Florida	FL	BAY	165345	2007	61255.857999
3	2007	Florida	FL	BRADFORD	28825	2007	15854.865475
4	2007	Florida	FL	BREVARD	539719	2007	246505.683938

fa.describe()[['MME']]

	MME
count	3.900000e+02
mean	2.046039e+05
std	4.077641e + 05
\min	0.000000e+00
25%	8.720220e+03
50%	5.445695e + 04
75%	1.944995e + 05
max	3.026737e + 06

The following is the florida 2010 summary statistics for $\ensuremath{\mathsf{MME}}$

fa[fa['Year'] >= 2010].describe()[['MME']]

	MME
count	1.950000e+02
mean	2.238792e+05
std	4.240561e + 05
\min	0.000000e+00
25%	9.633544e+03
50%	5.854929e + 04
75%	2.179930e + 05
max	3.026737e + 06

fa[fa['Year'] < 2010].describe()[['MME']]</pre>

	MME
count	1.950000e+02
mean	1.853285e+05
std	3.909344e+05
\min	0.000000e+00
25%	7.663763e + 03
50%	4.551490e + 04
75%	1.717782e + 05
max	2.584508e + 06

fa_compare = pd.read_csv('https://raw.githubusercontent.com/MIDS-at-Duke/pds-2022-turquois
fa_compare.head()

	Year	State	BUYER_STATE	BUYER_COUNTY	Population	T_YEAR	MME
0	2007	California	CA	ALAMEDA	1455715	2007	507600.817213
1	2007	California	CA	AMADOR	38756	2007	22155.108208
2	2007	California	CA	BUTTE	217469	2007	167352.343089
3	2007	California	CA	CALAVERAS	46268	2007	23121.433695
4	2007	California	CA	COLUSA	21075	2007	5569.718810

fa_compare[fa_compare['Year'] >= 2010].describe()[['MME']]

	MME
count	3.950000e+02
mean	1.456778e + 05
std	2.635363e+05
\min	0.000000e+00
25%	1.654260e + 04
50%	3.781170e + 04
75%	1.545487e + 05
max	1.847920e + 06

fa_compare[fa_compare['Year'] < 2010].describe()[['MME']]</pre>

	MME
count	3.960000e+02
mean	1.160259e + 05
std	2.149367e + 05
\min	0.000000e+00
25%	1.308693e + 04
50%	3.183289e+04
75%	1.246261e + 05
max	1.768168e + 06

Washington

wash = pd.read_csv('https://raw.githubusercontent.com/MIDS-at-Duke/pds-2022-turquoise-team
wash.head()

	Year	State	BUYER_STATE	BUYER_COUNTY	Population	T_YEAR	MME
0	2009	Washington	WA	ADAMS	18405	2009	3836.773950
1	2009	Washington	WA	ASOTIN	21415	2009	9136.063605
2	2009	Washington	WA	BENTON	171122	2009	56739.019412
3	2009	Washington	WA	CHELAN	71679	2009	24818.139466

	Year	State	BUYER_STATE	BUYER_COUNTY	Population	T_YEAR	MME
4	2009	Washington	WA	CLALLAM	71077	2009	52228.389902

wash.describe()[['MME']]

	MME
count	234.000000
mean	63567.692514
std	116009.430946
min	761.058525
25%	7838.791635
50%	21408.788803
75%	59372.280877
max	646956.449602

wash[wash['Year'] >= 2010].describe()[['MME']]

	MME
count	195.000000
mean	63538.504448
std	115531.981316
\min	786.099825
25%	7893.078218
50%	21411.378332
75%	60598.072516
max	646956.449602

wash[wash['Year'] < 2010].describe()[['MME']]</pre>

	MME
count	39.000000
mean	63713.632843
std	119902.911827
\min	761.058525
25%	7111.884548
50%	19808.055739

	MME
75%	54483.704657
max	627939.381922

wash_compare = pd.read_csv('https://raw.githubusercontent.com/MIDS-at-Duke/pds-2022-turque
wash_compare.head()

	Year	State	BUYER_STATE	BUYER_COUNTY	Population	T_YEAR	MME
0	2009	Hawaii	HI	HAWAII	183629	2009	70120.249951
1	2009	Hawaii	HI	HONOLULU	943177	2009	142647.388839
2	2009	Hawaii	HI	KAUAI	66518	2009	44348.058012
3	2009	Hawaii	HI	MAUI	153300	2009	93640.833898
4	2009	Iowa	IA	ADAIR	7676	2009	1373.040080

wash_compare.describe()[['MME']]

	MME
count	4247.000000
mean	15035.924641
std	40177.969788
\min	0.000000
25%	913.609875
50%	2658.222525
75%	10141.831446
max	392790.300685

wash_compare[wash_compare['Year'] >= 2010].describe()[['MME']]

	MME
count	3540.000000
mean	15323.346722
std	40660.857840
min	0.000000
25%	957.789773
50%	2755.961160

	MME
75%	10441.894991
max	392790.300685

```
wash_compare[wash_compare['Year'] < 2010].describe()[['MME']]
sns.set_style('whitegrid')
sns.set_context('talk')
plt.figure(figsize=(10, 6))
sns.distplot(fa['MME'], bins=100, kde=False, color='blue')
plt.title('Distribution of MME in Florida')
plt.xlabel('MME')
plt.ylabel('Count')
plt.show()</pre>
```



```
sns.set_style('whitegrid')
sns.set_context('talk')
plt.figure(figsize=(10, 6))
sns.distplot(wash['MME'], bins=100, kde=False, color='blue')
plt.title('Distribution of MME in Washington')
plt.xlabel('MME')
plt.ylabel('Count')
plt.show()
```

Distribution of MME in Washington 50 40 20 10 0 100000 200000 300000 400000 500000 600000 MME

```
fa['Year'] = fa['Year'].astype(int)
wash['Year'] = wash['Year'].astype(int)

rule = alt.Chart(fa).mark_rule(color='red', strokeDash=[5,5], strokeWidth=3).encode(
    x='Year:Q',
    size=alt.value(3)
).transform_filter(
    alt.datum.Year == 2010
)
```

```
fig = alt.Chart(fa).mark_line().encode(
      x='Year',
      y='MME',
      color='BUYER_COUNTY'
  ).properties(
      width=600,
      height=400
  )
  fig + rule
alt.LayerChart(...)
  rule4 = alt.Chart(fa_compare).mark_rule(color='red', strokeDash=[5,5], strokeWidth=3).ence
      x='Year:Q',
      size=alt.value(3)
  ).transform_filter(
      alt.datum.Year == 2010
  )
  fig4 = alt.Chart(fa_compare).mark_line().encode(
      x='Year',
      y='MME',
      color='BUYER_COUNTY'
  ).properties(
      width=600,
      height=400
  fig4 + rule4
alt.LayerChart(...)
  rule2 = alt.Chart(wash).mark_rule(color='red', strokeDash=[5,5], strokeWidth=3).encode(
      x='Year:Q',
      size=alt.value(3)
  ).transform_filter(
      alt.datum.Year == 2012
  )
```

```
fig2 =alt.Chart(wash).mark_line().encode(
      x='Year',
      y='MME',
      color='BUYER_COUNTY'
  ).properties(
      width=600,
      height=400
  )
  fig2 + rule2
alt.LayerChart(...)
  rule3 = alt.Chart(wash_compare).mark_rule(color='red', strokeDash=[5,5], strokeWidth=3).en
      x='Year:Q',
      size=alt.value(3)
  ).transform_filter(
      alt.datum.Year == 2012
  )
  fig3 =alt.Chart(wash_compare).mark_line().encode(
      x='Year',
      y='MME',
      color='BUYER_COUNTY'
  ).properties(
      width=600,
      height=400
  )
  fig3 + rule3
alt.LayerChart(...)
```

—- DON"T RUN THE FOLLOWING CODE FOR NOW ——

```
# Load the data
df = pd.read_csv('prescription_data_grouped_1.csv')
df.head()

df.shape

df.columns
```

- There are four columns in the dataset: 'BUYER_STATE', 'BUYER_COUNTY', 'T_YEAR', 'MME'
- 'MME' is a unit of measurement for the amount of opioids prescribed

Summary Statistics

```
# summary statistics of the shipment/prescription data
df.describe()
```

More Data Exploration

```
df.BUYER_STATE.unique()

df.T_YEAR.unique()

year = df.groupby('T_YEAR').sum()
year = year.reset_index()
year

year.shape

# plot the distribution of the number of prescriptions in MME across the years
year.plot(x='T_YEAR', y='MME', rot=0, title="MME change change over the years", xlabel="YE")
```

• From the plot above, we can see that after 2010, the slope of the MME is decreasing and was increasing before the policy intervention before 2010.

2010 is the policy intervention year

First State: FL

```
fa = pd.read_csv('df_florida_only_grouped.csv')
fa.head()

fa.describe()[['MME']]

florida = df[df['BUYER_STATE'] == 'FL']
fl_before = florida[florida['T_YEAR'] < 2010][['MME']]
fl_after = florida[florida['T_YEAR'] > 2010][['MME']]
print(f"The MME of Florida before 2010 policy change is {fl_before.sum()[0]} and after 201

florida.MME.value_counts().sort_values(ascending=True)

florida[florida['T_YEAR'] == 2010].MME.unique()

florida[florida['T_YEAR'] == 2010].describe()[['MME']]

florida['T_YEAR'].unique()

assert fl_before.sum()[0] > fl_after.sum()[0]
```

```
fl_before.describe()

fl_after.describe()

df.BUYER_STATE.unique()

fl_compare = ['CA','NV','NY']

fl_compare_df = df[df['BUYER_STATE'].isin(fl_compare)]

fl_compare_df_before = fl_compare_df[fl_compare_df['T_YEAR'] < 2010][['MME']]

fl_compare_df_after = fl_compare_df[fl_compare_df['T_YEAR'] > 2010][['MME']]

print(f"The MME of controlled states before 2010 policy change is {fl_compare_df_before.su}

fl_compare_df.describe()

# assume larger then, since not much policy change in the controlled states assert fl_compare_df_before.sum()[0] < fl_compare_df_after.sum()[0]

fl_compare_df_before.describe()

fl_compare_df_after.describe()</pre>
```

Second State: Texas [We are not taking a look at the Texas because of the policy change happened in 2007 and there's not enough information for us to do it. Something applies to the Washington, which started the policy change not until 2012.

```
taxes = df[df['BUYER_STATE'] == 'TX']
taxes.T_YEAR.unique()
tx_before = taxes[taxes['T_YEAR'] < 2010][['MME']]
tx_after = taxes[taxes['T_YEAR'] > 2010][['MME']]
print(f"The MME of Texas before 2010 policy change is {tx_before.sum()[0]} and after 2010
taxes.describe()
taxes.T_YEAR.unique()
```

```
tx_before.sum()[0] > tx_after.sum()[0]
```

There are more MME after the policy intervention

```
tx_compare = ['AK','CA','GA','NY', 'MO','WY']
tx_compare_df = df[df['BUYER_STATE'].isin(tx_compare)]
tx_compare_df_before = tx_compare_df[tx_compare_df['T_YEAR'] < 2010][['MME']]
tx_compare_df_after = tx_compare_df[tx_compare_df['T_YEAR'] > 2010][['MME']]
print(f"The MME of controlled states before 2010 policy change is {tx_compare_df_before.su}
tx_compare_df.describe()
```