Photometric Stereo

Introduction to Computational Photography: EECS 395/495

Northwestern University

Photometric Stereo

Method for recovering 3D shape information from image intensity (brightness).

Topics:

- (1) Gradient Space
- (2) Reflectance Map
- (3) Photometric Stereo
- (4) Calibration-Based Photometric Stereo
- (5) Shape from Surface Normal

Image Intensity

Image Intensity $I = \mathcal{F}(Source \ Direction \ s,$ Surface Normal n,Surface Reflectance)

Photometric Stereo

Image Intensity $I = \mathcal{F}(Source Direction s,$

Surface Normal n,

Surface Reflectance)

GIVEN

?

GIVEN

GIVEN

Surface Gradient and Normal

Let z = f(x, y) represent a 3D surface.

Surface Gradient:

$$\left(-\frac{\partial z}{\partial x}, -\frac{\partial z}{\partial y}\right) = (p, q) \quad \boxed{\text{In Horn } \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) = (p, q)}$$

Surface Normal:

$$\mathbf{N} = \left(-\frac{\partial z}{\partial x}, -\frac{\partial z}{\partial y}, 1\right) = (p, q, 1)$$

Unit Surface Normal:
$$\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = \frac{(p,q,1)}{\sqrt{p^2 + q^2 + 1}}$$

Surface Normal represented with only two parameters (p,q).

Gradient Space

Plane z = 1 is called the Gradient Space or pq Plane

Every point (p,q) in the Gradient Space corresponds to a unique orientation.

Gradient Space

Plane z = 1 is called the Gradient Space or pq Plane

Surface Normal:

$$\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = \frac{(p, q, 1)}{\sqrt{p^2 + q^2 + 1}}$$

Source Direction:

$$\mathbf{s} = \frac{\mathbf{S}}{|\mathbf{S}|} = \frac{(p_s, q_s, 1)}{\sqrt{p_s^2 + q_s^2 + 1}}$$

Every point (p,q) in the Gradient Space corresponds to a unique orientation.

Reflectance Map R(p,q)

For a given Source Direction s and Surface Reflectance, Image Intensity at a point (x,y):

$$I = R(p,q)$$

Reflectance Map

Review: Lambertian Surface

Image irradiance *I* is independent of viewing direction.

Lambertian (Diffuse or Matte) Surface

Reflectance Map: Lambertian Surface

Image Irradiance:

$$I = \frac{\rho}{\pi} kc \cos \theta_i = \frac{\rho}{\pi} kc (\mathbf{n} \cdot \mathbf{s})$$

where ρ : Surface Albedo (Reflectance)

k: Source Brightness

c: Constant (Optical System)

Let
$$\frac{\rho}{\pi}kc = 1$$
 then, $I = \cos\theta_i = \mathbf{n} \cdot \mathbf{s}$

Reflectance Map: Lambertian Surface

$$I = \mathbf{n} \cdot \mathbf{s} = \frac{pp_s + qq_s + 1}{\sqrt{p^2 + q^2 + 1}\sqrt{p_s^2 + q_s^2 + 1}} = R(p, q)$$

Reflectance Map

Reflectance Map: Iso-Brightness Contours

$$I = \mathbf{n} \cdot \mathbf{s} = \frac{pp_s + qq_s + 1}{\sqrt{p^2 + q^2 + 1}\sqrt{p_s^2 + q_s^2 + 1}} = R(p, q)$$

Reflectance Map: Lambertian Surface

$$I = \mathbf{n} \cdot \mathbf{s} = \frac{pp_s + qq_s + 1}{\sqrt{p^2 + q^2 + 1}\sqrt{p_s^2 + q_s^2 + 1}} = R(p, q)$$

Shape from a Single Image?

Given Image I, Source Direction s and Surface Reflectance

Reflectance Map R(p,q)

Can we estimate Surface Gradients (p,q) at each pixel? NO

Intensity at each pixel maps to infinite (p,q) values along the corresponding iso-brightness contour.

Photometric Stereo

Idea: Use multiple images under different lighting to resolve the ambiguity in surface orientation.

Notation:

Direction of Source $i: \mathbf{s_i} \equiv (p_{s_i}, q_{s_i})$

Reflectance Map for Source $i: R_i(p,q)$

Image intensity produced by Source $i: I_i(x, y)$

Capture Image I_1 under light source $s_1(p_{s_1}, q_{s_1})$.

Reflectance Map $R_1(p,q)$

Capture Image l_1 under light source $\mathbf{s}_1(\overline{p_{s_1},q_{s_1}})$.

For Example:

Let
$$I_1(x, y) = 0.9$$

Infinite Solutions Exist for (p,q)

Reflectance Map $R_1(p,q)$

Capture Image I_2 under light source $\mathbf{s}_2(p_{s_2}, q_{s_2})$.

For Example:

Let
$$I_1(x, y) = 0.9$$

 $I_2(x, y) = 0.7$

Two Solutions Exist for (p, q)

Reflectance Maps $R_1(p,q)$, $R_2(p,q)$

Capture Image I_3 under light source $\mathbf{s}_3(p_{s_3},q_{s_3})$.

For Example:

Let
$$I_1(x, y) = 0.9$$

$$I_2(x,y) = 0.7$$

$$I_3(x,y) = 0.4$$

Unique Solution for Surface Orientation: (p', q')

Reflectance Maps $R_1(p,q)$, $R_2(p,q)$, $R_3(p,q)$

- **Step 1:** Take *K* images with *K* known light sources.
- Step 2: Using known source direction and BRDF, construct reflectance map for each source direction.
- Step 3: For each pixel location (x, y), find (p, q) as the intersection of K reflectance map curves. This is the surface normal at pixel (x, y).

Smallest *K* needed depends on the material properties.

Example: K = 3 for Lambertian Surfaces.

Photometric Stereo: Lambertian Case

Image Irradiance measured at point (x, y) under each of the three light sources:

$$I_1 = \frac{\rho}{\pi} \mathbf{n} \cdot \mathbf{s_1}$$
 $I_2 = \frac{\rho}{\pi} \mathbf{n} \cdot \mathbf{s_2}$ $I_3 = \frac{\rho}{\pi} \mathbf{n} \cdot \mathbf{s_3}$

where:
$$\mathbf{n} = \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix}$$
 and $\mathbf{s_i} = \begin{bmatrix} s_x \\ s_y \\ s_z \end{bmatrix}$

We can write this in matrix format.

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \frac{\rho}{\pi} \begin{bmatrix} s_{x_1} & s_{y_1} & s_{z_1} \\ s_{x_2} & s_{y_2} & s_{z_2} \\ s_{x_3} & s_{y_3} & s_{z_3} \end{bmatrix} \mathbf{n}$$

Measured $S_{3\times3}$ (Known)

Photometric Stereo: Lambertian Case

Solution:
$$\mathbf{M} = (S)^{-1}I$$

Surface Normal:
$$\mathbf{n} = \frac{\mathbf{M}}{|\mathbf{M}|}$$
 Albedo: $\frac{\rho}{\pi} = |\mathbf{M}|$

When Does It Not Work?

When $S_{3\times3}$ is not invertible.

That is, when one source direction can be represented as a linear combination of the other two.

$$\mathbf{s_3} = \alpha \mathbf{s_1} + \beta \mathbf{s_2}$$

All sources and the origin lie on a plane

Photometric Stereo: Lambertian Case

Get better results by using more (K > 3) light sources

$$\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_K
\end{bmatrix} = \frac{\rho}{\pi} \begin{bmatrix}
S_{x_1} & S_{y_1} & S_{z_1} \\
S_{x_2} & S_{y_2} & S_{z_2} \\
\vdots & \vdots & \vdots \\
S_{x_K} & S_{y_K} & S_{z_K}
\end{bmatrix} \mathbf{n} \qquad \begin{cases}
I = S\mathbf{M} \\
\text{where: } \mathbf{M} = \frac{\rho}{\pi} \mathbf{n} \\
S_{K \times 3}
\end{cases}$$

 $S_{K imes 3}$ is not a square matrix and hence not invertible.

Solution: Use Least Squares Estimation

$$S^{T}I = S^{T}SM$$

$$\mathbf{M} = (S^{T}S)^{-1}S^{T}I \text{ (Pseudo-inverse)}$$

$$3 \times 3$$

Results: Lambertian Sphere

Estimated Surface Normals

Estimated Albedo

Results: Lambertian Mask

Input Images

Estimated Surface Normals

Estimated Albedo

Results: Lambertian Toy

Input Images

Estimated Surface Normals

Estimated Albedo

Calibration-based Photometric Stereo

Use a Calibration Object (ex: Sphere) of Known Size, Shape and Same Reflectance as the scene objects.

Calibration Sphere

Scene

Orientation Consistency: Points with the same surface normal produce the same set of intensities under different lighting.

Calibration-based Photometric Stereo

Use a Calibration Object (ex: Sphere) of Known Size, Shape and Same Reflectance as the scene objects.

Calibration Sphere

Scene

Orientation Consistency: Points with the same surface normal produce the same set of intensities under different lighting.

Calibration-based Photometric Stereo

Use a Calibration Object (ex: Sphere) of Known Size, Shape and Same Reflectance as the scene objects.

Calibration Sphere

Scene

Orientation Consistency: Points with the same surface normal produce the same set of intensities under different lighting.

Calibration Procedure

Step 1: Capture $K \ge 3$ images under K different light sources.

Each point on the sphere produces K image intensities $(I_1, I_2, ..., I_K)$ corresponding to the K light sources.

Step 2: Using the known size of the sphere, estimate the surface normal (p,q,1) for every point on the sphere.

Calibration Procedure

Image 1

Image 2

Image K

Surface Normals (p, q, 1)

Step 3: Create a lookup table for the

K-tuple: $(I_1, I_2, ..., I_K) \rightarrow (p, q)$

Populate the lookup table with $(I_1, I_2, ..., I_K)$ and (p, q) for each pixel on the sphere.

Looking Up Surface Normal

Step 4: Capture *K* images of the scene object under the same *K* light sources.

Step 5: For each pixel in the scene, use Lookup Table to map $(I_1, I_2, ..., I_K) \rightarrow (p, q)$

Image 1

Image 2

Image K

Estimated Surface Normals

Shape From Surface Normals

Gradient/Normal Map [p(x,y), q(x,y), 1]

Shape or Depth Map (z)

Shape From Surface Normals

Estimate surface by integrating surface gradient

$$z(x,y) = z(x_0, y_0) + \oint_{(x_0, y_0)}^{(x,y)} -(pdx + qdy)$$

where (x_0, y_0) is a any reference point and $z(x_0, y_0) = 0$.

z(x,y) obtained by integration along any path from (x_0,y_0) .

Naïve Algorithm for Estimating Shape

- 1. Initialize reference depth z(0,0) = 0
- 2. Compute depth for first column for y = 1 to (H 1)z(0, y) = z(0, y - 1) - q(0, y)
- 3. Compute depth for each row for y = 0 to (H 1) for x = 1 to (W 1) z(x, y) = z(x 1, y) p(x, y)

Computed Depth Map

Noise Sensitivity of Computed Shape

 (x_0, y_0) Path 1 (x, y)

Actual Surface shown with noisy estimates of surface gradient

Noise Sensitivity of Computed Shape

Actual Surface shown with noisy estimates of surface gradient

Depth computed from noisy gradients depends on the integration path.

One Solution: Compute depth maps using different paths. Then, find average of computed depth maps to reduce error.

Estimating Shape Using Least Squares

Minimize the errors between measured surface gradients (p,q) and surface gradients of estimated surface z(x,y).

Error Measure:

$$D = \iint_{Image} \left(\frac{\partial z}{\partial x} + p\right)^2 + \left(\frac{\partial z}{\partial y} + q\right)^2 dxdy$$

where $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ are gradients of the estimated surface.

We need to find z(x,y) that minimizes D

Frankot-Chellappa Algorithm

Minimize objective function D in Fourier Domain.

Let Z(u, v), P(u, v) and Q(u, v) be the Fourier Transforms of z(x, y), p(x, y) and q(x, y), respectively. Then:

$$z(x,y) = \iint_{-\infty}^{\infty} Z(u,v)e^{i2\pi(ux+vy)}dudv$$
$$p(x,y) = \iint_{-\infty}^{\infty} P(u,v)e^{i2\pi(ux+vy)}dudv$$
$$q(x,y) = \iint_{-\infty}^{\infty} Q(u,v)e^{i2\pi(ux+vy)}dudv$$

Substitute for z(x,y), p(x,y) and q(x,y) in equation for D.

Frankot-Chellappa Algorithm

Find Z(u,v) that minimizes D using $\frac{\partial D}{\partial Z}=0$.

Solution:
$$\tilde{Z}(u,v) = \frac{iuP(u,v) + ivQ(u,v)}{u^2 + v^2}$$

This is the Fourier Transform of the best fit surface.

Compute Inverse Fourier Transform to obtain $\tilde{z}(x,y)$.

$$\tilde{Z}(u,v) \longrightarrow \tilde{I}FT \longrightarrow \tilde{z}(x,y)$$

Results: 3D Surface Reconstruction

Surface Normals

Estimated Depth Map z = f(x, y)

Estimated Surface (Rendered)

Results: 3D Surface Reconstruction

Surface Normals

Estimated Depth Map z = f(x, y)

Estimated Surface (Rendered)

149 0

Results: Fish Toy

Calibration Spheres

Scene

Estimated Surface (Rendered)

Results: Brushed Fur

Calibration Cylinder

Scene

Photometric Stereo Results: Brushed Fur

Estimated Surface (Rendered)

Interreflection Problem

Brightness of a scene point is not only due to the light source but also due to light reflected by other scene points.

Photometric Stereo provides incorrect shape!

Shape from Interreflection

References: Textbooks

Textbooks:

Robot Vision (Chapter 10) Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 5) Forsyth, D and Ponce, J., Prentice Hall

References: Papers

[Frankot 1988] R. Frankot and R. Chellappa. "A Method for Enforcing Integrability in Shape from Shading Algorithm." IEEE PAMI, 1988.

[Hertzmann 2005] A. Hertzmann, S. M. Seitz. "Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs." IEEE PAMI, 2005.

[Horn 1990] Horn, B.K.P. "Height and Gradient from Shading," IJCV, 1990.

[Nayar 1991] S.K. Nayar, K. Ikeuchi and T. Kanade. "Shape from Interreflections." IJCV, 1991.

[Silver 1980] W.M. Silver. "Determining Shape and Reflectance Using Multiple Images." Master's thesis, MIT, Cambridge, Mass., 1980.

[Woodham 1980] R. Woodham, "Photometric Method for Determining Surface Orientation from Multiple Images." Optical Engineering, 1980.

Image Credits

- I.1 Adapted from Forsyth, D and Ponce, J., Computer Vision: A Modern Approach (Chapter 5), Prentice Hall.I.2 http://www.cs.washington.edu/education/courses/
- I.3 http://grail.cs.washington.edu/projects/sam/

cse455/04wi/projects/project3/project3.htm

- I.4 http://grail.cs.washington.edu/projects/sam/
- I.5 http://grail.cs.washington.edu/projects/sam/
- I.6 http://www1.cs.columbia.edu/CAVE/projects/separation/ photometric_stereo_gallery.php