Title: "Prefrontal Laterality Modulation Through Targeted Auditory Beat Stimulation During Multimodal Cognitive Tasks"

Abstract: This study will examines how auditory beat stimulation modulates prefrontal hemispheric asymmetry and autonomic nervous system activity during cognitively demanding tasks. Participants (N=30±5) will perform verbal-logical (left hemisphere dominant) and visual-spatial (right hemisphere dominant) tasks under three conditions: 10Hz binaural beats (440±10Hz), 40Hz monaural amplitude-modulated tones (440Hz carrier), and nature sound controls. Prefrontal beta-gamma asymmetry indices will be calculated from 4-channel EEG recordings, while autonomic activity will be monitored through heart rate variability (RMSSD) and electrodermal phasic responses.

Keywords: Steady-state Multisensory, Auditory Stimuli, Brain Lateralization, Physiological Responses, Cognitive Tasks

Experimental Protocol

Section 1: Cognitive Task Design [1][3]

1.1 Dual-Modality Challenge (32 mins total)

A. Verbal-Semantic Processing (Left Hemisphere Engagement)

- Auditory Text Analysis (8 mins/condition)
 - Listen to 75-word technical passages (70 dB SPL(Sound Pressure Level)) via Galaxy Buds
 - Simultaneously identify semantic inconsistencies (e.g., "A square has five sides")
 - Response method: Verbal corrections recorded via HyperX mic (NVIDIA noise suppression)

B. Visuospatial Manipulation (Right Hemisphere Engagement)

- 3D Mental Rotation Task (8 mins/condition)
 - Judge mirrored/non-mirrored pairs of Necker cubes
 - Embedded visual puzzles require 45°-315° mental rotations
 - Performance metric: Rotation angle vs response time slope

C. Cross-Modal Integration (6 mins/condition)

- Audio-Visual Binding Task
 - Match spoken word descriptors ("spiked," "rotating") to abstract figures
 - Inhibit mismatched pairings using forced-choice paradigm

Section 2: Auditory Stimulation Protocol [1][2][3]

2.1 Beat Generation Parameters

Condition Specification Neurological Basis[1][3]

Condition	Specification	Neurological Basis[1][3]	
10Hz Binaural Beats	440Hz ±10Hz (L/R phase offset)	Right prefrontal beta enhancement[1]	
40Hz Monaural AM Tones	440Hz carrier, 40Hz AM depth 80%	Left temporal gamma entrainment[2] [3]	
Nature Sounds	1/f noise spectrum with 4Hz modulation	Bilateral alpha synchronization[1]	

2.2 Stimulus Delivery Protocol

• Galaxy Buds Pro Configuration

- o Binaural beats: Phase-locked delivery (0° left, 180° right initialization)
- o Monaural AM: Right ear only (left channel muted) to enhance left hemisphere focus
- Stimulus ramping: 500ms cosine-squared onset/offset
- o Inter-stimulus interval: 1500ms ±300ms jitter

Section 3: Multimodal Data Acquisition Framework

3.1 Neurophysiological Synchronization

• Muse S EEG Preprocessing

- Asymmetry Index (ASI) calculation: (Right AF8 Left AF7)/(AF7 + AF8)
- o Frequency bands: Beta (13-30Hz), Gamma (30-45Hz)[3]
- Artifact rejection: ±75µV threshold with moving window SD

• Empatica EmbracePlus Metrics

- Phasic EDA: 0.05-1.5Hz bandpass (cvxEDA decomposition)
- HRV Analysis: RMSSD in 128s windows (matched to task epochs)

3.2 Experimental Timeline

Phase	Duration	Auditory Condition	Task Component
Baseline Recording	5 mins	None	Resting eyes-open
Condition A	8 mins	10Hz Binaural	Visuospatial + Verbal
Washout	3 mins	Pink noise (60dBA)	Fixation cross
Condition B	8 mins	40Hz Monaural AM	Verbal + Integration
Washout	3 mins	Pink noise (60dBA)	Fixation cross
Condition C	8 mins	Nature Sounds	Integration + Spatial

Section 4: Control Protocol (Per [3] Methodological Standards)

4.1 Environmental Controls

Acoustic Isolation

- Double-walled Nextroom lab
- Galaxy Buds passive isolation: 23dB SNR (measured via GRAS 45CA)

Physiological Constants

Ambient light: LED panels

Temperature: 22°C ±0.5°C (HVAC-controlled)

4.2 Counterbalancing Matrix

Group	Order	Beat Polarization
1	Binaural→AM→Nature	Right→Left→Bilateral
2	AM→Nature→Binaural	Left→Bilateral→Right
3	Nature→Binaural→AM	Bilateral→Right→Left

Technical Validation

1. 10Hz Binaural Effects

- Right prefrontal beta enhancement aligns with[1] findings of 10Hz beat-induced right temporal activation
- Phase offset (0° vs 180°) matches interaural time difference requirements from [3]

2. 40Hz Monaural Design

- AM depth (80%) replicates successful IED reduction protocol from [2]
- Right-ear delivery leverages left hemisphere auditory pathway dominance [3]

3. Task Synchronization

- o 8-min blocks allow sufficient entrainment time per [1] theta wave observations
- o ISI jitter prevents rhythmic expectation artifacts [3]

4. Asymmetry Quantification

- ASI formula validated against[3] laterality index methods
- Beta/gamma focus matches Muse S sensor capabilities [1]

This protocol integrates consumer devices into laboratory-grade neuroscience research while maintaining ecological validity. The 35-minute core duration prevents circadian interference (per [1] 30-minute threshold) while capturing transient entrainment effects.

Citations:

- [1] https://pmc.ncbi.nlm.nih.gov/articles/PMC11367212/
- [2] https://pmc.ncbi.nlm.nih.gov/articles/PMC8832987/
- [3] https://journals.physiology.org/doi/full/10.1152/jn.00224.2014
- [4] https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2023.1287018/full

- [5] https://pmc.ncbi.nlm.nih.gov/articles/PMC9208616/
- [6] https://www.nature.com/articles/s41398-022-02300-6
- [7] https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0166630
- [8] https://pmc.ncbi.nlm.nih.gov/articles/PMC9812253/
- [9] https://www.nature.com/articles/s41598-020-63980-y

[10]

 $https://www.researchgate.net/publication/269308992_The_investigation_of_alpha_frontal_energy_asymmetry_on_normal_and_stress_subjects_after_listening_to_the_binaural_beats_10_Hz$

[11]

https://www.researchgate.net/publication/353828632_Effectiveness_of_Receptive_Music_Therapy_with_Imbed ded_10_Hz_Binaural_Beats_Compared_with_Standard_Care_for_Patients_with_Major_Depressive_Disorder_A_Ra ndomized_Controlled_Trial

- [12] https://www.mdpi.com/2076-3417/12/24/13004
- [13] https://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=3661&context=rtds
- [14] https://escholarship.org/content/qt2kw474zg/qt2kw474zg.pdf
- [15] https://dl.acm.org/doi/abs/10.3233/THC-236001
- [16] https://journals.physiology.org/doi/full/10.1152/jn.00469.2005
- [17] https://www.researchgate.net/publication/361984336_The_age-related_changes_in_40_Hz_Auditory_Steady-State_Response_and_sustained_Event-Related_Fields_to_the_same_amplitude-modulated_tones_in_typically_developing_children_A_magnetoencephalography_study