D Kommunikation & Rechnernetze

- D1 Einführung und Motivation
- D2 Technischer Überblick
- D3 Lokale Rechnernetze
- D4 Einige Gemeinsamkeiten von Betriebssystemen und Rechnernetzen: Architekturmodelle und Diensthierarchien

D "Kommunikation und Rechnernetze"

D3 Lokale Rechnernetze

Lokales Rechnernetz (Local-Area Network, LAN):

- → wesentliche Eigenschaften (gemäß IEEE 802):
 - geographische Begrenzung (ca. 10 km)
 - Unterstützung der Kommunikation zwischen autonom arbeitenden Rechnern/ Knoten/ Stationen unterschiedlichsten Typs (→ "Heterogenität" der Knoten)
 - hohe Datenrate/Übertragungsgeschwindigkeit (i.a. 100 Mbit/s, ..., 10 / 100 Gbit/s)
 - relativ niedrige Bitfehlerrate (i.a. ≤ 10⁻⁹)
 - bitserielle Übertragung
 - durch privates Unternehmen betrieben, i.a. auf zusammenhängendes Grundstück begrenzt.

Gründe für LANs:

- Tendenz zu billigeren, leistungsfähigeren, kleineren, zahlreicheren und spezialisierteren Rechnern,
- Trend zu spezifischerer und z.T. teurer Peripherie,
- zunehmende Dezentralisierung der Dienste (Client/Server-Systeme),
- Einführung neuer Techniken wie z.B. Message Handling,
- wachsender Kommunikationsbedarf zwischen Stationen.

Wesentliche Topologieformen für LANs

Bemerkung:

- wichtige Anforderungen an Topologie: kostengünstige Netzadapter realisierbar, einfache Wegeermittlung (Routing), typîsche ÜM der LANs nutzbar
- *logische* versus *physikal. Topologie* zu unterscheiden (z.B. log. Ring auf physikal. Bus; logischer Stern als physikalischer Bus sofern VR = "Hub" bei Stern)

Typische Übertragungsmedien in LANs

Anforderungen an ÜM:

- relativ hohe Datenraten (einfacher als bei MANs / WANs, da relativ geringe Entfernungen zwischen Stationen)
- relativ geringe Bitfehlerraten
- möglichst Nutzung existierender Verkabelung
- ggf. Unterstützung mobiler Endsysteme

• Beispiele typischer ÜM für LANs:

- verdrillte Drähte
- Koax(ial)kabel
- Lichtwellenleiter (z.B. in Hochgeschwindigkeits-LANs)
- Infrarotsysteme (z.B. für Maus-, Druckeranschluss)
- Rundfunksysteme (z.B. in "Wireless LANs")
- Richtfunkstrecken (z.B. Laserverbindung zwischen Gebäuden)

Rechnerinterne DÜ versus DÜ in LANs:

- rechnerintern :
 - bitparallel, Kommunikationspartner nicht autonome Rechensysteme, zumeist zentralisierte Zugriffskontrolle auf gemeinsames Übertragungsmedium (z.B. Systembus), Bitfehler äußerst selten, häufig asymmetr. Kommunikationsbeziehungen ("Master-Slave")
- in LANs:
 bitseriell, zumeist gleichberechtigte Zugriffskontrolle auf gemeinsames ÜM, Bitfehler selten, gleichberechtigte Kommunikationspartner ("Peer-to-Peer")

Zugriffskontrollmechanismen

Anforderungen:

- möglichst einfach (u.a. Wunsch nach preisgünstigen Netzadaptern)
- fair
- kein separates Kommunikationssystem zur Reservierung von Kommunikationsressourcen (insbesondere gemeinsames ÜM)
- möglichst geringer "Overhead" für Realisierung der Zugriffskontrolle
- hohe Auslastbarkeit des ÜM
- schneller Zugriff bei sehr gering belastetem ÜM
- neuerdings: Echtzeitfähigkeit der Datenübertragungsdienste (Quality-of-Service / QoS –Zusicherungen)

Klassifikation der Zugriffskontrollmechanismen für Ringnetze sowie Bus-/Broadcastsysteme

Bemerkung:

- Aufforderungsverfahren mit zentraler vs. dezentraler Kontrolle
- Reservierungsverfahren: *statische* vs. *dynamische* Reservierung
- Kombinationen möglich, z.B. zufällige Zugriffe bei leerem Netz und dann Reservierung nach Kollisionen von Zugriffsversuchen

Beispiel I: Token Ring als Verfahren mit zirkulierender Kontrollmarke

Token: zirkulierende Kontrollmarke (≡ spez. Dateneinheit zur Weitergabe der Zugriffsberechtigung zwischen Stationen)

Zu jedem Zeitpunkt gilt:

- Token unterwegs (auf Ring-Abschnitt) ODER
- genau 1 Station S_i im Besitz des Tokens (dann S_i sendeberechtigt, sofern Momentanpriorität von S_i Tokennutzung gestattet)

t_o: Tokenweitergabe (→ *unidirektionale* Signal-/ Datenübertragung) :

Beispiel I: Token Ring (Forts.)

t₁: S₂ sendewillig (sendet Dateneinheit *d* mittels Übertragung des Signals *s*):

http://www.nt.fh-koeln.de/vogt/mm/tokenring/tokenring.html

- t₂: Zeitpunkt der erneuten Tokenweitergabe:
 - a) "wait-my-adress" (WMA-Modus): → vgl. "Standard" Token Ring
 S₂ empfängt d (bzw. s) nach vollständiger Ringumrundung → zumindest
 "Header" (mit Kontrollinfo) zu empfangen; erst dann Tokenweitergabe
 (Priorität für Tokennutzung evtl. erhöht zur Unterstützung von Echtzeitkommunikation, wie bei Sprach-, Audio-, Videoübertragung)
 - b) "early token release": → vgl. FDDI-Standard

Token wird direkt an d (bzw. s) angehängt

Vorteil: höhere Effizienz (insbesondere höherer Durchsatz, kleinere Wartezeit)

Nachteil: Unterstützung von Echtzeitkommunikation problematisch; gleichwohl gilt: Token Holding Time (THT) kann bei limitierter Anzahl von Stationen und begrenzter Ringlänge die Token-umlaufzeit begrenzen; Zeit für Senden < THT.

Beispiel II: CSMA/CD ("Ethernet") als Verfahren mit zufälligem Zugriff

CSMA/CD: Carrier Sense Multiple Access/Collision Detection

Prinzip:

- Stationen hören ÜM ab → Feststellen von Belegungszustand ∈ {belegt, unbelegt}
- sendewillige Station greift zu, sofern ÜM als frei betrachtet wird → Kollision möglich bei nahezu gleichzeitigem Zugriff (wegen Signallaufzeit auf Bus)
- nach Feststellen von Kollision: absichtliche Störung anderer Sender ("Jam"-Signal) für kurze Zeit
- freiwilliges Warten zufällig gezogener Wartezeit τ_w (im Mittel längeres Warten bei erhöhter Kollisionsrate) \rightarrow "exponential back-off", d.h.

$$\tau_{W} \in [0, T], [0, 2 \bullet T], [0, 4 \bullet T], [0, 8 \bullet T], [0, 16 \bullet T], ... [0, 2^{k} \bullet T], ...$$

(mit T = const., T > 0), und somit verdoppelt sich die mittlere Wartezeit jeweils bei wiederholten Kollisionen (Grund für "exponential back-off": Stabilitätsprobleme bei hoher Last)

Beispiel II: CSMA/CD (Forts.)

Realisierung:

- Mitte 70'er Jahre : Xerox PARC (Palo Alto Research Center)
- ca. 1980 : DIX-Group gegründet (DEC, Intel, Xerox)
- später : IEEE 802-Standard (speziell 802.3) → Ethernet

- Wann Kollision bemerkt?
- Wie lang muss man mindestens senden, um Kollisionen garantiert zu bemerken (während man noch sendet) ? [Sei τ = Signallaufzeit von einem Bus-Ende zum anderen] Reicht τ oder erst 2τ ?
- Weshalb ist Abschlusswiderstand nicht verzichtbar ?

CSMA/CD (Forts.): Einige Verständnisfragen

Zur Kollisionserkennung – nochmalige Illustration eines sich überlagernden Sendevorgangs :

Evtl. nützlicher Hinweis:

$$L/v_D > 2 \cdot d_{max} / c$$

- Wie lange dauert das Absenden eines Frames der Länge L bei einer Datenrate v_D ?
- Weshalb ist eine minimale Framegröße L_{min} notwendig?
- Wovon hängt die Ende-zu-Ende Signallaufzeit τ ab? Wie berechnet sie sich konkret?
- Was passiert, wenn der Abstand d_{max} zwischen den entferntesten Stationen (S₁, S_k in obiger Abb.) sich um den Faktor x vergrößert? Implikation für Datenrate v_D bzw. für L_{min} ?
- Was passiert, wenn die benutzte Datenrate sich um den Faktor x vergrößert? Implikation für L_{min} bzw. für d_{max} ?

Nota bene: Wir müssen Kollisionen bei allen beteiligten Sendern immer erkennen!

Hub versus **Router**

 Über Hub verbundene Ethernet-LANs (L1):

weiterhin nur 1 gemeinsam genutztes Ethernet-Segment

 Kopplung von LANs über IP-Router (L3):

Interkonnektion auf Vermittlungsschicht

Bridge versus Switch

 Über BRIDGE verbundene Ethernet-LANs (L1):

> Zwischenspeicherung und Filterung von Ü-Blöcken in Bridge

 Über SWITCH verbundene Ethernet-LANs (L2):

Switch realisiert Vermittlungsfunktion, jedoch kein Routing

(Grob-) Vergleich zwischen Hub, Bridge, Switch, Router

Merkmal	Hubs	Bridges	Router	Ethernet- Switches
Verkehrsisolierung	Nein	Ja	Ja	Ja
Plug-and-Play	Ja	Ja	Nein	Ja
Optimales Routing	Nein	Nein	Ja	Nein
Cut-Through	Ja	Nein	Nein	Ja

zu Details vgl. Kurose/Ross "Computernetze", Addison-Wesley 2002

Token Ring versus Ethernet

- Token Ring: für lange Zeit gemeinsam mit Ethernet wichtigste Realisierungsvariante für LANs (starke Unterstützung seitens IBM);
- Während der letzten Dekade dann "Konvergenz" in Richtung Ethernet-basierter LANs (neben WLANs); Token Ring dennoch weiterhin wichtigster Typ bei Ringnetzen im LAN-Bereich

Nota bene: Nutzung einer "zirkulierenden Kontrollmarke" grundsätzlich relevantes Zugriffskontroll- und Synchronisationsprinzip in Informatiksystemen (z.B. auch bei verteilter Datenhaltung)

Gründe für den Siegeszug des Ethernet:

- Einfachere Lösung ("small / simple is beautiful"), z.B. einfachere Zugriffskontrolltechnik → früh sehr preiswerte Netzadapter für Ethernet verfügbar! ... and: "The Winner takes it all !!!"
- Sehr schnelle Erhöhung der verfügbaren Datenrate : 10 Mb/s → 100 Mb/s (Fast Ethernet) → 1 Gb/s → 10 Gb/s → 100 Gb/s → ... (?)

Intranets

Def. Intranet:

Unternehmensnetz auf Basis der (standardisierten) Internet-Technologie.

Wesentliche Charakteristika von Intranets:

- auf TCP/IP basierend mit typischen anwendungsorientierten Diensten des Internet (Details zu IP und TCP)
- nur 1 Unternehmen als Netzbetreiber fungierend
- häufig LAN (aber nicht notwendigerweise)
- evtl. Übergang in das globale Internet

Gründe für Tendenz zu Intranets:

- stetig wachsende Bedeutung des Internet
- Internet-Technologien (insbesondere auch die Internet-Protokolle und Dienste) durch zahlreiche Hersteller unterstützt
- große Akzeptanz für Internet-spezifische anwendungsorientierte Dienste, wie E-Mail, WWW ("world wide web"/ "world wide wait ?!"), FTP,...
- Wunsch nach Öffnung des Unternehmensnetzes für Kommunikation in das / aus dem Internet
- einheitliche Plattform für internes und externes Netz

Intranets: Erwartungen und typische Probleme

- Allgemeine Erwartungen an Intranets:
 - in Intranet k\u00f6nnen Internet-Dienste aufwandsarm genutzt werden
 - unternehmensinterne Kommunikation ist "kompatibel" mit weltweiter Kommunikation
 - → Offenheit der eigenen Netzinfrastruktur, vereinfachte Nutzung und Wartung sowie gemeinsames Know-how für Intra- und Internet
 - gut erprobte Lösungen für die Kommunikation können genutzt werden
 → Lösungen durch Mio. Benutzer und weltweit erprobt
- Typische Probleme bei den TCP/IP-basierenden Kommunikationsinfrastrukturen für Intranets (und Internet):
 - IP (version 4) stößt gegenwärtig an Grenzen, u.a. Adressenengpass (-> IP v6), unzureichende Unterstützung von Mobilkommunikation
 - nur "best effort" -Dienste in Internet, d.h. keine Dienstgüte- (QoS- / Quality-of-Service-) Garantien
 - Netzsicherheit problematisch
 → "Firewalls", Datenverschlüsselung, "Closed Intranet"

Vergleich: Multiprozessorsysteme, LANs, MANs und WANs

