Apellido y Nombre:

Condición:

1	2	3	4	5a	5b ·	6a(i)	6a(ii)	6b	7	8a	8b	8c	9a	9b	10	Total
				14						Otto In		of the same	II ay		e de la	

Análisis Matemático II Licenciatura en Ciencias de la Computación EXAMEN 20/02/08

Parte teórica

Ejercicio 1: (4 ptos.)

Ejercicio 2: (4 ptos.) Ejercicio 3: (4 ptos.)

Ejercicio 4: (8 ptos.)

Parte práctica

Ejercicio 5:

a) (8 ptos.) Calcule la integral: $\int \frac{1}{6x + x^3} dx.$

b) (8 ptos.) Dibuje la región del plano comprendida entre las curvas $y=\frac{1}{4x-3}$, y=x, $x\equiv 2$. Calcule su área.

Ejercicio 6:

a) (14 ptos.) Decida si las siguientes series son convergentes, absolutamente convergentes o divergentes:

(i)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3n}{4n^2 + 3}$$
 (ii) $\sum_{n=1}^{\infty} \frac{n^2}{1 + n\sqrt{n}}$

b) (7 ptos.)Determine el intervalo de convergencia de la siguiente serie

$$\sum_{n=1}^{\infty} \frac{x^n}{n \arctan(n)}$$

Ejercicio 7:

a) (7 ptos.) Una lámina lisa caliente tiene temperatura T(x,y) en grados centígrados en el punto (x,y). Si T(2,1)=135, $\frac{\partial T}{\partial x}(2,1)=16$ y $\frac{\partial T}{\partial y}(2,1)=-15$, estime la temperatura en el punto (2,04,0,97).

b) (7 ptos.) Hallar el o los puntos de la esfera $x^2+y^2+z^2=4$ en los cuales el plano tangente es para lelo al plano x+y+z=4 .

Ejercicio 8: Calcule los siguientes límites

$$\lim_{(x,y)\to(1,0)} \frac{x+y}{x^2+y^2}$$

$$\lim_{(x,y)\to(1,1)} \frac{x-y}{x^3-y^3}$$

$$\lim_{(x,y)\to(4,4)}\frac{x-y}{\sqrt{x}-\sqrt{y}}$$

Ejercicio 9: (10 ptos.) Sea f la función dada por $f(x,y) = \ln(x^2 + y^2) - y$. Diga si tiene máximos, mínimos o puntos de silla en su dominio.

Ejercicio 10: (8 ptos.) Sea R la región del plano dada por $0 \le x \le y^3 \le 8$. Calcule la integral de la función $f(x,y) = xy^2$ en R.

Para alumnos libres

Ejercicio A: Calcule la siguiente integral impropia: $\int_0^1 \frac{1}{\sqrt[2]{y}} dy$.

Ejercicio B: Decida si la siguiente serie es convergente o divergente: $\sum_{n=1}^{\infty} \frac{n^2 - 1}{\sqrt{n} + 1}$