Survival Analysis LAB A

Kevin Ayala

October 04, 2018

```
getwd()
vet.data<-read.table("/Users/kevinlorenzoayala/desktop/vets.txt")</pre>
vet.data
#Question 1a.
vet.time<-vet.data$V1</pre>
head(vet.time)
## [1] 72 411 228 126 118 10
#Question 1b.
vet.cns<-vet.data$V2</pre>
head(vet.cns)
## [1] 1 1 1 1 1 1
#Question 1c.
library("survival")
vet.surv<-Surv(vet.data$V1,vet.data$V2)</pre>
head(vet.surv)
## [1] 72 411 228 126 118 10
\#did not use print function because I did not want to print all observations. Head was used instead.
#Question 1d.
vet.time.mean<-mean(vet.time)</pre>
vet.time.mean
## [1] 121.6277
#The mean of Vet.time is 121.6277, this is biased because there still exists censored data
#during this mean estimation.
#Question 1e.
sum(vet.cns)
## [1] 128
sum(vet.time*vet.cns)
## [1] 15632
#Sums are 128 and 15632 respectiveley, this means there are 128 observed values with a status
#1 and not 0. Of these observed values with a status of 1, their total time grouped
#together is 15632 becuase it is thier time multiplied by 1 then added on. The observations
#have been censored are not included because the observed time multiplied by 0 is still 0.
#Question 1f.
mean(vet.surv)
## [1] 61.28102
mean(vet.cns)
```

```
## [1] 0.9343066
# our mean is for vet.surv is 61.28, this mean has been generated by taking the average of two
#averages for vet.cns (.9343) and (121.6277) for vet.time known as a Kaplan-Meier Estimate.
retire <- read.table("/Users/kevinlorenzoayala/desktop/retire.txt", header=TRUE, skip=2)</pre>
head(retire)
     obs death ageentry age time gender
## 1 272
             0
                    733 870 137
                    746 804
## 2 67
             0
                              58
## 3 50
                   748 804
                              56
                                      2
             1
## 4 451
             1
                   751 777
                              26
                    759 781
                              22
## 5 455
             1
                                      1
## 6 192
             0
                    760 897 137
ret.surv<-Surv(retire$time, retire$death)</pre>
head(ret.surv)
## [1] 137+ 58+ 56
                       26
                           22 137+
#Question 2b
km.est<-survfit(ret.surv ~ 1)</pre>
km.est
## Call: survfit(formula = ret.surv ~ 1)
##
##
         n events median 0.95LCL 0.95UCL
##
       462
               176
                    129
                               118
#Question 2c
fit1<-survfit(Surv(retire$time, retire$death) ~ 1)</pre>
plot(fit1, col ="red", xlab = "Time In Months", ylab = "s(t)", main = "Retire Survival Function")
```

Retire Survival Function

#Question 2D
summary(km.est)

```
## Call: survfit(formula = ret.surv ~ 1)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
             458
                             0.998 0.00218
                                                     0.994
                                                                   1.000
       1
                        1
##
       2
             457
                        2
                             0.993 0.00377
                                                     0.986
                                                                   1.000
       6
             440
##
                        1
                             0.991 0.00439
                                                     0.983
                                                                   1.000
##
       7
             438
                        1
                             0.989 0.00492
                                                     0.979
                                                                   0.999
##
                        2
                             0.984 0.00586
       8
             434
                                                     0.973
                                                                   0.996
                             0.980 0.00668
##
       9
             427
                        2
                                                     0.967
                                                                   0.993
##
      10
             424
                        1
                             0.977 0.00705
                                                     0.964
                                                                   0.991
             423
                             0.975 0.00740
##
      11
                        1
                                                     0.961
                                                                   0.990
##
      12
             420
                        2
                             0.970 0.00806
                                                     0.955
                                                                   0.986
##
      13
             415
                        1
                             0.968 0.00838
                                                     0.952
                                                                   0.985
##
      14
             412
                        1
                             0.966 0.00868
                                                     0.949
                                                                   0.983
##
      15
             411
                             0.963 0.00897
                        1
                                                     0.946
                                                                   0.981
##
      16
             408
                        1
                             0.961 0.00926
                                                     0.943
                                                                   0.979
                             0.959 0.00953
##
      17
             406
                                                     0.940
                                                                   0.978
                        1
##
      18
             404
                        2
                             0.954 0.01006
                                                     0.934
                                                                   0.974
##
             399
                        3
      19
                             0.947 0.01080
                                                     0.926
                                                                   0.968
##
      21
             393
                        1
                             0.944 0.01104
                                                     0.923
                                                                   0.966
             392
##
      22
                        5
                             0.932 0.01214
                                                     0.909
                                                                   0.956
##
      23
             386
                             0.930 0.01235
                                                     0.906
                                                                   0.954
                        1
##
      24
             384
                        1
                             0.928 0.01255
                                                     0.903
                                                                   0.952
##
             380
      26
                        1
                             0.925 0.01275
                                                     0.900
                                                                   0.950
##
                        2
                                                                   0.946
      31
             367
                             0.920 0.01317
                                                     0.895
                             0.917 0.01338
##
      32
             362
                        1
                                                     0.892
                                                                   0.944
##
      33
             359
                        1
                             0.915 0.01358
                                                     0.889
                                                                   0.942
```

##	34	356	3	0.907 0.01418	0.880	0.935
##	35	351	2	0.902 0.01456	0.874	0.931
##	36	343	2	0.897 0.01494	0.868	0.927
##	37	337	2	0.891 0.01532	0.862	0.922
##	38	333	2	0.886 0.01569	0.856	0.917
##	39	330	3	0.878 0.01622	0.847	0.910
##	40	327	2	0.873 0.01656	0.841	0.906
##	41	324	3	0.865 0.01705	0.832	0.899
##	42	319	1	0.862 0.01721	0.829	0.896
##	43	317	2	0.856 0.01753	0.823	0.892
##	44	315	2	0.851 0.01784	0.817	0.887
##	45	312	1	0.848 0.01799	0.814	0.884
##	46	310	2	0.843 0.01828	0.808	0.879
##	47	307	1	0.840 0.01843	0.805	0.877
##	50	304	1	0.837 0.01857	0.802	0.875
##	51	302	1	0.835 0.01872	0.799	0.872
##	52	301	1	0.832 0.01886	0.796	0.870
##	53	298	1	0.829 0.01900	0.793	0.867
##	54	296	2	0.823 0.01928	0.786	0.862
##	56	294	3	0.815 0.01968	0.777	0.854
##	57	291	1	0.812 0.01981	0.774	0.852
##	58	287	1	0.809 0.01995	0.771	0.849
##	59	283	1	0.806 0.02008	0.768	0.847
##	60	280	2	0.801 0.02035	0.762	0.842
##	61	277	2	0.795 0.02061	0.756	0.836
##	63 65	273	2	0.789 0.02086	0.749	0.831
##	65 66	270	1	0.786 0.02099	0.746	0.828
##	66 67	266	1	0.783 0.02112	0.743	0.826
##	67	265	3	0.774 0.02149	0.733	0.818
## ##	68 60	261 258	2 2	0.768 0.02173	0.727	0.812
##	69 70	256 256	1	0.762 0.02197	0.721	0.807
##	70 71	256 254	4	0.760 0.02208 0.748 0.02253	0.717 0.705	0.804 0.793
##	72	254 250	2	0.742 0.02274	0.703	0.793
##	73	247	3	0.733 0.02305	0.689	0.739
##	74	244	4	0.721 0.02344	0.676	0.768
##	77	237	1	0.718 0.02354	0.673	0.765
##	79	235	1	0.714 0.02364	0.670	0.762
##	81	232	1	0.711 0.02374	0.666	0.759
##	82	231	2	0.705 0.02393	0.660	0.754
##	83	229	3	0.696 0.02420	0.650	0.745
##	85	226	1	0.693 0.02429	0.647	0.742
##	86	224	1	0.690 0.02438	0.644	0.739
##	89	218	1	0.687 0.02447	0.640	0.736
##	90	215	3	0.677 0.02475	0.630	0.727
##	93	210	1	0.674 0.02484	0.627	0.724
##	96	206	2	0.667 0.02502	0.620	0.718
##	97	204	1	0.664 0.02511	0.617	0.715
##	98	203	1	0.661 0.02520	0.613	0.712
##	100	199	3	0.651 0.02547	0.603	0.703
##	101	195	2	0.644 0.02564	0.596	0.696
##	102	193	1	0.641 0.02572	0.592	0.693
##	104	189	1	0.637 0.02581	0.589	0.690
##	106	186	2	0.631 0.02598	0.582	0.684

##	107	184	1	0.627 0.02607	0.578	0.680
##	108	183	4	0.613 0.02638	0.564	0.667
##	109	179	1	0.610 0.02646	0.560	0.664
##	110	178	2	0.603 0.02660	0.553	0.658
##	111	174	4	0.589 0.02688	0.539	0.644
##	112	170	2	0.582 0.02700	0.532	0.638
##	113	168	3	0.572 0.02718	0.521	0.628
##	114	165	1	0.568 0.02724	0.518	0.624
##	115	164	2	0.562 0.02734	0.510	0.618
##	117	159	1	0.558 0.02740	0.507	0.614
##	118	157	3	0.547 0.02756	0.496	0.604
##	119	154	2	0.540 0.02765	0.489	0.597
##	120	152	2	0.533 0.02774	0.481	0.590
##	122	149	1	0.530 0.02779	0.478	0.587
##	123	147	1	0.526 0.02783	0.474	0.583
##	124	143	1	0.522 0.02788	0.470	0.580
##	125	142	1	0.519 0.02792	0.467	0.576
##	127	140	3	0.507 0.02805	0.455	0.566
##	128	137	2	0.500 0.02813	0.448	0.558
##	129	135	2	0.493 0.02819	0.440	0.551
##	130	133	1	0.489 0.02822	0.437	0.548
##	132	132	1	0.485 0.02825	0.433	0.544
##	135	129	1	0.481 0.02828	0.429	0.540
##	136	126	1	0.478 0.02832	0.425	0.537

#This summary tells us that at 50 months, the rate of surviving is 0.837, at 51 months the #survival rate drops to .835 and continues to do so till 136 months at a rate of .478