一. 求下列极限 (50 分)

(1)
$$\lim_{n\to\infty} [(n+1)^{\frac{1}{7}} - n^{\frac{1}{7}}].$$

(2) $\lim_{n\to\infty} \left(\sin \frac{\pi}{\sqrt{n^2+1}} + \sin \frac{\pi}{\sqrt{n^2+2}} + \dots + \sin \frac{\pi}{\sqrt{n^2+n}} \right).$

(4)
$$\lim_{x\to 0} \frac{\sqrt{1-2x^2-1}}{x\sin 3x}$$
.
(5) $\lim_{n\to \infty} \frac{1}{2} \cdot \frac{3}{4} \cdot \dots \cdot \frac{2n-1}{2n}$.

二.
$$(10 \, f)$$
 设函数 $y = f(x)$ 在点 x 二阶可导,且 $f'(x) \neq 0$.若 $f(x)$ 存在反函数 $x = f^{-1}(y)$,试求 $(f^{-1})''(y)$.
 三. $(10 \, f)$ 讨论 $f(x) = \frac{1 - e^{\frac{1}{x}}}{1}$ 的间断点类型.

四. (10分) 若
$$f(x) = \begin{cases} e^{\frac{-1}{(x-1)^2}}, x \neq 1, \\ 0, x = 1, \end{cases}$$
 证明 $f^{(n)}(1) = 0.$

否连续?

 $\lim_{(3)} \left[\sin(\frac{\pi}{2}x) \right]^{\tan(\frac{\pi}{2}x)}.$

五. (10 分) 设
$$\begin{cases} x = \sqrt{1-t^2}, & \text{求} \frac{dy}{dx}, \frac{d^2y}{dx^2}. \end{cases}$$

六. (10 分) 当 a 为何值时? $f(x) = \begin{cases} x^2 \sin\frac{1}{x} & x \neq 0 \\ a & x = 0 \end{cases}$ 在 $x = 0$ 可导,并求 $f'(0)$,此时 $f'(x)$ 在 $x = 0$ 是