

Resolução NP1

Disciplina: Inteligência Computacional (C210/A)

Curso: Engenharia de Computação e Software

Prof^a. Victoria Dala Pegorara Souto

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Onsidere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

- Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- a) Realize uma busca em largura. Apresente a solução encontrada e os nós explorados.

Nós Explorados → a | e | c | b | g | d | z

Solução → a | e | g | z

O Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

b) Realize uma busca em profundidade. Apresente a solução encontrada e os nós explorados.

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

b) Realize uma busca em profundidade. Apresente a solução encontrada e os nós explorados.

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

b) Realize uma busca em profundidade. Apresente a solução encontrada e os nós explorados.

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

b) Realize uma busca em profundidade. Apresente a solução encontrada e os nós explorados.

O Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

 Realize uma busca em profundidade. Apresente a solução encontrada e os nós explorados.

Nós Explorados → a | e | g | z

Solução → a | e | g | z

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

Custo
$$\rightarrow$$
 9 + 5 + 2 = 16

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

O Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

$$a \rightarrow e = 18 + 7 = 25$$

 $a \rightarrow c = 10 + 9 = 19$
 $a \rightarrow b = 15 + 5 = 20$

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

$$a \rightarrow e = 18 + 7 = 25$$

 $a \rightarrow c = 10 + 9 = 19$
 $a \rightarrow b = 15 + 5 = 20$
 $c \rightarrow g = 5 + 5 + 9 = 19$
 $c \rightarrow d = 7 + 19 + 9 = 27$

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

a
$$\rightarrow$$
 e = 18 + 7 = 25
a \rightarrow c = 10 + 9 = 19
a \rightarrow b = 15 + 5 = 20
c \rightarrow g = 5 + 5 + 9 = 19
c \rightarrow d = 7 + 19 + 9 = 27
g \rightarrow z = 0 + 2 + 5 + 9 = 16

Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:

a
$$\rightarrow$$
 e = 18 + 7 = 25
a \rightarrow c = 10 + 9 = 19
a \rightarrow b = 15 + 5 = 20
c \rightarrow g = 5 + 5 + 9 = 19
c \rightarrow d = 7 + 19 + 9 = 27
 $q \rightarrow$ z = 0 + 2 + 5 + 9 = 16

- O Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
- d) Realize uma busca A*. Apresente a solução encontrada e seu respectivo custo.

Custo
$$\rightarrow$$
 9 + 5 + 2 = 16

- O Considere o grafo a seguir, no qual os números em preto representam o custo das transições (ou seja, o "peso das arestas") e os em cinza representam os valores da heurística de cada nó (ou seja, a "estimativa de custo em relação ao objetivo"). Considerando como vértice inicial o "a" e como objetivo o vértice "z", faça o que se pede:
 - e) Compare as soluções obtidas em (c) e (d). Qual delas é melhor? Justifique sua resposta.

Ambas as soluções possuem o mesmo custo, logo, uma é tão boa quanto a outra.

Considere um algoritmo genético aplicado à minimização da função de segundo grau $f(x) = x^2 - 4x - 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:

I_1 :	0	0	1	1	1	0
<i>I</i> ₂ :	1	1	0	1	0	1
<i>I</i> ₃ :	0	0	1	0	1	1
I_4 :	1	1	0	0	0	0

Considere um algoritmo genético aplicado à minimização da função de segundo grau $f(x) = x^2 - 4x - 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:

I_1 :	0	0	1	1	1	0	-14
I_2 :	1	1	0	1	0	1	+21
<i>I</i> ₃ :	0	0	1	0	1	1	-11
I_4 :	1	1	0	0	0	0	+16

Considere um algoritmo genético aplicado à minimização da função de segundo grau $f(x) = x^2 - 4x - 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:

I_1 :	0	0	1	1	1	0
I_2 :	1	1	0	1	0	1
<i>I</i> ₃ :	0	0	1	0	1	1
I_4 :	1	1	0	0	0	0

 $f(x) = x^2 - 4x - 32$

a) Calcule o grau de adaptação de cada indivíduo.

$$I_1 = 220$$
 -11
 $I_2 = 325$
 $I_3 = 133$
 $I_4 = 160$

-14

+21

Considere um algoritmo genético aplicado à minimização da função de segundo grau $f(x) = x^2 - 4x - 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:

I_1 :	0	0	1	1	1	0	-14
<i>I</i> ₂ :	1	1	0	1	0	1	+21
<i>I</i> ₃ :	0	0	1	0	1	1	-11
I_4 :	1	1	0	0	0	0	+16

b) Calcule o grau de adaptação médio da população.

$$g_{medio} = \frac{838}{4} = 209,5$$

$$f(x) = x^2 - 4x - 32$$

Considere um algoritmo genético aplicado à minimização da função de segundo grau $f(x) = x^2 - 4x - 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:

I_1 :	0	0	1	1	1	0	-14
I_2 :	1	1	0	1	0	1	+21
I_3 :	0	0	1	0	1	1	-11
I_4 :	1	1	0	0	0	0	+16

$$f(x) = x^2 - 4x - 32$$

c) Calcule o grau de aptidão de cada indivíduo.

$$f(I_1) = \frac{g(I_1)}{\sum_{i=1}^4 g(I_i)} = \frac{220}{838} = 0,26$$

$$f(I_2) = \frac{g(I_1)}{\sum_{i=1}^4 g(I_i)} = \frac{325}{838} = 0,39$$

$$f(I_3) = \frac{g(I_1)}{\sum_{i=1}^4 g(I_i)} = \frac{133}{838} = 0,16$$

$$f(I_4) = \frac{g(I_1)}{\sum_{i=1}^4 g(I_i)} = \frac{160}{838} = 0,19$$

- Considere um algoritmo genético aplicado à minimização da função de segundo grau $f(x) = x^2 4x 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:
 - d) Considere que os indivíduos 1 e 3 foram selecionados para crossover, e que esta operação acontecerá no segundo ponto de corte. Escreva os indivíduos que serão gerados neste processo, bem como seus respectivos graus de adaptação.

			Ponto	de Corte	9									
I_1 :	0	0	1	1	1	0	<i>I</i> ₅ :	0	0	1	0	1	1	-11
I_3 :	0	0	1	0	1	1	<i>I</i> ₆ :	0	0	1	1	1	0	-14
			Pa	is						Fill	hos	$I_4 = I_5 =$	133 220	

- Considere um algoritmo genético aplicado à minimização da função de segundo grau $f(x) = x^2 4x 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:
 - e) Considere que o indivíduo 2 sofrerá uma mutação do tipo flip envolvendo no quarto e no quinto genes. Escreva como ficará este indivíduo após esta operação, bem como seu novo grau de adaptação.

- Considere um algoritmo genético aplicado à **minimização** da função de segundo grau $f(x) = x^2 4x 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:
 - f) Neste momento, a população possui 6 indivíduos, mas pode conter somente 4 (módulo de população). Submeta a população a um operador de elitismo, o qual removerá os dois piores indivíduos da população. Indique quais indivíduos serão removidos.

I_1 :	0	0	1	1	1	0	$I_1 = 220$
I_2 :	0	1	0	1	1	1	$I_2 = 253$
I_3 :	0	0	1	1	0	1	$I_3 = 133$
I_4 :	1	1	0	0	0	0	$I_4=160$
<i>I</i> ₅ :	0-0	0	1	0	1	1	$I_5 = 133$
<i>I</i> ₆ :	0	0	1	1	1	0	$I_6 = 220$
7 400 1							A .

- Considere um algoritmo genético aplicado à **minimização** da função de segundo grau $f(x) = x^2 4x 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:
 - f) Neste momento, a população possui 6 indivíduos, mas pode conter somente 4 (módulo de população). Submeta a população a um operador de elitismo, o qual removerá os dois piores indivíduos da população. Indique quais indivíduos serão removidos.

I_1 :	0	0	1	1	1	0	$I_1 = 220$
<i>I</i> ₂ :	0	0	1	1	0	1	$I_2 = 133$
<i>I</i> ₃ :	1	1	0	0	0	0	$I_3 = 160$
I_4 :	0	0	1	0	1	1	$I_4 = 133$

Nova População

Aptidão Total = 646

Considere um algoritmo genético aplicado à **minimização** da função de segundo grau $f(x) = x^2 - 4x - 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:

g) Calcule o grau de adaptação médio da nova população.

I_1 :	0	0	1	1	1	0	$I_1 = 220$	646
<i>I</i> ₂ :	0	0	1	1	0	1	$I_2 = 133$	$g_{medio} = \frac{161,5}{4}$
<i>I</i> ₃ :	1	1	0	0	0	0	$I_3 = 160$	
I_4 :	0	0	1	0	1	1	$I_4 = 133$	

Nova População

Aptidão Total = 646

- Considere um algoritmo genético aplicado à **minimização** da função de segundo grau $f(x) = x^2 4x 32$ no intervalo [-31, +31]. Uma representação dos cromossomos deste problema pode ser feita utilizando um vetor de 6 bits, na qual o primeiro bit (mais à esquerda) representa o sinal (0 significa negativo e 1 positivo) e os demais bits representam a magnitude do valor associado (na base 2). Exemplo: o cromossomo 010011 representa o valor -19, enquanto o cromossomo 101101 representa o valor +13. Considere a população inicial a seguir, com 4 indivíduos:
 - h) É possível afirmar que esta geração melhorou a população de soluções candidatas? Justifique.

SIM, pois o grau de aptidão médio diminuiu → Problema de Minimização.

Considere a função "esfera" de três variáveis com mínimo global f(0,0,0) = 0 dada por $f(x,y,z) = x^2 + y^2 + z^2$. No contexto de uma otimização por Enxame de Partículas (PSO - Particle Swarm Optimization), uma população foi criada aleatoriamente com os seguintes indivíduos, representados com suas respectivas posições e velocidades vetoriais iniciais:

P1	Pos.:	+3,0	+1,3	+2,7
FI	Vel.:	+1,4	-0,6	+1,9
P2	Pos.:	+5,5	-0,6	+1,1
P2	Vel.:	+0,8	+0,4	+1,0
P3	Pos.:	-0,5	-2,2	-1,8
P3	Vel.:	+2,4	+1,9	+1,0

Considere a função "esfera" de três variáveis com mínimo global f(0,0,0) = 0 dada por $f(x,y,z) = x^2 + y^2 + z^2$. No contexto de uma otimização por Enxame de Partículas (PSO - Particle Swarm Optimization), uma população foi criada aleatoriamente com os seguintes indivíduos, representados com suas respectivas posições e velocidades vetoriais iniciais:

P1	Pos.:	+3,0	+1,3	+2,7
FI	Vel.:	+1,4	-0,6	+1,9
P2	Pos.:	+5,5	-0,6	+1,1
PZ	Vel.:	+0,8	+0,4	+1,0
P3	Pos.:	-0,5	-2,2	-1,8
P3	Vel.:	+2,4	+1,9	+1,0

a) Para cada indivíduo, encontre qual indivíduo estará mais próximo dele. Para tal, utilize a métrica de distância euclidiana.

Partícula 1

$$d(p_1, p_1) = 0.00$$

 $d(p_1, p_2) = 3.52^*$
 $d(p_1, p_3) = 6.69$

Partícula 3

$$d(p_3, p_1) = 6.69^*$$

 $d(p_3, p_2) = 6.85$
 $d(p_3, p_3) = 0.00$

Partícula 2

$$d(p_2, p_1) = 3.52^*$$

 $d(p_2, p_2) = 0.00$
 $d(p_2, p_3) = 6.85$

Considere a função "esfera" de três variáveis com mínimo global f(0,0,0) = 0 dada por $f(x,y,z) = x^2 + y^2 + z^2$. No contexto de uma otimização por Enxame de Partículas (PSO - Particle Swarm Optimization), uma população foi criada aleatoriamente com os seguintes indivíduos, representados com suas respectivas posições e velocidades vetoriais iniciais:

P1	Pos.:	+3,0	+1,3	+2,7
FI	Vel.:	+1,4	-0,6	+1,9
P2	Pos.:	+5,5	-0,6	+1,1
PZ	Vel.:	+0,8	+0,4	+1,0
P 3	Pos.:	-0,5	-2,2	-1,8
	Vel.:	+2,4	+1,9	+1,0

b) Com base no resultado obtido no item anterior, realize o ajuste de velocidade nos indivíduos, por meio da correspondência com o vizinho mais próximo. Mostre as novas velocidades das partículas após esta operação.

P1	Pos.:	+3,0	+1,3	+2,7	
PI	Vel.:	+0,8	0,4	1,0	P2
					1 2
P2	Pos.:	+5,5	-0,6	+1,1	
P2	Vel.:	+1,4	-0,6	+1,9	P1
D2	Pos.:	-0,5	-2,2	-1,8	
P3	Vel.:	+1,4	-0,6	+1,9	P1

Considere a função "esfera" de três variáveis com mínimo global f(0,0,0) = 0 dada por $f(x,y,z) = x^2 + y^2 + z^2$. No contexto de uma otimização por Enxame de Partículas (PSO - Particle Swarm Optimization), uma população foi criada aleatoriamente com os seguintes indivíduos, representados com suas respectivas posições e velocidades vetoriais iniciais:

P1	Pos.:	+3,0	+1,3	+2,7
PI	Vel.:	+0,8	0,4	1,0
P2	Pos.:	+5,5	-0,6	+1,1
P2	Vel.:	+1,4	-0,6	+1,9
Р3	Pos.:	-0,5	-2,2	-1,8
	Vel.:	+1,4	-0,6	+1,9

c) Realize uma operação de craziness no primeiro indivíduo da população. Considere que esta operação aumenta em 10% a magnitude da velocidade em x, diminui em 10% a magnitude da velocidade em y e inverte o sentido da velocidade em z do indivíduo. Mostre a nova velocidade deste indivíduo após esta operação.

P1	Pos.:	+3,0	+1,3	+2,7
FI	Vel.:	+0,88	0,36	-1,0
P2	Pos.:	+5,5	-0,6	+1,1
PZ	Vel.:	+1,4	-0,6	+1,9
Р3	Pos.:	-0,5	-2,2	-1,8
	Vel.:	+1,4	-0,6	+1,9

Considere a função "esfera" de três variáveis com mínimo global f(0,0,0) = 0 dada por $f(x,y,z) = x^2 + y^2 + z^2$. No contexto de uma otimização por Enxame de Partículas (PSO - Particle Swarm Optimization), uma população foi criada aleatoriamente com os seguintes indivíduos, representados com suas respectivas posições e velocidades vetoriais iniciais:

P1	Pos.:	+3,0	+1,3	+2,7
FI	Vel.:	+0,88	0,36	-1,0
P2	Pos.:	+5,5	-0,6	+1,1
P2	Vel.:	+1,4	-0,6	+1,9
P 3	Pos.:	-0,5	-2,2	-1,8
	Vel.:	+1,4	-0,6	+1,9

d) Realize a atualização da posição dos indivíduos. Mostre as novas posições das partículas após esta operação.

P1	Pos.:	+3,88	+1,66	+1,7
PI	Vel.:	+0,88	0,36	-1,0
P2	Pos.:	+6,9	-1,2	+3,0
P2	Vel.:	+1,4	-0,6	+1,9
P3	Pos.:	+0,9	-2,8	+0,1
	Vel.:	+1,4	-0,6	+1,9

Considere a função "esfera" de três variáveis com mínimo global f(0,0,0) = 0 dada por $f(x,y,z) = x^2 + y^2 + z^2$. No contexto de uma otimização por Enxame de Partículas (PSO - Particle Swarm Optimization), uma população foi criada aleatoriamente com os seguintes indivíduos, representados com suas respectivas posições e velocidades vetoriais iniciais:

D4	Pos.:	+3,88	+1,66	+1,7
P1	Vel.:	+0,88	0,36	-1,0
P2	Pos.:	+6,9	-1,2	+3,0
P2	Vel.:	+1,4	-0,6	+1,9
Р3	Pos.:	+0,9	-2,8	+0,1
	Vel.:	+1,4	-0,6	+1,9

e) Faça a avaliação da população, indicando seu melhor indivíduo. Para tal, utilize a própria função do enunciado.

$$f(x, y, z) = x^2 + y^2 + z^2$$

$$f(p_1) = 20,7$$

$$f(p_2) = 58.0$$

$$f(p_3) = 8.66^*$$

Considere a função "esfera" de três variáveis com mínimo global f(0,0,0) = 0 dada por $f(x,y,z) = x^2 + y^2 + z^2$. No contexto de uma otimização por Enxame de Partículas (PSO - Particle Swarm Optimization), uma população foi criada aleatoriamente com os seguintes indivíduos, representados com suas respectivas posições e velocidades vetoriais iniciais:

P1	Pos.:	+3,88	+1,66	+1,7
	Vel.:	+0,88	0,36	-1,0
P2	Pos.:	+6,9	-1,2	+3,0
	Vel.:	+1,4	-0,6	+1,9
P3	Pos.:	+0,9	-2,8	+0,1
	Vel.:	+1,4	-0,6	+1,9

f) Considerando que o critério de parada seja "distância do melhor indivíduo da população ao objetivo ser inferior a 3", é possível afirmar que a execução do algoritmo terá chegado ao fim? Justifique.

$$d(p_1, obj) = 4,55$$

$$d(p_2, obj) = 7,61$$

$$d(p_3, obj) = 2,94^*$$

Sim, pois o melhor indivíduo está a uma distância de 2,94 do objetivo.

