Lecture 26

Time Series Analysis

STAT 8020 Statistical Methods II December 1, 2020 Analysis

CLEMS 1

Time Series Data
Objectives of Time
Series Analysis
Features of Times
Series
Autocovariances
A Case Study

Notes

Whitney Huang Clemson University

Agenda

- **1** Time Series Data
- **2** Objectives of Time Series Analysis
- Features of Times Series
- Means & Autocovariances
- 6 A Case Study

26.2

Level of Lake Huron 1875-1972

Annual measurements of the level of Lake Huron in feet. [Source: Brockwell & Davis, 1991]

Time Series Analysis
CLEMS N
Time Series Data

Notes			

Notes			

Mauna Loa Atmospheric CO_2 Concentration

Monthly atmospheric concentrations of CO_2 at the Mauna Loa Observatory [Source: Keeling & Whorf, Scripps Institution of Oceanography (SIO)]

Notes			

US Unemployment Rate 1948 Jan. – 2020 Oct.

Notes

Airflow Signal

A "normal" patient's 100 Hz sleep airflow signal [Source: Huang et al. 2020+]

Analysis
CLEMS#N
Time Series Data

Notes				

Time Series Data & Models

- A time series is a set of observations made sequentially in "time"
- Time series analysis is the area of statistics which deals with the analysis of dependency between different observations in time series data
- \bullet A time series model is a probabilistic model that describes ways that the series data $\{y_t\}$ could have been generated
- More specifically, a time series model is usually a probability model for $\{Y_t:t\in T\}$, a collection of random variables indexed in time

Notes			

Some Objectives of Time Series Analysis

- Find a statistical model that adequately explains the dependence observed in a time series
- To conduct statistical inferences, e.g., Is there evidence of a decreasing trend in the Lake Huron depths?
- To forecast future values of the time series based on those we have already observed

N	otes			
_				
_				
_				
_				
_				

Features of Times Series

- Trends
 - One can think of trend, μ_t as continuous changes, usually in the mean, over longer time scales
 - Usually the form of the trend is unknown and needs to be estimated. When the trend is removed, we obtain a detrended series
- Seasonal or periodic components
 - \bullet A seasonal component s_t constantly repeats itself in time, i.e., $s_t = s_{t+kd}$
 - We need to estimate the form and/or the period d of the seasonal component, i.e, to deseasonalize the series
- The "noise" process
 - The noise process, η_t , is the component that is neither trend nor seasonality
 - We will focus on finding plausible (typically stationary) statistical models for this process

ne Series nalysis	Notes		
EMS#N	Notes		
res of Times			

Combining Trend μ_t , Seasonality s_t , and Noise η_t Together

There are two commonly used approaches

• Additive model:

$$y_t = \mu_t + s_t + \eta_t$$

• Multiplicative model:

$$y_t = \mu_t s_t \eta_t$$

If all $\{y_t\}$ are positive then we obtain the additive model by taking logarithms:

$$\log y_t = \log \mu_t + \log s_t + \log \eta_t$$

Means, Autocovariances, and Stationary Processes

ullet The mean function of $\{Y_t\}$ is

$$\mu_t = \mathrm{E}[Y_t], \quad t \in T$$

ullet The autocovariance function of $\{Y_t\}$ is

$$\gamma(t, t') = \text{Cov}(Y_t, Y_{t'}) = \text{E}[(Y_t - \mu_t)(Y_{t'} - \mu_{t'})], \quad t, t' \in T$$

When $t=t^\prime$ we obtain $\gamma(t,t') = \operatorname{Cov}(Y_t,Y_t) = \operatorname{Var}(Y_t) = \sigma_t^2$, the variance function of Y_t

Notes

Notes

Notes

Autocorrelation Function

The autocorrelation function (ACF) of $\{Y_t\}$ is

$$\rho(t,t') = \operatorname{Corr}(Y_t,Y_{t'}) = \frac{\gamma(t,t')}{\sqrt{\gamma(t,t)\gamma(t',t')}}$$

It measures the strength of linear association between Y_t and $Y_{t'}$

Properties:

- $0 -1 \le \rho(t, t') \le 1, \quad t, t' \in T$

TTT				
es				
	,			

Stationary Processes

We will still try to keep our models for $\{\eta_t\}$ as simple as possible by assuming stationarity, meaning that some characteristic of $\{\eta_t\}$ does not depend on the time points, only on the "time lag" between time points:

$$\bullet \ \mathrm{E}[\eta_t] = 0, \quad \forall t \in T$$

$$\bullet \operatorname{Cov}(\eta_t, \eta_{t'}) = \gamma(t' - t) = \operatorname{Cov}(\eta_{t+s}, \eta_{t'+s})$$

 \Rightarrow autocorrelation function (ACF):

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

Time Series Analysis			
CLEMS			
Means & Autocovariances			

Autoregressive Moving Average (ARMA) Models

Let $\{Z_t\}$ be independent and identical random variables that follow $N(0, \sigma^2)$

- Moving Average Processes (MA(q)): $\eta_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} \cdots + \theta_q Z_{t-q}$
- Autoregressive Processes (AR(p)): $\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t$
- Autoregressive Moving Average Processes $\begin{array}{l} \mathsf{ARMA}(\mathsf{p},\mathsf{q}) \colon \eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + \\ Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_q Z_{t-q} \end{array}$

N	Otos	

Notes

Autocorrelation Plot

Lake Huron Case Study

- Detrending
- Model selection and fitting
- Forecasting

See R lab 22 for a demo

Notes	
	_
Notes	
Notes	
Notes	