Local Average Treatment Effects: Demand Curves

Chris Conlon

April 4, 2021

Applied Econometrics

A Classic Example

- What is the effect of prices on quantity demanded?
- But a regression of $\log(q_t) = \beta_0 + \beta_1 \log(p_t) + u_t$ is going to be flawed.
- For one thing, how do we know that relationship represents supply or demand?
- ullet Imagine an instrument $z_t \in \{0,1\}$ that reduces supply but does not effect demand.
- What about?
 - Monotonicity?
 - Heterogeneity in treatemnt effects?
 - Exclusion Restriction?

LATE at the Fulton Fish Market (Graddy 1995)

 ${\it Table~2}$ Ordinary Least Squares and Instrumental Variable Estimates of Demand Functions with Stormy Weather as an Instrument

Variable	Ordinary least squares (dependent variable: log quantity)		Instrumental variable	
	(1)	(2)	(3)	(4)
Log price	-0.54	-0.54	-1.08	-1.22
	(0.18)	(0.18)	(0.48)	(0.55)
Monday		0.03		-0.03
		(0.21)		(0.17)
Tuesday		-0.49		-0.53
		(0.20)		(0.18)
Wednesday		-0.54		0.58
		(0.21)		(0.20)
Thursday		0.09		0.12
		(0.20)		(0.18)
Weather on shore		-0.06		0.07
		(0.13)		(0.16)
Rain on shore		0.07		0.07
		(0.18)		(0.16)
R^2	0.08	0.23		
No. of Obs.	111	111	111	111

Source: The data used in these regressions are available by contacting the author. Note: Standard errors are reported in parentheses.

Wald Estimator

Focus on the simple case:

- $z_t \in \{0,1\}$ where 1 denotes "stormy at sea" and 0 denotes "calm at sea"
- Idea is that offshore weather makes fishing more difficult but doesn't change onshore demand.
- Ignore x (for now at least) or assume we condition on each value of x.

$$\hat{\alpha}_{1,0} \to^p \frac{\mathbb{E}[q_t | z_t = 1] - \mathbb{E}[q_t | z_t = 0]}{\mathbb{E}[p_t | z_t = 1] - \mathbb{E}[p_t | z_t = 0]} \equiv \alpha_{1,0}$$

- If we have homogenous α then any IV gives us a consistent estimate of α_1
- If we are in complicated (nonlinear, heterogeneous) then $\alpha_{1,0}$ the object we recover, is not an estimator of a structural parameter.
- Moreover, this is at best a LATE, and thus it differs depending on which instrument we use!

AIG: Assumptions

- 1. Regularity conditions on $q_t^d, q_t^s, p_t, z_t, w_t$ first and second moment and is stationary, etc.
 - $q_t^d(p,z,x)$, $q_t^s(p,z,x)$ are continuously differentiable in p.
- 2. $z_t \in \{0,1\}$ is a valid instrument in q_t^d
 - ullet Exclusion: for all p,t

$$q_t^d(p, z = 1, x_t) = q_t^d(p, z = 0, x_t) \equiv q_t^d(p, x_t)$$

ie: conditioning on p_t means no dependence on z_t

- Relevance: for some period t: $q_t^s(p_t, 1, x_t) \neq q_t^s(p_t, 0, x_t)$. ie: z_t actually shifts supply somewhere!
- Independence: ϵ_t, η_t, z_t are mutually independent conditional on $x_t.$

AGI: Structural Interpretation

In order to interpret the Wald estimator $\alpha_{1,0}$ we make some additional economic assumptions on the structure of the problem:

- 1. Observed price is market clearing price $q_t^d(p_t) = q_t^s(p_t, z_t)$ for all t. (This means no frictions!).
- 2. "Potential prices": for each value of z there is a unique market clearing price

$$\forall z,t: \tilde{p}(z,t) \text{ s.t. } q_t^d(\tilde{p}(z,t)) = q_t^s(\tilde{p}(z,t),z).$$

 $\tilde{p}(z,t)$ is the potential price under any counterfactual (z,t)

AGI: Structural Interpretation

- Just like in IV we need denominator to be nonzero so that $E[p_t|z_t=1] \neq E[p_t|z_t=0].$
- Other key assumption is the familiar monotonicity assumption
 - $\tilde{p}(z,t)$ is weakly increasing in z.
 - Just like in program evaluation this is the key assumption. There it rules out "defiers" here it allows us to interpret the average slope as $\alpha_{1,0}$.
 - Assumption is untestable because you do not observe both potential outcomes $\tilde{p}(0,t)$ and $\tilde{p}(1,t)$ (same as in program evaluation).
 - Any story about IV is just a story! (Always the case!) unless we have repeated observations on the same individual.
- Monotonicity makes extending to multiple product case difficult/impossible.

Conlon Mortimer RJE (2021)

Wald Estimator: Redux

Consider the following Wald estimator:

$$\begin{aligned} \operatorname{Wald}\left(p_{j},p_{j}',x\right) &= \frac{q_{k}\left(p_{j}',x\right) - q_{k}\left(p_{j},x\right)}{-\left(q_{j}\left(p_{j}',x\right) - q_{j}\left(p_{j},x\right)\right)} \\ \lim_{p_{j}' \to p_{j}} \operatorname{Wald}\left(p_{j},p_{j}',x\right) &\to \frac{\frac{\partial q_{k}}{\partial P_{j}}\left(p_{j},x\right)}{-\frac{\partial q_{j}}{\partial P_{j}}\left(p_{j},x\right)} \equiv D_{jk}\left(p_{j},x\right) \end{aligned}$$

We call $D_{jk}(p_j, x)$ the Diversion Ratio.

As we increase P_j and people leave what fraction switch to k?

Wald Estimator: Relation to IV Case

To solidify the connection with the quasi-experimental LATE framework, recognize that our hypothetical price change experiment can be interpreted using the following definitions:

- Outcome $Y_i \in \{0,1\}$ denotes the event that consumer i purchases product k: $d_{ik}(P_j) = 1$.
- Treatment $T_i \in \{0, 1\}$ denotes the event that consumer i does not purchase product j. In other words $T_i = 0$ implies $d_{ij}(P_j) = 1$ and $T_i = 1$ implies $d_{ij}(P_j) = 0$.
- **Instrument** $Z_i = P_j$ the price of j induces consumers into not purchasing j.

Diversion: Why do we care?

• Related to cross price elasticity
$$D_{jk} = \frac{\frac{\partial q_k}{\partial P_j}(p_j, x)}{-\frac{\partial q_j}{\partial P_j}(p_j, x)} = -\frac{\epsilon_{jk}}{\epsilon_{jj}} \times \frac{q_k}{q_j}$$

• Related to multi-product differentiated Bertrand FOC (MR = MC):

$$p_j(\mathbf{p})\left[1 + \frac{1}{\epsilon_{jj}(\mathbf{p})}\right] = mc_j + \sum_k (p_k - mc_k) \cdot D_{jk}$$

• $D_{jk} \in [0,1]$ and $\sum_k D_{jk} = 1$ and high-diversion ratios indicate close substitutes.

Diversion: Assumptions

Like in multiple discrete choice lectures assume that:

- 1. Consumers make mutually exclusive and exhaustive discrete choice.
- 2. Can be guaranteed by presence of an outside option.
- 3. Utility $u_{ij}(x)$ can be deterministic or stochastic.
- 4. x contains all covariates that don't change (other prices and characteristics).
- 5. Could be mixed logit but doesn't need to be...

$$d_{ij}(p_j,x) = \begin{cases} 1 & u_{ij}(p_j,x) > u_{ij'}(p_j,x) \text{ for all } j' \in \mathcal{J} \text{ and } j' \neq j. \\ 0 & o.w. \end{cases}$$

6. $s_{ij}(x) = \int d_{ij}(x) dF_i$ (share of individuals choosing j) and $q_j(x) = s_j(x) \cdot M$.

Diversion as LATE

Analogue to LATE Theorem (Imbens Angrist (1994))

Under the following conditions:

- (a) Mutually Exclusive and Exhaustive Discrete Choice: $d_{ij} \in \{0,1\}$ and $\sum_{i \in \mathcal{I}} d_{ij} = 1$.
- (b) Exclusion: $u_{ik}(p_j, x) = u_{ik}(p'_i, x)$ for all $k \neq j$ and any (p_i, p'_i) ;
- (c) Monotonicity: $u_{ij}(p'_i, x) \leq u_{ij}(p_j, x)$ for all i and any $(p'_i > p_j)$; and
- (d) Existence of a first-stage: $d_{ij}(p_j, x) = 1$ and $d_{ij}(p'_i, x) = 0$ for $(p'_i > p_j)$ for some i;
- (e) Random Assignment: $(u_{ij}(P_j, x), u_{ik}(P_j, x)) \perp P_j$. then the Wald estimator

$$\frac{q_k(p'_j, x) - q_k(p_j, x)}{-\left(q_j(p'_j, x) - q_j(p_j, x)\right)} = \mathbb{E}[D_{jk,i}(x)|d_{ij}(p_j, x) > d_{ij}(p'_j, x)]$$

Proof in Conlon Mortimer (2021).

Compliance Types

Compliance Type	$(d_{ij}(p_j,x),d_{ij}(p'_j,x))$	Description	
Always Takers	(0,0)	Don't buy j at either price.	
Never Takers	(1, 1)	Buy j at either price	
Compliers	(1, 0)	Only buy j at lower price $p_j < p_j^\prime$	
Defiers	(0, 1)	Only buy j at higher prices $p_j^\prime > p_j$	
Treatment Effects Parameter	Abbreviation	Expression	
Average Treatment Effect	ATE	$\mathbb{E}[D_{jk,i}(x)]$	
Average Treatment on the Treated	ATT	$\mathbb{E}[D_{jk,i}(x) d_{ij}(p_j,x)=0]$	
Average Treatment on the Untreated	ATUT	$\mathbb{E}[D_{jk,i}(x) d_{ij}(p_j,x)=1]$	
Local Average Treatment Effect	LATE	$\mathbb{E}[D_{jk,i}(x) d_{ij}(p_j,x) = 1, d_{ij}(p'_j,x) = 0]$	

Diversion as LATE

What is the point?

- 1. Ceteris paribus price change $p_j \to p_j'$ gives the average diversion ratio among the compliers.
- 2. Compliers buy j at p_j but not at p'_j .
- 3. Choice of P_j is arbitrary could have been any z_j or $-z_j$ satisfying monotonicity:

$$u_{ij}(z'_j, x) \le u_{ij}(z_j, x)$$
 for all i and any $(z'_j > z_j)$.

4. Under pretty weak assumptions $ATT = \mathbb{E}[D_{jk,i}(x)|d_{ij}(p_j,x)=0] = \frac{s_{ik}(x)}{1-s_{ij}(x)}$

Diversion under RC Logit

We can always write any treatment effect parameter (LATE, ATE, ATUT, etc.) as weighted average over individual diversion ratios:

$$\mathbb{E}[D_{jk,i}(x)|?] = \int D_{jk,i}(x)w_{ij}(x)dF_i$$

The weights $w_{ij}(x)$ depend on the intervention:

- Price change
- Quality change
- Second-choice/Product Removal

Weighting for Mixed Logit

For mixed logit: $D_{jk,i}(x) = \frac{s_{ik}(x)}{1 - s_{ij}(x)}$

	$w_{ij}(x) \propto$	$\widetilde{w}_{ij}(x) \propto$
second choice data	$s_{ij}(x)$	$\frac{s_{ij}(x)}{1 - s_{ij}(x)}$
price change $rac{\partial}{\partial p_j}$	$s_{ij}(x) \cdot (1 - s_{ij}(x)) \cdot \alpha_i $	$s_{ij}(x)\cdot lpha_i $
characteristic change $rac{\partial^2}{\partial x_j}$	$s_{ij}(x) \cdot (1 - s_{ij}(x)) \cdot \beta_i $	$s_{ij}(x) \cdot \beta_i $
small quality change $rac{\partial^2}{\partial ar{\xi}_i}$	$s_{ij}(x)\cdot (1-s_{ij}(x))$	$s_{ij}(x)$
finite price change $w_i(p_j,p_j^\prime,x)$	$ s_{ij}(p_j',x)-s_{ij}(p_j,x) $	$\frac{ s_{ij}(p'_{j},x) - s_{ij}(p_{j},x) }{1 - s_{ij}(x)}$
finite quality change $w_i(\xi_j,\xi_j',x)$	$ s_{ij}(\xi_j',x) - s_{ij}(\xi_j,x) $	$\frac{ s_{ij}(\xi'_{j},x) - s_{ij}(\xi_{j},x) }{1 - s_{ij}(x)}$
willingness to pay (WTP)	$= \frac{s_{ij}(x)}{ \alpha_i \cdot s_{i0}(x)}$	$\frac{1 - s_{ij}(x)}{s_{ij}(x)}$ $\frac{ \alpha_i \cdot s_{i0}(x)(1 - s_{ij}(x))}{ \alpha_i \cdot s_{i0}(x)(1 - s_{ij}(x))}$

Allows us to calculate any average diversion ratio we want!

Decomposition

