

Sebastian Złotek

Metody i środki analizy ruchu sieciowego z uwzględnieniem aplikacji i trendów statystycznych

Spis treści

Wprowadzenie	1
Badany zbiór danych	1
Tabela typów danych i kolumn	2
Cel	5
Sposoby monitorowania ruchu sieciowego	6
Analiza danych	7
Wyniki	13
Kod	21
Wnioski	23
Źródła	24

Wprowadzenie

Analiza ruchu sieciowego to istotna kwestia szczególnie w kontekście informatyki śledczej czy monitoringu bezpieczeństwa sieci. Wiele firm stale inwestuje w infrastrukturę IT, aby dynamicznie się rozwijać i zwiększać swoją konkurencyjność. Prowadzi to do znaczącego wzrostu natężenia ruchu sieciowego. W systemie pojawia się coraz więcej urządzeń, a do tego rośnie ilość przechowywanych danych, które należy odpowiednio zabezpieczać. Utrzymanie jego wydajności i bezpieczeństwa na najwyższym poziomie nie polega jednak wyłącznie na inwestowaniu w nowe urządzenia. Problemy z działaniem często spowodowane są np.:

- Niepoprawną konfiguracją,
- "zatorami" w transferze danych,
- instalacją oprogramowania pochodzącego z niepewnych źródeł, \square zewnętrznymi atakami hakerów.

Im bardziej rozbudowana infrastruktura IT, tym trudniej jest ją kontrolować. Często okazuje się, że klasyczne oprogramowanie monitorujące

jest niewystarczające. Dużo więcej możliwości zapewniają narzędzia do inteligentnej analizy systemów informatycznych.

Jednak najsłabszym ogniwem każdego systemu informatycznego jest jego użytkownik. Pracownik firmy może np. zainstalować na komputerze oprogramowanie pochodzące z niepewnego źródła. Ruch sieciowy mogą spowalniać przestarzałe, dawno już nieaktualizowane programy.

Badany zbiór danych

Zbiór danych zawiera informacje dotyczące przepływu danych w sieci komputerowej. Dane posiadają około 60 kolumn i 500 tysięcy wierszy. Każda kolumna została opisana w tabeli poniżej (str.3).

Do przeprowadzenia analizy użyte zostało środowisko RStudio, oraz wersja języka programowania R 4.2.0.

^	X.U.FEFF.ts	src_ip	src_port ÷	dst_ip	dst_port	proto	service	duration
1	1554198358	3.122.49.24	1883	192.168.1.152	52976	tcp	-	80549.530260
2	1554198358	192.168.1.79	47260	192.168.1.255	15600	udp	-	0.000000
3	1554198359	192.168.1.152	1880	192.168.1.152	51782	tcp	-	0.000000
4	1554198359	192.168.1.152	34296	192.168.1.152	10502	tcp	-	0.000000
5	1554198362	192.168.1.152	46608	192.168.1.190	53	udp	dns	0.000549
6	1554198364	192.168.1.79	33269	192.168.1.255	15600	udp	-	0.000000
7	1554198364	192.168.1.152	34296	192.168.1.152	10502	tcp	-	0.000000
8	1554198364	192.168.1.152	1880	192.168.1.152	51782	tcp		0.000000
9	1554198369	192.168.1.152	1880	192.168.1.152	51782	tcp	-	0.000000
10	1554198369	192.168.1.152	34296	192.168.1.152	10502	tcp		0.000000

Widok danych w Rstudio (10 wierszy)

Tabela typów danych i kolumn

ID	Nazwa kolumny	Typ danych	Opis
1	ts	Time	Znacznik czasu połączenia między identyfikatorami przepływu
2	src_ip	String	Adres IP nadawcy (źródła)
3	src_port	Number	Numer portu nadawcy (źródła)
4	dst_ip	String	Adres IP odbiorcy
5	dst_port	Number	Numer portu odbiorcy
6	proto	String	Nazwa protokołu warstwy transportowej
7	service	String	Protokoły wykrywane dynamicznie, takie jak DNS, HTTP i SSL
8	duration	Number	Czas połączeń pakietowych, który jest szacowany przez odjęcie "czasu ostatniego widzianego pakietu" i "czasu pierwszego widzianego pakietu"
9	src_bytes	Number	Bajty wychodzące od nadawcy (źródła)

	-	_	-
10	dst_bytes	Number	Bajty wychodzące od odbiorcy
11	conn_state	String	Status połączenia, S0 - połączenie bez informacji zwrotnej, S1 – połączenie powiodło się, REJ – próba połączenia została odrzucona
12	missed_bytes	Number	Liczba utraconych bajtów
13	src_pkts	Number	Liczba początkowa pakietów wychodzących od nadawcy (źródła)
14	src_ip_bytes	Number	Liczba oryginalnych bajtów IP, czyli całkowita długość pola nagłówka IP systemów źródłowych
15	dst_pkts	Number	Liczba początkowa pakietów wychodzących od odbiorcy
16	dst_ip_bytes	Number	Liczba bajtów docelowego IP, czyli całkowita długość pola nagłówka IP systemów docelowych.

17	dns_query	string	Nazwa domeny, do której kierowane są zapytania DNS
18	dns_qclass	Number	Wartości, które określają klasy zapytań DNS
19	dns_qtype	Number	Wartość określająca typy zapytań DNS
20	dns_rcode	Number	Wartości kodów odpowiedzi DNS
21	dns_AA	Bool	Informacja, czy odpowiedź DNS jest otrzymana w sposób bezpośredni (autorytatywny) bez pośrednika
22	dns_RD	Bool	Informacja czy żądane zapytanie rekursywne DNS zostało zwrócone
23	dns_RA	Bool	Informacja czy żądane zapytanie rekursywne DNS jest dostępne

24	dns_rejected	Bool	Informacja, czy zapytanie DNS zostało odrzucone
25	ssl_version	String	Wersja SSL dostępna na serwerze
26	ssl_cipher	String	Pakiet szyfrów SSL wybrany przez serwer
27	ssl_resumed	Bool	SSL wskazuje sesję, która może być używana do inicjowania nowych połączeń, gdzie T oznacza, że połączenie SSL jest inicjowane
28	ssl_established	Bool	Oznacza nawiązanie połączenia między dwiema stronami, gdzie T oznacza nawiązanie połączenia
29	ssl_subject	String	Certyfikat X.509 oferowany przez serwer
30	ssl_issuer	String	Informacja o właścicielu/inicjatorze sll i certyfikatu cyfrowego

31	http_trans_depth	Number	Pipelining HTTP, informacja o możliwości wysyłania kilku żądań jednocześnie
32	http_method	String	Informacje zwrotne HTTP takie jak GET, POST i HEAD
33	http_uri	String	URI użyte w żądaniu HTTP
35	http_version	String	Wykorzystywane wersje protokołu HTTP, takie jak V1.1
36	http_request_body_len	Number	Rzeczywiste rozmiary nieskompresowanej zawartości danych przesyłanych od klienta HTTP
37	http_response_body_len	Number	Rzeczywiste rozmiary nieskompresowanej zawartości danych przesyłanych z serwera HTTP
38	http_status_code	Number	Kody stanu zwracane przez serwer HTTP
39	http_user_agent	Number	Wartości nagłówka User-Agent w protokole HTTP
40	http_orig_mime_types	String	Uporządkowane wektory typu mime z systemu źródłowego w protokole HTTP

41	http_resp_mime_types	String	Uporządkowane wektory typu mime z systemu docelowego w protokole HTTP					
42	weird_name	String	Nazwy zaistniałych anomalii/naruszeń związanych z protokołami					
43	weird_addl	String	Dodatkowe informacje związane z anomaliami lub naruszeniami protokołu					
44	weird_notice	bool	Wskazuje, czy naruszenie/nieprawidłowość zostały zwrócone do użytkownika					
45	label	Number	Oznacza rekordy ataki oraz adresy, bez wykrytych ataków, gdzie 0 oznacza rekordy normalne(niezaatakowane), a 1 oznacza ataki					
46	type	String	Oznacza kategorie ataków, takie jak adresy niezaatakowane(normal), DoS, DDoS i ataki typu backdoor.					

Cel

Celem badania jest dokonanie analizy ruchu sieciowego. Sprawdzamy za metodą funkcji statystycznych takich jak średnia, odchylenie standardowe czy korelacja, ruch w sieci (przepustowość, przesyłane bajty).

Analizie podlegać będą dane przepływu sieciowego.

Sposoby monitorowania ruchu sieciowego

Informacje dostarczane przez oprogramowania służące do monitorowania sieci umożliwiają:

- Monitorowanie i prognozowanie trendów sieciowych,
- Identyfikacje głównych mówców, (określanie jacy użytkownicy i jakie aplikacje wykorzystują całą przepustowość), □ Monitorowanie przepustowości, □ Zarządzanie urządzeniami.

Przykładowymi programami są:

- NetFlow Traffic Analyzer,
- Wireshark,
- OpenNMS.

Analiza danych

Poniższe wykresy przedstawiają najczęściej używane strony internetowe. Z pierwszego wykresu wynika, że najczęściej odwiedzaną witryną jest amazonaws.com jest to ponad 50%, pozostałe strony mają mniej więcej taką liczbę połączeń.

Application awareness

Najczęściej używane strony internetowe

Na wykresie drugim możemy zauważyć, że najczęstszym protokołem używanym przez adresatów są protokoły transportowe TCP i UDP.

Najczęściej używane protokoły

Najczęściej używane protokoły

Wykresy zużycia pasma dla podanych adresów IP przedstawiają ilość przesyłanych danych w megabajtach. IP o adresach 192.168.1.152 i 192.168.1.164 zużywają ponad 3 GB, gdzie reszta adresów IP zużywa pasma w znacząco mniejszym stopniu.

Na podanym wykresie widzimy dysproporcje pomiędzy adresami IP zużywającymi najwięcej pasma (megabajtów), a adresami IP, które zużywają o wiele mniej transferu. Jak widać istnieje przepaść w transferze pomiędzy dziesięcioma adresami. Z czego można wywnioskować, iż nadawcy dwóch pierwszych znacznie częściej używają sieci do bardziej wymagających zadań.

Suma zużytych megabajtów

Na następnym zrzucie ekranu widzimy wcześniejszą dysproporcję w zużyciu pasma. Porównując dwa adresy wykorzystujące najwięcej transferu z trzecim (Jest to ponad 15 razy więcej MB).

3 adresy IP które wykorzystują najwięcej transferu.

Pozostałe adresy nie różnią się już znacząco pod względem zużycia danych (Jest to maksymalnie kilkadziesiąt megabajtów).

Porównanie zużytych danych w megabajtach

Korelacja – związek pomiędzy dwiema zmiennymi losowymi. zależność dwóch zmiennych oznacza, że znając wartość jednej z nich, dałoby się przynajmniej w niektórych sytuacjach dokładniej przewidzieć wartość drugiej zmiennej, niż bez tej informacji.

Na obu wykresach możemy zauważyć, że zmienne nie mają, aż tak dużego powiązania ze sobą, w związku z tym korelacje możemy uznać jako słabą, najmocniejsze

powiązania mają ze sobą dane nadawcy, lecz nadawca według korelacji ma naprawdę słabą korelację (około 0.2).

	src_pkts	dst_pkts	src_bytes	dst_bytes	duration	missed_bytes	src_ip_bytes	dst_ip_bytes
src_pkts	1.00	0.29			0.34		0.69	0.23
dst_pkts	0.29	1.00			0.44		0.33	0.44
src_bytes			1.00	0.64		0.22		
dst_bytes			0.64	1.00		0.16		
duration	0.34	0.44			1.00			0.18
missed_bytes			0.22			1.00		
src_ip_bytes	0.69	0.33					1.00	0.09
dst_ip_bytes	0.23	0.44						1.00

Heatmapa korelacji

Za pomocą drugiego wykresu możemy zobaczyć bardziej dokładne wartości korelacji. Jest to możliwe dzięki uruchomieniu kodu w środowisku Rstudio i najechanie kursorem na poszczególne wartości na wykresie (punkty).

Heatmapa korelacji

Ilość ataków, prób włamań, z wykresu można wywnioskować, że było ich dokładnie 170 000, ponadto jeden adres IP mógł zostać zaatakowany kilka razy.

Wystepujące ataki w analizie:

 MITM (Man in the middle) – to prosty atak sieciowy, którego zamysłem jest podsłuchiwanie wymiany danych pomiędzy stronami komunikacji lub ewentualnej jej modyfikacji.

- Backdoor metoda pominiecia normalnych procesów uwierzytelniania lub szyfrowania systemu, produktu lub urządzenia (np. domowego routera).
- DDOS i DOS te ataki to ciągłe wysyłanie określonych typów pakietów na adres IP atakowanego serwisu.
- Injection jest to wstrzykiwanie złośliwych ciągów znaków, któe mogą przybierać wiele form. Mogą one wykorzystywać wbudowane funkcje oprogramowania rejestrującego dane w logach.
- Password do tego ataku dochodzi gdy atakujący przy użyciu hasła próbuje uzyskać dostęp do kilku kont w jednej domenie.
- Ransonware oprogramowanie, które blokuje dostęp do systemu komputerowego lub uniemożliwia odczyt zapisanych w nim danych.
- Scanning jest to zazwyczaj przygotowanie do bardziej niebezpiecznego ataku sieciowego. Haker skanuje na komputerze docelowym porty UDP/TCP używające usługi sieciowe i określa stopień podatności komputera na bardziej niebezpieczne ataki sieciowe.
- XSS polega on na wstrzyknięciu do przeglądarki ofiary fragmentu javascript bądź innego języka skryptowego, który może być uruchomiony w przeglądarce.

Sprawdzenie najczęstszych typów ataków na dany adres IP

Porównanie niezaatakowanych adresów IP z próbami włamań. Większość adresów nie została zaatakowana co możemy wywnioskować z kolumny "normal", jest to dokładnie 300 000 adresów IP, w porównaniu zaatakowanych jest około 170 000.

Sprawdzenie najczęstszych typów ataków na dany adres IP

Z wykresu możemy powiedzieć, że ponad połowa połączeń nie uzyskała informacji zwrotnej (S0, kolor niebieski), przy czym widać również, że najmniejszą wartością jest S1, która przedstawia udane połączenia. Około 25% prób połączeń zostało odrzuconych (REJ, kolor zielony). Statystyka jest dość zaskakująca, gdyż na co dzień przeważają połączenia zakończone sukcesem.

- S0 połączenie bez informacji zwrotnej
- S1 połączenie powiodło się
- REJ próba połączenia została odrzucona

Status połączeń

Wykres statusu połączeń

Wyniki

Poniższa tabela przedstawia dokładniejsze wyniki liczbowe wcześniej przedstawionego wykresu opisującego zużyte pasmo w megabajtach dla poszczególnych adresów IP.

÷	Group.1	inmb
1512	192.168.1.152	3311.80
1515	192.168.1.184	3214.51
1558	192.229.232.240	206.20
4091	2a01:111:2003::50	73.81
2427	2001:67c:1562::16	61.60
96	104.77.174.16	59.11
95	104.77.174.10	32.03
358	13.107.4.50	11.02
765	149.135.82.137	2.41
3977	2600:1415:11::b854:a573	2.17
3976	2600:1415:11::b854:a561	1.76
1526	192.168.1.33	1.08
4057	2606:2800:147:120f:30c:1ba0:fc6:3001	0.91
1532	192.168.1.79	0.75
4849	8.43.85.13	0.66
1517	192.168.1.190	0.61
1528	192.168.1.37	0.61
5055	91.189.92.20	0.53
2426	2001:67c:1560:8001::14	0.44
5056	91.189.92.38	0.38
4360	52.229.207.60	0.38
4055	2606:2800:147:120f:30c:1ba0:fc6:265a	0.37
1303	18.184.104.180	0.35
1521	192.168.1.195	0.34
391	13.35.146.38	0.34

Utracone bajty dla każdego IP (Nie uwzględnia wszystkich danych)

Średnia utraconych bajtów dla IP posortowane malejąco. W tabeli widać, że tworzące ramkę danych uwzględnia również adresy IPv6, a największa średnia wynosi 16147878.5 bajtów.

^	Group.1	x
2427	2001:67c:1562::16	16147878.5000000
4091	2a01:111:2003::50	9674243.1250000
96	104.77.174.16	7748218.7500000
95	104.77.174.10	4797845.8571429
765	149.135.82.137	2532195.0000000
1558	192.229.232.240	1533457.8439716
3977	2600:1415:11::b854:a573	759925.3333333
3976	2600:1415:11::b854:a561	614400.0000000
1515	192.168.1.184	309377.0581000
4849	8.43.85.13	173464.2500000
4107	2a01:111:f330:1790::a01	124870.0000000
4057	2606:2800:147:120f:30c:1ba0:fc6:3001	86921.9090909
391	13.35.146.38	71772.0000000
2426	2001:67c:1560:8001::14	65843.5714286
4656	65.52.108.90	63188.0000000
1512	192.168.1.152	57058.2116099
2263	20.42.24.50	56381.0000000
2816	205.185.216.42	52648.0000000
839	151.101.2.49	48300.3333333
3850	23.206.242.18	46720.0000000
5044	91.189.88.149	45736.3333333
4106	2a01:111:f307:1794::a21	42686.0000000
5056	91.189.92.38	36367.0909091
4056	2606:2800:147:120f:30c:1ba0:fc6:3000	21860.2500000
4587	64.4.16.214	20705.5000000
3984	2600:1415:11:49b::25bb	20020.0000000

Średnia utraconych bajtów (Nie uwzględnia wszystkich danych)

W odchyleniu standardowym ukazanym w poniższej tabeli widzimy, że adresy IP ze średniej powtarzają się również w odchyleniu standardowym. Największe odchylenie w utraconych danych to około 30205694.2 bajtów.

^	Group.1	x *
2427	2001:67c:1562::16	30205694.1996173
1515	192.168.1.184	20622644.8399071
4091	2a01:111:2003::50	12676863.5754689
96	104.77.174.16	11172135.1559969
95	104.77.174.10	7565732.4494651
1558	192.229.232.240	6411590.3633040
1512	192.168.1.152	4433650.7244826
3976	2600:1415:11::b854:a561	746899.7426697
4849	8.43.85.13	346928.5000000
358	13.107.4.50	240524.2634884
2426	2001:67c:1560:8001::14	174205.7154323
391	13.35.146.38	160487.0708811
3977	2600:1415:11::b854:a573	153953.9133810
5056	91.189.92.38	111842.7961752
839	151.101.2.49	83658.6313558
5044	91.189.88.149	76358.7843430
4656	65.52.108.90	74565.8242897
5055	91.189.92.20	74067.9764129
410	13.35.149.60	42929.7893309
4056	2606:2800:147:120f:30c:1ba0:fc6:3000	40010.1940375
389	13.35.146.29	32215.5927550
5054	91.189.92.19	29475.8967163
4057	2606:2800:147:120f:30c:1ba0:fc6:3001	26533.2998342
5046	91.189.88.161	24826.5000000
3849	23.206.242.11	22514.6996871
2425	2001:67c:1360:8001::17	17136.0000000

Odchylenie utraconych danych (Nie uwzględnia wszystkich danych)

Korelacja Pearsona, którą testowaliśmy sprawdza nam wyniki korelacji do porównania z algorytmami korelacji do użytych wcześniej (str. 11) wykresów korelacji w heatmapie. W informacji zwrotnej widzimy wybrane kolumny, wartość t (która brana jest do obliczenia poziomu istotności p), właśnie ten poziom istotności (próg, wedle którego oceniamy z jakim prawdopodobieństwem różnice, które zaobserwowaliśmy są dziełem przypadku.) oraz liczbę swobody stopni df (z teoretycznego punktu widzenia stopnie swobody odnoszą się do liczby niezależnych obserwacji / wyników / porównań występujących w badanej przez nas grupie obserwacji). Dalej w informacji zwrotnej mamy hipotezę, czyli dopuszczenie pewnych prawidłowości w tym wypadku że korelacja nie będzie równa 0, a dalej za pomocą próbek mamy wartość korelacji, działa to wszystko tak samo dla wszystkich 3 przykładów.


```
> korpkts
         Pearson's product-moment correlation
data: src_pkts$src_pkts and src_pkts$dst_pkts
t = 135.55, df = 197406, p-value < 0.000000000000000022 alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.2877661 0.2958374
sample estimates:
      cor
0.291807
> korbytes
         Pearson's product-moment correlation
data: src_pkts$src_bytes and src_pkts$dst_bytes
t = 365.36, df = 197406, p-value < 0.0000000000000022
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval: 
0.6325117 0.6377751
sample estimates:
       cor
0.6351508
> kordest
         Pearson's product-moment correlation
data: src_pkts$duration and src_pkts$dst_bytes
t = 4.4617, df = 197406, p-value = 0.000008135
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.005630462 0.014452165
sample estimates:
        cor
0.01004151
```

Poniższe trzy listy przedstawiają dokładne wartości zużytych megabajtów, które zostały ujęte na ww. wykresach (str.9 i 10).

Sprawdzanie korelacji

*	Group.1	inmb ‡	
1512	192.168.1.152	3311.80	
1515	192.168.1.184	3214.51 206.20	
1558	192.229.232.240		
4091	2a01:111:2003::50	73.81	
2427	2001:67c:1562::16	61.60	
96	104.77.174.16	59.11	
95	104.77.174.10	32.03	
358	13.107.4.50	11.02	
765	149.135.82.137	2.41	
3977	2600:1415:11::b854:a573	2.17	

Zużyte megabajty (Top 10)

	Group.1	inmb ‡
1512	192.168.1.152	3311.80
1515	192.168.1.184	3214.51
1558	192.229.232.240	206.20

Zużyte megabajty (Top 3)

^	Group.1	inmb [‡]	
4091	2a01:111:2003::50	73.81	
2427	2001:67c:1562::16	61.60	
96	104.77.174.16	59.11	
95	104.77.174.10	32.03	
358	13.107.4.50	11.02	
765	149.135.82.137	2.41	
3977	2600:1415:11::b854:a573	2.17	

Zużyte megabajty (Top 7)

Zestawienie pakietów i długość trwania połączenia dla danych połączeń. Możemy zauważyć, że przy pierwszych połączeniach wprowadzanych do ramki liczba utraconych bajtów wynosiła zero, lecz we wcześniejszych analizach (str.9) widać, że nie we wszystkich połączeniach udało się bez utraty bajtów nawiązać połączenie. Dzięki długości trwania połączenia (jest to czas połączeń pakietowych, który jest szacowany przez odjęcie "czasu

ostatniego widzianego pakietu" i "czasu pierwszego widzianego pakietu") możemy zobaczyć, że długość połączeń jest dla większości krótka. Spis pakietów i bajtów ma za zadanie pokazać, że nie każde połączenie zużywa dużą ilość pasma, a w większości są to wcześniej wspomniane krótkie połączenia.

^	src_pkts	dst_pkts	src_bytes	dst_bytes	duration	missed_bytes	src_ip_bytes	dst_ip_bytes
1	252181	2	1762852	41933215	80549.530260	0	14911156	236
2	1	2	0	0	0.028326	0	52	104
3	11	7	616	392	10.037018	0	924	588
4	4	4	224	224	3.009074	0	336	336
5	3	121942	33593178	0	22290.894560	0	1405	6360012
6	2	41109	66365725	0	45971.656380	0	4311	1648806
7	1	2	0	0	0.374279	0	40	80
8	1	2	0	0	0.371422	0	40	80
9	1	2	0	0	2.066015	0	40	80
10	1	2	0	0	1.214163	0	40	80
11	144	2	0	0	22.169931	0	8652	104
12	1	3	0	0	3.180604	0	52	144
13	36	2	0	0	5.964989	0	2196	104
14	266	1	0	0	32.292298	0	15656	52
15	219	3	0	0	25.425793	0	13328	156
16	1	2	0	0	1.896998	0	52	104
17	1	4	0	0	6.043497	0	52	208
18	1	4	0	0	6.043121	0	52	208
19	8	3	651	1	6.921624	0	2010	120
20	5	1	0	0	7.963314	0	260	52
21	1	4	0	0	4.322967	0	52	208
22	1	4	0	0	4.262362	0	52	208
23	1	4	0	0	4.321351	0	52	208
24	1	4	0	0	4.323088	0	52	208
25	4	1	0	0	2.191474	0	208	40
26	4	1	0	0	2.191369	0	208	40
27	27	2	0	0	4.845009	0	1512	104

Spis pakietów i czas trwania połączeń (Nie uwzględnia wszystkich danych)

Status połączenia pokazany na wykresie (str. 14), jest opisany również w tabeli poniżej, po wartości kolumny Freq możemy dokładnie określić ilość połączeń dla danego statusu, przy czym statusy i ich objaśnienie to:

- S0 połączenie bez informacji zwrotnej
- S1 połączenie powiodło się
- REJ próba połączenia została odrzucona

Jak i na wykresie widać tu, że połączenie S0, bez informacji zwrotnej jest wartością największą z ilością 113495 wystąpień, odrzucenie połączenia REJ na drugim miejscu z 45036 wystąpieniami. Zaskakujące jest S1, czyli udane połączenie, które posiada przypisane do siebie "jedynie" 13843 rekordy.

^	Var1	Freq ÷
1	S1	13843
2	REJ	45036
3	SO	113495

Podsumowanie połączeń

Podsumowanie ramki danych wypisuje wszystkie dostępne kolumny z ramki danych, a następnie podsumowuje statystyki opisowe m.in. długość danej kolumny, średnią, medianę, wartości minimalne oraz maksymalne, kwantyle pierwszego i trzeciego rzędu, odchylenia standardowe, typy danych oraz klas. Jest to o tyle przydatne, że dzięki właśnie funkcji summary możemy w łatwy sposób analizować szybko dużą liczbę kolumn, mając przy tym ogromną ilość informacji do analizy, które później możemy przenieść w bardziej rozbudowane złożone funkcję i sprawdzić ich poprawność.

Podsumowanie ramki danych

Kod

```
1 # Administracja systemów rozproszonych
2 # Koczynasz lonasz, Nowak Filip, Złotek Sebastian PO6
           #Instalacja bibliotek
install.packages("ggplot2")
install.packages("goplot2")
install.packages("RoolorBrewer")
install.packages("tidyverse")
install.packages("scales")
install.packages("scales")
install.packages("ggyis")
install.packages("ggyis")
install.packages("ggpubr")
install.packages("heatmaply")
install.packages("plotrix")
8 install.packages("tidyverse")
9 install.packages("scales")
10 install.packages("scales")
11 install.packages("gyvis")
12 install.packages("gyvis")
13 install.packages("gyvis")
14 install.packages("corrplot")
15 install.packages("torrix")
16 "Potrzebne biblioteki
17 "Potrzebne biblioteki
18 library("plotrix")
19 library("morrplot")
21 library("gyubr")
21 library("gyubr")
21 library("gyvis")
21 library("gylyr")
21 library("gylyr")
21 library("gylyr")
21 library("gylyr")
21 library("gylyr")
22 library("gylores")
23 library("gylores")
24 library("gylores")
25 library("gylores")
26 library("scolorBrewer")
27
28 options(scipen=999) #usuwamy postać wykładnicza
          setwd("D:/ASR_PROJEKT") #ustawiamy folder główny
          netflowds <- read.csv("Train_Test_Network.csv", encoding = "UTF-8") #wczytujemy plik csv
          netflowds
         summary(netflowds) #podsumowanie całej ramki danych
           (netflowds3 <-netflowds[netflowds$`dns_query`!="(empty)" & netflowds$`dns_query`!="-",]) #wykluczanie niepotrzebnych linii
          sorttowanie <- (sort(table(netflowds38'dns_query'),DECREASING=F)) #wybieramy najczęściej używane strony interneto
           dev.off()
 49 sorttowanie2 <- (sort(table(netflowds$'proto'),DECREASING=F)) #wybieramy najczęściej używane protokoły
51 paletabarw <- brewer.pal(3, "Set2") #kolory oraz opcje wykresu najczęściej używanych protokołów
52 (takiwykres <- pie(tail(sorttowanie2),
53 border="white",
54 main = "Najczęściej używane protokoły",
55 col = paletabarw))
           dev.off() #zapisanie wykresu
           mean(netflowds$'duration') #średnie, sumy oraz odchylenia standardowe utraconych bajtów i czasu trwania połączenia
 60
61
62
63
           mean(netflowds$'missed_bytes')
         sd(netflowds$'duration')
 64
65
         sd(netflowds$'missed_bytes')
           sum(netflowds$'duration')
           sum(netflowds$'missed_bytes')
           #średnia zużytych bajtów bytesperipmean <- (aggregate(netflowds?'missed_bytes', by=list(netflowds?'dst_ip'), FUN = mean))
           bytesperipmeansorted <- bytesperipmean[with(bytesperipmean, order(x, Group.1, decreasing = T)), ]
 75
76
77
78
79
80
81
82
           #odchylenie standardowe zużytych bajtów
bytesperipsd <- (aggregate(netflowds$'missed_bytes', by=list(netflowds$'dst_ip'), FUN = sd))</pre>
           by tesperips d sorted <- by tesperips d [with (by tesperips d, order (x, Group. 1, decreasing = T)), \ ]
           #suma zużytych bajtów
bytesperip <- (aggregate(netflowdsi'missed_bytes', by=list(netflowdsi'dst_ip'), FUN = sum))</pre>
bytesperipsorted <- bytesperip[with(bytesperip, order(x, Group.1, decreasing = T)), ]
bytesperipsorted <- bytesperipsorted %5% #zaokrag]enie i zamiana bajtów na megabajty
mutate(inmb = round((bytesperipsorted$x / 1048576), 2))
bytesperipsorted$x <- NULL

bytesperipsorted$x <- NULL

contact | Number 
           bytesperipsorted <- bytesperip[with(bytesperip, order(x, Group.1, decreasing = T)), ]</pre>
         TES2 <- head(bytesperipsorted, n = 3)
  95 TES3 <- tail(TES1, n = 7)
          str(bytesperipsorted)
gplot(TES1, aes(Group.1, inmb)) + geom_bar(stat = 'identity') + theme(axis.text.x = element_text(angle=65, vjust=0.6)) #top 10 zużycia pasma po IP
```



```
103 ggplot(TES2, aes(Group.1, inmb)) + geom_bar(stat = 'identity') + theme(axis.text.x = element_text(angle=65, vjust=0.6)) #top 3 zużycia pasma po IP
104
105 dev.off()
106
107 ggplot(TES3, aes(Group.1, inmb)) + geom_bar(stat = 'identity') + theme(axis tax+ u = 2)
            ggplot(TES3, aes(Group.1, inmb)) + geom_bar(stat = 'identity') + theme(axis.text.x = element_text(angle=65, vjust=0.6)) #porównanie zużytych megabajtów d
           dev.off()
 src_pkts <- netflowds %>% #informacje o pakietach, bajtach i długości połączenia
select(src_pkts, dst_pkts, src_bytes, dst_bytes, duration, missed_bytes, src_ip_bytes, dst_ip_bytes) %>%
filter(src_pkts >0 & dst_pkts >0)
           cor(src_pkts§src_pkts,src_pkts§dst_pkts, method="spearman") #korelacja pakietów
           #wykresy korelacji
corrplot(corr = cor(src_pkts), method='number') #heatmapa korelacji
           str(netflowds)
           129
130
131
132
                     colnames(x),
Vectorize(function(i,j) FUN(x[,i], x[,j]))
                p <- cor.test.p(src_pkts)
          heatmaply_cor(
140
175 | 176 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 177 | 
  178 dev.off()
 179
180 *sprawdzen
181 *50 polazz
181 *50 polazz
183 *81 polazz
183 *81 polazz
183 *81 polazz
183 *81 polazz
184 polazz
185 tatus_pol
185 tatus_pol
186 tatus_pol
187 tatus_pol
188 tat_data
191 select(v
192 fiter(v
193 freedata v
194 freedata v
195 select(v
196 select(v
196 select(v
197 podsumowan
197 podsumowan
199 podsumowan
199 select(v
200 fflter(v
200 fflter(v
201 gelD(as.n.)
         view(status_polaczenia)
         stat_data <- data.frame(status_polaczenia)
          namedata <- stat_data %5% select(vari) %5% select(vari) %5% | (vari == "Si") | vari == "RE3") %pybieranis danych kolumn i wierszy
          freqdata <- stat_data %>% filter((Var1 == "50") | (Var1 == "51") | Var1 == "RE3") %>% select(Freq)
             odsumowanie_polaczen <- stat_data %>% #spis polaczen
select(vari,Freq)%>%
filter(vari == "SO" | vari=="SI" | vari=="REJ")
       pie3D(as.numeric(unlist(fregdata)).labels = as.character(unlist(namedata)).explode = 0.1. main = "Status połaczeń")
```


Wnioski

Dzięki analizie sieci z wykorzystaniem języka programowania R, przeanalizowaliśmy przepustowość sieci, typy ataków hakerskich, zużyte megabajty, a także najczęściej używane protokoły .

Duże przedsiębiorstwa z rozwinięta infrastrukturą powinny używać oprogramowania do monitorowania ruchu sieciowego w czasie rzeczywistym, aby móc zarządzać ruchem sieciowym i wykorzystaniem łącza.

Źródła

- https://stovaris.pl/analiza-ruchu-sieciowego-dlaczego-jest-tak-potrzebna/
- https://www.manageengine.com/pl/netflow/network-traffic-monitor.html
- https://pl.joecomp.com/free-network-internet-traffic-monitor-tools-for-windows-10-8-7
- https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i?path=%2FTrain_Test _datasets%2FTrain_Test_Network_dataset
- https://www.naukowiec.org/wiedza/statystyka/stopnie-swobody_718.html

