Supplementary Information

A Perspective on Protective Carbon Shells for

Improved Stability of Alkaline Water Oxidation

Electrocatalysts

Lettie A. Smith, [†] *Kenta Kawashima*, [†] *Raul A. Marquez*, [†] *and C. Buddie Mullins* [†],§,∥,⊥,∇,*

- † Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
- § McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
- ¹ Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States.
- ▼ H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States.
- * Corresponding author: <u>mullins@che.utexas.edu</u>

Table 1. Summary of Example Carbon Core-Shell OER Electrocatalysts: Their Properties and Carbon Corrosion

	_		1 _	ı	1	ı	Г	
			Overpot					
			ential		duration			
			(mV) @	long-	of long-	post-	carbon	
	NP size	carbon layer	10	term	term	characte	corrosion	
sample	(nm)	thickness (nm)	mA·cm ⁻²	test	test	rization	?	ref.
sampic	(11111)	thickness (IIII)	IIIA CIII		icsi		•	101.
				CA,		XRD,		
				1.70 V		TEM,		
			420	VS		CO_2		1
				RHE	> 13.8 h	detection	Yes	
Fe ₃ C@C-N	10-40	_						
10,00,011	10 10			CA,				
				1.70 V				,
			-	VS				1
				RHE	> 13.8 h		Yes	
Fe ₃ C@C	_	_				_		
				CA,				
				1.70 V				,
]		-	VS				1
Fe ₃ C (no				RHE			Yes	
carbon layer)	-	-			<1.5 h	-		
,				CA,				
			330	1.57 V				
	20.4		330			CEM		2
	30 to	_		VS		SEM,		
FO ₈₀₀	40	~5		RHE	> 50 h	XPS	Likely	
			300	Chron				
				ogalva				
				nostati				
				С				
				measu				
				rement				
	CNT,			s, CA,				
	40 nm			1.56 V		XRD,		
	diamete			VS		TEM,		
FeNi@N-CNT	r	~7		RHE	10 h	XPS	Likely	3
TEMESTN-CIVI	1	~1	202		1011	ALS	Likely	
			292	CP, 50				
Fe/Fe ₃ C-				mA·c				4
A@CNT	5 to 10	1 to 2		m ⁻²	12 h	-	-	
			342	CP, 50				
Fe/Fe ₃ C-			3 12	mA·c				4
	>200	0.21			12.5			
C@CNT	>200	9.31	2	m ⁻²	12 h	-	-	
			341	CP, 50				
Fe/Fe ₃ C-				mA·c				4
P@CNT	200	0		m ⁻²	12 h	-	-	
Ni ₃ Fe-			171			SEM,		
Fe ₃ C@NCNTs			-7.1			TEM,		
				CD 10				
(also referred]			CP, 10		XRD,		
to as NF-				mA·c		Raman,		
FC@NCNTs)	~5	2-2.5		m ⁻²	~300 h	XPS	Likely	5
			234	CA,				
				1.52 V		XRD,		
				VS		XPS,		6
COC-P /CC	50 100	2.2			901			
C@CoP ₂ /CC	50-100	2.2		RHE	80 h	SEM	-	
			360	CA,				
				1.7 V				7
Co/CoOx@NS				vs				,
-NCNTs	~50	~50		RHE	5 h	_	_	
1101113	-50	- 50	1	MIL	J 11			ı

			361	CA,				
				1.59 V				8
Fe ₃ C@NG800-				VS				
0.2	≥4	0-25		RHE	20 h	-	-	
			330	CP, 10				
Co@Co ₃ O ₄ /NC				mA·c				
-1	2-10	~8		m ⁻²	~50 h	-	-	9
			390	CA,				
				1.57 V				10
CoNP@NC/N				VS				
G-700	35	2.8		RHE	1.38 h	TEM	No	

References

- (1) Abbas, S. A.; Ma, A.; Seo, D.; Jung, H.; Lim, Y. J.; Mehmood, A.; Nam, K. M. Synthesis of Fe₃C@C Core-Shell Catalysts with Controlled Shell Composition for Robust Oxygen Evolution Reaction. *Appl. Surf. Sci.* **2021**, *551*, 149445. https://doi.org/10.1016/j.apsusc.2021.149445.
- (2) Bandal, H. A.; Pawar, A. A.; Kim, H. Transformation of Waste Onion Peels into Core-Shell Fe₃C@ N-Doped Carbon as a Robust Electrocatalyst for Oxygen Evolution Reaction. *Electrochimica Acta* **2022**, *422*, 140545. https://doi.org/10.1016/j.electacta.2022.140545.
- (3) Tao, Z.; Wang, T.; Wang, X.; Zheng, J.; Li, X. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. *ACS Appl. Mater. Interfaces* **2016**, *8* (51), 35390–35397. https://doi.org/10.1021/acsami.6b13411.
- (4) Gao, T.; Yu, S.; Chen, Y.; Li, X.; Tang, X.; Wu, S.; He, B.; Lan, H.; Li, S.; Yue, Q.; Xiao, D. Regulating the Thickness of the Carbon Coating Layer in Iron/Carbon Heterostructures to Enhance the Catalytic Performance for Oxygen Evolution Reaction. *J. Colloid Interface Sci.* **2023**, *642*, 120–128. https://doi.org/10.1016/j.jcis.2023.03.067.
- (5) Liu, T.; Xiang, Y.; Tan, Z.; Hong, W.; He, Z.; Long, J.; Xie, B.; Li, R.; Gou, X. One-Step Growth of Ni₃Fe-Fe₃C Heterostructures Well Encapsulated in NCNTs as Superior Self-Supported Bifunctional Electrocatalysts for Overall Water Splitting. *J. Alloys Compd.* **2023**, *949*, 169825. https://doi.org/10.1016/j.jallcom.2023.169825.
- (6) Alsabban, M. M.; Yang, X.; Wahyudi, W.; Fu, J.-H.; Hedhili, Mohamed. N.; Ming, J.; Yang, C.-W.; Nadeem, M. A.; Idriss, H.; Lai, Z.; Li, L.-J.; Tung, V.; Huang, K.-W. Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core–Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11 (23), 20752–20761. https://doi.org/10.1021/acsami.9b01847.
- (7) Zhang, P.; Cai, Z.; You, S.; Wang, F.; Dai, Y.; Zhang, C.; Zhang, Y.; Ren, N.; Zou, J. Self-Generated Carbon Nanotubes for Protecting Active Sites on Bifunctional Co/CoOx Schottky Junctions to Promote Oxygen Reduction/Evolution Reactions via Efficient Valence Transition. *J. Colloid Interface Sci.* 2019, 557, 580–590. https://doi.org/10.1016/j.jcis.2019.09.060.
- (8) Jiang, H.; Yao, Y.; Zhu, Y.; Liu, Y.; Su, Y.; Yang, X.; Li, C. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe–N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. *ACS Appl. Mater. Interfaces* **2015**, *7* (38), 21511–21520. https://doi.org/10.1021/acsami.5b06708.
- (9) Aijaz, A.; Masa, J.; Rösler, C.; Xia, W.; Weide, P.; Botz, A. J. R.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Co@Co₃O₄ Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. *Angew. Chem. Int. Ed.* **2016**, *55* (12), 4087–4091. https://doi.org/10.1002/anie.201509382.
- (10) Zhong, X.; Jiang, Y.; Chen, X.; Wang, L.; Zhuang, G.; Li, X.; Wang, J. Integrating Cobalt Phosphide and Cobalt Nitride-Embedded Nitrogen-Rich Nanocarbons: High-Performance Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. *J. Mater. Chem. A* **2016**, 4 (27), 10575–10584. https://doi.org/10.1039/C6TA03820D.