WORKSHOP 5

2024 ALGEBRA 2

In this workshop, we will learn how to find Galois groups of irreducible quartic polynomials, up to a small ambiguity. We fix a base field F of characteristic 0 and an irreducible $f(x) \in F[x]$ of degree 4. Let G be the Galois group of f(x).

For your convenience, here is a list of transitive subgroups of S_4 with their orders (up to re-numbering).

Subgroup	Order
$\overline{S_4}$	24
A_4	12
$C_4 = \langle (1234) \rangle$	4
D_4	8
$V = \{e, (12)(34), (14)(23), (13)(24)\}\$	4

1. Problem 1

Say f(x) is a quartic with roots $\alpha_1, \ldots, \alpha_4$. The resolvent cubic g(x) is the cubic with roots

$$\beta_1 = \alpha_1 \alpha_2 + \alpha_3 \alpha_4$$
$$\beta_2 = \alpha_1 \alpha_3 + \alpha_2 \alpha_4$$
$$\beta_3 = \alpha_1 \alpha_4 + \alpha_2 \alpha_3.$$

Check that f(x) and g(x) have the same discriminant.

2. Problem 2

Prove that the discriminant is a square in F if and only if $G \subset A_4$.

3. Problem 3

Justify the following table (as much as you can) about the Galois group. Use the following observations. Let $F \subset K$ be a splitting field of f(x). Let $L \subset K$ be generated by the 3 roots of the resolvent cubic g(x). Then $F \subset L$ is the splitting field of g(x). We have a surjective group homomorphism

$$\operatorname{Aut}(K/F) \to \operatorname{Aut}(L/F)$$

with kernel Aut(K/L).

	Discriminant square	Discriminant non-square
Resolvent irreducible	A_4	S_4
Resolvent factors as $1+2$	Impossible	D_4 or C_4
Resolvent factors as 1+1+1	V	Impossible