Application 0

Réglage de correcteurs P et AP - Corrigé

Ressources de P. Dupas.

Correcteur proportionnel

Soit un système de fonction de transfert $G(p) = \frac{1}{(1+10p)(1+0,1p)(1+0,2p)}$ placé dans une boucle à retour unitaire.

C1-02

C2-04

Question 1 Déterminer la précision du système ε_S pour une entrée échelon unitaire.

Correction

Le système est de classe 0. L'entrée est de type échelon. $K_{\rm BO}=1$. L'écart statique est de $\frac{1}{1+1}=\frac{1}{2}$.

Question 2 Justifier le tracer du diagramme de Bode de la fonction de transfert en boucle ouverte du système.

Question 3 Déterminer *K* pour avoir une marge de phase de 45°. Indiquer alors la valeur de la marge de gain. Indiquer la valeur de l'écart statique.

Correction

- ► On résout $\varphi(\omega) = -135^\circ$: $\varphi(\omega) = -\arctan 10\omega \arctan 0$, $1\omega \arctan 0$, 2ω . $\varphi(\omega) = -135^\circ \Leftrightarrow \omega = 2,95 \operatorname{rad} \operatorname{s}^{-1}$ (solveur Excel).
- ► Calculons $G_{\rm dB}(\omega) = -20 \log \left(\sqrt{1 + 10^2 \omega^2} \right) 20 \log \left(\sqrt{1 + 0, 1^2 \omega^2} \right) 20 \log \left(\sqrt{1 + 0, 2^2 \omega^2} \right) = -31 \, \text{dB}$. Il faut donc augmenter le gain de 31 dB soit $K_P = 10^{31/20} = 35,48$.
- ► On a alors un écart statique de $\frac{1}{1+35,48} = 0,027$.
- ▶ Pour déterminer la marge de gain, il faut résoudre $\varphi(\omega) = -180^\circ$. On obtient $\omega = 7.17 \, \text{rad/s}$ et $M_G = 12 \, \text{dB}$.

Question 4 Déterminer K pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

Correction

- ▶ On commence par résoudre $\varphi(\omega) = -180^\circ$. On obtient $\omega = 7.17 \, \text{rad/s}$ et $M_G = 44 \, \text{dB}$.

 ▶ Il faut augmenter le gain de 38 dB soit $20 \log K_P = 38 \Rightarrow K_P = 10^{38/20} = 79$.

 ▶ On a alors un écart statique de $\frac{1}{1+79} = 0,0125$.

 ▶ La marge de phase est alors de 19°.

Correcteur à avance de phase

Soit un système de fonction de transfert $G(p) = \frac{100}{(p+1)^2}$ placé dans une boucle à retour unitaire. On souhaite corrige ce système en utilisant un correcteur à avance de phase de la forme $C(p) = K \frac{1 + a\tau p}{1 + \tau p}$

Question 5 Justifier le tracer du diagramme de Bode de G(p).

Question 6 Corriger ce système de sorte que sa marge de phase soit égale à 45°.

Correction

- $\qquad \bullet \quad G_{\mathrm{dB}}(\omega) = 20\log\left(100\right) 20\log\left(1+\omega^2\right). \ G_{\mathrm{dB}}(\omega) = 0 \ \Leftrightarrow \ \frac{100}{1+\omega^2} = 1 \ \Leftrightarrow \ \omega = \pm\sqrt{99}$ $\Rightarrow \omega = 9.95 \, \text{rad/s}.$
- $\varphi(\omega) = -2 \arctan \omega$ et $\varphi(9, 95) = -2.94 \operatorname{rad} = -169^{\circ}$ soit une marge de phase de 11°;
- le correcteur doit donc apporter un complément de phase de 34°. $\varphi_{\text{max}} = \arcsin\left(\frac{a-1}{a+1}\right) \Rightarrow \sin\left(\varphi_{\text{max}}\right) = \frac{a-1}{a+1} \Rightarrow a = -\frac{\sin\left(\varphi_{\text{max}}\right) + 1}{\sin\left(\varphi_{\text{max}}\right) 1} = 3,54.$
- $\tau = \frac{1}{9,95\sqrt{3,54}} = 0.053 \,\mathrm{s}.$

Question 7 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.

Éléments de correction

2. C(p) $0, 33 \frac{1+3,54\cdot 0,053p}{1+0,053p}$ Sciences Industrielles des l'Ingénieur – $PSI\star$

