EECS210 Written HW#6 Due: 11-7-17

- 1. (20) When an algorithm A is used to compute a problem Π with input S, it requires 0.2ms (10^{-3} s) to execute A when $|S| = 10^4$. If the complexity of the algorithm A is given by the following closed-form expressions, compute the time required to execute algorithm A when $|S| = 10^8$. Simplify your solution if possible.
 - (a) T(n) = 168n.
 - (b) $T(n) = 268n \log_{10} n$.
 - (c) $T(n) = 368n^2$.
 - (*d*) $T(n) = 2^n$.
- 2. (20) Let f(n) and g(n) be any arbitrary positive functions defined from N to R⁺. Determine the value of the following propositions. You must answer either *True or False* but not both. Justify your answer.
 - (a) If $f(n) \neq O(g(n))$, then $g(n) = \Omega(f(n))$.
 - (b) If f(n) = O(g(n)), then $g(n) = \Omega(f(n))$.
 - (c) If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(f(n))$, then f(n) = g(n).
 - (d) If f(n) = o(g(n)), then $f(n) \neq \Theta(g(n))$.
 - (e) If f(n) = O(g(n)), then $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$, where c is a constant with $0 \le c < \infty$.
- 3. (10) Given two algorithms A_1 and A_2 with $T_1(n) = 2n^2 + n + 210$ and $T_2(n) = 422n$. Compute smallest integer k such that algorithm A_2 outperforms algorithm A_1 for all $n \ge k$. You must show your computation for k clearly for credits.
- 4. (10) Using the definition of big-O to prove that $\frac{n^3 3n^2 + 210}{3n^2 12n + 15} = O(n).$
- 5. (10) Using Proof by Contradiction technique to prove that $3n^3 168n^2 + 210n 121 \neq \Omega(n^4)$.
- 6. (10) Using the definition of big- Θ to prove that $3n^3 168n^2 + 268n \lg n 660 = <math>\Theta(n^3)$.
- 7. (20) Using the Limit Ratio Theorem to prove or disprove the following statements.

(a)
$$\frac{2n^3 + 21n - 18}{28n + 3^{10}} = \Theta(n^2).$$

(b)
$$5^n = \Omega(2^{n+10}).$$