Выполнил: студент гр. Р41193 Морозов О. В.

Вариант задания

3	MUL		RVI +EXU_BYPASS
---	-----	--	-----------------

Часть І

Фрагмент dump-файла с выполнением инструкции mul на 0x2b0.

```
000002a0 < run test>:
2a0: 000080b7
                           lui
                                ra,0x8
2a4: e0008093
                          addi ra,ra,-512 # 7e00
< global pointer$+0x6ef8>
2a8: b6db7137
                          lui sp,0xb6db7
2ac: db710113
                          addi sp,sp,-585 # b6db6db7
< global pointer$+0xb6db5eaf>
2b0: 022081b3
                         mul gp,ra,sp
2b4: 00001eb7
                          lui t4,0x1
2b8: 200e8e93
                          addi t4,t4,512 # 1200 < global pointer$+0x2f8>
2bc: 02000e13
                                t3,32
                          li
2c0: 37d19c63
                          bne gp,t4,638 <fail>
```

Из рисунков 1 и 2 видно, что из памяти для pc=0x2b0 (выделено синим цветом) выбирается инструкция умножения с rs2=2 (sp), rs1=1 (ra), rd=3 (gp).

RV32M Standard Extension 00000001 rs2 rs1 000 rd 0110011 MUL

Рисунок 1. Формат инструкции MUL.

Диаграмма 1. Бинарное представление инструкции MUL.

Расшифровка диаграммы 2.

curr_pc	Объяснение
0x2A4	Выборка из памяти по адресу 0x2b0. (imem_addr)
0x2A8	По адресу 0x2b0 из памяти загружена инструкция 022081b3. (imem_data)
0x2AC	Инструкция декодируется, получаем код умножения (func7/func3)
0x2B0	Выставлены адреса регистров sp, ra, gp (exu2mprf_rs1/rs2/rd_addr), данные из регистров передаются на вход АЛУ (exu2mprf_rs1/rs2/rd_data), в умножителе устанавливаются значения операндов и вычисляется результат. (mul_op1/op2/res)
0x2B4	В регистр gp (mprf_int(29)) записан результат умножения. Стоит отметить, что в коде регистры пронумерованы в обратном порядке: x1 это mprf_int(31), x2 это mprf_int(30) и т. д.
0x2BC	Тест успешен в случае, если gp = t4 (mprf_int(3)). На это такте видно, что
	значения сравнялись и остались неизменными до инструкции bne.

Диаграмма 2. Выполнение инструкции MUL.

Часть II

Результат для архитектуры RVI -EXU_BYPASS

Dhrystones per Second: 3010

"dhrystone21.hex" selected (49.5 kB)

Результат для архитектуры RVI +EXU_BYPASS

Dhrystones per Second: 3153

"dhrystone21.hex" selected (49.5 kB)

Часть III

При изменении наличие параметра SCR1_EXU_STAGE_BYPASS добавляет bypass перед стадией exu, согласно scr1_eas.pdf конвеер состоит из 3 стадий. (SCR1_IFU_QUEUE_BYPASS отключен) Без EXU_BYPASS конвеер состоит из 2 стадий.

Занимаемая площадь для архитектуры для проекта меняется незначительно. Однако модули MPRF и HDU задействуют значительно больше LUT в конфигурации с EXU_BYPASS, модуль EXU значительно больше без. Количество регистров значительно меняется только в EXU.

По всей видимости, bypass, который разделяет EXU и IDU, переносит управляющие сигналы в HDU и MPRF.

Name 1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT as Memory (9600)	LUT Flip Flop Pairs (20800)
∨ N arty_scr1_top	8797	8015	214	68	3344	8466	331	3119
> 1 dbg_hub (dbg_hub)	463	723	0	0	237	439	24	300
✓ I i_scr1 (scr1_top_ahb)	5219	2723	211	68	1757	5219	0	1168
> I i_core_top (scr1_co	4882	2388	211	68	1685	4882	0	857
I i_dmem_ahb (scr1	32	105	0	0	42	32	0	3
I i_dmem_router (scr	38	3	0	0	29	38	0	1
i_imem_ahb (scr1	8	32	0	0	12	8	0	2
i_imem_router (scr	1	2	0	0	2	1	0	0
I j_pwrup_rstn_reset	3	2	0	0	3	3	0	0
I i_rstn_reset_sync (1	2	0	0	2	1	0	0
> I i_tcm (scr1_tcm)	122	4	0	0	57	122	0	0
■ i_timer (scr1_timer)	132	185	0	0	110	132	0	37
> I i_sys_pll (sys_pll)	0	0	0	0	0	0	0	0
> I i_system (system)	3041	4500	3	0	1397	2734	307	1545

Рис. 2 Report Utilization RVI -EXU_BYPASS

Name 1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT as Memory (9600)	LUT Flip Flop Pairs (20800)
✓ I i_core_top (scr1_co	4882	2388	211	68	1685	4882	0	857
i_dm (scr1_dm)	409	360	3	0	216	409	0	82
I_dmi (scr1_dmi)	178	73	0	0	115	178	0	17
✓ I i_pipe_top (scr1	3958	1781	208	68	1471	3958	0	511
I_pipe_csr (sc	56	261	0	0	196	56	0	6
✓ I i_pipe_exu (s	2528	121	3	0	893	2528	0	42
I i_ialu (scr1	540	0	0	0	251	540	0	0
I_Isu (scr1	224	5	2	0	132	224	0	1
i_pipe_hdu (s	224	101	0	0	131	224	0	21
■ i_pipe_ifu (scr	159	112	0	0	106	159	0	10
I i_pipe_ipic (s	282	95	13	4	101	282	0	59
i_pipe_mprf (512	992	192	64	552	512	0	0
■ i_pipe_tdu (sc	204	99	0	0	93	204	0	19
> I i_scu (scr1_scu)	57	49	0	0	35	57	0	18
> I i_tapc (scr1_tapc)	112	98	0	0	33	112	0	98
i_tapc_synchroni	174	27	0	0	93	174	0	9

Рис. 3 Report Utilization RVI -EXU_BYPASS (подробно)

Name 1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT as Memory (9600)	LUT Flip Flop Pairs (20800)
∨ N arty_scr1_top	8795	7939	226	66	3219	8464	331	3094
> 1 dbg_hub (dbg_hub)	463	723	0	0	228	439	24	306
I i_scr1 (scr1_top_ahb)	5217	2647	223	66	1714	5217	0	1135
> I i_core_top (scr1_co	4858	2312	223	66	1642	4858	0	810
i_dmem_ahb (scr1	62	105	0	0	52	62	0	1
I_dmem_router (scr	34	3	0	0	27	34	0	0
I_i_imem_ahb (scr1	6	32	0	0	14	6	0	1
i_imem_router (scr	0	2	0	0	2	0	0	0
i_pwrup_rstn_reset	3	2	0	0	3	3	0	0
I i_rstn_reset_sync (1	2	0	0	2	1	0	0
> I i_tcm (scr1_tcm)	122	4	0	0	64	122	0	0
I i_timer (scr1_timer)	132	185	0	0	110	132	0	36
> I i_sys_pll (sys_pll)	0	0	0	0	0	0	0	0
> I i_system (system)	3041	4500	3	0	1341	2734	307	1544

Рис. 4 Report Utilization RVI +EXU_BYPASS

Name 1	Slice LUTs (20800)	Slice Registers (41600)	F7 Muxes (16300)	F8 Muxes (8150)	Slice (815 0)	LUT as Logic (20800)	LUT as Memory (9600)	LUT Flip Flop Pairs (20800)
✓ I i_core_top (scr1_co	4858	2312	223	66	1642	4858	0	810
I i_dm (scr1_dm)	398	360	2	0	229	398	0	80
I_dmi (scr1_dmi)	188	73	0	0	120	188	0	16
✓ I i_pipe_top (scr1	3905	1705	221	66	1434	3905	0	460
i_pipe_csr (sc	57	261	0	0	198	57	0	8
✓ I i_pipe_exu (s	434	45	1	0	250	434	0	4
I_ialu (scr1	350	0	1	0	201	350	0	0
I_Isu (scr1	43	5	0	0	26	43	0	1
I j_pipe_hdu (S	1984	101	19	0	767	1984	0	62
i_pipe_ifu (scr	163	112	0	0	126	163	0	11
I i_pipe_ipic (s	291	95	13	4	93	291	0	67
I i_pipe_mprf (803	992	188	62	602	803	0	0
I_pipe_tdu (sc	194	99	0	0	85	194	0	9
> I i_scu (scr1_scu)	100	49	0	0	74	100	0	20
> I i_tapc (scr1_tapc)	112	98	0	0	33	112	0	98
i_tapc_synchroni	158	27	0	0	85	158	0	12

Рис. 5 Report Utilization RVI +EXU_BYPASS (подробно)

Временной анализ

Результат для архитектуры RVI -EXU_BYPASS.

Setup		Hold		Pulse Width
Worst Negative Slack (WNS):	13,053 ns	Worst Hold Slack (WHS):	0,008 ns	Worst Pulse Width Slack (WPWS): 3,000 ns
Total Negative Slack (TNS):	0,000 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS): 0,000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints: 0
Total Number of Endpoints:	21108	Total Number of Endpoints:	21060	Total Number of Endpoints: 8453
All user enecified timing constrain	inte are met			

Рис. 6 Изначальный Timing summary при 40ns

Для того, чтобы определить максимальную частоту, в файле arty_scr1_synth.xdc период SYS_CLK_VIRT установлен 20ns, параметр частоты в sys_pll установлен 50MHz — предполагаю, что будет получен значительный отрицательный slack. Тем не менее, WNS оказался больше -1 и меньше 0, а значит возможно получить положительный slack при помощи директив.

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	-0,263 ns	Worst Hold Slack (WHS):	0,025 ns	Worst Pulse Width Slack (WPWS):	3,000 ns
Total Negative Slack (TNS):	-1,925 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS):	0,000 ns
Number of Failing Endpoints:	8	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	21084	Total Number of Endpoints:	21036	Total Number of Endpoints:	8453
Timing constraints are not met.					

Рис. 7 Timing summary при 20ns

При включенном post-route phys opt design и post-place phys opt design с директивой AggressiveExplore получилось добиться положительного значения WNS.

 $F_{max} = 50MHz$

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0,020 ns	Worst Hold Slack (WHS):	0,025 ns	Worst Pulse Width Slack (WPWS):	3,000 ns
Total Negative Slack (TNS):	0,000 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS): 0	0,000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	21084	Total Number of Endpoints:	21036	Total Number of Endpoints:	8455
All user specified timing constrain	ints are met	_			

Рис. 8 Timing summary при 20ns с настройками

Результат для архитектуры $RVI + EXU_BYPASS$.

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	7,801 ns	Worst Hold Slack (WHS):	0,037 ns	Worst Pulse Width Slack (WPWS):	3,000 ns
Total Negative Slack (TNS):	0,000 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS):	0,000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	20922	Total Number of Endpoints:	20874	Total Number of Endpoints:	8377
All user specified timing constrai	nts are met				

Рис. 9 Изначальный Timing summary

Для того, чтобы определить максимальную частоту, в файле arty_scr1_synth.xdc период SYS_CLK_VIRT установлен 20ns, параметр частоты в sys_pll установлен 50MHz — предполагаю, что будет получен значительный отрицательный slack. Отрицательный slack составил около 4,5ns. 20+4,5=24.5ns~25ns и соответственно предполагаемая чистота, при которой WNS будет около нуля равно примеро 40MHz.

В файле arty_scr1_synth.xdc период SYS_CLK_VIRT установлен 25ns, параметр частоты в sys_pll установлен 40MHz. WNS меньше 0 и больше -1, следовательно можно попытаться улучшить результат при помощи директив.

Рис. 10 Timing summary при 25ns

При включенном post-route phys opt design и post-place phys opt design с директивой AggressiveExplore получилось добиться положительного значения WNS.

 $F_{max}=40MHz$

Setup	Hold		Pulse Width	
Worst Negative Slack (WNS): 0,012 ns	Worst Hold Slack (WHS):	0,017 ns	Worst Pulse Width Slack (WPWS):	2,633 ns
Total Negative Slack (TNS): 0,000 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS):	0,000 ns
Number of Failing Endpoints: 0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints: 21023	Total Number of Endpoints:	20975	Total Number of Endpoints:	8379
All user enecified timing constraints are met				

Рис. 11 Timing summary при 25ns с настройками

-	RVI -EXU_BYPASS	RVI +EXU_BYPASS
F_{max}	50MHz	40MHz
LUT	8797	8795
FF	8015	7939