Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Testul 12

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	· 1	
1.	$\left(\frac{2}{3}\right)^2 : \frac{1}{3} - 3 : 9 = \frac{4}{9} \cdot \frac{3}{1} - 3 \cdot \frac{1}{9} =$	3 p
	$=\frac{4}{3}-\frac{1}{3}=1$	2p
2.	$f(x) = 0 \Leftrightarrow 3x - 9 = 0$	3р
	x=3	2p
3.	$\sqrt{x^2 - 4x + 8} = x \Rightarrow x^2 - 4x + 8 = x^2$	2p
	-4x + 8 = 0, de unde obținem $x = 2$, care convine	3 p
4.	$x - \frac{8}{100} \cdot x = 184$	3p
	x = 200 de lei	2p
5.	C(1,2)	2p
	$4 = \frac{1 + x_D}{2}$, $1 = \frac{2 + y_D}{2}$, unde (x_D, y_D) sunt coordonatele punctului D , deci $x_D = 7$ și $y_D = 0$	3 p
6.	$tg\frac{\pi}{3} = \sqrt{3} \Rightarrow \cos x = \sqrt{3}\sin x$	2p
	$\sin^2 x + \left(\sqrt{3}\sin x\right)^2 = 1 \Leftrightarrow \sin^2 x = \frac{1}{4}$ și, cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{1}{2}$	3 p

SUBIECTUL al II-lea (30 de puncte)

	· · ·	
1.a)	$\det A = \begin{vmatrix} 3 & 6 \\ 1 & 2 \end{vmatrix} = 3 \cdot 2 - 6 \cdot 1 =$ $= 6 - 6 = 0$	3p 2p
	-0 0-0	2p
b)	$A \cdot A = \begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 9+6 & 18+12 \\ 3+2 & 6+4 \end{pmatrix} = \begin{pmatrix} 15 & 30 \\ 5 & 10 \end{pmatrix} =$	3 p
	$=5\begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} = 5A$	2p
c)	$xA + (1-x)I_2 = \begin{pmatrix} 2x+1 & 6x \\ x & x+1 \end{pmatrix} \Rightarrow \det(xA + (1-x)I_2) = -4x^2 + 3x + 1, \text{ pentru orice număr real } x$	3p
	$-4x^2 + 3x + 1 \ge 0$, de unde obţinem $x \in \left[-\frac{1}{4}, 1 \right]$	2p
2.a)	$1*2=3\cdot 1\cdot 2-1^2-2^2=$	3p
	=6-1-4=1	2p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

	b)	$2*x=6x-4-x^2$, pentru orice număr real x	2p	
		$6x-4-x^2=1 \Leftrightarrow x^2-6x+5=0$, de unde obținem $x=1$ sau $x=5$	3p	
	c)	$\sqrt[3]{x} * \sqrt[3]{x} = \sqrt[3]{x^2} \Rightarrow (\sqrt[3]{x} * \sqrt[3]{x}) * \sqrt[3]{x^2} = \sqrt[3]{x^4}$, pentru orice număr real x	2p	
		$\sqrt[3]{x^4} = 1 \Leftrightarrow x^4 = 1$, de unde obținem $x = -1$ sau $x = 1$	3р	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 2 - \frac{x+2-x}{(x+2)^2} = \frac{2x^2+8x+6}{(x+2)^2} =$	3p
	$=\frac{2(x^2+4x+3)}{(x+2)^2}=\frac{2(x+1)(x+3)}{(x+2)^2}, x \in (-2,+\infty)$	2p
b)	$f'(x) = 0 \Leftrightarrow x = -1$	2p
	$f'(x) \le 0$, pentru orice $x \in (-2,-1] \Rightarrow f$ este descrescătoare pe $(-2,-1]$, $f'(x) \ge 0$, pentru orice $x \in [-1,+\infty) \Rightarrow f$ este crescătoare pe $[-1,+\infty)$	3p
c)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(2 - \frac{1}{x+2}\right) = 2$	2p
	$\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} \left(-\frac{x}{x+2} \right) = -1, \text{ deci dreapta de ecuație } y = 2x - 1 \text{ este asimptotă}$ oblică spre $+\infty$ la graficul funcției f	3p
2.a)	2 2 (2)2	
	$\int_{0}^{3} (x^{2} + 1) f(x) dx = \int_{0}^{3} (x^{2} + 5) dx = \left(\frac{x^{3}}{3} + 5x\right) \Big _{0}^{3} =$	3p
	=9+15=24	2p
b)	$\int_{0}^{1} (f(x)-1)dx = \int_{0}^{1} \frac{4}{x^{2}+1} dx = 4 \operatorname{arctg} x \Big _{0}^{1} =$	3p
	$=4 \operatorname{arctg} 1 - 4 \operatorname{arctg} 0 = \pi$	2p
c)	F este primitivă a funcției $f \Rightarrow F'(x) = f(x), x \in \mathbb{R}$	2p
	$F''(x) = f'(x) = \frac{-8x}{(x^2 + 1)^2} \le 0$, pentru orice $x \in [0, +\infty)$, deci F este concavă pe $[0, +\infty)$	3 p