Han Wang

Ph.D. in Autonomous Driving and Generative AI at Berkeley Artificial Intelligence Research

■ +1510-409-2998 hanw@berkeley.edu hanwcal.github.io hf/hanwcal in/hanwcal

Profile and Objective

Ph.D. candidate at the Berkeley Artificial Intelligence Research group with a focus on Autonomous Driving and Generative AI. Seeking a postdoctoral position to further explore intelligent transportation systems and vehicular automation technologies.

Education

University of California, Berkeley GPA 3.93/4.0 CA, United States

Ph.D. in Transportation Engineering

08/2021 – 12/2024

M.S. in Electrical Engineering and Computer Science

08/2023 - 12/2024

M.Eng. in Transportation Engineering

08/2020 - 05/2021

Relevant Courses: Deep Reinforcement Learning / Responsible GenAI and Decentralized Intelligence / Advanced Control System / Reproducible and Collaborative Statistical Data Science / Computer Vision / Immersive Computing and Virtual Reality / Foundations of Computer Graphics / Intelligent Transportation Systems / Data Driven Control Methods for Civil Systems / Highway Traffic Operations / Operation of Transportation Facilities / Systems Analysis in Transportation / Public Transportation Systems / Traffic Safety and Injury Control

Southeast University *GPA 85.75/100*

Nanjing, China

M.Eng. in Transportation Engineering

09/2017 - 05/2020

School of Transportation and Logistic, Southwest Jiaotong University GPA 80.27/100

Chengdu, China

B.S. in Transportation Engineering

09/2013 - 06/2017

Research Experience

Congestion Impacts Reduction via CAV-in-the-loop Lagrangian Energy Smoothing (CIRCLES) 03/2022-12/2024

World's largest open-track fieldtest, sending 100 auto-vehicle(AV)s to I-24 during the morning peak to improve traffic. Funded by Toyota, Nissan, and General Motors. Supported by Tennessee Department of Transportation

- Role: Led the centralized speed planner to publish the optimized speed for all 100 AVs in real-time during the experiment.
- Tools: RL Speed Planner: PyTorch, Ray, Gym Backend: MySQL, Python API: PHP
- Outcome: From the field test data, we observed an 8% improvement overall, with 7% and 10% improvements upstream and downstream, respectively, and a 52% improvement during congestion formation at the bottleneck.

Collision Indeterminacy Prediction via Stochastic Trajectory Generation

06/2023-06/2024

Predicting the motion of AV with the **pre-trained image generative model**. Funded by Berkeley Deep Drive and Allstate
• Role: Lead the occupancy image dataset collecting, generative decoder pre-training, end-to-end training with perception encoder, the building of the simulation platform, and the design & training of the AV controller in the simulator.

- Tools: ML Model Design & Training: PyTorch, Ray | Simulation: SUMO | Dataset: Argoverse
- <u>Outcome</u>: Developed a probabilistic occupancy risk assessment (PORA) metric, validated through a scenario-generation-based microsimulation platform, demonstrated to be effective in predicting 87% of the conflicts that could not be predicted by TTC-2.

Creating an Inclusive Bicycle Level of Service: Virtual Bicycle Simulator study

01/2021-08/2023

Gather user feedback on biking environments with VR simulator survey. Funded by California Department of Transportation
• Role: Built the VR biking simulator, including hardware & software integration. Rebuilt the California streets in 3D scenarios.

- Tools: Simulator Development: Unity, C#, SteamVR | Modeling: Blender
- <u>Outcome</u>: The feedback from the survey proved the VR simulator provided a more realistic and engaging experience for participants, which enhanced their ability to make informed decisions about their route preferences.

Opportunities and Challenges for Runtime Behavior Generation in Games and Simulations

09/2023-06/2024

Runtime behavior generation using large language models in game/simulation development.

Personal Project

- <u>Role:</u> Developed the runtime code compile module. Implemented the semantic search and prompt engineering of the agent. Develop the element tree system of test scenarios. Conducted generalization tests in various scenarios.
- Tools: System Development: Unity, C# | LLM: OpenAI API
- <u>Outcome</u>: The pressure test demonstrated the system in various game scenarios, achieving an 85% success rate. Thematic analysis of developer feedback indicates the improved dynamic game experience by integrating real-time behavior generation.

V2X-based Driving Perception Assistance System

09/2023-12/2024

Integration of foundation models and AR to enhance driving assistance systems via real-time visual aids Personal Project • Role: Designed and implemented a system integrating multimodal data (Lidar, cameras, maps, traffic updates) for real-time driving assistance. Developed AR visual aids for 3D object tracking and scene reconstruction. Utilized specialized LLMs for

- script generation and natural language interaction.
- Tools: System Development: Unity, C#, OpenCV LLM: Ollama, LiteLLM
- Outcome: Achieved accurate 3D object tracking and reconstruction, enhancing driver situational awareness and safety through real-time AR visualizations. Refined functionality through human-in-loop interactions and driver feedback. Integrated foundation models for natural language command interpretation and script generation, improving the adaptability and usability.

Vision-based Browser Automation using GenAI

01/2024-12/2024

Automating browser workflows using multimodal LLM agents.

Personal Project

- Role: Finetuned open-source LLMs with RAG for browser operation subtasks. Developed vision + HTML webpage scraper. Defined and implemented multi-agent workflow. Develop the browser operation API kit for LLM. Developed the Chrome extension for human-in-loop expert data collecting. Created the open dataset on HuggingFace.
- Agent: Ollama, LangChain, LiteLLM • Tools: Finetune: Unsloth
- Outcome: Enhanced automation stability and adaptability to website layout changes, enabling complex workflow automation across multiple sites. Integrated real-time debugging and visualization of automation steps, facilitating efficient troubleshooting.

Skills

Programming Languages:

Python, C# **Backends:**

MySQL, AWS

Frameworks and Libraries:

PyTorch, Ray, Ollama, LiteLLM, Unsloth, OpenCV

Simulation and Modeling:

Unity, SteamVR, Blender, SUMO

Publications

- Lee, J. W., Wang, H., Jang, K., Hayat, A., Bunting, M., Alanqary, A., ... (64 authors) & Bayen, A. M. (2024). Traffic control via connected and automated vehicles: An open-road field experiment with 100 cavs. Accepted by IEEE CSM Special Issue Sept. 2024. arXiv preprint arXiv:2402.17043.
- Wang, H., Fu, Z., Lee, J., Matin, H. N. Z., Alanqary, A., Urieli, D., ... (17 authors) & Monache, M. L. D. (2024). Hierarchical speed planner for automated vehicles: A framework for lagrangian variable speed limit in mixed autonomy traffic. Accepted by IEEE CSM Special Issue Sept. 2024. arXiv preprint arXiv:2402.16993.
- Wang, H., Nick Zinat Matin, H., & Delle Monache, M. L. (2024, June). Reinforcement learning-based adaptive speed controllers in mixed autonomy condition. In 2024 European Control Conference (ECC) (pp. 01-06). IEEE.
- Chekroun, R., Wang, H., Lee, J., Toromanoff, M., Hornauer, S., Moutarde, F., & Monache, M. L. D. (2024). Mesoscale Traffic Forecasting for Real-Time Bottleneck and Shockwave Prediction. arXiv preprint arXiv:2402.05663.
- Fu, Z., Kreidieh, A. R., Wang, H., Lee, J. W., Delle Monache, M. L., & Bayen, A. M. (2023, June). Cooperative driving for speed harmonization in mixed-traffic environments. In 2023 IEEE Intelligent Vehicles Symposium (IV) (pp. 1-8). IEEE.
- Wang, H., Wu, H., Lu, J., Tang, F., & Delle Monache, M. L. (2023, September). Communication Optimization for Multiagent Reinforcement Learning-based Traffic Control System with Explainable Protocol. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC) (pp. 6068-6073). IEEE.
- Wang, H., & Delle Monache, M. L. (2022, July). Urban network resilience analysis and equity emphasized recovery based on reinforcement learning. In 2022 European Control Conference (ECC) (pp. 01-06). IEEE.
- Zhang, J., Dong, S., Li, Z., Ran, B., Li, R., & Wang, H. (2019). An eco-driving signal control model for divisible electric platoons in cooperative vehicle-infrastructure systems. IEEE Access, 7, 83277-83285.
- Tang, F., Cheng, L., Wang, H., Mao, P., & Jiang, J. (2019). Research on the Impact of Car-Hailing on Travel Mode Choice: Evidence from Chengdu, China. In CICTP 2019 (pp. 6134-6145).
- Dong, S. Y., Zhang, J., Wang, H., Ran, B., & Tan, H. C. (2018, July). A speed guidance-based signal control method for divisible platoon in CVIS. In 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 1403-1408). IEEE.
- Dong, S. Y., Zhang, J., Chen, T. Y., Wang, H., & Ran, B. (2018, July). CVIS-Based Intersection Signal Control Model for Indivisible Platoons. In 18th COTA International Conference of Transportation Professionals (pp. 359-368). Reston, VA: American Society of Civil Engineers.