Vol.8 No.3

Sept. 1995

黑盒实验的设计与分析

周胜海

(信阳师范学院,河南信阳,464000)

摘 要 本文提供一种由 R_{L} C 内成的黑盒实验的设计与分析方法, 并指出了该实验 在教学实施过程中应注意的问题。

关键词 黑盒;移相;谐振

1 引言

2 设计实例与分析

如图 1 所示, 黑盒外共有 6 个接线端, 相邻两接线端在黑盒内的联接为 R、L、C、开路、短路五种可能之一, 要求用万用表、信号发生器、示波器

等常用电磁学实验仪器判断相邻接线端之间的联接方式并测定 $R \setminus L \setminus C$ 元件的数值。 2.1 用万用表初步判断相邻接线端之间的联接方式并测定电阻的阻值。

表1 实验数据

相邻接线端	12	23	34	45	56	61
电阻值(Ω)	œ	œ	0	0	00	2200
可能联接方式	小电容或开路	小电容或开路	电感或短路	电感或短路	小电容或开路	电阻

2.2 用 RC 电路的移相特性判定小电容与开路并测定电容的容量。

图 2 所示的 $R \setminus C$ 串联的正弦交流电路是一种移相电路,可以产生电压相位的偏移,

收稿日期:1995-05-08

即输出电压 U_R 与输入电压 U 之间产生相位差 φ , 且

$$tg\varphi = -\frac{1}{2\pi f cR} \tag{1}$$

将可能联接方式为小电容或开路的三个相邻接线端 12.23.56 分别与电阻 R 联接成图 2 所示的移相电路,用示波器测得 $U.U_R$ 之间的相位差 φ 和电源频率 f 值,前面已测得 R 值,代入式(1)便可求得小电容 C 的值。并判定相邻接线端 23和 56 之间为开路。

2.3 用 *R*、*L*、*C* 谐振电路的谐振特性判定电感与 短路并测定电感的电感量。

用 $R \setminus L \setminus C$ 谐振电路的串联谐振特性或并联谐振特性都可以判定电感与短路,本实验是利用其串联谐振特性。

图 3 所示的 $R \setminus L \setminus C$ 串联的正弦交流电路有一谐振频率

$$f_o = \frac{1}{2\pi \sqrt{LC}} \tag{2}$$

当输入电压 U 的频率 f 等于 f_0 时,输出电压 U_R 取极大值。利用这一特性可能测量电感^[2]。

将可能联接方式为电感或短路的两个相邻接 线端 24、45 分别与电阻 R 和电容 C 联接成图 3 所 示的串联谐振电路。

改变电源频率(注意保持电源输出幅度不

图 2 实验原理图

图 3 实验原理图

变),观察 U_R 的幅度变化。若 U_R 在某一频率取得极大值,则该相邻接线端之间为电感,否则,该相邻接线端之间为短路。用示波器测得对应 U_R 极大值的电源频率 f 值,前面已测得 C 值,代入式(2)便可求得 L 值。

用上述方法可以判定相邻接线端 34 之间为短路、45 之间为电感。

参考文献

- [1] 廖玄九等.电工学(上册).人民教育出版社,1979.56-57
- [2] 〈大学物理实验〉编写组.大学物理实验.河南教育出版社,1988.128—132
- [3] 李锦泉. 淡物理教学实验的设计. 物理实验, 1990, 4(2):83-87

THE DESIGN AND ANALYSIS OF BLACK BOX EXPERIMENT

Zhou Shenghai

(Xinyang Teachers College, Xinyang, Henan, 464000)

Abstract This paper presents a desinging and analytical method for the black box experiment composed of R, L and C, and points out the questions for attention in the experimental teaching practice.

Keywords black box; phase shift; syntony