精算概论第二次作业: 寿险定价答案

庄源

目录

1	期末给付型保险定价 Insurance Paid at the End of the Death Year	2
2	期末给付型保险定价 Insurance Paid at the End of the Death Year	3
3	连续给付型保险定价及分位数保费 Insurance Paid Immediately	4
4	连续给付型保险及中心极限定理 Insurance Paid Immediately and CLT	5
5	赔付现值随机变量的均值与方差 $\mathrm{E}(\cdot)$ and $\mathrm{Var}(\cdot)$ of Present Value RVs	6
6	生存保险的现值 PV of Pure Endowment Insurance	7

1 期末给付型保险定价 Insurance Paid at the End of the Death Year

1.1 原题

现有 5 年期两全保险,投保年龄为 30 岁。已知: 30 岁的生存人数为 100,31 岁的生存人数 为 99,32 岁的生存人数为 97,33 岁的生存人数 95,34 岁的生存人数 90,35 岁的生存人数 85。假设死亡保险金额为 10000 元,死亡保险金在死亡年末支付,期满生存保险金额为 5000 元,利率为 3%。

- 1. 求趸缴净保费。
- 2. 假设缴费期为5年, 求年缴净保费;
- 3. 假设缴费期为3年, 求年缴净保费;
- 4. 假设缴费期为 3 年,第一年的费用比例为 30%,第二年费用比例为 20%,第三年费用比例 为 10%,求年缴毛保费。

1.2 参考答案

知识点: 第二章 PPT 中"两全寿险的均衡保费"和"毛保费", 位置为 PPT 89-90、92-93 面。

1. 设趸缴净保费为 P,则有:

$$P\ell_{30} = 10000 \times (d_{30}v + d_{31}v^2 + d_{32}v^3 + d_{33}v^4 + d_{34}v^5) + 5000\ell_{35}v^5$$

上式表示: 为得到平衡保费, 期望净保费现值应等于期望保险给付现值 1 。解得 P=5010.27。

2. 设五年期缴的年缴净保费为 P₅,则有:

$$P_5 \times (\ell_{30} + \ell_{31}v + \ell_{32}v^2 + \ell_{33}v^3 + \ell_{34}v^4) = 10000 \times (d_{30}v + d_{31}v^2 + d_{32}v^3 + d_{33}v^4 + d_{34}v^5) + 5000\ell_{35}v^5$$
解得 $P_5 = 1102.49$ 。

3. 设三年期缴的年缴净保费为 P3,则有:

4. 设三年期缴的年缴毛保费为 G,则有:

$$G \times (\ell_{30} + \ell_{31}v + \ell_{32}v^2) = 10000 \times (d_{30}v + d_{31}v^2 + d_{32}v^3 + d_{33}v^4 + d_{34}v^5) + 5000\ell_{35}v^5 + G\ell_{30} \times 30\% + G\ell_{31}v \times 20\% + G\ell_{32}v^2 \times 10\%$$

解得 G = 2186.16。

¹两全保险需要为每年的死亡人员(即 $d_{30} \sim d_{34}$)给付死亡保险金额,还需要为保险期末存活人员(即 ℓ_{35})支付期满生存保险的金额。

1.3 赋分及批改情况

表 1: Question 1 给分标准 (共 25 分)

采分点	分值
第1问	5
第2问	6
第3问	6
第4问	8

本题完成情况较好。部分同学计算出错,还有小部分同学没搞懂两全保险的给付规则。

2 期末给付型保险定价 Insurance Paid at the End of the Death Year

注. 本题有 EXCEL 答案,供同学们学习参考使用。[下载]

2.1 原题

假设利率为 2%,保额为 10000 元,死亡保险金在死亡年末支付。依据下表,计算 30 岁男性购买的 3 年期两全保险的趸缴净保费和 3 年期缴费的年缴净保费。

表 2: 男性各年龄死亡率

年龄	死亡率	
25	0.000615	
26	0.000644	
27	0.000675	
28	0.000711	
29	0.000751	
30	0.000797	
31	0.000847	
32	0.000903	
33	0.000966	
34	0.001035	
35	0.001111	

2.2 参考答案

知识点: 第二章 PPT 中"终身寿险和两全保险"、"两全寿险的均衡保费",位置为 PPT 80、89-90 面。

今 P 为趸缴净保费,则有:

$$P = 10000 A_{30:\overline{3}|} = 10000 \left(A_{30:\overline{3}|}^{1} + {}_{3}p_{30}v^{3} \right)$$
$$= 10000 \times \left(\sum_{k=0}^{2} {}_{k|}q_{30}v^{k+1} + {}_{3}p_{30}v^{3} \right)$$
$$= 9423.69$$

再令 $P_{30:3}$ 为 3 年期缴费的年缴净保费,则有:

$$\begin{split} P_{30:\overline{3}} &= \frac{A_{30:\overline{3}}}{\ddot{a}_{30:\overline{3}}} \\ &= \frac{9423.69}{\sum_{k=0}^{2} tp_{30}v^{k}} \\ &= 3206.21 \end{split}$$

2.3 赋分及批改情况

表 3: Question 2 给分标准(共 15 分)

	分值
趸缴净保费	10
年缴净保费	5

本题完成的情况很好。部分同学在 $\ddot{a}_{30:3}$ 的计算中没有考虑到生存概率,从而导致错误。

连续给付型保险定价及分位数保费 Insurance Paid Immediately 3

3.1 原题

设(x)投保终身寿险,保险金额1元,签单时其未来寿命T的概率密度函数为:

$$f_T(t) = \begin{cases} 1/60 & 0 < t < 60 \\ 0 & \text{其它} \end{cases}$$

利息强度为 $\delta = 0.06$,在签单时的保险金给付现值随机变量为 Z,试计算:

- 1. \bar{A}_x ;
- 2. 满足 $P(Z \le \xi_{0.95}) = 0.95$ 的 $\xi_{0.95}$ 。

3.2 参考答案

知识点: 第二章 PPT 中 "寿险的精算现值: 连续模型"一节,位置为 PPT 60-66 面。
1.
$$\bar{A}_x=\int_0^\infty v^t f_T(t)dt=\int_0^{60}e^{-\delta t}\frac{1}{60}dt=\frac{1-e^{-3.6}}{3.6}=0.2702$$

2. 对概率进行如下转换:

$$\begin{split} & \text{P}\left(Z \leqslant \xi_{0.95}\right) = \text{P}\left(v^T \leqslant \xi_{0.95}\right) = \text{P}\left(T \geqslant \frac{\ln \xi_{0.95}}{\ln v}\right) \\ & \Leftrightarrow h = \frac{\ln \xi_{0.95}}{\ln v}, \text{ 则 } \text{P}(T \geqslant h) = \int_{h}^{\infty} f_T(t) dt = \int_{h}^{60} \frac{1}{60} dt = 1 - \frac{h}{60} = 0.95, \end{split}$$

得
$$\frac{\ln \xi_{0.95}}{\ln v} = 3 \Rightarrow \xi_{0.95} = e^{-0.18} = 0.8353$$

3.3 赋分及批改情况

表 4: Question 3 给分标准(共 15 分)

采分点	分值
第1问	5
第2问	10

本题全班几乎全对。

连续给付型保险及中心极限定理 Insurance Paid Immediately and CLT

4.1 原题

假设(x) 投保了保险金额 1 元的终身寿险,余命T的概率密度是 $f_T(t) = \mu e^{-\mu t}, \mu = 0.04, t \ge$ 0。给定利息强度 $\delta = 0.06$ 。

- 1. 求该保单的趸缴净保费 \bar{A}_x ;
- 2. 满足 P ($Z \le \xi_{0.95}$) = 0.95 的 $\xi_{0.95}$;
- 3. 假设有 1000 个相互独立的 (x) 投保了该保险, 试计算该保险基金在最初 (即 t=0) 时的 数额至少为多少时,才能保证该基金足以支付所有投保人死亡给付的概率达到95%。

4.2 参考答案

知识点: 第二章 PPT 中 "例题: 对保费的理解"一节,位置为 PPT 67-70 面。 1.
$$\bar{A}_x = \int_0^\infty v^t f_T(t) dt = \frac{\mu}{\mu + \delta} = 0.4$$
;

2.
$$P(z \le \xi_{0.95}) = P(v^t \le \xi_{0.95}) = P(T \ge \frac{\ln \xi_{0.95}}{\ln v})$$

记
$$h = \frac{\ln \xi_{0.95}}{\ln v}$$

$$P(T \ge h) = \int_{h}^{\infty} f_T(t)dt = \int_{h}^{\infty} \mu e^{-\mu t} dt = e^{-\mu h} = 0.95$$

3. 记 Z_i 为被保险人的死亡给付现值,则基金死亡给付为 $Z = \sum_{i=1}^{1000} Z_i$,由于各个被保险人互 相独立,有:

$$E(Z) = \sum_{i=1}^{1000} E(Z_i) = 1000 \times 0.4 = 400$$

$$Var(Z) = Var\left(\sum_{i=1}^{1000} Z_i\right) = \sum_{i=1}^{1000} Var(Z_i) = 1000 \times \left[E(Z^2) - E^2(Z)\right]$$

$$= 1000 \times \left[\frac{\mu}{\mu + 2\delta} - \left(\frac{\mu}{\mu + \delta}\right)^2\right] = 90$$

记基金原始数额为 γ ,则

$$P(Z \le \gamma) = P\left(\frac{Z - 400}{\sqrt{90}} \le \frac{\gamma - 400}{\sqrt{90}}\right) = 0.95$$

 $\Rightarrow \frac{\gamma - 400}{\sqrt{90}} = 1.645 \quad \gamma = 415.61$

保险基金在最初至少为415.61元才能符合要求。

4.3 赋分及批改情况

表 5: Question 4 给分标准 (共 25 分)

采分点	分值
第1问	5
第2问	8
第3问	12

本题完成情况很好。

5 赔付现值随机变量的均值与方差 $\mathrm{E}(\cdot)$ and $\mathrm{Var}(\cdot)$ of Present Value RVs

5.1 原题

假设 x 岁的被保险人死力为 μ ,利息强度为 δ 。(年龄上限为正无穷)

- 1. 记 Z_1 为单位终身寿险(即保险金额为 1 元)的赔付现值,计算 $E(Z_1)$ 和 $Var(Z_1)$;
- 2. 记 Z_2 为单位 5 年期定期寿险的赔付现值, 计算 $E(Z_2)$ 和 $Var(Z_2)$ 。

5.2 参考答案

1. 对于终身寿险,有:

$$E(Z_1) = \int_0^\infty e^{-\delta t} \mu e^{-\mu t} dt = \frac{\mu}{\mu + \delta}$$

$$E[Z_1^2] = \frac{\mu}{\mu + 2\delta}$$

$$Var(Z_1) = E(Z_1^2) - [E(Z_1)]^2 = \frac{\mu}{\mu + 2\delta} - \left(\frac{\mu}{\mu + \delta}\right)^2$$

2. 对于定期寿险,有:

$$E(Z_{2}) = \int_{0}^{5} e^{-\delta t} \mu e^{-\mu t} dt = \frac{\mu}{\mu + \delta} \left[1 - e^{-5(\mu + \delta)} \right]$$

$$E(Z_{2}^{2}) = \frac{\mu}{\mu + 2\delta} \left[1 - e^{-5(\mu + 2\delta)} \right]$$

$$Var(Z_{2}) = \frac{\mu}{\mu + 2\delta} \left[1 - e^{-5(\mu + 2\delta)} \right] - \left\{ \frac{\mu}{\mu + \delta} \left[1 - e^{-5(\mu + \delta)} \right] \right\}^{2}$$

5.3 赋分及批改情况

表 6: Question 5 给分标准 (共 15 分)

采分点	分值
第1题	6
第2题	9

本题完成情况较差,很多同学没有化简式子。

6 生存保险的现值 PV of Pure Endowment Insurance

6.1 原题

现有保险公司提供的一个退休计划:参与者如果存活至 65 岁,可以在 65 岁时一次性领取 100 万元。假设一个 50 岁的人参与了该计划,他的死力 μ 为常数 0.005。利息强度 δ 为 0.05。试计算该计划对于他的期望现值。

6.2 参考答案

该期望现值为:

$$100 \cdot e^{-15\delta}_{15} p_{50} = 100 \cdot e^{-15\delta} e^{-\int_0^{15} \mu dt} = 100 e^{-15(\mu + \delta)} = 43.82 (\overrightarrow{\mathcal{H}} \overrightarrow{\pi})$$

6.3 赋分及批改情况

本题分值5分,完成情况很差。部分同学把本题想得太过复杂。