### **NORX**

#### A Parallel and Scalable Authenticated Encryption Scheme

Jean-Philippe Aumasson<sup>1</sup> (@veorq) **Philipp Jovanovic**<sup>2</sup> (@daeinar)

Samuel Neves<sup>3</sup> (@sevenps)

<sup>1</sup>Kudelski Security, Switzerland <sup>2</sup>University of Passau, Germany <sup>3</sup>University of Coimbra, Portugal

ESORICS 2014 Wrocław, September 08, 2014

### Outline

- 1. Motivation
- 2. Specification
- 3. Performance
- 4. Security Analysis
- 5. Conclusion

"Nearly all of the symmetric encryption modes you learned about in school, textbooks, and Wikipedia are (potentially) insecure."

—Matthew Green

### **Types**

- ▶ AE: ensure confidentiality, integrity, and authenticity of a message
- ► AEAD: AE + ensure *integrity* and *authenticity* of associated data (e.g. routing information in IP packets)

#### Generic Composition

- Symmetric encryption algorithm (confidentiality)
- Message Authentication Code (MAC) (authenticity, integrity)

### **Applications**

- Standard technology to protect in-transit data
- ► IPSec, SSH, TLS, ...

### Problems with Existing AE(AD) Schemes

- ▶ Interaction flaws between enc. and auth. in generic composition
- ▶ Weak primitives (e.g. RC4)
- Broken modes (e.g. EAXprime)
- Misuse resistant solutions barely used
- No reliable standards
- ▶ More examples: http://competitions.cr.yp.to/disasters.html

⇒ Lots of room for improvements

### Problems with Existing AE(AD) Schemes

- ▶ Interaction flaws between enc. and auth. in generic composition
- ▶ Weak primitives (e.g. RC4)
- Broken modes (e.g. EAXprime)
- Misuse resistant solutions barely used
- No reliable standards
- ▶ More examples: http://competitions.cr.yp.to/disasters.html

⇒ Lots of room for improvements

### **CAESAR**



- Competition for Authenticated Encryption: Security, Applicability, and Robustness.
- ▶ Goals: Identify a portfolio of authenticated ciphers that
  - offer advantages over AES-GCM (the current de-facto standard) and
  - are suitable for widespread adoption.

#### Overview:

- March 15 2014 End of 2017
- 1st round: 57 submissions
- http://competitions.cr.yp.to/caesar.html

#### Further Information:

- AEZoo: https://aezoo.compute.dtu.dk
- Speed comparison: http://www1.spms.ntu.edu.sg/~syllab/speed

# NO(T A)RX

#### Overview of NORX

### Main Design Goals

- ► High security
- Efficiency
- Simplicity
- Scalability

- Online
- Side-channel robustness (e.g. constant-time operations)
- ► High key agility

### Overview of NORX

#### **Parameters**

▶ Word size:  $W \in \{32, 64\}$  bits

▶ Number of rounds:  $1 \le R \le 63$ 

▶ Parallelism degree:  $0 \le D \le 255$ 

► Tag size:  $|A| \le 10W$ 

#### Instances

| Rank | NORXW-R-D  | Nonce size (2W) | Key size (4W) |  |
|------|------------|-----------------|---------------|--|
|      | NORX64-4-1 |                 |               |  |
|      | NORX32-4-1 | 64              |               |  |
|      | NORX64-6-1 |                 |               |  |
| 4    | NORX32-6-1 | 64              |               |  |
|      | NORX64-4-4 |                 |               |  |

### Overview of NORX

#### **Parameters**

▶ Word size:  $W \in \{32, 64\}$  bits

▶ Number of rounds:  $1 \le R \le 63$ 

▶ Parallelism degree:  $0 \le D \le 255$ 

► Tag size:  $|A| \le 10W$ 

#### Instances

| Rank | NORX <i>W-R-D</i> | Nonce size (2W) | Key size (4W) | Tag size (4W) | Classification  |
|------|-------------------|-----------------|---------------|---------------|-----------------|
| 1    | NORX64-4-1        | 128             | 256           | 256           | Standard        |
| 2    | NORX32-4-1        | 64              | 128           | 128           | Standard        |
| 3    | NORX64-6-1        | 128             | 256           | 256           | High security   |
| 4    | NORX32-6-1        | 64              | 128           | 128           | High security   |
| 5    | NORX64-4-4        | 128             | 256           | 256           | High throughput |

### NORX Mode



NORX in Sequential Mode (D=1)

#### **Features**

- ► (Parallel) monkeyDuplex construction (derived from Keccak/SHA-3)
- ▶ Processes header, payload and trailer data in one-pass
- ▶ Data expansion via multi-rate padding: 10\*1
- Extensible (e.g. sessions, secret message numbers)
- Parallelisable

### NORX Mode



NORX in Parallel Mode (D = 2)

#### **Features**

- ► (Parallel) monkeyDuplex construction (derived from Keccak/SHA-3)
- Processes header, payload and trailer data in one-pass
- ▶ Data expansion via multi-rate padding: 10\*1
- Extensible (e.g. sessions, secret message numbers)
- Parallelisable

### The State

▶ NORX operates on a state of 16 W-bit sized words

| W  | Size | Rate | Capacity |
|----|------|------|----------|
| 32 | 512  | 320  | 192      |
| 64 | 1024 | 640  | 384      |

► Arrangement of rate (data processing) and capacity (security) words:

| $s_0$    | $s_1$    | $s_2$    | $s_3$    |
|----------|----------|----------|----------|
| $s_4$    | $s_5$    | $s_6$    | $s_7$    |
| $s_8$    | $s_9$    | $s_{10}$ | $s_{11}$ |
| $s_{12}$ | $s_{13}$ | $s_{14}$ | $s_{15}$ |

#### Initialisation

▶ Load nonce, key and constants into state *S*:

| $u_0$ | $n_0$ | $n_1$ | $u_1$ |
|-------|-------|-------|-------|
| $k_0$ | $k_1$ | $k_2$ | $k_3$ |
| $u_2$ | $u_3$ | $u_4$ | $u_5$ |
| $u_6$ | $u_7$ | $u_8$ | $u_9$ |

► Parameter integration:

$$s_{14} \leftarrow s_{14} \oplus (R \ll 26) \oplus (D \ll 18) \oplus (W \ll 10) \oplus |A|$$

ightharpoonup Apply round permutation  $F^R$  to S

### The Permutation $F^R$

#### The Permutation F



#### The Permutation G

1: 
$$a \leftarrow H(a, b)$$

2: 
$$d \leftarrow (a \oplus d) \gg r_0$$

3: 
$$c \leftarrow H(c, d)$$

4: 
$$b \leftarrow (b \oplus c) \gg r_1$$

5: 
$$a \leftarrow H(a, b)$$

6: 
$$d \leftarrow (a \oplus d) \gg r_2$$

8: 
$$b \leftarrow (b \oplus c) \gg r_3$$

#### The Non-linear Operation H

$$\mathsf{H}: \mathbb{F}_2^{2n} \to \mathbb{F}_2^n, (x,y) \mapsto (x \oplus y) \oplus ((x \wedge y) \ll 1)$$

Rotation Offsets  $(r_0, r_1, r_2, r_3)$ 

### The Permutation $F^R$

#### **Features**

- ► F and G derived from ARX-primitives ChaCha/BLAKE2
- ▶ H is an "approximation" of integer addition:

$$a+b=(a\oplus b)+ig((a\wedge b)\ll 1ig)$$

- ► LRX permutation
- No SBoxes or integer additions
- SIMD friendly
- HW friendly
- High diffusion
- ► Constant-time

## Requirements for Secure Usage of NORX

- 1. Unique nonces
- 2. Abort on tag verification failure

## Performance

## SW Performance (x86)





| Platform                       | Implementation | cpb  | MiBps |
|--------------------------------|----------------|------|-------|
| Ivy Bridge: i7 3667U @ 2.0 GHz | AVX            | 3.37 | 593   |
| Haswell: i7 4770K @ 3.5 GHz    | AVX2           | 2.51 | 1390  |

Table: NORX64-4-1 performance

## SW Performance (ARM)





| Platform                     | Implementation | cpb  | MiBps |
|------------------------------|----------------|------|-------|
| BBB: Cortex-A8 @ 1.0 GHz     | NEON           | 8.96 | 111   |
| iPad Air: Apple A7 @ 1.4 GHz | Ref            | 4.07 | 343   |

Table: NORX64-4-1 performance

## SW Performance (SUPERCOP)



Source: http://www1.spms.ntu.edu.sg/~syllab/speed

- ▶ NORX among the fastest CAESAR ciphers
- ► Fastest Sponge-based scheme
- Reference implementation has competitive speed, too

## HW Performance (ASIC)



ASIC implementation and hardware evaluation by ETHZ students (under supervision of Frank K. Gürkaynak):

▶ Parameters:  $W \in \{32, 64\}$ ,  $R \in \{2, ..., 16\}$  and D = 1

► Technology: 180 nm UMC

Frequency: 125 MHz

► Area requirements: 59 kGE

▶ NORX64-4-1 performance:  $10 \, \text{Gbps} \approx 1200 \, \text{MiBps}$ 

# Security Analysis

## Security

### Sponge Security Bounds

- ► Classic:  $min\{2^{c/2}, 2^{|K|}\}$ 
  - NORX designed towards this bound
  - Expected security levels (c e 1, e = 2W): 127 and 255 bits
- Improved\*:  $\min\{2^{b/2}, 2^c, 2^{|K|}\}$ 
  - Nonce-based sponges in the ideal perm. model
  - Includes NORX with  $D \neq 1$
  - Effects: rate +2W bits ( $\approx +16\%$  performance)

<sup>\*</sup> P. Jovanovic, A. Luykx, and B. Mennink, Beyond  $2^{c/2}$  Security in Sponge-Based Authenticated Encryption Modes, Advances in Cryptology - ASIACRYPT 2014. To appear.

### NODE – The (NO)RX (D)ifferential Search (E)ngine\*

- Framework for automatic search of differential trails in  $F^R$
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- ► Some results:

| R      | type           | NORX32                 | NORX64                  |               |
|--------|----------------|------------------------|-------------------------|---------------|
| 1<br>4 | nonce<br>perm. | $< 2^{-60} \ 2^{-584}$ | $< 2^{-53} $ $2^{-836}$ | bound<br>best |

<sup>\*</sup> J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Latincrypt 2014. To appear. Software available on GitHub: https://github.com/norx/NODE

### NODE – The (NO)RX (D)ifferential Search (E)ngine\*

- ► Framework for automatic search of differential trails in F<sup>R</sup>
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Some results:

| R | type  | NORX32      | NORX64      |      |
|---|-------|-------------|-------------|------|
| 1 | nonce | $< 2^{-60}$ | $< 2^{-53}$ |      |
| 4 | perm. | $2^{-584}$  | $2^{-836}$  | best |

<sup>\*</sup> J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Latincrypt 2014. To appear. Software available on GitHub: https://github.com/norx/NODE

### NODE – The (NO)RX (D)ifferential Search (E)ngine\*

- Framework for automatic search of differential trails in F<sup>R</sup>
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Some results:

| R   | type           | NORX32                 | NORX64                 |               |
|-----|----------------|------------------------|------------------------|---------------|
| 1 4 | nonce<br>perm. | $< 2^{-60} \ 2^{-584}$ | $< 2^{-53} \ 2^{-836}$ | bound<br>best |

<sup>\*</sup> J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Latincrypt 2014. To appear. Software available on GitHub: https://github.com/norx/NODE

### NODE – The (NO)RX (D)ifferential Search (E)ngine\*

- ► Framework for automatic search of differential trails in F<sup>R</sup>
- Uses constraint / SAT solvers (STP, Boolector, CryptoMiniSat)
- Some results:

| R      | type           | NORX32                 | NORX64                 |               |
|--------|----------------|------------------------|------------------------|---------------|
| 1<br>4 | nonce<br>perm. | $< 2^{-60} \ 2^{-584}$ | $< 2^{-53} \ 2^{-836}$ | bound<br>best |

<sup>\*</sup> J-P. Aumasson, P. Jovanovic, and S. Neves, Analysis of NORX, Latincrypt 2014. To appear. Software available on GitHub: https://github.com/norx/NODE

## Conclusion

## Open Problems

- ► Cryptanalysis: linear, algebraic, (adv.) differential, (adv.) rotational
- Side-channel attacks
- Further implementations: e.g. FPGAs, microcontroller

## Take Aways

#### Features of NORX

- ► Secure, fast, and scalable
- Based on well-analysed primitives: ChaCha/BLAKE(2)/Keccak
- Clean and simple design
- HW and SW friendly

- Parallelisable
- Side-channel robustness considered during design phase
- Straightforward to implement
- ► No AES dependence

#### Further Information

https://norx.io

:Contact anovic@fim\_uni-passau\_de

@Daeina

## Take Aways

#### Features of NORX

- ► Secure, fast, and scalable
- Based on well-analysed primitives: ChaCha/BLAKE(2)/Keccak
- Clean and simple design
- HW and SW friendly

- Parallelisable
- Side-channel robustness considered during design phase
- Straightforward to implement
- ► No AES dependence

#### **Further Information**

https://norx.io

Contact: jovanovic@fim.uni-passau.de @Daeinar

## Supplement: NORX vs AES-GCM

|                                                                       | NORX                                                                | AES-GCM                                                                        |
|-----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|
| High performance High key agility Timing resistance Misuse resistance | yes (on many platforms) yes yes $A+N / LCP+X (exposes P \oplus P')$ | depends (high with AES-NI) no no (bit-slicing, AES-NI required) no (exposes K) |
| Parallelisation<br>Extensibility<br>Simple implementation             | yes (sessions, secret msg. nr., etc.) yes                           | yes<br>no<br>no                                                                |