# Imperfect ImaGANation:

# Implications of GANs Exacerbating Biases on Facial Data

Niharika Jain\* (🛩), Alberto Olmo\* (🛩), Sailik Sengupta (🛩), Lydia Manikonda (🛩), Subbarao Kambhampati (🛩)

#### Motivation

| ☐ carpedm20 / DCGAN-tensorflow          | Watch ▼ | 251 | ☆ Star | 6.9k  | 앙 Fork | 2.7k |
|-----------------------------------------|---------|-----|--------|-------|--------|------|
| □ tkarras / progressive_growing_of_gans | Watch ▼ | 281 | ☆ Star | 5.5k  | 앟 Fork | 1.1k |
| □ martinarjovsky / WassersteinGAN       |         | 109 | ☆ Star | 2.9k  | 앟 Fork | 694  |
| □ junyanz / CycleGAN                    | Watch ▼ | 402 | ☆ Star | 10.5k | 앟 Fork | 1.8k |

- Wide adoption of GANs as a seemingly trustworthy data augmentation technique.
- Practitioners possibly unaware of Mode Collapse causing exacerbation of biases.

### The Mode Collapse Problem

The diversity of the generated distribution is much lower than that of the training set due to the non-infinite capacity of the generator nor discriminator.



Figure 3: G(z) trained on a uniform, bimodal  $p_{data}$  without and with mode collapse. Figure inspired by Goodfellow et al. 2014, Figure 1



Arizona State University

### Evaluation

- Gathering and preprocessing of engineering professor headshots dataset from 47 U.S. universities
- Training and generation of new headshot distributions from 4 unconditional and 1 conditional GANs







- CvcleGAN
- Human annotation tasks on 50 images from each dataset
- Microsoft's Face API: gender recognition



#### Results

#### Human annotation





## MS Face API

#### Feminine | Masculine | Can't tell features

