- [7] 1. Let y = f(x) be given by the graph below on the right:
 - (a) State the domain of f.
 - (b) State the range of f.
 - (c) Evaluate: $(f \circ f)(0)$

- (d) Evaluate: $f^{-1}(-1)$
- (e) Using the graph, fill in the blanks to complete the piecewise definition for the function f(x) below:

- [5] **2.** Consider the quadratic function $f(x) = -x^2 + 2x + 3$.
 - (a) Find the x- and y-intercepts of the function. State the coordinates of each intercept.
 - (b) Find the coordinates of the vertex of the parabola.
 - (c) Graph the function on the axes provided. Label all the intercepts and vertex properly.
- [4] **3.** Use long division to calculate $(3x^3 4x^2 + 7x 8) \div (x 2)$. Write your conclusion in the form

$$\frac{3x^3 - 4x^2 + 7x - 8}{x - 2} = Q(x) + \frac{R(x)}{D(x)}$$

where Q(x) is the quotient, R(x) is the remainder, and D(x) is the divisor.

- [5] **4.** Let $f(x) = \frac{2x^2 x 3}{x^3 + 2x^2}$ and $g(x) = \frac{x^4 + 8x}{6x 4x^2}$. Find and simplify $(f \cdot g)(x)$.
 - **5.** Let $f(x) = \frac{7x}{x-2}$.
- [3] (a) Find $f^{-1}(x)$.
- [3] (b) Find and simplify $f\left(\frac{1}{x^2}\right)$.

- **6.** Solve the inequalities:
- [3] (a) $x^3 3x^2 4x + 12 < 0$
- [3] (b) $\frac{5x-2}{(x-2)(3-x)} \geqslant 0$
 - **7.** Solve for x:
- [4] (a) $x^2(x^2 2) = 3$
- [5] (b) $2 + \frac{39x + 96}{(x-4)(x+3)} = \frac{-x}{x+3}$
- [4] (c) $x + \sqrt{3 2x} = 0$
- [3] **8.** Simplify: $\sqrt[5]{\sqrt[3]{x}\sqrt{x}}$ (Assume all variables are positive and leave only positive exponents in your answer.)
- [3] **9.** State the domain in interval notation: $\frac{x-2}{\sqrt{x+5}} + \sqrt{3-x}$
- [2] **10.** If \$200 is invested at 4% interest compounded monthly, what is the value after 2 years? (Round your answer to the nearest cent.)
- [2] **11.** If $\log_x(y) = 10$ and $\ln(y) = 3$, find the value of $\ln(x)$.
- [6] **12.** Given $f(x) = \log_2(x+2) 3$
 - (a) Evaluate f(-1).
 - (b) State the equation of any asymptote of f(x).
 - (c) Find the coordinates of all axis intercepts of f.
 - (d) Sketch f(x). Label all the intercepts and asymptote(s) properly.
 - (e) Find $f^{-1}(x)$.
- [4] 13. Express in terms of the simplest possible logarithms.

$$\ln\left(\frac{4x^3\sqrt{x-1}}{(x+1)^2e^x}\right)$$

- **14.** Solve for x. (Give exact values.)
- [5] (a) $2(6)^{2x} = \left(\frac{1}{2}\right)^{x+1}$
- [4] (b) $\log_3(x+3) 1 = \log_3(x)$

- [5] **15.** The terminal side of angle θ in standard position is in the second quadrant and $\sin \theta = \frac{1}{3}$.
 - (a) Give an exact value for $\tan \theta$.
 - (b) Give an exact value for $\sec \theta$.
 - (c) Use a calculator to find angle θ in the interval $[0^{\circ}, 360^{\circ})$ accurate to two decimal places.
- [2] 16. Without a calculator, evaluate $\cot(120^\circ)$. Show your work and give an exact value.
- [3] 17. Without a calculator, find all angles θ in the interval $[0,2\pi)$ such that $\cos\theta = -\frac{\sqrt{3}}{2}$. Show your work.
- [3] **18.** From the top of a 100m cliff a boat is spotted with an angle of depression of 10°. How far is the boat from the base of the cliff? (Round your answer to the nearest metre.)
- [3] **19.** Simplify as much as possible: $(1 \cos^2 x)(1 + \cot^2 x)$.
- [3] **20.** Prove the identity: $\frac{\sec x \cos x}{\sin x} = \tan x$
- [3] **21.** Identify the amplitude, period, and sketch at least two cycles of the function $f(x) = -\sin(\pi x)$.
- [3] **22.** A triangle has sides of length a, b and c across from angles of measure A, B, and C respectively. Suppose $a = 5, B = 70^{\circ}$, and $C = 80^{\circ}$. Find A, b and c. Give your answers rounded to two decimal places.

END OF EXAM (Answers on next page.)

Answers:

1.(a)
$$D = (-4, -3] \cup (-2, 4]$$

1.(b)
$$R = (-4, -2] \cup [-1, 2) \cup (2, 4]$$

1.(c)
$$(f \circ f)(0) = 4$$

1.(d)
$$f^{-1}(-1) = 4$$

1. (e)
$$f(x) = \begin{cases} 2x + 10 & \text{if } -4 < x \le -3 \\ \frac{x}{2} - 3 & \text{if } -2 < x \le 2 \\ -\frac{3}{2}x + 5 & \text{if } 2 < x \le 4 \end{cases}$$

2.(a) y-int: (0,3), x-int's: (-1,0) and (3,0).

2.(b) vertex: (1,4).

2.(c)

3.
$$\frac{3x^3 - 4x^2 + 7x - 8}{x - 2} = 3x^2 + 2x + 11 + \frac{14}{x - 2}$$
4.
$$(f \cdot g)(x) = \frac{-(x + 1)(x^2 - 2x + 4)}{2x^2}$$

4.
$$(f \cdot g)(x) = \frac{-(x+1)(x^2-2x+4)}{2x^2}$$

$$5.(a) f^{-1}(x) = \frac{2x}{x-7}$$

5.(b)
$$f\left(\frac{1}{x^2}\right) = \frac{7}{1 - 2x^2}$$

6.(a)
$$(-\infty, -2) \cup (2, 3)$$

6.(a)
$$(-\infty, \frac{2}{5}] \cup (2, 3)$$

7.(a)
$$x = \pm \sqrt{3}$$

7.(b)
$$x = -8$$
 (reject -3).

7.(c)
$$x = -3$$
 (reject 1).

8. $x^{1/6}$

9.
$$(-5,3]$$

11.
$$\ln x = \frac{3}{10}$$

11.
$$\ln x = \frac{3}{10}$$

12.(a) $f(-1) = -3$

12.(b) V.A. at
$$x = -2$$

12.(c) y-int:
$$(0, -2)$$
, x-int: $(6, 0)$.

12.(e)
$$f^{-1}(x) = 2^{(x+3)} - 2$$

13.
$$\ln 4 + 3 \ln x + \frac{1}{2} \ln(x - 1) - 2 \ln(x + 1) - x$$

14.(a) $x = \frac{\ln 4}{\ln(1/72)}$

14.(a)
$$x = \frac{\ln 4}{\ln(1/72)}$$

14.(b)
$$x = \frac{3}{2}$$

15.(a)
$$\tan \theta = -\frac{1}{2\sqrt{2}} = -\frac{\sqrt{2}}{4}$$

15.(b)
$$\sec \theta = -\frac{3}{2\sqrt{2}} = -\frac{3\sqrt{2}}{4}$$

15.(c)
$$\theta \approx 160.53^{\circ}$$

$$16. \cot \theta = -\frac{1}{\sqrt{3}}$$

17.
$$\theta = \frac{5\pi}{6}, \theta = \frac{7\pi}{6}$$

19.
$$(1 - \cos^2 x)(1 + \cot^2 x) = 1$$

19.
$$(1 - \cos^2 x)(1 + \cot^2 x) = 1$$

20. $\frac{\sec x - \cos}{\sin x} = \frac{\frac{1}{\cos x} - \cos x}{\sin x}$

$$= \frac{1 - \cos^2 x}{\sin x \cos x} = \frac{\sin^2 x}{\sin x \cos x}$$

$$= \frac{\sin x}{\cos x} = \tan x$$

21.
$$A = 1, P = 2$$
.

22. $A = 30^{\circ}, b \approx 9.40, c \approx 9.85.$