10

5

Attorney Reference: 18242-511 (VI-0008-P1)

What is claimed is:

- I. A method for treating a patient having an immune dysfunction, said method comprising the steps of:
- (a) treating peripheral blood mononuclear cells with an effective amount of an aziridino-containing compound; and
 - (b) administering said peripheral blood mononuclear cells to said patient.
 - 2. The method of claim 1, wherein said immune dysfunction is cutaneous T-cell lymphoma, graft versus host disease, allograft rejection following organ transplantation, systemic lupus erythematosus, systemic sclerosis, inflammatory bowel disease, or rheumatoid arthritis.
 - 3. The method of claim 1 wherein said compound has the formula (II):

$$\begin{array}{c|c} R_{3} & & \\ R_{5} & & \\ R_{6} & & \\ \end{array}$$

wherein each R_1 is a divalent hydrocarbon moiety containing between 2 and 4 carbon atoms, inclusive; each of R_2 , R_3 , R_4 , R_5 , and R_6 is, independently, H or a monovalent hydrocarbon moiety containing between 1 arid 4 carbon atoms; and n is an integer between 1 and 10, inclusive.

4. The method of claim 1, wherein said compound is ethyleneimine dimer.

- 5. The method of claim 1, wherein said compound is an ethyleneimine trimer.
- 6. The method of claim 1, wherein said compound is an ethyleneimine tetramer.
- 5 7. The method of claim 1, wherein said compound has the formula (III):

$$R_{5} = \begin{bmatrix} R_{4} & R_{2} & R_{2} \\ R_{1} & R_{1} & R_{2} \\ R_{3} & R_{4} \end{bmatrix}$$

$$R_{7} = \begin{bmatrix} R_{2} & R_{2} \\ R_{3} & R_{4} \end{bmatrix}$$
(III)

wherein each R_1 is a divalent hydrocarbon moiety containing between 2 and 4 carbon atoms, inclusive; each of R_2 , R_3 , R_4 , R_5 , R_6 , and R_7 is, independently, R_7 is a monovalent hydrocarbon moiety containing between 1 and 4 carbon atoms; R_7 is a pharmaceutically acceptable counter anion; R_7 is valency of R_7 ; and R_7 is an integer between 1 and 10, inclusive.

8. The method of claim 1, wherein said compound has the formula (IV);

wherein each R1 is a divalent hydrocarbon moiety containing between 2 and 4 carbon atoms, inclusive; each of R₂, R₃, R₄, R₅, B₆, and R₇ is, independently, H or a monovalent hydrocarbon

Attorney Reference: 18242-511 (VI-0008-P1)

moiety containing between 1 and 4 carbon atoms; X is Cal or Br; Y is a pharmaceutically acceptable counter anion; W is valency of Y; and n is an integer between 1 and 10, inclusive.

- 9. A method for treating a patient having an immune dysfunction, said method comprising the steps of:
 - (a) extracorporeally treating peripheral blood mononuclear cells from said patient with an effective amount of an aziridino-containing compound;
 - (b) separately said peripheral blood mononuclear cells from said aziridino-containing compound; and
 - (c) administering said peripheral blood mononuclear cells to said patient.
 - 10. A method for preventing graft-versus-host (GVH) disease in a patient, the method comprising the steps of:
 - (a) extracorporeally treating a blood composition with an effective amount of an aziridino-containing compound; and
 - (b) administering said treated blood cell population to said patient, thereby preventing GVH disease in said patient.
- 11. The method of claim 10, wherein said blood composition comprises peripheral blood20 mononuclear cells (PBMC).
 - 12. The method of claim 10, wherein said blood composition is a non-leukoreduced blood cell concentrate.

- 13. The method of claim 10, wherein said blood composition is a heterologous blood cell population.
- 14. The method of claim 10, wherein said method further separating said aziridinocontaining compound from said treated blood cell composition prior to administering said treated blood composition to said patient.
- 15. The method of claim 14, wherein at least 99% of said aziridino-containing compound is removed from said treated blood cell composition prior to administering said treated blood composition to said patient.
 - 16. The method of claim 10, wherein said compound has the formula (II):

$$R_4 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_5 \longrightarrow R_6 \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_2 \longrightarrow R_2 \longrightarrow R_3 \longrightarrow R_4 \longrightarrow R_2 \longrightarrow R_2 \longrightarrow R_3 \longrightarrow R_4 \longrightarrow R_4 \longrightarrow R_5 \longrightarrow R_5$$

15

Process and the second

wherein each R₁ is a divalent hydrocarbon moiety containing between 2 and 4 carbon atoms, inclusive; each of R2, R3, R4, R5, and R6 is, independently, H or a monovalent hydrocarbon moiety containing between 1 arid 4 carbon atoms; and n is an integer between 1 and 10, inclusive.

20

17. The method of claim 10, wherein said compound is an ethyleneimine dimer.

Attorney Reference: 18242-511 (VI-0008-P1)

- 18. The method of claim 10, wherein said compound is an ethyleneimine trimer.
- 19. The method of claim 10, wherein said compound is an ethyleneimine tetramer.
- 20. The method of claim 10, wherein said compound has the formula (III):

$$R_{5} = \begin{bmatrix} R_{4} & & & \\ & R_{2} & & \\ & R_{1} - N + & H & n/-W[Y^{W}] \\ & R_{6} & & R_{7} & & (IIII) \end{bmatrix}$$

wherein each R_1 is a divalent hydrocarbon moiety containing between 2 and 4 carbon atoms, inclusive; each of R_2 , R_3 , R_4 , R_5 , B_6 , and R_7 is, independently, H or a monovalent hydrocarbon moiety containing between 1 and 4 carbon atoms; X is C1 or Br, Y is a pharmaceutically acceptable counter anion; W is valency of Y; and n is an integer between 1 and 10, inclusive.

21. The method of claim 10, wherein said compound has the formula (IV);

wherein each R1 is a divalent hydrocarbon moiety containing between 2 and 4 carbon atoms, inclusive; each of R2, R3, R4, R5, B6, and R7 is, independently, H or a monovalent hydrocarbon

5

22. The method of claim 10, wherein said patient is a human.

moiety containing between 1 and 4 carbon atoms; X is Cal or Br; Y is a pharmaceutically

acceptable counter anion; W is valency of Y; and n is an integer between 1 and 10, inclusive.

23. The method of claim 10, wherein said patient suffers from or is at risk for immune dysfunction.

- 24. The method of claim 22, wherein said human patient suffers from or is at risk for immune dysfunction.
- 25. A method for preventing graft-versus-host (GVH) disease in a patient, the method comprising the steps of:
- (a) treating a heterologous blood composition with an effective amount of an ethylene oligomer compound;
- (b) removing said ethylene oligomer from said heterologous treated blood composition; and
 - (c) administering said treated blood cell population to said patient, thereby preventing GVH disease in said patient.

- 26. The method of claim 25, wherein said patient is a human.
- 27. The method of claim 25, wherein said compound is an ethyleneimine dimer.

- 28. The method of claim 25, wherein said compound is an ethyleneimine trimer.
- 29. The method of claim 25, wherein said compound is an ethyleneimine tetramer.
- 5 30. A method for treating graft-versus-host (GVH) disease in a patient, the method comprising the steps of:
 - (a) treating a heterologous blood composition with an effective amount of an aziridinocontaining compound; and
 - (b) administering said treated blood cell population to said patient, thereby treating GVH disease in said patient.
 - 31. A method for preventing graft-versus-host (GVH) disease in a patient, the method comprising the steps of:
 - (a) treating a heterologous blood composition with an effective amount of an ethylene oligomer compound;
 - (b) removing said ethylene oligomer from said heterologous treated blood composition; and
 - (c) administering said treated blood cell population to said patient, thereby preventing GVH disease in said patient.
 - 32. A method for preventing an alloantibody response in a patient, the method comprising the steps of:

5

- (a) treating a heterologous blood composition with an effective amount of an aziridinocontaining compound; and
- (b) administering said treated blood cell population to said patient, thereby preventing said alloantibody response in said patient.
- 33. A method for functionally inactivating a leukocyte in a patient, the method comprising the steps of:
- (a) treating a heterologous blood composition comprising a leukocyte with an effective amount of an aziridino-containing compound; and
- (b) administering said treated blood cell population to said patient, thereby inactivating said leukocyte in said patient.
- 34. The method of claim 33, wherein said leukocyte renders does not proliferate following said treatment.
- 35. A blood composition produced by treating a composition comprising peripheral blood mononuclear cells with a non-viricidal amount of an aziridino-containing compound, wherein said aziridino-containing compound is present in an amount sufficient to inhibit proliferation of said peripheral blood mononuclear cells.