Motivation Quantum technologies is an exciting growing field, using quantum systems as information corriers. * Quantum computing

* Quadratic speedup for search

Exponential speedup for factoring * True randonness Provably secure communication + more Thinking like a quantum researcher How can I use this special feature of quantum systems

Measurement disturbance

Noncommutativity

Superposition

entenglement

nonlocality no-Gonna interference to my adventage? · Understanding basic mathematical formalism of quentum info/comp * Explore applications of the special features of quantum systems " Understand some physical implementations / has cause build those things?

Preliminaries (Brief)
We will only work with finite-dimensional spaces in this course.
Let C^d be the vector space of d -tuples in C , i.e., $V = (V_1, V_2,, V_d)$ with $V_i \in C$. We can define an inner-product on C^d by converge to C^d by C^d and C^d by C^d determined C^d de
Example: Take C^2 and $V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\omega = \begin{pmatrix} 1+i \\ -1 \end{pmatrix}$ then $\langle V, \omega \rangle = 1+2i$.
The inner-product also induces a norm $ \cdot : \mathbb{C}^d \to [0,\infty)$
$\ \mathbf{v} \ = \int \langle \mathbf{v}, \mathbf{v} \rangle.$
Ex: For $V = \binom{!}{!}$ $ V = \sqrt{1+1} = \sqrt{2}$
A basis $\xi V.3i$ for V is a set of linearly independent vectors that span the vector space V . I.e., 1) $\sum \alpha_i v_i = 0 \iff \alpha_i = \dots = \alpha_d = 0$ $\alpha : \in C$ 2) For any $v \in V$ $\exists \alpha : \in C$ $\exists \xi : \omega = \sum_i \alpha_i v_i$
A basis is orthonormal if in addition; $ \langle Vi, V_j \rangle = \begin{cases} 1 & i=j \\ 0 & \text{otherwise.} \end{cases} $
A linear operator $M: V \rightarrow W$ satisfies $M(\alpha V_1 + \beta V_2) = \alpha M V_1 + \beta M V_2 \qquad \forall V_1, V_2 \in V_2$ $\alpha, \beta \in C$

The postulates of Quantum Theory
To describe a quartum system we want to understand 3 things
1) States: How do we represent the physical system mathematically?
2) Evolution: How can we transform the system? How does it evolve with time?
3) Measurement: How can we probe our system to extract information about its properties?
We'll visit each of these individually. The definitions given here are not completely general but are sufficient for this course.

Quantum States
Postulate (State)
To a quantum system A we associate a Hilbert space Ll. Then the
To a quantum system A we associate a Hilbert space Lla. Then the Set of possible states of the system A corresponds to the unit vectors of Lla.
That is, to a quantum system we can associate a Hilbert space \mathbb{C}^d for some $d \in \mathbb{N}$, then the state of that system can be represented by a vector $v \in \mathbb{C}^d$ such that $ v = 1$.
Example (Qubits) A qubit is a 2 dimensional quantum system - H= C2.
- Computational basis e = (1), e = (1)
- Qubit state $\Psi = \propto e_0 + \beta e_1 \alpha, \beta \in C \text{and} cond con$
Remark (Bra-Ket notation)
Quantum theorists often use Dirac notation for states, rather than
writing $\Psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ we instead write $ \Psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. We then
write $\langle 4 = (\alpha, B)$ to denote the corresponding row vector
conjugated. Formally 14> should be thought of as a linear map 14>: C > Cd and <41: Cd > C.
Using this notation we can write an inner product as <410>
which previously we denoted by $\langle \Psi, \Phi \rangle$. Similarly we can form outer-products like $ \Psi \times \Phi $: $\mathbb{C}^d \to \mathbb{C}^d$ which are then matrices
acting on Ca. like 14X01: C -> Ca which are then matrices
Example (Pubits Continued) Using Dirac notation we write
Using Dirac notation we write

Example Let $|4\rangle = \frac{1}{\sqrt{2}}(10) + 11\rangle$. We'll 'measure in the basis' $\{10\}, 117\}$. We define projectors $P_0 = 10\times01 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $P_1 = 11\times11 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ Can check Po+Pi = 11. Then P(0) = (41Po14) = (to to) (100) (to) $= \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right)$ $= \frac{1}{\sqrt{2}}.$ Let 14) = 1/2 (10) +11)). Now we measure in the Hadamard basis {1+), 1->3. (Recall 1+) = 1/2 (10) +11>)). Let P+= HX+1 $P(+) = \langle \Psi | P_{+} | \Psi \rangle = \langle + | | | + | | + | \rangle$ = 1 1 2 Can measure in any ONB {IV:>3: by defining projectors.

Pi = IV:XVII. Exercise: Prove that this defines a valid measurement. Def" (Observable) Suppose the outcomes of a measurement {Pai}: are real. We can define an expectation operator M = I d: Pa: called an observable. (41M14) = 2 di (41Pail4) Expectation: = I di P(di) = [Measurement] Any Hermitian operator can be seen as an observable. By spectral M= I si Pri E Projector onto eigenspace theorem Eigenvalues are real & Pai & Form a measurement.

Ex: $Z = \begin{pmatrix} 1 & 9 \\ 0 & -1 \end{pmatrix} = 10001 - 110001$ Eigenvalues $\{+1, -1\}$ Eigenvectors $\{100, 11\}$. Projectors $\{10001, 11000\}$
$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 1 + X + 1 - 1 - X - 1$ Eigenvalues $\{+1, -1\}$ Eigenvectors $\{+1, -1\}$ Projectors $\{+1, -1\}$
Kemark (Distinguishing states) Suppose we are sent either a state 140 or a state 141 Is it possible to determine which state we are sent w/o errors? I.e., can we define a measurement {Mo, Mi} such that
P(0 140) = 1 and ? $P(1 140) = 1$
Case 1: <40 41>=0
Define Mo = 140X401 M1 = 11-140X401
P(01140) = <401 Mo140> = <40140 X40140> = 1
P(11140) = <4,1M,14,7 = <4,11-14,0x46/14,7 = <4,14,7 - <4,146x46/4,7
= 1
Case 2: (40/41) ≠0
As (4.014) \$ 0 we can write 14) = \$140) + \$140) where 140) \$\(\text{140} \).
Now suggose we have a measurement [Mo, Mi] that distinguishes

perfectly. Then <411 M147 = 1 and (401 M140) = 0 The latter implies Mil40) = 0 (as M, is projective) and so (4, 1M, 14,) = (2<4.1+ =<4.1) M, (2145+ B14.6+>) = 1B12 < 4.1 M, 14.7> 6 1B12 But \Rightarrow we must have $|\mathbf{R}|^2 = 1$ and so $|\alpha|^2 = 0$ and $|\alpha| = 0$ Why doesn't it help if we first itery transform the states by some ultip? I distinguish ultip and ultip? Exercise Find the best projective measurement from the Z-X place of the bloch sphere that distinguishes 140)=10> from 1417=1+>.

I.e., find a measurement from the set $M_0 = 1 + \cos(\theta) + \sin(\theta) \times$ $M_i = 1 - M_o$ that maximizes the probability of success, 2(P(01140)) + P(11141)) Try to interpret this geometrically on the Bloch solvere. Single system applications: A ready we have enough to give a basic application a random bit generator. 1) Prepare qubit $|+\rangle = \begin{pmatrix} t_z \\ t_z \end{pmatrix}$ 2) Measure in $\{10\rangle, 11\}$ basis P(0) = <+10×01+> = = = P(1)

By 1st block we need U12 = U21 = 0 But => 2nd block of form (U22 U11 D) U22 V22 which does not work ... Exercise For U,V unitary matrices shows
1) UV is unitary
2) UOV is unitary. No cloning principle You cannot build a universal cloner for quentum information. I.e., there does not exist a unitary U that maps 14)810) -> 14)814) for all 14). Proof Suppose such a U exists. Let 142 and 100 be two quantum States such that (410) \$0. Then U(4)100 = 14)14 and U(4)100 = 14)14But = (< 01 < 01 U+) (U145 10) = (01/01)(14)10) = $\langle 0|4\rangle$ only valid if $\langle \phi|4\rangle^2 = \langle \phi|4\rangle$ i.e. E {0,1} (4)=14) Only sets of orthogonal states can be closed.

