Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Temporada Académica de Verano 2011

Curso : Probabilidad y Estadística

Sigla : EYP1113-1

Pauta : I3

Profesor : Ricardo Alonso Olea Ortega Ayudantes : María Ignacia Vicuña Loyola

Problema 1

Un fabricantes esta realizando un estudio de confiabilidad de un nuevo producto eléctrico. Suponga que n son las unidades sometidas a condiciones de extremas de uso, con el fin de acelerar los tiempos de fallas. Si después de t horas el ingeniero a cargo decide parar ya que tenía hasta ese instante los tiempos exactos en que fallaron r unidades (r < n). Determine el estimador máximo verosímil del tiempo esperado de falla μ , bajo el supuesto que la distribución de probabilidad es exponencial de parámetro ν y construya un intervalo de confianza.

Ayuda: Recuerde que la verosimilitud es una probabilidad conjunta, por lo tanto para este caso

$$L(\nu) = P(T_1 = t_1, \ldots, T_r = t_r, T_{r+1} > t, \ldots, T_n > t),$$

con $t_i < t$ para $i = 1, \dots, r$ y T_1, \dots, T_n variables aleatorias independientes que corresponden a los tiempos de falla de las n unidades.

Solución

Tenemos que la función de verosimilitud está dada por

$$L(\nu) = P(T_1 = t_1, \dots, T_r = t_r, T_{r+1} > t, \dots, T_n > t),$$

con T_1, \ldots, T_n variables aleatorias independientes e idénticamente distribuidas Exponencial (ν) .

Por la independencia e idéntica distribución, la verosimilitud queda como sigue

$$L(\nu) = \left\{ \prod_{i=1}^{r} f_{T_i}(t_i) \right\} \times \left\{ \prod_{j=r+1}^{n} P(T_i > t) \right\} \quad [\textbf{0.5 Ptos.}]$$

$$= \left\{ \prod_{i=1}^{r} f_{T_i}(t_i) \right\} \times \left\{ \prod_{j=r+1}^{n} [1 - F_{T_i}(t)] \right\}$$

$$= \left\{ \prod_{i=1}^{r} \nu e^{-\nu t_i} \right\} \times \left\{ \prod_{j=r+1}^{n} e^{-\nu t} \right\} \quad [\textbf{0.5 Ptos.}]$$

$$= \nu^r \exp \left[-\nu \sum_{i=1}^{r} t_i \right] \exp \left[-\nu (n-r) t \right] \quad [\textbf{0.5 Ptos.}]$$

Mientras que la log verosimilitud esta dada por

$$\ell(\nu) = r \ln(\nu) - \nu \left[\sum_{i=1}^{r} t_i \right] - \nu (n-r) t \quad [0.5 \text{ Ptos.}]$$
 (1)

Derivando (1) con respecto a ν y luego igualando a cero se tiene que el estimador máximo verosímil del parámetro ν es:

$$\hat{\nu} = \frac{r}{\left[\sum_{i=1}^{r} t_i\right] + (n-r)t}$$
 [0.5 Ptos.]

Nos pide el estimador máximo verosímil del tiempo esperado μ . Del formulario de distribuciones tenemos que el valor esperado μ de una variable aleatoria Exponencial(ν) es una función $g(\nu)$ dada por:

$$\mu = g(\nu) = \frac{1}{\nu}$$
 [0.4 Ptos.]

Por la cuarta propiedad del formulario principal se tiene que el estimador máximo verosímil de μ es

$$\hat{\mu} = g(\hat{\nu}) = rac{\left[\sum_{i=1}^{r} t_i\right] + (n-r)t}{r}$$
 [0.4 Ptos.]

cuya distribución para muestras grandes es:

$$g(\hat{\nu}) \stackrel{\cdot}{\sim} \operatorname{Normal}\left(g(\nu), \sqrt{\frac{\left[g'(\nu)\right]^2}{I_n(\nu)}}\right)$$
 [0.4 Ptos.]

donde

$$g'(\nu) = -\frac{1}{\nu^2}$$
 [0.4 Ptos.]

у

$$I_n(\nu) = -E \left[\frac{\partial^2}{\partial \nu^2} \ell(\nu) \right]$$
$$= -E \left[-\frac{r}{\nu^2} \right]$$
$$= \frac{r}{\nu^2} \quad [0.4 \text{ Ptos.}]$$

Por lo tanto

$$\hat{\mu} \stackrel{.}{\sim} \operatorname{Normal}\left(\frac{1}{\nu}, \sqrt{\frac{\left[-1/\nu^2\right]^2}{r/\nu^2}}\right)$$

$$\stackrel{.}{\sim} \operatorname{Normal}\left(\frac{1}{\nu}, \sqrt{\frac{1}{\nu^2 r}}\right)$$

$$\stackrel{.}{\sim} \operatorname{Normal}\left(\frac{1}{\nu}, \frac{1}{\nu \sqrt{r}}\right)$$

$$\stackrel{.}{\sim} \operatorname{Normal}\left(\mu, \frac{\mu}{\sqrt{r}}\right) \quad \text{[0.5 Ptos.]}$$

Luego para muestras grandes

$$\frac{\hat{\mu} - \mu}{\mu / \sqrt{r}} \stackrel{\cdot}{\sim} \text{Normal}(0, 1)$$

y también

$$\frac{\hat{\mu} - \mu}{\hat{\mu}/\sqrt{r}} \sim \text{Normal}(0, 1)$$
 [0.5 Ptos.]

donde $\frac{\hat{\mu}}{\sqrt{r}}$ corresponde a la desviación estándar estimada de $\hat{\mu}$.

A partir de (2) se tiene que

$$<\mu>_{1-lpha}\in\hat{\mu}\pm k_{1-lpha/2}\cdotrac{\hat{\mu}}{\sqrt{r}}$$
 [0.5 Ptos.]

+ 1 Punto Base

Problema 2

Con el fin de conocer el nivel de aceptación que presentan los estudiantes de la PUC con respecto a la tarjeta TUC para ser usada como cuenta vista, se lleva a cabo una encuesta a 200 estudiantes. De entre ellos, sólo 40 habían aceptado la cuenta vista.

- (a) Existe evidencia estadística que permita afirmar que menos del 25 % de los estudiantes acepta utilizar la TUC como cuenta vista? Use $\alpha = 5$ %.
- (b) Para una probabilidad α de error tipo I y bajo el criterio de varianza máxima, determine la función de potencia. Haga un bosquejo.
- (c) Con base a la información obtenida en la encuesta, ¿cuál debe ser el tamaño muestral para estimar el nivel de aceptación de la tarjeta TUC como cuenta vista con un error no superior al 4% con una confianza del 90%?

Solución

(a) Tenemos una muestra aleatoria X_1, \ldots, X_n que proviene de una población cuya distribución en Bernoulli(p). El estimador de momento y máximo verosímil de p esta dada por

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i \overset{\text{aprox}}{\sim} \text{Normal}\left(p, \sqrt{\frac{p[1-p]}{n}}\right), \quad \text{[0.3 Ptos.]}$$

para tamaños muestrales grandes.

Se pide hacer una prueba estadística para las siguientes hipótesis

$$H_0: p = p_0$$
 vs $H_1: p < p_0$, [0.3 Ptos.]

con $p_0 = 0.25$.

Bajo la hipótesis nula el estadístico de prueba

$$Z_n = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}} \stackrel{\text{aprox}}{\sim} \text{Normal}(0, 1) \quad \textbf{[0.4 Ptos.]}$$

Alternativa 1: Se rechaza H_0 si $Z_n < -k_{1-\alpha}$. [0.2 Ptos.]

De la muestra tenemos que

[0.2 Ptos.]
$$\hat{p} = \frac{1}{200} \sum_{i=1}^{200} x_i = \frac{40}{200} = 0.2 \Rightarrow Z_n = \frac{0.2 - 0.25}{\sqrt{\frac{0.25 \cdot 0.75}{200}}} = -1.632993$$
 [0.2 Ptos.]

Mientras que para un nivel $\alpha = 0.05$ se tiene que $k_{1-0.05} = 1.645$. [0.2 Ptos.]

Como $Z_n \not< -k_{1-\alpha}$, entonces no existe suficiente evidencia estadística para rechazar la hipótesis nula con una probabilidad de error tipo I inferior al 5%. [0.2 Ptos.]

Alternativa 2: Se rechaza H_0 si el valor- $p < \alpha$. [0.2 Ptos.]

Para $Z \sim \text{Normal}(0,1)$ y las hipótesis planteadas, el valor-p se define como

valor-p =
$$P(Z < Z_n) = P(Z < -1.632993) = 1 - \Phi(1.632993)$$
 [0.2 Ptos.]

Te la tabla normal tenemos que

$$\Phi(1,632993) < \Phi(1,64) = 0.9484$$
 [0.2 Ptos.]

Es decir,

valor-p >
$$1 - 0.9484 = 0.0516$$
 [0.2 Ptos.]

Como el valor- $p \not< \alpha$, entonces no existe suficiente evidencia estadística para rechazar la hipótesis nula con una probabilidad de error tipo I inferior al 5%. [0.2 Ptos.]

(b) Tenemos que si el estadístico se prueba $Z_n < -k_{1-\alpha}$, entonces la hipótesis nula se rechaza con una probabilidad de error tipo I menor a α . Esta regla de rechazo es equivalente a que

$$\hat{p} < -k_{1-\alpha} \cdot \sqrt{\frac{p_0 (1-p_0)}{n}} + p_0$$
 [0.3 Ptos.]

Bajo el criterio de varianza máxima, la regla de rechazo sería

$$\hat{p} < -k_{1-\alpha} \cdot \sqrt{\frac{1}{4 \, n}} + p_0$$
 [0.3 Ptos.]

La Potencia corresponde a la probabilidad de rechazar la hipótesis nula cuando esta no es correcta. Para diferentes valor de Δ , tenemos que la potencia es

Potencia(
$$\Delta$$
) = $P\left(\hat{p} < -k_{1-\alpha} \cdot \sqrt{\frac{1}{4n}} + p_0 \mid p = p_0 - \Delta\right)$ [0.3 Ptos.]
= $P\left(\frac{\hat{p} - [p_0 - \Delta]}{\sqrt{\frac{1}{4n}}} < -k_{1-\alpha} + \Delta\sqrt{4n} \mid p = p_0 - \Delta\right)$ [0.3 Ptos.]
= $\Phi(-k_{1-\alpha} + \Delta\sqrt{4n})$ [0.3 Ptos.]
= $\Phi(k_{\alpha} + \Delta\sqrt{4n})$

[0.5 Ptos.]

(c) Alternativa 1: Para un nivel $(1 - \alpha) \times 100 \%$, el intervalo de confianza del parámetro p en base a la información de la encuesta está dado por:

$$_{1-\alpha} \in \hat{p} \pm k_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
 [0.5 Ptos.]

Si $1-\alpha=0.90~(1-\alpha/2=0.95)$ y el error de estimación no debe ser superior a 4 %, entonces la muestra necesaria es

[1.0 Ptos.]
$$n = \left(\frac{k_{0.95}\sqrt{\hat{p}(1-\hat{p})}}{0.04}\right)^2 = \left(\frac{1.645\cdot\sqrt{0.2\cdot0.8}}{0.04}\right)^2 = 268.96 \Rightarrow n = 269$$
 [0.5 Ptos.]

Alternativa 2: bajo el criterio de varianza máxima el intervalo es

$$_{1-\alpha} \in \hat{p} \pm k_{1-\alpha/2} \sqrt{\frac{1}{4n}}$$
 [0.5 Ptos.]

Si $1-\alpha=0.90~(1-\alpha/2=0.95)$ y el error de estimación no debe ser superior a 4 %, entonces la muestra necesaria es

[1.0 Ptos.]
$$n = \left(\frac{k_{0.95}}{2 \cdot 0.04}\right)^2 = \left(\frac{1.645}{2 \cdot 0.04}\right)^2 = 420.25 \Rightarrow n = 421$$
 [0.5 Ptos.]

+ 1 Punto Base

Problema 3

El lago Huron es el segundo lago más grande por área superficial y el quinto con agua dulce más grande del mundo. Un estudio realizado a mediados de los setenta considero los niveles anuales de agua entre los años 1875 y 1972 (Ver figura).

Un investigador piensa que en un año t, los niveles de agua X_t son generados por una combinación lineal de variables aleatorias $\{Z_t\}$ independientes cuya distribución es Normal $(0, \sigma)$.

Si el nivel X_t está dado por

$$X_t = \mu + \theta Z_{t-1} + Z_t,$$

con θ una constante conocida, obtenga los estimadores de momento de los parámetros μ y σ . Para el estimador de μ proponga una distribución y una expresión para sus parámetros.

Evalúe los estimadores si la información disponible es la siguiente:

$$n = 98;$$
 $\sum_{t=1875}^{1972} x_t = 56,7424;$ $\sum_{t=1875}^{1972} x_t^2 = 32,85425;$ $\theta = 0,8302$

Ayuda: (1) Si $Z \sim \text{Normal}(0,1)$, entonces $\mathbf{E}(Z) = 0$, $\mathbf{E}(Z^2) = 1$, $\mathbf{E}(Z^3) = 0$ y $\mathbf{E}(Z^4) = 3$. (2) Si U y V son variables aleatorias independientes, entonces las funciones h(U) y k(V) también lo son.

Solución

Tenemos que la variable aleatoria $\{X_t\}$ tiene los siguientes primeros dos momentos teóricos:

$$\mathbf{E}(X_t) = \mathbf{E}(\mu + \theta Z_{t-1} + Z_t)$$

$$= \mathbf{E}(\mu) + \mathbf{E}(\theta Z_{t-1}) + \mathbf{E}(Z_t), \text{ por linealidad del operador esperanza } [\mathbf{0.5 Ptos.}]$$

$$= \mu + \theta \mathbf{E}(Z_{t-1}) + \mathbf{E}(Z_t)$$

$$= \mu, \text{ ya que } \{Z_t\} \sim \text{Normal}(0, \sigma) \quad [\mathbf{0.5 Ptos.}]$$
(3)

у

$$\begin{split} \mathbf{E}(X_{t}^{2}) &= \mathbf{E}(\mu^{2} + \theta^{2} Z_{t-1}^{2} + Z_{t}^{2} + 2 \mu \theta Z_{t-1} + 2 \mu Z_{t} + 2 \theta Z_{t-1} Z_{t}) \\ &= \mathbf{E}(\mu^{2}) + \mathbf{E}(\theta^{2} Z_{t-1}^{2}) + \mathbf{E}(Z_{t}^{2}) + \mathbf{E}(2 \mu \theta Z_{t-1}) + \mathbf{E}(2 \mu Z_{t}) + \mathbf{E}(2 \theta Z_{t-1} Z_{t}) \\ &= \mu^{2} + \theta^{2} \mathbf{E}(Z_{t-1}^{2}) + \mathbf{E}(Z_{t}^{2}) + 2 \mu \theta \mathbf{E}(Z_{t-1}) + 2 \mu \mathbf{E}(Z_{t}) + 2 \theta \mathbf{E}(Z_{t-1} Z_{t}) \end{split}$$

Por la independencia entre Z_t y Z_{t-1} ,

$$\mathbf{E}(X_{t}^{2}) = \mu^{2} + \theta^{2} \mathbf{E}(Z_{t-1}^{2}) + \mathbf{E}(Z_{t}^{2}) + 2 \mu \theta \mathbf{E}(Z_{t-1}) + 2 \mu \mathbf{E}(Z_{t}) + 2 \theta \mathbf{E}(Z_{t-1}) \mathbf{E}(Z_{t}) \quad [\mathbf{0.5 \ Ptos.}]$$

$$= \mu^{2} + \theta^{2} \sigma^{2} + \sigma^{2}$$

$$= \mu^{2} + \sigma^{2} (\theta^{2} + 1) \quad [\mathbf{0.5 \ Ptos.}]$$
(4)

Igualando (3) a \overline{X}_n y (4) a \overline{X}_n^2 se tiene que los estimadores de momentos para los parámetros μ y σ son:

$$\hat{\mu} = \overline{X}_n$$
 [0.5 Ptos.]
$$\hat{\sigma} = \sqrt{\frac{\overline{X^2}_n - (\overline{X}_n)^2}{(\theta^2 + 1)}}$$
 [0.5 Ptos.]

donde

$$\overline{X}_n = \frac{1}{n} \sum_{t=1875}^{1972} X_t \quad \text{y} \quad \overline{X}_n^2 = \frac{1}{n} \sum_{t=1875}^{1972} X_t^2$$

Por otra parte, tenemos que $\hat{\mu}$ se puede escribir como una combinación lineal de variables aleatorias independientes cuya distribución es Normal $(0, \sigma)$:

$$\hat{\mu} = \frac{1}{n} \sum_{t=1875}^{1972} X_t$$

$$= \frac{1}{n} \sum_{t=1875}^{1972} \mu + \theta Z_{t-1} + Z_t$$

$$= \frac{1}{n} \left[n \mu + Z_{1874} + \sum_{t=1875}^{1971} (\theta + 1) Z_t + Z_{1972} \right]$$
 [0.5 Ptos.]

Esto implica que la distribución de $\hat{\mu}$ es Normal. [0.5 Ptos.]

Sus parámetros son:

$$E(\hat{\mu}) = \mu$$
 [0.5 Ptos.]

у

$$\mathbf{Var}(\hat{\mu}) = \frac{1}{n^2} \mathbf{Var}(Z_{1874}) + \frac{1}{n^2} \sum_{t=1875}^{1971} (\theta + 1)^2 \mathbf{Var}(Z_t) + \frac{1}{n^2} \mathbf{Var}(Z_{1972}) \quad [\mathbf{0.5 \ Ptos.}]$$

$$= \frac{1}{n^2} \left\{ \sigma^2 + \sigma^2 (\theta + 1)^2 (n - 2) + \sigma^2 \right\}$$

$$= \frac{\sigma^2 \left[n + (n - 2) (\theta + 2) \theta \right]}{n^2}$$

Por lo tanto

$$\hat{\mu} \sim \text{Normal}\left(\mu, \, \sigma \, \sqrt{\frac{\theta \, (\theta + 2) \, (n - 2)}{n^2} + \frac{1}{n}}\right)$$

Finalmente, a partir de la información entregada las realizaciones de los parámetros son

[0.5 Ptos.]
$$\hat{\mu} = 0.5790041$$
 v $\hat{\sigma} = 0.001009779$ [0.5 Ptos.]

+ 1 Punto Base

Formulario

- Sea X_1, \ldots, X_n una muestra aleatoria independiente e idénticamente distribuida con función de probabilidad p_X o de densidad f_X , determinada por un parámetro θ . Si $\hat{\theta}$ es el estimador máximo verosímil del parámetro θ , entonces:
 - $\mathbf{E}(\hat{\theta}) \to \theta$, cuando $n \to \infty$.
 - $\bullet \ \mathbf{Var}(\hat{\theta}) = \frac{1}{I_n(\theta)}, \ \mathrm{con} \ I_n(\theta) = -\mathbf{E} \left[\frac{\partial^2}{\partial \, \theta^2} \ \ln L(\theta) \right].$
 - $\hat{\theta} \stackrel{.}{\sim} \text{Normal}\left(\theta, \sqrt{\frac{1}{I_n(\theta)}}\right)$, cuando $n \to \infty$.
 - El estimador máximo verosímil de $g(\theta)$ es $g(\hat{\theta})$, cuya varianza está dada por: $\mathbf{Var}[g(\hat{\theta})] = \frac{[g'(\theta)]^2}{I_n(\theta)}$.

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x=0,\ldots,n$	$n,\ p$	$\mu_X = n p$ $\sigma_X^2 = n p (1 - p)$
Geométrica	$p(1-p)^{x-1}$	$x = 1, 2, \dots$	p	$\mu_X = 1/p$ $\sigma_X^2 = (1-p)/p^2$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x=r,r+1,\ldots$	r, p	$\mu_X = r/p$ $\sigma_X^2 = r (1-p)/p^2$
Poisson	$\frac{(\nu t)^x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	ν	$\mu_X = \nu t$ $\sigma_X^2 = \nu t$
Exponencial	$ u e^{-\nu x}$	$x \ge 0$	ν	$\mu_X = 1/\nu$ $\sigma_X^2 = 1/\nu^2$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu x}$	$x \ge 0$	$k,\ u$	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$
Gamma Trasladada	$\frac{\nu^k}{\Gamma(k)} (x - \gamma)^{k-1} e^{-\nu (x - \gamma)}$	$x \geq \gamma$	$k,\ u,\ \gamma$	$\mu_X = k/\nu + \gamma$ $\sigma_X^2 = k/\nu^2$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	$\mu,~\sigma$	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$
Log-Normal	$\frac{1}{\sqrt{2\pi}\left(\zetax\right)}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	$x \ge 0$	λ,ζ	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$
Uniforme	$\frac{1}{(b-a)}$	$a \le x \le b$	$a,\ b$	$\mu_X = (a+b)/2$ $\sigma_X^2 = (b-a)^2/12$
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	$a \leq x \leq b$	$q,\ r$	$\mu_X = a + \frac{q}{q+r} (b - a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0, n+m-N\} \leq x \leq \min\{n, m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

■ Propiedades función $\Gamma(\cdot)$:

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$

(3)
$$\Gamma(n+1) = n!$$
, si $n \in \mathbb{N}$; (4) $\Gamma(1/2) = \sqrt{\pi}$

• Propiedades función $B(\cdot, \cdot)$:

(1)
$$B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

• Propiedad distribución Gamma:

Si
$$T \sim \text{Gamma}(k, \nu) \Rightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}, \text{ si } k \in \mathbb{N}$$

Tablas de Percentiles p

Distribución Normal Estándar k_p								Distribución t-student $t_p(u)$							
k_p	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	ν	$t_{0,90}$	$t_{0,95}$	$t_{0,975}$	$t_{0,99}$
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359	1	3,078	6,314	12,706	31,821
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753	2	1,886	2,920	4,303	6,965
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141	3	1,638	2,353	3,182	4,541
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517	4	1,533	2,132	2,776	3,747
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879	5	1,476	2,015	2,571	3,365
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224	6	1,440	1,943	2,447	3,143
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549	7	1,415	1,895	2,365	2,998
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852	8	1,397	1,860	2,306	2,896
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133	9	1,383	1,833	2,262	2,821
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389	10	1,372	1,812	2,228	2,764
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621	11	1,363	1,796	2,201	2,718
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830	12	1,356	1,782	2,179	2,681
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015	13	1,350	1,771	2,160	2,650
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177	14	1,345	1,761	2,145	2,624
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319	15	1,341	1,753	2,131	2,602
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441	16	1,337	1,746	2,120	2,583
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545	17	1,333	1,740	2,110	2,567
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633	18	1,330	1,734	2,101	2,552
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706	19	1,328	1,729	2,093	2,539
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767	20	1,325	1,725	2,086	2,528
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817	21	1,323	1,721	2,080	2,518
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857	22	1,321	1,717	2,074	2,508
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890	23	1,319	1,714	2,069	2,500
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916	24	1,318	1,711	2,064	2,492
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936	25	1,316	1,708	2,060	2,485
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952	26	1,315	1,706	2,056	2,479
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964	27	1,314	1,703	2,052	2,473
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974	28	1,313	1,701	2,048	2,467
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981	29	1,311	1,699	2,045	2,462
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986	30	1,310	1,697	2,042	2,457
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990	∞	1,282	1,645	1,960	2,326

		Distribución Chi-Cuadrado						
ν	c _{0,025}	$c_{0,05}$	$c_{0,10}$	$c_{0,90}$	$c_{0,95}$	$c_{0,975}$	$c_{0,99}$	$c_{0,995}$
1	0,00	0,00	0,02	2,71	3,84	5,02	6,63	7,88
2	0,05	0,10	0,21	4,61	5,99	7,38	9,21	10,60
3	0,22	0,35	0,58	6,25	7,81	9,35	11,34	12,84
4	0,48	0,71	1,06	7,78	9,49	11,14	13,28	14,86
5	0,83	1,15	1,61	9,24	11,07	12,83	15,09	16,75
6	1,24	1,64	2,20	10,64	12,59	14,45	16,81	18,55
7	1,69	2,17	2,83	12,02	14,07	16,01	18,48	20,28
8	2,18	2,73	3,49	13,36	15,51	17,53	20,09	21,95
9	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,59
10	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,19
11	3,82	4,57	5,58	17,28	19,68	21,92	24,72	26,76
12	4,40	5,23	6,30	18,55	21,03	23,34	26,22	28,30
13	5,01	5,89	7,04	19,81	22,36	24,74	27,69	29,82
14	5,63	6,57	7,79	21,06	23,68	26,12	29,14	31,32
15	6,26	7,26	8,55	22,31	25,00	27,49	30,58	32,80
16	6,91	7,96	9,31	23,54	26,30	28,85	32,00	34,27
17	7,56	8,67	10,09	24,77	27,59	30,19	33,41	35,72
18	8,23	9,39	10,86	25,99	28,87	31,53	34,81	37,16
19	8,91	10,12	11,65	27,20	30,14	32,85	36,19	38,58
20	9,59	10,85	12,44	28,41	31,41	34,17	37,57	40,00
21	10,28	11,59	13,24	29,62	32,67	35,48	38,93	41,40
22	10,98	12,34	14,04	30,81	33,92	36,78	40,29	42,80
23	11,69	13,09	14,85	32,01	35,17	38,08	41,64	44,18
24	12,40	13,85	15,66	33,20	36,42	39,36	42,98	45,56
25	13,12	14,61	16,47	34,38	37,65	40,65	44,31	46,93