PrecalculusPolynomial inequalities

Todor Miley

2019

Outline

Polynomial inequalities

Example

Solve the inequality.

$$\begin{array}{ccc} 2x^2+3x-5 & \geq & 0 \\ (2x+5)(x-1) & \geq & 0 \\ x \in \left(-\infty, -\frac{5}{2}\right] \cup \left[1, \infty\right) \end{array}$$

Left hand side vanishes when $x = -\frac{5}{2}$ and when x = 1. The two roots split the real line into three intervals:

$$\left(-\infty,-\frac{5}{2}\right),\left(-\frac{5}{2},1\right),(1,\infty).$$

Interval	Factor signs	Final sign	Sample pt	Value at sample pt
$\left(-\infty,-\frac{5}{2}\right)$	(-)(-)	+	-100	f(-100) > 0
$(-\frac{5}{2},1)$	(+)(-)	_	0	f(0) = -5 < 0
$(1,\infty)$	(+)(+)	+	100	f(100) > 0

Example

Plot the function $2x^3 - 5x^2 + x + 2$. Solve the inequality. $2x^3 - 5x^2 + x + 2 > 0$

$$2(x - (-\frac{1}{2}))(x - 1)(x - 2) > 0$$

 $x \in (-\frac{1}{2}, 1) \cup (2, \infty)$

Left hand side vanishes when $x = -\frac{1}{2}$, when x = 1 and when x = 2. The two roots split the real line into four intervals: $(-\infty, -\frac{1}{2})$, $(-\frac{1}{2}, 1)$, (1, 2), $(2, \infty)$.

Interval	Factor signs	Final sign from plot
$\left(-\infty,-\frac{1}{2}\right)$	(-)(-)(-)	_
$\left(-\frac{1}{2},1\right)^{-1}$	(+)(-)(-)	+
(1,2)	(+)(+)(-)	_
$(2,\infty)$	(+)(+)(+)	+