

A卷

2021-2022 学年第 1 学期

(2021 秋季)

《编译原理与技术》期末考试卷

班级	学号	
姓名	成绩	

2022年1月12日

《编译原理与技术》 期末考试卷

注意事项: 1. 所有答案请直接写在题目中, 另附纸无效。

2. 交卷时请以班为单位交卷。

题号	 _	→	四						总分	
		二 三	1	2	3	4	5	6	7	心 刀
成绩										
阅卷人 签字										
任课教师签字										

一、填空题(每空1分,共11分)

- 1. 如果一个文法所定义的句子中有某个句子,它存在两棵不同的语法树,则该文法 是こ以形文法
- 2.3型文法又被称为<u></u>文法,可被<u>有的的标</u>接受。
- 3. 由翻译文法确定的语言中的符号串称为活动序列。活动序列由 动作 行名
- 4. 分析工作要部分地或全部地退回去重做,这种情况被称为
- ___是一种将循环体内代码依序拓展成顺序执行指令的优化方法。

$$S \rightarrow (L) \mid aS \mid a$$

$$L \rightarrow L, S \mid S$$

句型 (S,(a)) 的简单短语是 **S 炉 Q** , 句柄是 S 。

、)7. (A+B)*(C+D)-E 的后缀表示是 **AB+ CDイギ モ**

8. 观察以下函数:

Fint get(int a[][5][10], int i, int j, int k){

return a[i][j][k]; 3

则每次调用时,访问到的 a 中的元素的首地址与 a[0][0][0]的首地址相差

二、判断题(每题1分,共7分)

1. 语言和文法的关系是多对一。

P(I)、 $J \cdot P(I)$ で $J \cdot P($

3. 词法分析程序可以编成一个子程序,由语法分析程序调用!

4. 递归下降分析法中,不允许任意一个非终结符的规则是直接左递归的。

- 5. 任一句型的最左素短语称为该句型的句柄。 🗙
- 6. 属性翻译文法是上下文无关的文法。 ()
- 7. 根据程序在运行对发现的错误,就能够找出错误在源程序中的确切位置。 🗶

三、单选题(每题1分,共8分)

1. 下面哪个过程不属于编译过程的五个基本阶段?

- (A) 词法分析 (B) 语法分析
- (C) 代码优化
- ① 出错处理
- 2. 文法规则 E ::= E + T | T 的 EBNF 表示为: **/**

- $igate{A} E ::= \{+T | T\} *$
- \bigcirc E ::= {T+T}
- $\bigcirc E ::= \{+T\}T$
- 3. 正则文法 G(S)如下。

$$S \rightarrow A$$

$$A \rightarrow Ba \mid Bb$$

$$B \rightarrow Ca$$

$$C \rightarrow a \mid b \mid Ca \mid Cb$$

则对应的正则表达式可能是:

- (a|b)*a(a|b)
- (916)* (916)
- \mathbb{B} (a|b)*a(a|b)(a|b)
- (a|b)(a|b)a(a|b)*
- 4. 下列属于自顶向下分析法的是:

- A 递归子程序法
- B 算符优先分析法
- © LR(0)分析法
- D LALR(1)分析法
- 5. 下面关于基本块的描述,不正确的是:

- A 控制流只能从一个基本块的开始进入
- 图 控制流只能从一个基本块的末尾离开
- 🌘 控制流从一个基本块末尾离开后,只能进入固定的下一个块
- 基本块是一个连续的语句序列

6. 下面的代码片段有几个基本块?

- $1 \quad a = 123$
- a = 56
- 3 c = 0
- 4 if (a < 100) goto 9
- $5 \quad c = 4$
- 6 if (c == 2 * 2) goto 9
- 7 c = a + b
- 8 goto 6
- 9 return c
- \bigcirc 2
- **B** 3
- \bigcirc 4
- (D) 5

- A 强度削弱 B 常数合并
- © 常数传播
- (D) 代码外提

- 8. 下面关于优化的说法, 看误的是:
 - A 局部优化指在基本块内进行的优化
 - ❸ 数据流分析属于局部优化 🗡
 - 消除公共子表达式属于基本块内的优化
 - ◎ 循环展开和代码外提都可用于循环优化 (/

四、综合题(共74分)

- 1. (15分)已知正则表达式(01)*1*0(0|1)
 - (1) 表达式中括号(), 星号*, 分隔符 | 三个符号各有什么作用?
 - (2) 构造与之等价的右线性文法。
 - (3) 构造与之等价的 NFA。
 - (4) 将构造出的 NFA 转化为 DFA 并将其最小化。
 - 117 (06) 整件 a* 120-ND次 a|b a成b友ヤシーは7次-以 第3页共12页 121 GTST: S-> ABOC

北京航空航天大學

147 石柏文化

L-010	meci		
2	7.	7	٧-٥ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١
50,27	(1,37	127	2 = 3
[1,1]	147	100,47	(-) \$ (-) 0 - 5 2
42]	[4)	527	3 = 4) - 4
547	4	ф	2 0 2 2
(0)2,47	11,37	(27	
ſ37	(4)	(4)	2 2 3 3
	` 1		3 % 4 3 - 6 4
74	0		3-) 4)
1 <u>t</u>	1	2	
(3	4	5(av; (a) (a) (b) (b)
2	5	2	
3	_	-	
4	1	>	

3

3

CANTO

2. (共10分)对于文法 G[A]:

$$A \rightarrow i B * e$$

$$B \rightarrow SB | \epsilon$$

$$S \rightarrow [eC]|.i$$

$$C \rightarrow e C | \epsilon$$

- (1) 计算每个产生式右端字符串的 First 和每个非终结符的 Follow 集。 (用#代表输入结束)。
- (2) 画出该 LL(1)文法的分析表。
- (3) 请写出利用该文法分析句子 i.i*e 的识别过程。

FOLCON (A) = 5#7
FIZUW(13)= 1×7
FOLLOW (S) = FOLLOW (B)
(137-(8)-557)
٢,,٦ (۴) -
FOL (OW (C) = (7)

127

	v +	e	T]	(#
4	A-> 2114e					
13	3-15		B-> 513		8-2213	
7			13-> Tec	7	B→	i
C		(-> ec		()-> {		

(})	53	#05 d 1	2, 2×14	ATIBAE
	ر د	# e * 13 i	i.i* e#	
	3	# e 1/3	,2*e¶	13-95]3
	4	#exBS	, 2`* <i>e</i> #	J->.7.
	5	# e>Bi.	· 2 He#	
	6	#0*132	☆ ≯e件 第 5 页 共 12 页	12
	7	#exB	*e#	ろつを
	Я	# 0×	* e#	

3. (共10分)已知文法 G[T]:

$$T \rightarrow T - F \mid F$$

$$F \rightarrow F * P \mid P$$

$$P \rightarrow (T) \mid i$$

(1) 求各非终结符的 FIRSTVT 和 LASTVT 集合。

$$FZRSTVT(T) = S - 7VF(F) = S - 14, C, i7$$

$$F(F) = S*1VF(F) = S*1, C, i7$$

$$F(f) = SC, i7$$

[FXP]

(2) 构造文法 G 的优先关系矩阵,并判断该文法是否是算符优先文法。

右终结符 (栈外) 左终结符 (栈内)	-	*	()	i	#
_	ラ	C	Ľ	£	6	>
*	Ą	٦	Ÿ	Ş	C	⋗
(Ċ	Ć	Ċ	<i>[</i> ·]	Ç.	
)	•	ラ		V		A
i	Ş	シ		Ņ		Ş
#	\	4	Ŀ		<i>\(\)</i>	

4. (共14分)已知文法 G[S]对应的项目集如下图所示。

(1) 试补全上图中项目集 I₀、I₂、I₅, 并填写以下的 SLR(1) 分析表。

状态	ACTION					GOTO			
1八心	1	a	i	e	#	S	T	A	R
Ιo	S2			5			/		
I ₁	_				Accept	,	Ţ		
I 2	SZ		St	53			6	Y	
I 3	الح	Yç		•	V ₃			•	
I 4	יא י	J V			λ				
I 5	12		55	5,	1		4	7	
Ι 6	St	17							8
I 7		1/4			Vu				
I 8		5,			7				
I 9	Sg	1/2)
I 10	V.	/ /			YK				
I 11	7	V ₆							

(2) 判断这个文法是否为 SLR(1)文法,说明理由。

V 并列克

(3) 如果是,利用 SLR(1)分析表,分析输入串 liella。

步骤	状态栈 (栈底在左)	已识别符号	待输入串	动作
1	# 0	#	1 i e 1 1 a #	S
2	#012	#1	re/la#	S
3	10125	升()	ellat	<u></u>
4	10/2:503	目に	/la#	V.: —
5	# 0/25576	# /27	[/o#	2
6	# 9/25 57 6 19	#1;71	[a#	5
7	# 01258761919	#16711	n#	γ.: -
8	# 4122 5 76 191 9 211	#15THR	a#	V.:
9	#012:576191211	# 15712	a#	<i>V. ;</i> -
10	#012-5-7628	#1272	0.77	
11	# 012157620010	#12720	#	V::
12	#0/215 A7	#1/1A	#	y .:
13	#012A6	#1/A	#	Y.;
14	#071	≠ 17	#	MC C+ St
15				
16				
17				
18				
19				
21				
22				
23				

5. (共10分)有如下 C语言程序段:

```
void foo(int val) {
     int a=1;
3
     int b=2;
   void bar() {
6
     int c,d;
     int e[10];
7
8
        int f;
10
11
        int g;
        int h[10];
12
                   E 23012K!
13
       foo(g);
14
15
    }
16 }
```

(1) 按照下面的表头格式,画出编译到第13行结尾时栈式符号表的内容。

(表格顶端为栈底) 不需要写出全局符号) bar 不有 ?

层次	名字	种类	类型
0	yav	ProC	Void
/	C	Vsv.	/n -/
	d	Var	int
,		onay	int
	F	var'	MT
2	g	Vav	in
)	6	an ay	ÎM
)	• • • • • • • • • • • • • • • • • • • •	J	•

(2) 在右表中画出当**运行时**程序控制流从函数 bar 进入,通过调用 foo 第一次运行到第3行结尾时,程序运行栈上各活动记录的状态和内容。(表格顶端为栈底)

第9页共12页

6. (共 5 分)给定如下四元式代码,构建 DAG 图,消除局部公共子表达式,并使用课本中的启发式算法从 DAG 图中重新导出中间代码。

$$\begin{array}{c} 6 & c \\ 5 & 9 \\ 4 & 3 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 3 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 3 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 6 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \\ 4 & 7 \end{array}$$

$$\begin{array}{c} 7 & 7 \end{array}$$

7. (共10分)数据流分析。

- (1) 对图中变量,求出每个基本块的 def 和 use 集合;
- (2) 做活跃变量分析, 计算每个基本块最终的 in 集合。 (中间各列可用于写明中间过程, 最后一行已给出)

		use	def	in	out	in	out	in	out
7	B1	[8,9,7]	(x,y)	(P, Q, Z, K)	[x,p,k]	[1,12,k]	[N, J, N]	[61/2/6]	187,187
3 ψ	B2	SKT	\$m, y7	1x.p.k7	lxy,PT	MAN	(x,y, P,k)	7 (x7x)	5x,4,8k7
٢5	В3	Sy7	(X17	Sy, 77	1P]	(y, 7,1<7	(xP,k	1 54847	(۲، بربع
5	B4	(X)	17	[7,x?	147	(x,77	177	[4,7]	[1]
exic	В5	(P)	527	(P)	4	SP7	ø	[7]	ø
	\mathbf{B}_{exit}			{}	{}	{}	{}	{}	{}

(3) 假设只有跨越基本块仍活跃的变量才能分配到全局寄存器,且活跃范围重合的变量之间无法共享全局寄存器,根据活跃变量分析结果给出变量之间的冲突图。

