Math 353 HW 7

Mario L Gutierrez Abed

Section 3.1

(1) In the following we are given sequences. Discuss their limits and whether the convergence is uniform, in the region $\alpha \le |z| \le \beta$, for finite α , $\beta > 0$.

a)
$$\left\{\frac{1}{nz^2}\right\}_{n=1}^{\infty}$$

Solution:

$$\lim_{n\to\infty}\,\frac{1}{n\,z^2}=0\ \ \forall\ z\in[\alpha,\,\beta].$$

Now we need to determine whether the convergence is uniform or just pointwise. To show uniform convergence we must show that for each $z \in [\alpha, \beta]$, given any $\varepsilon > 0$ there exists an $\mathcal N$ depending on ε (but not on z), such that whenever $n > \mathcal N$, $\left| \frac{1}{n z^2} - 0 \right| < \varepsilon$ holds.

We have

$$\left| \frac{1}{nz^{2}} - 0 \right| < \varepsilon \Longrightarrow \left| \frac{1}{nz^{2}} \right| < \varepsilon \Longrightarrow \frac{1}{|n|} < \varepsilon |z^{2}|$$

$$\Longrightarrow |n| > \frac{1}{\varepsilon |z^{2}|}$$

$$\Longrightarrow n > \frac{1}{\varepsilon |z^{2}|} \quad \text{(since } n > 0\text{)}$$

Now since $|z| \ge \alpha > 0$ we have that $\frac{1}{|z|} \le \frac{1}{\alpha} \Longrightarrow \frac{1}{|z^2|} \le \frac{1}{\alpha^2}$.

So if we choose $\mathcal{N}>\frac{1}{\varepsilon\alpha^2}$, it should force the ε -statement to work.

Let's show that if $n > \mathcal{N} > \frac{1}{\varepsilon \alpha^2}$ then,

$$n > \frac{1}{\varepsilon \alpha^2} > \frac{1}{\varepsilon |z^2|} \Longrightarrow \frac{1}{n} < \varepsilon |z^2|$$

$$\Longrightarrow \frac{1}{n |z^2|} < \varepsilon$$

$$\Rightarrow \left| \frac{1}{n z^2} \right| < \varepsilon \Rightarrow \left| \frac{1}{n z^2} - 0 \right| < \varepsilon$$
.

Thus the sequence $\left\{\frac{1}{nz^2}\right\}_{n=1}^{\infty}$ is uniformly convergent.

$$\mathbf{b}) \left\{ \frac{1}{z^n} \right\}_{n=1}^{\infty}$$

Solution:

$$\lim_{n\to\infty}\frac{1}{z^n}=0 \ \text{ for } 1<\alpha\leq |z|\leq\beta\,.$$

Now we have

$$\left| \frac{1}{z^n} - 0 \right| < \varepsilon \Longrightarrow \left| \frac{1}{z^n} \right| < \varepsilon \Longrightarrow \frac{1}{z^n} < \varepsilon$$

$$\Longrightarrow z^n > \frac{1}{\varepsilon} \Longrightarrow \log z^n > \log \frac{1}{\varepsilon}$$

$$\Longrightarrow n > \log \frac{1}{\varepsilon} \frac{1}{\log z} = (\log 1 - \log \varepsilon) \frac{1}{\log z}$$

$$\Longrightarrow n > -\frac{\log \varepsilon}{\log z} < \log \varepsilon.$$

So we make $\mathcal{N} > \log \varepsilon$ (we were able to define \mathcal{N} exclusively in terms of ε).

Then since $n > \mathcal{N}$, we have

$$n > \log \varepsilon > -\frac{\log \varepsilon}{\log z} \Longrightarrow (\log z) \cdot n > -\log \varepsilon$$

$$\Longrightarrow \log z^{n} > \log 1 - \log \varepsilon \Longrightarrow \log z^{n} > \log \frac{1}{\varepsilon}$$

$$\Longrightarrow z^{n} > \frac{1}{\varepsilon} \Longrightarrow \frac{1}{z^{n}} < \varepsilon \Longrightarrow \left| \frac{1}{z^{n}} - 0 \right| < \varepsilon.$$

Thus the sequence $\left\{\frac{1}{z^n}\right\}_{n=1}^{\infty}$ is uniformly convergent.

(2) For the sequence in 1a), what can be said if

a)
$$\alpha = 0$$

Solution:

If $\alpha = 0$, then $\left\{\frac{1}{z^n}\right\}_{n=1}^{\infty}$ converges to f(z) = 0 for 0 < |z| but the convergence is pointwise and not uniform this time since we saw that $n > \frac{1}{\varepsilon |z^2|}$ and in this case as $|z| \to 0$, n gets very large, i.e. n goes

to infinity.

b)
$$\alpha > 0$$

Solution:

As we saw on 1a), the sequence is uniformly convergent.

c)
$$\beta = \infty$$

Solution:

Also as we saw on 1a), the sequence is uniformly convergent.

(5) Show that the following series converge uniformly in the given regions:

a)
$$\sum_{n=1}^{\infty} z^n$$
, $0 \le |z| \le R$, $R < 1$

Solution:

Since
$$|z| \le R$$
, we have that $|z|^j \le R^j$. We let $M_j = R^j$, then $\sum_{j=1}^{\infty} M_j = \sum_{j=1}^{\infty} R^j$.

This is a geometric series, which is convergent since R < 1. Hence by Weierstrass's M test the series $\sum_{n=1}^{\infty} z^n$ converges uniformly.

b)
$$\sum_{n=1}^{\infty} e^{-nz}$$
, $R < |\text{Re}(z)| \le 1$, $R > 0$

Solution:

We have

$$|e^{-jz}| = |e^{-j(x+iy)}| = |e^{-jx}e^{-ijy}| = |e^{-jx}| \le 1 \quad \text{(since } 0 < R < |x| = |\text{Re}(z)| \le 1\text{)}.$$

We know that the largest e^{-jx} can be is when x = R, hence we let $M_j = e^{-jR}$ so that

$$|e^{-jz}| < e^{-jR} = M_j$$
. Then we have that $\sum_{j=1}^{\infty} e^{-jR}$ is a geometric series that converges for $|e^{-R}| < 1$.

Since we are given that R > 0, we are certain that this series converges. Hence by Weierstrass's M

test the series $\sum_{n=1}^{\infty} e^{-nz}$ converges uniformly.

Section 3.2

(1) Obtain the radius of convergence of the series $\sum_{n=1}^{\infty} s_n(z)$, where $s_n(z)$ is given by the following:

b)
$$\frac{z^n}{(n+1)!}$$

Solution:

$$\lim_{j \to \infty} \left| \frac{z^{j+1}}{(j+2)!} \frac{(j+1)!}{z^j} \right| = \lim_{j \to \infty} \left| \frac{z}{(j+2)} \right| = 0 < 1.$$

Hence the radius of convergence is $R = \infty$.

c)
$$n^n z^n$$

Solution:

$$\lim_{j \to \infty} \left| \frac{(j+1)^{j+1} z^{j+1}}{j^{j} z^{j}} \right| = \lim_{j \to \infty} \left| \frac{(j+1)^{j} (j+1) z}{j^{j}} \right|$$

$$= \lim_{j \to \infty} \left| \left(\frac{j+1}{j} \right)^{j} (j+1) z \right|$$

$$= \left| e \cdot \infty \cdot z \right| = \infty.$$

Hence the series only converges when z = 0 and thus the radius of convergence is R = 0.

d)
$$\frac{z^{2n}}{2n!}$$

Solution:

$$\lim_{j \to \infty} \left| \frac{z^{2j+2}}{(2j+2)!} \frac{2j!}{z^{2j}} \right| = \lim_{j \to \infty} \left| \frac{z^2}{(2j+2)(2j+1)} \right| = 0 < 1$$

Hence the radius of convergence is $R = \infty$.

e)
$$\frac{n!}{n^n} z^n$$

Solution:

$$\lim_{j \to \infty} \left| \frac{(j+1)! z^{j+1}}{(j+1)^{j+1}} \frac{j^j}{j! z^j} \right| = \lim_{j \to \infty} \left| \frac{z j^j}{(j+1)^j} \right|$$

$$= \lim_{j \to \infty} \left| \left(\frac{j}{j+1} \right)^j z \right| = \left| \frac{1}{e} z \right| < 1.$$

Thus we have that $\left|\frac{1}{e} z\right| < 1 \Longrightarrow |z| \le e$, which indicates that the radius of convergence is R = e.

(2) Find Taylor series expansions around z = 0 of the following functions in the given regions:

b)
$$\frac{z}{1+z^2}$$
, $|z| < 1$

Solution:

We know that $\frac{1}{1-z}$ can be expanded as $\sum_{j=0}^{\infty} z^j$. So in this case we have

$$\frac{z}{1+z^2} = z \sum_{j=0}^{\infty} (-z^2)^j = \sum_{j=0}^{\infty} (-1)^j z^{2j+1}.$$

d)
$$\frac{\sin z}{z}$$
, $0 < |z| < \infty$

Letting $b_j = \sin(z)$, we have

$$f(0) = 0$$

$$f'(0) = \cos(0) = 1$$

$$f''(0) = -\sin(0) = 0$$

$$f^{(3)}(0) = -\cos(0) = -1$$

$$f^{(4)}(0) = \sin(0) = 0 \dots$$

We can see that all the even terms are zero so we are left with $\sin z = \sum_{j=0}^{\infty} \frac{(-1)^j z^{2j+1}}{(2j+1)!}$. Hence

$$\frac{\sin z}{z} = \sum_{j=0}^{\infty} \frac{(-1)^j z^{2j}}{(2j+1)!}.$$

f)
$$\frac{e^{z^2 - 1 - z^2}}{z^3}$$
, $0 < |z| < \infty$

Solution:

Expanding
$$e^{z^2}$$
 we have $\sum_{j=0}^{\infty} \frac{z^{2j}}{j!} = 1 + z^2 + \frac{z^4}{2!} + \frac{z^6}{3!} + \dots + \frac{z^{2j}}{j!}$.

Thus

$$e^{z^2} - 1 - z^2 = \frac{z^4}{2!} + \frac{z^6}{3!} + \dots + \frac{z^{2j}}{j!}$$

which implies

$$\frac{e^{z^2 - 1 - z^2}}{z^3} = \frac{1}{z^3} \sum_{j=2}^{\infty} \frac{z^{2j}}{j!} = \frac{1}{z^3} \sum_{j=0}^{\infty} \frac{z^{2^{j+4}}}{(j+2)!} = \sum_{j=0}^{\infty} \frac{z^{2^{j+1}}}{(j+2)!}.$$

(4) Show that about any point $z = x_0$, the equality $e^z = e^{x_0} \sum_{n=0}^{\infty} \frac{(z - x_0)^n}{n!}$ is true:

Solution:

The function e^z can be expanded about a point $z = x_0$ as follows:

$$f(z)|_{z=x_0} = e^z|_{z=x_0}$$

$$= f(x_0) + f'(x_0)(z - x_0) + \frac{f''(x_0)(z - x_0)^2}{2!} + \dots + \frac{f^{(n)}(x_0)(z - x_0)^n}{n!}.$$

But notice that $f(x_0) = e^{x_0}$ and also all derivatives $f^{(i)}(x_0) = e^{x_0} \ \forall i$. Hence we can factor the e^{x_0} term out of the series and we have

$$e^{z} = e^{x_0} \left(1 + (z - x_0) + \frac{(z - x_0)^2}{2!} + \frac{(z - x_0)^3}{3!} + \dots + \frac{(z - x_0)^n}{n!} \right)$$
$$= e^{x_0} \sum_{n=0}^{\infty} \frac{(z - x_0)^n}{n!}.$$