Semaine du 04/05 au 08/05

1 Cours

Matrices

Matrices à coefficients dans \mathbb{K} Définition d'une matrice à n lignes et p colonnes. Structure de \mathbb{K} -espace vectoriel de $\mathcal{M}_{n,p}(\mathbb{K})$. Base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$. Produit matriciel : bilinéarité et associativité. Transposition : linéarité, involutivité , transposée d'un produit. Matrices définies par blocs et produit de telles matrices.

Matrices carrées à coefficients dans \mathbb{K} Structure d'anneau de $\mathcal{M}_n(\mathbb{K})$. Élément neutre I_n . Matrices inversibles. Groupe linéaire $GL_n(\mathbb{K})$. Inverse d'un produit de matrices inversibles. Inverse d'une transposée de matrice inversible. Trace : linéarité, trace d'une transposée, trace d'un produit.

Matrices particulières de $\mathcal{M}_n(\mathbb{K})$ Matrices diagonales, triangulaires supérieures et inférieures. Structure de sous-espace vectoriel et de sous-anneau de $\mathcal{D}_n(\mathbb{K})$, $\mathcal{T}_n^+(\mathbb{K})$ et $\mathcal{T}_n^-(\mathbb{K})$. Matrices symétriques et antisymétriques. Structure de sous-espace vectoriel de $\mathcal{S}_n(\mathbb{K})$ et $\mathcal{A}_n(\mathbb{K})$.

2 Méthodes à maîtriser

- ► Calculer une puissance de matrice grâce à un polynôme annulateur ou à la formule du binôme de Newton.
- ▶ Calculer l'inverse d'une matrice à l'aide d'un polynôme annulateur ou à l'aide du pivot de Gauss.

3 Questions de cours

Matrices symétriques et antisymétriques On note $\mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ les ensembles des matrices symétriques et antisymétriques de $\mathscr{M}_n(\mathbb{K})$. Montrer que $\mathscr{S}_n(\mathbb{K})$ et $\mathscr{A}_n(\mathbb{K})$ sont des sous-espaces vectoriels de $\mathscr{M}_n(\mathbb{K})$ supplémentaires dans $\mathscr{M}_n(\mathbb{K})$.

Calcul de puissance Soit
$$a \in \mathbb{R}^*$$
. On pose $A = \begin{pmatrix} 0 & a & a^2 \\ \frac{1}{a} & 0 & a \\ \frac{1}{a^2} & \frac{1}{a} & 0 \end{pmatrix}$. Calculer A^n pour tout $n \in \mathbb{N}$.

Matrices triangulaires Montrer que le produit de deux matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{K})$ est une matrice triangulaire supérieure et que les coefficients diagonaux du produit sont les produits des coefficients diagonaux.