3D Graphics Programming Tools Geometric Transformations

3D Computer Graphics Pipeline

Geometric transformations

Topics

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations

- Specify transformations for objects
 - definitions of objects in own coordinate systems
 - use of object definition multiple times in a scene

world coordinates

modelling coordinates

Initial location at (0, 0) with x- and y-axes aligned

modelling coordinates

scale .3, .3

modelling coordinates

scale .3, .3 rotate -90

modelling coordinates

scale .3, .3 rotate -90 translate 5, 3

University of London

- Scaling a coordinate
 - means multiplying each of its components by a scalar
- Uniform scaling
 - means this scalar is the same for all components

- Non-uniform scaling
 - different scalars per component

How can we represent this in matrix form?

Scaling operation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix

Multiplying a point (or a vector) by a matrix (a transformation) yields a new transformed point (or a new vector)

- Scaling about the origin
- Negative scaling is reflection
- Scaling needn't be uniform, differential scaling
- Does not preserve lengths
- Does not preserve angles (except uniform scaling)
- Not a rigid body transformation

2D rotation about origin

$$x = r \cos (\phi)$$

$$y = r \sin (\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$

trigonometric identity...

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

$$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$

substitute...

$$\mathbf{x'} = \mathbf{x} \cos(\theta) - \mathbf{y} \sin(\theta)$$
$$\mathbf{y'} = \mathbf{x} \sin(\theta) + \mathbf{y} \cos(\theta)$$

2D rotation

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,
 - x' is a linear combination of x and y
 - y' is a linear combination of x and y

2D rotation

- Rotation about the origin
- Preserves lengths and angles
- Rigid body transformation

$$v' = Rv$$
, where $v = \begin{bmatrix} x \\ y \end{bmatrix}$, $v' = \begin{bmatrix} x' \\ y' \end{bmatrix}$, $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

$$\begin{cases} x' = x \cos \theta - y \sin \theta \\ y' = x \sin \theta + y \cos \theta \end{cases}$$

2D Translation

$$\mathbf{v}' = \mathbf{v} + \mathbf{t}$$
, where $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$, $\mathbf{v}' = \begin{bmatrix} x' \\ y' \end{bmatrix}$, $\mathbf{t} = \begin{bmatrix} dx \\ dy \end{bmatrix}$, and $\begin{cases} x' = x + dx \\ y' = y + dy \end{cases}$

- Preserves lengths (isometric)
- Preserves angles (conformal)
- Rigid body transformation

2D Shearing

$$Shear_{\theta} = \begin{bmatrix} 1 & \frac{1}{\tan \theta} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & dx \\ 0 & 1 \end{bmatrix}$$

Not rigid body transformation

$$\begin{cases} x' = x + sh_x * y \\ y' = y \end{cases}$$

$$\begin{cases} x' = x \\ y' = sh_y * x + y \end{cases}$$

• Shear transformations are also affine transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

(shear along x axis by using y)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

(shear along y axis by using x)

Basic 2D transformations

Translation

$$-x' = x + t_x$$
$$-y' = y + t_y$$

Scale

$$- x' = x * s_x - y' = y * s_y$$

Shear

$$- x' = x + h_{x *} y$$

 $- y' = y + h_{y *} x$

Rotation

$$- x' = x * \cos\Theta - y * \sin\Theta$$
$$- y' = x * \sin\Theta + y * \cos\Theta$$

Transformations can be combined (with simple algebra)

Scale

$$- x' = x * s_x$$

$$- y' = y * s_y$$

$$x' = x * s_x$$
$$y' = y * s_y$$

Scale

$$- x' = x * s_x - y' = y * s_y$$

Rotation

$$x' = x * \cos\Theta - y * \sin\Theta$$

 $y' = x * \sin\Theta + y * \cos\Theta$

$$x' = (x * s_x) * \cos\Theta - (y * s_y) * \sin\Theta$$

$$y' = (x * s_x) * \sin\Theta + (y * s_y) * \cos\Theta$$

Scale

$$- x' = x * s_x - y' = y * s_y$$

Rotation

$$x' = x * \cos\Theta - y * \sin\Theta$$

 $y' = x * \sin\Theta + y * \cos\Theta$

Translation

$$x' = x + t_x$$

 $y' = y + t_y$

$$x' = ((x * s_x) * cos\Theta - (y * s_y) * sin\Theta) + t_x$$

 $y' = ((x * s_x) * sin\Theta + (y * s_y) * cos\Theta) + t_y$

Today's agenda

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations

Matrix representation

Represent 2D transformation by a matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Multiply matrix by column vector
 apply transformation to point

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{aligned} x' &= ax + by \\ y' &= cx + dy \end{aligned}$$

Matrix representation

Transformations combined by multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Matrices are a convenient and efficient way to represent a sequence of transformations

Matrix multiplication is not generally commutative!

2x2 matrices

 What types of transformations can be represented with a 2x2 matrix?

2D identity
$$x' = x$$

 $y' = y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D scale

$$x' = s_x * x$$

$$y' = s_y * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 matrices

 What types of transformations can be represented with a 2x2 matrix?

2D rotate around (0,0)

$$x' = \cos \Theta * x - \sin \Theta * y$$
$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

2D shears

$$\begin{cases} x' = x + sh_x * y \\ y' = y \end{cases}$$

$$\begin{cases} x' = x \\ y' = sh_y * x + y \end{cases}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 matrices

 What types of transformations can be represented with a 2x2 matrix?

2D mirror about Y axis

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D mirror over (0,0)

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 matrices

 What types of transformations can be represented with a 2x2 matrix?

2D translation
$$x' = x + t_x$$
 NO! $y' = y + t_y$

Only linear 2D transformations can be represented with a 2x2 matrix

Linear transformations

- Linear transformations are combinations of
 - scale
 - rotation
 - shear and
 - mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations
 - origin maps to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

$$T(s_1\mathbf{p}_1 + s_2\mathbf{p}_2) = s_1T(\mathbf{p}_1) + s_2T(\mathbf{p}_2)$$

Homogeneous coordinates

- Homogeneous coordinates
 - represent coordinates in 2 dimensions with a 3D vector
 - seem unintuitive, but they make graphics operations much easier

Homogeneous coordinates

- How can we represent translation as a 3x3 matrix?
 - Using the rightmost column

$$x' = x + t_{x}$$

$$y' = y + t_{y}$$

$$Translation = \begin{vmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{vmatrix}$$

Translation

Homogeneous coordinates

- Homogeneous coordinates
 - add a 3rd coordinate to every 2D point
 - (x, y, w) represents a point at location (x/w, y/w)
 - (x, y, 0) represents a point at infinity
 - (0, 0, 0) is not allowed

Convenient coordinate system to represent many useful transformations

Homogeneous Coordinates

Homogeneous coordinates allow translation, scaling and rotation to be expressed homogeneously, allowing composition via multiplication

Basic 2D transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \mathbf{t}_x \\ 0 & 1 & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

shear

Affine transformations

- Affine transformations are combinations of
 - Linear transformations, and
 - Translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of affine transformations
 - origin does not necessarily map to origin
 - lines map to lines
 - parallel lines remain parallel
 - ratios are preserved
 - closed under composition

Today's agenda

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations

Matrix composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathsf{T}(\mathsf{t}_{\mathsf{x}},\mathsf{t}_{\mathsf{v}}) \qquad \mathsf{R}(\Theta) \qquad \mathsf{S}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{v}}) \qquad \mathbf{p}$$

Matrix multiplication (reminder)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

Matrix composition

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - general purpose representation
 - hardware matrix multiply

$$p' = (T * (R * (S*p)))$$

$$p' = (T*R*S) * p$$

- Note: order of transformations matters
 - matrix multiplication is generally not commutative

- What if we want to rotate and translate?
 - Ex: Rotate line segment by 45 degrees about endpoint a

Multiplication order – wrong way

- The line segment is defined by two endpoints
 - Applying a rotation of 45 degrees, R(45), affects both points
 - We could try to translate both endpoints to return endpoint a to its original position, but by how much?

Multiplication order - correct

- Isolate endpoint a from rotation effects
 - First translate line so a is at origin: T (-3,0)
 - Then rotate line 45 degrees: R(45°)
 - Then translate back so a is where it was: T(3,0)

$$T(-3,0) = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R(45) = \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix}, T(3,0) = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Will this sequence of operations work?

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ 1 \end{bmatrix} = \begin{bmatrix} a'_x \\ a'_y \\ 1 \end{bmatrix}$$

$$T(-3,0) = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R(45) = \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix}, T(3,0) = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Will this sequence of operations work?

$$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ 1 \end{bmatrix} = \begin{bmatrix} a'_x \\ a'_y \\ 1 \end{bmatrix}$$

$$T(-3,0) = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R(45) = \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix}, T(3,0) = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

No! Matrix multiplication is not commutative!

Will this sequence of operations work?

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ 1 \end{bmatrix} = \begin{bmatrix} a'_x \\ a'_y \\ 1 \end{bmatrix}$$

$$T(-3,0) = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R(45) = \begin{bmatrix} \cos(45) & -\sin(45) & 0 \\ \sin(45) & \cos(45) & 0 \\ 0 & 0 & 1 \end{bmatrix}, T(3,0) = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix composition

- After correctly ordering the matrices
- Multiply matrices together
- The results is just one matrix for the whole transformation
- Multiply this matrix by the vector of each vertex
- → All vertices easily transformed with one matrix to multiply

Composition of 2D Transformations

Scaling about a fixed point, not origin

Composition of 2D Transformations

Rotation about a fixed point, not origin

Exercise

```
1)Translation : t_x = -3 ; t_y = 2
2)Scaling : s_x = 1/3 ; s_y = 2
```

- 3) Rotation : $\Theta = -30$

How can these transformations be combined?

Today's agenda

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- 3D Transformations
 - Basic 3D transformations

- Similar to $2D \Rightarrow 3D$
- Homogenization

3D coordinates:

$$(x, y, z) \rightarrow (x, y, z, 1) \rightarrow (wx, wy, wz, w)$$

Homogeneous:

$$(x, y, z, w) \rightarrow (x/w, y/w, z/w, 1) \rightarrow (x/w, y/w, z/w)$$

3D transformation matrices: 4x4 matrices

Translation

$$T(dx, dy, dz) = \begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T^{-1}(dx, dy, dz) = T(-dx, -dy, -dz)$$

Preserves lengths, angles, areas, and volumes

Scaling

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$S^{-1}(s_x, s_y, s_z) = S(s_x^{-1}, s_y^{-1}, s_z^{-1})$$

- A negative value on one or three of the components of scales results in a reflection.
- Does not preserve lengths, angles, areas, or volumes, except when scaling is uniform

3D canonical rotations

 Rotation about x-axis:

y-axis:

z-axis:

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(\theta) = \begin{vmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad R_{y}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad R_{z}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_u^{-1}(\theta) = R_u(-\theta)$$

- Preserves lengths, angles, areas, and volumes.
- Rotations about arbitrary axis: Any 3D rotation is a composition of 3 rotations, one about each coordinate axis (Euler angles: roll, pitch, yaw).

• Euler angles: roll, pitch, yaw

• Rotations about arbitrary axis: Any 3D rotation is a composition of 3 rotations, one about each coordinate axis (Euler angles: roll, pitch, yaw).

Shearing

- Basic shears use one coordinate to shear another, use one coordinate to shear other two, or use two coordinates to shear the other one.
- Does not preserve lengths, angles, areas in all directions, but preserve volumes.

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & dx \\ m_{21} & m_{22} & m_{23} & dy \\ m_{31} & m_{32} & m_{33} & dz \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = M * \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = M * \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

- 3D geometric transformations can be composed by matrix multiplication in reverse order.
- Generally, the transformations are order dependent, and composition of transforms is not commutative, even of rotations.

Basic 3D transformations

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 & 0 \\ 0 & 0 & \mathbf{s}_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

identity

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{t}_x \\ 0 & 1 & 0 & \mathbf{t}_y \\ 0 & 0 & 1 & \mathbf{t}_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

mirror about Y/Z plane

translation

Reverse rotations

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
• To undo a rotation of θ , $R(\theta)$

- apply the inverse of the rotation $R^{-1}(\theta) = R(-\theta)$
 - To construct $R^{-1}(\theta) = R(-\theta)$
 - Inside the rotation matrix: $cos(-\theta) = cos(\theta)$
- The cosine elements of the inverse rotation matrix are unchanged
- The sign of the sine elements will flip $sin(-\theta) = -sin(\theta)$

$$\rightarrow R^{-1}(\theta) = R(-\theta) = R^{T}(\theta)$$

Rotation matrices are orthogonal.

3D rotation

General rotations in 3D

- require rotating about an arbitrary axis of rotation
- deriving the rotation matrix for such a rotation directly is a good exercise in linear algebra ...
- standard approach
 - express general rotation as composition of canonical rotations
 - rotations about X, Y, Z

Composition of 3D Transformations

- Rotation about an arbitrary axis
 - Step1. Translate the object to the origin
 - Step2. Rotate to align the axis with x-axis
 - Step3. Perform the specified rotation about x
 - Step4. Inverse rotations to turn the axis back
 - Step5. Inverse translation to move back

$$\frac{R_{v}(\theta) = \underbrace{T(x_{0}, y_{0}, z_{0})}_{\textbf{Step5}} \cdot \underbrace{R_{y}(-\alpha) \cdot R_{z}(-\beta)}_{\textbf{Step4}} \cdot \underbrace{R_{x}(\theta) \cdot R_{z}(\beta) \cdot R_{y}(\alpha)}_{\textbf{Step2}} \cdot \underbrace{T(-x_{0}, -y_{0}, -z_{0})}_{\textbf{Step1}}$$

