Question 10.13.1.22 The probability of getting a bad egg in a lot of 400 is 0.035. The number of bad eggs in the lot is

Solution:

parameters	values	description
X	0	good egg
	1	bad egg
Y	$\sum_{i=1}^{n} X_i$	Binomial random variable
n	400	Total number of eggs
k		number of bad eggs
p	0.035	Probability of getting a bad eggs
TABLE 0		

RANDOM VARIABLE

Let

$$\Pr(X=0) = p \tag{1}$$

$$Pr(X=1) = 1 - p \tag{2}$$

(3)

The pmf of Y is given by:

$$Y \sim \operatorname{Bin}(n, p) \tag{4}$$

$$p_Y(k) = \Pr(Y = k) \tag{5}$$

$$= {}^{n}C_{k}p^{k}(1-p)^{n-k}, (1 \le k \le n)$$
(6)

The value of k for which maximises the probability gives the number of bad eggs. k=14

Bad eggs = 14