subanéis

conceitos básicos

Definição. Uma parte A' de um anel (respetivamente, domínio de integridade, anel de divisão, corpo) A diz-se um subanel (respetivamente, subdomínio de integridade, subanel de divisão, subcorpo) de A se for um anel (respetivamente, domínio de integridade, anel de divisão, corpo) relativamente às restrições das operações de adição e produto do anel.

Exemplo 23. Quando consideradas as operações usuais de adição e multiplicação, o anel $\mathbb Z$ é subanel e subdomínio de integridade de $\mathbb R$, mas não é seu subanel de divisão, nem subcorpo.

Exemplo 24. Quando consideradas as operações usuais de adição e multiplicação, o anel $n\mathbb{Z}$ $(n \in \mathbb{N} \setminus \{1\})$ é subanel mas não é subdomínio de integridade de \mathbb{Z} .

Exemplo 25. Dado um anel A, $\{0_A\}$ e A são subanéis de A. No entanto, dado um anel de divisão ou corpo A, $\{0_A\}$ não é subanel de divisão nem subcorpo de A.

Proposição. Sejam A um anel e $A' \subseteq A$. Então, A' é subanel de A se e só se:

- 1. $A' \neq \emptyset$;
- 2. $x, y \in A' \Rightarrow x y \in A'$;
- 3. $x, y \in A' \Rightarrow xy \in A'$

Proposição. Sejam A um domínio de integridade e $A' \subseteq A$. Então, A' é subdomínio de integridade de A se e só se:

- 1. $1_A \in A'$;
- 2. $x, y \in A' \Rightarrow x y \in A'$;
- 3. $x, y \in A' \Rightarrow xy \in A'$

Proposição. Sejam A um anel de divisão (respetivamente, corpo) e $A' \subseteq A$. Então, A' é subanel de divisão (respetivamente, subcorpo) de A se e só se:

- 1. $A' \neq \emptyset$;
- 2. $x, y \in A' \Rightarrow x y \in A'$;
- $3. \ x,y \in A' \backslash \{0_A\} \Rightarrow xy^{-1} \in A' \backslash \{0_A\}.$

intersecção, união e soma de subanéis

INTERSECÇÃO Sejam A um anel e A_1 e A_2 subanéis de A. Então, $A_1 \cap A_2$ é subanel de A.

UNIÃO Sejam A um anel e A_1 e A_2 subanéis de A. A união $A_1 \cup A_2$ não é necessariamente um subanel de A.

SOMA Sejam A um anel e A_1 e A_2 subanéis de A. Como $(A_1, +)$ e $(A_2, +)$ são subgrupos do grupo comutativo (A, +), sabemos que o subconjunto

$$A_1 + A_2 = \{a_1 + a_2 : a_1 \in A_1, a_2 \in A_2\}$$

de A é subgrupo de (A, +) (Relembrar que se G é grupo e H, K < G então HK < G se e só se HK = KH; em linguagem aditiva, escrevemos H + K < G se e só se H + K = K + H). No entanto, dados $a_1 + a_2, b_1 + b_2 \in A_1 + A_2$,

$$(a_1 + a_2)(b_1 + b_2) = a_1b_1 + a_2b_1 + a_1b_2 + a_2b_2$$

não é necessariamente um elemento de $A_1 + A_2$, pelo que $A_1 + A_2$ não é necessariamente um subanel de A.

ideais e relações de congruência num anel

Definição. Seja A um anel. Uma parte I de A diz-se um *ideal direito* (respetivamente, *ideal esquerdo*) de A se:

- 1. (I,+)<(A,+);
- 2. $(\forall a \in A) (\forall x \in I)$ $xa \in I$ (respetivamente, $ax \in I$)

Se I for simultaneamente ideal esquerdo e ideal direito, então, I diz-se um ideal de A.

Exemplo 26. Consideremos o anel $(\mathbb{Z},+,\times)$. O conjunto $2\mathbb{Z}$ é um seu ideal pois $(2\mathbb{Z},+)<(\mathbb{Z},+)$ e o produto de um inteiro qualquer por um inteiro par é um inteiro par.

Exemplo 27. Relativamente ao anel $(\mathbb{Z}_4,+,\cdot)$, o conjunto $\{\bar{0},\bar{2}\}$ é um ideal pois

$$\left(\left\{\bar{0},\bar{2}\right\},+\right)<\left(\mathbb{Z}_{4},+\right)$$

е

$$\begin{split} &\bar{0}\cdot\bar{0}=\bar{0}\cdot\bar{1}=\bar{0}\cdot\bar{2}=\bar{0}\cdot\bar{3}=\bar{0}\in\left\{\bar{0},\bar{2}\right\}\\ &\bar{2}\cdot\bar{0}=\bar{2}\cdot\bar{2}=\bar{0}\in\left\{\bar{0},\bar{2}\right\} \quad e\quad \bar{2}\cdot\bar{1}=\bar{2}\cdot\bar{3}=\bar{2}\in\left\{\bar{0},\bar{2}\right\}. \end{split}$$

Como o anel em questão é comutativo, concluímos que $\left\{ \bar{0},\bar{2}\right\}$ é um ideal de $\mathbb{Z}_{4}.$

Exemplo 28. Seja A um anel. Então, $\{0_A\}$ é um ideal de A (ao qual se chama ideal trivial de A).

Exemplo 29. Um anel A é um ideal de si próprio (ao qual se chama *ideal impróprio de A*).

Proposição. Todo o ideal de um anel A é um subanel de A. Proposição. A intersecção de uma família de ideais de um anel A é um ideal de Α. Proposição. Num anel com identidade todo o ideal que contém essa identidade é impróprio. **Demonstração.** Sejam A um anel com identidade 1_A e I um ideal de A tal que $1_A \in I$. Então, $\forall a \in A$, $a = a \cdot 1_A \in I$. Logo, $A \subseteq I$. Como, por definição, $I \subseteq A$, temos o resultado pretendido, i.e., I = A.

Proposição. Num anel de divisão existem apenas dois ideais: o trivial e o impróprio.

Demonstração. Vimos já que $\{0_A\}$ e A são ideais de qualquer anel A. Vejamos que, se A é um anel de divisão, estes ideais são de facto os únicos ideais de A. Seja $I \neq \{0_A\}$ um ideal de A. Então, existe $x \in A \setminus \{0_A\}$ tal que $x \in I$. Mas, como $(A \setminus \{0_A\}, \cdot)$ é um grupo, temos que $x^{-1} \in A \setminus \{0_A\} \subseteq A$. Assim, como I é um ideal de A, temos que

$$1_A = xx^{-1} \in I.$$

Logo, I é um ideal que contém a identidade do anel, pelo que, pela proposição anterior, é o ideal impróprio.

Exemplo 30. Os únicos ideias do corpo \mathbb{R} são $\{0\}$ e o próprio \mathbb{R} .

O facto de $2\mathbb{Z}$ ser ideal de \mathbb{Z} permite-nos concluir que \mathbb{Z} não é corpo.

Podemos ter ideais de um anel A que sejam gerados por um elemento de a.

Definição. Sejam A um anel e $a \in A$. Chama-se ideal principal direito (respetivamente, ideal principal esquerdo, ideal principal) gerado por a, e representa-se por $(a)_d$ (respetivamente $(a)_e$, (a)) ao menor ideal direito (respetivamente, ideal esquerdo, ideal) que contém a.

Exemplo 31. Consideremos o anel \mathbb{Z}_4 com as operações usuais de adição e multiplicação de classes. Como a multiplicação é comutativa, todos os ideais esquerdos são direitos e viceversa, pelo que podemos falar simplesmente em ideais. Os ideais de \mathbb{Z}_4 são $\{\bar{0}\}$, $\{\bar{0},\bar{2}\}$ e \mathbb{Z}_4 . Assim, temos que

$$\left(\overline{0} \right) = \{ \overline{0} \}, \quad \left(\overline{2} \right) = \{ \overline{0}, \overline{2} \}, \quad \left(\overline{1} \right) = \left(\overline{3} \right) = \mathbb{Z}_4.$$

Proposição. Sejam A um anel e $a \in A$. Então,

- 1. $(a)_d$ é a intersecção de todos os ideais direitos de A que contêm a.
- 2. $(a)_e$ é a intersecção de todos os ideais esquerdos de A que contêm a.
- 3. (a) é a intersecção de todos os ideais de A que contêm a.

Exemplo 32. No corpo \mathbb{R} , $(0) = \{0\}$ e $(x) = \mathbb{R}$, para todo $x \neq 0$.

Exemplo 33. No domínio de integridade \mathbb{Z} , $(-n) = (n) = n\mathbb{Z}$, para todo $n \in \mathbb{N}_0$.

Proposição. Sejam A um anel com identidade e $a \in A$. Então, $(a)_d = aA$ e $(a)_a = Aa$.

Demonstração. Seja A um anel com identidade 1_A e $a \in A$. Pretendemos provar que

$$aA = \{ax \mid x \in A\}$$

é o menor ideal direito que contém a.

De facto, (aA, +) é um subgrupo de (A, +), pois

- (i) $aA \neq \emptyset$, já que $a = a \cdot 1_A \in aA$;
- (ii) $ax, ay \in aA \Rightarrow ax ay = a(x y) \in A$;

Mais ainda.

$$x \in A$$
, $ay \in aA \Rightarrow (ay) x = a(xy) \in aA$,

pelo que aA é um ideal de A.

Por outro lado, ao provar que $aA \neq \emptyset$, provamos que aA contém a.

Finalmente, seja J um ideal direito de A tal que $a \in J$. Então,

$$x \in aA$$
 \Rightarrow $x = ay$ com $y \in A$ \Rightarrow $x = ay$ com $a \in J$ e $y \in A$ \Rightarrow $x = ay \in J$.

De modo análogo, prova-se que $(a)_e = Aa$.

Corolário. Sejam A um anel comutativo com identidade e $a \in A$. Então, (a) = Aa = aA.

congruências

Definição. Seja A um anel. Uma relação de equivalência ρ definida em A diz-se uma relação de congruência se, para todos $x, x', y, y' \in A$,

$$x \rho x'$$
 e $y \rho y' \Rightarrow (x + y) \rho (x' + y')$ e $(xy) \rho (x'y')$.

Exemplo 34. Considere-se em \mathbb{Z} a relação

$$a \rho b \Leftrightarrow a - b \in 2\mathbb{Z}$$
.

Então, a relação ρ é de equivalência e é tal que

$$\begin{array}{lll} a\,\rho\,b & \mathrm{e} & a'\,\rho\,b' & \Leftrightarrow & a-b,a'-b' \in 2\mathbb{Z} \\ \\ \Rightarrow & a+a'-\left(b+b'\right) \in 2\mathbb{Z} & \mathrm{e} \\ \\ & aa'-bb'=aa'-ba'+ba'-bb'=\left(a-b\right)a'+b\left(a'-b'\right) \in 2\mathbb{Z} \\ \\ \Leftrightarrow & \left(a+a'\right)\,\rho\,\left(b+b'\right) & \mathrm{e} & aa'\,\rho\,bb', \end{array}$$

pelo que ρ é uma relação de congruência em \mathbb{Z} .

Proposição. Sejam A um anel e I um ideal de A. Então, a relação definida em A por

$$a \rho b \Leftrightarrow a - b \in I$$

é uma relação de congruência.

Demonstração. Comecemos por provar que ρ é uma relação de equivalência em A: Como (I, +) é subgrupo comutativo de (A, +), temos que:

- (i) para todo $a \in A$, a-a=0, $a \in I$ e, portanto, $a \rho a$. Assim, ρ é reflexiva;
- (ii) se $a,b\in A$ são tais que a ρ b, temos que $a-b\in I$ e, portanto, $b-a=-(a-b)\in I$. Logo, b ρ a, o que nos permite concluir que ρ é simétrica;
 - (iii) se $a,b,c\in A$ são tais que $a\rho$ b e b ρ c, temos que $a-b\in I$ e $b-c\in I$ e, portanto, $a-c=(a-b)+(b-c)\in I.$

Assim, $a \rho c$, o que nos permite concluir que ρ é transitiva.

Assim, ρ é uma relação de equivalência. Para concluir que ρ é uma relação de congruência basta verificar que

$$a \rho b$$
, $a' \rho b' \Rightarrow (a + a') \rho (b + b') e aa' \rho bb'$.

De facto, como I é ideal de A,

$$\begin{array}{ll} a \, \rho \, b, \ a' \, \rho \, b' & \Rightarrow a - b, a' - b' \in I \\ & \Rightarrow (a + a') - (b + b') \in I, \\ & aa' - bb' = aa' - ba' + ba' - bb' = (a - b)a' + b(a' - b') \in I \\ & \Leftrightarrow (a + a') \, \rho \, (b + b'), \ aa' \, \rho \, bb'. \end{array}$$

Proposição. Seja ρ uma relação de congruência definida num anel A. Então:

- 1. a classe $[0_A]_{\rho}$ é um ideal de A;
- 2. $a \rho b \Leftrightarrow a b \in [0_A]_{\rho}$;
- 3. $(\forall a \in A)$ $[a]_{\rho} = a + [0_A]_{\rho} (= \{a + x \in A \mid x \rho 0_A\}).$

Demonstração. (i) Sendo uma classe de equivalência, temos que $\neq \emptyset$. Sejam $a,b \in [0_A]_{\rho}$. Então, $a \rho 0_A$ e $b \rho 0_A$ e, portanto, $a-b \rho 0_A$, pelo que $a-b \in [0_A]_{\rho}$. Então, $([0_A]_{\rho},+)<(A,+)$. Sejam $a \in [0_A]_{\rho}$ e $x \in A$. Então $a \rho 0_A$ e $x \rho x$ e, portanto, $ax \rho 0_A x$ e $xa \rho x 0_A$, i.e., $ax \rho 0_A$ e $xa \rho 0_A$. Assim, $ax, xa \in [0_A]_{\rho}$. Estamos em condições de concluir que $[0_A]_{\rho}$ é um ideal de A.

(ii) Sejam $a, b \in A$. Então,

$$a \rho b \Leftrightarrow a - b \rho b - b \Leftrightarrow a - b \rho 0_A \Leftrightarrow a - b \in [0_A]_{\rho}$$

(iii) Seja $a \in A$. Então,

$$b \in [a]_{\rho} \Leftrightarrow b \rho a \Leftrightarrow b - a \in [0_A]_{\rho} \Leftrightarrow b = a + [0_A].$$

anéis quociente

definição

Se ρ é uma relação de congruência num anel A (e, portanto, de equivalência), podemos então falar no conjunto quociente

$$A/\rho = \left\{ \left[\mathbf{a} \right]_{\rho} \mid \mathbf{a} \in A
ight\}.$$

Neste conjunto, definem-se duas operações binárias:

1. uma adição de classes: para $a, b \in A$,

$$[a]_{\rho} + [b]_{\rho} = [a+b]_{\rho};$$

2. uma multiplicação de classes: para $a, b \in A$,

$$[a]_{\rho} \cdot [b]_{\rho} = [a \cdot b]_{\rho}$$
.

Sendo ρ uma relação de congruência, prova-se que as operações estão bem definidas, i.e., não dependem da escolha do representante da classe:

Se
$$[a]_{\rho}=[a']_{\rho}$$
 e $[b]_{\rho}=[b']_{\rho}$, temos que

$$a \rho a' e b \rho b'$$
,

pelo que

$$(a+b) \rho (a'+b')$$
 e $(ab) \rho (a'b')$

e, portanto,

$$[a+b]_{
ho}=\left[a'+b'
ight]_{
ho}\quad \mathrm{e}\quad [ab]_{
ho}=\left[a'b'
ight]_{
ho}.$$

Teorema. Sejam A um anel e ρ uma relação de congruência definida em A. Então, considerando a adição e a multiplicação acima definidas, $(A/\rho,+,\cdot)$ é um anel.

Observação. Sabemos que existe uma relação biunívoca entre o conjunto das relações de congruência em A e o conjunto dos ideais de A. Assim, se I é ideal de A, podemos também falar num anel quociente:

Definição. Sejam A um anel e I é ideal de A. Chama-se anel quociente módulo I ao anel $(A/I, +, \cdot)$, onde

•
$$A/I = \{x + I : x \in A\}$$
 e
$$y \in x + I \Leftrightarrow y - x \in I.$$

• para todos $x, y \in A$,

$$(x + I) + (y + I) = (x + y) + I$$

е

$$(x+I)(y+I) = xy + I.$$

Proposição. Sejam A um anel e I um ideal de A.

- 1. Se A é uma anel comutativo, então A/I é um anel comutativo;
- 2. Se A é um anel com identidade 1_A , então A/I é um anel com identidade $1_A + I$.

Exemplo 32. Considerando o anel dos inteiros relativos, sabemos que, para cada $n \in \mathbb{N}$, $n\mathbb{Z}$ é um ideal de \mathbb{Z} . Podemos então considerar o anel quociente $\mathbb{Z}/n\mathbb{Z}$. Mais ainda, para cada $x \in \mathbb{Z}$,

$$[x]_{n\mathbb{Z}} = x + n\mathbb{Z} = r + n\mathbb{Z} = [r]_n,$$

onde r é o resto da divisão inteira de x por n e, por isso, é tal que $0 \le r \le n-1$.

Logo,

$$\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}_n.$$

ideais primos e ideais maximais

Definição. Seja A um anel comutativo com identidade. Um ideal I de A diz-se maximal se não existir um ideal K de A tal que

$$I \subsetneq K \subsetneq A$$
.

Exemplo 33. O ideal $2\mathbb{Z}$ do anel \mathbb{Z} é maximal. O ideal $4\mathbb{Z}$ não é maximal pois

$$4\mathbb{Z} \subsetneqq 2\mathbb{Z} \subsetneqq \mathbb{Z}.$$

Definição. Seja A um anel comutativo com identidade. Um ideal I de A diz-se primo se $A \setminus I \neq \emptyset$ e $A \setminus I$ é fechado para o produto.

Exemplo 34. O ideal $2\mathbb{Z}$ do anel \mathbb{Z} é primo. De facto, $\mathbb{Z}\backslash 2\mathbb{Z}=2\mathbb{Z}+1$ é fechado para o produto, já que, para todos $n,m\in\mathbb{Z}$,

$$(2n+1)(2m+1) = 2(n+m+2nm) + 1.$$

Teorema. Sejam *A* um anel comutativo com identidade e *I* um ideal de *A*. Então, são equivalentes as seguintes afirmações:

- 1. I é maximal;
- 2. A/I é corpo.

Demonstração. $[(i) \Rightarrow (ii)]$. Como A é um anel comutativo com identidade, temos que A/I é um anel comutativo com identidade. Para provar que A/I é corpo, falta apenas provar que todo o elemento não nulo $x + I \in A/I$ admite um inverso.

Seja $a + I \in A/I$ tal que $a + I \neq I$. Então,

$$K = \{i + xa \in A \mid i \in I \text{ e } x \in A\}$$

é um ideal de A. De facto,

- (a) $0_A = 0_A + 0_A a$, pelo que $0_A \in K$ e, portanto, $K \neq \emptyset$;
- (b) para $i + xa, j + ya \in K$, temos que $i + xa (j + ya) = (i j) + (x y) a \in K$;
- (c) Para $i+xa\in K$ e $y\in A$, temos que y (i+xa)=yi+(yx) a. Como $yi\in I$ (porque I é ideal) e $yx\in A$, concluímos que y $(i+xa)\in K$.

Como o anel é comutativo, concluímos que K é um ideal de A.

Mais ainda, o ideal assim definido K é tal que $I \subsetneq K$. De facto,

$$i \in I \Rightarrow i = i + 0_A a \in K$$

e $a \notin I$ é tal que $a = 0_A + 1_A a \in K$.

Logo, porque I é um ideal maximal por hipótese, temos que K=A. Então, $1_A\in K$, pelo que existem $i_1\in I$ e $x_1\in A$ tais que $1_A=i_1+x_1a$, ou seja, $1_A-x_1a=i_1\in I$. Logo, $(1_A-x_1a)+I=I$. Mas,

$$(1_A - x_1 a) + I = I \Leftrightarrow x_1 a + I = 1_A + I \Leftrightarrow (x_1 + I) (a + I) = 1_A + I,$$
 pelo que $(a + I)^{-1} = x_1 + I$.

 $[(ii) \Rightarrow (i)]$. Seja I um ideal de A tal que A/I é um corpo.

Suponhamos que existe um ideal K de A, tal que $I \subsetneq K \subseteq A$. De $I \subsetneq K$, concluímos que $(\exists x \in K)$ $x \notin I$.

Logo, $x + I \neq I$. Mas,

$$x + I \neq I \Rightarrow (\exists x' + I \in (A/I) \setminus \{I\}) \quad (x + I) (x' + I) = 1_A + I$$

$$\Rightarrow (\exists x' \in A \setminus I) \quad xx' + I = 1_A + I$$

$$\Rightarrow (\exists x' \in A \setminus I) \quad xx' - 1_A = i \in I$$

$$\Rightarrow (\exists x' \in A) \quad 1_A = xx' - i, \quad \text{com } i, x \in K,$$

$$\Rightarrow 1_A \in K.$$

Assim, K = A e, portanto, I é maximal.

Exemplo 35. Se considerarmos o anel \mathbb{Z} , um ideal é maximal se e só se é do tipo $p\mathbb{Z}$, com p primo, pois \mathbb{Z}_p só é corpo se p for primo.

Teorema. Sejam A um anel comutativo com identidade e I um ideal de A. Então, são equivalentes as seguintes afirmações:

- 1. *I* é ideal primo;
- 2. A/I é um domínio de integridade.

Demonstração. $[(i)\Rightarrow (ii)]$. Como A é um anel comutativo com identidade, A/I também. Mais ainda, como I é primo, $A\setminus I\neq\emptyset$, pelo que $A/I\neq\{I\}$. Para provar que A/I é um domínio de integridade, falta então provar que

$$(x+I)(y+I) = I \Longrightarrow x+I = I \text{ ou } y+I = I.$$

De facto,

$$(x+I)(y+I) = I$$
 \iff $xy+I = I$
 \iff $xy \in I$
 \implies $x \in I$ ou $y \in I$ (I primo)
 \iff $x+I = I$ ou $y+I = I$.

 $[(ii)\Rightarrow(i)]$. Seja A um anel e I um ideal de A tal que A/I é um domínio de integridade. Então, $A/I\neq\{I\}$ e, portanto, $A\neq I$ pelo que $A\setminus I\neq\emptyset$.

Sejam $a, b \in A \setminus I$. Pretendemos provar que $ab \in A \setminus I$.

Suponhamos que $ab \in I$. Então, ab + I = I. Logo,

$$(a+I)(b+I) = I \Longrightarrow a+I = I \text{ ou } b+I = I,$$

o que contradiz a hipótese de $a, b \in A \setminus I$.

Como consequência dos dois últimos teoremas, temos que

Corolário. Qualquer anel maximal de um anel comutativo com identidade é ideal primo.

Demonstração. A demonstração é trivial, tendo em conta que todo o corpo é um domínio de integridade. Assim,

I ideal maximal \iff A/I corpo \implies A/I domínio de integridade \iff I ideal primo.

49