# **Decision Trees**

### **Decision Trees - 1**

- Algorithms used for both Classification and Regression
- Works effectively with non-linear dataset
- DT can be looked at like "rules" that can be understood by humans and implemented on datasets
- Uses the Greedy algorithm technique
- Core algorithm to build decisions is called **ID3**, that employs a top-down approach
- Dataset is split on the most significant feature (using Entropy / Information Gain)
- DT represents an inverted tree having the following attributes:
  - Decision node : Test for split of an attribute
  - □ Edge : split of an attribute
  - ☐ Leaf node : value of the target attribute
  - □ Path: a series of test to arrive at the final decision
- Using recursion, sub-trees are formed based on features not used in the higher nodes
- Divide and rule
- DT splits data until it reaches a "pure" state
  - > Pure subset is one where there are only **positive** outcomes. No further split

### **Greedy algorithm technique**

- A choice made which seems appropriate at that point of time
- A local-optimum choice that would lead to a global-optimum solution
  - > But doesn't happen always
- Algorithm does not go back and reverse its decision
  - > has only 1 shot to make the local optimum choice

IDE, C4.5, C5.0 -> Entropy and Information Gain CART -> Gini Index model

### Decision Tree Terminology



### **Decision Trees**

| <ul> <li>Conditions for split can be given during the model building proce</li> <li>Control the depth of the tree</li> <li>Split the data if the minimum result for a condition is 'n' [n</li> <li>Control the Complexity Parameter (to include or exclude sp</li> </ul> | is any positive number] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| rpart.control() function in R lets you to specify the different condition                                                                                                                                                                                                | ons                     |

#### Advantages

- ☐ Interpretable
- ☐ Easy to understand
- ☐ Scalable
- Robust
- With more features, Trees can grow large and may become difficult to understand
- Smaller trees have better accuracy than larger trees
- Test dataset may become difficult to generalise (*tips example*)

### **Predict whether someone will buy or sell stocks**

| Day | company_perf | exchange_rate | gold_price | Action   |
|-----|--------------|---------------|------------|----------|
| 1   | High         | Increase      | Stable     | Sale     |
| 2   | Medium       | Increase      | Unstable   | Purchase |
| 3   | High         | Increase      | Unstable   | Purchase |
| 4   | Medium       | Decrease      | Stable     | Purchase |
| 5   | Low          | Decrease      | Unstable   | Purchase |
| 6   | Medium       | Increase      | Stable     | Sale     |
| 7   | High         | Decrease      | Stable     | Purchase |
| 8   | Medium       | Increase      | Stable     | Sale     |
| 9   | High         | Increase      | Stable     | Sale     |
| 10  | Medium       | Decrease      | Unstable   | Purchase |
| 11  | High         | Decrease      | Stable     | Purchase |
| 12  | Medium       | Increase      | Stable     | Sale     |
| 13  | Medium       | Decrease      | Unstable   | Purchase |
| 14  | Low          | Increase      | Stable     | Purchase |
| 15  | Low          | Increase      | Stable     | Purchase |
|     |              |               |            |          |

**Decrease** 

Stable

????

**16** 

Low

Company\_perfExch\_rateGold\_priceHigh, Medium, LowIncrease, DecreaseStable, Unstable

**Action** 9 Purchase / 6 Sale















# **Split criteria**

#### **Entropy**

Total information held relating to the target variable (Binary) (IDE / C4.5) More information, better will be the result

#### **Entropy (I) of the target variable**

- Measures homogeneity of the sets
- ☐ Tells us how pure / impure a set is
- e.g. In a binary classification dataset, if S is the dataset having + and classes, then Entropy (Information) is measured as:

$$E(S) = -p_{(+)}log_2 p_{(+)} - p_{(-)}log_2 p_{(-)}$$

where

 $\mathbf{p_{(+)}} = \%$  of positive class

 $\mathbf{p}_{(-)} = \%$  of negative class

- Interpretation of Entropy
  - $\checkmark$  0 <= I <= 1
  - ✓ Number of bits that is needed to identify if an item in the given dataset is + or –
  - ✓ For a pure subset, number of bits = 0
  - $\checkmark$  For a tie, number of bits = 1

#### **Information Gain**

- ☐ Significant variable to split is determined by **Information Gain**
- ☐ Measure that determines how well a given attribute splits the dataset
- ☐ This measure is used at every step to determine the next best attribute
- ☐ Information (I) is needed to classify an object
- Gain (S, A) = E(S) Σ [ (S<sub>a</sub>/S) \* E(S<sub>a</sub>) ] (residual)

#### where

**E(S)** = Entropy calculation

**S**<sub>a</sub> = Count of attribute value **a** 

**S** = Total count of dataset of attribute **A** 

 $E(S_a)$  = Entropy of Attribute value **a** 

☐ **Maximum**(Gain(A) ) → Best Attribute

### **Exercise**

|    |                 |           |        | _   |
|----|-----------------|-----------|--------|-----|
| #  | creative_type   | genre     | rating | cat |
| 1  | Science Fiction | Action    | PG-13  | 1   |
| 2  | Fantasy         | Adventure | PG-13  | 1   |
| 3  | Fantasy         | Adventure | PG     | 2   |
| 4  | Fantasy         | Drama     | PG-13  | 2   |
| 5  | Fantasy         | Drama     | PG-13  | 2   |
| 6  | Science Fiction | Action    | PG-13  | 1   |
| 7  | Super Hero      | Action    | PG     | 1   |
| 8  | Super Hero      | Action    | PG     | 1   |
| 9  | Super Hero      | Action    | PG-13  | 2   |
| 10 | Super Hero      | Drama     | R      | 2   |
| 11 | Super Hero      | Drama     | PG-13  | 2   |
| 12 | Science Fiction | Drama     | PG-13  | 2   |
| 13 | Science Fiction | Drama     | R      | 2   |
| 14 | Science Fiction | Action    | PG     | 2   |
| 15 | Science Fiction | Action    | R      | 1   |
| 16 | Fantasy         | Action    | R      | 1   |
| 17 | Fantasy         | Action    | R      | 1   |
| 18 | Fantasy         | Adventure | R      | 1   |
| 19 | Fantasy         | Adventure | PG     | 2   |
| 20 | Fantasy         | Adventure | PG-13  | 2   |

Find the first best attribute to split



## **Pruning the Decision Tree**

- Pruning is a technique to reduce the size of the Decision Tree by eliminating certain sections of the tree that provide little information to classify instances
- Pruning a tree helps
  - Prevent overfitting
  - > Improving accuracy
- Select the tree size that minimises the cross-validated error (*R* has in-built function for this)
- Pruning is done using a technique known as "Complexity Parameter"
- Plotcp() provides a graphical representation of the cross-validation error summary
- Pruning the Decision Tree
  - > Pre-pruning : Chi-square test
  - Post-pruning : Pruning techniques to reduce the tree size (recommended)



- Post pruning, perform prediction with the pruned tree
- Compare the results with the pre-pruned model to check effectiveness
- Plotcp() provides a graphical representation of the cross-validation error summary



# **Complexity Parameter (cp)**

- Technique that determines
  - > quality of a split
  - > the total number of splits
- cp (default value) = 0.01
  - > cp = {low\_value}
    - More splits
    - Better results
  - > cp = {high\_value}
    - Lesser splits
    - May not give good results
- Next split depends on the cp
- Cross validation error reduces with each split
- Select the value of cp that corresponds to the minimum value of xerror (Cross Validation Error)

```
> printcp(basemodel)
Classification tree:
rpart(formula = lsp ~ ., data = train, method = "class", minsplit = 5,
   cp = 0.05, maxdepth = 5)
Variables actually used in tree construction:
[1] aac alm1 gvh mcg
Root node error: 129/235 = 0.54894
n = 235
       CP nsplit rel error xerror
                                      xstd
1 0.364341
               0 1.00000 1.00000 0.059132
2 0.240310
              1 0.63566 0.64341 0.056799
3 0.077519 2 0.39535 0.42636 0.050315
4 0.069767 3 0.31783 0.41085 0.049665
              4 0.24806 0.32558 0.045528
5 0.050000
>
```