VOLUME BETWEEN SURFACES AND TRIPLE INTEGRATION

Volume Between Surfaces

Let f and g be continuous functions on a closed, bounded region R, where

$$f(x,y) \ge g(x,y) \ \forall (x,y) \in R.$$

Then the volume V between f and g over R is

$$V = \iint\limits_{R} (f(x,y) - g(x,y)) \ dA.$$

Example

Example: Find the volume of the space region bounded by the planes 2x + 3y - z = 8 and x + 3y + z = 10, where x, y > 0.

Ans: We need to determine the region R over which we will integrate. To do so, we need to determine where the planes intersect. They have common z-values, when $2x+3y-8=10-x-3y\implies x+2y=6$. That is the planes intersect along the line x+2y=6. Therefore the region R is bounded by x=0,y=0 and x=6-2y.

$$\therefore V = \iint_{R} ((10 - x - 3y) - (2x + 3y - 8)) dA$$
$$= \int_{0}^{3} \int_{0}^{6 - 2y} (18 - 3x - 6y) dx dy = 54 \text{ unit}^{3}.$$

Observation

 In the previous example, we compute the volume by evaluating the integral

$$\int_0^3 \int_0^{6-2y} \left((10 - x - 3y) - (2x + 3y - 8) \right) dx dy.$$

- Now observe that $(10 x 3y) (2x + 3y 8) = \int_{2x+3y-8}^{10-x-3y} dz$.
- Thus we can write

$$\int_0^3 \int_0^{6-2y} \left((10 - x - 3y) - (2x + 3y - 8) \right) dx dy$$
$$= \int_0^3 \left(\int_0^{6-2y} \left(\int_{2x+3y-8}^{10-x-3y} dz \right) dx \right) dy.$$

Hurray! We get triple integral!!

Triple integrals

- We know how to integrate over a two-dimensional region; we need to move on to integrating over a three-dimensional region.
- We used a double integral to integrate over a two-dimensional region and so it should not be too surprising that we'll use a triple integral to integrate over a three dimensional region.

Definition

Let D be a closed, bounded region in space. Let a and b be real numbers, let $g_1(x)$ and $g_2(x)$ be continuous functions of x, and let $f_1(x,y)$ and $f_2(x,y)$ be continuous functions of x and y.

- **①** The volume V of D is denoted by a triple integral, $V = \iiint_{\mathbb{R}} dV$.
- 2 The iterated integral $\int_a^b \int_{g_1(x)}^{g_2(x)} \int_{f_1(x,y)}^{f_2(x,y)} dz \ dy \ dx$ is evaluated as

$$\int_{a}^{b} \int_{q_{1}(x)}^{g_{2}(x)} \int_{f_{1}(x,y)}^{f_{2}(x,y)} dz \ dy \ dx = \int_{a}^{b} \left(\int_{q_{1}(x)}^{g_{2}(x)} \left(\int_{f_{1}(x,y)}^{f_{2}(x,y)} dz \right) dy \right) dx.$$

Evaluating the above iterated integral is triple integration.

Result

Let D be a closed, bounded region in space and let ΔD be any subdivision of D into n cuboidal solids, where the i-th subregion D_i has dimensions $\Delta x_i \times \Delta y_i \times \Delta z_i$ and volume ΔV_i .

lacksquare The volume V of D is

$$V = \iiint\limits_{D} dV = \lim_{\|\Delta D\| \to 0} \sum_{i=1}^{n} \Delta V_i = \lim_{\|\Delta D\| \to 0} \sum_{i=1}^{n} \Delta x_i \Delta y_i \Delta z_i.$$

② If D is defined as the region bounded by the planes x=a and x=b, the cylinders $y=g_1(x)$ and $y=g_2(x)$, and the surfaces $z=f_1(x,y)$ and $z=f_2(x,y)$, where a< b, $g_1(x)\leq g_2(x)$ and $f_1(x,y)\leq f_2(x,y)$ on D, then

$$\iiint_{D} dV = \int_{a}^{b} \int_{q_{1}(x)}^{g_{2}(x)} \int_{f_{1}(x,y)}^{f_{2}(x,y)} dz \ dy \ dx.$$

 V can be determined using iterated integration with other orders of integration (there are 6 total), as long as D is defined by the region enclosed by a pair of planes, a pair of cylinders, and a pair of surfaces.

Cautions

- The outer limits have to be constant. They cannot depend on any of the variables.
- ② The middle limits can depend on the variable from the outer integral only. They cannot depend on the variable from the inner integral.
- The inner limits can depend on the variable from the outer integral and the variable from the middle integral.

For example, the following integral does NOT make any sense.

$$\iiint\limits_{D} dV = \frac{\int_{x}^{y} \int_{1}^{z} \int_{0}^{1} f(x, y, z) dx \ dy \ dz}{\int_{x}^{y} \int_{1}^{z} \int_{0}^{1} f(x, y, z) dx \ dy \ dz}.$$

Examples

Example 1: Evaluate $\iiint xyz \ dV$, where $D = [0,1] \times [1,2] \times [2,3]$.

Ans: Notice that the order does not matter. So

$$\iiint_{D} xyz \ dV = \int_{2}^{3} \int_{1}^{2} \int_{0}^{1} xyz \ dx \ dy \ dz$$

$$= \int_{2}^{3} \int_{1}^{2} \frac{x^{2}}{2} yz \Big|_{0}^{1} dy \ dz$$

$$= \frac{1}{2} \int_{2}^{3} \int_{1}^{2} yz \ dy \ dz$$

$$= \frac{1}{2} \int_{2}^{3} \frac{1}{2} y^{2} z \Big|_{1}^{2} dz$$

$$= \frac{1}{4} \int_{2}^{3} 3z \ dz = \frac{3}{8} z^{2} \Big|_{2}^{3} = \frac{15}{8}$$

origin and the adjacent corners be on the positive x,y and z axes. If the cube's density is directly proportional to the distance from the xy-plane, find its mass.

Example 2: A cube has sides of length 1 cm. Let one corner be at the

Ans: The density of the cube is f(x,y,z)=kz, for some constant k whose unit is ${\rm gm/cm^4}$. If D is the cube, then the mass is the triple integral given by

by
$$\iiint_D dV = \int_0^1 \int_0^1 \int_0^1 kz \ dx \ dy \ dz$$

$$= \int_0^1 \int_0^1 kz \ dy \ dz$$

$$= \int_0^1 kz \ dz$$

$$= k \frac{z^2}{2} \Big|_0^1 = \frac{k}{2} \text{ gms}$$

Example 3: Find the volume of the space region in the 1-st octant bounded by the plane x + 2y + 3z = 4.

Ans: There are a total of 6 different approaches, but the result is same irrespective of any approach. We'll do it in the approach when the order of integration is $dz \cdot dy \cdot dx$

The region D is bounded below by the plane z=0 (because we are restricted to the first octant) and above by $z=\frac{1}{3}\left(4-x-2y\right)$

$$\implies 0 \le z \le \frac{1}{3} \left(4 - x - 2y \right).$$

To find the bounds on y and x, we collapse the region onto the x-y plane. (You can consider it as the shadow or the top view region. Therefore, this method is called shadow method.)

Here it will form a triangular region, bounded by the lines x=0,y=0 and x+2y=4. Therefore we have

$$0 \le y \le 2 - \frac{x}{2}, \quad 0 \le x \le 4.$$

Thus the volume V of the region D is given by

$$\iiint dV = \int_0^4 \left(\int_0^{2-\frac{x}{2}} \left(\int_0^{\frac{1}{3}(4-x-2y)} dz \right) dy \right) dx$$

 $= \frac{1}{3} \int_{0}^{4} \int_{0}^{2-\frac{x}{2}} (4 - x - 2y) \, dy \, dx$

 $= \frac{1}{3} \int_0^4 \left(4y - xy - y^2 \right) \Big|_0^{2 - \frac{x}{2}} dx$

 $=\frac{1}{3}\left(4x-\frac{x^3}{12}-x^2\right)\Big|^4=\frac{16}{9}.$

Example 4: Find the volume of the space region ${\cal D}$ bounded by the surfaces

$$x^2 + y^2 = 1, z = 0$$
 and $z = -y$.

Ans: Consider the triple integral in the order $dz\ dy\ dx$

The region D is bounded below by the plane z = 0 and above by the plane z = -y.

The cylinder $x^2+y^2=1$ does not offer any bounds in the z-direction, as that surface is parallel to the z-axis. Thus $0 \le z \le -y$.

Collapsing the region into the x-y plane, we get part of the region bounded by the circle with equation $x^2 + y^2 = 1$.

$$\therefore -\sqrt{1-x^2} \le y \le 0 \text{ and } -1 \le x \le 1.$$

So the required volume is given by

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{0} \int_{0}^{-y} dz \ dy \ dx = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{0} (-y) dy \ dx$$

$$= \int_{-1}^{1} \left(-\frac{y^2}{2} \right) \Big|_{-\sqrt{1-x^2}}^{0} dx$$

$$= \frac{1}{2} \int_{-1}^{1} (1-x^2) dx$$

 $=\frac{1}{2}\left(x-\frac{x^3}{3}\right)\Big|^1$

 $=\frac{2}{3}$ unit³.

Cylindrical coordinates

- Cylindrical coordinates can be thought of as a combination of the polar and rectangular coordinate systems.
- Conversion technique: from rectangular to cylindrical: $r=\sqrt{x^2+y^2}, \tan\theta=\frac{y}{x}$ and z=z; from cylindrical to rectangular: $x=r\cos\theta, y=r\sin\theta$ and z=z.

Example: Convert the rectangular point $(3, \sqrt{3}, 2)$ to cylindrical coordinates,

and convert the cylindrical point $(2, -\frac{\pi}{4}, 1)$ to rectangular.

Ans: $r = \sqrt{9+3} = 2\sqrt{3}$, $\tan \theta = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6}$. Therefore, the

point $(3,\sqrt{3},2)$ in cylindrical coordinates is $(2\sqrt{3},\frac{\pi}{6},2)$. In the second case, we have $x = r\cos\theta = 2 \times \frac{1}{\sqrt{2}} = \sqrt{2}, y = r\sin\theta = 1$

 $2 \times \left(-\frac{1}{\sqrt{2}}\right) = -\sqrt{2}$. Therefore, the cylindrical coordinate point $(2, -\frac{\pi}{4}, 1)$ in

rectangular coordinate is $(\sqrt{2}, -\sqrt{2}, 1)$.

Spherical coordinate

- Spherical coordinates can be thought of as a "double application" of the polar coordinate system.
- In spherical coordinates, a point P is identified with (ρ, θ, ϕ) , where ρ is the distance from the origin to P, θ is the same angle as would be used to describe P in the cylindrical coordinate system, and ϕ is the angle between the positive z-axis and the ray from the origin to P.
- $\rho \geq 0, 0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq \pi$.

Relationship between rectangular and spherical coordinates

• From rectangular to spherical:

$$\rho=\sqrt{x^2+y^2+z^2}, \ \tan\theta=\frac{y}{x} \ \mathrm{and} \ \cos\phi=z/\sqrt{x^2+y^2+z^2}.$$

• From spherical to rectangular:

$$x = \rho \sin \phi \cos \theta$$
, $y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$.

Example: Convert the rectangular point $(3, \sqrt{3}, 2)$ to spherical coordinates,

and convert the spherical point
$$(1, \frac{\pi}{2}, \frac{\pi}{4})$$
 to rectangular coordinates.
Ans: $a = \sqrt{9 + 3 + 4} = 4$ $\tan \theta = \frac{1}{2} \implies \theta = \frac{\pi}{2}$ and $\cos \phi = \frac{2}{2} = \frac{\pi}{2}$

Ans: $\rho = \sqrt{9+3+4} = 4$, $\tan \theta = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6}$ and $\cos \phi = \frac{2}{4} = \frac{\pi}{6}$ $\frac{1}{2} \implies \phi = \frac{\pi}{3}.$ Therefore, $(3,\sqrt{3},2)$ in spherical coordinates is $(4,\frac{\pi}{6},\frac{\pi}{3}).$

In the second case, $x = \rho \sin \phi \cos \theta = 0$, $y = \rho \sin \phi \sin \theta = \frac{1}{2}$ and z = 0

 $\rho\cos\phi=\frac{\sqrt{3}}{2}$. Therefore, the spherical point $(1,\frac{\pi}{2},\frac{\pi}{4})$ in rectangular coordi-

nates is $(0, \frac{1}{2}, \frac{\sqrt{3}}{2})$.

Triple integration in cylindrical coordinates

Let $w=h(r,\theta,z)$ be a continuous function on a closed, bounded region D in space, bounded in cylindrical coordinates by $\alpha \leq \theta \leq \beta, g_1(\theta) \leq r \leq g_2(\theta)$ and $f_1(r,\theta) \leq z \leq f_2(r,\theta)$. Then

$$\iiint\limits_{\Omega} h(r,\theta,z)dV = \int_{\alpha}^{\beta} \int_{g_1(\theta)}^{g_2(\theta)} \int_{f_1(r,\theta)}^{f_2(r,\theta)} h(r,\theta,z) \ r \ dz \ dr \ d\theta.$$

Triple integration in spherical coordinates

Let $w=h(\rho,\theta,\phi)$ be a continuous function on a closed, bounded region D in space, bounded in spherical coordinates by $\alpha_1 \leq \phi \leq \alpha_2, \beta_1 \leq \theta \leq \beta_2$ and $f_1(\theta,\phi) \leq \rho \leq f_2(\theta,\phi)$. Then

$$\iiint\limits_{D}h(\rho,\theta,\phi)dV = \int_{\alpha_1}^{\alpha_2}\int_{\beta_1}^{\beta_2}\int_{f_1(\theta,\phi)}^{f_2(\theta,\phi)}h(\rho,\theta,\phi)\ \rho^2\sin(\phi)\ d\rho\ d\theta\ d\phi.$$

Examples

Example 1: Let D be the region in space bounded by the sphere, centered at the origin, of radius r. Use a triple integral in spherical coordinates to find the volume V of D.

Ans: Equation of the sphere is $\rho=r$. Then the bounds on θ and ϕ are $0<\theta<2\pi$ and $0<\phi<\pi$.

$$\therefore V = \iiint_D dV == \int_0^{\pi} \int_0^{2\pi} \int_0^r (\rho^2 \sin(\phi)) \ d\rho \ d\theta \ d\phi$$
$$= \frac{4}{2} \pi r^3.$$

THANK YOU.

