Related Work:

Related Work Summary Table

Title	Dataset Name & URL	Dataset Description	Method Name	Accuracy	Pros	Cons	Citation
Microscopi c Image of Different Processed Rice Varieties of Bangladesh	PRBD: Microsco pic Image of Different Processed Rice Varieties of Banglades h https://dat a.mendele y.com/dat asets/sfp9 s96prh/1	This dataset contains ten unique rice categories, which are: Aush, Beroi, BR-28, BR-29, Ghee Bhog, Katari Nazir, Katari Siddho, Swarna, Miniket, and Chinigura, in Bangladesh. These were collected from the local markets of Dhaka, Bangladesh. This dataset contains a total of 2000 high-resolution microscopic images and 8000 Augmented images.	DenseNet 201	Original Dataset- 93%	Regional varieties, nutritional information, global diversity, popularity data, Miniket rice, local types, undocumented quality, unverified nutritional claims, need for further research	visual similarity, limited generalizatio n, single-source data, no external validation, controlled environment only.	Md Tohsin et al., 2025 https://doi.org/10.1016/j.dib.2025.1 12058
Rice Classificati on Using Spatio-Spe ctral Deep	RGB and VIS/NIR Hyperspec tral Imaging	90 varieties, 8640 kernels, RGB, hyperspectral, VIS/NIR, seed-level,	SVM	99.84%	non-destructive, automatic feature extraction, spatio-spectral, no manual features,	specialized hardware, not publicly available, low reproducibilit	Chatnuntaw ech, I., Srinualnoi, T., Phadungsil, P., &

Convolutio nal Neural Network	Data for 90 Rice Seed Varieties https://zen odo.org/re cords/324 1923	high-resolution, non-destructive imaging, phenotyping			hyperspectral imaging	y, limited accessibility	Kongkaew, T. (2018). Rice Classificati on Using Spatio-Spec tral Deep Convolution al Neural Network. arXiv. https://arXiv.org/abs/18 05.11491
Developme nt of a Convolutio nal Neural Networks- Based Model to Classify the Rice Varieties	Smartpho ne Rice Variety Image Dataset (4-class)	4 rice varieties (Bhalum-5, Shahsarang, Nagina-22, IR-64), smartphone images	5-layer Convoluti onal Neural Network (CNN)	91.0%	Simple model, uses widely accessible images	Limited classes; no microscopic detail; not tested across many varieties	Kaur, S., Singh, B. K., Kumar, S., Singh, N., & Kumar, A. (2023). Developme nt of a convolution al neural networks-ba sed model to classify the rice varieties. Indian Journal of Hill Farming, 37(01), 78–82. https://doi.o rg/10.56678 /ijhf/2023/v 37/i1/201
Enhancing the Classificati on Accuracy of Rice Varieties	Ipsala, Arborio, Basmati, Jasmine, Karacadag rice image dataset (Turkish	Hyperspectral images of hybrid indica paddy rice grains (number of classes not publicly available; private dataset)	CARS (Competiti ve Adaptive Reweighte d Sampling) + CNN +	95.33%	High classification accuracy, Spectral features exploited for better differentiation	Limited to 17 rice varieties; may not generalize to other varieties, High-resoluti on images	Tran Thi Kim, Pham Viet Tuan, Koo Insoo, Mariano Vladimir, Do Hong Tuan.

Using CNNs	rice varieties)		Transform			required, which may not be readily available, The study did not explore the impact of environmenta I factors on classification accuracy.	(2023). Enhancing the Classificati on Accuracy of Rice Varieties Using CNNs. Internationa I Journal of Electrical Engineering & Telecommunications (IJEETC), Vol. 13, No.
							6. DOI: [10.12944/I] JEETC.13.6 .01](https://doi.org/10.1 2944/IJEET C.13.6.01)
Identificati on of Hybrid Indica Paddy Rice Grain Varieties Based on Hyperspect ral Imaging and Deep Learning	Hyperspec tral images of hybrid indica paddy rice grains	hyperspectral images, hybrid indica rice, grain-level data, spectral bands, high-resolution, non-destructive imaging	CNN	95.33%	high accuracy, spectral features, enhanced differentiation, non-destructive	specialized hardware, not RGB-compati ble, limited generalizatio n, reduced accessibility	Meng Zhang, Shuang Li, Hongyu Zhang, Yifan Zhang, Yifan Zhang, Yu Zhang. (2024). Identificatio n of Hybrid Indica Paddy Rice Grain Varieties Based on Hyperspectr al Imaging

							and Deep Learning. Biosensors, 15(10), 647. DOI: [10.3390/bi os15100647](https://doi .org/10.339 0/bios15100
An Overall Real-Time Mechanism for Classificati on and Quality Evaluation of Rice	Rice Grain Dataset	20,000 images of 6 rice varieties in China (private dataset); includes classification, completeness grading, and chalkiness evaluation	One-stage object detection + CNN + ML	97.89%,	Integrated pipeline for classification and quality evaluation, Multi-task capability, high accuracy in both classification and detection	Large system complexity, unknown generalization to unseen rice varieties, requires substantial computational resources	Wanke Xia, Ruoxin Peng, Haoqi Chu, Xinlei Zhu, Zhiyu Yang, Lili Yang. (2025). An Overall Real-Time Mechanism for Classificati on and Quality Evaluation of Rice. arXiv. DOI: [10.48550/a rXiv.2502.1 3764] https://doi.o rg/10.48550 /arXiv.2502. 13764
An Efficient Classificati on of Rice	Ipsala–Ar borio–Bas mati–Jas	75,000 rice grain images (15,000 per variety) of 5 types: Ipsala, Arborio,	Quantized Neural Networks	99.87%	Extremely low memory usage: only 23.1 KB for model	Quantization may reduce model precision,	Tasci, M., Istanbullu, A., Kosunalp,

Variety with Quantized Neural Networks	mine–Kar acadag Rice Image Dataset	Basmati, Jasmine, and Karacadag. Each image is 256×256 pixels.	(QNN) based on Multi-Lay er Perceptron (MLP) and LeNet-5 architectur es with varying quantizati on levels.		parameters, 23× fewer billion operations per second (GOPs) compared to similar studies, Suitable for deployment on resource-constrai ned edge devices.	Model complexity trade-offs may affect performance.	S., Iliev, T., Stoyanov, I., & Beloev, I. (2023). An Efficient Classificati on of Rice Variety with Quantized Neural Networks. Electronics, 12(10), 2285. [https://doi. org/10.3390 /electronics 12102285](https://doi.org/10.3390/ electronics1 2102285)
Classificati on of Rice Texture Based on Rice Image Using InceptionV 3 CNN	Rice Texture Image Dataset (Private, Indonesia	1,560 rice images, multiple classes	Inception V3 Convoluti onal Neural Network (CNN)	95.7%	High classification accuracy.Utilizes a modern CNN architecture.Suita ble for texture-based classification	The dataset is small, which may lead to overfitting. Limited variety of rice textures in the dataset	Budiono, G., & Wirawan, R. (2023). Classificati on of Rice Texture Based on Rice Image Using CNN (InceptionV 3). Techno Nusa Mandiri: Journal of Computing and Information Technology, 20(2), 103–110.

			[https://doi.
			org/10.3348
			0/techno.v2
			0i2.4666](h
			ttps://doi.or
			g/10.33480/
			techno.v20i
			2.4666)