Essai de Proctor

I. But:

Ce TP a pour but de :

- déterminer le poids volumique optimal sec (γ_{dopn}) et la teneur en eau optimal (ω_{opn}) pour un sol de remblai.
- d'identifier le type de sol étudié.

II. Matériels utilisés:

-Dame Proctor normal-

-Malaxeur-

III. Mode opératoire :

- 1. Tamiser le sol donné.
- 2. Peser 3 kg de sol, à l'aide d'une balance.
- 3. Peser 3% d'eau et le rajouter sur le sol pesé.
- 4. Malaxer le mélange à l'aide d'un malaxeur.
- 5. Peser le moule de Proctor vide.
- 6. Introduire la 1^{ère} couche et la compacter par la dame de Proctor.
- 7. Refaire la même procédure précédente pour les 3
- 8. Après le compactage, araser soigneusement la surface supérieure de la moule.
- 9. Peser l'ensemble juste arasé.
- 10. Prélever 2 prises sur l'échantillon : l'une en haut et l'autre en bas.
- 11. Peser les 2 prises humides.
- 12. Ajouter 3% de l'eau dans l'échantillon et refaire les mêmes procédures précédentes.
- 13. Après séchage, peser l'échantillon sèche.

IV. Travail demandé:

- Calculer le teneur en eau ω
- Calculer le poids volumique sec γ_d
- Tracer la courbe $\gamma_d = f(\omega)$
- Déterminer γ_{dopn} et ω_{opn}
- Calculer le degré de saturation S_r

V. Les mesures et les résultats :

> Calcul de teneur en eau :

$$\omega = \frac{M_w}{M_s} = \frac{M_h - M_s}{M_s} \text{ en } (\%)$$

Avec: Mw: masse d'eau (gr)

M_s: masse de sol sec (gr)

M_h: masse de sol humide (gr)

> Calcul de poids volumique sec :

$$\gamma_d = \frac{P_2 - P_1}{(1 + \omega) \times V_{moule}}$$
 en (KN/m³)

Avec:

P₂: masse de sol compacté + masse de moule (gr)

P₁: masse de moule (gr)

 $V_{\text{moule}} = \frac{\pi \times D^2 \times h}{4} = 948.556 \text{ cm}^3 \cong 950 \text{ cm}^3$: volume de l'échantillon

> Calcul de degré de saturation :

$$\text{Donc}: \ \boldsymbol{S_r} = \frac{\omega}{100 \times \rho_w \times (\frac{1}{\rho_d} - \frac{1}{\rho_s})} \ \text{en (\%)}$$

Avec:

 ω : Teneur en eau en (%)

 ρ_w : masse volumique de l'eau en (Kg/m³)

 ρ_s : masse volumique des particules solides du sol en (Kg/m³)

 ρ_w : masse volumique du sol sec en (Kg/m³)

> Les mesures :

	Essai 1		Essai 2		Essai 3		Essai 4		Essai 5	
Masse de moule : P ₁ (Kg)	1.814		1.814		1.814		1.814		1.814	
Masse totale humide : P ₂ (Kg)	3.542		3.686		3.724		3.790		3.676	
Masse nette humide (Kg)	1.728		1.872		1.910		1.976		1.862	
Volume de moule : V _{moule} (m ³)	0.950		0.950		0.950		0.950		0.950	
Poids volumique total : $\gamma_T (KN/m^3)$	18.189		19.705		20.105		20.800		19.600	
Masse de tare (gr)	50	30	24	30	26	32	30	30	54	34
Masse de sol humide + tare (gr)	64	40	38	40	44	46	42	44	82	52
Masse de sol sec + tare (gr)	62.8	38.9	36.5	38.7	42	44	40.1	42	78	49
Masse de sol sec (gr)	12.8	8.9	12.5	8.7	16	12	10.1	12	24	15
Masse d'eau (gr)	1.2	1.1	1.5	1.3	2	2	1.9	2	4	3
Teneur en eau : ω(%)	9.4	12.4	12	14.9	12.5	16.6	18.8	16.6	16.6	20
	10.9		13.45		14.55		17.7		18.3	
Poids volumique sec : γ_d (KN/m ³)	16.401		17.368		17.551		17.672		16.568	
Degré de saturation : S _r (%)	45.540		65.481		72.970		90.540		78.472	

> La courbe :

> Le résultat :

De cette courbe on trouve par projection que :

La teneur en eau optimal est : γ_{opn} = 17.700 KN/m³

Le poids volumique sec optimal est : $\omega_{opn} = 17.7 \%$

→D'après l'ordre de grandeur donné, on peut conclure que ce sol étudié est un limon.

VI. conclusion:

Les caractéristiques Proctor constituent des critères d'identification d'un sol permettant de situer son état naturel par rapport à son état optimal de mise en œuvre. Elles servent également de référence pour caractériser la qualité de compactage réaliser sur le chantier.