Reinforcement Learning (RL)

The story So Par: MDP V.S. RL Active RL V.s. Passive RL M Model based Learning x: Estimate T, R; Passive RL Model Free Learning O Direct Evaluation: Estimates Ve(5); Passive RL O Temporal Difference Lourning 0 Q-learning

Review -- Example: Model-based Learning

Learned Model

$$\hat{T}(B,aut,C) = 1$$

$$\hat{T}(C,east,D) = \frac{3}{4}$$

$$\hat{T}(C,east,A) = ...$$

$$R(B, \text{evot}, C) = R(c, \text{evot}, D) = R(c, \text{evot}, A) = \vdots$$

Review -- Pros and Cons of Model-based Learning

Erfan Meskar (ECE 421) Week 12- Part 3 Fall 2024

Reinforcement Learning (RL)

Basic Idea Behind Model-Free Learning

To approximate	e expectations w.	r.t. a distribution	1, we can either
Estimate +	le distribution from	n Samples, then	compute the
expectation	based on the	estimated distrib	ution
Cr, bypass	the distribution	and estimate	the expectation
from the	samples direc	ctly	

Erfan Meskar (ECE 421)

Week 12- Part 3

Fall 2024

Let's See an Example

- Consider the task of estimating the expected age of UfT students: E[A]
- If the probability distribution of A was Known, we could find it easily: E[A] = \(\sum_{\text{P(a)}} \). \(\alpha \)
- Without P(A), we have to Collect samples: [a,,a,,...,a,]
 - Model-Based approach: Estimat P(A) first: P[A=a] = N
 - Then we use P to estimate E[A]: E[A] = I P[A=a]. a
 - Model-Free approach:
 - Use the samples to estimate É(A]:

Basic Idea Behind Model-Free Learning

In RL, our ultimate goal is to find an estimate of expected return in each state.

Model-basel Coming: Estimate the probability distribution of return from the Samples. Then use it to calculate the expected return.

Model-Free: estimate the expected return directly from samples.

Erfan Meskar (ECE 421) Week 12- Part 3 Fall 2024

Simplified Passive RL Model

■ Simplified Passive RL model Input: stream of transitions produced by following Some fixed Policy TC(s) Eg., we are given the following epsodes: $(S,\pi(s),s,V,\pi(s),r,\ldots,end)$ (5,943), 5,7, 745"), 1", ..., end) Output: estimate of the state values $\frac{1}{\sqrt{2}}(S)$

Note: we don't know T and R

Direct Evaluation

Consider the passive learning model described before, with the goal of estimating $\nabla_{re(s)}$, i.e. expected total discounted reward from s mward. $\nabla_{re(s)} = \mathbb{E}[R(s,re(s),s_1) + \Im R(s,re(s),s_2) + \cdots]$

■ Direct Evaluation: It uses returns, the actual sums of discounted reward from 5 must de, to estimate its expectation.

Anytime you observe a transition from $S,T(S), \ldots$, you calculate the Sum of discounted reward for it. This will be our sample. I we $U_i(S) = R(S,T(S),S') + 8R(S,T(S') + S'') + 8^2 - \ldots$ The ifh time that we observe a a transition $\widehat{V}_{r}(S) = \frac{\sum V_i(S)}{N} + \frac{\sum V_i(S)}{N}$

This is also known as "direct utility estimation or Monte-Carla evalu

13

Example: Direct Evaluation

Inpot Policy 10 (Assume 8=1)

Episle 1:

Episle 3

Episte 2

Episle 4

$$\hat{V}_{R}(E) = \frac{\left((-1) + \gamma(-1) + \gamma(16)\right) + \left((-1) + \gamma(-1) + \gamma(-1)\right)}{2} = -2$$

Output Values

	-10	
+8	+4	10
11///	-2	

Do you see anything of putting with these estimated Yalve? Now come V(B) \(\frac{1}{2}(E) \)

Direct Evaluation Pros and Cons

Pros:

- It does not require any knowledge of T and R

 It Converges to the right answer in the limit.
- Cons:
 - It ignores information about state Connections.

 Each state must be learned separately

 50, slow to learn.

Erfan Meskar (ECE 421) Week 12- Part 3 Fall 2024

How Can We Incorporate Information About state Connections?

Before TD, Let's See Some Naive Ideas

- Before we present TD, let's study some naive ideas to exploit state Connections

 The Idea 1: Use actual samples to estimate the expectation

 The Idea 2: Update value of S after each transition s, a, s, r
- These two naïve ideas help us better understand the design principle behind TD

Erfan Meskar (ECE 421) Week 12- Part 3 Fall 2024

Idea 1

Let's take a second lack at the state value recursion relation:
$$V_{R}(s) = \sum_{s'} T(s, x(s), s') \left[R(s, x(s), s') + \partial V_{R}(s') \right]$$

$$= \mathbb{E} \left[R(s, x(s), s') + \partial V_{R}(s') \right]$$

$$= s'|sx(s)|$$

Hence, to estimate $V_{\kappa}(s)$, we must estimate the expectation above.

II Just like what we saw earlier, estimate the expected value of a random variable by finding average of its realizations

Erfan Meskar (ECE 421)

Week 12- Part 3

Fall 2024

idea 1, cont'd

Idea 1: Use actual sample to estimate the expected return. $5, 7(15), 5', \ldots \rightarrow sumply = R(5,7(15),5') + VV_{R}(5')$ $5, 7(15), 5', \ldots \rightarrow Sumply = R(5,7(15),5') + VV_{R}(5'')$ \vdots $3,7(15), 5', \ldots \rightarrow Sumply = R(5,7(15),5'') + VV_{R}(5'')$

 \sqrt{S} (S) $\leftarrow \sqrt{S}$ Sample.

I I sove: In reality, we do not have the luxury of putting our robot is state "s' over and over again, and re-run.

Erfan Meskar (ECE 421) Week 12- Part 3 Fall 2024

Idea 2

■ Iden 1 didn't work, because we connot generate N samples whenever we want. I Instead, we should learn to use the possible sample that we may observe in an episode. Idea 2: update value of S after each observed transition 5, a, s', ... 17 Upon Seeing this transition, we have a sample: · Sample of V(s): Somple = R(s, rc(s), s') + 8 T/ (s') · update Tre(s): Tre(s) { (1-a) Tre(s) + a Sample

running average

22

Running Average

How can we compute the average of 26, 1/2, ..., 26, numbers?

47 Method 1: Add them up and divide by n.

47 Method 2: Keep a running average μ and a running count K.

- K=0, M=0
- k=1, $M_1 = (0 \times M_0 + \mathcal{X}_1)/1 = \mathcal{X}_1$ k=2, $M_2 = (1 \times M_1 + \mathcal{X}_2)/2 = \frac{\mathcal{X}_{1+2}}{2}$
- K = 3, $M_3 = (2 \times M_2 + 2)/3 = \frac{2(1 + 2)}{3}$
- · General Formula: $M_n = ((n-1)M_{n-1} + 2k_n)/n$ $=(1-\frac{1}{n})/(n-1)+\frac{1}{n}2^{n}$

Running Average

This way of running average makes recent samples more important.

Also, it torgets about the past (distant Valves were wrong any way)

Erfan Meskar (ECE 421) Week 12- Part 3 Fall 2024 2

Temporal Difference Learning

To updated the values by maintaining a running average 4 upon seeing the transition S,a,s,R, we have a new sample: R15,a,s')+87/(s') • We can also write it as: \(\nu_{\chi(s)} \) \(\nu_{\chi(s)} \) + \(\alpha\) [Sample - \(\nu_{\chi(s)}\)] This is Temporal Difference Learning Rule. [Sample - V2(5)] is the TD error. Is the learning rate He observe a sample, move V(s) a little bit to make it more consistent with its neighbor V(s')

Erfan Meskar (ECE 421)

Week 12- Part 3

Fall 2024

Zef

Example: TD

Problems with TD Value Learning

To value learning is a model-free way to do policy evaluation of mimicking Bellman updates with running sample averages.

But we can't use the value function, or improve the policy without T.

$$Q(s,\alpha) = \sum_{s} T(s,\alpha,s') \left[R(s,\alpha,s') + \gamma V(s') \right]$$

What Can we do ?

Fy Lewn q-values (i.e. QIS,a), not Values (i.e., V(S))

17 makes action selection model-tree, too!