

Overview

Use cases

Types of analytics

The scientific method for analytics

Course outline

A Carpenter

What is Data Analytics

An Electrician

A Plumber

Your messed up home

What is Data Analytics(Cont....)

Overview

Use cases

Types of analytics

• The scientific method for analytics

Course outline

Use cases

Who might subscribe to the credit offer?

Credit
Card
Company
Company

Regional Bank

Store

How to limit

employee

turnover?

Which product to sell more?

Who is most likely to default on their loans?

Use cases

- Overview
- Use cases

- Types of analytics
- The scientific method for analytics
- Course outline

Types of Analytics

Why do airline prices change every hour?

Prescriptive
Analytics
advice on possible outcomes

SAVE S1.00

How do grocery cashiers know to hand you coupons you might actually use?

Predictive
Analytics
understanding the future

Predictive analytics Descriptive analytics

Predicting the future based

on historical patterns

What could happen?

Mining data to provide business insights

What has happened?

How does Netflix frequently recommend just the right movie?

Descriptive
Analytics
insight into the past

- Overview
- Use cases
- Types of analytics

- The scientific method for analytics
- Course outline

The Scientific Method for Analytics

Method: Understanding - Business and Data

To meet objectives

Method: Data Preparation

Business Understanding Data Understanding

Data Preparation

Modeling

Evaluation

Deployment

TABLE 2.1 Can You Find Any Problems in This Tiny Data Set?

Customer ID	Zip	Gender	Income	Age	Marital Status	Transaction Amount
1001	10048	M	75000	С	M	5000
1002	J2S7K7	F	-40000	40	W	4000
1003	90210		10000000	45	S	7000
1004	6269	M	50000	0	S	1000
1005	55101	F	99999	30	D	3000

Ref: Discovering Knowledge in Data: An Introduction to Data Mining, Second Edition, by Daniel Larose and Chantal Larose, John Wiley and Sons, Inc., 2014.

Method: Modeling and Evaluation

Business Understanding Data Understanding

Data Preparation

Modeling

Evaluation

Deployment

Method: Deployment and Tools

Business Understanding Data Understanding

Data Preparation

Modeling

Evaluation

Deployment

Microsoft Excel

Allows you to explore/analyze smaller data sets

Tableau Desktop

Allows you to visualize your data with dashboards

Python Language

Allows you to build statistical models that can make predictions about your data

SQL

Allows you to communicate and interact with databases

- Overview
- Use cases
- Types of analytics
- The scientific method for analytics

Course outline

Evaluation Criteria

Criteria	%	Comments
In-class Labs	20	Open book/resource. Most of the labs will be done and graded in the same class.
Quizzes	10	Three quizzes that take place at the beginning of any three classes to cover the flipped component.
Projects	30	Two projects occur - one before the midterm and another after the midterm.
Exam	40	Closed book/resource exam covering the entire course materials.

Course Outline

Week	Week starts on	Topics	Activities	Flipped
1	08-Jan	Introductory Week	Installation	
2	15-Jan	Introduction to Python / Python Data Structures	Lab1	Reading: Chap1 from Ref2
3	22-Jan	Numpy/ Pandas	Lab2	Reading: Chap2 from Ref2
4	29-Jan	Data Preprocessing/ Visualization	Lab3	Reading: Chap1 & Chap2 from Ref1
5	05-Feb	Exploratory Data Analysis	Lab4	Reading: Chap3 from Ref1
6	12-Feb	Statistical Analysis	Lab5	Reading: Chap4 from Ref1
7	19-Feb	Project1 Presentations		
8	26-Feb	Midterm Week	NA	
9	04-Mar	Regression Analysis	Lab6	Reading: Chap6 from Ref1
10	11-Mar	Spring Break	NA	
10	18-Mar	k-Nearest Neighbor Algorithm Support vector machine	Lab7	Reading: Chap7 from Ref1
11	25-Mar	Decision Trees	Lab8	Reading: Chap8 from Ref1
		Random Forest		
12	01-Apr	Hierarchical & k-Means Clustering	Lab9	Reading: Chap9 from Ref1
14	08-Apr	Project2 Presentations		
15	15-Apr	Final Exam		