

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA PRINCÍPIOS DE CONTAGEM - 2023.1

PROFESSOR: WILLIKAT BEZERRA DE MELO

TURMA: 2Z

MONITOR: JARDEL FELIPE CABRAL DOS SANTOS

RESOLUÇÃO DA LISTA 6

PROBLEMAS

- 1. É possível que a soma dos graus dos vértices de um grafo seja ímpar?
- 2. No grafo G da figura abaixo:

- (a) Dê o grau de cada um dos vértices.
- (b) Qual a soma de todos os graus?
- (c) Qual o número de arestas?
- (d) Determine $\Delta(G)$.
- (e) Determine $\delta(G)$.
- (f) Verifique a desigualdade $\frac{v(G)}{\Delta(G)+1} \leq \alpha(G) \leq \frac{e(G)}{\delta(G)}$ neste grafo G.
- 3. Mostre que todo grafo G possui um número par de vértices de grau impar.
- 4. Quantas arestas têm K_7 ? e K_{12} ? e K_n ?
- 5. Quantos vértices tem um grafo completo de 105 arestas?

1.

Não, pois o grau de um vértice, por definição, é numericamente igual ao número de arestas que tem ele como uma das extremidades. Indepentemente da paridade desse número, ao somar o grau dos vértices do grafo G, contaremos cada aresta do grafo duas vezes, uma para cada extremidade de uma aresta. Assim, a soma é igual à $2 \times e(G)$, um número par.

2.

(a)

- 1. $d_G(A) = 1$
- 2. $d_G(B) = 1$
- 3. $d_G(C) = 1$
- 4. $d_G(D) = 4$
- 5. $d_G(E) = 2$
- 6. $d_G(F) = 6$
- 7. $d_G(G) = 6$
- 8. $d_G(H) = 6$
- 9. $d_G(I) = 3$
- 10. $d_G(J) = 1$
- 11. $d_G(K) = 2$
- 12. $d_G(L) = 2$
- 13. $d_G(M) = 1$
- 14. $d_G(N) = 1$
- 15. $d_G(O) = 1$
- 16. $d_G(P) = 2$
- 17. $d_G(Q) = 4$
- 18. $d_G(R) = 1$
- 19. $d_G(S) = 1$

(b)

$$\sum_{v \in G} d_G(v) = 1 + 1 + 1 + 4 + 2 + 6 + 6 + 6 + 3 + 1 + 2 + 2 + 1 + 1 + 1 + 2 + 4 + 1 + 1 = 46$$

(c)

- AD
 BD
 CD
 DE
- 5. *EF*
- 6. *FG*
- 7. *FH*
- 8. *FI*
- 9. *FP*
- 10. FQ
- 11. *GH*
- 12. *GI*
- 13. *GM*
- 14.~GN
- 15. *GO*
- 16.~HI
- 17. HJ
- 18. *HK*
- 19.~HL
- $20. \ KL$
- 21. PQ
- 22. QR
- 23.~QS
- (d) Por definição, $\Delta(G)$ é o maior grau de um vértice de G. Logo, $\Delta(G) = 6$.
- (e) Por definição, $\delta(G)$ é o menor grau de um vértice de G. Logo, $\delta(G)=1$.
- (f) Vimos no item (a) que G tem 19 vértices. Logo, v(G) = 19. Já no item (c), vimos que G tem 23 arestas. Logo, e(G) = 23. Resta determinar $\alpha(G)$.

Por definição, $\alpha(G)$ é o número de elementos do maior conjunto de vértices de G que são independentes.

Recorde que um conjunto X de vértices de G é dito independente se para todo vértice $u, v \in X$, temos que a aresta uv não é aresta de G.

Argumentaremos que $\alpha(G) = 13$. Para isso, formaremos o maior conjunto de vértices independentes de G. É possível que exista mais de um conjunto com essa propriedade.

Denote por X o conjunto de vértices de G independentes que estamos construíndo. Temos que: $X = \{A, B, C, E, P, R, S, I, M, N, O, J, K\}$ é um conjunto de vértices de G independente. Além disso, |X| = 13.

Perceba que o conjunto X é maximal, pois não existe outro conjunto de vértices independentes $Y \subset G$ tal que $X \subset Y$.

O grafo G tem 19 vértices. Para qualquer conjunto de vértices independentes Y, temos que ou $D \in Y$, ou $D \notin Y$.

Situação 1: $D \in Y$

Se $D \in Y$, então $A, B, C, E \notin Y$. Assim, $|Y| \leq 15$ pois há 19 vértices e estamos desconsiderando 4 para formar Y. Podemos continuar com a investigação: ou $Q \in Y$, ou $Q \notin Y$.

Se $Q \in Y$, então $F, P, R, S \notin Y$. Assim, $|Y| \leq 11$. Desse modo, |Y| < |X|. Como queremos encontrar Y tal que |X| < |Y|, então devemos desconsiderar a hipótese de $Q \in Y$. Portanto, $Q \notin Y$. De maneira análoga, teremos que $G \notin Y$ e $H \notin Y$, pois caso contrário $|Y| \leq 9$ e $|Y| \leq 9$ respectivamente. Em ambos, |Y| < |X|.

Recapitulando: se $D \in Y$, para maximizar a quantidade de elementos de Y, teremos que ter $Q, G, H \notin Y$. Assim, $|Y| \leq 12$. Logo, não nunca teremos |X| < |Y|. Se quisermos encontrar um conjunto de vértices independentes maiores do que X, então não podemos ter $D \in Y$. Assim, ou $D \notin Y$, ou não existe tal Y.

Situação 2:
$$D \notin Y$$

Com isso, $|Y| \le 18$. Para garantir que não tenhamos $Y \subset X$, é necessário que Y possua pelo menos um elemento que não esteja em X. Caso $Y \subset X$ então $|Y| \le |X|$.

Assim, é preciso que $F \in Y$ ou $Q \in Y$ ou $G \in Y$ ou $H \in Y$ ou $L \in Y$.

Se $F \in Y$, então $E, P, Q, G, I, H \notin Y$. Logo, $|Y| \leq 12$. Desse modo, |Y| < |X|. Assim, não podemos ter $F \in Y$. Portanto, $F \notin Y$. Daí, $|Y| \leq 17$.

Se $Q \in Y$, então $P, R, S \notin Y$. Logo, $|Y| \le 14$. Note que $G \notin Y$ (caso contrário $|Y| \le 9$). Daí teremos que $|Y| \le 13 = |X|$. Assim, podemos desconsiderar o caso em que $Q \in Y$. Desse modo, $|Y| \le 16$, já que $D, F, G \notin Y$.

Se $G \in Y$, então $O, M, N, I \notin Y$. Assim, $|Y| \le 12$. Ou seja, |Y| < |X|. Portanto, não podemos ter $G \in Y$. Daí, $G \notin Y$ e $|Y| \le 15$.

Analogamente, se $H \in Y$, teremos que $|Y| \le 11$ (Por quê?). Assim, $H \notin Y$ e $|Y| \le 14$. Porém, só sobra o caso em que $L \in Y$, que implica que $K \notin Y$. Daí, $|Y| \le 13 = |X|$.

Logo, não nunca teremos |X| < |Y|. Então, concluí-se que não existe um conjunto de vértices independentes $Y \subset G$ tal que |X| < |Y|. Portanto, por definição,

$$\alpha(G) = |X| = 13$$

Com isso, temos que:

•
$$\frac{v(G)}{\Delta(G)+1} = \frac{19}{6+1} = \frac{19}{7} < \frac{21}{7} = 3$$

•
$$\alpha(G) = 13$$

•
$$\frac{e(G)}{\delta(G)} = \frac{23}{1} = 23$$

Assim,

$$\frac{v(G)}{\Delta(G)+1} \le \alpha(G) \le \frac{e(G)}{\delta(G)}$$

Pois,

$$\frac{19}{7} \le 13 \le 23$$

3.

Seja G um grafo. Daí, note que

$$\sum_{v \in G} d_G(v) = \sum_{v \in G}^{d_G(v) \text{ par}} d_G(v) + \sum_{v \in G}^{d_G(v) \text{ impar}} d_G(v)$$

Ou seja,

$$\sum_{v \in G}^{d_G(v) \text{ impar}} d_G(v) \ = \sum_{v \in G} d_G(v) \ - \sum_{v \in G}^{d_G(v) \text{ par}} d_G(v)$$

Mostramos na questão 1 que

$$\sum_{v \in G} d_G(v) = 2e(G)$$

Porém, temos que $\sum_{v \in G}^{d_G(v) \text{ par}} d_G(v)$ é par, pois cada parcela da soma é par, então o somatório também será par.

Assim, $\sum_{v \in G}^{d_G(v) \text{ impar}} d_G(v)$ é igual à diferença entre dois números pares. Portanto, é par.

Como cada parcela do somatório é um número ímpar, para que o somatório seja par, é necessário que haja uma quantidade par de parcelas, portanto, G possuirá um número par de vértices de grau ímpar.

4.

Por definição, cada vértice do grafo K_n forma uma aresta com os vértices restantes. Desse modo, a quantidade de arestas de K_n é numericamente igual à quantidade de pares distintos de vértices de K_n . Este último é igual a $C_2^n = \frac{n(n-1)}{2}$.

Portanto, existem

- $\frac{7 \times 6}{2} = 21 \text{ arestas em } K_7$
- $\frac{12 \times 11}{2} = 66$ arestas em K_{12}
- $\frac{n(n-1)}{2}$ arestas em K_n

5.

Vimos na questão anterior que o número de arestas de um grafo completo de n vértices (K_n) é igual a $\frac{n(n-1)}{2}$. Como o grafo completo mencionado tem 105 arestas, então queremos encontrar $x \in \mathbb{N}$ tal que $\frac{x(x-1)}{2} = 105$.

$$\frac{x(x-1)}{2} = 105 \Longleftrightarrow x(x-1) = 210 \Longleftrightarrow x^2 - x = 210 \Longleftrightarrow x^2 - x - 210 = 0 \Longleftrightarrow$$
$$\iff (x-15)(x+14) = 0 \Longleftrightarrow x = 15 \text{ ou } x = -14$$

Assim, o grafo completo K_x tem 15 vértices. Logo, $K_x = K_{15}$.