Guide to the versions of iFlow and list of modules

Yoeri M. Dijkstra

January 23, 2019

1 Version numbers

Version	Description	Publication or chapter
2.4	Starting version	• Dijkstra et al. (2017)
2.5	Restructuring of the sediment func-	• Brouwer et al. (2018)
	tionality. Adds erodibility and long	• Dijkstra (2019) - chapter 2
	time-scale integration	
2.6	Adds sediment-induced turbulence	• Dijkstra et al. (Submitted to Journal of Geo-
	damping and hindered settling	physical Research Oceans),
		• Dijkstra et al. (Submitted to Geophysical Re-
		search Letters)
		• Dijkstra (2019) - chapter 4, 5
2.7	Adds fluvial sediment source, water	• Dijkstra et al. (Submitted to Ocean Dynamics)
	and sediment sources and sinks	• Dijkstra (2019) - chapter 6

2 Modules in iFlow

Package general

i ackage general		
Module	Version	Description
Output	2.4	Save output variables for use within iFlow
ReadSingle	2.4	Load a single iFlow output file
ReadMultiple	2.4	Load multiple iFlow output files
Sensitivity	2.4	Intelligently loop the simulation over any number of values of any number of variables
CalibrationPlot	2.4	Evaluate the result of a sensitivity analysis using a cost function that compares model results to data and plot the result removed in v2.5
Calibration	2.5	Automatic calibration of M_2 water level to observations using a specified cost function. Only for one-parameter calibration.
OutputMat	2.5	Save output variables to a .mat file for use in Matlab
ReadIterative	2.5	Like ReadMultiple it reads multiple output iFlow output files, but only loads one file at a time, then allows iteration over other modules before reading the next file. Useful when memory is too small to read all files at once.
Iterator	2.6	Auxiliary module that takes two or more iterative modules and combines their loops into one loop. Prevents loops-in-loops.

Table 1: List of modules included in iFlow version 2.4.

Package numerical		
Module	Version	Description
RegularGrid	2.4	Create a 2DV standard grid and output grid.
HydroLead	2.4	Leading-order hydrodynamics using fully numerical methods
HydroFirst	2.4	First-order hydrodynamics using fully numerical methods
HydroHigher	2.4	Higher-order hydrodynamics up to any order using fully numerical methods
HigherOrderIterator	2.4	Auxiliary module for higher-order computations (i.e. above first order)
ReferenceLevel	2.4	Computation of a sub-tidal reference level based on the river-induced set-up
SedDynamicLead	2.4	Leading-order sediment dynamics using fully numerical methods
C ID · Tr ·	0.4	From v2.5 this functionality is in module SedimentCapacity.
SedDynamicFirst	$\frac{2.4}{2.4}$	First-order sediment dynamics using fully numerical methods From v2.5 this functionality is in module Sediment Capacity.
SedDynamicSecond	$\frac{2.4}{1}$	Second-order sediment dynamics restricted to river-induced
Scabynannesecona	2.4	resuspension of sediment, using fully numerical methods From v2.5
		this functionality is in module SedimentCapacity.
StaticAvailability	$\frac{2.4}{1}$	Sediment transport and trapping. Closure
		module for SedDynamicLead, SedDynamicFirst and
		SedDynamicSecond.Obsolete, from v2.5 replaced by Equilib-
		riumAvailability in package semi_analytical.
SalinityLead	2.4	Dynamic leading-order salinity computation using fully numerical methods
SalinityFirst	2.4	Dynamic first-order salinity computation using fully numerical methods
KEFittedLead	2.4	Set of modules for a vertically uniform eddy viscosity depending
KEFittedFirst		on the local velocity and depth, and for the roughness depending
KEFittedHigher		on the local velocity. The dependency between the eddy viscosity
KEFittedTruncated		and roughness is drawn from relations obtained from a $k-\epsilon$ model.
DiffusivityUndampe	d 2.5	Sets eddy diffusivity related to the eddy viscosity and a Prandtl-Schmidt number
SedimentCapacity	2.5	Leading-, first- and part of the second-order sediment dynamics,
		computing the sediment capacity using fully numerical methods
KEFittedMAW	2.6	Based on the KEFittedTruncated module. Adds damping functions suppressing the eddy viscosity, eddy diffusivity and bed shear stress as a result of vertical sediment stratification.
		SULODO GO GO TODATO OF VOLUTORI DOCUMENTO BULGUILIO GUI GUILIO GUI GUI GUILIO GUI

Table 2: List of modules included in iFlow version 2.4.

Package semi_analytical

Package semi_analytical		
Module	Version	Description
HydroLead	2.4	Leading-order hydrodynamics. Fully analytical in the vertical di-
		rection and numerical in the horizontal direction
HydroFirst	2.4	First-order hydrodynamics. Fully analytical in the vertical direc-
		tion and numerical in the horizontal direction
SedDynamic	$\frac{2.4}{2.4}$	Leading-, first- and second-order sediment dynamics and
		transport/trapping using analytical solutions, but with numerical
		integration. The second-order sediment dynamics is restricted to
		river-induced resuspension. From v2.5 this functionality is in mod-
		ule SedimentCapacity.
Sediment Capacity	2.5	Leading-, first- and second-order sediment dynamics, computing
		the sediment capacity using analytical solutions, but with numer-
		ical integration.
EquilibriumAvailabi	lity 2.5	Sediment transport/trapping, solving the bed-evolution equation
		for an equilibrium of the availability and erodibility of sediment
		(morphostatic). Solution is analytical in supply limited conditions
		and numerical otherwise.
DynamicAvailability	2.5	Sediment transport/trapping, integrating the bed-evolution equa-
		tion for the availability and erodibility of sediment over a long
		time scale with varying river discharge (morphostatic). Solution
		is numerical.
HinderedSettling_be	d = 2.6	Hindered settling based on the subtidal near-bed concentration.
SedimentSource	2.7	Prepares sediment source/sink terms on the upstream boundary
		and interior from the input.

Table 3: List of modules included in iFlow version 2.4.

Package analytical

i ackage analytical	r ackage analytical		
Module Ver	\sin	Description	
Geometry2DV	2.4	Create a two-dimensional geometry with arbitrary depth and	
		width	
SaltHyperbolicTangent	2.4	Diagnostic (i.e. prescribed) well-mixed salinity field according to	
		a tanh function	
SaltExponential	2.4	Diagnostic (i.e. prescribed) well-mixed salinity field according to	
		an exponential function	
TurbulenceUniform 2.4		Prescribed vertically uniform eddy viscosity and roughness	
TurbulenceParabolic 2.4		Prescribed eddy viscosity with a parabolic vertical profile and con-	
		stant roughness	
KEFittedLead	$\frac{2.4}{1}$	Set of modules for a vertically uniform eddy viscosity depending on	
KEFittedFirst		the local velocity and depth, and for the roughness depending on	
KEFittedHigher		the local velocity. The dependency between the eddy viscosity	
KEFittedTruncated		and roughness is drawn from relations obtained from a $k-\epsilon$	
		model. Moved to package numerical	

Table 4: List of modules included in iFlow version 2.4.

References

- Brouwer, R. L., Schramkowski, G. P., Dijkstra, Y. M., and Schuttelaars, H. M. (2018). Time evolution of estuarine turbidity maxima in well-mixed, tidally dominated estuaries: the role of availability- and erosion-limited conditions. *Journal of Physical Oceanography*, 48:1629–1650.
- Dijkstra, Y. M. (2019). Regime shifts in Sediment Concentrations in Tide-dominated Estuaries. PhD thesis, Delft University of Technology.
- Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and Schramkowski, G. P. (2017). The iFlow Modelling Framework v2.4. A modular idealized process-based model for flow and transport in estuaries. *Geoscientific Model Development*, 10:2691–2713.
- Dijkstra, Y. M., Schuttelaars, H. M., and Schramkowski, G. P. (Submitted to Geophysical Research Letters). A regime shift from low to high sediment concentrations in a tide-dominated estuary.
- Dijkstra, Y. M., Schuttelaars, H. M., and Schramkowski, G. P. (Submitted to Ocean Dynamics). Can the Scheldt River Estuary become hyperturbid? A model analysis of suspended sediment concentrations and transport in response to channel deepening.
- Dijkstra, Y. M., Schuttelaars, H. M., Schramkowski, G. P., and Brouwer, R. L. (Submitted to Journal of Geophysical Research: Oceans). Modelling the transition to high sediment concentrations as a response to channel deepening in the Ems River Estuary.