CS11313 - **Spring** 2023

Design & Analysis of Algorithms

Master Method

Ibrahim Albluwi

Three Familiar Examples

$$T(n) = \begin{cases} 4T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + n^2 & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

work at the **root** = n

number of **leaves** = $4^{\log_2 n} = n^2$

work at the **root** = n

number of **leaves** = $2^{\log_2 n} = n$

work at the **root** = n^2

number of **leaves** = $2^{\log_2 n} = n$

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i (\frac{n}{2^i}) = \Theta(n^2)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i}) = \Theta(n \log n)$$

$$T(n) = \sum_{i=0}^{\log_2 n} 4^i (\frac{n}{2^i}) = \Theta(n^2) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i}) = \Theta(n \log n) \qquad T(n) = \sum_{i=0}^{\log_2 n} 2^i (\frac{n}{2^i})^2 = \Theta(n^2)$$

Claim. If # of leaves > work at the root: $T(n) = \Theta(\text{number leaves})$

If # of leaves \equiv work at the root: $T(n) = \Theta(\text{work at the root} \times \text{number of levels})$ all levels are the same

If # of leaves \prec work at the root: $T(n) = \Theta(\text{work at the root})$

tree is leaf dominated

tree is root dominated

Another Three Familiar Examples

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + c & \text{if } n > 1\\ c & \text{if } n \le 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(\frac{n}{2}) + c & \text{if } n > 1\\ c & \text{if } n \le 1 \end{cases} \quad T(n) = \begin{cases} 3T(\frac{n}{9}) + \sqrt{n} & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases} \quad T(n) = \begin{cases} T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

$$T(n) = \begin{cases} T(\frac{n}{2}) + n & \text{if } n > 1\\ 1 & \text{if } n \le 1 \end{cases}$$

work at the **root** = *c*

work at the **root** = \sqrt{n}

work at the **root** = n

number of **leaves** = 1

$$T(n) = c \times \sum_{i=0}^{\log_2 n} 2^i = \Theta(n)$$

$$T(n) = c \times \sum_{i=0}^{\log_2 n} 2^i = \Theta(n) \qquad T(n) = \sum_{i=0}^{\log_9 n} 3^i \sqrt{\frac{n}{9^i}} = \Theta(\sqrt{n} \log n) \qquad T(n) = \sum_{i=0}^{\log_2 n} \frac{n}{2^i} = \Theta(n)$$

$$T(n) = \sum_{i=0}^{\log_2 n} \frac{n}{2^i} = \Theta(n)$$

Claim. If # of leaves > work at the root: $T(n) = \Theta(\text{number leaves})$

$$T(n) = \Theta(\text{number leaves})$$

tree is leaf dominated

If # of leaves
$$\equiv$$
 work at the root: $T(n) = \Theta(\text{work at the root} \times \text{number of levels})$ all levels are the same

If # of leaves \prec work at the root: $T(n) = \Theta(\text{work at the root})$

$$T(n) = \Theta(\text{work at the root})$$

tree is root dominated

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

there is at least one subproblems whole subproblem! subproblems

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Informally. If the work at the root is *polynomially less* than the number of leaves:

$$T(n) = \Theta(\text{number of leaves})$$

Example.
$$T(n) = 4T(\frac{n}{2}) + n \log n$$
 Example. $T(n) = 2T(\frac{n}{2}) + n \log n$ $f(n) = n \log n$ $f(n) = n \log n$ $f(n) = n \log n$ $n \log n = O(n^{\log_2 4 - \epsilon})$ $n \log n \neq O(n^{\log_2 2 - \epsilon})$ $f(n) = O(n^{1 \log_2 2 - \epsilon})$ Case 1 does not apply!

$$f(n)$$
 = work at the root | Number of leaves = $a^{\log_b n} = n^{\log_b a}$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$ (for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \cdot \log n)$

Informally. If the work at the root is *asymptotically the same* as the number of leaves:

$$T(n) = \Theta(\text{work at the root} \times \text{number of levels})$$

Example.
$$T(n) = 2T(\frac{n}{2}) + n$$
 Example. $T(n) = 2T(\frac{n}{2}) + n \log n$ $f(n) = n = \Theta(n^{\log_2 2})$ $f(n) = \Theta(n \log n)$ Case 2 does not apply

$$f(n)$$
 = work at the root | Number of leaves = $a^{\log_b n} = n^{\log_b a}$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$

(for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \cdot \log n)$

Case 3. If
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 then $T(n) = \Theta(f(n))$

(for some constant $\epsilon > 0$)

Informally. If work at the root is *polynomially greater* than the # of leaves: $T(n) = \Theta(\text{work at the root})$

Example.
$$T(n) = 2T(\frac{n}{2}) + n^2$$
 Example. $T(n) = 2T(\frac{n}{2}) + n \log n$ $f(n) = n^2 = \Omega(n^{\log_2 2 + \epsilon}) = \Omega(n^{1 + \epsilon})$ $f(n) = n \log n \neq \Omega(n^{1 + \epsilon})$ Case 3 does not apply

f(n) = work at the root | Number of leaves = $a^{\log_b n} = n^{\log_b a}$

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1. If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$

(for some constant $\epsilon > 0$)

Case 2. If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(f(n) \cdot \log n)$

Case 3. If
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 then $T(n) = \Theta(f(n))$ (for some constant $\epsilon > 0$)

provided that there are constants c < 1 and n_0 , ———————————Regularity Condition: such that $af(\frac{n}{h}) \leq cf(n)$ for all $n \geq n_0$.

work at children ≤ work at the parent

Case 1 (Examples)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1 (Tree is leaf-dominated)

If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then
$$T(n) = \Theta(n^{\log_b a})$$

(for some constant $\epsilon > 0$)

Recurrence

f(n)

of leaves

Case 1 condition

Result

$$T(n) = 4T(\frac{n}{2}) + n$$

$$T(n) = 2T(\frac{n}{2}) + c$$

$$T(n) = 3T(\frac{n}{2}) + \sqrt{n}$$

Case 1 (Examples)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 1 (Tree is leaf-dominated)

If
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then
$$T(n) = \Theta(n^{\log_b a})$$

(for some constant $\epsilon > 0$)

Recurrence	f(n)	# of leaves	Case 1 condition	Result
$T(n) = 4T(\frac{n}{2}) + n$	n	$n^{\log_2 4} = n^2$	$n = O(n^{2-\epsilon})$ If we pick $\epsilon \le 1$	$T(n) = \Theta(n^2)$
$T(n) = 2T(\frac{n}{2}) + c$	С	$n^{\log_2 2} = n^1$	$c = O(n^{1-\epsilon})$ If we pick $\epsilon \le 1$	$T(n) = \Theta(n)$
$T(n) = 3T(\frac{n}{2}) + \sqrt{n}$	\sqrt{n}	$n^{\log_2 3} = n^{1.585}$	$n^{0.5} = O(n^{1.585 - \epsilon})$ If we pick $\epsilon \le 1.085$	$T(n) = \Theta(n^{1.585})$

Case 3 (Examples)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 3 (Tree is root-dominated)

If
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 then
$$T(n) = \Theta(f(n))$$

(for some constant $\epsilon > 0$)

Regularity Condition: $af(\frac{n}{b}) \le cf(n)$ for some c < 1

Recurrence

of leaves

Case 3 condition

 $af(\frac{n}{b}) \le cf(n)$

Result

$$T(n) = 2T(\frac{n}{2}) + n^2$$

$$T(n) = T(\frac{n}{2}) + n$$

$$T(n) = T(\frac{n}{2}) + \log_2 n$$

Case 3 (Examples)

Given a recurrence equation of the following form:

$$T(n) = \begin{cases} aT(\frac{n}{b}) + f(n) & \text{if } n > 1\\ \Theta(1) & \text{if } n = 1 \end{cases}$$

Where *n* is a positive integer, $a \ge 1$ and b > 1, then:

Case 3 (Tree is root-dominated)

If
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 then
$$T(n) = \Theta(f(n))$$

(for some constant $\epsilon > 0$)

Regularity Condition: $af(\frac{n}{h}) \le cf(n)$ for some c < 1

Recurrence	# of leaves	Case 3 condition	$af(\frac{n}{b}) \le cf(n)$	Result
$T(n) = 2T(\frac{n}{2}) + n^2$	$n^{\log_2 2} = n^1$	$n^2 = \Omega(n^{1+\epsilon})$ If we pick $\epsilon \le 1$	$2 \cdot (\frac{n}{2})^2 \le c \cdot n^2$ $\frac{1}{2}n^2 \le c \cdot n^2$ $pick 0.5 < c < 1$	$T(n) = \Theta(n^2)$
$T(n) = T(\frac{n}{2}) + n$	1	$n = \Omega(n^{0+\epsilon})$ If we pick $\epsilon \le 1$	$1 \cdot (\frac{n}{2}) \le c \cdot n$ $\frac{1}{2}n \le c \cdot n$ $pick \ 0.5 \le c < 1$	$T(n) = \Theta(n)$

$$T(n) = T(\frac{n}{2}) + \log_2 n \qquad n^{\log_2 1} = n^0 \qquad \log_2 n \neq \Omega(n^{0+\epsilon})$$

$$n^{\log_2 1} = n^0$$

$$\log_2 n \neq \Omega(n^{0+\epsilon})$$

Exercises

1.
$$T(n) = 3T(\frac{n}{2}) + n\sqrt{n}$$

2.
$$T(n) = 2T(\frac{n}{2}) + \log_2 n$$

3.
$$T(n) = T(\frac{n}{2}) + c$$

4.
$$T(n) = T(\frac{n}{2}) + n \log_2 n$$

Exercises

1.
$$T(n) = 3T(\frac{n}{2}) + n\sqrt{n}$$
 $f(n) = n\sqrt{n}$, $a = 3, b = 2,$ # of leaves = $n^{\log_2 3} = n^{1.585}$ $n^{1.5} = O(n^{1.585 - \epsilon})$ if we pick $\epsilon \le 0.085$, Therefore **Case 1** applies: $T(n) = \Theta(n^{1.585})$

2.
$$T(n) = 2T(\frac{n}{2}) + \log_2 n$$
 $f(n) = \log_2 n$, $a = 2, b = 2,$ # of leaves = $n^{\log_2 2} = n^1$ $\log_2 n = O(n^{1-\epsilon})$ if we pick $\epsilon < 1$, Therefore **Case 1** applies: $T(n) = \Theta(n)$

3.
$$T(n) = T(\frac{n}{2}) + c$$
 $f(n) = c$, $a = 1$, $b = 2$, # of leaves = $n^{\log_2 1} = n^0 = 1$ $f(n) = \Theta(n^{\log_b a})$. Therefore, Case 2 applies: $T(n) = \Theta(c \times \log n)$

4. $T(n) = T(\frac{n}{2}) + n \log_2 n$ $f(n) = n \log_2 n$, a = 1, b = 2, # of leaves = $n^{\log_2 1} = n^0 = 1$ $n \log_2 n = \Omega(n^{0+\epsilon})$, Case 3 might apply. Check the regularity condition: $af(\frac{n}{b}) \le cf(n)$. $1 \cdot \frac{n}{2} \log_2 \frac{n}{2} \le c \cdot n \log_2 n$ is true. Therefore, Case 3 applies: $T(n) = \Theta(n \log n)$

Examples for Cases Where the Master Method does not Apply

1.
$$T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + \Theta(n)$$

Subproblems are not of an equal size.

2.
$$T(n) = 2T(n-1) + \Theta(n)$$

Subproblems decrease linearly in size.

3.
$$T(n) = \frac{1}{2}T(\frac{n}{2}) + \Theta(n)$$

Number of subproblems is less than 1.

4.
$$T(n) = nT(\frac{n}{2}) + \Theta(n)$$

Number of subproblems is not constant.

5.
$$T(n) = 2T(\frac{n}{2}) - n$$

f(n) is not positive

6.
$$T(n) = 2T(\frac{n}{2}) + \Theta(n \log n)$$

No polynomial separation between f(n) and the number of leaves.

7.
$$T(n) = T(\frac{n}{2}) + n(2 \cos n)$$

Regularity condition does not hold. There is no constant c for which $\frac{n}{2}(2\cos(\frac{n}{2})) \le cn(2\cos n)$ is always true for large n.