Análise e Desenvolvimento de Software

2022/2023 - Máquina de Estados Instituto Politécnico do Cávado e do Ave

Pedro Emanuel Cardoso de Sousa pesousa@ipca.pt

Propósito

- Origem e tipos
- Modelar os comportamentos que alteram os estados e os eventos que os despoletam
- Compreender a importância da dependência de estados para os comportamentos
- Analisar e modelar o estado das principais classes

Origem e tipos

- Diagramas de máquinas de estado são baseados na notação Statechart de David Harels
- Existe diferença entre UML e David Harels
- Dois tipos de máquina de estados:
 - Máquina de estados por comportamento modela o comportamento que passa por vários estados
 - Máquina de estados por protocolo modela a utilização de um protocolo

Comportamento dependente de estado

- O comportamento de algumas classes está dependente do estado da mesma
- As classes respondem com diferentes mensagens, quando estão em diferentes estados
- Existem objetos em que o seu estado muda durante o seu período de vida, seja ele curto ou longo
- Exemplo:
 - Conta bancária;
 - Movimento de levantar dinheiro;
 - Responde de forma diferente se o saldo está positivo ou negativo;

Modelar comportamentos

- Máquina de estados por comportamentos
- Representa o comportamento, deste caso de uso, em termos de comportamento

Modelar as alterações de estados

- Máquina de estados por protocolo
- Modela os passos para a mudança de estados de uma classe
- Disponibiliza um protocolo para que os utilizadores consumam os serviços da classe
- Programa que escreve informação para a base de dados:
 - Precisa de saber que:
 - ► Tem de ligar com a base de dados
 - ► Abrir a base de dados
 - ▶ Só depois pode escrever informações

Notação base

- Máquina de estados por comportamento
- Estados
- Transições
- Pseudoestado inicial
- Estado final

Máquina de estados por comportamento

Estados

- A situação em que uma determinada condição mantém o valor
- Representa-se por um retângulo de cantos redondos
- O nome fica na parte superior ou por fora
- O nome inicia-se com letra maiúscula

Transições

- Representa a mudança de estado
- ▶ É representado por uma seta entre estados, com um etiqueta (opcional)
- Ativada por um ou mais eventos
- Pode ter comportamentos associados

[<trigger> [',' <trigger>]* ['[' <guard>']'] ['/' <behavior-expression>]]

select device [device.Class==OnOffDevice] / display device data

Transições

- A ativação de eventos pode ser:
 - ▶ Call event → uma operação;
 - ▶ Signal event → uma sinalização;
 - ▶ Any receive event → "all";
 - ► Change event → quando uma condição boleana muda;
 - ► Time event:
 - ► Relative time event → depois de passar determinado tempo;
 - ▶ Absolute time event → num determinado tempo certo;

Inicio e fim

- Pseudoestado inicial
 - Apresentado por um circulo preto
- Estado final:
 - ▶ Um circulo com outro circulo preto no centro

Comportamentos em estados

Comportamentos na entrada

- Comportamentos na saída
- Comportamentos de execução
- Ativação (gatilhos)

Comportamentos na saída

- Comportamentos na entrada de um estado
- Define-se por "entry / " seguido pelo nome do comportamento

Comportamentos de execução

- Comportamento executado quando estamos com o estado ativo
- Define-se por "do / " seguido pelo nome do comportamento

OnOffDeviceInfo

entry / lock device exit / release device do / poll device status

Ativação (gatilhos)

- Este tipo de ativação não muda o estado, mas modela o comportamento
- Define-se pela ação de ativação mais "/ " seguido pelo nome do comportamento

OnOffDeviceInfo

entry / display device info entry / lock device exit / release device do / poll device status change status / display device info

Pseudoestados

- Escolha do pseudoestado
- Junção do pseudoestado
- Histórico do pseudoestado

Escolha dos pseudoestados

- Permite a divisão de uma transição, segundo os critério definidos
- Os critérios são avaliados de forma dinâmica quando o pseudoestado é alcançado
- ▶ É representado por um diamante

Junção de pseudoestados

- Permite que as transições sejam fundidas e divididas, segundo os critério definidos
- Os critérios são avaliados de forma estática antes da transição ser alcançada
- É representado por um circulo preto

Histórico de pseudoestados

- É usado para reentrar numa máquina de estados no mesmo estado antes de sair
- Representado por um H com um circulo
- H* representa um histórico profundo e múltiplos níveis

Histórico de pseudoestados

- É usado para reentrar numa máquina de estados no mesmo estado antes de sair
- Representado por um H com um circulo
- H* representa um histórico profundo e múltiplos níveis

Máquina de estados por protocolo

- Protocolo
- Notação

Máquina de estados por protocolo

- Protocolo
- Notação

Protocolo

- A sequência correta de uma operação para comunicar com uma instância de uma classe
- Network connections and filestreams
- Os tempos de vida longos de objetos

Notação

- É similar a uma máquina de estados por comportamento
- Por definição deve dizer {protocol} junto ao nome da máquina de estado
- Não existe "entry, exit, do, ..." nas ações para os estados

