

Channel Compensation in the Generalised VTS Approach to Robust ASR

Erfan Loweimi Jon Barker Thomas Hain

UKSpeech 2017

Speech and Hearing Research Group (SPandH)

Outline

VTS for Robust ASR

Generalised VTS

Channel Noise Estimation

Experimental Results

Vector Taylor Series (VTS) for Robust ASR

Model-based Noise Compensation

Model-based Noise Compensation

Environment Model

$$Y[k] = X[k] |H(k)|^2 + W[k]$$

$$\tilde{Y} = \tilde{X} + \underbrace{\tilde{H} + log\{1 + e^{\tilde{W} - \tilde{X} - \tilde{H}}\}}_{\tilde{G}(\tilde{X}, \tilde{W}, \tilde{H})}$$

$$\tilde{Z} = log Z$$

$$\tilde{Y} = \tilde{X} + \tilde{G}(\tilde{X}, \tilde{W}, \tilde{H})$$

Noise Compensation

$$\hat{X}_{MMSE} = \mathbb{E}[\tilde{X}|\tilde{Y}] = \int \tilde{X} p(\tilde{X}|\tilde{Y}) d\tilde{X}$$

Noise Compensation

$$\hat{X}_{MMSE} = \mathbb{E}[\tilde{X}|\tilde{Y}] = \int \tilde{X} p(\tilde{X}|\tilde{Y}) d\tilde{X}$$

$$\approx \tilde{Y} - \sum_{m=1}^{M} p(m|\tilde{Y}) \tilde{G}(\mu_m^{\tilde{X}}, \mu^{\tilde{W}}, \mu^{\tilde{H}})$$

Assumptions ...

$$\hat{X}_{MMSE} = \mathbb{E}[\tilde{X}|\tilde{Y}] = \int \tilde{X} p(\tilde{X}|\tilde{Y}) d\tilde{X}$$

$$\approx \tilde{Y} - \sum_{m=1}^{M} p(m|\tilde{Y}) \tilde{G}(\mu_m^{\tilde{X}}, \mu^{\tilde{W}}, \mu^{\tilde{H}})$$

$$-\tilde{Y} \sim \sum_{m=1}^{M} p_{\tilde{Y}}(m) \mathcal{N}(\tilde{Y}; \mu_m^{\tilde{Y}}, \Sigma_m^{\tilde{Y}})$$

- $-\tilde{Y}$ and \tilde{X} are jointly Gaussian within each component (Y?)
- $-\tilde{G}$ is evaluated at the mean of the Gaussians (Y?)

Noise Compensation

$$\hat{X}_{MMSE} = \mathbb{E}[\tilde{X}|\tilde{Y}] = \int \tilde{X} p(\tilde{X}|\tilde{Y}) d\tilde{X}$$

$$\approx \tilde{Y} - \sum_{m=1}^{M} p(m|\tilde{Y}) \tilde{G}(\mu_m^{\tilde{X}}, \mu^{\tilde{W}}, \mu^{\tilde{H}})$$

GMM of
$$\tilde{Y}: \theta^{\tilde{Y}} = \{p_m^{\tilde{Y}}, \mu_m^{\tilde{Y}}, \Sigma_m^{\tilde{Y}}\}$$
 ???

Non-linearity Problem

$$\tilde{Y} = \underbrace{\tilde{X} + \tilde{G}(\tilde{X}, \tilde{W}, \tilde{H})}_{f(\tilde{X}, \tilde{W}, \tilde{H})}$$

Non-linear

GMM of
$$\tilde{Y}: \theta^{\tilde{Y}} = \{p_m^{\tilde{Y}}, \mu_m^{\tilde{Y}}, \Sigma_m^{\tilde{Y}}\}$$
 ???

Taylor Series

$$\tilde{y} = f(\tilde{x}, \tilde{w}, \tilde{h})$$

Vector Taylor Series

$$\tilde{y} \approx \tilde{y}(\tilde{x}_0, \tilde{w}_0, \tilde{h}_0) + J^{\tilde{x}}(\tilde{x} - \tilde{x}_0) + J^{\tilde{w}}(\tilde{w} - \tilde{w}_0) + J^{\tilde{h}}(\tilde{h} - \tilde{h}_0)$$

$$J^{\tilde{z}}[i,j] = \frac{\partial \tilde{y}_i}{\partial \tilde{z}_j} \bigg|_{(\tilde{\mathbf{w}}_{\mathbf{0}}, \tilde{\mathbf{x}}_{\mathbf{0}}, \tilde{\mathbf{h}}_{\mathbf{0}})} \forall \quad z \in \{\tilde{x}, \tilde{w}, \tilde{h}\}$$

Requirements:

- Point(s)
- Jacobians $(J^{\tilde{z}})$

VTS for ASR -- Points

$$\tilde{y} \approx \tilde{y}(\tilde{x}_0, \tilde{w}_0, \tilde{h}_0) + J^{\tilde{x}}(\tilde{x} - \tilde{x}_0) + J^{\tilde{w}}(\tilde{w} - \tilde{w}_0) + J^{\tilde{h}}(\tilde{h} - \tilde{h}_0)$$

$$J^{\tilde{z}}[i,j] = \frac{\partial \tilde{y}_i}{\partial \tilde{z}_j} \bigg|_{(\mu^{\tilde{\mathbf{w}}}, \mu^{\tilde{\mathbf{x}}}_{\mathbf{m}}, \mu^{\tilde{\mathbf{h}}})} \forall \quad z \in \{\tilde{x}, \tilde{w}, \tilde{h}\}$$

Requirements:

- Point(s) → Means of the Gaussians
- Jacobians $(J^{\tilde{z}})$

VTS for ASR -- Jacobians

$$\tilde{y} \approx \tilde{y}(\tilde{x}_0, \tilde{w}_0, \tilde{h}_0) + J^{\tilde{x}}(\tilde{x} - \tilde{x}_0) + J^{\tilde{w}}(\tilde{w} - \tilde{w}_0) + J^{\tilde{h}}(\tilde{h} - \tilde{h}_0)$$

$$J_m^{\tilde{x}} = C \ diag\{\frac{1}{1 + V_m}\} \ C^{-1}$$

$$J_m^{\tilde{h}} = J_m^{\tilde{x}} = C \ diag\{\frac{1}{1 + V_m}\} \ C^{-1}$$

$$J_m^{\tilde{w}} = C \ C^{-1} - J_m^{\tilde{x}} = C \ diag\{\frac{V_m}{1 + V_m}\} \ C^{-1}$$

$$V_m = exp(C^{-1}(\mu^{\tilde{w}} - \mu_m^{\tilde{x}} - \mu^{\tilde{h}}))$$

VTS for ASR ...

$$\begin{cases} p_m^{\tilde{y}} &\approx p_m^{\tilde{x}} \\ \mu_m^{\tilde{y}} &\approx \mu_m^{\tilde{x}} + \mu^{\tilde{h}} + C \log(1 + V_m) \\ \Sigma_m^{\tilde{y}} &\approx J_m^{\tilde{x}} \Sigma_m^{\tilde{x}} J_m^{\tilde{x}^T} + J_m^{\tilde{x}} \Sigma^{\tilde{h}} J_m^{\tilde{h}^T} + J_m^{\tilde{w}} \Sigma^{\tilde{w}} J_m^{\tilde{w}^T} \end{cases}$$

$$\hat{x}_{MMSE} \approx \tilde{y} - \sum_{m=1}^{M} p(m|\tilde{y}) \ \tilde{g}(\mu^{\tilde{w}}, \mu_{m}^{\tilde{x}}, \mu^{\tilde{h}})$$

Generalised VTS

Generalised Non-linearity (GN)

$$\begin{cases} GenLog(x;\alpha) = \frac{1}{\alpha}(x^{\alpha} - 1), & x > 0 \quad \alpha \neq 0 \\ \lim_{\alpha \to 0} GenLog(x;\alpha) = log(x) \end{cases}$$

Generalised Non-linearity (GN)

- Statistics
 - Box-Cox Transformation (1964)
- Speech Processing
 - **Gen**eralised **Log**arithmic Function (1984)

$$\begin{cases} GenLog(x;\alpha) = \frac{1}{\alpha}(x^{\alpha} - 1), & x > 0 \quad \alpha \neq 0 \\ \lim_{\alpha \to 0} GenLog(x;\alpha) = log(x) \end{cases}$$

Advantages of GenLog

$$\begin{cases} GenLog(x;\alpha) = \frac{1}{\alpha}(x^{\alpha} - 1), & x > 0 \quad \alpha \neq 0 \\ \lim_{\alpha \to 0} GenLog(x;\alpha) = log(x) \end{cases}$$

[PDF] An Analysis of Transformations G. E. P. Box; D. R. Cox Journal of the...

https://pdfs.semanticscholar.org/6e82/0cf11712b9041bb625634612a535476f0960.pdf ▼

by GEP Box - 1964 - Cited by 12876 - Related articles

29 Sep 2007 - **Box** AND **COX-An Analysis of Transformations**. [No. 2,. Each of the considerations (i)-(iii) can, and has been, used separately to select a.

Advantages of GenLog

$$\begin{cases} GenLog(x;\alpha) = \frac{1}{\alpha}(x^{\alpha} - 1), & x > 0 \quad \alpha \neq 0 \\ \lim_{\alpha \to 0} GenLog(x;\alpha) = log(x) \end{cases}$$

- * Can potentially improve the ...
 - Linearity
 - Homoscedasticity
 - Normality

[PDF] An Analysis of Transformations G. E. P. Box; D. R. Cox Journal of the...

https://pdfs.semanticscholar.org/6e82/0cf11712b9041bb625634612a535476f0960.pdf ▼

by GEP Box - 1964 - Cited by 12876 - Related articles

29 Sep 2007 - **Box** AND **COX-An Analysis of Transformations**. [No. 2,. Each of the considerations (i)-(iii) can, and has been, used separately to select a.

GenLog can improve the SNR!

GenLog can improve the SNR ...

$$SNR_1 = \frac{S^{\alpha_1}}{N^{\alpha_1}}$$

$$SNR_2 = \frac{S^{\alpha_2}}{N^{\alpha_2}}$$

GenLog can improve the SNR ...

$$SNR_1 = \frac{S^{\alpha_1}}{N^{\alpha_1}}$$

$$SNR_2 = \frac{S^{\alpha_2}}{N^{\alpha_2}} = \frac{S^{\alpha_1} + \Delta S_{1\to 2}}{N^{\alpha_1} + \Delta N_{1\to 2}}$$

$$\alpha_1 < \alpha_2 \Rightarrow SNR_1 < SNR_2$$

- NBins: 50
- 330 Utterances, WSJ
- #frames > 241 k

Statistical Effect of GenLog

$$\begin{cases} GenLog(x;\alpha) = \frac{1}{\alpha}(x^{\alpha} - 1), & x > 0 \quad \alpha \neq 0 \\ \lim_{\alpha \to 0} GenLog(x;\alpha) = log(x) \end{cases}$$

Statistical Distribution

SNR Boost

$$\begin{cases} GenLog(x;\alpha) = \frac{1}{\alpha}(x^{\alpha} - 1), & x > 0 \quad \alpha \neq 0 \\ \lim_{\alpha \to 0} GenLog(x;\alpha) = log(x) \end{cases}$$

 $\uparrow \alpha$

Statistical Distribution

SNR Boost

$$\begin{cases} GenLog(x;\alpha) = \frac{1}{\alpha}(x^{\alpha} - 1), & x > 0 \quad \alpha \neq 0 \\ \lim_{\alpha \to 0} GenLog(x;\alpha) = log(x) \end{cases}$$

 $\uparrow \alpha$

Statistical Distribution

SNR Boost

$$0.05 < \alpha < 0.1$$

Environment Model

$$Y[k] = X[k] |H(k)|^2 + W[k] \qquad \mathbf{X[k]} \longrightarrow$$

$$\breve{Y} = \breve{X} \ \breve{H} \ (1 + (\frac{\breve{W}}{\breve{X}\breve{H}})^{\frac{1}{\alpha}})^{\alpha}$$

$$\breve{G}(\breve{X}, \breve{W}, \breve{H})$$

$$\breve{Z} = Z^{\alpha}$$

$$\breve{Y} = \breve{X} \breve{G}(\breve{X}, \breve{W}, \breve{H})$$

Generalised VTS (gVTS)

$$reve{X}_{MMSE} = \mathbb{E}[reve{X}|reve{Y}] = \int reve{X}p(reve{X}|reve{Y})dreve{X}$$

$$pprox reve{Y}\sum_{m=1}^{M}p(m|reve{Y})\;rac{1}{reve{G}(\mu_{m}^{reve{X}},\mu^{reve{W}},\mu^{reve{H}})}$$

qVTS → Equations

$$Y[k] = X[k] |H(k)|^{2} + W[k]$$

$$\begin{cases} GenLog(z;\alpha) = \frac{1}{\alpha}(z^{\alpha} - 1), & z > 0 \quad \alpha \neq 0 \\ \lim_{\alpha \to 0} GenLog(z;\alpha) = \log(z), \end{cases}$$

$$\begin{cases}
\breve{X} \sim \sum_{m=1}^{M} p_{\breve{x}}(m) \, \mathcal{N}(\mu_{m}^{\breve{X}}, \Sigma_{m}^{\breve{X}}) \\
\breve{W} \sim \mathcal{N}(\mu^{\breve{W}}, \Sigma^{\breve{W}}), \\
\breve{H} \sim \mathcal{N}(\mu^{\breve{H}}, \Sigma^{\breve{H}}),
\end{cases} \qquad \breve{V}_{m} = (\frac{\mu^{\breve{W}}}{\mu_{m}^{\breve{X}}} \mu^{\breve{H}})^{\frac{1}{\alpha}} \qquad \mathcal{E}\{\frac{1}{\breve{X}_{u}}\} \geq \frac{1}{\mathcal{E}\{\breve{X}_{u}\}}$$

$$\breve{X}_{MMSE} = \mathcal{E}[\breve{X}|\breve{Y}] = \int \breve{X} \, p(\breve{X}|\breve{Y}) d\breve{X}$$

$$p(m|\breve{Y}) = \frac{p_{\breve{y}}(m) \, \mathcal{N}(\mu_m^{\breve{Y}}, \Sigma_m^{\breve{Y}})}{\sum_{m'=1}^{M} p_{\breve{y}}(m') \, \mathcal{N}(\mu_{m'}^{\breve{Y}}, \Sigma_{m'}^{\breve{Y}})}$$

$$old Y pprox reve Y(reve X_0,reve W_0,reve H_0) \ + \ J^{reve W}(reve W - reve W_0) \ + \ J^{reve H}(reve H - reve H_0)$$

$$J_{gVTS}^{\lambda} = \frac{\partial \breve{Y}}{\partial \lambda} = \frac{\partial \breve{Y}}{\partial Y} \frac{\partial Y}{\partial \lambda} = 2\alpha \frac{\mu_m^{\breve{X}} \mu^{\breve{H}} \sqrt{V_m}}{(1 + V_m)^{1 - \alpha}}$$

$$\alpha \neq 0 \qquad \qquad \Sigma_m^{\check{Y}} \leftarrow \Sigma_m^{\check{Y}} + J_{VTS}^{\lambda} \ \Sigma^{\lambda} \ J_{VTS}^{\lambda}^{T}$$

$$J_{m}^{\check{X}} = \frac{\partial \check{Y}}{\partial \check{X}} \bigg|_{(\mu \check{X}, \mu \check{H}, \mu \check{W})} = diag\{\mu^{\check{H}} (1 + \check{V}_{m})^{\alpha - 1}\}$$

$$J_{m}^{\check{H}} = \frac{\partial \check{Y}}{\partial \check{H}} \bigg|_{(\mu \check{X}, \mu \check{H}, \mu \check{W})} = diag\{\mu_{m}^{\check{X}} (1 + \check{V}_{m})^{\alpha - 1}\}$$

$$J_{m}^{\breve{W}} = \frac{\partial \breve{Y}}{\partial \breve{W}} \bigg|_{(\mu_{m}^{\breve{X}}, \mu^{\breve{H}}, \mu^{\breve{W}})} = diag\{\mu^{\breve{H}} \left(\frac{1 + \breve{V}_{m}}{\breve{V}_{m}}\right)^{\alpha - 1}\}$$

$$\mathcal{E}_m = (\frac{\mu^{\check{W}}}{\mu^{\check{X}} \mu^{\check{H}}})^{\frac{1}{\alpha}}$$
 $\mathcal{E}\{\frac{1}{\check{X}_u}\} \ge \frac{1}{\mathcal{E}\{\check{X}_u\}}$

$$\mu_m^{\check{Y}} pprox \mu_m^{\check{X}} \ \mu^{\check{H}} (1 + (\frac{\mu^{\check{W}}}{\mu_m^{\check{X}} \mu^{\check{H}}})^{\frac{1}{\alpha}})^{\check{\alpha}})$$

$$\mu_m \sim \mu_m \, \mu \quad (1 + (\frac{1}{\mu_m^{\check{X}} \mu^{\check{H}}})^{-1})$$

$$\check{H}_t = \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathcal{E}\{\breve{H}\} = \mathcal{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

$$\mu^{\check{H}} = \mathcal{E}\{\frac{\check{Y}_u}{\check{X}_u}\} = \mathcal{E}\{\check{Y}_u\} \ \mathcal{E}\{\frac{1}{\check{\mathbf{Y}}}\}$$

$$\mathcal{E}\{\breve{Y}_u\} pprox rac{1}{T} \sum_{t=1}^{T} \breve{Y}_t$$

$$\begin{pmatrix} \tilde{X} \\ \tilde{Y} \end{pmatrix}_m \sim \mathcal{N} \left[\begin{pmatrix} \mu_m^{\tilde{X}} \\ \mu_m^{\tilde{Y}} \end{pmatrix}, \begin{pmatrix} \Sigma_{\tilde{X}\tilde{X}} & \Sigma_{\tilde{X}\tilde{Y}} \\ \Sigma_{\tilde{Y}\tilde{X}} & \Sigma_{\tilde{Y}\tilde{Y}} \end{pmatrix} \right]$$

$$\tilde{V}_{m} = \left(\frac{\mu^{\tilde{W}}}{\mu_{m}^{\tilde{X}}}\right)^{\frac{1}{\alpha}} \qquad \mathcal{E}\left\{\frac{1}{\tilde{X}_{u}}\right\} \geq \frac{1}{\mathcal{E}\left\{\tilde{X}_{u}\right\}} \\
\mu_{m}^{\tilde{Y}} \approx \mu_{m}^{\tilde{X}} \mu^{\tilde{H}} \left(1 + \left(\frac{\mu^{\tilde{W}}}{\mu_{m}^{\tilde{X}}}\mu^{\tilde{H}}\right)^{\frac{1}{\alpha}}\right)^{\alpha}$$

$$\tilde{J}^{\tilde{z}} = \frac{\partial \tilde{\mathbf{y}}}{\partial \tilde{\mathbf{z}}} = \frac{\partial \mathbf{C}\tilde{\mathbf{Y}}}{\partial \mathbf{C}\tilde{\mathbf{Z}}} = C \frac{\partial \tilde{\mathbf{Y}}}{\partial \tilde{\mathbf{Z}}} C^{-1} \Rightarrow \tilde{J}^{\tilde{z}} = C \tilde{J}^{\tilde{Z}} C^{-1}$$

$$\tilde{J}^{\tilde{z}} = \frac{\partial \tilde{\mathbf{y}}}{\partial \tilde{\mathbf{z}}} = \frac{\partial \mathbf{C}\tilde{\mathbf{Y}}}{\partial \mathbf{C}\tilde{\mathbf{Z}}} = C \frac{\partial \tilde{\mathbf{Y}}}{\partial \tilde{\mathbf{Z}}} C^{-1} \Rightarrow \tilde{J}^{\tilde{z}} = C \tilde{J}^{\tilde{Z}} C^{-1}$$

$$oxed{V}^T + J_m^{reve{H}} \; \Sigma^{reve{h}} \; J_m^{reve{H}}^T$$

$$\mathcal{E}\{\breve{X}_u\} pprox \sum_{m=1}^M p_x(m) \; \mu_m^{\breve{X}}$$

$$= \ \ \check{Y} \sum_{m=1}^{M} p(m|\check{Y}) \frac{1}{G(\mu_{m}^{\check{X}}, \mu^{\check{H}}, \mu^{\check{W}})} \qquad \qquad \check{x}[n,k] = \frac{\check{X}[n,k] \ |H[k]|^{2\gamma}}{\sqrt[N]{\prod_{n=1}^{N} \ \check{X}[n,k] \ |H[k]|^{2\gamma}}} \qquad \qquad Z \sim \sum_{m=1}^{M} \ p_{x}(m) \ \mathcal{N}(z; H_{d} \ \mu_{m}^{\check{X}}, H_{d} \ \Sigma_{m}^{\check{X}} \ H_{d}^{T})$$

$$\mu^{\check{H}} \approx \frac{\frac{1}{T} \sum_{t=1}^{T} \check{Y}_t}{\sum_{m=1}^{M} p_x(m) \mu_m^{\check{X}}}$$

$$\mu^{\check{H}} = \mathcal{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} = \mathcal{E}\{\breve{Y}_u\} \ \mathcal{E}\{\frac{1}{\breve{Y}}\} \qquad \qquad \frac{\mathcal{E}\{\breve{Y}_u\}}{\mathcal{E}\{\breve{X}_u\}} = \mathcal{E}\{\left(H + \frac{W_u}{X_u}\right)^{\alpha}\} \approx \mu^{\check{H}} + \mathcal{E}\{\frac{\breve{W}_u}{\breve{X}_u}\}$$

$$\mathcal{E}\{\breve{Y}_u\} \approx \frac{1}{T} \sum_{t=1}^{T} \breve{Y}_t \qquad \breve{\mathbf{Y}} = C^{-1} \breve{\mathbf{y}} \Rightarrow \begin{cases} p_{\breve{\mathbf{Y}}}(m) = p_{\breve{\mathbf{y}}}(m) \\ p(\breve{\mathbf{Y}}|m) = p(\breve{\mathbf{y}}|m) \end{cases} \Rightarrow p(m|\breve{\mathbf{Y}}) = p(m|\breve{\mathbf{y}})$$

$$\breve{H}_t = \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

$$\breve{H}_t = \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

$$\mu^{\breve{H}} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \mathbb{E}\{\frac{1}{\breve{X}_u}\}$$

Y and
$$\frac{1}{X}$$
 are uncorrelated!

$$\breve{H}_t = \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

$$\mu^{\breve{H}} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \mathbb{E}\{\frac{1}{\breve{X}_u}\}$$

$$\breve{H}_t = \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

$$\mu^{\breve{H}} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \ \mathbb{E}\{\frac{1}{\breve{X}_u}\}$$

 $\frac{1}{x}$ does not covary with x!

- NBins: 50
- 330 Utterances, WSJ
- #frames > 241 k

Statistical Effect of GenLog

$$\breve{H}_t = \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

$$\mu^{\breve{H}} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \mathbb{E}\{\frac{1}{\breve{X}_u}\}$$

x and $\frac{1}{x}$ are almost uncorrelated here!

$$\begin{split} \breve{H}_t &= \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \\ \mu^{\breve{H}} &= \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \; \mathbb{E}\{\frac{1}{\breve{X}_u}\} \end{split}$$

$$\breve{H}_t = \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

$$\mu^{\breve{H}} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \ \mathbb{E}\{\frac{1}{\breve{X}_u}\}$$

$$\mathbb{E}\{\breve{Y}_u\} \approx \frac{1}{T} \sum_{t=1}^{T} \breve{Y}_t$$

$$\mathbb{E}\{\breve{X}_u\} \approx \sum_{m=1}^{M} p_{\breve{x}}(m) \; \mu_m^{\breve{X}}$$

$$\begin{split} \breve{H}_t &= \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \\ \mu^{\breve{H}} &= \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \ \mathbb{E}\{\frac{1}{\breve{X}_u}\} \\ \mathbb{E}\{\frac{1}{\breve{X}_u}\} &\geq \frac{1}{\mathbb{E}\{\breve{X}_u\}} \end{split}$$

$$\mathbb{E}\{\breve{X}_u\} \approx \sum_{m=1}^M p_{\breve{x}}(m) \ \mu_m^{\breve{X}} \\ \mathbb{E}\{\breve{X}_u\} &\geq \frac{1}{\mathbb{E}\{\breve{X}_u\}} \end{split}$$

 $\frac{1}{X}$ is convex!

$$\begin{split} \breve{H}_t &= \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \\ \mu^{\breve{H}} &= \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \; \mathbb{E}\{\frac{1}{\breve{X}_u}\} \end{split}$$

$$\mathbb{E}\{\breve{Y}_u\} \approx \frac{1}{T} \sum_{t=1}^{T} \breve{Y}_t$$

$$\mathbb{E}\{\breve{X}_u\} \approx \sum_{m=1}^{M} p_{\breve{x}}(m) \; \mu_m^{\breve{X}}$$

$$\begin{split} \breve{H}_t &= \frac{\breve{Y}_t}{\breve{X}_t} \Rightarrow \mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \\ \mu^{\breve{H}} &= \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\} \approx \mathbb{E}\{\breve{Y}_u\} \ \mathbb{E}\{\frac{1}{\breve{X}_u}\} \\ \mathbb{E}\{\frac{1}{\breve{X}_u}\} \approx \frac{1}{\mathbb{E}\{\breve{X}_u\}} \\ \mathbb{E}\{\frac{1}{\breve{X}_u}\} \approx \frac{1}{\mathbb{E}\{\breve{X}_u\}} \end{split}$$

Under
$$\mu^{\breve{H}} \approx \frac{\frac{1}{T} \sum_{t=1}^T \breve{Y}_t}{\sum_{m=1}^M p_{\breve{x}}(m) \ \mu_m^{\breve{X}}}$$

Channel Estimation Aurora-4

$$\mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

$$XH + W \longrightarrow gvts1 \longrightarrow \hat{Z}$$

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

$$\underbrace{XH}_{Z} + W \longrightarrow \boxed{\text{gVTS1}} \longrightarrow \hat{Z} \longrightarrow \boxed{\mu^{\breve{H}} \approx \frac{\frac{1}{T} \sum_{t=1}^{T} \breve{Z}_{t}}{\sum_{m=1}^{M} p_{\breve{x}}(m) \ \mu_{m}^{\breve{X}}}} \longrightarrow \underbrace{\parallel H \parallel}_{M}$$

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

GMM

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

GMM

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

$$\mathbb{E}\{\frac{\breve{Y}}{\breve{X}}\} = \mathbb{E}\{\left(\frac{XH+W}{X}\right)^{\alpha}\} \approx \mu^{\breve{H}} + \mathbb{E}\{\frac{\breve{W}}{\breve{X}}\}$$

Channel Estimation Pseudocode

- **0.** Initialise **H**
- 1. Adapt Clean Model with H
- 2. gVTS for Additive Noise
- 3. Update H
- 4. If not converged GO TO 1

RETURN H

Experimental Results Aurora4 -- WER

Feature	A	В	$ ule{C}$	D	Ave_1	Ave_2
MFCC-Clean	6.8	33.4	23.8	50.2	38.0	28.6
MFCC-Multi1	9.1	18.4	23.4	35.9	25.6	21.7
MFCC-Multi2	10.7	17.0	19.1	31.3	22.8	19.5
VTS1-FBE	6.4	21.9	22.2	39.2	28.2	22.4
gVTS1-0.05	6.3	19.9	20.6	36.9	26.2	20.9
gVTS2-0.05-3	6.5	20.3	14.4	34.2	24.9	18.9

A: Clean

B: Additive

C: Channel

D: Additive+Channel

$$Ave_1 = \frac{A + 6B + C + 6D}{14}$$

$$Ave_2 = \frac{A+B+C+D}{4}$$

Experimental Results Aurora4 -- WER

Feature	A	В	\mathbf{C}	D	Ave_1	Ave_2
MFCC-Clean	6.8	33.4	23.8	50.2	38.0	28.6
MFCC-Multi1	9.1	18.4	23.4	35.9	25.6	21.7
MFCC-Multi2	10.7	17.0	T 19.1	31.3	22.8	T 19.5
VTS1-FBE	6.4	21.9	22.2	39.2	28.2	22.4
gVTS1-0.05	6.3	19.9	20.6	36.9	26.2	20.9
gVTS2-0.05-3	6.5	20.3	14.4	34.2	24.9	18.9

A: Clean

B: Additive

C: Channel

D: Additive+Channel

Abs: 4.7% Rel: 24.6% Abs: 0.6% Rel: 3.1%

<u>15/15</u>

Wrap-up

- This Talk was about ...
 - Vector Taylor Series for Robust ASR
 - Generalised VTS
 - Channel Noise Estimation

– Future Works:

- Extension to the Phase/Group Delay domains
- Further optimisation of the channel estimation

That's it!

- Thanks for your attention
- Q&A

Appendices

- 1. (g)VTS Pseudocode
- 2. Effect of GenLog on WER
 - 2.1. Aurora-2 → Clean (0-20 dB)
 - 2.2. Aurora-4 → Clean, Multi1, Multi2
- 3. Why Non-linear Transform?
- 4. Channel Estimation
 - 4.1. Initialisation and iteration effect
 - 4.2. ALL
- 5. Phase Factor
- 6. MMSE vs MAP

(g)VTS Pseudocode

- **0.** GMM of **CLEAN**
- _____
- For each utterance …
 - 1. Apply the compression function (Log of GenLog)
 - 2. Factor out the *CLEAN* and compute the distortion function
 - 3. Estimate the *Noise*
 - 3.1. Additive
 - 3.2. Channel
 - **4.** Linearise using **VTS**
 - 4.1. Points → means of Gaussians
 - 4.2. Jacobians → partial derivatives

Effect of GenLog on WER Aurora-2

Feature	α	TestSet A	TestSet B	TestSet C
MFCC	$log \leftrightarrow 0$	66.2	71.4	64.9
gMFCC	0.01	68.0	72.2	69.7
gMFCC	0.05	74.5	76.7	76.0
gMFCC	0.075	75.4	76.2	$\boldsymbol{76.9}$
gMFCC	0.1	73.3	74.3	74.5
gMFCC	0.15	70.0	71.4	68.8
gMFCC	0.2	67.2	69.3	63.2

Aurora-2 (Accuracy, Average 0-20 dB)

Effect of GenLog on WER Aurora-4

Feature	$ \alpha $	A	В	\mathbf{C}	D	Ave_1	Ave_2
MFCC-Clean	$\log \leftrightarrow 0$	6.8	33.7	23.6	49.9	38.0	28.6
gMFCC	0.05	6.9	25.5	23.7	43.1	31.6	24.8
gMFCC	0.075	7.7	22.9	24.3	40.7	29.6	23.9
gMFCC	0.1	7.8	22.2	25.7	40.4	29.2	24.0
MFCC-Multi1	log	9.1	18.4	23.4	35.9	25.6	21.7
gMFCC	0.05	9.3	16.6	23.9	34.5	24.2	21.1
gMFCC	0.075	9.6	16.1	25.4	34.4	24.1	21.4
gMFCC	0.1	10.2	16.0	26.0	34.8	24.3	21.7
MFCC-Multi2	log	10.7	17.0	19.1	31.3	22.8	19.5
gMFCC	0.05	11.0	16.1	19.9	30.3	22.1	19.4
gMFCC	0.075	11.2	16.3	20.5	30.6	22.4	19.7
gMFCC	0.1	11.3	16.7	21.6	30.9	22.7	20.1

A: Clean C: Channel

B: Additive D: Additive+Channel

$$Ave_1 = \frac{A + 6B + C + 6D}{14}$$

$$Ave_2 = \frac{A+B+C+D}{4}$$

Taking Log after applying GenLog?

$$\tilde{Y} = \tilde{X} + \underbrace{\tilde{H} + log\{1 + e^{\tilde{W} - \tilde{X} - \tilde{H}}\}}_{\tilde{G}(\tilde{X}, \tilde{W}, \tilde{H})}$$

$$\tilde{Z} = log Z$$

$$\breve{Z} = Z^{\alpha}$$

$$\dot{Y} = \dot{X} + \underbrace{\dot{H} + log\{1 + e^{\dot{W} - \dot{X} - \dot{H}}\}}_{\dot{G}(\dot{X}, \dot{W}, \dot{H})}$$

$$\dot{Z} = \alpha \, \log Z$$

Why Non-linear Transform?

$$\hat{Z} = log Z$$
 $\check{Z} = Z^{\alpha}$
 $\dot{Z} = \alpha \ log Z$
 $\overset{}{}$

Non-linear \check{x} Statistical Modelling

Why Non-linear Transform?

Why Non-linear Transform?

Linear transform does not change the family a RV belongs to !

Channel Estimation Initialisation and Iteration effect

$$H_0 = 1$$

Channel Estimation -- ALL

$$\mu^{\breve{H}} = \mathbb{E}\{\breve{H}\} = \mathbb{E}\{\frac{\breve{Y}_u}{\breve{X}_u}\}$$

Phase Factor

Periodogram

$$Y_k = X_k H_k + W_k + 2\sqrt{X_k H_k W_k} \cos(\theta_{X_k} + \theta_{H_k} - \theta_{W_k})$$

$$\lambda_k = cos(\theta_{X_k} + \theta_{H_k} - \theta_{W_k}) = \frac{Y_k - X_k H_k - W_k}{2\sqrt{X_k H_k W_k}}$$

FBE, Ith filter

$$\lambda_l = \frac{Y_l - X_l H_l - W_l}{2\sqrt{X_l H_l W_l}}$$

$$\lambda_l \sim \mathcal{N}(0, \sigma_l^2) \Rightarrow \lambda \sim \mathcal{N}(0, \Sigma^{\lambda})$$

$$J_{gVTS}^{\lambda} = \frac{\partial \ddot{Y}}{\partial \lambda} = \frac{\partial \ddot{Y}}{\partial Y} \frac{\partial Y}{\partial \lambda} = 2\alpha \frac{\mu_m^{\ddot{X}} \mu^{\ddot{H}} \sqrt{V_m}}{(1 + V_m)^{1 - \alpha}}$$

MMSE vs MAP

$$\hat{x}_{MMSE} = \mathbb{E}[x|y] = \int x P(x|y) dx$$

$$\hat{x}_{MAP} = \arg \max_{x} P(x|y)$$

MAP requires

<u>GLOBAL</u> maximum!

App. 6

MAP