# **Historic, Archive Document**

Do not assume content reflects current scientific knowledge, policies, or practices.



B.F.GOODRICH CHEMICAL COMPANY INDEPENDENCE TECHNICAL CENTER INDEPENDENCE, OHIO

3 163 12 9

U.S. Department of Agriculture
Northern Marketing and Nutrition Research Division
Agricultural Research Service
Peoria, Illinois 61604
Contract No. 12-14-100-10,333 (71)

Studies on the Production and Evaluation of Selected Starch-Reinforced Rubbers

Final Report

Ъу

Brooks Wolfe
Donald E. Wright
Frank J. Male
Robert W. Hallman

November 30, 1973

MHK

DISTRIBUTION

Peoria

R. A. Buchanan (12)

MANYS 1975

AD-33 Bookplate (1-63)

# NATIONAL



LIBRARY

30767

1 13/24/1

# TABLE OF CONTENTS

|                                                                 | Page |
|-----------------------------------------------------------------|------|
| SUMMARY                                                         | . 1  |
| DISCUSSION                                                      | . 2  |
| PROCESS DEVELOPMENT  Coagulation Process Development            | 2    |
| Zinc Starch Xanthate                                            | . 4  |
| Antioxidant Study                                               | 8    |
| Bench Scale Composition Experiments                             | 12   |
| Pilot Plant Coagulation Scale-Up                                | . 21 |
| Extrusion Processing                                            | 30   |
| Electron Microscopy                                             | 38   |
| Flowsheet and Cost Calculations                                 | 42   |
| NBR Masterbatches                                               | 48   |
| PRODUCT APPLICATION DEVELOPMENT Preliminary Accelerator Studies | .56  |
| Compound Development                                            | . 57 |
| Rubber Product Molding Trials                                   | .80  |
| PROJECT ASSESSMENT                                              | .87  |



#### SUMMARY

Masterbatches formed by the co-coagulation of starch xanthate mixed with rubber latex were studied on a bench scale and pilot plant scale. Based on bench scale experiments, the zinc starch xanthate/rubber master-batches were not scaled up because extremely fine coagulation crumbs were obtained and the rubber physical properties were not satisfactory. Rapid in-line co-coagulation of the starch xanthate and rubber latex is necessary to reproducibly obtain masterbatches with satisfactory rubber properties. Coagulation parameters affecting the crumb characteristics are: final serum ph (1.5-2.0), coagulation temperature (cool), and fatty acid emulsified latexes rather than rosin acid emulsified latexes. Crude filtering studies indicated the final filter cake will contain only 25% solids with 75% water. Dewatering presses are not suitable for these starch masterbatches.

The University of Akron discovery that extrusion processing of slightly wet (10%) masterbatches enhances physical properties was confirmed. The rubber-in-starch phase system obtained during coagulation must be inverted to a dispersion of fine starch particles in a continuous rubber phase to obtain rubbery properties. The mixing that occurs during compounding is not sufficient to invert the phases. Electron microscopy can be used to study the starch dispersion and particle size in the masterbatches. The extrusion process was successfully scaled-up from the Brabender laboratory extruder to the pilot plant scale V.D.Anderson Expander Dryer. The physical properties are not very sensitive to the extrusion conditions.

The estimated cost of incorporating starch in SBR, including raw material usage, extra direct labor for the xanthation process, extra indirect labor such as laboratory technicians, extra drying costs, capital depreciation on a \$1.6 MM investment, and a 12% BFIT return on investment, is 11.0 cents per pound of starch. All' the extra costs involved in making a starch masterbatch over and above the costs for producing the black pigmented rubber are charged against the starch rather than the masterbatch.

Starch xanthate masterbatches can be successfully cured with typical sulfur accelerator cure systems. The nitrile/starch masterbatches in general yield higher physical properties than the SBR/starch masterbatches. Also, their excellent oil resistance gives them the ability to be used to meet many product specifications.

The SBR/starch masterbatches can be blended with SBR black masterbatches to yield fairly high physical properties. These stocks are applicable for retreading tires or for various molded products.

Several tires were retreaded using a 50/50 blend of SBR/starch and SBR carbon black masterbatches. Some molded products were cured successfully using this same stock and a nitrile/starch MB.

The nitrite/starch stock was developed to meet ASTM specification 2BG615. The only property that failed to meet the specification was the water resistance. Poor water resistance is a weakness of starch polymer masterbatches that probably would limit their potential use.



#### DISCUSSION

#### PROCESS DEVELOPMENT

### Coagulation Process Development

All the published work involving the co-coagulation of starch xanthates with rubber latexes preceding the BFG work used batch processes. The University of Akron extensively studied the agitation requirements for batch coagulations. The viscosity variations that occur during a batch coagulation cause many problems in designing agitation for the coagulator. Continuous coagulation studies were recommended by the University of Akron. A continuous coagulation process offers a number of advantages over a batch process:

- (1) The viscosity changes that occur during coagulation are localized to the incoming stream only, rather than an entire tank.
- (2) The coagulation conditions can be controlled better since the time of coagulation is reduced and occurs in a constant environment. Better control may give an improved product.
- (3) A continuous process is generally more economical on a production scale than a batch process with its intermittant flows and time delays.
- (4) Since the bulk viscosity is reduced, the gas (nitrogen oxide) evolution is facilitated. Also, the gas evolution will be constant rather than being released in a large volume at one point during a coagulation as in a batch process.

With these potential advantages in mind, bench scale experiments were conducted in which a continuous coagulation process was simulated. The following procedure was used:

SBR 1509 latex was pre-blended with a 10% Hoosier Pearl corn starch xanthate solution (0.06-0.07 DS) and sufficient sodium nitrite to cross-link the starch. The general procedure was to prepare enough coagulation serum for good agitation in the coagulator. The coagulation serum consisted of water and sufficient sulfuric acid to reduce the pH to the desired level. The latex/SX preblend (Xantex) was slowly poured into the coagulation serum under agitation. The coagulation serum was maintained at the desired pH by addition of a 2% sulfuric acid solution. Because the rates were controlled manually the pH drifted as much as  $\pm$  0.5 pH units. Coagulation pH and temperature were evaluated. The best coagulation pH was found to be 4.0-5.0. As the coagulation pH was reduced, the crumb size became smaller. Higher coagulation pH's gave incomplete coagulation of the rubber and/or starch. The continuous coagulation gives a more uniform particle rize than batch coagulations, probably because the entire amount is coagulated under the same conditions. Batch coagulations, particularly when a viscous stage is involved, tend to have localized high concentrations of acid (low pH) which give smaller crumbs.

The quality of the continuous coagulation product is nearly equivalent to the batch coagulated control (Table I). Except when batch coagulations are specifically labelled, all further bench scale coagulations were the semi-continuous (simulated continuous) process.



TABLE I EVALUATION OF 45 PHR STARCH XANTHIDE/SBR MASTERBATCHES COAGULATED UNDER VARYING CONDITIONS

| Sample Sample                                                                 | 5-P3-A                          | 6-Р3-В                         | 6-P3-C                         | 7-P3-CA                        |
|-------------------------------------------------------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Latex .                                                                       | 1509                            | 1509                           | 1509                           | 1509                           |
| Coagulation                                                                   | Batch                           | Batch                          | Semi-<br>cont.*                | Semi-<br>cont.*                |
| Description                                                                   | Acid                            | Acid<br>Heat                   | Acid<br>Heat<br>No Aggl.       |                                |
| Final Coag. pH                                                                | 2.3                             | 4.2                            | 1.6                            | 4.3                            |
| Wash pH                                                                       | 2.5                             | 6.6                            | 2.3                            | 6.7                            |
| Rheometer Min. Visc. Scorch, Mins.                                            | 4.5<br>11.5                     | 4<br>6                         | 3.5<br>15                      | 4.5<br>6.5                     |
| 50% T Max. Cure Time, mins.  M200, psi Tensile, psi Elongation, % Durometer A | 21<br>1050<br>1400<br>310<br>64 | 12<br>750<br>1350<br>420<br>66 | 27<br>650<br>1300<br>310<br>58 | 12<br>700<br>1350<br>400<br>63 |
| 90% T Max. Cure Time, mins. M200, psi Tensile, psi Elongation, % Durometer A  | 33<br>1100<br>1450<br>270<br>66 | 18<br>800<br>1300<br>360<br>65 | 45<br>750<br>1400<br>300<br>59 | 19<br>700<br>1300<br>370<br>64 |

Starch: Hoosier Pearl Corn Starch Starch Xanthate: 0.06-0.07 DS

Semi-Continuous: Latex/SX/NaNO2 Blend add to a 2% H<sub>2</sub>SO<sub>4</sub> sol'n. containing enough acid to coagulate the entire blend.

All samples "extrusion dried" with a minimum of 3 passes; barrel temp. 125, 125, 150°C.

SBR 1509: nominal 23.5% Bound Styrene nominal 30 ML Viscosity

Mixed Acid Emulsifier



#### Zinc Starch Xanthate

Zinc sulfate/acid coagulated starch xanthate/SBR masterbatches are said to have two advantages: (1) clear coagulation serum and (2) little or no odor during extrusion drying. The zinc sulfate coagulated masterbatches, however, have a very fine coagulation crumb. Thus, process development work was started to improve the coagulation crumb size. batch coagulation indeed gave a fine crumb which is very difficult to filter. Generally, the processes which simulated continuous coagulations gave a finer, more fragile crumb but, also the cleanest serum. As the zinc sulfate level decreased the serum became more cloudy indicating starch losses. Substitution of magnesium sulfate (Epsom salt) for zinc sulfate gave a poor coagulation with high starch losses. It is felt that processes which rely on zinc sulfate for the actual coagulation may be difficult to successfully scale-up on a continuous basis. The addition of the Xantex to a zinc sulfate bath necessarily means that some zinc sulfate will be discharged in the serum. Since the SX solution and latex each bring in fresh water, some serum must be discharged as effluent. Economic and pollution considerations make such a discharge undesirable. Thus, the blending of the zinc sulfate solution with the SX or SX/latex blend seems best. Carrying this reasoning a little further indicates the zinc sulfate should be blended with the SX solution before the latex is added. In an SX/latex blend the zinc has two reaction sites -- the starch xanthate and the latex emulsifier (organic acid soap). The reaction with the starch xanthate is preferred since this cross-links the starch. reaction with the organic acid soap will destabilize or coagulate the latex but other coagulants, such as sulfuric acid, can accomplish this. Furthermore, a preformed zinc starch xanthate may tend to give a starch in rubber rather than a rubber in starch composition. This may be desirable from both a process standpoint and a property standpoint.

Based on these factors and the better coagulation crumbs, the process involving pre-reaction of the starch xanthate with the zinc sulfate was chosen for further study. Seven masterbatches were prepared for physical testing. In this series it was found that cold coagulations give a better coagulation crumb than hot coagulations. This series also indicated better crumb size with lower starch levels. When the zinc level was decreased, the coagulation pH had to be lowered and, as before, the serum became cloudy. Resorcinol/formaldehyde modification seemed to improve the serum clarity at the lower zinc level. One sample was prepared without extrusion drying to determine if this coagulation procedure gives a good starch in rubber dispersion. These masterbatches along with a batch coagulated control (23-P-11-1) were tested for physical properties. None of the samples, including the control, gave satisfactory physical properties (Table II).



TABLE II

Evaluation of Experimental SBR 1509/Zinc Starch Xanthate Masterbatches

| 32P12-7               | 4.0<br>45<br>No Extrd.<br>Drying                      | 149                                                                            | 60°<br>1,00<br>1,00<br>200<br>67                                                                               |
|-----------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 31712-6               | 30                                                    | 134                                                                            | 30°<br>250<br>250<br>200<br>200<br>54                                                                          |
| 31P12-5               | 1.0                                                   | 149                                                                            | 30.<br>250<br>250<br>250<br>60                                                                                 |
| 30P12-4               | 1.0<br>30<br>RF                                       | 131                                                                            | 30°<br>400<br>550<br>550<br>300<br>56                                                                          |
| D<br>30P12-3          | 1.0<br>45<br>RF                                       | 146<br>4                                                                       | -<br>000000000000000000000000000000000000                                                                      |
| 29P12-2               | nuous<br>30                                           | 13 <sup>1</sup> 4<br>1                                                         | . 300<br>350<br>350<br>300<br>53                                                                               |
| B<br>23P12-1          | Semi-Continuous 4.0 4.0 4.0 30                        | 149                                                                            | 60°<br>350<br>400<br>400<br>300<br>62                                                                          |
| <u>A9A</u><br>23P11-1 | Batch<br>4.0<br>45                                    | 149<br>1.5)<br>3.0)<br>1.25)                                                   | 30°<br>500<br>600<br>400<br>62                                                                                 |
| Compound No.          | Coagulation ZnSO <sub>lt</sub> as pnr ZnO Starch, phr | Masterbatch<br>Zinc Oxide<br>Stearic Acid<br>Altax<br>AgeRite Powder<br>Sulfur | Physical Testing  Cure Time @ 293°F 200% Modulus, psi 300% Modulus, psi Tensile, psi Elongation, % Durometer A |

Batch Coagulation: Latex & SX Blended, Acid added, ZnSO4 Sol'n added to coagulate, drain serum, air dry, wet

with 15% water, extruder dry. Semi-Continuous Coag.: SX & ZnSO<sub>4</sub> Sol'n mixed, latex added, blend powred slowly into pH 6-7 serum, maintain coagulation pH with add'n of 2% H2SO<sub>4</sub>, drain serum, air dry, wet with 15% water,

extruder dry.

Starch: Hoosier Pearl Corn Starch

Xanthate: 0.07-0.08 D.S. (estimated)
RF: 0.03 moles resorcinol/mole starch, 0.1 moles formaldehyde/mole starch



The BFG data indicated that zinc sulfate coagulated starch xanthate/SBR 1503 masterbatches have poor physical properties. To cross-check between laboratories, the USDA Peoria laboratory prepared two zinc starch xanthate/SBR masterbatches for BFG evaluation. BFG prepared similar masterbatches using both batch and semi-continuous methods. The batch coagulations had very fine (small) crumb sizes. A buchner funnel and filter paper had to be used to drain the serum from the crumb. The semi-continuous process involves blending SX, zinc sulfate solution, latex + NEPA antioxidant in that order; and then continuously adding this blend to a pH 6-7 coagulation serum under agitation. Although the crumb was small, the serum could be drained from the crumb using cheesecloth.

The physical testing evaluation of these masterbatches is shown in Table VI. All the zinc starch xanthate/SBR masterbatches, including the sample from the USDA Peoria laboratory, showed poor physical properties, particularly tensile strength. All the zinc starch xanthate modified with resorcinol/formaldehyde/SBR masterbatches showed acceptable physical properties. There are no significant differences either between the coagulation processes or the different laboratories.

Zinc sulfate coagulated starch xanthate/SBR masterbatches were not recommended for scale-up. While a clear coagulation serum can be obtained, the crumb, even under the best conditions, is difficult to handle. The need for resorcinol/formaldehyde modification to obtain acceptable physical properties eliminates the color advantage for the zinc sulfate coagulated masterbatches.



TABLE III EVALUATION OF ZINC STARCH XANTHATE/SBR MASTERBATCHES

| 9290:96         | 30<br>4<br>.1<br>Batch<br>USDA<br>1511                                   | 134<br>1<br>1.5<br>3<br>1.25                                   | 3.5<br>34<br>27<br>60+                                              | 600<br>1750<br>610<br>52                                               |
|-----------------|--------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|
| 9290:95         | 30<br>4<br><br>Batch<br>USDA<br>1511                                     | 134<br>1<br>1.5<br>3<br>1.25                                   | 2.5<br>31<br>28<br>60                                               | 200<br>250<br>460<br>49                                                |
| 50P19-4         | 30<br>.4<br>.1<br>Cont.<br>Extruder<br>IDC<br>1503                       | 134<br>1<br>1.5<br>3<br>1.25                                   | 3.1<br>66<br>8.4<br>39                                              | 800<br>1400<br>490<br>58                                               |
| 50P19-3         | 30<br>4<br>.1<br>Batch<br>Extruder<br>IDC<br>1503                        | 134<br>1<br>1.5<br>3<br>1.25                                   | 3.2<br>66<br>7.2<br>33                                              | 850<br>1800<br>530<br>59                                               |
| 49 <u>P19-2</u> | 30<br>4<br><br>Cont.<br>Extruder<br>IDC<br>1503                          | 134<br>1<br>1.5<br>3<br>1.25                                   | . 45<br>25<br>60                                                    | 250<br>300<br>380<br>54                                                |
| 49P19-1         | 30<br>4<br><br>Batch<br>Extruder<br>1DC<br>1503                          | 134<br>1<br>1.5<br>3<br>1.25                                   | 3.0<br>69<br>5.8<br>27                                              | 300<br>350<br>370<br>58                                                |
| Sample No.      | Starch, phr Zn as phr ZnO RF, molar Coagulation . Drying Prepared at SBR | Compound Recipe Masterbatch ZnO Stearic Acid Altax PBNA Sulfur | Rheometer Min.Torque,in-lbs. Max.Torque,in-lbs. tA2, min. t90, min. | Physical Properties 300% Modulus, psi<br>Tensile, psi<br>Elongation, % |



### Antioxidant Study

Starch xanthide/rubber masterbatches are made by coagulating a blend of rubber latex and starch xanthate containing sodium nitrite (NaNO $_2$ ) with acid. The sodium nitrite, a strong oxidizing agent under acidic conditions, is needed to cross-link the starch. In the original USDA procedure for bench scale work, the rubber antioxidant or stabilizer was added on the mill after drying to avoid the oxidizing coagulation environment. While this is satisfactory for bench scale work, it is not satisfactory for a commercial scale. The easiest method of incorporating the stabilizer is adding it as an emulsion to the latex before coagulation. This experiment was made to determine if this is feasible with any of the commonly used non-staining SBR stabilizers.

Samples of SBR 1509 containing no starch were prepared with several commonly used SBR stabilizers. The stabilizers were emulsified and added to the SBR latex. The latex was then split into two sections. The first section was salt-acid coagulated, washed once, and air dried at 180°F. The second section was treated with 1.1 phr sodium nitrite (NaNO<sub>2</sub>) which is about 60% of the level used for a 45 phr starch xanthide/rubber master-batch. Normally, a 25% excess sodium nitrite is used in a starch xanthide/SBR masterbatch coagulation. The second section was coagulated under the same conditions as the first section. While there were some subtle color differences in some of the samples, no drastic color differences were obtained at any stage.

The dried samples were aged in a 105°C air oven for 0 to 14 days. Mooney viscosity was determined for each sample for each aging period. The data are shown in Table IV.

Figure 1 shows the aging differences between the oxidized and nonoxidized samples without stabilizer and with AgeRite Stalite. The aging of a 5 phr starch xanthate/rubber masterbatch (coagulated with NaNO $_2$ ) present is also shown. The presence of the NaNO $_2$  drastically reduced the effectiveness of Stalite. However, the presence of some starch xanthate significantly reduced the effect of NaNO $_2$ . This indicates that the most severe conditions were chosen for this evaluation.

The differences between the oxidized and nonoxidized samples containing NEPA are small and the data actually show the oxidized sample to be slightly better than the nonoxidized sample initially. AgeRite Geltrol is not drastically affected by the oxidizing agent. Polygard is more affected than AgeRite Geltrol or AgeRite NEPA but less than Stalite. Both samples containing Ethyl 702 showed poor stability, probably because of poor incorporation. All the data for the samples coagulated with NaNO<sub>2</sub> present are shown in Figure 2. This ranks the stabilizers in the following order:

- (1) AgeRite NEPA
- (2) AgeRite Geltrol
- (3) Polygard
- (4) Ethyl 702
- (5) AgeRite Stalite



Evaluation of Stabilizers for SBR Coagulated under the Oxidizing Conditions of SBR/Starch Xanthide Masterbatch Coagulations

| 14g                  | ned          |              | 32       | 148            | 23              | .43             | 27              |                 | 54           | 8            | Stop      | 61        |                 |
|----------------------|--------------|--------------|----------|----------------|-----------------|-----------------|-----------------|-----------------|--------------|--------------|-----------|-----------|-----------------|
| Viscosity<br>10d 14d | Discontinued | ned          | 24       | 39             | 20              | 32              | 19              | ped             | 24           | 10           | 81        | 51        | ped             |
|                      | Disc         | Discontinued | 22       | 37             | 18              | 24              | 19              | Stopped         | 17           | ω            | 58        | 39        | Stopped         |
| Mooney<br>5d 7d      | 78           | Disc         | 19       | 31             | 15              | 19              | 16              | 81              | 0/           | 7            | 54        | 35        | 102             |
| Change in            | 72           | 152          | 10       | 29             | 0               | Ħ               | 16              | 57              | ω            | 5            | 51        | 32        | . 02            |
| Char<br>1d           | 59           | 107          | 9        | 174            | m               | 5               | <b>4</b>        | 38              | Υ)           | 디            | 56        | 17        | 64              |
| 14d                  | ned          |              | 57       | 73             | 64              | 20              | 54              |                 | 51           | 118          | Stop      | 88        |                 |
| Aging<br>10d         | Discontinued | red          | 64       | <del>†</del> 9 | 94              | 59              | . 94            | pec             | 51           | 38           | 108       | 73        | bec             |
| e l                  | Disco        | Discontinued | 24       | 62             | <b>†</b> †      | 51              | 94              | Stopped         | 47           | 36           | 85 1      | 99        | Stopped         |
| 2 5 701              | 100          | Disco        | 44       | 99             | 41              | 94              | 43              | 109             | 36           | 35           | 81        | 62        | 130             |
| Mooney,<br>105°C Ai  | お            | 178          | 35       | 54             | 35              | 38              | 43              | 85              | 35           | 33           | 78        | 59        | 98              |
| After 1              | 81           | 133          | 31       | 39             | 59              | 32              | 31              | 99              | 30           | 27           | 53        | 44        | 77              |
| Af.                  | 22           | 700          | 25       | 25             | 56              | 27              | 27              | 28              | 27           | 28           | 27        | 27        | 28              |
| NaNO <sub>2</sub>    | i<br>i       | ٦.1          | ł        | 1.1            | l<br>I          | ٦.٦             | š<br>t          | 1.1             | i<br>i       | 1.1          | i<br>t    | ٦.        | ٦.٢             |
| phr                  | 3<br>E       | ;            | 1.25     | 1.25           | 1.25            | 1.25            | 1.25            | 1.25            | 1.25         | 1.25         | 1.0       | 1.0       | 5.0             |
| Antioxidant          | None '       | None         | Polygard | Polygard       | AgeRite Geltrol | AgeRite Geltrol | AgeRite Stalite | AgeRite Stalite | AgeRite NEPA | AgeRite NEPA | Ethyl 702 | Ethyl 702 | Starch Xanthate |
| Sample               | Н            | N            | Μ        | †              | 7               | 9               | _               | ထ               | υ.<br>Ο      | 10           | 11        | 12        | 13              |









Two SBR 1503/45 phr starch xanthide masterbatches were coagulated with 1.25 phr stabilizer added to the rubber latex as an emulsion. AgeRite NEPA and AgeRite Geltrol were evaluated versus a control in which AgeRite Stalite was added after extrusion drying. The physical testing data are shown in Table V. No aging study was planned. The two latex stabilized samples were higher in viscosity (Rheometer minimum torque) and hardness and slightly lower in tensile. The presence of the stabilizer may reduce the polymer breakdown rate during the extrusion drying process. Addition of a stabilizer such as AgeRite NEPA to the latex before coagulation was recommended. Subsequent coagulations used this technique.

## Bench Scale Composition Experiments

Several series of bench scale coagulations were prepared to study the effects of various compositional changes. The compositional variations included starch loading, xanthate degree of substitution, rubber Mooney viscosity, latex emulsifier, resorcinol/formaldehyde modification, extender oil level and type. The semi-continuous bench scale coagulation was used. The value of these experiments is clouded by the lack of reproducibility for these bench scale coagulations.

A series of masterbatches were prepared to evaluate various starch loadings and blending SBR/starch xanthide masterbatches with different starch loadings. If blending masterbatches with different compositions is successful, only several general masterbatch compositions would be necessary. Otherwise, many specialized masterbatches must be made for each application. Masterbatches containing 30, 45, 60 and 90 phr starch xanthide (0.08 DS) were coagulated. As the starch level increased, the crumb became more difficult to drain. The physical testing data for these samples and several blends are shown in Table VI. There appears to be little or no difference between the 30 and 45 phr masterbatches. Neither blending 30 phr and a 90 phr starch xanthide masterbatches nor blending the 90 phr starch xanthide masterbatch with SBR 1503 significantly affected the physical properties. Mechanical blending masterbatches after they are made seems practical.

A series of SBR/45 phr starch xanthide (0.07 DS) samples were prepared using latexes with different Mooney viscosities. The physical testing for this series is shown in Table VII. A portion of each latex was coagulated and dried without any reinforcing agents or fillers. These samples were compounded with SRF black for comparison. The data are shown in Table VIII. The tensile and modulus change for both starch xanthide and SRF black reinforced rubber as the Mooney increases. The lowest Mooney SBR (19 ML) yielded the lowest tensile in both the starch xanthide and SRF series. remaining four SBR's in the SRF series had equivalent tensiles. The starch xanthide series had an optimum tensile with the 69 ML SBR. The higher Mooney SBR's gave slightly lower tensiles. In both series, the modulus increased as the SBR Mooney increased. The rate of increase was greater for the starch xanthide samples than the SRF samples. This, in part, might reflect the differences in compound viscosity as shown by the minimum Rheometer torque. Longer mill times to incorporate the black or a greater breakdown rate with black may have caused the lower compound viscosities with the higher SBR Mooney values. For an SBR/45 phr starch xanthide masterbatch the best balance of properties is obtained with a 50-70 ML polymer.



TABLE V

Evaluation of SBR 1503/45 phr Starch Xanthide Masterbatches
Stabilized with NEPA and Geltrol before Coagulation
Versus Stabilization after Drying

| Sample No.                                                                    | 45P17-2                                             | <u>47P17-5</u>                          | 47P17-6                                 |
|-------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------|
| Stabilizer Stabilizer Level, phr Stabilizer Addition                          | Stalite<br>1.25<br>after<br>drying                  | NEPA<br>1.25<br>Latex                   | Geltrol<br>1.25<br>Latex                |
| Compound No.                                                                  | <u>A39B</u>                                         | <u>A39E</u>                             | <u>A39F</u>                             |
| Recipe, phr Masterbatch Zinc Oxide Stearic Acid Altax PBNA Sulfur             | 145<br>5.0<br>1.5<br>3.0<br>1.25<br>2.0             | 145<br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 | 145<br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 |
| Rheometer, LS, 293°F                                                          |                                                     |                                         |                                         |
| Torque, min. Torque, max. Scorch Time, min. Cure Time, min.                   | 2.9<br>7 <sup>1</sup> 4<br>11.2<br>2 <sup>1</sup> 4 | 4.0<br>.77<br>11.5<br>.26               | 4.0<br>74<br>10.6<br>26                 |
| Stress-Strain, Cured at 293                                                   | 3°F                                                 | ·                                       |                                         |
| Cure Time, min. 300% Modulus, psi Tensile, psi Elongation, % Hardness, Duro A | 25<br>1250<br>1350<br>330<br>63                     | 25<br>950<br>1150<br>420<br>69          | 25<br>900<br>1100<br>390<br>67          |

Starch Xanthate: Hoosier Pearl Corn Starch

0.50 mole NaOH

0.08 D.S. (analyzed)

SBR 1503: 47 ML-4'-212°F

nominal 23.5% Bound Styrene

Fatty Acid Emulsifier



TABLE VI

Evaluation of SBR 1503/Starch Xanthide Masterbatches
Containing Different Starch Levels

| Compound No.                                                                                               | <u>A39A</u>                                     | В                                               | C                                                 | D                                                 | G                                                        | <u>H</u>                                         |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|
| Sample No.                                                                                                 | 45P1 <b>7-</b> 1                                | 45P17-2                                         | 46P17 <b>-</b> 3                                  | 46P17-4                                           | Blend                                                    | Blend                                            |
| phr Starch                                                                                                 | 30                                              | 45                                              | 60                                                | 90                                                | 45                                                       | 45                                               |
| Compound Recipe                                                                                            |                                                 |                                                 |                                                   |                                                   |                                                          |                                                  |
| 45P17-1 45P17-2 46P17-3 46P17-4 SBR 1503 Sundex 8125 ZnO Stearic Acid Altax PBNA Sulfur Rheometer, LS, 293 | 130<br><br><br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 | 145<br><br><br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 | 160<br><br>20<br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 | 190<br><br>60<br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 | 97.5<br><br>47.5<br><br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 | 95<br>50<br><br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 |
| Torque, min. Torque, max. Scorch Time, min. Cure Time, min. Stress-Strain, 293                             | 2.4                                             | 2.9                                             | 2.3                                               | 1.0                                               | 3.0                                                      | 4.3                                              |
|                                                                                                            | 75                                              | 7 <sup>4</sup>                                  | 67                                                | 44                                                | 84                                                       | 93                                               |
|                                                                                                            | 13.7                                            | 11.2                                            | 10.5                                              | 11.0                                              | 10.8                                                     | 11.0                                             |
|                                                                                                            | 33                                              | 24                                              | 23.5                                              | 23                                                | 24                                                       | 30                                               |
| Cure Time, min. 300% Modulus, psi Tensile, psi Elongation, % Hardness, Duro A                              | 30                                              | 25                                              | 25                                                | 25                                                | 25                                                       | 30                                               |
|                                                                                                            | 1100                                            | 1250                                            | 1200                                              | 850                                               | 1450                                                     | 1150                                             |
|                                                                                                            | 1350                                            | 1350                                            | 1550                                              | 1050                                              | 1550                                                     | 1150                                             |
|                                                                                                            | 370                                             | 330                                             | 420                                               | 450                                               | 330                                                      | 300                                              |
|                                                                                                            | 59                                              | 63                                              | 62                                                | 57                                                | 68                                                       | 71                                               |

Starch Xanthate: Hoosier Pearl Corn Starch

0.5 mole NaOH

D.S. = 0.08 (analyzed)

SBR 1503: 47 ML-4'-212°F



TABLE VII

Effect of SBR Mooney Viscosity on Properties of SBR/45 phr Starch Xanthide Masterbatches

| Sample No.                                                                                  | 33P13-1                                 | 33P13-2                          | 34213-3                           | 34P13-4                           | 35P13-5                   |
|---------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|---------------------------|
| SBR Latex                                                                                   | 1519<br>                                | 1503<br>                         | 1503+<br>1708                     | 1503+<br>1708                     | 1708                      |
| Latex ML-4'                                                                                 | 14                                      | 47                               | 69                                | . 94                              | 120                       |
| Compound No.                                                                                | <u>A</u>                                | В                                | C                                 | _ <u>D</u>                        | E                         |
| Masterbatch ZnO Stearic Acid Altax AgeRite Powder Sulfur                                    | 145<br>5.0<br>1.5<br>3.0<br>1.25<br>2.0 |                                  |                                   |                                   | <del></del>               |
| Rheometer                                                                                   |                                         |                                  |                                   |                                   |                           |
| Torque, min. Torque, max. Time, scorch Time, 90% cure                                       | 1.2<br>73<br>12<br>33                   | 3.2<br>69<br>14<br>36            | 5.7<br>82<br>12<br>37             | 7.0<br>86<br>11<br>36             | 9.5<br>93<br>10<br>34     |
| Stress-Strain, Cured                                                                        | 1 35 '                                  | F                                |                                   |                                   |                           |
| 200% Modulus, psi<br>300% Modulus, psi<br>Tensile, psi<br>Elongation, %<br>Hardness, Duro A | 1000<br>1250<br>1350<br>350<br>68       | 750<br>1300<br>1750<br>370<br>60 | 1000<br>1800<br>2300<br>360<br>63 | 1000<br>2150<br>2150<br>300<br>63 | 1200<br>2050<br>290<br>63 |

Starch Xanthate: Hoosier Pearl Corn Starch

0.5 mole NaOH

0.07 DS

SBR Latex: nominal 23.5% Bound Styrene

Fatty Acid Emulsifier Viscosity varied as shown.



TABLE VIII

Effect of SBR Mooney Viscosity on SBR/SRF Black Compounds

| Sample No.                                                                    | 35P13-6                                     | 36P13-7                         | 37P13-8                         | 37P13-9                         | 38P13-10                        |
|-------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| SBR Latex                                                                     | 1519                                        | 1503                            | 1503+<br>1708                   | 1503+<br>1708                   | 1708                            |
| ML-4'-212°                                                                    | 14                                          | 47                              | 69                              | 94                              | 120                             |
| Compound No.                                                                  | <u>27A</u>                                  | <u>27</u> B                     | <u>270</u>                      | 27D                             | <u>27E</u>                      |
| Parts Recipe Rubber SRF ZnO Stearic Acid Altax PBNA Sulfur                    | 100<br>50<br>5<br>1.5<br>3.0<br>1.25<br>2.0 |                                 |                                 |                                 | <del>&gt;</del>                 |
| Rheometer, LS, 293°F                                                          |                                             |                                 |                                 |                                 |                                 |
| Torque, min. Torque, max. Time, scorch Time, cure                             | 1.0<br>47<br>9.0<br>21                      | 3.4<br>62<br>7.0<br>23          | 4.5<br>68<br>6.3<br>24          | 5.8<br>82<br>6.3<br>28.5        | 7.1<br>86<br>5.5<br>30.5        |
| Stress-Strain, 293°F                                                          | Cure                                        |                                 |                                 |                                 |                                 |
| Cure Time, min. 300% Modulus, psi Tensile, psi Elongation, % Hardness, Duro A | 25<br>1300<br>2200<br>500<br>62             | 25<br>1450<br>2750<br>520<br>63 | 25<br>1600<br>2800<br>500<br>65 | 30<br>1800<br>2750<br>440<br>65 | 30<br>2000<br>2800<br>400<br>67 |



Previous work in other laboratories indicated that better physical properties are obtained as the degree of substitution (DS) decreases. A series of SBR 1500/45 phr starch xanthide masterbatches were prepared to further evaluate these findings. A 10% corn starch slurry which was treated with 0.5 mole NaOH was reacted with various levels of carbon disulfide. The starch xanthate was blended with SBR 1500 latex and coagulated using the semi-continuous procedure. None of the coagulations gave a good crumb size. This was particularly true for the lower D.S. samples. The rosin emulsifier used in SBR 1500 is suspected as the cause of the poorer crumb size. Most of the bench scale work has used a fatty acid emulsifier or mixed fatty/rosin acid emulsifier. Visual observations indicate higher losses in the serum when the D.S. was decreased.

The physical testing data for this series are shown in Table IX. Several samples showed exceptionally good properties. Sample 40P14-3 gave excellent properties. The trend toward better physicals with reduced D.S. is evident. The physicals for the vary low D.S. samples, however, were very erratic. The best balance of properties is obtained with 0.06-0.07 D.S. starch xanthate.

SBR 1500 (rosin emulsifier) has previously shown higher tensiles than other SBR's in starch xanthide masterbatches. Masterbatches based on SBR 1500 and SBR 1503 (fatty emulsifier) were prepared with and without the use of Nalco 107 (polyamine) as a coagulation aid. Each coagulation was further subdivided into air dried and Brabender extrusion dried sections. The SBR 1500 gives a crumb which is difficult to drain. Nalco 107 does not improve the crumb size of either the SBR 1500 or SBR 1503 masterbatches. Nalco 107 is not recommended for SBR starch masterbatch coagulations. The SBR 1503 without Nalco 107 gave the best coagulation crumb. The physical testing results (Table X) similar tensile properties except for one SBR The SBR 1500 showed the capability of excellent proper-1500 masterbatch. The conditions needed to obtain these properties consistently are not known nor is the reason for the difference between SBR 1500 and SBR 1503 understood. The Nalco 107 does not affect physical properties except that it significantly increases the cure rate. This is not unexpected since this polyamine is known to accelerate the cure in other SBR products. Except for the one SBR 1500 masterbatch, extrusion drying did not affect tensile. The primary effect of extrusion drying in this case is making the material softer (lower hardness and modulus) and more homogeneous. Except for the one SBR 1500 masterbatch, extrusion drying did not affect tensile. The primary effect of extrusion drying in this case is making the material softer (lower hardness and modulus) and more homogeneous.

A series of SBR 1708/oil/starch xanthide samples were prepared. The level of Sunthene 380, a naphthenic extender oil was varied from 5 phr to 50 phr. The starch xanthide loading was varied to maintain a 45 parts SX to 100 parts rubber plus oil ratio. Two samples were prepared with higher starch xanthide loadings but the oil was withheld until compounding. Samples were also prepared with different oils. The physical testing data for these samples are shown in Table XI. The tensiles for all samples were very good, particularly since all the previous tensile data for SBR/50 oil/70 starch xanthide masterbatches are about 1100 psi. As expected, the tensiles decrease as the oil level increases (Samples A, B, C, D and G). There is no sacrifice in properties up to 10 phr oil. Beyond the 10 phr level, there seems to be a tendency to reduce tensile significantly with an overcure. Nonetheless, the generally good tensiles in this series was very encouraging.



TABLE IX

Effect of Degree of Carbon Disulfide Substitution on the Physical Properties of SBR 1500/45 phr Sterch Xanthide Masterbatches

| 9345                                                                          | A                               | В                               | С                               | D                                    | E                                    |
|-------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|
| Sample No.                                                                    | 39P14-1                         | 39P14-2                         | 40P14-3                         | 40P14-4                              | 41P14-5                              |
| Degree of Substitution                                                        | 0.114                           | 0.078                           | 0.068                           | 0.048                                | 0.032                                |
| CS <sub>2</sub> Efficiency, %                                                 | 91                              | 78                              | 82                              | 72                                   | 65                                   |
| Rheometer, LS @ 293°F                                                         | •                               |                                 |                                 |                                      |                                      |
| Torque, min. Torque, max. Time, scorch Time, cure                             | 4.0<br>. 60<br>23<br>49         | 4.0<br>72<br>16.5<br>34         | 5.0<br>72<br>9.7<br>26          | 4.8<br>67<br>11<br>27                | 4.5<br>71<br>12<br>31                |
| Stress-Strain, Cured at                                                       | 293 <sup>0</sup> F              |                                 |                                 |                                      |                                      |
| Cure Time, min. 300% Modulus, psi Tensile, psi Elongation, % Hardness, Duro A | 50<br>1150<br>2100<br>420<br>57 | 35<br>2400<br>2400<br>300<br>62 | 30<br>1600<br>3000<br>430<br>58 | 30<br>1450<br>2300-2800<br>400<br>56 | 30<br>1400<br>2500-2900<br>440<br>54 |

| Compound Recipe    | phr   |
|--------------------|-------|
| SBR/SX Masterbatch | 145.0 |
| Zinc Oxide         | 5.0   |
| Stearic Acid       | 1.5   |
| Altax              | 3.0   |
| PBNA               | 1.25  |
| Sulfur             | 2.0   |



|         | 150(                                                              |                                                |
|---------|-------------------------------------------------------------------|------------------------------------------------|
|         | SBR                                                               |                                                |
|         | USING                                                             | GTTGC                                          |
|         | EVALUATION OF 45 PHR STARCH XANTHIDE MASTERBATCHES USING SBR 1500 | AND CRE 1503 ATR OFFICE VERSING FYAUTHER DRIFT |
| TABLE X | THIDE M                                                           | TARRO                                          |
| TABI    | XANT                                                              | TTau                                           |
|         | TARCH                                                             | ATR                                            |
|         | PHR S                                                             | 1503                                           |
|         | 45 1                                                              | CRP                                            |
|         | OF                                                                | CIN V                                          |
|         | VALUATION                                                         |                                                |
|         | H                                                                 |                                                |

| Sample         52P21-1           SBR         1500           Nalco 107         No           Drying         Air           Rheometer, 293°F.         18           Torque, Min.         135           Scorch Time         11           Time to T90         34           Physical Properties, 293°F. Cure 300% Modulus         1600 | A<br>52P21-1A<br>1500<br>No<br>Air<br>11<br>135<br>11<br>34<br>293°F. Cure<br>1600 | A B C C C C C C C C C C C C C C C C C C | · ·  | D<br>1500<br>Yes<br>Ext.<br>7.5<br>88<br>7.2<br>19.5 | E<br>53P21-3A<br>1503<br>No<br>Air<br>117<br>117<br>43 | F<br>53P21-3E<br>1503<br>No<br>Ext.<br>4.7<br>85<br>14<br>43 | G<br>53P21-4A<br>1503<br>Yes<br>Air<br>9.0<br>122<br>7<br>24 | H<br>53P21-4E<br>1503<br>Yes<br>Ext.<br>5.5<br>94<br>8.5<br>27 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|
| Tensile, psi                                                                                                                                                                                                                                                                                                                   | 1600                                                                               | 1600                                    | 1500 | 3100                                                 | 1450                                                   | . 1350                                                       | 1400                                                         | 1550                                                           |
| Elongation, %                                                                                                                                                                                                                                                                                                                  | 300                                                                                | 300                                     | 100  | 320                                                  | 220                                                    | 320                                                          | 230                                                          | 310                                                            |
| Durometer A                                                                                                                                                                                                                                                                                                                    | 85                                                                                 | 59                                      | 91   | 63                                                   | 81                                                     | 99                                                           | 80                                                           | 89                                                             |

Extruder - Brabender



Effect of Extender Oil Type and Level on Physical Properties of SBR 1708/0il/Starch Xanthide Masterbatches

| J SIPIO-4                   | 70<br>50<br>Sunpar<br>115<br>Paraff.    | 220                                                                          | 20.<br>1300<br>1500<br>370<br>62                                                                            | 30,<br>1300<br>1500<br>360<br>63                                                                            |
|-----------------------------|-----------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <u>1</u><br>21P10-3         | 70<br>,50<br>Sundex<br>8125<br>Hi.Arom. | 220                                                                          | 25.00<br>2550<br>340<br>64                                                                                  | 35°<br>2200<br>2500<br>340<br>67                                                                            |
| H<br>20P10-2                | 70<br>50<br>Gulf<br>NE 95<br>Aromatic   | 220                                                                          | 20.<br>1300<br>1750<br>410<br>58                                                                            | 30.<br>1 <sup>1</sup> +00<br>1700<br>380<br>59                                                              |
|                             | 70<br>50<br>Sunth.<br>.380<br>Naph.     | 520                                                                          | 20.<br>1600<br>1700<br>330<br>65                                                                            | 30'<br>1700<br>1750<br>310<br>65                                                                            |
| 1979-6                      | 0 0                                     | 162                                                                          | 30°<br>600<br>1500<br>490<br>143                                                                            | 10.0<br>1400<br>1400<br>1400<br>1440                                                                        |
| E 1979-5                    | 50                                      | 150                                                                          | 15.<br>1900<br>2000<br>320<br>58                                                                            | 25°<br>1100<br>1900<br>280<br>60                                                                            |
| D-<br>18P9-4                | 37.5                                    | 500                                                                          | 15.<br>1800<br>1950<br>310<br>68                                                                            | 25°<br>14co<br>1600<br>230<br>71                                                                            |
| C<br>18P9-3                 | 25                                      | 180                                                                          | 15.<br>1900<br>2150<br>330<br>65                                                                            | 25°<br>1350<br>1500<br>220<br>65                                                                            |
| B<br>17P9-2                 | 50 10 380                               | 160                                                                          | 1350<br>1350<br>2300<br>280<br>64                                                                           | 25.00<br>2500<br>300<br>66                                                                                  |
| A                           | 48<br>5<br>Sunthene                     | 153                                                                          | 15°<br>1550<br>2300<br>260<br>69                                                                            | 25.<br>1550<br>2300<br>270<br>69                                                                            |
| Compound Masterbatch Sample | Starch, phr Oil, phr Oil Oil            | Mosterbatch<br>Sunthene 380<br>Zinc Oxide<br>Stearic Acid<br>Altax<br>Sulfur | Cure Time @ 293°F<br>Hodulus 200%, psi<br>Hodulus 300%, psi<br>Tensile, psi<br>Elongation, %<br>Durometer A | Cure Time @ 293°F<br>Modulus 200%, psi<br>Modulus 300%, psi<br>Tensile, psi<br>Elongation, %<br>Durometer A |

Starch: Hoosier Pearl Corn Starch Xanthate: 0.08-0.07 D.S. (estimated) Coagulation: Semi-Continuous, 160°F, pH 4-5 SBR 1708: 120 ML-4'-212°F



## Pilot Plant Coagulation Scale-Up

Despite some misgivings about the reproducibility of the bench scale coagulations, scale-up in the pilot plant was started. The pilot plant coagulation line flowsheet is shown in Figure 3. While the coagulation itself is continuous, the preparation of the starch xanthate and the latex blending were batch operations. The standard procedure allowed at least 30 minutes for the xanthate to form before the latex was added. The latex, antioxidant emulsion, and sodium nitrite solution were added to the starch xanthate solution and mixed for at least 30 minutes before coagulation was started. Because of the agitation in the blend tank, each coagulation run was limited to 50 pounds of product. The 100 gallon blend tank was agitation with an air driven turbine blade mixer. The blend tank was placed on a scale so materials could be weighed in and the discharge rate determined.

The Xantex was pumped with a Moyno Pump from the weigh/blend tank to the 25 gallon agitated coagulation tank. The coagulation serum pH was maintained by the constant addition of a dilute sulfuric acid solution. The acid flow rate was controlled automatically by a pH controller/indicator. The coagulator overflowed onto a shaker screen equipped with "grizzly bars" with 0.02 inch spacings. In most cases the spent serum was discarded. The wet crumb was dropped into a 25 gallon agitated wash tank with fresh water added continuously. The wash tank overflowed into a cheesecloth lined crumb box. When possible, additional water was drained from the crumb by wrapping the crumb in the cheesecloth and applying pressure manually. The crumb was air dried and rewet with 10-15% water. Some runs consisted of several coagulation variables which were sampled at the coagulator. The bulk of these runs were not always worked up beyond washing. Mechanically this arrangement worked reasonably well.

The initial pilot plant coagulations yielded extremely-fine (small) coagulation crumbs. These fines passed through and plugged the shaker screen and plugged the cheesecloth pores. The conditions which eventually seemed optimum were: (1) pH 3-4, (2) cool temperatures (80°F), and (3) minimum agitation in the coagulator. The initial portion of each coagulation indicated that the actual coagulation required some residence time. Crumbs were not formed immediately. During a run at least some of the new material coagulated as a coating on previously formed crumbs. If agitation was gentle this process caused crumb agglomerates to form. The agglomerates easily broke up with agitation.

Several attempts were made at increasing the coagulation crumb size. Sodium sulfate is naturally formed during coagulation through the neutralization of the sodium xanthate with sulfuric acid. The beginning serum did not contain the sodium sulfate concentration which will eventually build up in the coagulator. The addition of 0.9% sodium sulfate to the initial coagulation serum seemed to reduce the time needed to obtain a good crumb. Higher concentrations in the range of 2 to 3 times the natural level were not particularly advantageous. The addition of about 4% methanol to the coagulation serum seemed to reduce the mushiness of the coagulation crumb. This was not actively pursued because of the toxiological and flammability problems associated with methanol.





9-2-71.



The physical properties for the continuously coagulated pilot plant samples were often disappointing. The better bench scale coagulations gave tensiles between 2000 and 2500 psi such as the typical data shown in Table XII. The continuously coagulated samples gave tensiles generally below 2000 psi - some were below 1500 psi. Tables XIII, XIV, and XV show physical testing data from several continuous coagulation runs. The tensiles ranged from about 1100 to 2200 psi for essentially the same composition. The lack of reproducibility as well as the low level of tensile were unacceptable. A re-examination of the coagulation fundamentals seemed appropriate.

The fundamental parameter in elastomer reinforcement is the particle size of the reinforcing material. The finer or smaller the particle, the better the reinforcement. Distribution or dispersion of the reinforcing agent is also critical. With carbon blacks these factors are generally related to bead breakdown. Other factors are "structure" (surface-to-volume or shape) and chemical bonding between the elastomer and reinforcing agent. The latter is the least documented.

The USDA work shows that the starch is the continuous phase at coagulation. Certainly during blending the starch xanthate solution is the continuous phase. The rubber latex particles are suspended in the starch solution even though the starch solids are less than the rubber solids. It is easy to conceive that during coagulation the starch coats or encases the rubber latex particle or rubber agglomerate. The rubber may not be coagulated in the traditional sense until after the starch coats the latex. It seems improbable that the starch could be coagulated without trapping or coagulating the rubber. This must be the case for the starch to be the discontinuous phase. Thus, the coagulation yields a product which has the phases inverted from the desired condition. This does NOT imply, however, that the coagulation conditions have no influence on the ultimate particle size or physical properties.

By necessity, the ultimate particle size is formed by mechanical action prior to curing. No chemical treatment of the crumb by itself will invert the phases. The available evidence indicates that the mechanical mixing during compounding is not sufficient to obtain a satisfactory starch particle size. The University of Akron discovered that extrusion processing partially dried starch masterbatches enhances physical properties. Electron microscopy verifies that a finer starch particle size is obtained with extrusion processing. Apparently, some moisture must be present. The role water plays has not been defined. Speculation is (1) water softens the starch for easier fragmentation and (2) water, shear, temperature (250-300°F) and maybe residual coagulation acid combine to break down the xanthate and/or the starch polymer itself. Breakdown of the xanthate or starch polymer appears to be a factor because higher degrees of carbon disulfide substitution give poorer physical properties. The higher DS would make the starch xanthate harder to break down because of greater cross-linking.

In summary, the problems are (1) which coagulation conditions give the finest starch particle or thinnest starch coating on rubber, and (2) what conditions promote phase inversion and starch breakdown? Ideally, the finest starch particle size would come from a complete coating of each <a href="Latex">Latex</a> particle. Any agglomeration or clustering of the latex particles (creaming) would increase the starch coating thickness. This would reduce the chance for obtaining a small starch particle during the phase inversion process.



TABLE XII

EVALUATION OF STARCH XANTHIDE/SBR 1503 MASTERBATCHES

COAGULATED AT DIFFERENT TEMPERATURES

| Compd. 148                                                                     | G       | Н       | I       |
|--------------------------------------------------------------------------------|---------|---------|---------|
| Sample No. Starch Level Coagulation Temp., °F. Wet Crumb, Grams                | 66P25-1 | 66P25-2 | 67P25-3 |
|                                                                                | 45      | 45      | 45      |
|                                                                                | 100     | 125     | 150     |
|                                                                                | 1547    | 1410    | 1460    |
| Compound Recipe Masterbatch Zinc Oxide Stearic Acid PBNA Altax Sulfur          | 145     | 145     | 145     |
|                                                                                | 5.0     | 5.0     | 5.0     |
|                                                                                | 1.5     | 1.5     | 1.5     |
|                                                                                | 1.25    | 1.25    | 1.25    |
|                                                                                | 3.0     | 3.0     | 3.0     |
|                                                                                | 2.0     | 2.0     | 2.0     |
| Cure Time @293°F, min.                                                         | 45      | 45      | 45      |
| Physical Properties 300% Modulus, psi Tensile, psi Elongation Hardness, Duro A | 1800    | 1800    | 1700    |
|                                                                                | 2200    | 2400    | 2100    |
|                                                                                | 360     | . 390   | 350     |
|                                                                                | 68      | 68      | 67      |

SBR 1503: nominal 23.5% Bound Styrene nominal 50 ML Viscosity Fatty Acid Emulsifier



TABLE XIII

Physical Testing of Pilot Plant 45 Starch Xanthide/SBR 1503

Masterbatches Processed Through the Brabender

| Coagulation Run No.                                                           | 3 & 4                     | <u>5</u>                  | 7                         | Average                   |
|-------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Compound No. 914                                                              | K.<br>Brabend             |                           | M                         |                           |
| Rheometer Torque, min. Torque, max. Scorch Time, min. Optimum Cure Time, min. | 6.5<br>67<br>10<br>28     | 6.0<br>65<br>8.5<br>21    | 5.8<br>63<br>8<br>19      |                           |
| Physical Testing 300% Modulus (psi) Tensile (psi) Elongation, % Durometer A   | 1500<br>1750<br>350<br>63 | 1250<br>1500<br>400<br>64 | 1350<br>1400<br>310<br>65 | 1370<br>1550<br>350<br>64 |

SBR 1503: nominal 23.5% Bound Styrene nominal 50 ML Viscosity Fatty Acid Emulsifier



TABLE XIV

## Test Data for Pilot Plant Run 21 (45 phr SX/SBR 1503).

| Sample No.                                                                                                                                                     |                                         | 21-1&2                             | <u>21-3</u>                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|------------------------------------|
| Compound No. 2047                                                                                                                                              |                                         | 10                                 | 11                                 |
| Coagulation                                                                                                                                                    |                                         | Continuous, PP                     | Continuous, PP                     |
| Coagulation pH                                                                                                                                                 |                                         | 2.5-3                              | 4.5-5                              |
| Coagulation Temp.,°F                                                                                                                                           |                                         | 140-120                            | 100                                |
| Wash                                                                                                                                                           |                                         | Lab, Batch                         | >                                  |
| Drying                                                                                                                                                         |                                         | Air @180°F, Rewet,                 | 3 Brabender Passes                 |
| Monsanto Rheometer (3° Arc, 3 cpm, 293°F) Maximum Torque Minimum Torque Scorch Time (t <sub>2</sub> ), Mi Optimum Cure (t <sub>90</sub> ), Cure Rate (k) X 100 | nutes                                   | 80.1<br>6.3<br>19.3<br>80.5<br>3.8 | 78.0<br>6.9<br>21.2<br>89.7<br>3.4 |
| Stress-Strain Tensile Strength, psi                                                                                                                            | Min. Cured<br>@293°F<br>25<br>50<br>100 | 1270<br>2210<br>1980               | 820<br>2150<br>2160                |
| Elongation, %                                                                                                                                                  | 25<br>50<br>100                         | 700<br>410<br>310                  | 680<br>380<br>310                  |
| 300% Modulus, psi                                                                                                                                              | 25<br>50<br>100                         | 560<br>1610<br>1920                | 390<br>1620<br>2060                |
| Shore A2 Hardness                                                                                                                                              | 25<br>50<br>100                         | 54<br>63<br>64                     | 52<br>60<br>64                     |

Notes: (1) 9.45% starch in SX

- (2) 0.057 D.S.(3) mushy crumb
- (4) 5.1 mg starch/ml coag. serum(5) 4.5 mg starch/ml wash serum



Test Data for Pilot Plant Run 22 Using In-Line Mixer (45 SX/SBR 1503)

Passes

| for 3 ]                                                             |                                                                                                                                                         |                                           |                   |                      |                   | 6                |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|----------------------|-------------------|------------------|
| 22-5<br>13<br>Cont.<br>PP<br>4<br>Batch<br>Lab<br>Extruded f        | 78.7<br>6.2<br>20.3<br>59.9<br>5.8                                                                                                                      | 1650<br>1660<br>1520                      | 800<br>370<br>300 | 740<br>1410<br>1520  | 09<br>99<br>89    | 1.109            |
| 22-4<br>12<br>Cont.<br>PP<br>4<br>Batch<br>Lab<br>Brabender Ex      | 80.2<br>6.2<br>18.2<br>58.9<br>5.7                                                                                                                      | 1890<br>1650<br>1700                      | 670<br>330<br>310 | 900<br>1460<br>1650  | 59<br>65<br>66    | 1.109            |
| 22-3<br>11<br>Cont.<br>PP<br>4<br>Batch<br>Lab<br>Moisture, Br      | 82.4<br>5.2<br>14.4<br>39.3                                                                                                                             | 1880<br>1650<br>1600                      | 460<br>340<br>330 | 1320<br>1500<br>1420 | 65<br>65          | 1,105            |
| 22-2<br>10<br>Cont.<br>PP<br>5<br>Batch<br>Lab<br>10%-15% Mo        | 82.2<br>5.4<br>14.8<br>37.9                                                                                                                             | 1310<br>1180<br>1100                      | 450<br>340<br>330 | 1010<br>1060<br>1050 | 64<br>67<br>67    | 1.110            |
| 22-1<br>9<br>Cont.<br>PP<br>5<br>Batch<br>Lab<br>Rewet to           | 70.8<br>4.8<br>16.7<br>39.9<br>9.9                                                                                                                      | 1120<br>1040<br>980                       | 580<br>410<br>330 | 660<br>850<br>910    | 60                | 1.111            |
| 22-W<br>8<br>Cont.<br>PP<br><br>Cont.<br>PP                         | 80.1<br>4.9<br>15.3<br>38.1                                                                                                                             | 1560<br>1670<br>1610                      | 400<br>310<br>350 | 1110<br>1480<br>1450 | 62<br>65<br>65    | 1.107            |
| 22-B<br>7<br>Batch<br>Lab<br><br>Batch<br>Lab<br>Air Dried          | 73.1<br>4.8<br>27.9<br>77.0                                                                                                                             | UC<br>1270<br>1150                        | uc<br>510<br>300  | UC<br>920<br>1150    | uc<br>60<br>62    | 1.102            |
|                                                                     | utes<br>inutes                                                                                                                                          | Min. Cured<br>at 293°F<br>25<br>50<br>100 | 25<br>50<br>100   | 25<br>50<br>100      | 25<br>50<br>100   |                  |
| Sample No. Compound No. 2368 Coagulation Coagulation pH Wash Drying | Monsanto Rheometer (3° Arc, 3 cpm, 293°F) Maximum Torque Minimum Torque Scorch Time (t <sub>2</sub> ), Minutes Optimum Cure (t <sub>90</sub> ), Minutes | Stress-Strain<br>Tensile Strength, psi    | Elongation, %     | 300% Modulus, psi    | Shore A2 Hardness | Specific Gravity |

Eppenbach In-Line Mixer was used in-line between blend tank and coagulator. 1) Notes:

Coagulation pH 3.5-5.0, Temp. @75°F, Recycle Serum only (No added Water). Standard NBS Compounding Recipe & Procedures 3)



The extrusion process for phase inversion was studied at various time by both BFG and the USDA. In general, it was concluded that the extrusion process was essential to obtain satisfactory rubbery properties. The studies, however, indicated a rather broad range of conditions might be suitable (discussed in detail elsewhere in this report). This leaves coagulation as the critical step in obtaining a reproducible masterbatch with satisfactory properties.

Some bench scale work indicated that rapid coagulations would give higher tensile properties. Based on this information the pilot plant coagulation line was modified to get intimate mixing of the acid solution and the Xantex before entering the coagulator. The acid solution was added to the Xantex stream in a water educator or jet just prior to entering an Eppenbach In-Line Mixer. The coagulated mixture discharged into a small hold tank containing the pH electrodes and then overflowed into the coagulator. Later the hold-tank and coagulator were eliminated from the system and the Eppenbach discharged directly onto the shaker screen. The acid solution rate was then adjusted manually based on visual observation of the discharge.

This coagulation system worked well once the flow rates were properly balanced. The piping around the eductor plugged several times because acid backed up into the Xantex line. The coagulum that formed prematurely plugged the eductor nozzle. The crumb size was found to be a function of coagulation pH and coagulation temperatures. Cool coagulation temperatures around 80°F gave larger, firmer crumbs than coagulations at higher temperatures such as 100-120°F. The amount of fines passing through the shaker screen increased as the temperature increased. The best processing was obtained at coagulation pH's between 1.6 and 1.9. At higher pH's slight upsets in flow rates would give incomplete coagulation before discharging. At lower pH's a progressively finer crumb was obtained. While the fines passing through the shaker screen increased at lower pH's, the dissolved starch losses in the serum were reduced.

The masterbatches coagulated in the Eppenbach mixer yielded reproducible tensiles within the 2000 to 2500 psi range. The physical property data for the first five Eppenbach coagulation runs is shown in Table XVI. The data shows that the properties are insensitive to coagulation pH's within the range of 1.0 to 2.2, to coagulation temperatures between 72°F and 120°F, and to acid solution concentration between 2.5 and 10%. As might be expected, the wash pH affects the cure rate.

Because relatively good properties can be obtained consistently, the Eppenbach In-Line coagulation process was adapted as the standard.



TABLE XVI Physical Properties of Five Pilot Plant Coagulations Using Eppenbach Mixer for Coagulation

| E-6<br>6<br>2.2<br>5                                          | 2.7                     | 75.5<br>15.2<br>43.2<br>8.2                                                           | 1070<br>1730<br>1810                              | 1540<br>1920<br>1970    | 380<br>320<br>320         | 56<br>63                    |        |
|---------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|---------------------------|-----------------------------|--------|
| E-6<br>3<br>1.8<br>5                                          | 3.3                     | 64<br>6.8<br>16.3<br>33.4<br>13.5                                                     | 1000<br>1750<br>1860                              | 2060<br>1750<br>1860    | 490<br>300<br>300         | 60<br>60<br>60              |        |
| E-6<br>1.5<br>5.72                                            | 2.5                     | 64.5<br>5.3<br>15.3<br>44.0<br>8.0                                                    | 650<br>1150<br>1320                               | 2250<br>1950<br>1750    | 590<br>400<br>350         | 54<br>58<br>60              |        |
| E-5<br>6&7W<br>1<br>2.5<br>80                                 | 1.8                     | 75<br>7.0<br>22.8<br>86.8<br>3.6                                                      | 270<br>1120<br>1500                               | 720<br>2300<br>1910     | 660<br>500<br>350         | 54<br>58<br>62              |        |
| E-5<br>3&4W<br>2<br>2.5<br>80                                 | 2.2                     | 73.5<br>6.0<br>21.0<br>60.5<br>5.8                                                    | 350<br>1400<br>1900                               | 880<br>2040<br>2250     | 640<br>380<br>350         | 59<br>99<br>99              |        |
| E-4<br>5W<br>2<br>5                                           |                         | 76.5<br>6.0<br>22.5<br>70.0                                                           | 240<br>1310<br>1860                               | 600<br>1970<br>2320     | 820<br>400<br>350         | 50<br>57<br>60              |        |
| E-4<br>3W<br>2<br>5<br>80                                     |                         | 75<br>6.2<br>21.2<br>60.7                                                             | 750<br>1580<br>1800                               | 2080<br>2180<br>1940    | 650<br>380<br>320         | 55<br>60<br>62              |        |
| E-4<br>2W<br>1.6<br>5<br>80                                   |                         | 78.5<br>6.8<br>22.8<br>69.0                                                           | , 400<br>1600<br>1970                             | 910<br>2360<br>2090     | 590<br>400<br>310         | 55<br>61<br>64              |        |
| E-2<br>ABC<br>0 1.5<br>5                                      | der                     | F 71.5<br>6.2<br>18.0<br>74.2<br>4.1                                                  | Recipe, 293°F<br>550<br>1000<br>1440              | 2070<br>2110<br>1860    | 750<br>510<br>380         | 54<br>58<br>62              | 0<br>L |
| E-1 .<br>D<br>1.5-2.0<br>10<br>80                             | <br>Brabender           | cps, 293°<br>71.5<br>5.7<br>23.5<br>,m.70.5                                           | Control Rec<br>5 280<br>0 1070<br>0 1680          | 1200<br>2380<br>2030    | 720<br>500<br>340         | 52<br>58<br>60              | 10/410 |
| Run No. Sample No. Coagulation pH Acid Conc.,% Coag. Temp.,°F | Wash Water pH<br>Drying | Rheometer, 3°, 3 Max. Torque Min. Torque Scorch (t2),min. Optimum Cure(t90) Cure Rate | Stress-Strain, Co<br>300% Modulus, 25<br>(psi) 50 | Tensile, 25<br>(psi) 50 | Elongation, 25 (%) 50 100 | Hardness, 25<br>(Duro A) 50 |        |
|                                                               |                         |                                                                                       | <del>-</del> 29 <del>-</del>                      |                         |                           |                             |        |

Composition: 45 phr SX/SBR 1503 CS2: 0.1 mole/mole starch NaNO2: 0.1 mole/mole starch SX Conc.: 8%



## Extrusion Processing

As described elsewhere in this report, the coagulation yields rubber dispersed in a continuous starch phase. Extrusion processing or extrusion drying of starch masterbatches containing 8 to 20% moisture was found to enhance the masterbatch physical properties by the University of Akron. The reason, which was not fully explored by the University of Akron, is that a better or more complete phase inversion is obtained compared with no mechanical action prior to compounding. Non-extrusion processed starch/SBR masterbatches yield stiff, boardy, hard, short (low elongation) compounds which visually show gross non-homogeneity. Such compounds are not suitable for any or very many rubber applications. Extrusion processed samples, by contrast, gave softer, more rubbery compounds. Although the tensiles were sometimes similar, tensile is not the only rubber property criteria and, in fact, it may be less important than other properties. Thus, extrusion processing starch masterbatches is necessary to obtain a satisfactory product.

With the important advantages associated with extrusion processing, it naturally required further study. Unfortunately, the early attempts were plagued with the unrecognized variability of the coagulation process at that time. Many of the experiments involving extrusion processing variables must be viewed with this background.

The extrusion processing procedure used for standard bench scale coagulations and control type pilot plant samples was three passes through a 25/1 L/D Brabender laboratory extruder with a spaghetti die (7-1/32) inch holes). The feed zone and second zone temperatures were  $257^{\circ}$ F, the discharge zone temperature was  $300^{\circ}$ F. These conditions were rather arbitarily set by the University of Akron and USDA laboratory. For cross reference and cross checking purposes these conditions were used as standard.

Since the USDA laboratory in Peoria was conducting a statistically designed set of experiments using the Brabender, BFG did not duplicate their effort. Two other laboratory extruders were evaluated plus the pilot plant scale V.D.Anderson Expander Dryer. The NRM (National Rubber Machinery Company) extruder has a short 2.2/1 L/D ratio which is used by many rubber extruders. A 1/4 inch round die was used on this one-inch diameter screw extruder. Table XVII shows the data for several experiments using the NRM and for Brabender and air dried only controls. The NRM and Brabender seem to give similar results despite the shorter residence time in the NRM extruder. A single pass does not give suitable physicals consistently.

A large quantity of 45 phr starch xanthide masterbatch was prepared. The bulk of the masterbatch was processed with one pass on the NRM extruder. Smaller samples were processed with two passes in the NRM and three passes in the Brabender. The larger batch was compounded both in a Banbury and on a mill. The smaller samples were mill mixed. These data (Table XVIII) show little difference between the extrusion conditions. The Banbury mix, however, showed poorer physical properties than the mill mixed samples. Shear conditions, temperatures, and residence time differences could be responsible for these variations.



TABLE XVII

Effect of Various Drying Conditions on SBR 1503/
Starch Xanthide Masterbatches

| Sample 44P16-                                                                                              | 1                                             | 2                                                     | <u>3</u> .                                         | 4                                                     | 5                                                     | 6                                                  | 7                                                  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Extruder Type No. Passes Extruder, OF                                                                      |                                               | Brabender<br>1<br>255                                 | Brabender<br>3<br>255                              | NRM<br>1                                              | NRM<br>2                                              | NRM<br>1                                           | NRM<br>3                                           |
| Die Temp., <sup>O</sup> F<br>Screw Speed, RPM<br>Air Drying Temp., <sup>O</sup> F                          | 180-200                                       | 300<br>100<br>180-200                                 | 300<br>100                                         | 220<br>40<br>180-200                                  | 1) 220<br>2) 283<br>40<br>180-200                     | 283<br>40<br>180-200                               | 283<br>40                                          |
| Die Configuration No. Dies % Volatile Matter*                                                              | 67.3                                          | 1/32"<br>round<br>7<br>14.1                           | 1/32"<br>round<br>7<br>2.0                         | 1/4" round 1 10.2                                     | 1/4" round 1 12.6                                     | 1/4" round 1 7.5                                   | 1/4" round 1 6.3                                   |
| Compound No.                                                                                               | A38A                                          | В                                                     | <u>C</u>                                           | D                                                     | E                                                     | F                                                  | G                                                  |
| Rheometer, LS, 293°F                                                                                       |                                               |                                                       |                                                    |                                                       |                                                       | ·                                                  |                                                    |
| Min. Torque Max. Torque Scorch Time, min. Cure Time, min.                                                  | 9.5<br>119<br>9.0<br>30                       | 3.2<br>60<br>13.0<br>50                               | 3.8<br>80<br>12.5<br>34                            | 4.5<br>61<br>10.8<br>26                               | 3.8<br>49<br>10.0<br>26                               | 3.5<br>60<br>10.0<br>26                            | 3.5<br>61<br>10.5<br>29                            |
| Stress-Strain, 293°F                                                                                       | Cure                                          |                                                       |                                                    |                                                       |                                                       |                                                    |                                                    |
| Cure Time, min. 200% Modulus, psi 300% Modulus, psi Tensile, psi Elongation, % Hardness, Duro A Appearance | 30<br>1700<br><br>1700<br>200<br>84<br>Spotty | 50<br>1300<br><br>1300<br>200<br>68<br>Very<br>Spotty | 30<br>1050<br>1450<br>1650<br>400<br>65<br>Uniform | 30<br>1100<br><br>1400<br>260<br>68<br>Very<br>Spotty | 30<br>1000<br><br>1300<br>250<br>66<br>Very<br>Spotty | 30<br>1100<br>1650<br>1750<br>320<br>67<br>Uniform | 30<br>1050<br>1550<br>1650<br>310<br>64<br>Uniform |
| Compound Recipe  Masterbatch                                                                               | <u>phr</u><br>145                             |                                                       | Starch X                                           | anthate:                                              | Hoosier 0.5 mole 0.0 D.S.                             |                                                    | Starch                                             |
| Zinc Oxide Stearic Acid                                                                                    | 5.0<br>1.50                                   |                                                       | SBR 1503                                           | : 47 ML-                                              | 4'-212 <sup>0</sup> F                                 |                                                    |                                                    |
| Altax<br>PBNA<br>Sulfur                                                                                    | 3.00<br>1.25<br>2.00                          |                                                       | Extruder                                           |                                                       | ir dried<br>0% moixtu                                 |                                                    |                                                    |

\* After extrusion but before air drying



TABLE XVIII

EVALUATION OF DRYING METHODS AND COMPOUNDING MIXERS FOR 45 PHR STARCH XANTHIDE/SBR 1503 MASTERBATCHES

| Compound No. 298 Masterbatch 72P27                    | <u>A</u><br>1A | $\frac{\mathrm{B}}{\mathrm{1}\mathrm{A}}$ | <u>C</u><br>1B | D | 2         |
|-------------------------------------------------------|----------------|-------------------------------------------|----------------|---|-----------|
| Drying Conditions After Air Drying to 10-20% Moisture |                |                                           |                |   |           |
| Extruder type                                         | NRM            | NRM                                       | NRM .          |   | Brabender |
| Speed, RPM                                            | 40             | 40                                        | 40             |   | 100       |
| Barrel Temp.,°F                                       | 270            | <b>27</b> 0                               | 270            |   | 257       |
| Die Temp.,°F                                          | 310            | 310                                       | 310            |   | 302       |
| Number of Passes                                      | 1              | 1                                         | 2              |   | 3         |
| Compound Recipe                                       | : 0            | ,                                         | •              |   |           |
| Masterbatch                                           | 145            | 145                                       | 145            |   | 145       |
| Zinc Oxide                                            | 5              | 5                                         | 5              |   | 5         |
| Stearic Acid                                          | 1.5            | 1.5                                       | 1.5            |   | 1.5       |
| PBNA                                                  | 1.25           | 1.25                                      | 1.25           |   | 1.25      |
| Altax                                                 | 3.0            | 3.0                                       | 3.0            |   | 3.0       |
| Sulfur                                                | 2.0            | 2.0                                       | 2.0            |   | 2.0       |
| Mixer                                                 | Mill           | Banbury                                   | Mil1           |   | Mill      |
| Rheometer: 3 cps, 3°, 293°F                           |                |                                           |                |   |           |
| Torque, min.                                          | 5.8            | 5.0                                       | 5.6            |   | 6.5       |
| Torque, max.                                          | <b>7</b> 5     | 66.5                                      | 72             |   | 110       |
| Scorch Time (t 2)                                     | 10.6           | 10.6                                      | 10.7           |   | 11.5      |
| Cure Time (t <sub>90</sub> )                          | 26             | 26                                        | 28             |   | 33        |
| Stress-Strain: 293°F cure, 30 minutes                 |                |                                           |                |   |           |
| 300% modulus, psi                                     | 1550           | 1450                                      | 1500           |   | 1600      |
| Tensile, psi                                          | 1650           | 1450                                      | 1700           |   | 1750      |
| Elongation, %                                         | 350            | 300                                       | 360            |   | 350       |
| Durometer A                                           | <b>7</b> 7     | 76                                        | 77             |   | 76        |



An 0.8 inch Welding Engineers dual worm extruder was also tried. Barrel temperatures and worm speeds were varied. The 45 phr starch masterbatch was ground in a Fitzmill and wet with 15% water. The crumb was free-flowing enough to feed the extruder feed hopper. Only a single pass was used. Since the vacuum vent did not have a condenser in-line, it did not work properly. At the end of the run the vent was almost completely plugged. The primary objective of this trial was to study feeding characteristics, rates, and torque requirements to determine if further work at the Welding Engineers laboratory would be practical. None of the samples were completely dried by the extruder. After further air drying all the samples were compounded. In general, the samples processed with the Welding Engineers extruder were only slightly poorer than the three pass Brabender control (Table XIX). Although the data indicated further work with Welding Engineers should proceed, there was no follow up because of coagulation problems.

The V.D.Anderson Expeller/Expander drying system is a popular mechanical dryer in the synthetic rubber industry. The Independence Technical Center has a "Model" Anderson system which is the smallest produced. In our judgment, the Dewatering Expeller would be ineffective with the starch masterbatch coagulation crumb. No experiments were made with the Expeller.

The initial trials used 45 phr starch xanthide/SBR 1503 masterbatches made in the pilot plant. Several coagulation runs were combined to obtain enough material. The masterbatch was air dried at  $180^{\circ}F$  and re-wet with about 10-15% water and allowed to soak at least 16 hours.

The controlled variables for the Expander are: (1) screw speed, (2) die configuration (number and size), and (3) steam, water, or neutral on the barrel jacket. The die temperature and the temperature near the end of the screw are also recorded.

The first run was made with seven 1/8-inch round hole dies and 150 rpm. The barrel temperature quickly rose from 260 to over 400°F. The product was burned and gave off a foul odor. It was obvious that the die area should be increased. No product was retained. After cleaning, the dies were changed to five 1/4-inch round holes and the speed reduced to 100 rpm. The temperature started to rise rapidly again. Cooling water was put on the barrel jacket. The temperature averaged 310°F and ranged up to 320°F. The masterbatch was dark grey but not burned. Some additional water was added to some of the masterbatch which brought the temperature down and some lighter material was obtained. The discharge also had a higher moisture level. The bulk of Run 2 was retained. For Run 3, the dies were five 1/4-inch round holes plus two  $1/8 \times 3/8$ -inch slots; the screw speed was again 100 rpm. Cooling water was still needed on the barrel jacket. When the temperature rose over 300°F, the masterbatch turned grey. Most of Run 3 was made at 290-300°F. Higher moisture feed gave lower barrel temperatures and higher moisture in the finished product. The Run 3 rate was 220 pounds per hours; the die plate was 340°F (steam on). Run 3 was divided into two sections: A Section was the initial, dryer portion while B Section had higher moisture. In both cases, the drying was finished in an air drier at 180°F and the masterbatch retained.



Avon Lake Trial of the 0.8 inch Welding Engineers Dual

Worm Extruder for Storch Mesterbatches

| Run                                                                                         | 1                                    | 2                                  | 3                                      | <u></u>                   | 5                          | 6                         | 4/5                       | Control                                               |                            |
|---------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|----------------------------------------|---------------------------|----------------------------|---------------------------|---------------------------|-------------------------------------------------------|----------------------------|
| Speed, RPA<br>Torque, in-1b.<br>Rate, Gm/Min.                                               | 50<br>42<br>32                       | 75<br>50<br>56                     | 75<br>50<br>56                         | 75<br>42<br>52            | 165<br>55,<br>121          | 50<br>33<br>31            | Trans-<br>ition<br>Run 4  | 3-Pass<br>Brs<br>bender                               | -                          |
| Zone 2 Temp., OF Zone 3 Temp., OF Zone 4 Temp., OF Zone 5 Temp., OF                         | 235<br>240<br>245<br>245             | 245<br>245<br>245<br>245           | 2 <sup>1</sup> +5<br>250<br>285<br>278 | 285<br>308<br>315<br>275  | 265<br>300<br>315<br>275   | 275<br>308<br>290<br>275  | to Run 5                  | 250<br>250<br>300                                     |                            |
| Vacuum Vent, in Hg<br>Stock Temp., <sup>O</sup> F                                           | 16<br>270                            | 5<br>295                           | 0 300                                  | 3/†0<br>0                 | 0<br>350                   | 0<br>330                  |                           | 0                                                     |                            |
| % Moisture                                                                                  | 4.7                                  | 5.7                                | 5.2                                    | 2.4                       | 5.1                        | 1.7                       |                           |                                                       |                            |
| Compound 1261                                                                               | C                                    | D                                  | <u>E</u>                               | F                         | G                          | <u>H</u>                  | <u> </u>                  | В                                                     | Avg.<br>W.E.               |
| Rheometer Torque, min. Torque, max. Scorch, \( \Delta \) 2 \( \) Cure Time, t <sub>90</sub> | 6.1;<br>87<br>14<br>41               | 6.5<br>87<br>14<br>40              | 6.2<br>86<br>14<br>41                  | 6.2<br>65<br>15.5<br>45   | 6.7<br>78<br>16<br>47      | 7.2<br>91<br>14<br>42     | 6.5<br>82<br>15<br>46     | 5.8<br>82<br>14.5<br>43                               |                            |
| Tensile, psi                                                                                | red 45'<br>1150<br>1300<br>330<br>67 | at 29<br>1200<br>1500<br>410<br>66 | 1100<br>1300                           | 1100<br>1350<br>400<br>67 | ·1000<br>1200<br>380<br>62 | 1150<br>1150<br>300<br>69 | 1150<br>1400<br>350<br>63 | 1250<br>1 <sup>1</sup> 450<br>370<br>6 <sup>1</sup> 4 | 1120<br>1310<br>360<br>65. |



The physical testing results for the retained Anderson samples is shown in Table XX. Also shown are the results of three pilot plant masterbatches processed through the Brabender. The Anderson trials included these masterbatches. The average Anderson properties are slightly poorer than the average Brabender properties.

The Anderson Expander has been used for processing all but one of the pilot plant lots used in compounding evaluations. While the results generally are slightly poorer with the Anderson versus the three pass Brabender control, it was the only practical method of processing the larger pilot plant quantities. Some additional comparisons between Brabender and Anderson processing are shown in Table XXI.

Some differences between the Brabender and Anderson might be caused by variations in feed preparation. The wet masterbatch for the Brabender was milled to obtain a sheet which was cut into strips. The moisture is well distributed in the sheet. For the Anderson the airdried chunks were rewet in a drum but were not processed any further before feeding the extruder. The moisture was not well distributed in this case. One pass versus three pass Brabender processing was evaluated. The one pass samples were air dried after extrusion. The data indicate that about half the one pass samples were equivalent to their three pass counterparts. The other half show poorer properties for the one pass samples.

In conclusion, extrusion processing is essential in obtaining satisfactory physical properties but the properties are insensitive to a wide range of equipment and conditions. The Anderson Expander is an acceptable piece of equipment for the extrusion processing step.



Physical Testing of Piloe Plant 45 Starch Xanthide/SBR 1503 Masterbatches Processed Through the Brabender vs. the Anderson Expander

| B Average           | E-I               | 5.9<br>9.0<br>1.3<br>3.4                                                                  | 50 1280 .<br>50 1420 .<br>10 340                                |
|---------------------|-------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 3A 3B               | E E               | 7.1<br>82<br>11.5<br>30                                                                   | 1300 1250<br>1550 1400<br>1550 340                              |
| 2                   | H                 | 8.8<br>73<br>15                                                                           | 1300                                                            |
| Anderson Run        | Coupound 1523     |                                                                                           | ·                                                               |
| Ανοπαβο             |                   |                                                                                           | 1370<br>1550<br>350                                             |
| 7                   | N                 | 5.3<br>8.0<br>1.9                                                                         | 1350<br>1400<br>310                                             |
| 2                   | I I               | 6.0                                                                                       | 1250                                                            |
| 3 % 4               | I Northead        | 6.5                                                                                       | 1750<br>1750<br>350                                             |
| Cocculation Run No. | Compound No. 911: | Rhcometer<br>Torque, min.<br>Torque, man.<br>Scorch Time, min.<br>Optimum Cure Time, min. | Physical Testing 300% Modulus (psi) Tensile (psi) Elongation, % |



Comparison of Laboratory Brabender Extrusion Processing Versus Pilot Plant Anderson Expander Processing

| Lot H 30RF 1032 NBR VDA BRAB.               | 4586-7 4586-3 | 30 31<br>3.4 3.8<br>10.1 19.3<br>22.6 40.0<br>18.4 11.1                                                         | 820 620<br>850 840<br>850 890              | .920 2050<br>.780 2080<br>.800 2020 | 540 650<br>520 550<br>530 510 | 63 62<br>63 62<br>63 62 |
|---------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|-------------------------------|-------------------------|
| 55<br>25<br>1708<br>SBR<br>BRAB.            | 4150-1        | 5 64.5<br>7 6.8<br>0 19.5<br>5 70<br>8 4.5                                                                      | 650<br>1000<br>1150                        | 1430 1<br>1410 1<br>1400 1          | 780<br>490<br>400             | 52<br>57<br>60          |
| Lot D 55 25 1708 SBR VDA                    | 4150-3        | 43.<br>6.<br>17.<br>36.                                                                                         | 930<br>1170<br>1160                        | 1350<br>1360<br>1160                | 560<br>380<br>300             | 62<br>65<br>67          |
| 30RF<br><br>1503<br>SBR<br>BRAB.            | 4151-1        | 73<br>6.0<br>22.1<br>87<br>3.5                                                                                  | 280<br>950<br>1370                         | 710<br>1610<br>1370                 | 700<br>420<br>300             | 57<br>60<br>65          |
| 1503<br>SBR<br>VDA                          | 4151-3        | 64<br>5.5<br>20.0<br>83<br>3.6                                                                                  | 540<br>920<br>1240                         | 1170<br>1380<br>1550                | 600<br>370<br>350             | 60<br>63<br>62          |
| 70<br>50<br>1708<br>SBR<br>BRAB.            |               | 39<br>4.1<br>21.0<br>63.0<br>5.5                                                                                | 660<br>820<br>940                          | 1500<br>1560<br>1480                | 640<br>520<br>470             | 45<br>46<br>47          |
| Lot B<br>70<br>50<br>1708<br>SBR<br>VDA     |               | 31.8<br>4.0<br>15.0<br>41.6<br>8.6                                                                              | 790<br>890<br>830                          | 1380<br>1220<br>1130                | 600<br>430<br>460             | 55<br>56<br>57          |
| 45<br><br>1503<br>SBR<br>BRAB.              |               | 88.5<br>6.0<br>19.0<br>62.0<br>5.3                                                                              | 610<br>1180<br>1440                        | 1520<br>1810<br>1720                | 800<br>500<br>370             | 57<br>63<br>66          |
| Lot A<br>45<br>45<br><br>1503<br>SBR<br>VDA |               | 56.5<br>5.3<br>16.7<br>45.0<br>8.1                                                                              | 850<br>1270<br>1300                        | 1600<br>1850<br>1670                | 490<br>400<br>370             | 59<br>63                |
| Run 24<br>50<br>10<br>1708<br>SBR<br>BRAB.  | 2369-9        | 95.5<br>13.3<br>10.9<br>33.2<br>10.3                                                                            | 2 <u>F</u><br>1420<br>1350<br>1220         | 1560<br>1400<br>1360                | 350<br>350<br>330             | 62<br>67<br>68          |
| Run 23/24<br>50<br>10<br>1708<br>SBR<br>VDA | 2731-2        | 293°F<br>93.1<br>15.1<br>10.3<br>n. 36.7<br>8.7                                                                 | Recipe, 293°F<br>1500                      | 1670<br>1580<br>1410                | 350<br>290<br>260             | 70<br>72<br>69          |
|                                             |               | cps.                                                                                                            | Control R. 25' 50' 100'                    | 25°<br>50°<br>100°                  | 25°<br>50°<br>100°            | ) 25'<br>50'<br>100'    |
| Sample No. SX, phr Oil, phr Latex Drying    | Compound No.  | Rheometer, 3°, 3 Max. Torque Min. Torque Scorch (t <sub>2</sub> ), min. Optimum Cure (t <sub>90</sub> Cure Rate | Stress-Strain, Co<br>300% Modulus<br>(psi) | Tensile(psi)                        | Elongation (%)                | Hardness (Duro A)       |

Note: Lot G, a 30 phr SX/Hycar 1032 Masterbatch, was air dried.



### Electron Microscopy

At several points in this report the importance of the final starch particle size distributed in the rubber matrix is discussed. While previous workers imputed the fine starch particle size, no one demonstrated this property experimentally. The electron microscope was found to be a suitable method of determining the physical characteristics of the starch in rubber.

Several of the photo-micrographs are included in this report to indicate the various conditions encountered. Figure 4 shows a 45 phr SX/SBR 1500 Brabender processed laboratory coagulation sample. The very fine particle size shown is reflected in the 3100 psi tensile obtained from this sample. It is one of two samples showing 3000 psi or higher tensile in this project. The air-dried counterpart of this sample is shown in Figure 5. Note that this is fine particles of rubber dispersed in starch. The 1600 psi tensile may be more of an indication of starch properties than rubber properties. Figure 6 shows a 45 phr SX/SBR 1503 air-dried masterbatch. Again, this is rubber in starch, except the rubber particles are much larger for SBR 1503 than SBR 1500. Figure 7 shows the Brabender processed sample based on SBR 1503. The starch particles are considerably larger than those shown in Figure 4 and this is reflected in the 1350 psi tensile. Figure 8 shows a 45 phr SX/SBR 1503 Brabender process sample which had 2400 psi tensile. Note that while there are many fine discreet starch particles, there are also zones of rubber in starch dispersed throughout. Also, some starch particles contain a core of rubber. Other electron photomicrographs show many variations between the extremes shown here. The tensiles generally correlate with the particle size shown in the photomicrographs.

This set of photos shows the value of the extrusion processing step. It also gives an indication that variables other than extrusion process may affect the starch particle size and tensile. If the coagulation gives large particles of starch and rubber, the extrusion processing step cannot easily reduce the particle size to where it can contribute toward reinforcement. The SBR 1500 masterbatches seem to give higher tensiles than SBR 1503. The electron photomicrographs suggest that the SBR 1500 yields finer, better distributed particles during coagulation compared with SBR 1503. The primary difference between them is that SBR 1500 uses a rosin emulsifier whereas SBR 1503 uses a fatty emulsifier. Unfortunately, the SBR 1500/starch masterbatches are very difficult to dewater. The coagulation crumb is very small, tends to hold more water and to give a cloudier serum than SBR 1503/starch masterbatches. The choice has generally gone with the easier processing SBR 1503.

Figure 9 shows a 45 phr SX/SBR 1503 Brabender processed sample taken from an Eppenbach In-Line pilot plant coagulation. The tensile for this sample was 2100 psi, about average for this type coagulation.





## FIGURE 4

12,500X 9867D 45 phr SX/SBR 1500 Electron Photomicrograph Magnification:

Compound No.:

Lab Composition: Coagulation:

Drying Process: Brabender Extruder Rubber Properties

3100 psi 63 Hardness: Tensile:



## FIGURE 5

Electron Photomicrograph Magnification:

Compound No.:

15,000X 9867A 45 phr SX/SBR 1500 Lab Composition: Coagulation:

Drying Process: Air Only Rubber Properties

1600 psi 85 Hardness: Tensile:





FIGURE 6

Electron Photomicrograph
Magnification: 15000X
Compound No.: 9867E
Composition: 45 phr SX/SBR 1503

Drying Process: Air Only Rubber Properties

1450 psi 81 Hardness: Tensile:



FIGURE 7

Electron Photomicrograph
Magnification: 12,500X
Compound No.: 9867F
Composition: 45 phr SX/SBR 1503
Coagulation: Lab

Drying Process: Brabender Extruder Rubber Properties

1350 psi 66 Hardness: Tensile:





## FIGURE 8

Electron Photomicrograph 15000X Magnification:

Compound No.:

148H 45 phr SX/SBR 1503 Composition:

Drying Process: Brabender Extruder Lab Coagulation:

2400 psi 68 Rubber Properties Tensile:

Hardness:



# FIGURE 9

Electron Photomicrograph

Magnification: Compound No.:

8200 E-2ABC 45 phr SX/SBR 1503 Composition:

Coagulation: Eppenbach, Pilot Plant Drying Process: Brabender Extruder Rubber Properties

2110 psi 58 Hardness: Tensile:



### Flowsheet and Cost Calculations

A flowsheet (Figure 10) was drawn for a 5,000 lb./hr. finishing line for a 45 phr SX/SBR masterbatch. This rate is equivalent to about 36,000,000 pounds per year. A continuous process was chosen since it represents the most economical approach. Several of the processes shown have not been demonstrated but are thought to be feasible. One of the important assumptions is the continuous process for starch xanthation with minimal hold-up time. Filtration studies have been limited to rather crude bench scale experiments. Also, the operation of a continuous air dryer has not been demonstrated. In the batch air dryer some problems with crusting, uneven drying and sticking have occurred. The flow sheet shows the tremendously large amount of water which must be removed from the filtered masterbatch in the air dryer. For the starch masterbatch 14,460 pounds per hour water must be removed whereas for a black masterbatch or non-pigmented rubbers only 880 pounds per hour must be removed per 5000 pounds produced. Another area which requires more investigation is the removal and disposal of the toxic nitrogen oxides generated by the sodium nitrite during coagulation.

Based on the information in the flowsheet, some calculations involving the economics of the project can be made. This is not intended to be detailed but very general to obtain some rough idea about the costs of making starch/rubber masterbatches. Many estimates and assumptions were made. Therefore, these cost calculations should not be taken as absolute.

The primary basis for these calculations is that the starch xanthide must carry ALL THE EXTRA costs involved in producing a starch xanthide-rubber masterbatch versus a black pigmented rubber. Thus, in addition to the raw material costs the starch must also bear the costs for handling and storing these materials, the preparation of the xanthate, the higher drying costs associated with the higher water content of starch masterbatches, and extrusion processing.

Table XXII summarizes the various cost estimates for starch xanthide incorporation. The total estimated cost is 9.38 cents per pound. With a minimum of a before Federal Income Tax profit of 12% on the investment, the calculated price is  $11.05\column{c}c/1b$ . The calculations are shown as Table XXIII.

The cost of a starch masterbatch may also be calculated. The incorporation cost of carbon black into SBR black masterbatches is  $1.2 \c c/1b$ . of masterbatch over the raw material costs (rubber at list price for non-pigmented polymer). Since our previous calculations were based on the extra expense of the starch over a black masterbatch, the  $1.2 \c c/1b$ . should be added in. The cost of a 45 phr starch xanthide/SBR masterbatch would be about  $20.5 \c c/1b$ .



5000 LB/HOUR MASTERBATCH RATE 1-8-73 mala STARCH AS RECEIVED IS 90% ACTIVE SHAKER SCREEN CONTINUOUSLY NITHOUT HOLD-UP 5900 16/Ar FILTER ALL PRODUCTION CONTANS 45 Phr THE XANTHATE CAN BE MADE NACH : 0.5 mole / mole starch NaNoz: 0.1 mole Imole starch CSz: 0.1 mole/mole starch OR 36,000,000 LB/YR TO FUME SUNGBER XANTHATE RECIPE BASES 450001 b/ hr;1118 90921/min STARCH TO SEWER OVERFLOW 4. 620016Ar E PPEN BACH PRODUCTION UNIT MIXER H 504 SPRAGE CONC PHRC 12,000ge1/mg Pressure Rous 000 33,300 16/hr 15% MB TO SEWER VACUUM FILTER EPPENBACH 78 g Pm FOR A STARCH XANTHIDE / SBR MASTERBATCH 13,300 CONDENSATE 20,000 1b/hr 25% MB LATES A.O. EMULSION LATEX STEAM DRIER. EXHAUST AIR TO ATM 14,460 14hr HzO AIR AIR 39,600 14/mo 66 14 Hor Na No WATER NaNOz Socie TANK 182 16Ar 438Pm 5860 16/hr 010% H20 5880 16/hr @ 15% H20 EXPANDER V.D. ANDERSON CooLING WATER STORAGE NaOH 20% 20,500 galk 71.5 16/hr EXHAUST AIR TO ATM 780 16/1/cHig COMPENSATE FLOW SHEET STORAGE C 52 STEAM 4100 gal/me (E) 0 1550 Whrad TAT 16/hr Pec WAREHOUSE (Rec) PACK-AGING UNIT (FR STORAGE STARCH 930006

FIGURE 10



## TABLE XXII - ESTIMATED COST OF STARCH XANTHIDE IN A 45 PHR SX/SBR MASTERBATCH

| Raw Material Costs                                   | 6.25¢/lb.  |
|------------------------------------------------------|------------|
| Direct Labor*                                        | 0.36       |
| Indirect Labor (80% of Direct)*                      | 0.29       |
| Maintenance*                                         | 0.04       |
| Extra Drying Expense*                                | 1.05       |
| Depreciation Allowance*                              | 1.39       |
| Total Estimated Cost                                 | 9.38¢/1b.  |
| Profit (12% on investment before Federal Income Tax) | 1.67       |
| Estimated Price                                      | 11.05¢/1b. |

<sup>\*</sup> Over and above that normally associated with production of the synthetic rubber.



### TABLE XXIII-CALCULATIONS FOR DETERMINING COST OF IN-CORPORATING STARCH XANTHIDE IN RUBBER

| Raw Materials  Raw Material Starch | Amount<br>45 phr | Pound/<br>hr.<br>1722 | Cents/<br>1b.<br>4.0 | Cents/<br>hr.<br>6888.00 |
|------------------------------------|------------------|-----------------------|----------------------|--------------------------|
| NaOH (50% Caustic)                 | 0.5 mole         | 382                   | 3.6*                 | 1375.20                  |
| Carbon Disulfide                   | 0.1 mole         | 71.5                  | 4.84*                | 346.06                   |
| Sodium Nitrite `                   | 0.1 mole         | 66                    | 10.65*               | 702.90                   |
| Sulfuric Acid                      | 0.5 mole         | 240                   | 1.55*                | 372.00                   |
| Total                              |                  |                       |                      | 9684.16                  |

$$\frac{9684.16c}{hr.} \qquad X \qquad \frac{1 \text{ hr.}}{1550 \text{ lb. active starch}} = \frac{6.248c}{\text{lb. starch in MB}}$$

\* Chemical Marketing Reporter; December 18, 1972

## Starch Rate 1550 1b. X 20 hr. X 360 day year = 11,300,000 lb./yr.

Direct Labor

Basis: one extra operator per shift over and above those required for black masterbatch finishing operations to cover following:

raw material handling
sodium nitrite solution preparation
starch xanthate preparation
metering
coagulation
drying
extrusion processing

$$\frac{1 \text{ operator}}{\text{shift}} \times \frac{4 \text{ shifts}}{\text{ operator/yr.}} \times \frac{1 \text{ year}}{11,300,000 \text{ lb.}} = \frac{\$0.0036}{\text{ lb. starch}}$$

Indirect Labor

Basis: 80% of direct labor (Typical)

$$\frac{\$0.0036}{1b.\text{starch}} \times .8 = \frac{\$0.0029}{1b.\text{starch}}$$

Maintenance

Basis: one-half extra man over and above those required for standard rubber finishing operations

.5 operator 
$$X = \frac{\$10,000}{\text{operator/yr.}} = \frac{1 \text{ Year}}{11,300,000 \text{ lb.}} = \frac{\$0.0004}{11,300,000 \text{ lb.}}$$



### TABLE XXIII CONTINUED

Extra Drying Expense

Basis: The dryer feed for a starch masterbatch is 75% water versus 15% water for a normal rubber masterbatch.

5,000 1b. masterbatch 
$$\times \frac{75 \text{ lb. water}}{25 \text{ lb.dry MB}} = \frac{15,000 \text{ lb.}}{\text{hr.}}$$
 water entering dryer

5,000 lb. MB 
$$\frac{10 \text{ lb. water}}{\text{hr.}}$$
 =  $\frac{550 \text{ lb. water}}{\text{hr.}}$  water in dryer discharge

Amount of water to be removed: 15,000-550 = 14,450 lb./hr. water

Amount of water normally removed:

$$\frac{5,000 \text{ lb. MB}}{\text{hr.}}$$
 X  $\frac{15 \text{ lb. water}}{85 \text{ lb. MB}} = \frac{880 \text{ lb. water}}{\text{hr.}}$ 

Extra water to be removed: 14,450 - 880 = 13,570 lb/hr. water

Extra expense for dryer steam:

$$\frac{13,500 \text{ lb. water}}{\text{hr.}} \times \frac{2 \text{ lb. steam}}{1 \text{ lb.water evap.}} \times \frac{60c}{1000 \text{ lb.steam}} \times \frac{1 \text{ HR.}}{1550 \text{ lb.starch}} = \frac{1.05c}{1 \text{ lb.starch}}$$



## TABLE XXIIICONTINUED

Depreciation Allowance

Basis: 10 year straight line depreciation

Capita! equals 4 times major equipment cost estimates

Existence of the following equipment is assumed;

caustic storage

sulfuric acid storage

latex storage

shaker screens

wash tank

vacuum filter

hot air dryer

baler

Estimate of major equipment costs:

| starch unloading and storage         | \$100,000 |
|--------------------------------------|-----------|
| instrumentation, metering            | 40,000    |
| tankage                              | 30,000    |
| V.D. Anderson Expander, drive & hood | 230,000   |
| Total                                | \$400,000 |

Estimated capital:  $$400,000 \times 4 = $1,600,000$ 

$$\frac{\$1,600,000}{10 \text{ yr.}}$$
 X  $\frac{1 \text{ year}}{11,300,000 \text{ lb. starch}} = \frac{\$0.0139/1b.}{11,300,000 \text{ lb. starch}}$ 

Profit

$$$1,600,000 \times \frac{.12}{yr}. \times \frac{1 \text{ year}}{11,300,000 \text{ lb. starch}} = $0.0167/1b.$$



#### NBR

The nitrile/butadiene (NBR) rubbers are specialty polymers in comparison to the general purpose SBR. The NBR market has many variations for specific applications. Even the details of manufacture differ widely between suppliers of NBR. Thus process development of starch/NBR masterbatches must be rather general. The rosin emulsified Hycar 1032 with medium acrylonitrile content was tried first because it was expected to be similar to SBR. Bench scale coagulation studies were also made with another medium acrylonitrile NBR, Hycar 1052, which is emulsified with a linear alkyl sulfonate. The linear alkyl sulfonate (LAS) emulsifiers are not deactivated by acidic conditions as are the fatty and rosin emulsifiers.

Actually the bench scale coagulation conditions for SBR gave a very small crumb which was difficult to handle. Nalco 107, a polyamine coagulation aide, was found to improve the coagulation. The Nalco 107 was premixed with the starch Xanthate solution before the latex was added to prevent any pre-coagulation of the rubber. Nalco 107 concentrations up to 1.5 phr improved the coagulation characteristics. The physical testing data for several samples coagulated by this system are shown in Table XXIV. Air drying the starchxanthide/NBR masterbatches does not give the non-homogeneous cured product that the air dried SBR masterbatches give. The starch and NBR appear to be more compatible than starch and SBR. Extrusion processing, however, will give a softer compound. The addition of resorcinol/formaldehyde results in a harder, shorter compound.

After the poor coagulations obtained for zinc xanthate/SBR masterbatches, it was surprising to find similar masterbatches with Hycar 1032 gave good coagulations. The SX/latex blend was slowly added to the zinc sulfate solution at pH 6-7. Dilute (2%) sulfuric acid was added to the serum to maintain the desired pH. The crumb tended to be fine but the serum drained easily and was clear. The evaluation of several masterbatches prepared by this method is shown in Table XXV. Zinc oxide was not added during compounding since zinc should be available from the zinc starch xanthate. Resorcinol/formaldehyde modification improved the physical properties. Extrusion processing, particularly with the unmodified (no R/F) masterbatches, seems detrimental to the masterbatch properties. These compounds also seemed to have a higher set or slower return rate following elongation. Further work on zinc starch xanthate/NBR masterbatches was dropped because of 1) increased material costs, 2) potential pollution problems, 3) no outstanding property advantage, 4) the apparent need for resorcinol/formaldehyde modification which will color the product.



TABLE XXIV

<u>Evaluation of Starch Xanthide/Hycar 1032 Masterbatches</u>

| Sample No.          | 56P22-3  | 56P22-4    |       |       | 59P22-10 |
|---------------------|----------|------------|-------|-------|----------|
| Starch, phr         | 30       | 30         | 30    | 45    | 30       |
| R/F Molar           | Name and |            | .1    |       | .2       |
| Coagulation         | Cont.    | Cont.      | Cont. | Cont. | Cont.    |
| Drying              | Air      | Extruder   | Air   | Air   | Air      |
| Compound No. 36     | С        | D          | E     | F     | J        |
|                     |          |            |       |       |          |
| Compound Recipe     |          |            |       |       | r        |
| Masterbatch         | 130      | 130        | 130   | 145   | 130      |
| Zinc Oxide          | 5        | 5          | 5     | 5     | 5        |
| Stearic Acid        | 1        | 1          | 1     | 1     | 1        |
| Altax               | 1        | 1          | 1     | 1     | 1        |
| PBNA                | 1.25     | 1.25       | 1.25  | 1.25  | 1.25     |
| Sulfur              | 1.5      | 1.5        | 1.5   | 1.5   | 1.5      |
| Cure Time, Mins.    | 35       | <b>3</b> 5 | 30    | 30    | 35       |
|                     |          | •          |       |       |          |
| Physical Properties |          |            |       |       |          |
| 300% Modulus, psi   | 1350     | 850        | 1250  | 1400  | 1400     |
| Tensile, psi        | 1700     | 1900       | 1450  | 1400  | 1500     |
| Elongation, %       | 390      | 500        | 400   | 300   | 350      |
| Durometer A Hard.   | 73       | 62         | 82    | 83    | 84       |
|                     |          |            |       |       |          |

Hycar 1032: Rosin Acid Emulsified Nitrile Rubber

R/F: Resorcinol/Formaldehyde - total moles/mole starch



TABLE XXV

EVALUATION OF 30 PHR ZINC STARCH
XANTHATE/HYCAR 1032 MASTERBATCHES

| Masterbatch                                                      | <u>89-31-6A</u>     | 89-31-6E            | 89-31-7            | 89-31-7E       |
|------------------------------------------------------------------|---------------------|---------------------|--------------------|----------------|
| Coagulation, ZnSO <sub>4</sub><br>R/F, mole/mole starch<br>Serum | 4 phr<br>0.1<br>Tan | 4 phr<br>0.1<br>Tan | 4 phr<br><br>Clear | 4 phr<br>Clear |
| Drying                                                           | Air                 | Extruder            | Air                | Extruder       |
| Compound 913                                                     | Α .                 | В                   | C .                | D              |
| Recipe                                                           |                     |                     |                    |                |
| Masterbatch                                                      | 135                 | 135                 | 135                | 135            |
| ZnO<br>Stearic Acid                                              | 1.0                 | 1.0                 | 1.0                | 1.0            |
| Sulfur                                                           | 1.5                 | 1.5                 | 1.5                | 1.5            |
| MBTS                                                             | 1.0                 | 1.0                 | 1.0                | 1.0            |
| PBNA ·                                                           | 1.25                | 1.25                | 1.25               | 1.25           |
| Rheometer                                                        |                     |                     |                    |                |
| Actual Cure Time, min.                                           | 40                  | 50                  | 40                 | 40             |
| Physical Properties, 302°F Cu                                    | ıre                 |                     |                    |                |
| 300% Modulus, psi                                                | 800                 | 500                 | 450                | 200            |
| Tensile, psi                                                     | 1400                | 1450.               | 1100               | 400            |
| Elongation, %                                                    | 580                 | 560                 | 850                | 670            |
| Hardness, Duro A                                                 | 64                  | 52                  | 60                 | 50             |
| Tension Set (200% Elongation,                                    | , hold 1 mir        | n. release)         |                    |                |
| % Elongation at 5 sec.                                           | 150                 | 130                 | 135                | 130            |
| % Elongation at 1 min.                                           | 125                 | 110                 | 115                | 110            |
|                                                                  |                     |                     |                    |                |



Hycar 1052 is an LAS (linear alkyl sulfonate) emulsified NBR. Normally calcium chloride, aluminum sulfate, or large quantities of sodium chloride are used to coagulate these rubbers. LAS is not acid sensitive. LAS emulsified latex, therefore, requires the development of a separate coagulation system compared with SBR.

Table XXVI describes several Hycar 1052 coagulation experiments. Starch losses are excessive for the calcium chloride and sodium chloride coagulants. Zinc sulfate, far in excess of the 4 to 5 phr ZnO equivalent, gave the best starch retention. Aluminum sulfate may be more practical than zinc sulfate although the starch loss in the serum is higher. The amount of zinc sulfate to give 4 phr ZnO equivalent will not give a complete coagulation. However, the addition of some calcium chloride with the zinc sulfate will give a good coagulation with nearly a clear serum but a fine crumb. Table XXVII indicates that the starch/Hycar 1052 masterbatches have the same deficiences as the zinc starch xanthate/Hycar 1032 masterbatches. Scale up was not recommended.

TABLE XXVI
COAGULATION OF 30 PHR STARCH/HYCAR 1052 MASTERBATCHES

| Sample<br>82P29-1 | Coagulant CaCl <sub>2</sub>                     | <u>phr</u><br>10.7 | % Starch Loss<br>30.0 |
|-------------------|-------------------------------------------------|--------------------|-----------------------|
| 82P29-2           | Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> | 1                  | 6.1                   |
| 83P29 <b>-</b> 3  | ZnSO <sub>4</sub> *                             | 40.7               | 3.2                   |
| 83P29-4           | NaCl                                            | 62                 | 21.5                  |
| 83P29-5           | NaCl                                            | 62                 | 24.9                  |
| 75P28-6           | Nalco 107                                       | ₩                  | No coagulation        |

<sup>\*</sup> Note: ZnSO, was added as coagulant without concern to affect on compound



TABLE XXVII

EVALUATION OF STARCH/HYCAR 1052 MASTERBATCHES

| Sample No.                                                                                                                               | 82-29-2                                                         | 82-29-3                            | 78-28-14A                             | 78-28-14B                              |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------|---------------------------------------|----------------------------------------|
| Coagulation Level, phr pH Starch Loss,% Drying                                                                                           | Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> 1.0 3.1 6.1 Air | ZnSO <sub>4</sub> 40.7 6.4 3.2 Air | ZnSO <sub>4</sub> CaCl 11.8 Clear Air | ZnSO <sub>4</sub> CaCl2 11.8> Extruder |
| Recipe Masterbatch Zinc Oxide Stearic Acid Sulfur MBTS PBNA                                                                              | 130<br>5.0<br>1.0<br>1.5<br>1.0<br>1.25                         |                                    |                                       | ><br>><br>>                            |
| Rheometer, 3°, 3 cpms, 302°F.  Max Torque  Min. Torque  Scorch (t <sub>2</sub> ), Min.  Optimum Cure (t <sub>90</sub> ), Min.  Cure Time | 72<br>8.0<br>8.7<br>28<br>30                                    | 55<br>4.4<br>14.0<br>36<br>35      | 47<br>5.2<br>5.8<br>10.5              | 52<br>2.9<br>9.0<br>16.5<br>15         |
| Stress-Strein, Control Recipe<br>300% Modulus<br>(psi)                                                                                   | , 302°F.<br>800                                                 | 350                                | 350                                   | 200                                    |
| Tensile(psi)                                                                                                                             | 1600                                                            | 1000                               | 1250                                  | 400                                    |
| Elongation (%)                                                                                                                           | 670                                                             | 900                                | 800                                   | 700                                    |
| Hardness (Duro A)                                                                                                                        | 73                                                              | 69                                 | 68                                    | 59                                     |



All the pilot plant scale-up coagulations of the NBR masterbatches used the Eppenbach In-Line coagulation process. The two initial coagulations compared no coagulation side versus about 1.0 phr Nalco 107 in the dilute acid. The Nalco 107 did not appear to affect the coagulation. The serum losses, which seemed to be fine crumb or coagulated starch, were about equivalent. These masterbatches were extrusion processed using the V.D.Anderson Expander. The barrel temperature did not increase as rapidly as with the SBR masterbatches. A reduction of the open die area was indicated.

Two 50 pound lots of NBR masterbatches were prepared. Lot G is an air dried 30 phr SX/Hycar 1032 masterbatch. The physical test data for this lot is shown in Table XXVIII. This data indicates that extrusion processing would have been advantageous in preparing this masterbatch.

Lot H is an extrusion processed 30 phr SXRF/Hycar 1032 masterbatch. The resorcinol/formaldehyde level was 0.1 mole/mole starch. In extrusion processing five 1/4-inch round dies were used. The maximum temperature was 330°F; no water was used on the jacket. The Lot H physical testing data (Table XXIX) shows the laboratory processing gives somewhat higher tensile than the Anderson processed material. The modulus for Lot H is higher (better) than Lot G.



TABLE XXVIIL PHYSICAL PROPERTIES OF LOT G (30 PHR SX/HYCAR 1032)

| }          |                                |            |            |                                    |             |                   |                                          |                                                 |                      |                                                       |                      | 7                |
|------------|--------------------------------|------------|------------|------------------------------------|-------------|-------------------|------------------------------------------|-------------------------------------------------|----------------------|-------------------------------------------------------|----------------------|------------------|
| Lot G      | 1.8                            | Air        |            | 42                                 |             | •                 | 32.0                                     | 080<br>008<br>008                               | 1550<br>1700<br>1660 | 760<br>700<br>620                                     | 70<br>71<br>72       | 1.097            |
| 52-16-2    | 1.8                            | $\uparrow$ | ¥          |                                    | 2.8         | 17.4              | 37.0                                     | 380<br>480<br>510                               | 1870<br>2350<br>2200 | 850<br>800<br>700                                     | 56<br>57<br>58       | 1.100            |
| 52-16-1    | H.8                            |            |            | 26                                 | 3.4         | 19.8              | 37.7                                     | 390<br>400<br>550                               | 2600<br>2080<br>2500 | 940<br>810<br>780                                     | 57<br>59<br>59       | 1.101            |
| 52-15-3    | 1.8                            |            |            | 32.5                               |             | •                 | 37.0                                     | 480<br>530<br>600                               | 2400<br>2530<br>2450 | 850<br>800<br>730                                     | 60<br>59<br>60       | 1.111            |
| 52-15-2    | 1.8                            |            |            | 32                                 | ۳.<br>۳.    | 14.0              | 27.8                                     | 490<br>540<br>610                               | 2300<br>2620<br>2520 | 780 · 790 730                                         | 58<br>59             | 1.116            |
| 52-15-1    | Continuous-<br>1.8             | Brabender  |            | 34                                 | 3.0         | 14.3              | 34.5<br>11.4                             | 302°F.<br>560<br>610<br>660                     | 1880<br>2280<br>2430 | 700<br>750<br>730                                     | 09                   | 1.113            |
|            |                                |            |            | 3, 302°F.                          |             |                   | lin.                                     | Recipe,<br>25,<br>35,<br>50,                    | 251<br>351<br>501    | 25 <sup>7</sup><br>35 <sup>7</sup><br>50 <sup>7</sup> | 251                  |                  |
| Sample No. | coagulation<br>Coagulation, pH | Wash pH    | Compound . | Rheometer, 3°, 3 cpms, Max. Torque | Min. Torque | Scorch (t2), Min. | Optimum Cure $(t_{90})$ , Min. Cure Rate | Stress-Strain, Control<br>300% Mosulus<br>(psi) | Tensile (psi)        | Elongation (%)                                        | Hardness<br>(Duro A) | Specific Gravity |



TABLE XXIX - PHYSICAL PROPERTIES OF LOT H (30 PHR SXRF/HYCAR 1032)

| Sample No.                                                                                                                      |                   | P52-13                            | P52-13-1                            | P52-13-3                  | 3 P52-14-1                       | 1 P52-14-2                  | P-52-14-3 Lot                     | -3 Lot H                          |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|-------------------------------------|---------------------------|----------------------------------|-----------------------------|-----------------------------------|-----------------------------------|
| Coagulation, pH                                                                                                                 |                   | baren<br>2.0                      | 1.5                                 | 1.9                       | 2.2                              | 2.2                         | 2.2                               | <br>   <br>                       |
| Wash pH<br>Drying                                                                                                               |                   | 4.1<br>Brabender                  | 4.0 .<br>er (3 passes               | 4.0                       | 4.1                              | 4.1                         | 4.1                               | <br>Anderson                      |
| Compound No. 4586                                                                                                               |                   | <b>~</b>                          | 7                                   | ml                        | 4                                | ,<br>vl                     | 91                                | 7                                 |
| Rheometer, 3°, 3 cpms, 3 Max. Torque Min. Torque Scorch (t <sub>2</sub> ), Min. Optimum Cure (t <sub>90</sub> ), Min. Cure Rate | 302°F.            | 33<br>3.9<br>20.0<br>39.5<br>11.8 | 37.5<br>3.2<br>19.0<br>42.0<br>10.0 | 31<br>3.8<br>19.3<br>40.0 | 36<br>3.3<br>19.3<br>46.0<br>8.6 | 32.5<br>3.7<br>18.5<br>37.5 | 38<br>3.0<br>18.4<br>40.0<br>10.6 | 30<br>3.4<br>10.1<br>22.6<br>18.4 |
| Stress-Strain, Control Recipe, 300% Modulus 25, (psi) 35,                                                                       | _                 | 302°F.<br>810<br>900<br>970       | 700<br>830<br>880                   | 620<br>840<br>890         | 720<br>850<br>950                | 700<br>870<br>920           | 750<br>940<br>970                 | 820<br>850<br>850                 |
| Tensile (psi)                                                                                                                   | 25°<br>35°<br>50° | 2040<br>2140<br>1980              | 2160<br>2080<br>2070                | 2050<br>2080<br>2020      | 2000<br>2080<br>2050             | 2260<br>2000<br>2410        | 2170<br>2250<br>2050              | 1920<br>1780<br>1800              |
| Elongation (%)                                                                                                                  | 25°<br>35°<br>50° | 590<br>550<br>480                 | 630<br>540<br>510                   | 650<br>550<br>510         | 620<br>560<br>520                | 620<br>520<br>570           | 600<br>540<br>480                 | 540<br>520<br>530                 |
| Hardness<br>(Duro A)                                                                                                            | 25°<br>35°<br>50° | 61<br>63<br>62                    | 61<br>62<br>63                      | 62<br>62<br>62            | 61<br>63<br>62                   | 61<br>63<br>63              | 62<br>62<br>62                    | 63                                |
| Specific Gravity                                                                                                                |                   | 1.113                             | 1.111                               | 1.108                     | 1.110                            | 1.107                       | 1.110                             | 1.107                             |



## PRODUCT APPLICATION DEVELOPMENT

## Preliminary Accelerator Studies

A preliminary evaluation of accelerator systems for starch xanthide masterbatches was initiated in order to find suitable accelerator systems for applications compounding. The six starch/polymer masterbatches used in the evaluations are shown below:

|     |            |              |                | Resorcinol         |
|-----|------------|--------------|----------------|--------------------|
| Lot | Polymer    | Starch (phr) | Naphthenic Oil | Formaldehyde (phr) |
| Α   | SBR 1503   | 45           |                |                    |
| В   | SBR 1708   | 70           | 50             | 40 to 60 to        |
| С   | SBR 1503   | 30           |                | 1.23               |
| D   | SBR 1708   | <b>5</b> 5   | <b>2</b> 5     |                    |
| G   | Hycar 1032 | . 30         |                |                    |
| Н   | Hycar 1032 | 30           | ***            | 1.23               |

Fourteen accelerators were selected for the study.

| Trade Name       | Type                               |
|------------------|------------------------------------|
| Captax           | Mercaptobenzothiazole              |
| Altax            | Benzothiazyl disulfide             |
| Zenite (10% wax) | Zinc mercaptolbenzothiazole        |
| Santocure        | Benzothiazolsulfenamide            |
| Ethylac          | Benzothiazyl thio carbamyl sulfide |
| Butyl Zimate     | Zinc dithiocarbamate               |
| Bismate          | Bismuth dithiocarbamate            |
| Unads            | Thiuram monosulfide                |
| Methyl Tuads     | Thiuram disulfide                  |
| Beutene          | Aldehyde-amine reaction product    |
| DBA              | Mixed amines                       |
| DOTG             | Guanidine                          |
| Thiate E         | Thiourea                           |
| ZBX              | Zinc xanthate                      |

Some of these materials were included because they may be used as secondary accelerators in future work.

In our procedure we masterbatched each of the six elastomers in a laboratory Banbury using the following recipe:

| Elastomer    | Variable | (to | give | 100 | parts | polymer) |
|--------------|----------|-----|------|-----|-------|----------|
| Zinc Oxide   | 5.0      |     |      |     |       |          |
| Stearic Acid | 2.0      |     |      |     |       |          |
| PBNA         | 1.25     |     |      |     |       |          |

These masterbatches were divided into mill-batch-sized portions and the sulfur (2 phr) and accelerators were added on a lab mill. We used three accelerator levels (0.625, 1.25 and 2.5 phr) for each accelerator. The mixed stocks were tested for cure characteristics (Monsanto Rheometer @300°F). Using the optimum cures  $(t_{90})$ , samples were cured and tested for stress-strain properties and Shore A2 hardness.

The results of the tests for the six starch/elastomer masterbatches are shown in Tables XXX through XXXV. This basic information was used in designing compounds for specific applications.



## Compound Development

Based on the extensive preliminary accelerator study, the optimum accelerators and levels were selected for each starch/elastomer MB. One optimum recipe for each starch/elastomer masterbatch was submitted to the laboratory for extensive processing and physical testing evaluations. The masterbatches used in the recipes are shown below.

| Lot    | Base Polymer | SX, phr | Oil, phr | RF, phr |
|--------|--------------|---------|----------|---------|
| Lot A  | SER 1503     | 45      |          |         |
| Lot B2 | SBR 1708     | 70      | 50       |         |
| Lot C  | SBR 1503     | 30      |          | 1.23    |
| Lot D2 | SBR 1708     | 55      | 25       |         |
| Lot G  | Hycar 1032   | 30      |          |         |
| Lot H  | Hycar 1032   | 30      |          | 1.23    |

The recipes and test data are shown in Table XXXVI.

The results of the evaluation indicate that the nitrile/starch masterbatches yield superior physical properties compared to the SBR/starch masterbatches. They also show the excellent oil resistance and hot air aging typical of nitrile polymers.

Other than poor flex resistance, short elongation and poor water resistance the other physical properties of both the SBR and nitrile/ starch masterbatches are in an acceptable range for many rubber products. In fact, the modulus, hardness and abrasion resistance values are higher than would be expected for stocks with low loadings of a reinforcing filler.

The stocks in Tables XXXVII and XXXVIII were developed in order to show a comparison of the starch masterbatches with SBR and Hycar stocks containing nonblack fillers. The starch masterbatches yield reinforcing intermediate between HiSil and Silene D. It is interesting to note the high modulus and hardness values of the starch masterbatch stocks. Stocks with only 30 phr & starch yield modulus and hardness values in line with stocks containing 75 phr of Silene D.'

The substitution of starch masterbatch Lot C for 1833-Gl in a typical tread rubber compound is shown in Table XXXIX. The substitution at the 25 and 50 percent level did not drastically change the physical properties of the control stock. Of interest is the lower heat build-up obtained on the blends and the similar abrasion resistance. All of the properties are in the acceptable range for tread rubber.



| _                                  |   |
|------------------------------------|---|
| 33                                 | l |
| 5                                  | ļ |
| -                                  | ŀ |
| 24                                 | I |
| SE                                 | Į |
| >                                  | l |
| S                                  | I |
| p4                                 | l |
| Ha                                 | l |
|                                    | 3 |
| 45                                 | ľ |
| ~                                  | ĺ |
| A MASTERBATCH (45 PHR SX/SBR 1503) |   |
| F                                  | ľ |
| 3A                                 | l |
| 2                                  | ľ |
| T                                  | l |
| AS                                 | ŀ |
| Z                                  | Į |
| ď                                  | ı |
| FOR LOT                            | ŀ |
| Ó                                  | ŀ |
| 1                                  |   |
| OR                                 |   |
| H                                  | 1 |
| ы                                  |   |
| 8                                  |   |
| STUD                               |   |
| STUD                               |   |
| OR                                 |   |
| Ĕ                                  |   |
| RA                                 |   |
| (F)                                | 1 |
| F                                  | 1 |
| ACCELERATOR :                      |   |
| A                                  |   |
| 1                                  |   |
| X                                  |   |
| X                                  |   |
| [z                                 | 0 |
| 1                                  |   |
| 1                                  | í |

|           | rties      | Shore   | 2 1         | 5 60   |          | j     | 58        | 09       | . 09     | 62        | 09   | 62        | 09         | 63     | !       | 1     | 79       | 09           | 63        | 63   | 99         | 1      | <b>ر</b> ۵           | 99         |        | 61         | 65   | 65              |
|-----------|------------|---------|-------------|--------|----------|-------|-----------|----------|----------|-----------|------|-----------|------------|--------|---------|-------|----------|--------------|-----------|------|------------|--------|----------------------|------------|--------|------------|------|-----------------|
|           | ain Proper | 300%    | Mod.        | )<br>\ | 1        | 1     | 1300      | 1430     | 1210     | 1250      | 1420 | 1260      | 1430       | î<br>Î | 1       | 1     | !        | 1160         | !         | !    | 2170       |        | 1                    | ł          |        | 1320       | 1    | 1               |
|           | ress-Str   |         | Elong.      | 270    | 250      | .     | 350       | 360      | 480      | 430       | 390  | 450       | 320        | 270    | 1       | - 1   | 260      | 380          | 280       | 240  | 320        | 0      | 780                  | 270        |        | 360        | 190  | 200             |
| 1         |            | Tensile | ונג         | 1330   | 1240     | }     | 1520      | 1730     | 2010     | 1890      | 2020 | 2050      | 1600       | 1350   | i       | 1     | 1540     | 1700         | 1240      | 1150 | 2250       | (      | 1920                 | 2340       |        | 1710       | 970  | 1120            |
|           |            |         | 100K        | 5.2    | 7.6      | •     | 2.9       | •        | 2.5      | 3.7       | 4.9  | 5.5       | •          | •      |         | 1.1   | 7.3      | 9.9          | 8.9       | 7.7  | 32.4       | (31.1) | 31.5                 | 30.3       | (25.8) | 28.8       | 22.1 | 30.7            |
|           |            | Opt.    | Cure 76.0   | 49.3   | 36.2     | 131.0 | 93.8      | 0        | 102.8    | 70.5      | 53.8 | 57.0      | 32.4       | 4      | 1       | 224.7 | 50.6     | 43.7         | 41.1      | 35.6 | €.         | 1.     | (10.4)               | <u>`</u> ~ | •      | 17.8       | •    | •               |
| Rheometer | 300°F.)    |         | Time.       |        |          | 4     | 15.8      | 9        | 9.6      | 7.9       | •    | 15.0      | 16.0       | 15.7   | 3.      | 22.5  | 0        |              | 7.2       |      | 3.2        | (3.7)  | 3.6                  | 3.7        | (3.5)  | 8.6        | 10.2 | ω<br>∞          |
| 0.6       | ,3 cpm,    | Min.    | Torque 6.3  | 6.9    | 7.0      | •     | 5.5       | •        | 6.1      | 6.1       | 0.9  | 0.9       | 0.9        | 5.1    | -6.7-   | 6.7   | . 0.9    | 6.4          | 9.9       | 7.1  | 7.1        | (7.1)  | 6.6                  | 6.8        | (8.3)  | 0.9        | 5.3  | 8.9             |
| Monsanto  | (3°Arc.    | Max.    | phr Torque  |        | 2.5 75.7 |       | 1.25 80.8 | 2.5 78.9 | 9.69 69. | 1.39 72.4 |      | .625 70.4 | +1.25 76.6 |        | .625    | ~     | 2.5 78.6 | 10           | 1.25 77.0 |      | +.625 97.3 | (91.4) | +1.25 85.1<br>(94.1) | +2.5 86.1  | (92.6) | +.625 83.8 | 91   | 66              |
|           |            |         | Accelerator |        |          | Altax |           |          | Zenite*  |           |      | Santocure | +          | +      | Ethylac |       |          | Butyl Zimate |           |      | Bismate    | :      | <b>.</b>             | -1-        |        | Unads      | ~1*  | <del>-</del> 1- |
|           |            | Recipe  | Number      | 7      | m        | 4     | 5         | 9        | 7        | ω         | 6    | 10        | 11         | 12     | 13      | 14    | 15       | 16           | 17        | 18   | 19         | C      | 70                   | 21         |        | 22         | 23   | 24              |

<sup>\* 10%</sup> wax. Adjusted to give .625, 1.25, & 2.5 phr Zenite Special. \*\* Did not cure. Values in parentheses are retests.



| 1503)         |
|---------------|
| R 15          |
| SX/SB         |
| IR S          |
| 5 PI          |
| H (4          |
| TERBATCH      |
| A MAS         |
| LOT           |
| FOR           |
| STUDY         |
| O ACCELERATOR |
| CONTD         |
| XXX           |
| TABLE         |

|             | erties                   | Shore   | A2 Hard.    | 62           | 65    | 29   |   | 57      | 57   | 1    |       | 1   | 1      | 1    |   | 1      | 1      | !     | i        | <b>.</b> | 1      | 1     |   | ł        | 1        | -     |  |
|-------------|--------------------------|---------|-------------|--------------|-------|------|---|---------|------|------|-------|-----|--------|------|---|--------|--------|-------|----------|----------|--------|-------|---|----------|----------|-------|--|
|             | in Prope                 | 300%    | Mod.        | 1310         | 1     | ł    |   | 1080    | 980  | 1    |       |     | l      | 1    |   | ł      | 1      | ł     | ļ        |          | 1      | ł     | • | ł        | i        | 1     |  |
|             | Stress-Strain Properties |         | Elong.      | 300          | 140   | 170  |   | .410    | 400  | 1    |       | i   | 1      | 1    |   | 1      | 1      | 1     | į        | }        | 1      | 1     |   | ļ        | ļ        | 1     |  |
| 6           | St                       | Tensile | Strength    | 1310         | 066   | 1300 |   | 1710    | 1510 |      | ł     | F   | 1      | 1    |   | 1      | 1      | i.    | ł        | ,        | !      | 1     |   | 1        |          | 1     |  |
|             |                          |         | 100K        | 22.8         | 21.9  | 42.6 |   | 1.5     | 5.5  | 5.4  | 1     |     | 1      | 1    |   | ŀ      | 1      | 2.1   | ł        |          | !      | 0.7   |   | 1        | !        | 1     |  |
|             |                          | Opt.    | Cure        | 15.3         | 15.7  | 9.6  |   | 163.3   | 48.7 | 0.64 | I     |     | 1      | 1    |   | 1      | ł      | 118.7 | ł        |          | i<br>i | 330.9 |   | 1        | 1        | {<br> |  |
| ter         | 300°F.                   |         | Time Cure   | 5.2          | 5.2   | 4.0  |   | 12.0    | 6.9  | 6.5  | ŀ     |     | i      | 1    |   | l      | ļ      | 7.7   | ł        | i        | I<br>I | 7.1   |   | 1        | ľ        | 1     |  |
| o Rheometer | , 3 cpm,                 | Min.    | Torque      | 6.3          | 5.8   | 8.8  |   | 5.4     | 5.8  | 4.2  | 1     |     | 1      | ł    |   | l      | 1      | 5.9   | ł        | ļ        | !      | 5.7   |   | <b>!</b> | 1        | 1     |  |
| Monsanto R  | (3° Arc, 3               | 121     | Torque      |              | 98.1  |      |   | 70.5    | 58.9 | 51.8 | 1     |     |        |      |   |        | 1      | 67.9  |          | 1        | 1      | 113.4 |   | 1        | <b>!</b> | 1     |  |
|             |                          |         | Tyd         | +.625        | +1.25 | +2.5 | • | .625    | 1.25 | 2.5  | 625** |     | 1.25** | 2.5% |   | .625** | 1.25** | 2.5   | .625**   | 1 25%%   | T. 6   | 2.5** |   | .625 **  | 1.25%    | 2.5** |  |
|             |                          |         | Accelerator | Methyl Tuads |       |      |   | Bentene |      |      | DBA   |     |        |      | , | DOTG   |        |       | Thiate E |          |        |       |   | ZBX      |          |       |  |
|             |                          | Recipe  | Number      | 25           | 26    | 27   |   | 28      | 29   | 30   | 31    | ł c | 32     | 33   |   | 34     | 35     | 36    | 37       | 33       | ) (    | 36    |   | 07       | 41       | 42    |  |

\*\* Did not cure.



| 1708)                                                      |   |
|------------------------------------------------------------|---|
| /SBR                                                       |   |
| OIL                                                        |   |
| NAPHTHENIC                                                 | - |
| 1/50                                                       |   |
| S                                                          |   |
| (7)                                                        |   |
| Y FOR LOT B MASTERBATCH (70 SX/50 NAPHTHENIC OIL/SBR 1708) |   |
| r B                                                        |   |
| LOJ                                                        |   |
| FOR                                                        |   |
| STUD                                                       |   |
| ACCELERATOR                                                |   |
| XXXI-                                                      |   |
| ABLE                                                       |   |

|             | es                       | Shore<br>A2 Hard.   | 1      | 55    | 57   |       | 1<br>1 | ! [        | 2/     | .       | 57    | 57    | !         | 95     | 59    | 57      | 59   | 57     | 56           | 56    | 58   | 09      | 61     | 62   | 58    | 09     | <del>7</del> 9 |
|-------------|--------------------------|---------------------|--------|-------|------|-------|--------|------------|--------|---------|-------|-------|-----------|--------|-------|---------|------|--------|--------------|-------|------|---------|--------|------|-------|--------|----------------|
|             | Stress-Strain Properties | 300% Sho            |        | 1070  | 1110 | ,     | i<br>i | 1 0        | . 0711 | 1       | .010  | 1060  | 1 1       | 1050   | 190   | 980     | 140  | 1270   | 030          | 1060  | .170 | 1300    | 1      | 1 1  | 140   | 1 1    | 1 1            |
|             | s-Strain                 | Elong.              |        | 310 1 |      |       | î<br>î |            | 330    |         |       | 410 1 |           | 450 1  |       |         |      | 300 1  |              | 400   |      |         | 270    | 270  |       | 280    |                |
|             | Stres                    | Tensile<br>Strength |        | 1160  | 1240 | •     | i<br>i |            | 7770   | 1       | 1350  | 1310  | i         | 1450   | .1290 | 1230    | 1270 | . 1270 | 1300         | 1220  | 1260 | 1500    | 1380   | 1390 | 1340  | 1240   | 1190           |
|             |                          |                     | 5 1.4  |       |      | 1     | 1      |            | 7      | 7 .65   | 9 2.4 | ιΩ    | H         | 9.01 0 | 20    | 2.      | 5    | 12     | 7            | 8 9.6 | -    | 24.     | 8 26.4 | 25.  | 20.   | 7 18.4 | 22.            |
|             |                          | Opt.<br>Cure        |        |       |      | !     | 1 0    | 207.0      | 134.X  | 365.7   |       |       | 0         | 38.0   | 0     | 0       | 00   | 32.1   | 9            | 31.8  | φ.   | 4.      | 13.8   | 2.   | М     | 25.7   | 0              |
| ter         | 300°F.)                  | Scorch              | 12.3   | 11.8  | 9.4  | !     | 1 5    | 0.12       | 24.8   | 14.4    | •     | •     | 6         | 16.2   | φ.    | φ.      | 6    | 13.6   |              | 7.8   | •    | •       | 5.1    | •    | •     | 13.2   | •              |
| o Rheometer | , 3 cpm,                 |                     | 5.0    | 3.4   | 2.0  | 1     | ,      | ) (        | o. n   | •       | 3.3   | •     | 3.3       | 5.5    | 3.0   | 6.2     | •    | 5.5    | •            | 3.8   | •    | 4.3     | 9.4    | •    | •     | 3.2    | •              |
| Monsanto    | (3° Arc,                 | ne                  | 9.49   | 48.3  | 57.9 | 1     |        | 7.017      | 0.7/   | 106.0   | 52.1  | 58.6  | 70.4      | 61.0   | 63.6  | 74.1    | 60.1 | 74.0   | 47.9         | 53.6  | 62.2 | 59.3    | 6.69   | 72.1 | 63.2  | 67.4   | 78.9           |
|             |                          | phr                 | .625   | 1.25  | 2.5  | ***** |        | 7.73       | C.2    | 69.     | 1.39  | 2.78  | .625**    | +1.25  | +2.5  | .625    | 1.25 | 2.5    | .625         | 1.25  | 2.5  | +.625   | +1.25  | +2.5 | +.625 | +1.25  | +2.5           |
|             |                          | Accelerator         | Captax |       |      | ÷     | Arcay  |            |        | Zenite* |       |       | Santocure |        |       | Ethylac |      |        | Butyl Limate |       |      | Bismate |        |      | Unads |        |                |
|             |                          | Recipe<br>Number    | 43     | 77    | 45   | 7,6   | 1 0    | <b>7</b> 7 | φ      | 49      | 20    | 51    | 52        | 53     | 54    | 55      | 56   | . 22   | - 28         | 59    | 09   | . 19    | 62     | 63   | 79    | 65     | 99             |

\* 10% wax. Adjusted to give .625, 1,25, & 2.5 phr Zenite Special. \*\* Did not cure.



|                                         |         | opertie                 | Shore   | A2 Har      | 59           | 61    | 67   | i       | 55       | 54   |        | {        | ;      | 1     |       | !     |      | II<br>I  | 1        |                                         | !          | 1      | 1      |    |
|-----------------------------------------|---------|-------------------------|---------|-------------|--------------|-------|------|---------|----------|------|--------|----------|--------|-------|-------|-------|------|----------|----------|-----------------------------------------|------------|--------|--------|----|
|                                         |         | rain Pr                 | 300%    | Mod.        | 1190.        | 1     | 1    | }       | 930      | 860  |        | 1        | ł      | 1     |       | !<br> |      | !        | 1        |                                         | <b> </b> . | 1      | i      |    |
|                                         | (       | Stress-Strain Propertie |         | Elong.      | 340          | 230   | 190  | ł       | 200      | 520  |        | !        | 1      | 1     |       |       | 1    | ł        | ł        |                                         | Į<br>Į     | !      | 1      |    |
|                                         |         | St                      | Tensile | Strength    | 1310         | 1270  | 1280 | ·       | 1300.    | 1230 |        | 1        | 1      | 1     | l     |       | 1    |          |          |                                         | 1          | 1      | }      |    |
|                                         |         |                         |         | 100K        | 19.8         | 21.3  | 25.8 | ł       | 2.5      | 5.2  |        | 1        | 1      | 1     | 1     |       | 1    | ļ        | 1        |                                         | !<br>!     | -      |        |    |
|                                         |         |                         | Opt.    | Cure        | 17.8         | 16.9  | 13.8 | }       | 104.9    | 50.3 |        | !        | 1      | 1     | ł     |       | 1    | ļ        | <b>¦</b> | ļ                                       | i<br>i     | 1      | ļ      |    |
| (CONT.)                                 | er      | 300 F.)                 | Scorch  | Time        | 6.2          | 6.1   | 6.4  | !       | 11.8     | 6.5  |        | !        | 1      | ;     | ł     | ;     | 1    | ł        | 1        | ļ                                       |            | 1      | ,1     |    |
| MASTERBATCH (CONT                       | Rheomet | , 3 cpm,                | Min.    | Torque      | 2.0          | 3.8   | 4.2  | !       | ۳<br>. ۲ | 4.2  |        | 1        | 1      | 1     | !     | ļ     | 1    | .        | 1        | !                                       |            | 1      | 1      |    |
|                                         | (0)     | (3 Arc,                 |         | ne          | 64.0         | 69.3  | 83.9 | 1       | 40.1     | 39.1 |        | <u> </u> | ļ      | +     | !     | !     | 1    | 1        | 1        | į                                       |            | ļ      | 1      |    |
| TUDY FOR LOT                            |         |                         |         |             | +.625        | +1.25 | +2.5 | .625**  | 1.25     | 2.5  | ,<br>, | **C70.   | 1.25** | 2.5** | **509 | 1.25% | 2.5% | .625**   | 1.25**   | 2 N N N N N N N N N N N N N N N N N N N |            | .625** | 1.25** | L  |
| TABLE XXXI- ACCELERATOR STUDY FOR LOT B |         |                         |         | Accelerator | Methyl Tuads |       |      | Bentene |          |      |        | UBA      |        |       |       |       |      | Thiate E |          |                                         |            | ZBX ·  |        |    |
| TABLE XX                                |         | •                       | Recipe  | Number      | 29           | 89    | 69   | 70      | 71       | 72   | 7.0    | ?        | 74     | 75    | 76    | 77    | 78   | 79       | 80       |                                         | 1          | 82     | 83     | 70 |

\*\* Did not cure.



TABLE XXXII-ACCELERATOR STUDY FOR MASTERBATCH LOT C (30 PHR SXRF/SBR 1503)
Monsanto Rheometer

| perties                  | Shore   | A2 Hard      | 1 1        | 1     | 1     | 1     | 5,8  | 1       | }     | 1        | 62        | 62     | 63     | 62        | . 61  | 63   | 09           | 62   | 64          | 63      | 65    | 65   | 62    | 65    | 65                       | 62           | 65    | 70   |   | 1 1 1      | 53   |
|--------------------------|---------|--------------|------------|-------|-------|-------|------|---------|-------|----------|-----------|--------|--------|-----------|-------|------|--------------|------|-------------|---------|-------|------|-------|-------|--------------------------|--------------|-------|------|---|------------|------|
| Stress-Strain Properties | 300%    | . Mod.       |            | 1     | -     | - 1   | 1090 | !       | 1     | <u> </u> | 1130      | 1460   |        | 1         | 1410  | !    | 1290         | 1    | !           | 1580    | 1     | 1    | 1920  | }     | 1                        | 1            |       | 1    |   |            | 280  |
| ess-St                   |         | Elong        |            | 1     | 1     | 1     | 330  | 1       | !     |          | 350       | 340    | 250    | 290       | 330   | 730  | 300          | 240  | 077         | 320     | 260   | 760  | 300   | 220   | 160                      | 280          | 220   | 150  |   |            | 630  |
| Str                      | Tensile | Strength     |            | 1     | \<br> | 1     | 1240 | 1       | 1     | 1        | 1430      | . 1710 | 1340   | 1240      | 1640  | 1300 | 1290         | 1390 | 0/17        | 1790    | 1850  | 1680 | 1920  | 1270  | 1200                     | 1630         | 1420  | 1230 |   |            |      |
|                          |         | 100K         | .72        | 1.21  | 1     | 1.21  | 4.7  | 0.67    | 0.77  | <u> </u> | •         | 9.3    | •      |           | 10.0  | •    |              | 10.0 | •           | 28.4    | 24.2  | 77.4 | 5.    | 22.5  | 2.                       | 15.1         | 23.2  |      |   |            | 5.1  |
|                          | Opt.    | Cure         | 331.5      | 201.8 | 1     | 211.6 | 9.89 | 359.1   | 310.5 | 1        | 2.        | 41.5   | 4.     | 7         | 37.0  | さ    | 41.5         | 29.2 | _           | •       | 12.2  |      | 4.    | 18.8  | $\overset{\circ}{\circ}$ |              | 14.2  | •    |   |            | 52.9 |
| 300°F.)                  | Scorch  | Time         | 13.7       | 12.7  | !     | 21.9  | 19.7 | 13.4    | 11.9  | !        | 9         | 16.8   | $\sim$ | 15.1      | 14.1  | 17.0 | 8.1          | 6.2  | •           | 2.8     | 2.7   | 8.7  | 9.2   | 9.8   | 8.2                      | •            | 4.3   | •    |   | <br>       | 7.8. |
| , 3 cpm, 30              | Min.    | Torque       | 8.3        | 5.4   | 1     | 5.3   | 6.7  | 8.0     | 9.1   | !        | 6.7       | 0.9    | 5.8    | 7.2       | 6.0   | 0.0  | 6.7          | 0.0  | C*0         |         | 9.0   |      | 7.9   | 4.9   | 6.1                      | 6.8          | 7.0   | 6.5  |   |            | 5.9  |
| Monsanto (3° Arc,        | Max.    | Torque       | 132.2      | 9.06  | 1     | 84.9  | 73.2 | 140.9   | 133.5 | !        | 80.5      | 81.4   | 87.8   | 78.1      | 80.6  | 0.76 | 8.99         | 82.5 | T•88        | 80.9    | 100.0 | 91.3 | 76.1  | 94.1  | 100.0                    | - 78.6       | 100.0 | 93.3 |   | 1 !<br>1 1 |      |
|                          |         | phr<br>625** | 1.25       | , 2.5 | .625  | 1.25  | 2.5  | 69.     | 1.39  | 7.78%    | .625      | 1.25   | +2.5   | +.625     | +1.25 | C•7  | .625         | 1.25 | <b>C.</b> 7 | +.625   | +1.25 | +2.5 | .625  | +1.25 | +2.5                     | +.625        | +1.25 | +2.5 | 1 | .625%%     | 2.5  |
|                          |         | Accelerator  | captax     |       | Altax |       |      | Zenite* |       |          | Santocure |        |        | Ethylac . |       |      | Butyl Zimate |      |             | Bismate |       |      | Unads |       |                          | Methyl Tuads |       |      | ; | Bentene .  |      |
|                          | Recipe  | Number       | , 98<br>98 | 87    | 88 89 | 89    | 90   | 91      | 92    | 43       | . 46      | 95     | 96     | 26        | 860   | 88   | 100          | 101  | 707         | 103     | 104   | 707  | 106   | 107   | 108                      | 109          | 110   | 111  | r | 112        | 114  |



| -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| m                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SXRF/SBR 1503)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>P</b> 4                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IR SXRF/SBF                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [IZ4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 12                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 12                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0)                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 工                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| P                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | The second secon |
| 63                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| U                                          | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OT (                                       | ۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H                                          | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                                          | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                          | ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pr-4                                       | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                          | Ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathcal{Q}$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ⋖                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ജ                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\sim$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 23                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAS                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAS                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A MAS                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R MAS                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OR MAS                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FOR MAS                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FOR MAS                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Y FOR MAS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DY FOR MASTERBATCH                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UDY FOR MAS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UDY FOR MAS                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TUDY FOR MAS                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STUDY FOR MAS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STUDY FOR MAS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R STUDY FOR MAS                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OR STUDY FOR MAS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOR STUDY FOR MAS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATOR STUDY FOR MAS                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RATOR STUDY FOR MAS                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRATOR STUDY FOR MAS                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ERATOR STUDY FOR MAS'                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LERATOR STUDY FOR MAS                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELERATOR STUDY FOR MAS                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CELERATOR STUDY FOR MAS                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STUD                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACCELERATOR STUDY FOR MAS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACCELERATOR STUDY FOR MAS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - ACCELERATOR STUDY FOR MAS                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D- ACCELERATOR STUDY FOR MAS               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TD- ACCELERATOR STUDY FOR MAS              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NTD- ACCELERATOR STUDY FOR MAS             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NUTD- ACCELERATOR STUDY FOR MAS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTD- ACCELERATOR STUDY FOR MAS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTD- ACCELERATOR STUDY FOR MAS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONTD- ACCELERATOR STUDY FOR MAS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T CONTD- ACCELERATOR STUDY FOR MAS         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TT CONTD- AC                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I.E XXXII CONTD- ACCELERATOR STUDY FOR MAS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|          |                          |         | 4                    |        |        |        |   |        |        |       |          |       |       |   |        |        |        |
|----------|--------------------------|---------|----------------------|--------|--------|--------|---|--------|--------|-------|----------|-------|-------|---|--------|--------|--------|
|          | Stress-Strain Properties | Shore   | A2 Hard.             | 1      | ł      | i<br>i |   | I      | 1      | -     | .        | i     | 1     |   | 1      | ł      | 1      |
|          | ain Pr                   | 300%    | Mod.                 | I      | 1      | I      |   | í      | 1      |       | ļ        | 1     | 1     |   | !      | 1      | 1      |
|          | ss-Str                   |         | Elong.               | ł      | 1      | I<br>I |   | I      | i      | I     | Į        | 1     | 1     |   | !      |        | !      |
|          | Stre                     | Tensile | Strength Elong. Mod. | Į,     | 1      | i<br>i | ì | 1      | ľ      | !     | 1        | į     | !     |   | I<br>I | 1      | 1      |
|          |                          |         | 100K                 |        | I<br>I | 1      |   | i      |        | 1.2   | ļ        | 1     | 09.0  |   | i<br>I | ***    | 1      |
|          |                          | Opt.    | Torque Time Cure     | 1      | ļ      | ł      |   | 1      | I<br>I | 205.2 | 1        | 1     | 396.5 |   | I<br>I | I<br>I | 1      |
| ter      | 300 F.)                  | Scorch  | Time                 | 1      | ł      | ļ      |   | 1      | ļ      | 8.3   | 1        | 1     | 10.0  |   | 1      | ı      | l<br>i |
| Rheome   | 3 cpm,                   | Min.    | Torque               | 1      | ļ      | !      |   | i      | ;      | 6.2   | ł        | ł     | 5.6   |   | !<br>! | 1      | 1      |
| Monsanto | (3° Arc, 3 cpm, 300      | Max.    | Torque               | 1      | 1      | i      |   | 1      | ļ      | 98.0  | 1        | 1     | 82.6  |   | !      | I<br>I | i      |
|          |                          |         | phr                  | .625** | 1.25** | 2.5**  |   | .625** | 1.25** | 2.5   | .625**   | 1.25% | 2.5   |   | .625xx | 1.25** | 2.5**  |
|          |                          |         | Accelerator          | DBA    |        |        |   | DOIG   |        |       | Thiate E |       |       |   | ZBX    |        |        |
|          |                          | Recipe  | Number               | 115    | 116    | 117    |   | 118    | 119    | 120   | 121      | 122   | 123   | Č | 774    | 125    | 126    |

\*\* Did not cure.



| ~     | L D (33 SA/23 NAFRIRENIC OIL/SER 1/00) |   |
|-------|----------------------------------------|---|
| ٥     | 2                                      |   |
| ř     | $\langle$                              |   |
|       | 4                                      |   |
| _     | ,                                      |   |
| Ē     | Ķ                                      |   |
| ٩     | 4                                      |   |
| 1     | -                                      |   |
| -     | 1                                      |   |
| ۲     | 4                                      |   |
| C     | )                                      |   |
|       |                                        |   |
| (     | ڔ                                      |   |
| -     | Z                                      |   |
| í     | 3                                      |   |
|       | E                                      |   |
| Ē     | 7                                      |   |
| 11    | C                                      |   |
| ۴     | 4                                      |   |
| 4     | 4                                      |   |
| 1     | 4                                      |   |
| ,     | _                                      |   |
| C     | 7                                      |   |
|       | 1                                      |   |
| 3     | d                                      |   |
| t     | 0                                      |   |
|       | ı                                      |   |
| U     | 7                                      |   |
| U     | )                                      |   |
| •     |                                        |   |
| 0     | -                                      |   |
| ۲     | -                                      |   |
| F     | -4                                     |   |
| Ċ     | 0                                      |   |
| ١     | 7                                      |   |
|       | ĺ                                      |   |
| 17.   | Ļ                                      |   |
| 1     | ر                                      |   |
| t     | 7                                      |   |
| 4     | 34                                     |   |
| -     | 2                                      |   |
| ŕ     | บั                                     |   |
| E     | 4                                      |   |
| ξ     | 2                                      |   |
|       | Y                                      |   |
|       | Ξ                                      |   |
| ,     | JUY FOR MANIERBAICH DOI D              |   |
| 1     | 7                                      | ĺ |
| ì     | עצ                                     |   |
| ĺ     | ı                                      |   |
|       | ×                                      |   |
| -     | 9                                      |   |
|       | 0                                      |   |
| ŧ     | 7                                      | Į |
| (     | מ                                      | ۱ |
|       | ATOR STUDY                             |   |
| 1     | 7                                      |   |
| Í     | Ξ                                      |   |
| 4     | 4                                      |   |
| 1     | ×                                      |   |
| 1     | I                                      |   |
|       | Y                                      |   |
| 1     | 2                                      |   |
| 1     |                                        | į |
| -     | _                                      |   |
|       |                                        |   |
| 1100. | LACT                                   |   |
|       | T-ACC                                  |   |
| 100   | TIPACI                                 |   |
|       | TTTTACK                                |   |
| 1000  | CALLEACT                               |   |
| 100   | CXXTTLAC                               |   |
| 1100  | CXXXTTTACK                             |   |
| 1000  | XXXTTTTACK                             |   |
|       | TEN XXXTT-ACC                          |   |
|       | BLE XXXTTT-ACC                         |   |
|       | ABLE XXXTTT-ACC                        |   |

|          | chows                    | A2 Hard.      | 61     | 62   | 1      | 1       | 62   |         | 09   | 59    | 59        | 19    | 61   | 61      | 62   | 63     | 09           | 62   | 62     | 99      | 99   | 65     | 65    | 79   | 70   |
|----------|--------------------------|---------------|--------|------|--------|---------|------|---------|------|-------|-----------|-------|------|---------|------|--------|--------------|------|--------|---------|------|--------|-------|------|------|
| í        | Stress-Strain Properties | Mod.          | 1410   | 1390 | 1      | 1       | 1430 | 1       | 1220 | 1280. | 1110      | 1260  | 1300 | 1160    | 1310 | 1 .    | 1180         | 1270 | i<br>i | 1610    | !    | 1      | 1350  | 1350 | 1    |
| ·<br>C   | s-straı                  | Elong.        | 320    | 300  | 1      | i       | 480  | ł       | 044  | 470   | 400       | 370   | 320  | 430     | 400  | 280    | 760          | 400  | 230    | 310     | 220  | 240    | 400   | 300  | 180  |
| d        | Torotlo                  | Strength      | 1420   | 1390 |        |         | 1630 | 1       | 1610 | 1720  | 1410      | 1390  | 1390 | . 1510  | 1580 | 1370   | 1550         | 1470 | 1340   | 1750    | 1450 | 1570   | 1580  | 1350 | 1180 |
|          | 1                        | 100K          | 2.7    | 4.8  | 0.55   | 1.7     | 3.5  | •       | 2.7  | •     | 2.7       | 11.2  | •    | 4.0     | 7.9  | 10.0   | •            | 7.7  | •      | 26.4    | 25.0 | 17.4   | •     | 21.1 | •    |
|          | 1                        | Cure          | 96.2   | 55.1 | 440.1  | 155.2   | 9.48 | 126.6   | 95.1 | 47.8  | 100.1     | 34.8  | 28.9 | 73.8    | 42.0 | 36.0   |              | 36.9 | •      | 2.      | 12.8 | е<br>С | •     | 21.9 | •    |
| ter      | Scorch                   | Time          | 9.6    | 7.3  |        | 16.6    |      | _       | 10.1 | _     | 9         | 15.2  | ~    | 16.4    | 13.0 | $\sim$ | 7.3          | 7.2  | 5.1    | 3.6     | 3.6  | 3.6    | 10.0  | 11.0 | 10.3 |
| 1        | Min Cpm,                 | Torque        | 6.2    | 6.8  | 5.7    | 6.8     | 5.7  |         | 6.2  |       | 6.8       | 7.1   | 0.9  | •       | 6.3  | 6.1    | 7.0          | 10.3 | 6.9    | 7.9     | 8.6  | 7.5    | 7.0   | 8.4  | 5.8  |
| Monsanto | Max Arc,                 | ne            |        | 66.1 | 150.2  | 8.06    | 71.3 | 61.7    | 9.49 | 0.79  | 72.2      | 69.2  | 78.1 | 73.8    | 9.89 | 83.6   | 58.4         | 61.9 | 73.1   | 72.3    | 88.0 | 83.0   | 71.7  | 75.4 | 91.5 |
|          |                          | phr           | 1.25   | 2.5  | .625** | 1.25 ** | 2.5  | **69.   | 1.39 | 2.78  | .625      | +1.25 | 2.5  | .625    | 1.25 | 2.5    | .625         | 1.25 | 2.5    | .625    | 1.25 | 2.5    | .625  | 1.25 | 2.5  |
|          |                          | Accelerator   | captas |      | Altax  |         |      | Zenite* |      |       | Santocure |       |      | Ethylac |      |        | Butyl Zimate |      |        | Bismate |      |        | Unads |      |      |
|          |                          | Number<br>127 | 128    | 129  | 130    | 131     | 132  | 133     | 134  | 135   | 136       | 137   | 138  | 139     | 140  | 141    | 142          | 143  | 144    | 145     | 146  | 147    | 148   | 149  | 150  |

\* 10% wax. Adjusted to give .625, 1.25, & 2.5 phr Zenite Special. \*\* Did not cure.



TABLE XXXIII- ACCELERATOR STUDY FOR MASTERBATCH LOT D (55 SX/25 NAPHTHENIC OIL/SBR 1708 CONT'D.)

|           | perties         | Shore        | A2 Hard.    | 79           | 67   | 71    |         | 09   | 59   |        | i      | 1      | ł      | 1      | i         | 1        | ł      | ì     | ł      | 1      | 1     |
|-----------|-----------------|--------------|-------------|--------------|------|-------|---------|------|------|--------|--------|--------|--------|--------|-----------|----------|--------|-------|--------|--------|-------|
|           | ain Pro         | le 300% Shor | Mod.        | ;            | !    | 1     | 1       | 1110 | 1110 | §<br>1 | i      | i<br>I | 1      | ł      | ı         | i        | 1      | ł     | Į<br>į | ŧ      | 1     |
|           | ess-Str         |              | Elong.      |              | 240  |       | 1       | 420  | 400  | ł      | ļ      | į      | 1      | . [    | i         | ł        | 1      | 1     | Į<br>į | i      |       |
|           | Str             | Tensile      | Strength    | 1540         | 1440 | 1290  | .       | 1570 | 1360 | i      | i      |        | i      | ł      | Carro com | 1        | ł      | ł     | i      | 1      | 1     |
|           |                 |              | 100K        |              |      |       | 1       | 3.1  | 5.7  | Ē<br>S | 1      | 1      | l<br>I |        | 1.1       | ****     | 1 1    | 0.31  | i      | 1      | 1     |
|           |                 |              | Cure        | 16.2         | 14.2 | 14.2  | 1       | 85.4 | 47.0 | ļ      | ŀ      | {      | Į<br>į | 1      | 210.4     | 4        | !      | 749.8 | ļ      | i      | !     |
| er        | 300°F.)         |              | Time        | ν.<br>       | 6.4  | 9.4   | 1       | 10.0 | 6.7  | Î      | i      | 1      |        |        | 10.3      | i        | ļ      | 11.2  | \$     | í<br>ì | 1     |
| Rheometer | , 3 cpm, 300°F. |              | Torque      | 6.9          | 7.7  | 9.9   | ļ       | 7.2  | 6.2  | §<br>1 | į      | !      | i      | 1      | 7.0       | ļ        | i<br>i | 6.5   | 1      | 1      | 1     |
| Monsanto  | (3° Arc,        |              | Torque      | 73.7         | 87.4 | 100.0 | ł       | 53.8 | 48.6 | i      | . !    | i      | 1      | 1      | 75.4      | !        | l<br>I | 120.6 | ł      | 1      | ł     |
|           |                 |              | Thq         | .625         | 1.25 | 2.5   | ,625%   | 1.25 | 2.5  | .625   | 1.25** | 2.5**  | .625** | 1.25** | 2.5%      | .625**   | 1.25** | 2.5** | .625** | 1.25** | 2.5** |
|           |                 |              | Accelerator | Methyl Tuads |      |       | Bentene |      |      | DBA    |        |        | DOTG   | •      |           | Thiate E |        |       | ZBX    |        |       |
|           |                 | Recipe       | Number      | 151          | 152  | 153   | 154     | 155  | 156  | 157    | 158    | 159    | 160    | 161    | 162       | 163      | 164    | 165   | 166    | 167    | 168   |

\*\* Did not cure.



|                                     | es                       | Shore   | Hard.            | 65      |      | 79    | . 99    | 65     |         | . 65    | 63   | 99           | 69   | 29   | 69      | 71    | 69   | 29           | 70     | 69   | 72      | 74     | 75   | 69      |      |      |
|-------------------------------------|--------------------------|---------|------------------|---------|------|-------|---------|--------|---------|---------|------|--------------|------|------|---------|-------|------|--------------|--------|------|---------|--------|------|---------|------|------|
|                                     | Stress-Strain Properties | % Sh    | 1                | 0       | 0    | 0     |         | 0      |         | 0       | 0    |              | 0    | 0    |         |       |      |              |        |      |         |        |      |         |      |      |
|                                     | Strain I                 | 300%    | 18. Mod.         |         |      |       | 0601. ( |        | 9       | 076 (   | 9    | 10           | 12   | ~    |         | 1460  |      |              | 1470   |      | 1490    | . (    |      | 1440    |      |      |
|                                     | tress-2                  | 9       | IπI              | ) 590   |      |       | 510     | ,      |         | 069 . ( |      |              | (480 |      |         | 077 ( |      |              | 390    |      |         | ) 290  |      | 004     |      |      |
|                                     | ٠.                       | Tensile | Strength<br>2010 | 1970    | 2000 | 9     | 1920    | part . | 21      | 2190    | 08   | 2170         | 1990 | 1890 | 2210    | 2200  | 1900 | 2040         | 1920   | 1880 | 1820    | 1780   | 1910 | 1910    | 87   | 85   |
|                                     |                          |         |                  |         |      |       |         |        |         |         |      |              |      |      |         |       |      |              |        |      |         |        |      |         |      |      |
|                                     |                          |         | 100K<br>5.3      | 10.0    | 20.0 | 6.2   | 7.5     | 18.9   | · •     | 12.4    | •    | •            | 10.5 | 6    | 2       | 50.0  | /    | •            | 12.4   | •    | •       | 24.0   | •    | 24.8    | •    | •    |
|                                     | • • •                    | 1       | Cure 48.4        | 23.7    | 16.2 | . K   | 46.6    | 27.4   | 0       | 25:4    | 4.   |              | 35.7 | φ.   |         | 15.1  | 14,1 | ·i           | 23.0   |      |         | 12.2   | •    | 15:7    | 4    | 6.   |
| 1010                                | 3 cpm, 310°F)            | Scorch  | Time<br>5.2      | .6.5    | 4.7  | 9     | 16.1    | 5.     | •       | 8.9     | •    | 4.           | 13.7 | 2.   | •       | 10.5  | •    | •            | 4.5    |      | •       | 2.6    | •    | 11.5    | ;    | i    |
|                                     |                          | Z       | Tor<br>4.        | 5.0     | 5.   | 4.7   | 4.1     | 4.2    | 4.5     | 5.5     | 4.7  | 4.2          |      | 0.4  | 5.0     | 5.0   | 5.0  | 5.1          | 0.9    | 7.3  | •       | 6.7    | •    | . 4.2   | •    | 4.1  |
| Monday                              | (3° Arc,                 | Max.    | Torque<br>53.9   | 58.7    | 57.1 | 41.1  | 55.8    | 52.9   | 51.4    | 52.9    | 57.0 | 40.7         | 61.1 | 58.0 | 67.2    | 66.3  | 77.4 | 68.8         | 76.2   | 78.8 | 76.8    | 88.1   | •    | 62.0    | 80.0 | 76.2 |
| CON SYSTEM                          |                          | ্যঞ্    | s <u>phr</u> -   | 7, 1.25 | 2.5  | 625   | 1.25    | 2.5    | 69.     | . 1.39  |      | .62 <b>5</b> | •    | 2.5  | 625     | 1.25  | 2.5  | 9.           | ₹ 1.25 | 2.5  | 9.      | 3 1.25 | 7    | <br>625 | 1.25 | 2.5  |
| TABLE XXXIVOT G ACCELERATION SYSTEM |                          |         | Accelerator      |         |      | Altax | •       |        | Zenite* |         |      | Santocure    |      |      | Ethylac | •     |      | Butyl Zimate |        |      | Bismate |        |      | Unads   |      |      |
| TABLE XX                            |                          | Recipe  | Number<br>169    | . 170   | 171  | 172.  | . 173   | 174    | 175     | 176     | 177  | 178          | 179  | 180  | 181     | 182   | 183  | 184          | 185    | 186  | 187     | 188    | 189  | 190     | 191  | 192  |

\* 10% wax. Adjusted to give .625, 1.25, + 2.5 Zenite Special.



\*\* Did not cure.

, of the publisher who will be written their course of



|                                       | S                        | Shore   |                   | 65   |       |   | 69       | 69     | 29   | •    | 99      | 29       | 99   | 20        | 2 7 7 | 70                                      |       | 67          | 99   | 65   |    | 71           | 68    | 71          |         | 74   | 70    |     | 89                   | . 68 | 69   |   |
|---------------------------------------|--------------------------|---------|-------------------|------|-------|---|----------|--------|------|------|---------|----------|------|-----------|-------|-----------------------------------------|-------|-------------|------|------|----|--------------|-------|-------------|---------|------|-------|-----|----------------------|------|------|---|
|                                       | Stress-Strain Properties | 300%    | j                 | 1510 | 1450  | C | 1290     | 30     | 1510 |      | 1130    | 1350     | 240  | 0071      | 200   | 1500                                    |       | 1590        | 1380 | 1880 |    | 1760         | -     | 2 6         | !       | !    | ı     |     | 1990                 | 1    | 1    |   |
|                                       | ss-Strain                |         | Elong.            | 430  | 400   |   |          | . 440  |      |      | . 20    | 50       | 780  |           |       | 4 7 C C C C C C C C C C C C C C C C C C |       |             |      | 310  |    |              | 90    | 90          | 280     | 230  | 230   |     | 300                  | 270  | 260  |   |
|                                       | Stre                     | Tensile | Strength<br>1600  | 2310 | 2090  |   | 7200     | . 2200 | 2130 |      | 2170    | 2290     | 1210 | 0386      | 2000  | 1940                                    | )<br> | 2220        | 1770 | 1970 |    | . 2270       | 1340  | 1890        | 1860    | 1720 | 1950  |     | 1990                 | 2000 | 2070 |   |
|                                       |                          |         | ı                 |      |       | F | ·        | 0      | 0    |      | 6.      | 0        | 2    | 9         | 7 0   | ~ ~                                     |       | <del></del> | 2    | ٦.   |    | 6.           | 7     | 2,          | -       |      | 6     |     | 7 .                  | 7    | 2    |   |
|                                       |                          | l       | 100K              |      |       | , | - (      | 27     | 12   |      | 2       | $\infty$ | 16   | 7         | ` <   | ς,                                      | 5     | 31          | 77   | 56   |    | 31           | 43    | 62          | 4       | 36   | 31    |     | 65                   | 69   | 9    |   |
|                                       | . :                      | 1       | Cure<br>34.6      | 29.9 | 16.9  | C | 452.3    | 41.3   | 35.4 | 4.** | 48.6    | 9        | · o  |           | . u   | 0.00                                    | 1 4   | 20:4        | 14.7 | 14.2 | •. | 12.2         | 7.6   | 75          |         |      | 0.0   | •   | 15.3                 |      |      | • |
|                                       | 310°F)                   | Scorch  | Time<br>9.0       | 7.0  | 4.5   |   | •        | 17.5   | •    |      | 6.6     | •        | •    | 14.2      | · v   | 11.6                                    | 4     | 13.0        | 9.5  | 10.1 |    | 5.0          | 4.1   | æ.          | 89      | 2    | 2.7   |     | 11.8                 | 2    | 0    |   |
|                                       | S cometer                | Min     | Torque 4.2        | 4.0  | 5.1   |   | •        | 4.1    | •    |      | 4.3     | •        | •    | 6,        |       |                                         | •     | 4.0         | .4.1 | •    |    | 6.4          | 6.4   | •           | •       | •    | 6.2   |     | 3.3                  | •    | •    |   |
|                                       | Monsanto (3° Arc.        | Max.    | Torque 44.6       | 56.5 | 62.6  | 0 | 2777     | 4.4.4  | 61.9 |      | 0.44    | 54.8     | 60.2 | 58.6      | 000   | 0.67                                    | 1     | 55.0        | 71.0 | 73.7 |    | 77.2         | 68.0  | 83.6        | 80.0    | 96.8 | 103.0 |     | 69.2                 | 59.3 | 78.2 |   |
| ON SYSTEM                             |                          |         | phr. 625          | 1.25 | . 2.5 |   |          | 1.25   |      |      |         | ų.       | 2.78 | .625      | -     | 7.5                                     | ,     | .625        | 1.25 | .2.5 |    | • 6          | .1.25 | 2.5         | .625    | -    | 2.5   | . • | .625                 | 4    |      |   |
| CELERATI                              | nd C                     |         | ं: ं .<br>•<br>•। | ্ট্র |       |   | <u> </u> |        | 24   |      |         | ·:       |      |           |       |                                         | 2.    | Asia)       |      |      |    | ite          | ; #·  | r diki<br>r | K. G.   | . ř. |       |     | ļ. 35 <sup>°</sup> . | . j  | 6.   |   |
| TABLEXXXV - LOT H ACCELERATION SYSTEM |                          |         | Accelerator       | •    |       |   | Altax    |        |      |      | Zenite* |          |      | Santocure |       |                                         |       | Ethylac     |      |      |    | Buty' Zimate |       |             | Bismate |      | ٠     |     | Unads                | •    | •-   |   |
| TABLEXXX                              | 9                        | Recipe  | Number<br>211     | 212  | 213   |   | 777      | 215    | 216  |      | 217     | 218      | 219  | 220       | 227   | 222                                     | 1     | 223         | 224  | 225  |    | 226          | 227   | 228         | . 229 . | 230  | 231   |     | 232                  | 233  | 234  |   |

\* 10% wax. Adjusted to give .625, 1.25, + 2.5 Zenite Special. \*\*\* 60 min. cure used.



|                                               |                                       | re          | A2 Hard.        | 2.0  | , m    |      | L       | 10      | 7      |                                       | L       |        |        |               |        | 4      | 6     |          |        |         |     | 1      | 1    | ,          |        |
|-----------------------------------------------|---------------------------------------|-------------|-----------------|------|--------|------|---------|---------|--------|---------------------------------------|---------|--------|--------|---------------|--------|--------|-------|----------|--------|---------|-----|--------|------|------------|--------|
|                                               | ties                                  | Shore       | A2 H            | 7.0  | 73     |      | i .     | 65      | 67     |                                       |         | i      | i      |               | i      | 67     | 69    | i        | . i    | i       |     | i      |      | i          |        |
|                                               | Stress-Strain Properties              | 300%        | Mod.            |      | Į<br>į |      | 1       | 1410    | 1540   |                                       | 1       | 1      | i      |               | i      | 1180 . | 1790  | !        | ļ      | !<br>!  |     | l<br>i | 1    | 1          |        |
|                                               | -Strai                                |             | Elong.          | 270  | 190    |      | 1       | . 430   | 420    |                                       | i       | !      | 1      |               | 1      | 470    | 400   | 1        | - 1    | ļ       |     | ł      | 1    | {          |        |
| ļ                                             | Stress                                | Tensile     | Strength Elong. | 2120 | 1800   |      | 1       | 2360    | 2340   |                                       | 1       | 1      | 1      |               | 1      | 2030   | 2450  | 1        | 1      | 1       |     | 1      | 1    | ł          |        |
|                                               |                                       |             |                 |      |        |      |         |         |        |                                       |         |        |        |               |        |        |       |          | •      |         |     |        |      |            |        |
|                                               |                                       |             |                 | 40.4 |        |      | 0.7     | 5.1     | 5.3    | ?<br>-                                | 1       | 1      | 1      |               | 0.4    | 3.0    | 4.7   | ļ        | 1      | 1.2     |     | !      | 1    | !          |        |
| , g                                           | . •                                   | Scorch Opt. | Cure<br>9 7     |      |        |      | 364.7   | . 7. 49 | 50.4   |                                       |         |        | i.     | •.            | 636.3  | 82.9.  | 55.3. | .        | ł      | 194.4   | .•  | i<br>T | -    | ;<br> <br> | •      |
|                                               | 310°F)                                | Scor        | Time 6 2        | 7.5  | 9.4    |      | 11.6    | 9.1     | 7.1    |                                       | 1       | 1      | 1      |               | 11.1   | 6.9    | 6.1   | i        | 1      | 9.3     |     | i<br>i | !    | 1          |        |
|                                               | fonsanto Rheometer (3° Arc, 3 cpm, 31 | Min.        | Torque 3.7      | 9.0  |        |      | 4.0     | დ<br>ო  | 4.2    |                                       | i       | 1      | i<br>i |               | 0.4    | 4.0    | 4.2   | į        | ł      | 4.3     |     | !      |      | 1          |        |
| (cont.)                                       | Monsanto (3° Arc,                     | Max.        | Torque 78.7     | 87.6 | 102.1  |      | 104.7   | 39.4    | . 62.4 |                                       | 1       | ·.     | !      |               | 222.2  | 75.2   | 79.1  | ł        | ł      | 98.1    |     | i      | 1    | 1          |        |
| ON SYSTEM                                     |                                       |             | . phr           | 1.25 | 2.5    | in A | **625** | 1.25    | 2.5    |                                       | . 625** | 1.25** | 2.5%%  | in the second | .625** | ¥ 1.25 | . 2.5 | . 625**  | 1.25** | . 2.5** | 3.  | .625** | 1.25 | 2.5**      | 5 .*** |
| TABLE XXXXV-LOT H ACCELERATION SYSTEM (CONT.) |                                       |             | Accelerator     |      |        |      | Beutene | ,,,,    |        | , , , , , , , , , , , , , , , , , , , | DBA     | ."     | e.T.   |               | DOIG   |        | · **) | Thiate E |        |         |     | ZBX    | 115  |            | Ŋ      |
| TABLE XX                                      |                                       | Recipe      | Number<br>235   | 236  | 237    |      | 238     | 239     | 240    |                                       | 241     | 242    | 243    |               | 244    | 245    | 246   | 247      | 248    | 249     | i i | 250    | 25L  | 727        |        |
|                                               |                                       |             |                 |      |        |      |         |         |        |                                       |         |        |        |               |        | ,      | 0     |          |        |         | •   |        |      |            |        |

\*\* Did not cure.



#### TABLE XXXVI

| Recipe<br>Polymer Identification                                                                                                                              |                    | $\frac{1}{\text{Lot A}}$           | 2A<br>Lot B2                         | $\frac{3}{\text{Lot C}}$            | 4A<br>Lot D2                       | $\frac{5}{\text{Lot G}}$            | 6B<br>Lot H                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|--------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|------------------------------------|
| Ingredients, phr                                                                                                                                              |                    | 145.00                             | 220.00                               |                                     |                                    |                                     |                                    |
| Lot B2<br>Lot C                                                                                                                                               |                    |                                    |                                      | 131.23                              | 180.00                             |                                     |                                    |
| Lot D2<br>Lot G                                                                                                                                               |                    |                                    |                                      |                                     |                                    | 130.00                              | <br>131.2                          |
| Lot H Zinc Oxide                                                                                                                                              |                    | 5.00<br>2.00                       | 5.00<br>2.00                         | 5.00<br>2.00                        | 5.00<br>2.00                       | 5.00<br>2.00                        | 5.00                               |
| Stearic Acid<br>PBNA                                                                                                                                          |                    | 1.25<br>0.5                        | 1.25                                 | 1.25                                | 1.25                               | 1.25                                | 1.2                                |
| Bismate<br>Unads                                                                                                                                              |                    |                                    |                                      | 0.625                               | 1 25                               | 0.625                               |                                    |
| Ethylac - Sulfur                                                                                                                                              |                    | 2.00                               | $\frac{1.25}{2.00}$                  | 2.00                                | 1.25<br>2.00                       | 2.00                                | 2.00                               |
| Total                                                                                                                                                         | COMP               | 155.75                             | 231.50                               | 142.105                             | 191.50                             | 140.875                             | 142.10                             |
|                                                                                                                                                               | COMPC              | OUND PROCES                        | ,                                    |                                     |                                    |                                     |                                    |
| Compound Mooney, ML-4, 212°F                                                                                                                                  |                    | 72                                 | 52                                   | 74                                  | 77                                 | 84                                  | 76                                 |
| Mooney Scorch, ML, 266°F<br>Minutes to 5 pt. rise<br>in test to 35 pt. rise<br>Index                                                                          |                    | 5.3<br>9.7<br>4.4                  | 30+<br>-1<br>                        | 16.1<br>21.5<br>5.4                 | 30+<br><br>                        | 24.3<br>30+<br>                     | 4.0<br>7.2<br>3.2                  |
| Yousento Rheometer                                                                                                                                            |                    |                                    | •                                    | :                                   |                                    |                                     |                                    |
| (3° arc, 3 cpm, 300°F)  Maximum Torque  Minimum Torque  Scorch Time (t <sub>2</sub> ). Minutes  Optimum Cure (E <sub>90</sub> ), Minutes  Cure Rate (k) X 100 |                    | 85.3<br>9.8<br>4.2<br>11.5<br>31.5 | . 63.2<br>4.7<br>17.4<br>59.4<br>5.5 | 100.2<br>7.9<br>8.8<br>16.8<br>28.8 | 78.9<br>8.1<br>14.8<br>50.5<br>6.4 | 76.2<br>6.1<br>14.1<br>24.9<br>21.3 | 73.1<br>7.2<br>2.9<br>12.5<br>24.0 |
| Green Strength Yield Strength, psi                                                                                                                            |                    | 101                                |                                      | 88                                  |                                    | 141                                 | <b>1</b> 26                        |
| Yield Elongation, % Ultimate Strength, psi Ultimate Elongation, %                                                                                             |                    | 200<br><b>7</b> 5<br>400           |                                      | 60<br>33<br>310                     | <br>                               | 50<br>8<br>1450                     | 50<br>8<br>640                     |
| Tel-Tac                                                                                                                                                       |                    |                                    |                                      |                                     |                                    |                                     |                                    |
| Tack, psi<br>Stickiness, psi                                                                                                                                  |                    | 16.7<br>4.2                        |                                      | 21.0<br>5.3                         |                                    | 38.2<br>8.7                         | 36.2<br>7.0                        |
|                                                                                                                                                               | UNAG               | ED VULCANI                         | ZATE PROPE                           | RTIES                               |                                    |                                     |                                    |
| Stress-Strain Tensile Strength, psi                                                                                                                           | *<br>8<br>12<br>25 | *<br>2200<br>2090 60<br>1950       | 14<br>1270 17<br>30                  | *<br>1640<br>1680 45<br>990         | *<br>21<br>1580 25<br>40           | 1980 6<br>1860 13<br>1810 30        | 2010<br>2160<br>1850               |
| Elongation, %                                                                                                                                                 | 8<br>12<br>25      | 380<br>340 60<br>300               | 14<br>370 17<br>30                   | 320<br>300 45<br>200                | 21<br>400 25<br>40                 | 500 6<br>470 13<br>440 30           | 330<br>340<br>300                  |

<sup>\*</sup> Min. Cured @300°F



#### TABLE XXXVI CONTD.

| Recipe                                                                                                                                                                                      |                    | 1                                 | <u>2A</u>              | <u>3</u>                  | <u>4A</u>                                            | <u>5</u>                  | <u>6B</u>            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|------------------------|---------------------------|------------------------------------------------------|---------------------------|----------------------|
|                                                                                                                                                                                             | UNAGE              | D VULCANIZA                       | TE PROPERTII           | ES CON'T.                 |                                                      |                           |                      |
| Stress-Strain 300% Modulus, psi                                                                                                                                                             | *<br>8<br>12<br>25 | 1700<br>1870 60                   | *<br>14<br>1140 17<br> | 1510<br>1680 45           | 21<br>1310 25<br>40                                  | * 1200 6 1210 13 1210 30  | 1790<br>1900<br>1850 |
| Shore A2 Hardness                                                                                                                                                                           | 8<br>12<br>25      |                                   | 14<br>59 17<br>20      | 65<br>65 45<br>67         | 21<br>62 25<br>40                                    | 71 6<br>72 13<br>72 30    | 70<br>70<br>69       |
| Angle Tear Resistance, ppi<br>Die C, Pulled w/grain                                                                                                                                         | 8<br>12<br>25      |                                   | 14<br>17<br>30         | 132<br>125<br>112         | 21<br>25<br>40                                       | 232 6<br>218 13<br>225 30 | 210<br>192<br>175    |
| Optimum Cure Time @300°F                                                                                                                                                                    |                    | 12                                | <u>60</u>              | 17                        | 51                                                   | 25                        | 13                   |
| Goodrich Flex (.175" stroke, 55 lbs. load, (opt. cure + 15 min.) Initial Static Compression tial Dynamic Compression ta T, °F manent Set, % (Method B, 72 hrs., 158°F) (Opt. cure + 8 min.) |                    | .146<br>.056<br>28<br>6.5<br>36.8 |                        | .145<br>.056<br>24<br>4.8 | .185<br>.0945<br>40<br>Ex.Blow-Out<br>26.32<br>25.66 |                           | <br><br><br>25.84    |
| Skid Resistance, British Port<br>(Opt. cure + 4 min.)<br>Glass, dry<br>, wet                                                                                                                | able               | 88<br>52                          | 88.8<br>37.0           | 98<br>53                  | 93.8<br>43.6                                         | 93<br>59                  | 28<br>59             |
| Pico Abrasion Index (Opt. cure + 8 min.)                                                                                                                                                    |                    | 66                                | 39                     | 80                        | 46                                                   | 97                        | 96                   |
| NBS Abrasion Resistance,<br>Per Cent of Standard                                                                                                                                            |                    | 234                               | 87                     | 314**                     | 101                                                  | 165                       | 287**                |
| DeMattia Flex, Flexures<br>to 0.6" crack growth, 212°F<br>(Opt. cure + 4 min.)                                                                                                              |                    | 600***<br>                        | 1200                   | 10***                     | 600                                                  | 20***                     | 600***               |
| Ross Flex (Aged 24 hrs.@272°F<br>Belt Flex (Time to failure (h                                                                                                                              |                    | 110,576<br>24                     | 206,488/.4             | ' 16                      | 50,526/.6                                            | 59<br>                    | ,434<br>24           |

<sup>\*</sup> Estimated, too high for exact measurement
\*\* Broke immediately

<sup>\*\*\*</sup> Recompounded



| TABLE | XXXVI | CONTD. |
|-------|-------|--------|
|       |       |        |

| Recipe                                         | <u>1</u>                    | <u>2A</u>  | 3    | <u>4A</u> | <u>5</u> | <u>6B</u> |
|------------------------------------------------|-----------------------------|------------|------|-----------|----------|-----------|
| Optimum Cure Time At 300°                      | <u>F</u> 12                 | 60         | 17   | 51        | 25       | 13        |
| Goodyear-Healey Rebound, (opt. cure + 15 min.) | % 67.8                      | 11.40      | 65.7 | 11.75     | 46.0     | 49.1      |
|                                                | AGED VULCANIZ<br>Aged 1 Day |            | CIES |           |          |           |
| Stress-Strain Tensile Strength, psi            | 2010                        | 825        | 1830 | 1200      | 1860     | 1470      |
| Elongation, %                                  | 300                         | 175        | 290  | 275       | 420      | 210       |
| 300% Modulus, psi                              | 2010                        |            |      |           | 1350     |           |
| Shore A2 Hardness                              | 64                          | 64         | 66   | 63        | 73       | 67        |
|                                                | AGED VULCANIZ<br>Aged 3 Day |            | CIES |           |          |           |
| Stress-Strain Tensile Strength, psi            | 1980                        | 1000       | 1890 | 1245      | 2010     | 1880      |
| Elongation, %                                  | 290                         | 200        | 270  | 260       | 420      | 260       |
| Modulus, psi                                   |                             | See See    |      |           | 1460     |           |
| nore A2 Hardness                               | 64                          | <b>6</b> 5 | 66   | 63        | 74       | 72        |
| ,                                              | AGED VULCANIZ Aged 5 Day    |            | TIES |           |          |           |
| Stress-Strain Tensile Strength, psi            | 1920                        | 695        | 1330 | 1185      | 1890     | 1730      |
| Elongation, %                                  | 280                         | 120        | 200  | 230       | 400      | 240       |
| 300% Modulus, psi                              |                             |            |      |           | 1500     |           |
| Shore A2 Hardness                              | 66                          | 64         | 66   | 62        | 73       | 71        |
|                                                | AGED VULCANIZ<br>Aged 7 Day |            | CIES |           |          |           |
| Stress-Strain Tensile Strength, psi            | 1520                        | 950        | 1740 | 1150      | 1820     | 1990      |
| Elongation, %                                  | 200                         | 160        | 240  | 220       | 380      | 260       |
| Shore A2 Hardness                              | 67                          | 65         | 68   | 60        | 73       | 73        |



|                                                                                                  |          | TABLE XXXV                  | I CONTD.                |                         |                         |                           |                         |
|--------------------------------------------------------------------------------------------------|----------|-----------------------------|-------------------------|-------------------------|-------------------------|---------------------------|-------------------------|
| Recipe                                                                                           |          | 1                           | <u>2A</u>               | <u>3</u>                | <u>4A</u>               | <u>5</u>                  | <u>6B</u>               |
| Optimum Cure Time @300°F,                                                                        | min.     | 12                          | 60                      | 17                      | 51                      | 25                        | 13                      |
| Dynamic Ozone Cracking<br>100°F, 50 pphm<br>4 hrs.<br>24 hrs.<br>48 hrs.<br>72 hrs.              |          | NC*<br>FGC**<br>FGC<br>FGC  | NC<br>FGC<br>FGC<br>FGC | NC<br>FGC<br>FGC<br>FGC | NC<br>FGC<br>FGC<br>FGC | NC<br>FGC<br>FGC<br>FGC   | NC<br>FGC<br>FGC<br>FGC |
| * No Cracking **Fine General Cracking                                                            |          | 200                         |                         |                         | 200                     |                           |                         |
|                                                                                                  | -        | IMMERSION PR<br>1 day in AS |                         | at 158°F                |                         |                           |                         |
| Weight Change, % Volume Change, %                                                                |          | 76.8<br>90.5                | 46.47<br>55.83          | 74.4<br>85.6            | 53.15<br>64.09          | 7.1<br>7.8                | 7.5<br>8.3              |
| Stress-Strain Properties Tensile Strength, psi Elongation, % 100% Modulus, psi Shore /2 Hardness |          | 680<br>120<br><br>45        | 600<br>120<br><br>43    | 790<br>150<br><br>45    | 690<br>140<br><br>47    | 1890<br>490<br>1120<br>64 | 1480<br>250<br><br>65   |
|                                                                                                  | Immersed | 3 days in A                 | STM #3 0il              | at 158°F                |                         |                           |                         |
| Weight Change, % Volume Change, %                                                                |          | 92.1<br>109.1               | 61.36<br>74.03          | 91.6<br>106.1           | 64.84<br>78.66          | 10.3<br>11.6              | 10.5                    |
| Stress-Strain Properties Tensile Strength, psi Elongation, % 300% Modulus, psi Shore A2 Hardness |          | 710<br>120<br><br>46        | 550<br>130<br><br>42    | 570<br>110<br><br>46    | 675<br>140<br><br>44    | 1800<br>410<br>1340<br>65 | 1580<br>250<br><br>64   |
|                                                                                                  | Immersed | 5 days in A                 | STM #3 0i1              | at 158°F                |                         |                           |                         |
| Weight Change, % Volume Change, %                                                                |          | 93.6<br>111.3               | 64.3<br>77.4            | 92.3<br>107.5           | 65.2<br>78.8            | 11.0<br>12.5              | 14.8<br>16.7            |
| Stress-Strain Properties Tensile Strength, psi Elongation, % 300% Modulus, psi Shore A2 Hardness |          | 750<br>130<br><br>45        | 560<br>120<br><br>40    | 58-<br>110<br><br>48    | 710<br>130<br><br>44    | 1660<br>370<br>1380<br>62 | 1000<br>190<br><br>65   |



### TABLE YXXVI CONT.

| Recipe                                                                                           | 1              | <u>2A</u>      | 3            | <u>4A</u>      | 5            | <u>6B</u> |
|--------------------------------------------------------------------------------------------------|----------------|----------------|--------------|----------------|--------------|-----------|
| IMMER                                                                                            | SION PROPERT   | TIES CON'T.    |              |                |              |           |
| Immersed 7                                                                                       | days in ASTN   | 1 #3 Oil at    | 158°F        |                |              |           |
| Weight Change, % Volume Change, %                                                                | 96.0           | 61.49          | 96.9         | 69.32          | 13.3         | 12.5      |
|                                                                                                  | 1 <b>1</b> 3.6 | 74.52          | 112.4        | 84.03          | 15.3         | 14.1      |
| Stress-Strain Properties Tensile Strength, psi Elongation, % 300% Modulus, psi Shore A2 Hardness | 620            | 490            | 990          | 600            | 1700         | 1250      |
|                                                                                                  | 110            | 120            | 150          | 120            | 380          | 180       |
|                                                                                                  |                |                |              |                | 1410         |           |
|                                                                                                  | 42             | 39             | 44           | 43             | 62           | 65        |
| Immersed 1                                                                                       | day in Water   | at 158°F       |              |                |              |           |
| Weight Change, % Volume Change, %                                                                | 8.8            | 18.25          | 7.3          | 16.70          | 18.6         | 14.3      |
|                                                                                                  | 9.5            | 19.20          | 7.7          | 17.66          | 20.3         | 15.5      |
| Stress-Strain Properties Tensile Strength, psi Elongation, % 300% Modulus, psi Shore A2 Hardness | 920            | 300            | 580          | 450            | 940          | 760       |
|                                                                                                  | 300            | 300            | 280          | 300            | 480          | 300       |
|                                                                                                  | 920            | 300            |              | 450            | 440          | 760       |
|                                                                                                  | 60             | 35             | 55           | 40             | 47           | 54        |
| Immersed 3                                                                                       | days in Wate   | er at 158°F    |              |                |              |           |
| Weight Change, % Volume Change, %                                                                | 12.5<br>13.44  | 37.16<br>40.79 | 11.0<br>11.7 | 28.23<br>31.03 | 27.6<br>30.3 | . 22.8    |
| Stress-Strain Properties Tensile Strength, psi Elongation, % 300% Modulus, psi Shore A2 Hardness | 890            | 290            | 540          | 390            | 800          | 580       |
|                                                                                                  | 300            | 300            | 240          | 250            | 440          | 210       |
|                                                                                                  | 890            |                |              |                | 490          |           |
|                                                                                                  | 57             | 30             | 55           | 32             | 47           | 52        |
| Immersed 5                                                                                       | days in Wate   | r at 158°F     |              |                |              |           |
| Weight Change, % Volume Change, %                                                                | 15.3           | 45.7           | 13.5         | 38.7           | 28.4         | 26.14     |
|                                                                                                  | 16.6           | 49.9           | 14.3         | 42.5           | 31.1         | 27.2      |
| Stress-Strain Properties Tensile Strength, psi Elongation, % 300% Modulus, psi Shore A2 Hardness | 920            | 280            | 580          | 390            | 790          | 770       |
|                                                                                                  | 300            | 260            | 240          | 270            | 420          | 290       |
|                                                                                                  | 920            |                |              |                | 490          |           |
|                                                                                                  | 55             | 25             | 53           | 28             | 45           | 53        |



#### TABLE XXXVI CONTD.

| Recipe                   | <u>1</u>        | <u>2A</u>   | <u>3</u>  | <u>4A</u> | 5    | <u>6B</u> |
|--------------------------|-----------------|-------------|-----------|-----------|------|-----------|
|                          | IMMERSION PROPE | RTIES CON'T | <u>r.</u> |           |      |           |
| Immerse                  | d 7 days in Wat | er at 158°E | र         |           |      |           |
| Weight Change, %         | 16.8            | 55.93       | 13.4      | 45.48     | 30.9 | 31.8      |
| Volume Change, %         | 17.9            | 61.82       | 13.9      | 50.26     | 34.0 | 34.9      |
| Stress-Strain Properties |                 |             |           |           |      |           |
| Tensile Strength, psi    | 840             | 275         | 570       | 390       | 580  | 720       |
| Elongation, %            | 290             | 300         | 210       | 240       | 360  | 270       |
| 300% Modulus, psi        | Mary Mary       | 275         |           |           | 460  |           |
| Shore A2 Hardness        | 54              | 28          | 51        | 32        | 44   | 51        |



TABLE XXXVII

SBR STOCKS

COMPARISON OF NON-BLACK FILLERS WITH STARCH

|                       | <u>HiSil</u>       | Silene D      | Dixie Clay | Starch   |
|-----------------------|--------------------|---------------|------------|----------|
| Ameripol 1708 Lot B2  | 137.50             | 137.50        | 137.50     | 220 00   |
| Zinc Oxide            | . 5.00             | 5.00          | 5.00       | 220.00   |
| Stearic Acid          | 1.00               | 1.00          | 1.00       | 2.00     |
| HiSi1                 | 75.00              |               |            |          |
| Silene D              |                    | 75.00         |            | and the  |
| Dixie Clay            | OUT COM            |               | 75.00      | one one  |
| Flexol 460            | 5.00               | 5.00          | 5.00       |          |
| Picco 25              | 5.00               | 5.00          | 5.00       |          |
| PBNA                  | eur eur            |               | au am      | 1.25     |
| Altax                 | 1.50               | 1.50          | 1.50       | duty GPA |
| Methyl Tuads          | .50                | .50           | .50        | 010 MM   |
| Ethylac               |                    | 617 GH        |            | 1.25     |
| Sulfur                | 1.50               |               | 1.50       | 2.00     |
| Total                 | 232.20             | 232.20        | . 232.20   | 231.50   |
|                       |                    |               |            |          |
| 0 1 1 1 1 1 1 1 1 1   |                    |               | ·          | F 2      |
| Compound Mooney, ML-4 | -                  |               | COLO QUAD  | 52       |
|                       |                    |               |            |          |
|                       |                    |               |            |          |
|                       | Physical Propertie | es @Opt. Cure | <u>!</u>   |          |
| Tensile Strength, psi | 1840               | 1375          | 560        | 1270     |
| Modulus, psi (300%)   | 725                | 700           | 340        | 1140     |
|                       |                    |               | •          |          |
| Elongation, %         | 610                | 500           | 450        | 370      |
| Chana A2 Handraga     | 65                 | 50            | 40         | 59       |
| Shore A2 Hardness     | 0.5                | 20            | 40         | 29       |



# TABLE XXXVIII NITRILE STOCKS COMPARISON OF NON-BLACK FILLERS WITH STARCH

| Hycar 1032 Lot H Zinc Oxide Stearic Acid HiSil Silene D Dixie Clay Flexol 460 | HiSil<br>100.00<br>5.00<br>1.00<br>75.00 | 5.00<br>1.00<br><br>5.00<br>1.00<br><br>75.00 | Dixie Clay<br>100.00<br><br>5.00<br>1.00<br><br>75.00<br>5.00 | Starch 131.23 5.00 2.00  |
|-------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|--------------------------|
| Picco 25 PBNA Altax Methyl Tuads Bismate Sulfur                               | 5.00<br><br>1.50<br>.50<br><br>1.50      | 5.00<br><br>1.50<br>.50<br><br>1.50           | 5.00<br><br>1.50<br>:50<br><br>1.50                           | 1.25<br><br>.625<br>2.00 |
| Total .  Compound Mooney (ML-4)                                               | 193.50                                   | 193.50                                        |                                                               | 142.13                   |
| •                                                                             | Physical Property                        | ies COpt. Cur                                 | <u>:e</u>                                                     |                          |
| Tensile Strength, psi                                                         | 3390                                     | 1470                                          | 1710                                                          | 2160                     |
| Modulus, 300% psi                                                             | 1260                                     | 1090                                          | 1200                                                          | 1900                     |
| Elongation, %                                                                 | 570                                      | 410                                           | 640                                                           | 3/0                      |
| Shore A2 Hardness                                                             | 82                                       | <b>7</b> 5                                    | 62                                                            | 70                       |



## TABLE XXXIX EVALUATION OF STARCH MB/1833 BLENDS

|                                        | A*                   | В                  | С                   |  |  |  |
|----------------------------------------|----------------------|--------------------|---------------------|--|--|--|
| Ameripol 1833-G1                       | <u>A</u> *<br>245.00 | $\frac{B}{183.75}$ | $1\overline{2}2.50$ |  |  |  |
| Lot C                                  |                      | 32.81              | 65.62               |  |  |  |
| Zinc Oxide                             | 3.00                 | 3.00               | 3.00                |  |  |  |
| Stearic Acid                           | 2.00                 | 2.00               | 2.00                |  |  |  |
| Santocure                              | 1.40                 | 1.40               | 1.40                |  |  |  |
| Unads                                  | .20                  | .20                | .20                 |  |  |  |
| Sulfur                                 | 2.00                 | 2.00               | 2.00                |  |  |  |
| Total                                  | 253.60               | 225.16             | 196.72              |  |  |  |
|                                        |                      |                    |                     |  |  |  |
|                                        |                      |                    |                     |  |  |  |
| Monsanto Rheometer                     |                      |                    |                     |  |  |  |
| 3° arc, 3 cpm, 280°F                   |                      | <b></b> ,          |                     |  |  |  |
| Maximum Torque                         | 52                   | 54                 | 56                  |  |  |  |
| Minimum Torque                         | 5.5                  | 3.5                | 4.5                 |  |  |  |
| Scorch Time (t <sub>2</sub> ), Min.    | 20                   | 26                 | 22                  |  |  |  |
| Optimum Cure $(\tilde{t}_{90})$ , Min. | 38                   | 45                 | 41                  |  |  |  |
|                                        |                      |                    |                     |  |  |  |
|                                        |                      |                    |                     |  |  |  |
| UNAGED VULCANIZATE PROPERTIES          |                      |                    |                     |  |  |  |
|                                        |                      |                    |                     |  |  |  |

|                       | lin. Cured |      |      |      |
|-----------------------|------------|------|------|------|
| Stress-Strain @       | 280°F      |      |      |      |
| Tensile Strength, psi | . 30       | 2600 | 2590 | 2700 |
|                       | 40         | 2700 | 2700 | 2250 |
|                       | 60         | 2550 | 2425 | 2400 |
| Florestion %          | 30         | 610  | 630  | 570  |
| Elongation, %         |            | 550  | 600  | 470  |
|                       | 40         |      |      |      |
|                       | 60         | 510  | 510  | 470  |
| 300% Modulus, psi     | 30         | 1100 | 1000 | 1200 |
|                       | 40         | 1250 | 1125 | 1240 |
|                       | 60         | 1350 | 1220 | 1310 |
| Shore A2 Hardness     | 30         | 60   | 57   | 60   |
| Jiore III Hardhess    | 40         | 60   | 58   | 60   |
|                       | 60         | 61   | 60   | 60   |
|                       | 00         | 01   | 00   | 00   |

<sup>\*</sup> Date from Previous BFGCC Report

Lot C - 100 SBR,30 phr starch, 1.23 RF Ameripol 183361 - 100 SBR, 62.5 HA Oil, 82.5 HAF H.S.



### TABLE XXXIX CONTD.

| Recipe                                                                                                                              | <u>A</u> .         | <u>B</u>           | <u>C</u>      |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|---------------|
| Goodrich Flex (.175" stroke, 55 lbs. load) (Opt. cure + 15 min.) Initial Static Compression Initial Dynamic Compression Delta T, °F | .262<br>.183<br>54 | .252<br>.161<br>36 | .210<br>.123  |
| Permanent Set, %                                                                                                                    | 10.5               | 6.8                | 6.4           |
| DeMattia Flex Flexures<br>to 0.6" Crack growth, (RT)<br>(Opt. cure + 4 min.)                                                        |                    | 20,106             | 27,934        |
| Pico Abrasion Index (Opt. cure + 8 min.)                                                                                            | 91                 | 92                 | 92            |
| Garvey Die Data<br>Speed 50 rpm, Heat 220°F<br>Barrel 100°F                                                                         |                    |                    | <b>\</b>      |
| Inches/min.                                                                                                                         |                    | 82.4               | 66.0          |
| Grams/min. Grams/inch                                                                                                               |                    | 158.0<br>1.92      | 148.0<br>2.24 |
| Rating                                                                                                                              | •                  | :                  |               |
| Contour                                                                                                                             |                    | 4                  | 3.5           |
| Edge<br>Surface                                                                                                                     |                    | . 4                | 4<br>4        |
| Corners                                                                                                                             |                    | _4                 | _4            |
| Total                                                                                                                               |                    | 16                 | 15.5          |
|                                                                                                                                     |                    |                    |               |



#### Rubber Products Molding Trials

Application compounds were developed for factory molding trials. Compounds RT-1, RT-2 and RT-3 (Table XXXX) were developed as retread compounds. Ameripol 1808 (RT-1) was selected as being typical of the SBR black masterbatches used in the tread rubber industry. Using 1808 as the control masterbatch, 25 and 50% starch masterbatch was substituted for it in a typical recipe. The recipes and test data are shown in the table. The resulting processing and physical properties were typical of retread compounds.

After having developed the compounds, we mixed approximately 10 to 12 lbs. of each and stripped it from the mill for use in an Orbitread machine. The stripped stock was taken to the B.F.Goodrich, Brookpark Retread Shop for application on buffed tires. Ten, new 8.25 X 14 nylon tires were obtained for use in this program. These tires were buffed and cemented similar to the regular retreading procedures.

The stock was extruded through an Orbitread machine onto the casings. The 50% starch/SBR masterbatch was extremely dry and obviously needed a tackifier to improve adhesion to the carcass. Satisfactory tires were built and cured. Two have been mounted on a local for wear evaluations.

The same stocks used in the retread trials were tested for cure characteristics at 320°F. These data indicated that cure times were reasonable ( 15 minutes) for molded products. Several cures of each stock were made in oil seal and 0 ring molds in order to determine the molding characteristics. The results indicate that the blends of Ameripol 1808 and a starch masterbatch can be used for many molded products. The physical properties would be adequate for a variety of applications. In addition, these compounds could be adjusted to give a faster cure or other improved physical properties.

Three Hycar 1032/starch masterbatch compounds were developed to meet ASTM D2000 BG specifications, Table XXXXI. Actually, the compounds pass the requirements for a 2BG615 specification except for water immersion. These compounds could be used in applications calling for this specification if the water specification could be varied.

Six to eight pounds of each stock was mixed along with a Hycar/carbon black recipe selected from the literature. The stocks were taken to the Enduro Rubber Company in Ravenna, Ohio, and molded into a variety of finished products. Various mold designs were selected to evaluate the knitting, hot tear and flow characteristics of these stocks. In all cases, the Hycar 1032/starch stocks molded without any problems. Some of the molds had extremely intricate undercuts which required exceptionally good flow and hot tear.

The molds were selected because of their intricate designs and the fact that they were readily available. Most of the products would not require the oil resistance and aging characteristics of the Hycar 1032/starch compounds. However, these evaluations indicate that the Hycar 1032/starch stocks could be used to mold most products requiring the special oil resistant properties.



One stock ST-3 was taken to the Lewis Division of the McDowell Wellman Industries for injection molding trials. A 16 cavity brake cup mold was used in this evaluation along with the Lewis ram injection molding machine. The stock molded well indicating that the SBR/starch masterbatch could be used for injection molding applications.

Based on the molding trials and physical test data (except water resistance) the Hycar/starch masterbatches could be used for the many molded products calling for the 2BG615 specifications. These applications would include products such as diaphragms, gaskets, O Rings, packings, seals, bushings, etc.

The composition of the Hycar and SBR starch masterbatches and the Ameripol 1808 masterbatch are shown in Table XXXXII.



# TABLE XXXX Evaluation of Starch MB/1808 Blends

| Ingredients Ameripol 1808 Lot B-2 Zinc Oxide Stearic Acid Santocure Unads Sulfur Total                                                           |                                                | RT-1<br>225.00<br>3.00<br>2.00<br>1.40<br>.20<br>2.00<br>233.60 | RT-2<br>168.75<br>55.00<br>3.00<br>2.00<br>1.40<br>.20<br>2.00<br>232.10 | RT-3<br>112.50<br>110.00<br>3.00<br>2.00<br>1.40<br>.20<br>2.00 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|
| Compound Mooney, ML-4,                                                                                                                           | @212°F                                         | 39                                                              | 37                                                                       | 45                                                              |
| Monsanto Rheometer  3° arc, 3 cpm, 280°F  Maximum Torque  Minimum Torque  Scorch Time, t <sub>2</sub> min.  Optimum Cure, t <sub>2</sub> min.    |                                                | 56<br>5.5<br>22<br>34                                           | 54.5<br>5<br>22<br>38                                                    | 53<br>4<br>21.5<br>41.5                                         |
| Monsanto Rheometer  3° arc, 3 cpm, 320°F  Maximum Torque  Minimum Torque  Scorch Time, t <sub>2</sub> , Min.  Optimum Cure, t <sub>90</sub> , Mi |                                                | 52<br>5<br>7.5<br>12                                            | 50<br>4.5<br>7.5<br>13                                                   | 48<br>4<br>8<br>13                                              |
| Mir                                                                                                                                              | AGED VUL<br>n. Cured<br>80°F<br>30<br>40<br>60 | CANIZATE PROPER  2950 2800 2850                                 | 2350<br>2300<br>2300<br>2300                                             | 2050<br>2100<br>2100                                            |
| Elongation, %                                                                                                                                    | 30<br>40<br>60                                 | 500<br>470<br>460                                               | 520<br>480<br>430                                                        | 470<br>470<br>460                                               |
| 300% Modulus, psi                                                                                                                                | 30<br>40<br>60                                 | 1500<br>1550<br>1625                                            | 1350<br>1450<br>1600                                                     | 1150<br>1250<br>1300                                            |
| Shore A2 Hardness                                                                                                                                | 30<br>40<br>60                                 | 60<br>60<br>61                                                  | 58<br>58<br>59                                                           | 58<br>58<br>58                                                  |



TABLE XXXX CONTD.

### UNAGED VULCANIZATE PROPERTIES CONTD.

| Min. Stress-Strain @320 | Cured      |        |              |      |
|-------------------------|------------|--------|--------------|------|
| Tensile Strength, psi   | 10         | 2650   | <b>217</b> 5 | 1950 |
| <b>3</b> , 1            | 15         | . 2750 | 2300         | 2000 |
|                         | 20         | 2700   | 2250         | 2050 |
|                         |            |        | , •          |      |
| Elongation, %           | 10         | 450    | 480          | 450  |
|                         | <b>1</b> 5 | 430    | 500          | 440  |
|                         | 20         | 440    | 450          | 420  |
|                         |            |        |              |      |
| 300% Modulus            | 10         | 1100   | 1150         | 1100 |
|                         | 15         | . 1350 | 1200         | 1150 |
|                         | 20         | 1425   | 1300         | 1200 |
|                         |            |        |              |      |
| Shore A2 Hardness, psi  | 10         | 58     | 58           | 57   |
|                         | 15         | 59     | 58           | 58   |
|                         | 20         | 59     | 58           | 57   |



# TABLE XXXXI NITRILE STARCH MASTERBATCH EVALUATION

| Ingredients Lot H-2 Zinc Oxide TP 90B PBNA Altax Stearic Acid Methyl Tuads N770 Sulfur                                                        | ·              | ST-1<br>131.23<br>5.00<br>7.50<br>1.50<br>2.00<br>.25<br><br>1.50 | ST-2<br>131.23<br>5.00<br>15.00<br>1.50<br>2.00<br>.25<br>.15.00<br>1.50 | ST-3<br>131.23<br>5.00<br><br>1.50<br>1.50<br>2.00<br>.25<br><br>1.50 |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|
| Compound Mooney, ML-4 @2                                                                                                                      | 212°F          | <b>3</b> 9                                                        | 37                                                                       | 55                                                                    |                    |
| Monsanto Rheometer  3° arc, 3 cpm, 320°F  Maximum Torque  Minimum Torque  Scorch Time, t <sub>2</sub> Min.  Optimum Cure, t <sub>2</sub> Min. |                | 48<br>2.5<br>5<br>6.5                                             | 37<br>2.5<br>5<br>8                                                      | 51.5<br>3<br>5.5<br>8                                                 |                    |
| Contraction 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                             | JLCANIZATE P   | ROPERTIES                                                         |                                                                          |                                                                       |                    |
|                                                                                                                                               | 15 1           | 700<br>650<br>600                                                 | 1600<br>1550<br>1525                                                     | 1650<br>1650<br>1625                                                  | Spec.<br>1500 min. |
| Elongation, %                                                                                                                                 | 15             | 430<br>460<br>420                                                 | 420<br>440<br>410                                                        | 410<br>340<br>360                                                     | 300 min.           |
| 300% Modulus, psi                                                                                                                             | 15             | 800<br>775<br>800                                                 | 925<br>875<br>950                                                        | 1200<br>1125<br>1100                                                  |                    |
| Shore A2 Hardness                                                                                                                             | 10<br>15<br>20 | 60<br>58<br>58                                                    | 57<br>57<br>56                                                           | 61<br>63<br>62                                                        | 60 <u>+</u> 5      |
| Heat Aged ASTM D573 70 hrs. @100°C                                                                                                            |                |                                                                   |                                                                          |                                                                       |                    |
| Tensile Strength, psi                                                                                                                         | 10             | -4                                                                | -8                                                                       | +8                                                                    | <u>+</u> 30% .     |
| (change) Elongation, %                                                                                                                        | 10             | 0                                                                 | <b>-3</b> 2                                                              | -12                                                                   | -50%               |
| (change) Hardness, pts                                                                                                                        | 10             | +2                                                                | +10                                                                      | +8                                                                    | <u>+</u> 15 pts.   |



TABLE XXXXI CONTD.

| Oil Immersion ASTM D471 No. 1 Oil, 70 hrs. @212°F |                |               |             |                     |  |
|---------------------------------------------------|----------------|---------------|-------------|---------------------|--|
| Tensile Strength % Change .                       | ST-1<br>-4     | ST-2<br>+4    | ST-3<br>+15 | <u>Spec.</u><br>-25 |  |
| Elongation<br>% Change                            | -20            | <b>-22</b>    | 0           | -45                 |  |
| Shore A2 Hardness<br>% Change                     | 0              | +6            | -1          | -5 to +10           |  |
| Volume Change %                                   | -6.2           | .~8.8         | 5           | -10 to +5           |  |
| Oil Immersion ASTM D                              | 471 No. 3 Oil, | 70 hrs. @212° | F           |                     |  |
| Tensile Strength % Change                         | -30            | -29           | -12         | -45                 |  |
| Elongation % Change                               | -23            | <b>-</b> 20 ∴ | -18         | <b>-</b> 45         |  |
| Volume Change %                                   | 11             | 16            | 16          | 0 to +25            |  |
|                                                   |                |               |             |                     |  |
| Fluid Immersion ASTM D471 Fuel A, 70 hrs. @73°F   |                |               |             |                     |  |
| Tensile Strength<br>% Change                      | -24            | -28           | +5          | <b>-</b> 25         |  |
| Elongation<br>% Change                            | -5             | -12           | 0           | <b>-25</b>          |  |
| Shore A2 Hardness pts. change                     | -3             | -3            | 0           | <u>+</u> 10         |  |
| Volume Change %                                   | +2             | +9            | +3          | -5 to +10           |  |



### TABLE XXXXI CONTD.

| Recipe                                  | <u>ST-1</u>                         | <u>ST-2</u>                | <u>ST-3</u> | Spec.       |  |  |
|-----------------------------------------|-------------------------------------|----------------------------|-------------|-------------|--|--|
|                                         | Fluid Immersion ASTM D              | 471 Fuel B                 |             |             |  |  |
| Tensile Strength<br>% Change            | -45                                 | -42                        | -25         | -60         |  |  |
| Elongation<br>% Change                  | 40                                  | -33                        | -31         | -60         |  |  |
| Shore A2 Hardness<br>% Change           | -13                                 | · <b>-</b> 9               | -14         | 0 to-30     |  |  |
| Volume Change, %                        | +29                                 | +35                        | +36         | 0 to +40    |  |  |
| Compression Set, ASTM D395, Solid, Max. |                                     |                            |             |             |  |  |
| Compression Set, %                      | percent, 22 hrs.                    | 32                         | 29          | 50          |  |  |
| Shore A2 Hardness,                      | Water Immersion ASTM C % Change -17 | 471, 70 hrs. @212°F<br>-15 | -14         | <u>+</u> 10 |  |  |
| Volume Change, %                        | 38                                  | 25                         | 38          | <u>+</u> 15 |  |  |

# TABLE XXXXII Composition of Masterbatches PHR

| Starch Xanthide               | SBR 70          | Hycar<br>30       | SBR             |
|-------------------------------|-----------------|-------------------|-----------------|
| Sunthene 380 Oil              | 50              |                   |                 |
| Polymer type                  | SBR 1708<br>100 | Hycar 1032<br>100 | SBR 1712<br>100 |
| HA Oil                        | -               | 600 000           | 50              |
| HAF N330 Carbon Black         | <del></del>     | on to             | 75              |
| Paraformaldehyde & Resorcinal |                 | 1.23              |                 |



#### Project Assessment

The assessment of this project is divided into two sections. These are roughly speaking:(1) The recommendations for specific future work, and (2) The long term view.

There are several critical areas in the design which must be investigated further. These are: (1) Alternate oxidants to avoid the problems associated with nitrogen oxide gas evolution, (2) Filtering or dewatering the crumb, and (3) Drying the filtered crumb evenly to 10-20% moisture. While these are all technical problems, their primary significance is economic. If a less hazardous oxidant can be used, extra ventilation and scrubbing may not be required. The filtering process must be improved to reduce the excessive water load on the dryer. Usually it is cheaper to reduce the water level as much as possible mechanically before the evaporative drying step. Because of the high inlet water level, excessive drying times were experienced. Furthermore, the drying tended to be uneven, that is, there were very dry spots and very wet spots. The crumb becomes sticky during a portion of the drying cycle. At this point the crumbs agglomerate and adhere to the dryer apron or tray. After this the crumbs tend to crust over giving an uneven drying rate. The extrusion dryer feed should have a uniform moisture level. A non-homogeneous feed to the Anderson Expander is suspected as a possible reason for its somewhat poorer performance compared with the laboratory Brabender extruder. A uniform feed should improve the starch dispersion or particle size properties.

In addition there are several less critical areas which could bear further investigation: (1) continuous xanthation, (2) coagulation mixer, (3) serum recycle process, (4) extrusion processing equipment and conditions, and (5) packaging. These items have generally been studied sometime before but have not necessarily been optimized. Continuous xanthation with very little hold-up time was assumed in the design. The USDA has a continuous xanthation process but the immediate blending with latex and coagulation has not been tested. The USDA speculates xanthation may require some time for an efficient reaction. Packaging should be studied since several forms might be practical. Also, the need for vapor proof covering must be investigated if water absorbtion becomes a problem.

Historically no filler or reinformcing agent for rubber has been commercialized initially as a non-dry or 'wet' mixed masterbatch. The only commercially available non-dry mixed masterbatches are oil, oil/black, black, and styrene resin masterbatches. Each of these were initially evaluated using dry mixes. Also, dry mixing continues except for the high volume items. Thus, the black masterbatches that are commercially available from a synthetic rubber producer are made for high volume uses, such as retreads, or are useful for many smaller volume applications. The industry has taken a number of years to evolve to its present position. Even where black masterbatches are used eventually, the initial compounding studies are often based on dry mixes. The masterbatches are generally produced to fill a customer or industry-wide demand either by direct request or by testing the market with different compositions. While most SBR producers make a variety of black masterbatches, no other rubber is sold as black masterbatch using a "wet" mix process except one supplier of cispolybutadiene.



Given this situation it is very difficult to introduce a material in a masterbatch form. The polymer may be wrong, the composition may be wrong, the modifications may be wrong, any number of things make this route difficult. A further complication to the masterbatch route is the commitment needed by a rubber producer. General purpose elastomers are inexpensive in large part because of the volume produced. To maintain these favorable economics, any subclass of the product, such as masterbatches, must also be produced in volume or incur an economic penalty. This, of course, is in the opposite direction needed for marketing where a low initial volume is needed to test and develop the market. This phase is generally handled with pilot plant operations. Undoubtedly, the starch masterbatch would have to be produced on a pilot plant scale several years. During this time extensive background compounding and physical testing data would be gathered to interest potential customers. Because starch would be competing with existing rubber reinforcing agents, the pilot plant operation would inevidably be an economic drain. With a unique, new product it may be possible to sell the limited quantities of pilot plant material at a high enough price to recover the pilot plant expense. This would not be the case with starch/SBR or NBR masterbatches. At this time, the risk involved with such an investment is not justified by the potential return. While the evaluations to date have been far from exhaustive, no unique, desirable property of significance has been found which would justify the investment for a semi-commercial pilot plant operation plus a full scale production facility. Of course, in this day of raw material shortages starch masterbatches can not be ruled out completely as a potential substitute or partial substitute for carbon black or other reinforcing fillers. Further work on starch masterbatches could be considered as insurance against carbon black supply shortages.

