Remark. A scheme will be a "space modelled on \mathbb{M} with an open cover by affine schemes". Since every "space" in \mathbb{M} Set is modelled on \mathbb{M} , we first define the notion of open covers for affine schemes, then define it for general $X \in \mathbb{M}$ Set.

We define closed subfunctors of affine schemes first, then define open ones as "complements" of closed.

Definition – Closed Subfunctors of Affine Schemes

Let $X \in \mathbf{Aff}$. For $I \in \mathrm{Ideal}\,\mathcal{O}(X)$, define the vanishing of $I, V(I) \in \mathbf{SubMSet}(X)$, by

$$A\in\mathbb{M}^{op}\mapsto\left\{\varphi\in\mathbf{Aff}(\operatorname{Sp} A,X)\,|\,I\subseteq\ker\varphi^{\flat}\right\}$$

In particular, for I=(f), we write V(f) instead of V((f)). A subfunctor Z of X is called *closed* when there exists $I \in \operatorname{Ideal} \mathcal{O}(X)$ such that Z=V(I).

Proposition - Basic Facts about Closed Subfunctors

Let $X \in \mathbf{Aff}$. Then the following are true :

- (Closed Subfunctors are Affine) For $I \in \operatorname{Ideal} \mathcal{O}(X)$, V(I) is representable by $\mathcal{O}(X)/I$ and $I = \ker (\mathcal{O}(X) \to \mathcal{O}(V(I)))$. Hence for any closed subfunctor Z of X, Z is an affine scheme and Z = V(I(Z)) where $I(Z) := \ker (\mathcal{O}(X) \to \mathcal{O}(Z))$ is called the *ideal of definition of* Z.
- (Ideals, Vanishing Adjunction) For $I, J \in \text{Ideal } \mathcal{O}(X), I \subseteq J$ if and only if $V(J) \subseteq V(I)$.
- (Arbitrary Intersection of Closed) Let \mathcal{X} be a collection of closed subfunctors of X. Then $\bigcap_{Z \in \mathcal{X}} Z = V(\sum_{Z \in \mathcal{X}} I(Z))$.
- (Base Change / "Preimage of Closed are Closed") Let $\varphi \in \mathbf{Aff}(Y,X)$, $I \in \mathrm{Ideal}\,\mathcal{O}(X)$. Let the following be a pullback diagram :

$$Y \xrightarrow{\varphi} X$$

$$\uparrow \qquad \uparrow$$

$$\varphi^{-1}V(I) \longrightarrow V(I)$$

Then $\varphi^{-1}V(I) = V(\mathcal{O}(Y)\varphi^{\flat}I).$

Proposition – Open Subfunctors of Affine Schemes

Let $X \in \mathbf{Aff}$. Then the following are true :

- (Open Subfunctors) For $I \in \operatorname{Ideal} \mathcal{O}(X)$, the following two subfunctors of X are equal:
 - ("Complement of V(I)") Define $X\setminus V(I)$ by setting $(X\setminus V(I))(A)$ to be the set of $\alpha\in \mathbf{Aff}(\operatorname{Sp} A,X)$ such that $\alpha^{-1}V(I)=\operatorname{Sp} 0$, the "empty affine scheme".
 - ("Support of I") Define D(I) by setting D(I)(A) to be the set of $\alpha \in \mathbf{Aff}(\operatorname{Sp} A, X)$ such that $A = A\alpha^{\flat}I$.

A subfunctor U of X is called *open* when there exists $I \in \text{Ideal } \mathcal{O}(X)$ such that $U = D(I) = X \setminus V(I)$.

We will use $\operatorname{Open} X$ to denote the full subcategory of $\operatorname{\mathbf{SubMSet}}(X)$ consisting of open subfunctors of X.

- (Ideal, Open Adjunction) Let $I, J \in \operatorname{Ideal} \mathcal{O}(X)$. Then $D(I) \subseteq D(J)$ if and only if $\sqrt{I} \subseteq \sqrt{J}$. In particular, for $U \in \operatorname{Open} X$, there exists a unique $I_U \in \operatorname{Ideal} \mathcal{O}(X)$ such that $\sqrt{I_U} = I_U$ and $U = D(I_U)$.
- ("Fields given enough points for Opens") For any $Y \in \mathbb{M}$ Set, define Y^{Pts} to the restriction of Y to the full subcategory Pts of \mathbb{M}^{op} consisting of K^{op} where K is a field. We will call Y^{Pts} the *points of* Y.

Then for U, V opens of X, U = V if and only if $U^{Pts} = V^{Pts}$.

– For $\mathcal{U} \subseteq \operatorname{Open} X$, define the *open union of* \mathcal{U} to be

$$\bigcup_{U\in\mathcal{U}}^{\circ}U:=X\setminus\bigcap_{U\in\mathcal{U}}V(I_{U})=D\left(\sum_{U\in\mathcal{U}}I_{U}\right)$$

Then for $\mathcal{U} \subseteq \operatorname{Open} X$,

- (Choice) for any $\{J_U\}_{U\in\mathcal{U}}\subseteq\operatorname{Ideal}\mathcal{O}(X)$ where each $U=D(J_U)$, we have $\bigcup_{U\in\mathcal{U}}^{\circ}U=D(\sum_{U\in\mathcal{U}}J_U)$.
- ("Open Cover") TFAE:
 - 1. (Intuitive) $\bigcup_{U \in \mathcal{U}}^{\circ} U = X$.
 - 2. (Partition of Unity) $\mathcal{O}(X) = \sum_{U \in \mathcal{U}} J_U$ where $\{J_U\}_{U \in \mathcal{U}}$ is any collection of ideals of $\mathcal{O}(X)$ such that $U = D(J_U)$ for each U.
 - 3. (Surjective on Points) For all $x:\operatorname{Sp} K\to X$ where K is a field, there exists $U\in\mathcal{U}$ such that x factors through U.

We say \mathcal{U} covers X when any (and thus all) of the above are true.

- (Base Change / "Preimage of Opens are Open") Let φ ∈ **Aff**(Y, X), I ∈ Ideal $\mathcal{O}(X)$. Let the following be a pullback diagram :

$$Y \xrightarrow{\varphi} X$$

$$\uparrow \qquad \uparrow$$

$$\varphi^{-1}D(I) \longrightarrow D(I)$$

Then $\varphi^{-1}D(I) = D(\varphi^{\flat}I)$. Hence the pullback of opens along morphisms of affine schemes remain open.

(Fiber Product) Let $X, X_1 \in \mathbf{Aff}/Y$ where $Y \in \mathbf{Aff}$. Let I, I_1 be ideals of $\mathcal{O}(X)$, $\mathcal{O}(X_1)$ respectively. Then we have the pullback diagram:

$$D(I) \longrightarrow Y$$

$$\uparrow \qquad \qquad \uparrow$$

$$D(I \otimes_{\mathcal{O}(Y)} I_1) \longrightarrow D(I_1)$$

In particular, $X = X_1 = Y$ implies the intersection of two opens of X is an open of X.

Proof.

(Open Subfunctors) $A \otimes_{\mathcal{O}(X)} \mathcal{O}(X)/I = A/A\alpha^{\flat}I$.

(*Ideal, Open Adjunction*) The reverse is straightforward. For forward implication, it suffices that $I \subseteq \sqrt{J}$. Suppose we have $f \in I \setminus \sqrt{J}$, in particular $\mathcal{O}(X) \neq 0$. Consider $\iota : \operatorname{Sp}(\mathcal{O}(X)/J)_f \to X$. Then $\iota \in D(I) \setminus D(J)$ since $(\mathcal{O}(X)/J)_f$ a non-zero ring by assumption. This is a contradiction.

(Fields give enough points for opens) Forwards is clear. Let U = D(I), V = D(J). For reverse, suppose $D(I) \neq D(J)$. WLOG let $\alpha \in D(I)(A) \setminus D(J)(A)$. We're looking for a "point" Sp $K \to D(I)$ that doesn't lift to D(J). Well, since $A\alpha^{\flat}J\subsetneq A$, by Zorn's lemma there exists a map $\mathrm{ev}_x:A\to K$ where K is a field and $J \subseteq \ker \operatorname{ev}_x$. Then $\alpha \circ x \in D(I)(K) \setminus D(J)(K)$ as desired.

(Choice) Straightforward by checking on points. (Open Cover, Base Change, Fiber product) Straightforward.

Definition – Open Subfunctors, Open Covers

Let $X \in \mathbb{M}\mathbf{Set}$. For $U \in \mathbf{SubMSet}(X)$, U is called *open* when for all $\alpha : \operatorname{Sp} A \to X$, the pullback $\alpha^{-1}U$ of U along α is an open of Sp A.

$$\begin{array}{ccc}
\operatorname{Sp} A & \stackrel{\alpha}{\longrightarrow} X \\
\uparrow & & \uparrow \\
\alpha^{-1}U & \longrightarrow U
\end{array}$$

We will use Open X to denote the full subcategory of $\mathbf{SubMSet}(X)$ consisting of opens. When Xis affine, this agrees with our specialized notion for affine schemes.

Proposition – Basic Facts about Open Subfunctors

The following are true:

- ("Extensionality") Let $U, V \in \operatorname{Open} X$. Then U = V if and only if $U^{\operatorname{Pts}} = V^{\operatorname{Pts}}$.

 (Composition) Let $V \in \operatorname{Open} U$, $U \in \operatorname{Open} X$, $X \in \mathbb{M}$ Set. Then $V \in \operatorname{Open} X$.

- (Base Change/"Preimage of Opens are Opens") Let $X \in \mathbb{M}$ Set, $U \in \text{Open } X$ and $\varphi \in$ $\mathbb{M}\mathbf{Set}(Y,X)$. Then the pullback $\varphi^{-1}U$ of U along φ is an open of Y.

$$Y \xrightarrow{\varphi} X$$

$$\uparrow \qquad \uparrow$$

$$\rho^{-1}U \longrightarrow U$$

- (Fiber Product) Let U, U_1 be opens of $X, X_1 \in \mathbb{M}$ Set respectively. Then for any $X \to S, X_1 \to S$ S, the fiber product $U \times_S U_1$ is an open of $X \times_S X_1$. In particular, for $X = X_1 = S$, this proves the intersection of two opens of X is again an open of X.
- ("Open Cover") Let U ⊆ Open X. TFAE :
 - ("Looks like Open Cover when Tested") For all $(A, \alpha) \in \operatorname{Sp} \downarrow X$, $\overset{\circ}{\bigcup}_{U \in \mathcal{U}} \alpha^{-1}U = \operatorname{Sp} A$.
 - ("Surjective on Points") For all $x: \operatorname{Sp} K \to X$ where K is a field, there exists $U \in \mathcal{U}$ such that x factors through U.

We say U covers X when any (and thus all) of the above are true.

- (Base Change of Open Cover) Let $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$ and $\mathcal{U} \subseteq \mathrm{Open}\,X$ cover X. Then $\varphi^{-1}U := \{\varphi^{-1}U\}_{U \in \mathcal{U}}$ covers Y.

Proof. (Extensionality) U = V if and only if for all $\alpha : \operatorname{Sp} A \to X$, $\alpha^{-1}U = \operatorname{Sp} A$ if and only if $\alpha^{-1}V = \operatorname{Sp} A$. This reduces to the affine global case.