

Amendments to the Claims

Please cancel Claims 8, 9, 11-18, 20, 21, 23-30, 32, 33, 35-42, 44-46, 53, 54, 56-63, 65, 66, 68-75, 77, 78, 80-87, 89-91, 93, and 97-139. Please amend Claims 10, 22, 34, 55, 67, 79 and 92. The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing

1. (Original) A compound represented by the following Structural Formula:

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof,
wherein:

(a) T1 is selected from the group consisting of

and ;

(b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

- (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C₀-C₄-alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- (d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁-C₆-heteroalkyl;
- (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;
- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;
- (g) Y is selected from the group consisting of C, O, S, NH and a single bond;
- (h) E is C(R3)(R4)A or A and wherein
 - (i) A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrile, C₀-C₆ alkylcarboxamide, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆ alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷;
 - (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;
 - (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and

C₁-C₅ alkoxy; and

(iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

- (i) Z5 is S or O;
- (j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;
- (k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- (l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- (n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- (o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl- C₁-6-

heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C_{3-C6} cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three independently selected from R28;

- (p) R_{12'}, R_{12''}, R_{13'}, R_{14'}, R_{15'}, R_{16'}, R_{17'}, R_{18'}, R_{19'}, R_{20'}, R_{21'}, R_{22'}, R_{23'}, R_{24'}, and R_{25'} are each independently selected from the group consisting of hydrogen, C_{1-C6} alkyl and aryl;
- (q) R₃₀ is selected from the group consisting of C_{1-C6} alkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C_{3-C6} cycloalkylaryl-C₀₋₂-alkyl, and wherein C_{1-C6} alkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C_{3-C6} cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- (r) R₃₂ is selected from the group consisting of a bond, hydrogen, halo, C_{1-C6} alkyl, C_{1-C6} haloalkyl, and C_{1-C6} alkyloxo;
- (s) R₃₃ is selected from the group consisting of C_{2-C8} alkyl, C_{1-C8} alkoxy,

phenyl, thiophene, pyridine, piperidine, , and , and

, wherein the C_{2-C8} alkyl, C_{1-C8} alkoxy, phenyl, thiophene,

pyridine, piperidine, , , and , are each optionally substituted with R₁₀ and R₁₁; and

(t) provided that when Y is C or a bond, at least one of R1, R2, R3, and R4 is C1-C4 alkyl.

2. (Original) The compound of Claim 1, wherein A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrile, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆ alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷.

3. (Original) The compound of Claim 1, wherein the compound is represented by the following Structural Formula:

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

(a) T1 is selected from the group consisting of

(b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-

C_{0-2} -alkyl are each optionally substituted with from one to three substituents independently selected from R1';

- (c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C_1-C_6 alkyl, C_1-C_6 alkyl-COOR12, C_1-C_6 alkoxy, C_1-C_6 haloalkyl, C_1-C_6 haloalkyloxy, C_3-C_7 cycloalkyl, aryloxy, aryl- C_{0-4} -alkyl, heteroaryl, heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C_1-C_6 alkyl and aryl;
- (d) R2 is selected from the group consisting of C_0-C_8 alkyl and C_1-C_6 -heteroalkyl;
- (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;
- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;
- (g) Y is selected from the group consisting of C, O, S, NH and a single bond;
- (h) E is C(R3)(R4)A or A and wherein
 - (i) A is selected from the group consisting of carboxyl, tetrazole, C_1-C_6 alkynitrile, carboxamide, sulfonamide and acylsulfonamide; wherein sulfonamide, acylsulfonamide and tetrazole are each optionally substituted with from one to two groups independently selected from R⁷;
 - (ii) each R⁷ is independently selected from the group consisting of hydrogen, C_1-C_6 haloalkyl, aryl- C_0-C_4 alkyl and C_1-C_6 alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C_1-C_6 alkyl, and halo- C_1-C_6 alkyl;
 - (iii) R3 is selected from the group consisting of hydrogen, C_1-C_5 alkyl, and C_1-C_5 alkoxy; and

(iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

- (i) Z5 is S or O;
- (j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;
- (k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- (l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- (n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- (o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are

each optionally substituted with from one to three independently selected from R28;

- (p) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- (q) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- (r) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;
- (s) R33 is selected from the group consisting of phenyl, thiophene, pyridine,

4. (Original) The compound of Claim 2, wherein the compound is represented by the following Structural Formula:

5. (Original) The compound of Claim 1, wherein the compound is represented by the following Structural Formula:

6. (Original) The compound of Claim 5, wherein the compound is represented by the following Structural Formula:

7. (Original) The compound of Claim 6, wherein the compound is represented by the following Structural Formula:

8. - 9. (Cancelled)

10. (Currently Amended) The compound of Claim 7, wherein:

X is -O-;

E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH;

R10 and R11 are each independently selected from the group consisting of

hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy;

R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl;

R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl;

R2 is a bond; and

U is saturated C₁-C₃ alkyl optionally substituted with C₁-C₃ alkyl.

11.-18. (Cancelled)

19. (Original) The compound of Claim 6, wherein the compound is represented by the following Structural Formula:

20. - 21. (Cancelled)

22. (Currently Amended) The compound of Claim 19, wherein:

X is -O-;

E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH;
R10 and R11 are each independently selected from the group consisting of
hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy,
C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy;
R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl;
R1, R3, and R4 are each independently selected from the group consisting of
hydrogen and C₁-C₂ alkyl;
R2 is a bond; and
U is saturated C₁-C₃ alkyl optionally substituted with C₁-C₃ alkyl.

23. - 30. (Cancelled)

31. (Original) The compound of Claim 6, wherein the compound is represented by the following Structural Formula:

32. - 33. (Cancelled)

34. (Currently Amended) The compound of Claim 31, wherein:

X is -O-;
E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH;
R10 and R11 are each independently selected from the group consisting of
hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy,
C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy;
R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl;
R1, R3, and R4 are each independently selected from the group consisting of

hydrogen and C₁-C₂ alkyl;

R2 is a bond; and

U is saturated C₁-C₃ alkyl optionally substituted with C₁-C₃ alkyl.

35. - 42. (Cancelled)

43. (Original) The compound of Claim 1 wherein the compound is selected from the group consisting of:

Racemic-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(1-Methyl-6-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propanoxy}-1H-indol-3-yl)-acetic acid;

(S)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(R)-(6-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(6-Hydroxy-5-{1-[4-isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethyl}-1H-indol-3-yl)-acetic acid;

(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

(1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(6-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

(R)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

(S)-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-methyl-1H-indol-3-yl)-acetic acid;

Racemic-(1-Methyl-6-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(1-Ethyl-6-{2-[4-isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

Racemic-(6-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-propoxy}-1-propyl-1H-indol-3-yl)-acetic acid;

{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethyl]-1H-indol-5-yloxy}-acetic acid;

Racemic(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

Racemic(6-{1-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(R)-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(S)-(6-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(R)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(S)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

(R)-(1-Methyl-5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(S)-(1-Methyl-5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-1H-indol-3-yl)-acetic acid;

(1-Methyl-5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-1H-indol-3-yl)-acetic acid;

5-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-1H-indole-2-carboxylic acid; and

5-{2-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-propoxy}-1-methyl-1H-indole-2-carboxylic acid.

44. - 46. (Cancelled)

47. (Original) A compound represented by the following Structural Formula:

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

(a) T1 is selected from the group consisting of

(b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

(c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆

haloalkyloxy, C₃-C₇ cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C₀-C₄-alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

(d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁-C₆-heteroalkyl;

(e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;

(f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;

(g) Y is selected from the group consisting of C, O, S, NH and a single bond;

(h) E is C(R3)(R4)A or A and wherein

- (i) A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkynitrile, C₀-C₆ alkylcarboxamide, C₀-C₆ alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆ alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷;
- (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;
- (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and
- (iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and

R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

- (i) Z5 is S or O;
- (j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;
- (k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- (l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- (n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- (o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;

- (p) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;
- (q) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- (r) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;
- (s) R33 is selected from the group consisting of C₂-C₈ alkyl, C₁-C₈ alkoxy,

48. (Original) The compound of Claim 47, wherein A is selected from the group consisting of C₀-C₆ alkylcarboxyl, C₀-C₆ alkyltetrazole, C₁-C₆ alkylnitrile, C₀-C₆

alkylsulfonamide and C₀-C₆ alkylacylsulfonamide; wherein C₀-C₆ alkylsulfonamide, C₀-C₆ alkylacylsulfonamide and C₀-C₆ alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷.

49. (Original) The compound of Claim 47, wherein the compound is represented by the following Structural Formula:

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:

(a) T1 is selected from the group consisting of

(b) R1 is selected from the group consisting of hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, wherein C₁-C₈ alkyl, C₁-C₈ alkenyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents independently selected from R1';

(c) R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆

haloalkyloxy, C₃-C₇ cycloalkyl, aryloxy, aryl-C₀-₄alkyl, heteroaryl, heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

- (d) R2 is selected from the group consisting of C₀-C₈ alkyl and C₁-₆-heteroalkyl;
- (e) X is selected from the group consisting of a bond, O, S, S(O)₂ and N;
- (f) U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;
- (g) Y is selected from the group consisting of C, O, S, NH and a single bond;
- (h) E is C(R3)(R4)A or A and wherein
 - (i) A is selected from the group consisting of carboxyl, tetrazole, C₁-C₆ alkynitrile, carboxamide, sulfonamide and acylsulfonamide; wherein sulfonamide, acylsulfonamide and tetrazole are each optionally substituted with from one to two groups independently selected from R⁷;
 - (ii) each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆ haloalkyl, aryl-C₀-C₄ alkyl and C₁-C₆ alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆ alkyl, and haloC₁-C₆ alkyl;
 - (iii) R3 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, and C₁-C₅ alkoxy; and
 - (iv) R4 is selected from the group consisting of hydrogen, C₁-C₅ alkyl, C₁-C₅ alkoxy, aryloxy, C₃-C₆ cycloalkyl, and aryl C₀-C₄ alkyl, and R3 and R4 are optionally combined to form a C₃-C₄ cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;

- (i) Z5 is S or O;
- (j) Z12 is selected from the group consisting of hydrogen and -Z13C₀-C₃alkylZ14;
- (k) Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;
- (l) Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';
- (m) Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';
- (n) R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;
- (o) R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17')₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25')₂; and wherein aryl-C₀-4-alkyl, aryl- C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;
- (p) R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;

- (q) R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀₋₄-alkyl, aryl-C₁₋₆-heteroalkyl, heteroaryl-C₀₋₄-alkyl, and C₃-C₆ cycloalkylaryl-C₀₋₂-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;
- (r) R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;
- (s) R33 is selected from the group consisting of phenyl, thiophene, pyridine,

50. (Original) The compound of Claim 47, wherein the compound is represented by the following Structural Formula:

51. (Original) The compound of Claim 50, wherein the compound is represented by the following Structural Formula:

52. (Original) The compound of Claim 51, wherein the compound is represented by the following Structural Formula:

53. - 54. (Cancelled)

55. (Currently Amended) The compound of Claim 52, wherein:

X is -O-;

E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH;

R10 and R11 are each independently selected from the group consisting of

hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12'', C₁-C₆ alkoxy,
C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy;

R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl;

R1, R3, and R4 are each independently selected from the group consisting of
hydrogen and C₁-C₂ alkyl;

R2 is a bond; and

U is saturated C₁-C₃ alkyl optionally substituted with C₁-C₃ alkyl.

56. - 63. (Cancelled)

64. (Original) The compound of Claim 51, wherein the compound is represented by the following Structural Formula:

65. - 66. (Cancelled)

67. (Currently Amended) The compound of Claim 64, wherein:

X is -O-;

E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH;

R10 and R11 are each independently selected from the group consisting of hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12", C₁-C₆ alkoxy, C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy;

R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl;

R1, R3, and R4 are each independently selected from the group consisting of hydrogen and C₁-C₂ alkyl;

R2 is a bond; and

U is saturated C₁-C₃ alkyl optionally substituted with C₁-C₃ alkyl.

68. - 75. (Cancelled)

76. (Original) The compound of Claim 51, wherein the compound is represented by the following Structural Formula:

77. - 78. (Cancelled)

79. (Currently Amended) The compound of Claim 76, wherein:

X is -O-;

E is -COOH, C₁-C₆ alkylcarboxyl, or C(R3)(R4)-C₁-C₆ alkyl-COOH;

R10 and R11 are each independently selected from the group consisting of

hydrogen, halo, oxo, C₁-C₆ alkyl, C₁-C₆ alkyl-COOR12", C₁-C₆ alkoxy,
C₁-C₆ haloalkyl, and C₁-C₆ haloalkyloxy;

R9 is selected from the group consisting of hydrogen and C₁-C₃ alkyl;

R1, R3, and R4 are each independently selected from the group consisting of
hydrogen and C₁-C₂ alkyl;

R2 is a bond; and

U is saturated C₁-C₃ alkyl optionally substituted with C₁-C₃ alkyl.

80. - 87. (Cancelled)

88. (Original) The compound of Claim 47 wherein the compound is selected from the group consisting of:

{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

[5-(5-Methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-acetic acid;

{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[2-(4-Benzyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-(5-{2-[2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-(5-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-{5-[4-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic 2-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[2-(4-Bromo-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-(2-Chloro-6-fluoro-phenoxy)methyl)-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenoxy)methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic 2-Methyl-2-{5-[4-phenoxy)methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-phenoxy)methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

5-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

5-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-(2-Chloro-6-fluoro-phenoxy)methyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-(2-Chloro-6-fluoro-phenoxy)methyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

5-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-pentanoic acid;

5-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-pentanoic acid;

5-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

4-[1-(4-Carboxy-butyl)-1H-indol-5-yloxymethyl]-2-(4-trifluoromethyl-phenyl)-thiazole-5-carboxylic acid;

3-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

4-[1-(2-Carboxy-ethyl)-1H-indol-5-yloxymethyl]-2-(4-trifluoromethyl-phenyl)-thiazole-5-carboxylic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethylsulfanyl]-indol-1-yl}-acetic acid;

{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
{5-[2-(5-Methyl-2-pyridin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;
{5-[2-(5-Methyl-2-morpholin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;
(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
(5-{2-[5-Methyl-2-(tetrahydro-pyran-4-yl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
{5-[2-(2-Butoxy-5-methyl-oxazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;
{5-[2-(5-Methyl-2-pyridin-3-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;
{5-[2-(5-Methyl-2-pyridin-2-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;
(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
{5-[3-(4-Butyl-phenoxy)-propoxy]-indol-1-yl}-acetic acid;
(5-{2-[2-(3-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
2-(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;
Racemic 2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

3-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

3-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-Methyl-2-(5-{2-[5-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(S)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(R)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic-2-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic-2-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Phenyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-tert-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-[5-(5-methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-propionic acid;

2-{5-[2-(4-Trifluoromethyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-Methyl-2-(5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-(5-{2-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

2-(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

2-Methyl-2-{5-[2-(5-methyl-2-phenyl-thiazol-4-yl)-ethoxy]-indol-1-yl}-propionic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-methyl-indol-1-yl}-acetic acid;

2-{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

{4-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-2-phenyl-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

(R)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*R*)-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*R*)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*S*)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(*S*)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

(*R*)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-methanesulfonamide;

N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-benzenesulfonamide; and

N-[2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetyl]-methanesulfonamide.

89. - 91. (Cancelled)

92. (Currently Amended) A method of treating a mammal in need of treatment for a disease, wherein the disease is treatable by modulating a peroxisome proliferator activated receptor, comprising the step of administering to the mammal in need thereof a therapeutically effective amount of the compound of Claim 1 or 47, a compound represented by the following Structural Formula:

and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof,
wherein:

(a) ~~T1 is selected from the group consisting of~~

;

(b) ~~R1 is selected from the group consisting of hydrogen, C₁-C₈-alkyl, C₁-C₈-alkenyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, wherein C₁-C₈-alkyl, C₁-C₈-alkenyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents independently selected from R1';~~

(c) ~~R1', R26, R27, R28, R31, Z14', and Z15' are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, exo, C₁-C₆ alkyl, C₁-C₆-alkyl-COOR12, C₁-C₆-alkoxy, C₁-C₆-haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, optionally substituted aryloxy, optionally substituted aryl-C₀-4-alkyl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, C(O)R13, COOR14, OC(O)R15, OS(O)₂R16, N(R17)₂, NR18C(O)R19, NR20SO₂R21, SR22, S(O)R23, S(O)₂R24, and S(O)₂N(R25)₂; R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24 and R25 are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;~~

(d) ~~R2 is selected from the group consisting of C₀-C₈-alkyl and C₁-6-heteroalkyl;~~

(e) ~~X is selected from the group consisting of a bond, O, S, S(O)₂ and N;~~

(f) ~~U is an aliphatic linker wherein one carbon atom of the aliphatic linker may be replaced with O, NH or S, and wherein such aliphatic linker is optionally substituted with R30;~~

(g) ~~Y is selected from the group consisting of C, O, S, NH and a single bond;~~

(h) ~~E is C(R3)(R4)A or A and wherein~~

- (i) ~~A is selected from the group consisting of C₀-C₆-alkylcarboxyl, C₀-C₆-alkyltetrazole, C₄-C₆-alkylnitrile, C₀-C₆-alkylcarboxamide, C₀-C₆-alkylsulfonamide and C₀-C₆-alkylacylsulfonamide; wherein C₀-C₆-alkylsulfonamide, C₀-C₆-alkylacylsulfonamide and C₀-C₆-alkyltetrazole are each optionally substituted with from one to two groups independently selected from R⁷;~~
- (ii) ~~each R⁷ is independently selected from the group consisting of hydrogen, C₁-C₆-haloalkyl, aryl-C₀-C₄-alkyl and C₁-C₆-alkyl, wherein such alkyl and arylalkyl are each optionally substituted with from one to two groups independently selected from R7'; each R7' is independently selected from halo, C₁-C₆-alkyl, and haloC₁-C₆-alkyl;~~
- (iii) ~~R3 is selected from the group consisting of hydrogen, C₁-C₅-alkyl, and C₁-C₅-alkoxy; and~~
- (iv) ~~R4 is selected from the group consisting of hydrogen, C₁-C₅-alkyl, C₁-C₅-alkoxy, aryloxy, C₃-C₆-cycloalkyl, and aryl-C₀-C₄-alkyl, and R3 and R4 are optionally combined to form a C₃-C₄-cycloalkyl, and wherein alkyl, alkoxy, cycloalkyl and aryl-alkyl are each optionally substituted with one to three each independently selected from R26;~~

(i) ~~Z5 is S or O;~~

(j) ~~Z12 is selected from the group consisting of hydrogen and Z13C₀-C₃alkylZ14;~~

(k) ~~Z13 is selected from the group consisting of a single bond, CO, CO₂, CONZ15, and SO₂;~~

(l) ~~Z14 is selected from the group consisting of aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z14';~~

(m) ~~Z15 is selected from the group consisting of hydrogen aryl and heteroaryl, wherein the aryl and heteroaryl is each optionally substituted with from one to three substituents independently selected from Z15';~~

(n) ~~R9 is selected from the group consisting of hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylenyl, halo, aryl-C₀-C₄ alkyl, heteroaryl, C₁-C₆ allyl, and OR29, and wherein aryl-C₀-C₄ alkyl, heteroaryl are each optionally substituted with from one to three independently selected from R27; R29 is selected from the group consisting of hydrogen and C₁-C₄ alkyl;~~

(o) ~~R10, R11 are each independently selected from the group consisting of hydrogen, hydroxy, cyano, nitro, halo, oxo, C₁-C₆ alkyl, C₀-C₆ alkyl-COOR12'', C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyloxy, C₃-C₇ cycloalkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, C₃-C₆ cycloalkylaryl-C₀-2-alkyl, aryloxy, C(O)R13', COOR14', OC(O)R15', OS(O)₂R16', N(R17)₂, NR18'C(O)R19', NR20'SO₂R21', SR22', S(O)R23', S(O)₂R24', and S(O)₂N(R25)₂; and wherein aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three independently selected from R28;~~

(p) ~~R12', R12'', R13', R14', R15', R16', R17', R18', R19', R20', R21', R22', R23', R24', and R25' are each independently selected from the group consisting of hydrogen, C₁-C₆ alkyl and aryl;~~

(q) ~~R30 is selected from the group consisting of C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl, and wherein C₁-C₆ alkyl, aryl-C₀-4-alkyl, aryl-C₁-6-heteroalkyl, heteroaryl-C₀-4-alkyl, and C₃-C₆ cycloalkylaryl-C₀-2-alkyl are each optionally substituted with from one to three substituents each independently selected from R31;~~

(r) ~~R32 is selected from the group consisting of a bond, hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ haloalkyl, and C₁-C₆ alkyloxo;~~

(s) — R33 is selected from the group consisting of C1-C8 alkyl, C1-C8 alkoxy,

phenyl, thiophene, pyridine, piperidine,

, wherein the C1-C8 alkyl, C1-C8 alkoxy, phenyl, thiophene,

pyridine, piperidine, , and , are each

optionally substituted with R10 and R11.

93. (Cancelled)

94. (Original) The method of Claim 92, wherein the disease is selected from the group consisting of diabetes mellitus, Syndrome X, and atherosclerosis.

95. (Original) The method of Claim 94, wherein the disease is diabetes mellitus.

96. (Original) The method of Claim 94, wherein the disease is Syndrome X.

97. - 139. (Cancelled)

140. (Original) The compound of Claim 1, wherein the compound is selected from the group consisting of:

{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

[5-(5-Methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-acetic acid;

{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[2-(4-Benzyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-(5-{2-[2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-(5-{2-[4-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-ethoxy}-indol-1-yl)-propionic acid;

{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-{5-[4-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic 2-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[2-(4-Bromo-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-(2-Chloro-6-fluoro-phenoxy)methyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic 2-Methyl-2-{5-[4-phenoxy)methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-phenoxy-methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

5-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

5-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-pentanoic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-{5-[4-(2-Chloro-6-fluoro-phenoxy-methyl)-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

5-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-pentanoic acid;

5-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-pentanoic acid;

3-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-propionic acid;

3-{5-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethylsulfanyl]-indol-1-yl}-acetic acid;

{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[2-(5-Methyl-2-pyridin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

{5-[2-(5-Methyl-2-morpholin-4-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Methyl-2-(tetrahydro-pyran-4-yl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[2-(2-Butoxy-5-methyl-oxazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;
{5-[2-(5-Methyl-2-pyridin-3-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;
{5-[2-(5-Methyl-2-pyridin-2-yl-thiazol-4-yl)-ethoxy]-indol-1-yl}-acetic acid;
(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
(5-{2-[2-(3-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
2-(5-{2-[5-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
2-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;
Racemic 2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-acetic acid;
2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;3-(5-{2-[2-(2-Chloro-phenyl)-5-ethyl-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
3-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;
2-Methyl-2-(5-{2-[5-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(*S*)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

(*R*)-(5-{2-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-propoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-oxazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic-2-{5-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

Racemic-2-{5-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

2-Methyl-2-{5-[4-phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-propionic acid;

{5-[4-tert-Butyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

2-Methyl-2-[5-(5-methyl-2-phenyl-oxazol-4-ylmethoxy)-indol-1-yl]-propionic acid;

2-{5-[2-(4-Trifluoromethyl-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-{5-[2-(4-Fluoro-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-{5-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

2-Methyl-2-(5-{2-[5-methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-yl]-ethoxy}-indol-1-yl)-propionic acid;

2-(5-{2-[2-(4-Bromo-phenyl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

2-(5-{2-[2-(5-Bromo-thiophen-2-yl)-5-methyl-oxazol-4-yl]-ethoxy}-indol-1-yl)-2-methyl-propionic acid;

2-Methyl-2-{5-[2-(5-methyl-2-phenyl-thiazol-4-yl)-ethoxy]-indol-1-yl}-propionic acid;

{5-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-2-methyl-indol-1-yl}-acetic acid;

2-{5-[2-(3,5-Bis-trifluoromethyl-phenyl)-4-methyl-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

{4-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-acetic acid;

Racemic-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-2-phenyl-ethoxy}-indol-1-yl)-acetic acid;

Racemic-(5-{1-[4-Phenethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

2-{5-[4-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-ylmethoxy]-indol-1-yl}-2-methyl-propionic acid;

(R)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-[2-(2-Chloro-6-fluoro-phenyl)-ethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-[2-phenylethyl]-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-Propyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-Isopropyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{1-[4-Methyl-2-(4-trifluoromethyl-phenyl)-thiazol-5-yl]-ethoxy}-indol-1-yl)-acetic acid;

(S)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

(R)-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-1-methyl-ethoxy}-indol-1-yl)-acetic acid;

N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-methanesulfonamide;

N-(2-{5-[5-Methyl-2-(4-trifluoromethyl-phenyl)-oxazol-4-ylmethoxy]-indol-1-yl}-acetyl)-benzenesulfonamide; and

N-[2-(5-{2-[5-Ethyl-2-(4-trifluoromethyl-phenyl)-thiazol-4-yl]-ethoxy}-indol-1-yl)-acetyl]-methanesulfonamide.