

Scalable sparse covariance estimation via self-concordance

Anastasios Kyrillidis Rabeeh Karimi Mahabadi Quoc Tran-Dinh Volkan Cevher Laboratory for Information and Inference Systems (LIONS), EPFL

{anastasios.kyrillidis, quoc.trandinh, volkan.cevher}@epfl.ch, rabeehk@student.ethz.ch

Big picture on convex optimization

• Current trend in convex optimization:

 $\min_{\mathbf{x} \in \mathbb{R}^n} \{ F(\mathbf{x}) : F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \}, \text{ where } f \text{ is smooth convex and } g \text{ is non-smooth convex.}$

• "Hot" trend in optimization: usage of low-dimensional models through *g* function:

• Tractability of proximity operator for $g(\cdot)$:

$$\operatorname{prox}_{g}^{\mathbf{H}}(\mathbf{y}) := \arg \min_{\mathbf{x} \in \mathbb{R}^{n}} \left\{ g(\mathbf{x}) + 1/2 \|\mathbf{x} - \mathbf{y}\|_{\mathbf{H}}^{2} \right\}$$

• Usually lead to harder-to-solve optimization problems...

- Generic strategy: $\mathbf{x}_{i+1} = \mathbf{x}_i + \tau_i \mathbf{d}_i$ where \mathbf{d}_i is a direction to move and $\tau_i \in (0, 1)$ is a step size.
- How to choose τ_i , \mathbf{d}_i : By using assumptions on $f(\cdot)$:
 - $f(\cdot)$ "lives" into well-known classes of functions:

Lipschtiz gradient continuity:

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L\|\mathbf{x} - \mathbf{y}\|_2$$

 μ -strong convexity:

 $\mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}$

Self-concordance in optimization

• \mathcal{F}_L and \mathcal{F}_μ are well-established assumptions but they might not hold in practice:

• Self-concordance: provides *affine invariance* in Newton methods – used in IP methods.

Definition 1 A convex function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be self-concordant with parameter $M \geq 0$, if $|\varphi'''(t)| \leq M\varphi''(t)^{3/2}$, where $\varphi(t) := f(\mathbf{x} + t\mathbf{v})$ for all $t \in \mathbb{R}$, $\mathbf{x} \in dom(f)$ and $\mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{x} + t\mathbf{v} \in dom(f)$.

The SCOPT framework [2]

• Using self-concordant bounds:

Lower surrogate	$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \omega (\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})$ $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$									
Upper surrogate	$f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \omega_* (\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})$ $\ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}} < 1$									
Hessian surrogates	$(1 - \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})^2 \nabla^2 f(\mathbf{x}) \leq \nabla^2 f(\mathbf{y}) \leq (1 - \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}})^{-2} \nabla^2 f(\mathbf{x}) \qquad \ \mathbf{y} - \mathbf{x}\ _{\mathbf{x}} < 1$									
Local norm:	$\ \mathbf{u}\ _{\mathbf{x}} := \left[\mathbf{u}^T abla^2 f(\mathbf{x}) \mathbf{u} ight]^{1/2}$									
Utility functions: $\omega_*(\tau) = -\tau - \ln(1-\tau), \ \tau \in [0,1)$ $\omega(\tau) = \tau - \ln(1+\tau), \ \tau \geq 0$										
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
Algorithm 1 Inexact SCOPT for sparse cov. estimation										
2: wh 3: S 4: C 5: if	but: $\mathbf{x}_0, \rho, \lambda > 0, \sigma = \frac{3}{40}, \epsilon, \gamma > 0.$ ile $\varepsilon_i \leq \gamma$ or $i \leq I^{\max}$ do bolve (4) for $\boldsymbol{\delta}_i$ with accuracy ϵ and parameters ρ, λ . Compute $\varepsilon_i = \ \boldsymbol{\delta}_i - \mathbf{x}_i\ _{\mathbf{x}_i}$ f $(\varepsilon_i > \sigma)$ $\mathbf{x}_{i+1} = (1 - \tau_i)\mathbf{x}_i + \tau_i\boldsymbol{\delta}_i$ for $\tau_i = \frac{\varepsilon_i - \sqrt{2\epsilon}}{\varepsilon_i(\varepsilon_i - \sqrt{2\epsilon} + 1)}$.									

Convergence guarantees

Theorem 1 (Global convergence guarantee) Let $\tau_i := \frac{\varepsilon_i - \sqrt{2\epsilon}}{\varepsilon_i(\varepsilon_i - \sqrt{2\epsilon} + 1)} \in (0, 1)$ where $\varepsilon_i := \|\mathbf{d}_i - \mathbf{x}_i\|_{\mathbf{x}_i}$ is the Newton decrement, \mathbf{d}_i is a direction to move and ϵ is the requested accuracy for finding \mathbf{d}_i . Assume $\varepsilon_i \geq \sqrt{2\epsilon}$, $\forall i$, and let the set $\{\mathbf{x} \in \text{dom}(F) : F(\mathbf{x}) \leq F(\mathbf{x}_0)\}$ be bounded. Then, SCOPT generates $\{\mathbf{x}_i\}_{i>0}$ such that \mathbf{x}_{i+1} satisfies:

$$F(\mathbf{x}_{i+1}) \leq F(\mathbf{x}_i) - \xi(\tau_i), \quad where$$

$$\xi(\tau_i) = -\omega_*(\tau_i \varepsilon_i) - \tau_i \left(\epsilon - \frac{1}{2} \left(\varepsilon_i - \sqrt{2\epsilon}\right)^2 - \frac{1}{2}\varepsilon_i^2\right) \ge 0, \forall i, i.e., \{F(\mathbf{x}_i)\}_{i \ge 0} \text{ is a strictly non-increasing sequence.}$$

• We prove the convergence rate towards the minimizer using *local information* in norm measures: as long as $\|\mathbf{x}_{i+1} - \mathbf{x}_i\|$ is away from 0, the algorithm has not yet converged to \mathbf{x}^* . We observe:

$$\|\mathbf{x}_{i+1} - \mathbf{x}_i\|_{\mathbf{x}_i} = \|\tau_i \left(\boldsymbol{\delta}_i - \mathbf{x}_i\right)\|_{\mathbf{x}_i} \propto \|\boldsymbol{\delta}_i - \mathbf{x}_i\|_{\mathbf{x}_i} := \varepsilon_i.$$

Theorem 2 (Local quadratic convergence rate) Assume $\tau_i = 1$ or $\tau_i = \frac{\varepsilon_i - \sqrt{2\epsilon}}{\varepsilon_i(\varepsilon_i - \sqrt{2\epsilon} + 1)} \in (0, 1)$. Then, SCOPT satisfies:

$$\varepsilon_{i+1} \le \beta \varepsilon_i^2 + c,$$

where $\beta = \mathcal{O}\left(\frac{1}{1-\varepsilon_i}\right)$, $c = \sqrt{2\epsilon}$ and ϵ is user-defined. I.e., SCOPT has locally quadratic convergence rate where c > 0 is small-valued and bounded.

Sparse covariance estimation for portfolio optimization

• Classic Markowitz portfolio: minimize $\mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$

7: **else** $\mathbf{x}_{i+1} = \boldsymbol{\delta}_i$

8: end while

subject to
$$\mathbf{w}^T \mathbf{r} = \mu$$
, $\sum w_i = C$, $w_i \ge 0$, $\forall i$.

Usually, Σ is unknown...

• To approximate Σ , we propose the self-concordant minimization:

$$\mathbf{\Theta}^{\star} = \underset{\mathbf{\Theta}}{\operatorname{arg\,min}} \left\{ \frac{1}{2\rho} \|\mathbf{\Theta} - \widehat{\mathbf{\Sigma}}\|_F^2 - \log \det(\mathbf{\Theta}) + \frac{\lambda}{\rho} \|\mathbf{\Theta}\|_1 \right\}$$

One cannot easily use L-Lipschitz and μ -strongly convex assumptions...

• Other applications: sparse graph selection, Poisson imaging, etc.

Model			$F(\mathbf{\Theta}^{\star}) (\times 10^2)$			Time (secs)		
n		λ	[3]	iSCOPT	iscopt FLS	[3]	iSCOPT	iscopt FLS
	$\frac{k}{n^2} = 0.05$	1	32.013	31.919	31.919	8.288	9.996	3.584
100	$\frac{k}{n^2} = 0.1$	0.5	36.190	34.689	34.689	10.470	12.761	$\boldsymbol{5.012}$
$oldsymbol{\Sigma}_3$	$\frac{k}{n^2} = 0.2$	0.5	62.143	53.081	53.081	18.446	14.720	6.257
	$\frac{k}{n^2} = 0.05$	1	_	_	2711.931	> T	> T	759.724
1000	$\frac{k}{n^2} = 0.1$	1	_	_	4734.251	> T	> T	875.344
	$\frac{k}{n^2} = 0.2$	1	_	_	5553.508	> T	> T	1059.709

Most correlations between assets tend to be
 zero in practice...

References

[1] Xue, L., Ma, S., and Zou, H., "Positive definite ℓ_1 penalized estimation of large covariance matrices", Journal of the American Statistical Association, 2012 [2] Tran-Dinh, Q. Kyrillidis, A. and Cevher, V., "Composite self-concordant minimization", ArXiV.

[3] Rothman, A. J, "Positive definite estimators of large covariance matrices", Biometrika 99(3):733-740, 2012. [4] Wang, H, "Two new algorithms for solving covariance graphical lasso based on coordinate descent and ECM", arXiv preprint arXiv:1205.4120, 2012.