# **Bessel Functions**







#### Overview



#### Last lectures:

- Frobenious method
- Special functions
- Bessel functions

$$y(x) = \sum_{n=0}^{\infty} a_n x^{n+\alpha}$$

$$x^2y'' + xy' + (x^2 - n^2)y = 0.$$

### This lectures:

Bessel functions

Reading: Chapter 8 of lecture notes

#### Recall: Bessel function



#### Circular drum (the vibrations of this)

### The wave equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} ,$$

**Boundary conditions** 

$$u(a, \theta, t) = 0,$$
  
 $u(r, \theta, t) = u(r, \theta + 2\pi, t),$   
 $|u(r, \theta, t)| < \infty.$ 



Circular drum, so use cylindrical co-ordinates

Seek product solutions  $\varphi(r, \theta, t)$ 

$$\varphi(r, \theta, t) = R(r)Q(\theta)T(t)$$
.

### Cylindrical Drum Solution



R equation 
$$r^2R'' + rR' + (\mu^2r^2 - n^2)R = 0$$
.

Special case of SL

To solve R: e.g. let

$$x = \mu r$$
,

$$y(x) = R(r) = R\left(\frac{x}{\mu}\right)$$
.

$$x^2y'' + xy' + (x^2 - n^2)y = 0.$$

Bessel's equation of "order" n

Goal: find 
$$y(x) \rightarrow R \rightarrow \varphi(r, \theta, t) = R(r)Q(\theta)T(t)$$
.



Try series solution about x=0

Divide Bessel's eq by x<sup>2</sup>-> "standard form"

$$y'' + \frac{1}{x}y' + \left(1 - \frac{n^2}{x^2}\right)y = 0.$$

P(x) and Q(x) both have singularities at x=0

Compare to...

$$y'' + P(x)y' + Q(x)y = 0,$$

P(x) = 1/x and  $Q(x) = 1 - n^2/x^2$  both have singularities at x = 0



$$xP(x) = 1,$$
  
$$x^2Q(x) = x^2 - n^2$$

are both well behaved and thus **analytic** at x = 0

therefore x = 0 is a **regular singular** point of the diff. equ.

So the **Frobenius method** will lead to at least one solution of the form

$$y(x) = \sum_{k=0}^{\infty} a_k x^{k+\alpha}$$

Sub into the Bessel equation...



$$y(x) = \sum_{k=0}^{\infty} a_k x^{k+\alpha}$$



$$y(x) = \sum_{k=0}^{\infty} a_k x^{k+\alpha}$$

$$x^2 y'' + xy' + (x^2 - n^2)y = 0$$

Required ingredients 
$$n^2y = \sum_{k=0}^{\infty} n^2 a_k x^{k+\alpha}$$
,



$$x^{2}y = \sum_{k=0}^{\infty} a_{k}x^{k+\alpha+2} = \sum_{k=2}^{\infty} a_{k-2}x^{k+\alpha}$$

$$k=0$$
 k=2 k=2, then rename k: k=0 and 1 terms go 
$$xy' = \sum_{k=0}^{\infty} a_k (k+\alpha) x^{k+\alpha} ,$$

$$x^2y'' = \sum_{k=0}^{\infty} a_k(k+\alpha)(k+\alpha-1)x^{k+\alpha}$$
.



#### Substitute ingredients into the equation....

$$\sum_{k=0}^{1} \left[ a_k(k+\alpha)(k+\alpha-1) + a_k(k+\alpha) - n^2 a_k \right] x^{k+\alpha} +$$

$$\sum_{k=2}^{\infty} \left[ a_k(k+\alpha)(k+\alpha-1) + a_k(k+\alpha) + a_{k-2} - n^2 a_k \right] x^{k+\alpha} = 0.$$

### Equating the coefficients $x^{k-\alpha}$ to 0 gives

k=0 
$$a_0(\alpha^2-n^2) = 0, \text{ equation:} \alpha=+/-n$$
 k=1 
$$a_1\left[(1+\alpha)^2-n^2\right] = 0,$$
 k>=2 
$$a_k\left[(k+\alpha)^2-n^2\right]+a_{k-2} = 0.$$



$$a_0(\alpha^2 - n^2) = 0,$$

$$a_1 \left[ (1 + \alpha)^2 - n^2 \right] = 0,$$

$$a_k \left[ (k + \alpha)^2 - n^2 \right] + a_{k-2} = 0.$$

If  $\alpha = +/- n$ , this can only be satisfied if  $\alpha_1 = 0$ . So the **recurrence** coefficient relation is:

$$a_k = \frac{1}{n^2 - (k + \alpha)^2} a_{k-2}$$

Connects coeffs separated by 2:  $\alpha_1$ =0,  $\alpha_k$ =0 for all odd k  $\alpha_1$  =n  $\alpha_2$ = -n differ by an integer

Frobenius only gives 1 solution, take as  $|\alpha|$  = n



In the circular drum, however, the **periodicity requirement** on the angular solution Q means n has to be an integer,

and so the two solutions  $\alpha = \pm n$  are **not linearly independent.** 

May take one of the solutions to correspond to  $\alpha = |n|$ , which is called a **Bessel function** of the first kind,  $J_n(x)$ .

Using the recurrence relation for the coefficients finds that  $J_n(x)$ 

$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(k+n)!} \left(\frac{x}{2}\right)^{2k+n}$$

(arbitrary) value of  $a_0$  set to  $a_0=\frac{1}{2^n n!}$  chosen so that for all n > -1  $\int_0^\infty J_n(x)\,dx=1\;.$ 

$$a_0 = \frac{1}{2^n n!}$$

$$\int_{-\infty}^{\infty} J_n(x) \, dx = 1$$



The second linearly independent solution to the Bessel Equ: use reduction of order.

These solutions are **Bessel functions** of the second kind:

 $Y_{v}(x)$ . (Neumann functions N(x).)



#### General solution

$$y(x) = AJ_n(x) + BY_n(x) .$$

Diverges for x->o

If BC require y(o), then B=o. Often the case -> usually work with  $J_n$  not  $Y_n$ 





It is not possible to solve explicitly for the values of x where the functions cross zero, but these can be determined numerically.



Table 8.1: Values of  $z_{nm}$ , the *m*th zero of  $J_n$ , for n = 0, 1, 2, 3 (computed with the GSL routine gsl\_sf\_bessel\_zero\_Jnu [12]).

| m  | $z_{0m}$ | $z_{1m}$ | $z_{2m}$ | $z_{3m}$ |
|----|----------|----------|----------|----------|
| 1  | 2.40483  | 3.83171  | 5.13562  | 6.38016  |
| 2  | 5.52008  | 7.01559  | 8.41724  | 9.76102  |
| 3  | 8.65373  | 10.1735  | 11.6198  | 13.0152  |
| 4  | 11.7915  | 13.3237  | 14.796   | 16.2235  |
| 5  | 14.9309  | 16.4706  | 17.9598  | 19.4094  |
| 6  | 18.0711  | 19.6159  | 21.117   | 22.5827  |
| 7  | 21.2116  | 22.7601  | 24.2701  | 25.7482  |
| 8  | 24.3525  | 25.9037  | 27.4206  | 28.9084  |
| 9  | 27.4935  | 29.0468  | 30.5692  | 32.0649  |
| 10 | 30.6346  | 32.1897  | 33.7165  | 35.2187  |

### More on Bessel functions



Bessel functions arise in many contexts and in a number of different forms.

E.g. cylindrical symmetry (like the circular drum).

Can express the **two linearly independent** solutions to **Bessel's equation** by **Hankel functions** 

$$H_{\nu}^{(1)}(x) = J_{\nu}(x) + iY_{\nu}(x)$$
,

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - iY_{\nu}(x)$$
.

Modified Bessel equation

$$x^2y'' + xy' - (x^2 + \nu^2)y = 0 .$$

### **Modified Bessel functions**



$$x^2y'' + xy' - (x^2 + \nu^2)y = 0.$$

### 2 linearly independent solutions

### are called the modified Bessel functions, I(x) and K(x).

These functions are exponentially growing and decaying, in contrast to the oscillating behaviour of J(x) and Y(x).



(a) the first kind  $I_n(x)$ 

(b) the second kind  $K_n(x)$  for integer order n.

### Bessel's equation



$$x^2y'' + xy' + (x^2 - n^2)y = 0.$$

### Bessel's equation of order n,

"order" is not the same as that of ODE

In vibrating drum: n must be an integer

Bessel's equation appears in other contexts with **noninteger** values for this parameter.

Use convention: **n** for an **integer**, **v** if it is **noninteger**.

Notice that  $\mu$  no longer appears explicitly in the equation when it is written in terms of x, and therefore only appears in the solution R(r) through the value of x, i.e., product  $\mu$ r.

#### Helmholtz equation



#### If the Helmholtz equation

$$\nabla^2 \varphi + k^2 \varphi = 0 \; ,$$

is separated in spherical polar coordinates: radial equation:

$$x^{2}y'' + 2xy' + \left[x^{2} - n(n+1)\right]y = 0.$$

2 linearly independent solutions are called spherical Bessel functions,  $j_n(x)$  and  $y_n(x)$ : related to the ordinary Bessel functions  $J_n(x)$  and  $Y_n(x)$  by

$$j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+1/2}(x) ,$$

$$y_n(x) = \sqrt{\frac{\pi}{2\pi}} Y_{n+1/2}(x)$$
.

### Spherical Bessel functions, $j_n(x)$ and $y_n(x)$







Plots of spherical Bessel functions (a) the first kind  $j_n(x)$  (b) the second kind  $y_n(x)$ for integer order n.

### Summary



### This lecture:

- Special functions
- Bessel functions

$$x^2y'' + xy' + (x^2 - n^2)y = 0.$$



Reading: Chapter 8 of lecture notes