

Description

The series of devices uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- ●DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- \bullet V_{DS} =150V,I_D =70A R_{DS(ON)}=13.5mΩ (typical) @ V_{GS}=10V
- ●Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- ●175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST15N135-T3	VST15N135	TO-220C			
VST15N135-TC	VST15N135	TO-263	-	-	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	70	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	49	Α	
Pulsed Drain Current	I _{DM}	280	Α	
Maximum Power Dissipation	P _D	200	W	
Derating factor		1.33	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	672	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Résistance, Junction-to-Case ^(Note 2)	R ₀ JC	0.75	°C/W	
--	-------------------	------	------	--

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.1	4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =35A	-	13.5	15	mΩ
Forward Transconductance	g FS	V_{DS} =5 V , I_{D} =35 A	-	58	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	\\ 75\\\\ 0\\	-	2000	-	PF
Output Capacitance	C _{oss}	V_{DS} =75 V , V_{GS} =0 V ,	-	280	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	16	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =75V, I_D =35A V_{GS} =10V, R_G =3 Ω	-	12.5	-	nS
Turn-on Rise Time	t _r		-	3.8	-	nS
Turn-Off Delay Time	t _{d(off)}		-	14	-	nS
Turn-Off Fall Time	t _f		-	3.5	-	nS
Total Gate Charge	Qg	V 75VI 05A	-	35	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=75V,I_{D}=35A,$	-	11.8	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	9.9	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =35A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	70	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = 35A$	-	105	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	160	-	nC

Notes:

^{1.} Repetitive Rating: Pulse width limited by maximum junction temperature.

^{2.} Surface Mounted on FR4 Board, $t \le 10$ sec. The value of R_{BJA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

^{4.} Guaranteed by design, not subject to production

^{5.} E_{AS} condition : $Tj=25^{\circ}C$, $V_{DD}=50V$, $V_{G}=10V$, L=0.5mH, $Rg=25\Omega$

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance