CAMBRIDGE INTERNATIONS

JUNE 2002

GCE Advanced Level

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT:9701/4

CHEMISTRY (STRUCTURED QUESTIONS (A2 CORE))

1 (a)
$$K_w = [H^*][OH^*]$$
 (or $[H_3O^*][OH^*]$) [1]

(b) $[H^+] = K_w/[OH^-] = 1 \times 10^{-14}/0.2 \ (= 5 \times 10^{-14} \text{ mol dm}^{-3})$ [1]

$$\therefore pH = 13.3$$
 [1]

(c) NH₃ is a weak base or incompletely ionised [or NaOH is strong base] [1] [or an equation showing the equilibrium over to the NH₃ + H₂O side]

(f)
$$NH_3 + H^+ \longrightarrow NH_4^+$$
 [1] $[or NH_3 + HCl or H_2SO_4 etc]$

$$NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$$
 [1] [or $NH_4Cl + NaOH$ etc]

[At least one of the above equations should be shown. Allow a verbal equivalent for the other equation. Correct verbal equivalents for both equations are still worth [1] mark only. Any incorrect — equation negates the mark for a correct one, but ignore "neutral" equations like $NH_*Cl \longrightarrow NH_*^+ + Cl$]

total: 10

1

2

1

2	(a) mix (a solution of) 4-nitrophenyl ethanoate with (a solution of) NaOH [do NOT allow titration with NaOH]	[1]
	either [ester] or volume of ester solution is known/fixed/stated	[1]
	place in colorimeter (fitted with a suitable filter) (or spectrophotometer)	[1]
	time the reaction / the appearance of yellow colour / the formation of product	[1]
	measure the increase in absorbance over time or take time for a fixed absorbance/colour to occur	[1]

[allow take out samples at known times and titrate with standard acid for the last two marks]

5 max 4

(b) (i) from graph (see next page) [N.B. the graph on the question paper has not been reproduced correctly - the shapes of the curves are steeper at the start than the original. Allowance has been made for this in the rate ranges quoted below]

rate (A) =
$$0.001/18 - 0.001/26 = 3.8 - 5.5 \times 10^{-5} \text{ mol dm}^{-3} \text{ min}^{-1}$$

 $[or 6.3 - 9.0 \times 10^{-7} \text{ mol dm}^{-3} \text{ sec}^{-1}]$ [1]

rate (B) =
$$0.001/7 - 0.001/12 = 8.3 - 14.3 \times 10^{-5} \text{ mol dm}^{-3} \text{ min}^{-1}$$

 $[or 1.38 - 2.4 \times 10^{-7} \text{ mol dm}^{-3} \text{ sec}^{-1}]$ [1]

correct units for either rate u/c [1]

(ii) order with respect to
$$[OH] = 1$$
 $u/c[1]$

(vi)
$$k = rate/([OH][ester]) = 4 \times 10^{-5}/(0.2 \times 1 \times 10^{-3})$$

= $0.2 \pm 0.05 \quad mo\Gamma^{1} dm^{3} min^{-1} [1] + [1] anits$
{ $or 0.0033 \quad mo\Gamma^{1} dm^{3} sec^{-1} [1] + [1]}$

[allow ecf from part (i) for value of the rate constant and part (v) for rate equation. Units mark is u c]

9 total: 13

2. Graph for part (b)

3 (a)
$$Ca(NO_3)_2 \longrightarrow CaO + 2NO_2 + \frac{1}{2}O_2$$
 [or doubled] [1]

(b) stabilities increase down the group [or comparison of two Gp II nitrates][1]

because as the ions [NOT atoms]get bigger/have more shells/have smaller charge density u/c [1]

there is less polarisation of the nitrate ion/NO₃/anion u/c [1]

(c) (i)
$$MNO_3 \longrightarrow MNO_2 + \frac{1}{2}O_2$$
 [or doubled, or specific Gp 1 nitrate] [1]

(ii) 100g loses 10.85g of oxygen, this is $10.85/16 \approx 0.678$ moles of O or 0.339 moles of O₂ per 100g [1]

∴ 0.678 mol of MNO₃ has a mass of 100g

 \therefore 1.0 mol of MNO₃ has a mass of 100/0.678 = 147.5 g

since
$$NO_3 = 62$$
, $M = 147.5 - 62 = 85.3$ [85 - 85.5] [1]

3 total: 7

3

 $[1s^2 2s^2 2p^6 3s^2 3p^6]$ 3d⁵ 4 (a)

[1]

1

- E values: Cl₂/Cl 1.36(V) Br₂/Br 1.07(V) I_2/Γ 0.54(V) [1] (b) (i) [E^e values could be read from the answers in (c)]
 - (Therefore) the halogens are less oxidising from Cl to I
- u/c [1]
- E^{9} values: $Cr^{3+}/Cr^{2-} = 0.41V$ $Fe^{3+}/Fe^{2+} = 0.77V$ $Co^{3+}/Co^{2+} = 1.82V$ [1] [E* values could be read from the answers in (c). Allow -0.74 for Cr³⁺ and -0.04 for Fe³⁺]
- (Therefore) the 3+ ions become more oxidising from Cr³⁺ to Co³⁺ u/c[1]

4 max 3

(c) (i) no reaction [I]

(ii)
$$2Co^{3r} + 2Br^{2} \longrightarrow 2Co^{2r} + Br_{2}$$
 [1]
 $E^{0} = 1.82 - 1.07 = 0.75V$ [1]

 $2Cr^{2-} + I_2 \longrightarrow 2Cr^{3-} + 2\Gamma$ E^o = 0.54 - (-0.41) = 0.95V (iii) [1] [1]

5 max 4 total: 8

5 (a) amide [NOT peptide] [1]

phenol [NOT hydroxy or alcohol] [ignore, i.e. do not allow, benzene ring]

[1]

2

(b) (i) CH_3CONH (or isomers, ≥ 2 bromines) [1]

- CH3CONH-(ii)
- [or Na salt = must include charges][1]
- (iii) $(CH_3CO_2) + NH_2$ [or Na salt - must include charges][1]
- (c) (i) $X = CH_3COC1$ or $(CH_3CO)_2O$ [or names. NOT ester] [1]
 - PCl₅ or PCl₃ or SOCl₂ [or names] (ii) [if the anhydride is used, allow P_2O_5 , $AlPO_3$, $CH_2=C=O$, PCl_5 then $+CH_3CO_3Na$ or any other valid method of obtaining anhydrides from acids? $fif X = ester then allow ecf for C_1H_5OH + conc H_2SO_J$

3

total: 7

6 (a) (i) All AlCl₃/Fe/FeCl₃/ I_2 [(aq), water or light negates this mark] [1]

(ii) light/hf/uv or heat [(aq) or water negates this mark] [1]

(b) (i) A does not react, because the Cl-ring bond is strong/short or Cl is more closely bonded or Cl electrons delocalised into the ring [1]

(ii) CH_2Cl CH_2OH + OH \longrightarrow $(or\ NaOH)$ $+ Cl^*$ (no ecf) [1]

2 total: 4

2

$$\gamma$$
 (a) $Y =$ NO₂

reagents for 1: conc. $HNO_3 + H_2SO_4$ [(aq) negates] [1] [e.c.f.; allow a correct reagent corresponding to the structure of Y-e.g. if Y = chlorobenzene, allow $Cl_2 + Fe$ etc]

reagents for II: tin/Sn or iron/Fe [NOT Zn] + (conc.)HCl or LiAlH₄ [NOT NaBH₄] or H₂ + Ni [NOT Pt] [1]

[e.c.f.: allow a correct reagent corresponding to the structure of Y. e.g. if Y = chlorobenzene, allow NaNH₂ (NOT NH₃)]

conditions for $I: 35^{\circ}C < T < 60^{\circ}C$ [cond. on suitable reagent][1] [e.c.f.: allow the correct conditions corresponding to the structure of Y. e.g. heat]

studyguide.pk

			<u>, etud</u>	∤quide.p	k
Page 6	Mark Scheme	Syllábůs'	Paper	guide.p	11
	A Level Examinations – June 2002	9701	4]	

(b)	(i)	$C_6H_5NH_2 + H^+/HCVH_2O \longrightarrow C_6H_5NH_3^+ [+CI/OH]$	[1]	
		[product must show ionic N^*]		
	(ii)	less basic than NH ₃	[1]	
	(iii)	lone pair (on N) is delocalised over the ring [this mark may be obtained from a diagram - e.g. double dot on $N + curly$ arrows	[1] >w]	3
(c)	(i)	HNO ₂ or nitrous (nitric(HI)) acid or NaNO ₂ + HCl	[1]	J
(0)	(1)	0°C < T < 10°C	[1]	
	(ii)	NaOH (aq) or dilute or in solution (or in words) [NOT NH1(aq)]	[1]	
	(iii)	N=N-OH CH ₃	[1]	4

[CH] and OH have to be adjacent, but allow any orientation of N=N w.r.t. OH]

total: 11

No circle in benzene ring: deduct [1] for the whole paper. Sticks rather than C-H bonds: deduct [1] for the whole paper.

