Неразобранные задачи

Минский ШАД. Осень

14 января 2015 г.

1 Динамическое программирование

1. [1 балл] На прямой своими координатами задано n точек. В этих точках расположеные гвоздики. Два гвоздика, находящихся в позициях x_i и x_j можно соединить ниткой длиной $|x_i - x_j|$ саженей. Необходимо натянуть нитки между гвоздями таким образом, чтоб к каждому гвоздю была присоединена как минимум одна нитка, а суммарная длина нитей была минимальна. Сложность алгоритма должна составлять $\mathcal{O}(n \log n)$.

Решение:

Отсортируем все гвоздики по координате и будем считать, что они пронумерованы в порядке увеличения координаты. Очевидно, что гвоздик стоит соединять только с соседним гвоздём (иначе можно считать что рассматриваемый гвоздь соединён с промежуточным, а промежуточный — с изначальным соседом). Тогда введём величину f_i — ответ на задачу, если бы было задано только первых i гвоздей. Тогда:

$$f_i = \min(f_{i-1}, f_{i-2}) + |x_i - x_{i-1}|$$

Последний гвоздь мы обязаны соединить с предпоследним. Мы выбираем из двух вариантов: первый соответствует случаю, когда мы соединяем гвоздь i-1 с гвоздём i-2, а второй — нет. Итого $\mathcal{O}(n\log n)$ на сортировку и $\mathcal{O}(n)$ на вычисление ответа.

$2 \quad \text{KM}\Pi$

2. [1 балл] Для каждой позиции строки S вычислить значение a_i — длину максимальной подстроки, которая начинается в i и совпадает с некоторым суффиксом строки S. Решение должно иметь сложность $\mathcal{O}(n)$

Решение:

Развернём строку и посчитаем префикс-функцию. Если мы развернём обратно массив, содержащий значения префикс-функций, то можно заметить, что это и есть ответ на задачу.

3 Разное

3. [3 балла] Дан массив из n+1 числа, в котором содержатся целые числа от 1 до n (какие-то числа могут отсутствовать). Необходимо найти любое такое x, что x встречается в массиве как минимум дважды.

Рассмотрим граф из n+1 вершины, и дугами $i\to a_i$. В таком орграфе n+1 вершина и n+1 дуга, а значит он состоит только из циклов, каждая вершина которого — корень какого-нибудь корневого дерева.

Например, исходный массив:

a_i	3	1	2	1	4	3	7	4
i	1	2	3	4	5	6	7	8

Породит следующий граф:

Зелёным отмечены числа, которые подходят под ответ. Эти числа соответствуют вершинам, в которые входят больше одной дуги.

Забудем на время про ориентацию дуг. Посмотрим на компоненту связности, в которой лежит вершина n+1. Очевидно, что в этой компоненте есть цикл (в компоненте m вершин и m рёбер). Однако, вершина n+1 на цикле лежать не может (в неё не входит ни одна дуга) — значит если мы встанём в неё и будем идти по дугам, то рано или поздно придём в цикл. Заметим, что первая вершина цикла, в которую мы попадём обязательно будет «зелёной». Действительно, в неё входит как минимум одна дуга из цикла и та дуга, по которой мы пришли.

Ну, теперь задача получилась простая. Надо встать в вершину n+1 и идти по дугам до цикла, а после найти первую вершину цикла. В данном случае можно сделать это так.

- 1. Сделаем от вершины n+1 ровно n+1 шаг. Пусть мы попали в вершину x. Очевидно, это вершина цикла (предпериод не может быть длинней n+1).
- 2. Пойдём от вершины x по дугам и будем считать количество шагов, пока опять не попадём в вершину x. Пусть это количество l. Заметим, что l длина цикла.
- 3. Заведём два указателя. Один будет указывать на вершину n+1, другой на вершину через l шагов от вершины n+1. Будем двигать эти указатели одновременно по шагу, пока они не станут указывать на одну и ту же вершину. Очевидно, что это и будет первая вершина цикла.
- 4. [1 балл] Дан отсортированный массив различных целых чисел. Надо определить, существует ли такой индекс i, что $a_i = i$. Сложность алгоритма должна быть $\mathcal{O}(\log n)$, где n длина массива.

Решение:

Так как числа целые и различные, то $a_i \geqslant a_{i-1} + 1$. Рассмотрим функцию $f(i) = a_i - i$. Она неубывающая. Поэтому можно найти первую точку, где она не меньше нуля за $\mathcal{O}(\log n)$ с помощью бинарного поиска.

5. $[1 \frac{1}{2}$ балла] Дан массив из $n=2^k$ различных целых чисел. Необходимо определить 2-ю порядковую статистику за не более, чем n+k-2 сравнения.

Заметим, что найти минимум в массиве из n элементов можно только с помощью n-1 сравнения, причём, очевидно, меньше сделать нельзя.

С другой стороны можно по разному использовать эти сравнения. Давайте будем поступать следующим образом. На первом шаге сравним элементы на первом и втором местах, затем на третьем и четвёртом и так за n/2 сравнений оставим ровно n/2 кандидатов на минимум. Будем повторять такую операцию, пока не останется ровно один элемент. Такую стратегию легко реализовать в виде дерева. К примеру, рассмотрим массив (2, 8, 1, 3, 7, 4, 6, 5):

Посмотрим, как минимум проложил себе путь наверх:

Очевидно, он выигрывал при каждом сравнении. Теперь заметим, что среди тех, у кого он выигрывал обязательно есть второй минимум. Действительно, второй минимум таким же образом шёл наверх, выигрывая всех, пока не встретился с минимумом:

Заметим, что всего элементов, которых мы сравнивали с минимумом ровно k — по одному на каждый уровень:

А значит, из них мы можем найти минимум за k-1 сравнение. Таким образом нам нужно n-1+k-1=n+k-2 сравнения на всё.

6. [1 балл] Пусть мы имеем два положительные неубывающие функции f(x) и g(x), причём $f(n) = \mathcal{O}(g(n))$. Правда, что $2^{f(n)} = \mathcal{O}(()2^{g(n)})$? Если это может как выполняться, так и не выполняться, привидете примеры обоих случаев. Иначе докажите утверждение.

Решение:

Иногда это выполнятся, например f(n)=g(n). В частности, это правда, если $f(n)\leqslant g(n)$, при $n\to\infty$.

С другой стороны, если, к примеру, g(n)=2f(n), то $2^{f(n)}$ и $2^{g(n)}$ отличаются уже не в константу раз.

7. $[\frac{1}{2}$ балла] Пусть у нас есть k отсортированных последовательностей из n чисел каждая. Предлагается такой алгоритм слияния их в одну: сначала сольём две первых последовательности, затем результат с третьей, и так далее. Какова сложность полученного алгоритма? Считаем, что слияние двух массивов происходит за их суммарную длину. Какова сложность полученного алгоритма.

Решение:

$$\sum_{i=1}^{k-1} n + in = n \sum_{i=1}^{k-1} i + 1 = \mathcal{O}(nk^2)$$

- 8. Дана матрица размером $n \times m$. Каждый элемент матрицы равен либо единице, либо нулю. Нужно преобразовать матрицу таким образом, чтоб элемент $a_{i,j}$ был равен 1 тогда и только тогда, когда в строке i есть хотя бы одна единица или в столбце j есть хотя бы одна единица.
 - (a) [1 балл] Решение должно иметь сложность O(nm)
 - (b) [1 балл] Решение должно иметь сложность $\mathcal{O}(nm)$ и использовать лишь константу дополнительной памяти (т.е. результат должен оказаться в исходной матрице). Каждый элемент матрицы занимает один бит.

Заметим, что задачу можно переформулировать так: если в позиции (i,j) исходной матрицы стоит единица, то надо заполнить строку i и столбец j единицами в результирующей матрице.

Изначально запомним, есть ли в первой строке хотя бы одна единица. Затем для каждой строки, начиная со второй, будем делать следующее:

- 1. Запомним есть ли в этой строке хотя бы одна единица. Эту информацию не будем запоминать между строками, так что памяти будет $\mathcal{O}(1)$
- 2. Если в столбце j этой строки стоит единица, поставим единицы в j-й столбец первой строки
- 3. Если в пункте 1 мы запомнили, что в этой строке была единица, то заполним всю строку единицами

Теперь пройдёмся по первой строке и если встречаем единицу, то заполняем весь встреченный столбец единицами. Если мы изначально запомнили, что первая строка содеражала хотя бы одну единицу, то заполняем единицами всю строку. Полученная матрица — искомая.

9. [$\frac{1}{2}$ балла] Дан массив, где **к**аждое число, кроме одного, повторяет**с**я два раза, а одно число — встречается только **о**дин раз. Надо найти это число за 1 п**р**оход по массиву и $\mathcal{O}(1)$ дополнительной памяти.

Решение:

Найдём ⊕-сумму всего массива — это и будет искомое число.

10. [1 ½ балла] Дан массив целых чисел, где каждое число, кроме x и y, встречается по два раза, а числа x и y — ровно по одному ($x \neq y$). Надо найти эти числа за $\mathcal{O}(n)$ времени и $\mathcal{O}(1)$ памяти.

Решение:

Найдём \oplus -сумму всего массива — это будет $x \oplus y$. Обозначим эту сумму за S. Очевидно, что $S \neq 0$ ($x \neq y$). Найдём любой его единичный бит i (позже покажем, как это сделать за константу времени). Мы знаем, что в этом бите числа x и y различаются. Будем считать, не теряя общности, что x имеет 1 в бите i, а y = 0. Тогда найдём $S_0 = \oplus$ -сумму всех чисел, у которых в i-м бите стоит 0, и аналогичную $S_1 = \dim S_1$ для всех чисел, у которых в i-м бите стоит единица. Тогда $x = S_1$, $y = S_0$. Научимся находить единичный бит у числа за O(1). Для этого заметим, что prev(x) = x & (x-1) = 0 это число $x \in S_1$ занулённым младшим единичным битом. Тогда, если мы вычислим $x \in S_1$ то мы как раз получим число с одним взведённым битом — самым младшим единичным битом числа x.

Затем, для определения куда отнести число z: в S_0 или S_1 необходимо просто проверять результат $z\&(x\oplus \operatorname{prev}(x))$.

4 Геометрия

- 11. Дано n точек на плоскости. Необходимо сказать сколько треугольников на этих точках содержат точку (0,0).
 - (a) [$\frac{1}{2}$ балла] Решение должно иметь сложность $\mathcal{O}(n^3)$
 - (b) [$\frac{1}{2}$ балла] Решение должно иметь сложность $\mathcal{O}(n^2 \log n)$
 - (c) [1 балл] Решение должно иметь сложность $\mathcal{O}(n \log n)$

Посчитаем количество треугольников, которые **не** содержат точку (0,0), а затем вычтем из общего (C_n^3) количества треугольников найденное количество и получим ответ на задачу.

Все такие треугольники содержатся в одной полуплоскости относительно начала координат. Отсортируем все точки по углу, относительно (0,0). Начнём с полуплоскости, полученной осью oX. Будем вращать её по часовой стрелке. Когда точка A входит в полуплоскость, посчитаем сколько треугольников будет содержаться в этой новой полуплоскости и иметь A как одну из вершин. Очевидно, что если в полуплоскости ровно m точек, то количество искомых треугольников C_m^2 . Число m можно легко поддерживать: при вхождении точки увеличиваем его на 1, при выходе — уменьшаем.

5 Структуры данных

- 12. Предложить реализацию очереди, используя стурктуру данных стек. Разрешается использовать $\mathcal{O}(1)$ стеков и $\mathcal{O}(1)$ дополнительной памяти. Стек имеет две операции («push» и «pop»), очередь тоже.
 - (a) $[\frac{1}{2}$ балла] Амортизированная стоимость операций должна быть $\mathcal{O}(1)$
 - (b) [2 балла] Стоимость операций должна быть $\mathcal{O}(1)$ в худшем случае

Решение:

Для решения первой части можно использовать известную конструкцию из двух стеков, назовём их A и B. При выполнении операции «push» будем добавлять элемент в стек B. При выполнении «pull» — достаем из стека A. Если же стек A пуст, то просто перекладываем все элементы из стека B в стек A. Легко показать, что тогда выполняется FIFO. Каждый элемент не более одного раза добавляется и достаётся из каждого из двух стеков.

Pemenue второго пункта довольно большое, описание его можно найти вот тут http://goo.gl/ViEYxL

- 13. Предложить реализацию стека, используя стурктуру данных очередь. Стек имеет две операции («push» и «pop»), очередь тоже. За n будем считать максимальное количество элементов, которые могут находится в стеке в одно время.
 - (a) $[\frac{1}{2}$ балла] Разрешается использовать $\mathcal{O}(n)$ дополнительной памяти
 - (b) [½ балла] Стоимость операции «push» должна быть $\mathcal{O}(n)$, а «pop» $\mathcal{O}(1)$. Дополнительной памяти $\mathcal{O}(1)$
 - (c) $[\frac{1}{2}$ балла] Стоимость операции «рор» должна быть $\mathcal{O}(n)$, а «push» $\mathcal{O}(1)$
 - (d) [2 балла] (Амортизированная) Стоимость обеих операций должна быть $\overline{o}(n)$

Решение:

В первом пункте просто заведём стек в дополнительной памяти.

Будем реализовывать стек на одной очереди. Будем поддерживать в этой очереди порядок LIFO. Если надо забрать элемент, то просто заберём элемент из очереди. Если вставить, то поступим следующим образом. Запомним сколько элементов в очереди до добавления, пусть m. Добавим новый элемент в очередь. Затем сделаем m раз связку «pull»-«push», тем самым выведя новый элемент на первое место, а все остальные оставив за ним. На рисунке элементы пронумерованы в порядке добавления в структуру.

Промежуточное состояние структуры	4 - 3 - 2 - 1
«pull»	¾ 3←2←1
После «pull»	4 ← 3 ← 2
Добавление элемента	4 4 3 4 2 4 5
«pull»-«push»	3 ← 2 ← 5 ← 4
«pull»-«push»	2 4 3
«pull»-«push»	5 ← 4 ← 3 ← 2

Понятно, что можно при операции «push» просто добавлять элемент в очередь, а при «pop» делать серию «pull»-«push» дабы вывести самый последний элемент на первое место.

Приступим к интересной части. Реализуем операцию «push» за $\bar{o}(1)$ и «pull» за амортизированную оценку $\mathcal{O}(sqrtn)$. Заведём две очереди: A и B. В первой будем хранить $\approx \sqrt{n}$ элементов самых близких к вершине стека (т.е. добавленных позже всего). Хранить их, однако, будем в порядке очереди (иначе сложность, вероятно, бы возрасла опять до $\mathcal{O}(()n)$). При операции «push» просто добавляем элемент в очередь A. Если $|A|^2 > |B|$ перекидываем элемент верхней элемент очереди A в B. Понятно, что таких перекидываний на «push» надо сделать не больше одного.

При операции «pull» серией «pull»-«push» очереди B добиваемся, чтобы последний элемент стека оказался на вершине и возвращаем его. Заметим, что инвариант про $|A|^2 \leqslant |B|$ не нарушился.

Если же очередь A пуста, то необходимо переупорядочить элементы. Для этого переместим (B.pull -A.push) $\lfloor |B| - \sqrt{|B|} \rfloor$ элементов из очереди B в очередь A и просто переименуем очереди. Теперь инвариант выполняется.

В качестве упражнения предлагается доказать, что амортизированная сложность операции «pull» составляет \sqrt{n} .