Table des matières

T	Mo	delisat	ion Mathematique du système	Т
	1.1	Introd	luction aux modèles probabilistes	1
		1.1.1	Distribution de probabilité jointe	1
		1.1.2	Théorème de Bayes	1
	1.2	Modèl	e de précision des performances	1
		1.2.1	Fonction objectif	1
		1.2.2	Optimisation par descente de gradient	2
		1.2.3	Équations différentielles dy système	2
	1.3	Analy	se de complexité	2
		1.3.1	Complexité temporelle	2
		1.3.2	Borne d'erreur	2
2	Mét	thodol	ogie et Algorithmes	4
	2.1	Impléi	mentation Python	4
	2.2	Archit	secture du système	7
3	Rés	ultats	Expérimentaux	8
	3.1	Config	guration expérimentale	8
	3.2	Résult	tats de performance	8
	3.3	Analy	se statistiques	9
	3.4	Courb	es d'apprentissage	9
	3.5	Équat	ion de régression	9
4	Ana	alyses	Statistiques Avancées	11
	4.1	Tests	d'hypothèses	11
		4.1.1	Test e Student	11
		4.1.2	Analyse de puissance statistique	11
	4.2	Analy	ses multivariées	12
		4.2.1	Analyse en composantes principales	12
		4.2.2	Équation de l'ellipse de confiance	12
	4.3	Série t	temporelles et prévisions	13

		4.3.1	Modèle ARIMA	13
		4.3.2	Équation de prévision	13
5	Sim	ulatio	ns et Validations	14
	5.1	Simul	ation de Monte Carlo	14
		5.1.1	Estimateur de Monte Carlo	14
		5.1.2	Algorithme de Metropolis-Hastings	14
	5.2	Valida	ation croisée	15
	5.3	Analy	rse de sensibilité	15
		5.3.1	Indice de Sobol	15
	5.4	Équat	tion de performance théorique	16
		5.4.1	Borne de Cramér-Rao	16
		5.4.2	Théorème de limite centrale	16
		5.4.3	Inégalité de Bernstein	16
\mathbf{A}	nnex	es		17
	.1	Preuv	res mathématiques	17
		.1.1	Preuve du théorème principal	17
	.2	Donné	ées supplémentaires	
	.3		source complémentaire	

Table des figures

2.1	Architecture en couches du réseau de neurones	7
3.1	Courbes d'apprentissage du modèle	9
4.1	Analyse de composantes principales avec ellipses de confiance	12
5.1	Analyse de sensibilité par indices de Sobol	16

Liste des tableaux

1.1	Comparaison des complexités algorithmiques	3
2.1	Paramètres de l'algorithme d'optimisation	7
3.1	Configuration matérielle et logicielle	8
3.2	Comparaison des performances des algorithmes	8
3.3	Analyse de variance (ANOVA) des résultats	Ĝ
4.1	Résultats des tests statistiques comparatifs	11
4.2	Performance des modèle de prévision	13
5.1	Résultats de validation croisée 10-fold	15
2	Données brutes des expérimentations	17

Liste des algorithmes

1	Algorithme d'apprentissage adaptatif	4
2	Algorithme MCMC avec Metrpolis-Hastrings	14

Modélisation Mathématique du système

1.1 Introduction aux modèles probabilistes

Dans cette section, nous présentons les fondements mathématiques de cotre approche. considérons un système décrit par un ensemble de variables aléatoires X_1, X_2, \ldots, X_n .

1.1.1 Distribution de probabilité jointe

La distribution de probabilité jointe peut être exprimée comme :

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i \mid \pi(X_i))$$
 (1.1)

ou $\pi(X_i)$ représente les parents de X_i dans le graphe bayésien.

1.1.2 Théorème de Bayes

Le théorème de Bayes fondamental s'écrit :

$$P(A \mid B) = \frac{p(B \mid A)P(A)}{P(B)} \tag{1.2}$$

1.2 Modèle de précision des performances

1.2.1 Fonction objectif

Nous cherchons à maximiser la fonction objectif suivante :

$$\mathcal{L}(\theta) = \mathbb{E}_{x \sim p_{data}[\log p_{\theta}(x)] - \lambda \Omega(\theta)}$$
(1.3)

ou θ représente les paramètres du modèle, λ est le coefficient de régularisation, et $\Omega(\theta)$ est le terme de régularisation.

1.2.2 Optimisation par descente de gradient

La mise à jour des paramètres suit :

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathcal{L}(\theta_t) \tag{1.4}$$

avec θ le taux d'apprentissage.

1.2.3 Équations différentielles dy système

Le comportement dynamique est modélisé par :

$$\frac{dx}{dt} = \alpha x - \beta xy \tag{1.5}$$

$$\frac{dy}{dt} = \delta xy - \gamma y \tag{1.6}$$

ou x représente la population de proies et y celle de prédateurs.

1.3 Analyse de complexité

1.3.1 Complexité temporelle

la complexité de notre algorithme est donnée par :

$$T(n) = O(n\log n) + O(n^2) + O(n^3)$$
(1.7)

1.3.2 Borne d'erreur

L'erreur d'approximation est bornée par :

$$\epsilon \le \frac{C}{\sqrt{n}} + \frac{D}{n^2} \tag{1.8}$$

ou C et D sont des constantes positives.

 ${\it TABLE} \ 1.1 - Comparaison \ des \ complexit\'es \ algorithmiques$

Algorithme	Meilleur cas	Cas moyen	Prise cas	Escape
QuickSort	$O(n \log n)$	$O(n \log n)$	$O(n^2)$	$O(\log n)$
MergeSort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	O(n)
HapSort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	O(1)
TimeSort	O(n)	$O(n \log n)$	$O(n \log n)$	O(n)

Méthodologie et Algorithmes

```
Algorithm 1 Algorithme d'apprentissage adaptatif
```

```
1: procedure ADAPTIVEOPTIMIZATION(X, y, \eta_0, \epsilon)
         \theta \leftarrow \text{InitialisationAl\'eatoire}()
 3:
         \eta \leftarrow \eta_0
         t \leftarrow 0
 4:
         loss history \leftarrow []
 5:
         while t < \max iterations do
 6:
              gradient \leftarrow nabla\theta \mathcal{L}(\theta)
 7:
              \theta \leftarrow \theta - \eta \times \text{gradient}
              current loss \leftarrow \mathcal{L}(\theta)
 9:
10:
              loss history.append(current loss)
              if t > 10 and loss_history[t] > loss_history[t - 5] then
11:
                                                                   ▶ Réduction du taux d'apprentissage
                   \eta \leftarrow \eta \times 0.5
12:
              end if
13:
              if |gradient| < \epsilon then
14:
                   break
                                                                                      ▷ Convergence atteinte
15:
              end if
16:
17:
              t \leftarrow t + 1
         end while
18:
         return \theta
19:
20: end procedure
```

2.1 Implémentation Python

Listing 2.1 – Implementation de l'algorithme d'optimisation

```
import numpy as np
import matplotlib.pyplot as plt
from typing import List, Tuple

4
5
```

```
class AdaptiveOptimizer:
       0.00
       Implementation of an adaptive optimization algorithm.
8
       0.00
9
10
       def __init__(self, learning_rate: float = 0.01, max_iter:
11
          int = 1000,
                     tolerance: float = 1e-6, reduction_factor:
12
                        float = 0.5:
           self.learning_rate = learning_rate
13
           self.max_iter = max_iter
14
           self.tolerance = tolerance
15
           self.reduction_factor = reduction_factor
16
           self.loss_history = []
17
18
       def objective_function(self, theta: np.ndarray, X: np.
19
          ndarray, y: np.ndarray) -> float:
           0.00
20
           Objective function to minimize.
21
22
           predictions = X @ theta
23
           error = predictions - y
24
           loss = np.mean(error ** 2)
25
           return loss
26
27
       def gradient(self, theta: np.ndarray, X: np.ndarray, y: np.
28
          ndarray) -> np.ndarray:
29
           Compute the gradient of the objective function.
30
31
           predictions = X @ theta
32
           error = predictions - y
33
           grad = (2 / len(y)) * X.T @ error
34
           return grad
35
36
       def optimize(self, X: np.ndarray, y: np.ndarray, theta_init:
37
           np.ndarray = None) -> Tuple[np.ndarray, List[float]]:
           0.000
38
           Main optimization algorithm.
39
40
           if theta_init is None:
41
```

```
theta = np.random.randn(X.shape[1])
42
           else:
43
                theta = theta_init.copy()
44
45
           current_lr = self.learning_rate
46
47
           for iteration in range(self.max_iter):
48
                grad = self.gradient(theta, X, y)
49
                theta = theta - current_lr * grad
50
                current_loss = self.objective_function(theta, X, y)
51
                self.loss_history.append(current_loss)
52
53
                # Adapt learning rate
54
                if iteration > 10 and self.loss_history[iteration] >
55
                    self.loss_history[iteration - 5]:
                    current_lr *= self.reduction_factor
56
                    print(f"Iteration {iteration}: learning rate
57
                       reduced to {current_lr}")
58
                # Stop if gradient is small
59
                if np.linalg.norm(grad) < self.tolerance:</pre>
60
                    print(f"Convergence reached at iteration {
61
                       iteration}")
                    break
62
63
           return theta, self.loss_history
64
65
66
   if __name__ == "__main__":
67
       # Generate synthetic data
68
       np.random.seed(42)
69
       n_{samples}, n_{features} = 1000, 20
70
       X = np.random.randn(n_samples, n_features)
71
       true_theta = np.random.randn(n_features)
72
       y = X @ true_theta + np.random.normal(0, 0.1, n_samples)
73
74
       # Run optimizer
75
       optimizer = AdaptiveOptimizer(learning_rate=0.01, max_iter
76
          =1000)
       theta_opt, losses = optimizer.optimize(X, y)
77
78
```


FIGURE 2.1 – Architecture en couches du réseau de neurones

```
print(f"Optimal parameters: {theta_opt}")
print(f"Final loss: {losses[-1]:.6f}")
```

Table 2.1 – Paramètres de l'algorithme d'optimisation

Paramètre	Valeur	Plage	Description
Taux d'apprentissage initial (η_0)	0.01	[100, 5000]	Critère d'arrêt
Seuil de convergence (ϵ)	10^{-6}	$[10^{-8}, 10^{-4}]$	Tolérance du gradient
Facteur de réduction	0.5	[0.1, 0.9]	Facteur de réduction
Taille du batch	32	[16, 128]	de η Échantillons par itération

2.2 Architecture du système

Résultats Expérimentaux

3.1 Configuration expérimentale

Table 3.1 – Configuration matérielle et logicielle

Composant	(Spécification)	Version
Processeur	Intel Xeon ES-2690 v4	2.6 GHz (14 coeurs)
Mémoire RAM	128 Go DDR4	$2400 \mathrm{MHz}$
Carte graphique	NVIDIA Tesla V100	32 Go HBM2
Stockage	SSD NVME	1To
Système d'exploitation	ubuntu server	$20.04 \ \mathrm{LTS}$
Framework 'apprentissage	TensorFlow	2.8.0
Bibliothèque mathématique	NumPy	1.21.0
Language de programmation	Python	3.9.0

3.2 Résultats de performance

Table 3.2 – Comparaison des performances des algorithmes

Algorithme	Précision(%)	Rappel (%)	F1-Score(%)	(Temps (s))	Mémoire (
Random Forest	92.3	91.8	92.0	45.2	
SVM Linéaire	88.7	87.9	88.3	12.3	
Réseau de Neurones	95.6	94.8	95.2	156.7	
XGBoost approche	96.8	96.1	96.4	89.3	

3.3 Analyse statistiques

Source	SS df	MS	F p-value		
Entre groupes	245.67	4	61.42	28.73	< 0.001
A l'intérieur des groupes	128.45	60	2.14		
Total	374.12	64			

Table 3.3 – Analyse de variance (ANOVA) des résultats

3.4 Courbes d'apprentissage

FIGURE 3.1 – Courbes d'apprentissage du modèle

3.5 Équation de régression

Le modèle de régression multiple s'écrit :

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon \tag{3.1}$$

avec les coefficients estimés :

$$\hat{\beta}_0 = 2.345$$
 (SE = 0.123)
 $\hat{\beta}_1 = 0.789$ (SE = 0.45)
 $\hat{\beta}_2 = -0.456$ (SE = 0.067)
 $\hat{\beta}_3 = 1.234$ (SE = 0.089)

Le coefficient de détermination ajusté est $R_{adj}^2 = 0.892$.

Analyses Statistiques Avancées

4.1 Tests d'hypothèses

4.1.1 Test e Student

Pour comparer les moyennes de deux groupes indépendants, nous utilisons le test t de Student :

$$t = \frac{\bar{X}_1 - \bar{X}_2}{s_q \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \tag{4.1}$$

ou s_p est l'écart-type poolé :

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$
(4.2)

4.1.2 Analyse de puissance statistique

La puissance du test est donnée par :

Puissance =
$$1 - \beta = \Phi\left(z_{1-\alpha/2} - \frac{\delta}{\sigma\sqrt{(2/n)}}\right) + \Phi\left(-z_{1-\alpha/2} - \frac{\delta}{\sigma\sqrt{2/n}}\right)$$
 (4.3)

Table 4.1 – Résultats des tests statistiques comparatifs

Comparaison	t-value	ddl	p-value	IC~95%	Size	Power
Algo A vs Algo B	3.45	58	0.0012	[0.124, 0.456]	0.89	0.92
Algo A vs Algo C	2.12	58	0.0387	[0.023, 0.289]	0.56	0.67
Algo B vs Algo C	1.78	58	0.0801	[-0.015, 0.234]	0.45	0.52
Notre vs Meilleur	4.67	58	0.0001	[0.234, 0.567]	1.23	0.98

4.2 Analyses multivariées

4.2.1 Analyse en composantes principales

la protection sur composantes principales s'écrit :

$$Z = XW (4.4)$$

ou w est la matrice des vecteurs propres de la matrice de covariance.

4.2.2 Équation de l'ellipse de confiance

Pour une distribution normale bivariée :

$$\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu)^2}{\sigma_y^2} - 2\rho \frac{(x-\mu_x)(y-\mu_y)}{\sigma_x \sigma_y} = -2\log(1-p)$$
 (4.5)

FIGURE 4.1 – Analyse de composantes principales avec ellipses de confiance

4.3 Série temporelles et prévisions

4.3.1 Modèle ARIMA

Le modèle ARIMA(p,d,q) s'écrit :

$$(1 - \sum_{i=1}^{p} \phi_i B^i)(1 - B)^d X_t = (1 + \sum_{i=1}^{q} \theta_i B^i)\epsilon_t$$
(4.6)

ou B est l'opérateur de retard.

4.3.2 Équation de prévision

La prévision à l'horizon h est donnée par :

$$\hat{X}_{t+h} = \mathbb{E}[X_{t+h}|X_1,\dots,X_t] \tag{4.7}$$

Table 4.2 – Performance des modèle de prévision

Modèle	RMSE	MAE	MAPE (%)	R^2	AIC
ARIMA(1,1,1)	23.45	18.67	4.23	0.892	1256.78
SARIMA(1,1,1)(1,1,1,12)	18.92	15.23	3.45	0.934	1189.45
ETS (A,N,N)	25.67	20.45	4.67	0.867	1345.23
Prophet	20.12	16.78	3.89	0.915	1223.56
Notre modèle	15.34	12.45	2.89	0.956	1123.67

Simulations et Validations

5.1 Simulation de Monte Carlo

5.1.1 Estimateur de Monte Carlo

L'estimateur de l'espérance est conné par :

$$\mathbb{E}[f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} f(X_i)$$
 (5.1)

avec une erreur standard de:

$$\sigma MC = \frac{\sigma_f}{\sqrt{N}} \tag{5.2}$$

5.1.2 Algorithme de Metropolis-Hastings

Algorithm 2 Algorithme MCMC avec Metrpolis-Hastrings

```
1: procedure METROPOLISHASTING(f, x_0, N)
 2:
        samples \leftarrow [x_0]
        x \leftarrow x_0
 3:
        for i \ gets1 to N \ do
 4:
            x' \sim q(\cdot|x)
                                                                        ⊳ Position de nouvel état
 5:
            \alpha \leftarrow \min(1, frecf(x')q(x|w')f(x)q(x'|x))
 6:
            u \sim \text{Uniform}(0,1)
 7:
            if (thenu < \alpha)
 8:
                x \leftarrow x'
                                                                                    ▷ (Acceptation)
 9:
            end if
10:
            samples.append(x)
11:
        end for
12:
        return samples
13:
14: end procedure
```

5.2 Validation croisée

Fold Précision f1-Score **AUC** Log-Loss Temps (s) Rappel 1 0.9450.9380.9410.9820.15645.22 0.9510.9420.9460.9840.14243.83 0.938 0.931 0.934 0.978 0.16747.1 4 0.9470.9400.9430.9830.14944.5 5 0.9420.9350.938 0.9800.16146.36 43.2 0.9490.9410.9450.9850.138 7 0.940 0.981 45.8 0.9440.9370.1548 0.9480.9390.9430.9840.14544.1 9 0.9410.937 0.979 46.70.9340.16310 0.9460.9380.9420.9830.14844.6Moyenne 0.9450.9380.9410.982015245.1Ecart-type 0.004 0.003 0.004 0.0020.009 1.3

Table 5.1 – Résultats de validation croisée 10-fold

5.3 Analyse de sensibilité

5.3.1 Indice de Sobol

L'analyse de sensibilité utilise les indices Sobol :

$$S_i = \frac{\mathbb{V}[\mathbb{E}[Y|X_i]]}{\mathbb{V}[Y]}, \quad S_{T_i} = 1 - \frac{\mathbb{V}[\mathbb{E}[Y|X_{-i}]]}{\mathbb{V}[Y]}$$

$$(5.3)$$

Figure 5.1 – Analyse de sensibilité par indices de Sobol

5.4 Équation de performance théorique

5.4.1 Borne de Cramér-Rao

la variance d'un estimateur non biaisé est bornée par :

$$Var(\hat{\theta}) \ge \frac{1}{I(\theta)} \tag{5.4}$$

Ou $I(\theta)$ est l'information de Fisher.

5.4.2 Théorème de limite centrale

pour des variables i.i.d. avec espérance μ et variance σ^2 :

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$
 (5.5)

5.4.3 Inégalité de Bernstein

Pour des variables bornées :

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right) \leq 2\exp\left(-\frac{n\epsilon^{2}}{2\sigma^{2}+\frac{2}{3}M\epsilon}\right)$$
 (5.6)

Annexes

.1 Preuves mathématiques

.1.1 Preuve du théorème principal

 $D\acute{e}monstration$. Considérons la fonction objectif $\mathcal{L}(\theta)$. Par convexité, nous avons :

$$\mathcal{L}(\theta^*) - \mathcal{L}(\theta) \le \langle \nabla \mathcal{L}(\theta), \theta^* - \theta \rangle$$
$$\le \|\nabla \mathcal{L}(\theta)\| \cdot \|\theta^* - \theta\|$$

En utilisant l'hypothèse de Lipschitz, on obtient la borne souhaitée.

.2 Données supplémentaires

Table 2 – Données brutes des expérimentations

Exp	Param1	Param2	Param3	Résultat	Erreur	Temps
1	0.1	0.5	10	0.845	0.023	45.2
2	0.2	0.5	10	0.856	0.021	46.7
3	0.1	0.6	10	0.867	0.019	47.8
4	0.2	0.6	10	0.879	0.017	48.9
5	0.1	0.5	20	0.891	0.015	52.3
6	0.2	0.5	20	0.902	0.013	53.6
7	0.1	0.6	20	0.912	0.012	54.8
8	0.2	0.6	20	0.923	0.010	56.1
9	0.15	0.55	15	0.934	0.009	49.5
10	0.15	0.55	15	0.945	0.008	50.2

.3 Code source complémentaire

Listing 1 – Module de calculs mathématiqus avancés