Python for Data Science

Introduction to Tree Methods

Introduction to Tree Methods

Chapter 8 of Introduction to Statistical Learning By Gareth James, et al.

Let's start off with a thought experiment to give some motivation behind using a decision tree method.

Imagine that I play Tennis every Saturday and I always invite a friend to come with me.

Sometimes my friend shows up, sometimes not.

For him it depends on a variety of factors, such as: weather, temperature, humidity, wind etc..

I start keeping track of these features and whether or not he showed up to play with me.

Temperature	Outlook	Humidity	Windy	Played?
Mild	Sunny	80	No	Yes
Hot	Sunny	75	Yes	No
Hot	Overcast	77	No	Yes
Cool	Rain	70	No	Yes
Cool	Overcast	72	Yes	Yes
Mild	Sunny	77	No	No
Cool	Sunny	70	No	Yes
Mild	Rain	69	No	Yes
Mild	Sunny	65	Yes	Yes
Mild	Overcast	77	Yes	Yes
Hot	Overcast	74	No	Yes
Mild	Rain	77	Yes	No
Cool	Rain	73	Yes	No
Mild	Rain	78	No	Yes

I want to use this data to predict whether or not he will show up to play.

An intuitive way to do this is through a Decision Tree

In this tree we have:

- Nodes
 - Split for the value of a certain attribute
- Edges
 - Outcome of a split to next node

In this tree we have:

- Root
 - The node that performs the first split
- Leaves
 - Terminal nodes that predict the outcome

Intuition Behind Splits

Imaginary Data with 3 features (X,Y, and Z) with two possible classes.

X	Y	Z	Class
1	1	1	Α
1	1	0	Α
0	0	1	В
1	0	0	В

Splitting on Y gives us a clear separation between classes

Intuition Behind Splits

Imaginary Data with 3 features (X,Y, and Z) with two possible classes.

X	Y	Z	Class
1	1	1	A
1	1	0	Α
0	0	1	В
1	0	0	В

We could have also tried splitting on other features first:

Entropy and Information Gain are the Mathematical Methods of choosing the best split. Refer to reading assignment.

Entropy:

$$H(S) = -\sum_{i} p_{i}(S) \log_{2} p_{i}(S)$$

Information Gain:

$$IG(S, A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{S} H(S_v)$$

We could have also tried splitting on other features first:

Entropy and Information Gain are the Mathematical Methods of choosing the best split. Refer to reading assignment.

Entropy:

$$H(S) = -\sum_{i} p_i(S) \log_2 p_i(S)$$

Information Gain:

$$IG(S, A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{S} H(S_v)$$

To improve performance, we can use many trees with a random sample of features chosen as the split.

- A new random sample of features is chosen for every single tree at every single split.
- For classification, m is typically chosen to be the square root of p.

What's the point?

 Suppose there is one very strong feature in the data set. When using "bagged" trees, most of the trees will use that feature as the top split, resulting in an ensemble of similar trees that are highly correlated.

What's the point?

- Averaging highly correlated quantities does not significantly reduce variance.
- By randomly leaving out candidate features from each split,
 Random Forests "decorrelates" the trees, such that the averaging process can reduce the variance of the resulting model.

We'll start by taking a look at a small example data set of Kyphosis (a medical spine condition) patients and try to predict whether or not a corrective spine surgery was successful.

Then for your portfolio project we'll use loan data from Lending Club to predict default rates.

Decision Trees and Random Forests with Python

Thanks!

Any questions?