

Posterior Consistency for the Number of Components in a Finite Mixture

Jeffrey W. Miller and Matthew T. Harrison

Division of Applied Mathematics, Brown University

Introduction

Summary

Dirichlet process mixtures (DPMs) are not consistent for the number of components in a finite mixture. However, there is a natural alternative that is consistent and exhibits many of the attractive properties of DPMs.

Setup

- Parametric family: $\{p_{\theta}: \theta \in \Theta\}$, with $\Theta \subset \mathbb{R}^k$.
- Mixing measure: $q = \sum_{i} \pi_i \delta_{\theta_i}$, where $\theta_i \in \Theta$ and $\sum_{i} \pi_i = 1$
- Mixture density: $f_q(x) = \sum_i \pi_i p_{\theta_i}(x)$

(Note: f_q is a finite mixture when q has finite support.)

• Assume identifiability: $f_q = f_{q'} \Rightarrow q = q'$ for any q, q' with finite support.

For example, $\{p_{\theta}: \theta \in \Theta\}$ might be univariate normals with $\theta = (\mu, \sigma^2)$:

Two distributions

Data distribution (the "true" distribution)

 $X_1, X_2, \dots \stackrel{\text{\tiny IIC}}{\sim} f_{q_0}$ for some q_0 with finite support.

Model distribution

 $Q \sim \text{some prior on mixing measures } q$, (e.g. $Q \sim \mathrm{DP}(\alpha, H)$) $\beta_1, \beta_2, \ldots \stackrel{\scriptscriptstyle\mathsf{II}^{\scriptscriptstyle\mathsf{C}}}{\sim} Q$ (given Q), $X_i \sim p_{\beta_i}$ (given $Q, \beta_1, \beta_2, \ldots$) independent for $i = 1, 2, \ldots$

Q

Note that $X_1, X_2, \ldots \stackrel{\text{iid}}{\sim} f_Q$ (given Q).

Let $T_n = \#\{\beta_1, \dots, \beta_n\}$ (i.e. the number of distinct components so far).

Questions of convergence

In a DPM, $Q \sim \text{DP}(\alpha, H)$. Alternatively, we could use a MFM (see next panel). Is the posterior consistent (and at what rate of convergence)...

	DPMs	MFMs
for the density?	Yes (optimal rate)	Yes (optimal rate)
DPMs: Ghosal & van der Vaart (2001, 2007), and others. MFMs: Doob's theorem gives a.e. consistency. Kruijer et al. (2008, 2010) prove rates.		
for the mixing measure?	Yes (optimal rate)	Yes
DPMs: Nguyen (2012) MFMs: Doob's theorem gives a.e. consistency. Optimal rate?		
for the number of components?	Not consistent	Yes
DPMs: This is our contribution. MFMs: Doob's theorem gives a.e. consistency (see e.g. Nobile (1994)).		

A Consistent Alternative

A mixture of finite mixtures (MFM)

Many authors have considered the following natural alternative to DPMs. (e.g. Nobile (1994, 2007), Richardson & Green (1997, 2001), Stephens (2000), etc.)

Instead of $Q \sim \mathrm{DP}(\alpha, H)$, choose Q as follows:

MFM model

 $S \sim p(s)$, a p.m.f. on $\{1, 2, ...\}$ $\pi \sim \text{Dirichlet}(\gamma_{s1}, \dots, \gamma_{ss}) \text{ (given } S = s)$ $\theta_1,\ldots,\theta_s \stackrel{\text{\tiny IIG}}{\sim} H \text{ (given } S=s)$ $Q = \sum_{i=1}^{S} \pi_i \, \delta_{\theta_i}$

For convenience, we suggest $p(s) = \text{Poisson}(s - 1 \mid \lambda)$ and $\gamma_{ij} = \gamma > 0 \ \forall i, j$.

Exchangeable partition probability function (EPPF)

This yields an EPPF of Gibbs form (as in Gnedin and Pitman, 2005).

EPPF (DPM vs MFM) (... with $\alpha = 1$ and $\gamma = 1$ for simplicity)

If C is a partition of $\{1, \ldots, n\}$ into t parts, then

$$P_{ ext{\tiny DPM}}(\mathcal{C}) = rac{1}{n!} \prod_{c \in \mathcal{C}} (|c|-1)!$$

$$P_{\text{\tiny MFM}}(\mathcal{C}) = \kappa(n,t) \prod_{c \in \mathcal{C}} |c|!$$

where
$$\kappa(n,t) = \mathbb{E}(S_{(t)}/S^{(n)})$$
.

- Here, $s_{(t)} = s(s-1)\cdots(s-t+1)$ and $s^{(n)} = s(s+1)\cdots(s+n-1)$.
- The numbers $\kappa(n, t)$ can be efficiently precomputed.

Restaurant process and Gibbs sampling

This leads to a simple "restaurant process" closely resembling the CRP:

Restaurant process (DPM vs MFM)

The first customer sits at a table. (At this point, $C = \{\{1\}\}$.)

The n^{th} customer sits...

at table $c \in \mathcal{C}$ with probability \propto $(|c|+1)\kappa(n,t)$ or at a new table with probability \propto $\kappa(n,t+1)$

where $t = |\mathcal{C}|$ is the number of occupied tables so far.

Consequently, Gibbs sampling for MFMs and DPMs is nearly identical.

Stick-breaking construction for MFMs

When $\gamma = 1$, the marginal distribution of π is beautifully simple:

Start with a stick of unit length.

Break off i.i.d. Exponential(λ) pieces until you run out of stick.

Note that this corresponds to a Poisson process on the unit interval.

Empirical Results

Toy example #1: One normal component

Prior (x) and estimated posterior (o) of the number of clusters, T_n

Data: $\mathcal{N}(0,1)$. Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.

Toy example #2: Five normal components

Prior (x) and estimated posterior (o) of the number of clusters, T_n

Data: $\sum_{k=0}^{\infty} \frac{1}{5} \mathcal{N}(4k, \frac{1}{2})$. Each plot is the average over 5 datasets. Burn-in: 10,000 sweeps, Sample: 100,000 sweeps.

Typical cluster assignments for Example #1

Empirically, DPMs like to have several tiny clusters in addition to the "dominant" ones, while MFMs prefer only dominant clusters.

Data: $\mathcal{N}(0,1)$. (For visualization purposes, the datapoints have been vertically jittered.)

Theoretical Results

Inconsistency results

Theorem (Exponential families)

- . $\{p_{\theta}: \theta \in \Theta\}$ is an exponential family,
 - 2. the base measure H is a conjugate prior, and
- 3. the concentration parameter $\alpha > 0$ is any fixed value,

then for any "true" mixing measure q_0 with finite support, the DPM posterior on the number of clusters T_n is not consistent (that is, it does not converge to the true number of components).

Consider a "standard normal DPM": $p_{\theta}(x) = \mathcal{N}(x \mid \theta, 1)$ and H is $\mathcal{N}(0, 1)$.

Theorem (Prior on the concentration parameter)

For a standard normal DPM, this inconsistency remains when the concentration parameter α is given a Gamma prior.

The wrong intuition

It is tempting to think that the prior on T_n is the culprit, since $P_{\text{DPM}}(T_n = t) \sim \text{Poisson}(t-1|\alpha \log n)$ as $n \to \infty$.

However, this is not the fundamental reason why inconsistency occurs. Even if we replace the prior on T_n by something that is not diverging, inconsistency remains!

- For each n = 1, 2, ... let $p_n(t)$ be a p.m.f. on $\{1, ..., n\}$.
- Define the "tilted" model: $P_{\text{TILT}}(X_{1:n}, T_n = t) = P_{\text{DPM}}(X_{1:n} \mid T_n = t) p_n(t)$.
- Call $\{p_n\}$ "non-degenerate" if for all $t=1,2,\ldots$, $\liminf_{n\to\infty}p_n(t)>0$.

Theorem (Tilted models)

For any non-degenerate sequence p_n , under the tilted model P_{TILT} based on the standard normal DPM, the posterior of T_n is not consistent.

The right intuition

Let K_i be the size of cluster i.

$$P_{\mathsf{DPM}}(K = k | T_n = t) \propto k_1^{-1} \cdots k_t^{-1}$$
 $P_{\mathsf{DPM}}(K_1 = k_1 | T_n = 2)$

DPMs heavily favor having many small clusters.

MFMs put negligible mass on such partitions.