ت/تر/ريا	الشعبة: ع	
سيف الدب	حمع و اعداد الأستاذ . مده ر	

سلسلة التمارين في مادة العلوم الفيزيانية

المستوى : سنة ثالثة ثانوي المستوى : سنه ثالثة ثانوي الوحدة 2_3 : تطور جملة ميكانيكية – دراسة حركة القذيفة

<u>التمرين (1) : __</u>

رمة (العا	<i>*</i>		
مجموع	مجزأة	عناصر الإجابة		
		ط):	رين : (06 نقا	التم
		$\sum \vec{F} = m \cdot \overrightarrow{a_G}$ $P = m_S \cdot \overrightarrow{a_G}$ $O(X, OY)$ بالاسقاط على المحورين $0 = m_S \cdot a_x = 0$ $P = m_S \cdot a_y = -g$	أ ـ دراسة طبيعة الحركة	
	0,25	(OX) مستقيمة منتظمة الحركة على OY) مستقيمة متغيرة بانتظام	الحركة على (=
	0,25 0,25	$a_x = rac{dv_x}{dt} = 0.$ الشروط $a_y = rac{dv_y}{dt} = -g.$ بالتكامل $v_{x(t)} = C_1$ بالتكامل $v_{y(t)} = -g.t + C_2$ $v_{y(t)} = -g.t + C_2$ $v_{y(t)} = -g.t + C_3$ $v_{y(t)} = -g.t + C_4$ $v_{y(t)} = -g.t + C_5$	ب ـ المعادلات الزمنية للسرعة	1
3,5	0,25 0,25	$v_{x_{(t)}} = V_0. Cos(\alpha)$ بالتكامل $x_{(t)} = V_0. Cos(\alpha).t + C_3$ $v_{y_{(t)}} = -g.t + V_0. Sin(\alpha)$ $y_{(t)} = -\frac{1}{2}g.t^2 + V_0. Sin$	$(\alpha).t + C_4.$	
3,3	0,25 0,25	$x_{(0)} = V_0. Cos(\alpha). (0) + C_3 = >$ $C_3 = x_{(0)} = 0.$ $y_{(0)} = -\frac{1}{2}g. (0)^2 + V_0. Sin(\alpha). (0) + C_4 = > C_4 = y_{(0)} = h_0.$	t=0	-
	0,25 0,25	$y(t) = \frac{y(t)}{2} y(t) + y(t) \sin(\alpha t) + i \cos(\alpha t)$	المعادلات الز للموضع	
	0,25	$x_{(t)} = V_0. Cos(lpha). t$ $t = rac{x_{(t)}}{V_0. Cos(lpha)}.$ $y_{(t)}$	-,,	1
	0,25	$y_{(t)} = -\frac{1}{2}g.\left(\frac{x_{(t)}}{V_0.Cos(\alpha)}\right)^2 + V_0.Sin(\alpha).\left(\frac{x_{(t)}}{V_0.Cos(\alpha)}\right) + h_0.$	معادلة المسار	
	0,25	$y_{(t)} = \frac{-g.x_{(t)}^2}{2.V_0^2.Cos^2(\alpha)} + Tan(\alpha).x_{(t)} + h_0$		-
	0,25	معادلة المسار من الشكل $y=ax^2+bx+c$ و هي معادلة قطع مكافئ إذن مساد الكرة عدارة عن قطء مكافئ	طبيعة المسار	
	0,25	$\frac{g.x_{(t)}^{2}}{2.V_{0}^{2}.Cos^{2}(\alpha)} = Tan(\alpha).x_{(t)} + h_{0} - y_{(t)}.$ $V_{0}^{2} = \frac{g.x_{(t)}^{2}}{2.Cos^{2}(\alpha) \times (Tan(\alpha).x_{(t)} + h_{0} - y_{(t)})}.$ $V_{0}^{2} = 74$ $V_{0} = \sqrt{74}$	أ ـ السرعة	
	0,25	$V_0^2 = \frac{10.(6,2)^2}{2.\cos^2(37) \times (Tan(37).6,2+2,4-3)}.$ $V_0 = 8,6 \text{ m/s}$	V_0	
1,75	0,25	$x_S = V_0.Cos(\alpha).t_S$ $t_S = \frac{x_S}{V_0.Cos(\alpha)} = \frac{6.2}{8.6.Cos(37)} = t_S = 0.9 s.$	ب ـ المدة الزمنية	2
	0,25	$v_{x_S} = V_0. \cos(\alpha) = 8.6. \cos(37) = 6.87 \text{ m/s}$		
	0,25	$v_{y_S} = -g. t_S + V_0. Sin(\alpha) = (-10 \times 0.9) + 8.6. Sin(37)$ $v_{y_S} = -3.82 \text{ m/s}$	ج ـ سرعة الكرة	
	0,25	$v_S = \sqrt{v_{x_S}^2 + v_{y_S}^2} = \sqrt{(6.87)^2 + (-3.82)^2} = \frac{7.86 \text{ m/s}}{1.00000000000000000000000000000000000$		

الشعبة: ع ت / تر / ريا	سلسلة التمارين في مادة العلوم الفيزيائية	المستوى : سنة ثالثة ثانوي
جمع وإعداد الأستاذ: مدور سيف الدين	دراسة حركة القذيفة	الوحدة 2_2: تطور جملة ميكانيكية _

	0,25	$Tan(\beta) = \frac{ v_{y_S} }{v_{x_S}} = \frac{ -3.82 }{6.87} = 0.556.$ $\beta = Tan^{-1}(0.556) = \beta = 29^{\circ}$	الزاوية β	
		لمعرفة امكانية تسجيل الهدف نحسب ارتفاع الكرة في النقطة التي يقف فيها اللاعب (B) وذلك بتعويض فاصلتها $x_D=1\ m$ في معادلة المسار		
0,75	0,25 0,25	$y_D = \frac{-g.x_D^2}{2.V_0^2.\cos^2(\alpha)} + Tan(\alpha).x_D + h_0.$ $y_D = \frac{-10.1^2}{2.8,6^2.\cos^2(37)} + Tan(37).1 + 2,4.$ $y_D = 3 m$		3
	0,25	الهدف لا يسجل لأن ارتفاع الكرة أقل من قفزة اللاعب		

التمرين (2) : ـ

ثانوية : المجاهد قندوز علي ، سيدي خويلد – ورقلة

		:(رين : (07 نقاط)	التم
			,	Ι
0,25	0,25	$ \begin{array}{c c} \mathbf{v_0} & \mathbf{x} \\ \mathbf{v_0} & \mathbf{v} \\ \vec{P} = m\vec{a} \end{array} $	التمثيل	1
	0,25 0,25 0,25 0,25	بالإسقاط على المحورين: \vec{p} $0 = ma_x => a_x = 0$ $P = ma_y => a_y = g$ الحركة وفق (ox) مستقيمة منتظمة (oy) مستقيمة متسار عة بانتظام	دراسة طبيعة الحركة	
3,5		$a_x = rac{dv_x}{dt} = 0.$ $a_y = rac{dv_y}{dt} = g.$ $v_{x(t)} = C_1$ $t = 0$ $v_{y(t)} = g \cdot t + C_2$ $t = 0$ $v_{x(0)} = C_1 = > C_1 = v_0$ $v_{y(0)} = C_2 = 0$ $v_{x(t)} = v_0$ $v_{y(t)} = g \cdot t$	المعادلتين الزمنيتين للسرعة	2
	0,25 0,25 0,25 0,25	$v_{x(t)} = \frac{dx}{dt} = v_0$	المعادلتين الزمنيتين للموضع	
	0,5	$t = \frac{x_{(t)}}{V_0} y_{(t)} = \frac{1}{2} \cdot g \cdot (\frac{x_{(t)}}{V_0})^2. \qquad y_{(t)} = \frac{g \cdot x_{(t)}^2}{2 \cdot V_0^2}.$	معادلة المسار	
	0,25 0,25	$\begin{vmatrix} V_0 = 120 \ km/h \\ V_0 = 33,33 \ m/s \end{vmatrix} t = \frac{x_{(t)}}{V_0} = \frac{12}{33,33} = > t = 0,36 \ s$	اللحظة	
1	0,25	$y_{(t)} = \frac{1}{2} \cdot g \cdot t^2$ $y_{(t)} = \frac{1}{2} \cdot 10 \cdot (0.36)^2 = y_{(t)} = 0.648 m.$	الأرتفاع	3
	0,25	$h = y_0 - y_{(t)} = 2 - 0.648 = $		
1		$v = \sqrt{v_x^2 + v_y^2}$. $v_y = g \cdot t = 10 \times 0.36 = 3.6 \text{ m/s}$ $v_x = 33.33 \text{ m/s}$ $v = \sqrt{33.33^2 + 3.6^2} = 33.52 \text{ m/s}$.	السرعة	4

الصفحة : 2 / 4

1	ت / تر / ریا	لشعبة: ع	3)	وي سلسلة التمارين في مادة العلوم الفيزيانية	مستوى : سنة ثالثة ثانر	اله
(ة 2_2 : تطور جملة ميكانيكية _ دراسة حركة القذيفة جمع وإعداد الأستاذ : مدور سيف الدين			وحدة 2_2 : تطور جما	الو	
		0,25 0,25	$\cos(\beta) = \frac{v_x}{v_0}.$	$\beta = \cos(\frac{33,33}{33,52})^{-1} = > \beta = 6,1^{\circ}.$	الزاوية	
		0,25 0,25	$y_{(t)} = \frac{g \cdot x_{(t)}^2}{2 \cdot V_0^2}.$	$x_{(t)} = \sqrt{\frac{2 \cdot V_0^2 \cdot y_{(t)}}{g}} = \sqrt{\frac{2 \times 33,33^2 \times 2}{10}} = 21 m.$		

1,25 $y_{(t)} = \frac{12x_{(t)}}{2x_{(t)}}$ $y_{(t)} = \frac{12x_{(t)}}{2x_{(t)}}$

التمرين (3): ـ

دمة	العلا	7.1 80 1:-		
مجموع	مجزأة	عناصر الإجابة		
		:	رين: (06 نقاط)	التم
0.75	0.25 0.25 0.25	بتطبیق القانون الثانی لنیوتن $\vec{F}_{ext} = \text{m.} \vec{a}$ ای $\vec{P} = \text{m.} \vec{a}$ و بالاسقاط علی OX نجد $a_{x} = 0$ ای حرکة مستقیمة منتظمة و بالاسقاط علی $a_{Y} = -g$ ای حرکة مستقیمة متغیرة بانتظام و بالاسقاط علی $a_{Y} = -g$ نجد $a_{Y} = -g$ ای خرکة مستقیمة متغیرة بانتظام (متباطئة فی الصعود و متسارعة فی النزول)	استنتاج طبيعة الحركة وفق محوري الدراسة	1
1.50	0.25 0.25 0.5 0.5	$a_{Y}=-g$ نگامل فنجد $a_{Y}=-g$ $a_{x}=0$ $v_{y}(t)=-gt+v_{0}\sin{(\alpha)}$ نجد $v_{y}(t)=-\frac{1}{2}gt^{2}+v_{0}\sin{(\alpha)}t+h_{0}$ $X(t)=v_{0}\cos{(\alpha)}t$ بالتکامل $V_{y}(t)=-\frac{1}{2}gt^{2}+v_{0}\sin{(\alpha)}t+h_{0}$	المعادلتين الز منيتين للحركة	2
1.25	0.25	$t=rac{X}{v_0\cos{(lpha)}}$ نجد $\mathbf{X}(t)$ نجد $\mathbf{Y}(t)$ فنجد $\mathbf{Y}(t)$ فنجد $\mathbf{Y}(t)$ فنجد $\mathbf{Y}(t)$ فنجد $\mathbf{Y}(t)$ أن منافع المعادلة الزمنية للموضع $\mathbf{Y}(t)$ فنجد $\mathbf{Y}(t)$ أن منافع المعادلة الزمنية للموضع $\mathbf{Y}(t)$ فنجد $\mathbf{Y}(t)$	معادلة المسار	3
1.25	0.25 0.25 0.25 0.25 0.25	$v_0=13.6~\mathrm{m.s^{-1}}$ السرعة الابتدائية $v_0=13.6~\mathrm{m.s^{-1}}$ السرعة الكرة بالذروة و هي توافق لحظة وصول سرعة الكرة $t_p=0.4~\mathrm{s}$ لادنى قيمة لها و هي بيانيا اللحظة α بيانيا اللحظة α تأ زاوية القذف الابتدائية α لدينا عند الذروة تكون $v_y(t_p)=0~\mathrm{m.s^{-1}}$ ومنه $v_y(t_p)=v_y(t)=-g~t_p+v_0~\sin(\alpha)=0$ $\sin(\alpha)=\frac{g~t_p}{v_0}=\frac{10\times0.4}{13.6}=0.29$ ومنه $v_0~\sin(\alpha)=g~t_p$ ومنه $a=17.1^\circ$	من بيان الشكل(4)	4
0.50	0.25 0.25	$Y(t_p)$ نعوض بقيمة t_p في المعادلة الزمنية للموضع $Y(t_p) = -\frac{1}{2} \operatorname{g} t_p^2 + \operatorname{v_0sin}(\alpha) t_p + \operatorname{h_0}$ $Y(0,4 s) = -\frac{1}{2} \operatorname{10.}(0,4)^2 + \operatorname{13.6.sin}(17.10^\circ).0,4 + 1.1 = 1.9 \ \mathrm{m}$	اقصى ارتفاع تبلغه الكرية	5

ت / تر / ريا سيف الدين	•	- ثانوي سلسلة التمارين في مادة العلوم الفيزيائية المسلمة التمارين في مادة العلوم الفيزيائية جمع وإعداد الأست	ستوى : سنة ثالثة عدة 2 3 : تطور	
0.75	0.25 0.25 0.25	Y(9m)=1.49m	هل يتمكن اللاعب من تسجيل الهدف بهذه القذفة؟	6
0.73	0.23	انلاحظ انY(9m)= 1.49m < 2,44 m ومنه تم تسجيل الهدف.	(1)	w 94
(مة	العلا	, , , , , , , , , , , , , , , , , , ,	مرين (4) : –	الند ا
مجموع	مجزأة	عناصر الإجابة		
		<u>'</u> : (4	رين : (06 نقا	التم
		$P = m_S \cdot a_G'$ بالاسقاط على المحورين $P = m_S \cdot a_y = -g$ بالاسقامة منتظمة الحركة على (OX) مستقدمة منتظمة الحركة على الحركة على (OX)	أ ـ دراسة طبيعة الحركة الحركة على (
		$a_{x} = \frac{dv_{x}}{dt} = 0.$ الأبتدائية $v_{x(t)} = C_{1}$ بالتكامل $v_{y(t)} = -g.t + C_{2}$ $v_{y(t)} = -g.t + C_{2}$ $v_{x(0)} = C_{1} = 0$	ب ـ المعادلات الزمنية للسرعة	2
		$v_{y_{(0)}} = V_0.Cos(\alpha)$ $v_{x_{(t)}} = V_0.Cos(\alpha)$ $v_{y_{(t)}} = -g.t + V_0.Sin(\alpha)$ $v_{y_{(t)}} = V_0.Cos(\alpha)$ $v_{y_{(t)}} = -g.t + V_0.Sin(\alpha)$ $v_{y_{(t)}} = -\frac{1}{2}g.t^2 + V_0.Sin(\alpha)$	$(\alpha).t + C_4.$	·
		$\begin{vmatrix} x_{(0)} = V_0. \cos(\alpha). & (0) + C_3 = 0 \\ y_{(0)} = -\frac{1}{2}g. & (0)^2 + V_0. \sin(\alpha). & (0) + C_4 = 0 \\ 0 = 0. & (0) = 0. \end{aligned}$	الابتدائية $t=0$	
		$egin{aligned} y_{(t)} &= -rac{1}{2}g.t^2 + V_0.Sin(lpha) + h_0. & x_{(t)} &= V_0.Cos(lpha).t \ x_{(t)} &= V_0.Cos(lpha).t \ t &= rac{x_{(t)}}{V_0.Cos(lpha)}. & y_{(t)} \ y_{(t)} &= -rac{1}{2}g.\left(rac{x_{(t)}}{V_0.Cos(lpha)} ight)^2 + V_0.Sin(lpha).\left(rac{x_{(t)}}{V_0.Cos(lpha)} ight) + h_0. \end{aligned}$	المعادلات الزر للموضع معادلة المسار	2
		$y_{(t)} = \frac{-g.x_{(t)}^2}{2.V_0^2.Cos^2(\alpha)} + Tan(\alpha).x_{(t)} + h_0$		
		(2) is an -0 is all the limit		II
		عند أقصى ارتفاع (الذروة) $v_{y_S} = 0$ من الشكل (2):	اللحظة الزمنية t_S	1
		$v_x = \frac{x}{t} = \frac{(4,8\times4)}{(0,27\times4)} = 17,77 \text{ m/s}.$ $v_x = v_{x_{(0)}} = \frac{17,77 \text{ m/s}}{1}.$	$v_{x_{(0)}}$	2
		$OP = xp = 4.8 \times 4 = 19.2 m$ (4) من الشكل	OP	

ثانوية : المجاهد قندوز علي ، سيدي خويلد – ورقلة

الشعبة: ع ت / تر / ريا
جمع وإعداد الأستاذ: مدور سيف الدين

سلسلة التمارين في مادة العلوم الفيزيائية

المستوى: سنة ثالثة ثانوي

الوحدة 2 3: تطور جملة ميكانيكية - دراسة حركة القذيفة

	ر جملة ميكانيكية ــ دراسة خركة العديقة		
	$v_S = v_{x(S)} = v_{x(0)}$ هذا يعني $v_{y_S} = 0$ هذا يعني (3) ولدينا في الذروة $E_{C(S)} = \frac{1}{2}.m.v_{x(S)}^2, \begin{cases} 1 \ Cm => 4J \\ 0.75 \ Cm => x \end{cases}, x = \frac{0.75 \times 4}{1} = 3J.$ $E_{C(S)} = 68 + 3 = 71J$ $m = \frac{2.E_{C(S)}}{v_{x(S)}^2} = \frac{2 \times 71}{(17.77)^2} => m = 0.45 \ Kg.$	m	
	$E_{C(0)} = \frac{1}{2} \cdot m \cdot v_0^2 = v_0^2 = \frac{2 \cdot E_{C(0)}}{m} = \frac{2 \times 72}{0.45} = 320.$ $v_0 = \sqrt{320} = v_0 = 17.9 \text{ m/s}$	v_0	2
	$\begin{aligned} v_{x_{(0)}} &= v_0. \cos(\alpha) \\ \alpha &= \cos^{-1}\left(\frac{v_{x_{(0)}}}{v_0}\right) = \cos^{-1}\left(\frac{17,77}{17,9}\right) = > \alpha = 6,9^{\circ}. \end{aligned}$	α	
	$t=0 \Rightarrow v_{y_{(0)}} = v_0.Sin(\alpha) = 17.9 \times Sin(6.9) = 2.15 \text{ m/s}$ 1 Cm = > 2.15 m/s	السلم	
	$\begin{aligned} v_{y_S} &= -gt_S + v_0.Sin(\alpha) = 0\\ g &= \frac{v_0.Sin(\alpha)}{t_S} = \frac{2.15}{0.216} = 9.95 \approx \frac{10 \ m/s^2}{0.216}. \end{aligned}$	g	3
	من الشكل (4) نسقط بعد الشبكة $L=12~m$ نجد $t=2.5~Cm imes 0.27={0.675~s}$	اللحظة	
	$y_{(t)} = -\frac{1}{2}g.t^{2} + V_{0}.Sin(\alpha) + h_{0}$ $y_{(t)} = -(0,5.10.0,675^{2}) + (17,9.Sin(6,9)) + 3,5.$ $y_{(t)} = 3,37 m$	$y_{(t)}$	4
	$xp = 4.8 \times 4 = 19.2 m$ عن الشكل (4) نجد : $19.2 m < (12 + 9) = 21 m$	$x_{(p)}$ طريقة 1	
	$y_{(p)} = \frac{-g.x_{(p)}^2}{2.V_0^2.cos^2(\alpha)} + Tan(\alpha).x_{(p)} + h_0 : $ $0 = \frac{-10.x_{(p)}^2}{2.17,9^2.cos^2(6,9)} + Tan(6,9).x_{(p)} + 3,5.$ $0 = -0,015.x_{(p)}^2 + 0,12.x_{(p)} + 3,5$ $0,0158.x_{(p)}^2 - 0,121.x_{(p)} - 3,5 = 0$ $\Delta = b - 4.a.c = (0,121)^2 - 4(0,0158 \times (-3,5)) = 0,2358$ $x_p = \frac{-b + \sqrt{\Delta}}{2.a} = \frac{-(-0.121) + \sqrt{0.2358}}{2 \times 0.0158} = 19,2 \text{ m}$ $19,2 \text{ m} < (12 + 9) = 21 \text{ m}$	طريقة 2	5