Coursework 3

COMP2721 Algorithms and Data Structures II sample solutions

1. In the table we give the sets V(i,k) for $1 \le i \le k \le 7$ for the input string ababbab. For k > i the index at variable $X \in V(i,k)$ is a string made from all the values of j such that $X \to YZ$ is a production of the grammar, $Y \in V(i,j)$ and $Z \in V(j+1,k)$.

	k = 1	k=2	k=3	k=4	k=5	k = 6	k = 7
i = 1	$\{A,C\}$	$\{S_1,C_1\}$	$\{B_2\}$	$\{B_{12}\}$	Ø	$\{A_{34}\}$	$\{S_{1346}, C_{16}\}$
i = 2		{ <i>B</i> }	$\{S_2,A_2\}$	$\{S_{23}, C_3\}$	Ø	Ø	$\{B_4\}$
i = 3			$\{A,C\}$	$\{S_3,C_3\}$	Ø	Ø	$\{B_{34}\}$
i = 4				$\{B\}$	Ø	$\{A_4\}$	$\{S_{46}, C_6\}$
i=5					{ <i>B</i> }	$\{S_5,A_5\}$	$\{S_{56}, C_6\}$
i = 6						$\{A,C\}$	$\{S_6, C_6\}$
i = 7							<i>{B}</i>

The j-values allow us to construct the following parse trees. Only one of them was required. For j=1 and j=3 on the top level:

For j = 4 on the top level:

For j=6 on the top level:

2. We choose an arbitrary vertex $r \in V$ as root of T = (V, E). For each verex $x \in V$ let V(x) denote the set of all vertices $y \in V$ such that x is on the path from y to r in T. Especially we have $x \in V(x)$. Furthermore, let T(x) be the subtree of T induced by V(x).

For all $x \in V$ let

- m(x) denote the maximum weight of a matching of T(x),
- s(x) denote the maximum weight of a matching of T(x) that saturates x, and
- u(x) denote the maximum weight of a matching of T(x) that leaves x unsaturated.

The *children* of x are the vertices in the set $C(x) = N(x) \cap V(x)$. For the root r all neighbours are children. For all other vertices x there is a parent vertex in $N(x) \setminus V(x)$ which is not a child of x.

We have the following recurrences

$$s(x) = \begin{cases} \max_{y \in C(x)} \left(w(xy) + u(y) + \sum_{z \in C(x) \setminus \{y\}} m(z) \right) & \text{if } C(x) \neq \varnothing \\ -\infty & \text{if } C(x) = \varnothing \end{cases}$$

$$u(x) = \begin{cases} \sum_{y \in C(x)} m(y) & \text{if } C(x) \neq \varnothing \\ 0 & \text{if } C(x) \neq \varnothing \end{cases}$$

$$m(x) = \max\{s(x), u(x)\}$$

To see these we first observe that $C(x) = \emptyset$ if and only if x is a leaf of T. In this case T(x) has only one matching, namely \emptyset , which leaves x unsaturated. So u(x) = 0 and, striktly speaking, s(x) is undefined; we set $s(x) = -\infty$ instead. If $C(x) \neq \emptyset$ then every matching of T(x) that leaves x unsaturated partitions into matchings in the subtrees T(y) rooted at the children y of x. If x is saturated, then x is matched to a child y. So y cannot be matched to a vertex in V(y). For all other children $z \neq y$ of x it does not matter whether z is saturated. If so, it is matched to one of its children. Finally, the line for m(x) is obvious.

The maximum weight of a matching in T is m(r).

The recurrence can be converted into a dynamic programming algorithm. Therefore we first run BFS starting from the root vertex r, and then compute s(x), u(x) and m(x) in reverse order. That is, if |V|=n then we start with the vertex x with $\sigma(x)=n$ down to the root with $\sigma(r)=1$. Note that the cases for $C(x)=\varnothing$ are not special if we set, for any parameter $t:V\to\mathbb{N}$, the values $\max_{y\in\varnothing}t(y)=-\infty$ and $\sum_{y\in\varnothing}t(y)=0$.