Abstract Algebra (MATH6302), Fall 2024 Homework Assignment 2

Joel Sleeba

September 11, 2024

- 1. **Solution:** Consider $\mathcal{A} = \{\{1,2,3\},\{2,5\}\} \cup \{\{x\}, x \in \mathbb{Z}\}$. We define a relation on \mathbb{Z} where we claim $x \sim y$ if there exists $A \in \mathcal{A}$ such that $x, y \in A$. We claim this is reflexive and symmetric but not transitive.
 - (Reflexivity) Let $a \in \mathbb{Z}$. Then since $\{a\} \in \mathcal{A}$, we get $a \sim a$ and we are done.
 - (Symmetry) Let $x \sim y$. Then there exists some $A \in \mathcal{A}$ with $x, y \in A$. This implies $y, x \in A$ and we get $y \sim x$.
 - (Not Transitive) $1 \sim 2$ since $\{1, 2, 3\} \in \mathcal{A}$ and $2 \sim 5$ since $\{2, 5\} \in \mathcal{A}$. But $1 \not\sim 5$ since there are no elements in \mathcal{A} containing 1 and 5.
- 2. **Solution:** We will show that the relation defined is reflexive, symmetric and transitive.
 - (Reflexivity) $(a,b) \sim (a,b)$ since ab ba = 0 for all $a,b \in \mathbb{Z}$.
 - (Symmetry) Let $(a, b) \sim (c, d)$. Then ad bc = 0, by the definition of the relation \sim . This implies cb da = 0 by the commutativity of addition of multiplication in \mathbb{Z} , which is equivalent to $(c, d) \sim (a, b)$.
 - (Transitivity) Let $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$ where $b,d,f \neq 0$. Then ad - bc = 0 and cf - de = 0. Since $d \neq 0$ by assumption, adf = bcf = bed implies af = be which gives $(a,b) \sim (e,f)$.

3. Solution:

- (a) Cyclic. $C_2 \times C_5 \cong C_{10}$. (1, 1) generates the whole group.
- (b) Not cyclic. Assume it is with generator (a, b). Now since we know that $a, b \in C_4$, we get $a^4 = b^4 = 0$ (identity element of C_4). This gives that $(a, b)^4 = (0, 0)$, the identity element of $C_4 \times C_4$. Because our choice of (a, b) was arbitrary, this gives that the order of every element is at most 4. Since $C_4 \times C_4$ has 16 elements, this contradicts our assumption that it is cyclic.
- (c) Cyclic. $\forall n \in \mathbb{N}, n = \underbrace{1+1+\cdots+1}_{n \text{ times}}$. So, 1 generates the group
- (d) Not cyclic. Assume $a \in \mathbb{Q}$ be a positive rational number and consider $\langle a \rangle$, the subgroup generated by a which is precisely $\{na : n \in \mathbb{Z}\}$. Now a/2 is again a rational but $a/2 \notin \langle a \rangle$. Hence \mathbb{Q} is not cyclic.
- (e) Not cyclic. Assume it is and suppose that $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ is the generator. Then $(k_1 a, k_2 b) \notin \langle (a, b) \rangle$ if $(k_1, k_2) = 1$
- (f) Cyclic. Since $18=2\times 3^2$, by the primitive root theorem we get that Z_{18}^* is cyclic.
- (g) Not cyclic. Since $36 = 4 \times 3^2$, by the primitive root theorem we get that it is not cyclic.
- (h) Not cyclic. Since $A\Delta A = \emptyset$ for all set A, unless $\mathcal{P}(S)$ contains only two elements, it won't be cyclic. But |P(S)| = 2 if and only if |S| = 1.
- 4. **Solution:** $\mathcal{P}(\{1,2\}) = \{\Phi, \{1\}, \{2\}, \{1,2\}\}\}$. Moreover from last assignment, we see that $(\mathcal{P}(\{1,2\}), \Delta)$ is a group. Since it has 4 elements, are there are only two distinct groups of order 4 upto isomorphism (namely the cyclic group of order 4, and the Klein 4 group), $(\mathcal{P}(\{1,2\}), \Delta)$ must be isomorphic to either one of them.

It is clear that the identity element of this group must be Φ , since $A\Delta\Phi = A$ for all subgroup A of $\{1,2\}$. Moreover we see that $A\Delta A = (A\cup A)\setminus (A\cup A) = A\setminus A = \Phi$. Hence every element in the group $(\mathcal{P}(\{1,2\}), \Delta)$ is its own inverse. Since we know this is a property of the Klein 4 group, we get that $(\mathcal{P}(\{1,2\}), \Delta)$ is isomorphic to V_4 , the Klein group of order 4.

- 5. **Solution:** Recall that if G_1, G_2, \ldots, G_n are groups, then their direct product $\mathcal{G} = G_1 \times G_2 \times \cdots \times G_n$ is a group under the operation $(a_1, a_2, \ldots, a_n)(b_1, b_2, \ldots, b_n) = (a_1b_1, a_2b_2, \ldots, a_nb_n)$ with identity element (e_1, e_2, \ldots, e_n) where each e_j is the identity element in G_j .
 - (\Longrightarrow) Assume that \mathcal{G} is an Abelian group. Let $1 \leq i \leq n$, we will show that G_i is Abelian. Let $g, h \in G_i$. Consider the corresponding elements $\tilde{g} = (e_1, e_2, \ldots, e_{i-1}, g, e_{i+1}, \ldots, e_n)$ and $\tilde{h} = (e_1, e_2, \ldots, e_{i-1}, h, e_{i+1}, \ldots, e_n)$ in \mathcal{G} . Since we know that \mathcal{G} is Abelian, we get $\tilde{g}\tilde{h} = \tilde{h}\tilde{g}$. This by the definition of multiplication implies

$$(e_1, e_2, \dots, e_{i-1}, gh, e_{i+1}, \dots, e_n) = (e_1, e_2, \dots, e_{i-1}, hg, e_{i+1}, \dots, e_n)$$

which implies gh = hg. Now since $g, h \in G_i$ was arbitrary and $1 \le i \le n$ was arbitrary, we get that G_i is Abelian for all $1 \le i \le n$.

(\iff) Conversely, if each G_i is Abelian, then for $\tilde{g} = (g_1, g_2, \ldots, g_n), \tilde{h} = (h_1, h_2, \ldots, h_n) \in \mathcal{G}$,

$$\tilde{g}\tilde{h} = (g_1h_1, g_2h_2, \dots, g_nh_n)$$

$$= (h_1g_1, h_2g_2, \dots h_ng_n)$$

$$= \tilde{h}\tilde{q}$$

which shows \mathcal{G} is Abelian.

- 6. **Solution:** We will show that the relation is reflexive, symmetric, and transitive.
 - (Reflexivity) Let $g \in C_n$, then $g^{-1}g = e \in H$ since $e \in H$.
 - (Symmetry) Let $g \sim h$. Then $g^{-1}h \in H$. Since H is a subgroup, $(g^{-1}h)^{-1} = h^{-1}q \in H$ which implies $h \sim q$.
 - (Transitivity) Let $f \sim g$ and $g \sim h$. Then $f^{-1}g, g^{-1}h \in H$ and $f^{-1}h = f^{-1}(gg^{-1})h = (f^{-1}g)(g^{-1}h) \in H$. Hence $f \sim h$.

7. Solution:

(a) We know that an $x \in \mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$ is in \mathbb{Z}_n^* if and only if there exists an $y \in \mathbb{Z}_n$ with $xy \equiv 1 \mod n$, which is equivalent to $\gcd(x,n) = 1$. Hence

$$\mathbb{Z}_n^* = \{ x \in \mathbb{Z}_n : \gcd(x, n) = 1 \}$$

Then by the definition of Euler-totient function, we get that the cardinality of \mathbb{Z}_n^* is $\phi(n)$. Specifically for this question, it would be $\phi(900)$. Since $900 = 2^2 3^2 5^2$, we get that $\phi(900) = 2(2-1)3(3-1)5(5-1) = 240$. Hence |G| = 240

(b) Since gcd(11,900) = 1, we see that $11 \in \mathbb{Z}_{900}^*$. So $11^{-1} \in \mathbb{Z}_{900}^*$. To find 11^{-1} , we use the reverse Euclidean algorithm. We see that

$$900 = 11 \times 81 + 9$$
$$11 = 9 \times 1 + 2$$
$$9 = 2 \times 4 + 1$$

so reversing it we get

$$1 = 9 - 2 \times 4$$

$$= 9 - (11 - 9) \times 4$$

$$= 9 \times 5 - 11 \times 4$$

$$= (900 - 11 \times 81) \times 5 - 11 \times 4$$

$$= 900 \times 5 + 11 \times (-409)$$

So $11^{-1} \equiv -409 \mod 900 = 419 \mod 900$. Hence $11^{-1} = 419$ in \mathbb{Z}_{900}^* .

8. **Solution:** The equation is $5457x \equiv 3317 \mod 5885$. We find the gcd of 5885 and 5457 using the Euclidean algorithm.

$$5885 = 5457 \times 1 + 428$$

 $5457 = 428 \times 12 + 321$
 $428 = 321 \times 1 + 107$
 $321 = 107 \times 3$

Hence we see that $\gcd(5885, 5457) = 107$ and 107|3317 as $3317 = 107 \times 31$. Hence dividing the whole equation by the common denominator, we see that solving $5457x \equiv 3317 \mod 5885$ is equivalent to solving

$$51x \equiv 31 \mod 55$$

Hence we use the euclidean algorithm again,

$$55 = 51 \times 1 + 4$$

 $51 = 4 \times 12 + 3$
 $4 = 3 \times 1 + 1$
 $3 = 1 \times 3$

Reversing this gives us

$$1 = 4 - 3$$

$$= 4 - (51 - 4 \times 12)$$

$$= 4 \times 13 - 51$$

$$= (55 - 51) \times 13 - 51$$

$$= 55 \times 13 - 51 \times 14$$

$$= 55 \times 13 + 51 \times (-14)$$

So we see that $51^{-1} \equiv -14 \mod 55$ and $-14 \equiv 41 \mod 55$. Hence the primitive modulo class of 41 is the solution for the equation $51x \equiv 1 \mod 51$. So multiplying the equation $51x \equiv 31 \mod 55$ with $55^{-1} = 41$, we see that $x \equiv 31 \times 41 \mod 55 = 1271 \mod 55 = 6 \mod 55$. Hence the solution set for the original equation is $\{55n + 6 : n \in \mathbb{Z}\}$

9. Solution: Since 101, 103, 107 are coprimes to each other, chineses remainder theorem gives that there is a unique solution for x in the $Z_{101\times103\times107} = \mathbb{Z}_{1113121}$.

Now $x \equiv 43 \mod 101$ implies $x = 101k_1 + 43$. Substituting this to the next equation, we get $101k_1 + 43 \equiv 10 \mod 103$ which is equivalent to $k_1 \equiv (101^{-1})70 \mod 103$. Now using the reverse Euclidean algorithm, we find the inverse of 101 in Z_{103} . Since $1 = 101 \times 51 + 103 \times (-50)$, we see that $101^{-1} = 51 \in \mathbb{Z}_{103}$. Therefore $k_1 \equiv 51 \times 70 \equiv 68 \mod 103$. Hence $k_1 = 104k_2 + 68$ and $x = 101(103k_2 + 68) + 43 = 10403k_2 + 6911$.

Now we substitute this to the next equation to get $10403k_2 + 6911 \equiv 96 \mod 107$ which is equivalent to $k_2 \equiv (10403^{-1})33 \mod 107$. Now similarly using the reverse euclidean algorithm, we find that $1 = 4764 \times 107 + 10403(-49)$. Hence we see that $10403^{-1} = -49 \equiv 58 \mod 107$. Hence $k_2 \equiv 58 \times 33 \equiv 1914 \equiv 95 \mod 107$. Therefore $k_2 = 107n + 95$ and x = 10403(107n + 95) + 6911 = 113121n + 995196.

Hence the solution set of the system of equations is $\{113121n+995196, n \in \mathbb{N}\}$.

10. **Solution:** Given that 10 is a primitive root modulo 313. This gives that $\langle 10 \rangle = Z_{313}^*$. Moreover since we know that 313 is a prime, $\phi(313) = 312$ and therefore |10| = 312. Therefore if $x = 10^a \in \langle 10 \rangle$ with $x^3 = 1 \mod 313$, then either x = 1 or $|10^a| = 3$. But we know that for any cyclic group with generator g, $|g^a| = \frac{|g|}{(a,|g|)}$. Therefore if

$$|10^a| = \frac{|10|}{(a,|10|)} = \frac{312}{(a,312)} = 3$$

one must have $(a,312) = \frac{312}{3} = 104$. The only possible candidates for a are 104,208. Hence the residue classes which satisfy the given equation are $[1],[10^{104}],[10^{208}]$. Now using the usual theatrics, we see that this is exactly [1],[214] and [98] respectively.

- 11. **Solution:** We see that $7^4 = 2401$ has its ones digit equal to 1. Therefore $7^{4n} = (7^4)^n = (2401)^n$ must have its ones digit equal to 1 for all $n \in \mathbb{N}$. By the same logic we see that the ones digit of 7^{4n+1} , 7^{4n+2} , 7^{4n+3} must be 7, 9, and 3 respectively. Hence to find the ones digit of 7^{7^7} , we just need to find out the residue class of $7^{7^7} = 7^{49}$. 49 = 32 + 16 + 1
 - $7^1 \mod 4 = 3$
 - $7^2 \mod 4 = (7 \mod 4)(7 \mod 4) = 3^2 \mod 4 = 1$
 - $7^4 \mod 4 = (7^2 \mod 4)(7^2 \mod 4) = 1^2 \mod 4 = 1$

Now since we are going to keep multiplying by 1 while finding the residue classes of 7 rasied to higher powers of 2, we conclude that 7^{16} , 7^{32} both lie in the residue class of 1 mod 4. Hence 7^{49} mod $4 = 1 \times 1 \times 3$ mod 7 = 3. Therefore $7^{7^7} = 4n+3$ for some $n \in \mathbb{N}$, and therefore by our previous reasoning, we see that the ones digit of $7^{7^{7^7}}$ is 3.

- 12. **Solution:** We see that 1074 = 1024 + 32 + 16 + 2.
 - $8^2 \mod 211 = 64 \mod 211$
 - $8^4 \mod 211 = 4096 \mod 211 = 87$
 - $8^8 \mod 211 = (8^4 \mod 211)(8^4 \mod 211) = 87^2 \mod 211 = 184$

- $8^{16} \mod 211 = (8^8 \mod 211)(8^8 \mod 211) = 184^2 \mod 211 = 96$
- $8^{32} \mod 211 = (8^{16} \mod 211)(8^{16} \mod 211) = 96^2 \mod 211 = 143$
- $8^{64} \mod 211 = (8^{32} \mod 211)(8^{32} \mod 211) = 143^2 \mod 211 = 193$
- $8^{128} \mod 211 = (8^{64} \mod 211)(8^{64} \mod 211) = 193^2 \mod 211 = 113$
- $8^{256} \mod 211 = (8^{128} \mod 211)(8^{128} \mod 211) = 113^2 \mod 211 = 109$
- $8^{512} \mod 211 = (8^{256} \mod 211)(8^{256} \mod 211) = 109^2 \mod 211 = 65$
- $8^{1024} \mod 211 = (8^{512} \mod 211)(8^{512} \mod 211) = 65^2 \mod 211 = 5$

Therefore $8^{1074} \mod 211 = 5 \times 143 \times 96 \times 64 \mod 211 = 4392960 \mod 211 = 151$

- 13. **Solution:** Using Bezout's lemma we see that gcd(a, n) = gcd(a + kn, n) for all $k \in \mathbb{Z}$. Hence the statement we have to prove is equivalent to showing $a \in \mathbb{Z}_n$ is a generator for \mathbb{Z}_n if and only if (a, n) = 1. (a here is assumed to be the smallest positive integer in the corresponding residue class [a], and we will continue this convention)
 - (\Longrightarrow) Let $a \in \mathbb{Z}_n$ with $(a,n) = d \neq 1$. Then for $k = \frac{n}{d} > 1$ (still an integer), we get $ak = \frac{an}{d}$, Since d|a, we get that n|ak which gives that $ak \mod n = 0$. Therefore the strict subset $\{a, 2a, \ldots, (k-1)a, 0 = ka\}$ is closed under modular addition, which makes it a proper subgroup. Thus we see that a cannot generate \mathbb{Z}_n
 - (\iff) Conversely, if (a, n) = 1 then by Bezout's lemma there exists k_1, k_2 with $(k_1, k_2) = 1$ such that $ak_1 + nk_2 = 1$. which implies $ak_1 \equiv 1 \mod n$. This implies ak_1 is the equivalent class of 1. Now since we know [1] is a generator for \mathbb{Z}_n , we see that a generate \mathbb{Z}_n .
- 14. **Solution:** Since 103 is a prime we see that Z_{103}^* has 102 elements and that it is a cyclic group. Let g be a generator of the group. If g^a is any other generator for $1 \le a \le 102$, we must have $|g^a| = \frac{|g|}{(a,|g|)} = \frac{102}{(a,102)} = 102$ which gives (a,102) = 1. There is exactly $\phi(102) = 32$ such a by the definition of the Euler-totient function.

15. **Solution:** Let Graham's number $g = 3^{b_1}$. We should find out $x \in Z_{121}$ such that $x \equiv g \mod 121$. Since (3,121) = 1 and $\phi(121) = 110$, we see that if we can write $b_1 = 110 \times q + b_1$, then using Fermat's little theorem we'll get $g = 3^{110q+r} \mod 121 \equiv (3^{110} \mod 121)^q (3^r \mod 121) = 3^r \mod 121$.

As a general rule of thumb, we get that if (3, n) = 1, then $3^a \mod n \equiv 3^r \mod n$, where $a = \phi(n)q + r$. Now we are at a place to proceed with our calculations.

- Let $g = 3^{b_1}$ be the Graham's number. Since (121, 3) = 1 and $\phi(121) = 110, 3^{b_1} \equiv 3^{r_1} \mod 121$ where $r_1 = b_1 \mod 110$
- Now let $b_1 = 3^{b_2}$. Since (110, 3) = 1 and $\phi(110) = 40, 3^{b_2} \equiv 3^{r_2} \mod 110$ where $r_2 = b_2 \mod 40$
- Now let $b_2 = 3^{b_3}$. Since (40,3) = 1 and $\phi(40) = 16$, $3^{b_3} \equiv 3^{r_3} \mod 40$ where $r_3 = b_3 \mod 16$
- Now let $b_3 = 3^{b_4}$. Since (16,3) = 1 and $\phi(16) = 8$, $3^{b_4} \equiv 3^{r_4} \mod 16$ where $r_4 = b_4 \mod 8$
- Now let $b_4 = 3^{b_5}$. Since (8,3) = 1 and $\phi(8) = 4$, $3^{b_5} \equiv 3^{r_5} \mod 8$ where $r_5 = b_5 \mod 4$

Now since 3 mod 4 = -1 and b_5 is an odd number being the odd power 3, we see that $3^{b_5} = -1 \mod 4 = 3 \mod 4$. Hence $r_5 = 3$, Tracing the argument back, we get

- $r_4 = 3^{r_5} \mod 8 = 3^3 = 27 \mod 8 = 3$
- $r_3 = 3^{r_4} \mod 16 = 3^3 = 27 \mod 16 = 11$
- $r_2 = 3^{r_3} \mod 40 = 3^{11} \mod 40 = 27$
- $r_1 = 3^{r_2} \mod 110 = 3^{27} \mod 110 = 97$
- $g = 3^{r_1} \mod 121 = 3^{97} \mod 121 = 9$

Hence x = 9 is the required answer.

16. Solution: If $y = 1 \mod 9797$ that implies (y, 9797) = 1. Since $9797 = 101 \times 97$, this is equivalent to (y, 97) = 1 and (y, 101) = 1. Hence we look for x^3 which simultaneously satisfy $x^3 = 1 \mod 97$ and $x^3 = 1 \mod 101$. Since

we know that 97 and 101 are primes, we get that Z_{97}^* , Z_{101}^* are cyclic groups with cardinality 96 and 100 respectively.

Since we know that the order of an element in a group must divide the order of the group, and 3 /100, we get that there are no elements of order 3 in Z_{101}^* . Hence we get that the only element in Z_{101}^* with $x^3 = 1 \mod 101$ is x = 1.

Similarly, if $g \in Z_{97}^*$ generate the group, and $|g^k| = 3$, then we must have $\frac{|g|}{(k,|g|)} = \frac{96}{(k,96)} = 3$ which gives (k,96) = 32. Hence the possible values for a are 32 and 64. Since we know that 5 is a generator for Z_{97}^* , we get that the elements in $x \in Z_{97}^*$, with $x^3 = 1 \mod 97$ are specifically $35 = 5^{32} \mod 97$ and $61 = 5^{64} \mod 97$.

Now to find the x which satisfy $x^3 = 1 \mod 9797$, we will use the Chineese remainder theorem to solve the 3 different system of linear equations.

 $x = 1 \mod 97$ $x = 35 \mod 97$ $x = 61 \mod 97$ $x = 1 \mod 101$ $x = 1 \mod 101$ $x = 1 \mod 101$

Now using the chinese remainder theorem, we get that the solutions are $1,5758,1516 \in \mathbb{Z}_{9797}^*$