Ia) Note that if  $x \in C$  is an endpoint of a removed interval, then  $x = \frac{K}{3}$  for some integers  $n \ge 1$  and  $0 \le K \le 3$ . So we just need a real number  $x \in (0, 1)$  satisfying

a)  $\times$  has some ternary expansion  $x = \sum_{i=1}^{\infty} a_i 3^i$  where  $a_i \neq 1$  for any i, and

b)  $X \neq \frac{K}{3}^n$  For any  $K, n \in \mathbb{N}^{>0}$ ,

then we will have XEC by (a) and X not an endpoint by (b).

Claim:  $X=(0.\overline{02})_3=(0.026202...)_3$  works.

(Base 3)

PF By construction, x satisfies

$$x = \sum_{i=0}^{\infty} a_i 3^i$$
,  $a_i \in \{0, 2\}$ 

(b) To see that X satisfies (b), we can compute

$$X = (0.020202 - 1)_{3}$$

$$= 0.3 + 2.3 + 0.3 + 2.3 + ...$$

$$= \sum_{i=1}^{\infty} 2.3^{i} = 2 \sum_{i=1}^{\infty} 3^{i} = 2 \sum_{i=1}^{\infty} (\frac{1}{a})^{i}$$

$$= 2(-1 + \sum_{i=0}^{\infty} (\frac{1}{a})^{i})$$

$$=2\left(-1+\frac{1}{1-\frac{1}{a}}\right)=\frac{1}{4}$$

where  $4 \pm 3^n$  for any integer n.

(1b) If a set X is <u>nowhere dense</u> in a topological space, it equivalently satisfies  $(\overline{X})^{\circ} = \emptyset$ 

(i.e., the interior of the closure is empty.)

- It then suffices to show that a) C is closed, so C = C, and b) C has no interior points, so  $C^\circ = \emptyset$ .
- (a) To see that C is closed, we will show  $C':=[0,1]\setminus C$  is open. An arbitrary union of open sets is open, so the claim is that  $C'=\bigcup_{j\in J}A_j$  for some collection of open sets  $\{A_j\}_{j\in J}$ .

Consider  $C_n$ , the  $n^{th}$  stage of the process used to construct the Cantor set, so  $C = \bigcap_{i=1}^{\infty} C_n$ . But by induction,  $C_n^c$  is a union of open sets. In particular,  $C_n^c = (\frac{1}{3}, \frac{2}{3})$ , and  $C_n^c = (\bigcup_{i=1}^{n-1} C_i^c) \cup (\text{Exactly } n \text{ open intervals})$ , that were deleted

open by construction

Open by hypothesis

So 
$$C_n^c$$
 is open for each  $n$ . But then
$$C_n^c = \left(\bigcap_{n=1}^{\infty} C_n\right) = \bigcup_{i=1}^{\infty} C_n^c$$

is a union of open sets and thus open. So C is closed.

(b) To see that  $C = \emptyset$ , suppose towards a contradiction that  $x \in C^\circ$ , so there exists some  $\varepsilon > 0$  such that  $N_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon) \subseteq C$ . Letting u(I) denote the length of an interval, we have  $u(N_{\varepsilon}(x)) = 2\varepsilon > 0$ .

Claim: Let  $L_n := \mu(C_n)$ , then  $L_n = (\frac{2}{3})$ .

This follows immediately by noting that  $L_n$  satisfies the recurrence relation

$$L_{n+1} = \frac{2}{3}L_n$$
,  $L_0 = 1$ 

Since an interval of length  $\frac{1}{3}$ Ln-1 is removed at the nth stage, which has the unique claimed solution.

But if  $I_1 \subseteq I_2$  are real intervals, we must have  $M(I_1) \subseteq M(I_2)$ , whereas if we choose n large enough such that  $\binom{2}{3}^n < 2\varepsilon$ , we have  $(x-\varepsilon,x+\varepsilon) \subseteq C = \bigcap_{i=1}^n C_i \implies (x-\varepsilon,x+\varepsilon) \subseteq C_n$ , but  $M((x-\varepsilon,x+\varepsilon)) = 2\varepsilon > \binom{2}{3}^n = M(C_n)$ , a contradiction.

So such an XEC can't exist, and C°= &.

Thus  $(C)^{\circ} = C^{\circ} = \emptyset$ , and C is nowhere dense, and Since a meager set is a countable union of nowhere dense sets, C is meager.  $\Box$ 

Claim, C is measure Zero.

Measures are additive over disjoint sets, i.e.

 $A \cap B = \emptyset \Rightarrow \mu(A \sqcup B) = \mu(A) + \mu(B)$ ,

And if ASB, we have

 $\mu(B) = \mu(B \sqcup (B \setminus A)) = \mu(B) + \mu(B \setminus A)$  $\Rightarrow \mu(B \setminus A) = \mu(B) - \mu(A).$  Now let Bn be the union of the intervals that are deleted at the nth step. We have

$$M(B_0) = 0$$

$$M(B_1) = \frac{1}{3}$$

$$M(B_2) = 2(\frac{1}{9}) = \frac{2}{9}$$

$$M(B_3) = 4(\frac{1}{27}) = \frac{4}{27}$$

$$H(B_0) = \frac{2^{n-1}}{3}$$

Moreover, if 
$$i \neq j$$
, then  $B_i \cap B_j = \emptyset$ , and  $C^c := [0,1] - C = \bigsqcup_{i=1}^{\infty} B_i$ .

We thus have

$$M(c) = M(so,1]) - M(c^{c})$$

$$= 1 - M(\bigcup_{n=1}^{\infty} B_{n})$$

$$= 1 - \sum_{n=1}^{\infty} M(B_{n})$$

$$= 1 - \sum_{n=1}^{\infty} 2^{n-1} 3^{n}$$

$$= 1 - (\frac{1}{3}) \sum_{n=0}^{\infty} (\frac{2}{3})^n$$

$$= 1 - (\frac{1}{3})(\frac{1}{1-2/3})$$

$$= 0$$

(1c)

Let  $y \in [0,1]$  be arbitrary, we will produce an  $x \in C$  such that f(x) = c.

Write  $y = (a, a_2 - b_2) = \sum_{i=1}^{\infty} a_i 2^{-i}$  where  $a_i \in \{0, 1\}$ 

Now define

$$x = (2a, 2a_2 - ...)_3 = \sum_{i=1}^{\infty} (2a_i)^{-i} := \sum_{i=1}^{\infty} b_i 3^{-i}$$

Since a  $\in \{0,1\}$ , b = 2a,  $\in \{0,2\}$ , meaning  $\times$  has no  $1^s$  in its ternary expansion and so  $\times \in \mathbb{C}$ . Moreover, under f we have

bi 
$$\mapsto \frac{1}{2}bi$$

So bi  $\mapsto ai$  and thus  $f(x)=y$ .

2ai  $\mapsto \frac{1}{2}(2ai)=ai$ 

So C >> [0,1], which is uncountable, thus so is C.



2a) (
$$\Rightarrow$$
) Suppose X is Gs, so  $X = \bigcup_{n=1}^{\infty} A_i$  with each Ai closed. Then  $A_i^c$  is open by definition, and so  $X = (\bigcup_{n=1}^{\infty} A_i)^c = \bigcap_{n=1}^{\infty} A_i^c$ 

is a countable intersection of open sets, and thus For.

( $\Leftarrow$ ) Suppose X' is an Form, so  $X = \bigcap_{i=1}^{\infty} B_i$  with each  $B_i$  open. Then each  $B_i'$  is closed by definition, and  $X = (X')' = (\bigcap_{i=1}^{\infty} B_i)' = \bigcup_{i=1}^{\infty} B_i'$ 

is a countable union of closed sets, and thus Gs.

Suppose X is closed, we will show  $X = \bigcap_{n=1}^{\infty} C_n$  with each  $C_n$  open. For each  $x \in X$  and  $n \in \mathbb{N}$ , define

• 
$$B_n(x) = \{ y \in \mathbb{R}^n \mid d(x,y) \leq \frac{1}{n} \}$$

• 
$$C_n = \bigcup_{x \in X} B_n(x)$$

• 
$$W = \bigcap_{n=1}^{\infty} C_n = \bigcap_{n=1}^{\infty} \bigcup_{x \in X} B_n(x)$$

Since each Bn(x) is open by construction and Cn is a Union of opens, each Cn is open.

## Claim W=X.

 $X \subseteq W$ : If  $x \in X$ , then  $x \in B_n(x) \subseteq C_n$  for all n, and so  $x \in \bigcap_{n=1}^{\infty} C_n = W$ .

 $W \subseteq X$ : Suppose there is some  $w \in W \setminus X$  (so  $w \neq x$  for any  $x \in X$ ) towards a contradiction.

Since  $\omega \in \bigcap_{i=1}^n C_n$ ,  $\omega \in C_n$  for every n. So  $\omega \in \bigcup_{x \in X} B_n(x)$  for every n. But then there is some particular x &X such that WE Bn(Xo) for every n (otherwise we could take N large enough so that w& BN(X) for any XEX, so X& UBN(X) where wxx. But then if  $N_{\epsilon}(x)$  is an arbitrary neighborhood of x, We can take  $\pi \in \mathcal{E}$  to obtain  $w \in \mathcal{B}_n(x) \subseteq \mathcal{N}_{\mathcal{E}}(x)$ , which makes w a limit point of X. But since X is closed, it contains its limit points, forcing the contradiction weX. So X is a countable intersection of open sets, and thus a Gs set.

Now suppose X is open. Then  $X^c$  is closed, and thus a Gs set. But then  $(X^c)^c = X$  is an  $F_\sigma$  set by problem (2a).

Using the fact that singletons are closed in Metric spaces, we can write  $Q = \bigcup_{q \in Q} Q^q$  as a countable union of closed sets, so Q is an  $F_S$  set. Suppose Q was also a  $G_S$  set, so  $Q = \bigcap_{i=1}^\infty A_i$  with each  $A_i$  open. Then for any fixed  $P_i$ , so  $P_i$  is dense in  $P_i$  for every  $P_i$ .

However, it is also true that  $P_i = P_i + Q^q = P_i$  is an open, dense subset of  $P_i$ , and we can write

$$\mathbb{R} \setminus \mathbb{D} = \mathbb{R} \setminus \bigcup_{q \in \mathbb{Q}} \{q\} = \bigcap_{q \in \mathbb{Q}} (\mathbb{R} \setminus \{q\})$$

as in intersection of open dense sets; Since R is a

Baire space, countable intersections of open dense sets are dense.

But then 
$$\left(\bigcap_{i=1}^{\infty} A_i\right) \cap \left(\bigcap_{q \in Q} \{q, \xi^c\right) = Q \cap (R \setminus Q) = \emptyset$$

must be dense in R, which is absurd. \*

Note that this argument also works when R is replaced with any open interval I and Q is replaced with QNI.

For a set that is neither Gs nor Fs, consider  $A = Q \cap (0, \infty), \quad \text{positive rationals}$   $B = (R \cdot Q) \cap (-\infty, 0), \quad \text{negative irrationals}$ 

A is Fo but not Gs, using above argument, and dually B is Gs but not Fo.

Claim: X=AUB is neither Gs nor Fo.

Suppose X is Gs. Then Xn(0,00) = A is Gs as well. \*

Suppose X is Fo. Then X is Gs, but

 $X = (A \cup B) = A^{c} \cap B^{c} = (Q \cap (-\infty,0)) \cup ((R \setminus Q) \cap (0,\infty))$ 

and thus  $X^c \cap (-\omega_{10}) = A$  is Gs. \*

So X is neither Gs or Fo.



Claim:  $c \in [0, 1] \Rightarrow \lim_{x \to c} f(x) = 0.$ 

This holds iff YceI, YE, ∃S s.t. |x-c|(S ⇒ |fx)|(E,

so let E>0 be arbitrary. Consider the set

 $S = \{ n \in \mathbb{N} | \frac{1}{n} \ge \epsilon \}$ , which is a <u>finite</u> set, and so

 $S_{1} = \{ r_{n} \in \mathbb{Q} | \frac{1}{n} \geq \epsilon \} \text{ is } f_{inite} \text{ as well.}$ 

So choose  $S < min d(c, r_n)$  so  $N_S(c) \cap S_Q = \emptyset$  $r_n \in S_Q$ 

Then  $|x-c| < S \Rightarrow \begin{cases} \cdot f(x) = 0 \text{ if } x \in \mathbb{Z} \setminus \mathbb{Q}, \text{ or } \\ \cdot x = r_m \in (\mathbb{Q} \setminus S_q) \cap \mathbb{Z} \text{ for some } m \text{ such that } \\ \text{Im } < \varepsilon \text{ by construction.} \end{cases}$ 

But then  $|f(x)| = 1/m | \langle \varepsilon | as desired. \[ \pi | \]$ 

So  $\cdot \subset I \setminus Q \Rightarrow f(c) = 0 = \lim_{x \to c} f(x),$ 

•  $C = r_n \in I \cap Q \implies f(c) = \frac{1}{N} \neq 0 = \lim_{x \to c} f(x)$ 

and f is discontinuous on InQ.