A N*B ASYNCHRONOUS FIFO WITH VERILOG HDL

WHEN MULTI BIT SIGNALS ARE SYNCHRONIZED WITH 2 FLIP FLOP SYNCHRONIZER, EACH BIT IS SYNCHRONIZED USING SEPARATE 2-FF SYNCHRONIZER. METASTABILITY CAN CAUSE A FLIP FLOP TO SETTLE DOWN EITHER TO A TRUE VALUE OR A FALSE VALUE. SO, OUTPUT OF EVERY SYNCHRONIZER MAY NOT SETTLE TO CORRECT VALUE AT SAME CLOCK, THIS CAUSES DATA INCOHERENCY, IN ORDER TO SYNCHRONIZE MULTI BIT SIGNAL USING 2 FLIP FLOP SYNCHRONIZER METHOD, ONLY A SINGLE BIT CHANGE MUST BE GUARANTEED AT A PARTICULAR CLOCK CYCLE. THIS CAN BE ACHIEVED BY GRAY ENCODING.

• FOR EXAMPLE, IN ASYNCHRONOUS FIFO DESIGN, WHEN WE SYNCHRONIZE READ POINTER VALUE AFTER CONVERTING TO GRAY VALUE IN WRITE CLOCK DOMAIN USING 2-FF SYNCHRONIZER, THERE IS POSSIBILITY OF METASTABILITY. AS THERE IS ONLY ONE BIT CHANGE IN THE GRAY ENCODING SO EVEN IF THERE IS METASTABILITY WHEN CLOCK CROSSING, THE GRAY COUNTER VALUE WILL BE PREVIOUS VALUE. FOR EXAMPLE, READ POINTER (GRAY COUNTER) VALUE IS CHANGING FROM 010 TO 110 AND SYNCHRONIZED WITH WRITE CLOCK THEN DUE TO METASTABILITY (IF IT OCCURS) POSSIBILITY IS READ POINTER REMAINS 011

Binary Gray	CLK
000 000 001 001	BIN[2:0] 011 X 100
010 011 011 010	BIN_S[2:0] 011 XXXX X 100
100 110 → 101 111	GRAY[2:0] 010 X 110
110 101 111 100	GRAY_S[2:0] 010 \(\sqrt{110 or 010} \sqrt{110}

WHY DUAL GRAY COUNTER

WE USE N+1 BIT TO A N BIT FIFO ADDRESS

WHY? THAT'S BECAUSE WE NEED THE MSB TO FULL AND EMPTY FLAG —EXPLAINED IN CODE-.

SO WHY DUAL COUNTER ?,CAN'T WE JUST

USE THE LAST N BITS AS AN ADDRESS?

ACTUALLY, WE CAN'T AND THE REASON OF THAT IS THE IMAGE OR MIRROR FEATURE WILL CAUSE MY DATA TO BE OVERWRITTEN OR READ FALSE DATA

				Gray Code	2		
Decimal	4 bit binary	1 bit	2 bit	3 bit	4 bit]	
0	0000	0	00	000 —	0000 ———		_
1	0001	1	01	001—	0001 ———		¬ l
2	0010		11	011 —	0011 ———		, []
3	0011		10	010 —	0010 ———		
4	0100		00	110	0110 —	<u> </u>	
5	0101		•••	111	0111 —	-	
6	0110			101	0101 —	-	
7	0111			100 —	0100	-	
8	1000			000	1100 ———		
9	1001				1101 —	-	> Image
10	1010				1111 —		
11	1011				1110 ——	-	
12	1100				1010 ———		
13	1101				1011 —		J
14	1010				1001 —		
15	1111				1000 ———		

HOW WE GENERATE GRAY ADDRESS AND POINTER

VIVADO SCHEMATIC

CONTROL UNIT SCHEMATIC

THANK YOU

DON'T FORGET TO CHECK THE HDL AND GIVE A REVIEW .

LINK TO HDL:

HTTPS://GITHUB.COM/MOHAMED-ABDULRAHMAN5/ASYNCROUNUS FIFO BUFFER.GIT

DESIGNER: ENG. MOHAMED ABDULRAHMAN.

REFERENCES:

CLIFFORD E. CUMMINGS, SUNBURST DESIGN, INC

SYNCHRONIZATION IN DIGITAL LOGIC CIRCUITS RYAN DONOHUE