Digital Electronic Circuits Section 1 (EE, IE)

Lecture 18

Class Test 2:

27-10-2020 (TUE): Starting 10:15 AM (additional holiday after Dusserah)

Syllabus: Logic families (not covered in CT1) and primarily post CT1, shall include concept dealt in pre-CT1 part which forms the pre-requisite.

Binary Multiplication

$0 \times 0 = 0$	
$0 \times 1 = 0$	
$1 \times 0 = 0$	
1 x 1 = 1	

X	y	m
0	0	0
0	1	0
1	0	0
1	1	1

$$m = x.y$$

1101 10 0000 1101 11010	(13) ₁₀ (2) ₁₀ (26) ₁₀
1101 11 Carry • 11——— 1101 1101 100111	(13) ₁₀ (3) ₁₀ (39) ₁₀

4-bit x 2-bit Multiplication

4-bit x 4-bit Multiplication

01 11 10 01 1 ← 1st row adder

10 00 00 10 1 ← 2nd row adder

01 11 00 01 1 ← 3rd row adder

Example:

 $X_3 X_2 X_1 X_0$: 1101 $y_3 y_2 y_1 y_0$: 1011

L O O O 1

Result: 10001111

Binary Division

Dividend = Divisor x Quotient + Remainder

$$D = d \times q + r$$

$$D = (1011)_2 = (11)_{10}$$

$$d = (11)_2 = (3)_{10}$$

$$q = (11)_2 = (3)_{10}$$

$$r = (10)_2 = (2)_{10}$$

1001

1101

1101

$$D = (1110101)_2 = (117)_{10}$$

0011

 $d = (1101)_2 = (13)_{10}$

0000

 $q = (1001)_2 = (9)_{10}$
 $r = 0$

0110

0000

1101

1101

Unit Cell for Divider Array

b in	X	y	d	b out
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

 D_0

 D_1

Full
$$d = x + y + b_{in}$$

Subtractor $b_{out} = x' \cdot y + x' \cdot b_{in} + y \cdot b_{in}$

A Divider Circuit

Example:

References:

□ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
 Applications 8e, McGraw Hill
 □ Lloris Ruiz A., Castillo Morales E., Parrilla Roure L., García Ríos A. Number
 Systems. In: Algebraic Circuits. Intelligent Systems Reference Library, vol 66. Springer,
 Berlin, Heidelberg