Class 6a: Time Series

Business Forecasting

Roadmap:

- 1. Components of time series
- 2. Patterns of correlation in time series
- 3. Simple forecasting methods
- 4. Evaluating forecasts
- 5. Time series decomposition
- 6. Forecasting with time series decomposition

Example

- Suppose you wonder if you should go into the wedding business.
- You need to predict whether there is potential for work
- So you look at evolution in the number of weddings across years

Heterosexual Marriages in Mexico

Same Sex Marriages in Mexico

Going into gay marriage business is probably a better idea!

Components

- 1. **Trend** long term change in the level of data, positive or negative.
 - If flat, we call the data stationary
 - Formally, the mean, variance, and autocorrelation does not depend on time

Heterosexual Marriages in Mexico

Components

- 1. **Trend** long term change in the level of data, positive or negative.
 - If flat, we call the data stationary
 - Formally, the mean, variance, and autocorrelation does not depend on time
- 2. **Seasonal pattern**: Variation in level that repeats at the same time each period
 - If there is seasonality, data is not stationary

Heterosexual Marriages in Mexico

Components

- 1. **Trend**: Long term change in the level of data, positive or negative.
 - If flat, we call the data stationary
 - Formally, the mean, variance, and autocorrelation does not depend on time
- 2. Seasonal pattern: Variation in level that repeats at the same time each period
 - If there is seasonality, data is not stationary
- 3. **Cyclical pattern**: Wavelike upward and downward movements along the trend. Not always the same length, not always the same time of year
 - Different from seasonality which always happens at the same time and has same length
 - Often related to business cycles

Heterosexual Marriages in Mexico

Components

- 1. **Trend**: Long term change in the level of data, positive or negative.
 - If flat, we call the data stationary
 - Formally, the mean, variance, and autocorrelation does not depend on time
- 2. Seasonal pattern: Variation in level that repeats at the same time each period
 - If there is seasonality, data is not stationary
- 3. **Cyclical pattern**: Wavelike upward and downward movements along the trend. Not always the same length, not always the same time of year
 - Different from seasonality which always happens at the same time and has same length
 - Often related to business cycles
- 4. **Random components**: Can't be attributed to other parts of the model. The most difficult to predict

Heterosexual Marriages in Mexico

Some other examples

Australian antidiabetic drug sales

Australian electricity production

Australian clay brick production

Amazon closing stock price

Autocorrelation

- Can past values predict future values?
- Yes, if they are correlated
- We will measure Autocorrelation:
 - Are values in previous period correlated with values in the next period?
 - \circ So between y_t and y_{t-1} ,\$yt\$ and `(y{t-2})` etc

$${\hat
ho}_k = rac{\sum_{t=k+1}^n (y_t - ar y)(y_{t-k} - ar y)}{\sum_{t=1}^n (y_t - ar y)^2}$$

```
## # A tsibble: 360 x 5 [1M]
##
        Month
                  M Lag1_M Lag2_M Lag3_M
        <mth> <dbl> <dbl> <dbl> <dbl>
##
##
   1 1993 Jan 54850
                        NA
                               NA
                                      NA
   2 1993 Feb 54271 54850
##
                               NA
                                      NA
   3 1993 Mar 55350 54271 54850
##
                                      NA
##
   4 1993 Apr 52268 55350 54271
                                   54850
##
   5 1993 May 59671
                     52268
                            55350
                                   54271
##
   6 1993 Jun 47557
                     59671
                            52268
                                   55350
   7 1993 Jul 54503
##
                     47557
                            59671
                                   52268
##
   8 1993 Aug 51534 54503 47557
                                   59671
   9 1993 Sep 46000
##
                     51534
                            54503
                                   47557
  10 1993 Oct 51590
                     46000
                            51534
                                   54503
```

We can calculate the values for marriage data:

lag	1.0000000	2.0000000	3.0000000	4.0000000	5.0000000	6.0000000
acf	0.3126539	0.4934558	0.2992763	0.2474031	0.2879573	0.1557756

And plot the Autocorrelation Function (ACF) on a correlogram:

• Why high values at 12 and 24 lag?

Some other examples:

- Shock persists for a long time
- If stationary, shocks should not persist, autocorrelation should decay quickly 25 / 124

Autocorrelation

- How do we know that the correlation is significant and not just sampling randomness?
- Test:
 - $\circ \ H_0:
 ho_k=0$ or data is white noise
 - $\circ H_A: \rho_k \neq 0$
- What is White Noise?

White noise

White Noise

Autocorrelation of white noise

Test

- Intuitively:
 - 1. We will calculate test statistic
 - 2. Figure out how likely to obtain such value if data was White Noise
 - If test statistic is big, it's unlikely to come from White Noise, so we reject null

$$t_{test} = rac{\hat{
ho}_k - 0}{1/\sqrt{n-k}}$$

- Compare it to t distribution with t_{n-k} degrees of freedom
- Rule of thumb for larger datasets: reject at 95% if:

$$|\hat{
ho}_k| > rac{2}{\sqrt{n}}$$

Confidence bands

- We can compute confidence bands such that if $\hat{\rho}_k$ is within these bands, it's not significant.
- In our data on straight marriage, n=360
- If data is white noise, autocorrelations should not cross 0.1054

 The more observation you have, the better you are at detecting autocorrelation

Gay marriages

• Is there a way to transform the data, so it's stationary?

First differencing

• Take the first differences

$$\Delta y_t = y_t - y_{t-1}$$

- First differences approximate how much data growth in each period
- If trend is linear, this variable should have more or less constant mean

First differencing

```
# A tsibble: 154 x 3 [1M]
##
         Month
                    M Diff M
         <mth> <int>
                       <int>
##
    1 2010 Mar
                          NA
##
                   94
##
    2 2010 Apr
                   72
                         -22
                      -12
##
    3 2010 May
                   60
    4 2010 Jun
                   68
##
                           8
    5 2010 Jul
##
                   61
                          -7
    6 2010 Aug
                   69
##
                           8
    7 2010 Sep
##
                   52
                         -17
##
    8 2010 Oct
                   69
                          17
##
    9 2010 Nov
                   47
                         -22
  10 2010 Dec
##
                   97
                          50
## # i 144 more rows
```

Is transform data stationary?

- Does it have constant mean?
- What about constant variance?
- What about autocorrelation?

Naive Model

The simplest way to forecast is to assume that it will be the same as previous period

- ullet One step forecast: $\hat{y}_{T+1|T}=y_T$
- ullet h-step forecast: $\hat{y}_{T+h|T}=y_T$

44 / 124

What is the confidence interval for such prediction?

- We need to know the variance of the forecast error
- What is Forecast Error?

$$e_t = y_{T+h} - \hat{y}_{T+h|T}$$

- It's the difference between what we forecasted and what actually happened onece we observe this datapoint
 - Also known as out-of-sample error
 - We only used observations up to point T when estimating this model!
 - Different from Fitted Residuals!

$$u_t = y_t - \hat{y}_t$$

These are fitted residuals for observations that we used in estimation.

- In the simplest model, and one step ahead, residuals and forecast errors are similar.
- So we can approximate the standard deviation of e_t with standard deviation of u_t in this naive model.
- Let σ_h be the h-step forecast error.
- We will assume:

$$\sigma_1 = \sigma_u$$

so the standard deviation of the one step ahead forecast is the same as the standard deviation of the residuals

• This gives us the following confidence interval for one step ahead error:

$$CI_{95}=\hat{y}_{T+1|T}\pm 1.96\hat{\sigma}_u$$

For longer horizon, forecast error in naive forecast is:

• Let $\sigma_h = \sigma_u \sqrt{h}$ be the sd of h-step forecast error, and

```
## [1] 13683.56

## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

## 361 54887 37375.25 72398.75 28105.09 81668.91
```


Seasonal naive

We can make it slightly more elaborate by assuming it's the same value as in the last same season:

$$\hat{y}_{T+1|T}=y_{m(T+1)}$$

• m(T) is the last time period with the same season as T+1

• At one step ahead, the confidence interval is the same:

$$CI_{95}=\hat{y}_{T+1|T}\pm 1.96\hat{\sigma}_u$$

- For longer horizon, forecast error is slightly different:
- Let $\sigma_h = \sigma_u \sqrt{h}$ be the h-step forecast error sd
- ullet Let k be the number of seasonal cycles in the forecast prior to forecast time
 - If it's the first January since time T, k+1=1
 - If it's the second January since time T, k+1=2

$$CI_{95} = \hat{y}_{T+h|T} \pm 1.96 \hat{\sigma}_u \sqrt{k+1}$$

- Why the interval is smaller than in the previous case?
- The forecast errors are smaller
- So the standard deviation of errors is smaller!

Simple Average

We can also just take an average of the time series and make it our prediction:

$$\hat{y}_{T+1|T} = ar{y}_T = rac{\sum_{t \leq T} y_t}{T}$$

• At one step ahead, the confidence interval is the same:

$$CI_{95}=\hat{y}_{T+1|T}\pm 1.96\hat{\sigma}_u$$

- For longer horizon, forecast error is slightly different:
- Let $\sigma_h = \sigma_u \sqrt{h + \frac{1}{T}}$ be the h-step forecast error sd

$$CI_{95}=\hat{y}_{T+h|T}\pm 1.96\hat{\sigma}_u\sqrt{h+rac{1}{T}}$$

Generally,aAverage value acros 20 years is not a good prediction

Moving average

Consider an average of the last k observations:

$$MA(k)_t: rac{\sum_{j=1}^k y_{t+1-j}}{k} = rac{y_t + y_{t-1}.. + y_{t+1-k}}{k}$$

- How many? Usually equal to number of seasons, so the seasonal variation smoothed out
- As we will see later, this is more useful in identifying trend and cycle components

12 months

4 Months

3 years

Evaluating forecasts

Which of the forecasts was the best?

- There is couple of ways to evaluate the forecast accuracy
- They all have advantages and disadventages
- General idea: how close the forecast was to the observed value
- You always use OUT-OF-SAMPLE errors, not fitted residuals

Mean Error

$$ME = rac{\sum_{t=1}^{T-h} (y_{t+h} - \hat{y}_{t+h|t})}{T-h}$$

- This is the average of forecast error
- Can tell us which direction is the bias
- You can test for the existence of bias with a usual t test:
 - $\circ \ H_0 : E(e_t) = 0$
 - $\circ \ H_A: E(e_t)
 eq 0$ (or inequality)
- Test statistic and the null distribution:

$$T_{test} = rac{ar{e} - 0}{rac{\hat{\sigma}_e}{\sqrt{n}}} \sim t_{n-1}$$

- Positive and negative values can add up to 0
- So even if errors are large, but symmetric, this measure will be close to 0

Mean Error:

• If the error is negative, we overestimate!

Mean Absolute Error

$$MAE = rac{\sum_{t=1}^{T-h} |y_{t+h} - \hat{y}_{t+h|t}|}{T-h}$$

- Similar, but we take absolute value of errors. So they don't cancel out!
- This measure is **always** positive
- But we can't say whether we underpredict or overpredict

```
## # A tibble: 3 × 11
    .model
            SS .type ME RMSE
                                                  MPE
##
                                            MAE
                                                      MAPE
                                                            MASE RMSSE
    <chr> <lgl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
##
             FALSE Test -4822. 12980. 12050. -17.1 29.0 4.19
  1 Mean
                                                                 3.51
  2 Naïve FALSE Test -13170, 17851, 13170, -35.3 35.3 4.58 4.83
  3 Seasonal naïve FALSE Test -5940. 5951. 5940. -12.8 12.8 2.06
                                                                 1.61
```

Now clearly seasonal is the best

Mean Percentage Error

$$MPE = rac{\sum_{t=1}^{T-h} (y_{t+h} - \hat{y}_{t+h|t})/y_{t+h}}{T-h}$$

- Answers the question:
 - on average, my forecast is x% wrong
 - It's unitless, so I can compare forecasts of different measures
 - EG: comparing forecast of inflation vs exports
- But again, negative and positive can cancel out...
- So average forecast is again performing well!

Mean Absolute Percentage Error

$$MAPE = rac{\sum_{t=1}^{T-h} |y_{t+h} - \hat{y}_{t+h|t}|/y_{t+h}}{T-h}$$

• Similar as before, but we take the absolute value

Squared Errors

Mean Squared Errors

$$MSE = rac{\sum (A_t - F_t)^2}{n}$$

Root Mean Squared Errors

$$RMSE = \sqrt{rac{\sum (A_t - F_t)^2}{n}}$$

- If we take squre instead of absolute value, we penalize more big deviations
- Then we need to take square root to get the right units back

```
## # A tibble: 3 × 11
                       .type ME RMSE
    .model
          SS
                                            MAE
                                                  MPE
                                                      MAPE
                                                            MASE RMSSE
##
    <chr> <lgl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
##
  1 Mean FALSE Test -4822. 12980. 12050. -17.1 29.0 4.19 3.51
## 2 Naïve
          FALSE Test -13170, 17851, 13170, -35,3 35,3 4,58 4,83
  3 Seasonal naïve FALSE Test -5940. 5951. 5940. -12.8 12.8 2.06
                                                                 1.61
```

Time series decomposition

- Helps in analyzing the patterns in the time series data
- Sometimes used for forecasting

Multiplicative Decomposition: Assume time series is a product of 4 elements:

$$y_t = S_t T_t C_c R_t$$

Goal: Identify the elements of the time series:

- 1. Seasonality S_t
- 2. Trend T_t
- 3. Cycles C_t
- 4. Irregular/Reminder R_t
- Two notes:
 - We will often ignore irregular components
 - Some methods don't distinguish between Trend and Cycles

How would you identify which variations are due to seasonality?

• Idea:

- 1. Eliminate seasonal variation
- 2. Compare the actual series to the one without seasonal variation
- 3. The difference is due to seasonality!
- How to eliminate seasonal variation?
- We will use (Centred) Moving Averages for smoothing.

Moving averages for smoothing

- Why moving average smoothes out seasonal variation?
- It averages out variation over some period of time
- In some seasons we have more weddings, in some seasons we have less wedding. On average these positive and negative seasonalities will average out.
- Over which period should we take average?

- Suppose I take average over 5 months.
- Note that this time the period in focus is at the center
- I look at y_t , two observations before it and two observations after it!
- So the closest observations to y_t

$$MA(5)_t: rac{\sum_{j=-2}^2 y_{t+j}}{5} = rac{y_{t+2} + y_{t+1} + y_t + y_{t-1} + y_{t-2}}{5}$$

- If I take only 5, I don't average over all seasons!
- Sometimes I capture more high seasons but not low seasons, so seasonality persists

93 / 124

- Suppose I take average over 12 seasons
- Now each average is over all months (seasons)
- We eliminated seasonal variation

$$MA(12)_t: rac{\sum_{j=-6}^5 y_{t+j}}{12} = rac{y_{t+5} + y_{t+4}.. + y_t + .. + y_{t-5} + y_{t-6}}{12}$$

- Mathematical caveat
 - Since the number of periods is even (12), our main observations is not really at the center
 - We can have 5 obs before and 6 after
 - Or 6 obs bevore and 5 after Centered Moving Average
- Or we can have both!
- Calculate moving average both ways and then take the average of the two.

$$CMA(12)_t = (rac{\sum_{j=-6}^5 y_{t+j}}{12} + rac{\sum_{j=-5}^6 y_{t+j}}{12})/2$$

Note that we lose some data at the end and at the beginning.

What was the "seasonality" in terms of Covid?

Daily new coronavirus cases in the U.S.

- Less testing on weekends
- Seasonality was by the day of the week
- So we take 7 days average to smooth it out

- We achieved first step, we have a series without seasonal variation
- So how we identify which parts are due to seasonality?

Seasonal indices

- Compare actual data to data without seasons
- January 2010 seasonal factor would be

$$SF_{January,2010} = Y_{January,2010}/CMA_{January,2010}$$

$$SF_t = Y_t/CMA_t$$

Seasonal indices

• We assume seasonal indices are the same across the time, so we just take the average of all of them for each season:

$$SF_{January} = \sum_{year} Y_{January,year}/CMA_{January,year}$$

##		Month	Seasonal_index
##	1	1	0.8646459
##	2	2	1.3184852
##	3	3	1.0124035
##	4	4	0.9360894
##	5	5	1.0167274
##	6	6	0.8573390
##	7	7	0.9494380
##	8	8	0.9299655
##	9	9	0.8000362
##	10	10	0.9524714
##	11	11	0.9844850
##	12	12	1.3779134

- In January, we have 13.5% less weddings than yearly average
- In December, we have on average
 38% weddings than yearly avearge
- in June, we have 14.3% less weddings than yearly average

- They should average to 1
 - Because they represent how much they deviate from average in a given season
- (or in other words) They should add up to the number of seasons!

$$\sum_{s=1}^S SF_s = S$$

- If you don't know one index, you can identify it from the sum

Trend

- We isolated seasonality
- Now that our time series is not contaminated by seasonal variation, we can identify the trend

Assumption: Trend is linear

- We are trying to find a line that best approximate the deseasoned data
- That's what a linear regression do!
- My outcome is the deseasoned time series values
- My predictor is time

$$CMA_t = a + bt + e_t$$

- We find a and b by OLS
- -- Our predicted trend at time t is:

$$T_t = \hat{a} + \hat{b}t$$

Straight marriages

```
##
## Call:
## lm(formula = trend ~ Time, data = a)
##
## Coefficients:
## (Intercept) Time
## 77204.63 -61.46
```

Linear Trend vs Deseasoned Data

Same-sex marriages

```
##
## Call:
## lm(formula = trend ~ Time, data = a)
##
## Coefficients:
## (Intercept) Time
## -1145.310 2.407
```

Linear Trend vs Deseasoned Data

Cyclical element

- Cyclical element is the upward and downward movements around the trend in the deseasoned data
- Divide the centered moving average (deseasoned time series) by the trend value

$$C_t = rac{CMA_t}{T_t}$$

Linear Trend vs Deseasoned Data

Multiplicative Decomposition

- What about the irregular component?
- We will assume it's one, unless someone tells us there will be some shock
- Once we identified all the elements, we can make predictions for the original variable using the model:

$$y_t = S_t T_t C_c R_t$$

h) Forecast and onfidence interval in time series.

Assemble all the elements:

you know the seasonal factor, the trend, you don't know the cycle component - this needs to be figured out

Forecasting with decomposition

just seasonalize the predicted trend

simple forecast prediction - sigma residal etc https://otexts.com/fpp2/prediction-intervals.html prediction interval (residual),