Final Project

Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer

Members: 章峻福110753503

葉冠宏 108753208

What is this paper talking about

- Multi-class Classification
 - Distinguish 4 class of the ovarian cancer status control, benign, borderline tumor, invasive cancer
 - Variables: 2,578 microRNAs
- develop a Neural Netwrok to classify patients well
 - Comparision: serum CA125 level
- Traditional ML process
 - Hyperparameter tuning?
 - Feature selection?

Flowchart of study design

Figure 1. Flowchart of study design. (a) Protocol for miRNA sequencing, filtering, batch adjustment and separation into the training and testing sets. (b) Protocol for model development and testing.

Data Available

- •GSE94533
 - Processed RNA-seq data (rawcount & TPM)
- Supplement data
 - elife-28932-supp1-v2.docx
 - clinical data: Age, Study, Cancer Stage, grade, Histology, CA125 levels
 - elife-28932-supp6-v2.xlsx
 - Batch adjusted, log10-transformed miRNA expression data

Progressed data Structure

A	В	C D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W
mirna_rawcou	nts					受試者	編號														
name	sequence na	me_coun:ntical_mirr	e1036	e1048	e1059	e1044	e1026	e1051	e1041	e1037	e1007	e1045	e1043	e1047	e1029	e1046	e1008	e1019	e1033	e1017	e10
nsa-let-7a-2-3p	CTGTACAGC	1 hsa-let-7a	U	U	U	U	U	U	U	U	U	U	U	1	U	U	U	U	U	U	
nsa-let-7a-3p	CTATACAAT	2 hsa-let-7a	728	2119	1062	1484	670	730	469	1281	1177	921	451	1092	682	458	846	1105	547	1295	
nsa-let-7a-5p	TGAGGTAGT	3 hsa-let-7a	54879	51659	128852	49425	34816	24607	21519	56323	119661	31633	30923	14670	60744	30883	77641	341567	15132	89746	1
nsa-let-7b-3p	CTATACAAC	1 hsa-let-7b	87	217	161	155	84	91	23	145	110	230	102	253	205	265	294	117	192	205	
nsa-let-7b-5p		niRNA healiet-7b	81947	256692	145716	113908	34065	31445	56278	84967	128458	64344	67527	57078	160270	122003	150225	298457	59606	248668	7
nsa-let-7c-3p	CTGTACAAC	hsa-let-	0	0	0	0	1	4	7	4	0	7	0	0	0	1	4	0	4	0	
nsa-let-7c-5p	TGAGGTAGT		1904	3184	4113	2208	1037	788	1237	2268	4213	1192	1222	1437	2519	1562	2991	8920	870	5288	
nsa-let-7d-3p	CTATACGAC	1 hsa-let-7d	1545	3779	4355	3476	2168	1249	2825	3503	3512	6093	2113	5639	6250	7352	7819	2290	4872	5590	
nsa-let-7d-5p	AGAGGTAGT	1 hsa-let-7d	7703	14108	30496	7357	9719	4116	4987	12144	20772	11766	7994	5440	8974	6246	14076	49914	3482	18150	
nsa-let-7e-3p	CTATACGGC	1 hsa-let-7e	8	5	14	23	3	3	0	2	0	40	3	3	1170	22	1003	1	0	14	
nsa-let-7e-5p nsa-let-7f-1-3p	TGAGGTAGG	1 hsa-let-7e	338 34	192 126	704 66	886 50	183 40	302 43	324 46	598 41	855 58	585 63	205 30	107 103	1170 33	316 27	1083 86	530 53	190 25	571 48	
	CTATACAAT	1 hsa-let-7f	7.4			90	54						100		90	40	56	56		39	
nsa-let-7f-2-3p nsa-let-7f-5p	CTATACAGT TGAGGTAGT	1 hsa-let-7f	63 25790	105 36367	63 94630	44506	26797	20508	51 8973	105 44093	121 71347	114 19685	39 16380	72 7682	40222	16603	42598	251718	9136	60249	
isa-let-71-5p isa-let-7g-3p	CTGTACAGG	2 hsa-let-7f 1 hsa-let-7g	10	40	10	44506	18	20508	89/3	14	23	19085	10380	14	40222	10003	42598	47	12	11	
nsa-let-7g-3p	miRNA TGAGGTAGT	1 hsa-let-7g	41066	146986	143462	50793	48441	29283	17743	70891	90627	39284	36012	27130	40843	44095	46894	274408	22857	102151	
isa-let-7g-sp isa-let-7i-3p	CTGCGCAAG	1 hsa-let-7g	141	843	270	93	278	90	116	202	381	227	152	474	94	192	262	782	124	322	
isa-let-7i-5p	項目 TGAGGTAGT	1 hsa-let-7i-	60874	321981	241850	82394	107124	41153	41538	144394	141770	112674	74535	108310	121203	79196	76062	515581	36523	178630	
isa-net-71-5p	TGGAATGTA	2 hsa-miR-1	316	109	250	1176	213	213	32	227	224	68	68	65	194	69	149	99	58	7247	
nsa-miR-7-1-3p	CAACAAATC	1 hsa-miR-7	7	36	15	15	13	8	0	8	18	4	7	12	2	11	17	18	9	19	
nsa-miR-7-2-3p	CAACAAATC	1 hsa-miR-7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
nsa-miR-7-5p	TGGAAGACT	3 hsa-miR-7	1860	17222	7236	1845	7479	1538	2303	6743	7152	4883	3553	3356	5857	4317	3559	25177	2510	9315	
nsa-miR-9-3p	ATAAAGCTA	3 hsa-miR-9	20	3	14	38	20	15	0	10	59	20	3	15	0	1	46	8	76	9313	
nsa-miR-9-5p	TCTTTGGTT	3 hsa-miR-9	27	25	54	58	25	29	132	52	34	26	4	19	69	16	31	37	47	1724	
nsa-miR-10a-3p	CAAATTCGT	1 hsa-miR-1	29	20	38	624	61	49	23	64	136	118	14	179	19	40	115	30	32	148	
nsa-miR-10a-5p	TACCCTGTA	1 hsa-miR-1	3525	3786	7663	17697	3177	4455	10911	8424	4265	14888	5016	11962	16730	21153	17696	1334	5471	23142	
nsa-miR-10b-3p	ACAGATTCG	1 hsa-miR-1	17	52	18	103	112	19	66	50	86	135	30	212	22	120	81	11	285	126	
nsa-miR-10b-5p	TACCCTGTA	1 hsa-miR-1	2805	13185	7755	12767	7621	6282	19979	19539	6810	24409	11998	21541	25879	49145	21149	876	27257	25529	
nsa-miR-15a-3p	CAGGCCATA	1 hsa-miR-1	0	3	3	0	0	4	0	0	3	0	0	2	0	0	0	4	0	0	
nsa-miR-15a-5p	TAGCAGCAC	1 hsa-miR-1	255	1841	536	403	327	169	81	581	500	143	205	481	156	166	678	1450	823	2456	
nsa-miR-15b-3p	CGAATCATT	1 hsa-miR-1	748	11102	3038	797	795	752	315	1376	1415	1205	744	4403	560	657	853	2330	521	1942	
nsa-miR-15b-5p			935	6043	1614	636	881	468	380	1214	1459	441	752	1495	397	354	1557	4316	519	3515	
sa-miR-16-1-3p	TAGCAGCAC CCAGTATTA	比兩表初步驚選	2	20	3	6	1	6	0	5	5	0	4	10	3	23	4	23	0	4	
sa-miR-16-2-3p		DALATE baa-miR-1	12598	54448	38306	18606	9506	8295	6314	18786	22472	14353	23321	64958	18697	19103	21642	42334	7956	37752	
sa-miR-16-5p	TAGCAGCAC	RNA項門a-miR-1	10502	47861	17510	9829	4306	5171	2176	8760	11870	3239	5066	9497	3584	2354	10367	26645	4387	22659	
sa-miR-17-3p	ACTGCAGTG	1 hsa-miR-1	19	175	86	25	39	20	8	57	45	20	21	62	45	27	36	229	60	74	
sa-miR-17-5p	CAAAGTGCT	1 hsa-miR-1	1411	6124	4617	2600	1659	1002	666	2124	2984	1797	1196	1441	1026	1175	2519	6260	624	2117	
sa-miR-18a-3p	ACTGCCCTA	1 hsa-miR-1	50	437	274	48	78	33	77	50	124	131	60	265	42	189	128	141	100	121	
sa-miR-18a-5p	TAAGGTGCA	1 hsa-miR-1	49	262	218	166	84	52	27	138	151	62	45	49	47	126	137	485	29	180	
sa-miR-18b-3p	TGCCCTAAA	7 1 hsa-miR-1	2	7	3	2	1	0	0	0	1	1	6	19	0	6	8	2	0	4	
nsa-miR-18b-5p	TAAGGTGCA	1 hsa-miR-1	4	37	17	20	16	1	2	22	22	7	3	14	4	5	14	55	7	36	
sa-miR-19a-3n	TGTGCAAAT	1 hea-miR-1	210	1761	417	1150	540	EDE	150	072	745	111	200	014	107	202	475	1250	220	1007	

Data Merged

4	A B	С	D	E	F G	Н	1	J	K	L	M	N	0	Р	Q	R	S	T	U	V
1 II	Study	Stage	Grade	Histology	Age Pathology	outcome_c	CA-125	CA-125	>3 hsa-let-7a-3	hsa-let-7a-5	hsa-let-7b-	hsa-let-7b-	hsa-let-7c-	hsa-let-7d-	hsa-let-7d-!	hsa-let-7e-5	hsa-let-7f-5	hsa-let-7g-l	hsa-let-7i-5	hsa-miR-1
2	1 NECC	*	*	control	53 control	control	#	*	1.630462	4.186283	0.639502	3.939203	2.781	2.231032	3.167665	1.804878	4.069749	4.142388	4.29829	1.506029
3	10 PMP	*	*	serous cyst	t 45 benign	benign	17.	4 BBC	1.654457	4.035057	1.062944	3.696924	2.575665	2.693975	3.074113	1.870031	3.986123	3.595796	4.070027	2.155441
4	100 PMP	II		3 serous adei	1 52 I/II	invasive	113	2 CA	1.688492	3.746013	1.404598	4.310191	2.726369	2.833369	2.524331	1.976228	3.641565	3.590177	3.869842	1.226399
5	101 PMP	II		3 mixed with	n 59 I/II	invasive	542.	6 CA	2.288865	2.986056	1.27711	3.750561	2.029923	2.943666	2.322157	1.798989	3.344037	3.35462	3.940302	1.226399
6	102 PMP	*	*	serous cyst	t 53 benign	benign	#	*	1.875833	4.023679	1.448065	4.017818	2.864536	3.015019	2.804518	2.457346	3.956777	3.659199	3.916113	1.322702
7	103 NECC	*	*	control	53 control	control	#	*	1.792358	3.675841	1.296086	4.291353	2.605935	2.679978	2.601779	1.605416	3.520133	3.497688	3.945064	0.577276
8	104 PMP	III		2 clear cell a	62 III/IV	invasive	#	*	1.847796	3.743381	0.721939	3.800174	2.497354	2.198513	2.611616	2.042312	3.763583	3.384017	3.8527	1.356471
9	105 PMP	I		1 endometric	45 I/II	invasive	31.	4 BBC	2.030103	3.809303	1.420149	4.317201	2.703967	2.900169	2.753855	1.989602	3.779855	3.671378	3.98902	1.305231
10	106 PMP	II		3 serous adei	1 48 I/II	invasive	68	1 CA	1.709485	3.510758	1.371757	3.730733	2.331247	2.522019	2.409475	1.95892	3.507009	3.230848	3.641276	1.286774
11	107 PMP	II		2 serous ader	r 55 I/II	invasive	88.	6 CA	1.88981	4.139097	1.029112	4.171426	2.847593	2.286256	2.9984	1.890304	4.084689	3.858878	4.219908	1.819692
12	108 PMP	III		3 clear cell a	< 50 III/IV	invasive	721.	1 CA	1.630896	3.95775	1.029112	3.857679	2.58789	2.77785	2.980401	2.435426	3.885882	3.610706	4.055711	1.677874
13	109 PMP	*	*	serous cyst	t 50 benign	benign	\$	*	1.994874	3.60265	0.788612	3.836927	2.469485	2.233182	2.644462	1.779064	3.643883	3.550908	3.93575	2.06071
14	11 PMP	*		0 serous bord	59 borderline	boardline	42.	8 CA	1.688057	3.991001	1.181827	3.729107	2.565115	2.673183	3.072414	2.100621	3.941649	3.556618	4.124222	2.414724
15	110 PMP	*	*	serous cyst	t 52 benign	benign	\$	*	1.563689	4.168147	0.946675	3.935105	2.651534	2.431707	3.165261	2.031309	3.995825	3.829709	4.083563	1.550175
16	111 PMP	*	*	serous cyst	t 49 benign	benign	\$	*	1.363483	3.90298	1.782944	4.157836	2.754145	3.169608	2.620071	2.301248	3.675944	3.425196	3.625964	1.457101
17	112 PMP	III		3 mixed with	n 57 III/IV	invasive	20.	9 BBC	2.222003	4.132299	1.297726	3.9602	2.756132	2.489379	3.073251	2.129538	4.068948	3.7833	4.117629	1.927487
18	113 PMP	I		1 endometric	65 I/II	invasive	‡	*	1.809257	3.952609	1.711772	4.089466	2.725685	2.877331	2.884553	2.119838	3.813429	3.572154	3.780232	1.286774
19	114 PMP	II		3 serous adei	ı 45 I/II	invasive	19.	4 BBC	1.927998	3.980852	1.208797	4.290834	2.750331	2.674247	3.087048	1.999373	3.948632	3.653166	4.049903	1.693467
20	115 PMP	I		2 serous adei	r 52 I/II	invasive	\$	*	1.909338	3.996287	1.354376	3.912793	2.603325	2.676512	3.122608	2.094614	3.910578	3.611819	3.953515	1.550438
21	116 PMP	I		1 serous ader	r 73 I/II	invasive	12	8 CA	1.957366	4.068748	1.1566	4.383122	2.857974	2.56622	3.009838	2.220269	4.002625	3.788261	4.114454	1.103446
22	117 PMP	*		0 serous bord	62 borderline	boardline	4	2 CA	2.079113	3.535934	1.352736	4.341791	2.588751	2.624019	2.580081	1.751645	3.447535	3.508015	3.836654	1.590392
23	118 PMP	*		0 serous bord	61 borderline	boardline	‡	*	1.895986	3.606237	1.181827	4.3596	2.546303	2.559551	2.688493	1.422525	3.418946	3.522385	3.935804	0.890676
24	119 PMP	II		3 endometric	46 I/II	invasive	37	1 CA	1.688492	3.566177	1.232757	3.936407	2.397266	2.554341	2.315029	1.847004	3.441327	3.2092	3.419701	1.226399
25	12 PMP	II		2 clear cell a	< 59 I/II	invasive	12	5 CA	1.605447	4.19532	0.990552	3.545807	2.603325	2.637089	3.146248	1.842431	4.249165	3.867669	4.278484	1.847784
26	120 PMP	*	*	endometric	55 benign	benign	4.	2 BBC	1.875833	3.991119	1.475771	3.95212	2.696676	2.722695	3.01667	2.270918	3.941912	3.565202	3.794142	1.825189
27	13 PMP	*	*	serous cyst	t 70 benign	benign	1	2 BBC	1.775221	4.080932	1.402959	3.767577	2.569941	2.738647	3.124515	1.903352	4.005133	3.709852	4.01349	2.22906
28	14 PMP	III		3 endometric	57 III/IV	invasive	382.	2 CA	2.119942	3.069252	1.183467	4.340032	2.234647	3.130066	2.383625	1.35761	3.090367	3.026664	3.706546	-0.15015
29	15 PMP	*		0 serous bord	56 borderline	boardline	450.	3 CA	1.698685	4.193465	1.12636	3.778023	2.717338	2.643231	3.125647	1.824495	4.197283	3.847564	4.243657	1.736994
30	16 PMP	III		3 endometric	63 III/IV	invasive	100	2 CA	1.677587	4.101587	1.1566	3.949511	2.732478	2.834927	3.087048	1.914381	4.017649	3.520597	4.141287	2.010683
31	17 PMP	*		0 serous bord	69 borderline	boardline	38	8 CA	1.57792	3.547338	1.386842	4.545	2.492773	3.176411	2.909948	1.773715	3.1007	2.960178	3.51765	0.577276
32	18 PMP	*		0 serous bord	50 borderline	boardline	11	8 CA	1.719167	3.851681	1.433534	3.293219	2.31643	2.790763	2.815361	1.555404	3.829598	3.644216	3.901004	2.358547
33	19 PMP	III		2 endometric	55 III/IV	invasive	\$	*	1.809257	4.256018	1.317425	3.766146	2.822789	2.728867	3.114951	1.83781	4.209215	3.872307	4.107927	2.144539
34	2 PMP	*		0 serous bord	58 borderline	boardline	76	3 CA	1.939559	3.975204	1.181827	3.725716	2.693751	2.67546	2.970325	1.344445	4.000097	3.790741	4.235418	2.363795
35	20 PMP	II		3 serous adei	r 74 I/II	invasive		9 BBC	2.044176	4.305862	1.463774	4.327389	3.032641	2.897492	3.27145	2.161899	4.144658	3.71961	4.333168	1.863838

The key point what we got

- Why the ML algorithms without boosting ensemble models, such as XGBoost ??
 - In recent years, XGBoost is a popular tool among a lot of campaigns due to its high performance.
- How to deal with hyperparameter tuning ??
 - Some ML algorithm must tune hyperparameters for performing well, e.g. XGBoost .
- If there is a automatic way to select feasure??

Traditional ML vs AutoML

Traditional Machine Learning

rminer package in r

- new automated machine learning (AutoML)
 - Versions: 1.4.6 / 1.4.5 / 1.4.4
 - 14 classification and 15 regression methods
- Multi-class Classification
 - conditional inference tree
 - generalized linear model (GLM) with elastic net regularization
 - decision tree
 - k-nearest neighbor
 - support vector machine
 - least squares support vector machine
 - multilayer perceptron with one hidden layer
 - random forest
 - XGBoost
 - Bagging
 - adaboost.M1 method
 - linear discriminant analysis
 - multinomial logistic regression

The tricky thing about data

Stage III/IV: 45

Table 2. Demographics of patients after stratified random sampling into training and testing sets.

	Training (n = 135)	Testing (n = 44)	p-value
Age, years, median (SD) *	56 (8.1)	56 (8.3)	1.0
CA-125, units/ml, median (SD) *	126.5 (1193.5)	105.6 (577.8)	0.91
Pathology, n (%) [†]			1.0
Control	11 (8.1)	4 (9.1)	
Benign lesions	34 (25.2)	11 (25.0)	
Borderline tumors	16 (11.9)	5 (11.4)	
Stage I/II invasive cancers	41 (30.4)	12 (27.3)	
Stage III/IV invasive cancers	33 (24.4)	12 (27.3)	

Stage III/IV: 46 &

3 patients coding borderline

	A	В	C	D	E
61	ID 🔻	Study	Stage	Grade	Histology
	e1012	ERA	ш	0	serous borderline
	e1027	ERA	Ш	0	serous borderline
	e1048	ERA	Ш	0	serous borderline

Grade = 0 & Histology written as "borderline" means that those case were checked by examination in the pathology lab

All tool we used

- •R
 - openxlsx
 - rminer
 - sampling
 - caret
- Python
 - klearn
 - sklego
 - pgmpy.models
 - pandas
 - numpy

The same feasures in original models

Significance-based selection	Correlation-based feature subset selection	Expression fold change selection
miR-29a-3p	miR-16-2-3p	miR-23b-3p
miR-30d-5p	miR-200a-3p	miR-29a-3p
miR-200a-3p	miR-200c-3p	miR-32-5 p
miR-200c-3p	miR-320b	miR-92a-3p
miR-320d	miR-320d	miR-150-5 p
miR-320c		miR-200a-3p
miR-450b-5p		miR-200c-3p
miR-203a		miR-203a
miR-486–3 p		miR-320c
miR-1246		miR-320d
miR-1307–5 p		miR-335-5 p
		miR-450b-5p
		miR-1246
		miR-1307-5 p

What we found¹?

- The result Kuan-Hung did has inferior result.
 - may be due to statistical bias. □

Our result

	Significance-based variable subset	Correlation-based feature selection subset	Fold change-based variable subset
Linear discriminant analysis	0.76	0.73	0.76
Logistic regression	0.76	0.73	0.77
Neural network	0.77	0.73	0.76
Support vector machine	0.7	0.67	0.71
Naive Bayes classifier	0.66	0.71	0.66
Random forest	0.77	0.71	0.72

Table 4. Performance of the eleven statistical models on the testing set by variable selection method. Results are shown for the testing set.

	Variable selection method						
Statistical model	Significance-based variable subset AUC (95% CI)	Correlation-based feature selection subset AUC (95% CI)	Fold change-based variable subset AUC (95% CI)				
Linear discriminant analysis	0.80 (0.66-0.93)	0.76 (0.62-0.90)	0.78 (0.64-0.92)				
Logistic regression	0.81 (0.68-0.94)	0.75 (0.61–0.90)	0.82 (0.70-0.94)				
Neural network	0.84 (0.72-0.96)	0.75 (0.60-0.89)	0.90 (0.81-0.99)				
Support vector machine	0.77 (0.63-0.91)	0.73 (0.58-0.87)	0.77 (0.63-0.91)				
Multivariate adaptive regression splines	0.57 (0.40–0.74)	0.66 (0.49–0.82)	0.73 (0.58–0.88)				
Naive Bayes classifier	0.75 (0.60-0.89)	0.68 (0.52-0.84)	0.75 (0.60-0.89)				
Least Absolute Deviation regression tree	0.77 (0.63–0.91)	0.61 (0.44–0.78)	0.69 (0.53–0.84)				
Functional tree	0.78 (0.64-0.91)	0.77 (0.63-0.91)	0.68 (0.52-0.84)				
Bayesian network	0.72 (0.56-0.87)	0.67 (0.52-0.83)	0.72 (0.56-0.87)				
Random forest	0.78 (0.64-0.91)	0.71 (0.56-0.86)	0.76 (0.62-0.90)				
Elastic net	0.80 (0.67-0.93)	0.76 (0.62-0.90)	0.79 (0.66-0.92)				

What we found²?

•boosting ensemble models may be another good choice.

Model	classification accuracy rate	weighted True Positive rate	weighted F1 score
conditional inference tree(ctree)	50	50	38.3
generalized linear model (GLM) with lasso or elasticnet regularization(cv.glmnet)	54.5	54.5	40.6
decision tree(dt)	54.5	54.5	52.1
k-nearest neighbor(knn)	50	50	50.5
support vector machine(svm)	52.3	52.3	35.9
least squares support vector machine(lssvm)	52.3	56.8	59.1
Neural Network(multilayer perceptron, mlp)	47.7	43.2	50.5
random Forest	52.3	56.8	45.7
xgboost	56.8	56.8	53.1
bagging	56.8	56.8	49.7
adaboost.M1 method(boosting)	56.8	61.4	53.1
linear discriminant analysis(lda)	43.2	43.2	42.6
logistic regression(multinomial)	47.7	47.7	47.2
naiveBayes	43.2	43.2	44.2

What we found³?

- We tried to use Recursive Feature Elimination to select miRNA automatically
 - The result are inconsistent

Reproducibility

- •How to document our project? How to maintain our code? How to reproduce our result?
 - 峻福part: data manipulation & run"f_project_tmp.r"
 - 冠宏part: use data "final_dset_combine.csv" & run "test.py"

Teamwork coordination

- 峻福:research on feature engineering, run AutoML methods which is not implemented by the author, edit Github
- 冠宏:do some package research, implement the methods mentioned in the paper, edit Github, edit slides

