第七章 信号处理电路

7.2 电压比较器

7.2 电压比较器

电压比较器将一个模拟量输入电压与一个参考电压进行比较,输出只有两种可能的状态:高电平或低电平。

比较器中的集成运放一般工作在非线性区;处于开环状态或引入正反馈。

分类: 过零比较器、单限比较器、滞回比较器及双限比较器。

集成运放的非线性工作区

电路中没有引入负反馈或引入的是正 反馈,理想运放工作于非线性区。

因其放大倍数趋于无穷大,所以输出 $u_o = \begin{cases} U_{\mathrm{OPP}} & u_+ > u_- \\ - U_{\mathrm{OPP}} & u_+ < u_- \end{cases}$ 电压只有两种可能:

因为
$$r_{id} \rightarrow \infty$$
,故 $i_+ = i \approx 0$ "虚断"

一、单限电压比较器

过零电压比较器

阈值电压 (门限电 平): 当 比较器的 输出电压 由一种状 态跳变为 另一种状 态所对应 的输入电 压。

集成运放的净输入电压等于输入电压,为保护集成运放的输入端,需加输入端限幅电路。

电压比较器输入级的保护电路

输出限幅电路

为适应负载对电压幅值的要求,输出端加限幅电路。

另一种形式的限幅电路

设任何一个稳压管被反向击穿时,两个稳压管两端总的 U_Z
的稳定电压为 U_Z
< U_{Opp}

当 $u_{\rm I}$ < 0 时,不接稳压管时, $u_{\rm O}$ = + $U_{\rm OPP}$,接入稳压管后,左边的稳压管被反向击穿,集成运放的反向输入端"虚地", $u_{\rm O}$ = + $U_{\rm Z}$;

当 $u_{\rm I} > 0$ 时,右边的稳压管被反向击穿, $u_{\rm O} = -U_{\rm Z}$;

采用该输出限幅电路的优点

- (1) 提高了输出电压的变换速度
- (2)净输入为零,保护输入端

分析电压传输特性三要素:

- (1)由集成运放输出端所接的限幅电路来确定电压比较器的输出高、低电平U_{OH}、U_{OI};
- (2)写出运放同相输入端、反相输入端电位表达式 u_+ 、 u_- ,令 u_+ = u_- ,解得的输入电压 u_I 就是阈值电压 U_T ;
- (3)uo在ur过Ur时的跃变方向决定于ur作用于运放的哪个输入端。

一般单限比较器

(a)

$$u_0 = \pm U_Z$$

$$u_{-} = \frac{R_{1}}{R_{1} + R_{2}} u_{I} + \frac{R_{2}}{R_{1} + R_{2}} U_{REF} \qquad u_{+} = 0$$

$$u_{-} = u_{+} = 0$$

$$U_T = -\frac{R_2}{R_1} U_{REF}$$

- (1) 若要 U_{T} < 0,则应如何修改电路?
- (2) 若要改变曲线跃变方向,则应如何修改电路?
- (3) 若要改变 $U_{\rm OL}$ 、 $U_{\rm OH}$ 呢?

另一种输出限幅电路的单限比较器

例:如图所示电路中, $R_1=R_2=5K$, $U_{REF}=2V$, $U_Z=5V$,输入电压波形如图所示,画出输出电压波形。

解:
$$U_O = \pm U_Z = \pm 5V$$

$$U_T = -\frac{R_2}{R} U_{REF}$$

单限比较器,输入电压在阈值电压 附近的任何微小变化,都将引起输 出电压的跃变,因此灵敏性较高, 但抗干扰能力差。

二、滞回电压比较器

$$U_{0} = \pm U_{Z}$$

$$U_{+} = \pm \frac{R_{1}}{R_{1} + R_{2}} U_{Z}$$

$$U_{-} = U_{I}$$

$$\Leftrightarrow U_{-} = U_{+}$$

$$\Leftrightarrow U_{T} = \pm \frac{R_{1}}{R_{1} + R_{2}} U_{Z}$$

如何改变滞回比较器的电压传输特性

- 1. 若要电压传输特性曲线左右移动,则应如何修改电路?
- 2. 若要电压传输特性曲线上下移动,则应如何修改电路?

改变输出 限幅电路

三 双限比较器

参考电压 $U_{REF1} > U_{REF2}$

若 u_1 低于 U_{REF2} ,运放 A_1 输出低电平, A_2 输出高电平,二极管 VD_1 截止, VD_2 导通,输出电压 u_0 为高电平;

双限比较器

若 $u_{\rm I}$ 高于 $U_{\rm REF1}$, 运放 $A_{\rm I}$ 输出高电平, $A_{\rm 2}$ 输出低电平,二极管 $VD_{\rm 2}$ 截止, $VD_{\rm I}$ 导通,输出电压 $u_{\rm O}$ 为高电平;

当 u_1 高于 U_{REF2} 而低于 U_{REF1} 时,运放 A_1 、 A_2 均输出低电平,二极管 VD_1 、 VD_2 均截止,输出电压 u_0 为低电平;

综上所述,双限比较器在输入信号 $u_{\rm I} < U_{\rm REF2}$ 或 $u_{\rm I} > U_{\rm REF1}$ 时,输出为高电平;而当 $U_{\rm REF2} < u_{\rm I} < U_{\rm REF1}$ 时,输出为低电平。

下门限电平 $U_{TL} = U_{REF2}$ 。 上门限电平 $U_{TH} = U_{REF1}$; 当 u_1 高于 U_{REF2} 而低于 U_{REF1} 时,运放 A_1 、 A_2 均输出低电平,二极管 VD_1 、 VD_2 均截止,输出电压 u_0 为低电平;

综上所述,双限比较器在输入信号 $u_{\rm I} < U_{\rm REF2}$ 或 $u_{\rm I} > U_{\rm REF1}$ 时,输出为高电平;而当 $U_{\rm REF2} < u_{\rm I} < U_{\rm REF1}$ 时,输出为低电平。

下门限电平 $U_{TL} = U_{REF2}$ 。 上门限电平 $U_{TH} = U_{REF1}$;