

Contents lists available at ScienceDirect

# Journal of Algebra

www.elsevier.com/locate/jalgebra



# The quaternion group has ghost number three



Fatma Altunbulak Aksu<sup>a,1</sup>, David J. Green<sup>b,\*</sup>

#### ARTICLE INFO

#### Article history: Received 10 January 2016 Available online 30 August 2016 Communicated by Markus Linckelmann

MSC: primary 20C20 secondary 20D15, 20J06

Keywords: Quaternion group Ghost map Ghost number Dade's generators Kronecker quiver Linear relation

#### ABSTRACT

We prove that the group algebra of the quaternion group  $Q_8$  over any field of characteristic two has ghost number three. © 2016 Elsevier Inc. All rights reserved.

<sup>&</sup>lt;sup>a</sup> Dept of Mathematics and Computer Science, Çankaya University, Ankara, Turkey

<sup>&</sup>lt;sup>b</sup> Institut für Mathematik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

<sup>\*</sup> Corresponding author.

 $E\text{-}mail\ addresses:\ altunbulak@cankaya.edu.tr}$  (F. Altunbulak Aksu), david.green@uni-jena.de (D.J. Green).

 $<sup>^1</sup>$  The author was supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK-BIDEP-2219).

### 1. Introduction

The study of ghost maps in stable categories originated with Freyd's generating hypothesis in homotopy theory [6], which is still an open question. In this paper we are concerned with ghosts in modular representation theory. Let G be a group and K a field of characteristic p. A map  $f: M \to N$  in the stable category  $\operatorname{stmod}(KG)$  of finitely generated KG-modules is called a *ghost* if it vanishes under Tate cohomology, that is if  $f_*: \hat{H}^*(G, M) \to \hat{H}^*(G, N)$  is zero. The ghost maps then form an ideal in  $\operatorname{stmod}(KG)$ , and Chebolu, Christensen and Mináč [3] define the *ghost number* of KG to be the nilpotency degree of this ideal.

Determining the exact value of the ghost number is hard in all but the simplest cases. In [4], Christensen and Wang studied ghost numbers for p-group algebras. They gave conjectural upper and lower bounds for the ghost number of an arbitrary p-group, and also showed that the ghost number (over a field of characteristic two) of the quaternion group  $Q_8$  is either three or four. In our earlier paper [1], we established most cases of their conjectural bounds. In this paper, we shall prove the following theorem.

**Theorem 1.1.** Let K be any field of characteristic two. Then the group algebra  $KQ_8$  has ghost number three.

Let us call a composition of n ghost maps an n-fold ghost. Given the result of Christensen and Wang on  $Q_8$ , our Theorem 1.1 is equivalent to the statement that every threefold ghost map  $M \xrightarrow{f} N$  is stably trivial. To show this, we take any embedding  $M \mapsto I$  of M in a finitely generated  $KQ_8$ -module and show that f factors through I.

In Section 2, we recall Dade's presentation of the group algebra  $KQ_8$  and derive some properties of ghost maps, including the crucial Lemma 2.5. In Section 3, we recall a theorem of Kronecker which classifies the linear relations on a vector space V. This leads us to the construction of the lift in Section 4: We have  $I = KQ_8 \otimes_K V$  for some K-vector space V. As we may assume M to be projective-free, we have  $M \subseteq J \otimes_K V$  for J the Jacobson radical  $J = J(KQ_8)$ . Since a threefold ghost kills  $\operatorname{soc}^3(M)$ , it follows that f factors through  $M/\operatorname{soc}^3(M)$ , which is a subspace of  $(J/J^2) \otimes_K V \cong V^2$ . That is,  $M/\operatorname{soc}^3(M)$  is a linear relation on V; and using Lemma 2.5 we are able to construct a lift for each indecomposable summand in its Kronecker decomposition, thus proving the theorem.

### 2. Ghost maps and Dade's generators

We only need the following property of ghost maps.

**Lemma 2.1** ([3], Proposition 2.1). Let G be a p-group, K a field of characteristic p, and  $M \xrightarrow{f} N$  a ghost map between projective-free KG-modules. Then  $\mathrm{Im}(f) \subseteq \mathrm{rad}(N)$  and  $\mathrm{soc}(M) \subseteq \ker(f)$ .  $\square$ 

The next result is presumably well-known.

**Lemma 2.2.** Let G be a finite group, K/k a finite field extension, and  $M \xrightarrow{f} N$  a map  $in \operatorname{stmod}(kG)$ . If  $K \otimes_k M \xrightarrow{\operatorname{Id}_K \otimes f} K \otimes_k N$  is  $trivial \ in \operatorname{stmod}(KG)$ , then f is  $trivial \ in \operatorname{stmod}(kG)$ . Hence ghost number  $(kG) \leq \operatorname{ghost}$  number (kG).

**Proof.** As a map of k-vector spaces, inclusion  $k \stackrel{i}{\hookrightarrow} K$  is a split monomorphism; let  $K \stackrel{\pi}{\twoheadrightarrow} k$  be a splitting. Suppose that  $\mathrm{Id}_K \otimes f$  factors through a finitely generated KG-projective module P. Then  $f = (\pi \otimes \mathrm{Id}_N) \circ (\mathrm{Id}_K \otimes f) \circ (i \otimes \mathrm{Id}_M)$  also factors through P, which is also a finitely generated kG-projective module. The last part follows, since extending scalars preserves ghost maps.  $\square$ 

**Remark 2.3.** Consider now the quaternion group  $Q_8 = \langle i, j \rangle$ . Let K be a field of characteristic 2 which contains  $\mathbb{F}_4 = \{0, 1, \omega, \bar{\omega}\}$ . In [5, (1.2)], Dade defines  $x, y \in J(KQ_8)$  by

$$x = \omega i + \bar{\omega} j + ij$$
  $y = \bar{\omega} i + \omega j + ij$ .

He then shows that  $KQ_8$  is the K-algebra generated by x, y with relations

$$x^2 = yxy$$
  $y^2 = xyx$   $xy^2 = y^2x = x^2y = yx^2 = 0$ .

Hence 1, x, y, xy, yx, xyx, yxy, xyxy = yxyx is a K-basis of  $KQ_8$ . Moreover, the terms in the radical and socle series of  $KQ_8$  are as follows:

```
\mathrm{rad}^0(KQ_8) = \mathrm{soc}^5(KQ_8)
                                           is KQ_8
rad(KQ_8) = soc^4(KQ_8)
                                           has basis
                                                             x, y, xy, yx, xyx, yxy, xyxy
\operatorname{rad}^{2}(KQ_{8}) = \operatorname{soc}^{3}(KQ_{8})
                                           has basis
                                                             xy, yx, xyx, yxy, xyxy
\operatorname{rad}^{3}(KQ_{8}) = \operatorname{soc}^{2}(KQ_{8})
                                           has basis
                                                             xyx, yxy, xyxy
\operatorname{rad}^4(KQ_8) = \operatorname{soc}(KQ_8)
                                           has basis
                                                             xyxy
\operatorname{rad}^{5}(KQ_{8}) = \operatorname{soc}^{0}(KQ_{8})
                                           is 0.
```

**Notation.** From now on, we write  $R = KQ_8$  and  $J = J(R) = \operatorname{rad}(R) = (x, y) \leq R$ . Hence  $J^n = \operatorname{rad}^n(KQ_8) = \operatorname{soc}^{5-n}(KQ_8)$ .

**Lemma 2.4.** Suppose that  $[t + J^2(R)] \in \mathbb{P}(J/J^2)$  is neither  $[x + J^2]$  nor  $[y + J^2]$ . Then for all R-modules M, the map  $\operatorname{rad}(M) \to \operatorname{rad}^2(M)$ ,  $m \mapsto tm$  is surjective.

**Proof.** It is enough to prove the case M=R; and by Nakayama it suffices to prove that the map  $J/J^2 \to J^2/J^3$ ,  $r+J^2 \mapsto tr+J^3$  is surjective. As  $J/J^2$  and  $J^2/J^3$  are both two-dimensional,  $r \mapsto tr$  is surjective if and only if it is injective.

If  $t \in \alpha x + \beta y + J^2(R)$  and  $r \in \lambda x + \mu y + J^2(R)$  and then  $tr \in \alpha \mu xy + \beta \lambda yx + J^3(R)$ . So if  $tr \in J^3$  then  $\alpha \mu = 0 = \beta \lambda$ . But the assumption on t means that  $\alpha, \beta$  are both non-zero: so  $r \in 0 + J^2$ .  $\square$  **Lemma 2.5.** Suppose that  $M \xrightarrow{f} N$  is a threefold ghost for  $KQ_8$ , with M, N projective-free. Embedding M in an injective module  $R \otimes_K V$  for some K-vector space V, we have  $M \subseteq J \otimes_K V$ . Suppose further that  $m \in M$  satisfies  $m \in t \otimes v + J^2 \otimes_K V$  with  $v \in V$  and  $t \in \{x, y\}$ . Then there is an  $n \in N$  such that

$$f(m) = \begin{cases} xyxn & t = x \\ yxyn & t = y \end{cases}.$$

**Proof.** We treat the case t=x; the other case is analogous. Hence  $m=x\otimes v+xyu+yxw$  for some  $u,w\in R\otimes_K V$ , and so  $yxm=xyxyw\in\operatorname{soc}(M)$ . Let

$$M = N_0 \xrightarrow{f_1} N_1 \xrightarrow{f_2} N_2 \xrightarrow{f_3} N_3 = N$$

be a realisation of f as a threefold ghost, with  $N_1$  and  $N_2$  projective-free. Recall from Lemma 2.1 that  $soc(N_{i-1}) \subseteq ker(f_i)$  and  $Im(f_i) \subseteq rad(N_i)$ .

Since  $soc(M) \subseteq ker(f_1)$  it follows that  $yxf_1(m) = 0$ . As  $Im(f_1) \subseteq rad(N_1)$  there are  $\alpha, \beta \in N_1$  with  $f_1(m) = x\alpha + y\beta$ . Since  $yxf_1(m) = 0$ , we deduce that  $yxy\beta = 0$  and hence  $xy\beta \in soc(N_1) \subseteq ker(f_2)$ .

Therefore  $xyf_2(\beta) = 0$ . But  $\text{Im}(f_2) \subseteq \text{rad}(N_2)$ , and so  $f_2(\beta) = x\gamma + y\delta$  with  $\gamma, \delta \in N_2$ . From  $xyf_2(\beta) = 0$  it follows that  $xyx\gamma = 0$ , hence  $yx\gamma \in \text{soc}(N_2) \subseteq \text{ker}(f_3)$  and  $yxf_3(\gamma) = 0$ . It follows that

$$f(m) = xf_3f_2(\alpha) + yxf_3(\gamma) + xyxf_3(\delta) = xf_3f_2(\alpha),$$

since  $f_3(\delta) \in \operatorname{rad}(N)$  and therefore  $xyxf_3(\delta) \in \operatorname{rad}^4(N) = 0$ . So f(m) = xn' for  $n' = f_3f_2(\alpha) \in \operatorname{rad}^2(N)$ . But then  $n' = xyn'_1 + yxn'_2$  for some  $n'_1, n'_2 \in N$ , and so  $f(m) = xyxn'_2$ .  $\square$ 

#### 3. Kronecker's Theorem

**Theorem 3.1** (Kronecker). Let K be a field, V a finite-dimensional K-vector space, and  $L \subseteq V^2$  a subspace. Suppose further that the pair (V, L) is indecomposable, in the following sense:  $V \neq 0$ , and there is no proper direct sum decomposition  $V = V_1 \oplus V_2$  such that  $L = (L \cap V_1^2) \oplus (L \cap V_2^2)$ . Then there is a basis  $e_1, \ldots, e_n$  of V such that one of the following cases holds:

- (1) L has basis  $(e_1,0), (e_2,e_1), (e_3,e_2), \ldots, (e_n,e_{n-1}), (0,e_n)$ .
- (2) L either has basis  $(e_1,0)$ ,  $(e_2,e_1)$ ,  $(e_3,e_2)$ , ...,  $(e_n,e_{n-1})$  or it has basis  $(0,e_1)$ ,  $(e_1,e_2)$ ,  $(e_2,e_3)$ , ...,  $(e_{n-1},e_n)$ .
- (3) L has basis  $(e_2, e_1), (e_3, e_2), \ldots, (e_n, e_{n-1}).$
- (4)  $L = \{(v, F(v)) \mid v \in V\}$  for an automorphism F of V which has indecomposable rational canonical form with respect to the basis  $e_1, \ldots, e_n$ . A rational canonical form

is indecomposable if it consists of only one block, whose characteristic polynomial is moreover a power of an irreducible element of K[X].

**Proof.** In the language of [2, p. 112], the assumptions say that L is an indecomposable linear relation on V, which is the same thing as an indecomposable representation of the Kronecker quiver with  $\ker(a) \cap \ker(b) \neq 0$ . So the result can be read off from Kronecker's Theorem (Theorem 4.3.2 of [2]): note that Case (i) in [2] corresponds to our cases (2) and (4).  $\square$ 

**Corollary 3.2.** For every subspace  $L \subseteq V^2$  there is a direct sum decomposition  $V = \bigoplus_{i=1}^r V_i$  such that

- (1)  $L = \bigoplus_{i=1}^r L_i \text{ for } L_i = L \cap V_i^2$ .
- (2) For each  $1 \le i \le r$  the pair  $(V_i, L_i)$  is indecomposable in the sense of Theorem 3.1.

We write 
$$(V, L) = \bigoplus_{i=1}^{r} (V_i, L_i)$$
.  $\square$ 

## 4. Constructing the lift

Recall from Remark 2.3 that  $x+J^2$ ,  $y+J^2$  is a basis of  $J/J^2$ . Let V be a finite dimensional K-vector space. Then any submodule  $M\subseteq J\otimes_K V$  defines a subspace of  $V^2$ :

$$L_{x,y}(M) := \left\{ (u, w) \in V^2 \mid x \otimes u + y \otimes w \in M + J^2 \otimes_K V \right\}.$$

The following result is an immediate consequence of the description of the radical and socle series in Remark 2.3.

**Lemma 4.1.** Let  $M \subseteq J \otimes_K V$ . Then

- $(1) \operatorname{soc}^3(M) = M \cap (J^2 \otimes_K V).$
- (2) Set  $L = L_{x,y}(M)$ , and let  $(V, L) = \bigoplus_{i=1}^r (V_i, L_i)$  be the direct sum decomposition of Corollary 3.2. If each  $L_i$  has basis  $(u_{i1}, w_{i1}), \ldots, (u_{i,d_i}, w_{i,d_i})$ , then for any choice of elements

$$m_{ij} \in M \cap (x \otimes u_{ij} + y \otimes w_{ij} + J^2 \otimes_K V)$$
,

we have 
$$M = soc^3(M) + \sum_{i=1}^{N} M_i$$
, where  $M_i = \sum_{j=1}^{d_i} Rm_{ij}$ .  $\square$ 

**Proposition 4.2.** For  $M \subseteq J \otimes_K V$  set  $L = L_{x,y}(M)$ . Let  $(V, L) = \bigoplus_{i=1}^r (V_i, L_i)$  be a decomposition into indecomposables. Suppose additionally that for each indecomposable pair  $(V_i, L_i)$  which satisfies Case (4) of Theorem 3.1, the roots of the characteristic polynomial of the automorphism F all lie in K.

Suppose further that N is projective-free. Then every threefold ghost  $M \xrightarrow{f} N$  extends to a map  $R \otimes_K V \xrightarrow{\bar{f}} \operatorname{rad}^2(N)$ .

**Proof.** Suppose first that the indecomposable  $(V_i, L_i)$  satisfies Case (1) of Theorem 3.1. Then  $V_i$  has a basis  $e_1, \ldots, e_n$  such that  $L_i$  has basis  $(0, e_1), (e_1, e_2), (e_2, e_3), \ldots, (e_{n-1}, e_n), (e_n, 0)$ . By construction of L, there are  $m_0, \ldots, m_n \in M$  such that  $m_j \in x \otimes e_j + y \otimes e_{j+1} + J^2 \otimes_K V$ , where  $e_0 = e_{n+1} = 0$ . Since  $\operatorname{Im}(f) \subseteq \operatorname{rad}^3(N)$  there are  $a_j, b_j \in N$  for  $0 \leq j \leq n$  such that

$$f(m_j) = xyxa_j + yxyb_j;$$

and by Lemma 2.5, we may take  $a_0 = b_n = 0$ . We then define  $\bar{f}$  on  $R \otimes_K V_i$  by  $\bar{f}(1 \otimes e_j) = xyb_{j-1} + yxa_j$ . It follows that

$$\bar{f}(y \otimes e_1) = f(m_0)$$
  $\bar{f}(x \otimes e_j + y \otimes e_{j+1}) = f(m_j)$   $\bar{f}(x \otimes e_n) = f(m_n)$ .

The two subcases of Case (2) are analogous to each other, so we only consider the case where  $L_i$  has basis  $(0, e_1)$ ,  $(e_1, e_2)$ ,  $(e_2, e_3)$ , ...,  $(e_{n-1}, e_n)$ . This corresponds to the case  $f(m_n) = 0$  of Case (1) above, where we may take  $a_n = 0$ .

Case (3) is even simpler: this time we have  $f(m_0) = f(m_n) = 0$  and therefore  $b_0 = a_n = 0$ .

Case (4): By assumption, the matrix of F with respect to the basis  $e_1, \ldots, e_n$  of  $V_i$  is a rational canonical form which has only one block, and the minimal polynomial of this block is  $(X - \lambda)^n$  for some  $\lambda \in K^{\times}$ . It follows that there is a basis  $e'_1, \ldots, e'_n$  of  $V_i$  with respect to which the matrix of F is the  $(n \times n)$  Jordan block for the eigenvalue  $\lambda$ . Consequently,  $L_i$  has basis

$$(e_1',\lambda e_1')\,, \qquad (e_j',e_{j-1}'+\lambda e_j') \text{ for } 2 \leq j \leq n.$$

We may therefore pick elements  $m_1, \ldots, m_n \in M$  such that

$$m_1 \in (x + \lambda y) \otimes e'_1 + J^2 \otimes_K V$$
  

$$m_j \in y \otimes e'_{j-1} + (x + \lambda y) \otimes e'_j + J^2 \otimes_K V \quad \text{for } 2 \le j \le n.$$

So since  $f(m_j) \in \operatorname{rad}^3(N)$  for all j, and since  $[x + \lambda y + J^2]$  is neither  $[x + J^2]$  nor  $[y + J^2]$ , Lemma 2.4 tells us that we can inductively pick  $\bar{f}(1 \otimes e'_1), \ldots, \bar{f}(1 \otimes e'_n) \in \operatorname{rad}^2(N)$  such that

$$\bar{f}((x+\lambda y)\otimes e_1') = f(m_1)$$

$$\bar{f}((x+\lambda y)\otimes e_j') = f(m_j) + \bar{f}(y\otimes e_{j-1}') \quad \text{for } 2\leq j\leq n.$$

Treating each summand  $(V_i, L_i)$  in this way we obtain a map  $\bar{f}: R \otimes_K V \to \mathrm{rad}^2(N)$ , which therefore satisfies  $\bar{f}(J^2 \otimes_K V) = 0$ . It follows that all the equations above such as  $\bar{f}(x \otimes e_j + y \otimes e_{j+1}) = f(m_j)$  can be simplified to  $\bar{f}(m_j) = f(m_j)$ . As f and  $\bar{f}$  are also both zero on  $\mathrm{soc}^3(M) \subseteq J^2 \otimes_K V$ , it follows by Lemma 4.1 that  $\bar{f}|_M = f$ .  $\square$ 

**Proof of Theorem 1.1.** By [4], the ghost number is at least three. So we have to show that every threefold ghost  $M \xrightarrow{f} N$  is stably trivial. Stripping projective summands if necessary, we may assume that M, N are projective free. Taking an injective hull, we see that M embeds in  $R \otimes_K V$  for some finite-dimensional K-vector space V. Since M is projective free, we actually have  $M \subseteq J \otimes_K V$ .

By Lemma 2.2, we may replace K by a finite extension field: so we may assume that  $\mathbb{F}_4 \subseteq K$ . Set  $L = L_{x,y}(M)$ . Corollary 3.2 says that (V, L) is a direct sum of indecomposables. Replacing K by a finite extension field again if necessary, we may assume in Case (4) of Theorem 3.1 that the characteristic polynomial of the automorphism F always splits over K. By Proposition 4.2, it follows that f extends to a map  $\bar{f}: R \otimes_K V \to \mathrm{rad}^2(N)$ . As  $R \otimes_K V$  is free and hence projective, this factorisation

$$M \xrightarrow{\text{inclusion}} R \otimes_K V \xrightarrow{\bar{f}} \operatorname{rad}^2(N) \hookrightarrow N$$

of f demonstrates that f is stably trivial.  $\square$ 

## Acknowledgments

The first author would like to thank the Institute for Mathematics of the University of Jena for their hospitality.

# References

- [1] F. Altunbulak Aksu, D.J. Green, On the Christensen–Wang bounds for the ghost number of a *p*-group algebra, J. Group Theory 19 (4) (2016) 609–615.
- [2] D.J. Benson, Representations and Cohomology. I, second edition, Cambridge Studies in Advanced Math., vol. 30, Cambridge University Press, Cambridge, 1998.
- [3] S.K. Chebolu, J.D. Christensen, J. Mináč, Ghosts in modular representation theory, Adv. Math. 217 (6) (2008) 2782–2799.
- [4] J.D. Christensen, G. Wang, Ghost numbers of group algebras, Algebr. Represent. Theory 18 (1) (2015) 1–33.
- [5] E.C. Dade, Une extension de la théorie de Hall et Higman, J. Algebra 20 (1972) 570-609.
- [6] P. Freyd, Stable homotopy, in: Proc. Conf. Categorical Algebra, La Jolla, Calif., 1965, Springer, New York, 1966, pp. 121–172.