Compliance as a function of assessment method

Exposure evaluation in front of a base station panel antenna: 200 W, 900 MHz

FEKO setup

Boresight

- Panel antenna
 - Panel: 2250 mm x 300 mm
 - 200 W total radiated power
- Homogeneous tissue adult sized phantom
 - εr=55, σ=1.05 at 900 MHz
 - ~15,270 dielectric triangles
 - Height=1.75m, mass=64 kg (1000 kg/m³)
 - Phantom on boresight and off-boresight
- SAR and field strengths calculated
 - Results compared to RPS3 occ. limits

SAR: 900 MHz plane wave exposure

- Comparing whole body average SAR_{wb} in FEKO homogeneous phantom to that in heterogeneous NORMAN (Dimbylow, 2002)
- SAR_{wb} 1 V/m (rms) plane wave, vertical polarisation, incident from front
 - FEKO: 16.6 uW/kg
 - NORMAN (2 mm voxel): 17.0 uW/kg

Panel antenna

- Dual frequency 900/1800 MHz panel antenna
 - Vertical polarisation
- Two arrays of vertically stacked half wave dipoles
 - 9 dipoles at 900 MHz and 7 dipoles at 1800 MHz
 - Overall antenna dimensions: 2250mm x 300mm
- Only 900 MHz array active in this example
 - Active 1800 MHz will be included in a future example
- Specifications at 900 MHz
 - 9 half wave dipoles
 - Maximum gain: 16.4 dBi
 - Half power horizontal beamwidth: 98°
 - Total radiated power: 200 W

Antenna pattern data - elevation

Antenna pattern data - azimuth

Scanning and spatial averaging

Process

- FEKO calculated SAR (whole body average and 10g) at different separation distances directly front of the antenna
 - At 0.5m and then from 1m to 15 m in 1m increments
 - Boresight and off-boresight alignment of phantom facing the panel antenna
- At each separation distance, and without the phantom present, performed a scan over a vertical plane to determine the maximum (peak) equivalent power flux density S_{eq}.
 Additionally, performed spatial averaging using the schemes shown on the previous slide
 - $S_{eq} = E_t^2/377$ and E_t is the total field electric strength = $\sqrt{(|E_x|^2 + |E_y|^2 + |E_z|^2)}$ at a point in space
 - Spatial average= $(S_{eq-1}+S_{eq-2}+..+S_{eq-N})/N$ where N is the number of points
 - N = 3, 6, 9 and 20 point schemes
 - the difference between using E_t or H_t field to calculate S_{eq} is explored on the next slide
- Calculated SAR (whole body and 10g) using formulas published by Thors et al (2008)
- Compared results with RPS3 occupational exposure limits

E_t or H_t to calculate S_{eq}?

- Histogram: ratio r=S_{eq}(H_t)/S_{eq}(E_t)
- ~95% of values lie between r=0.90 (2.43%) and r=1.04 (97.41%)
- Used E_t in calcs

Compliance as function of assessment method (boresight exposure @ 900 MHz)

Compliance as function of assessment method (Off-boresight exposure @ 900 MHz)

Summary

- Feko SAR calcs show compliance with RPS3 can be achieved with a separation distance of ~0.75m for boresight and off-boresight alignment of phantom
- Thors SAR estimation formulas are conservative compared to Feko SAR calcs
 - RPS3 compliance can be achieved with a separation distance of 1.5m
- Most conservative compliance estimation occurs when using Peak field strength. Next most conservative is RPS3 spatial averaging
 - RPS3 compliance can be achieved with a separation distance of ~3m.