Aditya Khanna

12 December 2019

Software Architecture – Deployment Blueprints (DB)

Deployment Blueprint Topic: Climate Change Data Aggregation Web Application

Table of Contents:

Deployment Blueprint #1 (DB1) – Data-Centered Architecture Solution
Part 1: Deriving Deployment Blueprints (DB)2
Part 2: Evaluating Solution Blueprint Compliance
Part 3: Planning Evaluation of DB Using an ATAM Quality Attribute Utility Tree22
Deployment Blueprint #2 (DB2) – Client/Server Architecture Solution
Part 1: Deriving Deployment Blueprints (DB)29
Part 2: Evaluating Solution Blueprint Compliance
Part 3: Planning Evaluation of DB Using an ATAM Quality Attribute Utility Tree50

Deployment Blueprint #1 (DB1) – Data-Centered Architecture Solution

Part 1: Deriving Deployment Blueprints (DB)

Figure 1. Graphical Depiction of DB1

Reference with Example of Repository Architecture Style:

TutorialsPoint. "Data-Centered Architecture."

https://www.tutorialspoint.com/software_architecture_design/data_centered_architecture. htm. Accessed 9 December 2019.

Relevant Excerpt from Reference:

"In Repository Architecture Style, the data store is passive and the clients (software components or agents) of the data store are active, which control the logic flow. The participating components check the data-store for changes."

Table 1. Description of Component Elements

Deployment Blueprint Component	Description
Database	The database component is a centralized
	repository that all of the other internal
	components pull verified environmental data
	from. In this deployment blueprint, we make
	the database centralized and emphasize its
	importance in order to model the Repository
	Architecture Style for Data-Centered
	Architecture Solutions. The other components
	are independent of one another in this
	deployment solution, and they can each
	access environmental information within the
	database. By modeling the database in this
	manner, we reduce the work done for data
	transfers between the other internal
	components and. Additionally, we ensure data
	integrity since the database is one centralized
	location. This also allows for scalability and
	reliability.
Map Tool	The map tool component filters certain areas
	based on environmental data and user inputs

	that are acquired from the user interface tool.
	The map tool is able to show, filter, and
	delineate regions that are associated with
	certain environmental filters as well as show
	the environmental information of a specific
	-
	area (which it acquired from the centralized
D . A 1 . T . 1	database).
Data Analysis Tool	The data analysis tool displays and returns
	areas based on environmental and time
	information. The data analysis is used by the
	other internal components to acquire
	environmental information from the
	centralized database – both current and for a
	specified time frame. In this deployment
	blueprint, the data analysis tool now updates
	and stores information in the centralized
	database.
Compare Data Tool	The compare data tool compares the
	environmental information of two specified
	areas. It acquires the environmental data and
	then returns special comparison metrics that
	are used to compare the different areas and
	portray the differences between them. In this
	deployment blueprint, the compare data tool
	now pulls information from the centralized
	database.
User Interface Tool	The user interface tool is specific to the
Oser interface 1001	solution and deployment blueprints; it was not
	specified in the business blueprint. The user
	interface tool invokes the other internal
	components so that the users are not required
	to access and modify the internal system. The
	user interface tool reduces coupling between
	components and adds a layer of abstraction to
	the system (because it invokes internal
	methods according to the user's needs so that
	it can satisfy their requirements).
Information Procurement Tool	The information procurement tool is specific
	to the solution and deployment blueprints; it
	was not specified in the business blueprint. It

procures environmental information from
verified external sources through API calls
and web-scraping methodologies. It then sorts
the acquired environmental information and
then stores the most accurate data in the
centralized database. It is an extra layer of
protection that ensures reliability by
comparing pulled information from different
sources and only storing verified information.

Table 2. Description of Connector Elements (I/O Dependencies)

Deployment Blueprint Connectors	Description
From: Database	Sends environmental data to the map tool
To: Map Tool	component according to input parameters that it received.
From: Database	Sends environmental data to the data analysis
To: Data Analysis Tool	tool component according to input parameters that it received.
From: Database	Sends environmental data to the compare data
To: Compare Data Tool	tool component according to input parameters that it received.
From: Database	Sends a request for new or updated
m to a n	information periodically so that the
To: Information Procurement Tool	information stored in the centralized database is up to date.
From: Map Tool	Sends an area or requirements to the database
To Database	as input data. Expects to receive locations that
To: Database	fit the filtered criteria and/or environmental
	data about the specified region.
From: Data Analysis Tool	Sends an area as input data. Expects to
To: Database	receive environmental information from the
10: Database	specified region.
From: Compare Data Tool	Sends two areas as input data. Expects to
	receive environmental information from the
	specified regions.

To: Database	
From: Information Procurement Tool To: Database	Sends updated environmental data to the database periodically in order to keep the centralized database up to date.
From: User Interface Tool	Sends user inputs in a formatted manner to
To: Map Tool	invoke the map tool component and retrieve environmental information.
From: User Interface Tool	Sends user inputs in a formatted manner to
To: Compare Data Tool	invoke the compare data tool component and retrieve environmental information about two areas.
From: Map Tool	Sends environmental information back to the
To: User Interface Tool	user interface tool, which can be accessed by the users.
From: Compare Data Tool	Sends environmental information from two
To: User Interface Tool	locations back to the user interface tool, which can be accessed by the users.
From: Users	Users send their inputs and requirements to
To: User Interface Tool	the user information tool. These inputs will be circulated throughout the system in order to return the what the user requires.
From: External Data Sources	Sends verified environmental data to the
To: Information Procurement Tool	information procurement tool. There it will be sorted and checked before being stored in the centralized database.

Table 3. Allocation of Solution to Deployment Components

DB Component	SB Components Allocated to DB Component
Database	Database
Map Tool	Map Tool
Data Analysis Tool	Data Analysis Tool

Compare Data Tool	Compare Data Tool
User Interface Tool	User Interface Tool
Information Procurement Tool	N/A

Table 4. Satisfaction of Domain Functions by Solutions

SB Solution Component	BB Functions Satisfied (39/39)
Database	• pullSoilData()
	• pullWaterData()
	• pullAirData()
	• pullTemperatureData()
	• pullWindSpeedData()
	• pullHumidityData()
	• pullPrecipitationData()
	r · · · · · · · · · · · · · · · · · · ·
Map Tool	filterAreaBasedOnSoilData()
-	• filterAreaBasedOnWaterData()
	• filterAreaBasedOnAirData()
	• filterAreaBasedOnTemperatureData()
	• filterAreaBasedOnWindSpeedData()
	• filterAreaBasedOnHumidityData()
	• filterAreaBasedOnPrecipitationData()
Data Analysis Tool	displayCurrentSoilData()
,	displayCurrentWaterData()
	• displayCurrentAirData()
	• displayCurrentTemperatureData()
	• displayCurrentWindSpeedData()
	• displayCurrentHumidityData()
	displayCurrentPrecipitationData()
	• displaySoilDataForTimeFrame()
	• displayWaterDataForTimeFrame()
	displayAirDataForTimeFrame()displayTemperatureDataForTimeFrame()
	 display reinperatureDataForTimeFrame() displayWindSpeedDataForTimeFrame()
	display WindspeedBatar of Fine Frame() displayHumidityDataForTimeFrame()

	displayPrecipitationDataForTimeFrame()
Compare Data Tool	 compareSoilData() compareWaterData() compareAirData() compareTemperatureData() compareWindSpeedData() compareHumidityData() comparePrecipitationData()
User Interface Tool	 searchLocation() clear() zoomIn() zoomOut()

Table 5. Satisfaction of Domain Data by Solutions

SB Solution Component	BB Data Satisfied (24/24)
Database	Soil Data
	Water Data
	Air Data
	Temperature Data
	Wind Speed Data
	Humidity Data
	Precipitation Data
Map Tool	Primary Location Data
	Filtered Area Data – Soil
	Filtered Area Data – Water
	Filtered Area Data – Air
	Filtered Area Data – Temperature
	Filtered Area Data – Wind
	Filtered Area Data – Humidity
	Filtered Area Data – Precipitation

Data Analysis Tool	Specified Time Frame
Compare Data Tool	Secondary Location Data
	Comparison Data – Soil
	Comparison Data – Water
	Comparison Data – Air
	Comparison Data – Temperature
	Comparison Data – Wind Speed
	Comparison Data – Humidity
	Comparison Data – Precipitation
User Interface Tool	N/A

Table 6. BB I/O Mapping to DB

DB Component	I/O Dependency
From: Map Tool	pullSoilData() requires Primary Location
To: Database	Data, which was allocated to the Map Tool component
	• pullWaterData() requires Primary Location
	Data, which was allocated to the Map Tool component
	• pullAirData() requires Primary Location
	Data, which was allocated to the Map Tool component
	• pullTemperatureData() requires Primary
	Location Data, which was allocated to the
	Map Tool component
	• pullWindSpeedData() requires Primary
	Location Data, which was allocated to the
	Map Tool component
	• pullHumidityData() requires Primary
	Location Data, which was allocated to the
	Map Tool component
	• pullPrecipitationData() requires Primary
	Location Data, which was allocated to the
	Map Tool component

From: Compare Data Tool	• pullSoilData() requires Secondary Location
_	Data, which was allocated to the Compare
To: Database	Data Tool component
	• pullWaterData() requires Secondary Location
	Data, which was allocated to the Compare
	Data Tool component
	• pullAirData() requires Secondary Location
	Data, which was allocated to the Compare
	Data Tool component
	• pullTemperatureData() requires Secondary
	Location Data, which was allocated to the
	Compare Data Tool component
	• pullWindSpeedData() requires Secondary
	Location Data, which was allocated to the
	Compare Data Tool component
	• pullHumidityData() requires Secondary
	Location Data, which was allocated to the
	Compare Data Tool component
	• pullPrecipitationData() requires Secondary
	Location Data, which was allocated to the
	Compare Data Tool component
From: Database	• filterAreaBasedOnSoilData() requires Soil
	Data from pullSoilData(), which was
To: Map Tool	allocated in the <i>Database</i> component
	• filterAreaBasedOnWaterData() requires
	Water Data from pullWaterData(), which
	was allocated in the Database component
	• filterAreaBasedOnAirData() requires Air
	Data from pullAirData(), which was
	allocated in the <i>Database</i> component
	• filterAreaBasedOnTemperatureData()
	requires Temperature Data from
	pullTemperatureData(), which was allocated
	in the <i>Database</i> component
	• filterAreaBasedOnWindSpeedData() requires
	Wind Speed Data from pullWind
	SpeedData(), which was allocated in the
	Database component
	• filterAreaBasedOnHumidityData() requires
	Humidity Data from pullHumidityData(),

	which was allocated in the <i>Database</i>
	component
	• filterAreaBasedOnPrecipitationData()
	requires Precipitation Data from
	<pre>pullPrecipitationData(), which was allocated</pre>
	in the <i>Database</i> component
From: Map Tool	displayCurrentSoilData() requires Primary
	Location Data, which was allocated in the
To: Data Analysis Tool	Map Tool component
•	• displayCurrentWaterData() requires Primary
	Location Data, which was allocated in the
	Map Tool component
	• displayCurrentAirData() requires Primary
	Location Data, which was allocated in the
	Map Tool component
	• displayCurrentTemperatureData() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayCurrentWindSpeedData() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayCurrentHumidityData() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayCurrentPrecipitationData() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displaySoilDataForTimeFrame() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayWaterDataForTimeFrame() requires
	Primary Location Data, which was allocated
	in the <i>Map Tool</i> component
	• displayAirDataForTimeFrame() requires
	Primary Location Data, which was allocated
	in the Map Tool component
	• displayTemperatureDataForTimeFrame()
	requires Primary Location Data, which was
	allocated in the Map Tool component
	• displayWindSpeedDataForTimeFrame()
	requires Primary Location Data, which was
	allocated in the Map Tool component
	• displayHumidityDataForTimeFrame()
	requires Primary Location Data, which was
	allocated in the Map Tool component

	displayPrecipitationDataForTimeFrame()
	requires <i>Primary Location Data</i> , which was
	allocated in the <i>Map Tool</i> component
From: Database	displayCurrentSoilData() requires Soil Data
Tion. Buttouse	from <i>pullSoilData()</i> , which was allocated in
To: Data Analysis Tool	the <i>Database</i> component
To Dum Timing sis Tool	 displayCurrentWaterData() requires Water
	Data from pullWaterData(), which was
	allocated in the <i>Database</i> component
	displayCurrentAirData() requires Air Data
	from <i>pullAirData()</i> , which was allocated in
	the <i>Database</i> component
	• displayCurrentTemperatureData() requires
	Temperature Data from
	pullTemperatureData(), which was allocated
	in the <i>Database</i> component
	• displayCurrentWindSpeedData() requires
	Wind Speed Data from pullWindSpeedData(),
	which was allocated in the Database
	component
	• displayCurrentHumidityData() requires
	Humidity Data from pullHumidityData(),
	which was allocated in the <i>Database</i>
	component
	• displayCurrentPrecipitationData() requires
	Precipitation Data from
	pullPrecipitationData(), which was allocated
	in the <i>Database</i> component
	• displaySoilDataForTimeFrame() requires
	Soil Data from pullSoilData(), which was
	allocated in the <i>Database</i> component
	• displayWaterDataForTimeFrame() requires Water Data from pullWaterData(), which
	Water Data from pullWaterData(), which was allocated in the Database component
	 displayAirDataForTimeFrame() requires Air
	Data from pullAirData(), which was
	allocated in the <i>Database</i> component
	 displayTemperatureDataForTimeFrame()
	requires Temperature Data from
	pullTemperatureData(), which was allocated
	in the <i>Database</i> component
	 displayWindSpeedDataForTimeFrame()
	requires Wind Speed Data from
	pullWindSpeedData(), which was allocated in
	the <i>Database</i> component
	I - 2 2

	 displayHumidityDataForTimeFrame() requires Humidity Data from pullHumidityData(), which was allocated in the Database component displayPrecipitationDataForTimeFrame() requires Precipitation Data from pullPrecipitationData(), which was allocated in the Database component
From: Map Tool	• compareSoilData() requires Primary
To: Compare Data Tool	Location Data, which was allocated in the Map Tool component
	• compareWaterData() requires Primary
	Location Data, which was allocated in the
	Map Tool component
	• compareAirData() requires Primary Location Data, which was allocated in the Map Tool component
	• compareTemperatureData() requires Primary
	Location Data, which was allocated in the Map Tool component
	• compareWindSpeedData() requires Primary
	Location Data, which was allocated in the
	Map Tool componentcompareHumidityData() requires Primary
	• compareHumidityData() requires Primary Location Data, which was allocated in the
	Map Tool component
	• comparePrecipitationData() requires Primary
	Location Data, which was allocated in the
E D. I	Map Tool component
From: Database	• compareSoilData() requires Soil Data from
To: Compare Data Tool	<pre>pullSoilData(), which was allocated in the Database component</pre>
To Company 2 and Tool	• compareWaterData() requires Water Data
	from <i>pullWaterData()</i> , which was allocated in
	the Database component
	• cmopareAirData() requires Air Data from
	pullAirData(), which was allocated in the
	Database component
	• compareTemperatureData() requires Temperature Data from
	pullTemperatureData(), which was allocated
	in the <i>Database</i> component
	• compareWindSpeedData() requires Wind
	Speed Data from pullWindSpeedData(),

	which was allocated in the <i>Database</i> component • compareHumidityData() requires Humidity Data from pullHumidityData(), which was allocated in the <i>Database</i> component • comparePrecipitationData() requires Precipitation Data from pullPrecipitationData(), which was allocated in the <i>Database</i> component
--	---

Derivation Rationale:

• Architectural Styles and Stakeholder Needs:

1. Repository Architecture Style (Data-Centered Architecture): We modeled our system in this deployment blueprint (DB) primarily according to the Repository Architecture Style. This is clearly illustrated in our graphic, since we have a centralized database that every other component is centered around. The map tool, data analysis tool, compare data tool, and information procurement tool all pull data from and update the central database. These are known as the data accessors in this architectural style. This model ensures that we maintain a certain level of data integrity, for all of the data is located in one accessible and centralized location. This means that we satisfy our highest priority quality – reliability. We ensure that the data is reliable with the information procurement tool from verified external sources and then store that information in the centralized database where it is accessed (from the entire system). It also satisfies scalability for the resources that we invest in the system can be scaled through individual components. For example, if we want more repository space or want to increase the bandwidth of data transmission, we can just scale the database itself. Next, the

system satisfies compatibility, for the database can adapt and be modified to have endpoints that can be accessed on any platform. Finally, we can modify the data we store, what data is available, what sources we pull from, and how much information we transmit. This means that we satisfy flexibility as well.

Stakeholder Needs: Reliability, Scalability, Compatibility, Flexibility

2. Object-Oriented Architecture Style (Call-and-Return Architecture): Our system implements an Object-Oriented Architecture Style as well. This is also illustrated in our graphical representation, for the components are al modular. Our system uses an abstraction of layers between the user and the internal structure. Additionally, we instantiate objects and classes that we use as inputs and outputs between the components. This style ensures that we satisfy the condition of an ontime delivery, for our modular and abstracted code allows us to maintain our intent, avoid unnecessary code, and foresee risks/challenges. This means that we can avoid delays and deliver on-time. Additionally, this allows us satisfy the condition of reasonable costs. Having a shorter delivery time and avoiding mistakes allows us to spend less resources (time, effort, and money) fixing mistakes that we avoided. Additionally, Object-Oriented systems are easy to maintain and scale. Classes and objects can be modified easily, and those changes are able to be seen throughout the system. This means that our model is also maintainable. Finally, our application satisfies availability, for Object-Oriented systems allow the system to always be available and running. By maintaining modularity, we are able to create parallel streams that provide similar functionalities (service-drive architectures) that satisfy availability.

Stakeholder Needs: Time Delivery, Cost, Maintainability, Availability

3. <u>Layered Architecture Style (Call-and-Return Architecture)</u>: We also somewhat model a Layered Architecture Style in this deployment blueprint. We create an outer layer that serves as the user interface for users and clients to interact with (that hides the internal structure of our system). This layered approach allows us to satisfy the stakeholder need of usability. We can modify and cater the user interface so that it maximizes usability and utility for users through this layered model.

Stakeholder Needs: Usability

4. Pipe and Filter Architecture Style (Data Flow Architecture): We also have a structure that uses some fundamental ideas behind the Pipe and Filter Architecture Style. We use a unidirectional flow of data with the information procurement tool in order to update and store environmental data in the centralized database. This Pipe and Filter ideology allows us to procure, sort, and check information before using it in our application. This ensures reliability. Additionally, this allows us to satisfy the stakeholder need of extensibility. By having a data flow network for storing data in the database, we are able to expand our procurement tools and pull from more sources very easily. This means our system is extensible and has the potential to grow and meet the needs of stakeholders in the future.

Stakeholder Needs: Extensibility

• Architectural Style References:

- TutorialsPoint. "Data-Centered Architecture."
 https://www.tutorialspoint.com/software_architecture_design/data_centered_a
 rchitecture.htm. Accessed 9 December 2019.
- TutorialRide. "Object Oriented Architecture."
 https://www.tutorialride.com/software-architecture-and-design/object-oriented-architecture.htm. Accessed 9 December 2019.
- 3. Mallawaarachchi, Vijini. TowardsDataScience. "10 Common Software Architectural Patterns in a Nutshell." https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013.

 Accessed 9 December 2019.
- 4. TutorialRide. "Data Flow Architecture."

 https://www.tutorialride.com/software-architecture-and-design/data-flow-architecture.htm. Accessed 9 December 2019.

• Potential Conflicts:

1. One potential conflict that could arise when implementing the model enumerated within this deployment blueprint (DB) is an increase in coupling between components. By implementing a centralized database in accordance with the Repository Architecture Style (Data-Centered Architecture), we have the potential of increasing dependency between internal components and the centralized database component. This could interfere with how we satisfy the stakeholder need of scalability. By increasing coupling, we make it more difficult to engender change throughout the system by only modifying a single component. In order to

scale, we might have to modify multiple components based of the increase in coupling.

• Trade-Offs:

1. By implementing the Repository Architecture Style (Data-Centered Architecture) in this deployment blueprint (DB), we are able to increase reliability – which is our highest priority according to our stakeholder needs. A centralized database allows us to maintain a certain level of data integrity since all of the environmental data is located in one accessible and centralized location. This ensures that only this data is accessed and distributed (which ensures reliability). The trade-off, however, is a slight decrease in scalability. By centralizing the data, we increase the reliance of other internal components on the database. This means that we could potentially increase coupling between our internal components. This trade-off is justified, since we are ensuring our highest priority stakeholder need. Additionally, we increase the security and value of our application by increasing reliability.

• Refactorings:

Created User Interface Tool: For this deployment blueprint (DB), we created a
user interface tool component that did not exist in the business blueprint (BB).
This refactoring allows us to implement the fundamental ideas of a Layered
Architecture Style, which allows us to ameliorate the user interface as well as the
usability of our application through an abstraction of functionality. This
refactoring could potentially sacrifice the BB's vision to reduce system
complexity, for we are adding an additional component. This refactoring,

however, is justified because this component allows us to improve usability and directly help the users by making the application easy to navigate through an abstraction of functionality. Thus, we are able to reduce user complexity at the expense of potentially increasing system complexity – which is justified for our application.

2. <u>Created Information Procurement Tool:</u> For this deployment blueprint (DB), we created an information procurement tool component that did not exist in the business blueprint (BB). This refactoring allows us to improve the reliability of our application by checking the information that we pull from external sources. This refactoring could potentially sacrifice the BB's vision to reduce system complexity, for we are adding an additional component. This refactoring, however, is justified because this component allows us to ensure that the environmental data stored in our database is reliable – which is our most prioritized quality.

Part 2: Evaluating Solution Blueprint Compliance

$$CompFuncCoeff(c, t) = \frac{|\textit{CompFunc}_{\textit{regd}}(c, t)|}{|\textit{CompFunc}(c)|}$$

Table 7. CompFuncCoeff(c, t) Calculations

Component (BB)	Technology (SB)	CompFuncCoeff(c, t)
Map Tool	Map Tool	7/11
	Data Analysis Tool	0/11
	Compare Data Tool	0/11

	Database	0/11
	User Interface Tool	4/11
Data Analysis Tool	Map Tool	0/14
	Data Analysis Tool	14/14
	Compare Data Tool	0/14
	Database	0/14
	User Interface Tool	0/14
Compare Data Tool	Map Tool	0/7
	Data Analysis Tool	0/7
	Compare Data Tool	7/7
	Database	0/7
	User Interface Tool	0/7
	Map Tool	0/7
Database	Data Analysis Tool	0/7
	Compare Data Tool	0/7
	Database	7/7
	User Interface Tool	0/7

$$CompDataCoeff(c, t) = \frac{|\textit{CompData}_{\textit{regd}}(c, t)|}{|\textit{CompFunc}(c)|}$$

Table 8. CompDataCoeff(c, t) Calculations

Component (BB)	Technology (SB)	CompDataCoeff(c, t)
Map Tool	Map Tool	8/8
	Data Analysis Tool	0/8
	Compare Data Tool	0/8
	Database	0/8
	User Interface Tool	0/8
Data Analysis Tool	Map Tool	0/1
	Data Analysis Tool	1/1
	Compare Data Tool	0/1
	Database	0/1
	User Interface Tool	0/1
Compare Data Tool	Map Tool	0/8
	Data Analysis Tool	0/8
	Compare Data Tool	8/8
	Database	0/8
	User Interface Tool	0/8
	Map Tool	0/7
Database	Data Analysis Tool	0/7
	Compare Data Tool	0/7
	Database	7/7

User Interface Tool	0/7

Table 9. CompFuncBoundaryError(t) Calculations

Technology (SB)	CompFuncBoundaryError(t)
Map Tool	(1 - (7/11)) + (0/11) = 0.3636
Data Analysis Tool	(1 - (14/14)) + (0/11) = 0
Compare Data Tool	(1 - (7/7)) + (0/7) = 0
Database	(1 - (7/7)) + (0/7) = 0
User Interface Tool	(1 - (4/11)) + (0/11) = 0.6363

Part 3: Planning Evaluation of DB Using an ATAM Quality Attribute Utility Tree

<u>Utility Definition:</u> Utility is the measurement of an element's value or worth. In a software architecture context, utility is the combination of a software system's usefulness and usability.

Aggregation Method for Quality Assessments: In order to obtain an overall "goodness" of the system by aggregating quality assessments, we must set objectives to satisfy each quality attribute and specify metrics on how to measure the success of meeting the aforementioned objectives. Additionally, we must keep in mind that the quality attributes are weighted by priority, so a system is better if it meets its objectives and satisfies the quality attributes higher in the Utility Tree.

• UTILITY

o Reliability

Ensure Data Integrity

- *Objective:* Ensure that the Database contains the most recent environmental information and is updated correctly from the external data sources (H, M)
 - Metric: Search for environmental data with the user interface tool component. Check what information is stored in the database for that area by viewing the expected output. Then check the information procurement tool for the selected area. Compare the information and check if it is identical. (H)
- *Objective:* Increase the number if verified data sources to pull information from (H, M)
 - Metric: Add sources to the infrastructure of the information
 procurement tool. Search for environmental data with the
 user interface tool component. Then check the information
 procurement tool for the selected area. Check to see if the
 number of sources and comparison calculations has
 increased. (H)

Enable Source Confirmation Service

- Objective: Ensure that the information procurement tool analyzes environmental data from the sources and takes the most appropriate value (H, H)
 - Metric: Set the sources for the information procurement tool to a program that we create. Populate the information

procurement tool with information – specifically an array of many numbers. Check that the components chooses the reliable and weighted source, and check that it matches with the mode value (H)

o Scalability

Maximize Scalability

- Objective: Display that the database component is able to scale as the environmental information stored becomes more diverse and the database becomes more populated (H, M)
 - Metric: Increase the number of elements in the database by
 a set number n for some bound. Then run a script after
 every addition of elements that checks how fast it takes to
 return environmental information. Check if the time
 increases linearly or faster with the increase in elements
 within the database (H)

o Usability

Ensure Services are Accessible

- Objective: Navigate between services through the user interface tool in less than 1 second and less than an number of clicks for an number of services, where n > 0 (M, M)
 - Metric: Write a front-end Selenium testing script that starts
 at the main user page and navigates between an n number

of pages in all combinations of n-orderings. Check that each instance is less than 1 second (H)

Compatibility

- Maximize Platform Accessibility
 - Objective: Ensure that the web application is accessible on all major web browsers (Google Chrome, Firefox, Microsoft Edge, Safari, etc.), and check that all of the services function appropriately (H, H)
 - Metric: Write multiple scripts (one for every web browser)
 that automates navigation between services within our
 application. Then let the script check each functionality and check it against an expected output. Check if the results are
 appropriate (M)

Flexibility

- Maximize System Flexibility with Regard to Time
 - Objective: Ensure that the system is able to remain functional and swift in terms of time even with the addition of multiple new features and services (M, M)
 - Metric: Measure the time of the system before any additions of features and services. Create a load-heavy service (mock function) that execute 2ⁿ searches. Add this service to the system and measure the difference in time.

Check to see if the increase in time is less than an increase of 2^n (M)

o Time Delivery

- Minimize Projected Timeline
 - Objective: Minimize the projected timeline for the project and reduce the number of hours invested into development as well as testing (H, L)
 - Metric: Check the original schedule. Compare how many deliverables were expected to be completed and check the actual number of deliverables completed (M)

o Cost

- Minimize Cost of Project
 - Objective: Minimize the cost of the project and reduce investment of resources (H, M)
 - Metric: Determine the initial cost of investment (hardware, server-space, database orientation) (H)
 - *Objective:* Minimize the number of hours that the development team works and invests into the project (H, M)
 - Metric: Project how many hours are required to maintain the application and how many hours are required to complete development (H)

o Maintainability

Minimize Resource Consumption

- Objective: Ensure that the consumption of data, memory, and server (bandwidth) resources are reduced for both client-side and server-side interactions (M, M)
 - Metric: Instantiate instances of the application n multiple
 devices and machines. Exhaustively run every combination
 of services. Check the memory, space, and bandwidth
 consumed by the processes on both the client-side and
 server-side (M)

Availability

- Maximize Active (Operation-Ready) Time
 - Objective: Ensure that the application is always active and is always readily accessible. Ensure there are no instances of the application going down (M, M)
 - Metric: Instantiate a live session of the application on a
 machine. Measure the connection between the browser and
 the application and record whether there are any instances
 of a loss of connection. Check these recordings after an n
 number of days (H)

Extensibility

- Minimize Coupling Between Components
 - Objective: Minimize coupling between components and ensure that system components are highly cohesive as independent entities. Minimize dependencies between components (L, L)

Metric: Measure coupling using the "Number of
 Dependencies Between Components" calculations from the
 BB (L)

Deployment Blueprint #2 (DB2) – Client/Server Architecture Solution

Part 1: Deriving Deployment Blueprints (DB)

Figure 1. Graphical Depiction of DB2

Reference with Example of Repository Architecture Style:

CCM. "Client/Server Environment." https://ccm.net/contents/152-client-server-environment.

Accessed 9 December 2019.

Relevant Excerpt from Reference:

"Numerous applications run in a client/server environment, this means that client computers (computers forming part of the network) contact a server, generally a very powerful computer in terms of input/output, which provides services to the client computers. These services are programs which provide data such as the time, files, a connection, etc."

Table 1. Description of Component Elements

Deployment Blueprint Component	Description
Database	The database is accessed from components
	within the server component. This allows for
	scalability, reliability, and security because all
	of the internal structure is located within the
	centralized and accessible server component.
	The database component is a repository that
	all of the other internal components pull
	verified environmental data from. The other
	components are independent of one another in
	this deployment solution, and they can each
	access environmental information within the
	database. Additionally, we ensure data
	integrity since the database is one centralized
	location. This also allows for scalability and
	reliability.
Map Tool	The map tool component is now a component
	within the server component. The server
	component is accessible and centralized so
	that our system can ensure scalability and
	security. Additionally, the system is more

	reliable because the internal structure is
	hidden within the server component – away
	from unnecessary modification. The map tool
	component filters certain areas based on
	environmental data and user inputs that are
	acquired from the user interface tool. The
	map tool is able to show, filter, and delineate
	regions that are associated with certain
	environmental filters as well as show the
	environmental information of a specific area
	(which it acquired from the database).
Data Analysis Tool	The data analysis tool component is now a
·	component within the server component. The
	server component is accessible and
	centralized so that our system can ensure
	scalability and security. Additionally, the
	system is more reliable because the internal
	structure is hidden within the server
	component – away from unnecessary
	modification. The data analysis tool displays
	and returns areas based on environmental and
	time information. The data analysis is used by
	the other internal components to acquire
	environmental information from the database
	– both current and for a specified time frame.
	In this deployment blueprint, the data analysis
	tool now updates and stores information in
	the database.
Compare Data Tool	The compare data tool component is now a
	component within the server component. The
	server component is accessible and
	centralized so that our system can ensure
	scalability and security. Additionally, the
	system is more reliable because the internal
	structure is hidden within the server
	component – away from unnecessary
	modification. The compare data tool
	compares the environmental information of
	two specified areas. It acquires the
	environmental data and then returns special

	comparison metrics that are used to compare
	the different areas and portray the differences
	between them. In this deployment blueprint,
	the compare data tool now pulls information
	from the database.
User Interface Tool	The user interface tool component is now a
	component within the server component. The
	server component is accessible and
	centralized so that our system can ensure
	scalability and security. Additionally, the
	system is more reliable because the internal
	structure is hidden within the server
	component – away from unnecessary
	modification. The user interface tool is
	specific to the solution and deployment
	blueprints; it was not specified in the business
	blueprint. The user interface tool invokes the
	other internal components so that the users are
	not required to access and modify the internal
	system. The user interface tool reduces
	coupling between components and adds a
	layer of abstraction to the system (because it
	invokes internal methods according to the
	user's needs so that it can satisfy their
	requirements).
Web Browser	This is the platform on which a user that is
	using a workstation (a hardware endpoint) can
	access the server component. The web
	browser can make requests to the server and
	respond to activities on the server. It cannot
	access the internal components of the server
	component.
Server – Web Application Cluster	The server component is a centralized and
	easily accessible component that can be
	accessed by users through web browser
	endpoints. It can receive requests and release
	responses from these endpoints. This
	increases security and reliability, for the
	internal components of the server are closed
	for modification and access. Additionally, the
	differential and access. Haditionally, the

server is scalable because it is a centralized
component that only needs to change in a
single instance. It contains the map tool, data
analysis, compare, and user interface
components.

Table 2. Description of Connector Elements (I/O Dependencies)

Deployment Blueprint Connectors	Description
From: Database	Sends environmental data to the server
	component according to input parameters that
To: Server	it received. It returns information that satisfies
	the criteria of the contained components (map
	tool, data analysis tool, compare tool)
From: Server	Sends an input data to the database according
	to its inner components (map tool, data
To: Database	analysis tool, compare tool). Expects to
	receive locations that fit the filtered criteria
	and/or environmental data about the specified
	region.
From: User Interface Tool	Sends user inputs in a formatted manner to
T. M. T. 1	invoke the map tool component and retrieve
To: Map Tool	environmental information.
From: User Interface Tool	Sends user inputs in a formatted manner to
	invoke the compare data tool component and
To: Compare Data Tool	retrieve environmental information about two
	areas.
From: Map Tool	Sends environmental information back to the
	user interface tool, which can be accessed by
To: User Interface Tool	the users.
From: Compare Data Tool	Sends environmental information from two
	locations back to the user interface tool,
To: User Interface Tool	which can be accessed by the users.
From: Users	Users send their inputs and requirements to
To: Server	the server. These inputs will be circulated
10. Server	

	throughout the system in order to return the
	what the user requires.
From: Server	The server sends an appropriate response to
To: User	the users based on its internal components (map tool, data analysis tool, compare tool).

Table 3. Allocation of Solution to Deployment Components

DB Component	SB Components Allocated to DB Component
Database	Database
Server (Map Tool)	Map Tool
Server (Data Analysis Tool)	Data Analysis Tool
Server (Compare Data Tool)	Compare Data Tool
Server (User Interface Tool)	User Interface Tool
Web Browser	N/A

Table 4. Satisfaction of Domain Functions by Solutions

SB Solution Component	BB Functions Satisfied (39/39)
Database	 pullSoilData() pullWaterData() pullAirData() pullTemperatureData() pullWindSpeedData() pullHumidityData() pullPrecipitationData()
Server (Map Tool)	zoomIn()zoomOut()filterAreaBasedOnSoilData()

	• filterAreaBasedOnWaterData()
	• filterAreaBasedOnAirData()
	• filterAreaBasedOnTemperatureData()
	• filterAreaBasedOnWindSpeedData()
	• filterAreaBasedOnHumidityData()
	• filterAreaBasedOnPrecipitationData()
Server (Data Analysis Tool)	displayCurrentSoilData()
	• displayCurrentWaterData()
	• displayCurrentAirData()
	• displayCurrentTemperatureData()
	• displayCurrentWindSpeedData()
	• displayCurrentHumidityData()
	• displayCurrentPrecipitationData()
	• displaySoilDataForTimeFrame()
	• displayWaterDataForTimeFrame()
	• displayAirDataForTimeFrame()
	• displayTemperatureDataForTimeFrame()
	displayWindSpeedDataForTimeFrame()displayHumidityDataForTimeFrame()
	displayHumidityDataForTimeFrame()displayPrecipitationDataForTimeFrame()
	displayi recipitationDatar of Timer tame()
Server (Compare Data Tool)	compareSoilData()
	• compareWaterData()
	• compareAirData()
	• compareTemperatureData()
	• compareWindSpeedData()
	• compareHumidityData()
	• comparePrecipitationData()
Server (User Interface Tool)	• searchLocation()
	• clear()
L	L .

Table 5. Satisfaction of Domain Data by Solutions

SB Solution Component	BB Data Satisfied (24/24)
Database	Soil Data
	Water Data

	Air DataTemperature Data
	Wind Speed Data
	Humidity Data
	Precipitation Data
	Frecipitation Data
Server (Map Tool)	Filtered Area Data – Soil
	Filtered Area Data – Water
	Filtered Area Data – Air
	Filtered Area Data – Temperature
	Filtered Area Data – Wind
	Filtered Area Data – Humidity
	Filtered Area Data – Precipitation
Server (Data Analysis Tool)	Specified Time Frame
Server (Compare Data Tool)	Comparison Data – Soil
	Comparison Data – Water
	Comparison Data – Air
	Comparison Data – Temperature
	Comparison Data – Wind Speed
	Comparison Data – Humidity
	Comparison Data – Precipitation
Server (User Interface Tool)	Primary Location Data
	Secondary Location Data

Table 6. BB I/O Mapping to DB

DB Component	I/O Dependency
From: Server (Map Tool)	• pullSoilData() requires Primary Location
To: Database	Data, which was allocated to the Map Tool component
	• pullWaterData() requires Primary Location
	Data, which was allocated to the Map Tool
	component

	 pullAirData() requires Primary Location Data, which was allocated to the Map Tool component pullTemperatureData() requires Primary Location Data, which was allocated to the Map Tool component pullWindSpeedData() requires Primary Location Data, which was allocated to the Map Tool component pullHumidityData() requires Primary Location Data, which was allocated to the Map Tool component pullPrecipitationData() requires Primary Location Data, which was allocated to the
	Map Tool component
From: Server (Compare Data Tool) To: Database	 pullSoilData() requires Secondary Location Data, which was allocated to the Compare Data Tool component pullWaterData() requires Secondary Location Data, which was allocated to the Compare Data Tool component pullAirData() requires Secondary Location Data, which was allocated to the Compare Data Tool component pullTemperatureData() requires Secondary Location Data, which was allocated to the Compare Data Tool component pullWindSpeedData() requires Secondary Location Data, which was allocated to the Compare Data Tool component pullHumidityData() requires Secondary Location Data, which was allocated to the Compare Data Tool component pullPrecipitationData() requires Secondary Location Data, which was allocated to the Compare Data Tool component pullPrecipitationData() requires Secondary Location Data, which was allocated to the Compare Data Tool component
From: Database	• filterAreaBasedOnSoilData() requires Soil
To: Server (Map Tool)	Data from pullSoilData(), which was allocated in the Database component

	 filterAreaBasedOnWaterData() requires Water Data from pullWaterData(), which was allocated in the Database component filterAreaBasedOnAirData() requires Air Data from pullAirData(), which was allocated in the Database component filterAreaBasedOnTemperatureData() requires Temperature Data from pullTemperatureData(), which was allocated in the Database component filterAreaBasedOnWindSpeedData() requires Wind Speed Data from pullWind SpeedData(), which was allocated in the Database component filterAreaBasedOnHumidityData() requires Humidity Data from pullHumidityData(), which was allocated in the Database component filterAreaBasedOnPrecipitationData() requires Precipitation Data from pullPrecipitationData(), which was allocated
From: Server (Map Tool) To: Server (Data Analysis Tool)	 displayCurrentSoilData() requires Primary Location Data, which was allocated in the Map Tool component displayCurrentWaterData() requires Primary Location Data, which was allocated in the Map Tool component displayCurrentAirData() requires Primary Location Data, which was allocated in the Map Tool component displayCurrentTemperatureData() requires Primary Location Data, which was allocated in the Map Tool component displayCurrentWindSpeedData() requires Primary Location Data, which was allocated in the Map Tool component displayCurrentHumidityData() requires Primary Location Data, which was allocated in the Map Tool component displayCurrentHumidityData() requires Primary Location Data, which was allocated in the Map Tool component

	 displayCurrentPrecipitationData() requires Primary Location Data, which was allocated in the Map Tool component displaySoilDataForTimeFrame() requires Primary Location Data, which was allocated in the Map Tool component displayWaterDataForTimeFrame() requires Primary Location Data, which was allocated in the Map Tool component displayAirDataForTimeFrame() requires Primary Location Data, which was allocated in the Map Tool component displayTemperatureDataForTimeFrame() requires Primary Location Data, which was allocated in the Map Tool component displayWindSpeedDataForTimeFrame() requires Primary Location Data, which was allocated in the Map Tool component displayHumidityDataForTimeFrame() requires Primary Location Data, which was allocated in the Map Tool component displayPrecipitationDataForTimeFrame() requires Primary Location Data, which was allocated in the Map Tool component displayPrecipitationDataForTimeFrame() requires Primary Location Data, which was allocated in the Map Tool component
From: Database To: Server (Data Analysis Tool)	 allocated in the Map Tool component displayCurrentSoilData() requires Soil Data from pullSoilData(), which was allocated in the Database component displayCurrentWaterData() requires Water Data from pullWaterData(), which was allocated in the Database component displayCurrentAirData() requires Air Data from pullAirData(), which was allocated in the Database component displayCurrentTemperatureData() requires
	 Temperature Data from pullTemperatureData(), which was allocated in the Database component displayCurrentWindSpeedData() requires Wind Speed Data from pullWindSpeedData(), which was allocated in the Database component displayCurrentHumidityData() requires Humidity Data from pullHumidityData(), which was allocated in the Database component

	 displayCurrentPrecipitationData() requires Precipitation Data from pullPrecipitationData(), which was allocated in the Database component displaySoilDataForTimeFrame() requires Soil Data from pullSoilData(), which was allocated in the Database component displayWaterDataForTimeFrame() requires Water Data from pullWaterData(), which was allocated in the Database component displayAirDataForTimeFrame() requires Air Data from pullAirData(), which was allocated in the Database component displayTemperatureDataForTimeFrame() requires TemperatureData from pullTemperatureData(), which was allocated in the Database component displayWindSpeedDataForTimeFrame() requires Wind Speed Data from pullWindSpeedData(), which was allocated in the Database component displayHumidityDataForTimeFrame() requires Humidity Data from pullHumidityData(), which was allocated in the Database component displayPrecipitationDataForTimeFrame() requires PrecipitationData from pullPrecipitationData(), which was allocated in the Database component
From: Server (Map Tool)	• compareSoilData() requires Primary Location Data, which was allocated in the
To: Server (Compare Data Tool)	 Map Tool component compareWaterData() requires Primary Location Data, which was allocated in the Map Tool component compareAirData() requires Primary Location Data, which was allocated in the Map Tool component compareTemperatureData() requires Primary Location Data, which was allocated in the Map Tool component compareWindSpeedData() requires Primary
	Location Data, which was allocated in the Map Tool component

	• compareHumidityData() requires Primary Location Data, which was allocated in the
	Map Tool component
	• comparePrecipitationData() requires Primary
	Location Data, which was allocated in the
	Map Tool component
From: Database	• compareSoilData() requires Soil Data from
Trom. Database	pullSoilData(), which was allocated in the
To: Server (Compare Data Tool)	Database component
10. Server (Compare Data 1001)	*
	• compareWaterData() requires Water Data
	from <i>pullWaterData()</i> , which was allocated in
	the <i>Database</i> component
	• <i>cmopareAirData()</i> requires <i>Air Data</i> from
	pullAirData(), which was allocated in the
	Database component
	• <i>compareTemperatureData()</i> requires
	Temperature Data from
	pullTemperatureData(), which was allocated
	in the <i>Database</i> component
	• compareWindSpeedData() requires Wind
	Speed Data from pullWindSpeedData(),
	which was allocated in the Database
	component
	• <i>compareHumidityData()</i> requires <i>Humidity</i>
	Data from pullHumidityData(), which was
	allocated in the <i>Database</i> component
	• comparePrecipitationData() requires
	Precipitation Data from
	pullPrecipitationData(), which was allocated
	in the <i>Database</i> component
	in the Dandouse component

Derivation Rationale:

• Architectural Styles and Stakeholder Needs:

1. <u>Client/Server Architecture Style:</u> We modeled our system primarily after the Client/Server Architectural Style. This can be clearly illustrated in our graphical representation; we have a server component that contains the map tool, data analysis tool, compare data tool, and user interface tool. This server component is accessible through web browser endpoints that can request certain services. This

allows the internal structure of the system to be closed for modification but still accessible through the abstracted server component. This ensures that the environmental information that we use is secure, which increases the reliability of our web application (which is the most prioritized stakeholder need).

Additionally, the server component is centralized and easily accessible. This means that we can ensure the condition of scalability, for we only need to modify the server in order to engender change throughout the system. Finally, we can also improve the usability of the system by only allowing to make simplified requests through the client/server model. This ensures that server-side data is not manipulated and client-side requirements are met easily.

Stakeholder Needs: Reliability, Scalability, Usability

2. Object-Oriented Architecture Style (Call-and-Return Architecture): Our system implements an Object-Oriented Architecture Style as well. This is also illustrated in our graphical representation, for the components are al modular. Our system uses an abstraction of layers between the user and the internal structure. Additionally, we instantiate objects and classes that we use as inputs and outputs between the components. This style ensures that we satisfy the condition of an ontime delivery, for our modular and abstracted code allows us to maintain our intent, avoid unnecessary code, and foresee risks/challenges. This means that we can avoid delays and deliver on-time. Additionally, this allows us satisfy the condition of reasonable costs. Having a shorter delivery time and avoiding mistakes allows us to spend less resources (time, effort, and money) fixing mistakes that we avoided. Additionally, Object-Oriented systems are easy to

maintain and scale. Classes and objects can be modified easily, and those changes are able to be seen throughout the system. This means that our model is also maintainable. Finally, our application satisfies availability, for Object-Oriented systems allow the system to always be available and running. By maintaining modularity, we are able to create parallel streams that provide similar functionalities (service-drive architectures) that satisfy availability.

Stakeholder Needs: Time Delivery, Cost, Maintainability, Availability

3. Repository Architecture Style (Data-Centered Architecture): We modeled our database in this deployment blueprint (DB) similar to the Repository Architecture Style. This model ensures that we maintain a certain level of data integrity, for all of the data is located in one accessible and centralized location. This means that we satisfy our highest priority quality – reliability. We ensure that the data is reliable with the information procurement tool from verified external sources and then store that information in the centralized database where it is accessed (from the entire system). It also satisfies scalability for the resources that we invest in the system can be scaled through individual components. For example, if we want more repository space or want to increase the bandwidth of data transmission, we can just scale the database itself. Next, the system satisfies compatibility, for the database can adapt and be modified to have endpoints that can be accessed on any platform. Finally, we can modify the data we store, what data is available, what sources we pull from, and how much information we transmit. This means that we satisfy flexibility as well.

Stakeholder Needs: Reliability, Scalability, Compatibility, Flexibility

4. Layered Architecture Style (Call-and-Return Architecture): We also somewhat model a Layered Architecture Style in this deployment blueprint. We create an outer layer that serves as the user interface for users and clients to interact with (that hides the internal structure of our system). This layered approach allows us to satisfy the stakeholder need of usability. We can modify and cater the user interface so that it maximizes usability and utility for users through this layered model. We can also add additional features without interfering with the user experience. Thus, we can also increase the extensibility of the system.

Stakeholder Needs: Usability, Extensibility

• Architectural Style References:

- 1. CCM. "Client/Server Environment." https://ccm.net/contents/152-client-server-environment. Accessed 9 December 2019.
- TutorialRide. "Object Oriented Architecture."
 https://www.tutorialride.com/software-architecture-and-design/object-oriented-architecture.htm. Accessed 9 December 2019.
- TutorialsPoint. "Data-Centered Architecture."
 https://www.tutorialspoint.com/software_architecture_design/data_centered_a
 rchitecture.htm. Accessed 9 December 2019.
- Mallawaarachchi, Vijini. TowardsDataScience. "10 Common Software
 Architectural Patterns in a Nutshell." https://towardsdatascience.com/10 common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013.

 Accessed 9 December 2019.

• Potential Conflicts:

1. One potential conflict that could arise when implementing the model enumerated within this deployment blueprint (DB) is an increase in complexity. By implementing a centralized server according to the Client/Server Architecture Style, we create an abstracted and accessible component that users can access through designated endpoints. This model, however, structures the system so that the server component contains other important components (the map tool, the data analysis tool, the compare data tool, and the user interface tool). This increase in complexity means that there could potentially be an increase in cost and extensibility when there are system-wide modifications that are required. Thus, in this deployment blueprint, we must consider increasing reliability at the potential cost of extensibility.

• Trade-Offs:

1. By implementing the Client/Server Architecture Style in this deployment blueprint (DB), we are able to increase reliability – which is our highest priority according to our stakeholder needs. A centralized and accessible server allows us to maintain a certain level of data integrity since all of the environmental data is located in one accessible and centralized location. This ensures that only this data is accessed and distributed (which ensures reliability). Additionally, we are able to ensure that the data is secure, for the server only allows users to access internal information through certain endpoints with requests. This means that the system is closed for modification and is accessed by the server itself. The trade-off, however, is a slight decrease in extensibility due to the increase in complexity. This complexity hinders the ease in which we can modify the entire system to add

new features. The benefits, however, far outweigh the costs, and this trade-off is justified. By increasing reliability, we ensure that we have satisfied our most important stakeholder need. We greatly increase the value of our app at the potential cost of extensibility on the developer-side of the application.

• Refactorings:

- 1. Created Server Component: For this specific deployment blueprint (DB), we created a server component that was not enumerated within our business blueprint (BB). This refactoring allowed us to implement the Client/Server Architecture Style for this deployment blueprint (DB), which allowed us to create a centralized and accessible server component that abstracted information and protected the internals of the system structure. This refactoring could potentially sacrifice the BB's vision to reduce system complexity, for we are adding an additional component that encapsulates many other important components. This refactoring, however, is justified because this component allows us to improve reliability which is our highest priority stakeholder need. Thus, we are able to protect the environmental information as well as ensure that the system is closed for modification. This increase in reliability increases the value of our web application and greatly helps users, which is why it is justified.
- 2. <u>Created User Interface Tool:</u> For this deployment blueprint (DB), we created a user interface tool component that did not exist in the business blueprint (BB). This refactoring allows us to implement the fundamental ideas of a Layered Architecture Style, which allows us to ameliorate the user interface as well as the usability of our application through an abstraction of functionality. This

refactoring could potentially sacrifice the BB's vision to reduce system complexity, for we are adding an additional component. This refactoring, however, is justified because this component allows us to improve usability and directly help the users by making the application easy to navigate through an abstraction of functionality. Thus, we are able to reduce user complexity at the expense of potentially increasing system complexity – which is justified for our application.

Part 2: Evaluating Solution Blueprint Compliance

$$CompFuncCoeff(c, t) = \frac{|CompFunc_{regd}(c, t)|}{|CompFunc(c)|}$$

Table 7. CompFuncCoeff(c, t) Calculations

Component (BB)	Technology (SB)	CompFuncCoeff(c, t)
Map Tool	Map Tool	9/11
	Data Analysis Tool	0/11
	Compare Data Tool	0/11
	Database	0/11
	User Interface Tool	2/11
Data Analysis Tool	Map Tool	0/14
	Data Analysis Tool	14/14
	Compare Data Tool	0/14
	Database	0/14
	User Interface Tool	0/14

Compare Data Tool	Map Tool	0/7
	Data Analysis Tool	0/7
	Compare Data Tool	7/7
	Database	0/7
	User Interface Tool	0/7
	Map Tool	0/7
Database	Data Analysis Tool	0/7
	Compare Data Tool	0/7
	Database	7/7
	User Interface Tool	0/7

$$CompDataCoeff(c, t) = \frac{|CompData_{regd}(c, t)|}{|CompFunc(c)|}$$

Table 8. CompDataCoeff(c, t) Calculations

Component (BB)	Technology (SB)	CompDataCoeff(c, t)
Map Tool	Map Tool	7/8
	Data Analysis Tool	0/8
	Compare Data Tool	0/8
	Database	0/8
	User Interface Tool	1/8
Data Analysis Tool	Map Tool	0/1
	Data Analysis Tool	1/1

	Compare Data Tool	0/1
	Database	0/1
	User Interface Tool	0/1
Compare Data Tool	Map Tool	0/8
	Data Analysis Tool	0/8
	Compare Data Tool	7/8
	Database	0/8
	User Interface Tool	1/8
	Map Tool	0/7
Database	Data Analysis Tool	0/7
	Compare Data Tool	0/7
	Database	7/7
	User Interface Tool	0/7

Table 9. CompFuncBoundaryError(t) Calculations

Technology (SB)	CompFuncBoundaryError(t)
Map Tool	(1 - (9/11)) + (0/11) = 0.1818
Data Analysis Tool	(1 - (14/14)) + (0/11) = 0
Compare Data Tool	(1 - (7/7)) + (0/7) = 0
Database	(1 - (7/7)) + (0/7) = 0
User Interface Tool	(1 - (2/11)) + (0/11) = 0.8181

Part 3: Planning Evaluation of DB Using an ATAM Quality Attribute Utility Tree

<u>Utility Definition:</u> Utility is the measurement of an element's value or worth. In a software architecture context, utility is the combination of a software system's usefulness and usability.

Aggregation Method for Quality Assessments: In order to obtain an overall "goodness" of the system by aggregating quality assessments, we must set objectives to satisfy each quality attribute and specify metrics on how to measure the success of meeting the aforementioned objectives. Additionally, we must keep in mind that the quality attributes are weighted by priority, so a system is better if it meets its objectives and satisfies the quality attributes higher in the Utility Tree.

• <u>UTILIT</u>Y

o Reliability

- Ensure Server is Closed for Modification and Open for Requests
 - *Objective:* Ensure that the server component is accessible by users through web browsers and designated endpoints. Restrict the server component so that users are not able to access or modify the internal structure of the system (H, M)
 - Metric: Set-up an n number of machines or devices and open live connections with the application's server component. In each of the n machines or devices, run every combination of service with boundary input parameters from the client-side. Check if all of the internal structures and information is still the same before the metric evaluation (H)

Ensure Data Integrity

- *Objective:* Ensure that the Database contains the most recent environmental information and is updated correctly from the external data sources (H, M)
 - Metric: Search for environmental data with the user interface tool component. Check what information is stored in the database for that area by viewing the expected output. Then check the information procurement tool for the selected area. Compare the information and check if it is identical. (H)
- *Objective:* Increase the number if verified data sources to pull information from (H, M)
 - Metric: Add sources to the infrastructure of the information procurement tool. Search for environmental data with the user interface tool component. Then check the information procurement tool for the selected area. Check to see if the number of sources and comparison calculations has increased. (H)

Scalability

- Maximize Scalability with regard to Time
 - *Objective:* Display that the server component is able to scale as the number of web browsers connecting to the application increases

overall. Ensure that the server component is able to handle an increase in traffic while hosted (H, M)

Metric: Increase the number of web browsers connected to
the server component by a set number n for some bound.
Then run a script after every addition of elements that
checks how fast it takes to return environmental
information. Check if the time increases linearly or faster
with the increase in web browser connections to the
application (H)

Usability

- Ensure Services are Accessible
 - Objective: Navigate between services through the user interface tool in less than 1 second and less than an number of clicks for an number of services, where n > 0 (M, M)
 - Metric: Write a front-end Selenium testing script that starts at the main user page and navigates between an n number of pages in all combinations of n-orderings. Check that each instance is less than 1 second (H)

Compatibility

- Maximize Platform Accessibility
 - Objective: Ensure that the web application is accessible on all major web browsers (Google Chrome, Firefox, Microsoft Edge,

Safari, etc.), and check that all of the services function appropriately (H, H)

Metric: Write multiple scripts (one for every web browser)
that automates navigation between services within our
application. Then let the script check each functionality and
check it against an expected output. Check if the results are
appropriate (M)

o Flexibility

- Maximize System Flexibility with Regard to Time
 - *Objective:* Ensure that the system is able to remain functional and swift in terms of time even with the addition of multiple new features and services (M, M)
 - Metric: Measure the time of the system before any additions of features and services. Create a load-heavy service (mock function) that execute 2ⁿ searches. Add this service to the system and measure the difference in time.
 Check to see if the increase in time is less than an increase of 2ⁿ (M)

Time Delivery

- Minimize Projected Timeline
 - Objective: Minimize the projected timeline for the project and reduce the number of hours invested into development as well as testing (H, L)

 Metric: Check the original schedule. Compare how many deliverables were expected to be completed and check the actual number of deliverables completed (M)

o Cost

- Minimize Cost of Project
 - Objective: Minimize the cost of the project and reduce investment of resources (H, M)
 - Metric: Determine the initial cost of investment (hardware, server-space, database orientation) (H)
 - *Objective:* Minimize the number of hours that the development team works and invests into the project (H, M)
 - Metric: Project how many hours are required to maintain the application and how many hours are required to complete development (H)

o Maintainability

- Minimize Resource Consumption
 - *Objective:* Ensure that the consumption of data, memory, and server (bandwidth) resources are reduced for both client-side and server-side interactions (M, M)
 - Metric: Instantiate instances of the application n multiple devices and machines. Exhaustively run every combination of services. Check the memory, space, and bandwidth

consumed by the processes on both the client-side and server-side (M)

o Availability

- Maximize Active (Operation-Ready) Time
 - Objective: Ensure that the application is always active and is always readily accessible. Ensure there are no instances of the application going down (M, M)
 - Metric: Instantiate a live session of the application on a
 machine. Measure the connection between the browser and
 the application and record whether there are any instances
 of a loss of connection. Check these recordings after an n
 number of days (H)

Extensibility

- Minimize Coupling Between Components
 - Objective: Minimize coupling between components and ensure that system components are highly cohesive as independent entities. Minimize dependencies between components (L, L)
 - Metric: Measure coupling using the "Number of
 Dependencies Between Components" calculations from the
 BB (L)