

(11)Publication number:

2003-084085

(43)Date of publication of application: 19.03.2003

(51)Int.CI.

G04G 3/00

(21)Application number: 2001-274372

(71)Applicant : CITIZEN WATCH CO LTD

11.09.2001 (22)Date of filing:

(72)Inventor: NAGATA YOICHI

(54) ELECTRONIC TIMEPIECE

(57)Abstract:

PROBLEM TO BE SOLVED: To enhance a start-up characteristic

of an electronic time piece in a low voltage.

SOLUTION: A terminal voltage of a timer means is made equal to a generation voltage by providing a start-up auxiliary circuit for connecting a power generation means directly to the timer means The start-up auxiliary circuit is operated to be brought into a conductive condition during stop of oscillation in the timer means, the start-up auxiliary circuit is operated to be brought into a nonconductive condition during start of the oscillation in the timer means and a step-up means is operated, so as to allow self-startup for the whole electronic time piece even in the low generation voltage. The electronic time piece is thereby allowed to be operated even by a solar cell of single stage constitution.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision

of rejection1

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-84085 (P2003-84085A)

(43)公開日 平成15年3月19日(2003.3.19)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考) G 2F002

G04G 3/00

G 0 4 G 3/00

審査請求 未請求 請求項の数6 OL (全 11 頁)

(21)出願番号

特顯2001-274372(P2001-274372)

(22)出願日

平成13年9月11日(2001.9.11)

(71) 出願人 000001960

シチズン時計株式会社

東京都西東京市田無町六丁目1番12号

(72)発明者 永田 洋一

東京都西東京市田無町六丁目1番12号 シ チズン時計株式会社内

Fターム(参考) 2F002 AA00 AE01 CB02

(54) 【発明の名称】 電子時計

(57) 【要約】

【課題】 低電圧における電子時計の起動特性を向上さ せる。

【解決手段】 発電手段を計時手段へ直接接続する起動 補助回路を設けることで計時手段の端子電圧を発電電圧 に等しくなるようにする。起動補助回路は計時手段の発 振停止中に導通状態となるように動作し、発振開始後に は起動補助回路は非導通となりかつ昇圧手段を動作させ ることで、発電電圧が低くとも電子時計全体が自起動可 能となるようにした。これにより1段構成のソーラセル でも電子時計が動作可能となる。

【特許請求の範囲】

.

【請求項1】 外部からのエネルギを電気エネルギに変 機する発電手段と、

該発電手段のエネルギを蓄電する蓄電手段と、

該蓄電手段または前記発電手段のエネルギにより計時動 作する計時手段と、

前記発電手段と前記蓄電手段と前記計時手段との間のエ ネルギの伝達または遮断を行う手段とを有する電子時計 であって、

前記発電手段と前記計時手段とを直接接続することので 10 きる起動補助回路を有することを特徴とする電子時計。

【請求項2】 前記計時手段は、

基準信号を発生する発振回路と、

前記計時手段の計時動作の停止を検出する発振停止検出 .回路とを備え、

前記計時手段の停止時には前記起動補助回路が発電手段 と計時手段とを並列に接続することを特徴とする請求項 1に記載の電子時計。

【請求項3】 前記発電手段の出力を昇圧して前記計時 手段または前記蓄電手段へ出力する昇圧手段を備え、 該昇圧手段は前記発振停止検出回路が発振開始を検出し てから所定の期間は強制的に前記計時手段へ昇圧出力す ることを特徴とする請求項2に記載の電子時計。

【請求項4】 前記蓄電手段の蓄電電圧を検知する残量 検出手段を備え、

前記蓄電手段の蓄電電圧が所定値を下回った場合には、 前記蓄電手段と前記計時手段との接続を切断する機能を 有することを特徴とする請求項1に記載の電子時計。

【請求項5】 前記計時手段は

共振回路からなる共振部と、

該共振部の出力信号を増幅する増幅部と、

該増幅部の出力信号を減衰させる減衰部と、

該増幅部と並列に接続し前記共振部の出力信号を増幅す る補助増幅部とからなる発振回路を有し、

前記補助増幅部を前記増幅部よりも低いしきい値電圧の 電界効果トランジスタ素子で構成したことを特徴とする 請求項1に記載の電子時計。

【請求項6】 前記補助増幅部は信号増幅動作する補助 増幅回路と、

該補助増幅回路を通電または非通電にするスイッチ回路 40 とで構成し、

前記計時手段は発振停止状態から所定の期間だけ補助増 幅部を通電状態とする機能を有することを特徴とする請 求項5に記載の電子時計。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、水晶振動子などの 固有周波数を利用した発振回路を用いた電子時計に関す るものであり、特に電子時計などに用いられる水晶発振 回路の発振起動性向上のための回路構成に関するもので

ある。

[0002]

【従来の技術】現在は、光や機械的エネルギなどの外部 エネルギを電気エネルギに変換し、この電気エネルギを 電子機器の駆動に利用する発電手段を内蔵した電子時計

【0003】このような発電手段を内蔵した電子時計に は、太陽電池を利用する太陽電池式時計や、回転錘の機 械的エネルギを電気的エネルギに変換して利用する機械 発電式時計や、熱電対を複数直列化しその熱電対の両端 の温度差により発電する温度差発電式時計がある。これ ちの発電手段内蔵時計は、外部からのエネルギ供給がな く、また蓄電手段の蓄電エネルギが放電しきってしまう とこの電子時計は停止してしまうが、少なくとも外部か らのエネルギ供給が再開した後には電子時計は再び動作 を開始可能となっている。

【0004】ここで従来の例として、上記のうちの太陽 電池式の電子時計の場合の電源周辺回路について、図6 を用いて説明する(本例は特公平4-50550を参照 している)。

【0005】この従来の電子時計では、太陽電池である 発電手段96が充電用スイッチ群を介して蓄電手段97 と計時手段60に接続している。

【0006】発電手段96は太陽電池であり、第1のダ イオード7aと計時手段60とで電流経路を形成してい る。なお計時手段60は、電気エネルギで時刻表示を行 う時計プロック61と、容量が10μ F のコンデンサ 6 2を並列に接続することで構成している。

【0007】また発電手段96は第2のダイオード7b 30 と第2のスイッチ回路8bと蓄電手段3とでもう一つの 電流経路を形成している。第2のスイッチ回路8bは蓄 電手段3の充電用であるが説明は省略する。

【0008】そして、第1のスイッチ回路8aは、トラ ンスミッションゲート回路であり、計時手段60と蓄電 手段97とを並列接続できるように、計時手段60の負 極と蓄電手段97の負極との間に接続している。第1の スイッチ回路8 a をオフとすれば、少なくとも発電手段 96から発生した電流が蓄電手段97を流れないような 状態に制御されるようになっている。

【0009】この従来の電子時計は、蓄電手段97がほ ぼ空まで放電した状態で、かつ発電手段96も発電して いないときは、計時手段60は動作を停止している。こ のとき第1のスイッチ回路8aおよび第2のスイッチ回 路8bをオフするようになっており、その後に発電手段 96が発電を開始すると、その発電エネルギは計時手段 60のみに送られ、この結果として計時手段60の再起 動が可能となっている。

【0010】このような従来の一般的な電子時計に用い られる発振回路は、蓄電手段を満充電にする理由から、 発電手段として太陽電池などのほぼ定電圧を出力する発

[0011]

、発明が解決しようとする課題】ところが複数段セルは 受光面に分割スリットが入るため、見栄えが悪いという だけでなく、小面積のセルや異形のセルなどにしたとき に分割スリットによって有効受光面積が小さくなるとい う間質があった。

【0012】そこで単純に太陽電池セルを1段にすることも考えられる。ところが従来の電子時計に用いられる 発板回路は(主に水晶発板回路)、発板回動は(ない。6~0、8V程度が必要であるが、第1のダイオード7 aでは小さいものでも0、1Vよりは大きな電圧時下がある一方で、太陽電池1段分の開放電圧は多くとも0、7V程度しかなく、単に一段セルの太陽電池を発電手段として利用しようとすると、発振回路そのものに印加される電圧は発板回路の発揮起動電圧を下回ってしまい、この結果として発極回路を起動できないという問題があった。

【0013】 [発明の目的] そこで本発明は上配の欠点 20 を改善し、1段セル構成の太陽電池でも確実に動作し、 かつ高効率で充電動作可能な電子時計を提供するもので ある。

[0014]

【課題を解決するための手段】本発明の電子時計は、外 部からのエネルギを電気エネルギに変換する発電手段 と、該発電手段のエネルギを蓄電する蓄電手段と、該蓄 電手段あるいは前配発電手段のエネルギにより計時動作 する計時手段と、前配発電手段と前記蓄電手段と的記計 時手段との間のエネルギの伝達あるいは遮断を行う充放 電影網手段とを有する電子時計であって、前記発電手段 と前記計時手段とを直接接続する起動補助回路を有する ことを特徴とする。

【0015】本発明の電子時計では、蓄電手段の残量が 催かとなって、計時手段が動作を行っていないときは、 計時手段に直接発電手段を接続し、発電電圧をそのまま 計時手段に印加できるようになっている。しかもこのと きに蓄電手段の蓄電残量を発電手段など他の回路要素に 放電してしまうこともない。

【0016】さらに本発明では、計時手段中の発振回路のそのものの起動電圧を低くすることで起動特性にマージンを与え、そのうえ昇圧回路を用いて高電圧を得られるようになっているため、定格電圧の高いステッピングモータなどを用いた時刻表示体を速やかに動作させることが可能となっている。

【0017】 [作用] このため従来は難しかった、1段 セル構成の太陽電池を用いた電子時計であっても、比較 的照度の低い環境下であっても起動動作が可能な電子時 計を実現することができる。

[0018]

【発明の実施の形態】以下、本発明の発掘回路を実施するための最適な形態について図面を用いて説明する。図 1 は本発明の電子時計の全体回路の構成を示す回路図である。図 2 は本発明の電子時計における放電スイッチ部 および第 2 の充電スイッチ部の構成を示す回路図である。図 3 は本発明の電子時計における時計プロックの構成を示す回路図である。図 4 は本発明の電子時計の波形生成手段の回路例を示す回路図である。さらに図5 は本発明の実施の形態の回路要部の電圧を示す波形図である。

【0019】 [本発明の全体構成説明:図1]まず図1 を用いて本実施の形態の電子時計の全体構成を説明す る。本発明の実施の形態の電子時計は、起動補助回路9 1と、昇圧手段92と、第1の充電スイッチ部93と、第2の充電スイッチ部94と、放電スイッチ部95とと、発電手段96と、蓄電手段97と発電検出手段98とで構成する。

【0020】時計プロック61は電子時計としての計時 動作および充放電動作のための制御信号を生成する都分 りである。時計プロック61からは発振停止信号S91と 昇圧クロック592と第1の充電スイッチ信号S93と 第2の充電スイッチ信号S94とが出力しており、発電 検出信号S98が入力している。なお時計プロック61 の内部構成や、時計プロック61から出力されている各 信号の貯線配こついては後述する。

【0021】また時計プロック61には、間欠的な負荷の動作に対して端子間離圧を安定化させる目的で、コンデンサ62を並列接続している。 すなわちコンデンサ62は正極が接地し負極端子名はVss1とした。 なおこのコンデンサ62は10μFの容量のものを用いている。時計プロック61とコンデンサ62とは計時手段60とした。

【0022】リチウムイオン2次電池である蓄電手段9 7は、後述する発電手段96から出力される電力を蓄 え、発電手段96が非発電である間も時計プロック61 を動作させるためのものである。蓄電手段97は正極を 接地しており、また負極端子名はVss2とした。

【0023】起動補助回路91は、時計プロック61が 一旦動作を停止した後に再起動させる際に、後述の発電 手換96の電力を時計プロック61へ送るためのもので ある

□0024] 起動補助回路91は、NチャネルMOS電 界効果トランジスタ(以下FET)で構成したスイッチ 回路であり、起動補助回路91のソース端子はVss1 端子に接続しており、かつドレイン端子が発電手段96 の負極に接続している。また、起動補助回路91のゲー ト端子には、発振停止信号S91が接続している。足動 補助回路91は、前述の発性回路50や破形生成手段5 1が動作停止している期間はオン状態となって、発電手 60 段96と計時手段60と低抵抗で並列接続するように なっている。

【0025】また放電スイッチ節95は発電手段96が 非発電である間でも蓄電手段97に蓄えられた電力を時 計プロック61へ送るためのものである。放電スイッチ 節95については後述する。放電スイッチ節95には発 振停止信号591が接続している。

【0026】発電手段96は、ソーラセルを1段だけ有 する太陽電池モジュールである。発電手段96の正極は 接地し、負極が昇圧手段92の昇圧入力端子に接続して いる。発電手段96は光が照射すると約0.5~0.7 Vの開放電圧が発生するものである。

【0027】昇圧手段92はコンデンサの直並列状態を切りかえることで昇圧動作を行う一般的な昇圧回路である。昇圧手段92についての詳しい情成説明は省略するが、昇圧手段92はMOSFETには含述の波形生成手段51の一部の論理回路に用いた低いしきい値のものを用いて、波形生成手段51が出力する小さな振幅(0.5 V以上)であっても充分に切り換え削御が可能となるようにしたものを用いる。昇圧手段92の昇圧出力端子名20はVupとした。

【0028】昇圧手段92の入力側には発電手段96の 出力が接続しており、発電手段96の出力電圧を昇圧す るようになっている。また界圧手段92には昇圧動作を 制御するために昇圧クロックS92が接続しており、昇 圧手段92はこの昇圧クロックS92により内部のコン デンサを切り換えて4倍昇圧動作を行う。

【0029】また、第1の充電スイッチ部93と第2の 充電スイッチ部94とは昇圧手段92の動作に同期して 昇圧出力を時計プロック61および蓄電手段97へそれ 30 ぞれ送るためのスイッチである。第1の充電スイッチ部 93は単体のNチャネルMOSFETであり、ソース端 子注Vss1に接続し、ドレイン端子が昇圧手段92の 昇圧出力端子Vupに接続し、ゲート端子は第1の充電 スイッチ信号S93に接続している。

【0030】第2の充電スイッチ部94の詳細な構成については後述するが、基本部分の構成は第1の充電スイッチ部93と同様のFETからなる第2の充電スイッチ94aである(図1には図示せず)。第2の充電スイッチ94aのソース端子は蓄電手段97の負極Vss2~40接続し、ドレイン端子は昇圧手段92の昇圧出力端子Vupへ接続している。また第2の充電スイッチ部94には、制御信号として第2の充電スイッチ部94には、制御信号として第2の充電スイッチ信号S94および発極停止信号S91が接続している。

【0031】一方、発電検出手段98は発電手段96の 発電状態を検知するためのアンプ回路などからなる回路 プロックである。発電検出手段96の詳細な構成につい ては省略するが、発電手段96が所定の発電量が出力さ れているときにはハイレベルを出力しそれ以外ではロウ レベルを出力するよう動作する。なお発電検出手段98

の検知出力は発電検出信号S98として時計プロック6 1に接続している。

【0032】 [放電スイッチ部および第2の充電スイッチ部の構成説明:図21 さらに図2を用いて本発明の実施の形態における第2の充電スイッチ部94 および放電スイッチ部95 は、第1の放電スイッチの15 a と、第2のが成場スイッチ95 b と、第1のがペンスイッチ95 b と、第2のブルダウンスイッチ96 d と、放電用レベルシフタ95 c と、残盤検出手段95 f とで構成している。また第2の充電スイッチ部94は、第2の元電スイッチ94 a と、第3のブルダウンスイッチ95 b と、充電用レベルシフチ994 c と、精成している。

【0033】第1の放電スイッチ95aと第2の放電スイッチ95bと第1のブルダウンスイッチ95cと第2のブルダウンスイッチ95cと第2のブルダウンスイッチ95もはNチャネルMOSFE Tであり、特に第1の放電スイッチ95aはよび第2の放電スイッチ95bには、充分チャネル幅が大きく、オン抵抗が低いものを用いることとする。

【0034】第1の放電スイッチ95aおよび第2の放電スイッチ95bはドレイン端子同士が共に接続し、第1の放電スイッチ95aのソース端子がVss1に接続し、第2の放電スイッチ95bのソース端子がVss2に接続している。

【0035】一方、放電用レベルシフタ95eは、接地電位ーVss1の論理信号レベルを接地電位ーVss2の論理信号レベルで接対である。放電用レベルシフタである。放電用レベルシフタ95eには残量検出信号S95が入力

し、レベル変換した出力を第2の放電スイッチ95bの ゲート端子に接続している。なお放電用レベルシフタ9 5c は接地側の電流経路を切断することにより非通電状 能にできるものである。

100361 この放電用レベルシフタ95 eの構成については簡単な説明にとどめるが、PチャネルMOSFE TであるトランジスタQ1、Q2、Q3と、NチャネルMOSFE ETであるQ4、Q5とが接地ーVss2間に図示のように接続されている。すなわち、トランジスタQ1のゲート端子に接線されている。すなわち、トランジスタQ2のゲート端子に残量検出信号S95が存成し、さらにトランジスタQ2のゲート端子に残量検出信号S95の否定信号が接続し、さらにトランジスタQ2とQ4とり接続点がトランジスタQ2のゲート端子に接続すとともに出力端子になっており、トランプスタQ3とQ4ともに出力端子になっており、トランプスタQ3とQ5の接続点がトランジスタQ4のゲート端子に接続している。なおトランジスタQ4のゲート端子に接続している。なおトランジスタQ4のゲート端子が負論理のイネーブル端子で長さなっている。

【0037】第1のブルダウンスイッチ95 cおよび第 2のブルダウンスイッチ95 dは、発振停止信号S91 が接地電位、すなわちハイレベルである間は第1の放電 50 スイッチ95 a および第2の放電スイッチ95 b が共に オフするように動作するブルダウン用のFETである。 第1のブルダウンスイッチ95 cはドレイン端子が第1 の放電スイッチ95 aのゲート端子に、ソース端子がV sslにそれぞれ接続している。また第2のブルダウン スイッチ95 dはドレイン端子が第2の放電スイッチ9 5 b ゲート端子に、ソース端子がVss2にそれぞれ接 続している。第1のブルダウンスイッチ95 c および第 2のブルダウンスイッチ95 dのゲート端子は共に発振 停止信号591に接続している。

【0038】したがって放電用レベルシフタ95eは、 角論理のイネーブル場子/E、すなわち発振停止信号S 91が接地電位の時には接地関からの電源供給が絶たれ、 非非電状態となり、さらに第1のブルダウンスイッチ 95cおよび第2のブルダウンスイッチ95dにより第 1の放電スイッチ95aおよび第2の放電スイッチ95 めが一ト電位はモれぞれのソース電位と同じとなる。 このときは第1の放電スイッチ95aと第2の放電スイッチ95bとに構造上形成されるダイオードは互いに反 対向きとなるのでVsslとVss2との間に完全に非 議価機能となる。

【0039】一方、残量検出手段95mは、一般的に用 いられる電圧検出回路であり、残量検出手段95fは接 地-Vss1間の電圧で動作するものである。残量検出 手段95fは、蓄電手段97の端子電圧が1.0V以上 であればハイレベルを出力し、それ以外ではロウレベル を出力する。出力信号は残量検出信号S95としてお り、同様にして残量検出信号S95の否定信号も同様に して出力できるような構成のものを用いている。残量検 出手段95fについては詳細な構成説明を省略するが、 残量検出手段95fは放電用レベルシフタ95eと同様 30 に負論理のイネーブル端子/Eを備えており、このイネ ーブル端子/Eに発振停止信号S 9 1 を接続すること で、発振停止時に非通電状態にできるものを用いる。な お、本実施の形態では、残量検出手段95 f を放電スイ ッチ部95のなかに設けたが、放電スイッチ部95の外 部に設けることも可能である。

【0040】一方、第2の充電スイッチ部94については、第2の充電スイッチ信号S94を充電用レベルシフタ94に接続することで、第2の充電スイッチ信号S94を接触している。充電用レベルシフタ94には前途の放電用レベルシフタ95eと同じものである。また充電用レベルシフタ94cの出力には第2の充電スイッチ94aのゲート端子が接続している。さらに第2の充電スイッチ94aのゲート端子に接続している。さらに第2の充電スイッチ94をが接続している。といるである。また充電組イッチ94aのゲート端子には第3のブルダウンスイッチ94bが接続しており、発展停止信号S91が接地電位のときは接続しており、発展停止信号S91が接地電位のときは発してブルダウンするようになっている。

【0041】 [時計プロックの構成説明:図3] つぎに図3を用いて本発明の電子時計における時計プロックの

構成について説明する。

【0042】本発明の時計プロック61は、発振回路50と、波形生成手段51と、定電圧手段52と、第1のインバーク53と、時刻表示体54とで構成している。 【0043】発振回路50は、共振部10と、増幅部20と、減衰部30と、補助増幅部40とで構成している。

【0044】共振部10は水晶振動子11と第1の発振

容量12と第2の発振容量13とで構成している。増幅

部20は第1のトランジスタ素子21と第2のトランジ スタ素子22とバイアス抵抗23とで構成している。第 1のトランジスタ素子21と第2のトランジスタ素子2 2とはしきい値電圧が0.5 Vのものを用いる。減衰部 30は抵抗素子で構成している。減衰部30は抵抗値が 1 MΩのものを用いる。補助増幅部40は第3のトラン ジスタ素子42と第4のトランジスタ素子43と第1の スイッチ41と第2のスイッチ44とで構成している。 【0045】水晶振動子11は一般的な電子時計に用い られる水晶振動子である。また第1の発振容量12およ び第2の発振容量13は集積回路に内蔵したコンデンサ である。第1の発振容量12は7pFであり第2の発振 容量13は3pFであるものとする。各発振容量の正極 は接地し、負極を振動子11の両端にそれぞれ接続して いる。なお第1の発振容量12の負極は共振部10の出 力端子であるが、発振入力S1としている。もう一方の 第2の発振容量13の負極は共振部10の入力端子であ る。なお振動子11と第1の発振容量12および第2の 発振容量13とは共振回路を構成しており、この共振周

波数は32768H2となるようにしてある。 [0046] 第1のトランジスク素子21はPチャネル のMOSFETであり、第2のトランジスタ素子22は パチャネルMOSFETである。バイアス抵抗23は数 10MQ以上の高抵抗薬子である。第1のトランジスタ 素子21と第2のトランジスタ素子22とバイアス抵抗 23とで簡素なCMOSアンプを構成している。

【0047】第1のトランジスタ素子21および第2のトランジスタ素子22のゲート端子同士は共通とし、この端子を増幅部20の入力端子としている。また第1のトランジスタ素子21および第2のトランジスタ素子22のドレイン端子同士をそれぞれを共通とし、この端子を増幅部20の出力端子としている。さらに第1のトランジスタ素子21のソース端子は接地し、第2のトランジスタ素子22のソース端子は接地し、第2のトランジスタ素子2でのより、第4では一般では一般である。このに増幅部20の入力端子と出力端子との間にはバイアス抵抗23を挿入する。

【0048】第3のトランジスタ楽干42はPチャネルのMOSFETであり、第4のトランジスク楽子43は NチャネルMOSFETである。第1のスイッチ41は 50 PチャネルのMOSFETであり、第2のスイッチ44 はNチャネルMOSFETである。なお第3のトランジ スタ素子42および第4のトランジスタ素子43とが補 助増幅回路を構成し、第1のスイッチ41および第2の スイッチ44とがスイッチ回路を構成している。

【0049】第1のスイッチ41のソース端子は接地 し、第2のスイッチ44のソース端子も後述の定電圧手 段52の定電圧出力Vregに接続する。

【0050】また第3のトランジスタ素子 42のソース 端子は第1のスイッチ41のドレイン端子に接続し、第 4のトランジスタ素子 43のソース端子は第2のスイッ チ44のドレイン端子に接続する。また第3、第4のトランジスタ素子のゲート端子同士は共通とし、この端子 を補助増幅部40の入力端子とする。また第3、第4のトランジスタ素子のドレイン端子同士は共通とし、この 場子を補助増幅部40の出力端子とする。

【0051】そして特に本実施の形態では第3のトランジスタ素子42および第4のトランジスタ素子43は共に増幅部20を構成するトランジスタ素子よりもしきい値億程にの低いものを用いる。ここでは両トランジスタ素子のしきい値電圧はいずれも0.35Vに設定したもの20 ヶ用いることとする。

【0052】また第1のスイッチ41および第2のスイッチ44にも同様にしきい値電圧の低いもの(0.35 V)を用いる。

【0053】そして発振入力S1が増幅部20および補助増幅部40に入力している。増幅部20の出力である発振力かS2には減衰部30の一端が接続し減衰部30の他端が接続し減衰部30の他端が接続し減衰部30の他端が接続10の入力に接続している。一方、補助増幅部40の出力は接版部10の入力端子(第2の発振容量13の負極)へ入力している。共振部10の出力130発振力51となっており帰還回路が形成されている。

【0054】補助増幅部40の第2のスイッチ44のゲート端子には該形生成手段51のパワーオンリセット信号550が接続している。また補助増幅部40の第1のスイッチ41のゲート端子にはパワーオンリセット信号550を第1のインバータ53に入力することで得られるパワーオンリセット信号550を変えの否定信号が接続している。なお第1のインバータ53は一般的なCMOSインバータであり、接地-Vreg間の電圧で動作する。

【0055】さらに発振出力S2は波形生成手段51に 40 入力している。波形生成手段51は発揮回路の出力である発振出力S2を多段のフリップフロップ回路で分周 し、この分周信号を合成することでステップモータを駆動するバルス波形を生成する論理回路である。また波形 生成手段51は電源が投入されたときから0.5秒(5 00ミリ秒)の問ハイレベルとなるパワーオンリセット 信号550も出力する。

【0056】 同様に波形生成手段51からは昇圧動作の ための昇圧クロックS92と第1の充電スイッチ信号S 93と第2の充電スイッチ信号S94とを出力してい る。さらに波形生成手段51には後述する発電検出信号 S98が入力している。波形生成手段51の構成説明に ついては後述する。

【0057】時刻表示体54 は図示しないステッピング モータや減速輪列や文生級や指針などからなる、電子時 計の時刻表示部分である。時刻表示体54 は液形生成手 段51 が生成したバルス波形を元にステッピングモータ を駆動し、減速輪列を介して指針を回転させて時刻を表 示する。時刻表示体54 については一般的な構成である ため詳細な構成説明は省略する。

【0058】 定電圧手段52は一定電圧を出力する一般 的な定電圧回路(電圧レギュレータ)である。ここでは 定電圧出力の端子はVregとしている。なお定電圧手 段52は時計プロック61の電源電圧である接地-Vs s1間の電圧で駆動され、接地-Vreg間の電圧が O. 8Vとなるように動作する。Vss1は時計プロッ グ61の負極の端子である。

【0060】 [波形生成手段の構成説明:図4] つぎに図4年別・て本実施の形態の表形生成手段51 内構成について説明する。波形生成手段51は、発版停止検出回路55と、整形インパータ71 a と、第1のフリップフロップ71 b と、第2のフリップフロップ71 c と、パルス合成回路71 d と、年1のアンドゲート72と、第1のオアゲート73と、第2のオアゲート78と、第1のアンドゲート78と、第2のアンドゲート78と、第2のアンドゲート78と、第3のアンドゲート78と、第3のアンドゲート78と、第3のアンドゲート78と、第3のアンドゲート78と、第3のレベルシフタ76と、第2のレベルシフタ76と、第2のインパータ79と、第3のレベルシフタ80とで構成する。

【0061】パルス合成回路71dとモータドライバ7 1eを除いた波形生成手段51中の新理回路は、補助増 幅部40に用いたものと同様にアナネル、ハチャネル 共に低いしきい値電圧を有するMOSFETで構成した 低しまい値CMOS回路で構成する。

【0062】すなわち、発振停止検出回路55と、整形 インバータ71aと、第1のフリップフロップ71b と、第2のフリップフロップ71cと、第1のアンドゲ ート72と、第2のアンドゲート77と、第3のアンド ゲート78と、第1のオアゲート73と、第2のオアゲ ート75と、第1のレベルシフタ74と、第2のレベル シフタ76と、第2のインバータ79とは低しきい値C 50 MOS回路で構成する。

特開 2 0 0 3 - 8 4 0 8 5

【0063】パルス合成回路71dは一般的な電子時計 で用いられる分周回路と複数の論理ゲートで構成され た、発振回路の出力を元に前述のステッピングモータを 回転駆動させるためのモータ駆動パルス波形を合成する 一般的な論理回路である。またモータドライバ71 eは パルス合成回路71dのモータ駆動パルス波形をレベル 変換し、ステッピングモータを駆動する大電流を供給可 能なドライバ回路である。特に図示はじないが、モータ ドライバ71eの出力端子には前述のステッピングモー タの駆動コイルが接続している。パルス合成回路71d およびモータドライバ71eについては一般的な電子時 計と同様の回路構成であるので詳細な説明は省略する。 【0064】なおモータドライバ71eを除く波形生成 手段51の構成要素が動作するための電源は、第1のレ ベルシフタ74と第2のレベルシフタ76と第2のアン ドゲート77と第3のアンドゲート78を除いて前述の 定電圧手段52の出力から得られるよう接続している。 第1のレベルシフタ74と第2のレベルシフタ76と第 2のアンドゲート77および第3のアンドゲート78 は、接地-Vss1間の電圧で動作するようになってい 20

200651発展停止検出回路55は一般的に用いられる、入力信号の有無により発振動作の停止を検知する回路である。発振停止検出回路55には第2のフリップフロップ71cの出力信号が入力している。発振停止検出回路55の出力は発振停止信号591としている。

【0066】バルス合成回路71 dはパワーオンリセット信号S50と独制月圧信号S70と充電クロックS75とも出力している。充電クロックS75は1日ェの方形波である。またパワーオンリセット信号S50は、時計プロック61に電源を投入してから0.5秒間ハイレベルとなるパワーオンリセットパルスである。同様に独制昇圧信号S70はパワーオンリセットS50と同様のアリーオンリセットバルスであるが、時計プロック61に電源を投入してから1.5秒(1500ミリ形)間ハイレベルとなるように設定してある。これらの充電クロックS75やパワーオンリセット信号S50は一般的であるので生成回路の構成については省略する。

【0067】整形インバータ71aは、発振回路の出力 信号S2を方形波へ波形整形するためのインバータである。整形インバータ71aの出力は、第1のフリップフロップ71bに入力している。また第1のフリップフロップ71bに入力している。なお第1~第2のフリップフロップ71cに入力している。なお第1~第2のフリップフロップ71b~71cはトグルタイプのフリップフロップである。第2のフリップフロップ71cは出力信号をバルス合成回路71d~接続している。

【0068】第1のオアゲート73はバルス合成回路7 1dの出力する強制昇圧信号S70と発電検出信号S9 8との論理和を出力する。第1のアンドゲート72は第 50

1のオアゲート73の出力信号と第2のフリップフロップ71cの出力信号と発振停止信号S91の否定信号との論理視を第1のレベルシフタ74へ出力する。 なお発 振停止信号S91の否定信号は発振停止信号S91を第2のインバータ79に入力することで生成している。

[0069]また第1のレベルシフタ74および第2のレベルシフタ76は接地-Vre間の論理信号レベルを接地-Vss1間の論理信号レベルを接地-Vss1間の論理信号レベルへ変換する一般的なレベルシフタ回路である。第1のレベルシフタ74の76で変出力は昇圧クロックS92としている。

【0070】一方、第2のオアゲート75は強制昇圧信 号S70と充電グロックS75との論理和を第2のレベ ルシフタ76〜出力する。

【0071】第2のアンドゲート77は第2のレベルシフタ76の出力と第1のレベルシフタ740出力との議理復を出力する。 なお第2のアンドゲート77の出力は第1の元電スイッチ信号S93としている。 第3のアンドゲート78は第2のレベルシフタ76の否定出力と第1のレベルシフタ74の出力との論理類を出力する。 なお第2のアンドゲート78の出力は第2の元電スイッチ信号S94としている。以上のようにして、被形生成手優51を構成する。

【0072】 [動作説明:図1~図5] つぎに図1から 図5を用いて本発明の実施の形態の全体動作について説 明する。ただし図5の破形図においては、発振出力S2 と昇圧クロックS92以外は単に論理値だけを変形図上 に示している。

[0073] ここでは蓄電手段97の残量が空で発電手段96も発電をしておらず、時計ブロック61の動作が停止した状態から発電手段96が発電を開始する場合に

ついて説明する。 【0074】まず全体が停止した状態について説明す る。発振停止検出回路55は、発電手段96が発電を開 始する以前から接地電位、すなわちハイレベルを出力し ている。このときは放電スイッチ部95においては、第 1の放電スイッチ95aおよび第2の放電スイッチ95 bは前述の通りに双方向に非導通状態となっており、か つ残量検出手段95 f や放電用レベルシフタ95 e も非 通電状態となっている。さらにこのときは、第2の充電 スイッチ部94においても、第2の充電スイッチ94a は少なくとも蓄電手段から外部へは電流がリークしない ようになっており、かつ充電用レベルシフタ94cも非 通電状態となっている。したがって、発電手段96が非 発電状態でかつコンデンサ62が放電しきった状態で は、蓄電手段97に残ったエネルギは、少なくとも蓄電 手段97に接続された回路要素へ放電しないようになっ ている。この動作は起動補助回路91が導通あるいは非 導通のいずれの状態でも保証される。

【0075】つぎに発電手段96が発電を開始し、本実 の 施の形態の電子時計が再起動するときの動作について説

明する。本実施の形態の発電手段96に発電手段96に 光が照射すれば、その照射した光があまり強くない場合 では、発電手段96の開放電圧はおよそ0.5V程度と

【0076】コンデンサ62が放電しきった状態、すなわち電源電圧Vssが0Vに近い間は配動補助回路9 1はダイオード的に電流を流すが、コンデンサ62に電荷が蓄えられてVss1が0Vから大きくなるにしたがって起動補助回路91はスイッチ的に動作し始める。この結果コンデンサ62は1秒ほどで端予電圧が目ぼり、5Vとなるまで充電される。このときは時計ブロック61に印加される電源電圧Vss1が低い場合は定電圧手段52は電源電圧Vss1が低い場合は空電圧手段52は電源電圧と等しい0.5Vを出力する。

【0077】またこのときにはパワーオンリセット信号 S50および強制列圧信号S70はハイレベルとなって いる。パワーオンリセット信号S50がハイレベルの間 は補助増幅部40の第1のスイッチ41および第2のス イッチ44は導画状態となり、第3のトランジスタ素子 42および第4のトランジスタ素子43で構成された補20 助増幅回路40は動作可能状態となる。

【0078】本実施の形態の発揮回路においては、発振 回路50に0.5V程度が印加されれば発振回路50は 発振動作を開始する。これは補助増幅部40は0.5V であっても発振に必要な増幅率があるためである。すな わち補助増幅部40と共振部10で構成された帰還回路 で共振部10のもつ共振周波数にほぼ等しい成分の信号 だけの獲幅が成長し、やがて発振出力52から正弦波が 遥んだ方形故に近い出力信号が得られる。この補助増幅 部40は、パワーオンリセット信号550にない、発振 が停止している状態および発振を開始してから所定の期 間、すなわち少なくとも0.5秒の間は強制的に通電さ れ、増幅動作を行うようになっている。この期間には、 少なくとも使用条件下で発振が開始し、かつ発振が安定 するのに必要な条件を設定している。

【0079】発揮回路50が発振を開始すれば、整形インパータ71a、第1のフリップフロップ71b、第2のフリップフロップ77b、第2を振停止検出回路55には第2のフリップフロップ71cの出力信号が入力するので、発振停止信号S91は接 40地電位 (ハイレベル) からロウレベルへと変化する。すると起動補助回路91はFETの構造上ダイオード的に動作するようになる。

【0080】さらに発振停止信号S91がロウレベルとなれば昇圧クロックS92が出力されるので昇圧手段92は昇圧動作を行う。すなわち第1のレベルシフタ74 および第2のレベルシフタ76を介して、はじめは振幅が0.5 Vの昇圧クロックS92が出力され、これにより昇圧手段92は昇圧動作を行う。このときは第1の元50

電スイッチ部93は動作状態となるので昇圧出力は時計 ブロック61側にのみ送られる(このときは起動補助回 第91はオフ状態になっており、昇圧手段92の昇圧出 力が再び発電手段96へ戻らない)。この昇圧手段92 は、強制昇圧信号570に従い、発振停止信号591が ロウレベルになってから所定の期間、すなわち1.5秒 間は強制的に昇圧動作を行うようになっている。この期 間には、昇圧出力によって計時手段60の増予電圧が充 分に上昇するのに(例えば前述のステッピングモータを 駆動可能な確圧まで、例えば前でステッピングモータを 駆動可能な確圧まで、多要な条件を設定している。

【0081】また昇圧手段92が昇圧動作を行った後、電源電圧Vss1が0.8Vよりも高くなれば、定電圧 手段52は所定の定電圧である0.8Vの一定値を出力 する。したがって電源電圧Vss1が0.8Vよりも高 い状態では発振回路50自体に印加される電圧は電源電 圧Vss1の変動によらず一定値となる。

【0082】 なおこのときは補助増幅部40の増幅率は 極めて高いものとなっているが、発振回路50の動作電 圧は定電圧手段により最大でも0.8 Vに固定されてい るので、高周波側の増幅率は制限され、この結果として 水晶振動子11がオーバートーン(高次モード)発振す るのを抑制できる。

【0083】そして発展開始から0.5秒後にはパワー オンリセット信号S50がロウレベルとなる。このとき 補助増幅部40の第1のスイッチ41および第2のスイ ッチ4はオフ状態となる。よって補助増幅部40は非 通電状態となり。かつ補助増幅部40の出力端子は発版 出力S2端子に対して高インビーダンスとなる。このと 果、第3のトランジスタ素子42および第4のトランジ スタ素子43の増幅動作は停止する。このときは発援回 路50は増幅部20のみで発振動作を行うこととなり、 発振出力S2は正弦核に近い信号へと切り換わる。

【0084】パワーオンリセット信号S50がロウレベルとなってパワーオンリセット状態が解除されたときには、前述した通り電源電圧Vss1は発電電圧よりも高い電圧は昇圧されている。すなわら電源電圧Vss1は1.0V以上の電圧まで上昇しているため、標準しきい値電圧を育するCMOS回路で構成した波形生成手段51は油管の動作が可能となっている。

【0085】その後、発駆回路50が発振開始してから
1.5秒後には強制昇圧信号570はロウレベルに切り
扱わる。このときには電源電圧Vss1はさらに高い
1.5V以上の電圧に昇圧されている。この電圧は前途のステッピングモータの駆動にも充分な電圧であり、図示はしていないがこのときの電源電圧Vs1は1.5
Vまで上昇しているの時刻表示体54の時刻表示動作が開始される。なお強制昇圧信号570がロウレベルになれば昇圧手段92は強制昇圧動作はしなくなるが、このときは発電手段96が発電中であるので昇圧手段92
の昇圧動作自体は継続する。

【0086】これ以降は、発電手段96が発電状態である間は発電検出手段98がこれを検知し、この結果発電検出情号598はハイレベルとなるので第2のフリップフェブ71cの出力信号と同等の信号が第1のレベシフタ74を介して昇圧プロック592に出力される。また第1の充電スイッチ部93および第2の充電スイッチ部94は周期的に動作するため昇圧手段92の昇圧出力は助計プロック61と蓄電手段97とに交互に出力される。

【0087】したがって昇圧手段92は蓄電手段97と 時計プロック61とへ昇圧出力を行うので、振矩回路5 0が発援を開始してから数秒後には専刻表示を行いいつ つさらに蓄電手段97への充電も行われるようになる。

【0088】上記充電動作により蓄電手段97の場子電圧が上昇し、蓄電電圧vs2が100%を超えれば、 放電スイッチ部95の残量検出手段95 所ごれを検放 し、Vs51とVs2との間を導通状態とする。この 後は計時手段60は蓄電手段97に並列に接続される が、上記と同様の充放電動作を行うことで計時手段60 は所定の計時動作を継続する。

【0089】その後(特に図4では示していないが)、 発電手段96が非発電地態となれば発電検出信号S98 はロウレベルとなるので昇圧クロックS92はハイレベ ルのままとなり、昇圧動作は停止する。回線に第1の元 電スイッチ部93および第2の充電スイッチ部94はオ フ状態となる。この間は時計プロック61へは放電スイ ッチ部95を介して蓄電手段97に書えられた電力が送 られるため、発電手段96が非発電であっても時計プロ ック61の計時動作は同様に継続される。

【0090】さらに非発電状態が継続すれば、蓄電手段 30 7 に蓄えられたエネルギは時計プロック 6 1 の計時動 作で消費され、本がて蓄電電圧V s s 2 が 1.0 Vを下回るようになる。これを残骸後出手段 9 5 f が検知すれ ば再び放電スイッチ部は非顕通となり、蓄電手段 9 7 から時計プロック 6 1 へのエネルギ供給が絶たれ、ま もなく時計プロック 6 1 の動作は停止する。このときは発振 検出信号 8 9 1 は接地電位 (ハイレベル) となり、前途のとおり蓄電手段 9 7 は他の回路要素から切り離されるので、その後は蓄電電圧V s 2 は 1.0 V付近を維持する。

【0091】なお本実施の形態で用いた補助増幅部40 の第1のスイッチ41には補助増幅部40の第3のトラ ンジスタ素子42と同じしきい値電圧のPチャネルMO SFETを用い、同様に第2のスイッチ44には第4の トランジスタ素子43と同じしきい値電圧のNデャネル MOSFETを用いることとしたが、第1のスイッチ4 と第2のスイッチ44のしきい値電圧には増幅部20 の第1のトランジスタ素子42と第2のトランジスタ素 子43と同じしきい値電圧のしたよい。 【0092】またこれと類似するが、第3のトランジス タ素子 4 2に第1のトランジスタ素子 2 1と同じしきい 値のPチャネルMOSFETを用い、第4のトランジス タ素子 4 3にも第2のトランジスタ素子 2 と同じしき い値のNチャネルMOSFETを用い、その代わりに第 3のトランジスタ素子 4 2と第4のトランジスタ素子 4 3のチャネル幅をさらに大きくすることで補助増幅部 4 の増幅学を高くすることも可能である。

16

【0093】たとえば本実施の形態で用いた第3のトランジスタ素子42および第4のトランジスタ素子43のチャネル幅の3倍以上に設定することが可能であるが、この場合でも第3および第4のトランジスタ素子のチャネル長を大きくしたことで発生する寄生容量分を考慮して各共振容量を調整すればよく、発振回路の起動電圧は上記までの実施の形態よりも悪くなるが、しきい値電圧は改善することができる。

【0094】また本実施の形態では補助増幅部40の構成は、補助増幅回路に対してスイッチ回路が接地側および電圧出力Vreg側となるように配置した。これは20 スイッチ回路を構成する第1のスイッチ41および第2のスイッチ44に基板パイアス効果が働いてスイッチング効率が悪くなることがないようにしたためであるが、この影響が無視できるようであればこの配置を変えてもよい。たとえば第3のトランジスタ業子42を接地側とし、第4のトランジスタ素子44を定電圧出力Vreg側とし、第1のスイッチ41および第2のスイッチ44が補助増幅部40の出力側となるように配置してもよい。いずれの場合もパワーオンリセット信号S50をロウレベルにすれば補助増幅部40の電源が切れ非通電状態となりかつ補助増幅部40の電源が切れ非通電状態となりかつ補助増幅部40の出力を高インビーダンス 状態にできる。

(10095) その他、本実施の形態における電源手段9 0に用いた回路要素もこれらに環定するものではない。 たとえば昇圧手段92としてはコンデンサの技能状態を 切りかえる形式のものを夜崖したが、その他コイルに生 じる誘起電圧を利用したものであってもよい。また発電 手段96としては1段構成の太通電池としたが、温度整 で発電する熱電発電業子であってもよい。

[0096] また説明の簡素化のため、蓄電手段の過充 40 電防止機能などは省略したが、実用上必要な機能を設け てもよいことは明らかである。

[0097]

【発明の効果】上記までの説明で明らかなように、本発明の発振回路を用いれば、従来は難しかった水晶発振回路自体を、大腸電池1段分相当である0.5 Vという低い発電電圧を、計時手段が動作しているときのみ直接印加することで発振起動動作させることが可能となる。

【0098】また通常発振時の消費電力は従来と変わらず、かつ定電圧手段を用いることでオーバートーン発振 り も抑制できるため、安定した発振特性を維持したまま起

動特性の改善をはかることができる。

【0099】特に本発明の発振回路には一般的な電子時 計の発振回路に用いる水晶振動すを用いており、CR発 振回路やリング発振回路といった比較的低電圧で動作す る他の発振回路と比較して発振起動に必要な電流は格段 に小さいため発振起動がし易く、出力抵抗値の高い熱電 発電器なども発電手段として選べるというメリットも有 している。当然ながらCR発振回路やリング発振回路と いった発振回路を別途用意する必要もない。

【0100】さらに本発明の電子時計では、上記の発振 10 回路によって昇圧手段を駆動するようにしたため、発振 回路自体の起動電圧よりも定格電圧の高いステッピング モータなどの負荷を即時に動作させることができるよう になっており、発生電圧が低い発電器を用いて電子時計 以外の様々な電子機器も駆動させることが可能となる。

【図面の簡単な説明】

【図1】本発明の実施の形態の電子時計の全体回路構成 を示した回路図である。

【図2】本発明の実施の形態の電子時計の放電スイッチ部および第2の充電スイッチ部の回路構成を示した回路 20 図である。

【図3】本発明の実施の形態の電子時計の時計ブロック

の回路構成を示した回路図である。

【図4】 本発明の実施の形態の電子時計の波形生成手段 の構成を示した回路図である。

【図5】 本発明の実施の形態の電子時計の要部電圧波形 を示した波形図である。

【図6】従来の電子時計の回路構成を示した回路図である。

【符号の説明】

10 共振部

10 20 増幅部

30 減衰部

40 補助増幅部

50 発振回路

90 電源手段

91 起動補助回路

1 起動補助回

92 昇圧手段

93 第1の充電スイッチ部

94 第2の充電スイッチ部 95 放電スイッチ部

95 放電人へ

96 発電手段

97 蓄電手段 98 発電検出手段

[図2]

[図1]

[図6]

