Wymagania edukacyjne z uzupełnienia

Elementy analizy matematycznej

Treści nauczania	Dopuszczający	Dostateczny	Dobry	Bardzo dobry	Celujący
	- zna warunek na istnienie	- potrafi podać wzór	- potrafi zbadać czy do	- potrafi zbadać czy do	Ocenę celującą
	funkcji odwrotnej do danej	funkcji odwrotnej do danej	danej funkcji istnieje	danej	otrzymuje uczeń,
	- potrafi narysować wykres	(proste przykłady)	funkcja	funkcji istnieje funkcja	którego aktywności
	funkcji odwrotnej mając	- rozwiązuje bardziej	odwrotna	odwrotna	matematyczne
Funkcje	wykres funkcji danej	złożone równania	(na prostych przykładach)	(na złożonych	świadczą o rozumieniu
odwrotne,	- potrafi narysować	cyklometryczne i proste	- rozwiązuje bardziej	przykładach)	pojęć na poziomie
funkcje	wykresy funkcji	nierówności	złożone równania	- rozwiązuje równania	strukturalnym
_	cyklometrycznych i	- (kryteria z klasy I	cyklometryczne i	cyklometryczne z	(według:
trygonometryczne	odczytać z nich własności	dotyczące trygonometrii)	nierówności	parametrem	Dyrszlag Z., "O
i cyklometryczne	tych funkcji		- (kryteria z klasy I	- (kryteria z klasy I	poziomach i kontroli
i cyklometi yezhe	- rozwiązuje proste		dotyczące trygonometrii)	dotyczące	rozumienia pojęć ma-
	równania cyklometryczne			trygonometrii)	tematycznych w
	- (kryteria z klasy I dotyczące				procesie
	trygonometrii)				dydaktycznym", WSP,
	- zna własność Darboux	- potrafi zastosować	- potrafi zastosować	- stosuje twierdzenia	Opole 1978) lub
	- zna inne własności funkcji	własność Darboux do	własności funkcji ciągłych	Rolle'a i Lagrange'a do	wykazał się
	ciągłych	prostych zadań	do rozwiązywania	zadań bardziej	umiejętnością
	- zna twierdzenie Rolle'a i	- potrafi podać	bardziej złożonych zadań	złożonych	rozwiązywania zadań
	Lagrange'a z	interpretację	- stosuje twierdzenia	- rozwiązuje	pochodzących z
	wyjaśnieniem	geometryczną twierdzenia	Rolle'a i Lagrange'a do	skomplikowane zadania	olimpiad, zawodów
	- potrafi wyciągnąć wnioski	Rolle'a i Lagrange'a.	prostych zadań	optymalizacyjne	lub
Granice i	z twierdzenia Lagrange'a.	- rozwiązuje bardziej	- rozwiązuje złożone	- stosuje twierdzenie de	konkursów
pochodne	- rozwiązuje proste zadania	złożone zadania	zadania optymalizacyjne	l'Hospitala w	matematycznych dla
,	optymalizacyjne	optymalizacyjne	- stosuje twierdzenie de	skomplikowanych	uczniów liceów (np.
	- zna wypowiedź	- stosuje twierdzenie de	l'Hospitala w złożonych	przypadkach	prze-chodząc do ich
	twierdzenia de l'Hospitala	l'Hospitala w prostych	przypadkach	- (kryteria z klasy III	kolejnych etapów).
	- (kryteria z klasy III	przypadkach	- (kryteria z klasy III	dotyczące ciągłości,	
	dotyczące ciągłości, granic i	- (kryteria z klasy III	dotyczące ciągłości,	granic i	
	różniczkowalności funkcji)	dotyczące ciągłości, granic i	granic i różniczkowalności	różniczkowalności	
		różniczkowalności funkcji)	funkcji)	funkcji)	

Całki	- zna definicję całki nieoznaczonej - zna definicję funkcji pierwotnej - zna związek między funkcją pierwotną, a całką nieoznaczoną - potrafi znaleźć funkcję pierwotną do danej funkcji spełniającą zadany warunek - zna twierdzenia o liniowości i addytywności całki - zna twierdzenia o całkowaniu przez części oraz przez podstawienie - zna definicję całki oznaczonej (całki Riemanna) - wykorzystuje całkę oznaczoną dla obliczania pól pod wykresem funkcji - podaje przykład funkcji niecałkowalnej w sensie Riemanna	- potrafi obliczać całki nieoznaczone stosując najprostsze elementarne wzory - oblicza proste całki metodą przez części i przez podstawienie - rozwiązuje bardziej złożone zadania z całek oznaczonych	- potrafi obliczać całki nieoznaczone stosując elementarne wzory - oblicza bardziej złożone całki metodą przez części i przez podstawienie - rozwiązuje złożone zadania z całek oznaczonych	- potrafi obliczać całki nieoznaczone stosując płynnie wszystkie elementarne wzory - oblicza złożone całki metodą przez części i przez podstawienie - rozwiązuje skomplikowane zadania z całek oznaczonych - dowodzi niecałkowalność funkcji w sensie Riemanna	
-------	---	--	---	--	--

Zakłada się, że uczeń spełnia wymagania edukacyjne z matematyki określone na poprzednich etapach edukacji i aktywnie korzysta z nich przy rozwiązywaniu zadań. Klasyfikację poziomów trudności zadań matematycznych opracowano według: Dyrszlag Z., O poziomach i kontroli rozumienia pojęć matematycznych w procesie dydaktycznym", WSP, Opole 1978.

- 1. Zadanie proste ma na celu kontrolę rozumienia wszystkich pojęć w danym zadaniu na poziomie definicyjnym oraz zastosowanie wiadomości w sytuacjach typowych.
- 2. Zadanie trudniejsze dodatkowo wymaga od ucznia wykazania się rozumieniem pojęć w nim występujących na poziomie lokalnej komplikacji oraz zastosowanie analizowanych wiadomości w sytuacjach nietypowych tj. np. takich, w których na dane pojęcie narzucono dodatkowe warunki.
- 3. Zadanie złożone dodatkowo weryfikuje umiejętność ucznia do sprawnego łączenia wiadomości z co najmniej kilku działów matematyki i stosowania ich do sytuacji problemowych, sprawność rachunkową oraz stałą kontrolę wszystkich warunków zadania na każdym etapie jego rozwiązania.
- 4. Zadanie niestandardowe dodatkowo sprawdza rozumienie przez ucznia zawartych w zadaniu pojęć na poziomie uogólnienia, uwzględnia zastosowanie poznanej wiedzy do sytuacji problemowych, których rozwiązanie polega na konieczności abstrakcyjnego uogólnienia poznanych wiadomości lub twórczej aktywności matematycznej.