

Univerza v Ljubljani Fakulteta za <mark>matematiko in fiziko</mark>

 $Oddelek\ za\ fiziko$

7. naloga: - Razdelčni in nelinearni modeli

Poročilo pri predmetu modelska analiza 12015/2016

 $\begin{array}{c} Avtor: \\ \text{Klemen RAHNE} \\ 28152028 \end{array}$

18. november 2015

1 Farmakološki model

Tako kot v prejšnji nalogi imamo farmakološki model z enakimi podatki. Sedanji model, odziv tkiva y v odvisnosti od vnesene doze reagenta, opisujemo s tremi parametri p, a in y_0 :

$$y = \frac{y_0 x^p}{x^p + a^p} \tag{1.1}$$

1.1 Primerjava z linearnim prilagajanjem

V prejšnji nalogi smo imeli vrednost parametra p=1, ter smo enačbo preoblikovali v linearno obliko, ter jo nato prilagajali linearno. Primerjajmo vrednosti parametrov med linearnim in nelinearnim prilagajanjem.

	linearno prilagajanje		linearno prilagajanje	
	vrednost	napaka	vrednost	napaka
y_0	104.8	±2.5	106.3	± 4.6
a	21.2	±1.3	24.7	±3.8
χ^2	26.08		22.01	

Slika 1.1: Primerjava med linearnim in nelinearnim prilagajanjem.

Pričakovali bi, da bosta oba prilagajanja enak, vendar iz vrednosti χ^2 ugotovimo, da je nelinearno prilagajanje nekoliko boljše.

1.2 Parameter p

Oglejmo si, kako dobro prilagajanje dosežemo s prilagajanjem prvotne enačbe 1.1.

	vrednost	napaka
p	1.36	± 0.17
y_0	99.6	± 3.5
a	19.8	± 2.3
χ^2	9.36	

Slika 1.2: Prilagajanje z vpeljavo dodatnega parametra p.

Z vpeljavi dodatnega parametra, izboljšamo prilagajanje, saj vrednost χ^2 pade za 1/2 v primerjavi z le dvema parametroma.

2 Čiščenje ledvic

Oglejmo si model čiščenja ledvic. V telesu se zadržujejo odpadne snovi, ki se preko ledvic izločajo iz telesa. S pomočjo radioaktivnega sledilca izmerimo časovni potek koncentracije odpadnih snovi v telesu. Iz meritev določimo posamezne parametre, ki nam povedo v kakšnem stanju so ledvica.

2.1 Enorazdelčni model

V naših ledvicah predpostavimo, da je hitrost izločanja odpadnih snovi odvisna od pretoka krvi skozi ledvica Φ , koncentracije odpadnih snovi c, volumna ledvic V ter učinkovitostjo prečiščevanja ϵ

$$\dot{c} = -\frac{\epsilon \Phi}{V} c \tag{2.1}$$

Rešitev zgornje enačbe je preprosta eksponentna padajoča funkcija:

$$c = c_0 e^{-\lambda t} (2.2)$$

Vemo, da je v krvi koncentracija odpadnih snovi sorazmerna koncentraciji radioaktivnega sledilca, zato lahko zgornjo enačbo prevzamemo na število razpadov sledilca:

$$N = N_0 e^{-\lambda t} \tag{2.3}$$

Iz jedrskega razpada vemo, da je standardni odklon enak korenu vseh detektiranih razpadov v danem času:

$$\sigma_{N_i} = \sqrt{N_i}$$

Najprej poglejmo, kako dobro se prilagaja zgornji model. Optimalna parametra pri zgornjem modelu

Slika 2.1: nelinearno prilagajanje krivulji $N = N_0 e^{-\lambda t}$.

sta $N_0=8894.5\pm549.0$, $\lambda=8.1\times10^{-4}\pm6.6\times10^{-5}$, vrednost $\chi^2=4058$. Že iz grafa opazimo, da tak model ni najboljši. Zato ga dopolnimo. Če dodatno upoštevamo če konstantno ozadje pade vrednost χ^2 na 521.3, ter vrednosti parametrov $N_0=9828.6\pm343.3$, $\lambda=2.50\times10^{-3}\pm1.4\times10^{-4}$ ter $B=2438\pm82.7$.

Slika 2.2: nelinearno prilagajanje krivulji $N = N_0 e^{-\lambda t} + B$.

2.2 Dvorazdelčni model

Ker so ledvice del večjega sistema (organizma), ledvice interagirajo tudi z ostalimi organi, tkivi. Posledično enorazdelčni opis ni dovolj dober. Zato naš model opišemo z naslednjo funkcijo:

$$N = Ae^{-\lambda_1 t} + Be^{-\lambda_2 t} \tag{2.4}$$

Pri prilagajanju te funkcije na podatke dobimo naslednje vrednosti parametrov:

	vrednost	napaka
A	5231.2	± 170.7
λ_1	4.2×10^{-4}	$\pm 2.1 \times 10^{-5}$
В	8177.1	± 66.0
λ_2	4.8×10^{-3}	$\pm 2.3 \times 10^{-4}$
χ^2	72.6	

Slika 2.3: nelinearno prilagajanje krivulji $N = Ae^{-\lambda_1 t} + Be^{-\lambda_2 t}$.

Vrednost χ^2 pade s 521, na 72.6, kar je že razlika v enem velikostnem razredu. Zato lahko predpostavimo, da tak dvorazdelčni model bolje opiše delovanje ledvic, kot pa enorazdelčni model. Dodatno si oglejmo še en model delovanja ledvic, v katerega vpeljemo člen $e^{-\lambda\sqrt{t}}$. Torej prilagajamo naslednjo funkcijo:

$$N = Ae^{-\lambda_1 t} + Be^{-\lambda_2 \sqrt{t}} \tag{2.5}$$

Optimalni parametri za zgornjo funkcijo pri danih podatkih so:

	vrednost	napaka
A	4970	± 286
λ_1	4.2×10^{-3}	$\pm 1.7 \times 10^{-4}$
В	8794.7	± 322.4
λ_2	3.0×10^{-2}	$\pm 9.4 \times 10^{-4}$
χ^2	29.4	

Slika 2.4: nelinearno prilagajanje krivulji $N = Ae^{-\lambda_1 t} + Be^{-\lambda_2 t}$.

S prostim očesom se razlike med grafoma 2.3 in 2.4 ne opazi. Vrednosti χ^2 za omenjena grafa se razlikuje za faktor ≈ 2 , v korist modela 2.5. Vsekakor lahko rečemo, da za opis delovanje ledvic bolje opisuje dvorazdelčni opis.

3 Korozija

Lastnost korozije, lahko določimo iz parametrov, ki jih določimo iz U-I diagrama med kovino in korozivnim elektrolitom. Osnovni model opisujejo trije parametri I_0 , U_a , U_b :

$$I = I_0 \left[\exp\left(\frac{U}{U_a}\right) - \exp\left(-\frac{U}{U_c}\right) \right] \tag{3.1}$$

Za tak model dobimo naslednje vrednosti parametrov:

	vrednost	napaka
I_0	2.6×10^{-3}	3.9×10^{-4}
U_a	138.7	± 25.1
U_b	74.0	± 6.9
$\sigma^2 \chi^2$	4.2×10^{-8}	

Predpostavljamo, da so pri vseh meritvah toka napake konstantne (σ) , ker pa ne vemo vrednosti, lahko vrednost $\sigma^2\chi^2$ obravnavamo kot kvaliteto prilagajanja.

Slika 3.1: Nelinearno prilagajanje $I=I_0 \left[\exp \frac{U}{U_a} - \exp - \frac{U}{U_b}\right]$.

Slika 3.2: Nelinearno prilagajanje s premikom napetosti.

Poskusimo naš model še bolj izpopolniti. Opazimo, da naše izmerjene točke ne potekajo skozi izhodišče, zato v 3.1 vpeljemo linearni premik napetosti: $U \to U - U_d$:

$$I = I_0 \left[\exp\left(\frac{U - U_d}{U_a}\right) - \exp\left(-\frac{U - U_d}{U_b}\right) \right]$$
 (3.2)

Pri taki izbiri modelske funkcije se vrednost parametrov nekoliko spremenijo, vrednost $\sigma^2 \chi^2$, pa se zmanjša za en velikostni razred. Torej smo dobili boljšo modelsko funkcijo.

	vrednost	napaka
I_0	3.1×10^{-3}	$\pm 2.4 \times 10^{-4}$
U_a	198.0	± 24.0
U_b	76.6	± 3.5
U_d	-4.61	± 0.42
$\sigma^2 \chi^2$	5.76×10^{-9}	

3.1 Taylorjev razvoj/linearni problem

Naše izmerjene točke lahko tudi prilagodimo polinomu *n*-te stopnje. Zaradi relativno majhne ukrivljenosti bomo prilagajali polinom tretje stopnje:

$$I = A + BU + CU^2 + DU^3 (3.3)$$

Optimalni parametri so:

	${ m vrednost}$	napaka
A	2.92×10^{-4}	$\pm 3.0 \times 10^{-5}$
B	5.51×10^{-5}	$\pm 8.4 \times 10^{-7}$
C	-2.44×10^{-7}	$\pm 6.5 \times 10^{-9}$
D	1.24×10^{-9}	$\pm 1.2 \times 10^{-10}$
$\sigma^2 \chi^2$	7.58×10^{-9}	

Opazimo, da vrednosti koeficientov, ki pripadajo posamezni stopnji padajo z naraščanjem stopnje. To opravičuje našo linearizacijo. Tudi vrednost $\sigma^2\chi^2$ je primerljiva z vrednostjo, ko smo eksaktno prilagajali z odmikom napetosti. Če želimo določiti parametre U_a , U_b , U_d ter I_0 , je potrebno enačbo 3.2 razvito po Taylorju, ter nato vzeti le člene, ki vsebujejo potence do stopnje tri.