

<u>Course</u> > <u>Week 3</u>... > <u>Compr</u>... > Quiz 3

Quiz 3

Problem 1

1/1 point (graded)

What is the dimension of A^T , where A is the 1 imes n "row vector" $[1,2,3,\ldots,(n-1)\,,n]$?

- \bigcirc 1 × 1
- $\bigcirc 1 \times n$
- left n imes 1
- $\bigcirc n \times n$
- ~

Submit

1 Answers are displayed within the problem

Problem 2

1/1 point (graded)

True or false: $\left(\left(A^T\right)^T\right)^T=A^T$

	Fa	lse

Submit

1 Answers are displayed within the problem

Problem 3

1/1 point (graded)

Let
$$M=egin{pmatrix} 1 & 5 \ 2 & 2 \end{pmatrix}$$
 and let $N=egin{pmatrix} 0 & 2 \ 5 & 5 \end{pmatrix}$, what is $M+N$?

$$leftondermath{lack}{lack} M+N=egin{pmatrix} 1 & 7 \ 7 & 7 \end{pmatrix}$$

$$igcirc M+N=egin{pmatrix} 0 & 10 \ 10 & 10 \end{pmatrix}$$

$$igcirc M+N=egin{pmatrix} 3 & 10 \ 2 & 7 \end{pmatrix}$$

$$igcirc M+N=egin{pmatrix} 3 & 5 \ 6 & 7 \end{pmatrix}$$

Submit

1 Answers are displayed within the problem

1/1 point (graded)

Give the transpose of $M=egin{pmatrix} 3 & 1 & 2 \ 2 & 1 & 8 \ 4 & 4 & 4 \end{pmatrix}$

$$M^T = egin{pmatrix} 2 & 8 & 4 \ 1 & 1 & 4 \ 3 & 2 & 4 \end{pmatrix}$$

$$M^T = egin{pmatrix} 4 & 4 & 4 \ 2 & 1 & 8 \ 3 & 1 & 2 \end{pmatrix}$$

$$M^T = egin{pmatrix} 3 & 2 & 4 \ 1 & 1 & 4 \ 2 & 8 & 4 \end{pmatrix}$$

$$M^T = egin{pmatrix} 4 & 8 & 2 \ 4 & 1 & 1 \ 4 & 2 & 3 \end{pmatrix}$$

~

Submit

1 Answers are displayed within the problem

Problem 5

1/1 point (graded)

Given
$$\mathbf{x}=(1 \quad 4)$$
 and $\mathbf{y}=\begin{pmatrix} 4 \\ 1 \end{pmatrix}$, what is $\mathbf{x}-\mathbf{y^T}$?

$\bigcirc \mathbf{x} - \mathbf{y}^{\mathbf{T}} = (3 -3)$
$\bigcirc \mathbf{x} - \mathbf{y^T} = (0 0)$
Cannot subtract these two vectors
✓
Submit
Answers are displayed within the problem
Problem 6
1/1 point (graded) If the dot product of two vectors, ${\bf a}^{ {\bf b}}$, is equal to 0 , what must be true? Select all that apply.
lacksquare $lacksquare$ a equals $lacksquare$
b a = 0
$lacksquare$ either ${f a}={f 0}$ or ${f b}={f 0}$
$ ightharpoonup {f a}$ is orthogonal to ${f b}$
✓
Submit
Answers are displayed within the problem
Problem 7

1/1 point (graded)

Given a vector, $\mathbf{x} \in \mathbb{R}^{\mathbf{d} \times \mathbf{1}}$, the product $\mathbf{x}\mathbf{x}^{\mathbf{T}}$ is equal to which of the following:

igcirc [Math Processing Error] $||\mathbf{x}||^2$

 $\bigcirc 1$

igcup The identity matrix, I_d

lacksquare a d imes d matrix

Submit

1 Answers are displayed within the problem

Problem 8

1/1 point (graded)

The following line is given by the equation $\mathbf{w}^*\mathbf{x} = c$, where c = 8. What are the vectors \mathbf{x} and \mathbf{w} ?

$$\mathbf{x} = egin{pmatrix} x_1 \ x_2 \end{pmatrix}$$
 , $\mathbf{w} = (8 \quad -8)$

$$igcap_{\mathbf{x}} = egin{pmatrix} x_1 \ x_2 \end{pmatrix}$$
 , $\mathbf{w} = egin{pmatrix} -4 & 1 \end{pmatrix}$

$$igcap_{\mathbf{x}} = ig(egin{array}{c} x_1 \ x_2 \ \end{pmatrix}$$
 , $\mathbf{w} = ig(-1 \quad 8\,ig)$

$$led{ullet} \mathbf{x} = egin{pmatrix} x_1 \ x_2 \end{pmatrix}$$
 , $\mathbf{w} = egin{pmatrix} 2 & 1 \end{pmatrix}$

~

Submit

• Answers are displayed within the problem

Problem 9

1/1 point (graded)

Indicate which of the following properties apply to matrix multiplication:

Commutative property (that is, AB=BA)

Existence of an identity matrix

~

Submit

1 Answers are displayed within the problem

Problem 12

1/1 point (graded)

Which of the following are true about singular matrices?

- Singular matrices cannot also be diagonal matrices
- ightharpoonup Singular matrices have a determinant of 0
- ✓ Singular matrices are not invertible
- Singular matrices include the identity matrix

Submit

1 Answers are displayed within the problem

Problem 13

1/1 point (graded)

Given the 2×2 matrix, $M = \begin{pmatrix} 1 & 5 \\ 1 & 4 \end{pmatrix}$, determine which of the following is the inverse matrix of M.

$$left M^{-1} = egin{pmatrix} -4 & 5 \ 1 & -1 \end{pmatrix}$$

$$M^{-1}=egin{pmatrix}1&rac{1}{5}\1&rac{1}{4}\end{pmatrix}$$

$$igcap_{M^{-1}}=egin{pmatrix}1&-1\-5&4\end{pmatrix}$$

Opes not have an inverse

Submit

• Answers are displayed within the problem

Problem 14

1/1 point (graded)

Which of the following matrices are singular?

$$\begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$$

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{3} & 1 \\ 1 & 3 \end{pmatrix}$$

Submit

1 Answers are displayed within the problem

Problem 15

1/1 point (graded)

Given the matrix, $M=\begin{pmatrix}1&3\\2&7\end{pmatrix}$, and the vector $\mathbf{x}=\begin{pmatrix}x_1\\x_2\end{pmatrix}$, what expression below is equivalent to $\mathbf{x}^{\mathbf{T}}M\mathbf{x}$?

- $\bigcirc x_1^2 + 3x_1x_2 + 14x_2^2$
- $\bigcirc x_1 + 5x_1^2x_2^2 + 7x_2$
- $\bigcirc \ 3x_1 + 10x_2$

Submit

1 Answers are displayed within the problem

Problem 16

1/1 point (graded)

Suppose a Gaussian distribution has a covariance matrix that is diagonal, with the same value in each position along the diagonal. Which of the following can we conclude? Select all that apply.

▼ The features are uncorrelated

▼ The contour lines for the distribution are axis aligned

✔ The contour lines for the distribution are in concentric spheres
$lacksquare$ Any point that is a fixed distance away from the mean μ has the same density
✓
Submit
Answers are displayed within the problem
Problem 17
1/1 point (graded) True or false: the only two parameters needed to define a multivariate Gaussian distribution are the mean, μ , and the covariance matrix, Σ .
True
False
Submit
Answers are displayed within the problem
Problem 18
1/1 point (graded) For a spherical Gaussian distribution, defined by $\mu\in\mathbb{R}^d$ and $\Sigma=\sigma^2I_d$, what is the determinant of the covariance matrix, $ \Sigma $?
$\bigcirc \sigma^2$

$loodsymbol{\odot} \sigma^{2d}$
$igcup \sigma^d$
$\bigcirc \sigma$
✓
Submit
Answers are displayed within the problem
Problem 19
1/1 point (graded) Given the following 4 data points in \mathbb{R}^3 , computer the mean, $\mu \in \mathbb{R}^3$.
Data points: $x_1=(0,0,1)$, $x_2=(1,4,1)$, $x_3=(2,2,1)$, $x_4=(1,2,5)$.
$\bigcirc \mu = (1.5, 2.5, 3)$
$\boxed{ \bullet \ \mu = (1,2,2) }$
$\bigcirc\mu = (1.33, 2.66, 2.66)$
$\bigcirc\mu=(4,8,8)$
✓
Submit
Answers are displayed within the problem

Problem 20 1/1 point (graded) True or false: the covariance matrix of any data set is necessarily symmetric. True) False Submit **1** Answers are displayed within the problem Problem 21 1/1 point (graded) True or false: In a binary classification setting, where each class is modeled by a multivariate Gaussian, a data point, x, will always be classified as label 1 instead of label 2 if the distance from x to μ_1 is less than the distance from x to μ_2 . True

True

False

Submit

1 Answers are displayed within the problem

Problem 22

1/1 point (graded)

If a Gaussian generative model is used for classification, and the decision boundary for the k classes is linear, which of the following statements must be true?
\bigcirc There are exactly two classes, i.e. $k=2$
\bigcirc The class probabilities, π_i , must be equal
\bigcirc The means, μ_i , are equidistant from this decision boundary
$lacksquare$ The covariance matrices, Σ_i , must be equal
Submit
Answers are displayed within the problem
Problem 23
1/1 point (graded) If a test error is 0% , what does this indicate about the model?
None of the data in the test set was misclassified
The model will perfectly classify every new data point
The data in the test set is not a good representation of all classes
\bigcirc 0% test error is not achievable
✓
Submit

Answers are displayed within the problem
Problem 24
1/1 point (graded) Suppose a generative Gaussian model is used for a binary classification problem with two classes, A and B . If the decision boundary is linear and the class probability $\pi_A>\pi_B$, would you expect the boundary to be closer to μ_A or μ_B ?
\bigcirc The boundary will be closer to μ_A
$lacksquare$ The boundary will be closer to μ_B
$igcup$ The boundary will be equidistant to μ_A and μ_B
This cannot be determined without the respective covariance matrices
✓
Submit
Answers are displayed within the problem
Problem 25
1/1 point (graded) True or false: a Gamma distribution is useful for modeling features which are constrained to a specific interval.
☐ True
False
✓

Submit
Answers are displayed within the problem
Problem 26 1/1 point (graded) Using the Naive Bayes classifier, which of the following are necessarily true?
Each coordinate of the data is modeled by the same distribution
Each coordinate of the data is taken to be independent of the others
Provides a very inaccurate model for classification
Each pairwise set of coordinates are modeled together
✓
Submit
Answers are displayed within the problem
Problem 27
1/1 point (graded) Which distribution would be useful for specifying the distribution over first names in a phone book for some random city?
Gamma Distribution
Beta Distribution

Categor	cal Distribution		
✓			
Submit			

© All Rights Reserved