2023 ACM MOBISYS

No More Companion Apps Hacking but One Dongle: Hub-Based Blackbox Fuzzing of loT Firmware

INDEX

01. Introduction **05.** Design of HubFuzzer

02. Related Work **06.** Evaluation

03. Background **07.** Discussion

04. Overview **08.** Conclusion

Introduction

- 전 세계적으로 IoT 시장 규모가 커짐에 따라 IoT 디바이스에 대한 사이버 공격 또한 증가하고 있음
- 이러한 공격은 주로 IoT 펌웨어의 취약점을 악용하기 때문에, IoT 펌웨어 취약점을 발견하는 것이 중요함

Introduction

- 전 세계적으로 IoT 시장 규모가 커짐에 따라 IoT 디바이스에 대한 사이버 공격 또한 증가하고 있음
- 이러한 공격은 주로 IoT 펌웨어의 취약점을 악용하기 때문에, IoT 펌웨어 취약점을 발견하는 것이 중요함

[Blackbox Fuzzing Example]

- IoTFuzzer과 DIANE
 - IoT Companion App 활용하여 IoT Device로 입력을 전송함

한계점

- 난독화된 Companion App을 리버스 엔지니어링하고 수정하는 데 노력이 필요함
- 정적 분석과 수작업을 결합하여 퍼징 메시지를 삽입하는데 사용할 수 있는 루틴을 식별함
 - ㆍ 시간이 오래걸리고 불완전한 퍼징 메시지
- 이러한 퍼징은 Companion App 내부의 input sanitization로 인해 방해를 받음 > 특정 sanitization을 우회하여 완화(DIANE)

Introduction

- 전 세계적으로 IoT 시장 규모가 커짐에 따라 IoT 디바이스에 대한 사이버 공격 또한 증가하고 있음
- 이러한 공격은 주로 IoT 펌웨어의 취약점을 악용하기 때문에, IoT 펌웨어 취약점을 발견하는 것이 중요함

[Blackbox Fuzzing Example]

- SNIPUZZ
 - 수동으로 API 테스트 프로그램 수집하여 IoT Device 퍼징

한계점

- API 테스트 프로그램을 공개하는 vendor 거의 없음
- 공개된 테스트 스크립트가 반드시 device의 모든 기능 커버하는 것이 아님
- 수동으로 테스트 프로그램 수집
- API 테스트 프로그램에서 지원하는 디바이스 기능만 테스트할 수 있어 오탐이 발생할 수 있음
- 암호화된 메시지 처리 불가

01 Introduction

• Insight & Main Idea

- 기존 어떠한 연구도 Setting-up Message를 IoT 퍼징에 활용하지 않음
- 본연구는 Setting-Up Message 활용하여 기기의 기능 발견후 체계적인 **기능 지향 퍼징** 수행할 것을 제안
- IoT Companion App을 리버스 엔지니어링하지 않고 Setting-up message 에서 기기가 지원하는 전체 기능 목록을 자동으로 도출함

01 Introduction

Fuzzing Approach

- 기존 방식: 디바이스당 하나의 Companion App을 해킹하거나 수동으로 테스트 스크립트를 수집하여 퍼징 메시지 전송
- 제안 방식: 균일한 허브 기반 퍼징
- ✓ Compainion App을 사용하지 않기 때문에, Companion App 내부의 다양한 input sanitization으로 퍼징이 방해되지 않음
- ✓ Device context가 테스트 결과에 영향을 미치는 경우가 많으므로 민감한 퍼징 수행
- ✓ 테스트 메시지 전송 전 디바이스를 특수 상태로 설정

01 Introduction

Contribution

- 새로운 허브 기반 동적 분석 아키텍처 제안하고 블랙박스 IoT 퍼징에 대한 유용성 입증
- Setting-up message에서 IoT 장비가 지원하는 기능 도출하고 기능 지향 블랙박스 퍼징 제시
- 프로토콜 사양에서 메시지 구조 및 명령/속성 값 범위에 대한 지식을 추출하여 IoT 장비를 테스트하는데 재사용
- 디바이스 상태 민감 퍼징은 특정 디바이스 조건이 충족될 때만 트리거될 수 있는 취약점을 탐지하도록 설계
- HubFuzzer을 구현하고 21개의 인기있는 IoT 디바이스에 대한 평가 수행하였으며, 4개의 CVE와 23개의 제로데이 취약점 발견

O2 Related Work

Static Analysis-based Approaches

- IoT 펌웨어 이미지에 액세스함
- 제조업체가 펌웨어를 공개하지 않는 경우가 많으므로, 접근법의 적용 가능성은 제한적임
- 오탐률이 높은 경향이 있음

Dynamic Analysis-based Approaches

- Emulation
 - ▶ 확장성과 처리량 문제

Symbolic Execution

- ▶ IoT 펌웨어의 정확한 실행을 위해서는 다양한 주변장치에 접근해야 함
- ▶ 주변 장치의 모든 입력을 symbolic으로 간주하여 부정확성을 유발하거나 부정확한 emulation 결과를 사용함

Blackbox Fuzzing

- ➤ IoTFuzzer과 DIANE은 리버스 엔지니어링 companion App에 의존
- ➤ Snipuzz는 수동으로 수집한 테스트 프로그램에 의존

03 Background

IoT Platform Architecture

ZigBee and Z-Wave

- 홈 자동화 분야에서 가장 널리 사용되는 무선 프로토콜
- 전력 소비가 적고 에너지 비용 절감
- 본 연구에서는 Z 기반 장치라고 하는 Zigbee 및 Z-Wave IoT 장치에 대한 허브 기반 퍼징 접근 방식을 보여줌

Limitations of the State of the Art

Overview

SNIPUZZ

• IoT 디바이스의 피드백을 사용하여 네트워크 패킷을 스니펫으로 분할하는 스니펫 기반 mutation 전략 구현

04 Overview

Our Goals

- 간편한 사용
- 높은 기능 커버리지
- 일반화 가능 : 복잡한 메시지와 암호화를 사용하는 디바이스에 일반화 가능
- 상태에 민감한 퍼징

Insight and Idea

- 설정 메시지를 활용하여 IoT 디바이스가 지원하는 기능 파악 후 체계적인 기능 지향 퍼징 수행
- 프로토콜 사양에서 메시지 명령/속성 값 범위에 대한 지식을 추출
- 상태 감지 퍼징을 포함한 테스트 입력 변이 전략을 구축하는 데 사용됨

04 Overview

04 Overview

Architecture of HUBFUZZER

Design of HubFuzzer

Device Connector

- Zigbee, Z-Wave와 같은 디바이스별 프로토콜을 통해 IoT 디바이스와 직접 통신
- 여러 오픈 소스 플랫폼(홈 어시스턴트, 오픈햅, 웹씽즈 등)에서 장치 커넥터와 유사한 기능을 제공하며, 개발자가 다양한 IoT 장치를 통합하기 위한 애드온을 사용할 수 있음

- Zigbee Protocol Stack이 포함되어 있어 Zigbee Device를 홈 어시스턴트에 직접 연결할 수 있음
- Z-Wave JS 제공하여 Z-Wave Device와의 연결 지원
- ➤ 해당 Device Connector는 Zigbee 및 Z-Wave 무선 통신 기능을 위한 USB 동글로 제작됨

HubFuzzer

Function Extractor

Learning Supported Functions **Design of HubFuzzer**

• Zigbee 의 클러스터

- ZCL에 정의된 대로 각 클러스터는 특정 기능에 해당하며 연결된 2 바이트 클러스터 식별자(CID)를 가짐
- 예) ON/OFF 클러스터 (CID = 0x0006) 사용하면 스위치 장치를 전환할 수 있음 Level 제어 클러스터 (CID = 0x0008) 사용하면 장치의 물리적 양의 레벨을 제어할 수 있음

• 클러스터: 특정 기능에 대한 인터페이스를 정의하는 명령과 속성의 모음

속성: 상태로 저장할 수 있는 장치의 속성

명령: 장치를 제어하고 속성을 조작할 수 있는 메서드

Listing 1: ZigBee packing procedure

Payload 저장

Figure 5: Format of the ZCL frame.

Learning Supported Functions **Design of HubFuzzer**

• Z-Wave의 명령어 클래스

- 장치 기능을 추상화하고 관련 기능을 명령어 클래스로 그룹화함
- 명령어 클래스는 명령과 속성의 모음으로, 명령은 특정 기능에 해당하는 장치 속성을 제어, 쿼리 및 보고하는데 사용됨
- Set: 장치에 특정 작업(장치 상태 변경할 수 있는)을 수행하도록 장치에 전송
- Get: 장치의 현재 상태를 요청하기 위해 장치로 전송
- Report: 상태가 변경된 경우 현재 장치 상태를 보고하기 위해 장치에서 전송

Learning Supported Functions **Design of HubFuzzer**

Our Method

목표: 테스트 메시지를 IoT 장비에 전송하여 장비 동작을 트리거하는 것

- 1) 장치가 지원하는 기능 학습
- 2) 장치를 제어할 수 있는 명령 결정
- 3) 장치에 저장된 속성 결정

IoT Devices Setting-Up Messages Testing Message Response Response Mutating Commands Mutating Attributes

기본 클러스터

- 모든 ZigBee 장치에 필수적인 클러스터
- 전원 부성을 러보수 속성을 포함한 21개의 속성 + reset 명령
- 장치의 전원에 대한 정보를 얻고 전압 알람 구성
- **아바/이러 활례전**된 58개의 속성 정의
- 조명의 on/off 시간 지정과 같은 5개의 속성 + 6개의 명령

Learning Supported Functions **Design of HubFuzzer**

• 퍼징을 위한 지식 추출

- 프로토콜 사양은 포함된 각 클러스터에 대한 자세한 설명 제공하고, 해당 프로토콜 스택 라이브러리에 반영됨
- 명령어, 인수/속성, 각 인수의 데이터 유형 및 값 범위 등
- 1) 스크립트를 사용하여 라이브러리에서 관련 정보 추출
- 2) 데이터베이스에 저장
- 3) HubFuzzer에 통합

_ 일회성 작업

• 디바이스 퍼징

- 1) 설정 메시지에서 지원되는 클러스터를 학습
- 2) 데이터베이스에서 지원하는 명령과 속성, 각 명령 인수의 값 범위와 데이터 유형 검색
- 3) 이 정보를 통해 테스트 메시지 생성 지원

Mutating Attributes

Mutating Commands

Packing Procedure **Design of HubFuzzer**

Packing Procedure

- 1) 각 명령 요청에 의해 호출되어 IoT 장치로 전송할 메시지 생성
- 2) Packing Procedure에서 input sanitization 처리를 제거하고 메시지를 작성하기 위한 정보를 변경하여 테스트 메시지를 생성함

• 기존작업

- 테스트 메시지를 준비하기 위한 기능을 찾아야 함
- 각 디바이스의 컴패니언 앱에서 sanitization 처리 제거 = 각 IoT 기기의 컴패니언 앱을 리버스 엔지니어링

HubFuzzer

- 테스트 메시지를 준비하기 위한 기능을 찾아야 함
- sanitization 처리 제거는 한 번만 수행
 - = 패킹 절차를 수정하는데 한 번만 노력

Mutating Attributes

Mutating Commands

Fuzzing Policies **Design of HubFuzzer**

We have the following fuzzing policies.

- Policy 1: 인수 값 변경
 - 고위험 유형: 해당 유형의 인자 값이 변경될 경우 디바이스 충돌을 일으킬 가능성이 높은 유형 (예: OctetString, CharString, 정수, 실수, float, Array, Set 및 NoData)
 - 저위험 유형 : (예: 시간, 날짜)
- Policy 2: 인자 유형 변경
- Policy 3: Agument 수 변경
- Policy 4: 지원되지 않는 클러스터 및 명령어 시도

State-Sensitive Fuzzing **Design of HubFuzzer**

• 실험 결과

디바이스 상태가 충돌을 유발하는 데 상당한 영향을 미치는 것으로 나타남

- 예) 특정 비율로 스마트 전구의 밝기를 높이는 테스트 메시지가 주어졌을 때 전구의 밝기가 가장 높을 때 미시지가 전구 충돌을 일으킴
- ▶ 상태 민감 퍼징 수행
- 1. 디바이스 상태를 특수한 상태로 설정한 후 상태에 영향을 줄 수 있는 테스트 메시지를 보냄
- 2. 명령이 주어지면 먼저 수정하려는 디바이스 속성을 결정함
 - Write-Attribute Command: 속성이 지정되어 있으므로 쉽게 결정할 수 있음
 - Cluster Command: 명령에 의해 수정되는 속성 찾음
- 3. 속성의 값 범위 결정
- 4. 범위 지정 시 속성과 관련된 인수에 최대값과 최소값을 제공하여 두 개의 리셋 메시지 생성
 - 범위 지정 X 임의의 값을 사용하여 재설정 메시지 생성
- 기존 IoT Fuzzing 연구에서는 디바이스 상태의 영향 고려하지 않음 (IoTFuzzer, SNIPUZZ, DIANE)
 - ▶ 특수한 조건이 충족될 때만 충돌을 일으키는 많은 취약점을 탐지하지 못함

Response Monitor **Design of HubFuzzer**

• IoT 디바이스가 메시지 m을 수신할 때의 4가지 시나리오

Figure 6: Different scenarios when an IoT device receives a message.

- 허브 퍼저에서 ACK 응답이 수신되지 않으면 장치 충돌이 발생한 것
 - 네트워크 연결 상태가 좋지 않은 경우 메시지가 손실되어 ACK도 손실될 수 있으나 누락된 ACK가 충돌로 인한 것이라면 동일한 메시지를 사용하여 증상을 안정적으로 재현할 수 있음
 - 그러나 네트워크 연결 상태가 좋지 않아서 발생한 경우에는 재현할 수 없으며, 기기가 충돌로 인해 재시작해도 LED가 깜박이거나 경고음이 울리는 등의 증상이 나타나지 않음
- ACK는 수신되었지만 Report 응답이 수신되지 않은 경우, 디바이스의 충돌 여부를 확인할 수 없음(그림 6(b) 및 (d) 참조)
 - 다음 상태 민감도 테스트를 위해 유효한 것으로 알려진 리셋 메시지를 전송하여 이를 구분해야 함
 - Report 응답이 수신되지 않으면 디바이스가 충돌했음을 나타냄

- HubFuzzer은 Zigbee, Z-wave와 같은 디바이스별 프로토콜을 통해 IoT 디바이스와 직접 통신함
- 여러 오픈소스 플랫폼(Home Assistant, ..)에서 장치 커넥터와 유사한 기능을 제공하며 개발자가 다양한 IoT 장치를 통합하기 위한 애드온을 사용할 수 있음
- 홈 어시스턴트의 ZigBee 및 Z-Wave 애드온을 활용하여 Z 기반 장치와 연결함
 - 장치 커넥터 : Nortek security & Control HUSBZB-1 USB 동글로 제작

Nortek security & Control HUSBZB-1 USB Dongle

Experimental setup **Evaluation**

- 온/오프라인 시장에서 인기있는 Z 기반 IoT 기기 21종 선정
 - (a) 디바이스 세부 정보
 - (b) 디바이스의 사진

• Test 환경

- Ubuntu 20.04 PC with 4.9 GHz Intel® Core(TM) i7 CPU and 32 GB RAM 에서 실행
- 관련없는 트래픽의 간섭을 피하기 위해 완전히 제어된 네트워크에서 Z 기반 디바이스를 구성함

Baseline Method

• SNIPUZZ

	디바이스 유형	공급업체	모델	펌웨어 버전	프로토콜
ID	Device Type	Vendor	Model	Firmware Version	Protocol
1	Thermostat	Centralite	Pearl	0x04075010	ZigBee
2	Lighting	Sengled Bulb	E11-N1EAW	0x00000024	ZigBee
3	Lighting	Innr	FL 120 C	0x28002162	ZigBee
4	Lighting	Philip Bloom	Bloom	1.88.1	ZigBee
5	Lighting	Sengled Strip	E1G-G8E	0x00000024	ZigBee
6	Blind	Third Reality	3RSB015BZ	1.00.54	ZigBee
7	Plug	Lumi	ZNCZ12LM	18	ZigBee
8	Locker	Schlage	BE468GBAK CAM 619	0.21.0	ZigBee
9	Locker	Kwikset	99140-139	0x40a32a10	ZigBee
10	Sensor	Tuya	B09TDQ9GP6	v1.0.10	ZigBee
11	Switch	Tuya	B09XCP7DN1	v1.1.0	ZigBee
12	Switch	Third Reality	3RSS009B	v1.01.10	ZigBee
13	Dimmer Switch	Sengled	E1E-G7F	v0.0.9	ZigBee
14	Plug	Minoston	MP21Z	v1,0.1	Z-Wave
15	Wall Switch	Aeotec	ZW130-A	v2.3	Z-Wave
16	Sensor	Aeotec	ZW080	v3.28	Z-Wave
17	Switch	Aeotec	ZW096-A	v1.7	Z-Wave
18	Motion Sensor	Fibaro	FGMS-001	v3.4	Z-Wave
19	Thermostat	Honeywell	TH6320ZW2003	v1.3	Z-Wave
20	Locker	Kwikset	98880-004	v4.79	Z-Wave
21	Dimmer Plug	Minoston	MP22Z	v7.13.9	Z-Wave

SNIPUZZ와 비교하기 위해 선택 (SNIPUZZ에서 테스트한 다른 디바이스는 WiFi기반이므로 포함하지 않았음)

(b) Photo of devices

25/37

Function Coverage **Evaluation**

• 기능 커버리지 결과

Table 1: Function Coverage Results. N/A: Z-Wave devices do not support write-attribute commands.

ID		HubFuzzer			SNIPUZZ	
ID	Cluster	Command	Attribute	Cluster	Command	Attribute
1	8(100%)	29(100%)	91(100%)	2(25%)	19(66.7%)	0(0%)
2	8(100%)	48(100%)	99(100%)	3(37.5%)	5(10.4%)	0(0%)
3	8(100%)	44(100%)	94(100%)	3(37.5%)	5(11.4%)	0(0%)
4	8(100%)	54(100%)	100(100%)	4(50%)	14(25.9%)	0(0%)
5	8(100%)	48(100%)	99(100%)	3(37.5%)	5(10.4%)	0(0%)
6	7(100%)	30(100%)	93(100%)	1(14.3%)	10(33.3%)	0(0%)
7	7(100%)	26(100%)	100(100%)	1(14.3%)	3(11.5%)	0(0%)
8	7(100%)	55(100%)	81(100%)	1(14.3%)	3(6%)	0(0%)
9	7(100%)	55(100%)	81(100%)	1(14.3%)	3(6%)	0(0%)
10	3(100%)	4(100%)	79(100%)	0(0%)	0(0%)	0(0%)
11	5(100%)	26(100%)	34(100%)	1(20%)	3(11.5%)	0(0%)
12	6(100%)	26 (100%)	91(100%)	1(16.7%)	3(11.5%)	0(0%)
13	5(100%)	26(100%)	42(100%)	1(20%)	3(11.5%)	0(0%)
14	14(100%)	89(100%)	N/A	1(7%)	3(3%)	N/A
15	19(100%)	117(100%)	N/A	3(16%)	6(5%)	N/A
16	16(100%)	85(100%)	N/A	3(19%)	7(8%)	N/A
17	18(100%)	89(100%)	N/A	1(5%)	3(4%)	N/A
18	20(100%)	115(100%)	N/A	0(0%)	0(0%)	N/A
19	21(100%)	113(100%)	N/A	2(9.5%)	19(16.8%)	N/A
20	15(100%)	106(100%)	N/A	1(6.7%)	3(2.8%)	N/A
21	15(100%)	96(100%)	N/A	1(6.7%)	3(3.1%)	N/A

Write-Attribute Command 지원 X

Cluster and Command Coverage

HubFuzzer

설정 메시지를 통해 장치의 지원하는 클러스터를 추출 이를 통해 클러스터, 명령어, 속성에 대한 전체 커버리지를 달성할 수 있음

SNIPUZZ

API 테스트 프로그램을 사용하여 테스트 메시지를 생성 API 테스트 프로그램이 커버하지 못하는 경우에는 명령어 커버리지를 달성하기 어렵거나 불가능함

- Attribute Coverage(ZigBee 장치의 경우)
 - HubFuzzer

쓰기 속성 명령을 통해 모든 속성을 수정하는 테스트 메시지를 생성할 수 있음

SNIPUZZ

API 테스트 프로그램에서는 쓰기 속성 명령을 지원하지 않아 속성 수정을 테스트할 수 없음

• 디바이스 Fuzz test하려면 > 수동으로 Hubfuzzer와 페어링하는 방법 밖에 없음

Table 2: Vulnerability Discovery Results. (*UV*: Unknown Vulnerability. *DoS*: Denial of Service.)

HubFuzzer SNIPUZZ ID Vul. Type Number Vul. Type Number UV/DoS UV/DoS UV/DoS UV/DoS 0 10 11 13 DoS 15 UV 16 18 DoS 19 20 0

Table 3: Some of Discovered Vulnerabilities Details. (HD API: Hidden API, defined in Section 4.1.)

ID	HD API?	Command	Normal Mes. → Exploit (only payload is shown)	Required Device Initial State	Observations	CVE
1	~	Write_Battery_thres(uint8)	0x02007d20 → 0x02007d42 Policy 2: Change argument type from uint8 to CharString	Heating mode is set to 32 degrees Celsius	Device crashed & bricked	CVE-2023-24678
2	✓	Move_up(uint8)	0x01010003 → 0x01010000 Policy 1: Provide an invalid value 0x00 to the argument	Brightness is set to the lowest (0)	Device crashed	CVE-2022-47100
2	~	Move_down(uint8)	0x01010102 → 0x01010100 Policy 1: Provide an invalid value 0x00 to the argument	Brightness is set to the highest (254)	Device crashed	CVE-2022-47100
5	✓	Move_up_OnOff(uint8)	0x01050007 → 0x01050000 Policy 1: Provide an invalid value 0x00 to the argument	Brightness is set to the lowest (0)	Device crashed	CVE-2022-47100
5	✓	Move_down_OnOff(uint8)	0x01050108 → 0x01050100 Policy 1: Provide an invalid value 0x00 to the argument	Brightness is set to the highest (254)	Device crashed	CVE-2022-47100
6	×	Down_close()	0x0103 → 0x010303 Policy 3: Provide one or more arguments to the command	Any state	Device crashed	CVE-2023-29780
13	√	Set_short_poll_interval(uint16)	0x01030009 → 0x01030000 Policy 1: Provide an invalid value 0x0000 to the argument	Any state	Device kept reporting state until battery was drained	CVE-2023-29779
15	✓	Firmware_Update_Request_Get(uint8,uint8)	0x7A038601 → 0x7A03ff Policy 3: Provide only one argument with an invalid value 0xff	Any state	Device crashed	Under review
18	✓	An invalid command in the Clock cluster	0x8101 Policy 4: Try unsupported cluster 0x81 and invalid command 0x01	Any state	Device crashed	Under review

ID	HD API?	Command	Normal Mes. → Exploit (only payload is shown)	Required Device Initial State	Observations	CVE
1	✓	Write_Battery_thres(uint8)	0x02007d20 → 0x02007d42 Policy 2: Change argument type from uint8 to CharString	Heating mode is set to 32 degrees Celsius	Device crashed & bricked	CVE-2023-24678

- 사례 연구 1 : Centralite Pearl Thermostat (ID = 1)
 - UV(알려지지 않은 취약점) / DoS(서비스 거부)
 - Write_Battery_thres(uint8): 배터리 부족 경보의 임계값을 설정할 수 숨겨진 명령으로, Uint8인 인수를 하나만 받음

• 취약점 트리거

- 데이터 유형을 CharString으로 변경하고 동시에 디바이스를 섭씨 32도로 설정하면 디바이스 충돌 발생
- 정상 메시지에서는 0G20으로 표시되는 단위 8 데이터 유형을 CharString으로 변경하면 디바이스 충돌 발생

• 관찰 결과

- 1. 첫 번째 관찰 결과는 익스플로잇(0G02007342)이 전송되면 디바이스의 연결이 끊기고 약 1초 후에 자동으로 재연결됨
- 2. 두 번째 관찰 결과는 일정 시간 내에 여러 번의 익스플로잇을 전송하면 디바이스의 연결이 끊어지고 자동으로 재연결되지 않아 공격자가 DoS공격을 수행할 수 있음
- 이러한 상태에서는 디바이스를 재부팅하거나 수동으로 공장 초기화하거나 페어링을 수동으로 해도 네트워크에 다시 연결할 수 없어 디바이스가 완전히 사용 불가능한(bricked) 상태가 됨

			$0x01010003 \longrightarrow 0x01010000$	Brightness		
_						
2	✓	Move_up(uint8)	Policy 1: Provide an invalid	is set to	Device crashed	CVE-2022-47100
			value 0x00 to the argument	the lowest (0)		
			$0x01010102 \longrightarrow 0x01010100$	Brightness		
2	✓	Move_down(uint8)	Policy 1: Provide an invalid	is set to	Device crashed	CVE-2022-47100
			value 0x00 to the argument	the highest (254)		
			$0x01050007 \longrightarrow 0x01050000$	Brightness		
5	✓	Move_up_OnOff(uint8)	Policy 1: Provide an invalid	is set to	Device crashed	CVE-2022-47100
	İ		value 0x00 to the argument	the lowest (0)		
			$0x01050108 \longrightarrow 0x01050100$	Brightness		
5	✓	Move_down_OnOff(uint8)	Policy 1: Provide an invalid	is set to	Device crashed	CVE-2022-47100
			value 0x00 to the argument	the highest (254)		

- 사례 연구 2 : Sengled Bulb E11-N1EAW (ID = 2)
 - UV(알려지지 않은 취약점) 4개 / DoS(서비스 거부) 4개
 - Move_up(unit8), Move_down(unit8), Move_up_OnOff(unit8), Move_down_OnOff(unit8) : 특정 비율로 장치의 밝기를 켜거나 끌 수 있는 OnOff 효과의 유무와 관계없이 밝기를 증가 또는 감소시키는 명령
- 취약점 트리거
 - 데이터 유형을 CharString으로 변경하고 동시에 디바이스를 섭씨 32도로 설정하면 디바이스 충돌 발생
 - 정상 메시지에서는 0G20으로 표시되는 단위 8 데이터 유형을 CharString으로 변경하면 디바이스 충돌 발생
- 관찰 결과
 - 1. UV: 익스플로잇이 한 번 전송되면 디바이스가 한 번 충돌하고 연결이 끊긴 후 자동으로 공장 상태로 변경된 다음 1초 후에 네트워크에 다시 접속
 - 2. 확장 DoS: 익스플로잇이 일정 시간 내에 여러 번 전송되면 수동으로 페어링할 때까지 디바이스가 자동으로 다시 연결되지 않으므로 공격자는 확장된 DoS 공격을 수행할 수 있음

			$0x0103 \longrightarrow 0x010303$			
6	×	Down_close()	Policy 3: Provide one or more	Any state	Device crashed	CVE-2023-29780
			arguments to the command			

- 사례 연구 3 : Third Reality 3RSB015BZ (ID = 6)
 - CVE-2023-29780이 할당된 두 가지 취약점을 탐지
 - Down_close(): 스마트 블라인드를 최대 길이까지 확장할 수 있는 명령어로, 인수를 받지 않음

• 취약점 트리거

• 인수를 제공하면 현재 디바이스 상태에 관계없이 생성된 테스트 메시지가 취약점을 트리거할 수 있음(Privacy 3)

• 관찰 결과

- 1. 테스트 메시지가 한 번 전송되면 기기의 연결이 끊어졌다가 자동으로 재연결
- 2. 여러 번 연속해서 전송되면 약 30초 후에 연결이 끊어졌다가 재연결되어 공격자가 DoS 공격을 수행할 수 있는 것으로 관찰됨

13	✓	Set_short_poll_interval(uint16)	0x01030009 → 0x01030000 <i>Policy 1:</i> Provide an invalid	Any state	Device kept reporting state until	CVE-2023-29779
			value 0x0000 to the argument		battery was drained	

- 사례 연구 4: Sengled E1E-G7F (ID = 13)
 - CVE-2023-29779가 할당된 DoS 취약점
 - Set_short_poll_interval(uint16): 짧은 폴링의 간격을 설정할 수 있는 명령어
- 취약점 트리거
 - 인자에 유효하지 않은 값 0x0000을 제공
- 관찰 결과
 - 1. 디바이스가 간격 없이 상태를 계속 보고하고 정상적인 메시지에 응답하지 않음
 - 2. 실험에서 디바이스가 상태를 계속 보고하면서 배터리가 방전됨

15	√	Firmware_Update_Request_Get(uint8,uint8)	0x7A038601 → 0x7A03ff Policy 3: Provide only one argument with an invalid value 0xff	Any state	Device crashed	Under review
			with an invalid value oxii			

- 사례 연구 5: Aeotec ZW130-A (ID = 15)
 - UV 취약점 발견, 해당 취약점에 대한 CVE 요청했으며 현재 검토중
 - Firmware_Update_Request_Get (uint8, uint8) : 펌웨어 업데이트를 시작하는데 사용되는 숨겨진 명령어로, 2개의 인수 필요

• 취약점 트리거

• 유효하지 않은 값 0x#을 가진 인수를 하나만 제공하면 디바이스 충돌 발생

18	✓	An invalid command in the Clock cluster	0x8101 Policy 4: Try unsupported cluster 0x81 and invalid command 0x01	Any state	Device crashed	Under review
----	---	--	---	-----------	----------------	--------------

- 사례 연구 6: Fibaro FGMS-001 (ID = 18)
 - DoS 취약점 발견, 해당 취약점에 대한 CVE 요청했으며 현재 검토중
 - Fibaro FGMS-001: 동작 감지, 조명 변화, 환경 온도 변화 등 다양한 동작이나 이벤트를 트리거하도록 설계되어 있음
 - Device 시계를 컨트롤러 시스템 시계와 동기화하는 것을 목표로 하는 Clock 클러스터(0x81)의 잘못된 명령과 관련

• 취약점 트리거

• 지원되지 않는 클러스터(0x81)와 유효하지 않은 명령(0x01)이 포함된 테스트 메시지를 보내면 해당 명령은 클러스터(0x81)에 존재하지 않으므로 유효하지 않음

• 관찰 결과

• 테스트 메시지를 일정 시간 내에 여러 번 전송하면(실험에서는 약 60초 동안 120번 전송) 디바이스 충돌

- (a)~(g): 시간 경과에 따라 발견된 취약점과 Test 메시지 수에 따른 퍼징의 효율성 측정
- (h): 21개의 디바이스 각각에 대한 퍼즈 테스트에 HubFuzzer가 걸린 총 시간

34/37

⁰⁷ Discussion

Testing WiFi and Bluetooth Devices

- 디바이스는 홈킷과 호환되는 한 하나 이상의 로컬 제어 채널 지원하며 많은 IoT 공급없체가 홈킷을 지원
- 홈킷 프로토콜에 따르면 홈킷 지원 장치는 홈킷 허브와 페어링할 뿐만 아니라, 장치 유형과 기능도 선언
- 향후: 홈키트 프레임워크 활용하여 WiFi 및 블루투스 장치를 테스트하기 위한 허브 구축할 것임

Testing Matter Devices

• Matter과 Thread는 홈 디바이스 상호 운용성과 연결성을 개선하기 위해 설계된 두 가지 업계 전반의 표준임

Matter : 애플리케이션 계층에서의 상호 운용성을 향상시키기 위한 표준

Thread: IoT 장치들 간의 하위 계층 통신을 위한 표준

• 향후: Matter 장치 테스트에 허브 기반 퍼징 아이디어를 적용

08 Conclusion

- 기존 작업: Companion App을 리버스 엔지니어링 하거나 테스트 스크립트를 수동으로 수집
- HubFuzzer: 퍼저가 스스로를 허브로 선언하여 IoT 디바이스 연결하는 허브 기반 IoT 퍼징 기법 제안
 - Setting-up message를 활용하여 IoT Device가 지원하는 기능 발견하고 이를 이용하여 체계적인 기능 지향 퍼징 수행
 - Input sanitization에 제약을 받지 않으며, 암호화된 통신도 처리할 수 있음
- 21개의 인기 IoT 디바이스를 대상으로 평가 진행, 23개의 제로데이 취약점 발견 및 4개의 CVE 지정

