

Expert Answers In A Flash: Improving Domain Specific QA

## Overview

- Pipeline for domain-specific question answering in a open-QA setting
  - Involves the use of retrievers, rankers and readers

#### Challenges:

- Efficient resource allocation
  - Providing reader appropriate number of passages
- Ranking suffers from generalization and can improved with domain knowledge

# **Pipeline Overview**



### BM25: First Level Filter

- A probabilistic model
- Intuition: Paragraphs can be easily distinguished based on the query keywords
- Fast and effective filter
  - 16ms on average per query
  - Top 5 accuracy of BM25 is nearly 95.4%
- Alternatives: DPR (Bi-encoder)
  - Pro: captures semantics
  - Con: requires precomputing dense, dataspecific vector representations
  - Doesn't provide considerable improvements

### Rankers

Essentially cross-encoders trained on query, paragraph pair

Classifier head to determine the semantic similarity

Re-ranks the narrowed paragraphs

| Model                                                                                          | Top k                                             | Accuracy | Time per query (s) |
|------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|--------------------|
| TinyBERT cross-encoder applied on all paragraphs in the theme                                  | 1                                                 | 85.02%   | 0.05               |
| TinyBERT cross-encoder applied on top<br>10 paragraphs based on BM25                           | 1                                                 | 86%      | 0.02               |
| MiniLM cross-encoder applied on top                                                            | 1 (top 1 of MiniLM)                               | 88.71%   | 0.76               |
| 10 paragraphs based on BM25                                                                    | 2 (top 1 of BM25 and<br>MiniLM each)              | 90.92%   | 0.76               |
| MiniLM, and TinyBERT cross-encoder<br>applied on top 10 paragraphs based on<br>BM25 separately | 3 (top 1 of BM25,<br>MiniLM and TinyBERT<br>each) | 92.51%   | 0.82               |

# Domain Adaptive Rankers

With Knowledge Distillation and Contrastive Loss

## **Knowledge Distillation**

- Hard negatives are mined using BM25 retrieved documents

  Smaller student model learns from the output logits of the teacher model
  - Minimize the mean square loss (MSE)



- MiniLM teacher (L-12) and student model (L-2)
  - Task-transfer: pretrained on the ms-marco dataset for the task of passage re-ranking

## **Knowledge Distillation**

|                             | Top 1 Accuracy | Inference Time per Query<br>(Colab CPU) |
|-----------------------------|----------------|-----------------------------------------|
| Student Model (MiniLM-L-2)  | 85.79%         | 305 ms                                  |
| Finetuned Model             | 89.31%         | 305 ms                                  |
| Teacher Model (MiniLM-L-12) | 90.27%         | 1010 ms                                 |

- Trained for 13 epochs on 80:20 train-test split with overlapping themes
- Approaches top 1 accuracy of a pre-trained teacher model

## **Contrastive Loss Training**

Minimising loss translates to simultaneously maximize the similarity between the positive pairs while minimizing the same for negative pairs

1 positive and 9 BM25 hard negatives  $sim(z_i, z_i)$  is the logits score of the ranker

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \sum_{k\neq i} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

| Epochs     | Top 1 Accuracy |
|------------|----------------|
| Pretrained | 81.02%         |
| Epoch 1    | 81.65%         |
| Epoch 2    | 82.71%         |

## **Theme Specific Rankers**

Outperforms universal ranker when fine-tuned with specific themes

Considerable difference for enough training examples
 Loaded at inference time

Fine-tuned universal ranker for 2 epochs on specific themes

|                            | Universal Ranker | Theme Finetuning |
|----------------------------|------------------|------------------|
| New York City              | 0.747            | 0.761            |
| IPod                       | 0.804            | 0.885            |
| 2008 Sichuan<br>Earthquake | 0.843            | 0.862            |

# Heuristic

For Difficulty Prediction

## Heuristic for Difficulty Prediction

- 1. Not all questions are equally difficult
- 2. 1s is the **average** time limit per question

Varied amount of passages can be passed to reader based on question difficulty

## **Theme Specific Rankers**

- p(X, i): probability that the answer lies among the top i of the ranker's final ranked paragraphs
- $\circ$  q(X, i): probability that the reader will solve the top I question correctly
- Expected number of correctly answered questions:

$$\sum p(X i, z[i]) \cdot q(X i, z[i])$$

- $\bigcirc$  z[i]: number of passages passed for the ith question
- Maximize expectation over the constraint-  $\sum z[i]$  ≤ K for some K.
  - Upperbound is on the total number of passages passed to the reader

## Model for P(X,i)

- Correlation exists between ranker/retriever scores distribution and the probable location of the answer paragraph
- X is taken as the concatenated ranker-retriever scores
- Neural network with one hidden layer used to predict the p(X,i)

## Algorithm

- Initialize z[i] as 1 (assume one paragraph for each query)
- 2. Greedily increment the z[j] variable that locally increases the expectation by the maximum amount
  - 1.  $O(K \log n)$  (with min heap)
- 3. Followed with a random algorithm:
  - 1. Randomly choose a j with z[j] > 0, decrement z[j] and then again increase the z[k] value
    - Redo the greedy operation

### Results

Constraint K dynamically based on time remaining

 Based on time left after retrieving and ranking and average reader latency

#### Results:

Average time per question: 0.97s

|          | Top 2 | Heuristic Approach |
|----------|-------|--------------------|
| Accuracy | 0.854 | 0.898              |

# Readers & Answerability

For answer extraction

#### **Readers Intro**

- Purpose of the reader is to apply reading comprehension algorithms to retrieved paragraphs
- Used transformer based readers which are composed of encoders and decoders that employ extractive spans

Where the start\_loss and end\_loss are the cross entropy losses for the start and end logits respectively.

#### **Pre-Trained Readers**

| Model        | Time (per query) | Accuracy (Exact<br>Match) | Memory  | F1 Score |
|--------------|------------------|---------------------------|---------|----------|
| Retro Reader | 13.96s           | 90.56%                    | 3.86 GB | 87.76%   |

#### **Retro Reader**

Performs well due to Sketchy reading(E-FV), Intensive reading(I-FV), and Rear Verification(RV)

| Model                 | Accuracy<br>(Exact Match) | Time (per<br>query) | Memory  | F1 score |
|-----------------------|---------------------------|---------------------|---------|----------|
| roberta-base-squad2   | 83.27%                    | 2020 ms             | 496 MB  | 62.33    |
| roberta-large-squad2  | 89.98%                    | 6500 ms             | 1420 MB | 70.32    |
| tinyroberta-squad2    | 79.26%                    | 630 ms              | 326 MB  | 66.73    |
| minilm-uncased-squad2 | 78.85%                    | 305 ms              | 134 MB  | 64.85    |
| distilbert-base       | 51.67%                    | 474 ms              | 261 MB  | 45.50    |

## **Experiments on MiniLM**

- Distilling BERT-base's last layer attention module student flexibility
- Scaled dot product between last layer attention modules similarity
- Offers the best performancelatency ratio
- Pre trained on squad 2.0

| Split type              | Details of fine-tuning                        | Exact match accuracy |
|-------------------------|-----------------------------------------------|----------------------|
| Theme Independent Split | Pre-trained Minilm                            | 78.142%              |
| Theme Independent Split | Minilm fine-tuned on the train-split          | 74.890%              |
| Theme Dependent Split   | Pre-trained Minilm                            | 78.142%              |
| Theme Dependent Split   | Minilm fine-tuned on the train-split          | 75.217%              |
| Data-augmentation       | Minilm fine-tuned on the train-split          | 70.126%              |
| Data-augmentation       | 2nd model fine-tuned again on the train-split | 65.515%              |

## Challenges and Inferences

Absence of relevant training data causes overfitting

| Split type              | Details of fine-tuning               | Exact match accuracy |
|-------------------------|--------------------------------------|----------------------|
| Theme Independent Split | Pre-trained Minilm                   | 78.142%              |
| Theme Independent Split | Minilm fine-tuned on the train-split | 74.890%              |

Improvement on theme-wise finetuning rather than normal split

| Theme Dependent Split | Pre-trained Minilm                   | 78.142% |
|-----------------------|--------------------------------------|---------|
| Theme Dependent Split | Minilm fine-tuned on the train-split | 75.217% |

## **Data Augmentation**

- Tried two kinds of data augmentations:
- 1. Hard negatives: generated by pairing the wrong paragraphs with each questions to extend the dataset.
- 2. Inserting the sentence containing the correct answer of a question in another paragraph and pairing up with corresponding question
- Can be attributed to complete change in context and latency as compared to heavier models

| Data-augmentation | Minilm fine-tuned on the train-split          | 70.126% |
|-------------------|-----------------------------------------------|---------|
| Data-augmentation | 2nd model fine-tuned again on the train-split | 65.515% |

## **Decoding Strategy**

#### We designed three different t

- Find the top\_n best answers maximizing the sum of start\_logits
   and end\_logits vectorization, time-optimal solution.
- O(nlogn) binary search and a type of sliding window maximum answer length.
- commonly used simple searching algorithm of O(n^2) time complexity.

## **Answerability**

- Baseline: Reader confidence scores with threshold 0.5
- Proposed novel method uses confidence score of reader, retriever and ranker with perceptron classifier
  - Intuition: correct answer's passage reader, retriever and ranker scores must be placed higher in their score distributions.

| Method                | Data                                        | Accuracy | F1     |
|-----------------------|---------------------------------------------|----------|--------|
| 0.5 Threshold         | Reader Score                                | 95.80%   | 96.34% |
| Perceptron Classifier | Top 10 Retriever Score                      | 69.57%   | 79.41% |
| Perceptron Classifier | Top 10 Retriever +<br>Reader Score          | 97.46%   | 98.17% |
| Perceptron Classifier | Top 10 Retriever +<br>Ranker + Reader Score | 97.61%   | 98.53% |

Here Retriever is BM25, Reader is TinyRoBERTa and Ranker is miniLM cross-encoder.

## Conclusion

- 1. Domain Adaptable Rankers with knowledge distillation
- 2. Novel difficulty prediction heuristic to dynamically determine the number of passages to be read
- 3. Signals from retriever, ranker and reader for answerability
- Domain-Adaptability ☑
- Low Latency
- High Precision