

Università degli Studi di Verona, Facoltà di Scienze MM.FF.NN

Reti di Calcolatori, Prof. D. Carra, A.A. 2012/2013 Appello d'esame del 5 Febbraio 2013

- Scrivere **nome**, **cognome** e **numero di matricola** su ciascun foglio che si intende consegnare (non e' obbligatorio consegnare la brutta copia)
- I risultati verranno pubblicati sugli avvisi della pagina del corso Martedi 12 Febbraio dopo le 12
- · La correzione dei temi d'esame può essere visionata durante la registrazione
- Orali (facoltativi) e registrazioni si terranno Martedi 12 Febbraio alle 14.30 in aula da definirsi.

Domande sulla teoria (4 punti ciascuna)

Lo studente risponda in maniera concisa, ma precisa, alle seguenti domande riguardanti la parte teorica. E' necessario che lo studente ottenga almeno 7 punti (su un totale di 12 punti a disposizione). In caso contrario, gli esercizi non verranno considerati e il voto finale sarà insufficiente.

- 1. Si descriva il problema del "terminale nascosto" (hidden terminal problem) nelle Wireless LAN e la soluzione adottata dallo standard 802.11.
- 2. In riferimento al livello di rete, si spieghi che cosa succede quando un host si connette ad una rete ed ha bisogno di ricever un indirizzo IP (non è necessario andare nei dettagli dei protocolli, è sufficiente descrivere a grandi linee i messaggi scambiati).
- 3. L'header del protocollo UDP contiene solo 4 campi: Source Port, Destination Port, Length e Checksum. Si spieghi brevemente a cosa servono tali campi.

Esercizio 1 (7 punti)

Un Bridge è attestato contemporaneamente su due segmenti distinti di rete; sul segmento 1 c'è una stazione, A, e sul segmento 2 ci sono due stazioni, B e C (si veda la figura a fianco). Il Bridge è un particolare tipo di stazione che memorizza ciascuna trama che arriva da un segmento di rete e, una volta ricevuta completamente, la ritrasmette sull'altro segmento di rete (tale comportamento è valido, in modo indipendente l'uno dall'altro, in entrambi i sensi); le trame restano in memoria del Bridge fino a quando la trasmissione sull'altro segmento non è andata a buon fine.

Le stazioni e il Bridge utilizzano un protocollo **CSMA** 1-persistent. Le caratteristiche del sistema sono:

- velocità dei segmenti: 1.0 Mbit/s;
- lunghezza delle trame generate dalle stazioni: 1250 byte;
- ritardo di propagazione pari ad 1 ms tra le staziona A e il bridge, pari a 1ms tra la stazione B e il bridge, e pari a 2 ms tra la stazione B e la stazione C;

Le stazioni generano le seguenti trame:

- stazione A: una trama (A1) all'istante tA1=536 msec, e una trama (A2) all'istante tA2=571 msec, entrambe dirette a B;
- stazione B: una trama (B1) all'istante tB1=582 msec diretta ad A;
- stazione C: una trama (C1) all'istante tC1=536 msec, diretta ad A, e una trama (C2) all'istante tC2=551 msec, diretta a B;

In caso di collisione, si supponga che le stazioni decidono di ritrasmettere Z millisecondi <u>dopo</u> la fine della trasmissione della trama corrotta; il numero Z viene deciso secondo il seguente metodo:

- si attende un tempo pari a Z = Sc * N + T, dove
 - Sc = somma delle cifre che compongono l'istante di inizio trasmissione
 - N = numero di collisioni subite da quella trama
 - T tempo di trama

ad esempio, se l'istante di inizio trasmissione è 418 msec, Z = (4+1+8)*N + T Determinare:

- 1. graficamente le trasmissioni delle diverse trame, indicando se avviene collisione, in quali istanti essa viene eventualmente avvertita e da quali apparati;
- 2. il periodo di vulnerabilità del sistema preso in considerazione.

Università degli Studi di Verona, Facoltà di Scienze MM.FF.NN

Reti di Calcolatori, Prof. D. Carra, A.A. 2012/2013 Appello d'esame del 5 Febbraio 2013

Esercizio 2 (7 punti)

Si consideri la rete rappresentata in Figura, collegata ad Internet attraverso il router X (router di default per la rete). Si hanno i sequenti vincoli:

 Le LAN 1, 2 e 3 devono poter contenere rispettivamente almeno 300, 100 e 400 host;

• la LAN 2 contiene un host con indirizzo 43.12.154.201.

Tralasciando gli indirizzi del collegamento punto-punto tra il router C e X:

2. Si assegnino gli indirizzi di rete e di broadcast alle LAN 1, 2 e 3, utilizzando il blocco CIDR individuato nel punto precedente.

3. Si scriva la tabella di routing del router C, considerando come metrica il numero di hop e assumendo che il router X abbia annunciato di poter raggiungere qualsiasi host su Internet in 3 hop.

Un'applicazione A deve trasferire 63750 byte all'applicazione B utilizzando il protocollo TCP. Si supponga che la connessione tra A e B sia già stata instaurata. La trasmissione dei segmenti inizia al tempo t=0. Sono noti i seguenti parametri:

MSS concordata pari a 1250 byte;

- RCVWND annunciata da B ad A pari a 27500 byte; a partire dal tempo $t_a>6.0$ la destinazione annuncia una RCVWND pari a 3750 byte; a partire dal tempo $t_b>22.0$ la destinazione annuncia una RCVWND pari a 20000 byte;
- SSTHRESH iniziale = RCVWND;
- CWND= 1 segmento a t=0;
- RTT pari a 1.0 secondo, costante per tutto il tempo di trasferimento;
- RTO base = 2*RTT; nel caso di perdite consecutive dello stesso segmento, i timeout seguenti raddoppiano fino ad un massimo di 4 volte il RTO base (incluso), dopodiché la connessione viene abbattuta;
- il tempo di trasmissione dei segmenti è trascurabile rispetto RTT;
- il ricevitore riscontra immediatamente i segmenti.

Inoltre si supponga che la rete vada fuori servizio nei seguenti intervalli di tempo:

- da $t_1=5.5s$ a $t_2=7.5s$;
- da t₃=11.5s a t₄=14.5s;

Si tracci l'andamento della CWND nel tempo e si determini in particolare:

- 1. il valore finale di CWND (sia graficamente, sia esplicitandolo);
- 2. i valori assunti dalla SSTHRESH durante il trasferimento (graficamente);
- 3. il tempo necessario per il trasferimento dei dati (sia graficamente, sia esplicitandolo);
- 4. il numero di segmenti trasmessi ad ogni intervallo, specificando se ne vengono ricevuti i riscontri o meno (sia graficamente, sia esplicitando i valori).

