北京邮电大学 2015-2016 学年第 二 学期

《大学物理 B (上)》期末考试试题

考 一、学生参加考试须带学生证或学院证明,未带者不准进入考场。学生必须按照

试 监考教师指定座位就坐。

注 二、书本、参考资料、书包等物品一律放到考场指定位置。

意 三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场

事 违纪或作弊行为者,按相应规定严肃处理。

项 四、学生必须将答题内容做在试题答卷上,做在草稿纸上一律无效。

考试	大学物理	B (上)	考试时间		2016年6月29日				
课程					8:00-10:00				
题号 (满		二	三	四	五.	六	总分		
分)	(30)	(30)	(10)	(10)	(10)	(10)			
得分									
\							-		
阅卷									
教师									

一. 选择题: (每题 3 分, 共 30 分)

1. 竖立的圆筒形转笼,半径为 R,绕中心轴 OO' 转动,物块 A 紧靠在圆筒的内壁上随筒转动,物块与圆筒间的摩擦系数为 μ ,要使物块 A 不下落,圆筒转动的角速度 ω 至少应为【

(A)
$$Q = -2\sqrt{2}q$$
; (B) $Q = \sqrt{2}q$; (C) $Q = -2q$; (D) $Q = -\sqrt{2}q$.

3. 均匀细棒 OA 可绕通过其一端 O 而与棒垂直的水平固定光滑轴转动,如图所示. 今使棒从水平位置由静止开始自由下落,则在棒摆动到竖直位置的过程中,正确的是【】

(A)	角速度从小到大,	角加速度从大到小.	(B)	角速度从小到大,	角加速度从小到大.
(C)	角速度从大到小,	角加速度从大到小.	(D)	角速度从大到小	, 角加速度从小到大,

一平行板电容器始终与端电压一定的电源相联, 当电容器两极板间为真空时, 电场强度为 \vec{E}_0 , 电位移为 \vec{D}_0 , 保持电源相联, 在两极板间充满相对介电常量为 ε , 的各向同性均匀电

介质时,再断开电源,随后将电介质撤掉,此时电场强度为 \vec{E} ,电位移为 \vec{D} .则【 1

(A)
$$\vec{E} = \vec{E}_0 / \varepsilon_r$$
, $\vec{D} = \vec{D}_0$.

(B)
$$\vec{E} = \varepsilon_r \vec{E}_0$$
, $\vec{D} = \varepsilon_r \vec{D}_0$.

$$(C) \quad \vec{E} = \vec{E}_0 \, / \, \varepsilon_r \, , \quad \vec{D} = \vec{D}_0 \, / \, \varepsilon_r \, . \qquad \qquad (D) \quad \vec{E} = \varepsilon_r \vec{E}_0 \, , \quad \vec{D} = \vec{D}_0 \, .$$

(D)
$$\vec{E} = \varepsilon_r \vec{E}_0$$
, $\vec{D} = \vec{D}_0$.

- 5. 电位移矢量的时间变化率 $d\bar{D}/dt$ 的单位是【

- (A)库仑/米² (B)库仑/秒 (C)安培/米² (D)安培•米/秒
- 无限长均匀载流空心圆柱导体的内外半径分别为 $a \cdot b$,则空间各处的 \vec{B} 的大小与场点到圆 柱中心轴线的距离 r 的关系定性地如图所示, 正确的图是【

- 7. 半径分别为 R 和 r 的两个金属球,相距很远.用一根细长导线将两球连接在一起并使它们 带电. 在忽略导线的影响下,两球表面的电荷面密度之比 σ_R/σ_r 为【
 - (A) R/r.
- (B) R^2/r^2 .
- (C) r^2/R^2 .
- (D) r/R.
- 8. 设高温热源的热力学温度是低温热源的热力学温度的 n 倍,则理想气体在一次卡诺循环中, 对外做的功是传给低温热源热量的【
 - (A) n倍.

- (B) n-1 倍. (C) $\frac{1}{n}$ 倍. (D) $\frac{n+1}{n}$ 倍.
- 9. 热力学第二定律表明:【
 - (A) 不可能从单一热源吸收热量使之全部变为有用的功.
 - (B) 无论可逆与不可逆过程, 系统的熵增总是大于零.
 - (C) 功可以全部转化为热量,但热量不能全部转化为功.

- (D) 一切自发过程都是不可逆的.
- 10. 设一定的理想气体 (摩尔质量是 M, 玻尔兹曼常数为 k) 温度为 T, 压强为 p, 体积为 V,

已知速率分布函数为 f(v) ,则小于最概然速率 v_p 的分子数为【

(A) $\frac{pV}{kT} \int_0^{v_p} f(\mathbf{v}) d\mathbf{v}.$

(B) $\frac{pV}{kT} \int_0^{v_p} v f(v) dv$.

(C) $\frac{VT}{pk} \int_0^{v_p} f(\mathbf{v}) d\mathbf{v}$.

- (D) $\frac{VT}{pk} \int_0^{v_p} v f(v) dv.$
- 二. 填空题 (每空3分,共30分)(如有根号或n,请保留)
- 2. 一质量为m的质点沿着一条曲线运动,其位置矢量在空间直角坐标系中的表达式为 $\vec{r} = a(\cos \omega t)\vec{i} + 2a(\sin \omega t)\vec{j}$,其中a、 ω 皆为常量, \vec{i} , \vec{j} 为互相垂直的单位矢量且 $\vec{i} \times \vec{j} = \vec{k}$ 。则此质点对原点的角动量 \vec{L} 为 =
- 4. 一长为l,质量为 m 的均匀链条,伸直放在光滑的水平桌面上,使其边缘稍稍伸出桌面并由静止释放,如果铁链沿伸长方向开始滑动,则当其长度的 $\frac{1}{2}$ 滑离桌边时,铁链下端的速率为_____。
- 5. 两块带电金属板平行放置,其中 A 板带电量为 q_1 , B 板带电量为 q_2 , 平板面积 S 远大于问距 d,试求静电平衡时 A 板左侧的面电荷密度为

6. 一无铁芯的长直螺线管,导线中通以电流I,如果在保持其半径和总匝数不变的情况下,

把螺线管拉长使长度变为原来的2倍,则它内部的磁场强度变为原来的

倍, 自感系数将变为原来的 倍, 管内总磁能变为原来的

倍。

7. 图示的曲线分别表示了氢气 (H_2) 和氦气 (H_e) 在同一温度下的分子速率的分布情况. 由图可知,氢气分子的方均根速率为 m/s。

三. 计算题(10分)

1mol 刚性多原子(原子数大于 3)的理想气体,经过如图所示的循环过程: 其中 $a \to b$ 为等压过程, $b \to c$ 为绝热过程, $c \to a$ 为等温过程。(普适常数为 R)

- (1). 写出此理想气体的状态方程,并求等体摩尔热容 C_v 和等压摩尔热容 C_n 分别为多少?
- (2). 已知 V_1, V_2, V_3 , 求此循环的效率。

四. 计算题(10分)

一个质量为M,长为l的匀质细棒可绕点 C 在竖直平面内转动。现在有一质量为m的子弹以水平速度v射入细棒中,并留在细棒下端随棒转动,若细棒刚好可转过 90 度,求子弹的初速度v等于多少?

五. 计算题(10分)

一个半径为 R_1 的金属球与内外径分别为 R_2 和 R_3 的金属球壳同心放置,其中金属球带电Q,金属球壳不带电。金属球与球壳之间填充相对介电常数为 ε_r 的电介质。求(1)金属球的电势(以无穷远处为势能零点);(2)金属球与球壳之间的电场能量。

六. 计算题(10分)

如图所示,一无限长直导线上通过稳定电流 I,电流方向向上,导线旁有一长度为 R 的金属棒,绕其一端 O 在一平面内顺时针匀速转动,角速度为 ω ,O 点到导线的垂直距离为 r (r>R),设直导线在金属棒旋转的平面内,试求:

- (1) 当金属棒转到与长直导线平行且 O 端向下时,即 OM 位置,棒内感应电动势的大小和方向;
- (2) 当金属棒转到与长直导线垂直且 O 端靠近导体时,即 ON 位置,棒内感应电动势的大小和方向。

北京邮电大学 2015-2016 学年第 二 学期 《大学物理 B(上)》期末考试试题答案

- 一、 选择题(每题3分,共30分)
 - 1. C; 2. A; 3.A; 4.B; 5.C; 6.C; 7.D; 8.B; 9.D; 10.A.
- 二、 填空题(每题3分,共30分)

1.
$$\underline{10}$$
; 2. $\underline{2m\omega a^2 \overline{k}}$; 3. $\underline{\frac{2J}{\omega_0}}$; $\underline{\frac{4}{9} J \omega_0^2}$; 4. $\underline{\frac{\sqrt{gI}}{2}}$;

5.
$$\frac{q_1 + q_2}{2S}$$
; 6. $\underline{1/2 g 0.5}$; $\underline{1/2 g 0.5}$; $\underline{1/2 g 0.5}$ 7. $\underline{1000\sqrt{3}}$.

三、 计算题(10分)

$$\mathbf{M}$$
:(1) 理想气体的状态方程: $pV = RT$. (1分)

等体摩尔热容
$$C_{nm} = 3R$$
, 等压摩尔热容 $C_{nm} = 4R$. (2分)

(2)
$$a \to b$$
 过程中, $Q_1 = C_p(T_b - T_a) = 4R(T_b - T_a) = 4p(V_2 - V_1)$,吸热. (3分)
$$c \to a$$
过程中, $Q_2 = A = \int_c^a p dV = RT \ln \frac{V_1}{V_3} = pV_1 \ln \frac{V_1}{V_3}$,放热. (2分)

效率为:
$$\eta = 1 - \frac{|Q_2|}{Q_1} = 1 - \frac{V_1 \ln \frac{V_3}{V_1}}{4(V_2 - V_1)}$$
 (2分)

四、 计算题(10分)

解:细棒对
$$C$$
 点的转动惯量为 $J = \frac{1}{3}Ml^2$ (2分)

子弹打进木棒的过程中,系统对 C 点的角动量守恒:

$$mlv = (ml^2 + J)\omega$$
,得 $\omega = \frac{3mv}{(3m+M)!}$. (4分)

在随后的转动过程中, 机械能守恒:

$$\frac{1}{2}(mI^2 + J)\omega^2 = mgI + Mg\frac{1}{2}$$
,所以 $V = \sqrt{\frac{(3m+M)(2m+M)}{3m^2}gI}$ 。 (4分)

五、 计算题(10分)

解: (1) 根据对称性做半径为 r 的同心球面,

当
$$R_1 < r < R_2$$
 时,根据高斯定理可得 $4\pi r^2 D = Q$, 所以场强为 $E = \frac{1}{4\pi \epsilon . \epsilon_0} \frac{Q}{r^2}$; (2 分)

同理当
$$r > R_3$$
时,可得外部的场强为 $E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$; (2分)

所以金属球上的电势为:

$$V(r) = \int_{R_1}^{R_2} \frac{1}{4\pi\varepsilon_r \varepsilon_0} \frac{Q}{r^2} dr + \int_{R_3}^{+\infty} \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} dr = \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{\varepsilon_r R_1} - \frac{1}{\varepsilon_r R_2} + \frac{1}{R_3} \right]$$
(3 \(\frac{\frac{1}{2}}{2}\))

(2) 电场能量为

$$W = \int_{R_1}^{R_2} \frac{1}{2} \varepsilon_r \varepsilon_0 E^2 \cdot 4\pi r^2 dr = \int_{R_1}^{R_2} \frac{1}{2} \varepsilon_r \varepsilon_0 \left(\frac{1}{4\pi\varepsilon} \frac{Q}{r^2} \right)^2 \cdot 4\pi r^2 dr = \frac{Q^2}{8\pi\varepsilon_r \varepsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right). \quad (3 \%)$$

六、 计算题(10分)

解:右边距轴上 x 远处一点的磁感应强度为
$$B = \frac{\mu_0 I}{2\pi x}$$
,方向垂直纸面向内。 (2分)

(1) 当在 OM 位置上时,

$$\varepsilon = \int_0^1 \left(v \times B \right) \times dI = \int_0^1 \omega I \times \frac{\mu_0 I}{2\pi x} dI = \frac{\mu_0 I \omega R^2}{4\pi r} \tag{3 \frac{2}{3}}$$

方向是O指向M,即M点的电势高。 (1分)

(2) 当在 ON 位置上时,

$$\varepsilon = \int_{r}^{r+R} (v \times B) \cdot dI = \int_{r}^{r+R} \omega (x - r) \cdot \frac{\mu_{0} I}{2\pi x} dx$$

$$= \frac{\mu_{0} I \omega}{2\pi} \left[R - r \ln \frac{r + R}{r} \right]$$
(3 \(\frac{\psi}{r}\))

方向是O指向N,即N点的电势高。 (1分)