Оглавление

1	ΤФ	ΚП		2
	1.1	Серия	полезных результатов	2
		1.1.1	Теорема Коши для прямоугольного треугольника	2
		1.1.2	Теорема Коши для треугольника	3
		113	Теорема Коши для конечносвязной многоугольной области	4

Глава 1

ΤΦΚΠ

1.1. Серия полезных результатов

1.1.1. Теорема Коши для прямоугольного треугольника

Теорема 1. Рассматриваем треугольник ABC (рис. 1.1a).

$$f \in \mathcal{A}(G),$$
 $A = a + pi,$ $B = b + pi,$ $c = b + qi,$ $a < b,$ $p < q,$ $\triangle ABC \subset G$
$$I := \int\limits_{\partial \triangle ABC} f(z) \, dz = 0$$

Доказательство. Рассмотрим точки:

$$D = \frac{a+b}{2} + i\frac{p+q}{2}, \qquad K = \frac{a+b}{2} + pi, \qquad E = b + i\frac{p+q}{2}$$

$$\int\limits_{\partial\Delta ABC} f(z) \, \mathrm{d}z = \int\limits_{\partial\Box} + \int\limits_{\partial\Delta_1} + \int\limits_{\partial\Delta_2}$$

$$\int\limits_{ED} + \int\limits_{DE} = 0, \qquad \int\limits_{DK} + \int\limits_{KD} = 0$$

К каждому из треугольников можно применить такое же рассуждение, а к прямоугольникам—теорему Коши для прямоугольника. Получаем

$$I = \sum_{k=1}^{2^n} I_{n_k} \tag{1.1}$$

$$I_{n_k} = \int_{\partial \Delta_{n_k}} f(z) \, \mathrm{d}z \tag{1.2}$$

Рассмотрим какой-то из шагов (треугольник обозначим $\alpha\beta\gamma$, рис. 1.1b):

$$\int\limits_{\partial \Delta \alpha \beta \gamma} f(z) \, \mathrm{d} \, z = \int\limits_{\partial \Delta \alpha \beta \gamma} f(z) - f(\alpha) \, \mathrm{d} \, z + f(\alpha) \int\limits_{\partial \Delta \alpha \beta \gamma} 1 \, \mathrm{d} \, z$$

Второй интеграл равен 0 (по св-ву 5 криволинейных интегралов). Значит, это равно

$$\int_{\partial \Delta \alpha \beta \gamma} f(z) - f(\alpha) \, \mathrm{d}z \tag{1.3}$$

По св-ву 7 криволинейных интегралов, это означает, что

$$\left| \int_{\partial \Delta \alpha \beta \gamma} f(z) \, dz \right| \le \int_{\partial \Delta \alpha \beta \gamma} |f(z) - f(\alpha)| \, |dz| \tag{1.4}$$

Применим теорему Кантора:

$$\forall \varepsilon > 0 \quad \exists \delta > 0: \quad \forall \alpha \in [A, C], \quad z \in \partial \triangle \alpha \beta \gamma \quad |f(z) - f(\alpha)| < \varepsilon$$
 (1.5)

Выберем n так, что

$$z^{-n} \cdot |C - A| < \delta$$

Тогда

$$(1.4), (1.5) \implies \int_{\partial \Delta \alpha \beta \gamma} |f(z) - f(\alpha)| |dz| < \varepsilon \int_{\partial \Delta \alpha \beta \gamma} |dz| \underset{\text{H3 reom. coofp.}}{<} 3\varepsilon |\gamma - \alpha| = 3\varepsilon \cdot |C - A| \cdot 2^{-n} \quad (1.6)$$

$$\Longrightarrow_{(1.4)} \forall k \quad |I_{n_k}| < 3\varepsilon |C - A| \cdot 2^{-n} \tag{1.7}$$

$$\underset{(1.1)}{\Longrightarrow} |I| \le \sum_{k=1}^{2^n} |I_{n_k} < 3\varepsilon |C - A| \cdot 2^{-n} \cdot 2^n = 3\varepsilon |C - A| \tag{1.8}$$

$$\implies |I| = 0$$

Если треугольник перевернуть относительно оси ординат, результат не изменится.

Замечание. Аналитичность f использовалась для прямоугольника.

1.1.2. Теорема Коши для треугольника

Рис. 1.2

Теорема 2. Рассматриваем треугольник ABC (рис. 1.2)

$$A = a + pi, \quad B = b + pi, \quad C = d + qi, \qquad a < d < l, \qquad q > p$$

$$\underbrace{\int\limits_{\partial\triangle ADC} + \int\limits_{\partial\triangle DBC} = \int\limits_{\partial\triangle ABC}}_{0} \underbrace{\partial\triangle ABC}$$

Рис. 1.3

Теорема 3. Рассматриваем треугольник ABC (рис. 1.3). Считаем, что наибольшая сторона — это AB. Возьмём θ так, что $e^{i\theta}$ \triangle ABC повёрнут "правильно".

$$f_{\theta}(z) := f(e^{-i\theta}z), \qquad f_{\theta} \in A(G_{\theta})$$

Получаем треугольник $A_1B_1C_1$ из предыдущей теоремы.

Дальше пользуемся свойством 8 криволинейных интегралов.

1.1.3. Теорема Коши для конечносвязной многоугольной области

Определение 1. *Многоугольником* будем называть замкнутую кривую $\Gamma:[a,b] \to \mathbb{C},$ устроенную следующим образом:

$$n \ge 2$$
, $a = c_0 < c_1 < \dots < c_n < c_{n+1} = b$

$$\forall t \in [c_k, c_{k+1}] \quad \Gamma(t) = \Gamma(c_k) \cdot \frac{c_{k+1} - t}{c_{k+1} - c_k} + \Gamma(c_{k+1}) \cdot \frac{t - c_k}{c_{k+1} - c_k}$$

Точки $\Gamma(c_k)$ будем называть вершинами многоугольника.

Определение 2. *Многоугольной областью* будем называть область, граница которой является многоугольником.

Определение 3. *Конечносвязной многоугольной областью* будем называть область, граница которой состоит из конечного объединения многоугольников.

Теорема 4. Имеется некая конечносвязная многоугольная область D, ограниченная многоугольниками $\Gamma_1, \ldots, \Gamma_k$.

$$\partial D = \bigcup_{\nu=1}^{k} \Gamma_{\nu}$$

Пусть есть область G такая, что $G \supset \overline{D}$ и функция $f \in \mathcal{A}(G)$. Рассмотрим

$$\overrightarrow{\partial} D = \bigcup_{\nu=1}^{k} \overrightarrow{\Gamma}_{\nu},$$

при этом, каждая кривая Γ_{ν} положительно ориентированна относительно области D.

$$\implies \int_{\partial D} f(z) \, \mathrm{d}z = 0$$

Доказательство. Применим теорему о триангуляции конечносвязной многоугольной области:

$$\exists \ \{ \ \Delta_k \ \}_{k=1}^N \ , \quad \Delta_k - \text{откр.} : \qquad \begin{cases} \Delta_k \cap \Delta_l = \emptyset, & k \neq l \\ \overline{\Delta}_k \cap \overline{\Delta}_l = \begin{cases} \emptyset \\ \text{общая вершина} \\ \text{общая сторона} \end{cases} \\ \bigcup_{k=1}^N \overline{\Delta}_k = \overline{D} \end{cases}$$

Рассмотрим

$$\sum_{k=1}^{N} \int_{\partial \Delta_k} f(z) \, \mathrm{d} z$$

Каждый из них предстаим в виде суммы интегралов по трём сторонам. В результате:

- 1. каждый внутренний отрезок мы пройдём дважды в разных направлениях;
- 2. все "внутренние" границы (многоугольники) проходятся полностью в отрицательном (относительно самого многоугольника) направлении;
- 3. остаётся только "внешняя" граница.

$$\sum = 0$$