Binary outcomes

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Key ideas

- Frequently we care about outcomes that have two values
 - Alive/dead
 - Win/loss
 - Success/Failure
 - etc
- Called binary outcomes or 0/1 outcomes
- · Linear regression (like we've seen) may not be the best

Example: Baltimore Ravens

http://espn.go.com/nfl/team/_/name/bal/baltimore-ravens

Ravens Data

ravenWinNum ravenWin ravenScore opponentScore						
1		1	W	24	9	
2		1	W	38	35	
3		1	W	28	13	
4		1	W	34	31	
5		1	W	44	13	
6		0	L	23	24	

Linear regression

$$RW_i = b_0 + b_1 RS_i + e_i$$

 RW_i - 1 if a Ravens win, 0 if not

 RS_i - Number of points Ravens scored

 b_0 - probability of a Ravens win if they score 0 points

 b_1 - increase in probability of a Ravens win for each additional point

 e_i - variation due to everything we didn't measure

Linear regression in R

```
lmRavens <- lm(ravensData$ravenWinNum ~ ravensData$ravenScore)
summary(lmRavens)</pre>
```

```
Call:
lm(formula = ravensData$ravenWinNum ~ ravensData$ravenScore)
Residuals:
  Min 10 Median 30 Max
-0.730 -0.508 0.182 0.322 0.572
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.28503 0.25664 1.11 0.281
ravensData$ravenScore 0.01590 0.00906 1.76 0.096 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.446 on 18 degrees of freedom
                                                                                   6/22
Multiple R-squared: 0.146, Adjusted R-squared: 0.0987
```

Linear regression

plot(ravensData\$ravenScore,lmRavens\$fitted,pch=19,col="blue",ylab="Prob Win",xlab="Raven Score")

Odds

Binary Outcome 0/1

 RW_i

Probability (0,1)

 $Pr(RW_i|RS_i, b_0, b_1)$

Odds $(0, \infty)$

 $\frac{Pr(RW_i|RS_i,b_0,b_1)}{1 - Pr(RW_i|RS_i,b_0,b_1)}$

Log odds $(-\infty, \infty)$

$$\log\left(\frac{\Pr(RW_i|RS_i, b_0, b_1)}{1 - \Pr(RW_i|RS_i, b_0, b_1)}\right)$$

Linear vs. logistic regression

Linear

$$RW_i = b_0 + b_1 RS_i + e_i$$

or

$$E[RW_i|RS_i, b_0, b_1] = b_0 + b_1RS_i$$

Logistic

$$Pr(RW_i|RS_i, b_0, b_1) = \frac{exp(b_0 + b_1RS_i)}{1 + exp(b_0 + b_1RS_i)}$$

or

$$\log\left(\frac{\Pr(RW_{i}|RS_{i}, b_{0}, b_{1})}{1 - \Pr(RW_{i}|RS_{i}, b_{0}, b_{1})}\right) = b_{0} + b_{1}RS_{i}$$

Interpreting Logistic Regression

$$\log\left(\frac{\Pr(RW_{i}|RS_{i}, b_{0}, b_{1})}{1 - \Pr(RW_{i}|RS_{i}, b_{0}, b_{1})}\right) = b_{0} + b_{1}RS_{i}$$

 b_0 - Log odds of a Ravens win if they score zero points

 b_1 - Log odds ratio of win probability for each point scored (compared to zero points)

 $\exp(b_1)$ - Odds ratio of win probability for each point scored (compared to zero points)

Explaining Odds

Probability of Death

Odds of Death

Odds Ratio = 1, Continuous Covariate

Different odds ratios

Ravens logistic regression

logRegRavens <- glm(ravensData\$ravenWinNum ~ ravensData\$ravenScore,family="binomial")
summary(logRegRavens)</pre>

```
Call:
qlm(formula = ravensData$ravenWinNum ~ ravensData$ravenScore,
   family = "binomial")
Deviance Residuals:
           10 Median
  Min
                           30
                                  Max
-1.758 \quad -1.100 \quad 0.530 \quad 0.806
                               1.495
Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
(Intercept)
                      -1.6800
                                  1.5541 -1.08
                                                  0.28
ravensData$ravenScore 0.1066
                               0.0667 1.60
                                                  0.11
(Dispersion parameter for binomial family taken to be 1)
                                                                                        16/22
   Null deviance: 24.435 on 19 degrees of freedom
```

Ravens fitted values

plot(ravensData\$ravenScore,logRegRavens\$fitted,pch=19,col="blue",xlab="Score",ylab="Prob Ravens Win

Odds ratios and confidence intervals

exp(logRegRavens\$coeff)

exp(confint(logRegRavens))

```
2.5 % 97.5 %
(Intercept) 0.005675 3.106
ravensData$ravenScore 0.996230 1.303
```

ANOVA for logistic regression

```
anova(logRegRavens, test="Chisq")
```

```
Analysis of Deviance Table

Model: binomial, link: logit

Response: ravensData$ravenWinNum

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL

19 24.4

ravensData$ravenScore 1 3.54 18 20.9 0.06.

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Simpson's paradox

	Treatment A	Treatment B
Small Stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large Stones	Group 3 73% (192/263)	Group 4 69% (55/80)
Both	78% (273/350)	83% (289/350)

http://en.wikipedia.org/wiki/Simpson's_paradox

Interpreting Odds Ratios

- Not probabilities
- Odds ratio of 1 = no difference in odds
- Log odds ratio of 0 = no difference in odds
- Odds ratio < 0.5 or > 2 commonly a "moderate effect"
- Relative risk $\frac{\Pr(RW_i|RS_i=10)}{\Pr(RW_i|RS_i=0)}$ often easier to interpret, harder to estimate
- For small probabilities RR ≈ OR but they are not the same!

Wikipedia on Odds Ratio

Further resources

- Wikipedia on Logistic Regression
- Logistic regression and glms in R
- · Brian Caffo's lecture notes on: Simpson's paradox, Case-control studies
- · Open Intro Chapter on Logistic Regression