TRANSMISSION IMPAIRMENT

CSE320 – Data Communications

Department of Computer Science and Engineering School of Data & Science

TRANSMISSION IMPAIRMENT

Signals travel through transmission media, which are not perfect. The imperfection causes signal impairment.

Attenuation

Example

•Suppose a signal travels through a transmission medium and its power is reduced to one-half. This means that P_2 is $(1/2)P_1$. In this case, the attenuation (loss of power) can be calculated as

$$10 \log_{10} \frac{P_2}{P_1} = 10 \log_{10} \frac{0.5P_1}{P_1} = 10 \log_{10} 0.5 = 10(-0.3) = -3 \text{ dB}$$

A loss of 3 dB (-3 dB) is equivalent to losing one-half the power.

Distortion

changes in the form or shape of the signal

At the receiver

Noise

Signal to Noise Ratio (SNR)

$$SNR = \frac{P_{signal}}{P_{noise}}$$
 Unwanted component

Example: The power of a signal is 10 mW and the power of the noise is 1 μ W; what are the values of SNR and SNR_{dB}?

Solution

The values of SNR and SNR_{dB} can be calculated as follows:

$$SNR = \frac{10,000 \text{ } \mu\text{W}}{1 \text{ } \text{mW}} = 10,000$$
$$SNR_{dB} = 10 \log_{10} 10,000 = 10 \log_{10} 10^4 = 40$$

1 W =
$$10^3$$
 mW
1 mW = 10^{-3} W
10 mW = 10^{-2} W
1 W = 10^6 μ W