Department of Physics and Astronomy University of Southern California

Graduate Screening Examination Part II

Saturday, April 9, 2011

Do not separate this page from the problem pages. Fill out and turn in at the end of the exam.

Stud		Fill in your L-	-#						
is sig	gned with Mark e	your L-nu	mber. Do	not write	e answers	to diffe	and make surverent problem arately your a	ns on	the same
;	Solve 3 p	roblems of	your choic	e. Do not	turn in	more tha	an 3 problem	s.	
,	The total	l time allow	ed 2 hrs 3	30 min.					
-	Please, in	ndicate prob	olems you	are turnin	ıg in:	II-3		1 T T	[- 4

II-1. (Classical Mechanics)

Two mass points m_1 and m_2 ($m_1 \neq m_2$) are connected by a massless string of length ℓ passing through a hole in a horizontal table. The string and mass points move without friction with m_1 on the table and m_2 free to move in a vertical line.

- (i) What initial velocity must m_1 be given so that m_2 will remain motionless a distance d below the surface of the table?
- (ii) If m_2 is slightly displaced in a vertical direction, small oscillations will ensue. Use Lagrange's equations to find the period of these oscillations.

II-2. (Electricity and Magnetism)

Consider a hollow cube of side a. The volume inside the cube is the region

$$0 < x < a$$
, $0 < y < a$, $0 < z < a$.

All of the sides of the cube are metallic and grounded to zero potential. A single point charge of magnitude q is placed in the center of the cube at the point x = y = z = a/2.

(i) Solve the differential equation

$$-\epsilon_0 \nabla^2 \Phi = q \, \delta(x - a/2) \delta(y - a/2) \delta(z - a/2) \,,$$

for the electrostatic potential $\Phi(x, y, z)$ everywhere inside the volume of the cube as a double Fourier sine series in the x and y variables. The boundary condition is that the potential vanishes on all of the surfaces of the cube.

- (ii) Using the above solution for the potential and Gauss's law, find an expression (also as a double Fourier sine series) for the charge density $\sigma(x, y)$ on the top surface of the cube at z = a/2.
- (iii) Integrate your result for $\sigma(x, y)$ to find an expression for the total charge q' on the top surface as a double sum. Do not sum the series, but based on symmetry state what the final result for q' must be.

Hint: A useful identity is: $\sinh(\alpha + \beta) = \sinh(\alpha)\cosh(\beta) + \cosh(\alpha)\sinh(\beta)$.

II-3. (Mathematical Methods)

Use the contour above with $R \to \infty$ to show that

$$\int_0^\infty \frac{\sinh(ax)}{\sinh(\pi x)} = \frac{1}{2} \tan \frac{a}{2}, \quad -\pi < a < \pi.$$

II-4. (Quantum Mechanics)

A spin-half particle with magnetic moment μ is placed in a magnetic field $\vec{B}(t)$ which rotates with frequency ω ,

$$\vec{B}(t) = B_z \hat{z} + B_x \hat{x} \cos(\omega t) + B_y \hat{y} \sin(\omega t),$$

where B_z , B_x , and B_y are real constants, with

$$B_z = \frac{\hbar\omega_0}{2\mu}, \qquad B_x = B_y = \frac{\hbar\omega_1}{2\mu}.$$

The Hamiltonian is represented by the 2×2 matrix

$$\mathbf{H}(t) = -\mu \, \vec{\sigma} \cdot \vec{B}(t) \,,$$

where $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (i) Write down the equation satisfied by the state ket $|\Psi(t)\rangle$ of the particle.
- (ii) Consider the (rotation) operator $\mathbf{R}(\theta \hat{n})$ represented by the matrix

$$\mathbf{R}(\theta \hat{n}) = e^{-i\theta \hat{n} \cdot (\frac{1}{2}\vec{\sigma})}.$$

What is the equation satisfied by $\mathbf{R}(\omega t \hat{z}) |\Psi(t)\rangle$, and what state does this ket represent?

(iii) At time t = 0 the spin is aligned along the positive z-axis. What is the probability for finding the spin aligned along the negative z-axis at t > 0?