This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1-3 (canceled)

1	
	Claim 4 (currently amended): For use with a node of a
2	communications network, a method for setting up a
3	connection in response to a request, the method comprising:
4	a) determining a next link of the connection based or
5	routing information;
6	b) determining whether the determined next link of
7	the connection has sufficient capacity to meet that
8	requested by the request;
9	c) if the determined next link of the connection is
10	determined to not have sufficient capacity to meet
11	that requested by the request, repeating (b) and (c)
12	at least once to try an alternative next link;
13	d) if the determined next link of the connection is
14	determined to have sufficient capacity to meet that
15	requested by the request, then (i) updating connection
16	admission control information to reflect the capacity
17	requested by the request and (ii) further requesting a
18	connection identifier;
19	e) accepting a requested connection identifier
20	received;
21	f) providing an interface number and allocation
22	control information to an interface associated with
23	the interface number; and
24	The method of claim 3 further comprising:
25	g) if an interface receives an interface number and
26	allocation control information associated with the
27	interface number, then

- 28 i) determining a bit-vector corresponding to the interface number,
- 30 ii) determining a first available part of the
- 31 link, and
- 32 iii) marking the bit vector such that bits
- 33 corresponding to the determined first available
- 34 part of the link are marked as unavailable.
 - 1 Claim 5 (original): The method of claim 4 wherein the link
 - 2 is a time division multiplexed link.
- 1 Claim 6 (original): The method of claim 4 wherein the link
- 2 is a wavelength division multiplexed link.
- 1 Claim 7 (currently amended): The method of claim 4 ±
- 2 further comprising:
- 3 <u>he</u>) accepting allocated capacity information;
- \underline{i} \underline{i} updating switch mapping information in response
- 5 to the received allocated capacity information; and
- 6 jg) updating state information based on the allocated
- 7 capacity information.
- 1 Claim 8 (currently amended): The method of claim $\frac{4}{3}$
- 2 further comprising:
- 3 <u>hg</u>) accepting allocated capacity information;
- 4 <u>ih</u>) updating switch mapping information in response
- 5 to the received allocated capacity information;
- \underline{j} updating state information based on the allocated
- 7 capacity information; and
- 8 \underline{k} generating a set up message including the
- 9 connection identifier and the interface.

Claim 9 (canceled)

- 1 Claim 10 (currently amended): The apparatus of claim 13 9
- 2 wherein the programmable device is a field programmable
- 3 gate array.

21

22

23

Claims 11 and 12 (canceled)

1	Claim 13 (currently amended): For use with a node of a
2	communications network, the node having interfaces
3	terminating communications links, an apparatus for setting
4	up a connection in response to a request, the apparatus
5	comprising:
6	a) at least one storage device storing
7	i) routing information;
8	ii) connection admission control information;
9	and
10	b) a programmable device adapted to
11	i) determine a next link of the connection based
12	on the routing information;
13	ii) determine whether the determined next link
14	of the connection has sufficient capacity to meet
15	that requested by the request of the call;
16	iii) repeat (ii) and (ii) at least once to try
17	an alternative next link if the next link of the
18	connection is determined to not have sufficient
19	capacity to meet that requested by the request;
20	iv) update the connection admission control

information to reflect the capacity requested by

the request and request a connection identifier

if the determined next link of the connection is

24	determined to have sufficient capacity to meet
25	that requested by the request
26	v) accept a requested connection identifier;
27	vi) provide an interface number and allocation
28	control information to an interface associated
29	with the interface number; and
30	The device of claim 12 wherein the programmable device is
31	further adapted to
32	<pre>— vii) if an interface receives an interface</pre>
33	number and allocation control information
34	associated with the interface number, then
35	i) determining a bit-vector corresponding
36	to the interface number,
37	ii) determining a first available part of
38	the link, and
39	iii) marking the bit vector such that bits
40	corresponding to the determined first
41	available part of the link are marked as
42	unavailable.
1	Claim 14 (original): The device of claim 13 wherein the
2	link is a time division multiplexed link.
1	Claim 15 (original): The device of claim 13 wherein the
2	link is a wavelength division multiplexed link.
1	Claim 16 (currently amended): The device of claim $13 9$
2	wherein the programmable device is further adapted to
3	 accepting allocated capacity information;
4	- updating switch mapping information in response to
5	the received allocated capacity information, and

Juniper-15

- 6 updating state information based on the allocated
- 7 capacity information.

Claims 17-20 (canceled)

- 1 Claim 21 (previously presented): The method of claim 22
- 2 wherein the communications resources is bandwidth.
- 1 Claim 22 (previously presented): For use in call signaling
- 2 protocol, a method for use by a node of a communications
- 3 network to determine a link of a connection, the method
- 4 comprising:
- a) determining a next hop of the connection based on
- 6 routing information;
- b) determining a link associated with the determined
- 8 next hop;
- 9 c) determining whether or not the determined link has
- 10 sufficient communications resources to satisfy the
- 11 call; and
- d) only if it is determined that the determined link
- has sufficient communication resources to satisfy the
- 14 call, then allocating communication resources of the
- link to the call,
- wherein the link is a multiplexed link having
- 17 channels, and
- wherein the act of allocating communication resources
- 19 of the link to the call includes determining available
- 20 channels of the link until the sum of capacity of the
- 21 determined available channels is enough to satisfy the
- 22 call.

Juniper-15

- 1. Claim 23 (original): The method of claim 22 wherein the
- 2 link is a time division multiplexed link and wherein the
- 3 channels are time-slots.
- 1 Claim 24 (original): The method of claim 22 wherein the
- 2 link is a wavelength division multiplexed link and wherein
- 3 the channels are wavelengths.

Claim 25 (canceled)

- 1 Claim 26 (previously presented): The apparatus of claim 27
- 2 wherein the communications resources is bandwidth.
- 1 Claim 27 (currently amended): For use in call signaling
- 2 protocol, apparatus a method for use by a node of a
- 3 communications network to determine a link of a connection,
- 4 the apparatus method comprising:
- 5 a) means for determining a next hop of the connection
- 6 based on routing information;
- 7 b) means for determining a link associated with the
- 8 determined next hop;
- 9 c) means for determining whether or not the
- 10 determined link has sufficient communications
- 11 resources to satisfy the call; and
- d) means for allocating communication resources of
- the link to the call only if it is determined that the
- 14 determined link has sufficient communication resources
- 15 to satisfy the call, then allocating communication
- 16 resources of the link to the call,
- 17 wherein the link is a multiplexed link having
- 18 channels, and

- wherein the means for allocating communication
- 20 resources of the link to the call includes means for
- 21 determining available channels of the link until the sum of
- 22 capacity of the determined available channels is enough to
- 23 satisfy the call.
- 1 Claim 28 (original): The apparatus of claim 27 wherein the
- 2 link is a time division multiplexed link and wherein the
- 3 channels are time-slots.
- 1 Claim 29 (original): The apparatus of claim 27 wherein the
- 2 link is a wavelength division multiplexed link and wherein
- 3 the channels are wavelengths.
- 1 Claim 30 (currently amended): The method of claim 4 1
- 2 wherein the act of updating connection admission control
- 3 information to reflect the capacity requested by the
- 4 request if the determined next link of the connection is
- 5 determined to have sufficient capacity to meet that
- 6 requested by the request, includes decreasing the capacity
- 7 of the link.
- 1 Claim 31 (currently amended): The apparatus of claim 13 9
- 2 wherein the programmable device is adapted to update the
- 3 connection admission control information to decrease the
- 4 capacity of the link to reflect the capacity requested by
- 5 the request if the determined next link of the connection
- 6 is determined to have sufficient capacity to meet that
- 7 requested by the request.