

Métodos Computacionales Tarea 1 - Derivadas, Integrales y sistemas de ecuaciones 16-06-2017

La solución a este taller debe subirse por SICUA antes de las 10:30PM del lunes 26 de junio del 2017. Los dos archivos código fuente deben subirse en un único archivo .zip con el nombre NombreApellido_hw1.zip, por ejemplo yo debería subir el zip VeronicaArias_hw1.zip. Este archivo debe descomprimirse en un directorio de nombre NombreApellido_hw1 que sólo debe contener los códigos en python cargas.py e integral.py (10 puntos). Recuerden que este trabajo es individual.

1. (45 points) **Potencial y campo eléctrico** En este ejercicio debe calcular numéricamente el campo eléctrico de una distribución de cargas a partir del potencial eléctrico. Para una carga puntual q, el potencial eléctrico V está dado por $V = k \cdot q/R$, donde $k = 8.987 * 10^9 \,\mathrm{Nm^2C^{-2}}$ es la constante de Coulomb. Suponga que tiene un cuadrupolo eléctrico conformado por cuatro cargas, dos de valor -e y dos de valor e, ubicadas en las cuatro esquinas de un cuadrado de lado 1 nm, donde $e = 1.602176 \times 10^{-19} \,\mathrm{C}$. Para resolver este problema centre dicho cuadrado en el origen del sistema de coordenadas. Recuerde que debe escoger unidades que faciliten la solución numérica del problema (por ejemplo e y nm en vez de C y m).

Escriba un script llamado cargas.py que:

- use clases y objetos para inicializar y solucionar el problema de las 4 cargas: cada carga debe ser un objeto de una clase definida por ustedes.
- ullet usando el principio de superposición, obtenga el potencial V debido a las cuatro cargas en un área delimitada por un cuadrado de lado 2 nm.
- ullet Obtenga numéricamente el campo eléctrico $ec{E}$ debido a las cargas. Use la relación:

$$\vec{E}(x,y) = -V = -\left(\frac{\partial V}{\partial x}\hat{i} + \frac{\partial V}{\partial y}\hat{j}\right) \tag{1}$$

y obtenga \vec{E} usando derivación numérica (use el algoritmo de central difference).

• Haga una gráfica del potencial y las lìneas de campo eléctrico que obtuvo numéricamente. El potencial es un campo escalar y conviene graficarlo usando una escala de color (puede usar por ejemplo plt.imshow). El campo eléctrico es un campo vectorial y para graficarlo conviene usar o vectores o lineas de campo (puede usar por ejemplo plt.streamplot) El script debe guardar esta gráfica (sin mostrarla) en cargas.pdf.

2. (25 points) Integral en 10 dimensiones

El objetivo de este ejercicio es calcular numéricamente una integral en 10 dimensiones. La función que deben integrar es:

$$f(x_1, x_2, ..., x_{10}) = (x_1 + x_2 + ... + x_{10})^3$$
(2)

Para integrales de alta dimensionalidad se usan métodos de integración de Monte Carlo. Escriba un script llamado integral.py que:

• Calcule la integral:

$$I = \int_0^2 \int_0^2 \dots \int_0^2 f(x_1, x_2, \dots, x_{10}) dx_1 dx_2 \dots dx_{10}$$
 (3)

de la función entre 0 y 2, repitiendo el método 20 veces y tome el promedio de las 20 repeticiones como el resultado de la integral.

- Repita el proceso anterior variando el número de puntos N utilizados para calcular la integral (tome N=2, 4, 8, ..., 8192). Haga una gráfica del valor calculado de la integral en función del número de puntos aleatorios N utilizados en el cálculo de la integral. El script debe guardar esta gráfica (sin mostrarla) en num_integral.pdf.
- Para estimar el error, calcule la integral analíticamente y compare esto con sus resultados numéricos para los distintos N. Haga una gráfica del error en función de $1/\sqrt{N}$. El script debe guardar esta gráfica (sin mostrarla) en err_integral.pdf.