

Database Security

Chapter 8
SQL Injection Exploitation and Defense

Objectives

- Define SQL injection exploitation
- Identify ways intruders gather information from a network infrastructure
- Describe common strategies for exploiting database infrastructures
- Identify common SQL statements and SQL constructs used to exploit weaknesses
- Apply exploitation for the purpose of identifying infrastructure weaknesses
- Identify defense strategies against SQL injection exploits

Exploitation and Information Gathering

- Act of using system vulnerabilities for the purpose of gaining access or control
- Does not always result in control
 - Depends on effectiveness of SQL query injection techniques and usefulness of generated output
- To defend a system from successful exploitation:
 - Security professional must be aware of means to derive information
 - And what information to protect

Information That Aids in Exploitation

- Locating a weakness
 - First step in intrusion process
- Example: attacker gains access to database
 - But does not have knowledge of its contents
 - Goal: construct theoretical picture of infrastructure
 - Gathering details aids goal of obtaining access
- Database schema
 - Overall logical structure of objects within the database
 - Includes stored procedures, table, views, and users

- Information about the database
 - Knowing database vendor and version is necessary
- With vendor/version info, attacker can infer:
 - SQL language syntax to use to construct injections
 - Available default procedures
 - Method of processing queries
 - Storage mechanisms utilized
 - Large portion of the schema

- Identifying the vendor
 - Easy for the knowledgeable intruder
 - Multiple clues needed to ascertain database vendor and type
- Clues that aid intruders in identifying vendor
 - The scripting language
 - The platform
 - The database response

- Scripting language
 - Database vendors often lean toward one or two languages
 - Example: PHP used to communicate with MySQL
 - .NET used by SQL Server
 - Oracle has a relationship with Java Script

Platform

- Microsoft SQL Server based on foundation of Microsoft Windows Server 2008
 - Indication of Windows points to SQL Server

- Platform (cont'd.)
 - Open source operating systems often used to support MySQL and Oracle
 - Platform provides only one small clue
 - Every configuration is built on unique needs
- Database response
 - Provides most reliable means to identify database
 - Differences in syntax and error format exist between databases
 - Error code can be a valuable piece of information
 - Vendor's Web site provides information on error codes

Vendor	Error code search Web site	Sample
Microsoft SQL Server	www.microsoft.com/technet/ support/ee/ee_advanced.aspx	Login failed for user 'DOMAINNAME\ACCOUNTNAME' (Error code: 18456)
MySQL	http://dev.mysql.com/doc/ refman/5.1/en/error-messages- server.html	error 2003: access denied for user @ localhost (100061)
Oracle	www.ora-code.com/	ERROR: ORA-01017 invalid username/password; login denied

Table 8-1 Error code identification

- Identifying the version
 - Can be equally important to identify as the vendor
 - Gives insight into system capabilities
 - Intruder can take advantage of known vulnerabilities for a given version
- Once database vendor is identified:
 - Locating version number can be an easy task
 - Standard queries used to return version number of that system

- Example of command to discover version in SQL Server: SELECT@@VERSION
 - Returns version of SQL server, processor, operating system, service pack, and build
- Possible results of injecting statement as a string parameter within a Web application
 - Results returned:
 - If application input or output has not been filtered
 - If expected parameter is a string

- Possible results of injecting statement as a string parameter within the Web application (cont'd.)
 - Error returned:
 - If statement is constructed incorrectly
 - If expected parameter is a number
 - Message may provide the necessary information
 - Nothing returned:
 - If application filters input or output
 - If application is configured to handle error messages in this way
 - Intruder will need to use trial and error approach

- Other types of standard statements
 - Statements to determine database name, location, and language being used
- Administrators should become familiar with these statements
 - Helps understand the amount of information that may be gathered during exploitation

Extracting the Real Data

- Techniques presented in previous section allow intruders to gather basic information needed
- Based on knowledge gained about the database:
 - Intruder can construct meaningful queries to gather data
- Exploitation attack equipped to move deeper into the system
 - Targets can be located and data extracted

Statement Exploits

- Endless number of SQL statements can be injected into the database
- Intruder has capability to access database as a typical user
 - Access is restricted by privileges of the user
- Next section explores common statements used in SQL injection attacks
 - Assumes attacker is working under restricted conditions

+

Using UNION

- UNION statements
 - Powerful tools of SQL injection attacks
 - Intruder attaches his or her own queries onto preexisting legitimate statements
- UNION operator combines two or more SQL statements
- Revisiting Yum grocer example

http://www.yum.com/index.asp?category=dairy union select Table_Name from Information_Schema.Tables- -

- Both results will be combined and returned
 - Provided syntax is correct
- *Table_Name* call is asking the database to provide names of all the tables for a specific database
- Double dashes at the end comment the rest of the statement
- When using UNION statements
 - Data type and number of columns must be the same as data type and number of columns returned by the original statement

- Method to determine how many columns are being used in original query
 - Keep adding null expressions in place of the SELECT statement in the URL until error messages disappear
 - http://www.yum.com/index.asp?category=dairy union select null from Information_Schema.Tables- -
 - http://www.yum.com/index.asp?category=dairy union select null null from Information_Schema.Tables- -
 - http://www.yum.com/index.asp?category=dairy union select null null null from Information_Schema.Tables- -

- Once number of columns being called in original request has been determined
 - Data type can also be determined using trial and error
- Replace each column one at a time with a specific data type http://www.yum.com/index.asp?category=dairy union select Table_Name, null, null from Information_Schema.Tables- -

+

Using UNION (cont'd.)

 Replace each column one at a time with a specific data type (cont'd.)

> http://www.yum.com/index.asp?category=dairy union select null, Table_Name, null from

Information_Schema.Tables- -

http://www.yum.com/index.asp?category=dairy union select null,
null, Table_Name from

Information_Schema.Tables- -

- For those statements that return an error, the incorrect data type exists
 - Can attempt different data type or leave it as null

+

- Automated tools can assist with this effort
 - Can be found by searching online
 - Tools can be used in cases where *null* cannot be used:
 - Or columns are too large
- Table_Name can be replaced with Column_Name and same strategy applied to identify and view all columns in the database

Using Conditions

- Conditional statements
 - If a specified condition is true, a specified action should be taken
 - If a specified condition is false, an alternative action should be taken
 - Advantageous in situations where UNION statements are not allowed
- Example of question intruder could ask the database using a conditional statement:
 - Am I the Administrator?

Using Conditions (cont'd.)

- Generating error messages
 - Could alert system administrator to intruder's actions
- Initiated delays
 - Time-based responses
 - Effective means to find an answer to a constructed conditional statement
 - Intruder creates a conditional statement that includes a delay in the response
 - Intruder can infer the answer based on presence or absence of a pause

-
_

Platform	Procedure	Comments
Microsoft SQL Server	WAIT FOR DELAY '0:0:5'	Delays a system for five seconds
MySQL	BENCHMARK(100000, encode('Hello')	Causes the system to encode the word hello one million times, resulting in a delay; the exact time of the delay can be determined by practicing the commands prior to using them
Oracle	Pg sleep(5)	Delays a system for five seconds

Table 8-2 Initiating server time delays

Using Conditions (cont'd.)

- Disadvantage of using time delays
 - Delay itself causes process to take longer
- Another method of using conditional statements
 - Designing statements to return different results for true statements as for false statement
 - Might not be effective depending on database defense strategies

Large-Scale Extraction

- Strategies presented so far can be tedious and time consuming
 - Effective at providing intruders with data necessary to extend their search
- As an intruder begins to understand a data scheme:
 - Strategies presented can be combined to extract data on a much larger scale

Large-Scale Extraction (cont'd.)

- Obtaining database names
 - First step is to list accessible databases
 - Then, one or several can be targeted
 - Tables and columns can be extracted
- Statements that can be used to extract database names
 - Vary depending on the platform
 - Listed in Table 8-3

Platform	Statement	Comments
Microsoft SQL Server	SELECT name FROM sysdatabases	Returns a list of databases; the <i>sysdatabases</i> is installed with SQL Server and contains entries for each major database, which includes the <i>master</i> , <i>model</i> , <i>msdb</i> , and <i>tempdb</i>
MySQL	SELECT schema_Name FROM information_schema.schemata	Returns a list of databases; <i>Information_schema</i> allows access to the metadata of the databases and <i>.schemata</i> is a table that holds information about the databases
Oracle	SELECT global_name FROM global_name	Within Oracle, a user can only maintain one connection to one database, so the only list that can be retrieved is that of the name of the current database

Table 8-3 Database discovery

Large-Scale Extraction (cont'd.)

- Obtaining table names
 - Approach: find the table that holds the number and names of all tables in that particular database
- Sysobjects
 - Name of the table holding table information
- Statements that can be used to obtain table names
 - Vary depending on the platform
 - Listed in Table 8-4

Platform	Statement	Comments
Microsoft SQL Server	SELECT name FROM systables	Returns a list of tables found in the sys.tables view of the target database
MySQL	SELECT Column_Name FROM information_schema .tables	Returns a list of databases; Information_schema allows access to the metadata of the databases and .tables is a table that holds information about the tables
Oracle	Select Table_Name from all_tables;	Returns all of the tables in the database

Table 8-4 Table identification

Large-Scale Extraction (cont'd.)

- Obtaining columns
 - Intruder can construct statements to extract the columns
 - And the data from within the columns
- Examples of statements that can be used to extract columns
 - Listed in Table 8-5

Platform	Statement	Comments
Microsoft SQL Server	SELECT name FROM syscolumns	Returns a list of tables found in the sys.columns view of the target database
MySQL	SELECT Column_Name FROM information_schema.columns	Returns a list of databases; Information_schema allows access to the metadata of the databases and .columns is a table that holds information about the columns
Oracle	Select column_name from all_tab_columns;	Returns all of the columns in the database

Table 8-5 Identifying columns

Advanced Techniques

- Filters often used in Web applications:
 - To identify and defer an injection
- Characteristics of filters
 - Search for and block certain known SQL injection characters or statements
- Methods used by intruders to evade and trick filters
 - Encoding
 - Changing characters from ASCII to a different format, such as hex

Advanced Techniques (cont'd.)

- Methods used by intruders to evade and trick filters (cont'd.)
 - Case sensitivity
 - Change case of keywords to avoid detection
 - Example: uNiON instead of UNION
 - Breaking it down
 - Break up the common word using URL code
 - Example: 'S' + 'ELE' + 'CT
 - Using alternative statements
 - Example: Case statements instead of *If...Then* statements

Exploitation of Privileges and Passwords

- Success of techniques previously described:
 - Depends on permissions of the user for which injection statements are being processed
 - Can be limiting to intruders
- Privileges must be identified
 - And increased if possible

Identifying Privileges

- Intruder must first know which privileges are grantable on the system
 - Must locate and view privilege tables
- SQL statements used to identify available grantable privileges on the database
 - Listed in Table 8-6

Diatform	Statement	Comments
Platform	Statement	Comments
Microsoft SQL Server	EXEC sp_helprotect NULL, 'myusername'	Returns a list of all permissions for the username provided in single quotes, for that particular database. It is necessary to change <i>myusername</i> to the name of the current user; therefore, the current username must be found first for this statement to be effective
MySQL	SELECT Grantee, privilege_type, is_grantable FROM information_schema .user_priviliges	Returns a list of grantable privileges on the current database; <i>Information_schema</i> allows access to the metadata of the databases and <i>.user_privileges</i> is a table that holds the grantable privileges
Oracle	Select * from user_sys_privs Select * from user_role_privs Select * from user_tab_privs Select * from user_col_privs	There are four different types of privileges within Oracle: System, Role, Table, and Column. Sys_privs holds all current user-grantable system privileges; Role_privs holds all current user-grantable roles; Tab_privs holds all current user-grantable table privileges; Col_privs holds all current user-grantable column privileges

Table 8-6 Identifying grantable privileges

Obtaining Passwords

- User passwords are stored using nonreversible hash within a table
 - Privileges are needed to access the table
- Password hash
 - Cryptology-encoded string version of a user or system password
 - More difficult to extract
- Some passwords are saved as text strings
 - Pose a great risk to data integrity
 - Can be easily extracted

Table 8-7 Extracting passwords

Obtaining Privileges

- Obtaining passwords
 - One method of obtaining higher privileges
- Tables that hold password information require high privileges themselves
 - Back-door strategies exist for viewing these tables
- Obtaining administrator privileges
 - Vendor and version specific
 - Strategies vary greatly

Obtaining Privileges (cont'd.)

- Brute force attacks
 - Iterative trial and error technique using every possible combination
 - Complexity depends on information user is trying to obtain
 - More successful if much background knowledge is obtained prior to the attack
- Automated tools
 - Can be found online
 - Created for gathering information to assist privilege escalation

Obtaining Privileges (cont'd.)

OPENROWSET

- Common procedure available in SQL Server
 - Can be used for escalating privileges
- Allows user to remotely connect to the database to retrieve information as a different user
- Credentials required to log in remotely must match those on the database
- No time-out for failed login attempts
 - Intruder can use brute force strategies to obtain necessary credentials

Obtaining Privileges (cont'd.)

■ E-Mail

- Most modern database systems use e-mail to alert administrators
- Database will automatically generate e-mail that includes user's password if lost or forgotten
- Attacker can create malicious code to redirect or copy information sent
- Provides a channel for escalating database privileges and obtaining sensitive information

Defending Against Exploitation

- Defending database systems
 - Learn infrastructure weaknesses
 - Use careful system monitoring and thoughtful action
 - Combine different strategies to create a strong defense

+

Using Bond Parameters

- Bond parameters
 - Placeholders for binding user input
- Once user input is "bonded," it is placed into a preconstructed SQL statement
 - Dynamic SQL is not necessary
 - User data is treated as user data alone
 - Cannot affect the SQL statement
- Very effective defense
 - Can only be used for variables which hold data values

Using Bond Parameters

```
Using MySQL, without bind parameters:
$mysqli->query("select first_name, last_name"
       ." from employees"
       ." where subsidiary_id = ".$subsidiary_id);
Using a bind parameter:
if ($stmt = $mysqli->prepare("select first_name, last_name"
              ." from employees"
              ." where subsidiary_id = ?"))
 $stmt->bind_param("i", $subsidiary_id);
 $stmt->execute();
} else {
 /* handle SQL error */}
```


Sanitizing Data

- Word blocking
 - Blocking certain keywords not allowed as input within a Web application
- Word filtering
 - Balance of blocking known keywords and identifying allowed keywords
 - Limit and mask data fields to only those words or characters that should be used as input

Restricting and Segregating Databases

- Assign privileges on the database with greatest granularity available
 - Do not overlook permissions of users on the Web server
- Injections are processed with Web application privileges
 - Web server should have most restricted privileges possible
- Web server and database server should be segregated

Security-Conscious Database Design

- During data infrastructure design:
 - Consider where things are stored and how this is viewed by an outsider
 - Consider how objects are named and what information is given away
- Change default names on sensitive data
- Do not use object views for critical database objects
- Create a honeypot environment
 - Fake environment that includes false data to mislead intruders

Diligent Monitoring

- Equally as important as all other security techniques
- Tracking errors can show indications of real-time attacks
- Tracking resource usage can uncover attacker using automated tools
 - Database queries per minute
 - Database requests per minute
- Use baselines to create thresholds for alerts

⁺ Summary

- Understanding the database schema an important goal of an SQL injection attack
 - More information increases likelihood intruder can obtain control
- Database errors that include vendor's name can provide useful information to intruders
- UNION statements are powerful tools for an attack
 - Intruder can append malicious code onto legitimate SQL statements
- Conditional statements can help intruders gain access

Summary (cont'd.)

- Several techniques exist for intruders to evade Web application filters
- Privileges can be escalated by obtaining passwords through brute force attacks, automated tools, e-mail redirection, and OPENROWSET
- Bond parameters are a defense against exploitation
- Segregating database servers ensures that they can be closely monitored and secured