Mars Robot DSL

Sudhakar Gottam

Pim Jager

November 30, 2015

Contents

1	Requirements of Mars Robot	2
2	Proposed layout of Mars Robot	;
3	Development process of Mars Robot DSL and corresponding Missions	:

1 Requirements of Mars Robot

The Mars Robot shall adhere to the following requirements, which are set up using the FURPS model, and are prioritized using the MOSCOW method.

Functional requirements		
Identifier	Priority	Description
F1	Must	The robot must not fall of the table
F2	Must	The robot must be able to detect colors
F3	Must	The robot must be able to detect rocks
F4	Must	The robot must be able to "measure" rocks
F5	Must	The robot must be able to push light-weight rocks
F6	Should	The robot should be able to avoid lakes
F7	Could	The robot could be able to park in a corner
F8	Must	The robot must be able to "measure" lakes exactly once
F9	Must	The robot must be able to avoid rocks
F10	Could	The generated programs could work on both robots
F11	Must	The DSL must allow control of the three actuators
F12	Must	The DSL must provide readouts of the three sensors
F13	Must	The DSL must provide a method of controlling actuators based on the values of sensors
F14	Must	The DSL must provide a method of prioritizing different actions
F15	Should	The DSL should abstract over commonly used functionality
F16	Could	The DSL could provide a method to specify and execute user specified subroutines
F17	Must	The DSL must generate a valid Java program which can be run on the mars rover.

Table 1: Functional requirements of Mars Rover

	Usability requirements			
Identifier	Priority	Description		
U1	Should	The mapping between a generated Java program and a specification in the DSL should be easy		
U2	Must	The DSL must be easy to read and understand		

Table 2: Usability requirements of Mars Rover

Reliability requirements		
Identifier	Priority	Description
R1	M	Sample description

Table 3: Reliability requirements of Mars Rover

Performance requirements		
Identifier	Priority	Description
P1	M	Sample description

Table 4: Performance requirements of Mars Rover

Supportability requirements		
Identifier	Priority	Description
S1	M	Sample description

Table 5: Supportability requirements of Mars Rover

2 Proposed layout of Mars Robot

The Mars rover uses two separate bricks to connect all peripherals. Because of this the two bricks need to communicate about the status of the different actuators and sensors.

This communication could introduce small delays, and as stated in Section 1 the most imported requirement for the rover is that is always keeps itself safe. Therefore we propose a layout where the most important sensors related to safety are connected to the same block as the two main motors. This ensures that the robot can always keep itself safe, even when the communication between the two bricks fails.

	Brick 1	Brick 2
Actuators	Left Motor	
	Right motor	
	Measurement Motor	
Sensors	Light left	Color Sensor
	Light Right	Gyro Sensor
	Ultrasonic Front	Touch Sensor Left
	Ultrasonic Rear	Touch Sensor Right

Table 6: Connection of the sensors and actuators to the Mars Rover

In this layout Brick 1 is the main control brick, it handles the most important safety related sensors and all actuators. Brick 2 connects the other sensors and can then communicate their readings to Brick 1.

The touch sensor are not considered essential safety sensors as the mars rover is very sturdy and contact with blocks can already be mostly avoided by the ultrasonic sensor on the front.

If it turns out that two ultrasonic sensors on the same brick are problematic then the front ultrasonic sensor of brick 1 will be interchanged with the gyro sensor on brick 2.

3 Development process of Mars Robot DSL and corresponding Missions

The Mars Robot DSL and corresponding missions will be developed in an agile way; the development is split into small sprints. Each sprint consists of designing, building, integrating and testing a particular function. At the end of each sprint a working product (DSL and code generation) is delivered.

These sprints ensure that the development process won't end in some form of integration hell of all the different sub-parts and shows possible errors in the design of the robot as early as possible. It also allows to check the product quick, and often, with the client, which ensures that the developed product matches the clients expectations.

The goal of the first sprint will be to write an proof-of-concept rover-program in Java to test all the different sensors and actuators and the communication between the two bricks. This has two main benefits, firstly it ensures that the design of the robot is correct and all the basic function of the robot work. Secondly, it provides an example for the implementation of the code generation. Consecutive sprints will consist of implementing the different sensors and actuators, and writing the mission possible with the sensors and actuators implemented so far.

The selection of the goals for the next sprint is guided by the requirements of Section 1.