PHẦN I: XÁC SUẤT

- 1. Biến cố ngẫu nhiên & xác suất của biến cố:
 - 1.1. Công thức cộng xác suất:
 - 1.1.1. p(A+B)=p(A)+p(B) (2 biến cố xung khắc)
 - 1.1.2. $p(A+B)=p(A)+p(B)-p(A.B) \rightarrow p(A+B+C)=p(A)+p(B)+p(C)-$ [p(AB)+p(AC)+p(BC)]+p(ABC)
 - 1.2. Công thức nhân xác suất:
 - 1.2.1. p(A.B)=p(A).p(B) (2 biến cố độc lập)
 - 1.2.2. $p(A.B)=p(A).p(B/A) \rightarrow p(A_1A_2...A_n) = p(A_1).p(A_2/A_1)...p(A_n/A_1A_2...A_{n-1})$
 - 1.3. Công thức Bernoulli: cho 2 biến cố A và \overline{A}

1.3.1.
$$p_n(x) = C_n^x p^x q^{n-x}$$
, p=p(A), q=1-p

1.4. Công thức xác suất đầy đủ:

$$p(F) = p(A_1).p(F/A_1) + p(A_2).p(F/A_2) + ... + p(A_n).p(F/A_n)$$

1.5. Công thức Bayes:
$$p(A_i / F) = \frac{p(A_i . F)}{p(F)} = \frac{p(A_i) . p(F / A_i)}{p(F)}$$

- 2. Biến ngẫu nhiên:
 - **2.1.** Bảng phân phối xác suất (biến ngẫu nhiên rời rac)
 - **2.2.** Hàm mật độ xác suất (f(x)) (biễn ngẫu nhiên liên tục)
 - **2.2.1.** $f(x) \ge 0$

 - **2.2.2.** $\int_{-\infty}^{+\infty} f(x)dx = 1$ **2.2.3.** $p(a \le x \le b) = \int_{a}^{b} f(x)dx$
 - **2.3.** Hàm phân phối xác suất (F(x)) (dùng cho cả 2 loại biến-thường là biến ngẫu nhiên liên tuc)
 - **2.3.1.** F(x) = p(F < x)
 - **2.3.2.** F'(x) = f(x)
 - **2.3.3.** $F(x) = \int_{-\infty}^{x} f(t)dt$
 - **2.4.**Kỳ vong
 - **2.4.1.** $E(x) = x_1 p_1 + x_2 p_2 + ... + x_n p_n$ (từ bảng phân phối xác suất)
 - **2.4.2.** $E(x) = \int_{-\infty}^{+\infty} x f(x) dx$
 - **2.5.**Phương sai:

2.5.1.
$$V(x) = E(x^2) - [E(x)]^2$$

2.5.2.
$$V(x) = \int_{0}^{+\infty} x^2 f(x) dx - [\int_{0}^{+\infty} x f(x) dx]^2$$

3. Một số phân phối xác suất thông dụng:

3.1.Phân phối chuẩn tổng quát: $X \sim N(\mu; \sigma^2)$

3.1.1.
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

3.1.2.
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

3.1.3.
$$ModX = MedX = \mu$$
; $E(x) = \mu$, $V(x) = \sigma^2$

3.1.4.
$$p(a \le x \le b) = \varphi(\frac{b-\mu}{\sigma}) - \varphi(\frac{a-\varphi}{\sigma})$$

3.1.5. Phân phối chuẩn tắc
$$\mu = 0, \sigma^2 = 1$$

3.1.5.1.
$$T \sim N(0,1)$$

3.1.5.2.
$$f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

3.1.5.3. Đổi biến
$$T = \frac{X - \mu}{\sigma}$$

3.1.5.4.
$$p(a \le x \le b) = \varphi(b) - \varphi(a)$$

3.2. Phân phối Poisson: $X \sim P(\lambda), \lambda > 0$

3.2.1.
$$p(\lambda = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

3.2.2.
$$E(x) = V(x) = \lambda$$

3.3.*Phân phối nhị thức:* $X \sim B(n, p)$

3.3.1.
$$p(X = k) = p_n(k) = C_n^k p^k q^{n-k}, p+q=1$$

3.3.2.
$$\sum_{k=0}^{n} p(X=k) = 1$$

3.3.3.
$$E(x) = np$$
, $ModX = x_0, np - q \le x_0 \le np + q$

3.3.4. Khi n=1:
$$X \sim B(1, p)$$
:phân phối không-một

3.3.4.1.
$$E(x) = p, E(x^2) = p, V(x) = pq$$

3.3.5. Xấp xỉ phân phối nhị thức:

3.3.5.1. Bằng phân phối Poisson: n > 50, p < 0.1; $X \sim B(n, p) \approx X \sim P(\lambda)$, $\lambda = np$.

$$p(x=k) = C_n^k p^k q^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

3.3.5.2. Bằng phân phối chuẩn:

$$np \ge 0.5, nq \ge 0.5, \mu = np, \sigma = \sqrt{npq} \cdot X \sim B(n, p) \approx X \sim N(np, npq)$$

 $p(x = k) = \frac{1}{\sigma} f(\frac{k - \mu}{\sigma}); p(k_1 < X < k_2) = \varphi(\frac{k_2 - \mu}{\sigma}) - \varphi(\frac{k_1 - \mu}{\sigma})$

3.4.*Phân phối siêu bội:* $X \sim H(N, N_A, n)$ [N:tổng số phần tử, N_A :Số phần tử có tính chất A trong N, n: số phần tử lấy ngẫu nhiên]. Goi X là số phần tử có tính chất A trong n.

$$p(X = k) = \frac{C_{N_A}^k . C_{N-N_A}^{n-k}}{C_{N}^n}$$

3.4.1.
$$E(X) = np, p = \frac{N_A}{N}; V(X) = npq. \frac{N-n}{N-1}, q = 1-p$$

3.4.2. Xấp xỉ phân phối siêu bội bằng phân phối nhị thức:

$$n \le 0.05N \Rightarrow X \sim B(n, p)$$
; $p(X = k) = C_n^k p^k q^{n-k}$, $p = \frac{N_A}{N}$

- **3.5.**Biến ngẫu nhiên 2 chiều: X và Y độc lập $\Leftrightarrow P_{ij} = p(x_i).q(y_j)$ với mọi i,j
- 3.6. Hiệp phương sai và hệ số tương quan:
 - **3.6.1.** Hiệp phương sai(cov): cov(X,Y) = E(XY) E(X)E(Y)
 - **3.6.2.** Hệ số tương quan $\rho_{X,Y}$: $\rho_{X,Y} = \frac{\text{cov}(X,Y)}{\sigma(X)\sigma(Y)}$

PHẦN 2: THỐNG KÊ

- 1. Tổng thể và mẫu
 - 1.1. Thực hành tính toán trên mẫu:
 - 1.1.1. Tính trung bình $(\overline{X_n})$: $\overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - 1.1.2. Tính tỷ lệ mẫu: (f_n) ; $f_n = \frac{m_A}{n} (m_A : số phần tử mang tính chất A; n: kích thước mẫu)$
 - 1.1.3. Tính phương sai mẫu: $S^2 = \frac{1}{n-1} \left[\sum_{i=1}^{k} n_i x_i^2 n(\overline{X})^2 \right]$
 - 1.2. Ước lượng tham số của tổng thể:
 - 1.2.1. Ước lượng điểm: $E(X_n) = \mu$, $E(f_n) = p$, $E(S^2) = \sigma^2$
 - 1.2.2. Ước lượng khoảng:
 - 1.2.2.1. Ước lượng khoảng cho trung bình: Với độ tin cậy 1- α cho trước, 1 mẫu kích thước n.

Men digge ii.	
$n \ge 30, \sigma^2$ biết	$n \ge 30, \sigma^2$ chưa biết
\overline{X} , σ	\overline{X} ,s
$\mu_1 = \overline{X} - \varepsilon, \mu_2 = \overline{X} + \varepsilon$	$\mu_1 = \overline{X} - \varepsilon, \mu_2 = \overline{X} + \varepsilon$

CuuDuongThanCong.com https://fb.com/tailieudientucnt

$\varepsilon = u_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$	$\varepsilon = u_{\alpha} \cdot \frac{s}{\sqrt{n}}$
$(1-\alpha \to 0.5 - \frac{\alpha}{2} \to u_{\frac{\alpha}{2}})$	$(1-\alpha \to 0.5 - \frac{\alpha}{2} \to u_{\frac{\alpha}{2}})$
$n < 30, \sigma^2$ biết	$n < 30, \sigma^2$ chưa biết
Như TH1	\overline{X} ,s
	$\mu_1 = \overline{X} - \varepsilon, \mu_2 = \overline{X} + \varepsilon$
	$\varepsilon = t_{(n-1,\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{n}}$

1.2.2.2. Ước lượng khoảng cho tỷ lệ: tổng thể có tỷ lệ p chưa biết, với độ tin cậy $1-\alpha$ cho trước, với 1 mẫu kích thước n, tỷ lệ mẫu f_n . Tìm 2 số p_1, p_2 thoả:

$$p(p_1 \le p \le p_2) = 1 - \alpha$$
, $p_{1,2} = f_n \mp \varepsilon$ Công thức: $\varepsilon = u_{\frac{\alpha}{2}} \sqrt{\frac{f(1-f)}{n}}$

1.2.2.3. Ước lượng khoảng cho phương sai: Giả sử tổng thể có σ^2 chưa biết. Dựa vào 1 mẫu kích thước n, với độ tin cậy 1- α cho trước.

TH1:
$$\mu$$
 chưa biết, biết S^2 . Khi đó ta có $\sigma^2 \in [\frac{(n-1)S^2}{\chi_1^2}, \frac{(n-1)S^2}{\chi_2^2}]$ trong đó

$$\chi_1^2 = \chi^2(n-1,\frac{\alpha}{2}), \chi_2^2 = \chi^2(n-1,1-\frac{\alpha}{2})$$

TH2:
$$\mu$$
 biết. Khi đó $\sigma^2 \in [\frac{\sum n_i(x_i - \mu)}{\chi_1^2}, \frac{\sum n_i(x_i - \mu)}{\chi_2^2}]$, trong đó

$$\chi_1^2 = \chi^2(n, \frac{\alpha}{2}), \chi_2^2 = \chi^2(n, 1 - \frac{\alpha}{2})$$

- 1.2.3. Kiểm định giả thuyết thống kê:
 - 1.2.3.1. Kiểm định giả thuyết thống kê cho μ

1.2.3.1.1.TH1: σ^2 biết

Giả thuyết thống kê	W_{α} : σ^2 biết (miền bác bỏ H_0)
H_0 : $\mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}, u > u_{\alpha} \}$
$H_1: \mu \neq \mu_0$	$W_{\alpha} - \{u - \frac{1}{\sigma} \sqrt{n}, u > u_{\frac{\alpha}{2}}\}$
$H_0: \mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}, u < u_{\alpha} \}$
$H_1: \mu < \mu_0$	$W_{\alpha} - \{u - \frac{1}{\sigma} \sqrt{n}, u - u_{\alpha}\}$
H_0 : $\mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}, u > u_{\alpha} \}$
$H_1: \mu > \mu_0$	$w_{\alpha} - \{u - \frac{1}{\sigma} \sqrt{n}, u > u_{\alpha}\}$

1.2.3.1.2.TH2: $n \ge 30$, σ^2 không biết

Giả thuyết thống kê	W_{α} (miền bác bỏ H_0)
H_0 : $\mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{s} \sqrt{n}, u > u_{\frac{\alpha}{2}} \}$
$H_1: \mu \neq \mu_0$	$W_{\alpha} - \{u - \frac{1}{S}, u > u_{\frac{\alpha}{2}}\}$
$H_0: \mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\varsigma} \sqrt{n}, u < u_{\alpha} \}$
$H_1: \mu < \mu_0$	$W_{\alpha} = \{u = \frac{1}{S}, yn, u \leftarrow u_{\alpha}\}$
$H_0: \mu = \mu_0$	$W_{\alpha} = \{ u = \frac{\overline{X} - \mu_0}{\varsigma} \sqrt{n}, u > u_{\alpha} \}$
$H_1: \mu > \mu_0$	$v_{\alpha} - \{u - \frac{1}{S}, u > u_{\alpha}\}$

1.2.3.1.3.TH3: n < 30, σ^2 không biết

Giả thuyết thống kê	W_{lpha} (miền bác bỏ H_0)
$egin{aligned} H_0: \mu = \mu_0 \ H_1: \mu eq \mu_0 \end{aligned}$	$W_{\alpha} = \left\{ t = \frac{\overline{X} - \mu_0}{s} \sqrt{n}, \left t \right > t_{(n-1,\frac{\alpha}{2})} \right\}$
$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$	$W_{\alpha} = \{ t = \frac{\overline{X} - \mu_0}{s} \sqrt{n}, t < t_{(n-1,\frac{\alpha}{2})} \}$
$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$	$W_{\alpha} = \left\{t = \frac{\overline{X} - \mu_0}{s} \sqrt{n}, \ t > t_{(n-1,\frac{\alpha}{2})}\right\}$

1.2.3.2. Kiểm đinh giả thuyết thống kê cho tỷ lệ:

Giả thuyết thống kê	W_{α} (miền bác bỏ H_0)
$H_{0:}p = p_0$ $H_{1:}p \neq p_0$	$W_{\alpha} = \{ u = \frac{f - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, u > u_{\frac{\alpha}{2}} \}$
$H_{0:}p = p_0$ $H_{1:}p < p_0$	$W_{\alpha} = \{ u = \frac{f - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, u < u_{\alpha} \}$
$H_{0:}p = p_0$ $H_{1:}p > p_0$	$W_{\alpha} = \{ u = \frac{f - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}, u > u_{\alpha} \}$

1.2.3.3. Kiểm định giả thuyết thống kê cho phương sai:

1.2.3.3.1.TH1: μ chưa biết

Giả thuyết thống kê	W_{lpha} (miền bác bỏ H_0)
1 0	$W_{\alpha} = \{ \chi^{2} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}}, \chi^{2} < \chi_{1}^{2} \text{ hoặc } \chi^{2} > \chi_{2}^{2}$ $\chi_{1}^{2} = \chi^{2}_{(n-1,1-\frac{\alpha}{2})}, \chi_{2}^{2} = \chi^{2}_{(n-1,\frac{\alpha}{2})}$

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	$W_{\alpha} = \{\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}, \chi^2 < \chi^2_{(n-1,1-\alpha)}$
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$W_{\alpha} = \{\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}, \chi^2 > \chi^2_{(n-1,\alpha)}$

1.2.3.3.2.TH2: μ biết.

Giả thuyết thống kê	W_{α} (miền bác bỏ H_0)
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$W_{\alpha} = \{\chi^2 = \frac{\sum n_i (x_i - \mu)^2}{\sigma_0^2}, \chi^2 < \chi_1^2 \text{ hoặc } \chi^2 > \chi_2^2$
	$\chi_1^2 = \chi_{(n,1-\frac{\alpha}{2})}^2, \chi_2^2 = \chi_{(n,\frac{\alpha}{2})}^2$
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 < \sigma_0^2$	$W_{\alpha} = \{ \chi^2 = \frac{\sum n_i (x_i - \mu)^2}{\sigma_0^2}, \chi^2 < \chi^2_{(n, 1 - \alpha)} $
$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 > \sigma_0^2$	$W_{\alpha} = \{\chi^2 = \frac{\sum n_i (x_i - \mu)^2}{\sigma_0^2}, \chi^2 > \chi^2_{(n,\alpha)}$

1.2.4. So sánh 2 tham số của tổng thể:

1.2.4.1. So sánh 2 số trung bình:

1.2.4.1.1.TH1: $m \ge 30, n \ge 30, \sigma_1^2, \sigma_2^2$ biết

GTTK	W_{α}
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}; u > u_{\frac{\alpha}{2}} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}}; u < -u_{\alpha} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}}; u > u_{\alpha} \right\}$

$1.2.4.1.2.\text{TH2:}\,m\!<\!\!30,n\!<\!\!30,\sigma_{\!\scriptscriptstyle 1}^2,\sigma_{\!\scriptscriptstyle 2}^2$ biết, X,Y có phân phối chuẩn

GTTK	W_{α}

CuuDuongThanCong.com https://fb.com/tailieudientucntt

$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}; u > u_{\frac{\alpha}{2}} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}; u < -u_{\alpha} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_{1}^{2}}{m} + \frac{\sigma_{2}^{2}}{n}}}; u > u_{\alpha} \right\}$

1.2.4.1.3.TH3: $m \ge 30, n \ge 30, \sigma_1^2, \sigma_2^2$ không biết

GTTK	W_{lpha}
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; u > u_{\frac{\alpha}{2}} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; u < -u_{\alpha} \right\}$
$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ u = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; u > u_{\alpha} \right\}$

1.2.4.1.4. TH4: m <30, n <30, X,Y có phân phối chuẩn, $\sigma_1^2=\sigma_2^2$ không biết

GTTK	W_{lpha}
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 \neq \mu_2$	$W_{\alpha} = \left\{ t = \frac{\overline{X} - \overline{Y}}{\sqrt{s^2 \left(\frac{1}{m} + \frac{1}{n}\right)}}; t > t_{\binom{m+n-2,\frac{\alpha}{2}}{2}} \right\} s^2 = \frac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2}$

$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ t = \frac{\overline{X} - \overline{Y}}{\sqrt{1 - (m+n-2)\alpha}}; t < -t_{(m+n-2)\alpha} \right\}$
	$W_{\alpha} = \left\{ t = \frac{\overline{X} - \overline{Y}}{\sqrt{s^2 \left(\frac{1}{2} + \frac{1}{2}\right)}}; t < -t_{(m+n-2,\alpha)} \right\}$
	$\left(\begin{array}{c} \sqrt{s} \left(m \cdot n\right) \end{array}\right)$
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 > \mu_2$	$\begin{bmatrix} W \\ - \end{bmatrix}_{t-} = \begin{bmatrix} \overline{X} - \overline{Y} \end{bmatrix}$
	$W_{\alpha} = \left\{ t = \frac{X - Y}{\sqrt{s^2 \left(\frac{1}{2} + \frac{1}{2}\right)}}; t > t_{(m+n-2,\alpha)} \right\}$
	$\left(\sqrt{s} \left(\frac{-}{m} + \frac{-}{n} \right) \right)$

1.2.4.1.5.TH5: m < 30, n < 30, X,Y có phân phối chuẩn, $\sigma_1^2 \neq \sigma_2^2$ chưa biết

	<u> </u>
GTTK	W_{lpha}
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 \neq \mu_2$	$ W = \int a - \frac{\overline{X} - \overline{Y}}{ x } \cdot a > t \cdot t - t$ $t - t = v - \frac{s_1^2}{ x } \cdot v - \frac{s_2^2}{ x } \cdot t - \frac{t_1 v_1 + t_2 v_2}{ x }$
	$W_{\alpha} = \left\{ g = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; g > t; t_1 = t_{\left(m-1, \frac{\alpha}{2}\right)}, t_2 = t_{\left(n-1, \frac{\alpha}{2}\right)}; v_1 = \frac{s_1^2}{m}, v_2 = \frac{s_2^2}{n}; t = \frac{t_1 v_1 + t_2 v_2}{v_1 + v_2} \right\}$
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 < \mu_2$	$ W \equiv \left\{ \sigma \equiv \frac{\overline{X} - \overline{Y}}{X - \overline{Y}} : \sigma < -t : t = t \right\} $
	$W_{\alpha} = \left\{ g = \frac{\overline{X} - Y}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; g < -t; t_1 = t_{(m-1,\alpha)}, t_2 = t_{(n-1,\alpha)} \right\}$
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 > \mu_2$	$W = \left\{ g = \frac{\overline{X} - \overline{Y}}{\overline{X} - \overline{Y}} : g > t \right\}$
	$W_{\alpha} = \left\{ g = \frac{X - Y}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}; g > t \right\}$

1.2.4.2. So sánh 2 tỷ lệ:

1.2.1.2. So saim 2 ty iç.	
GTTK	W_{lpha}
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 \neq \mu_2$	$\begin{bmatrix} W \end{bmatrix}_{u=1} = \begin{bmatrix} f_1 - f_2 \\ \vdots \\ g_{1} \end{bmatrix}_{u=1} = \begin{bmatrix} f_1 - f_2 \\ \vdots \\ g_{2} \end{bmatrix}$
	$W_{\alpha} = \left\{ u = \frac{f_1 - f_2}{\sqrt{f(1 - f)\left(\frac{1}{m} + \frac{1}{n}\right)}}; u > u_{\frac{\alpha}{2}}; f_1 = \frac{k_1}{m}, f_2 = \frac{k_2}{n} \right\}$
$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 < \mu_2$	$W_{\alpha} = \left\{ u = \frac{f_1 - f_2}{\sqrt{f(1 - f)\left(\frac{1}{m} + \frac{1}{n}\right)}}; u < -u_{\alpha} \right\}$

$H_0: \mu_1 = \mu_2$	
$H_1: \mu_1 > \mu_2$	$W_{\alpha} = \left\{ u = \frac{f_1 - f_2}{\sqrt{f(1 - f)\left(\frac{1}{m} + \frac{1}{n}\right)}}; u > u_{\alpha} \right\}$

1.2.4.3. So sánh 2 phương sai:

GTTK	W_{lpha}
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$	$W_{\alpha} = \left\{ g = \frac{s_1^2}{s_2^2}, g < \overline{f} hayg > f; f = f_{\frac{\alpha}{2}}(m-1, n-1), \overline{f} = \frac{1}{f_{\frac{\alpha}{2}}(n-1, m-1)} \right\}$
$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$	$W_{\alpha} = \left\{ g = \frac{s_1^2}{s_2^2}, g > f_{\alpha}(m-1, n-1) \right\}$