Algorithm 1 Driving cycle construction	
1:	Input: Ω $ ightharpoonup$ Real Driving Cycle Data
2:	Output: $B $ $ ightharpoonup$ Constructed Driving Cycle
3:	Load Real driving cycle data $\Omega = \{\omega_i\}$
4:	$\textbf{for} \ \text{each driving cycle} \ \omega_i \ \textbf{do} \qquad \qquad \triangleright \ \text{Dynamic segmentation and Segment}$
	grouping
5:	Partition into K segments and represent it as $\omega_i = s_{i,1}, s_{i,2},, s_{i,K}$
6:	Define segment group G_j as the set of j^{th} segments from all driving
	cycles, $G_j = s_{1,j}, s_{2,j},, s_{N,j}$
7:	end for
8:	for each segment group G_j do
9:	Form a distance matrix using (4), (5), and (6)
10:	Find the index of the reference segment using (7) and (8)
11:	To create state space X_j , build S-A grid map and assign states
12:	procedure Markov Chain (G_j, X_j) $ ightharpoonup$ Markov chain modeling
13:	Compute transition probabilities for G_j
14:	Set-up Markov chain transition probability matrix ${\bf P}$ using (3)
15:	$\mathbf{for}\ m \leftarrow 1, M\ \mathbf{do} \qquad \qquad \triangleright \ \mathrm{Monte\ Carlo\ simulation}$
16:	$C \leftarrow \{c_m\}$ \triangleright Generate M new segments according to \mathbf{P}
17:	end for
18:	end procedure
19:	Compute the DTW distance between c_m and R_j using (9)
20:	Select the best driving segment b_j using (10)
21:	end for
22:	Construct best representative driving cycle by $B = concat(b_1, b_2, \dots, b_K)$