

Feature Engineering

Mundher Al-Shabi

Big Data Borat @BigDataBorat

In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.

"Coming up with features is difficult, time-consuming, requires expert knowledge. 'Applied machine learning' is basically feature engineering."

Andrew Ng

"More data beats clever algorithms, but better data beats more data." Peter Norvig

The Dream...

The Reality

Raw data

First at all ... a closer look at your data

- What does the data model look like?
- What is the features distribution?
- What are the features with missing or inconsistent values?
- What are the most predictive features?
- Conduct a Exploratory Data Analysis (EDA)

ML-Ready Dataset

- Tabular data (rows and columns)
 - Usually denormalized in a single file/dataset
 - Each row contains information about one instance
 - Each column is a feature that describes a property of the instance

Data Cleansing

 Homogenize missing values and different types of in the same feature, fix input errors, types, etc.

Name	Date	Duration (s)	Genre	Plays
Highway star	1984-05-24	*	Rock	139
Blues alive	1990/03/01	281	Blues	239
Lonely planet	2002-11-19	5:32s	Techno	42
Dance, dance	02/23/1983	312	Disco	N/A
The wall	1943-01-20	218	Reagge	83
Offside down	1965-02-19	4 minutes	Techno	895
The alchemist	2001-11-21	418	Bluesss	178
Bring me down	18-10-98	328	Classic	21
The scarecrow	1994-10-12	269	Rock	734

Name	Date	Duration (s)	Genre	Plays
Highway star	1984-05-24		Rock	139
Blues alive	1990-03-01	281	Blues	239
Lonely planet	2002-11-19	332	Techno	42
Dance, dance	1983-02-23	312	Disco	
The wall	1943-01-20	218	Reagge	83
Offside down	1965-02-19	240	Techno	895
The alchemist	2001-11-21	418	Blues	178
Bring me dowr	1998-10-18	328	Classic	21
The scarecrow	1994-10-12	269	Rock	734

Numerical features

- Usually easy to ingest by mathematical models.
- Can be prices, measurements, counts, ...
- Easier to impute missing data
- Distribution and scale matters to many models

Imputation for missing values

- Datasets contain missing values, often encoded as blanks, NaNs or other placeholders
- Ignoring rows and/or columns with missing values is possible, but at the price of loosing data which might be valuable
- Better strategy is to infer them from the known part of data
- Strategies
 - Mean: Basic approach
 - Median: More robust to outliers
 - Mode: Most frequent value
 - Using a model: Can expose algorithmic bias

Imputation for missing values

Missing values imputation with scikit-learn

Binarization

Transform discrete or continuous numeric features in binary features Example:
 Number of user views of the same document

docui	ment_id	uuid	views_count
	25792	6d82e412aa0f0d	8
	25792	571016386ffee7	6
	25792	6a91157d820e37	6
	25792	ad45fc764587b0	6
	25792	a743b03f2b8ddc	3

document_id	uuid	viewed
25792	6d82e412aa0f0d	1
25792	571016386ffee7	1
25792	6a91157d820e37	1
25792	ad45fc764587b0	1
25792	8d87becfb35857	1
25792	abcdefg1234567	0

Binarization with scikit-learn

Rounding

- Form of lossy compression: retain most significant features of the data.
- Sometimes too much precision is just noise
- Rounded variables can be treated as categorical variables
- Example:
 - Some models like Association Rules work only with categorical features. It is possible to convert a percentage into categorical feature this way

document_id	cument_id topic_id confidence		ROUND(confidence*10)
25792	1205	0.9594	10
15454	1545	0.1254	1
78764	958	0.1854	2
21548	1510	0.5454	5
48877	25	0.3655	4

Log transformation

Compresses the range of large numbers and expand the range of small numbers.
 Eg. The larger x is, the slower log(x) increments

user_id	views_count	log(1+views_count)
а	1000	6.91
b	500	6.22
С	300	5.71
d	200	5.30
е	150	5.02
f	100	4.62
g	70	4.26
h	50	3.93
i	30	3.43
j	20	3.04
k	10	2.40
l	5	1.79
m	1	0.69

Feature generation

Combined = (horizontal ** 2 + vectical ** 2) ** 0.5

Feature generation

price	fractional_part
0.99	0.99
2.49	0.49
1.0	0.0
9.99	0.99

Scaling

- Models that are smooth functions of input features are sensitive to the scale of the input (eg. Linear Regression)
- Scale numerical variables into a certain range, dividing values by a normalization constant (no changes in single-feature distribution)
- Popular techniques
 - MinMax Scaling
 - Standard (Z) Scaling

Min-max scaling

 Squeezes (or stretches) all values within the range of [0, 1] to add robustness to very small standard deviations and preserving zeros for sparse data.

Min-max scaling with scikit-learn

Standard (Z) Scaling

 After Standardization, a feature has mean of 0 and variance of 1 (assumption of many learning algorithms)

Standardization with scikit-learn

Interaction Features

- Simple linear models use a linear combination of the individual input features, x1, x2, ... xn to predict the outcome y.
- y = w1x1 + w2x2 + ... + wnxn
- An easy way to increase the complexity of the linear model is to create feature combinations (nonlinear features).

Interaction Features

```
(X_1, X_2) \Longrightarrow (1, X_1, X_2, X_1^2, X_1X_2, X_2^2)
```

Polynomial features with scikit-learn

Categorical Features

- Nearly always need some treatment to be suitable for models
- Examples:
- Platform: ["desktop", "tablet", "mobile"] Document_ID or User_ID: [121545, 64845, 121545]
- High cardinality can create very sparse data
- Difficult to impute missing

Label encoding

- Give every categorical variable a unique numerical ID
- Useful for non-linear tree-based algorithms
- Does not increase dimensionality
- Randomize the cat_var -> num_id

```
>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1]...)
```

One-Hot Encoding

- Transform a categorical feature with m possible values into m binary features.
- If the variable cannot be multiple categories at once, then only one bit in the group can be on.

platform=desktop	platform=mobile	platform=tablet
1	0	0
0	1	0
0	0	1

One-Hot Encoding

```
>>> import pandas as pd
>>> s = pd.Series(list('abca'))
>>> pd.get_dummies(s)
  a b c
0 1 0 0
1 0 1 0
  0 0 1
3 1 0 0
```

Date and time

- Periodicity
 - Day number in week, month, season, year, second, minute, hour.
- Time since
 - Row-independent moment
 For example: since 00:00:00 UTC, 1 January 1970;
 - Row-dependent important moment
 Number of days left until next holidays/ time passed after last holiday.
- Difference between dates
 - datetime_feature_1 datetime_feature_2

Periodicity. «Time since»

Date	weekday	daynumber_since_ year_2014	is_holiday	days_till_h olidays
01.01.2014	5	0	True	0
02.01.2014	6	1	False	3
03.01.2014	0	2	False	2
04.01.2014	1	3	False	1
05.01.2014	2	4	True	0
06.01.2014	3	5	False	9

Difference between dates

user_id	registration_date	last_purchase_date	last_call_date	date_diff	churn
14	10.02.2016	21.04.2016	26.04.2016	5	0
15	10.02.2016	03.06.2016	01.06.2016	-2	1
16	11.02.2016	11.01.2017	11.01.2017	1	1
20	12.02.2016	06.11.2016	08.02.2017	94	0

Coordinates

"...some machine learning projects succeed and some fail.

Where is the difference?

Easily the most important factor is the features used."

Pedro Domingos