

ARTICLE OPEN

Machine learning-based prediction of COVID-19 diagnosis based on symptoms

Yazeed Zoabi 61, Shira Deri-Rozov1 and Noam Shomron 61 52

Supervised and unsupervised learning

ADS2

Gedi Lukšys

April 15, 2024

Learning objectives

Today's plan:

- main elements & techniques of supervised learning
- a simple example of supervised learning and gradient ascent approach
- an overview of different supervised and unsupervised learning techniques
- relevant considerations and applications of supervised and unsupervised learning

Supervised learning: what is it for?

Learn to predict relations between 2 sets of data: "inputs" -> "outputs"

Apt. size: 50, 75, 150, 67, 34, 80m²

No of rooms: 2, 4, 5, 3, 2, 3

Rent: \$700, 950, 1400, 1000, 550, 1200

0, 1, 2, ..., 9

Spam / no Spam

"Abu Malik: CONFIDENTIAL TRUST REPLY URGENTLY"

"bahn.de: Vielen Dank für Ihren Fahrkartenkauf! (Auftrag ABCXYZ)" Input typically multidimensional (sometimes very much so...)

Output often unidimensional, **disc** (classes) or **continuous**

Formally speaking: classification vs. regression

- Supervised learning deals with learning a function f(X, W) = Y, based on a number of available data points $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)}),$ also called examples
 - where $x^{(i)}$ is usually a vector $(x_1^{(i)}, x_2^{(i)}, \dots, x_M^{(i)})$
 - y⁽ⁱ⁾ is either a number (=> regression)
 - a class {0, 1} or a vector of classes (=> classification)
 - W model parameters (also a vector), M dimensionality

• Most common example: linear regression / classifier

Why is it called "supervised"?

- Suppose our model simulates a function y = f(x)
- We can apply it to inputs (x-s) from existing examples to calculate outputs, i.e. $f(x^{(1)})$, $f(x^{(2)})$, ...
- In the beginning the model has not learned to predict the function correctly yet, but as we have the corresponding example ("teacher") outputs, we can measure the mean squared error (MSE):

$$MSE = ((y^{(1)} - f(x^{(1)}))^2 + ... + (y^{(n)} - f(x^{(n)}))^2)/n$$

Sometimes root mean square error (RMSE) is used instead.

This is called the **error** or **objective** function. The goal is to minimize it.

A simple example - linear model

• Model: y = ax + b

Objective function:
$$MSE = \frac{1}{N} \prod_{i=1}^{N} (y^{(i)} - ax^{(i)} - b)^2$$

How can we make our model minimize the error?

We have 2 parameters: a & b

We have to find their values that minimize the error!

How?

- 1. Guess! (need to start somewhere)
- 2. Adjust guesses, e.g. try neighboring values, go in the direction that decreases the error most => hill climbing

http://www.statslab.cam.ac.uk/~rrw1/stats/reg ress1.gif

Parameter initialization
Typically random

A standard method: gradient descent

- Mean squared error (MSE) is a function of parameters (a and b)
- Derivatives δ MSE / δ a and δ MSE / δ b should be 0 at the minimum of MSE.
- How to get there fastest? (analytical solution aside ©)
- Go along the steepest direction:

$$\Delta a = -\alpha \delta MSE / \delta a$$

$$\Delta b = -\alpha \delta MSE / \delta b$$

• Update of parameters is called a learning rule, and α is the learning rate.

Let's try!

$$MSE = \frac{1}{N} \prod_{i=1}^{N} (y^{(i)} - ax^{(i)} - b)^{2}$$

• Learning rules:

Too slow

$$\Delta a = -\alpha / N \sum_{i=1}^{N} 2(y^{(i)} - ax^{(i)} - b)(-x^{(i)})$$

$$\Delta b = -\alpha / N \sum_{i=1}^{N} 2(y^{(i)} - ax^{(i)} - b)(-1)$$

- Examples: (0,1), (1,3), (4,6), (2,4), (3,4)
- Try different learning rates

```
α = 0.03

#1: a=0.56, b=0.22

#2: a=0.9, b=0.35

#3: a=1.1, b=0.44

#4: a=1.21, b=0.5

#5: a=1.28, b=0.54

#10: a=1.36, b=0.64

#20: a=1.32, b=0.77

#50: a=1.23, b=1.03

#100: a=1.15, b=1.25

#200: a=1.11, b=1.38
```

```
α = 0.08

#1: a=1.5, b=0.58

#2: a=1.38, b=0.58

#3: a=1.37, b=0.62

#4: a=1.36, b=0.66

#5: a=1.35, b=0.69

#10: a=1.29, b=0.85

#20: a=1.22, b=1.06

#50: a=1.13, b=1.32

#100: a=1.1, b=1.39

#200: a=1.1, b=1.4
```

```
α = 0.13

#1: a=2.44, b=0.94

#2: a=0.59, b=0.36

#3: a=1.93, b=0.89

#4: a=0.9, b=0.6

#5: a=1.63, b=0.91

#10: a=1.17, b=0.97

#20: a=1.16, b=1.22

#50: a=1.11, b=1.38

#100: a=1.1, b=1.4

#200: a=1.1, b=1.4
```

```
α = 0.16
#1: a=3.01, b=1.15
#2: a=-0.5, b=0.01
#3: a=3.46, b=1.48
#4: a=-1.12, b=-0.06
#5: a=4.07, b=1.83
#10: a=-4.25, b=-0.85
#20: a=-19.92, b=-6.11
#50: a=-1206.95, b=-422.37
#100: a=-1030083.04, b=-361332.61
#200: a=-748941284697.65, b=-262714417242.33
```

Artificial neural networks (multi-layer perceptrons)

- Inspired by early ideas on neural networks in the brain, particularly the hierarchically organized visual system ("the perceptron")
- Trained using backpropagation
- Were shown to have universal approximation property
- Still very popular, although recently eclipsed by deep learning (which is a special case)

Support vector machines (SVMs) and kernels

- Finding boundaries with largest margins between classes
- Kernels: projecting to higher dimensions

http://www.imtech.res.in/raghava/rbpred/svm.jpg

Shooting fireworks into the sky or gene -> protein parallels ©

Unsupervised learning: a clustering example

Can be solved with K-means

Is it really simple?

How many clusters?

How to treat borderline points?

More on unsupervised learning: Gaussian mixtures

- Clusters vary in sizes & shapes, modeled by Gaussians
- Calculated using "expectation-maximization" algorithm

https://en.wikipedia.org/wiki/Cluster_analysis

Gaussian mixtures for supervised learning

 Classes have complex distributions and may consist of multiple Gaussian clusters

A.W.Moore's bioassay example

Clustering vs. dimensionality reduction

- Clustering reduces the number of data points (into much fewer clusters)
 - e.g. K-means, Gaussian mixtures
- Dimensionality reduction reduces the number of dimensions per data point
 - e.g. Principal/Independent Component Analyses
- Use similar principles but in different direction / for different purpose (leading to either fewer data or fewer dimensions)
- In supervised learning dimensionality reduction often used before prediction - WHY?

Principal component analysis - rotate data to maximize variance

PCA can help finding good features

 Principal components are orthogonal / decorrelated, but not always easily interpretable

Where they are:

 Principal component analysis of genetic variation in Europe

Novembre et al., Nature 2008

Identification of brain's networks using fMRI + Independent Component Analysis during the resting state

Smith et al., PNAS 2009

Independent
Component analysis extract components
that are not just
uncorrelated but also
independent!

Identification of brain's networks using fMRI + ICA during the resting state & task performance

Extracted components in the resting state and during a variety of task performances are similar!

Smith et al., PNAS 2009

Potential problem in supervised learning: overfitting

- Imagine a model: $p(x) = w_0 + w_1 x + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$.
- No. of parameters = M+1
- Goal: minimize error

$$MSE_{train} = \frac{1}{N} \prod_{i=1}^{N} \left(p(x^{(i)}) - y^{(i)} \right)^{2}$$

Herbert Jaeger, 'Machine Learning', Bremen, 2003

M=1, MSE=0.4852 M=3, MSE=0.0703 M=10, MSE = 0!

Bias-variance dilemma

- Why does M=3 look better than M=10?
 - It better generalizes the function! But...
 - We typically don't know what the function is...
- Use the testing error!

$$MSE_{test} = \frac{1}{K} \prod_{j=1}^{K} \left(p(x^{(j)}) - y^{(j)} \right)^{2}$$

So M=3 is really the best ©

- Bias fails to account for relevant data structure
- · Variance varies too much depending on training data

H.Jaeger, 'Machine Learning', Bremen, 2003

Dealing with bias-variance dilemma

Finding a right balance (i.e. avoiding overfitting and underfitting) depends on two critical quantities:

- Model size (the number of parameters M)
- The number of samples N

If M >= N, there will certainly be a substantial overfitting (system of linear equations analogy)

 Normally it's recommended that M would be much smaller than N e.g. 50 or 100 parameters for 1000 samples

How to evaluate over-/underfitting?

Use cross-validation

- Divide your data into training and validation sets
- Use the training set for training the model, and the validation set for choosing the number of parameters
- If have too little data, can use "leave-one-out" cross validation

Dimensionality reduction: features

- So our model size is limited by the number of available samples. What's the problem with this?
- Model size is also constrained (unfortunately from the opposite side) by the dimensionality of data - usually for each input dimension there is at least 1 parameter

How to resolve this?

- Use not the raw data, but features!
- Sometimes this can be done using taskdependent heuristics

http://w3.impa.br/~lhf/sib2003/p023/img2.gif

