Practice Sheet - 2 (Chapter 2)

à|°à\$à|°à|¤à|¿5 à|®à|¿à|¨à|¿à|Ÿà\$‡ à|...à|Ÿà\$;‹à|®à\$‡à|Ÿà|¿à|• à|†à|°à|¡à\$‡à|Ÿ à|¹à\$Yà\$‡ à|¯à|%à\$Ÿ

Q: Are all of these enough to get full marks in the exam?

A: NO. This is a practice sheet. Meaning, you can practice all you want using the questions from this sheet. However, doing well in exams depends upon your ability to understand a question, formulate an answer, and express it correctly. You see, these are humane skills which cannot be guaranteed by completing a practice sheet only. But yeah, Best of luck anyway.

Chapter 2 (Instructions: Language of the Computer)

Question - 1:

Construct the equivalent RISC-V code of the following C code. Once you have the RISC-V code, identify type of each instruction and encode them accordingly.

$$A[7] = A[2] + A[B[8]] + 10;$$

 $B[i] = A[3] - 8;$

Base addresses of array A and B are in register $X_{20}\hat{A}$ and $X_{21}\hat{A}$ and i is in register X_{22}

Question - 2:Â

Construct the equivalent RISC-V code of the following C code.

```
for (i = 8; i > 0; i--) { \hat{A} if (A[i] == i) { \hat{A} \hat{A} \hat{A} A[2] = A[B[3]]; \hat{A} }
```

Base addresses of array A and B are in register $\hat{A} X_{20} \hat{A}$ and $X_{21} \hat{A}$. Also consider i is in register $\hat{A} X_{22}$.

Question - 3:

Construct the equivalent RISC-V code of the following C code.

if
$$(A[i] < i)$$
{
 \hat{A} \hat{A} \hat{A} $A[2] = A [B[3]];$

Base addresses of array A and B are in register \hat{A} $X_{20}\hat{A}$ and $X_{21}\hat{A}$. Also consider i is in register \hat{A} X_{22} .

Question - 4:

Construct the equivalent RISC-V code of the following C code.

if (A[3] != A[6]) {
$$\hat{A}$$
 \hat{A} \hat{A} if (A[3] == 0) { \hat{A} \hat{A}

Base addresses of array A and B are in register $\hat{A}~X_{20}\hat{A}$ and $X_{21}\hat{A}$.

Ouestion - 5:

Construct the equivalent RISC-V code of the following C code.

```
\hat{A} \hat{A} \hat{A} int x = 0;
\hat{A} \hat{A} \hat{A}  int y = 9;
\hat{A} \hat{A} int z = addition(x, y);
int addition (int a, int b) {
\hat{A} \hat{A} int c = a + b;
 Â Â return c;
```

Variables x, y, z are stored in X_{20} , \hat{A} $X_{21}\hat{A}$ and X_{22} \hat{A} registers. Argument x, y are passed using register X_{13} , X_{14}

Variable c from the addition function also uses register X₂₁

Question - 6:

Write RISC-V assembly code that checks if the number stored in register X_{25} is even or not. If even then store 1 in register $\mathbf{X26}\hat{\mathbf{A}}$ otherwise store $\mathbf{0}$. $\hat{\mathbf{A}}$ $\hat{\mathbf{A}$ $\hat{\mathbf{A}}$ $\hat{\mathbf{A$ ÂÂÂÂ

Question - 7:

ADD $X_{25}\hat{A}$, $X_{25}\hat{A}$, $X_{0}\hat{A}$. Can you make this instruction faster?

Que	Question - 8: Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â					
Memory Location	Code	Line Number	Machine Code			
	ADDI X5 Â, X 0 Â,5	1				
	ADDI X ₆ Â, X ₀ Â, 1	2				
	ADDI $\mathbf{X}_{25}\hat{\mathbf{A}}$, $\mathbf{X}_{0}\hat{\mathbf{A}}$, 0	3				
	Loop: BLT $\mathbf{X_5}\hat{\mathbf{A}}$, $\mathbf{X_6}\hat{\mathbf{A}}$, loopBreak	4	xxxxxxxxxx			
	Â Â ADDI X ₂₅ Â, X ₂₅ Â, 1	5				
#7080	Â Â ADDI X5Â, X5Â,-1	6				
	\hat{A} \hat{A} \hat{A} \hat{A} \hat{A} \hat{A} BEQ $\mathbf{X_0}\hat{A}$, $\mathbf{X_0}\hat{A}$, Loop	7	xxxxxxxxx			
	loopBreak:	8				

- a) What is the value of **PC** while executing line2? Answer: \hat{A} $\hat{A$ ÂÂÂ
- b) Fill up the machine codes corresponding to line4 and line7 in the table above. \hat{A} \hat{A}

Question - 9:Â

Memory Location	Code	Line Number
	Loop:	
	SLLI $\mathbf{X_{10}}\hat{\mathbf{A}}$, $\mathbf{X_{22}}\hat{\mathbf{A}}$, 3	1
	ADD $\mathbf{X_{10}}\hat{\mathbf{A}}$, $\mathbf{X_{10}}\hat{\mathbf{A}}$, $\mathbf{X_{25}}\hat{\mathbf{A}}$	2
	LD X9 Â , 0(X ₁₀)	3
	BNE X9 Â , X24 Â , Exit	4
#80016	ADDI $X_{22}\hat{A}$, $X_{22}\hat{A}$, 1	5

BEQ $\mathbf{X_0}\hat{\mathbf{A}}$, $\mathbf{X_0}\hat{\mathbf{A}}$, Loop	6
Exit:	

- a. Fill up the memory locations.
- b. Find the SB-type instructions from the above code and encode them accordingly.

Given, \hat{A} $(000)_2$ opcode for BEQ

II. opcode = $(103)_{10}$, funct3 = $(001)_2$ \hat{A} opcode for BNE

Question - 10:Â

Write necessary RISC-V instructions to store the value (1111 1111 0000 1111 11)2 in X20 register.

Question - 11:Â

Show how the value 0xabcdef12 would be arranged in memory in RISC-V machine.

C/high level statement?

> slli x30, x5, 3 Â add x30, x10, x30 slli x31, x6, 3 add x31, x11, x31 1d x5, 0(x30) Â addi x12, x30, 8 ld x30, 0(x12) add x30, x30, x5 \hat{A} sd x30, 0(x31)

Assume that the variables f, g, h, i, and j are assigned to registers x5, x6, x7, x28, and x29, respectively. Assume that the base address of the

Arrays A and B are in registers x10 and x11, respectively.