

Geometric Camera Calibration

based on "A Flexible New Technique for Camera Calibration" by Zhengyou Zhang

Alexander Reuter 2.12.2009

Motivations

What we know so far

- Pinhole cameras are ideal cameras
- There doesn't exist a pinhole camera actually
- So there doesn't exist images obtained by an ideal camera

Motivations

What is camera calibration?

Find the parameters of a camera that produced several images

Application field

- Transform the image to one obtained by an ideal camera
- Find the global position and orientation of a camera

Available techniques

- Self-calibration
- Photogrammetric calibration

Overview

Overview

- Pinhole Camera
 - Intrinsic parameters
 - Extrinsic parameters
- Zhangs Algorithm
- Degenerate configurations

Homography

Properties

- Linear projection between two planes
- Described by a $\mathbb{R}^{3\times3}$ matrix

Advantages

- Transformation from a rectangle plane in world space to a quadriliteral in image plane can be described as a homography problem
- Important tool for camera calibration

Homography

Homography

example

Developing intrinsic camera matrix

Motivation

- definition of camera properties required to apply camera calibration
- different parameter definitions make introduction necessary
- assume naive pinhole camera model

Development of intrinsic camera matrix

Applying focal length [1]

Focal length examples

Figure: 40mm, 180mm and 600mm focal length

Development of intrinsic camera matrix

Development of intrinsic camera matrix

Principal point offset

$$\left(\begin{array}{c}X'\\Y'\\Z'\\1\end{array}\right)\longmapsto \left(\begin{array}{c}fX'+Z'x_0\\fY'+Z'y_0\\Z'\end{array}\right)=\left[\begin{array}{ccc}f&x_0&0\\&f&y_0&0\\&&1&0\end{array}\right]\left(\begin{array}{c}X'\\Y'\\Z'\\1\end{array}\right)$$

Camera calibration matrix

$$K := \left[\begin{array}{ccc} f & x_0 \\ & f & y_0 \\ & & 1 \end{array} \right]$$

Independent scaling

Unequal scale factors

$$K := \left[\begin{array}{ccc} \alpha_{\mathsf{X}} & & \mathsf{x}_0 \\ & \alpha_{\mathsf{y}} & \mathsf{y}_0 \\ & & 1 \end{array} \right]$$

Skew parameter

$$K := \left[\begin{array}{ccc} \alpha_{\mathsf{X}} & \mathsf{s} & \mathsf{x}_0 \\ & \alpha_{\mathsf{y}} & \mathsf{y}_0 \\ & & 1 \end{array} \right]$$

Development of extrinsic camera matrix

Development of extrinsic camera matrix

Camera rotation and translation

 $X_{cam}:=$ object coordinates depending on camera orientation $R\in\mathbb{R}^{3 imes 3}$ and origin $C\in\mathbb{R}^{3 imes 1}$

Getting X_{cam}

$$X_{cam} = \begin{bmatrix} R & -RC \\ 0 & 1 \end{bmatrix} \begin{pmatrix} X' \\ Y' \\ Z' \\ 1 \end{pmatrix} = \begin{bmatrix} R & -RC \\ 0 & 1 \end{bmatrix} X$$
$$= R[I| - C]X$$

Putting K and X_{cam} together

$$X = KX_{cam} = KR[I|-C]X \stackrel{t:=-RC}{=} K[R|t]$$

Finite projective camera

Finite projective camera

- $P \in \mathbb{R}^{3 \times 4}$
- $\bullet \ P := K[R|t] = \begin{bmatrix} \alpha_x & s & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix}$

•
$$x' = PX$$
, where $X = \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$ and $x' = \begin{pmatrix} x \\ y \\ w \end{pmatrix}$

$$\bullet \Rightarrow x = \frac{x'}{w}$$

Prework

• Take several images of a planar checkboard

Prework

Find subpixel corners of each checkboard

 Get the checkboard coordinate in 2D worldspace of each checkboard corner

Algorithm

- Estimate a homography for each image
- Estimate intrinsic matrix K from the set of homographies
- Estimate extrinsic parameters for each checkboard
- Estimate coefficients of radial distortion

Distortion

Two important distortion types

- Radial distortion
- Tangential distortion

Estimate coefficients of radial distortion

Distortion in Zhangs Algorithm

- Only radial distortion is handled
- Estimation provided by minimization

Method Summary

- Print a pattern
- Take images
- Detect feature points
- Estimate intrinsic & extrinsic parameters
- Estimate coefficients of radial distortion
- Refine by minimizing

Multiple cameras

Multiple cameras

Multiple cameras

Degenerate configurations

Degenerate configurations

- Rotation between two images needed to get homography
- Long focal length / small working volume lead to non reliable results
- Outliers in feature point sets not acceptable (RANSAC)
- Subpixel accuracy for feature points required

Figure: RANSAC algorithm

Degenerate configurations

Conclusion

Summary

- Camera calibration obtains intrinsic and extrinsic parameters of a camera
- Plane-to-plane transformations, called Homographies are used to map from object plane to image plane
- Many approaches (like Zhangs) estimate distortions
- Relative position and orientation of each camera based on the properties of a selected camera can be obtained

Homogeneous coordinates

Cartesian coordinates

- Standard coordinate system
- Standard matrix operation allows rotation, scaling and shearing

Homogeneous coordinates

- Enhanced coordinate system
- One matrix operation allows translation and perspective transformations additionally

Homogeneous coordinates

From Cartesian coordinates to Homogeneous coordinates

$$\bullet \left(\begin{array}{c} x \\ y \end{array}\right) \to \left(\begin{array}{c} x \\ y \\ 1 \end{array}\right) \text{ and } \left(\begin{array}{c} x \\ y \\ z \end{array}\right) \to \left(\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right)$$

From Homogeneous coordinates to Cartesian coordinates

$$\bullet \begin{pmatrix} x \\ y \\ w \end{pmatrix} \rightarrow \begin{pmatrix} \frac{x}{w} \\ \frac{y}{w} \end{pmatrix} \text{ and } \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \rightarrow \begin{pmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{z}{w} \end{pmatrix} \\
10$$

