REAL VARIABLES COMPONENT OF QUALIFYING EXAM Fall 1990

- 1. Let (X, \mathcal{B}) be a measurable space.
 - (a) State the definition of a \mathcal{B} -measurable function on X.
 - (b) Show that the sum of two real-valued measurable functions is measurable.
- 2. (a) What is meant by (X, \mathcal{B}, μ) being a measure space?
 - Let (X, \mathcal{B}, μ) be a measure space.
 - (b) Show that if $B_n \in \mathcal{B}$ for each $n \in \mathbb{N}$, then $\mu\left(\bigcup_{n \in \mathbb{N}} B_n\right) \leq \sum_{n \in \mathbb{N}} \mu(B_n)$.
- 3. f is Borel-measurable on $\mathbb R$ and integrable with respect to Lebesgue measure λ .
 - (a) Prove that $F(x) := \int_0^x f d\lambda$ defines a bounded and continuous function on \mathbb{R} .
 - (b) Prove that if F is 0 λ -almost everywhere, then so is f.

 HINT: Show that the set-function $\mu(B) := \int_B f d\bar{\lambda}$ (B Borel) is identically 0, then consider a B appropriately related to f.
 - (c) Show that a Borel-measurable homomorphism ϕ of \mathbb{R} into $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$ i.e., a Borel-measurable character of the additive group \mathbb{R} is necessarily continuous. HINT: $f(x) \cdot \int_0^a f = \int_x^{a+x} f$ for all $a, x \in \mathbb{R}$ (why?). Choose a appropriately.
- 4. Construct Borel-measurable $B \subset \mathbb{R}$ such that $0 < \lambda(B \cap I) < \lambda(I)$ for every non-void open interval I, λ being Lebesgue measure.
- 5. Let (X, \mathcal{M}) be a measurable space. Let \mathcal{O} , \mathcal{B} , \mathcal{L} be the classes of open, Borel-measurable, and Lebesgue-measurable subsets of \mathbb{R} , respectively. What implications among the following statements are valid for $f: X \to \mathbb{R}$? For those that fail offer a counterexample.
 - (i) f is \mathcal{M} -measurable.
 - (ii) $f^{-1}(\mathcal{O}) \subset \mathcal{M}$.
 - (iii) $f^{-1}(\mathcal{B}) \subset \mathcal{M}$.
 - (iv) $f^{-1}(\mathcal{L}) \subset \mathcal{M}$.
- 6. Define $f_n(t) := \sin(nt)$, $n \in \mathbb{N}$, $t \in [-\pi, \pi]$. Prove that $\{f_n : n \in \mathbb{N}\}$ is closed and bounded in the (complete) metric space $L_2[-\pi, \pi]$, but is not compact.
- 7. Let μ be a non-negative measure on the σ-algebra M. Say that μ is semi-finite if E ∈ M & μ(E) = ∞ ⇒ ∃F ∈ M ∩ E with 0 < μ(F) < ∞. Show that when semi-finiteness prevails, for all E ∈ M, μ(E) = sup{μ(F) : F ∈ M ∩ E & μ(F) < ∞}.</p>
 HINT: Use exhaustion: a maximal family F of disjoint M∩E sets of positive, finite measure cannot
 - HINT: Use exhaustion: a maximal family $\mathcal F$ of disjoint $\mathcal M\cap E$ sets of positive, finite measure cannot have $\sum_{\mathcal F} \mu(F) < \mu(E)$.
- 8. Let K be a non-void compact subset of \mathbb{R} . Use a countable dense subset $\{k_n : n \in \mathbb{N}\}$ of K and the linear functional $f \mapsto \sum_{n \in \mathbb{N}} 2^{-n} f(k_n)$ to construct a Borel measure on \mathbb{R} whose support is K.