Correction: DM3

Exercice 1. (Fin de l'exercice du DS) Dans cet exercice, on considère une suite quelconque de nombres réels $(a_n)_{n\in\mathbb{N}}$, et on pose pour tout $n\in\mathbb{N}$:

$$b_n = \sum_{k=0}^n \binom{n}{k} a_k.$$

Partie I: Quelques exemples

- 1. Calculer b_n pour tout $n \in \mathbb{N}$ lorsque la suite $(a_n)_{n \in \mathbb{N}}$ est la suite constante égale à 1.
- 2. Calculer b_n pour tout $n \in \mathbb{N}$ lorsque la suite $(a_n)_{n \in \mathbb{N}}$ est définie par $a_n = \exp(n)$.
- 3. (a) Démontrer que, pour tout $(n \ge 1, n \ge k \ge 1)$,

$$k\binom{n}{k} = n\binom{n-1}{k-1}.$$

- (b) En déduire que : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \binom{n}{k} k = n2^{n-1}$.
- (c) Calculer la valeur de b_n , pour tout $n \in \mathbb{N}$ lorsque la suite $(a_n)_{n \in \mathbb{N}}$ est définie par $a_n = \frac{1}{n+1}$.

Partie II: Formule d'inversion

Le but de cette partie est de montrer que la suite $(a_n)_{n\in\mathbb{N}}$ s'exprime en fonction de la suite $(b_n)_{n\in\mathbb{N}}$.

1. Montrer que pour tout $(k, n, p) \in \mathbb{N}^3$, tel que $k \leq p \leq n$ on a :

$$\binom{n+1}{p}\binom{p}{k} = \binom{n+1}{k}\binom{n+1-k}{p-k}.$$

2. Montrer que, pour tout $(k, n) \in \mathbb{N}^2$, tel que $k \leq n$ on a :

$$\sum_{i=0}^{n-k} (-1)^i \binom{n+1-k}{i} = (-1)^{n-k}.$$

3. Montrer que pour tout $n \in \mathbb{N}$ on a

$$\sum_{p=0}^{n} \sum_{k=0}^{p} {n+1 \choose k} {n+1-k \choose p-k} (-1)^{p-k} b_k = \sum_{k=0}^{n} (-1)^{n-k} {n+1 \choose k} b_k$$

- 4. Donner, pour tout $n \in \mathbb{N}$, l'expression de a_{n+1} en fonction de b_{n+1} et de $a_0, ..., a_n$.
- 5. Prouver, par récurrence forte sur n que :

$$\forall n \in \mathbb{N}, a_n = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} b_k.$$

6. En utilisant le résultat précédent montrer que pour tout $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} \binom{n}{k} k 2^{k} (-1)^{n-k} = 2n.$$

Correction 1.

Partie I: Quelques exemples

- 1. Pour $a_n = 1$, $b_n = \sum_{k=0}^n \binom{n}{k} = 2^n$.
- 2. Pour $a_n = exp(n)$, $b_n = \sum_{k=0}^n \binom{n}{k} e^k = (1 + e^1)^n$.
- 3. (a)

$$k \binom{n}{k} = k \frac{n!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} = n \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} = n \binom{n-1}{k-1}$$

(b) Comme le premier terme est nul $\sum_{k=0}^{n} \binom{n}{k} k = \sum_{k=1}^{n} n \binom{n-1}{k-1}$ Et d'après la question précédente on a donc $\sum_{k=0}^{n} \binom{n}{k} k = n \sum_{k=1}^{n} \binom{n-1}{k-1}$ Or en faisant un changement de variable on obtient $\sum_{k=1}^{n} \binom{n-1}{k-1} = \sum_{k=0}^{n-1} \binom{n-1}{k}$. Donc

$$\sum_{k=0}^{n} \binom{n}{k} k = n2^{n-1}$$

(c) D'après la question 3a) on a $(k+1)\binom{n+1}{k+1} = (n+1)\binom{n}{k}$. Donc

$$\frac{1}{n+1} \binom{n+1}{k+1} = \frac{1}{k+1} \binom{n}{k}$$

Ainsi

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{k+1} = \sum_{k=0}^{n} \frac{1}{n+1} \binom{n+1}{k+1}$$

On fait un changement de variable k + 1 = j on obtient

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{k+1} = \sum_{j=1}^{n+1} \frac{1}{n+1} \binom{n+1}{j}$$
$$= \frac{1}{n+1} \left(\sum_{j=0}^{n+1} \binom{n+1}{j} - 1 \right)$$
$$= \frac{1}{n+1} \left(2^{n+1} - 1 \right)$$

Partie II: Formule d'inversion

- 1. C'est l'exercice 2 du DM 4.
- 2.

$$\sum_{i=0}^{n-k} (-1)^i \binom{n+1-k}{i} = \sum_{i=0}^{n-k+1} (-1)^i \binom{n+1-k}{i} - (-1)^{n-k+1}$$

Et d'après le BdN :

$$\sum_{i=0}^{n-k+1} (-1)^i \binom{n+1-k}{i} = (1-1)^{n-k} = 0$$

 et

$$-(-1)^{n-k+1} = (-1)^{n-k}$$

Ce qui donne le résultat.

3.
$$b_{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} a_k = \sum_{k=0}^{n} {n+1 \choose k} a_k + a_{n+1}$$
. Donc

$$a_{n+1} = b_{n+1} - \sum_{k=0}^{n} {n+1 \choose k} a_k$$

4. Soit
$$P(n)$$
 la propriété : " $\forall p \leq n \, a_p = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} b_p$."

Montrons
$$P(0)$$
: " $\forall j \leq 0$ $a_j = \sum_{k=0}^{j} (-1)^{j-k} \binom{j}{k} b_k$." Il suffit de vérifier $a_0 = \sum_{k=0}^{0} (-1)^{0-k} \binom{0}{k} b_k$.

Et on a
$$\sum_{k=0}^{0} (-1)^{0-k} \binom{0}{k} b_k$$
. = b_0 Par ailleurs, par définition $b_0 = \sum_{k=0}^{0} \binom{0}{k} a_k = a_0$. Ainsi $P(0)$ est vraie.

Hérédité

On suppose que P est vraie pour un certain entier naturel n fixé. Montrons P(n+1). Pour cela il suffit de vérifier que

$$a_{n+1} = \sum_{k=0}^{n+1} (-1)^{n+1-k} \binom{n+1}{k} b_k$$

Or on a vu que

$$a_{n+1} = b_{n+1} - \sum_{p=0}^{n} {n+1 \choose p} a_p$$

et en utilisant l'hypothése de récurrence on obtient

$$\sum_{p=0}^{n} \binom{n+1}{p} a_p = \sum_{p=0}^{n} \binom{n+1}{p} \sum_{k=0}^{p} (-1)^{p-k} \binom{p}{k} b_k$$

$$= \sum_{p=0}^{n} \sum_{k=0}^{p} \binom{n+1}{p} \binom{p}{k} (-1)^{p-k} b_k$$

$$= \sum_{p=0}^{n} \sum_{k=0}^{p} \binom{n+1}{k} \binom{n+1-k}{p-k} (-1)^{p-k} b_k$$

D'après la question II . 1.

On échange les deux symboles sommes on obtient :

$$\sum_{p=0}^{n} \sum_{k=0}^{p} \binom{n+1}{k} \binom{n+1-k}{p-k} (-1)^{p-k} b_k = \sum_{k=0}^{n} \sum_{p=k}^{n} \binom{n+1}{k} \binom{n+1-k}{p-k} (-1)^{p-k} b_k$$

$$= \sum_{k=0}^{n} \binom{n+1}{k} b_k \sum_{p=k}^{n} \binom{n+1-k}{p-k} (-1)^{p-k}$$

$$= \sum_{k=0}^{n} \binom{n+1}{k} b_k \sum_{i=0}^{n-k} \binom{n+1-k}{i} (-1)^{i}$$

En faisant le cahngement d'indice p - k = i.

On obtient finalement en utilisant la question II. 2.

$$\sum_{p=0}^{n} {n+1 \choose p} a_p = \sum_{k=0}^{n} {n+1 \choose k} b_k (-1)^{n-k}$$

On conclut en remarquant que $b_{n+1} = \binom{n+1}{n+1} b_{n+1} (-1)^{n+1-(n+1)}$ et ainsi

$$a_{n+1} = (-1)^{n+1-(n+1)} \binom{n+1}{n+1} b_{n+1} + \sum_{k=0}^{n} (-1)^{n+1-k} \binom{n+1}{k} b_k = \sum_{k=0}^{n+1} (-1)^{n+1-k} \binom{n+1}{k} b_k$$

5. On a vu dans la partie I que pour $a_n = n$ on a $b_n = n2^{n-1}$. Donc en appliquant le résultat précédent on a

$$\sum_{k=0}^{n} \binom{n}{k} k 2^{k-1} (-1)^{n-k} = n$$

Ce qui donne finalement

$$\sum_{k=0}^{n} \binom{n}{k} k 2^{k} (-1)^{n-k} = 2 \sum_{k=0}^{n} \binom{n}{k} k 2^{k-1} (-1)^{n-k} = 2n$$

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sin(u_n) \end{cases}$$

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 < u_n < \frac{\pi}{2}$.
- 2. On note $f(x) = \sin(x) x$. Montrer que pour tout $x \in \mathbb{R}_+^*$, f(x) < 0.
- 3. En déduire le sens de variation de $(u_n)_{n\in\mathbb{N}}$.
- 4. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$
- 5. Montrer que $f(x) = 0 \iff x = 0$.
- 6. Déterminer la valeur de ℓ .

Info

- 1. Ecrire une fonction qui prend en paramètre $n \in \mathbb{N}$ et qui retourne la valeur de u_n . (Pour ceux qui n'ont pas encore vu les fonctions, vous pouvez écrire un script qui retourne la valeur de u_n sans les fonctions, mais bon c'est pas si différent...)
- 2. Ecrire une fonction qui prend en paramètre $e \in \mathbb{R}^+$ et qui retourne la valeur du premier terme $n_0 \in \mathbb{N}$ telle que $|u_{n_0}| \leq e$ et la valeur de u_{n_0} . (même remarque)

Correction 2.

- 1. On fait une récurrence. Pour tout $n \in \mathbb{N}$ on note P(n) la propriété définie par : " $0 < u_n < \frac{\pi}{2}$ " Par définition $u_0 = 1$, et on a bien $0 < 1 < \frac{\pi}{2}$ (car $\pi > 3$) Donc la propriété P est vraie au rang 0. On suppose qu'il existe $n_0 \in \mathbb{N}$ tel que P_{n_0} soit vraie et on va montrer que ceci implique P_{n_0+1} En effet, pour tout $x \in]0, \frac{\pi}{2}[, \sin(x) \in]0, 1[\subset]0, \pi/2[^1$. Donc si P_{n_0} est vraie, c'est à dire $u_{n_0} \in]0, \frac{\pi}{2}[$, on a alors $u_{n_0+1} = \sin(u_{n_0}) \in]0, 1[$. De nouveau comme $1 < \frac{\pi}{2}$ ceci implique P_{n_0+1} . Par récurrence, la propriété P(n) est vraie pour tout $n \in \mathbb{N}$.
- 2. La fonction f est dérivable sur \mathbb{R} et $f'(x) = \cos(x) 1 \le 0$. Donc f est décroissante et f(0) = 0. Donc pour tout $x \in \mathbb{R}_+^*$, f(x) < 0.
- 3. $u_{n+1} u_n = \sin(u_n) u_n = f(u_n)$ Comme pour tout $n \in \mathbb{N}$, $u_n > 0$ d'après la question 1, on a donc $f(u_n) < 0$ d'après la question 2. Ainsi pour tout $n \in \mathbb{N}$

$$u_{n+1} \le u_n$$

ce qui assure que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

- 4. La suite $(u_n)_{n\in\mathbb{N}}$ est minorée (par 0) d'après la question 1 et décroissante d'après la question précédente. Par théorème de la limite monotone, la suite converge vers $\ell \geq 0$
- 5. L'étude de f a montré que f(x) < 0 sur \mathbb{R}_+^* et f(x) > 0 sur \mathbb{R}_-^* . Ainsi $f(x) = 0 \implies x = 0$. Réciproquement, si x = 0, $f(0) = \sin(0) 0 = 0$. L'équivalence est bien montrée.

^{1.} en d'autres termes, $]0, \pi/2[$ est stable par la fonction sinus

6. Comme $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$ on a aussi $\lim u_{n+1}=\ell$. De plus, comme la fonction sinus est continue sur \mathbb{R} on a $\lim \sin(u_n)=\sin(\lim u_n)$. Ainsi la limite ℓ satisfait $\ell=\sin(\ell)$. Ce qui d'après la question précédente implique $\ell=0$.

Finalement

 $\lim u_n = 0$

INFO

```
1 from math import sin
  \mathbf{def} \ \mathbf{u}(\mathbf{n}):
           #valeur de u0
    x=1
    for i in range(n):
                    \#relation de recurrence que l'on applique n fois avec range(n)
        x=\sin(x)
    return(x)
s from math import abs
  def limite(e):
     L=0 \#valeur de la limite
     n=0 #on met en place un compteur
11
      val=u(n)
                \#valeur de u0
12
13
     while abs(val-L)>e: \#tant\ que\ la\ valeur\ de\ |u(n)-L|\ est\ plus\ grande\ que\ e
14
         n+=1 #on incremente la valeur du compteur de 1
15
         val = u(n) \#on \ actualise \ la \ valeur \ de \ u(n)
16
17
     return(n, u(n))
18
```