# Language Understanding Systems

Evaluation in NLP

Evgeny A. Stepanov

SISL, DISI, UniTN evgeny.stepanov@unitn.it

### Outline

1 Basic Concepts

2 Evaluation Metrics

3 Exercises





### Section 1

# Basic Concepts





Why do we want to evaluate a system / an algorithm's performance?



Why do we want to evaluate a system / an algorithm's performance?

• To measure one or more of its qualities.



# Why do we want to evaluate a system / an algorithm's performance?

- To measure one or more of its qualities.
- Proper evaluation criteria is a way to specify the problem.





Why do we want to evaluate a system / an algorithm's performance?

- To measure one or more of its qualities.
- Proper evaluation criteria is a way to specify the problem.

How do we evaluate a system / an algorithm's performance?





#### Automatic Evaluation

Compare the system's output with the gold standard (reference)



### Automatic Evaluation

Compare the system's output with the gold standard (reference)

• Cons: An effort to produce the gold standard (manual)





### Automatic Evaluation

Compare the system's output with the gold standard (reference)

- Cons: An effort to produce the gold standard (manual)
- Pros: Re-usable; no additional cost





#### Automatic Evaluation

Compare the system's output with the gold standard (reference)

- Cons: An effort to produce the gold standard (manual)
- Pros: Re-usable; no additional cost

### Manual Evaluation

Ask **human judges** to estimate the quality w.r.t. certain criteria





#### Automatic Evaluation

Compare the system's output with the gold standard (reference)

- Cons: An effort to produce the gold standard (manual)
- Pros: Re-usable; no additional cost

#### Manual Evaluation

Ask **human judges** to estimate the quality w.r.t. certain criteria

• For some tasks the gold standard might be unobtainable





### Automatic Evaluation

Compare the system's output with the gold standard (reference)

- Cons: An effort to produce the gold standard (manual)
- Pros: Re-usable; no additional cost

#### Manual Evaluation

Ask human judges to estimate the quality w.r.t. certain criteria

- For some tasks the gold standard might be unobtainable
- No agreed automatic evaluation method





#### Automatic Evaluation

Compare the system's output with the gold standard (reference)

- Cons: An effort to produce the gold standard (manual)
- Pros: Re-usable; no additional cost

#### **OBJECTIVE**

#### Manual Evaluation

Ask human judges to estimate the quality w.r.t. certain criteria

- For some tasks the gold standard might be unobtainable
- No agreed automatic evaluation method

#### SUBJECTIVE





### Intrinsic vs. Extrinsic Evaluation

#### Intrinsic

- in isolation
- w.r.t. gold standard (references)
- e.g. POS-Tagging performance





### Intrinsic vs. Extrinsic Evaluation

### Intrinsic

- in isolation
- w.r.t. gold standard (references)
- e.g. POS-Tagging performance

### Extrinsic

- as a part of other system
- usefulness for some other task
- e.g. effect of POS-Tagger on parsing performance





### Black-Box vs. Glass-Box

#### Black-Box

Evaluation of Performance

- speed
- accuracy
- etc.





### Black-Box vs. Glass-Box

#### Black-Box

Evaluation of Performance

- speed
- accuracy
- etc.

#### Glass-Box

Evaluation of Design

- algorithm
- used resources
- etc.





• Where Gold Standard comes from?



- Where Gold Standard comes from?
- Annotation by experts (human judges)



- Where Gold Standard comes from?
- Annotation by experts (human judges)
- How do we know that Gold Standard is good?



- Where Gold Standard comes from?
- Annotation by experts (human judges)
- How do we know that Gold Standard is good?
- Evaluate agreement between the annotators/judges





- Where Gold Standard comes from?
- Annotation by experts (human judges)
- How do we know that Gold Standard is good?
- Evaluate agreement between the annotators/judges
- Most simple agreement measure: % of agreed instances





# Lower & Upper Bounds of the Performance

#### Lower Bound

**Baseline** – trivial solution to the problem:

- random: random decision
- *chance*: random decision w.r.t. the distribution of categories in the training data
- majority: assign everything to the largest category
- etc.





# Lower & Upper Bounds of the Performance

#### Lower Bound

**Baseline** – trivial solution to the problem:

- random: random decision
- *chance*: random decision w.r.t. the distribution of categories in the training data
- majority: assign everything to the largest category
- etc.

### Upper Bound

Inter-rater agreement – human performance.



# Lower & Upper Bounds of the Performance

#### Lower Bound

**Baseline** – trivial solution to the problem:

- random: random decision
- chance: random decision w.r.t. the distribution of categories in the training data
- majority: assign everything to the largest category
- etc.

### Upper Bound

**Inter-rater agreement** – human performance.

A system is expected to perform within the lower and upper bounds.



# Data Split

Training for training / extracting rules / etc.

Development for optimization / intermediate evaluation

Testing for the final evaluation



### Section 2

### **Evaluation Metrics**





# The Simplest Case

$$Accuracy = \frac{\text{Num. of Correct Decisions}}{\text{Total Num. of Instances}} \tag{1}$$





# The Simplest Case

$$Accuracy = \frac{\text{Num. of Correct Decisions}}{\text{Total Num. of Instances}} \tag{1}$$

- Known number of instances
- Single decision for each instance
- Single correct answer for each instance
- All errors are equal





# **Contingency Table**

|     |     | $\mathbf{REF}$ |     |
|-----|-----|----------------|-----|
|     |     | POS            | NEG |
| HYP | POS | TP             | FP  |
|     | NEG | FN             | TN  |



# Contingency Table

|     |     | $\mathbf{REF}$ |     |
|-----|-----|----------------|-----|
|     |     | POS            | NEG |
| НҮР | POS | TP             | FP  |
|     | NEG | FN             | TN  |

```
TP True Positive a
FP False Positive b
FN False Negative c
TN True Negative d
```



# Accuracy

|     |     | $\mathbf{REF}$         |               |
|-----|-----|------------------------|---------------|
|     |     | POS                    | NEG           |
| HYP | POS | $\mathbf{TP}$          | $\mathbf{FP}$ |
|     | NEG | $\mathbf{F}\mathbf{N}$ | TN            |

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN} \tag{2}$$



# Accuracy

|     |     | REF                    |               |
|-----|-----|------------------------|---------------|
|     |     | POS                    | NEG           |
| HYP | POS | TP                     | $\mathbf{FP}$ |
|     | NEG | $\mathbf{F}\mathbf{N}$ | TN            |

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN} \tag{2}$$

• What if TN is infinite or unknown?



# Accuracy

|     |     | $\mathbf{REF}$         |     |
|-----|-----|------------------------|-----|
|     |     | POS                    | NEG |
| HYP | POS | TP                     | FP  |
|     | NEG | $\mathbf{F}\mathbf{N}$ | TN  |

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN} \tag{2}$$

- What if TN is infinite or unknown?
- e.g.: Number of irrelevant queries to a search engine





### Precision & Recall

|     |                  | $\mathbf{REF}$         |     |           |
|-----|------------------|------------------------|-----|-----------|
|     |                  | POS                    | NEG |           |
| HYP | POS              | TP                     | FP  | Precision |
|     | $\overline{NEG}$ | $\mathbf{F}\mathbf{N}$ | TN  |           |
|     |                  | Recall                 |     |           |

$$Precison = \frac{TP}{TP + FP} \tag{3}$$



## Precision & Recall

|     |                  | $\mathbf{REF}$         |               |           |
|-----|------------------|------------------------|---------------|-----------|
|     |                  | POS                    | NEG           |           |
| HYP | POS              | TP                     | $\mathbf{FP}$ | Precision |
|     | $\overline{NEG}$ | $\mathbf{F}\mathbf{N}$ | TN            |           |
|     |                  | Recall                 |               |           |

$$Precison = \frac{TP}{TP + FP} \tag{3}$$

$$Recall = \frac{TP}{TP + FN} \tag{4}$$



## Precision & Recall

|     |                  | $\mathbf{REF}$         |               |           |
|-----|------------------|------------------------|---------------|-----------|
|     |                  | POS                    | NEG           |           |
| HYP | POS              | TP                     | $\mathbf{FP}$ | Precision |
|     | $\overline{NEG}$ | $\mathbf{F}\mathbf{N}$ | TN            |           |
|     |                  | Recall                 |               |           |

$$Precison = \frac{TP}{TP + FP} \tag{3}$$

$$Recall = \frac{TP}{TP + FN} \tag{4}$$





#### F-Measure

• Harmonic Mean of Precision & Recall



#### F-Measure

- Harmonic Mean of Precision & Recall
- Usually evenly weighted

$$F_{\beta} = \frac{(1+\beta^2) * Precision * Recall}{\beta^2 * Precision + Recall}$$
 (5)

$$F_1 = \frac{2 * Precision * Recall}{Precision + Recall} \tag{6}$$





## **Edit Distance**

- Hypotheses and Reference might differ not only on instance labels, but also on number of instances
- Number of concepts





## **Edit Distance**

- Hypotheses and Reference might differ not only on instance labels, but also on number of instances
- Number of concepts
- WER: Word Error Rate
- CER: Concept Error Rate





## **Edit Distance**

- Hypotheses and Reference might differ not only on instance labels, but also on number of instances
- Number of concepts
- WER: Word Error Rate
- CER: Concept Error Rate

$$*ER = \frac{I + D + S}{N} \tag{7}$$





# More Advanced Topics

- Cross-Validation
- Significance Tests
- Agreement Measures
- Sampling (random, stratified)
- Binary vs. Multi-class classification
- Multi-label data
- Regression
- Re-ranking
- Ensemble Methods
- etc.





## Section 3

## Exercises





## **Exercises**

Given the sample data, where Column 1 – References and Column 2 – Hypotheses:

- 1 Compute raw TP, FP, FN, TN.
- 2 Compute Accuracy, Precision, Recall, F-Measure



## **Exercises**

Given the sample data, where Column 1 – References and Column 2 – Hypotheses:

- 1 Compute raw TP, FP, FN, TN.
- 2 Compute Accuracy, Precision, Recall, F-Measure

Write scripts...



# Synthetic Data

- Generate a Data Set where:
  - 5 classes
  - the distribution is 20%, 20%, 30%, 25%, 5%
- Sampling:
  - Split into training and test sets as 90% & 10%
  - Random vs. Stratified Sampling



