Modelling Interaction

Interaction Techniques and Technologies (ITT), SS 2016

Session 9 (02.06.2016), Raphael Wimmer

Overview

These are slides/notes for the lecture, automatically generated from the slide set. Please extend this outline with your own notes.

Goals for this Week

Overall: Analyzing tasks and predicting task completion times

Know

- · Power Law of Practice
- · Hick's Law
- · predictive models: GOMS, KLM

Learn

- implementing simple GUIs with PyQt
- · predicting task completion times using predictive models

Practice

- instrumenting code in Python: print(), QT signals, decorators
- · conducting small user studies
- overview of related work

Today

- 14:15 14:30 Overview of today's session
- 14:30 15:15 Review/overview of predictive models, GOMS and KLM
- 15:15 15:35 Practical experiment
- 15:35 15:45 New Assignment, preview of next session

Where are We?

- Conducting and Logging Experiments (+ intro to Python / PyQT)
- Documenting and Visualizing Experiments (+ intro to pylab, matplotlib)
- Pointing (pointing devices, Fitts' Law, Steering Law, CD gain, ...)
- Text Entry (speed, models, keyboard layouts, input techniques)
- Models of Interaction (KLM, GOMS)

Predictive Models

General Question

How can we predict how much time a user will need to complete a certain task?

Fitts' Law

- Paul Fitts (1954): "The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement", J. Exp. Psy. 47
- · Classic Formulation

$$ID = log_2(2A/W)bit/s$$

$$I_P = 1/t \times log_2(2A/W)bit/s$$

- (A = amplitude/distance of movement; W = width of target; ID = index of difficulty, I_P_ = index of performance)
- Shannon Formulation (MacKenzie, 1989)

$$MT = a + b \times log_2(A/W + 1)$$

• interesting discussion: Drewes (2013): "A Lecture on Fitts' Law" 1

Steering Law

- Acot, Zhai (1997): "Beyond Fitts' law: models for trajectory-based HCI tasks"², Proc. CHI '97, ACM, New York
- Idea: steering a pointer through a narrow tunnel takes longer than through a wide tunnel
- · How does movement time depend on width and length of tunnel?
- Model tunnel as a series of Fitts' Law pointing tasks
- $\rightarrow T = a + b \int_C \frac{ds}{W(s)}$
- for a straight tunnel with width W, length A: $T=a+b\frac{A}{W}$

Power Law of Practice

- · The logarithm of the reaction time decreases linearly with the logarithm of the amount of practice
- Newell & Rosenbloom (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1-55). Hillsdale, NJ: Erlbaum.

Hick's Law

- Amount of time needed to choose one item in a set is proportional to $log_2(n)$, whereas n is the number of items in the set.
- Hick (1952), "On the rate of gain of information"³

Miller's Law

- Humans can keep 7 ± 2 chunks of information in their working memory.
- Miller (1956), The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information⁴
- chunks: numbers, letters, words, sentences, images, ...
- recoding of multiple chunks into fewer chunks allows for storing more information
- e.g., " T T S E" == 4 chunks, "TEST" == 1 chunk
- actual amount that can be stored depends on type of information

¹http://www.cip.ifi.lmu.de/~drewes/science/fitts/A%20Lecture%20on%20Fitts%20Law.pdf

²http://www.almaden.ibm.com/u/zhai/papers/steering/chi97.pdf

³http://www2.psychology.uiowa.edu/faculty/mordkoff/InfoProc/pdfs/Hick%201952.pdf

⁴http://psychclassics.yorku.ca/Miller/

And now?

- · aforementioned models only describe sensorimotor control
- · human-computer interaction is a little bit more complex

GOMS

GOMS

- Card, Moran, Newell (1983): "The Psychology of Human-Computer Interaction", Lawrence Erlbaum Associates, Hillsdale, NJ
- descriptive / predictive model of task completion
- Four components:
 - Goals what the user wants to achieve (hierarchy of goals)
 - Operators individual steps towards the goal
 - Methods sequence of related operators
 - Selection Rules how the user selects which of several alternative methods they use
- Distinction of goals and operators defined by intended level of detail

GOMS: Example

- Goal: post a comment on YouTube
 - Goal: log in
 - * Operator: click on 'sign in' link
 - * Operator: enter name
 - * Operator: enter password
 - * **or**: form already filled in by password manager
 - * Operator: click 'sign in' button
 - Goal: select comment form
 - Goal: type something witty
 - Goal: submit comment

. . .

Let's have a closer look at:

. .

Goal: Type and format the text 'so COOL' using a rich-text editor

. .

Which operators and methods are possible? (let's do this together)

GOMS: Use Cases

- · document and discuss tasks
- · identify usability problems:
 - performance bottlenecks
 - methods with high cognitive demands
 - too many alternative paths, etc.
- predict task completion times (by assigning times to each operator)

• example: Gray, John, Atwood (1992): "The precis of Project Ernestine or an overview of a validation of GOMS"⁵, Proc. CHI '92, ACM, New York

GOMS: Limitations

- GOMS (in its classic form) does not account for:
 - errors
 - variations in users
 - * skill
 - * age
 - * fatigue
 - * training
 - likeability, etc.
- complex tasks result in complex GOMS trees
- How coarse/fine should operators be defined?
- What are valid selection rules? (need to find out experimentally)

KLM

KLM - Keystroke Level Model

- Card, Moran, Newell (1980): "The keystroke-level model for user performance with interactive systems" 6, Communications of the ACM 23(7), ACM, New York
- · 'low-level GOMS'
- idea: deconstruct tasks down to the keystroke-level operators:
 - Keystroke
 - Pointing with mouse
 - Button press or release on mouse
 - Mental act
 - Hand switching between keyboard and mouse
 - Waiting for system response
- Practical guide: Kieras (2001): "Using the keystroke-level model to estimate execution times"

KLM: Standard Values

based on (Card, Moran, Newell (1980) and Kieras (2001))

Operator	time (s)
K eystroke	0.28
P ointing with mouse	1.10
B utton press or release on mouse	0.10
M ental act	1.20
H and switching between keyboard and mouse	0.40
W aiting for system response	_

⁵http://dl.acm.org/citation.cfm?id=142821

⁶http://www.cs.cmu.edu/~cga/behavior/card1980.pdf

⁷http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.3363&rep=rep1&type=pdf

. . .

Example: How long will it take for you to log into GRIPS and click the first link?

KLM: Extensions

• for mobile phones: Holleis et al. (2007)

• automatically generating KLM predictions: Schulz (2008)

• powerful tool: CogTool⁸

Exercise: QWERTY vs. Chords

- How long will it take to write "I am sitting here in a boring room."?
- · typing every letter
- · replacing the two most common words with a chord
- · replacing the two longest words with a chord

Outlook

Course Assignment

- · Read up on KLM, GOMS
- Implement a simple calculator application with PyQt (only a few basic operators)
- Determine appropriate values for the KLM operators for the calculator application
- · Predict task completion times using KLM and Fitts' Law and verify your predictions

Next Session

- · Knowledge test
- · Discussion of previous sessions
- Introduction: Bonus Tasks
- Assigning new groups
- Distribution WiiMotes

Afterwards

- Introduction WiiMote
- Introduction to PyQtGraph

ENDE

⁸http://www.cogtool.com