Übungsaufgaben zur Vorlesung "Analysis I" Blatt 6

Aufgabe 1.

a) Finden Sie alle Häufungspunkte, $\limsup_{n\to\infty} x_n$, $\liminf_{n\to\infty} x_n$, $\sup x_n$, $\inf x_n$ für die Folge

$$x_n = \frac{((-1)^{\left[\frac{n}{2}\right]} - 1)2n + (-1)^n \sqrt[n]{2}}{n}, \quad n \in \mathbb{N}.$$

b) Sei $A \subset \mathbb{R}$ nichtleer und nach oben beschränkt und α eine obere Schranke von A. Zeigen Sie: $\alpha = \sup A \Leftrightarrow \exists (x_n)_{n \in \mathbb{N}} \subset A \text{ mit } x_n \to \alpha$.

Aufgabe 2. Seien a und x_0 positive reelle Zahlen. Wir definieren die Folge $(x_n)_{n\in\mathbb{N}}$ rekursiv durch

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), \quad n = 0, 1, 2, \dots$$

- a) Zeigen Sie, dass die Folge $(x_n)_{n\in\mathbb{N}}$ konvergiert und berechnen Sie ihren Grenzwert.
- b) Beobachten Sie für den Fall a=2, wie schnell man eine gute Näherung für den Grenzwert in Abhängigkeit von der Wahl von x_0 bekommt. Experimentieren Sie dabei mit dem Taschenrechner. Berichten Sie über Ihr Ergebnis.

Bemerkung: Das in der Aufgabe dargestellte Iterationsverfahren ist eine sehr effiziente Methode \sqrt{a} näherungsweise zu berechnen. Sie können das beim Experimentieren mit dem Taschenrechner selber sehen! Ähnlich kann man auch $\sqrt[k]{a}$, $k \in \mathbb{N}$, $k \geq 3$, berechnen. Übrigens wird in Taschenrechnern genau diese Methode für die Berechnung von $\sqrt[k]{a}$ verwendet.

Aufgabe 3. Untersuchen Sie, ob $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge, falls:

- a) $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}, n \in \mathbb{N}$
- b) $x_n = a_0 + a_1 q + ... + a_n q^n$, $n \in \mathbb{N}$, wobei $|a_k| < M$ für alle $k \in \mathbb{N}_0$ und |q| < 1

Aufgabe 4. Beweisen Sie direkt (d.h. ohne Verwendung der Tatsache, dass jede Cauchy-Folge in \mathbb{R} konvergiert):

- a) Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ Cauchy-Folgen, so ist auch $(a_nb_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge.
- b) Jede reelle Cauchy-Folge, die eine konvergente Teilfolge besitzt, ist konvergent.

Abgabe: Bis 29. November vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1		2		3		4		
	a	b	a	b	a	b	a	b	
Punkte	3	2	3	2	2	2	3	3	20

Präsenzaufgaben

1. Für Folgen positiver Zahlen schreiben wir

$$a_n << b_n \text{ für } n \to \infty :\Leftrightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

- a) Zeigen Sie: $a_n \ll b_n, b_n \ll c_n \Rightarrow a_n \ll c_n$.
- b) Ordnen Sie folgende Folgen bezüglich << an:

$$a_n = n!, b_n = 4^n, c_n = n^n, d_n = n^{100}, e_n = n^{[\sqrt{n}]}$$

2. Finden Sie alle Häufungspunkte, $\limsup_{n\to\infty}x_n$, $\liminf_{n\to\infty}x_n$, $\sup x_n$, $\inf x_n$ für die Folge

$$x_n = 1 + 2(-1)^{n+1} + 3(-1)^{\left[\frac{n}{3}\right]}, \quad n \in \mathbb{N}.$$

- 3. Zeigen Sie:
 - a) $a \in \mathbb{R}$ ist genau dann ein Häufungswert einer Folge (a_n) , wenn jede Umgebung von a unendlich viele Folgenglieder enthält.
 - b) Ist (a_n) eine beschränkte reelle Folge, so gilt: $a = \limsup_{n \to \infty} a_n \Leftrightarrow \text{für jedes } \varepsilon > 0 \text{ gibt es höchstens endlich viele Indizes } n \text{ mit } a_n > a + \varepsilon \text{ und unendlich viele Indizes } n \text{ mit } a_n > a \varepsilon.$
- 4. Geben Sie ein Beispiel für eine Folge, für die die Menge aller Häufungswerte mit $\mathbb N$ übereinstimmt.
- 5. Zeigen Sie, dass die Folge $x_1 = \sqrt{2}, x_2 = \sqrt{2 + \sqrt{2}}, x_3 = \sqrt{2 + \sqrt{2} + \sqrt{2}}, \dots$ konvergiert und berechnen Sie ihren Grenzwert.
- 6. Zeigen Sie, dass die Folge $x_n=0,\underbrace{77...7}_{n-mal},n\in\mathbb{N},$ eine Cauchy-Folge ist.
- 7. Sei $(a_n)_{n\in\mathbb{N}}$ eine positive Folge mit $\liminf_{n\to\infty} a_n \neq 0$. Beweisen Sie:

$$\limsup_{n \to \infty} \frac{1}{a_n} = \frac{1}{\liminf_{n \to \infty} a_n}$$

- 8. Beweisen oder widerlegen Sie:
 - a) Ist eine Folge reeller Zahlen monoton und hat sie eine konvergente Teilfolge, so konvergiert die Folge selbst.
 - b) Konvergieren Teilfolgen $(a_{2k})_{k\in\mathbb{N}}$ und $(a_{2k+1})_{k\in\mathbb{N}}$ der Folge $(a_n)_{n\in\mathbb{N}}$ gegen a, so konvergiert die Folge $(a_n)_{n\in\mathbb{N}}$ gegen a.

2