

ALGORITMOS EM GRAFOS

Bacharelado em Sistemas da Informação Prof. Marco André Abud Kappel

Exercícios para P1

Considere o grafo representado pela seguinte matriz de adjacências:

0	0	0	1	0	1
1	0	0	1	1	0
1	0	0	1	0	1
0	0	0	0	0	1
1	0	1	1	0	0
0	0	0	0	0	0

- a) Faça o desenho do grafo, atribuindo uma letra para cada nó, na ordem em que aparecem na matriz.
- b) O grafo é simples? Justifique.
- c) O grafo é cíclico? Justifique.
- d) Existem quantos caminhos independentes saindo do nó C e chegando no F? Justifique.
- e) Qual é o grau de entrada do nó D? Justifique.
- f) Represente o grafo na forma de Matriz de Incidências.
- g) Represente o grafo na forma de Lista de Adjacências.
 - h) Identifique e faça o desenho de um subgrafo induzido com 3 vértices.
- i) Aplique o algoritmo de Ordenação Topológica no grafo.

Considere o grafo representado pela seguinte matriz de incidências:

-1	-1	+1	0	0	0
0	0	0	0	-1	0
+1	0	0	0	0	+1
0	0	-1	-1	0	0
0	+1	0	+1	+1	-1

 a) Faça o desenho do grafo, atribuindo uma letra para cada nó, seguindo a ordem das linhas.

b) Aplique a ordenação topológica no grafo.

c) Aplique a busca em largura no grafo.

Considere o grafo representado pela seguinte matriz de incidências:

+1	0	+1	0	0	-1	0	0	0
0	0	0	-1	0	0	0	-1	0
0	0	0	0	+1	0	0	0	0
0	+1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	+1	-1	+1	0	0	0
0	-1	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0	0
0	0	-1	0	0	0	0	+1	0

- a) Faça o desenho do grafo, atribuindo um número para cada nó e uma letra para cada aresta. i
- b) O grafo é trivial? Justifique.
- c) O grafo é regular? Justifique.
- d) O grafo é esparso? Justifique.
- e) O grafo é cíclico? Justifique.
- f) O grafo é conexo? Justifique.
- g) Mostre os graus de entrada e saída de cada nó.
- h) Represente o grafo na forma de lista de adjacências.
- i) Quantas arestas seriam necessárias para criar um grafo não direcionado completo com o mesmo número de nós que o grafo acima?
- j) Identifique e faça o desenho de um subgrafo induzido com dois vértices.

Considere o seguinte grafo G:

- a) Construa a matriz de adjacências do grafo G.
- b) Desenhe o grafo complementar G^c do grafo G.
- c) Crie a matriz que representa os nós que se conectam com caminhos de comprimento 4 no i grafo G.
 - d) Aplique a Busca em Profundidade no grafo G.

Faça a ordenação topológica do grafo abaixo:

Considere o grafo representado pela seguinte matriz de adjacências:

0	1	1	0	1	0	1
1	0	0	1	0	0	1
0	0	0	0	1	0	0
0	1	0	0	0	0	1
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	0	0	0	0	0	0

- a) Represente o grafo na forma de Lista de Adjacências.
- b) Qual é o número de arestas do grafo? Justifique.
- c) O grafo é direcionado? Justifique.
- d) O grafo é trivial? Justifique.
- e) Qual é o grau de saída do nó A? Justifique.
- f) Identifique e faça o desenho de um subgrafo induzido com 3 vértices.
- g) Aplique a busca em largura no grafo.
- h) Identifique uma matriz que mostra os nós que estão conectados por caminhos de comprimento 2.

- Questão 7
- Considere o seguinte grafo:

- a) O grafo é simples? Justifique.
- b) O grafo é completo? Justifique.
- c) Represente o grafo por lista de adjacências.
- d) Mostre um subgrafo induzido deste grafo, contendo 4 vértices.
- e) Partindo do nó 7, aplique a busca em largura no grafo.

- Questão 8
- Resolva as seguintes questões referentes ao grafo não direcionado descrito pela matriz de adjacência que possui os seguintes valores em sua diagonal inferior:

0				
1	0			
0	1	0		
1	0	0	0	
1	0	0	1	1

- a) Faça o desenho do grafo.
- b) O grafo é simples? Justifique.
- c) O grafo é completo? Justifique.
- d) O grafo é esparso? Justifique.
- e) Quantas arestas precisam ser removidas para que o grafo se torne acíclico? Qual(is) é(são) a(s) opção(ões)?
- f) Mostre todos os nós que são acessíveis pelos outros por um caminho de comprimento 2.

Uma fábrica possui duas linhas de montagem para fabricação de um equipamento. Para ficar pronto, o produto precisa sair do nó IN e chegar ao nó IOUT. O grafo abaixo representa o tempo de transferência entre os etapas das linhas de montagem.

- a) Aplique a ordenação topológica para extrair uma sequência válida de etapas nas linhas de produção para que as estações sejam vistoriadas.
- b) Aplique o algoritmo de Dijsktra e determine quais são as transferências de estação que representam a sequência mais rápida na linha de produção.

Uma fábrica possui duas linhas de montagem para fabricação de um equipamento. Para ficar pronto, o produto precisa sair do nó IN e chegar ao nó IOUT. O grafo abaixo representa o tempo de transferência entre os etapas das linhas de montagem.

- a) Aplique a ordenação topológica para extrair uma sequência válida de etapas nas linhas de produção para que as estações sejam vistoriadas.
- b) Aplique o algoritmo de Dijsktra e determine quais são as transferências de estação que representam a sequência mais rápida na linha de produção.

Considere o grafo ponderado abaixo:

Nó	Heurística
Α	12
В	8
С	6
D	3
E	0

- a) Aplique o algoritmo de Dijkstra no grafo, tendo A como nó de partida e F como destino. Mostre cada etapa do algoritmo e, no final, identifique o caminho mínimo e o peso total do caminho.
- Aplique o algoritmo A*, utilizando como heurística os valores da tabela. Mostre cada etapa do algoritmo e, no final, identifique o caminho mínimo e o peso total do caminho.

Use o algoritmo de Dijkstra para definir o menor caminho para o nó F a partir do nó A. Os números sobre as arestas representam as distâncias entre os nós, e os números sobre os nós representam o valor da heurística em cada um.

Algoritmos em grafos

Questão 13

 Aplique o algoritmo A* para descobrir o caminho mínimo entre os nós A e J, considerando a heurística dada pela tabela.

Heurística		
Α	10	
В	8	
C	5	
D	7	
Е	3	
F	6	
G	5	
П	3	
1	1	
J	0	

Algoritmos em grafos

Questão 14

Aplique o algoritmo A* para obter o caminho mais rápido entre o ponto de partida do jogador e a saída do labirinto. Considere que o jogador pode apenas caminhar na direção vertical ou horizontal e que cada movimento corresponde a um "quadrado".

Dica: use a distância de Manhattan como heurística.