# 제 2 장 분할정복법 (divide-and-conquer)

- 일반적인 방법
- 이진탐색(이분탐색)
- 합병 정렬

### 일반적인 방법

• 주어진 문제를  $k (1 \le k \le n)$  개의 부분 문제들(subproblems)로 나눈 후, 각 부분 문제들의 해를 구하여 원래 문제의 해답으로 결합하는 방법이다.



- subproblem 들은 일반적으로 원래 problem과 같은 유형이며, 처리해야할 데 이터의 크기만 작다.
  - -> 순환 호출을 사용하는 것이 유리한다.
- 제어 추상화: 제어의 흐름만을 구체적으로 보여줌
   Type DAndC(P)
   {
   if <u>Small(P)</u> return S(P);
   else {
   divide P into smaller instances P<sub>1</sub>, P<sub>2</sub>, ···, P<sub>k</sub>, k ≥ 1;
   apply DAndC to each of these subproblems;
   return <u>Combine( DAndC(P<sub>1</sub>), DAndC(P<sub>2</sub>), ···, DAndC(P<sub>k</sub>), ));</u>
   }
   }

- Small(P)는 입력의 크기가 분할하지 않고도 그 답이 계산될 수 있을 정도로 충분히 작은지의 여부를 판단하는 조건문이다.
- Combine 은 k개의 부분 문제들에 대한 해를 사용하여 P의 해를 결정해준다.
- DAndC의 계산시간

$$T(n) = \begin{cases} g(n) & \text{small } n \\ T(n_1) + T(n_2) + ... + T(n_k) + f(n) & \text{otherwise} \end{cases}$$

• 순환 관계식 풀기

분할-정복 알고리즘의 복잡도는 일반적으로 다음의 순환식으로 표시된다.

$$T(n) = \begin{cases} T(1) & \text{n = 1} \\ aT(\frac{n}{b}) + f(n) & \text{n > 1} \end{cases}$$

여기서 a 와 b는 이미 결정된 상수들이며, T(1)은 이미 알려져 있고, n 은 b의 멱수(power)로 가정한다.

### 순환식 풀기 예제

• 예제(치환법) a = 2, b = 2, T(1) = 2, f(n) = n 2 M, T(n) = 2T(n/2) + n= 2[2T(n/4) + n/2] + n= 4T(n/4) + 2n= 4[2T(n/8) + n/4] + 2n= 8T(n/8) + 3n= ... \* 모든 1≤ i ≤ log₂ n 에 대해 T(n) = 2<sup>i</sup> T(n/2<sup>i</sup>) + i·n 이므로  $i = \log_2 n$  이면  $T(n) = 2^{\log n} T(n/2^{\log n}) + n \log_2 n = n \log_2 n + 2n$ 

## 2.1 이진 탐색(이분탐색)

• 문제:  $a_0 \le a_1 \le ... \le a_{n-1}$  인 리스트  $a_0$ ,  $a_1$ , ...,  $a_{n-1}$  에서 x의 값이 존재한다면 (즉  $x = a_i$ ) 그 위치 j를 결정하라.

$$\rightarrow$$
 P = (n, a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>n-1</sub>, x)

- 분할-정복 기법 적용
  - n = 1 이면 Small(P)가 true, 그리고 x = a<sub>i</sub> 이면 S(P) = i x ≠ a<sub>i</sub> 이면 S(P) = -1
  - n > 1 이면, 어떤 index k 에 대하여
    P1 = (k, a<sub>0</sub>, a<sub>1</sub>, ..., a<sub>k-1</sub>, x)
    P2 = (1, a<sub>k</sub>, x)
    P3 = (n-k-1, a<sub>k+1</sub>, a<sub>k+2</sub>, ..., a<sub>n-1</sub>, x)
    x = a<sub>k</sub> 이면 P는 해결되고, x < a<sub>k</sub> 이면 P1, x > a<sub>k</sub> 이면 P3
    \* k = |(n+1)/2| 이면 (즉, 리스트의 중간) 이진 탐색이라 부른다.

# 프로그램(lec4-1)

```
int BinSrch(int a[], int i, int I, int x)
// Given an array a[i:I] of elements in nondecreasing
// order, 0<=i<=I, determine whether x is present, and
// if so, return j such that x == a[j]; else return -1.
{
   if (I==i) { // If Small(P)
        if (x==a[i]) return i;
        else return -1;
   else { // Reduce P into a smaller subproblem.
        int mid = (i+1)/2;
        if (x == a[mid]) return mid;
        else if (x < a[mid]) return BinSrch(a,i,mid-1,x);
        else return BinSrch(a,mid+1,l,x);
   이진 탐색에서는 combine 이 필요없다.
```

• 예제 -15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151

3) 
$$x = 9$$
 low high mid  
0 13 6  
0 5 2  
3 5 4 (found)

• 정리: 함수 BinSrch(a, 0, n-1, x)는 정확히 동작한다.

### 이진탐색의 순환관계식

• n 이 2의 멱수일 경우

$$T(n) = \begin{cases} T(1) & \text{n = 1} \\ T(n/2) + c & \text{n > 1} \end{cases}$$

이때, a = 1, b = 2, f(n) = c 치환법에 의해, T(n) = T(n/2i) + c· log<sub>2</sub> n (1≤ i ≤ log<sub>2</sub> n) 따라서, T(n) = O(log n) 이다.

## 이진 탐색의 결정 트리

• n = 14 일 때



• 시간 복잡도 O(log n)

#### 반복적 구조를 갖는 이진 탐색(lec4-2)

```
int BinSearch(int a[], int n, int x)
// Given an array a[0:n-1] of elements in nondecreasing
// order, n \ge 0, determine whether x is present, and
// if so, return j such that x == a[j]; else return -1.
{
   int low = 0, high = n-1;
   while (low <= high){
         int mid = (low + high)/2;
         if (x < a[mid]) high = mid - 1;
         else if (x > a[mid]) low = mid + 1;
         else return mid;
   return -1;
```

#### 반복당 한번의 비교 사용(lec4-3)

```
Int BinSearch1(int a[], int n, int x)
// Same specifications as BinSearch except n > 0
  int low=0, high=n;
  // high is one more than possible.
  while (low < (high-1)) {
         int mid = (low + high)/2;
         if (x < a[mid]) high = mid; // Only one comparison
                                       // in the loop
         else low = mid; // x >= a[mid]
  if (x == a[low]) return(low); // x is present.
  else return -1; // x is not present.
```

- BinSearch는 간혹 BinSearch1보다 두 배의 원소 비교를 한다 (예를 들어, x > a[n] 인 경우).
- 성공적인 탐색에 대해서 BinSearch1은 BinSearch보다 원소 비교를 (log n)/
   2 더 많이 한다(예를 들어, x == a[mid]인 경우).

|    | n          | 5000  | 10000 | 15000 | 20000 | 25000 | 30000 |
|----|------------|-------|-------|-------|-------|-------|-------|
| 성공 | Binsearch  | 51.30 | 67.95 | 67.72 | 73.85 | 76.77 | 73.40 |
|    | Binsearch1 | 47.68 | 53.92 | 61.98 | 67.46 | 68.95 | 71.11 |
| 실패 | Binsearch  | 50.40 | 66.36 | 76.78 | 79.54 | 78.20 | 81.15 |
|    | Binsearch1 | 41.93 | 52.65 | 63.33 | 66.86 | 69.22 | 72.26 |

#### 2.2 합병 정렬

- 최악의 경우에 대한 복잡도는 O(n log n)이다.
- n 개의 원소(키)를 갖는 리스트 (a[1], a[2], ... a[n])를 두 개의 부분 리스트 (a[1], ..., a[]n/2]])와 (a[]n/2]+1], ..., a[n])로 분할하여 각각을 정렬한다. 그 결과인 정렬된 부분 리스트를 합병하여 전체 n 개의 원소를 갖는 정렬된 리스트로 만든다.
- 각각의 부분 리스트에 대해 이러한 분할과 합병을 반복한다.
- 리스트에 한 개의 원소만 존재할 때 Small(P) 가 true로 되며, 이 경우 이미 리스트는 정렬된 것으로 생각할 수 있으므로 바로 return 한다.

# 프로그램(lec4-4)

```
void MergeSort(int low, int high)
 // a[low: high] is a global array to be sorted.
 // Small(P) is true if there is only one element to
 // sort. In this case the list is already sorted.
 {
    if (low < high) { // If there are more than one element
      // Divide P into subproblems.
        // Find where to split the set.
         int mid = (low + high)/2;
      // Solve the subproblems.
        MergeSort(low, mid);
        MergeSort(mid + 1, high);
      // Combine the solutions.
        Merge(low, mid, high);
```

#### 보조 기억장소를 사용하는 합병(lec4-4) (프로그램에서 배열 b[]가 보조 기억장소)

```
void Merge(int low, int mid, int high)
 // a[low:high] is a global array containing two sorted
 // subsets in a[low:mid] and in a[mid+1:high]. The goal
 // is to merge these two sets into a single set residing
 // in a[low:high]. b[] is an auxiliary global array.
    int h = low, i = low, i = mid+1, k;
    while ((h <= mid) && (j <= high)) {
       if (a[h] \le a[i]) \{ b[i] = a[h]; h++; \}
       else { b[i] = a[i]; i++; } i++;
    if (h > mid) for (k=j; k < = high; k++) {
                b[i] = a[k]; i++;
    else for (k=h; k\leq mid; k++) {
          b[i] = a[k]; i++;
    for (k=low; k < = high; k++) a[k] = b[k];
  }
```

## 예제

- 10개의 원소를 갖는 배열 a[1:10] (310 285 179 652 351 423 861 254 450 520)
- 호출 과정



# Merge의 호출에 대한 트리



#### 정렬 과정

```
(310 | 285 | 179 | 652 | 351 | 423
                              861
                                   254 450
                                             520)
(285)
     310 | 179 | 652 | 351 | 423
                              861
                                   254
                                        450
                                             520)
(179)
     285 310 | 652 351 | 423 861
                                   254 450
                                             520)
(179
    285 310 | 351 652 | 423 861 254 450
                                             520)
(179
    285 310 351
                     652 | 423 | 861 | 254 | 450
                                             520)
(179
                     652 | 423 | 861 | 254 | 450 | 520)
    285 310 351
(179)
                     652 | 423 | 861 | 254 | 450 | 520)
    285
           310 351
(179)
    285
           310 351
                     652 | 254 | 423 | 861 | 450
                                              520)
(179
    285
           310 351
                     652 | 254 423
                                   450 520 861)
(179)
    254
           285
                310 351 423 450 520 652 861)
```

## MergeSort의 분석

• MergeSort의 순환 관계식:

$$T(n) =$$
 
$$\begin{cases} a & \text{n = 1, & $d$} \leftarrow a \\ 2T(n/2) + cn & \text{n > 1, & $d$} \leftarrow c \end{cases}$$

n이 2의 멱수일 경우, n = 2<sup>k</sup>가 되는 양수 k가 존재한다.

$$T(n) = 2T(n/2) + cn$$

$$= 2(2T(n/4) + cn/2) + cn$$

$$= 4T(n/4) + 2cn$$

$$= 4(2T(n/8) + cn/4) + 2cn$$
...
$$= 2^{k}T(1) + kcn$$

$$= an + cn log n$$

•  $T(n) = O(n \log n)$ 

#### 개선 사항

- 비효율적인 부분들을 개선하며, 시간 복잡도는 여전히 O(n log n)이다.
- 문제점:

보조 기억장소 b[]를 사용하여 합병하므로 Merge의 각 호출에서 b[low:high]에 저장된 결과를 a[low:high]로 다시 복사해야 한다.

- → 키를 포함하는 레코드의 크기가 큰 경우 많은 시간을 소요
- 개선점:

해당 레코드를 가리키는 링크 값을 사용하여 레코드를 이동시키지 않고 링크 값만을 이동한다. 일반적으로 링크 값을 저장하는 필드는 전체 레코드에 비해 크기가 작으므로 이동 시간을 줄일 수 있을 뿐만 아니라 좀더 적은 공간을 사용한다.

예:

하나의 리스트 시작 q = 2, 이것은 (10, 25, 30, 50) 을 의미하고, 다른 리스트 시작 r = 5, 이것은 (15, 35, 55, 70) 을 의미한다. 합병 후,

link: 8 5 4 7 3 0 1 6 합병 리스트의 시작 p = 2, 이것은 (10, 15, 25, 30, 35, 50, 55, 70)을 의미한다.

- 여기서 링크 값은 변수의 주소가 아니라 원소를 저장하고 있는 배열의 첨자값 이다.
- 링크 값이 0인 경우 이것은 리스트의 끝을 의미한다.

## 개선된 합병 정렬(lec4-5)

```
int MergeSort1 (int low, int high)
 // The global array a[low: high] is sorted in
 // nondecreasing order using the auxiliary array
 // link[low:high]. The values in link will
 // represent a list of the indices low through
 // high giving a[] in sorted order. A pointer
 // to the beginning of the list is returned.
     if (low < high)
        int mid = (low + high)/2;
        int q = MergeSort1(low, mid);
        int r = MergeSort1(mid+1, high);
        return(Merge1(q,r));
     else return low;
 }
```

## 링크를 사용하는 합병(lec4-5)

```
int Merge1 (int q, int r)
 // The lists q and r are merged and
 // a pointer to the beginning of the merged list is returned.
    int i=q, j=r, k=0;
    // The new list starts at link[0]. → p 에 해당함.
    while (i != 0 && j != 0) { // While both lists are nonempty do
       if (a[i] \le a[j]) \{ // \text{ Find the smaller key.} \}
         link[k] = i; k = i; i = link[i]; // Add a new key to the list.
       else {
         link[k] = j; k = j; j = link[j];
    if (i == 0) link[k] = j;
    else link[k] = i;
    return(link[0]);
```

#### 예제

```
[0] [1] [2] [3] [4] [5] [6] [7] [8]
  a:
           50
               10
                   25
                       30
                            15
                               70
                                    35
                                         55
link:
        0
            0
                0
                    0
                        0
                            0
                                0
                                     0
                                         0
qrp
122
                                               (10,50)
        2
            0
                         0
                             0
                                0
                                         0
                                               (10,50), (25,30)
3 4 3
        3
            0
                     4
                         0
                             0
                                0
                                     0
                                         0
                                               (10,25,30,50)
232
        2
                3
                     4
            0
                             0
                                     0
                                         0
                                               (10,25,30,50)(15,70)
565
        5
                 3
            0
                     4
                             6
                                     0
                                         0
                3
                                               (10,25,30,50)(15,70)(35,55)
787
                             6
                                     8
            0
                     4
                                         0
575
        5
                3
                                               (10,25,30,50)(15,35,55,70)
            0
                     4
                                         6
                                0
252
        2
            8
                 5
                         7
                             3
                                         6
                                               (10, 15, 25, 30, 35, 50, 55, 70)
                                0
```