

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт искусственного интеллекта Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 5

построение комбинационных схем, реализующих СДНФ и СКНФ заданной логической функции от 4-х переменных по дисциплине

«ИНФОРМАТИКА»

Выполнил студент груг	Жерздев Егор Олегович	
Принял		Ассистент Павлова Е.С
Практическая работа выполн	ена «»2022 г.	Подпись студента
«Зачтено»	«»2022 г.	Подпись преподавателя

Москва 2022

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	3
1.1 Персональный вариант	3
2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	4
2.1Предварительная подготовка данных	Ζ
2.2Вывод формулы для СДНФ	5
2.3Вывод формулы для СКНФ	6
2.4Построение схем в лабораторном комплексе	7
3 ВЫВОДЫ	8
4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ	9

1 ПОСТАНОВКА ЗАДАЧИ

Логическая функция от четырех переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. Записать формулы СДНФ и СКНФ. Построить комбинационные схемы СДНФ и СКНФ в лабораторном комплексе, используя общий логический базис. Протестировать работу схем и убедиться в их правильности. Подготовить отчет о проделанной работе и защитить ее.

1.1 Персональный вариант

Логическая функция от четырех переменных, заданная в 16-теричной форме: 3767_{16}

2 ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

2.1 Предварительная подготовка данных

Преобразуем заданную логическую функцию в двоичную запись: 0011 0111 0110 0111_2 - получили столбец значений логической функции, который необходим для восстановления полной таблицы истинности.

Таблица 1 – Таблица истинности заданной функции

a	b	c	d	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2.2 Вывод формулы для СДНФ

Запишем формулу СДНФ, для чего рассмотрим наборы значений переменных, на которых функция равна единице. Для каждого набора переменные, равные нулю, берем с отрицанием, а переменные, равные единице, без отрицания. В результате получим множество совершенных конъюнкций, объединив которые через дизъюнкцию, образуем формулу СДНФ.

Таблица 2 – Таблица СДНФ

a	b	c	d	F
0	0	1	0	1
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

 $\begin{array}{c} \text{Fедн} \varphi = \overline{a} \cdot \overline{b} \cdot c \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot c \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot d + \overline{a} \cdot b \cdot c \cdot \overline{d} + \overline{a} \cdot b \cdot c \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot b \cdot \overline{c} \cdot d + a \cdot b \cdot \overline{c} \cdot d \\ \hline \end{array}$

2.3 Вывод формулы для СКНФ

Запишем формулу СКНФ, для чего рассмотрим наборы значений переменных, на которых функция равна нулю (смотри табл.3). Для каждого набора переменные, равные единице, надо взять с отрицанием, а переменные, равные нулю, без отрицания. В результате мы получим множество совершенных дизъюнкций, объединив которые через конъюнкцию образуем формулу СКНФ.

Таблица 3 – Таблица истинности заданной функции

a	b	c	d	F
0	0	0	0	0
0	0	0	1	0
0	1	0	0	0
1	0	0	0	0
1	0	1	1	0
1	1	0	0	0

$$\begin{tabular}{l} {\rm Fcкh} \varphi = & (a+b+c+d) \cdot (a+b+c+\bar{d}) \cdot (a+\bar{b}+c+d) \cdot (\bar{a}+b+c+d) \cdot \\ & (\bar{a}+b+\bar{c}+\bar{d}) \cdot (\bar{a}+\bar{b}+c+d) \end{tabular}$$

2.4 Построение схем в лабораторном комплексе

Построим в лабораторном комплексе комбинационные схемы,

реализующие СДНФ и СКНФ рассматриваемой функции в общем логическом базисе,протестируем их работу и убедимся в их правильности.

3 выводы

Тестирование показало, что схемы работают правильно.

4 ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ