Studenckie Koło Naukowe Math4You Wydział Informatyki Politechniki Białostockiej

Zbiory przybliżone Polska szkoła sztucznej inteligencji

Jan Gromko

22 kwietnia 2017 r.

Plan referatu

Wprowadzenie

Czym są zbiory przybliżone – historia i idea Podstawowe pojęcia

Problem redukcji

Istota problemu redukcji Prosty algorytm redukcji Problem złożoności wyznaczania reduktów Przybliżone metody wyznaczania reduktu

Znaczenie zbiorów przybliżonych

Możliwości i zalety Zastosowania

Historia i idea

- ► Teoria zaproponowana w 1982 r. przez prof. Zdzisława Pawlaka.
- Wprowadzona jako nowe matematyczne podejście do pojęć nieostrych i metoda analizy danych.

Podstawy

- ► Zbiory przybliżone oparte są o logikę trójwartościową;
- zbiór przybliżony jest zbiorem niedefiniowalnym nie można go jednoznacznie scharakteryzować na podstawie własności jego elementów.

Przykład

Pacjent	Ból głowy	Ból mięśni	Ból mięśni Temperatura	
1	nie	tak	podwyższona	tak
2	tak	nie	podwyższona	tak
3	tak	tak	wysoka	tak
4	nie	tak	tak normalna	
5	tak	nie	podwyższona	nie
6	nie	nie	nie wysoka	

Tabela 1. Tablica decyzyjna przykładowego zbioru.

$$S = (U, A, V, f)$$
 – system informacyjny

U – zbiór obiektów (uniwersum)

A – zbiór atrybutów

 $V = \bigcup_{a \in A} V_a$ – zbiór wszystkich możliwych wartości atrybutów

 V_a – dziedzina atrybutu $a \in A$

 $f: U \times A \rightarrow V$ – funkcja informacyjna

$$DT = (U, C, D, V, f)$$
 – tablica decyzyjna

C – zbiór atrybutów warunkowych

D – zbiór atrybutów decyzyjnych

 $A = C \cup D$ – zbiór atrybutów

U - pacjenci

 $C = \{b\'ol\ g\'lowy,\ b\'ol\ mię\'sni,\ temperatura\}$

D – grypa

Reguly decyzyjne

Problem:

Znaleźć zależność między występowaniem/niewystępowaniem grypy a symptomami występującymi u pacjentów, czyli znaleźć zależność między atrybutem decyzyjnym a wartościami atrybutów warunkowych, opisujących poszczególne obiekty.

Sprzeczności w zbiorze

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
2	tak	nie	podwyższona	tak
5	tak	nie	podwyższona	nie

Tabela 2. Sprzeczne informacje w zbiorze – przypadki, których nie można jednoznacznie sklasyfikować.

Relacja nierozróżnialności

Relację nierozróżnialności zdefiniowana jest jako

$$I(B) = \{(x, y) \in U \times U : \forall a \in B \ f(a, x) = f(a, y)\},\$$

gdzie $B \subseteq A$.

Jeśli $(x, y) \in I(B)$, wówczas obiekty x i y są nierozróżnialne ze względu na podzbiór atrybutów B.

Przykład – analiza danych

W oparciu o posiadane dane, można stwierdzić, że:

- ► {1,3,6} to zbiór przypadków, które (na podstawie atrybutów warunkowych) możemy *jednoznacznie* zaklasyfikować do grupy pacjentów chorych na grypę;
- ► {1,2,3,5,6} to zbiór przypadków, które *mogą* być zakwalifikowanie jako pacjenci chorzy na grypę;
- ► {2,5} to zbiór przypadków, które nie mogą być jednoznacznie zaklasyfikowane jako pacjenci, którzy są lub nie są chorzy na grypę.

Dolne przybliżenie

Wszystkie te elementy, które można jednoznacznie zaklasyfikować do danego zbioru, według posiadanej wiedzy na ich temat.

Górne przybliżenie

Wszystkie te elementy, których przynależności do danego zbioru nie można wykluczyć.

Rysunek 1. Przykładowy zbiór.

Dolne przybliżenie

Rysunek 2. Dolne przybliżenie zbioru.

Obszar brzegowy

Rysunek 3. Obszar brzegowy zbioru.

Górne przybliżenie

Rysunek 4. Górne przybliżenie zbioru.

Redukcja

Czy można zredukować zbiór pod względem atrybutów w ten sposób, by zachowana była rozróżnialność elementów z oryginalnego zbioru?

Macierz rozróżnialności

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 3. Macierz rozróżnialności.

g – ból głowy; m – ból mięśni; t – temperatura

Tworzenie macierzy rozróżnialności

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
1	nie	tak	podwyższona	tak
4	nie	tak	normalna	nie

Tabela 4. Fragment tablicy decyzyjnej.

	1	2	3	4	5	6
4	t	?	?	Ø	_	_

Tabela 5. Fragment macierzy rozróżnialności.

Tworzenie macierzy rozróżnialności

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
2	tak	nie	podwyższona	tak
4	nie	tak	normalna	nie

Tabela 6. Fragment tablicy decyzyjnej.

	1	2	3	4	5	6
4	t	g, m, t	?	Ø	_	_

Tabela 7. Fragment macierzy rozróżnialności.

Tworzenie macierzy rozróżnialności

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
3	tak	tak	wysoka	tak
4	nie	tak	normalna	nie

Tabela 8. Fragment tablicy decyzyjnej.

	1	2	3	4	5	6
4	t	g, m, t	g, t	Ø	_	_

Tabela 9. Fragment macierzy rozróżnialności.

Macierz rozróżnialności – oryginalny zbiór

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 10. Macierz rozróżnialności.

Macierz rozróżnialności – redukcja

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, t	g, t	Ø	_	_
5	g	Ø	t	Ø	Ø	_
6	Ø	Ø	Ø	t	g, t	Ø

Tabela 11. Macierz rozróżnialności po redukcji.

Możliwości

- ► Szukanie zależności między danymi,
- ► redukcja zbiorów danych,
- ▶ określenie wagi danych,
- ► generowanie reguł decyzyjnych.

Zalety

- Teoria ZP nie wymaga założeń na temat danych, takich jak prawdopodobieństwo czy rozmytość,
- ► szybkie algorytmy analizy danych,
- ► łatwa interpretacja wyników,
- matematyczna prostota.

Zastosowania

- ▶ Medycyna,
- ► farmakologia,
- ▶ bankowość,
- ► lingwistyka,
- ▶ rozpoznawanie mowy,
- ▶ ochrona środowiska,
- bazy danych.

Zastosowania – przykład

Ograniczenie liczby badań medycznych do jedynie tych, które są naprawdę konieczne do rozpoznania choroby.

- ► Zmniejszenie ryzyka powikłań u pacjenta,
- zmniejszenie kosztów badań.

Bibliografia

- [1] Zdzisław Pawlak
 Zbiory przybliżone nowa matematyczna metoda analizy danych
- [2] Leszek Rutkowski

 Metody i techniki sztucznej inteligencji

Pytania

