Statistical mechanical models for stabiliser codes subject to correlated noise

Joint work with Steve Flammia (USyd/Yale) Christopher Chubb

Centre for Engineered Quantum Systems University of Sydney

TQC 2018

christopher.chubb@sydney.edu.au christopherchubb.com

Two important questions about quantum codes:

- How do I decode?
- What is the threshold?

Two important questions about quantum codes:

- How do I decode optimally?
- What is the threshold?

Two important questions about quantum codes:

- How do I decode optimally?
- What is the fault-tolerant threshold?

Two important questions about quantum codes:

- How do I decode optimally?
- What is the fault-tolerant threshold?

Statistical mechanical mapping

Allows us to reappropriate techniques for studying stat. mech. systems to study quantum codes.

Statistical mechanical mapping

Allows us to reappropriate techniques for studying stat. mech. systems to study quantum codes.

Statistical mechanical mapping

Allows us to reappropriate techniques for studying stat. mech. systems to study quantum codes.

- Generalise mapping correlated noise for arbitrary codes
- Numerically show that mild correlations can lower the threshold of the toric code considerably
- Show how to apply our mapping to circuit noise via the history code
- Show that the stat. mech. mapping gives tensor network maximum likelihood decoders which generalise the MPS decoder of Bravyi, Suchara and Vargo

- Generalise mapping correlated noise for arbitrary codes
- Numerically show that mild correlations can lower the threshold of the toric code considerably
- Show how to apply our mapping to circuit noise via the history code
- Show that the stat. mech. mapping gives tensor network maximum likelihood decoders which generalise the MPS decoder of Bravyi, Suchara and Vargo

- Generalise mapping correlated noise for arbitrary codes
- Numerically show that mild correlations can lower the threshold of the toric code considerably
- Show how to apply our mapping to circuit noise via the history code
- Show that the stat. mech. mapping gives tensor network maximum likelihood decoders which generalise the MPS decoder of Bravyi, Suchara and Vargo

- Generalise mapping correlated noise for arbitrary codes
- Numerically show that mild correlations can lower the threshold of the toric code considerably
- Show how to apply our mapping to circuit noise via the history code
- Show that the stat. mech. mapping gives tensor network maximum likelihood decoders which generalise the MPS decoder of Bravyi, Suchara and Vargo

Let $[\![A,B]\!]$ be the scalar commutator of two Paulis, $AB=:[\![A,B]\!]BA$.

For a stabiliser code generated by $\{S_k\}_k$, and an error Pauli E,

$$H_E(ec{s}) := -\sum_i \sum_{\sigma \in \mathcal{P}_i} \overbrace{J_i(\sigma)}^{ ext{Coupling Disorder}} \overbrace{\prod_{k: \llbracket \sigma, S_k
rbracket} = -1}^{ ext{DoF}} s_k$$

for $s_k \in \{\pm 1\}$, and couplings $J_i(\sigma) \to \mathbb{R}$.

Take-aways

- ullet Ising-type, with interactions corresponding to single-site Paulis σ
- Disorder E flips some interactions (Ferro ↔ Anti-ferro)
- Local code ⇒ local stat. mech. model
- ullet Stat. mech. model has a symmetry: $s_j
 ightarrow s_j$ and $E
 ightarrow E S_j$

Let $[\![A,B]\!]$ be the scalar commutator of two Paulis, $AB=:[\![A,B]\!]$ BA.

For a stabiliser code generated by $\{S_k\}_k$, and an error Pauli E,

$$H_{E}(\vec{s}) := -\sum_{i} \sum_{\sigma \in \mathcal{P}_{i}} \underbrace{J_{i}(\sigma)}_{Coupling} \underbrace{\mathbb{I}[\sigma, E]}_{k: \llbracket \sigma, S_{k} \rrbracket = -1} \underbrace{\prod_{k: \llbracket \sigma, S_{k} \rrbracket = -1}}_{DoF} s_{k}$$

for $s_k \in \{\pm 1\}$, and couplings $J_i(\sigma) \to \mathbb{R}$.

Take-aways

- ullet Ising-type, with interactions corresponding to single-site Paulis σ
- Disorder E flips some interactions (Ferro \leftrightarrow Anti-ferro)
- Local code ⇒ local stat. mech. model
- ullet Stat. mech. model has a symmetry: $s_j
 ightarrow s_j$ and $E
 ightarrow E S_j$

Let $[\![A,B]\!]$ be the scalar commutator of two Paulis, $AB=:[\![A,B]\!]BA$.

For a stabiliser code generated by $\{S_k\}_k$, and an error Pauli E,

$$H_{E}(\vec{s}) := -\sum_{i} \sum_{\sigma \in \mathcal{P}_{i}} \underbrace{\int_{i}(\sigma)}_{Coupling} \underbrace{\mathbb{I}[\sigma, E]}_{k: \llbracket \sigma, S_{k} \rrbracket = -1} \underbrace{\prod_{k: \llbracket \sigma, S_{k} \rrbracket = -1}}_{coupling} s_{k}$$

for $s_k \in \{\pm 1\}$, and couplings $J_i(\sigma) \to \mathbb{R}$.

Take-aways:

- ullet Ising-type, with interactions corresponding to single-site Paulis σ
- Disorder E flips some interactions (Ferro \leftrightarrow Anti-ferro)
- Local code ⇒ local stat. mech. model
- ullet Stat. mech. model has a symmetry: $s_j o -s_j$ and $E o ES_j$

Suppose we have an independent error model

$$\Pr(E) = \prod_i p_i(E_i).$$

Nishimori condition: $\beta J_i(\sigma) = \frac{1}{4} \sum_{\tau \in \mathcal{P}} \log p_i(\tau) \llbracket \sigma, \tau \rrbracket$,

Using the Fourier-like orthogonality relation $rac{1}{4}\sum_\sigma \llbracket\sigma, au
rbracket=\delta_{ au,I}$ we get that

$$e^{-\beta H_E(1)} = \Pr(E).$$

Together with the previous symmetry,

$$Z_E = \sum_{\vec{s}} e^{-\beta H_E(\vec{s})} = \sum_S e^{-\beta H_{ES}(\vec{1})} = \sum_S \Pr(ES) = \Pr(\overline{E})$$

Suppose we have an independent error model

$$\Pr(E) = \prod_i p_i(E_i).$$

Nishimori condition: $\beta J_i(\sigma) = \frac{1}{4} \sum_{\tau \in \mathcal{P}} \log p_i(\tau) \llbracket \sigma, \tau \rrbracket$,

Using the Fourier-like orthogonality relation $\frac{1}{4}\sum_{\sigma} \llbracket \sigma, \tau \rrbracket = \delta_{\tau,I}$ we get that

$$e^{-\beta H_E(\vec{1})} = \Pr(E).$$

Together with the previous symmetry,

$$Z_E = \sum_{\vec{s}} e^{-\beta H_E(\vec{s})} = \sum_S e^{-\beta H_{ES}(\vec{1})} = \sum_S \mathsf{Pr}(ES) = \mathsf{Pr}(\overline{E}).$$

Consider the free energy cost of a logical operator L,

$$\Delta_{E}(L) = -\frac{1}{\beta} \log Z_{EL} + \frac{1}{\beta} \log Z_{E} = \frac{1}{\beta} \log \frac{\Pr(\overline{E})}{\Pr(\overline{EL})}.$$

	Quantum code	Stat. mech. system
Below threshold	$\{\Pr(\overline{EL})\}_L$ peaked	$\Delta(L) \to \infty$ (in mean)
Above threshold	$\{\Pr(\overline{EL})\}_L$ flat	$\Delta(L) o 0$ (in prob.)

Consider the free energy cost of a logical operator L,

$$\Delta_{E}(L) = -\frac{1}{\beta} \log Z_{EL} + \frac{1}{\beta} \log Z_{E} = \frac{1}{\beta} \log \frac{\Pr(\overline{E})}{\Pr(\overline{EL})}.$$

	Quantum code	Stat. mech. system
Below threshold	$\{\Pr(\overline{EL})\}_L$ peaked	$\Delta(L) \to \infty$ (in mean)
Above threshold	$\{\Pr(\overline{EL})\}_L$ flat	$\Delta(L) o 0$ (in prob.)

Consider the free energy cost of a logical operator L,

$$\Delta_{E}(L) = -\frac{1}{\beta} \log Z_{EL} + \frac{1}{\beta} \log Z_{E} = \frac{1}{\beta} \log \frac{\Pr(\overline{E})}{\Pr(\overline{EL})}.$$

	Quantum code	Stat. mech. system
Below threshold	$\{\Pr(\overline{EL})\}_L$ peaked	$\Delta(L) \to \infty$ (in mean)
Above threshold	$\{\Pr(\overline{\mathit{EL}})\}_L$ flat	$\Delta(L) o 0$ (in prob.)

Consider the free energy cost of a logical operator L,

$$\Delta_{E}(L) = -\frac{1}{\beta} \log Z_{EL} + \frac{1}{\beta} \log Z_{E} = \frac{1}{\beta} \log \frac{\Pr(\overline{E})}{\Pr(\overline{EL})}.$$

	Quantum code	Stat. mech. system
Below threshold	$\{\Pr(\overline{EL})\}_L$ peaked	$\Delta(L) ightarrow \infty$ (in mean)
Above threshold	$\{\Pr(\overline{EL})\}_L$ flat	$\Delta(\mathit{L}) ightarrow 0$ (in prob.)

Toric code

 $\mathsf{Bit} ext{-flip} o \mathsf{Random\text{-}bond Ising}^\mathbf{I}$ Indep. $X\&Z o 2 \times \mathsf{Random\text{-}bond Ising}$ Depolarising $o \mathsf{Random} ext{ 8-vertex model}$

Color code

 $\begin{array}{c} \mathsf{Bit}\text{-flip} \to \mathsf{Random} \ \mathsf{3}\text{-spin} \ \mathsf{Ising} \\ \mathsf{Phase}\text{-flip} \to \mathsf{Random} \ \mathsf{3}\text{-spin} \ \mathsf{Ising} \\ \mathsf{Depolarising} \to \mathsf{Random} \ \mathsf{interacting} \ \mathsf{8}\text{-vertex}^2 \end{array}$

Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

²Bombin et.al., PRX 2012, doi:10/crz5, arXiv:1202.1852

Toric code

Bit-flip \rightarrow Random-bond Ising¹
Indep. $X\&Z \rightarrow 2\times$ Random-bond Ising
Depolarising \rightarrow Random 8-vertex model²

Color code

 $\mathsf{Bit} ext{-flip} o \mathsf{Random 3-spin Ising} \ \mathsf{Phase} ext{-flip} o \mathsf{Random 3-spin Ising} \ \mathsf{Depolarising} o \mathsf{Random interacting 8-vertex}^3$

Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

²Bombin et.al., PRX 2012, doi:10/crz5, arXiv:1202.1852

Toric code

 $\begin{array}{l} {\sf Bit\text{-}flip} \to {\sf Random\text{-}bond\ Ising}^1 \\ {\sf Indep}.\ X\&Z \to 2{\times}{\sf Random\text{-}bond\ Ising} \\ {\sf Depolarising} \to {\sf Random\ 8\text{-}vertex\ model}^2 \end{array}$

Color code

 $\mathsf{Bit} ext{-flip} o \mathsf{Random 3-spin Ising}$ $\mathsf{Phase} ext{-flip} o \mathsf{Random 3-spin Ising}$ $\mathsf{Depolarising} o \mathsf{Random interacting 8-vertex}$

Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

²Bombin et.al., PRX 2012, doi:10/crz5, arXiv:1202.1852

Toric code

 $\begin{array}{l} {\sf Bit\text{-}flip} \to {\sf Random\text{-}bond\ Ising}^1 \\ {\sf Indep}.\ X\&Z \to 2{\times}{\sf Random\text{-}bond\ Ising} \\ {\sf Depolarising} \to {\sf Random\ 8\text{-}vertex\ model}^2 \end{array}$

Color code

 $\begin{array}{c} {\sf Bit\text{-flip}} \to {\sf Random\ 3\text{-spin\ lsing}} \\ {\sf Phase\text{-flip}} \to {\sf Random\ 3\text{-spin\ lsing}} \\ {\sf Depolarising} \to {\sf Random\ interacting\ 8\text{-vertex}}\ ^2 \end{array}$

¹Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

²Bombin et.al., PRX 2012, doi:10/crz5, arXiv:1202.1852

The key point independence gave us was the ability to factor our noise model

$$\Pr(E) = \prod_i p_i(E_i).$$

We can generalise this to correlated models:

Factored distribution

An error model factors over regions $\{R_j\}_j$ if there exist $\phi_j:\mathcal{P}_{R_i} o\mathbb{R}$ such that

$$\Pr(E) = \prod_{j} \phi_{j} \left(E_{R_{j}} \right)$$

This model includes many probabilistic graphical models, such as Bayesian Networks and Markov Random Fields.

The key point independence gave us was the ability to factor our noise model

$$\Pr(E) = \prod_i p_i(E_i).$$

We can generalise this to correlated models:

Factored distribution

An error model factors over regions $\{R_i\}_i$ if there exist $\phi_i: \mathcal{P}_{R_i} \to \mathbb{R}$ such that

$$\Pr(E) = \prod_{j} \phi_{j} \left(E_{R_{j}} \right)$$

This model includes many probabilistic graphical models, such as Bayesian Networks and Markov Random Fields.

The construction works pretty much the same as before, changing $\sigma \in \mathcal{P}_i$ to $\sigma \in \mathcal{P}_{R_i}$:

$$H_E(ec{s}) := -\sum_j \sum_{\sigma \in \mathcal{P}_{R_j}} J_j(\sigma) \left[\!\left[\sigma, E
ight]\!\right] \prod_{k: \left[\!\left[\sigma, S_k
ight]\!\right] = -1} s_k$$

Nishimori condition:
$$\beta J_j(\sigma) = \frac{1}{|\mathcal{P}_{R_j}|} \sum_{\tau \in \mathcal{P}_{R_j}} \log \phi_j(\tau) \left[\!\left[\sigma, \tau\right]\!\right],$$

As before we get that $Z_E = \Pr(\overline{E})$, and so the threshold manifests as a phase transition.

The construction works pretty much the same as before, changing $\sigma \in \mathcal{P}_i$ to $\sigma \in \mathcal{P}_{R_i}$:

$$H_{E}(\vec{s}) := -\sum_{j} \sum_{\sigma \in \mathcal{P}_{R_{j}}} J_{j}(\sigma) \left[\!\left[\sigma, E\right]\!\right] \prod_{k: \left[\!\left[\sigma, S_{k}\right]\!\right] = -1} s_{k}$$

Nishimori condition:
$$\beta J_j(\sigma) = \frac{1}{|\mathcal{P}_{R_j}|} \sum_{\tau \in \mathcal{P}_{R_j}} \log \phi_j(\tau) \left[\!\!\left[\sigma,\tau\right]\!\!\right],$$

As before we get that $Z_E = \Pr(\overline{E})$, and so the threshold manifests as a phase transition.

Toric code with correlated bit-flipsCorrelations induce longer-range interactions

Toric code with correlated bit-flipsCorrelations induce longer-range interactions

Toric code with correlated bit-flipsCorrelations induce longer-range interactions

Toric code with correlated bit-flipsCorrelations induce longer-range interactions

Monte Carlo simulations

¹Dennis et.al., JMP 2002, doi:10/cs2mtf, arXiv:quant-ph/0110143

Noise followed by ideal measurements is unrealistic. In reality, circuits will be faulty.

Applying measurement circuits will tend to spread around and correlate noise:

We will consider measurement circuits of the form

where U is a Clifford and M is a Pauli.

For convenience we only consider independent noise on each circuit. We also will push noise through until after the unitary:

We will consider measurement circuits of the form

where U is a Clifford and M is a Pauli.

For convenience we only consider independent noise on each circuit. We also will push noise through until after the unitary:

 $Pr(Error history) = \prod_{i} Pr(Error after meas. i | Error before meas. i)$

 $Pr(Error history) = \prod_{i} Pr(Error after meas. i \mid Error before meas. i)$

C. T. Chubb Correlated stat. mech. mapping

 $Pr(Error history) = \prod_{i} Pr(Error after meas. i \mid Error before meas. i)$

History code

History code:

- Qubits placed at points in space-time (including ancillae)
- Stabiliers correspond to measurements and stabilisers at final time
- Logicals correspond to logicals at final time
- Circuit noise on original code = Spatially correlated noise on history code
- FT decoding of original code = Decoding the history code
- ET threshold of original code Threshold of history code

History code

History code:

- Qubits placed at points in space-time (including ancillae)
- Stabiliers correspond to measurements and stabilisers at final time
- Logicals correspond to logicals at final time
- Circuit noise on original code = Spatially correlated noise on history code
- FT decoding of original code = Decoding the history code
- $\bullet \ \mathsf{FT} \ \mathsf{threshold} \ \mathsf{of} \ \mathsf{original} \ \mathsf{code} = \mathsf{Threshold} \ \mathsf{of} \ \mathsf{history} \ \mathsf{code} \\$

Conclusions and further work

- Extended the stat. mech. mapping to correlated models
- Can apply stat. mech. mapping to circuit noise via the history code
- Stat. mech. mapping gives tensor network maximum likelihood decoders

- Can we apply this to experimentally relevant correlated models?
- Can we use the decoders to understand to better understand the connection between correlation and the threshold (ongoing work).