Semi-intrusive uncertainty quantification for reliable simulations

Anna Nikishova¹ Dongwei Ye¹ Lourens Veen²
Pavel Zun¹ Alfons G. Hoekstra¹

¹Computational Science Lab, University of Amsterdam ²Netherlands eScience Center

17 February 2020

Introduction

Credibility of computational models Uncertainty Quantification Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results Comparison of SA results

Introduction

Credibility of computational models Uncertainty Quantification Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results Comparison of SA results

Introduction

Credibility of computational models

Uncertainty Quantification Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results Comparison of SA results

Credibility of computational models

Credibility

the willingness of persons to base decisions on information obtained from the model.^[1]

Lee W Schruben. "Establishing the credibility of simulations". In: Simulation 34.3 (1980), pp. 101–105.

^[2] Lealem Mulugeta et al. "Credibility, replicability, and reproducibility in simulation for biomedicine and clinical applications in neuroscience". In: Frontiers in neuroinformatics 12 (2018), p. 18.

Credibility of computational models

Credibility

the willingness of persons to base decisions on information obtained from the model. [1]

Reproducibility

the ability of a simulation to be copied by others to provide a simulation that provides the same results.^[2]

^[1] Lee W Schruben. "Establishing the credibility of simulations". In: Simulation 34.3 (1980), pp. 101–105.

^[2] Lealem Mulugeta et al. "Credibility, replicability, and reproducibility in simulation for biomedicine and clinical applications in neuroscience". In: Frontiers in neuroinformatics 12 (2018), p. 18.

Credibility of computational models

Credibility

the willingness of persons to base decisions on information obtained from the model. [1]

Reproducibility

the ability of a simulation to be copied by others to provide a simulation that provides the same results.^[2]

Reliability

the ability of the model to produce accurate and precise results.

^[1] Lee W Schruben. "Establishing the credibility of simulations". In: Simulation 34.3 (1980), pp. 101–105.

^[2] Lealem Mulugeta et al. "Credibility, replicability, and reproducibility in simulation for biomedicine and clinical applications in neuroscience". In: Frontiers in neuroinformatics 12 (2018), p. 18.

VVUQ as parts of the reliability assessment

Introduction

Credibility of computational models

Uncertainty Quantification

Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results

Uncertainty Quantification (UQ) is a scientific field, which supports decision making using computational models that involve uncertainties.

Uncertainty Quantification (UQ) is a scientific field, which supports decision making using computational models that involve uncertainties.

Uncertainty Quantification (UQ) is a scientific field, which supports decision making using computational models that involve uncertainties.

Introduction

Credibility of computational models Uncertainty Quantification

Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results Comparison of SA results

Scale separation map^[3]

Alfons G Hoekstra et al. "Towards a complex automata framework for multiscale modeling: Formalism and the scale separation map". In: International Conference on Computational Science. Springer. 2007, pp. 4922–930.

Introduction

Credibility of computational models
Uncertainty Quantification
Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results Comparison of SA results

Non-intrusive vs semi-intrusive methods^[4]

^[4] A Nikishova et al. "Semi-intrusive multiscale metamodelling uncertainty quantification with application to a model of in-stent restenosis". In: *Philosophical Transactions of the Royal Society A* 377.2142 (2019), p. 20180154.

Non-intrusive vs semi-intrusive metamodeling methods

Introduction

Credibility of computational models
Uncertainty Quantification
Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results Comparison of SA results

2D multiscale model of in-stent restenosis

2D multiscale model of in-stent restenosis

2D multiscale model of in-stent restenosis

UQ methods:

- Non-intrusive quasi-Monte Carlo (QMC)
 - reference solution
 - ▶ 1024 samples
 - ► ~90 minutes per sample
- Non-intrusive metamodeling (NIM)
 - ▶ 128 training samples
 - ► training takes ~5 minutes
 - ▶ ~7 times speed up
- Semi-intrusive metamodeling (SIUQ)
 - 4 training samples
 - ► ~15 minutes per sample
 - ightharpoonup ~7 times speed up

Introduction

Credibility of computational models
Uncertainty Quantification
Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results Comparison of SA results

Introduction

Credibility of computational models Uncertainty Quantification Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results

Comparison of SA results

Introduction

Credibility of computational models Uncertainty Quantification Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results

Comparison of SA results

Introduction

Credibility of computational models
Uncertainty Quantification
Multiscale models

Uncertainty Quantification of multiscale models

Application

Results

Comparison of UQ results Comparison of SA results

- Multiscale models provide advantages in UQ
 - Better control, since physics is preserved;
 - More accurate metamodeling;
 - Analysis of computationally cheap single-scale models.^[5]

- Multiscale models provide advantages in UQ
 - Better control, since physics is preserved;
 - More accurate metamodeling;
 - Analysis of computationally cheap single-scale models.^[5]

Thank you!

A.Nikishova@uva.nl