Clustering

Project no. 3 [20 p.]

Exercises

Exercise 3.1. [10 p.]

Test the effect of various methods design to detect outliers / anomalies. Consider **Ann-thyroid** data set, that cosists of 7200 instances and 22 variables, is summarized in a table below.

Characteristic	Info	Counts (Percentage)
Numerical variables	V1, V17-V21	6
Binary variables	V2-V16	15
Class Variable	V22	values: 1, 2, 3
Anomaly classes	1, 2	534 (~8%)

Please note that those data are described in the literature (see e.g. [Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. Isolation forest. Data Mining, 2008. ICDM'08.]) to contain known anomaly classes. Hence, we can treat those classes as ground truth and evaluate results of outliers detection algorithms using various measures like AUC, Accuracy, Precision, Recall, etc.

Experiment

- 1. In [Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. Isolation forest. Data Mining, 2008. ICDM'08.] it was suggested to remove all binary variables in order to compare chosen anomaly detection algorithms.
- 2. Assume that anomaly labels are unavailable in the training stage.
- 3. Use
 - DBSCAN
 - HDBSCAN
 - · One-class SVM
 - Isolation Forests
 - Local Outlier Factor in order to detect possible outliers / anomalies.
- 4. Evaluate and compare used methods based on their results using AUC, Accuracy, Precision and Recall.
- 5. Present your results and conclusions in Jupyter Notebook or knitr short report.

Exercise 3.2. [10 p.]

The Clustering Results Repository (v1.1.0) [https://github.com/gagolews/clustering_results_v1/] provides results obtained using various clustering methods on more than 200 datasets. See also:

- $\bullet \ \, \text{https://clustering-benchmarks.gagolewski.com/weave/results-v1.html\#clustering-results-repository-v1-1-0} \\$
- $\bullet \ \ https://clustering-benchmarks.gagolewski.com/weave/file-format.html\#clustering-results$
- $\bullet \ \ https://clustering-benchmarks.gagolewski.com/weave/true-vs-predicted.html$

Select one method and prepare report that will include:

- short description of the method;
- comparison of the results of this method to others available in the repository;

• analysis of the strengths and weaknesses of the method, e.g. on selected data sets.

All data sets are available at $Benchmark\ Suite\ for\ Clustering\ Algorithms$ - $Version\ 1^1\ [https://github.com/g\ agolews/clustering_benchmarks_v1].$

Note that some data sets are difficult for all algorithms.

¹M. Gagolewski and others (Eds.), Benchmark Suite for Clustering Algorithms – Version 1, 2020, doi:10.5281/zenodo.3815066