线段树

算法流程

复杂度分析

实际应用

选讲

树状数组

算法流程

复杂度证明

实际应用

选讲

线段树合并

算法流程

复杂度分析

实际应用

练习题

线段树分裂

算法流程

复杂度分析

实际应用

可持久化线段树

算法流程

复杂度分析

实际应用

练习题

李超线段树

算法流程

复杂度分析

实际应用

线段树

算法流程

有一个序列,要区间修改、区间求和和求区间最值,怎么做?

显然有一种nq的做法,暴力查、改所选区间。

算法复杂度是不能接受的。

还可以怎么做?

显然可以将长度为n序列分为等长的 \sqrt{n} 块,每一块分别维护 整块的和 和 对整块的序列加上的相同的数是多少,还有区间最值。

区间加和区间求和相同,查询或修改区间由中间连续的整块和两边长度小于 \sqrt{n} 的散块构成。

中间连续的整块最多有 \sqrt{n} 块,散块有 $O(\sqrt{n})$ 个,总复杂度 $n\sqrt{n}$ 。

而线段树,则是在此基础上的进一步优化,进行优雅的分块,可用logn的复杂度完成每次询问。

线段树的本质是一颗二叉树,不同于其它二叉树,线段树的每一个节点记录的是一段区间的信息。 先来看线段树的结构(下面是对于长度5的序列建的树):

实际就是将上一层的节点每个都砍作均匀的两块。

节点上的数字即代表某个点所管辖的范围。

如下演示更改某一个点的过程。

以下将用仅有区间修改和区间求和的线段树进行演示。

创建节点

通常会选用结构体,不过题目不复杂情况下可用数组模拟。

• 快速找子节点

设当前点编号为id, 左儿子编号为 $id \times 2$,右儿子编号为 $id \times 2 + 1$ 。

当然你也可以在建树时将左右儿子编号存下来。

建树

```
void built(int u,int l,int r){//初始化线段树
    len[u]=r-l+1;//计算当前点对应的区间长度
    if(l==r)return tr[u]=sum[l],void(0);
    int mid=(l+r)/2;
    built(u*2,l,mid),built(u*2+1,mid+1,r);
    tr[u]=tr[u*2]+tr[u*2+1];
    return ;
}
```

主函数内调用built(1,1,n)建树。

• 单点修改?

```
void modify(int u,int l,int r,int pla,int sumn){
    if(l==r)return tr[u]=sumn,void(0);
    int mid=(l+r)/2;
    if(pla<=mid)modify(u*2,l,mid,pla,sumn);
    else modify(u*2+1,mid+1,r,pla,sumn);
    tr[u]=tr[u*2]+tr[u*2+1];//需要往上继续更新节点信息
    return;
}</pre>
```

• 区间查询?

有三种情况:

- 1、区间在id节点的左半边,递归往下ls(左儿子)
- 2、区间在id节点的右半边,递归往下rs(右儿子)
- 3、区间包含id节点的中点,区间以中点分段,分别递归ls、rs


```
int query(int u,int l,int r,int L,int R){
   if(L<=l&&r<=R)return tr[u];
   int mid=(l+r)/2,ansn=0;
   if(L<=mid)ansn+=query(u*2,l,mid,L,R);
   if(R>mid)ansn+=query(u*2+1,mid+1,r,L,R);
   return ansn;
};
```

• 区间修改?

引入lazy标记,某一个点上的lazy标记即代表这个区间每个数被加上的共同值是多少。

将标记lazy打在区间上,表示该区间会有一个lazy的增加。

如果在之后的维护或查询过程中,需要对这个结点递归地进行处理,则当场将这个标记分解,传递给它的两个子结点,这样就不需要考虑自根结点开始的影响了。

方便起见,我们将lazy tag的下传和值的上传分别写成两个函数。

```
void pushdown(int u){//下传信息
    if(!tag[u])return;
    //若当前点有lazy tag
    tr[u*2]+=tag[u]*len[u*2];
    tr[u*2+1]+=tag[u]*len[u*2+1];//左右儿子的值分别更新
    tag[u*2]+=tag[u];
    tag[u*2+1]+=tag[u];//lazy tag继续下传
    tag[u]=0;//当前点的lazy tag用过了,清零
    return;
}

void update(int u){//更新当前节点的信息(即将被包含于它的区间信息回传给它)
    tr[u]=tr[u*2]+tr[u*2+1];
    return;
}
```

如下为区间修改和查询:

```
void modify(int u,int 1,int r,int L,int R,int k){//修改
    if(L \le 1\&\&r \le R)
        tag[u]+=k;//给区间打上lazy tag标记
        tr[u]+=len[u]*k;
        return ;
    }
    pushdown(u);//下传标记
    int mid=(1+r)/2;
    if(L<=mid)modify(u*2,1,mid,L,R,k);</pre>
    if(R>mid)modify(u*2+1,mid+1,r,L,R,k);
    update(u);//回传值更新当前点
    return ;
}
int query(int u,int l,int r,int L,int R){//查询
    if(L \le 1\&\&r \le R) return tr[u];
    pushdown(u);//下传标记
    int mid=(1+r)/2, ans n=0;
    if(L<=mid)ansn+=query(u*2,1,mid,L,R);</pre>
    if(R>mid)ansn+=query(u*2+1,mid+1,r,L,R);
    return ansn;
}
```

复杂度分析

线段树有log(n)层,单点修改和单点查询都是log(n)的。

区间修改查询时,注意到每层只会下传区间左右端点所属的区间,每层下传两个节点,复杂度log(n)。总复杂度nlog(n)。

实际应用

线段树非常的万能,什么区间信息都可以试着用线段树搞一搞。

P3372 【模板】线段树 1

建议先写一写这道。

P1198 [JSOI2008] 最大数

P3373 【模板】线段树 2

上面三道基本上是板子。

P1083 [NOIP2012 提高组] 借教室

题解:线段树区间减,维护最小值,最小值小于零就完蛋。也有二分做法,要听就讲。

给定长度为n的数列a,以及m条指令(n,m<=50000),每条指令是以下两种之一:

1、"0 x y",把a[x]改成y

2、"1 x y",查询区间[x,y]中的最大连续子段和

对于每一个询问,输出一个整数表示答案

题解:本题建立的线段树节点除了区间的端点,还需要维护4个信息:区间和sum,区间最大连续子段和temp,紧靠左端的最大连续字段和lmax,紧靠右端的最大连续子段和rmax。update里顺便处理一下就行。

给定一个长度为n的序列a,以及m条指令 $(n, m \le 2 * 10^5)$,每条指令可能是以下两种之一:

1、"C l r d", 表示把a[l],a[l+1],...,a[r]都加上d

2、"Q l r", 表示询问a[l],a[l+1],...,a[r]的最大公约数

对于每个询问,输出一个整数表示答案

(tips: 和欧几里得算法有一定关系,关系不大)

(tips plus: gcd(x,y)=gcd(x-y,y))

题解: 相信大家已经掌握了线段树了, 咕咕咕。

我们知道, gcd(x,y)=gcd(x,y-x), 对于三个数, 也成立: gcd(x,y,z)=gcd(x,y-x,z-y)

实际上,对于任意多个整数,上述式子都成立

因此,构造原数组的差分序列b

这样一来,询问"Q l r",就等价于求出gcd(a[l],query(1,l+1,r))

因此原序列的区间修改变成了单点修改。

求单点的值还需要线段树求前缀和,不过用接下来要讲的树状数组也可以。

P2672 [NOIP2015 普及组] 推销员

P1442 铁球落地 (较难, 没时间或者没学过dp就算了)

P8868 [NOIP2022] 比赛 深刻理解线段树打标记

PS: 线段树要多写, 写几遍就熟练了。

选讲

zkw线段树,不用递归! 然而并没有什么用

猫树! 超速处理线段树上的静态问题! 有点用但是不多

有时间再讲吧, 咕咕咕。

P6242 【模板】线段树 3 (区间最值操作、区间历史最值) 吉司机线段树, 尽在线段树3!

• 动态开点线段树

如果线段树开在值域上,值域很大直接把线段树每一个节点建出来空间起飞。

当我们访问到一个区间时, 在对对应节点开点。

此时我们不再用 $u \times 2$ 和 $u \times 2 + 1$ 表示左右儿子,而用两个指针指向左右儿子。

对应到刚才单点修改代码:

```
void modify(int &u,int l,int r,int pla,int sumn){
   if(!u)u=++cnt;
   if(l==r)return tr[u]=sumn,void(0);
   int mid=(l+r)/2;
   if(pla<=mid)modify(ls[u],l,mid,pla,sumn);
   else modify(rs[u],mid+1,r,pla,sumn);
   tr[u]=tr[ls[u]]+tr[rs[u]];
   return;
}</pre>
```

• 线段树优化建图

有一类问题,从一个点向 [l,r] 区间内每一个点连边,或者将 $[l_1,r_1]$ 中每个点向 $[l_2,r_2]$ 中每个点连边 如果一个个连复杂度是不能承受的。

但如果用线段树将 [l,r] 的区间拆成 logn 个区间,每个区间对应线段树上一个点,再对这些点连边,就可以在 logn 时间内完成操作。

例题: <u>CF786B</u>

Sol:板!

树状数组

线段树完全可以实现树状数组所有功能,但树状数组代码极短且常数小,实际能用树状数组绝不用线段 树。

算法流程

我们知道求一个区间的和可以转化为两个前缀和相减。

但如果暴力修改前缀和复杂度不能接受。

为什么慢? 重复计算了某些区间。

可利用分块思想只计算当前所属的块。

如何高效分块?即是树状数组解决的问题。

树状数组本质也是和线段树差不多的二叉树,但其使用了二进制数的特性,使其十分精巧。

先上结构图:

发现这么一件事:将当前点下标用二进制表示,二进制中从小到大第一个1所表示的十进制数设为k,当前点的管辖范围即为包括当前点和它前面长度为k的区间。

例如 6的二进制为110,最后一位为中间的1,则管辖长度为 2^1 ,管辖区间为[5-6];而8的二进制为1000,则管辖长度为 2^3 ,管辖区间为

[1-8].

为什么是这样呢? 我们将1-8的二进制列出:

1: 1 5: 101

2: 10 6: 110

3: 11 7: 111

4: 100 8: 1000

每到长度为 2^k 的地方,最大的区间大小会乘2,而后又开始重复 2^{k-1} 时的区间分割。

在二进制上则表现为 每到长度为 2^k 的地方,最高位后移,除了最高位的位上又开始重复 2^{k-1} 时的循环。

两者恰好——对应。 (据说树状数组本身是找规律找出来的)

还有另一种思考方式。

根据任意正整数的关于2的不重复次幂的唯一分解性质,即任意正整数只有唯一的二进制表示形式。

即x可以被唯一表示为 $x = 2^{i1} + 2^{i2} + \ldots + 2^m$,则可以将1 - x划分为m个区间,分别为:

$$[1-2^{i1}], [2^{i1}+1, 2^{i2}], \ldots, [2^{m-1}+1, 2^m]$$
.

考虑构造这样一个数组,发现将当前点下标用二进制表示,二进制中从小到大第一个1所表示的十进制数设为k,当前点的管辖范围即为包括当前点和它前面长度为k的区间。

例如 $x=7=2^2+2^1+2^0$,那么区间[1,7]就可以分成[1,4],[5,6],[7,7]三个小区间,长度分别为 lowbit(4)=4、lowbit(6)=2、lowbit(7)=1

由此可以得到上述结构图。

先来看下代码:

```
inline int lowbit(int x){return x&-x;}
inline void add(int x,int y){
    while(x<=n)tr[x]+=y,x+=lowbit(x);
    return ;
}
inline int get(int x){
    int ansn=0;
    while(x)ansn+=tr[x],x-=lowbit(x);
    return ansn;
}</pre>
```

注意: 树状数组只能够支持前缀和查询。调用一次get函数得到的是1-x的前缀和。

lowbit(x)函数的作用是得到x二进制从小到大第一位为1的位所对应的十进制数。

函数add中 "x+=lowbit(x)": 由于上述 "在二进制上则表现为 每到长度为 2^k 的地方,最高位后移,除了最高位的位上又开始重复 2^{k-1} 时的循环。",x+lowbit(x)等同于将x的最低为1的位进位。

函数get中"x-=lowbit(x)"同理,即为跳出当前的块,跳入前面第一个和当前块无交的整块。

lowbit中的"x&-x": 众所周知负数在计算机中是由补码的形式储存, "x&-x"相当于将x的01反转(设反转后的数为y), 这样原来x从第1位开始连续的0都变成1, 再加1后相当于将y第1位开始连续的1依次进位直到第一个0, 也就是x第一个1的位置。设x第一个1的位置为k, y则1-(k-1)的位置都是0, 而(k+1)-最高位上x和y都不相同, 因此只有x&y只有第k位上是1。

复杂度证明

每次加lowbit,都会使最低位至少后移一位;每次减lowbit,都会使1减少一个,总复杂度nlog(n)。

实际应用

树状数组应用不如线段树广,不具有可减性的信息都不能用树状数组(例如求最大值),同时它也只能做到求前缀和,但实在是太好写了!

在一些毒瘤卡常题不能用线段树时,也会考虑用树状数组减小常数。

给你N个数,有两种操作

1: 给区间[a,b]的所有数都增加X

2: 询问第i个数是什么?

题解:差分前缀和QAQ

题解:值域树状数组QAQ

维护三个序列, 支持分别区间加区间乘, 查询三个序列对应位置的数之积之和。

题解:先从小规模入手。考虑只有一个序列,显然给线段树加tag且先乘后加。 多个序列?

给某个位置加 x, 相当于给答案增加了 x*一个常数, 这个常数是相同位置另两个数的乘积。于是维护七个元素即可。

P1966 [NOIP2013 提高组] 火柴排队双倍经验

P1972 [SDOI2009] HH的项链

树状数组卡常的题要用到cdq分治QAQ

多写几遍就熟练了(确信)

选讲

树状数组上二分/树状数组区间加区间求和/二维树状数组

咕了,有时间就讲吧。

完结撒花——

博客宣传

以上是在役时给初中讲课的ppt,反观现在的讲课水平....QAQ

线段树合并

算法流程

显然如果用节点开满的线段树,单次合并复杂度就是 $O(nlog^2n)$ 的。(线段树有 nlogn 个节点,插入一个节点复杂度是 logn 的)

因此需要上面的动态开点线段树。

假设两颗线段树为 A 和 B, 我们从 1号节点开始递归合并。

递归到某个节点时,如果 A 树或者 B 树上的对应节点为空,直接返回另一个树上对应节点,这里运用了动态开点线段树的特性。

如果递归到叶子节点,我们合并两棵树上的对应节点。

最后,根据子节点更新当前节点并且返回。

不对吧! 这复杂度不妥妥超预算吗? 且听我细细道来。

复杂度分析

可以证明将 n 棵只有一个元素的线段树合并成一棵线段树的复杂度是 O(nlogn) 的,证明如下。

如果一个位置被递归到了,就说明两棵线段树上相对应的位置都有节点,这两个节点会被合并为一个节点,视作其中一个节点被dfs后就删掉了。

每次dfs都会删掉路径上的节点,一共有 nlogn 个点,总复杂度就是 nlogn

tips:容易被卡空间的选手,建议把删掉的节点回收利用。

实际应用

P4556 [Vani有约会] 雨天的尾巴 /【模板】线段树合并

Sol:

树上路径覆盖? 树上差分!

每个点开棵线段树(下标为救济粮的类型),线段树维护数量最大的救济粮。如果要在 u->v 的路径上发放 z 类型的救济粮,在 u 的线段树上 z 的位置加一,v 同理。 lca 处对应位置减一。要求某个点救济粮和相应的数量,只要把子树内所有的线段树合并起来就好啦!于是从叶子往根依次dfs合并,当某个节点的子树dfs完了就计算这个节点。

练习题

P3224 [HNOI2012] 永无乡

线段树分裂

算法流程

如果要将线段树中 [l,r] 的树分裂出来,从上往下递归,如果节点被完全包含在区间内就直接拆出来;如果有部分重叠,就新建一个节点。将拆出来的节点连在新建的节点上得到新树。

复杂度分析

递归就相当于线段树区间查询的过程嘛! 单只 log。

实际应用

P5494 【模板】线段树分裂

给出一个可重集 a (编号为 1) ,它支持以下操作:

0 p x y : 将可重集 p 中大于等于 x 且小于等于 y 的值移动到一个新的可重集中(新可重集编号为从 2 开始的正整数,是上一次产生的新可重集的编号+1)。

1 p t : 将可重集 t 中的数放入可重集 p,且清空可重集 t(数据保证在此后的操作中不会出现可重集 t)。

 $2 p \times q$: 在 p 这个可重集中加入 x 个数字 q.

 $3 p \times y$: 查询可重集 p 中大于等于 x 且小于等于 y 的值的个数。

4 p k: 查询在 p 这个可重集中第 k 小的数,不存在时输出 -1 。

可持久化线段树

可以保存线段树的历史版本。

算法流程

对线段树做修改操作,怎么维护它的历史版本呢?

每次都把线段树复制一份再修改TLEMLE一片。

考虑单点修改每次只修改了一条链,只要把修改的链单独存起来就行。

对应到线段树上, 若现在修改的是下标为1位置上的值, 建出的树是:

访问红色1得到修改后的树,白色1得到修改前的树。

区间修改咋搞啊?

如果对红色2 打上标记,标记会下传到白色5,从而影响到历史版本,这并不是我们想要的。 因此标记不能下传,要将标记永久化在节点上。 比如,如果对修改后的树 8~11 都加上 k,就给 红2 打上一个加k的标记,查询 红8 的值时不仅要找到 红8 的值,还要将它所有祖先节点上的标记加起来。

复杂度分析

每次相当于改的是一条长度为 logn 的链,复杂度是单log的。

空间嘛,建议多开亿点数组。

实际应用

P3834 【模板】可持久化线段树 2

给定 n 个整数构成的序列 a,将对于指定的闭区间 [l,r] 查询其区间内的第 k 小值。

• 对于 100% 的数据,满足 $1 \le n, m \le 2 \times 10^5$, $0 \le a_i \le 10^9$, $1 \le l \le r \le n$, $1 \le k \le r - l + 1$ 。

Sol:

从左到右依次往值域线段树里加数,同时维护线段树的历史版本。

在第i个数加入后的线段树,保存了 $a_1, a_2, \ldots a_i$ 的信息。

如果将 r 个数加入后的线段树(设为A)减去 l-1 时的线段树(设为B),得到的信息就是 $a_l, a_{l+1} \dots a_r$ 的信息。

实操时并不需要真正执行线段树相减的操作,只需要用A的对应节点减去B的对应节点的信息,就能得到目标线段树对应节点的信息。

得到了对应的值域线段树,区间第k小怎么求?线段树上二分一下嘛。

P1972 [SDOI2009] HH的项链

给一个序列,每次询问[I,r]中不同的数的个数。

离线可以用树状数组做,考虑下在线的可持久化线段树做法。

Sol:

对于一个区间,只在某个数第一次出现的时候计数 设pre[i]表示a[i]这个数上一次出现的位置,没有则为0 那么答案就是[l,r]中满足(pre[i]< l)的个数

练习题

P2839 [国家集训队] middle

小拓展:

求支持单点修改的区间第k小?

Sol:

修改一个点,实际上会对后面所有线段树造成影响,一个一个修改不太现实。

那么用类似树状数组单点修改的方式,用 root[x] 维护子序列 [x-lowbit(x)+1,x] 的变化量。

查询的时候同时维护 log 棵树就好了。

总复杂度两只log。

(这真的还是可持久化吗)

tips: 类似地如果将并查集的 fa 数组用线段树维护并可持久化,这就叫可持久化并查集()

李超线段树

要求在平面直角坐标系下维护两个操作:

在平面上加入一条线段。记第 i 条被插入的线段的标号为 i。

给定一个数 k, 询问与直线 x=k 相交的线段中, 交点纵坐标最大的线段的编号。

坐标均为整数, 且规模较小。

算法流程

用线段树对于每个区间维护在 m=(I+r)/2 处取值最大的直线的信息。

现在我们需要插入一条线段 f, 在这条线段完整覆盖的线段树节点代表的区间中, 某些区间的最优线段可能发生改变。

考虑某个被新线段 f 完整覆盖的区间,若该区间无最优线段,则该线段可以直接成为最优线段。

否则, 设该区间的中点为 m, 我们拿新线段 f 在中点处的值与原最优线段 g 在中点处的值作比较。

如果新线段 f 更优,则将 f 和 g 交换并做下述操作。那么现在考虑在中点处 f 不如 g 优的情况:若在左端点处 f 更优,那么 f 和 g 必然在左半区间中产生了交点,递归到左儿子中进行插入;若在右端点处 f 更优,那么 f 和 g 必然在右半区间中产生了交点,递归到右儿子中进行插入。若在左右端点处 g 都更优,那么 f 不可能成为答案,不需要继续下传。

为什么要交换后判断下传?若f与g在左半区间有交点,说明g有可能成为左半区间中某个点的答案。 因此如果要查某个点的答案,要递归到叶子节点并将路径上的线段都比较一下。

复杂度分析

因为要比较左右端点哪条线段更优,节点上的线段必须要完全覆盖对应的区间。

因此加入一条线段要将它拆成 logn 条长度为 2^k 的线段,每条线段都要递归执行上述过程。

总复杂度两只log。

实际应用

Sol:

这不就是板子题嘛

P3081 [USACO13MAR] Hill Walk G

Sol:

令当前位置为 (x_{now}, y_{now}) , 要找线段满足在 x_{now} 处 $y_i \leq y_{now}$ 且 y_i 最大。

李超树仅能满足 y_i 最大,无法满足 $y_i \leq y_{now}$ 。

因为线段不交且单调上升,某一次在 x_{now} 上方的线段以后也永远用不到了。

所以只要一直删用不到的线段直到找到能用的。

关于李超树的删除:考虑加一条线段是什么过程。

是将在节点上的tag替换为更优的线段,并把原线段下传递归。

传到最后最劣的线段会被扔掉,因此无法保留劣线段的信息。

那么要被扔掉时开个堆,将线段存堆里,等在它上面的线段都删了再拿出来。

对于此题李超双log套堆为三log爆炸。

已知如果思路方向对, 做不出来大概是条件没挖够

线段不交还没用,对李超树线段交时才下传,因此少个log。

这种做法空间常数超大(动态开点李超+超多堆),考虑离散化+手写堆。。。 吸吸氧吧。

考虑还有没有其他简洁的做法。

还是从性质入手,设当前线段为 (x_1,y_1) — $>(x_2,y_2)$,下一条线段为 (x_3,y_3) — $>(x_4,y_4)$ 。

要满足 $x_1 <= x_3 < x_2 < x_4$,且在 $x = x_2$ 处下一条线段的 y 要小于 y_2 。

先将所有线段按照 x 排序,符合上述限制的线段是在一个区间($x_1 <= x_i < x_2$)内的。

依次将区间内符合限制的线段加入李超树,易知没加入的线段永远不会再用,且一条线段只被加一次就够了。

从前向后依次扫直到找不到答案为止。

要离散化,复杂度两只log。