

Master of Science in Analytics

Unsupervised Learning

Machine Learning 1

Unsupervised vs. supervised

- Supervised learning cares about an outcome
 - Goal: create models to predict target from features
 - Applies to regression, classification
 - We have some feature vector, X, which describes the data
 - In all cases, we have a response / target, "Y"
- Unsupervised learning
 - Goal: discover interesting patterns in data 1) Can we make a compelling visual of data? 2) Can we find subgroups in the data?
 - No target; only features
 - Goals are less quantifiable, but important:
 - Used in medical research (finding gene expression patterns?)
 - Used to find types of shoppers (browsing history?)
 - We are awash with data, but how much data has labels (eg. sentiment of tweets)?

PCA - reminder

- Principal Components Analysis
- Algorithm
 - Identify direction of maximum variance & fit linear regression
 - Describe each data point with distance to regression line
 - Create additional principal components orthogonal to existing PCs

Notes

- Loading vector defines a direction in feature space along which the data vary the most (i.e. principal component direction)
- Features should be normalized in sklearn:

```
from sklearn import preprocessing

scaler = StandardScaler()  # There are other types of scalars
scaler.fit(train_X)
trainX_scaled = scaler.transform(train_X)
testX scaled = scaler.transform(test X)  # Applies the same scaling
```


PCA vs. explained variance

- Scree plot
 - PCA can be used to show portion of explained variance
 - Reminder:

- How many principal components to choose?
 - For describing data, choose as many M as are interesting (2? to an "elbow"?)
 - For PCR, select M via cross validation

Example: USArrests data

Data

- 1973 (old, I know)
- https://vincentarelbundock.github.io/Rdatasets/datasets.html > USArrests

Data (features)

- Assault, Murder, Rape arrests (per 100,000 people)
- UrbanPop (Urban population) percent of population residing in an urban area

Examples

```
"State", "Murder", "Assault", "UrbanPop", "Rape"
"California", 9, 276, 91, 40.6
"Colorado", 7.9, 204, 78, 38.7
"Connecticut", 3.3, 110, 77, 11.1
"Delaware", 5.9, 238, 72, 15.8
```


USArrests biplot

PCA vs. biplot

PCA Loadings for USArrests

	PC1	PC2
Murder	0.5358995	-0.4181809
Assault	0.5831836	-0.1879856
UrbanPop	0.2781909	0.8728062
Rape	0.5434321	0.1673186

- Biplot combines 2 items
 - Scores (for observations) of first M principal components
 - Principal component loading vectors (directions of greatest variance)
 - Usually, M = 2 or 3

PCA implementation

- 1) Import data
 - a) If necessary, split data into train, test sets
- 2) Coerce training data into: X (normalised numpy array, etc.)

#3) Generate PCA transformations

from sklearn.decomposition import PCA as sklearnPCA

```
components = len(X.columns) # can be any number down to 2
pca = sklearnPCA(n_components=components)
pca.fit(X_norm)
xvector = pca.components_[0] # 1st PC...
yvector = pca.components_[1] # 2nd PC...

xs = pca.transform(X)[:,0]
ys = pca.transform(X)[:,0]
```


Lab: create biplot

Data

- Get USArrests data: <u>https://vincentarelbundock.github.io/Rdatasets/datasets.html</u> > USArrests
- ... or get another dataset if you prefer

Task

- Construct a biplot of this data
- Plot states & names; show loading vectors as arrows

Distance comparison

- Biplot shows distance between observations
- But sign of observation (eg. +/- from origin) may change
- Negative components may be difficult to explain
- Data is assumed to be organized along a (single) hyperplane

Alternatives to PCA

- Non-Negative Matrix Factorization (NMF)
 - Vectors are not ordered (i.e. no "first NMF component"), with all components playing an equal role
 - All vector loadings are positive easier to explain
 - Excellent for recovery of mixed source signals
- t-SNE
 - Adept at performing non-linear dimensionality reduction
 - Good for visual data (eg. digits, faces, etc.)

Clustering

Task

- Identify subgroups (clusters) in data
- Observations within groups should be similar to each other
- Observations outside a group should be dissimilar

Example: market segmentation

- Assume household measurements (median income, occupation, distance from nearest city, etc.)
- Partition households to identify subgroups who are more receptive to advertising / product purchase

Methods

- K-means clustering
- DBSCAN
- Hierarchical clustering
- Spectral clustering

K-means clustering

Clusters

- Determined by proximity in feature space
- No ordering colours / numbers are for human consumption only
- No observation belongs to more than 1 cluster

Example (synthetic)

K-means algorithm

- Step 1 = start
 - Decide on number of clusters, k
 - Randomly assign k cluster centroids to feature space
 - CAUTION: ISLR says, "randomly assign a cluster membership to each observation"
- Step 2 = iterate to convergence:
 - Assign each observation to the cluster whose centroid is the closest
 - Compute location of cluster centroid
 - Converge when observations do not change cluster membership
- Handling random start
 - K-Means clustering may generate different assignments depending on "start" state, so should be performed several times
 - By default, scikit-learn implementation returns the best of 10
 K-Means runs, each with different start points

K-means implementation

- 1) Import data
- 2) Coerce training data into: X (normalised numpy array, etc.)

3) Create k clusters

from sklearn.cluster import KMeans

k = 3 # ... but determining number of clusters is an art?
kmeans = KMeans(n_clusters=k)
kmeans.fit(X)

Each observation now "belongs" to a cluster. Which one? print kmeans.labels_ # kmeans.predict(X) would give the same vector

Evaluating clustering

- Insufficient to define precision/recall (ala classification)
- With ground truth (compare pred_label to true_label)
 - Adjusted Rand Index (ARI)
 - Measures (symmetric) similarity of assignments
 - Ignores permutations [0, 1, 1, 2] == [1, 2, 2, 0]
 - Normalized Mutual Information (NMI) similar to ARI but in [0, 1]
 - V-Measure combines two desirable elements of clusters:
 - Homogeneity: each cluster contains members of one class only
 - Completeness: all members of a class live in one cluster
- Without ground truth
 - Silhouette coefficient a measure of cluster compactness
 - Note that compactness isn't always the goal, so this may generate spurious results

My plug for v-measure

Lab: wine clustering with k-means

Data

- Get wine data: https://archive.ics.uci.edu/ml/datasets/Wine
- Ignore first column (cluster target!); use all others as features

Task

- Ignore first column (wine type = 1 3)
- Predict cluster membership:
 - First ~60 observations
 - Next ~70 observations
 - Final ~48 observations
- Output V-measure
- Adjust number of clusters to achieve maximal performance
- Advanced: Create biplot of instances, ala USArrests
- Advanced: Look at percentage of variance explained (via PCA) as if this were a classification problem; is this related to ideal # clusters?

Wine clusters vs. PCA (example)

Thoughts on k-means

- Advantages of k-means
 - It is fast (even faster with sklearn's MiniBatchKMeans?)
 - It is effective for many clustering applications
- Disadvantages of k-means
 - Cluster boundaries must be relatively simple (only centroids matter)
 - Will always generate clusters (even if none exist)
 - Assumes all dimensions are equally important, so k-means will be unlikely to recover the following:

DBSCAN

- "Density-based spatial clustering with noise"
- Clusters:
 - Densely packed
 - Separated from other clusters by low-density areas
- Terms in sklearn
 - eps: max distance between two points in the same neighbourhood
 - min_samples: number of observations in a neighbourhood
- Overview = classify observations as one of:
 - Core samples (within a space, eps of at least min_samples points)
 - Reachable points (within the *eps* of another point, but not in a neighbourhood) — aka boundary point — in the neighbourhood
 - Outliers (outside the eps of other points)

DBSCAN - illustration

DBSCAN live sample

- Naftali Harris may have the best anmation
 https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
- One result:

sklearn implementation

- 1) Import data
- 2) Coerce training data into: X (normalised numpy array, etc.)

#3) Generate clusters

from sklearn.cluster import DBSCAN

```
max_dist = 0.3
hoodsize=10
cluster = DBSCAN(eps=max_dist, min_samples=hoodsize)
cluster.fit(X)

# Association between observations & clusters.
print cluster.labels_
```

Thoughts on DBSCAN

Advantages

- Can find clusters of any shape great at geolocation data
- Some points may not belong to any cluster
- No need to specify number of clusters

Disadvantages

- Curse of dimensionality
- Densities are defined globally, so sparse neighbourhoods are difficult

to find

- Ideal eps is difficult to get right; one practice:
 - Decide on "k" and perform k-means
 - Sort distances in ascending order
 - Look for an "elbow" —> eps
 - k —> min_samples

Hierarchical clustering

- Technically a family of clustering algorithms
 - All algorithms in the family grow clusters from top down (splitting) or bottom up (by growing)
 - Focus on agglomerative clustering
- Builds a dendrogram over data
 - o Dendrogram is a (another) binary tree connecting all observations
 - Cutting the tree at a certain height gives number of clusters

Hierarchical clustering algorithm

- Ideally: normalize features
- Start with each observation in its own cluster
- Repeat until convergence:
 - Merge two closest clusters
 - Converge when only one cluster remains

Trivial example

Where does a cluster begin/end?

Average

- Record mean of pairwise inter-cluster dissimilarity
- Change with "linkage=" in sklearn constructor

Complete

- Record largest of pairwise inter-cluster dissimilarity
- Also called "maximum"

Ward

- Sum of squared distances between all observations between clusters
- Default for sklearn

Complete linkage example

	1	2	3	4	5
1	0				
2	9	0			
3	3	7	0		
4	6	5	9	0	
5	11	10	2	8	0

	35	1	2	4
35	0			
1	11	0		
2	10	9	0	
4	9	6	5	0

Distance between clusters

- Euclidean distance
 - Most common and most used
 - Required if linkage is "ward"
- In sklearn, change with "affinity=":
 - Cosine
 - 0 11
 - o L2
 - Manhattan
 - Precomputed?
- Normalizing data is useful

sklearn implementation

- 1) Import data
- 2) Coerce training data into: X (normalised numpy array, etc.)

3) Generate clusters

from sklearn.cluster import AgglomerativeClustering

```
k = 3 # ... default is 2
cluster = AgglomerativeClustering(n_clusters=k)
cluster.fit(X)
```

Association between observations & clusters. print cluster.labels_

Limitations (current) of sklearn

- Very difficult to produce a dendrogram
 - Technically, it can be done by changing the source code
 - Can produce other great looking plots
- Version in scipy can (eg. the following)

scipy implementation

- 1) Import data
- 2) Coerce training data into: X (numpy array)

```
# 3) Cluster... then graph
from scipy.cluster.hierarchy import linkage, dendrogram
Z = linkage(X, 'ward') # Z is now the clustered data
# 4) Graph the data using matplotlib
plt.figure()
dendrogram(Z)
plt.show()
```


Lab: 1990 US census

Data

- Get census data from my GitHub > MSAN621-data > USCensus...
- This is a smaller version of the 1990 census, available at <u>UCI</u> and <u>other places</u>; smaller helps running time and to see the dendrogram

Task

- Cluster this using AgglomerativeClustering
- Draw a dendrogram using scipy
- Compare the version in sklearn to scipy
- Advanced: <u>Can you annotate a heatmap with a dendrogram?</u>

Spectral clustering

- Main idea: dimensionality reduction > clustering
 - Clustering (sometimes) fails because it operates in high dimensions
 - Perform dimensionality reduction, followed by clustering
 - Lift "heavy" for dimensionality reduction
 - Simple clustering (eg. k-means) is sufficient for results
- Comparison to other clustering approaches
 - K-means and DBSCAN seek compactness
 - Spectral clustering seeks connectivity
 - Connectivity is also the goal for hierarchical (depending on linkage)
 - · Compactness, e.g., k-means, mixture models
 - Connectivity, e.g., spectral clustering

Spectral clustering - approach

- Goal: given a set of points, cluster them into k subsets
- Form an affinity matrix, A
 - o Defines how close (similar) two points *i* & *j* are in p-dimensional space
 - o If i = j, A_{ij} = 0; otherwise something, eg. A_{ij} = e**($s_i s_j$)²/2)
 - Matrix is symmetric
- Form a diagonal matrix, D, s.t. D_{ii} = sum of A's row i
- Form Laplacian matrix $L = D^{1/2}AD^{1/2}$
- Form matrix $X(x_1, x_2, ..., x_k)$
 - Matrix X is made from the k largest eigenvectors of L
 - Dimensions have been reduced to k
- Form matrix Y (renormalize X to have unit length)
- Cluster Y

Graph (computer science)

- A general version of a tree (with fewer rules)
 - G = (V, E) —> Vertices (nodes) + Edges (links between vertices)
 - Several types; we consider weighted graphs (edges have distance)
 - Order of graph |V| = number of vertices
 - Size of graph |E| = number of edges
- Graph cut
 - Removes one or more edges
 - Partitions the graph into 2 disjoint subsets

Cutting

- Ideal cut satisfies two objectives:
 - Removes the fewest edges
 - o Divides the graph into two regions, A and B s.t. |A| = |B|
- Objective functions, *J(A, B)*, for cuts

Given:
$$s(A, B) = \sum_{i \in A} \sum_{j \in B} w_{ij}$$

Ratio cut

$$\frac{s(A, B)}{|A|} + \frac{s(A, B)}{|B|}$$

Normalized cut

$$\frac{s(A, B)}{s(A, A) + s(A, B)} + \frac{s(A, B)}{s(B, B) + s(A, B)}$$

Min-max-cut

$$\frac{s(A, B)}{s(A, A)} + \frac{s(A, B)}{s(B, B)}$$

Cut comparisons

Tendencies

- Min-max cut favours balanced clusters (|A| = |B|)
- Other cuts do not show size dependence

Which to use?

- Use any of them with well-separated clusters
- Use min-max cut when clusters overlap (significantly)
- Use normalized cuts or min-max cuts when clusters are "fuzzy"

2-way clustering of newsgroups (Ding, 2004)

Newsgroups	RatioCut	NormCut	MinMaxCut
Atheism	63.2 ± 16.2	97.2 ± 0.8	97.2 ± 1.1
Comp.graphics			
Baseball	54.9 ± 2.5	74.4 ± 20.4	79.5 ± 11.0
Hockey			
Politics.mideast	53.6 ± 3.1	57.5 ± 0.9	83.6 ± 2.5
Politics.misc			

How many clustering algorithms?

- There are 9 major clustering algorithms in sklearn
 - Relax the constraint of making the subgraphs equal if we can objectively prove the cuts are good —> LAMBDA2 = cutsize/|A| + cutsize/|B|
 - Different proposals for what makes a good cut (ratio, normalised, minmax, etc.)
 - Perform dimensionality reduction, followed by clustering
 - Lift "heavy" for dimensionality reduction
 - Simple clustering (eg. k-means) is sufficient for results
- Comparison to other clustering approaches
 - K-means and DBSCAN seek compactness
 - Spectral clustering seeks connectivity
 - Connectivity is also the goal for hierarchical (depending on linkage)