第四章 插值法

- 4.1 引言
- 4.2 多项式插值
- 4.3 拉格朗日插值
- 4.4 牛顿插值
- 4.5 埃尔米特插值
- 4.6 分段插值
- 4.7 三次样条插值(课本在第五章)

4.1 引言

在生产和科研中出现的函数是多种多样的。常遇到这样的情况:

- ▶ 函数表达式过于复杂不便于计算,而又需要计算许多点处的函数值
- ► 仅有几个采样点处的函数值(即函数表),而又需要知道非 采样点处的函数值

正态分布的概率密度函数f(t)和分布函数F(x)

4.1 引言

✓ 上述问题的一种解决思路:

允许有一定误差的基础上,建立复杂函数或者未知函数的 一个便于计算的近似解析函数表达式,从而使问题得到简化, 这也是开发计算机软件是使用的技术之一。

✔ 解决方法-插值法:

即利用邻近点上已知函数值的加权平均来估计位置函数值。

插值问题定义

□ 当函数 y = f(x) 非常复杂或未知时,在一系列节点 $x_0, X_1 \cdots, x_n$ 处测得函数值 $y_0 = f(x_0), \cdots, y_n = f(x_n)$,由此构造一个简单易算的近似函数 $g(x) \approx f(x)$,满足条件 g(x) = f(x) ($i = 0, \cdots n$)。 称 g(x) 为 f(x) 的插值函数。

插值法背景介绍

插值法是一种古老的数学方法、它来自生产实践。 早在一千多年前的隋唐时期制定历法时就应用了二次插 值、隋朝刘焯(公元6世纪)将等距节点二次插值应用 于天文计算。但插值理论都是在17世纪微积分产生以后 才逐步发展的,牛顿的等距节点差值公式及均差插值公 式都是当时的重要成果。 近半世纪,由于计算机的广泛 使用和造船、航空、精密机械加工等实际问题的需要, 使得插值法在理论上和实践上得到了进一步的发展, 尤 其是20世纪40年代后期发展起来的样条(Spline)插值, 更获得了广泛应用,成为计算机图形学的基础。

插值基函数

$$\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x)$$

则插值多项式 $p_n(x)$ 可以被这组基线性表出,即:

$$p_n(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \dots + a_n \varphi_n(x)$$

这样就可以通过不同的基来构造插值多项式 $p_n(x)$ 项, 这样的方法称为基函数法。

- 令 $\Phi = \{\varphi_1, \varphi_2, \dots, \varphi_1\}$,则对于不同的函数族 Φ 的选择,得到不同的插值问题,所求得的逼近效果就不同。
 - ▶ 当Φ为一些三角函数的多项式集合时:三角插值;
 - ▶ 当Φ为一些有理分式集合时:有理插值;
 - ▶ 当Φ为一些多项式集合时:多项式插值(代数插值)

□ 基函数法基本步骤:

- 1) 寻找特殊的基函数组 (插值基函数)
- 2) 确定插值多项式在这组基下的表示系数。

4.2 多项式插值

需指出的是, 计算机软件中经常要用到的库函数, 如sin(x), cos(x)和指数函数, 他们都是用多项式逼近来计算的。 虽然目前最先进的逼近方法是有理函数逼近, 但多项式逼近理论更适于作为数值计算的入门课程, 因此本章讨论多项式逼近。

Taylor级数回顾

定理 4.1(泰勒多项式逼近) 设 $f \in C^{N+1}[a,b]$, 而 $x_0 \in [a,b]$ 是固定值。如果 $x \in [a,b]$,则有

$$f(x) = P_N(x) + E_N(x) \tag{1}$$

其中 $P_N(x)$ 为用来近似 f(x)的多项式:

$$f(x) \approx P_N(x) = \sum_{k=0}^N \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 (2)

误差项 $E_N(x)$ 形如

$$E_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} (x - x_0)^{N+1}$$

c 为 x 和 x_0 之间的某个值 c = c(x)。

4.2 多项式插值

表 4.1 一些常用函数的泰勒级数展开

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 对所有 x

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
 对所有 x

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$
 对所有 x

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

$$-1 \le x \le 1$$

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

$$-1 \le x \le 1$$

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \cdots$$
 其中 $|x| < 1$

4.2 多项式插值

取
$$\Phi = P_n := \text{span} \{1, x, x^2, \dots, x^n\}$$
,即
$$P_n = \{\varphi(x) | \varphi(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \ a_i \in \mathbf{R}, \ 0 \le i \le n\}$$

插值区间 插值节点

定义4.1 设y = f(x) 在区间[a,b] 上有定义,且已知它在 n+1个互异点 $a \le x_0 < x_1 \dots < x_n \le b$ 上的函数值 y_0 , y_1, \ldots, y_n , 若存在一个次数不超过 n 次的多项式

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$

满足条件

$$p(x_i) = y_i (i = 0, ... n)$$

则称p(x)为f(x)的n次插值多项式。

插值多项式的唯一性

设所要构造的插值多项式为:

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

由插值条件

$$P_n(x_i) = y_i, \qquad i = 0, 1, \dots, n$$

得到如下线性代数方程组:

$$\begin{cases} 1 \cdot a_0 + x_0 a_1 + \dots + x_0^n a_n = y_0 \\ 1 \cdot a_0 + x_1 a_1 + \dots + x_1^n a_n = y_1 \\ \dots \\ 1 \cdot a_0 + x_n a_1 + \dots + x_n^n a_n = y_n \end{cases}$$

存在唯一性定理证明(续)

此方程组的系数行列式为

$$D = \begin{vmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{vmatrix} = \prod_{0 \le j < i \le n} (x_i - x_j)$$

范德蒙行列式!

当 $x_i \neq x_j$ $i = 1,2, \dots n$; $j = 1,2, \dots n$ 时, $D \neq 0$, 因此, $P_n(x)$ 由 a_0 , a_1 , ..., a_n 唯一确定。

插值多项式的唯一性

定理 $4.2 \parallel ($ 唯一性) 满足n+1个插值条件的n 次插值

多项式存在且唯一。

注:该定理的证明过程实质上给出了一种求插值 多项式的一个方法,

但此方法不适合计算机求解。我们要寻找用计算 机的求解方法。

4.3 拉格朗日 (Lagrange) 插值

定义4.2 若存在一个次数为 n 的多项式 $l_k(x)$,在n+1个节点 x_0, \ldots, x_n 上满足:

$$l_k(x_i) = \delta_{ki} = \begin{cases} 1, i = k \\ 0, i \neq k \end{cases}$$

则称 $l_k(x)$ 为节点 x_0, \ldots, x_n 上的拉格朗日插值基函数。

 \Box 设 f(x) 的 n 次插值多项式为

$$p(x) = a_0 l_0(x) + a_1 l_1(x) + \cdots + a_n l_n(x)$$

满足插值条件: $p(x_i) = y_i$ (i = 0, ... n)

将 x_0,\ldots,x_n 分别代入即可得: $a_i=y_i \ (i=0,\ldots n)$

所以
$$p(x) = y_0 l_0(x) + y_1 l_1(x) + \cdots + y_n l_n(x)$$

称为拉格朗日插值多项式,记作 $L_n(x)$,即

下面我们介绍如何构造 $l_k(x), k = 0, 1, 2, \dots, n$.

根据点斜式,过点 (x_0,y_0) 和 (x_1,y_1) 的方程可写为

变形可得:

$$y = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0),$$

$$y = y_0 \underbrace{\begin{pmatrix} x - x_1 \\ x_0 - x_1 \end{pmatrix}} + y_1 \underbrace{\begin{pmatrix} x - x_0 \\ x_1 - x_0 \end{pmatrix}}_{l_1}$$

□由构造法可得

$$l_k(x) = rac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)(x_k-x_1)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)} \ k=0,1,2,\ldots,n$$

回可以证明 $l_0(x)$, $l_1(x)$, ..., $l_n(x)$ 线性无关,即它们构成线性空间 $P_n(x)$ 的一组基。

$$L_n(x) = \sum_{j=0}^n y_j l_j(x) = \sum_{j=0}^n y_j \prod_{\stackrel{i=0}{i
eq j}}^n rac{x-x_i}{x_j-x_i}$$
 为便于上

□ 当 n=1 时

$$L_1(x) = y_0 l_0(x) + y_1 l_1(x) = \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

线性插值多项式 (一次插值多项式)

□ 当 n=2 时

$$\mathbf{L_2(x)} = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x)
= \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

抛物(线)插值多项式 (二次插值多项式)

第四章 插值法

- 4.1 引言
- 4.2 多项式插值
- 4.3 拉格朗日插值
- 4.4 均差与牛顿插值
- 4.5 埃尔米特插值
- 4.6 分段插值
- 4.7 三次样条插值

在生产和科研中出现的函数是多种多样的。常遇到这样的情况:

- ▶ 函数表达式过于复杂不便于计算,而又需要计算许多点处的函数值
- ▶ 仅有几个采样点处的函数值(即函数表),而又需要知道非采样点处的函数值

□ 当函数 y = f(x) 非常复杂或未知时,在一系列节点 x_0, \dots, x_n 处测得函数值 $y_0 = f(x_0)$,…, $y_n = f(x_n)$,由此构造一个简单易算的近似函数 $g(x) \approx f(x)$,满足条件g(x) = f(x) ($i = 0, \dots n$)。称 g(x) 为 f(x) 的插值函数。

正态分布的概率密度函数f(t)和分布函数F(x)

插值基函数

□ 令 $P_n(x)$ ={次数不超过 n 的多项式的全体},则 $P_n(x)$ 构成一个 n+1 维线性空间,设其一组基为

$$\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x)$$

则插值多项式 $p_n(x)$ 可以被这组基线性表出,即:

$$p_n(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + \dots + a_n \varphi_n(x)$$

这样就可以通过不同的基来构造插值多项式 $p_n(x)$ 项, 这样的方法称为基函数法。

第四章 插值法

- 4.1 引言
- 4.2 多项式插值
- 4.3 拉格朗日插值
- 4.4 均差与牛顿插值
- 4.5 埃尔米特插值
- 4.6 分段插值
- 4.7 三次样条插值

在生产和科研中出现的函数是多种多样的。常遇到这样的情况:

- ▶ 函数表达式过于复杂不便于计算,而又需要计算许多点处的函数值
- 仅有几个采样点处的函数值(即函数表),而又需要知道非采样点处的函数值

□ 例4.1: 已知函数 $y = \ln x$ 的函数值如下

x	10	11	12	13	14
lnx	2.3026	2.3979	2.4849	2.5649	2.6391

试分别用线性插值和抛物插值计算 ln11.75的近似值。

解: 在插值计算中,为了减小截断误差,通常选取与插值点x邻接的插值节点。

线性插值:取 $x_0=11, x_1=12$ 得

$$L_1(x) = \frac{(x - x_1)}{(x_0 - x_1)} y_0 + \frac{(x - x_0)}{(x_1 - x_0)} y_1 = 0.087x + 1.4409$$

将 x=11.75 代入可得: $\ln 11.75 \approx L_1(11.75) \approx 2.4632$

抛物插值:

$$L2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2$$

取 x_0 =11, x_1 =12, x_2 =13。将 x=11.75 代入可得: $\ln 11.75 \approx L_2(11.75) \approx 2.4638$

■ 可以计算出 ln11.75 的近似值为:

 $\ln 11.75 \approx 2.4638532405902$

可见, 抛物插值的精度比线性插值要高。

Lagrange插值多项式简单方便,只要取定节点就可写出基函数,进而得到插值多项式。易于计算机实现。

例4. 2 已知y=f(x)的函数表

X	0	1	2	4
f(x)	1	9	23	3

构造拉格朗日插值多项式。

解 4个点可构造3次的拉格朗日插值多项式,为

$$l_0(x) = \frac{(x-1)(x-2)(x-4)}{(0-1)(0-2)(0-4)} = -\frac{1}{8}x^3 + \frac{7}{8}x^2 - \frac{7}{4}x + 1$$

$$l_1(x) = \frac{(x-0)(x-2)(x-4)}{(1-0)(1-2)(1-4)} = \frac{1}{3}x^3 - 2x^2 + \frac{8}{3}x$$

$$l_2(x) = \frac{(x-0)(x-1)(x-4)}{(2-0)(2-1)(2-4)} = -\frac{1}{4}x^3 + \frac{5}{4}x^2 - x$$

$$l_3(x) = \frac{(x-0)(x-1)(x-2)}{(4-0)(4-1)(4-2)} = \frac{1}{24}x^3 - \frac{1}{8}x^2 + \frac{1}{12}x$$

拉格朗日插值多项式为

$$L_3(x) = \sum_{k=0}^{3} y_k l_k(x)$$

$$= l_0(x) + 9l_1(x) + 23l_2(x) + 3l_3(x)$$

$$= -\frac{11}{4}x^3 + \frac{45}{4}x^2 - \frac{1}{2}x + 1$$

拉格朗日插值的误差分析

在插值区间[a, b]上通过n+1个节点的n次插值多项式,除了在插值节点x;上没有误差,即满足

P(xi) = yi $i = 0, 1, \cdots n$

在其它点上,只是
$$y=f(x)$$
的近似值,一般是存在误差的,称 $R(x)=f(x)-P(x)$ x_{0} x_{0} x_{1} x_{1} x_{1} x_{1} x_{1} x_{1} x_{1} x_{1} x_{1}

为插值多项式的截断误差,或称为插值多项式的余项。

定理 2 (误差估计) 设 $f^{(n)}(x)$ 在 [a,b] 上连续, $f^{(n+1)}(x)$ 在 (a,b) 内存在. $\varphi(x)$ 是满足插值条件(1) 的不超过 n 次的插值多项式. 则对任意 $x \in [a,b]$,存在 $\xi = \xi(x) \in (a,b)$,使得

$$R_n(x) = f(x) - \varphi(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

成立,式中 $\omega_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$. 进而当 $f^{(n+1)}(x)$ 在区间(a,b)有上界 M_{n+1} 时,有

$$\left| R_n(x) \right| \leq \frac{M_{n+1}}{(n+1)!} \left| \omega_{n+1}(x) \right| \quad \bullet$$

证明:

证明: 因为 $R_n(x_i) = f(x_i) - L_n(x_i) = 0$ $(i = 0,1,\dots,n)$

于是可假定R_n(x)具有如下形式:

$$R_n(x) = k(x)(x - x_0)(x - x_1) \cdots (x - x_n) = k(x) \prod_{i=0}^{n} (x - x_i)$$

作辅助函数

$$\varphi(t) = f(t) - L_n(t) - k(x)(t - x_0)(t - x_1) \cdots (t - x_n)$$

$$= f(t) - L_n(t) - k(x) \prod_{i=0}^{n} (t - x_i)$$

容易看出, $\varphi(t)$ 有 x,x_0,x_1,\cdots,x_n 共n+2个相异零点,且在[a,b]上存在n+1阶导数。根据Rolle'Principle,在 $\varphi(t)$ 的两个零点之间至少有一个零点,故 $\varphi(t)$ 在[a,b]上至少有n+1个零点。如此类推, $\varphi^{(n+1)}(t)$ 在(a,b)上至少有1个零点 ξ ,使得

$$\varphi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - L_n^{(n+1)}(\xi) - k(x) \frac{d^{(n+1)}}{dt^{(n+1)}} \prod_{i=0}^n (t - x_i)|_{t=\xi} = 0.$$

注意到 L是n次多项式, $L_n^{(n+1)}(t) \equiv 0$; $\prod_{i=0}^n (t-x_i)$ 的首项为 t^n ,故 $\frac{d^{(n+1)}}{dt^{(n+1)}}\prod_{i=0}^n (t-x_i) = (n+1)!$ 。 由上述方程解得

$$k(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \quad \xi \in (a,b)$$

于是

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

注1: 如果 $f^{(n+1)}(x)$ 在(a,b)上有界,即

$$\exists M > 0, |f^{(n+1)}(x)| \le M, \forall x \in (a,b)$$

则有余项估计:

$$|R_n(x)| \le \frac{M}{(n+1)!} \Big| \prod_{i=0}^n (x - x_i) \Big|$$

注2: 当 f(x)为任一个次数 $\leq n$ 的多项式时,由 $f^{(n+1)}(x) \equiv 0$,可知 $R_n(x) \equiv 0$,因此,插值多项式 $L_n(x)$ 对于次数 $\leq n$ 的多项式的估计是精确的。

拉格朗日插值的误差分析

对于线性插值,其误差为

$$R(x) = f(x) - P(x) = \frac{1}{2}f''(\xi)(x - x_0)(x - x_1) \quad \xi \in (a, b)$$

对于抛物插值(二次插值),其误差为

$$R(x) = f(x) - P(x) = \frac{1}{6}f'''(\xi)(x - x_0)(x - x_1)(x - x_2) \quad \xi \in (a, b)$$

例4. 3 已知 x_0 =100, x_1 =121, 用线性插值估计

 $f(x) = \sqrt{x}$ 在x=115时的截断误差。

解 由插值余项公式,有 $R_1(x) = \frac{1}{2}f''(\xi)\omega(x)$

因为
$$f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}$$
 所以 $R_1(x) = -\frac{1}{8}\xi^{-\frac{3}{2}}(x - x_0)(x - x_1)$

$$\begin{split} R_1(115) &= -\frac{1}{8} \xi^{-\frac{3}{2}} (115 - 100) (115 - 121) \\ &\leq \frac{1}{8} \times |(115 - 100) (115 - 121)| \times \max_{\xi \in [100, 121]} \xi^{-\frac{3}{2}} \\ &\leq \frac{1}{8} \times 10^{-3} \times |(115 - 100) (115 - 121)| \\ &= \frac{1}{8} \times 15 \times 6 \times 10^{-3} \\ &= 0.01125 \end{split}$$

拉格朗日插值的算法实现

1.计算步骤

- (1)输入n, xi, yi (i=0,1,...,n), 给出初始值P(x)=0
- (2)对i=0,1,...,n, 计算

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

$$P(x) = P(x) + l_i(x)y_i$$

(3)输出P(x)。

拉格朗日插值的算法实现

2. 算法流程图

3. 程序实现

lagrangeChazhi.m


```
function C=lagrangeChazhi(X,Y)
```

```
%Input - X is a vector that contains a list of abscissas
%
         - Y is a vector that contains a list of ordinates
%Output - C is a matrix that contains the coefficients of
           the Lagrange interpolatory polynomial
% - L is a matrix that contains the Lagrange coefficient polynomials
% X=[0,1,2,4]; Y=[1,9,23,3]; C=lagrangeChazhi(X,Y)
w = length(X);
n=w-1;
L=zeros(w,w);
%Form the Lagrange coefficient polynomials
for k=1:n+1
                                                       命令行窗口
 V=1:
                                                         >> X=[0,1,2,4]; Y=[1,9,23,3]; C=lagrangeChazhi(X,Y)
  for i=1:n+1
                                                        C =
   if k~=i
                                                           -2.7500 11.2500 -0.5000
     V = conv(V, poly(X(j)))/(X(k)-X(j));
   end
  end
 L(k,:)=V;
End
% Determine the coefficients of the Lagrange interpolator polynomial
C=Y*L:
```

1.0000

作业 4.1

5. 写出 f(x)的 3 次拉格朗日插值多项式的误差项 $E_3(x)$, 在节点 $x_0 = -1$, $x_1 = 0$, $x_2 = 3$ 和 $x_4 = 4$ 处插值结果精确。f(x)为

(a)
$$f(x) = 4x^3 - 3x + 2$$

(b)
$$f(x) = x^4 - 2x^3$$

(c)
$$f(x) = x^5 - 5x^4$$

- 2. 下表给出了11月8日美国洛杉矶的一个郊区在5小时内的测量温度。
 - (a) 利用程序 4.1, 对表中的数据构造一个拉格朗日插值多项式。
 - (b) 利用算法 4.1(iii),估计在这 5 小时内的平均温度。
 - (c) 在同一坐标系中画出表中的数据和由(a)得到的多项式。讨论用(a)中的多项式计算平均温度可能产生的误差。

时间(下午)	华氏度	
1	66	
2	66	
3	65 64	
4	64	
5	63	
6	63	

4.4 均差与牛顿插值

拉格朗日插值多项式,公式结构紧凑,在理论分析中非常方 便。但当插值点增加时,全部插值基函数 $l_k, k=1,2,\cdots,n$ 均要随之变化,整个公式也要发生变化,这在实际计算中 是很不方便的,还造成计算量的浪费。为解决这一缺陷, 我们可尝试构造一种具有承袭性的插值多项式,也就是说, 每增加一个节点时,只需增加相应的一项即可。

这就是牛顿插值多项式。

4.4 均差与牛顿插值

□ 将Lagrange插值公式改写成

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n \widetilde{O}(x - x_i)$$

 \square 为保证它是满足插值条件 $P_n(x_i) = y_i$,需且只需满足

$$\begin{cases} y_0 = P_n(x_0) = a_0 \\ y_1 = P_n(x_1) = a_0 + a_1(x_1 - x_0) \\ y_2 = P_n(x_2) = a_0 + a_1(x_1 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) \\ \dots \\ y_n = P_n(x_n) = a_0 + a_1(x_1 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) + \dots \\ + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1}) \end{cases}$$

怎样确定参数 a_0, \ldots, a_n ?

可见,牛顿插值多项式是插值多项式p(x)的另一种表示形式,与拉格朗日多项式相比。当增加一个节点时,牛顿插值公式只需在原来的基础上增加一项,前面的计算结果仍然可以使用。与拉格朗日插值相比,牛顿插值具有灵活增加节点的优点,且克服了"增加一个节点时整个计算工作重新开始"的缺点。

为了确定牛顿插值多项式 $P_n(x)$ 中的系数 $a_0, a_1, ..., a_n$ 的计算公式,先介绍均差的概念。

4.4.1 均差及其性质

定义4.3 f(x)在点 x_i 处零阶均差定义为函数值本身: $f[x_i]=f(x_i)$ 。

函数y=f(x)在区间[x_i,x_{i+1}]上的平均变化率
$$\frac{f(x_{i+1})-f(x_i)}{x_{i+1}-x_i}$$

称为f(x)关于 x_i, x_{i+1} 的一阶均差,并记为 $f[x_i, x_{i+1}]$ 。

一阶均差的平均变化率
$$\frac{f[x_{i+1},x_{i+2}]-f[x_i,x_{i+1}]}{x_{i+2}-x_i}$$

称为f(x)的二阶均差,并记为 $f[x_i,x_{i+1},x_{i+2}]$ 。

一般地,在定义了f(x)的m-1阶均差后,可定义f(x)的m 阶均差为

$$f[x_0, x_1, \dots x_m] = \frac{f[x_1, x_2, \dots x_m] - f[x_0, x_1, \dots x_{m-1}]}{x_m - x_0}$$

即高阶均差可由低一阶的两个均差组合而得到。

给定函数表4.1,相应的一、二、三阶均差如表4.2。

表4. 1							
$\begin{bmatrix} \mathbf{x} & \mathbf{x}_0 & \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$							
f(x)	f(x ₀)	f(x ₁)	f(x ₂)	f (x ₃)			

	表4. 2								
i	x _i	f[x _i]	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	f[x _i , x _{i+1} ,				
					x_{i+2}, x_{i+3}				
0	\mathbf{x}_0	f (x ₀)							
1	\mathbf{x}_1	f (x ₁)	f[x ₀ , x ₁]						
2	\mathbf{x}_2	f (x ₂)	f[x ₁ , x ₂]	f[x ₀ , x ₁ , x ₂]					
3	\mathbf{x}_3	f (x ₃)	$f[x_2, x_3]$	f[x ₁ , x ₂ , x ₃]	f[x ₀ , x ₁ , x ₂ , x ₃]				

例4. 4 求 $f(x_i) = x^3$ 在节点x=0, 2, 3, 5, 6上的各阶均差值。

解 由于n=4,可得到4阶均差,如下表:

i	x _i	f[x _i]	f[x _i , x _{i+1}]	$f[x_i, x_{i+1}, x_{i+2}]$	f[x _i , x _{i+1} , x _{i+2} , x _{i+} ₃]	$f[x_i, x_{i+1}, x_{i+2}, x_{i+32}, x_{i+4}]$
0	0	0				
1	2	8	(8-0) / (2-0) =4			
2	3	27	(27-8) / (3-2) =19	(19-4) / (3-0) =5		
3	5	125	(125-27) / (5-3) =49	(49-19) / (5-2) =10	(10-5) / (5-0) =1	
4	6	216	(216–25) / (6–5) =91	(91-49) / (6-3) =14	(14-10) / (6-2) =1	(1-1)/(6- 0)=0

4.4.1 均差及其性质

性质1 函数 f(x) 的 n 阶均差 $f[x_0, x_1, \dots, x_n]$ 可由函数 值 $f(x_0)$, $f(x_1)$, \dots , $f(x_n)$ 的线性组合表示,且

$$f[x_0, x_1, \dots x_n] = \sum_{k=0}^{n} \frac{f(x_k)}{\omega'(x_k)}$$

$$= \sum_{k=0}^{n} \frac{f(x_k)}{(x_k - x_0)(x_k - x_1) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

其中,
$$\omega'(x_k) = \prod_{\substack{i=0\\i\neq k}}^n (x_k - x_i)$$

这个性质可用数学归纳法证明。

性质2 均差具有对称性,与节点的顺序无关。 例如

 $f[x_0, x_1] = f[x_1, x_0]$ $f[x_0, x_1, x_2] = f[x_1, x_2, x_0] = f[x_0, x_2, x_1] = \cdots$

性质3 若f[x, x_0 , x_1 , ···, x_k]是x的k次多项式,则k+1阶均差f[x, x_0 , x_1 , ···, x_k , x_{k+1}]是x的k-1次多项式。证 由均差定义

$$f[x, x_0, x_1, \cdots, x_k, x_{k+1}] = \frac{f[x_0, x_1, \cdots, x_k, x_{k+1}] - f[x, x_0, x_1, \cdots, x_k]}{x_{k+1} - x}$$

右端分子为k次多项式,且当 $x=x_{k+1}$ 时分子为0,故分子含有因子 $x_{k+1}=x$,与分母相消后, 右端为k=1次多项式。

性质4 若f(x)是n次多项式,则f[x,x0,x1,***,xn]恒为0。

证 f(x)是n次多项式,则f[x,x0]是n-1次多项式, f[x,x0,x1]是 n-2 次多项式,依次递推, f[x,x0,x1,···,xn-1]是零次多项式,所以 f[x,x0,x1,···,xn]≡0

性质5 k阶均差f[x, x_0 , x_1 , ···, x_k]和k阶导数之间有下列关系:

$$f[x_0, x_1, \dots, x_k] = \frac{f^{(k)}(\xi)}{k!} \qquad \xi \in (\min_{0 \le i \le n} x_i, \max_{0 \le i \le n} x_i)$$

这个性质可直接用罗尔(Rolle)定理证明。

4.4.2 牛顿插值公式

牛顿插值多项式

$$N_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) + \dots + a_{n-1}(x - x_{n-1})$$

的系数a₀, a₁, ···, a_n可根据插值条件推出,即由

有

$$N_n(x_i) = f(x_i)$$
 $i = 0,1,\dots,n$

$$N_n(x_0) = a_0 = f(x_0)N_n(x_1) = a_0 + a_1(x_1 - x_0) = f(x_1)$$

$$N_n(x_2) = a_0 + a_1(x_1 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f(x_2)$$

$$N_n(x_n) = a_0 + a_1(x_1 - x_0) + \dots + a_n(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1}) = f(x_n)$$

这是关于a0, a1, ···, an的下三角方程组, 可求得

$$a_0 = f(x_0)$$

$$a_1 = \frac{f(x_1) - a_0}{(x_1 - x_0)} = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} = f[x_0, x_1]$$

$$a_2 = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} = \frac{f[x_0, x_2] - f[x_0, x_1]}{(x_2 - x_1)} = f[x_0, x_1, x_2]$$

一般,用数学归纳法可证明

$$a_k = f[x_0, x_1, \dots, x_k]$$
 $(k = 0, 1, \dots, n)$

所以n次牛顿(Newton)插值公式为

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1 \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

其余项

$$R_n(x) = f[x, x_0, x_1 \cdots, x_n](x - x_0)(x - x_1) \cdots (x - x_n)$$

例4.5 已知

x_i	1	2	4	7
$f(x_i)$	0	1	15	12

求满足以上插值条件的牛顿型插值多项式。

解:由于

 $f(x_0)=0$, $f[x_0,x_1]=1$, $f[x_0,x_1,x_2]=4$, $f[x_0,x_1,x_2,x_3]=-1.25$; 则牛顿三次插值多项式为

$$N_3(x) = 0 + (x-1) + 4 \times (x-1)(x-3) - 1.25 \times (x-1)(x-3)(x-4)$$

例3:已知f(x)在六个点的函数值如下表,运用牛顿型插值多项式求f(0.596)的近似值。

x_k	$f(x_k)$	一阶差商	二阶差商	三阶差商	四阶差商	五阶差商	$x - x_k$
0.40	0.41075						0.196
0.55	0.57815	1.1160					0.046
0.65	0.69675	1.1860	0.2800				-0.054
0.80	0.88811	1.2757	0.3588	0.1970			-0.204
0.90	1.02652	1.3841	0.4336	0.2137	0.0344		-0.454
1.05	1.25386	1.5156	0.5260	0.2310	0.0346	0.0003	

4.4.3 牛顿插值误差分析

由插值多项式的唯一性可知:满足同一组插值条件的拉格朗日插值多项式P(x)与牛顿插值多项式而N_n(x)实际上是同一个多项式,仅是同一插值多项式的不同表达形式而已。因此,他们误差也完全相等。故有:

$$R_n(x) = f[x, x_0, x_1 \cdots, x_n] \prod_{i=0}^n (x - x_i) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i)$$

$$f[x, x_0, x_1 \cdots, x_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

可以看出,牛顿插值公式计算方便,增加一个插值点,只要多计算一项,而 $N_n(x)$ 的各项系数恰好是各阶均差值,很有规律。

拉格朗日插值与牛顿插值的比较

1) $P_n(x)$ 和 $N_n(x)$ 均是n次多项式,且均满足插值条件: $P_n(x_k) = N_n(x_k) = f(x_k), k = 0,1,...,n$

由多项式的唯一性: $P_n(x) \equiv N_n(x)$, 因而,两个公式的余项是相等的,即 $f[x,x_0,x_1\cdots,x_n]\omega_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_n(x)$

2) 当插值多项式从*n*-1次增加到*n*次时,拉格朗日型插值必须重新计算所有的基本插值多项式;而对于牛顿型插值,只需用表格再计算一个*n*阶差商,然后加上一项即可。

4.4.4 牛顿插值的算法实现

1. 计算公式

- (1) 用一维数组 x_1 (i), y_1 (i) 存放插值点和对应的函数值 x_i , y_i
- (2) 计算各阶均差f[x₀, x₁, ..., x_k],即 F[i, 0]=y₁(i) i=0, 1, ..., n F[i, i]=[f[i, i-1]-f[i, i]]/[x₁(i)-x₁(i-i)]
- $F[i, j] = [f[i, j-1] f[i, j]] / [x_1(i) x_1(i-j)]$ j=1, 2, ..., n; i=j, j+1, ..., n
- (3) 按式(5. 13) 计算出所求插值点x_k处的函数值 P=F(n, n) P=P*[x-x₁(k)]+F(k, k), k=n-1, n-2, ..., 0

4.4.4 牛顿插值法的算法实现

构造和计算过 $(x_k, y_k) = (x_k, f(x_k)), k = 0, 1, \dots, N$ 的次数小于等于N 的牛顿多项式:

$$P(x) = d_{0,0} + d_{1,1}(x - x_0) + d_{2,2}(x - x_0)(x - x_1) + \dots + d_{N,N}(x - x_0)(x - x_1) \dots (x - x_{N-1})$$

其中

$$d_{k,0} = y_k,$$

$$d_{k,j} = \frac{d_{k,j-1} - d_{k-1,j-1}}{x_k - x_{k-j}}$$

程序实现: newtonChazhi.m

```
function C=newtonChazhi(X,Y)
          - X is a vector that contains a list of abscissas
%Input
%
          - Y is a vector that contains a list of ordinates
%Output - C is a vector that contains the coefficients
%
           of the Newton intepolatory polynomial
          - D is the divided difference table
%
\% X=[0,1,2,4]; Y=[1,9,23,3]; C=newtonChazhi(X,Y)
                                                           for k=(n-1):-1:1
n=length(X);
                                                             C=conv(C,poly(X(k)));
D=zeros(n,n);
                                                             m=length(C);
D(:,1)=Y';
                                                             C(m)=C(m)+D(k,k);
                                                            end
% form the divided difference table
for j=2:n
 for k=j:n
   D(k,j)=(D(k,j-1)-D(k-1,j-1))/(X(k)-X(k-j+1));
 end
end
                                                 命令行窗口
```

% Determine the coefficients of the Newton

interpolatory polynomial

C=D(n,n);

```
命令行窗口

>> X=[0,1,2,4]; Y=[1,9,23,3]; C=newtonChazhi(X,Y)

C =

-2.7500 11.2500 -0.5000 1.0000
```

作业4.2

7. $f(x) = 3\sin^2(\pi x/6)$ x = 1.5, 3.5

7 - 1.0, 5.5						
x_k	$f(x_k)$					
0.0	0.00					
1.0	0.75					
2.0	2.25					
3.0	3.00					
4.0	2.25					
	0.0 1.0 2.0 3.0					

8. $f(x) = e^{-x}$ x = 0.5, 1.5

k	x _k	$f(x_k)$					
0	0.0	1.00000					
1	1.0	0.36788					
2	2.0	0.13534					
3	3.0	0.04979					
4	4.0	0.01832					

回顾

第四章 插值法

- 4.1 引言
- 4.2 多项式插值
- 4.3 拉格朗日插值
- 4.4 均差与牛顿插值
- 4.5 埃尔米特插值
- 4.6 分段插值
- 4.7 三次样条插值

在生产和科研中出现的函数是多种多样的。常遇到这样的情况:

- ▶ 函数表达式过于复杂不便于计算,而又需要计算许多点处的函数值
- 仅有几个采样点处的函数值(即函数表),而又需要知道非采样点处的函数值

4.5 埃尔米特(Hermite)插值

- 户有时,为保证插值函数能更好地和原来的函数相重合,不但要求"过点",即两者在节点上有相同的函数值,且要求"相切",即在节点上还有相同的导数值,或者更高阶导数也相等。

这类插值称为埃尔米特插值。

我们这里仅介绍满足条件 $H(x_i) = H(x_i)$ 和 $H'(x_i) = f'(x_i)$ 的插值多项式。

4.5 埃尔米特插值

定义4.4. 已知n+1个互异点 $a=x_0<x_1<\dots< x_n=b$ 上的函数值 $f(x_i)$ 和导数值 $f'(x_i)$,若存在一个次数不超过2n+1的多项式H(x),满足

$$H(x_i) = H(x_i), H'(x_i) = f'(x_i), i = 0, 1, 2, \dots, n,$$
 (4.5.1) 则称 $H(x)$ 为 $f(x)$ 的 $2n+1$ 次埃尔米特插值多项式。

式中给出了2n+2个条件,可唯一确定一个次数不超过2n+1的多项式 $H_{2n+1}(x)$,采用类似于拉格朗日插值多项式基函数的方法,求出埃尔米特多项式 $H_{2n+1}(x)$ 。

4.5 埃尔米特插值

定理4.3 满足插值条件(4.5.1)的埃尔米特多项 式是唯一的。

证 设 $H_{2n+1}(x)$ 和 $\overline{H}_{2n+1}(x)$ 都满足上述插值条件,令

$$\phi(x) = H_{2n+1}(x) - \overline{H}_{2n+1}(x)$$

则每个节点 x_k (k=0, 1, ····n) 均为 ϕ (x) 的二重根,即有2n+2个根,但 ϕ (x) 是不高于2n+1次的多项式,所以 ϕ (x) \equiv 0,即

$$H_{2n+1}(x) = \overline{H}_{2n+1}(x)$$

唯一性得证。

例4.7 已知函数f(x)在两个节点上的函数值及导数值如表:

X _i	1	2
f(x _i)	2	3
$f'(x_i)$	0	-1

求f(x)的三次埃尔米特插值多项式。

解令所求的埃尔米特插值多项式为

$$H_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

由插值条件有
$$\begin{cases} H_3(1) = a_3 + a_2 + a_1 + a_0 = 2 \\ H_3(2) = 8a_3 + 4a_2 + 2a_1 + a_0 = 3 \\ H_3'(1) = 3a_3 + 2a_2 + a_1 = 0 \\ H_3'(2) = 12a_3 + 4a_2 + a_1 = -1 \end{cases}$$

解之得

$$a_3 = -3$$
, $a_2 = 13$, $a_1 = -17$, $a_0 = 9$

所以有

$$H_3(x) = -3x^3 + 13x^2 - 17x + 9$$

4.5 埃尔米特插值误差分析

定理4. 4 若f(x)在[a, b]上存在2n+2阶导数,则2n+1次埃尔米特插值多项式的余项为

$$R_{2n+1}(x) = f(x) - H_{2n+1}(x) = \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \omega^2(x)$$

其中,

$$\omega(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \qquad \xi \in (a, b)$$

定理的证明,可仿照拉格朗日插值余项的证明方法。

4.6 分段插值法

在区间[a,b]上用插值多项式P逼近函数f时,f和P在每个节 点上的差异(理论上)应该为零。自然,我们期望在一切中间点上 也能很好地逼近f. 根据插值多项式余项公式,插值节点越多, 一般说来误差越小, 函数逼近越好, 但这也不是绝对的。因为 余项的大小既与插值节点的个数有关,也与函数f(x)的高阶导数 有关。换句话说,适当地提高插值多项式的次数,有可能提高 计算结果的准确程度,但并非插值多项式的次数越高越好。

但上述的期望不可能实现的。当认识到这一点时,在数学 界曾引起强烈的震动。

•考察函数

$$f(x) = \frac{1}{1 + x^2}, \quad -5 \le x \le 5$$

将区间[-5,5]分成n等分,以 $P_n(x)$ 表示取n+1个等分的插值多项式,右上图给出了P2(x)、P3(x)、P10(x)的图象,可以看出: 随着插值节点数增加,插值多项式的次数也相应增加,而对于高次插值时, $P_n(x)$ 在两端会出现激烈的振荡,带来数值不稳定; 越靠近端点逼近的效果越差(Runge现象)。

该现象表明,在大范围内使用高次插值,逼近的效果往往是不理想的。因此,既要增加插值结点,减小插值区间,又要不增加插值多项式的次数以减少误差,我们可以采用分段插值的办法。

4.6.1 高次插值的龙格现象

另外,从舍入误差来看,高次插值误差的传播也较为严重。在 一个节点上产生的舍入误差会在计算中不断扩大,并传播到其它 节点上。

因此,为克服在区间上进行高 次插值所造成的龙格现象,采用分 段插值的方法,将插值区间分成若 干个小的区间,在每个小区间进行 线性插值,然后相互连接,用连接 相邻节点的折线逼近被插函数,这 种把插值区间分段的方法就是分段 线性插值法。

□ 在处理实际问题时,总是希望将 所得到的数据点用得越多越好。最 简单的方法是用直线将函数值点直 接连接。

□分段低次插值

基本思想: 用分段低次多项式来代替单个多项式。

具体作法: (1) 把整个插值区间分割成多个小区间;

(2) 在每个小区间上作低次插值多项式;

(3) 将所有插值多项式拼接整一个多项式。

优点: 公式简单、运算量小、稳定性好、收敛性 ...

缺点:节点处的导数不连续,失去原函数的光滑性。

4.6.2 分段线性插值公式

若用插值基函数表示,则在[a,b]上

$$S(x) = \sum_{i=0}^{n} l_i(x) f(x_i) \quad (a \le x \le b) \quad (5.28)$$

$$\downarrow \downarrow \uparrow , \qquad l_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}}, & x_{i-1} \le x \le x_i \\ \frac{x - x_{i+1}}{x_i - x_{i+1}}, & x_i \le x \le x_{i+1} \\ 0, & x \in [a, b], x \notin [x_{i-1}, x_{i+1}] \end{cases}$$

显然, $l_i(x)$ 是分段线性连续函数, 且 $l_i(x_k) = \begin{cases} 1, & i = k \\ 0, & i \neq k \end{cases}$

称S(x)为f(x)的分段线性插值函数。

由线性插值的余项估计式知,f(x)在每个子段[x_i,x_{i+1}]上有误差估计式

$$|f(x) - S(x)| \le \frac{h_i^2}{8} \max_{x_i \le x \le x_{i+1}} |f''(x)|$$

其中,h_i=x_{i+1}-x_i

但不光滑!

例 4.8 已知函数 $y=f(x)=\frac{1}{1+x^2}$ 在区间[0,5]上取等距插值节点 (如下表),求区间上分段线性插值函数,并利用它 求出 f(4.5)近似值。

x_{i}	0	1	2	3	4	5
y_i	1	0.5	0.2	0.1	0.05882	0.03846

$$P(x) = \frac{x - (k+1)}{k - (k+1)} y_k + \frac{x - k}{(k+1) - k} y_{k+1}$$

$$=-y_k(x-k-1)+y_{k+1}(x-k)$$

$$P(x) = \begin{cases} -(x-1)+0.5x, & x \in [0,1] \\ -0.5(x-2)+0.2(x-1), & x \in [1,2] \\ -0.2(x-3)+0.1(x-2), & x \in [2,3] \\ -0.1(x-4)+0.05882(x-3), & x \in [3,4] \\ -0.05882(x-5)+0.03846(x-4), x \in [4,5] \end{cases}$$

 $P(4.5) = -0.05882 \times (4.5-5) + 0.03846 \times (4.5-4) = 0.04864$

实际值: f(4.5)=0.04705882352941

当n=7时, P(4.5)=0.04762270321996

当n=10时,P(4.5)=0.04705882352941

由此可见,对于光滑性要求不高的插值问题,分段 线性插值的效果非常好! 计算也简单! 根据拉格朗日一次插值函数的余项,可以得到分段线性插值函数的插值误差估计:

对
$$\mathbf{x} \in [a, b]$$
, 当 $\mathbf{x} \in [x_k, x_{k+1}]$ 时,

$$R(x) = \frac{1}{2} f''(\xi)(x - x_k)(x - x_{k+1}) \qquad \text{II} \quad |R(x)| \le \frac{h^2}{8} M$$

其中

$$h = \max_{0 \le k \le n-1} |x_{k+1} - x_k| \qquad M = \max_{x \in (a,b)} |f''(x)|$$

于是可以加密插值结点,缩小插值区间,使h减

小,从而减小插值误差。

例4.9 已知f(x)在4个节点上的函数值如下表:

x _i	30	45	60	90
$f(x_i)$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

求f(x)在区间[30,90]上的分段连续线性插值函数S(x)

解 将插值区间[30,90]分成连续的三个小区间: [30,45], [45,60], [60,90],则S(x)在三个区间上的线性插值分别为:

$$S(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1) = \frac{\sqrt{2} - 1}{30} x + \frac{3}{2} - \sqrt{2}$$

$$S(x) = \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2) = \frac{\sqrt{3} - \sqrt{2}}{30} x + 2\sqrt{2} - \frac{3}{2}\sqrt{3}$$

$$S(x) = \frac{x - x_3}{x_2 - x_3} f(x_2) + \frac{x - x_2}{x_3 - x_2} f(x_3) = \frac{2 - \sqrt{3}}{60} x + \frac{3\sqrt{3}}{2} - 2$$

将各小区间的线性插值函数连接在一起,得

$$S(x) = \begin{cases} \frac{\sqrt{2} - 1}{30}x + \frac{3}{2} - \sqrt{2} & 30 \le x \le 45\\ \frac{\sqrt{3} - \sqrt{2}}{30}x + 2\sqrt{2} - \frac{3}{2}\sqrt{3} & 45 \le x \le 60\\ \frac{2 - \sqrt{3}}{60}x + \frac{3\sqrt{3}}{2} - 2 & 60 \le x \le 90 \end{cases}$$

4.7 三次样条插值

高次插值函数可以保证曲线的光滑性,但计算量大,有剧烈振荡,数值稳定性差;采用分段线性插值,虽然计算简单,但在分段点上仅连续而不光滑(导数不连续),这往往不能满足某些工程技术的高精度要求。如在船体、飞机等外形曲线的设计中,不仅要求曲线连续,而且要有二阶光滑度,即有连续的二阶导数。

样条函数可以同时解决这两个问题,使插值函数既是低阶分段函数,又是光滑的函数。

课本的第5.3节

4.7.1 样条函数的概念

1]: 在[a, b]上取n+1个插值结点 $a=x_0 < x_1 < x_2 < \cdots < x_n=b$ 已知函数 y=f(x) 在这n+1个点的函数值为 $y_k=f(x_k)$ 则 在[a, b]上函数 y=f(x)的m次样条插值函数 y=f(x)

- (1) s(x)在(a, b)上直到m-1阶导数连续;
- (2) $S(x_k) = y_k, \quad k = 0, 1, \dots, n;$
- (3) 在区间 $[x_k,x_{k+1}](k=0,1,\cdots,n-1)$ 上,s(x)是m次多项式。

从数学上看,样条曲线实际上是由分段曲线"装配"而成的, 且在连接点处具有边疆的二阶导数。样条曲线由于具有非常好的光 滑性,从数学上加以概括,就得到样条函数这一概念。

4.7.2 三次样条插值公式

由样条函数的定义可知,三次样条插值函数S(x)是一个分段三次多项式。要求出S(x),在每个小区间 $[x_k,x_{k+1}]$ 上要确定4个待定参数。若用 $s_k(x)$ 表示它在第k个子区间 $[x_k,x_{k+1}]$ 上的表达式,则

 $s_k(x) = a_{k0} + a_{k1}x + a_{k2}x^2 + a_{k3}x^3$, $k = 0,1,\dots,n-1$ (4n个待定系数)

其中四个待定系数为 a_{k0} , a_{k1} , a_{k2} , a_{k3} , 子区间共有n个,所以要确定S(x)需要4n个待定系数。

另一方面,要求分段多项式S(x)及其一阶、二阶导数在整值区间 [a,b]上连续,则要求它们在各个子区间的连接点x₀,x₁,…x_{n-1}上连续。

4.7.2 三次样条插值公式

定义4.5 设函数S(x)定义在区间[a,b]上,给定n+1个节点 $a=x_0<x_1<\dots< x_n=b$,和一组与之对应的函数值 $f(x_0)$, $f(x_1)$,… $f(x_n)$,若函数S(x)满足:

- (1)在每个节点上满足 $S(x_k) = f(x_k)$ (k=0,1,···,n);
- (2)在[a,b]上有连续的零阶、一阶、二阶导数;
- (3)在每个小区间[x_k, x_{k+1}] ($k=0,1,\dots,n-1$)上是一个三次多项式.则称S(x)为三次样条插值函数。

4.7.3 三次样条插值的存在性

已知S(x)是分段三次多项式,

由二阶导数连续,设 $S''(x_k)=m_k$, $k=0,1,\cdots,n$, m_k 是未知、待定的数。

因为S(x)是分段三次多项式,则S''(x)是分段一次多项式,在每个区间 $[x_k,x_{k+1}]$ 内,

$$S''(x) = \frac{x_{k+1} - x}{x_{k+1} - x_k} m_k + \frac{x - x_k}{x_{k+1} - x_k} m_{k+1}$$

将上式在区间 $[x_k,x_{k+1}]$ 上积分两次,并且由 $S(x_k)=y_k$,

 $S(x_{k+1}) = y_{k+1}$ 来确定两个积分常数。

 $\stackrel{\mathcal{L}}{=} x \in [x_k, x_{k+1}] \stackrel{\mathcal{H}}{=} ,$

$$S(x) = -\frac{(x - x_{k+1})^3}{6h_k} m_k + \frac{(x - x_k)^3}{6h_k} m_{k+1} - (y_k - \frac{h_k^2}{6} m_k) \frac{x - x_{k+1}}{h_k} + (y_{k+1} - \frac{h_k^2}{6} m_{k+1}) \frac{x - x_k}{h_k}$$

利用S(x)一阶导数连续的性质,对上式求导,得:

$$S'(x) = -\frac{(x - x_{k+1})^2}{2h_k} m_k + \frac{(x - x_k)^2}{2h_k} m_{k+1} - \frac{h_k}{6} (m_{k+1} - m_k) + \frac{1}{h_k} (y_{k+1} - y_k)$$

在上式中, $\diamond x = x_k$, 得:

$$S'(x_k+0) = -\frac{h_k}{6}m_{k+1} - \frac{h_k}{3}m_k + \frac{y_{k+1}-y_k}{h_k}$$

将上式中的k 换成 k-1,得S'(x) 在[x_{k-1},x_k] 上的表达式, 用 $x=x_k$ 代入,

$$S'(x_k - 0) = \frac{h_{k-1}}{6} m_{k-1} + \frac{h_{k-1}}{3} m_k + \frac{y_k - y_{k-1}}{h_k}$$

 $|\overrightarrow{|}| S'(x_k+0) = S'(x_k-0)$,

联立上述两式,得到关于 m,的方程:

$$\frac{h_{k-1}}{6}m_{k-1} + \frac{h_k + h_{k-1}}{3}m_k + \frac{h_k}{6}m_{k+1} = \frac{y_{k+1} - y_k}{h_k} - \frac{y_k - y_{k-1}}{h_{k-1}} \quad k = 1, 2, \dots, n-1$$

两边乘以 $\frac{6}{h_1+h_2}$, 得:

$$\frac{h_{k-1}}{h_k + h_{k-1}} m_{k-1} + 2m_k + \frac{h_k}{h_k + h_{k-1}} m_{k+1} = \frac{6}{h_k + h_{k-1}} \left(\frac{y_{k+1} - y_k}{h_k} - \frac{y_k - y_{k-1}}{h_{k-1}} \right)$$

4.7.3 三次样条插值的存在性

上式中,等式左边含未知量 m_{k-1} , m_k , m_{k+1} , 等式右边 y_{k-1} , y_k , y_{k+1} 是已知的,令

$$\lambda_{k} = \frac{h_{k-1}}{h_{k} + h_{k-1}}, \qquad \mu_{k} = \frac{h_{k}}{h_{k} + h_{k-1}} = 1 - \lambda_{k}, \quad C_{k} = \frac{6}{h_{k} + h_{k-1}} \left(\frac{y_{k+1} - y_{k}}{h_{k}} - \frac{y_{k} - y_{k-1}}{h_{k-1}} \right)$$

则得:

$$\lambda_k m_{k-1} + 2m_k + \mu_k m_{k+1} = C_k \qquad k = 1, 2, \dots, n-1$$

这是含有n+1个未知量 m_0, m_1, \cdots, m_n , 共有n-1个方程组成的线性方程组。欲确定方程的解,尚缺2个方程。因此,求三次样条函数还要2个附加条件。

通常在区间端点a=x0,b=xn上各加一个条件,称为端点约束。 常用端点约束有三种类型。

常用端点约束有三种类型:

类型1: 给定两端点f(x)的一阶导数值:

$$S'(x_0) = f'(x_0), \quad S'(x_n) = f'(x_n)$$
 = $\frac{\Xi_{n,n}}{\Xi_{n,n}}$

类型2: 给定两端点f(x)的二阶导数值:

$$S''(x_0) = f''(x_0), \quad S''(x_n) = f''(x_n)$$
 三弯矩方程

作为特例, $S''(x_0) = S''(x_n) = 0$ 称为自然边界条件。

满足自然边界条件的三次样条插值函数称为自然样条插值函数。

类型3: 当f(x)是以 (x_n,x_0) 为周期的函数时,则要求S(x)也是周期函数.这时边界条件应满足

当
$$f(x_0)=f(x_n)$$
时,

$$S'(x_0) = S'(x_n), \quad S''(x_0) = S''(x_n).$$

第一类端点约束: 三转角方程

给出边界端点的一阶导数值:

$$S'(x_0) = y'_0$$
, $S'(x_n) = y'_n \circ$

利用前面已推导的公式,

$$S'(x) = -\frac{(x - x_{k+1})^2}{2h_k} m_k + \frac{(x - x_k)^2}{2h_k} m_{k+1} - \frac{h_k}{6} (m_{k+1} - m_k) + \frac{1}{h_k} (y_{k+1} - y_k)$$

取 k=0, $x=x_0$, 得:

$$y_0' = -\frac{h_0}{3} m_0 - \frac{h_0}{6} m_1 + \frac{y_1 - y_0}{h_0}$$

取 k=n-1, $x=x_n$, 得:

$$y'_{n} = \frac{h_{n-1}}{6} m_{n-1} + \frac{h_{n-1}}{3} m_{n} + \frac{y_{n} - y_{n-1}}{h_{n-1}}$$

移项得

$$2m_0 + m_1 = \frac{6}{h_0} \left(\frac{y_1 - y_0}{h_0} - y_0' \right) = C_0$$

$$m_{n-1} + 2m_n = \frac{6}{h_{n-1}} \left(y_n' - \frac{y_n - y_{n-1}}{h_{n-1}} \right) = C_n$$

于是,我们可以建立如下方程组:

$$\begin{cases} 2m_0 + m_1 & = C_0 \\ \lambda_1 m_0 + 2m_1 + \mu_1 m_2 & = C_1 \\ & \cdots & \cdots \\ & \lambda_{n-1} m_{n-2} + 2m_{n-1} + \mu_{n-1} m_n = C_{n-1} \\ & m_{n-1} + 2m_n = C_n \end{cases}$$
军是严格对角占优的三对角矩

其系数矩阵是严格对角占优的三对角矩阵:

从而可以解出 $m_0, m_1, ..., m_n$ 。解出后可以得到三次样条函 数的分段表达式,

$$S(x) = -\frac{(x - x_{k+1})^3}{6h_k} m_k + \frac{(x - x_k)^3}{6h_k} m_{k+1} - (y_k - \frac{h_k^2}{6} m_k) \frac{x - x_{k+1}}{h_k} + (y_{k+1} - \frac{h_k^2}{6} m_{k+1}) \frac{x - x_k}{h_k}$$

注: 三次样条插值与Hermite插值的区别。

第二类端点约束: 三弯矩方程

附加条件为 $S''(x_0) = m_0 S''(x_n) = m_n$

第二类端点约束:三弯矩方程

其系数矩阵为

$$egin{bmatrix} 2 & \mu_1 & & & & & \ \lambda_2 & 2 & \mu_2 & & & & \ & \lambda_3 & 2 & \mu_3 & & & \ & \ddots & \ddots & \ddots & & \ & & \lambda_{n-2} & 2 & \mu_{n-2} \ & & & \lambda_{n-1} & 2 \end{bmatrix}$$

系数矩阵严格对角 占优,方程组存在 唯一解。

这是一个三对角矩阵,由于 ¾+ μ₂=1<3,因而它是严格 对角占优的。原方程组是个三对角方程组,可以 用追赶法求解。

第三类端点约束

口第三类端点约束: $s'(x_0) = s'(x_n)$, $s''(x_0) = s''(x_n)$

可得 $m_0 = m_n$, $\lambda_n m_1 + \mu_n m_{n-1} + 2m_n = d_n$

 $\lambda_n = h_1/(h_1 + h_n), \mu_n = h_n/(h_1 + h_n),$ $d_n = 6((y_1 - y_0)/h_1 - (y_n - y_{n-1})/h_n)/(h_1 + h_n)$

与前面的 n-1 个方程联立得 n 阶线性方程组:

$$\begin{bmatrix} 2 & \lambda_1 & & & \mu_1 \\ \mu_2 & 2 & \lambda_2 & & \\ & \ddots & \ddots & \ddots & \\ & & \mu_{n-1} & 2 & \lambda_{n-1} \\ \lambda_n & & & \mu_n & 2 \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \\ \vdots \\ M_{n-1} \\ M_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_{n-1} \\ d_n \end{bmatrix}$$

系数矩阵严 格对角占优, 方程组存在 唯一解。

具体计算过程

- □ 综上所述,满足插值条件 $s(x_j)=y_j$ 和某一类边界条件的三次样条函数存在且唯一!
- □具体计算过程
 - ✓ 根据插值条件 $s(x_j) = y_j$ 和给定的边界条件列出相应得方程组;
 - ✓ 解出该线性方程组的解 m_0, m_1, \dots, m_n ; 具体求解方法参见第五章和第六章
 - ✓ 将 m_0 , m_1 , ..., m_n 代入 $s_j(x)$ 的表达式,写出三次 样条函数 s(x) 在整个插值区间上的分段表达式。

例4. 10 已知y=f(x)的函数值如

X	1	2	4	5		
f(x)	1	3	4	2		

在区间[1, 5]上求三次样条插值函数S(x), 使它满足边界条件S''(1) = S''(5) = 0.

解 这是在第二种边界条件下的插值问题,故确定 M_i(i=0,1,2,3)的方程组形如三弯矩方程所示,

由已知边界条件,有 $S''(x_0) = f''(x_0) = M_0 = 0$,

 $S''(x_3) = f''(x_3) = M_3 = 0$. 则得求解M₁, M₂的方程组为

$$\begin{bmatrix} 2 & \lambda_1 \\ \mu_2 & 2 \end{bmatrix} \begin{bmatrix} M_1 \\ M_2 \end{bmatrix} = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}$$

根据给定数据和边界条件算出μ_i、λ_i、g_i,及

$$h_1=1$$
, $h_2=2$, $h_3=1$
 $f[x_0, x_1]=2$, $f[x_1, x_2]=1/2$, $f[x_2, x_3]=-2$
 $\lambda_1=h_2/(h_1+h_2)=2/3$, $\mu_2=h_2/(h_2+h_3)=2/3$
 $g_1=6(f[x_1, x_2]-f[x_0, x_1])/(h_1+h_2)=-3$
 $g_2=6(f[x_2, x_3]-f[x_1, x_2])/(h_2+h_3)=-5$

则得方程组

$$\begin{cases} 2M_1 + \frac{2}{3}M_2 = -3\\ \frac{2}{3}M_1 + 2M_2 = -5 \end{cases}$$

解得

 $M_1 = -3/4$, $M_2 = -9/4$

又因为

 $M_0 = M_3 = 0$

即得S(x)在各子区间上的表达式 $S_i(x)$ (i=1, 2, 3), 由式(5. 32)知,S(x)在区间[x_0, x_1]上的表达式为

$$S_1(x) = M_0 \frac{(x_1 - x)^3}{6h_1} + M_1 \frac{(x - x_0)^3}{6h_1} + \left(y_0 - \frac{M_0}{6}h_1^2\right) \frac{(x_1 - x)}{h_1} + \left(y_1 - \frac{M_1}{6}h_1^2\right) \frac{(x - x_0)}{h_1}$$

将 x_0 =1, x_1 =2, y_0 =1, y_1 =3, h_1 =1, M_0 =0, M_1 =-3/4代入上式化简后得

$$S_1(x) = -\frac{1}{8}x^3 + \frac{3}{8}x^2 + \frac{7}{4}x - 1$$

同理, S(x)在[x_1, x_2]和[x_2, x_3]上的表达式为

$$S_2(x) = -\frac{1}{8}x^3 + \frac{3}{8}x^2 + \frac{7}{4}x - 1$$

$$S_3(x) = \frac{3}{8}x^3 - \frac{45}{8}x^2 + \frac{91}{4}x - 19$$

故所求的三次样条插值函数S(x)在[1,5]上的表达式为

$$S(x) = \begin{cases} \frac{1}{8}x^3 + \frac{3}{8}x^2 + \frac{7}{4}x - 1 & (1 \le x \le 2) \\ -\frac{1}{8}x^3 + \frac{3}{8}x^2 + \frac{7}{4}x - 1 & (2 \le x \le 4) \\ \frac{3}{8}x^3 - \frac{45}{8}x^2 + \frac{91}{4}x - 19 & (4 \le x \le 5) \end{cases}$$

4.7.4 三次样条插值函数的求法

用三次样条绘制的曲线不仅有很好的光滑度,而且当节点逐渐加密时,其函数值在整体上能很好地逼近被插函数,相应的导数值也收敛于被插函数的导数,不会发生龙格现象。

因此三次样条在计算机辅助设计中有广泛的应用。

程序实现:SanciyangtiaoChazhi.m

```
function S=SanciyangtiaoChazhi(X,Y,dx0,dxn)
                                                             U(1)=U(1)-3*(D(1)-dx0);
%Input - X is the 1xn abscissa vector
                                                             B(N-1)=B(N-1)-H(N)/2;
% - Y is the 1xn ordinate vector
                                                             U(N-1)=U(N-1)-3*(dxn-D(N));
% - dxo = S'(x0) first derivative boundary condition
                                                             for k=2:N-1
       -dxn = S'(xn) first derivative boundary
%
                                                               temp=A(k-1)/B(k-1);
condition
                                                              B(k)=B(k)-temp*C(k-1);
%Output - S: rows of S are the coefficients for the
                                                               U(k)=U(k)-temp*U(k-1);
cubic interpolants
                                                             end
% X=[0,1,2,3]; Y=[0,0.5,2,1.5]; dx0=0.2; dxn=-1;
% C=SanciyangtiaoChazhi(X,Y,dx0,dxn)
                                                             M(N)=U(N-1)/B(N-1);
% »Í¼
% x1=0:0.01:1; y1=polyval(C(1,:),x1-X(1));
                                                             for k=N-2:-1:1
                                                              M(k+1)=(U(k)-C(k)*M(k+2))/B(k);
x2=1:0.01:2; y2=polyval(C(2,:),x2-X(2));
                                                             end
%x3=2:0.01:3; y3=polyval(C(3,:),x3-
X(3); plot(x1,y1,x2,y2,x3,y3,X,Y,'.')
                                                             %Clamped spline endpoint constraints
N=length(X)-1;
H=diff(X);
                                                             M(1)=3*(D(1)-dx0)/H(1)-M(2)/2;
D=diff(Y)./H;
                                                             M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;
A=H(2:N-1);
                                                             for k=0:N-1
B=2*(H(1:N-1)+H(2:N));
                                                               S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));
C=H(2:N);
                                                               S(k+1,2)=M(k+1)/2;
C=H(2:N);
                                                               S(k+1,3)=D(k+1)-
U=6*diff(D);
                                                             H(k+1)*(2*M(k+1)+M(k+2))/6;
%Clamped spline endpoint constraints
                                                               S(k+1,4)=Y(k+1);
B(1)=B(1)-H(1)/2;
                                                             end
```

```
34 -
        U=6*diff(D);
命令行窗口
   X=[0,1,2,3]; Y=[0,0.5,2,1.5]; dx0=0.2; dxn=-1;
  C=SanciyangtiaoChazhi(X, Y, dx0, dxn)
   % 画图
   x1=0:0.01:1; y1=polyval(C(1,:),x1-X(1)); x2=1:0.01:2; y2=polyval(C(2,:),x2-X(2));
  x3=2:0.01:3; y3=polyval(C(3,:),x3-X(3)); plot(x1,y1,x2,y2,x3,y3,X,Y,'.')
   C =
                         0.2000
      0.4800
              -0.1800
                                        0
     -1.0400
              1.2600
                         1.2800
                                   0.5000
      0.6800
              -1.8600
                          0.6800
                                   2.0000
f_{x} >>
                                                       2.5
```


作业

2. 设有多项式 $S(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ 。

(a) 证明根据条件 S(1)=3, S'(1)=-4, S(2)=1 和 S'(2)=2 可得到如下方程组:

$$a_0 + a_1 + a_2 + a_3 = 3$$

 $a_1 + 2a_2 + 3a_3 = -4$
 $a_0 + 2a_1 + 4a_2 + 8a_3 = 1$
 $a_1 + 4a_2 + 12a_3 = 2$

- (b) 求解(a)中的方程组,并根据结果画出三次多项式曲线。
- 4. 求三次紧压样条曲线,经过点(-3,2),(-2,0),(1,3)和(4,1),而且一阶导数边界条件 S'(-3) = -1 和 S'(4) = -1。

算法与程序

1. 推广研究另外两种端点约束的Matlab程序。

本章教学要求及重点难点

- •理解插值的基本概念
- •掌握Lagrange插值法、Newton插值法、Hermite 插值法、三次样条插值
- •会计算各种插值法的插值余项及误差分析
- ·掌握Lagrange插值法、Newton插值法的算法设计 思想
- •重点: Lagrange插值法、Newton插值法、 Hermite插值法以及三次样条插值
- •难点: 计算各种插值法的插值余项及误差分析

文献 期刊 博硕士 会议 报纸 外文文献 年鉴 百科 词典 统计数据 专利 标准 更多>>

文献全部分类

~

▼ 样条插值

检索

结

主题:样条插值 ×

查看 样条插值 的指数分析结果

主题

分组浏览: 学科 发表年度 研究层次 作者 机构 基金

免费订阅

×

2018 (20) 2017 (151) 2016 (213) 2015 (195) 2014 (221) 2013 (199) 2012 (193) 2011 (192) 2010 (237) 2009 (212) 2008 (209)

2007 (212) 2006 (183) 2005 (154) 2004 (128) >>

移动知网-全球学术快报

排序:	主题排序→ 发表时间 被引 下载			≣₹	川表 ■摘要	每页显	示: 10 2	0 50
已述	达文献: 0 清除 批量下载 导出/参考文献 计量可视化分析	¥			找到:	3,859 条结	果 1/1	93 >
	题名	作者	来源	发表时间	数据库	被引	下载	阅读
1	基于三次样条插值时域采样重构的间谐波检测新算法	金维刚; 刘会金	电网技术	2012-07-05	期刊	23	543 🖶	HTML
<u>2</u>	基于GPU的三维有限差分直升机瞬变电磁响应并行计算	关珊珊	吉林大学	2012-12-01	博士	17	781 🖶	m
□ 3	三维旅行时场B <mark>样条插值</mark> 射线追踪方法	张东;张婷婷;乔友锋;杨 艳;胡英 >	石油地球物理勘 探	2013-08-15	期刊	9	186 🖶	m
4	薄盘光滑 <mark>样条插值</mark> 中三种协变量方法的降水量 <mark>插值</mark> 精度 比较	刘正佳; 于兴修; 王丝 丝; 商贵铎	地理科学进展	2012-01-15	期刊	24	584 🖶	HTML
<u> </u>	旋转悬臂梁动力学的B <mark>样条插值</mark> 方法	范纪华; 章定国	机械工程学报	2012-12-05	期刊	17	299 🖶	m
<u>6</u>	几种谐波检测加窗 <mark>插值</mark> FFT算法的比较	刘冬梅; 郑鵬; 何怡刚; 吴雪震; 赵卫忠	电测与仪表	2013-12-25	期刊	31	752 🖶	m
<u> </u>	基于三次 <mark>样条插值</mark> 信号重构的微网谐波及间谐波分析算 法	王维东; 杜旭浩; 杨帆	电网技术	2012-11-05	期刊	23	592 🖶	HTML
8	基于三次 <mark>样条</mark> 函数的激光雷达数据可视化 <mark>插值</mark> 法	陈浩;华灯鑫;张毅坤; 闫庆;李仕春	仪器仪表学报	2013-04-15	期刊	19	470 🖶	m

资源类型 📶

- 贝娜天主 省
- 期刊 - 硕士
- 博士
- 博士 - 国内会议
- 国际会议

文献来源 🔏

- 大连理工大学
- 计算数学
- 合肥工业大学
- 计算机工程与应
- 计算机辅助设计

关键词 🔏

- 插值
- 样条插值
- 三次样条插值
- B样条

3. I hadamat

- 样条函数

文献 期刊 博硕士 会议 报纸 外文文献 年鉴 百科 词典 统计数据 专利 标准 更多>>

文献全部分类

Y

▼ 样条插值

☆ 索

结果中检索 高级检索

出版物检索

主题:样条插值 × 查看 样条插值 的指数分析结果

分组浏览: 学科 学位年度 基金 导师 学科专业 研究层次

主题

2018 (2) 2017 (53) 2016 (75) 2015 (69) 2014 (97) 2013 (75) 2012 (82) 2011 (64) 2010 (84) 2009 (83) 2008 (82) 2007 (74)

排序:	排序: 主题排序→ 出版时间 被引 下载 学位授予年度					每页显示: 10 <mark>20</mark> 50		
已选文献: 0 清除 批里下载 导出/参考文献 计里可视化分析 ▼					53 >			
	中文题名	作者	学位授予单位	数据库	学位年度	被引	下载	阅读
<u> </u>	基于GPU的三维有限差分直升机瞬变电磁响应并行计算	关珊珊	吉林大学	博士	2012年	17	781 🖶	ф
<u> </u>	仿人机器人的步态规划和步行控制研究	付根平	广东工业大学	博士	2013年	30	2729 🖶	m
3	几何连续性约束下的自由曲面过渡问题研究	施侃乐	清华大学	博士	2012年	4	476 🖶	m
4	航空图像超分辨率重构技术研究	杨文波	中国科学院研究生院 (长春光学精密机械 与物理研究所)	博士	2014年	13	1022 🖶	m
<u> </u>	数字图像处理中非线性 <mark>插值</mark> 方法的应用研究	盛敏	合肥工业大学	博士	2009年	20	1791 🖶	m
<u> </u>	基于三次 <mark>样条插值</mark> 的地面核磁共振反演方法研究	冷舒喆	吉林大学	硕士	2017年		62 🖶	m
7	基于经验模态分解的故障诊断方法研究	杨贤昭	武汉科技大学	博士	2012年	46	2687 🖶	m
8	<mark>样条</mark> 函数与径向基函数的若干研究	姜自武	大连理工大学	博士	2010年	7	878 🖶	m
9	基于自适应三次 <mark>样条插值</mark> 的ACARS航迹重构算法研究	宋阳	中国民航大学	硕士	2017年		53 🖶	ф

免费订阅

F 能少利器

移动知网-全球学术快报 研究型协同学习平台

资源类型 🔏	
- 硕士	(840)
- 博士	(214)
学位授予单位 🚮	*
- 大连理工大学	(66)
- 合肥工业大学	(55)
- 浙江大学	(38)
- 哈尔滨工业大学	(30)
- 南京航空航天大学	(29)
关键词 🚮	*
- 样条插值	(309)
- 插值点	(147)
- 三次样条插值	(133)
- 曲面插值	(111)
- 图像边缘	(106)

为我推荐

- 三次样条插值方法及其在形变数据