- 2016 3B 期末(打ち間違えあったらメンゴ、下に本物つけときます)
- $1. \{a_n\}_{n\geq 1}$ を数列で任意の $n\geq 1$ に対し $a_n\geq 0$ とする

以下の命題について正しければ証明し、間違いならば成り立たない例をあげよ。

- (a) $\lim_{n\to\infty} n^2 a_n = 0$ が成り立つならば $\sum_{n=1}^{\infty} a_n$ は収束する」
- (b) 「 $\sum_{n=1}^{\infty} a_n$ が収束するならば $\lim_{n \to \infty} n^2 a_n = 0$ が成り立つ」
- 2. 次の級数が終息するかどうか調べ、(b)、(c)については収束するような実数 x の範囲を求めよ。

(a)
$$\sum_{n=1}^{\infty} \frac{n^{\frac{1}{n}}}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n}\sqrt{n!}} \chi^{2n}$ (c) $\sum_{n=1}^{\infty} \frac{\left(\chi^2 + \chi + 1\right)^n}{n(n+2017)}$

 $3. f を \mathbb{R}^2$ 上で定義された連続関数とする。次の類似積分の積分範囲を図示し、積分順序を交換せよ。

$$I = \int_{-1}^{1} \left(\int_{\log(x+2)}^{-x^2+4} f(x,y) dy \right) dx$$

4. 次の重積分の値を求めよ。

(a)
$$I = \iint_D \frac{x^2}{1+y^4} dx dy$$
 $D = \{(x,y) \in \mathbb{R}^2; 0 \le x \le 2, x \le y \le 2\}$

(b)
$$I = \iint_D e^{\frac{x-y}{x+y}} dxdy$$
 $D = \{(x,y) \in \mathbb{R}^2 : x+y \le 1, \ x \ge 0, \ y \ge 0\}$

5. D = $\{(x,y) \in \mathbb{R}^2; \frac{1}{4} \le 2x^2 + y^2 \le \frac{3}{4}, \ x \ge 0, \ y \ge 0\}$ とする。次の重積分に対して

 $\mathbf{x} = \frac{\mathbf{r}}{\sqrt{2}}\mathbf{cos}\theta$ $\mathbf{y} = \mathbf{rsin}\theta$ と置いて変数返還するとき、ヤコビアン \mathbf{J} (\mathbf{r} 、 θ) を求めよ。また積分の値を求めよ。

$$I = \iint_D \frac{1 + \sqrt{2x^2 + y^2}}{\sqrt{2x^2 + y^2}\sqrt{1 - 2x^2 - y^2}} dxdy$$

慶應義塾	大字試恩	四四四四四	(HH)

					試験時間	90分 程点欄	% *	
平成 29	年 2月 2日(木)3時限施行		学部	学科	年	組	探点欄	
担当者名	坂川 博宣 君	学籍番号						
科目名	数学3B	氏 名						

次の1から5に答えよ、途中の計算も適宜答案用紙に記入すること。

- 1. $\{a_n\}_{n\geq 1}$ を数列で任意の $n\geq 1$ に対し $a_n\geq 0$ とする. 以下の命題について正しければ証明し、間違いならば成り立たない例を挙げよ.
 - (a) $\lceil \lim_{n \to \infty} n^2 a_n = 0$ が成り立つならば $\sum_{n=1}^{\infty} a_n$ は収束する」
 - (b) 「 $\sum_{n=1}^{\infty} a_n$ が収束するならば $\lim_{n\to\infty} n^2 a_n = 0$ が成り立つ」
- 2. 次の級数が収束するかどうか調べ、(b)、(c)については収束するような実数xの範囲を求めよ.
- (a) $\sum_{n=1}^{\infty} \frac{n^{\frac{1}{n}}}{2^n}$ (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n}\sqrt{n!}} x^{2n}$ (c) $\sum_{n=1}^{\infty} \frac{(x^2+x+1)^n}{n(n+2017)}$
- $3. f \in \mathbb{R}^2$ 上で定義された連続関数とする、次の累次積分の積分範囲を図示し、積分順序を交換せよ、

$$I = \int_{-1}^{1} \left(\int_{\log(x+2)}^{-x^2+4} f(x,y) dy \right) dx$$

- 4. 次の重積分の値を求めよ.
 - (a) $I = \iint_D \frac{x^2}{1+y^4} dx dy$, $D = \{(x,y) \in \mathbb{R}^2; \ 0 \le x \le 2, \ x \le y \le 2\}$
 - (b) $I = \iint_D e^{\frac{x-y}{x+y}} dxdy$, $D = \{(x,y) \in \mathbb{R}^2; \ x+y \le 1, \ x \ge 0, \ y \ge 0\}$
- 5. $D = \{(x,y) \in \mathbb{R}^2; \frac{1}{4} \le 2x^2 + y^2 \le \frac{3}{4}, x \ge 0, y \ge 0\}$ とする.

次の重積分に対し $x = \frac{r}{\sqrt{2}}\cos\theta, y = r\sin\theta$ と置いて変数変換するとき、ヤコビアン $J(r,\theta)$ を求めよ.

また積分の値を求めよ.

$$I = \iint_D \frac{1 + \sqrt{2x^2 + y^2}}{\sqrt{2x^2 + y^2}\sqrt{1 - 2x^2 - y^2}} \, dx dy$$