Homework 1

ECE 269: Linear Algebra and Applications
Homework #1
Instructor: Behrouz Touri

Due Date: Thursday Jan 16th Friday Jan 17th, 8 pm (submission through Gradescope)

- 1. Review of prior Linear Algebra: Properties of Matrix multiplication. Let $A, B \in \mathbb{R}^{n \times n}$ be regular $n \times n$ real-valued matrices $(n \ge 2)$. Prove or disprove the following claims:
 - (a) AB = BA.
 - (b) If AB = 0, then A = 0 or B = 0.
 - (c) If $A^k = 0$ for all k > 1, then A = 0.
 - (d) If A'A = 0, then A = 0.
- 2. Some set theory. Let A, B, C be three sets.
 - (a) Show that if $A \subseteq B$, then $A C \subseteq B C$ where $A C = A \cap C^c$.
 - (b) Is this true or not: $A \cup (B \cap C) = (A \cup B) \cap C$.
- 3. Finite field GF(4). As mentioned in the class, a field is a set equipped with two tables (operations), an addition table, and a multiplication table that are related through the distributive law.
 - (a) Construct those tables for the set $\mathbb{F} = \{0, 1, a, b\}$ where 0 is the unity of the additive table and 1 is the unity of the multiplication table.
 - (b) Given your answer in part (a), solve $a \cdot x + 1 = b$ (i.e., find $x \in \mathbb{F}$ that satisfies this identity).
- 4. Field Properties. Let $(\mathbb{F}, +, \cdot)$ be a field with the additive identity element z and multiplicative identity element o. Prove the following.
 - (a) For all $a \in \mathbb{F}$, $z \cdot a = z$.
 - (b) Show that if \mathbb{F} is finite, and $a \neq z$, then $a^q = o$ for some $q \geq 1$.
- 5. Subspaces. Let V and W be subspaces of a vector space. Which of the following is also a subspace?
 - (a) Minkowski sum $V + W = \{v + w : v \in V, w \in W\}.$
 - (b) $V \cap W$.
 - (c) $\mathcal{V} \cup \mathcal{W}$.

For each case, either verify that it is a subspace or prove otherwise.

- 6. Bases. Find a basis for each of the following subspaces of \mathbb{R}^4 .
 - (a) All vectors whose components are equal.

- (b) All vectors whose components sum to zero.
- (c) All vectors orthogonal to both $\begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}'$ and $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}'$.
- (d) All vectors spanned by $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}'$, $\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}'$, $\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}'$, and $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}'$ Repeat parts (a)–(d) for \mathbb{Z}_2^4 instead of \mathbb{R}^4 .