이 문서의 주요 내용을 요약하고, 시험 대비에 도움이 되는 핵심 사항을 정리해 보겠습니다.

1. 세그멘테이션 개요

세그멘테이션은 주소 공간을 여러 논리적인 세그먼트로 나누어 메모리 낭비를 줄이는 방식입니다. 베이스와 바운드 레지스터를 사용하여 각 세그먼트를 물리 메모리의 다른 위치에 독립적으로 배치할 수 있습니다.

스택과 힙 사이의 큰 빈 공간 문제를 해결하여, 물리 메모리 사용의 효율성을 높입니다. 이는 대용량 주소 공간에서도 메 모리를 낭비하지 않도록 설계되었습니다.

2. 세그멘트 종류

코드, 힙, 스택으로 나뉩니다. 이 각각은 고유한 베이스와 바 운드를 가집니다.

각 세그먼트의 크기와 위치는 독립적으로 관리되며, 필요에 따라 물리 메모리에 적재됩니다.

3. 외부 단편화 문제

세그멘테이션은 외부 단편화 문제를 유발할 수 있습니다. 세 그먼트의 크기가 다르므로, 메모리 공간에 불연속적인 빈 공 간이 생기기 쉽습니다. 이 문제는 메모리를 압축 (compaction)하여 해결할 수 있지만, 성능에 큰 영향을 미 칩니다.

4. 공유 메모리

코드 공유를 통해 여러 프로세스가 동일한 코드 세그먼트를 참조할 수 있습니다. 각 프로세스는 자신의 주소 공간을 갖 고 있지만, 읽기 전용으로 설정된 코드 세그먼트는 공유됩니 다.

5. 스택의 반대 방향 확장

스택은 일반적인 세그먼트와는 다르게 메모리의 반대 방향으로 확장됩니다. 이를 위해 추가적인 하드웨어가 필요하며, 베이스와 바운드 값을 사용하여 변환을 처리합니다.

6. 시험 대비