Séquence: 10

Document : TP01 Lycée Dorian Renaud Costadoat

Françoise Puig

Avec Correction

Référence S10 - TP01

Compétences A3-C4: Analyse d'architecture et de comportement

A3-C9: Information

Mod2-C5: Systèmes à événements discrets

Mod2-C11: Modélisation géométrique et cinématique des mouvements entre so-

lides indéformables

Mod2-C12: Modélisation cinématique des liaisons entre solides

Mod2-C14: Modèle cinématique d'un mécanisme Mod2-C15: Modélisation des actions mécaniques

Com2-C4: Outils de communication

Description Conception d'un algorithme de calcul d'addition pour une calculatrice

Système Calculatrice de bureau

1 Présentation du système

Le système étudié est une calculatrice de bureau utilisée pour des opérations financières ou comptables.

Le but de ce TP est de modéliser, de simuler et de valider deux solutions technologiques pour la réalisation d'un additionneur :

- logique câblée (simulée sous Matlab/Simulink),
- logique programmée (simulée sous python)

- Un fichier Simulink: Calculatrice vierge.slx,
- Un fichier Python : Calculatrice vierge.py.

2 Additionner deux nombres de 1 bit

Nous allons tout d'abord réaliser un additionneur à 1 chiffre binaire. C'est un composant ayant deux entrées logiques (les deux chiffres binaires à additionner) notés a_0 et b_0 .

La sortie (résultat de l'opération arithmétique d'addition) est un nombre binaire à deux chiffres la somme s_0 et la retenue r_i qui réalise l'opération suivante :

$$\begin{array}{ccc} & b_0 & & 0 \\ + & a_0 & \text{qui se traduit par} & + & 1 \\ \hline r_1 & s_0 & & & 0 & 1 \end{array}$$

Question 1 Etablir la table de vérité de la somme s_0 et la retenue r_1 en fonction des entrées b_0 et a_0 .

b_0	a_0	s_0	r_1
0	0		
0	1		
1	0		
1	1		

Question 2 Etablir les équations logiques de la somme s_0 (en utilisant un opérateur logique remarquable) et la retenue r_1 en fonction des entrées b_0 et a_0 . Vérifier le résultat à l'aide des logiciels de simulation.

3 Additionner deux nombres de n bit

Question 3 Etablir la table de vérité de la somme s_1 (en utilisant un opérateur logique remarquable) et la retenue r_2 en fonction des entrées b_1 , a_1 et r_1 .

b_1	a_1	r_1	s_1	r_2
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

- **Question 4** Établir les équations logiques de la somme s_1 et la retenue r_2 en fonction des entrées b_1 , a_1 et r_1 . Vérifier le résultat à l'aide des logiciels de simulation.
- **Question 5** En déduire les équations logiques de la somme s_i au rang i (en utilisant un opérateur logique remarquable) et la retenue r_{i+i} au rang i+1 en fonction des entrées a_i , b_i et r_i au rang i.
- Question 6 Tracer le schéma de l'ensemble du système de traitement de l'information.
- Question 7 Compléter le fichier python afin d'obtenir le même fonctionnement en logique programmée.

4 Afficher l'information sur un afficheur 7 segments

Un afficheur « 7 segments » est constitué de 7 diodes électroluminescentes (LEDs) numérotées de 0 à 6. L'objectif de cette partie est de concevoir un adaptateur qui convertit un nombre binaire pour l'afficher sur un afficheur 7 segments.

L'adaptateur se présente sous la forme d'un opérateur à 4 entrées binaires a_3 , a_2 , a_1 , a_0 et 7 sorties binaires F_i avec $i \in [0,6]$.

Question 8 Remplir les colonnes F_i de la table de vérité.

a_3	a_2	a_1	a_0	F_0	F_1	F_2	F_3	F_4	F_5	F_6	a_3	a_2	a_1	a_0	F_0	F_1	F_2	F_3	F_4	F_5	F_6
0	0	0	0								1	0	0	0							
0	0	0	1								1	0	0	1							
0	0	1	0								1	0	1	0							
0	0	1	1								1	0	1	1							
0	1	0	0								1	1	0	0							
0	1	0	1								1	1	0	1							
0	1	1	0								1	1	1	0							
0	1	1	1								1	1	1	1							7

Question 9 Etablir l'équation logique de chaque LED $F_i = f_i(a_3, a_2, a_1, a_0)$ de l'afficheur 7 segments à l'aide d'un tableau de Karnaugh.

F_0	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$				
$a_3 a_2 = 01$				
$a_3 a_2 = 11$				
$a_3 a_2 = 10$				

F_1	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$				
$a_3 a_2 = 01$				
$a_3 a_2 = 11$				
$a_3 a_2 = 10$				

F_2	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$				
$a_3 a_2 = 01$				
$a_3 a_2 = 11$				
$a_3 a_2 = 10$				

F_3	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$				
$a_3 a_2 = 01$				
$a_3 a_2 = 11$				
$a_3 a_2 = 10$				

F_4	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$				
$a_3 a_2 = 01$				
$a_3 a_2 = 11$				
$a_3 a_2 = 10$				

F_5	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$				
$a_3 a_2 = 01$				
$a_3 a_2 = 11$				
$a_3 a_2 = 10$				

F_6	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$				
$a_3 a_2 = 01$				
$a_3 a_2 = 11$				
$a_3 a_2 = 10$				

Question 10 Coder à la suite du code python la fonction f qui donne la liste $F = [F_0, F_1, F_2, F_3, F_4, F_5, F_6]$ à partir de la liste $a = [a_0, a_1, a_2, a_3]$.

Correction

Question 1 Etablir la table de vérité de la somme s_0 et la retenue r_1 en fonction des entrées b_0 et a_0 .

b_0	a_0	s_0	r_1
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Question 2 Etablir les équations logiques de la somme s_0 (en utilisant un opérateur logique remarquable) et la retenue r_1 en fonction des entrées b_0 et a_0 . Vérifier le résultat à l'aide des logiciels de

$$s_0=a_0\oplus b_0,\,r_1=a_0.b_0$$

Question 3 Etablir la table de vérité de la somme s_1 (en utilisant un opérateur logique remarquable) et la retenue r_2 en fonction des entrées b_1 , a_1 et r_1 .

b_1	a_1	r_1	s_1	r_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Question 4 Établir les équations logiques de la somme s_1 et la retenue r_2 en fonction des entrées b_1 , a_1 et r_1 . Vérifier le résultat à l'aide des logiciels de simulation.

$$s_1 = a_1 \oplus b_1 \oplus r_1, r_2 = a_1.b_1 + b_1.r_1 + r_1.a_1$$

Question 5 En déduire les équations logiques de la somme s_i au rang i (en utilisant un opérateur logique remarquable) et la retenue r_{i+i} au rang i+1 en fonction des entrées a_i , b_i et r_i au rang i.

$$s_i = a_i \oplus b_i \oplus r_i, r_{i+1} = a_i.b_i + b_i.r_i + r_i.a_i$$

Tracer le schéma de l'ensemble du système de traitement de l'information. **Question 6**

Question 7 Compléter le fichier python afin d'obtenir le même fonctionnement en logique programmée. Le code est disponible ici.

```
a = 1587
b = 57
# Convertir un entier en binaire
def inttobin(a):
    r = []
    while a!=1:
        r.append(a%2)
        a=a//2
    r.append(a)
    return r
a=inttobin(a)
b=inttobin(b)
# Homogénéiser la longueur de a et b
while len(a)!=len(b):
    if len(a)>len(b):
        b.append(0)
    else:
        a.append(0)
n=len(a)
#Calcul de s0 et r1
r = 0*(n+1)
s=_0*n
s_0=a_0^b_0
r_1=a_0.b_0
#Calcul de si et ri+1
f+i in range(1,n):
    s[i]=a[i]^b[i]^r[i]
    r[i+1]=a[i].b[i]+b[i].r[i]+r[i].a[i]
```


s.append(r[-1])


```
#Convertir un nombre binaire en entier
def bittoint(a):
    s=0
    f+i in range(len(a)):
        s+=2**i*a[i]
    return s

print bittoint(s)
```

Question 8 Remplir les colonnes F_i de la table de vérité.

a_3	a_2	a_1	a_0	F_0	F_1	F_2	F_3	F_4	F_5	F_6	a_3	a_2	a_1	a_0	F_0	F_1	F_2	F_3	F_4	F_5	$ F_6 $
0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	1	1	1	1	1	1	1
0	0	0	1	0	1	1	0	0	0	0	1	0	0	1	1	1	1	1	0	1	1
0	0	1	0	1	1	0	1	1	0	1	1	0	1	0	1	1	1	0	1	1	1
0	0	1	1	1	1	1	1	0	0	1	1	0	1	1	0	0	1	1	1	1	1
0	1	0	0	0	1	1	0	0	1	1	1	1	0	0	1	0	0	1	1	1	0
0	1	0	1	1	0	1	1	0	1	1	1	1	0	1	0	1	1	1	1	0	1
0	1	1	0	1	0	1	1	1	1	1	1	1	1	0	1	0	0	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	0	0	0	1	1	1

Question 9 Etablir l'équation logique de chaque LED $F_i = f_i(a_3, a_2, a_1, a_0)$ de l'afficheur 7 segments à l'aide d'un tableau de Karnaugh.

F_0	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$	1	0	1	1
$a_3 a_2 = 01$	0	1	1	1
$a_3 a_2 = 11$	1	0	1	1
$a_3 a_2 = 10$	1	1	0	1

F_1	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$	1	1	1	1
$a_3 a_2 = 01$	1	0	1	0
$a_3 a_2 = 11$	1	0	1	1
$a_3 a_2 = 10$	1	1	0	1

F_2	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$	1	1	1	0
$a_3 a_2 = 01$	1	1	1	1
$a_3 a_2 = 11$	0	1	0	0
$a_3 a_2 = 10$	1	1	1	1

F_3	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$	1	0	1	1
$a_3 a_2 = 01$	0	1	0	1
$a_3 a_2 = 11$	1	1	0	1
$a_3 a_2 = 10$	1	1	1	0

F_4	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$	1	0	0	1
$a_3 a_2 = 01$	0	0	0	1
$a_3 a_2 = 11$	1	1	1	1
$a_3 a_2 = 10$	1	0	1	1

F_5	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$	1	0	0	0
$a_3 a_2 = 01$	1	1	0	1
$a_3 a_2 = 11$	1	0	1	1
$a_3 a_2 = 10$	1	1	1	1

F_6	$a_1 a_0 = 00$	$a_1 a_0 = 01$	$a_1 a_0 = 11$	$a_1 a_0 = 10$
$a_3 a_2 = 00$	0	0	1	1
$a_3 a_2 = 01$	1	1	0	1
$a_3 a_2 = 11$	0	1	1	1
$a_3 a_2 = 10$	1	1	1	1

$$F_0 = \overline{a_3}.a_1 + a_2.a_1 + \overline{a_2}.\overline{a_0} + a_3.\overline{a_0} + a_3.\overline{a_2}.\overline{a_1} + \overline{a_3}.a_2.a_0$$

$$F_1 = \overline{a_1}.\overline{a_0} + \overline{a_3}.\overline{a_2} + a_2.a_1.a_0 + a_3.\overline{a_0} + \overline{a_2}.\overline{a_1}$$

$$F_2 = \overline{a_3}.\overline{a_1} + \overline{a_3}.a_0 + \overline{a_1}.a_0 + a_3.\overline{a_2} + \overline{a_3}.a_2$$

$$F_3 = a_3.\overline{a_1} + \overline{a_3}.\overline{a_2}.\overline{a_0} + \overline{a_3}.\overline{a_2}.a_1 + a_2.\overline{a_1}.a_0 + a_2.a_1.\overline{a_0} + a_3.\overline{a_2}.a_0$$

$$F_4 = a_3.a_2 + a_1.\overline{a_0} + a_3.a_1 + \overline{a_2}.\overline{a_0}$$

$$F_5 = \overline{a_1}.\overline{a_0} + a_3.a_1 + a_2.\overline{a_0} + \overline{a_3}.a_2.\overline{a_1} + a_3.\overline{a_2}$$

$$F_6 = a_1.\overline{a_0} + a_3.\overline{a_2} + a_3.a_0 + \overline{a_2}.a_1 + \overline{a_3}.a_2.\overline{a_1}$$

Question 10 Coder à la suite du code python la fonction f qui donne la liste $F = [F_0, F_1, F_2, F_3, F_4, F_5, F_6]$ à partir de la liste $a = [a_0, a_1, a_2, a_3]$. Le code est disponible ici.

def f(a):

fr=[]

fr.append(not a[3] and a[1] or a[2] and a[1] or not a[2] and not a[0] or a[3] and not a[0] or a[3] and not a[2] and a[1] or not a[3] and a[2] and a[0])

fr.append(not a[1] and not a[0] or not a[3] and not a[2] or a[2] and a[1] and a[0] or a[3] and not a[0] or not a[2] and not a[1])

fr.append(not a[3] and not a[1] or not a[3] and a[0] or not a[1] and a[0]
 or a[3] and not a[2] or not a[3] and a[2])

 $\label{eq:continuous_problem} \texttt{fr.append}(\texttt{a[3]} \texttt{ and not a[1]} \texttt{ or not a[3]} \texttt{ and not a[0]}$

or not a[3] and not a[2] and a[1] or a[2] and not a[1] and a[0]

or a[2] and a[1] and not a[0] or a[3] and not a[2] and a[0])

fr.append(a[3] and a[2] or a[1] and not a[0] or a[3] and a[1]
 or not a[2] and not a[0])

fr.append(not a[1] and not a[0] or a[3] and a[1] or a[2] and not a[0] or not a[3] and a[2] and not a[1] or a[3] and not a[2])

fr.append(a[1] and not a[0] or a[3] and not a[2] or a[3] and a[0]
 or not a[2] and a[1] or not a[3] and a[2] and not a[1])
return fr