1.
$$(a+b)^2 = a^2 + 2ab + b^2$$
; $a^2 + b^2 = (a+b)^2 - 2ab$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$
; $a^2 + b^2 = (a-b)^2 + 2ab$

3.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$

4.
$$(a+b)^3 = a^3 + b^3 + 3ab(a+b)$$
; $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$

5.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$
; $a^3 - b^3 = (a-b)^3 + 3ab(a-b)$

6.
$$a^2 - b^2 = (a + b)(a - b)$$

7.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

8.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

9.
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + b^{n-1})$$

10.
$$a^n = a.a.a...n$$
 times

11.
$$a^m.a^n = a^{m+n}$$

11.
$$a^{m}.a^{n} = a^{m+n}$$

12. $\frac{a^{m}}{a^{n}} = a^{m-n}$ if $m > n$
= 1 if $m = n$
= $\frac{1}{a^{n-m}}$ if $m < n; a \in R, a \neq 0$
13. $(a^{m})^{n} = a^{mn} = (a^{n})^{m}$

13.
$$(a^m)^n = a^{mn} = (a^n)^m$$

14.
$$(ab)^n = a^n.b^n$$

15.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

16.
$$a^0 = 1$$
 where $a \in R, a \neq 0$

14.
$$(ab)^n = a^n . b^n$$

15. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
16. $a^0 = 1$ where $a \in R, a \neq 0$
17. $a^{-n} = \frac{1}{a^n}, a^n = \frac{1}{a^{-n}}$

18.
$$a^{p/q} = \sqrt[q]{a^p}$$

19. If
$$a^m = a^n$$
 and $a \neq \pm 1, a \neq 0$ then $m = n$

20. If
$$a^n = b^n$$
 where $n \neq 0$, then $a = \pm b$

21. If
$$\sqrt{x}$$
, \sqrt{y} are quadratic surds and if $a + \sqrt{x} = \sqrt{y}$, then $a = 0$ and $x = y$

22. If
$$\sqrt{x}, \sqrt{y}$$
 are quadratic surds and if $a + \sqrt{x} = b + \sqrt{y}$ then $a = b$ and $x = y$

23. If
$$a, m, n$$
 are positive real numbers and $a \neq 1$, then $\log_a mn = \log_a m + \log_a n$

24. If
$$a, m, n$$
 are positive real numbers, $a \neq 1$, then $\log_a \left(\frac{m}{n}\right) = \log_a m - \log_a n$

25. If a and m are positive real numbers,
$$a \neq 1$$
 then $\log_a m^n = n \log_a m$

26. If a, b and k are positive real numbers,
$$b \neq 1, k \neq 1$$
, then $\log_b a = \frac{\log_k a}{\log_k b}$

27.
$$\log_b a = \frac{1}{\log_a b}$$
 where a, b are positive real numbers, $a \neq 1, b \neq 1$

28. if a, m, n are positive real numbers, $a \neq 1$ and if $\log_a m = \log_a n$, then m = n

$$\sin^2 A + \cos^2 A = 1$$
 $\sin \theta = \frac{PQ}{OP} = \frac{\sigma \pi}{\varpi \log \pi}$ $\csc \theta = \frac{OP}{PQ} = \frac{\varpi \log \pi}{\sigma \pi}$ $\sec \theta = \frac{OP}{OQ} = \frac{\varpi \log \pi}{\sigma \pi}$ $\cot^2 A = \csc^2 A$ $\cot^2 A = \sec^2 A$ $\cot^2 A = \sec^2 A$ $\cot^2 A + 1 = \cot^2 A$ $\cot^2 A + 1 =$