# Editorial RoAlgo PreOJI 2024



4-II MARTIE 2024



#### Copyright © 2024 RoAlgo

Această lucrare este licențiată sub Creative Commons Atribuire-Necomercial-Partajare în Condiții Identice 4.0 Internațional (CC BY-NC-SA 4.0) Aceasta este un sumar al licenței și nu servește ca un substitut al acesteia. Poți să:

- **Distribui:** copiază și redistribuie această operă în orice mediu sau format.
- Adaptezi: remixezi, transformi, și construiești pe baza operei.

Licențiatorul nu poate revoca aceste drepturi atât timp cât respectați termenii licenței.

- **Atribuire:** Trebuie să acorzi creditul potrivit, să faci un link spre licență și să indici dacă s-au făcut modificări. Poți face aceste lucruri în orice manieră rezonabilă, dar nu în vreun mod care să sugereze că licențiatorul te sprijină pe tine sau modul tău de folosire a operei.
- Necomercial: Nu poți folosi această operă în scopuri comerciale.
- **Partajare în Condiții Identice:** Dacă remixezi, transformi, sau construiești pe baza operei, trebuie să distribui contribuțiile tale sub aceeași licență precum originalul.

Pentru a vedea o copie completă a acestei licențe în original (în limba engleză), vizitează: https://creativecommons.org/licenses/by-nc-sa/4.0

# **Cuprins**

| 1 | Multumiri         | Comisia RoAlgo        | 4 |
|---|-------------------|-----------------------|---|
| 2 | Problema Operații | Luca Valentin Mureșan | 5 |
| 3 | Problema flip01   | Luca Valentin Muresan | 6 |

# 1 Multumiri

Acest concurs nu ar fi putut avea loc fără următoarele persoane:

- Luca Valentin Mureșan, Lucian Andrei Badea, Ștefan Vîlcescu și Traian Mihai Danciu, autorii problemelor și laureați la concursurile de informatică și membri activi ai comunității RoAlgo;
- Alex Vasiluță, fondatorul și dezvoltatorul principal al Kilonova;
- Ștefan Alecu, creatorul acestui șablon LATEX pe care îl folosim;
- Rareș Buzdugan, Andrei Chertes și ceilalti testeri ai concursului, care au dat numeroase sugestii și sfaturi utile pentru buna desfășurare a rundei;
- Ștefan-Cosmin Dăscălescu, coordonatorul comisiei claselor 5-6-9;
- Comunității de informatică din România, pentru participarea la acest concurs, precum și tuturor celor care ne-au ajutat să promovăm concursul.

# 2 Problema Operații

Autor: Luca Valentin Mureșan

### Soluție de 40 de puncte

Pentru aproximativ 40 de puncte, putem simula algoritmul descris în enunț.

## Soluție completă

Observăm că vom ajunge la un moment să scădem de foarte multe ori a din b (de exemplu  $a=10^9$ , b=3). Ne punem întrebarea, cum am putea simula mai rapid aceste operații? Pentru următoarele cazuri, presupunem că  $a \ge b$  (dacă a < b, vom trata analog cazurile).

Observație: Vom scădea de a/b ori la rând b din a. După a/b scăderi, vom avea a < b.

- 1. Dacă k > a/b, putem să simulăm a/b pași deodată (scădem  $b \cdot (a/b)$  din
- a). De asemenea, vom scădea a/b din k.
- 2. Dacă  $k \le a/b$ , putem să simulăm k-1 pași deodată (scădem  $k \cdot (a/b)$  din
- a). Răspunsul este chiar a b.

Vom repeta acest algoritm până am ajuns în cazul 2. După ce am făcut cazul 2, ne vom opri deoarece deja am aflat răspunsul.

Soluție oficială

# 3 Problema flip01

Autor: Luca Valentin Mureșan

### Solutia de 9 puncte

Pentru fiecare query, toate elementele din query sunt egale, deci avem două cazuri:

Dacă queryul conține doar 0, atunci șirul este deja egal cu 0, deci vom afișa 0. Dacă queryul conține doar 1, atunci putem face tot șirul egal cu 0 cu o singură operație, deci vom afișa 1.

### Solutia de 7 puncte

Pentru fiecare query, avem două cazuri:

Dacă șirul are lungime pară, vom afișa  $\frac{lungimea}{2}$ .

Altfel, dacă șirul are lungime impară și primul element este egal cu 0, vom afișa  $\frac{lungime}{2}$ , altfel vom afișa  $\frac{lungimea}{2} + 1$ .

#### Solutia de 44 de puncte

Deoarece  $1 \le N, Q \le 2000$ , putem rezolva fiecare query folosind forță brută, având complexitatea de  $O(N \cdot Q)$ .

## Solutia completă

Fie  $sp_i$  = numărul de indici j < i astfel încât  $a_j = 0$  și  $a_{j+1} = 1$ . Atunci, pentru fiecare query, rezultatul va fi  $sp_{dr} - sp_{st-1} + 1$ , dacă  $a_{st} = a_{st-1} = 1$ , altfel rezultatul va fi  $sp_{dr} - sp_{st-1}$ . Soluția oficială