The Persistent Effects of Peru's Mining *Mita* by Melissa Dell, Econometrica (2010)

Microeconometrics, Summer Semester 2017

Eleonora Guarnieri

July 18, 2017

Outline

Introduction and Motivation

Historical Background

Data and Estimation Method

Results

Conclusion and Discussion

Outline

Introduction and Motivation

Historical Background

Data and Estimation Method

Results

Conclusion and Discussion

What "big picture" issues does the paper address?

- ► Massive divergence in economic prosperity within the developing world since the mid-20th century
- How do we explain this divergence?
- ► Historical institutions and governance organizations → contemporary (under)development and differential growth paths:
 - Africa: organization of pre-colonial states (Michalopoulos & Papaioannu, 2013; Gennaioli & Rainer, 2007)
 - ► Europe, South America, Asia: organization of historical states (Acemoglu et al., 2015; Boeckh et al., 2014, Dell et al., WP, ...)

Research question

This paper:

- Examines the long-run impacts of the mining mita, a forced labor system instituted by the Spanish government in Peru and Bolivia (1573-1812)
- Implements a geographic (multidimensional) regression discontinuity (RD) design across the mita boundary
- Identifies statistically significant impacts on:
 - Contemporary living standards
 - Channels of persistence (land tenure and public goods provision)

Contributions

1. Methodological

 Multidimensional, semiparametric Regression Discontinuity approach

2. Literature on long-run development

- First paper focusing on channels of persistence and potential mechanisms
- Starting point for modeling Latin America's long-run growth trajectory → role of large landowners in shielding individuals from an extractive state; extent to which the state can be used to shape economic interactions

Outline

Introduction and Motivation

Historical Background

Data and Estimation Method

Results

Conclusion and Discussion

"The mountain that eats men"

Source: The Guardian. "Story of cities #6: how silver turned Potosí into the first city of capitalism", 21 March 2016

- Potosí mines discovered in 1545 \rightarrow largest deposit of silver in the Spanish Empire
- Huancavelica mines
- ▶ The mining mita: indigenous villages within a contiguous region were required to provide one-seventh of their adult male population as *mita* laborers
- Subjected region: constant from 1578 onwards

The *mita* boundary

The Mita's assignment

- ► The Spanish authorities required only a portion of districts in today's Peru to contribute to the *mita* Map
- Administrative and enforcement costs of coercing labor
- Two criteria:
 - Distance to the mines at Potosí and Huancavelica → increasing administrative and enforcement costs in distance
 - Elevation → only highland people could survive intensive physical labor

Outline

Introduction and Motivation

Historical Background

Data and Estimation Method

Results

Conclusion and Discussion

Mining Mita

- Land tenure and labor systems
- Public goods
- Proximate determinants of household consumption

- Household consumption
- Stunting in children

- Land tenure and labor systems
- Public goods
- Proximate determinants of household consumption

- Household consumption
- Stunting in children

Mining Mita

- Land tenure and labor systems Parish reports, Cusco regional government, Peruvian Population Census
- Public goods Population Census, 2001 Peruvian National Household Survey (ENAHO)
- Proximate determinants of household consumption 1993 Population Census

- Household consumption
- Stunting in children

Mining Mita

- Land tenure and labor systems
- Public goods
- Proximate determinants of household consumption

- Household consumption 2001 Peruvian National Household Survey
- ► Stunting in children Census from the Ministry of Education

Estimation Strategy

- How do we identify the *mita* effect on the aforementioned outcomes?
- Can we simply compare mita to non-mita districts (in today's Peru)?
- → Assignment to the *mita* based on (at least) two geographic criteria
- → Districts might differ in (observed/unobserved) predetermined characteristics, in turn responsible for differential outcomes today

Sharp Regression Discontinuity (Reminder)

Treatment D is a function of a known running variable X:

$$D_i = \mathbb{1}\{X_i \ge c\}$$

where c is the threshold. Therefore:

$$D_i = \begin{cases} 1 & \text{if } X_i \ge c \\ 0 & \text{if } X_i < c \end{cases}$$

Multidimensional RDD

- ▶ In this context, the **running (or assignment) variable** *X* for the Regression Discontinuity Design is "geography"
- Mita treatment is a deterministic and discontinuous function of known covariates: longitude and latitude
- The border between mita and non-mita areas forms a multidimensional (geographic) discontinuity in longitude-latitude space
- Idea: compare "mita" to "non-mita" households situated close enough to the border

Estimation Strategy

Basic Regression

$$c_{idb} = \alpha + \frac{\gamma}{mita_d} + f(\text{geographic location}_d) + X'_{id}\beta + \Phi_b + \epsilon_{idb}$$

where:

- c_{idb} is the outcome variable of interest for observation i in district d along segment b of the boundary
- mita_d is an indicator equal to 1 if the observation i belongs to a district which was subject to mita
- $ightharpoonup f(geographic location_d)$ is the multidimensional RD polynomial
- X'_{id} is a vector of covariates (mean elevation/slope, demographic variables)
- $ightharpoonup \Phi_b$ is a vector of boundary segment fixed effects

Estimation Strategy

Basic Regression

$$c_{idb} = \alpha + \frac{\gamma}{mita_d} + f(\text{geographic location}_d) + X'_{id}\beta + \Phi_b + \epsilon_{idb}$$

where:

- Bandwith: 100km, 75km, 50km
- RD polynomial:
 - ► Cubic in latitude and longitude (preferred specification)
 - Cubic in distance to Potosí (single dimension)
 - Cubic in distance to the mita boundary (single dimension)
- Semiparametric vs nonparametric RD
 - Georeferencing
 - Sample size

Estimation strategy - Stata implementation

Basic Regression

$$c_{idb} = \alpha + \gamma mita_d + f(\text{geographic location}_d) + X'_{id}\beta + \Phi_b + \epsilon_{idb}$$

Example with:

- Cubic polynomial in latitude and longitude
- ▶ 100 km bandwidth

```
regress /*
*/lhhequiv /* c_{idb}
*/pothuan_mita /* mita_{i}
*/x y x2 y2 xy x3 y3 x2y xy2 /* f(geographic location_{d})
*/elv_sh slope infants children adults /* X_{id}
*/bfe4_1 bfe4_2 bfe4_3 /* phi_{b}
*/ if (cusco!=1 & d_bnd<100), /* exclude Cusco, bandwidth 100 km
*/robust cluster (ubigeo) /* clustered at the district level</pre>
```

21

Identifying assumptions

- 1. **Continuity**: all relevant factors besides treatment vary smoothly at the *mita* boundary
- 2. No selective sorting across the treatment threshold

Let c_1 and c_0 denote potential outcomes under treatment and control respectively, let x denote longitude and y denote latitude.

Identification requires:

 $E[c_1 \mid x, y]$ and $E[c_0 \mid x, y]$ are continuous at the discontinuity threshold

Individuals located just outside the *mita* catchment are an appropriate counterfactual for those located just inside it

- Not entirely testable, but balancing tests help assessing its plausibility
- ► Test for difference in means for geographic and demographic characteristics: $c_{gd} = \alpha + \beta mita_d + \epsilon_{gd}$

```
foreach Y of num 100 75 50 25 { // Test at different bandwidths
    drop if d_bnd>`Y'
    bys pothuan_mita: sum elev
    regress elev pothuan_mita, robust // Roubust standard errors
}
```

▶ Identifying assumption: $\beta = 0$ for such outcomes

				-> pothuan_mit	ta = 0					
Sur	TABLE I SUMMARY STATISTICS ^a			Variable	0b	s Mean	Std. Der	v. Min	I.	Max
				elev	9	5 4018.429	728.9468	8 2000.04	4925.	. 94
	S	imple Falls	Within	_						
	<10	km of Mita	Boundary	-> pothuan_mit	ta = 1					
	Inside	Outside	s.e.	_ Variable	l ob	s Mean	Std. Des	v. Min	1	· lax
GIS Measures					-					
Elevation	4042	4018	[188.77] (85.54)	elev	17	7 4042.055	554.804	4 1759.93	5079.	.17
Slope	5.54	7.21	[0.88]* (0.49)**	Linear regres:	sion		1	Number of obs F(1, 270)	=	272 0.08
Observations	177	95						Prob > F R-squared	-	0.7826
% Indigenous	63.59	58.84	[11.19] (9.76)					Root MSE	=	621
Observations	1112	366	,	elev	Coef	Robust . Std. Err.	t I	P> t [95	Conf.	Interval]
Log 1572 tribute rate	1.57	1.60	[0.04] (0.03)	pothuan_mita cons	23.6266 4018.42				. 7874 L . 422	192.0408 4165.436

				-> pothuan_mit	ta = 0					
St	TABLI			Variable	0bs	Mean	Std. Dev.	Min	M	lax
				elev	95	4018.429	728.9468	2000.04	4925.	94
	S	ample Falls	Within	_						
	<10	0 km of Mita	Boundary	-> pothuan_mit	ta = 1					
	Inside	Outside	s.e.	Variable	Obs	Mean	Std. Dev.	Min	M	lax
GIS Measures										_
Elevation	4042	4018	[188.77] (85.54)	elev	177	4042.055	554.804	1759.93	5079.	17
Slope	5.54	7.21	[0.88]*	Linear regres:	sion			mber of obs	=	272 0.08
			$(0.49)^*$	-				ob > F	=	0.7826
Observations	177	95						squared	=	0.0003
% Indigenous	63.59	58.84	[11.19] (9.76)				Ro	ot MSE	=	621
Observations	1112	366	. ,	elev	Coef.	Robust Std. Err.	t P>	· t [95%	Conf.	Interval]
Log 1572 tribute ra	te 1.57	1.60	[0.04] (0.03)	pothuan_mita cons	23.62669 4018.429	85.54197 74.66873		783 -144. 000 3871	7874	192.0408 4165.436

	TABL			-> pothuan_mi	ta = 0					
St	JMMARY ST			Variable	0b:	s Mean	Std. Dev	. Min	Max	к
			nr	elev	9:	4018.429	728.9468	2000.04	4925.94	4
		ample Falls	within	-						
	<10	km of Mita	Boundary	-> pothuan_mit	ta = 1					
	Inside	Outside	s.e.	_ Variable	Ob:	s Mean	Std. Dev	. Min	Max	к
GIS Measures						_				-
Elevation	4042	4018	[188.77] (85.54)	elev	17	4042.055	554.804	1759.93	5079.17	7
Slope	5.54	7.21	[0.88]* (0.49)**	Linear regres:	sion		F	umber of obs (1, 270) rob > F	=	272 0.08
Observations	177	95						rop > r -squared	-	0.7826
% Indigenous	63.59	58.84	[11.19] (9.76)					oot MSE	-	621
Observations	1112	366	,	elev	Coef	Robust . Std. Err.	t P	> t [95	Conf. In	nterval]
Log 1572 tribute ra	te 1.57	1.60	[0.04] (0.03)	pothuan_mita _cons	23.6266 4018.42					192.0408 4165.436

1. Continuity Conley

				-> pothuan_mit	ta = 0					
Sun	TABLE I SUMMARY STATISTICS ^a Sample Falls Within		Variable	0bs	Mean	Std. Dev.	Min	Ma	ıx	
			elev	95	4018.429	728.9468	2000.04	4925.9	14	
		0 km of Mita		-> pothuan mit	ta = 1					
	Inside	Outside	s.e.	_ Variable	Obs	Mean	Std. Dev.	Min	Ма	ıx
GIS Measures Elevation	4042	4018	[188.77] (85.54)	elev	177	4042.055	554.804	1759.93	5079.1	_ .7
Slope	5.54	7.21	[0.88]* (0.49)**	Linear regres:	sion		F (mber of obs 1, 270)	=	272 0.08
Observations	177	95						ob > F squared	=	0.7826
% Indigenous	63.59	58.84	[11.19] (9.76)				Ro	ot MSE	=	621
Observations	1112	366	, ,	elev	Coef.	Robust Std. Err.	t P>	t [95%	Conf. I	[nterval]
Log 1572 tribute rate	1.57	1.60	[0.04] (0.03)	pothuan_mita _cons	23.62669 4018.429	85.54197 74.66873		783 -144. 000 3871		192.0408 4165.436

TABLE I-Continued

	Sample Falls Within							
	<10	<100 km of Mita Boundary						
	Inside	Outside	s.e.					
% 1572 tribute to								
Spanish Nobility	59.80	63.82	[1.39]*** (1.36)***					
Spanish Priests	21.05	19.10	[0.90]** (0.94)**					
Spanish Justices	13.36	12.58	[0.53] (0.48)*					
Indigenous Mayors	5.67	4.40	[0.78] (0.85)					
Observations	63	41						

TABLE I-Continued

		Sample Falls	Within							
	<100 km of Mita Boundary			<50 k	<50 km of Mita Boundary			<25 km of Mita Boundary		
	Inside	Outside	s.e.	Inside	Outside	s.e.	Inside	Outside	s.e.	
% 1572 tribute to										
Spanish Nobility	59.80	63.82	[1.39]*** (1.36)***	62.01	63.07	[1.12] (1.34)	61.01	63.17	[1.58] (2.21)	
Spanish Priests	21.05	19.10	[0.90]** (0.94)**	20.59	19.93	[0.76] (0.92)	21.45	19.98	[1.01] (1.33)	
Spanish Justices	13.36	12.58	[0.53] (0.48)*	12.81	12.48	[0.43] (0.55)	13.06	12.37	[0.56] (0.79)	
Indigenous Mayors	5.67	4.40	[0.78] (0.85)	4.42	4.47	[0.34] (0.33)	4.48	4.42	[0.29] (0.39)	
Observations	63	41		35	30		18	24		

2. No Selective Sorting

- Violated if the mita effect directly provoked substantial out-migration of productive individuals, leading to a larger indirect effect
- Explore the possibility of migration as an interesting channel of persistence
- ▶ Low migration rates in the past 130 years → constant aggregate population distribution
- ▶ No statistically significant differences in rates of out-migration between *mita* and non-*mita* districts (1993 census)
- Outmigration from mita districts during the period that the mita was in force may have been substantial → evidence from 17th century population data

Outline

Introduction and Motivation

Historical Background

Data and Estimation Method

Results

Conclusion and Discussion

Outcomes and Channels of Persistence

Mining Mita

- Land tenure and labor systems
- Public goods
- Proximate determinants of household consumption

- Household consumption
- Stunting in children

Household consumption

TABLE II LIVING STANDARDS^a

		Dependent Variable					
	Log Equiv. Hausehold Consumption (2001)						
Sample Within:	<100 km	<75 km	<50 km				
	of Bound.	of Bound.	of Bound.				
	(1)	(2)	(3)				
	Panel A. Cubic	Polynomial in Latitude ar	nd Longitude				
Mita	-0.284	-0.216	-0.331				
	(0.198)	(0.207)	(0.219)				
\mathbb{R}^2	0.060	0.060	0.069				
	Panel B. Cubic Polynomial in Distance to Potosí						
Mita	-0.337***	-0.307***	-0.329***				
	(0.087)	(0.101)	(0.096)				
\mathbb{R}^2	0.046	0.036	0.047				
	Panel C. Cubic Po	olynomial in Distance to M	fita Boundary				
Mita	-0.277***	-0.230**	-0.224**				
	(0.078)	(0.089)	(0.092)				
R^2	0.044	0.042	0.040				
Geo. controls	yes	yes	yes				
Boundary F.E.s	yes	yes	yes				
Clusters	71	60	52				
Observations	1478	1161	1013				

Household consumption

Cubic polynomial in distance to Potosí

	BLE II Standards ^a
Depende	nt Variable
Log Equiv. Hausel	hold Consumption (2001)
Sample Within:	<100 km
	of Bound.
	(1)

Mita	-0.337*** (0.087)
R^2	0.046
Geo. controls	yes
Boundary F.E.s	yes
Clusters	71
Observations	1478

```
regress /*
*/lhhequiv /*
*/pothuan_mita /*
*/dpot dpot2 dpot3 /*
*/elv_sh slope infants children adults /*
*/bfe4* if (cusco!=1 & d_bnd<100), /*
*/robust cluster (ubigeo) /*</pre>
```

Household consumption

Cubic polynomial in distance to Potosí

LIVING STANDARDS ^a Dependent Variable		Linear regress	ion			Number F(12, 7 Prob > R-squar Root MS	0) = F = ed =	1,478 4.14 0.0001 0.0463 .99038
Log Equiv. Hau	isehold Consumption (2001)	_		(Std.	Err. adj	usted for	71 clusters	in ubigeo)
Sample Within:	<100 km of Bound.	lhhequiv	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	(1)		3368099	.0870028	-3.87	0.000	5103315	1632884
Mita	-0.337*** (0.087)	pothuan mita dpot dpot2 dpot3 elv_sh	-2.838273 .269934 0082634 1759927	4.704792 .5655069 .0220649 .1184049	-0.60 0.48 -0.37 -1.49	0.548 0.635 0.709 0.142	-12.22169 8579338 0522705 4121439	6.545138 1.397802 .0357437 .0601584
R ² Geo. controls	0.046 yes	slope infants children adults	0284839 0106256 .0103591 .0169945	.0169523 .0257637 .016799 .023573	-1.68 -0.41 0.62 0.72	0.097 0.681 0.539 0.473	0622943 0620097 0231454 0300204	.0053265 .0407585 .0438636 .0640094
Boundary F.E.s Clusters Observations	yes 71 1478	bfe4_1 bfe4_2 bfe4_3 _cons	.5149854 0705154 .0839917 16.49349	.1174166 .2485321 .145616 12.83085	4.39 -0.28 0.58 1.29	0.000 0.777 0.566 0.203	.2808055 5661971 2064303 -9.096834	.7491653 .4251663 .3744137 42.08382

Outcomes and Channels of Persistence

Mining Mita

- Land tenure and labor systems
- Public goods
- Proximate determinants of household consumption

Long run development:

- Household consumption
- Stunting in children

Stunting in children

TABLE II LIVING STANDARDS^a

		Dependent	Variable	
		Stunted Growth, C	hildren 6-9 (2005)	
Sample Within:	<100 km	<75 km	<50 km	
	of Bound.	of Bound.	of Bound.	
	(4)	(5)	(6)	
	Panel A. Cu	bic Polynomial in Latitud	e and Longitude	
Mita	0.070	0.084*	0.087*	
	(0.043)	(0.046)	(0.048)	
R^2	0.051	0.020	0.017	
	Panel B.	Cubic Polynomial in Dista	nce to Potosí	
Mita	0.080***	0.078***	0.078***	
	(0.021)	(0.022)	(0.024)	
\mathbb{R}^2	0.049	0.017	0.013	
	Panel C. Cubic	Polynomial in Distance to	o Mita Boundary	
Mita	0.073***	0.061***	0.064***	
	(0.023)	(0.022)	(0.023)	
R^2	0.040	0.015	0.013	
Geo. controls	yes	yes	yes	
Boundary F.E.s	yes	yes	yes	
Clusters	289	239	185	
Observations	158,848	115,761	100,446	

RD Plots

Specification tests and robustness

Results tend to be robust to...

- ▶ ...14 different specification of the RD polynomial Robustness
- ...controls for ethnicity
- ...the inclusion of metropolitan Cusco
- ...the exclusion of districts falling along portions of the boundary formed by rivers
- ...accounting for differential rates of migration today

```
Other Robustness
```

Baseline (pre-mita) covariates

 $\label{eq:table V} \text{TABLE V} \\ \text{1572 Tribute and Population}^{\text{a}}$

			Depender	t Variable			
Share of Tribute Revenues							
Log Mean	Spanish	Spanish Spanish Spa		Indig.	Percent		
Tribute (1)	Nobility Priests (2) (3)		Justices (4)	Mayors (5)	Mayors Men		Females (8)
Panel	A. Cubic	Polynomia	l in Latitu	ide and Lo	ongitude		
0.020 (0.031)	-0.010 (0.030)	0.004 (0.019)	0.004 (0.010)	0.003 (0.005)	-0.006 (0.009)	0.011 (0.012)	-0.009 (0.016)
0.762	0.109	0.090	0.228	0.266	0.596	0.377	0.599
Par	nel B. Cub	ic Polynor	nial in Dis	stance to F	otosí		
0.019 (0.029)	-0.013 (0.025)	0.008 (0.015)	0.006 (0.009)	-0.001 (0.004)	-0.012 (0.008)	0.005 (0.010)	-0.011 (0.012)
0.597	0.058	0.073	0.151	0.132	0.315	0.139	0.401
Panel C	C. Cubic Po	olynomial	in Distanc	e to Mita	Boundary		
0.040 (0.030)	-0.009 (0.018)	0.005 (0.012)	0.003 (0.006)	-0.001 (0.004)	-0.011 (0.007)	0.001 (0.008)	-0.008 (0.010)
0.406	0.062	0.096	0.118	0.162	0.267	0.190	0.361
yes yes 1.591	yes yes 0.625	yes yes 0.203	yes yes 0.127 65	yes yes 0.044 65	yes yes 0.193	yes yes 0.204	yes yes 0.544
	Panel (0.029) (0.031) (0.029) (0.029) (0.029) (0.040) (0.030) (0.040) (0.030) (0.040) yes	Log Mean Spanish	Log Mean Spanish Spanish Priests (2) (2) (3)	Share of Tribute Revenue Spanish Spanish	Description Color Color	Color	Company Comp

Outcomes and Channels of Persistence

Mining Mita

- Land tenure and labor systems
- Public goods
- Proximate determinants of household consumption

Long run development:

- Household consumption
- Stunting in children

Land tenure and labor systems

$$\label{eq:table_vi} \begin{split} & TABLE\ VI \\ & LAND\ TENURE\ AND\ LABOR\ SYSTEMS^{a} \end{split}$$

	Dependent Variable							
	Haciendas per District in 1689 (1)	Haciendas per 1000 District Residents in 1689 (2)	Percent of Rural Tributary Population in Haciendas in ca. 1845 (3)	Percent of Rural Population in Haciendas in 1940 (4)	Land Gini in 1994 (5)			
	Panel A. Cul	bic Polynomial in	n Latitude and L	ongitude				
Mita	-12.683*** (3.221)	-6.453** (2.490)	-0.127* (0.067)	-0.066 (0.086)	0.078 (0.053)			
R^2	0.538	0.582	0.410	0.421	0.245			
	Panel B.	Cubic Polynomia	al in Distance to	Potosí				
Mita	-10.316*** (2.057)	-7.570*** (1.478)	-0.204** (0.082)	-0.143*** (0.051)	0.107*** (0.036)			
R^2	0.494	0.514	0.308	0.346	0.194			
Mita	Panel C. Cubi -11.336*** (2.074)	c Polynomial in -8.516*** (1.665)	Distance to <i>Mita</i> -0.212*** (0.060)	Boundary -0.120*** (0.045)	0.124***			
R^2	0.494	0.497	0.316	0.336	0.226			
Geo. controls	yes	yes	yes	yes	yes			
Boundary F.E.s	yes	yes	yes	yes	yes			
Mean dep. var. Observations	6.500 74	5.336 74	0.135 81	0.263 119	0.783 181			

Outcomes and Channels of Persistence

Mining Mita

- Land tenure and labor systems
- Public goods
- Proximate determinants of household consumption

Long run development:

- Household consumption
- Stunting in children

Public goods

TABLE VII EDUCATION^a

	Dependent Variable					
		Mean Years	Mean Years			
	Literacy	of Schooling	of Schooling			
	1876	1940	2001			
	(1)	(2)	(3)			
	Panel A. Cubic Polynomial i	n Latitude and Longitude				
Mita	-0.015	-0.265	-1.479*			
	(0.012)	(0.177)	(0.872)			
R^2	0.401	0.280	0.020			
	Panel B. Cubic Polynomia	al in Distance to Potosí				
Mita	-0.020***	-0.181**	-0.341			
	(0.007)	(0.078)	(0.451)			
R^2	0.345	0.187	0.007			
	Panel C. Cubic Polynomial in					
Mita	-0.022***	-0.209***	-0.111			
	(0.006)	(0.076)	(0.429)			
R^2	0.301	0.234	0.004			
Geo. controls	yes	yes	yes			
Boundary F.E.s	yes	yes	yes			
Mean dep. var.	0.036	0.470	4.457			
Clusters	95	118	52			
Observations	95	118	4038			

Outcomes and Channels of Persistence

Mining Mita

- Land tenure and labor systems
- Public goods
- Proximate determinants of household consumption

Long run development:

- Household consumption
- Stunting in children

Proximate determinants of household consumption

TABLE IX
CONSUMPTION CHANNELS^a

		Dependent Variable	
	Percent of District Labor Force in Agriculture—1993 (1)	Agricultural Household Sells Part of Produce in Markets—1994 (2)	Household Member Employed Outside the Agricultural Unit—1994 (3)
	Panel A. Cubic Polynomia	l in Latitude and Longitude	
Mita	0.211	-0.074**	-0.013
	(0.140)	(0.036)	(0.032)
R^2	0.177	0.176	0.010
	Panel B. Cubic Polynor	nial in Distance to Potosí	
Mita	0.101	-0.208***	-0.033
	(0.061)	(0.030)	(0.020)
R^2	0.112	0.144	0.008
	Panel C. Cubic Polynomial	in Distance to Mita Boundary	
Mita	0.092*	-0.225***	-0.038**
	(0.054)	(0.032)	(0.018)
R^2	0.213	0.136	0.006
Geo. controls	yes	yes	yes
Boundary F.E.s	yes	yes	yes
Mean dep. var.	0.697	0.173	0.245
Clusters	179	178	182
Observations	179	160,990	183,596

Outline

Introduction and Motivation

Historical Background

Data and Estimation Method

Results

Conclusion and Discussion

Conclusion

- ▶ This paper exploits exogenous variation in the assignment of the *mita* to identify channels through which it influences contemporary economic development
- ▶ Its long-run effects lower household consumption by 25% and increase stunting in children by around 6 percentage points
- Land tenure, public goods and market participation are channels through which its impacts persist

Literature

Governance and Long-Run Development

Acemoglu, D.; C. Garcia-Jimeno & J. A. Robinson (2015): State capacity and economic development: A network approach. *The American Economic Review*, 105, 2364-2409

Becker, S. O.; K. Boeckh; C. Hainz & L. Woessmann (2016): The empire is dead, long live the empire! Long-run persistence of trust and corruption in the bureaucracy. *The Economic Journal*, 126, 40-74 Gennaioli, N. & I. Rainer (2007): The modern impact of precolonial centralization in Africa. *Journal of Economic Growth* 12, 185-234

Michalopoulos, S. & E. Papaioannou (2013), Pre-Colonial Ethnic Institutions and Contemporary African Development. *Econometrica*, 81, 113-152

RD Design

Hahn, J., P. Todd, & W. Van der Klaauw (2001): Identification and estimation of treatment effects with a regression-discontinuity design. *Econometrica*, 69, 201-209

Imbens, G. W. & T. Lemieux (2008): Regression discontinuity designs: A guide to practice. *Journal of Econometrics*, 142, 615-635

Lee, D. S. & T. Lemieux (2010), Regression Discontinuity Designs in Economics. *Journal of Economic Literature*, 48, 281-355

McCrary, J. (2008) Manipulation of the running variable in the regression discontinuity design: A density test. Journal of Econometrics, 142, 698-714

Literature

Multidimensional RD Design

Bayer, P; F. Ferreira, & R. McMillan (2007): A unified framework for measuring preferences for schools and neighborhoods. *Journal of Political Economy*, 115(4), 588-638

Black, S. E. (1999) Do better schools matter? Parental valuation of elementary education. *Quarterly Journal of Economics*, 114(2), 577-599

Dell, M., N. Lane, P. Querubin (2017): The Historical State, Local Collective Action, and Economic

Development in Vietnam. Working Paper

Keele, L., S. Lorch, M. Passarella, D. Small & R. Titiunik (2016): An Overview of Geographically Discontinuous Treatment Assignments with an Application to Children's Health Insurance. *Advances in Econometrics*, 38

Keele, L. & R. Titiunik (2016): Natural experiments based on geography. *Political Science Research and Methods*, 4, 65-95

Discussion

1. Density test (see McCrary, 2008) as an additional support for the assumption of **no selective sorting** around the boundary Density plots

Discussion

 → Continuity assumption: A portion of the mita's border coincides with today's border between the Aruepica and Cusco regions → the first-level administrative unit in Peru

Peru administrative divisions

Lee&Lemieux (2010): "What are all the things differing between the two regions other than the treatment of interest?"

- According to the Organic Law of Regional Governments, the responsibilities of regional governments include planning regional development, executing public investment projects, promoting economic activities, and managing public property
 - → The estimates could be capturing the effect of different local policies
 - → Placebo: test other regional border

You can access the paper's replication files at: https://scholar.harvard.edu/dell/publications/persistent-effects-perus-mining-mita

Questions/comments?

Appendix

Mita's region and today's borders (Back)

Conley standard errors Back

- ▶ Geographic data such as elevation, slope, terrain ruggedness (and weather) are spatially correlated → they are correlated at physically nearby grids
- Standard errors are corrected for an unknown-form serial dependence based on location (see Conley, T. (1999): GMM estimation with cross sectional dependence, *Journal of Econometrics*, 92, 1-45)
- ► Stata command: x_ols
 - x_ols coordlist cutlist dep regressors, coord() xreg()
- download ADO file at: http://economics.uwo.ca/people/conley_docs/code_to_download_gmm.html

Specification tests

TABLE III SPECIFICATION TESTS^a

			Depe	ndent Variabl	e			
	Log Equiv. H	ausehold Consu	mption (2001)	Stunted Growth, Children 6-9 (2005)				
Sample Within:	<100 km	<75 km	<50 km	<100 km	<75 km	<50 km	Border	
	of Bound.	of Bound.	of Bound.	of Bound.	of Bound.	of Bound.	District	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
		tive Function		RD Polyno	mial: Basel	ine I		
Linear polyno	mial in latit							
Mita	-0.294***	-0.199	-0.143	0.064***	0.054**	0.062**	0.068**	
	(0.092)	(0.126)	(0.128)	(0.021)	(0.022)	(0.026)	(0.031)	
Quadratic pol								
Mita	-0.151	-0.247	-0.361	0.073*	0.091**	0.106**	0.087**	
	(0.189)	(0.209)	(0.216)	(0.040)	(0.043)	(0.047)	(0.041)	
Quartic polyn	omial in lati	itude and lon	gitude					
Mita	-0.392*	-0.324	-0.342	0.073	0.072	0.057	0.104**	
	(0.225)	(0.231)	(0.260)	(0.056)	(0.050)	(0.048)	(0.042)	
	Alternat	tive Function	al Forms for	RD Polyno	mial: Baseli	ne II		
Linear polyno								
Mita	-0.297***	-0.273***	-0.220**	0.050**	0.048**	0.049**	0.071**	
	(0.079)	(0.093)	(0.092)	(0.022)	(0.022)	(0.024)	(0.031)	
Quadratic pol								
Mita	-0.345***	-0.262***	-0.309***	0.072***	0.064***	0.072***	0.060*	
	(0.086)	(0.095)	(0.100)	(0.023)	(0.022)	(0.023)	(0.032)	
Quartic polyn		tance to Poto	sí					
Mita	-0.331***	-0.310***	-0.330***	0.078***	0.075***	0.071***	0.053*	
	(0.086)	(0.100)	(0.097)	(0.021)	(0.020)	(0.021)	(0.031)	
Interacted line	ear polynon	nial in distanc	e to Potosí					
Mita	-0.307***	-0.280***	-0.227**	0.051**	0.048**	0.043*	0.076***	
	(0.092)	(0.094)	(0.095)	(0.022)	(0.021)	(0.022)	(0.029)	
Interacted qua	adratic poly							
Mita	-0.264***	-0.177*	-0.285**	0.033	0.027	0.039*	0.036	
	(0.087)	(0.096)	(0.111)	(0.024)	(0.023)	(0.023)	(0.024)	

(Continues)

	Dependent Variable									
	Log Equiv. H	ausehold Cons	umption (2001)	Stunted Growth, Children 6-9 (2005)						
Sample Within:	<100 km of Bound. (1)	<75 km of Bound. (2)	<50 km of Bound. (3)	<100 km of Bound. (4)	<75 km of Bound. (5)	<50 km of Bound. (6)	Border District (7)			
Linear polynom			Forms for R	D Polynom	ial: Baselin	e III				
Mita	-0.299*** (0.082)	-0.227** (0.089)	-0.223** (0.091)	0.072*** (0.024)	0.060*** (0.022)	0.058** (0.023)	0.056* (0.032)			
Quadratic polyr Mita	nomial in dis -0.277*** (0.078)	stance to mit -0.227** (0.089)	a boundary -0.224** (0.092)	0.072*** (0.023)	0.060*** (0.022)	0.061*** (0.023)	0.056* (0.030)			
Quartic polynor Mita	nial in dista -0.251*** (0.078)	nce to mita t -0.229** (0.089)	oundary -0.246*** (0.088)	0.073*** (0.023)	0.064*** (0.022)	0.063*** (0.023)	0.055*			
Interacted linea	r polynomia	al in distance	to mita bour	ndary						
Mita	-0.301* (0.174)	-0.277 (0.190)	-0.385* (0.210)	0.082 (0.054)	0.087 (0.055)	0.095 (0.065)	0.132** (0.053)			
Interacted quad	lratic polyno	mial in dista	ince to mita b	oundary						
Mita	-0.351 (0.260)	-0.505 (0.319)	-0.295 (0.366)	0.140* (0.082)	0.132 (0.084)	0.136 (0.086)	0.121* (0.064)			
			linary Least S	Squares						
Mita	-0.294*** (0.083)	-0.288*** (0.089)	-0.227** (0.090)	0.057** (0.025)	0.048* (0.024)	0.049* (0.026)	0.055* (0.031)			
Geo. controls Boundary F.E.s Clusters	yes yes 71	yes yes 60	yes yes 52	yes yes 289	yes yes 239	yes yes 185	yes yes 63			
Observations	1478	1161	1013	158,848	115,761	100,446	37,421			

Other robustness checks (Back)

		L	og Equivalent	t Household Co	onsumption (20	01)		
					Excludes			
				Excludes	Portions of	Flexible		
				Districts	Boundary	Estimation		
		Control for	Includes	With Inca	Formed by	of Consump.		
	Baseline	Ethnicity	Cusco	Estates	Rivers	Equivalence	Migration	Baseline
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
				Panel A. C	Cubic Polyno	mial in Latit	ude and Lor	ngitude
Mita	-0.331	-0.202	-0.465**	-0.281	-0.322	-0.326	-0.223	0.087*
	(0.219)	(0.157)	(0.207)	(0.265)	(0.215)	(0.230)	(0.198)	(0.048)
R^2	0.069	0.154	0.104	0.065	0.070	0.292	0.067	0.017
	Panel B. Cubic Polynomial in Distance to Potosí							
Mita	-0.329***		-0.450***		-0.376***		-0.263***	0.078***
	(0.096)	(0.073)	(0.096)	(0.101)	(0.114)	(0.099)	(0.095)	(0.024)
R^2	0.047	0.140	0.087	0.036	0.049	0.275	0.042	0.013
				Panel C. Cu	bic Polynom	ial in Distan	ce to Mita B	oundary
Mita	-0.224**	-0.195***	-0.333***	-0.255**	-0.217**	-0.224**	-0.161*	0.064***
	(0.092)	(0.070)	(0.087)	(0.110)	(0.098)	(0.095)	(0.088)	(0.023)
R^2	0.040	0.135	0.088	0.047	0.039	0.270	0.037	0.013
Geo. controls	yes	yes	yes	yes	yes	yes	yes	yes
Bound. F.E.s	yes	yes	yes	yes	yes	yes	yes	yes
Clusters	52	52	57	47	51	52	52	185
Observations	1013	1013	1173	930	992	1013	997	100,446

Density Plots - consumption sample (left) and children sample (right)

Mita's region and today's borders (Back)

