Taller 1 Estadística Bayesiana Fecha de entrega: 27 de agosto de 2020 (hasta mediodía)

- 1. Se ajusta un modelo normal con media θ y varianza σ^2 a la variable *protein* que se encuentra en la base de datos cow de la librería BayesDA de R.
 - a) Suponga que se utiliza como distribución a priori para σ^2 una IG (0.1,0.2) y como a priori para $\theta|\sigma^2$

 $p(\theta|\sigma^2) \propto (\sigma^2)^{-1/2} \exp\left[-\frac{S_0(\theta-\delta)^2}{2\sigma^2}\right]$

con $S_0 = 5$ y $\delta = 3$. Encuentre un intervalo de credibilidad para σ^2 y θ al 95%.

b) Suponga que ahora se utilizan las siguientes distribuciones a priori no informativas e independientes

$$p(\theta) = 1 - \infty < \theta < \infty$$

$$p(\sigma^2) = \frac{1}{\sigma^2} \quad 0 < \theta < \infty$$

Encuentre un intervalo de credibilidad para σ^2 y θ al 95 %.

- c) Suponga que θ es conocida y que es igual a 3. Si se utiliza una a priori conjugada para σ^2 con $\alpha = 0.1$ y $\beta = 0.2$, encuentre un intervalo de credibilidad para σ^2 al 95 %.
- d) Suponga que σ^2 es conocido y que es igual a 0.05. Si se utiliza una a priori conjugada para θ con $\mu_0 = 3$ y $\tau_0^2 = 0.02$, encuentre un intervalo de credibilidad para θ al 95 %.
- e) Realice UN gráfico con las densidades posteriores de θ y OTRO gráfico con las densidades posteriores σ^2 de encontrados en los numerales anteriores. Concluya.
- 2. Sea X_1, \dots, X_n una muestra aleatoria de una distribución Gamma-inversa (α, θ) donde $\alpha = 1$ y $\theta \sim \text{Gamma}(\alpha_0, \beta_0)$, donde α_0 y β_0 son conocidas.
 - a) Encuentre la distribución posterior de θ . ¿Qué puede concluir?
 - b) Los valores de la muestra aleatoria de tamaño 10 son: 24.42, 1.51, 15.38, 7.50, 9.09, 5.98, 15.04, 57.99, 1.40, 10.27. Además $\alpha_0=11$ y $\beta_0=2.5$. Se quiere probar que $\theta=5$. Encuentre un intervalo de credibilidad posterior al 95 % para $\theta=5$ y concluya.
- 3. Se tiene la siguiente tabla de contigencia.

X :	Y: estado de la enfermedad		Marginal
Factor de Riesgo	1: presente	2: ausente	de X
1: presente	211	320	531
2: ausente	343	1301	1644
Marginal de Y	554	1621	2175

- a) Suponga un modelo multinomial y su conjugada a priori Dirichlet y analice los datos de la tabla.
- b) Calcule la media y varianza posterior para la probabilidad de cada una de las celdas. Concluya.
- 4. Si $X_i | \theta \sim \text{Maxwell}(\theta)$, entonces:

$$f(x_i|\theta) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} \theta^{\frac{3}{2}} x_i^2 \exp\left[-\frac{\theta x_i^2}{2}\right], \quad x_i > 0$$

Muestre que la distribución Gamma es la a priori conjugada para θ .

- 5. De cuatro parejas de aves que estaban anidando se observó el número de huevos por nido n y número de huevos eclosionados Y, proporcionando los datos de n= 2, 3, 3, 4 y y= 1, 2, 3, 3. Sea θ la probabilidad de que un huevo eclosione.
 - a) Obtenga la función de verosimilitud.
 - b) Suponga una a priori conjugada y encuentre la distribución posterior de $\theta|\mathbf{y}$.
 - b) Se observa una quinta pareja de la misma especie de aves y se encuentra que $n_5 = 3$. Encuentre la distribución predictiva de Y_5 , el número de huevo eclosionados en el quinto nido. La distribución predictiva posterior es la beta-binomial. Encuentre su valor esperado utilizando una distribución a priori no informativa ($\alpha = \beta = 1$).