

SEQUENCE LISTING

<110> Arthur B. Raitano
 Daniel E.H. Afar
 Aya Jakobovits
 Mary Faris
 Rene S. Hubert
 Steve Chappell Mitchell
 Douglas C. Saffran

<120> NOVEL G PROTEIN-COUPLED RECEPTOR
 UP-REGULATED IN PROSTATE CANCER AND USES THEREOF

<130> 511582002410

<140> US 10/017,066
<141> 2001-12-14

<150> US 09/680,728
<150> 2000-10-05

<150> 60/157,902
<151> 1999-10-05

<160> 50

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3136
<212> DNA
<213> Homo Sapiens

<220>
<221> CDS
<222> (133)...(1083)

<400> 1
cagagaggct gtatccagt gcagcctgcc agacctttc tggaggaaga ctggacaaag 60
ggggcacac attccttcca tacgggttag cctctacactg cctggtgctg gtcacagtcc 120
agttcttca tg atg gtt gat ccc aat ggc aat gaa tcc agt gct aca tac 171
Met Val Asp Pro Asn Gly Asn Glu Ser Ser Ala Thr Tyr

1 5 10

ttc atc cta ata ggc ctc cct ggt tta gaa gag gct cag ttc tgg ttg 219
Phe Ile Leu Ile Gly Leu Pro Gly Leu Glu Ala Gln Phe Trp Leu
15 20 25

gcc ttc cca ttg tgc tcc ctc tac ctt att gct gtt cta ggt aac ttg 267
Ala Phe Pro Leu Cys Ser Leu Tyr Ile Ala Val Leu Gly Asn Leu
30 35 40 45

aca atc atc tac att gtt cgg act gag cac agc ctg cat gag ccc atg 315
Thr Ile Ile Tyr Ile Val Arg Thr Glu His Ser Leu His Glu Pro Met
50 55 60

tat ata ttt ctt tgc atg ctt tca ggc att gac atc ctc atc tcc acc Tyr Ile Phe Leu Cys Met Leu Ser Gly Ile Asp Ile Leu Ile Ser Thr	65	70	75	363
tca tcc atg ccc aaa atg ctg gcc atc ttc tgg ttc aat tcc act acc Ser Ser Met Pro Lys Met Leu Ala Ile Phe Trp Phe Asn Ser Thr Thr	80	85	90	411
atc cag ttt gat gct tgt ctg cta cag att ttt gcc atc cac tcc tta Ile Gln Phe Asp Ala Cys Leu Leu Gln Ile Phe Ala Ile His Ser Leu	95	100	105	459
tct ggc atg gaa tcc aca gtg ctg ctg gcc atg gct ttt gac cgc tat Ser Gly Met Glu Ser Thr Val Leu Leu Ala Met Ala Phe Asp Arg Tyr	110	115	120	507
gtg gcc atc tgt cac cca ctg cgc cat gcc aca gta ctt acg ttg cct Val Ala Ile Cys His Pro Leu Arg His Ala Thr Val Leu Thr Leu Pro	130	135	140	555
cgt gtc acc aaa att ggt gtg gct gtc gtg cgg ggg gct gca ctg Arg Val Thr Lys Ile Gly Val Ala Ala Val Val Arg Gly Ala Ala Leu	145	150	155	603
atg gca ccc ctt cct gtc ttc atc aag cag ctg ccc ttc tgc cgc tcc Met Ala Pro Leu Pro Val Phe Ile Lys Gln Leu Pro Phe Cys Arg Ser	160	165	170	651
aat atc ctt tcc cat tcc tac tgc cta cac caa gat gtc atg aag ctg Asn Ile Leu Ser His Ser Tyr Cys Leu His Gln Asp Val Met Lys Leu	175	180	185	699
gcc tgt gat atc cgg gtc aat gtc gtc tat ggc ctt atc gtc atc Ala Cys Asp Asp Ile Arg Val Asn Val Val Tyr Gly Leu Ile Val Ile	190	195	200	747
atc tcc gcc att ggc ctg gac tca ctt ctc atc tcc ttc tca tat ctg Ile Ser Ala Ile Gly Leu Asp Ser Leu Leu Ile Ser Phe Ser Tyr Leu	210	215	220	795
ctt att ctt aag act gtg ttg ggc ttg aca cgt gaa gac cag gcc aag Leu Ile Leu Lys Thr Val Leu Gly Leu Thr Arg Glu Ala Gln Ala Lys	225	230	235	843
gca ttt ggc act tgc gtc tct cat gtg tgt gct gtg ttc ata ttc tat Ala Phe Gly Thr Cys Val Ser His Val Cys Ala Val Phe Ile Phe Tyr	240	245	250	891
gta cct ttc att gga ttg tcc atg gtg cat cgc ttt agc aag cgg cgt Val Pro Phe Ile Gly Leu Ser Met Val His Arg Phe Ser Lys Arg Arg	255	260	265	939
gac tct ccg ctg ccc gtc atc ttg gcc aat atc tat ctg ctg gtt cct Asp Ser Pro Leu Pro Val Ile Leu Ala Asn Ile Tyr Leu Leu Val Pro	270	275	280	987
cct gtg ctc aac cca att gtc tat gga gtg aag aca aag gag att cga				1035

Pro Val Leu Asn Pro Ile Val Tyr Gly Val Lys Thr Lys Glu Ile Arg
 290 295 300

cag cgc atc ctt cga ctt ttc cat gtg gcc aca cac gct tca gag ccc 1083
 Gln Arg Ile Leu Arg Leu Phe His Val Ala Thr His Ala Ser Glu Pro
 305 310 315

taggtgtcag tgatcaaact tctttccat tcagagtcct ctgattcaga ttttaatgtt 1143
 aacattttgg aagacagtat tcagaaaaaa aatttcctta ataaaaaaaata caactcagat 1203
 ccttcaaata taaaactggt tggggaatct ccatttttc aatattattt tcttcttgt 1263
 tttcttgcta catataatta ttaataccct gactagggtt tggtggagg gttattactt 1323
 ttcattttac catgcagtcc aaatctaaac tgcttctact gatggttac agcattctga 1383
 gataagaatg gtacatctag agaacattt ccaaaggcc aagcacggca aaggaaaaata 1443
 aacacagaat ataataaaat gagataatct agcttaaaac tataacttcc tcttcagaac 1503
 tcccaaccac attggatctc agaaaaatgc tgccttcaaa atgacttcta cagagaagaa 1563
 ataattttc ctctggacac tagcacttaa ggggaagatt ggaagtaaag cttgaaaag 1623
 agtacatttta cctacgttaa taaaagttga cacactgtt tgagagttt cacagcatat 1683
 ggaccctgtt ttcccttattt aattttctta tcaaccctt aatttaggcaa agatattatt 1743
 agtacctca ttgtagccat gggaaaattt atggtcagtg gggatcagtg aattaaatgg 1803
 ggtcatacaa gtataaaaat taaaaaaaaaa aaagacttca tgcccaatct catatgtat 1863
 ggaagaactg ttagagagac caacaggta gtgggttaga gatttccaga gtcttacatt 1923
 ttcttagagga ggtatttaat ttcttctcac tcatccagtg ttgtatttag gaatttccgt 1983
 gcaacagaac tcatggctt aatcccacta gctattgctt attgtcctgg tccaattgcc 2043
 aattacctgt gtcttggaaag aagtgtttt taggttcacc attatggaaat attcttattc 2103
 agaaaagtctg catagggctt atagcaagtt atttattttt aaaagttcca taggtgattc 2163
 tgataggcag tgaggttagg gagccaccag ttatgtatggg aagtatggaa tggcaggtct 2223
 tgaagataac attggcctt tgagtgtgac tgcgtactgg aaagtgggg aatcttcagg 2283
 accatgctt atttgggct ttgtcagta tggAACAGGG actttgagac cagggaaagca 2343
 atctgactta ggcattggaa tcaggcattt ttgcttctga gggcttattt ccaagggtt 2403
 ataggttca tcttcaacag gatatgacaa cagtgttaac caagaaaactc aaattacaaa 2463
 tactaaaaca tttgtatcata tatgtgttaa gtttcatttt cttttcaat cctcaggttc 2523
 cctgatatgg attcctataa catgcttca tccccctttt taatggatat catatttgg 2583
 aatgcctatt taataacttgc atttgcgtt ggactgttaag cccatgggg cactgtttat 2643
 tattgaatgt catctctgtt catcattgac tgctcttgc tcatcattga atcccccagc 2703
 aaagtgccta gaacataata gtgcttatgc ttgacaccgg ttattttca tcaaaccctga 2763
 ttccttctgt cctgaacaca tagccaggca attttccagc cttcttgag ttgggttatta 2823
 ttaaattctg gccattactt ccaatgtgag tggaaatgtac atgtcaatt tctataacctg 2883
 gctcataaaaa ccctcccatg tgcagccctt catgttgaca taaaatgtga cttggaaagc 2943
 tatgtttac acagagtaaa tcaccagaag cttggatttc tgaaaaaaact gtgcagagcc 3003
 aaacctctgt catttgcaac tcccacttgt atttgtacga ggcagttga taagtggaaa 3063
 ataaagtact attgtgtcaa gaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 3123
 aaaaaaaaaaaa aaa 3136

<210> 2
<211> 317
<212> PRT
<213> Homo Sapiens

<400> 2
Met Val Asp Pro Asn Gly Asn Glu Ser Ser Ala Thr Tyr Phe Ile Leu
1 5 10 15
Ile Gly Leu Pro Gly Leu Glu Glu Ala Gln Phe Trp Leu Ala Phe Pro
20 25 30
Leu Cys Ser Leu Tyr Leu Ile Ala Val Leu Gly Asn Leu Thr Ile Ile
35 40 45
Tyr Ile Val Arg Thr Glu His Ser Leu His Glu Pro Met Tyr Ile Phe
50 55 60

Leu Cys Met Leu Ser Gly Ile Asp Ile Leu Ile Ser Thr Ser Ser Met
 65 70 75 80
 Pro Lys Met Leu Ala Ile Phe Trp Phe Asn Ser Thr Thr Ile Gln Phe
 85 90 95
 Asp Ala Cys Leu Leu Gln Ile Phe Ala Ile His Ser Leu Ser Gly Met
 100 105 110
 Glu Ser Thr Val Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile
 115 120 125
 Cys His Pro Leu Arg His Ala Thr Val Leu Thr Leu Pro Arg Val Thr
 130 135 140
 Lys Ile Gly Val Ala Ala Val Val Arg Gly Ala Ala Leu Met Ala Pro
 145 150 155 160
 Leu Pro Val Phe Ile Lys Gln Leu Pro Phe Cys Arg Ser Asn Ile Leu
 165 170 175
 Ser His Ser Tyr Cys Leu His Gln Asp Val Met Lys Leu Ala Cys Asp
 180 185 190
 Asp Ile Arg Val Asn Val Val Tyr Gly Leu Ile Val Ile Ile Ser Ala
 195 200 205
 Ile Gly Leu Asp Ser Leu Leu Ile Ser Phe Ser Tyr Leu Leu Ile Leu
 210 215 220
 Lys Thr Val Leu Gly Leu Thr Arg Glu Ala Gln Ala Lys Ala Phe Gly
 225 230 235 240
 Thr Cys Val Ser His Val Cys Ala Val Phe Ile Phe Tyr Val Pro Phe
 245 250 255
 Ile Gly Leu Ser Met Val His Arg Phe Ser Lys Arg Arg Asp Ser Pro
 260 265 270
 Leu Pro Val Ile Leu Ala Asn Ile Tyr Leu Leu Val Pro Pro Val Leu
 275 280 285
 Asn Pro Ile Val Tyr Gly Val Lys Thr Lys Glu Ile Arg Gln Arg Ile
 290 295 300
 Leu Arg Leu Phe His Val Ala Thr His Ala Ser Glu Pro
 305 310 315

<210> 3
 <211> 320
 <212> PRT
 <213> Rat Protein

<400> 3
 Met Ser Ser Cys Asn Phe Thr His Ala Thr Phe Met Leu Ile Gly Ile
 1 5 10 15
 Pro Gly Leu Glu Glu Ala His Phe Trp Phe Gly Phe Pro Leu Leu Ser
 20 25 30
 Met Tyr Ala Val Ala Leu Phe Gly Asn Cys Ile Val Val Phe Ile Val
 35 40 45
 Arg Thr Glu Arg Ser Leu His Ala Pro Met Tyr Leu Phe Leu Cys Met
 50 55 60
 Leu Ala Ala Ile Asp Leu Ala Leu Ser Thr Ser Thr Met Pro Lys Ile
 65 70 75 80
 Leu Ala Leu Phe Trp Phe Asp Ser Arg Glu Ile Thr Phe Asp Ala Cys
 85 90 95
 Leu Ala Gln Met Phe Phe Ile His Ala Leu Ser Ala Ile Glu Ser Thr
 100 105 110
 Ile Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro
 115 120 125
 Leu Arg His Ala Ala Val Leu Asn Asn Thr Val Thr Val Gln Ile Gly
 130 135 140

Met Val Ala Leu Val Arg Gly Ser' Leu Phe Phe Pro Leu Pro Leu
 145 150 155 160
 Leu Ile Lys Arg Leu Ala Phe Cys His Ser Asn Val Leu Ser His Ser
 165 170 175
 Tyr Cys Val His Gln Asp Val Met Lys Leu Ala Tyr Thr Asp Thr Leu
 180 185 190
 Pro Asn Val Val Tyr Gly Leu Thr Ala Ile Leu Leu Val Met Gly Val
 195 200 205
 Asp Val Met Phe Ile Ser Leu Ser Tyr Phe Leu Ile Ile Arg Ala Val
 210 215 220
 Leu Gln Leu Pro Ser Lys Ser Glu Arg Ala Lys Ala Phe Gly Thr Cys
 225 230 235 240
 Val Ser His Ile Gly Val Val Leu Ala Phe Tyr Val Pro Leu Ile Gly
 245 250 255
 Leu Ser Val Val His Arg Phe Gly Asn Ser Leu Asp Pro Ile Val His
 260 265 270
 Val Leu Met Gly Asp Val Tyr Leu Leu Leu Pro Pro Val Ile Asn Pro
 275 280 285
 Ile Ile Tyr Gly Ala Lys Thr Lys Gln Ile Arg Thr Arg Val Leu Ala
 290 295 300
 Met Phe Lys Ile Ser Cys Asp Lys Asp Ile Glu Ala Gly Gly Asn Thr
 305 310 315 320

<210> 4
 <211> 320
 <212> PRT
 <213> Homo Sapiens

<400> 4

Met Ser Ser Cys Asn Phe Thr His Ala Thr Cys Val Leu Ile Gly Ile
 1 5 10 15
 Pro Gly Leu Glu Lys Ala His Phe Trp Val Gly Phe Pro Leu Leu Ser
 20 25 30
 Met Tyr Val Val Ala Met Cys Gly Asn Cys Ile Val Val Phe Ile Val
 35 40 45
 Arg Thr Glu Arg Ser Leu His Ala Pro Met Tyr Leu Phe Leu Cys Met
 50 55 60
 Leu Ala Ala Ile Asp Leu Ala Leu Ser Thr Ser Thr Met Pro Lys Ile
 65 70 75 80
 Leu Ala Leu Phe Trp Phe Asp Ser Arg Glu Ile Ser Ile Glu Ala Cys
 85 90 95
 Leu Thr Gln Met Phe Phe Ile His Ala Leu Ser Ala Ile Glu Ser Thr
 100 105 110
 Ile Leu Leu Ala Met Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro
 115 120 125
 Leu Arg His Ala Ala Val Leu Asn Asn Thr Val Thr Ala Gln Ile Gly
 130 135 140
 Ile Val Ala Val Val Arg Gly Ser Leu Phe Phe Pro Leu Pro Leu
 145 150 155 160
 Leu Ile Lys Arg Leu Ala Phe Cys His Ser Asn Val Leu Ser His Ser
 165 170 175
 Tyr Cys Val His Gln Asp Val Met Lys Leu Ala Tyr Ala Asp Thr Leu
 180 185 190
 Pro Asn Val Val Tyr Gly Leu Thr Ala Ile Leu Leu Val Met Gly Val
 195 200 205
 Asp Val Met Phe Ile Ser Leu Ser Tyr Phe Leu Ile Ile Arg Thr Val
 210 215 220

Leu	Gln	Leu	Pro	Ser	Lys	Sér	Glu	Arg	Ala	Lys	Ala	Phe	Gly	Thr	Cys
225							230					235			240
Val	Ser	His	Ile	Gly	Val	Val	Leu	Ala	Phe	Tyr	Val	Pro	Leu	Ile	Gly
							245				250			255	
Leu	Ser	Val	Val	His	Arg	Phe	Gly	Asn	Ser	Leu	His	Pro	Ile	Val	Arg
						260			265			270			
Val	Val	Met	Gly	Asp	Ile	Tyr	Leu	Leu	Leu	Pro	Pro	Val	Ile	Asn	Pro
						275			280			285			
Ile	Ile	Tyr	Gly	Ala	Lys	Thr	Lys	Gln	Ile	Arg	Thr	Arg	Val	Leu	Ala
						290		295		300					
Met	Phe	Lys	Ile	Ser	Cys	Asp	Lys	Asp	Leu	Gln	Ala	Val	Gly	Gly	Lys
						305		310		315			320		

<210> 5
<211> 427
<212> DNA
<213> Homo Sapiens

<400> 5															
gatcaaactt	cttttccatt	cagagtccctc	tgattcagat	ttaatgtta	acattttggaa										60
agacagtatt	cagaaaaaaaa	atttccttaa	taaaaataca	actcagatcc	ttcaaatatg										120
aaactggttgc	ggaatctcc	atttttcaa	tattatttc	ttctttgttt	tcttgctacg										180
tataattatt	aatatcctga	ctaggttgt	gttggagggt	tattacttt	cattttacca										240
tgcatgtccaa	atctaaactg	cttctactga	tggtttacag	cattctgaga	taagaatgg										300
acatctagag	aacatttgcc	aaaggcctaa	gcacagcaaa	ggaaaataaa	cacagaatat										360
aataaaatga	gataatctag	cttaaaacta	taacttcctc	tttagaactc	ccaaccacat										420
ttggatc															427

<210> 6
<211> 501
<212> DNA
<213> Homo Sapiens

<220>															
<221> CDS															
<222> (1)...(501)															

<400> 6															
gct	gtg	gcc	atg	ttt	att	gga	gtg	ttg	gat	cta	ttc	ttt	atc	atc	cta
Ala	Val	Ala	Met	Phe	Ile	Gly	Val	Leu	Asp	Leu	Phe	Phe	Ile	Ile	Leu
1										10					15

tct	tat	atc	ttt	atc	ctt	cag	gca	gtt	cta	caa	ctc	tcc	tct	cag	gag
Ser	Tyr	Ile	Phe	Ile	Leu	Gln	Ala	Val	Leu	Gln	Leu	Ser	Ser	Gln	Glu
															96
20									25						30

gcc	cgc	tac	aaa	gca	ttt	ggg	aca	tgt	gtc	tct	cac	ata	ggt	gcc	atc
Ala	Arg	Tyr	Lys	Ala	Phe	Gly	Thr	Cys	Val	Ser	His	Ile	Gly	Ala	Ile
															144
35									40						45

tta	gcc	ttc	tac	aca	cct	tca	gtc	atc	tct	tca	gtc	atg	cac	cgt	gtg
Leu	Ala	Phe	Tyr	Thr	Pro	Ser	Val	Ile	Ser	Ser	Val	Met	His	Arg	Val
															192
50								55				60			

gcc	cgc	tgt	gtg	cca	cac	gtc	cac	att	ctc	ctc	gcc	aat	ttc	tat	
Ala	Arg	Cys	Ala	Val	Pro	His	Val	His	Ile	Leu	Ala	Asn	Phe	Tyr	
									75						240
65															80

ctg ctc ttc cca ccc atg gtc aat ccc atc atc tat ggc gtt aag acc	288
Leu Leu Phe Pro Pro Met Val Asn Pro Ile Ile Tyr Gly Val Lys Thr	
85 90 95	
aag cag atc cgt gac agt ctt ggg agt att cct gag aaa gga tgt gtg	336
Lys Gln Ile Arg Asp Ser Leu Gly Ser Ile Pro Glu Lys Gly Cys Val	
100 105 110	
aat aga gag tga gga ata agt gga aaa aga gtg ggg ccc agt gaa tgc	384
Asn Arg Glu * Gly Ile Ser Gly Lys Arg Val Gly Pro Ser Glu Cys	
115 120 125	
tgt agt ggg cca ggg ctg tgc tga gag tag atg ggt cct aga ctc cac	432
Cys Ser Gly Pro Gly Leu Cys * Glu * Met Gly Pro Arg Leu His	
130 135 140	
gtt tag ttc ttt tct tgt att atg aaa aga ata aat gat gtc ctg aag	480
Val * Phe Phe Ser Cys Ile Met Lys Arg Ile Asn Asp Val Leu Lys	
145 150 155	
ctc aga aaa aaa aaa aaa aaa	501
Leu Arg Lys Lys Lys Lys Lys	
160	

<210> 7
<211> 163
<212> PRT
<213> Homo Sapiens

<400> 7
Ala Val Ala Met Phe Ile Gly Val Leu Asp Leu Phe Phe Ile Ile Leu
1 5 10 15
Ser Tyr Ile Phe Ile Leu Gln Ala Val Leu Gln Leu Ser Ser Gln Glu
20 25 30
Ala Arg Tyr Lys Ala Phe Gly Thr Cys Val Ser His Ile Gly Ala Ile
35 40 45
Leu Ala Phe Tyr Thr Pro Ser Val Ile Ser Ser Val Met His Arg Val
50 55 60
Ala Arg Cys Ala Val Pro His Val His Ile Leu Leu Ala Asn Phe Tyr
65 70 75 80
Leu Leu Phe Pro Pro Met Val Asn Pro Ile Ile Tyr Gly Val Lys Thr
85 90 95
Lys Gln Ile Arg Asp Ser Leu Gly Ser Ile Pro Glu Lys Gly Cys Val
100 105 110
Asn Arg Glu Gly Ile Ser Gly Lys Arg Val Gly Pro Ser Glu Cys Cys
115 120 125
Ser Gly Pro Gly Leu Cys Glu Met Gly Pro Arg Leu His Val Phe Phe
130 135 140
Ser Cys Ile Met Lys Arg Ile Asn Asp Val Leu Lys Leu Arg Lys Lys
145 150 155 160
Lys Lys Lys

<210> 8
<211> 14

<212> PRT
<213> Homo Sapiens

<400> 8
Met Val Asp Pro Asn Gly Asn Glu Ser Ser Ala Thr Tyr Phe
1 5 10

<210> 9
<211> 13
<212> PRT
<213> Homo Sapiens

<400> 9
Val His Arg Phe Ser Lys Arg Arg Asp Ser Pro Leu Pro
1 5 10

<210> 10
<211> 4
<212> PRT
<213> Homo Sapiens

<400> 10
Asn Glu Ser Ser
1

<210> 11
<211> 4
<212> PRT
<213> Homo Sapiens

<400> 11
Asn Leu Thr Ile
1

<210> 12
<211> 4
<212> PRT
<213> Homo Sapiens

<400> 12
Asn Ser Thr Thr
1

<210> 13
<211> 4
<212> PRT
<213> Homo Sapiens

<400> 13
Arg Arg Asp Ser
1

<210> 14
<211> 4
<212> PRT
<213> Homo Sapiens

<400> 14
Ser Leu His Glu
1

<210> 15
<211> 4
<212> PRT
<213> Homo Sapiens

<400> 15
Ser Gly Ile Asp
1

<210> 16
<211> 4
<212> PRT
<213> Homo Sapiens

<400> 16
Ser Gly Met Glu
1

<210> 17
<211> 6
<212> PRT
<213> Homo Sapiens

<400> 17
Gly Asn Glu Ser Ser Ala
1 5

<210> 18
<211> 6
<212> PRT
<213> Homo Sapiens

<400> 18
Gly Leu Glu Glu Ala Gln
1 5

<210> 19
<211> 6
<212> PRT
<213> Homo Sapiens

<400> 19
Gly Met Glu Ser Thr Val
1 5

<210> 20
<211> 6
<212> PRT
<213> Homo Sapiens

<400> 20
Gly Thr Cys Val Ser His
1 5

```

<210> 21
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 21
ttttgatcaa gctt 14

<210> 22
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 22
ctaatacgac tcactatagg gctcgagcgg ccgcccgggc ag 42

<210> 23
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 23
gatcctgccc gg 12

<210> 24
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 24
gtaatacgac tcactatagg gcagcgtggc cgccggccgag 40

<210> 25
<211> 10
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 25
gatcctcgcc 10

<210> 26

```

<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 26		
ctaatacgac tcactatagg gc	22	
<210> 27		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 27		
tcgagggcc gccgggcag ga	22	
<210> 28		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 28		
agcgtggtcg cggccgagga	20	
<210> 29		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 29		
atatccccgc gctcgctgac gacaa	25	
<210> 30		
<211> 26		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Primer		
<400> 30		
agccacacgc agtcattgt agaagg	26	
<210> 31		
<211> 24		
<212> DNA		

```

<213> Artificial Sequence

<220>
<223> Primer

<400> 31
atcctgacta ggttgggtt ggag 24

<210> 32
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 32
tgtggttggg agttctaaag agga 24

<210> 33
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> FLAG tag

<400> 33
gattacaagg atgacgacga taag 24

<210> 34
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 34
ccgaattcca tcttctggtt caatttc 27

<210> 35
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 35
gaagctgaaa aggtacactt gagctctcc 29

<210> 36
<211> 7
<212> PRT
<213> Homo Sapiens

```

<400> 36
Ser Leu His Glu Pro Met Tyr
1 5

<210> 37
<211> 7
<212> PRT
<213> Homo Sapiens

<400> 37
Ala Met Ala Phe Asp Arg Tyr
1 5

<210> 38
<211> 7
<212> PRT
<213> Homo Sapiens

<400> 38
Tyr Val Ala Ile Cys His Pro
1 5

<210> 39
<211> 7
<212> PRT
<213> Homo Sapiens

<400> 39
Lys Ala Phe Gly Thr Cys Val
1 5

<210> 40
<211> 7
<212> PRT
<213> Homo Sapiens

<400> 40
Gly Val Lys Thr Lys Glu Ile
1 5

<210> 41
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 41
agycntncays mnccnatgtay

21

<210> 42
<211> 21

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 42
tcnctncays mnccnatgta y 21

<210> 43
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 43
agyttrcays mnccnatgta y 21

<210> 44
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 44
tcnttrcays mnccnatgta y 21

<210> 45
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 45
gcnatggcnt tygaycgnta y 21

<210> 46
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 46
gcnatggcnt tygayagrta y 21

<210> 47
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 47
taygtngcna thtgycaycc n 21

<210> 48
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 48
nggrtgrcad atngcnacrt a 21

<210> 49
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 49
nacrcangtn ccraangcyt t

<210> 50
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<221> misc_feature
<222> (1)...(21)
<223> n = A,T,C or G

<400> 50
datytsyttn gtyttncnc c

21

21