Solutions to CNS 2013 PT4 - Kuramoto

4.a

-Expanding
$$r \exp \left(i\Theta \right) = \frac{1}{N} \sum_{j=1}^N \exp \left(i \theta_j \right)$$
, we have $r \cos (\Theta)$ equals $\frac{1}{N} \sum_{j=1}^N \cos (\theta_j)$ and $r \sin (\Theta)$ equals $\frac{1}{N} \sum_{j=1}^N \sin (\theta_j)$. Then,
$$\dot{\theta}_i = \omega_i - \frac{K}{N} \sum_{j=1}^N \sin (\theta_i - \theta_j)$$

$$\dot{\theta}_i = \omega_i - \frac{K}{N} \sin (\theta_i) \sum_{j=1}^N \cos (\theta_j) + \frac{K}{N} \cos (\theta_i) \sum_{j=1}^N \sin (\theta_j)$$

$$\dot{\theta}_i = \omega_i - K \sin (\theta_i) r \cos (\Theta) + K \cos (\theta_i) r \sin (\Theta)$$

$$\dot{\theta}_i = \omega_i - K r \sin (\theta_i - \Theta).$$

4.b

- -When $\,\theta_j\,$ equals $\,\Theta$, then $\,r\,$ equals 1: therefore, $\,r\,$ is a measure of a number of population that have the same phase.
- $-\Theta$ represents an average phase of the population.

4.c

-The phase fixed point of each phase oscillator is $\sin^{-1}(\omega_i/(Kr))+\Theta$. Jacobian matrix of each oscillator at the phase fixed point is $-Kr\cos(\sin^{-1}(\omega_i/(Kr)))$. Then, the phase fixed point is linearly stable if and only if $-Kr\cos(\sin^{-1}(\omega_i/(Kr)))<0$, i.e. $\omega_i\in(-Kr,Kr)$: it is unstable if and only if $-Kr\cos(\sin^{-1}(\omega_i/(Kr)))>0$, i.e. $\omega_i<-Kr$ or $\omega_i>Kr$.