ECE 250: Stochastic Processes: Week #2

Instructor: Behrouz Touri

Outline:

- Probability Space
- ullet Properties of σ -algebras and probability measures
- Borel-Cantelli Lemma

Deterministic vs Random Processes (dynamics)

- Recall: A probability space is a tuple $(\Omega, \mathcal{F}, \Pr(\cdot))$, where \mathcal{F} is a σ -algebra on Ω and $\Pr(\cdot)$ is a probability measure, i.e., it satisfies (i) $\Pr(\Omega) = 1$, and (ii) $\Pr(\cup_k A_k) = \sum_k \Pr(A_k)$ for countably many mutually disjoint sets A_k .
- Properties of σ -algebras:
 - For any family I of σ -algebras \mathcal{F}_{α} (countable or uncountable) on Ω , $\mathcal{F} = \cap_{\alpha \in I} F_{\alpha}$ is a σ -algebra.
 - We can define the smallest σ -algebra containing a given set of subsets $\mathcal E$, denoted by $\sigma(\mathcal E)$ by:

$$\sigma(\mathcal{E}) := \bigcap_{\sigma - \mathsf{algebra} \mathcal{F}: \mathcal{E} \subseteq \mathcal{F}} \mathcal{F}.$$

- Example: if $\Omega = \{1, 2\}$, what is $\sigma(\{\{1\}\})$?
- Definition: We refer to the σ -algebra generated by collection of open intervals $\{(a,b)\mid a< b\}$ in $\mathbb R$ to be the Borel σ -algebra in $\mathbb R$ and denote it by $\mathcal B(\mathbb R)$.
- What sets are in $\mathcal{B}(\mathbb{R})$? Do the sets of singletons $\{x\}$ belong to this σ -algebra? Answer: Yes.
 - Does this mean that $\mathcal{B}(\mathbb{R})$ contains all the subsets of \mathbb{R} ? Answer: No.
- In general, we refer to the σ -algebra generated by $(a_1, b_1) \times \cdots \times (a_n, b_n)$ as the Borel σ -algebra in \mathbb{R}^n , denoted by \mathcal{B}^n .
- For two σ -algebras $\mathcal{F}_1, \mathcal{F}_2$, is $\mathcal{F}_1 \cup \mathcal{F}_2$ a σ -algebra? Answer: No!

Properties of a Probability Measure

(Notation: We use indices k, i, j for countable index sets and $\alpha, \beta, ...$ for arbitrary ones)

- 1. Monotonicity: for $A, B \in \mathcal{F}$ with $A \subset B$, we have $\mathbf{Pr}(A) \leq \mathbf{Pr}(B)$.
- 2. Sub-additivity (Union Bound): $\mathbf{Pr}(\cup_k A_k) \leq \sum_k \mathbf{Pr}(A_k)$.
- 3. Continuity from Below: If $A_k \uparrow A$, i.e. $A_1 \subseteq A_2 \subseteq \cdots$ and $A = \bigcup_k A_k$, then $\mathbf{Pr}(A_k) \to \mathbf{Pr}(A)$ (implied from HW1).
- 4. Continuity from Above: If $A_k \downarrow A$, i.e. $\cdots \subseteq A_2 \subseteq A_1$ and $A = \cap_k A_k$, then $\mathbf{Pr}(A_k) \to \mathbf{Pr}(A)$ (implied from HW1).

Independent Events

(Recall: we refer to the members of the underlying σ -algebra of a probability space as events.)

- We say that two events $A, B \in \mathcal{F}$ are independent if $\Pr(A \cap B) = \Pr(A) \Pr(B)$.
- We say that a family of events $\{E_k\}$ are independent if for any finite $A_{i_1}, \ldots, A_{i_k} \in E$, $\Pr(A_{i_1} \cap \cdots \cap A_{i_k}) = \Pr(A_{i_1}) \cdots \Pr(A_{i_k})$, where $1 \leq i_1 < i_2 < \cdots < i_k$.
- For a countable sequence of events $\{A_k\}$ define its infinite often event $\{A_k, \text{ i.o.}\}$ as the set of $\omega \in \Omega$ such that ω belongs to infinitely many A_k s.
- Note that $\{A_k, \text{ i.o.}\} \in \mathcal{F} \text{ (why?)}.$
- More precisely,

$$\{A_k, \text{ i.o.}\} = \bigcap_{k=1}^{\infty} \bigcup_{t=k}^{\infty} A_t.$$

Borel-Cantelli Lemma(s)

Theorem 1 (Borel-Cantelli). For a given sequence of events $\{A_k\}$, $\mathbf{Pr}(\{A_k, i.o.\}) > 0$ implies $\sum_{k=1}^{\infty} \mathbf{Pr}(A_k) = \infty$.

Conversely, if $\{A_k\}$ is an independent sequence, $\sum_{k=1}^{\infty} \mathbf{Pr}(A_k) = \infty$ implies

$$\mathbf{Pr}(\{A_k, i.o.\}) = 1 > 0.$$

Proof. Let $E = \{A_k, \text{ i.o.}\}$ and

$$E_k = \bigcup_{t=k}^{\infty} A_k.$$

Note that $E \subseteq E_k$ and because of sub-additivity:

$$\mathbf{Pr}(E_k) = \mathbf{Pr}(\bigcup_{t=k}^{\infty} A_t) \le \sum_{t=k}^{\infty} \mathbf{Pr}(A_t).$$

Therefore, $\mathbf{Pr}(E) \leq \mathbf{Pr}(E_k) \leq \sum_{t=k}^{\infty} \mathbf{Pr}(A_t)$ and hence, if $\sum_{t=1}^{\infty} \mathbf{Pr}(A_k) < \infty$, $\mathbf{Pr}(E) = 0$ (why?).

For the converse part, if $\{A_k\}$ are independent, we have:

$$\mathbf{Pr}(E_k) = \mathbf{Pr}(\bigcup_{t=k}^{\infty} A_t) = 1 - \mathbf{Pr}((\bigcup_{t=k}^{\infty} A_t)^c)$$

$$= 1 - \mathbf{Pr}(\bigcap_{t=k}^{\infty} A_t^c)$$

$$= 1 - \prod_{t=k}^{\infty} (1 - \mathbf{Pr}(A_t)),$$

where the last equality follows from the independence of A_k^c s (see HW2).

Note that $1 - x \le e^{-x}$. Therefore,

$$\mathbf{Pr}(E_k) = 1 - \prod_{t=k}^{\infty} (1 - \mathbf{Pr}(A_t))$$

$$\geq 1 - \prod_{t=k}^{\infty} e^{-\mathbf{Pr}(A_t)}$$

$$= 1 - e^{-\sum_{t=k}^{\infty} \mathbf{Pr}(A_t)}$$

$$= 1 - e^{-\infty} = 1.$$

Since, $E_k \downarrow E$, $\lim_{k\to\infty} \mathbf{Pr}(E_k) = \mathbf{Pr}(E)$. Therefore, $\mathbf{Pr}(E) = \lim_{k\to\infty} \mathbf{Pr}(E_k) = 1$.

Borel-Cantelli Lemma(s)-Application

- \bullet Suppose that we have an independent sequence of 0,1 with equal probability.
- What is the probability of infinitely many of them becoming 1? Why?
- What if we have an independent sequence 0,1 but now the kth random variable is 1 with probability 1/k. What is the probability of infinitely many of them being 1? Answer: 1! Because of the Borel-Cantelli lemma as $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$.

Random Variables

The most important objects in probability theory are random variables.

Definition 1. Let $(\Omega, \mathcal{F}, \mathbf{Pr}(\cdot))$ be a probability space. The mapping $X : \Omega \to \mathbb{R}$ is called a random variable if the pre-image of any interval $(-\infty, a]$ belongs to \mathcal{F} , i.e.

$$X^{-1}((-\infty, a]) \in \mathcal{F} \quad \text{for all } a \in \mathbb{R},$$
 (1)

where

$$X^{-1}(B) := \{ \omega \in \Omega \mid X(\omega) \in B \}.$$

Important Result: If we have a random variable X, then (1) implies that

$$X^{-1}(B) \in \mathcal{F}$$
 for all $B \in \mathcal{B}$.

Notation: We use three notations interchangeably $\{\omega \in \Omega \mid X(\omega) \in B\} := \{X \in B\} := X^{-1}(B)$.

(Important) Example of Random Variable

Example 1. (Indicator Function) For a set $E \subseteq \Omega$, define the indicator function of E as

$$\mathbf{1}_{E}(\omega) = \left\{ \begin{array}{ll} 1 & \text{if } \omega \in E \\ 0 & \text{if } \omega \notin E \end{array} \right.$$

Indeed, $\mathbf{1}_{E}(\omega)$ is a random-variable iff $E \in \mathcal{F}$. To show this, let $a \in \mathbb{R}$. Then

- 1. if a < 0, $\mathbf{1}_{E}^{-1}((-\infty, a]) = \emptyset$,
- 2. if $0 \le a < 1$, then $\mathbf{1}_{E}^{-1}((-\infty, a]) = E^{c}$, and
- 3. if $1 \le a$, then $\mathbf{1}_{E}^{-1}((-\infty, a]) = \Omega$.

Therefore, Since \mathcal{F} is a σ -algebra and $E \in \mathcal{F}$, therefore, it follows that $E^c \in \mathcal{F}$ and hence, $\mathbf{1}_E^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}$.

Random Vectors and Random Processes

- Random Vectors: Any mapping $X: \Omega \to \mathbb{R}^n$ with $X(\omega) = (X_1(\omega), X_2(\omega), \dots, X_n(\omega))$ is called a random vector if X_i is a random variable for all $i = 1, \dots, n$.
- Random Process: An infinitely indexed collection $\{X_{\alpha}\}_{{\alpha}\in I}$ of random variables on $(\Omega, \mathcal{F}, \Pr)$ is called a random process.
- If the index set I is a discrete set (usually $I=\mathbb{Z}^+$), the random process is called a discrete-time random process. When $I=\mathbb{R}$ or $I=\mathbb{R}^+$, the random process is called a continuous-time random process.

Some Comments on Random Processes

- It is extremely important that the underlying probability space is shared between all these random variables.
- Note that for an $\omega \in \Omega$, $\{X_t(\omega)\}$ would be a sequence of real-numbers (i.e., a usual sequence). Such a sequence is called a **sample-path** for the process.
- Example: HW 1-Problem 5

This course: Mostly focuses on discrete-time random processes, i.e., when $I = \mathbb{Z}, \mathbb{Z}^+$. Therefore, we drop the index set and unless otherwise explicitly stated, the index variable k, t, n, \ldots are discrete.