

Claims

1. The use of a compound of formula (I):

5

(I)

wherein:

Ring A is selected from carbocyclyl or heterocyclyl;

R¹ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy,

10 **N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, tri-(C₁₋₄alkyl)silyloxy, carbocyclyl, heterocyclyl, carbocyclylC₀₋₄alkylene-Y- and heterocyclylC₀₋₄alkylene-Y-; wherein R¹ may be optionally substituted on carbon by one or**

15 more groups selected from R⁶; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R⁷;

n is 0-5; wherein the values of R¹ may be the same or different;

R² and R³ are independently selected from hydrogen, hydroxy, amino, cyano,

16 C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, carbocyclyl, heterocyclyl, carbocyclylC₁₋₄alkyl, heterocyclylC₁₋₄alkyl; or R² and R³ together form C₂₋₆alkylene; wherein R² and R³ may be independently optionally substituted on carbon by one or more groups selected from R⁸; and wherein if said heterocyclyl contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R⁹;

one of R⁴ and R⁵ is selected from C₁₋₄alkyl and the other is selected from hydrogen or

25 C₁₋₄alkyl; wherein R⁴ and R⁵ may be optionally substituted on carbon by one or more groups selected from R¹⁰;

Y is -S(O)_a-, -O-, -NR¹²-, -C(O), -C(O)NR¹³-, -NR¹⁴C(O)- or -SO₂NR¹⁵-; wherein a is 0 to 2;

R¹², R¹³, R¹⁴ and R¹⁵ are independently selected from hydrogen, phenyl and C₁₋₄alkyl;

30 R⁶ and R⁸ are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl,

C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, C_{1-4} alkanoyl, C_{1-4} alkanoyloxy, $N-(C_{1-4}\text{alkyl})\text{amino}$, $N,N-(C_{1-4}\text{alkyl})_2\text{amino}$, $C_{1-4}\text{alkanoylamino}$, $N-(C_{1-4}\text{alkyl})\text{carbamoyl}$, $N,N-(C_{1-4}\text{alkyl})_2\text{carbamoyl}$, $C_{1-4}\text{alkylS(O)}_a$ wherein a is 0 to 2, $C_{1-4}\text{alkoxycarbonyl}$, $N-(C_{1-4}\text{alkyl})\text{sulphamoyl}$, $N,N-(C_{1-4}\text{alkyl})_2\text{sulphamoyl}$, $C_{1-4}\text{alkylsulphonylamino}$, carbocyclyl and heterocyclyl; wherein R^6 and R^8 may be independently optionally substituted on carbon by one or more R^{11} ;

R^{10} is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, $C_{1-4}\text{alkyl}$, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, C_{1-4} alkanoyl, $C_{1-4}\text{alkanoyloxy}$, $N-(C_{1-4}\text{alkyl})\text{amino}$, $N,N-(C_{1-4}\text{alkyl})_2\text{amino}$, $10\ C_{1-4}\text{alkanoylamino}$, $N-(C_{1-4}\text{alkyl})\text{carbamoyl}$, $N,N-(C_{1-4}\text{alkyl})_2\text{carbamoyl}$, $C_{1-4}\text{alkylS(O)}_a$ wherein a is 0 to 2, $C_{1-4}\text{alkoxycarbonyl}$, $N-(C_{1-4}\text{alkyl})\text{sulphamoyl}$, $N,N-(C_{1-4}\text{alkyl})_2\text{sulphamoyl}$, $C_{1-4}\text{alkylsulphonylamino}$; wherein R^{10} may be independently optionally substituted on carbon by one or more R^{16} ;

R^7 and R^9 are independently selected from $C_{1-4}\text{alkyl}$, $C_{1-4}\text{alkanoyl}$, $C_{1-4}\text{alkylsulphonyl}$, $15\ C_{1-4}\text{alkoxycarbonyl}$, carbamoyl, $N-(C_{1-4}\text{alkyl})\text{carbamoyl}$, $N,N-(C_{1-4}\text{alkyl})_2\text{carbamoyl}$, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl;

R^{11} and R^{16} are independently selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, $20\ diethylamino$, $N\text{-methyl-}N\text{-ethylamino}$, acetylamino, $N\text{-methylcarbamoyl}$, $N\text{-ethylcarbamoyl}$, $N,N\text{-dimethylcarbamoyl}$, $N,N\text{-diethylcarbamoyl}$, $N\text{-methyl-}N\text{-ethylcarbamoyl}$, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, $N\text{-methylsulphamoyl}$, $N\text{-ethylsulphamoyl}$, $N,N\text{-dimethylsulphamoyl}$, $N,N\text{-diethylsulphamoyl}$ or $N\text{-methyl-}N\text{-ethylsulphamoyl}$;

$25\ or a pharmaceutically acceptable salt thereof$;
in the manufacture of a medicament for use in the inhibition of $11\beta\text{HSD1}$.

2. The use according to claim 1 wherein Ring A is pyridyl, phenyl, thienyl, furyl, pyrazinyl, 1,2,3-thiadiazolyl, thiazolyl, cyclohexyl, naphthyl, cyclohexenyl, pyrazolyl, $30\ benzothienyl$, indolyl, 1,1,3-trioxo-2,3-dihydro-1,2-benzisothiazolyl, 1,3-benzodioxolyl, cyclopentyl, tetrahydropyranyl, 1-oxooctahydropyrido[1,2-a]pyrazinyl, 1,2,3,4-tetrahydronaphthyl, piperidinyl and benzthiazolyl.

3. The use according to either of claims 1 or 2 wherein R¹ is selected from halo, nitro, cyano, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, tri-(C₁₋₄alkyl)silyloxy, carbocyclyl and heterocyclylC₀₋₄alkylene-Y-; wherein R¹ may be optionally substituted on carbon by one or more groups selected from R⁶; wherein

5 Y is -NR¹²-;

R¹² is hydrogen; and

R⁶ is selected from halo, C₂₋₄alkenyl, C₁₋₄alkanoyl, C₁₋₄alkanoylamino and carbocyclyl.

10 4. The use according to any one of claims 1-4 wherein n is 0-2; wherein the values of R¹ may be the same or different.

5. The use according to any one of claims 1-5 wherein R² and R³ are independently selected from hydrogen or C₁₋₄alkyl, or R² and R³ together form C₂₋₆alkylene.

15

6. The use according to any one of claims 1-6 wherein one of R⁴ and R⁵ is selected from hydrogen and C₁₋₄alkyl and the other is selected from C₁₋₄alkyl; wherein R⁴ and R⁵ may be optionally substituted on carbon by one or more groups selected from R¹⁰; and

R¹⁰ is selected from C₁₋₄alkoxy and N,N-(C₁₋₄alkyl)₂amino.

20

7. The of a compound of formula (I) (as depicted in claim 1) wherein:

Ring A is carbocyclyl or heterocyclyl;

R¹ is selected from halo, nitro, cyano, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl,

C₁₋₄alkoxy, C₁₋₄alkanoyl, tri-(C₁₋₄alkyl)silyloxy, carbocyclyl and heterocyclylC₀₋₄alkylene-Y-;

25 wherein R¹ may be optionally substituted on carbon by one or more groups selected from R⁶; wherein:

Y is -NR¹²-;

R¹² is hydrogen; and

R⁶ is selected from halo, C₂₋₄alkenyl, C₁₋₄alkanoyl, C₁₋₄alkanoylamino and

30 carbocyclyl;

n is 0-3; wherein the values of R¹ may be the same or different;

R² and R³ are independently selected from hydrogen or C₁₋₄alkyl, or R² and R³ together form C₂₋₆alkylene;

- 54 -

one of R⁴ and R⁵ is selected from hydrogen and C₁₋₄alkyl and the other is selected from C₁₋₄alkyl; wherein R⁴ and R⁵ may be optionally substituted on carbon by one or more groups selected from R¹⁰; and

R¹⁰ is selected from C₁₋₄alkoxy and N,N-(C₁₋₄alkyl)₂amino;

5 or a pharmaceutically acceptable salt thereof;

in the manufacture of a medicament for use in the inhibition of 11 β HSD1.

8. A compound of formula (I) as depicted in claim 1 selected from:

(4-fluorophenyl)[N-(2-methoxyethyl)-N-(methyl)sulphamoylmethyl]ketone;

10 (2,4-difluorophenyl)[1-(N,N-diisopropylsulphamoyl)-1methylethyl]ketone;

(2,4-difluorophenyl)(N,N-diisopropylsulphamoylmethyl)ketone;

(thiazol-2-yl)(N,N-dimethylsulphamoylmethyl)ketone;

(4-fluorophenyl)[N-(2-isopropoxyethyl)-N-(isopropyl)sulphamoylmethyl]ketone;

(pyrazin-2-yl)(N,N-dimethylsulphamoylmethyl)ketone;

15 (4-isopropoxyphenyl)(N,N-diisopropylsulphamoylmethyl)ketone;

(3-cyanophenyl)(N,N-diisopropylsulphamoylmethyl)ketone;

(pyrid-2-yl)(N,N-dimethylsulphamoylmethyl)ketone;

or a pharmaceutically acceptable salt thereof.

20 9. A compound of formula (Ia):

wherein:

Ring A is selected from phenyl, pyridyl, thiazolyl, thieryl and furyl;

25 R¹ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino; wherein R¹

30 may be optionally substituted on carbon by one or more groups selected from R⁶; and wherein

if said heterocycll contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R⁷;

n is 0-3; wherein the values of R¹ may be the same or different;

R² and R³ are independently selected from hydrogen, hydroxy, amino, cyano,

5 C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, carbocycll, heterocycll, carbocycllC₁₋₄alkyl, heterocycllC₁₋₄alkyl; wherein R² and R³ may be independently optionally substituted on carbon by one or more groups selected from R⁸; and wherein if said heterocycll contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R⁹;

10 R⁴ and R⁵ are independently selected from C₁₋₄alkyl; wherein R⁴ and R⁵ may be optionally substituted on carbon by one or more groups selected from R¹⁰;

R⁶ and R⁸ are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino,

15 N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl,

N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl,

N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino; wherein R⁶ and R⁸ may be independently optionally substituted on carbon by one or more R¹¹;

R¹⁰ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl,

20 mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl,

N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino; wherein R¹⁰ may be independently

25 optionally substituted on carbon by one or more R¹⁶;

R⁷ and R⁹ are independently selected from C₁₋₄alkyl, C₁₋₄alkanoyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonyl, carbamoyl, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl;

R¹¹ and R¹⁶ are independently selected from halo, nitro, cyano, hydroxy,

30 trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, diethylamino, N-methyl-N-ethylamino, acetylarnino, N-methylcarbamoyl, N-ethylcarbamoyl, N,N-dimethylcarbamoyl, N,N-diethylcarbamoyl, N-methyl-N-ethylcarbamoyl, methylthio,

ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, *N*-methylsulphamoyl, *N*-ethylsulphamoyl, *N,N*-dimethylsulphamoyl, *N,N*-diethylsulphamoyl or *N*-methyl-*N*-ethylsulphamoyl; or a pharmaceutically acceptable salt thereof; with the proviso that said compound is not (*N*-5 methyl-*N*-butylsulphamoylmethyl)(phenyl)ketone; [1-(*N,N*-dimethylsulphamoyl)ethyl](phenyl)ketone; (*N,N*-dimethylsulphamoylmethyl)(4-nitrophenyl)ketone; (*N,N*-dimethylsulphamoylmethyl)(4-fluoro-2-methylaminophenyl)ketone; (*N,N*-dimethylsulphamoylmethyl)(3-methoxy-4-methyl-6-aminophenyl)ketone; (*N,N*-dimethylsulphamoylmethyl)(3-methoxy-6-aminophenyl)ketone; (*N,N*-10 dimethylsulphamoylmethyl)(phenyl)ketone; (*N,N*-dimethylsulphamoylmethyl)(2-nitro-4-methoxyphenyl)ketone; (*N,N*-dimethylsulphamoylmethyl)(2-amino-4-methoxyphenyl)ketone; [1-(*N*-methyl-*N*-butylsulphamoyl)ethyl](phenyl)ketone; or (*N,N*-dimethylsulphamoylmethyl)(thien-2-yl)ketone.

15 10. A pharmaceutical composition which comprises a compound of formula (I) or (Ia), or a pharmaceutically acceptable salt thereof, as claimed in either of claims 8 or 9 in association with a pharmaceutically-acceptable diluent or carrier.

11. A compound of the formula (I) or (Ia), or a pharmaceutically acceptable salt thereof, 20 as claimed in either of claims 8 or 9, for use in a method of prophylactic or therapeutic treatment of a warm-blooded animal, such as man.

12. A compound of the formula (I) or (Ia), or a pharmaceutically acceptable salt thereof, as claimed in either of claims 8 or 9, for use as a medicament.

25 13. The use of a compound of the formula (I) or (Ia), or a pharmaceutically acceptable salt thereof, as claimed in either of claims 8 or 9, in the manufacture of a medicament for use in the production of an 11 β HSD1 inhibitory effect in a warm-blooded animal, such as man.

30 14. The use of a compound as claimed in any one of claims 1-7 or 13 wherein production of, or producing an, 11 β HSD1 inhibitory effect refers to the treatment of metabolic syndrome.

15. The use of a compound as claimed in any one of claims 1-7 or 13 wherein production of, or producing an, 11 β HSD1 inhibitory effect refers to the treatment of diabetes, obesity, hyperlipidaemia, hyperglycaemia, hyperinsulinemia or hypertension, particularly diabetes and obesity.

5

16. The use of a compound as claimed in any one of claims 1-7 or 13 wherein production of, or producing an, 11 β HSD1 inhibitory effect refers to the treatment of glaucoma, osteoporosis, tuberculosis, dementia, cognitive disorders or depression.

10 17. A method for producing an 11 β HSD1 inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I), as claimed in any one of claims 1-8, or a compound of formula (Ia) as claimed in claim 9, or a pharmaceutically acceptable salt thereof.

15