Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Kvalificeringstävling den 5 oktober 1994

- 1. Amanda har födelsedag den 5 oktober. I år fyller hon lika många år som summan av siffrorna i det årtal hon föddes. Hur gammal blir Amanda idag, den 5 oktober 1994?
- 2. Lös ekvationen $\cos^7 x \sin^7 x = 1$.
- 3. I en triangel med sidolängderna a>b>c skärs hörnen av med snitt, som är parallella med motstående sidor. Man får då en liksidig sexhörning vars sidolängd är s. Visa att

$$\frac{a}{3} > s > \frac{c}{3}.$$

- 4. Cirkeln C har medelpunkt i origo och radien 1. Kan det finnas två punkter på C, på avstånd 1 från varandra, vilkas koordinater är rationella?
- 5. Av de nio reella talen $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$ bildar man de sex produkterna

$$J_1 = a_1 b_2 c_3$$
, $J_2 = a_2 b_3 c_1$, $J_3 = a_3 b_1 c_2$,

$$U_1 = a_3b_2c_1$$
, $U_2 = a_2b_1c_3$. $U_3 = a_1b_3c_2$.

Var och en av dessa produkter är antingen lika med α eller lika med β , där α och β är två olika positiva reella tal. Visa att $J_1 + J_2 + J_3 = U_1 + U_2 + U_3$.

- 6. Låt $a_0, a_1, \ldots, a_{1994}$ vara reella tal som uppfyller:
 - i) $a_0 = a_{1994} = 0$
 - ii) $a_n + a_{n+2} < 2a_{n+1}$, för $n = 0, 1, \dots, 1992$.

Visa att $a_n \neq 0$ för n = 1, 2, ..., 1993.