Step-1

Suppose P is the projection matrix onto the subspace S and Q is the projection matrix onto the orthogonal complement S^{\perp}

 $\operatorname{Find}^{P+Q}$, PQ

Step-2

Since P is a projection onto the subspace S.

That means $P^2 = P$

Since $\mathcal Q$ is the projection matrix onto the orthogonal complement $\mathbf S^\perp$

So Q = I - P

Now

$$P + Q = P + (I - P)$$
$$= I$$

Step-3

And

$$PQ = P(I - P)$$

$$= PI - P^{2}$$

$$= P - P \qquad \text{since } P^{2} = P$$

$$= 0$$

Therefore, P+Q=I and PQ=0, where I is the identity matrix.

Step-4

Show that P-Q is its own inverse.

Now,

$$(P-Q)(P-Q) = P^{2} - PQ - QP + Q^{2}$$

$$= P - 0 - 0 + (I-P)(I-P) \qquad \begin{cases} \text{Since } P^{2} = P, Q = I-P \\ PQ = 0 \end{cases}$$

$$= P + I - IP - PI + P^{2}$$

$$= P + I - P - P + P \qquad \qquad \text{(Since } IP = PI = P)$$

$$= I$$

By the well-known property, if AB = I then $A^{-1} = B$.

Here, obtained that $(P-Q)(P-Q) = I_{\text{then}}(P-Q)^{-1} = P-Q$.

Hence P-Q is its own inverse.