Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina
Departamento Acadêmico de Eletrônica
Curso de Graduação em Engenharia Eletrônica

SANTA CATARINA

Circuito de comando para acionamento de semicondutores e Circuitos Acessórios aplicados a Eletrônica de Potência

Prof. Joabel Moia.

Florianópolis, março de 2019.

Drivers x Drives:

Acionamento de Motor CA: Drives (Inversores)

Acionamento Semicondutores: Drivers

Tensão de Threshold de um MOSFET:

• É a tensão de source para gate (V_{GS(th)}) limite para o MOSFET começar a entrar em condução.

Tensão de Threshold de um MOSFET:

Exemplo: IRF840 Vishay

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static							
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	500	-	-	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference to 25 °C, I _D = 1 mA	-	0.78	-	V/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.0	-	4.0	V	

Cuidados ao comandar dois interruptores complementares:

Tempo Morto

Principais Objetivos dos Circuitos de Comandos para Transistores:

- Propiciar operação adequada na condução, bloqueio e comutação dos transistores;
- Proteger o transistor contra sobrecorrentes e curto-circuito;
- Garantir que o transistor não entre em condução de maneira espontânea;
- Minimizar as perdas na comutação;
- Reduzir o atraso entre o comando e a entrada em condução do transistor;

• Realizada a interface entre o circuito de potência e o circuito de comando;

- Aplica-se tensão entre Gate e Source (MOSFET) ou Gate e Emissor
 (IGBT) (15V para MOSFETS e IGBTs convencionais)
- É necessário carregar e descarregar Ciss
- Os tempos de comutação são dependentes da velocidade de carga e descarga de Ciss (MOSFET) (Ciss= CGS+ CGD, CDS em curto).
- IGBTs: o tempo de bloqueio é menos dependente de Rg.

Tipos de Drivers:

- Não Isolados;
- Isolados:
 - Opto Acopladores;
 - Transformadores de pulso;
 - Fibra óptica;

A necessidade de isolação do driver depende da estratégia de isolação adotada para o circuito/sistema;

Alguns drivers apresentam tensão de bloqueio negativa, outros tensão nula.

- Sobre a necessidade de tensão de bloqueio negativa:
 A descarga rápida dos capacitores C_{GD}, C_{DS}, e C_{GS}, aliada à presença de resistência de gate e indutância parasita de gate, podem levar ao disparo acidentam de um MOSFET, quando deveria permanecer bloqueado;
- O bloqueio com tensão negativa evita que o sinal de gate atinja o Valor de threshold;
- O circuito do driver deve estar próximo aos transistores;

Circuito de Comando Básico não Isolado:

Circuito de Comando Básico não Isolado:

Ajuste de tempo de entrada em condução e bloqueio independentes, por meio de Rg2 e Rg1, respectivamente.

Circuito de Comando Básico não Isolado:

Com tensão negativa e proteção contra sobrecorrente.

- Isolação Galvânica;
- Operação em alta frequência;
- Razão cíclica limitada para desmagnetizar o trafo de pulsos;
- Baixo Custo;
- Possibilidade de alto valor de tensão de isolação;
- Necessita de apenas uma fonte de alimentação por interruptor;

Circuito com Opto Acoplador:

- Necessita de alimentação isolada;
- Permite razão cíclica elevada;
- Apresenta pouca imunidade a interferência por ruídos;
- Frequência de comutação limitada (200 kHz);

Circuito com Opto Acoplador:

Circuito com Opto Acoplador:

Exemplo Circuito com Opto Acoplador:

Circuito com Fibra Ótica:

- Necessita de alimentação isolada;
- Permite razão cíclica elevada;
- Apresenta ótima imunidade a interferência por ruídos;
- Alta frequência de comutação;
- Alta tensão de isolação;

Circuito com Fibra Ótica:

HFBR-3810Z & HFBR-3810MSZ

Features

- Data transmission at signal rates of DC to 10MBaud
- DC coupled receiver with CMOS/TTL output for easy designs: no data encoding or digitizing circuitry required
- High noise immunity
- RoHS compliant
- Transient voltage suppression of up to 12kV according IEC 60664-1
- Laser class 1 according to IEC-60825: Amendment 2001

Mandatory Drive circuit – Top view

Circuito de Comando tipo Bootstrap:

- Não Realiza Isolação;
- Possui pequena limitação de razão cíclica (0,05 < D < 0,95);
- O diodo bootstrap é ultrarrápido e de alta tensão;
- Custo reduzido;
- Aplicado em circuitos em que os interruptores comutam de Forma complementar (meia-ponte, ponte completa);

Circuito de Comando tipo Bootstrap: IR2110

Product Summary

VOFFSET (IR2110) 500V max.
(IR2113) 600V max.

IO+/- 2A / 2A

VOUT 10 - 20V

ton/off (typ.) 120 & 94 ns

Delay Matching (IR2110) 10 ns max.
(IR2113) 20ns max.

Circuito de Comando tipo Bootstrap:

Typical Connection

Product Summary

Voffset	600V max.		
I _O +/-	130 mA / 270 mA		
Vout	10 - 20V		
t _{on/off} (typ.)	680 & 150 ns		
Deadtime (typ.)	520 ns		

Circuito de Comando tipo Bootstrap:

Driver Comerciais: Fabricante Supplier

DRIVERS PARA TRANSISTORES DE POTÊNCIA

comutação: 100 kHz

M 10.0,us

supplier

Driver Comerciais: Fabricante Supplier

CH1

Características mecânicas do driver simples:

Circuitos Dedicados: Modulador PWM

Modulador PWM

Circuitos Dedicados: Modulador PWM

Diagrama de blocos do circuito integrado UC3525

Circuitos Dedicados: Modulador PWM

UC3525:

Timing Resistor-R T (k.g.)

Modulador PWM

Frequência de oscilação

$$f := \frac{1}{Ct \cdot (0.7 \cdot Rt + 3 \cdot Rd)}$$

Charge Time (µs)

UC3525:

Soft-Start - pino 8

Circuitos Dedicados: Modulador PWM + Controle+ Driver

LT3800 – Linear Technology

TYPICAL APPLICATION

12V 75W DC/DC Converter with Reverse Current Inhibit and Input UVLO

FEATURES

- Wide 4V to 60V Input Voltage Range
- Output Voltages up to 36V

Circuitos Dedicados: Modulador PWM + Controle+ Driver

UC3845: Flyback Converter

Circuitos Dedicados: Modulador PWM + Controle+ Driver

Viper53E:

Circuitos Dedicados: Reatores Eletrônicos Lâmpadas Fluorescentes

IR2166 – International Rectifier

FAN7532 - Fairchild

Circuitos Dedicados: Driver para Leds

LED5000 - ST

Circuitos Relacionados com Controle em Malha Fechada:

Circuitos Relacionados com Controle em Malha Fechada:

Sensores de Tensão

Para tensão CC:

- Divisor resistivo de tensão (não isolado, baixo custo);
- Fotoacoplador (isolado, Pequena faixa de operação);
- Efeito Hall (isolado, caro).

Para tensão CA:

- Divisor resistivo de tensão (não isolado, baixo custo);
- Efeito Hall (isolado, caro, faixa de frequência limitada);
- Transformador (isolado, não informa nível CC).

Circuitos Relacionados com Controle em Malha Fechada:

Sensor de Tensão

Circuitos Relacionados com Controle em Malha Fechada:

Sensores de Corrente

- Para corrente contínua:
 - Resistor shunt (não isolado, baixo custo, sujeito a ruído, gera queda de tensão);
 - Efeito Hall (isolado, custo elevado).
- Para corrente alternada:
 - Resistor shunt (não isolado, baixo custo, sujeito a ruído, gera queda de tensão);
 - Efeito Hall (isolado, custo elevado);
 - Transformador de corrente (isolado, não informa nível CC).

Circuitos Relacionados com Controle em Malha Fechada:

Sensor de Corrente

Circuitos Relacionados com Controle em Malha Fechada:

Medição de Valor Eficaz

- Conversor de valor eficaz (true RMS) para tensão contínua (AD736):
 - Converte um sinal para uma tensão contínua proporcional ao valor eficaz;
 - Baixo custo;
 - Baixa potência consumida (1mW);
 - Alimentação -3,2V, 2,8V; até ±16,5V;
 - Alta impedância de entrada ($10^{12}\Omega$);
 - Freqüência de operação até 10kHz.

Circuitos Relacionados com Controle em Malha Fechada:

Circuitos Relacionados com Controle em Malha Fechada:

Sensores de Velocidade

 Tacogerador (pode ter saída em CC ou CA);

- Encoder (princípio óptico);
 - Absoluto;
 - Relativo;
- Resolver (princípio magnético);

Circuitos Relacionados com Controle em Malha Fechada:

Resolver Digital

Circuitos Relacionados com Controle em Malha Fechada:

Sensores de Temperatura

- Termopar:
 - Sujeito a ruído;
 - Necessita de compensação de junta fria.
- Termoresistência:
- Termistores (PTC ou NTC):
 - Baixo custo;
 - Baixa potência.
- Diodo:
 - Baixo custo;
 - Baixa Precisão.

Circuitos Relacionados com Controle em Malha Fechada:

Tarefa 4

Especificação:

Tensão de Entrada: 36 ±10% V

Tensão de Saída: 12 V

Potência: 100 W;

Por meio do site da digikey:

Escolher dois (fabricantes diferentes) Cl's dedicados que possam ser empregado para a implementação do Circuito Buck supracitado.

Dica: Para a escolher o CI, colocar no campo de pesquisa do site "power supply"