Written Assignment 1

50 points

Write out your answers to these problems neatly in a text file and submit your work by the due date.

Be sure to put your name on your paper.

Show your work!

Note: Only problem 6 involves two's-complement notation.

- 1. (8 points) Convert the following binary numbers to their decimal representations:
 - 1. $1001 \rightarrow (1*2^3)+(1*2^0)=9$
 - 2. $10110 \rightarrow (1*2^4)+(1*2^2)+(1*2^1)= 22$
 - 3. $101110 \rightarrow (1*2^5)+(1*2^3)+(1*2^2)+(1*2^1)=46$
 - 4. $101011 \rightarrow (1^2^5) + (1^2^3) + (1^2^1) + (1^2^0) = 43$
- 2. (8 points) Convert the following hexadecimal numbers to their decimal representations:
 - 1. $3C \rightarrow (3*16^{1})(12*16^{0}) = 60$
 - 2. A9 \rightarrow (10*16^1)(9*16^0)= 169
 - 3. $4E8 \rightarrow (4*16^2)(14*16^1)(8*16^0) = 1256$
 - 4. $507 \rightarrow (5*16^2)(0*16^1)(7*16^0) = 1287$
- 3. (8 points) Convert the following decimal numbers to their hexadecimal and binary representations:
 - 1. $37 \rightarrow 37 \cdot (1*2^5) \cdot (1*2^2) \cdot (1*2^0) = 0010(2) \cdot 0101(5)$
 - 2. $1194 \rightarrow 1194 (1*2^10) (1*2^7) (1*2^5) (1*2^3) (1*2^1) = 0100(4) 1010(A) 1010(A)$
 - 3. $359 \rightarrow 359 \cdot (1*2^8) \cdot (1*2^6) \cdot (1*2^5) \cdot (1*2^2) \cdot (1*2^1) \cdot (1*2^0) = 0001(1) \cdot 0110(6) \cdot 0111(7)$
 - 4. $2047 \rightarrow 2047 \cdot (1*2^10) \cdot (1*2^9) \cdot (1*2^8) \cdot (1*2^7) \cdot (1*2^6) \cdot (1*2^5) \cdot (1*2^4) \cdot (1*2^2) \cdot (1*2^4) \cdot (1*2^6) \cdot (1*2^6$

- 4. (8 points) Do the binary arithmetic:
 - 1. 01110

5.

6.

+ 11011

2. 10110+ 01111

3. 10101 - 01100 ------1001

4. 11101 - 01110

100101

101001

1111	
. (8 points) Do the h 1. 2581 + 94BD	nexadecimal arithmetic:
BA3E	
2. F28 + 31C	
1244	
3. 5BE7 - 36C1	
2526	
4. EAB - B84 	
represent 32-bit tw	gers in the following computations are indicated in hexadecimal, but vo's complement binary numbers. Perform the operations and indicate and why. (If overflow occurs the result is invalid, but show it anyway.)
a. D4C3B2A1	b. 754C4612

+ 3456ABCD	+ 1003A642
1091A5E6E	854FEC54
1111	111
1101	0111
+ 0011	+ 0001
10000	1000
(bits match,	(bits match,
no overflow)	no overflow)
c. E044032F	d. 645C2041
- A18492A2	- 781D30B1
3EBF708D	
E044032F	645C2041
+ 3EBF708D	+ (-2C3EEF90)
11F0373BC	381D30B1
111	11
1110	0110
+ 0011	+ 0010
10001	1000
(bits match,	(bits match,
no overflow)	no overflow)
e. 7FFFFFF	f. E8866541
+ 70000001	- 920B011F
F0000000	567B6422
E044032F	E8866541
+ 3EBF708D	+ 567B6422
11F0373BC	13F01C963

- 7. (4 points) Assume that:
 - 1. Register 0 contains 00043E6C
 - 2. Register 1 contains 0000007D
 - 3. Register 7 contains FF028CC4

Here are some expressions which may be D(X,B) addresses. If they are valid, calculate the values (in hexadecimal), and if they are not valid, explain why not:

- 5. $0(0,7,1) \rightarrow \text{not valid because there is an extra character}$
- 6. $117(0,7) \rightarrow 117-(1*2^6)-(1*2^5)-(1*2^4)-(1*2^2)-(1*2^0)=0111(7) 0101(5)$

7. $49(7,1) \rightarrow 49-(1*2^5)-(1*2^4)-(1*2^0)=0011(3)\ 0001(1)$