CS2102 AY21/22 SEM 1

github/jovyntls

DBMS

Transactions

- ullet transaction, T o a finite sequence of database operations
- 4 properties of a transaction: ACID properties

ACID properties

- 1. Atomicity \rightarrow either all effects of T are reflected in the database, or none
- 2. Consistency \rightarrow the execution of T guarantees to yield a $\it correct \ \it state$ of the DB
- Isolation → execution of T is isolated from the effects of concurrent transactions
- 4. **Durability** \rightarrow after the commit of T, its effects are permanent in case of failures

Serializability

- Requirement for Concurrent Execution: serializable transaction execution
- · concurrency: to optimise performance
- · serializability: to ensure integrity of data
- (concurrent execution of a set of transactions is) serializable

 → execution is equivalent to some serial execution of the
 same set of transactions
- equivalent → they have the same effect on the data

RELATIONAL MODEL

- relation schema → defines a relation
- · specifies attributes and data constraints
- $R(A_1,A_2,\ldots,A_n)$: relation schema with name R and n attributes A_1,A_2,\ldots,A_n
- relational database schema \rightarrow set of relation schemas + data constraints
- TableName(col_1, col_2, col_3) with dom(col_1) = {x, y, z}
- **domain** \rightarrow a set of *atomic* values
- $dom(A_i)$ = set of possible values for A_i
- e.g. dom(course) = {cs2102, cs2030, cs2040}
- for all value v of attribute $A_i, v \in \{dom(A_i) \cup \{null\}\}$
- relation → a set of tuples
- each instance of schema R is a relation which is a subset of $\{(a_1,a_2,\ldots,a_n)\mid a_i\in dom(A_i)\cup\{null\}\}$
- integrity constraint → condition that restricts what constitutes valid data
- structural → (integrity constraint) inherent to the data model

Key Constraints

• $superkey \rightarrow subset$ of attributes that uniquely identifies a tuple in a relation

- key → superkey that is also minimal no proper subset of the key is a superkey
- candidate keys \rightarrow set of all keys for a relation
- **primary key** \rightarrow selected candidate key; cannot be null
- prime attributes → attributes of the primary key

CONSTRAINTS

- Not-Null Constraints violation: $\exists t \in \mathsf{Employees}$ where $\mathsf{t}.\mathsf{id}$ IS NOT NULL evaluates to false
- Unique Constraints violation: For any 2 tuples $t_i, t_k \in R$, $(t_i \cdot A <> t_k \cdot A)$ or $(t_i \cdot B <> t_k \cdot B)$ evaluates to false
- ! null rows will NOT violate unique key constraints
- Primary Key Constraints: prime attributes cannot be null
 (entity integrity constraint)
- Foreign Key Constraints: each FK in the referencing relation must:
- appear as a PK in the referenced relation, OR
- be a null value
- R.sid → S.id: R.sid is a FK referencing PK id in S

ENTITY RELATIONSHIP MODEL

- entity set → collection of entities of the same type
- attribute → specific information describing an entity
- key attribute → uniquely identifies each entity
- composite attribute
 → composed of multiple other attributes
- multivalued attribute → may comprise more than one value for a given entity
- derived attribute → derived from other attributes

Relationship Sets

- $\frac{\text{degree}}{\text{degree}} \rightarrow \text{no.}$ of entity roles participating in a relationship
- an n-ary relationship set involves n entity roles (where n is the degree of the relationship set)

Dependency Constraints

- weak entity sets → entity set that does not have its own key
- can only be uniquely identified through the primary key of its owner entity
- partial key

 set of attributes that uniquely identifies a
 weak entity for a given owner entity (identifies the exact
 instance of a weak entity)

- requirements
 - many-to-one relationship (identifying relationship) from weak entity set to owner entity set
 - 2. weak entity set must have **total participation** in identifying relationship

Participation Constraints

- partial participation constraint → participation (of an entity in a relationship) is not mandatory (0 or more)
- total participation constraint \rightarrow participation is mandatory (1 or more)

in **exactly one** instance of R

E is a **weak entity set** with identifying owner E' & identifying relationship set R.

R`

Cardinality Constraints

Alternative Representations

ISA Hierarchy Constraints

- overlap contraint → a superclass entity can belong to multiple subclasses
- covering constraint
 → a superclass entity has to belong to a subclass

Aggregation

abstraction that treats relationships as higher-level entities
 e.g. treating 2 entities + 1 relationship as an entity set

SQL

- $\begin{array}{c} \bullet \text{ FROM} \rightarrow \text{WHERE} \rightarrow \text{GROUP BY} \rightarrow \text{HAVING} \rightarrow \text{SELECT} \\ \rightarrow \text{ORDER BY} \rightarrow \text{LIMIT/OFFSET} \end{array}$
- _ any single character; % any sequence of characters (*)
- UNION / INTERSECT / EXCEPT : removes duplicate tuples
- UNION ALL/... ALL: keeps duplicates
- if column A_i or table R appears in the SELECT/HAVING clause, one of the following conditions must hold:
- 1. A_i appears in the GROUP BY clause
- 2. A_i appears as input of an aggregation function in the SELECT clause
- 3. the primary key of ${\it R}$ appears in the GROUP BY clause
- NULLIF(val1, val2) returns val1 == val2 ? null : val1

Handling NULLs

- comparison operation with $null \Rightarrow unknown$
- arithmetic operation with null ⇒ null
- null = null ⇒ unknown (null, neither true nor false)
- null = some_value ⇒ neither true nor false

X	у	x<>y	x IS DISTINCT FROM y	x IS NULL
1	1	FALSE	FALSE	FALSE
1	2	TRUE	TRUE	FALSE
null	1	null	TRUE	TRUE
null	null	null	FALSE	TRUE

TALSE THOE
Interpretation
Minimum non-null value in A
Maximum non-null value in A
Average of non-null values in A
Sum of non-null values in A
Count of non-null values in A
Count of rows in R
Average of distinct non-null values in A
Sum of distinct non-null values in A
Count of distinct non-null values in A

Let R be an empty relation; let S be a non-empty relation with n tuples but ONLY null values for A.

Query	Result	Query	Resu			
SELECT MIN(A) FROM R;	null	SELECT MIN(A) FROM S;	nul			
BELECT MAX(A) FROM R;	null	SELECT MAX(A) FROM S;	nul			
SELECT AVG(A) FROM R;	null	SELECT AVG(A) FROM S;	nul			
BELECT SUM(A) FROM R;	null	SELECT SUM(A) FROM S;	nul			
SELECT COUNT(A) FROM R;	0	SELECT COUNT(A) FROM S;	0			
SELECT COUNT(*) FROM R;	0	SELECT COUNT(*) FROM S;	n			

RELATIONAL ALGEBRA UNARY OPERATORS

Selection, σ_c WHERE

- $\sigma_c(R) \rightarrow$ select all tuples from R satisfying condition c.
- \forall tuple $t \in R$, $t \in \sigma_c(R) \iff c$ evaluates true on t
- input and output relation have the same schema
- selection condition \rightarrow
- a boolean expression of one of the following forms:
- constant selection attribute op constant
- attribute selection attribute₁ op attribute₂
- $\exp_1 \land \exp_2$; $\exp_1 \lor \exp_2$; $\neg \exp_1$; (expr)
- with $op \in \{=, <>, <, \le, \ge, >\}$
- operator precedence: (), op, ¬, ∧, ∨

Projection, π_{ℓ} **SELECT**

- $\pi_{\ell}(R) \rightarrow$ projects all attributes of a given **relation** specified in list ℓ (duplicates removed from output relation)
- order of attributes matters!

Renaming, ρ_{ℓ} AS

- $\rho_{\ell}(R) \to \text{renames the attributes of a relation } R$ (with schema $R(A_1, A_2, \ldots, A_n)$)
- 2 possible formats for ℓ
- ullet is the new *schema* in terms of the new attribute names
- $\ell = (B_1, B_2, \dots, B_n)$
- $B_i = A_i$ if attribute A_i does not get renamed
- ℓ is a list of attribute renamings of the form:
- $B_i \leftarrow A_i, \ldots, B_k \leftarrow A_k$
- each $B_i \leftarrow A_i$ renames attribute A_i to attribute B_i
- · order of renaming doesn't matter

SET OPERATORS

- union $\to R \cup S$ returns a relation w/ all tuples in both R or S
- intersection $\rightarrow R \cap S$... all tuples in both R and S
- set difference $\rightarrow R S$... all the tuples in R but not in S
- ! for all set operators: R and S must be union-compatible

Union Compatibility

- two relations R and S are union-compatible \rightarrow if
- R and S have the same number of attributes: and
- corresponding attributes have the same or compatible domains
- note: R and S do not have to use the same attribute names

CROSS PRODUCT

- **cross product** \rightarrow given two relations R(A, B, C) and S(X,Y), $R \times S$ returns a relation with schema (A, B, C, X, Y) defined as
- $R \times S = \{(a, b, c, x, y) \mid (a, b, c) \in R, (x, y) \in S\}$
- size of cross product = |R| * |S|

JOIN OPERATORS

Inner Joins

- · eliminate all tuples that do not satisfy a matching criteria (i.e. attribute selection)
- θ -join \to (of two relations R and S) $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- **Equi Join** \bowtie \rightarrow special case of θ -join defined over the equality operator (=) only
- Natural Join \bowtie \rightarrow performed over all attributes R and Shave in common
- the natural join (of two relations R and S) is defined as $R \bowtie S = \pi_{\ell}(R \bowtie_{c} \rho_{b_{i} \leftarrow a_{i}, \dots, b_{k} \leftarrow a_{k}}(S))$
- $A = \{a_i, \dots, a_k\}$ = the set of attributes that R and Shave in common
- $c = ((a_i = b_i) \land \cdots \land (a_k = b_k))$
- $\ell =$ list of all attributes of R +list of all attributes in S that
- ullet output relation contains the common attributes of R and Sonly once

Outer Joins

- dangling tuples \rightarrow tuples in R or S that do not match with tuples in the other relation
- **dangle** $(R \bowtie_{\theta} S) \rightarrow$ set of dangling tuples in R wrt to $R \bowtie_{\theta} S$ (missing attribute values are padded with null) • $dangle(R \bowtie_{\theta} S) \subseteq R$
- · always removed by inner joins, kept by outer joins

• $null(R) \rightarrow n$ -component **tuple** of null values where n is the number of attributes of R.

Definitions

- left outer join $\rightarrow R \bowtie_{\theta} S$ $= R \bowtie_{\theta} S \cup (dangle(R \bowtie_{\theta} S) \times \{null(S)\})$
- right outer join $\rightarrow R \bowtie_{\theta} S$ $= R \bowtie_{\theta} S \cup (\{null(R)\} \times dangle(S \bowtie_{\theta} R))$
- full outer join $\to R \bowtie_{\theta} S$ $= R \bowtie_{\theta} S \cup (dangle(R \bowtie_{\theta} S) \times \{null(S)\})$ $\cup (\{null(R)\} \times dangle(S \bowtie_{\theta} R))$

Natural Outer Joins

- natural left/right/full outer join: $R \bowtie S / R \bowtie S / R \bowtie S$
- · output relation contains the common attributes only once

FUNCTIONAL DEPENDENCIES

- normal form → a definition of minimum requirements in terms of redundancy
- prime attribute → appears in at least one key
- an attribute not in any RHS of any FD must be in every key

Functional Dependencies

Let $A_1, A_2, \ldots, A_m, B_1, B_2, \ldots, B_n$ be some attributes.

uniquely identifies →

 $\{A_1A_2\ldots A_m\} \to \{B_1B_2\ldots B_n\}$ whenever 2 tuples have the same values on $A_1 A_2 \dots A_m$, they always have the same values on $B_1 B_2 \dots B_n$

- $\{A\} \rightarrow \{B\}$: functional dependency A determines B
- two attributes are functionally equivalent → if either one can determine the other
- dependency preserving → can derive all FDs from table closures
- equivalence \rightarrow F1 is equivalent to F2 ($F1 \equiv F2$) \Leftrightarrow
- $F2 \vdash F1$: every FD in F1 can be derived from F2
- $F1 \dashv F2$: every FD in F2 can be derived from F1

Armstrong's Axioms

- 1. axiom of **reflexivity**: set \rightarrow a subset of attributes $(\{A,B\} \rightarrow \{A\})$
- 2. axiom of augmentation:

if $\{A\} \to \{B\}$, then $\forall C, \{AC\} \to \{BC\}$

3. axiom of transitivity:

if $\{A\} \to \{B\}$ and $\{B\} \to \{C\}$, then $\{A\} \to \{C\}$

Extended Armstrong's Axioms

- rule of decomposition:
- if $\{A\} \rightarrow \{BC\}$ then $\{A\} \rightarrow \{B\} \land \{A\} \rightarrow \{C\}$
- rule of union:

if $\{A\} \rightarrow \{B\} \land \{A\} \rightarrow \{C\}$, then $\{A\} \rightarrow \{BC\}$

• combined: $\{A\} \to \{BC\} \Leftrightarrow \{A\} \to \{B\} \land \{A\} \to \{C\}$

Closures

• $\{A_1A_2...A_m\}^+$ is the closure of $A_1A_2...A_m$

BOYCE-CODD NF (BCNF) BCNF

 BCNF → every non-trivial & decomposed FD has a superkey as its LHS

- stronger than 3NF has fewer redundancies
- ! a table with exactly one or two attributes is always in BCNF!
- ✓ no update/deletion/insertion anomalies
- ✓ small redundancies
- ✓ lossless join original table can always be reconstructed from decomposed tables (natural join).

$$\Rightarrow$$
 $R = R1 \bowtie R2 = \pi_{R1}(R) \bowtie \pi_{R2}(R)$

- x may not preserve all FDs decomposed table may have no non-trivial & decomposed FDs
- exists FD that cannot be derived from FDs on R1 and R2
- lossless decomposition $\rightarrow \{R_1, R_2\}$ is lossless if $R_1 \cap R_2$ is a superkey of R_1 or R_2
- $R_1 \cap R_2$ uniquely identifies all the attributes in R_1 or R_2
- closure of $R_1 \cap R_2 = R_1$ or R_2

Non-Trivial and Decomposed FD

- non-trivial $\rightarrow \{A\} \rightarrow \{B\}$ where $\{B\} \not\subseteq \{A\}$
- **decomposed** $\rightarrow \{A\} \rightarrow \{B\}$ where B is a single attribute

BCNF Normalisation

- for a BCNF-violating FD $\{A\} \rightarrow \{A\}^+$, create tables
- $R1(\{A\}^+)$ containing the superkey, and
- $R2(\{A\} \cup (R \{A\}^+))$
- · if table does not contain all attributes:
 - 1. compute closure of each subset of the table's attributes
 - 2. remove RHS attributes not in the table

! implicit functional dependencies should be checked too! (because explicit FDs may not apply to R2 when R2 is missing attributes)

THIRD NORMAL FORM (3NF)

3NF

- a table is in 3NF → if every non-trivial & decomposed FD:
- its LHS is a superkey. OR
- its RHS is a **prime attribute** (any attribute in any key)
- ✓ will preserve all FDs
- relaxed form of BCNF
- satisfies BCNF ⇒ satisfies 3NF
- violates 3NF ⇒ violates BCNF
- · if all attributes are prime attributes, the table is in 3NF

3NF Synthesis

for table R and a set of FDs F.

- 1. derive minimal basis F_h of F
- 2. from the minimal basis, combine (union) the FDs for which the LHS is the same (canonical cover)
- 3. create a table for each FDs remained in the minimal basis after union
- 4. if **none** of the tables contain a key for the original table R, create a table containing a key of R

Minimal Basis / Minimal Cover

- minimal basis, F_b : **simplified** \rightarrow 4 conditions
 - 1. equivalence: $\overline{F} \equiv F_b$ (every FD in F_b can be derived from F and vice versa)
 - 2. every FD in F_h is non-trivial and decomposed
 - 3. \forall FD in F_h , none of the LHS attributes are redundant
 - 4. no FD in F_b is redundant
- redundant o can be removed without affecting the original FD (i.e. $F \equiv F_{b*}$ where F_{b*} is formed by removing the

to obtain a minimal basis

- 1. ensure equivalence
- 2. transform FDs to non-trivial and decomposed
- 3. remove redundant attributes
- 3.1. for an FD $\{A\} \rightarrow B$ for a **set** of attributes A, for an attribute C in A.
- 3.2. compute $\{A-C\}^+$ using F
- 3.3. if $B \in \{A C\}^+$, then we can remove C
- 4. remove redundant FDs

-- merge A and T

CREATE TABLE B (

b1 integer

4.1. try removing and check for equivalence

COMMON ER MODELS

FOREIGN KEY (b1) REFERENCES S

DROP TABLE IF EXISTS A, B, C CASCADE; CREATE TABLE A at INTEGER PRIMARY KEY a2 INTEGER CREATE TABLE B (a1 INTEGER REFERENCES A ON DELETE CASCADE b1 INTEGER b2 INTEGER PRIMARY KEY (a1, b1) CREATE TABLE C (a1 INTEGER, b1 INTEGER,