

Probability and Stochastic Processes

Open Quiz 02

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

13 November 2024

Suppose that X, Y have finite variance.

Further, suppose that $X = \mathbb{E}[Y|X]$ and $Y = \mathbb{E}[X|Y]$.

Determine the value of

 $\frac{\text{Var}(X)}{\text{Var}(X) + 2\text{Var}(Y)}.$

Suppose that X is a continuous random variable with PDF f_X . Further, suppose that f_X is symmetric, i.e., $f_X(x) = f_X(-x)$ for all $x \in \mathbb{R}$. Compute the value of

$$\int_0^\infty \mathbb{P}(\{|X-t|\leq 2\})\,\mathrm{d}t.$$

Suppose that X and Y are continuous random variables, and $X \perp Y$. Prove formally that $\mathbb{P}(\{X = Y\}) = 0$.

Let X be a random variable taking values in [0,1]. Suppose that $\mathbb{E}[X]=\frac{1}{2}$. Show that

$$\operatorname{Var}(X) \leq \frac{1}{4}$$
.

Produce an example for which the above inequality holds with equality.

Random variables X and Y are related as Y = g(X) for some strictly increasing function g. Suppose that $X \sim \text{Exponential}(1)$, and

$$f_{\mathbb{Y}}(\mathbf{y}) = rac{K}{\mathbf{y}^{b+1}}, \qquad \mathbf{y} \geq \mathbf{2}.$$

Here, b > 0 is a fixed constant.

Determine K and the function g in terms of the constant b.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$ where \mathbb{P} is a uniform distribution on $\Omega = [0, 1]$. Can you think of random variables X, Y such that BOTH of the below conditions are satisfied:

- 1. $\mathbb{P}(\{X > Y\}) > \frac{1}{2}$.
- **2.** $\mathbb{E}[X] < \mathbb{E}[Y]$.

A coin with an unknown bias p is tossed n times. Let the probability of seeing the outcomes $(x_1, \ldots, x_n) = \mathbf{x}$ be denoted by $\mathcal{L}(p; \mathbf{x})$. Find the value of p that maximises $\mathcal{L}(p; \mathbf{x})$.

Let $X_1, X_2, \ldots \overset{\text{i.i.d.}}{\sim} \text{Exponential}(1)$.

Determine $\mathbb{E}[X_1|X_1+\cdots+X_{100}]$.

Let $X, Y \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(0, 1)$. Let

$$U = \min\{X, Y\}, \qquad V = \max\{X, Y\}.$$

Determine Cov(U, V).