STAT 4352 - Mathematical Statistics Notes

 ${\rm JaimeGoB}$

February 27, 2021

1 Chapter 10.2 - Unbiased Estimators

Definition: 10.2 Unbiased Estimator

A statistic $\hat{\theta}$ is an *Unbiased Estimator* of parameter θ if and only if:

$$E[\hat{\theta}] = \theta$$

That is $\hat{\theta}$ on average its value equals θ .

Definition: Bias

Bias of $\hat{\theta}$: $b_n(\hat{\theta}) = E[\hat{\theta}] - \theta$

When:

$$b_n(\hat{\theta}) = E[\hat{\theta}] - \theta = 0$$
 (Unbiased Estimator)
 $b_n(\hat{\theta}) = E[\hat{\theta}] - \theta \neq 0$ (Biased Estimator)

Definition: Asymptotically Unbiased Estimator

Based on a random sample n, from a given distribution. We say $\hat{\theta}$ is a **Asymptotically Unbiased Estimator** if and only if:

$$\lim_{n\to\infty} b_n(\hat{\theta}) = 0$$

Properties of Unbiased Estimators

- \bullet \overline{x} is always unbiased for all distributions.
- NOT UNIQUE. (there can be multiple unbiased estimators).

If you can have multiple unbiased estimators which one is best? Next desireable properties are sufficiency and low variance.

• Does not have invariance property.

 \overline{x} is unbiased for $\mu \implies \overline{x}^2$ is unbiased for μ^2

2 Chapter 10.3 - Efficiency

How to measure accuracy of estimators?

1) Mean Absolute Error (MAE)

 $MAE_{\theta} = E[|\hat{\theta} - \theta|]$

2) Mean Absolute Deviation (MAD)

 $MAD_{\theta} = \text{median}[|\hat{\theta} - \theta|]$

3) Mean Squared Error (MSE)

$$MSE_{\theta} = E(\hat{\theta} - \theta)^2 = Var_{\theta}(\hat{\theta}) + Bias_{\theta}^2(\hat{\theta})$$

For an unbiased estimator (Bias = 0)

 $MSE_{\theta} = Var_{\theta}(\hat{\theta})$

Definition: Relative Efficiency

Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be unbiased estimators of θ .

If
$$\frac{Var_{\theta}(\hat{\theta}_1)}{Var_{\theta}(\hat{\theta}_2)} < 1$$

We can say that $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$.

You would want to pick the estimator $\hat{\theta}$ that is more efficient (lowest variance).

Efficiency Example 1: If
$$\frac{Var_{\theta}(\hat{\theta}_1)}{Var_{\theta}(\hat{\theta}_2)} = 0.50 \Longrightarrow Var_{\theta}(\hat{\theta}_1) = 0.5Var_{\theta}(\hat{\theta}_2)$$

 $\hat{\theta}_1$ is 50% **MORE** efficient than $\hat{\theta}_2$

Efficiency Example 2: If
$$\frac{Var_{\theta}(\hat{\theta}_1)}{Var_{\theta}(\hat{\theta}_2)} = 1.50 \Longrightarrow Var_{\theta}(\hat{\theta}_1) = 1.5Var_{\theta}(\hat{\theta}_2)$$

 $\hat{\theta}_1$ is 50% **LESS** efficient than $\hat{\theta}_2$

 $\hat{\theta}_2$ is 50% **MORE** efficient than $\hat{\theta}_1$

Definition: Asymptotic Relative Efficiency

Based on a random sample n, from a given distribution. We define the comparison of estimators $(\hat{\theta}_1, \hat{\theta}_2)$ is **Asymptotically Relative Efficiency** when:

$$ARE = \lim_{n \to \infty} \frac{Var_{\theta}(\hat{\theta}_1)}{Var_{\theta}(\hat{\theta}_2)} < 1$$

The efficiency(gain) is reduced as sample size $n \to \infty$. For huge sample sizes both unbiased estimators are equally good. For small n one estimator is better than other.

Definition: Uniformly Minimum Variance Unbiased Estimator

An unbiased estimator $\hat{\theta}$ is *Uniformly Minimum Variance Unbiased Estimator* (*UMVUE*) for θ if it has the smallest variance in the class of all unbiased estimators for θ .

Theorem 10.2: Cramer-Rao Inequality

It is possible to obtain a lower bound on the variance of all *unbiased estimators* θ .

- \bullet $\hat{\theta}$ unbiased estimator of parameter θ , based on a random sample of n observations.
- $f(x, \theta)$ is the probability distribution of random variable X.
- n is a random sample size

The Lower Bound of Variance of an Unbiased Estimator is the defined by the Cramer-Rao inequality:

$$Var(\hat{\theta}) \ge \frac{1}{I(\theta)}$$
 where $I(\theta) = nE\left[\left(\frac{\partial}{\partial \theta}lnf(X,\theta)\right)^2\right]$

 $I(\theta)$ is the Fisher Information in a random sample of size n and $\frac{\partial}{\partial \theta} ln f(X, \theta)$ is known as score function. It is the smallest possible value variance can have.

UMVUE exists when:

If $Var(\hat{\theta}) = \frac{1}{I(\theta)}$ It has smallest possible value for variance.

 $\Longrightarrow \hat{\theta}$ is UMVU of $\hat{\theta}$

UMVUE does not exists when:

If $Var(\hat{\theta}) \neq \frac{1}{I(\theta)}$ You can't say $\hat{\theta}$ is UMVUE as lower bound is not achievable.

3 Chapter 10.4 - Consistency

Definition: Consistency

If $\hat{\theta}$ is an estimator of θ based on a random sample of size n, we say that $\hat{\theta}$ is **consistent** (closed) for θ , if $\epsilon > 0$:

$$\lim_{n\to\infty} P(|\hat{\theta}-\theta|<\epsilon)=1 \qquad \qquad \theta-target parameter, \hat{\theta}-estimator$$

$$\epsilon - \text{estimator (small distance ex: 0.0001)}$$

Consistency is an Asymptotic Property:

Error in estimation using $\hat{\theta}$ is small

 $\hat{\theta}$ converges in probability to θ

When $n \to \infty$ we can be practically certain that the error made with a consistent estimator will be less than any small preassigned positive constant ϵ .

Theorem 10.3

If $\hat{\theta}$ is an unbiased estimator of the parameter θ and $Var(\hat{\theta}) \to 0$ Bias $(\hat{\theta}) \to 0$ as $n \to \infty$ then $\hat{\theta}$ is a consistent estimator of θ .

4 Chapter 10.5 - Sufficiency

Definition: Sufficient Principle

- Reduce data without loosing information about θ .
- Captures all information about a sample relevant to estimation of θ , that is, if all the knowledge about θ that can be gained from the individual sample values and their order can just as well be gained from the value of $\hat{\theta}$ alone.

Definition: Sufficient Estimator

The statistic $\hat{\theta}$ is a sufficient estimator of parameter θ of a given distribution **iff** for each value of $\hat{\theta}$ the conditional probability distribution or density of a random sample $x_1, x_2, ... x_n$ given $\hat{\theta} = \theta$ is independent of θ .

Sufficient property from conditional probability distribution or density when $\hat{\theta} = \theta$:

$$f(x_1,x_2,...x_n; \hat{\theta}) = \frac{f(x_1,x_2,...x_n, \hat{\theta})}{g(\hat{\theta})}$$

Note: Ratio should not contain θ in order to be sufficient estimator of θ

Theorem 10.4: Factorization Theorem

The statistic $\hat{\theta}$ is a sufficient estimator of the parameter θ iff the joint probability distribution or density of the random sample can be factored so that:

$$f(x_1,x_2,...x_n; \hat{\theta}) = g(\hat{\theta},\theta) * h(x_1,x_2,...x_n)$$

where $g(\hat{\theta}, \theta)$ depends on θ and $\hat{\theta}$ and $h(x_1, x_2, ...x_n)$ does not depend on θ .

Using factorization you want to identify:

- g function \implies function θ
- h function \implies function without θ (h(x) = 1 if not present)

Properties of Sufficiency:

- Complete data is always sufficient.
- Any 1-1 function of a sufficient statistic is also sufficient.
- Good estimators should be functions of sufficient statistic. (a good estimator is sufficient)

5 Chapter 10.8 - Method of Maximum Likelihood

Notation

$$X = (X_1, X_2, ... X_n) \stackrel{i.i.d.}{\sim} f_{\theta}(x)$$

Data before observed - r.v.'s with same distribution.

 θ may be a vector, $\theta \in \Theta$

 Θ is parameter space. Ex: parameter space of $\mathcal{N}(\mu, \sigma^2)$ is $-\infty < \mu < \infty, -\infty < \sigma^2 < \infty,$ $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_n)$ Data that has been observed. (Set of sample elements)

Definition: Likelihood Function

Joint pdf/pmf of X considered as a function of θ keeping the data X fixed.

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} f_{\theta}(\mathbf{x}_{i}) = f(\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n}; \hat{\theta}) = f(\mathbf{x}_{1}, \hat{\theta}) f(\mathbf{x}_{2}, \hat{\theta}) ... f(\mathbf{x}_{n}, \hat{\theta})$$

vary θ to find value that maximizes product, this value for θ is known as MLE.

Definition: Maximum Likelihood Estimator

The Maximum Likelihood Estimator (MLE) of θ is the value θ that maximizes the Likelihood function $\mathcal{L}(\theta)$.

- Complete data is always sufficient.
- Value of θ that maximizes $\mathcal{L}(\theta)$ also maximizes $\log \mathcal{L}(\theta)/\ln \mathcal{L}(\theta)$.
- First Derivative: $\frac{\partial \mathcal{L}(\theta)}{\partial \theta} \implies \text{Critical Points (Max/Min)}$
- Second Derivative: $\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta^2} < 0 \implies \text{Maximum exists.}$

Log-Likelihood Function $\log \mathcal{L}(\theta) / \ln \mathcal{L}(\theta)$

Because log/ln is a monotone function, if we maximize log-Likelihood it is the same as maximizing Likelihood. The reason why because $\frac{\log \mathcal{L}(\theta)}{\ln \mathcal{L}(\theta)}$ is used because taking the derivative is much easier. When referring to log we mean $\log_e = \ln$.

•
$$\log(ab) = \log(a) + \log(b)$$

Ex: $f(x) = \prod_{i=1}^{n} g(x_i) \implies \ln f(x) = \sum_{i=1}^{n} \ln g(x_i)$
where $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_n)$ Set of sample elements

This property applies to both log/ln. The inner product can be expressed as a sum of individual elements. This comes super handy when taking derivatives.

7

Properties of a Maximum Likelihood Estimator

- \bullet $\hat{\theta}_{MLE}$ is always a function of sufficient statistics whenever they exist.
- Optimal when n is large.
- May not be good when the distribution assumptions are wrong.
- $\hat{\theta}_{MLE} \in \Theta$ (MLE is included in parameter space)
- $\hat{\theta}_{MLE}$ has invariance property:

$$\hat{\theta}$$
 is MLE for θ
 \iff
 $\hat{\theta}^2$ is MLE for θ^2
 \iff

6 10.9 Bayesian Inference

Bayes Rule

Conditional probability can be rewritten with a Bayes Rules.

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Difference Between Classical and Bayesian Approach Classical Approach:

- θ is a unknown parameter and fixed.
- Does not have a probability distribution $f(\theta)$

Bayesian Approach:

- θ is a random variable and not fixed.
- Has a probability distribution $f(\theta)$

Prior Distribution for θ :

- Denoted $f(\theta)$ or $\pi(\theta)$
- Specified before seeing data.
- Reflects personal degree of belief about what are the possible values of θ and how likely they are.
- Can be discrete or continuous.
- Can be vague: All values equally likely

Let data $X = (X_1, X_2,...,X_n)$ be a random sample from a population.

The distribution of random variable X, will have a pdf/pmf: $f(\mathbf{x}|\theta)$ "distribution depends on θ " will have a **joint density of likelihood of sample** is:

$$f(x_1, x_2,...,x_n|\theta) = f(x_1|\theta)f(x_2|\theta)...f(x_n|\theta)$$

Posterior Distribution of θ

We define posterior distribution of θ as the <u>conditional distribution of θ given the sample</u> results.

$$f(\theta | x_1, x_2,...,x_n) = \frac{f(x_1, x_2,...,x_n; \theta)}{f(x_1, x_2,...,x_n)} = \frac{f(x_1, x_2,...,x_n|\theta)f(\theta)}{\int_{-\infty}^{\infty} f(x_1, x_2,...,x_n|\theta)f(\theta) d\theta}$$

where,

Joint Distribution Joint Density of of Sample and θ Likelihood of Sample Prior $f(x_1, x_2, ..., x_n; \theta) = f(x_1, x_2, ..., x_n | \theta)$ $f(\theta)$

Marginal Distribution of Sample (independent of θ) Continuous Case:

$$f(x_1, x_2, ..., x_n) = \int_{-\infty}^{\infty} f(x_1, x_2, ..., x_n | \theta) f(\theta) d\theta$$

In summary,

Posterior Distribution = Likelihood * Prior / Normalizing Constant

Posterior Distribution of a parameter can be used to:

- make estimates
- make probability statements about the parameter.

Def: Conjugate Family

When prior and posterior distribution belong to the same distribution family.

NOTES:

• Because denominator of Posterior Distribution is a normalizing constant and independent of θ :

$$\frac{1}{f(x_1, x_2, \dots, x_n)}$$

it is known as proportional factor and it will get absorbed in the \propto sign.

We can summarize the Posterior Distribution to:

$$f(\theta|x_1, x_2, ..., x_n) \propto f(x_1, x_2, ..., x_n|\theta) f(\theta)$$

Posterior Distribution \propto Likelihood * Prior

10

• The Posterior Distribution depends only sufficient statistics.

Let T(x) be a sufficient static for θ using factorization theorem:

$$f(\mathbf{x}|\theta) = g(T(\mathbf{x}), \theta)h(\mathbf{x})$$

We can conclude:

$$f(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)f(\theta)$$

 $factorization\ theorem$

$$f(\theta|\mathbf{x}) \propto h(\mathbf{x})g(T(\mathbf{x})|\theta)f(\theta)$$

 $h(\mathbf{x})$ does not depend on θ so constant gets absorbed in ∞

$$f(\theta|\mathbf{x}) \propto g(T(\mathbf{x})|\theta)f(\theta)$$

$$\implies f(\theta|\mathbf{x}) = f(\theta|T(\mathbf{x}))$$

Beliefs of θ having observed full data \mathbf{x} are same as if we had observed only the sufficient statistic $T(\mathbf{x})$.

Properties of Bayes Estimator

- Depends on Sufficient Statistic.
- Under certain circumstances, as $n \to \infty$ it is equivalent to MLE.
- ullet Effect of prior diminishes as data dominates $(n \to \infty)$.
- Optimal for large n.
- Posterior Distribution can be estimated for non-conjugate priors using Markov Chains or Monte Carlo.

,

7 Chapter number - Chapter Name

Theorem number: Theorem Name