Problem 1

Design a priority encoder that implements the following truth table.

Inputs				Outputs		
a3	a2	a1	a0	y1	y0	Valid
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

Write a testbench that tests the module with all 16 possible input combinations. In addition, synthesize your design in Quartus. Your solution should include your code (both the module and testbench), the simulation waveform, and the RTL netlist from Quartus.

Problem 2

Design an 8-bit shift register with an asynchronous active low reset and the functionality as described in the following table.

s	Operation
00	Parallel load from a input
01	Shift right (use shiftIn bit as bit n-1)
10	Shift left (use shiftIn bit as bit 0)
11	Hold

Write a testbench that tests the module in all operating modes. In addition, synthesize your design in Quartus. Your solution should include your code (both the module and testbench), the simulation waveform, and the RTL netlist from Quartus.