Matematyka dyskretna 6. Tożsamości kombinatoryczne

26.11.2020

Na czym polega dowodzenie tożsamości kombinatorycznych?

Główna idea opiera się na możliwości zliczania pewnej rodziny obiektów na różne sposoby.

A zatem znajdujemy **interpretację kombinatoryczną** jednej ze stron tożsamości. Następnie pokazujemy, że ta interpretacja odpowiada również drugiej stronie.

Klasyczny przykład

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Na czym polega dowodzenie tożsamości kombinatorycznych?

Główna idea opiera się na możliwości **zliczania** pewnej rodziny obiektów **na różne sposoby**.

A zatem znajdujemy **interpretację kombinatoryczną** jednej ze stron tożsamości. Następnie pokazujemy, że ta interpretacja odpowiada również drugiej stronie.

Klasyczny przykład

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Na czym polega dowodzenie tożsamości kombinatorycznych?

Główna idea opiera się na możliwości **zliczania** pewnej rodziny obiektów **na różne sposoby**.

A zatem znajdujemy **interpretację kombinatoryczną** jednej ze stron tożsamości. Następnie pokazujemy, że ta interpretacja odpowiada również drugiej stronie.

Klasyczny przykład

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Na czym polega dowodzenie tożsamości kombinatorycznych?

Główna idea opiera się na możliwości **zliczania** pewnej rodziny obiektów **na różne sposoby**.

A zatem znajdujemy **interpretację kombinatoryczną** jednej ze stron tożsamości. Następnie pokazujemy, że ta interpretacja odpowiada również drugiej stronie.

Klasyczny przykład

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{r}$$

Na czym polega dowodzenie tożsamości kombinatorycznych?

Główna idea opiera się na możliwości **zliczania** pewnej rodziny obiektów **na różne sposoby**.

A zatem znajdujemy **interpretację kombinatoryczną** jednej ze stron tożsamości. Następnie pokazujemy, że ta interpretacja odpowiada również drugiej stronie.

Klasyczny przykład:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Na czym polega dowodzenie tożsamości kombinatorycznych?

Główna idea opiera się na możliwości **zliczania** pewnej rodziny obiektów **na różne sposoby**.

A zatem znajdujemy **interpretację kombinatoryczną** jednej ze stron tożsamości. Następnie pokazujemy, że ta interpretacja odpowiada również drugiej stronie.

Klasyczny przykład:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Zadanie

Udowodnij kombinatorycznie podaną tożsamość:

$$n\binom{n-1}{k-1} = k\binom{n}{k}, \quad 1 \leqslant k \leqslant n.$$

3

Pytanie: Co możemy zliczyć za pomocą wyrażenia $n\binom{n-1}{k-1}$?

Pytanie: Co możemy zliczyć za pomocą wyrażenia $n\binom{n-1}{k-1}$?

Pytanie: Czemu z kolei odpowiada wyrażenie $k\binom{n}{k}$?

Niech A będzie n-elementowym zbiorem.

Niech A będzie n-elementowym zbiorem.

Wówczas $n\binom{n-1}{k-1}$ zlicza na ile sposobów możemy wybrać:

Niech A będzie *n*-elementowym zbiorem.

Wówczas $n\binom{n-1}{k-1}$ zlicza na ile sposobów możemy wybrać:

• ustalony element $x \in A$,

Niech A będzie n-elementowym zbiorem.

Wówczas $n\binom{n-1}{k-1}$ zlicza na ile sposobów możemy wybrać:

- ustalony element $x \in A$,
- oraz k-1 elementowy podzbiór $B \subseteq A \setminus \{x\}$.

Niech A będzie *n*-elementowym zbiorem.

Wówczas $n\binom{n-1}{k-1}$ zlicza na ile sposobów możemy wybrać:

- ustalony element $x \in A$,
- oraz k-1 elementowy podzbiór $B \subseteq A \setminus \{x\}$.

Inna interpretacja:

Niech A będzie n-elementowym zbiorem.

Wówczas $n\binom{n-1}{k-1}$ zlicza na ile sposobów możemy wybrać:

- ustalony element $x \in A$,
- oraz k-1 elementowy podzbiór $B \subseteq A \setminus \{x\}$.

Inna interpretacja: spośród n osób wybieramy kapitana drużyny na n sposobów,

Niech A będzie n-elementowym zbiorem.

Wówczas $n\binom{n-1}{k-1}$ zlicza na ile sposobów możemy wybrać:

- ustalony element $x \in A$,
- oraz k-1 elementowy podzbiór $B \subseteq A \setminus \{x\}$.

Inna interpretacja: spośród n osób wybieramy kapitana drużyny na n sposobów, po czym dobieramy mu k-1 pozostałych członków drużyny na $\binom{n-1}{k-1}$ sposobów.

Możemy też dokonać wyboru w innej kolejności.

Możemy też dokonać wyboru w innej kolejności.

$$k\binom{n}{k} = \binom{n}{k}k$$
 zlicza na ile sposobów możemy wybrać:

Możemy też dokonać wyboru w innej kolejności.

$$k\binom{n}{k} = \binom{n}{k}k$$
 zlicza na ile sposobów możemy wybrać:

• k-elementowy podzbiór B' zbioru A, czyli $B' \subseteq A$,

Możemy też dokonać wyboru w innej kolejności.

$$k\binom{n}{k} = \binom{n}{k}k$$
 zlicza na ile sposobów możemy wybrać:

- k-elementowy podzbiór B' zbioru A, czyli $B' \subseteq A$,
- ustalony element x z tego podzbioru, $x \in B'$.

Możemy też dokonać wyboru w innej kolejności.

 $k\binom{n}{k} = \binom{n}{k}k$ zlicza na ile sposobów możemy wybrać:

- k-elementowy podzbiór B' zbioru A, czyli $B' \subseteq A$,
- ustalony element x z tego podzbioru, $x \in B'$.

Przyjmując $B'=B\cup\{x\}$ widzimy, że zliczamy dokładnie to samo co na poprzednim slajdzie.

Możemy też dokonać wyboru w innej kolejności.

$$k\binom{n}{k} = \binom{n}{k}k$$
 zlicza na ile sposobów możemy wybrać:

- k-elementowy podzbiór B' zbioru A, czyli $B' \subseteq A$,
- ustalony element x z tego podzbioru, $x \in B'$.

Przyjmując $B' = B \cup \{x\}$ widzimy, że zliczamy dokładnie to samo co na poprzednim slajdzie.

Inna interpretacja:

Możemy też dokonać wyboru w innej kolejności.

 $k\binom{n}{k} = \binom{n}{k}k$ zlicza na ile sposobów możemy wybrać:

- k-elementowy podzbiór B' zbioru A, czyli $B' \subseteq A$,
- ustalony element x z tego podzbioru, $x \in B'$.

Przyjmując $B' = B \cup \{x\}$ widzimy, że zliczamy dokładnie to samo co na poprzednim slajdzie.

Inna interpretacja: spośród n osób wybieramy k-elementową drużynę na $\binom{n}{k}$ sposobów,

Możemy też dokonać wyboru w innej kolejności.

 $k\binom{n}{k} = \binom{n}{k}k$ zlicza na ile sposobów możemy wybrać:

- k-elementowy podzbiór B' zbioru A, czyli $B' \subseteq A$,
- ustalony element x z tego podzbioru, $x \in B'$.

Przyjmując $B' = B \cup \{x\}$ widzimy, że zliczamy dokładnie to samo co na poprzednim slajdzie.

Inna interpretacja: spośród n osób wybieramy k-elementową drużynę na $\binom{n}{k}$ sposobów, po czym ustalamy kto będzie kapitanem na k sposobów.

7

7

Zadanie

Udowodnij kombinatorycznie podaną tożsamość:

$$\sum_{k=2}^{n} (k)_{2} \binom{n}{k} = (n)_{2} 2^{n-2}, \quad n \geqslant 2.$$

Pytanie: Co możemy zliczyć za pomocą wyrażenia

$$(n)_2 2^{n-2} = n(n-1)2^{n-2}$$
?

Pytanie: Co możemy zliczyć za pomocą wyrażenia

$$(n)_2 2^{n-2} = n(n-1)2^{n-2}$$
?

Rozważmy n elementowy zbiór A.

Pytanie: Co możemy zliczyć za pomocą wyrażenia

$$(n)_2 2^{n-2} = n(n-1)2^{n-2}$$
?

Rozważmy n elementowy zbiór A.

• na n sposobów ustalamy pierwszy element tego zbioru: $x \in A$,

Pytanie: Co możemy zliczyć za pomocą wyrażenia

$$(n)_2 2^{n-2} = n(n-1)2^{n-2}$$
?

Rozważmy n elementowy zbiór A.

- na n sposobów ustalamy pierwszy element tego zbioru: $x \in A$,
- następnie na n-1 sposobów ustalamy drugi element: $y \in A \setminus \{x\}$,

Pytanie: Co możemy zliczyć za pomocą wyrażenia

$$(n)_2 2^{n-2} = n(n-1)2^{n-2}$$
?

Rozważmy n elementowy zbiór A.

- na n sposobów ustalamy pierwszy element tego zbioru: $x \in A$,
- następnie na n-1 sposobów ustalamy drugi element: $y \in A \setminus \{x\}$,
- dla każdego z pozostałych n-2 elementów z $A \setminus \{x,y\}$ na 2 sposoby ustalamy, czy dany element zostanie wybrany czy nie.

Pytanie: Co możemy zliczyć za pomocą wyrażenia

$$(n)_2 2^{n-2} = n(n-1)2^{n-2}$$
?

Rozważmy n elementowy zbiór A.

- na n sposobów ustalamy pierwszy element tego zbioru: $x \in A$,
- następnie na n-1 sposobów ustalamy drugi element: $y \in A \setminus \{x\}$,
- dla każdego z pozostałych n-2 elementów z $A\setminus\{x,y\}$ na 2 sposoby ustalamy, czy dany element zostanie wybrany czy nie.

Pytanie: Co wybraliśmy w ten sposób?

Pytanie: Co możemy zliczyć za pomocą wyrażenia

$$(n)_2 2^{n-2} = n(n-1)2^{n-2}$$
?

Rozważmy n elementowy zbiór A.

- na n sposobów ustalamy pierwszy element tego zbioru: $x \in A$,
- następnie na n-1 sposobów ustalamy drugi element: $y \in A \setminus \{x\}$,
- dla każdego z pozostałych n-2 elementów z $A\setminus\{x,y\}$ na 2 sposoby ustalamy, czy dany element zostanie wybrany czy nie.

Pytanie: Co wybraliśmy w ten sposób?

Wybraliśmy podzbiór $B \subseteq A$ wraz z **uporządkowaną** parą elementów (x, y), t.że $x, y \in B$.

Pytanie: Jak inaczej można wybrać taki podzbiór B wraz z ustaloną uporządkowaną parą elementów (x, y)?

• najpierw ustalamy rozmiar k podzbioru B:

Pytanie: Jak inaczej można wybrać taki podzbiór B wraz z ustaloną uporządkowaną parą elementów (x, y)?

• najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ullet ustalamy pierwszy element pary, czyli $x \in B$, na

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,
- oraz drugi element pary, czyli $y \in B \setminus \{x\}$, na

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów.
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,
- oraz drugi element pary, czyli $y \in B \setminus \{x\}$, na k-1 sposobów.

Pytanie: Jak inaczej można wybrać taki podzbiór B wraz z ustaloną uporządkowaną parą elementów (x, y)?

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,
- oraz drugi element pary, czyli $y \in B \setminus \{x\}$, na k-1 sposobów.

Pytanie: Jak inaczej można wybrać taki podzbiór B wraz z ustaloną uporządkowaną parą elementów (x, y)?

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,
- oraz drugi element pary, czyli $y \in B \setminus \{x\}$, na k-1 sposobów.

$$\sum_{k=2}^{n}$$

Pytanie: Jak inaczej można wybrać taki podzbiór B wraz z ustaloną uporządkowaną parą elementów (x, y)?

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,
- oraz drugi element pary, czyli $y \in B \setminus \{x\}$, na k-1 sposobów.

$$\sum_{k=2}^{n} \binom{n}{k}$$

Pytanie: Jak inaczej można wybrać taki podzbiór B wraz z ustaloną uporządkowaną parą elementów (x, y)?

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,
- oraz drugi element pary, czyli $y \in B \setminus \{x\}$, na k-1 sposobów.

$$\sum_{k=2}^{n} \binom{n}{k} \cdot k$$

Pytanie: Jak inaczej można wybrać taki podzbiór B wraz z ustaloną uporządkowaną parą elementów (x, y)?

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,
- oraz drugi element pary, czyli $y \in B \setminus \{x\}$, na k-1 sposobów.

$$\sum_{k=2}^{n} \binom{n}{k} \cdot k \cdot (k-1)$$

Pytanie: Jak inaczej można wybrać taki podzbiór B wraz z ustaloną uporządkowaną parą elementów (x, y)?

- najpierw ustalamy rozmiar k podzbioru B: k = 2, 3, ..., n,
- następnie wybieramy k-elementowy podzbiór $B \subseteq A$ na $\binom{n}{k}$ sposobów,
- ustalamy pierwszy element pary, czyli $x \in B$, na k sposobów,
- oraz drugi element pary, czyli $y \in B \setminus \{x\}$, na k-1 sposobów.

$$\sum_{k=2}^{n} \binom{n}{k} \cdot k \cdot (k-1) = \sum_{k=2}^{n} (k)_2 \binom{n}{k}$$

Pytanie: Czy potrafisz podać inną interpretację kombinatoryczną?

$$\sum_{k=2}^{n} (k)_{2} \binom{n}{k} = (n)_{2} 2^{n-2}, \quad n \geqslant 2.$$

Zadanie

Udowodnij kombinatorycznie podaną tożsamość:

$$\sum_{k=3}^{n} \binom{k-1}{2} = \binom{n}{3}, \quad n \geqslant 3.$$

$$\sum_{k=3}^{n} \binom{k-1}{2} = \binom{n}{3}, \quad n \geqslant 3.$$

W tym zadaniu łatwo można zinterpretować prawą stronę tożsamości.

$$\sum_{k=3}^{n} \binom{k-1}{2} = \binom{n}{3}, \quad n \geqslant 3.$$

W tym zadaniu łatwo można zinterpretować prawą stronę tożsamości.

$$\binom{n}{3}$$
 to

15

$$\sum_{k=3}^{n} \binom{k-1}{2} = \binom{n}{3}, \quad n \geqslant 3.$$

W tym zadaniu łatwo można zinterpretować prawą stronę tożsamości.

 $\binom{n}{3}$ to liczba wyborów trzech elementów zbioru n-elementowego

$$\sum_{k=3}^{n} \binom{k-1}{2} = \binom{n}{3}, \quad n \geqslant 3.$$

W tym zadaniu łatwo można zinterpretować prawą stronę tożsamości.

- $\binom{n}{3}$ to liczba wyborów trzech elementów zbioru $\emph{n}\text{-}\text{elementowego}$
 - Jak to się ma do lewej strony tożsamości?

$$\sum_{k=3}^{n} \binom{k-1}{2} = \binom{n}{3}, \quad n \geqslant 3.$$

W tym zadaniu łatwo można zinterpretować prawą stronę tożsamości.

 $\binom{n}{3}$ to liczba wyborów trzech elementów zbioru $\emph{n}\text{-}$ elementowego

- Jak to się ma do lewej strony tożsamości?
- Dlaczego (^{k-1}₂) skoro chcemy wybrać trzy elementy, a nie dwa?

$$\sum_{k=3}^{n} \binom{k-1}{2} = \binom{n}{3}, \quad n \geqslant 3.$$

W tym zadaniu łatwo można zinterpretować prawą stronę tożsamości.

- $\binom{n}{3}$ to liczba wyborów trzech elementów zbioru n-elementowego
 - Jak to się ma do lewej strony tożsamości?
 - Dlaczego (^{k-1}₂) skoro chcemy wybrać trzy elementy, a nie dwa?
 - Gdzie jest trzeci element?

Załóżmy, że chcemy wybrać trzy elementy z **uporządkowanego** zbioru $A = \{1, 2, \dots, n\}$.

X - 3-elementowy podzbiór zbioru A

Załóżmy, że chcemy wybrać trzy elementy z **uporządkowanego** zbioru $A = \{1, 2, \dots, n\}$.

X - 3-elementowy podzbiór zbioru A

Możemy albo wybrać te elementy na raz,

Załóżmy, że chcemy wybrać trzy elementy z **uporządkowanego** zbioru $A = \{1, 2, \dots, n\}$.

X - 3-elementowy podzbiór zbioru A

Możemy albo wybrać te elementy na raz,

Załóżmy, że chcemy wybrać trzy elementy z **uporządkowanego** zbioru $A = \{1, 2, \dots, n\}$.

X - 3-elementowy podzbiór zbioru A

Możemy albo wybrać te elementy na raz, albo zacząć od ustalenia **największego** z nich.

Załóżmy, że chcemy wybrać trzy elementy z **uporządkowanego** zbioru $A = \{1, 2, \dots, n\}$.

X - 3-elementowy podzbiór zbioru A

Możemy albo wybrać te elementy na raz, albo zacząć od ustalenia **największego** z nich.

Załóżmy, że chcemy wybrać trzy elementy z **uporządkowanego** zbioru $A = \{1, 2, ..., n\}$.

X - 3-elementowy podzbiór zbioru A

Możemy albo wybrać te elementy na raz, albo zacząć od ustalenia **największego** z nich.

Jeśli k jest **największym elementem** spośród wybranych trzech, to pozostałe dwa elementy możemy wybrać na

Jeśli k jest **największym elementem** spośród wybranych trzech, to pozostałe dwa elementy możemy wybrać na $\binom{k-1}{2}$ sposobów.

Jeśli k jest **największym elementem** spośród wybranych trzech, to pozostałe dwa elementy możemy wybrać na $\binom{k-1}{2}$ sposobów.

Z kolei największy element k musi spełniać warunek

Jeśli k jest **największym elementem** spośród wybranych trzech, to pozostałe dwa elementy możemy wybrać na $\binom{k-1}{2}$ sposobów.

Z kolei największy element k musi spełniać warunek $k \ge 3$.

Jeśli k jest **największym elementem** spośród wybranych trzech, to pozostałe dwa elementy możemy wybrać na $\binom{k-1}{2}$ sposobów.

Z kolei największy element k musi spełniać warunek $k \ge 3$.

Zatem sumaryczna liczba wyborów trzech elementów z A to

Jeśli k jest **największym elementem** spośród wybranych trzech, to pozostałe dwa elementy możemy wybrać na $\binom{k-1}{2}$ sposobów.

Z kolei największy element k musi spełniać warunek $k \ge 3$.

Zatem sumaryczna liczba wyborów trzech elementów z A to

$$\sum_{k=3}^{n} \binom{k-1}{2}.$$

Pytanie: Czy potrafisz podać inną interpretację kombinatoryczną?

$$\sum_{k=3}^{n} \binom{k-1}{2} = \binom{n}{3}, \quad n \geqslant 3.$$

Zadanie

Rozpisz wyrażenie $(x + 2y + 3z)^4$ i podaj współczynnik przy x^2yz oraz x^3z .

$$(x+2y+3z)^4 =$$

$$(x+2y+3z)^4 = ((x+2y+3z)^2)^2$$

$$(x+2y+3z)^4 = ((x+2y+3z)^2)^2$$

= $(x^2+4y^2+9z^2+4xy+6xz+12yz)^2$

$$(x + 2y + 3z)^4 = ((x + 2y + 3z)^2)^2$$

$$= (x^2 + 4y^2 + 9z^2 + 4xy + 6xz + 12yz)^2$$

$$= x^4 + 16y^4 + 81z^4 + 16x^2y^2 + 36x^2z^2 + 144y^2z^2 + 144y^2 + 144y^2z^2 + 144y^2z^2 + 144y^2z^2 + 144y^2z^2 + 144y^2z^$$

$$(x + 2y + 3z)^4 = ((x + 2y + 3z)^2)^2$$

$$= (x^2 + 4y^2 + 9z^2 + 4xy + 6xz + 12yz)^2$$

$$= x^4 + 16y^4 + 81z^4 + 16x^2y^2 + 36x^2z^2 + 144y^2z^2 + 8x^2y^2 + 18x^2z^2 + 8x^3y + 12x^3z + 24x^2yz +$$

$$(x + 2y + 3z)^4 = ((x + 2y + 3z)^2)^2$$

$$= (x^2 + 4y^2 + 9z^2 + 4xy + 6xz + 12yz)^2$$

$$= x^4 + 16y^4 + 81z^4 + 16x^2y^2 + 36x^2z^2 + 144y^2z^2 + 8x^2y^2 + 18x^2z^2 + 8x^3y + 12x^3z + 24x^2yz + 72y^2z^2 + 32xy^3 + 48xy^2z + 96y^3z +$$

$$(x + 2y + 3z)^{4} = ((x + 2y + 3z)^{2})^{2}$$

$$= (x^{2} + 4y^{2} + 9z^{2} + 4xy + 6xz + 12yz)^{2}$$

$$= x^{4} + 16y^{4} + 81z^{4} + 16x^{2}y^{2} + 36x^{2}z^{2} + 144y^{2}z^{2} + 8x^{2}y^{2} + 18x^{2}z^{2} + 8x^{3}y + 12x^{3}z + 24x^{2}yz + 72y^{2}z^{2} + 32xy^{3} + 48xy^{2}z + 96y^{3}z + 72xyz^{2} + 108xz^{3} + 216yz^{3} +$$

$$(x + 2y + 3z)^{4} = ((x + 2y + 3z)^{2})^{2}$$

$$= (x^{2} + 4y^{2} + 9z^{2} + 4xy + 6xz + 12yz)^{2}$$

$$= x^{4} + 16y^{4} + 81z^{4} + 16x^{2}y^{2} + 36x^{2}z^{2} + 144y^{2}z^{2} + 8x^{2}y^{2} + 18x^{2}z^{2} + 8x^{3}y + 12x^{3}z + 24x^{2}yz + 72y^{2}z^{2} + 32xy^{3} + 48xy^{2}z + 96y^{3}z + 72xyz^{2} + 108xz^{3} + 216yz^{3} + 48x^{2}yz + 96xy^{2}z + 144xyz^{2}$$

$$(x + 2y + 3z)^4 = ((x + 2y + 3z)^2)^2$$

$$= x^4 + 16y^4 + 81z^4 + 24x^2y^2 + 54x^2z^2 + 216y^2z^2$$

$$+ 8x^3y + 12x^3z + 32xy^3 + 96y^3z + 108xz^3 + 216yz^3$$

$$+ 72x^2yz + 144xy^2z + 216xyz^2$$

Prostsza metoda

Aby obliczyć współczynnik przy $x_1^{t_1}x_2^{t_2}\dots x_r^{t_r}$, $t_1+t_2+\dots+t_r=n$, wielomianu $(a_1x_1+a_2x_2+\dots+a_rx_r)^n$ wystarczy wyliczyć

$$\binom{n}{t_1, t_2, \ldots, t_r} a_1^{t_1} a_2^{t_2} \ldots a_r^{t_r}.$$

$$(x+2y+3z)^4$$

$$(x+2y+3z)^4$$

Współczynnik przy x^2yz to:

$$(x+2y+3z)^4$$

Współczynnik przy x^2yz to: $\binom{4}{2,1,1} \cdot 1^2 \cdot 2^1 \cdot 3^1 =$

$$(x+2y+3z)^4$$

Współczynnik przy x^2yz to: $\binom{4}{2,1,1} \cdot 1^2 \cdot 2^1 \cdot 3^1 = \frac{4!}{2!1!1!} \cdot 6 = 72$

$$(x+2y+3z)^4$$

Współczynnik przy x^2yz to: $\binom{4}{2,1,1} \cdot 1^2 \cdot 2^1 \cdot 3^1 = \frac{4!}{2!1!1!} \cdot 6 = 72$

Współczynnik przy x^3z to:

$$(x+2y+3z)^4$$

Współczynnik przy
$$x^2yz$$
 to: $\binom{4}{2,1,1} \cdot 1^2 \cdot 2^1 \cdot 3^1 = \frac{4!}{2!1!1!} \cdot 6 = 72$

Współczynnik przy
$$x^3z$$
 to: $\binom{4}{3.0.1} \cdot 1^3 \cdot 2^0 \cdot 3^1 =$

$$(x + 2y + 3z)^4$$

Współczynnik przy
$$x^2yz$$
 to: $\binom{4}{2.1,1} \cdot 1^2 \cdot 2^1 \cdot 3^1 = \frac{4!}{2!1!1!} \cdot 6 = 72$

Współczynnik przy
$$x^3z$$
 to: $\binom{4}{3.0.1} \cdot 1^3 \cdot 2^0 \cdot 3^1 = \frac{4!}{3!0!1!} \cdot 3 = 12$

Zadanie

Udowodnij kombinatorycznie następującą tożsamość

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n, \quad n \geqslant 0.$$

Pytanie: Co możemy zliczyć za pomocą wyrażenia 3^n ?

Pytanie: Co możemy zliczyć za pomocą wyrażenia 3^n ?

 3^n oznacza liczbę n-elementowych **ciągów ternarnych**, czyli ciągów o wyrazach ze zbioru $\{0,1,2\}$.

Pytanie: Co możemy zliczyć za pomocą wyrażenia 3^n ?

 3^n oznacza liczbę n-elementowych **ciągów ternarnych**, czyli ciągów o wyrazach ze zbioru $\{0, 1, 2\}$.

Pytanie: Jak inaczej policzyć takie ciągi?

Pytanie: Co możemy zliczyć za pomocą wyrażenia 3^n ?

 3^n oznacza liczbę n-elementowych **ciągów ternarnych**, czyli ciągów o wyrazach ze zbioru $\{0,1,2\}$.

Pytanie: Jak inaczej policzyć takie ciągi?

Ustalmy na początek ile mamy zer i jedynek oraz gdzie one stoją.

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie

Niech *k* oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas *k* spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie każdej z wybranych pozycji **przypisujemy zero lub jedynkę** na

Niech *k* oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas *k* spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie każdej z wybranych pozycji **przypisujemy zero lub jedynkę** na 2^k sposobów.

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie każdej z wybranych pozycji **przypisujemy zero lub jedynkę** na 2^k sposobów.

Zauważmy jeszcze, że na pozostałych pozycjach

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie każdej z wybranych pozycji **przypisujemy zero lub jedynkę** na 2^k sposobów.

Zauważmy jeszcze, że na pozostałych pozycjach stoją dwójki.

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie każdej z wybranych pozycji **przypisujemy zero lub jedynkę** na 2^k sposobów.

Zauważmy jeszcze, że na pozostałych pozycjach stoją dwójki.

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie każdej z wybranych pozycji **przypisujemy zero lub jedynkę** na 2^k sposobów.

Zauważmy jeszcze, że na pozostałych pozycjach stoją dwójki.

$$\sum_{k=0}^{n}$$

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie każdej z wybranych pozycji **przypisujemy zero lub jedynkę** na 2^k sposobów.

Zauważmy jeszcze, że na pozostałych pozycjach stoją dwójki.

$$\sum_{k=0}^{n} \binom{n}{k}$$

Niech k oznacza **liczbę zer i jedynek** w naszym ciągu. Wówczas k spełnia warunki:

$$0 \leqslant k \leqslant n$$
.

Wybieramy pozycje dla zer i jedynek na $\binom{n}{k}$ sposobów.

Następnie każdej z wybranych pozycji **przypisujemy zero lub jedynkę** na 2^k sposobów.

Zauważmy jeszcze, że na pozostałych pozycjach stoją dwójki.

$$\sum_{k=0}^{n} \binom{n}{k} 2^{k}.$$

Pytanie: Czy potrafisz podać inną interpretację kombinatoryczną?

Zadanie

Udowodnij kombinatorycznie następującą tożsamość

$$\sum_{k=m}^{n-1} \binom{k}{r-1} = \binom{n}{r} - \binom{m}{r}, \quad 0 \leqslant m < n, 1 \leqslant r \leqslant m.$$

W tym zadaniu zdecydowanie łatwiej można zinterpretować prawą stronę tożsamości.

W tym zadaniu zdecydowanie łatwiej można zinterpretować prawą stronę tożsamości.

Czemu odpowiada wyrażenie $\binom{n}{r} - \binom{m}{r}$?

W tym zadaniu zdecydowanie łatwiej można zinterpretować prawą stronę tożsamości.

Czemu odpowiada wyrażenie $\binom{n}{r} - \binom{m}{r}$?

Możliwa interpretacja:

W tym zadaniu zdecydowanie łatwiej można zinterpretować prawą stronę tożsamości.

Czemu odpowiada wyrażenie $\binom{n}{r} - \binom{m}{r}$?

Możliwa interpretacja: Niech A będzie zbiorem mocy n, a $B \subset A$ jest jego podzbiorem mocy m < n. Wówczas $\binom{n}{r} - \binom{m}{r}$ to liczba r-elementowych podzbiorów zbioru A, które nie są całkowicie zawarte w B.

W tym zadaniu zdecydowanie łatwiej można zinterpretować prawą stronę tożsamości.

Czemu odpowiada wyrażenie $\binom{n}{r} - \binom{m}{r}$?

Możliwa interpretacja: Niech A będzie zbiorem mocy n, a $B \subset A$ jest jego podzbiorem mocy m < n. Wówczas $\binom{n}{r} - \binom{m}{r}$ to liczba r-elementowych podzbiorów zbioru A, które nie są całkowicie zawarte w B.

Musimy teraz pokazać, że można wyznaczyć liczbę takich podzbiorów w sposób odpowiadający lewej stronie naszej tożsamości:

$$\sum_{k=m}^{n-1} \binom{k}{r-1}$$

Niech A będzie zbiorem mocy n, a B będzie jego podzbiorem mocy m < n. Chcemy policzyć ile jest podzbiorów X mocy r, które nie są całkowicie zawarte w B.

Niech A będzie zbiorem mocy n, a B będzie jego podzbiorem mocy m < n. Chcemy policzyć ile jest podzbiorów X mocy r, które nie są całkowicie zawarte w B.

Bez straty ogólności możemy przyjąć, że $A=\{1,2,\ldots,n\}$ oraz $B=\{1,2,\ldots,m\}.$

Niech A będzie zbiorem mocy n, a B będzie jego podzbiorem mocy m < n. Chcemy policzyć ile jest podzbiorów X mocy r, które nie są całkowicie zawarte w B.

Bez straty ogólności możemy przyjąć, że $A=\{1,2,\ldots,n\}$ oraz $B=\{1,2,\ldots,m\}.$

Niech A będzie zbiorem mocy n, a B będzie jego podzbiorem mocy m < n. Chcemy policzyć ile jest podzbiorów X mocy r, które nie są całkowicie zawarte w B.

Bez straty ogólności możemy przyjąć, że $A=\{1,2,\ldots,n\}$ oraz $B=\{1,2,\ldots,m\}.$

X - podzbiór mocy r

Niech k+1 będzie największym elementem podzbioru X.

Niech k+1 będzie **największym elementem** podzbioru X. Jakie mamy założenia na k+1?

Niech k+1 będzie **największym elementem** podzbioru X. Wówczas $k+1 \in \{m+1, m+2, \ldots, n\}$, bo inaczej $X \subseteq B$.

Niech k+1 będzie **największym elementem** podzbioru X. Wówczas $k+1 \in \{m+1, m+2, \ldots, n\}$, bo inaczej $X \subseteq B$. Teraz wystarczy dobrać **brakujące elementy** X spośród

Niech k+1 będzie **największym elementem** podzbioru X. Wówczas $k+1 \in \{m+1, m+2, \ldots, n\}$, bo inaczej $X \subseteq B$.

Teraz wystarczy dobrać **brakujące elementy** X spośród $\{1,2,\ldots,k\}$.

Niech k+1 będzie **największym elementem** podzbioru X. Wówczas $k+1 \in \{m+1, m+2, \ldots, n\}$, bo inaczej $X \subseteq B$.

Teraz wystarczy dobrać **brakujące elementy** X spośród $\{1,2,\ldots,k\}$. Możemy zrobić to na

Niech k+1 będzie **największym elementem** podzbioru X. Wówczas $k+1 \in \{m+1, m+2, \dots, n\}$, bo inaczej $X \subseteq B$.

Teraz wystarczy dobrać **brakujące elementy** X spośród $\{1,2,\ldots,k\}$. Możemy zrobić to na $\binom{k}{r-1}$ sposobów.

Niech k+1 będzie **największym elementem** podzbioru X. Wówczas $k+1 \in \{m+1, m+2, ..., n\}$, bo inaczej $X \subseteq B$.

Teraz wystarczy dobrać **brakujące elementy** X spośród $\{1,2,\ldots,k\}$. Możemy zrobić to na $\binom{k}{r-1}$ sposobów.

Zatem ustalamy $k \in \{m, m+1, \ldots, n-1\}$,

Niech k+1 będzie **największym elementem** podzbioru X. Wówczas $k+1 \in \{m+1, m+2, ..., n\}$, bo inaczej $X \subseteq B$.

Teraz wystarczy dobrać **brakujące elementy** X spośród $\{1,2,\ldots,k\}$. Możemy zrobić to na $\binom{k}{r-1}$ sposobów.

Zatem ustalamy $k \in \{m, m+1, \ldots, n-1\}$, a następnie wybieramy pozostałe r-1 elementów na $\binom{k}{r-1}$ sposobów.

Pytanie: Czy potrafisz podać inną interpretację kombinatoryczną?

Zadanie

Udowodnij kombinatorycznie następującą tożsamość

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1.$$

W Zadaniu A.3 na $\binom{n}{3}$ sposobów wybieraliśmy 3-elementowy podzbiór **uporządkowanego** zbioru *n*-elementowego.

W Zadaniu A.3 na $\binom{n}{3}$ sposobów wybieraliśmy 3-elementowy podzbiór **uporządkowanego** zbioru *n*-elementowego.

Tym razem mamy do czynienia ze zbiorem (n+2)-elementowym, stąd $\binom{n+2}{2}$.

W Zadaniu A.3 na $\binom{n}{3}$ sposobów wybieraliśmy 3-elementowy podzbiór **uporządkowanego** zbioru *n*-elementowego.

Tym razem mamy do czynienia ze zbiorem (n+2)-elementowym, stąd $\binom{n+2}{3}$.

W Zadaniu A.3 wybieraliśmy 3 elementy tego zbioru startując od elementu największego.

W Zadaniu A.3 na $\binom{n}{3}$ sposobów wybieraliśmy 3-elementowy podzbiór **uporządkowanego** zbioru *n*-elementowego.

Tym razem mamy do czynienia ze zbiorem (n+2)-elementowym, stąd $\binom{n+2}{3}$.

W Zadaniu A.3 wybieraliśmy 3 elementy tego zbioru startując od elementu największego.

W jaki inny sposób możemy wybrać ten podzbiór?

W Zadaniu A.3 na $\binom{n}{3}$ sposobów wybieraliśmy 3-elementowy podzbiór **uporządkowanego** zbioru *n*-elementowego.

Tym razem mamy do czynienia ze zbiorem (n+2)-elementowym, stąd $\binom{n+2}{3}$.

W Zadaniu A.3 wybieraliśmy 3 elementy tego zbioru startując od elementu największego.

W jaki inny sposób możemy wybrać ten podzbiór?

Zacznijmy od elementu środkowego!

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Który element przyjąć jako ten środkowy?

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru najmniejszego elementu to

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru **najmniejszego** elementu to k.

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru **najmniejszego** elementu to k.

Z kolei liczba sposobów wyboru największego elementu to

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru **najmniejszego** elementu to k.

Z kolei liczba sposobów wyboru **największego** elementu to (n+2)-(k+1)=n+1-k.

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru **najmniejszego** elementu to k.

Z kolei liczba sposobów wyboru **największego** elementu to $(n+2)-(k+1)=\frac{n+1-k}{n}$.

Czy mamy jakieś założenia na k + 1?

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru **najmniejszego** elementu to k.

Z kolei liczba sposobów wyboru **największego** elementu to $(n+2)-(k+1)=\frac{n+1-k}{n}$.

Musimy przyjąć $2 \leqslant k + 1 \leqslant n + 1$

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru **najmniejszego** elementu to **k**.

Z kolei liczba sposobów wyboru **największego** elementu to $(n+2)-(k+1)=\frac{n+1-k}{k}$.

Musimy przyjąć $2 \le k+1 \le n+1$ lub, równoważnie, $1 \le k \le n$.

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru **najmniejszego** elementu to k.

Z kolei liczba sposobów wyboru **największego** elementu to $(n+2)-(k+1)=\frac{n+1-k}{k}$.

Musimy przyjąć $2 \le k+1 \le n+1$ lub, równoważnie, $1 \le k \le n$.

Zatem sumaryczna liczba sposobów wyboru 3-elementowego podzbioru to

$$\sum_{k=1}^{n} k(n+1-k) = \binom{n+2}{3}, \quad n \geqslant 1$$

Niech k+1 będzie **środkowym** elementem spośród wybieranej trójki.

Wówczas liczba sposobów wyboru **najmniejszego** elementu to k.

Z kolei liczba sposobów wyboru **największego** elementu to $(n+2)-(k+1)=\frac{n+1-k}{n}$.

Musimy przyjąć $2 \le k+1 \le n+1$ lub, równoważnie, $1 \le k \le n$.

Zatem sumaryczna liczba sposobów wyboru 3-elementowego podzbioru to

$$\sum_{k=1}^{n} k(n+1-k).$$

Pytanie: Czy potrafisz podać inną interpretację kombinatoryczną?