# Distribuzioni

Vers. 1.1.0

Gianluca Mastrantonio

gianluca.mastrantonio@polito.it

# Outline

Note introduttive

- 2 Distribuzioni
  - Normal Multivariata (Vettori Gaussiani)
  - Chi-quadro
  - T di Student
  - F di Fisher Snedecor

### Alcune note sul corso

- Nel corso viene seguito il libro Casella Berger (con poche eccezioni, come la normale multivariata e la regressione multivariata) e ogni volta che finiremo un argomento metterò a quali capitoli faceva riferimento;
- Useremo il software R per fare degli esempi e chiarire con dataset alcuni concetti che useremo, ma non è chiesta la conoscenza di R per poter superare l'esame;
- Prima della lezione metterò a disposizione i codici R e le slides che useremo. Delle slides ci saranno due versioni, una pulita e una su cui scriverò durante la lezione;
- La scritta "chunk x" sulle slides indica che c'è un esempio nel file R allegato, al chunk x, con esempi o più dettagli;
- al fine di ogni sezione caricherò degli esercizi.

### Notazione I

La notazione usata dagli statistici è un po' diversa da quella dei probabilisti (e meno precisa), e se alcune cose si possono determinare dal contesto non si indicano. Alcuni esempi

- Sia la funzione di probabilità (pmf) che di densità (pdf) si indicano spesso con f(), dove f è la pmf se l'argomento è discreto, o la pfm se continuo, a meno che non serva fare una distinzione;
- La pmf e pdf di una variabile X, dipendente da parametri  $\theta$ , si può scrivere equivalentemente come

$$f(X = x) \equiv f_X(x) \equiv f(x) \equiv f(x|\theta) \equiv f(x;\theta) \equiv f_{\theta}(x)$$

e varie altre permutazioni. L'importante è che dal contesto si capisca a cosa ci si riferisce;

# Notazione II

• Se una variabile assume valori solo in un sottoinsieme di  $\mathbb{R}$ , per esempio  $\mathbb{R}^+$ , o di un'altro spazio, non c'è bisogno di usare la funzione indicatrice per dire dove la sua densità è zero: per esempio se  $X \sim G(\alpha,\beta)$ , la sua densità la si indica con

$$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$$

dove è inplicito che vada calcolata solo su  $\mathbb{R}^+$ .

- Il dominio dei parametri viene in generale omesso e è quello in cui la densità esiste, se è diverso viene specificato;
- Alcune distribuzioni possono essere formalizzate in modi diversi da quello che avete visto con la Siri, per esempio la Gamma può essere anche scritta come  $G(\alpha,\theta)$  con densità

$$\frac{\theta^{-\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\theta}}$$

altri esempi sono l'esponenziale, le geometrica etc.

# Richiami Normale Univariata I

• Richiamiamo dei concetti delle normali univariate. Se  $X \sim N(0,1)$  (distribuita come una normale standard), la sua densità è

$$f(x) = (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{x^2}{2}\right)$$

con  $\mathrm{E}(X)=0$  e  $\mathrm{Var}(X)=1$  e funzione caratteristica

$$\varphi_X(t) = \exp\left(-\frac{t^2}{2}\right), \, \forall t \in \mathbb{R}$$

• la variabile aleatorie  $Y = \mu + \sigma X$ , se  $\sigma \neq 0$  è distribuita normalmente  $(N(\mu, \sigma^2))$  con densità

$$f(y; \mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

con  $E(X) = E(\mu + \sigma X) = \mu$ ,  $Var(X) = Var(\mu + \sigma X) = \sigma^2 Var(X) = \sigma^2$  e funzione caratteristica

$$\varphi_Y(t) = \varphi_{\mu+\sigma X}(t) = \exp(it\mu)\,\varphi_X(\sigma t) = \exp\left(it\mu - \frac{\sigma^2 t^2}{2}\right)$$

# Richiami Normale Univariata II

- Se  $\sigma = 0$  la variabile Y è degenere;
- ullet I parametri  $\sigma$  e  $-\sigma$  danno luogo alla stessa distribuzione;
- Trasformazione lineare di una variabile normale è ancora normale. Se Z=a+bY allora  $Z\sim N(a+b\mu,b^2\sigma^2)$ , visto che

$$Z = a + bY = a + b(\mu + \sigma X) = a + b\mu + b\sigma X = \mu^* + \sigma^* X$$

dove  $\mu^* = a + b\mu$  e  $\sigma^* = b\sigma$ ;

Potete vedere quache esempio in "Chunk normale"

# Normale Multivariata I

Consideriamo una collezione di dimensione k di variabili aleatorie normali standard  $X_i \sim N(0,1)$ , con  $i=1,\ldots,k$  ( $X_i \overset{iid}{\sim} N(0,1)$ ) e indichiamo con  $\mathbf{X}=(X_1,X_2,\ldots,X_k)^T$ . La densità congiunta è

$$f(\mathbf{x}) = \prod_{i=1}^{k} f(x_i) = \prod_{i=1}^{k} (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{x_i^2}{2}\right) = \prod_{i=1}^{k} (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{x_i^2}{2}\right) = (2\pi)^{-\frac{k}{2}} \exp\left(-\frac{\mathbf{x}^T \mathbf{x}}{2}\right) = (2\pi)^{-\frac{k}{2}} \exp\left(-\frac{\mathbf{x}^T \mathbf{x}}{2}\right)$$

è facile da verificare che il vettore  $E(\mathbf{X})$  ha elemento i-esimo  $[E(\mathbf{X})]_i = 0$  e matrice di varianza e covarianza  $Var(\mathbf{X})$  con element ij pari a

$$[Var(\mathbf{X})]_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

# Normale Multivariata II

la funzione caratteristica è

$$\varphi_{\mathbf{X}}(\mathbf{t}) = \prod_{i=1}^{k} \varphi_{X_i}(\mathbf{t}) = \prod_{i=1}^{k} \exp\left(-\frac{t_i^2}{2}\right) = \exp\left(-\frac{\mathbf{t}^T \mathbf{t}}{2}\right)$$

### Normale multivariate standard (e vettori Gaussiani standard)

Un vettore aleatorio  $\mathbf{X}$  a valori in  $\mathbb{R}^k$ , assolutamente continuo, si dice vettore Gaussiano standard, e si scrive  $\mathbf{X} \sim N_k(\mathbf{0}, \mathbf{I}_k) \equiv N(\mathbf{0}, \mathbf{I}_k)$  se ha densità

$$f(\mathbf{x}) = (2\pi)^{-\frac{k}{2}} \exp\left(-\frac{\mathbf{x}^T \mathbf{x}}{2}\right) \forall \mathbf{x} \in \mathbb{R}^k.$$

Un vettore Gaussiano standard si dice essere distribuito come una Normale multivariata standard o, equivalentemente, come una Gaussiana multivariata standard.

Come con il caso univariato, si può generalizzare

### Normale Multivariata III

### Normale multivariata - Caso generale

Definiamo un vettore  $\mu \in \mathbb{R}^n$  e una matrice  $\mathbf{A} \in m_{n \times k}(\mathbb{R})$ , allora il vettore aleatorio  $\mathbf{Y} = \mu + \mathbf{A}\mathbf{X}$  è un vettore Gaussiano di dimensione n con parametri  $(\mu, \Sigma)$ , dove

$$\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^T$$
, e si scrive come

$$\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \equiv N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Per costruzione  $\Sigma \in m_{n \times n}(\mathbb{R})$ .

Indichiamo con  $\mu_i$  l'i-esimo elemento di  $\mu$ ,  $a_{ij}$  il valore in posizione ij di  $\mathbf{A}$ , e con  $\sigma_{ij}$  il valore in posizione ij di  $\mathbf{\Sigma}$  se  $j \neq j$ , mentre l'elemento in posizione ii si indica con  $\sigma_i^2$ ).

# Normale Multivariata IV

Abbiamo che

$$Y_{i} = \sum_{h=1}^{k} a_{ih} X_{h} + \mu_{i}$$

$$E(Y_{i}) = \sum_{h=1}^{k} a_{ih} E(X_{h}) + \mu_{i} = \mu_{i}$$

$$Var(Y_{i}) = \sum_{h=1}^{k} a_{ih}^{2} Var(X_{h}) = \sum_{h=1}^{k} a_{ih}^{2} = [\mathbf{A} \mathbf{A}^{T}]_{ii} = \sigma_{i}^{2}$$

$$Cov(Y_{i}, Y_{j}) = Cov \left( \sum_{h=1}^{k} a_{ih} X_{h} + \mu_{i}, \sum_{l=1}^{k} a_{jl} X_{l} + \mu_{j} \right) = \sum_{h=1}^{k} \sum_{l=1}^{k} a_{ih} a_{jl} Cov(X_{h}, X_{l}) =$$

Quindi il vettore  $\mu$  è il vettore medie e  $\Sigma$  la matrice di varianza e covarianza.

 $\sum_{i} a_{ih} a_{jh} = [\mathbf{A} \mathbf{A}^T]_{ij} = \sigma_{ij}$ 

# Normale Multivariata V

Gli stessi risultati si possono ottenere utilizzando le regole per il calcolo di medie e varianze di combinazioni lineari di vettori

$$E(\mathbf{Y}) = \boldsymbol{\mu} + \mathbf{A}E(\mathbf{X}) = \boldsymbol{\mu}$$
$$Var(\mathbf{Y}) = \mathbf{A}Var(\mathbf{X})\mathbf{A}^{T} = \mathbf{A}\mathbf{I}_{k}\mathbf{A}^{T} = \boldsymbol{\Sigma}$$

la funzione caratteristica di  $\mathbf{Y}$  è

$$\varphi_{\mathbf{Y}}(\mathbf{t}) = \varphi_{\boldsymbol{\mu} + \mathbf{A}\mathbf{X}}(\mathbf{t}) = \exp\left(i\mathbf{t}^T\boldsymbol{\mu}\right)\varphi_{\mathbf{X}}(\mathbf{A}^T\mathbf{t}) = \exp\left(i\mathbf{t}^T\boldsymbol{\mu} - \frac{1}{2}|\mathbf{A}^T\mathbf{t}|^2\right)$$

dove possiamo scrivere

$$|\mathbf{A}^T \mathbf{t}|^2 = (\mathbf{A}^T \mathbf{t})^T (\mathbf{A}^T \mathbf{t}) = \mathbf{t}^T \mathbf{A} \mathbf{A}^T \mathbf{t} = \mathbf{t}^T \mathbf{\Sigma} \mathbf{t}$$

### Teorema - Chiusura rispetto a trasformazioni lineari

La famiglia dei vettori gaussiani è chiusa rispetto a trasformazione lineari

# Normale Multivariata VI

#### **Dimostrazione:**

Sia  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{X}$  con  $\mathbf{X} \sim N_k(\mathbf{0}, \mathbf{I}_k)$ , con  $\boldsymbol{\mu} \in \mathbb{R}^n$  e dove  $\mathbf{A} \in m_{n \times k}(\mathbb{R})$ , allora  $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \mathbf{A}\mathbf{A}^t)$ . Introduciamo  $\mathbf{b} \in \mathbb{R}^q$  e  $\mathbf{B} \in m_{q \times n}(\mathbb{R})$  e definiamo la variabile  $\mathbf{Z} = \mathbf{b} + \mathbf{B}\mathbf{Y}$  abbiamo che

$$\mathbf{Z} = \mathbf{b} + \mathbf{B}\mathbf{Y} = \mathbf{b} + \mathbf{B}(\boldsymbol{\mu} + \mathbf{A}\mathbf{X}) = (\mathbf{b} + \mathbf{B}\boldsymbol{\mu}) + (\mathbf{B}\mathbf{A})\mathbf{X}$$

dove  $(\mathbf{b}+\mathbf{B}\pmb{\mu})\in\mathbb{R}^q$  e  $(\mathbf{B}\mathbf{A})\in m_{q\times k}(\mathbb{R})$  e quindi

$$\mathbf{Z} \sim N_q(\mathbf{b} + \mathbf{B}\boldsymbol{\mu}, \mathbf{B}\mathbf{A}\mathbf{A}^T\mathbf{B}^T)$$

### Normale Multivariata VII

### Proposizione - Proprietà delle Matrice di covarianza

Se  $\Sigma$  è una matrice di covarianza di un vettore aleatorio Y a valori in  $\mathbb{R}^n$ , allora (i) è simmetrica e (ii) semi-definita positiva

#### Dimostrazione:

(i) Simmetrica:

$$\sigma_{ij} = [\mathbf{\Sigma}]_{ij} = \operatorname{Cov}(Y_i, Y_j) = \operatorname{Cov}(Y_j, Y_i) = [\mathbf{\Sigma}]_{ji} = \sigma_{ji}$$

(ii) Semi-definita positiva: prendiamo un vettore  $\mathbf{u} \in \mathbb{R}^n$ , abbiamo che

$$\mathbf{u}^{T} \mathbf{\Sigma} \mathbf{u} = \mathbf{u}^{T} \text{Cov}(\mathbf{Y}) \mathbf{u} = \mathbf{u}^{T} \mathbf{E} \left( (\mathbf{Y} - \mathbf{E}(\mathbf{Y})) (\mathbf{Y} - \mathbf{E}(\mathbf{Y}))^{T} \right) \mathbf{u} =$$

$$\mathrm{E}\left(\mathbf{u}^{T}\left(\mathbf{Y}-\mathrm{E}(\mathbf{Y})\right)\left(\mathbf{Y}-\mathrm{E}(\mathbf{Y})\right)^{T}\mathbf{u}\right)=\mathrm{E}\left(\left(\mathbf{u}^{T}\mathbf{Y}-\mathbf{u}^{T}\mathrm{E}(\mathbf{Y})\right)\left(\mathbf{u}^{T}\mathbf{Y}-\mathbf{u}^{T}\mathrm{E}(\mathbf{Y})\right)^{T}\right)$$

# Normale Multivariata VIII

dove  $\mathbf{u}^T\mathbf{Y}$  è uno scalare che ha valore atteso pari a  $\mathbf{u}^T\mathrm{E}(\mathbf{Y})$  e quindi

$$\mathbf{u}^T \mathbf{\Sigma} \mathbf{u} = \operatorname{Var}(\mathbf{u}^T \mathbf{Y}) \ge 0$$

# Proposizione - Radice principale matrice simmetrica e semi-definita positiva

Se  $\Sigma$  è una matrice simmetrica e semi-definita positiva di dimensione  $n \times n$ , allora esiste uan matrice  $\mathbf A$  simmetrica e semi-definita positiva di dimensione  $n \times n$ , tale per cui vale

$$\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^T = \mathbf{A}^2$$

e  ${f A}$  viene chiamata la radice principale di  ${f \Sigma}$ 

Se la matrice  $\Sigma$  è invetibile, lo è anche la sua radice principale.

# Normale Multivariata IX

Possiamo determinare le densità del vettore  $\mathbf{Y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ 

# Proposizione - Densità di ${f Y}$

Se  $\Sigma$  è invertibile, allora Y è assolutamente continua e ha densità

$$(2\pi)^{-\frac{n}{2}} \mathsf{det}(\mathbf{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{(\mathbf{y}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{y}-\boldsymbol{\mu})}{2}\right)$$

#### Dimostrazione:

Definiamo A come la radice principale di  $\Sigma$ , quindi invertibile e sia

$$\mathbf{X} = \mathbf{A}^{-1}(\mathbf{Y} - \boldsymbol{\mu}) = \mathbf{A}^{-1}\mathbf{Y} - \mathbf{A}^{-1}\boldsymbol{\mu}$$

e quindi

$$\mathbf{X} \sim N_n(\mathbf{A}^{-1}\boldsymbol{\mu} - \mathbf{A}^{-1}\boldsymbol{\mu}, \mathbf{A}^{-1}\boldsymbol{\Sigma}(\mathbf{A}^{-1})^T)$$

ma 
$$\mathbf{A}^{-1} \mu - \mathbf{A}^{-1} \mu = \mathbf{0}$$
 e  $\mathbf{A}^{-1} \mathbf{\Sigma} (\mathbf{A}^{-1})^T = \mathbf{A}^{-1} \mathbf{A} \mathbf{A}^T (\mathbf{A}^{-1})^T = \mathbf{I}_n$ 

Per costruzione abbiamo  $\mathbf{Y}=\boldsymbol{\mu}+\mathbf{A}\mathbf{X}$ , quindi  $\mathbf{Y}$  è assolutamente continuo ( $\boldsymbol{\mu}+\mathbf{A}\mathbf{X}$  è un diffeomorfismo) e usando il metodo dello Jacobiano abbiamo che la densità è

$$f_{\mathbf{Y}}(y) = \frac{f_{\mathbf{X}}(\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu}))}{\det(\mathbf{A})} = \frac{(2\pi)^{-\frac{n}{2}} \exp\left(-\frac{(\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu}))^{T}(\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu}))}{2}\right)}{\det(\mathbf{A})}$$

e visto che

$$(\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu}))^T (\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu})) = (\mathbf{y} - \boldsymbol{\mu})^T (\mathbf{A}^{-1})^T \mathbf{A}^{-1} (\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu})) = (\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu})$$

 $e det(\mathbf{\Sigma}) = det(\mathbf{A})det(\mathbf{A}) = det(\mathbf{A})^2$  allora

$$f_{\mathbf{Y}}(y) = (2\pi)^{-\frac{n}{2}} \det(\mathbf{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{(\mathbf{y} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu})}{2}\right)$$

# Normale Multivariata XI

### Osservazioni

- ullet Vale anche il viceversa, cioè se  $\Sigma$  non è invertibile, allora Y non è assolutamente continua.
- ullet se  $\Sigma$  non è invertibile allora Y è degenere.

# Normale Multivariata XII

Esempio di una normale bivariata con media

$$\mu = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

e matrice di covarianza

$$\mathbf{\Sigma} = \left( \begin{array}{cc} 1 & 0.8 \\ 0.8 & 1.2 \end{array} \right)$$

Il plot è stata fatto con il "Chunk normale multivariata".



# Normale Multivariata XIII

#### Esercizio 1

Sia 
$$\mathbf{X} \sim N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, con  $\boldsymbol{\mu} = \mathbf{0}$  e  $\boldsymbol{\Sigma} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{pmatrix}$  trovare la legge di

$$\mathbf{Z} = \left( \begin{array}{c} x_1 - x_2 \\ x_1 + x_3 \end{array} \right)$$

#### Soluzione:

Possiamo scrivere 
$$\mathbf{Z} = \mathbf{AX} + \mathbf{b}$$
, con  $\mathbf{b} = \mathbf{0}$  e  $\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ , quindi  $\mathbf{Z}$  è un

vettore gaussiano e 
$$\mathbf{Z} \sim N_2(\mathbf{m}, \mathbf{V})$$
, dove  $\mathbf{m} = \mathbf{0}$  e  $\mathbf{V} = \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^T = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ .

Un'alternativa è calcolare direttamente i valori attesi e varianze e covarianze.

# Normale Multivariata XIV

### Esercizio 2

Sia 
$$\mathbf{X} \sim N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, con  $\boldsymbol{\mu} = \mathbf{0}$  e  $\boldsymbol{\Sigma} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{X}$  è un vettore gaussiano? è assolutamente continuo?

# Soluzione:

la matrice  $\Sigma$  è simmetrica e definita positiva, visto che il suo determinante è 1, quindi X è un vettore Gaussiano. Visto che  $\Sigma$  è invertibile (è definita positiva), allora X è assolutamente continua.

# Normale Multivariata XV

#### Esercizio 3

Sia  $f(\mathbf{x}) = (2\pi)^{-1} 3^{-\frac{1}{2}} \exp\left(-\frac{x_1^2 + x_1 x_2 + x_2^2}{3}\right)$ ,  $\forall \mathbf{x} \in \mathbb{R}^2$ , la funzione di densità di  $\mathbf{X}$ . La variabile  $\mathbf{X}$  è  $N_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ ? e che valore assumono i parametri?

#### Soluzione:

Dobbiamo avere che  $det(\Sigma) = 3$ , e inoltre

$$-\frac{(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}{2} = -\frac{x_1^2 + x_1 x_2 + x_2^2}{3}.$$

Siccome non ci sono termini con gradi < 2, allora  $\mu = \mathbf{0}$ , cioè

$$(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (x_1 - \mu_1)^2 [\boldsymbol{\Sigma}^{-1}]_{11} + (x_2 - \mu_2)^2 [\boldsymbol{\Sigma}^{-1}]_{22} + 2(x_1 - \mu_1)(x_2 - \mu_2) [\boldsymbol{\Sigma}^{-1}]_{12}$$

e tutti i prodotti  $x_1\mu_1$ ,  $x_2\mu_2$ ,  $x_2\mu_1$  e  $x_1\mu_2$  si devono eliminare. Abbiamo anche che

$$(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = 2 \frac{x_1^2 + x_1 x_2 + x_2^2}{3}$$

# Normale Multivariata XVI

e quindi 
$$\Sigma^{-1}=\begin{pmatrix}2/3&1/3\\1/3&2/3\end{pmatrix}$$
 il cui determinante è  $\frac{1}{3}$  e quindi quello di  $\Sigma$  è 3. La sua inverse è  $\Sigma=\begin{pmatrix}2&-1\\-1&2\end{pmatrix}$ 

# Esercizio 3

Sia  $\mathbf{X} \sim N_2(\mathbf{0}, \mathbf{I}_2)$  e definiamo  $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{X}$ , con  $\boldsymbol{\mu} = \mathbf{0}$  e  $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ .

Determinare la natura di Y.

# Soluzione:

# Normale Multivariata XVII

La matrice di covarianza di  $\mathbf{Y}$  è  $\mathbf{\Sigma}=\left(\begin{array}{cc}2&4\\4&8\end{array}\right)$  il cui determinante è 0, quindi non invertibile e  $\mathbf{Y}$  è degenere.

Si può anche vedere dal valore della correlazione tra  $Y_1$  e  $Y_2$ , che è  $\frac{[\mathbf{\Sigma}]_{12}}{\sqrt{[\mathbf{\Sigma}]_{11}[\mathbf{\Sigma}]_{22}}}=\frac{4}{\sqrt{16}}=1$ , quindi perfetta correlazione.

Un'altro metodo è vedere come  $Y_1=X_1+X_2$  e  $Y_2=2X_1+2X_2=2Y_1$ , e  $P(Y_1=2Y_2)=P(\mathbf{Y}\in r)$ , con  $r=\{\mathbf{y}\in \mathbb{R}^2: y_2=2y_1\}$ 

# Normale Multivariata XVIII

# Proposizione - Distribuzione Marginale

Se  $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , allora  $\forall i = 1, ..., n \ X_i \sim N(\mu_i, \sigma_i^2)$ 

#### Soluzione:

Possiamo usare la funzione caratteristica della normale multivariata

$$\varphi_{\mathbf{X}}(\mathbf{t}) = \exp\left(i\mathbf{t}^T\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^T\mathbf{\Sigma}\mathbf{t}\right)$$

e, introducendo il vettore  ${\bf e}_i$  di lunghezza n, che assume valore 0 per tutti gli elementi tranne l'i-esimo, in cui è uno. Allora la funzione caratteristica della i-esima marginale è

$$\varphi_{X_i}(t) = \varphi_{\mathbf{X}}(\mathbf{e}_i t) = \exp\left(i(\mathbf{e}_i t)^T \boldsymbol{\mu} - \frac{1}{2}(\mathbf{e}_i t)^T \boldsymbol{\Sigma}(\mathbf{e}_i t)\right)$$

e visto che  $(\mathbf{e}_i t)^T \boldsymbol{\mu} = t \mu_i$  e  $(\mathbf{e}_i t)^T \boldsymbol{\Sigma}(\mathbf{e}_i t) = t^2 \sigma_i^2$ , allora

$$\varphi_{X_i}(t) = \exp\left(it\mu_i - \frac{1}{2}t^2\sigma_i^2\right)$$

# Normale Multivariata XIX

che è la funzione caratteristica di una normale univariata di media  $\mu_i$  e varianza  $\sigma_i^2$ .

fate attenzione che il viceversa non vale, cioè se  $X_1, \ldots, X_n$  sono marginalmente normali, il vettore  $\mathbf{X}$  potrebbe non essere normale

# Proposizione - Indipendenza

Consideriamo una v.a. 
$$\mathbf{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
. Dividiamola in blocchi come  $\mathbf{X} = \begin{pmatrix} \mathbf{X}_A \\ \mathbf{X}_B \end{pmatrix}$  dove  $\mathbf{X}_A \in \mathbb{R}^{n_A}$  e  $\mathbf{X}_B \in \mathbb{R}^{n_B}$ , e assumiamo  $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_A \\ \boldsymbol{\mu}_B \end{pmatrix}$  e  $\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_A & \boldsymbol{\Sigma}_{AB} \\ \boldsymbol{\Sigma}_{AB}^T & \boldsymbol{\Sigma}_B \end{pmatrix}$  dove  $\boldsymbol{\mu}_A$  e  $\boldsymbol{\mu}_B$  sono le medie di  $\mathbf{X}_A$  e  $\mathbf{X}_B$  rispettivamente, mentre  $\boldsymbol{\Sigma}_A$  è la matrice di covarianza di  $\mathbf{X}_A$ ,  $\boldsymbol{\Sigma}_B$  è la matrice di covarianza di  $\mathbf{X}_A$ , a è la matrice di covarianza tra A e B. Allora  $\mathbf{X}_A$  è indipendente da  $\mathbf{X}_B$   $\Longleftrightarrow$   $\boldsymbol{\Sigma}_{AB}$  è una matrice di zeri.

# Normale Multivariata XX

### Soluzione:

- $(i) \Longrightarrow \dot{e} \text{ ovvio}$
- (ii) per  $\longleftarrow$  definiamo  $\mathbf{t}=\left(egin{array}{c} \mathbf{t}_A \\ \mathbf{t}_B \end{array}
  ight)$  con  $\mathbf{t}_A$  e  $\mathbf{t}_B$  di lunghezza rispettivamente  $n_A$  e  $n_B$ ,
- e prendiamo la funzione caratteristica

$$\varphi_{\mathbf{X}}(\mathbf{t}) = \exp\left(i\mathbf{t}^{T}\boldsymbol{\mu} - \frac{1}{2}\mathbf{t}^{T}\boldsymbol{\Sigma}\mathbf{t}\right) = \exp\left(i(\mathbf{t}_{A}^{T}\boldsymbol{\mu}_{A} + \mathbf{t}_{B}^{T}\boldsymbol{\mu}_{B}) + -\frac{1}{2}(\mathbf{t}_{A}^{T}\boldsymbol{\Sigma}_{A}\mathbf{t}_{A} + \mathbf{t}_{B}^{T}\boldsymbol{\Sigma}_{B}\mathbf{t}_{B})\right)$$

che è uguale a

$$\varphi_{\mathbf{X}}(\mathbf{t}) = \exp\left(i\mathbf{t}_{A}^{T}\boldsymbol{\mu}_{A} + -\frac{1}{2}\mathbf{t}_{A}^{T}\boldsymbol{\Sigma}_{A}\mathbf{t}_{A}\right)\exp\left(i\mathbf{t}_{B}^{T}\boldsymbol{\mu}_{B} + -\frac{1}{2}\mathbf{t}_{B}^{T}\boldsymbol{\Sigma}_{B}\mathbf{t}_{B}\right) = \varphi_{\mathbf{X}_{A}}(\mathbf{t}_{A})\varphi_{\mathbf{X}_{B}}(\mathbf{t}_{B})$$

e quindi  $\mathbf{X}_A \perp \!\!\! \perp \mathbf{X}_B$ 

# Normale Multivariata XXI

Si può generalizzare il risultato a più di due blocchi, anche univariati.

### Proposizione - Condizionamento

Consideriamo una v.a.  $\mathbf{X} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ . Dividiamola in blocchi cone  $\mathbf{X} = \begin{pmatrix} \mathbf{X}_A \\ \mathbf{X}_B \end{pmatrix}$  dove

$$\mathbf{X}_A \in \mathbb{R}^{n_A}$$
 e  $\mathbf{X}_B \in \mathbb{R}^{n_B}$ , e assumiamo  $oldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_A \ oldsymbol{\mu}_B \end{array}
ight)$  e  $oldsymbol{\Sigma} = \left(egin{array}{c} oldsymbol{\Sigma}_A & oldsymbol{\Sigma}_{AB} \ oldsymbol{\Sigma}_{BA} & oldsymbol{\Sigma}_B \end{array}
ight)$  dove

 $\mu_A$  e  $\mu_B$  sono le medie di  $\mathbf{X}_A$  e  $\mathbf{X}_B$  rispettivamente, mentre  $\hat{\Sigma}_A$  è la matrice di covarianza di  $\mathbf{X}_A$ ,  $\Sigma_B$  è la matrice di covarianza di  $\mathbf{X}_B$ , mentre  $\Sigma_{AB}$  la matrice di covarianza tra A e B.

Allora la distribuzione di  $\mathbf{X}_A|\mathbf{X}_B=\mathbf{x}_B$  è ancora normale multivariata con

$$egin{aligned} oldsymbol{\mu}_{A|B} &= oldsymbol{\mu}_A + oldsymbol{\Sigma}_{AB} oldsymbol{\Sigma}_B^{-1} (\mathbf{x}_B - oldsymbol{\mu}_B) \ oldsymbol{\Sigma}_{A|B} &= oldsymbol{\Sigma}_A - oldsymbol{\Sigma}_{AB} oldsymbol{\Sigma}_B^{-1} oldsymbol{\Sigma}_{BA} \end{aligned}$$

# Normale Multivariata XXII

#### Soluzione:

Definiamo la seguente v.a.  $\mathbf{Z} = \mathbf{X}_A + \mathbf{A}\mathbf{X}_B$ , con  $\mathbf{A} = -\mathbf{\Sigma}_{AB}\mathbf{\Sigma}_B^{-1}$  in modo tale che  $\mathbf{Z} \perp \!\!\! \perp \mathbf{X}_B$ :

$$Cov(\mathbf{Z}, \mathbf{X}_B) = Cov(\mathbf{X}_A, \mathbf{X}_B) + Cov(\mathbf{A}\mathbf{X}_B, \mathbf{X}_B) = \mathbf{\Sigma}_{AB} - \mathbf{\Sigma}_{AB}\mathbf{\Sigma}_B^{-1}\mathbf{\Sigma}_B = \mathbf{0}$$

dove in questo caso  $\mathbf{0}$  è una matrice di zeri e siccome  $(\mathbf{Z}, \mathbf{X}_B)$  sono un vettore gaussiano sono anche indipendenti.

Visto che

$$\mathbf{X}_A = \mathbf{Z} - \mathbf{A}\mathbf{X}_B$$

abbiamo che  $\mathbf{X}_A|\mathbf{X}_B=\mathbf{x}_B\sim\mathbf{Z}-\mathbf{A}\mathbf{x}_B$  è gaussiano con

$$E(\mathbf{X}_A|\mathbf{x}_B) = E(\mathbf{Z} - \mathbf{A}\mathbf{X}_B|\mathbf{x}_B) = E(\mathbf{Z}|\mathbf{x}_B) - E(\mathbf{A}\mathbf{X}_B|\mathbf{x}_B) = E(\mathbf{Z}) - \mathbf{A}\mathbf{x}_B$$

### Normale Multivariata XXIII

dove  $\mathrm{E}(\mathbf{Z}) = \mathrm{E}(\mathbf{Z}|\mathbf{x}_B)$  perchè c'è indipendenza. Allora

$$E(\mathbf{X}_A|\mathbf{x}_B) = \boldsymbol{\mu}_A - \mathbf{A}(\mathbf{x}_B - \boldsymbol{\mu}_B) = \boldsymbol{\mu}_A + \boldsymbol{\Sigma}_{AB}\boldsymbol{\Sigma}_B^{-1}(\mathbf{x}_B - \boldsymbol{\mu}_B)$$

$$Var(\mathbf{X}_{A}|\mathbf{x}_{B}) = Var(\mathbf{Z} - \mathbf{A}\mathbf{X}_{B}|\mathbf{x}_{B}) = Var(\mathbf{Z}) = Var(\mathbf{X}_{A} + \mathbf{A}\mathbf{X}_{B}) =$$

$$Var(\mathbf{X}_{A}) + \mathbf{A}Var(\mathbf{X}_{B})\mathbf{A}^{T} + \mathbf{A}Cov(\mathbf{X}_{B}, \mathbf{X}_{A}) + Cov(\mathbf{X}_{A}, \mathbf{X}_{B})\mathbf{A}^{T} =$$

$$\Sigma_{A} + \Sigma_{AB}\Sigma_{B}^{-1}\Sigma_{B}\Sigma_{B}^{-1}\Sigma_{BA} - 2\Sigma_{AB}\Sigma_{B}^{-1}\Sigma_{BA} =$$

$$\Sigma_{A} - \Sigma_{AB}\Sigma_{B}^{-1}\Sigma_{BA}$$

# Normale Multivariata XXIV

Si possono riarrangiare gli elementi di X per dimostrare che per qualsiasi partizione di X, in  $X_A$  e  $X_B$ , la distribuzione di  $X_A|X_B$  è normale con media e varianza

$$egin{aligned} oldsymbol{\mu}_{A|B} &= oldsymbol{\mu}_A + oldsymbol{\Sigma}_{AB} oldsymbol{\Sigma}_B^{-1} (\mathbf{x}_B - oldsymbol{\mu}_B) \ oldsymbol{\Sigma}_{A|B} &= oldsymbol{\Sigma}_A - oldsymbol{\Sigma}_{AB} oldsymbol{\Sigma}_B^{-1} oldsymbol{\Sigma}_{BA} \end{aligned}$$

Alcuni esempi di distribuzione conditionate della normale multivariata si possono vedere su "Chunk normale multivariata".

# Normale Multivariata XXV

Esempi della distribuzione di X|Y=y, con  $(X,Y)^T\sim N_2(\pmb{\mu},\pmb{\Sigma})$ , con

$$\mu = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

e matrice di covarianza

$$\mathbf{\Sigma} = \left( \begin{array}{cc} 1 & 0.8 \\ 0.8 & 1.2 \end{array} \right)$$

per vari valori di y.
Il plot è stata fatto con il "Chunk normale multivariata".



# Chi-quadro I

# Chi-quadro

Una variabile aleatoria  $\mathbf{Y} \in \mathbb{R}^+$  assolutamente continua si dice essere distribuita come una chi-quadro con  $n \in \mathbb{N}$  (zero escluso) gradi di libertà (gdl),  $Y \sim \chi^2(n)$ , se

$$f(y) = 2^{-\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)^{-1} y^{\frac{n}{2}-1} \exp\left(-\frac{y}{2}\right)$$

Abbiamo che E(Y) = n e Var(Y) = 2n.

### Alcune interessanti proprietà

• Se  $X_1, \ldots X_n$  sono iid normali standard, allora  $Q = \sum_{i=1}^n X_i^2 \sim \chi^2(n)$  - la chi-quadro viene definita partendo da questa relazione;

# Chi-quadro II

• La somma di due chi-quadro indipendenti di  $n_1$  e  $n_2$  gdl è una chi quadro di  $n=n_1+n_2$  gradi di libertà. La dimostrazione è molto semplice visto che

$$\sum_{i=1}^{n} X_{i}^{2} \sim \chi^{2}(n) = \sum_{i=1}^{n_{1}} X_{i}^{2} + \sum_{i=1}^{n_{2}} X_{i+n_{1}}^{2}$$

- e  $Q_1 = \sum_{i=1}^{n_1} X_i^2 \sim \chi^2(n_1)$  e  $Q_2 = \sum_{i=1}^{n_2} X_{i+n_1}^2 \sim \chi^2(n_2)$ , dove per costruzione  $Q_1 \perp \!\!\! \perp Q_2$ ;
- la  $\chi^2(n)$  è una G(n/2,2) (fate attenzione a come definite il secondo parametro della gamma, altrimenti è G(n/2,1/2)), visto che una G(a,b) ha densità

$$f(y) = b^{-a} \Gamma(a)^{-1} y^{a-1} \exp\left(-\frac{y}{b}\right)$$

- Se  $X_1, \ldots X_n$  sono indipendenti e  $X_i \sim N(\mu_i, 1)$ , allora  $Q = \sum_{i=1}^n X_i^2$  è distribuita come una chi-quadro non centrata con n gdl e parametro di non centralità  $\lambda = \sum_{i=1}^n \mu_i^2$  e si scrive  $Q \sim \chi^2_\lambda(n)$ .
  - La media del chi-quadro non centrato è  $n+\lambda$  e la varianza  $2(n+2\lambda)$ ;
- Se  $X \sim U(0,1)$  allora  $-2\log(X) \sim \chi^2(2)$ .

# Chi-quadro III

Alcune densità della chi-quadro per differenti valori dei gradi di libertà ("**chunk chi-quadro**")



### T di Student I

#### T di Student

Una variabile aleatoria  $\mathbf{Y} \in \mathbb{R}$  assolutamente continua si dice essere distribuita come una  $\mathsf{T}$  di Student con  $n \in \mathbb{R}^+$  gradi di libertà (gdl),  $Y \sim t(n)$ , se

$$f(y) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{y^2}{n}\right)^{-\frac{n+1}{2}}$$

La T di Student ha media 
$$0$$
 se  $n > 0$ , e varianza  $\frac{n}{n-2}$  se  $n > 2$ , è infinita se  $1 < n \le 2$ ,

altrimenti è indefinita. La distribuzione è simmetrica e unimodale.

 La distribuzione T di Student può essere definita come la distribuzione della variabile aleatoria

$$Y = \frac{Z}{\sqrt{\frac{X}{n}}}$$

dove  $Z \sim N(0,1)$ ,  $X \sim \chi^2(n)$ , e Z e X sono indipendenti.

### T di Student II

- Una generalizzazione si può ottenere se  $Z \sim N(\mu,1)$ , e in questo caso Y è distribuita come una T non centrata, con parametro di non centralità  $\mu$ :  $Y \sim t_{\mu}(n)$ .
- Con *n* abbastanza grande (più di 80), la T di Student può essere approssimata da una normale standard.

# T di Student III

Alcune densità della T di Student per differenti valori dei gradi di libertà (sinistra) e confronto con normale standard (destra) ("**chunk T di Student**").



# F di Fisher Snedecor I

### F di Fisher Snedecor

Una variabile aleatoria  $\mathbf{Y} \in \mathbb{R}^+$  assolutamente continua si dice essere distribuita come una F di Fisher Snedecor con  $n_1 \in \mathbb{R}^+$  e  $n_2 \in \mathbb{R}^+$  gradi di libertà,  $Y \sim F(n_1, n_2)$ , se

$$f(y) = \frac{\sqrt{\frac{(n_1y)^{n_1}n_2^{n_2}}{(n_1y+n_2)^{n_1+n_2}}}}{yB\left(\frac{n_1}{2}, \frac{n_2}{2}\right)}$$

La F di Fisher Snedecor ha media  $\frac{n_2}{n_2-1}$  se  $n_2>0$ , altrimenti è indefinita, e varianza  $\frac{2n_2^2(n_1+n_2-1)}{n_1(n_2-2)^2(n_2-4)}$  se  $n_2>4$ , altrimenti è indefinita.

• La distribuzione F di Fisher Snedecor può essere definita come la distribuzione della variabile aleatoria

$$Y = \frac{X_1/n_1}{X_2/n_2}$$

dove  $X_1 \sim \chi^2(n_1)$ ,  $X_2 \sim \chi^2(n_2)$ , e  $X_1$  e  $X_2$  sono indipendenti.

# F di Fisher Snedecor II

- se  $X \sim t(n)$ , allora  $X^2 \sim F(1,n)$ , e  $X^{-2} \sim F(n,1)$ ;
- se  $X \sim B(n_1/2, n_2/2)$ , allora  $\frac{n_2 X}{n_1(1-X)} \sim F(n_1, n_2)$ .

# F di Fisher Snedecor III

Alcune densità della F di Fisher Snedecor per differenti valori dei gradi di libertà ("chunk F di Fisher Snedecor").

