

Project Initialization and Planning Phase

Date	15 March 2024	
Team ID	PNT2022TMID124356	
Project Title	SmartLender - Applicant Credibility Prediction for Loan Approval	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) report

The proposal report aims to transform loan approval using machine learning, boosting efficiency and accuracy. It tackles system inefficiencies, promising better operations, reduced risks, and happier customers. Key features include a machine learning-based credit model and real-time decision-making.

Project Overview		
Objective	The primary objective is to revolutionize the loan approval process by implementing advanced machine learning techniques, ensuring faster and more accurate assessments.	
Scope	The project comprehensively assesses and enhances the loan approval process, incorporating machine learning for a more robust and efficient system.	
Problem Statement		
Description	Addressing inaccuracies and inefficiencies in the current loan approval system adversely affects operational efficiency and customer satisfaction.	
Impact	Solving these issues will result in improved operational efficiency, reduced risks, and an overall enhancement in the lending process, contributing to customer satisfaction and organizational success.	
Proposed Solution		
Approach	Employing machine learning techniques to analyze and predict creditworthiness, creating a dynamic and adaptable loan approval system.	
Key Features	- Implementation of a machine learning-based credit assessment model.	

- Real-time decision-making for quicker loan approvals.
- Continuous learning to adapt to evolving financial landscapes.

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU		
Memory	RAM specifications	8 GB		
Storage	Disk space for data, models, and logs	1 TB SSD		
Software				
Frameworks	Python frameworks	Flask		
Libraries	Additional libraries	scikit-learn, pandas, numpy, matplotlib, seaborn		
Development Environment	IDE	Jupyter Notebook, pycharm		
Data				
Data	Source, size, format	Kaggle dataset, 614, csv UCI dataset, 690, csv		