Лабораторная работа № 3.6.1. Спектральный анализ электрических сигналов.

Содержание

1		рия и подготовка к работе.	2			
	1.1	Цель и приборы, используемые в работе	2			
	1.2		2			
2	Зад	ание 1. Исследование спектра периодической последова-				
	тел	ьности прямоугольных испульсов.	3			
	2.1	Экспериментальная установка	3			
	2.2					
3	Зад	дание 2. Исследование спектра периодической последова-				
	тел	ьности цугов гармонических колебаний.	9			
	3.1	Экспериментальная установка	9			
		Результаты обработки				
4	Исс	следование спектра гармонических сигналов модулирован-				
	ных по амплитуде					
	4.1	Экспериментальная установка	10			
	4.2	Обработка результатов	11			

1 Теория и подготовка к работе.

1.1 Цель и приборы, используемые в работе.

Цель работы: Изучение спектрального состава периодических электрических сигналов.

В работе используются: анализатор спектра, генератор прямоуголных импульсов, генератор сигналов специальной формы, осциллограф.

1.2 Принцип работы спектроанализатора.

Для исследования спектров в работе используется гетеродинный анализатор спектра типа СК4-56. Упрощённая структурная схема, поясняющая последовательный супер-гетеродинный метод спектрального анализа внешнего сигнала, изображена на рис (1.2).

Рис. 1: Структурная схема анализатора спектра.

Восстановление спектрального состава входного сигнала f(x) происходит периодически с некоторым заданным периодом. Это время является периодом повторения пилообразного напряжения, которое вырабалывается генератором развёртки. Линейно нарастающее во времени напряжение с генератора развёртки подаётся на гетеродин, который генерирует переменное напряжение с частотой пропорциональной этому напряжению, но с постоянной амплитудой. При изменении пилообразного напряжения от нуля до некоторого максимального значения частота, сигналов, вырабатываемых гетеродином, изменяется в пределах от 128 до 188 кГц. Исследуемый сигнал /(6) и переменное напряжение с гетеродина одновременно поступают на смеситель. При нелинейном сложении этих колебаний на выходе смесителя возникают сигналы суммарной и разностной частоты. Для анализа используется только разностный сигнал. Смешение частот исследуемого сигнала и частоты гетеродина лежит в основе большинства современных радиоприёмных устройств супергетеродинов.

Со смесителя сигнал поступает на фильтр, который настроен на частоту 128 кГц. Таким образом мы «извлекаем» из спектра входного сигнала

(6) переменное напряжение с частотой равной разности частот гетеродина и фильтра. За время, равное периоду повторения пилообразкаег колебания с частотами от нуля до 60 кГц. Затем эти колебания детектируются, усиливаются и подаются на вертикальный вход электронно-лучевой трубки (ЭЛТ). Одновременно сигнал с генератора развёртки поступает на горизонтальный вход ЭЛТ. На экране анализатора возникает, таким образом, график, изображающий зависимость амплитуды гармоник от частоты, те. фурье-спектр исследуемого сигнала.

2 Задание 1. Исследование спектра периодической последовательности прямоугольных испульсов.

Рис. 2: Схема для исследования периодической последовательности прямоугольных испульсов.

2.1 Экспериментальная установка.

Схема для исследования спектра периодической последовательности прямоугольных импульсов представлена на рис. (2). Сигнал с выхода генератора прямоугольных импульсов Γ 5-54 подаётся на вход анализатора спектра и одновременно — на вход Y осциллографа. С генератора импульсов на осциллограф подабися также сигнал синхронизации, запускающий ждущую развёртку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на экране ЭЛТ анализатора спектра — распределение амплитуд спектральных составляющих этой последовательности.

В наблюдаемом спектре отсутствует информация об амилилуде нулевой гармоники, т. е. о величине постоянной составляющей; её местоположение (начало отсчёта шкалы частот) отмечено небольшим вертикальным выбросом.

2.2 Результаты обработки.

- 1. Соберем схему согласно рисунку (2) и подготовим приборы к работе.
- 2. Установим на анализаторе спектра режим работы с однократной разверсткой и получим на экране спектр импульсов с праметрами $f_{\text{повт}}=10^3\Gamma$ ц; $\tau=25$ мкс; частотыный масштаб $m_x=5$ к Γ ц/дел.

Проанализируем, как меняется спектр ($\Delta \nu$, $\delta \nu$): а) при увеличении τ вдвое при неизменном $f_{\text{повт}}=1$ к Γ ц; б) при увеличении $f_{\text{повт}}$ вдвое при неизменном $\tau=25$ мкс.

Рис. 3: $f_{\text{повт}}=10^3\Gamma$ ц; au=25мкс; частотыный масштаб $m_x=5$ к Γ ц/дел

Из рисунка (2.2) видно, что $\Delta \nu = 7$ дел = 35к Γ ц.

Рис. 4: $f_{\text{повт}}=10^3\Gamma$ ц; $\tau=50$ мкс; частотыный масштаб $m_x=5$ к Γ ц/дел Из рисунка видно (2.2), что Δ $\nu=3.5$ дел = 17.5к Γ ц.

Рис. 5: $f_{\text{повт}}=2*10^3\Gamma$ ц; au=25мкс; частотыный масштаб $m_x=5$ к Γ ц/дел

Из рисунка видно (2.2), что $\Delta \nu = 8$ дел = 40к Γ ц.

3. Проведем измерение зависимости ширины спектра от длительности импкльса Δ $\nu(\tau)$ при увеличении τ от 25 до 200 мкс при $f_{\text{повт}}=1$ к Γ ц. Результаты занесем в таблицу (1).

Таблица 1: Зависимость ширины спектра ΔV от длительности сигнала au.

τ		40	60	80	100	120	140	160	180	200
ΔV	7	25	17	12.5	10	8.3	7	6.25	5.7	5

Зависимость ширины спектра ΔV от длительности сигнала au.

 $\Delta V \cdot \tau = 1.006$, значит, соотношение неопределенности выполняется с точностью 0.6%.

Таблица 2: Характеристики гармоник для $\tau = 50 \mu c.$

№ Гармоники	Частота (кГц)	Амплитуда (мВ)
1	0.063	118.1
2	1.042	69.367
3	2.02	68.62
4	2.998	66.42
5	4.028	63.46
6	5.058	60.5
7	5.985	56.08
8	7.015	51.65
9	7.942	47.96
10	8.972	43.53
11	10.05	40.58
12	12.01	33.2
13	12.06	32.47
14	12.99	29.51
15	14.02	24.35
16	15.0	19.92
17	15.97	15.5
18	17.0	11.87
19	18.03	7.379

Рис. 6: Спектр для $f_{\text{повт}}=10^3 \Gamma$ ц; $\tau=100$ мкс; частотыный масштаб $m_x=5$ к Γ ц/дел

Таблица 3: Характеристики гармоник для $\tau = 100 \mu c.$

№ Гармоники	Частота (кГц)	Амплитуда (мВ)
1	0.063	219.1
2	0.99	137.2
3	2.02	129.1
4	2.998	118.8
5	4.028	103.3
6	5.058	86.33
7	6.036	65.67
8	7.066	46.49
9	7.993	29.51
10	9.075	13.28

3 Задание 2. Исследование спектра периодической последовательности цугов гармонических колебаний.

3.1 Экспериментальная установка.

Экспериментальная установка. Исследование спектра периодически чередующихся цугов гармонических колебаний проводится по схеме, изображённой на рис. (3.1). Генератор Г6-З4 вырабатывает синусоидальные колебания высокой частоты. На вход АМ (амилитудная модуляция) этого генератора подаются прямоугольные импульсы с генералора Г5-54, а на выходе мы получаем высокочастотные модулированные колебания в виде отдельных кусков синусоиды — цугов. Эти пуги с выхода генератора Г6-34 поступают на вход спектроанализатора и одновременно на вход У осциллографа. Сигнал синхронизации подавтся на вход Х осциллографа с генератора импульсов.

Рис. 7: Схема для исследования спектра периодической последовательности цугов высокочастотных колебаний.

3.2 Результаты обработки.

- 1. Соберем схему изображеннцю на рисунке (3.1) и подготовим приборы к работе.
- 2. Установим частоту несущей $\nu_0=25$ к Γ ц и проанализируем, как меняется вид спектра: а) при увеличении длительности импульса вдвое ($\tau=50,\,100$ мкс для $f_{\text{повт}}=1$ к Γ ц); б) при измерении частоты несущей: $\nu_0=25,\,10$ или 40 к Γ ц.

Рис. 8: При $\nu_0 = 25$ к Γ ц

3. При фиксированной длительности импульсов $\tau = 50$ мкс исследуем зависимость расстояния $\delta \nu$ от между соседними спектральными компонентами от периода Т (частыт повторения импульсов $f_{\text{повт}}$ в диапазоне от 1 до 8 кГц).

Таблица 4: Зависимость расстояния между соседними спектральными компонентами $\delta \nu$ от частоты повторения импульсов $f_{\text{повт.}}$.

$f_{ m nobt.}$	0.5	1	2	3	4	5
$\delta \nu$	0.5	1	2	3	4	5

Зависимость $\delta \nu$ от $f_{\text{повт.}}$ полностью совпадает с теоритической: угловой коэффициент равен 1.

4 Исследование спектра гармонических сигналов модулированных по амплитуде

4.1 Экспериментальная установка.

Схема для исследования амплитудно-модулированного сигнала представлена на рис. (4.1). Модуляционный генератор встроен в левую часть генератора сигналов Гб-34. Синусоидальный сигнал с частотой модуляции $f_{\text{мод}} = 1 \text{ к} \Gamma$ ц подается с модуляционного генератора на вход AM (амилитудная

модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей $\nu_0 = 25 \kappa \Gamma$ ц). Амплитудно-модулированный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра.

Рис. 9: Схема для исследования спектра высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоническим сигналом.

4.2 Обработка результатов.

- 1. Соберем установку по схеме (4.1), подготовим приборы к использованию.
- 2. Измеряя глубину модуляции, исследуем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии от глубины модуляции m; для рассчеты глубины модуляции m воспользуемся формулой 6.13, измеряя максимальную $2A_{\max}$ и минимальную $2A_{\min}$ амплитуды сигнала на экране осциллографа.
- 3. Построим график отнощения амплитуды боковой линии спектра к амплитуде основной линии от глубины модуляции m. Определим угол наклона графика и сравним с рассчетным по формуле 6.14.

Рис. 10: Пример изображения амплитуд боковых линий спектра и основной линии.

Таблица 5: Амплитудные характеристики.

Амплитуда (мВ)	0.2	1	1.5	2
$A_{min} (MB)$	441.7	240.6	125.7	16.44
$A_{max} (MB)$	542.2	750.4	872.5	991.5
$a_{\text{осн}} \text{ (MB)}$	324.7	324.7	324.7	317.2
абок (мВ)	15.67	81.36	120.2	156.7
m	0.102	0.514	0.748	0.967

Зависимость отношения $a_{\text{бок}}$ к $a_{\text{осн}}$ от глубины модуляции m.

Коэффициент наклона, равный 0.497, отличается от рассчита
ггого теоретически на 0.6%

5 Вывод

Исследован спектр сигнала переодической последовательности прямоугольных импульсов, переодической последовательности цугов и сигнала, промодулированного по амплитуде. Установлены качественные изменения картин спектров при изменении параметров колебаний.