Training Recurrent Neural Network

$$C = \frac{1}{2} \sum_{n=1}^{N} \|y^n - \hat{y}^n\|^2$$

$$C^n = \|y^n - \hat{y}^n\|^2$$

All element w in Wh, Wi or Wo

$$\longrightarrow w \leftarrow w - \eta \partial C^n / \partial w$$

Backpropagation through time (BPTT)

Review:

Backpropagation

$$\frac{\partial \mathbf{C}_{x}}{\partial w_{ij}^{l}} = \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}} \frac{\partial \mathbf{C}_{x}}{\partial z_{i}^{l}}$$

$$W_{ij}$$
 \mathcal{L}_i

Forward Pass

$$z^1 = W^1 x + b^1$$

$$a^1 = \sigma(z^1)$$

• • • • •

$$z^{l-1} = W^{l-1}a^{l-2} + b^{l-1}$$

$$a^{l-1} = \sigma(z^{l-1})$$

\mathcal{S}_{i}^{l}

Error signal

$$\delta^{L} = \sigma'(z^{L}) \bullet \nabla C_{x}(y)$$

$$\delta^{L-1} = \sigma'(z^{L-1}) \bullet (W^L)^T \delta^L$$

$$\delta^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$

Review:

Backpropagation

$$\frac{\partial \mathbf{C}_{x}}{\partial w_{ij}^{l}} = \begin{bmatrix} \partial z_{i}^{l} & \partial \mathbf{C}_{x} \\ \partial w_{ij}^{l} & \partial z_{i}^{l} \end{bmatrix}$$

$|\delta_i^l|$

Error signal

Backward Pass

$$\delta^{L} = \sigma'(z^{L}) \bullet \nabla C_{x}(y)$$

$$\delta^{L-1} = \sigma'(z^{L-1}) \bullet (W^L)^T \delta^L$$

$$\delta^{l} = \sigma'(z^{l}) \bullet (W^{l+1})^{T} \delta^{l+1}$$

Backpropagation through Time Xⁿ an **UNFOLD:** A very deep neural network aⁿ⁻¹ Xn-1 Input: init, x^1 , x^2 , ... x^n ∂C^n output: yn ∂y_1^n target: \hat{y}^n an-2 ∂C^n ∂C^n ∂y_3^n X^1 init

Backpropagation through Time

UNFOLD:

A very deep neural network

Input: init, x^1 , x^2 , ... x^n

output: yn

target: \hat{y}^n

Backpropagation through Time

 x^{n-2}

the same

memory

UNFOLD:

A very deep neural network

Input: init, x^1 , x^2 , ... x^n

output: yn

target: \hat{y}^n

init

xn

√n-1

$$w_2 \leftarrow w_2 - \frac{\partial C}{\partial w_2} - \frac{\partial C}{\partial w_1}$$
pointer

Some weights are shared.

(The values of w_1 , w_2 should always be the same.)

Forward Compute a^1 , a^2 , a^3 , a^4 Pass: **BPTT** \rightarrow For C^4 \rightarrow For C^3 **Backward** \rightarrow For C^2 \rightarrow For C^1 Pass: \hat{y}^3 a⁴ a^2 a^3 init

 x^2

 x^3

 x^4

Unfortunately, it is not easy to train RNN.

The error surface is rough.

Source: http://jmlr.org/proceedings/papers/v28/pascanu13.pdf

Toy Example

$$\frac{\partial C^n}{\partial w} = \frac{\partial C^n}{\partial y^r} \frac{\partial y^n}{\partial w}$$

$$\frac{\partial y^n}{\partial w} \approx \frac{\Delta y^n}{\Delta w}$$

If n = 1000:
$$w = 1$$
 $y^n = 1$ $w = 1.01$ $y^n \approx 20000$

$$w = 0.99 \longrightarrow y^n \approx 0$$

$$w = 0.01 \longrightarrow y^n \approx 0$$

$$y^1 \qquad y^2 \qquad y^3 \qquad y^n$$

$$1 \qquad 1 \qquad 1 \qquad 1$$

$$1 \qquad 1 \qquad 1 \qquad 1$$

Gradient Vanishing/Exploding

Possible Solutions

Clipped Gradient

Source: http://jmlr.org/proceedings/papers/v28/pascanu13.pdf

NAG

Source: http://www.cs.toronto.edu/~fritz/absps/momentum.pdf

NAG

GradientMovementLast Movement

Momentum

 Nesterov's Accelerated Gradient (NAG)

RMSProp

<u>Review:</u> <u>Adagrad</u>

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$

Use first derivative to estimate second derivative

RMSProp

Error Surface can be even more complex when training RNN.

RMSProp

$$w^{1} \leftarrow w^{0} - \frac{\eta}{\sigma^{0}} g^{0} \qquad \sigma^{0} = g^{0}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\alpha(\sigma^{0})^{2} + (1 - \alpha)(g^{1})^{2}}$$

$$w^{3} \leftarrow w^{2} - \frac{\eta}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\alpha(\sigma^{1})^{2} + (1 - \alpha)(g^{2})^{2}}$$

$$\vdots$$

 $w^{t+1} \leftarrow w^t - \frac{\eta}{\sigma^t} g^t$ $\sigma^t = \sqrt{\alpha(\sigma^{t-1})^2 + (1-\alpha)(g^t)^2}$

Root Mean Square of the gradients with previous gradients being decayed

LSTM can address the gradient vanishing problem.

LSTM

Extension: "peephole"

Other Simpler Variants

GRU: Cho, Kyunghyun, et al.
 "Learning Phrase
 Representations using RNN
 Encoder—Decoder for
 Statistical Machine
 Translation", EMNLP, 2014

 SCRN: Mikolov, Tomas, et al. "Learning longer memory in recurrent neural networks", ICLR 2015

Better Initialization

Quoc V. Le, Navdeep Jaitly, Geoffrey E. Hinton, "A Simple Way to Initialize Recurrent Networks of Rectified Linear Units", 2015

Vanilla RNN: Initialized with Identity matrix + ReLU

Concluding Remarks

- Be careful when training RNN ...
- Possible solution:
 - Clipping the gradients
 - Advanced optimization technology
 - NAG
 - RMSprop
 - Try LSTM (or other simpler variants)
 - Better initialization