8. Proprietăți statistice ale imaginilor de intensitate

8.1. Introducere

În această lucrare se vor prezenta principalele trăsături statistice care caracterizează distribuția nivelurilor de intensitate într-o imagine de intensitate (grayscale) sau dintr-o zonă/regiune de interes (ROI) a imaginii. Aceste mărimi statistice se pot aplica în mod analog și imaginilor color pe fiecare componentă de culoare în parte.

În cadrul acestei lucrări vom folosi următoarele notații:

- L=255 nivelul maxim de intensitate al imaginii
- h(g) histograma imaginii (numărul de pixeli având nivelul de gri g)
- M=H*W, numărul de pixeli din imagine
- p(g)=h(g)/M funcția de densitate de probabilitate a nivelurilor de gri (FDP).

8.2. Valoarea medie a nivelurilor de intensitate

Este o măsură a intensității medii a imaginii sau a regiunii de interes. O imagine întunecată va avea o medie scăzută (Fig. 8.1a), iar una luminoasă o medie ridicată (Fig. 8.1b).

Fig. 8.1 Ilustrarea poziției histogramei și a valorii medii a nivelurilor de intensitate pentru o imagine întunecată (a) și una luminoasă (b).

Calculul valorii medii a intensităților se face folosind formulele:

$$\overline{g} = \mu = \int_{-\infty}^{+\infty} g \cdot p(g) dg = \sum_{g=0}^{L} g \cdot p(g) = \frac{1}{M} \sum_{g=0}^{L} g \cdot h(g)$$
 (8.1)

$$\overline{g} = \mu = \frac{1}{M} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} I(i,j)$$
(8.2)

8.3. Deviația standard a nivelurilor de intensitate

Este o măsură a contrastului imaginii (regiunii de interes) și caracterizează gradul de împrăștiere al nivelurilor de intensitate față de valoarea medie. O imagine cu contrast ridicat va avea o deviație standard mare (Fig. 8.2a – histograma este împrăștiată pe întreaga plajă a nivelurilor de intensitate), iar o imagine cu contrast scăzut va avea o deviație standard mică (Fig. 8.2b – histograma este restrânsă la câteva niveluri de intensitate în jurul valorii medii).

Fig. 8.2 Ilustrarea poziției histogramei si a deviației standard (2σ) a nivelurilor de intensitate pentru o imagine cu contrast ridicat (a) și una cu contrast scăzut (b).

Calculul deviației standard a intensităților:

$$\sigma = \sqrt{\sum_{g=0}^{L} (g - \mu)^2 \cdot p(g)}$$
(8.3)

$$\sigma = \sqrt{\frac{1}{M} \sum_{i=0}^{H-1} \sum_{j=0}^{W-1} (I(i,j) - \mu)^2}$$
(8.4)

8.4. Binarizare automata globala

Acest algoritm de binarizare foloseste imagini care au histograma bimodala (două vârfuri, obiecte și fundal). Având doua varfuri, este de ajuns un singur prag (T) pentru binarizare.

Algoritm

- 1. Initializare:
 - a. |Se calculeaza histograma h
 - b. Se gaseste intensitatatea maxima $I_{\it max}$ si intensitatea minima $I_{\it min}$
 - c. Se ia o valoare initiala pentru T: $T = (I_{max} + I_{min})/2$
- 2. Se segmenteaza imaginea pe baza pragului si se calculeaza valoarea medie de intensitate:
 - se calculeaza μ_{G1} pentru $G1:I(i,j) \le T$
 - se calculeaza μ_{G2} pentru G2:I(i,j)>T

Implementare eficienta: se calculeaza mediile μ_{G1} si μ_{G2} folosind histograma initiala

$$\mu_{G1} = \frac{1}{N} \sum_{f=I_{min}}^{f=T} f \cdot h(f) \text{ unde } N = \sum_{f=I_{min}}^{f=T} h(f)$$

$$\mu_{G2} = \frac{1}{N} \sum_{f=T+1}^{f=I_{max}} f \cdot h(f) \text{ unde } N = \sum_{f=T+1}^{f=I_{max}} h(f)$$

- 3. Se actualizeaza pragul T: $T = (\mu_{G1} + \mu_{G2})/2$
- 4. Se repeta 2-3 pana cand $T_k T_{k-1} < eroare$ (unde eroare poate fi o valoare intreag sau subunitara)
- 5. Se binarizeaza imaginea folosind pragul T

b. Histograma imaginii

c.Imagine binara dupa segmentare cu pragul T = 165 (eroare = 0.1)

Fig. 8.3. Rezultatul binarizarii cu pragul calculat

8.5. Funcții de transformare cu formă analitică

În Fig. 8.4 sunt ilustrate câteva funcții de transformare tipice ale nivelurilor de intensitate, exprimabile într-o formă analitică:

Fig. 8.4 Funcții tipice de transformare ale nivelurilor de intensitate

8.5.1. Funcția identitate (fără efect):

$$g_{out} = g_{in} \tag{8.5}$$

8.5.2. Negativul imaginii:

$$g_{out} = L - g_{in} = 255 - g_{in} \tag{8.6}$$

8.5.3. Modificarea contrastului (lățirea/îngustarea histogramei):

$$g_{out} = g_{out}^{MIN} + (g_{in} - g_{in}^{MIN}) \frac{g_{out}^{MAX} - g_{out}^{MIN}}{g_{in}^{MAX} - g_{in}^{MIN}}$$
(8.7)

Unde:

$$\frac{g_{out}^{MAX} - g_{out}^{MIN}}{g_{in}^{MAX} - g_{in}^{MIN}} = \begin{cases} >1 & \Rightarrow & l \check{a} tire \\ <1 & \Rightarrow & \hat{i} n gustare \end{cases}$$
(8.8)

8.5.4. Corecția gamma:

$$g_{out} = L \left(\frac{g_{in}}{L}\right)^{\gamma} \tag{8.9}$$

Unde:

γ este un coeficient pozitiv: subunitar (codificare/compresie gamma) sau supraunitar (decodificare/decompresie gamma)

Atenție: se va face întotdeauna verificarea următoare: $0 \le g_{out} \le 255$, iar eventualele depășiri se vor rezolva prin saturare !!!

 γ < 1: codificare/comprimare gamma

 $\gamma > 1$: decodificare/decompresie gamma

Fig. 8.5 Ilustrarea rezultatelor operațiilor de corecție gamma

8.5.5. Modificarea luminozității

$$g_{out} = g_{in} + offset \tag{8.10}$$

Atenție: se va face întotdeauna verificarea următoare: $0 \le g_{out} \le 255$, iar eventualele depășiri se vor rezolva prin saturare !!!

8.6. Egalizarea histogramei

Este o transformare care permite obținerea unei imagini cu histogramă/FDP cvasiuniformă, indiferent de forma histogramei/FDP a imaginii de intrare. Pentru aceasta se va folosi următoarea transformare (vezi notele de curs pentru mai multe detalii):

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{j=0}^k \frac{n_j}{n}$$
 , $k = 0...L$ (8.11)

Unde:

 r_k – nivelul de intensitate normalizat al imaginii de intrare corespunzător nivelului de intensitate (nenormalizat) k: $r_k = \frac{k}{L}$, ($r_k = 0...1$ și k = 0...L) (L=255 pt. imagini grayscale cu 8 biţi/pixel)

 s_k – nivelul de intensitate normalizat al imaginii de ieșire.

 $p_{C}(r_{k})$ – funcția densității de probabilitate cumulative (FDPC) a imaginii de intrare

$$p_C(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{g=0}^k \frac{h_r(g)}{M}$$
 (8.12)

 r_j – nivelul de intensitate normalizat al imaginii de intrare corespunzător nivelului de intensitate (nenormalizat) j: $r_j = \frac{j}{L}$, j = 0...L.

8.6.1. Algoritmul de egalizare a histogramei

- 1. Se calculează histograma sau FDP a imaginii de intrare (vector de 256 elemente).
- 2. Se calculează FDPC, conform (8.12), sub forma unui vector p_C de 256 elemente.
- 3. Se calculează funcția de transformare pentru egalizarea histogramei, în conformitate cu (8.12). Deoarece din relația (8.11) se obțin valori s_k normalizate ale intensităților de ieșire, este necesară înmulțirea valorii s_k cu L (255):

$$g_{out} = Ls_k = \frac{L}{M} \sum_{g=0}^{g_{in}} h(g)$$
 , $k = g_{in}$ (8.13)

Această funcție de transformare se poate scrie sub forma unei tabele (vector) de echivalente:

$$g_{out} = tab(g_{in}) = 255 \cdot p_C(g_{in})$$
 (8.14)

4. Se calculează intensitățile pixelilor din imaginea de ieșire (egalizată) pe baza echivalențelor din tabela :

$$Dst(i, j) = tab[Src(i, j)]$$
(8.15)

8.7. Activități practice

- 1. Calculați și afișați media, deviația standard si histograma si histograma cumulativa a nivelurilor de intensitate. Pentru histograma folosiți funcția *ShowHistogram* din OpenCV Application (vezi si L3).
- 2. Implementați metoda de determinare automată a pragului de binarizare (vezi secțiunea 8.4) și binarizați imaginile folosind acest prag.
- 3. Implementați funcțiile de transformare a histogramei (vezi secțiunea 8.5) pentru calculul negativului imaginii, lățirea/îngustarea histogramei, corecția gamma, modificarea luminozității. Introduceți limitele \mathcal{S}_{out}^{MIN} , \mathcal{S}_{out}^{MAX} , coeficientul gamma și valoarea de creștere a luminozității prin intermediul consolei. După fiecare procesare afișați histogramele imaginilor (sursă si destinație).
- **4.** Implementați algoritmul de egalizare a histogramei (vezi secțiunea 8.6). Afișați histogramele imaginilor (sursă și destinatie).
- 5. Salvați-vă ceea ce ați lucrat. Utilizați aceeași aplicație în laboratoarele viitoare. La sfârșitul laboratorului de procesare a imaginilor va trebui să prezentați propria aplicație cu algoritmii implementați!!!

Referințe

[1] R.C.Gonzales, R.E.Woods, Digital Image Processing, 2-nd Edition, Prentice Hall, 2002