Solución de ecuaciones no lineales

Dr. Manuel Adrian Acuña Zegarra

- Se emplea para obtener una aproximación de una raíz, o solución, de una ecuación de la forma f(x) = 0.
- ▶ El método se basa en emplear iterativamente el teorema de Bolzano, el cual garantiza que dada una función f continua en el intervalo [a,b], tal que $f(a) \times f(b) < 0$, entonces existe al menos un número $p \in (a,b)$ tal que f(p) = 0.

Para llevar a cabo este método, se siguen los siguientes pasos:

- ▶ Paso 1: Verificar que la función f cumpla las condiciones del teorema de Bolzano en el intervalo propuesto [a, b].
- ▶ Paso 2: Encontrar el punto medio del intervalo [a, b] y escoger el subintervalo que contenga a la raíz buscada. Para hacer esto último, aplicaremos nuevamente el teorema de Bolzano sobre este nuevo intervalo.
- ▶ Paso 3: Aplicar el paso 2 a nuestro nuevo intervalo y proseguir con este procedimiento en cada nuevo intervalo generado.

Definimos a la tolerancia como un valor $\epsilon > 0$, tal que

$$|p_n - p_{n-1}| < \epsilon,$$
 $\frac{|p_n - p_{n-1}|}{|p_n|} < \epsilon, \quad p_n \neq 0, \quad o$
 $|f(p_n)| < \epsilon.$

donde p_n es el valor obtenido en el n-ésima iteración al aplicar el método de bisección. En el caso de que se conozca la solución exacta, en las dos primeras desigualdades se sustituirá el valor de p_n por p y el de p_{n-1} por p_n .

Es importante mencionar que usualmente se considera que el error relativo es un mejor criterio para relacionar con el valor de tolerancia, puesto que existen casos en donde:

- i) $p_n p_{n-1}$ tienda a cero, pero la aproximación difiera mucho de la raíz exacta, o
- ii) $f(p_n)$ sea muy cercano a cero, pero la aproximación aún se encuentra lejos de la raíz buscada.

Ejemplos

1. Aplique el método de bisección para aproximar la solución de $x^2=2$ cuando $x\in[1,2]$. Considere una tolerancia igual a 0.0001.

Ejemplos

- 1. Aplique el método de bisección para aproximar la solución de $x^2=2$ cuando $x\in[1,2]$. Considere una tolerancia igual a 0.0001.
- 2. Aplique el método de bisección para aproximar la solución de $cos(x) \sqrt{x} = 0$ cuando $x \in [0, \pi/4]$. Considere una tolerancia igual a 0.0005.

Sea la función $f(x) = x^2 - 2x + 3$. Es claro que si y es solución de f(x) significa que:

$$y^2 - 2y + 3 = 0,$$

lo cual es equivalente a decir que

$$y = \frac{y^2 + 3}{2} \ .$$

Por lo tanto, si denotamos al lado derecho de la ecuación anterior por g(y), tenemos

$$g(y) = y$$
.

▶ Un punto fijo de una función g es un número x tal que g(x) = x.

- ▶ Un punto fijo de una función g es un número x tal que g(x) = x.
- ► Gráficamente se puede interpretar lo anterior de la siguiente manera:

Observemos los siguientes ejemplos:

1.
$$g(x) = x^2 - 2$$
 cuando $x \in [-2, 3]$.

Observemos los siguientes ejemplos:

1.
$$g(x) = x^2 - 2$$
 cuando $x \in [-2, 3]$.

2.
$$g(x) = \sin(x) - x$$
 para $x \in [-\pi/4, \pi/4]$

Observemos los siguientes ejemplos:

1.
$$g(x) = x^2 - 2$$
 cuando $x \in [-2, 3]$.

2.
$$g(x) = \sin(x) - x$$
 para $x \in [-\pi/4, \pi/4]$

3.
$$g(x) = e^x - 1$$
 cuando $x \in [-1, 1]$.

El siguiente teorema da condiciones suficientes para la existencia y unicidad del punto fijo.

Teorema

- a) Si $f \in C[a, b]$ y $f(x) \in [a, b]$, para todo $x \in [a, b]$, entonces f tiene al menos un punto fijo en [a, b].
- b) Y si además f'(x) existe para todo $x \in (a,b)$ y existe una constante positiva k < 1 con

$$|f'(x)| \le k$$
, para todo $x \in (a, b)$,

entonces el punto fijo en [a, b] es único.

Sea la función
$$g(x) = \frac{x^2-2}{4}$$
 definida para $x \in [-1,1]$.

Sea la función $g(x) = \frac{x^2-2}{4}$ definida para $x \in [-1,1]$.

▶ Es claro que g(x) es una función continua en $x \in [-1, 1]$.

Sea la función $g(x) = \frac{x^2-2}{4}$ definida para $x \in [-1,1]$.

- ▶ Es claro que g(x) es una función continua en $x \in [-1, 1]$.
- ▶ Para garantizar que $g(x) \in [-1,1]$ para todo $x \in [-1,1]$, podemos aplicar los criterios de las derivadas.

Sea la función $g(x) = \frac{x^2-2}{4}$ definida para $x \in [-1,1]$.

- ▶ Es claro que g(x) es una función continua en $x \in [-1, 1]$.
- ▶ Para garantizar que $g(x) \in [-1,1]$ para todo $x \in [-1,1]$, podemos aplicar los criterios de las derivadas.
- ▶ Finalmente, tras observar las características de la primera derivada de g(x) es claro que existe k < 1 tal que

$$|g'(x)| \le k$$
, para todo $x \in (a, b)$.