Preguntas: 10

Respuestas

válidas: 🔌

Puntuación: 🔌

Nota:

¿Con cuántas hebras se ejecuta este código si previamente se ha fijado la variable de entorno OMP_NUM_THREADS=8?

Elección única

```
omp_set_num_threads(4);
#pragma omp parallel num_threads(2)
printf("hello\n");
```

Usuario Profesores

a) 2

b) 1

© c) 4

(b) 8

2 ¿Cuál de las siguientes formas es la correcta para fijar a 4 el número de hebras para un programa OpenMP ?

Elección única

Usuario Profesores

- a) En un progarma OpenMP, usando la función
 omp_max_threads(4) al principio de la función main.
- b) En un programa OpenMP, usando la función omp_set_num_threads(4) al principio de la función main.
 - c) En un programa OpenMP, usando la función
 omp_num_threads(4) al principio de la función main.
 - d) En la consola del sistema, usando la variable de entorno export OMP_THREAD_LIMIT=4
- El parámetro chunk en el siguiente código determina:

 #pragma omp parallel for schedule(guided,chunk)

Elección única Usuario Profesores

a) El tamaño del bloque iteraciones que OpenMP asignará

siempre a cada hebra

- b) El tamaño del bloque iteraciones óptimo que OpenMP debe usar para minimizar el tiempo de ejecución
- c) El tamaño mínimo del bloque iteraciones que OpenMP asignará a una hebra
 - d) El tamaño máximo del bloque iteraciones que OpenMP asignará a una hebra

Indica qué reparto de iteraciones a hebras es correcto suponiendo 3 hebras y la cláusula schedule(dynamic,2).

Elección única

Usuario Profesores

de	a)											
		iteración	0	1	2	3	4	5	6	7	8	9
		hebra	0	0	1	1	2	2	0	0	0	$\overline{2}$

b)
$$\frac{\text{iteración} \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9}{\text{hebra} \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 2 \quad 2 \quad 2 \quad 0}$$

Elección única

¿Qué muestra la ejecución del siguiente programa por pantalla suponiendo que se ejecuta en un nodo de ATCgrid?

int n = (int)(omp_get_max_threads() / 4);
#pragma omp parallel for num_threads(6) if(n > 6)
for (int i=0; i<n; i++)</pre>

printf("h: \%d ", omp_get_thread_num());

Usuario Profesores

- a) h:0 h:0 h:0 h:0 h:0 h:0
- b) Las otras respuestas no son correctas.
- © h:0
- 🐚 d) h:0 h:1 h:2 h:3 h:4 h:5

Indica qué reparto de iteraciones a hebras es correcto suponiendo dos hebras y la cláusula schedule (guided, 3)

Elección única

Usuario Profesores

•	(D)	a)	iteración	0	1	2	3	4	5	6	7	8	9	10	11
			hebra	0	0	0	0	0	0	1	1	1	0	0	0

de	b)													
	ite	ración	0	1	2	3	4	5	6	7	8	9	10	11
	\overline{h}	\overline{ebra}	0	0	0	0	0	0	0	1	1	0	0	0

c) iteración 0 1 2 3 4 5 6 7 8 9 10 11 hobro 0 0 0 1 1 1 1 0 0 0 1 1 1 1

do	d)												
•	iteración	0	1	2	3	4	5	6	7	8	9	10	11
	$\overline{ m hebra}$	0	0	0	0	0	0	1	1	1	0	0	1

¿Cuál de las siguientes opciones permitiría comprobar qué tipo de planificación obtiene mejores resultados para un programa paralelo con ayuda de un script? Usuario Profesores

Elección única

D a) schedule(dynamic)

0 b) schedule(runtime)

C) schedule(static) 1

d) schedule(guided) 0

Dado el código que se tiene a continuación ¿Qué tipo de reparto de iteraciones a hebras sería el más óptimo en tiempo de ejecución?

Elección única

```
#pragma omp parallel for
for (int i=0; i<100; i++)
 a[i] += b[i]*c[i];
```

Usuario Profesores

a) static

b) runtime 1

D c) dynamic

Ø d) guided

¿Qué código cree mejor para conseguir multiplicar una matriz triangular inferior por un vector?

Elección única

int m[N][N], v[N], $r[N] = {0}$; Usuario Profesores

Indica qué reparto de iteraciones a hebras es correcto suponiendo 4 hebras y la cláusula schedule(static,3).

Elección única

Usuario Profesores

b)
$$\frac{\text{iteración} \ |\ 0\ |\ 1\ |\ 2\ |\ 3\ |\ 4\ |\ 5\ |\ 6\ |\ 7\ |\ 8\ |\ 9}{\text{hebra}}$$

(D)	C)											
	,	iteración	0	1	2	3	4	5	6	7	8	9
		hebra	0	0	0	0	1	1	1	1	2	2
No.	d)											
CP	u)	iteración	0	1	2	3	4	5	6	7	8	9
		hebra	0	0	0	1	1	1	2	2	2	3