

Guía 5 Capacitancia

Objetivos de aprendizaje

Esta guía sirve de soporte para estudiar capacitancia. Las capacidades que tienes que comprobar o desarrollar a través de esta guía son:

- Expresar la capacitancia entre dos materiales conductores.
- Aplicar la definición de capacitancia en problemas de diferente geometría.

Esta guía contiene un breve resumen de la materia, y los ejercicios esenciales que tienes que saber resolver.

Para profundizar tus conocimientos, puedes apoyarte en las secciones 26.1 y 26.2 del libro "Física para ciencias e ingeniería" vol 2 de Serway & Jewett

Ideas clave

Capacitancia

La combinación de dos conductores cargados se conoce como **capacitor**. Si estos conductores, también llamados *"placas"*, tienen una carga de igual magnitud, pero de signo opuesto, existe entre ellos una diferencia de potencial ΔV .

Figura 1: Conductores cargados formando un capacitor.

La carga Q que está presente sobre las placas del conductor es linealmente proporcional con la diferencia de potencial entre los conductores; es decir $Q \propto \Delta V$. La constante de proporcionalidad **depende de la forma y de la separación** entre los conductores. Esta constante es conocida como la **capacitancia**.

Entonces la **capacitancia** se define como la razón entre la magnitud de la carga en cualquiera de los conductores, y la magnitud de la diferencia de potencial entre ellos.

$$C = \left| \frac{Q}{\Delta V} \right|$$

La unidad de Capacitancia en el SI es el farad (F), definido como:

$$1[F] = 1\left[\frac{C}{V}\right]$$

¡Recuerda! Por definición la capacitancia siempre es una cantidad positiva, y tanto la carga como la diferencia de potencial se expresan como cantidades positivas.

Cálculo de la capacitancia

La capacitancia de un par de conductores se ilustra generalmente mediante tres geometrías comunes, placas paralelas, cilindros y esferas concéntricos. En estos cálculos supondremos que los conductores cargados están separados por un espacio vacío.

Ejemplo

Condensador cilíndrico

Considere a continuación un conductor cilíndrico sólido de radio a rodeado por una carcasa cilíndrica coaxial de radio interior b, como se muestra en la Figura 2. La longitud de ambos cilíndros es L y consideramos que esta longitud es mucho mayor que b-a, la separación de los cilindros, de modo que se puedan despreciar los efectos de borde. El condensador se carga de modo que el cilindro interior tiene carga +Q mientras que la capa exterior tiene una carga -Q. ¿Cuál es la capacitancia?

Figura 2.

Solución:

Para calcular la capacitancia, primero buscamos el módulo del campo eléctrico en todas partes. Debido a la simetría cilíndrica del sistema, elegimos nuestra superficie gaussiana como un cilindro coaxial con longitud l < L y radio r donde a < r < b. A partir del flujo eléctrico usando la ley de Gauss, obtenemos:

$$\oint_{S} \vec{E} \cdot d\vec{A} = EA = E(2\pi rl) = \frac{\lambda l}{\varepsilon_0} \rightarrow E = \frac{\lambda}{2\pi \varepsilon_0 r}$$

Donde $\lambda=Q/L$ es la carga por unidad de longitud. Observe que el campo eléctrico no desaparece en la región a < r < b. Para r < a, la carga encerrada es $q_{enc} = 0$ como cualquier carga neta en un conductor debe residir en su superficie. Del mismo modo, para r > b la carga encerrada es $q_{enc} = \lambda l - \lambda l = 0$ ya que la superficie gaussiana encierra cargas iguales pero de signos opuestos, de ambos conductores.

La diferencia de potencial viene dada por:

$$\Delta V = V_b - V_a = -\int_a^b E_r dr = -\frac{\lambda}{2\pi\varepsilon_0} \int_a^b \frac{dr}{r} = -\frac{\lambda}{2\pi\varepsilon_0} \ln\left(\frac{b}{a}\right)$$

Donde hemos elegido la ruta de integración a lo largo de la dirección de las lineas de campo eléctrico. Como era de esperar, el conductor externo con carga negativa tiene un potencial menor. Esto da:

$$C = \frac{Q}{|\Delta V|} = \frac{\lambda L}{\lambda \ln(b/a)/2\pi\varepsilon_0} = \frac{2\pi\varepsilon_0 L}{\ln(b/a)}$$

Vemos que la capacitancia \mathcal{C} , depende solo de los factores geométricos \mathcal{L} , \mathcal{a} y \mathcal{b}

Ejercicios

Ejercicio 1

Dos conductores con cargas netas de $+10~\mu C$ y $-10~\mu C$, tienen una diferencia de potencial de 10~V entre ellas. Determine:

- a) La capacitancia del sistema.
- b) ¿Cuál será la diferencia de potencial entre los dos conductores si las cargas en cada uno de ellos se incrementan hasta $+100~\mu C$ y $-100~\mu C$ respectivamente?

Resp: a)
$$C = 1 [\mu F]$$

b)
$$\Delta V = 100 [V]$$

Ejercicio 2

Se tienen dos placas conductoras paralelas muy grandes de área A, separadas por una distancia d. Una placa tiene carga +Q y la otra placa tiene carga -Q.

Encuentre:

- a) El campo eléctrico entre las placas.
- b) La diferencia de potencial entre las placas.
- c) La capacitancia.

Resp: a)
$$\overrightarrow{E} = \frac{\sigma}{\varepsilon_0} \hat{\imath}$$
,

b)
$$\Delta V = E d$$
,

c)
$$C = \frac{\varepsilon_0 A}{d}$$

Ejercicio 3

Se tienen dos cascarones esféricos conductores, concéntricos, de radio a y b respectivamente. El cascarón interior tiene carga +Q y el cascarón exterior tiene carga -Q.

Encuentre:

- a) El campo eléctrico entre los cascarones esféricos.
- b) La diferencia de potencial entre los cascarones.
- c) La capacitancia.

$$\textit{Resp: a)} \overrightarrow{E} = \frac{\textit{Q}}{4\pi\varepsilon_0 r^2} \hat{r},$$

b)
$$\Delta V = \frac{Q}{4\pi\varepsilon_0} \frac{(a-b)}{ab}$$
,

c)
$$C = \frac{4\pi\varepsilon_0 ab}{b-a}$$

Ejercicio 4

Se tiene un capacitor esférico, cuyo radio interior mide $7\ cm$ y el radio exterior $14\ cm$.

- a) Calcule la capacitancia del dispositivo.
- b) ¿Cuál deberá ser la diferencia de potencial entre los cascarones esféricos para obtener una carga de $4\,\mu\text{C}$ en el capacitor?

Resp:
$$a) C = 15,6 [pF],$$

b)
$$\Delta V = 257 [kV]$$

Ejercicio 5

a) Si considera la Tierra y una capa de nubes a $800\,m$ de altura desde su superficie, como las "placas" de un capacitor, calcule la capacitancia del sistema Tierra-capa de nubes.

Suponga que la capa de nubes tiene un área de $1\,km^2$ y que el aire entre la nube y el suelo es puro y seco. Suponga que se acumula una carga en la nube y en el suelo hasta que un campo eléctrico uniforme de $3\times 10^6\,N/C$ en todo el espacio entre ellos provoca una ruptura en el aire que conduce electricidad en forma de relámpago.

b) ¿Cuál es la carga máxima que puede aceptar la nube?

Resp: a)
$$C=11.1 [nF]$$

b) $Q = 26,6 [C]$

Ejercicio 6

Un capacitor está formado por dos placas paralelas, cada una de ellas con un área de $7.6\ cm^2$, separadas por una distancia de $1.8\ mm$. A estas placas se les aplica una diferencia de potencial de $20\ V$. Calcule:

- a) El campo eléctrico entre las placas.
- b) La densidad de carga superficial.
- c) La capacitancia.
- d) La carga sobre cada placa.

Resp: a)
$$E = 1.11 \times 10^4 [V/m]$$
,
b) $\sigma = 98.3 [nC/m^2]$,
c) $C = 3.74 [pF]$,
d) $Q = 74.7 [pC]$,