Ciencia de Datos 2021

Lista 01b

30.enero.2021

- 1. Sean X, Y variables aleatorias. Demostrar las siguientes propiedades:
 - a) Si $\mathbb{V}ar(X) = \mathbb{E}(X^2) (\mathbb{E}X)^2$.
 - b) Si X y Y son independientes, entonces Cov(X,Y)=0.
 - c) Mostrar que I(X,Y) = I(Y,X).
 - d) Proporciona un ejemplo donde no se cumple $\mathbb{V}ar(X+Y) = \mathbb{V}ar(X) + \mathbb{V}ar(Y)$.
- 2. Sean X, Y variables con las siguiente función de probabilidad conjunta:

$\mathbb{P}(x,y)$	x = 1	x = 2	x = 3	x = 4
y=1	1/8	1/16	1/32	1/32
y=2	1/16	1/8	1/32	1/32
y = 3	1/16	1/8	1/32	1/32
y=4	1/16	1/16	1/16	1/16

Calcular

- a) H(X) y H(Y),
- b) $H_Y(X)$ y $H_X(Y)$,
- c) H(X,Y),
- d) I(X,Y).
- 3. Sean X, Y variables aleatorias conjuntamente continuas con función de densidad

$$f(x,y) = \begin{cases} 2, & \text{si } y+x \leq 1, x>0, y>0; \\ 0, & \text{en otro caso.} \end{cases}$$

Encontrar Cov(X,Y) y $\rho(X,Y)$ (correlación).

- 4. En el lenguaje de programación de su preferencia (Python, R, Matlab, C⁺⁺, o cualquier otro que quieran), hacer lo siguiente:
 - a) Construir una muestra de 200 elementos, de una variable aletoria $X \in \mathbb{R}^3$ que sigue una distribución normal $\mathcal{N}_3(\mu, \Sigma)$, donde $\mu \in \mathbb{R}^3$ y $\Sigma \in \mathbb{R}^{3 \times 3}$ son de su elección (Σ debe ser positiva definida, y tener valores 1 en su diagonal principal).
 - b) Hacer un plot en 3D de la nube de puntos de esta distribución.
 - c) Hacer un pairplot de esta distribución.

Repita lo anterior para diferentes matrices Σ (3 veces). En función de las gráficas obtenidas, comente sus hallazgos.

5. Descargue la base de datos Iris (publicada orignalmente por Ronald Fisher en 1936).

https://archive.ics.uci.edu/ml/datasets/iris

https://en.wikipedia.org/wiki/Iris_flower_data_set

Hacer un análisis exploratorio de estos datos (e.g. plot de los datos, histogramas, graficar distribuciones univariadas, pairplots, calcular resúmenes de distribuciones). A partir de esta información, ¿qué puede concluir de sus datos?

6. (Ley de probabilidad total para esperanzas, caso finito). Sean X y Y variables aleatorias finitas. Mostrar que

$$\mathbb{E}(X) = \sum_{y \in \Omega_Y} \mathbb{E}[X|Y=y] \, \mathbb{P}(Y=y).$$

- 7. Para las siguientes variables aleatorias, calcular $\mathbb{E}(X)$, $\mathbb{V}ar(X)$, I(X), f_X e F_X . (Sugerencia: Hacer una tabla, con todas las distribuciones que vayan viendo en el curso).
 - a) $X \sim Unif[1, n]$, donde $[1, n] = \{1, 2, 3, \dots, n\}$.
 - b) $X \sim Ber(p)$.
 - c) $X \sim Binom(n, p)$.
 - d) $X \sim Geom(\theta)$, $0 < \theta < 1$.
 - e) $X \sim Possion(\lambda), \lambda > 0.$
- 8. Para las siguientes variables aleatorias continuas, calcular $\mathbb{E}(X)$, $\mathbb{V}ar(X)$, I(X), f_X e F_X . (Sugerencia: Hacer una tabla).
 - a) $X \sim U(a, b)$, a < b.
 - b) $X \sim Exp(\lambda)$, $\lambda > 0$.
 - c) $X \sim \mathcal{N}(\mu, \sigma^2), \ \mu \in \mathbb{R}, \ \sigma > 0.$