Cavalos Programação nível 1 - Fase 2 - 2008 Adhoc - Difícil

O jogo de xadrez como conhecido hoje foi inventado por volta do século XV, na Europa Medieval. Uma das suas peças mais interessantes é o *cavalo*, que se movimenta e ataca outras peças conforme a figura abaixo:

	•		•	
•				•
		\Im		
•				•
	•		•	

Na figura, o símbolo '•' representa as posições que o cavalo na casa central ataca.

Existem vários quebra-cabeças interessantes envolvendo os movimentos do cavalo; um deles pergunta quantos cavalos podem ser colocados em um tabuleiro $M \times N$ de forma que nenhum par de cavalos se ataque:

Soluções do quebra-cabeça para (a) um tabuleiro (a) 5×3 (b) um tabuleiro 2×6 .

A sua tarefa é escrever um programa que, dados M e N, determina quantos cavalos podem ser colocados em um tabuleiro $M \times N$ de forma que nenhum par de cavalos ataque-se simultaneamente.

Entrada

A entrada contém um único conjunto de testes, que deve ser lido do dispositivo de entrada padrão (normalmente o teclado). A primeira (e única) linha da entrada contém dois inteiros, M e N, $(1 \le M \le 1000, 1 \le N \le 1000)$ indicando, respectivamente, o número de linhas e o número de columas do tabuleiro.

Saída

Seu programa deve imprimir, na $saida \ padr\~ao$, uma única linha, contendo um inteiro indicando o maior número de cavalos que podem ser colocados no tabuleiro sem que dois deles se ataquem.

Exemplo de entrada	Exemplo de saída	
5 3	8	
	,	
Exemplo de entrada	Exemplo de saída	
2 6	8	
Exemplo de entrada	Exemplo de saída	
1 1		