1 chemin espace-temps

Nous considérons les sommets et les arêtes qui inclus dans une boite $\Lambda(l)$ de taille $2l \times h$. On étudie les chemin espace-tempss fermés dans la boîte formés par la percolation dynamique de paramètre p.

Définition 1. Une arête-temps est un couple (e,t) où e est une arête de \mathbb{E} et t un nombre réel.

Nous définissons une relation d'équivalence de connexion sur l'espace $\mathbb{E} \times \mathbb{R}$ de la manière suivante : nous disons que les arêtes-temps (e,t) et (f,s) sont connectés si e=f ou (s=t et e,f ont une extrémité commune). Nous notons $(e,t) \sim (f,s)$ si l'une des conditions est vérifiée. Un chemin espace-temps est une suite d'arête-temps $(e_i,t_i)_{i\geqslant 0}$ telle que pour tout $i\geqslant 0$, $(e_i,t_i)\sim (e_{i+1},t_{i+1})$. Nous définissons la longueur d'un chemin espace-temps comme le nombre d'arête-temps dans la suite. Nous disons que (e_i,t_i) est un changement de temps si $e_{i+1}=e_i$ et $t_{i+1}\neq t_i$ et nous appelons $[t_i,t_{i+1}]$ si $t_i< t_{i+1}$ ou $[t_{i+1},t_i]$ si $t_i>t_{i+1}$ un intervalle de changement de temps. Désormais, nous considérons les chemins espace-temps avec les changements de temps simples, i.e. si (e_k,t_k) est un changement de temps alors, $e_{k+2}\neq e_k$.

Nous considérons le processus de percolation dynamique à temps discret et ω une trajectoire. Un chemin epsace-temps $(e_i,t_i)_{0\leqslant i\leqslant n}$ est dit fermé si pour tout $1\leqslant i\leqslant n,\ e_i$ est fermé à l'instant t_i dans ω . Nous disons que ce chemin espace-temps fermé est d'occurrence disjointe de longueur n avec m changements de temps s'il existe m indices $1\leqslant k(1)< k(2)<\cdots< k(m)\leqslant n$ telles que :

• Les changements de temps arrivent aux instants $t_{k(1)}, \ldots, t_{k(m)}$, i.e.

$$\forall i \in \{1, \dots, m-1\}$$
 $e_{k(i)} = e_{k(i)+1}$ $t_{k(i)+1} = \dots = t_{k(i+1)}$.

• Les arêtes visitées à un instant donné sont 2 à 2 distinctes, i.e.

$$\forall i, j \in \{1, \dots, n\}$$
 $(i \neq j, t_i = t_i) \Rightarrow e_i \neq e_i$.

- Les fermetures d'arêtes arrivent disjointement, i.e, pour tout $i, j \in \{1, ..., j\}$, i < j tels que $e_i = e_j$, l'une des 3 conditions suivantes est vérifiée :
 - j = i + 1 et $i \in \{k(1), \dots, k(m)\}$;
 - $t_i < t_j$ et il existe un instant $s \in]t_i, t_j[$ tel que e_j est ouverte à s dans ω ;

• $t_j < t_i$ et il existe un instant $s \in]t_j, t_i[$ tel que e_j est ouverte à s dans ω :

Soit x, y deux sommets dans $\Lambda(l)$, nous disons qu'un chemin espace-temps $(e_1, t_1), \ldots, (e_n, t_n)$ relie x à y si x est l'une extrémité de e_1 et y une extrémité de e_n .

Proposition 1. Soit $(e_i, t_i)_{0 \le i \le N}$ un chemin espace-temps fermé qui relie x à y dans ω , il existe une fonction $\phi : \{1, \ldots, n\} \to \{1, \ldots, N\}$ strictement croissante telle que $(e_{\phi(1)}, t_{\phi(1)}), \ldots, (e_{\phi(n)}, t_{\phi(n)})$ est un chemin espace-temps fermé d'occurrence disjointe qui relie x à y dans ω .

 $D\acute{e}monstration$. Nous allons montrer cette proposition par récurrence sur la longueur N. Supposons que la proposition est vraie pour tout chemin de longueur inférieur à N. Considérons maintenant un chemin

$$(e_1, t_1), \ldots, (e_{N+1}, t_{N+1})$$

de longueur N+1 qui relie x à y. S'il existe un indice $i \leq N$ tel que $(e_i, t_i) = (e_{N+1}, t_{N+1})$, alors le chemin

$$(e_1, t_1), \ldots, (e_i, t_i)$$

est un chemin de longueur $i \leq N$ qui relie x à y. Par l'hypothèse de récurrence, il existe un chemin extrait d'occurrence disjointe qui relie x à y. S'il existe un indice $1 \leq i \leq N$ tel que $e_i = e_{N+1}$, et e_{N+1} reste fermée entre t_i et t_{N+1} , nous considérons le chemin

$$(e_1, t_1), \ldots, (e_i, t_i), (e_{N+1}, t_{N+1})$$

qui est de longueur inférieur à N. Nous appliquons l'hypothèse de récurrence à ce chemin et nous obtenons un chemin extrait d'occurrence disjointe qui relie x à y. Si aucun des cas précédents a lieu, nous considérons le chemin $(e_1, t_1), \ldots, (e_N, t_N)$ de longueur N et qui relie x à z, où z est un voisin de y. Par l'hypothèse de récurrence, il existe une fonction strictement croissante $\phi: \{1, \ldots, n\} \to \{1, \ldots, N\}$ telle que le chemin extrait

$$\gamma(\phi) = (e_{\phi(1)}, t_{\phi(1)}), \dots, (e_{\phi(n)}, t_{\phi(n)})$$

est un chemin d'occurrence disjointe qui relie x à z. Si ce chemin n'emprunte pas l'arête e_{N+1} , alors nous posons $\phi(n+1)=N+1$ et nous obtenons le chemin extrait souhaité. Considérons le cas où $\gamma(\phi)$ emprunte l'arête e_{N+1} . Supposons tout d'abord que $\gamma(\phi)$ passe par e_{N+1} avant et après t_{N+1} . Nous notons t_- (respectivement t_+) le dernier (respectivement premier) instant

strictement avant (respectivement après) t_{N+1} où $\gamma(\phi)$ visite e_{N+1} et soit j_- (respectivement j_+) l'unique indice tel que $t_{\phi(j_-)} = t_-$ et $e_{\phi(j_-)} = e_{N+1}$ (respectivement $t_{\phi(j_+)} = t_+$ et $e_{\phi(j_+)} = e_{N+1}$). Plus formellement, les indices j_-, j_+ sont définis par les conditions suivantes :

$$j_{-} < t_{N+1}, \quad e_{j_{-}} = e_{N+1}, \quad t_{j_{-}} = \max \{ t_j : 1 \leqslant j \leqslant N, e_j = e_{N+1}, t_j < t_{N+1} \},$$

 $j_{+} > t_{N+1}, \quad e_{j_{+}} = e_{N+1}, \quad t_{j_{+}} = \min \{ t_j : 1 \leqslant j \leqslant N, e_j = e_{N+1}, t_j > t_{N+1} \}.$

Comme le chemin $\gamma(\phi)$ est d'occurrence disjointe et ne contient pas l'arête temps (e_{N+1}, t_{N+1}) , et qu'aucun de ses arêtes-temps (e_i, t_i) de changements de temps n'est restée fermée entre t_i et t_{N+1} , nécessairement, l'arête e_{N+1} doit s'ouvrir sur $]t_{j_-}, t_{N+1}[$ et sur $]t_{N+1}, t_{j_+}[$, nous ajoutons (e_{N+1}, t_{N+1}) à la fin de $\gamma(\phi)$ et nous obtenons le chemin extrait d'occurrence disjointe qui relie x à y.

Maintenant, supposons que $\gamma(\phi)$ visite e_{N+1} uniquement avant t_{N+1} . Nous définissons j_- de la même façon que dans le cas précédent. Nécessairement, e_{N+1} s'ouvre entre t_{j_-} et t_{N+1} , alors le chemin

$$(e_{\phi(1)}, t_{\phi(1)}), \dots, (e_{\phi(n)}, t_{\phi(n)}), (e_{N+1}, t_{N+1})$$

vérifie les conditions voulues.

Enfin, si $\gamma(\phi)$ visite e_{N+1} uniquement après t_{N+1} , nous définissons seulement j_+ et nous obtenons le chemin extrait voulu de la même manière que le cas précédent.

Définition 2. Un chemin espace-temps $(e_i, t_i)_{0 \le i \le n}$ est dit impatient si toute arête de changement de temps e_k est suivi par une arête e_{k+2} qui change son état à l'instant t_{k+2} dans ω , i.e.,

$$\forall k \in \{1, \dots, n-2\} \quad e_k = e_{k+1} \Rightarrow \omega(e_{k+2}, t_{k+2}) \neq \omega(e_{k+2}, t_{k+2}^-)$$

Nous allons montrer tout chemin espace-temps admet une modification temporelle qui est impatiente. Pour cela, nous introduisons l'algorithme de modification récursive suivante :

Algorithme 1. Soit $(e_1, t_1), \ldots, (e_n, t_n)$ un chemin espace-temps. Nous allons modifier la première arête e_1 du chemin, selon les cas suivants :

- Si $e_2 \neq e_1$, alors nécessairement $t_1 = t_2$, et nous ne modifions pas (e_1, t_1) . Nous recommençons l'algorithme avec le chemin $(e_2, t_2), \ldots, (e_n, t_n)$;
- Si $t_1 < t_2$, soit τ_3 le dernier instant avant t_2 où e_3 se ferme. Si $t_1 \ge \tau_3$, nous remplaçons $(e_1, t_1), (e_2, t_2)$ par $(e_1, t_1), (e_3, t_1)$ et nous recommençons

avec le chemin $(e_3, t_1), (e_3, t_3), \ldots, (e_n, t_n)$. Si $t_1 < \tau_3$, nous remplaçons $(e_1, t_1), (e_2, t_2)$ par $(e_1, t_1), (e_2, \tau_3), (e_3, \tau_3)$. Nous recommençons l'algorithme avec le chemin $(e_3, \tau_3), (e_3, t_3), \ldots, (e_n, t_n)$.

• Si $t_1 > t_2$, soit τ_3 le premier instant après t_2 où e_3 s'ouvre. Si $t_1 \leqslant \tau_3$, nous remplaçons $(e_1, t_1), (e_2, t_2)$ par $(e_1, t_1), (e_3, t_1)$ et nous recommençons avec le chemin $(e_3, t_1), (e_3, t_3), \ldots, (e_n, t_n)$. Si $t_1 > \tau_3$, nous remplaçons $(e_1, t_1), (e_2, t_2)$ par $(e_1, t_1), (e_2, \tau_3), (e_3, \tau_3)$. Nous recommençons l'algorithme avec le chemin $(e_3, \tau_3), (e_3, t_3), \ldots, (e_n, t_n)$.

Nous remarquons que la longueur du chemin à modifier diminue après chaque itération, donc l'algorithme se termine. Au vu de la définition d'un chemin impatient, nous avons directement la propriété suivante :

Proposition 2. Soit $(e_1, t_1), \ldots, (e_n, t_n)$ un chemin espace-temps qui relie x à y, sa modification obtenue selon l'algorithme précédent est impatient qui relie x à y et les intervalles de changement de temps après modification sont inclus dans les intervalles initiaux.

Nous montrons maintenant qu'un chemin d'occurrence disjointe est toujours d'occurrence disjointe après la modification selon l'algorithme.

Proposition 3. Soit $\gamma = (e_1, t_1), \dots, (e_n, t_n)$ un chemin espace-temps d'occurrence disjointe, nous modifions ce chemin selon algorithme 1. Le chemin obtenu est d'occurrence disjointe et impatient.

Démonstration. Nous vérifions que la condition de l'occurrence disjointe est conservée à chaque étape de l'algorithme. Soit $(e_i, t_i), (e_{i+1}, t_{i+1})$ le changement de temps qui est modifié lors d'une itération, et supposons que le chemin visite e_i ou e_{i+2} plus qu'une fois. Supposons aussi que $t_i < t_{i+1}$. Nous examinons les deux résultats possibles de la modification. Si nous obtenons $(e_i, t_i), (e_{i+2}, t_i)$, nous devons vérifier qu'il existe un instant entre chaque visite de e_{i+2} et t_i tel que e_{i+2} est ouverte à cette instant. Or (e_{i+2}, t_{i+2}) est dans γ qui est un chemin d'occurrence disjointe, donc e_{i+2} ouvre entre les autres instants de visites et t_{i+2} . Vu que l'arête e_{i+2} est fermée entre t_i et t_{i+2} , cette propriété est encore vraie pour t_i . Si nous avons $(e_i, t_i), (e_{i+1}, \tau_{i+2}), (e_{i+2}, \tau_{i+2})$ après la modification, nous devons vérifier la condition pour e_i et e_{i+2} . Nous rappelons que $e_{i+1} = e_i$ et τ_{i+2} le dernier instant avant t_{i+1} où e_{i+2} se ferme. Or e_i est fermée entre t_i et τ_{i+2} , donc e_i ouvre entre τ_{i+2} et les autres instants de visites. De même, e_{i+2} ouvre entre τ_{i+2} et les autres instants de visites car e_{i+2} est fermée entre τ_{i+2} et t_{i+2} . Enfin, le cas où $t_i > t_{i+1}$ se traite de la même manière.

2 Décroissance exponentielle

Nous démontrons ici que la probabilité d'avoir un chemin espace-temps qui relie deux points décroît exponentiellement vite avec la distance entre les deux points. Nous notons

$$x \stackrel{s,t}{\longleftrightarrow} y$$

l'événement : il existe un chemin espace temps fermé qui relie x et y dans l'intervalle de temps [s,t]. Nous commençons par un lemme combinatoire :

Lemme 1. Soit S(n,m) l'ensemble de m-uplet d'entiers suivant :

$$S(n,m) = \{ (u_1, \dots, u_m) \in \{1, \dots, n\}^m : \forall 1 \le i \le m-1 \ u_{i+1} > u_i + 1 \}.$$

Alors

$$|S(n,m)| = \binom{n-m+1}{m}.$$

Démonstration. Nous considérons l'application

$$\Phi: (u_1, \ldots, u_m) \to (u_1, \ldots, u_i - i + 1, \ldots, u_m - m + 1).$$

L'application Φ est une bijection de S(n,m) sur l'ensemble de m-uplet strictement croissant entre 1 et n-m+1, i.e.

$$\{(u_1,\ldots,u_m)\in\{1,\ldots,n-m+1\}^m: \forall 1\leqslant i\leqslant m-1 \ u_{i+1}>u_i\}.$$

Ce dernier est de cardinal
$$\binom{n-m+1}{m}$$
.

Nous énonçons maintenant notre estimée centrale.

Proposition 4. Soit x, y deux points dans Λ et s < t deux instants, alors :

$$P\left(\begin{array}{c} \textit{il existe un chemin } \gamma \textit{ de longueur } n \\ \textit{qui relie } x \textit{ à y entre } s \textit{ et } t \end{array}\right) \leqslant \exp\left(\frac{2n(t-s)}{|\Lambda|} + \frac{n}{2}\ln(3-3p)\right)$$

Démonstration. Notons \mathcal{E} l'événement à estimer. Supposons que \mathcal{E} arrive et soit γ un chemin espace-temps qui le réalise. Par les propositions précédentes, nous pouvons supposer que γ est d'occurrence disjointe et impatient. Notons $(e_1, t_1), \ldots, (e_n, t_n)$ les arêtes-temps de γ , $k(1), \ldots, k(m)$ les indices où les changements de temps ont lieu nous notons par convention k(0) = 1 et k(m+1) = n. Quitte à arrêter γ à l'instant où il visite y, nous pouvons supposer que γ ne se termine pas par un changement de temps, i.e. k(m) <

n-1. Pour $0 \le i \le m$, nous notons \mathcal{E}_i l'événement : il existe un chemin fermé qui relie une extrémité de $e_{k(i)}$ à une extrémité de $e_{k(i+1)}$ à l'instant $t_{k(i+1)}$, $e_{k(i)}$ reste fermée entre $t_{k(i)}$ et $t_{k(i+1)}$ et $e_{k(i)+2}$ se ferme à l'instant $t_{k(i+1)}$. Nous conditionnons \mathcal{E} selon le nombre et les instants de changement de temps puis nous factorisons la probabilité à l'aide de l'inégalité de BK :

$$P(\mathcal{E}) = \sum_{0 \leqslant m \leqslant \frac{n}{2}} \sum_{1 \leqslant k(1) < \dots < k(m) \leqslant n} \sum_{t_{k(1)}, \dots, t_{k(m)}} P(\mathcal{E}_0 \circ \dots \circ \mathcal{E}_m)$$

$$\leqslant \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} \sum_{1=k(0) < \dots < k(m+1)=n} \sum_{t_{k(1)}, \dots, t_{k(m)}} \prod_{i=0}^m P(\mathcal{E}_i).$$

Nous étudions maintenant chaque terme $P(\mathcal{E}_i)$. Nous notons x_i, y_i les extrémités de l'arête $e_{k(i)}$ dans l'ordre où elles sont traversées par γ .

$$P(\mathcal{E}_i) = P \left(\begin{array}{c} y_i \longleftrightarrow x_{i+1} \text{ à l'instant } t_{k(i+1)} \\ e_{k(i)} \text{ reste fermée entre } t_{k(i)} \text{ et } t_{k(i+1)} \\ e_{k(i)+2} \text{ change d'état à } t_{k(i+1)} \end{array} \right)$$

Pour réaliser $y_i \longleftrightarrow x_{i+1}$ à l'instant $t_{k(i+1)}$, il existe un chemin fermé de longueur k(i+1)-k(i)-1 car $e_{k(i)}=e_{k(i)+1}$. La probabilité qu'il existe un tel chemin est majorée par $(3-3p)^{k(i+1)-k(i)-1}$. Or à chaque instant t, nous choisissons une arête uniformément parmi toutes les arêtes de $\Lambda(l)$ et nous déterminons le nouvel état de cette arête selon une loi de Bernoulli de paramètre 1, la probabilité que $e_{k(i)}$ reste fermée entre $t_{k(i)}$ et $t_{k(i+1)}$ est donc $(1-\frac{p}{|\Lambda|})^{|t_{k(i+1)}-t_{k(i)}|}$. Enfin, la probabilité que $e_{k(i)+2}$ change son état à l'instant $t_{k(i+1)}$ est $\frac{1}{|\Lambda|}$. Nous obtenons :

$$P(\mathcal{E}_i) \leqslant (3 - 3p)^{k(i+1) - k(i) - 1} \left(1 - \frac{p}{|\Lambda|}\right)^{|t_{k(i+1)} - t_{k(i)}|} \frac{1}{|\Lambda|}$$

Nous injectons les majorations précédentes dans la première probabilité et nous obtenons :

$$P(\mathcal{E}_{0} \circ \dots \circ \mathcal{E}_{m}) \leqslant \sum_{0 \leqslant m \leqslant \frac{n}{2}} \sum_{1 \leqslant k(1) < \dots < k(m) < n} \sum_{t_{k(1)}, \dots, t_{k(m)}} (3 - 3p)^{n - m} (1 - \frac{p}{|\Lambda|})^{\sum_{i=1}^{m} |t_{k(i+1)} - t_{k(i)}|} \frac{1}{|\Lambda|^{m}}$$

Calculons d'abord la somme sur les instants $t_{k(1)}, \ldots, t_{k(m)}$, nous posons $\Delta_i = |t_{k(i+1)} - t_{k(i)}|$. Si m et les indices $k(1), \ldots, k(m)$ sont fixés, la suite

 $t_{k(1)}, \ldots, t_{k(m)}$ est déterminée par la donnée de $t_{k(1)}$, les valeurs de $\Delta_1, \ldots, \Delta_{m-1}$ et les signes de $t_{k(i+1)} - t_{k(i)}$, d'où :

$$\sum_{t_{k(1)},\dots,t_{k(m)}} (1 - \frac{p}{|\Lambda|})^{\sum_{i=1}^m |t_{k(i+1)} - t_{k(i)}|} = 2^{m-1} (t-s) \sum_{1 \leqslant \Delta_1,\dots,\Delta_{m-1} \leqslant t-s} (1 - \frac{p}{|\Lambda|})^{\Delta_1 + \dots + \Delta_{m-1}}.$$

Nous échangeons la somme et le produit et nous obtenons :

$$\sum_{1 \leqslant \Delta_1, \dots, \Delta_{m-1} \leqslant t-s} (1 - \frac{p}{|\Lambda|})^{\sum_{i=1}^{m-1} \Delta_i} = \prod_{i=1}^{m-1} \left(\sum_{\Delta_i = 1}^{t-s} \left(1 - \frac{p}{|\Lambda|} \right)^{\Delta_i} \right)$$

$$= \prod_{i=1}^{m-1} \left(1 - \frac{p}{|\Lambda|} \right) \frac{1 - \left(1 - \frac{p}{|\Lambda|} \right)^{t-s}}{\frac{p}{|\Lambda|}} \leqslant \prod_{i=1}^{m-1} \frac{1 - \left(1 - \frac{p}{|\Lambda|} \right)^{t-s}}{\frac{p}{|\Lambda|}}.$$

Comme $(1-x)^{\alpha} \ge 1 - \alpha x$ pour 0 < x < 1 et $\alpha \ge 0$, nous avons

$$\prod_{i=1}^{m-1} \frac{1 - (1 - \frac{p}{|\Lambda|})^{t-s}}{\frac{p}{|\Lambda|}} \leqslant (t - s)^{m-1}.$$

Nous avons donc

$$P(\mathcal{E}) \leqslant \sum_{0 \leqslant m \leqslant \frac{n}{2}} \sum_{1 \leqslant k(1) < \dots < k(m) < n} 2^{m-1} (3 - 3p)^{n-m} (t - s)^m \frac{1}{|\Lambda|^m}.$$

Or le nombre de $1 \leq k(1) < \dots < k(m) \leq n$ est $\binom{n-m+1}{m}$ par lemme 1, donc :

$$P(\mathcal{E}) \leqslant \sum_{0 \leqslant m \leqslant \frac{n}{2}} \binom{n-m+1}{m} 2^{m-1} (3-3p)^{n-m} (t-s)^m \frac{1}{|\Lambda|^m}$$

$$\leqslant (3-3p)^{n/2} \sum_{m=0}^{\lfloor \frac{n}{2} \rfloor} \frac{(2n)^m}{m! |\Lambda|^m} (t-s)^m$$

$$\leqslant \exp\left(\frac{2n(t-s)}{|\Lambda|} + \frac{n}{2} \ln(3-3p)\right).$$

Enfin, utilisons la proposition précédente pour obtenir la décroissance en vitesse exponentielle de la probabilité d'avoir un chemin espace temps qui relie deux points de distance l.

Théorème 1. Soit x, y deux points de distance l et t un instant. Alors

$$P(x \stackrel{0,t}{\longleftrightarrow} y) \leqslant \exp(-C(p)l)$$

pour tout $p > \tilde{p}$ où \tilde{p} une constante arbitraire. De plus, C(p) est une constante positive qui tend vers infini quand p tends vers 1.

 $D\acute{e}monstration$. Remarquons d'abord qu'un chemin espace-temps qui relie x,y est nécessairement de longueur supérieure à l. De plus nous pouvons extraire un chemin d'occurrence disjointe et impatient à partir de ce chemin qui relie aussi et x,y entre 0 et t. Or la probabilité qu'un chemin qui vit un temps t est bornée par $\exp(-c(p)t)$, nous pouvons considérer le cas où $t\leqslant \kappa l\leqslant \kappa |\Lambda|$ avec κ une constante arbitraire strictement positive. Nous avons l'inégalité suivante :

$$P(x \overset{0,t}{\longleftrightarrow} y) = P\left(\begin{array}{c} x \overset{0,t}{\longleftrightarrow} y \text{ par } \gamma \\ \gamma \text{ d'occurrence disjointe et impatient} \end{array}\right) + \exp(-c(p)\kappa l) \\ t \leqslant \kappa l \\ \leqslant \sum_{n \geqslant l} P\left(\begin{array}{c} x \overset{0,t}{\longleftrightarrow} y \text{ par } \gamma \\ \gamma \text{ d'occurrence disjointe et impatient} \\ |\gamma| = n, t \leqslant \kappa l \end{array}\right) + + \exp(-c(p)\kappa l) \\ \leqslant \sum_{n \geqslant l} \exp\left(2n\kappa + \frac{n}{2}\ln(3-3p)\right) + \exp(-c(p)\kappa l).$$

Nous posons \tilde{p} telle que $\kappa + \frac{\ln(3-3\tilde{p})}{2} = 0$. Nous avons donc pour tout $p > \tilde{p}$

$$\sum_{n\geqslant l} \exp\left(2n\kappa + \frac{n}{2}\ln(3-3p)\right) + \exp(-c(p)\kappa l)$$

$$\leqslant \frac{\exp(l(\kappa + \frac{\ln(3-3p)}{2}))}{1 - \exp(\kappa + \frac{\ln(3-3p)}{2})} + \exp(-c(p)\kappa l) \leqslant \exp(-C(p)l)$$

où nous posons

$$C(p) = \frac{\min(c(p), -\kappa - \frac{\ln(3-3p)}{2})}{2}$$

qui tend vers infini quand p tend vers 1.