Dynamics

Chipters Sp:5.01, 5.02, 5.03, 5.04, 5.05, 5.06, 5.07

CP: 1-5 Pn: 9, 13, 17, 34, 50, 53, 55, 57, 67

Newton's Law:

Newton's 1st have If no net force acts on a body, the body's velocity can't change; that is the body can't accelerate.

Newton's 2^{nd} Law: The <u>net bonce</u> on a body is equal to the phroduct of the body's man and et's acceleration. $\vec{F}_{net} = m \vec{a}$

unit of Force $\rightarrow N$ (St) = $kg m/s^2$ (SG \rightarrow dyne = $g cm/s^2$ Bruitish $\rightarrow pound = Slung fl/s^2$

Newton's 3rd Law: When two bodies internet, the forces on the bodies from each other are always equal in magnitude and opposite in direction.

 $\vec{F}_{20n1} \xrightarrow{\vec{F}_{10n2}} \vec{F}_{10n2} = -\vec{F}_{20n1}$

$$\vec{F}_{net} = m \vec{a}$$

$$\Rightarrow \vec{F}_{1} + \vec{F}_{2} + \vec{F}_{3} = m \vec{a}$$

$$\Rightarrow \vec{F}_{3} = m \vec{a} - \vec{F}_{1} - \vec{F}_{2}$$
Now,
$$m \vec{a} = m a_{x} \hat{i} + m a_{y} \hat{j}$$

$$= 2 |\vec{a}| \cos(50) \hat{i} + 2 |\vec{a}| \sin(50) \hat{j}$$

$$= [2 \times 3 \times \cos(50) \hat{i} + 2 \times 3 \times \sin(50) \hat{j}] N$$

$$= [3.86 \hat{i} + 4.60 \hat{j}] N$$

$$\vec{F}_{1} = |\vec{F}_{1}| \cos((180 + 30) \hat{i} + |\vec{F}_{1}| \sin((180 + 30)) \hat{j})$$

$$= [-5\sqrt{3} \hat{i} + (-5) \hat{j}] N$$

$$\vec{F}_{2} = [0 \hat{i} + 20 \hat{j}] N$$

$$\vec{F}_{3} = [(3.86 + 5\sqrt{3} - 0) \hat{i} + (4.60 + 5 - 20) \hat{j}] N$$

$$= [2.5 \hat{i} - 10.4 \hat{j}]$$

$$|\vec{F_3}| = \sqrt{(/2.5)^2 + (-10.4)^2} = \overline{16.26N}$$

$$\theta = \tan^{-1}\left(\frac{F_{3,y}}{F_{3,x}}\right)$$

$$= \tan^{-1}\left(\frac{-10.4}{12.5}\right) = \overline{[-39.76]^2}$$

$$T \downarrow q \qquad T-m_1 g = m_1 a \qquad T-m_1 g = m_2 \qquad T-m_1 g \qquad T-m_2 g \qquad T-$$

See S.P. 5.06,5.07

$$m_1 = 3.7 \text{ kg}$$
 $m_2 = 2.3 \text{ kg}$
 $a = ?$

$$T - m_1 g \sin \theta = m_1 a$$

$$= 7 - m_1 g \sin \theta - m_1 a = 0 \qquad (1)$$

$$\begin{array}{cccc}
\alpha \downarrow & \int_{m_2}^{T} \\
m_2 & \int_{m_2}^{m_2} \\
m_2 & \int_{m_2}$$

$$T - m_1 g \sin \theta - m_1 \alpha = 0 - (2)$$

$$T - m_2 g - T - m_2 \alpha = 0 - (2)$$

$$T - m_1 g \sin \theta - m_1 \alpha = 0 - (1)$$

$$(1) + (2) = 0$$

$$- m_1 g \sin \theta - m_1 a + m_2 g - m_2 a = 0$$

$$\Rightarrow m_2 g - m_1 g \sin \theta = m_1 a + m_2 a$$

$$\Rightarrow (m_2 - m_1 \sin \theta) g$$

$$\Rightarrow (m_1 + m_2)$$

$$= \frac{(2 \cdot 3 - 3 \cdot 7 \times \sin 30^\circ) \times 9 \cdot 8}{2 \cdot 3 + 3 \cdot 7}$$

$$= \frac{(2 \cdot 3 - 3 \cdot 7 \times \sin 30^\circ) \times 9 \cdot 8}{2 \cdot 3 + 3 \cdot 7}$$

$$= \frac{(0 \cdot 735 \text{ m/s}^2)}{2 \cdot 3 + 3 \cdot 7}$$

From equation (2),
$$T = m_2(g-a)$$
.
 $= 2.3 \times (9.8 - 0.735) N$
 $= 20.85 N$

$$m = 100 \text{ kg}$$

$$\theta = 30^{\circ}$$

Applying Newton's 2nd along x-axis,

(a)
$$F\cos\theta - mg\sin\theta = 0$$

=>
$$F(0)\theta = mg sin\theta$$

=>
$$F$$
 = $mg tan \theta$

Applying Newton's 2nd Law along-y-axis, $F_N - F \sin \theta - mg \cos \theta = 0$ (b)

55

(a)
$$\overrightarrow{F}_{20n1} \xrightarrow{f} \overrightarrow{F}_{N_1}$$

$$F = 3.2N$$

$$F - F_{20n1} = m_1 \alpha - \alpha$$

$$\overrightarrow{F}_{N_2} \xrightarrow{F}_{10n_2} \overrightarrow{F}_{20n_1} = m_2 \alpha - \alpha$$

$$F - F_{2001} = m_1 a - G$$

$$F_{20n1} = m_2 a - (2)$$

$$\int_{F_g}^{F_N} \vec{a} \qquad F = (m_1 + m_2)a$$

$$F_g = A = \frac{F}{m_1 + m_2} \qquad (3)$$

Putting equation (3) into (1)

$$F - F_{26n1} = m_1 \frac{F}{m_1 + m_2}$$

$$=) F - \frac{m_1}{m_{1} + m_2} F = F_{2001}$$

$$=) \left(1 - \frac{m_1}{m_1 + m_2}\right) F = F_{20n1}$$

$$=) \frac{m_2}{m_1 + m_2} F = F_{20N1}$$

$$F_{20n1} = \frac{1.2}{2.3+1.2} \times 3.2 N$$

$$= 1.1 N$$

$$F_{10n2} = \frac{m_2}{m_1 + m_2} F$$
$$= \underbrace{\begin{bmatrix} 1 \cdot 1 & N \end{bmatrix}}$$

(b)
$$\begin{array}{c}
m_1 \\
m_2 \\
F \\
\downarrow \\
m_2
\end{array}$$

$$\begin{array}{c}
F \\
\downarrow \\
F_{10n2}
\end{array}$$

$$\dot{f}'_{20n1} = m_1 a - (2)$$

$$\overrightarrow{F} = (m_1 + m_2) a$$

$$\overrightarrow{F} = (m_1 + m_2) a$$

$$a = \frac{F}{m_1 + m_2} - (3)$$

Putting equation (3) into (1),
$$F - F_{10n2} = m_2 \frac{F}{m_1 + m_2}$$

$$=) F - \frac{m_2}{m_1 + m_2} F = F_{10n2}$$

$$=) F_{10n2} = \frac{m_1}{m_1 + m_2} F$$

$$= \frac{2.3}{2.3 + 1.2} \times 3.2N$$

$$= \frac{2.1N}{2.1N}$$

Putting equation (3) into (2),
$$F_{2on1}' = \frac{m_1}{m_1 + m_2} F$$

$$= 2.5 N$$

$$= 2.5 N$$

$$= F_{2on2}' \sim m_1 \quad \text{and} \quad F_{1on2} = F_{2on1} \sim m_2$$

$$\text{since,} \quad m_1 > m_2, \quad \text{and} \quad F_{2on1} > F_{2on1}$$

$$\therefore F_{1on2} > F_{1on2} \quad \text{and} \quad F_{2on1} > F_{2on1}$$

Here, man of the particle
$$m = 0.340 \text{ kg}$$

Position vector of the particle, $\vec{r} = (-15 + 2t - 4t^3)^{\frac{1}{4}} + (25 + 7t - 9t^2)$

at,
$$t = 0.700 \, \text{s}$$
, $|\vec{F}| = ?$, $\theta = ?$

According to Newton's 2nd Law,

$$\vec{F} = m \frac{d^2 \vec{h}}{dt^2}$$

$$= 0.340 \times \frac{d}{dt} \left(\frac{d}{dt} \left(-15 + 2t - 4t^3 \right) \hat{i} + \frac{d}{dt} \left(25 + 7t - 9t^2 \right) \hat{j} \right)$$

$$= 0.340 \times \frac{d}{dt} \left(\left(2 - 12t^2 \right) \hat{i} + \left(2 - 18t \right) \hat{j} \right)$$

$$= 0.340 \times \left(-24t \hat{i} - 18 \hat{j} \right)$$

$$\vec{F} = 0.340 \times \left(-24x0.700 \hat{i} - 18 \hat{j} \right)$$

$$= -0.340 \times 24x0.700 \hat{i} - 0.340 \times 18 \hat{j}$$

$$= -0.340 \times 24x0.700 \hat{i} - 0.340 \times 18 \hat{j}$$

(a)
$$: |\vec{F}| = \sqrt{(-5.71)^2 + (-6.12)^2} = [8.37 N]$$

(b)
$$\theta = \tan^{-1}\left(\frac{-6.12}{-5.71}\right) = \pi + \tan^{-1}\left(\frac{6.12}{5.71}\right)$$

= $180^{\circ} + 47^{\circ} = 227^{\circ}$

Panticles direction of travel is the direction of the punticle's relocity, so,
$$\vec{V} = \frac{d\mathcal{X}}{dt} \hat{i} + \frac{d\mathcal{Y}}{dt} \hat{j}$$

$$= \frac{d}{dt} \left(-15 + 2t - 4t^3\right) \hat{i} + \frac{d}{dt} \left(25 + 7t - 4t^3\right)$$

$$0' = tan^{-1} \left(\frac{-5.66}{-3.88} \right)$$

$$= 180' + tan^{-1} \left(\frac{5.66}{3.88} \right)$$

$$= 180' + 55.28' = 2 35.28'$$

团

mg sind to mgcood

a) Applying Newton's 2nd Law into

u - anis

T-mgsind=0

=> $T = mg \sin \theta$ = $8.5 \times 9.8 \times \sin(30)$ N = 41.65

(b) Applying Newton's 2nd Law into y-am's

FN - mg cost = 0

=> FN = mg Cus B

= 8.5×9.8×105(30) N = [72.14N]

(4)

When we cut the cord there is no more tension force of the cord. Appyling Newton's 2nd Law along x-anis,

=)
$$a = 9 \sin \theta$$

= $9.8 \times \sin(30)$
= $[4.9 \text{ m/s}^2]$

mc
$$\int_{mg}^{T_1} T_1$$
 a Applying Newton's 2^{nd} Law on C ,

 $m_{cg} - T_1 = m_{ca}$
 $T_1 = m_{cg} - m_{ca}$ (4)

$$T_{1} = m_{c}g - m_{c}\alpha \qquad -(4)$$

$$Applying \quad Newton's \quad 2^{nd} \quad Law \quad on \quad B,$$

$$T_{2} \qquad B \quad a \downarrow (-T_{2}tT_{1} + m_{B}g) = m_{B}\alpha$$

$$T_{3} \qquad m_{B}g \qquad T_{4} = -m_{B}\alpha + T_{1} + m_{B}g \qquad -(2)$$

$$m_A$$
 a Applying Newton's 2nd Law on C,
 $T_2 = m_A a - (3)$

Putting (3) into (2),

$$m_A a = -m_B a + T_1 + m_B g$$
 $m_A a + m_B a - m_B g = T_1 - (4)$
 $m_A a + m_B a - m_B g = T_1 - m_B g$

From (4) and (4), $m_C g - m_C a = m_A a + m_B a - m_B g$

From (1) and (4),
$$m_c g - m_c a = m_A a + m_B a - m_B g$$

$$= m_c g + m_B g = m_A a + m_B a m_c a$$

$$= m_c g + m_B g$$

$$= m_C g + m_B g$$

$$= m_A + m_B + m_C$$

$$\alpha = \frac{10\times9.8 + 40\times9.8}{30 + 40 + 10} \quad m/3^{2}$$

$$= 6.125 \, m/3$$

Putting a into equation (1),
$$T_1 = (lo \times 9.8 - lo \times 6.125)N$$

= $[36.75N]$ (Ama)

Disturce travel A,
$$h = \frac{1}{2} a t^2$$

= $\frac{1}{2} \times 6.12 \times (0.250)^2 m$
= 0.191 m (Am b)

$$T_1$$
 T_2
 T_3
 T_4
 T_5
 T_7
 T_7

Appyling Newton's 2nd Law on
$$m_3$$
 T_2
 T_3
 T_3
 T_3
 T_4
 T_5
 T_7
 T_8
 T_8

Putting value of a sinto (1)

$$T_1 = m_1 a$$
 $= (12 \times 97) N$
 $= \overline{11.69N} (Amb)$

Putting the value of a, T, into (2),

 $T_2 = T_1 + m_2 a$
 $= (164 + 24 \times 097) N$
 $= \overline{34.92N} (Ansc)$

Applying Newton's 2nd Lawon A)

 $T_1 = m_2 a$
 $T_2 = m_3 a - (1)$

Applying Newton's 2nd Lawon B,

 $T_1 = m_2 a - (2)$
 $T_2 = T_1 + m_3 a$
 $T_1 = m_3 a - (2)$
 $T_2 = T_1 + m_3 a$
 $T_3 = T_2 = T_1 + m_3 a$
 $T_4 = T_2 = T_1 + m_3 a$
 $T_5 = T_5 = T_1 + m_3 a$

= maa+mag+mga-(3)

$$m_{c}g - 72 = m_{c}a$$

$$= m_{c}g - m_{c}a - (4)$$

$$= \frac{m_c 9 - m_A 9}{m_A + m_B + m_C}$$

$$= \frac{10 \times 9.8 - 6 \times 9.8}{6 + 8. + 10} \quad m/s^2$$

From equation (4),
$$T_2 = (10 \times 9.8 - 10 \times 1.63) N$$

= $\boxed{81.7N} \boxed{Am}$