# UPDATE: DEVELOPMENT OF A FAST SEARCH ALGORITHM FOR THE MUSIC FRAMEWORK

Jonas Lieb, 18.08.2015

## REMINDER: MUSIC (MODEL UNSPECIFIC SEARCH IN CMS)

- Sort events into **event classes** by their physics object content  $(\mu, e, \gamma, \text{jets}, \text{MET})$
- Three distributions of interest:  $\sum |\overrightarrow{p_T}|, M_{\text{inv}}, \text{MET}$
- Find most significant region (Rol) in each distribution
- Determine look-elsewhere corrected **p-value** ( $\tilde{p}$ ) for each distribution through pseudoexperiments
- lacktriangleright Compare distribution of  $\widetilde{m p}$  from data with MC



#### SCANNING

- Construct connected bin regions from histogram
- Calculate **p-value** for each region:

$$p_{\mathrm{data}} = \begin{cases} \sum_{N=N_{\mathrm{data}}}^{\infty} C \cdot \int_{0}^{\infty} \mathrm{d}\theta \, \exp\left(-\frac{(\theta-N_{SM})^{2}}{2\,\sigma_{SM}^{2}}\right) \frac{e^{-\theta}\theta^{N}}{N!}, & \text{if } N_{\mathrm{data}} \geq N_{\mathrm{SM}} \\ \sum_{N=0}^{N_{\mathrm{data}}} C \cdot \int_{0}^{\infty} \mathrm{d}\theta \, \exp\left(-\frac{(\theta-N_{SM})^{2}}{2\,\sigma_{SM}^{2}}\right) \frac{e^{-\theta}\theta^{N}}{N!}, & \text{if } N_{\mathrm{data}} < N_{\mathrm{SM}} \end{cases}$$

• Find most significant region (smallest p-value) for each histogram

### CALCULATION OF $\widetilde{p}$

- Needed to account for "look-elsewhere-effect"
- Repeat scanning with
   pseudo-experiments, each
   mean is shifted within its
   Standard Model uncertainty



$$\tilde{p} = \frac{\text{number of pseudo experiments with } p_{pseudo} < p_{data}}{\text{total number of pseudo experiments}}$$

### QUICKSCAN

- Problem: the p-value is evaluated many times, its calculation is time consuming
- Mitigation: preselect interesting regions using a less computation intense algorithm
- Select a certain number of candidate regions, with the maximum

$$\chi = \frac{|N_{obs} - N_{MC}|}{\sqrt{\sigma_{MC}^2 + N_{MC}}}$$

- This estimator does not consider effects depending on the absolute number of events "vertical" binning by magnitude
- To select the most significant region, calculate the p-value integral only for the Quickscan candidates
- \* Two One parameters:
  - number of candidates per vertical bin
  - magnitude bin size



### STATISTICAL TERM IN ESTIMATOR

Problem: estimator used to be

$$\chi = \frac{|N_{obs} - N_{MC}|}{\sigma_{MC}}$$

- $\sigma_{MC}$  does not include expected statistical deviation between  $N_{obs}$  and  $N_{MC}$  ,  $\sqrt{N_{MC}}$
- Solution: replace  $\sigma_{MC} o \sqrt{\sigma_{MC}^2 + \sqrt{N_{MC}}^2} = \sqrt{\sigma_{MC}^2 + N_{MC}}$
- Solved a lot of problems

### ADDITIONAL PROBLEM IN HIGH ENERGY TAILS



### SOLUTION: SPECIAL HANDLING OF NESTED REGIONS

- Region A is nested in region B
- A and B are excesses
- A and B have the same amount of data
- $\rightarrow$  A is more significant
- Solves (almost) all problematic cases



### FIXED!



### PARAMETER OPTIMIZATION

- Optimization of the parameters is performed by measuring their effect on two metrics:
  - Runtime / Speed-up  $= rac{T_{classic}}{T_{quickscan}}$
  - Relative deviation of  $\widetilde{p}$ :  $\frac{\Delta \widetilde{p}}{\widetilde{p}(\text{classical})} = \frac{\widetilde{p}(\text{quickscan}) \widetilde{p}(\text{classical})}{\widetilde{p}(\text{classical})} \ (\leq 0)$
- Working on a subset: 2012 data, exclusive classes only, max. 2 jets, dicing exactly 1000 rounds
- Status quo:
  - Runtime ~ 1h 30min
  - Random  $\Delta \widetilde{p}$  spread through dicing about 5%



w/o Quickscan vs. w/o Quickscan

### SELECTED RESULTS





1000 candidates

Runtime: 54 minutes



Quickscan vs. w/o Quickscan

### RESULTS FOR THE BIN SIZE



#### RESULTS

- Quickscan seems to work (even better!)
- Magnitude binning not necessary anymore
- Speed-up up to 6 times while keeping very good physics results

### OUTLOOK

- Validation Run
- Write-up as Bachelor thesis