Forecasting for Future CMB Searches for Primordial Magnetic Fields Literature Review

University of Melbourne

Dylan Sutton Supervised by Dr. Christian Reichardt 27th May 2016

Abstract

Contents

1	Intr	Introduction 4						
	1.1	Large Scale Magnetic Fields	4					
	1.2	CMB Polarisation	6					
	1.3	Primordial Magnetic Fields	8					
	1.4		8					
2	PMF Theory							
	2.1	Biermann Batteries	1					
	2.2	Other Methods of PMF Generation	1					
	2.3	Effect of PMFs on the Cosmic Microwave Background	1					
	2.4	Other effects of PMFs	2					
	2.5	Cosmic Birefringence	2					
3	Method 13							
	3.1	The Fisher Matrix	3					
	3.2	Covariances	4					
	3.3	extended datasets	4					
	3.4	crosschecks	4					
	3.5	tests	4					
4	Forecasts 15							
	4.1	ΛCDM forecasts	5					
	4.2	extended models	5					
5	Disc	cussion and Future Work 10	6					
	5.1	Discussion	6					
	5.2	Applications						
		Future Work						

1 Introduction

ΛCDM cosmology is very successful at describing the Universe. However there remain many outstanding problems in the model that beg for a solution. One problem is the mysterious origin of the large-scale magnetic fields permeating the cosmos. Detections of Faraday rotation, synchrotron emissions and Zeeman splitting in distant galaxies and throughout intracluster media reveal weak magnetic fields, on the order of microgauss coherent over the scale of megaparsecs. Though there are models for describing the amplification of existing magnetic fields, such as magnetohydrodynamics and galactic dynamos there is no clear answer for where these magnetic fields came from.

A possible answer to this question are primordial magnetic fields (PMFs). PMFs are seed magnetic fields produced in the early Universe sometime before recombination. These weak seed fields - of order nanoguass - could be taken up by galactic dynamos to become the weak magnetic field we see today. So far PMFs remain undetected, but with the next generation of CMB experiments and beyond beginning over the next decade, it is important to know how sensitive these experiments are to the faint traces of PMFs and whether they are able to make a detection. The aim of this thesis is to forecast the upper-limits on PMF detections for stage-3 and stage-4-like CMB experiments.

In this chapter I will begin by discussing the nature of the large-scale magnetic fields and the physics behind their amplification due to galactic dynamos in section 2.1. In section 2.2 I will discuss recent advances in constraining the PMF strength. Next, in section 2.3 I will give a quick review on CMB observables, polarisation and power spectra - which are instrumental in the study of PMFs. Finally in section 2.4 I will discuss CMB-S3 experiments with focus on the SPT-3G and Advanced ACTPol as well as preliminary figures on CMB-S4 experiments.

1.1 Large Scale Magnetic Fields

Galaxy clusters and their resident galaxies are known to possess weak microgauss magnetic fields coherent over scales as large as megaparsecs. Observational evidence of these magnetic fields come in the form of Zeeman splitting, synchrotron emission and Faraday rotation.

Zeeman Splitting

In the presence of magnetic fields, electronic energy levels in molecules and atoms split based on the angular momentum of the electron with respect to the orientation of the magnetic field. As a result, Zeeman splitting causes the spectral lines from distant sources to also split. Splitting of the Hydrogen 21cm line and the OH 18cm line are common probes of magnetic fields in our owng galaxy. Currently Zeeman splitting has given no constraints on the magnetic fields in the ICM. Zeeman splitting has been used to measure the magnetic fields within dense gas clouds around other galaxies, with strengths in the order of 0.5-18mG [1], however these regions are not representative of the large-scale magnetic fields threading the cosmos.

Synchrotron Emissions

As electrons and ions spiral around magnetic fields in galaxies and the intracluster medium they emit synchrotron radiation with energies proportional to the strength of the magnetic field and the velocity of the ions.

The emissivity of synchrotron radiation is given by:

$$j(B_{\perp}, \nu) \propto n_0 B_{\perp}^{(1+\alpha)/2} \nu^{(1-\alpha)/2}$$
 (1)

Where ν is the frequency of the electron's circular motion, B_{\perp} is the magnetic field component perpendicular to the line of sight and n_0 is the normalised electron density, given by $n_e dE = n_0 E^{-\alpha} dE$ where E is the energy of the electron and α is the spectral index, the value for which varies from galaxy to galaxy.

Synchrotron emissions from nearby galaxies have given constraints on B_{\perp} within the range 4 μG to 19 μG [?].

Faraday Rotation

As a polarised photon travels through a magnetised plasma it undergoes Faraday Rotation. Magnetised plasmas such as the intracluster medium exhibit different refractive indices for left and right circularly polarised light. Hence, as linearly polarised light propagates through the plasma, its plane of polarisation is rotated by some some angle, β , given by:

$$\beta = RM\lambda^2 \tag{2}$$

where λ is the wavelength of the photon and RM is the rotation measure, given by:

$$RM = \frac{e^3}{2\pi^2 \epsilon_0 m^2 c^3} \int_0^d n_e(s) B_{\parallel}(s) ds$$
 (3)

The angle of rotation therefore depends on the electron density, n_e in the plasma, the component of the magnetic field parallel to the direction of propagation of the photon, B_{\parallel} and the photon's wavelength, λ .

Measurements of Faraday rotation within galaxy clusters have found the magnetic field strength to lie in the range of 0.2 - 3 μG [2]. In additon, Faraday rotation measurements yield magnetic field strengths in galaxies as 4 - 6 μG for spiral galaxies and 6 - 8 μG in elliptical and irregular galaxies [2].

Galactic Dynamos

On their own, seed magnetic fields such as PMFs are too weak (of order nanoguass) to give rise to the magnetic fields we see in the cosmos today. There must be a process for amplifying the seed magnetic fields.

Galactic dynamos are good candidates for seed magnetic field amplifiers. Dynamos are systems that convert kinetic energy into electromagnetic energy. Hot ionised gas rotates

Figure 1: Spin up of magnetic fields in the presence of a galactic dynamo. In the first panel, at t = 0.1 Gyr, the seed magnetic field is picked up by a dynamo. Over the next two panels the dynamo spins up the magnetic field, increasing flux density. The bottom panel is a side-on view of the galactic dynamo at 8.1 Gyr. Figure from Beck et al., (1996) [?].

around the galactic centre of a galaxy. The ions drag the magnetic field lines along with them, tangling them up and increasing the magnetic flux density, and in addition the magnetic field strength. Hence galactic dynamos are able to amplify a weak seed magnetic field into a stronger magnetic field that we observe today.

1.2 CMB Polarisation

In the few years CMB polarisation has proven a powerful tool for studying large scale structure and the early Universe. If PMFs did in fact exist, then their traces ought to be found within the CMB polarisation. Section 2 contains a discussion on how PMFs affect CMB polarisation.

The CMB is the light from the Big Bang, however the CMB itself didn't form until 300,000 years after the Big Bang. At this point in time the Universe was cool enough to allow photons to decouple from baryons. This event is known as last-scattering. From there on the photons were able to free stream through the cosmos. Over the intervening 13 billion years the CMB photons have been cosmologically redshifted into the microwave frequency band. The CMB is a blackbody spectrum corresponding to a temperature of 2.73K.

The polarisation of the CMB first arose due to quadrupolar temperature anisotropies at last scattering [3]. Thomson scattering of photons in the electron-photon plasma linearly polarises out-going photons, however without anisotropies or only dipolar anisotropies, the net polarisation of the CMB is cancelled out. An electron in the plasma is surrounded by two hot regions and two cool regions oriented perpendicular to one another. Photons approaching

from the hotter region impart their polarisation more strongly than those from cooler regions, producing net polarisations over patches of the sky. Figure 1 shows a diagram of Thomson scattering in a region with quadrupolar anisotropy.

Figure 2: Thomson scattering of CMB photons in the presence of a quadrupole anisotropy. The red lines are the polarisations of a cold photon and the blue lines are the polarisations of a hot photon both incident on the same electron. The result is a net linear polarisation.

Quadrupolar anisotropies are caused by scalar, vector or tensor perturbations. Scalar perturbations are density fluctuations. Vector perturbations result from vortices in the photon-electron fluid or from more exotic phenomena, such as cosmic strings and other topological defects. Finally a tensor perturbation would be the result of gravity waves produced during cosmic inflation.

In order to describe the effects of perturbations on CMB polarisation we introduce two polarisation modes. E-modes and B-modes. E-modes are formed from scalar perturbations. The E-modes resemble electric fields in electromagnetism in the sense that they are curl-free. It is also useful to note that E-modes have even parity. B-modes on the other hand are formed from vector and tensor perturbations and are currently undetected. Continuing the electromagnetism analogy a B-mode resembles a magnetic field, in the sense that it is purely a curl field. B-modes have odd parity.

The causes of B-mode CMB polarisation are new frontiers in physics. There is a strong case to study CMB polarisation, in the hopes that we may shed some light on the exotic nature of the early Universe.

1.3 Primordial Magnetic Fields

As of yet PMFs remain undetected.

Figure 3: Representation of E-mode polarisations and B-mode polarisations. Note how E-modes are symmetric and resemble a divergent field. In contrast the B-modes appear anti-symmetric and resemble a curled field.

The seed magnetic fields required to form the large-scale magnetic fields we see in the Universe today may have been primordial magnetic fields (PMFs). At some point in the evolution of the Universe a weak magnetic field with a strength less than a few nanogauss may have been produced. Recent work from PLANCK (2015) has constrained the primordial magnetic field strength coherent over 1 Mpc to $B_{1Mpc} < 4.4$ nG [?]. In 2016 POLARBEAR modestly improved this constraint to $B_{1Mpc} < 3.9$ nG [?].

1.4 Future CMB experiments

This year stage-3 CMB experiments will commence operation and before the end of the next decade, stage-4 CMB experiments will have also collected their data. The next generation of CMB experiments aim to obtain tighter constraints on cosmological parameters such as the tensor-to-scalar ratio as well as map the CMB in higher detail than ever before. Though PMF detection is not the main science goal of these experiments, they will be able to tighten constraints on the primordial magnetic field strength and perhaps make a detection.

The key limitation in detecting PMFs will be the experimental sensitivity, measured in noise (μ K). To improve sensitivity one must decrease the noise, which is done by adding more detectors. The noise level and the number of detectors obey the relation:

$$noise \propto (\sqrt{n_{detectors}})^{-1}$$

Each stage of CMB experiments adds a factor of 10 more detectors, bringing the noise level down by a factor of $\sqrt{10}$.

CMB-S3

CMB-S4

Figure 4: Plot of approximate raw experimental sensitivity of CMB experiments vs time in years. The Red lines indicate space-based experiments. Of note is PLANCK whose sensitivity falls in the middle-range of the stage-2 CMB experiments. The dotted cyan line represents the sensitivity of CMB-S3, which we expect to improve by up to an order of magnitude over Stage 2. CMB-S4 is represented by the dotted purple line, which is set to improve by a further order of magnitude over S3.

Table 1: My caption								
Experiment	Stage	N_{bolo}	Scan Area (deg^2)	Temperature Noise (μ K)				
Noise(polarisation) (μ K)			•					
SPT-pol	2	100	1536	14				
20	•		'					
SPT-3G	3	15234	2500	3.4				
4.8	•		'	'				
	1	1	1	I				

2 PMF Theory

2.1 Biermann Batteries

The large-scale magnetic fields we see need to have had some initial seed field, but of course this raises the question: Where did the seed field come from? The most popular model for seed magnetic field generation from zero initial conditions is the 'Biermann battery' proposed by Biermann in 1950. Biermann batteries form in highly ionised environments such as the plasma shortly afer the Big Bang. Within the plasma, ions are drawn to regions of lower density and lower temperature. Since the the constituents of the plasma - protons and electrons - have different masses they flow at different rates resulting in a net flow of charge. If this flow of current forms a loop, then by Faraday's law of induction, a magnetic field is produced by the battery.

The magnetic field produced by the Biermann battery is described by:

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{U} \times \vec{B} - \eta \nabla \times \vec{B}) - \frac{ck_b}{e} \frac{\nabla n_e}{n_e} \times \nabla T \tag{4}$$

The final term, $\nabla n_e \times \nabla T$ is the source term describing the Biermann battery effect. In order for this term to be non-zero and hence to have a Biermann battery, gradients of the electron density and the temperature must be non-parallel.

Biermann batteries are also predicted to occur at later times in the Universe

- Infalling ionised hydrogen in galaxies
- diagram of Biermann battery

2.2 Other Methods of PMF Generation

- QCD
- Inflation
- I really need to read up on this stuff.

2.3 Effect of PMFs on the Cosmic Microwave Background

If PMFs have a field strength 1nG then their signatures will be detectable in the CMB B-mode polarisation power spectrum. Just as extragalactic magnetic fields Farday rotate radio and X-ray signals, PMFs would induce Faraday rotation on CMB polarisation. The net effect is that a fraction of E-mode polarisation would be transformed into B-mode polarisation.

- PMF polarisation power spectrum
- Measurable quantity, $A_p m f \propto B_1 m p c^4$
- previous constraints from PLANCK and POLARBEAR (transplant from intro)
- How distinguish effects of pmfs from primordial gravity waves
- Neat.

2.4 Other effects of PMFs

see lit review or talk for:

- large scale structure: Ω_8
- plot of matter power spectrum for different pmf strengths
- PMFs interact with charged baryons through Lorentz force
- interfere with distribution of mass
- non-linear effect hard to gauge:
- BBN
- early energy density budget is modified, expansion rates change
- freeze-out times for nucleosynthesis change
- changes in H and He abundances.
- Weak constraints, Yamazaki in 2012 cites $B_1mpc < 1.5\mu G$, which isn't very telling.

2.5 Cosmic Birefringence

Measuring a conversion of E-mode power to B-mode power consistent with expected PMF effects doesn't strictly confirm the existence of PMFs. PMFs are not the only mechanism that could rotate the polarisation of

- Birefrengent materials have different refractive indices for left and right circular polarisation harkens back to faraday rotation
- Space may be intrinsically birefringent
- Hint of new physics: New pseudoscalar coupling between photons and dark energy: Quintessence models.
- Can be quantified in terms of an effective primordial magnetic field

3 Method

3.1 The Fisher Matrix

The elements of the Fisher matrix are defined as:

$$\mathcal{F}_{ij} = -\left\langle \frac{\partial^2 ln \mathcal{L}}{\partial p^i \partial p^j} \right\rangle \tag{5}$$

where \mathcal{L} is the likelihood and p^i , p^j are the i^{th} and j^{th} model parameters.

If the Fisher matrix is non-singular then it can be inverted into a covariance matrix for the model parameters. This result follows from the Cramèr-Rao theorem, which states that the variance of some unbiased estimator, p is greater than or equal to the inverse of its Fisher information. The Fisher information of a model parameter is given by:

$$F = -\langle \frac{\partial^2 ln \mathcal{L}}{\partial p^2} \rangle \tag{6}$$

Since the Fisher matrix can be inverted into a covariance matrix over the model parameters, it is a powerful tool in experimental design used for forecasting the upper limits on the precision of an experiment. The Fisher matrix has a number of useful properties:

Linearity under addition: Adding n Fisher matrices returns a new Fisher matrix which can be inverted into a new covariance matrix with tighter constraints. This result is especially useful when you wish to know the total accuracy of combining many different experiments.

$$(\mathcal{F}_1 + \mathcal{F}_2 + \dots + \mathcal{F}_n)^{-1} = (\mathcal{F}_{1+2+\dots+n})^{-1}$$

As a corollary, the Fisher matrix can be multiplied by a scalar, which is useful when you want to know the effect of repeating your experiment or adding more instances of the same design. Furthermore, one can use this property to add priors to your design: suppose we know that one model parameter has been well-constrained in the past and our experiment isn't set to improve upon this result. We can combine the prior result with our current Fisher matrix to provide tighter constraints Marginalisation over variables

Usually, the Fisher matrix is found by calculating the log-likelihood for the model parameters. This is done by making likelihood chains in Markov-chain-Monte-Carlo simulations however this is not the only approach. If your model parameters are unbiased and Gaussian distributed then, the following definition for the Fisher matrix holds:

$$F_{ij} = \frac{\partial f}{\partial p^i} C^{-1} \frac{\partial f}{\partial p^j} \tag{7}$$

where f is the function that relates model parameters to:...

In order to forecast for an experiment we need simply invert the Fisher matrix.

- 3.2 Covariances
- 3.3 extended datasets
- 3.4 crosschecks
- 3.5 tests

- 4 Forecasts
- 4.1 Λ CDM forecasts
- 4.2 extended models

- 5 Discussion and Future Work
- 5.1 Discussion
- 5.2 Applications
- 5.3 Future Work

References

- [1] T. Robishaw, E. Quataert, and C. Heiles, "Extragalactic Zeeman Detections in OH Megamasers," *Astrophys. J.*, vol. 680, p. 981, 2008.
- [2] L. M. Widrow, "Origin of galactic and extragalactic magnetic fields," Rev. Mod. Phys., vol. 74, pp. 775–823, 2002.
- [3] W. Hu and M. J. White, "A CMB polarization primer," New Astron., vol. 2, p. 323, 1997.