Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>Р3221</u>	_К работе допущен
Студенты <u>Фан Нгок Туан; Фам Данг Чунг</u>	<u>Нгиа</u> Работа выполнена
Преподаватель Коробков М . П.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.05

Исследование колебаний физического маятника

1. Цели работы.

Изучение характеристик затухающих колебаний физического маятника.

2. Задачи, решаемые при выполнении работы.

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

3. Объект исследования.

Физический маятник

4. Метод экспериментального исследования.

- 1. Измерение периода N числа колебаний маятника с разными положениями груза, параллельно отмечая время, когда амплитуда отклонения маятника от равновесного положения будет равна 25, 20, 15, 10 и 5.
- 2. Построение графиков зависимостей амплитуды колебаний от времени и квадрата периода от момента инерции.
- 3. Определение, какой тип трения играет главную роль в затухании колебаний: сухое трение или вязкое.
- 4. Вычисление экспериментальной и теоретической приведенной длины маятника при разных его конфигурациях.

5. Рабочие формулы и исходные данные.

Коэффициент затухания

$$\beta = \frac{rl^2}{2I}$$

Зависимость логарифма отношения амплитуд от времени

$$ln\frac{A}{A_0} = -\beta t,$$

Зависимость амплитуды колебаний от ширины зоны застоя

$$A(t = nT) = A_0 - 4n\Delta\varphi_3.$$

Расстояния центров грузов от оси вращения

$$R = l_1 + (n-1)l_0 + b/2$$

Момент инерции грузов

$$I_{\rm rp} = m_{\rm rp} (R_{\rm Bepx}^2 + R_{\rm HJJK}^2 + 2R_{\rm 60K}^2).$$

Период колебаний маятника от момента инерции

$$T = 2\pi \sqrt{\frac{I}{mgl}}.$$

Приведенная длина маятника от момента инерции

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l.$$

6. Измерительные приборы.

Таблица 1. Характеристики средств измерения

№ п/п	Наименование средства измерения	Предел измерений	Цена деления	Погрешность прибора
1	Шкала	60∘	1∘/дел.	1°
2	Секундомер	500c	0.01 c	5 мс

Таблица 5. Параметры установки

	Параметры установки					
1.	Масса каретки	(47,0 ± 0,5) г				
2.	Масса шайбы	(220,0 ± 0,5) r				
3.	Масса грузов на крестовине	(408,0 ± 0,5) г				
4.	Расстояние от оси до первой риски	$(57,0 \pm 0,5)$ mm				
5.	Расстояние между рисками	$(25,0 \pm 0,2)$ MM				
6.	Диаметр ступицы	$(46,0 \pm 0,5)$ мм				
7.	Диаметр груза на крестовине	(40.0 ± 0.5) mm				
8.	Высота груза на крестовине	(40.0 ± 0.5) mm				
9.	Расстояние, проходимое грузом (h)	$(700,0 \pm 0,1)$ мм				

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Замеры времени 10 колебаний маятника

t ₁ , c	18,20
t2, c	18,01
t ₃ , c	18,05
t _{cp} , c	18,09

Среднее время 10 колебаний:

$$\bar{t} = \frac{t_1 + t_2 + t_3}{3} = \frac{18,20 + 18,01 + 18,05}{3} = 18,09 \text{ c.}$$

$$N = 10$$

$$T = \frac{\bar{t}}{N} = \frac{18,09}{10} \approx 1,81 \text{ c.}$$

Таблица 2

Амплитуда отклонения	25°	20°	15°	10°	5°
Время					

t ₁ , c	46,80	89,86	162,27	244,08	350,28
t ₂ , c	45,09	90,72	158,73	238,92	356,98
t ₃ , c	44,00	93,62	166,06	239,23	357,17
t ⁻, c	45,30	91,40	162,35	240,74	354,81

$$\bar{t}(25^{\circ}) = \frac{t_1 + t_2 + t_3}{3} = \frac{46,80 + 45,09 + 44,00}{3} = 45,30 \text{ c.}$$

Таблица 3

Положение боковых грузов	t_1	t_2	t_3	t	Т
1 риска	16,65	15,93	16,02	16,20	1,62
2 риски	17,19	17,33	17,24	17,25	1,72
3 риски	18,20	18,12	18,18	18,17	1,82
4 риски	19,35	19,41	19,36	19,38	1,94
5 рисок	20,52	20,61	20,53	20,55	2,06
6 рисок	21,96	21,91	22,11	21,99	2,20

$$T(1 \text{ риска}) = \frac{\bar{t}}{N} = \frac{16,2}{10} \approx 1,62 \text{ c.}$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

<i>t</i> ⁻, c	A, rad	In(A/A0)
0	$A_0 = 0,13$	0,000
45.3	0,12	-0,092
91.4	0,11	-0,198
162.35	0,10	-0,320
240.74	0,08	-0,463
354.81	0,07	-0,633

$$A_0 = 0.057 + 0.025 * 6 * \sin(\frac{\pi}{6}) = 0.13$$

$$\beta = 0.001787 \ c^{-1}$$

$$\theta = \frac{1}{\beta} = 559,597 c$$

Таблица 4

Риски	1	2	3	4	5	6
R _{верх} , M	0,077					
R _{ниж} , м	0,202					
R _{бок} , M	0,077	0,102	0,127	0,152	0,177	0,202
I _{гр} , Н·м	0,024	0,028	0,032	0,038	0,045	0,052
I , Н·м	0,032	0,036	0,040	0,046	0,053	0,060
L _{npэксп} , M	0,651	0,734	0,822	0,934	1,053	1,201
L _{пртеор} , M	0,615	0,692	0,769	0,885	1,019	1,154

$$R_{Bepx} = 0.057 + 0.02 = 0.077 \,\mathrm{M}$$

$$R_{\text{HHЖ}} = 0.057 + 0.025 * 5 + 0.02 = 0.202 \,\mathrm{M}$$
 $I_{\text{Гр1}} = m_{\text{Гр}} (R_{\text{Верх}}{}^2 + R_{\text{HHЖ}}{}^2 + 2R_{\text{бок}}{}^2) = 0.408 * (0.077^2 + 0.202^2 + 2*0.077^2) \approx 0.024 \,\mathrm{H\cdot M}$
 $I_{I} = I_{\text{Гр1}} + I_{0} = 0.024 + 0.008 = 0.032 \,\mathrm{H\cdot M}$
 $T^2 = \frac{4\pi^2}{mgl}.I = A.I => \,ml = \frac{4\pi^2}{g.A} \approx 0.052 \,\mathrm{kg\cdot M}$
 $l_{\text{Теор}} = \frac{ml}{4m_{\text{Гр}}} = \frac{0.052}{4*0.408} \approx 0.032 \,\mathrm{M}$
 $l_{\text{Пр эксп 1}} = \frac{T_{1}^2 g}{4\pi^2} \approx 0.651 \,\mathrm{M}$
 $l_{\text{Пр теор 1}} = \frac{I_{1}}{ml} \approx 0.615 \,\mathrm{M}$

11. Графики (перечень графиков, которые составляют Приложение 2).

Рис. 1 – График зависимости амплитуды от времени

 $Puc.\ 2$ — График, соответствующий формуле $\ln rac{A}{A_0} = -eta t$

Рис. 3 – График зависимости квадрата периода от момента инерции

12. Окончательные результаты.

Риски	1	2	3	4	5	6
1пр эксп	0,651	0,734	0,822	0,934	1,053	1,201
Іпр теор	0,615	0,692	0,769	0,885	1,019	1,154

13. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы были экспериментально изучены характеристики затухающих колебаний физического маятника. Последовательно измеряя время, когда амплитуда колебаний уменьшалась до 25°, 20° и т. д., был составлен график зависимости амплитуды колебаний от времени (см. рисунок 1), который, как оказалось, имеет экспоненциальный вид – соответственно, в данных колебаниях преобладает именно вязкое трение, а не сухое, причём коэффициент затухания $\beta = 0.001787$ с⁻¹, а время затухания $\theta = 559,597$ с. Кроме того, были определены экспериментальные Іпр эксп и теоретические Іпр теор значения приведенной длины, представленные в последних столбцах на таблице 4.