Lecture 10: Bayes Nets: Probabilistic Models

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS410/index.html

Probability

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green
- Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Video of Demo Ghostbuster – No probability

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
 - Model: Agent knows something about how the known variables relate to the unknown variables

 Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

Weather:

P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions 2

• Unobserved random variables have distributions $P(T) \qquad \qquad P(W)$

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number P(W=rain)=0.1
- Must have: $\forall x \ P(X=x) \ge 0$ and $\sum_x P(X=x) = 1$

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
...

OK if all domain entries are unique

Joint Distributions

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

• Must obey: $P(x_1, x_2, \dots x_n) \geq 0$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Events

• An *event* is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are *partial* assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

P(X,Y)

Х	Υ	Р
+X	+y	0.2
+X	-y	0.3
-X	+y	0.4
-X	- y	0.1

Quiz: Events 2

2

.2+.3=.5

.1+.3+.2=.6

P(X,Y)

Х	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-у	0.1

Marginal Distributions

 Marginal distributions are sub-tables which eliminate variables

by adding

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

cold rain 0.3
$$P(s) = \sum_{t} P(t, s)$$

 $P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

Quiz: Marginal Distributions

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

P(X)

X	Р
+x	
-X	

+y

-у

Quiz: Marginal Distributions 2

Х	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+ y	0.4
-X	-y	0.1

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

P(X)

X	Р
+x	.5
-X	.5

Υ	Р
+y	.6
-V	4

P(Y)

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+ y	0.4
-x	-у	0.1

Quiz: Conditional Probabilities 2

• P(-x | +y)?

• P(-y | +x)?

P(X,Y)

Х	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-у	0.1

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W	T	=	hot)
-----	---	---	------

L	W	Р
	sun	0.8
	rain	0.2

$$P(W|T = cold)$$

P(W|T)

W	Р
sun	0.4
rain	0.6

Joint Distribution

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

W	Р
sun	0.4
rain	0.6

Normalization Trick 2

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

Т	W	Р
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection (make it sum to one)

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick 3

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(c, W)W cold 0.2 sun cold 0.3 rain

NORMALIZE the selection (make it sum to one)

$$\longrightarrow$$

P(W|T=c)

W	Р
sun	0.4
rain	0.6

Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

• P(X | Y=-y)?

Х	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-у	0.1

probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

Quiz: Normalization Trick 2

• P(X | Y=-y)?

X	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-x	-у	0.1

SELECT the joint probabilities matching the evidence

X	Υ	P
+X	-y	0.3
-X	-y	0.1

NORMALIZE the	
selection	
make it sum to one)	

To Normalize

• (Dictionary) To bring or restore to a normal condition

• Step 1: Compute Z = sum over all entries

Step 2: Divide every entry by Z

• Example 1

W	Р
sun	0.2
rain	0.3

W	Р
sun	0.4
rain	0.6

• Example 2

T	W	Р
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15

All entries sum to ONE

	Т	W	Р
	hot	sun	0.4
>	hot	rain	0.1
	cold	sun	0.2
	cold	rain	0.3

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

• P(W)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

• P(W)?

P(sun)=.3+.1+.1+.15=.65

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

• P(W)?

P(sun)=.3+.1+.1+.15=.65 P(rain)=1-.65=.35

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

 $P(sun | winter, hot) \propto .1$ $P(rain | winter, hot) \propto .05$

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter, hot)?

P(sun|winter,hot) ∝ .1 P(rain|winter,hot) ∝ .05 P(sun|winter,hot)=2/3 P(rain|winter,hot)=1/3

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W | winter)?

P(sun|winter) $\propto .1+.15=.25$ P(rain|winter) $\propto .05+.2=.25$ P(sun|winter)=.5 P(rain|winter)=.5

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

General case:

- Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ • Query* variable: Q Hidden variables: $H_1 \dots H_r$ All variables
- Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

We want:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

Bayes Rule

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y) \qquad \Longrightarrow \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule 2

$$P(y)P(x|y) = P(x,y)$$

• Example:

P(W)

R	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D,W)

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Bayes' Rule

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$

$$P(+s|+m) = 0.8$$
 Example givens
$$P(+s|-m) = 0.01$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

• Given:

P(W)

R	Р
sun	0.8
rain	0.2

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry)?

Quiz: Bayes' Rule 2

• Given:

P	(\overline{W})
	•		_

R	Р
sun	0.8
rain	0.2

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry)?

 $P(sun|dry) \propto P(dry|sun)P(sun) = .9*.8 = .72$ $P(rain|dry) \propto P(dry|rain)P(rain) = .3*.2 = .06$ P(sun|dry)=12/13P(rain|dry)=1/13

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. $P(R = yellow \mid G=(1,1)) = 0.1$
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

$$P(g|r) \propto P(r|g)P(g)$$

Video of Demo Ghostbusters with Probability

Probabilistic Models

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box

- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Independence

• Two variables are *independent* if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \! \perp \!\!\! \perp \!\!\! Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

P_{1}	T	W
<i>-</i> 1	$(\bot,$	<i> </i>

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

 $P_2(T,W)$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

N fair, independent coin flips:

$P(X_1)$		
H	0.5	
Т	0.5	

$P(X_2)$		
Н	0.5	
Т	0.5	

$$egin{array}{c|c} P(X_n) & & \\ H & 0.5 \\ \hline T & 0.5 \\ \end{array}$$

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- ullet X is conditionally independent of Y given Z $X \!\perp\!\!\!\perp \!\!\!\perp Y | Z$

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- ullet X is conditionally independent of Y given Z $X \!\perp\!\!\!\perp \!\!\!\perp \!\!\!\!\perp Y | Z$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$P(x|z,y) = \frac{P(x,z,y)}{P(z,y)}$$

$$= \frac{P(x,y|z)P(z)}{P(y|z)P(z)}$$

$$= \frac{P(x|z)P(y|z)P(z)}{P(y|z)P(z)}$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$
- Trivial decomposition:
- $P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) = P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain}, \mathsf{Traffic})$
 - With assumption of conditional independence:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 B: Bottom square is red
 G: Ghost is in the top
- Givens: P(+g) = 0.5 P(-g) = 0.5 P(+t | +g) = 0.8 P(+t | -g) = 0.4 P(+b | -g) = 0.8

P(T,B,G) =	P(G)	P(T	G)	P(B	(G)
------------	------	-----	----	-----	-----

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	-g	0.16
+t	-b	+g	0.24
+t	<u>b</u>	-g	0.04
-t	+b	+g	0.04
-t	- b	5 0	0.24
-t	<u>b</u>	gg +	0.06
-t	-b	-g	0.06

Bayes' Nets

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - We first look at some examples

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

Why is an agent using model 2 better?

Model 2: rain causes traffic

Example: Alarm Network

Variables

• B: Burglary

• A: Alarm goes off

• M: Mary calls

• J: John calls

• E: Earthquake!

Example: Alarm Network 2

Variables

• B: Burglary

• A: Alarm goes off

• M: Mary calls

• J: John calls

• E: Earthquake!

Example: Humans

- G: human's goal / human's reward parameters
- S: state of the physical world
- A: human's action

Example: Traffic II

Variables

- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together: n

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:

P(+cavity, +catch, -toothache)

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)

Probabilities in BNs 2

Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

- Chain rule (valid for all distributions): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$
- Assume conditional independences: $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$
 - \rightarrow Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(X_1)$$

h	0.5
t	0.5

$P(X_2)$		
h	0.5	
t	0.5	

$$P(X_n)$$
h 0.5
t 0.5

$$P(h, h, t, h) = P(h)P(h)P(t)P(h)$$

Example: Traffic

$$P(+r, -t) = P(+r)P(-t|+r) = (1/4) *(1/4)$$

Example: Traffic 2

Causal direction

P	T	1	F	2)
_	\ —	7	_	~/

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

Reverse causality?

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables *Traffic* and *Drips*
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

$$P(x_i|x_1,\ldots x_{i-1}) = P(x_i|parents(X_i))$$

Summary

- Probability
 - Joint/marginal/conditional probabilities

Shuai Li

https://shuaili8.github.io

Questions?