Activité 3.2 - Spectres d'émission

Objectifs:

- ▶ Comprendre la notion de spectre d'émission.
- Analyser le spectre d'émission d'une lampe.

Contexte : Il existe différentes sources lumineuse, comme le Soleil, les lampadaires, les néons, les écrans de téléphones, etc.

→ Comment caractériser la lumière émise par une source?

Comp.	Items	D	\mathbf{C}	В	A
VAL	Comparer des spectres avec des valeurs de références.				

Document 1 - Spectre d'émission

La lumière est une onde électromagnétique, qui peut avoir plusieurs longueurs d'ondes. Nos yeux captent certaines longueurs d'ondes et y associent une couleur : c'est le domaine visible.

La donnée de toutes les longueurs d'ondes présentes dans une source lumineuse s'appelle le **spectre d'émission**. Le spectre dans le domaine visible est représenté de la manière suivante :

1 - Les spectre d'émissions continus

Document 2 - Spectre continu

Un spectre d'émission continu présente une suite de raies colorées. Un spectre continu prend la forme d'une bande colorée unique.

Document 3 - Lampe à incandescence

Une lampe à incandescence est composé d'un petit filament chauffé par le passage d'un courant électrique. En augmentant la tension d'alimentation d'une lampe à incandescence, on augmente la température du filament.

1 -	(Qu	elle	es ·	dii	ffé:	re:	nc	es	r	er	na	ar	qυ	ıe	Z-	VC	ou	\mathbf{S}	qι	ıa	no	1.	la	la	m	ıp	e (es	t a	ali	m	er.	ıtέ	èе	er	ı 6	; €	ŧ	er	1 J	l2	V	?		

3 — En comparant les spectres données dans le document 5, indique classe contiennent de l'hydrogène, du néon ou du mercure.	r si les lampes éclairant l