Research seminar

Зайцева Арина, Валиуллина Рената

November 2023

1 Dataset Info

This Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011. The company mainly sells unique allocasion gift-ware. Many customers of the company are wholesalers. Dataset contains 1067371 rows and 8 columns.

2 Overview of data

- InvoiceNo: Invoice number. Nominal. A 6-digit integral number uniquely assigned to each transaction. If this code starts with the letter 'c', it indicates a cancellation.
- StockCode: Product (item) code. Nominal. A 5-digit integral number uniquely assigned to each distinct product.
- Description: Product (item) name. Nominal.
- Quantity: The quantities of each product (item) per transaction. Numeric.
- InvoiceDate: Invice date and time. Numeric. The day and time when a transaction was generated.
- UnitPrice: Unit price. Numeric. Product price per unit in sterling (£).
- CustomerID: Customer number. Nominal. A 5-digit integral number uniquely assigned to each customer.
- Country: Country name. Nominal. The name of the country where a customer resides.

3 EDA

3.1 Первый этап

Подключаем библиотеки и загружаем датасет

- 1. $data_1$ данные за 2009-2010 год
- $2. \ data_2$ данные за 2010-2011 год

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import zipfile
import wget

url = 'https://archive.ics.uci.edu/static/public/502/online+retail+ii.zip'
filename = wget.download(url) #returns file name

with zipfile.ZipFile(filename, 'r') as zip_ref: #read mode
    zip_ref.extractall('./')

Data_1 = pd.read_excel('online_retail_II.xlsx', sheet_name='Year 2009-2010')
#use data from list 1(Year 2009-2010)
Data_2 = pd.read_excel('online_retail_II.xlsx', sheet_name='Year 2010-2011')
#use data from list 2(Year 2010-2011)
```

```
data_1 = Data_1
data_2 = Data_2
data_size = len(data_1)+len(data_2)
```

3.2 Второй этап

Обрабатываем значения в датасете.

• Находим пропущенные значения

```
1 null_1 = data_1.isnull().sum() #series: the first coloumn - names of coloumns from data_1,
                                 #the second coloumn - the quantity of empty cells for every
                                 #attribute
4 perc = null_1 / len(data_1)
5 null_data_1 = pd.concat([null_1, perc], axis=1, keys=['num_null_values', 'percentage_null_values'
     1)
6 display(null_data_1)
8 null_2 = data_2.isnull().sum() #series: the first coloumn - names of coloumns from data_2,
                                 #the second coloumn - the quantity of empty cells for every
10
                                 #attribute
perc = null_2 / len(data_2)
null_data_2 = pd.concat([null_2, perc], axis=1, keys=['num_null_values', 'percentage_null_values'
     1)
display(null_data_2)
14
15
print("Percent of emty cells in Customer ID: ", (null_data_1.iat[6, 0] + null_data_2.iat[6,0])/
(1en(data_1)+len(data_2))*100)
```

	num_null_values	percentage_null_vaLues
Invoice		0.000000
StockCode	0	0.000000
Description	2928	0.005572
Quantity	0	0.000000
InvoiceDate		0.000000
Price	0	0.000000
Customer ID	107927	0.205395
Country	0	0.000000
	num_null_values	percentage_null_vaLues
Invoice		0.000000
StockCode	0	0.000000
Description	1454	0.002683
Quantity	0	0.000000
InvoiceDate		0.000000
Price	0	0.000000
Customer ID	135080	0.249266
Country	0	0.000000
Percent of e	emty cells in Cus	tomer ID: 22.7668729991

Выяснили, что отсутствует около 20-24% данный Customer ID в обои датафреймах, что составляет примерно 22,7% от всей бд. Для задачи классификации и регрессии нам вполне будет достаточно оставшихся данных, так как попытка подстановки каких-либо значение в Customer ID приведет к сильному искажению данных, так что при построении этой модели удалим строки с пропущенными значениями Customer ID. После удаления получаем:

Number of rows in data_1: 417534 Number of rows in data_2: 406830 • Выявляем аномалии

Из аномалий датасете есть отмененные транзакции. Найдем их количество

Percent of cancelled transactions in 2009-2010: 0.9217975755384022 Percent of cancelled transactions in 2010-2011: 0.8342928559985234

Отмененных транзакций в сумме меньше двух процентов, поэтому удалим их, так как не известна причина отмены, из-за чего они могут помешать построению точной модели.

```
data_1['t'] = data1['t']
data_1 = data_1.loc[data_1.t == True] #Drop cancelled transactions
data_1 = data_1.drop(columns=['t'])
print(f'Number of rows in data_1: {len(data_1)}')

data_2['t'] = data2['t']
data_2 = data_2.loc[data_2.t == True]
data_2 = data_2.drop(columns=['t'])
print(f'Number of rows in data_2: {len(data_2)}')

data_size = len(data_1) + len(data_2)
print(f'Total datasset size: {data_size}')
```

Number of rows in data_1: 407695 Number of rows in data_2: 397925 Total datasset size: 805620

• Поищем аномалии в столбцах Quantity и Price

```
#Negative quantity of products
print(f"data_1 percentage of not positive quantity: {len(data_1.loc[data_1.Quantity <= 0])/
    data_size*100}")
print(f'data_2 percentage of not positive quantity: {len(data_2.loc[data_2.Quantity <= 0])/
    data_size*100}', '\n')

#Negative price of products
print(f'data_1 percentage of negative prices: {len(data_1.loc[data_1.Price <= 0])/data_size*100}')
print(f'data_2 percentage of negative prices: {len(data_2.loc[data_2.Price <= 0])/data_size*100}')</pre>
```

```
data_1 percentage of not positive quantity: 0.0 data_2 percentage of not positive quantity: 0.0 data_1 percentage of negative prices: 0.003847968024626995 data_2 percentage of negative prices: 0.004965120031776768
```

Удалим строки с отрицательными Quantity, так как их количеество меньше одного процента.

```
data_1 = data_1.loc[data_1.Quantity > 0]
data_1 = data_1.loc[data_1.Price > 0]
print(f'Number of rows in data_1: {len(data_1)}')

data_2 = data_2.loc[data_2.Quantity > 0]
data_2 = data_2.loc[data_2.Price > 0]
print(f'Number of rows in data_2: {len(data_2)}')

data_size = len(data_1) + len(data_2)
print(f'Total datasset size: {data_size}')
```

Number of rows in data_1: 407664 Number of rows in data_2: 397885 Total datasset size: 805<u>549</u>

• Удалим дубликаты

```
data_1 = data_1.drop_duplicates()
print(f'Number of rows in data_1: {len(data_1)}')

data_2 = data_2.drop_duplicates()
print(f'Number of rows in data_2: {len(data_2)}')

data_size = len(data_1) + len(data_2)
print(f'Total datasset size: {data_size}')
```

Number of rows in data_1: 400916 Number of rows in data_2: 392693 Total datasset size: 793609

• Найдем выбросы и удалим их. Чтобы понять, является ли значение выбросом, воспользуемся интерквартильным размахом:

$$IRL = Q_3 - Q_1$$

где Q_1 — первая квартиль — такое значение признака, меньше которого ровно 25% всех значений признаков. Q_3 — третья квартиль — значение, меньше которого ровно 75% всех значений признака. Выбросы будут лежать вне данного интервала $[Q_1 - 1.5IQR, Q_3 + 1.5IQR]$.

```
def IRL(data, var):
   q_1 = data[var].quantile(.25)
   q_3 = data[var].quantile(.75)
    irl = q_3 - q_1
    bottom = q_1 - 1.5*irl
   top = q_3 + 1.5*irl
    data = data.loc[data[var] <= top]</pre>
    data = data.loc[data[var] >= bottom]
    return data
9
10
11 data_1 = IRL(data_1, 'Quantity')
12 data_1 = IRL(data_1, 'Price')
data_2 = IRL(data_2, 'Quantity')
data_2 = IRL(data_2, 'Price')
data_size = len(data_1) + len(data_2)
print(f'Number of rows in data_1: {len(data_1)}')
18 print(f'Number of rows in data_2: {len(data_2)}')
print(f'Total datasset size: {data_size}')
```

Number of rows in data_1: 342273 Number of rows in data_2: 333234 Total datasset size: 675507

```
print(f'Percent of data_1: {len(data_1)/data_size*100}')
print(f'Percent of data_2: {len(data_2)/data_size*100}')
```

Percent of data_1: 50.66905302239652 Percent of data_2: 49.33094697760349

Данные готовы

4 Построение моделей

4.1 Модель 1

В первой модели будем прогнозировать количество товаров, которое будет продано в следующем году. Так как процент данных для каждого года составляет около 50%, можем обучать модель на 2009-2010 годах, а тестировать на 2010-2011 годах. Начнем построение регресионной модели

```
1 X_train = data_1['Price'].to_numpy()
y_train = data_1['Quantity'].to_numpy()
3 X_test = data_2['Price'].to_numpy()
4 y_test = data_2['Quantity'].to_numpy()
6 N = len(X_train)
7 x_summ = 0
8 y_summ = 0
9 for i in range(len(X_train)):
    x_summ += X_train[i]
for j in range(len(y_train)):
y_summ += y_train[j]
mx = x_summ / N
_{14} my = y_summ / N
alpha2 = np.dot(X_train.T, X_train) / N
alpha11 = np.dot(X_train.T, y_train) / N
17 k = (alpha11 - mx * my) / (alpha2 - mx ** 2)
18 b = my - k * mx
19 print("y = ", k, "* x + ", b)
```

y = -1.4166225350081039 * x + 10.55288589807121

Изобразим графики точек (x_i, y_i) из обучающей и тестовой выборок и полученную линейную функцию

```
1 X_train = data_1['Price'].to_numpy()
y_train = data_1['Quantity'].to_numpy()
3 X_test = data_2['Price'].to_numpy()
4 y_test = data_2['Quantity'].to_numpy()
6 N = len(X_train)
7 x_summ = 0
8 y_summ = 0
9 for i in range(len(X_train)):
   x_summ += X_train[i]
for j in range(len(y_train)):
y_summ += y_train[j]
mx = x_summ / N
_{14} my = y_summ / N
15 alpha2 = np.dot(X_train.T, X_train) / N
alpha11 = np.dot(X_train.T, y_train) / N
17 k = (alpha11 - mx * my) / (alpha2 - mx ** 2)
b = my - k * mx
19 print("y = ", k, "* x + ", b)
```


Нашли с помощью метода наименьших квадратов линейную функцию y=kx+b, приближающую неизвестную зависимость. У прямой отрицательный наклон, так как ближе к нижнему левому углу плотность расположения точек выше, чем в другой части графика. Из этого делаем вывод, что данная функция от цены товаров может использоваться для прогноза количества их продаж Теперь попробуем приблизить, используя не линейную функцию, а гиперболическую

```
import numpy.linalg as lg
from numpy.linalg import inv

deg_x = np.vstack([0.4 + 2 * ((X_train-0.01) ** (-1))]).T
koeff_b = np.dot(np.dot(lg.inv(np.dot(deg_x.T, deg_x)), deg_x.T), y_train)
ans = "y = 0.4 + 2 * (x-0.01)^(-1)"
print(ans, sep=' ')
```

$y = 0.4 + 2 * (x-0.01)^{(-1)}$

```
rang = []
for j in range(150,8000):
    rang.append(j/1000)

y = [0.4 + 2/(i-0.001) * koeff_b for i in rang]

fig, ax = plt.subplots(2, figsize=(10, 10))

ax[0].scatter(X_train, y_train, color = 'lightgreen')

ax[0].set_title('Train data')
```

```
8 ax[0].plot([i for i in rang], y, color = 'magenta')
9 ax[1].scatter(X_test, y_test, color = 'powderblue')
10 ax[1].set_title('Test data')
11 ax[1].plot([i for i in rang], y, color = 'magenta')
12 fig.show()
```


Данная функция проходит ближе к началу координат, где наибольшее скопление точек, что является более точным приближением, чем линейная функция.

4.1.1 Модель 2

Во второй модели осуществим классификацию покупателей с помощью RFM-анализа, где рассматриваются такие показатели как давность покупок (recency), их частота (frequency) и общая сумма покупок (monetary).

Сначала расчитаем давность для каждого клиента для каждой выборки в зависимости от даты последней покупки. Следующим шагом будет подсчет частоты сделок, и, наконец, общие денежные затраты на покупку продукции. Отнормируем значения каждого признака После этого объединим все посчитанные значения в одну таблицу и посчитаем общее значение RFM для какждого покупателя по формуле $RFM = 0.1 \cdot Recency + 0.3 \cdot Frequency + 0.6 \cdot Monetary$

```
def r_f_m(data):
    recency = data.groupby(by='Customer ID', as_index=False)['InvoiceDate'].max()
    last_purchase_data = recency['InvoiceDate'].max() #day of last purchase according to data
    recency['Recency'] = recency['InvoiceDate'].apply(lambda x: (last_purchase_data - x).days)
    recency['rec_rank'] = recency['Recency'].rank(ascending=False) # count numerical rank
    recency['rec_rank_norm'] = (recency['rec_rank']/recency['rec_rank'].max())*100 # normalize values
    recency = recency.drop(columns={'InvoiceDate', 'Recency', 'rec_rank'}) #leave only the customer's ID
      and the normalized value of recency
9
    frequency = data.groupby(by=['Customer ID'], as_index=False)['InvoiceDate'].count()
    frequency = frequency.rename(columns = {'InvoiceDate': 'Frequency'})
10
    frequency['freq_rank'] = frequency['Frequency'].rank(ascending=True) # count numeracal rank
    frequency['freq_rank_norm'] = (frequency['freq_rank']/frequency['freq_rank'].max())*100 # normalize
    frequency = frequency.drop(columns={'Frequency', 'freq_rank'}) #leave only the customer's ID and the
      normalized value of frequency
14
    data['Monetary'] = data['Price']*data['Quantity']
16
    monetary = data.groupby(by='Customer ID', as_index=False)['Monetary'].sum()
    monetary['mon_rank'] = monetary['Monetary'].rank(ascending=True) # count numeracal rank
17
    monetary['mon_rank_norm'] = (monetary['mon_rank']/monetary['mon_rank'].max())*100 # normalize values
18
    monetary = monetary.drop(columns={'Monetary', 'mon_rank'}) #leave only the customer's ID and the
19
      normalized value of monetary
    rfm = (recency.merge(frequency, on='Customer ID')).merge(monetary, on='Customer ID')
21
    rfm['RFM'] = 0.1*rfm['rec_rank_norm']+0.3 * rfm['freq_rank_norm']+0.6*rfm['mon_rank_norm']
22
23
    return rfm
24
rfm_1 = r_f_m(data_1)
rfm_2 = r_f_m(data_2)
28 display(rfm_1)
29 display(rfm_2)
```

	Customer ID	rec_rank_norm	freq_rank_norm	mon_rank_norm	RFM	
0	12346.0	21.617665	44.879227	41.473430	40.509593	
1	12347.0	96.181530	67.536232	75.483092	75.168878	
2	12348.0	38.026107	30.555556	25.289855	28.143190	
3	12349.0	56.569477	72.089372	82.608696	76.848977	
4	12351.0	85.580090	30.555556	32.850242	37.434821	
4135	18283.0	76.345004	91.135266	50.603865	65.337399	
4136	18284.0	41.612785	30.555556	32.705314	32.951134	
4137	18285.0	5.794803	9.842995	7.173913	7.836727	
4138	18286.0	29.035013	63.285024	71.425121	64.744081	
4139	18287.0	76.345004	66.678744	76.497585	73.536674	
4140 rows × 5 columns						

```
1 #normalize RFM
2
3 rfm_1['RFM'] = rfm_1['RFM'] * 0.05
4 rfm_1['RFM'] = rfm_1['RFM'].round(2)
5 rfm_1 = rfm_1[['Customer ID', 'RFM']]
```

Теперь разделим покупателей по следубщим категориям: 1. RFM < 1.6: Lost Customer 2. $1.6 \le \text{RFM} <$ 3: Low-value customer 3. $3 \le \text{RFM} <$ 4: Medium value customer 4. $4 \le \text{RFM} <$ 4.5: High Value Customer 5. $4.5 \le \text{RFM}$: Top

Customer

Делаем то же самое для данных за 2010-2011 год. Нарисуем pie carts для обеих периодов:

```
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

frfm_pie_1 = rfm_1.groupby('Rank').agg(num_customers=('Customer ID', 'count')).reset_index().sort_values (by='Rank')

frfm_pie_2 = rfm_2.groupby('Rank').agg(num_customers=('Customer ID', 'count')).reset_index().sort_values (by='Rank')

fig1 = px.pie(rfm_pie_1, names='Rank', values='num_customers')
fig2 = px.pie(rfm_pie_2, names='Rank', values='num_customers')
fig1.update_layout(title='Classification of customers in 2009-2010', legend=dict(title='Rank'))
fig2.update_layout(title='Classification of customers in 2010-2011', legend=dict(title='Rank'))
fig1.show()
fig2.show()
```


По диаграммам видно, что процент количества покупателей каждой группы практически не изменился. С учетом того, что размер выборок также отличается всего на 10 тысяч транзакций, можно заключить, что, вероятнее всего, в странах не было особенных экономических кризисов и иных потрясений.

4.1.2 Модель 3

В данной модели на основании частоты покупок отдельных покупателей будем выявлять товары, которые регулярно покупали как в 2009-2010, так и в 2010-2011 годах. Это позволит предположить, какие товары и почему, вероятнее продолжат покупать и в последующие периоды времени, а какие - нет.

Критерием "регулярной" покупки будет служить максимальная разница по времени между двумя последовательными покупками - если эта разница превышает 60 дней, то покупка товара "нерегулярной".

Нас будет интересовать именно вид товара (без разницы какого он цвета, размера или с каким рисунком), поэтому сначала оставим для всех StockCode только первые пять цифр, уникальные для каждого товара (изначально буквы в конце кода обозначают цвет, размер и другие признаки).

Пишем функцию для вычисления регулярности покупок, возвращает твблицу с колонками StockCode(код товара) и regularly(значение True - "частый"товар, False - иначе):

```
def most_regular_products(data):
    model = data.loc[data.Country == 'United Kingdom'].reset_index()
    model['StockCode'] = model['StockCode'].astype(str)
    model['StockCode'] = model['StockCode'].apply(lambda x: x[:5])
    model = model[['Customer ID', 'StockCode', 'InvoiceDate']]
5
    model = model.sort_values(by=['Customer ID', 'StockCode', 'InvoiceDate']).reset_index(drop=True)
    model['transtitions_per_period'] = 0
9
10
    i = 0
    j = 0
    k = 0
12
    while i < len(model):</pre>
      while j < len(model) and model.loc[j, 'Customer ID'] == model.loc[i, 'Customer ID']:
14
        flag_k = 0
16
        while k < len(model) and model.loc[k, 'StockCode'] == model.loc[j, 'StockCode']:</pre>
17
18
          if flag_k != 0:
            d = (pd.to_datetime(model.loc[k, 'InvoiceDate']) - pd.to_datetime(model.loc[k-1, 'InvoiceDate
      '])).days
            if d > max:
20
21
              max = d
          flag_k = 1
22
          model.loc[k, 'transtitions_per_period'] = max
23
24
          k += 1
        j = k
25
26
      i = j
    model = model.loc[model.transtitions_per_period != 0].reset_index(drop=True)
28
    model['reg'] = model['transtitions_per_period'] >= 60
29
    model = model[['StockCode', 'reg']].drop_duplicates().reset_index(drop=True)
30
    return model
32
```

Находим для для каждого товара в двух периодах(2009-2010 и 2010-2011 года) "регулярный" он или нет и составляем таблицу: StockCode - код товара, reg - "регулярный" ли в 2009-2010, reg 2 - "нерегулярный" ли в 2010-2011:

```
model1 = most_regular_products(data_1)
model2 = most_regular_products(data_2)
model2 = model2.rename(columns={'reg':'reg_2'})

result = pd.merge(model1, model2, how='left',on='StockCode')
result['stays_regular'] = result['reg'] * result['reg_2']
```

Теперь для каждого товара найдем количество людей, которые продолжили покупать его регулярно:

```
reg_num = result.groupby('StockCode').agg(num_customers=('stays_regular', 'count')).reset_index()
reg_num = reg_num.sort_values(by=['num_customers'])
```


Наибольшее значение num_costomers - 4, поэтому рассмотримь товары, которые продолжили покупать 4 человека.

Посмотрим на товары, которые продолжили покупать регулярно, а какие нет:

```
#products continued to be bought regularly
3 items = data_1[['StockCode', 'Description']]
4 items['StockCode'] = items['StockCode'].astype(str).apply(lambda x: x[:5])
5 items = items.drop_duplicates(subset=['StockCode']).reset_index(drop=True)
7 reg_num4 = reg_num.loc[reg_num.num_customers == 4]
9 for index, rows in reg_num4.iterrows():
   df = items.loc[items.StockCode == rows[0]].reset_index()
11
    if len(df) != 0:
      print(df.loc[0, 'Description'], '\n')
12
14 #products stopped to be bought regularly
for index, rows in not_frequent_products.iterrows():
   df = items.loc[items.StockCode == rows[0]].reset_index()
   #display(df)
18
    if len(df) != 0:
   print(df.loc[0, 'Description'], '\n')
```

Из каждой группы найдем по 5 товаров и выдвинем предположение в связи с чем такое могло случиться.

Товары, которые продолжили регулярно покупать:

- 1. SMALL NOTEBOOK тетради постоянно заканчиваются
- 2. POPPY'S PLAYHOUSE это популярная детская игрушка, которая состоит из разных частей, которые можно много раз докупать
- 3. PENCILS SMALL TUBE SKULL ручки постоянно и используют, из-за чего они заканчиваются
- 4. 200 BENDY SKULL STRAWS одноразовые трубочки для напитков
- 5. PLASTERS пластыри, так же как и трубочки, вещь одноразовая

Товары, которые перестали регулярно покупать:

- 1. PARTY PIZZA DISH PINK+WHITE SPOT посуда для вечеринки. Покупатели могли переехать, пока некого звать на вечеринки, а до этого были друзья на старом месте.
- $2.\ \, \text{BLUE}$ CHENILLE SHAGGY CUSHION COVER наволочки на диванные подушки а они обычно быстро не изнашиваются
- 3. PINK SQUARE COMPACT MIRROR обычно людям много маленьких зеркал не нужно
- 4.~ BLACK TEA,COFFEE,SUGAR JARS постепенно купили банки для всего, что нужно, а потом их нет смысла часто менять из-за их относительной долговечности
- 5. DOGGY RUBBER собака могла умереть, поэтому и игрушки не нужны.