Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Final den 19 november 1968

1. En triangels sidor har längderna a>b>c och motsvarande höjder har längderna h_a , h_b och h_c . Visa att

$$a + h_a > b + h_b \ge c + h_c$$
.

- 2. På ytan av en damm, som har formen av en cirkel med radien 5 meter, simmar 6 ankungar. Visa att i varje ögonblick två av ankungarna simmar på ett avstånd av högst 5 meter.
- 3. För godtyckliga reella tal x_1 , x_2 och x_3 gäller att

om
$$x_1 + x_2 + x_3 = 0$$
 så är $x_1x_2 + x_2x_3 + x_3x_1 \le 0$.

Visa detta.

För vilka heltal $n \ge 4$ gäller att

om
$$x_1 + x_2 + \dots + x_n = 0$$
 så är $x_1 x_2 + x_2 x_3 + \dots + x_{n-1} x_n + x_n x_1 \le 0$?

(Båda summorna innehåller *n* termer).

4. Låt P(x) vara ett tredjegradspolynom med exakt tre olika reella nollställen. Hur många reella rötter har ekvationen

$$(P'(x))^2 - 2P(x)P''(x) = 0?$$

5. Låt m och n vara positiva heltal. Visa att det finns en konstant $\alpha>1$ sådan att

$$\frac{m}{n} < \sqrt{7}$$
 medför att $7 - \frac{m^2}{n^2} \ge \frac{\alpha}{n^2}$.

Vilket är det största möjliga värdet på α ?

6. Följden a_1, a_2, \cdots är definierad genom rekursionsformeln

$$a_{n+1} = \sqrt{a_n^2 + \frac{1}{a_n}}$$
 , $n \ge 1$

och $a_1 = 1$. Visa att man kan välja α så att

$$\frac{1}{2} \le \frac{a_n}{n^{\alpha}} \le 2$$
 för alla $n \ge 1$.