Travaux pratiques – TP 10

Suivi cinétique par spectrophotométrie : décoloration de l'érythrosine

% Capacités exigibles

- Relever les indications sur le risque associé au prélèvement, au mélange et au stockage des produits chimiques et adopter une attitude responsable lors de leur utilisation.
- O Suivi cinétique de transformations chimiques.
- Pratiquer une démarche expérimentale pour déterminer une concentration ou une quantité de matière par spectrophotométrie UV-Visible.
- ☐ Établir une loi de vitesse à partir du suivi temporel d'une grandeur physique.
- Exploiter les résultats d'un suivi temporel de concentration pour déterminer les caractéristiques cinétiques d'une réaction.
- Proposer et mettre en œuvre des conditions expérimentales permettant la simplification de la loi de vitesse.
- ☐ Suivi en continu d'une grandeur physique.

I | Objectifs

- ♦ Revoir la technique de spectrophotométrie.
- ♦ Tracer un spectre d'absorption d'une solution colorée : l'érythrosine.
- ♦ Suivre la cinétique d'une réaction lente :
- ♦ Vérifier des conditions expérimentales de dégénérescence de l'ordre.

II | Analyser

II/A Étude cinétique de la réaction entre l'érythrosine et l'eau de Javel

II/A) 1 Présentation

L'érythrosine est un colorant artificiel utilisé dans l'industrie alimentaire (E127) pour colorer les cerises et sirops. L'érythrosine (noté E) peut être décolorée par action des ions hypochlorite (ClO⁻) selon l'équation bilan

$$E(aq) + ClO^{-}(aq) = EClO^{-}(aq)$$

Le produit EClO⁻ obtenu est incolore.

II/A) 2 Matériel et données

Données

- \diamond Solution d'érythrosine de concentration massique $c_m(E) = 30 \,\mathrm{mg} \cdot \mathrm{L}^{-1}$.
- ♦ Solution d'eau de Javel (Na⁺ + ClO⁻) à 4,8% de chlore actif, soit une concentration molaire [ClO⁻] $\approx 0.24 \,\mathrm{mol}\cdot\mathrm{L}^{-1}$.
- \diamond Masse molaire de l'érythrosine : $M(E) = 880 \,\mathrm{g \cdot mol}^{-1}$.

II/A) 3 Étude des conditions expérimentales

- 1 Pourquoi peut-on penser qu'on peut suivre cette cinétique par spectrophotométrie?
- (2) Écrire la loi de vitesse de réaction. On appellera v cette vitesse, p l'ordre partiel par rapport à l'érythrosine, q celui par rapport à ClO^- et k la constante de vitesse de la réaction.
- (3) En tenant compte des données, calculer les concentrations initiales respectives en érythrosine c_0 et en ions hypochlorite $[ClO^-]_0$ dans la cuve. Y a-t-il dégénérescence de l'ordre? Modifier l'écriture de la loi de vitesse dans ce cas, en notant k_{app} la constante de vitesse apparente.

 $\overline{\mathrm{II}/\mathrm{A}}$ Détermination de l'ordre partiel p par rapport à l'érythrosine

On rappelle la loi de BEER-LAMBERT, appliquée ici à l'érythrosine : $A = \varepsilon \ell[E]$. Montrer que :

- (4) Il faut tracer ln(A) = f(t) pour tester l'hypothèse p = 1.
- (5) Il faut tracer 1/A = f(t) pour tester l'hypothèse p = 2.

 $\mathrm{II}/\mathrm{A})\,\mathrm{5}$ Détermination de l'ordre partiel q par rapport aux ions hypochlorites

On note $k_{\text{app},1}$ la constante de vitesse pour une concentration en ions hypochlorites $[\text{ClO}^-]_{01}$ et $k_{\text{app},2}$ la constante de vitesse pour une concentration en ions hydroxydes $[\text{ClO}^-]_{02} = [\text{ClO}^-]_{01}/2$.

(6) Montrer qu'alors

$$q = \frac{\ln\left(\frac{k_{\text{app},1}}{k_{\text{app},2}}\right)}{\ln(2)}$$

III Réaliser et valider

III/A Réalisation du spectre de l'érythrosine

Nous allons dans un premier temps établir le spectre d'absorption de l'érythrosine.

Expérience TP10.1 : Spectre d'absorption

- \diamondsuit Calibration du spectrophotomètre :
 - 1) Calibrer; Appuyer sur 0/1 puis cuve vide ?: \overline{VAL} . et imprimer ?: \overline{ESC} .
 - 2) Quand le calibrage est terminé : le spectro affiche : absorbance, etc
 - 3) Arrêter l'appareil : 0/1.

III. Réaliser et valider

♦ Redémarrer le spectrophotomètre sous contrôle de l'ordinateur :

- 1) Ouvrir Regressi
- 2) Dans Fichier \rightarrow nouveau choisir S250
- 3) Choisir dans le menu du spectro le protocole de communication : S 250 I/PC.
- 4) Cliquer sur le bouton correspondant au spectro éteint. Le spectro se rallume alors (il faut quelques secondes!).

♦ Tracé du spectre : spectre paramétrable [335 ; 900] nm :

- 1) Choisir des longueurs d'ondes variant de 400 à 600 nm avec un pas de 3 nm.
- 2) Effectuer le zéro avec une cuve remplie d'eau distillée en cliquant sur BLANC. Le spectro trace une ligne (bleue) de zéro pour toutes les longueurs d'ondes.
- 3) Puis réaliser le spectre de l'érythrosine en remplissant la cuve au 3/4 de sa hauteur avec la solution, puis en cliquant sur SPECTRE.

Expérience TP10.2 : Exploitation du graphe

- 1) Basculer dans Regressi : clic sur Sauver et Vers régressi du logiciel du spectro, et remplir le nom de la grandeur (A).
- 2) Grâce au réticule, pointer la longueur d'onde de la valeur maximale.
- Imprimer la courbe après avoir retiré le zéro en x et relié les points grâce à un lissage d'ordre 3 (dans le menu Coordonnées, décocher « zéro inclus »).
- 2 À quelle longueur d'onde doit-on travailler ensuite pour avoir un maximum de précision sur la mesure de l'absorbance?

III/B Étude cinétique de la réaction

 $\overline{\text{III/B}}$ Détermination de l'ordre partiel p par rapport à l'érythrosine

Expérience TP10.3 : Suivi cinétique

- 1) Éteignez le spectrophotomètre en le débranchant salement (mais proprement), puis le rallumer manuellement. Fermer Régressi complètement.
- 2) Allumer de nouveau le spectro en le rebranchant et en appuyant sur 0/1. Aller jusqu'au bout de la procédure de calibration.
- 3) Eteindre le spectro en appuyant sur 0/1. Le rallumer sous contrôle de l'ordinateur comme vu précédemment. Et choisir cette fois **suivi cinétique**.
- 4) Indiquer la valeur de λ_{max} pour déterminer la longueur d'onde à laquelle vous allez étudier l'évolution de l'intensité lumineuse.
- 5) Mettre la cuve avec le solvant puis appuyez cliquer ici.
- 6) Effectuer le zéro avec une cuve remplie d'eau distillée en cliquant sur BLANC. Le spectro trace une ligne (bleue) de zéro pour toutes les longueurs d'ondes.
- 7) Choisir ensuite 80 points, $\delta t = 4$ s, pour obtenir une durée d'expérience de 5 min environ. Valider. Puis refaire le blanc avec la cuve d'eau distillée en cliquant sur BLANC

Lycée Pothier 3/4 MPSI3 – 2024/2025

- 8) Prélever à la finnpipette : 1,2 mL d'eau de Javel, 1,2 mL d'eau distillée et 1,2 mL d'érythrosine que vous déposerez successivement dans une cuve. Recouvrir de *Parafilm* puis mélanger rapidement. Déposer cette dernière dans le spectro (dans le bon sens!) et lancer l'acquisition en cliquant sur mettre la cuve avec la solution puis cliquer ici.
- 9) Une fois l'acquisition terminée, transférer les données sous Regressi en cliquant sur l'icône prévue à cet effet. Créer les variables calculées nécessaires, puis effectuer les régressions linéaires trouvées précédemment; les superposer avec deux échelles : une échelle à gauche pour lnA = ln(A) et une échelle à droite pour invA = 1/A. Supprimer les zéros en ordonnées (menu coordonnées).
- $\boxed{3}$ Effectuer les régressions linéaires pour tester les hypothèses p=1 et p=2, et imprimer les courbes. Conclure sur la valeur de p.
- 4 Déterminer la constante apparente de vitesse de la réaction $k_{\text{app},1}$ et le temps de demi-réaction $\tau_{1/2}$.

III/B) 2 Détermination de l'ordre partiel q par rapport aux ions hydroxydes

Expérience TP10.4 : Suivi cinétique

- 1) Recommencer une nouvelle acquisition en prélevant : 0,6 mL d'eau de Javel, 1,8 mL d'eau distillée et 1,2 mL d'érythrosine. On a ainsi divisé par 2 la concentration initiale des ions hypochlorites et maintenue constante celle de l'érythrosine.
- 2) Une fois l'acquisition terminée, transférer les données sous Regressi en cliquant sur l'icône prévue à cet effet.
- $\boxed{5}$ Vérifier l'ordre p que vous avez obtenu précédemment.
- $\boxed{6}$ Déterminer expérimentalement la nouvelle constante apparente de vitesse de la réaction, notée $k_{\mathrm{app},2}$.
- 7 En déduire l'ordre partiel q par rapport à ClO^- ; l'arrondir à sa valeur entière la plus proche.

Remarque TP10.1:

Ne pas oublier d'imprimer les courbes obtenues, seuls repères pour l'examinataire. Vous prendrez soin de n'imprimer que les courbes et d'utiliser une impression noir et blanc.

${ m IV}|$ Conclure

- 8 Quels sont les ordres partiels expérimentaux?
- 9 Quel est l'ordre global de cette réaction?
- 10 Cette réaction suit-elle la loi de VAN'T HOFF?

Important

En fin de séance, nettoyez votre paillasse, débranchez le spectrophotomètre et ne pas oublier d'enlever la cuve à l'intérieur du spectrophotomètre.