PROPOSED MARKING GUIDE APPLIED MATHEMATICS P425/2 2023

N O	SOLUTION	MK S	COMMEN T
1	Let X be the number of tails obtained		
	P(H) = 2P(T)		
	P(H) + P(T) = 1		
	2P(T) + P(T) = 1		
	3P(T)=1		
	$P(T) = \frac{1}{3}, P(H) = \frac{2}{3}$		
	$\Rightarrow n = 7, p = \frac{1}{3}, q = \frac{2}{3}$		
	$P(X = 2) = {}^{7}C_{2} \cdot \left(\frac{1}{3}\right)^{2} \cdot \left(\frac{2}{3}\right)^{5}$		
	$=\frac{224}{729} \text{ or } 0.3073$		
		05	
2	$4 ms^{-1}$ $2 ms^{-1}$ $2.6 ms^{-1}$ $v_2 ms^{-1}$	100	
	A B A Gkg A Gkg A Gkg		
	a) From $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$		
	$6 \times 4 - (2 \times 2) = 6 \times 2.6 + 2 \times v_2$		
	$24 - 4 = 15.6 + 2v_2$		
	$2v_2 = 4.4$		
	$v_2 = 2.2 ms^{-1}$		
	b) Loss in kinetic energy = $K.E_{After} - K.E_{Before}$		
	K.E _{Before} = $\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2$		
	$= \frac{1}{2} \times 6 \times 4^2 - \frac{1}{2} \times 2 \times 2^2$		
	= 44 J		
	K.E After = $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$		
	$=\frac{1}{2} \times 6 \times 2.6^2 + \frac{1}{2} \times 2 \times 2.2^2$		

Prepared by AGABA ALEX @0751476403/0789863084

_	28 77 2		
	= 15.44 J		
<u></u>	\therefore Loss in K. E = 44 - 15.44 = 28.56 J		
		05	
3	$h = \frac{1}{2} - 0 = 0.5$		
	f(x)		
	0 0.1003		
	0.5 0.0391		
	1 0.0801		
	1.5 0.0602		
	2 0.0649		
	2.5 0.0380		
	3 0.0327 Total 0.1330 0.2823		
	$\int_0^3 f(x) dx \approx \frac{1}{2} \times \frac{1}{2} [0.1330 + 2(0.2823)]$		
	≈ 0.1744		
	≈ 0.174 (3dps)		
		05	
4	a ms		
	P.		
	, R		
	9 sin 30° a		
	g sin g cos so		
	30° g		
	Perpendicular to the plane;		
	$R = g \cos 30^{\circ} \dots (i)$		
	Parallel to the plane;		
	$g \sin 30^{\circ} - \frac{1}{4}R = a \dots (ii)$		
	Putting (i) into (ii);		
	$a = g \sin 30^{\circ} - \frac{1}{4} (g \cos 30^{\circ})$		
	$a = 9.8 \times \frac{1}{2} - \frac{1}{4} \times 9.8 \times \frac{\sqrt{3}}{2}$		
	$a = 2.7782 ms^{-2}$		
	From $v^2 = u^2 + 2as$		

	$v^2 = 0^2 + 7$	2 × 2.7782 >	× 4		
	$v^2 = 22.22$				
	$\dot{v} = 4.714$				
	v = 4.714	T 1115			
5					05
3		f (*000)	c f.d		
	0-10	15	10 1.5		
	10 - 20	19	10 1.9		
	20 - 30 30 - 40	16	10 1.6 10 1.8		
	40 - 60		20 1.5		
	60 - 80		20 0.3		
	80 – 90	1	10 0.1		
	a)				
	4				
	Frequency				
	Density (1000) 2.0-				
	2.0				
	1.8	N/			
	1.64	1,44			
	1,0-				
	0.8				
	1.0 0.8 0.6				
	0.4-				
	0.2				
	0-	20 4	0 60	80 100	
				Hass boundaries	
		- 208			
<u> </u>	b) Modal age = 1	l 6 years			05
6	x = 6.45, y = 0.0	00215 7 = 3	2 7		05
0	$e_x = 0.43, y = 0.0$ $e_x = 0.005, e_y = 0.0$				
	$\varepsilon_{\chi} = 0.003, \varepsilon_{\gamma} = (r + r^3)$. 0.000003, 8	c _z — 0.03		
	$w_{min} = \frac{(x+z^3)_{min}}{(\sqrt{y})_{max}}$	<u>.</u>			
	$=\frac{6.445+(2.65)}{\sqrt{0.002155}}$	5) ³			
	√0.002155	5			

	con ma in		
	= 539.7147		
	(x+z ³)		
	$w_{max} = \frac{(x+z^3)_{max}}{(\sqrt{y})_{min}}$		
	$=\frac{6.455 + (2.75)^3}{\sqrt{0.002145}}$		
	$\sqrt{0.002145}$ = 588.4137		
	$= 588.4137$ ∴ Internal = $539.7147 \le w \le 588.4137$		
-	∴ Internat = 559.7147 ≤ W ≤ 566.4157	05	
7	a) From $P(S' \cap R') = P(S') \cdot P(R')$	05	
<u>'</u>			
	$P(S) = [1 - P(S)] \cdot P(R')$		
	$P(S) = \frac{1}{4} \left(1 - P(S) \right)$		
	$P(S) = \frac{1}{4} - \frac{1}{4}P(S)$		
	$\frac{5}{4}P(S) = \frac{1}{4}$		
	$\therefore P(S) = \frac{1}{5} \text{ or } 0.2$		
	b) $P(S' \cap R) = P(S') \cdot P(R)$		
	$=\frac{4}{5}\times\frac{3}{4}$		
	$=\frac{3}{7}$ or 0.6		
\vdash	_ <u>5</u>	05	
8	Let K = weight per unit are, W = KA	05	
0	Area of square = $60 \times 60 = 3600 \text{ cm}^2$		
	Area of circle = $\pi r^2 = \pi \times 20^2 = 400\pi \text{ cm}^2$		
	Remainder = $3600 - 400\pi$		
	Figure Area Weight Distance of		
	CO.G from AD		
	Circle 400π 400πK 40		
	Remainder $3600-400\pi$ $(3600-400\pi)$ K \bar{x}		
	Taking moments about AD		
	$(3600 - 400\pi)K \times \bar{x} = 3600K \times 30 - 400\pi K \times 40$		
	$(3600 - 400\pi)\bar{x} = 108,000 - 16,000\pi$		
	$\bar{x} = \frac{108,000 - 16,000\pi}{3600 - 400\pi}$		
	$\bar{x} = 24.6375 \ cm \text{ from AD}$		
	x = 24.0373 tm nom AD		
-	14/	05	-
9	a) $M(\bar{x}, \bar{y})$		

$$\bar{x} = \frac{\sum x}{n} = \frac{653}{10} = 65.3$$

$$\bar{y} = \frac{\sum y}{n} = \frac{670}{10} = 67$$

$$\therefore M(\bar{x}, \bar{y}) = M(65.3, 67)$$

b) Let B = BIOLOGY E = ECONOMICS

В	E	R_B	R_E	d	d²
45	90	10	1.	9	81
63	64	6	5	1	1
56	76	8	3	5	25
61	70	7	4	3	9
75	55	3	8	-5	25
83	53	1	9.5	-8.5	72.225
73	62	4	6.5	-2.5	6.25
50	85	9	2	7	49
77	53	2	9.5	-7.5	56.25
70	62	5	6.5	-1.5	2.225
653	670				$\sum d^2 = 327$

$$\rho = 1 - \frac{6 \sum_{n} d^{2}}{n(n^{2} - 1)}$$
$$= 1 - \frac{6(327)}{10(10^{2} - 1)}$$

	=-0.9818		
	Comment: It is significant at 5%		
	Or It is significant at 1%		
	Or It is very high negative correlation		
	Of It is very high negative correlation		
10	a)	12	
	Velocity ↑ (ms ⁻¹)		
	25		
	· · · · · · · · · · · · · · · · · · ·		
	A 10 18 30 Time (s)		
	p)		
	(i) $526 = (25 \times 10) + \frac{1}{2} \times 8(25 + V) + (V \times 12)$		
	526 = 250 + 100 + 4V + 12V		
	526 = 350 + 16V		
	16V = 176		
	$V = 11 \ ms^{-1}$		
	(ii) From $v = u + at$		
	11 = 25 + 8a		
	8a = -14		
	a = -1.75		
	∴ the deceleration is 1.75 ms ⁻²	12	
11	a)	14	
	(i) $f(1) = 1e^1 + 5(1) - 10 = -2.2817$		
	$f(2) = 2e^2 - 5(2) - 10 = 14.7781$		
	(ii) Since $f(1) \cdot f(2) < 0$, thus $1 < \text{root} < 2$		
	b)		
	$1 \qquad x_0 \qquad 2$		
	-2.2817 0 14.7781		

	$\frac{x_0 - 1}{0 + 2.2817} = \frac{2 - 1}{14.7781 + 2.2817}$		
	$x_0 = 1.1337$		
	$f(1.13337) = 1.13337e^{1.1337} + 5(1.1337) - 10$		
	=-0.8089		
	1.1337 x ₁ 2		
	-0.8089 0 14.7781		
	$\frac{x_1 - 1.1337}{0 + 0.8089} = \frac{2 - 1.13337}{14.7781 + 0.8089}$		
	$x_1 = 1.1787$		
	∴ Root ≈ 1.179 (3dps)		
<u> </u>	Root ≈ 1.179 (Sups)		
10	A Thorse of	12	
12	a) Testing		
	For $-1 \le x \le 0$;		
	=F(0)-F(-1)		
	$=\frac{1}{6}-0$		
	$=\frac{6}{6}<\frac{1}{2}$		
	D 2		
	For $0 \le x \le 2$;		
	= F(2) - F(0)		
	$=\frac{5}{6}-\frac{1}{6}$		
	$=\frac{2}{3}>\frac{1}{2}$		
	Let m = median		
	$F(m) = \frac{1}{2}$		
	$\frac{1+2m}{6} = \frac{1}{2}$		
	1 + 2m = 3		
	2m = 2		
	$bar{m} = 2$ $bar{m} = 1$		
	m = 1		
	d(1+r) = 1		
	b) For $-1 \le x \le 0$; $f(x) = \frac{d}{dx} \left(\frac{1+x}{6} \right) = \frac{1}{6}$		
	For $0 \le x \le 2$; $f(x) = \frac{d}{dx} \left(\frac{1+2x}{6} \right) = \frac{1}{3}$		
	For $2 \le x \le \frac{8}{3}$; $f(x) = \frac{d}{dx} \left(\frac{4+3x}{12} \right) = \frac{1}{4}$		
	For $x \ge \frac{8}{3}$; $f(x) = \frac{d}{dx}(1) = 0$		
	$\frac{1}{3} \frac{1}{3} \frac{1}$		

	$f(x) = \begin{cases} \frac{1}{6}, -1 \le x \le 0 \\ \frac{1}{3}, 0 \le x \le 2 \\ \frac{1}{4}, 2 \le x \le \frac{8}{3} \\ 0, elsewhere \end{cases}$ $c) P(1 \le X \le 2.5) = \int_{1}^{2} \frac{1}{3} dx + \int_{2}^{2.5} \frac{1}{4} dx$ $= \left[\frac{1}{3}x\right]_{1}^{2} + \left[\frac{1}{4}x\right]_{2}^{2.5}$ $= \frac{1}{3}(2-1) + \frac{1}{4}(2.5-2)$ $= \frac{1}{3} + \frac{1}{8}$ $= \frac{11}{24} \text{ or } 0.4583$ $d) E(X) = \int_{-1}^{0} \frac{1}{6}x dx + \int_{0}^{2} \frac{1}{3}x dx + \int_{2}^{\frac{8}{3}} \frac{1}{4}x dx$ $= \frac{1}{6} \left[\frac{x^{2}}{2}\right]_{-1}^{0} + \frac{1}{3} \left[\frac{x^{2}}{2}\right]_{2}^{0} + \frac{1}{4} \left[\frac{x^{2}}{2}\right]_{2}^{\frac{8}{3}}$ $= \frac{1}{12}(0-1) + \frac{1}{6}(4-0) + \frac{1}{8} \left(\frac{64}{9} - 4\right)$ $= -\frac{1}{12} + \frac{2}{3} + \frac{7}{18}$		
	$=\frac{35}{36}$ or 0.97222		
		12	
13	a) Let F_R be the resultant force		
	$F_R = F_1 + F_2 + F_3$ $= {2 \choose -3} + {5 \choose 2} + {-2 \choose -11}$ $= {5 \choose -12} N$		
	$\therefore F_R = \sqrt{5^2 + (-12)^2} = 13 \text{ N}$		
	b) About the origin; $G = \begin{vmatrix} 2 & 3 \\ 2 & -3 \end{vmatrix} + \begin{vmatrix} -2 & 3 \\ 5 & 2 \end{vmatrix} + \begin{vmatrix} 3 & -2 \\ -2 & -11 \end{vmatrix}$ $= (-6 - 6) + (-4 - 15) + (-33 - 4)$ $= -12 - 19 - 37$ $= -68 \text{ Nm}$		
	Using $G - xF_y + yF_x = 0$ -68 + 12x + 5y = 0 $\therefore 12x + 5y - 68 = 0$		
	c) It cuts the x-axis when $y = 0$;		

	12x - 68 = 0		
	12x = 68		
	x = 5.6667 m from the origin.		
	59		
	d) Let $(al + bf)$ be the force to be added to form a couple		
	For a couple the $F_R = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$		
	$\Rightarrow {5 \choose -12} + {a \choose b} = {0 \choose 0}$		
	$5 + a = 0$ $\therefore a = -5$		
	$-12 + b = 0 \qquad \therefore b = 12$		
	$\therefore (-5l + 12j) \text{ N}$		
		12	
14	a) Let $x = N^{\frac{1}{k}}$		
	$x^k = N$		
	$x^k - N = 0$		
	Let $f(x) = x^k - N$		
	$f'(x) = kx^{k-1}$		
	$x_n^k - N$		
	$x_{n+1} = x_n - \frac{x_n^k - N}{k x_n^{k-1}}$		
	$x_{n+1} = \frac{kx_n^k - x_n^k + N}{kx_n^{k-1}}$		
	$=\frac{(k-1)x_n^k+N}{kx_n^{k-1}}$		
	b)		

Prepared by AGABA ALEX @0751476403/0789863084

_ 0.200	Ť	
= 0.395 (ii) P (two or more) = P (only two) + P(oll)		
(ii) $P \text{ (two or more)} = P \text{ (only two)} + P \text{ (all)}$		
$P(\text{only two}) = P(A' \cap B \cap C) + P(A \cap B' \cap C) + P(A \cap B \cap C')$ $= (0.7 \times 0.5 \times 0.7) + (0.3 \times 0.5 \times 0.7) + (0.3 \times 0.5 \times 0.3)$	1	
= 0.245 + 0.105 + 0.045	1	
= 0.395		
$P(AII) = P(A \cap B \cap C)$		
$= 0.3 \times 0.5 \times 0.7$		
= 0.105		
\therefore P (two or more) = 0.395 + 0.105 = 0.5 ALT:		
P (two or more) = 1 - [P(none) + P(only one)]		
$P(\text{none}) = P(A' \cap B' \cap C')$		
$= 0.7 \times 0.5 \times 0.3$		
= 0.7 × 0.5 × 0.5		
\therefore P (two or more) = 1-[0.105 + 0.395]		
= 1 - 0.5		
= 0.5		
b) $P(P) = 0.6, P(L/P) = \frac{2}{3}$		
$P(Q) = 0.4, P(L/Q) = \frac{1}{3}$		
(i) $P(L) = \left(0.6 \times \frac{2}{3}\right) + \left(0.4 \times \frac{1}{3}\right)$		
$=\frac{8}{15}$ or 0.5333		
(ii) $P(P/L') = \frac{P(P \cap L')}{P(L')}$		
$=\frac{\left(0.6\times\frac{1}{3}\right)}{1-\frac{ii}{15}}$		
$=\frac{3}{7}$ or 0.4286		
	12	
Let α be the acceleration of the system, T and T_1 be the tensions in the		
strings		

Using $v = u + at$	
$v = 0 + 1.4 \times 1.5$	
$v = 2.1 ms^{-1}$	

