INTRO TO MACHINE LEARNING

KNOWLEDGE SHARING FOR CPE/SKE STUDENTS

SIRAKORN LAMYAI

STUDENT, KASETSART U.

OCTOBER 10, 2018

OUTLINE

- 1 Introduction to Machine Learning
 - What is Machine Learning? Traditional programming approach Machine learning approach
- 2 Machine Learning Problems
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- 3 Model
 - A good model Overfitting and underfitting

INTRODUCTION TO MACHINE LEARN-ING

■ This is Recaptcha.

- This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.

- This is Recaptcha.
 - ► Recaptcha helps stop millions of spam a day.
 - ► In some old days, we have to type Captcha texts to distinguish ourself from bots.

- This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.
 - ► In some old days, we have to type Captcha texts to distinguish ourself from bots.
 - ► How is it possible that with a single click, an automated system can distinguish bots from humans?

TRADITIONAL PROGRAMMING APPROACH

MACHINE LEARNING APPROACH

IN OTHER WORDS...

Machine Learning

Machine Learning

= Data + Data analysis algorithm

Machine Learning

Data + Data analysis algorithmAdapt to change

MACHINE LEARNING PROBLEMS

1. Supervised learning

- 1. Supervised learning
- 2. Unsupervised learning

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Given a training set for the data, find a model to generalise well to unseen data.

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems
 - Classification: On the discrete data

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems
 - Classification: On the discrete data
 - Regression: On the continuous data

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems
 - Classification: On the discrete data
 - Regression: On the continuous data
- Example problems: Spam E-mail detection, Facial recognition

■ Discover **hidden** structure in **non-labelled** data.

Unsupervised Learning

- Discover **hidden** structure in **non-labelled** data.
- Example: Clustering, Generative models

REINFORCEMENT LEARNING

■ A result of the combination between...

MODEL

- A result of the combination between...
 - ▶ a **method** to recognise the data, and

- A result of the combination between...
 - ▶ a **method** to recognise the data, and
 - **sample datas** for such the method

0 | 1

Data Method

1 | 1

Data

Method

MODEL

Determine which group should the purple dot be in (red/green/blue) by **checking the colour of its nearest dot.**

Data Method

■ We're going to write our **first own** machine learning algorithm called *k*-Nearest Neighbour (*k*NN)

- We're going to write our **first own** machine learning algorithm called *k*-Nearest Neighbour (*k*NN)
 - ► *k*-NN is known to be very simple, with its concept as

- We're going to write our **first own** machine learning algorithm called *k*-Nearest Neighbour (*k*NN)
 - ► k-NN is known to be very simple, with its concept as

k-NN algorithm

To classify label of a data point, get *k* nearest data points to the data point, and select the major label among those data points.

Good model?

GOOD MODEL

How should we draw the line to predict this data?

GOOD MODEL

Blue, red, or green line?

1. Underfitting

1. Underfitting

► Our model fails to know the data's trends

1. Underfitting

- Our model fails to know the data's trends
- ► Resulting in failure to predict further data

1. Underfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data
- 2. Overfitting

1. Underfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data

2. Overfitting

Our model memorise instead of generalise

1. Underfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data

2. Overfitting

- Our model memorise instead of generalise
- Resulting in failure to catch the trend

Good model must generalise