Math & Stat for Data Science

Graduate School of Data Science Seoul National University

- Suppose researchers are interested in the height of Korean population
 - How can we summarize the data?

- Now researchers are interested in both height and weight
 - How we can capture the relationship between these two?

3.1 Definition. The expected value, or mean, or first moment, of X is defined to be

$$\mathbb{E}(X) = \int x \, dF(x) = \begin{cases} \sum_{x} x f(x) & \text{if } X \text{ is discrete} \\ \int x f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$
(3.1)

assuming that the sum (or integral) is well defined. We use the following notation to denote the expected value of X:

$$\mathbb{E}(X) = \mathbb{E}X = \int x \, dF(x) = \mu = \mu_X. \tag{3.2}$$

- One-number summary of the distribution
- Can be approximated by sample mean (for IID samples)

Expectation (Binary Dist)

- X~ Bernoulli(p)
 - E(X) = p

Expectation (Binary Dist)

- X~Binomial(n,p)
 - E(X) = np

Expectation (Binary Dist)

- $X^{Poisson}(\lambda)$
 - $E(X) = \lambda$

3.6 Theorem (The Rule of the Lazy Statistician). Let Y = r(X). Then

$$\mathbb{E}(Y) = \mathbb{E}(r(X)) = \int r(x)dF_X(x). \tag{3.3}$$

- Expected value of transformed variables can be easily calculated using the above theorem.
- For binary variables (or multivariate variables)

$$\mathbb{E}(r(X,Y)) = \int \int r(x,y)dF(x,y).$$

Example

3.7 Example. Let $X \sim \mathrm{Unif}(0,1)$. Let $Y = r(X) = e^X$. E(r(X))?

Example

3.9 Example. Let (X,Y) have a jointly uniform distribution on the unit square. Let $Z=r(X,Y)=X^2+Y^2$. Then,

E(r(X, Y))?

Properties of Expectation

3.11 Theorem. If X_1, \ldots, X_n are random variables and a_1, \ldots, a_n are constants, then

$$\mathbb{E}\left(\sum_{i} a_{i} X_{i}\right) = \sum_{i} a_{i} \mathbb{E}(X_{i}). \tag{3.5}$$

- Very useful property!
- Do not require independence of X!!
- Example: mean of Binomial (n, p)?

Properties of Expectation

3.13 Theorem. Let X_1, \ldots, X_n be independent random variables. Then,

$$\mathbb{E}\left(\prod_{i=1}^{n} X_i\right) = \prod_{i} \mathbb{E}(X_i). \tag{3.6}$$

- Requires independence of X
- Example: Mean of XY, where X and Y are independent and X~Bernoulli(p₁) and Y~ Bernoulli(P₂)

Variance and Covariance

3.14 Definition. Let X be a random variable with mean μ . The variance of X — denoted by σ^2 or σ_X^2 or $\mathbb{V}(X)$ or $\mathbb{V}X$ — is defined by

$$\sigma^{2} = \mathbb{E}(X - \mu)^{2} = \int (x - \mu)^{2} dF(x)$$
 (3.7)

assuming this expectation exists. The standard deviation is $sd(X) = \sqrt{V(X)}$ and is also denoted by σ and σ_X .

 Variance represents the spread of distribution

Variance – Important properties

3.15 Theorem. Assuming the variance is well defined, it has the following properties:

- 1. $\mathbb{V}(X) = \mathbb{E}(X^2) \mu^2$.
- 2. If a and b are constants then $\mathbb{V}(aX + b) = a^2 \mathbb{V}(X)$.
- 3. If X_1, \ldots, X_n are independent and a_1, \ldots, a_n are constants, then

$$\mathbb{V}\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 \mathbb{V}(X_i). \tag{3.8}$$

Variance

• Example: Variance of binomial(n, p)?

Variance

Sample mean and variance

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$

3.17 Theorem. Let X_1, \ldots, X_n be IID and let $\mu = \mathbb{E}(X_i), \ \sigma^2 = \mathbb{V}(X_i)$. Then

$$\mathbb{E}(\overline{X}_n) = \mu$$
, $\mathbb{V}(\overline{X}_n) = \frac{\sigma^2}{n}$ and $\mathbb{E}(S_n^2) = \sigma^2$.

3.18 Definition. Let X and Y be random variables with means μ_X and μ_Y and standard deviations σ_X and σ_Y . Define the covariance between X and Y by

$$Cov(X,Y) = \mathbb{E}\left((X - \mu_X)(Y - \mu_Y)\right)$$
(3.11)

and the correlation by

$$\rho = \rho_{X,Y} = \rho(X,Y) = \frac{\mathsf{Cov}(X,Y)}{\sigma_X \sigma_Y}. \tag{3.12}$$

 Indicate the strength of linear relationship between two random variables X and Y

Correlation?

3.19 Theorem. The covariance satisfies:

$$Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

The correlation satisfies:

$$-1 \le \rho(X, Y) \le 1.$$

3.20 Theorem. $\mathbb{V}(X+Y)=\mathbb{V}(X)+\mathbb{V}(Y)+2\mathsf{Cov}(X,Y)$ and $\mathbb{V}(X-Y)=\mathbb{V}(X)+\mathbb{V}(Y)-2\mathsf{Cov}(X,Y)$. More generally, for random variables X_1,\ldots,X_n ,

$$\mathbb{V}\left(\sum_i a_i X_i\right) = \sum_i a_i^2 \mathbb{V}(X_i) + 2 \sum \sum_{i < j} a_i a_j \mathsf{Cov}(X_i, X_j).$$

Important RVs

Distribution	Mean	Variance
Point mass at a	a	0
Bernoulli(p)	p	p(1 - p)
Binomial(n, p)	np	np(1-p)
Geometric(p)	1/p	$(1-p)/p^2$
$Poisson(\lambda)$	λ	λ
Uniform(a, b)	(a+b)/2	$(b-a)^2/12$
$Normal(\mu, \sigma^2)$	μ	σ^2
Exponential(β)	β	eta^2
$Gamma(\alpha, \beta)$	$\alpha\beta$	$lphaeta^2$
$Beta(\alpha, \beta)$	$\alpha/(\alpha+\beta)$	$\alpha\beta/((\alpha+\beta)^2(\alpha+\beta+1))$
$t_ u$	0 (if $\nu > 1$)	$\nu/(\nu-2) \ (\text{if } \nu > 2)$
χ_p^2	p	2p
Multinomial(n, p)	np	see below
Multivariate Normal (μ, Σ)	μ	Σ

Multivariate & Conditional Expectation & Monte-Carlo approach

Multivariate RVs

$$X=\left(egin{array}{c} X_1 \ dots \ X_k \end{array}
ight) \qquad \qquad \mu=\left(egin{array}{c} \mu_1 \ dots \ \mu_k \end{array}
ight) = \left(egin{array}{c} \mathbb{E}(X_1) \ dots \ \mathbb{E}(X_k) \end{array}
ight) \qquad \qquad ext{Mean Vector}$$

$$\mathbb{V}(X) = \begin{bmatrix} \mathbb{V}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_k) \\ \operatorname{Cov}(X_2, X_1) & \mathbb{V}(X_2) & \cdots & \operatorname{Cov}(X_2, X_k) \\ \vdots & \vdots & \vdots & \vdots \\ \operatorname{Cov}(X_k, X_1) & \operatorname{Cov}(X_k, X_2) & \cdots & \mathbb{V}(X_k) \end{bmatrix}.$$
 Covariance Matrix

Multivariate RVs

3.21 Lemma. If a is a vector and X is a random vector with mean μ and variance Σ , then $\mathbb{E}(a^TX) = a^T\mu$ and $\mathbb{V}(a^TX) = a^T\Sigma a$. If A is a matrix then $\mathbb{E}(AX) = A\mu$ and $\mathbb{V}(AX) = A\Sigma A^T$.

 Very useful to identify the mean and variance of linear combination of random variables

Multivariate RVs

• Example: Suppose $(X_1, X_2, X_3)^T$ have the following mean and variance

$$\mu = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{pmatrix},$$

• Let $Y = X_1 + 0.5X_2 + 0.5X_3$. Mean and variance of Y?

Conditional Expectation

3.22 Definition. The conditional expectation of X given Y = y is

$$\mathbb{E}(X|Y=y) = \begin{cases} \sum x f_{X|Y}(x|y) dx & \text{discrete case} \\ \int x f_{X|Y}(x|y) dx & \text{continuous case.} \end{cases}$$
(3.13)

If r(x, y) is a function of x and y then

$$\mathbb{E}(r(X,Y)|Y=y) = \begin{cases} \sum r(x,y) f_{X|Y}(x|y) dx & \text{discrete case} \\ \int r(x,y) f_{X|Y}(x|y) dx & \text{continuous case.} \end{cases}$$
(3.14)

Conditional Expectation

- Given Y, what is the expected values of X?
 - Ex. Given Height=180 cm, what is the expected value of Weight
- Important: E(X|Y=y) & E(r(X,Y)|Y=y) are functions of y. So E(X|Y) is a random variable of Y
 - Ex. X \sim Uniform(0,1), and Y \sim Uniform(x,1) given X=x. Then E(Y | X) = (1+x)/2

Conditional Expectation

3.24 Theorem (The Rule of Iterated Expectations). For random variables X and Y, assuming the expectations exist, we have that

$$\mathbb{E}\left[\mathbb{E}(Y|X)\right] = \mathbb{E}(Y) \quad \text{and} \quad \mathbb{E}\left[\mathbb{E}(X|Y)\right] = \mathbb{E}(X). \tag{3.15}$$

More generally, for any function r(x, y) we have

$$\mathbb{E}\left[\mathbb{E}(r(X,Y)|X)\right] = \mathbb{E}(r(X,Y)). \tag{3.16}$$

Conditional Variance

3.26 Definition. The conditional variance is defined as

$$\mathbb{V}(Y|X=x) = \int (y-\mu(x))^2 f(y|x) dy$$
 where $\mu(x) = \mathbb{E}(Y|X=x)$. (3.17)

Conditional Variance is also a RV

3.27 Theorem. For random variables X and Y,

$$\mathbb{V}(Y) = \mathbb{E}\mathbb{V}(Y|X) + \mathbb{V}\mathbb{E}(Y|X).$$

Conditional Expectation and Variance

- Example: Suppose height of male ~ N(173, 5²) and female ~ N(163, 4²). The numbers of males and females are the same
 - Mean height?

Conditional Expectation and Variance

- Example: Suppose height of male ~ N(173, 5²) and female ~ N(163, 4²). The numbers of males and females are the same
 - Variance?

Monte-Carlo simulation

- Suppose we want to calculate E(f(x)) and V(f(x)), where distribution of x is know and easily sampled
 - EX. $x \sim N(0,1)$ and $f(x) = x^3$
- In many situations, it is difficult to get them analytically
- Monte Carlo approach can be used
 - Simulate x, B times, $x_1, ..., x_B$
 - Estimate E(f(x)) as the sample mean

$$E(f(x)) \approx \frac{1}{n} \sum_{i=1}^{B} f(x_i)$$

Monte-Carlo simulation

 EX. Suppose that (height, weight) in Korean Male follows MVN with

$$\mu = \begin{pmatrix} 173 \\ 68 \end{pmatrix}, \Sigma = \begin{pmatrix} 5^2 & 10 \\ 10 & 4^2 \end{pmatrix},$$

• Mean and variance of BMI (kg/m²)?

Monte-Carlo simulation: BMI

```
import numpy as np
import matplotlib.pyplot as plt

mean = np.array([173, 68])
cov = np.array([[25,10], [10,16]])

X = np.random.multivariate_normal(mean, cov, size=1000)
BMI = X[:,1]/(X[:,0]/100) **2

plt.hist(BMI)
```



```
print('mean:', np.mean(BMI))
print('sd:', np.std(BMI))
```

mean: 22.707407367106246 sd: 1.3214436859878371

Moment Generating Function

3.29 Definition. The moment generating function MGF, or Laplace transform, of X is defined by

$$\psi_X(t) = \mathbb{E}(e^{tX}) = \int e^{tx} dF(x)$$

where t varies over the real numbers.

- Have all the information on the distribution
- Useful to derive the distribution of sum of random variables
- Moment calculation: $\psi^{(k)}(0) = \mathbb{E}(X^k)$

Moment Generating Function

- **3.31 Lemma.** Properties of the MGF.
 - (1) If Y = aX + b, then $\psi_Y(t) = e^{bt}\psi_X(at)$.
- (2) If X_1, \ldots, X_n are independent and $Y = \sum_i X_i$, then $\psi_Y(t) = \prod_i \psi_i(t)$ where ψ_i is the MGF of X_i .

- Example:
 - Let X ~ Binomial(n, p). MGF of X?

- Example:
 - Let X ~ Binomial(n₁, p), and Y~ Binomial (n₂, p). MGF of X+Y?

3.33 Theorem. Let X and Y be random variables. If $\psi_X(t) = \psi_Y(t)$ for all t in an open interval around 0, then $X \stackrel{d}{=} Y$.

 MGF is widely used when to derive the distribution!

Moment Generating Functions for Some Common Distributions

$$\begin{array}{ll} \underline{\text{Distribution}} & \underline{\text{MGF } \psi(t)} \\ \text{Bernoulli}(p) & pe^t + (1-p) \\ \text{Binomial}(n,p) & (pe^t + (1-p))^n \\ \text{Poisson}(\lambda) & e^{\lambda(e^t-1)} \\ \text{Normal}(\mu,\sigma) & \exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\} \\ \text{Gamma}(\alpha,\beta) & \left(\frac{1}{1-\beta t}\right)^{\alpha} \text{ for } t < 1/\beta \end{array}$$

- There are slightly different versions of similar functions
 - Cumulant Generating Function

Characteristic function

- Using MGF (CGF and characteristic functions), distribution function can be estimated
 - This kind of technique can be very useful...

Summary

- Expectation
 - One-number summary of the distribution
 - Linear operator
- Variance
 - Represent the spread of distribution
- Covariance & Correlation
 - Indicate the (linear) relationship between two RV
- Conditional Expectation
- Moment generating function