

# Выравнивание биологических последовательностей 3анятие 2

Александр Ракитько

#### Зачем нужно выравнивание?

Обнаружение функциональных и эволюционных связей в биологических последовательностях:

- Подобные последовательности —> эволюционные отношения
- Эволюционные отношения —> связанная функция
- Ортологи —> одна и та же (или почти одна и та же) функция в разных организмах

#### Изменение геномов с течением веремени



# Задача выравнивания: определение редакционного расстояния

A C G T C A T C A

7

Формальная постановка задачи: определение редакционного расстояния - минимального количества элементарных преобразований (замен, вставок, делеций), переводящих одну последовательность в другую

T A G T G T C A

# Что необходимо для вычисления оптимального выравнивания?

- Весовая функция (scoring function)
  - Вес выравнивания = стоимость редактирования S1 в S2
  - Стоимость замены, вставки, делеции
  - Бонус за совпадение букв
- Алгоритм нахождения оптимального выравания
  - Перебор?

# Возможно ли выполнить полный перебор выравниваний?

• Количество способов выравнивания двух последовательностей длин *m* и *n*:

$$\binom{n+m}{m} = \frac{(m+n)!}{(m!)^2} \approx \frac{2^{m+n}}{\sqrt{\pi m}}$$

• Для двух последовательностей дины *n*:

| n   | Число вариантов |
|-----|-----------------|
| 10  | 184756          |
| 20  | 1.40E+11        |
| 100 | 9.00E+58        |

#### Весовая функция (scoring function)



| Тип позиции    | Стоимость |
|----------------|-----------|
| Совпадение     | +m        |
| Несовпадение 🗶 | -s        |
| Разрыв 🛕 🔻     | -d        |

Вес выравнивания (Score) =  $(число совпадений) \times m - (число несовпадений) \times s - (число разрывов) \times d$ 

#### Матричное представление выравнивания





Цель: найти оптимальный путь по матрице от точки начала до точки окончания.

8

#### Bec (score) выравнивания аддитивен



Для заданного разделения (i,j) вес оптимального выравнивания есть: вес оптимального выравнивания между S1[1,i] и S2[1,j] + вес оптимального выравнивания между S1[i,n] и S2[j,m]



#### Динамическое программирование

- Для данной задачи существует только конечное число подзадач?
  - Да. Имеем *n*×*m* позадач выравниваний S1[1,i] с S2[1,j].
- Первоначальная задача является одной из подзадач?
  - Да. Выравнивание S1[1,n] с S2[1,m].
- Каждая подзадача решается на основе решений более мелких подзадач?
  - Да. (покажем далее).

Вывод: мы можем использовать динамическое программирование

#### Поиска оптимального выравнивания S1[1,i] с S2[1,j]

- Мы можем попасть в точку (*i,j*) только из трех позиций: (*i*-1,*j*-1), (*i*-1,*j*) и (*i*,*j*-1).
- Зная веса F оптимальных выравниваний F(i-1,j-1), F(i-1,j) и F(i,j-1), вес оптимального выравнивания F(i,j) определяется как:

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + g(i,j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$

где 
$$g(i,j) = \begin{cases} m, if \ S1[i] = S2[j] \end{cases}$$
  $j$ -1  $j$ -1



S1 A G T A

m=1, s=-1, d=-1

|   | Α | G | Т | A |
|---|---|---|---|---|
|   |   |   |   |   |
| Α |   |   |   |   |
| Т |   |   |   |   |
| A |   |   |   |   |

S1 A G T A m=1, s=-1, d=-1

|   |    | A  | G  | Т  | A  |
|---|----|----|----|----|----|
|   | 0  | -1 | -2 | -3 | -4 |
| Α | -1 |    |    |    |    |
| Т | -2 |    |    |    |    |
| Α | -3 |    |    |    |    |

S1 A G T A m=1, s=-1, d=-1

|   |    | A  | G  | Т  | Α  |
|---|----|----|----|----|----|
|   | 0  | -1 | -2 | -3 | -4 |
| A | -1 |    |    |    |    |
| Т | -2 |    |    |    |    |
| A | -3 |    |    |    |    |

S1 A G T A m=1, s=-1, d=-1



S1 A G T A m=1, s=-1, d=-1

|   |    | A  | G  | Т  | Α  |
|---|----|----|----|----|----|
|   | 0  | -1 | -2 | -3 | -4 |
| Α | -1 | 1  |    |    |    |
| Т | -2 |    |    |    |    |
| A | -3 |    |    |    |    |

S1 A G T A m=1, s=-1, d=-1

|   |    | A  | G  | Т  | Α  |
|---|----|----|----|----|----|
|   | 0  | -1 | -2 | -3 | -4 |
| Α | -1 | 1  |    |    |    |
| Т | -2 |    |    |    |    |
| A | -3 |    |    |    |    |

S1 A G T A m=1, s=-1, d=-1

|   |    | A  | G  | Т  | A  |
|---|----|----|----|----|----|
|   | 0  | -1 | -2 | -3 | -4 |
| A | -1 | 1  | 0  | -1 | 2  |
| Т | -2 | 0  | 0  | 1  | 0  |
| A | -3 | -1 | -1 | 0  | 2  |

S1 A G T A m=1, s=-1, d=-1

|   |    | A  | G  | Т  | A  |
|---|----|----|----|----|----|
|   | 0  | -1 | -2 | -3 | -4 |
| A | -1 | 1  | 0  | -1 | -2 |
| Т | -2 | 0  | 0  | 1  | 0  |
| A | -3 | -1 | -1 | 0  | 2  |



S1 A G T A

m=1, s=-1, d=-1

|   |    | Α  | G  | Т  | A  |
|---|----|----|----|----|----|
|   | 0  | -1 | -2 | -3 | -4 |
| A | -1 | 1  | 0  | 1  | 2  |
| Т | -2 | 0  | 0  | 1  | 0  |
| Α | -3 | -1 | -1 | 0  | 2  |



S1 A G T A

m=1, s=-1, d=-1

|   |    | A  | G  | Т                 | A  |
|---|----|----|----|-------------------|----|
|   | 0  | -1 | -2 | -3                | -4 |
| Α | -1 | 1  | 0  | 1 <del>&lt;</del> | 2  |
| Т | -2 | 0  | 0  | 1                 | 0  |
| A | -3 | -1 | -1 | 0                 | 2  |



S1 A G T A

m=1, s=-1, d=-1

|   |    | A  | G  | Т  | A  |
|---|----|----|----|----|----|
|   | 0  | -1 | -2 | -3 | -4 |
| Α | -1 | 1  | 0  | 1  | -2 |
| Т | -2 | 0  | 0  | 1  | 0  |
| A | -3 | -1 | -1 | 0  | 2  |



# Глобальное выравнивание (алгоритм Нидлмана-Вунша)

- 1. Инициализация.
  - a. F(0, 0) = 0
  - b.  $F(0, j) = -j \times d$
  - c.  $F(i, 0) = -i \times d$
- 2. Основной цикл. Заполнение матрицы
  - a. For each i = 1.....MFor each j = 1.....N

$$F(i-1,j-1) + g(s1[i], s2[j])$$
 [case 1]  
 $F(i, j) = max \{ F(i-1, j) - d$  [case 2]  
 $F(i, j-1) - d$  [case 3]

$$DIAG$$
, if [case 1]  
 $Ptr(i,j) = \{ LEFT, if [case 2] \}$   
 $UP$ , if [case 3]

3. <u>Завершение.</u> F(M, N) - оптимальный вес, выравнивание извлекается из Ptr(M, N) процедурой обратного прохода

# Вычислительная сложность алгоритма Нидлмана-Вунша

- Временная сложность (количество операций) O(N×M)
- Пространственная сложность (объем памяти) O(N×M)

# Алгоритм BLAST

1. Для каждого слова длины W в искомой последовательности составляется список схожих слов, вес выравнивания которых выше определенного порога T.



2. Для каждого слова обрабатываем составленный для него список схожих слов - ищем, по заранее построенной хэш-таблице, последовательности в базе данных, имеющие точное вхождение данных слов.

| Слово | Индексы записей в БД |
|-------|----------------------|
| AAA   | 1,7,457,2957,        |
| AAC   | 34,756,2345,71928,   |
| AAD   | 3,75,827,1876,       |
| AAE   | 7,15,234,987,        |
| AAF   | 71,743,18762,        |
| AAG   | 55,221,347,876,      |
|       |                      |

3. Расширяем выравнивание вправо и влево от найденных "затравок" используя алгоритм динамического программирования.



4. Прекращаем расширение выравнивание если падение суммарного веса выравнивания от точки последнего максимума достигнет заранее установленного порога *X*. Устанавливаем длину выравнивания в позиции последнего максимума.



# Свойства аминокислот



# Матрица BLOSUM62

|   | C  | S  | Т  | P  | Α  | G  | N  | D  | E  | Q  | Н  | R  | K  | М  | I  | L  | ٧  | F | Y | W  |   |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|----|---|
| C | 9  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | C |
| S | -1 | 4  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | S |
| T | -1 | 1  | 5  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | T |
| P | -3 | -1 | -1 | 7  |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | P |
| A | 0  | 1  | 0  | -1 | 4  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    | A |
| G | -3 | 0  | -2 | -2 | 0  | 6  |    |    |    |    |    |    |    |    |    |    |    |   |   |    | G |
| N | -3 | 1  | 0  | -2 | -2 | 0  | 6  |    |    |    |    |    |    |    |    |    |    |   |   |    | N |
| D | -3 | 0  | -1 | -1 | -2 | -1 | 1  | 6  |    |    |    |    |    |    |    |    |    |   |   |    | D |
| E | -4 | 0  | -1 | -1 | -1 | -2 | 0  | 2  | 5  |    |    |    |    |    |    |    |    |   |   |    | E |
| Q | -3 | 0  | -1 | -1 | -1 | -2 | 0  | 0  | 2  | 5  |    |    |    |    |    |    |    |   |   |    | Q |
| Н | -3 | -1 | -2 | -2 | -2 | -2 | 1  | -1 | 0  | 0  | 8  |    |    |    |    |    |    |   |   |    | Н |
| R | -3 | -1 | -1 | -2 | -1 | -2 | 0  | -2 | 0  | 1  | 0  | 5  |    |    |    |    |    |   |   |    | R |
| K | -3 | 0  | -1 | -1 | -1 | -2 | 0  | -1 | 1  | 1  | -1 | 2  | 5  |    |    |    |    |   |   |    | K |
| М | -1 | -1 | -1 | -2 | -1 | -3 | -2 | -3 | -2 | 0  | -2 | -1 | -1 | 5  |    |    |    |   |   |    | М |
| I | -1 | -2 | -1 | -3 | -1 | -4 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | 1  | 4  |    |    |   |   |    | I |
| L | -1 | -2 | -1 | -3 | -1 | -4 | -3 | -4 | -3 | -2 | -3 | -2 | -2 | 2  | 2  | 4  |    |   |   |    | L |
| ٧ | -1 | -2 | 0  | -2 | 0  | -3 | -3 | -3 | -2 | -2 | -3 | -3 | -2 | 1  | 3  | 1  | 4  |   |   |    | ٧ |
| F | -2 | -2 | -2 | -4 | -2 | -3 | -3 | -3 | -3 | -3 | -1 | -3 | -3 | 0  | 0  | 0  | -1 | 6 |   |    | F |
| Y | -2 | -2 | -2 | -3 | -2 | -3 | -2 | -3 | -2 | -1 | 2  | -2 | -2 | -1 | -1 | -1 | -1 | 3 | 7 |    | Y |
| W | -2 | -3 | -2 | -4 | -3 | -2 | -4 | -4 | -3 | -2 | -2 | -3 | -3 | -1 | -3 | -2 | -3 | 1 | 2 | 11 | W |
|   | C  | S  | Т  | P  | Α  | G  | N  | D  | E  | Q  | Н  | R  | K  | М  | I  | L  | ٧  | F | Υ | W  | Г |

#### Благодарности

- При подготовке слайдов использовались материалы лекций:
  - Михаила Гельфанда (ИППИ)
  - Андрея Миронова (МГУ)
  - Serafim Batzoglou (Stanford)
  - Manolis Kellis (MIT)
  - Pavel Pevzner (UCSD)