

DINFK

Linear regression

Introduction to Machine Learning, Lecture 2

Fanny Yang

Announcements

- Deadline for buddy matching: this Friday 25.2. 23:59
 - For today, the virtual attendees may take the time to brainstorm on their own
- Q&A session online **today 17:15 to 18:00**
 - o may ask more administrative questions there
 - instructions on how to effectively use Moodle
 - find the link on the course website

Recap and plan for today

Last lecture: Different problems in machine learning

- supervised learning
- unsupervised learning

Today: Walking through the supervised learning pipeline with

- the simplest ML method: linear regression in 1d
- for the scenario of determining sales price of a house

Simplified diagram of supervised learning

Simplified diagram of supervised learning

Machine learning pipeline

Example (house)

I want to list my house for sale! At which price should I sell it?

Find the average market price for houses of my kind!

ML pipeline to find average house price

Last lecture I learned: I can use machine learning to do that. If I can find input-output examples, I can use supervised learning, it's a regression task! Your house Can't feed houses into computer! ML method: Training Data Model \hat{f} efficiently find $\hat{f} \in F$ that fits training data Average price for your house in CHF

Step 0: find representation for house

- Determine how to represent houses in a digital fashion
- for example using a vector of attributes:
 e.g. size, # bathrooms, distance to public transport, years since construction, ...
- Collect attributes and sales prices from other houses and your own

ML pipeline to find average house price

Step III: Predict Step II: Learn **Step I: Collect** Your house: attributes ML method: efficiently find $\hat{f} \in F$ Model \hat{f} Training Data that fits training data House 1: attributes, price Average price for House n: attributes, price your house in CHF

Simple linear regression in 1-d

(example with one attribute)

Step I: Collect data of other houses

Input attribute x: size in m^2 ;
Output y: sales price in CHF

Disclaimer: these are artificial numbers in an imaginary city

From training data to model \hat{f}

Step III: Prediction if we have \hat{f}

Step II: A method to obtain a model \hat{f}

Different function classes F

Question: With what kind of functions can I fit 1-dimensional data

Different training losses

pointwise loss function ℓ , representing "closeness" between f(x) and y for a point (x, y)

Question: What is a good fit of the training data?

If f(x) is "close" to y for most points, that is, it has low training loss $L(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$

Let's think about suitable loss functions, representing some notion of distance

Which loss $\ell(f(x), y)$ would you choose?

Discuss with neighbor for two minutes and answer on eduApp.

(a)
$$|f(x) - y|$$
 (b) $f(x) - y$

(c)
$$(f(x) - y)^2$$
 (d) $max(y - f(x), 0)$

Different training losses

Question: What is a good fit of the training data?

pointwise loss function ℓ , representing "closeness" between f(x) and y for a point (x, y)

If f(x) is "close" to y for most points, that is, it has low training loss $L(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$

Let's think about suitable loss functions, representing some notion of distance

not differentiable $f(x) = -10^5 \text{ for all } x$ would have low loss!

(a)
$$|f(x) - y|$$
 (b) $f(x) - y$

(c)
$$(f(x) - y)^2$$
 (d) $max(y - f(x), 0)$

overestimation is rewarded, not differentiable

Step II: The method choice for this lecture

Function class: Linear functions

Function class F

linear function

Loss function

squared loss

Optimization

closed-form

Class/set of all linear functions $F_{lin} = \{f: f(x) = w_0 + w_1 x \text{ for } w_0, w_1 \in \mathbb{R}\}$

We say, all functions in F_{lin} are parameterized by two scalars w_0 , w_1

Training loss using the squared loss

Function class F

linear function

Training loss

squared loss

Optimization

closed-form

What is a good fit of the training data?

We want to find the function \hat{f} that minimizes the training loss (squared loss) on average over the training set:

$$\hat{f} = \underset{f \in F_{lin}}{\operatorname{argmin}} L(f) = \underset{f \in F_{lin}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

 $\hat{m{f}}$ we call the output of our ML model - linear regression

Linear model \hat{f} that minimizes training loss

• Goal: Find model \hat{f} that has the smallest training loss

$$\hat{f} = \underset{f \in F_{lin}}{\operatorname{argmin}} L(f) = \underset{f \in F_{lin}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Recall: all linear functions in $F_{lin}=\{f:f(x)=w_0+w_1x\ \text{ for }w_0,w_1\in\mathbb{R}\}$ are parameterized by two scalars w_0,w_1
- Since \hat{f} is a function in F_{lin} , it has to be of the form $\hat{f}(x)=\widehat{w}_0+\widehat{w}_1x$ for two scalars w_0 , w_1 ,
 - \rightarrow searching for a minimum in F_{lin} is the same as searching for scalars w_0 , w_1 that minimize

$$\widehat{w} := (\widehat{w}_0, \widehat{w}_1) = \underset{w_0, w_1 \in \mathbb{R}}{\operatorname{argmin}} L(w_0, w_1) = \underset{w_0, w_1 \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (y_i - w_0 - w_1 x_i)^2$$

Minimization of the training loss: How to find \widehat{w}

Optimization

closed-form

Training loss for linear functions
$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - w_0 - w_1 x_i)^2$$

We would like to find training loss minimizer $\widehat{w} = (\widehat{w}_0, \widehat{w}_1) = \operatorname{argmin} L(w_0, w_1)$ $w_0, w_1 \in \mathbb{R}$

- Some candidate linear functions (left), but F_{lin} includes infinitely many candidates!
- We can compute minimizer w_0, w_1 analytically!

Simplifying the problem: Fixing $w_0=0$

Function class F

linear function

Loss function

squared loss

Optimization

closed-form

The training loss for linear functions $L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - w_0 - w_1 x_i)^2$ is a function of w_0, w_1

For simplification, we first fix $w_0 = 0$, and only optimize $L(0, w_1)$ over $w_1 \in \mathbb{R}$

Analysis recap: Stationary points of 1-d functions

Optimization

closed-form

For a general 1-d function g(x), where's the minimum $\hat{x} = \operatorname{argmin}_{x \in R} g(x)$

Here are two example functions. Find all stationary points, local and global minima.

 \rightarrow since L(0, w₁) is a one-dimensional quadratic: there's one minimum where L'(0, \hat{w}_1) = 0

Solving the original problem: Finding the minimum \widehat{w}

Function class F

linear function

Loss function

squared loss

Optimization

closed-form

More generally: let w_0 again be variable, i.e. want to find $\widehat{w} = (\widehat{w}_0, \widehat{w}_1) = \operatorname*{argmin}_{w_0, w_1 \in \mathbb{R}} L(w_0, w_1)$

• By Theorem 2.3. math recap, a global minimum \widehat{w} must satisfy $\nabla_{\!\!\!w} L(\widehat{w}) = 0$

Recall the training loss $L(w_0,w_1)=rac{1}{n}\sum_{i=1}^n(y_i-w_0-w_1x_i)^2$

In the next five minutes: Turn to your neighbor and derive precise conditions on \widehat{w} as a function of the sample points $\{(x_i, y_i)\}_{i=1}^n$ (calculate the gradient first)

Solving the original problem: Finding the minimum \widehat{w}

Function class F

linear function

Loss function

squared loss

Optimization

closed-form

More generally: let w_0 again be variable, i.e. want to find $\widehat{w} = (\widehat{w}_0, \widehat{w}_1) = \operatorname*{argmin}_{w_0, w_1 \in \mathbb{R}} L(w_0, w_1)$

- By Theorem 2.3. math recap, a global minimum \widehat{w} must satisfy $\nabla_{\!\!\!w} L(\widehat{w}) = 0$
- Recall the training loss $L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i w_0 w_1 x_i)^2$
- And hence the minimum $\widehat{w} = (\widehat{w}_0, \widehat{w}_1)$ satisfies

$$\nabla_{w} L(\widehat{w}_{0}, \widehat{w}_{1}) = \begin{pmatrix} -\frac{2}{n} \sum_{i=1}^{n} (y_{i} - \widehat{w}_{0} - \widehat{w}_{1} x_{i}) \\ -\frac{2}{n} \sum_{i=1}^{n} (y_{i} - \widehat{w}_{0} - \widehat{w}_{1} x_{i}) x_{i} \end{pmatrix} = 0$$

How many minima $\widehat{\boldsymbol{w}}$? – Linear Algebra refresher

A minimum \widehat{w} must satisfy $\begin{pmatrix} -\frac{2}{n}\sum_{i=1}^{n}(y_i-\widehat{w}_0-\widehat{w}_1x_i)\\ -\frac{2}{n}\sum_{i=1}^{n}(y_i-\widehat{w}_0-\widehat{w}_1x_i)x_i \end{pmatrix} = 0.$ First think about how many

solutions exist to this equation. How many (global) minima $\hat{\boldsymbol{w}}$ exist?

- (A) One
- (B) Multiple (C) None

(D) Depends on $\{(x_i, y_i)\}_{i=1}^n$

Solution: (D) Regarding number of solutions:

- brute force: deriving closed-form solutions (see homework)
- or: matrix vector notation (we see later today)
- or: system of two linear equations for two parameters \rightarrow when does it have a unique solution?

Further, all solutions are global minima, we'll discuss next week in more detail, why ...

What you can do now

- high-level: teach a machine how to use training data to output a prediction rule/model (that can be used for prediction of a new point)
 by deriving a closed-form solution
- know what a training loss is and minimize the training loss (with square loss)
 over 1-d linear functions by minimizing over the scalars
 that parameterize the function

MORE IN TUTORIAL...

Side comment: other losses

Function class F

linear function

Loss function

different choices

Optimization

closed-form

Squared loss

- weighs over- and underestimation the same
- Cost grows quadratically (large errors hugely penalized)

Instead might want:

- ignore outliers (ones with very large penalty) → Huber loss
- weigh over- and underestimation differently → asymmetric losses

Minimizer of Huber loss

Function class **F**Inear function

Loss function

Huber loss

Optimization

closed-form

Perhaps better choice if there are outliers in your training data not representing current market

Minimizer of asymmetric loss

linear function

Loss function

• asymmetric regression loss

Optimization

closed-form

Minimum of square loss ℓ_{square}

More weight on overestimation

Minimum of loss that places less weight on overestimation ℓ_{over}

Perhaps better choice if you care more about maximizing profit than how fast you can sell

Multiple regression

(Linear least squares)

More inputs available

These two houses have similar size, but very different price?

→ this 1d model completely ignores other attributes of the house!

For example they might differ in

- number of bathrooms,
- distance to train station,
- construction year etc.

Step I: Collect more data of other houses

 $x_{[1]} = \text{size (in } m^2),$

 $x_{[2]} = # of bathrooms$

 $x_{[3]}$ = distance to train (in km),

 $x_{[4]}$ = years since construction

notation:

 $oldsymbol{x_i}$ - input attributes of sample i

 $x_{[i]}$ - i-th attribute

Input: attribute vector $\mathbf{x} = (x_{[1]}, \dots, x_{[d]})$

Output: y: sales price in CHF

$$x_1 = (120,2,0.5,1), y_1 = 1.5 mio$$

$$x_2 = (200,3,0.5,3)$$
 $y_2 = 3$ mio

$$x_3 = (130,2,5,1) \ y_3 = 1 \ mio$$

$$x_4 = (135,1,5,1) \ y_4 = 0.7 \ mio$$

$$x_5 = (80,4,1,0.5) \ y_5 = 0.7 \ mio$$

Disclaimer: these are artificial numbers in an imaginary city

Multiple regression

(All visualizations are for two attributes, i.e. d=2, the formulas are more general d>1)

Function class: Linear with d linear features

Function class F

linear function

Loss function

squared loss

Optimization

closed-form

Class/set of all linear functions $F_{lin} = \{ f: f(x) = w_0 + \sum_{j=1}^d w_j x_{[j]} = w_0 + w^{\mathsf{T}} x \text{ for } w = (w_1, ..., w_d) \in \mathbb{R}^d \}$

Visualization for d = 2: $f(x) = w_0 + w_1 x_{[1]} + w_2 x_{[2]}$ fix $x_{[2]} = w_0 + w_1 x_{[1]} + w_2 x_{[2]}$ $x_{[2]} = w_0 + w_1 x_{[1]} + w_2 x_{[2]}$ $x_{[2]} = w_0 + w_1 x_{[1]} + w_2 x_{[2]}$ $x_{[2]} = w_0 + w_1 x_{[1]} + w_2 x_{[2]}$ $x_{[2]} = w_0 + w_1 x_{[2$

Training loss using the squared loss

Function class F

linear function

Loss function

squared loss

Optimization

closed-form

Analogous to 1-d: learned model \hat{f} minimizes training loss

$$\hat{f} = \underset{f \in F_{lin}}{\operatorname{argmin}} L(f) = \underset{f \in F_{lin}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

equivalent to minimizing over vector **w**

$$\widehat{w} = \underset{w_0 \in \mathbb{R}, w \in \mathbb{R}^d}{\operatorname{argmin}} L(w_0, w) = \underset{w_0 \in \mathbb{R}, w \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (y_i - w_0 - w^{\mathsf{T}} x_i)^2$$

Training loss in matrix vector notation

notation:

 x_i - input attributes of sample i

 $x_{[i]}$ - i-th attribute

 w_i - i-th element of vector w

We now see how we can rewrite the training loss L in matrix vector notation

Minimizing the training loss

- For simplicity let's set $w_0 = 0$ and minimize over w
- Training loss $L(0, w) = \frac{1}{n} ||y Xw||^2 = \frac{1}{n} ||y||^2 \frac{2}{n} y^T X w + \frac{1}{n} w^T X^T X w$

with gradient
$$\nabla_{\!\! w} L(0,w) = \frac{2}{n} \left(X^{\mathsf T} X w - X^{\mathsf T} y \right)$$
 and Hessian $D^2 L(0,w) = \frac{2}{n} X^{\mathsf T} X$

- We'll now look at two ways to find the minimum
 - stationary point condition (gradient = 0)
 - geometric argument (orthogonal projection)

Optimal solution: via stationary point condition

Function class F

linear function

Loss function

squared loss

Optimization

closed-form

- Again: Minimum $\widehat{w} = \operatorname{argmin}_{w} L(0, w)$ must be a stationary point, i.e. satisfying $\nabla_{w} L(0, \widehat{w}) = 0$
- All stationary points of this quadratic loss $\frac{1}{n} ||y Xw||^2$ are minima, because the Hessian $\frac{2}{n} X^T X$ is positive semi-definite (psd) (see math recap Sec 1.6., 2.5 and details next week)
- $\nabla_w L(0, w) = \frac{2}{n} (X^\mathsf{T} X w X^\mathsf{T} y)$ together with stationary point condition $\nabla_w L(0, \widehat{w}) = 0$ yields

$$\to X^{\mathsf{T}} y = X^{\mathsf{T}} X \, \widehat{w} \to \widehat{w} = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} y$$

Optimal solution: via geometric argument

Function class *F*

Loss function

Optimization

linear function

squared loss

• closed-form

$$\widehat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} \left\| \begin{array}{ccc} \mathbf{n} & \mathbf{y} \\ \mathbf{y} & - & \mathbf{n} & \mathbf{X} \end{array} \right\| \mathbf{w} \right\| d$$

- set of all possible Xw: span(X) (subspace spanned by columns of X, math recap)
- let Π_X be the orthogonal projection matrix onto span(X)
- then, the closest point to y on span(X) is $\Pi_X y$ (math recap Section 1.4)

Optimal solution: via geometric argument

We now derive the expression for the vector $\widehat{\boldsymbol{w}}$ such that $X\widehat{\boldsymbol{w}} = \Pi_X \boldsymbol{y}$

We know that because $X\widehat{w}$ is an orthogonal projection

• the residual $y - X\widehat{w}$ orthogonal to all $v \in span(X) \iff (y - X\widehat{w})^\mathsf{T} X w = 0$ for all $w \in \mathbb{R}^d$

Optimal solution: via geometric argument

We now derive the expression for the vector \hat{w} such that $X\hat{w} = \Pi_X y$ (see also Exerc. 1.6. in recap notes)

We know that because $X\widehat{w}$ is an orthogonal projection

- the residual $y X\widehat{w}$ orthogonal to all $v \in span(X) \iff (y X\widehat{w})^{\mathsf{T}}Xw = 0$ for all $w \in \mathbb{R}^d$
- hence we require $X^{\mathsf{T}}(y X\widehat{w}) = 0 \iff X^{\mathsf{T}}y = X^{\mathsf{T}}X\,\widehat{w}$ (called normal equations!)
- \rightarrow this yields the unique solution $\widehat{w} = (X^TX)^{-1}X^Ty$ if X^TX is invertible

Question for you until next week (Answers discussed next week):

How many minima \widehat{w} does $\frac{1}{n} ||y - Xw||^2$ have? Argue using the matrix $X^T X$

(A) One

- (B) Multiple
- (C) None
- (D) Depends on $\{(x_i, y_i)\}_{i=1}^n$

What you can do now

On a high level:

- for inputs with multiple attributes
- teach a machine how to use training data to output a prediction rule/model (that can be used for prediction of a new point)
- by deriving a closed-form solution for the best linear fit
 (in the square loss sense) on the training data (training loss minimzer)

References / acknowledgements

- We will provide lecture notes that explain the derivations in more detail
- Other reference: ISLR Chapter 3

