<u>Ограниченные и неограниченные множества. Максимальный и минимальный элементы множества.</u>

Пусть $\emptyset \neq X \subset \mathbb{R}$

Определение 1:

Множество X называется

- **1) ограниченным сверху**, если $\exists \ c \in \mathbb{R}$, такое что $\forall \ x \in X$: $x \leqslant c$ (c верхняя граница X)
- **2) ограниченным снизу**, если \exists d ∈ \mathbb{R} , такое что \forall x ∈ X: x \geqslant d (d нижняя граница X)
- 3) ограниченным, если X ограничено сверху и снизу одновременно

Определение 2:

Множество X называется

- **1) неограниченным сверху**, если $\forall b \in \mathbb{R} \exists x \in X: x > b$
- **2) неограниченным снизу**, если $\forall b \in \mathbb{R} \exists x \in X : x < b$
- 3) неограниченным, если X неограниченно сверху и снизу одновременно

Определение 3:

```
(a \in \mathbb{R} = \max X) \Leftrightarrow ((a \in X) \land (\forall x \in X: x \leqslant a))(b \in \mathbb{R} = \min X) \Leftrightarrow ((b \in X) \land (\forall x \in X: x \geqslant b))
```

Задачи для самостоятельного выполнения:

- 1) Пусть X={1,1/2,1/3,...,1/n}.
 - а) Указать наименьший и наибольший элементы этого множества, если они существуют.
 - б) Каковы множества верхних и нижних граней для множества X. Найти supX и infX.
- 2) Для множества $X=\{x\in \mathbb{R}\mid x=1/2^n, n\in \mathbb{N}\}$ найти maxX, minX, supX и infX если они существуют.
- 3) Для множества $X=\{x∈Z \mid -5 \le x<0\}$ найти maxX, minX, supX и infX если они существуют.
- 4) Пусть X,Y \subset R- произвольные ограниченные сверху множества. Доказать, что множество X+Y={z \in R|z=x+y,|x \in X,y \in Y} ограничено сверху и справедливо равенство sup(X+Y)=supX+supY.