Abstract—

Index Terms—

I. NOTATIONS

The Transmitter energy arrival instants are marked by t_i 's with energy E_i^T while the receiver energy arrivals are marked by r_i 's with energy E_i^R for $i \in \{0,1..\}$. The receiver spends P amount of power to be on and no power when it is off. Hence each energy arrival E_i^R can be viewed as it adds $T_i^R = \frac{E_i^R}{P}$ amount of time for which the receiver can be on. The maximum amount of time for which the receiver (and hence the Transmitter) can be on till time '.' is given by function $T^R(.)$. It can be easily seen that $T^R(t) = \sum_{i=0}^{r_i < t} T_i^R$. Similarly the maximum energy harvested at the transmitter till time 't' is given by function $E^T(t) = \sum_{i=0}^{t_i < t} E_i^T$. The rate of bits transmition with power '.', given by function g(.) is assumed to follow the following properties as proposed in [1]

$$P1)g(0)=0 \text{ and } \lim_{x\to\infty}g(x)\to\infty. \tag{1}$$

$$P2)g(x)$$
 is concave in nature with x . (2)

$$P3)g(x)$$
 is increasing with x . (3)

$$P4)g(x)/(x)$$
 is monotonically decreasing with x. (4)

For convenience of presentation, we also follow the following convention: we use the notation $\stackrel{L1}{=}$ or $\stackrel{(1)}{=}$ or $\stackrel{P1}{=}$ or $\stackrel{T1}{=}$ to indicate that the equality "=" follows from Lemma 1 / Equation (1) / Property 1 / Theorem 1 respectively (same for inequalities).

II. OPTIMAL OFFLINE ALGORITHM

Before describing and proving the optimal algorithm we state the following lemmas which would be useful in later proofs

Lemma 1. The transmitted power in an optimal solution is non-decreasing with time whenever the receiver is on.

Proof. We prove this by contradiction. The following two cases arise according to the receiver being *on* or *off.*

case-1: Assume that the transmit power is p_1 form time A to B and then p_2 for from B to C with $p_1>p_2$ and the receiver is on throughout time A to C as shown in figure 1. In this case suppose we transmit at a power $p'=\frac{p_1(B-A)+p_2(C-B)}{C-A}$ then the number of bits transmitted would be more over the same time duration due

to concavity of g(p) as shown below.

$$g(p_1)\frac{B-A}{C-A} + g(p_2)\frac{C-B}{C-A} \le g(\frac{p_1(B-A) + p_2(C-B)}{C-A})$$
(5)

$$\implies g(p')(C-A) \ge g(p_1)(B-A) + g(p_2)(C-B)$$

As we can transmit more number of bits during C-A with power p' we could save total transmition time since we would have lesser number of bits left to transmit after time C. Hence this case cannot be optimal.

case-2: The receiver is *off* for certain duration (say from B to C) of time during A to D as shown in figure 1. The transmition power is p_1 from A to B and p_2 from C to D. Now consider the case where keeping everything else intact we put the receiver *off* from instant A to A+C-B and keep transmition from A+C-B to D. This would always be feasible from the receiver point as energy with the receiver can only be non-decreasing with time. This scenario now boils down to case-1 from time A+C-B to D and hence cannot be optimal.

Fig. 1. Figure showing the two cases of Lemma 1, case 1[left] case2 [right] with $p_1>p_2$

Lemma 2. In an optimal solution once transmition has started the receiver is never off until transmition is complete.

Proof. This is equivalent to saying there is no-breaks during transmition in optimal solution. We again prove this by contradiction. Keeping intact Lemma 1 the only case in which this can occur is the transmitter transmits with power p_1 from time A to B and then the receiver is off from B to C, again the transmitter is on with power p_2 from time C to D with $p_1 < p_2$ as shown in figure . Consider the case where we keep the receiver off form time A to B' = A + C - B. Now, a energy arrival can occur at the transmitter anywhere between A to D. If there is no energy arrival then transmitting at a constant rate from B' to D would transmit more number of bits.

case - 1: If the energy arrival is between A and B', then it can be easily seen that transmitting at a constant rate from B' to D would be better due to concavity of g(p).

On-line Algorithm for energy harvesting transmitter and receiver

Input: Bits to transmit B_0 ; E_i^T , E_i^R for $t_i, r_i < t$ where t is the present time instant

$$\begin{aligned} & \text{Initialize: } T_{start} = & \min \\ & T^R(t)g\left(\frac{E^T(t)}{T^R(t)}\right) \geq B_0 \\ & B_{left} = B_0, \ E_{left} = E^T(T_{start}) \\ & \text{While } B_{left} \geq 0 \\ & \text{Transmit at power } \frac{E_{left}}{T} \text{ s.t. } Tg\left(\frac{E_{left}}{T}\right) = B_{left} \\ & \text{if } t = t_i \text{ for any } i \\ & B_{left} = B_{left} - (t - \max(t_{i-1}, T_{start}))g\left(\frac{E_{left}}{T}\right) \\ & E_{left} = E_{left} - (t - \max(t_{i-1}, T_{start}))\frac{E_{left}}{T} \\ & \text{end} \end{aligned}$$

case-2: If the arrival is between B' and C (say C'), then it can be easily seen that transmitting at a same rate p_1 from B' to C' and at a constant rate from C' to D would deliver more number of bits.(At worst case energy arrival occurring at C would make this scenario transmit equal number of bits as the original scenario).

case-3: If there is an energy arrival from C to D (say D'), then transmitting at a constant power form B' to D' and then at same rate p_2 from D' to D would fetch more number of bits at the receiver.

Applying the above scenarios iteratively we could shift the receiver *off* duration C-B to the beginning of transmition and still at worst case transmit equal number of bits in same time duration. Hence having a break in-between transmition is always discouraged. We can also see that the optimal solution may not be unique. \Box

Lemma 3. In the optimal solution we consider transmit power can only change at energy arrival of transmitter once transmission has started.

Proof. Keeping in mind Lemma 1 and 2 its proof becomes same as the one for Lemma 2, [1].

III. ONLINE ALGORITHM FOR ENERGY HARVESTING TRANSMITTER AND RECEIVER

Notation: The starting time of the transmission is denoted by T_{start} and the present time is denoted by t. The number of bits and energy left to transmit at any Transmitter energy epoch is represented by B_{left} and E_{left} receptively. The online algorithm that we propose is presented in table I. The following lemma can be easily concluded from the definition of the on-line algorithm and hence stated without proof.

Lemma 4. The transmit power in the online algorithm is non-decreasing with time after T_{start} .

Theorem 1. The competitive ratio of the on-line algorithm presented in Table I is 2.

Proof. This is equivalent to saying that the time taken by the on-line algorithm can at max be twice the time taken by optimal off-line algorithm. Let the time taken by the off-line version be T_{off} and the on-line version be T_{online} .

We now show that

$$T_{off} \ge T_{start}$$
 (7)

This proof follows from contradiction. Let $T_{off} < T_{start}$ and the optimal off-line algorithm transmits with energy in sequence $\{e_1, e_2, ..., e_k\}$ for time $\{l_1, l_2, ..., l_k\}$. Now the number of bits transmitted can be bounded as

$$\sum_{i=1}^{i=k} g\left(\frac{e_i}{l_i}\right) l_i \stackrel{P2}{\leq} g\left(\frac{\sum_{i=1}^{i=k} e_i}{\sum_{j=1}^{j=k} l_j}\right) \sum_{j=1}^{j=k} l_j$$
 (8)

$$\stackrel{P3,P4}{\leq} g \left(\frac{E^T(T_{off})}{T_{off}} \right) T_{off} \tag{9}$$

$$\stackrel{P4}{\leq} \lim_{t \to T_{start}^{-}} g\left(\frac{E^{T}(t)}{t}\right) t < B_0$$
(10)

where (10) follows form definition of T_{start} . But the off-line algorithm should transmit all B_0 bits and hence this concludes that $T_{off} \geq T_{start}$.

Next we estimate the maximum time taken to complete transmission after T_{start} in the on-line algorithm. Let the on-line version transmits at power sequence $\{p_1, p_2, ..., p_k\}$ for time $\{l_1, l_2..., l_k\}$. Now,

$$\sum_{i=1}^{i=k} l_i g(p_i) = B_0 \tag{11}$$

$$\stackrel{L4}{\Longrightarrow} g(p_1) \sum_{i=1}^{i=k} l_i \le B_0 \tag{12}$$

$$\implies g\left(\frac{E^T(T_{start})}{T}\right) \sum_{i=1}^{i=k} l_i \le B_0 \quad \text{s.t. } Tg\left(\frac{E^T(T_{start})}{T}\right) = B_0$$
(13)

$$\implies \sum_{i=1}^{i=k} l_i \le T \tag{14}$$

But, $T \overset{P4}{\leq} T^R(T_{start})$ as $T_{start}g(\frac{E^T(T_{start})}{T_{start}}) \geq B_0 = Tg(\frac{E^T(T_{start})}{T})$ and from the definition of $T^R(T_{start})$ it follows that $T^R(T_{start}) \leq T_{start}$. So we can calculate the competitive ratio as

$$r = \max \frac{T_{online}}{T_{off}} = \frac{T_{start} + \sum_{i=1}^{i=k} l_i}{T_{off}} \le \frac{T_{start} + T}{T_{off}}$$
 (15)

$$\leq \frac{2T_{start}}{T_{off}} \stackrel{(7)}{\leq} 2 \tag{16}$$

REFERENCES

[1] J. Yang and S. Ulukus, "Optimal packet scheduling in an energy harvesting communication system," *Communications, IEEE Transactions on*, vol. 60, no. 1, pp. 220–230, January 2012.