Wykład 5

Stwierdzenie 5.1 Niech

 $e_1 = (1, 0, 0, ..., 0), \ e_2 = (0, 1, 0, ..., 0), \cdots, \ e_n = (0, 0, 0, ..., 0, 1)$ będzie bazą standardową przestrzeni R^n . Niech $f: R^n \to R^s$ będzie przekształceniem liniowym spełniającym warunki:

$$f(e_1) = (a_{1,1}, a_{2,1}, ..., a_{s,1}),$$

$$f(e_2) = (a_{1,2}, a_{2,2}, ..., a_{s,2}),$$

$$\vdots$$

$$f(e_n) = (a_{1,n}, a_{2,n}, ..., a_{s,n}).$$

Wówczas
$$f(x_1, x_2, ..., x_n) = (a_{1,1}x_1 + a_{1,2}x_2 + ... + a_{1,n}x_n, a_{2,1}x_1 + a_{2,2}x_2 + ... + a_{2,n}x_n, ..., a_{s,1}x_1 + a_{s,2}x_2 + ... + a_{s,n}x_n).$$

Zapis ten nazywamy wzorem analitycznym przekształcenia f.

Definicja 5.2 Niech $f: \mathbb{R}^n \to \mathbb{R}^s$ będzie określone wzorem $f(x_1, x_2, ..., x_n) = (a_{1,1}x_1 + a_{1,2}x_2 + ... + a_{1,n}x_n, \ a_{2,1}x_1 + a_{2,2}x_2 + ... + a_{2,n}x_n, \ ..., \ a_{s,1}x_1 + a_{s,2}x_2 + ... + a_{s,n}x_n)$. Macierzą f w bazach standardowych nazywamy

$$M(f) = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s,1} & a_{s,2} & \cdots & a_{s,n} \end{bmatrix}.$$

Stwierdzenie 5.3 Niech

 $e_1 = (1, 0, 0, ..., 0), \ e_2 = (0, 1, 0, ..., 0), \cdots, e_n = (0, 0, 0, ..., 0, 1)$ bedzie baza standardowa przestrzeni R^n Wówczas

$$M(f) = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s,1} & a_{s,2} & \cdots & a_{s,n} \end{bmatrix}$$

jest macierzą przekształcenia $f: \mathbb{R}^{\overline{n}} \to \mathbb{R}^s$ wtedy i tylko wtedy gdy

$$f(e_1) = (a_{1,1}, a_{2,1}, ..., a_{s,1}),$$

 $f(e_2) = (a_{1,2}, a_{2,2}, ..., a_{s,2}),$
.

:

$$f(e_n) = (a_{1,n}, a_{2,n}, ..., a_{s,n}).$$

Czyli obrazy kolejnych wektorów bazy standardowej są kolejnymi kolumnami macierzy przekształcenia.

Definicja 5.4 Niech układ $\mathscr{A} = (\alpha_1, \alpha_2, ..., \alpha_n)$ będzie bazą przestrzeni V nad ciałem K zaś $\mathscr{B} = (\beta_1, \beta_2, ..., \beta_s)$ będzie bazą przestrzeni W nad tym samym ciałem K. Wówczas macierzą przekształcenia $f \in L(V, W)w$ tych bazach

nazywamy macierz
$$M(f)_{\mathscr{A}}^{\mathscr{B}} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s,1} & a_{s,2} & \cdots & a_{s,n} \end{bmatrix}$$
, $gdy \ dla \ każdego$

$$wektora \ bazy \ f(\alpha_i) = \sum_{i=1}^s a_{i,i} \beta_i \ .$$

Definicja 5.5 Macierzą jednostkową nazywamy macierz przekształcenia identyczności czyli taką macierz kwadratową, która ma na przekątnej jedynki a w pozostałych miejscach zera.

Definicja 5.6 Macierzą transponowaną do macierzy M nazywamy taką macierz M^T , w której wiersze i kolumny są zamienione rolami. To znaczy

$$M^{2}$$
, w ktoreg wiersze i kolumny są zamienione rolami.
$$\begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s,1} & a_{s,2} & \cdots & a_{s,n} \end{bmatrix}^{T} = \begin{bmatrix} a_{1,1} & a_{2,1} & \cdots & a_{s,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{s,2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{s,n} \end{bmatrix}$$

Algorytm 1 Niech $\{\alpha_i\}_{i=1,2,\dots,t}$ będzie zbiorem wektorów z przestrzeni R^n zaś $\{\beta_i\}_{i=1,2,\dots,t}$ Będzie zbiorem wektorów z przestrzeni R^s . Szukamy przekształcenia liniowego $f: R^n \to R^s$ spełniającego warunek $\forall_{i \in I} f(\alpha_i) = \beta_i$.

- 1) Budujemy macierz $M = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \\ \vdots & \vdots \\ \alpha_t & \beta_t \end{bmatrix}$
- 2) Sprowadzamy macierz M do postaci schodkowej zredukowanej M' przy pomocy operacji elementarnych i wykreślamy wiersze zerowe.
- 3) Jeżeli schodek wypadł po prawej stronie kreski to STOP takie przekształcenie nie istnieje.
- 4) Jeżeli z lewej strony kreski otrzymaliśmy macierz jednostkową to STOP kolejne wiersze opisują obrazy wektorów bazy standardowej zaś macierz po prawej stronie kreski jest równa $M(f)^T$.
- 5) (w pozostałych przypadkach) Uzupełniamy wiersze macierzy z lewej strony kreski do bazy \mathbb{R}^n , wpisujemy z prawej strony dowolne wektory i GO TO 2).

Przykład 5.7 Szukamy wzoru analitycznego i macierzy w bazie standardowej przekształcenia $\phi: \mathbb{R}^2 \to \mathbb{R}^2$,

które jest rzutem na prostą $Lin\{(1,-3)\}$ wzdłuż prostej $Lin\{(2,-5)\}$.

Z definicji rzutu

$$\phi(1, -3) = (1, -3)$$

 $\phi(2, -5) = (0, 0)$

 $Budujemy \ macierz$

 $\left[\begin{array}{cc|c} 1 & -3 & 1 & -3 \\ 2 & -5 & 0 & 0 \end{array}\right] \ i \ operacjami \ elementarnymi \ sprowadzamy \ do \ postaci$ schodkowej zredukowanej

$$\left[\begin{array}{cc|cc} 1 & -3 & 1 & -3 \\ 0 & 1 & -2 & 6 \end{array}\right]$$

$$\left[\begin{array}{cc|c} 1 & 0 & -5 & 15 \\ 0 & 1 & -2 & 6 \end{array}\right]$$

Otrzymaliśmy:
$$\phi(1,0) = (-5,15), \ \phi(0,1) = (-2,6)$$

 $M(\phi) = \begin{bmatrix} -5 & -2 \\ 15 & 6 \end{bmatrix}, \ \phi(x,y) = (-5x - 2y, 15x + 6y).$

Definicja 5.8 Niech A i B będą macierzami nad ciałem K, gdzie A ma n kolumn i t wierszy zaś B ma s kolumn i n wierszy. Niech $f \in L(K^n, K^t)$ $i \ g \in L(K^s, K^n)$ będą przekształceniami liniowymi takimi, że M(f) = Ai M(g) = B (w bazach standardowych). Iloczynem macierzy nazywamy macierz $A \cdot B = M(f \circ g)$. Czyli $M(f) \cdot M(g) = M(f \circ g)$.

 ${f Uwaga}$ Jeżeli liczba kolumn macierzy A jest różna od liczby wierszy macierzy B to iloczyn $A \cdot B$ nie istnieje.

Definicja 5.9

Macierzą jednostkową nazywamy taką macierz kwadratową, która ma na przekątnej jedynki a w pozostałych miejscach zera. Oznaczamy ją symbolem I lub I_n .

 $Macierz\ kwadratowq\ A\in K_n^n\ nazywamy\ odwracalnq\ gdy\ istnieje\ taka\ macierz$ $B \in K_n^n$, $\dot{z}e\ AB = BA = I$.

Twierdzenie 5.10 Własności mnożenia macierzy:

- 1) $laczność: (A \cdot B) \cdot C = A \cdot (B \cdot C)$.
- 2) $\forall_{r \in K}$ $r(A \cdot B) = (rA) \cdot B = A \cdot (rB)$
- 3) $\forall r_{1,r_{2} \in K} (r_{1}A_{1} + r_{2}A_{2}) \cdot B = r_{1}A_{1} \cdot B + r_{2}A_{2} \cdot B$
- 4) $\forall_{r_1,r_2 \in K} \ A \cdot (r_1 B_1 + r_2 B_2) = r_1 A \cdot B_1 + r_2 A \cdot B_2$
- 5) Jeżeli I jest macierzą jednostkową to $\forall_A \ A \cdot I = A \ i \ A = I \cdot A$

Definicja 5.11 Jedynkami macierzowymi nazywamy macierze $e_{i,j}$, które mają jedynkę w i-tym wierszu i j-tej kolumnie a pozostałe współczynniki zerowe.

Twierdzenie 5.12 Zbiór $\{e_{i,j}\}_{1 \leq i \leq t, 1 \leq j \leq n}$ jest bazą przestrzeni K_t^n .

Wzory mnożenia
1)
$$e_{i,j}e_{k,l} = \left\{ egin{array}{ll} \theta & j
eq k \\ e_{i,l} & j = k \end{array} \right.$$

2) Dla
$$[a_1 \ a_2 \ ... \ a_n] \in K^n$$
 i $\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \in K_n$

$$[a_1 \ a_2 \ ... \ a_n] \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = [a_1b_1 + a_2b_2 + ... + a_nb_n]$$
3) Dla $A = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_t \end{bmatrix} \in K_t^n$ i $B = [k_1 \ k_2 \ ... \ k_s] \in K_n^s$

$$\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_t \end{bmatrix} \cdot [k_1 \ k_2 \ ... \ k_s] = \begin{bmatrix} w_1k_1 \ w_1k_2 \ ... \ w_1k_2 \ ... \ w_2k_2 \ ... \ w_2k_s \\ \vdots \ \vdots \ \vdots \ ... \ \vdots \\ w_tk_1 \ w_tk_2 \ ... \ w_tk_s \end{bmatrix}$$

Co a rozpisaniu na elementy daje:

Jeżeli
$$A = [a_{i,j}] \in K_t^n$$
, $B = [b_{p,q}] \in K_n^s$ i $AB = [c_{u,w}] \in K_t^s$, to $c_{u,w} = \sum_{j=1}^n a_{u,j}b_{j,w}$.

Wyznacznik macierzy

Niech f będzie przekształceniem liniowym przestrzeni \mathbb{R}^n w siebie. Wprowadzimy funkcję zwaną wyznacznikiem, która mierzy jak f zmienia objętości brył.

Definicja 5.13 Permutacją zbioru A nazywamy każde różnowartościowe i "na" przekształcenie $f: A \to A$. Jeśli $A = \{1, 2, ..., n\}$ To zbiór wszystkich permutacji A oznaczamy symbolem S_n .

Stwierdzenie 5.14 $|S_n| = n!$.

Ponieważ w S_n mamy łączne działanie składania przekształceń (zwane dalej iloczynem), przekształcenie inedtycznościowe i przekształcenia odwrotne więc S_n z działaniem składania nazywamy **grupą permutacji**.

Definicja 5.15 Permutację $\tau \in S_n$ nazywamy transpozycją i oznaczamy $\tau = (a, b)$, $gdy \ a \neq b \ i \ \tau$ jest określona wzorem: $\tau(a) = b, \ \tau(b) = a \ oraz \ \tau(j) = j, \ gdy \ j \neq a \ i \ j \neq b.$

Twierdzenie 5.16 Każda permutacja $\tau \in S_n$ jest iloczynem transpozycji.

Definicja 5.17 Permutację nazywamy parzystą jeśli jest iloczynem parzystej liczby transpozycji i nieparzystą gdy jest iloczynem nieparzystej liczby transpozycji.

Znakiem permutacji τ nazywamy liczbę $(-1)^{\tau} = \begin{cases} 1 & , \tau \text{ jest parzysta} \\ -1 & , \tau \text{ jest nieparzysta} \end{cases}$

Twierdzenie 5.18 Każda permutacja jest parzysta albo nieparzysta.

Definicja 5.19 Wyznacznikiem nazywamy funkcję $Det: K_n^n \to K$ określoną wzorem: jeżeli $A = \sum_{i,j=1}^n a_{i,j}e_{i,j}$ to $Det(A) = \sum_{\tau \in S_n} (-1)^{\tau} a_{1,\tau(1)} a_{2,\tau(2)}...a_{n,\tau(n)}.$

Liczenie wyznacznika w prostych przypadkach .

Macierze rozmiaru < 3. (metoda Sarrusa.)

$$Det[a_{1,1}] = a_{1,1}.$$

$$Det \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}.$$

$$Det \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} = a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{2,1}a_{3,2} - a_{1,3}a_{2,2}a_{3,1} - a_{1,2}a_{2,1}a_{3,3} - a_{1,1}a_{2,3}a_{3,2}.$$

Wyznaczników macierzy stopnia >3 nie da się liczyć metodą Sarrusa.

Twierdzenie 5.20 Jeżeli macierz $A = \sum_{i,j=1}^{n} a_{i,j}e_{i,j}$ jest górną lub dolną trójkątną to wyznacznik jej jest iloczynem elementów na przekątnej $Det(A) = a_{1,1}a_{2,2}...a_{n,n}$.

Wniosek 5.21 Jeżeli macierz $A = \sum_{i,j=1}^{n} a_{i,j} e_{i,j}$ jest w postaci schodkowej to jej wyznacznik jest iloczynem elementów na przekątnej $Det(A) = a_{1,1}a_{2,2}...a_{n,n}$.

Wyznacznik a operacje elementarne

Twierdzenie 5.22 (Cauchy'ego) Wyznacznik iloczynu macierzy jest iloczynem wyznaczników. Det(AB) = Det(A)Det(B).

Definicja 5.23 Macierzą elementarną nazywamy macierz kwadratową $E_{i,j}(r) = I + re_{i,j} \in K_n^n$, gdzie $i \neq j$ oraz I jest macierzą jednostkową. To znaczy macierz mającą jedynki na przekątnej, r w miejscu i, j a w pozostałych miejscach zera.

Twierdzenie 5.24 Niech $A \in K_n^s$, $B \in K_t^n$ i $E_{i,j}(r) \in K_n^n$ będą macierzami. Wówczas:

- 1) $E_{i,j}(r)A$ powstaje z macierzy A przez dodanie do wiersza i-tego r razy wiersz j-ty.
- 2) $BE_{i,j}(r)$ powstaje z macierzy B przez dodanie do j-tej kolumny r razy kolumne i-ta.

Twierdzenie 5.25.

- 1) Jeżeli macierz A powstała z macierzy B przez dodanie do pewnego wiersza innego wiersza pomnożonego przez liczbę to Det(A) = Det(B).
- 1') Jeżeli macierz A powstała z macierzy B przez dodanie do pewnej kolumny innej kolumny pomnożonego przez liczbę to Det(A) = Det(B).
- 2) Jeżeli macierz A powstała z macierzy B przez pomnożenie pewnego wiersza przez liczbę t to $Det(A) = t \cdot Det(B)$.
- 2') Jeżeli macierz A powstała z macierzy B przez pomnożenie pewnej kolumny przez liczbę t to $Det(A) = t \cdot Det(B)$.
- 3) Jeżeli macierz A powstała z macierzy B przez zamianę dwóch wierszy to Det(A) = -Det(B).
- 3) Jeżeli macierz A powstała z macierzy B przez zamianę dwóch kolumn to Det(A) = -Det(B).

Twierdzenie 5.26 (rozwinięcie Laplace'a)

Niech $A = \sum_{i,j=1}^{n} a_{i,j}e_{i,j} \in K_n^n$ będzie macierzą kwadratową. Symbolem $A_{i,j}$ oznaczamy macierz powstałą z A przez usunięcie i-tego wiersza oraz j-tej kolumny. Ustalamy liczbę $t \in \{1, 2, ..., n\}$. Wówczas:

- 1) $Det(A) = \sum_{j=1}^{n} (-1)^{t+j} a_{t,j} Det(A_{t,j}).$ 2) $Det(A) = \sum_{i=1}^{n} (-1)^{i+t} a_{i,t} Det(A_{i,t}).$

Dowód:

krok 1) Przypuśćmy, że w ostatnim wierszu jedynym niezerowym elementem jest $a_{n,n} = 1$, (n-ty wiersz macierzy A jest wektorem e_n).

Wtedy
$$Det(A) = \sum_{\tau \in S_n} (-1)^{\tau} a_{1,\tau(1)} a_{2,\tau(2)} ... a_{n,\tau(n)} =$$

$$= \sum_{\tau \in S_{n-1}} (-1)^{\tau} \left(a_{1,\tau(1)} a_{2,\tau(2)} ... a_{n-1,\tau(n-1)} \right) a_{n,n} = Det(A_{n,n}) a_{n,n} = Det(A_{n,n})$$

$$\left(Det(A) = \sum_{j=1}^{n} (-1)^{n+j} a_{n,j} Det(A_{n,j}) \right).$$

krok 2) Przypuśćmy, że w ostatnim wierszu jedynym niezerowym elementem jest $a_{n,t} = 1$, n-ty wiersz macierzy A jest wektorem e_t .

Oznaczmy $A = [k_1 k_2 ... k_t ... k_n]$ i $B = [k_1 k_2 ... k_{t-1} k_{t+1} ... k_n k_t]$. Macierz B powstaje z A przez zamianę kolumn cyklem $\tau = (k_t k_{t+1} \dots k_n)$ długości nt+1. $(B = [k_{\tau(1)} k_{\tau(2)} \dots k_{\tau(t)} \dots k_{\tau(n)}])$. Zatem $(-1)^{\tau} = (-1)^{n-t}$ i $Det(A) = (-1)^{n-t} Det(B)$. Ponadto $\forall_j A_{n,t} = B_{n,n}$ więc tak jak w kroku 1) $Det(A) = (-1)^{n-t} Det(B) = (-1)^{n+t} Det(B_{n,n}) = (-1)^{n+t} Det(A_{n,t})$ oraz $\left(Det(A) = \sum_{j=1}^{n} (-1)^{n+j} a_{n,j} Det(A_{n,j}) \right).$

krok 3) Rozwinięcie względem n-tego wiersza. Zapiszmy n-ty wiersz $w_n = \sum_{j=1}^n a_{n,j} e_j$ Oznaczmy symbolem $A^{(j)}$ macierz powstałą z A przez zastąpienie n-tego wiersza wektorem e_j . Wtedy $A^{(j)}_{n,j} = A_{n,j}$ I ze względu na liniowość wyznacznika względem n-tego wiersza $Det(A) = \sum_{j=1}^n a_{n,j} Det(A)^{(j)}$ $= \sum_{j=1}^n (-1)^{n+j} a_{n,j} Det(A^{(j)}_{n,j}) = \sum_{j=1}^n (-1)^{n+j} a_{n,j} Det(A_{n,j}).$

krok 4) Rozwinięcie względem t-tego wiersza.

Oznaczmy
$$A = \begin{bmatrix} w_1 \\ w_2 \\ \cdots \\ w_t \\ w_n \end{bmatrix}$$
 i $B = \begin{bmatrix} k_1 \\ k_2 \\ \cdots \\ k_{t-1} \\ k_{t+1} \\ \cdots \\ k_n \\ k_t \end{bmatrix}$. Macierz B powstaje z A przez

zamianę wierszy cyklem $\tau = (k_t \, k_{t+1} \dots k_n)$ długości n - t + 1. Zatem $(-1)^{\tau} = (-1)^{n-t}$ i $Det(A) = (-1)^{n-t}Det(B)$. Ponadto $\forall_j A_{t,j} = B_{n,j}$ i $b_{n,j} = a_{t,j}$ więc tak jak w kroku 3 $Det(A) = (-1)^{n-t}Det(B) = (-1)^{n-t}\sum_{j=1}^{n} (-1)^{n+j}b_{n,j}Det(B_{n,j})$ $= \sum_{j=1}^{n} (-1)^{t+j}a_{t,j}Det(A_{t,j})$.

krok 5) Rozwinięcie względem t-tej kolumny. Niech

Algorytm liczenia wyznacznika

Dana macierz kwadratowa A.

- 1) Stosując operacje elementarne typu dodanie do pewnego wiersza wielokrotności innego lub dodanie do pewnej kolumny wielokrotności innej kolumny doprowadzamy macierz A do postaci w której w wybranej kolumnie (wierszu) jest tylko jeden element $\neq 0$.
- 2) Zgodnie z metodą Laplace'a rozwijamy względem tej kolumny (wiersza).
 - 3) Jeżeli otrzymana macierz ma wymiar > 1 Go To 1).

Przykład 5.27

$$\begin{vmatrix} -2I & -2I \\ 1 & 2 & 0 & 2 \\ 0 & 3 & 3 & -6 \\ -3 & -6 & 3 & -3 \\ 2 & 6 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 3 & -6 \\ -3 & 0 & 3 & 3 \\ 2 & 2 & 2 & 2 & -3 \end{vmatrix} = (-1)^{1+1} 1 \begin{vmatrix} 3 & 3 & -6 \\ 0 & 3 & 3 \\ 2 & 2 & 2 & -3 \end{vmatrix} = 3 \begin{vmatrix} 1 & 1 & -2 \\ 0 & 3 & 3 \\ 2 & 2 & -3 \end{vmatrix} = 3 \begin{vmatrix} 1 & 1 & -2 \\ 0 & 3 & 3 \\ 2 & 2 & -3 \end{vmatrix} = 3 \begin{vmatrix} 1 & 1 & -2 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{vmatrix} = (-1)^{1+1} 1 \begin{vmatrix} 3 & 3 \\ 0 & 1 \end{vmatrix} = 9.$$

Wzór Cramera na rozwiązania układu równań

$$\text{Dany układ równań} \left\{ \begin{array}{lll} a_{1,1}x_1 & +a_{1,2}x_2+ & \cdots & +a_{1,n}x_n & =b_1 \\ a_{2,1}x_1 & +a_{2,2}x_2 & +\cdots & +a_{2,n}x_n & =b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n,1}x_1 & +a_{n,2}x_2 & +\cdots & +a_{n,n}x_n & =b_n \end{array} \right.$$

o macierzy kwadratowej
$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}$$

Jeżeli $Det(A) \neq 0$ to rozwiązaniem jest ciąg

$$x_1 = \frac{Det(A_1)}{Det(A)}, \ x_2 = \frac{Det(A_2)}{Det(A)}, \ \dots \ x_n = \frac{Det(A_n)}{Det(A)},$$

gdzie macierz A_i powstaje z macierzy A przez zastąpienie i - tej kolumny kolumną wyrazów wolnych.

Własności wyznacznika wynikające bezpośrednio z własności permutacji

Twierdzenie 5.28 Niech $A \in K_n^n$ będzie macierzą.

- 1) $S_n = \{ \sigma \mid \sigma^{-1} \in S_n \}. \ S_n^{-1} \stackrel{n}{=} S_n.$
- 1') $Det(A) = Det(A^T)$.
- 2) Dla dowolnej permutacji τ $S_n = \{\tau \sigma \mid \sigma \in S_n\}$. $S_n = \tau S_n$.
- 2') Jeżeli macierz A' powstała z A przez przestawienie kolumn permutacją τ to $Det(A) = (-1)^{\tau} Det(A')$.
- 2") Jeżeli macierz A" powstała z A przez przestawienie wierszy permutacją τ to $Det(A) = (-1)^{\tau} Det(A)$ ".
 - 3) Jeżeli macierz A ma dwie jednakowe kolumny to Det(A) = 0.
 - 3') Jeżeli macierz A ma dwa jednakowe wiersze to Det(A) = 0.

Twierdzenie 5.29 Wyznacznik jest funkcją liniową względem dowolnie wybranej kolumny. Dokładniej - Jeżeli $A' = [k_1 \ k_2 \ ... \ k'_i \ ... \ k_n], \ A'' = [k_1 \ k_2 \ ... \ k''_i \ ... \ k_n]$ i $A = [k_1 \ k_2 \ ... \ ak'_i + bk''_i \ ... \ k_n]$ to Det(A) = aDet(A') + bDet(A'').

Wniosek 5.30 Wyznacznik jest funkcją liniową względem dowolnie wybranego wiersza.

Minory.

Definicja 5.31 Minor stopnia k macierzy A o m wierszach i n kolumnach, tak że $k \leq min(m,n)$ to wyznacznik macierzy kwadratowej stopnia k powstałej z macierzy A przez skreślenie (m-k) wierszy i (n-k) kolumn. Minorami stopnia k=1 są komórki macierzy.

Definicja 5.32.

Rząd macierzy jest równy stopniowi największego niezerowego minora.

Twierdzenie 5.33 Niech $A \in K_n^n$ będzie kwadratową macierzą stopnia n. Wówczas równoważne są warunki:

- 1) Macierz A jest odwracalna.
- 2) rz(A) = n.
- 3) $Det(A) \neq 0$