

APPROXIMATELY BISECTRIX-ORTHOGONALITY PRESERVING MAPPINGS

ALI ZAMANI

ABSTRACT. Regarding the geometry of a real normed space \mathcal{X} , we mainly introduce a notion of approximate bisectrix-orthogonality on vectors $x, y \in \mathcal{X}$ as follows:

$$x \stackrel{\varepsilon}{\perp} w y \text{ if and only if } \sqrt{2} \frac{1-\varepsilon}{1+\varepsilon} \|x\| \|y\| \leq \|y\| x + \|x\| y \leq \sqrt{2} \frac{1+\varepsilon}{1-\varepsilon} \|x\| \|y\|.$$

We study class of linear mappings preserving the approximately bisectrix-orthogonality $\stackrel{\varepsilon}{\perp}_w$. In particular, we show that if $T : \mathcal{X} \rightarrow \mathcal{Y}$ is an approximate linear similarity, then

$$x \stackrel{\delta}{\perp} w y \implies T x \stackrel{\theta}{\perp}_w T y \quad (x, y \in \mathcal{X})$$

for any $\delta \in [0, 1)$ and certain $\theta \geq 0$.

1. INTRODUCTION AND PRELIMINARIES

There are several concepts of orthogonality appeared in the literature during the past century such as Birkhoff–James, Phythagorean, isosceles, Singer, Roberts, Diminnie, Carlsson, Rätz, ρ -orthogonality, area orthogonality, etc, in an arbitrary real normed space \mathcal{X} , which can be regarded as generalizations of orthogonality in the inner product spaces, in general [1, 2]. These are of intrinsic geometric interest and have been studied by many mathematicians. Among them we recall the following ones:

- (i) *Birkhoff–James* \perp_B : $x \perp_B y$ if $\|x\| \leq \|x + ty\|$ for all scalars t (see [3]).
- (ii) *Phythagorean* \perp_P : $x \perp_P y$ if $\|x + y\|^2 = \|x\|^2 + \|y\|^2$ (see [9]).
- (iii) *Isosceles* \perp_I : $x \perp_I y$ if $\|x + y\| = \|x - y\|$ (see [9, 14]).
- (iv) *Roberts* \perp_R : $x \perp_R y$ if $\|x + ty\| = \|x - ty\|$ for all scalars t (see [15]).

The following mapping $\langle \cdot | \cdot \rangle_g : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ was introduced by Miličić [12]:

$$\langle y | x \rangle_g = \frac{1}{2} (\rho'_+(x, y) + \rho'_-(x, y)),$$

where mappings $\rho'_+, \rho'_- : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ are defined by

$$\rho'_\pm(x, y) = \lim_{t \rightarrow 0^\pm} \frac{\|x + ty\|^2 - \|x\|^2}{2t}.$$

In addition the ρ -orthogonality $x \perp_\rho y$ means $\langle y | x \rangle_g = 0$.

Note that $\perp_R, \perp_\rho \subseteq \perp_B$ [1] and the relations $\perp_P, \perp_I, \perp_B$ are, however, independent. If $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ is a real inner product space, then all above relations coincide with usual orthogonality \perp derived from $\langle \cdot | \cdot \rangle$ [2].

In the present note, we consider the so-called bisectrix-orthogonality and we study the orthogonality preserving property of this kind of orthogonality.

2010 *Mathematics Subject Classification.* Primary 46B20; Secondary 46C50, 47B99.

Key words and phrases. Bisectrix-orthogonality, Approximate orthogonality, Isometry, Orthogonality preserving mapping.

Let \mathcal{X} be a real normed space and $x, y \in \mathcal{X}$. The bisectrix-orthogonality relation $x \perp_W y$ (cf. Section 5.2 in [1]) is defined by

$$\left\| \|y\|x + \|x\|y \right\| = \sqrt{2}\|x\|\|y\|,$$

which for nonzero x and y means

$$\left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| = \sqrt{2}.$$

For instance consider the space $(\mathbb{R}^2, \|\cdot\|)$ where $\|(r, s)\| = \max\{|r|, |s|\}$ for $(r, s) \in \mathbb{R}^2$. Then $(1, 0) \perp_W (r, s)$ if and only if either (r, s) is the zero vector or

$$(r, s) \in ((-\sqrt{2} - 1, \sqrt{2} - 1)) \times [-\sqrt{2}, \sqrt{2}] \cup ((-\sqrt{2} - 1, \sqrt{2} - 1] \times \{-\sqrt{2}, \sqrt{2}\}).$$

Now we recall some properties of bisectrix-orthogonality (the proofs can be found in [1, Proposition 5.2.1]):

- (P.1) $x \perp_W 0, 0 \perp_W y$ for all $x, y \in \mathcal{X}$;
- (P.2) $x \perp_W y$ if and only if $y \perp_W x$;
- (P.3) If $x \perp_W y$ and $x, y \neq 0$, then x, y are linearly independent;
- (P.4) If $x \perp_W y$ and $\alpha\beta \geq 0$, then $\alpha x \perp_W \beta y$;
- (P.5) In an inner product space, $x \perp_W y$ if and only if $\langle x|y \rangle = 0$.

By the definition of bisectrix-orthogonality and Pythagorean orthogonality one can easily get the following properties:

- (P.6) For all nonzero vectors $x, y \in \mathcal{X}$, $x \perp_W y$ if and only if $\frac{x}{\|x\|} \perp_P \frac{y}{\|y\|}$;
- (P.7) For all $x, y \in S_{\mathcal{X}} = \{z \in \mathcal{X} : \|z\| = 1\}$, $x \perp_W y$ if and only if $x \perp_P y$.

We state some relations between bisectrix-orthogonality and other orthogonalities. It is known [1, 2] that each of the following properties implies that the norm $\|\cdot\|$ comes from an inner product.

- (P.8) $\perp_W \subseteq \perp_I$ over \mathcal{X} ;
- (P.9) $\perp_I \subseteq \perp_W$ over \mathcal{X} ;
- (P.10) $\perp_W \subseteq \perp_B$ over $S_{\mathcal{X}}$;
- (P.11) $\perp_B \subseteq \perp_W$ over $S_{\mathcal{X}}$;
- (P.12) If for all $x, y \in \mathcal{X}$, $x \perp_W y$ implies $\|x + y\|^2 + \|x - y\|^2 \sim 2\|x\|^2 + 2\|y\|^2$

where \sim stands either for \leq or \geq . An easy consequence of $\perp_R, \perp_P \subseteq \perp_B$ states that if for all $x, y \in S_{\mathcal{X}}$, the relation $x \perp_W y$ implies $x \perp_R y$ or $x \perp_P y$, then the norm $\|\cdot\|$ comes from an inner product.

In this paper we introduce two notions of approximate bisectrix-orthogonality ${}^{\varepsilon}\perp_W$ and \perp_W^{ε} in a real normed space \mathcal{X} and study the class of linear mappings which preserve the approximately bisectrix-orthogonality of type ${}^{\varepsilon}\perp_W$. In particular, we show that if $T : \mathcal{X} \rightarrow \mathcal{Y}$ is an approximate linear similarity, then

$$x^{\delta} \perp_W y \implies Tx^{\theta} \perp_W Ty \quad (x, y \in \mathcal{X})$$

for any $\delta \in [0, 1)$ and certain $\theta \geq 0$.

2. APPROXIMATELY BISECTRIX-ORTHOGONALITY PRESERVING MAPPINGS

Let ζ, η be elements of an inner product space $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ and $\varepsilon \in [0, 1)$. The approximate orthogonality $\zeta \perp^{\varepsilon} \eta$ defined by

$$|\langle \zeta | \eta \rangle| \leq \varepsilon \|\zeta\| \|\eta\|$$

or equivalently,

$$|\cos(\zeta, \eta)| \leq \varepsilon \quad (\zeta, \eta \neq 0).$$

So, it is natural to generalize the notion of approximate orthogonality for a real normed space \mathcal{X} . This fact motivated Chmieliński and Wójcik [5] to give for two elements $x, y \in \mathcal{X}$ the following definition of the approximate isosceles-orthogonality $x^\varepsilon \perp_I y$ as follows:

$$\left| \|x + y\| - \|x - y\| \right| \leq \varepsilon(\|x + y\| + \|x - y\|).$$

They also introduced another approximate isosceles-orthogonality $x \perp_I^\varepsilon y$ by

$$\left| \|x + y\|^2 - \|x - y\|^2 \right| \leq 4\varepsilon\|x\|\|y\|.$$

Inspired by the above approximate isosceles-orthogonality, we propose two definitions of approximate bisectrix-orthogonality.

Let $\varepsilon \in [0, 1)$ and $x, y \in \mathcal{X}$, let us put $x^\varepsilon \perp_W y$ if

$$\left| \left\| \|y\|x + \|x\|y \right\| - \sqrt{2}\|x\|\|y\| \right| \leq \varepsilon \left(\left\| \|y\|x + \|x\|y \right\| + \sqrt{2}\|x\|\|y\| \right)$$

or equivalently,

$$\sqrt{2} \frac{1-\varepsilon}{1+\varepsilon} \|x\|\|y\| \leq \left\| \|y\|x + \|x\|y \right\| \leq \sqrt{2} \frac{1+\varepsilon}{1-\varepsilon} \|x\|\|y\|,$$

which means

$$\sqrt{2} \frac{1-\varepsilon}{1+\varepsilon} \leq \left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| \leq \sqrt{2} \frac{1+\varepsilon}{1-\varepsilon}$$

for nonzero vectors x and y .

Also we define $x \perp_W^\varepsilon y$ if

$$\left| \left\| \|y\|x + \|x\|y \right\|^2 - 2\|x\|^2\|y\|^2 \right| \leq 2\varepsilon\|x\|^2\|y\|^2$$

or equivalently,

$$\sqrt{2(1-\varepsilon)}\|x\|\|y\| \leq \left\| \|y\|x + \|x\|y \right\| \leq \sqrt{2(1+\varepsilon)}\|x\|\|y\|,$$

which means

$$\sqrt{2(1-\varepsilon)} \leq \left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| \leq \sqrt{2(1+\varepsilon)}$$

for nonzero $x, y \in \mathcal{X}$.

It is easy to check that in the case where the norm comes from a real-valued inner product we have

$$x^\varepsilon \perp_W y \Leftrightarrow |\langle x, y \rangle| \leq \frac{4\varepsilon}{(1-\varepsilon)^2} \|x\|\|y\|$$

and

$$x \perp_W^\varepsilon y \Leftrightarrow |\langle x, y \rangle| \leq \varepsilon\|x\|\|y\| \Leftrightarrow x \perp^\varepsilon y$$

Thus the second approximate bisectrix-orthogonality coincides with the natural notion of approximate orthogonality for inner product spaces.

Note that the relations \perp_W^ε and \perp_W^ε are symmetric and almost homogeneous in the sense that

$$x^\varepsilon \perp_W y \implies y^\varepsilon \perp_W x \quad \text{and} \quad \alpha x^\varepsilon \perp_W \beta y \quad \text{for } \alpha\beta \geq 0$$

and

$$x \perp_W^\varepsilon y \implies y \perp_W^\varepsilon x \quad \text{and} \quad \alpha x \perp_W^\varepsilon \beta y \quad \text{for } \alpha\beta \geq 0.$$

Remark 2.1. It is easy to see that \perp_W^ε implies \perp_W^ε with the same ε . Also if $\varepsilon \in [0, \frac{1}{16})$, then \perp_W^ε implies $\perp_W^{16\varepsilon}$. Indeed, for $x, y \neq 0$, since $0 \leq \varepsilon < \frac{1}{16}$, so $\frac{1+\varepsilon}{1-\varepsilon} \leq \sqrt{1+16\varepsilon}$ and $\sqrt{1-16\varepsilon} \leq \frac{1-\varepsilon}{1+\varepsilon}$. Hence $x \perp_W^\varepsilon y$ implies

$$\sqrt{2(1-16\varepsilon)} \leq \left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| \leq \sqrt{2(1+16\varepsilon)}$$

or equivalently, $x \perp_W^{16\varepsilon} y$.

Now, suppose that \mathcal{X} and \mathcal{Y} are real normed spaces of dimensions greater than or equal to two and let $\delta, \varepsilon \in [0, 1)$. We say that a linear mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$ preserves the approximate bisectrix-orthogonality if

$$x^\delta \perp_W y \implies Tx^\varepsilon \perp_W Ty \quad (x, y \in \mathcal{X}).$$

Notice that if $\delta = \varepsilon = 0$, we have

$$x \perp_W y \implies Tx \perp_W Ty \quad (x, y \in \mathcal{X}),$$

and we say that T preserves the bisectrix-orthogonality.

Koldobsky [10] (for real spaces) and Blanco and Turnšek [4] (for real and complex ones) proved that a linear mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$ preserving the Birkhoff orthogonality has to be a similarity, i.e., a non-zero-scalar multiple of an isometry. Further, Chmieliński and Wójcik [7, 16] proved that a linear mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$ preserving the ρ -orthogonality has to be a similarity. Approximately orthogonality preserving mappings in the framework of normed spaces have been recently studied. In the case where $\delta = 0$, Mojškerc and Turnšek [13] and Chmieliński [6] verified the properties of mappings that preserve approximate Birkhoff orthogonality. Also Chmieliński and Wójcik [5, 7] studied some properties of mappings that preserve approximate isosceles-orthogonality and ρ -orthogonality in the case when $\delta = 0$. Recently Zamani and Moslehian [17] studied approximate Roberts orthogonality preserving mappings.

The next lemma plays an essential role in our work. It provides indeed a reverse of the triangle inequality; see [8].

Lemma 2.2. [11, Theorem 1] *Let \mathcal{X} be a normed space and $x, y \in \mathcal{X} \setminus \{0\}$. Then*

$$\begin{aligned} \|x\| + \|y\| + (\left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| - 2) \max\{\|x\|, \|y\|\} \\ \leq \|x + y\| \\ \leq \|x\| + \|y\| + (\left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| - 2) \min\{\|x\|, \|y\|\} \end{aligned}$$

To reach our main result, we need some lemmas, which are interesting on their own right. We state some prerequisites for the first lemma. For a bounded linear mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$, let $\|T\| = \sup\{\|Tx\|; \|x\| = 1\}$ denote the operator norm and $[T] := \inf\{\|Tx\|; \|x\| = 1\}$. Notice that for any $x \in \mathcal{X}$, we have $[T]\|x\| \leq \|Tx\| \leq \|T\|\|x\|$.

Lemma 2.3. *Let $\delta, \varepsilon \in [0, 1)$. If a nonzero bounded linear mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$ satisfies*

$$\frac{1-\varepsilon}{1+\varepsilon} \gamma \|x\| \leq \|Tx\| \leq \frac{1+\varepsilon}{1-\varepsilon} \gamma \|x\|$$

for all $x \in \mathcal{X}$ and all $\gamma \in \left[\frac{1-\delta}{1+\delta} [T], \frac{1+\delta}{1-\delta} \|T\| \right]$, then

$$x^\delta \perp_W y \implies Tx^\varepsilon \perp_W Ty \quad (x, y \in \mathcal{X}).$$

Proof. Let $x, y \in \mathcal{X} \setminus \{0\}$ and $x \perp_W y$. Then $\sqrt{2}\frac{1-\delta}{1+\delta} \leq \left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| \leq \sqrt{2}\frac{1+\delta}{1-\delta}$. If $x = sy$ for some $s \in \mathbb{R} \setminus \{0\}$, then for $\gamma = \frac{1-\delta}{1+\delta}[T]$ we have

$$\begin{aligned} \left\| \frac{Tx}{\|Tx\|} + \frac{Ty}{\|Ty\|} \right\| &= \left\| T \left(\frac{x}{\|Tx\|} + \frac{y}{\|Ty\|} \right) \right\| \\ &= \left\| T \left(\frac{sy}{\|sTy\|} + \frac{y}{\|Ty\|} \right) \right\| \\ &= \frac{\|y\|}{\|Ty\|} \left\| T \left(\frac{sy}{\|sy\|} + \frac{y}{\|y\|} \right) \right\| \\ &= \frac{\|y\|}{\|Ty\|} \left\| T \left(\frac{x}{\|x\|} + \frac{y}{\|y\|} \right) \right\| \\ &\leq \frac{\|y\|}{\|Ty\|} \frac{1+\varepsilon}{1-\varepsilon} \gamma \left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| \\ &= \frac{\|y\|}{\|Ty\|} \frac{1+\varepsilon}{1-\varepsilon} \frac{1-\delta}{1+\delta} [T] \left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| \\ &\leq \frac{1+\varepsilon}{1-\varepsilon} \frac{1-\delta}{1+\delta} \sqrt{2} \frac{1+\delta}{1-\delta} \\ &= \sqrt{2} \frac{1+\varepsilon}{1-\varepsilon}, \end{aligned}$$

whence $\left\| \frac{Tx}{\|Tx\|} + \frac{Ty}{\|Ty\|} \right\| \leq \sqrt{2} \frac{1+\varepsilon}{1-\varepsilon}$. Similarly, $\sqrt{2} \frac{1-\varepsilon}{1+\varepsilon} \leq \left\| \frac{Tx}{\|Tx\|} + \frac{Ty}{\|Ty\|} \right\|$. Thus $Tx \perp_W Ty$. Assume that x, y are linearly independent. Set $\gamma_0 := \frac{\sqrt{2}}{\left\| \frac{x}{\|Tx\|} + \frac{y}{\|Ty\|} \right\|}$. We may assume that $\frac{\|x\|}{\|Tx\|} \leq \frac{\|y\|}{\|Ty\|}$. By Lemma 2.2 we have

$$\begin{aligned} \left\| \frac{x}{\|Tx\|} + \frac{y}{\|Ty\|} \right\| &\leq \frac{\|x\|}{\|Tx\|} + \frac{\|y\|}{\|Ty\|} + (\left\| \frac{x}{\|x\|} + \frac{y}{\|y\|} \right\| - 2) \min\left\{ \frac{\|x\|}{\|Tx\|}, \frac{\|y\|}{\|Ty\|} \right\} \\ &\leq \frac{\|y\|}{\|Ty\|} + (\sqrt{2} \frac{1+\delta}{1-\delta} - 1) \frac{\|x\|}{\|Tx\|} \\ &\leq \frac{1}{[T]} + (\sqrt{2} \frac{1+\delta}{1-\delta} - 1) \frac{1}{[T]} \\ &= \sqrt{2} \frac{1+\delta}{1-\delta} \frac{1}{[T]}. \end{aligned}$$

So that $\gamma_0 \geq \frac{\sqrt{2}}{\sqrt{2} \frac{1+\delta}{1-\delta} \frac{1}{[T]}} = \frac{1-\delta}{1+\delta}[T]$.

Similarly we get $\gamma_0 \leq \frac{1+\delta}{1-\delta} \|T\|$. Thus $\gamma_0 \in \left[\frac{1-\delta}{1+\delta}[T], \frac{1+\delta}{1-\delta} \|T\| \right]$. Our hypothesis implies that

$$\frac{1-\varepsilon}{1+\varepsilon} \gamma_0 \|z\| \leq \|Tz\| \leq \frac{1+\varepsilon}{1-\varepsilon} \gamma_0 \|z\| \quad (z \in \mathcal{X})$$

or equivalently,

$$\left| \|Tz\| - \gamma_0 \|z\| \right| \leq \varepsilon (\|Tz\| + \gamma_0 \|z\|) \quad (z \in \mathcal{X})$$

Putting $\|Ty\|x + \|Tx\|y$ instead of z in the above inequality we get

$$\begin{aligned} & \left| \left\| \|Ty\|Tx + \|Tx\|Ty \right\| - \frac{\sqrt{2}}{\left\| \frac{x}{\|Tx\|} + \frac{y}{\|Ty\|} \right\|} \right\| \|Ty\|x + \|Tx\|y \right| \\ & \leq \varepsilon \left(\left\| \|Ty\|Tx + \|Tx\|Ty \right\| + \frac{\sqrt{2}}{\left\| \frac{x}{\|Tx\|} + \frac{y}{\|Ty\|} \right\|} \right) \|Ty\|x + \|Tx\|y \right). \end{aligned}$$

Thus

$$\left| \left\| \|Ty\|Tx + \|Tx\|Ty \right\| - \sqrt{2}\|Tx\|\|Ty\| \right| \leq \varepsilon \left(\left\| \|Ty\|Tx + \|Tx\|Ty \right\| + \sqrt{2}\|Tx\|\|Ty\| \right),$$

whence $Tx \overset{\varepsilon}{\perp}_W Ty$. \square

Lemma 2.4. *Let $\delta, \varepsilon \in [0, 1)$. If a nonzero bounded linear mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$ satisfies $\frac{1+\delta}{1-\delta}\|Tz\|\|u\| \leq \frac{1+\varepsilon}{1-\varepsilon}\|Tu\|\|z\|$ for all $z, u \in \mathcal{X}$, then*

$$x \overset{\delta}{\perp}_W y \implies Tx \overset{\varepsilon}{\perp}_W Ty \quad (x, y \in \mathcal{X}).$$

Proof. By our assumption we have, $\frac{1+\delta}{1-\delta}\|Tz\| \leq \frac{1+\varepsilon}{1-\varepsilon}\|Tu\|$ for all z, u with $\|z\| = \|u\| = 1$.

Passing to the infimum over $\|u\| = 1$, we get

$$\frac{1+\delta}{1-\delta}\|Tz\| \leq \frac{1+\varepsilon}{1-\varepsilon}[T] \quad (\|z\| = 1),$$

and passing to the supremum over $\|z\| = 1$ we obtain

$$\frac{1+\delta}{1-\delta}\|T\| \leq \frac{1+\varepsilon}{1-\varepsilon}[T].$$

Now, let $\gamma \in \left[\frac{1-\delta}{1+\delta}[T], \frac{1+\delta}{1-\delta}\|T\| \right]$ and $x \in \mathcal{X}$. Therefore we have

$$\begin{aligned} \frac{1-\varepsilon}{1+\varepsilon}\gamma\|x\| & \leq \frac{1-\varepsilon}{1+\varepsilon} \times \frac{1+\delta}{1-\delta}\|T\|\|x\| \\ & \leq \frac{1-\varepsilon}{1+\varepsilon} \times \frac{1+\delta}{1-\delta} \times \frac{1+\varepsilon}{1-\varepsilon} \times \frac{1-\delta}{1+\delta}[T]\|x\| \\ & \leq \|Tx\| \\ & \leq \|T\|\|x\| \\ & \leq \frac{1+\varepsilon}{1-\varepsilon} \times \frac{1-\delta}{1+\delta}[T]\|x\| \\ & \leq \frac{1+\varepsilon}{1-\varepsilon} \times \frac{1-\delta}{1+\delta} \times \frac{1+\delta}{1-\delta}\gamma\|x\| \\ & = \frac{1+\varepsilon}{1-\varepsilon}\gamma\|x\|. \end{aligned}$$

Thus

$$\frac{1-\varepsilon}{1+\varepsilon}\gamma\|x\| \leq \|Tx\| \leq \frac{1+\varepsilon}{1-\varepsilon}\gamma\|x\|$$

Making a use of Lemma 2.3 just completes the proof. \square

We are now in position to establish the main result. Following [13], we say that a linear mapping $U : \mathcal{X} \rightarrow \mathcal{Y}$ is an approximate linear isometry if

$$(1 - \varphi_1(\varepsilon))\|z\| \leq \|Uz\| \leq (1 + \varphi_2(\varepsilon))\|z\| \quad (z \in \mathcal{X}),$$

where $\varphi_1(\varepsilon) \rightarrow 0$ and $\varphi_2(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Notice that if $\varphi_1(\varepsilon) = \varphi_2(\varepsilon) = 0$, then U is an isometry.

A linear mapping $U : \mathcal{X} \rightarrow \mathcal{Y}$ is said to be an approximate similarity if it is a non-zero-scalar multiple of an approximate linear isometry, or equivalently it satisfies

$$\lambda(1 - \varphi_1(\varepsilon))\|w\| \leq \|Uw\| \leq \lambda(1 + \varphi_2(\varepsilon))\|w\|$$

for some unitary U , some $\lambda > 0$ and for all $w \in \mathcal{X}$, where $\varphi_1(\varepsilon) \rightarrow 0$ and $\varphi_2(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Theorem 2.5. *Let $U : \mathcal{X} \rightarrow \mathcal{Y}$ be an approximate linear similarity and $\delta \in [0, 1)$. If a nonzero bounded linear mapping $T : \mathcal{X} \rightarrow \mathcal{Y}$ satisfies $\|T - U\| \leq \varepsilon\|U\|$, then*

$$x^\delta \perp_W y \implies Tx^\theta \perp_W Ty \quad (x, y \in \mathcal{X}),$$

where $\theta = \frac{2\delta+2\varepsilon+(1-\delta)\varphi_1(\varepsilon)+(1+\delta+2\varepsilon)\varphi_2(\varepsilon)}{2+2\delta\varepsilon-(1-\delta)\varphi_1(\varepsilon)+(1+\delta+2\delta\varepsilon)\varphi_2(\varepsilon)}$.

Proof. For any $w \in \mathcal{X}$ we have

$$\left| \|Tw\| - \|Uw\| \right| \leq \|Tw - Uw\| \leq \|T - U\| \|w\| \leq \varepsilon\|U\| \|w\| \leq \varepsilon\lambda(1 + \varphi_2(\varepsilon))\|w\|,$$

whence

$$-\varepsilon\lambda(1 + \varphi_2(\varepsilon))\|w\| \leq \|Tw\| - \|Uw\| \leq \varepsilon\lambda(1 + \varphi_2(\varepsilon))\|w\|.$$

Since

$$\lambda(1 - \varphi_1(\varepsilon))\|w\| \leq \|Uw\| \leq \lambda(1 + \varphi_2(\varepsilon))\|w\|,$$

therefore we get

$$\lambda \left[(1 - \varphi_1(\varepsilon)) - \varepsilon(1 + \varphi_2(\varepsilon)) \right] \|w\| \leq \|Tw\| \leq \lambda(1 + \varepsilon)(1 + \varphi_2(\varepsilon))\|w\|.$$

Thus for any $z, u \in \mathcal{X}$, we have

$$\begin{aligned} \frac{1+\delta}{1-\delta} \|Tz\| \|u\| &\leq \frac{1+\delta}{1-\delta} \lambda(1 + \varepsilon)(1 + \varphi_2(\varepsilon))\|z\| \frac{\|Tu\|}{\lambda \left[(1 - \varphi_1(\varepsilon)) - \varepsilon(1 + \varphi_2(\varepsilon)) \right]} \\ &= \frac{(1 + \varepsilon)(1 + \varphi_2(\varepsilon))(1 + \delta)}{[(1 - \varphi_1(\varepsilon)) - \varepsilon(1 + \varphi_2(\varepsilon))](1 - \delta)} \|Tu\| \|z\| \\ &= \frac{1 + \frac{2\delta+2\varepsilon+(1-\delta)\varphi_1(\varepsilon)+(1+\delta+2\varepsilon)\varphi_2(\varepsilon)}{2+2\delta\varepsilon-(1-\delta)\varphi_1(\varepsilon)+(1+\delta+2\delta\varepsilon)\varphi_2(\varepsilon)}}{1 - \frac{2\delta+2\varepsilon+(1-\delta)\varphi_1(\varepsilon)+(1+\delta+2\varepsilon)\varphi_2(\varepsilon)}{2+2\delta\varepsilon-(1-\delta)\varphi_1(\varepsilon)+(1+\delta+2\delta\varepsilon)\varphi_2(\varepsilon)}} \|Tu\| \|z\| \\ &= \frac{1 + \theta}{1 - \theta} \|Tu\| \|z\|. \end{aligned}$$

Therefore $\frac{1+\delta}{1-\delta} \|Tz\| \|u\| \leq \frac{1+\theta}{1-\theta} \|Tu\| \|z\|$. Now the assertion follows from Lemma 2.4. \square

As a consequence, with $\varepsilon = 0$ and $T = U$, we have

Corollary 2.6. *Let $T : \mathcal{X} \rightarrow \mathcal{Y}$ be an approximate linear similarity. Then*

$$x^\delta \perp_W y \implies Tx^\theta \perp_W Ty \quad (x, y \in \mathcal{X})$$

for any $\delta \in [0, 1)$, where $\theta = \frac{2\delta+(1-\delta)\varphi_1(\varepsilon)+(1+\delta)\varphi_2(\varepsilon)}{2-(1-\delta)\varphi_1(\varepsilon)+(1+\delta)\varphi_2(\varepsilon)}$.

Acknowledgement. The author would like to thank his PhD supervisor, Prof. M. S. Moslehian, for his useful comments improving the paper.

REFERENCES

1. C. Alsina, J. Sikorska and M. Santos Tomás, *Norm Derivatives and Characterizations of Inner Product Spaces*, World Scientific, Hackensack, NJ, 2009.
2. D. Amir, *Characterization of Inner Product Spaces*, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1986.
3. G. Birkhoff, *Orthogonality in linear metric spaces*, Duke Math. J. **1** (1935), 169–172.
4. A. Blanco and A. Turnšek, *On maps that preserves orthogonality in normed spaces*, Proc. Roy. Soc. Edinburgh Sect. A **136** (2006), 709–716.
5. J. Chmieliński and P. Wójcik, *Isosceles-orthogonality preserving property and its stability*, Nonlinear Anal. **72** (2010), 1445–1453.
6. J. Chmieliński, *Remarks on orthogonality preserving mappings in normed spaces and some stability problems*, Banach J. Math. Anal. **Bold** (2007), no. 1, 117–124.
7. J. Chmieliński and P. Wójcik, *On a ρ -orthogonality*, Aequationes Math. **80** (2010), 45–55.
8. F. Dadipour, M. S. Moslehian, J. M. Rassias and S.-E. Takahasi, *Characterization of a generalized triangle inequality in normed spaces*, Nonlinear Anal-TMA **75** (2012), no. 2, 735–741.
9. R. C. James, *Orthogonality in normed linear spaces*, Duke Math. J. **12** (1945), 291–301.
10. D. Koldobsky, *Operators preserving orthogonality are isometries*, Proc. Roy. Soc. Edinburgh Sect. A **123** (1993), 835–837.
11. L. Maligranda, *Simple norm inequalities*, Amer. Math. Monthly **113** (2006), 256–260.
12. P. M. Miličić, *Sur la G-orthogonalité dans les espaces normés*, Math. Vesnik. **39** (1987), 325–334.
13. B. Mojškerc and A. Turnšek, *Mappings approximately preserving orthogonality in normed spaces*, Nonlinear Anal. **73** (2010), 3821–3831.
14. M. Mirzavaziri and M. S. Moslehian, *Orthogonal constant mappings in isosceles orthogonal spaces*, Kragujevac J. Math. **29** (2006), 133–140.
15. B. D. Roberts, *On the geometry of abstract vector spaces*, Tôhoku Math. J. **39** (1934), 42–59.
16. P. Wójcik, *Linear mappings preserving ρ -orthogonality*, J. Math. Anal. Appl. **386** (2012), 171–176.
17. A. Zamani and M.S. Moslehian, *Approximate Roberts orthogonality*, Aequat. Math. **89** (2015), 529–541.

DEPARTMENT OF PURE MATHEMATICS, CENTER OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES (CEAAS), FERDOWSI UNIVERSITY OF MASHHAD, P.O. BOX 1159, MASHHAD 91775, IRAN.

E-mail address: zamani.ali85@yahoo.com.