1 review

Converting reps from linear operators to matrices.

If $g \in G$ for a group G and $|i\rangle$ is a complete orthonormal basis for the space in which D(g) acts as a linear operators, then by inserting a complete set of states using

$$1 = \sum_{j} |j\rangle \langle j|D(g)|i\rangle \equiv \sum_{j} |j\rangle [D(g)]_{ji}$$
 (1)

we get the connection between the linear operator and matrix forms of a representation. Here $D^{(\mu)}$ is a representation matrix for the irreducible representation μ of dimension n_{μ} , n_{G} is the order of the group, g stands for the group elements, and the hermitian conjugate D^{\dagger} of a matrix D is obtained by transposing the rows and columns and replacing each element of the matrix by its complex conjugate. Character Theorems

Traces χ of the representation matrices satisfy the orthonormality and completeness relations

$$\sum_{i} \frac{n_i}{n_G} \chi_{\mu}^*(i) \chi^{\nu}(i) = \delta_{\mu}^{\nu} \tag{2}$$

$$\frac{n_i}{n_G} \sum_{\mu} \chi^{\mu}(i) \chi^{*j}_{\mu}(i) = \delta^j_i \tag{3}$$

A representation of a finite group is irreducible only if

$$\sum_{i} n_i |\chi_i|^2 = n_G \tag{4}$$

The number of times a_{ν} the the irrep ν occurs in this reduction is

$$a_{\nu} = \sum_{i} \frac{n_i}{n_G} \chi_{\nu}^*(i) \chi(i) \tag{5}$$

2 Exercise 15

Consider the representation $\gamma^{(4)}$. We have $n_1=1, n_2=2$, and $n_3=3$. The above is true because these are the sizes of the three conjugacy classes. We have $\chi_1(1)=1, \chi_1(2)=1, \chi_1(3)=1$. The above values are just the traces of $\gamma^{(1)}$ for each of the three conjugacy classes. We have $\chi_2(1)=1, \chi_2(2)=1, \chi_2(3)=-1$. The above values are the traces of $\gamma^{(2)}$ for each of the three conjugacy classes. We have $\chi_3(1)=2, \chi_3(2)=-1, \chi_3(3)=0$. The above values are the traces of $\gamma^{(3)}$ on each of the three conjugacy classes. We have $\chi(1)=3, \chi(2)=0, \chi(3)=1$, where $\chi=\chi^{(4)}$. These are the values of $\chi^{(4)}$ on each of the conjugacy classes.

$$a_1 = \frac{1}{6}[(1)(1)(3) + (2)(1)(0) + (3)(1)(1)] = 1,$$

$$a_2 = \frac{1}{6}[(1)(1)(3) + (2)(1)(0) + (3)(-1)(1)] = 0,$$

$$a_3 = \frac{1}{6}[(1)(2)(3) + (2)(-1)(0) + (3)(0)(1)] = 1,$$

Thus the content is the sum of $\gamma^{(1)}$ and $\gamma^{(3)}$ since $a_2 = 0$.