Multivariate Normal

Yingbo Li

Clemson University

MATH 9810

Reading Comprehesion Example

Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

- $Y_{i,1}$: pre-instructional score for student i
- $Y_{i,2}$: post-instructional scorefor student i
- vector of observations for each student $\mathbf{Y}_i = (Y_{i,1}, Y_{i,2})'$

Questions:

- Do students improve in reading comprehesion on average?
- If so, by how much?
- Can we predict post-test score from pre-test score?

NOTE: CANNOT CLAIM THAT METHOD CAUSED ANY CHANGES BECAUSE NO CONTROL GROUP.

Scatter Plot

Bivariate Normal Model

Model the data as bivariate normal, $\mathbf{Y}_i \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

- $m{\phi}$ $m{\mu}=(\mu_1,\mu_2)'$ where $\mu_1=E(Y_1)$ and $\mu_2=E(Y_2)$
- Covariance matrix:

$$oldsymbol{\Sigma} = \left(egin{array}{cc} \sigma_1^2 & \sigma_{12} \ \sigma_{21} & \sigma_2^2 \end{array}
ight)$$

where $\sigma_1^2=Var(Y_1)$, $\sigma_2^2=Var(Y_2)$, and σ_{12} is the covariance between Y_1 and Y_2 , i.e., $\sigma_{21}=\sigma_{12}=E[(Y_1-\mu_1)(Y_2-\mu_2)]$

• Correlation between Y_1 and Y_2 is $\rho = \frac{\sigma_{12}}{\sigma_1 \sigma_2}$

Correlations: -0.5 (left) , 0 (middle), 0.5 (right)

General Form of Multivariate Normal

For $p \geq 2$ dimensions, we write $\mathbf{Y}_i \sim \mathsf{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- $m{\mu}=E(\mathbf{Y})$ is p dimensional vector of $E(Y_j)$ for $j=1,\dots,p$
- $\Sigma = Cov(\mathbf{Y}) = E[(\mathbf{Y} \boldsymbol{\mu})(\mathbf{Y} \boldsymbol{\mu})']$ is a $p \times p$ matrix with diagonal elements equal to the variances of Y_j and off-diagonal elements equal to the covariances $E((Y_j \mu_j)(Y_k \mu_k))$
- Σ has to be a positive definite matrix, i.e., for any $\mathbf{x} \neq 0$ in \mathbb{R}^p , $\mathbf{x}' \Sigma \mathbf{x} > 0$.

PDF of Multivariate Normal $\mathbf{Y} \sim \mathsf{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

ullet Using Σ , the pdf is

$$p(\mathbf{Y}) = (2\pi)^{-p/2} |\mathbf{\Sigma}|^{-1/2} \exp(-\frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu})).$$

ullet Or, letting $oldsymbol{\Phi} = oldsymbol{\Sigma}^{-1}$ be the precision matrix, we have

$$p(\mathbf{Y}) = (2\pi)^{-p/2} |\mathbf{\Phi}|^{1/2} \exp(-\frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})' \mathbf{\Phi} (\mathbf{Y} - \boldsymbol{\mu}))$$

Suppose A is a $q \times p$ matrix, then

$$\mathbf{Y} \sim \mathsf{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Longrightarrow \mathbf{A} \mathbf{Y} \sim \mathsf{N}_q(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}')$$

Yingbo Li (Clemson)

Semi-conjugate Prior Distribution

Need prior distributions on μ and Σ

- Semi-conjugate prior for μ is $N_p(\mu_0, \Lambda_0)$, where Λ_0 is a $p \times p$ positive definite matrix.
- \bullet Semi-conjugate prior for Φ is the Wishart distribution, a generalization of the Gamma distribution to higher dimensions.
- Semi-conjugate specification requires MCMC simulation (Gibbs sampler) for posterior inference

Wishart Distribution

• Suppose \mathbf{X}_i is a $p \times 1$ vector of random variables such that $\mathbf{X}_i \sim \mathsf{N}_p(\mathbf{0}, \mathbf{\Lambda})$. Let

$$\mathbf{X} = [\mathbf{X}_1', \dots, \mathbf{X}_n']'$$

be n iid samples from this distribution, i.e., the i-th row of \mathbf{X} is \mathbf{X}'_i .

Then the sum of squares

$$\mathbf{S} = \mathbf{X}'\mathbf{X} = \sum_{i=1}^{n} \mathbf{X}_i \mathbf{X}_i' \sim \mathsf{Wishart}_p(n, \mathbf{\Lambda}),$$

with pdf

$$p(\mathbf{S}) = \frac{1}{C} |\mathbf{S}|^{\frac{n-p-1}{2}} \exp(-\frac{1}{2} \mathsf{tr}(\mathbf{S}\boldsymbol{\Lambda}^{-1}))$$

where
$$C = 2^{np/2} \pi^{p(p-1)/4} \prod_{j=1}^p \Gamma(n/2 + (1-j)/2) |\mathbf{\Lambda}|^{n/2}$$

- ullet n is the degrees of freedom, and $oldsymbol{\Lambda}$ is the scale parameter.
- If $S \sim \mathsf{Wishart}_p(n, \Lambda)$, then $E(S) = n\Lambda$
- When p = 1, this is just a Gamma distribution

Yingbo Li (Clemson) Multivariate Normal MATH 9810 8 / 15

Inverse Wishart

- Let ${\bf Z}$ be a random variable such that ${\bf Z}^{-1} \sim {\sf Wishart}_p(n, {\bf \Psi}^{-1})$. Then, ${\bf Z} \sim {\sf inverse} \ {\sf Wishart}_p(n, {\bf \Psi}^{-1})$
- If $\mathbf{Z} \sim \text{inverse Wishart}_p(n, \mathbf{\Psi}^{-1})$ then
 - $E(\mathbf{Z}^{-1}) = n\mathbf{\Psi}^{-1}$ $E(\mathbf{Z}) = \frac{1}{n-n-1}\mathbf{\Psi}$
- Some people write distribution slightly differently: they use Ψ instead of Ψ^{-1} . As long as you correctly interpret scale parameter, you get same answers.

Back to Priors for Φ and Σ

- Assume $\Phi \sim \mathsf{Wishart}_p(\nu_0, \mathbf{S}_0^{-1})$ or equivalently $\Sigma \sim \mathsf{inverse} \ \mathsf{Wishart}_p(\nu_0, \mathbf{S}_0^{-1})$, so that
 - $E[\mathbf{\Phi}] = \nu_0 \mathbf{S}_0^{-1}$ $E[\mathbf{\Sigma}] = \frac{1}{\nu_0 \nu 1} \mathbf{S}_0$
- Setting hyperparameters for priors
 - Determine your prior best guess (i.e., prior mean) of Σ , say Σ_0 . Set $S_0 = (\nu_0 p 1)\Sigma_0$.
 - ▶ Choose $\nu_0=p+2$ for vague prior beliefs that Σ is centered around \mathbf{S}_0
 - lacktriangle Choose u_0 large for stronger prior beliefs that $oldsymbol{\Sigma} pprox \mathbf{S}_0$
 - ▶ Note that $\nu_0 > p+1$ for proper prior

Default Prior Distribution

• An improper, default prior distribution is the Jeffrey's prior,

$$p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \propto |\boldsymbol{\Sigma}|^{-(p+1)/2}$$

• This results in posterior distributions that are computed without the need for MCMC. Let sample cross-products matrix be $\mathbf{S} = \sum_{i=1}^{n} (\mathbf{Y}_i - \bar{\mathbf{Y}})(\mathbf{Y}_i - \bar{\mathbf{Y}})'.$ Then,

$$oldsymbol{\Sigma} \mid \mathbf{Y} \sim \text{inverse Wishart}_p(n-1, \mathbf{S}^{-1})$$

 $oldsymbol{\mu} \mid oldsymbol{\Sigma}, \mathbf{Y} \sim \mathsf{N}_p(\mathbf{\bar{Y}}, \mathbf{\Sigma}/n)$

 In general, be careful with noninformative priors in high dimensions, because they can easily lead to improper posterior distributions.

◆ロト ◆個ト ◆ 園 ト ◆ 園 ト り Q (*)

Prior Distribution for $\mu \sim \mathsf{N}_p(\mu_0, \Lambda_0)$

- Both tests designed to have a mean of 50. Bivariate normal prior makes sense, since we expect values of μ to be decreasingly plausible as we move away from 50.
- Set $\mu_0 = (50, 50)'$.
- Suppose we a priori believe that true means are not likely to be less than 25 or more than 75. To reflect this belief, we set Λ_0 so that there is small chance of being outside that range. For any one test, $50 \pm 2\lambda_0 = (25,75)$ implies $\lambda_0^2 = (25/2)^2 \approx 156$.
- Suppose we think the tests are measuring similar concepts, so we make a reasonably strong prior correlation between average test scores of .50.

As a result, we have a prior distribution for μ :

$$\mu \sim N_2 \left(\left(\begin{array}{c} 50\\ 50 \end{array} \right), \left(\begin{array}{cc} 156 & 78\\ 78 & 156 \end{array} \right) \right)$$

Yingbo Li (Clemson) Multivariate Normal MATH 9810 12 / 15

Priors for Φ (or Σ)

- Because individual scores constrained to [0, 100], we set prior for Σ such that values outside that range are unlikely. For any test $50 \pm 2\sigma_0 = (0, 100)$ implies $\sigma_0^2 = (50/2)^2 = 625$.
- Assume prior correlation between individual's test scores of .50.
- Vague beliefs about Σ : set $\nu_0 = p + 2 = 4$
- ullet Hence, we have $oldsymbol{\Phi} \sim \mathsf{Wishart}_2(4, \mathbf{S}_0^{-1})$,

$$\Phi \sim \mathsf{Wishart}_2 \left(4, \left(egin{array}{cc} 625 & 312.5 \\ 312.5 & 625 \end{array}
ight)^{-1}
ight)$$

ullet Equivalently, $p(oldsymbol{\Sigma})$ is inverse-Wishart $_2$ using $u_0=4$ and the same ${f S}_0^{-1}$

4□▶ 4□▶ 4 = ▶ 4 = ▶ 9 < ○</p>

Full Conditionals

For Gibbs sampler, we need full conditional distributions

$$\begin{split} & \boldsymbol{\mu} \mid \boldsymbol{\Phi}, \mathbf{Y} \sim \mathsf{N}_p((\boldsymbol{\Lambda}_0^{-1} + n\boldsymbol{\Phi})^{-1}(n\boldsymbol{\Phi}\bar{\mathbf{Y}} + \boldsymbol{\Lambda}_0^{-1}\boldsymbol{\mu}_0), (\boldsymbol{\Lambda}_0^{-1} + n\boldsymbol{\Phi})^{-1}) \\ & \boldsymbol{\Phi} \mid \boldsymbol{\mu}, \mathbf{Y} \sim \mathsf{Wishart}_p(n + \nu_0, (\mathbf{S}_0 + \sum_i (\mathbf{Y}_i - \boldsymbol{\mu})(\mathbf{Y}_i - \boldsymbol{\mu})')^{-1}) \end{split}$$

Equivalently,

$$\mathbf{\Sigma} \mid \boldsymbol{\mu}, \mathbf{Y} \sim \mathsf{inverse-Wishart}_p(n + \nu_0, (\mathbf{S}_0 + \sum_i (\mathbf{Y}_i - \boldsymbol{\mu})(\mathbf{Y}_i - \boldsymbol{\mu})')^{-1})$$

We'll do the Gibbs sampler and posterior inference in class.

Answering Questions of Interest

Questions:

- Do students improve in reading comprehesion on average?
 - Want $Pr(\mu_2 > \mu_1 \mid \mathbf{Y})$.
- If so, by how much?
 - Want posterior inference for $\mu_2 \mu_1$.
- Can we predict post-test score from pre-test score?
 - Best approach is regression (Ch. 9). Related is inference for σ_{12} , e.g., $Pr(\sigma_{12} > 0 \mid \mathbf{Y})$