Openshift Container Platform

Workshop OCP Technical Overview

By: Oren Oichman

Title: Senior Solution Architect

Email: ooichman@redhat.com

IRC: two_oes/ooichman

Openshift Architecture

Openshift Development CONFIDENTIAL designator

^{*}Coming soon

Architecture **CONFIDENTIAL** designator

Openshift Container engine

supports any OCI compatible runtime.

Kubernetes primary node agent

makes sure that containers are running in a Pod.

V0000000

Source:

CRI-O Support in OpenShift

CRI-O tracks and versions identical to Kubernetes, simplifying support permutations

CRI-0 1.18 OpenShift 4.5 Kubernetes 1.18 OpenShift 4.6 CRI-0 1.19 Kubernetes 1.19 CRI-0 1.20 Kubernetes 1.20 OpenShift 4.7

Containers

A container is the smallest compute unit

Containers

Containers are created from container images

Containers

Container images are stored in an image registry

Containers

an image repository contains all versions of an image in the image registry

Pods

The smallest compute unit that can be defined, deployed, and managed.

Rough equivalent of a machine instance (physical or virtual) to a container.

Pods provide CPU, memory, network and storage to a container

10.140.4.44

apiVersion: v1
kind: Pod
metadata:
 name: example
 labels:
 env: test
spec:
 containers:
 - name: containerone
 image: example-image
 - name: containertwo

Configmaps

Allow you to decouple configuration artifacts from image content.

Secrets

Provide a mechanism to hold sensitive information such as passwords

Deployments and DeploymentConfigurations

Define how to roll out new versions of Pods

Each time a deployment is triggered, whether manually or automatically, a deployer Pod manages the deployment

Daemonset

Ensures that all (or some) nodes run a copy of a pod

Use cases:

- Cluster storage daemon
- Logs collection daemon (fluentd)
- Node monitoring daemon (node-exporter)
- Network daemon (dns, sdn,ovs)

Statefulset

Manages the deployment and scaling of a set of Pods, and provides guarantees about the ordering and uniqueness of these Pods.

Used to manage stateful applications

```
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: web
spec:
  Selector:
    matchLabels:
      app: example
  serviceName: "nginx"
  replicas: 3
  template:
    metadata:
      labels:
        app: example
    Spec:
terminationGracePeriodSeconds: 10
      Containers: ...
```

Liveness and Readiness

A Liveness checks determines if the container in which it is scheduled is still running.

A Readiness check determines if the container in which it is scheduled is ready to service requests.

Projects

A project allows a community of users to organize and manage their content in isolation from other communities.

Projects starting with openshift- and kube-host cluster components that run as Pods and other infrastructure components.

Networking

Openshift Networking

Services provide internal load-balancing and service discovery across pods

Routes make services accessible to clients outside the environment via real-world urls

Networking

Openshift Networking

Networking CONFIDENTIAL designator

Openshift SDN

Begin Exercise 3

