Package 'geohabnet'

December 22, 2023

Title Analysis of Cropland Connectivity

Version 1.0.1 **Date** 2023-10-29

Description Geographical spatial analysis of cropland connectivity.

Allows users to visualize risk index plots for a given set of crops.

The functions are developed as an extension to analy-

sis from Xing et al (2021) <doi:10.1093/biosci/biaa067>.

The primary function is sean() and is indicative of how sensitive the risk analysis is to parameters using kernel models.

The Package currently supports crops sourced from Monfreda, C., N. Ramankutty, and J. A. Foley (2008) <doi:10.1029/2007gb002947> ``Farming the planet: 2. Geographic distribu-

tion of crop areas, yields, physiological types, and net primary produc-

tion in the year 2000, Global Biogeochem. Cycles, 22, GB1022" and

International Food Policy Research Insti-

tute (2019) <doi:10.7910/DVN/PRFF8V> ``Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 2.0, Harvard Dataverse, V4".

This analysis produces 3 maps - mean, variance, and difference for the crop risk index. It applies distance functions and graph operations on a network to calculate risk index.

There are multiple ways in which functions can be used -

generate final outcome and then the intermediate outcomes for more sophisticated use cases. Refer to vignettes.

sean() will set some global variables which can be accessed using \$ prefix. These values are propagated to other functions for performing operations such as distance matrix calculation.

parameters.yaml stores the parameters and values and can be accessed us-

ing get_parameters(). Refer it's usage.

The objective of this package is to support risk analysis using cropland connectivity on 10 parameters -

host crops, density threshold, aggregation and distance method, resolution, geographic extent, link threshold, kernel models, network metrics and maps.

These parameters serves as an input and are used different phases of analysis workflow.

License GPL-3
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports config (>= 0.3.1),
 geodata (>= 0.5.8),
 geosphere (>= 1.5.18),
 igraph (>= 1.4.2),

2 R topics documented:

```
terra (>= 1.7.29),
     easycsv (>= 1.0.8),
     yam1 (>= 2.3.7),
     stats,
     stringr (>= 1.5.0),
     memoise (>= 2.0.1),
     graphics,
     rlang (>= 1.1.1),
     viridisLite (>= 0.4.2),
     beepr (>= 1.3),
     rnaturalearth (>= 0.3.3),
     tools,
     methods
Suggests devtools,
     knitr,
     lintr (>= 3.0.2),
     mockthat (>= 0.2.8),
     pkgdown,
     rmarkdown,
     testthat (>= 3.1.7)
URL https://garrettlab.github.io/CroplandConnectivity/,
     https://CRAN.R-project.org/package=geohabnet/,
     https://github.com/GarrettLab/CroplandConnectivity/tree/main/geohabnet/,
     https://www.garrettlab.com/
BugReports https://github.com/GarrettLab/CroplandConnectivity/issues
VignetteBuilder knitr
```

R topics documented:

ccri_diff	3
ccri_mean	4
ccri_variance	4
connectivity	5
cropharvest_rast	7
crops_rast	7
dist_methods	8
GeoModel-class	8
GeoNetwork-class	8
GeoRasters-class	9
geoscale_param	9
get_parameters	9
get_param_metrics	10
get_rasters	11
get_supported_sources	11
GlobalRast-class	12
global_scales	12
Gmap-class	13
gplot	13
load parameters	14

ccri_diff 3

ccri_diff

Calculate difference map

Description

This function produces a map of difference b/w mean and sum indexes in rank of cropland harvested area fraction.

Usage

```
ccri_diff(x, y, global, geoscale, res = reso(), outdir = tempdir())
```

Arguments

x	SpatRaster.
У	SpatRaster.
global	Logical. TRUE if global analysis is required, FALSE otherwise. east and west are required when TRUE.
geoscale	Numeric vector. x will be cropped to this extent.
res	Numeric. Map resolution. This value is used in aggregation and dis-aggregation operation. Default is reso().
outdir	Character. Output directory for saving raster in TIFF format. Default is tempdir().
rast	SpatRaster. A template raster to hold the cell-wise difference

Details

Ideally, the function is tested to yield desired results when length(which(y[] > 0)) > length(which(x[] > 0)).

Value

RiskMap. Contains result in the form of SpatRaster objects and file path of the saved maps.

4 ccri_variance

ccri_mean

Calculate mean of raster objects

Description

Wrapper for terra::mean(). Calculates mean of list of rasters.

Usage

```
ccri_mean(
  indices,
  global = FALSE,
  east = NULL,
  west = NULL,
  geoscale = NULL,
  plt = TRUE,
  outdir = tempdir()
)
```

Arguments

indices	List of SpatRasters. This input represents the spatial raster collection for which mean is to be calculated.
global	Logical. TRUE if global analysis is required, FALSE otherwise. east and west are required when TRUE.
east	SpatRaster. Collection of risk indices on eastern extent.
west	SpatRaster. Collection of risk indices on western extent. When TRUE, geoscale is ignored. Default is TRUE.
geoscale	Vector. geographical scale. Default is NULL.
plt	TRUE if need to plot mean map, FALSE otherwise.
outdir	Character. Output directory for saving raster in TIFF format. Default is tempdir().

Value

 $Risk Map.\ Contains\ result\ in\ the\ form\ of\ Spat Raster\ objects\ and\ file\ path\ of\ the\ saved\ maps.$

ccri_variance	Calculate variance of CCRI	

Description

This function produces a map of variance of CCRI based on input parameters

connectivity 5

Usage

```
ccri_variance(
  indices,
  rast,
  global,
  east = NULL,
  west = NULL,
  geoscale,
  res = reso(),
  outdir = tempdir()
)
```

Arguments

indices	SpatRaster. Collection of risk indices.
rast	SpatRaster. Template for variance output
global	Logical. TRUE if global analysis is required, FALSE otherwise. east and west are required when TRUE.
east	SpatRaster. Collection of risk indices on eastern extent.
west	SpatRaster. Collection of risk indices on western extent. When TRUE, geoscale is ignored. Default is TRUE.
geoscale	Vector. geographical scale. Default is NULL.
res	Numeric. Map resolution. This value is used in aggregation and dis-aggregation operation. Default is reso().
outdir	Character. Output directory for saving raster in TIFF format. Default is tempdir().

Value

RiskMap. Contains result in the form of SpatRaster objects and file path of the saved maps.

connectivity	Calculate and plot maps

Description

Calculate mean, variance and difference. The result is produced in form of maps plotted with predefined settings. Currently, the settings for plot cannot be customized. Default value is TRUE for all logical arguments

Usage

```
connectivity(
  host,
  indices,
  global = FALSE,
  east = NULL,
  west = NULL,
  geoscale = NULL,
  res = reso(),
```

6 connectivity

```
pmean = TRUE,
pvar = TRUE,
pdiff = TRUE,
outdir = tempdir()
)
```

Arguments

host	SpatRaster. Host density map or raster.
indices	SpatRaster. Collection of risk indices.
global	Logical. TRUE if global analysis is required, FALSE otherwise. east and west are required when TRUE.
east	SpatRaster. Collection of risk indices on eastern extent.
west	SpatRaster. Collection of risk indices on western extent. When TRUE, geoscale is ignored. Default is TRUE.
geoscale	Vector. geographical scale. Default is NULL.
res	Numeric. Map resolution. This value is used in aggregation and dis-aggregation operation. Default is reso().
pmean	Logical. TRUE if map of mean should be plotted, FALSE otherwise.
pvar	Logical. TRUE if variance map should be plotted, FALSE otherwise.
pdiff	Logical. TRUE if difference map should be plotted, FALSE otherwise.
outdir	$Character.\ Output\ directory\ for\ saving\ raster\ in\ TIFF\ format.\ Default\ is\ {\tt tempdir()}.$

Details

indexes are actually risk indices representing in the form of spatRaster resulting from operations on crop's raster and parameters provided in either parameters.yaml or sean().

It will save all the opted plots using - pmean, pvar and pdiff. File will be saved in provided value of outdir or tempdir(). If interactive() is TRUE, then plots can be seen in active plot window. E.g. Rstudio. The maps are plotted using SpatRaster object. These objects are available as a return value of this function.

Value

Gmap. See details.

References

Yanru Xing, John F Hernandez Nopsa, Kelsey F Andersen, Jorge L Andrade-Piedra, Fenton D Beed, Guy Blomme, Mónica Carvajal-Yepes, Danny L Coyne, Wilmer J Cuellar, Gregory A Forbes, Jan F Kreuze, Jürgen Kroschel, P Lava Kumar, James P Legg, Monica Parker, Elmar Schulte-Geldermann, Kalpana Sharma, Karen A Garrett, *Global Cropland .connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests*, BioScience, Volume 70, Issue 9, September 2020, Pages 744–758, doi:10.1093/biosci/biaa067

Hijmans R (2023). *terra: Spatial Data Analysis*. R package version 1.7-46, https://CRAN.R-project.org/package=terra

cropharvest_rast 7

cropharvest_rast

Get raster object for crop

Description

Get cropland information in a form of raster object from data source for crop

Usage

```
cropharvest_rast(crop_name, data_source)
```

Arguments

crop_name

Name of the crop

data_source

Data source for cropland information

Value

Raster.

Examples

```
cropharvest_rast("avocado", "monfreda")
```

crops_rast

Get sum of rasters for individual crops

Description

Takes crop names and returns raster object which is sum of raster of individual crops. Currently, only supports crops listed in geodata::monfredaCrops(), geodata::spamCrops() If crop is present in multiple sources, then their mean is calculated.

Usage

```
crops_rast(crop_names)
```

Arguments

crop_names

A named list of source along with crop names

Value

SpatRaster. Raster object which is sum of all the individual crop raster

```
crops_rast(list(monfreda = c("wheat", "barley"), mapspam = c("wheat", "potato")))
```

8 GeoNetwork-class

dist_methods

Distance methods supported

Description

Contains supported strategies to calculate distance between two points. Use of one the methods in sean() or sensitivity_analysis().

Usage

```
dist_methods()
```

Value

vector

Examples

dist_methods()

GeoModel-class

GeoModel class

Description

A ref class to represent results of dispersal models.

Fields

matrix An adjacency matrix to represent network.

GeoNetwork-class

GeoNetwork

Description

An S4 class representing a network of geographical data. This will wrap all the results from the risk analysis using sean() or sensitivity_analysis(). This class contains the field from Gmap class which has results in the form of SpatRaster and TIFF file.

Slots

rasters A list of GeoRasters objects.

GeoRasters-class 9

GeoRaster class		
-----------------	--	--

Description

A class to represent raster vis-a-vis risk indices. This class encapsulates the results of apply dispersal models and metrics.

Fields

rasters List. List of raster representing risk indices. These are of type GeoModels. global Boolean. True if contains GlobalRast object, False otherwise.

geoscale_param

Get geographical scales from the parameters

Description

This function returns a list of geographical scales set in global and custom extent in parameters.yaml. If global is TRUE, the CustomExt is ignored.

Usage

```
geoscale_param()
```

Value

Vector. A set of geographical scales

Description

Retrieves the parameters and copies the parameter file to the specified output path.

Usage

```
get_parameters(out_path = tempdir(), iwindow = FALSE)
```

Arguments

out_path character. The output path where the parameter file will be copied. Default is

temporary directory tempdir()

iwindow logical. If TRUE, prompts the user to select the output directory using a file

chooser window. Default is FALSE

10 get_param_metrics

Details

Using configuration file is an alternative to sean()

Value

character. The path to the copied parameter file.

See Also

```
set_parameters()
```

Examples

```
get_parameters()
get_parameters(out = tempdir())
```

get_param_metrics

Get metrics from parameters

Description

Get metrics and parameters stored in parameters.yaml.

Usage

```
get_param_metrics(params = load_parameters())
```

Arguments

params R object of load_

R object of load_parameters(). Default is load_parameters().

Value

List. List of metrics - parameters and values. See usage.

```
# Get metrics from parameters
get_param_metrics()
get_param_metrics(load_parameters())
```

get_rasters 11

get_rasters

Get rasters object from parameters

Description

Takes named list of hosts as an input. See host object in get_parameters() or load_parameters(). This is also a wrapper of crops_rast(). Function creates 2 raster object - one is a sum of all the crops specified under sources and other using the provided raster file. See tiff_torast()

Usage

```
get_rasters(hosts)
```

Arguments

hosts

List of hosts and values. It is synonym to Hosts object in parameters

Value

List of SpatRaster.

See Also

```
load_parameters(), get_parameters(), tiff_torast(), cropharvest_rast()
```

Examples

```
# Get default rasters
## Not run:
get_rasters(list(mapspam = c("wheat"), monfreda = c("avocado"), file = "some_raster.tif"))
## End(Not run)
```

```
get_supported_sources Get supported sources of crops
```

Description

When provided, cropharvest_rast() will look for cropland data in this specific source.

Usage

```
get_supported_sources()
```

Value

Vector of supported sources. Also used as a lookup to find get raster object.

```
# Get currently supported sources
get_supported_sources()
```

12 global_scales

GlobalRast-class

GlobalRast class

Description

A class to represent raster for global scales. Global scales are accessible using global_scales(). However, this class encapsulates the results of apply dispersal models and metrics.

Fields

east A list of raster for eastern hemisphere.

west A list of raster for western hemisphere.

global_scales

Global geographical extent

Description

See geographical extents used in global analysis. Returns eastern and western hemisphere extents. Each extent is in the form of c(Xmin, Xmax, Ymin, Ymax).

Usage

```
global_scales()
```

Details

Seperate analysis on geographical scales of eastern and western hemisphere are combined to run global analysis.

Value

List. Named list with scales for eastern and western hemisphere

See Also

```
set_global_scales()
```

Gmap-class 13

Gmap-class

Gmap class

Description

An S4 class to represent various maps. Set the slots in the Gmap object.

Usage

```
setmaps(x, me, vari, dif)
## S4 method for signature 'Gmap'
setmaps(x, me, vari, dif)
```

Arguments

x A Gmap object.

me A GeoRaster object representing mean risk index.

vari A GeoRaster object representing variance.
dif A GeoRaster object representing difference.

Value

A Gmap object.

Slots

```
me_rast SpatRaster A raster representing mean risk index.
me_out Character. A file path to the mean risk index raster.
diff_rast SpatRaster A raster representing difference.
diff_out Character. A file path to the difference raster.
var_rast Numeric. A raster representing variance.
var_out SpatRaster A file path to the variance raster.
```

gplot

Plot a Raster* object

Description

```
This is a wrapper for terra::plot()
```

Usage

```
gplot(x, ...)
```

14 load_parameters

Arguments

```
x a Raster* object
... additional arguments passed to terra::plot()
```

Value

a plot

Examples

```
r <- terra::rast(nrows=108, ncols=21, xmin=0, xmax=10)
gplot(r)
gplot(r, col = "red")
gplot(r, col = "red", breaks = 10)</pre>
```

load_parameters

Load Parameters from YAML File

Description

This function loads parameters from a YAML file and stores them in an object.

Usage

```
load_parameters(filepath = .param_fp())
```

Arguments

filepath

Path to the YAML file containing the parameters. By default, it takes the value of parameters.yaml in R user's directory.

Value

object with parameters and values

```
# Load parameters from default file
load_parameters()
```

model_powerlaw 15

model_powerlaw

Calculate risk index using inbuilt models.

Description

- model_powerlaw(): calculates risk index using power law.
- model_neg_exp(): calculates risk index using negative exponential.

Usage

```
model_powerlaw(
  beta,
  link_threshold,
  distance_matrix = the$distance_matrix,
  thresholded_crop_values,
  adj_mat = NULL,
  crop_raster,
  crop_cells_above_threshold,
 metrics = the$parameters_config$`CCRI parameters`$NetworkMetrics$InversePowerLaw
)
model_neg_exp(
  gamma_val,
  link_threshold,
  distance_matrix = the$distance_matrix,
  thresholded_crop_values,
  adj_mat = NULL,
  crop_raster,
  crop_cells_above_threshold,
 metrics = the$parameters_config$`CCRI parameters`$NetworkMetrics$InversePowerLaw
)
```

Arguments

beta A list of beta values. DispersalParameterBeta in parameters.yaml. link_threshold A threshold value for link. distance_matrix distance matrix, generated during sean(). thresholded_crop_values crop values above threshold. adj_mat Adjacency matrix(optional) representing un-directed graph network. If this is provided, then gamma_val, distance_matrix, link_threshold and thresholded_crop_values are ignored. These ignored parameters are used to generate adjacency matrix internally. This is the only way to use custom adjacency matrix. A raster object for cropland harvest. crop_raster crop_cells_above_threshold crop cells above threshold. Only contains cells and not the the values. metrics A list 2 vectors - metrics and weights. A list of beta values. DispersalParameterGamma in parameters.yaml. gamma_val

16 nn_sum

Details

Network metrics should be passed as a list of vectors e.g. list(metrics = c("betweeness"), weights = c(100)). Default values are fetched from parameters.yaml and arguments uses the same structure.

Value

risk index

nn_sum

Calculation on network matrix.

Description

These are basically an abstraction of functions under the igraph package. The functions included in this abstraction are:

- [nn_sum()]: Calculates the sum of nearest neighbors igraph::graph.knn().
- [node_strength()]: Calculates the sum of edge weights of adjacent nodes igraph::graph.strength().
- [betweeness()]: Calculates the vertex and edge betweenness based on the number of geodesics igraph::betweenness().
- [ev()]: Calculates the eigenvector centrality of positions within the network igraph::evcent().
- [closeness()]: measures how many steps is required to access every other vertex from a given vertex igraph::closeness().
- [degree()]: number of adjacent edges igraph::degree().
- [pagerank()]: page rank score for vertices igraph::page_rank().

Usage

```
nn_sum(crop_dm, we)
node_strength(crop_dm, we)
betweeness(crop_dm, we)
ev(crop_dm, we)
degree(crop_dm, we)
closeness(crop_dm, we)
pagerank(crop_dm, we)
```

Arguments

Distance matrix. In the internal workflow, the distance matrix comes is a result crop_dm of operations within sean() and risk functions.

Weight in percentage.

we

reset_params 17

Value

Matrix with the mean value based on the assigned weight.

See Also

Other metrics: supported_metrics()

reset_params

Reset parameters.yaml

Description

Resets the values in the parameters.yaml file to the default initial values.

Usage

```
reset_params()
```

Value

Logical. TRUE if function was successfully executed

Examples

```
reset_params()
```

reso

Get resolution value

Description

Resolution stored in parameter.yaml. If not present it will result default value.

Usage

reso()

Value

Numeric. Resolution from parameters.yaml. Default is 24.

See Also

```
set_reso()
```

18 sa_onrasters

RiskMap-class

RiskMap class

Description

An S4 class representing resulting maps from the specific operation type.

Fields

```
map Character. A file path to the map.
riid SpatRaster. This is one of the risk maps.
spr SpatRaster. A spatial raster representing the risk index.
```

fp Character. A file path to the risk index raster.

risk_indices

Get risk indices

Description

Get risk indices from GeoRasters object.

Usage

```
risk_indices(ri)
```

Arguments

ri

GeoRasters object

Value

List of risk indices. If the ri is global, the list will contain two elements, one for each hemisphere.

sa_onrasters

Run sensitivity analysis

Description

Same as sensitivity_analysis() but it takes raster object and other parameters as an input.

- sa_onrasters() is a wrapper around sean() function. Takes raster object and other parameters as an input.
- msean_onrast() same as sa_onrasters(). Use this for side effects + results. Produces and plots the maps for the outcomes and results are returned as an object. It produces and plots the maps for the outcomes and results are returned as an object.

sa_onrasters 19

Usage

```
sa_onrasters(
  rast,
  global = TRUE,
  geoscale,
  link_thresholds,
  host_density_thresholds,
  agg_methods = c("sum", "mean"),
  dist_method = "geodesic",
  res = reso()
)
msean_onrast(
  global = TRUE,
  geoscale = NULL,
  res = reso(),
  outdir = tempdir(),
)
```

Arguments

rast Raster object which will be used in analysis.

global Logical. TRUE if global analysis, FALSE otherwise. Default is TRUE

geoscale Numeric vector. Geographical coordinates in the form of c(Xmin, Xmax, Ymin,

Ymax)

link_thresholds

Numeric vector. link threshold values

host_density_thresholds

Numeric vector. host density threshold values

agg_methods vector. Aggregation methods

dist_method Character. One of the values from dist_methods()

res Numeric. resolution at which operations will run. Default is reso()

outdir Character. Output directory for saving raster in TIFF format. Default is tempdir().

... arguments passed to sa_onrasters()

Details

When global = TRUE, geo_scale is ignored. Instead uses scales from global_scales().

Value

A list of calculated CCRI indices after operations. An index is generated for each combination of paramters. One combination is equivalent to sean() function.

References

Yanru Xing, John F Hernandez Nopsa, Kelsey F Andersen, Jorge L Andrade-Piedra, Fenton D Beed, Guy Blomme, Mónica Carvajal-Yepes, Danny L Coyne, Wilmer J Cuellar, Gregory A Forbes, Jan F Kreuze, Jürgen Kroschel, P Lava Kumar, James P Legg, Monica Parker, Elmar Schulte-Geldermann, Kalpana Sharma, Karen A Garrett, *Global Cropland .connectivity: A Risk Factor*

20 sean

for Invasion and Saturation by Emerging Pathogens and Pests, BioScience, Volume 70, Issue 9, September 2020, Pages 744–758, doi:10.1093/biosci/biaa067

Hijmans R (2023). *terra: Spatial Data Analysis*. R package version 1.7-46, https://CRAN.R-project.org/package=terra

See Also

```
Use get_rasters() to obtain raster object.
msean_onrast()
```

Examples

```
rr <- get_rasters(list(monfreda = c("avocado")))</pre>
res1 <- sa_onrasters(rr[[1]],</pre>
            global = FALSE,
            geoscale = c(-115, -75, 5, 32),
            c(0.0001, 0.00004),
            c(0.0001, 0.00005),
            c("sum", "mean"),
            res = 24)
res2 <- sa_onrasters(rr[[1]],</pre>
            global = TRUE,
            link_{thresholds} = c(0.000001),
            host_density_thresholds = c(0.00015),
            agg_methods = c("sum"),
            res = 24)
res3 <- msean_onrast(rast = rr[[1]],</pre>
          link_{thresholds} = c(0.000001),
          host_density_thresholds = c(0.00015))
```

sean

Calculate sensitivity analysis on cropland harvested area fraction

Description

This function calculates sensitivity analysis on cropland harvested area fraction based on provided parameters. Some parameters are only accessible from parameters. yaml and uses value from here. sensitivity_analysis() is a wrapper around sean() function.

• msean() is a wrapper around sean() function. It has additional argument to specify maps which are calculated using connectivity() function. The maps are essentially the risk network.

Usage

```
sean(
  rast,
  global = TRUE,
  geoscale = NULL,
  agg_methods = c("sum", "mean"),
  dist_method = "geodesic",
  link_threshold = 0,
```

sean 21

```
host_density_threshold = 0,
  res = reso()
)

msean(..., global = TRUE, geoscale = NULL, res = reso(), outdir = tempdir())
```

Arguments

rast Raster object which will be used in analysis.

global Logical. TRUE if global analysis, FALSE otherwise. Default is TRUE

geoscale Numeric vector. Geographical coordinates in the form of c(Xmin, Xmax, Ymin,

Ymax)

agg_methods vector. Aggregation methods

dist_method Character. One of the values from dist_methods()

link_threshold Numeric. A threshold value for link

host_density_threshold

Numeric. A host density threshold value

res Numeric. resolution at which operations will run. Default is reso()

... arguments passed to sean()

outdir Character. Output directory for saving raster in TIFF format. Default is tempdir().

Details

When global = TRUE, geoscale is ignored and global_scales() is used. What makes sean() different from msean() is thier return value. The return value of msean() is GeoNetwork contains the result from applying connectivity() function on the risk indexes. Essentially, the risk maps.

Value

GeoRasters.

GeoNetwork.

References

Yanru Xing, John F Hernandez Nopsa, Kelsey F Andersen, Jorge L Andrade-Piedra, Fenton D Beed, Guy Blomme, Mónica Carvajal-Yepes, Danny L Coyne, Wilmer J Cuellar, Gregory A Forbes, Jan F Kreuze, Jürgen Kroschel, P Lava Kumar, James P Legg, Monica Parker, Elmar Schulte-Geldermann, Kalpana Sharma, Karen A Garrett, *Global Cropland .connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests*, BioScience, Volume 70, Issue 9, September 2020, Pages 744–758, doi:10.1093/biosci/biaa067

Hijmans R (2023). *terra: Spatial Data Analysis*. R package version 1.7-46, https://CRAN.R-project.org/package=terra

See Also

```
Uses connectivity()
Uses msean()
```

22 search_crop

Examples

```
avocado <- cropharvest_rast("avocado", "monfreda")

# global
ri <- sean(avocado) # returns a list of GeoRasters
mri <- msean(rast = avocado) # returns GeoNetwork object

# non-global
# geoscale is a vector of xmin, xmax, ymin, ymax

# returns GeoRasters object
ri <- sean(avocado, global = FALSE, geoscale = c(-115, -75, 5, 32))
ri

# returns GeoNetwork object
mri <- msean(rast = avocado, global = FALSE, geoscale = c(-115, -75, 5, 32))
mri</pre>
```

search_crop

Search for crop

Description

It returns the dataset sources in which crop data is available. It's a wrapper around geodata::spamCrops() and geodata::monfredaCrops()

Usage

```
search_crop(name)
```

Arguments

name

name of crop

Value

Logical. Sources iin crop data is available.

See Also

```
get_supported_sources()
```

```
search_crop("coffee")
search_crop("wheat")
search_crop("jackfruit")
```

sensitivity_analysis 23

sensitivity_analysis Calculate sensitivity analysis on parameters

Description

This function runs sensitivity analysis on parameters based on parameters provided through <code>set_parameters()</code>. If no parameters are provided, then it will run analysis on default parameters which is accessible through <code>get_parameters()</code>. It can be used as an entry point for Cropland .connectivity risk index vis-a-vis CCRI. By default, it runs analysis on global <code>scalesglobal_scales()</code>. After analysis is complete, it will suppress maps for outcomes if <code>maps = FALSE</code> or <code>interactive()</code> is <code>FALSE</code>. Thier are 2 results. The side effects are the plotted maps. The returned object is of class <code>GeoNetwork</code>. It contains risk indices with corresponding adjacency matrices along with final maps from the outcome.

Usage

```
sensitivity_analysis(maps = TRUE, alert = TRUE)
```

Arguments

maps logical. TRUE if maps are to be plotted, FALSE otherwise alert logical. TRUE if beep sound is to be played, FALSE otherwise

Value

GeoNetwork. Errors are not handled.

References

Yanru Xing, John F Hernandez Nopsa, Kelsey F Andersen, Jorge L Andrade-Piedra, Fenton D Beed, Guy Blomme, Mónica Carvajal-Yepes, Danny L Coyne, Wilmer J Cuellar, Gregory A Forbes, Jan F Kreuze, Jürgen Kroschel, P Lava Kumar, James P Legg, Monica Parker, Elmar Schulte-Geldermann, Kalpana Sharma, Karen A Garrett, *Global Cropland .connectivity: A Risk Factor for Invasion and Saturation by Emerging Pathogens and Pests*, BioScience, Volume 70, Issue 9, September 2020, Pages 744–758, doi:10.1093/biosci/biaa067

Hijmans R (2023). *terra: Spatial Data Analysis*. R package version 1.7-46, https://CRAN.R-project.org/package=terra

See Also

```
sa_onrasters() sean() global_scales() get_parameters() set_parameters() connectivity()
```

```
# Run analysis on specified parameters.yaml
ss1 <- sensitivity_analysis()
ss2 <- sensitivity_analysis(FALSE, FALSE)
ss3 <- sensitivity_analysis(TRUE, FALSE)</pre>
```

24 set_parameters

set_global_scales

Set global geographical extent

Description

Set the geographical extents used in global analysis. Each extent should be in the form of c(Xmin, Xmax, Ymin, Ymax)

Usage

```
set_global_scales(value)
```

Arguments

value

list. Named list of eastern and western hemisphere extents. See usage.

Value

List. Named list with scales for eastern and western hemisphere

See Also

```
global_scales() terra::ext()
```

Examples

```
set_global_scales(list(east = c(-24, 180, -58, 60), west = c(-140, -34, -58, 60)))
```

set_parameters

Set Parameters

Description

This function allows you to set the parameters by replacing the existing parameters file with a new one. Use get_parameters() to modify the parameter values.

Usage

```
set_parameters(new_params, iwindow = FALSE)
```

Arguments

new_params The path to the new parameters file.

iwindow Logical indicating whether to prompt the user to select the new parameters file

using a file selection window. Defaults to FALSE.

Value

None

set_reso 25

Examples

```
param_fp <- get_parameters()
set_parameters(param_fp)</pre>
```

set_reso

Set resolution value

Description

Set resolution to be used in analysis. It doesn't modify the parameters.yaml but instead a currently loaded instance of it. Must be greater than 0 and less than or equal to 48.

Usage

```
set_reso(value)
```

Arguments

value

numeric. Resolution value.

Value

Invisible TRUE

Examples

```
set_reso(24)
```

 sp_rast

raster for mapspam crop.

Description

get raster for crop in mapspam dataset

Usage

```
sp_rast(crp)
```

Arguments

crp

character. name of a crop. Case-insensitive.

Details

```
See geodata::spamCrops() for supported crops.
```

26 supported_metrics

Value

SpatRaster

References

International Food Policy Research Institute, 2020. Spatially-Disaggregated Crop Production Statistics Data in Africa South of the Sahara for 2017. <doi: 10.7910/DVN/FSSKBW>, Harvard Dataverse, V2

See Also

```
geodata::spamCrops() search_crop()
```

Examples

```
sp_rast("rice")
```

supported_metrics

Returns metrics currently supported in the analysis.

Description

Returns metrics currently supported in the analysis.

Usage

```
supported_metrics()
```

Value

vector of supported metrics.

See Also

Other metrics: nn_sum()

```
supported_metrics()
```

tiff_torast 27

tiff_torast

Get raster object from tif file

Description

This is a wrapper of terra::rast() and generates a raster object if provided with a TIF file.

Usage

```
tiff_torast(path_to_tif)
```

Arguments

```
path_to_tif TIFF file. This is an encoding of map in raster format.
```

Value

SpatRaster.

```
# Generate raster for usage
fp <- paste(tempfile(), ".tif", sep = "")
ret <- utils::download.file(
"https://geohabnet.s3.us-east-2.amazonaws.com/util-rasters/avocado_HarvestedAreaFraction.tif",
destfile = fp, method = "auto", mode = "wb")
tiff_torast(fp)</pre>
```