Exponents

worksheet

- 1. Circle all of the following that are true about 3^4 .
 - a. 3^4 is equivalent to $3 \cdot 4$.
 - b. 3^4 is equivalent to $4 \cdot 4 \cdot 4$.
 - c. 3^4 is equivalent to $3 \cdot 3 \cdot 3 \cdot 3$.
 - d. 3^4 is equivalent to $\sqrt[4]{3}$.
- 2. Select the choice that gives $2x^3 + 5x^3$ in simplest form.

$$7x^6$$

$$2x^3 + 5x^3$$

3. Match the expression on the left with an equivalent form on the right.

$$x^{2}x^{3} = x^{3}$$

$$(x^{2})^{3} = x^{3}$$

$$\frac{x^{3}}{x^{2}} = x^{5}$$

$$\frac{1}{x^{-3}} = x^{6}$$

Exponents

KEY POINTS

NOTES

Exponents

Add/subtract ex. expressions

Product rule

Quotient rule

Power rule

Quotient rule

A superscript number in the upper right of a base number. It means to multiply the base number times itself the number of times of the exponent value. Ex: $3^2 = 3 \cdot 3 = 9$.

Like terms are needed add or subtract exponential expressions. Combine coefficients and leave the variable exponential expression. Ex: $3x^2 + 2x^2 = 5x^2$.

When multiplying exponential expressions with like bases, add the exponents.

$$x^{a} \cdot x^{b} = x^{a+b}$$
.
Ex: $x^{2} \cdot x^{3} = x^{2+3} = x^{5}$

When dividing exponential expressions with like bases subtract the exponents. $\frac{x^a}{x^b} = x^{a-b}$.

Ex:
$$\frac{x^5}{x^2} = x^{5-2} = x^3$$
.

When a power is raised to a power, multiply exponents. $(x^a)^b = x^{a \cdot b}$. Ex: $(2^2)^3 = 2^6 = 64$.

When an exponential expression is divided by another with like bases, subtract their ex-

Exponents

KEY POINTS

ponents.
$$\frac{x^a}{x^b} = x^{a-b}$$
.

Ex:
$$\frac{x^4}{x^2} = x^{4-2} = x^2$$
.