Inverse Problems Variational regularisation

Clarice Poon University of Bath

February 27, 2020

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

More on the total variation functiona

The dual perspective

Variational regularisation

Let's return to Tikhonov regularisaton: The regularised solution is u_{α} :

$$(A^*A + \alpha \mathrm{Id})u_{\alpha} = A^*f_{\delta} \tag{1.1}$$

One can check (do this!) that this is the first order optimality condition of

$$\min_{u \in \mathcal{U}} \frac{1}{2} \|Au - f_{\delta}\|^2 + \frac{\alpha}{2} \|u\|^2.$$
 (1.2)

Since this is a convex optimisaton problem, (1.1) is a necessary and sufficient condition for the minimum of the functional (1.2).

- $||Au f||^2$ is called the data fidelity term.
- $\mathcal{J}(u) \stackrel{\text{def.}}{=} \frac{1}{2} \|u\|^2$ is called the regularisation term, and penalises some unwanted features of the solution (in this case, large norm).
- lacktriangledown as the regularisation parameter.

Variational regularisation

We will now study more general variational regularisers of the form

$$R_{\alpha}f_{\delta} \in \operatorname{argmin}_{u \in \mathcal{U}} \frac{1}{2} \|Au - f_{\delta}\|_{\mathcal{V}}^{2} + \alpha \mathcal{J}(u).$$
 (1.3)

where

- $A: \mathcal{U} \to \mathcal{V}$ is a bounded linear operator between a Banach spaces \mathcal{U} and a Hilbert space \mathcal{V} .
- $\mathcal{J}:\mathcal{U}\to[0,\infty].$
- $f_{\delta} \in \mathcal{V}$ satisfies $\|Au^{\dagger} f_{\delta}\|_{\mathcal{V}} \leqslant \delta$.

Let $\mathcal{J}(u) = \|Lu\|_{\mathcal{Z}}$ where $L: \mathcal{U} \to \mathcal{Z}$ is a linear (possibly unbounded) operator . Popular choices include differential operators, e.g. $L = \nabla$, $\mathcal{U} = W^{1,2}(\Omega)$, $\mathcal{Z} = L^2(\Omega)$.

Let $\mathcal{J}(u) = \|Lu\|_{\mathcal{Z}}$ where $L: \mathcal{U} \to \mathcal{Z}$ is a linear (possibly unbounded) operator . Popular choices include differential operators, e.g. $L = \nabla$, $\mathcal{U} = W^{1,2}(\Omega)$, $\mathcal{Z} = L^2(\Omega)$.

For $\mathcal{J}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2$, u is a minimizer if and only if

$$A^*Au - A^*f - \alpha\Delta u = 0,$$

with Neumann boundary condition $\nabla u \cdot \eta = 0$ on $\partial \Omega$ where η is the outward unit normal to $\partial \Omega$.

Let $\mathcal{J}(u) = \|Lu\|_{\mathcal{Z}}$ where $L: \mathcal{U} \to \mathcal{Z}$ is a linear (possibly unbounded) operator . Popular choices include differential operators, e.g. $L = \nabla$, $\mathcal{U} = W^{1,2}(\Omega)$, $\mathcal{Z} = L^2(\Omega)$.

For $\mathcal{J}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2$, u is a minimizer if and only if

$$A^*Au - A^*f - \alpha\Delta u = 0,$$

with Neumann boundary condition $\nabla u \cdot \eta = 0$ on $\partial \Omega$ where η is the outward unit normal to $\partial \Omega$.

Intuition is to encourages solutions with small gradient which best fit the observation data f, so noise is removed.

Let $\mathcal{J}(u) = \|Lu\|_{\mathcal{Z}}$ where $L: \mathcal{U} \to \mathcal{Z}$ is a linear (possibly unbounded) operator . Popular choices include differential operators, e.g. $L = \nabla$, $\mathcal{U} = W^{1,2}(\Omega)$, $\mathcal{Z} = L^2(\Omega)$.

For $\mathcal{J}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2$, u is a minimizer if and only if

$$A^*Au - A^*f - \alpha\Delta u = 0,$$

with Neumann boundary condition $\nabla u \cdot \eta = 0$ on $\partial \Omega$ where η is the outward unit normal to $\partial \Omega$.

- Intuition is to encourages solutions with small gradient which best fit the observation data *f* , so noise is removed.
- lacktriangleright For imaging applications, leads to oversmooth reconstructions as Δ has very strong isotropic smoothing properties.

Example: Lasso

Consider
$$\mathcal{U} = \mathcal{V} = \ell_2(\mathbb{N})$$
 and $\mathcal{J}(u) = \begin{cases} \|u\|_1 & u \in \ell_1(\mathbb{N}) \\ +\infty & u \in \ell_2(\mathbb{N}) \setminus \ell_2(\mathbb{N}) \end{cases}$.

The problem

$$\min_{u} \frac{1}{2} \|Au - f\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{1}$$

is called the lasso in statistics and can be shown to promote sparse solutions.

One can also consider $\mathcal{J}(u)=\|Wu\|_1$ where $W:\ell_2(\mathbb{N})\to\ell_2(\mathbb{N})$. For example, W is some wavelet transform.

Example: Lasso

Consider
$$\mathcal{U} = \mathcal{V} = \ell_2(\mathbb{N})$$
 and $\mathcal{J}(u) = \begin{cases} \|u\|_1 & u \in \ell_1(\mathbb{N}) \\ +\infty & u \in \ell_2(\mathbb{N}) \setminus \ell_2(\mathbb{N}) \end{cases}$.

The problem

$$\min_{u} \frac{1}{2} \|Au - f\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{1}$$

is called the lasso in statistics and can be shown to promote sparse solutions.

One can also consider $\mathcal{J}(u) = \|Wu\|_1$ where $W : \ell_2(\mathbb{N}) \to \ell_2(\mathbb{N})$. For example, W is some wavelet transform.

Consider $\langle u, a \rangle = f$ where $u \in \mathbb{R}^2$ is unknown, $a \in \mathbb{R}^2$ and $f \in \mathbb{R}$. Solutions are along the red line. The solution of smallest ℓ_1 norm will be 1-sparse, whereas the solution of smallest ℓ_2 norm is 2-sparse.

Example: Total variation

Instead of $\mathcal{J}(u)=\int_{\Omega}|\nabla u|^2$, one could consider $\mathcal{J}(u)=\int_{\Omega}|\nabla u|$. Deblurring example:

$$\min_{u} \mathcal{J}(u) + \|Ku - b\|_{L^{2}}^{2}, \quad \text{where} \quad Ku = h \star u$$

$$\mathcal{J}(x) = \|Dx\|_2^2$$

$$\mathcal{J}(x) = \|Dx\|_1$$

Example: Total variation

The use of $\int_{\Omega} |\nabla u|^2$ leads to smooth solutions, the point of $\int_{\Omega} |\nabla u|$ is that this makes sense not only for $u \in W^{1,1}(\Omega)$ but also for functions of bounded variation.

Given $u \in L^1(\Omega)$ for $\Omega \subset \mathbb{R}^d$, define

$$\mathrm{TV}(u) \stackrel{\scriptscriptstyle\mathsf{def.}}{=} \sup \left\{ \langle u, \, \mathrm{div} \varphi \rangle \; ; \; \varphi \in \mathit{C}^\infty_c(\Omega; \mathbb{R}^d), \; \sup_{\omega \in \Omega} \left\| \varphi(\omega) \right\|_2 \leqslant 1 \right\}.$$

Let $\|u\|_{BV} \stackrel{\text{def.}}{=} \|u\|_{L^1} + \mathrm{TV}(u)$, and the space of bounded variations $\left\{u \in L^1 \; ; \; \mathrm{TV}(u) < \infty\right\}$ is a Banach space with norm $\|\cdot\|_{BV}$.

Contains $W^{1,1}(\Omega)$ and also discontinuous functions such as χ_C where $C \subset \Omega$ has Lipschitz boundary, in which case, $TV(\chi_C) = Per(C)$.

Given $f \in \mathbb{R}^N$, there are two components to (linear) inverse problems:

- 1. A data model: $f = Au_0 + n$ where $u_0 \in \mathbb{R}^N$ is the underlying object to be recovered, A is some linear transform (e.g. a blurring operator, a subsampled Fourier transform, or the identity matrix), and n is the noise. Typically, the entries in n are assumed to be Gaussian distributed with mean 0 and variance σ^2 .
- 2. An a-priori probability density: $P(u) = e^{-p(u)}$. This represents the idea that we have of the solution.

By Bayes' rule, the posteriori probability of u knowing f is

$$P(u|f)P(f) = P(f|u)P(u).$$

By Bayes' rule, the posteriori probability of u knowing f is

$$P(u|f)P(f) = P(f|u)P(u).$$

Choosing
$$P(f|u) = \exp\left(-\frac{1}{\sigma^2} \|f - Au\|_2^2\right)$$
:

$$P(u|f) = \frac{\exp\left(-\frac{1}{\sigma^2} \|f - Au\|_2^2 - p(u)\right)}{P(f)},$$

By Bayes' rule, the posteriori probability of u knowing f is

$$P(u|f)P(f) = P(f|u)P(u).$$

Choosing
$$P(f|u) = \exp\left(-\frac{1}{\sigma^2} \|f - Au\|_2^2\right)$$
:

$$P(u|f) = \frac{\exp\left(-\frac{1}{\sigma^2} \left\|f - Au\right\|_2^2 - p(u)\right)}{P(f)},$$

The maximum a posteriori (MAP) reconstruction is:

$$u^*\in\mathop{\rm argmax}_u P(u|f).$$
 Equivalently,
$$u^*\in\mathop{\rm argmin}_u p(u)+\frac{1}{\sigma^2}\left\|f-Au\right\|_2^2.$$

Other choices of noise distributions:

- Additive Laplace noise $e^{-\frac{1}{\sigma^2}\|f-Au\|_1}$ with corresponding data fidelity term $\|Au-f\|_1$
- Poisson noise $\prod_{i,j} \frac{u_{i,j}^{f_{i,j}}}{f_{i,j}!} e^{-u_{i,j}}$ with data fidelity term $\int u f \log(u)$.

Figure 1: Adding different noise using Matlab's imnoise function

We now study regularisers of the form

$$R_{\alpha}(f) \in \operatorname*{argmin}_{u} \alpha \mathcal{J}(u) + \frac{1}{2} \|f - Au\|_{2}^{2}.$$

Usual questions:

- Given $f = Au^{\dagger}$, do we have convergence $R_{\alpha}(f) \rightarrow u^{\dagger}$?
- Do we have convergent regularisers?
- Convergence rates?

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

More on the total variation functiona

The dual perspective

We consider functionals $E: \mathcal{U} \to \bar{\mathbb{R}} \stackrel{\text{def.}}{=} \mathbb{R} \cup \{-\infty, +\infty\}.$

- Useful to model constraints. E.g. if $E:[-1,\infty)\to\mathbb{R}^2$ maps $x\mapsto x^2$, consider instead $\bar E:\mathbb{R}\to\bar{\mathbb{R}}$ defined by $\bar E(x)=E(x)$ for $x\in[-1,\infty)$ and $\bar E(x)=+\infty$ otherwise. No need to worry if E(x+y) is well-defined.
- We then consider unconstrained minimisation (although the function may no longer be differentiable).
- The indicator function on a set $C \subset \mathcal{U}$ is $\iota_C \stackrel{\text{def.}}{=} \begin{cases} 1 & x \in C \\ +\infty & x \notin C \end{cases}$ So, we can write $\min_{u \in C} E(u) = \min_{u \in \mathcal{U}} E(u) + \iota_C(u)$.

We denote $dom(E) \stackrel{\text{def.}}{=} \{u \in \mathcal{U} ; E(u) < \infty\}$. We say E is proper if $dom(E) \neq \emptyset$.

Convexity

A subset $C \subseteq \mathcal{U}$ is called convex if $\lambda u + (1 - \lambda)v \in \mathcal{C}$ for all $\lambda \in (0, 1)$ and $u, v \in \mathcal{C}$

A functional $E:\mathcal{U}\to \bar{\mathbb{R}}$ is called convex if

$$E(\lambda u + (1-\lambda)v) \leqslant \lambda E(u) + (1-\lambda)E(v), \forall \lambda \in (0,1) \quad \text{and} \quad \forall u,v \in \text{dom}(E), u \neq v.$$

It is called strictly convex if the inequality is strict.

Dual spaces

Banach spaces are complete, normed vector spaces.

Dual spaces

For every Banach space \mathcal{U} , its dual space \mathcal{U}^* is the space of continuous linear functionals on \mathcal{U} , that is, $\mathcal{U}^* = \mathcal{L}(\mathcal{U}, \mathbb{R})$. Given $u \in \mathcal{U}$ and $p \in \mathcal{U}^*$, we write the dual product $\langle p, u \rangle \stackrel{\text{def.}}{=} p(u)$. The dual space is a Banach space equipped with the norm

$$\|p\|_{\mathcal{U}^*} = \sup_{u \in \mathcal{U}, \|u\|_{\mathcal{U}} \leqslant 1} \langle p, u \rangle.$$

Dual spaces

Banach spaces are complete, normed vector spaces.

Bi-dual

The bi-dual space of $\mathcal{U}\stackrel{\text{def.}}{=} (\mathcal{U}^*)^*$. Every $u\in\mathcal{U}$ defines a continuous linear mapping on \mathcal{U}^* , by

$$\langle Eu, p \rangle \stackrel{\text{def.}}{=} \langle p, u \rangle = p(u).$$

 $E:\mathcal{U}\to\mathcal{U}^{**}$ is well defined and is a continuous linear isometry. If E is surjective, then \mathcal{U} is called reflexive.

Examples of reflexive Banach spaces include Hilbert spaces, L^q, ℓ^q for $q \in (1, \infty)$. We call $\mathcal U$ separable if there exists a countable dense subset of $\mathcal U$.

Dual spaces

Banach spaces are complete, normed vector spaces.

Adjoint

For any $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, there exists a unique operator $A^* : \mathcal{V}^* \to \mathcal{U}^*$ called the adjoint of A such that for all $u \in \mathcal{U}$ and $p \in \mathcal{V}$,

$$\langle A^*p, u\rangle = \langle p, Au\rangle.$$

Weak and weak-* convergence

In infinite dimensions, bounded sequences do not have to have convergent subsequences.

E.g. In ℓ^2 , consider e_j the canonical basis. Then, $\|e_j\|=1$ for all j but there does not exists $u\in\ell^2$ such that $\|e_j-u\|\to 0$.

Weak and weak-* convergence

In infinite dimensions, bounded sequences do not have to have convergent subsequences.

E.g. In ℓ^2 , consider e_j the canonical basis. Then, $\|e_j\|=1$ for all j but there does not exists $u\in\ell^2$ such that $\|e_j-u\|\to 0$.

Weak and weak-* convergence

We say that $\{u_k\} \subset \mathcal{U}$ converges weakly to $u \in \mathcal{U}$ if and only if for all $p \in \mathcal{U}^*$, we have $\langle p, u_k \rangle \to \langle p, u \rangle$.

For $\{p_k\} \subset \mathcal{U}^*$, we say $\{p_k\}$ converges weak-* to $p \in \mathcal{U}^*$ if for all $u \in \mathcal{U}$, we have $\langle p^k, u \rangle \to \langle p, u \rangle$ for all $u \in \mathcal{U}$.

Weak and weak-* convergence

In infinite dimensions, bounded sequences do not have to have convergent subsequences.

E.g. In ℓ^2 , consider e_j the canonical basis. Then, $\|e_j\|=1$ for all j but there does not exists $u\in\ell^2$ such that $\|e_j-u\|\to 0$.

Weak and weak-* convergence

We say that $\{u_k\} \subset \mathcal{U}$ converges weakly to $u \in \mathcal{U}$ if and only if for all $p \in \mathcal{U}^*$, we have $\langle p, u_k \rangle \to \langle p, u \rangle$.

For $\{p_k\} \subset \mathcal{U}^*$, we say $\{p_k\}$ converges weak-* to $p \in \mathcal{U}^*$ if for all $u \in \mathcal{U}$, we have $\langle p^k, u \rangle \to \langle p, u \rangle$ for all $u \in \mathcal{U}$.

- Banach-Alaogu Theorem: Let \mathcal{U} be a normed vector space. Then every bounded sequence $\{f_i\} \subset \mathcal{U}^*$ has a weak-* convergent subsequence.
- Every bounded sequence in a reflexive Banach space has a weakly convergent subsequence.

Lower semi-continuity

One useful property is the notion of sequential lower semicontinuity:

Let $\mathcal X$ be a Banach space with topology $\tau_{\mathcal X}$. The functional $E:\mathcal X\to [-\infty,\infty]$ is said to be sequentially lower semi-continuous with respect to $\tau_{\mathcal X}$ at $u\in\mathcal X$ if

$$E(x) \leqslant \liminf_{j \to \infty} E(x_j)$$

for all sequences $\{x_j\}_j \subset \mathcal{X}$ with $x_j \to x$ in the topology $\tau_{\mathcal{X}}$ of \mathcal{X} .

" $E(x_0)$ is a good lower bound for function values near x_0 "

Let $\mathcal U$ be any normed space with norm $\|\cdot\|_{\mathcal U}$, then $E(u)=\|u\|_{\mathcal U}$ is lower semicontinuous with respect to the weak topology:

Let \mathcal{U} be any normed space with norm $\|\cdot\|_{\mathcal{U}}$, then $E(u) = \|u\|_{\mathcal{U}}$ is lower semicontinuous with respect to the weak topology:

Idea: For fixed $u \in \mathcal{U}$, Hahn Banach Theorem says we can construct an element of $f \in \mathcal{U}^*$ such that f(u) = ||u|| and ||f|| = 1.

Let \mathcal{U} be any normed space with norm $\|\cdot\|_{\mathcal{U}}$, then $E(u) = \|u\|_{\mathcal{U}}$ is lower semicontinuous with respect to the weak topology:

Idea: For fixed $u \in \mathcal{U}$, Hahn Banach Theorem says we can construct an element of $f \in \mathcal{U}^*$ such that f(u) = ||u|| and ||f|| = 1.

Proof: Let $u^j \to u$ weakly, by the Hahn-Banach theorem, there exists an element $f \in \mathcal{U}^*$ such that $f(u) = \|u\|_{\mathcal{U}}$ and $\|f\| = 1$. Therefore,

$$\|u\|_{\mathcal{U}} = f(u) = \lim_{j} f(u^{j}) \leqslant \liminf_{j} \|u^{j}\|_{\mathcal{U}}.$$

The functional $\left\|\cdot\right\|_1:\ell^2\to[0,\infty]$ is lower semi-continuous with respect to ℓ_2 convergence.

The functional $\left\|\cdot\right\|_1:\ell^2\to[0,\infty]$ is lower semi-continuous with respect to ℓ_2 convergence.

Idea: Convergence in ℓ_2 implies that each entry of the sequence converges. So, we can just apply Fatou's lemma.

The functional $\|\cdot\|_1:\ell^2\to[0,\infty]$ is lower semi-continuous with respect to ℓ_2 convergence.

Idea: Convergence in ℓ_2 implies that each entry of the sequence converges. So, we can just apply Fatou's lemma.

Proof: Given any $\{u^j\} \subset \ell_2$ with $u^j \to u$ in ℓ_2 , we have

$$u_k^j = \langle e_k, u^j \rangle \rightarrow \langle e_k, u \rangle = u_k.$$

So, by Fatou's lemma

$$\|u\|_1 = \sum_{k} \lim_{j \to \infty} \left| u_k^j \right| \leqslant \liminf_{j \to \infty} \sum_{k} \left| u_k^j \right| = \liminf_{j \to \infty} \left\| u^j \right\|_1.$$

Minimising functionals

A functional is called coercive if for all $u_j \in \mathcal{U}$ with $||u_j|| \to +\infty$, we have $E(u_j) \to +\infty$. Equivalently, if $\{E(u_j)\}_j$ is bounded, then $\{u_j\}_j$ must be bounded.

Minimising functionals

A functional is called coercive if for all $u_j \in \mathcal{U}$ with $||u_j|| \to +\infty$, we have $E(u_j) \to +\infty$. Equivalently, if $\{E(u_j)\}_j$ is bounded, then $\{u_j\}_j$ must be bounded.

Coercivity is sufficient to ensure boundedness of minimising sequences:

Lemma 2.1

Let $E: \mathcal{U} \to \mathbb{R}$ be a proper coercive functional, bounded from below. Then, $\inf_{u \in \mathcal{U}} E(u)$ exists in \mathbb{R} and there exists a minimising sequence $\{u_j\}$ such that $E(u_j) \to \inf_u E(u)$ and all minimising sequences are bounded.

Theorem 2.2 (The Direct method of Calculus)

Let $\mathcal U$ be a Banach space and $\tau_{\mathcal U}$ a topology (not necessarily the norm topology) on $\mathcal U$ such that bounded sequences have $\tau_{\mathcal U}$ convergent subsequences. Let $E:\mathcal U\to\bar{\mathbb R}$ be proper coercive and $\tau_{\mathcal U}$ -l.s.c, and bounded from below. Then E has a minimiser.

Theorem 2.2 (The Direct method of Calculus)

Let $\mathcal U$ be a Banach space and $\tau_{\mathcal U}$ a topology (not necessarily the norm topology) on $\mathcal U$ such that bounded sequences have $\tau_{\mathcal U}$ convergent subsequences. Let $E:\mathcal U\to \bar{\mathbb R}$ be proper coercive and $\tau_{\mathcal U}$ -l.s.c, and bounded from below. Then E has a minimiser.

Idea: Bounded sequences have convergent subsequences. So we take a minimising sequences, and show its limit is a minimiser.

Theorem 2.2 (The Direct method of Calculus)

Let $\mathcal U$ be a Banach space and $\tau_{\mathcal U}$ a topology (not necessarily the norm topology) on $\mathcal U$ such that bounded sequences have $\tau_{\mathcal U}$ convergent subsequences. Let $E:\mathcal U\to \bar{\mathbb R}$ be proper coercive and $\tau_{\mathcal U}$ -l.s.c, and bounded from below. Then E has a minimiser.

Idea: Bounded sequences have convergent subsequences. So we take a minimising sequences, and show its limit is a minimiser.

Proof.

- The assumptions imply that there exists a bounded minimising sequence $\{u_j\}_j$.
- By assumption on the topology $\tau_{\mathcal{U}}$, there exists a subsequence u_{k_j} and $u_* \in \mathcal{U}$ which converges $\tau_{\mathcal{U}}$ to u_* .
- Due to $\tau_{\mathcal{U}}$ -lsc, we have $E(u^*) \leq \liminf_{k \to \infty} E(u_{j_k}) = \inf_u E(u) > \infty$. Therefore, u_* is a minimiser.

- Key ingredient: bounded sequences have convergent subsequences.
- If \mathcal{U} is a reflexive Banach space and E is a proper, bounded from below, coercive, lsc wrt weak topology, then a minimiser exists, since reflexive Banach spaces are weakly compact.
- A convex function is lsc wrt weak topology if and only if it is lsc with respect to strong topology.
- If E has at least one minimiser and is strictly convex, then the minimiser is unique: let u, v be two minimisers of E. If $u \neq v$, then

$$E(u) \leqslant E(\frac{1}{2}u + \frac{1}{2}v) < \frac{1}{2}E(u) + \frac{1}{2}E(v) \leqslant E(u)$$

which is a contradiction. Not however that strict convexity is not necessary for uniqueness of minimisers (e.g. think for f(x) = |x|).

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

More on the total variation functiona

The dual perspective

Well-posedness and regularisation properties

We now study the properties of

$$R_{\alpha}f \in \operatorname{argmin}_{u \in \mathcal{U}} \Phi_{\alpha,f}(u) \stackrel{\text{def.}}{=} \frac{1}{2} \|Au - f\|_{\mathcal{V}}^2 + \alpha \mathcal{J}(u)$$

as a convergent regularisation for

$$Au = f (3.1)$$

where $A: \mathcal{U} \to \mathcal{V}$ is a bounded linear operator and \mathcal{U} , \mathcal{V} are Banach spaces.

- 1. When do minimisers exist? (i.e. well-posedness of the regularised problem)
- 2. Is $R_{\alpha}: \mathcal{V} \to \mathcal{U}$ continuous?
- 3. What is the equivalent notion of a minimal norm solution here?
- 4. How to choose $\alpha(\delta)$ to guarantee the convergence of the minimisers to an appropriated generalised solution?

1. Existence of minimisers

Theorem 1

Let $\mathcal U$ be a Banach space and let $\mathcal V$ be a Hilbert space with topologies $\tau_{\mathcal U}$ and $\tau_{\mathcal V}$ respectively. Let $\|\cdot\|_{\mathcal V}$ be $\tau_{\mathcal V}$ -lsc. Assume that

- (i) $A: \mathcal{U} \to \mathcal{V}$ is $\tau_{\mathcal{U}} \to \tau_{\mathcal{V}}$ continuous.
- (ii) $\mathcal{J}: \mathcal{U} \to (0, +\infty]$ is proper, $\tau_{\mathcal{U}}$ -lsc and its non-empty sublevel-sets $\{u \in \mathcal{U}: \mathcal{J}(u) \leqslant C\}$ are $\tau_{\mathcal{U}}$ -sequentially compact

Then,

- (i') for any fixed $\alpha > 0$ and $f \in \mathcal{V}$, there exists a minimiser of $u^{\alpha} \in \operatorname{argmin}_{u} \frac{1}{2} \|Au f\|_{\mathcal{V}}^{2} + \alpha \mathcal{J}(u)$.
- (ii') If A is injective or $\mathcal J$ is strictly convex, then u^α is unique.

1. Existence of minimisers

Theorem 1

Let $\mathcal U$ be a Banach space and let $\mathcal V$ be a Hilbert space with topologies $\tau_{\mathcal U}$ and $\tau_{\mathcal V}$ respectively. Let $\|\cdot\|_{\mathcal V}$ be $\tau_{\mathcal V}$ -lsc. Assume that

- (i) $A: \mathcal{U} \to \mathcal{V}$ is $\tau_{\mathcal{U}} \to \tau_{\mathcal{V}}$ continuous.
- (ii) $\mathcal{J}: \mathcal{U} \to (0, +\infty]$ is proper, $\tau_{\mathcal{U}}$ -lsc and its non-empty sublevel-sets $\{u \in \mathcal{U}: \mathcal{J}(u) \leqslant C\}$ are $\tau_{\mathcal{U}}$ -sequentially compact

Then,

- (i') for any fixed $\alpha > 0$ and $f \in \mathcal{V}$, there exists a minimiser of $u^{\alpha} \in \operatorname{argmin}_{u} \frac{1}{2} \|Au f\|_{\mathcal{V}}^{2} + \alpha \mathcal{J}(u)$.
- (ii') If A is injective or $\mathcal J$ is strictly convex, then u^α is unique.

Idea: the direct method of Calculus. Take a minimising sequence, show it has a limit (from a subsequence), then use I.s.c. properties to conclude it is a minimiser.

1. Existence of minimisers

Since $\Phi_{\alpha,f}(u) \geqslant 0$, there exists a minimising sequence u_j so that

$$\lim_{j\to\infty}\Phi_{\alpha,f}(u_j)=\inf_{u\in\mathcal{U}}\Phi_{\alpha,f}(u)\stackrel{\text{def.}}{=}L.$$

In particular, $J(u_j)$ is uniformly bounded. Since the level sets of $\mathcal J$ are $\tau_{\mathcal U}$ sequentially compact, there exists a subsequence u_{j_k} which converges $\tau_{\mathcal U}$ to some $u \in \mathcal U$.

By continuity of A, Au_{j_k} converges to Au in $\tau_{\mathcal{V}}$. By lsc properties of \mathcal{J} and $\|\cdot\|_{\mathcal{V}}$, we have

$$\Phi_{\alpha,f}(u) \leqslant \liminf_{k \to \infty} \Phi_{\alpha,f}(u_{j_k}) \leqslant L.$$

Therefore, *u* is a minimiser.

Finally, we saw that the minimum is unique if $\Phi_{\alpha,f}$ is strictly convex. Note that $u \mapsto \|Au - f\|_{\mathcal{V}}$ is strictly convex if and only if A is injective (exercise!).

2. Variational regularisers are continuous

Theorem 2

Fix $\alpha > 0$. Under the assumptions of Theorem 4, assume also

- lacktriangle either A is injective or $\mathcal J$ is strictly convex.
- norm convergence in V implies convergence in τ_V .

Then, given $f_j \to f$ in \mathcal{V} , $u_j \stackrel{\text{def.}}{=} R_{\alpha} f_j$ exists and is unique, and u_j converges to $u \stackrel{\text{def.}}{=} R_{\alpha} f$ in $\tau_{\mathcal{U}}$. Moreover, $\mathcal{J}(u_j) \to \mathcal{J}(u)$.

2. Variational regularisers are continuous

Theorem 2

Fix $\alpha > 0$. Under the assumptions of Theorem 4, assume also

- lacktriangle either A is injective or $\mathcal J$ is strictly convex.
- lacksquare norm convergence in $\mathcal V$ implies convergence in $au_{\mathcal V}$.

Then, given $f_j \to f$ in \mathcal{V} , $u_j \stackrel{\text{def.}}{=} R_{\alpha} f_j$ exists and is unique, and u_j converges to $u \stackrel{\text{def.}}{=} R_{\alpha} f$ in $\tau_{\mathcal{U}}$. Moreover, $\mathcal{J}(u_j) \to \mathcal{J}(u)$.

Idea: As before,

- 1. we first show that $\{\Phi_{\alpha,f}(u_i)\}_i$ is bounded
- 2. This lets us extract a convergent subsequence with limit \hat{u} .
- 3. Finally, show that \hat{u} minimises $\Phi_{\alpha,f}$.

2. Variational regularisers are continuous (proof)

Step 1: show that $\Phi_{\alpha,f}(u_j)$ is bounded: First observe that

- (a) $||f + g||_{\mathcal{V}}^2 \le 2 ||f||_{\mathcal{V}}^2 + 2 ||g||_{\mathcal{V}}^2$ for all $f, g \in \mathcal{V}$.
- (b) From (a), we have

$$\Phi_{\alpha,f}(u) \leq ||Au - g||^2 + ||g - f||^2 + 2\alpha \mathcal{J}(u) \leq 2\Phi_{\alpha,g}(u) + ||f - g||^2.$$

Now, since \mathcal{J} is proper, there exists \tilde{u} such that $\Phi_{\alpha,f}(\tilde{u})<\infty$

$$\Phi_{\alpha,f}(u_j) \leqslant 2\Phi_{\alpha,f_j}(u_j) + \|f - f_j\|_{\mathcal{V}}^2 \leqslant 2\Phi_{\alpha,f_j}(\tilde{u}) + \|f - f_j\|_{\mathcal{V}}^2$$

Step 2, Extract a subsequence which converges to \hat{u} : By compactness of the sublevel sets of \mathcal{J} , there exists a subsequence u_{j_k} which converges $\tau_{\mathcal{U}}$ to some $\hat{u} \in \mathcal{U}$.

2. Variational regularisers are continuous (proof)

Step 3, $\hat{u} = u$: By continuity of A, lsc of $\|\cdot\|_{\mathcal{V}}$ and lsc of \mathcal{J} , we have

$$\Phi_{\alpha,f}(\hat{u})\leqslant \liminf_k \Phi_{\alpha,f_{j_k}}(u_{j_k})\leqslant \liminf \Phi_{\alpha,f_{j_k}}(u)=\Phi_{\alpha,f}(u).$$

By uniqueness of minimisers, $\hat{u} = u$

Step 4, the entire sequence converges: Repeat this for any subsequence of $\{u_j\}$ to see that all subsequences have a subsequence which converge to u. Therefore, the entire sequence u_j converges to u in $\tau_{\mathcal{U}}$.

For the last statement, We see from Step 3 that $\Phi_{lpha,f_j}(u_j) o \Phi_{lpha,f}(u).$ So,

$$\begin{split} \limsup_{j \to \infty} \alpha \mathcal{J}(u_j) &= \limsup_{j \to \infty} \Phi_{\alpha, f_j}(u_j) - \frac{1}{2} \|Au_j - f_j\|^2 \\ &= \Phi_{\alpha, f}(u) - \liminf_{j \to \infty} \|Au_j - f_j\|^2 \leqslant \Phi_{\alpha, f}(u) - \|Au - f\|^2 \\ &= \alpha \mathcal{J}(u) \leqslant \liminf_{j \to \infty} \alpha \mathcal{J}(u_j). \end{split}$$

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \text{ and }$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \text{ for all } \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{J}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \text{ and }$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \text{ for all } \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{J}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \ ext{and}$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \ \text{for all} \ \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{I}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

■ As \mathcal{V} is a Hilbert space, $\mathbb{L}_f \stackrel{\text{def.}}{=} \left\{ v \; ; \; v \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au - f\|_{\mathcal{V}} \right\}$ is non-empty if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \ \operatorname{and}$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \ \text{for all} \ \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{I}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

■ As $\mathcal V$ is a Hilbert space, $\mathbb L_f \stackrel{\mathrm{def.}}{=} \left\{ v \; ; \; v \in \operatorname{argmin}_{u \in \mathcal U} \|Au - f\|_{\mathcal V} \right\}$ is non-empty if and only if $f \in \mathcal R(A) \oplus \mathcal R(A)^{\perp}$. When it is no ambiguity, we write $\mathbb L = \mathbb L_f$.

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \text{ and }$
- $\mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u})$ for all $\tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|$.

Then, $u_{\mathcal{J}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

- As \mathcal{V} is a Hilbert space, $\mathbb{L}_f \stackrel{\text{def.}}{=} \left\{ v \; ; \; v \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \right\}$ is non-empty if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$. When it is no ambiguity, we write $\mathbb{L} = \mathbb{L}_f$.
- We next establish existence under appropriate compactness and continuity assumptions. Note however: even when there is existence, in general, there is no uniqueness.

3. Existence of a \mathcal{J} -minimising solution

Theorem 4

Let $\mathcal U$ and $\mathcal V$ be Banach spaces with topologies $\tau_{\mathcal U}$ and $\tau_{\mathcal V}$ respectively. Let $\|\cdot\|_{\mathcal V}$ be $\tau_{\mathcal V}$ -Isc. Suppose $f\in\mathcal R(A)\oplus\mathcal R(A)^\perp$ and $\mathbb L$ has an element with finite $\mathcal J$ -value. Assume also that

- (i) $A: \mathcal{U} \to \mathcal{V}$ is $\tau_{\mathcal{U}} \to \tau_{\mathcal{V}}$ continuous.
- (ii) $\mathcal{J}: \mathcal{U} \to (0, +\infty]$ is proper, $\tau_{\mathcal{U}}$ -lsc and its non-empty sublevel-sets $\{u \in \mathcal{U} : \mathcal{J}(u) \leqslant C\}$ are $\tau_{\mathcal{U}}$ -sequentially compact

Then, there exists a $\mathcal J\text{-minimising solution }u_{\mathcal J}^\dagger.$

3. Existence of a \mathcal{J} -minimising solution

Theorem 4

Let $\mathcal U$ and $\mathcal V$ be Banach spaces with topologies $\tau_{\mathcal U}$ and $\tau_{\mathcal V}$ respectively. Let $\|\cdot\|_{\mathcal V}$ be $\tau_{\mathcal V}$ -Isc. Suppose $f\in\mathcal R(A)\oplus\mathcal R(A)^\perp$ and $\mathbb L$ has an element with finite $\mathcal J$ -value. Assume also that

- (i) $A: \mathcal{U} \to \mathcal{V}$ is $\tau_{\mathcal{U}} \to \tau_{\mathcal{V}}$ continuous.
- (ii) $\mathcal{J}: \mathcal{U} \to (0, +\infty]$ is proper, $\tau_{\mathcal{U}}$ -lsc and its non-empty sublevel-sets $\{u \in \mathcal{U}: \mathcal{J}(u) \leqslant C\}$ are $\tau_{\mathcal{U}}$ -sequentially compact

Then, there exists a ${\mathcal J}$ -minimising solution ${\it u}_{\mathcal J}^{\dagger}.$

Proof: Consider $\inf_{u \in \mathbb{L}} \mathcal{J}(u)$. Note that \mathbb{L} is nonempty by assumption.

- Since $\mathcal{J} \geqslant 0$, there exists a minimising sequence u_n . By compactness of sublevel sets, there exists a subsequence u_{n_k} which $\tau_{\mathcal{U}}$ converges to u_* . Moreover, continuity of A means Au_{n_k} converges to Au_* in $\tau_{\mathcal{V}}$.
- $u_* \in \mathbb{L}$ since $||Au_* f|| \leq \liminf_{k \to \infty} ||Au_{n_k} f|| \leq \inf_u ||Au f||$.
- u_* is a minimiser as $\mathcal J$ is $\tau_{\mathcal U}$ -lsc: $\inf_{u\in\mathbb L} \mathcal J(u) = \liminf_k \mathcal J(u_{n_k}) \geqslant \mathcal J(u_*)$.

4. Convergent regularisation

Theorem 5

Under the assumptions of Theorem 4, if $\alpha = \alpha(\delta)$ is such that $\alpha(\delta) \to 0$ and $\delta^2/\alpha(\delta) \to 0$ as $\delta \to 0$, then $u_\delta \stackrel{\text{def.}}{=} u_\delta^{\alpha(\delta)}$ converges (up to a subsequence) $\tau_\mathcal{U}$ to a \mathcal{J} minimising solution $u_\mathcal{J}^\dagger$ and $\mathcal{J}(u_\delta) \to \mathcal{J}(u_\mathcal{J}^\dagger)$.

4. Convergent regularisation

Theorem 5

Under the assumptions of Theorem 4, if $\alpha = \alpha(\delta)$ is such that $\alpha(\delta) \to 0$ and $\delta^2/\alpha(\delta) \to 0$ as $\delta \to 0$, then $u_\delta \stackrel{\text{def.}}{=} u_\delta^{\alpha(\delta)}$ converges (up to a subsequence) $\tau_\mathcal{U}$ to a \mathcal{J} minimising solution $u_\mathcal{J}^\dagger$ and $\mathcal{J}(u_\delta) \to \mathcal{J}(u_\mathcal{J}^\dagger)$.

Idea: Show that $\{\mathcal{J}(u_\delta)\}_\delta$ is bounded. Then, use compactness and lsc properties to deduce that it has a limit (up to subsequence) which a \mathcal{J} -minimising solution.

4. Convergent regularisation

Theorem 5

Under the assumptions of Theorem 4, if $\alpha=\alpha(\delta)$ is such that $\alpha(\delta)\to 0$ and $\delta^2/\alpha(\delta)\to 0$ as $\delta\to 0$, then $u_\delta\stackrel{\text{def.}}{=} u_\delta^{\alpha(\delta)}$ converges (up to a subsequence) $\tau_\mathcal{U}$ to a $\mathcal J$ minimising solution $u_\mathcal{J}^\dagger$ and $\mathcal J(u_\delta)\to \mathcal J(u_\mathcal{J}^\dagger)$.

■ Since u_δ is a minimiser:

$$\|Au_{\delta} - f_{\delta}\|^2 + \alpha(\delta)\mathcal{J}(u_{\delta}) \leqslant \frac{1}{2} \|Au_{\mathcal{J}}^{\dagger} - f_{\delta}\|^2 + \alpha(\delta)\mathcal{J}(u_{\mathcal{J}}^{\dagger}).$$
 This implies that $\mathcal{J}(u_{\delta}) \leqslant \mathcal{J}(u_{\mathcal{J}}^{\dagger}) + \frac{\delta^2}{2\alpha(\delta)}.$

- by compactness of the sublevel sets of \mathcal{J} , up to a subsequence u_{δ_n} converges to u_* as $\delta_n \to 0$. By continuity of A, $Au_{\delta_n} \stackrel{\tau_{\mathcal{V}}}{\longrightarrow} Au_*$.
- $u_* \in \mathbb{L}_f$ follows by lsc of $\|\|_{\mathcal{V}}$ wrt $\tau_{\mathcal{V}}$ and by minimality of u_{δ_n} :

$$\begin{split} \frac{1}{2} \left\| A u_* - f \right\|^2 &\leqslant \liminf_{n \to \infty} \frac{1}{2} \left\| A u_{\delta_n} - f_{\delta_n} \right\|^2 \leqslant \liminf_{n \to \infty} \frac{1}{2} \left\| A u_{\delta_n} - f_{\delta_n} \right\|^2 + \alpha(\delta_n) \mathcal{J}(u_{\delta_n}) \\ &\leqslant \liminf_{n \to \infty} \frac{1}{2} \left\| A u_{\mathcal{J}}^{\dagger} - f_{\delta_n} \right\|^2 + \alpha(\delta_n) \mathcal{J}(u_{\mathcal{J}}^{\dagger}) = \inf_{u} \left\| A u - f \right\|. \end{split}$$

■ Finally $\mathcal{J}(u_*) \leqslant \liminf_{n \to \infty} \mathcal{J}(u_{\delta_n}) \leqslant \liminf_{n \to \infty} \mathcal{J}(u_{\mathcal{J}}^{\dagger}) + \frac{\delta_n^2}{2\alpha(\delta_*)} = \mathcal{J}(u_{\mathcal{J}}^{\dagger}).$

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

lacktriangle Lower semicontinuity: ${\mathcal J}$ is weakly-lsc

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

- lacktriangle Lower semicontinuity: ${\mathcal J}$ is weakly-lsc
- Compactness of sublevel sets: bounded sequences have weakly convergent subsequences.

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

- lacktriangle Lower semicontinuity: ${\mathcal J}$ is weakly-lsc
- Compactness of sublevel sets: bounded sequences have weakly convergent subsequences.

So, Theorem 5 holds with weak convergence.

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

- lacktriangle Lower semicontinuity: ${\mathcal J}$ is weakly-lsc
- Compactness of sublevel sets: bounded sequences have weakly convergent subsequences.

So, Theorem 5 holds with weak convergence.

Hilbert spaces satisfy the Radon Riesz property:

If u_k converge weakly to u and $\|u_k\| \to \|u\|$, then $\|u_k - u\| \to 0$.

So, we have strong convergence as well as weak convergence of solutions.

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1$.

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1.$

Lower semicontinuity: \mathcal{J} is weakly lsc in ℓ^2 .

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1.$

Lower semicontinuity: \mathcal{J} is weakly lsc in ℓ^2 .

Compactness of sublevel sets:

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1.$

Lower semicontinuity: $\mathcal J$ is weakly lsc in ℓ^2 .

Compactness of sublevel sets:

■ We have $\|\cdot\|_2 \leq \|\cdot\|_1$, so $\mathcal{J}(u) \leq C$ implies $\|u\|_2 \leq C$

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1.$

Lower semicontinuity: $\mathcal J$ is weakly lsc in ℓ^2 .

Compactness of sublevel sets:

- We have $\|\cdot\|_2 \leq \|\cdot\|_1$, so $\mathcal{J}(u) \leq C$ implies $\|u\|_2 \leq C$
- lacksquare bounded sequences have weakly convergent subsequences in ℓ^2 .

So, the sublevel-sets of ${\mathcal J}$ are weakly sequentially compact in $\ell^2.$

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1.$

Lower semicontinuity: $\mathcal J$ is weakly lsc in ℓ^2 .

Compactness of sublevel sets:

- We have $\|\cdot\|_2 \leq \|\cdot\|_1$, so $\mathcal{J}(u) \leq C$ implies $\|u\|_2 \leq C$
- lacksquare bounded sequences have weakly convergent subsequences in ℓ^2 .

So, the sublevel-sets of $\mathcal J$ are weakly sequentially compact in ℓ^2 .

Theorem 5 thus guarantees weak convergence in ℓ_2 of solutions.

Example: Bounded variation

Recall
$$\|u\|_{BV} = \|u\|_{L^1} + TV(u)$$
. Let $A: L^1(\Omega) \to L^2(\Omega)$ be continuous and
$$\mathcal{J}(u) = \begin{cases} \|u\|_{BV} & u \in BV(\Omega) \\ +\infty & \text{otherwise} \end{cases}.$$

Example: Bounded variation

Recall
$$\|u\|_{BV} = \|u\|_{L^1} + TV(u)$$
. Let $A: L^1(\Omega) \to L^2(\Omega)$ be continuous and
$$\mathcal{J}(u) = \begin{cases} \|u\|_{BV} & u \in BV(\Omega) \\ +\infty & \text{otherwise} \end{cases}.$$

Lower semi-continuity: TV is lower semi-continuous with respect to L^1 convergence (exercise)

Example: Bounded variation

Recall
$$\|u\|_{BV} = \|u\|_{L^1} + TV(u)$$
. Let $A: L^1(\Omega) \to L^2(\Omega)$ be continuous and
$$\mathcal{J}(u) = \begin{cases} \|u\|_{BV} & u \in BV(\Omega) \\ +\infty & \text{otherwise} \end{cases}.$$

Lower semi-continuity: TV is lower semi-continuous with respect to L^1 convergence (exercise)

Compactness of sublevel sets:

Theorem 6 (Rellich's compactness theorem)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with Lipschitz boundary, and let $(u_n)_n \subset BV(\Omega)$ be such that $\sup_n \|u_n\|_{BV} < \infty$. Then there exists $u \in BV(\Omega)$ and a subsequence $(u_{n_k})_k$ such that $u_{n_k} \to u$ in $L^1(\Omega)$.

Example: Bounded variation

Recall
$$\|u\|_{BV} = \|u\|_{L^1} + TV(u)$$
. Let $A: L^1(\Omega) \to L^2(\Omega)$ be continuous and
$$\mathcal{J}(u) = \begin{cases} \|u\|_{BV} & u \in BV(\Omega) \\ +\infty & \text{otherwise} \end{cases}.$$

Lower semi-continuity: TV is lower semi-continuous with respect to L^1 convergence (exercise)

Compactness of sublevel sets:

Theorem 6 (Rellich's compactness theorem)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with Lipschitz boundary, and let $(u_n)_n \subset BV(\Omega)$ be such that $\sup_n \|u_n\|_{BV} < \infty$. Then there exists $u \in BV(\Omega)$ and a subsequence $(u_{n_k})_k$ such that $u_{n_k} \to u$ in $L^1(\Omega)$.

Therefore, Theorem 5 guarantees strong convergence in L^1 .

Example: Total variation

What if we take $\mathcal{J}(u) = \mathrm{TV}(u)$ on domain Ω ?

Compactness of sublevel sets is problematic as $\mathcal{J}(\alpha \chi_{\Omega}) = 0$ for all $\alpha \in \mathbb{R}$, but additional compactness can come from the data fidelity term:

Example: Total variation

What if we take $\mathcal{J}(u) = \mathrm{TV}(u)$ on domain Ω ?

Compactness of sublevel sets is problematic as $\mathcal{J}(\alpha\chi_{\Omega})=0$ for all $\alpha\in\mathbb{R}$, but additional compactness can come from the data fidelity term:

Theorem 3.1 (Poincaré inequality)

Let $\Omega\subset\mathbb{R}^N$. For $u\in BV(\Omega)$, let $m(u)=\frac{1}{|\Omega|}\int_\Omega u(x)\mathrm{d}x$. Then there exists C>0 such that

$$\|u - m(u)\|_{L^p} \leqslant CTV(u), \quad \forall u \in BV(\Omega),$$

for all $p \in [1, N/(N-1)]$. This holds for p = 2 and N = 2.

Let $\Omega \subset \mathbb{R}^2$, let $A: L^1(\Omega) \to L^2(\Omega)$ be a bounded linear operator and suppose that $A\chi_{\Omega} \neq 0$.

Given u_n s.t. $\mathrm{TV}(u_n) + \frac{1}{2} \|Au_n - f\|_2^2 \leqslant C$, $|m(u_n)|$ is also uniformly bounded:

- let $w_n = m(u_n)$ and $v_n = u_n m(u_n)$. Then, $\int v_n = 0$ and $\mathrm{TV}(v_n) = \mathrm{TV}(u_n)$. So, by the Poincaré inequality, $\|v_n\|_{L^2} \leqslant C'$.
- Observe now that $C \ge \|Au_n f\|_2 \ge \|Au_n\|_2 \|f\|_2$, so $\|Au_n\|_2$ is uniformly bounded. Hence

$$C \geqslant \|Au_n\|_2 = |m(u_n)| \|A\chi_{\Omega}\|_2 - \|Av_n\|_2.$$

So, Poincaré inequality tells us that $\|u_n\|_{L^2}$ and hence $\|u_n\|_1$ is uniformly bounded, and Rellich's compactness theorem allows us to extract a L^1 convergent subsequence.

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

More on the total variation functiona

The dual perspective

Towards convergence rates

We have established convergence of a regularised solution u_{δ} to a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$ as $\delta \to 0$. We now establish results on the *speed* of convergence.

The subdifferential

For convex functionals, we can generalise the concept of a derivative for non-differentiable functions.

Definition 7

A functional $E:\mathcal{U}\to \overline{\mathbb{R}}$ is called subdifferentiable at $u\in\mathcal{U}$ if there exists an element $p\in\mathcal{U}^*$ such that $E(v)\geqslant E(u)+\langle p,\,v-u\rangle$ for all $v\in\mathcal{U}$. We call p a subgradient at u. The collection of all subgradients at u

$$\partial E(u) \stackrel{\text{def.}}{=} \{ p \in \mathcal{U}^* \; ; \; E(v) \geqslant E(u) + \langle p, v - u \rangle, \forall v \in \mathcal{U} \}$$

is called the subdifferential of E at u.

Let
$$E: \mathbb{R} \to \mathbb{R}$$
 be $E(u) = |u|$. Then, $\partial E(u) = \begin{cases} \operatorname{sign}(u) & u \neq 0 \\ [-1, 1] & u = 0 \end{cases}$

The subdifferential

- If *E* is differentiable at *u*, then $\partial E(u) \stackrel{\text{def.}}{=} \{\nabla E(u)\}$.
- Let $E: \mathcal{U} \to \overline{\mathbb{R}}$ and $F: \mathcal{U} \to \overline{\mathbb{R}}$ be proper lsc convex functions and suppose that there exists $u \in \text{dom}(E) \cap \text{dom}(F)$ such that E is continuous at u. Then $\partial(E+F) = \partial E + \partial F$.
- Let E be convex. Then, u is a minimises E if and only if $0 \in \partial E(u)$.
- If $E: \mathcal{U} \to \overline{\mathbb{R}}$ is a proper convex function and $u \in \text{dom}(E)$, then $\partial E(u)$ is a weak-* compact convex subset of \mathcal{U}^* .

Bregman distances

Convergence rates are typically derived via analysis of the *dual problem* and studied in terms of the *Bregman distances* associated with the (convex) regularisation functional \mathcal{J} .

Definition 8

Given a convex functional E, $u, v \in \mathcal{U}$ such that $E(v) < \infty$ and $p \in \partial E(v)$, the generalised Bregman distance is given by

$$\mathcal{D}_{E}^{p}(u,v) = E(u) - E(v) - \langle p, u - v \rangle. \tag{4.1}$$

Bregman distances

Convergence rates are typically derived via analysis of the *dual problem* and studied in terms of the *Bregman distances* associated with the (convex) regularisation functional \mathcal{J} .

Definition 8

Given a convex functional E, $u, v \in \mathcal{U}$ such that $E(v) < \infty$ and $p \in \partial E(v)$, the generalised Bregman distance is given by

$$\mathcal{D}_{E}^{p}(u,v) = E(u) - E(v) - \langle p, u - v \rangle. \tag{4.1}$$

Example:

For
$$E(u) = \frac{1}{2} \|u\|^2$$
, $\partial E(v) = \{v\}$, so

$$\mathcal{D}_{E}^{v}(u,v) = \frac{1}{2} \|u\|^{2} - \frac{1}{2} \|v\|^{2} - \langle v, u - v \rangle$$

Bregman distances

Convergence rates are typically derived via analysis of the *dual problem* and studied in terms of the *Bregman distances* associated with the (convex) regularisation functional \mathcal{J} .

Definition 8

Given a convex functional E, $u, v \in \mathcal{U}$ such that $E(v) < \infty$ and $p \in \partial E(v)$, the generalised Bregman distance is given by

$$\mathcal{D}_{E}^{p}(u,v) = E(u) - E(v) - \langle p, u - v \rangle. \tag{4.1}$$

Example:

For
$$E(u) = \frac{1}{2} \|u\|^2$$
, $\partial E(v) = \{v\}$, so
$$\mathcal{D}_E^v(u, v) = \frac{1}{2} \|u\|^2 - \frac{1}{2} \|v\|^2 - \langle v, u - v \rangle$$

$$= \frac{1}{2} \|u\|^2 + \frac{1}{2} \|v\|^2 - \langle v, u \rangle$$

$$= \frac{1}{2} \|u - v\|^2.$$

Convergence rates and the source condition

We say that a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$ satisfies the **source condition** if there exists $p^{\dagger} \in \mathcal{V}$ such that $A^*p^{\dagger} \in \partial \mathcal{J}(u_{\mathcal{J}}^{\dagger})$.

Theorem 4.1

Assume that the source condition is satisfied at a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$. Let $f = Au_{\mathcal{J}}^{\dagger}$ and let f_{δ} be such that $\|f_{\delta} - f\| \leqslant \delta$. Let $u_{\delta} \in \operatorname{argmin}_{u} \Phi_{\alpha, f_{\delta}}(u)$ be a regularised solution. Then,

$$D_{\mathcal{J}}^{\mathsf{v}}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) \leqslant \frac{1}{2\alpha} \left(\delta + \alpha \|p^{\dagger}\|\right)^{2}.$$

Convergence rates and the source condition

We say that a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$ satisfies the **source condition** if there exists $p^{\dagger} \in \mathcal{V}$ such that $A^*p^{\dagger} \in \partial \mathcal{J}(u_{\mathcal{J}}^{\dagger})$.

Theorem 4.1

Assume that the source condition is satisfied at a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$. Let $f = Au_{\mathcal{J}}^{\dagger}$ and let f_{δ} be such that $\|f_{\delta} - f\| \leqslant \delta$. Let $u_{\delta} \in \operatorname{argmin}_{u} \Phi_{\alpha, f_{\delta}}(u)$ be a regularised solution. Then,

$$D_{\mathcal{J}}^{\mathsf{v}}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) \leqslant \frac{1}{2\alpha} \left(\delta + \alpha \left\| p^{\dagger} \right\| \right)^{2}.$$

Idea: Use the fact that a minimiser u_{δ} satisfies $\Phi_{\alpha,f_{\delta}}(u_{\delta}) \leqslant \Phi_{\alpha,f_{\delta}}(u_{\mathcal{J}}^{\dagger})$. Result follows by rearranging and exploiting the fact that $\left\|Au_{\mathcal{J}}^{\dagger} - f_{\delta}\right\| \leqslant \delta$.

Proof.

Since u_{δ} is a minimiser,

$$\alpha \mathcal{J}(u_{\delta}) + \frac{1}{2} \|Au_{\delta} - f_{\delta}\|^{2} \leqslant \alpha \mathcal{J}(u_{\mathcal{J}}^{\dagger}) + \frac{1}{2} \|Au_{\mathcal{J}}^{\dagger} - f_{\delta}\|^{2}.$$

- LHS is equal to

$$\frac{1}{2} \left\| A u_{\delta} - f_{\delta} + \alpha p^{\dagger} \right\|^{2} + \alpha D_{\mathcal{J}}^{v} (u_{\delta}, u_{\mathcal{J}}^{\dagger}) - \frac{\alpha^{2}}{2} \left\| p^{\dagger} \right\|^{2} + \alpha \langle p^{\dagger}, f_{\delta} - f_{\dagger} \rangle.$$

■ Rearranging and by Cauchy-Schwarz:

$$D_{\mathcal{J}}^{v}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) \leqslant \frac{1}{2\alpha} \left(\delta^{2} + \alpha^{2} \left\| \boldsymbol{p}^{\dagger} \right\|^{2} + 2\alpha \left\| \boldsymbol{p}^{\dagger} \right\| \delta \right).$$

44 / 78

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

More on the total variation functional

The dual perspective

Total variation regularisation

Let us return to

$$\min_{u \in L^2(\Omega)} TV(u) + \frac{1}{2} \left\| Au - f \right\|_{L^2}^2$$

When A = Id, this is known as the ROF model (after Rudin, Osher and Fatemi who first introduced the total variation functional for image processing).

- Recall that $TV(u) = \int_{\Omega} |\nabla u|$ is well defined on $W^{1,1}(\Omega)$.
- For $u \in W^{1,1}([a,b])$, define continuous function $\tilde{u}(x) \tilde{u}(a) = \int_a^x u'(t) dt$ which coincides with u a.e.. So, functions in $W^{1,1}([a,b])$ cannot have discontinuities, and given $f \in W^{1,1}([a,b]^2)$, since $f(\cdot,x) \in W^{1,1}([a,b])$ for a.e. x, images cannot have jumps across vertical/horizontal boundaries.

Key point: is that J is well defined for a more general class of functions which can have discontinuities.

We shall see in this example that not only can $\int |\nabla u|$ be extended to a larger class of functions where edges are permitted, it is actually necessary to do so.

Consider

$$\min_{u \in W^{1,1}([0,1])} \mathcal{E}(u), \qquad \mathcal{E}(u) = \lambda \int_0^1 \left| u'(t) \right| dt + \int_0^1 \left| u(t) - g(t) \right|^2 dt,$$

where $g = \chi_{(1/2,1]}$.

We will show that this minimization problem does not have a solution in $W^{1,1}$.

Let u be a minimizer.

■ Maximum/minimum principles $u \leq 1$ a.e.:

Let $v \in \min\{u, 1\}$. Then,

- $\blacksquare v' = u'$ on $\{u < 1\}$ and v' = 0 on $\{u \ge 1\}$. Therefore, $\int |v'| \le \int |u'|$.
- Since $g \leq 1$, $||v g||^2 \leq ||u g||^2$.

So, $\mathcal{E}(v) \leqslant \mathcal{E}(u)$ and this inequality is strict if $v \neq u$. Similarly, $u \geqslant 0$ a.e..

■ 'Symmetry' Note that g(t) = 1 - g(1 - t). Let $\tilde{u} = 1 - u(1 - t)$. Then $\|\tilde{u} - g\|^2 = \|u - g\|^2$ and $\|\tilde{u}'\|_1 = \|u'\|_1$. So, $\mathcal{E}(\tilde{u}) = \mathcal{E}(u)$. Also,

$$\mathcal{E}\left(\frac{\tilde{u}+u}{2}\right)\leqslant \frac{1}{2}\mathcal{E}(\tilde{u})+\frac{1}{2}\mathcal{E}(u)=\mathcal{E}(u)$$

and by strict convexity of $\|\cdot\|_2^2$, this inequality is strict if $\tilde{u} \neq u$.

■ Let $m = \min u = u(a)$ and let $M = \max u = u(b)$. From the previous observation, M = 1 - m. Then, (assume b > a, case $a \ge b$ is similar)

$$||u'||_1 \geqslant \int_a^b |u'(t)| dt \geqslant \int_a^b u'(t) = M - m = 1 - 2m.$$

Also, since $m \le 1 - m$, we must have $m \in [0, 1/2]$.

To summarize, we have shown that $u \in [m,1-m]$ for some $m \in [0,1/2]$, u(1-t)=1-u(t), and

$$\mathcal{E}(u) \geqslant \lambda(M-m) + \int_0^{1/2} m^2 + \int_{1/2}^1 (1-M)^2 = \lambda(1-2m) + m^2.$$

The RHS is minimal when $m=\lambda$ if $\lambda\leqslant 1/2$ and m=1/2 if $\lambda\geqslant 1/2$. In the latter case, we see that $u\equiv 1/2$ achieves the minimum and is the unique minimizer.

Assume now that $\lambda < 1/2$. Then for any minimizer u, $\mathcal{E}(u) \geqslant \lambda(1 - \lambda)$. Let us construct a minimizing sequence: For $n \geqslant 2$, define

$$u_n(t) = egin{cases} \lambda & t \leqslant 1/2 - 1/n, \ rac{1}{2} + n(t - 1/2)(1/2 - \lambda) & |t - 1/2| \leqslant 1/n, \ 1 - \lambda & t \geqslant 1/2 + 1/n. \end{cases}$$

- $\int_0^1 |u_n'| = \int_0^1 u_n' = 1 2\lambda.$
- $\mathcal{E}(u_n) \leq \lambda(1-2\lambda) + \left(1-\frac{2}{n}\right)^2 \lambda^2 + \frac{2}{n} \rightarrow \lambda(1-\lambda)$ as $n \to \infty$. So $\inf_u \mathcal{E}(u) = \lambda(1-\lambda)$.

The L^1 limit of u_n is $u=\lambda\chi_{[0,1/2)}+(1-\lambda)\chi_{[1/2,1]}$, which is **not** in $W^{1,1}$. Note also that since $\int |u_n'|=1-2\lambda$ for all n, it is natural to assume that $\int |u'|$ makes sense.

Total variation regularisation

A natural extension of the functional F is to define for $u \in L^1$:

$$F(u) = \inf \left\{ \lim_{n \to \infty} \int_0^1 \left| u_n'(t) \right| \mathrm{d}t \; ; \; u_n \to u \; \text{in} \; L^1, \quad \lim_{n \to \infty} \int_0^1 \left| u_n' \right| < \infty \right\}.$$

This definition is consistent with the more standard definition of total variation thanks to the following result

Theorem 5.1

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with Lipschitz boundary, let $u \in BV(\Omega)$. Then, there exists a sequence (u_n) of functions in $C^{\infty}(\Omega) \cap W^{1,1}(\Omega)$, such that

- 1. $u_n \rightarrow u$ in L^1 .
- 2. $J(u_n) = \int_{\Omega} |\nabla u| \to J(u) = \int_{\Omega} |Du|$.

Distributional interpretation of TV

Given $u \in L^2(\Omega)$ with $\Omega \subset \mathbb{R}^n$, define $T_u : \mathcal{D}(\Omega) \stackrel{\text{def.}}{=} \mathcal{C}_c^{\infty}(\Omega) \to \mathbb{R}$ by

$$T_u(\varphi) = \int \varphi(x) u(x) \mathrm{d}x$$

This is a continuous linear form on $\mathcal{D}(\Omega)$, aka a distribution. Write $T_u \in \mathcal{D}(\Omega)'$.

The derivative of T_u are defined to be, for i = 1, ..., n

$$\partial_i T_u(\varphi) = \int \partial_i \varphi(x) u(x) dx.$$

Denote $Du = (\partial_i T_u)_{i=1}^n$.

If $TV(u)<\infty$, then $\langle Du,\, \varphi\rangle\leqslant TV(u)\, \|\varphi\|_\infty$, so Du is a continuous linear form on the space of continuous vector fields and by Riesz' representation theorem, it defines a Radon measure on Ω , and $|Du|(\Omega)=J(u)$.

Recall that for each $u \in L^1(\Omega)$, $J(u) = \sup_{p \in \mathcal{K}} \int_{\Omega} u(x) p(x) dx$ where

$$\mathcal{K} = \left\{ -\mathrm{div} \varphi \; ; \; \varphi \in \mathit{C}^{\infty}_{c}(\Omega; \mathbb{R}^{\mathit{N}}), \left\| \varphi \right\|_{\infty} \leqslant 1 \right\}.$$

Taking the closure of K in L^2 gives

$$K = \left\{ -\mathrm{div}z \; ; \; z \in L^{\infty}(\Omega,\mathbb{R}^N), \left\| z \right\|_{\infty} \leqslant 1, -\mathrm{div}z \in L^2(\Omega), z \cdot \eta_{\Omega} = 0 \right\}.$$

and since K is the largest set for which $J(u)=\sup_{p\in K}\int_{\Omega}u(x)p(x)\mathrm{d}x.$ we also have

$$K = \left\{ p \in L^2(\Omega) \; ; \; \int p(x) u(x) \mathrm{d}x \leqslant J(u), \; \forall u \in L^2(\Omega) \right\}.$$

In the definition of K, $-{
m div}z\in L^2(\Omega)$ means that there exists $\gamma\in L^2(\Omega)$ such that

$$\int_{\Omega} \gamma u = \int z \cdot \nabla u, \qquad \forall u \in C_c^{\infty}(\Omega).$$

Theorem 9

We have
$$\partial J(u) = \{ p \in K ; \langle p, u \rangle = J(u) \}$$

Proof.

If $p \in K$ and $\langle p, u \rangle = J(u)$, then for all $v \in L^2$,

$$J(v) \geqslant \langle v, p \rangle = J(u) + \langle v - u, p \rangle.$$

For the converse, if $p \in \partial J(u)$, the for all t > 0 and all $v \in L^2$,

$$tJ(v) = J(tv) \geqslant J(u) + \langle tv - u, p \rangle$$

Letting $t \to 0$ yields $J(u) \leqslant \langle p, u \rangle$.

Dividing by
$$t$$
 and letting $t \to +\infty$ yields $J(v) \geqslant \langle v, p \rangle$.

Note that $K = \partial J(0)$ and $p \in \partial J(u)$ means

$$\mathbf{p} = -\operatorname{div}(z)$$
 where $\|z\|_{\infty} \leqslant 1$ and $-\int \operatorname{div}(z)u = \int |Du| = J(u)$.

We can think of $z \cdot Du = |Du|$ so z is the vector field which is normal to the level lines of u.

TV denoising

Let's consider the ROF model

$$\min_{u \in L^2} \alpha TV(u) + \frac{1}{2} \left\| u - f \right\|_{L^2}^2.$$

Here, $A = \mathrm{Id}$ and the source condition asks that $\partial TV(u) \neq \emptyset$.

Source condition example 1

Let $C \subset \Omega$ have C^{∞} boundary and consider $f = 1_C$. Then

$$TV(1_C) = \operatorname{Per}(C) = \int_{\partial C} 1 = \int_{\partial C} \langle \eta_{\partial C}, \, \eta_{\partial C} \rangle.$$

Since $\eta_{\partial C} \in C^{\infty}(\partial C, \mathbb{R}^2)$ and $\|\eta_{\partial C}(x)\|_2 = 1$, we can extend to $\psi \in C_0^{\infty}(\Omega; \mathbb{R}^2)$ with $\sup_x \|\psi(x)\|_2 \leqslant 1$. Therefore, by the divergence theorem

$$TV(1_C) = \int_{\partial C} \langle \psi, \eta_{\partial C} \rangle = \int_C \operatorname{div}(\psi) = \langle \operatorname{div}(\psi), 1_C \rangle$$

and $\operatorname{div}(\psi) \in \partial TV(0)$. So, the source condition is satisfied.

Source condition example 2

Suppose now that $C=[0,1]^2$ and suppose that $p_0\in\partial TV(1_C)\subset L^2(\Omega)$. Then,

$$\langle p, 1_C \rangle = TV(1_C) = Per(C) = 4.$$

Since $TV(u) \geqslant \langle p_0, u \rangle$ for all u,

$$TV(1_{C\setminus C_{\varepsilon}})\geqslant \langle p_0,\, 1_{C\setminus C_{\varepsilon}}\rangle = \langle p_0,\, 1_C\rangle - \langle p_0,\, 1_{C_{\varepsilon}}\rangle$$

Source condition example 2

Suppose now that $C = [0,1]^2$ and suppose that $p_0 \in \partial TV(1_C) \subset L^2(\Omega)$. Then,

$$\langle p, 1_C \rangle = TV(1_C) = Per(C) = 4.$$

Since $TV(u) \geqslant \langle p_0, u \rangle$ for all u,

$$4-2\varepsilon+\sqrt{2}\varepsilon=TV(1_{C\setminus C_{\varepsilon}})\geqslant \langle p_0,\,1_{C\setminus C_{\varepsilon}}\rangle=\langle p_0,\,1_C\rangle-\langle p_0,\,1_{C_{\varepsilon}}\rangle=4-\langle p_0,\,1_{C_{\varepsilon}}\rangle$$

$$\frac{\varepsilon}{\sqrt{2}}\sqrt{\int_{C_{\varepsilon}}|p_0|^2}\geqslant |\langle p_0,\, 1_{C_{\varepsilon}}\rangle|\geqslant (2-\sqrt{2})\varepsilon \implies \sqrt{\int_{C_{\varepsilon}}|p_0|^2}\geqslant \sqrt{2}(2-\sqrt{2}).$$

Contradiction since $p_0 \in L^2$. Therefore $\partial J(1_C) = \emptyset$.

Convergence

Consider

$$\min_{u \in L^{2}(\Omega)} \alpha TV(u) + \frac{1}{2} \|Au - f\|_{L^{2}}.$$

Under the source condition with $v=A^*p=\operatorname{div}(z)$, we have a bound not only on the Bregman divergence $d:=J(u)-J(u_0)-\langle v,\,u-u_0\rangle$, but also on the total variation outside the saturation points of z.

Theorem 5.2

Assume that $v = A^*p \in \partial TV(u^\dagger)$ and $f = Au^\dagger$. Let $v = -{\rm div} z$ with $\|z\|_\infty \leqslant 1$ and $U_r \stackrel{\rm def.}{=} \{x \in \Omega : |z(x)| < r\}$.

$$U_r = \{x \in \Omega : |Z(x)| < 0\}$$

For each $r \in (0,1)$,

$$(1-r)\int_{U_r} |Du| \leq \frac{\delta^2}{2\lambda} + \frac{\lambda \|p\|_{L^2}^2}{2} + \delta \|p\|_{L^2}.$$

Proof.

$$d := J(u) - J(u_0) - \langle v, u - u_0 \rangle$$

$$= J(u) - J(u_0) + \langle \operatorname{div} z, u \rangle - \langle \operatorname{div} z, u_0 \rangle$$

$$= J(u) + \langle \operatorname{div} z, u \rangle \qquad \text{since } J(u_0) = \langle -\operatorname{div} z, u_0 \rangle$$

$$= J(u) - \int (z, Du) = J(u) - \int_{\Omega \setminus U_r} (z, Du) - \int_{U_r} (z, Du)$$

$$\geqslant J(u) - \int_{\Omega \setminus U_r} |Du| - r \int_{U_r} |Du| \geqslant (1 - r) \int_{U_r} |Du|.$$

The conclusion now follows by applying the upper bound on d.

Let us consider the case of denoising. Let $B_R \subset \mathbb{R}^2$ be the ball of radius R with origin 0 and let $u^{\dagger} = \chi_{B_R}$. Then let p = -div(z) where z is defined by

$$z(x) = \frac{q\left(\left||x| - R\right|\right)}{|x|} {x_1 \choose x_2}, \qquad q(s) = \max\{1 - s/\varepsilon, 0\}.$$

(In polar coordinates (r, θ) , we can write $z(r, \theta) = q(|r - R|)\binom{\cos(\theta)}{\sin(\theta)}$). One can show that $||p|| = \mathcal{O}(\varepsilon^{-1/2})$. Then, by choosing $U = \{x \in \Omega \; ; \; \operatorname{dist}(x, \partial B_R) \geqslant \varepsilon\}$, the minimizer u satisfies

$$\int_{U} |Du| \leqslant \mathcal{O}\left(\frac{\delta^{2}}{\lambda} + \frac{\lambda}{\varepsilon} + \frac{\delta}{\varepsilon}\right) = \mathcal{O}\left(\frac{\delta}{\sqrt{\varepsilon}}\right)$$

provided that $\lambda = \delta \sqrt{\varepsilon}$.

Therefore, most of the total variation of u is concentrated around ∂B_R and this points to the ability of TV regularization in dampening oscillations away from the true edge ∂B_R .

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

More on the total variation functiona

The dual perspective

The dual perspective

We have so far considered

$$\min_{u} \mathcal{J}(u) + \frac{1}{2} \left\| Au - f \right\|^{2}$$

When $\mathcal J$ is a convex functional, it is often convenient (both from a theoretical and practical perspective) to consider the dual formulation.

The convex conjugate

Let V be a real topological vector space and let V^* be its dual.

Definition 10

Given $F: V \to (-\infty, +\infty]$, its convex conjugate is $F^*: V^* \to (-\infty, +\infty]$ defined by

$$F^*(y) \stackrel{\text{def.}}{=} \sup_{x \in V} \{\langle x, y \rangle - F(x) \}.$$

- \blacksquare F^* is convex regardless of whether F is convex.
- We have the Fenchel Young inequality: $\langle x, y \rangle \leq F(x) + F^*(y)$,
- if F is convex and lower semi-continuous, then $F^{**} = F$.
- if F is convex, then $y \in \partial F(x)$ if and only if $F(x) + F^*(y) = \langle x, y \rangle$.

The convex conjugate – Examples

- (a) if $F(x) = \frac{1}{2} ||x||^2$ and V is a Hilbert space, then $F^*(y) = \frac{1}{2} ||y||^2$:
 - $F^*(y) = \sup_{x} \langle x, y \rangle \frac{1}{2} ||x||^2 \leqslant \frac{1}{2} ||y||^2.$
 - Setting $x \stackrel{\text{def.}}{=} y$ in the supremum above yields $F^*(y) \geqslant \frac{1}{2} \|y\|^2$.
- (b) If F(x) = ||x|| and $||\cdot||_*$ is its dual norm, then

$$F^*(y) = egin{cases} 0 & \|y\|_* \leqslant 1 \ +\infty & ext{otherwise}. \end{cases}$$

(c) If $F = \iota_K$ (takes value 0 for $x \in K$ and $+\infty$ otherwise) with K being a convex set, then $F^*(y) = \sup_{x \in K} \langle x, y \rangle$.

Absolutely one-homogeneous functionals

A functional $E:\mathcal{U}\to \bar{\mathbb{R}}$ is absolutely one-homogeneous if $E(\lambda u)=|\lambda|\,E(u)$ for all $\lambda\in\mathbb{R}$ and $u\in\mathcal{U}$. Clearly E(0)=0.

Examples: $\|\cdot\|_p$, the total variation functional.

- Let E be convex, absolutely one-homogeneous and let $p \in \partial E(u)$. Then $E(u) = \langle p, u \rangle$.
- Let E be proper, convex, lsc, absolutely one-homogeneous. Then, E^* is the characteristic function of the convex set $\partial E(0)$.
- for any $u \in \mathcal{U}$, $p \in \partial E(u)$ if and only if $p \in \partial E(0)$ and $E(u) = \langle p, u \rangle$.

Let V, Y be real topological vector spaces with duals V^* and Y^* . Let $y \in Y$ and $b_j \in \mathbb{R}$ for j = 1, ..., M. Consider **the primal problem**:

$$\min_{x \in V} F_0(x) \text{ subject to } Ax = y, \tag{6.1}$$

$$F_j(x) \leqslant b_j, \ j \in [M], \tag{6.2}$$

where $F_0:V \to (-\infty,+\infty]$ is called the objective function and $F_j:V \to (-\infty,+\infty]$ for $j\in [M]$ are called the constraint functions. $A:V \to Y$ is a continuous linear functional. The set $K\stackrel{\mathrm{def.}}{=} \{x\in V\; ;\; Ax=y,F_j(x)\leqslant b_j\}$ is called the admissible set.

The Lagrange function is defined for $x \in V$, $\xi \in Y^*$ and $\nu \in \mathbb{R}^M$ with $\nu_\ell \geqslant 0$ for all $\ell \in [M]$ by

$$L(x,\xi,\nu)\stackrel{\text{def.}}{=} F_0(x) + \langle \xi, Ax - y \rangle + \sum_{\ell=1}^M \nu \left(F_\ell(x) - b_\ell \right).$$

The variables ξ and ν are called the **Lagrange multipliers**.

The Lagrange dual function is defined as

$$H(\xi, \nu) \stackrel{\text{def. inf.}}{=} \inf_{x \in V} L(x, \xi, \nu), \qquad \xi \in Y^*, \ \nu \in \mathbb{R}^M_{\geqslant 0}.$$

If $x \mapsto L(x, \xi, \nu)$ is unbounded from below, then we write $H(\xi, \nu) = -\infty$.

Properties of the dual function H:

- The dual function is always concave since it is the pointwise infimum of a family of affine functions.
- We have $H(\xi, \nu) \leq \inf_{x \in K} F_0(x)$ for all $\xi \in Y^*$ and $\nu \in \mathbb{R}^M_{\geq 0}$. Indeed, we have $H(\xi, \nu) \leq \inf_{x \in K} L(x, \xi, \nu)$, and note that given any $x \in K$, we have Ax y = 0 and $F_\ell(x) b_\ell \leq 0$, so $L(x, \xi, \nu) \leq F_0(x)$.

So, $H(\xi, \nu)$ serves as a lower bound for the infimum of F_0 over K, and since we want this lower bound to be as tight as possible, it makes sense to consider

$$\sup_{\xi \in Y^*, \nu \in \mathbb{R}^M} H(\xi, \nu) \text{ subject to } \nu_{\ell} \geqslant 0, \ \ell \in [M]. \tag{6.3}$$

This optimisation problem is called the **dual problem** and (6.1) is called the **primal problem**.

- If D^* is the supremum of (6.3) and P^* is the infimum of (6.1), then we have in general $D^* \leq P^*$ (this is called **weak duality**). and $P^* D^*$ is called the duality gap.
- When $D^* = P^*$, then we say we have **strong duality**.

Consider now $\inf_{x\in V} E(Ax) + F(x)$, where $E: Y \to (-\infty, +\infty]$ and $F: V \to (-\infty, +\infty]$ are convex functionals, and $A: V \to Y$ is a continuous linear operator. This is equivalent to

$$\inf_{z \in Y, x \in V} E(z) + F(x)$$
 subj. to $Ax = z$

the Lagrange dual is for $\xi \in Y^*$ as

$$H(\xi) = \inf_{x,z} \{ E(z) + F(x) + \langle \xi, Ax - z \rangle \}$$

$$= \inf_{x,z} \{ E(z) + F(x) + \langle A^* \xi, x \rangle - \langle \xi, z \rangle \}$$

$$= -\sup_{z \in Y} \langle \xi, z \rangle - E(z) - \sup_{x \in V} \langle -A^* \xi, x \rangle - F(x)$$

$$= -E^*(\xi) - F^*(-A^* \xi).$$

So, the dual problem is

$$\sup_{\xi \in Y^*} -E^*(\xi) - F^*(-A^*\xi)$$

Theorem 6.1 (Strong duality)

Suppose that E and F are proper convex functionals, there exists $u_0 \in V$ such that $F(u_0) < \infty$, $E(Au_0) < \infty$ and E is continuous at Au_0 . Then, strong duality holds and there exists at least one dual optimal solution. Moreover, if p^* is a primal optimal solution and d^* is a dual optimal solution, then

$$Ap^* \in \partial E^*(d^*)$$
 and $A^*d^* \in -\partial F(p^*)$

We are interested in the case

$$\min_{u} \frac{1}{2} \|Au - f_{\delta}\|^2 + \alpha \mathcal{J}(u)$$

So, $E(Au) = \frac{1}{2} ||Au - f_{\delta}||^2$ and $F(u) = \alpha \mathcal{J}(u)$.

- $\blacksquare E^*(v) = -\langle v, f_{\delta} \rangle + \frac{1}{2} ||v||^2.$
- If \mathcal{J} is absolute one-homogeneous, then $\mathcal{J}^*(v) = \iota_K$ where $K = \partial J(0)$, and $(\alpha J)^*(v) = \alpha J^*(\alpha^{-1}v)$.

Therefore, the dual problem is

$$\sup_{\mathbf{v}}\langle \mathbf{v}, f_{\delta}\rangle - \frac{1}{2} \|\mathbf{v}\|^{2} + \iota_{K} \left(\frac{A^{*}\mathbf{v}}{\alpha} \right) = \sup_{\mathbf{v}: A^{*}\mathbf{v} \in \partial \mathcal{J}(\mathbf{0})} \alpha \left(\langle \mathbf{v}, f_{\delta} \rangle - \frac{\alpha}{2} \left\| \alpha \mathbf{v} \right\|^{2} \right). \tag{6.4}$$

If p_δ and u_δ are dual and primal solutions, then the optimality conditions take the form

$$A^*p_\delta \in \partial \mathcal{J}(u_\delta)$$
 and $p = \frac{f_\delta - Au_\delta}{\alpha}$

NB: the dual solution is unique since it is the projection onto a closed convex set.

The limit primal and dual problems

Formal limits problems as $\delta \to 0$ are

$$\inf_{u:Au=f} \mathcal{J}(u) = \inf_{u \in \mathcal{U}} \iota_{\{f\}}(Au) + \mathcal{J}(u)$$
(6.5)

and

$$\sup_{p:A^*p\in\partial\mathcal{J}(0)}\langle f,\,p\rangle = -\inf_p\langle -f,\,p\rangle + \iota_{\partial J(0)}(A^*p) \tag{6.6}$$

Lemma 11

For $J: \mathcal{U} \to [0, \infty]$ absolute one-homogeneous and coercive, we have $0 \in \operatorname{int}(\partial J(0))$.

Proof.

Indeed, if not, then there exists e_n and u_n with $\|e_n\| \to 0$ such that $J(u_n) < \langle e_n, u_n \rangle$. Since J is one-homogeneous, we can assume that $\|u_n\| = 1$. Therefore, $\lim_{n \to \infty} J(u_n) \leqslant \lim_{n \to \infty} \|e_n\| \|u_n\| = 0$. Letting $\lambda_n = 1/J(u_n)$, we have $\|\lambda_n u_n\| \to +\infty$ but $J(\lambda_n u_n) = 1$. Contradiction since J is coercive.

Primal-Dual relations

- We can apply Theorem 6.1 to (6.6) with $F = \iota_{\partial J(0)}$ and $E = \langle -f, \cdot \rangle$. Cleary, E(0) = 0, $F(A^*0) = 0$, and F is continuous at 0. In this case, we have strong duality and (6.5) has at least one solution.
- However, unlike the case where $\alpha > 0$, there is no guarantee that a dual solution to (6.6) exists, and it may not be unique if it does exist.
- If a dual solution p exists, then it is related to any primal solution u by $A^*p \in \partial J(u)$.

What is the behaviour of p_{δ} as $\delta \to 0$?

The source condition implies dual convergence

Theorem 6.2

Suppose that the source condition holds at a \mathcal{J} -minimising solution $\mathfrak{u}_{\mathcal{J}}^{\dagger}$. Then, p_{α} the solution to (6.4) with data f is uniformly bounded in α . Moreover, $p_{\alpha} \to p^{\dagger}$ strongly in \mathcal{V} as $\alpha \to 0$, where p^{\dagger} is a solution to (6.6) with smallest norm.

Proof.

■ Let p_{α} be a solution to to (6.4) with $f_{\delta} = f$, we have

$$\langle f, p_{\alpha} \rangle - \frac{\alpha}{2} \|p_{\alpha}\|^2 \geqslant \langle f, p^{\dagger} \rangle - \frac{\alpha}{2} \|p^{\dagger}\|^2,$$
 (6.7)

and p^{\dagger} being a solution to (6.6) implies that $\langle f, p^{\dagger} \rangle \geqslant \langle f, p_{\delta} \rangle$. So, $\|p^{\dagger}\| \geqslant \|p_{\alpha}\|$.

- We may extract a subsequence such that $p_{\alpha_{n_k}}$ weakly converges to p_* (recall that the closed unit ball of a Hilbert space is weakly sequentially compact). Taking the limit of $\lambda \to 0$ in (6.7) yields $\langle f, p_* \rangle \geqslant \langle y, p^{\dagger} \rangle$.
- Note that $A^*p_{\alpha_{n_k}}$ converges weakly to A^*p_* , and so $A^*p_* \in \partial \mathcal{J}(0)$ (since this is a weakly closed set). So, p_* is a solution to (6.6).

The source condition implies dual convergence

Proof.

■ Finally, p_* is the solution of minimal norm since

$$\|p_*\| \leqslant \liminf_k \|p_{\alpha_{n_k}}\| \leqslant \|p^{\dagger}\|,$$

and hence, $p_* = p^\dagger$, $\left\| p_{\alpha_{n_k}} \right\| \to \left\| p^\dagger \right\|$ and $p_{\alpha_{n_k}} \to p_0$ strongly in \mathcal{H} . This implies $\lim_{\delta \to 0} \left\| p_\alpha - p^\dagger \right\| = 0$, since otherwise, we can extract a subsequence p_{α_k} such that $\left\| p_{\alpha_k} - p^\dagger \right\| > \varepsilon$ and by the above argument, extract a further subsequence which converges strongly to p^\dagger .

Note: since the solution to (6.4) with f_{δ} is $P_{K}(f_{\delta}/\alpha)$ the orthogonal projection onto $\{p : A^{*}p \in \partial \mathcal{J}(0)\}$, we have

$$\|p_{\alpha}-p_{\delta}\|=\|P_{K}(f/\alpha)-P_{K}(f_{\delta}/\alpha)\|\leqslant \delta/\alpha\leqslant C.$$

So, $\|p_\delta\|$ is also uniformly bounded in δ and converges to p^\dagger as $\delta/\alpha(\delta) \to 0$.

The minimal norm certificate

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha, \delta \to 0$ (with $\delta/\alpha \leqslant c$). This often means that A^*p^{\dagger} control the structural properties of $u_{\alpha,\delta}$ for small α and δ .

Example Let $\mathcal{J} = \|\cdot\|_1$ in \mathbb{R}^n . Suppose that $A^*p^{\dagger} \in \partial J(u^{\dagger})$ satisfies $\|(A^*p^{\dagger})_{S^c}\|_{\infty} < 1$ for $S \stackrel{\text{def.}}{=} \operatorname{Supp}(u)$. Then $\operatorname{Supp}(u_{\alpha,\delta}) = S$.

- $A^*p \in \partial J(u)$ means that $||A^*p||_{\infty} \leq 1$ and $(A^*p)_S = \text{sign}(u_S)$.
- If $\|(A^*p^{\dagger})_{S^c}\|_{\infty} < 1$, then $\|(A^*p_{\alpha,\delta})_{S^c}\|_{\infty} < 1$ for all α, δ sufficiently small. This means $\operatorname{Supp}(u_{\alpha,\delta}) \subseteq S$.
- Since we have convergence of $u_{\alpha,\delta}$ to u, we actually have $\operatorname{Supp}(u_{\alpha,\delta}) = S$.

Similar notions of structural stability (stability of level curves) for $\mathcal{J}=TV$.

We studied variational regularisers of the form

$$R_{\alpha}(f) = \operatorname{argmin}_{u} \alpha \mathcal{J}(u) + \frac{1}{2} \|Au - f\|^{2}.$$

which is a natural generalisation of Tikhonov regularisation.

- This is a convergent regularisation under appropriate continuity properties of A, \mathcal{J} is proper, lsc with compact sublevel sets and $\delta^2/\alpha(\delta) \to 0$.
- We introduced a source condition for studying convergence rates:
 - this gives convergence rates in terms of Bregman distances under a source condition.
 - For convex regularisers, we saw how to reformulate using the dual problem. The source condition is simply saying that the limit dual problem $(\alpha \to 0)$ has a solution.
 - The source condition guarantees dual convergence, and this can provide finer notions of convergence.