Computer Science Department University of Crete

CS458: Introduction to Cryptography Project: Transition Framework for PQC

Deadline: 31/01/2024, 23:59

Notes: You will have approximately **2 months** to complete the project. There will be **no extension**. The project accounts for **30%** of the overall grade. It can be done in **teams of up to 4 people**. You are allowed to use **AI tools** or code found online to build a complete system. At the end, there will be an **oral examination** and similarity checking. Due to the workload required, you should **start early** on the necessary research as well as the development.

Introduction

The rise of quantum computing presents a critical challenge to existing cryptographic systems. This project focuses on building a **crypto agility framework** designed to facilitate seamless transition of Post-Quantum Cryptography (PQC) algorithms into existing infrastructures. Through this project, students will:

- 1. Develop an understanding of cryptographic agility
- 2. Conduct cryptographic inventory scans
- 3. Risk assess and prioritize quantum-vulnerable systems
- 4. Demonstrate PQC transition strategies
- 5. Design and implement a crypto agility simulation
- 6. Review standards and guidelines to ensure interoperability and compliance
- 7. Develop a phased migration roadmap

Project Structure

Part 1: Preparatory Phase (Week 1–2)

- Goal: Understand the basics of PQC and cryptographic agility.
- Tasks:
 - Study preparatory material (NIST guidelines, PQC Migration Handbook)
 - o Identify quantum-vulnerable cryptographic primitives
 - o Familiarize with tools and compliance standards
- Deliverables:
 - o A chapter in your report summarizing initial findings and key terms

Part 2: Cryptographic Inventory and Risk Assessment (Week 3–4)

- Goal: Build a tool to identify and prioritize quantum-vulnerable assets
- Tasks:
 - o Develop a database or software to track cryptographic assets
 - o Implement a risk assessment module using prioritization algorithms

• Deliverables:

- o A working cryptographic inventory tool with a demonstration video
- A chapter in your report summarizing findings

Part 3: Migration Planning (Week 5–6)

- Goal: Create a phased roadmap for PQC transition
- Tasks:
 - o Design a step-by-step migration plan
 - o Include considerations for business continuity and interoperability

• Deliverables:

o A chapter in your report summarizing a migration roadmap with example use cases (e.g., an SME)

Part 4: Simulator Development (Week 7–8)

- Goal: Develop a simulator to test PQC transition strategies
- Tasks:
 - Simulate quantum-vulnerable systems and transition scenarios
 - o Include risk prioritization and compliance monitoring in the simulation
 - o Conduct a case study simulating PQC adoption in an SME environment

• Deliverables:

- o A functional simulator with a user guide
- A chapter in your report will be the simulator's user guide
- A chapter in your report discussing the case study

Output

1. **Report**: Detailed documentation, as described above

2. **Presentation**: Summary of the project for oral defense

3. **Software**: Inventory tool, simulator

Indicative Timetable & Rubric

Week	Phase	Criteria	Weight (%)	Description
1 - 2	Preparatory Phase	Initial Understanding	5	Demonstrates understanding of cryptographic
				agility and PQC fundamentals
		Research Quality	5	Includes well-documented findings from
		nesearch Quanty	3	preparatory readings.
3 - 4	Crypto Inventory & Assessment	Tool Functionality	25	Accurate and functional inventory tool that
				identifies and tracks assets
		Risk Prioritization	5	Clear, logical, and correct prioritization of
				quantum-vulnerable assets
5 - 6	Migration Planning	Roadmap Clarity	5	Well-structured, actionable, and realistic
				migration roadmap
		Business Continuity	5	Considers operational and business priorities
		business Continuity	J	during migration
7 - 8	Simulator Development	Simulation Accuracy	25	Valid representation of PQC transition scenarios
				and risk assessments
		User Guide Quality	5	Clear and practical instructions for using the
				simulator
9 - 10	Case Study	Case Study Insights	10	Comprehensive case study report with real-
				world applicability.
	Overall	Presentation Quality	5	Effective communication of the project through
				presentations and reports.
		Team Collaboration	5	Evidence of teamwork and fair distribution of
				tasks.
			100	

Instructions on How AI Tools Can Help

AI tools can greatly enhance efficiency and creativity in this project. Here are phase-specific instructions:

Preparatory phase

- **Literature review**: Use AI tools (e.g., ChatGPT or similar) to summarize key points from NIST guidelines, the PQC Migration Handbook, and other standards
- **Understanding concepts**: Ask AI for clarifications on terms like cryptographic agility, quantum-safe algorithms, and interoperability

Inventory & Assessment

- Code suggestions: Use AI coding assistants like GitHub Copilot or ChatGPT to write functions for asset identification and tracking
- **Risk analysis**: Generate risk matrices or models based on inputs, such as asset vulnerabilities and threat levels

Migration Planning

- Roadmap creation: Seek AI input for drafting migration phases and aligning them with business continuity goals
- **Document formatting**: Automate the creation of professional-looking documents for the roadmap using templates or AI-based tools

Simulator Development & Case Study

- **Scenario modeling**: Use AI to simulate system responses to quantum threats and develop interactive scenarios
- **Debugging**: Leverage AI to troubleshoot simulation code and suggest optimizations
- Case study analysis: Use AI to draft sections of the case study, including cost breakdowns and impact analyses, based on your inputs

General use

- Collaboration tools: Utilize AI for task delegation, tracking progress, and maintaining team communication.
- **Presentation preparation**: Create slide content or draft talking points for the final presentation.
- **Code checking**: Validate or optimize code using AI tools for enhanced efficiency.

Guidelines for ethical use of AI

- 1. **Transparency**: Always cite AI-generated content, whether text, code, or visualizations.
- 2. **Supplement, not replace**: Use AI as a helper but ensure original understanding and critical thinking.
- 3. **Plagiarism check**: Run all AI-generated content through plagiarism tools to ensure originality.
- 4. **Collaboration**: Share AI findings within the team to foster mutual learning and avoid over-reliance by individuals

References

- Wikipedia
 - o https://en.wikipedia.org/wiki/Cryptographic_agility
 - o https://en.wikipedia.org/wiki/Harvest_now,_decrypt_later
 - o https://en.wikipedia.org/wiki/Post-quantum_cryptography
 - o https://en.wikipedia.org/wiki/Cryptographic_primitive
- Cryptosense, Cryptographic Inventory
 - https://www.youtube.com/watch?v=91dMLnCv5hQ&list=PLA-8aGQm6tkL6PPTbdg6cy74x7TWFFU3V&ab_channel=Cryptosense (6 short videos)
 - o https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWP0kj
- Cryptographic Agility
 - o https://www.youtube.com/watch?v=8pGJVTekDyM&ab_channel=RS AConference

• Guidelines

o ...