Av2 - 2° Semestre de 2022

Avaliação 2 - Elementos de Sistemas

Pontos HW	Pontos SW
40	10

- Avaliação individual.
- 80 min total.
- Ficar no blackboard durante a prova.
- Fazer commit ao final de cada questão.
- Lembre de dar push ao final.

Para testar basta descomentar o módulo que deseja validar no arquivo config_testes.txt e executar o comando python3 testeHW.py Ou ./testeHW.py .

1. Lógica combinacional - Codificador

Pontos HW	Pontos SW
15	0

Um codificador é um circuito que compacta várias entradas binárias em um número menor de saídas. A saída de um codificador de prioridade, que pode ser usado em um sistema embarcado, é a representação binária do índice da linha ativada mais significativa, começando do zero. O codificador de prioridade é usado para controlar pedidos de interrupção.

As entradas do codificador são quatro linhas de interrupção (I3, I2, I1 e I0) e ele possui três saídas: P1 e P0, que formam um número binário de 2 bits que indica o número da entrada ativada que possui maior prioridade, e V que indica se há alguma interrupção.

A tabela-verdade a seguir mostra o funcionamento do codificador.

I3	I2	I1	IO	P1	P0	V
0	0	0	0	X	X	0
	\cap	\cap	1	0	0	1

1 of 4 13/10/2022 20:59

U	U	U	1	U	U	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

 $\{width=300\}$

Implementação

Implemente as três saídas no arquivo src/Encoder.vhd.

Lembre de descomentar o módulo no arquivo config_testes.txt e testar com ./testeHW.py

Rubrica para avaliação:

Pontos HW	Descritivo
15	As três saídas implementadas corretamente
10	Duas saídas implementadas corretamente
5	Apenas saída V implementada corretamente

P0 <= I3 or (not(I2) and I1); P1 <= I2 or I3; V <= I0 or I1 or I2 or I3;

2. Lógica combinacional - Teorema de De Morgan

Pontos HW	Pontos SW
5	0

Prove o Teorema de De Morgan para um função com três variáveis de entrada utilizando VHDL.

q0 <= not(a and b and c); q1 <= not (a) or not (b) or not (c);

Implementação

Implemente as duas saídas no arquivo src/teorema.vhd, sendo uma delas para uma nand de três entradas e a outra para a aplicação do Teorema de De Morgan à nand.

Lembre de descomentar o módulo no arquivo config_testes.txt e testar com ./testeHW.py

2 Lágica combinacional VUDI

2 of 4 13/10/2022 20:59

3. Lugica cullivillacional - VIIDL

Pontos HW	Pontos SW
20	0

Considere os códigos vhdl dos arquivos src/blocoX.vhd e src/blocoY.vhd.

Questões:

- 1. Desenhe o circuito lógico correspondente ao src/blocoX.vhd utilizando componentes combinacionais e salve como figura na pasta src/.
- 2. Explique o funcionamento do circuito do blocoX (responda no arquivo funcao blocoX.txt). Se e=1, a saida é d (a + b). Se e=0, a saida é d b not(c)
- 3. Deseja-se implementar o blocoY na ULA do curso, ligando as entradas do bloco às entradas da ULA e a saída do bloco à saída qx da ULA. Implemente essa modificação no arquivo src\ALU.vhd. Apenas inclua a linha referente à esta modificação bY: blocoY port map(a => y, b => x, q => qx);
- 4. Qual a função realizada pelo circuito do blocoY (responda no arquivo função blocoY.txt)? compara se as entradas são iguais

Lembre de descomentar o módulo no arquivo config_testes.txt e testar com ./testeHW.py

- -> Dica: Para descobrir a função, verifique em que condições a saída q vai para HIGH.
- -> Info: Várias arquiteturas podem ser declaradas em um mesmo arquivo vhd, como é o caso do blocoX.

Rubrica para avaliação:

Pontos HW	Descritivo
5	Cada item solicitado na questão

4. Identificação de erro

Pontos HW	Pontos SW
0	10

A figura a seguir apresenta as curvas obtidas no GTKWave como resultado da simulação do módulo Mux8Way16.vhd . Entretanto, esse módulo não passou nos testes. A partir das curvas fornecidas:

1 Identifique o intervalo de tempo em que o erro ocorre

3 of 4 13/10/2022 20:59

- i. identinque o intervaio de tempo em que o emo ocorre
- 2. Descreva qual seria o resultado esperado

 $\{width=300\}$

Resolução

Responda as questões no arquivo src/erro_Mux8Way16.txt.

Rubrica para avaliação:

Pontos SW	Descritivo
10	Intervalo de tempo identificado e resultado esperado descrito corretamente.
5	Apenas o intervalo de tempo foi identificado corretamente.

4 of 4