Training Support Vector Machines on Multiprocessors and GPUs

鄧偉祥

10567212

林翰緯

0456808

Outline

- SVM
 heuristic instruction
 math
 SMO algorithm
 serial version profiling
- MNIST database data format
- MPI flow chart results
- CUDA strategies results
- References

SVM - heuristic instruction

- Support Vector Machine
- Optimal margin classifier
- Decision boundary

$$w^T x + b = 0$$

• Solve w^T and b

SVM - heuristic instruction

- Support Vector Machine
- Optimal margin classifier
- Decision boundary

$$w^T x + b = 0$$

• Solve w^T and b

Support vectors

SVM - heuristic instruction

Examples:

SVM - math

- $min_{w,b} \frac{1}{2} ||w||^2$ s. t. $y^{(i)} (w^T x^{(i)} + b) \ge 1, i = 1, ..., m$
- $max_{\alpha} W(\alpha) = \sum_{i=1}^{m} \alpha_{i} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j} \langle x^{(i)}, x^{(j)} \rangle$ $s. t. \alpha_{i} \geq 0, i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$

•
$$w^T x + b = (\sum_{i=1}^m \alpha_i y^{(i)} x^{(i)})^T x + b$$

= $\sum_{i=1}^m \alpha_i y^{(i)} \langle x^{(i)}, x \rangle + b$

SVM - math

- $min_{w,b} \frac{1}{2} ||w||^2$ s. t. $y^{(i)} (w^T x^{(i)} + b) \ge 1, i = 1, ..., m$
- $max_{\alpha} W(\alpha) = \sum_{i=1}^{m} \alpha_{i} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_{i} \alpha_{j} \langle x^{(i)}, x^{(j)} \rangle$ s. t. $\alpha_{i} \geq 0$, i = 1, ..., m Input: training set $x^{(i)}$, $y^{(i)}$ $\sum_{i=1}^{m} \alpha_{i} y^{(i)} = 0$ Output: α_{i} , b
- $w^T x + b = (\sum_{i=1}^m \alpha_i y^{(i)} x^{(i)})^T x + b$ Input: test set x, y $= \sum_{i=1}^m \alpha_i y^{(i)} \langle x^{(i)}, x \rangle + b$ Output: prediction accuracy

SVM – SMO algorithm

Coordinate ascent


```
Loop until convergence: { For i = 1, ..., m {  \alpha_i = \arg \max_{\widehat{\alpha}_i} W(\alpha_1, \ldots, \alpha_{i-1}, \widehat{\alpha}_i, \alpha_{i+1}, \ldots, \alpha_m)  } }
```

SVM – SMO algorithm

Coordinate ascent

BUT

$$\begin{aligned} \max_{\alpha} W(\alpha) &= \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle \\ s.t. & \alpha_i \geq 0, i = 1, \dots, m \\ & \sum_{i=1}^{m} \alpha_i y^{(i)} = 0 \end{aligned}$$

We can't make any change to α_1 without violating this constraint

Repeat until convergence: {

- 1. Select some pair α_i and α_j to update next
- 2. Reoptimize $W(\alpha)$ with respect to α_i and α_j , while holding all the other α_k 's $(k \neq i, j)$ fixed.

SVM – SMO algorithm

Algorithm 1 Sequential Minimal Optimization

```
Input: training data x_i, labels y_i, \forall i \in \{1..l\}
Initialize: \alpha_i = 0, f_i = -y_i, \forall i \in \{1..l\}
Compute: b_{high}, I_{high}, b_{low}, I_{low}
Update \alpha_{I_{high}} and \alpha_{I_{low}}
```

repeat

Update
$$f_i$$
, $\forall i \in \{1..l\}$
Compute: b_{high} , I_{high} , b_{low} , I_{low}
Update $\alpha_{I_{high}}$ and $\alpha_{I_{low}}$
until $b_{low} \leq b_{high} + 2\tau$

$$f_{i}' = f_{i} + \left(\alpha_{I_{high}}' - \alpha_{I_{high}}\right) y^{(I_{high})} \left\langle x^{(i)}, x^{(I_{high})} \right\rangle$$
$$+ \left(\alpha_{I_{low}}' - \alpha_{I_{low}}\right) y^{(I_{low})} \left\langle x^{(i)}, x^{(I_{low})} \right\rangle$$

SVM – serial version profiling

Algorithm 1 Sequential Minimal Optimization

until $b_{low} \leq b_{high} + 2\tau$

```
Input: training data x_i, labels y_i, \forall i \in \{1..l\}
Initialize: \alpha_i = 0, f_i = -y_i, \forall i \in \{1..l\}
Compute: b_{high}, I_{high}, b_{low}, I_{low}
Update \alpha_{I_{high}} and \alpha_{I_{low}}
repeat

Update f_i, \forall i \in \{1..l\} >99%

Compute: b_{high}, I_{high}, b_{low}, I_{low}
Update \alpha_{I_{high}} and \alpha_{I_{low}}
Update a_{I_{high}} and a_{I_{low}}
Update a_{I_{high}} and a_{I_{low}}
Update a_{I_{high}} and a_{I_{low}}
Update a_{I_{high}} and a_{I_{low}}
```

MNIST database – data format

 $[0\ 0\ 0\ 0\ ...\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ ...\ 0.2157\ 0.5333\ ...\ 0\ 0\ ...]$ $28 \times 28 = 784$ dimensional vector

60000 handwritten digits for training 10000 for testing

	10000 training set	60000 training set
classification	2 or 5	Even or odd

MPI - flow chart

MPI - Serial Code Structure

```
while(DualityGap > prob->tau * ABS(Dual) && numChanged != 0)
       a1 old = prob->alphas[I up];
       a2 old = prob->alphas[I low];
       y1 = prob->y[I up];
       y2 = prob->y[I low];
       F1 = Err[I up];
       F2 = Err[I low];
       s1 = seconds();
       numChanged = computeNumChaned(prob, I_up, I_low, a1_old, a2_old, y1, y2, F1, F2, &Dual, &a1, &a2);
       t1 += (seconds() - s1);
       prob->alphas[I up] = a1;
       prob->alphas[I low] = a2;
       s2 = seconds();
       for (i = 0; i < prob->size; i++) {
               Err[i] += (a1 - a1 old) * y1 * rbf kernel(prob, I up, i)
                       + (a2 - a2 old) * y2 * rbf kernel(prob, I low, i);
       t2 += (seconds() - s2);
       s3 = seconds();
       computeBupIup(Err, prob, &b up, &I up);
       computeBlowIlow(Err, prob, &b_low, &I_low);
       prob->b = (b low + b up) / 2;
       t3 += (seconds() - s3);
       s4 = seconds();
       DualityGap = computeDualityGap(Err, prob);
       t4 += (seconds() - s4);
       num iter++;
```

MPI - Code Structure

```
MPI Bcast(Err, prob->size, MPI FLOAT, 0, MPI COMM WORLD);
for (i=0; i<CLUSTER SIZE; i++)
        clusterErr[i] = Err[i + my rank*CLUSTER SIZE];
syncLoopParam(&L, numChanged, Dual, DualityGap);
while(L.DualityGap > prob->tau * ABS(L.Dual) && L.numChanged != 0)
        if (my rank == 0) {
                . . . . .
                s2 = seconds();
        syncParam(&P, a1, a1 old, a2, a2 old, y1, y2, I up, I low);
        for (i = 0; i < CLUSTER SIZE; i++) {</pre>
                clusterErr[i] += (P.a1 - P.a1 old) * P.y1 * rbf kernel(prob, P.I up, i + my rank*CLUSTER SIZE)
                        + (P.a2 - P.a2 old) * P.y2 * rbf kernel(prob, P.I low, i + my rank*CLUSTER SIZE);
        MPI Gather(clusterErr, CLUSTER SIZE, MPI FLOAT, Err, CLUSTER SIZE, MPI FLOAT, 0, MPI COMM WORLD);
        if (my rank == 0) {
                t2 += (seconds() - s2);
        syncLoopParam(&L, numChanged, Dual, DualityGap);
```

MPI – results

MPI – results

MPI – results

		2P	4P
1	speedup	2.12	3.92

Class	LIBSVM	Sequential	Parallel SMO					
		SMO	1P	2P	4P	8P	16P	30P
0	2931.668	3597.97	3948.83	1862.49	1006.46	483.51	283.19	210.10
1	2753.418	3717.91	3326.05	1845.33	895.45	462.50	266.70	196.09
2	5160.932	5644.19	5595.01	2781.18	1302.27	656.56	372.72	248.32
3	5737.956	6021.50	5404.18	2749.00	1330.94	703.06	399.22	271.97
4	5145.859	6044.60	6143.85	2771.65	1544.05	719.86	400.72	274.08
5	4825.642	5568.70	5529.62	2551.38	1408.74	655.09	378.62	267.57
6	3448.498	4232.65	4226.76	2099.81	973.81	491.43	294.33	194.78
7	5421.564	5788.88	5796.86	3124.36	1467.97	731.57	412.99	292.19
8	6565.783	7183.05	7243.13	3321.72	1800.28	822.35	468.53	314.70
9	7642.706	8033.80	7960.56	3645.48	1844.40	932.33	554.03	353.78
Averaged	4963.403	5583.325	5517.485	2675.24	1357.437	665.826	383.105	262.358

L.J. Cao, et al.

"Parallel sequential minimal optimization for the training of support vector machines".

Matrix with size x size

Strategy: pre-calculate this matrix then use GPU to accelerate matrix multiplication

It works!
For 10000 training data,
serial version takes
181.48 second while
CUDA version takes 5.16

Speedup is 35.2

second.

```
[u10567212@gpuws-sslab CUDA]$ ./modified_SMO train-mnist-10000 train-mnist-10000-s.model 10000 784 1 0.001 0.001
computeNumChaned : 0.027730 secs
update f_i : 180.890815 secs
update b_up, b_low : 0.365614 secs
computeDualityGap : 0.194550 secs
b = 0.203094
The total elapsed time is 181.479650 seconds
total sv: 1366

[u10567212@gpuws-sslab CUDA]$ ./mat_modified_SMO train-mnist-10000 train-mnist-10000-matrix-cuda.model 10000 784 1 0.001 0.001
b = 0.048123
total sv: 1366
The total elapsed time is 5.157143 seconds
```

It works!

For 10000 training data, serial version takes

181.48 second while

CUDA version takes 5.16

second.

Speedup is 35.2

But... it needs a amount of memory, can't apply for 60000 training data!

```
[u10567212@gpuws-sslab CUDA]$ ./modified_SMO train-mnist-10000 train-mnist-10000-s.model 10000 784 1 0.001 0.001
computeNumChaned : 0.027730 secs
update f_i : 180.890815 secs
update b_up, b_low : 0.365614 secs
computeDualityGap : 0.194550 secs
b = 0.203094
The total elapsed time is 181.479650 seconds
total sv: 1366

[u10567212@gpuws-sslab CUDA]$ ./mat_modified_SMO train-mnist-10000 train-mnist-10000-matrix-cuda.model 10000 784 1 0.001 0.001
b = 0.048123
total sv: 1366
The total elapsed time is 5.157143 seconds
```

CUDA – result

#SV

	Serial version	CUDA version1	CUDA version2
10000 training set	1366	1366	1366
60000 training set	17704	-	17879

b

	Serial version	CUDA version1	CUDA version2
10000 training set	0.203094	0.048123	0.048117
60000 training set	-7.189573	-	-6.730177

Test accuracy

	Serial version	CUDA version1	CUDA version2
10000 training set	0.982 (1473/1500)	0.982 (1473/1500)	0.982 (1473/1500)
60000 training set	0.936 (9358/10000)	-	0.935 (9350/10000)

CUDA – result

Time (sec)

	Serial version	CUDA version2	Speedup
10000 training set	181	5.7	31.7
60000 training set	8974	189	47.4

Table 6.3. C-SVC Training Results

DATASET	# SUPPO	RT VECTORS	Abs Difference	TRAINING	G TIME (S)	Speedin (v)
DATASET	CUSVM	LIBSVM	IN b	CUSVM	LIBSVM	SPEEDUP (X)
ADULT	18,676	19,059	2.8×10^{-6}	31.6	541.2	17.1
Web	35,220	$35,\!231$	2.6×10^{-4}	228.3	2,906.8	12.7
MNIST	43,751	43,754	2.0×10^{-7}	498.9	17,267.0	34.6
FOREST	270,305	270,304	8.0×10^{-3}	2,016.4	29,494.3	14.1

A. Carpenter. "CUSVM: A CUDA implementation of support vector classification and regression".

	# support vectors CUDA Serial	Training Time(s) CUDA Serial	
MNIST	43397	771.2	

CUDA – result

Different Execution Configuration:

References

- http://cs229.stanford.edu/
 CS229 Lecture notes part V: Support Vector Machines by Andrew Ng.
- S.S. Keerthi, S.K. Shevade, C. Bhattaacharyya and K.R.K. Murthy. "Improvements to Platt's SMO algorithm for SVM classifier design" *Neural Computation*, Vol. 13, pp. 637-649, 2001.
- L.J. Cao, et al. "Parallel sequential minimal optimization for the training of support vector machines". *Neural Networks, IEEE Transactions on*, 17(4):1039-1049, July 2006.
- A. Carpenter. "CUSVM: A CUDA implementation of support vector classification and regression". Technical report (2009)

Thank you