

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Измерение коэффициента поверхностного натяжения жидкости

Работа №2.5.1; дата: 08.04.22

Семестр: 2

1. Аннотация

Цель работы:

- 1) Измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта
- 2) Определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре

Схема установки:

Рис. 1: Схема установки

Исследуемая жидкость (дистиллированная вода) наливается в сосуд (колбу) B. Тестовая жидкость (этиловый спирт) наливается в сосуд E. При измерениях колбы герметично закрываются пробками. Через одну из двух пробок проходит полая металлическая игла C. Этой пробкой закрывается сосуд, в котором проводятся измерения. Верхний конец иглы открыт в атмосферу, а нижний погружен в жидкость. Другой сосуд герметично закрывается второй пробкой. При создании достаточного разрежения воздуха в колбе с иглой пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения ΔP , необходимого для прохождения пузырьков (при известном радиусе иглы). Разрежение в системе создается с помощью аспиратора A. Кран K_2 разделяет две полости аспиратора. Верхняя полость при закрытом кране K_2 заполняется водой. Затем кран K_2 открывают и заполняют водой нижнюю полость аспиратора. Разрежение воздуха создается в нижней полости при открывании крана K_1 , когда вода вытекает из неё по каплям. В колбах B и C, соединённых трубками с нижней полостью аспиратора, создается такое же пониженное давление. Разность давлений в полостях с разреженным воздухом и атмосферой измеряется спиртовым микроманометром. Для стабилизации температуры исследуемой жидкости через рубашку D колбы B непрерывно прогоняется вода из термостата.

В работе используются:

Прибор Ребиндера с термостатом и микроманометром, исследуемые жидкости, стаканы.

2. Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{R}$$

Где σ – коэффициент поверхностного натяжения, _{внутри} и $P_{\text{снаружи}}$ – давление внутри пузырька и снаружи, R – радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

3. Проведение эксперимента

Основные параметры при проведении эксперимента

Основными параметрами в данной ряботе являются плотность эталонной жидкости – этанола $\rho_0 = 809.5~{\rm kr/m^3}$, плотность исследуемой жидкости – воды $\rho = 998.2~{\rm kr/m^3}$, ускорение свободного падения $g = 9.81~{\rm m/c^2}$, пересчетный коэффициент k = 0.2, коэффициент поверхностного натяжения этанола $\sigma_0 = 22.75~{\rm mH/m}$.

Измерение диаметра иглы

Вначале двумя способами оценим диаметр иглы. Первый – прямое измерение микроскопом, при этом получаем $d=(1.05\pm0.05)$ мм. Второй – по известному коэффициенту поверхностного натяжения спирта.

	i	1	2	3	4	5	среднее	
	Р, дел	47.0 ± 0.5	47.0 ± 0.5	47.0 ± 0.5	47.0 ± 0.5	47.0 ± 0.5	47.0 ± 0.5	
Ī	\overline{P} , Πa	92.18 ± 0.98						
ſ	d, mm	0.99 ± 0.01						

Табл. 1: Измерение диаметра иглы

Как видно из полученных значений, они совпадают в пределах стандартного отклонения.

Проверка соотношения давлений

Вначале установим иглу у поверхности воды, а затем опустим ее в глубь воды. При этом соответствующие высоту иглы от неподвижной части установки $h_1=1.85\pm0.05$ см, $h_2=0.65\pm0.05$ см. Получаем первое из значений $\Delta h=1.2\pm0.1$ см. Измерения давлений занесем в таблицу:

i	1	2	3	4	5	среднее
P_1 , дел	140.0 ± 0.5					
P_2 , дел	204.0 ± 0.5					
ΔP , дел	64 ± 1					
Δh , mm	1.3 ± 0.1					

Табл. 2: Проверка соотношения давлений

Вновь наблюдаем совпадение сопоставляемых значений с точностью в пределах стандартного отклонения. Здесь же из формулы 1 рассчитаем коэффициент поверхностного натяжения воды при 20 °C:

$$\sigma = \frac{P}{P_0} \sigma_0 = (67.8 \pm 0.76) \,\mathrm{MH/M}$$

Определение температурного коэффициента

Оформим полученные данные в виде таблицы.

$t,^{\circ}\mathrm{C}$	Р, дел					\overline{P} , дел
20.0 ± 0.1	204.0 ± 0.5	203.0 ± 0.5	204.0 ± 0.5	204.0 ± 0.5	204.0 ± 0.5	203.8 ± 0.5
24.2 ± 0.1	203.0 ± 0.5	203.0 ± 0.5	203.0 ± 0.5	204.0 ± 0.5	203.0 ± 0.5	203.2 ± 0.5
29.6 ± 0.1	202.0 ± 0.5					
35.5 ± 0.1	201.0 ± 0.5					
41.4 ± 0.1	199.0 ± 0.5					
44.3 ± 0.1	198.0 ± 0.5	198.0 ± 0.5	198.0 ± 0.5	197.0 ± 0.5	198.0 ± 0.5	197.8 ± 0.5
50.3 ± 0.1	195.0 ± 0.5					
56.0 ± 0.1	193.0 ± 0.5	194.0 ± 0.5	194.0 ± 0.5	193.0 ± 0.5	193.0 ± 0.5	193.6 ± 0.5
59.0 ± 0.1	193.0 ± 0.5					

Табл. 3: Зависимость P(t)

На основе этих данных построим график, и определим тепературный коэффициент для коэффициента поверхностного натяжения.

Рис. 2: График зависимости $\sigma(t)$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T} = (-0.152 \pm 0.008) \, \frac{\mathrm{mH}}{\mathrm{m} \cdot \mathrm{K}}$$

Построение оставшихся графиков

В этом пункте приведем графики зависимости теплоты образования единицы поверхности и энергии образования единицы поверхности.

Рис. 3: График зависимости q(t)

Рис. 4: График зависимости $U/\Pi(t)$

4. Выводы

1) В результате работы определено, что в нашем диапазоне температур зависимость коэффициента поверхностного натяжения воды от температуры линейна, приичм убывает. Соответствующий коэффициент:

$$\left| \frac{\mathrm{d}\sigma}{\mathrm{d}T} \right| = (0.152 \pm 0.008) \, \frac{\mathrm{MH}}{\mathrm{M} \cdot \mathrm{K}}$$

Что близко к табличному значению $\alpha = 0.154 \, \frac{\text{мH}}{\text{м·K}}$ в пределах стандартного отклонения.

2) Получены зависимости теплоты и энергии образования единицы поверхности жидкости при данных температурах. Они приведены на Рис. 3-4.