

Stream ciphers: native stream ciphers and security notion

Cryptography, Autumn 2021

Lecturers: J. Daemen, B. Mennink

September 14, 2021

Institute for Computing and Information Sciences Radboud University

Outline

Modern stream ciphers

How not to build modern stream ciphers

Some real-world stream ciphers

Modelling attacks on stream ciphers

The Random Oracle

Indistinguishability security notion

Modern stream ciphers

Requirement for re-synchronization

- ► Stream ciphers discussed up to now
 - input: short cipher key K
 - output: long keystream Z
 - necessary condition: each bit z_t shall be used only once!
- ▶ Practical problems:
 - Alice and Bob need to keep cipher (LFSR) states synchronous
 - communication is lost when losing synchronization
- Solution
 - add another input: a diversifier D (AKA initial value)
 - same cipher key can now be used to generate many keystreams
 - for each message encryption use a different value for D

Modern stream ciphers

Modern stream ciphers take a key K and a diversifier D as input

How to use modern stream ciphers

- ► Message encryption
 - have a system that generates a unique diversifier *D* per message
 - e.g., date/time, message sequence number, random value, . . .
 - encipher message with keystream Z from K and D
- ▶ Data streams, e.g., pay TV, telephone, . . .
 - split in relatively short, numbered, sub-sequences, e.g., frames
 - keystream to encipher a sub-sequence uses its number as D

How not to build modern stream ciphers

Multiplexer LFSR supporting diversifier: resync attack

- ▶ Real-world stream cipher (early '90s), approach:
 - choose LFSR and mux dimension d to resist best known attacks
 - initialize state with K+D
- \triangleright Adversary may get keystream for multiple, say n, diversifier values:
 - D⁽⁰⁾ gives Z⁽⁰⁾
 - D⁽¹⁾ gives Z⁽¹⁾
 - . . .
 - $D^{(i)}$ gives $Z^{(i)}$
 - ...
- We zoom in on the state $s_t^{(i)}$ and keystream bit $z_t^{(i)}$ at cycle t
- ▶ For compactness, we omit the t subscript and write $s^{(i)}$ and $z^{(i)}$

Resync attack (cont'd)

- ▶ Some notation:
 - we have $s^{(i)} = M^t(K + D^{(i)}) = M^tK + M^tD^{(i)}$
 - we write K' for M^tK and $E^{(i)}$ for $M^tD^{(i)}$
 - we now have $s^{(i)} = K' + E^{(i)}$:
- ▶ Guess-and-determine attack starting at cycle t: $z_t^{(i)}$
 - make hypothesis for 4 bits of K', in mux address positions (!)
 - ... this allows computing corresponding bits of $s^{(i)}$
 - ...and for each, allows appointing $z^{(i)}$ to a bit of $s^{(i)}$
 - each of these n statebits can be converted to K'
 - ▶ if wrong hypothesis, huge probability for inconsistency
 - ▶ if right hypothesis, known part of the state fills up fast
- \triangleright Leads to immediate break even if n is quite modest, for any t

Why resync attacks work

- ► State update function is linear
 - lightweight and convenient to implement in constant time
 - analyzable: length of cycle known in advance
 - but difference between states known after init, remains known forever
- ▶ Mapping from *D* to initial state is linear
 - simple and cheap
 - but difference of D's known → state difference known
- ▶ Output function (multiplexer) is simple
 - compact and cheap
 - but allows for partial reconstruction of state

Building stronger stream ciphers

- (1) Introduce non-linearity in state updating function
 - irregular clocking: let # LFSR cycles depend on state bit values
 - make recursion formula non-linear, e.g., NLFSR
- (2) After writing D and K in state, do blank cycles (no output)
 - non-linearity from D and K to s_t is weak for small t
 - but increases fast with growing t
 - note: requires state updating function to be non-linear
- (3) Make output function stronger
 - research has led to many published criteria
 - choose an output function guided by these

Alternative approach: build stream cipher from a strong cryptographic primitive, e.g., a block cipher or a cryptographic permutation

Some real-world stream ciphers

Irregularly clocked LFSR: DECT Stream Cipher

- ▶ In use in hundreds of millions of wireless phones today
- ▶ 4 maximum-length LFSRs with coprime lengths
- ightharpoonup Top 3 clocked 2 or 3 times in between time steps t
- ▶ Bottom LFSR determines clocking of top 3 ones
- ▶ Output function *O* with 1 bit of *memory*
- Practically broken with statistical key recovery attack

NLFSR: Trivium [De Canniere and Preneel, 2006]

- claims 80 bits of security
- ▶ 80-bit *K* and 80-bit *D*
- ▶ 288-bit state
- ▶ linear output function
- regularly clocked
- ▶ non-linearity in update: only 3 AND gates
- ► output period not known in advance *but likely OK*
- ▶ init. takes 1152 cycles
- ▶ as yet unbroken

Something completely different: RC4 [Ron Rivest, 1987]

- ▶ 5 to 256-byte K, no dedicated D
- ▶ State: 256-byte array, 2 pointers
- Software-oriented

- Used in TLS and WEP
- Biases in keystream
- ► Broken in practice [wikipedia]

Key Schedule Algorithm (KSA), initialization:

```
for i from 0 to 255
    S[i] := i
endfor
j := 0
for i from 0 to 255
    j := (j + S[i] + key[i mod keylength]) mod 256
    swap values of S[i] and S[j]
endfor
```

Pseudo-random generation algorithm (PRGA), update/output:

```
i := 0
j := 0
while GeneratingOutput:
    i := (i + 1) mod 256
    j := (j + S[i]) mod 256
    swap values of S[i] and S[j]
    K := S[(S[i] + S[j]) mod 256]
    output K
endwhile
```

Native stream ciphers: summary

- ▶ Filtered and combiner LFSR: mostly of historical significance
 - from days before resync attacks
- ► Irregularly clocked still in use today:
 - DECT, Mifare Classic, GSM A5/1, ...
 - each and every one of them is broken
- So-called state-of-the-art: eSTREAM portfolio http://www.ecrypt.eu.org/stream/
 - NLFSR: Trivium, Grain, Snow and Sosemanuk
 - RC4-inspired design: HC-128

by academics, for academics

- ► Reality check:
 - stream encryption in practice today: modes of block ciphers
 - future of stream encryption: modes of permutations

(both treated later in this course)

Modelling attacks on stream ciphers

Stream cipher definition, recap

- ightharpoonup Generates keystream bits z_t from
 - K: secret key, typically 128 or 256 bits
 - D: diversifier, for generating multiple keystreams per key
- \triangleright z_t can be a bit or a sequence of bits, e.g., a byte or a 32-bit word

We can formally write (asking for ℓ output bits):

$$Z = \mathsf{SC}_{\mathsf{K}}(D,\ell)$$

Modelling attacks

- ► Adversary has query access to:
 - SC_K: stream cipher instance with unknown key K
 - $SC_{K'}$: stream cipher instance with chosen key K'
- ▶ Can make queries Q
 - Q_d : queries to SC_K with cost (e.g., total length) M
 - Q_c : queries to $SC_{K'}$ with cost N
- \blacktriangleright Express probability of success as function of M and N
- ► Example: generic exhaustive key search: $Pr(success) = N2^{-|K|}$ with N number of key-trial queries to $SC_{K'}$

Iterative stream ciphers: internal structure

- ▶ Operates on an evolving state s_t
- ▶ In our multiplexer LFSR example:
 - State update function $s_t = Ms_{t-1}$: LFSR update
 - Output function $z_t = f(s_t)$: multiplexer
- ▶ More in general
 - State update function $s_t = M(s_{t-1})$
 - Output function: $z_t = f(s_t)$

Modelling attack (cont'd)

- ▶ Limitation of previous model: can only describe *generic* attacks
 - generic means: making abstraction of the inner working
- \blacktriangleright We give adversary query access to inner functions (here M and f)
 - models the fact that these are *public* (Kerckhoff's principle)
- ▶ Breakdown can be even more fine-grained
 - queries to inner functions finally become computation
 - ...with some measure of computational effort
- ▶ When do we consider a stream cipher *secure*?
 - if no attacks with success probability above the one in claim!
 - but what would be reasonable to claim in the first place?

The Random Oracle

The ideal cipher: Random Oracle [Bellare-Rogaway 1993]

- ▶ What would the ideal cryptographic function look like?
- ▶ It is called a Random Oracle (RO)
- ▶ Random Oracle can be built, but is not practical

Random Oracle Inc.: letter answering service!

- 1) (m, ℓ) arrives at Random Oracle Inc., with
 - m: the letter
 - ullet the length of the requested answer

2) Frank checks archive for presence of a file (m, Z)

- 3) Employee Cheetah is put at work
 - a) if no (m, Z) in archive, Cheetah types random Z with $|Z| = \ell$
 - b) else if $|Z| < \ell$, Cheetah extends Z to length ℓ with random string
 - c) else Cheetah takes a break and eats a banana

4) Frank copies Z

5) Frank puts file with (m, Z) (back) in archive

5) Frank sends response Z truncated to length ℓ to sender

Random Oracle returns unrelated responses for different inputs *m*

Random Oracle (bit more formal)

- ▶ Database of input-output tuples
- Initially empty

m	Z
1100	101011101010101
1111010101101101	1101011101111101101
001000011100	101011010111010101011

- ▶ New query (m, ℓ) :
 - If *m* is not in the database:
 - \triangleright generate ℓ random bits Z,
 - ightharpoonup add (m, Z) to the list,
 - ► return Z
 - If m is in the database, look at corresponding Z:
 - ▶ If $|Z| \ge \ell$: return first ℓ bits of Z
 - ▶ If $|Z| < \ell$: generate $\ell |Z|$ random bits Z', append Z' to Z, replace (m, Z) in the list by (m, Z || Z'), return Z || Z'.

Stream encryption using a random oracle

- ► Say:
 - Alice wants to send messages P_i confidentially to Bob
 - both Alice and Bob can query \mathcal{RO} , but nobody else can
- ▶ For message P_i :
 - Alice queries \mathcal{RO} with $(i, |P_i|)$ and \mathcal{RO} returns Z_i
 - Alice enciphers P_i to $C_i \leftarrow P_i + Z_i$
 - Alice sends (i, C_i) to Bob
 - Bob queries \mathcal{RO} with $(i, |C_i|)$ and \mathcal{RO} returns Z_i
 - Bob deciphers C_i to $P_i \leftarrow C_i + Z_i$
- \blacktriangleright The \mathcal{RO} returns a one-time pad, so provides perfect secrecy
- If we have stream cipher that, if keyed, is indistinguishable from \mathcal{RO}
 - Alice and Bob use that to get Z_i instead of \mathcal{RO} and it's OK!
 - that suggests a useful security goal for a stream cipher

Indistinguishability security

notion

Security notion: hardness of distinguishing from \mathcal{RO}

Distinguishing game (black box version):

- \blacktriangleright Adversary $\mathcal A$ has query access to a system that is either:
 - SC_K: stream cipher with unknown key K
 - RO: ideal stream cipher in the form of a random oracle
- ▶ She does not know which one and has to guess that
- \blacktriangleright Adversary $\mathcal A$ is actually an attack algorithm that returns either:
 - 1 if it estimates the system is SC_K
 - ullet 0 if it estimates the system is \mathcal{RO}

Hardness of distinguishing from RO: advantage

- ▶ Let:
 - $Pr(A = 1 \mid SC_K)$: probability that A returns 1 in case of SC_K
 - $Pr(A = 1 \mid RO)$: probability that A returns 1 in case of RO

Advantage of an adversary $\ensuremath{\mathcal{A}}$

$$Adv_{\mathcal{A}} = | Pr(\mathcal{A} = 1 \mid SC_{\mathcal{K}}) - Pr(\mathcal{A} = 1 \mid \mathcal{RO}) |$$

Note: Adv_A is in interval [0...1]

Hardness of distinguishing from \mathcal{RO} : resources

- ▶ Black box fails to model that *F* and *f* are public
- ▶ We give additional query access to F and f
- ▶ We model query complexity in two parts again:
 - M: called online or data complexity
 - N: called offline or computational complexity
- \blacktriangleright We express $\mathrm{Adv}_{\mathcal{A}}$ as $\epsilon(M, N)$

Hardness of distinguishing from \mathcal{RO} : what a claim looks like

$\epsilon(M,N)$ indistinguishability claim for a stream cipher SC

There exists no attack algorithm $\mathcal A$ that distinguishes SC_K , with K a uniformly chosen unknown key, from a random oracle with $Adv_A > \epsilon(M,N)$

Note: this is a very powerful type of claim

Implications of \mathcal{RO} indistinguishability

A $\epsilon(M, N)$ indistinguishability claim implies:

- ▶ There are no key recovery attacks with success prob. above $\epsilon(M, N)$
- ▶ Probability that keystream Z is periodic is below $\epsilon(M, N)$
- ▶ Success in exploiting biases in Z limited to $\epsilon(M, N)$
- **...**

Implications of a $\epsilon(M, N)$ indistinguishability claim

It claims for any imaginable attack:

```
\Pr(\text{success of attack on } \mathsf{SC}_{\mathsf{K}}) \leq \epsilon(\mathsf{M}, \mathsf{N}) + \Pr(\text{success of attack on } \mathcal{RO})
```

Proof:

- ightharpoonup Recipe for distinguishing adversary ${\cal A}$ based on the attack:
 - (1) Spend resources M and N on the attack
 - (2) If it works, return 1, else return 0
- $ightharpoonup \Pr(\mathcal{A}=1 \mid \mathcal{RO}) = \Pr(\text{success of attack on } \mathcal{RO})$
- ▶ $Pr(A = 1 \mid SC_{\kappa}) = Pr(success of attack on SC_{\kappa})$
- ▶ Due to the claim their difference is at most $\epsilon(M, N)$

Conclusion: what is a secure stream cipher?

- ► A stream cipher that, when keyed with a fixed and unknown key K, is hard to distinguish from a random oracle
- ▶ How hard it actually is, is expressed by a bound on the advantage
- ▶ We cannot prove such bounds for concrete stream ciphers
- ▶ But we can make claims and assumptions
- ▶ For stream ciphers built on an underlying primitive we can prove conditional bounds . . .