MIDTERM EXAMINATION MTH101- Calculus And Analytical Geometry

Question No: 1 (Marks: 1) - Please choose one

 x_0 and $f''(\overline{x_0}) < 0$ If f is a twice differentiable function at a stationary point

- has relative At
 - ► Minima
 - ► Maxima
 - ► None of these

Note:Maxima(If Maxima refers to local maximum)

Question No: 2 (Marks: 1) - Please choose one

 $x = x_0$ is called ----- for the graph of a function if A line $f(x) \to +\infty$ or $f(x) \to -\infty$ as x approaches x_0 from the right or from the left

- ► Horizontal asymptotes
- ► None of these
- ► Vertical asymptotes

Question No: 3 (Marks: 1) - Please choose one

A line $y = y_0$ is called a for the graph f if $\lim_{x \to +\infty} f(x) = y_0 \quad or \quad \lim_{x \to -\infty} f(x) = y_0$

- ► Vertical asymptotes
- ► Horizontal asymptotes
- **▶** None of these

Question No: 4 (Marks: 1) - Please choose one

According to Power-Rule of differentiation, if $f(x) = x^n$ where n is a real number, then

$$\sum_{n \in \mathbb{Z}^{n-1}}^{x^{n-1}}$$

Question No: 5 (Marks: 1) - Please choose one

$$y = \frac{1}{1-x}$$
 $\frac{dy}{dx} =$

If then

▶ 1

•

-1

 $-\frac{-1}{\left(1-x\right)^2}$

Question No: 6 (Marks: 1) - Please choose one

 $xv = 4 \qquad \frac{dy}{dx}$

> 0

 $\rightarrow \frac{-1}{x^2}$

 $\frac{4}{x^2}$

 $\frac{-4}{x^2}$

Question No: 7 (Marks: 1) - Please choose one

 $2x - y = -3 \qquad \frac{dy}{dx}$

2x - y = -3 then

2

-2

▶ 0

▶ -3

Question No: 8 $\,$ (Marks: 1) $\,$ - Please choose one

$$\frac{d}{dx}[\sec x] = \underline{\hspace{1cm}}$$

$$\frac{1}{1+\sin^2 x}$$

$$-\sin x$$

$$1+\sin^2 x$$

$$\frac{1}{1-\sin^2 x}$$

$$\sin x$$

$$\frac{\sin x}{1-\sin^2 x}$$

Question No: 9 (Marks: 1) - Please choose one

$$30^{0} = \frac{\frac{\pi}{3}}{\frac{\pi}{4}}$$

$$\frac{\pi}{6}$$

$$\frac{\pi}{6}$$

Question No: 10 (Marks: 1) - Please choose one

Question No: 11 (Marks: 1) - Please choose one

$$\frac{d}{dx}[\csc x] = \underline{\hspace{1cm}}$$

$$\frac{1}{1+\cos^2 x}$$

$$\frac{-\cos x}{1-\cos^2 x}$$

$$\frac{-\cos x}{1-\cos^2 x}$$

$$\frac{1}{1-\cos^2 x}$$

Question No: 12 (Marks: 1) - Please choose one

Chain rule is a rule for differentiating _____ of functions.

- **▶** Product
- ► Sum
- **▶** Difference
- **▶** Composition

Question No: 13 (Marks: 1) - Please choose one

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

The power rule,

holds if n is

- ► An integer
- ► A rational number
- ► An irrational number
- ► All of the above

Question No: 14 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denote points in that

interval. If $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ then which of the following statement is correct?

- ightharpoonup f is an increasing function.
- ightharpoonup f is a decreasing function.
- ightharpoonup f is a constant function.

Question No: 15 (Marks: 1) - Please choose one

If f''(x) > 0 on an open interval (a,b), then which of the following statement is correct?

- ightharpoonup f is concave up on (a, b).
- ightharpoonup f is concave down on (a, b).
- ightharpoonup f is linear on (a, b).

Question No: 16 (Marks: 1) - Please choose one

If f''(x) < 0 on an open interval (a,b) then which of the following statement is correct?

- ightharpoonup f is concave up on (a, b).
- ightharpoonup f is concave down on (a, b)
- ightharpoonup f is linear on (a, b).

Question No: 17 (Marks: 1) - Please choose one

If x > 0 then $\frac{d}{dx}[\ln x] = \underline{\hspace{1cm}}$

- **)**
- **x**

1

X

 $\ln \frac{1}{x}$

Question No: 18 (Marks: 1) - Please choose one

If b > 0 then $\frac{d}{dx}[b^x] = \underline{\hspace{1cm}}$

- **>** 0
 - $\rightarrow xb^{x-1}$
- $\rightarrow \ln b$
- $b^x \ln b$

Question No: 19 (Marks: 1) - Please choose one

Let $y = (x^3 + 2x)^{37}$. Which of the following is correct?

$$\frac{dy}{dx} = (37)(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = 111x^2(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{36}$$

$$\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{38}$$

Question No: 20 (Marks: 1) - Please choose one

What is the base of natural logarithm?

▶ 10

► Any real number

Question No: 21 (Marks: 1) - Please choose one

Let x_0 be critical points of the function f. Those critical points for which

are called _____ of f

- ► Local points
- ► End points
- **►** Stationary points

Question No: 22 (Marks: 1) - Please choose one

$$\log_b a^r = \underline{\hspace{1cm}}$$

$$a \log_b r$$

$$r \log_b a$$

$$\frac{\log_b a}{\log_b r}$$

Question No: 23 (Marks: 1) - Please choose one

$$\log_b \frac{1}{c} = \underline{\hspace{1cm}}$$

$$\begin{array}{c} \log_b c \\ 1 - \log_b c \\ \\ - \log_b c \end{array}$$

 $ightharpoonup 1 + \log_b c$

Question No: 24 (Marks: 1) - Please choose one

$$\log_b \frac{1}{t} = \underline{\hspace{1cm}}$$

$$\begin{array}{c} \log_b t \\ 1 - \log_b t \\ \\ & 1 + \log_b t \\ \\ & -\log_b t \end{array}$$

Question No: 25 (Marks: 3)

If $f(x) = x^4 - 8 x^2$, determine all relative extrema for the function. Using First Derivative Test.

Solution:

$$f = x^{4} - 8x^{2}$$

$$f = 4x^{3} - 16x^{1}$$

$$f = 0$$

$$4x^{3} - 16x = 0$$

$$x(4x^{2} - 16) = 0$$

$$x = 0$$

$$4x^{2} - 16 = 0$$

$$x^{2} = \frac{16}{4}$$

$$x^{2} = 4$$

$$x = \pm 2$$

Re *lactive* extreama $(0, \pm 2)$Ans

Question No: 26 (Marks: 5)

 $y = x^{-2}(4 + 3x^{-3})$

Differentiate

Solution:

$$y = 4x^{-2} + 3x^{-3} \cdot x^{-2}$$

$$= 4x^{-2} + 3x^{-5}$$

$$\frac{dy}{dx} = 4\frac{d}{dx}(x^{-2}) + 3\frac{d}{dx}(x^{-5})$$

$$= 4(-2)x^{-2-1} + 3\frac{d}{dx} - 5x^{-5-1}$$

$$= -8x^{-3} + (-15x^{-6})$$

$$\frac{dy}{dx} = -8x^{-3} - 15x^{-6} \dots \text{Ans}$$

Question No: 27 (Marks: 10)

$$f(x) = \frac{1}{x}$$

Determine the intervals in which the graph of the function upward or downward.

is concave

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 - 2007 For Evaluation Only.

Solution

$$f(x) = \frac{1}{x}$$
$$f(x) = -\frac{1}{x}$$

X	1	2	3	4
F(x)	-1	-0.25	-0.11	-0.625

Conclusion:

 $f^{(x)}$ is increasing when x is from $(0,\infty)$

so,

It is concave up.

 $f^{(x)}$ is decreasing when x is from $(-\infty,0)$

so,

It is concave down