PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 98/04910

G01N 27/42, 27/04

A1 (43) International Publication Date:

5 February 1998 (05.02.98)

(21) International Application Number:

PCT/US97/12255

(22) International Filing Date:

10 July 1997 (10.07.97)

(30) Priority Data:

08/681,730

29 July 1996 (29.07.96)

US

(71) Applicant: MIDTRONICS, INC. [US/US]; 8230 South Madison Street, Burr Ridge, IL 60521 (US).

(72) Inventor: BERTNESS, Kevin, 1.; 1317 McClurg Drive, Batavia, IL 60510 (US).

(74) Agents: CHAMPLIN, Judson, K. et al.; Westman, Champlin & Kelly, P.A., International Centre - Suite 1600, 900 Second Avenue South, Minneapolis, MN 55402-3319 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD AND APPARATUS FOR AUDITING A BATTERY TEST

(57) Abstract

A method and apparatus for auditing condition of a storage battery (12) performs a battery test on the storage battery (12) to obtain a test result. Test condition information is obtained related to conditions of the battery test. The battery test result and the test condition information are combined into a code. The code may be subsequently used to determine conditions during the battery test which lead to the particular test result.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

15

20

25

30

-1-

METHOD AND APPARATUS FOR AUDITING A BATTERY TEST

BACKGROUND OF THE INVENTION

The present invention relates to testing storage batteries. More specifically, the present invention relates to generating a code related to a battery test.

Storage batteries, such as lead acid storage batteries of the type used in the automotive industry, have existed for many years. However, understanding the nature of such storage batteries, how such storage batteries operate and how to accurately test such batteries has been an ongoing endeavor and has proved quite difficult. Storage batteries consist of a plurality of individual storage cells electrically connected in series. Typically each cell has a voltage potential of about 2.1 volts. By connecting the cells in series, the voltages of the individual cells are added in a cumulative manner. For example, in a typical automotive storage battery, six storage cells are used to provide a total voltage when the battery is fully charged of 12.6 volts.

There has been a long history of attempts to accurately test the condition of storage batteries. A simple test is to measure the voltage of the battery. If the voltage is below a certain threshold, the battery is determined to be bad. However, this test is inconvenient because it requires the battery to be charged prior to performing the test. If the battery is discharged, the voltage will be low and a good battery may be incorrectly tested as bad. Furthermore, such a test does not give any indication of how much energy is stored in the battery. Another technique for testing a

battery is referred as a load test. In a load test, the battery is discharged using a known load. As the battery is discharged, the voltage across the battery is monitored and used to determine the condition of the battery. This technique requires that the battery be sufficiently charged in order that it can supply current to the load.

More recently, a technique has been pioneered by Dr. Keith S. Champlin for testing storage batteries by measuring the conductance of the batteries. 10 technique is described in a number of United States patents obtained by Dr. Champlin, for example, U.S. Patent No. 3,873,911, issued March 25, 1975, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Patent No. 3,909,708, issued September 30, 1975, to 15 Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Patent No. 4,816,768, issued March 28, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE; U.S. Patent No. 4,825,170, issued April 25, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE 20 WITH AUTOMATIC VOLTAGE SCALING; U.S. Patent 4,881,038, issued November 14, 1989, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE AUTOMATIC VOLTAGE SCALING TO DETERMINE CONDUCTANCE; U.S. Patent No. 4,912,416, issued March 27, 25 1990, to Champlin, entitled ELECTRONIC BATTERY TESTING DEVICE WITH STATE-OF-CHARGE COMPENSATION; and U.S. Patent No. 5,140,269, issued August 18, 1992, to Champlin, entitled ELECTRONIC TESTER FOR ASSESSING BATTERY/CELL CAPACITY. 30

As battery test results have become more accurate, and the repeatability of those results has increased, we have recognized a new problem. Specifically, if a subsequent battery test is performed

10

15

20

25

30

at a later time and perhaps at a different location and under different conditions, there is no adequate way to compare the results of the two tests. It is impossible to determine if differences in test results are due to improper use of the test equipment, inaccurately recorded test results or even falsification of the test results. For example, this problem can be particularly vexing to battery manufactures, battery distributors, and automobile companies who offer warranties with their batteries. Further, the precise conditions of the test and test results would be useful in determining the cause of the failure and reducing the likelihood of failure in new batteries by identifying and correcting defects.

SUMMARY OF THE INVENTION

The present invention offers solutions to problems associated with the aforementioned problems. The present invention provides a method and apparatus for auditing a battery test. In the method, a battery test is performed on a storage battery to obtain a test result. Test condition information is obtained regarding conditions related to the battery test. The test result and the test condition information is combined into a code and the code is stored or output for future reference.

Similarly, the apparatus includes battery test circuitry for performing a battery test on the storage battery and providing a test result. Input circuitry receives test condition information which is related to conditions of the battery test. Calculation circuitry coupled to the battery test circuitry and the input circuitry combines the battery test result and the test condition information and responsively provides a code output.

In various embodiments of the invention, the code output can be used to subsequently analyze the battery test in view of the test conditions.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a simplified schematic diagram showing battery monitoring and auditing circuitry in accordance with the present invention.

Figure 2 is a simplified block diagram shown the steps of a method in accordance with the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides a new and useful technique for monitoring and auditing a battery test of a storage battery, such as a lead acid storage battery. The present invention is for use with any battery tester or testing technique and those discussed herein are strictly as examples. The present invention provides a method and apparatus for combining the result of a battery test with information related to conditions of the battery test into a code which can be subsequently accessed. As described herein, the present invention is useful in subsequent analysis of batteries which failed the battery test and may be used to monitor batteries returned on warranty, to monitor operator performance and can be used in detecting and identifying a faulty design of a storage battery.

Figure 1 is a simplified block diagram of battery monitoring circuitry 16 in accordance with the present invention. Apparatus 16 is shown coupled to battery 12 which includes a positive battery terminal 22 and a negative battery terminal 24.

Circuitry 16 operates in accordance with one embodiment of the present invention and determines the conductance (G_{BAT}) of battery 12 and the voltage potential (V_{BAT}) between terminals 22 and 24 of battery

5

10

15

20

25

20

25

includes current source 50, Circuitry 16 12. differential amplifier 52, analog-to-digital converter 54 and microprocessor 56. Amplifier 52 is capacitively coupled to battery 12 through capacitors C_1 and C_2 . Amplifier 52 has an output connected to an input of 5 analog-to-digital converter 54. Microprocessor 56 is connected to system clock 58, memory 60, memory 62 and analog-to-digital converter 54. Microprocessor 56 is also capable of receiving an input from input devices 66 Microprocessor 56 also connects to output and 68. 10 device 72.

In operation, current source 50 is controlled by microprocessor 56 and provides a current I in the direction shown by the arrow in Figure 1. embodiment, this is a square wave or a pulse. Differential amplifier 52 is connected to terminals 22 and 24 of battery 12 through capacitors C_1 and C_2 , respectively, and provides an output related to the voltage potential difference between terminals 22 and 24. In a preferred embodiment, amplifier 52 has a high input impedance. Circuitry 16 includes differential amplifier 70 having inverting and noninverting inputs connected to terminals 24 and 22, respectively. Amplifier 70 is connected to measure the open circuit potential voltage (V_{BAT}) of battery 12 between terminals 22 and 24. The output of amplifier 70 is provided to analog-to-digital converter 54 such that the voltage across terminals 22 and 24 can be measured microprocessor 56.

through a four-point connection technique known as a Kelvin connection. This Kelvin connection allows current I to be injected into battery 12 through a first pair of terminals while the voltage V across the

terminals 22 and 24 is measured by a second pair of connections. Because very little current flows through amplifier 52, the voltage drop across the inputs to amplifier 52 is substantially identical to the voltage drop across terminals 22 and 24 of battery 12. The output of differential amplifier 52 is converted to a digital format and is provided to microprocessor 56. Microprocessor 56 operates at a frequency determined by system clock 58 and in accordance with programming instructions stored in memory 60.

Microprocessor 56 determines the conductance of battery 12 by applying a current pulse I using current source 50. The microprocessor determines the change in battery voltage due to the current pulse I using amplifier 52 and analog-to-digital converter 54. The value of current I generated by current source 50 is known and is stored in memory 60. In one embodiment, current I is obtained by applying a load to battery 12. Microprocessor 56 calculates the conductance of battery 12 using the following equation:

Conductance =
$$G_{BAT} - \frac{\Delta I}{\Delta V}$$
 Equation 1

where ΔI is the change in current flowing through battery 12 due to current source 50 and ΔV is the change in battery voltage due to applied current ΔI .

Based upon the battery conductance G_{BAT} and the battery voltage, the battery tester 16 determines the condition of battery 12. For example, if the battery conductance G_{BAT} is lower than a predetermined threshold for a particular battery at a particular voltage, microprocessor 56 determines that battery 12 has failed the battery test. For example, as explained in the Champlin patents, the tester can compare the measured

5

10

15

20

25

10

15

20

25

30

CCA (Cold Cranking Amp) with the rated CCA for that particular battery. Microprocessor 56 uses information input from input device 66 provided by, for example, an operator, etc. This information may consist of the particular type of battery, location, time, the name of Additional information relating to the the operator. conditions of the battery test is received by microprocessor 56 from input device 68. Input device 68 may comprise one or more sensors, for example, or other elements which provide information such as ambient or battery temperature, time, date, humidity, barometric pressure, noise amplitude or characteristics of noise in the battery or in the test result, or any other information or data which may be sensed or otherwise recovered which relates to the conditions of the test, how the battery test was performed, or intermediate results obtained in conducting the test. Additional test condition information is provided by microprocessor Such additional test condition information may include the values of G_{BAT} and battery voltage, the various inputs provided to battery tester 16 by the operator which may include, for example, type of battery, estimated ambient or battery temperature, type of vehicle (i.e., such as provided through the Vehicle Identification Number (VIN) code for the vehicle) or the particular sequence of steps taken by the operator in conducting the test. In accordance with the present revention, microprocessor 56 uses some, or all, of the ious battery test condition information and combines such test condition information with the test result to generate a code. This code is provided to output device 72 which may comprise, for example, a display or a printer. In another embodiment, the code is stored in memory 62 for subsequent use. As used herein, input

circuitry refers to any circuitry used to obtain the test condition information and may include inputs 66 and 68, memory 60, etc.

The code of the present invention may be generated through any appropriate technique. Two examples follow.

For example, the display 72 will indicate: "TEST CODE: A0XXXX1YYYY2222Z".

	Where the	information is encoded as follows:				
10		A: Alph geog	nanumeric code representing raphic territory			
15		0:	<pre>0 = no temperature compensation used in conditioning the test. 1 = temperature compensation used in conditioning the test.</pre>			
20		XXXX:	Entered battery rating in coded CCA (Cold Cranking Amps) (0=A, 1=B, 2=C, etc.) I.E. "0625 CCA" displayed as AGCF			
25		1:	<pre>Result of battery test: 0 = Good Return to Service 1 = Good Recharge & Return to</pre>			
30	YYYY:		Measured coded battery voltage without decimal point (0=A, 1=B, etc.) I.E. "12.65 Volts" displayed as BCGF			
35		2222:	Actual CCA measured by tester.			
		Z:	Alphanumeric code representing state of charge.			
40			e using eight characters follows. A			
	pseudo 1	oase 26 r	number, represented by two alpha			

characters, is used to represent certain values in this

test code.

10

For example, to convert the coded number "CZ", look up the alpha characters in the following table:

A=0	B=1	C=2	D=3	E=4	F=5
G=6	H=7	I=8	J=9	K=10	L=11
M=12	N=13	O=14	P=15	Q=16	R=17
S=18	T=19	U=20	V=21	W=22	X=23
Y=24	Z=25				

Table 1

Take the first letter, "C", and multiply its value by 26. Then add the value of the second letter "Z": $\{"C" \times 26\} + "Z".$

(2) X (26) = 52.

Equation 2

52 + 25 = 77.

Equation 3

The coded number is 77. 15

The display 72 will indicate "TEST CODE: XX0YY1ZZ", for example. .

The information is encoded as follows:

Entered coded battery rating in 5 CCA increments. For example, 360 CCA would be represented as 72, 650 CCA as 130, etc. CCA will be rounded to the nearest The coded CCA is then 5 CCA value. represented using the Pseudo Base 26 scheme listed above. 360 CCA = 72 coded = CU. 650 CCA = 130 = FA.

25

20

Result code: 0:

0 = Good -- Return to Service 1 = Good -- Recharge & Return to

Service

2 = Recharge & Retest

3 = Bad battery

Bad cell battery

PCT/US97/12255

		<pre>5 = Good Return to Service (temperature compensated during</pre>
5		<pre>test) 6 = Good Recharge & Return to Service (temperature compensated during test)</pre>
		<pre>7 = Recharge & Retest (temperature compensated during test)</pre>
1.0		8 = Bad battery (temperature compensated)
10		9 = Bad cell battery (temperature compensated)
,	YY:	
		increments. For example, 10.00 volts
15		would be represented as 200, 12.75 volts
		as 255, etc. Voltage will be rounded to
		the nearest 50mVolt value. The coded
		voltage is then represented using the
		Pseudo Base 26 scheme listed above.
20		10.00 volts = 200 coded = HS. 12.75
		volts = 255 = JV.
	1:	Numeric code representing state of
		charge. The state of charge of the
		battery is indicated by a single numeric
25		character. "0" represents that SOC is
		not applicable, such as in Replace
		Battery or Recharge and Retest. "5"
		represents 100% state of charge. "1"-
		"4" are divided in equal steps between a
30		selected lower percentage and 100%
		relative conductance.
•	ZZ:	Actual measured battery cranking power
		in 5 CCA increments. For example, 360
		CCA would be represented as 72, 650 CCA
35		as 130, etc. CCA will be rounded to the
		nearest 5 CCA value. The coded CCA is
		then represented using the Pseudo Base

10

15

20

25

30

26 scheme listed above. 360 CCA = 72 coded = CU. 650 CCA = 130 = FA.

Figure 2 is a simplified block diagram showing steps in accordance with the method of the present Figure 2 shows flow chart 100 which initiates operation at start block (or step) 102. block 104, user input is obtained. For example, user input is obtained through input device 66 and may constitute instructions for performing a battery test, the rated cold cranking amps (CCA) for the batter under test, estimated temperature during the test temperature compensation during the test or any other user input related to the test or test environment. This information is provided to microprocessor 56 and is stored in memory 60 for use during the test. Additional information may relate to a particular vehicle in which the battery in installed which may be obtained, for example, using the VIN code for the vehicle. Further, the make, model and manufacturer of the battery 12 may be provided. Other such information includes battery specific information, such as a serial number, digital signature for tracking and identifying the battery, make, model, and date of manufacture of the battery, Such information may be manually input or, for example, read from a bar code carried on the battery.

At block 106, microprocessor 56 performs the battery test using the techniques described above. However, it will be understood that those techniques are merely examples and the battery test may be any battery test including a simple voltage measurement test, a load test, resistance, conductance, impedance, admittance, or other parameter test, battery capacity or state of charge test, digital hygrometer test in which the specific gravity of the battery acid is measured,

WO 98/04910 PCT/US97/12255

-12-

complex charging and discharging tests which are known in the art, etc. It will be understood that in various embodiments of the present invention, the particular test may be selected from any available or yet to be discovered battery test.

At block 108, microprocessor 56 obtains any additional condition information which may be used in accordance with the invention. As explained above, the information may be any information related to the test such as actual ambient or battery temperature sensed by device 68, various intermediate test results which were obtained in performing the test at step 106, various battery parameters such as surface charge, voltage, conductance, resistance, float current, noise amplitude, noise frequency or other noise characteristics, etc. At step 110, microprocessor 56 combines the condition information obtained at step 108 with the test results obtained at step 106 into a string of information. The information may be of any form and is not limited to the character code described above. The information may be digitally encoded into a series of data bytes. However, in one preferred embodiment, an alpha numeric code is preferred. This combination of information is referred to herein as a code. At block 112, this code is output using an appropriate technique. For example, the code can be output on output device 72 which may be a display, printer, label printer, bar code printer, modem or other data transmission means, etc. variation on the invention, the step 112 provides the output to memory 62 for subsequent use. For example, a plurality of codes may be collected in memory for subsequent output or analysis. At block 114, procedure ends.

5

10

15

20

25

10

15

20

25

30

One advantage of the present invention is that it is particularly useful in ensuring compliance with the warranty return policies of manufacturers. example, if, upon identifying a faulty battery, the operator marks the battery 12 with the code provided on output device 72, for example, by marking directly on the battery or applying a sticker to the battery when the battery is returned, the manufacturer will have information regarding the test which resulted in the return of the battery. In one preferred embodiment, the code is encrypted or otherwise difficult to duplicate whereby the code cannot be falsified. manufacturer may then perform a subsequent test on the battery and compare the subsequent test result with the result obtained which lead to the warranty return. This will make it very difficult for the unscrupulous individual to return a battery under a warranty policy where the battery is not faulty. Furthermore, the invention provides additional traceability of the batteries which are being returned to the manufacturer in that the particular code may contain geographic and location information used to identify the particular test location and operator which lead to the failed test. Further still, if the battery is in a new car and is being returned to the automobile manufacturer, the manufacturer can retrieve information regarding the vehicle such as through the VIN code of the vehicle.

The present invention provides a convenient technique for a manufacturer to collect information regarding batteries which fail battery tests. Such information can be used in improving future batteries or identifying faults in existing batteries. For example, the code can contain information regarding the various intermediate steps or measurements which are obtained in

providing the battery test. This could be, for example, battery recovery voltage, voltage after a first test, voltage after a second test, surface charge voltage, voltage or current in response to an implied load or signal, temperature compensation input, noise amplitude or other noise characteristics, float current, etc.

The present invention may be used with standby batteries such as those used to power remote telephone switching locations, computer facilities, power company facilities, pumping stations, etc. It will be understood by those skilled in the art that the present invention is not limited to automotive storage batteries.

In one embodiment of the invention, the code is in an encrypted format to thereby reduce the 15 likelihood of code falsification. In the two examples described above, the code is encrypted in that it is difficult for a user who is unfamiliar with the particular coding technique to discover the precise technique being used and generate valid codes which 20 contain falsified information. A further embodiment of the invention includes providing a stronger encryption algorithm which may be as simple as an offset or transposition cipher or a more complex technique such as a public key encryption technique. Such a technique can 25 also be used to apply a digital signature to the code information about the containing, for example, particular battery tester being used.

Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For example, one may use other input mechanisms to obtain test condition

WO 98/04910 PCT/US97/12255

-15**-**

information or employ other battery tests than those explicitly described. Further, the code may be generated using any appropriate technique.

WHAT IS CLAIMED IS:

1. An apparatus for monitoring the condition of a storage battery, comprising:

battery test circuitry for performing a battery test on the storage battery, providing an intermediary test result output, and providing a battery test result based upon the intermediary test result output; and

calculation circuitry coupled to the battery test circuitry combining the battery test result and the intermediary test result output and responsively providing a code output.

- 2. The apparatus of claim 1 wherein the intermediary test result information includes battery voltage.
- 3. The apparatus of claim 1 including input circuitry receiving test condition information related to conditions of the battery test, wherein the calculation circuitry provides the test code output further in response to the test condition information.
- 4. The apparatus of claim 3 wherein test condition information includes information related to temperature.
- 5. The apparatus of claim 3 wherein test condition information includes geographic information.
- 6. The apparatus of claim 3 wherein test condition information includes information related to the vehicle containing the battery.
- 7. The apparatus of claim 3 wherein test condition information includes information related to the battery.

PCT/US97/12255

- 8. The apparatus of claim 1 wherein the intermediary test result output comprises battery conductance.
- 9. The apparatus of claim 1 wherein the intermediary test result output comprises battery response to a resistive load.
- 10. The apparatus of claim 1 wherein the intermediary test result output comprises battery resistance.
- 11. A method of monitoring the condition of a storage battery, comprising:
 - connecting a battery test device to the storage battery;
 - performing a battery test on the storage
 battery and obtaining an intermediary
 test result;
 - obtaining a test result based upon the intermediary test result; and
 - combining the test result and the intermediary test result into a code.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12255

A. CLASSIFICATION OF SUBJECT MATTER							
IIS CI ·	IPC(6) :G01N 27/42, 04 US CL :324/426, 433; 340/636						
According to	International Patent Classification (IPC) or to both	national classification and IPC					
	DS SEARCHED	A barabasian arrabate)					
i	ocumentation searched (classification system followe	d by classification symbols)					
U.S. : 3	24/426, 427, 429, 433; 340/636; 320/48						
Documentati NONE	on searched other than minimum documentation to the	e extent that such documents are included	in the fields searched				
Electronic d	ata base consulted during the international search (no	ame of data base and, where practicable.	search terms used)				
APS search ten	ns: battery, voltage, test?, display, condition and cod	le					
c. Doc	UMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
Y	US 4,514,694 A (FINGER) 30 April	1985, column 16	1 and 18				
Y, P	US 5,606,242 A (HULL et al.) 25 Fe	2-3,4-12,14 -15, 18-24					
A	US 5,144,248 A (ALEXANDRES et al.) 01 September 1992, see figure 6						
A	US 5,032,825 A (KUZNICKI) 16 July	1-10					
A	US 4,820,966 A (FRIDMAN) 11 April 1989, see the figures						
Further documents are listed in the continuation of Box C. See patent family annex.							
	ecial categories of cited documents:	"T" later document published after the unu date and not in conflict with the appl the principle or theory underlying the	seation but ested to understand				
6	be of particular relevance	"X" document of perticular relevance; the	claimed invention cannot be				
T. do:	tier document published on or after the international filing date sument which may throw doubts on priority claim(s) or which is	considered noval or cannot be conside when the document is taken alone	red to involve an inventive step				
cita	d to establish the publication date of another citation or other cital reason (as specified)	"Y" document of particular relevance; the	claimed invention cannot be step when the document is				
"O" do	nument referring to an oral disclosure, use, axhibition or other	combined with one or more other such being obvious to a person skilled in t	documents, such combination				
P dos	nument published prior to the international filing date but leter than priority date claimed	*&* document member of the same patent					
	actual completion of the international search	Date of mailing of the international sea	rch report				
23 OCTO	BER 1997	1 6 DEC 1997					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Authorized officer Commissioner of Patents and Trademarks							
Box PCT	per of Patents and Trademarks	MAURA REGAN					
_	, D.C. 20231 p. (703) 308-7382	Telephone No. (703) 305-4917					