Correction:

$$\frac{\partial P_i}{\partial \tilde{\mathbf{x}}} = \mathbf{R}_{L_i L_{i-1}} \mathbf{R}_{LI} \cdot [-\mathbf{R}_{IW} [(_W P_i -_W \mathbf{p}_{WI})]_{\times} \quad -\mathbf{R}_{IW} \quad 0]$$

The robot state is defined as $\mathbf{x} = [\mathbf{R}_{WI},_W \mathbf{p}_{WI},_W \mathbf{v}_I, \mathbf{b}_a, \mathbf{b}_g, \mathbf{g}]$

1. Coordinate Transformation

The 3D point $_WP_i$ is first transformed from the **world frame** to the **IMU frame**, then to the **LiDAR frame**:

$$_{L}P_{i} = \mathbf{R}_{LI} \cdot \mathbf{R}_{IW} \cdot (_{W}P_{i} - _{W}\mathbf{p}_{WI}) \tag{1}$$

where:

 $\cdot \mathbf{R}_{IW}$: Rotation from world to IMU

ullet ${f R}_{LI}$: LiDAR-to-IMU extrinsic rotation

• $_{W}\mathbf{p}_{WI}$: IMU position in world frame

2. Perturbation Analysis for Rotation

For a small perturbation $\delta\theta$ in attitude \mathbf{R}_{IW} , we use the **right perturbation model** on SO(3):

$$\mathbf{R}_{IW}
ightarrow \mathbf{R}_{IW} \cdot \exp\left([\delta heta]_{ imes}
ight)$$
 (2)

The perturbed point becomes:

$$_{L}P_{i}^{\prime} = \mathbf{R}_{LI} \cdot \mathbf{R}_{IW} \cdot \exp\left(\left[\delta\theta\right]_{\times}\right) \cdot \left(_{W}P_{i} -_{W}\mathbf{p}_{WI}\right) \tag{3}$$

Using first-order approximation $\exp([\delta\theta]_{\times}) \approx \mathbf{I} + [\delta\theta]_{\times}$:

$$LP_{i}' \approx \mathbf{R}_{LI} \cdot \mathbf{R}_{IW} \cdot (\mathbf{I} + [\delta\theta]_{\times}) \cdot ({}_{W}P_{i} - {}_{W}\mathbf{p}_{WI})$$

$$\Rightarrow \delta LP_{i} = \mathbf{R}_{LI} \cdot \mathbf{R}_{IW} \cdot [\delta\theta]_{\times} \cdot ({}_{W}P_{i} - {}_{W}\mathbf{p}_{WI})$$
(4)

Using the property $[a]_{\times}b = -[b]_{\times}a$:

$$\delta_L P_i' = -\mathbf{R}_{LI} \cdot \mathbf{R}_{IW} \cdot \left[\left({_W}P_i - _W \mathbf{p}_{WI} \right) \right]_{\times} \cdot \delta\theta \tag{5}$$

As derived previously, the rotation perturbation leads to:

$$\frac{\partial_L P_i}{\partial \delta \theta} = -\mathbf{R}_{LI} \cdot \mathbf{R}_{IW} \cdot \left[\left({_W}P_i - _W \mathbf{p}_{WI} \right) \right]_{\times} \tag{6}$$

3. Position Perturbation

$$_{W}\mathbf{p}_{WI}^{\prime} =_{W} \mathbf{p}_{WI} + \delta \mathbf{p} \tag{7}$$

For a position perturbation $\delta \mathbf{p}$, the derivative is straightforward according to equation (1):

$$\frac{\partial_L P_i}{\partial \delta \mathbf{p}} = -\mathbf{R}_{LI} \cdot \mathbf{R}_{IW} \tag{8}$$

4. Full Matrix

Combining the rotation and position terms, we get:

$$\frac{\partial P_i}{\partial \tilde{\mathbf{x}}} = \mathbf{R}_{L_i L_{i-1}} \mathbf{R}_{LI} \cdot [-\mathbf{R}_{IW} [(_W P_i -_W \mathbf{p}_{WI})]_{\times} - \mathbf{R}_{IW} \quad 0]$$
(9)

where:

ullet $\mathbf{R}_{L_iL_{i-1}}$: Relative rotation between consecutive LiDAR frames