INTRODUCTION À LA MODÉLISATION STATISTIQUE – L2–MIASHS 2015–2016 –

JUAN VIU-SOS

Table des matières

1. No	tions de probabilité	1
1.1.	Univers, événements et opérations	2
1.2.	Probabilité : définition axiomatique	3
1.3.	Probabilité : modèle finie et équiprobabilité	4
1.4.	Notion de probabilité conditionnelle. Indépendance	5
2. Vai	riables aléatoires	7
2.1.	Variables aléatoires discrètes. Espérance. Variance	7
2.2.	Épreuve de Bernoulli	9
2.3.	Schéma de Bernoulli. Loi binomiale	10
2.4.	Simulation de variables aléatoires discrètes	12
2.5.	Une variable aléatoire continue : la loi normale	12
3. Est	imation ponctuelle d'une proportion	17
3.1.	Modèle statistique	17
3.2.	Estimation du modèle	17
3.3.	L'inégalité de Bienaymé-Tchebychev	18
4. Est		19
4.1.	Théorème de Moivre-Laplace	20
4.2.	Intervalle de fluctuation asymptotique	20
4.3.	Intervalle de confiance asymptotique	

1. Notions de probabilité

La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences dont le résultat est fruit du hasard :

- le lancer d'un dé ou de pièce de monnaie,
- faire tourner une roulette,
- durée de vie d'un appareil électronique,
- temps d'attente dans une file,
- mesurer la hauteur des Français(es),...

Définition 1.1. On appel exp'erience al'eatoire à toute épreuve dont :

- a) on ne peut pas prévoir le résultat de façon certaine.
- b) on peut indiquer l'ensemble des résultats possibles.

Tout résultat possible d'une expérience aléatoire est appelé éventualité.

1.1. Univers, événements et opérations.

Définition 1.2. On considère une expérience aléatoire.

- On appelle *univers*, au ensemble Ω qui représente toutes les éventualités.
- Soit $A \subset \Omega$, on dit que A est un événement si, une fois obtenu le résultat de l'expérience aléatoire, on peut affirmer si A est-il vérifié ou non. Un événement est-il appelé élémentaire s'il contient qu'une seule éventualité. On dénotera par A l'ensemble de tous les événements de Ω .
- On appelle Ω et \emptyset les événements certain et impossible, respectivement.

Exemple 1.3. On considère l'expérience aléatoire qui consiste à lancer d'un dé de six faces non truqué et à regarder le nombre inscrit sur sa face supérieure.

- Les éventualités sont : "obtenir un 1", "obtenir un 2",..., "obtenir un 6", qui peuvent être représentées par les nombres 1, 2, ..., 6, respectivement.
- Dont, l'univers : $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- Les sous-ensembles $A = \{\text{``obtenir 2''}\} = \{2\}, B = \{\text{``obtenir pair''}\} = \{2,4,6\}, C = \{\text{``obtenir au moins 3''}\} = \{3,4,5,6\} \text{ sont des \'ev\'enements.}$

Définition 1.4. Soient A et B des événement d'une expérience aléatoire avec univers associé Ω . On définit les opérations suivantes :

- événement contraire de $A: \overline{A} = \{\omega \in \Omega \mid \omega \notin A\}.$
- événement "A et B" : $A \cap B = \{ \omega \in \Omega \mid \omega \in A \text{ et } \omega \in B \}.$
- événement "A ou B" : $A \cup B = \{\omega \in \Omega \mid \omega \in A \text{ ou } \omega \in B\}$.
- $\text{ \'ev\'enement "A et non B" } : A \setminus B = \{\omega \in \Omega \mid \omega \in A \text{ et } \omega \not \in B\}.$

FIGURE 1. Diagrammes de Venn

Définition 1.5. Deux événements A et B sont appelés incompatibles si $A \cap B = \emptyset$.

Remarque 1.6.

- (1) ces opérations sont exactement les opérations classiques entre ensembles : complémentaire, intersection, réunion et différence (Figure 1).
- (2) On a assumé que la famille des événements \mathcal{A} est "suffisamment riche" pour que toutes les opérations précédentes soient bien définies. Pendant le cours, on n'aura besoin que des considérations précédentes, mais mathématiquement on a besoin d'assumer aussi que

Si
$$\{A_i\}_{i=1}^{+\infty} \subset \mathcal{A} \Longrightarrow \bigcup_{i=1}^{+\infty} A_i \in \mathcal{A}$$

(notion de σ -algèbre, Introduction aux probabilités, S4).

Rappel 1.7 (Lois de Morgan). Soient $A, B \subset \Omega$:

- $(1) \ \overline{A \cup B} = \overline{A} \cap \overline{B}.$
- (2) $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Exemple 1.8. Si on revienne sur l'exemple précédent :

$$\overline{A} = \{1, 3, 4, 5, 6\}$$
 $\overline{B} = \{1, 3, 5\} = \{\text{"obtenir impair"}\}$ $\overline{C} = \{1, 2\} = \{\text{"obtenir au plus 2"}\}$

$$B \cap C = \{4,6\}$$
 $B \cup C = \{2,3,4,5,6\}$ $A \cup B = \{2,4,6\} = B \text{ (car } A \subset B)$ $\overline{B} \setminus C = \{1,3\}$

$$\overline{B} \cap \overline{C} = \{\text{"obtenir impair et au plus 2"}\} = \{1\} = \overline{B \cup C}$$

$$\overline{B} \cup \overline{C} = \{\text{``obtenir impair ou au plus 2''}\} = \{1,2,3,5\} = \overline{B \cap C}$$

1.2. Probabilité: définition axiomatique.

On considère une expérience aléatoire d'univers Ω et famille d'événements \mathcal{A} .

Définition 1.9. Une fonction de *probabilité* es une fonction $P: \mathcal{A} \to \mathbb{R}$ telle que :

- (1) $0 \le P(A) \le 1$ pour tout $A \in \mathcal{A}$.
- (2) Si $\{A_i\}_{i=1}^{+\infty}$ est une famille d'événements deux à deux incompatibles (i.e. $A_i \cap A_j = \emptyset, \forall 1 \le i \ne j$), alors

$$P\left(\bigcup_{i=1}^{+\infty} A_i\right) = \sum_{i=1}^{+\infty} P(A_i)$$

Le triplet (Ω, \mathcal{A}, P) s'appelle espace probabilisé.

Proposition 1.10. Toute fonction de probabilité vérifie :

- (1) $P(\Omega) = 1$ et $P(\emptyset) = 0$.
- (2) Pour tout $A, B \in \mathcal{A}$:

(a)
$$P(\overline{A}) = 1 - P(A)$$
.

(b)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.
En particulier, si A et B incompatibles : $P(A \cup B) = P(A) + P(B)$.

(c)
$$P(A \setminus B) = P(A) - P(A \cap B)$$
.

Remarque 1.11. ⚠On est en train de "mesurer" des ensembles!

1.3. Probabilité: modèle finie et équiprobabilité.

Un cas particulier d'expérience aléatoire est celle où l'univers est finie :

$$\Omega = \{e_1, e_2, \dots, e_n\}$$

Exemples : le lancé d'une pièce $\Omega = \{$ "pile", "face" $\}$, le lancé d'un dé $\Omega = \{1, 2, \dots, 6\}, \dots$ Dans ce cas :

- $-\mathcal{A} = \mathcal{P}(\Omega)$. (tout sous-ensemble de Ω)
- Pour définir une fonction de probabilité sur Ω , il suffit d'associer un réel $p_i \in [0,1]$ à chaque éventualité $e_i \in \Omega$ tel que $P(\{e_i\}) = p_i$.

Exemple 1.12.

- Monnaie non-truquée : $P(\{\text{ "pile"}\}) = P(\{\text{ "face"}\}) = 1/2.$
- Monnaie truquée : $P(\{\text{"pile"}\}) = 3/4$. Quel est $P(\{\text{"face"}\})$?.

Définition 1.13. On dit qu'un modèle finie est équiprobable (ou d'équiprobabilité) lorsque toutes les probabilités élémentaires sont égales, c'est-à-dire lorsque $P(\{e_i\}) = P(\{e_j\})$ quelque soit les éventualités $e_i, e_j \in \Omega$.

Théorème 1.14 (Règle de Laplace). Dans un modèle équiprobable :

$$P(A) = \frac{|A|}{|\Omega|} = \frac{nb \ des \ cas \ favorables}{nb \ total \ de \ cas}, \quad \forall A \in \mathcal{A}.$$

Exemple 1.15. Le lancé d'un dé non-truqué, on a $\Omega = \{1, 2, \dots, 6\}$:

- $-A = \{\text{``obtenir pair''}\} = \{2, 4, 6\} \Longrightarrow P(A) = 3/6 = 1/2.$
- $-B = \{\text{``obtenir impair''}\} = \{1, 3, 5\} \Longrightarrow P(B) = 3/6 = 1/2 \ (= 1 P(\overline{B}) = 1 P(A)).$
- $-C = \{\text{``obtenir multiple de 3''}\} = \{3,6\} \Longrightarrow P(C) = 2/3 = 1/3$
- $-D = \{\text{``obtenir au moins 3''}\} = \{3, 4, 5, 6\} \Longrightarrow P(D) = 3/6 = 1/2$

Exemple 1.16. Dans un collège, les 100 élèves de troisième sont répartis selon leur seconde langue vivante comme le montre le tableau suivant :

	allemand	espagnol	total
garçons	18	22	40
filles	33	27	60
total	51	49	100

Une expérience aléatoire consiste à prendre un élève au hasard. On modélise cette expérience de façon équiprobable sur l'ensemble Ω des 100 élèves.

Notons $A = \{$ "l'élève étudie l'allemand " $\}$ et $F = \{$ "l'élève est une fille " $\}$. Quel est la probabilité que l'élève pris au hasard

- a) soit une fille ? P(F) = 60/100 = 0.6
- b) soit une fille germaniste ? $P(F \cap A) = 33/100 = 0.33$
- c) soit un garçon ou fasse de l'allemand ? $P(\overline{F} \cup A) = P(\overline{F}) + P(A) P(\overline{F} \cap A) = 1 60/100 + 51/100 18/100 = 73/100 = 0.73$ En utilisant les lois de Morgan : $P(\overline{F} \cup A) = 1 P(\overline{F} \cup A) = 1 P(F \cap \overline{A}) = 1 27/100 = 73/100 = 0.73$

1.4. Notion de probabilité conditionnelle. Indépendance.

Comment doit-on modifier la probabilité que l'on attribue à un événement lorsqu'on dispose d'une information supplémentaire ou on a déjà obtenu des résultats *a priori* sur l'expérience ?

Exemple 1.17. On reprend l'exemple précédent. Quelle est la probabilité qu'un élève *fille* pris au hasard étudie l'allemand? On dispose ici d'une information supplémentaire: on sait que l'élève choisi est une fille. Notre univers se restreint aux 60 filles, dont 33 étudient l'allemand. D'après la Règle de Laplace, cette probabilité est de 33/60 = 11/20. Comment peut-on définir mathématiquement cet concept?

Définition 1.18. Soient $A, B \in \mathcal{A}$, avec $P(A) \neq 0$. La probabilité de B sachant que A est réalisé (on dit la probabilité de B sachant A), noté P(B|A), est le nombre réel défini par :

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

Remarque 1.19. \triangle En général : $P(B|A) \neq P(A|B)$.

Exemple 1.20.

- Probabilité de qu'une fille prise au hasard étudie l'allemand : $P(A|F) = \frac{P(A \cap F)}{P(F)} = \frac{|A \cap F|}{|F|} = \frac{11/20}{1}$.
- Probabilité de qu'un étudiant d'allemand pris au hasard soit une fille : $P(F|A) = \frac{P(A \cap F)}{P(A)} = \frac{|A \cap F|}{|A|} = 33/51$.

Remarque 1.21. \triangle En traduisant un énoncé, attention á ne pas confondre $P(A \cap B)$ avec P(A|B).

Ce qui fait l'intérêt du concept de probabilité conditionnelle, c'est qu'il est souvent bien plus facile d'attribuer directement une valeur à P(B|A) en tenant compte des conditions expérimentales (liées à l'information A) et d'en déduire ensuite la valeur de $P(A \cap B)$.

Proposition 1.22. Soient A et B deux événements de probabilité non nulle :

$$P(A \cap B) = P(A) \cdot P(B|A)$$

Remarque 1.23. Il est très pratique pour cela de remanier la définition ci-dessus et de représenter la situation par un arbre pondéré (Figure 2) :

Figure 2

La probabilité de l'intersection de deux (ou plusieurs...) événements est égale au produit des probabilités des branches du chemin passant par ces événements.

Exemple 1.24. Une urne contient 2 boules rouges et 3 boules vertes indiscernables au toucher. On en tire au hasard deux l'une après l'autre, *sans remise*. Quelle est la probabilité d'obtenir deux rouges ?

On prends comme univers Ω l'ensemble des $20=5\cdot 4$ possibles extractions des boules 5 boules avec la couleur :

$$\Omega = \{(i, j) \in \{R1, R2, V3, V4, V5\}^2 \mid i \neq j\} (= \{(R1, R2), (R1, V3), \dots\})$$

(arrangement de 2 éléments de $\{R1,R2,V3,V4,V5\}$)

et dans ce cas on prend $\mathcal{A} = \mathcal{P}(\Omega)$ et P l'équiprobabilité. On définie les événements :

- $-A = \{$ "obtenir une rouge dans la premier extraction" $\}$.
- $-B = \{$ "obtenir une rouge dans la seconde extraction" $\}$.

On construit l'arbre pondéré avec les deux extractions et on obtient :

$$P(A) = 2/5$$
, $P(B|A) = 1/4 \Longrightarrow P(A \cap B) = 2/5 \cdot 1/4 = 1/10$

Remarque 1.25. "B|A" ne désigne pas un nouvel événement différent de A. Quand on écrit P(B|A), ce que l'on a modifié, ce n'est pas l'événement B, mais la valeur numérique qui lui était attribuée par la fonction d'ensembles P!

Proposition 1.26. Soit (Ω, \mathcal{A}, P) un espace probabilisé et $A \in \mathcal{A}$ fixe tel que $P(A) \neq 0$. Alors la fonction :

$$\begin{array}{ccc} P(\cdot \mid A): & \mathcal{A} & \longrightarrow & [0,1] \\ & B & \longmapsto & P(B|A) = \frac{P(A \cap B)}{P(A)} \end{array}$$

est une fonction de probabilité et $(\Omega, \mathcal{A}, P(\cdot \mid A))$ est un espace probabilisé.

Remarque 1.27. $P(\cdot \mid A)$ vérifie donc toutes les propriétés de la fonction de probabilité, p.ex.

- $P(\overline{B}|A) = 1 P(B|A),$
- $P(B \cup C|A) = P(B|A) + P(C|A) P(B \cap C|A),$

- ..

Remarque 1.28. Il existent des résultats très utiles pour relier les probabilités a priori et a posteriori d'avoir reçu des nouvelles informations sur les expériences qu'on est en train d'étudier. (Formule des probabilités totales, Formule de Bayes, Introduction aux probabilités, S4).

Exemple 1.29. Si on revienne sur l'exemple précédent : supposons qu'on a obtenu comme résultat une boule verte. Quel est la probabilité de que la boule proviens de l'urne U_1 ?

Définition 1.30. Deux événements A et B sont dits indépendants lorsque $P(A \cap B) = P(A) \cdot P(B)$.

Proposition 1.31. Deux événements A et B de probabilité non nulle sont indépendants si et seulement si P(A|B) = P(A). (sii P(B|A) = P(B))

Proposition 1.32. Deux événements A et B sont indépendants si et seulement si A et \overline{B} sont indépendants.

Remarque 1.33. Ane pas confondre événements incompatibles et événements indépendants (ensembles vs probabilité).

Exemple 1.34. Si on considère deux lancés consécutifs d'une pièce équilibrée les événements :

- $-A = \{$ "obtention de pile dans la premier lancé " $\}$.
- $-B = \{$ "obtention de pile dans la seconde lancé " $\}$.

sont indépendantes, car $P(A \cap B) = 1/4 = 1/2 \cdot 1/2 = P(A) \cdot P(B)$.

Exemple 1.35. On classifie 1200 personnes d'un village par rapport au genre et si elles fument ou non :

	femme	homme	total
fume	200	600	800
ne fume pas	100	300	400
total	300	900	1200

Une expérience aléatoire consiste à prendre une personne au hasard. On modélise cette expérience de façon équiprobable sur l'ensemble Ω des 1500 personnes.

Les événements $H = \{$ " la personne est un homme " $\}$ et $F = \{$ " la personne fume " $\}$ sont indépendantes, car

$$P(H) = \frac{900}{1200} = \frac{3}{4}, \quad P(F) = \frac{800}{1200} = \frac{2}{3}, \quad P(H \cap F) = \frac{600}{1200} = \frac{1}{2}$$
 et $P(H \cap F) = 1/2 = 3/4 \cdot 2/3 = P(H) \cdot P(F)$.

2. Variables aléatoires

Pendant tout le chapitre, on considère une expérience aléatoire avec espace probabilisé associé (Ω, \mathcal{A}, P) .

2.1. Variables aléatoires discrètes. Espérance. Variance.

Définition 2.1. On appelle variable aléatoire discrète (v.a.d.) toute application

$$\begin{array}{cccc} X: & \Omega & \longrightarrow & \mathbb{R} \\ & \omega & \longmapsto & X(\omega) \end{array}$$

telle que:

- (1) L'ensemble des images $X(\Omega)$, appelé l'univers image de X, est un sous-ensemble de N.
- (2) Pour tout $x \in X(\Omega)$, l'ensemble $\{\omega \in \Omega \mid X(\omega) = x\}$ (dénoté simplement par $\{X = x\}$) fait partie des événements de l'expérience aléatoire A.

Une variable aléatoire discrète est caractérise de manière unique par l'ensemble des probabilités $P(X=x) \in [0,1]$, pour tout $x \in X(\Omega)$. Cet ensemble est appelé la loi de X.

Remarque 2.2. Une variable aléatoire discrète est simplement une codification numérique (par des entiers) de certains informations intéressants de l'univers Ω d'une expérience aléatoire.

Exemple 2.3. Si on considère deux lancés consécutifs d'une pièce non-truqué, on a l'univers associé

$$\Omega = \{$$
 "pile-pile", "face-pile", "pile-face", "face-face" $\}$

On peut donc définir la variable aléatoire discrète X= "nombre de piles obtenues dans deux lancés consécutifs d'une pièce " qui a la forme

donc l'univers image $X(\Omega) = \{0, 1, 2\}$. On se trouve dans situation d'équiprobabilité, donc en Utilisant la Règle de Laplace, la loi de probabilité de la v.a.d. X peut s'exprimer par le tableau

Cette loi est représenté par le graphe de la fonction discrète (Figure 3) :

Figure 3

On peut exprimer l'événement {" obtenir au plus une pile "} = $\{X \le 1\}$ comme l'union disjoint d'événements $\{X = 0\}$ et $\{X = 1\}$, donc :

$$P(X \le 1) = P(X = 0) + P(X = 1) = 1/4 + 1/2 = 3/4$$

On va définir deux paramètres qui nous résument des informations sur la loi de probabilité d'une v.a.d. :

Définition 2.4. Soit X une v.a.d. On appelle :

- espérance de X au nombre réel donné par la somme pondéré

$$\mathrm{E}[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x)$$

Plus généralement, si ϕ est une fonction réelle définie sur $X(\Omega)$:

$$E[\phi(X)] = \sum_{x \in X(\Omega)} \phi(x) \cdot P(X = x)$$

- variance de X au nombre réel définie par

$$\operatorname{Var}[X] = \operatorname{E}\left[(X - \operatorname{E}[X])^2 \right] = \sum_{x \in X(\Omega)} (x - \operatorname{E}[X])^2 \cdot P(X = x)$$

Remarque 2.5. Intuitivement, E[X] et Var[X] donnent la moyenne théorique et la dispersion théorique des valeurs prises par X qu'on l'obtiendrait sur un grand nombre d'expériences.

Propriété 2.6. $Var[X] = E[X^2] - E[X]^2$.

Exemple 2.7. Revenons sur le dernier exemple. On peut calculer l'espérance et la variance de la v.a.d. X à partir du tableau

$$E[X] = \sum_{x \in X(\Omega)} x \cdot P(X = x) = \sum_{i=1}^{3} x_i \cdot P(X = x_i) = 0 \cdot P(X = 0) + 1 \cdot P(X = 1) + 2 \cdot P(X = 2)$$
$$= 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} = 1$$

$$Var[X] = \sum_{x \in X(\Omega)} (x - E[X])^2 \cdot P(X = x) = \sum_{i=1}^{3} (x_i - E[X])^2 \cdot P(X = x_i)$$

$$= (0 - 1)^2 \cdot P(X = 0) + (1 - 1)^2 \cdot P(X = 1) + (2 - 1)^2 \cdot P(X = 2) = 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} = 1/2$$
(plus simple)
$$= E[X^2] - E[X]^2 = \sum_{i=1}^{3} x_i^2 \cdot P(X = x_i) - 1 = 0 + 1 \cdot \frac{1}{2} + 4 \cdot \frac{1}{4} - 1 = 1/2$$

Donc la moyenne théorique de X est 1 avec pas beaucoup de dispersion.

Exemple 2.8. Imaginons qu'on en train de jouer avec un ami au jeu de *pile-pile*: on lance deux pièce s équilibrés, si on obtient "pile-pile" notre ami doit nous donner 1 euro, si on obtient "face-face" c'est nous qui donnons l'euro à notre ami. Dans un autre case, rien se passe. Quelle est le bénéfice attendu dans ce jeu?

À partir de l'exemple précédente, on peut définir la variable aléatoire Y= "Notre bénéfice dans le jeu de pile-pile" comme une fonction de X, c.-a.-d. $Y=\phi(X)=X-1$. Si on calcule l'espérance associé à Y:

$$E[Y] = E[X - 1] = \sum_{i=1}^{3} (x_i - 1) \cdot P(X = x_i) = -1 \cdot P(X = 0) + 0 \cdot P(X = 1) + 1 \cdot P(X = 2)$$
$$= -1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} = 0$$

Donc, si on joue un nombre suffisamment grand de fois, les bénéfices et les pertes auront tendance à se compenser. C'est qu'on appelle un jeu équitable.

Remarque 2.9. Dans ce cours, on va se centrer sur des v.a.d. définies sur des univers $\underline{\text{finis}}$: $\Omega = \{e_1, e_2, \dots, e_n\}$. L'univers image $X(\Omega)$ est donc fini, ainsi comme les sommes arithmétiques précédentes.

Définition 2.10. Soient X et Y deux v.a.d. définies sur l'univers Ω . On dit que X et Y sont indépendantes si et seulement si

$$P(X = k_x, Y = k_y) = P(X = k_x)P(Y = k_y), \quad \forall k_x \in X(\Omega), \ \forall k_y \in Y(\Omega).$$

2.2. Épreuve de Bernoulli.

Définition 2.11. On appelle épreuve de Bernoulli de probabilité $p \in [0,1]$ toute expérience aléatoire admettant deux issues tel que

- a) la première issue appelée succès (notée S) se réalise avec une probabilité p.
- b) la seconde issue appelée échec (notée \overline{S} ou E) se réalise avec une probabilité q=1-p.

Exemple 2.12.

- (1) Obtenir pile ou face en lançant une pièce équilibré (p = 1/2) ou truquée $(p \neq 1/2)$.
- (2) Obtenir 1 avec un dé à 6 faces.
- (3) Obtenir un as sur 32 cartes.
- (4) Qu'une personne pris au hasard aille une certaine maladie.

Définition 2.13. On dirai la variable aléatoire X suit la loi de Bernoulli de paramètre $p \in [0,1]$ si elle ne prend que deux valeurs 0 et 1 avec :

$$P(X = 1) = p$$
 et $P(X = 0) = q$

On notera $X \sim \mathcal{B}(p)$.

2.3. Schéma de Bernoulli. Loi binomiale.

Définition 2.14. On appelle schéma de Bernoulli comportant n épreuves $(n \in \mathbb{N}^*)$ tout expérience consistant à répéter n fois te de façon indépendante la même épreuve de Bernoulli de paramètre p.

Exemple 2.15. On répète n=3 fois le lancer d'une pièce et on observe l'événement "obtenir face". On peut illustrer un schéma de Bernoulli par un arbre pondéré (Figure 4) :

Figure 4

La probabilité d'observer une réalisation donnée est facile à calculer grâce à l'indépendance des épreuves !

$$P(\{\text{``obtenir 3 faces''}\}) = p^3$$
 et $P(\{\text{``obtenir 2 faces''}\}) = 3p^2q$

Définition 2.16. On considère un schéma de Bernoulli avec n épreuves et de probabilité p d'observer un succès S à chacune des épreuves :

$$\Omega = \{(e_1, \dots, e_n) \mid e_i = S \text{ ou } \overline{S}\} = \{S, \overline{S}\}^n$$

Soit X la v.a.d. à valeurs dans $\{0,1,\ldots,n\}$ qui compte le nombre de succès d'une tel schéma de Bernoulli. On dirai que la variable aléatoire X suit la loi binomiale de paramètres $n\in\mathbb{N}$ et $p\in[0,1]$, noté $X\sim\mathcal{B}(n,p)$.

Remarque 2.17. Plus mathématiquement : si X_1, \ldots, X_n sont des v.a.d. indépendantes tels que $X_i \sim \mathcal{B}(p)$, alors la v.a.d. définie par $Z = \sum_{i=1}^n X_i$ suit une binomiale de paramètres n et p.

En utilisant l'arbre pondéré décrivant le schéma de Bernoulli, on peut facilement obtenir la loi binomiale :

Propriété 2.18. Soit $X \sim \mathcal{B}(n, p)$, alors :

$$\forall k \in \{0, 1, \dots, n\}: P(X = k) = C_n^k p^k q^{n-k}$$

où $C_n^k = combinaisons$ sans répétition de n éléments pris k à k.

Remarque 2.19. $\sum_{k=0}^n P(X=k) = \sum_{k=0}^n C_n^k p^k q^{n-k} = (p+q)^n = 1$ (Formule du binôme de Newton).

Rappel 2.20. Sur les combinaisons et la factorielle. Soient $k, n \in \mathbb{N}$ tels que $k \leq n$ et $n \geq 1$.

- a) $k! = k \cdot (k-1) \cdot (k-2) \cdots 2 \cdot 1$. 0! = 1.
- b) $C_n^k = \frac{n!}{k!(n-k)!}$. En particulier, $C_n^0 = \frac{n!}{0!n!} = 1$ et $C_n^n = \frac{n!}{n!0!} = 1$.
- c) $C_n^k = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = C_n^{n-k}$.
- d) $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$.

Ces nombres peuvent se calculer facilement avec le Triangle de Pascal (Figure 5) :

FIGURE 5. Triangle de Pascal : $C_4^1 + C_4^2 = C_5^2$.

Propriété 2.21. Soit $X \sim \mathcal{B}(n, p)$ avec $n \in \mathbb{N}$ et $p \in [0, 1]$, alors

$$E[X] = np$$
 et $Var[X] = npq$

Démonstration. On sait que $P(X=k)=C_n^kp^kq^{n-k}$, pour tout $k\in\{0,1,\ldots,n\}$. Alors, par déf.

$$E[X] = \sum_{k=0}^{n} k \cdot P(X = k) = \sum_{k=1}^{n} k \cdot C_{n}^{k} p^{k} q^{n-k}$$

On remarque que:

$$k \cdot C_n^k = \frac{kn!}{k!(n-k)!} = \frac{n!}{(k-1)!(n-k)!} = n \cdot \frac{(n-1)!}{(k-1)!(n-k)!}$$
$$= n \cdot C_{n-1}^{k-1}$$

D'où:

$$E[X] = n \sum_{k=1}^{n} k \cdot C_n^k p^k q^{n-k} = \left[j = k-1; \begin{array}{l} k = 1 \to j = 0 \\ k = n \to j = n-1 \end{array} \right]$$
$$= n \sum_{j=0}^{n-1} C_{n-1}^j p^j q^{n-1-j} = n p \sum_{j=0}^{n-1} C_{n-1}^j p^j q^{n-1-j} = n p (p+q)^{n-1}$$
$$= n p$$

De même, on peut prouver Var[X] = npq. (TD)

2.4. Simulation de variables aléatoires discrètes.

Vouloir utiliser un ordinateur pour obtenir des nombres aléatoires apparaît paradoxal, sinon impossible : par définition, un nombre aléatoire n'est pas prévisible, tandis que l'ordinateur ne peut appliquer qu'une formule prédéfinie (un algorithme). Pour cela, on utilise ce qu'on appelle les nombres pseudo-aléatoires, générés à partir de certains données de l'ordinateur, comme p.ex, en fonction du nombre de millisecondes de l'horloge de l'ordinateur au moment où l'on commence la simulation.

L'intérêt est pourtant grand, car bien des applications utilisent des nombres aléatoires :

- sécurité informatique (génération automatique d'identifiants, de clés secrètes),
- méthodes d'optimisation dans des espaces de grande dimension (algorithmes génétiques),
- simulations numériques de systèmes complexes (physique, ingénierie, finance, assurance, météo. . .),
- jeux vidéos (paysages aléatoires, intelligence artificielle,...),

2.5. Une variable aléatoire continue : la loi normale.

Dans cette section, I désigne un intervalle $I \subset \mathbb{R}$ (borné ou non).

On a étudié que des expériences aléatoires avec un univers "discrète" muni d'une loi de probabilité P. Toute variable aléatoire ne prenait alors qu'un nombre fini de valeurs. P. ex., la "probabilité d'obtenir face ou pile dans le lancé d'une pièce".

Cependant, certaines expériences aléatoires conduisent à utiliser des variables aléatoires qui prennent toutes les valeurs d'un intervalle I de \mathbb{R} , p. ex. mesurer la taille ou le poids d'un homme de 19 ans prise au hasard dans une population.

Pendant le cours *Statistique Descriptive* (S2), on a fait la différence entre variables quantitatives "discrètes" et "continues". Pour définir la notion de fréquence dans les échantillons des "continues", on devait découper l'ensemble des modalités en intervalles disjoints d'une même amplitude, appelés *classes*.

Imaginons qu'on représente dans un histogramme l'échantillon donné par les tailles X des hommes de 19 ans dans une population. Au fur et au mesure qu'on augmente la taille de l'échantillon, on peut définir des classes avec des amplitudes plus petits : l'histogramme s'approchera vers une courbe y = f(x) qui va modéliser la fréquence relative de X (Figure 6) :

Figure 6. Taille.

Définition 2.22. On appelle fonction de densité sur un I toute fonction $f: I \to \mathbb{R}$ telle que :

- (1) f est positive et continue sur I (éventuellement, continue par morceaux).
- (2) $\int_I f(x) dx = 1$.

Remarque 2.23. Lorsque I est non-borné, p. ex. $I = [a, +\infty[$, on définit les intégrales par le passage au limite :

$$\int_{I} f(x) dx = \int_{a}^{+\infty} f(x) dx = \lim_{M \to +\infty} \int_{a}^{M} f(x) dx$$

(notion d'intégrale généralisée, Intégrales généralisées et multiples, S3)

Définition 2.24. On appelle variable aléatoire continue (v.a.c.) sur I toute application

$$\begin{array}{cccc} X: & \Omega & \longrightarrow & \mathbb{R} \\ & \omega & \longmapsto & X(\omega) \end{array}$$

telle que:

- (1) L'univers image $X(\Omega) = I$.
- (2) Pour tout J sous-intervalle de I, $\{\omega \in \Omega \mid X(\omega) \in J\} \in \mathcal{A}$ (dénoté simplement par $\{X \in J\}$).
- (3) Il existe une fonction de densité f sur I telle que, pour tout sous-intervalle $J \subset I$:

$$P(X \in J) = \int_{J} f(x) dx.$$

On dira que X suit la loi de densité f sur I.

Remarque~2.25.

- (1) On utilisera (abusivement) les notations $\{a \leq X \leq b\}$, $\{a > X\}$, $\{X \leq b\}$ au lieu de $\{X \in [a,b]\}$, $\{X \in]a,+\infty[\}$, $\{X \in]-\infty,b]\}$, respectivement.
- (2) $P(X \in J) \ge 0$ car f est positive, et ce nombre correspond à l'aire de la région délimite sous la courbe intégrale par J (Figure 7) :

Figure 7

On a aussi que $P(X \in J) \le 1$, car $\int_I f(x) dx = 1$, par définition.

- (3) Notez que, dans le cas des v.a. continues :
 - $-P(X=a) = \int_a^a f(x) dx = 0, \forall a \in I.$
 - $-P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b), \forall a, b \in I.$

Dans le cas continu, on peut aussi définir la notion d'espérance et la variance.

Définition 2.26. Soit X une v.a.c. de loi de densité f sur I. On appelle esp'erance de X au nombre réel

$$E[X] = \int_{I} x f(x) dx$$

Plus généralement, si ϕ est une fonction réelle définie sur I :

$$E[\phi(X)] = \int_{T} \phi(x) f(x) dx$$

De la même façon, on appelle variance de X au nombre réel $\mathrm{Var}[X] = \mathrm{E}\left[(X - \mathrm{E}[X])^2\right] = \mathrm{E}[X^2] - \mathrm{E}[X]^2$

Exemple 2.27 (Loi uniforme). On va définir la loi de densité équivalente à l'équiprobabilité dans le cas continu.

Une v.a.c. X suit une loi uniforme sur I = [a, b], noté $X \sim \mathcal{U}([a, b])$, si la fonction de densité associé a X vient donnée par

$$f(x) = \frac{1}{b-a} = cte, \quad \forall x \in [a, b]$$

On voit bien que $\int_a^b \frac{dx}{b-a} = 1.$ Pour tout $J = [c,d] \subset I = [a,b]$:

$$P(X \in J) = P(c \le X \le d) = \int_c^d \frac{dx}{b-a} = \frac{1}{b-a} \int_c^d dx = \frac{c-d}{b-a} = \frac{\text{longueur de } J}{\text{longueur de } I}$$

Exo : Calculer E[X] et Var[X].

On va définir une loi de densité fortement associé à la loi Binomiale : la loi Normale, une des plus adaptées pour modéliser des phénomènes naturels, p.ex. tailles anatomiques des animaux, chute d'objets, mesure d'erreurs dans des expériences physiques, distribution des notes dans un examen,...

Définition 2.28. Une v.a.c. X suit une loi normale de paramètres $\mu \in \mathbb{R}$ et $\sigma \in \mathbb{R}^*$, notée $X \sim \mathcal{N}(\mu, \sigma^2)$, si la fonction de densité associé a X vient donnée par

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad \forall x \in \mathbb{R}.$$

En particulier, $X \sim \mathcal{N}(0,1)$ est appelé la loi normale centrée réduite.

FIGURE 8

Propriété 2.29. Soit $X \sim \mathcal{N}(\mu, \sigma^2)$, alors $E[X] = \mu$ et $Var[X] = \sigma^2$.

Remarque 2.30.

- 1) On assume que f(x) correspond bien à une densité de probabilité (en particulier, $\int_{-\infty}^{+\infty} f(x) dx = 1$).
- 2) f(x) est paire par rapport à $x = \mu$. Pour des différents valeurs de $\sigma \in \mathbb{R}^*$, on obtient un allongement $(\sigma < 1)$ ou un aplatissement $(\sigma > 1)$ de la graphique autour la droite défini par $x = \mu$ (Figure 9).

Il n'existe pas de primitive s'exprimant avec des fonctions élémentaires pour f(x) Le calcul de l'aire sous la courbe demande des méthodes numériques sur f(x). Cependant, nous pouvons nous ramener toujours a l'étude de la loi normale centrée réduite :

Propriété 2.31. Soit
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, alors la v.a.c. $Z = \frac{X - \mu}{\sigma}$ vérifie $Z \sim \mathcal{N}(0, 1)$.

FIGURE 9. Les lois $\mathcal{N}(0,1)$, $\mathcal{N}(2,1)$, $\mathcal{N}(0,1/4)$ et $\mathcal{N}(0,9)$.

Pour calculer des probabilités sur une v.a.c. $Z \sim \mathcal{N}(0,1)$, on utilisera des tables qui nous donnent des bons approximations de la fonction

$$\Phi: \mathbb{R} \longrightarrow [0,1]$$

$$z \longmapsto \Phi(z) = P(Z \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} dx$$

appelé fonction de répartition de la loi normale centrée réduite.

Propriété 2.32. Soient $z_0, z_1 \in \mathbb{R}$ tels que $z_0 < z_1$, alors :

(1)
$$P(Z \ge z_0) = 1 - \Phi(z_0) = \Phi(-z_0)$$
.

(2)
$$P(z_0 \le Z \le z_1) = \Phi(z_1) - \Phi(z_0)$$
.

On apprêtera en TD à calculer des probabilités $P(Z \in J)$ en utilisant une table d'approximations de $\Phi(z)$ et les propriétés précédentes (Figure 10).

FIGURE 10. Calcul d'aires dans une $\mathcal{N}(0,1)$ en utilisant $\Phi(z)$.

Exemple 2.33. Soit $X \sim \mathcal{N}(5,4)$:

(1) Déterminer les probabilités $P(X \le 8)$, $P(X \le 2)$: On a vu dans le cours que la v.a. $Z = \frac{X-5}{2}$ suit une loi normal centrée réduite $\mathcal{N}(0,1)$. Donc

$$P(X \le 8) = P\left(\frac{X-5}{2} \le \frac{8-5}{2}\right) = P(Z < 1.5) = \Phi(1.5) = 0.9332$$

De même,

$$P(X \le 2) = P\left(\frac{X-5}{2} \le \frac{2-5}{2}\right) = P(Z < -1.5)$$
$$= \Phi(-1.5) = 1 - \Phi(1.5) = 0.0668$$

(2) En déduire la valeur de $P(2 \leq X \leq 8) \; : \;$ On a

$$P(2 < X < 8) = P\left(\frac{2-5}{2} \le \frac{X-5}{2} \le \frac{8-5}{2}\right) = P(-1.5 < Z < 1.5)$$
$$= \Phi(1.5) - \Phi(-1.5) = 0.93320.0668 = 0.8664$$

Du à la symétrie de la loi normal $X \sim \mathcal{N}(\mu, \sigma^2)$ autour $\mathrm{E}[X] = \mu$ et au fait que $\mathrm{Var}[X] = \sigma^2$, les paramètres μ et σ nous donnent des intervalles dépendant de μ et σ qui nous donnent des valeurs fixes de probabilité. Classiquement, en prenant des multiples entières (Figure 11) :

Proposition 2.34.

- (1) $P(X \in [\mu \sigma, \mu + \sigma]) \simeq 0.683$.
- (2) $P(X \in [\mu 2\sigma, \mu + 2\sigma]) \simeq 0.954$.
- (3) $P(X \in [\mu 3\sigma, \mu + 3\sigma]) \simeq 0.997.$

Figure 11

On peut faire le chemin inverse, en fixant une probabilité d'erreur $\alpha \in]0,1[$, on peut trouver un intervalle symétrique autour la moyenne correspondant à cette proba.

Proposition 2.35. Soit $Z \sim \mathcal{N}(0,1)$. Pour tout $\alpha \in]0,1[$, il existe un réel $z_{\alpha/2} > 0$ t.q.

$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$

On appel $1 - \alpha$ le seuil et $z_{\alpha/2}$ la valeur critique correspondante.

Remarque 2.36. Les concepts précédents seront très utiles à l'heure de construire des intervalles centrés dans la moyenne pour lesquels les résultats des observations de v.a. "tombent" dedans avec une certaine proba $1 - \alpha$ (Figure).

Figure 12

Remarque 2.37. Notez que $P(Z \le -z_{\alpha/2}) = P(Z \ge z_{\alpha/2}) = \alpha/2$.

Classiquement en statistique, on prend des seuils du 95% ou 99%:

Propriété 2.38. $z_{0.025} \simeq 1.96$ et $z_{0.005} \simeq 2.58$.

Exemple 2.39. Calculer approximativement la valeur critique $z_{\alpha/2}$ pour $\alpha=0.1$: On veut trouer $z_{0.05}>0$ tel que $P(Z>z_{0.05})=0.05$. On peut exprimer $P(Z>z_{0.05})=1-P(Z\leq 1.0)$

 $z_{0.05}$) = 1 – $\Phi(z_{0.05})$. On doit donc chercher dans la table de la normal une valeur approx. qui vérifie

$$\Phi(z_{0.05}) = 1 - 0.05 = 0.95$$

On remarque que $\Phi(1.64) \simeq 0.9495$ et $\Phi(1.65) \simeq 0.9505$, donc on prendra la moyenne comme valeur aprox. $\Phi(1.645) \simeq 0.95$. D'où $z_{0.05} \simeq 1.645$ et

$$P(-1.645 < Z < 1.645) \simeq 0.9$$

3. Estimation ponctuelle d'une proportion

3.1. Modèle statistique.

On sait qu'on observe un succès avec proba p dans une épreuve de Bernoulli. Mais on ne connaît pas la valeur de p et on souhaite l'estimer à partir des observations ou bien on souhaite vérifier la valeur de p à partir des observations. On est en face à deux problèmes :

- (1) Estimation statistique de p.
- (2) Test statistique sur p.

En résumé et de manière générale :

3.2. Estimation du modèle.

On suppose que les n observations sont les réalisations de n variables aléatoires indépendantes de la même loi de Bernoulli de paramètre p.

Observations : $x_1, \ldots, x_n \in \{0,1\}^n$ ($x_i = 1$ corresp. à un succès)

Vars. aléatoires : $X_1, \ldots, X_n \sim \mathcal{B}(p)$

On construit un statistique $S_n = f(X_1, ..., X_n)$ qui soit informative par rapport à l'estimation de p ou bien par rapport à un test sur p.

Remarque 3.1. S_n est aussi une variable aléatoire : si x_1, \ldots, x_n sont des réalisations de X_1, \ldots, X_n (observations), on dénotera par $s_n = f(x_1, \ldots, x_n)$ la réalisation correspondante à S_n .

On cherche de donner une estimation ponctuelle de p. Précédemment, on a vu que si

$$S_n = \sum_{i=1}^n X_i$$

alors $S_n \sim \mathcal{B}(n,p)$ (une binomiale!). D'où, on peu calculer facilement la "valeur attendu" de S_n par l'espérance :

$$E[S_n] = np$$
 et $Var[S_n] = np(1-p)$

Donc, un estimateur naturel de p vient donné par

$$\hat{p}_n = \frac{S_n}{n}$$

Question. Comment juger la qualité d'un estimateur ? Qu'est-ce qu'est un bon estimateur ?

Proposition 3.2. \hat{p}_n est un estimateur sans biais, i.e. $E[\hat{p}_n] = p$.

Démonstration. On a
$$E[\hat{p}_n] = E\left[\frac{S_n}{n}\right] = \frac{1}{n}E[S_n] = \frac{1}{n}np = p$$
.

Proposition 3.3. $\operatorname{Var}[\hat{p}_n] = \frac{p(1-p)}{n} \underset{n \to \infty}{\longrightarrow} 0.$

Démonstration. (Rappel
$$\operatorname{Var}[aX + b] = a^2 \operatorname{Var}[X]$$
)
On a $\operatorname{Var}[\widehat{p}_n] = \operatorname{Var}\left[\frac{S_n}{n}\right] = \frac{1}{n^2} \operatorname{Var}[S_n] = \frac{1}{n^2} np(1-p) = \frac{p(1-p)}{n}$.

Remarque 3.4. Interprétation : La variance est une mesure de la dispersion d'une v.a. autour son espérance, la valeur moyenne attendue. Plus la variance est petite, plus la loi de la variable aléatoire est concentrée autour l'espérance.

Ici, plus l'échantillon est de taille grande, plus \hat{p}_n est concentrée sur p.

3.3. L'inégalité de Bienaymé-Tchebychev.

Dans un cadre général, qu'est-ce qu'on peut considérer comme "convergence" d'une suite de v.a. ? On devra avoir en compte le caractère aléatoire de la suite. Comment est-ce qu'on peut mesurer ce convergence en utilisant des mesures de dispersion (p.e. la variance) ?

Proposition 3.5 (Inégalité de Bienaymé-Tchebychev). Soit X une v.a.d. et soit $k \in \mathbb{N}^*$ t.q. $\to [|X|^k] < \infty$. Alors $\forall \varepsilon > 0$:

$$(0 \le) P(|X| > \varepsilon) \le \frac{\mathrm{E}[|X|^k]}{\varepsilon^k}$$

Corollaire 3.6. Soit X une v.a.d. t.q. $Var[X] < \infty$. Alors

$$\forall \varepsilon > 0, \quad P(|X - \mathbf{E}[X]| > \varepsilon) \le \frac{\mathrm{Var}[X]}{\varepsilon^2}$$

Démonstration. On applique l'inég. de B-T à la v.a.d. $X-\mathrm{E}[X]$ et on prends k=2.

Démonstration de l'inég. de B-T. Par déf.

$$E[|X|^{k}] = \sum_{x \in X(\Omega)} |x|^{k} P(X = x) = \sum_{\substack{x \in X(\Omega) \\ |x| < \varepsilon}} |x|^{k} P(X = x) + \sum_{\substack{x \in X(\Omega) \\ |x| \ge \varepsilon}} |x|^{k} P(X = x)$$

$$\geq \sum_{\substack{x \in X(\Omega) \\ |x| \ge \varepsilon}} |x|^{k} P(X = x) \geq \varepsilon^{k} \sum_{\substack{x \in X(\Omega) \\ |x| \ge \varepsilon}} P(X = x) = \varepsilon^{k} P(X \ge \varepsilon)$$

D'où, car $\varepsilon > 0$:

$$P(|X| > \varepsilon) \le \frac{\mathrm{E}\left[|X|^k\right]}{\varepsilon^k}$$

L'inég. de B-T donne un moyen d'évaluer la distance entre les valeurs prises par une v.a. et son espérance, en donnant une majoration de la probabilité que l'écart soit grand par la variance. On peut donc donner une notion de convergence pour des v.a. (ce n'est pas la seule notion qui existe! : *Intégration et calcul des probabilités*, S5).

Définition 3.7. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a. représentant la répétition une $\hat{\mathbf{m}}$. exp. al. On dit que $(X_n)_{n\in\mathbb{N}}$ converge en probabilité vers la v.a. X, noté $X_n \xrightarrow{pr} X$ si,

$$\forall \varepsilon > 0, P(|X_n - X| > \varepsilon) \xrightarrow[n \to \infty]{} 0.$$

Est-ce que notre estimateur \hat{p}_n vérifie cette convergence sur le param. p?

Proposition 3.8. $\hat{p}_n \xrightarrow{pr} p$

 $D\acute{e}monstration$. On applique le corollaire sur \hat{p}_n et :

$$\forall \varepsilon > 0, \quad P(|\hat{p}_n - \mathbf{E}[\hat{p}_n]| > \varepsilon) \le \frac{\mathrm{Var}[\hat{p}_n]}{\varepsilon^2}$$

D'où, car $E[\hat{p}_n] = p$ et $Var[\hat{p}_n] = \frac{p(1-p)}{n}$,

$$0 \le P(|\hat{p}_n - p| > \varepsilon) \le \frac{p(1-p)}{n\varepsilon^2} \underset{n \to \infty}{\longrightarrow} 0$$

En utilisant le Thm. des gendarmes, on a donc $P(|\hat{p}_n - p| > \varepsilon) \xrightarrow[n \to \infty]{} 0$.

Remarque 3.9. Dans la dém. précédente, on a utilisé le fait que

$$P(|\hat{p}_n - p| > \varepsilon) \le \frac{p(1-p)}{n\varepsilon^2}$$

On remarque que $\{|\hat{p}_n-p|>\varepsilon\}=\{p\not\in [\hat{p}_n-\varepsilon,\hat{p}_n+\varepsilon]\}$, d'où

$$P(p \in [\hat{p}_n - \varepsilon, \hat{p}_n + \varepsilon]) \ge 1 - \frac{p(1-p)}{n\varepsilon^2}$$

En prenant la proba $\alpha = \frac{p(1-p)}{n\varepsilon^2}$, on peut déterminer des extrêmes de l'intervalle précédente en fonction de α :

$$\varepsilon^2 = \frac{p(1-p)}{n\alpha} \underset{\varepsilon > 0}{\Longleftrightarrow} \varepsilon = \sqrt{\frac{p(1-p)}{n\alpha}}$$

Alors, on obtiens:

$$P\left(p \in \left[\hat{p}_n - \sqrt{\frac{p(1-p)}{n\alpha}}, \hat{p}_n + \sqrt{\frac{p(1-p)}{n\alpha}}\right]\right) \ge 1 - \alpha$$

On a donc construit à partir de \hat{p}_n un intervalle (aléatoire!) "qui contient le paramètre p avec une probabilité sup. à $1 - \alpha$ ". Peut-on donner des constructions similaires plus précises, à partir de l'estimateur, pour un seuil $1 - \alpha$ donné?

4. ESTIMATION D'UNE PROPORTION À L'AIDE D'UN INTERVALLE DE CONFIANCE

On considère encore n réalisations (observations) de n variables aléatoires indépendantes de la même loi de Bernoulli de paramètre p, et l'estimateur \hat{p}_n . En utilisant une approximation des v.a. binomiales par la loi normal, on va construire des intervalles à partir de l'estimateur qui vont nous aider à tester notre modèle statistique : ou bien à estimer la valeur de p, ou bien à tester une certaine hypothèse sur p, dans tout les deux avec un certain seuil mesuré par la proba.

4.1. Théorème de Moivre-Laplace.

Pour un nombre n suffisamment grand, on va démontrer qu'on peut approcher une v.a. binomiale $\mathcal{B}(n,p)$ pour une normale, en utilisant une autre notion de convergence basée sur la convergence mathématique des fonctions de répartition,

Théorème 4.1 (de Moivre-Laplace). Soit X_n une v.a. suivant une loi binomiale $\mathcal{B}(n,p)$. On pose $Z_n = \frac{X_n - np}{\sqrt{np(1-p)}}$, alors pour tout intervalle J = [a,b] de \mathbb{R} :

$$P(Z_n \in J) = P(a \le Z_n \le b) \xrightarrow[n \to \infty]{} \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(b) - \Phi(a)$$

où $\Phi(z)$ est la fonction de répartition d'une v.a. normale centrée réduite.

On va utiliser le Thm. de Moivre-Laplace pour construire des intervalles soit de fluctuation soit de confiance sur le paramètre p d'une épreuve de Bernoulli, à partir des observations indépendantes. Rappelons que si X_1, \ldots, X_n des v.a. indép. de loi $\mathcal{B}(p)$, alors $\sum_{i=1}^n X_i \sim \mathcal{B}(n,p)$.

4.2. Intervalle de fluctuation asymptotique.

En modélisant une épreuve de Bernoulli de paramètre p. Supposons qu'on est dans des cas où :

- a) on connaît le paramètre p,
- b) on a formulé une hypothèse sur sa valeur,

et on veut, ou bien vérifier la valeur du paramètre, ou bien construire des échantillons bien distribués d'une population. (Test sur le paramètre).

En utilisant le Thm. de Moivre-Laplace, on va déterminer quels sont les "variations dues au hasard" qu'on obtient sur \hat{p}_n pour des échantillons de grande taille n, avec un certaine probabilité $1-\alpha$.

Théorème 4.2. Soient X_1, \ldots, X_n des v.a. indép. de loi $\mathcal{B}(p)$, et $\alpha \in]0,1[$ fixé. Posons $\hat{p}_n = \frac{X_1 + \ldots + X_n}{n}$. Alors

$$P\left(\hat{p}_n \in \left[p - z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}, p + z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}\right]\right) \underset{n \to \infty}{\longrightarrow} 1 - \alpha$$

où $z_{\alpha/2} > 0$ est l'unique valeur qui vérifie.

$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha, \quad Z \sim \mathcal{N}(0, 1).$$

Démonstration. On sait que $Y_n = \sum_{i=1}^n X_i$ suit une loi $\mathcal{B}(n,p)$. On pose $Z_n = \frac{Y_n - np}{\sqrt{np(1-p)}}$ et on applique le Thm. de Moivre-Laplace pour l'intervalle $[-z_{\alpha/2}, z_{\alpha/2}]$:

$$P(Z_n \in [-z_{\alpha/2}, z_{\alpha/2}]) \underset{n \to \infty}{\longrightarrow} \int_{-z_{\alpha/2}}^{z_{\alpha/2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(z_{\alpha/2}) - \Phi(-z_{\alpha/2}) = 1 - \alpha.$$

Or

$$\begin{split} Z_n \in [-z_{\alpha/2}, z_{\alpha/2}] &\iff -z_{\alpha/2} \leq \frac{Y_n - np}{\sqrt{np(1-p)}} \leq z_{\alpha/2} \\ &\iff -z_{\alpha/2} \sqrt{np(1-p)} \leq Y_n - np \leq z_{\alpha/2} \sqrt{np(1-p)} \\ &\iff np - z_{\alpha/2} \sqrt{np(1-p)} \leq Y_n \leq np + z_{\alpha/2} \sqrt{np(1-p)} \\ &\iff p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \leq \frac{Y_n}{n} \leq p + z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \\ &\iff \frac{Y_n}{n} \in \left[p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}, p + z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}\right], \end{split}$$

et par déf. $\hat{p}_n = \frac{Y_n}{n} = \frac{X_1 + \ldots + X_n}{n},$ d'où le résultat.

Définition 4.3. On appel $I_n = \left[p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}, p + z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \right]$ l'intervalle de fluctuation asymptotique de \hat{p}_n au seuil de $1 - \alpha$.

Remarque 4.4. On admet que, sous certaines conditions, on peut approcher

$$P(\hat{p}_n \in I_n) \simeq 1 - \alpha$$

En pratique, on permet l'approximation si

$$n \ge 30$$
, $np \ge 5$, et $n(1-p) \ge 5$

Classiquement, on utilise ces au seuil de 95% et 99%, i.e. avec $\left\{ \begin{array}{l} \alpha=0.05\to z_{0.025}\simeq 1.96\\ \alpha=0.01\to z_{0.005}\simeq 2.58 \end{array} \right.$

Exemple 4.5. Expérience "pile ou face" avec une pièce équilibré : on suppose p = 1/2. On va lancer la pièce n = 200 fois. Tout d'abord, on va tester si on vérifie les conditions pour prendre l'approximation :

$$n = 200 \ge 30$$
, $np = n(1-p) = 200 \cdot 0.5 = 100 \ge 5$

Pour n=200, on obtient l'intervalle de fluctuation asymptotique de \hat{p}_{200} au

- seuil du 95% :
$$I_{200} = \left[\frac{1}{2} - 1.96\sqrt{\frac{1/2(1-1/2)}{200}}, \frac{1}{2} + 1.96\sqrt{\frac{1/2(1-1/2)}{200}}\right] = [0.43, 0.57].$$

- seuil du 99% : $I_{200} = \left[\frac{1}{2} - 2.58\sqrt{\frac{1/2(1-1/2)}{200}}, \frac{1}{2} + 2.58\sqrt{\frac{1/2(1-1/2)}{200}}\right] = [0.41, 0.59].$

Donc, au bout de 200 observations, la fréquence observé de \hat{p}_{200} "tombera" dans [0.43, 0.57] et dans [0.41, 0.59] un 95% et 99% des fois, respectivement.

Remarque 4.6. Le fait d'obtenir une valeur en dehors de cet intervalle s'interprète alors en mettant en cause la représentativité de l'échantillon ou la valeur de p.

<u>Attention</u>: À l'inverse, le fait que la moyenne soit comprise dans l'intervalle n'est pas une garantie de la validité de l'échantillon ou du modèle.

4.3. Intervalle de confiance asymptotique.

On se place dans le cas où on a aucune information sur p et rien nous permet de faire une hypothèse : on veut donc faire une ESTIMATION SUR LE PARAMÈTRE, avec un certain niveau de confiance.

Dans ce cas, on veut construire un intervalle à partir des observations tel que la vraie valeur de

p soit contenu de dans avec une grande probabilité. En général, ce problème est compliqué car l'expression de l'interval le pour \hat{p}_n :

$$z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}$$

dépend de p. Une approche classique (Terminale) est de considérer, pour un seuil de 95% :

$$p(1-p) \le \frac{1}{4} \Longrightarrow \sqrt{p(1-p)} \le \frac{1}{2} \Longrightarrow 1.96\sqrt{p(1-p)} \le 1$$

donc,

$$P\left(p \in \left[\hat{p}_n - \frac{1}{\sqrt{n}}, \hat{p}_n + \frac{1}{\sqrt{n}}\right]\right) \ge 0.95$$

mais c'est en générale une mauvaise approximation, l'intervalle est trop grand!

Définition 4.7. On appel

$$I_n = \left[\hat{p}_n - 1.96\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}}, \hat{p}_n + 1.96\sqrt{\frac{\hat{p}_n(1-\hat{p}_n)}{n}} \right]$$

l'intervalle de confiance asymptotique de p au seuil de 0.95.

À partir du Thm. de Moivre-Laplace et en utilisant des utiles d'approximation des lois normales, on peut montrer qu'on peut approcher

$$P(p \in I_n) \simeq 0.95$$

au seuil de 95%, en vérifiant les conditions :

$$n \ge 30$$
, $n\hat{p}_n \ge 5$, et $n(1-\hat{p}_n) \ge 5$

Exemple 4.8. On dispose d'une urne avec des boules rouges et vertes. On réalise un tirage de 100 boules et on obtiens 59 rouges et 41 vertes. Alors, la fréquence observé d'apparition du caractère "boule rouge" est de $\hat{p}_{100}=0.59$. Les conditions d'approximation $100 \geq 30, 100 \cdot 0.59=59 \geq 5, 100 \cdot 0.41=41 \geq 5$ sont vérifiées donc on peut construire l'intervalle de confiance au seuil de 95% pour la proportion des boules rouges p dans l'urne :

$$I_{100} = \left[0.59 - 1.96\sqrt{\frac{0.59(1 - 0.59)}{100}}, 0.59 + 1.96\sqrt{\frac{0.59(1 - 0.59)}{100}}\right] = [0, 493, 0.685]$$

Laboratoire de Mathématiques et de leurs Applications UMR CNRS 5142 Bâtiment IPRA - Université de Pau et des Pays de l'Adour Avenue de l'Université - BP 1155 64013 PAU CEDEX

 $E\text{-}mail\ address: {\tt juan.viusos@univ-pau.fr}$