DSA 2017 6.2: Vorbereitungsaufgaben

David Augustin und Urban Seifert

1 Komplexe Zahlen

Aufgabe 1.1

Sei $z_1 = \sqrt{27}/3 + 1i$ und $z_2 = 2 - 2i$. Berechne

- 1. $|z_1|$ und $|z_2|$
- 2. Den Winkel $\varphi = \text{Arg}[z]$ und die jeweiligen Polar- und Eulerdarstellungen.
- 3. Berechne $z_1 + z_2$, $z_1 \cdot z_2$ und z_1/z_2 in der kartesischen Darstellung und Eulerdarstellung.

Aufgabe 1.2

Sei $z \in \mathbb{C}$ eine beliebige komplexe Zahl. Was folgt, falls $z^* = z$ gilt? Was folgt aus $z^* = -z$? Sei $w \in \mathbb{C}$ eine weitere komplexe Zahl. Zeige, dass |zw| = |z||w| gilt.

Aufgabe 1.3

Die komplexen Zahlen erlauben eine kompakte Behandlung einiger geometrischer Probleme. Dazu wollen wir die Folgenden Betrachtungen anstellen.

- 1. Überlege Dir, dass die komplexen Zahlen \mathbb{C} mit der gewöhnlichen Addition definiert als $z_1 + z_2 := (x_1 + x_2) + \mathrm{i}(y_1 + y_2)$ und skalaren Multiplikation $a \cdot z := ax + \mathrm{i}(ay)$ für $a \in \mathbb{R}$ einen \mathbb{R} -Vektorraum (\mathbb{C} , +, ·) formen (*Hinweis*: Überprüfe die Vektorraum-Axiome).
- 2. Eine komplexe Zahl z=x+iy kann durch einen zweidimensionalen reellen Spaltenvektor $\mathbf{z}=(x,y)^T\in\mathbb{R}$ dargestellt werden. Zeige, dass alle Operationen in $(\mathbb{C},+,\cdot)$ äquivalent mit Operationen in $(\mathbb{R}^2,+,\cdot)$ durchgeführt werden können. Man sagt, dass \mathbb{C} isomorph zu \mathbb{R}^2 ist und schreibt $\mathbb{C}\simeq\mathbb{R}^2$.
- 3. Auf \mathbb{R}^n können wir ein *Skalarprodukt* $\langle \mathbf{x}, \mathbf{y} \rangle$ zwischen zwei Vektoren \mathbf{x} und \mathbf{y} definieren als

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = |\mathbf{x}| |\mathbf{y}| \cos \alpha,$$
 (1)

wobei α der Winkel zwischen \mathbf{x} und \mathbf{y} ist. (Spalten- bzw. Zeilenvektoren können formal als $n \times 1$ - bzw $1 \times n$ -Matrizen aufgefasst werden, sodass $\mathbf{x}^T\mathbf{y}$ mit dem Matrixprodukt eine $(1 \times n) \times (n \times 1) = 1 \times 1$ -Matrix (also Zahl) ergibt.) Überlege Dir, welche Bedingungen eine Matrix \mathbf{O} bzw. deren Elemente erfüllen muss, sodass bei der gleichzeitigen Anwendung $\mathbf{x} \mapsto \mathbf{O}\mathbf{x}$ (und analog für \mathbf{y} das Skalarprodukt invariant bleibt, also

$$\langle \mathbf{O}\mathbf{x}, \mathbf{O}\mathbf{y} \rangle \stackrel{!}{=} \langle \mathbf{x}, \mathbf{y} \rangle.$$
 (2)

Hinweis: **Ox** kann nun als Produkt einer $n \times n$ mit einer $n \times 1$ Matrix aufgefasst werden. Die Beziehung $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$ könnte hilfreich sein.¹

4. Wir wählen nun n=2. Wieviele freie Parameter kann die Matrix **O** haben? (Eine 2×2 -Matrix hat 4 Einträge. Wieviele unabhängige Bedingungen für die Einträge folgen aus der obigen Invarianzforderung?) Zeige, dass

$$\mathbf{O}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \tag{3}$$

für einen beliebigen Winkel α die obige Invarianzforderung erfüllt, also eine orthogonale Matrix ist. Ist die Wahl der Parametrisierung von \mathbf{O} eindeutig? Berechne die Determinante von \mathbf{O} .

- 5. Zeige, dass $\mathbf{O}(\alpha + \beta) = \mathbf{O}(\alpha)\mathbf{O}(\beta)$ gilt. Was bedeutet dies anschaulich? *Hinweis:* Wahrscheinlich sind die Additionstheoreme für sin und cos nützlich, s. Reader.
- 6. Zeige nun, dass die Drehung eines allgemeinen Vektors, $(x,y)^T \mapsto \mathbf{O}(\alpha)(x,y)^T$, äquivalent dargestellt werden kann durch die Multiplikation einer geeigneten komplexen Zahl $z \mapsto ze^{\mathrm{i}\alpha}$. Hinweis: Beachte Aufgabenteil 2!

2 Lineare Algebra

Aufgabe 2.1

Berechne die Determinante von

1.

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 2 & 3 \end{pmatrix} \quad \text{und} \tag{4}$$

2.

$$\mathbf{B} = \begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}. \tag{5}$$

Finde eine orthogonale Matrix **O**, die

$$\mathbf{B} = \mathbf{O}\mathbf{A}\mathbf{O}^T \tag{6}$$

erfüllt. Nutze dazu die Darstellung (3) und bestimme den Rotationswinkel α . Gibt es ein Argument warum man det $A = \det B$ erwartet haben sollte, wenn (6) bereits bekannt gewesen wäre? *Hinweis:* Determinanten von Produkten aus Matrizen faktorisieren, also det $(\Pi_i \mathbf{M}_i) = \Pi_i (\det \mathbf{M}_i)$, wobei \mathbf{M}_i beliebige Matrizen sind. Zudem können Matrizen in einer Determinante permutiert werden, also det $(\mathbf{ABC}) = \det (\mathbf{BCA}) = \det (\mathbf{CAB})$.

$$(AB)_{ij} := \sum_{k=1}^{n} A_{ik} B_{kj}.$$

Transponieren heißt nun Zeilen- und Spalten vertauschen (und somit ersten und zweiten Index), sodass $((AB)^T)_{ij} = (AB)_{ji} = \sum_{k=1}^n A_{jk} B_{ki} = \sum_{k=1}^n (A^T)_{kj} (B^T)_{ik} = \sum_{k=1}^n (B^T)_{ik} (A^T)_{kj} = (B^T A^T)_{ij}$ ist.

¹Dies ergibt sich aus der Definition des Matrizenprodukts in Komponenten

Aufgabe 2.2

Berechne i) die Determinante und ii) Spur der folgenden Matrix:

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \tag{7}$$

iii) Bestimme die inverse Matrix A^{-1} . Wie lautet die Determinante der inversen Matrix?

Aufgabe 2.3

Sei eine 2×2 Matrix **A** definiert mit

$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}.$$

Wie lauten die Determinante und Spur von A? Berechne die Eigenwerte λ und Eigenvektoren \mathbf{v} von \mathbf{A} , die jeweils

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

erfüllen. Nach obiger Gleichung ist $c\mathbf{v}$ mit $c \in \mathbb{R}$ auch ein Eigenvektor, wenn \mathbf{v} ein Eigenvektor ist. Wie lauten die auf den Betrag 1 normierten Eigenvektoren von \mathbf{A} ? Schreibe diese normierten Eigenvektoren \mathbf{v}_1 , \mathbf{v}_2 spaltenweise in eine Matrix $\mathbf{O} = (\mathbf{v}_1, \mathbf{v}_2)$. Berechne nun $\mathbf{O}^{-1}\mathbf{A}\mathbf{O}$. Was fällt Dir auf? Wie lauten Determinante und Spur der neuen Matrix?

Aufgabe 2.4

Sei nun **A** eine beliebige reelle $n \times n$ Matrix. Eigenwerte λ_i und die zugehörigen Eigenvektoren $\mathbf{v}_i \neq 0$ mit $i = 1, \dots, n$ erfüllen per Definition

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

- 1. (Wieso bedeutet $\lambda = 0$, dass **A** keine Inverse besitzt?) Wir nehmen nun an, dass det **A** $\neq 0$, also **A** eine Inverse besitzt. Zeige, dass die Eigenwerte von \mathbf{A}^{-1} durch $1/\lambda_1, \ldots, 1/\lambda_n$ gegeben sind.
- 2. Zeige, dass alle Eigenwerte von orthogonalen Matrizen mit $\mathbf{O}^T = \mathbf{O}^{-1}$ als komplexe Zahlen mit Betrag 1 geschrieben werden können, also $\lambda_i = \mathrm{e}^{\mathrm{i}\alpha_i}$ mit $\alpha_i \in [0, 2\pi)$. *Hinweis:* Betrachte die Beträge $|\mathbf{v}| = \sqrt{\mathbf{v}^T\mathbf{v}}$ und analog $|\mathbf{O}\mathbf{v}|$ und nutze aus, dass die Norm $|\cdot| \geq 0$ ist.

Aufgabe 2.5

Seien $\sigma_1, \, \sigma_2$ und σ_3 komplexe 2×2 -Matrizen gegeben durch

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix} \quad \mathrm{und} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

1. Berechne für die obigen Matrizen σ_i^* (also komplex konjugieren der einzelnen Elemente) und σ_i^T . Berechne auch $\sigma_i^{\dagger} = (\sigma_i^*)^T$. Was fällt Dir auf?

 $^{{}^{2}\}mathbf{A}^{\dagger} := (\mathbf{A}^{*})^{T} = (\mathbf{A}^{T})^{*}$ nennt man die *adjungierte Matrix*. (Wieso ist die Reihenfolge von komplex konjugieren und transponieren irrelevant?)

- 2. Berechne die Quadrate der Matrizen und $\sigma_1\sigma_2$, $\sigma_2\sigma_3$ und $\sigma_3\sigma_1$. (Wieso ist die explizite Berechnung von $\sigma_2\sigma_1$ usw. nicht notwendig? *Hinweis:* Betrachte den Operator [†] und den vorherigen Aufgabenteil.)
- 3. Wie lauten die Eigenwerte und zugehörigen (orthonormierten) Eigenvektoren von σ_3 ? Berechne die Wirkung von σ_1 und σ_2 auf diese Eigenvektoren. Zeige außerdem, dass für $\sigma^+ := (\sigma_1 + i\sigma_2)/2$ und $\sigma^- := (\sigma_1 i\sigma_2)/2$ die Beziehung $(\sigma^+)^{\dagger} = \sigma^-$ gilt. Berechne die Wirkung von $\sigma^3 \sigma^+$ und $\sigma^3 \sigma^-$ auf die obigen Vektoren.

3 Differential- und Integralrechnung

Aufgabe 3.1

Bestimme die erste Ableitung der folgenden Funktionen.

$$f_1(x) = \frac{1+x^4}{1-x^4}$$

$$f_2(x) = \sinh x, \quad \text{mit} \quad \sinh x = \frac{1}{2}(e^x - e^{-x})$$

$$f_3(x) = \cosh x, \quad \text{mit} \quad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$f_4(x) = a^{2x}, \ a = \text{const.}$$

Die Funktionen sinh und cosh heißen Sinus- und Cosinus hyperbolicus. Nutze die oben angegebene Darstellung für sinh x und $\cosh x$, um zu zeigen, dass

$$\cosh^2 x - \sinh^2 x = 1 \tag{8}$$

gilt. Kennst Du eine ähnliche Relation für $\sin x$, $\cos x$?

Aufgabe 3.2

Bestimme die folgenden Integrale mithilfe von Substitution und/oder partieller Integration.

 ${\it Hinweis:}$ Beachte den Unterschied zwischen einem ${\it bestimmten}$ Integral, also mit Grenzen a, b und der Stammfunktion F

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a),$$

und einem $unbestimmten\ Integral$, bei dem keine Grenzen angegeben werden. Da eine Stammfunktion immer nur bis auf eine Konstante C eindeutig ist, schreibt man daher für ein unbestimmtes Integral

$$\int f(x) \, \mathrm{d}x = F(x) + C, \quad C \in \mathbb{R}.$$

- 1. $\int_{-1}^{2} x \sqrt{x^2 + 5} \, dx$
- 2. $\int \ln x \, dx$ Tipp: Schreibe $\ln x = 1 \cdot \ln x$ und nutze partielle Integration.
- $3. \int \frac{\ln x}{x^5} \, \mathrm{d}x$
- 4. $\int_{-3}^{3} \sqrt{9-x^2} \, dx$ Tipp: Überlege Dir eine geschickte Substitution, sodass Du den Satz des Pythagoras für die trigonometrischen Funktionen verwenden kannst.