Betriebssysteme und Netzwerke Vorlesung 1

Artur Andrzejak

Was ist ein Betriebssystem (BS)?

- "Ein Programm, das immer laufen muss"
 - Treffend, aber keine wirkliche Definition
- Besser: "Softwareschicht zwischen Hardware und den Anwendungsprogrammen"
- Intuitiv: ein Geflecht von Programmen, die den Benutzern und den (Anwendungs-)Programmen helfen, die Hardware zu verwenden
- Eine Aufzählung der Aufgaben eines BS kann das konkreter machen
 - Was sind die primären Aufgaben eines BS?
 - Auflösung kommt später

Komplexität der Betriebssysteme

- Wie viele Zeilen Quellcode hat ein "großes" BS?
- ▶ Red Hat Linux v7.1 (April 2001): über 30 Mio. Zeilen Code
 - "If developed by conventional proprietary means, it would have required about 8,000 person-years and would have cost over \$1 billion (in year 2000 U.S. dollars)" (Wikipedia - "Source lines of code")

In Millionen SLOC (source lines of code)

OpenSolaris:
9.7

Linux kernel 2.6.32: 12.6

Mac OS X 10.4:

Debian 4.0: / Debian 5.0: 283 / 324

Komplexität des BS Microsoft Windows

Jahr	Version	SLOC (Mio.)
1993	Windows NT 3.1	4-5
1994	Windows NT 3.5	7-8
1996	Windows NT 4.0	11-12
2000	Windows 2000	Über 29
2001	Windows XP	40
2006	Vista	50
2009	Windows 7	40
2015	Windows 10	27-50

Betriebssysteme und Anwendungen

Geschichte der Betriebssysteme

Rechner der Erster Generation 1941 - 1955

Erste funktionierende Digitalcomputer

- ▶ 1941: Z3 von Konrad Zuse, Berlin (Relais)
- ▶ 1943: Colossus in Bletchley Park, UK (2500 Röhren)
- ▶ 1944: Mark I in Harvard Univ. (Relais, Schalter)
- ▶ 1946: ENIAC von William Mauchley / J. Presper Eckert, Univ. of Pennsylvania (17.468 Elektronenröhren)

Videos zu ENIAC

- ► ENIAC: Electronic Numerical Integrator And Computer
 - https://www.youtube.com/watch?v=goi6NAHMKog
 - ▶ Bis ca. 2:35 (min:sec) [01a]
- [opt] Computer Pioneers Pioneer Computers Part 2
 - https://www.youtube.com/watch?v=wsirYCAocZk
 - Ca. 2:00 bis 16:00 (min:sec)

Von Neumann-Architektur (VNA)

- ENIAC: kein Programmspeicher
 - Die "Programmierung" erfolgte durch das Umstecken von Kabeln

John von Neumann veröffentlichte 1945 das Konzept der VNA (Princeton-Architektur)

- Schaltungskonzept für einen universeller Rechner
- Speicher enthält Daten <u>und</u>
 Programmcode
- Umsetzung in <u>EDVAC</u>

Details Erste Generation 1941-1955

- Rechner bestanden aus Relais und Elektronenröhren
- Programme waren in Assembler oder später in FORTRAN geschrieben
- Programme wurden "umgesteckt", oder später aus Lochkartenstapeln eingelesen
- Ressourcenzuteilung
 - Der Programmierer trug sich in einen Aushang an der Wand, ging in den Maschinenraum, "programmierte", und hoffte auf keinen Ausfalle von einem der 10-20k Röhren
 - Programm endete früher => verlorene Zeit
 - Zeitscheibe nicht ausreichend => Programmabbruch
- <u>Keine</u> Betriebssysteme: jedes (Anwender-)Programm nutzte die Hardware direkt

Zweite Generation 1955 - 1964

- Die Erfindung des Transistors (1947) führte zur Kommerzialisierung der Computer (Mitte 1950er)
- UNIVAC I (1951): 5.2k Röhren, 18k Kristall-Dioden
 - ▶ 1905 Rechenoperationen pro Sekunde, 1000 Worte mit zwölf Dezimalstellen; Preis: 1.5 Mio USD
 - Video [01a]: https://www.youtube.com/watch?v=goi6NAHMKog
 - Ab 4:55 bis Ende 7:14 (min:sec)
- Preise für Computer damals: von 50 kUSD bis 1 Mio. USD (heutiger Wert: 400 kUSD bis 7 Mio. USD)
 - Große Unternehmen, obere Behörden, Universitäten konnten sich Großrechner (Mainframes) leisten

Ineffizienzen

Üblicher Betrieb

- Programmierer stanzte sein Programm (FORTRAN, Assembler) auf Lochkarten und übergab es einem Operator
- Operator las den Lochkartenstapel ein und startete die Verarbeitung
- Nach Beendigung ging er zum Drucker und brachte den Ausdruck in den Ausgaberaum
- Wenn Computer fertig war, musste Operator den n\u00e4chsten Lochkartenstapel holen und einlesen lassen, ...

Ineffizienzen

- Rechner wartete oft ungenutzt, bis die Daten in den Speicher kamen
- Ein Operator (Bediener) war notwendig

Stapelverarbeitung

- Verbesserung: Stapelverarbeitung (batch processing)
 - Neu: Einlesen der Lochkarten und Ausgabe: separate Einheiten
 - Betriebssystem liest Jobs von Magnetband und startet automatisch den folgenden Job, wenn ein Job beendet ist

Vorbereitung der Eingabe (kleinere Maschine)

Eigentliche Verarbeitung: "Abarbeitung des Stapels" (größere Maschine)

Ausgabe (kleinere Maschine)

Definition: <u>Stapelverarbeitung</u> ist die Abarbeitung einer Reihe von Programmen ohne manuelle Intervention

Struktur eines Rechenjobs

- Betriebssysteme jener Zeit:
 - FMS (Fortran Monitor System)
 - ▶ IBSYS (IBM Betriebssystem für IBM 7094)
- Vorläufer von Shell-Skripten: Kontrollkarten zur automatischen Steuerung des Ablaufs
 - Z.B. das Einlesen des Compilers (vom Band),
 Kompilierung, Ausführung usw. erfolgten automatisch

Dritte Generation 1964 - 1980

- Bis dahin gab es zwei Produktstrategien
 - Wortorientierte, große, wissenschaftliche Rechner für numerische Berechnungen (z.B. IBM 7094)
 - Zeichenorientierte, kommerzielle Rechner für das Sortieren und Ausdrucken von Bändern in Banken und Versicherungen (z.B. IBM 1401)
- Probleme
 - Zwei Produktlinien waren zu teuer
 - Beim Übergang zu einer schnelleren Maschine war die Software (SW) nicht mehr kompatibel
 - Auch innerhalb einer Produktlinie

Das System/360 von IBM

- IBM versuchte, dieses Problem mit einer Familie von Software-kompatiblen Rechnern zu lösen
 - > System/360, eingeführt am 7. April 1964
 - Spektrum reichte von "1401" bis "7094" und größer
- Unterschiede im max. CPUgeschwindigkeit, Speicher, Anzahl der I/O-Geräte usw.
- Später hat IBM kompatible Nachfolger herausgebracht
 - ▶ 370, 4300, 3080, 3090
 - Auch die aktuelle Großrechnerarchitektur von IBM – System z (bzw. zSeries) ist ein Ableger davon

System/360 Model 40b

Das System/360 - Probleme

- Die gesamte SW auch das Betriebssystem OS/360
 - sollte auf allen Modellen arbeiten
 - Das erforderte ein BS, das 100 bis 1000 Mal umfangreicher als FMS war
 - > => Mio. Zeilen Assemblercode, geschrieben von Tausenden von Programmierern, mit Tausenden von Fehlern ...
- Mehr im Buch des OS/360 Architekten Fred Brooks: "The Mythical Man-Month" (1975, ..,1995)
 - "Adding manpower to a late software project makes it later.", http://en.wikipedia.org/wiki/The_Mythical_Man-Month
- Trotzdem, System/360 war ein riesiger Erfolg
 - 70% des Umsatzes von IBM USA in 1969

OS/360 und Multiprogrammierung

- Problem: In der Datenverarbeitung kann die Ein-/Ausgabezeit 80-90% der Joblaufzeit betragen
 - Die damals teure CPU ist nicht ausgelastet
- Eine wichtigste Neuerung von OS/360 war die Multiprogrammierung (<u>multiprogramming</u>)
 - Multiprogrammierung = Wechsel der Belegung von CPU zwischen mehreren Jobs
 - Um die I/O-Wartezeiten zu vermeiden
- Die Multiprogrammierung ist ein zentrales Konzept der BS
 - begleitet uns ständig im 1. Teil der VL
 - Macht leider das BS viel, viel komplexer
 - OS/360 hatte diese Fähigkeit nicht von Anfang an

Gegenüberstellung der Begriffe

Stapelverarbeitung

 Abarbeitung einer Liste von Programmen (Jobs) <u>ohne</u> manuelle Intervention

Multiprogrammierung

- (schneller) Wechsel der Belegung von CPU und Ressourcen zwischen mehreren Jobs
- Wechsel meist beim Zugriff auf die I/O-Geräte, um Wartezeiten zu vermeiden

<u>Multitasking</u> bzw. Mehrprozessbetrieb

- Fähigkeit eines Betriebssystems, mehrere Jobs nebenläufig auszuführen
- Verbesserung gegenüber der Multiprogrammierung ist die (Pseudo-) Gleichzeitigkeit: die beteiligten Jobs werden in kurzen Abständen aktiviert

Andere Neuerungen der dritten Generation

Timesharing

- ▶ Erlaubt mehreren Benutzern, an einem Computer gleichzeitig zu arbeiten, indem sie sich die Rechenzeit des einzigen vorhandenen Prozessors teilten
- Beschrieben von <u>Bob Bemer</u> in 1957 (einer der Väter des <u>ASCII</u>-Standards)
- Setzt Multiprogramming und Mehrbenutzersystem voraus
- Video zu Problemen des Batch-Betriebs und zu Time-Sharing
 - ▶ 1963 Timesharing: A Solution to Computer Bottlenecks
 - https://www.youtube.com/watch?v=Q07PhW5sCEk von Minute 8:00 bis ca. Minute 15:00

BS der dritten Generation

- Das erste Timesharing-System hieß Compatible Time Sharing System (CTSS) und wurde auf einer modifizierten 7094 entwickelt (MIT, J. McCarthy, 1957)
 - Nicht erfolgreich wegen Mangel an Hardware-Schutz
- Danach beschlossen MIT, Bell Labs und General Electric eine Maschine zu bauen, die Hunderte von Benutzern gleichzeitig unterstützen sollte (1963)
- > => MULTICS (MULTiplexed Information and Computing System), siehe www.multicians.org
 - Kommerziell kein Erfolg
 - Aber konzeptionell und wissenschaftlich prägend

BS der dritten Generation - UNIX

- In den 1960er entstanden Minicomputer: kleiner aber deutlich billiger als Mainframes
 - DEC PDP-1 hatte ca. 8 KB RAM, kostete aber nur 5% von IBM 7094
- ▶ Ein solcher Minicomputer (PDP-7) wurde benutzt, um eine Einbenutzerversion von MULTICS zu schreiben
- MULTICS-Weiterentwicklung führte 1971 zu UNIX
- UNIX Quelltexte waren frei verfügbar => viele Versionen
 - Wichtigste Versionen: System V (AT&T) und BSD-UNIX (Berkeley Software Distribution)
 - POSIX-Standard (von IEEE) definiert einen Teil der Systemschnittstelle, um die Kompatibilität zu erreichen

Es gibt viele Varianten von UNIX

UNIX Eigenschaften

- Video [01b]: Computerhelden mit coolen Frisuren
 - AT&T Archives: The UNIX Operating System https://www.youtube.com/watch?v=tc4ROCJYbm0
- Ab 4:35 bis 6:30 (min:sec)
 - Unix als "Baukasten" für eigene Software
 - Pipelining
- Ab 11:35 bis 15:36 (min:sec)
 - Dateisystem
 - Hierarchische Folder (Directories)
 - Shell (ab 14:30)

Vierte Generation 1980 bis heute

- Diese Zeit ist dominiert von den PCs / Mikrocomputern – "personal computing"
- 1974: erste Allzweck-8-Bit-CPU 8080 von Intel
 - Digital Research entwickelte dafür (und für Z80 von Zilog) das System CP/M (Control Program for Microcomputers)
- In den frühen 1980er Jahren entwarf IBM den IBM-PC und kaufte dafür das MS-DOS von Microsoft ein
 - Es folgten viele Windows-Betriebssysteme
- Ausprobieren: Mac von 1984 (https://goo.gl/16Gc4l)
- Konzeptionelle Neuerungen
 - GUI: Graphical User Interface
 - Netzwerkbetriebssysteme / verteilte Betriebssysteme

Windows Zeitleiste (timeline)

Linux-Versionen

- Populärste Linux-Versionen (laut Geek Trio)
 - Ubuntu
 - Fedora (Red Hat's open project)
 - openSUSE
 - Debian
 - Mandriva (ehemals Linux Mandrake)
 - Linux Mint
 - PCLinuxOS
 - Slackware
 - Gentoo
 - CentOS
- Diagramme der Timelines / Distributions
 - http://futurist.se/gldt/

Fünfte Generation ab ca. 2007 bis heute

- BS für Mobiltelefone, Mediaplayer, Netbooks, und Tablet-Computer
- Android, Apple iOS, BlackBerry OS, Symbian, Windows Mobile/Phone

- Wesentliche Neuerungen
 - GUI für Touch-Bedienung und "no windows"-Betrieb
 - Enge Kopplung von Anwendungen via BS-Schnittstellen
 - Unterstützung von Sensoren und diversen Kommunikationskanälen im BS

Mikroprozessoren

- Wer ist der größte Chiphersteller weltweit?
- Intel hat den größten Marktanteil (Sep 2012)
- Gesamtwert: 94.2 Mrd. USD

- Aber: Intel macht nur ca. 2% der Mikroprozessoren!
- Rest: 98% der CPUs sind sog. "embedded processors": für Autos, Drucker, Kabelmodems, Telefone,…
- "ARM ... is considered to be market dominant in the field of processors for mobile phones ... and tablet computers..."
 - ▶ 13.04.2015; http://en.wikipedia.org/wiki/ARM_Holdings
- Mehr dazu: http://www.computerweekly.com/news/2240226532/Arm-is-a-competitor-we-take-very-seriously-says-Intel

Real (wo)men program in C

- Die Programmiersprache der Wahl für Geräte mit "embedded processors" ist vorrangig C
- Antworten auf die Frage (essentiell):
 - "My current embedded project is programmed mostly in ?"

Moore's Law und die Folgen

Moore's Law (1965): "The density of transistors on a chip doubles every 18 months, for the same cost"

Jahr

Moore's Law und die CPU-Frequenzen

- Seit ca. 2006, die Leistung eines einzigen CPU-Kerns steigt nicht mehr nach dem Moore'schen Gesetz
- Gilt das Gesetz weiterhin?

- Ja (noch)
- => MehrKerne proChip

Wichtige Konzepte bei der Evolution der BS

- Stapelverarbeitung (batch processing)
- Multiprogramming
- Time-Sharing
- Personal Computing
- GUIs, verteilte Betriebssysteme
- BS für mobile Geräte
- Eingebettete Systeme/Prozessoren

Quellen / Weiterführende Literatur

- Tannenbaum, Kapitel 1
- Silberschatz et.al, Kapitel 2 (wenig davon)
- Per Brinch Hansen, The evolution of operating systems. In Classic Operating Systems: From Batch Processing to Distributed Systems, P. Brinch Hansen, (Ed.), 2000, Springer Verlag, New York.
- Wikipedia

Danke schön.

Hilft uns die Geschichte?

- Computerindustrie ist (primär) technologiegetrieben
 - PCs existieren nicht, weil Millionen Menschen seit der Steinzeit danach verlangten, sondern weil es jetzt möglich ist, Computer billig herzustellen
- Technologische Veränderungen lassen oft ein Konzept veralten und verschwinden
 - Aber die nächste technologische Änderung kann das alte Konzept wieder "auferstehen" lassen
 - Es lohnt sich also, auch "alte" Konzepte anschauen

Beispiel Prozessorentwicklung

- Die ersten Prozessoren hatten festverdrahtete Befehlssätze
- Die Mikroprogrammierung kam mit CISC Prozessoren
 - Festverdrahtete Befehle veralteten
- Mit RISC Prozessen veraltete die Mikroprogrammierung
 - Festverdrahtung wurde wieder "cool"
- Die Funktionsweise der JVM und Common Language Runtime (Teil von .NET) sind der Mikroprogrammierung wieder ähnlich

OS/360 Versionen

- ▶ 1. Version: PCP (Primary Control Program)
 - Konnte nur ein Programm (bzw. Job) auf einmal ausführen
- 2. Version: MFT (Multiprogramming with a Fixed number of Tasks)
 - Nur eine fest definierte Anzahl von Jobs kann (pseudo-) gleichzeitig ausgeführt werden
 - Speicher wird fest für jeden Job vor seinem Start zugewiesen
- 3. Version: MVT (Multiprogramming with a Variable number of Tasks)
 - Beliebige Anzahl von Jobs sowie eine dynamische Speichernutzung (Veränderungen zur Laufzeit)