

Agenda

- Thesis
- Introducing our Data
- Research Questions
- Linear & Statistical Modeling
- Bias and Limitations
- Future Work
- Call to Action
- Works Cited
- Q&A

Introducing our Data

Data Cleaning Overview:

Removed duplicate of Apple, Rounded down to 0% for anything that was <1, Converted all dashes to 0%, Converted all percentages to floats

Index	c: 91 entries,	0 to 93		
Data	columns (tota	l 11 columns):		
#	Column	Non-Null Count	Dtype	
0	Year	91 non-null	int64	
1	Company	91 non-null	object	
2	Female %	91 non-null	float64	
3	Male %	91 non-null	float64	
4	% White	91 non-null	float64	
5	% Asian	91 non-null	float64	
6	% Latino	91 non-null	float64	
7	% Black	91 non-null	float64	
8	% Multi	91 non-null	float64	
9	% Other	91 non-null	float64	
10	% Undeclared	91 non-null	float64	
dtypes: float64(9), int64(1), object(1)				
memor	y usage: 8.5+	КВ		

	Year	Company	Female %	Male %	% White	% Asian	% Latino	% Black	% Multi	% Other	% Undeclared
0	2018	Yahoo!	37	63	45	44	4		2		
1	2018	Google	31	69	53	36	4		4		
2	2018	Apple	32	68	54	21	13				
3	2018	Cisco	24	76	53	37		4		<1	-
4	2018	еВау	40	60	50	39	6			1	-
5	2018	HP	37	63	73	12	8	4		<1	
6	2018	Indiegogo	50	50	58	28		4			
7	2018	Nvidia	17	83	37	45			14	<1	
8	2018	Dell	28	72	69	9	11	10	-	1	-
9	2018	Ingram Micro		69	52	14	19	14	1	0	-

Research Question 1

Has diversity in tech companies increased over time?

What is the percentage of Males vs Females in the tech workplace?

RESEARCH QUESTION 2

Males vs Females 2014-2018

	Year	Male %	Female %
0	2014	66.0	34.0
1	2015	65.0	35.0
2	2016	65.0	35.0
3	2017	65.0	35.0
4	2018	63.0	37.0

Deeper Dive

Final Year

Research Question 3

How do Black people and Latino people compare over time?

Regression

1. Are companies that hire more Women more likely to hire Latino people?

Regression

2. Are companies that hire more Women more likely to hire Black people?

Statistical Testing

Gender - Hypothesis

- Null: There is no difference between Males vs Females working in Tech Companies.
- Alternative: There is a difference between Males vs Females working in Tech Companies.

Diversity - Hypothesis

- Null: There is no difference in the averages between each diversity group.
- Alternative: There is at least one difference in the averages between each diversity group.

Gender

- We accept the alternative hypothesis – there is a significant difference between males and females across tech companies.
- TtestResult
 - (statistic=20.573574726611028, pvalue=3.78484545338512e-49, df=179.9993887209176)

Diversity

- We accept the alternative hypothesis – there is at least one diversity group with differences in the averages.
- FonewayResult
 - (statistic=985.8325475532455, pvalue=2.47133054e-316)

Bias and Limitations

SMALL LIST OF COMPANIES

COMPANY SIZE NOT INCLUDED

RECENT YEARS NOT INCLUDED

RAW NUMBERS NOT INCLUDED (ONLY PERCENTAGES)

INTERSECTIONAL DATA NOT INCLUDED (EX: LATINO FEMALE, BLACK MALE)

VALUES THAT WERE UNDECLARED

Future Work

- Pull data that spans a longer period
- Incorporate company size
- Ensure that the data includes gender and race for each employee
- Obtain data that is more gender inclusive (gender diversity)
- Capture employee satisfaction data: are minority employees happy in their respective companies?

Call to Action

- Tackle unconscious bias within the workplace and on individual teams
- Introduce tech into more schools
 - workshops, camps, clubs, and after school programs centered around technology

Works Cited

Jainaru. "Diversity in Tech Companies." Kaggle, www.kaggle.com/datasets/jainaru/diversity-in-tech-companies/data. Accessed 10 June 2024.

"The Diversity Gap in Silicon Valley." Lee & Low Books Blog, 12 Mar. 2015, blog.leeandlow.com/2015/03/12/the-diversity-gap-in-silicon-valley/. Accessed 10 June 2024.

"Set Color for Each Violin in Violin Plot." Stack Overflow, stackoverflow.com/questions/34058188/set-color-for-each-violin-in-violin-plot. Accessed 10 June 2024.

"The Gender Gap in Tech: Let's Talk About It." Ironhack Blog, www.ironhack.com/gb/blog/the-gender-gap-in-tech-let-s-talk-about-it. Accessed 10 June 2024.

Lardinois, Frederic. "Black, Latino People Are Being Left Out of the Tech Workforce." GovTech, www.govtech.com/workforce/black-latino-people-are-being-left-out-of-the-tech-workforce.html. Accessed 10 June 2024.

Thank you

Questions?

Diversity ttest

```
White vs Asian: TtestResult(statistic=22.426127199064165, pvalue=3.4974324485005776e-53, df=173.78741107942048)
White vs Black: TtestResult(statistic=47.45100949423269, pvalue=6.374334017920352e-81, df=122.98495278778121)
White vs Latino: TtestResult(statistic=46.29135565132039, pvalue=4.13282193180125e-78, df=119.3735241720709)
White vs Multi: TtestResult(statistic=51.99438750290772, pvalue=4.870119400677852e-79, df=109.537654889487)
White vs Other: TtestResult(statistic=55.316345330041564, pvalue=3.910652332452989e-73, df=93.31475419432466)
White vs Undeclared: TtestResult(statistic=55.69860802269435, pvalue=7.557267383459079e-75, df=95.9104106591678)
Asian vs Black: TtestResult(statistic=12.852924987195221, pvalue=7.644253536628321e-24, df=112.92177336927801)
Asian vs Latino: TtestResult(statistic=11.581759018419703, pvalue=8.827328477772503e-21, df=110.3300092458146)
Asian vs Multi: TtestResult(statistic=15.577446894105972, pvalue=6.992841235175281e-29, df=103.40989499464588)
Asian vs Other: TtestResult(statistic=16.909733828894062, pvalue=5.166342130749162e-30, df=92.26101951932218)
Asian vs Undeclared: TtestResult(statistic=17.467632811843643, pvalue=2.8276886801936257e-31, df=94.03313383302206)
Black vs Latino: TtestResult(statistic=-2.9021422691618346, pvalue=0.004171105579260181, df=179.31680824799332)
Black vs Multi: TtestResult(statistic=5.509231046627633, pvalue=1.3317013546634914e-07, df=168.02727152668047)
Black vs Other: TtestResult(statistic=8.904425131520638, pvalue=1.4956780083145585e-14, df=107.30242991242221)
Black vs Undeclared: TtestResult(statistic=10.270102429424778, pvalue=3.7853392676111054e-18, df=120.25779691951077)
Latino vs Multi: TtestResult(statistic=9.017914867341968, pvalue=3.608912970795619e-16, df=172.49074872237733)
Latino vs Other: TtestResult(statistic=13.439520313134684, pvalue=6.477281620974978e-25, df=109.52785001293975)
Latino vs Undeclared: TtestResult(statistic=14.69482678067052, pvalue=6.301597651996616e-29, df=123.96164151053163)
Multi vs Other: TtestResult(statistic=2.92523538481525, pvalue=0.004120717814921395, df=119.35924965926462)
Multi vs Undeclared: TtestResult(statistic=4.846109485972371, pvalue=3.3103904655276187e-06, df=139.43501659992066)
Other vs Undeclared: TtestResult(statistic=3.457792920018384, pvalue=0.0006911859728477218, df=166.76559172686433)
```