Dice Game Problem

Vladimir Podolskii

Computer Science Department, Higher School of Economics

Outline

Dice Game

Playing the game

· Consider the following situation

Bosch, "The Conjurer"

- Consider the following situation
- You are in a bad neighborhood

Bosch, "The Conjurer"

- Consider the following situation
- You are in a bad neighborhood
- There is a shady person on the corner of the street who offers bypassers to play a game with him

Bosch, "The Conjurer"

The rules of the game

 There are several dices with various numbers on their sides

pixabay.com

- There are several dices with various numbers on their sides
- You and the shady person pick one dice each

pixabay.com

- There are several dices with various numbers on their sides
- You and the shady person pick one dice each
- Both of you throw your dices

pixabay.com

- There are several dices with various numbers on their sides
- You and the shady person pick one dice each
- Both of you throw your dices
- Whoever has the larger number wins

pixabay.com

- There are several dices with various numbers on their sides
- You and the shady person pick one dice each
- Both of you throw your dices
- Whoever has the larger number wins
- The winner gets 1 dollar from the loser

pixabay.com

 To give you advantage the shady person lets you to pick your dice first

- To give you advantage the shady person lets you to pick your dice first
- So you can pick the one you find the best

- To give you advantage the shady person lets you to pick your dice first
- So you can pick the one you find the best
- And he will have to pick from the remaining options

- To give you advantage the shady person lets you to pick your dice first
- So you can pick the one you find the best
- And he will have to pick from the remaining options
- So why not to win all shady person's money?

- To give you advantage the shady person lets you to pick your dice first
- So you can pick the one you find the best
- And he will have to pick from the remaining options
- So why not to win all shady person's money?
- Where is the catch?

 There are no catches external to our model (in the end, this is a math course)

- There are no catches external to our model (in the end, this is a math course)
- The dices are fair: each outcome has probability exactly 1/6

- There are no catches external to our model (in the end, this is a math course)
- The dices are fair: each outcome has probability exactly 1/6
- No one will hit you on the head during the game

- There are no catches external to our model (in the end, this is a math course)
- The dices are fair: each outcome has probability exactly 1/6
- No one will hit you on the head during the game
- No one will pick your pocket

- There are no catches external to our model (in the end, this is a math course)
- The dices are fair: each outcome has probability exactly 1/6
- No one will hit you on the head during the game
- No one will pick your pocket
- Disclamer: beware, all of these are not guaranteed to you in real life games with scammers!

- There are no catches external to our model (in the end, this is a math course)
- The dices are fair: each outcome has probability exactly 1/6
- No one will hit you on the head during the game
- No one will pick your pocket
- Disclamer: beware, all of these are not guaranteed to you in real life games with scammers!
- In our problem the shady person is not cheating: the game will be played exactly as described

• The game seems favorable to us

- The game seems favorable to us
- Yet, the shade person is eager to play

- The game seems favorable to us
- Yet, the shade person is eager to play
- So, what's wrong with this situation?

- The game seems favorable to us
- Yet, the shade person is eager to play
- So, what's wrong with this situation?
- It turns out that there is purely mathematical answer to this puzzle

Outline

Dice Game

Playing the game

 Once we come closer we see that the shady person has just three dices

- Once we come closer we see that the shady person has just three dices
- And here they are:

Dice 1 has numbers: 1, 1, 6, 6, 8, 8
 Dice 2 has numbers: 2, 2, 4, 4, 9, 9
 Dice 3 has numbers: 3, 3, 5, 5, 7, 7

- Once we come closer we see that the shady person has just three dices
- And here they are:

- Dice 1 has numbers: 1, 1, 6, 6, 8, 8
 Dice 2 has numbers: 2, 2, 4, 4, 9, 9
 Dice 3 has numbers: 3, 3, 5, 5, 7, 7
- Which one should we pick?

· We are educated

- · We are educated
- Should compare dices and compute the probabilities

- · We are educated
- Should compare dices and compute the probabilities
- Let's start with Dice 1 and Dice 2

 We have to consider all outcomes and count winning outcomes for each of the dices

 We have to consider all outcomes and count winning outcomes for each of the dices

```
1,2 1,2 1,4 1,4 1,9 1,9
1,2 1,2 1,4 1,4 1,9 1,9
6.2 6.2 6.4 6.4 6.9 6.9
6,2 6,2 6,4 6,4 6,9 6,9
8,2 8,2 8,4 8,4 8,9 8,9
8,2 8,2 8,4 8,4 8,9 8,9
```

 We have to consider all outcomes and count winning outcomes for each of the dices

1,2	1,2	1,4	1,4	1,9	1,9
1,2	1,2	1,4	1,4	1,9	1,9
6,2	6,2	6,4	6,4	6,9	6,9
6,2	6,2	6,4	6,4	6,9	6,9
8,2	8,2	8,4	8,4	8,9	8,9
8,2	8,2	8,4	8,4	8,9	8,9

 We have to consider all outcomes and count winning outcomes for each of the dices

1,2	1,2	1,4	1,4	1,9	1,9
1,2	1,2	1,4	1,4	1,9	1,9
6,2	6,2	6,4	6,4	6,9	6,9
6,2	6,2	6,4	6,4	6,9	6,9
8,2	8,2	8,4	8,4	8,9	8,9
8,2	8,2	8,4	8,4	8,9	8,9

 Dice 1 wins in 16 outcomes

1,2	1,2	1,4	1,4	1,9	1,9
1,2	1,2	1,4	1,4	1,9	1,9
6,2	6,2	6,4	6,4	6,9	6,9
6,2	6,2	6,4	6,4	6,9	6,9
8,2	8,2	8,4	8,4	8,9	8,9
8,2	8,2	8,4	8,4	8,9	8,9

- Dice 1 wins in 16 outcomes
- Dice 2 wins in 20 outcomes

1,2	1,2	1,4	1,4	1,9	1,9
1,2	1,2	1,4	1,4	1,9	1,9
6,2	6,2	6,4	6,4	6,9	6,9
6,2	6,2	6,4	6,4	6,9	6,9
8,2	8,2	8,4	8,4	8,9	8,9
8,2	8,2	8,4	8,4	8,9	8,9

- Dice 1 wins in 16 outcomes
- Dice 2 wins in 20 outcomes
- Dice 2 wins with probability $\frac{20}{36} = \frac{5}{9} > \frac{1}{2}$

• Dice 2 is better than Dice 1

- Dice 2 is better than Dice 1
- Let's compare Dice 2 with Dice 3 and find the best dice!

```
2,3 2,3 2,5 2,5 2,7 2,7
2,3 2,3 2,5 2,5 2,7 2,7
4.3 4.3 4.5 4.5 4.7 4.7
4.3 4.3 4.5 4.5 4.7 4.7
9.3 9.3 9.5 9.5 9.7 9.7
9.3 9.3 9.5 9.5 9.7 9.7
```

2,3	2,3	2,5	2,5	2,7	2,7
2,3	2,3	2,5	2,5	2,7	2,7
4,3	4,3	4,5	4,5	4,7	4,7
4,3	4,3	4,5	4,5	4,7	4,7
9,3	9,3	9,5	9,5	9,7	9,7

 We have to consider all outcomes and count winning outcomes for each of the dices

2,3	2,3	2,5	2,5	2,7	2,7
2,3	2,3	2,5	2,5	2,7	2,7
4,3	4,3	4,5	4,5	4,7	4,7
4,3	4,3	4,5	4,5	4,7	4,7
9,3	9,3	9,5	9,5	9,7	9,7
9,3	9,3	9,5	9,5	9,7	9,7

 Dice 2 wins in 16 outcomes

2,3	2,5	2,5	2,7	2,7
2,3	2,5	2,5	2,7	2,7
4,3	4,5	4,5	4,7	4,7
4,3	4,5	4,5	4,7	4,7
9,3	9,5	9,5	9,7	9,7
9,3	9,5	9,5	9,7	9,7
	2,3 4,3 4,3 9,3	2,3 2,5 4,3 4,5 4,3 4,5 9,3 9,5	2,32,52,54,34,54,54,34,54,59,39,59,5	2,3 2,5 2,5 2,7 2,3 2,5 2,5 2,7 4,3 4,5 4,5 4,7 4,3 4,5 4,5 4,7 9,3 9,5 9,5 9,7 9,3 9,5 9,5 9,7

- Dice 2 wins in 16 outcomes
- Dice 3 wins in 20 outcomes

2,3	2,3	2,5	2,5	2,7	2,7
2,3	2,3	2,5	2,5	2,7	2,7
4,3	4,3	4,5	4,5	4,7	4,7
4,3	4,3	4,5	4,5	4,7	4,7
9,3	9,3	9,5	9,5	9,7	9,7
9,3	9,3	9,5	9,5	9,7	9,7

- Dice 2 wins in 16 outcomes
- Dice 3 wins in 20 outcomes
- Dice 3 wins with probability $\frac{20}{36} = \frac{5}{9} > \frac{1}{2}$

Dice 2 is better than Dice 1

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Clearly, Dice 3 is better than Dice 1 and we are done

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Clearly, Dice 3 is better than Dice 1 and we are done
- Or are we?

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Clearly, Dice 3 is better than Dice 1 and we are done
- Or are we?
- · Let's check

```
3,1 3,1 3,6 3,6 3,8 3,8
3,1 3,1 3,6 3,6 3,8 3,8
5,1 5,1 5,6 5,6 5,8 5,8
5,1 5,1 5,6 5,6 5,8 5,8
7.1 7.1 7.6 7.6 7.8 7.8
7.1 7.1 7.6 7.6 7.8 7.8
```

3,1	3,1	3,6	3,6	3,8	3,8
3,1	3,1	3,6	3,6	3,8	3,8
5,1	5,1	5,6	5,6	5,8	5, 8
5,1	5,1	5,6	5,6	5,8	5, 8
7,1	7,1	7,6	7,6	7, 8	7, 8
7,1	7,1	7,6	7,6	7,8	7,8

 We have to consider all outcomes and count winning outcomes for each of the dices

3,1	3,1	3,6	3,6	3,8	3,8
3,1	3,1	3,6	3,6	3,8	3,8
5,1	5,1	5,6	5,6	5,8	5, 8
5,1	5,1	5,6	5,6	5,8	5, 8
7,1	7,1	7,6	7,6	7,8	7, 8
7,1	7,1	7,6	7,6	7,8	7, 8

 Dice 3 wins in 16 outcomes

3,1	3,1	3,6	3,6	3,8	3,8
3,1	3,1	3,6	3,6	3,8	3,8
5,1	5,1	5,6	5,6	5,8	5,8
5,1	5,1	5,6	5,6	5,8	5,8
7,1	7,1	7,6	7,6	7, 8	7, 8
7,1	7,1	7,6	7,6	7, 8	7, 8

- Dice 3 wins in 16 outcomes
- Dice 1 wins in 20 outcomes

3,1	3,1	3,6	3,6	3,8	3,8
3,1	3,1	3,6	3,6	3,8	3,8
5,1	5,1	5,6	5,6	5,8	5,8
5,1	5,1	5,6	5,6	5,8	5,8
7,1	7,1	7,6	7,6	7,8	7,8
7,1	7,1	7,6	7,6	7,8	7,8

- Dice 3 wins in 16 outcomes
- Dice 1 wins in 20 outcomes
- Dice 1 wins with probability $\frac{20}{36} = \frac{5}{9} > \frac{1}{2}$

• Dice 2 is better than Dice 1

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2 ...

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2 ...
- But Dice 1 is better than Dice 3!

- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2 ...
- But Dice 1 is better than Dice 3!
- How is this even possible?

• We are used to compare numbers

- We are used to compare numbers
- And we are used that certain properties hold

- We are used to compare numbers
- · And we are used that certain properties hold
- One of them: if a > b and b > c, then a > c

- We are used to compare numbers
- · And we are used that certain properties hold
- One of them: if a > b and b > c, then a > c
- This is called transitivity

- We are used to compare numbers
- · And we are used that certain properties hold
- One of them: if a > b and b > c, then a > c
- This is called transitivity
- This translates to real life experience: faster, higher, stronger

But random variables are not numbers!

- But random variables are not numbers!
- It is way harder to compare them

- But random variables are not numbers!
- It is way harder to compare them
- If we find some way of comparison, still usual properties are not guaranteed!

- But random variables are not numbers!
- It is way harder to compare them
- If we find some way of comparison, still usual properties are not guaranteed!
- For instance: no transitivity in our game!

• But what our discovery means for the game?

- But what our discovery means for the game?
- Dice 2 is better than Dice 1

- But what our discovery means for the game?
- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2

- But what our discovery means for the game?
- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Dice 1 is better than Dice 3

- But what our discovery means for the game?
- Dice 2 is better than Dice 1
- Dice 3 is better than Dice 2
- Dice 1 is better than Dice 3
- The shady person, who allowed us to choose a dice first, is actually having an advantage because of that!

Dice 2 is better than Dice 1
Dice 3 is better than Dice 2
Dice 1 is better than Dice 3

How the shady person should play the game:

Dice 2 is better than Dice 1
Dice 3 is better than Dice 2
Dice 1 is better than Dice 3

How the shady person should play the game:

If we pick Dice 1, the shady person picks Dice 2

Dice 2 is better than Dice 1
Dice 3 is better than Dice 2
Dice 1 is better than Dice 3

How the shady person should play the game:

- If we pick Dice 1, the shady person picks Dice 2
- If we pick Dice 2, the shady person picks Dice 3

Dice 2 is better than Dice 1
Dice 3 is better than Dice 2
Dice 1 is better than Dice 3

How the shady person should play the game:

- If we pick Dice 1, the shady person picks Dice 2
- If we pick Dice 2, the shady person picks Dice 3
- If we pick Dice 3, the shady person picks Dice 1

Main Lessons

• The probability is tricky!

Main Lessons

- The probability is tricky!
- One should be very careful when applying usual intuition to probability

Main Lessons

- The probability is tricky!
- One should be very careful when applying usual intuition to probability
- One should avoid scam games