tod	ooutcome	

Definitions

Term	Notation Example(s)	We say in English	
<i>n</i> -tuple	(x_1, x_2, x_3)	The 3-tuple of x_1 , x_2 , and x_3	
	(3,4)	The 2-tuple or ordered pair of 3 and 4	
sequence	x_1, \ldots, x_n	A sequence x_1 to x_n	
	x_1, \ldots, x_n where $n = 0$	An empty sequence	
	x_1, \ldots, x_n where $n = 1$	A sequence containing just x_1	
	x_1, \ldots, x_n where $n = 2$	A sequence containing just x_1 and x_2 in order	
	x_1, x_2	A sequence containing just x_1 and x_2 in order	
set		Unordered collection of objects. The set of	
all integers	\mathbb{Z}	The (set of all) integers (whole numbers including	
all : : : : : : :	\mathbb{Z}^+	negatives, zero, and positives)	
all positive integers all natural numbers	N.	The (set of all) strictly positive integers	
an natural numbers	14	The (set of all) natural numbers. Note : we use the convention that 0 is a natural number.	
roster method	[42 7 0]	The set whose elements are 43, 7, and 9	
roster method	$\{43, 7, 9\}$ $\{9, \mathbb{N}\}$	The set whose elements are 45 , 7 , and 9 . The set whose elements are 9 and \mathbb{N} .	
	{9,11}	The set whose elements are 9 and 19	
set builder notation	$\{x \in \mathbb{Z} \mid x > 0\}$	The set of all x from the integers such that x is	
		greater than 0	
	$\{3x \mid x \in \mathbb{Z}\}$	The set of all integer multiples of 3 Note : we use	
		the convention that writing two numbers next to	
		each other means multiplication.	
function definition	f(x) = x + 4	Define f of x to be $x + 4$	
function application	f(7)	f of 7 or f applied to 7 or the image of 7 under f	
rancolon application	f(z)	f of z or f applied to z or the image of z under f	
	f(g(z))	f of g of z or f applied to the result of g applied	
	J (3(~))	to z	
abgaluta valua	9	The absolute value of -3	
absolute value	$\begin{vmatrix} -3 \\ \sqrt{9} \end{vmatrix}$		
square root	•	The non-negative square root of 9	
gummation notation	$\sum_{i=1}^{n} i$	The sum of the integers from 1 to m inclusive	
summation notation	$\sum_{i=1}^{n} i$ $\sum_{i=1}^{n} i^2 - 1$	The sum of the integers from 1 to n , inclusive	
	$\sum_{i=1}^{n} i^2 = 1$	The sum of $i^2 - 1$ (<i>i</i> squared minus 1) for each <i>i</i>	
	$\underset{i-1}{\overset{\iota}{\smile}}$	from 1 to n , inclusive	
	<i>t</i> −1	nom 1 to 16, inclusive	
quotient, integer division	$n \operatorname{\mathbf{div}} m$	The (integer) quotient upon dividing n by m ; in-	
		formally: divide and then drop the fractional part	
modulo, remainder	$n \mod m$	The remainder upon dividing n by m	

Netflix intro

What data should we encode about each Netflix account holder to help us make effective recommendations?

In machine learning, clustering can be used to group similar data for prediction and recommendation. For example, each Netflix user's viewing history can be represented as a n-tuple indicating their preferences about movies in the database, where n is the number of movies in the database. People with similar tastes in movies can then be clustered to provide recommendations of movies for one another. Mathematically, clustering is based on a notion of distance between pairs of n-tuples.

Data types

Term	Examples:		
	(add additional	(add additional examples from class)	
set	$7 \in \{43, 7, 9\}$	$2 \notin \{43, 7, 9\}$	
unordered collection of elements			
Equal means agree on membership of all elements			
n-tuple			
ordered sequence of elements with n "slots"			
Equal means corresponding components equal			

string

ordered finite sequence of elements each from specified set Equal means same length and corresponding characters equal

$$\{-1,1\} \qquad \{0,0\} \qquad \{-1,0,1\} \qquad \mathbb{Z} \qquad \mathbb{N} = \{x \in \mathbb{Z} \mid x \geq 0\} \qquad \emptyset \qquad \mathbb{Z}^+ = \{x \in \mathbb{Z} \mid x > 0\}$$

Which of the sets above are defined using the roster method? Which are defined using set builder notation?

Which of the sets above have 0 as an element?

Can you write any of the sets above more simply?

Rna def

RNA is made up of strands of four different bases that match up in specific ways. The bases are elements of the set $B = \{A, C, G, U\}$.

Definition The set of RNA strands S is defined (recursively) by:

Basis Step: $A \in S, C \in S, U \in S, G \in S$

Recursive Step: If $s \in S$ and $b \in B$, then $sb \in S$

where sb is string concatenation.

Examples:

To define a set we can use the **roster method**, the **set builder notation**, and also ...

New! Recursive Definitions of Sets: The set S (pick a name) is defined by:

Basis Step: Specify finitely many elements of S

Recursive Step: Give a rule for creating a new element of S from known values existing in S,

and potentially other values.

The set S then consists of all and only elements that are put in S by finitely many (a nonnegative integer number) of applications of the recursive step after the basis step.