

Fakultät Mathematik Institut für Algebra, Professur für Algebra

ELEMENTE DER ALGEBRA UND ZAHLENTHEORIE

Prof. Dr. Arno Fehm

Sommersemester 2019

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Kapitel 1

KÖRPERERWEITERUNGEN

1 Körpererweiterungen

Definition 1.1

L|K ist endlich erzeugt $\Leftrightarrow a_1,\ldots,a_n \in L: L=K(a_1,\ldots,a_n)$ L|K ist einfach \Leftrightarrow ex. $a \in L: L=K(a)$

Bemerkung 1.2

- (a) L|K endlich $\Rightarrow L|K$ endlich erzeugt.
- (b) $K[a_1,\ldots,a_n]$ ist das Bild des Homomorphismus

$$\begin{cases} K[a_1, \dots, a_n] & \to & L \\ f & \mapsto & f(a_1, \dots, a_n) \end{cases}$$

und
$$K(a_1, \ldots, a_n) = \left\{\frac{\alpha}{\beta} : \alpha, \beta \in K[a_1, \ldots, a_n], \beta \neq 0\right\} \cong \text{Quot}(K[a_1, \ldots, a_n])$$

2 Algebraische Körpererweiterungen

Sei L|K eine Körpererweiterung.

Definition 2.1 (!)

Sei $\alpha \in L$. Gibt es ein $0 \neq f \in K[X]$ mit $f(\alpha) = 0$, so heißt α algebraisch über K, andernfalls transzendent über K.

Beispiel 2.2

- (a) $\alpha \in K \Rightarrow \alpha$ ist algebraisch über K (denn $f(\alpha) = 0$ für $f = X \alpha \in K[X]$)
- (b) $\sqrt{-1} \in \mathbb{Q}(\sqrt{-1})$ ist algebraisch über \mathbb{Q} (denn $f(\sqrt{-1}) = 0$ für $f = X^2 + 1 \in \mathbb{Q}[X]$) $\sqrt{-1} \in \mathbb{C}$ ist algebraisch über \mathbb{R}

Bemerkung 2.3

Sind $K \subseteq L \subseteq M$ Körper und $\alpha \in M$ algebraisch über K, so auch über L.

Lemma 2.4

Genau dann ist $\alpha \in L$ algebraisch über K, wenn $1, \alpha, \alpha^2, \ldots K$ -linear abhängig sind.

Beweis. Für $\lambda_0, \lambda_1, \dots \in K$, fast alle gleich Null, so ist

$$\sum_{i=0}^{\infty} \lambda_i \alpha^i \iff f(\alpha) = 0 \text{ für } f = \sum_{i=0}^{\infty} \lambda_i X^i \in K[X]$$

1

Lemma 2.5

Betrachte den Epimorphismus

$$\varphi_{\alpha} \colon \left\{ \begin{array}{ccc} K[X] & \to & K[\alpha] \\ f & \mapsto & f(\alpha) \end{array} \right.$$

Genau dann ist α algebraisch über K, wenn $\operatorname{Ker}(\varphi_{\alpha}) \neq (0)$. In diesem Fall ist $\operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha})$ mit einem eindeutig bestimmten irreduziblen, normierten $f_{\alpha} \in K[X]$.

Beweis. K[X] Hauptidealring \Rightarrow $Ker(\varphi_{\alpha}) = (f_{\alpha}), f_{\alpha} \in K[X]$, o.E. sei f_{α} normiert. Aus $K[\alpha] \subseteq L$ nullteilerfrei folgt, dass $Ker(\varphi_{\alpha})$ prim ist. Somit ist f_{α} prim und im Hauptidealring also auch irreduzibel.

Definition 2.6

Sei $\alpha \in L$ algebraisch über K, $\operatorname{Ker}(\varphi_{\alpha}) = (f_{\alpha})$ mit $f_{\alpha} \in K[X]$ normiert und irreduzibel.

- (1) MinPol $(\alpha \mid K) := f_{\alpha}$, das **Minimalpolynom** von α über K.
- (2) $\deg(\alpha \mid K) := \deg(f_{\alpha})$, der **Grad** von α über K.

Satz 2.7

Sei $\alpha \in L$.

- (a) α transzendent über K $\Rightarrow K[\alpha] \cong K[X]$, $K(\alpha) \cong_K K(X)$, $[K(\alpha): K] = \infty$.
- (b) α algebraisch über K $\Rightarrow K[\alpha] = K(\alpha) \cong {}^{K[X]/\text{MinPol}(\alpha|K)}$, $[K(\alpha):K)] = \deg(\alpha|K) < \infty$ und $1, \alpha, \ldots, \alpha^{\deg(\alpha|K)-1}$ ist K-Basis von $K(\alpha)$.

Beweis. (a) $Ker(\varphi_{\alpha}) = (0) \Rightarrow \varphi_{\alpha}$ ist Isomorphismus (da zusätzlich injektiv)

- $\Rightarrow K(\alpha) \cong_K \operatorname{Quot}(K[\alpha]) \cong_K \operatorname{Quot}(K[X]) = K(X)$
- $\Rightarrow [K(\alpha): K] = [K(X): K] = \infty$
- (b) Sei $f = f_{\alpha} = \text{MinPol}(\alpha \mid K), n = \deg(\alpha \mid K) = \deg(f).$
 - f irreduzibel \Rightarrow $(f) \neq (0)$ prim $\stackrel{\text{GEO II.4.7}}{\Longrightarrow} (f)$ ist maximal \Rightarrow $K[\alpha] \cong {}^{K[X]/(f)}$ ist Körper \Rightarrow $K[\alpha] = K(\alpha)$
 - $1, \alpha, \ldots, \alpha^{n-1}$ sind K-linear unabhängig:

$$\sum_{i=0}^{n-1} \lambda_i \alpha^i = 0 \implies \sum_{i=0}^{n-1} \lambda_i X^i \in (f) \stackrel{\deg f = n}{\Longrightarrow} \lambda_i = 0 \ \forall i$$

 $1,\alpha,\dots,\alpha^{n-1}$ ist Erzeugendensystem: Für $g\in K\left[X\right]$ ist

$$g = q \cdot f + r \text{ mit } q, r \in K[X] \text{ und } \deg(r) < \deg(f) = n$$

und

$$g(\alpha) = q(\alpha)\underbrace{f(\alpha)}_{-0} + r(\alpha) = r(\alpha)$$

somit $K[X] = \operatorname{Im}(\varphi_{\alpha}) = \{g(\alpha) : g \in K[X]\} = \{r(\alpha) : r \in K[X], \deg(r) < n\} = \sum_{i=0}^{n-1} K \cdot \alpha^{i}$

Beispiel 2.8

- (a) $p \in \mathbb{Z}$ prim $\Rightarrow \sqrt{p} \in \mathbb{C}$ ist algebraisch über \mathbb{Q} . Da $f(X) = X^2 - p$ irreduzibel in $\mathbb{Q}[X]$ ist (GEO II.7.3), ist MinPol $(\sqrt{p} \mid \mathbb{Q}) = X^2 - p$, $[\mathbb{Q}(\sqrt{p}) : \mathbb{Q}] = 2$.
- (b) Sei $\zeta_p = e^{2\pi i/p} \in \mathbb{C}$ $(p \in \mathbb{N} \text{ prim})$. Da $\Phi_p = \frac{X^p 1}{X 1} = X^{p-1} + X^{p-2} + \dots + X + 1 \in \mathbb{Q}[X]$ irreduzibel in $\mathbb{Q}[X]$ ist (GEO II.7.9), ist MinPol $(\zeta_p \mid \mathbb{Q}) = \Phi_p$, $[\mathbb{Q}(\zeta_p) \colon \mathbb{Q}] = p 1$. Daraus folgt schließlich

$$[\mathbb{C}\colon\mathbb{Q}]\geq[\mathbb{Q}(\zeta_p)\colon\mathbb{Q}]=p-1\ \forall p\ \Rightarrow\ [\mathbb{C}\colon\mathbb{Q}]=\infty\ \Rightarrow\ [\mathbb{R}\colon\mathbb{Q}]=\infty.$$

(c) $e \in \mathbb{R}$ ist transzendent über \mathbb{Q} (Hermite 1873), $\pi \in \mathbb{R}$ ist transendent über \mathbb{Q} (Lindemann 1882). Daraus folgt: $[\mathbb{R}:\mathbb{Q}] \geq [\mathbb{Q}(\pi):\mathbb{Q}] = \infty$. Jedoch ist unbekannt, ob z.B. $\pi + e$ transzendent ist.

Definition 2.9

L|K ist algebraisch : \Leftrightarrow jedes $\alpha \in L$ ist algebraisch über K.

Satz 2.10

L|K endlich $\Rightarrow L|K$ algebraisch.

Beweis. $\alpha \in L$, $[L:K] = n \Rightarrow 1, \alpha, \dots, \alpha^n$ K-linear abhängig $\stackrel{2.4}{\Rightarrow} \alpha$ algebraisch über K.

Korollar 2.11

Ist $L = K(\alpha_1, \dots, \alpha_n)$ mit $\alpha_1, \dots, \alpha_n$ algebraisch über K, so ist L|K endlich, insbesondere algebraisch.

Beweis. Vollständige Induktion nach n:

(IA)
$$n = 0 : \checkmark$$

(IS)
$$n > 0$$
: $K_1 := K(\alpha_1, \dots, \alpha_{n-1})$
 $\Rightarrow L = K_1(\alpha_n), \alpha_n \text{ algebraisch ""uber } K_1 \text{ (2.3)}$
 $\Rightarrow [L: K] = \underbrace{[K_1(\alpha_n): K_1]}_{<\infty \text{ nach } 2.7} \cdot \underbrace{[K_1: K]}_{<\infty \text{ nach IH}}$

Korollar 2.12

Es sind äquivalent:

- (1) L|K ist endlich.
- (2) L|K ist endlich erzeugt und algebraisch.
- (3) $L = K(\alpha_1, \dots, \alpha_n)$ mit $\alpha_1, \dots, \alpha_n$ algebraisch über K.

Beweis. (1) \Rightarrow (2): 1.15 und 2.10

 $(2) \Rightarrow (3)$: trivial

(3) \Rightarrow (1): 2.11

Bemerkung 2.13

Nach 2.7 ist

 α algebraisch über $K \ \Leftrightarrow \ K\left[\alpha\right] = K(\alpha)$

Direkter Beweis für (\Rightarrow) :

Sei $0 \neq \beta \in K[\alpha]$. Daraus folgt, dass $f(\beta) = 0$ für ein irreduzibles $0 \neq f = \sum_{i=0}^{n} a_i X^i \in K[X]$. Durch Einsetzen von β und Division durch β erhält man (auch wegen der aus der Irreduzibilität folgenden Bedingung $a_0 \neq 0$)

$$\beta^{-1} = -a_0^{-1}(a_1 + a_2\beta + \dots + a_n\beta^{n-1}) \in K[\beta] \subseteq K[\alpha]$$