CHAPTER

Mathematical Induction and Binomial Theorem

Section-A

JEE Advanced/ IIT-JEE

Fill in the Blanks

The larger of $99^{50} + 100^{50}$ and 101^{50} is 1.

(1982 - 2 Marks)

- The sum of the coefficients of the plynomial $(1 + x 3x^2)^{2163}$ 2. (1982 - 2 Marks)
- 3. If $(1 + ax)^n = 1 + 8x + 24x^2 + ...$ then a = ... and n = ...(1983 - 2 Marks)
- Let n be positive integer. If the coefficients of 2nd, 3rd, and 4. 4th terms in the expansion of $(1 + x)^n$ are in A.P., then the value of *n* is (1994 - 2 Marks)
- The sum of the rational terms in the expansion of 5. $(\sqrt{2} + 3^{1/5})^{10}$ is (1997 - 2 Marks)

C **MCQs** with One Correct Answer

- Given positive integers r > 1, n > 2 and that the coefficient of (3r)th and (r + 2)th terms in the binomial expansion of (1983 - 1 Mark) $(1+x)^{2n}$ are equal. Then
 - (a) n=2r
- (c) n = 2r + 1
- (c) n=3r
- (d) none of these
- The coefficient of x^4 in $\left(\frac{x}{2} \frac{3}{x^2}\right)^{10}$ is (1983 1 Mark)
- (b) $\frac{504}{259}$
- (d) none of these
- The expression $\left(x + (x^3 1)^{\frac{1}{2}}\right)^5 + \left(x (x^3 1)^{\frac{1}{2}}\right)^5$ is a

(1992 - 2 Marks) polynomial of degree (c) 7

- If in the expansion of $(1+x)^m (1-x)^n$, the coefficients of x and x^2 are 3 and – 6 respectively, then m is (1999 - 2 Marks)
- 5. For $2 \le r \le n$, $\binom{n}{r} + 2 \binom{n}{r-1} + \binom{n}{r-2} = 1$
 - (a) $\binom{n+1}{r-1}$ (b) $2\binom{n+1}{r+1}$ (c) $2\binom{n+2}{r}$ (d) $\binom{n+2}{r}$

- 6. In the binomial expansion of $(a-b)^n$, $n \ge 5$, the sum of the 5th and 6^{th} terms is zero. Then a/b equals (2001S)
 - (a) (n-5)/6
- (b) (n-4)/5
- (c) 5/(n-4)
- (d) 6/(n-5)
- The sum $\sum_{i=0}^{m} {10 \choose i} {20 \choose m-i}$, (where ${p \choose q} = 0$ if p < q) is

maximum when m is (b) 10 (a) 5 (d) 20 (c) 15

- Coefficient of t^{24} in $(1+t^2)^{12}(1+t^{12})(1+t^{24})$ is (2003S) (a) $^{12}C_6 + 3$ (b) $^{12}C_6 + 1$ (c) $^{12}C_6$ (d) $^{12}C_6 + 2$ If $^{n-1}C_r = (k^2 3) ^n C_{r+1}$, then $k \in$ (2004S) (a) $(-\infty, -2]$ (b) $[2, \infty)$ (c) $[-\sqrt{3}, \sqrt{3}]$ (d) $(\sqrt{3}, 2]$
- The value of

$$\begin{pmatrix} 30 \\ 0 \end{pmatrix} \begin{pmatrix} 30 \\ 10 \end{pmatrix} - \begin{pmatrix} 30 \\ 1 \end{pmatrix} \begin{pmatrix} 30 \\ 11 \end{pmatrix} + \begin{pmatrix} 30 \\ 2 \end{pmatrix} \begin{pmatrix} 30 \\ 12 \end{pmatrix} \dots + \begin{pmatrix} 30 \\ 20 \end{pmatrix} \begin{pmatrix} 30 \\ 30 \end{pmatrix}$$
 is where

$$\binom{n}{r} = {}^{n}C_{r} \tag{2005S}$$

- $\begin{pmatrix} 30 \\ 10 \end{pmatrix} \quad \text{(b)} \quad \begin{pmatrix} 30 \\ 15 \end{pmatrix} \qquad \text{(c)} \quad \begin{pmatrix} 60 \\ 30 \end{pmatrix}$
- For r = 0, 1, ..., 10, let A_r , B_r and C_r denote, respectively, the coefficient of x^r in the expansions of $(1+x)^{10}$, (2010)

$$(1+x)^{20}$$
 and $(1+x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to

- (a) $B_{10} C_{10}$ (c) 0(b) $A_{10}(B^2_{10}C_{10}A_{10})$ (d) $C_{10}-B_{10}$
- 12. Coefficient of x^{11} in the expansion of $(1+x^2)^4(1+x^3)^7(1+x^4)^{12}$ is (JEE Adv. 2014) (a) 1051 (b) 1106 (d) 1120 (c) 1113

MCQs with One or More than One Correct

If C_r stands for nC_r , then the sum of the series

$$\frac{2\left(\frac{n}{2}\right)!\left(\frac{n}{2}\right)!}{n!}[C_0^2 - 2C_1^2 + 3C_2^2 - \dots + (-1)^n(n+1)C_n^2],$$

where n is an even positive integer, is equal to (1986 - 2 Marks) (a) 0

(b)
$$(-1)^{n/2}(n+1)$$

- (c) $(-1)^{n/2}(n+2)$
- (d) $(-1)^n n$
- (e) none of these.
- If $a_n = \sum_{r=0}^n \frac{1}{{}^n C_r}$, then $\sum_{r=0}^n \frac{r}{{}^n C_r}$ equals (1998 2 Marks)
 - (a) $(n-1)a_{n}$
- (b) na.
- (c) $\frac{1}{2}na_n$
- (d) None of the above

E **Subjective Problems**

 $C_1 + 2C_2x + 3C_3x^2 + \dots + 2nC_{2n}x^{2n-1} = 2n(1+x)^{2n-1}$ 1. where $C_r = \frac{(2n)!}{r!(2n-r)!}$ $r=0,1,2,\dots,2n$

$$C_1^2 - 2C_2^2 + 3C_3^2 - \dots - 2nC_{2n}^2 = (-1)^n n C_n$$

- $C_1^2 2C_2^2 + 3C_3^2 \dots 2nC_{2n}^2 = (-1)^n n C_n$. Prove that $7^{2n} + (2^{3n-3})(3^{n-1})$ is divisible by 25 for any
- If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$ then show that the sum of the products of the C_i 's taken two at a time, 3.

represented by
$$\sum_{0 \le i < j \le n} \sum_{i \le j} C_i C_j$$
 is equal to $2^{2n-1} - \frac{(2n)!}{2(n!)^2}$

(1983 - 3 Marks)

Use mathematical Induction to prove: If n is any odd positive integer, then $n(n^2-1)$ is divisible by 24.

(1983 - 2 Marks)

If p be a natural number then prove that $p^{n+1} + (p+1)^{2n-1}$ is divisible by $p^2 + p + 1$ for every positive integer n.

(1984 - 4 Marks)

Given $s_n = 1 + q + q^2 + \dots + q^n$:

$$S_n = 1 + \frac{q+1}{2} + \left(\frac{q+1}{2}\right)^2 + \dots + \left(\frac{q+1}{2}\right)^n, q \neq 1 \text{ Prove that}$$

$$^{n+1}C_{1} + ^{n+1}C_{2}s_{1} + ^{n+1}C_{3}s_{2} + \dots + ^{n+1}C_{n}s_{n} = 2^{n}S_{n}$$

(1984 - 4 Marks)

- Use method of mathematical induction $2.7^n + 3.5^n 5$ is divisible by 24 for all n > 0(1985 - 5 Marks)
- 8. Prove by mathematical induction that - (1987 - 3 Marks)

$$\frac{(2n)!}{2^{2n}(n!)^2} \le \frac{1}{(3n+1)^{1/2}} \text{ for all positive Integers n.}$$

Let $R = (5\sqrt{5} + 11)^{2n+1}$ and f = R - [R], where [] denotes

the greatest integer function. Prove that $Rf = 4^{2n+4}$

10. Using mathematical induction, prove that (1989 - 3 Marks) ${}^{m}C_{0}{}^{n}C_{k} + {}^{m}C_{1}{}^{n}C_{k-1} + \dots {}^{m}C_{k}{}^{n}C_{0} = {}^{(m+n)}C_{k},$ where m, n, k are positive integers, and ${}^{p}C_{q} = 0$ for p < q.

11. Prove that (1989 - 5 Marks)
$$C_0 - 2^2 C_1 + 3^2 C_2 - \dots + (-1)^n (n+1)^2 C_n = 0,$$

$$n > 2, \text{ where } C_n = {}^n C_n.$$

- 12. Prove that $\frac{n^7}{7} + \frac{n^5}{5} + \frac{2n^3}{3} \frac{n}{105}$ is an integer for every (1990 - 2 Marks)
- Using induction or otherwise, prove that for any non-13. (1991 - 4 Marks) negative integers m, n, r and k,

$$\sum_{m=0}^{k} (n-m) \frac{(r+m)!}{m!} = \frac{(r+k+1)!}{k!} \left[\frac{n}{r+1} - \frac{k}{r+2} \right]$$

14. If $\sum_{r=0}^{2n} a_r (x-2)^r = \sum_{r=0}^{2n} b_r (x-3)^r$ and $a_k = 1$ for all

 $k \ge n$, then show that $b_n = {}^{2n+1}C_{n+1}$ (1992 - 6 Marks)

- 15. Let p > 3 be an integer and α , β be the roots of $x^2 - (p+1)x + 1 = 0$ using mathematical induction show that $\alpha^n + \beta^n$.
 - (i) is an integer and (ii) is not divisible by p(1992 - 6 Marks)
- 16. Using mathematical induction, prove that $\tan^{-1}(1/3) + \tan^{-1}(1/7) + \dots + \tan^{-1}\{1/(n^2 + n + 1)\}\$ $= \tan^{-1} \{ n/(n+2) \}$ (1993 - 5 Marks)
- Prove that $\sum_{n=0}^{k} (-3)^{r-1} {3n \choose 2r-1} = 0$, where k = (3n)/2 and

(1993 - 5 Marks) n is an even positive integer.

If x is not an integral multiple of 2π use mathematical induction 18. to prove that: (1994 - 4 Marks)

$$\cos x + \cos 2x + \dots + \cos nx = \cos \frac{n+1}{2} x \sin \frac{nx}{2} \csc \frac{x}{2}$$

- Let *n* be a positive integer and (1994 5 Marks) $(1+x+x^2)^n = a_0 + a_1 x + \dots + a_{2n} x^{2n}$ Show that $a_0^2 a_1^2 + a_2^2 + \dots + a_{2n}^2 = a_n$ Using mathematical induction prove that for every integer
- $n \ge 1$, $(3^{2n}-1)$ is divisible by 2^{n+2} but not by 2^{n+3} .

Let $0 < A_i < \pi$ for i = 1, 2, ..., n. Use mathematical induction to prove that

$$\sin A_1 + \sin A_2 \dots + \sin A_n \le n \sin \left(\frac{A_1 + A_2 + \dots + A_n}{n} \right)$$

where ≥ 1 is a natural number.

{You may use the fact that

$$p\sin x + (1-p)\sin y \le \sin [px + (1-p)y],$$

where $0 \le p \le 1$ and $0 \le x, y \le \pi$. (1997 - 5 Marks)

Let p be a prime and m a positive integer. By mathematical induction on m, or otherwise, prove that whenever r is an integer such that p does not divide r, p divides $^{mp}C_r$,

(1998 - 8 Marks)

Hint: You may use the fact that $(1+x)^{(m+1)p} = (1+x)^p (1+x)^{mp}$

$$\sum_{k=0}^{m} \frac{\binom{2n-k}{k}}{\binom{2n-k}{n}} \cdot \frac{(2n-4k+1)}{(2n-2k+1)} 2^{n-2k} = \frac{\binom{n}{m}}{\binom{2n-2m}{n-m}} 2^{n-2m}$$

for each non-be gatuve integer $m \le n$. $\left(\text{Here} \left(\begin{matrix} p \\ c \end{matrix} \right) = {}^{p}C_{q} \right)$.

24. For any positive integer m, n (with $n \ge m$), let $\binom{n}{m} = {}^{n}C_{m}$.

Prove that $\binom{n}{m} + \binom{n-1}{m} + \binom{n-2}{m} + \dots + \binom{m}{m} = \binom{n+1}{m+2}$

$$\binom{n}{m} + 2 \binom{n-1}{m} + 3 \binom{n-2}{m} + \dots + (n-m+1) \binom{m}{m} = \binom{n+2}{m+2}.$$

- 25. For every positive integer n, prove that $\sqrt{(4n+1)} < \sqrt{n} + \sqrt{n+1} < \sqrt{4n+2}$. Hence or otherwise, prove that $\lceil \sqrt{n} + \sqrt{(n+1)} \rceil = \lceil \sqrt{4n+1} \rceil$, where $\lceil x \rceil$ denotes the greatest integer not exceeding x. (2000 - 6 Marks)
- Let a, b, c be positive real numbers such that $b^2 4ac > 0$ and let $\alpha_1 = c$. Prove by induction that

$$\alpha_{n+1} = \frac{a\alpha_n^2}{\left(b^2 - 2a(\alpha_1 + \alpha_2 + ... + \alpha_n)\right)}$$
 is well – defined and

 $\alpha_{n+1} < \frac{\alpha_n}{2}$ for all n = 1, 2, ... (Here, 'well – defined' means

that the denominator in the expression for α_{n+1} is not zero.) (2001 - 5 Marks)

- 27. Use mathematical induction to show that $(25)^{n+1} - 24n + 5735$ is divisible by $(24)^2$ for all $n = 1, 2, \dots$ (2002 - 5 Marks)
- Prove that (2003 - 2 Marks) 28.

$$2^{k} \binom{n}{0} \binom{n}{k} - 2^{k-1} \binom{n}{2} \binom{n}{1} \binom{n-1}{k-1} + 2^{k-2} \binom{n-2}{k-2} - \dots - (-1)^{k} \binom{n}{k} \binom{n-k}{0} = \binom{n}{k}$$

29. A coin has probability p of showing head when tossed. It is tossed n times. Let p_n denote the probability that no two (or more) consecutive heads occur. Prove that $p_1=1$, $p_2=1-p^2$ and $p_n = (1-p)$. $p_{n-1} + p(1-p) p_{n-2}$ for all $n \ge 3$.

Prove by induction on n, that $p_n = A\alpha^n + B\beta^n$ for all $n \ge 1$, where α and β are the roots of quadratic equation

$$x^{2}-(1-p)x-p(1-p)=0$$
 and $A=\frac{p^{2}+\beta-1}{\alpha\beta-\alpha^{2}}$, $B=\frac{p^{2}+\alpha-1}{\alpha\beta-\beta^{2}}$.

(2000 - 5 Marks)

Ι **Integer Value Correct Type**

- The coefficients of three consecutive terms of $(1 + x)^{n+5}$ are 1. in the ratio 5:10:14. Then n =(JEE Adv. 2013)
- 2. Let m be the smallest positive integer such that the coefficient of x^2 in the expansion of $(1+x)^2+(1+x)^3+...+$ $(1+x)^{49} + (1+mx)^{50}$ is $(3n+1)^{51}C_3$ for some positive integer n. Then the value of n is (JEE Adv. 2016)

Section-B IEE Main /

- The coefficients of x^p and x^q in the expansion of $(1+x)^{p+q}$ 1. [2002] are
 - equal (a)
 - equal with opposite signs (b)
 - reciprocals of each other (c)
 - (d) none of these
- If the sum of the coefficients in the expansion of $(a + b)^n$ is 4096, then the greatest coefficient in the expansion is
 - [2002]

- (a) 1594
- (d) 2924
- The positive integer just greater than $(1 + 0.0001)^{10000}$ is 3.

 - (c) 2 r and n are positive integers r > 1, n > 2 and coefficient of
- 4. (r+2)th term and 3rth term in the expansion of $(1+x)^{2n}$ are equal, then n equals [2002] (b) 3r+1 (c) 2r

- (d) 2r+1
- If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + \dots}}}$ haing n radical signs then by methods of mathematical induction which is true
 - (a) $a_n > 7 \forall n \ge 1$
- (b) $a_n < 7 \ \forall \ n \ge 1$
- (c) $a_n < 4 \ \forall \ n \ge 1$ (d) $a_n < 3 \ \forall \ n \ge 1$

- 6. If x is positive, the first negative term in the expansion of $(1+x)^{27/5}$ is [2003]
- (a) 6th term (b) 7th term (c) 5th term (d) 8th term. 7. The number of integral terms in the expansion of
- $(\sqrt{3} + \sqrt[8]{5})^{256}$ is [2003]
- (b) 32
- (c) 33
- (d) 34
- Let $S(K) = 1 + 3 + 5... + (2K 1) = 3 + K^2$. Then which of the following is true
 - Principle of mathematical induction can be used to prove the formula
 - (b) $S(K) \Rightarrow S(K+1)$
 - (c) $S(K) \Rightarrow S(K+1)$
 - (d) S(1) is correct
- The coefficient of the middle term in the binomial expansion in powers of x of $(1+\alpha x)^4$ and of $(1-\alpha x)^6$ is the same if α equals

- (a) $\frac{3}{5}$ (b) $\frac{10}{3}$ (c) $\frac{-3}{10}$ (d) $\frac{-5}{3}$

[2008]

10 .	The	coefficient	of x^n in	expansion	of (1+x	(1-x)	$)^n$ is
-------------	-----	-------------	-------------	-----------	------	-----	-------	----------

(a)
$$(-1)^{n-1}n$$

(b)
$$(-1)^n (1-n)$$
 [2004]

(c)
$$(-1)^{n-1}(n-1)^2$$

(d)
$$(n-1)$$

11. The value of
$${}^{50}C_4 + \sum_{1}^{6} {}^{56-r}C_3$$
 is [2005]

(a)
$${}^{55}C_4$$
 (b) ${}^{55}C_3$ (c) ${}^{56}C_3$

12. If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following

holds for all $n \ge 1$, by the principle of mathematical induction

(a)
$$A^n = nA - (n-1)I$$

(a)
$$A^n = nA - (n-1)I$$
 (b) $A^n = 2^{n-1}A - (n-1)I$

(c)
$$A^n = nA + (n-1)I$$

(c)
$$A^n = nA + (n-1)I$$
 (d) $A^n = 2^{n-1}A + (n-1)I$

13. If the coefficient of
$$x^7$$
 in $\left[ax^2 + \left(\frac{1}{bx}\right)\right]^{11}$ equals the

coefficient of x^{-7} in $\left[ax - \left(\frac{1}{hx^2}\right)\right]^{11}$, then a and b satisfy

the relation

[2005]

(a)
$$a - b = 1$$

(b)
$$a+b=1$$

(c)
$$\frac{a}{b} = 1$$

(d)
$$ab = 1$$

14. If x is so small that
$$x^3$$
 and higher powers of x may be

neglected, then $\frac{(1+x)^{\frac{3}{2}} - \left(1 + \frac{1}{2}x\right)^3}{\frac{1}{2}}$ may be approximated as

(a)
$$1 - \frac{3}{8}x^2$$

(b)
$$3x + \frac{3}{8}x^2$$
 [2005]

(c)
$$-\frac{3}{8}x^2$$

(d)
$$\frac{x}{2} - \frac{3}{8}x^2$$

15. If the expansion in powers of x of the function $\frac{1}{(1-ax)(1-bx)}$ is $a_0 + a_1x + a_2x^2 + a_3x^3$ then a_n is

(a)
$$\frac{b^n - a^n}{a^n}$$

(a)
$$\frac{b^n - a^n}{b - a}$$
 (b) $\frac{a^n - b^n}{b - a}$ [2006]

(c)
$$\frac{a^{n+1} - b^{n+1}}{b - a}$$
 (d) $\frac{b^{n+1} - a^{n+1}}{b - a}$

$$(d) \quad \frac{b^{n+1} - a^{n+1}}{b - a}$$

16. For natural numbers m, n if
$$(1-y)^m (1+y)^n$$

= 1 +
$$a_1y$$
 + a_2y^2 + and a_1 = a_2 = 10, then (m, n) is (a) (20,45) (b) (35,20) [20]

$$(35,20)$$
 [200]

17. In the binomial expansion of
$$(a-b)^n$$
, $n \ge 5$, the sum of 5^{th} and 6^{th} terms is zero, then a/b equals [2007]

(a)
$$\frac{n-5}{6}$$
 (b) $\frac{n-4}{5}$ (c) $\frac{5}{n-4}$ (d) $\frac{6}{n-5}$.

(c)
$$\frac{5}{n}$$

(d)
$$\frac{6}{n-5}$$

$$^{20}C$$
 is

$$^{20}C_0 - ^{20}C_1 + ^{20}C_2 - ^{20}C_3 + \dots - \dots + ^{20}C_{10}$$
 is

(b)
$${}^{20}C_{10}$$
 (c) ${}^{-20}C_{10}$ (d) $\frac{1}{2}{}^{20}C_{10}$

Statement-2:
$$\sum_{r=0}^{n} (r+1)^{n} C_{r} x^{r} = (1+x)^{n} + nx(1+x)^{n-1}.$$
(a) Statement -1 is false, Statement-2 is true
(b) Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1

- a correct explanation for Statement-1
- Statement -1 is true, Statement -2 is true; Statement -2 is not a correct explanation for Statement-1
- (d) Statement -1 is true, Statement-2 is false

19. Statement -1: $\sum_{r=0}^{n} (r+1)^{-n} C_r = (n+2)2^{n-1}$

The remainder left out when $8^{2n} - (62)^{2n+1}$ is divided by 9 (b) 7 (c) 8 (d) 0

21. Let
$$S_1 = \sum_{j=1}^{10} j(j-1)^{10} C_j$$
, $S_2 = \sum_{j=1}^{10} j^{10} C_j$ and $S_3 = \sum_{j=1}^{10} j^{2} {}^{10} C_j$.

Statement-1: $S_3 = 55 \times 2^9$. **Statement-2:** $S_1 = 90 \times 2^8$ and $S_2 = 10 \times 2^8$.

- (a) Statement -1 is true, Statement -2 is true; Statement -2 is **not** a correct explanation for Statement -1.
- Statement -1 is true, Statement -2 is false.
- (c) Statement -1 is false, Statement -2 is true.
- Statement 1 is true, Statement 2 is true; Statement -2 is a correct explanation for Statement -1.
- The coefficient of x^7 in the expansion of $(1-x-x^2+x^3)^6$ is

(a)
$$-132$$
 (b) -144

23. If *n* is a positive integer, then
$$(\sqrt{3}+1)^{2n} - (\sqrt{3}-1)^{2n}$$
 is:

- (b) an odd positive integer
- (c) an even positive integer
- (d) a rational number other than positive integers
- The term independent of x in expansion of

$$\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10} \text{ is}$$
 [JEE M 2013]

If the coefficients of x^3 and x^4 in the expansion of $(1+ax+bx^2)(1-2x)^{18}$ in powers of x are both zero, then (a, b) is equal to:

(a)
$$\left(14, \frac{272}{3}\right)$$
 (b) $\left(16, \frac{272}{3}\right)$ (c) $\left(16, \frac{251}{3}\right)$ (d) $\left(14, \frac{251}{3}\right)$

26. The sum of coefficients of integral power of x in the binomial expansion $\left(1-2\sqrt{x}\right)^{50}$ is : **JEE M 2015**

(a)
$$\frac{1}{2}(3^{50}-1)$$

(b)
$$\frac{1}{2}(2^{50}+1)$$

(c)
$$\frac{1}{2}(3^{50}+1)$$

(d)
$$\frac{1}{2}(3^{50})$$

If the number of terms in the expansion of $\left(1 - \frac{2}{x} + \frac{4}{x^2}\right)^n$, $x \neq 0$, is 28, then the sum of the coefficients of all the terms in this expansion, is: [JEE M 2016]