Lectures Outline

Lecture 1-6: Chapter # 1

```
Lecture 1:
       Introduction
Motivation of DM
       Applications of DM
       Logic and its applications
Lecture 2:
       Logic types
                 Classical, Fuzzy
Classical Logic
       Simple Logic
                 Proposition
       Compound Logic
                 Logical Connectors
                     AND, OR, NOT, IMPLICATION, BI-Implication
                 Logical Equivalence
Lecture 3:
       Quiz
       Tautology
       Contradiction
       Logical Equivalence using Tautology
       Converse
       Inverse
       Contradiction
       Negation
Lecture 4:
       Predicate Logic
                Motivation
       Quantification
              Prefix and Quantifiers
              Proposition Function
              Types of Quantifiers
                     Existential
```

Universal Negation of quantifiers

Lecture 5:

Translation English into Quantifiers
Binding and Free Variables
Nested Quantifiers

Lecture 6:

Logical Proofs
Types of Proof

Direct proof Indirect Proof

Proof by Contraposition Proof by Contradiction

Lecture 7-9: Chapter # 2

Lecture 7:

Set Theory

Set Representation

Set Builder Notation

Veinn Diagrams

Subset and its Derivatives

Set Operations

Representation of Set Concepts using Predicate Logic

Proof of Set Properties using Set Builder Notation

Representation of Set in Computers using Bit strings

Set Operations using Bit strings

Self Study: Cartesian Product

Intro to Functions

What is a Function

Domain, Range, Co-Domain and Image of a Function

Lecture 8:

Types of Functions

Onto functions

One-to-one

Bijective

Inverse of Functions

Composition of Functions

Widely used functions

Increasing, Strictly-Increasing, Decreasing, Strictly Decreasing, Ceiling, Floor Representation of increasing and decreasing functions using predicate logic

Sequence and Summations

Recurrence Relations

Base Conditions

Expressing Summations

Lecture 9:

Class Feedback
Closed-Form Solutions vs Recurrence relations
Closed-Form Solution of Geometric Series
Limit Shifting
Summation Expansion

Lecture 10-12: Chapter # 5

Lecture 10:

Long Quiz Introduction to Induction Sample Questions

Lecture 11:

Weak Induction
Practice Examples
Strong Induction

Lecture 12:

Weak Induction Quiz Strong Induction Recursion

Lecture 13:

Long Quiz Solution
Recurrence relations and Recursion

Lecture 14-18: Chapter # 3

Lecture 14:

Revision of set concepts Function Growth

Lecture 15

- Function Growth
- Proofs revision

Lecture 16

Mid term Revision

Lecture 17

- Time Complexity
- Importance of time Complexity

Lecture 18

• Big oh, omega and Theta

Lecture 19

- Mid term solution
- Paper show

Lecture 20-22: Chapter # 4

Lecture 20

- Number Theory
 - Modular Arithmetic
 - Congruent

Lecture 21

- Number Theory
 - o Prime Numbers
 - o GCD, LCM

Lecture 22

- Number Theory
- Cryptography

Lecture 23-27: Chapter # 10

Lecture 23

- Graphs
 - Introduction
 - Terminology

Lecture 24

- Graphs Representation
 - Adjacency List
 - Adjacency Matrix
 - Incidence Matrix

Lecture 25

- Number Theory
- Cryptography

Practice Questions

Chapter 1: Logic

Propositional Logic:

Exercise (starting Page 12): Q#1-12, 16-18, 31-39

Read De-Morgan's law from Page 26

Logical Equivalence

Exercise (starting Page 34): Q#1-10, 13-33

Quantification

Exercise (starting Page 53): Q# 1-18, 21, 22, 25, 28, 29

Nested Quantifiers

Exercise (starting Page 64): Q# 1-4, Q5 part (a)-(d), 25-27, 29

Proof practice Questions

Page 91: Q# 1-9, 15-17

Reading:

Rules of Inference: Page # 71-72

Proofs: Page #81-87

Fuzzy Logic

Page 16: Q# 45-47

Chapter 2: Sequence and Summations[2.1-2.4]

Set Theory:

Basics of Set Theory

Page 125: Q# 1-44

Topic: Set operations, BitStrings, multi-sets, fuzzy-sets

V2: Page 136: Q# 1-11, 25-35, 52-65

V1: Page 136-137: Questions 1-4, 25, 26, 27, 29, 30, 31, 32, 52, 53, 63, 64, 65

Reading:

Set Identities Page # 130

Function

Page 152: Q# 1-33, 77 (Partial Function)

Reading:

Section 2.3 starting Page 138-145

Summation

Page 167: Q#1-6(a)-(f), 7-10, 18(a), 19(a), 29-34

Reading: Page # 156-160, Page # 164-166, Theorem 1 at Page 164

Chapter 5: Induction and Recursion

Induction:

Page # 329: Q# 1-24, 31-36

Chapter 4: Number Theory and CryptoGraphy

- Section 4.1 (Divisibility and Modular Arithmetic):
 - Page # 244: 1, 2, 5, 6, 9 b) c), 11, 12, 15, 21, 25 d), 28 to 33, 40
 - Compute $(53 * 3^{100} + 3^{101})^{25} \mod 7$.
- Section 4.3 (Primes and Greatest Common Divisors)
 - o Page # 272, Q# 1 to 4, 17, 25, 27, 28, 30, 31, 33

Chapter 10: Graphs

Graphs and Graph Models: Page 649: Q#1-10

Graph Terminology, Special Graphs and their applications: Page 665-666: Q#1-5, 7-10, 20-26

Representation of Graphs and Isomorphism: Page 675-677: Q#1-22, 34-40

Connectivity: Page 689 1-5,11

Euler and Hamiltonian Graphs: Page 703-705: 1-8, 13-15, 18-23, 26, 30-36

Shortest Path Problems: Page 716: 1-8

Planar Graphs: Page 725: 2,3,4

Graph Coloring: Page 732-733: Q 1-11

For dual graphs: please read page 727.

10.2 Graph Terminology, Special Graphs and their applications: Page 651 to 662

10.3 Representation of Graphs and Isomorphism: 668 to 673

10.4 Connectivity: Page 678-682

10.5 Euler and Hamilton Paths: Page 693 to 700

10.6 Shortest Path Problems: Page 708-716

10.7 Planar Graph: Page 718-72010.8 Graph Coloring: Page 727-732

Chapter 11: Trees

Introduction Page 755: 1-10

Traversals Page 783-785: 7-19, 22-29 Spanning Tree Page 796-797: 1-9, 13-18

Chapter 6: Counting

Section 6.1 (The Basics of Counting):

o 1 - 22, 26, 32, 34, 35, 41, 47, 53, 55, 56.

- Section 6.2 (The Pigeonhole Principle):
 - o 5, 9, 19, 31.
- Section 6.3 (Permutations and Combinations):
 - o 3, 5, 11, 10, 19, 21(a)(d), 23, 25, 30, 32, 33, 34, 37, 40.