Below are all of the additional practice problems suggested on problem sets 6 to 10 (those covered on midterm 2). These are all useful for exam review. I will put at least one of these problems (perhaps with minor modifications) on the exam.

- 1. (3.1.3) Order of Elements in S_n . Prove Proposition 3.4. In other words, prove that the order of an element $\sigma \in S_n$ is the least common multiple of the lengths of the cycles in its cycle decomposition.
- 2. (4.4.16) Find the number of conjugacy classes of S_4 and the number of elements in each of these classes.
- 3. (5.1.1) Let $G = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ be the direct product of $(\mathbb{Z}/4\mathbb{Z}, +)$ and $(\mathbb{Z}/3\mathbb{Z}, +)$, and let $H = \langle (2,0) \rangle$ be a subgroup of G. Find the right cosets of H in G.
- 4. (4.3.8) Let $G = S_4$, and let $V = \mathbb{R}^4$. In Problem 7, we defined an action of G on V.
 - (a) For this action, what is the stabilizer of $(3, \sqrt{2}, 3, \sqrt{2})$? Find a familiar group that is isomorphic to this stabilizer.
 - (b) For $g \in G$, let $W(g) = \{v \in V \mid g \cdot v = v\}$. Prove that W(g) is a subspace of V. Find a basis for W(g) when $g = (1 \ 3) \in S_4$.
- 5. (4.4.13) Let $G = S_3$ and $V = \mathbb{R}^3$. In Problem 7, we defined an action of G on V. (Also see Problem 4.) What is the orbit of $(3, \sqrt{2}, 3)$ in this action? What about (4, 4, 4)? What are the possible orbit sizes for this action?
- 6. (5.2.2) If G is a noncyclic group of order 27, then for how many elements x of G do we have $x^9 = e$?
- 7. (4.1.4) Let G be a subgroup of S_n . Hence every element of G is a permutation of $[n] = \{1, \ldots, n\}$. Let e_i be the element of \mathbb{R}^n with a 1 in the *i*th coordinate and zeros in all other coordinates. The set $B = \{e_1, \ldots, e_n\}$ is the standard basis for \mathbb{R}^n . Define an action of G on B by

$$\sigma \cdot e_i = e_{\sigma(i)}$$
.

Extend this action to an action of G on \mathbb{R}^n as follows: If $v \in \mathbb{R}^n$ then, for some scalars α_1 , ..., α_n , we have $v = \alpha_1 e_1 + \cdots + \alpha_n e_n$. For $\sigma \in G$, we define

$$\sigma \cdot v = \alpha_1 e_{\sigma(1)} + \alpha_2 e_{\sigma(2)} + \dots + \alpha_n e_{\sigma(n)}.$$

- (a) Let n=3, let $G=S_3$, and let $v=(\sqrt{2},-8,4)\in\mathbb{R}^3$. Find $\sigma\cdot v$ and $\tau\cdot v$, where $\sigma=(1\ 2\ 3)$ and $\tau=(2\ 3)$.
- (b) Show that the above definition does indeed give an action of G on \mathbb{R}^n .
- (c) Can you generalize the above action to an action of any subgroup of S_n on any n dimensional vector space with a designated basis?

due never. page 1 of 3

- 8. (5.1.6) Let G be a group, and let $H \leq G$ with |G:H| = 2.
 - (a) If K is a subgroup of G with at least one element not in H. Show that G = HK.
 - (b) Is it possible to find $y \in G$ such that $yH \neq Hy$?
- 9. (5.1.10) Let G be a group, and let $H \leq G$. Recall Definition 4.24 of $\mathbf{N}_G(H)$, the normalizer of H in G. Show that

$$\mathbf{N}_G(H) = \{ x \in G \mid xHx^{-1} = H \} = \{ x \in G \mid xH = Hx \}.$$

- 10. (5.1.2) Let $G = (\mathbb{Z}, +)$ be the group of integers, and let $H = (5\mathbb{Z}, +)$ be the subgroup of G consisting of all multiples of 5. Describe the right cosets of H in G.
- 11. (5.2.5) Let $D_{10} = \langle a, b \mid a^5 = b^2 = e, ba = a^4b \rangle$ be the dihedral group of order 10. Assume x and y are two distinct elements of order two in D_{10} . Let $H = \langle x, y \rangle$. What can you say about |H|? Can x and y commute? Give your reasons.
- 12. (10.1.1) Find all normal subgroups of D_8 and of S_3 .
- 13. (10.1.9) Find a group G, with subgroups H and K, such that $H \triangleleft K$, $K \triangleleft G$, but H not normal in G.
- 14. (10.2.4) If M and N are normal subgroups of a group G, show that $M \cap N$ is also a normal subgroup of G.
- 15. (10.3.3) Let $G = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ and let H be the subgroup of G generated by (2,2).
 - (a) What are the elements of H?
 - (b) What are the elements of G/H?
 - (c) Find a familiar group that is isomorphic to G/H.
- 16. (10.3.9) Let G be a group and let $N \triangleleft G$. Assume that |G:N| = m. Let $x \in G$. Prove that $x^m \in N$.
- 17. (11.3.5) Let D_8 and S_3 , as usual, be the dihedral group of order 8 and the symmetric group of degree 3 respectively. Assume $\phi: D_8 \to S_3$ is a homomorphism. What are the possibilities for $|\ker(\phi)|$ and $|\operatorname{Im}(\phi)|$? For each possibility, give an explicit example.
- 18. (15.1.3) Let d be an integer (positive or negative) not divisible by a square of a prime, and $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$. Let $N \colon \mathbb{Z}[\sqrt{d}] \to \mathbb{Z}$ be defined by $N(a + b\sqrt{d}) = a^2 db^2$. Prove that, for $x, y \in \mathbb{Z}[\sqrt{d}]$, we have

$$N(xy) = N(x)N(y).$$

due never. page 2 of 3

- 19. (15.1.5) Show that, without using ± 1 as one of the factors, neither 3 nor $2 + \sqrt{5}i$ can be factored in $\mathbb{Z}[\sqrt{5}i]$.
- 20. (15.2.6) Is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ a field? Is $\mathbb{Z}/4\mathbb{Z}$ a field? Can you find a field with four elements? If so, give its addition and multiplication tables explicitly.
- 21. (15.2.7) Let $\mathbb{F}_2 = (\mathbb{Z}/2\mathbb{Z}, +, \cdot)$ and define $E = \{ \begin{bmatrix} a & b \\ b & a+b \end{bmatrix} \mid a, b \in \mathbb{F}_2 \}$. How many elements does E have? With the usual matrix addition and multiplication, is E a field?
- 22. (15.2.11) Let X be a non-empty set, and recall (Definition 2.20) that 2^X is the set of all subsets of X, and for A and B subsets of X, their symmetric difference is denoted by \triangle and is defined by

$$A\triangle B = (A - B) \cup (B - A).$$

Show that $(2^X, \triangle, \cap)$ is a commutative ring with identity. Is it an integral domain?

- 23. (15.2.13) Find the group of units of $\mathbb{Z}/5\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/12\mathbb{Z}$, and $\mathbb{Z}/24\mathbb{Z}$.
- 24. (16.1.1) If D is an integral domain and R a subring of D with at least two elements, then is R necessarily an integral domain? Either prove that it is, or give an example where it is not.
- 25. (16.1.4) Proof of Theorem 16.12d and 16.12e. Let R and S be rings, and $\phi: R \to S$ a ring homomorphism. Let R' and S' be subrings, respectively, of R and S. Prove that $\phi(R')$ and $\phi^{-1}(S')$ are subrings, respectively, of S and R.
- 26. (16.1.7) Let R be a ring with identity. How many ring homomorphisms $\phi \colon \mathbb{Z} \to R$ are there with $\phi(1) = 1_R$?
- 27. (16.1.10) Let $R = \mathbb{Q}[\sqrt{2}]$ and $S = \mathbb{Q}[\sqrt{3}]$. Show that the only ring homomorphism from R to S is the trivial one. In particular, conclude that R and S are not isomorphic rings. In other words, assume $f: R \to S$ is a ring homomorphism. Show that f(r) = 0 for all $r \in R$.
- 28. (16.1.20) Let R be a ring with identity, and let J be an ideal of R. Assume that J contains a unit of R. Prove that J = R.

due never. page 3 of 3