Liubov Shilova (7003130)

I finally got my MN!!!

Exercise 1.

Theory (just for myself, can be skipped): For each pair (i, j) of possible cut positions of s_p and s_q we define the pairwise additional cost with respect to c by:

Csp,sq [i, j] := $\min\{c(A++B) \mid A \in A(\alpha \mid sp, \alpha \mid sq), B \in A(\sigma \mid sp, \sigma \mid sq)\} - c(A*)$

where A(a, b) denote the set of all possible alignments of two sequences a and b.

The matrix $Cs_p, s_q := (C_{i,j})$ $0 \le i \le |s_p|$, $0 \le j \le |s_q|$ is called the additional cost matrix of s_p and s_q with respect to c. The additional cost matrices can be easily computed using the "forward" and "reverse" pairwise alignment matrices, that is

$$C_{s,t}[i,j] = D_{s,t}^f[i,j] + D_{s,t}^r[i,j] - c_{opt}(s,t)$$

where

$$c_{opt}(s,t) = D_{s,t}^{f}[|s|, |t|] = D_{s,t}^{r}[0, 0],$$

by definition.

The exercise itself:

- 1. Compute forward matrix
- 2. Compute reverse.
- 3. Compute (1) + (2) = T. and from each cell do (– optimal cost), which is stored in the right bottom of (1)

s = ACCG and t = TACG

D							
	e	Α	С	С	G		
e	0	1	2	3	4		
Т	1	1	2	3	4		
Α	2	1	2	3	4		
C G	3	2	1	2	3		
G	4	3	2	2	2		

•						
	Α	С	С	G	e	
Т	2	2	2	3	4	
Α	1	1	1	2	3	
С	2	1	0	1	2	
G	3	2	1	0	1	
e	4	3	2	1	0	

Drev

<u>≈3649</u>						
	Α	С	С	G	e	
Т	0	1	2	4	6	
Α	0	0	1	3	5	
С	2	0	0	2	4	
G	4	2	0	0	2	
e	6	4	2	1	0	

Exercise 2

Like a normal clustering algorithm:

- 1. Find two closest sequences. Make the alignment. Then treat it as a
- 2. We can treat the alignment from (1) as a string and align other strings (or alignments) to it.
- 3. Again find the two closest strings or alignments and align them to each other.
- 4. Repeat.

The tree: each leaf is a string; each inner node is an alignment.

If we have k strings with length at most n:

Time complexity: O (n²k²)

Space complexity: nk (maybe not?)