Chromcall Workflow Example

Bo Wang

2025-07-04

Package & Data Preparation

The 'chromcall' package provides a workflow for integrative analysis of chromatin profiling data, quantifying and comparing chromatin mark enrichment and transcriptional activity across predefined genomic regions.

1. Load Input Files

All examples utilize bundled data included with the chromcall package.

- genome_file: Chromosome metadata (name, length, circularity, genome build)
- region_file: Genomic regions of interest (e.g., promoters)
- blacklist file (optional): Regions to exclude from analysis
- expr_files (optional): Expression profiles per region
- bam files: BAM files for H3K4me3, H3K27me3, and matched controls

2. Preview Input Content

```
# BED regions
head(read.table(region_file, header = FALSE))
       V1
              ٧2
## 1 chr20 297560 297660
## 2 chr20 324560 324660
## 3 chr20 381290 381390
# Blacklist
head(read.table(blacklist_file, header = FALSE))
       V1
              ٧2
                       VЗ
## 1 chr1 628087 635923
## 2 chr1 789516 792613
## 3 chr1 2651095 2657690
## 4 chr1 2658436 2659484
## 5 chr1 2660040 2662057
## 6 chr1 2663196 2666377
# Expression data
head(read.table(expr_file1, header = FALSE))
##
       V1
              V2
                   VЗ
## 1 chr20 297610 12.5
## 2 chr20 324610 8.7
## 3 chr20 381340 16.2
head(read.table(expr_file2, header = FALSE))
##
        ۷1
              V2
                   VЗ
## 1 chr20 297610 12.5
## 2 chr20 324610 8.7
## 3 chr20 381340 16.2
# BAM files available
list.files(bam_dir, pattern = "sample[AB].*\\.bam$")
## [1] "control_sampleA.bam" "control_sampleB.bam"
                                                     "h3k27me3_sampleA.bam"
## [4] "h3k27me3_sampleB.bam" "h3k4me3_sampleA.bam"
                                                     "h3k4me3_sampleB.bam"
```

Full Workflow

Step 1 Construct Sample Objects

```
# Sample A
sampleA <- build_chromcall_sample(</pre>
  sample name = "SampleA",
                 = list(
  experiments
    H3K27me3 = file.path(bam_dir, "h3k27me3_sampleA.bam"),
    H3K4me3 = file.path(bam_dir, "h3k4me3_sampleA.bam"),
    Control = file.path(bam_dir, "control_sampleA.bam")
  ),
  control_name = "Control",
  genome_file = genome_file,
 region_file = region_file,
window_size = 10000,
  blacklist_file = blacklist_file,
  expression_file = expr_file1
# Sample B
sampleB <- build_chromcall_sample(</pre>
  sample_name = "SampleB",
                   = list(
  experiments
    H3K27me3 = file.path(bam_dir, "h3k27me3_sampleB.bam"),
    H3K4me3 = file.path(bam_dir, "h3k4me3_sampleB.bam"),
    Control = file.path(bam_dir, "control_sampleB.bam")
  ),
  control_name = "Control",
 genome_file = genome_file,
region_file = region_file,
window_size = 10000,
  blacklist_file = blacklist_file,
  expression_file = expr_file2
)
```

Inspect structure:

```
sampleA
```

```
## class: RangedSummarizedExperiment
## dim: 3 3
## metadata(3): sample_name control_name genome_tiles
## assays(1): counts
## rownames: NULL
## rowData names(2): blacklist expression
## colnames(3): H3K27me3 H3K4me3 Control
## colData names(3): name control lambda_g
SummarizedExperiment::assayNames(sampleA)
```

```
## [1] "counts"
```

```
SummarizedExperiment::colData(sampleA)
## DataFrame with 3 rows and 3 columns
##
                 name control
                                  lambda_g
##
           <character> <logical> <numeric>
## H3K4me3
                         FALSE 0.00138967
             H3K4me3
                         TRUE 0.00114291
## Control
               Control
head(SummarizedExperiment::assay(sampleA, "counts"))
##
       H3K27me3 H3K4me3 Control
## [1,]
          0
## [2,]
              0
                             0
                     1
## [3,]
Step 2 Run Region-Level Testing
resultA <- test_region_counts(sampleA)</pre>
resultB <- test_region_counts(sampleB)</pre>
Preview assay outputs:
SummarizedExperiment::assayNames(resultA)
## [1] "counts"
                 "logFC"
                           "lambda_t" "p_value" "p_adj"
SummarizedExperiment::colData(resultA)
## DataFrame with 3 rows and 3 columns
##
                 name control
                                  lambda_g
           <character> <logical> <numeric>
## H3K27me3
             H3K27me3 FALSE 0.00201308
## H3K4me3
              H3K4me3
                        FALSE 0.00138967
## Control
               Control
                       TRUE 0.00114291
head(SummarizedExperiment::assay(resultA, "counts"))
##
       H3K27me3 H3K4me3 Control
## [1,]
              0
                     2
                             0
## [2,]
              0
                             0
                     1
## [3,]
              0
head(SummarizedExperiment::assay(resultA, "logFC"))
       H3K27me3 H3K4me3 Control
##
## [1,]
       0 7.651052
## [2,]
             0 6.658211
## [3,]
             0 6.658211
                              0
```

```
head(SummarizedExperiment::assay(resultA, "lambda_t"))
##
           H3K27me3
                        H3K4me3
                                    Control
## [1,] 0.002013079 0.001389674 0.001142909
## [2,] 0.002013079 0.001389674 0.001142909
## [3,] 0.002013079 0.001389674 0.001142909
head(SummarizedExperiment::assay(resultA, "p_value"))
##
        H3K27me3
                      H3K4me3 Control
## [1,]
               1 9.647022e-07
## [2,]
               1 1.388708e-03
## [3,]
               1 1.388708e-03
                                     1
head(SummarizedExperiment::assay(resultA, "p_adj"))
        H3K27me3
                      H3K4me3 Control
##
## [1,]
               1 2.894107e-06
                                     1
## [2,]
               1 1.388708e-03
                                     1
## [3,]
               1 1.388708e-03
                                     1
Step 3 Export Single-Sample Results
write_experiment_results(resultA, experiment = "H3K4me3", file = "SampleA_H3K4me3.tsv")
head(read.delim("SampleA_H3K4me3.tsv"))
##
     seqnames start
                        end width counts_control counts_experiment
                                                                       logFC
## 1
        chr20 297560 297660
                              101
                                                                  2 7.651052
                                                0
## 2
        chr20 324560 324660
                              101
                                                0
                                                                  1 6.658211
## 3
        chr20 381290 381390
                                                                  1 6.658211
                              101
                                                0
                                           pvalue
                                                           padj expression
##
    modification factor test lambda
## 1
                       1 0.001389674 9.647022e-07 2.894107e-06
                                                                      12.5
## 2
                       1 0.001389674 1.388708e-03 1.388708e-03
                                                                       8.7
## 3
                       1 0.001389674 1.388708e-03 1.388708e-03
                                                                      16.2
##
   significant
## 1
## 2
              ns
## 3
              ns
```

Step 4 Compare Two Samples

```
comparison <- compare_samples(resultA, resultB)
comparison</pre>
```

```
GRanges object with 3 ranges and 17 metadata columns:
##
##
                          ranges strand | SampleA_expression SampleA_H3K27me3_padj
         seqnames
##
            <Rle>
                       <IRanges>
                                  <Rle> |
                                                     <numeric>
                                                                             <numeric>
##
     [1]
            chr20 297560-297660
                                                           12.5
                                                                                     1
##
     [2]
            chr20 324560-324660
                                                            8.7
                                                                                     1
                                                           16.2
##
     [3]
            chr20 381290-381390
                                       * |
                                                                                     1
##
         SampleA_H3K27me3_class SampleA_H3K27me3_score SampleA_H3K4me3_padj
##
                       <numeric>
                                                <numeric>
                                                                      <numeric>
##
     [1]
                                                                    2.89411e-06
##
     [2]
                                0
                                                        0
                                                                    1.38871e-03
##
     [3]
                                0
                                                        0
                                                                    1.38871e-03
##
         SampleA_H3K4me3_class SampleA_H3K4me3_score SampleB_expression
##
                      <numeric>
                                              <numeric>
                                                                  <numeric>
     [1]
##
                                               175.5977
                                                                       12.5
##
     [2]
                               1
                                                87.7988
                                                                        8.7
     [3]
                                                87.7988
                                                                        16.2
##
                               1
##
         SampleB_H3K27me3_padj SampleB_H3K27me3_class SampleB_H3K27me3_score
##
                      <numeric>
                                               <numeric>
##
     [1]
                                                       0
                                                                                0
                               1
##
     [2]
                               1
                                                       0
                                                                                0
##
     [3]
                                                       0
                                                                                0
                               1
##
         SampleB_H3K4me3_padj SampleB_H3K4me3_class SampleB_H3K4me3_score
##
                     <numeric>
                                             <numeric>
                                                                    <numeric>
##
     [1]
                                                     0
                                                                             0
                              1
##
     [2]
                                                     0
                                                                             0
                              1
##
     [3]
                                                                             0
                              1
##
         log2FC_expression H3K27me3_DeltaScore H3K4me3_DeltaScore
##
                  <numeric>
                                       <numeric>
                                                            <numeric>
##
     [1]
                          0
                                                0
                                                            -175.5977
     [2]
                          0
                                                0
##
                                                            -87.7988
##
     [3]
                          0
                                                0
                                                             -87.7988
##
##
     seginfo: 25 sequences (1 circular) from hg38 genome
```

Step 5 Export Comparison Results

```
write_comparison_results(comparison, "comparison_SampleA_vs_SampleB.tsv")
head(read.delim("comparison_SampleA_vs_SampleB.tsv"))
```

```
end width SampleA_expression SampleA_H3K27me3_padj
       chr start
## 1 chr20 297560 297660
                            101
                                               12.5
## 2 chr20 324560 324660
                                                8.7
                                                                          1
## 3 chr20 381290 381390
                            101
                                               16.2
                                                                          1
     SampleA_H3K27me3_class SampleA_H3K27me3_score SampleA_H3K4me3_padj
## 1
                           0
                                                    0
                                                              2.894107e-06
## 2
                           0
                                                    0
                                                              1.388708e-03
## 3
                           0
                                                    0
                                                              1.388708e-03
##
     {\tt SampleA\_H3K4me3\_class~SampleA\_H3K4me3\_score~SampleB\_expression}
## 1
                                         175.59766
                                                                  12.5
                          1
## 2
                                          87.79883
                                                                   8.7
                          1
## 3
                          1
                                          87.79883
                                                                   16.2
##
     SampleB_H3K27me3_padj SampleB_H3K27me3_class SampleB_H3K27me3_score
## 2
                          1
                                                   0
                                                                           0
## 3
                          1
                                                   0
                                                                           0
##
     SampleB_H3K4me3_padj SampleB_H3K4me3_class SampleB_H3K4me3_score
## 1
## 2
                                                0
                                                                        0
                         1
## 3
                         1
                                                                        0
     log2FC_expression H3K27me3_DeltaScore H3K4me3_DeltaScore
## 1
                      0
                                           0
                                                      -175.59766
                      0
## 2
                                           0
                                                       -87.79883
## 3
                      0
                                           0
                                                       -87.79883
```