'pst-math'

A PSTricks package for enhancing mathematical operators in PSTricks $_{\mathrm{ver.~0.2}}$

Christophe JORSSEN <christophe.jorssen@libre.fr.invalid>

'libre' is the french word for 'free'

04/07/14

Contents		Other operators	4
1 Trigonometry 1	4	${\tt Infix-RPN} \ {\tt and} \ {\tt pst-infixplot} \ {\tt support}$	6
2 Hyperbolic trigonometry 2	5	Credits	7

1 Trigonometry

'pst-math' introduces natural trigonometric postscript operators COS, SIN and TAN defined by

$$\cos : \begin{cases} \mathbb{R} & \to [-1, 1] \\ x & \mapsto \cos(x) \end{cases}$$

$$\sin : \begin{cases} \mathbb{R} & \to [-1, 1] \\ x & \mapsto \sin(x) \end{cases}$$

$$\tan : \begin{cases} \mathbb{R} \setminus \{k\frac{\pi}{2}, k \in \mathbb{Z}\} & \to \mathbb{R} \\ x & \mapsto \tan(x) \end{cases}$$

where x is in radians. TAN does not produce PS error¹ when $x = k \frac{pi}{2}$.

Stack	Operator	Result	Description
num	COS	real	Return cosine of <i>num</i> radians
num	SIN	real	Return sine of <i>num</i> radians
num	TAN	real	Return tangent of <i>num</i> radians

'pst-math' introduces natural trigonometric postscript operators ACOS, ASIN and ATAN defined by

$$\mathrm{acos}: \left\{ \begin{array}{ccc} [-1,1] & \to & [0,\pi] \\ x & \mapsto & \mathrm{acos}(x) \end{array} \right.$$

¹TAN is defined with Div PSTricks operator rather than with div PS operator.

$$asin: \left\{ \begin{array}{ccc} [-1,1] & \to & [-\frac{\pi}{2},\frac{\pi}{2}] \\ x & \mapsto & asin(x) \end{array} \right.$$

$$atan: \left\{ \begin{array}{ccc} \mathbb{R} & \to &]-\frac{\pi}{2},\frac{\pi}{2}[\\ x & \mapsto & atan(x) \end{array} \right.$$

	Stack	Operator	Result	Description
	num	ACOS	angle	Return arccosine of <i>num</i> in radians
	num	ASIN	angle	Return arcsine of <i>num</i> in radians
,	num	ATAN	angle	Return arctangent of <i>num</i> in radians

Important: ATAN is not defined as PS operator atan. ATAN needs only one argument on the stack.

begin{pspicture}(-5,-2)(5,4)
\SpecialCoor % For label positionning
\psaxes[labels=x,Dy=\pstPI2]{->}%
 (0,0)(-5,-2)(5,4)
\uput[0](!0 PI){\$\pi\$}
\uput[0](!0 PI 2 div){\$\frac{\pi}2\$}
\uput[0](!0 PI 2 div neg)%
 {\$-\frac{\pi}2\$}
\psplot[linecolor=blue]{-1}{1}%
 {x ACOS}
\psplot[linecolor=red]{-1}{1}%
 {x ASIN}
\psplot[linecolor=green]{-5}{5}%
 {x ATAN}
\end{pspicture}

2 Hyperbolic trigonometry

'pst-math' introduces hyperbolic trigonometric postscript operators COSH, SINH and TANH defined by

$$\cosh : \left\{ \begin{array}{ccc} \mathbb{R} & \to & [1, +\infty[\\ x & \mapsto & \cosh(x) \end{array} \right.$$

$$\sinh : \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \sinh(x) \end{array} \right.$$

$$\tanh : \left\{ \begin{array}{ccc} \mathbb{R} & \to &]-1, 1[\\ x & \mapsto & \tanh(x) \end{array} \right.$$

\mathbf{Stack}	Operator	Result	Description
num	COSH	real	Return hyperbolic cosine of <i>num</i>
num	SINH	real	Return hyperbolic sine of <i>num</i>
num	TANH	real	Return hyperbolic tangent of <i>num</i>

'pst-math' introduces reciprocal hyperbolic trigonometric postscript operators ACOSH, ASINH and ATANH defined by

$$a\cosh: \left\{ \begin{array}{ccc} [1,+\infty[& \to & \mathbb{R} \\ x & \mapsto & a\cosh(x) \end{array} \right.$$

$$a\sinh: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & a\sinh(x) \end{array} \right.$$

$$a\tanh: \left\{ \begin{array}{ccc}]-1,1[& \to & \mathbb{R} \\ x & \mapsto & a\tanh(x) \end{array} \right.$$

Stack	Operator	Result	Description
num	ACOSH	real	Return reciprocal hyperbolic cosine of <i>num</i>
num	ASINH	real	Return reciprocal hyperbolic sine of <i>num</i>
num	ATANH	real	Return reciprocal hyperbolic tangent of <i>num</i>

 $\propty {->}(0,0)(-5,-4)(5,4)$ \psplot[linecolor=blue]{1}{5}% {x ACOSH} \psplot[linecolor=red]{-5}{5}% {x ASINH} \psplot[linecolor=green]{-.999}{.999}% $\{x | ATANH \}$ \end{pspicture}

3 Other operators

'pst-math' introduces postscript operator EXP defined by

$$\exp: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \exp(x) \end{array} \right.$$

	Stack	Operator	Result	Description
	num	EXP	real	Return exponential of <i>num</i>
5 -4 -3 -2 -1	4 - 3 - 2 - 1	1 2	1 1 3 4	\begin{pspicture} \psaxes{->}(0,0)(\psplot[linecolor:

 $\begin{array}{l} \begin{array}{l} & \\ \end{array} \end{array}$ $\propty {->}(0,0)(-5,-0.5)(5,5)$ \psplot[linecolor=blue, plotpoints=1000] {-5}{5}{x EXP} \end{pspicture}

'pst-math' introduces postscript operator GAUSS defined by

gauss:
$$\begin{cases} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\overline{x})^2}{2\sigma^2}} \end{cases}$$

Stack	Operator	Result	Description
num ₁ num ₂ num ₃	GAUSS	real	Return gaussian of num_1 with mean num_2 and standart deviation num_3

'pst-math' introduces postscript operator SINC defined by

$$\operatorname{sinc}: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \frac{\sin x}{x} \end{array} \right.$$

Stack	Operator	Result	Description
num	SINC	real	Return cardinal sine of <i>num</i> radians

\psset{xunit=.25,yunit=3}
\begin{pspicture}(-20,-.5)(20,1.5)
\SpecialCoor % For label positionning
\psaxes[labels=y,Dx=\pstPII]{->}%
 (0,0)(-20,-.5)(20,1.5)
\uput[-90](!PI 0){\$\pi\$}
\uput[-90](!PI neg 0){\$-\pi\$}
\psplot[linecolor=blue,
 plotpoints=1000]{-20}{20}{x SINC}
\end{pspicture}

'pst-math' introduces postscript operator GAMMALN defined by

$$\ln \Gamma : \begin{cases}]0, +\infty[& \to & \mathbb{R} \\ x & \mapsto & \ln \int_0^t t^{x-1} e^{-t} dt \end{cases}$$

Stack	Operator	Result	Description	
num	GAMMALN	real	Return logarithm of Γ function of <i>num</i>	

4 Infix-RPN and pst-infixplot support

You can now use the operators defined in 'pst-math' with the infix notation, using the infix-RPN package. The packages must be read in the fellowing order:

```
\usepackage{infix-RPN,pst-math}
```

If you want to use 'pst-math' with pst-infixplot, then read the packages in the fellowing order:

\psset{xunit=.5,yunit=3}
\begin{pspicture}*(-1.5,-.75)(19,1.5)
\psaxes[Dx=5,Dy=.5]{->}%
 (0,0)(-1,-.75)(19,1.5)
\psPlot[linecolor=red,
 plotpoints=1000]{0.0001}{20}%
 {BESSEL_Y0(x)-BESSEL_Y1(x)}
\end{pspicture}

5 Credits

Many thanks to Jacques L'helgoualc'h and Herbert Voss.