Bayesian molecular-clock dating using genome-scale datasets

Bayesian molecular-clock dating using genome-scale datasets

• Today we will use **MCMCtree** to infer the timetree of 10 primates using a genome-scale alignment (3.4 million base pairs)

MCMCtree uses the MCMC algorithm

Likelihood calculation is expensive

- We must calculate the likelihood for every site in the alignment:
- •f (D | \mathbf{t} , \mathbf{r}) = \prod_i f (D_i | \mathbf{t} , \mathbf{r}), where D_i is the i-th alignment site
- Thus, for genome-scale alignments this multiplication can become very large
- It gets worse if there are many species in the alignment because the algorithm must visit all nodes in the tree to calculate f (D | t, r)
- MCMC sampling of using genome-alignments would take months or years

Bayesian molecular-clock dating using genome-scale datasets

- MCMCtree implements a method to approximate the likelihood during MCMC sampling of timetrees
- To use the approximation we need to:
 - Work on a fixed tree topology
 - Estimate the branch lengths, **b**, (in substitution per site) on the tree by ML
 - Estimate the gradient, **g**, and Hessian, **H**, of the likelihood
- Then, by using **b**, **g**, and **H**, MCMCtree can provide a surprisingly accurate approximation of the likelihood during MCMC sampling
- $\Delta \log f (D \mid \mathbf{b}) \approx \Delta \mathbf{b}^{\mathsf{T}} \mathbf{g} + \Delta \mathbf{b}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{b} / 2$
- Cost of approximate calculations depends on the number of species (which determines size of **b**, **g**, **H**) but not on alignment length

Advantages of the approximation

- The approximation gives speedups of over 1,000x compared to MCMC sampling with exact likelihood calculations
- For example, in today's example, our 3.4 million-base alignment can be sampled in about **2.5 min** with the approximation
- However, it would take ~15,000 min (10 days) with exact likelihood
- This is a 6,000x computation speedup
- MCMCtree is now the de facto standard for timetree inference in large datasets

MCMCtree best for very large data

Tutorial: Primates divergence times

- dos Reis and Yang (2019) Bayesian Molecular Clock Dating Using Genome-Scale Datasets. In: Evolutionary Genomics. https://doi.org/10.1007/978-1-4939-9074-0 10
- All data files are available from my GitHub:
- https://github.com/mariodosreis/divtime
- MCMCtree can be downloaded from:
- http://abacus.gene.ucl.ac.uk/software/paml4.9j.tgz
- It is recommended to have the following software: **R** and **RStudio**, **Tracer**, and **FigTree**.
- These slides: https://dosreislab.github.io/assets/slides/applnL.pdf

Data files: data/10s.tree

- Tree is in Newick format and has fossil calibrations
- You can open data/10s.tree in a text editor (Notepad, TextEdit, etc.)

Data files: data/10s.tree

You may open data/10s.tree with FigTree

Data files: data/10s.phys

- Alignment is in Phylip sequential format with site-patterns
- Alignment is divided into two partitions:
 - First and second codon positions (8,011 site-patterns)
 - Third codon positions (14,507 site-patterns)
- You can also open the alignment using a text editor

Data files: data/10s.phys

• • •				data –	- less 10	s.phys	— 94×	×24					
10	8011	Р											
Tree_shrew		A	AAAAAAA	A AAA	AAAAA	A AAA	AAAAA	AA	AAAAA	AAAA	AAAAAAAA	A AAAAAAAAA	Α
Bushbaby		A	AAAAAAA	A AAA	AAAAA	A AAA	AAAAA	AA A	AAAAA	AAAA	AAAAAAAA	AAAAAAAAA	Α
Mouse_lemur		Α	AAAAAAA	A AAA	AAAAA	AAA A	AAAAA	AA A	AAAAA	AAAA	AAAAAAAA	AAAAAAAAA	Α
Tarsier		Α	AAAAAAA	A AAA	AAAAA	AAA A	AAAAA	AA A	AAAAA	AAAA	AAAAAAAA	AAAAAAAAA	Α
Marmoset		A	AAAAAAA	A AAA	AAAAA	AAA A	AAAAA	AA A	AAAAA	AAAA	AAAAAAAA	AAAAAAAAA	Α
Rhesus		A	AAAAAAA	A AAA	AAAAA	A AAA	AAAAA	AA A	AAAAA	AAAA	AAAAAAAA	A AAAACCCCCC	C
Orangutan		A	AAAAAAA	A AAA	AAAAA	AAA A	AAAAC	CC	CCCCC	CGGGG	GGGGGGGT	T TTTTAAAAAA	Α
Gorilla		Α	AAAAAAA	A ACC	CCCCGG	G GGT	TTTTA	AA A	ACCCC	FAAAA	ACCGGGGGA	A CCGTAAACCG	G
Chimp		Α	AAACCGGG	T TAA	CCGTAA	G GTA	CGTTA	AC (GCCCT	FAACG	GACAAGGGA	T CTGTAAAACA	G
Human		Α	CGTACACG	A TAC	ACACAG	A GAA	CGATA	CA	AACTC	TAGAA	GCCAGACGA	T CTGTACGACA	G
597133 82 329	9 37	91	13 30	0	1 82	69	6	10	68	4	5 79		
1 1 484	11	The second secon	93 1	106	1	1	2	52		2	1		
1 1 114	1	2	2 880	2	1	5	11	1	3	8	4		
6 1 420	205	1	2 1	1	78	897	6	2	1	2	3		
2 1 6		256	1 1	1	1	4	3	3	1754	1	5		
1 1 10	5	1	1 14	1	30	1	1	7		35	2		
15 1 4	11	1	5 1	695	1	1	1	3		642	1		
1 3 1	1	3	1 6	1	1	5	2	4	1	1	2		
:			5.75										

Step 1: Estimation of b, g and H control file: gH/mcmctree-outBV.ctl

```
gH — less mcmctree-outBV.ctl — 86×16
       seqfile = ../data/10s.phys
     treefile = ../data/10s.tree
        ndata = 2
       seqtype = 0
                     * 0: nucleotides; 1:codons; 2:AAs
      usedata = 3
                     * 0: no data (prior); 1:exact likelihood;
                     * 2: approximate likelihood; 3:out.BV (in.BV)
        clock = 2
                     * 1: global clock; 2: independent rates; 3: correlated rates
        model = 4
                     * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
        alpha = 0.5 * alpha for gamma rates at sites
        ncatG = 5
                     * No. categories in discrete gamma
    cleandata = 0
                     * remove sites with ambiguity data (1:yes, 0:no)?
(END)
```

Step 1: Estimation of b, g and H

• In a terminal window, go to the gH/ directory and type

\$ mcmctree mcmctree-outBV.ctl

- MCMCtree will prepare and unrooted tree, a baseml.ctl file, and then call BASEML to calculate b, g, and H
- These parameters will be saved to a file called gH/out.BV
- Copy gH/out.BV as mcmc/in.BV

Step 1: file gH/out.BV

```
gH — less -S out.BV — 87×23
10
((Bushbaby: 0.029524, Mouse lemur: 0.019653): 0.006547, (Tarsier: 0.030898, (Marmoset:
 0.006547 0.029524 0.019653 0.002123 0.030898 0.011754 0.015183 0.003426 0.008
-2.088785 -1.981107 7.873266 -24.785755 -4.465100 -5.585153 -2.139822 -18.493240 -14.
Hessian
-2.033e+08 -2.59e+06 -9.717e+06 -4.363e+07 1.799e+06 -5.457e+06 2.055e+06 -1.285e+0
 -2.59e+06 -5.71e+07 2.235e+06 1.475e+06 3.315e+06 1.651e+06 3.436e+06 2.134e+0
 -9.717e+06 2.235e+06 -8.733e+07 -2.954e+06
                                           2.79e+06 7.275e+05 3.371e+06 1.512e+0
 -4.363e+07 1.475e+06 -2.954e+06 -4.622e+08 -5.059e+06 -2.658e+07 3.701e+06 -5.156e+0
 1.799e+06 3.315e+06
                      2.79e+06 -5.059e+06 -5.473e+07 7.951e+05 3.437e+06
                                                                           2.28e+0
-5.457e+06 1.651e+06 7.275e+05 -2.658e+07 7.951e+05 -1.403e+08 3.724e+06 -1.163e+0
 2.055e+06 3.436e+06 3.371e+06 3.701e+06 3.437e+06 3.724e+06 -1.25e+08 -1.69e+0
-1.285e+04 2.134e+06 1.512e+06 -5.156e+06 2.28e+06 -1.163e+07 -1.69e+07 -4.756e+0
 3.483e+06 4.548e+06 4.413e+06 -1.405e+05 4.463e+06 2.246e+06 1.979e+06 1.699e+0
 8.345e+05 2.861e+06 2.023e+06 1.605e+06 2.021e+06 -5.676e+05 -8.423e+05 -1.722e+0
```

Step 2: Posterior MCMC sampling control file: mcmc/mcmctree.ctl

```
mcmc — less -S mcmctree.ctl — 88×31
       seed = -1
    segfile = ../data/10s.phys
   treefile = ../data/10s.tree
   mcmcfile = mcmc.txt
    outfile = out.txt
      ndata = 2
    seqtype = 0 * 0: nucleotides; 1:codons; 2:AAs
    usedata = 2 * 0: no data (prior); 1:exact likelihood;
                   * 2:approximate likelihood; 3:out.BV (in.BV)
      clock = 2  * 1: global clock; 2: independent rates; 3: correlated rates
    RootAge = '<1.0' * safe constraint on root age, used if no fossil for root.
      model = 4
                   * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
      alpha = 0.5 * alpha for gamma rates at sites
      ncatG = 5 * No. categories in discrete gamma
   cleandata = 0 * remove sites with ambiguity data (1:yes, 0:no)?
    BDparas = 1 1 0 * birth, death, sampling
kappa gamma = 6 2
                      * gamma prior for kappa
                      * gamma prior for alpha
alpha_gamma = 1 1
rgene_gamma = 2 40 1 * gammaDir prior for rate for genes
sigma2 gamma = 1 10 1 * gammaDir prior for sigma^2 (for clock=2 or 3)
      print = 1 * 0: no mcmc sample; 1: everything except branch rates 2: everythin
     burnin = 20000
   sampfreq = 100
    nsample = 20000
```

Step 2: Posterior MCMC sampling

In a terminal window, go to the mcmc/ directory and type

\$ mcmctree mcmctree.ctl

- MCMCtree will start the MCMC chain to obtain a posterior sample of primate timetrees
- Once the run is finished, MCMCtree will have created mcmc/mcmc.txt, mcmc/out.txt, and mcmc/FigTree.tre files
- Rename the files as mcmc/mcmc1.txt, mcmc/out1.txt, and mcmc/FigTree1.tre and run MCMCtree again
- This is necessary to assess convergence

Step 2: Posterior MCMC sampling File mcmc/mcmc.txt

• •			mcmc —	less -S mcmc.txt — 1	121×34			
Gen	t_n11 t_n12	t_n13 t_n14	t_n15	t_n17	t_n19 mu1	mu2 sigma2	2_1 sigm	a2_2
1	1.4956478	0.8466238	0.5890040	0.7791652	0.5838105	0.2867013	0.1539901	0
100	1.5101832	0.8465849	0.5935071	0.7830479	0.5919507	0.2917796	0.1522791	0
200	1.4602814	0.8361205	0.5761541	0.7848931	0.5902324	0.2909308	0.1554728	0
300	1.4560957	0.8372168	0.5632736	0.7868402	0.5849301	0.3050102	0.1543257	0
400	1.4534685	0.8362638	0.5643719	0.7836932	0.5841846	0.3043935	0.1486133	0
500	1.4526052	0.8314959	0.5560353	0.7828864	0.5795211	0.3145948	0.1474609	0
600	1.4380462	0.8290732	0.5394369	0.7873949	0.5851622	0.3014357	0.1437796	0
700	1.4175470	0.8252979	0.5302741	0.7772600	0.5632684	0.2901634	0.1433558	0
800	1.3939014	0.8312538	0.5453034	0.7865938	0.5738942	0.2828061	0.1453689	0
900	1.3900419	0.8281506	0.5283644	0.7879186	0.5663521	0.2727386	0.1367500	0
1000	1.4497851	0.8324548	0.5224675	0.7831550	0.5619431	0.2830906	0.1319068	0
1100	1.4665192	0.8440065	0.5225911	0.7859403	0.5542077	0.2828897	0.1299686	0
1200	1.4824712	0.8435770	0.5065843	0.7820752	0.5447545	0.2934183	0.1290661	0
1300	1.4214785	0.8473784	0.4929307	0.7814759	0.5449553	0.3012859	0.1313614	0
1400	1.4351406	0.8409271	0.4788677	0.7659328	0.5330178	0.2964239	0.1334176	0
1500	1.4169766	0.8488125	0.4927271	0.7593739	0.5244676	0.2917076	0.1320802	0
1600	1.4240811	0.8557939	0.4788962	0.7688778	0.5237991	0.2914483	0.1330076	0
1700	1.4290043	0.8621785	0.4754302	0.7719766	0.5128849	0.2807836	0.1324408	0
1800	1.4007963	0.8613668	0.4781263	0.7737334	0.5036348	0.2794530	0.1326838	0
1900	1.3976055	0.8569682	0.4830466	0.7799735	0.5018574	0.2744069	0.1363005	0
2000	1.3575765	0.8489579	0.4838674	0.7744377	0.4952919	0.2776222	0.1368104	0
2100	1.3486746	0.8628296	0.4926865	0.7773963	0.5016323	0.2787184	0.1409348	0
2200	1.3489146	0.8515314	0.4974664	0.7749747	0.5018672	0.2678407	0.1455347	0
2300	1.3377558	0.8489836	0.4857455	0.7737184	0.4966193	0.2604696	0.1434914	0
2400	1.3257752	0.8437305	0.4886405	0.7799860	0.4870373	0.2695790	0.1434873	0
2500	1.3280078	0.8299278	0.4964764	0.7772518	0.4840314	0.2643404	0.1436576	0
2600	1.2934054	0.8333909	0.4940264	0.7702210	0.4663136	0.2609665	0.1427137	0
2700	1.3058661	0.8336730	0.4902217	0.7682070	0.4779101	0.2528066	0.1422329	0
2800	1.3014975	0.8236208	0.4840299	0.7628795	0.4724228	0.2501602	0.1362455	0
2900	1.3050347	0.8187004	0.4723432	0.7583963	0.4618772	0.2495729	0.1375987	0
3000	1.3044666	0.8149604	0.4787576	0.7529778	0.4583901	0.2660171	0.1326572	0
3100	1.3134347	0.8086550	0.4844851	0.7531946	0.4585487	0.2604281	0.1337584	0
mcmc.t	xt							

Step 2: Posterior MCMC sampling File mcmc/out.txt

```
mcmc - less -S out.txt - 121×34
# constant sites: 624389 (55.42%)
ln Lmax (unconstrained) = -4636133.236961
Time used: 2:18
mean of parameters using all iterations
   1.18274 0.90672 0.61149 0.82265
                                          0.45967
                                                    0.29192
                                                              0.17809 0.10453 0.08527
                                                                                           0.02697
                                                                                                     0.11132 0.13604
Species tree for FigTree. Branch lengths = posterior mean times; 95% CIs = labels
(1_Tree_shrew, ((2_Bushbaby, 3_Mouse_lemur) 13 , (4_Tarsier, (5_Marmoset, (6_Rhesus, (7_Orangutan, (8_Gorilla, (9_Chimp,
(Tree shrew: 1.182735, ((Bushbaby: 0.611490, Mouse lemur: 0.611490): 0.295229, (Tarsier: 0.822650, (Marmoset: 0.459674, (
(Tree_shrew: 1.182735, ((Bushbaby: 0.611490, Mouse_lemur: 0.611490) [&95%HPD={0.517085, 0.714825}]: 0.295229, (Tarsier: 0
Posterior mean (95% Equal-tail CI) (95% HPD CI) HPD-CI-width
t n11
              1.1828 ( 0.9272, 1.4391) ( 0.9199, 1.4291) 0.5092 (Jnode 18)
t n12
              0.9067 ( 0.7808, 1.0335) ( 0.7789, 1.0306) 0.2517 (Jnode 17)
t_n13
              0.6115 (0.5212, 0.7209) (0.5171, 0.7148) 0.1977 (Jnode 16)
t_n14
              0.8226 ( 0.7005,  0.9449) ( 0.6970,  0.9404)  0.2434 (Jnode 15)
t n15
              0.4597 ( 0.3912,  0.5286) ( 0.3891,  0.5262)
                                                           0.1371 (Jnode 14)
t_n16
              0.2919 ( 0.2526,  0.3392) ( 0.2500,  0.3344)
                                                           0.0844 (Jnode 13)
t_n17
              0.1781 ( 0.1473,  0.2157) ( 0.1444,  0.2127)
                                                           0.0682 (Jnode 12)
              0.1045 (0.0995, 0.1175) (0.0989, 0.1148) 0.0159 (Jnode 11)
t n18
t n19
              0.0853 ( 0.0757,  0.0987) (
                                          0.0746,
                                                  0.0962)
                                                           0.0215 (Jnode 10)
              0.0270 ( 0.0221,  0.0336) ( 0.0216,  0.0329)
mu1
                                                           0.0113
              0.1113 ( 0.0896,  0.1392) ( 0.0875,  0.1361)
                                                           0.0487
mu2
              0.1368 ( 0.0610,  0.2801) ( 0.0492,  0.2513)  0.2022
sigma2 1
sigma2_2
              0.1649 ( 0.0764,  0.3236) ( 0.0643,  0.2949)  0.2306
             -17.0202 (-26.0530, -9.9180) (-25.2970, -9.4360) 15.8610
lnL
(END)
```

Step 2: Visualization with FigTree File mcmc/FigTree.tre

Step 3: Convergence diagnostics

- MCMC is a stochastic algorithm
- Thus, MCMC analyses must be run several times to verify results are consistent
- For example, you can carry out convergence diagnostics using Tracer or R

Step 3: Convergence plots in R

Exercises

- Exercise 1: Following the instructions in the book chapter, carry out MCMC sampling from the prior (Hint: usedata = 0)
- Exercise 2: The analysis we just carried out used the independent log-normal rates model. Repeat the analysis using auto-correlated rates (Hint: clock = 3)
- Exercise 3: Using a text editor, open the treefile, data/10s.tree, and modify the fossil calibrations. Use B(0.057, 0.10, 0.01, 0.2) for the human-chimp divergence, and use B(0.615, 1.315, 0.01, 0.05) for the root. Run the analysis again
- Exercise 4: Repeat the analysis using exact likelihood (Hint: usedata = 1, you need to reduce the number of iterations)

Further Exercises

- Exercise 5: Date the 330 species primate dataset (data/330s.phy and data/330s.tree). MCMC sampling of this datasets takes several hours.
- Exercise 6: MCMCtree now implements marginal likelihood calculation for Bayesian model selection of tree topology, substitution model and relaxed-clock model. You can follow the tutorial to choose the clock model here:

https://dosreislab.github.io/2017/10/24/marginal-likelihood-mcmc3r.html