Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»
Отчет по лабораторной работе 1.2.1
Определение скорости полета пули при помощи баллистического маятника.
Выполнил студент:
Сериков Василий Романович
группа: Б03-102

Цель работы: Определить скорость полета пули, применяя законы сохранения и используя баллистические маятники.

В работе используется: Духовое ружье на штативе, осветитель, оптическая система для измерения отклонений маятника, измерительная линейка, пули и весы для их взвешивания, баллистические маятники.

Теория: Баллистическим называется маятник, колебания которого вызываются кратковременным начальным импульсом. Необходимо позаботиться, чтобы после удара пули колебания маятника происходили в одной плоскости и отсутствовали поперечные движения. І метод определения скорости пули - это метод с помощью баллистического маятника, совершающего поступательное движение (рис.1). Маятник состоит из цилиндра, подвешенного на 4 нитях одинаковой длины. Расчет скорости пули выполняется по следующей формуле:

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x$$

Рис. 1. Схема установки для измерения скорости полета пули

П метод измерения скорости пули - это с помощью баллистического маятника, совершающего крутильные колебания (рис.2). Пуля попадает в мишень, которая вместе с грузами и со стержнем составляет крутильный баллистический маятник. Сразу после попадания пули в мишень, система пуля-мишень будет двигаться с угловой скоростью Ω такой, что

$$mvr = I\Omega, (1)$$

где I – момент инерции систему пуля-мишень.

Если k – модуль кручения проволоки, то из закона сохранения энергии следует, что

$$k\frac{\varphi^2}{2} = I\frac{\Omega^2}{2},\tag{2}$$

где φ — амплитуда колебаний маятника после выстрела. Из уравнений (4) и (5) можно найти скорость v по амплитуде φ .

 $v = \varphi \frac{\sqrt{kI}}{mr}. (3)$

где $\varphi = \frac{x}{2d}$, а d - расстояние от шкалы до оси, x - смещение изображения нити осветителя на шкале.

Периоды колебаний маятника с грузами и без можно выразить как

$$T_2 = 2\pi \sqrt{\frac{I}{k}} \qquad T_1 = 2\pi \sqrt{\frac{I - 2MR^2}{k}}$$

Тогда \sqrt{kI} можно найти как

$$\sqrt{kI} = \frac{4\pi M R^2 T_2}{T_2^2 - T_1^2} \tag{4}$$

Рис.2 Схема установки для измерения скорости пули с крутильным баллистическим маятником

Ход работы:

Работа с маятником, совершающим поступательное движение.

1. Измеряем массы пулек на весах, результаты занесем в таблицу 1. Погрешность измерения массы: $\sigma_m=\pm 0,001~{\rm f}$

$N_{\overline{0}}$	1	2	3	4	5	6	7	8
т, г	0,512	0,509	0,510	$0,\!516$	0,502	0,514	0,504	0,515

Таблица 1: Массы 8 пулек.

- 2. Измерим расстояние L. L= $(220,0\pm0,1)$ см. Масса маятника M= 2900 ± 5 г
- 3. Произведя холостой выстрел, мы убедились, что маятник не реагирует на воздушную струю из ружья.
- 4. Мы убедились, что амплитуда при 10 колебаний маятника не уменьшается более, чем в 2 раза.
- 5. Произведем 4 выстрела и определим скорость пули в каждом случае по формуле $u=\frac{M}{m}\sqrt{\frac{g}{L}}\Delta x$. Полученные данные (х-смещение маятника, и-скорость пули, σ_u -погрешность измерения скорости) занесем в таблицу 2.

$$\sigma_u = \sqrt{(\frac{\partial f}{\partial M}\sigma_M)^2 + (\frac{\partial f}{\partial m}\sigma_m)^2 + (\frac{\partial f}{\partial L}\sigma_L)^2 + (\frac{\partial f}{\partial x}\sigma_x)^2}$$

$$\sigma_x = \pm 0.5 \text{ MM}$$

$\mathcal{N}^{\underline{o}}$	1	2	3	4
X, MM	13,5	13,2	13,2	13,4
и, м/с	161	158	158	158
σ_u , m/c	5	5	5	5

Таблица 2: Значения x, u, σ_u для 4 пулек.

6. Посчитаем среднее значение скорости. Таким образом: $\bar{u} = 159 \pm 5 \text{ м/c}$

Работа с крутильным баллистическим маятником.

- 1. Измерим значения r, R, d. r = (23.0 ± 0.1) см, R = (33.5 ± 0.1) см, d= (45.0 ± 0.1) см. Значения массы пулек указаны в таблице 1. Масса груза M = 714.1 г.
- 2. Измерим время 10 колебаний маятника с грузами и без них, и определим периоды T_1 и T_2 . Полученные данные занесем в таблицу 3.

T_1	T_2	σ_{T_1}	σ_{T_2}
17,99 с	13,77 с	$0.03 \ c$	$0.03 \ c$

Таблица 3: Значения $T_1, T_2, \sigma_{T_1}, \sigma_{T_2}$

- 3. Найдем величину \sqrt{kI} по формуле $\sqrt{kI} = \frac{4\pi MR^2T_2}{T_2^2-T_1^2}$ и оценим погрешность по формуле: $\sigma_{\sqrt{kI}} = \sqrt{(\frac{\partial f}{\partial R}\sigma_R)^2 + (\frac{\partial f}{\partial T_1}\sigma_{T_1})^2 + (\frac{\partial f}{\partial T_2}\sigma_{T_2})^2}.$ Тогда получим: $\sqrt{kI} = (0.135 \pm 0.009) \frac{\text{кг} \cdot \text{м}^2}{\text{c}}$
- 4. Определим скорость четырех пулек при каждом выстреле по формуле $v=\frac{x}{2d}\frac{\sqrt{kI}}{mr}$. Оценим погрешность по формуле: $\sigma_u=u\sqrt{\left(\frac{\sigma_x}{x}\right)^2+\left(\frac{\sigma_d}{d}\right)^2+\left(\frac{\sigma_{\sqrt{kI}}}{\sqrt{kI}}\right)^2+\left(\frac{\sigma_m}{m}\right)^2+\left(\frac{\sigma_r}{r}\right)^2}$. Данные занесем в таблицу 4.

$\mathcal{N}_{\overline{0}}$	1	2	3	4
X, CM	12,5	12,8	12,5	12,4
u, м/ c	162	162	161	157
σ_u , M/c	2	2	2	2

Таблица 4: Значения x, u, σ_u для 4 пулек.

- 5. Таким образом среднее значение скорости равно: $\overline{u} = 161 \pm 2 \; \text{м/c}$
- 6. Вывод: Применив два способа измерения скорости полета пули, мы получили одинаковые значения скоростей в пределах погрешности.