GEOMETRIC REALIZATION OF COVERING COMPLEXES

FRANK MURPHY-HERNANDEZ AND LUIS MACÍAS-BARRALES

ABSTRACT. We prove that the geometric realization of a covering complex is a covering space. Also, this holds true for the universal covering complex.

Introduction

The theory of abstract simplicial complexes is a useful tool in the calculation of fundamental groups. This fact appears explicitly in the paper [9] of A. Weil, For any connected abstract simplicial complex S is edge-path group E(S) is naturally isomorphic to the fundamental group of its geometric realization $\pi_1(|S|)$. The edge-path group could be described explicitly by generators and relations. As reference for these facts, see the book of I. Singer and J. Thorpe [7].

We base our definition of covering complex given by J. Rotman in [4], but there are other definitions covering complex as the one in [1]. The definition of J. Rotman

1. Preliminaries

We recall that, given a topological space X, a covering space on X it's a continuous map $p: E \to X$, such that for every $x \in X$, there is an open neighborhood U such that $p^{-1}(U)$ it is a disjoint union of open sets U_{λ} , $\lambda \in \Lambda$, and $p|_{U_{\lambda}}: U_{\lambda} \to U$ it's a homeomorphism. We recommend the book of P. May [3] and the book of J. Rotman [6] as reference of covering spaces.

An abstract simplicial complex is a pair (S, \mathcal{K}) where S is a set and \mathcal{K} is a family of non-empty finite subsets of S such that:

- $\bigcup \mathcal{K} = S$.
- If $\sigma \subseteq \tau$ and $\tau \in \mathcal{K}$ then $\sigma \in \mathcal{K}$.

We call complexes to the abstract simplicial complexes. If $\sigma \in \mathcal{K}$, then the dimension of σ is $|\sigma|-1$, and we denote it by $dim(\sigma)$. The elements of \mathcal{K} of dimension n are called n-simplices, and we denote the set of n-simplices by \mathcal{K}_n . We define the n-skeleton of (S,\mathcal{K}) as the complex $(S,\bigcup_{m=1}^{0}\mathcal{K}_m)$, and we denote it by $sk_n(S,\mathcal{K})$. The 0-simplices are called vertices. The dimension of (S,\mathcal{K}) is defined as the supremum of $dim(\sigma)$ where σ ranges over \mathcal{K} , we denote it by $dim(S,\mathcal{K})$. This dimension may be infinite. We call the complex (S,\mathcal{K}) finite, if S is finite. In particular, a finite complex has finite dimension. A complex (S,\mathcal{K}) is called indiscrete, if $\mathcal{K} = \{\{s\} \mid s \in S\}$.

An edge e in (S, \mathcal{K}) is a pair of vertices (x, y) where $\{x, y\} \in \mathcal{K}$, x is the origin of the edge e and we denote it by orig(e), and y is the end of the edge e and we denote by end(e). A path α in (S, \mathcal{K}) is a finite sequence of edges e_1, \ldots, e_n such

Date: November 11, 2019.

²⁰⁰⁰ Mathematics Subject Classification. Primary ****, ****; Secondary ****, ****.

Key words and phrases. Abstract Simplicial Complexes, Coverings, Fundamental Group.

that $end(e_i) = orig(e_{i+1})$ with i = 1, ..., n-1. We define $orig(\alpha) = orig(e_1)$ and $end(\alpha) = end(e_n)$.

A morphism between complex (S_1, \mathcal{K}^1) and (S_2, \mathcal{K}^2) is a map $f: S_1 \longrightarrow S_2$ such that $f(\sigma) \in \mathcal{K}^2$ for any $\sigma \in \mathcal{K}^1$. We call a morphism of complexes a simplicial map. We denote by \mathcal{C} to the category of complexes and simplicial maps.

If X is a non empty set, we denote by D(X) the complex given (X, \mathcal{D}_X) where \mathcal{D}_X is the set of all non empty finite subsets of X. As reference of complexes, we recommend [7] and [8].

We denote by $\mathbb{P}(X)$ the power set of a set of X. If $f: X \longrightarrow Y$ is a function, then f induces a map $f_{\circ} \colon \mathbb{P}(X) \longrightarrow \mathbb{P}(Y)$ where $f_{\circ}(A)$ is the direct image of A under f for $A \in \mathbb{P}(X)$. We denote by \mathcal{S}_X the group of permutation in X.

We denote by \mathcal{T} to the category of topological spaces and continuous maps.

For S a G-set and $s \in S$, we denote by G_s the stabilizer of s and by o(s) the orbit of s. The set of orbits of S is a partition of S, so the quotient set is denoted by S/G. We say that the action is free, for any $g \in G$ and $s \in S$ gs = s implies g = e. Any G-set can be descomposed as the disjoint union of its orbits, so $S = \coprod_{o(s) \in S/G} o(s)$. As reference for G-sets, we have the books of M. Aschbacher [2], and of J. Rotman [5].

2. Covering Complexes

Definition 2.1. Let (S, \mathcal{K}) be a complex. We say that (S, \mathcal{K}) is connected if for any pair of vertices x, y of (S, \mathcal{K}) there is a path α such that $orig(\alpha) = x$ and $end(\alpha) = y$.

The following definition is due J. Rotman in [4].

Definition 2.2. Let (S, \mathcal{K}) be a complex. A covering of (S, \mathcal{K}) is a pair $((T, \mathcal{L}), p)$ where (T, \mathcal{L}) is a complex and $p: T \longrightarrow S$ is a simplicial map such that:

- (T, \mathcal{L}) is a connected complex.
- For every $\sigma \in \mathcal{K}$, $p^{-1}(\sigma) = \bigcup_{i \in I} \sigma_i$ where the family $\{\sigma_i\}_{i \in I}$ is a pairwise disjoint family of simplices of \mathcal{L} such that $p|_{\sigma_i} : \sigma_i \longrightarrow \sigma$ is bijective.

The map p is called projection and the simplices σ_i are called sheets over σ .

We observe that p is surjective and (S, \mathcal{K}) is connected. For our geometric porpoises we need a stronger definition of covering complex.

Definition 2.3. Let (S, \mathcal{K}) be a complex. A geometric covering of (S, \mathcal{K}) is a covering $((T, \mathcal{L}), p)$ such that for any simplex $\sigma \in \mathcal{L}_n$, $p(\sigma) \in \mathcal{K}_n$. In other words, p preserves the dimension of the simplices. We have that geometric coverings preserve the dimension of the complexes. By definition all geometric coverings are coverings.

Example 2.1. Let (S, \mathcal{K}) be the complex $D(\mathbb{Z}_2)$, and (T, \mathcal{L}) be the complex $D(\mathbb{Z}_4)$. We consider the canonical projection $p \colon \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2$ which is a simplicial map. This simplicial map does not preserve the dimension of the simplices. We notice that $p^{-1}(\{[0]\}) = \{[0]\} \cup \{[2]\}, p^{-1}(\{[1]\}) = \{[1]\} \cup \{[3]\}, and p^{-1}(\{[0], [1]\}) = \{[0], [2]\} \cup \{[1], [3]\}$ and $D(\mathbb{Z}_4)$ is a connected complex, so p is a covering which is not a geometric covering.

Proposition 2.1. Let (S, \mathcal{K}) be a complex, and $((T, \mathcal{L}), p)$ a covering complex of (S, \mathcal{K}) . If $\sigma \in \mathcal{K}$ is a maximal simplex, then p^{-1} is the disjoint union of maximal simplices.

Proof. Let $\sigma \in \mathcal{K}$ be a maximal simplex with $p^{-1}(\sigma) = \bigcup_{i \in I} \sigma_i$ where the family $\{\sigma_i\}_{i \in I}$ is a pairwise disjoint family of simplices of \mathcal{K} such that $p|_{\sigma_i} : \sigma_i \longrightarrow \sigma$ is bijective. If σ_j is not maximal for some $j \in I$, then there is a simplex $\tau \in \mathcal{L}$ such that $\sigma_j \subset \tau$. As σ is maximal and $\sigma = p(\sigma_j) \subseteq p(\tau)$, we have that $p(\tau) = \sigma$. This contradicts the fact that p preserves the dimension. Therefore σ_i is a maximal simplex.

Definition 2.4. Let (S, \mathcal{K}) and (T, \mathcal{L}) be complexes and $f: (S, \mathcal{K}) \longrightarrow (T, \mathcal{L})$ be a simplicial map. We say that f reflects maximal simplices, if $\sigma \in \mathcal{K}$ is such that $f(\sigma)$ is a maximal simplex, then σ is a maximal simplex.

Proposition 2.2. Let (S, \mathcal{K}) be a finite dimensional complex, and $((T, \mathcal{L}), p)$ a covering complex of (S, \mathcal{K}) . Then $((T, \mathcal{L}), p)$ is a geometric covering complex of (S, \mathcal{K}) if and only if p reflects maximal simplices.

Proof	Conjetura		
1 100j.	Conjecura		

Let (S, \mathcal{K}) and (T, \mathcal{L}) be complexes and $f: S \longrightarrow T$ be a function. We notice that f is a simplicial map if $f_{\circ}(\mathcal{K}) \subseteq \mathcal{L}$. So we denote the induced map by $f_*: \mathcal{K} \longrightarrow \mathcal{L}$.

Definition 2.5. Let (S, \mathcal{K}) be a complex. A combinatoric covering of (S, \mathcal{K}) is a covering $((T, \mathcal{L}), p)$ such that $p_*^{-1}(\sigma)$ is a family of pairwise disjoint simplices.

Example 2.2. Let (S, \mathcal{K}) be the complex $D(\mathbb{Z}_2)$, and (T, \mathcal{L}) be the complex $sk_1(D(\mathbb{Z}_4))$. We consider the canonical projection $p: \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2$ which is a simplicial map. This map is a geometric covering complex, but is not a combinatoric complex as $p_*^{-1}(\{[0]\}) = \{\{[0]\}, \{[0]\}, \{[0], [2]\}\}$ is not pairwise disjoint.

Example 2.3. Let (S, \mathcal{K}) be the complex $sk_1(D(\mathbb{Z}_3))$, and (T, \mathcal{L}) be the complex given by $T = \mathbb{Z}$ and $\mathcal{L} = \{\{n, n+1\} \mid n \in \mathbb{Z}\} \cup \{\{m\} \mid m \in \mathbb{Z}\}$. We consider the canonical projection $p \colon \mathbb{Z} \longrightarrow \mathbb{Z}_3$ which is a simplicial map. Moreover, $((T, \mathcal{L}), p)$ is a combinatoric covering complex.

Proposition 2.3. Let (S, \mathcal{K}) be a complex, and $((T, \mathcal{L}), p)$ a combinatoric covering complex of (S, \mathcal{K}) . Then $((T, \mathcal{L}), p)$ is a geometric covering complex.

Proof. Let $\sigma \in \mathcal{L}_n$. As p is a covering there is a family $\{\sigma_i\}_{i \in I}$ of pairwise disjoint simplices such that $p^{-1}(p(\sigma)) = \bigcup_{i \in I} \sigma_i$ and $|\sigma_i| = |p(\sigma)|$ for all $i \in I$. We observe that $\{\sigma_i\}_{i \in I}$ and $p_*^{-1}(\sigma)$ are partitions of $p^{-1}(p(\sigma))$. As we have that $\{\sigma_i\}_{i \in I} \subseteq p_*^{-1}(\sigma)$, then $\{\sigma_i\}_{i \in I} = p_*^{-1}(\sigma)$. So $\sigma = \sigma_j$ for some $j \in I$, and $|\sigma| = |p(\sigma)|$. Therefore $((T, \mathcal{L}), p)$ a geometric covering complex.

3. G-Covering Complexes

Definition 3.1. Let G be a group and (S, \mathcal{K}) be a complex. We say that (S, \mathcal{K}) is a G-complex, if S is a G-set and $g\sigma \in \mathcal{K}$ for all $\sigma \in \mathcal{K}$. We notice that in particular \mathcal{K} is a G-set.

Definition 3.2. Let G be a group and (S, \mathcal{K}) be a G-complex. We define $\mathcal{K}^G := \{\pi(\sigma) \subseteq S/G \mid \sigma \in \mathcal{K}\}$ where $\pi : S \longrightarrow S/G$ is the canonical projection.

Proposition 3.1. Let G be a group and (S, K) be a G-complex. Then $(S/G, K^G)$ is a complex. Moreover, π is a simplicial map.

Proof. Let $o(x) \in S/G$. Then $\pi(\{x\}) = \{xG\}$. As $\{x\} \in \mathcal{K}$, we have that $\{xG\} \in \mathcal{K}^G$.

Definition 3.3. Let G be a group and (S, \mathcal{K}) be a G-complex. We say that the action is wandering, if for any $q \in G$ $q\sigma \cap \sigma \neq \emptyset$ implies that q = e.

Example 3.1. Let G be a group and S be a G-set. If the action over S is free, then the indiscrete complex over S is G complex with wandering action.

Proposition 3.2. Let G be a group and (S, \mathcal{K}) be a G-complex with discontinuous action. Then $((S/G, \mathcal{K}^G), \pi)$ is covering complex.

 \square Proof.

Definition 3.4. Let G be a group, (S, \mathcal{K}) be a G-complex, and $\sigma \in \mathcal{K}$. We say that σ is wandering, if for any $x, y \in \sigma$ o(x) = o(y) implies that x = y.

Proposition 3.3. Let G be a group, (S, \mathcal{K}) be a G-complex, and $\sigma \in \mathcal{K}$. Then σ is wandering if and only if $|\sigma \cap o(x)| = 1$ for any $x \in \sigma$.

 \square

Definition 3.5. Let G be a group and S be a G-set. We define K[G] as the set of all elements of \mathcal{D}_S which are wandering.

Proposition 3.4. Let G be a group and S be a G-set. Then $(S, \mathcal{K}[G])$ is a complex with discontinuous action.

Proof.

Proposition 3.5. Let G be a group and (S, \mathcal{K}) be a G-complex with discontinuous action. Then $\mathcal{K} \subseteq \mathcal{K}[G]$.

Proof.

Definition 3.6. Let G be a group, let H be a subgroup of G, (S, K) be a G-complex, and $\sigma \in K$. We say that σ is H-wandering, if for any $x, y \in \sigma$ $o_H(x) = o_H(y)$ implies that x = y. In particular, to say that σ is wandering means that G-wandering.

Proposition 3.6. Let (S, \mathcal{K}) be a complex and $\sigma \in \mathcal{K}$. Then there is a group W_{σ} such that (S, \mathcal{K}) be is a W_{σ} -complex with σ wandering and if there is other group G with these properties there is a unique monorphism.....

Proof. Let G be group of automorphisms of (S, \mathcal{K}) . Then (S, \mathcal{K}) is a G-complex. We put \mathfrak{S} as the family of all subgroups H of G such that σ is H-wandering. We notice that \mathfrak{S} is no empty as $\{e\}$ is in \mathfrak{S} . So we consider an ascending chain $\{H_i\}_{i=0}^{\infty}$ in \mathfrak{S} and we put $\bar{H} := \bigcup_{i=0}^{\infty}$. We notice that

 $barH \in \mathfrak{S}$, since for $x,y \in S$ if $o_{\bar{H}}(x) = o_{\bar{H}}(y)$ then there is $g \in \bar{H}$ such that gx = y. As $g \in \bar{H}$, there is $j \in \mathbb{N}$ with $g \in H_j$. Thus $H_j \in \mathfrak{S}$ and it follows that x = y. Therefore by Zorn's lemma the family has a maximal element and we call it W_{σ} .

Now, we affirm that the family is directed so we get that W_{σ} is the maximum of \mathfrak{S} . Let $H, K \in \mathfrak{S},...$.

Example 3.2.

4. Geometric Realization of Covering Complexes

Definition 4.1 (Geometric Realization). The geometric realization of a complex (S, \mathcal{K}) is the set of all function $\phi \colon S \longrightarrow [0, 1]$ such that:

- $supp(\phi) \in \mathcal{K}$
- $\sum_{s \in S} \phi(s) = 1$

We denote this set by $|(S,\mathcal{K})|$. We can give $|(S,\mathcal{K})|$ a metric topology given by:

$$d(\phi, \psi) = \sqrt{\sum_{s \in S} (\phi(s) - \psi(s))^2}$$

for $\phi, \psi \in |(S, \mathcal{K})|$. When we endowed $|(S, \mathcal{K})|$ with the metric topology we denote it by $|(S, \mathcal{K})|_d$. There is a second topology for $|(S, \mathcal{K})|$ called the coherent topology. Foer each simplex $\sigma \in \mathcal{K}$, we define its geometric realization $|\sigma|$ as the set of functions $\phi \in |(S, \mathcal{K})|$ with $\operatorname{supp}(\phi) \subseteq \sigma$. We give to $|\sigma|$ the subspace topology inherited as subset of $|(S, \mathcal{K})|$. If we consider the inclusion $i_\sigma \colon |\sigma| \longrightarrow |(S, \mathcal{K})|$, then coherent topology on $|(S, \mathcal{K})|$ is the largest topology which makes all the inclusions continuous. Usually, $|(S, \mathcal{K})|$ is considered with the coherent topology. We may characterize $|(S, \mathcal{K})|$ as the colimit in \mathcal{T} of the geometric realization of its simplices. So a function $f \colon |(S, \mathcal{K})| \longrightarrow X$ is continuous if and only its restrictions to $|\sigma|$ is continuous for all $\sigma \in \mathcal{K}$. Especially, the identity $|(S, \mathcal{K})| \longrightarrow |(S, \mathcal{K})|_d$ is continuous, so the coherent topology contains the metric topology. In particular, if (S, \mathcal{K}) is a finite complex, then both topologies coincide.

We observe that if $\sigma, \tau \in \mathcal{K}$ are disjoint, then $|\sigma|$ and $|\tau|$ are disjoint.

Definition 4.2. Let (S, \mathcal{K}) be a complex and $s \in S$. We define $\phi_s \colon S \longrightarrow [0, 1]$ as $\phi_s(t) = \delta_{st}$ for any $t \in S$ where δ is the Kronecker's delta.

Definition 4.3. If $f: (S, \mathcal{K}) \longrightarrow (T, \mathcal{L})$ is a simplicial map, then it induces a continuous function $|f|: |(S, \mathcal{K})| \longrightarrow |(T, \mathcal{L})|$. If $\phi \in |(S, \mathcal{K})|$ with $\sigma = \operatorname{supp}(\phi)$ then $\phi = \sum_{s \in \sigma} \phi(s)\phi_s$. So we define $|f|(\phi) := \sum_{s \in \sigma} \phi(s)\phi_{f(s)}$. In this way, the geometric realization is a functor from \mathcal{C} to \mathcal{T} .

Proposition 4.1. Let (S, \mathcal{K}) be a complex and $((T, \mathcal{L}), p)$ a finite geometric covering of (S, \mathcal{K}) . Then $|(T, \mathcal{L}), p)|$ is covering of $|(S, \mathcal{K})|$.

Proof. Let $\phi \in |(S, \mathcal{K})|$ with $supp(\phi) = \sigma \in \mathcal{K}$. Then $p^{-1}(\sigma) = \bigcup_{i \in I} \sigma_i$ where the family $\{\sigma_i\}_{i \in I}$ is a pairwise disjoint family of simplices of \mathcal{L} such that $p|_{\sigma_i} : \sigma_i \longrightarrow \sigma$ is bijective. We define $R = \min\{\frac{d(\phi, \phi_s)}{2} \mid s \in \sigma\}$. So $\mathbb{B}_R(\phi)$ is an open neighborhood of ϕ . We affirm that $|p|^{-1}(\mathbb{B}_R(\phi)) = \bigcup_{i \in I} \mathbb{B}_R(\phi_i)$

Proposition 4.2. Let (S, \mathcal{K}) be a complex and $((T, \mathcal{L}), p)$ a finite dimensional geometric covering of (S, \mathcal{K}) . Then $|(T, \mathcal{L}), p)|$ is covering of $|(S, \mathcal{K})|$.

Proposition 4.3. Let (S, \mathcal{K}) be a complex and $((T, \mathcal{L}), p)$ a geometric covering of (S, \mathcal{K}) . Then $|(T, \mathcal{L}), p)|$ is covering of $|(S, \mathcal{K})|$.

5. Geometric Realization of the Universal Covering Complex

References

- [1] James Abello, Michael R Fellows, and John Stillwell. On the complexity and combinatorics of covering finite complexes. *Australasian J. Combinatorics*, 4:103–112, 1991.
- [2] Michael Aschbacher. Finite group theory, volume 10. Cambridge University Press, 2000.
- [3] J Peter May. A concise course in algebraic topology. University of Chicago press, 1999.
- [4] Joseph Rotman. Covering complexes with applications to algebra. The Rocky Mountain Journal of Mathematics, 3(4):641–674, 1973.
- [5] Joseph J Rotman. An introduction to the theory of groups, volume 148. Springer Science & Business Media, 2012.
- [6] Joseph J Rotman. An introduction to algebraic topology, volume 119. Springer Science & Business Media, 2013.
- [7] Isadore Manuel Singer and John A Thorpe. Lecture notes on elementary topology and geometry. Springer, 2015.
- [8] Edwin H Spanier. Algebraic topology, volume 55. Springer Science & Business Media, 1989.
- [9] André Weil. On discrete subgroups of lie groups. Annals of Mathematics, pages 369–384, 1960.

FACULTAD DE CIENCIAS, UNAM, MEXICO CITY Email address: murphy@ciencias.unam.mx

Instituto de Matemáticas, UNAM, Mexico City