

Schletter, Inc.		20° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-05, Eq. 7-2)
$I_s =$	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>1395.35</u>	<u>6805.65</u>	k
Compressive Load =	4433.95	5229.30	k
Lateral Load =	<u>9.79</u>	3079.91	k
Moment (Weak Axis) =	0.02	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 171509.8 in-lbs Resisting Force Required = 2598.63 lbs A minimum 132in long x 37in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4331.06 lbs to resist overturning. Minimum Width = <u>37 in</u> in Weight Provided = 7376.88 lbs Sliding Force = 740.28 lbs Use a 132in long x 37in wide x 18in tall Friction = 0.4 Weight Required = 1850.70 lbs ballast foundation to resist sliding. Resisting Weight = 7376.88 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 740.28 lbs Cohesion = 130 psf Use a 132in long x 37in wide x 18in tall 33.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3688.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in	37 in	38 in	39 in	40 in
FA	1398 lbs	1398 lbs	1398 lbs	1398 lbs	1819 lbs	1819 lbs	1819 lbs	1819 lbs	2296 lbs	2296 lbs	2296 lbs	2296 lbs	-665 lbs	-665 lbs	-665 lbs	-665 lbs
F _B	1422 lbs	1422 lbs	1422 lbs	1422 lbs	2202 lbs	2202 lbs	2202 lbs	2202 lbs	2600 lbs	2600 lbs	2600 lbs	2600 lbs	-3267 lbs	-3267 lbs	-3267 lbs	-3267 lbs
F _V	154 lbs	154 lbs	154 lbs	154 lbs	1312 lbs	1312 lbs	1312 lbs	1312 lbs	1088 lbs	1088 lbs	1088 lbs	1088 lbs	-1481 lbs	-1481 lbs	-1481 lbs	-1481 lbs
P _{total}	10196 lbs	10396 lbs	10595 lbs	10795 lbs	11398 lbs	11597 lbs	11797 lbs	11996 lbs	12273 lbs	12472 lbs	12672 lbs	12871 lbs	494 lbs	614 lbs	733 lbs	853 lbs
M	3537 lbs-ft	3537 lbs-ft	3537 lbs-ft	3537 lbs-ft	5417 lbs-ft	5417 lbs-ft	5417 lbs-ft	5417 lbs-ft	6420 lbs-ft	6420 lbs-ft	6420 lbs-ft	6420 lbs-ft	2517 lbs-ft	2517 lbs-ft	2517 lbs-ft	2517 lbs-ft
е	0.35 ft	0.34 ft	0.33 ft	0.33 ft	0.48 ft	0.47 ft	0.46 ft	0.45 ft	0.52 ft	0.51 ft	0.51 ft	0.50 ft	5.09 ft	4.10 ft	3.43 ft	2.95 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	243.8 psf	243.1 psf	242.4 psf	241.8 psf	248.9 psf	248.1 psf	247.3 psf	246.6 psf	258.6 psf	257.5 psf	256.5 psf	255.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	357.5 psf	353.8 psf	350.3 psf	347.0 psf	423.2 psf	417.8 psf	412.6 psf	407.7 psf	465.1 psf	458.6 psf	452.4 psf	446.5 psf	263.3 psf	92.4 psf	72.7 psf	66.9 psf

38 in

37 in

Ballast Width

7377 lbs 7576 lbs 7776 lbs 7975 lbs

<u>39 in</u>

40 in

Maximum Bearing Pressure = 465 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(3.08 \text{ ft}) =$

Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1204.9 \text{ ft-lbs}$

Resisting Force Required = 781.57 lbs S.F. = 1.67

Weight Required = 1302.62 lbs Minimum Width = 37 in in Weight Provided = 7376.88 lbs A minimum 132in long x 37in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		37 in			37 in		37 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	222 lbs	580 lbs	222 lbs	789 lbs	2316 lbs	789 lbs	65 lbs	170 lbs	65 lbs	
F _V	1 lbs	0 lbs	1 lbs	4 lbs	0 lbs	4 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	9355 lbs	7377 lbs	9355 lbs	9483 lbs	7377 lbs	9483 lbs	2735 lbs	7377 lbs	2735 lbs	
M	3 lbs-ft	0 lbs-ft	3 lbs-ft	12 lbs-ft	0 lbs-ft	12 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	0.51 ft	
f _{min}	275.6 psf	217.5 psf	275.6 psf	278.9 psf	217.5 psf	278.9 psf	80.6 psf	217.5 psf	80.6 psf	
f _{max}	276.0 psf	217.5 psf	276.0 psf	280.3 psf	217.5 psf	280.3 psf	80.7 psf	217.5 psf	80.7 psf	

Maximum Bearing Pressure = 280 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 37in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 37in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.411 k	Maximum Axial Load = 4.674 k	
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k	
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k	
Utilization =	<u>46%</u>	Utilization = <u>63%</u>	
Diagonal Strut			
Maximum Axial Load =	2.129 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear	ar.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>29%</u>		
		Struts under compression are shown to den	

hown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 40.12 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.802 in Max Drift, Δ_{MAX} = 0.029 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 108 \text{ in}$$

$$J = 0.432$$

$$298.779$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]} \end{split}$$

$$\varphi_{\Gamma} = \varphi_{\Gamma} | \text{BC-1.6DC V((LDSC)/(LDSC$$

$$\phi F_1 = 27.7 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{array}{lll} L_b &=& 108 \\ J &=& 0.432 \\ && 190.005 \\ S1 &=& \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &=& 0.51461 \\ S2 &=& \left(\frac{C_c}{1.6}\right)^2 \\ S2 &=& 1701.56 \\ \phi F_L &=& \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}] \\ \phi F_1 &=& 28.9 \end{array}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$k = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max} St = 2.788 \text{ k-ft}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy =

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14 88.9 in $L_b =$ J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$

Weak Axis:

3.4.14 88.9 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.2$

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

31.1 ksi

h/t =

S1 =

m =

 $C_0 =$

Cc =

Bbr -

N/A for Weak Direction

16.2

36.9

0.65

40

 $\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.4.16.1

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_1 = 1.3\phi y Fcy$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L = 29.4 \text{ ksi}$$

$$k = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

$$Sx = 1.375 \text{ in}^3$$

$$M_{max}St = 3.363 \text{ k-ft}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W = 33.3 \text{ ksi}$$

$$k = 923544 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

$$k = 40 \text{ mm}$$

$$k = 40 \text{ mm}$$

$$k = 3.904 \text{ k-ft}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

 $P_{max} =$

Rev. 11.05.2015

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

 $\phi F_L =$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

31.4 ksi

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$\varphi = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 27.5 \\ C_0 = & 27.5 \\ C_0 = & 27.5 \\ S2 = & 27.5 \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L \text{WK} = & 28.2 \text{ ksi} \\ \text{Iy} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{X} = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \end{array}$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

24.5

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\varphi F_{L} = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

SCHLETTER

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

x =

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{\theta_b}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ & \text{ly} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

Rev. 11.05.2015

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & \boldsymbol{\phi} \boldsymbol{c} [Bp-1.6Dp^*b/t] \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & \boldsymbol{\phi} \boldsymbol{c} [Bp-1.6Dp^*b/t] \\ \boldsymbol{\phi} \boldsymbol{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

PVMax 60 Cell 2V 20° 120mph 30psf 9ft 7-05 NS.xlsx | Page 16

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{\phiF}_{\text{L}} &= & \text{\phiyFcy} \\ \text{\phiF}_{\text{L}} &= & 33.25 \text{ ksi} \\ \text{\phiF}_{\text{L}} &= & 15.92 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 16.39 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-66.204	-66.204	0	0
2	M14	٧	-66.204	-66.204	0	0
3	M15	V	-104.034	-104.034	0	0
4	M16	V	-104.034	-104.034	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	151.323	151.323	0	0
2	M14	V	116.014	116.014	0	0
3	M15	V	63.051	63.051	0	0
4	M16	V	63 051	63 051	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E				1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	599.794	2	1250.132	2	.698	1	.003	1	Ö	1	Ó	1
2		min	-752.664	3	-1613.295	3	.03	15	0	15	0	1	0	1
3	N7	max	.029	9	1197.51	1	286	15	0	15	0	1	0	1
4		min	188	2	-310.625	3	-7.531	1	016	1	0	1	0	1
5	N15	max	.023	9	3410.727	1	0	3	0	3	0	1	0	1
6		min	-2.166	2	-1073.345	3	0	1	0	1	0	1	0	1
7	N16	max	2156.704	2	4022.536	2	0	12	0	3	0	1	0	1
8		min	-2369.162	3	-5235.115	3	0	2	0	1	0	1	0	1
9	N23	max	.029	9	1197.51	1	7.531	1	.016	1	0	1	0	1
10		min	188	2	-310.625	3	.286	15	0	15	0	1	0	1
11	N24	max	599.794	2	1250.132	2	03	15	0	15	0	1	0	1
12		min	-752.664	3	-1613.295	3	698	1	003	1	0	1	0	1
13	Totals:	max	3353.75	2	12153.007	2	0	3	·		·		·	
14		min	-3875.445	3	-10156.301	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	78.885	1	483.555	1	-5.274	15	0	3	.188	1	0	1
2			min	2.902	15	-800.457	3	-144.585	1	016	2	.007	15	0	3
3		2	max	78.885	1	338.226	1	-4.052	15	0	3	.06	1	.682	3
4			min	2.902	15	-563.375	3	-110.966	1	016	2	.002	15	411	1
5		3	max	78.885	1	192.897	1	-2.83	15	0	3	.001	3	1.127	3
6			min	2.902	15	-326.294	3	-77.348	1	016	2	034	1	676	1
7		4	max	78.885	1	47.568	1	-1.608	15	0	3	002	12	1.334	3
8			min	2.902	15	-89.213	3	-43.729	1	016	2	095	1	797	1
9		5	max	78.885	1	147.868	3	386	15	0	3	004	12	1.305	3
10			min	2.902	15	-97.761	1	-10.111	1	016	2	122	1	772	1
11		6	max	78.885	1	384.95	3	23.508	1	0	3	004	15	1.039	3
12			min	2.902	15	-243.09	1	144	3	016	2	115	1	601	1
13		7	max	78.885	1	622.031	3	57.126	1	0	3	003	15	.535	3
14			min	2.902	15	-388.42	1	1.183	12	016	2	075	1	285	1
15		8	max	78.885	1	859.112	3	90.745	1	0	3	.002	2	.179	2
16			min	2.902	15	-533.749	1	2.405	12	016	2	004	3	205	3
17		9	max	78.885	1	1096.193	3	124.363	1	0	3	.107	1	.782	1
18			min	2.902	15	-679.078	1	3.627	12	016	2	0	3	-1.183	3
19		10	max	78.885	1	1333.275	3	157.981	1	.016	2	.248	1	1.534	1
20			min	2.902	15	-824.407	1	4.849	12	0	12	.005	12	-2.398	3
21		11	max	78.885	1	679.078	1	-3.627	12	.016	2	.107	1	.782	1
22			min	2.902	15	-1096.193	3	-124.363	1	0	3	0	3	-1.183	3
23		12	max	78.885	1	533.749	1	-2.405	12	.016	2	.002	2	.179	2
24			min	2.902	15	-859.112	3	-90.745	1	0	3	004	3	205	3
25		13	max	78.885	1	388.42	1	-1.183	12	.016	2	003	15	.535	3
26			min	2.902	15	-622.031	3	-57.126	1	0	3	075	1	285	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]] LC	y-y Mome	LC.	z-z Mome	LC
27		14	max	78.885	1	243.09	1	.144	3	.016	2	004	15	1.039	3
28			min	2.902	15	-384.95	3	-23.508	1	0	3	115	1	601	1
29		15	max	78.885	1	97.761	1	10.111	1	.016	2	004	12	1.305	3
30			min	2.902	15	-147.868	3	.386	15	0	3	122	1	772	1
31		16	max	78.885	1	89.213	3	43.729	1	.016	2	002	12	1.334	3
32			min	2.902	15	-47.568	1	1.608	15	0	3	095	1	797	1
33		17	max	78.885	1	326.294	3	77.348	1	.016	2	.001	3	1.127	3
34			min	2.902	15	-192.897	1	2.83	15	0	3	034	1	676	1
35		18	max	78.885	1	563.375	3	110.966	1	.016	2	.06	1	.682	3
36			min	2.902	15	-338.226	1	4.052	15	0	3	.002	15	411	1
37		19	max	78.885	1	800.457	3	144.585	1	.016	2	.188	1	0	1
38			min	2.902	15	-483.555	1	5.274	15	0	3	.007	15	0	3
39	M14	1	max	39.153	1	521.473	1	-5.452	15	.011	3	.217	1	0	1
40			min	1.44	15	-633.324	3	-149.466	1	013	2	.008	15	0	3
41		2	max	39.153	1	376.144	1	-4.23	15	.011	3	.084	1	.543	3
42			min	1.44	15	-452.738	3	-115.848		013	2	.003	15	449	1
43		3	max	39.153	1	230.815	1	-3.008	15	.011	3	.003	3	.905	3
44			min	1.44	15		3	-82.229	1	013	2	015	1	752	1
45		4	max	39.153	1	86.378	2	-1.786	15	.011	3	002	12	1.087	3
46			min	1.44	15	-91.564	3	-48.611	1	013	2	08	1	91	1
47		5	max	39.153	1	89.023	3	564	15	.011	3	004	12	1.089	3
48			min	1.44	15	-59.843	1	-14.993	1	013	2	112	1	923	1
49		6	max	39.153	1	269.61	3	18.626	1	.011	3	004	15	.909	3
50			min	1.44	15		1	408	3	013	2	11	1	791	1
51		7	max	39.153	1	450.197	3	52.244	1	.011	3	003	15	.549	3
52		,	min	1.44	15		1	1.007	12	013	2	075	1	518	2
53		8	max	39.153	1	630.784	3	85.863	1	.011	3	0	10	.009	3
54			min	1.44	15		1	2.229	12	013	2	006	1	106	2
55		9	max	39.153	1	811.37	3	119.481	1	.011	3	.097	1	.479	1
56			min	1.44	15	-641.16	1	3.451	12	013	2	0	3	712	3
57		10	max	39.153	1	991.957	3	153.1	1	.013	2	.233	1	1.193	1
58			min	1.44	15	-786.489	1	4.673	12	011	3	.004	12	-1.614	3
59		11	max	39.153	1	641.16	1	-3.451	12	.013	2	.097	1	.479	1
60			min	1.44	15	-811.37	3	-119.481	1	011	3	0	3	712	3
61		12	max	39.153	1	495.831	1	-2.229	12	.013	2	0	10	.009	3
62		12	min	1.44	15		3	-85.863	1	011	3	006	1	106	2
63		13	max	39.153	1	350.502	1	-1.007	12	.013	2	003	15	.549	3
64		10	min	1.44	15		3	-52.244	1	011	3	075	1	518	2
65		14	max	39.153	1	205.172	1	.408	3	.013	2	004	15	.909	3
66		17	min	1.44	15	-269.61	3	-18.626	1	011	3	11	1	791	1
67		15	max		1		1		1	.013	2	004	12	1.089	3
68		10	min	1.44	15	-89.023	3	.564	15	011	3	112	1	923	1
69		16	max		1	91.564	3	48.611	1	.013	2	002	12	1.087	3
70		10	min	1.44	15	-86.378	2	1.786	15	011	3	08	1	91	1
71		17	max	39.153	1	272.151	3	82.229	1	.013	2	.003	3	.905	3
72		17	min	1.44	15	-230.815	1	3.008	15	011	3	015	1	752	1
73		18	max	39.153	1	452.738	3	115.848	1	.013	2	.084	1	.543	3
		10			15	-376.144	1	4.23	15	011	3	.003	15	449	1
74 75		19	min max	1.44 39.153	1	633.324	3	149.466	1	.013	2	.003 .217	1		1
76		19		1.44						013			15	0	3
77	M15	1	min	-1.509	15	<u>-521.473</u> 718.062	2	5.452 -5.451	15 15	.013	2	.008 .217	1	<u> </u>	2
78	IVI TO		max		15		2						15		3
		2	min	<u>-40.911</u>	1 1 5	-347.697	3	<u>-149.459</u>		009	3	.008		0	3
79			max		15	515.091	2	-4.229	15 1	.013	2	.084	1	.3	2
80		2	min	-40.911	1_	-251.851	3	-115.841		009	3	.003	15	617	
81 82		3	max	-1.509 40.011	15	312.121	2	-3.007	15	.013	3	.002	3	.504	3
		4	min	<u>-40.911</u>	1_	<u>-156.005</u>	3	-82.222		009		015		-1.03	2
83		4	max	-1.509	15	109.15	2	-1.785	15	.013	2	002	12	.612	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

B4		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
Becompany Beco	84			min	-40.911	1		3	-48.604	1	009	3	08	1	-1.241	2
B8	85		5	max	-1.509	15	35.687	3	563	15	.013	2	004	12	.624	3
B8	86			min	-40.911	1	-93.82	2	-14.985	1	009	3	112	1	-1.248	2
B88	87		6	max	-1.509	15	131.533	3	18.633	1	.013	2	004	15	.54	3
B8																
90			7			_								15		
91																
92			8													
93			T .										_			
94			a											-		
95			1 3													
96			10													
98			10	_												
98			11													
99			11													
100			40			_										
101			12													
102			40													_
103			13													
104														•		
105			14													
106				min												
107			15	max		15										
108				min		1				15	013		112			
109	107		16	max	-1.509	15	60.159	3	48.604	1	.009	3	002	12	.612	3
110	108			min	-40.911	1	-109.15	2	1.785	15	013	2	08	1	-1.241	2
110	109		17	max	-1.509	15	156.005	3	82.222	1	.009	3	.002	3	.504	3
111	110			min		1		2	3.007	15	013	2	015	1	-1.03	2
112			18			15						3		1		3
113						1				15				15		
114			19													
115 M16																
116		M16	1													
117																
118			2									_			_	
119																
120			3													
121 4 max -3.089 15 70.04 2 -1.614 15 .012 1 003 12 .52 3 122 min -83.96 1 -29.401 3 -43.989 1 013 3 094 1 -1.123 2 123 5 max -3.089 15 66.445 3 392 15 .012 1 004 12 .501 3 124 min -83.96 1 -132.931 2 -10.371 1 013 3 121 1 -1.092 2 125 6 max -3.089 15 162.291 3 23.248 1 .012 1 004 15 .387 3 126 min -83.96 1 -335.901 2 .189 12 013 3 115 1 .888 2 127 7 max -3			1									_				
122			1													
123 5 max -3.089 15 66.445 3 392 15 .012 1 004 12 .501 3 124 min -83.96 1 -132.931 2 -10.371 1 013 3 121 1 -1.092 2 125 6 max -3.089 15 162.291 3 23.248 1 .012 1 004 15 .387 3 126 min -83.96 1 -335.901 2 .189 12 013 3 115 1 858 2 127 7 max -3.089 15 258.137 3 56.866 1 .012 1 003 15 .176 3 128 min -83.96 1 -538.872 2 1.41 12 013 3 075 1 42 2 129 8 max -3			1													
124 min -83.96 1 -132.931 2 -10.371 1 013 3 121 1 -1.092 2 125 6 max -3.089 15 162.291 3 23.248 1 .012 1 004 15 .387 3 126 min -83.96 1 -335.901 2 .189 12 013 3 115 1 858 2 127 7 max -3.089 15 258.137 3 56.866 1 .012 1 003 15 .176 3 128 min -83.96 1 -538.872 2 1.41 12 013 3 075 1 42 2 129 8 max -3.089 15 353.983 3 90.484 1 .012 1 .001 2 .22 2 130 min -83.96 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>			-											•		
125 6 max -3.089 15 162.291 3 23.248 1 .012 1 004 15 .387 3 126 min -83.96 1 -335.901 2 .189 12 013 3 115 1 858 2 127 7 max -3.089 15 258.137 3 56.866 1 .012 1 003 15 .176 3 128 min -83.96 1 -538.872 2 1.41 12 013 3 075 1 42 2 129 8 max -3.089 15 353.983 3 90.484 1 .012 1 .001 2 .22 2 130 min -83.96 1 -741.842 2 2.632 12 013 3 003 3 13 131 9 max -3.089 15			1 5													
126 min -83.96 1 -335.901 2 .189 12 013 3 115 1 858 2 127 7 max -3.089 15 258.137 3 56.866 1 .012 1 003 15 .176 3 128 min -83.96 1 -538.872 2 1.41 12 013 3 075 1 42 2 129 8 max -3.089 15 353.983 3 90.484 1 .012 1 .001 2 .22 2 130 min -83.96 1 -741.842 2 2.632 12 013 3 003 3 13 3 131 9 max -3.089 15 449.829 3 124.103 1 .012 1 .106 1 1.063 2 132 min -83.96 1<			G													
127 7 max -3.089 15 258.137 3 56.866 1 .012 1 003 15 .176 3 128 min -83.96 1 -538.872 2 1.41 12 013 3 075 1 42 2 129 8 max -3.089 15 353.983 3 90.484 1 .012 1 .001 2 .22 2 130 min -83.96 1 -741.842 2 2.632 12 013 3 003 3 13 3 131 9 max -3.089 15 449.829 3 124.103 1 .012 1 .106 1 1.063 2 132 min -83.96 1 -944.813 2 3.854 12 013 3 .001 12 532 3 133 10 max -3.089 15 545.675 3 157.721 1 .013 3 .247			0	_												
128 min -83.96 1 -538.872 2 1.41 12 013 3 075 1 42 2 129 8 max -3.089 15 353.983 3 90.484 1 .012 1 .001 2 .22 2 130 min -83.96 1 -741.842 2 2.632 12 013 3 003 3 13 3 131 9 max -3.089 15 449.829 3 124.103 1 .012 1 .106 1 1.063 2 132 min -83.96 1 -944.813 2 3.854 12 013 3 .001 12 532 3 133 10 max -3.089 15 545.675 3 157.721 1 .013 3 .247 1 2.11 2 134 min -83.96 1			7													
129 8 max -3.089 15 353.983 3 90.484 1 .012 1 .001 2 .22 2 130 min -83.96 1 -741.842 2 2.632 12 013 3 003 3 13 3 131 9 max -3.089 15 449.829 3 124.103 1 .012 1 .106 1 1.063 2 132 min -83.96 1 -944.813 2 3.854 12 013 3 .001 12 532 3 133 10 max -3.089 15 545.675 3 157.721 1 .013 3 .247 1 2.11 2 134 min -83.96 1 -1147.784 2 5.076 12 012 1 .006 12 -1.029 3 135 11 max -3.089 15 944.813 2 -3.854 12 .013 3 .106																
130 min -83.96 1 -741.842 2 2.632 12 013 3 003 3 13 3 131 9 max -3.089 15 449.829 3 124.103 1 .012 1 .106 1 1.063 2 132 min -83.96 1 -944.813 2 3.854 12 013 3 .001 12 532 3 133 10 max -3.089 15 545.675 3 157.721 1 .013 3 .247 1 2.11 2 134 min -83.96 1 -1147.784 2 5.076 12 012 1 .006 12 -1.029 3 135 11 max -3.089 15 944.813 2 -3.854 12 .013 3 .106 1 1.063 2 136 min -83.96						_										
131 9 max -3.089 15 449.829 3 124.103 1 .012 1 .106 1 1.063 2 132 min -83.96 1 -944.813 2 3.854 12 013 3 .001 12 532 3 133 10 max -3.089 15 545.675 3 157.721 1 .013 3 .247 1 2.11 2 134 min -83.96 1 -1147.784 2 5.076 12 012 1 .006 12 -1.029 3 135 11 max -3.089 15 944.813 2 -3.854 12 .013 3 .106 1 1.063 2 136 min -83.96 1 -449.829 3 -124.103 1 012 1 .001 12 532 3 137 12 max -3.089 15 741.842 2 -2.632 12 .013 3 .001			8													
132 min -83.96 1 -944.813 2 3.854 12 013 3 .001 12 532 3 133 10 max -3.089 15 545.675 3 157.721 1 .013 3 .247 1 2.11 2 134 min -83.96 1 -1147.784 2 5.076 12 012 1 .006 12 -1.029 3 135 11 max -3.089 15 944.813 2 -3.854 12 .013 3 .106 1 1.063 2 136 min -83.96 1 -449.829 3 -124.103 1 012 1 .001 12 532 3 137 12 max -3.089 15 741.842 2 -2.632 12 .013 3 .001 2 .22 2 138 min -83.96																
133 10 max -3.089 15 545.675 3 157.721 1 .013 3 .247 1 2.11 2 134 min -83.96 1 -1147.784 2 5.076 12 012 1 .006 12 -1.029 3 135 11 max -3.089 15 944.813 2 -3.854 12 .013 3 .106 1 1.063 2 136 min -83.96 1 -449.829 3 -124.103 1 012 1 .001 12 532 3 137 12 max -3.089 15 741.842 2 -2.632 12 .013 3 .001 2 .22 2 138 min -83.96 1 -353.983 3 -90.484 1 012 1 003 3 13 3 139 13 max -3.089 15 538.872 2 -1.41 12 .013 3 003 15 .176 3			9													
134 min -83.96 1 -1147.784 2 5.076 12 012 1 .006 12 -1.029 3 135 11 max -3.089 15 944.813 2 -3.854 12 .013 3 .106 1 1.063 2 136 min -83.96 1 -449.829 3 -124.103 1 012 1 .001 12 532 3 137 12 max -3.089 15 741.842 2 -2.632 12 .013 3 .001 2 .22 2 138 min -83.96 1 -353.983 3 -90.484 1 012 1 003 3 13 3 139 13 max -3.089 15 538.872 2 -1.41 12 .013 3 003 15 .176 3																
135 11 max -3.089 15 944.813 2 -3.854 12 .013 3 .106 1 1.063 2 136 min -83.96 1 -449.829 3 -124.103 1 012 1 .001 12 532 3 137 12 max -3.089 15 741.842 2 -2.632 12 .013 3 .001 2 .22 2 138 min -83.96 1 -353.983 3 -90.484 1 012 1 003 3 13 3 139 13 max -3.089 15 538.872 2 -1.41 12 .013 3 003 15 .176 3			10													
136 min -83.96 1 -449.829 3 -124.103 1 012 1 .001 12 532 3 137 12 max -3.089 15 741.842 2 -2.632 12 .013 3 .001 2 .22 2 138 min -83.96 1 -353.983 3 -90.484 1 012 1 003 3 13 3 139 13 max -3.089 15 538.872 2 -1.41 12 .013 3 003 15 .176 3																
137 12 max -3.089 15 741.842 2 -2.632 12 .013 3 .001 2 .22 2 138 min -83.96 1 -353.983 3 -90.484 1 012 1 003 3 13 3 139 13 max -3.089 15 538.872 2 -1.41 12 .013 3 003 15 .176 3			11			15	944.813	2				3				
138 min -83.96 1 -353.983 3 -90.484 1 012 1 003 3 13 3 139 13 max -3.089 15 538.872 2 -1.41 12 .013 3 003 15 .176 3						1		3								
139			12	max	-3.089	15	741.842	2	-2.632	12	.013	3	.001	2	.22	
139	138			min	-83.96	1	-353.983	3		1	012	1	003	3	13	
			13			15				12	.013	3		15		
							-258.137								42	

Model Name

Schletter, Inc. HCV

110 V

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
141		14	max	-3.089	15	335.901	2	189	12	.013	3	004	15	.387	3
142			min	-83.96	1	-162.291	3	-23.248	1	012	1	115	1	858	2
143		15	max	-3.089	15	132.931	2	10.371	1	.013	3	004	12	.501	3
144			min	-83.96	1	-66.445	3	.392	15	012	1	121	1	-1.092	2
145		16	max	-3.089	15	29.401	3	43.989	1	.013	3	003	12	.52	3
146			min	-83.96	1	-70.04	2	1.614	15	012	1	094	1	-1.123	2
147		17	max	-3.089	15	125.247	3	77.608	1	.013	3	0	3	.442	3
148			min	-83.96	1	-273.01	2	2.836	15	012	1	033	1	952	2
149		18	max	-3.089	15	221.093	3	111.226	1	.013	3	.061	1	.269	3
150		10	min	-83.96	1	-475.981	2	4.058	15	012	1	.002	15	577	2
151		19	max	-3.089	15	316.939	3	144.845	1	.013	3	.189	1	0	2
152		19		-83.96	1	-678.951	2	5.28	15	012	1	.007	15	0	3
	M2	1	min								3				
153	IVIZ			1090.729	2	2.028	4	.738	1	0	<u> </u>	0	3	0	1
154			min	-1440.524	3	.478	15	.027	15	0		0	-	0	-
155		2	max		2	1.994	4	.738	1	0	3	0	1	0	15
156			min	-1440.239	3	.47	15	.027	15	0	1	0	15	0	4
157		3	max		2	1.961	4	.738	1_	0	3	0	1_	0	15
158			min	-1439.955	3	.462	15	.027	15	0	1	0	15	001	4
159		4	max	1091.867	2	1.928	4	.738	1	0	3	0	1	0	15
160			min	-1439.67	3	.454	15	.027	15	0	1	0	15	002	4
161		5	max	1092.246	2	1.894	4	.738	1	0	3	0	1	0	15
162			min	-1439.386	3	.446	15	.027	15	0	1	0	15	002	4
163		6	max	1092.625	2	1.861	4	.738	1	0	3	0	1	0	15
164			min	-1439.101	3	.438	15	.027	15	0	1	0	15	002	4
165		7		1093.004	2	1.827	4	.738	1	0	3	.001	1	0	15
166		<u> </u>	min	-1438.817	3	.43	15	.027	15	0	1	0	15	003	4
167		8	max		2	1.794	4	.738	1	0	3	.001	1	0	15
168			min	-1438.532	3	.423	15	.027	15	0	1	0	15	003	4
169		9		1093.763	2	1.761	4	.738	1	0	3	.002	1	0	15
		9		-1438.248	3		15			0	1	0	15	_	
170		40	min			.415		.027	15		_	_		004	4
171		10	max		2	1.727	4	.738	1	0	3	.002	1_	001	15
172		4.4	min	-1437.964	3	.407	15	.027	15	0	1	0	15	004	4
173		11		1094.521	2	1.694	4	.738	1	0	3	.002	1	001	15
174			min	-1437.679	3	.399	15	.027	15	0	1	0	15	005	4
175		12		1094.901	2	1.66	4	.738	1_	0	3	.002	1_	001	15
176			min	-1437.395	3	.388	12	.027	15	0	1	0	15	005	4
177		13	max		2	1.627	4	.738	1	0	3	.002	1_	001	15
178			min	-1437.11	3	.375	12	.027	15	0	1	0	15	006	4
179		14	max	1095.659	2	1.594	4	.738	1	0	3	.002	1	001	15
180			min	-1436.826	3	.362	12	.027	15	0	1	0	15	006	4
181		15	max	1096.038	2	1.56	4	.738	1	0	3	.003	1	002	15
182			min		3	.349	12	.027	15	0	1	0	15	006	4
183		16	max	1096.418	2	1.527	4	.738	1	0	3	.003	1	002	15
184			min		3	.336	12	.027	15	0	1	0	15	007	4
185		17		1096.797	2	1.493	4	.738	1	0	3	.003	1	002	15
186			min		3	.323	12	.027	15	0	1	0	15	007	4
187		18		1097.176	2	1.46	4	.738	1	0	3	.003	1	002	15
188		10	min	-1435.688	3	.31	12	.027	15	0	1	0	15	002	4
189		19		1097.555	2	1.427	4	.738	1	0	3	.003	1	002	15
		19		-1435.404											
190	MO	4	min		3	.297	12	.027	15	0	1	0	15	008	4
191	<u>M3</u>	1		545.867	2	7.983	4	.071	1	0	3	0	1_	.008	4
192			min		3	1.877	15	.003	15	0	1	0	15	.002	15
193		2	max		2	7.213	4	.071	1	0	3	0	1	.005	2
194				-679.318	3	1.696	15	.003	15	0	1	0	15	0	12
195		3		545.526	2	6.443	4	.071	1	0	3	0	1	.003	2
196			min		3	1.515	15	.003	15	0	1	0	15	0	3
197		4	max	545.356	2	5.673	4	.071	1	0	3	0	1	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
198			min	-679.574	3	1.334	15	.003	15	0	1	0	15	002	3
199		5	max		2	4.903	4	.071	1	0	3	0	1	0	15
200			min	-679.701	3	1.153	15	.003	15	0	1	0	15	003	3
201		6	max	545.015	2	4.133	4	.071	1	0	3	0	1	001	15
202			min	-679.829	3	.972	15	.003	15	0	1	0	15	005	4
203		7	max	544.845	2	3.363	4	.071	1	0	3	0	1	001	15
204			min	-679.957	3	.791	15	.003	15	0	1	0	15	006	4
205		8	max	544.675	2	2.593	4	.071	1	0	3	0	1	002	15
206		- 6	min	-680.085	3	.61	15	.003	15	0	1	0	15	002	4
207		9	max	544.504	2	1.823	4	.071	1	0	3	0	1	002	15
208		9	min	-680.212	3	.429	15	.003	15	0	1	0	15	002	4
209		10			2	1.053	4	.003	1		3	0	1	009	15
		10	max							0	1				
210		4.4	min	-680.34	3	.248	15	.003	15	0		0	15	009	4
211		11	max	544.164	2	.406	2	.071	1	0	3	0	1	002	15
212		40	min	-680.468	3	087	3	.003	15	0	1	0	15	009	4
213		12	max	543.993	2	114	15	.071	1	0	3	0	1	002	15
214		1.0	min	-680.596	3	537	3	.003	15	0	1	0	15	009	4
215		13	max		2	295	15	.071	1	0	3	0	1	002	15
216			min	-680.723	3	-1.257	4	.003	15	0	1	0	15	009	4
217		14	max	543.653	2	476	15	.071	1	0	3	0	1	002	15
218			min	-680.851	3	-2.027	4	.003	15	0	1	0	15	008	4
219		15	max		2	657	15	.071	1	0	3	0	1	002	15
220			min	-680.979	3	-2.797	4	.003	15	0	1	0	15	007	4
221		16	max	543.312	2	838	15	.071	1	0	3	0	1	001	15
222			min	-681.107	3	-3.567	4	.003	15	0	1	0	15	006	4
223		17	max	543.142	2	-1.019	15	.071	1	0	3	0	1	001	15
224			min	-681.234	3	-4.337	4	.003	15	0	1	0	15	004	4
225		18	max	542.971	2	-1.2	15	.071	1	0	3	0	1	0	15
226			min	-681.362	3	-5.107	4	.003	15	0	1	0	15	002	4
227		19	max	542.801	2	-1.381	15	.071	1	0	3	0	1	0	1
228			min	-681.49	3	-5.877	4	.003	15	0	1	0	15	0	1
229	M4	1		1194.444	1	0	1	286	15	0	1	0	1	0	1
230			min	-312.925	3	0	1	-7.813	1	0	1	0	15	0	1
231		2	1	1194.614	1	0	1	286	15	0	1	0	12	0	1
232			min	-312.797	3	0	1	-7.813	1	0	1	0	1	0	1
233		3		1194.785	1	0	1	286	15	0	1	0	15	0	1
234			min	-312.669	3	0	1	-7.813	1	0	1	001	1	0	1
235		4	+	1194.955	1	0	1	286	15	0	1	0	15	0	1
236			min	-312.541	3	0	1	-7.813	1	0	1	002	1	0	1
237		5	1	1195.125	1	0	1	286	15	0	1	0	15	0	1
238				-312.413		0	1	-7.813	1	0	1	003	1	0	1
239		6		1195.296	1	0	1	286	15	0	1	0	15	0	1
240				-312.286		0	1	-7.813	1	0	1	004	1	0	1
241		7		1195.466		0	1	286	15	0	1	0	15	0	1
242				-312.158		0	1	-7.813	1	0	1	005	1	0	1
243		8		1195.636	1		1	-7.813 286	15	0	1	0	15	0	1
		-				0	1		1		1		1	0	1
244			min		3	0		-7.813		0	_	006	_		_
245		9		1195.807	1	0	1	286	15	0	1	0	15	0	1
246		40		-311.902		0	1	-7.813	1	0	1	007	1	0	1
247		10		1195.977	1	0	1	286	15	0	1	0	15	0	1
248		4.	min		3	0	1	-7.813	1	0	1	008	1_	0	1
249		11		1196.148	1	0	1	286	15	0	1	0	15	0	1
250				-311.647		0	1	-7.813	1	0	1	009	1_	0	1
251		12		1196.318		0	1	286	15	0	1	0	15	0	1
252				-311.519		0	1	-7.813	1	0	1	009	1	0	1
253		13		1196.488		0	1	286	15	0	1	0	15	0	1
254			min	-311.391	3	0	1	-7.813	1	0	1	01	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255 256		14		1196.659 -311.264	<u>1</u> 3	0	1	286 -7.813	<u>15</u> 1	0	<u>1</u> 1	011	15 1	0 0	1
257		15		1196.829	<u> </u>	0	1	286	15	0	+	0	15	0	1
258		13		-311.136	3	0	1	-7.813	1	0	1	012	1	0	1
259		16		1196.999	1	0	1	286	15	0	1	0	15	0	1
260				-311.008	3	0	1	-7.813	1	0	1	013	1	0	1
261		17	max		1	0	1	286	15	0	1	0	15	0	1
262			min	-310.88	3	0	1	-7.813	1	0	1	014	1	0	1
263		18	max	1197.34	1	0	1	286	15	0	1	0	15	0	1
264			min	-310.753	3	0	1	-7.813	1	0	1	015	1	0	1
265		19	max	1197.51	1_	0	1	286	15	0	1	0	15	0	1
266			min	-310.625	3	0	1	-7.813	1_	0	1	016	1	0	1
267	<u>M6</u>	1		3472.401	2	2.65	2	0	_1_	0	1	0	1	0	1
268				-4674.46	3	136	3	0	1_	0	1	0	1	0	1
269		2	max		2	2.624	2	0	_1_	0	<u>1</u>	0	1	0	3
270			min		3	155	3	0	1_	0	1	0	1	0	2
271		3		3473.159	2	2.598	2	0	1_	0	1	0	1	0	3
272		4		-4673.891	3	175	3	0	1_	0	1_	0	1	001	2
273		4		3473.539	2	2.572	2	0	1_	0	1	0	1	0	3
274 275		5	min	-4673.606 3473.918	<u>3</u> 2	194 2.546	2	0	<u>1</u> 1	0	<u>1</u> 1	0	1	002 0	3
276		5	min	-4673.322	3	214	3	0	1	0	1	0	1	003	2
277		6		3474.297	2	2.52	2	0	1	0	+	0	1	- <u>003</u> 0	3
278				-4673.037	3	233	3	0	1	0	1	0	1	003	2
279		7		3474.677	2	2.494	2	0	1	0	1	0	1	<u>003</u> 0	3
280				-4672.753	3	253	3	0	1	0	1	0	1	004	2
281		8		3475.056	2	2.468	2	0	1	0	1	0	1	0	3
282				-4672.469	3	272	3	0	1	0	1	0	1	005	2
283		9		3475.435	2	2.442	2	0	1	0	1	0	1	0	3
284			min	-4672.184	3	292	3	0	1	0	1	0	1	005	2
285		10	max	3475.814	2	2.416	2	0	1	0	1	0	1	0	3
286			min	-4671.9	3	311	3	0	1	0	1	0	1	006	2
287		11		3476.194	2	2.39	2	0	_1_	0	1	0	1	0	3
288				-4671.615	3	331	3	0	1	0	1	0	1	006	2
289		12		3476.573	2	2.364	2	0	1_	0	1	0	1	0	3
290		4.0		-4671.331	3	35	3	0	1_	0	1	0	1	007	2
291		13		3476.952	2	2.338	2	0		0	1	0	1	0	3
292		4.4		-4671.046	3	37	3	0	1_	0	1_	0	1	008	2
293		14		3477.331 -4670.762	2	2.312	2	0	1	0	1	0	1	0	3
294 295		15		3477.711	<u>3</u> 2	389 2.286	2	0	1	0	1	0	1	008 0	3
296		15	min	-4670.477	3	409	3	0	1	0	1	0	1	009	2
297		16		3478.09	2	2.26	2	0	1	0	1	0	1	.001	3
298		10		-4670.193	3	429	3	0	1	0	1	0	1	009	2
299		17		3478.469	2	2.234	2	0	1	0	1	0	1	.001	3
300			min		3	448	3	0	1	0	1	0	1	01	2
301		18		3478.848	2	2.208	2	0	1	0	1	0	1	.001	3
302				-4669.624	3	468	3	0	1	0	1	0	1	011	2
303		19		3479.228	2	2.182	2	0	1	0	1	0	1	.001	3
304				-4669.34	3	487	3	0	1	0	1	0	1	011	2
305	M7	1		1995.435	2	8.016	4	0	1	0	1	0	1	.011	2
306			min	-2126.229	3	1.882	15	0	1	0	1	0	1	001	3
307		2		1995.264	2	7.246	4	0	1	0	1	0	1	.008	2
308				-2126.357	3	1.701	15	0	1	0	1	0	1	003	3
309		3		1995.094	2	6.476	4	0	1_	0	1	0	1	.006	2
310			min	-2126.485	3	1.52	15	0	1_	0	1	0	1	004	3
311		4	max	1994.924	2	5.706	4	0	_1_	0	<u>1</u>	0	1	.004	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2126.612	3	1.339	15	0	1	0	1	0	1	005	3
313		5	max	1994.753	2	4.936	4	0	1	0	1	0	_1_	.002	2
314			min	-2126.74	3	1.158	15	0	1	0	1	0	1	006	3
315		6	max	1994.583	2	4.166	4	0	1	0	1	0	1	0	2
316			min	-2126.868	3	.977	15	0	1	0	1	0	1	007	3
317		7	max		2	3.396	4	0	1	0	1	0	1_	001	15
318			min	-2126.996	3	.796	15	0	1	0	1	0	1	008	3
319		8	max	1994.242	2	2.673	2	0	1	0	1	0	_1_	002	15
320			min	-2127.123	3	.507	12	0	1	0	1	0	1	008	3
321		9	max	1994.072	2	2.073	2	0	1	0	1	0	1	002	15
322			min	-2127.251	3	.207	12	0	1	0	1	0	1	008	4
323		10	max	1993.902	2	1.473	2	0	1	0	1	0	_1_	002	15
324			min	-2127.379	3	19	3	0	1	0	1	0	1	009	4
325		11	max	1993.731	2	.873	2	0	1	0	1	0	1	002	15
326			min	-2127.507	3	64	3	0	1	0	1	0	1	009	4
327		12	max	1993.561	2	.273	2	0	1	0	1	0	1_	002	15
328			min	-2127.634	3	-1.09	3	0	1	0	1	0	1	009	4
329		13	max	1993.391	2	29	15	0	1	0	1	0	_1_	002	15
330			min	-2127.762	3	-1.54	3	0	1	0	1	0	1	009	4
331		14	max	1993.22	2	471	15	0	1	0	1	0	1	002	15
332			min	-2127.89	3	-1.994	4	0	1	0	1	0	1	008	4
333		15	max	1993.05	2	652	15	0	1	0	1	0	_1_	002	15
334			min	-2128.018	3	-2.764	4	0	1	0	1	0	1	007	4
335		16	max	1992.879	2	833	15	0	1	0	1	0	1	001	15
336			min	-2128.146	3	-3.534	4	0	1	0	1	0	1	006	4
337		17	max	1992.709	2	-1.014	15	0	1	0	1	0	1	001	15
338			min	-2128.273	3	-4.304	4	0	1	0	1	0	1	004	4
339		18	max	1992.539	2	-1.195	15	0	1	0	1	0	1	0	15
340			min	-2128.401	3	-5.074	4	0	1	0	1	0	1	002	4
341		19	max	1992.368	2	-1.376	15	0	1	0	1	0	1	0	1
342			min	-2128.529	3	-5.844	4	0	1	0	1	0	1	0	1
343	M8	1	max	3407.661	1_	0	1	0	1	0	1	0	_1_	0	1
344			min	-1075.645	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3407.831	1	0	1	0	1	0	1	0	1	0	1
346			min	-1075.517	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3408.002	1_	0	1	0	1	0	1	0	1	0	1
348			min	-1075.389	3	0	1	0	1	0	1	0	1_	0	1
349		4	max		1_	0	1	0	1	0	1	0	1	0	1
350			min	-1075.262	3	0	1	0	1	0	1	0	1	0	1
351		5		3408.342	1_	0	1	0	1	0	1	0	1	0	1
352				-1075.134	3	0	1	0	1	0	1	0	1	0	1
353		6		3408.513	1_	0	1	0	1	0	1	0	1	0	1
354			min	-1075.006	3	0	1	0	1	0	1	0	1	0	1
355		7		3408.683	1_	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		3408.853	1_	0	1	0	1_	0	1	0	1_	0	1
358			min	-1074.751	3	0	1	0	1	0	1	0	1	0	1
359		9		3409.024	1_	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	0	1	0	1	0	1	0	1
361		10		3409.194	1	0	1	0	1	0	1	0	1	0	1
362			min		3	0	1	0	1	0	1	0	1	0	1
363		11		3409.364	1_	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3409.535	1	0	1	0	1	0	1	0	1	0	1
366				-1074.24	3	0	1	0	1	0	1	0	1	0	1
367		13		3409.705	1_	0	1	0	1	0	1	0	1	0	1
368			min	-1074.112	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3409.875	_1_	0	1	0	1	0	1	0	1	0	1
370			min	-1073.984	3	0	1	0	1	0	1	0	1	0	1
371		15	max	3410.046	_1_	0	1	0	1	0	1	0	1	0	1
372			min	-1073.856	3	0	1	0	1	0	1_	0	1	0	1
373		16		3410.216	_1_	0	1	0	1	0	1	0	1	0	1
374		4-	min	-1073.729	3	0	1	0	1_	0	1	0	1	0	1
375		17	-	3410.386	1_	0	1	0	1	0	1	0	1	0	1
376		40		-1073.601	3	0	1	0	1_	0	1_	0	1	0	1
377		18		3410.557	1	0	1	0	1	0	1	0	1	0	1
378		19		-1073.473 3410.727	3	0	1	0	<u>1</u> 1	0	_	0	1	0	1
379 380		19	min		<u>1</u> 3	0	1	0	1	0	1		1	0	1
381	M10	1		1090.729	2	2.028	4	027	15	0	1	0	1	0	1
382	IVITO		min	-1440.524	3	.478	15	738	1	0	3	0	3	0	1
383		2		1091.108	2	1.994	4	027	15	0	1	0	15	0	15
384			min	-1440.239	3	.47	15	738	1	0	3	0	1	0	4
385		3		1091.487	2	1.961	4	027	15	0	1	0	15	0	15
386			min	-1439.955	3	.462	15	738	1	0	3	0	1	001	4
387		4		1091.867	2	1.928	4	027	15	0	1	0	15	0	15
388				-1439.67	3	.454	15	738	1	0	3	0	1	002	4
389		5		1092.246	2	1.894	4	027	15	0	1	0	15	0	15
390			min	-1439.386	3	.446	15	738	1	0	3	0	1	002	4
391		6	max	1092.625	2	1.861	4	027	15	0	1	0	15	0	15
392			min	-1439.101	3	.438	15	738	1	0	3	0	1	002	4
393		7	max	1093.004	2	1.827	4	027	15	0	1	0	15	0	15
394			min	-1438.817	3	.43	15	738	1	0	3	001	1	003	4
395		8	max	1093.384	2	1.794	4	027	15	0	1	0	15	0	15
396			min	-1438.532	3	.423	15	738	1	0	3	001	1	003	4
397		9		1093.763	2	1.761	4	027	15	0	1	0	15	0	15
398				-1438.248	3	.415	15	738	1_	0	3	002	1	004	4
399		10		1094.142	2	1.727	4	027	15	0	1_	0	15	001	15
400			min	-1437.964	3	.407	15	738	1_	0	3	002	1_	004	4
401		11		1094.521	2	1.694	4	027	15	0	1_	0	15	001	15
402		40	min	-1437.679	3	.399	15	738	1_	0	3	002	1	005	4
403		12		1094.901	3	1.66	12	027	<u>15</u>	0	<u>1</u>	002	<u>15</u>	001	15
404		12	min			.388		738		_	<u>3</u> 1			005	4
405 406		13		1095.28 -1437.11	3	1.627 .375	<u>4</u> 12	027 738	<u>15</u> 1	0	3	002	<u>15</u>	001 006	15
407		14		1095.659	2	1.594	4	736 027	15	0	<u> </u>	002	15	006 001	15
407		14		-1436.826	3	.362	12	738	1	0	3	002	1	006	4
409		15		1096.038	2	1.56	4	027	15	0	1	0	15	002	15
410		10		-1436.541	3	.349	12	738	1	0	3	003	1	006	4
411		16		1096.418	2	1.527	4	027	15	0	1	0	15	002	15
412				-1436.257	3	.336	12	738	1	0	3	003	1	007	4
413		17		1096.797	2	1.493	4	027	15	0	1	0	15	002	15
414				-1435.972	3	.323	12	738	1	0	3	003	1	007	4
415		18		1097.176	2	1.46	4	027	15	0	1	0	15	002	15
416				-1435.688	3	.31	12	738	1	0	3	003	1	008	4
417		19	max	1097.555	2	1.427	4	027	15	0	1	0	15	002	15
418				-1435.404	3	.297	12	738	1	0	3	003	1	008	4
419	M11	1	max	545.867	2	7.983	4	003	15	0	1	0	15	.008	4
420			min		3	1.877	15	071	1	0	3	0	1	.002	15
421		2		545.697	2	7.213	4	003	15	0	1	0	15	.005	2
422				-679.318	3	1.696	15	071	1	0	3	0	1	0	12
423		3		545.526	2	6.443	4	003	15	0	1	0	15	.003	2
424				-679.446	3	1.515	15	071	1_	0	3	0	1_	0	3
425		4	max	545.356	2	5.673	4	003	15	0	<u>1</u>	0	15	0	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
426			min	-679.574	3	1.334	15	071	1	0	3	0	1	002	3
427		5	max	545.186	2	4.903	4	003	15	0	1_	0	15	0	15
428			min	-679.701	3	1.153	15	071	1	0	3	0	1	003	3
429		6	max	545.015	2	4.133	4	003	15	0	1	0	15	001	15
430			min	-679.829	3	.972	15	071	1	0	3	0	1	005	4
431		7	max		2	3.363	4	003	15	0	1_	0	15	001	15
432			min	-679.957	3	.791	15	071	1	0	3	0	1	006	4
433		8	max	544.675	2	2.593	4	003	15	0	1	0	15	002	15
434			min	-680.085	3	.61	15	071	1	0	3	0	1	008	4
435		9	max	544.504	2	1.823	4	003	15	0	1_	0	15	002	15
436			min	-680.212	3	.429	15	071	1	0	3	0	1	009	4
437		10	max	544.334	2	1.053	4	003	15	0	1	0	15	002	15
438			min	-680.34	3	.248	15	071	1	0	3	0	1	009	4
439		11	max	544.164	2	.406	2	003	15	0	1	0	15	002	15
440			min	-680.468	3	087	3	071	1	0	3	0	1	009	4
441		12	max	543.993	2	114	15	003	15	0	1	0	15	002	15
442			min	-680.596	3	537	3	071	1	0	3	0	1	009	4
443		13	max	543.823	2	295	15	003	15	0	1	0	15	002	15
444			min	-680.723	3	-1.257	4	071	1	0	3	0	1	009	4
445		14	max	543.653	2	476	15	003	15	0	1	0	15	002	15
446			min	-680.851	3	-2.027	4	071	1	0	3	0	1	008	4
447		15	max		2	657	15	003	15	0	1	0	15	002	15
448			min	-680.979	3	-2.797	4	071	1	0	3	0	1	007	4
449		16	max	543.312	2	838	15	003	15	0	1	0	15	001	15
450			min	-681.107	3	-3.567	4	071	1	0	3	0	1	006	4
451		17	max		2	-1.019	15	003	15	0	1	0	15	001	15
452			min	-681.234	3	-4.337	4	071	1	0	3	0	1	004	4
453		18	max		2	-1.2	15	003	15	0	1	0	15	0	15
454			min	-681.362	3	-5.107	4	071	1	0	3	0	1	002	4
455		19	max	542.801	2	-1.381	15	003	15	0	1	0	15	0	1
456			min	-681.49	3	-5.877	4	071	1	0	3	0	1	0	1
457	M12	1		1194.444	1	0	1	7.813	1	0	1	0	15	0	1
458	<u>-</u>		min	-312.925	3	0	1	.286	15	0	1	0	1	0	1
459		2	1	1194.614	1	0	1	7.813	1	0	1	0	1	0	1
460			min	-312.797	3	0	1	.286	15	0	1	0	12	0	1
461		3		1194.785	1	0	1	7.813	1	Ö	1	.001	1	0	1
462			min	-312.669	3	0	1	.286	15	0	1	0	15	0	1
463		4		1194.955	1	0	1	7.813	1	0	1	.002	1	0	1
464			min	-312.541	3	0	1	.286	15	0	1	0	15	0	1
465		5	1	1195.125	1	0	1	7.813	1	0	1	.003	1	0	1
466				-312.413		0	1	.286	15	0	1	0	15	0	1
467		6		1195.296	1	0	1	7.813	1	0	1	.004	1	0	1
468				-312.286		0	1	.286	15	0	1	0	15	0	1
469		7	1	1195.466	1	0	1	7.813	1	0	1	.005	1	0	1
470			min	-312.158	3	0	1	.286	15	0	1	0	15	0	1
471		8		1195.636	1	0	1	7.813	1	0	1	.006	1	0	1
472		T .	min		3	0	1	.286	15	0	1	0	15	0	1
473		9		1195.807	1	0	1	7.813	1	0	1	.007	1	0	1
474			min	-311.902	3	0	1	.286	15	0	1	0	15	0	1
475		10		1195.977	1	0	1	7.813	1	0	1	.008	1	0	1
476		10	min	-311.775	3	0	1	.286	15	0	1	.008	15	0	1
477		11		1196.148	1	0	1	7.813	1	0	1	.009	1	0	1
477				-311.647	3	0	1	.286	15	0	1	0	15	0	1
		12	1		<u>3</u> 1		1		1		1				
479		12		1196.318		0	1	7.813	15	0	1	.009	1 15	0	1
480		12	min		3	0	_	.286		0		0		0	-
481		13		1196.488	1	0	1	7.813	1	0	1	.01	1	0	1
482			min	-311.391	3	0	1	.286	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1196.659	1	0	1	7.813	1	0	1_	.011	1	0	1
484			min	-311.264	3	0	1	.286	15	0	1	0	15	0	1
485		15	max	1196.829	1	0	1	7.813	1	0	1	.012	1	0	1
486			min	-311.136	3	0	1	.286	15	0	1	0	15	0	1
487		16	max	1196.999	1	0	1	7.813	1	0	1	.013	1	0	1
488			min	-311.008	3	0	1	.286	15	0	1	0	15	0	1
489		17	max	1197.17	1	0	1	7.813	1	0	1	.014	1	0	1
490			min	-310.88	3	0	1	.286	15	0	1	0	15	0	1
491		18	max	1197.34	1	0	1	7.813	1	0	1	.015	1	0	1
492			min	-310.753	3	0	1	.286	15	0	1	0	15	0	1
493		19	max	1197.51	1	0	1	7.813	1	0	1	.016	1	0	1
494		10	min	-310.625	3	0	1	.286	15	0	1	0	15	0	1
495	M1	1	max	144.589	1	800.429	3	-2.901	15	0	1	.188	1	0	3
496	1011		min	5.274	15	-482.257	1	-78.806	1	0	3	.007	15	016	2
497		2	max	145.079	1	799.419	3	-2.901	15	0	1	.146	1	.241	1
498			min	5.422	15	-483.603	1	-78.806	1	0	3	.005	15	422	3
499		3	max		3	570.143	2	-2.875	15	0	3	.105	1	.484	1
500		<u> </u>	min	-242.985		-588.547	3	-78.238	1	0	2	.004	15	827	3
		4		409.781	2	568.797		-76.236	15		3		1	.192	
501		4	max		3_		2		1	0		.063			1
502		-	min	-242.496	2	<u>-589.556</u>	3	-78.238	_	0	2	.002	15	516	3
503		5	max	410.148	3_	567.451	2	-2.875	15	0	3	.022	1	004	15
504			min	-242.006	2	-590.566	3	-78.238	1_	0	2	0	15	205	3
505		6	max	410.516	3_	566.105	2	-2.875	15	0	3	0	15	.107	3
506			min	-241.516	2	-591.575	3	-78.238	1_	0	2	019	1	428	2
507		7	max	410.883	3_	564.759	2	-2.875	15	0	3	002	15	.42	3
508			min	-241.026	2	-592.585	3	-78.238	1	0	2	061	1	726	2
509		8	max		<u>3</u>	563.413	2	-2.875	15	0	3	004	15	.733	3
510			min	-240.536	2	-593.594	3	-78.238	1	0	2	102	1	-1.024	2
511		9	max	421.19	3	51.157	2	-4.315	15	0	9	.061	1	.855	3
512			min	-181.789	2	.409	15		1	0	3	.002	15	-1.171	2
513		10	max	421.557	3_	49.81	2	-4.315	15	0	9	0	15	.833	3
514			min	-181.299	2	.003	15		1	0	3	0	1	-1.198	2
515		11	max	421.924	3	48.464	2	-4.315	15	0	9	002	15	.812	3
516			min	-180.809	2	-1.664	4	-117.419	1	0	3	063	1	-1.224	2
517		12	max	431.756	3	389.571	3	-2.806	15	0	2	.101	1	.709	3
518			min	-122.021	2	-669.678	2	-76.536	1	0	3	.004	15	-1.085	2
519		13	max	432.124	3	388.562	3	-2.806	15	0	2	.06	1	.503	3
520			min	-121.531	2	-671.024	2	-76.536	1	0	3	.002	15	731	2
521		14	max	432.491	3	387.552	3	-2.806	15	0	2	.02	1	.299	3
522			min	-121.041	2	-672.37	2	-76.536	1	0	3	0	15	377	2
523		15	max	432.859	3	386.543	3	-2.806	15	0	2	0	15	.094	3
524			min		2	-673.716		-76.536	1	0	3	02	1	046	1
525		16	max		3	385.533	3	-2.806	15	0	2	002	15	.334	2
526			min	-120.061	2	-675.062	2	-76.536	1	0	3	061	1	109	3
527		17		433.594	3	384.524	3	-2.806	15	0	2	004	15	.691	2
528			min		2	-676.408	2	-76.536	1	0	3	101	1	313	3
529		18	max		15	680.784	2	-3.089	15	0	3	005	15	.348	2
530		Ŭ	min		1	-315.989	3	-84.036	1	0	2	145	1	154	3
531		19	max	-5.28	15	679.438	2	-3.089	15	0	3	007	15	.013	3
532		'	min	-144.841	1	-316.998	3	-84.036	1	0	2	189	1	012	1
533	M5	1	max		1	2666.48	3	0	1	0	1	0	1	.031	2
534	IVIO	+	min	9.698	12	-1641.707	1	0	1	0	1	0	1	0	3
535		2		316.444	1	2665.471	3	0	1	0	1	0	1	.894	1
536			min	9.943	12	-1643.053	1	0	1	0	1	0	1	-1.407	3
537		3		1306.818	3	1692.191	2	0	1	0	1	0	1	1.722	1
538		3	min	-832.725	2	-1853.753	3	0	1	0	1	0	1	-2.759	3
		1									•				
539		4	шах	1307.185	3_	1690.845	2	0	1	0	<u>1</u>	0	1	.85	1

Model Name

Schletter, Inc.HCV

:

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-832.235	2	-1854.762	3	0	1	0	1	0	1	-1.78	3
541		5	max	1307.552	3	1689.499	2	0	1	0	1	0	1	.017	9
542			min	-831.745	2	-1855.772	3	0	1	0	1	0	1	801	3
543		6	max	1307.92	3	1688.153	2	0	1	0	1	0	1	.178	3
544			min	-831.255	2	-1856.781	3	0	1	0	1	0	1	979	2
545		7	max	1308.287	3	1686.807	2	0	1	0	1	0	1	1.158	3
546			min	-830.765	2	-1857.791	3	0	1	0	1	0	1	-1.869	2
547		8	max	1308.655	3	1685.461	2	0	1	0	1	0	1	2.139	3
548			min	-830.275	2	-1858.8	3	0	1	0	1	0	1	-2.759	2
549		9	max	1322.87	3	171.621	2	0	1	0	1	0	1	2.461	3
550			min	-707.066	2	.406	15	0	1	0	1	0	1	-3.143	2
551		10	max	1323.237	3	170.275	2	0	1	0	1	0	1	2.383	3
552			min	-706.576	2	0	15	0	1	0	1	0	1	-3.233	2
553		11	max	1323.604	3	168.929	2	0	1	0	1	0	1	2.305	3
554			min	-706.086	2	-1.569	4	0	1	0	1	0	1	-3.322	2
555		12	max	1338.033	3	1204.701	3	0	1	0	1	0	1	2.023	3
556			min	-582.958	2	-2032.496	2	0	1	0	1	0	1	-2.974	2
557		13	max	1338.401	3	1203.692	3	0	1	0	1	0	1	1.388	3
558			min	-582.468	2	-2033.842	2	0	1	0	1	0	1	-1.902	2
559		14	max	1338.768	3	1202.682	3	0	1	0	1	0	1	.753	3
560			min	-581.978	2	-2035.188	2	0	1	0	1	0	1	828	2
561		15	max	1339.135	3	1201.673	3	0	1	0	1	0	1	.246	2
562			min	-581.488	2	-2036.534	2	0	1	0	1	0	1	003	13
563		16	max	1339.503	3	1200.663	3	0	1	0	1	0	1	1.321	2
564			min	-580.999	2	-2037.88	2	0	1	0	1	0	1	515	3
565		17	max	1339.87	3	1199.654	3	0	1	0	1	0	1	2.397	2
566			min	-580.509	2	-2039.226	2	0	1	0	1	0	1	-1.148	3
567		18	max	-10.396	12	2299.471	2	0	1	0	1	0	1	1.235	2
568			min	-315.94	1	-1090.635	3	0	1	0	1	0	1	601	3
569		19	max	-10.151	12	2298.125	2	0	1	0	1	0	1	.023	1
570			min	-315.45	1	-1091.644	3	0	1	0	1	0	1	025	3
571	<u>M9</u>	1	max		1_	800.429	3	78.806	1	0	3	007	15	00	3
572			min	5.274	15	-482.257	1	2.901	15	0	1	188	1	016	2
573		2	max		1	799.419	3	78.806	1	0	3	005	15	.241	1
574			min	5.422	15	-483.603	1	2.901	15	0	1	146	1	422	3
575		3	max		3	570.143	2	78.238	1	0	2	004	15	.484	1
576			min	-242.985	2	-588.547	3	2.875	15	0	3	105	1	827	3
577		4	max		3	568.797	2	78.238	1	0	2	002	15	.192	1
578			min	-242.496	2	-589.556	3	2.875	15	0	3	063	1	516	3
579		5	max	410.148	3	567.451	2	78.238	1	0	2	0	15	004	15
580				-242.006				2.875	15		3	022	1	205	3
581		6		410.516	3	566.105	2	78.238	1	0	2	.019	1	.107	3
582			min		2	-591.575	3	2.875	15	0	3	0	15	428	2
583		7		410.883	3	564.759	2	78.238	1	0	2	.061	1	.42	3
584			min	-241.026	2	-592.585	3	2.875	15	0	3	.002	15	<u>726</u>	2
585		8		411.251	3	563.413	2	78.238	1	0	2	.102	1	.733	3
586			min		2	-593.594	3	2.875	15	0	3	.004	15	-1.024	2
587		9	max		3	51.157	2	117.419	1	0	3	002	15	.855	3
588		4.0		-181.789		.409	15	4.315	15	0	9	061	1	<u>-1.171</u>	2
589		10	max		3	49.81	2	117.419	1	0	3	0	1	.833	3
590		4.4	min		2	.003	15	4.315	15	0	9	0	15	<u>-1.198</u>	2
591		11		421.924	3	48.464	2	117.419	1	0	3	.063	1	.812	3
592		4.0	min		2	-1.664	4	4.315	15	0	9	.002	15	-1.224	2
593		12		431.756	3	389.571	3	76.536	1	0	3	004	15	.709	3
594		40	min	-122.021	2	-669.678	2	2.806	15	0	2	101	1	<u>-1.085</u>	2
595		13		432.124	3	388.562	3	76.536	1	0	3	002	15	.503	3
596			min	-121.531	2	-671.024	2	2.806	15	0	2	06	1	731	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	432.491	3	387.552	3	76.536	1	0	3	0	15	.299	3
598			min	-121.041	2	-672.37	2	2.806	15	0	2	02	1	377	2
599		15	max	432.859	3	386.543	3	76.536	1	0	3	.02	1	.094	3
600			min	-120.551	2	-673.716	2	2.806	15	0	2	0	15	046	1
601		16	max	433.226	3	385.533	3	76.536	1	0	3	.061	1	.334	2
602			min	-120.061	2	-675.062	2	2.806	15	0	2	.002	15	109	3
603		17	max	433.594	3	384.524	3	76.536	1	0	3	.101	1	.691	2
604			min	-119.571	2	-676.408	2	2.806	15	0	2	.004	15	313	3
605		18	max	-5.428	15	680.784	2	84.036	1	0	2	.145	1	.348	2
606			min	-145.331	1	-315.989	3	3.089	15	0	3	.005	15	154	3
607		19	max	-5.28	15	679.438	2	84.036	1	0	2	.189	1	.013	3
608			min	-144.841	1	-316.998	3	3.089	15	0	3	.007	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.126	2	.007	3 1.02e-2	2	NC	1_	NC	1
2			min	0	15	026	3	004	2 -2.129e-3	3	NC	1	NC	1
3		2	max	0	1	.25	3	.025	1 1.157e-2	2	NC	5	NC	2
4			min	0	15	032	1	0	10 -2.134e-3	3	781.951	3	8852.847	1
5		3	max	0	1	.474	3	.059	1 1.294e-2	2	NC	5	NC	3
6			min	0	15	147	1	.002	10 -2.138e-3	3	432.069	3	3673.781	1
7		4	max	0	1	.61	3	.089	1 1.431e-2	2	NC	5	NC	3
8			min	0	15	209	1	.003	15 -2.142e-3	3	339.749	3	2449.674	1
9		5	max	0	1	.641	3	.104	1 1.569e-2	2	NC	5	NC	3
10			min	0	15	209	1	.004	15 -2.147e-3	3	323.704	3	2099.41	1
11		6	max	0	1	.571	3	.099	1 1.706e-2	2	NC	5	NC	3
12			min	0	15	148	1	.003	10 -2.151e-3	3	361.939	3	2189.873	1
13		7	max	0	1	.419	3	.077	1 1.843e-2	2	NC	5	NC	3
14			min	0	15	041	1	0	10 -2.156e-3	3	484.92	3	2823.81	1
15		8	max	0	1	.227	3	.044	1 1.98e-2	2	NC	2	NC	2
16			min	0	15	.002	15	004	10 -2.16e-3	3	853.17	3	5036.815	1
17		9	max	0	1	.229	2	.023	3 2.117e-2	2	NC	4	NC	1
18			min	0	15	.005	15	009	2 -2.165e-3	3	2094.414	2	NC	1
19		10	max	0	1	.279	2	.023	3 2.254e-2	2	NC	3	NC	1
20			min	0	1	026	3	015	2 -2.169e-3	3	1408.815	2	NC	1
21		11	max	0	15	.229	2	.023	3 2.117e-2	2	NC	4	NC	1
22			min	0	1	.005	15	009	2 -2.165e-3	3	2094.414	2	NC	1
23		12	max	0	15	.227	3	.044	1 1.98e-2	2	NC	2	NC	2
24			min	0	1	.002	15	004	10 -2.16e-3	3	853.17	3	5036.815	1
25		13	max	0	15	.419	3	.077	1 1.843e-2	2	NC	5	NC	3
26			min	0	1	041	1	0	10 -2.156e-3	3	484.92	3	2823.81	1
27		14	max	0	15	.571	3	.099	1 1.706e-2	2	NC	5	NC	3
28			min	0	1	148	1	.003	10 -2.151e-3	3	361.939	3	2189.873	1
29		15	max	0	15	.641	3	.104	1 1.569e-2	2	NC	5	NC	3
30			min	0	1	209	1	.004	15 -2.147e-3	3	323.704	3	2099.41	1
31		16	max	0	15	.61	3	.089	1 1.431e-2	2	NC	5	NC	3
32			min	0	1	209	1	.003	15 -2.142e-3	3	339.749	3	2449.674	1
33		17	max	0	15	.474	3	.059	1 1.294e-2	2	NC	5	NC	3
34			min	0	1	147	1	.002	10 -2.138e-3	3	432.069	3	3673.781	1
35		18	max	0	15	.25	3	.025	1 1.157e-2	2	NC	5	NC	2
36			min	0	1	032	1	0	10 -2.134e-3	3	781.951	3	8852.847	1
37		19	max	0	15	.126	2	.007	3 1.02e-2	2	NC	1	NC	1
38			min	0	1	026	3	004	2 -2.129e-3		NC	1	NC	1
39	M14	1	max	0	1	.255	3	.007	3 5.941e-3	2	NC	1	NC	1
40			min	0	15	391	2	003	2 -4.552e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r				, ,	LC
41		2	max	0	1	.541	3	.017	1 7.061e-3	2	NC	5	NC	1
42			min	0	15	662	2	001	10 -5.492e-3	3	755.15	3	NC	1
43		3	max	0	1	.785	3	.047	1 8.181e-3	2	NC	5	NC	2
44			min	0	15	899	2	.001	10 -6.432e-3	3	407.413	3	4658.817	1
45		4	max	0	1	.959	3	.075	1 9.302e-3	2	NC	15	NC	3
46			min	0	15	-1.078	2	.003	15 -7.371e-3	3	306.969	3	2896.861	1
47		5	max	0	1	1.047	3	.091	1 1.042e-2	2	NC	15	NC	3
48			min	0	15	-1.186	2	.004	15 -8.311e-3	3	271.741	2	2389.026	1
49		6	max	0	1	1.05	3	.09	1 1.154e-2	2	NC	15	NC	3
50			min	0	15	-1.223	2	.003	10 -9.251e-3	3	259.77	2	2431.262	1
51		7	max	0	1	.983	3	.071	1 1.266e-2	2	NC	15	NC	2
52			min	0	15	-1.198	2	0	10 -1.019e-2	3	267.808	2	3079.504	1
53		8	max	0	1	.872	3	.041	1 1.378e-2	2	NC	15	NC	2
54			min	0	15	-1.132	2	004	10 -1.113e-2	3	291.339	2	5405.576	1
55		9	max	0	1	.763	3	.021	3 1.49e-2	2	NC	5	NC	1
56			min	0	15	-1.06	2	008	2 -1.207e-2	3	322.974	2	NC	1
57		10	max	0	1	.711	3	.02	3 1.602e-2	2	NC	5	NC	1
58			min	0	1	-1.024	2	014	2 -1.301e-2	3	341.394	2	NC	1
59		11	max	0	15	.763	3	.021	3 1.49e-2	2	NC	5	NC	1
60			min	0	1	-1.06	2	008	2 -1.207e-2	3	322.974	2	NC	1
61		12	max	0	15	.872	3	.041	1 1.378e-2	2	NC	15	NC	2
62			min	0	1	-1.132	2	004	10 -1.113e-2	3	291.339	2	5405.576	1
63		13	max	0	15	.983	3	.071	1 1.266e-2	2	NC	15	NC	2
64			min	0	1	-1.198	2	0	10 -1.019e-2	3	267.808	2	3079.504	1
65		14	max	0	15	1.05	3	.09	1 1.154e-2	2	NC	15	NC	3
66			min	0	1	-1.223	2	.003	10 -9.251e-3	3	259.77	2	2431.262	1
67		15	max	0	15	1.047	3	.091	1 1.042e-2	2	NC	15	NC	3
68			min	0	1	-1.186	2	.004	15 -8.311e-3	3	271.741	2	2389.026	
69		16	max	0	15	.959	3	.075	1 9.302e-3	2	NC	15	NC	3
70			min	0	1	-1.078	2	.003	15 -7.371e-3	3	306.969	3	2896.861	1
71		17	max	0	15	.785	3	.047	1 8.181e-3	2	NC	5	NC	2
72			min	0	1	899	2	.001	10 -6.432e-3	3	407.413	3	4658.817	1
73		18	max	0	15	.541	3	.017	1 7.061e-3	2	NC	5	NC	1
74			min	0	1	662	2	001	10 -5.492e-3	3	755.15	3	NC	1
75		19	max	0	15	.255	3	.007	3 5.941e-3	2	NC	1	NC	1
76			min	0	1	391	2	003	2 -4.552e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.261	3	.006	3 3.867e-3	3	NC	1	NC	1
78			min	0	1	39	2	003	2 -6.154e-3	2	NC	1	NC	1
79		2	max	0	15	.45	3	.017	1 4.667e-3	3	NC	5	NC	1
80			min	0	1	732	2	001	10 -7.318e-3	2	632.561	2	NC	1
81		3	max	0	15	.615	3	.047	1 5.466e-3	3	NC	5	NC	2
82		Ĭ	min	0	1	-1.026	2	.001	10 -8.482e-3		339.968		4643.079	
83		4	max	0	15	.742	3	.076	1 6.266e-3	3	NC	15	NC	3
84			min	0	1	-1.239	2	.003	15 -9.645e-3	2	254.468	2	2888.519	
85		5	max	0	15	.82	3	.092	1 7.065e-3	3	NC	15		3
86		Ť	min	0	1	-1.356	2	.004	15 -1.081e-2	2	223.791	2	2382.137	
87		6	max	0	15	.85	3	.09	1 7.864e-3	3	NC	15	NC	3
88			min	0	1	-1.374	2	.003	10 -1.197e-2	2	219.555	2	2423.171	1
89		7	max	0	15	.837	3	.071	1 8.664e-3	3	NC	15	NC	3
90			min	0	1	-1.311	2	0	10 -1.314e-2	2	234.731	2	3065.43	1
91		8	max	0	15	.796	3	.041	1 9.463e-3	3	NC	15	NC	2
92			min	0	1	-1.196	2	003	10 -1.43e-2	2	268.001	2	5360.135	
93		9	max	0	15	.749	3	.019	3 1.026e-2	3	NC	5	NC	1
94			min	0	1	-1.079	2	007	2 -1.546e-2	2	313.581	2	NC	1
95		10	max	0	1	.726	3	.019	3 1.106e-2	3	NC	5	NC	1
96		10	min	0	1	-1.023	2	013	2 -1.663e-2	2	341.463	2	NC	1
97		11	max	0	1	.749	3	.019	3 1.026e-2	3	NC	5	NC	1
JI		<u> </u>	IIIIax	U		.145	_ J	.018	J 1.0206-2	J	INC	_J_	INC	\perp

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	-1.079	2	007	2 -1.546e-2	2	313.581	2	NC	1
99		12	max	0	1	.796	3	.041	1 9.463e-3	3	NC	15	NC	2
100			min	0	15	-1.196	2	003	10 -1.43e-2	2	268.001	2	5360.135	_
101		13	max	0	1	.837	3	.071	1 8.664e-3	3_	NC	<u>15</u>	NC	3
102		4.4	min	0	15	<u>-1.311</u>	2	0	10 -1.314e-2	2	234.731	2	3065.43	1
103		14	max	0	1	.85	3	.09	1 7.864e-3	3	NC	<u>15</u>	NC	3
104		4.5	min	0	15	-1.374	2	.003	10 -1.197e-2	2	219.555	2	2423.171	1
105		15	max	0	1	.82	3	.092	1 7.065e-3	3_	NC 000 704	15	NC	3
106		40	min	0	15	<u>-1.356</u>	2	.004	15 -1.081e-2	2	223.791	2	2382.137	1
107		16	max	0	1	.742	3	.076	1 6.266e-3	3	NC 054 400	<u>15</u>	NC	3
108		4-7	min	0	15	-1.239	2	.003	15 -9.645e-3	2	254.468	2	2888.519	
109		17	max	0	1	<u>.615</u>	3	047	1 5.466e-3	3	NC	5	NC	2
110		10	min	0	15	-1.026	2	.001	10 -8.482e-3	2	339.968	2	4643.079	
111		18	max	0	1	<u>.45</u>	3	.017	1 4.667e-3	3_	NC	5	NC	1
112		10	min	0	15	732	2	001	10 -7.318e-3	2	632.561	2	NC	1
113		19	max	0	1	.261	3	.006	3 3.867e-3	3	NC	_1_	NC	1
114			min	0	15	39	2	003	2 -6.154e-3	2	NC	1_	NC	1
115	<u>M16</u>	1	max	0	15	.111	2	.005	3 6.943e-3	3	NC	1_	NC	1
116			min	0	1	087	3	003	2 -8.545e-3	2	NC	1_	NC	1
117		2	max	0	15	.003	3	.025	1 8.045e-3	3_	NC	_5_	NC	2
118			min	0	1	106	2	0	10 -9.531e-3	2	999.125	2	8896.66	1
119		3	max	0	15	.072	3	.059	1 9.147e-3	3_	NC	5	NC	3
120			min	0	1	277	2	.002	15 -1.052e-2	2	556.849	2	3678.21	1
121		4	max	0	15	.108	3	.089	1 1.025e-2	3	NC	5	NC	3
122			min	0	1	375	2	.003	15 -1.15e-2	2	444.989	2	2446.715	1
123		5	max	0	15	.102	3	.104	1 1.135e-2	3	NC	5	NC	3
124			min	0	1	384	2	.004	15 -1.253e-2	1_	436.274	2	2091.874	1
125		6	max	0	15	.058	3	1	1 1.245e-2	3	NC	5	NC	3
126			min	0	1	309	2	.004	15 -1.356e-2	1	514.919	2	2174.885	1
127		7	max	0	15	0	15	.078	1 1.355e-2	3	NC	5	NC	3
128			min	0	1	167	2	.002	10 -1.458e-2	1	779.359	2	2787.639	1
129		8	max	0	15	.039	1	.045	1 1.466e-2	3	NC	3	NC	2
130			min	0	1	105	3	002	10 -1.561e-2	1	2100.886	2	4892.225	1
131		9	max	0	15	.175	1	.017	3 1.576e-2	3	NC	4	NC	1
132			min	0	1	182	3	006	10 -1.664e-2	1	2285.042	3	NC	1
133		10	max	0	1	.235	1	.017	3 1.686e-2	3	NC	4	NC	1
134			min	0	1	216	3	012	2 -1.766e-2	1	1677.568	3	NC	1
135		11	max	0	1	.175	1	.017	3 1.576e-2	3	NC	4	NC	1
136			min	0	15	182	3	006	10 -1.664e-2	1	2285.042	3	NC	1
137		12	max	0	1	.039	1	.045	1 1.466e-2	3	NC	3	NC	2
138			min	0	15	105	3	002	10 -1.561e-2	1	2100.886	2	4892.225	1
139		13	max	0	1	0	15	.078	1 1.355e-2	3	NC	5	NC	3
140			min	0	15	167	2	.002	10 -1.458e-2	1	779.359	2	2787.639	1
141		14	max	0	1	.058	3	.1	1 1.245e-2	3	NC	5	NC	3
142			min	0	15	309	2	.004	15 -1.356e-2	1	514.919	2	2174.885	1
143		15	max	0	1	.102	3	.104	1 1.135e-2	3	NC	5	NC	3
144			min	0	15	384	2	.004	15 -1.253e-2	1	436.274	2	2091.874	1
145		16	max	0	1	.108	3	.089	1 1.025e-2	3	NC	5	NC	3
146			min	0	15	375	2	.003	15 -1.15e-2	2	444.989	2	2446.715	
147		17	max	0	1	.072	3	.059	1 9.147e-3	3	NC	5	NC	3
148			min	0	15	277	2	.002	15 -1.052e-2	2	556.849	2	3678.21	1
149		18	max	0	1	.003	3	.025	1 8.045e-3	3	NC	5	NC	2
150			min	0	15	106	2	0	10 -9.531e-3		999.125	2	8896.66	1
151		19	max	0	1	.111	2	.005	3 6.943e-3	3	NC	1	NC	1
152			min	0	15	087	3	003	2 -8.545e-3	2	NC	1	NC	1
153	M2	1	max	.006	2	.006	2	.006	1 -5.837e-6		NC	1	NC	2
154			min	008	3	01	3	0	15 -1.589e-4	1	9689.033	2	9071.368	
											, , , , , , , , , , , , , , , , , , , ,	_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
155		2	max	.006	2	.005	2	.006	1_	-5.448e-6	<u>15</u>	NC	_1_	NC	2
156			min	007	3	009	3	0	15	-1.482e-4	<u>1</u>	NC	1_	9894.946	1
157		3	max	.005	2	.004	2	.005	1_	-5.058e-6		NC	_1_	NC	1
158			min	007	3	009	3	0		-1.376e-4	1_	NC	1_	NC	1
159		4	max	.005	2	.004	2	.005	1	-4.669e-6	<u>15</u>	NC	_1_	NC	1
160		_	min	006	3	009	3	0	15	-1.27e-4	_1_	NC	1_	NC	1
161		5	max	.005	2	.003	2	.004	1	-4.28e-6	<u>15</u>	NC	_1_	NC	1
162			min	006	3	008	3	0	15	-1.164e-4	_1_	NC	_1_	NC	1
163		6	max	.004	2	.002	2	004	1	-3.89e-6	<u>15</u>	NC	1_	NC	1
164		_	min	006	3	008	3	0	15	-1.058e-4	1_	NC	1_	NC	1
165		7	max	.004	2	.002	2	.003	1	-3.501e-6	<u>15</u>	NC	1_	NC	1
166			min	005	3	007	3	0	15	-9.518e-5	_1_	NC	1_	NC	1
167		8	max	.004	2	.001	2	.003	1	-3.111e-6	<u>15</u>	NC	1_	NC NC	1
168			min	005	3	007	3	0	15	-8.456e-5	1_	NC	1_	NC	1
169		9	max	.003	2	0	2	.002	1	-2.722e-6	<u>15</u>	NC	1_	NC	1
170		10	min	004	3	006	3	0	15	-7.395e-5	1_	NC	1_	NC	1
171		10	max	.003	2	0	2	.002	1	-2.332e-6	<u>15</u>	NC	1	NC NC	1
172		1.4	min	004	3	006	3	0	15	-6.333e-5	1_	NC	1_	NC NC	1
173		11	max	.003	2	0	2	.002	1	-1.943e-6	<u>15</u>	NC		NC NC	1
174		40	min	003	3	005	3	0	15	-5.272e-5	1_	NC NC	1_	NC NC	1
175		12	max	.002	2	0	2	.001	1	-1.553e-6	<u>15</u>	NC NC	1	NC NC	1
176		40	min	003	3	005	3	0	15	-4.211e-5	1_	NC NC	1_	NC NC	1
177		13	max	.002	2	0	15	0	1	-1.164e-6	<u>15</u>	NC NC	1	NC NC	1
178		4.4	min	003	3	004	3	0	15	-3.149e-5	1_	NC NC	1_	NC NC	1
179		14	max	.002	2	0	15	0	1	-7.745e-7	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
180		4.5	min	002	3	004	3	0	15	-2.088e-5	1_	NC NC	_	NC NC	
181		15	max	.001	2	0	15	0	1	-3.85e-7	<u>15</u>	NC NC	1	NC NC	1
182		4.0	min	002	3	003	3	0	15	-1.026e-5	1_	NC NC	1_	NC NC	1
183		16	max	0	2	0	15	0	1	4.152e-7	2	NC NC	1	NC NC	1
184 185		17	min	001 0	2	002 0	15	<u> </u>	1 <u>5</u>	-6.482e-7 1.096e-5	<u>3</u>	NC NC	1	NC NC	1
186		17	max	0	3	002	3	0	15	2.07e-7	12	NC NC	1	NC NC	1
187		18	min	0	2	<u>002</u> 0	15	0	1	2.07e-7 2.158e-5	1	NC NC	1	NC NC	1
188		10	max	0	3	0	3	0	15	7.833e-7	15	NC NC	1	NC NC	1
189		19		0	1	0	1	0	1	3.219e-5	1	NC	1	NC	1
190		19	max	0	1	0	1	0	1	1.173e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.725e-7	15	NC	1	NC	1
192	IVIO		min	0	1	0	1	0	1	-1.021e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	8.305e-6	1	NC	1	NC	1
194			min	0	2	002	4	0	15	3.05e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	2.683e-5		NC	1	NC NC	1
196			min	0	2	003	4	0	15		15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	4.535e-5	1	NC	1	NC	1
198			min	0	2	005	4	0	15		15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	6.387e-5	1	NC	1	NC	1
200			min	001	2	007	4	0	15	2.337e-6	15	NC	1	NC	1
201		6	max	.002	3	002	15	0	1	8.239e-5	1	NC	1	NC	1
202			min	001	2	009	4	0	15	3.015e-6	15	NC	1	NC	1
203		7	max	.002	3	002	15	.001	1	1.009e-4	1	NC	1	NC	1
204			min	002	2	01	4	0	15	3.692e-6		8931.544	4	NC	1
205		8	max	.002	3	003	15	.001	1	1.194e-4	1	NC	1	NC	1
206			min	002	2	012	4	0	15	4.37e-6		7990.887	4	NC	1
207		9	max	.003	3	003	15	.002	1	1.379e-4	1	NC	1	NC	1
208			min	002	2	013	4	0	15		15		4	NC	1
209		10	max	.003	3	003	15	.002	1	1.565e-4	1	NC	2	NC	1
210			min	002	2	013	4	0	15	5.725e-6		7155.338	4	NC	1
211		11	max	.003	3	003	15	.002	1	1.75e-4	1	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC		LC
212			min	003	2	013	4	0	15	6.402e-6	15	7121.117	4	NC	1
213		12	max	.004	3	003	15	.003	1	1.935e-4	_1_	NC	2	NC	1
214			min	003	2	013	4	0	15	7.08e-6	15	7329.447	4	NC	1
215		13	max	.004	3	003	15	.003	1	2.12e-4	_1_	NC	_1_	NC	1
216			min	003	2	012	4	0	15	7.757e-6	15	7824.554	4_	NC	1
217		14	max	.004	3	003	15	.003	1	2.305e-4	1_	NC	1	NC NC	1
218		45	min	003	2	011	4	0	15	8.435e-6		8717.616	4	NC NC	1
219		15	max	.005	3	002	15	.004	1	2.491e-4	1_	NC NC	1_	NC NC	1
220		40	min	004	2	009	4	0	15	9.112e-6	<u>15</u>	NC NC	1_	NC NC	1
221		16	max	.005	3	002 008	15	<u>.004</u> 0	15	2.676e-4	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	004 .005	3		15	.005		9.79e-6 2.861e-4	<u>15</u>	NC NC	1	NC NC	1
224		17	max	004	2	001 006	1	<u>.005</u>	1 15	1.047e-5	<u>1</u> 15	NC NC	1	NC NC	1
225		18	min max	.006	3	<u>006</u> 0	15	.005	1	3.046e-4	1 <u>1</u>	NC NC	1	NC NC	1
226		10	min	004	2	004	1	<u>.005</u>	15	1.114e-5	15	NC	1	NC	1
227		19	max	.006	3	- <u>004</u> 0	15	.006	1	3.231e-4	1	NC	1	NC	1
228		13	min	005	2	003	1	0	15	1.182e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.003	2	0	15		1	NC	1	NC	2
230	IVIT	'	min	0	3	006	3	006	1	7.413e-7	15	NC	1	4246.304	1
231		2	max	.003	1	.004	2	0	15	1.996e-5	1	NC	1	NC	2
232			min	0	3	006	3	005	1	7.413e-7	15	NC	1	4621.091	1
233		3	max	.003	1	.004	2	0	15	1.996e-5	1	NC	1	NC	2
234			min	0	3	005	3	005	1	7.413e-7	15	NC	1	5066.944	1
235		4	max	.002	1	.003	2	0	15	1.996e-5	1	NC	1	NC	2
236			min	0	3	005	3	004	1	7.413e-7	15	NC	1	5602.362	1
237		5	max	.002	1	.003	2	0	15	1.996e-5	1	NC	1	NC	2
238			min	0	3	005	3	004	1	7.413e-7	15	NC	1	6252.479	1
239		6	max	.002	1	.003	2	0	15	1.996e-5	1	NC	1	NC	2
240			min	0	3	004	3	004	1	7.413e-7	15	NC	1	7052.156	1
241		7	max	.002	1	.003	2	0	15	1.996e-5	1_	NC	1_	NC	2
242			min	0	3	004	3	003	1	7.413e-7	15	NC	1	8050.875	1
243		8	max	.002	1	.003	2	0	15	1.996e-5	_1_	NC	_1_	NC	2
244			min	0	3	004	3	003	1	7.413e-7	15	NC	1_	9320.81	1
245		9	max	.002	1	.002	2	0	15	1.996e-5	_1_	NC	_1_	NC	1
246			min	0	3	003	3	002	1	7.413e-7	15	NC	_1_	NC	1
247		10	max	.001	1	.002	2	0	15	1.996e-5	_1_	NC	_1_	NC	1
248			min	0	3	003	3	002	1	7.413e-7	<u>15</u>	NC	1_	NC	1
249		11	max	.001	1	.002	2	0	15	1.996e-5	_1_	NC	1_	NC NC	1
250		40	min	0	3	003	3	002	1_	7.413e-7	15	NC	_1_	NC NC	1
251		12	max	.001	1	.002	2	0	15	1.996e-5	1_	NC NC	1_	NC NC	1
252		40	min		3	002	3	001		7.413e-7			1	NC NC	1
253		13	max	0	3	.001	2	0		1.996e-5	1_	NC NC	1	NC	1
254		1.1	min	0	1	002	2	0	1 1 5	7.413e-7	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
255		14	max	0	3	.001	3	0	1	1.996e-5 7.413e-7	15		1	NC NC	1
256 257		15	min	0	1	002 0	2	<u> </u>	15	1.996e-5	<u>15</u> 1	NC NC	1	NC NC	1
258		15	max	0	3	001	3	0	1	7.413e-7	15	NC	1	NC	1
259		16		0	1	0	2	0	15		1	NC	1	NC	1
260		10	max	0	3	0	3	0	1	7.413e-7	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.996e-5	1 <u>5</u>	NC NC	1	NC NC	1
262		17	min	0	3	0	3	0	1	7.413e-7	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.996e-5	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	7.413e-7	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.996e-5	1	NC	1	NC	1
266		'	min	0	1	0	1	0	1	7.413e-7	15	NC	1	NC	1
267	M6	1	max	.019	2	.021	2	0	1	0	1	NC	4	NC	1
268			min	025	3	031	3	0	1	0	1	1792.28	3	NC	1
			1111111	.020	_							02.20			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
269		2	max	.017	2	.02	2	0	1	0	1	NC	4	NC	1
270			min	023	3	029	3	0	1	0	1		3	NC	1
271		3	max	.016	2	.018	2	00	1	0	1	NC	4	NC	1
272			min	022	3	027	3	0	1	0	1	2023.904	3	NC	1
273		4	max	.015	2	.016	2	0	1	0	1	NC	4_	NC	1
274		_	min	021	3	026	3	0	1	0	1	2163.577	3	NC NC	1
275		5	max	.014	2	.014	2	0	1	0	1	NC	4	NC NC	1
276			min	019	3	024	3	0	1	0	1_	2323.748	3	NC NC	1
277		6	max	.013	2	.013	2	0	1	0	1	NC	4	NC NC	1
278 279		7	min	018	2	022 .011	2	0	1	0	1	2509.189 NC	<u>3</u>	NC NC	1
280			max	.012 017	3	02	3	0	1	0	1	2726.26	3	NC NC	1
281		8	min	.017	2	<u>02</u> .01	2	0	1		1	NC	<u>ა</u> 1	NC NC	1
282		0	max	015	3	019	3	0	1	0	1	2983.638	3	NC NC	1
283		9	max	.01	2	.008	2	0	1	0	1	NC	1	NC NC	1
284		-	min	014	3	017	3	0	1	0	1		3	NC NC	1
285		10	max	.009	2	.007	2	0	1	0	1	NC	1	NC	1
286		10	min	012	3	015	3	0	1	0	1	3673.324	3	NC	1
287		11	max	.008	2	.005	2	0	1	0	1	NC	1	NC	1
288			min	011	3	013	3	0	1	0	1	4149.521	3	NC	1
289		12	max	.007	2	.004	2	0	1	0	1	NC	1	NC	1
290		·-	min	01	3	012	3	0	1	0	1	4763.455	3	NC	1
291		13	max	.006	2	.003	2	0	1	0	1	NC	1	NC	1
292			min	008	3	01	3	0	1	0	1	5584.116	3	NC	1
293		14	max	.005	2	.002	2	0	1	0	1	NC	1	NC	1
294			min	007	3	008	3	0	1	0	1		3	NC	1
295		15	max	.004	2	.002	2	0	1	0	1	NC	1	NC	1
296			min	006	3	007	3	0	1	0	1	8466.586	3	NC	1
297		16	max	.003	2	0	2	0	1	0	1	NC	1	NC	1
298			min	004	3	005	3	0	1	0	1	NC	1	NC	1
299		17	max	.002	2	0	2	0	1	0	1	NC	1_	NC	1
300			min	003	3	003	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	2	00	2	00	1	0	1	NC	1_	NC	1
302			min	001	3	002	3	0	1	0	1	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
307		2	max	.001	3	0	2	0	1	0	1	NC	1	NC	1
308			min	0	2	003	3	0	1	0	1_	NC NC	1_	NC NC	1
309		3	max	.002	3	0	2	0	1	0	1	NC NC	1	NC NC	1
310		1	min	002	2	005	3	0	1	0	1_1	NC NC	1	NC NC	1
311		4	max	.003	3	001	15	0	1	0	1	NC NC	1	NC NC	1
312		-	min	003	2	007			1	0	1	NC NC	1	NC NC	1
313		5	max min	.004 004	3	002 009	15	<u> </u>	1	0	1	NC NC	1	NC NC	1
315		6	max	.005	3	009	15	0	1	0	1	NC	+	NC	1
316		-	min	005	2	011	3	0	1	0	1	8897.166	3	NC NC	1
317		7	max	.006	3	002	15	0	1	0	1	NC	1	NC	1
318			min	006	2	002 012	3	0	1	0	1		3	NC NC	1
319		8	max	.007	3	012	15	0	1	0	1	NC	1	NC NC	1
320			min	007	2	013	3	0	1	0	1		3	NC NC	1
321		9	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
322			min	008	2	014	3	0	1	0	1	7069.732	3	NC	1
323		10	max	.009	3	003	15	0	1	0	1	NC	1	NC	1
324		1.0	min	009	2	014	3	0	1	0	1		3	NC	1
325		11	max	.01	3	003	15	0	1	0	1	NC	1	NC	1
			,								_		_		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
326			min	01	2	014	3	0	1	0	1	7122.998	3	NC	1
327		12	max	.011	3	003	15	0	1	0	<u>1</u>	NC	<u>1</u>	NC	1
328			min	011	2	014	3	0	1	0	1	7452.656	4	NC	1
329		13	max	.012	3	003	15	0	1	0	1	NC	1	NC	1
330			min	012	2	013	3	0	1	0	1	7950.513	4	NC	1
331		14	max	.013	3	003	15	0	1	0	1	NC	1	NC	1
332			min	013	2	012	3	0	1	0	1	8852.807	4	NC	1
333		15	max	.014	3	002	15	0	1	0	1	NC	1	NC	1
334			min	014	2	01	3	0	1	0	1	NC	1	NC	1
335		16	max	.015	3	002	15	0	1	0	1	NC	1	NC	1
336			min	015	2	009	1	0	1	0	1	NC	1	NC	1
337		17	max	.017	3	001	15	0	1	0	1	NC	1	NC	1
338			min	015	2	008	1	0	1	0	1	NC	1	NC	1
339		18	max	.018	3	0	15	0	1	0	1	NC	1	NC	1
340			min	016	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.019	3	0	15	0	1	0	1	NC	<u> </u>	NC	1
342		10	min	017	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.016	2	0	1	0	1	NC	1	NC	1
344	IVIO		min	003	3	019	3	0	1	0	1	NC	1	NC	1
345		2	max	.008	1	.015	2	0	1	0	1	NC	1	NC	1
346			min	002	3	018	3	0	1	0	1	NC NC	1	NC	1
347		3	max	.002	1	.014	2	0	1	0	1	NC	1	NC	1
		3	min	002	3	017	3	0	1	0	1	NC	1	NC	1
348		1							1		•	NC NC	_		1
349		4	max	.007	1	.013	2	0	1	0	<u>1</u> 1		1	NC NC	1
350		+	min	002	3	015	3	0	•	0		NC NC		NC NC	-
351		5	max	.006	1	.012	2	0	1	0	1	NC	1	NC	1
352			min	002	3	<u>014</u>	3	0	1	0	1_	NC NC	1_	NC NC	1
353		6	max	.006	1	.011	2	0	1	0	_1_	NC	1_	NC	1
354		_	min	002	3	013	3	0	1	0	1_	NC	1_	NC	1
355		7	max	.005	1	.011	2	0	1	0	_1_	NC	_1_	NC	1
356			min	002	3	012	3	0	1	0	1	NC	1_	NC	1
357		8	max	.005	1	01	2	0	1	0	_1_	NC	1_	NC	1
358			min	002	3	011	3	0	1	0	1_	NC	_1_	NC	1
359		9	max	.005	1	.009	2	0	1	0	_1_	NC	_1_	NC	1
360			min	001	3	01	3	0	1	0	1	NC	1_	NC	1
361		10	max	.004	1	.008	2	0	1_	0	_1_	NC	_1_	NC	1
362			min	001	3	009	3	0	1	0	1	NC	1_	NC	1
363		11	max	.004	1	.007	2	0	1	0	_1_	NC	_1_	NC	1
364			min	001	3	008	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
366			min	0	3	007	3	0	1	0	1	NC	1	NC	1
367		13	max	.003	1	.005	2	0	1	0	1	NC	1	NC	1
368			min	0	3	006	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
370			min	0	3	005	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	004	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374		Ť	min	0	3	003	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376			min	0	3	002	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378		10	min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19		0	1	<u>001</u> 0	1	0	1	0	1	NC NC	1	NC	1
		19	max	0	1	0	1	0	1	0	1	NC NC	1		1
380	N44.0	4	min					0	15	1.589e-4	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	2
381	M10	1	max	.006	2	.006	2								
382			min	008	3	01	3	006	1	5.837e-6	15	9689.033	2	9071.368	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
383		2	max	.006	2	.005	2	0	15	1.482e-4	1	NC	1	NC	2
384			min	007	3	009	3	006	1_	5.448e-6	15	NC	1_	9894.946	1
385		3	max	.005	2	.004	2	0	15	1.376e-4	1	NC	1	NC	1
386			min	007	3	009	3	005	1_	5.058e-6	15	NC	1_	NC	1
387		4	max	.005	2	.004	2	0	15	1.27e-4	1	NC NC	1	NC	1
388		_	min	006	3	009	3	005	1_	4.669e-6	15	NC NC	1_	NC	1
389		5	max	.005	2	.003	2	0	15	1.164e-4	1	NC	1	NC	1
390			min	006	3	008	3	004	1_	4.28e-6	15	NC NC	1_	NC NC	1
391		6	max	.004	2	.002	2	0	15	1.058e-4	1	NC	1	NC	1
392		-	min	006	3	008	3	004	1_	3.89e-6	15	NC NC	1_	NC NC	1
393		7	max	.004	2	.002	2	0	15	9.518e-5	1	NC	1	NC	1
394			min	005	3	007	3	003	1_	3.501e-6	15	NC NC	1_	NC NC	1
395		8	max	.004	2	.001	2	0	15	8.456e-5	1	NC	1	NC	1
396			min	005	3	007	3	003	1_	3.111e-6	15	NC	1_	NC	1
397		9	max	.003	2	0	2	0	15	7.395e-5	1	NC NC	1	NC	1
398		40	min	004	3	006	3	002	1_	2.722e-6	15	NC NC	1_	NC	1
399		10	max	.003	2	0	2	0	15	6.333e-5	1	NC	1	NC	1
400		4.4	min	004	3	006	3	002	1_	2.332e-6	15	NC	1_	NC	1_
401		11	max	.003	2	0	2	0	15	5.272e-5	1	NC	1	NC	1
402		40	min	003	3	005	3	002	1_	1.943e-6	15	NC NC	1_	NC NC	1
403		12	max	.002	2	0	2	0	15	4.211e-5	1	NC	1	NC	1
404		40	min	003	3	005	3	001	1_	1.553e-6	15	NC NC	1_	NC NC	1
405		13	max	.002	2	0	15	0	15	3.149e-5	1	NC	1	NC	1
406		4.4	min	003	3	004	3	0	1_	1.164e-6	15	NC NC	1_	NC NC	1
407		14	max	.002	2	0	15	0	15	2.088e-5	1_	NC NC	1_	NC NC	1
408		4.5	min	002	3	004	3	0	1_1	7.745e-7	15	NC NC	1_	NC NC	1
409		15	max	.001	2	0	15	0	15	1.026e-5	1	NC	1	NC	1
410		40	min	002	3	003	3	0	1_	3.85e-7	15	NC NC	1_	NC NC	1
411		16	max	0	2	0	15	0	15	6.482e-7	3	NC	1	NC	1
412		47	min	001	2	002	3	0	1_1	-4.152e-7	2	NC NC	1_	NC NC	1
413		17	max	0		0	15	0	15	-2.07e-7	12		1_	NC NC	1
414		40	min	0	3	002	3	0	1_1	-1.096e-5	1_	NC NC	1_	NC NC	1
415		18	max	0	2	0	15	0	15	-7.833e-7	15	NC NC	1	NC NC	1
416		40	min	0		0		0		-2.158e-5	4.5	NC NC		NC NC	
417		19	max	0	1	0	1	0	1	-1.173e-6	15	NC NC	1	NC NC	1
418	N444	1	min	0	1	0		0		-3.219e-5 1.021e-5	1	NC NC	_	NC NC	•
419 420	M11		max	0	1	<u>0</u> 	1	<u> </u>	1		1	NC NC	1	NC NC	1
		2	min			0		-	15	3.725e-7	15		1	NC NC	1
421 422			max	0	3		15	<u> </u>	1	-3.05e-7 -8.305e-6	<u>15</u> 1	NC NC	1	NC NC	1
423		3	min max	0	3	002 0	15	0		-9.824e-7			1	NC NC	1
424		3	min	0	2	003	4	0	1	-2.683e-5		NC	1	NC	1
425		4	max	0	3	003 001	15	0	15			NC	1	NC	1
426		4	min	0	2	005	4	0	1	-4.535e-5		NC	1	NC	1
427		5		.001	3	003	15	0	15	-4.333e-3 -2.337e-6		NC	1	NC	1
428		5	max min	001	2	002	4	0	1	-6.387e-5		NC NC	1	NC	1
429		6	max	.002	3	002	15	0	15	-3.015e-6		NC	1	NC	1
430		0	min	001	2	002	4	0	1	-8.239e-5		NC NC	1	NC	1
431		7	max	.002	3	009 002	15	0	15	-3.692e-6		NC NC	1	NC NC	1
432			min	002	2	002	4	001	1	-1.009e-4		8931.544	4	NC	1
433		8	max	.002	3	003	15	<u>001</u> 0	15	-4.37e-6	15	NC	1	NC NC	1
434		0	min	002	2	003 012	4	001	1	-1.194e-4		7990.887	4	NC	1
435		9	max	.003	3	003	15	<u>001</u> 0	15	-5.047e-6		NC	1	NC	1
436		9	min	002	2	013	4	002	1	-1.379e-4		7431.59	4	NC	1
437		10	max	.003	3	003	15	<u>002</u> 0	15	-5.725e-6		NC	2	NC	1
438		10	min	002	2	003 013	4	002	1	-1.565e-4		7155.338	4	NC NC	1
439		11	max	.003	3	003	15	0		-6.402e-6		NC	2	NC	1
TU3			πιαλ	.000	J	003	IJ	U	10	0.7026-0	IJ	INO		INO	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
440			min	003	2	013	4	002	1	-1.75e-4	1	7121.117	4	NC	1
441		12	max	.004	3	003	15	0	15	-7.08e-6	15	NC	2	NC	1
442			min	003	2	013	4	003	1	-1.935e-4	1_	7329.447	4	NC	1
443		13	max	.004	3	003	15	0	15	-7.757e-6	15	NC	1	NC	1
444			min	003	2	012	4	003	1	-2.12e-4	1	7824.554	4	NC	1
445		14	max	.004	3	003	15	0	15	-8.435e-6	15	NC	1	NC	1
446			min	003	2	011	4	003	1	-2.305e-4	1	8717.616	4	NC	1
447		15	max	.005	3	002	15	0	15	-9.112e-6	15	NC	1	NC	1
448			min	004	2	009	4	004	1	-2.491e-4	1	NC	1	NC	1
449		16	max	.005	3	002	15	0	15	-9.79e-6	15	NC	1	NC	1
450			min	004	2	008	4	004	1	-2.676e-4	1	NC	1	NC	1
451		17	max	.005	3	001	15	0	15	-1.047e-5	15	NC	1	NC	1
452			min	004	2	006	1	005	1	-2.861e-4	1	NC	1	NC	1
453		18	max	.006	3	0	15	0	15	-1.114e-5	15	NC	1	NC	1
454			min	004	2	004	1	005	1	-3.046e-4	1	NC	1	NC	1
455		19	max	.006	3	0	15	0	15		15	NC	1	NC	1
456			min	005	2	003	1	006	1	-3.231e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.004	2	.006	1	-7.413e-7	15	NC	1	NC	2
458			min	0	3	006	3	0	15	-1.996e-5	1	NC	1	4246.304	1
459		2	max	.003	1	.004	2	.005	1	-7.413e-7	15	NC	1	NC	2
460			min	0	3	006	3	0	15	-1.996e-5	1	NC	1	4621.091	1
461		3	max	.003	1	.004	2	.005	1	-7.413e-7	15	NC	1	NC	2
462			min	0	3	005	3	0	15	-1.996e-5	1	NC	1	5066.944	1
463		4	max	.002	1	.003	2	.004	1	-7.413e-7	15	NC	1	NC	2
464			min	0	3	005	3	0	15	-1.996e-5	1	NC	1	5602.362	1
465		5	max	.002	1	.003	2	.004	1	-7.413e-7	15	NC	1	NC	2
466			min	0	3	005	3	0	15	-1.996e-5	1	NC	1	6252.479	1
467		6	max	.002	1	.003	2	.004	1	-7.413e-7	15	NC	1	NC	2
468			min	0	3	004	3	0	15		1	NC	1	7052.156	1
469		7	max	.002	1	.003	2	.003	1	-7.413e-7	15	NC	1	NC	2
470			min	0	3	004	3	0	15	-1.996e-5	1	NC	1	8050.875	1
471		8	max	.002	1	.003	2	.003	1	-7.413e-7	15	NC	1	NC	2
472			min	0	3	004	3	0	15	-1.996e-5	1	NC	1	9320.81	1
473		9	max	.002	1	.002	2	.002	1	-7.413e-7	15	NC	1	NC	1
474			min	0	3	003	3	0	15	-1.996e-5	1	NC	1	NC	1
475		10	max	.001	1	.002	2	.002	1	-7.413e-7	15	NC	1	NC	1
476			min	0	3	003	3	0	15	-1.996e-5	1	NC	1	NC	1
477		11	max	.001	1	.002	2	.002	1	-7.413e-7	15	NC	1	NC	1
478			min	0	3	003	3	0	15		1	NC	1	NC	1
479		12	max	.001	1	.002	2	.001	1	-7.413e-7	15	NC	1	NC	1
480			min	0	3	002	3	0	15	-1.996e-5	1	NC	1	NC	1
481		13	max	0	1	.001	2	0	1	-7.413e-7		NC	1	NC	1
482			min	0	3	002	3	0	15		1	NC	1	NC	1
483		14	max	0	1	.001	2	0	1	-7.413e-7	15	NC	1	NC	1
484			min	0	3	002	3	0	15	-1.996e-5	1	NC	1	NC	1
485		15	max	0	1	0	2	0	1	-7.413e-7	15	NC	1	NC	1
486			min	0	3	001	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-7.413e-7	15	NC	1	NC	1
488			min	0	3	0	3	0		-1.996e-5	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-7.413e-7	15	NC	1	NC	1
490			min	0	3	0	3	0	_	-1.996e-5	1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-7.413e-7	15	NC	1	NC	1
492		1.5	min	0	3	0	3	0	15	-1.996e-5	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.413e-7	•	NC	1	NC	1
494		13	min	0	1	0	1	0	1	-1.996e-5	1	NC	1	NC	1
495	M1	1	max	.007	3	.126	2	0	1	1.274e-2	1	NC	1	NC	1
496	IVII		min	004	2	026	3	0		-2.389e-2	3	NC	1	NC	1
430			11/111	004		020	J	U	IU	-2.5036-2	J	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio L0		tio LC
497		2	max	.007	3	.061	2	0	15	6.194e-3	1	NC 4	NC NC	1
498			min	004	2	012	3	004	1	-1.182e-2	3	1780.398 2	NC	1
499		3	max	.007	3	.011	3	0	15	3.508e-5	10	NC 5	NC NC	1
500			min	004	2	009	2	006	1	-1.217e-4	3	858.674 2	NC	1
501		4	max	.007	3	.049	3	0	15	4.303e-3	2	NC 5		1
502			min	004	2	087	2	006	1	-4.641e-3	3	542.588 2		1
503		5	max	.007	3	.097	3	0	15	8.583e-3	2	NC 5		1
504		 	min	004	2	169	2	004	1	-9.161e-3		391.925 2		1
505		6	max	.007	3	.15	3	0	15	1.286e-2	2	NC 15		1
		0			2		2	002	1					1
506		7	min	004		248				-1.368e-2	3	308.88 2		•
507		7	max	.007	3	.2	3	0	1	1.714e-2	2	NC 1		1
508			min	004	2	318	2	0	3	-1.82e-2	3	259.836 2		1
509		8	max	.007	3	.242	3	0	1	2.143e-2	2	9407.21 1		1
510			min	003	2	374	2	0	15	-2.272e-2	3	230.816 2		1
511		9	max	.007	3	.269	3	0	15	2.428e-2	2	8797.082 1	5 NC	1
512			min	003	2	409	2	0	1	-2.294e-2	3	215.705 2	NC	1
513		10	max	.006	3	.279	3	0	1	2.618e-2	2	8611.053 1	5 NC	1
514			min	003	2	421	2	0	15	-2.032e-2	3	211.27 2		1
515		11	max	.006	3	.273	3	0	1	2.809e-2	2	8796.798 1		1
516			min	003	2	409	2	0	15	-1.769e-2	3	216.42 2		1
517		12	max	.006	3	.25	3	0	15	2.709e-2	2	9406.604 1		1
518		12	min	003	2	373	2		1	-1.492e-2	3	232.981 2		1
		40						0						
519		13	max	.006	3	.212	3	0	15	2.172e-2	2	NC 1		1
520			min	003	2	314	2	0	1	-1.195e-2	3	265.088 2		1
521		14	max	.006	3	.165	3	.001	1_	1.635e-2	2	NC 1		1
522			min	003	2	241	2	0	15	-8.972e-3	3	320.067 2	NC NC	1
523		15	max	.006	3	.112	3	.004	1	1.098e-2	2	NC 5		1
524			min	003	2	161	2	0	15	-5.995e-3	3	414.876 2	NC	1
525		16	max	.006	3	.057	3	.005	1	5.616e-3	2	NC 5	NC NC	1
526			min	003	2	08	2	0	15	-3.019e-3	3	590.806 2	NC	1
527		17	max	.005	3	.004	3	.006	1	4.355e-4	1	NC 5		1
528			min	003	2	005	2	0	15	-4.277e-5	3	967.593 2		1
529		18	max	.005	3	.056	2	.004	1	9.334e-3	2	NC 4		1
530		10	min	003	2	043	3	0	15	-3.879e-3	3	2057.037 2		1
		10				<u>043 </u>					_			1
531		19	max	.005	2		2	0	15	1.876e-2	2			
532	N 4 5		min	003	_	087	3	0	1	-7.874e-3	3	NC 1		1
533	<u>M5</u>	1_	max	.023	3	.279	2	0	1	0	_1_	NC 1		1
534			min	015	2	026	3	0	1	0	_1_	NC 1		1
535		2	max	.023	3	.134	2	0	1	0	_1_	NC 5		1
536			min	015	2	01	3	0	1	0	1	803.159 2		1
537		3	max	.023	3	.034	3	0	1	0	1	NC 5	NC NC	1
538			min	015	2	028	2	0	1	0	1	377.969 2	NC	1
539		4	max	.022	3	.13	3	0	1	0	1	NC 1	5 NC	1
540			min	015	2	221	2	0	1	0	1	231.425 2		1
541		5	max	.022	3	.261	3	0	1	0	1	7568.329 1		1
542		1	min	015	2	431	2	0	1	0	1	162.933 2		1
		6						-						
543		6	max	.021	3	.409	3	0	1	0	1			1
544		_	min	<u>015</u>	2	<u>639</u>	2	0	1	0	_1_	125.967 2		1
545		7	max	.021	3	<u>.553</u>	3	0	1	0	1	4815.13 1		1
546			min	014	2	827	2	0	1	0	1_	104.513 2		1
547		8	max	.021	3	.673	3	0	1	0	_1_	4229.8 1		1
548			min	014	2	978	2	0	1	0	1	91.995 2		1
549		9	max	.02	3	.751	3	0	1	0	1	3929.776 1	5 NC	1
550			min	014	2	-1.074	2	0	1	0	1	85.559 2		1
551		10	max	.02	3	.779	3	0	1	0	1	3839.403 1		1
552		1.0	min	014	2	-1.106	2	0	1	0	1	83.675 2		1
553		11	max	.019	3	.76	3	0	1	0	1	3929.89 1		1
JJJ		<u> </u>	πιαλ	ان.	_ ວ_	.70	_ J	U	<u> </u>	U		J323.03 I3	J INC	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

5556		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
	554			min	013	2	-1.074	2	0	1	0	1	85.855	2	NC	1
557	555		12	max	.019	3	.694	3	0	1	0	1	4230.066	15	NC	1
See	556			min	013	2	975	2	0	1	0	1	92.965	2	NC	1
559	557		13	max	.018	3	.588	3	0	1	0	1	4815.665	15	NC	1
Section	558			min	013	2	816	2	0	1	0	1	107.034	2	NC	1
561	559		14	max	.018	3	.454	S	0	1	0	1	5823.506	15	NC	1
F662	560			min	013	2	62	2	0	1	0	1	131.654	2	NC	1
F663	561		15	max	.017	3	.304	3	0	1	0	1	7570.353	15	NC	1
F664	562			min	012	2	407		0	1	0	1	175.334	2	NC	1
565	563		16	max	.017	3	.153	Ω	0	1	0	1	NC	15	NC	1
See				min	012				0	1	0	1	259.454		NC	1
567	565		17	max	.017	3	.012	3	0	1	0	1	NC	5	NC	1
567				min	012		017		0	1	0	1	447.063	2	NC	1
Fight			18		.017		.122		0	1	0	1			NC	1
Feb 19 max .017 3 .235 1 0 1 0 1 NC 1 NC 1					012	2	108	3	0	1	0	1	990.399	2	NC	1
S70			19	max	.017	3		1	0	1	0	1	NC	1	NC	1
S72				min	012	2		3	0	1	0	1	NC	1	NC	1
S72		M9	1		.007	3	.126	2	0	15	2.389e-2	3	NC	1	NC	1
573				min			026		0	1	-1.274e-2	1	NC	1	NC	1
S74	573		2	max	.007	3	.061	2	.004	1		3	NC	4	NC	1
575										15		1		2		1
S76			3			3	.011	3	.006	1		3	NC	5	NC	1
577				min	004		009			15			858.674	2	NC	1
578			4						.006							1
579										15		2				1
S80			5	max					.004			3		5		1
581 6 max .007 3 .15 3 .002 1 1.368e-2 3 NC 15 NC 1 582 min 004 2 248 2 0 15 -1.286e-2 2 308.88 2 NC 1 583 7 max .007 3 .2 3 0 3 1.82e-2 3 NC 15 NC 1 584 min 004 2 318 2 0 1 -1.714e-2 2 259.836 2 NC 1 585 8 max .007 3 .242 3 0 15 2.272e-2 3 .9407.21 15 NC 1 586 min 003 2 374 2 0 1 2.243e-2 2 30.770.02 NC 1 587 9 max .006 3 .279 3 </td <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>15</td> <td></td> <td></td> <td>391.925</td> <td>2</td> <td>NC</td> <td>1</td>				min					0	15			391.925	2	NC	1
S82			6	max	.007	3	.15	3	.002	1		3	NC	15	NC	1
584 min 004 2 318 2 0 1 -1.714e-2 2 259.836 2 NC 1 585 8 max .007 3 .242 3 0 15 2.272e-2 3 9407.21 15 NC 1 587 9 max .007 3 .269 3 0 1 2.294e-2 2 .203.816 2 NC 1 588 min 003 2 409 2 0 15 -2.428e-2 2 215.705 2 NC 1 589 10 max .006 3 .279 3 0 15 2.032e-2 3 8611.053 15 NC 1 590 min 003 2 421 2 0 1 -2.618e-2 2 211.27 2 NC 1 591 11 max .006 3	582			min	004	2	248		0	15	-1.286e-2	2	308.88	2	NC	1
584 min 004 2 318 2 0 1 -1.714e-2 2 259.836 2 NC 1 585 8 max .007 3 .242 3 0 15 2.272e-2 3 9407.21 15 NC 1 587 9 max .007 3 .269 3 0 1 2.294e-2 2 .203.816 2 NC 1 588 min 003 2 409 2 0 15 -2.428e-2 2 215.705 2 NC 1 589 10 max .006 3 .279 3 0 15 2.032e-2 3 8611.053 15 NC 1 590 min 003 2 421 2 0 1 -2.618e-2 2 211.27 2 NC 1 591 11 max .006 3			7	max	.007	3	.2	3	0	3		3	NC	15	NC	1
586 min 003 2 374 2 0 1 -2.143e-2 2 230.816 2 NC 1 587 9 max .007 3 .269 3 0 1 2.294e-2 3 8797.082 15 NC 1 588 min 003 2 409 2 0 15 -2.428e-2 2 215.705 2 NC 1 589 10 max .006 3 .279 3 0 15 -2.428e-2 2 211.27 2 NC 1 590 min 003 2 -421 2 0 1 -2.618e-2 2 211.27 2 NC 1 591 11 max .006 3 .25 3 0 1 -2.809e-2 2 216.42 2 NC 1 592 min 003 2 -373				min	004		318		0	1		2	259.836		NC	1
587 9 max .007 3 .269 3 0 1 2.294e-2 3 8797.082 15 NC 1 588 min 003 2 409 2 0 15 -2.428e-2 2 215.705 2 NC 1 589 10 max .006 3 .279 3 0 15 2.032e-2 3 8611.053 15 NC 1 590 min 003 2 -421 2 0 1 -2.618e-2 2 211.27 2 NC 1 591 11 max .006 3 .273 3 0 15 1.769e-2 2 211.27 2 NC 1 592 min 003 2 409 2 0 1 -2.809e-2 2 216.42 2 NC 1 593 12 max .006 3 .215	585		8	max	.007	3	.242	3	0	15	2.272e-2	3	9407.21	15	NC	1
587 9 max .007 3 .269 3 0 1 2.294e-2 3 8797.082 15 NC 1 588 min 003 2 409 2 0 15 -2.428e-2 2 215.705 2 NC 1 589 10 max .006 3 .279 3 0 15 2.032e-2 3 8611.053 15 NC 1 590 min 003 2 -421 2 0 1 -2.618e-2 2 211.27 2 NC 1 591 11 max .006 3 .273 3 0 15 1.769e-2 2 211.27 2 NC 1 592 min 003 2 409 2 0 1 -2.809e-2 2 216.42 2 NC 1 593 12 max .006 3 .215				min	003		374		0	1		2		2	NC	1
588 min 003 2 409 2 0 15 -2.428e-2 2 2 15.705 2 NC 1 589 10 max .006 3 .279 3 0 15 2.032e-2 3 8611.053 15 NC 1 590 min 003 2 421 2 0 1 -2.618e-2 2 211.27 2 NC 1 591 11 max .006 3 .273 3 0 15 1.769e-2 2 216.42 2 NC 1 592 min 003 2 -409 2 0 1 -2.809e-2 2 216.42 2 NC 1 593 12 max .006 3 .25 3 0 1 1.492e-2 3 9406.604 15 NC 1 594 min 003 2 314			9						0	1		3				1
589 10 max .006 3 .279 3 0 15 2.032e-2 3 8611.053 15 NC 1 590 min 003 2 421 2 0 1 -2.618e-2 2 211.27 2 NC 1 591 11 max .006 3 .273 3 0 15 1.769e-2 3 8796.798 15 NC 1 592 min 003 2 409 2 0 1 -2.809e-2 2 216.42 2 NC 1 593 12 max .006 3 .25 3 0 1 1.492e-2 3 9406.604 15 NC 1 594 min 003 2 373 2 0 15 -2.709e-2 2 232.981 2 NC 1 595 13 max .006 3					003	2	409		0	15		2		2	NC	1
590 min 003 2 421 2 0 1 -2.618e-2 2 211.27 2 NC 1 591 11 max .006 3 .273 3 0 15 1.769e-2 3 8796.798 15 NC 1 592 min 003 2 409 2 0 1 -2.809e-2 2 216.42 2 NC 1 593 12 max .006 3 .25 3 0 1 1.492e-2 3 9406.604 15 NC 1 594 min 003 2 373 2 0 15 -2.709e-2 2 232.981 2 NC 1 595 13 max .006 3 .212 3 0 15 .2.172e-2 2 265.088 2 NC 1 596 14 max .006 3			10	max	.006	3			0	15		3			NC	1
591 11 max .006 3 .273 3 0 15 1.769e-2 3 8796.798 15 NC 1 592 min 003 2 409 2 0 1 -2.809e-2 2 216.42 2 NC 1 593 12 max .006 3 .25 3 0 1 1.492e-2 3 9406.604 15 NC 1 594 min 003 2 373 2 0 15 -2.709e-2 2 232.981 2 NC 1 595 13 max .006 3 .212 3 0 1 1.195e-2 3 NC 15 NC 1 596 min 003 2 314 2 0 15 -2.172e-2 2 265.088 2 NC 1 597 14 max .006 3				min					0						NC	1
592 min 003 2 409 2 0 1 -2.809e-2 2 2 16.42 2 NC 1 593 12 max .006 3 .25 3 0 1 1.492e-2 3 9406.604 15 NC 1 594 min 003 2 373 2 0 15 -2.709e-2 2 232.981 2 NC 1 595 13 max .006 3 .212 3 0 1 1.195e-2 3 NC 15 NC 1 596 min 003 2 314 2 0 15 -2.172e-2 2 265.088 2 NC 1 597 14 max .006 3 .165 3 0 15 8.972e-3 3 NC 15 NC 1 598 min 003 2 241 <			11		.006	3	.273	3	0	15		3	8796.798	15	NC	1
593 12 max .006 3 .25 3 0 1 1.492e-2 3 9406.604 15 NC 1 594 min 003 2 373 2 0 15 -2.709e-2 2 232.981 2 NC 1 595 13 max .006 3 .212 3 0 1 1.195e-2 3 NC 15 NC 1 596 min 003 2 314 2 0 15 -2.172e-2 2 265.088 2 NC 1 597 14 max .006 3 .165 3 0 15 8.972e-3 3 NC 15 NC 1 598 min 003 2 241 2 001 1 -1.635e-2 2 320.067 2 NC 1 599 15 max .006 3 <				min					0							1
594 min 003 2 373 2 0 15 -2.709e-2 2 232.981 2 NC 1 595 13 max .006 3 .212 3 0 1 1.195e-2 3 NC 15 NC 1 596 min 003 2 314 2 0 15 -2.172e-2 2 265.088 2 NC 1 597 14 max .006 3 .165 3 0 15 8.972e-3 3 NC 15 NC 1 598 min 003 2 241 2 001 1 -1.635e-2 2 320.067 2 NC 1 599 15 max .006 3 .112 3 0 15 5.995e-3 3 NC 5 NC 1 600 min 003 2 161 <t< td=""><td></td><td></td><td>12</td><td>max</td><td>.006</td><td>3</td><td></td><td>3</td><td>0</td><td>1</td><td></td><td>3</td><td></td><td>15</td><td></td><td>1</td></t<>			12	max	.006	3		3	0	1		3		15		1
595 13 max .006 3 .212 3 0 1 1.195e-2 3 NC 15 NC 1 596 min 003 2 314 2 0 15 -2.172e-2 2 265.088 2 NC 1 597 14 max .006 3 .165 3 0 15 8.972e-3 3 NC 15 NC 1 598 min 003 2 241 2 001 1 -1.635e-2 2 320.067 2 NC 1 599 15 max .006 3 .112 3 0 15 5.995e-3 3 NC 5 NC 1 600 min 003 2 161 2 004 1 -1.098e-2 2 414.876 2 NC 1 601 max .006 3 .057 <							373		0	15	-2.709e-2		232.981			1
596 min 003 2 314 2 0 15 -2.172e-2 2 265.088 2 NC 1 597 14 max .006 3 .165 3 0 15 8.972e-3 3 NC 15 NC 1 598 min 003 2 241 2 001 1 -1.635e-2 2 320.067 2 NC 1 599 15 max .006 3 .112 3 0 15 5.995e-3 3 NC 5 NC 1 600 min 003 2 161 2 004 1 -1.098e-2 2 414.876 2 NC 1 601 16 max .006 3 .057 3 0 15 3.019e-3 3 NC 5 NC 1 602 min 003 2 08			13					3				3		15		1
597 14 max .006 3 .165 3 0 15 8.972e-3 3 NC 15 NC 1 598 min 003 2 241 2 001 1 -1.635e-2 2 320.067 2 NC 1 599 15 max .006 3 .112 3 0 15 5.995e-3 3 NC 5 NC 1 600 min 003 2 161 2 004 1 -1.098e-2 2 414.876 2 NC 1 601 max .006 3 .057 3 0 15 3.019e-3 3 NC 5 NC 1 602 min 003 2 08 2 005 1 -5.616e-3 2 590.806 2 NC 1 603 17 max .005 3 .004									0	15						1
598 min 003 2 241 2 001 1 -1.635e-2 2 320.067 2 NC 1 599 15 max .006 3 .112 3 0 15 5.995e-3 3 NC 5 NC 1 600 min 003 2 161 2 004 1 -1.098e-2 2 414.876 2 NC 1 601 16 max .006 3 .057 3 0 15 3.019e-3 3 NC 5 NC 1 602 min 003 2 08 2 005 1 -5.616e-3 2 590.806 2 NC 1 603 17 max .005 3 .004 3 0 15 4.277e-5 3 NC 5 NC 1 604 min 003 2 005			14						0							1
599 15 max .006 3 .112 3 0 15 5.995e-3 3 NC 5 NC 1 600 min 003 2 161 2 004 1 -1.098e-2 2 414.876 2 NC 1 601 16 max .006 3 .057 3 0 15 3.019e-3 3 NC 5 NC 1 602 min 003 2 08 2 005 1 -5.616e-3 2 590.806 2 NC 1 603 17 max .005 3 .004 3 0 15 4.277e-5 3 NC 5 NC 1 604 min 003 2 005 2 006 1 -4.355e-4 1 967.593 2 NC 1 605 18 max .005 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>001</td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td></t<>									001			2				
600 min 003 2 161 2 004 1 -1.098e-2 2 414.876 2 NC 1 601 16 max .006 3 .057 3 0 15 3.019e-3 3 NC 5 NC 1 602 min 003 2 08 2 005 1 -5.616e-3 2 590.806 2 NC 1 603 17 max .005 3 .004 3 0 15 4.277e-5 3 NC 5 NC 1 604 min 003 2 005 2 006 1 -4.355e-4 1 967.593 2 NC 1 605 18 max .005 3 .056 2 0 15 3.879e-3 3 NC 4 NC 1 606 min 003 2 043			15							15		3				1
601 16 max .006 3 .057 3 0 15 3.019e-3 3 NC 5 NC 1 602 min 003 2 08 2 005 1 -5.616e-3 2 590.806 2 NC 1 603 17 max .005 3 .004 3 0 15 4.277e-5 3 NC 5 NC 1 604 min 003 2 005 2 006 1 -4.355e-4 1 967.593 2 NC 1 605 18 max .005 3 .056 2 0 15 3.879e-3 3 NC 4 NC 1 606 min 003 2 043 3 004 1 -9.334e-3 2 2057.037 2 NC 1 607 19 max .005 3 <									004							
602 min 003 2 08 2 005 1 -5.616e-3 2 590.806 2 NC 1 603 17 max .005 3 .004 3 0 15 4.277e-5 3 NC 5 NC 1 604 min 003 2 005 2 006 1 -4.355e-4 1 967.593 2 NC 1 605 18 max .005 3 .056 2 0 15 3.879e-3 3 NC 4 NC 1 606 min 003 2 043 3 004 1 -9.334e-3 2 2057.037 2 NC 1 607 19 max .005 3 .111 2 0 1 7.874e-3 3 NC 1 NC 1			16													
603 17 max .005 3 .004 3 0 15 4.277e-5 3 NC 5 NC 1 604 min 003 2 005 2 006 1 -4.355e-4 1 967.593 2 NC 1 605 18 max .005 3 .056 2 0 15 3.879e-3 3 NC 4 NC 1 606 min 003 2 043 3 004 1 -9.334e-3 2 2057.037 2 NC 1 607 19 max .005 3 .111 2 0 1 7.874e-3 3 NC 1 NC 1																
604 min 003 2 005 2 006 1 -4.355e-4 1 967.593 2 NC 1 605 18 max .005 3 .056 2 0 15 3.879e-3 3 NC 4 NC 1 606 min 003 2 043 3 004 1 -9.334e-3 2 2057.037 2 NC 1 607 19 max .005 3 .111 2 0 1 7.874e-3 3 NC 1 NC 1			17													
605 18 max .005 3 .056 2 0 15 3.879e-3 3 NC 4 NC 1 606 min 003 2 043 3 004 1 -9.334e-3 2 2057.037 2 NC 1 607 19 max .005 3 .111 2 0 1 7.874e-3 3 NC 1 NC 1																
606 min 003 2 043 3 004 1 -9.334e-3 2 2057.037 2 NC 1 607 19 max .005 3 .111 2 0 1 7.874e-3 3 NC 1 NC 1			18									•				_
607 19 max .005 3 .111 2 0 1 7.874e-3 3 NC 1 NC 1											-9.334e-3					
			19													
	608			min	003	2	087	3	0	15		2	NC	_	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	1/5			
Project:	Standard PVMax - Worst Case, 37-42 Inch Width					
Address:						
Phone:						
E-mail:						

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 37	Standard PVMax - Worst Case, 37-42 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 37	-42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2915.5	1524.0	0.0	1524.0
2	2915.5	1524.0	0.0	1524.0
Sum	5831.0	3048.0	0.0	3048.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5831 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{ ext{ed},Na}$ $\Psi_{ ext{g}}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 37-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}}c_{a1}^{1.5}$	° (Eq. D-24)						
le (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Vc / Avco) Yec, v Ye	$_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
666.00	648.00	1.000	0.969	1.000	1.000	15593	0.70	10875

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}\lambda}\sqrt{f'_{c}c_{a1}}^{1.}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	16.16	24369		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
872.64	1175.16	1.000	1.000	1.000	24369	0.70	25334

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / A Nco) Ψ ec,N Ψ	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2916	6071	0.48	Pass
Concrete breakout	5831	10231	0.57	Pass
Adhesive	5831	8093	0.72	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1524	3156	0.48	Pass (Governs)
T Concrete breakout x+	3048	10875	0.28	Pass
Concrete breakout y-	1524	25334	0.06	Pass
Pryout	3048	20601	0.15	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 37-42 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.72 0.48 120.3 % 1.2 Pa	3C. D.7.3	0.72	0.48	120.3 %	1.2	Pas
-------------------------------------	-----------	------	------	---------	-----	-----

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.