UC SANTA CRUZ

p-adic representations and simplicial distance in Bruhat-Tits buildings

Xu Gao University of California, Santa Cruz

• p-adic representation = ρ : $G \longrightarrow GL_K(V)$ with K a p-adic field

- p-adic representation = $\rho: G \longrightarrow GL_K(V)$ with K a p-adic field
- stable lattice = lattice stable under the action of $\rho(G)$ Recall that: lattice = f. g. K° -submodule L of V spanning the entire V.

p-adic representations and simplicial distance in Bruhat-Tits buildings | Xu Gao

- p-adic representation = $\rho: G \longrightarrow GL_K(V)$ with K a p-adic field
- stable lattice = lattice stable under the action of $\rho(G)$
- p-adic representation \leadsto stable lattice \leadsto mod ϖ reduction

$$(\rho, V) \rightsquigarrow L \rightsquigarrow L \otimes_{K^{\circ}} \kappa \rightsquigarrow V_{\kappa}$$

- p-adic representation = ρ : $G \longrightarrow GL_K(V)$ with K a p-adic field
- stable lattice = lattice stable under the action of $\rho(G)$
- p-adic representation \leadsto stable lattice \leadsto mod ϖ reduction \Longrightarrow bridge between ordinary and modular representations

Stable lattices

Geometric study of $\rho: G \longrightarrow GL_K(V)$

stable lattices \approx stable vertices in the *Bruhat-Tits buildings* of $GL_K(V)$

Stable lattices

Geometric study of $\rho: G \longrightarrow GL_K(V)$

stable lattices \approx stable vertices in the *Bruhat-Tits buildings* of $GL_K(V)$ = vertices in the fixed-point set $S(\rho)$

Stable lattices

Geometric study of $\rho: G \longrightarrow \mathfrak{G}(K)$

stable lattices \approx stable vertices in the *Bruhat-Tits buildings* of $\mathfrak{G}(K)$ = vertices in the fixed-point set $S(\rho)$

• 9 reductive group \rightsquigarrow $\mathscr{B}(9)$ Bruhat-Tits building metric space + polysimplicial complex

- 9 reductive group \rightsquigarrow $\mathscr{B}(\mathfrak{G})$ Bruhat-Tits building metric space + polysimplicial complex
- ρ a representation to $\mathfrak{G} \leadsto S(\rho) \subset \mathfrak{B}(\mathfrak{G})$ fixed-point set convex + simplicial

- 9 reductive group \rightarrow $\mathscr{B}(9)$ Bruhat-Tits building metric space + polysimplicial complex
- ρ a representation to $\mathcal{G} \leadsto S(\rho) \subset \mathcal{B}(\mathcal{G})$ fixed-point set convex + simplicial \leadsto determined by vertices

- 9 reductive group \rightsquigarrow $\mathscr{B}(\mathfrak{G})$ Bruhat-Tits building metric space + polysimplicial complex
- ρ a representation to $\mathfrak{G} \leadsto S(\rho) \subset \mathfrak{B}(\mathfrak{G})$ fixed-point set convex + simplicial \leadsto determined by vertices \leadsto incident geometry of vertices

- 9 reductive group \rightsquigarrow $\mathscr{B}(9)$ Bruhat-Tits building metric space + polysimplicial complex
- ρ a representation to $\mathfrak{G} \leadsto S(\rho) \subset \mathfrak{B}(\mathfrak{G})$ fixed-point set convex + simplicial \leadsto determined by vertices \leadsto incident geometry of vertices \leadsto simplicial distance (=distance by incident relations)

Simplicial distance

A path of length 3.

Simplicial ball of radius 3.

Results

1. Characterizations of simplicial distance.

Results

- 1. Characterizations of simplicial distance.
- 2. Simplicial balls as fixed-point sets.

Results

- 1. Characterizations of simplicial distance.
- 2. Simplicial balls as fixed-point sets.
- 3. Exponential polynomials and simplicial volume.

 Φ , the root system, is irreducible and classical (i.e. A_n , B_n , C_n , or D_n)

Theorem (G., 2022)

d(x,y) - 1 = maximum of numbers of walls between them; in particular, the simplicial distance from the origin o to x is

$$d(x,o) = \lceil a_0(x-o) \rceil,$$

where a_0 = highest root rel. Weyl chamber covering x.

The two blues are separated by 3 walls and have distance 4.

A path of length 4.

The blue has value 3 under a_0 and is of distance 3 from the red.

A path of length 3.

Corollary

If
$$\Phi = A_n$$
 or C_n , then $d(x,y) \le r \iff \exists L \in x, L' \in y$ such that $L \supset L' \supset \varpi^r L$.

When $\Phi = B_n$ or D_n , the simplicial distance could be shorter due to the oriflamme construction.

Simplicial balls

Theorem (G., 2022)

The simplicial ball B(x, r) of radius r at x = fixed-point set of the Moy-Prasad subgroup $P_{x,r}$.

• Moy-Prasad subgroups $(P_{x,r})_{r\geqslant 0}$ (Moy-Prasad, 96) generalizing principal congruence subgroups

• concave function $f = \text{function on } \widetilde{\Phi} := \Phi \cup \{0\} \text{ s.t. }$

$$\forall a, b \in \widetilde{\Phi}, a + b \in \widetilde{\Phi} \implies f(a) + f(b) \ge f(a + b).$$

• concave function $f = \text{function on } \widetilde{\Phi} := \Phi \cup \{0\} \text{ s.t. }$

$$\forall a, b \in \widetilde{\Phi}, a + b \in \widetilde{\Phi} \implies f(a) + f(b) \ge f(a + b).$$

• \sim contd. smooth model \mathfrak{G}_f of G s.t. $P_f = \mathfrak{G}_f(K^\circ)$ is bounded.

• concave function $f = \text{function on } \widetilde{\Phi} := \Phi \cup \{0\} \text{ s.t. }$

$$\forall a, b \in \widetilde{\Phi}, a + b \in \widetilde{\Phi} \implies f(a) + f(b) \ge f(a + b).$$

- \sim contd. smooth model \mathfrak{G}_f of G s.t. $P_f = \mathfrak{G}_f(K^\circ)$ is bounded.
- $\mathbf{x} \in \mathcal{B}(\mathfrak{G}) \leadsto f_{\mathbf{x}} : a \mapsto -a(\mathbf{x}) \leadsto parahoric subgroups P_{\mathbf{x}} \approx stabilizer of \mathbf{x}.$

• concave function f = function on $\widetilde{\Phi} := \Phi \cup \{o\}$ s.t.

$$\forall a, b \in \widetilde{\Phi}, a + b \in \widetilde{\Phi} \implies f(a) + f(b) \ge f(a + b).$$

- \sim contd. smooth model \mathfrak{G}_f of G s.t. $P_f = \mathfrak{G}_f(K^\circ)$ is bounded.
- $\mathbf{x} \in \mathcal{B}(\mathfrak{G}) \leadsto f_{\mathbf{x}} : a \mapsto -a(x) \leadsto parahoric subgroups P_{\mathbf{x}} \approx stabilizer of x.$
- $f_x + r (r \ge 0) \sim Moy$ -Prasad subgroups $P_{x,r}$.

Simplicial volume formula

Theorem (G., 2022)

$$\mathsf{SV}(r)(:=|B(o,r)|) = \sum_{I \subset \Delta} \frac{\mathscr{P}_{\Phi;I}(q)}{q^{\deg(\mathscr{P}_{\Phi;I})}} \sum_{x \in B(r,C,I)} \prod_{a(x)>0} q^{\lceil a(x) \rceil}$$

- $\mathcal{P}_{\Phi;l}$ = Poincaré polynomial
- C = Weyl chamber
- $B(r, C, I) = B(o, r) \cap \operatorname{inn}(\bigcap_{a \in I} \ker(a))$

The index set B(r, C, I)

$$B(2,\blacksquare,\mathfrak{a}_1)=\{\bullet,\bullet\}, \quad B(2,\blacksquare,\mathfrak{a}_2)=\{\bullet,\bullet\}, \quad B(2,\blacksquare,\Delta)=\{\bullet\}, \quad B(2,\blacksquare,\emptyset)=\{\bullet\}.$$

Asymptotic estimation

Theorem (G., 2022)

We have the following asymptotic dominant relation as $r \to \infty$:

$$SV(r) \times r^{\epsilon(n)}q^{\pi(n)r}$$

where $\epsilon(n)$ and $\pi(n)$ are in the following table.

	(n odd)	A _n (n even)	B_3	B_n $(n \geqslant 4)$	C_n	D_4	D_n $(n \geqslant 5)$
$\epsilon(n)$	-	1	0	0	0	2	1
$\pi(n)$	$\left(\frac{n+1}{2}\right)^2$	$\frac{n}{2}(\frac{n}{2}+1)$	5	$\frac{n^2}{2}$	$\frac{n(n+1)}{2}$	6	$\frac{n(n-1)}{2}$

Leading coefficients

Theorem (G., 2022)

Leading coefficients have the following rationality properties: If \mathcal{B} is of type A_n , C_n , B_3 , or D_4 , then we have

$$\mathsf{SV}(r) \sim \mathbf{c}(n) \cdot r^{\epsilon(n)} q^{\pi(n)r},$$

otherwise

$$SV(2r) \sim c_0(n) \cdot r^{\epsilon(n)} q^{2\pi(n)r},$$

$$SV(2r+1) \sim c_1(n) \cdot r^{\epsilon(n)} q^{2\pi(n)r},$$

where c(n), $c_0(n)$ and $c_1(n)$ are positive numbers that are rational functions of q.

• Non-irreducible buildings

• Non-irreducible buildings

non-split types

• Non-irreducible buildings

non-split types

• Exceptional types

• Non-irreducible buildings

non-split types

Exceptional types

concave functions and fixed-point sets (conjectured)