2024 矩阵分析与应用

作业四

- 1. 设 $\mathbf{A} \in \mathcal{R}^{n \times n}$, 试说明下面哪些是线性变换。
- (1) $\mathbf{T}(\mathbf{X}_{n\times n}) = \mathbf{A}\mathbf{X} \mathbf{X}\mathbf{A}$, (2) $\mathbf{T}(\mathbf{A}) = \mathbf{A}^T$,
- $(3)\mathbf{T}(\mathbf{X}_{n\times n}) = \frac{\mathbf{X} + \mathbf{X}^T}{2} \ (4)\mathbf{T}(\mathbf{X}_{n\times 1}) = \mathbf{A}\mathbf{x} + \mathbf{b}, \ \mathbf{b} \neq \mathbf{0}.$
- 2. 设 $\mathbf{A} \in \mathcal{R}^{n \times n}$, \mathbf{T} 为 $\mathcal{R}^{n \times 1}$ 的一个线性算子,定义为: $\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x}$. 记 S 为标准基,试说明 $[\mathbf{T}]_S = \mathbf{A}$.
 - 3. 对于向量空间 R^3 ,

$$\mathcal{B} = \left\{ \mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

$$\mathcal{B}' = \left\{ \mathbf{v}_1 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

为该空间的两组基。

(1) 对于恒等算子 \mathbf{I} , 分别计算 $[\mathbf{I}]_{\mathcal{B}}$, $[\mathbf{I}]_{\mathcal{B}'}$, $[\mathbf{I}]_{\mathcal{B}\mathcal{B}'}$.

(2) 对于投影算子
$$\mathbf{P} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$
, 计算 $[\mathbf{P}]_{\mathcal{BB}'}$.

4. 设 **T** 为
$$R^3$$
 的一个线性算子, 其定义为 **T** $(x, y, z) = (x - y, y - x, x - z)$,
$$\mathcal{B} = \left\{ \mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$
 为其一组基, $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ 为 R^3 的一个向量。

- (1) 分别计算 $[\mathbf{T}]_{\mathcal{B}}$ 和 $[\mathbf{v}]_{\mathcal{B}}$ 。
- (2) 计算 $[\mathbf{T}(\mathbf{v})]_{\mathcal{B}}$, 并验证 $[\mathbf{T}(\mathbf{v})]_{\mathcal{B}} = [\mathbf{T}]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}$ 成立。