Université des Sciences et de la Technologie d'Oran. 2021-2022 Faculté des Mathématiques et Informatique LMD - MI 1ère Année. Analyse1

Fiche deTD2 Les suites réelles

Exercice 1:

Calculer les limites des suites suivantes de terme général:

1.
$$U_n = \frac{\cos(2n^3 - 5)}{3n^3 + 2n^2 + 1}$$
, 2. $U_n = \frac{\sqrt{n} - 9n + 8}{2\sqrt{n} + 3n + 7}$, 3. $U_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$, 4. $U_n = \frac{3^n - 2.5^n + 6.7^n}{7.2^n + 3.4^n + 5.7^n}$, 5. $U_n = \frac{3^n + (-3)^n}{3^n}$, 6. $U_n = \frac{e^{2n} - e^n + 1}{2e^n + 3}$.

Exercice 2:

Exercise 2. En utilisant la définition de la limite d'une suite, montrer que:
$$1/\lim_{n\to +\infty}\frac{3n-1}{2n+3}=\frac{3}{2}, \qquad 2/\lim_{n\to +\infty}\frac{(-1)^n}{2^n}=0, \qquad 3/\lim_{n\to +\infty}\frac{2\ln(1+n)}{\ln n}=2,$$

$$4/\lim_{n\to +\infty}3^n=+\infty, \quad 5/\lim_{n\to +\infty}\frac{-5n^2-2}{4n}=-\infty, \qquad 6/\lim_{n\to +\infty}\ln\left(\ln n\right)=+\infty.$$

Exercice 3:

1. En utilisant le principe d'encadrement d'une suite, montrer que la suite $(U_n)_{n\in\mathbb{N}}$ converge vers une limite l à déterminer dans chaque cas :

$$a/U_n = \sum_{k=1}^n \frac{n}{n^3 + k}, \qquad b/U_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$$

$$c/U_n = \frac{\left[\sqrt{n}\right]}{n}, n \in \mathbb{N}^*, \text{ (où []] désigne la partie entière)}.$$

2. Soit
$$U_n = \sum_{k=1}^n \frac{1}{3+|\sin k|\sqrt{k}}$$
, montrer que $\lim_{n\to+\infty} U_n = +\infty$.

Exercice 4:

On considère la suite $(U_n)_{n\in\mathbb{N}}$ définie par: $\begin{cases} U_0 = 0 \\ U_{n+1} = \frac{7U_n + 4}{3U_n + 3}; \quad \forall n \in \mathbb{N} \end{cases}$

- 1. Montrer que: $0 \le U_n \le 2$; $\forall n \in \mathbb{N}$
- 2. Etudier la monotonie de $(U_n)_{n\in\mathbb{N}}$
- 3. Déduire que $(U_n)_{n\in\mathbb{N}}$ est convergente puis calculer sa limite
- 4. Soit $E = \{U_n / n \in \mathbb{N}\}$; déterminer sup E et inf E.

Exercice 5:

On considère la suite $(U_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} U_0 = 0 \\ U_{n+1} = \sqrt{U_n + 2}, \forall n \in \mathbb{N} \end{cases}$

- 1. Montrer que : $0 \le U_n < 2, \forall n \in \mathbb{N}$.
- 2. En déduire la monotonie de $(U_n)_{n\in\mathbb{N}}$.
- 3. On considère la suite $(V_n)_{n\in\mathbb{N}}$ définie par: $V_n=2-U_n$, $\forall n\in\mathbb{N}$.
 - (a) Quel est le signe de $(V_n)_{n\in\mathbb{N}}$?
 - (b) Montrer que, pour tout entier naturel n, on a : $\frac{V_{n+1}}{V_n} \leq \frac{1}{2}$.
 - (c) En utilisant un raisonnement par récurrence montrer que:

$$V_n \le \left(\frac{1}{2}\right)^{n-1}, \forall n \in \mathbb{N}^*.$$

(d) En déduire la limite de la suite $(V_n)_{n\in\mathbb{N}}$, puis celle de $(U_n)_{n\in\mathbb{N}}$.

Exercice 6: (Rattrapage 2021)

Soit la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $\begin{cases} 0 < u_1 < \frac{1}{\sqrt{2}} \\ u_{n+1} = u_n - 2u_n^3, n \in \mathbb{N}^* \end{cases}$

- 1. Montrer que $\forall n \in \mathbb{N}^*, 0 < u_n < \frac{1}{\sqrt{2}}$.
- 2. Etudier la monotonie de $(u_n)_{n\in\mathbb{N}^*}$.
- 3. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ est convergente et trouver sa limite.
- 4. Déterminer sup E et inf E où $E = \{u_n; n \in \mathbb{N}^*\}$.

Exercice 7:

En utilisant le critère de Cauchy montrer que la suite $(U_n)_{n\in\mathbb{N}^*}$ est convergente et que la suite $(V_n)_{n\in\mathbb{N},n\geq 2}$ est divergente.

$$1/U_n = \sum_{k=0}^n \frac{\sin k}{2^k}, \forall n \in \mathbb{N}^*, \qquad 2/V_n = \sum_{k=2}^n \frac{1}{\ln k}, \forall n \ge 2.$$

Exercices supplémentaires:

Exercice 8: (Examen 2021)

On considère la suite de nombres réels $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = \frac{3}{2} \\ u_{n+1} = (u_n - 1)^2 + 1 \end{cases}$

- 1. Montrer que : $1 < u_n < 2, \forall n \in \mathbb{N}$.
- 2. Etudier la monotonie de $(u_n)_{n\in\mathbb{N}}$.
- 3. Déduire la convergence de $(u_n)_{n\in \mathbb{N}}$ puis calculer sa limite.
- 4. Soit l'ensemble $E = \{u_n / n \in N\}$, déterminer inf E et sup E.

Exercice 9:

On considère la suite $(U_n)_{n\in\mathbb{N}}$, définie par : $\begin{cases} U_0 = 1 \\ U_{n+1} = U_n e^{-U_n}, \forall n \in \mathbb{N} \end{cases}$

- 1. Montrer que $U_n > 0; \forall n \in \mathbb{N}$.
- 2. En déduire la monotonie de $(U_n)_{n\in\mathbb{N}}$.
- 3. En déduire que $(U_n)_{n\in\mathbb{N}}$ est convergente puis calculer sa limite.
- 4. Soit $S_n = \sum_{k=0}^n U_k$, montrer que $U_{n+1} = e^{-S_n}, \forall n \in \mathbb{N}$. En déduire que $\lim_{n\to +\infty} S_n = +\infty$.