Practical Aspect of RSA

* Key operation: a e mod n

* Suppose:

a ~ 150 digits

e ~ 120 digits,

≈ 10¹²⁰

n ~ 150 digits

* Method 1:

10 calculate a e

② Take mod n

Problem: 102 = 100, 1+2 digits

103 = 1000, 1+3 digits

lok 1+k digits

ae > 10e 1+e digits

~ 1+10120 digits

Too long to fit in computer

* Method 2

 a^3 mod $n = a (a^2 \mod n) \mod n$ a^4 mod $n = a (a^3 \mod n) \mod n$ a^5 mod $n = a (a^4 \mod n) \mod n$

 $a^e \mod n = a (a^{e-1} \mod n) \mod n$ Results < n, fit in computer

Problem ?

10120 steps!

the Sun would burn out before we finished.

Fact on Slide 42 follows from Th 4.24

* P29 relatively prime

* Let $a = x \mod p \in \mathbb{Z}p$

b = x mod 9 & Zq

* Consider equations

 $y \mod p = a$ (1)

 $y \mod q = b$ (2)

* They have unique sln in Zpg = Zn

* Y=x is one sln of (1)+(2) in Zh

* Because

xed mod p = a

xed mod q = 6

(xed mod n) mod p = a

(xed mod n) mod q = b

* so Xed mod n is also a

sln of (1)+(3)

2 it is in Zn

* By Th 4.24, We have

Xed mod n = X.

proved.

of muls in repeated squaring

< s in squareing process

+ s in the last step

= 25 \leq \frac{2}{2} \rightarrow \frac{2}{2}

= 12-1

18 - On Fly -1