Language Model Prior for Low-Resource Neural Machine Translation

Christos Baziotis, Barry Haddow, Alexandra Birch

Institute for Language, Cognition and Computation School of Informatics, University of Edinburgh Edinburgh, UK

EMNLP 2020

Introduction

Neural Machine Translation

$$\hat{\boldsymbol{y}} = \arg\max_{\boldsymbol{y}} \log p(\boldsymbol{y}|\boldsymbol{x})$$

Modeling directly $p(\boldsymbol{y}|\boldsymbol{x})$ requires large amounts of parallel data.

Introduction

Neural Machine Translation

$$\hat{\boldsymbol{y}} = \arg\max_{\boldsymbol{y}} \log p(\boldsymbol{y}|\boldsymbol{x})$$

Modeling directly p(y|x) requires large amounts of parallel data.

Introduction

Neural Machine Translation

$$\hat{\boldsymbol{y}} = \arg\max_{\boldsymbol{y}} \log p(\boldsymbol{y}|\boldsymbol{x})$$

Modeling directly p(y|x) requires large amounts of parallel data.

Noisy Channel

Noisy Channel

Noisy Channel

Noisy Channel

Noisy Channel

It models the "reverse translation probability" $p({m y}|{m x}) \propto p_{\scriptscriptstyle {
m TM}}({m x}|{m y}) imes p_{\scriptscriptstyle {
m LM}}({m y})$

Language Model Fusion

Noisy Channel

It models the "reverse translation probability" $p({m y}|{m x}) \propto p_{\scriptscriptstyle {
m TM}}({m x}|{m y}) imes p_{\scriptscriptstyle {
m LM}}({m y})$

Language Model Fusion

Feature-based: incorporate the representations of the LM

deep-fusion (Gulcehre et al., 2015), cold-fusion (Sriram et al., 2018)

Noisy Channel

It models the "reverse translation probability" $p({m y}|{m x}) \propto p_{\scriptscriptstyle {
m TM}}({m x}|{m y}) imes p_{\scriptscriptstyle {
m LM}}({m y})$

Language Model Fusion

Feature-based: incorporate the *representations* of the LM

deep-fusion (Gulcehre et al., 2015), cold-fusion (Sriram et al., 2018)

Probability Interpolation: combine the *probabilities* of the TM & the LM

■ shallow-fusion (Gulcehre et al., 2015), simple-fusion (Stahlberg et al., 2018)

I Computational overhead, as the LM is also required for decoding

- **I** Computational overhead, as the LM is also required for decoding
- 2 Unwanted LM-TM interference in probability interpolation

- **I** Computational overhead, as the LM is also required for decoding
- 2 Unwanted LM-TM interference in probability interpolation

$$p(\boldsymbol{y}_t) = \text{softmax}(\log p_{\text{TM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t},\boldsymbol{x}) + \log p_{\text{LM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t})) \quad \text{POSTNORM}$$
(simple-fusion; Stahlberg et al., 2018)

DE: die Republikaner im Kongress drängen auf eine umfassendere Neufassung der Ozonregeln.

EN: Republicans→in→Congress→are→pushing→for→a→broader→rewrite→
of→the→ozone→rules.

Real example of POSTNORM from DE \rightarrow EN newstest2018

- **I** Computational overhead, as the LM is also required for decoding
- Unwanted LM-TM interference in probability interpolation

$$p(\boldsymbol{y}_t) = \text{softmax}(\log p_{\text{TM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t},\boldsymbol{x}) + \log p_{\text{LM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t})) \quad \text{POSTNORM}$$
(simple-fusion; Stahlberg et al., 2018)

DE: die Republikaner im Kongress drängen auf eine umfassendere Neufassung der Ozonregeln.

EN: Republicans→in→Congress→are→pushing→for→a→broader→rewrite→
of→the→ozone→rules.

Real example of POSTNORM from DE \rightarrow EN newstest2018

- **I** Computational overhead, as the LM is also required for decoding
- Unwanted LM-TM interference in probability interpolation

$$p(m{y}_t) = ext{softmax}(\log p_{\scriptscriptstyle ext{TM}}(m{y}_t|m{y}_{< t},m{x}) + \log p_{\scriptscriptstyle ext{LM}}(m{y}_t|m{y}_{< t}))$$
 POSTNORM (simple-fusion; Stahlberg et al., 2018)

DE: die Republikaner im Kongress drängen auf eine umfassendere Neufassung der Ozonregeln.

EN: Republicans→in→Congress→are→pushing→for→a→<u>broader</u>→rewrite→
of→the→ozone→rules.

Real example of POSTNORM from DE \rightarrow EN newstest2018

- **I** Computational overhead, as the LM is also required for decoding
- 2 Unwanted LM-TM interference in probability interpolation

$$p(\boldsymbol{y}_t) = \text{softmax}(\log p_{\text{TM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t},\boldsymbol{x}) + \log p_{\text{LM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t})) \quad \text{POSTNORM}$$
(simple-fusion; Stahlberg et al., 2018)

DE: die Republikaner im Kongress drängen auf eine umfassendere Neufassung der Ozonregeln.

EN: Republicans→in→Congress→are→pushing→for→a→broader→rewrite→
of→the→ozone→rules.

Real example of POSTNORM from DE \rightarrow EN newstest2018

$$\mathcal{L} = \sum_{t=1}^{N} \underbrace{-\log p_{ ext{ iny TM}}(oldsymbol{y}_t | oldsymbol{y}_{< t}, oldsymbol{x})}_{ ext{ translation}}$$

- + The TM can **overrule** the LM when needed
- + Easier than priors on neural network weights
- + The LM is **not required** during decoding

Knowledge Distillation

Also uses soft targets from a teacher model, but needs parallel data

Knowledge Distillation

Also uses soft targets from a teacher model, but needs parallel data

Label Smoothing

Converts the one-hot into soft targets to penalize over-confidence

Knowledge Distillation

Also uses soft targets from a teacher model, but needs parallel data

Label Smoothing

Converts the one-hot into soft targets to penalize over-confidence

Assigns equal probability to all the incorrect classes, unlike the LM.

Knowledge Distillation

Also uses soft targets from a teacher model, but needs parallel data

Label Smoothing

Converts the one-hot into soft targets to penalize over-confidence

- Assigns equal probability to all the incorrect classes, unlike the LM.
- Orthogonal to posterior regularization (LM-prior)

Experimental Setup

Language Pair	Sentences	Corpus
English-German	275K	News Commentary v13
English-Turkish	190K	SETIMES

Table: Parallel data from WMT-2018

Language	Small (3M)	Large (30M)	Corpus
English	✓	✓	News Crawl 2016
German	\checkmark	✓	News Crawl 2016
Turkish	✓	_	News Crawl 2010-2018

Table: Monolingual data from News Crawl articles

Models

- Architecture: Transformer (LMs and TMs)
- Vocabulary: 16K symbols (sentencepiece)

Method	DE→EN	EN→DE	TR→EN	EN→TR
Base	26.6	25.6	16.6	11.2
Shallow-fusion	27.8	26.0	17.3	11.5
POSTNORM+ LS	26.4	23.3	16.0	11.0
Base + LS	28.4	27.3	18.4	12.6
Base + Prior	30.2	29.1	19.5	13.8

Method	DE→EN	$EN { o} DE$	$TR{ o}EN$	$EN {\rightarrow} TR$
Base	26.6	25.6	16.6	11.2
Shallow-fusion	27.8	26.0	17.3	11.5
POSTNORM+ LS	26.4	23.3	16.0	11.0
Base + LS	28.4	27.3	18.4	12.6
Base + Prior	30.2	29.1	19.5	13.8

Method	$DE { ightarrow} EN$	$\textbf{EN} {\rightarrow} \textbf{DE}$	$TR{ o}EN$	$EN {\rightarrow} TR$
Base	26.6	25.6	16.6	11.2
Shallow-fusion	27.8	26.0	17.3	11.5
POSTNORM+ LS	26.4	23.3	16.0	11.0
$Base + \mathtt{LS}$	28.4	27.3	18.4	12.6
Base + Prior	30.2	29.1	19.5	13.8

Method	$DE { ightarrow} EN$	$EN { o} DE$	$TR{ o}EN$	$\textbf{EN} {\rightarrow} \textbf{TR}$
Base	26.6	25.6	16.6	11.2
Shallow-fusion	27.8	26.0	17.3	11.5
POSTNORM+ LS	26.4	23.3	16.0	11.0
Base + LS	28.4	27.3	18.4	12.6
Base + Prior	30.2	29.1	19.5	13.8

Method	$DE { ightarrow} EN$	$EN { o} DE$	$TR{ o}EN$	$EN \rightarrow TR$
Base	26.6	25.6	16.6	11.2
Shallow-fusion	27.8	26.0	17.3	11.5
POSTNORM+ LS	26.4	23.3	16.0	11.0
Base + LS	28.4	27.3	18.4	12.6
Base + Prior	30.2 (+1.8)	29.1 (+1.8)	19.5 (+1.1)	13.8 (+1.2

Method	$DE { ightarrow} EN$	$EN { o} DE$	$TR{ o}EN$	EN→TR
Base	26.6	25.6	16.6	11.2
Shallow-fusion	27.8	26.0	17.3	11.5
POSTNORM+ LS	26.4	23.3	16.0	11.0
Base + LS	28.4	27.3	18.4	12.6
Base + Prior	30.2	29.1	19.5	13.8
Base + Prior + LS	30.3 (+0.1)	29.7 (+0.6)	19.5	14.1 (+0.3

DE→EN	$EN{ o}DE$	$TR {\rightarrow} EN$	$\textbf{EN} {\rightarrow} \textbf{TR}$
26.6	25.6	16.6	11.2
27.8	26.0	17.3	11.5
26.4	23.3	16.0	11.0
28.4	27.3	18.4	12.6
30.2	29.1	19.5	13.8
30.3	29.7	19.5	14.1
30.0	29.8 (+0.7)	19.5	-
	26.6 27.8 26.4 28.4 30.2 30.3	26.6 25.6 27.8 26.0 26.4 23.3 28.4 27.3 30.2 29.1 30.3 29.7	26.6 25.6 16.6 27.8 26.0 17.3 26.4 23.3 16.0 28.4 27.3 18.4 30.2 29.1 19.5 30.3 29.7 19.5

Analysis

Estimated density of each model's entropy on the $\mathtt{DE} {\to} \mathtt{EN}$ test set

Analysis

Estimated density of each model's entropy on the $DE \rightarrow EN$ test set

■ LS successfully mitigates overfitting, by **penalizing confidence**

Analysis

Estimated density of each model's entropy on the $\mathtt{DE} {\to} \mathtt{EN}$ test set

- LS successfully mitigates overfitting, by **penalizing confidence**
- "Base+Prior" does **not just** penalize confidence, but **exploits** the LM

Analysis

Estimated density of each model's entropy on the $DE \rightarrow EN$ test set

- LS successfully mitigates overfitting, by **penalizing confidence**
- "Base+Prior" does not just penalize confidence, but exploits the LM
- \blacksquare "POSTNORM" is over-confident, due to unwanted interference from LM

Conclusions¹

- Simple approach to incorporate prior knowledge in NMT
 - The decoupling of the LM from the TM enables fast decoding
 - We change **only** the training objective
- 2 Promising results in two low-resource translation datasets
 - Improvements even with **modest** monolingual data
- 3 Analysis of TM output distributions using different methods
 - Evidence that the model exploits the knowledge of the LM-prior

Thank you

Appendix

Bonus Slides

Full Results

Method	DE→EN		EN→DE		TR→EN		EN→TR	
	dev	test	dev	test	dev	test	dev	test
Base	22.6±0.1	26.6±0.1	18.3±0.3	25.6±0.2	15.9 _{±0.0}	16.6±0.3	12.2±0.1	11.2±0.2
Shallow-fusion	$23.4{\scriptstyle \pm 0.1}$	$27.8 \scriptstyle{\pm 0.1}$	$18.5{\scriptstyle \pm 0.2}$	$26.0{\scriptstyle \pm 0.1}$	$16.5{\scriptstyle \pm 0.1}$	17.3±0.3	$12.7{\scriptstyle \pm 0.0}$	$11.5{\scriptstyle \pm 0.1}$
POSTNORM	$20.4_{\pm 0.2}$	$24.5{\scriptstyle \pm 0.3}$	$16.6{\scriptstyle \pm 0.1}$	$22.9{\scriptstyle \pm 0.3}$	$13.8{\scriptstyle \pm 0.2}$	$11.0{\scriptstyle \pm 0.1}$	$10.0{\scriptstyle \pm 0.1}$	$10.2{\scriptstyle \pm 0.1}$
$Base + \mathtt{LS}$	$23.8{\scriptstyle \pm 0.6}$	$28.4{\scriptstyle \pm 0.7}$	$19.2{\scriptstyle \pm 0.3}$	27.3 _{±0.3}	$17.5{\scriptstyle \pm 0.1}$	$18.4{\scriptstyle \pm 0.2}$	$13.8{\scriptstyle\pm0.2}$	$12.6{\scriptstyle \pm 0.0}$
Base + Prior	24.9 _{±0.0}	30.2 _{±0.1}	20.5 ±0.3	29.1 _{±0.7}	18.5 _{±0.2}	19.5 _{±0.2}	$\textbf{15.1}{\scriptstyle\pm0.1}$	13.8 _{±0.1}
Base + Prior + LS	25.1±0.3	30.3±0.3	20.8±0.4	29.7 _{±0.7}	18.5±0.3	19.5±0.2	15.5±0.1	14.1 _{±0.2}
Base + Prior (30M)	$24.9{\scriptstyle \pm 0.1}$	$30.0{\scriptstyle \pm 0.1}$	$\underline{21.0}{\scriptstyle \pm 0.4}$	29.8 _{±0.3}	$\underline{18.6}{\scriptstyle \pm 0.0}$	$19.5{\scriptstyle\pm0.2}$	-	-

Table: BLEU scores of each NMT method (mean and std of 3 runs)

Baziotis et al.

The hyperparameters of each method were tuned on the DE \rightarrow EN dev-set: LS($\alpha=0.1$), shallow-fusion($\beta=0.1$), LM-prior ($\lambda=0.5$, $\tau=2$)

Results: Extremely Low-Resource Conditions

Figure: BLEU scores on the DE \rightarrow EN test set with different scales of parallel data. Mean of 3 runs reported.

Perplexity Scores of LMs

language	3M (PPL↓)	30M (PPL↓)
English	29.70	25.02
German	22.71	19.22
Turkish	22.78	_

Table: Perplexity scores for LMs trained on each language's monolingual data, computed on a small held-out validation set per language.

Connection to Knowledge Distillation

Distillation also uses as soft targets the distributions of a teacher model

■ Knowledge distillation (word-level) for NMT(Kim and Rush, 2016)

Connection to Knowledge Distillation

Distillation also uses as soft targets the distributions of a teacher model

■ Knowledge distillation (word-level) for NMT(Kim and Rush, 2016)

Use softmax-temperature τ to reveal **extra information** from LM

popularized as "dark knowledge" by (Hinton et al., 2015)

Connection to Knowledge Distillation

Distillation also uses as soft targets the distributions of a teacher model

Knowledge distillation (word-level) for NMT(Kim and Rush, 2016)

Use softmax-temperature au to reveal **extra information** from LM

popularized as "dark knowledge" by (Hinton et al., 2015)

$$\mathcal{L} = \sum_{t=1}^{N} -\log p_{\text{TM}}(\boldsymbol{y}_{t}|\boldsymbol{y}_{< t}, \boldsymbol{x}) + \lambda \boldsymbol{\tau}^{2} D_{\text{KL}}(p_{\text{LM}}(\boldsymbol{y}_{t}|\boldsymbol{y}_{< t}; \boldsymbol{\tau}) \parallel p_{\text{TM}}(\boldsymbol{y}_{t}|\boldsymbol{y}_{< t}, \boldsymbol{x}; \boldsymbol{\tau}))$$

$\mathcal{L}_{\scriptscriptstyle \mathrm{KL}}$ Sensitivity Analysis

Figure: BLEU scores on the DE \rightarrow EN test set of models trained with different λ and τ for the \mathcal{L}_{KL} . Mean of 3 runs for each combination reported.

Prior Work: Noisy Channel

Statistical Machine Translation

It models the "reverse translation probability" $p(\boldsymbol{y}|\boldsymbol{x}) \propto p(\boldsymbol{x}|\boldsymbol{y}) \times p(\boldsymbol{y})$

$$\hat{m{y}} = rg \max_{m{y}} \underbrace{p_{ ext{TM}}(m{x}|m{y})}_{ ext{translation model}} imes \underbrace{p_{ ext{LM}}(m{y})}_{ ext{language model}}$$

Prior Work: Noisy Channel

Statistical Machine Translation

It models the "reverse translation probability" $p(\boldsymbol{y}|\boldsymbol{x}) \propto p(\boldsymbol{x}|\boldsymbol{y}) \times p(\boldsymbol{y})$

$$\hat{m{y}} = rg \max_{m{y}} \underbrace{p_{ ext{TM}}(m{x}|m{y})}_{ ext{translation model}} imes \underbrace{p_{ ext{LM}}(m{y})}_{ ext{language model}}$$

Decoding with seq2seq is slow!

Feature-based: incorporate the representations of the LM

- deep-fusion (Gulcehre et al., 2015)
- cold-fusion (Sriram et al., 2018)

Feature-based: incorporate the representations of the LM

- deep-fusion (Gulcehre et al., 2015)
- cold-fusion (Sriram et al., 2018)

Probability Interpolation: incorporate the predictions of the LM

■ shallow-fusion (Gulcehre et al., 2015)

$$\hat{\boldsymbol{y}} = \arg\max_{\boldsymbol{y}} \ \log p_{\scriptscriptstyle \mathrm{TM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t}, \boldsymbol{x}) + \boldsymbol{\beta} \ \log p_{\scriptscriptstyle \mathrm{LM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t})$$

Feature-based: incorporate the representations of the LM

- deep-fusion (Gulcehre et al., 2015)
- cold-fusion (Sriram et al., 2018)

Probability Interpolation: incorporate the predictions of the LM

■ shallow-fusion (Gulcehre et al., 2015)

$$\hat{\boldsymbol{y}} = \arg\max_{\boldsymbol{y}} \; \log p_{\text{\tiny TM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t}, \boldsymbol{x}) + \boldsymbol{\beta} \; \log p_{\text{\tiny LM}}(\boldsymbol{y}_t|\boldsymbol{y}_{< t})$$

■ simple-fusion (Stahlberg et al., 2018) → POSTNORM:

$$p(y_t) = \operatorname{softmax}(\log p_{\scriptscriptstyle \mathrm{TM}}(y_t|y_{< t},x) + \log p_{\scriptscriptstyle \mathrm{LM}}(y_t|y_{< t}))$$

References I

- Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2015. On using monolingual corpora in neural machine translation. arXiv preprint arXiv:1503.03535.
- Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*, abs/1503.02531.
- Yoon Kim and Alexander M. Rush. 2016. Sequence-level knowledge distillation. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, pages 1317–1327, Austin, Texas, USA.
- Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and Adam Coates. 2018. Cold fusion: Training seq2seq models together with language models. In *Proceedings of Interspeech*, pages 387–391.
- Felix Stahlberg, James Cross, and Veselin Stoyanov. 2018. Simple fusion: Return of the language model. In *Proceedings of the Conference on Machine Translation*, pages 204–211, Belgium, Brussels.