

Recognition Class 12

Kalman Filter

- Weighted sum: $\hat{x}_t = \hat{x}_t^- + K_t(\mathbf{z}_t H\hat{x}_t^-)$
- Questions:
 - How to set the weight between prediction and observations? E_{EST}
 - How to set the variance?
 - How to predict ?

Time t

Simple Example

Known system's linear dynamic model:

• E.g.,
$$x_t = \begin{pmatrix} p_t \\ \dot{p}_t \end{pmatrix}$$
, \dot{p} is velocity $\dot{p}_{t+1} = \dot{p}_t$ and $p_{t+1} = p_t + \Delta T \dot{p}_t + w_t$

• Known linear mapping between the state x_t and the observation, z_t :

• E.g.,
$$z_t = p_t + v_t$$

- Measurement and estimation errors:
 - v_t and w_t are Gaussian noise

Assumptions

• Known system's linear dynamic model, with white noise $\sim G(0, Q)$

$$X_t = AX_{t-1} + Bu_t + W_{t-1}$$

- A is $n \times n$, B is $n \times \ell$
- Known linear transformation of the states to the measurements with white noise $\sim G(0, R)$: $z_t = Hx_t + v_t$
 - H is an $m \times n$ matrix

A, B, H, Q, R are assumed to be known

Goal

- Compute x_t
- Given:
 - Initial state
 - Previous measurements
 - Known (or learned) linear models: A, B, H
- Minimize the error (its covariance) between the correct and the computed x_t

```
\begin{aligned} x_t &= Ax_{t-1} + Bu_t + w_{t-1}, & w \in G(0, Q) \\ z_t &= Hx_t + v_t, & v_t \in G(0, R) \end{aligned}
```


Notation

- A priori:
 - state estimation: \widehat{x}_t^-
 - error: $e_t^- = x_t \widehat{x}_t^-$
 - covariance: $\Sigma_t^- = E(e_t^- e_t^{-T})$
- A posteriori, given z_t :
 - state estimation: \hat{x}_t
 - error: $e_t = (x_t \hat{x}_t)$
 - covariance: $\Sigma_t = E(e_t \ e_t^T)$

We would like to minimize it

The Discrete Kalman Filter ביתחומי הרצליה The Discrete Kalman Filter

Predict

(a priori estimate)

1. Predict the state ahead:

$$\hat{x}_t^- = A\hat{x}_{t-1}^- + Bu$$

2. Predict the error covariance ahead:

$$\Sigma_t^- = A \; \Sigma_{t-1} A^T + Q$$

Update

(a posteriori estimate)

1. Kalman gain K₁ is:

$$k_t = \frac{E_{est}}{E_{est} + E_{mea}}$$

$$K_t = \Sigma_t^- H^T (H \Sigma_t^- H^T + R)^{-1}$$

2. Update the state estimate:

$$\hat{x}_t = \hat{x}_t^- + K_t(\mathbf{z}_t - H\hat{x}_t^-)$$

3. Update the error covariance:

$$\Sigma_t = (I - K_t H) \Sigma_t^-$$

Up to Here

- Up to here: only brief outline of Kalman filter
- Many extensions exists
- Detailed: https://www.kalmanfilter.net/default.aspx
- See more references at the of the presentation

Non-Parametric Prediction

- Motivation: limitations of Kalman filter
- What are they?

Particle Filters

- Can represent distribution with set of weighted samples ("particles")
- Allows us to maintain multiple hypotheses

Particle Filters

Contour Prediction

- Object model
- Object shape
- Video

More on Tracking

- Tracklets
- Evaluation

Recognition

What is Recognition

Learning:

See one or more images of a given object: Building a model

Recognition:

Recognize the object in a **novel** image: Determine the object (model) in the image

Simple Correlation

The model:

- An image of the object
- A set of images of the object

Recognition: compare a new image to each of the models' images

- Use nearest neighbor
- Use k-nearest neighbors

Identifiaction: Simple Correlation

A chair

Find the chair

Output of normalized correlation

Adapted from Torralba

Classification: Simple Correlation

Simple template matching is not going to make it

Classification Challenges

Simple Classification

Nearest neighbor

No training required!

Training examples from class 1

Pros:

- + Simple to implement
- + Can be any distribution
- + Works for any number of classes
- + Nonparametric method

NN cons:

- Need good distance function
- Slow at test time

Less similar

More similar

Simple Correlation

- Expected to fail to generalize to new
 - Views
 - Illumination
 - Non rigid transformation
 - Occlusion

• ...

Main Challenges

- Generalization:Recognition in unseen images
- Robustness
- Scalability:
 - Space and time

Object Recognition Evolution

- Tailored end-to-end
 - Features (e.g., SIFTS, HOGS, RGB histograms,...)
 - Mapping (e.g., nearest neighbor, majority, ...)
- Learning Half way
 - Features (e.g., BOW)
 - Mapping (e.g., SVM)
- Learning end-to-end
 - Features & mapping (e.g., neural networks)

Examples Tailored End-to-End

 Simple image correlation using nearest neighbor or k-nearest neighbors

 Tailored facial feature representation (Yuille 1991)

General image features,
 e.g., SIFTS (Lowe 2004)

Machine Learning

- Use a set of observation to uncover the relation between input and the desired output
 - The alternative: study the problem mathematically
- Types:
 - Supervised/Semi-supervised/unsupervised

The Essences of Learning

- A pattern exists:
 - E.g., a picture of the same object has something in common
- Close mathematical solution is unknown
 - Otherwise use it!
- Must have data
 - Labeled
 - Unlabeled

Components of General Learning

- Input: $x \in X$
- Output: $y \in Y$
- Target function: $f: X \to Y$
- Training examples: $(x_1, y_1), ..., (x_N, y_N)$
- Hypothesis: $g: X \to Y$, s.t., $g \approx f$

Outline for Learning

- Target function: $f: X \to Y$
- Find $g: X \to Y$, s.t., $g \approx f$

Object Recognition

- The function f: determine the object in the image
- Learn f from a set of labeled/unlabeled examples
- Use f to recognize objects in a new image

Supervised Learning

Training:

Negative examples

Supervised Learning

Testing: face?

Supervised Learning

Learning Half Way

- Separate representation & matching
- Main Questions:
 - What is the representation
 - What is the "black box"

Tailored Representation

- The entire image
- Histogram
- Contours
- Features:
 - Regular grid
 - Local interest points
- Descriptors
 - Patches, Histograms, SIFT...

"Black Box"

- Examples:
 - Fisher classifier
 - SVM
 - Random Forest
 - ...
 - Neural networks
 - Convolution neural network (CNN)

Bag of Words

(Sivic & Zisserman 2003)

Use matching techniques from document analysis

Object

Bag of 'words'

Bag of Words

Independent features

Representation: histogram of features

Collect Features

2. Codewords dictionary formation

128-D SIFT space

K-Means

- Choose a fixed number of clusters
- Find the centers of the clusters
- Minimize: $\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{elements of i'th cluster}} \|x_j \mu_i\|^2 \right\}$

where μ_i is the center of S_i

- Iterative Algorithm
 - Fix cluster centers; allocate points to closest cluster
 - Fix allocation; compute best cluster centers:

K-mean Clustering

2. Codewords dictionary formation

Slide credit: Josef Sivic

128-D SIFT space

Image patch examples of codewords

Image Representation

Weighted Histogram

 Weight a word according to its frequency it all documents

Uses of BoW Representation

- Treat as feature vector for standard classifier
 - e.g., SVM
- Cluster BoW vectors over image collection

Discover visual themes

- Hierarchical models
 - Decompose scene/object

Support Vector Machin * (SVM)

Linear classifier

Limitations?

- Geometry:
 - Invariance to view points
 - 3D alignment
 - Weak geometric constraints

Summary

- Goals of computer vision:
 - Infer the physical world from images
 - Impart human perceptual ability to machines
 - Improve over human perceptual ability

What we learned

- What are the challenges
- Tasks examples
- Example of solutions (algorithms)
- Principals of solutions
- Implementations: parallelism

Course Topics

- Image features:
 - edges, corners, other interest points
- Image formation: Geometry
- Geometry: Stereo, SFM, Homography, epipolar geometry
- Motion analysis:
 - Optical flow, change detection, tracking
- Object Recognition
 - BOW

Tools

- Convolution
- Algebra:
 - Projective Algebra, SVD, 2D/3D transformations, Use of EigenVectors,
- Gaussians and Mixture of Gaussians
- RANSAC
- Evaluation methods

More Tools

- Double threshold
- RGB Histograms & histogram of gradients
- Nearest neighbor & Lowe distance
- Use vectorized solutions!

· ...

Left for Additional Lectures

- More on object recognition
 - Supervised/unsupervised, AdaBoost, Cascade
- More on multi camera
- Segmentation
- Photometry:
 - Image formation
 - Photometric Stereo
- Introduction to CNN
 - state-of-the-art compared to classic methods

Depth Perception

Depth Perception

Shape from Shading is ill-pose

CrowdCam

Papal coronation

CrowdCam: Moving Object

Depth Ambiguity

Illusion

See you in the one-on-one meeting