Minimization of DFA

Minimization of DFA is required to obtain the minimal version of any DFA which consist of the minimum number of states possible

Two states 'A' and 'B' are said to be equivalent if

$$\delta(A,X) \rightarrow F$$
or
$$\delta(A,X) + F$$
and
$$\delta(B,X) \rightarrow F$$

$$\delta(B,X) + F$$

where 'X' is any input String

Minimization of DFA - Examples (Part-1)

1 Equivalence

2 Equivalence

A,B -A,CV C,DX

	0	1
$\rightarrow A$	В	C
В	В	D
C	В	C
D	В	E
E	В	C

1 Equivalence

2 Equivalence

O Equivalence: {A,B,C,D} {E}

1 Equivalence

{A,B, C} {D} {E}

2 Equivalence

{A, C} {B} {O} {E}

3 Equivalance

{A,c} {B} {O} {E}

A,B	_
A,C	/
C, D	X

_		0	- 1	
$\rightarrow A$		B	C	
É	3	В	D	
(B	C	
1	D	B	E	
(E	В	C	

Minimization of DFA - Examples (Part-2)

Construct a minimum DFA equivalent to the DFA described by

	0	1	O Eauvalence
→ q o	91	95	{90,91,93,94,95,90,973 } 925
91	96	92	1- Equivalence
92	90	92	§ 90, 94, 96]
93	92	96	
94	97	95	{91,979
95	92	96	{93,95} {92}
96	96	94	7 Taninalana
97	96	92	2- Equivalence
			{90,94} {96} {91,97} {93,95} {91}

$$99$$
 91 95 { 99 92 96 92 1- Equivalence 99 96 92 99 95 99 96 99 97 99 97 99 97 99 98 99 99 99 99 99 99 99 90

Minimization of DFA - Examples (Part-3)

When there are more than one Final States involved

Minimize the following DFA:

	O	1
→A	В	C
В	Α	D
0	E	F
D	E	F
E	E	F
F	F	F

$$O$$
 A,B
 A,B

Minimization of DFA - Examples (Part-4)

When there are Unreachable States involved

A state is said to be Unreachable if there is no way it can be reached from the Initial State

Minimization of DFA - Examples (Part-4)

When there are Unreachable States involved

0-Equivalence	; }	A, D, E	ე ჩ ც	,८,५५
---------------	-----	---------	--------------	-------

A state is said to be Unreachable if there is no way it can be reached from the Initial State

