1 Trigonométrie au lycée

Voici le cercle trigonométrique (de rayon 1), le sens de lecture est l'inverse du sens des aiguilles d'une montre. Les angles remarquables sont marqués de 0 à 2π (en radian) et de 0° à 360°. Les coordonnées des points correspondant à ces angles sont aussi indiquées.

Le point M a pour coordonnées $(\cos x, \sin x)$. La droite (OM) coupe la droite d'équation (x=1) en T, l'ordonnée du point T est $\tan x$. Les formules de base :

 $\cos^2 x + \sin^2 x = 1$

$$\cos(x + 3\pi i) = \cos x$$
$$\sin(x + 2\pi) = \sin x$$

Nous avons les formules suivantes :

$$\cos(-x) = \cos x$$
$$\sin(-x) = -\sin x$$

On retrouve graphiquement ces formules à l'aide du dessin des angles x et -x.

Il en est de même pour les formules suivantes :

Valeurs que l'on retrouve bien sur le cercle trigonométrique.

1.1 Les fonctions sinus, cosinus, tangente

La fonction cosinus est périodique de période 2π et elle est paire (donc symétrique par rapport à l'axe des ordonnées). La fonction sinus est aussi périodique de période de 2π mais elle est impaire (donc symétrique par rapport à l'origine).

Voici un zoom sur l'intervalle $[-\pi, \pi]$.

Pour tout x n'appartenant pas à $\{\ldots,-\frac{\pi}{2},\frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{2},\ldots\}$ la tangente est définie par

$$\tan x = \frac{\sin x}{\cos x}$$

La fonction $x\mapsto \tan x$ est périodique de période π ; c'est une fonction impaire.

Voici les dérivées :

$$\cos' x = -\sin x$$

$$\sin' x = \cos x$$

$$\tan' x = 1 + \tan^2 x = \frac{1}{\cos^2 x}$$

1.2 Les formules d'addition

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$\sin(a+b) = \sin a \cdot \cos b + \sin b \cdot \cos a$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$$

On en déduit immédiatement :

$$\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$

$$\sin(a-b) = \sin a \cdot \cos b - \sin b \cdot \cos a$$

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

Il est bon de connaître par cœur les formules suivantes (faire a=b dans les formules d'addition) :

$$\cos 2a = 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$= \cos^2 a - \sin^2 a$$

$$\sin 2a = 2\sin a \cdot \cos a$$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$