LSPR sensor modified by molecularly imprinted sol-gel for selective organic acid vapor detection

Liang Shang, Chuanjun Liu, Kenshi Hayshi*

Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka, Japan

Introduction

Body odor

Fatty acids

Alcohols

Aldehydes

Esters

Ketones

Amines

Application

Medical diagnosis

Introduction

Localized surface plasmon resonance (LSPR)

Absorption spectra

Particle size, shape and composition

Surrounding media

Merit & drawback

Fast response/recovery speed

Non specificity

Introduction

Molecularly Imprinted Sol-gel (MISG)

Reaction principle

Hydrolyzed - M - OR + HOH Reesterification Polycondensed Water Condensation Hydrolysis - M - O - M - HOH Alcoholysis - M - O - M - HOH Alcoholysis

Imprinting method

Compared with other MIP

Stability of

chemical and thermal

Concept

MISG-LSPR sensor array

Experiment

MISG material

MISG-AuNPs film fabrication

Iso-propanol 2 mL

 $Ti(OBu)_4$ 136 μ L

APTES $24 \mu L$

Template 50 μL

TiCl₄ 25 μL

70 °C water bath, 1h

Step 1 APTES modification

Step 2 Sputtered AuNPs and anneal

Sputtering AuNPs thinkness: 3nm

Anneal: 200 °C, 5h, air

Aunps Aunps Aunps Aunps Aunps Aunps Aunps Aunps Aunps Aunps

Step 3 MISG reaction solution spin coating

MISG solution: 20 µL Spin coating speed: 1000/3000/5000 rpm Template molecules Titanate sol-gel martix Aunps Aunps

Step 4 Annealed for removing templates

Experiment

Testing system

Gas generate system

Transmittance spectra testing system

$$k = \frac{22.4 \times (273 + t) \times 760}{M \times 273 \times P}$$

t – Thermodynamic temperature (°C)

M – Molecular weight (g/mol)

P – Atmosphere (mmHg)

$$C = \frac{k \times D_r \times 10^3}{F}$$

Dr – Diffusion rate (µg/min)

F – Flow rate of dilute gas (ml/min)

■ Transmittance spectra of MISG-LSPR sensors.

The changes of transmittance spectra are affected by their different surface features.

■ Real-time response of HA-MISG and NISG with different coating speeds to HA vapors (Transmittance at λ_{min})

 Real-time response of HA-MISG-LSPR sensor to three fatty acid vapors (PA/HA/OA)

HA-MISG-LSPR sensor

Template molecule: HA

Spin coating speed: 3000 rpm

PA: Propanoic acid (40.93 ppm)

HA: Hexanoic acid (21.05 ppm)

OA: Octanoic acid (11.23 ppm)

 $K = Normalized T/C_{gas}$

A specific selectivity to HA vapors was obtained

■ MISG-LSPR sensor array for fatty acid vapors discrimination.

Fatty acid vapors

Propanoic acid (PA) Hexanoic acid (HA)

Heptanoic acid (HPA) Octanoic acid (OA)

Propanoic acid + Hexanoic acid (PA+HA, v:v = 1:1)

Propanoic acid + Octanoic acid (PA+OA, v:v = 1:1)

Hexanoic acid + Octanoic acid (HA+OA, v:v = 1:1)

■ PCA and linear discriminant analysis (LDA) results for diverse fatty acid vapors

Conclusion

- An AuNPs film combined with MISG was utilized for the determination of fatty acid vapors selectively.
- The adsorption capacity of pure titanate sol-gel matrix is weak.
- By controlling the **spin coating speed**, the **adsorption ability** of MISG would be controlled.
- Based on the MISG-LSPR sensor array, fatty acid vapors would be detected and discriminated.

Thank you for your attention

