

VPN SpyGlass

Unveiling Network
Shadows: Unmasking
VPNs with VPN

Spyglass

Advisor: Dr. Mehdi Hussain

Co-Advisor: Dr. Arsalan

Ahmad

Team Members:

Hassan Abdullah 337275

Sameen Mubashar 346848

Overview

- Introduction
- Problem Statement
- Literary Review
- Value Proposition
- Initial Phases Before
 Development

- Technologies
- Software Development
 Implementation
- Project Milestones
- Work Division
- Costing

Introduction

Ol Importance of network security

02 Encrypted Network Traffic Analysis

Need to detect VPN usage

04 P4 Language

Problem
Statement

Problem 1

The proliferation of VPNs poses a challenge to network administrators, as these tools can bypass security measures and access restricted content. This poses security risks, violates agreements, and slows network performance

Problem 2

Existing methods often struggle to identify VPN traffic due to encryption and masking techniques employed by VPN services.

Literary Review

Works in the Network Analytics And SDN

RESERCH PAPER	YEAR/AUTHOR	GOAL	METHOD USED	LIMITATION
Characterization of Encrypted and VPN Traffic using Time-related Features	2016 Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun and Ali A. Ghorbani	Effectiveness of flow-based time-related features to detect VPN traffic and to characterize encrypted traffic into different categories, according to the type of traffic.	C4.5 decision tree and KNN	 Proposed set of time-related features achieving accuracy levels around 80%. Require Labelled Dataset of previous Network Packet History
Detection of VPN Network Traffic	2022 Avnish Goel, Apoorv Kashy, B. Devesha Reddy	Detecting and classifying the network traffic as VPN/Non- VPN over the standardized Dataset using various Machine Learning algorithms.	Multilayer Perceptrons (MLPs) and Random Forest Model	The precision and recall for the same were 0.99907 and 0.92849 respectively. Require Labelled Dataset of previous Network Packet History
A Survey on Encrypted Network Traffic Analysis Applications, Techniques, and Countermeasures	2021 EVA PAPADOGIANNAKI, SOTIRIS IOANNIDIS	Examine the literature that deals with network traffic analysis and inspection after the ascent of encryption in communication channels	Use traditional deep packet inspection systems	Only for Normal traffic. Not for VPN.
Lightweight Anti DDoS Security Tool: Edge Level Filtering in SDN using P4	2023 Masumi Arafune; Bhargavi Goswami; Manasa Kulkarni; Nagarajan Venkatachalam	Defense mechanism by enabling edge-level filtering without involving the control plane.	By implementing filtering functions in edge switches, it can provide an efficient and effective defense layer in SDN network systems so that SDN switch can become the first line of defense against packet injection attacks.	Only for DDoS Attack Isolates Data Plan from control Plane

Value Proposition

The value of our project lies in its potential to significantly enhance network security and policy enforcement. By providing network administrators with a tool that can accurately identify and monitor VPN usage full filling few UNSDGs, organizations can:

Ol Prevent data breaches.

O2 Industry, Innovation, and Infrastructure

O3 Peace, Justice, and Strong Institutions

04 Sustainable Cities and Communities

Project Development Methodology / Architecture

Initial Phases Before Development

- Ol Understanding existing VPN detection systems
- **02** Understanding BMV2 and P4 working
- **03** Requirements engineering for web interface

Technologies

ReactJS

Django

Python

P4 Language

Mininet

ONOS

OpenFlow

Wireshark

Implementation

Phase 1

Detection of VPN traffic using Deep Packet Inspection based on their IP, Port Number, and Packet Length. Understand P4, BMV2, and OpenFlow.

Phase 2

Development of Web Page. Setting up of implementation environment.

Phase 3

Implementation of code on BMV2 switch and integrating with the webpage.

Project Milestones and Deliverables

Project Timeline

Work Division

- Environment Setting.
- Implementing Mininet Topology and OpenFlow
- Backend Development, Testing, and Documentation
- Deployment

Hassan

- UI Design
- Frontend Development, Testing, and Documentation
- Non-functional Requirements Testing

Sameen

- P4 Program
- Pattern detection of VPNs
- SRS and SDS
- Maintenance and Improvement

Mutual

Costing

ITEM	COST
Domain for 1 year	PKR 1300
System to set up virtual Switch	PKR 60,000
(Optional) Edgecore DCS802-12.8T Programmable Data Center Switch	\$ 32,000

Thank You

For Your Attention

Any Questions?