Question 1:

	Wage	Education	Exper	
Wage	1			
Education	0.396469	1		
Exper	0.171888	-0.25612		1

Correlation indicates strength and direction of the relationships between variables.

The correlation coefficient between "wage" and "education" is 0.396469. This is a moderate positive i.e., as the value of education increases, wages is likely to increase, but it is not a very strong relationship.

The correlation coefficient between "wage" and "exper" is 0.1718. This is a weak positive correlation between wage and experience i.e., as experience increases, wages tend to increase slightly, but the relationship is not very strong. This is highly unlikely as per the real-world scenario.

The correlation coefficient between "education" and "exper" is -0.25612. This is a weak negative correlation between education and experience, suggesting that as education levels increases, there is a tendency for experience levels to decrease slightly.

Question 2:

The Regression Equation with Wage as dependent variable and all other variables except Age as independent variable is given by:

Wage = $B_0 + B_1 * female + B_2 * nonwhite + B_3 * union + B_4 * education + B_5 * exper$

Each coefficient represents the expected change in the wage for an additional unit change in the respective explanatory variable holding other variables constant.

SUMMARY OUTPUT									
Regression St	tatistics								
Multiple R	0.513391563								
R Square	0.263570897								
Adjusted R Square	0.256117161								
Standard Error	6.555497839								
Observations	500								
ANOVA									
	df	SS	MS	F	gnificance	F			
Regression	5	7598.1	1519.62	35.3609	6.1E-31				
Residual	494	21229.4	42.9746						
Total	499	28827.5							
	Coefficients of	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.09	%
Intercept	-6.14874882	1.65169	-3.7227	0.00022	-9.39395	-2.90355	-9.39395	-2.90355	Г
female	-1.55751856	0.58986	-2.64048	0.00854	-2.71647	-0.39857	-2.71647	-0.39857	
nonwhite	-2.16679196	0.78823	-2.74895	0.0062	-3.71548	-0.6181	-3.71548	-0.6181	
union	1.146911336	0.79565	1.44147	0.15009	-0.41637	2.71019	-0.41637	2.71019	
education	1.184459329	0.1043	11.3566	1E-26	0.97954	1.38938	0.97954	1.38938	
exper	0.185092885	0.02676	6.91665	1.4E-11	0.13251	0.23767	0.13251	0.23767	

 $\mathsf{Wage} = B_o + B_1 * female + B_2 * nonwhite + B_3 * union + B_4 * education + B_5 * exper$

This equation can be interpreted as that:

Wage $=B_o$ means that wage for Male with white race, not a union member, with no education and no work experience.

Wage = $B_0 + B_1$ means that wage for Female with white race, not a union member, with no education and no work experience.

Wage = $B_0 + B_1 + B_2$ means that wage for Female with non-white race, not a union member, with no education and no work experience.

So on, Wage = $B_0 + B_1 + B_2 + B_3 + B_4 * education + B_5 * exper$ means that wage for Female with non-white race, a union member, with some education and with some work experience.

Regression Equation 1:

 $\label{eq:wage} \begin{tabular}{ll} Wage = -6.1487488180495 - 1.55751856352247* female - 2.16679195919089* nonwhite + \\ 1.14691133598611* union + 1.18445932909071* education + 0.185092885466996* experiments (a) (0.185092885466996) and (0.185092885466996) are supported by the support of the support o$

Question 3:

Explanation of \mathbb{R}^2 , F-test and individual p values of the coefficients with respect to Regression Equation 1.

- 1. R^2 (Coefficient of Determination):- The R^2 value is 0.263570897062628 suggesting that approx. 26% of the variance in the wage can be explained by the predictor variables used in the model.
- 2. F-test: F- test in the regression model asses the overall significance of the model. F statistics of the given model is 35.3609119003031. It measures the mean square for regression (MS) by the mean square for the residual (MS). The significance F value is 6.14758498146384E-31 (very close to zero). This represents the p-value associated with the F-statistic. The extremely small p-value indicates that the null hypothesis is being rejected.
- 3. The p-values of each coefficient provide information about the statistical significance of the individual predictor variables in relation to the dependent variable (wage).
 - 1. Intercept: The p-value for the intercept term is 0.000219786453906055 indicating that the intercept term is statistically significant. So, when all the predictor variables are zero, average wage is significantly different from zero.
 - 2. Female: The p-value for the coefficient of the "female" variable is 0.00854084818489423. This suggests that the variable is statistically significant i.e., female has a significant effect on the wage.
 - 3. Nonwhite: The p-value for the coefficient of the "nonwhite" variable is 0.00619767412399708 less than the threshold 0.05. Therefore, the "nonwhite" variable is statistically significant in explaining the wage in this model.
 - 4. Union: The p-value for the coefficient of the "union" variable is 0.150085539750413. greater than 0.05. Thus, the "union" variable is not statistically significant, and hence has no significant effect on the wage when controlling for other variables.
 - 5. Education: The p-value for the coefficient of the "education" variable is 1.02362951041274E-26, suggesting that the "education" variable is statistically significant even after accounting for other variables.
 - 6. Exper: The p-value for the coefficient of the "exper" variable is 1.43769300093448E-11, implying that the "exper" variable is statistically significant i.e., the experience has a significant effect on the wage, even when considering other variables.

Ouestion 4:

The Regression Equation with Wage as dependent variable and all other variables including Age as independent variable is given by:

Wage = $B_0 + B_1 * female + B_2 * nonwhite + B_3 * union + B_4 * education + B_5 * exper + B_6 * age$

Each coefficient represents the expected change in the wage for an additional unit change in the respective explanatory variable holding other variables constant.

Including age in the model gave below result:-

SUMMARY OUTPUT								
Regression St	atistics							
Multiple R	0.513391563							
R Square	0.263570897							
Adjusted R Square	0.25409287							
Standard Error	6.555497839							
Observations	500							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	6	7598.096721	1266.35	35.3609	1.4E-35			
Residual	494	21229.42865	42.9746					
Total	500	28827.52537						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	-6.14874882	1.651689968	-3.7227	0.00022	-9.39395	-2.90355	-9.39395	-2.90355
female	-1.55751856	0.589861491	-2.64048	0.00854	-2.71647	-0.39857	-2.71647	-0.39857
nonwhite	-2.16679196	0.788226513	-2.74895	0.0062	-3.71548	-0.6181	-3.71548	-0.6181
union	1.146911336	0.79565398	1.44147	0.15009	-0.41637	2.71019	-0.41637	2.71019
education	1.184459329	0.104296592	11.3566	1E-26	0.97954	1.38938	0.97954	1.38938
exper	0.185092885	0.026760468	6.91665	1.4E-11	0.13251	0.23767	0.13251	0.23767
age	0	0	65535	#NUM!	0	0	0	0
< > ••• C	1 02 0	staget 03	without	Ago]	Q2 with	Age I	+	
(21 Q2 Da	ataset Q2	without	Age	QL WILLI	, .gc	т т	

Here, the age coefficients is not provided indicating some error in the data. When checked whether there is some linearity dependency within variables, found that age and exper are dependent.

Running the regression between the two variables with age being the dependent variable found that exper has significant p value suggesting significant effect on age variable. Also, scatterplot is checked to check the collinearity between these two variables.

SUMMARY OUTPUT								
Regression Stat	istics							
Multiple R	0.967518							
R Square	0.936091							
Adjusted R Square	0.935962							
Standard Error	2.836834							
Observations	499							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	58584.06	58584.06	7279.667	5.6E-299			
Residual	497	3999.672	8.047629					
Total	498	62583.73						
	Coefficients	andard Frri	t Stat	P-value	Lower 95%	Unner 95%	ower 95 09	pper 95.0%
Intercept			84.47451		20.02601			
	0.935224				0.913687			
10	0.333224	0.010901	65.32090	3.02-299	0.913067	0.93070	0.913067	0.53070

From scatterplot, it appears that both the variables have positive linear relationship between age and exper variable, suggesting that as age increases exper tends to increase. This suggests a linear dependence between the two variables.

Now, removing exper variable and running the regression model provided same Regression statistics with slight increase in the Adjusted R square. Also, noted that there has been slight decrease in the coefficients of intercept and education but rest all the variables' coefficient remained the same. Also, coefficient of exper and age came out to be same.

SUMMARY OUTPUT								
Regression S	tatistics							
Multiple R	0.513391563							
R Square	0.263570897							
Adjusted R Square	0.256117161							
Standard Error	6.555497839							
Observations	500							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	5	7598.1	1519.62	35.3609119	6.14758E-31			
Residual	494	21229.4	42.9746					
Total	499	28827.5						
	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	-7.25930613	1.73786	-4.17715	3.4903E-05	-10.673818	-3.84479	-10.6738	-3.84479
female	-1.55751856	0.58986	-2.64048	0.00854085	-2.71646529	-0.39857	-2.71647	-0.39857
nonwhite	-2.16679196	0.78823	-2.74895	0.00619767	-3.71548187	-0.6181	-3.71548	-0.6181
union	1.146911336	0.79565	1.44147	0.15008554	-0.41637189	2.71019	-0.41637	2.71019
education	0.999366444	0.10084	9.91069	3.0733E-21	0.801243775	1.19749	0.80124	1.19749
age	0.185092885	0.02676	6.91665	1.4377E-11	0.132514514	0.23767	0.13251	0.23767

Explanation of \mathbb{R}^2 , F-test and individual p values of the coefficients with respect to Regression Equation 1.

- 1. R^2 (Coefficient of Determination):- The R^2 value is 0.263570897062629 suggesting that approx. 26% of the variance in the wage can be explained by the predictor variables used in the model.
- 2. F-test: F- test in the regression model asses the overall significance of the model. F statistics of the given model is 35.3609119003032. It measures the mean square for regression (MS) by the mean square for the residual (MS). The significance F value is 6.1475849814622E-31 (very close to zero). This represents the p-value associated with the F-statistic. The extremely small p-value indicates that the null hypothesis is being rejected.
- 3. Adjusted R^2 : The increase in the adjusted R square indicates that the additional independent variable in the model is contributing to a better fit of data.
- 4. The p-values of each coefficient provide information about the statistical significance of the individual predictor variables in relation to the dependent variable (wage).
 - 1. Intercept: The p-value for the intercept term is 0.000219786453906055 indicating that the intercept term is statistically significant. So, when all the predictor variables are zero, average wage is significantly different from zero.
 - 2. Female: The p-value for the coefficient of the "female" variable is 0.00854084818489423. This suggests that the variable is statistically significant i.e., female has a significant effect on the wage.
 - 3. Nonwhite: The p-value for the coefficient of the "nonwhite" variable is 0.00619767412399708 greater than the threshold 0.05. Therefore, the "nonwhite" variable is statistically significant in explaining the wage in this model. We reject the null hypothesis because nonwhite has significant effect on wage while considering other variables.
 - 4. Union: The p-value for the coefficient of the "union" variable is 0.150085539750413. greater than 0.05. Thus, the "union" variable is not statistically significant, and hence has no significant effect on the wage when controlling for other variables.
 - 5. Education: The p-value for the coefficient of the "education" variable is 3.0732846770329E-21, suggesting that the "education" variable is statistically significant even after accounting for other variables.
 - 6. Age: The p-value for the coefficient of the "age" variable 1.43769300093438E-11, implying that the "age" variable is statistically significant i.e., the experience has a significant effect on the wage, even when considering other variables.

Question 5:

The interaction effect between "education" and each of the variables "female," "nonwhite," and "union.

SUMMARY OUTPUT									
	Regression Statistics								
Multiple R		0.190149365							
R Square		0.036156781							
Adjusted R Square		0.030327084							
Standard Error		7.484555987							
Observations		500							
ANOVA									
	df		SS	MS	F	gnificance	F		
Regression		3	1042.31	347.437	6.202171673	0.00038			
Residual		496	27785.2	56.0186					
Total		499	28827.5						
	Coefficients		andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.0%
Intercept		12.31383486	0.49633	24.81	5.9167E-89	11.3387	13.289	11.3387	13.289
education*female		-0.03797259	0.04829	-0.7864	0.432011271	-0.13284	0.0569	-0.13284	0.0569
education* nonwhite		-0.196888455	0.06898	-2.85448	0.004491238	-0.33241	-0.06137	-0.33241	-0.06137
education* union		0.21597258	0.06505	3.32012	0.00096605	0.08817	0.34378	0.08817	0.34378

Yes, there is an interaction effect in the regression model.

- 1. education*female: The coefficient -0.0379725904240176 indicates that the effect of education on the wage variable differs depending on the gender (female or male). The negative coefficient suggests that the relationship between education and the wage is weaker for females compared to males. However, the p-value (0.432011271254887) is not significant, indicating that this interaction effect is not statistically significant.
- 2. education*nonwhite: The coefficient is -0.19688845505998. This suggests that the effect of education on the wage variable differs based on the nonwhite or white background. However, the p-value (0.00449123826573105) is significant, indicating that this interaction effect is statistically significant.
- 3. education*union: The coefficient is 0.215972579585415. This suggests that the effect of education on the wage variable differs depending on whether the individual is a member or not. The positive coefficient indicates that the relationship between education and the wage is stronger for a union member.

The interaction effect between "exper" and each of the variables "female," "nonwhite," and "union.

SUMMARY OUTPUT											
Regression Stat	istics										
Multiple R	0.15401										
R Square	0.02372										
Adjusted R Square	0.01781										
Standard Error	7.5327										
Observations	500										
ANOVA											
	df	SS	MS	F	gnificance I	F					
Regression	3	683.728	227.909	4.016621047	0.00767						
Residual	496	28143.8	56.7415								
Total	499	28827.5									
	Coefficients	andard Err	t Stat	P-value	Lower 95%	Jpper 95%	ower 95.09	pper 95.09	%		
Intercept	12.0576	0.43689	27.5987	2.8033E-102	11.1992	12.9159	11.1992	12.9159			
exper*female	0.00518	0.02783	0.18629	0.852293343	-0.04949	0.05986	-0.04949	0.05986			
exper*nonwhite	-0.10741	0.03868	-2.77646	0.005703224	-0.18341	-0.0314	-0.18341	-0.0314			
exper*union	0.09733	0.03421	2.84552	0.004617429	0.03013	0.16454	0.03013	0.16454			
< > ··· (Q4 with A	ge only	Q5 I	nteraction [Dataset	Q5 w	ith Educa	ation	Q5 with	Exper	
dy 🦙 Accessibility	/: Unavailab	le									

- 1. exper*female: The coefficient 0.00518424776135004 suggests that the effect of "exper" on the wage variable differs depending on the gender of the individual. The positive coefficient indicates that the relationship between "exper" and the wage is stronger for females compared to males. However, the p-value (0.852293342985486) is not significant, indicating that this interaction effect is not statistically significant.
- 2. exper*nonwhite: The coefficient is -0.10740695073777. This suggests that the effect of "exper" on the wage variable differs depending on whether the individual is white or nonwhite. However, the p-value (0.0057032241803729) is significant, indicating that this interaction effect is statistically significant.
- 3. exper*union: The coefficient is 0.0973310257886072. This suggests that the effect of "exper" on the age variable differs depending on whether the individual is a union member or not. The positive coefficient indicates that the relationship between "exper" and the wage is stronger for union members compared to non-union members.

Question 6:

Stepwise method is an approach to select most relevant variables in the regression model. It is a combination of forward selection and backward elimination steps. Considering wage as the dependent variable and all the other variables including the interaction variables, below model is prepared using stepwise approach.

Steps included:

1. Correlation between wage and all other variables in calculated.

wage female	1		nonwhite	union	education	age	exper	cation*Jen	ation* nonv	ication* un	(per*Jemai	er*nonwn)	(per "unio
emale	1												
Ciliaic	-0.12138	1											
nonwhite	-0.14707	0.074556	1										
union	0.101226	-0.06814	0.098358	1									
ducation	0.396469	-0.01071	-0.11392	-0.02016	1								
age	0.281524	-0.01024	0.023895	0.202896	-0.00338	1							
exper	0.171888	-0.00719	0.051902	0.201228	-0.25612	0.967506	1						
education	-0.04178	0.953951	0.03367	-0.05501	0.203179	-0.01769	-0.06847	1					
education	-0.1159	0.060273	0.971091	0.078178	-0.01569	0.00625	0.010009	0.049251	1				
education	0.136538	-0.0529	0.064896	0.965384	0.100577	0.179976	0.148543	-0.00574	0.083348	1			
exper*fen	-0.00776	0.759422	0.086903	0.011333	-0.14494	0.424161	0.446665	0.666764	0.047442	-0.00413	1		
exper*nor	-0.08762	0.061417	0.812981	0.178438	-0.17574	0.281649	0.316693	0.003029	0.739585	0.09664	0.202598	1	
exper*uni	0.091198	-0.07398	0.132722	0.871861	-0.10726	0.376631	0.391193	-0.08609	0.071507	0.790853	0.079827	0.323864	1

- 2. Criterion Selection: Criteria to enter a variable in the model is p-value less than 0.05 (p-in) and criteria to remove a variable is p-value is 0.1 (p-out).
- 3. Excel Sheet "Stepwise 1" contains regression output of outcome variable wage and explanatory variable education (as education and wage had the highest correlation). The explanatory variable satisfies the criterion of p-in and hence is a good fit as per the criterion.

4. The next highest correlated independent variable "age" is included in the model and both the independent variable education ad age satisfies the p-value criterion. Also, there has been increase in the Adjusted R value denoting inclusion of age is a good fit in the model.

SUMMARY	OUTPUT									
Regression	Statistics									
Multiple R										
R Square	0.2372									
Adjusted F										
Standard I										
Observation										
ANOVA										
	df	SS	MS	F	gnificance	F				
Regression	2	6837.892	3418.946	77.27352	6.01E-30					
Residual	497	21989.63	44.24473							
Total	499	28827.53								
C	oefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.09	6	
Intercept	-8.87678	1.716967	-5.17003	3.4E-07	-12.2502	-5.50337	-12.2502	-5.50337		
education	1.031138	0.101646	10.14437	4.2E-22	0.831429	1.230848	0.831429	1.230848		
age	0.191972	0.026588	7.220234	1.96E-12	0.139733	0.244211	0.139733	0.244211		
> ••	• Q5 wi	th Exper	Questio	n 6 Stepwi	se Step	owise 1	Stepwise	2	+	
V 50 Acco	ccibility: Upay	ailablo								

5. Next highly correlated independent variable is exper. But as we know age and exper are linearly dependent variable, we are getting error in the regression report. So, I have checked the regression report excluding age and have found that inclusion of either age or exper provides the same regression output.

0.2372 0.23212 6.65167 500									
6.65167									
500									
df	SS	MS	F	gnificance	F				
3	6837.89	2279.3	77.2735	5E-41					
497	21989.6	44.2447							
500	28827.5								
efficientsa	ındard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	6	
7.72494	1.62738	-4.74685	2.7E-06	-10.9223	-4.52755	-10.9223	-4.52755		
1.22311	0.10515	11.6317	8E-28	1.01651	1.42971	1.01651	1.42971		
0	0	65535	#NUM!	0	0	0	0		
0.19197	0.02659	7.22023	#NUM!	0.13973	0.24421	0.13973	0.24421		
	3 497 500 efficients 7.72494 1.22311 0	3 6837.89 497 21989.6 500 28827.5 efficientsandard Ern 7.72494 1.62738 1.22311 0.10515 0 0	3 6837.89 2279.3 497 21989.6 44.2447 500 28827.5 efficientsandard Err. t Stat 7.72494 1.62738 -4.74685 1.22311 0.10515 11.6317 0 0 65535	3 6837.89 2279.3 77.2735 497 21989.6 44.2447 500 28827.5 efficientsandard Erri t Stat P-value 7.72494 1.62738 -4.74685 2.7E-06 1.22311 0.10515 11.6317 8E-28 0 0 65535 #NUM!	3 6837.89 2279.3 77.2735 5E-41 497 21989.6 44.2447 500 28827.5	3 6837.89 2279.3 77.2735 5E-41 497 21989.6 44.2447 500 28827.5 efficient and ard Erro t Stat P-value lower 95% Upper 95% 7.72494 1.62738 -4.74685 2.7E-06 -10.9223 -4.52755 1.22311 0.10515 11.6317 8E-28 1.01651 1.42971 0 0 65535 #NUM! 0 0	3 6837.89 2279.3 77.2735 5E-41 497 21989.6 44.2447 500 28827.5 efficients and ard Erri t Stat P-value lower 95% Jpper 95% wer 95.09 7.72494 1.62738 -4.74685 2.7E-06 -10.9223 -4.52755 -10.9223 1.22311 0.10515 11.6317 8E-28 1.01651 1.42971 1.01651 0 0 65535 #NUM! 0 0 0	3 6837.89 2279.3 77.2735 5E-41 497 21989.6 44.2447 500 28827.5 efficient and ard Err, t Stat P-value Lower 95% Jpper 95.09 pper 95.09 7.72494 1.62738 -4.74685 2.7E-06 -10.9223 -4.52755 -10.9223 -4.52755 1.22311 0.10515 11.6317 8E-28 1.01651 1.42971 1.01651 1.42971 0 0 65535 #NUM! 0 0 0 0 0	3 6837.89 2279.3 77.2735 5E-41 497 21989.6 44.2447 500 28827.5 efficient and ard Erro t Stat P-value Lower 95% Jpper 95% wer 95.0% pper 95.0% 7.72494 1.62738 -4.74685 2.7E-06 -10.9223 -4.52755 -10.9223 -4.52755 1.22311 0.10515 11.6317 8E-28 1.01651 1.42971 1.01651 1.42971 0 0 65535 #NUM! 0 0 0 0

Regression output excluding age and including exper.

SUMMARY	OUTPUT								
Regression	Statistics								
Multiple R	0.487032								
R Square	0.2372								
Adjusted F	0.234131								
Standard I	6.651672								
Observation	500								
ANOVA									
	df	SS	MS	F	gnificance	F			
Regression	2	6837.892	3418.946	77.27352	6.01E-30				
Residual	497	21989.63	44.24473						
Total	499	28827.53							
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	6
Intercept	-7.72494	1.627383	-4.74685	2.71E-06	-10.9223	-4.52755	-10.9223	-4.52755	
education	1.22311	0.105153	11.63172	7.96E-28	1.016511	1.429709	1.016511	1.429709	
exper	0.191972	0.026588	7.220234	1.96E-12	0.139733	0.244211	0.139733	0.244211	

6. Testing the model with next highly correlated variable "education*union". The p- value of this variable is greater than p-in hence cannot be included in the model. Now testing with next highly correlated variable.

SUMMARY OUTPUT									
SOMINARY OUTPOT									
Regression Stat	tistics								
Multiple R	0.48926								
R Square	0.23938								
Adjusted R Square	0.23478								
Standard Error	6.64886								
Observations	500								
ANOVA									
	df	SS	MS	F	gnificance	F			
Regression	3	6900.66	2300.22	52.03248544	3E-29				
Residual	496	21926.9	44.2074						
Total	499	28827.5							
	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%:	ower 95.09	pper 95.0%	6
Intercept	-8.64836	1.72692	-5.00798	7.65871E-07	-12.0413	-5.25539	-12.0413	-5.25539	
education	1.01862	0.10215	9.97225	1.807E-21	0.81793	1.21931	0.81793	1.21931	
age	0.18614	0.02702	6.88771	1.72408E-11	0.13304	0.23923	0.13304	0.23923	
education* union	0.07013	0.05885	1.19158	0.233995912	-0.0455	0.18575	-0.0455	0.18575	

- 7. For below independent variables the p-value p-in criteria didn't satisfy. Hence were not included in the model. Also, inclusion of these variable did not make any other previously added variable insignificant i.e., p value > pout. So, no variable was not excluded.
 - 1. Union

Α	В	С	D	E	F	G	Н	1	
Regression	Statistics								
Multiple F	0.4899								
R Square	0.24								
Adjusted	0.23541								
Standard	6.64612								
Observati	500								
ANOVA									
	df	SS	MS	F	gnificance	F			
Regressio	3	6918.74	2306.25	52.21190238	2.4E-29				
Residual	496	21908.8	44.1709						
Total	499	28827.5							
С	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.0%	6
Intercept	-8.81755	1.71609	-5.13815	3.99619E-07	-12.1893	-5.44584	-12.1893	-5.44584	
union	1.08345	0.80082	1.35294	0.176691945	-0.48996	2.65687	-0.48996	2.65687	
education	1.03387	0.10158	10.1777	3.18689E-22	0.83429	1.23346	0.83429	1.23346	
age	0.18453	0.02713	6.80153	2.98817E-11	0.13122	0.23783	0.13122	0.23783	
(••• Ste	pwise 2	Stepwi	se 3 Ster	wise 4	Stepwise	s Ste	epwise 6	

2. exper*union

exper*union										
SUMMARY OUTPUT										
Regression Stat	istics									
Multiple R	0.48793									
R Square	0.23808									
Adjusted R Square	0.23347									
Standard Error	6.65453									
Observations	500									
ANOVA										
	df	SS	MS	F	gnificance	F				
Regression	3	6863.24	2287.75	51.66220257	4.5E-29					
Residual	496	21964.3	44.2828							
Total	499	28827.5								
	C ((: : .	1 15		D /	050/	0.504	05.00	05.00	,	
	Coefficients		t Stat		Lower 95%				б	
Intercept	-8.77846	1.72261	-5.09601	4.94056E-07		-5.39393		-5.39393		
education	1.04	0.10236	10.16	3.7058E-22	0.83888	1.24112	0.83888	1.24112		
age .	0.18374	0.02874	6.39396	3.73674E-10	0.12728	0.2402	0.12728	0.2402		
exper*union	0.0235	0.03106	0.75664	0.449623615	-0.03753	0.08453	-0.03753	0.08453		
< > ••• Ste	pwise 2	Stepwis	se 3 S	tepwise 4	Stepwise	5 Ste	pwise 7	+		
ady 💸 Accessibility: U	navailable									

8. For below independent variables the p-value p-in criteria satisfy. Hence were included in the model. Also, inclusion of these variable did not make any other previously added variable insignificant i.e., p value > pout. So, no variable was not excluded. Also, inclusion of these variables increased Adjusted R value proving these variables are good fit in the model.

1. exper*female

	Coefficients	andard Erri	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	Ipper 95.0%
Intercept	-8.911401	1.711839	-5.205748	2.83505E-07	-12.27475	-5.548052	-12.27475	-5.548052
education	0.998473	0.102635	9.728435	1.3743E-20	0.796821	1.200126	0.796821	1.200126
age	0.217196	0.029332	7.404656	5.68495E-13	0.159565	0.274827	0.159565	0.274827
exper*fe	r -0.05388	0.026828	-2.00831	0.045151961	-0.106591	-0.001168	-0.106591	-0.001168

2. education*female

But the inclusion of education* female variable in the model increase the p value of exper*female > pout. So, excluding exper*female from the model.

3. Exper*nonwhite

	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.0%		
Intercept	-8.65447255	1.694485	-5.10743	4.66834E-07	-11.9837	-5.3252	-11.9837	-5.3252		
education	1.046248498	0.104228	10.03809	1.04752E-21	0.841465	1.251032	0.841465	1.251032		
age	0.210392497	0.027371	7.686684	8.18538E-14	0.156615	0.26417	0.156615	0.26417		
education*female	-0.128996305	0.043221	-2.98459	0.002979986	-0.21392	-0.04408	-0.21392	-0.04408		
exper*nonwhite	-0.084036596	0.03322	-2.52971	0.011724888	-0.14931	-0.01877	-0.14931	-0.01877		
> ••• Stepv	vise 5 Stepwi	ise 6 Ste	epwise 7	Stepwise 8	Stepwis	se9 Ste	pwise 10	+	:	4
ly Sa Accessibility: Unay					, J.Sp					

9. Education*nonwhite:

Inclusion of education*nonwhite variable increased the p value of exper*nonwhite > pout. Hence, removing the variable from model. Also, education*nonwhite pvalue > pin so the variable cannot be included in the model.

10. Female:

Inclusion of female variable increased the p value of education*female > pout. Hence, removing the variable from model. Also, female pvalue > pin so the variable cannot be included in the model.

11. Nonwhite:

Non white p value < pin and also the inclusion of non white variable does not affect existing variable in the model.

	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.09	pper 95.0%
Intercept	-8.13138	1.725712	-4.711898238	3.19186E-06	-11.52198566	-4.74077	-11.522	-4.74077
education	0.998637	0.10161	9.828141299	6.0183E-21	0.798997658	1.198275	0.798998	1.198275
age	0.193728	0.026413	7.334548942	9.13165E-13	0.141832473	0.245623	0.141832	0.245623
nonwhite	-2.21404	0.788197	-2.808991034	0.005165832	-3.762654268	-0.66542	-3.76265	-0.66542

The Final regression model is:

```
\label{eq:wage} \begin{aligned} \text{Wage} &= -8.1313788983491 + 0.998636574402803 * education + 0.193727704140893 * \\ & age - 2.21403793976649 * nonwhite \end{aligned}
```

Question 7:

Interpretation of above variables

- 1. Intercept: It defines that wage of individual with no education , just born and white race will get wage -8.1313788983491 dollars less. The estimated wage in dollars when all the dependent variable is zero. The interpretation of intercept will be not meaningful in this context.
- 2. Education: The coefficient for "education" is 0. 998636574402803, holding all other variables constant. This indicates that additional a unit increase in education is associated with a 0.998636574402803 dollars increase in the wage variable. This coefficient suggests a positive relationship between education and the wage variable.
- 3. Age: The coefficient for "age" is 0.193727704140893. It suggests that an additional increase in age is associated with a 0.193727704140893 dollars increase in the dependent variable, holding other constant.
- 4. Nonwhite: The coefficient for nonwhite is -2.21403793976649. This indicates the average difference in the predicted wage in dollars when the individual belongs to non white race i.e., the wage for non white will be -2.21403793976649 dollars less than the white race individual.

Question 8:

Main Assumptions:

- 1. Linear Assumption is correct.
- 2. $E[\varepsilon|X] = 0$
- 3. Homoskedasticity: Var $E[\varepsilon|X] = \sigma_{\varepsilon}^2$
- 4. Corr $[\varepsilon_i, \varepsilon_j] = 0$ for all i not equal to j.
- 5. Normality of errors: $\varepsilon | X \sim N (0, \sigma_{\varepsilon}^2)$

As per the Main Assumptions Mean error is not zero and by visualisation it is right skewed, hence not normal. Also, Residual scatter plot shows no pattern with few outliers.

Confirming the same with Shapiro-Wilk normality test

Since the p-value is extremely small 2.2e-16, much smaller than the significance level 0.05, so we reject the null hypothesis. Thus, we conclude that the data does not follow a normal distribution.

Question 9:

Regression equation is:

```
\label{eq:wage} \begin{aligned} \text{Wage} &= -8.1313788983491 + 0.998636574402803 * education + 0.193727704140893 * \\ & age - 2.21403793976649 * nonwhite \end{aligned}
```

The regression equation obtained from Stepwise Method, does not include gender/female variable. So, the wage variable does not have any significant effect of the gender/ female variable. Hence, there is no gender bias in the wage rate.

Question 10:

Regression equation is:

```
\label{eq:wage} \begin{aligned} \text{Wage} &= -8.1313788983491 + 0.998636574402803 * education + 0.193727704140893 * \\ & age - 2.21403793976649 * nonwhite \end{aligned}
```

The regression equation obtained from Stepwise Method, does include union variable but includes education variable. As per the equation obtained wage rate is not dependent on the union variable but dependent on the education variable, which affects the wage in dollars by 0. 998636574402803 dollars with every additional unit increase in education. Thus, there is no advantage of union membership to those with higher education.

Question 10:

If this question is not dependent on Regression Equation2.

Regression equation used for this is:

Wage = -2.6767261576117 + 5.457397975786 * union + 1.08692227644397 * education - -0.24797861176055 * (education * union)

Multiple R 0.413094 R Square	Regression	Statistics									
R Square 0.170647											
Standard I 6.942768 Observatic 500 ANOVA ANOVA ARegressior 3 4919.322 1639.774 34.01878 5.22E-20 Residual 496 23908.2 48.20202 Total 499 28827.53 Coefficientsandard Erro t Stat P-value Lower 95%Upper 95%ower 95.0%pper 95.0% Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776											
ANOVA df SS MS F gnificance F Regressior 3 4919.322 1639.774 34.01878 5.22E-20 Residual 496 23908.2 48.20202 Total 499 28827.53 Coefficients and ard Erro t Stat P-value Lower 95% Upper 95% ower 95.0% pper 95.0% Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776	Adjusted F	0.16563									
ANOVA df SS MS F gnificance F Regressior 3 4919.322 1639.774 34.01878 5.22E-20 Residual 496 23908.2 48.20202 Total 499 28827.53 Coefficients and ard Erro t Stat P-value Lower 95% Upper 95% ower 95.0% pper 95.0% Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776	Standard I	6.942768									
Regressior 3 4919.322 1639.774 34.01878 5.22E-20 Residual 496 23908.2 48.20202 Total 499 28827.53 Coefficients and ard Erro t Stat P-value Lower 95% Upper 95% ower 95.0% pper 95.0% Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776	Observation	500									
Regressior 3 4919.322 1639.774 34.01878 5.22E-20 Residual 496 23908.2 48.20202 Total 499 28827.53 Coefficients and ard Erro t Stat P-value Lower 95% Upper 95% ower 95.0% pper 95.0% Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776	ANOVA										
Residual 496 23908.2 48.20202 Total 499 28827.53 **Coefficients and ard Error t Stat P-value Lower 95% Upper 95% ower 95.0% pper 95.0% Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776		df	SS	MS	F	gnificance	F				
Total 499 28827.53 Lower 95%Upper 95%ower 95.0%pper 95.0% Coefficientsandard Erro t Stat P-value Lower 95%Upper 95%ower 95.0%pper 95.0% Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776	Regressior	3	4919.322	1639.774	34.01878	5.22E-20					
Coefficientsandard Erro t Stat P-value Lower 95% Upper 95% wer 95.0% pper 95.0% Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776	Residual	496	23908.2	48.20202							
Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776	Total	499	28827.53								
Intercept -2.67673 1.626678 -1.64552 0.100497 -5.87276 0.519303 -5.87276 0.519303 union 5.457398 3.519746 1.550509 0.121657 -1.45805 12.37285 -1.45805 12.37285 education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776	C	oefficients:	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%	6	
education 1.086922 0.119533 9.093059 2.32E-18 0.852068 1.321776 0.852068 1.321776											
	union	5.457398	3.519746	1.550509	0.121657	-1.45805	12.37285	-1.45805	12.37285		
0.24700 0.250074 0.05407 0.240050 0.75047 0.262242 0.252242	education	1.086922	0.119533	9.093059	2.32E-18	0.852068	1.321776	0.852068	1.321776		
education -0.24798 0.259671 -0.95497 0.340058 -0.75817 0.262213 -0.75817 0.262213	education	-0.24798	0.259671	-0.95497	0.340058	-0.75817	0.262213	-0.75817	0.262213		

The coefficient for the "union" variable is 5.457397975786, with a p-value of 0.1216, indicating union membership has no statistically significant positive effect on wages.

The coefficient for the "education" variable is 1.08692227644397, with a p-value of 2.31968064083756E-18, indicating education has highly a statistically significant positive effect on wages holding other variables constant. Individuals with education can expect, on average, a 1.08692227644397 dollars increase in their wages compared to people with no education.

The coefficient for the interaction term "education*union" is -0.24797861176055, with a p-value of 0.340058. This indicates that the interaction between education and union membership is not statistically significant at conventional levels (p < 0.05). Hence, there is no advantage of union membership to those with higher education.