

Figure 1 Average Accumulated Reward for α =1

Figure 2 Average Accumulated Reward for α =0.9 k

Table 1 Average Q-values α =1

Epsilon-gree dy	Average of action value Q(a1) of 100 runs	True action value Q*(a¹)	Average of action value Q(a2) of 100 runs	True action value Q*(a²)
ε = 0 (greedy)	5.00920326	5	6.94091167	7
ε = 0.1	4.84934599	5	6.85077403	7
ε = 0.2	4.94948212	5	6.61051014	7
ε = 0.5(random)	4.76514626	5	6.34843023	7

Table 2 Average Q-values α =0.9 k

Epsilon-gree dy	Average of action value Q(a1) of 100 runs	True action value Q*(a¹)	Average of action value Q(a2) of 100 runs	True action value Q*(a²)
ε = 0 (greedy)	4.92406251	5	6.9617018	7
ε = 0.1	5.04772503	5	6.82325321	7
ε = 0.2	4.85349616	5	6.63852045	7
ε = 0.5(random)	4.47139182	5	6.49080936	7

According to Plot1, the ϵ = 0.1 perform the best, the graph depicts a rise in the anticipated reward with accumulated experience. In the early stages, the greedy strategy demonstrated a slightly faster improvement compared to the other methods, but then stabilized at a lower plateau. But it changed when change the leaning rate to 0.9k, in the plot 2, the policy ϵ = 0.5(random) seems get the best average accumulated reward. However the plot2 may don't correct is that when we execute the e-greedy policy, with less value of e show you can

exploitation more, but the e shouldn't be too small that is because the exploration will be slowly. So maybe the best learning in part 2 is $\varepsilon = 0.1$.

Figure 3 Average Accumulated Reward for $\alpha = 1/(1+\ln(1+k))$

Figure 4 Average Accumulated Reward for α =1/k

Table 3 Average Q-values $\alpha = 1/(1 + \ln(1 + k))$

Epsilon-gree dy	Average of action value Q(a1) of 100 runs	True action value Q*(a¹)	Average of action value Q(a2) of 100 runs	True action value Q*(a²)
ε = 0 (greedy)	5.00144144	5	6.7187843	7
ε = 0.1	4.98310878	5	6.71416822	7
ε = 0.2	4.94530912	5	6.68396624	7
ε = 0.5(random)	4.81967443	5	6.22457709	7

Table 4 Average Q-values α =1/k

Epsilon-gree dy	Average of action value Q(a1) of 100 runs	True action value Q*(a¹)	Average of action value Q(a2) of 100 runs	True action value Q*(a²)
ε = 0 (greedy)	4.99524356	5	6.69535422	7
ε = 0.1	4.94279144	5	6.70688896	7
ε = 0.2	4.96731042	5	6.67594623	7
ε = 0.5(random)	4.87941368	5	6.00660903	7

According to plot3, the ϵ = 0.1 show the best Average Accumulated Reward, but in the lopt4, the ϵ = 0.5(random) show the best Average Accumulated Reward. The plot 3 demonstrate that the greedy , ϵ = 0.1, and ϵ = 0.2 are all seems good to exploitation, they all rise so fast in

the start and end with similar average accumulated reward for.

So, I would say the ϵ = 0.1, and learning rate = 1/(ln(k)+1) will maximum average accumulated reward.

B)

Figure 5. Average Accumulated Reward
Table5 Average Q-values with different initial Q

Initial Q values	Average of action value Q(a)1 of 100 runs	True action value Q*(a1)	Average of action value Q(a)2 of 100 runs	True action value Q*(a2)
Q =[0 0]	4.67315095	5	6.64070311	7
Q =[5 7]	4.53589951	5	7.00368398	7
Q =[20 20]	4.60372112	5	6.81512228	7

If the initial values are too high like Q=(20,20), which may overestimate the value of certain actions and choose them more often, leading to suboptimal results, and if the initial values are too low like Q=(0,0), which may underestimate the value of certain actions and not choose them enough.

So as far as I'm concerned, the optimal value of initial Q=(5,7).

C)

Figure 5 Average Accumulated Reward for gradient-based policy and e-greedy policy

From the plot, the gradient-based policy is better than e-greedy policy, it may result in the gradient-based policy are able to improve convergence and more effective exploration.