

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

http://www.jstatsoft.org/

Tidy Data

Hadley Wickham RStudio

Lecture 5-2: Tidy data I

Dr. James Chen, Animal Data Scientist, School of Animal Sciences

Happy families are all alike; every unhappy family is unhappy in its own way

Leo Tolstoy

Like families, tidy datasets are all alike but every messy dataset is messy in its own way. Tidy datasets provide a standardized way to link the structure of a dataset (its physical layout) with its semantics (its meaning). In this section, I'll provide some standard vocabulary for describing the structure and semantics of a dataset, and then use those definitions to define tidy data.

Data Semantics

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Variable

A variable contains all values that measure the same underlying attribute (like height, temperature, duration) across units

Observation

An observation contains all values measured on the same unit (like a person, or a day, or a race) across attributes.

	${\it treatmenta}$	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Variable

A variable contains all values that measure the same underlying attribute (like height, temperature, duration) across units

Observation

An observation contains all values measured on the same unit (like a person, or a day, or a race) across attributes.

It is essential to understand what question you want to address from the data

	treatmenta	${\it treatmentb}$
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
${\it treatmentb}$	2	11	1

name	trt	result
John Smith	\mathbf{a}	
Jane Doe	\mathbf{a}	16
Mary Johnson	\mathbf{a}	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Variable

- 1. person, with three possible values (John, Mary, and Jane).
- 2. treatment, with two possible values (a and b).
- 3. result, with five or six values depending on how you think of the missing value (-, 16, 3, 2, 11, 1).

18 values: 3 variables, 6 observations

Is it easy to figure out what are observations and what are variables?

	height	weight		height	width
Person 1	XXX	XXX	Object 1	XXX	XXX
Person 2	XXX	XXX	Object 2	XXX	XXX
Person 3	XXX	XXX	Object 3	XXX	XXX
				1	

Object 1	height	XXX
Object 1	width	XXX
Object 2	height	XXX
Object 2	width	XXX

Is it easy to figure out what are observations and what are variables?

Variable

it is easier to describe functional relationships between **variables** (e.g., z is a linear combination of x and y, density is the ratio of weight to volume) than between rows

Observation

it is easier to make comparisons between groups of **observations** (e.g., average of group a vs. average of group b) than between groups of columns.

	height	width
Object 1	XXX	XXX
Object 2	XXX	XXX
Object 3	XXX	XXX

	dimension	value
Object 1	height	XXX
Object 1	width	XXX
Object 2	height	XXX
Object 2	width	XXX

Is it easy to figure out what are observations and what are variables?

Variable

it is easier to describe functional relationships between **variables** (e.g., z is a linear combination of x and y, density is the ratio of weight to volume) than between rows

Home phone Work phone

Person 1	XXX	XXX
Person 2	XXX	XXX
Person 3	XXX	XXX

Observation

it is easier to make comparisons between groups of **observations** (e.g., average of group a vs. average of group b) than between groups of columns.

	Number type	Number
Person 1	work	XXX
Person 1	home	XXX
Person 2	work	XXX

Tidy Data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending on how rows, columns and tables are matched up with observations, variables and types. In **tidy data**:

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each type of observational unit forms a table. We can ignore this for now

Tidy data makes it easy for an analyst or a computer to extract needed variables because it provides a standard way of structuring a dataset. Compare Table 3 to Table 1: in Table 1 you need to use different strategies to extract different variables. This slows analysis and invites errors. If you consider how many data analysis operations involve all of the values in a variable (every aggregation function), you can see how important it is to extract these values in a simple, standard way. Tidy data is particularly well suited for vectorised programming languages like R, because the layout ensures that values of different variables from the same observation are always paired.

Tidying Messy Datasets

The five most common problems with messy datasets

Week

5 - 2

• Column headers are values, not variable names.

• Multiple variables are stored in one column.

Week

6 - 2

• Variables are stored in both rows and columns.

- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.

Surprisingly, most messy datasets, including types of messiness not explicitly described above, can be tidied with a small set of tools: melting, string splitting, and casting. The following sections illustrate each problem with a real dataset that I have encountered, and show how to tidy them. The complete datasets and the R code used to tidy them are available online at https://github.com/hadley/tidy-data, and in the online supplementary materials for this paper.

2017 National population projection datasets

POP_5: population age 5 as of July 1

YEAR	POP_0	POP_1	POP_2	POP_3	POP_4
2016	3970145	3995008	3992154	3982074	3987656
2017	4054035	3982964	4008116	4003478	3992207
2018	4075563	4068172	3995888	4019345	4013649
2019	4095614	4089881	4082231	4006967	4029427
2020	4113164	4110117	4104058	4094281	4016919
2021	4127525	4127842	4124416	4116205	4105035
2022	4139039	4142382	4142254	4136660	4127020
2023	4147758	4154076	4156909	4154588	4147538
2024	4154108	4162971	4168717	4169332	4165525
2025	4158795	4169495	4177722	4181225	4180328
2026	4162506	4174374	4184383	4190355	4192326
2027	4165252	4178275	4189406	4197138	4201555
2028	4166643	4181210	4193447	4202280	4208440

What are the variables?

Population size

pandas.melt

```
pandas.melt(frame, id_vars=None, value_vars=None, var_name=None,
value_name='value', col_level=None, ignore_index=True)
```

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

id_vars value_vars Identifier Columns to unpivot

YEAR	POP	_0	POP_1	POP_2
20	16	3970145	3995008	3992154
20	17	4054035	3982964	4008116
20	18	4075563	4068172	3995888
20	19	4095614	4089881	4082231
20	20	4113164	4110117	4104058
20	21	4127525	4127842	4124416
20	22	4139039	4142382	4142254
20	23	4147758	4154076	4156909
20	24	4154108	4162971	4168717
20	25	4158795	4169495	4177722
20	26	4162506	4174374	4184383
20	27	4165252	4178275	4189406
20	28	4166643	4181210	4193447

Imagine what its tidied form looks like ...

```
data_long = pd.melt(data,
                     id_vars=["YEAR"],
                     var_name="age",
                     value_name="pop")
   data_long
   0.0s
      YEAR
                 age
                            pop
               POP_0
                       3970145
      2016
01234
               POP_0
                       4054035
      2017
               POP_0
      2018
                       4075563
               POP_0
      2019
                       4095614
                       4113164
      2020
               POP_0
• • • •
        •••
                            •••
             POP_100
4540
      2056
                        505951
4541
      2057
             POP_100
                        529280
4542
                        549748
      2058
             POP_100
             POP_100
4543
      2059
                        567379
4544
      2060
             POP_100
                        589382
[4545 rows x 3 columns]
```

id_vars	value_vars
Identifier	Columns to unpivot

YEAR	POP_0	POP_1	POP_2
201	6 3970145	3995008	3992154
201	7 4054035	3982964	4008116
201	8 4075563	4068172	3995888
201	9 4095614	4089881	4082231
202	0 4113164	4110117	4104058
202	1 4127525	4127842	4124416
202	2 4139039	4142382	4142254
202	3 4147758	4154076	4156909
202	4 4154108	4162971	4168717
202	5 4158795	4169495	4177722
202	6 4162506	4174374	4184383
202	7 4165252	4178275	4189406
202	8 4166643	4181210	4193447

Imagine what its tidied form looks like ...

Unpivot all columns

```
data_long = pd.melt(data,
                    id_vars=["YEAR"],
                    var_name="age",
                    value_name="pop")
   data_long
   0.0s
      YEAR
                 age
                          pop
               POP 0
                      3970145
      2016
0
               POP_0
      2017
                      4054035
2
               POP_0
                      4075563
      2018
      2019
               POP_0
                      4095614
               POP_0
      2020
                      4113164
      2056
4540
            POP_100
                       505951
4541
      2057
            POP_100
                       529280
4542
      2058
                       549748
            POP_100
      2059
           POP_100
                       567379
           POP_100
4544
      2060
                       589382
[4545 rows x 3 columns]
```

Unpivot the first three columns

```
data_long = pd.melt(data,
                    id_vars=["YEAR"],
                    value_vars=["POP_1", "POP_2", "POP_3"],
                    var_name="age",
                    value_name="pop")
   data_long
✓ 0.0s
     YEAR
             age
                       pop
     2016
           POP_1
                  3995008
     2017
           P0P_1
                  3982964
     2018
           POP_1
                  4068172
     2019
           POP_1
                  4089881
     2020
           POP_1
                  4110117
           POP_3
130
     2056
                  4401231
131
     2057
           POP_3
                  4411893
132
           POP_3
     2058
                  4421774
    2059 POP_3
                  4430923
    2060 POP_3
                  4439404
134
[135 rows x 3 columns]
```

Billboard top hits for 2000

id_vars

Identifier

value_vars

Columns to unpivot

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge $+$ her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

What are the identifiers?

var_name	value_name
week	rank
1	87
2	82
3	72

Billboard top hits for 2000

id_vars

Identifier

value_vars

Columns to unpivot

var_name

week

value_name rank

Original

year	artist	track	$_{ m time}$	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51

year	artist	$_{ m time}$	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000 - 04 - 01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Billboard top hits for 2000

id_vars

Identifier

value_vars

Columns to unpivot

var_name

week

value_name rank

Original

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51

year	artist	$_{ m time}$	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000 - 04 - 01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Billboard top hits for 2000

id_vars
Identifier

value_vars
Columns to unpivot

var_name week

value_name rank

Original

year	artist	track	$_{ m time}$	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51

year	artist	$_{ m time}$	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000 - 04 - 01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Billboard top hits for 2000

id_vars
Identifier

value_vars

Columns to unpivot

var_name

week

value_name rank

Original

year	artist	track	$_{ m time}$	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51

year	artist	$_{ m time}$	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000 - 04 - 01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge $+$ her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000 - 04 - 29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Multiple Variables Stored in One Column

Tuberculosis (TB) dataset

Gender + age range

country	year	m014	m1524	m2534	m3544	m4554	m5564	m65	mu	f014
AD	2000	0	0	1	0	0	0	0		
\mathbf{AE}	2000	2	4	4	6	5	12	10	_	3
\mathbf{AF}	2000	52	228	183	149	129	94	80		93
\overline{AG}	2000	0	0	0	0	0	0	1		1
${ m AL}$	2000	2	19	21	14	24	19	16		3
$\mathbf{A}\mathbf{M}$	2000	2	152	130	131	63	26	21		1
AN	2000	0	0	1	2	0	0	0		0
AO	2000	186	999	1003	912	482	312	194		247
AR	2000	97	278	594	402	419	368	330	_	121
AS	2000					1	1		_	

var_name

column

value_name

cases

Multiple Variables Stored in One Column

Tuberculosis (TB) dataset

Original

id_vars

value_vars

country	year	m014	m1524	m2534	m3544
AD	2000	0	0	1	0
\mathbf{AE}	2000	2	4	4	6
\mathbf{AF}	2000	52	228	183	149
\overline{AG}	2000	0	0	0	0
AL	2000	2	19	21	14
AM	2000	2	152	130	131
AN	2000	0	0	1	2
AO	2000	186	999	1003	912
AR	2000	97	278	594	402
AS	2000				

id_vars	value_vars

country	year	cases	
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
\mathbf{AE}	2000	m014	2
\mathbf{AE}	2000	m1524	4
\mathbf{AE}	2000	m2534	4
\mathbf{AE}	2000	m3544	6
\mathbf{AE}	2000	m4554	5
\mathbf{AE}	2000	m5564	12
AE	2000	m65	10
\mathbf{AE}	2000	f014	3

Multiple Variables Stored in One Column

Tuberculosis (TB) dataset

country	year	column	cases
AD	2000	m014	0
AD	2000	m1524	0
AD	2000	m2534	1
AD	2000	m3544	0
AD	2000	m4554	0
AD	2000	m5564	0
AD	2000	m65	0
$\mathbf{A}\mathbf{E}$	2000	m014	2
$\mathbf{A}\mathbf{E}$	2000	m1524	4
$\mathbf{A}\mathbf{E}$	2000	m2534	4
\mathbf{AE}	2000	m3544	6
\mathbf{AE}	2000	m4554	5
\mathbf{AE}	2000	m5564	12
\mathbf{AE}	2000	m65	10
\mathbf{AE}	2000	f014	3

country	year	sex	age	cases
AD	2000	m	0-14	0
AD	2000	m	15-24	0
AD	2000	m	25-34	1
AD	2000	m	35-44	0
AD	2000	m	45-54	0
AD	2000	m	55-64	0
AD	2000	m	65+	0
\mathbf{AE}	2000	m	0-14	2
\mathbf{AE}	2000	m	15-24	4
\mathbf{AE}	2000	m	25-34	4
\mathbf{AE}	2000	m	35-44	6
\mathbf{AE}	2000	m	45-54	5
\mathbf{AE}	2000	m	55-64	12
\mathbf{AE}	2000	m	65+	10
AE	2000	\mathbf{f}	0-14	3

Indexing

Get the first letter as the "gender" variable

Indexing

Get the last two numbers as the upper bound of the range