Discrete Structures

 ${\bf Combinatorics}$

Nathan Warner

Computer Science Northern Illinois University September 21, 2023 United States

Contents

1	Factorials	2								
2	The fundamental counting principal (Basic count-									
	ing principal)	3								
3	Permutations	4								
4	Combinations	6								
	Pigeonhole principle									
6	Pascals Triangle	8								

1 Factorials

• Definition 1: •

The **Factorial** for a positive integer n, is the product of all the positive integers that are less than or equal to n

$$n! = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1.$$

2 The fundamental counting principal (Basic counting principal)

Definition 2:

The **fundamental counting principal** says that if there are a ways of doing event 1, b ways of doing event 2, and c ways of doing event 3, then the total number of outcomes are (when no do events are dependent on each other)...

 $a \cdot b \cdot c$.

Note: If there is dependency between the events, we must use addition

3 Permutations

Definition 3:

A **permutation** of a set is an arrangement of its members into a sequence or linear order. Order matters.

When dealing wit permutations, there are two cases that become important. They are:

- With repetition
- Without repetition

Theorem 1: Permutation with repetition

 n^r .

Where n is the number of choices and r is the repetition.

Example. Suppose we want to know how many possible permutations can be made for a 4 digit lock using the digits 0-9. We would have:

$$10 \times 10 \times 10 \times 10$$

= 10,000 Possible permutations.

Using the theorem:

 10^{4}

= 10,000 Possible permutations.

Theorem 2: Permutations without repetition

n!.

Where n is the number of choices

Example. Suppose we have 5 balls in a bag, and every time we pick a ball from the bag we do not replace it. Then we can compute the number of permutations by:

$$5 \times 4 \times 3 \times 2 \times 1$$
$$= 120.$$

Using the theorem:

= 120.

But what if r, the number of repetitions, is less than the choices? In this case we can use the following theorem:

Theorem 3

$$\frac{n!}{(n-r)!}.$$

Denoted by:	
	P(n,k).

4 Combinations

Definition 4:

A **combination** of a set is an arrangement of its members into a sequence or linear order. Order does not matter

Like permutations, we have two possibilities:

- When repetition is allowed
- When repetition is not allowed

Theorem 4: Combinations when repetition is not allowed

$$\frac{n!}{k!(n-k)!}.$$

Denoted by:

$$C(n,k)$$
 or $\binom{n}{k}$

Theorem 5: Combinations when repetition is allowed

$$\frac{(k+n-1)!}{k!(n-1)!}$$

5 Pigeonhole principle

• Definition 5: •

If n items are put into m containers with n > m, then at least one container must contain more than one item

6 Pascals Triangle

n = 0							1						
n = 1						1		1					
n=2					1		2		1				
n = 3				1		3		3		1			
n = 4			1		4		6		4		1		
n = 5		1		5		10		10		5		1	
n = 6	1		6		15		20		15		6		1