

- Fetpype: An Open-Source pipeline for reproducible
- 2 Fetal Brain MRI Analysis
- Thomas Sanchez^{1,2*}, Gerard Martí-Juan^{3*}, David Meunier⁴, Gemma Piella³,
- ⁴ Meritxell Bach Cuadra^{1,2}, and Guillaume Auzias⁴
- 1 CIBM Center for Biomedical Imaging, Switzerland 2 Department of Diagnostic and Interventional
- 6 Radiology, Lausanne University Hospital and University of Lausanne, Switzerland 3 BCN MedTech,
- Department of Engineering, Universitat Pompeu Fabra, Spain 4 Aix-Marseille Université, CNRS, Institut
- de Neurosciences de La Timone, France * These authors contributed equally.

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository ☑
- Archive ♂

Editor: Open Journals ♂ Reviewers:

@openjournals

Submitted: 01 January 1970 **Published:** unpublished

License

Authors of papers retain copyright and release the work under a 20 Creative Commons Attribution 4.0 International License (CC BY 4.0)

23

24

25

26

28

29

30

31

32

33

35

36

37

38

Summary

Fetal brain Magnetic Resonance Imaging (MRI) is crucial for assessing neurodevelopment in utero. However, analyzing this data presents significant challenges due to fetal motion, low signal-to-noise ratio, and the need for complex multi-step processing, including motion correction, super-resolution reconstruction, and segmentation. While various specialized tools exist for individual steps, integrating them into robust, reproducible, and user-friendly workflows that go from raw image to volume and surface analysis is not straightforward (Figure 1). This lack of standardization hinders reproducibility across studies and limits the adoption of advanced analysis techniques for researchers and clinicians. To address these challenges, we introduce Fetpype, an open-source Python library designed to streamline and standardize the preprocessing and analysis of fetal brain MRI data.

Statement of need

Fetpype is a Python package integrating several established neuroimaging software principles and tools to create a cohesive and extensible framework, which we summarize in four points.

- 1. Data Standardization: Fetpype expects input data organized according to the Brain Imaging Data Structure (BIDS) standard (Gorgolewski et al., 2016), promoting interoperability and simplifying data management.
- Containerization: Individual processing tools are encapsulated within Docker or Singularity containers. This ensures reproducibility and reduces installation issues, providing a better experience for the end user.
- 3. Workflow Management: The Nipype library (Gorgolewski et al., 2011) is used to construct processing workflows: it provides a robust interface for combining different steps from different containers or packages, facilitating data caching and parallelization, and allowing pipelines to be easily shareable.
- 4. Configuration: Pipeline configuration is managed using simple YAML files and the Hydra library (Yadan, 2019), allowing users to easily select between different modules or parameters without directly modifying the code. The current implementation of Fetpype integrates modules for data preprocessing, high resolution reconstruction (NeSVoR (Xu et al., 2023), SVRTK Uus et al. (2022), or NiftyMIC (Ebner et al., 2020)), segmentation (using existing, popular pipelines like BOUNTI (Uus et al., 2023) or the developing human connectome project pipeline (Makropoulos et al., 2018)).
- 40 Fetpype was designed to be used by the fetal MRI community by providing a standardized,

- reproducible and flexible open-source platform for preprocessing and analysis. We believe this
- tool can facilitate research, improve comparability between studies, and foster collaboration.
- The pipeline is publicly available on GitHub (https://github.com/fetpype/fetpype), and its
- open-source nature and modular design facilitate community involvement: researchers can
- integrate their own tools by creating corresponding Nipype interfaces and container wrappers, 45
- following the package contribution guidelines.
- In the future, the package will be extended to feature cortical surface extraction as well as
- spectral analysis. We welcome contributions of authors wanting to integrate their method to
- Fetpype.

Figure 1: The different steps covered by Fetpype. The current version of Fetpype implements the different processing steps needed to compute clinically relevant measures like biometric, volumetric or surface descriptors, but does not implement them.

Acknowledgements

- This work was funded by Era-net NEURON MULTIFACT project (TS: Swiss National
- Science Foundation grant 31NE30_203977; GA: French National Research Agency,
- Grant ANR-21-NEU2-0005; GM, GP: Ministry of Science, Innovation and Universities:
- MCIN/AEI/10.13039/501100011033/), and the SulcalGRIDS Project, (GA: French National
- Research Agency Grant ANR-19-CE45-0014).

References

- Ebner, M., Wang, G., Li, W., Aertsen, M., Patel, P. A., Aughwane, R., Melbourne, A., Doel, T., Dymarkowski, S., De Coppi, P., & others. (2020). An automated framework for localization, 58 segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage, 206, 59
- 116324.
- Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, 61 G., Ghosh, S. S., Glatard, T., Halchenko, Y. O., & others. (2016). The brain imaging data 62 structure, a format for organizing and describing outputs of neuroimaging experiments.
- 63
- Scientific Data, 3(1), 1-9.
- Gorgolewski, K. J., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., 65 & Ghosh, S. S. (2011). Nipype: A flexible, lightweight and extensible neuroimaging data 66
- processing framework in python. Frontiers in Neuroinformatics, 5, 13.

- Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M. A., Hajnal, J. V., & Schnabel, J.
 A. (2012). Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. *Medical Image Analysis*, 16(8), 1550–1564.
- Makropoulos, A., Robinson, E. C., Schuh, A., Wright, R., Fitzgibbon, S., Bozek, J., Counsell, S. J., Steinweg, J., Vecchiato, K., Passerat-Palmbach, J., & others. (2018). The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. *Neuroimage*, *173*, 88–112.
- Uus, A. U., Grigorescu, I., Poppel, M. P. van, Steinweg, J. K., Roberts, T. A., Rutherford, M. A., Hajnal, J. V., Lloyd, D. F., Pushparajah, K., & Deprez, M. (2022). Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21–36 weeks GA range. *Medical Image Analysis*, 80, 102484.
- Uus, A. U., Kyriakopoulou, V., Makropoulos, A., Fukami-Gartner, A., Cromb, D., Davidson,
 A., Cordero-Grande, L., Price, A. N., Grigorescu, I., Williams, L. Z., & others. (2023).
 BOUNTI: Brain vOlumetry and aUtomated parcellation for 3D feTal MRI. bioRxiv.
- Xu, J., Lala, S., Gagoski, B., Abaci Turk, E., Grant, P. E., Golland, P., & Adalsteinsson, E. (2023). NeSVoR: Implicit neural representation for slice-to-volume reconstruction in MRI. *IEEE Transactions on Medical Imaging*.
- Yadan, O. (2019). *Hydra a framework for elegantly configuring complex applications*. Github. https://github.com/facebookresearch/hydra

