

KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY DEEMED TO BE UNIVERSITY, BHUBANESWAR – 24 (Decld. U/S 3 of UGC Act, 1956) OFFICE OF THE CONTROLLER OF EXAMINATIONS

Sample Question Format

KIIT Deemed to be University Online Mid Semester Examination(Spring Semester-2021)

Subject Name & Code: Discrete Mathematics, MA 2013 Applicable to Courses: CSCE, ECS

Full Marks=20
Time:1 Hour

SECTION-A(Answer All Questions. All questions carry 2 Marks) <u>Time:20 Minutes</u>

 $(5\times2=10 \text{ Marks})$

Question	Question Tyme(MCO/SAT)	Question	CO Mapping
No Q.No:1(a)	Type(MCQ/SAT)	Which of the following proposition is true? (a) If the Sun is a planet, elephants will fly (b) $3 + 2 = 8$ if $5 + 2 = 7$	Propositional Logic and Equivalence
		(c) $1 > 3$ and 3 is a positive integer (d) $-2 > 3$ or 3 is a negative integer	Ans-(a)
		The contrapositive of the statement, "You win the game if you know the rules but are not overconfident" is (a) If you lose the game then you don't know	Propositional Logic and Equivalence
		the rules or you are overconfident. (b) A sufficient condition that you win the game is that you know the rules or you are not overconfident.	Ans-(a)
		(c) If you know the rules and are overconfident then you win the game.(d) A necessary condition that you know the rules or you are not overconfident is that you	
16		win the game. The converse of the statement "Getting elected follows from knowing the right people" is (a) If you know the right people, then you are getting elected.	Propositional Logic and Equivalence
		(b) If you are getting elected, then you know the right people.(c) Getting elected is necessary for knowing the right people.(d) None of these.	Ans-(b)
		$(P \lor R) \land (P \rightarrow R) \land (Q \rightarrow R)$ is equivalent to (a) P (b) Q	Propositional Logic and Equivalence
O M - (1)		(c) R (d) T	Ans-(c)
Q.No:1(b)		Which of the following propositions is true if the domain consists of all real numbers? (a) $\exists x(x^2 = -1)$	Predicates and Quantifiers Ans-(b)

		(b) $\exists x (x^4 < x^2)$	
		(c) $\forall x (2x > x)$	
		(d) None of these	
		Which of the following statements is NOT	Predicates and
		equivalent to the statement, "There exists either	Quantifiers
		a computer scientist or a mathematician who	
		knows both discrete math and Java?"	
		(a) There exists a person who is a computer	
		scientist and who knows both discrete math and	Ans-(b)
		Java or there exists a person who is a	TIIIS (D)
		mathematician and who knows both discrete	
		math and Java.	
		(b) There exists a person who is a computer	
		scientist or there exists a person who is a	
		mathematician who knows discrete math or	
		who knows Java.	
		(c) There exists a person who is a computer	
		scientist and who knows both discrete math and	
		Java or there exists a mathematician who knows	
		both discrete math and Java.	
		(d) There exists a person who is a computer	
		scientist or a mathematician who knows both	
	E.	discrete math and Java.	Dradicates and
		Find the correct translation of "There is a	Predicates and Quantifiers
		student in your school who is not happy" into	Quantificis
		logical expression. Given $S(x)$: x is a student in your school, $H(x)$: x is not happy.	Ans-(c)
		(a) $\exists x (S(x) \rightarrow H(x))$	
		(a) $\exists x (S(x) \to H(x))$ (b) $\exists x (S(x) \to \sim H(x))$	
		(c) $\exists x(S(x) \rightarrow H(x))$	
		(d) $\exists x(S(x) \land H(x))$	
		Which of the following equivalences are	Predicates and
		correct?	Quantifiers
		(i) $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$	
		(ii) $\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$	
		(iii) $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$	
		(iv) $\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x)$	Ang (b)
			Ans-(b)
		(a) (i) and (ii)	
		(b) (i) and (iii)	
		(c) (ii) and (iv)	
		(d) (i) and (iv)	
Q.No:1(c)		Which of the following is correct regarding the	Rules of Inference
		argument "All parrots like fruit. My pet bird is	
		not a parrot. Therefore, my pet bird does not	
		like fruit?"	
		(a) Correct due to modus ponens	Ans-(d)
		(b) Correct due to modus tollens	
		(c) Fallacy due to affirming the conclusion	
		(d) Fallacy due to denying the hypothesis	D1
		What rules of inference are used in this	Rules of Inference
		argument?	
		"It is either colder than Himalaya today or the	
		pollution is harmful. It is hotter than Himalaya	
y .		today. Therefore, the pollution is harmful."	

		(a) Conjunction(b) Modus ponens(c) Disjunctive syllogism	Ans-(c)
	<u></u>	(d) Hypothetical syllogism	
		"Parul is out for a trip or it is not snowing" and "It is snowing or Raju is playing chess" imply that	Rules of Inference
		 (a) Parul is out for trip (b) Raju is playing chess (c) Parul is out for a trip and Raju is playing chess (d) Parul is out for a trip or Raju is playing chess 	Ans-(d)
		What conclusion you get from the following	Rules of Inference
		 statements. (i) If n is a real number such that n > 1, then n² > 1. Suppose that n² > 1. Then n > 1. (ii) If n is a real number with n > 3, then n² > 9. Suppose that n² ≤ 9. Then n ≤ 3. (a) (i) is correct and (ii) is incorrect. 	Ans-(b)
		(a) (i) is correct and (ii) is incorrect. (b) (i) is incorrect and (ii) is correct. (c) Both are correct. (d) Both are incorrect.	
Q.No:1(d)		The bit strings for the sets are 1111100000 and 10101010. The union of these sets is	Set
		a) 1010100000 b) 1010101101 c) 1111111100	Ans-(d)
		If A has 4 elements B has 8 elements then the minimum and maximum number of elements in A U B area) 4, 8	Set
		b) 8, 12 c) 4, 12 d) 12, 12	Ans-(b)
		If A is $\{\{\Phi\}, \{\Phi, \{\Phi\}\}\}\$, then the power set of A has how many element?	Set
		b) 4 c) 1 d) 8	Ans-(b)
		There are 345 students at a college who have taken a course in Calculus, 202 who have taken a course in Discrete Mathematics, and 188 who have taken a course in both Calculus and Discrete Mathematics. How many	Set
		students have taken a course in either calculus or Discrete Mathematics? (a) 369 (b) 547 (c) 735 (d) 359	Ans-(d)
Q.No:1(e)		The number of reflexive as well as symmetric	Relation

7	
relations on a set with 15 distinct elements is	
a. 2 ²¹⁰ b. 2 ¹⁵ c. 2 ¹²⁰ d. 2 ¹⁰⁵	Ans-(d)
The number of symmetric relations on a set with 15 distinct elements is	Relation
 a. 2²¹⁰ b. 2¹⁵ c. 2¹²⁰ d. 2¹⁰⁵ 	Ans-(c)
The number of reflexive relations on a set with 15 distinct elements is	Relation
 a. 2²¹⁰ b. 2¹⁵ c. 2¹²⁰ d. 2¹⁰⁵ 	Ans-(a)
The relation $R = \{(x, y) x + y = 0\}$ on the set of real numbers is	Relation
(a) Symmetric, Transitive and not Reflexive(b) Reflexive, Symmetric and not Transitive(c) Symmetric, not Reflexive and not Transitive(d) Reflexive, Symmetric and Transitive	Ans-(c)

SECTION-B(Answer Any One Question. Each Question carries 10 Marks)

<u>Time: 30 Minutes</u> (1×10=10 Marks)

Question No.	Question	<u>CO</u>
(Question Bank)		Mapping
Question No:2	Find converse, inverse and contrapositive of the following statements in the form "If p, then q"	Propositional Logic
	 (a) It snows whenever the wind blows from the northeast. (b) You will reach the summit unless you begin your climb too late. (c) To be a citizen of this country, it is sufficient that you were born in the United States. (d) It is necessary to walk 8 miles to get to the top 	
Question No:3	of Long's Peak. Show that the compound statement $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology by using truth tables and without using truth tables.	Propositional equivalence
Question No:4	Translate each of these statements into logical expressions using predicates, quantifiers, and logical connectives. (a) Not everybody is your friend or someone is perfect. (b) There is a person in your school who is not	Predicates and Quantifiers

Scanned with CamScanner

	happy. (c) Everyone in your class has studied Calculus and C++. (d) No one is perfect (e) Someone in your class can not speak Hindi	
Question No:5	Using the rules of inference show that the following argument is valid. If <i>A</i> works hard, then either <i>B</i> or <i>C</i> will enjoy themselves. If <i>B</i> enjoys himself, then <i>A</i> will not work hard. If <i>D</i> enjoys himself, then <i>C</i> will not. Therefore, if <i>A</i> works hard, <i>D</i> will not enjoy himself.	Rules of Inference
Question No:6	 (a) Using strong induction, prove that for each positive integer n, the nth Fibonacci number F_n is less than (⁷/₄)ⁿ. (b) Use mathematical induction to prove that 1² + 3² + 5²++(2n - 1)² = n(2n - 1)(2n + 1)/3, n ≥ 1. 	Induction

Sd/-Controller of Examinations

join helpline group for more questiom papers and assignment