3F3 Example Paper4 Part Solution

Hanchen Wang

Ph.D Candidate in Engineering, University of Cambridge

January 27, 2020

- Q1: check the 'The Matrix Cookbook'1
 - the chain rule of matrix differentiation can be found here: https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
- Q2:

a)
$$\mathbf{x}^T \mathbf{B} \mathbf{x} = \mathbf{G} \mathbf{x}^T \mathbf{G} \mathbf{x}$$

b) this is equally to prove that: $\mathbf{G}\mathbf{x}=0$ iff $\mathbf{x}=0\Rightarrow\mathbf{G}$ is full rank

c)
$$\frac{\partial \mathbf{J}}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^T \mathbf{B} \mathbf{x} - 2 \mathbf{b}^T \mathbf{x}) = (\mathbf{B} + \mathbf{B}^T) \mathbf{x} - 2 \mathbf{b} = 0$$

$$d)(\mathbf{x} - \mathbf{m})^{T} \mathbf{M}(\mathbf{x} - \mathbf{m}) + C = \mathbf{x}^{T} \mathbf{M} \mathbf{x} + \mathbf{m}^{T} \mathbf{M} \mathbf{m} - \mathbf{m}^{T} \mathbf{M} \mathbf{x} - \mathbf{x}^{T} \mathbf{M} \mathbf{m} + C$$
$$\sim \mathbf{x}^{T} \mathbf{B} \mathbf{x} + 2\mathbf{b}^{T} \mathbf{x} \Rightarrow (\mathbf{x} - \mathbf{B}^{-1} \mathbf{b})^{T} \mathbf{B} (\mathbf{x} - \mathbf{B}^{-1} \mathbf{b}) - \mathbf{b}^{T} \mathbf{B}^{-1} \mathbf{b}$$

e)
$$p(\theta|\mathbf{x}) \propto p(\mathbf{x}|\theta)p(\theta) = \mathcal{N}(0, \sigma_e^2) \mathcal{N}(\mathbf{m}_{\theta}, \mathbf{C}_{\theta})$$

Proof Omitted(it has been practiced for so many times), it's in lecture note

 it is worth mentioning that Linear Gaussian model is neither Gaussian Mixture Model(GMM) or Gaussian Process(GP)

¹https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf () +

Q3:

$$\begin{split} \mathcal{L}(x|\theta) &= \prod_{i=0}^{N-1} \mathcal{N}(x_i|\mu,\sigma_n^2) = \prod_{i=0}^{N-1} \mathcal{N}(\frac{x-\mu}{\sigma_n}|0,1) \ \Rightarrow \ \mu^{(ML)} = \arg\max\log(\mathcal{L}(x|\mu)) \\ &\Rightarrow \mu^{(ML)} = \sum_{i=0}^{N-1} x_i w_i \quad \text{where } w_i = \frac{1}{\sigma_i^2} / \sum_k \frac{1}{\sigma_k^2} \propto \frac{1}{\sigma_i} \Rightarrow \text{larger variance, smaller weight} \\ &\mu^{(OLS)} = \arg\min\sum_{i=0}^{N-1} (x_i - \mu)^2 \Rightarrow \ \mu^{(OLS)} = \frac{1}{N} \sum_{i=0}^{N-1} x_i \Rightarrow \text{same weight} \end{split}$$

• bias and variance of $\mu^{(OLS)}$:

$$\begin{aligned} \operatorname{bias}(\mu^{(OLS)}) &= \mathbb{E}[\mu^{(OLS)}] - \mu = \frac{1}{N} \sum_{i} \mathbb{E}[x_{i}] - \mu = \frac{1}{N} \sum_{i} (\mu + \mathbb{E}[\sigma_{i}]) - \mu = 0 \\ \operatorname{var}(\mu^{(OLS)}) &= \mathbb{E}[(\mu^{(OLS)})^{2}] - \mathbb{E}[\mu^{(OLS)}]^{2} = \frac{1}{N^{2}} \mathbb{E}[(\sum_{i=0}^{N-1} x_{i})^{2}] - \mu^{2} \\ &= \frac{1}{N^{2}} \mathbb{E}[(\sum_{i=0}^{N-1} \sum_{j \neq i} x_{i} x_{j}) + \sum_{i=0}^{N-1} x_{i}^{2}] - \mu^{2} \\ &= \frac{1}{N^{2}} (N(N-1)\mu^{2} + N\mu^{2} + \sum_{i=1}^{N-1} \sigma_{i}^{2}) - \mu^{2} = \frac{1}{N^{2}} \sum_{i=1}^{N-1} \sigma_{i}^{2} \end{aligned}$$

3/9

Q3:

• bias and variance of $\mu^{(ML)}$:

$$\begin{aligned} \operatorname{bias}(\mu^{(ML)}) &= \mathbb{E}[\sum_{i} x_{i} w_{i}] - \mu = (\sum_{i} \frac{1}{\sigma_{i}^{2}}) / (\sum_{k} \frac{1}{\sigma_{k}^{2}}) \mu - \mu = 0 \\ \operatorname{var}(\mu^{(ML)}) &= \mathbb{E}[(\sum_{i} x_{i} w_{i})^{2}] - \mu^{2} = \mathbb{E}[(\sum_{i=0}^{N-1} \sum_{j \neq i} w_{i} w_{j} x_{i} x_{j}) + \sum_{i=0}^{N-1} w_{i}^{2} x_{i}^{2}] - \mu^{2} \\ &= \sum_{i=0}^{N-1} \sum_{j \neq i} w_{i} w_{j} \mathbb{E}[x_{j}] \mathbb{E}[x_{j}] + \sum_{i=0}^{N-1} w_{i}^{2} \mathbb{E}[x_{i}^{2}] - \mu^{2} \\ &= \mu^{2} \sum_{i=0}^{N-1} \sum_{j \neq i} w_{i} w_{j} + \sum_{i=0}^{N-1} w_{i}^{2} (\mu^{2} + \sigma_{i}^{2}) - \mu^{2} \\ &= \mu^{2} \sum_{i} \sum_{j} w_{i} w_{j} + \sum_{i=0}^{N-1} w_{i}^{2} \sigma_{i}^{2} - \mu^{2} = \sum_{i=0}^{N-1} w_{i}^{2} \sigma_{i}^{2} = 1 / \left(\sum_{i=0}^{N-1} 1 / \sigma_{i}^{2}\right) \end{aligned}$$

- both are unbiased estimator, the variance of the ML estimator depends on the smallest variance, $\min(\sigma_i^2)$, while that of the OLS estimator depends on all the variance, $\sum(\sigma_i^2)$.
- OLS estimator is sensitive to outliers in terms of the larger variance of inferred variable when encountering outliers, while ML estimator is more robust with the same criteria²

²actually ML method is robust to outliers in the response variable(here is Y), but turned out not to be resistant to outliers in the explanatory variables(here is X)(e.g., leverage points).

Q4:

$$\begin{split} & a\sin(n\Omega) + b\cos(n\Omega) = \sqrt{a^2 + b^2}\sin(n\Omega + \phi) \qquad \text{where } \phi = \arctan(b/a) \\ & \Rightarrow \text{to derive } P_{R,\theta}(r,\theta), \text{ we first derive the Jacobian, } \mathcal{J} \\ & \Rightarrow \mathcal{J} = \left| \begin{array}{cc} \partial a/\partial r & \partial a/\partial \theta \\ \partial b/\partial r & \partial b/\partial \theta \end{array} \right| = \left| \begin{array}{cc} \cos \theta & -r\sin \theta \\ \sin \theta & r\cos \theta \end{array} \right| = r = \sqrt{a^2 + b^2} \\ & \Rightarrow f_{R,\theta}(r,\theta) = f_{A,B}(r\cos \theta, r\sin \theta) \times r = \frac{r}{2\pi\sigma^2} \exp\left(-\frac{1}{2\sigma^2}r^2\right) \\ & \Rightarrow f_{R}(r) = \int_0^{2\pi} f_{R,\theta}(r,\theta) \mathrm{d}\theta = \frac{r}{\sigma^2} \exp\left(-\frac{1}{2\sigma^2}r^2\right) \qquad \text{Rayleigh Distribution} \end{split}$$

Figure: PDF and CDF of Rayleigh, source: wikipedia (≥) (≥) (≥) ()

- Q5
 - it is straight to calculate the expectation, θ , and variance, θ^2 , thus omit
 - just to clarify, t_i is the time interval between *i*-th and i+1-th trade

$$\mathcal{L} = p(\mathbf{t}|\theta) = \prod_{i} p(t_{i}|\theta) = \theta^{-N} \exp\left(-\sum_{i=1}^{N} t_{i}/\theta\right)$$

$$\theta^{(ML)} = \arg\max_{\theta} \mathcal{L} = \sum_{i=1}^{N} t_{i}/N$$

$$\operatorname{bias}(\theta^{(ML)}) = \mathbb{E}[\theta^{(ML)}] - \theta = \sum_{i=1}^{N} \theta/N - \theta = 0$$

$$\operatorname{var}(\theta^{(ML)}) = \mathbb{E}[(\theta^{(ML)})^{2}] - \theta^{2} = \theta^{2}/N$$

• for the posterior:

$$p(\theta|\mathbf{t}) \propto p(\mathbf{t}|\theta)p(\theta) = \theta^{-(N+2)} \exp\left(-\frac{\sum_{i=1}^{N} t_i + 1}{\theta}\right)$$

 \Leftrightarrow two additional observations, t' and t'', where t'+t''=1

$$\Rightarrow \theta^{(MAP)} = \arg\max_{\theta} p(\theta|\mathbf{t}) = \frac{1 + \sum_{i=1}^{N} t_i}{N + 2}$$

ullet when N is very large, likelihood term dominates the posterior, thus $heta^{(ML)} pprox heta^{(MAP)}$

$$\begin{split} x_n &= ax_{n-1} + e_n \\ \mathcal{L} &= P_{\mathbf{x}}(x_1, x_2, ..., x_{N-1} | a) = P_{\mathbf{x}}(x_{N-1} | x_{N-2}, a) ... P_{\mathbf{x}}(x_1 | x_0, a) \\ &= \prod_{i=1}^{N-1} \mathcal{N}(x_i | ax_{i-1}, 1) = \prod_{i=1}^{N-1} \mathcal{N}(x_i - ax_{i-1} | 0, 1) \\ a^{(ML)} &= \arg\max_{a} \log(\mathcal{L}) = \arg\max_{a} \sum_{i=1}^{N-1} (x_i - ax_{i-1})^2 \\ &= \arg\max_{a} \sum_{i=1}^{N-1} (x_i^2 + a^2 x_{i-1}^2 - 2ax_i x_{i-1}) \\ &\Rightarrow a^{(ML)} = \frac{\sum_{n=1}^{N-1} x_{n-1} x_n}{\sum_{n=0}^{N-2} x_n^2} \end{split}$$

thus we can derive the posterior:

$$P(a|\mathbf{x}) \propto P(a)P(\mathbf{x}|a) \propto \exp\left\{-\frac{1}{2}\left[\sum_{n=1}^{N-1}(ax_{n-1}-x_n)^2 + \frac{(a-\mu_a)^2}{\sigma_a^2}\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[a^2\left(\sum_{n=1}^{N-1}x_{n-1}^2 + \frac{1}{\sigma_a^2}\right) - 2a\left(\sum_{n=1}^{N-1}x_nx_{n-1} + \frac{\mu_a}{\sigma_a^2}\right) + f(\mathbf{x})\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[a^2\left(S_2 + \frac{1}{\sigma_a^2}\right) - 2a\left(S_1 + \frac{\mu_a}{\sigma_a^2}\right) + f(\mathbf{x})\right]\right\} \sim \mathcal{N}\left(a|\hat{\mu}_a, \hat{\sigma}_a^2\right)$$

Q6

by matching the moments

$$\hat{\sigma}_a^2 = \frac{1}{S_2 + 1/\sigma_a^2} = 0.005$$
 $\hat{\mu}_a^2 = \frac{S_1 + \mu_a/\sigma_a^2}{S_2 + 1/\sigma_a^2} = 0.94$

probability of unstable filter:

$$\textit{P(|a|>1)} = 1 - \Phi\left(\frac{1-0.94}{\sqrt{0.005}}\right) + \Phi\left(\frac{-1-0.94}{\sqrt{0.005}}\right) = 0.2$$

to sketch the prior, likelihood and posterior:

Figure: PDF of Prior, Likelihood and Posterior

note that all of the three are Gaussians, likelihood share the same variance with prior

Q6

the new posterior is a truncated Gaussian:

$$P(\mathbf{a}|\mathbf{x}) = \left\{ \begin{array}{ll} \frac{1}{1-0.2} \mathcal{N}(\mathbf{a}|0.94, 0.005), & \text{if } -1 < \mathbf{a} < 1 \\ 0, & \text{otherwise} \end{array} \right.$$

$$\mathbf{a}^{(MAP)} = 0.94$$

For MMSE, require:

$$\begin{split} \mathbf{a}^{MMSE} &= \mathbb{E}[\mathbf{a}|\mathbf{x}] = \int_{-1}^{+1} \mathbf{a}P(\mathbf{a}|\mathbf{x})\mathrm{d}\mathbf{a} = \frac{1}{0.8} \int_{-1}^{+1} \mathbf{a}\mathcal{N}\left(\mathbf{a}|\mu,\sigma^2\right)\mathrm{d}\mathbf{a} \\ &= \frac{1}{0.8\sqrt{2\pi\sigma^2}} \int_{-1}^{+1} \mathbf{a}\exp\left[-\frac{(\mathbf{a}-\mu)^2}{2\sigma^2}\right]\mathrm{d}\mathbf{a} \quad \text{set } u = \mathbf{a} - \mu \\ &= \frac{1}{0.8\sqrt{2\pi\sigma^2}} \int_{-1-\mu}^{+1-\mu} (u+\mu)\exp\left[-\frac{u^2}{2\sigma^2}\right]\mathrm{d}u \\ &= \frac{1}{0.8\sqrt{2\pi\sigma^2}} \left\{ \int_{-1-\mu}^{+1-\mu} u \exp\left[-\frac{u^2}{2\sigma^2}\right]\mathrm{d}u + \int_{-1-\mu}^{+1-\mu} \mu \exp\left[-\frac{u^2}{2\sigma^2}\right]\mathrm{d}u \right\} \\ &= \frac{1}{0.8\sqrt{2\pi\sigma^2}} \left\{ \left[-\sigma^2 \exp\left(-\frac{u^2}{2\sigma^2}\right)\right]_{-1-\mu}^{1-\mu} + \mu\sqrt{2\pi\sigma^2} \int_{-1-\mu}^{1-\mu} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{u^2}{2\sigma^2}\right)\mathrm{d}u \right\} \\ &= \frac{1.25}{\sqrt{2\pi\sigma^2}} \left\{ \sigma^2 \exp\left(-\frac{u^2}{2\sigma^2}\right) - \exp\left(-\frac{(1-u)^2}{2\sigma^2}\right)^2 \right] \mu\sqrt{2\pi\sigma^2} \left[\Phi\left(\frac{1-\mu}{2\sigma^2}\right) - \Phi\left(\frac{-1-\mu}{2\sigma^2}\right)\right] \right\} \\ &= 0.9154 \quad \text{fairly small impact on the estimate for } \mathbf{a} \end{split}$$