Important things in Electroplating Concentration polarisations

Ca, thode

M"+ + ne > M a Ca, mode Diffusion rate / deposition rate -> Smooth plating happens Deffusion late & deposition late Concentration & M" arround'

the elichade bere omes less relative to Bulk

Concentration effect of Concentration polarisations: -> We may much to apoply larger potential to have Continuous electroplating -> in Case of galvanic -> Cell out put will be less than the theoritical Value - internse the Snefere area of ductrode: ool ming same
amount oool my
lunery
40 hoo deposition a 100 g/h deposition rate a 100 g/h Temperature: - M^{m+} gains Kinetic energy
No deffusion rate encess

Decomposition potential -) minium potential required to Continions electrolysis/ despritions elutry is/ deposition a) and $H_2 \longrightarrow 2H^{\dagger} + 2\bar{e} \qquad E^{\circ} = 0$ a anode a Calhode H2+ 1/202 - H20 minimum I have to apply Ed (decomposition Potential In H > delongonition potential is potential regund for Continions electrifying

-> too basic medium > leads to formation
of metal onided metal hydronides?
affects the Quality of
affects the Quality of plating.
_> Commonly we use p# 4-8 for
plating
3. Welling hyant!
,