Bayesian Analysis of Player Performance over Time

Nathaniel Brown

April 10, 2018

Objective

► Investigate Bayesian modelling techniques on shooting data, and to learn more about time-dependency in the data.

Previous Studies

- ► Gilovich, Vallone, & Tversky (1985)
- ▶ Wetzels (2016)
- ▶ Bar-Eli, Avugos, & Raab (2006)

Data

Description of Dataset

- Player-tracking data provided by the Duke Men's Basketball team.
- Recorded using SportVU, a player-tracking system from STATS, LLC.
- ▶ Final Sequence Play-by-Play Optical: contains information of players' basketball actions (e.g., shot makes and attempts, dribbles, passes, fouls) and their time stamps for every game.
- ▶ Final Sequence Optical: contains precise locations for all 10 players and the ball at a rate of 25 times per second for every game.

Missing Data

- ► The ability to record this data depends on specialized tracking cameras, and not every arena has the technology installed.
- ► Has data for 94 out of the 147 games played between the 2013-2014 and 2016-2017 seasons (82 at Home and 12 Away).

Data Cleaning

- Translate the locations to a half-court setting.
- Convert the x-y coordinates (feet) to polar coordinates (feet and radians).
- Add an indicator for home games.
- Only use the shots that Duke players attempt (no opposing players appear in more than 5 games).

Data Cleaning (cont.)

Table 1: Summary of Dataset

Name	Туре	Values	Extra Details
season gameid time globalplayerid r theta home result	categorical categorical continuous categorical continuous continuous categorical categorical	$ \begin{cases} 2014, \dots, 2017 \rbrace \\ \text{NA} \\ \text{NA} \\ \text{NA} \\ [0, \infty) \\ [-\pi, \pi] \\ \{0,1\} \\ \{0,1\} \end{cases} $	94 unique values 13-digit timestamp in milliseconds 31 unique values Distance of shot from hoop (feet) Angle of shot (radians) 1 if shot occured during a home game 1 if shot was made(response)

Table 2: Sample of Dataset

season	gameid	time	globalplayerid	r	theta	home	result
2014	201401070173	1389141733839	603106	4.2076	1.0746	1	1
2014	201401070173	1389141844712	601140	16.6537	1.2973	1	0
2014	201401070173	1389143172185	696289	18.7901	-0.0581	1	1
2014	201401070173	1389143196303	601140	23.4629	0.9539	1	1
2014	201401070173	1389143220261	756880	6.5365	0.0696	1	0

Data Cleaning (cont.)

Distribution of Shot Locations $\theta = 0$ Result

Figure 1: Locations and Results of All Shots

Exploratory Data Analysis

- Visualize changes in success rate over time in individuals and in population.
- ▶ Moving average only accounts for shot order and outcome.

Exploratory Data Analysis (cont.)

Exploratory Data Analysis (cont.)

Figure 2: Moving Average of Shot Success Rate

Model-Building

- ► Types of Models
- Generalized Linear Model
- Hierarchical Generalized Linear Model
- Discounted Likelihood Hierarchical Model
- ► All models based off a logistic regression model
- ▶ Built using JAGS library in R (R2jags)

Generalized Linear Model: Notation

$$logit(p_i) = \beta_{int} + x_{r,i}\beta_r + x_{\theta,i}\beta_\theta + x_{H,i}\beta_H$$

Generalized Linear Model: Results

Generalized Linear Model: Results (cont.)

Figure 3: GLM Posterior Distributions for Four Players

Hierarchical Model: Notation

$$\begin{split} \mathsf{logit}(\textit{p}_{\mathsf{j}\mathsf{i}}) &= \beta_{\mathsf{int, j}} + x_{\mathsf{r, j}\mathsf{i}}\beta_{\mathsf{r, j}} + x_{\theta, \mathsf{j}\mathsf{i}}\beta_{\theta, \mathsf{j}} + x_{\mathsf{H, j}\mathsf{i}}\beta_{\mathsf{H, j}}, \\ \beta_{\mathsf{int, j}} &\sim \textit{N}(\beta_{\mathsf{int}}, \tau_{\mathsf{int}}^2), \\ \beta_{\mathsf{r, j}} &\sim \textit{N}(\beta_{\mathsf{r}}, \tau_{\mathsf{r}}^2), \\ \beta_{\theta, \mathsf{j}} &\sim \textit{N}(\beta_{\theta}, \tau_{\theta}^2), \\ \beta_{\mathsf{H, j}} &\sim \textit{N}(\beta_{\mathsf{H}}, \tau_{\mathsf{H}}^2). \end{split}$$

Hierarchical Model: Results

Figure 4: Population Distribution with Four Player Effects

Hierarchical Model: Contour Plots

Hierarchical Model: Contour Plots (cont.)

Figure 5: Contour Plots for Four Players and Population of Players

Discounted Model: Notation

Hierarchical model equation:

$$logit(p_{ji}) = \beta_{int, j} + x_{r,ji}\beta_{r, j} + x_{\theta,ji}\beta_{\theta,j} + x_{H, ji}\beta_{H, j}.$$

Binomial likelihood term without discounting:

$$L_{\mathrm{gj}}(\Theta) = \prod_{i=1}^{\mathsf{n}_{\mathrm{gj}}} p(\mathsf{y}_{\mathrm{gji}}|\Theta) \propto \prod_{i=1}^{\mathsf{n}_{\mathrm{gj}}} p_{\mathrm{gji}}^{\mathsf{y}_{\mathrm{gji}}} (1 - p_{\mathrm{gji}})^{1 - \mathsf{y}_{\mathrm{gji}}}.$$

Exponential discounting to the outcomes for $0 < \delta < 1$:

$$\pi_{\mathsf{gji}} = \left(p_{\mathsf{gji}}^{\mathsf{y}_{\mathsf{gji}}} (1 - p_{\mathsf{gji}})^{1 - \mathsf{y}_{\mathsf{gji}}}
ight)^{\delta^{|\mathcal{g} - \mathcal{g}_0|}},$$

Discounted Likelihood:

$$\Lambda_{gj}(\Theta) = \prod_{i=1}^{n_{gj}} \pi_{gji},$$

Discounted Model: Ones Trick

```
for(i in 1:N){
  # delta = discount rate
 wt[i] <- delta^abs(games[i]-g0)
  # model equation with random effects by player
 logit(prob[i]) <-
    beta_int[player[i]]*int[i] +
    beta_home[player[i]]*home[i] +
    beta_r[player[i]]*logr[i] +
    beta_theta[player[i]]*theta[i]
  # likelihood function
 p1[i] <- prob[i]^result[i]
 p2[i] <- (1-prob[i])^(1-result[i])
  # discounted likelihood function
 pi[i] <- (p1[i] * p2[i])^wt[i]
  # defines correct discounted likelihood function
 y[i] ~ dbern(pi[i])
```

Discounted Model: Weighting

Figure 6: Illustration of Discounted Weighting

Discounted Model: Results

Figure 7: Parameters for Two Players and Population over Time, $\delta=0.750$

Discounted Model: Results (cont.)

Figure 8: Parameters for Two Players and Population over Time, $\delta=0.999$

Evaluation of Models

Figure 9: Model Evaluation

Calibration Plots

Figure 10: Calibration Plots for Discounted Likelihood Model, $\delta=0.850$

Results from Model with $\delta = 0.850$

Figure 11: Parameters for Two Players and Population over Time, $\delta=0.850$

Conclusion

- ► Some weak evidence for time-dependency in shooting success rate.
- Angle only matters for certain players.
- ▶ Effects of Home-court advantage are not strong in this dataset.

Future Goals

- ▶ Incorporate more advanced predictors.
- ▶ Add random effects on discount factor.

Acknowledgments

- Mike West, for advising me through this project.
- Merlise Clyde, for introducing me to the ones trick in JAGS.
- My thesis committee of Cliburn Chan, Merlise Clyde, and Mike West.
- Kevin Cullen, Basketball Director of Information Technology for the Duke Men's Basketball team, for providing data for this research.