Лекция 2.

Локальный минимум в $C^1[a,b]$.

Fominyh A. V. 2023

Определение пространства $C^k[a,b]$

Пространством $C^k[a,b]$ мы будем называть множество функций x(t), $t\in [a,b]$ заданных на [a,b], непрерывных и имеющих непрерывные производные до k-го порядка включительно. По определению считаем, что $C^0[a,b]=C[a,b]$

Метрика в пространстве $C^k[a,b]$

Hорма в $C^k[a,b]$

$$||x||_k = \sum_{j=0}^k \max_{t \in [a,b]} |x^{(j)}(t)|.$$

Метрика в $C^k[a, b]$

$$\rho_k(x,y) = \|x - y\|_k = \sum_{i=0}^k \max_{t \in [a,b]} |x^{(j)}(t) - y^{(j)}(t)|.$$

Окрестность в пространстве $C^k[a,b]$

Открытая окрестность k-го порядка

Открытой arepsilon-окрестностью k-го порядка функции $x_0(t)\in C^k[a,b]$ будем называть множество функций

$$M_{\varepsilon}^k(x_0) = \{x(t) \in C^k[a,b] \mid \rho_k(x,x_0) < \varepsilon\}.$$

Несложно убедиться в том, что

$$M_{\varepsilon}^k(x_0)\subset M_{\varepsilon}^{k-1}(x_0)\subset\ldots\subset M_{\varepsilon}^1(x_0)\subset M_{\varepsilon}^0(x_0).$$

Близость кривых

Будем говорить, что две функции $x_1(t)$ и $x_2(t) \in C^k[a,b]$ являются ε -близкими в смысле 0-го порядка, если $\rho_0(x_1,x_2)<\varepsilon$.

Будем говорить, что две функции $x_1(t)$ и $x_2(t) \in C^k[a,b]$ являются ε -близкими в смысле 1-го порядка, если $\rho_1(x_1,x_2) < \varepsilon$.

Глобальный минимум

Обычно в данном курсе будут рассматриваться функционалы на пространстве $C^k[a,b]$.

Будем говорить, что функционал J(x) достигает глобального (абсолютного) минимума на множестве $G\subset C^k[a,b]$ в точке $x_0(t)\in G$, если выполняется неравенство

$$J(x) \geqslant J(x_0) \quad \forall x \in G \subset C^k[a, b].$$

Сильный локальный минимум

Множество $M_{arepsilon}^0(x_0)$ называется сильной открытой arepsilon-окрестностью точки $x_0\in C^k[a,b].$

Будем говорить, что функционал J(x) достигает сильного локального (относительного) минимума на множестве $G\subset C^k[a,b]$ в точке $x_0(t)\in G$, если существует такое $\varepsilon>0$, что выполняется неравенство

$$J(x) \geqslant J(x_0) \quad \forall x \in M_{\varepsilon}^0(x_0) \cap G.$$

Слабый локальный минимум

Множество $M^1_{arepsilon}(x_0)$ называется слабой открытой arepsilon-окрестностью точки $x_0\in C^k[a,b].$

Будем говорить, что функционал J(x) достигает слабого локального (относительного) минимума на множестве $G\subset C^k[a,b]$ в точке $x_0(t)\in G$, если существует такое $\varepsilon>0$, что выполняется неравенство

$$J(x)\geqslant J(x_0)\quad \forall x\in M^1_{\varepsilon}(x_0)\cap G.$$

О связи сильного и слабого локальных минимумов

По определению сильный локальный минимум является и слабым.

Говоря неформально, если точка $x_0 \in G$ "выдержала конкуренцию" среди всех тех кривых, которые близки по значениям $(J(x)\geqslant J(x_0) \quad \forall x\in M^0_{\varepsilon}(x_0)\cap G)$, то она "выдержала конкуренцию" в частности среди тех из них, которые близки и по значениям производных $(J(x)\geqslant J(x_0) \quad \forall x\in M^1_{\varepsilon}(x_0)\cap G)$.

Производная по направлению

Пусть на нормированном пространстве X задан функционал J(x). Пусть x_0 и $h \in X$. Будем говорить, что J(x) имеет в точке x_0 производную по направлению h, если существует предел

$$\lim_{\alpha \to +0} \frac{J(x_0 + \alpha h) - J(x_0)}{\alpha} =: J'(x_0, h). \tag{1}$$

Первая вариация функционала

Предположим, что в точке x_0 существуют производные функционала J(x) на X по любому направлению $h \in X$. Тогда функционал

$$\delta J(x_0,h) := J'(x_0,h) \quad \forall \ h \in X \tag{2}$$

называется (первой) вариацией функционала J(x) в точке x_0 .

Замечание 1

Первая вариация $\delta J(x_0,h)$ как функция направления h является положительно однородной, но не обязательно аддитивной.

Слабая дифференцируемость (по Гато)

Дифференциал Гато

Если функционал J(x) на X имеет первую вариацию в точке $x_0 \in X$, причем $\delta J(x_0,h)$ является линейным непрерывным функционалом по h, то будем называть ее дифференциалом Гато.

В этом случае говорят, что функционал J(x) является слабо дифференцируемым (дифференцируемым по Гато) в точке x_0 .

Замечание 2

Из слабой дифференцируемости функционала не следует его непрерывность.

Сильная дифференцируемость (по Фреше)

Дифференциал Фреше

Если приращение функционала J(x) на X в точке x_0 можно представить в виде

$$J(x_0 + h) - J(x_0) = dJ(x_0, h) + r(x_0, h) \quad \forall h \in X,$$

где $dJ(x_0,h)$ — **линейный непрерывный** по h функционал,

$$\lim_{\|h\|\to 0}\frac{r(x_0,h)}{\|h\|}=0,$$

то будем называть (вариацию) $dJ(x_0,h)$ дифференциалом Фреше. В этом случае говорят, что функционал J(x) является сильно дифференцируемым (дифференцируемым по Фреше) в точке x_0 .

Связь дифференцируемости по Гато и Фреше

Теорема

Если функционал J(x) на X дифференцируем по Фреше в точке $x_0 \in X$, то он непрерывен в точке x_0 и дифференцируем по Гато в точке x_0 (и производные Гато и Фреше в этой точке совпадают).

Литература.

- Иглин С. П. Математические расчеты на базе MatLab. 2005. СПб.: БХВ-Петербург. 620 с.
- Алексеев В. М., Тихомиров В. М. Фомин С. В. Оптимальное управление. 1979. Москва: Наука. 432 с.