19) Logistic Regression

Vitor Kamada

January 2020

Reference

Tables, Graphics, and Figures from

An Introduction to Statistical Learning

James et al. (2017): Chapters: 4.3

The Default Data Set: Default Rate $\cong 3\%$

A Subset of 10,000 Individuals

Why Not Linear Regression?

$$y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if seizure} \end{cases}$$

Linear Probability vs Logistic Model

The Logistic Model

$$p(X) = rac{e^{eta_0 + eta_1 X}}{1 + e^{eta_0 + eta_1 X}}$$
 $1 - p(X) = rac{1}{1 + e^{eta_0 + eta_1 X}}$
 $rac{p(X)}{1 - p(X)} = e^{eta_0 + eta_1 X}$
 $\log\left[rac{p(X)}{1 - p(X)}
ight] = eta_0 + eta_1 X$

Logistic Regression

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Predictions given Balance

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

$$\hat{p}(X) = rac{e^{\hat{eta}_0 + \hat{eta}_1 X}}{1 + e^{\hat{eta}_0 + \hat{eta}_1 X}}$$

$$\frac{e^{-10.65+0.0055\times1,000}}{1+e^{-10.65+0.0055\times1,000}} = 0.57\%$$

$$X = 2000 \rightarrow \hat{p}(X) = 58.6\%$$

Predictions given Student

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\hat{Pr}(default = Yes|student = Yes)$$

$$\frac{e^{-3.5+0.405\times1}}{1+e^{-3.5+0.405\times1}} = 4.3\%$$

$$\hat{Pr}(default = Yes|student = No)$$
 $rac{e^{-3.5}}{1+e^{-3.5}} = 2.9\%$

Multiple Logistic Regression

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

$$\hat{p}(X) = \frac{e^{-10.87 + 0.0057 \times 1,500 + 0.003 \times 40 - 0.65 \times 1}}{1 + e^{-10.87 + 0.0057 \times 1,500 + 0.003 \times 40 - 0.65 \times 1}} = 5.8\%$$

$$\hat{p}(X) = \frac{e^{-10.87 + 0.0057 \times 1,500 + 0.003 \times 40 - 0.65 \times 0}}{1 + e^{-10.87 + 0.0057 \times 1,500 + 0.003 \times 40 - 0.65 \times 0}} = 10.5\%$$