Réseaux IP

E. Jeandel

Emmanuel.Jeandel at univ-lorraine.fr

Problématique

- Attribuer une adresse à une machine
- Savoir comment envoyer un message à une machine connaissant uniquement son adresse
- Trouver à partir de l'adresse, dans quel réseau se trouve la machine

Problématique

Idée de base : Pour envoyer un message à une machine d'adresse A

- Soit je m'aperçois que A est dans mon réseau local, et je lui envoie directement
- Soit ce n'est pas le cas, et je trouve quelqu'un (un routeur) pour le faire à ma place.

La partie routage sera faite la semaine prochaine.

Adresses

Les adresses liaisons (MAC) ne suffisent pas :

- L'adresse liaison identifie uniquement la machine (∼ numéro de série), mais pas où elle se situe
- L'adresse doit permettre de savoir comment accéder à la machine
- On peut vouloir changer la carte réseau/la machine sans que ça ne se voie.
- On peut vouloir changer l'adresse

La pratique

- Chaque machine est dotée d'une adresse A
- Chaque machine possède un couple (A, B)
 - A: adresse de la machine.
 - B: ensemble des adresses situées sur le même réseau.

Quand on parle de machine, il faut plutôt parler d'accès réseau : un routeur aura plusieurs adresses.

Contenu

Réseau local

IPv4

IPv4 est la quatrième édition de IP (les 3 premières n'ont pas existé plus de six mois). C'est à la fois :

- Une façon d'adresser des machines
- Un protocole pour communiquer entre ces machines

Adresses IPv4

- Une adresse IPv4 est la donnée de 32 bits (4 octets).
- On la représente souvent sous la forme de 4 blocs de 8 bits, chaque bloc représenté sous la forme d'un entier
- Exemple

bin	01110110	00010011	01011110	11110101
dec	118	19	94	245
hex	76	13	5E	F5

Comment trouver l'ensemble des machines sur le même réseau?

Préfixes (CIDR)

Historiquement : réseaux de 256, 65536 ou 16777216 adresses : Le premier octet permet de savoir la taille du réseau.

Maintenant, adressage par préfixe :

- Préfixe de taille n : les machines dans le réseau sont toutes les machines qui ont les mêmes n premiers bits. On écrit l'adresse sous la forme xxx.yyy.zzz.www/n
- Peut être donné par un masque, formé par n bits à 1 et 32 n bits à 0.

118.19.94.245/21?

```
dec 118 . 19 . 94 . 245 bin 01110110.00010011.01011110.11110101
```

118.19.94.245/21?

```
dec 118 . 19 . 94 . 245 bin 01110110.00010011.01011110.11110101
```

On isole les 21 premiers bits

118.19.94.245/21?

```
dec 118 . 19 . 94 . 245 bin 01110110.00010011.01011110.11110101
```

Le réseau est constitué de toutes les machines qui ont les mêmes 21 premiers bits

118.19.94.245/21?

```
dec 118 . 19 . 94 . 245
bin 01110110.00010011.01011110.11110101
```

```
De
     118
dec
                                88
               . 00010011 . 01011000
     01110110
                                         00000000
bin
à
dec
      118
                                95
                                            255
               . 00010011 . 01011111 . 11111111
     01110110
bin
```

118.19.94.245/21?

```
dec 118 . 19 . 94 . 245
bin 01110110.00010011.01011110.11110101
```

Masque de réseau :

125.13.58.142/22?

125.13.58.142/22?

On isole les 22 premiers bits

125.13.58.142/22?

```
dec | 125 . 13 . 58 . 142
bin | 01111101.00001101.00111010.10001110
```

Le réseau est constitué de toutes les machines qui ont les mêmes 22 premiers bits

125.13.58.142/22?

```
dec 125 . 13 . 58 . 142 bin 01111101.00001101.00111010.10001110
```

```
De
dec
      125
               . 13
                                56
               . 00001101 . 00111000
                                          00000000
bin
     01111101
à
dec
      125
                    13
                                59
                                            255
               . 00001101 . 00111011 . 11111111
     01111101
bin
```

125.13.58.142/22?

```
dec 125 . 13 . 58 . 142 bin 01111101.00001101.00111010.10001110
```

```
Masque de réseau :
```

```
mamachine$ ifconfig eth0 eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 inet 140.117.13.101 netmask 255.255.248.0 broadcast 140.117.15.25
```

```
mamachine$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 140.117.13.101 netmask 255.255.248.0 broadcast 140.117.15.25
```

```
        dec
        140
        .
        117
        .
        13
        .
        101

        bin
        10001100
        .
        01110101
        .
        00001101
        .
        01100101
```

C'est un préfixe /21

```
mamachine$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 140.117.13.101 netmask 255.255.248.0 broadcast 140.117.15.25
```

```
dec | 140 . 117 . 13 . 101
bin | 10001100 . 01110101 . 00001101 . 01100101
```

Le réseau est constitué de toutes les machines qui ont les mêmes 21 premiers bits

```
mamachine$ ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 140.117.13.101 netmask 255.255.248.0 broadcast 140.117.15.25
```

```
dec | 140 . 117 . 13 . 101
bin | 10001100 . 01110101 . 00001101 . 01100101
```

```
De
dec
       140
              . 117
bin
     10001100
              . 01110101 . 00001000
                                      00000000
à
                         . 15
dec
       140
               117
                                         255
                         . 00001111
bin
     10001100
              . 01110101
```

E. Jeandel, UL <u>RéseauxIP</u> 12/37

Adresses particulières dans un réseau

Deux adresses particulières ne sont pas utilisables pour une interface réseau

- La première adresse, qui est l'adresse du réseau
- La dernière adresse, qui est l'adresse de broadcast. Envoyer à cet adresse permet d'envoyer à toutes les machines du réseau.

Exemple: 118.19.94.245/21

Adresse réseau : 118.19.88.0

Adresse broadcast : 118.19.95.255

Toutes les autres adresses peuvent être utilisées pour une interface réseau.

Note: un réseau /31 ou /32 ne contient aucune adresse pour une interface réseau.

Préfixes importants

Adresses xxx.yyy.zzz.www/24:

- Toutes les adresses entre xxx.yyy.zzz.0 et xxx.yyy.zzz.255
- 256 adresses en tout
- Adresse du réseau : xxx.yyy.zzz.0/24
- Adresse de broadcast : xxx.yyy.zzz.255
- 254 adresses utilisables par les interfaces réseaux.

Préfixes importants

Adresses xxx.yyy.zzz.www/16:

- Toutes les adresses entre xxx.yyy.0.0. et xxx.yyy.255.255
- 65536 adresses en tout
- Adresse du réseau : xxx.yyy.0.0/16
- Adresse de broadcast : xxx.yyy.255.255
- 65534 adresses utilisables par les interfaces réseaux.

Préfixes importants

Adresses 0.0.0.0/0:

- Toutes les adresses possibles
- Désigne tout le réseau internet

Adresses xxx.yyy.zzz.www/32:

- Désigne une seule adresse
- Pas vraiment un réseau

Préfixes

Un préfixe /n contient 2^{32-n} adresses, dont 2 ne sont pas utilisables

- n = 24, $2^8 = 256$ adresses, dont 254 utilisables pour une interface réseau
- n = 20, $2^{12} = 4096$ adresses, dont 4094 utilisables pour une interface réseau

Réseaux privés (RFC 8190)

Réseau privé : Adresse **pas unique** sur l'Internet, et sont inconnus des routeurs par défaut

- 0.0.0.0/8 : peut désigner le réseau local (uniquement comme adresse source)
- 127.0.0.0/8 : boucle locale : ne contient que la machine
- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16
- 100.64.0.0/10 conçu pour connecter des réseaux privés ensemble

Avoir une adresse

Comment fixer l'adresse IP d'une machine? Deux méthodes

- Statique : dans un fichier de configuration sur la machine
- Dynamique : obtenue au démarrage de la machine, peut changer d'un jour à l'autre (DHCP, voir cours de L3)

Attention : il faut fixer l'adresse IP mais aussi le masque(préfixe)!

Contenu

1 IPv4

Réseau local

Problématique

Idée de base : Pour envoyer un message à une machine d'adresse A

- Soit je m'aperçois que A est dans mon réseau local, et je lui envoie directement
- Soit ce n'est pas le cas, et je trouve quelqu'un (un routeur) pour le faire à ma place.

Réseau local

Soit la machine 12.14.59.39/24. Parmi ces adresses IP, lesquelles sont sur le réseau local?

- 12.14.59.1
- 12.14.16.64
- 12.14.59.17
- 6.6.6.6
- 12.14.59.39

Réseau local

Sur un réseau local, on communique en utilisant les adresses MAC.

Il faut un mécanisme pour trouver l'adresse MAC à partir de l'adresse IP.

Ce mécanisme (protocole) s'appelle ARP.

ARP

Address Resolution Protocol (RFC826)

Un paquet ARP contient :

- Un champ demande/réponse
- L'adresse IP(resp. MAC) de l'émetteur
- L'adresse IP(resp. MAC) du destinataire

ARP est conçu pour fonctionner avec n'importe quel protocol liaison/réseau

- s/IP/réseau/
- s/MAC/liaison/

ARP

Principe (1/2)

Si A d'adresse IP 1.6.6.4 et d'adresse MAC 00:de:ad:be:ef:00 veut connaître l'adresse MAC de la machine d'adresse IP 1.6.6.15

- Trame ethernet en broadcast (sur ff:ff:ff:ff:ff:ff)
- ARP en mode demande
- Adresse IP/MAC de l'expéditeur (pourquoi ?)
- Adresse IP du destinataire
- Adresse MAC du destinaire : 00:00:00:00:00:00

ARP

Principe (2/2)

Lorsque B veut répondre :

- Trame ethernet généralement vers A
- ARP en mode réponse
- Adresse IP/MAC de A et de B

Attention : seul *B* doit répondre.

Exemple pratique

Exemple pratique

Table ARP

On ne redemande pas à chaque envoi les correspondances IP-Mac! Cache ARP dans chaque machine :

Adresse	TypeMap	AdresseMat	Indicateurs	Iface
192.168.1.1	ether	a4:2b:b0:f6:a0:d6	С	eth0
192.168.1.4	ether	28:39:26:23:8b:7d	С	eth0
192.168.1.6	ether	48:b0:2d:2d:c7:9a	С	eth0
192.168.1.9	ether	00:11:32:93:06:79	C	eth0
192.168.1.15	ether	b8:27:eb:e4:36:82	CM	eth0
192.168.1.16		(incomplete)		eth0

Indicateurs:

C : Apprise

CM : codée en dur

• incomplete : la correspondance a échoué

- Quand on reçoit une réponse à une requête ARP
- Quand on reçoit une question nous concernant
- Quand on reçoit un paquet ARP sur une adresse IP qu'on connaît :
- Au bout d'un certain temps, on vide les vieilles entrées (OS dependent).

- Quand on reçoit une réponse à une requête ARP
 - J'ai demandé qui a l'adresse IP 192.168.0.1
 - On m'a répondu "c'est aa:bb:cc:dd:ee:ff"
 - Je mets ça dans mon cache
- Quand on reçoit une question nous concernant
- Quand on reçoit un paquet ARP sur une adresse IP qu'on connaît :
- Au bout d'un certain temps, on vide les vieilles entrées (OS dependent).

- Quand on reçoit une réponse à une requête ARP
- Quand on reçoit une question nous concernant
 - J'ai vu passé la demande "qui a l'adresse IP 192.168.0.1", qui est mon adresse IP, venant de la machine 192.168.0.4 dont l'adresse mac est 01:02:03:04:05:06
 - Je réponds, parce que je suis civilisé
 - Je mets dans mon cache que 192.168.0.4 correspond à 01:02:03:04:05:06.
 - Si elle m'a contacté, je vais sans doute répondre plus tard
- Quand on reçoit un paquet ARP sur une adresse IP qu'on connaît :
- Au bout d'un certain temps, on vide les vieilles entrées (OS dependent).

- Quand on reçoit une réponse à une requête ARP
- Quand on reçoit une question nous concernant
- Quand on reçoit un paquet ARP sur une adresse IP qu'on connaît :
 - J'ai vu passé la question "qui a l'adresse IP 192.168.0.1? C'est 192.168.0.4, d'adresse 01:02:03:04:05:06 qui demande" alors que je n'ai rien demandé
 - Je pensais que 192.168.0.4 avait comme adresse MAC de:ad:be:ef:00:00, on m'aurait donc menti
 - Je change donc dans mon cache
 - Si je ne connaissais pas 192.168.0.4, je ne fais rien
- Au bout d'un certain temps, on vide les vieilles entrées (OS dependent).

- Quand on reçoit une réponse à une requête ARP
- Quand on reçoit une question nous concernant
- Quand on reçoit un paquet ARP sur une adresse IP qu'on connaît :
- Au bout d'un certain temps, on vide les vieilles entrées (OS dependent).

A veut envoyer un message à 192.168.1.4

1. A regarde si 192.168.1.4 est dans son réseau local ⇒ Oui.

2. A consulte son cache ARP

3. A ne connait pas encore l'adresse MAC de 192.168.1.4

Entête ARP

4. A envoie une requête ARP sur son réseau local.

Entête Ethernet source : aa:bb:cc:dd:ee:ff

destination: ff:ff:ff:ff:ff:ff (broadcast) source: 192.168.1.3/aa:bb:cc:dd:ee:ff

destination: 192.168.1.4/00:00:00:00:00

type: question

5. B et C reçoivent la trame. B s'en félicite et passe à autre chose.

 E. Jeandel, UL
 RéseauxIP
 31/37

6. C ajoute la correspondance ARP à sa table

6. C ajoute la correspondance ARP à sa table

7. C répond à A.

Entête Ethernet source : ff:66:66:66:66

destination: aa:bb:cc:dd:ee:ff

Entête ARP source : 192.168.1.4/ff:66:66:66:66

destination: 192.168.1.3/aa:bb:cc:dd:ee:ff

type : réponse

8. A ajoute la correspondance ARP à sa table

8. A ajoute la correspondance ARP à sa table

aa:bb:cc:dd:ee:ff

9. A a toutes les infos pour envoyer son paquet IP.

Entête Ethernet source : aa:bb:cc:dd:ee:ff

destination: ff:66:66:66:66:66

Entête IP source: 192.168.1.3

destination: 192.168.1.4

message bonjour!

10. Si jamais C veut répondre à A, il n'a pas besoin de refaire une requête ARP.

ARP

Ce qu'il faut retenir

Avant tout envoi d'un ou plusieurs paquets IP, on voit en général un échange ARP

Sauf si la correspondance est dans le cache.

E. Jeandel, UL <u>RéseauxIP</u> 32/3

ARP

Interactions avec commutateurs

Attention, seule la machine qui a l'adresse IP doit répondre à la requête ARP

- Le commutateur ne doit pas essayer d'être malin
- La machine peut avoir changé d'adresse IP
- La machine peut avoir changé d'endroit

Subtilités

Si on change l'adresse IP d'une machine :

- Elle recevra immédiatement les paquets à destination de la nouvelle adresse IP (pourquoi?)
- Elle recevra aussi certains paquets à destination de l'ancienne adresse IP (pourquoi?)

Subtilités

Si on change l'adresse MAC d'une machine (parce qu'on a changé la carte réseau)

• Elle ne recevra pas tout de suite les paquets (pourquoi?)

Que se passe-t-il si deux machines ont la même adresse IP?

ARP

Attaques

Dans un réseau local, ce n'est pas vraiment l'adresse IP qui décide qui va recevoir le paquet, mais plutôt la correspondance ARP qui a été effectuée

• Possibilité d'attaques : une machine répond à la requête ARP à la place d'une autre (ARP spoofing/cache poisoning)