TAS

Cours 04 - De λ_{ST} vers un langage fonctionnel typé.

Romain Demangeon

TAS - M2 STL

03/10/2024

De λ vers ML

- ▶ En partant de λ , on peut se diriger vers un langage fonctionnel complet.
- ► En ajoutant des types de bases.
- ► En ajoutant les types sommes et les types produits.
- ► En ajoutant des définitions de fonction récursives.
- ► En ajoutant du polymorphisme.
- En ajoutant d'autres traits :
 - traits impératifs,
 - traits concurrents,
 - traits exceptionnels.

Types de Base

▶ On peut ajouter des entiers natifs (par exemple) à la syntaxe :

$$M ::= x \mid M M \mid \lambda x.M \mid n$$

avec $n \in \mathbb{N}$.

Avec un type et une règle de typage adéquats :

$$T ::= \alpha \mid T \to T \mid \mathbf{N}$$
 (Nat) $\frac{n \in \mathbb{N}}{\Gamma \vdash n : \mathbf{N}}$

Types de Base (II)

- Problème : on ne peut rien faire des entiers.
- li faut des primitives pour les manipuler.
 - par exemple S, P et ifz.
 - qu'il faut typer :

$$\begin{split} M ::= & \times \mid M \ M \mid \lambda x. M \mid n \mid \text{ifz } M \ M \ M \mid S \ M & \text{(succ)} \frac{1}{S \ n \longrightarrow n+1} \\ & \text{(pred)} \frac{M \longrightarrow M'}{P \ n \longrightarrow n-1} & \text{(ifz0)} \frac{M \longrightarrow M'}{\text{ifz } M \ N_1 \ N_2 \longrightarrow \text{ifz } M' \ N_1 \ N_2} \\ & \text{(ifz1)} \frac{n \ne 0}{\text{ifz } 0 \ M \ N \longrightarrow M} & \text{(ifz2)} \frac{n \ne 0}{\text{ifz } n \ M \ N \longrightarrow M} \\ & \text{(Su)} \frac{\Gamma \vdash M : \mathbf{N}}{\Gamma \vdash S \ M : \mathbf{N}} & \text{(Pr)} \frac{\Gamma \vdash M : \mathbf{N}}{\Gamma \vdash P \ M : \mathbf{N}} \\ & \text{(Ifz)} \frac{\Gamma \vdash M : \mathbf{N}}{\Gamma \vdash \text{ifz } M \ N_1 \ N_2 : T} \end{split}$$

- Notez l'absence de $\frac{N_1 \longrightarrow N'_1}{\text{ifz } M \ N_1 \ N_2 \longrightarrow \text{ifz } M \ N'_1 \ N_2}$
- ► Similaire (primitives, typage des primitives) pour d'autres types de

 Sources de Sou base.

Types de Base : Inférence

- le système est toujours dirigé par la syntaxe.
- la règle (Nat) génère une équation $T_i = N$.
- les autres règles fixent un type N dans la génération récursive d'équations
 - et peuvent générer $T_i = N$ (par exemple (Su))
- ► lors de l'unification :
 - N = N est éliminée.
 - ▶ $\mathbf{N} = T_1 \rightarrow T_2$ fait échouer l'inférence.

Rappel: Types Produits

On ajoute des déconstructeurs de couples à la syntaxe.

$$M ::= x \mid M M \mid \lambda x.M \mid (M, M) \mid \Pi_1 M \mid \Pi_2 M$$

qui permettent de projeter un couple

$$(\mathsf{ProG}) \frac{M \longrightarrow M'}{(M,N) \longrightarrow (M',N)} \qquad (\mathsf{ProD}) \frac{N \longrightarrow N'}{(M,N) \longrightarrow (M,N')}$$

$$(\mathsf{PjG}) \frac{\Pi_1(M,N) \longrightarrow M}{\Pi_2(M,N) \longrightarrow M} \qquad (\mathsf{PjD}) \frac{\Pi_2(M,N) \longrightarrow M}{\Pi_2(M,N) \longrightarrow M}$$

et que l'on doit typer

$$(\mathbf{Pro}) \frac{\Gamma \vdash M : T \qquad \Gamma \vdash N : U}{\Gamma \vdash (M, N) : T \times U} \qquad (\mathbf{PjG}) \frac{\Gamma \vdash M : T \times U}{\Gamma \vdash \Pi_1 \ M : T}$$

$$(\mathbf{PjD}) \frac{\Gamma \vdash M : T \times U}{\Gamma \vdash \Pi_2 \ M : U}$$

Types Produits: Exemple

$$\begin{array}{ccc} & (\lambda c. (\Pi_1 \ c) \ (\Pi_2 \ c)) \ (I, I \ K) \\ \longrightarrow & (\Pi_1 \ (I, I \ K)) \ (\Pi_2 \ (I, I \ K)) \\ \longrightarrow & I \ (\Pi_2 \ (I, I \ K)) \\ \longrightarrow & I \ (I \ K) \\ \longrightarrow & (I \ K) \\ \longrightarrow & K \end{array}$$

On pose $T_k = \alpha \rightarrow \beta \rightarrow \alpha$.

$$(\mathbf{Abs}) \frac{(\mathsf{PrG}) \frac{(\mathsf{Var}) \overline{\Gamma \vdash c : ((T_K \to T_K) \times T_K)}}{\Gamma \vdash (\Pi_1 \ c) : T_K \to T_K}}{c : ((T_K \to T_K) \times T_K) \vdash (\Pi_1 \ c) : T_K} \frac{(\mathsf{PrD}) \frac{(\mathsf{Var}) \overline{\Gamma \vdash c : ((T_K \to T_K) \times T_K)}}{\Gamma \vdash (\Pi_1 \ c) : T_K}}{\vdash \lambda c. (\Pi_1 \ c) : ((T_K \to T_K) \times T_K) \to T_K}$$

Rappel: Types Sommes

Le destructeur lie une variable.

$$M ::= x \mid M \ M \mid \lambda x.M \mid \mathsf{g} : M \mid \mathsf{d} : M \mid \mathsf{sw} \ M \ \triangleright x : M + M$$

On branche en fonction du côté du terme.

$$\begin{split} (\mathtt{SumG}) & \frac{M \longrightarrow M'}{\mathtt{g} : M \longrightarrow \mathtt{g} : M'} \qquad (\mathtt{SumD}) \frac{N \longrightarrow N'}{\mathtt{d} : N \longrightarrow \mathtt{g} : N'} \\ & (\mathtt{SwG}) \frac{}{\mathtt{sw} \ \mathtt{g} : M \ \triangleright \times : N_1 + N_2 \longrightarrow N_1[M/x]} \\ & (\mathtt{SwG}) \frac{}{\mathtt{sw} \ \mathtt{d} : M \ \triangleright \times : N_1 + N_2 \longrightarrow N_2[M/x]} \end{split}$$

On type avec :

$$(SumG) \frac{\Gamma \vdash M : T}{\Gamma \vdash g : M : T + U} \qquad (SumG) \frac{\Gamma \vdash M : U}{\Gamma \vdash d : M : T + U}$$

$$(Sw) \frac{\Gamma \vdash M : T + U}{\Gamma \vdash sw \ d : M : N_1 + N_2 : S}$$

Types Sommes: Exemple

$$(\lambda x.sw \times \triangleright y: y + 2 + y + 3 + 4) (g: I)$$

$$\longrightarrow sw (g: I) \triangleright y: y + 2 + y + 3 + 4 \longrightarrow I + 2 \longrightarrow 2$$
On pose $T_I = (\mathbf{N} \to \mathbf{N})$ et $T_K = (\mathbf{N} \to \mathbf{N} \to \mathbf{N})$

$$(Su) = \frac{(Var)}{\Gamma_1 \vdash x : (T_I + T_K)} \frac{(Var)}{(App)} \frac{(Var)}{\Gamma_1 \vdash y : T_I} \frac{(Nat)}{\Gamma_1 \vdash z : N} \frac{(Nat)}{\Gamma_1 \vdash z : N} \frac{(App)}{(App)} \frac{\frac{(Var)}{\Gamma_2 \vdash y : T_K} \frac{(Var)}{\Gamma_2 \vdash y : T_K} \frac{(Var)}{\Gamma_2 \vdash y : N}}{\frac{\Gamma_2 \vdash y : T_K}{\Sigma : (T_I + T_K), y : T_I \vdash y : N}} \frac{(Su)}{\Gamma_2 \vdash y : N} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_K \vdash y : M} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_K \vdash y : M} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_K \vdash y : M} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_K \vdash y : M} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_K \vdash y : M} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_K \vdash y : M} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_K \vdash y : M} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_K \vdash y : M} \frac{(Su)}{\Sigma : (T_I + T_K), y : T_I \vdash y : T_$$

Types Sommes et Produits : Inférence

- le système de types est toujours dirigé par la syntaxe
- ▶ génération :
 - **SumG** (par exemple) génère une équation $T_i = t_1 + t_2$ (avec t_1 et t_2 de nouvelles variables)
 - **(Sw)** (par exemple) force le même type dans la génération de N_1 et N_2 .
- unification :
 - T + U = S + R (par exemple) génère deux nouvelles équations T = S et U = R
 - $ightharpoonup T + U = S \times R$ (par exemple) fait échouer l'unification.

Récursion

- λ_{ST} termine \Rightarrow il n'est pas Turing-complet.
- Les combinateurs de points fixe sont non-typables.
 - \triangleright Y $F \longrightarrow^* F (Y F)$
- Passer à un langage intéressant demande d'abandonner la terminaison et d'introduire la récursion.
- Une manière de procéder est d'introduire un point fixe natif.

$$\begin{split} M ::= x \mid \lambda x.M \mid M \ M \mid \text{fix} \ M \end{split} \qquad & \text{(fix)} \\ \frac{\Gamma}{\text{fix} \lambda \phi.M} \longrightarrow M[(\text{fix} \lambda \phi.M)/\phi]}{\Gamma \vdash \text{fix} \lambda \phi.M : T \rightarrow U} \end{split}$$

- ▶ fix $\lambda \phi$.M: $T \rightarrow U$, ϕ et M doivent avoir le même type.
- on peut "supposer" que c'est un type fonctionnel:
 - permet d'écrire des fonctions récursives.
 - φ joue le rôle de l'appel récursif.

Récursion : Exemple

```
\begin{array}{c} \operatorname{add} = \operatorname{fix} \; (\lambda \phi. \lambda n_1 n_2. \operatorname{ifz} \; n_1 \; n_2 \; (\mathbb{S} \; (\phi \; (\mathbb{P} \; n_1) \; n_2)))) \\ & \operatorname{add} \; 2 \; 3 \\ & \longrightarrow \; \lambda n_1 n_2. \operatorname{ifz} \; n_1 \; n_2 \; (\mathbb{S} \; (\phi \; (\mathbb{P} \; n_1) \; n_2))) [\operatorname{add}/\phi] \\ & = \; (\lambda n_1 n_2. \operatorname{ifz} \; n_1 \; n_2 \; (\mathbb{S} \; (\operatorname{add} \; (\mathbb{P} \; n_1) \; n_2))) \; 2 \; 3 \\ & \longrightarrow \; \operatorname{ifz} \; 2 \; 3 \; (\mathbb{S} \; (\operatorname{add} \; (\mathbb{P} \; 2) \; 3)) \\ & \longrightarrow \; \mathbb{S} \; (\operatorname{add} \; (\mathbb{P} \; 2) \; 3) \\ & \longrightarrow \; \mathbb{S} \; (\operatorname{add} \; 1 \; 3) \\ & \longrightarrow \; \mathbb{S} \; ((\lambda n_1 n_2. \operatorname{ifz} \; n_1 \; n_2 \; (\mathbb{S} \; (\operatorname{add} \; (\mathbb{P} \; n_1) \; n_2))) \; 1 \; 3) \\ & \longrightarrow \; \mathbb{S} \; (\mathbb{S} \; (\mathbb{S} \; 1 \; 3) \; (\mathbb{S} \; (\operatorname{add} \; (\mathbb{P} \; 1) \; n_2))) \; 0 \; 3)) \\ & \longrightarrow \; \mathbb{S} \; (\mathbb{S} \; (\operatorname{add} \; 0 \; 3)) \\ & \longrightarrow \; \mathbb{S} \; (\mathbb{S} \; (\lambda n_1 n_2. \operatorname{ifz} \; n_1 \; n_2 \; (\mathbb{S} \; (\operatorname{add} \; (\mathbb{P} \; n_1) \; n_2))) \; 0 \; 3)) \\ & \longrightarrow \; \longrightarrow \; \mathbb{S} \; (\mathbb{S} \; (3)) \\ & \longrightarrow \; \longrightarrow \; \mathbb{S} \; (\mathbb{S} \; (3)) \end{array}
```


Récursion : Exemple (II)

$$\mathtt{add} = \mathtt{fix} \; (\lambda \phi. \lambda \mathit{n}_1 \mathit{n}_2.\mathtt{ifz} \; \mathit{n}_1 \; \mathit{n}_2 \; (\mathtt{S} \; (\phi \; (\mathtt{P} \; \mathit{n}_1) \; \mathit{n}_2)))$$

$$(App) \xrightarrow{(Var)} \frac{(Var) \frac{(Var)} \frac{(Var) \frac{(Var) \frac{(Var)} \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var)} \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var) \frac{(Var)} \frac{(Var) \frac{(Var)} \frac{(Var)}}{(Var)}}{(Var)}}}}{(Var)}}}{(Var)}}}{(V$$

- On introduit des termes typables et non-terminants.
- $R = fix (\lambda \phi. \lambda x. \phi x)$
- $ightharpoonup R M \longrightarrow (\lambda x.R x) I \longrightarrow R M$

$$(\mathsf{Abs}) \frac{(\mathsf{App}) \frac{(\mathsf{Var}) \frac{}{ \mathsf{\Gamma} \vdash \phi : \alpha \to \alpha}}{ \frac{ \phi : \alpha \to \alpha }{ }} \frac{(\mathsf{Var}) \frac{}{ \mathsf{\Gamma} \vdash x : \alpha }}{ \frac{ \phi : \alpha \to \alpha, x : \alpha \vdash \phi : \alpha }{ }} }{ \frac{ \phi : \alpha \to \alpha \vdash \lambda x . \phi \times}{ }}{ \vdash R : \alpha \to \alpha}$$

Récursion : Inférence

- le système de types est toujours dirigé par la syntaxe
- ▶ génération :
 - ▶ (**Fix**) génère une équation $T_i = t_1 \rightarrow t_2$ (avec t_1 et t_2 de nouvelles variables)
- unification :
 - pas d'influence.

Polymorphisme

- Polymorphisme de généricité : une même fonction/méthode est utilisable avec des types différents.
- ightharpoonup Dans λ_{ST} , un terme typable est typable avec une infinité de type :

$$\vdash I : \alpha \to \alpha$$

$$\vdash I : (\alpha \to \alpha) \to (\alpha \to \alpha)$$

$$\vdash I : (\alpha \to \beta \to \alpha) \to (\alpha \to \beta \to \alpha)$$

$$\vdash I : (\alpha \to \beta \to \alpha) \to (\alpha \to \beta \to \alpha)$$

$$\vdash I : (\alpha \to (\alpha \to \alpha) \to \alpha) \to (\alpha \to (\alpha \to \alpha) \to \alpha)$$

- Dans ce processus, chaque variable de type agit comme une variable mathématique, que l'on peut remplacer par n'importe quel type.
- Cette caractéristique permet de typer / / :

$$(\mathsf{App}) \frac{(\mathsf{Var}) \frac{(\mathsf{Var}) \frac{}{\varkappa : \alpha \to \alpha \vdash \varkappa : \alpha \to \alpha}}{\emptyset \vdash \mathit{I} : (\alpha \to \alpha) \to (\alpha \to \alpha)} \qquad (\mathsf{Abs}) \frac{(\mathsf{Var}) \frac{}{\varkappa : \alpha \vdash \varkappa : \alpha}}{\emptyset \vdash \mathit{I} : \alpha \to \alpha}$$

▶ Dans la branche de gauche, I est typée avec le type $(\alpha \to \alpha) \to (\alpha \to \alpha)$, et dans la branche de droite avec $\alpha \to \alpha$.

Polymorphisme (II)

- Ce processus ne s'applique pas aux variables liées.
- $\delta = \lambda x.x \ x$ n'est pas typable :

$$\textbf{(Abs)} \frac{(\mathsf{Var}) \frac{(\mathsf{Var})}{x: t_1 \vdash x: t_3 \to T_2}}{x: T_1 \vdash x : T_2} \frac{(\mathsf{Var}) \frac{}{x: t_1 \vdash x: t_3}}{\emptyset \vdash \lambda x. x : t_1 \to t_2}$$

- on tombe sur $t_3 \rightarrow t_2 = t_3$ qui n'est pas unifiable.
- la règle (**App**) force le contexte Γ (donc le type de x) à être le même des deux côtés de l'application.
- ightharpoonup pourtant δ I ne semble pas plus problématique que I I.
- On peut étendre le système de types pour typer ces termes faisant apparaître de la généricité.
 - le même code qui va substituer les deux occurences de x est utilisé "de deux manières différentes".

Polymorphisme (III)

On ajoute la quantification universelle aux types:

$$T ::= \alpha \mid T \rightarrow T \mid \forall \alpha. T$$

on ajoute des règles pour ce constructeur de types :

$$(\mathbf{Gen}) \frac{\Gamma \vdash M : T}{\Gamma \vdash M : \forall \alpha . T} \qquad \qquad (\mathbf{Inst}) \frac{\Gamma \vdash M : \forall \alpha . T}{\Gamma \vdash M : T[U/\alpha]}$$

- ► (Gen) permet de généraliser les variables de types d'un type donné à un terme.
- (Inst) permet d'instantier la variable liée d'un type universel par n'importe quel type.
- c'est Système F.

Polymorphisme (IV)

 $ightharpoonup \delta$ est typable :

- ici on utilise la règle (Inst) pour remplacer chaque α par le type $\forall \alpha.\alpha \rightarrow \alpha$ lui-même.
- $ightharpoonup \Omega$ n'est pas typable.
 - le type de δ ne peut pas être généralisé de manière intéressante (il n'a pas de variable libre)
 - ightharpoonup on ne peut donc pas typer δ avec deux types différents dans δ δ .

Polymorphisme (V)

- ► Théorème : En Système F, *M* est typable si et seulement si *M* est fortement normalisant.
- Conséquence :

Polymorphisme (V)

- ► Théorème : En Système F, M est typable si et seulement si M est fortement normalisant.
- Conséquence : F n'est pas inférable (l'inférence n'est pas décidable)
 - elle n'est plus dirigée par la syntaxe, (on peut utiliser (Abs) ou (Inst))
 - ightharpoonup quand on utilise (Inst), on a plusieurs possibilités pour U.
- pour un langages de programmation, on veut du polymorphisme inférable.

Let-polymorphisme

- les langages fonctionnels utilisent un polymorphisme plus restreint
- ils disposent d'une construction let
 - let x = N in M a la même sémantique que $(\lambda x.M)$ N
 - c'est le seul endroit où l'on peut créer du polymorphisme

$$(\text{Let}) \frac{\Gamma \vdash N : T \qquad \Gamma, x : \mathbf{Gen}(T) \vdash M : U}{\Gamma \vdash \text{let } x = N \text{ in } M : U}$$

avec $\mathbf{Gen}(T)$ l'opération syntaxique qui transforme T en $\forall \alpha_1 \forall \alpha_2 \ldots \forall \alpha_n. T$ si $\alpha_1, \ldots, \alpha_n$ sont les variables de types libres de T.

- l'inférence devient décidable.
- l'algorithme de *Hindley-Milner* (variante d'unification) est utilisé pour l'inférence de types des langages à *la ML*.

Exemple de let-typage

$$(\mathsf{App}) \frac{(\mathsf{Var}) \frac{(\mathsf{Var}) \frac{}{i : \forall \alpha.\alpha \to \alpha \vdash i : \forall \alpha.\alpha \to \alpha}}{i : \forall \alpha.\alpha \to \alpha \vdash i : (\mathsf{N} \to \mathsf{N}) \to (\mathsf{N} \to \mathsf{N})} \frac{(\mathsf{Var}) \frac{}{i : \forall \alpha.\alpha \to \alpha \vdash i : \forall \alpha.\alpha \to \alpha}}{i : \forall \alpha.\alpha \to \alpha \vdash i : \mathsf{N} \to \mathsf{N}}$$

$$(Abs) \frac{(\mathsf{Var}) \frac{}{\mathsf{x} : \alpha \vdash \mathsf{x} : \alpha}}{\vdash \lambda \mathsf{x}.\mathsf{x} : \alpha \to \alpha} \qquad (\mathsf{App}) \frac{\frac{}{i : \forall \alpha.\alpha \to \alpha \vdash i \: i : \mathsf{N} \to \mathsf{N}}}{i : \forall \alpha.\alpha \to \alpha \vdash i \: i \: 2} \frac{}{i : \forall \alpha.\alpha \to \alpha \vdash i \: i \: 2}$$

$$\vdash \mathsf{let} \: i = \lambda \mathsf{x}.\mathsf{x} \: \mathsf{in} \: i \: i \: 2 : \mathsf{N}$$

- ▶ **Gen**($\alpha \to \alpha$) c'est $\forall \alpha.\alpha \to \alpha$
- ightharpoonup à gauche, (Inst) avec [(N ightarrow N)/lpha]
- ightharpoonup à droite, (Inst) avec [N/ α]

Let-Polymorphisme : Inférence

- le système de type n'est plus dirigé par la syntaxe :
 - on peut utiliser (Inst) à tout moment.
- méthode possible :
 - pendant la génération,
 - \triangleright on rencontre let x = N in M,
 - ▶ fait l'inférence (génération + unification) de N.
 - on généralise le type obtenu *T*.
 - on continue la génération dans M.
- unification :
 - ightharpoonup on traite $\forall \alpha. T_1 = T_2$
 - lacktriangle on prend une nouvelle variable de type eta
 - on remplace l'équation par $T_1[\beta/\alpha] = T_2$
 - ainsi plusieurs apparitions du même type polymorphe dans les équations sont indépendantes
 - l'instantiation est faite pendant l'unification
 - attention à l'ordre (∀ devrait être "prioritaire")

```
 \begin{cases} \{ (\forall \alpha.\alpha \rightarrow \alpha, \mathbf{t}_1), (\mathbf{t}_1, \mathbf{N} \rightarrow \mathbf{N}), (\beta_1 \rightarrow \beta_2 \rightarrow \beta_1, \gamma \rightarrow \mathbf{t}_1) \} \\ \{ (\forall \alpha.\alpha \rightarrow \alpha, \mathbf{N} \rightarrow \mathbf{N}), (\beta_1 \rightarrow \beta_2 \rightarrow \beta_1, \gamma \rightarrow (\forall \alpha.\alpha \rightarrow \alpha)) \} \\ \rightarrow \{ (\alpha_1 \rightarrow \alpha_1, \mathbf{N} \rightarrow \mathbf{N}), (\beta_1 \rightarrow \beta_2 \rightarrow \beta_1, \gamma \rightarrow (\forall \alpha.\alpha \rightarrow \alpha)) \} \\ \rightarrow \{ (\alpha_1 \rightarrow \alpha_1, \mathbf{N} \rightarrow \mathbf{N}), (\beta_1, \gamma), (\beta_2 \rightarrow \beta_1, \forall \alpha.\alpha \rightarrow \alpha) \} \\ \rightarrow \{ (\alpha_1 \rightarrow \alpha_1, \mathbf{N} \rightarrow \mathbf{N}), (\beta_1, \gamma), (\beta_2 \rightarrow \beta_1, \alpha_2 \rightarrow \alpha_2) \} \\ \rightarrow^* \{ \dots, (\alpha_1, \mathbf{N}), \dots (\alpha_2, \gamma), \dots \}
```


Traits Impératifs

- les langages ML contiennent des traits impératifs.
- On peut ajouter à λ :
 - ► allocation ref *M*
 - déréférencement !M
 - ► réaffectation *M*:=*N*
 - ▶ une unité ∘
- Une mémoire σ associe des régions (adresses) à des termes.
- On réduit des couples (terme; mémoire)
- On ajoute les règles :

$$(\operatorname{ref1}) \frac{\rho \notin M \quad \rho \notin \sigma}{\operatorname{ref} M; \sigma \longrightarrow \rho; \sigma[\rho \mapsto M]} \qquad (\operatorname{ref2}) \frac{M \longrightarrow M'}{\operatorname{ref} M; \sigma \longrightarrow \operatorname{ref} M'; \sigma}$$

$$(\operatorname{deref1}) \frac{\sigma(\rho) = M}{!\rho; \sigma \longrightarrow M; \sigma} \qquad (\operatorname{deref2}) \frac{M \longrightarrow M'}{!M; \sigma \longrightarrow !M'; \sigma}$$

$$(\operatorname{as3}) \frac{N \longrightarrow N'}{M := N; \sigma \longrightarrow M := N'; \sigma} \qquad (\operatorname{as1}) \frac{\rho \in \sigma}{\rho := N; \sigma \longrightarrow \circ; \sigma[\rho \mapsto N]}$$

$$(\operatorname{as2}) \frac{M \longrightarrow M'}{M := N; \sigma \longrightarrow M' := N'; \sigma}$$

- on met à jour les autres règles
 - (elles n'accèdent pas et ne modifient pas la mémoire)

Traits Impératifs (II)

- On ajoute un type de base ★ pour les commandes.
- ► On ajoute un constructeur de type spécifique **Ref**.
- ► On ajoute les règles :

$$(\text{Unit}) \frac{\Gamma \vdash M : T}{\Gamma \vdash \circ : \bigstar} \qquad (\text{Ref}) \frac{\Gamma \vdash M : T}{\Gamma \vdash \text{ref } T : \text{Ref } T}$$

$$(\text{Deref}) \frac{\Gamma \vdash M : \text{Ref } T}{\Gamma \vdash !M : T} \qquad (\text{As}) \frac{\Gamma \vdash M : \text{Ref } T \qquad \Gamma \vdash N : T}{\Gamma \vdash M := N : \bigstar}$$

Traits Impératifs (III)

$$(\operatorname{Ref}) = (\operatorname{Abs}) - (\operatorname{App}) - (\operatorname{App})$$

$$(\mathsf{App}) \frac{(\mathsf{Inst}) \frac{(\mathsf{Var})}{\Gamma, y : \bigstar \vdash f : \forall \alpha . \mathsf{Ref} \ (\alpha \to \alpha)}}{\Gamma, y : \bigstar \vdash f : \mathsf{Ref} \ (\bigstar \to \bigstar)} \frac{(\mathsf{Unit})}{\Gamma, y : \bigstar \vdash \vdash \circ : \bigstar} \frac{(\mathsf{Var})}{\Gamma, y : \bigstar \vdash \vdash \circ : \bigstar}$$

- ► **Gen**(**Ref**($\alpha \rightarrow \alpha$)) c'est $\forall \alpha$.**Ref**($\alpha \rightarrow \alpha$)
- ightharpoonup à gauche, (Inst) avec $\left[\bigstar / \alpha \right]$
- ightharpoonup à droite, (Inst) avec [N/ α]

Traits Impératifs (IV)

le typage échoue dans son rôle.

Traits Impératifs (V)

- l'approche naïve ne fonctionne pas.
- ▶ il ne faut pas toujours généraliser les types impératifs lors d'un let
- ► la solution des langages ML est :
 - distinguer les termes expansifs et non-expansifs
 - les termes non-expansifs sont généralisés,
 - les termes expansifs recoivent un polymorphisme faible
 - ▶ par exemple, **Ref** $_\alpha \longrightarrow _\alpha$
 - pendant l'inférence, la première fois qu'ils sont instantiés ils se transforment en leur instantiation : $_{-}\alpha \longrightarrow _{-}\alpha$ devient Nat \longrightarrow Nat et ne peut plus être modifié.
 - en OCaml c'est 'a vs. '_a

Expansivité

- Les termes suivants sont non-expansifs :
 - ▶ les variables et les termes de base (entiers, ○),
 - les abstractions,
 - les applications et les let quand les sous-expressions sont non-expansives.
- ▶ **GenF**(**T**) généralise faiblement le type $T : \overline{\forall} \alpha_1 ... \overline{\forall} \alpha_n .T$
- Deux règles de typage pour let et une instantiation faible:

Il faut empêcher un contexte contenant des types faiblement polymorphe d'être copié :

$$(\mathsf{App}) \frac{\Gamma \vdash M : U \to \mathcal{T} \quad \Gamma \vdash N : U \quad \overline{\forall} \not\in \Gamma}{\Gamma \vdash M \; N : \; \mathcal{T}}$$

$$(\mathsf{LetE}) \frac{\Gamma \vdash N : \mathcal{T} \quad \Gamma, x : \mathsf{GenF}(\mathcal{T}) \vdash M : U \quad N \; \mathsf{expansif} \quad \overline{\forall} \not\in \Gamma}{\Gamma \vdash \mathsf{let} \; x = N \; \mathsf{in} \; M : U} \qquad (\mathsf{LetNE}) \qquad (\mathsf{As}) \qquad .$$

Expansivité : Exemple

$$\mathsf{E} | \underbrace{\frac{(\mathsf{Var}) \frac{(\mathsf{Var}) \frac{\mathsf{Var}} \frac{(\mathsf{Var}) \frac{(\mathsf{Var}) \frac{(\mathsf{Var}) \frac{(\mathsf{Var}) \frac{(\mathsf{Var}) \frac$$

$$(\mathsf{App}) \frac{(\mathsf{Deref}) \frac{\Gamma, y : \bigstar \vdash f : \mathsf{Ref} \ (\bigstar \to \bigstar)}{\Gamma, y : \bigstar \vdash \vdash f : \bigstar \to \bigstar} (\mathsf{Unit}) \frac{\Gamma, y : \bigstar \vdash \circ : \bigstar}{\Gamma, y : \bigstar \vdash \vdash \vdash \circ : \bigstar}$$

- le terme ref $\lambda x.x$ est expansif.
- ▶ on généralise faiblement son type en $\forall \alpha$.**Ref** ($\alpha \rightarrow \alpha$).
 - on ne peut plus utiliser (Inst) comme avant.
- dans le (App), on ne peut pas garder ce type dans le contexte.
 - on doit faire un (InstF) en dessous.
 - on doit choisir une même instantiation pour les deux branches.

Traits Impératifs : Inférence

- les nouvelles constructions correspondent aux nouvelles règles.
- ▶ génération:
 - même principe, mais on doit décider de l'expansivité
 - ▶ on distingue \forall et $\overline{\forall}$.
- unification:
 - quand on instantie un $\overline{\forall}\alpha$ (par renommage de α), on doit le rendre indisponible à une prochaine instantiation dans le reste du processus d'inférence.
 - on peut utiliser des références.
 - on peut sauter l'étape de renommage.

λ avec passage de messages

On peut définir un λ -calcul qui communique par passage de message. a, b, \ldots sont des canaux

$$M ::= x \mid \lambda x.M \mid M M \mid a(x).M \mid \overline{a}\langle M \rangle.M \qquad S ::= S \mid\mid S \mid [M]$$

$$(\mathsf{Ter}) \frac{M \longrightarrow M'}{[M] \longrightarrow [M']} \qquad (\mathsf{Sys1}) \frac{S_1 \longrightarrow S_1'}{S_1 \mid\mid S_2 \longrightarrow S_1' \mid\mid S_2}$$

$$(\mathsf{Sys2}) \frac{S_2 \longrightarrow S_2'}{S_1 \mid\mid S_2 \longrightarrow S_1 \mid\mid S_2'}$$

$$(\mathsf{Comm}) \frac{S_2 \longrightarrow S_2'}{[a(x).M_1] \mid\mid [\overline{a}\langle N \rangle.M_2] \longrightarrow M_1[N/x] \mid\mid [M_2]}$$

- ▶ à rapprocher des algèbres de processus (PPC) et de Go (PC3R).
- on veut rejeter $[\overline{a}(3).\circ] || [a(x).(x \ 0)]$

λ avec passage de messages : Typage

- ▶ types pour les canaux # T (transporte du T),
- ► contextes ≡ pour les canaux,
- **▶** jugements pour les termes $\Gamma \mid \Xi \vdash M : T$
- ▶ jugements pour les systèmes $\Xi \vdash S$

Exceptions

On peut ajouter des mécanismes exceptionnels :

$$M ::= x \mid \lambda x.M \mid M M \mid C M \mid E M$$

► Sémantique :

- ➤ On peut forcer que E N soit en position évaluable (si on suit une stratégie) dans (C2)
- ► Typage :

$$(\mathbf{E}) \frac{\Gamma \vdash_{U} M : U}{\Gamma \vdash_{U} \mathcal{E} M} \qquad (\mathbf{C}) \frac{\Gamma \vdash_{U} M : U}{\Gamma \vdash_{\mathcal{E}} M : U}$$

- jugement paramétré par le type de l'exception.
- la valeur exceptionnelle doit être du même type que le terme dans laquelle elle se trouve.
- à raffiner . . .

Curry-Howard : Logique Intuitionniste

► Formules logiques avec l'implication.

$$\phi ::= A \mid \phi \Rightarrow \phi$$

- Γ : ensemble d'hypothèses (de formules),
- ▶ Jugements $\Gamma \vdash \phi$: " ϕ est prouvable avec les hypothèses Γ "
- ► Séquents Intuitionnistes :

$$(\mathsf{Ax})_{\overline{\Gamma,A\vdash A}} \qquad (\mathsf{MP})^{\frac{\Gamma\vdash A\Rightarrow B}{\Gamma\vdash B}} \qquad (\mathsf{I})^{\frac{\Gamma,A\vdash B}{\Gamma\vdash A\Rightarrow B}}$$

Formules prouvables :

Curry-Howard : Correspondance

- ► Formules de SI \leftrightarrow Types de λ_{ST}
- ▶ Preuves de SI \leftrightarrow Dérivation de typage de λ_{ST}
 - ightharpoonup = Termes de λ_{ST}
 - car le système de types est dirigé par la syntaxe

$$(App) \xrightarrow{(App)} \xrightarrow{\Gamma \vdash x : A \rightarrow (B \rightarrow C)} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{\Gamma \vdash y : z : B} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash x : A \rightarrow B \rightarrow C, y : A \rightarrow B, z : A \vdash \lambda(x z) (y z) : C} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{\Gamma \vdash y : z : B} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{\Gamma \vdash y : z : B} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{(App)} \xrightarrow{(App)} \xrightarrow{\Gamma \vdash y : A \rightarrow B} \xrightarrow{(Var)} \xrightarrow{\Gamma \vdash z : A} \xrightarrow{\Gamma \vdash y : z : B} \xrightarrow{(App)} \xrightarrow{(App)$$

▶ ??? de SI \leftrightarrow Réduction de λ_{ST}

Curry-Howard: Elimination des coupures

- Opération de transformation des preuves.
- ► Utilisation d'un lemme :

$$(\mathbf{App}) \frac{(\mathbf{I}) \frac{\overline{\Gamma, A \vdash B}}{\overline{\Gamma \vdash A \Rightarrow B}} \qquad \frac{\overline{\mathcal{P}}_2}{\overline{\Gamma \vdash A}}}{\overline{\Gamma \vdash B}} \qquad \longrightarrow \qquad \frac{\overline{\mathcal{P}}_1[\overline{\mathcal{P}}_2]}{\overline{\Gamma \vdash B}}$$

avec $\mathcal{P}_1[\mathcal{P}_2]$ la preuve obtenue en prenant \mathcal{P}_1 et en remplaçant tous les $(\mathbf{A}\mathbf{x})_{\overline{\Gamma'}}$ par $\frac{\mathcal{P}_2}{\Gamma' \vdash A}$

- on simplifie une preuve en *inlinant* un lemme à tous les endroits où on en avait besoin.
- l'enchainement de (App) avec (I) à gauche s'appelle une coupure, le processus correspondant à la réduction est l'élimination des coupures.
- éliminer une coupure peut faire grossir la preuve et ajouter des coupures.
 - ightharpoonup en copiant plusieurs fois les coupures dans \mathcal{P}_{\in}
- l'élimination des coupures termine.

Curry-Howard: Logique Classique

Calcul des Séquents classique :

$$(\mathsf{TE}) \frac{}{\vdash A \lor A} \qquad \text{ou} \qquad (\mathsf{Abs}) \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \qquad \text{ou}$$

$$(\mathsf{PL}) \frac{\Gamma \vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}{\Gamma \vdash A}$$

▶ comment introduire $A \lor B$ dans λ_{ST} ?

Curry-Howard: Logique Classique

Calcul des Séquents classique :

$$(\mathsf{TE}) \frac{}{\vdash A \lor A} \qquad \text{ou} \qquad (\mathsf{Abs}) \frac{\mathsf{I} \vdash \neg \neg A}{\mathsf{\Gamma} \vdash A} \qquad \mathsf{ou}$$
$$(\mathsf{PL}) \frac{\mathsf{\Gamma} \vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A}{\mathsf{\Gamma} \vdash A}$$

ightharpoonup comment introduire $A \lor B$ dans λ_{ST} ?

$$(SumG) \frac{\Gamma \vdash M : T}{\Gamma \vdash g : M : T \lor U} \qquad (SumG) \frac{\Gamma \vdash M : U}{\Gamma \vdash d : M : T \lor U}$$

$$(Sw) \frac{\Gamma \vdash M : T \lor U}{\Gamma \vdash sw \ d : M : N_1 + N_2 : S}$$

soit

$$(\operatorname{LI}) \frac{\Gamma \vdash T}{\Gamma \vdash T \lor U} \qquad (\operatorname{RI}) \frac{\Gamma \vdash U}{\Gamma \vdash T \lor U} \qquad (\operatorname{E}) \frac{\Gamma \vdash T \lor U \qquad \Gamma, T \vdash S \qquad \Gamma, U \vdash S}{\Gamma \vdash S}$$

Curry-Howard: Logique Classique (II)

- ightharpoonup il faut complexifier λ pour obtenir des calculs en relation avec SK
- le $\lambda\mu$ -calcul permet de définir des termes nommés:

$$M ::= x \mid \lambda x.M \mid M M \mid \mu \alpha.E$$
 $E ::= [\alpha] M$

la réduction structurelle permet, dans un terme liant le nom α , de distribuer un argument N à tous les sous-termes nommés par α .

$$\overline{(\mu\alpha.M)\ N\longrightarrow \mu\alpha.M[[\alpha](N\ M')/[\alpha]M']}$$

- le système de types standard de $\lambda\mu$ correspond à la déduction naturelle classique.
- ightharpoonup $\overline{\lambda}\mu ilde{\mu}$ correspond aux séquents classiques

$$C ::= [V|E] \qquad V ::= x \mid \lambda x. V \mid e \ v \mid \mu \alpha. c \qquad E ::= \alpha \mid \alpha \lambda. e \mid v \ e \mid \overline{\mu} x. c$$

avec la réduction

$$\overline{[\lambda x. V | V' E]} \longrightarrow \overline{[V' | \overline{\mu} x. [V | E]]} \qquad \overline{[E' V | \alpha \lambda. E]} \longrightarrow \overline{[\mu \alpha. [V | E] | E'}$$

$$\overline{\mu \alpha. [V | \alpha]} \longrightarrow V \qquad \overline{[\mu \alpha. C | E]} \longrightarrow C[E/\alpha] \qquad \overline{[V | \overline{\mu}. C]} \longrightarrow C[V/x]$$

$$\overline{\mu x. [x | E]} \longrightarrow E$$

termes, contextes, et commandes manipulent le flot de contrôle.

Cube de Barendregt

- trois directions pour enrichir λ_{ST}
- ▶ termes dépendants de types : Polymorphisme
 - Système F présenté avec instantiation explicite et réduction typée

$$M ::= x \mid \lambda x.M \mid M M \mid \Lambda T.M \mid T \qquad T ::= \alpha \mid T \to T \mid \forall \alpha.T$$

$$\frac{\Gamma \vdash \Lambda X.M : \forall \alpha.T}{\Gamma \vdash \Lambda X.M \ U \longrightarrow \Gamma \vdash M : T[U/X]}$$

- on peut définir δ comme $\Lambda Y.\lambda x.(x Y \rightarrow Y) (x Y)$
- ightharpoonup et I comme $\Lambda X.\lambda x.x$
- et typer δ ($\forall \alpha.(\alpha \rightarrow \alpha)$) I.
- types dépendant de termes (appelés "types dépendants")
 - ▶ formellement $T ::= \alpha \mid T \rightarrow T \mid \pi x.T$
 - permet de définir, par exemple, 4 vect, les vecteurs de taille inférieure à 4.
- types dépendant de types (constructeurs de types)
 - ▶ formellement $T ::= \alpha \mid T \to T \mid \Pi X.T$
 - permet de définir Liste A, les listes d'éléments de types A,
 - hierarchie de sortes (comme en PAF)

Curry-Howard: Correspondances

- ► Le Calcul des Constructions ferme le cube de Barendregt
- ▶ Quelques correspondances de Curry-Howard connues :
 - ▶ SI $\leftrightarrow \lambda_{ST}$
 - ightharpoonup SK $\leftrightarrow \overline{\lambda}\mu\tilde{\mu}$
 - ▶ Arithmétique de Peano ↔ Système F
 - ► Logique de Hilbert ↔ Logique Combinatoire
 - ► LI d'ordre supérieur ↔ Calcul des Constructions.
 - $ightharpoonup \lambda$ linéaires \leftrightarrow Logiques Linéaires.

Conclusion

- ► TDs 03-06 Travail en autonomie
 - réalisation d'un évaluateur-typeur,
 - synthèse d'article.
- ► Cours 5 : Typage en Objet.

