Chapter 1: Vector Spaces

Juan Patricio Carrizales Torres

Aug 17, 2022

Problem 1.1. Let \mathcal{V} be a vector space over \mathbb{F} . Show that if $\alpha, \beta \in \mathbb{F}$ and if \mathbf{v} is a nonzero vector in \mathcal{V} , then $\alpha \mathbf{v} = \beta \mathbf{v} \implies \alpha = \beta$. [HINT: $\alpha - \beta \neq 0 \implies \mathbf{v} = (\alpha - \beta)^{-1} (\alpha - \beta) \mathbf{v}$.]

Proof. Suppose, to the contrary, that there are distinct $\alpha, \beta \in \mathbb{F}$ such that for some nonzero $\mathbf{v} \in \mathcal{V}$ we have $\alpha \mathbf{v} = \beta \mathbf{v}$. Then, $\alpha - \beta \neq 0$ and so $\mathbf{v} = (\alpha - \beta)^{-1}(\alpha - \beta)\mathbf{v}$. Hence,

$$\mathbf{v} = (\alpha - \beta)^{-1} \alpha \mathbf{v} - (\alpha - \beta)^{-1} \beta \mathbf{v} = (\alpha - \beta)^{-1} (\alpha \mathbf{v} - \beta \mathbf{v}).$$

Since $\alpha \mathbf{v} = \beta \mathbf{v}$, it follows that $\alpha \mathbf{v} - \beta \mathbf{v} = \beta \mathbf{v} - \beta \mathbf{v} = \mathbf{0}$. This implies that $\mathbf{v} = (\alpha - \beta)^{-1} \mathbf{0} = \mathbf{0}$. This is a contradiction to our assumption that \mathbf{v} was nonzero.

Another way to prove this directly is by using the fact, for some $\alpha \in \mathbb{F}$ and nonzero vector \mathbf{v} , that $\alpha \mathbf{v} = \mathbf{0} \implies \alpha = 0$. A proof reads as follows:

Let $\alpha, \beta \in \mathbb{F}$ and $\mathbf{v} \in \mathcal{V}$ be some nonzero vector such that $\alpha \mathbf{v} = \beta \mathbf{v}$. Then, $\alpha \mathbf{v} - \beta \mathbf{v} = \beta \mathbf{v} - \beta \mathbf{v} = \mathbf{0}$ and so $(\alpha - \beta)\mathbf{v} = \mathbf{0}$. Since \mathbf{v} is nonzero, it follows that $\alpha - \beta = 0$ and so $\alpha = \beta$.

Problem 1.2. Show that the space \mathbb{R}^3 endowed with the rule

$$\mathbf{x} \square \mathbf{y} = \begin{bmatrix} \max(x_1, y_1) \\ \max(x_2, y_2) \\ \max(x_3, y_3) \end{bmatrix}$$

for vector addition and the usual rule for scalar multiplication is not a vector space over \mathbb{R} .

Proof. We show that this space has no unique additive identity. Consider some $\mathbf{x} = (x_1, x_2, x_3)$. Then, both $\mathbf{y} = (x_1 - 1, x_2 - 1, x_3 - 1)$ and $\mathbf{z} = (x_1 - 2, x_2 - 2, x_3 - 2)$ are in \mathbb{R}^3 and they are distinct. Note that $\mathbf{x} \square \mathbf{y} = \mathbf{x}$ and $\mathbf{x} \square \mathbf{z} = \mathbf{x}$.

In fact, one can easily show that there is no vector that is an additive inverse of every vector (the zero vector $\mathbf{0}$) since one can easily construct a vector with elements lower than the ones from any other vector.

Problem 1.3. Let $\mathcal{C} \subset \mathbb{R}^3$ denote the set of vectors $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ such that th polynomial

 $a_1 + a_2t + a_3t^2 \ge 0$ for every $t \in \mathbb{R}$. Show that it is closed under vector addition (i.e., $\mathbf{a}, \mathbf{b} \in \mathcal{C} \implies \mathbf{a} + \mathbf{b} \in \mathcal{C}$), but that \mathcal{C} is not a vector space over \mathbb{R} . [REMARK: A set \mathcal{C} with the indicated two properties is called a **cone**.]

Proof. We first show that C is closed under addition. Consider any $\mathbf{a}, \mathbf{b} \in C$. Then, for every $t \in \mathbb{R}$ we have $a_1 + a_2t + a_3t^2 \ge 0$ and $b_1 + b_2t + b_3t^2 \ge 0$. Then,

$$a_1 + a_2t + a_3t^2 + b_1 + b_2t + b_3t^2 = (a_1 + b_1) + (a_2 + b_2)t + (a_3 + b_3)t^2 \ge 0$$

for every $t \in \mathbb{R}$. Thus, $\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{bmatrix} \in \mathcal{C}$. However, it is not close under scalar

multiplication. Consider some nonzero $\mathbf{v} \in \mathcal{C}$ and let $\alpha = -1$. Since $v_1 + v_2t + v_3t^2 \geq 0$ for every $t \in \mathbb{R}$, it follows that $(-v_1) + (-v_2)t + (-v_3)t^2 < 0$ for every positive t. Hence, $(-1)\mathbf{v} \notin \mathcal{C}$ and so it is not a vector space over \mathbb{R} .

Problem 1.5. Let \mathcal{F} denote the set of continuous real-valued functions f(x) on the interval $0 \le x \le 1$. Show that \mathcal{F} is a vector space over \mathbb{R} with respect to the natural rules of vector addition $((f_1 + f_2)(x) = f_1(x) + f_2(x))$ and scalar multiplication $((\alpha f)(x) = \alpha f(x))$.

Proof. (a) Closed under vector addition

Consider two functions $f, g \in \mathcal{F}$. Let $x \in [0, 1]$. Then, $f(x), g(x) \in \mathbb{R}$ and so $(f + g)(x) = f(x) + g(x) \in \mathbb{R}$ since \mathbb{R} is closed under addition. Therefore, f + g is a real-valued function on the interval [0, 1] and so $(f + g) \in \mathcal{F}$.

(b) Closed under scalar multiplication

Consider some function $f \in \mathcal{F}$ and real number α . Let $x \in [0,1]$. Then, $f(x) \in \mathbb{R}$ and so $(\alpha f)(x) = \alpha f(x) \in \mathbb{R}$ since \mathbb{R} is closed under multiplication. Thus, αf is a real-valued function on the interval [0,1] and so $\alpha f \in \mathcal{F}$.

(c) Vector addition is commutative

Let $f, g \in \mathcal{F}$ and $x \in [0, 1]$. Then, (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x) since addition in the set of real numbers is commutative.

(d) Vector addition is associative

Let $f, g, h \in \mathcal{F}$ and $x \in [0, 1]$. Then, ((f + g) + h)(x) = (f + g)(x) + h(x) = f(x) + g(x) + h(x) = f(x) + (g + h)(x) = (f + (g + h))(x) since addition in \mathbb{R} is associative (the order of addition does not matter).

(e) Existence of additive identity

Let $f:[0,1] \to \mathbb{R}$ be defined by f(x)=0 for all $x \in [0,1]$. Then, f is a continous real-valued function and so $f \in \mathcal{F}$. Consider any $g \in \mathcal{F}$ and let $a \in [0,1]$. Then, (f+g)(a)=f(a)+g(a)=0+g(a)=g(a) since 0 is the additive identity of real numbers. Thus, f is an additive identitive in \mathcal{F} .

(f) Existence of additive inverse

Consider some $f \in \mathcal{F}$. Let $g : [0,1] \to \mathbb{R}$ be defined by g(x) = -f(x) for all $x \in [0,1]$. Consider some $x \in [0,1]$ and so (f+g)(x) = f(x) + g(x) = f(x) - f(x) = 0. Hence, g is the additive inverse of f.

- (g) $f \in \mathcal{F} \implies (1)f = f$ Let $f \in \mathcal{F}$. Consider any $x \in [0,1]$ and so f(x) = (1)f(x). Thus, f = (1)f.
- (h) For any $\alpha, \beta \in \mathbb{R}$ and vector $f \in \mathcal{F}$, $\alpha(\beta f) = (\alpha \beta)f$ Let $f \in \mathcal{F}$ and $\alpha, \beta \in \mathbb{R}$. Consider any $x \in [0,1]$ and so $\alpha(\beta f)(x) = \alpha(\beta f(x)) = (\alpha \beta)f(x)$ since multiplication in \mathbb{R} is associative. Thus, $\alpha(\beta f) = (\alpha \beta)f$
- (i) For any $\alpha, \beta \in \mathbb{R}$ and vector $f \in \mathcal{F}$, $(\alpha + \beta)f = \alpha f + \beta f$ Let $f \in \mathcal{F}$ and $\alpha, \beta \in \mathbb{R}$. Consider any $x \in [0, 1]$ and so $(\alpha + \beta)f(x) = \alpha f(x) + \beta f(x) = (\alpha f + \beta f)(x)$ since multiplication over addition is distributive for real numbers.

Lemma 1. Let S be a nonempty subset of a vector space M over \mathbb{F} . Then, S is a vector space if and only if for every pair of vectors $\mathbf{v}, \mathbf{a} \in S$ and $\alpha, \beta \in \mathbb{F}$, $\alpha \mathbf{v} + \beta \mathbf{a} \in S$.

Proof. Assume that S is a vector space and so it is closed under addition and scalar multiplication. Let $\mathbf{v}, \mathbf{a} \in S$ and $\alpha, \beta \in \mathbb{F}$, then $\alpha \mathbf{v}, \beta \mathbf{a} \in S$ and so $\alpha \mathbf{v} + \beta \mathbf{a} \in S$. Suppose, for every pair of vectors $\mathbf{v}, \mathbf{a} \in S$ and $\alpha, \beta \in \mathbb{F}$, that $\alpha \mathbf{v} + \beta \mathbf{a} \in S$. Let $\alpha = 0$ and $\beta \in \mathbb{F}$. Consider any vectors $\mathbf{v}, \mathbf{a} \in S$. Then, $\alpha \mathbf{v} = 0$ is the additive identity of M and so $\beta \mathbf{a} = \alpha \mathbf{v} + \beta \mathbf{a} \in S$. Thus, S is closed under scalar multiplication. Consider some vectors $\mathbf{v}, \mathbf{a} \in S$ and let $\alpha = \beta = 1$. Then, $\mathbf{v} + \mathbf{a} = (1)\mathbf{v} + (1)\mathbf{a} = \alpha \mathbf{v} + \beta \mathbf{a} \in S$ since $\mathbf{v}, \mathbf{a} \in M$. Therefore, S is closed under addition and so it is a vector space.

Problem 1.6. Let F_0 denote the set of continuous real-valued functions f(x) on the interval $0 \le x \le 1$ that met the auxiliary constraints f(0) = 0 and f(1) = 0. Show that F_0 is a vector space over \mathbb{R} with respect to the natural rules of vector addition and scalar multiplication that were introduced in **Excercise 1.5** and that F_0 is a subspace of the vector space \mathcal{F} that was considered there.

Proof. By definition, $F_0 \subseteq \mathcal{F}$. Let's prove that it is closd under addition and scalar multiplication. Consider some $f, g \in F_0$ and $\alpha, \beta \in \mathbb{R}$. Then, $\alpha f + \beta g$ is a real-valued function since $f, g \in \mathcal{F}$. Particularly, $(\alpha f + \beta g)(0) = \alpha f(0) + \beta g(0) = 0 + 0 = \alpha f(1) + \beta g(1) = (\alpha f + \beta g)(1)$ and so, by condition, it is a vector in F_0 . Therefore, F_0 is a subspace of \mathcal{F} .

Problem 1.7. Let F_1 denote the set of continuous real-valued functions f(x) on the interval $0 \le x \le 1$ that meet the auxiliary constraints f(0) = 0 and f(1) = 1. Show that F_1 is not a vector space over \mathbb{R} with respect to the natural rules of vector addition and scalar multiplication that were introduced in **Exercise 1.5**.

Proof. We know that $F_1 \subseteq \mathcal{F}$. Consider some $f \in F_1$. Then, (2)f is a continuous real-valued function since $f \in \mathcal{F}$. However, note that $(2f)(1) = (2)f(1) = 2 \neq 1$ and so $(2)f \notin F_1$. Hence, F_1 is not closed under scalar multiplication and so F_1 is not a subspace of \mathcal{F} . \square