7 הרצאה

מסלולים קלים ביותר - אלגוריתם גנרי

הקדמה

 $P_{st}=(s=v_0,\ldots,v_k=t)$ - נתון לנו גרף (מכוון או לא) הפן פונקציית משקל על הקשתות משקל על הקשתות S=(V,E) את משקל המסלול הקל ביותר בין שני צמתים s וב- $\delta(s,t)$ את משקל המסלול הקל ביותר בין שני צמתים s וב-t-ום מסלול מצומת t-ום מסלול מצומת t-ום מסלול מצומת משקל המסלול הקל ביותר בין שני צמתים t-ום מסלול מצומת משקל המסלול הקל ביותר בין שני צמתים t-ום מסלול מצומת משקל המסלול הקל ביותר בין שני צמתים ביותר בין שני צמתים משקל המסלול הקל ביותר בין שני צמתים משקל המסלול הקל ביותר בי

$$\delta(s,t) = \inf_{P_{st}} w(P_{st})$$

 $\delta(1,7)$ בגרף הבא ? למה שווה $\delta(1,3)$?

:הערות

- לאלגוריתמים למציאת מסלול קל ביותר שימושים רבים, אולי המידי שבהם הוא חישוב מסלול קצר ביותר בין שתי נקודות במפה.
- יתכנו משקלים שלילים על הקשתות, למשל אם אנחנו מעוניינים לתכנן מסלול לרכב חשמלי והמטרה שלנו היא לחסוך בסוללה.
 - $\delta(s,t)=\infty$ נגדיר s נגדיר לא ישיג לא לא נגדיר כאשר צומת ל
- הותת כאשר יש מעגל שלילי ישיג מצומת s, נגדיר $\delta(s,v)=-\infty$ לכל $\delta(s,v)=-\infty$ לכל במקרה כזה רק נרצה לזהות שיהו אכן המצב).

תכונות

טענה 1. אם אין בגרף מעגלים שלילים אז קיים מסלול פשוט קל ביותר

הוכחה. נסתכל על המסלול הקל ביותר עם הכי מעט מעגלים, נוריד מעגל אחד.

טענה 2. אם (v_i,\dots,v_j) -ש מסלול קל ביותר מ v_k -ט ל- v_k אז לכל v_k -ט מסלול קל ביותר $p=(v_0,\dots,v_k)$ מסלול קל ביותר בין v_i -ט מסלול קל ביותר מ v_i -ט מינים מיני

הוכחה. אם לא, נחליף את המסלול הקל ביותר בתת מסלול הקיים ונקבל מסלול קל יותר.

מקור בודד

sעלכל $\delta(s,v)$ בהינתן גרף $\delta(s,v)$ לכל את מקור sעומת מקור א, נרצה לחשב את הערך

 $\delta(s,v) \leq \delta(s,u) + w(uv)$ אי מתקיים ש $uv \in E$ מתקיים לב שלכל קשת אי שוויון המשולש: נשים לב שלכל קשת ש $uv \in E$ מוגדר להיות ניסיון שיפור: בהינתן גרף G = (V,E) ופונקציית חסם עליון $d(v) \neq uv \neq uv$ ניסיון שיפור של שיפור לפי קשת ע $uv \neq uv$ מוגדר להיות $d(v) \neq uv \neq uv$

טענה 3. אם b היא פונקציית חסם עליון לפני ניסיון שיפור אז d היא פונקציית חסם עליון אחרי ניסיון השיפור.

הוכחה. אם אחרי ניסיון השיפור מתקיים ש- $d(v) < \delta(v)$ אז מתקיים ש:

$$d(v) < \delta(s, v) \le \delta(s, u) + w(uv) \le d(u) + w(uv) = d(v)$$

d(v)>d(u)+w(uv) הגדרה 2. (קשת משפרת) קשת uv קשת קשת משפרת) הגדרה

אלגוריתם גנרי לחישוב ערך המסלול הקל ביותר ממקור בודד

- $d(s) \leftarrow 0$ הצב , $d(v) \leftarrow \infty$ הצב $v \in V$ הצב. 1.
 - uv כל עוד קיימת קשת משפרת .2

$$uv$$
 לפי $d(v)$ אפר את

 $d(v) < \infty$ אז s-טענה 4. אם האלגוריתם עוצר וצומת v ישיג פ

ם הוכחה. נניח בשלילה שלא ונסתכל על הקשת הראשונה uv במסלול מ-s ל-v כך ש- ∞ ו-v סתירה. סענה 5. אס קיים בגרף פעגל שלילי ישיג פ-s אז האלגוריתם לא עוצר.

: נשים לב ש v_1,\ldots,v_k,v_1 נשים לב ש: w(uv)>d(v)-d(u) נשים לב שפרת אינה משפרת אינה משפרת אמ"מ

$$0 = d(v_1) - d(v_k) + \sum_{i=1}^{k-1} d(v_{i+1}) - d(v_i) \le w(v_1 v_k) + \sum_{i=1}^{k-1} w(v_{i+1} v_i) < 0$$

 $v \in V$ לכל לכל $d(v) = \delta(v)$ אז עוצר אז אם האלגוריתם אוצר סענה 6.

הוכחה. נשים לב ש-d היא פונקציית חסם עליון והפעולה היחידה שהאלגוריתם מבצע היא ניסיון שיפור ולכן בסיום האלגוריתם הוכחה. $v\in V$ לכל $d(v)\geq \delta(v)$ לכל עליון, כלומר $d(v)\geq \delta(v)$ לכל $d(v)\leq \delta(v)$ נראה שמתקיים שהטענה מתקיים שהטענה מתקיימת עבורם ב- $d(v)\leq \delta(v)$ נסמן את קבוצת הצמתים שהטענה מתקיימת עבורם ב- $d(v)\leq \delta(v)$