CLAIMS

Therefore, at least the following is claimed:

1	1.	A method of managing deployed trunk circuit capacity, the method comprising
2		the steps of:
3		monitoring trunk circuits to collect traffic usage data;
4		analyzing the traffic usage data by computing time-moving averages;
5		and
6		forecasting trunk circuit capacity requirements based at least in part on
7		the time-moving averages.
1 .	2.	The method of claim 1, wherein the time-moving averages are based on a
2		cluster that is a community of interest with a locality of communication access
3		pattern.
1	3.	The method of claim 2, wherein the cluster comprises at least one switch and
2		trunk circuits to at least two other switches.
1	4.	The method of claim 1, wherein the traffic usage data comprises a metric that
2		is based upon multiples of a base unit of bandwidth.
1	5.	The method of claim 1, wherein the traffic usage data comprises a metric that
2		is based upon a count of a plurality of connections multiplied by a duration of
3		each of the connections.
1	6.	The method of claim 1, wherein the-time moving averages are computed at
2		least weekly.
1	7.	The method of claim 1, wherein the forecasting step computes a plurality of
2		forecasts using a plurality of models.
1	8.	The method of claim 1, wherein the forecasting step allows manual override of
2		at least one model parameter.

1	9.	The method of claim 8, wherein the forecasting step uses a graphical user
2		interface (GUI) for entering the manual override of the at least one model
3		parameter.
1	10.	The method of claim 1, wherein the forecasting step displays forecast output
2		through a graphical user interface (GUI).
1	11.	A system that facilitates managing deployed trunk circuit capacity, the system
2	•	comprising:
3	•	logic configured to monitor trunk circuits to collect traffic usage data;
4		logic configured to analyze the traffic usage data by computing time-
5		moving averages; and
6		logic configured to forecast trunk circuit capacity requirements based
7		at least in part on the time-moving averages.
1	12.	The system of claim 11, wherein the time-moving averages are based on a
2		cluster that is a community of interest with a locality of communication access
3		pattern.
1	13.	The system of claim 12, wherein the cluster comprises at least one switch and
2		trunk circuits to at least two other switches.
1	14.	The system of claim 11, wherein the traffic usage data comprises a metric that
2		is based upon multiples of a base unit of bandwidth.
1	15.	The system of claim 11, wherein the traffic usage data comprises a metric that
2		is based upon a count of a plurality of connections multiplied by a duration of
3		each of the connections.
1	16.	The system of claim 11, wherein the-time moving averages are computed at
2		least weekly.

1	1 /.	The system of claim 11, wherein the logic configured to forecast computes a
2		plurality of forecasts using a plurality of models.
1	18.	The system of claim 11, wherein the logic configured to forecast allows
2		manual override of at least one model parameter.
1	19.	The system of claim 18, wherein the logic configured to forecast uses a
2		graphical user interface (GUI) for entering the manual override of the at least
3		one model parameter.
1	20.	The system of claim 11, wherein the logic configured to forecast displays
2		forecast output through a graphical user interface (GUI).