

Nonlinear Macroeconomic Effects in CRE Vacancy Forecast Models

Michael Taylor | ARES April 2019

Introduction

– Can we better incorporate business cycles into vacancy forecast models?

- Overview of CoStar's metro forecast models
- Potential nonlinear transformations of macroeconomic variables
- Results of vacancy forecast models with additional variables

CoStar Metro Forecast Model

Regression Equations

Stock

$$CS_t = f(\Delta R_{t-1}, V_{t-1}) \tag{1}$$

where CS_t is construction starts, ΔR_{t-1} is lagged first difference of log rent, V_{t-1} is lagged vacancy.

Vacancy

$$V_t = f(\Delta E_t) \tag{5}$$

$$\Delta V_t = f(\Delta^2 E_{t-1}, \Delta S_{t-1}, \hat{v}_{t-1})$$
 (6)

where V_t is log vacancy, ΔE_t is first difference of log employment, ΔV_t is first difference of log vacancy, $\Delta^2 E_{t-1}$ is lagged second difference of log employment, ΔS_{t-1} is lagged first difference of log stock, and \hat{v}_{t-1} is the lagged predicted residual from Equation 5.

Rent

$$R_t = f(O_{t-1}, E_t) (10)$$

$$\Delta R_t = f(\Delta O_{t-1}, \Delta E_{t-1}, \hat{r}_{t-1})$$
 (11)

where R_t is log rent, O_{t-1} is lagged log occupancy, E_t is log employment, ΔR_t is first difference of log rent, ΔO_{t-1} is lagged first difference of log occupancy, ΔE_{t-1} is lagged first difference of log employment, and \hat{r}_{t-1} is the lagged predicted residual from Equation 10.

Cap Rate

$$\Delta Y_t = f(\Delta I_{t-1}, \Delta U_t, \Delta^2 R_{t-1}) \tag{16}$$

where ΔY_t is first difference of log cap rate, ΔI_{t-1} is lagged first difference of log Baa corporate bond yield, ΔU_t is first difference of unemployment rate, and $\Delta^2 R_{t-1}$ is lagged second difference of log rent.

Linear Transformations

Table 1: Typical Independent Variable Transformations

Equation	Description
X_t	No transformation
$X_t - X_{t-k}$	First difference
$X_t/X_{t-k}-1$	Percentage change or growth rate
$ln(X_t)$	Natural logarithm
$ln(X_t) - ln(X_{t-k})$	First difference of natural logarithm

Additional Nonlinear Transformations

Table 2: Nonlinear Independent Variable Transformations

Equation	Description
X_t^2	Squared
X_t^3	Cubed
$P(R_t)$	Probability of recession
$P(R_{t,i})$	Probability of recession by metro
R_t	Recession dummy

Probability of Recession Binary Logistic Regression

$$P(R_t) = \Lambda (X\beta + \varepsilon) \text{ where } \Lambda(x) = \frac{e^x}{1 + e^x}$$
 (1)

Where $P(R_t)$ is the probability of R_t , X is the independent variable matrix including first difference log national employment, β is the vector of coefficient estimates, ε is the error term, and $\Lambda(x)$ is logistic cumulative distribution function.

Recession Model Estimation Results

Table 3: Estimation Results for Recession Model

	Coefficient
Constant	-2.5014 (-3.24)
Employment	-871.0072 (-3.91)
N	137
${ m N}$ Pseudo ${ m R}^2$	$137 \\ 0.7555$
- 1	
Pseudo R ²	0.7555

The t statistics are shown in parenthesis.

Recession Model Fitted Values

Baseline Vacancy Forecast Model

$$\Delta V_t = \beta_0 + \beta_1 \Delta E_{t-1} + \beta_2 \Delta S_{t-1} + \varepsilon \tag{2}$$

Where V_t is first difference log vacancy, ΔE_{t-1} is lagged second difference log employment, ΔS_{t-1} is lagged first difference log stock, and ε is the error term. Equation 2 is estimated using ordinary least squares, and $\beta_0 \dots \beta_n$ represent the coefficient estimates.

Additional Independent Variables

Table 4: Additional Independent Variables

Equation	Description
$(\Delta E_{t-1})^2$	Squared Employment Growth
$(\Delta E_{t-1})^3$	Cubed Employment Growth
R_t	Recession dummy
$P(R_t)$	Probability of recession
$P(R_{t,i})$	Probability of recession by metro

Vacancy Forecast Model Estimation Results

Table 5: Estimation Results for Vacancy Models

	Baseline	$(\Delta E_{t-1})^2$	$(\Delta E_{t-1})^3$	$P(R_t)$	$P(R_{t,i})$	R_t
Constant	-0.0114	-0.0146	-0.0111	-0.0157	-0.0164	-0.0136
Constant	(-14.18)	(-17.29)	(-13.85)	(-18.88)	(-19.70)	(-17.02)
ΛE	-1.2024	-1.1689	-1.4600	-0.6590	-0.6208	-0.8823
ΔE_{t-1}	(-24.23)	(-23.66)	(-19.90)	(-11.29)	(-10.73)	(-17.00)
ΛC	0.8435	0.8378	0.8251	0.7918	0.7797	0.7190
ΔS_{t-1}	(15.98)	(15.98)	(15.61)	(15.19)	(14.99)	(13.72)
Additional		27.5448	474.1052	0.0344	0.0343	0.0294
Variable		(11.76)	(4.76)	(17.08)	(18.71)	(18.32)
N	10,579	10,579	10,579	10,579	10,579	10,579
\mathbb{R}^2	0.1071	0.1178	0.1096	0.1319	0.1387	0.1367
MAE	0.03493	0.03442	0.03491	0.03420	0.03415	0.03428
RMSE	0.05055	0.05022	0.05050	0.04986	0.04972	0.04976
VIF	1.12	1.08	1.96	1.43	1.41	1.20

The t statistics are shown in parentheses. The highest \mathbf{R}^2 and lowest MAE and RMSE values are highlighted in bold.

Chicago Industrial In-Sample Fitted Values

New York Office In-Sample Fitted Values

Out-of-Sample Results (2008Q1-2012Q4)

Table 6: Out-of-Sample Results (2008Q1-2012Q4)

	Baseline	$(\Delta E_{t-1})^2$	$(\Delta E_{t-1})^3$	$P(R_t)$	$P(R_{t,i})$	R_t
N	3,691	3,691	3,691	3,691	3,691	3,691
MAE	0.03422	0.03489	0.03494	0.03605	0.03347	0.03495
RMSE	0.04589	0.04674	0.04545	0.04771	0.04479	0.04641

The lowest MAE and RMSE values are highlighted in bold.

Out-of-Sample Results (2013Q1-2017Q4)

Table 7: Out-of-Sample Results (2013Q1-2017Q4)

	Baseline	$(\Delta E_{t-1})^2$	$(\Delta E_{t-1})^3$	$P(R_t)$	$P(R_{t,i})$	R_t
N	7,051	7,051	7,051	7,051	7,051	7,051
MAE	0.03948	0.03859	0.03947	0.03795	0.03757	0.03829
RMSE	0.05412	0.05332	0.05412	0.05274	0.05249	0.05302

The lowest MAE and RMSE values are highlighted in bold.

New York Office Base Case Forecast

New York Office Recession Forecast

Conclusion

- Examined a baseline vacancy forecast model and compared it to five other models with additional variables
- Looked at in-sample and out-of-sample results
- The addition of nonlinearly transformed variables improved the fit of the baseline vacancy model
 - In particular, the addition of the fitted values from a recession model using metro employment as its independent variable
 - Even though employment was already a factor
- Underscores that the real world is complex and nonlinear
- Demonstrates a practical method to factor business cycles into vacancy forecast models

Future Research

- Add nonlinear macroeconomic effects to other CRE forecast models
- Additional nonlinear transformations of the employment variable, or of other variables
- Separate property type or metro models

Questions or Comments?

© Copyright 2018 CoStar Group, Inc. All Rights Reserved. Although CoStar makes efforts to ensure the accuracy and reliability of the information contained herein, the following information includes projections that are based on various assumptions by CoStar concerning future events and circumstances, as well as historical and current data maintained in CoStar's database. Actual results may vary from the projections presented. The information in this presentation is provided 'as is' and CoStar expressly disclaims any guarantees, representations or warranties of any kind, including those of merchantability and fitness for a particular purpose. Features shown in this presentation may require additional subscriptions.