S 3

AP2: Deuxième Année Cycle Préparatoire

Analyse 3: Espace Vectoriels Normés

Série n° 2

Espace Vectoriels Normés -

Exercice 1

Dites si les propositions suivantes sont vraies ou fausses avec la justificatin:

- 1. Si (E,N) est un espace vectoriel normé, $x \in E, r > 0$, et B(x,r) est la boule de centre x et de rayon r > 0, alors pour tout $\lambda > 0$, $\lambda B(x, r) = B(x, \lambda r)$.
 - $2 \cdot N : (x,y) \longmapsto |5x+3y|$ est une norme sur \mathbb{R}^2 .
 - 3. Soit $E = \mathbb{R}_1[x]$, Alors $N: P \longmapsto |P(0)| + |P(1)|$ est une norme sur E.
- 4. Si N_1 et N_2 sont deux normes équivalentes sur E, et si on note $B_1 = \{x \in E, N_1 \leq 1\}$ et $B_1 = \{x \in$ $E, N_2 \leq 1$, alors il existe a, b > 0 tels que $aB_1 \subset B_2 \subset bB_1$.
- 5. Soit (U_n) une suite de l'espace vectoriel normé $(E, \|.\|)$ et soit $\ell \in E$. Alors (U_n) converge vers ℓ si et seulement si $(\|U_n - \ell)$ tend vers 0.

Exercice 2

Soit $(E, \|.\|)$ une espace vectoriel normé.

1°) Démontrer que, pour tous $x, y \in E$, On a.

$$||x|| + ||y|| \le ||x + y|| + ||x - y||$$

En déduire que

$$||x|| + ||y|| \le 2 \max(||x + y||, ||x - y||)$$

2°) On suppose désormais que la norme est issue d'un produit Scalaire, Démontrer que, pour tous $x, y \in E$, On a

$$(\|x\| + \|y\|)^2 \le (\|x + y\| + \|x - y\|)^2$$

En déduire que

$$(\|x\| + \|y\|)^2 \le \sqrt{2} \max(\|x + y\|, \|x - y\|)$$

Exercice 3

Dans $E = \mathbb{R}^n$ Montrer que $\|.\|_1$, $\|.\|_2$ et $\|.\|_{\infty}$ des normes deux à deux équivalentes.

Exercice 4 (Proposition dans le cours).

L'espace vectoriel $\mathbb R$ muni de la norme euclidienne est un espace vectoriel normé complet.

Exercice 5

Soit E l'espace vectoriel des fonctions continues sur [0,1] dans valeurs \mathbb{R} , on définit $f \in E$.

$$||f||_{\infty} = \sup\{|f(x)|, x \in [0, 1]\}$$
 et $||f||_{1} = \int_{0}^{1} |f(x)| dx$

- 1°) Vérifier que $||f||_{\infty}$, et $||f||_{1}$ sont deux normes sur E.
- 2°) Montere que pour tout $f \in E$, $||f||_1 \le ||f||_{\infty}$

En utilisant la suite de fonctions $f_n(x) = x^n$, pouver que ces deux normes ne sont pas équivalentes.