El problema de la semana

(Para entregar antes de las 23:59 del día 21-09-2020)

INSTRUCCIONES: Entrega el problema 1 si tu NIA es un número impar. Entrega el problema 2 si tu NIA es un número par. Indica al comienzo de la solución del problema el número del problema y tu NIA.

1. Sea $\mathcal{C} = \{e_1, e_2, e_3\}$ la base canónica de \mathbb{R}^3 . Sea $\varphi : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ la forma bilineal cuya matriz asociada respecto a \mathcal{C} es:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

- a) Demuestra que φ es un producto escalar.
- b) Sea $\mathcal{B} = \{u_1 = e_1 e_2, u_2 = -e_3, u_3 = e_1 + e_2 + e_3\}$ otra base de \mathbb{R}^3 . Halla los ángulos que forman entre sí los vectores de la base \mathcal{B} respecto de este producto escalar.
- c) Usa el procedimiento de Gram-Schmidt para hallar una base ortogonal de \mathbb{R}^3 , a partir de la base \mathcal{B} , respecto del producto escalar definido por φ .
- **2.** Sea $\mathcal{C} = \{e_1, e_2, e_3\}$ la base canónica de \mathbb{R}^3 . Sea $\varphi : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ la forma bilineal cuya matriz asociada respecto a \mathcal{C} es:

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

- a) Demuestra que φ es un producto escalar.
- **b)** Halla los ángulos que forman entre sí los vectores de la base $\mathcal C$ respecto de este producto escalar.
- c) Usa el procedimiento de Gram-Schmidt para hallar una base ortogonal de \mathbb{R}^3 , a partir de la base \mathcal{C} , respecto del producto escalar definido por φ .