Practice problems-7

Notations: $S = Fea(P) = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \leq 0, \text{ for } i = 1, 2, ..., m \},$ $D_{\mathbf{x}^*} = \{ \mathbf{d} \in \mathbb{R}^n : g_i(\mathbf{x}^* + t\mathbf{d}) \leq 0, \text{ for all } i = 1, 2, ..., m, \text{ and for all } 0 \leq t \leq c_d, c_d > 0 \},$ $F_{0,x^*} = \{ \mathbf{d} \in \mathbb{R}^n : \nabla f(\mathbf{x}^*)\mathbf{d} < 0 \}, I_{\mathbf{x}^*} = \{ i \in \{1, ..., m\} : g_i(\mathbf{x}^*) = 0 \}, G_{0,\mathbf{x}^*} = \{ \mathbf{d} \in \mathbb{R}^n : \nabla g_i(\mathbf{x}^*)\mathbf{d} < 0 \text{ for all } i \in I \}.$

1. Consider the problem of minimizing

$$f(x_1, x_2) = -x_1x_2 + x_1^2 + 2x_2^2 - 2x_1 + e^{x_1 + x_2}$$
 over R^2 .

- (a) Write the first order necessary optimality condition for this problem. Is this condition also sufficient for optimality?
- (b) Is $[0,0]^T$ a local minimum point for this problem? If not find a direction **d** along which the function f will decrease.
- 2. Consider the following problem:

Minimize
$$4x_1^2 - x_2^2 + 8x_1x_2$$

subject to $2x_1 + x_1^2 - x_2 \ge 0$
 $x_1 \ge 0, x_2 \ge 0$.

- (a) Does $[0,0]^T$ satisfy the first and the second order necessary conditions for a local minimum?
- (b) Find all points \mathbf{x}^* in the feasible region at which $G_{0,\mathbf{x}^*} = \phi$.
- 3. If $\mathbf{x}^* \in S$ is such that for all $\mathbf{d} \in D_{\mathbf{x}^*}(\neq \phi)$, $\nabla f(\mathbf{x}^*)\mathbf{d} > 0$ then does it imply that \mathbf{x}^* is a local minimizer of f? If yes justify, if no then give an example to justify your claim.
- 4. Consider the following problem:

Minimize
$$-x_1^2 - 4x_1x_2 - x_2^2$$

subject to $x_2^2 + x_1^2 = 1$.

- (a) If possible find an FJ point which is not a KKT point.
- (b) If possible find a KKT point which is not an optimal point.
- (c) Are the first and the second order necessary conditions for a local minimum satisfied at the KKT point/s?
- (d) If the objective function is changed to $2x_1^2 x_1x_2 + x_2^2 x_2$ and if $S = Fea(P) = \{(x_1, x_2) : x_2^2 + x_1^2 \le 1\}$ then find all optimum solutions to this problem.
- 5. Minimize $(x_1 2)^2 + (x_2 3)^2$ subject to $x_1^2 + x_2^2 \le 5$. $2x_1 + x_2 \le 4$. $-x_1 \le 0$ $-x_2 \le 0$.
 - (a) Check whether all the g_i 's and f are convex functions.

- (b) Check that $\mathbf{x}^* = [1, 2]^T$ is a KKT point (done in class).
- (c) Is \mathbf{x}^* a global minimum of f over this feasible region?
- (d) Does there exist an $\mathbf{x}^* \in Fea(P)$ such that $G_{0,\mathbf{x}^*} = D_{\mathbf{x}^*}$?
- (e) Does there exist an $\mathbf{x}^* \in Fea(P)$ such that $G_{0,\mathbf{x}^*} \neq D_{\mathbf{x}^*}$?
- 6. For a nonlinear programming problem (P) of the form,

Minimize
$$f(\mathbf{x})$$

subject to
$$g_i(\mathbf{x}) \leq \mathbf{0}$$
, for $i = 1, ..., m$, $\mathbf{x} \in \mathbb{R}^n$,

where all the g_i 's and f are continuously differentiable throughout \mathbb{R}^n , check the correctness of the following statements with proper justification.

- (a) If $\mathbf{x}^* \in Fea(P)$ is a KKT point of the above problem then $-\nabla f(\mathbf{x}^*)$ lies in the cone generated by $\nabla g_i(\mathbf{x}^*)$, $i \in I$, where I gives the indices of the binding constraints (given by g_i 's) at \mathbf{x}^* .
- (b) If $g_2 = -g_3$ then all points $\mathbf{x} \in Fea(P)$ are FJ (Fritz John) points.
- (c) If $\nabla f(\mathbf{x}^*) = 0$ for some $\mathbf{x}^* \in Fea(P)$ then \mathbf{x}^* is a KKT point.
- (d) If \mathbf{x}^* is an FJ point and there is a solution to the FJ conditions at \mathbf{x}^* with $u_0 = 0$ (u_0 is the coefficient of $\nabla f(\mathbf{x}^*)$ in the FJ conditions), then \mathbf{x}^* is not a KKT point.
- (e) If \mathbf{x}^* is a KKT point then it is also an FJ point.
- (f) If \mathbf{x}^* is an FJ point and $\nabla g_i(\mathbf{x}^*)$'s are LD, then $G_{0,\mathbf{x}^*} = \phi$ (or in other words there exists a solution to the FJ conditions with $u_0 = 0$).
- (g) If $\nabla g_i(\mathbf{x}^*)$'s are LI, then $G_{0,\mathbf{x}^*} \neq \phi$.
- (h) If $G_{0,\mathbf{x}^*} = \phi$ then $\nabla g_i(\mathbf{x}^*)$'s are LD.
- (i) If \mathbf{x}^* is not an interior point of the feasible region S of (P) and $F_{0,\mathbf{x}^*} = \phi$ then \mathbf{x}^* is a local minimizer.
- (j) If all the g_i 's and f are convex functions and \mathbf{x}^* is such that $F_{0,\mathbf{x}^*} \cap G_{0,\mathbf{x}^*} = \phi$, then \mathbf{x}^* is a global minimum of f in S.
- (k) If \mathbf{x}^* is a local minima of (P) with $F_{0,\mathbf{x}^*} \neq \phi$ but $G_{0,\mathbf{x}^*} = \phi$ then \mathbf{x}^* is not a KKT point.
- (1) For all $\mathbf{x}^* \in S$, $G_{0,\mathbf{x}^*} = D_{\mathbf{x}^*}$.
- (m) There exists a (P) such that $G_{0,\mathbf{x}^*} \neq D_{\mathbf{x}^*}$, for all $\mathbf{x}^* \in S$.
- (n) There exists a (P) with $Fea(P) \neq \phi$ such that $G_{0,\mathbf{x}^*} = \phi$ for all $\mathbf{x}^* \in S$.
- (o) There exists a (P) with $Fea(P) \neq \phi$ such that $D_{\mathbf{x}^*} = \phi$ for all $\mathbf{x}^* \in S$.
- 7. Give examples of nonconstant functions on \mathbb{R}^n which are both convex and concave and those which are neither convex nor concave.
- 8. For a linear programming problem (P) of the form, Minimize $\mathbf{c}^T \mathbf{x}$ subject to $A_{m \times n} \mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$, find the KKT conditions.

9. Consider the linear programming problem.

Minimize
$$2x_1 - 3x_2$$

subject to $x_1 + 2x_2 \le 3$
 $2x_1 + 3x_2 \le 5$
 $x_1 \ge 0, x_2 \ge 0$.

Find the KKT conditions for this problem at a local minimum point of this problem. Solve the KKT conditions for u_i 's. Hence find an optimal solution of the dual.

10. Minimize $-x_1$

subject to
$$-(1 - x_1)^3 + x_2 = 0$$

$$-(1 - x_1)^3 - x_2 = 0.$$

Check whether $[1,0]^T$ is a KKT point of the above problem. How many feasible points does this problem have? What is your conclusion?