Aprendizado de Máquina aplicado a Testes

Ricardo Prudêncio

Big Data

Repositórios de Software

Software repositories

Current and historical artifacts and interactions are registered in software repositories

March/2014 Marco Aurélio Gerosa (gerosa@inne usp.br) 2

From: Marco Gerosa (USP)

http://www.slideshare.net/marcogerosa/mining-sociotechnical-information-from-software-repositories

KDD (Knowledge Discovery in Databases)

Bases de Dados,....

KDD (Knowledge Discovery in Databases)

KDD, Big Data

Analista, Cientista de Dados

- Definir objetivos
- Guiar o processo de coleta e tratamento de dados
- Definição de problemas (tarefas)
- Construção de soluções (modelos)
- Avaliação e interpretação dos modelos

Disciplina

- Foco:
 - Aprendizagem de Máquina

- Conteúdo
 - Análise Exploratória de Dados
 - Problemas
 - Classificação, Regressão e Agrupamento
 - Tópicos Especiais

Introdução e conceitos básicos	02/mai
introdução e conceitos basicos	OZJIIIai
Algoritmos de classificação (Ágyeros de Decisão e Bandom Forests)	03/mai
Algoritmos de classificação (Árvores de Decisão e Random Forests)	OS/IIIai
Algoritmos de classificação (Algoritmos Baseados em Vizinhança, Regressão Logística, Naive Bayes)	04/mai
Avaliação de algoritmos de classificação	05/mai
Algoritmos de agrupamento / Algoritmos de regressão	08/mai
Pré-processamento de dados e seleção de atributos	
re processumento de dados e seregão de diribatos	09/mai
Acompanhamento de Projetos - Parte 1	10/mai
Acompanhamento de Projetos - Parte 2	11/mai
	t

Disciplina

- Avaliação
 - Listas de exercício de acompanhamento (peso 5) e uma lista final (peso 5)
- Ferramenta
 - Weka
- Material de Estudo

Inteligência Artificial

Breve Introdução

Exemplos de aplicações de IA

Robótica

- Como obter manipulação fina e versátil de objetos, navegação segura e eficiente, autonomia?
- E no caso de ambientes dinâmicos e imprevisíveis?

Carros Autônomos

Reconhecimento de Padrões

Sistemas de Recomendação

- Como fazer recomendações personalizadas de produtos/serviços/experts?
- Como modelar o perfil do usuário?

Interação Humano Computador

- Como dar ao usuário a ajuda de que ele precisa?
- Como adaptar a informação e funcionalidades ao dispositivo e à situação do usuário?
- Como interagir e navegar na web via voz?

IA em Sistemas computacionais

- Maior valor agregado quando embutida em sistemas de computação
 - A cereja do bolo
 - A azeitona da empada

Voltando às aplicações...

O que esses problemas têm em comum?

- Grande complexidade
 - número, variedade e natureza das tarefas
- Não há "solução algorítmica" viável
 - mas existe conhecimento (em intenção ou em extensão) sobre o problema
- Requerem modelagem do comportamento de um "ser inteligente"
 - autonomia, aprendizagem, conhecimento, etc.

Máquinas inteligentes?

- Inteligência Artificial
 - Surgiu na década de 50
 - Objetivo: desenvolver sistemas para realizar tarefas que, no momento
 - são melhor realizadas por seres humanos que por máquinas, ou
 - não possuem solução algorítmica viável pela computação convencional

Teste de Turing

Máquina que <u>age humanamente</u>:

Aprendizagem de Máquina

 Sub-área de IA que desenvolve sistemas que melhoram seu desempenho com a experiência

Aprendizagem de Máquina

- Abordagens:
 - Data-driven: algoritmos encontram regularidades em dados
 - Classificação, agrupamento, regressão,...
 - Agent-driven: algoritmos exploram um ambiente para aprender a tomar decisões
 - Aprendizagem por reforço

Aprendizagem de Máquina - Abordagem Data-Driven

- Modelos descritivos
 - Descrevem ou sumarizam dados
 - E.g., Agrupamento
 - Usam dados não rotulados
 - Aprendizado não supervisionado

- Modelos preditivos
 - Realizam previsões sobre os dados
 - E.g., Classificação
 - Usam dados rotulados com uma variável alvo
 - Aprendizado supervisionado

Modelos Preditivos - Classificação

Classificação

- Associar objetos a uma categoria ou classe
 - E.g., diagnóstico de pacientes, classificação risco de um cliente, classificação de documentos,...
- Classificação é feita com base nos atributos dos objetos
 - E.g., diagnóstico de um paciente é feito com base nos sintomas observados e exames realizados

- Diagnóstico médico
 - Qual a chance de reincidência?

Onde estão as regiões de risco em uma imagem de tomografia?

- Classificação de imagens
 - Você é você mesmo? :)
 - Onde estão as anomalias nas imagens?
 - Essa imagem tem conteúdo sensível?

Detecção de anomalias

– Que transações de crédito são fraudes?

– Quais equipamentos vão falhar?

Categorização de usuários

 Que usuários do Instagram se interessam por roupas? Ou automóveis? Ou perfumaria?

– Qual o viés político de um usuário no Twitter?

Análise de sentimentos

Esse Twitter expressão raiva, alegria, angústia?

– Essa pessoa está feliz?

Funções de score

– Quem será um bom pagador?

– Qual o risco de sonegação?

– Quem contratar?

Classificação com AM

 Algoritmo de aprendizagem supervisionada adquire conhecimento a partir de um conjunto de exemplos

Conjunto de Dados - Diabetes

1: preg	2: plas	3: pres	4: mass	5: age	6: cla
Numeric	Numeric	Numeric	Numeric	Numeric	Nomir
6.0	148.0	72.0	33.6	50.0	tested_positive
1.0	85.0	66.0	26.6	31.0	tested_negative
8.0	183.0	64.0	23.3	32.0	tested_positive
1.0	89.0	66.0	28.1	21.0	tested_negative
0.0	137.0	40.0	43.1	33.0	tested_positive
5.0	116.0	74.0	25.6	30.0	tested_negative
3.0	78.0	50.0	31.0	26.0	tested_positive
10.0	115.0	0.0	35.3	29.0	tested_negative
2.0	197.0	70.0	30.5	53.0	tested_positive
8.0	125.0	96.0	0.0	54.0	tested_positive
4.0	110.0	92.0	37.6	30.0	tested_negative
10.0	168.0	74.0	38.0	34.0	tested_positive
10.0	139.0	80.0	27.1	57.0	tested_negative
1.0	189.0	60.0	30.1	59.0	tested_positive
5.0	166.0	72.0	25.8	51.0	tested_positive
7.0	100.0	0.0	30.0	32.0	tested_positive
0.0	118.0	84.0	45.8	31.0	tested_positive
7.0	107.0	74.0	29.6	31.0	tested_positive
1.0	103.0	30.0	43.3	33.0	tested_negative
1.0	115.0	70.0	34.6	32.0	tested_positive
3.0	126.0	88.0	39.3	27.0	tested_negative
8.0	99.0	84.0	35.4	50.0	tested_negative
7.0	196.0	90.0	39.8	41.0	tested_positive
9.0	119.0	80.0	29.0	29.0	tested_positive
11.0	143.0	94.0	36.6	51.0	tested_positive
10.0	125.0	70.0	31.1	41.0	tested_positive
7.0	147.0	76.0	39.4	43.0	tested_positive
1.0	97.0	66.0	23.2	22.0	tested_negative
13.0	145.0	820	22.2	57.0	tested negative

Exemplo - Modelo de Árvore de Decisão

Exemplo - Modelo de Regressão Logística

$$P(Y = 1 \mid x_1, ..., x_p) = \frac{1}{1 + \exp(-(\beta + \alpha_1 x_1 + ... + \alpha_p x_p))}$$

Classificação - Definições

- Exemplo (ou instância)
 - Tupla com atributos que descrevem um objeto de interesse + classe do exemplo
 - E.g., dados de um paciente + doença
 - E.g., medidas de complexidade de software + {bug ou não bug}
- Atributos Preditores
 - Característica de um exemplo usada para classificação
- Atributo Alvo
 - Problemas de classificação binários ou multi-class

Classificação - Definições

- Conjunto de Treinamento
 - Coletado da base de dados e etiquetado (rolutado) geralmente por um humano
 - Usado para construir um classificador
- Conjunto de Teste
 - Conjunto usado para avaliar a qualidade do classificador gerado
- Classificador (Modelo)
 - Resultado retornado pelo indutor (aproxima a função real de classificação)

Ver WEKA

- Conjunto Iris
- Conjunto Heart-Statlog
- Conjunto Change-Metrics

Aprendizado de Máquina Supervisionado

- Categorias de algoritmos
 - Árvores de decisão e regras
 - Aprendizado lazy
 - Aprendizado Bayesiano
 - Redes neurais
 - Métodos de Kernel,
 - Etc...
- Qual o melhor algoritmo?

Referências

- T. Mitchell, Machine Learning, Cap. 3, 1997.
- I. Witten, E. Frank, 2000. Data Mining Practical Machine Learning Tools and Techniques with Java Implementations.
- M. Monard, J. Baranauskas, Indução de Regras e Árvores de Decisão, Sistemas Inteligentes, Cap. 5, 2005.
- J. R. Quinlan, Induction of Decision Trees, *Machine Learning*, Vol.1, N.1, 1986.