1

Matrix Theory(EE5609) Assignment 9

Anshum Agrawal Roll No- AI20MTECH11006

Abstract—Given AB = -BA, this documents finds value of trace(A) and trace(B).

Download latex-tikz codes from

https://github.com/anshum0302/EE5609/blob/master/assignment9a/assign9.tex

1 PROBLEM STATEMENT

Let A and B be real invertible matrices such that

$$\mathbf{AB} = -\mathbf{BA}.\tag{1.0.1}$$

Then

- 1) $trace \mathbf{A} = trace(\mathbf{B}) = 0$
- 2) $trace \mathbf{A} = trace(\mathbf{B}) = 1$
- 3) $trace \mathbf{A} = 0$, $trace(\mathbf{B}) = 1$
- 4) $trace(\mathbf{A}) = 1$, $trace(\mathbf{B}) = 0$

Solution:

Definition	Matrix A is said to be similar to matrix B if there exists matrix P such that $\mathbf{A} = \mathbf{PBP}^{-1}$
Properties	Similar matrices have same eigenvalues Sum of eigenvalue of a matrix equals its trace From above two properties we can conclude that similar matrices have same trace

TABLE 1: Similar matrices and Properties

	F (1.0.1) 1
$trace(\mathbf{A}) = 0$ $trace(\mathbf{B}) = 0$	From (1.0.1) we have
	AB = -BA
	$\implies \mathbf{A} = \mathbf{B}(-\mathbf{A})\mathbf{B}^{-1}$
	So, matrix A and (- A) are similar
	$trace(\mathbf{A}) = trace(-\mathbf{A})$
	$\implies trace(\mathbf{A}) = 0$
	Similarly From (1.0.1) we have
	AB = -BA
	$\implies \mathbf{B} = \mathbf{A}^{-1}(-\mathbf{B})\mathbf{A}$
	So, matrix B and $(-\mathbf{B})$ are similar
	$trace(\mathbf{B}) = trace(-\mathbf{B})$
	$\implies trace(\mathbf{B}) = 0$
	So this statement is true
$trace(\mathbf{A}) = 1$ $trace(\mathbf{B}) = 1$	From (1.0.1) we have
	$\mathbf{AB} = -\mathbf{BA}$
	$\implies \mathbf{A} = \mathbf{B}(-\mathbf{A})\mathbf{B}^{-1}$
	So, matrix A and (- A) are similar∴
	$trace(\mathbf{A}) = trace(-\mathbf{A})$
	$\implies trace(\mathbf{A}) = 0.$
	As $trace(\mathbf{A}) = 0$ this statement is
$trace(\mathbf{A}) = 0$ $trace(\mathbf{B}) = 1$	From (1.0.1) we have
	AB = -BA
	$\implies \mathbf{B} = \mathbf{A}^{-1}(-\mathbf{B})\mathbf{A}$
	So, matrix B and (- B) are similar
	$trace(\mathbf{B}) = trace(-\mathbf{B})$
	$\implies trace(\mathbf{B}) = 0.$
	As $trace(\mathbf{B}) = 0$ this statement is
	false From (1.0.1) we have
$trace(\mathbf{A}) = 1$ $trace(\mathbf{B}) = 0$	$\mathbf{AB} = -\mathbf{BA}$
	$\Rightarrow \mathbf{A} = -\mathbf{B}\mathbf{A}$ $\Rightarrow \mathbf{A} = \mathbf{B}(-\mathbf{A})\mathbf{B}^{-1}$
	So, matrix A and (- A) are similar
	$trace(\mathbf{A}) = trace(-\mathbf{A})$
	$\implies trace(\mathbf{A}) = 0.$
	As $trace(\mathbf{A}) = 0$ this statement is false

TABLE 2: Calculation of trace