K – поле $\leadsto R = K[x_1, \dots, x_n]$ – кольцо многочленов от переменных x_1, \dots, x_n $M = \{ax_1^{k_1}x_2^{k_2}\dots x_n^{k_n}\mid a\in K\setminus\{0\}, k_i\in\mathbb{Z}_{\geqslant 0}\}$ – множество всех одночленов R $M_0 = \{x_1^{k_1}x_2^{k_2}\dots x_n^{k_n}\mid k_i\in\mathbb{Z}_{\geqslant 0}\}$ – множество всех одночленов R с единичным коэффициентом $f\in R\setminus\{0\}$ $\leadsto M(f)$ – все одночлены входящие в f

Определение. Множество F называется cucmemoй $\Gamma p\"eбнера$, если $\forall g \in R$ остаток многочлена g относительно F определён однозначно, то есть не зависит от приводящей к нему цепочки элементарных редукций.

Теорема (критерий Бухбергера). Для системы $F \in R \setminus \{0\}$ следующие условия эквивалентны:

- (а) F система Грёбнера
- (б) $\forall f_1, f_2 \in F$ верно $S(f_1, f_2) \stackrel{F}{\leadsto} 0$

Следствие. Если существуют $f_1, f_2 \in F$, такие что $S(f_1, f_2) \stackrel{F}{\leadsto} r \neq 0$ (где r – остаток), то F не система Грёбнера.

Определение. Множество $F \subseteq R \setminus \{0\}$ называется базисом Грёбнера идеала I, если

- (a) I = (F)
- (б) F система Грёбнера

Определение. Базис Грёбнера F в $I \lhd R$ называется минимальным редуцированным если

- (a) $\forall f_1, f_2 \in F, \ f_1 \neq f_2$ верно, что $\forall m \in M(f_1): \ m \not L(f_2)$
- (б) все старшие коэффициенты равны 1

Теорема. $F \subseteq I \setminus \{0\} \Rightarrow$ следующие условия эквиваленты:

- (а) F базис Грёбнера в I
- (б) $\forall g \in I$ выполняется $g \stackrel{F}{\leadsto} 0$
- (в) $\forall g \in I$ существует $f \in F$: $L(g) \vdots L(f)$

Замечание. Базисы Грёбнера часто определяются последним условием.

Следствие. F – базис Грёбнера в $I \Rightarrow$

- (a) $\forall g \in I$ всякая цепочка элементарных редукций относительно Fприводит к0
- (б) $\forall g \in R$ верно $g \in I \Leftrightarrow$ остаток от g относительно F равен 0

Лемма. Не существует бесконечных цепочек одночленов $m_1, m_2, ...,$ где $m_i \not : m_j$ для всех i > j. **Теорема** (теорема Гильберта о базисе идеала). $\forall I \lhd R$ существует $f_1, ..., f_n \in I$, что $I = (f_1, ..., f_n)$.

Задание 1. Выясните принадлежит ли идеалу $I=(x^2y+2z^2,y^2-yz)$ кольца $\mathbb{R}[x,y,z]$ многочлены $g_1=x^3z^3+3xyz^3$ и $g_2=x^3y^2z+2xy^2z^2$.

1. Найдем в I базис Грёбнера, используя алгоритм Бухбергера. Вычислим S-полином f_1 и f_2 : $HOK(L(f_1),L(f_2))=x^2y^2$, тогда $S(f_1,f_2)=y\cdot f_1+x^2\cdot f_2=2yz^2+x^2yz\overset{-z\cdot f_1}{\longrightarrow}2yz^2-2z^3$. Полученный многочлен нередуцируем относительно $f_1,\,f_2$, поэтому по алгоритму Бухбергера добавим в рассматриваемую систему $f_3=yz^2-z^3$.

Посчитаем $S(f_1, f_3)$: $HOK(L(f_1), L(f_2)) = x^2yz^2$, тогда $S(f_1, f_3) = z_2 \cdot f_1 - x^2 \cdot f_2 = 2z^4 + x^2z^3$. Полученный многочлен нередуцируем относительно $F = \{f_1, f_2, f_3\}$, поэтому добавляем в F многочлен $f_4 = x^2z^3 + 2z^4$.

Найдём
$$S(f_2, f_3) = z^2 \cdot f_2 - y \cdot f_3 = -yz^3 + yz^3 = 0.$$

Проверим для f_2 и f_4 : заметим, что старшие члены f_2 и f_4 взаимно просты, это означает, что их S-полином редуцируется к нулю относительно f_2 и f_4 .

Осталось проверить для
$$f_3$$
 и f_4 . Редуцируем полином $S(f_3, f_4) = x^2z \cdot f_3 - y \cdot f_4 = -x^2z^4 - 2yz^4 \xrightarrow{x \cdot f_4} -x^2z^4 - 2yz^4 + x^2z^4 + 2z^5 = -2yz^4 + 2z^5 \xrightarrow{2z^2 \cdot f_3} -2yz^4 + 2z^5 + 2yz^4 - 2z^5 = 0.$

Таким образом, по алгоритму Бухбергера, получаем что система $\{f_1, f_2, f_3, f_3\}$ – базис Грёбнера идеала I. Полученный базис: $\{x^2y+2z^2, y^2-yz, yz^2-z^3, x^2z^3+2z^4\}$.

2. Чтобы выяснить, принадлежат ли g_1 и g_2 идеалу, нужно найти их остаток относительно найденного базиса. Если этот остаток равен нулю, что многочлен принадлежит описанному идеалу.

Проведём редукцию g_1 над F и проверим его остаток относительно этой системы:

$$x^{3}z^{3} + 3xyz^{3} \xrightarrow{-x \cdot f_{4}} x^{3}z^{3} + 3xyz^{3} - x^{3}z^{3} - 2xz^{4} = 3xyz^{3} - 2xz^{4} \xrightarrow{-3xz \cdot f_{3}} 3xyz^{3} - 2xz^{4} - 3xyz^{3} + 3xz^{4} = \boxed{xz^{4}}$$

Полученный многочлен нередуцируем относительно F: он не делится на старший член каждого из многочленов из F. Таким образом, после редукции g_1 получаем ненулевой остаток $\Rightarrow g_1 \notin I$.

Проведём редукцию g_2 над F и проверим его остаток относительно этой системы:

$$x^{3}y^{2}z + 2xy^{2}z^{2} \xrightarrow{-xyz \cdot f_{1}} x^{3}y^{2}z + 2xy^{2}z^{2} - x^{3}y^{2}z - 2xyz^{3} = 2xy^{2}z^{2} - 2xyz^{3} \xrightarrow{-2xy \cdot f_{3}} 2xy^{2}z^{2} - 2xyz^{3} - 2xy^{2}z^{2} + 2xyz^{3} = \boxed{0}$$

Получен остаток равны нулю. Значит g_2 принадлежит описанному идеалу.

Ответ: искомый базис: $\{x^2y+2z^2,\ y^2-yz,\ yz^2-z^3,\ x^2z^3+2z^4\};$ многочлены $g_1\notin I$ и $g_2\in I$

Задание 2. Найдите минимальный редуцированный базис Грёбнера в идеале

$$(xy + 2yz, x - y^2, yz^2 - y) \subseteq \mathbb{R}[x, y, z]$$

относительно лексикографического порядка, задаваемого условием z > x > y.

1. Построим произвольный базис Грёбнера в I, а затем преобразуем его в минимально редуцируемый. Построение будем выполнять с помощью алгоритма Бухбергера.

Пусть $f_1=2zy+xy,\ f_2=x-y^2,\ f_3=z^2y-y$ (здесь одночлены упорядочены в соответствии с условием задачи). Проверим редуцируемость к нулю f_1 и f_2 : заметим, что их старшие члены взаимно просты, значит $S(f_1,f_2)\overset{f_1,f_2}{\leadsto} 0$. Аналогичная ситуация и с $f_2,\ f_3$: их старшие члены взаимно просты, поэтому $S(f_2,f_3)\overset{f_2,f_3}{\leadsto} 0$.

Вычислим $S(f_1,f_3)=z\cdot f_1-2\cdot f_3=zxy-2y\stackrel{-\frac{1}{2}x\cdot f_1}{\longrightarrow}zxy-2y-zxy-\frac{1}{2}x^2y=-\frac{1}{2}x^2y-2y\stackrel{\frac{1}{2}xy\cdot f_2}{\longrightarrow}-\frac{1}{2}x^2y-2y+\frac{1}{2}x^2y-\frac{1}{2}xy^3=-\frac{1}{2}xy^3-2y\stackrel{\frac{1}{2}y^3\cdot f_2}{\longrightarrow}-\frac{1}{2}xy^3-2y+\frac{1}{2}xy^3-\frac{1}{2}y^5=-\frac{1}{2}y^5-2y.$ Полученный многочлен нередуцируем в $\{f_1,f_2,f_3\}$, а значит, он является остатком. Добавим его в F, обозначив $f_4=y^5+4y$.

Проверим, что $S(f_1, f_4) \stackrel{F}{\leadsto} 0$, $S(f_2, f_4) \stackrel{F}{\leadsto} 0$ и $S(f_3, f_4) \stackrel{F}{\leadsto} 0$. Для $S(f_2, f_4)$ описанное выполняется, так как старшие члены f_2 и f_4 взаимно просты, то есть $S(f_2, f_4) \stackrel{f_2, f_4}{\leadsto} 0$.

Вычислим S-полином f_1 и f_4 . Имеем:

$$S(f_1, f_4) = y^4 \cdot f_1 - 2z \cdot f_4 = xy^5 - 8zy \xrightarrow{4 \cdot f_1} xy^5 - 8zy + 8zy + 4xy = xy^5 + 4xy \xrightarrow{-y^5 \cdot f_4} xy^5 + 4xy - xy^5 - y^7 = 4xy - y^7 \xrightarrow{-4y \cdot f_2} 4xy - y^7 - 4xy - 4y^3 = -y^7 - 4y^3 \xrightarrow{y^2 \cdot f_4} 0$$

Вычислим S-полином f_3 и f_4 . Имеем:

$$S(f_3, f_4) = y^4 \cdot f_3 - z^2 \cdot f_4 = -y^5 - 4z^2y \xrightarrow{4 \cdot f_3} -y^5 - 4z^2y + 4z^2y - 4y = -y^5 - 4y \xrightarrow{f_4} 0$$

Таким образом, получаем $F = \{2zy + xy, x - y^2, z^2y - y, y^5 + 4y\}$ – базис Грёбнера описанного идеала.

2. По найденному базису построим минимальный редуцированный. Для этого сначала избавимся от многочленов $f \in F$, таких что $\exists g \in F : L(f) : L(g)$, так как если f_1, \ldots, f_n – базис Грёбнера идеала I и $L(f_1) : L(f_i)$, $i \neq 1$, то f_2, \ldots, f_n также является базисом Грёбнера идеала I.

Старший член многочлена f_3 делится на старший член f_1 , поэтому его можно убрать из рассматриваемого базиса. У многочленов f_1, f_2, f_4 старший член не делится на старший член каждого из оставшихся многочлена базиса.

Одночлены многочленов в МРБГ не должны делиться на старший член других многочлена этого базиса. Для многочлена f_1 это условие не выполняется: его одночлен xy делится на $L(f_2)$. Выполним редукцию: $f_1 \xrightarrow{-y \cdot f_2} 2zy + y^3$. Для остальных многочленов условие соблюдено.

3. Таким образом получаем новую систему $F' = \{2zy + y^3, x - y^2, y^5 + 4y\}$, которая также базис Грёбнера в рассматриваемом идеале по построению. Чтобы этот базис стал минимально редуцированным осталось сделать все старшие коэффициенты равными 1.

Получаем, $F = \{zy + \frac{1}{2}y^3, x - y^2, y^5 + 4y\}$ – искомый минимально редуцированный базис идеала.

Ответ: $F = \{zy + \frac{1}{2}y^3, x - y^2, y^5 + 4y\}$

Задание 3. Дан идеал $I=(x^2y+2xz+z^2,y^2z-2z)\subseteq \mathbb{R}[x,y,z]$. Найдите порождающую систему для идеала $I\cap \mathbb{R}[x,y]$ кольца $\mathbb{R}[x,y]$ и порождающую систему идеала $I\cap \mathbb{R}[x,z]$ кольца $\mathbb{R}[x,z]$.

1. Пусть $I \triangleleft R$ и F — базис Грёбнера в I. Рассмотрим $R_k = R[x_{k+1}, \dots, x_n]$. Известно, что тогда $I \cap R_k$ — идеал в R_k и $F \cap R_k$ — базис Грёбнера в $I \cap R_k$.

Отсюда становится ясно, как найти базис для идеала $I \cap \mathbb{R}[x,y]$ кольца $\mathbb{R}[x,y]$ и идеала $I \cap \mathbb{R}[x,z]$ кольца $\mathbb{R}[x,z]$.

- 2. Чтобы найти базис для $I \cap \mathbb{R}[x,y]$ введём лексикографический порядок так, чтобы переменные x и y были последним, то есть порядок следующий: z > x > y. Тогда базис для $I \cap \mathbb{R}[x,y]$ это $F \cap \mathbb{R}[x,y]$, где F базис Грёбнера идеала I в $\mathbb{R}[z,x,y]$ при заданном упорядочивании. Найдём базис Грёбнера с помощью алгоритма Бухбергера.
 - Обозначим $f_1 = z^2 + 2zx + x^2y$ и $f_2 = zy^2 2z$. Проредуцируем $S(f_1, f_2)$:

$$S(f_1, f_2) = y^2 \cdot f_1 - z \cdot f_2 = 2z^2 + 2zxy^2 + x^2y^3 \xrightarrow{-2 \cdot f_1}$$

$$\xrightarrow{-2 \cdot f_1} 2z^2 + 2zxy^2 + x^2y^3 - 2z^2 - 4zx - 2x^2y = 2zxy^2 + x^2y^3 - 4zx - 2x^2y \xrightarrow{-2x \cdot f_2} 2zxy^2 + x^2y^3 - 4zx - 2x^2y - 2zxy^2 + 4zx = x^2y^3 - 2x^2y$$

Полученный полином нередуцируем относительно $\{f_1, f_2\}$, поэтому добавим $f_3 = x^2y^3 - 2x^2y$ в базис.

- Полиномы $S(f_1, f_3)$ и $S(f_2, f_3)$ редуцируются к нулю относительно $\{f_1, f_2, f_3\}$, так как старшие члены у f_1 и f_2 взаимнопросты со старшем членом f_3 .
- Таким образом, базис Грёбнера для I в $\mathbb{R}[z,x,y]$ это $\{z^2+2zx+x^2y,\ zy^2-2z,\ x^2y^3-2x^2y\}$. Для получения базиса $I\cap\mathbb{R}[x,y]$ осталось пересечь F с $\mathbb{R}[x,y]$, то есть взять многочлены из F, зависящие только от x и y. Итог: $I\cap\mathbb{R}[x,y]=(x^2y^3-2x^2y)$.
- 3. Аналогично найдём базис для $I \cap \mathbb{R}[x,z]$. Введём следующий порядок: y>z>x. Найдём базис Грёбнера с помощью алгоритма Бухбергера.
 - Обозначим $f_1 = yx^2 + 2xz + z^2$ и $f_2 = y^2z 2z$. Проредуцируем $S(f_1, f_2)$:

$$S(f_1, f_2) = yz \cdot f_1 - x^2 \cdot f_2 = 2yxz^2 + yz^3 + 2x^2z$$

Полученный полином нередуцируем относительно $\{f_1, f_2\}$, поэтому добавим в базис многочлен $f_3 = yz^3 + 2yxz^2 + 2x^2z$ в базис.

— Проредуцируем $S(f_1, f_3)$ и $S(f_2, f_3)$:

$$S(f_1, f_3) = z^3 \cdot f_1 - x^2 \cdot f_3 = 2xz^2 + z^5 - 2x^3yz^2 + 2x^4z \longrightarrow 4xz^4 + z^5 - 2x^4z + 4x^2z^3$$

$$f_4 = z^5 + 4xz^4 - 2x^4z + 4x^2z^3$$

$$S(f_2, f_3) = z^2 \cdot f_2 - y \cdot f_3 = -2z^3 - 2xy^2z^2 - 2x^2yz \longrightarrow$$

$$\longrightarrow -2z^3 - 2xy^2z^2 - 2x^2yz + 2xy^2z^2 - 4xz^2 = -2z^3 - 2x^2yz - 4xz^2 \longrightarrow$$

$$\longrightarrow -2z^3 - 2x^2yz - 4xz^2 + 2z^3 + 2x^2yz + 4xz^2 = 0$$

 $-S(f_1, f_4) \leadsto 0$, так как старшие члены взаимно просты.

$$S(f_{2}, f_{4}) = z^{4} \cdot f_{2} - y^{2} \cdot f_{4} = -2z^{5} - 4xy^{2}z^{4} + 2x^{4}y^{2}z - 4x^{2}y^{2}z^{3} \longrightarrow$$

$$\longrightarrow -2z^{5} + 2x^{4}y^{2}z + 4x^{2}y^{2}z^{3} + 8x^{3}yz^{2} \longrightarrow$$

$$\longrightarrow -2z^{5} + 2x^{4}y^{2}z + 8x^{3}yz^{2} + 8x^{2}z^{3} \longrightarrow$$

$$\longrightarrow -2z^{5} + 8x^{3}yz^{2} + 8x^{2}z^{3} + 4x^{4}z \longrightarrow$$

$$\longrightarrow -2z^{5} + 8x^{3}yz^{2} + 8x^{2}z^{3} - 8xz^{4} \longrightarrow 0$$

$$S(f_{3}, f_{4}) = z^{2} \cdot f_{3} - y \cdot f_{4} = -2xyz^{4} + 2x^{2}z^{3} + 2x^{4}yz - 4x^{2}yz^{3} \longrightarrow$$

$$\longrightarrow 2x^{2}z^{3} + 2x^{4}yz + 4x^{3}z^{2} \longrightarrow 0$$

Получаем следующий базис при заданном упорядочивании:

$$F = \{yx^2 + 2xz + z^2, y^2z - 2z, yz^3 + 2yxz^2 + 2x^2z, z^5 + 4xz^4 - 2x^4z + 4x^2z^3\}$$

Нетрудно найти пересечение. Это многочлен от переменных x и z, то есть идеал является $I\cap \mathbb{R}[x,z]=(z^5+4xz^4-2x^4z+4x^2z^3)$

Ответ: $(x^2y^3 - 2x^2y)$, $(z^5 + 4xz^4 - 2x^4z + 4x^2z^3)$

Задание 4. Найдите конечный базис Грёбнера (относительно стандартного лексикографического порядка, задаваемого условием x>y>z) для идеала I кольца $\mathbb{R}[x,y,z]$, где

$$I = \{ f \in \mathbb{R}[x, y, z] \mid f(a, a - 1, a^2 + a) = 0 \text{ для всех } a \in \mathbb{R} \}$$

- 1. Рассмотрим следующие многочлены: $f_1 = x y 1$, $f_2 = y^2 + 3y z + 2$. Они принадлежат идеалу, так как для любого $a \in \mathbb{R}$ значение от этих многочленов в точке $(a, a 1, a^2 + a)$ равно нулю.
- 2. Покажем, что $F = \{f_1, f_2\}$ базис Грёбнера некоторого идеала. Заметим, что старшие члены f_1 и f_2 взаимно просты, значит, их S-полином редуцируется к нулю относительно F. Получаем, что F система Грёбнера, это означает, что F базис Грёбнера идеала $J = (f_1, f_2) = (F)$.
- 3. Покажем, что $I \equiv J$. Ясно, что $J \subseteq I$, так как любая комбинация многочленов из идеала I, является многочленом из I, а порождающая система в J это $f_1, f_2 \in I$. Покажем, что для всякого $f \in I$ выполнено $f \in J$. Проредуцируем f относительно F. Пусть r

- остаток f относительно F. Этот остаток также лежит в I, так как

$$r = \underbrace{f}_{\in I} - \underbrace{m_1 f_1 - m_2 f_2}_{\in I}$$

Значит $r(a, a-1, a^2+a)=0$ для всех $a\in\mathbb{R}$. Так как r остаток, то он либо полностью зависит от z, если $L(r)=z^k$, либо зависит от y и z, если $L(r)=yz^k$. Последний случай сразу же отпадает, так как для любого x из $f(x, a-1, a^2-a)=0$ следует, что f кратно f_2 .

Если r зависит только от z, то этот многочлен можно рассматривать только в $\mathbb{R}[z]$. Так как $r(a^2+a)=0$ для всех $a\in R$, многочлен r конечной степени имеет бесконечно много корней, но такое может быть только при $r\equiv 0$.

4. Таким образом, I = J и порождается F.

Ответ: $(x - y - 1, y^2 + 3y - z + 2)$