2012 年全国硕士研究生入学统一考试 数学一试题解析

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项 中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

(1) 曲线
$$y = \frac{x^2 + x}{x^2 - 1}$$
 渐近线的条数为 ()

- (A) 0
- (B) 1
- (C) 2
- (D) 3

【答案】: C

【解析】: $\lim_{x \to 1} \frac{x^2 + x}{x^2 - 1} = \infty$,所以x = 1为垂直的

$$\lim_{x\to\infty}\frac{x^2+x}{x^2-1}=1$$
,所以 $y=1$ 为水平的,没有斜渐近线 故两条选 C

- (2) 设函数 $f(x) = (e^x 1)(e^{2x} 2)\cdots(e^{nx} n)$, 其中 n 为正整数, 则 f'(0) =
- (A) $(-1)^{n-1}(n-1)!$
- (B) $(-1)^n (n-1)!$
- (C) $(-1)^{n-1}n!$
- (D) $(-1)^n n!$

【答案】: C

【解析】:

 $f'(x) = e^{x}(e^{2x} - 2)\cdots(e^{nx} - n) + (e^{x} - 1)(2e^{2x} - 2)\cdots(e^{nx} - n) + \cdots(e^{x} - 1)(e^{2x} - 2)\cdots(ne^{nx} - n)$ (6) 设 A 为 3 阶矩阵,P 为 3 阶可逆矩阵,且 $P^{-1}AP = \begin{bmatrix} 1 & 1 & 1 \\ & 1 & 2 \end{bmatrix}$,

所以 $f'(0) = (-1)^{n-1} n!$

- (3) 如果 f(x,y) 在(0,0) 处连续,那么下列命题正确的是(
- (A) 若极限 $\lim_{\substack{x \to 0 \\ x \to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在,则 f(x,y) 在 (0,0) 处可微
- (B) 若极限 $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y)}{x^2 + y^2}$ 存在,则 f(x,y) 在 (0,0) 处可微
- (C) 若 f(x,y) 在 (0,0) 处可微,则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在
- (D) 若 f(x,y) 在 (0,0) 处可微,则极限 $\lim_{\substack{x\to 0 \ y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在

【答案】:

【解析】: 由于 f(x,y) 在 (0,0) 处连续,可知如果 $\lim_{\substack{x\to 0 \ y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在,则必有

$$f(0,0) = \lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = 0$$

这样, $\lim_{\substack{x\to 0\\x\to 0}}\frac{f(x,y)}{x^2+y^2}$ 就可以写成 $\lim_{\substack{\Delta x\to 0\\\Delta y\to 0}}\frac{f(\Delta x,\Delta y)-f(0,0)}{\Delta x^2+\Delta y^2}$, 也即极限

$$\lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{f(\Delta x, \Delta y) - f(0,0)}{\Delta x^2 + \Delta y^2}$$
 存在,可知
$$\lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{f(\Delta x, \Delta y) - f(0,0)}{\sqrt{\Delta x^2 + \Delta y^2}} = 0$$
,也即

$$f(\Delta x, \Delta y) - f(0,0) = 0\Delta x + 0\Delta y + o\left(\sqrt{\Delta x^2 + \Delta y^2}\right)$$
。 由可微的定义可知

f(x,y) 在 (0,0) 处可微。

- (4) 设 $I_k = \int_{-k}^{k} e^{x^2} \sin x dx (k=1,2,3)$,则有 D
- (A) $I_1 < I_2 < I_3$
- (B) $I_2 < I_2 < I_3$
- (C) $I_1 < I_3 < I_1$
- (D) $I_1 < I_2 < I_3$

【答案】: (D)

【解析】: $I_k = \int_a^k e^{x^2} \sin x dx$ 看为以 k 为自变量的函数,则可 知 $I_k' = e^{k^2} \sin k \ge 0, k \in (0,\pi)$,即可知 $I_k = \int_0^k e^{x^2} \sin x dx$ 关 于k在 $(0,\pi)$ 上为单调增函数,又由于 $1,2,3\in(0,\pi)$,则 $I_1 < I_2 < I_3$, 故选 D

(5) 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ c_1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ c_2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ -1 \\ c_3 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -1 \\ 1 \\ c_4 \end{pmatrix}$ 其中 c_1, c_2, c_3, c_4 为任意常

数,则下列向量组线性相关的是(

- (A) $\alpha_1, \alpha_2, \alpha_3$
- (B) $\alpha_1, \alpha_2, \alpha_4$

- (C) $\alpha_1, \alpha_3, \alpha_4$
- (D) $\alpha_2, \alpha_3, \alpha_4$

【答案】: (C)

【解析】:由于 $|(\alpha_1, \alpha_3, \alpha_4)| = \begin{vmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \\ c & c & c \end{vmatrix} = c_1 \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 0$,可知 $\alpha_1, \alpha_3, \alpha_4$

$$P = (\alpha_1, \alpha_2, \alpha_3)$$
, $Q = (\alpha_1 + \alpha_2, \alpha_2, \alpha_3) \bowtie Q^{-1}AQ = ($

$$\begin{array}{ccc}
(A) \begin{pmatrix} 1 & & \\ & 2 & \\ & & 1 \end{pmatrix} & (B) \begin{pmatrix} 1 & \\ & 1 \\ & & 2 \end{pmatrix}$$

$$(B)\begin{pmatrix}1\\&1\\&&2\end{pmatrix}$$

$$\begin{array}{ccc}
(C) \begin{pmatrix} 2 & & \\ & 1 & \\ & & 2 \end{pmatrix} & (D) \begin{pmatrix} 2 & \\ & 2 & \\ & & 1 \end{pmatrix}$$

$$(D)\begin{pmatrix} 2 & & & \\ & 2 & & \\ & & 1 \end{pmatrix}$$

【答案】: (B)

【解析】:
$$Q = P \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 则 $Q^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}$,

$$Q^{-1}AQ = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}AP \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\$$

故选 (B)。

(7) 设随机变量 x 与 y 相互独立, 且分别服从参数为 1 与参数为 4 的指数分 布,则 $p\{x < y\} = ()$

$$(A)\frac{1}{5}$$
 $(B)\frac{1}{3}$ $(C)\frac{2}{5}$ $(D)\frac{4}{5}$

【答案】: (A)

【解析】: (X,Y)的联合概率密度为 $f(x,y) = \begin{cases} e^{-x-4y}, & x > 0, & y > 0 \\ 0, & 其它 \end{cases}$

则
$$P\{X < Y\} = \iint_{x < y} f(x, y) dx dy = \int_0^{+\infty} dx \int_0^y e^{-x-4y} dx = \int_0^{+\infty} e^{-5y} dy = \frac{1}{5}$$

(8) 将长度为 1m 的木棒随机地截成两段,则两段长度的相关系数为()

(A) 1 (B)
$$\frac{1}{2}$$
 (C) $-\frac{1}{2}$ (D) -1

【答案】: (D)

【解析】: 设两段长度分别为x,y,显然x+y=1,即y=-x+1,故两者是线性关系,且是负相关,所以相关系数为-1

二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9)若函数 f(x) 满足方程 f''(x) + f'(x) - 2f(x) = 0 及 $f'(x) + f(x) = 2e^x$,

则 $f(x) = ____$ 。

【答案】: e^x

【解析】: 特征方程为 $r^2+r-2=0$,特征根为 $r_1=1,r_2=-2$,齐次微分方程 f''(x)+f'(x)-2f(x)=0 的 通 解 为 $f(x)=C_1e^x+C_2e^{-2x}$. 再 由 $f'(x)+f(x)=2e^x$ 得 $2C_1e^x-C_2e^{-2x}=2e^x$,可知 $C_1=1,C_2=0$ 。

故 $f(x) = e^x$

【答案】: $\frac{\pi}{2}$

【解析】: $\Leftrightarrow t = x - 1$ $\int_0^2 x \sqrt{2x - x^2} dx = \int_{-1}^1 (t+1) \sqrt{1 - t^2} dt = \int_{-1}^1 \sqrt{1 - t^2} dt = \frac{\pi}{2}$

【答案】: {1,1,1}

【解析】: grad $\left(xy + \frac{z}{y}\right)_{(2,1,1)} = \left\{y, x - \frac{z}{y^2}, \frac{1}{y}\right\}_{(2,1,1)} = \left\{1, 1, 1\right\}$

(12) 设
$$\sum = \{(x, y, z) | x + y + z = 1, x \ge 0, y \ge 0, z \ge 0\},$$
 则

$$\iint_{\Sigma} y^2 ds = \underline{\qquad}$$

【答案】: $\frac{\sqrt{3}}{12}$

【解析】:由曲面积分的计算公式可知

$$\iint_{\Sigma} y^{2} ds = \iint_{D} y^{2} \sqrt{1 + (-1)^{2} + (-1)^{2}} dx dy = \sqrt{3} \iint_{D} y^{2} dx dy \qquad , \qquad$$
 其 中

$$D = \{(x, y) \mid x \ge 0, y \ge 0, x + y \le 1\}$$
 。 故 原 式

$$= \sqrt{3} \int_0^1 dy \int_0^{1-y} y^2 dx = \sqrt{3} \int_0^1 y^2 (1-y) dy = \frac{\sqrt{3}}{12}$$

(13) 设 X 为三维单位向量,E 为三阶单位矩阵,则矩阵 $E-xx^T$ 的秩为

【答案】: 2

【解析】: 矩阵 xx^T 的特征值为 0,0,1 ,故 $E-xx^T$ 的特征值为 1,1,0 。又由于为实对称矩阵,是可相似对角化的,故它的秩等于它非零特征值的个数,也即 $r(E-xx^T)=2$ 。

(14) 设 A, B, C 是随机事件, A, C 互不相容, $P(AB) = \frac{1}{2}, P(C) = \frac{1}{3},$ 则

 $P(AB\overline{C}) = \underline{\hspace{1cm}}_{\circ}$

【答案】: $\frac{3}{4}$

【解析】:由条件概率的定义, $P(AB|\overline{C}) = \frac{P(AB\overline{C})}{P(\overline{C})}$,

其中 $P(\bar{C}) = 1 - P(C) = 1 - \frac{1}{3} = \frac{2}{3}$

 $P(AB\overline{C}) = P(AB) - P(ABC) = \frac{1}{2} - P(ABC)$,由于 A, C 互不相容,即

 $AC = \phi$, P(AC) = 0, X

 $ABC \subset AC$, 得 P(ABC) = 0 , 代入得 $P(AB\overline{C}) = \frac{1}{2}$, 故 $P(AB|\overline{C}) = \frac{3}{4}$.

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15)(本题满分10分)

证明: $x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}, -1 < x < 1$

【解析】: 令 $f(x) = x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2}$,可得

 $f'(x) = \ln \frac{1+x}{1-x} + x \frac{1+x}{1-x} \cdot \frac{2}{(1-x)^2} - \sin x - x$ $= \ln \frac{1+x}{1-x} + \frac{2x}{1-x^2} - \sin x - x$ $= \ln \frac{1+x}{1-x} + \frac{1+x^2}{1-x^2} \cdot x - \sin x$

当 0 < x < 1时,有 $\ln \frac{1+x}{1-x} \ge 0$, $\frac{1+x^2}{1-x^2} > 1$, 所以 $\frac{1+x^2}{1-x^2} \cdot x - \sin x \ge 0$,

故 $f'(x) \ge 0$,而 f(0) = 0,即得 $x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2} \ge 0$

所以 $x \ln \frac{1+x}{1-x} + \cos x \ge \frac{x^2}{2} + 1$ 。

当-1 < x < 0,有 $\ln \frac{1+x}{1-x} \le 0$, $\frac{1+x^2}{1-x^2} > 1$,所以 $\frac{1+x^2}{1-x^2} • x - \sin x \le 0$,

故 $f'(x) \ge 0$,即得 $x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2} \ge 0$

可知, $x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}, -1 < x < 1$

(16)(本题满分10分)

求 $f(x,y) = xe - \frac{x^2 + y^2}{2}$ 的极值。

【解析】: $f(x,y) = xe - \frac{x^2 + y^2}{2}$,

先求函数的驻点. $f_x'(x,y) = e - x = 0, f_y'(x,y) = -y = 0$, 解得函数为驻点

为(e,0).

又
$$A = f_{xx}'(e,0) = -1$$
, $B = f_{xy}'(e,0) = 0$, $C = f_{yy}'(e,0) = -1$, 所以 $B^2 - AC < 0$, $A < 0$, 故 $f(x,y)$ 在点 $(e,0)$ 处取得极大值 $f(e,0) = \frac{1}{2}e^2$.

求幂级数
$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$$
 的收敛域及和函数

【解析】:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\frac{4n^2 + 4n + 3}{2n + 1}}{\frac{4(n+1)^2 + 4(n+1) + 3}{2(n+1) + 1}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{4n^2 + 4n + 3}{2n + 1} \cdot \frac{2(n+1) + 1}{4(n+1)^2 + 4(n+1) + 3} \right| = 1$$

$$S(x) = \sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$$

$$\int_0^x S(t)dt = \sum_{n=0}^\infty \int_0^x \frac{4n^2 + 4n + 3}{2n + 1} x^{2n} dx$$

$$x = 1$$
时 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 发散

$$\therefore \lim_{n \to \infty} \frac{\frac{4n^2 + 4n + 3}{2n + 1}}{\frac{1}{2n + 1}} = \infty$$

$$x = -1$$
时 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} (-1)^{2n}$ 收敛

∴x∈(-1,1)为函数的收敛域。

和函数为
$$S(x) = \sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n} \cdot \frac{1}{x}$$

(18)(本题满分10分)

已知曲线
$$L:$$
 $\begin{cases} x = f(t) \\ y = \cos t \end{cases}$ $\left(0 \le t < \frac{\pi}{2}\right)$, 其中函数 $f(t)$ 具有连续导数, 且

f(0) = 0, $f(t) > 0 \left(0 < t < \frac{\pi}{2} \right)$ 。若曲线 L 的切线与 x 轴的交点到切点的距

离恒为 1, 求函数 f(t) 的表达式, 并求此曲线 L 与 x 轴与 y 轴无边界的区域的 面积。

【解析】:(1)曲线 L 在任一处 (x,y) 的切线斜率为 $\frac{dy}{dx} = \frac{-\sin t}{f'(t)}$, 过该点 (x,y)

处 的 切 线 为
$$Y - \cos t = \frac{-\sin t}{f'(t)} (X - f(t))$$
 , 令 $Y = 0$ 得

 $X = f'(t)\cos t + f(t)$.由于曲线 $L = f(t)\cos t + f(t)\cos t + f(t)$.由于曲线 $L = f(t)\cos t + f(t)\cos t + f(t)$.由于曲线 $L = f(t)\cos t + f(t)\cos t + f(t)$.由于曲线 $L = f(t)\cos t + f(t)\cos t + f(t)$.由于曲线 $L = f(t)\cos t + f(t)$

故 有
$$[f'(t)\cot t + f(t) - f(t)]^2 + \cos^2 t = 1$$
 , 又 因 为

$$f'(t) > 0(0 < t < \frac{\pi}{2})$$

所以 $f'(t) = \frac{\sin t}{\cot t}$, 两边同时取不定积分可得

 $f(t) = \ln \left| \sec t + \tan t \right| - \sin t + C$, 又由于 f(0) = 0 ,所以 C = 0 . 故函数

$$f(t) = \ln \left| \sec t + \tan t \right| - \sin t.$$

(2) 此曲线L与x轴和y轴的所围成的无边界的区域的面积为:

$$S = \int_0^{\frac{\pi}{2}} \cos t \cdot f'(t) dt = \frac{\pi}{4}.$$

(19) (本题满分10分)

已知 L 是第一象限中从点(0,0) 沿圆周 $x^2 + y^2 = 2x$ 到点(2,0), 再沿圆周 $x^2 + y^2 = 4$ 到 点 (0,2) 的 曲 线 段 , 计 算 曲 线 积 分 $J = \int_{T} 3x^2 y dx + \left(x^2 + x - 2y\right) dy .$

【解析】: 设圆 $x^2 + y^2 = 2x$ 为圆 C_1 ,圆 $x^2 + y^2 = 4$ 为圆 C_2 , 下补线利用格林 公式即可,设所补直线 L_1 为 x = 0 ($0 \le y \le 2$),下用格林格林公式得:原式 $= \int_{L+L_1} 3x^2 y dx + (x^3 + x - 2y) dy - \int_{L_1} 3x^2 y dx + (x^3 + x - 2y) dy$ $= \iint_{S} (3x^2 + 1 - 3x^2) dx dy - \int_{2}^{0} -2y dy$ $=\frac{1}{4}S_{C_2}-\frac{1}{2}S_{C_1}+4=\frac{\pi}{2}-4$

设
$$A = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$

(I) 求 A

(II) 已知线性方程组 Ax = b 有无穷多解,求a,并求 Ax = b 的通解。

$$\begin{array}{c} (1) = \sum_{n=0}^{\infty} \frac{2n+1}{2n+1} & (1) = \sum_{n=0}^{\infty} \frac{4n^2+4n+3}{2n+1} x^{2n} \cdot \frac{1}{x} \\ (18) (本 题满分 10 分) \\ (18) (本 题满分 10 分) \\ (19) = 0, \ f(t) > 0 & 0 < t < \frac{\pi}{2} \end{pmatrix}, \ \ \text{其中函数 } f(t) \ \ \text{具有连续导数}, \ \ \text{且} \\ (19) = 0, \ \ f(t) > 0 & 0 < t < \frac{\pi}{2} \end{pmatrix}, \ \ \text{若曲线 L} \ \ \text{的表达式, 并求此曲线 L} \ \ \text{与 x 轴与 y 轴无边界的区域的} \\ (10) = 0, \ \ \text{可能}. \end{array}$$

可知当要使得原线性方程组有无穷多解,则有 $1-a^4=0$ 及 $-a-a^2=0$,可知

形得
$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

可知导出组的基础解系为 $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, 非齐次方程的特解为 $\begin{bmatrix} 0\\-1\\0\\0 \end{bmatrix}$, 故其通解为 $\alpha_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\alpha_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, $\alpha_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\1\\2 \end{bmatrix}$

$$k \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$

线性方程组 Ax = b 存在 2 个不同的解,有|A| = 0.

即:
$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1) = 0$$
,得 $\lambda = 1$ 或 -1 .

当
$$\lambda = 1$$
时, $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 1 \end{pmatrix}$,显然不符,故 $\lambda = -1$.

(21) (本题满分 10 分) 三阶矩阵
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \end{pmatrix}$$
, A^T 为矩阵 A 的转置,

已知 $r(A^T A) = 2$,且二次型 $f = x^T A^T A x$ 。

- 1) 求*a*
- 2) 求二次型对应的二次型矩阵,并将二次型化为标准型,写出正交变换过程。

【解析】: 1) 由 $r(A^T A) = r(A) = 2$ 可得,

$$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \end{vmatrix} = a + 1 = 0 \Rightarrow a = -1$$

2)
$$f = x^{T} A^{T} A x = (x_{1}, x_{2}, x_{3}) \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$
$$= 2x^{2} + 2x^{2} + 4x^{2} + 4x^{$$

$$=2x_1^2 + 2x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_2x_3$$

则矩阵
$$B = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$

$$|\lambda E - B| = \begin{vmatrix} \lambda - 2 & 0 & -2 \\ 0 & \lambda - 2 & -2 \\ -2 & -2 & \lambda - 4 \end{vmatrix} = \lambda (\lambda - 2)(\lambda - 6) = 0$$

解得 B 矩阵的特征值为: $\lambda_1 = 0; \lambda_2 = 2; \lambda_3 = 6$

对于
$$\lambda_1 = 0$$
,解 $(\lambda_1 E - B)X = 0$ 得对应的特征向量为: $\eta_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$

对于
$$\lambda_2 = 2$$
,解 $(\lambda_2 E - B)X = 0$ 得对应的特征向量为: $\eta_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

对于
$$\lambda_3=6$$
,解 $(\lambda_3E-B)X=0$ 得对应的特征向量为: $\eta_3=\begin{pmatrix}1\\1\\2\end{pmatrix}$

将 η_1 , η_2 , η_3 单位化可得:

$$\alpha_{1} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \quad \alpha_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \alpha_{3} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

 $Q = (\alpha_1, \alpha_2, \alpha_3)$

(22)(本题满分10分)

已知随机变量X,Y以及XY的分布律如下表所示,

X	0	1	2
P	1/2	1/3	1/6

Y	0	1	2
P	1/3	1/3	1/3

XY	0	1	2	4
P	7/12	1/3	0	1/12

求: (1)
$$P(X = 2Y)$$
;

(2) $\operatorname{cov}(X-Y,Y) = \rho_{XY}$

【解析】:

=/N; V; =-			
X	0	1	2
P	1/2	1/3	1/6

Y	0	1	2
P	1/3	1/3	1/3

XY	0	1	2	4
P	7/12	1/3	0	1/12

(1)
$$P(X = 2Y) = P(X = 0, Y = 0) + P(X = 2, Y = 1) = \frac{1}{4} + 0 = \frac{1}{4}$$

(2)
$$\operatorname{cov}(X-Y,Y) = \operatorname{cov}(X,Y) - \operatorname{cov}(Y,Y)$$

$$cov(X,Y) = EXY - EXEY$$
 , \ddagger

$$EX = \frac{2}{3}, EX^2 = 1, EY = 1, EY^2 = \frac{5}{3}, DX = EX^2 - (EX)^2 = 1 - \frac{4}{9} = \frac{5}{9}$$

$$DY = EY^2 - (EY)^2 = \frac{5}{3} - 1 = \frac{2}{3}, EXY = \frac{2}{3}$$

所以,
$$\operatorname{cov}(X,Y) = 0$$
, $\operatorname{cov}(Y,Y) = DY = \frac{2}{3}$

$$cov(X-Y,Y) = -\frac{2}{3}, \rho_{XY} = 0.$$

(23)(本题满分11分)

设随机变量 X 与 Y 相互独立且分别服从正态分布 $N\left(\mu,\sigma^2\right)$ 与 $N\left(\mu,2\sigma^2\right)$, 其中 σ 是未知参数且 $\sigma > 0$,设Z = X - Y,

- (1) 求z的概率密度 $f(z,\sigma^2)$;
- (2) 设 $z_1, z_2, \cdots z_n$ 为来自总体 Z 的简单随机样本,求 σ^2 的最大似然估计量
- (3) 证明 σ^2 为 σ^2 的无偏估计量。

【解析】: (1) 因为 $X \sim N(\mu, \sigma^2), Y \sim N(\mu, 2\sigma^2)$, 且X 与 Y相互独立, 故 $Z = X - Y \sim N(0, 5\sigma^2),$

所以,
$$Z$$
的概率密度为 $f(z,\sigma^2) = \frac{1}{\sqrt{10\pi\sigma}} e^{-\frac{z^2}{10\sigma^2}}, (-\infty < z < +\infty)$

(2) 似然函数

$$L(\sigma^{2}) = \prod_{i=1}^{n} f(z_{i}, \sigma^{2}) = \frac{1}{\left(10\pi\right)^{\frac{n}{2}} \left(\sigma^{2}\right)^{\frac{n}{2}}} e^{-\frac{1}{10\sigma^{2}} \sum_{i=1}^{n} z_{i}^{2}} = \left(10\pi\right)^{-\frac{n}{2}} \left(\sigma^{2}\right)^{-\frac{n}{2}} e^{-\frac{1}{10\sigma^{2}} \sum_{i=1}^{n} z_{i}^{2}}$$

$$\ln L(\sigma^2) = -\frac{n}{2} \ln (10\pi) - \frac{n}{2} \ln (\sigma^2) - \frac{1}{10\sigma^2} \sum_{i=1}^n z_i^2$$

$$\frac{d \ln L(\sigma^2)}{d\sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{10(\sigma^2)^2} \sum_{i=1}^n z_i^2 = 0$$

解得最大似然估计值为 $\hat{\sigma}^2 = \frac{1}{5n} \sum_{i=1}^n z_i^2$,

最大似然估计量为 $\hat{\sigma}^2 = \frac{1}{5n} \sum_{i=1}^n Z_i^2$

$$E(\hat{\sigma}^2) = E\left(\frac{1}{5n}\sum_{i=1}^n Z_i^2\right) = \frac{1}{5n}\sum_{i=1}^n EZ_i^2 = \frac{1}{5n}\sum_{i=1}^n \left[\left(EZ_i\right)^2 + DZ_i\right] = \frac{1}{5n}\sum_{i=1}^n 5\sigma^2 = \sigma^2$$

故 $\hat{\sigma}^2$ 为 σ^2 的无偏估计量。

数学(一)试卷

- 一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)
- (2)由曲线 $y = \ln x$ 与两直线 y = e + 1 x 及 y = 0 所围成的平面图形的面积是
- (3)与两直线 $\begin{cases} x=1 \\ y=-1+t \ \mathcal{D} \ \frac{x+1}{1} = \frac{y+2}{1} = \frac{z+1}{1} \ \text{都平行且过原} \end{cases}$ 点的平面方程为 z=2+t
- (4) 设 L 为 取 正 向 的 圆 周 $x^2 + y^2 = 9$, 则 曲 线 积 分 $\mathbf{\tilde{N}}(2xy 2y)dx + (x^2 4x)dy = \underline{\hspace{1cm}} .$
- (5) 已 知 三 维 向 量 空 间 的 基 底 为 $\alpha_1 = (1,1,0), \alpha_2 = (1,0,1), \alpha_3 = (0,1,1),$ 则向量 $\beta = (2,0,0)$ 在此基底

二、(本题满分8分)

求正的常数 a = b, 使等式 $\lim_{x \to 0} \frac{1}{bx - \sin x} \int_0^x \frac{t^2}{\sqrt{a + t^2}} dt = 1$ 成立.

三、(本题满分7分)

(1)设 f 、 g 为连续可微函数 ,u = f(x, xy), v = g(x + xy), 求 $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}.$

(2) 设矩阵 \mathbf{A} 和 \mathbf{B} 满足关系式 $\mathbf{AB} = \mathbf{A} + 2\mathbf{B}$, 其中

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}, 求矩阵 \mathbf{B}.$$

四、(本题满分8分)

求微分方程 $y''' + 6y'' + (9 + a^2)y' = 1$ 的通解,其中常数 a > 0.

五、选择题(本题共 4 小题,每小题 3 分,满分 12 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)设
$$\lim_{x\to a} \frac{f(x) - f(a)}{(x-a)^2} = -1$$
, 则在 $x = a$ 处

(A) f(x) 的导数存在,且 $f'(a) \neq 0$

(B) f(x) 取

得极大值

(C) f(x) 取得极小值

(D) f(x) 的

导数不存在

(2)设 f(x) 为已知连续函数 $I = t \int_0^{\frac{s}{t}} f(tx) dx$, 其中 t > 0, s > 0, 则 I 的值

(A)依赖于s和t

(B)依赖于 s、

 $t \, \pi x$

(C)依赖于t、x,不依赖于s

(D)依赖于 s,

不依赖于 t

(3)设常数 k > 0,则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{k+n}{n^2}$

(A)发散

(B)绝对收敛

(C)条件收敛

(D)散敛性与

k 的取值有关

(4)设 **A** 为 *n* 阶方阵,且 **A** 的行列式 $|\mathbf{A}| = a \neq 0$,而 $\mathbf{A}^* \in \mathbf{A}$ 的

伴随矩阵,则 $|\mathbf{A}^*|$ 等于

(A) *a*

(B) $\frac{1}{a}$

(C) a^{n-1}

(D) a^n

六、(本题满分10分)

求幂级数 $\sum_{n=1}^{\infty} \frac{1}{ng^n} x^{n-1}$ 的收敛域,并求其和函数.

七、(本题满分10分)

求曲面积分

$$I = \iint\limits_{\Sigma} x(8y+1)dydz + 2(1-y^2)dzdx - 4yzdxdy,$$

其中 Σ 是由曲线 $f(x) = \begin{cases} z = \sqrt{y-1} & 1 \le y \le 3 \\ x = 0 \end{cases}$ 绕 y 轴旋转一周而

成的曲面,其法向量与 y 轴正向的夹角恒大于 $\frac{\pi}{2}$.

八、(本题满分10分)

设函数 f(x) 在闭区间 [0,1] 上可微,对于 [0,1] 上的每一个 x,函数 f(x) 的值都在开区间 (0,1) 内,且 $f'(x) \neq 1$,证明在 (0,1) 内有且仅有一个 x,使得 f(x) = x.

九、(本题满分8分)

问 a,b 为何值时,现线性方程组

$$x_{1} + x_{2} + x_{3} + x_{4} = 0$$

$$x_{2} + 2x_{3} + 2x_{4} = 1$$

$$-x_{2} + (a - 3)x_{3} - 2x_{4} = b$$

$$3x_{1} + 2x_{2} + x_{3} + ax_{4} = -1$$

有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.

十、填空题(本题共 3 小题,每小题 2 分,满分 6 分.把答案填在题中横线上)

- (1)设在一次实验中,事件 A 发生的概率为 p,现进行 n 次独立试验,则 A 至少发生一次的概率为______;而事件 A 至多发生一次的概率为______.
- (2)有两个箱子,第1个箱子有3个白球,2个红球,第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为______.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为_____.
- (3) 已 知 连 续 随 机 变 量 X 的 概 率 密 度 函 数 为 $f(x) = \frac{1}{\sqrt{\pi}} e^{-x^2 + 2x 1}, 则 X 的数学期望为______, X 的方差为$

十一、(本题满分6分)

设随机变量 X,Y 相互独立,其概率密度函数分别为

$$f_X(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \cancel{x} : \overrightarrow{C} \end{cases}, f_Y(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}, \qquad \left\{ \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases} \right.$$

求 Z = 2X + Y 的概率密度函数.

数学(一)试卷

- 一、(本题共3小题,每小题5分,满分15分)
- (1)求幂级数 $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n3^n}$ 的收敛域.
- (2)设 $f(x) = e^{x^2}$, $f[\varphi(x)] = 1 x$ 且 $\varphi(x) \ge 0$, 求 $\varphi(x)$ 及其定义域.
- (3) 设 Σ 为 曲 面 $x^2 + y^2 + z^2 = 1$ 的 外 侧 , 计 算 曲 面 积 分 $I = \bigoplus_{\Sigma} x^3 dy dz + y^3 dz dx + z^3 dx dy.$
- 二、填空题(本题共 4 小题,每小题 3 分,满分 12 分.把答案填在题中横线上)

(1)若
$$f(t) = \lim_{x \to \infty} t(1 + \frac{1}{x})^{2tx}$$
,则 $f'(t) =$ ______.

(2)设
$$f(x)$$
 连续且 $\int_0^{x^3-1} f(t)dt = x$,则 $f(7) =$ ______.

(3)设周期为 2 的周期函数,它在区间 (-1,1] 上定义为 f(x)

(4) 设 4 阶 矩 阵 $\mathbf{A} = [\alpha, \gamma_2, \gamma_3, \gamma_4], \mathbf{B} = [\beta, \gamma_2, \gamma_3, \gamma_4],$ 其 中 $\alpha, \beta, \gamma_2, \gamma_3, \gamma_4$ 均为 4 维列向量,且已知行列式 $|\mathbf{A}| = 4, |\mathbf{B}| = 1,$ 则行列式 $|\mathbf{A} + \mathbf{B}| =$ ______.

三、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)设 f(x) 可导且 $f'(x_0) = \frac{1}{2}$, 则 $\Delta x \to 0$ 时,f(x) 在 x_0 处的微 分 dy 是

(A)与 Δx 等价的无穷小 (B) 与 Δx 同 阶的无穷小

(C)比 Δx 低阶的无穷小 (D) 比 Δx 高 阶的无穷小

(2) 设 y = f(x) 是 方程 y'' - 2y' + 4y = 0 的 一 个 解 且 $f(x_0) > 0, f'(x_0) = 0, 则函数 f(x) 在点 x_0 处$

(A)取得极大值

(B)取得极小

值

(C)某邻域内单调增加

(D)某邻域内

单调减少

(3) 设

X

域

 $\Omega: x^2 + y^2 + z^2 \le R^2, z \ge 0, \Omega_2: x^2 + y^2 + z^2 \le R^2, x \ge 0, y \ge 0, z \ge 0,$

$$(A) \iiint_{\Omega} x dv = 4 \iiint_{\Omega_{2}} dv \tag{B}$$

$$\iiint_{\Omega} y dv = 4 \iiint_{\Omega_2} y dv$$

$$\iiint_{\Omega_{1}} y dv = 4 \iiint_{\Omega_{2}} y dv$$

$$(C) \iiint_{\Omega_{1}} z dv = 4 \iiint_{\Omega_{2}} z dv$$
(D)

$$\iiint_{\Omega_{1}} xyzdv = 4 \iiint_{\Omega_{2}} xyzdv$$

(4)设幂级数 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 在 x=-1 处收敛,则此级数在 x=2 处

(A)条件收敛

(B)绝对收敛

(C)发散

(D)收敛性不

能确定

- (5) n 维向量组 α_1, α_2, L , α_s ($3 \le s \le n$) 线性无关的充要条件是
- (A) 存在一组不全为零的数 k_1,k_2,L_1,k_2 ,使

 $k_1 \alpha_1 + k_2 \alpha_2 + L + k_3 \alpha_4 \neq 0$

(B) α_1, α_2, L , α_s 中任意两个向量均线性无关

(C) α_1, α_2, L , α_s 中存在一个向量不能用其余向量线性表示

(D) α_1, α_2, L , α_s 中存在一个向量都不能用其余向量线性表示

四、(本题满分6分)

设 $u = yf(\frac{x}{y}) + xg(\frac{y}{x})$,其中函数 f、 g 具有二阶连续导数,求

$$x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial x \partial y}.$$

五、(本题满分8分)

设函数 y = y(x)满足微分方程 $y'' - 3y' + 2y = 2e^x$, 其图形在点 (0,1) 处的切线与曲线 $y=x^2-x-1$ 在该点处的切线重合,求函数 y = y(x).

六、(本题满分9分)

设位于点(0,1)的质点 A 对质点 M 的引力大小为 $\frac{k}{r^2}(k>0$ 为常数,r 为 A 质点与 M 之间的距离),质点 M 沿直线 $y=\sqrt{2x-x^2}$ 自 B(2,0) 运动到 O(0,0),求在此运动过程中质点 A 对质点 M 的引力所作的功.

七、(本题满分6分)

已知 **AP**=**BP**, 其中 **B**=
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
, **P**= $\begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$, 求

 \mathbf{A}, \mathbf{A}^5 .

八、(本题满分8分)

已知矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix}$$
与 $\mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{bmatrix}$ 相似.

- (1)求 *x* 与 *y*.
- (2)求一个满足 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$ 的可逆阵 \mathbf{P} .

九、(本题满分9分)

设函数 f(x) 在区间 [a,b] 上连续,且在 (a,b) 内有 f'(x) > 0,证明:在 (a,b) 内存在唯一的 ξ ,使曲线 y = f(x) 与两直线 $y = f(\xi), x = a$ 所围平面图形面积 S_1 是曲线 y = f(x) 与两直线 $y = f(\xi), x = b$ 所围平面图形面积 S_2 的 3 倍.

十、填空题(本题共 3 小题,每小题 2 分,满分 6 分.把答案填在题中横线上)

(1)设在三次独立试验中,事件 A 出现的概率相等,若已知 A 至少出现一次的概率等于 $\frac{19}{27}$,则事件 A 在一次试验中出现的概率是

(2)若在区间(0,1)内任取两个数,则事件"两数之和小于 $\frac{6}{5}$ "的概率为

(3)设随机变量 X 服从均值为 10,均方差为 0.02 的正态分布,已知

$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du, \phi(2.5) = 0.9938,$$

则 X 落在区间(9.95,10.05)内的概率为______.

十一、(本题满分6分)

设随机变量 X 的概率密度函数为 $f_X(x) = \frac{1}{\pi(1-x^2)}$, 求随机变

量 $Y=1-\sqrt[3]{X}$ 的概率密度函数 $f_Y(y)$.

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

(1) 已知
$$f'(3) = 2$$
, 则 $\lim_{h\to 0} \frac{f(3-h)-f(3)}{2h} =$ _______.

(2) 设 f(x) 是连续函数,且 $f(x) = x + 2 \int_0^1 f(t) dt$,则 f(x)

=____

- (3) 设平面曲线 L 为下半圆周 $y = -\sqrt{1-x^2}$, 则曲线积分 $\int_L (x^2 + y^2) ds = \underline{\hspace{1cm}}.$
 - (4)向量场 $\operatorname{div} \boldsymbol{u}$ 在点 P(1,1,0) 处的散度 $\operatorname{div} \boldsymbol{u} =$

(5) 设矩阵
$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, 则矩阵 $(\mathbf{A} - 2\mathbf{I})^{-1}$$$

=____

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括

号内)

(1)当 x > 0 时,曲线 $y = x \sin \frac{1}{x}$

(A)有且仅有水平渐近线

(B)有且仅有

铅直渐近线

(C)既有水平渐近线,又有铅直渐近线 渐近线,又无铅直渐近线 (D)既无水平

(2)已知曲面 $z=4-x^2-y^2$ 上点 P 处的切平面平行于平面

2x+2y+z-1=0,则点的坐标是

$$(A)(1,-1,2)$$
 $(B)(-1,1,2)$

$$(C)(1,1,2)$$
 (D)

(-1, -1, 2)

(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数, 则该非齐次方程的通解是

(A)
$$c_1 y_1 + c_2 y_2 + y_3$$
 (B)

$$c_1 y_1 + c_2 y_2 - (c_1 + c_2) y_3$$

(C)
$$c_1 y_1 + c_2 y_2 - (1 - c_1 - c_2) y_3$$
 (D)

$$c_1 y_1 + c_2 y_2 + (1 - c_1 - c_2) y_3$$

(4) 设 数
$$f(x) = x^2, 0 \le x < 1$$
, 而

$$S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x, -\infty < x < +\infty, \sharp +\infty$$

$$b_n = 2\int_0^1 f(x) \sin n\pi x dx, n = 1, 2, 3, L, \text{ M } S(-\frac{1}{2})$$
 等于

(A)
$$-\frac{1}{2}$$

$$(B) - \frac{1}{4}$$

$$(C)\frac{1}{4}$$

$$(D)\frac{1}{2}$$

(5)设 **A** 是 n 阶矩阵,且 **A** 的行列式 $|\mathbf{A}| = 0$,则 **A** 中

(A)必有一列元素全为 0 元素对应成比例 (B)必有两列

(C)必有一列向量是其余列向量的线性组合

(D)任一列向

量是其余列向量的线性组合

三、(本题共3小题,每小题5分,满分15分)

(1)设
$$z = f(2x - y) + g(x, xy)$$
, 其中函数 $f(t)$ 二阶可导, $g(u, v)$

具有连续二阶偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

(2)设曲线积分 $\int_c xy^2 dx + y\varphi(x)dy$ 与路径无关,其中 $\varphi(x)$ 具有连

续的导数,且 $\varphi(0)=0$, 计算

$$\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy$$
的值.

(3)计算三重积分
$$\iint_{\Omega} (x+z)dv$$
, 其中 Ω 是由曲面 $z=\sqrt{x^2+y^2}$ 与 $z=\sqrt{1-x^2-y^2}$ 所围成的区域.

四、(本题满分6分)

将函数
$$f(x) = \arctan \frac{1+x}{1-x}$$
 展为 x 的幂级数.

五、(本题满分7分)

设
$$f(x) = \sin x - \int_0^x (x-t)f(t)dt$$
, 其中 f 为连续函数, 求 $f(x)$.

六、(本题满分7分)

证明方程 $\ln x = \frac{x}{e} - \int_0^\pi \sqrt{1 - \cos 2x} dx$ 在区间 $(0, +\infty)$ 内有且仅有两个不同实根.

七、(本题满分6分)

问 λ 为何值时,线性方程组

$$x_1 + x_3 = \lambda$$

$$4x_1 + x_2 + 2x_3 = \lambda + 2$$

$$6x_1 + x_2 + 4x_3 = 2\lambda + 3$$

有解,并求出解的一般形式.

八、(本题满分8分)

假设 λ 为 n 阶可逆矩阵 **A** 的一个特征值,证明

- (1) $\frac{1}{\lambda}$ 为 \mathbf{A}^{-1} 的特征值.
- (2) $\frac{|\mathbf{A}|}{\lambda}$ 为 **A** 的伴随矩阵 **A*** 的特征值.

九、(本题满分9分)

设半径为 R 的球面 Σ 的球心在定球面 $x^2 + y^2 + z^2 = a^2 (a > 0)$ 上,问当 R 为何值时,球面 Σ 在定球面内部的那部分的面积最大?

十、填空题(本题共 3 小题,每小题 2 分,满分 6 分.把答案填在题中横线上)

(1)已知随机事件 A 的概率 P(A) = 0.5, 随机事件 B 的概率 $P(B) = 0.6 及条件概率 P(B|A) = 0.8, 则和事件 AUB 的概率 P(AUB) = _____.$

- (2)甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6 和 0.5,现已知目标被命中,则它是甲射中的概率为_____.
- (3)若随机变量 ξ 在 (1,6) 上服从均匀分布,则方程 $x^2 + \xi x + 1 = 0$ 有实根的概率是

十一、(本题满分6分)

设随机变量 X 与 Y 独立,且 X 服从均值为 1、标准差(均方差) 为 $\sqrt{2}$ 的 正态 分布,而 Y 服 从 标准 正态 分布. 试求 随机 变量 Z=2X-Y+3 的概率密度函数.

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

(1)过点
$$M(1,2-1)$$
 且与直线
$$\begin{cases} x = -t + 2 \\ y = 3t - 4$$
 垂直的平面方程是
$$z = t - 1$$

(2)设 *a* 为非零常数,则 $\lim_{x\to\infty} (\frac{x+a}{x-a})^x =$ ______.

(3)设函数
$$f(x) = \begin{cases} 1 & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$$
 ,则 $f[f(x)] =$ ______

(4)积分
$$\int_0^2 dx \int_x^2 e^{-y^2} dy$$
 的值等于______.

(5) 己 知 向 量 组

 $\alpha_1 = (1, 2, 3, 4), \alpha_2 = (2, 3, 4, 5), \alpha_3 = (3, 4, 5, 6), \alpha_4 = (4, 5, 6, 7),$

则该向量组的秩是_____.

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的

四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括 号内)

(1)设 f(x) 是连续函数,且 $F(x) = \int_{x}^{e^{-x}} f(t)dt$,则 F'(x)等于

(A)
$$-e^{-x} f(e^{-x}) - f(x)$$
 (B)

$$-\mathrm{e}^{-x}\,f(\mathrm{e}^{-x})+f(x)$$

(C)
$$e^{-x} f(e^{-x}) - f(x)$$
 (D)

$$e^{-x} f(e^{-x}) + f(x)$$

(2)已知函数 f(x) 具有任意阶导数,且 $f'(x) = [f(x)]^2$,则当 n为大于 2 的正整数时, f(x) 的 n 阶导数 $f^{(n)}(x)$ 是

(A)
$$n![f(x)]^{n+1}$$
 (B)

 $n[f(x)]^{n+1}$

$$(C) \left[f(x) \right]^{2n} \tag{D}$$

 $n![f(x)]^{2n}$

(3)设
$$a$$
 为常数,则级数 $\sum_{n=1}^{\infty} \left[\frac{\sin(na)}{n^2} - \frac{1}{\sqrt{n}} \right]$

(A)绝对收敛

(B)条件收敛

(C)发散

(D)收敛性与

a 的取值有关

(4) 已知 f(x) 在 x=0 的某个邻域内连续,且

$$f(0) = 0$$
, $\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = 2$, 则在点 $x = 0$ 处 $f(x)$ (B) 可导,且 $f'(0) \neq 0$

(C)取得极大值 (D)取得极小 值

(5)已知 $\boldsymbol{\beta}_1$ 、 $\boldsymbol{\beta}_2$ 是非齐次线性方程组 $\mathbf{AX}=\boldsymbol{b}$ 的两个不同的解, $\boldsymbol{\alpha}_1$ 、 $\boldsymbol{\alpha}_2$ 是对应其次线性方程组 $\mathbf{AX}=\boldsymbol{0}$ 的基础解析, k_1 、 k_2 为任意常数,则方程组 $\mathbf{AX}=\boldsymbol{b}$ 的通解(一般解)必是

(A)
$$k_1 \boldsymbol{\alpha}_1 + k_2 (\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) + \frac{\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2}{2}$$
 (B)

$$k_1\boldsymbol{\alpha}_1 + k_2(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2) + \frac{\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2}{2}$$

(C)
$$k_1 \alpha_1 + k_2 (\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
 (D)

$$k_1\boldsymbol{\alpha}_1 + k_2(\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2) + \frac{\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2}{2}$$

三、(本题共3小题,每小题5分,满分15分)

(2)设 $z = f(2x - y, y \sin x)$, 其中 f(u, v) 具有连续的二阶偏导

数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

(3)求微分方程 $y'' + 4y' + 4y = e^{-2x}$ 的通解(一般解).

四、(本题满分6分)

求幂级数 $\sum_{n=0}^{\infty} (2n+1)x^n$ 的收敛域,并求其和函数.

五、(本题满分8分)

求曲面积分

$$I = \iint_{S} yzdzdx + 2dxdy$$

其中 S 是球面 $x^2 + y^2 + z^2 = 4$ 外侧在 $z \ge 0$ 的部分.

六、(本题满分7分)

设不恒为常数的函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,且 f(a)=f(b).证明在 (a,b) 内至少存在一点 ξ , 使得 $f'(\xi)>0$.

七、(本题满分6分)

设四阶矩阵

$$\mathbf{B} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

且矩阵 A 满足关系式

$$\mathbf{A}(\mathbf{E} - \mathbf{C}^{-1}\mathbf{B})'\mathbf{C}' = \mathbf{E}$$

其中 \mathbf{E} 为四阶单位矩阵, \mathbf{C}^{-1} 表示 \mathbf{C} 的逆矩阵, \mathbf{C}' 表示 \mathbf{C} 的转置矩阵,将上述关系式化简并求矩阵 \mathbf{A} .

八、(本题满分8分)

求 一 个 正 交 变 换 化 二 次 型 $f = x_1^2 + 4x_2^2 + 4x_3^2 - 4x_1x_2 + 4x_1x_3 - 8x_2x_3$ 成标准型.

九、(本题满分8分)

质点 *P* 沿着以 *AB* 为直径的半圆周,从点 *A*(1,2)运动到点 *B*(3,4)

的过程中受变力 $\stackrel{1}{F}$ 作用(见图). $\stackrel{1}{F}$ 的大小等于点 P 与原点 O 之间的距离,其方向垂直于线段 OP 且与 y 轴正向的夹角小于 $\frac{\pi}{2}$. 求变力 $\stackrel{1}{F}$ 对质点

P 所作的功.

十、填空题(本题共 3 小题,每小题 2 分,满分 6 分.把答案填在题中横线上)

(1)已知随机变量 X 的概率密度函数

$$f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$$

则 X 的概率分布函数 F(x)=______.

(2)设随机事件 A、 B 及其和事件的概率分别是 0.4、 0.3 和 0.6, 若 \bar{B} 表示 B 的 对 立 事件,那 么 积 事件 $A\bar{B}$ 的 概 率 $P(A\bar{B})$

(3)已知离散型随机变量 X 服从参数为 2 的泊松 (Poisson) 分布,

即 $P{X = k} = \frac{2^k e^{-2}}{k!}, k = 0,1,2,L$,则随机变量 Z = 3X - 2的数学

期望*E*(Z)=_____.

十一、(本题满分6分)

设二维随机变量 (X,Y) 在区域 D:0<x<1,|y|< x 内服从均匀分布,求关于 X 的边缘概率密度函数及随机变量 Z=2X+1 的方差 D(Z).

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

(1)设
$$\begin{cases} x = 1 + t^2 \\ y = \cos t \end{cases}$$
 ,则
$$\frac{d^2 y}{dx^2} = \underline{\qquad}$$

(2)由方程 $xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$ 所确定的函数 z = z(x, y)

在点(1,0,-1)处的全微分dz =______

- (3) 已 知 两 条 直 线 的 方 程 是 $l_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}; l_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}.$ 则过 l_1 且平行于 l_2 的 平面方程是______.
- (4)已知当 $x \to 0$ 时, $(1+ax^2)^{\frac{1}{3}}-1$ 与 $\cos x-1$ 是等价无穷小,则常数 a=_____.

(5) 设 4 阶方阵
$$\mathbf{A} = \begin{bmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
, 则 \mathbf{A} 的逆阵 \mathbf{A}^{-1}

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)曲线
$$y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$$

(A)没有渐近线

(B)仅有水平

渐近线

(C)仅有铅直渐近线

(D)既有水平

渐近线又有铅直渐近线

(2)若连续函数 f(x)满足关系式 $f(x) = \int_0^{2\pi} f(\frac{t}{2})dt + \ln 2$, 则

f(x)等于

(A) $e^x \ln 2$

(B) $e^{2x} \ln 2$

(C) $e^{x} + \ln 2$

(D) $e^{2x} + \ln 2$

(3)已知级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n = 2, \sum_{n=1}^{\infty} a_{2n-1} = 5$$
,则级数 $\sum_{n=1}^{\infty} a_n$ 等于

$$(A)3$$
 $(B)7$

$$(C)8$$
 $(D)9$

(4)设 D 是平面 xoy 上以(1,1)、(-1,1) 和(-1,-1) 为顶点的三角

形区域, D_1 是 D 在第一象限的部分,则

$$\iint\limits_{D} (xy + \cos x \sin y) dx dy$$
 等于

$$(A) 2 \iint_{D_1} \cos x \sin y dx dy \tag{B}$$

$$2\iint_{D_1} xydxdy$$

(C)
$$4\iint_{D} (xy + \cos x \sin y) dxdy$$
 (D)0

(5)设n阶方阵A、B、C满足关系式ABC = E,其中E是n阶

单位阵,则必有

$$(A) \mathbf{ACB} = \mathbf{E} \tag{B}$$

CBA = E

$$(C) \mathbf{BAC} = \mathbf{E} \tag{D}$$

BCA = E

三、(本题共3小题,每小题5分,满分15分)

$$(1) 求 \lim_{x \to 0^+} (\cos \sqrt{x})^{\frac{\pi}{2}}.$$

(2)设 n 是曲面 $2x^2 + 3y^2 + z^2 = 6$ 在点 P(1,1,1) 处的指向外侧的

法向量,求函数 $u = \frac{\sqrt{6x^2 + 8y^2}}{z}$ 在点 P 处沿方向 $\frac{1}{n}$ 的方向导数.

(3)
$$\iint_{\Omega} (x^2 + y^2 + z) dv$$
, 其中 Ω 是由曲线
$$\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$$
 绕 z 轴 旋 转

一周而成的曲面与平面 z=4 所围城的立体.

四、(本题满分6分)

过点 O(0,0) 和 $A(\pi,0)$ 的曲线族 $y = a \sin x (a > 0)$ 中,求一条曲

线L,使沿该曲线O从到A的积分

$$\int_{L} (1+y^3) dx + (2x+y) dy$$
 的值最小.

五、(本题满分8分)

将函数 $f(x) = 2 + |x|(-1 \le x \le 1)$ 展开成以 2 为周期的傅里叶级

数,并由此求级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和.

六、(本题满分7分)

设函数 f(x) 在 [0,1] 上连续,(0,1) 内可导,且

 $3\int_{\frac{2}{3}}^{1} f(x)dx = f(0)$,证明在(0,1)内存在一点c,使f'(c) = 0.

七、(本题满分8分)

己

知

 $\alpha_1 = (1,0,2,3), \alpha_2 = (1,1,3,5), \alpha_3 = (1,-1,a+2,1), \alpha_4 = (1,2,4,a+8)$ $\mathcal{R} \beta = (1,1,b+3,5).$

- (1) a、b为何值时, β 不能表示成 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的线性组合?
- (2) a、b 为何值时, β 有 α_1 , α_2 , α_3 , α_4 的唯一的线性表示式?写出该表示式.

八、(本题满分6分)

设 \mathbf{A} 是 n 阶正定阵 , \mathbf{E} 是 n 阶单位阵,证明 \mathbf{A} + \mathbf{E} 的行列式大于 1.

九、(本题满分8分)

在上半平面求一条向上凹的曲线,其上任一点 P(x, y) 处的曲率

等于此曲线在该点的法线段 PQ 长度的倒数(Q 是法线与 x 轴的交点),且曲线在点(1,1) 处的切线与 x 轴平行.

十、填空题(本题共 2 小题,每小题 3 分,满分 6 分.把答案填在题中横线上)

- (1)若随机变量 X 服从均值为 2、方差为 σ^2 的正态分布,且 $P\{2 < X < 4\} = 0.3$,则 $P\{X < 0\} =$ ______.
- (2)随机地向半圆 $0 < y < \sqrt{2ax x^2}$ (a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与 x 轴的夹角小于 $\frac{\pi}{4}$ 的概率为_____.

十一、(本题满分6分)

设二维随机变量(X,Y)的密度函数为

$$f(x,y) = \begin{cases} 2e^{-(x+2y)} & x > 0, y > 0 \\ 0 & \text{ #$\dot{\mathbb{C}}$} \end{cases}$$

求随机变量 Z = X + 2Y 的分布函数.

数学(一)试卷

- 一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)
- (1) 设函数 y = y(x) 由方程 $e^{x+y} + \cos(xy) = 0$ 确定,则 $\frac{dy}{dx}$
- (2) 函 数 $u = \ln(x^2 + y^2 + z^2)$ 在 点 M(1,2,-2) 处 的 梯 度 $\operatorname{grad} u|_{M} =$ _____.
 - (3)设 $f(x) = \begin{cases} -1 & -\pi < x \le 0 \\ 1 + x^2 & 0 < x \le \pi \end{cases}$,则其以 2π 为周期的傅里叶

级数在点 $x = \pi$ 处收敛于_____.

(4) 微分方程 $y' + y \tan x = \cos x$ 的通解为 y =

(5) 设
$$\mathbf{A} = \begin{bmatrix} a_1b_1 & a_1b_2 & \mathbf{L} & a_1b_n \\ a_2b_1 & a_2b_1 & \mathbf{L} & a_2b_n \\ \mathbf{L} & \mathbf{L} & \mathbf{L} & \mathbf{L} \\ a_nb_1 & a_nb_2 & \mathbf{L} & a_nb_n \end{bmatrix},$$
 其 中

 $a_i \neq 0, b_i \neq 0, (i = 1, 2, L, n)$. 则矩阵 **A** 的秩 $r(\mathbf{A}) = \underline{\hspace{1cm}}$.

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)当
$$x \to 1$$
 时,函数 $\frac{x^2 - 1}{x - 1} e^{\frac{1}{x - 1}}$ 的极限

(A)等于 2

(B)等于 0

(C)为 ∞

(D)不存在但

不为∞

(2)级数
$$\sum_{n=1}^{\infty} (-1)^n (1 - \cos \frac{a}{n})$$
 (常数 $a > 0$)

(A)发散

(B)条件收敛

(C)绝对收敛

(D)收敛性与

a 有关

(3) 在曲线 $x = t, y = -t^2, z = t^3$ 的所有切线中,与平面

x+2y+z=4 平行的切线

(A)只有1条

(B)只有 2 条

(C)至少有3条

(D)不存在

(4)设 $f(x) = 3x^3 + x^2 |x|$,则使 $f^{(n)}(0)$ 存在的最高阶数n为

(A)0

(B)1

(C)2

(D)3

(5)要使
$$\boldsymbol{\xi}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
, $\boldsymbol{\xi}_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ 都是线性方程组 $\mathbf{AX} = \mathbf{0}$ 的解,只要

系数矩阵 A 为

$$(A) \begin{bmatrix} -2 & 1 & 2 \end{bmatrix} \tag{B}$$

$$\begin{bmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -1 \\ 4 & -2 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

三、(本题共3小题,每小题5分,满分15分)

(1)
$$\Re \lim_{x\to 0} \frac{e^x - \sin x - 1}{1 - \sqrt{1 - x^2}}$$
.

(2)设 $z = f(e^x \sin y, x^2 + y^2)$,其中 f 具有二阶连续偏导数,求

$$\frac{\partial^2 z}{\partial x \partial y}.$$

(3)设
$$f(x) = \begin{cases} 1 + x^2 & x \le 0 \\ e^{-x} & x > 0 \end{cases}$$
,求 $\int_1^3 f(x-2) dx$.

四、(本题满分6分)

求微分方程 $y'' + 2y' - 3y = e^{-3x}$ 的通解.

五、(本题满分8分)

计 算 曲 面 积 分
$$\iint_{\Sigma} (x^3 + az^2) dy dz + (y^3 + ax^2) dz dx + (z^3 + ay^2) dx dy, 其中 \Sigma 为上半 球面 $z = \sqrt{a^2 - x^2 - y^2}$ 的上侧.$$

六、(本题满分7分)

设 f''(x) < 0, f(0) = 0, 证 明 对 任 何 $x_1 > 0, x_2 > 0$, 有 $f(x_1 + x_2) < f(x_1) + f(x_2).$

七、(本题满分8分)

在变力 F = yzi + zxj + xyk 的作用下,质点由原点沿直线运动到

椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上第一卦限的点 $M(\xi, \eta, \zeta)$, 问当 $\xi \setminus \eta \setminus \zeta$

取何值时,力 F 所做的功W 最大?并求出W 的最大值.

八、(本题满分7分)

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,向量组 $\alpha_2, \alpha_3, \alpha_4$ 线性无关,问:

- (1) α_1 能否由 α_2 , α_3 线性表出?证明你的结论.
- (2) α_4 能否由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出?证明你的结论.

九、(本题满分7分)

设 3 阶矩阵 **A** 的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$, 对应的特征向量 依次为

$$\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \xi_2 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \xi_3 = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}, 又向量 β = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

- (1)将 β 用 ξ_1, ξ_2, ξ_3 线性表出.
- (2)求 $\mathbf{A}^{n}\mathbf{\beta}(n$ 为自然数).

十、填空题(本题共 2 小题,每小题 3 分,满分 6 分.把答案填在题中横线上)

口 日 知
$$P(A) = P(B) = P(C) = \frac{1}{4}, P(AB) = 0, P(AC) = P(BC) = \frac{1}{6}, 则 事 件 A 、 B 、 C 全不发生的概率为_____.$$

(2)设随机变量 X 服从参数为 1 的指数分布,则数学期望 $E\{X + e^{-2X}\} =$ ______.

十一、(本题满分6分)

设随机变量 X 与 Y 独立 , X 服从正态分布 $N(\mu,\sigma^2)$, Y 服从 $[-\pi,\pi]$ 上的均匀分布,试求 Z=X+Y 的概率分布密度(计算结果用标准正态分布函数 Φ 表示,其中 $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}\mathrm{e}^{-\frac{t^2}{2}}\,dt)$.

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

(1) 函数
$$F(x) = \int_{1}^{x} (2 - \frac{1}{\sqrt{t}}) dt (x > 0)$$
 的 单 调 减 少 区 间 为

(2)由曲线 $\begin{cases} 3x^2 + 2y^2 = 12 \\ z = 0 \end{cases}$ 绕 y 轴旋转一周得到的旋转面在点

 $(0,\sqrt{3},\sqrt{2})$ 处的指向外侧的单位法向量为______.

(3)设函数 $f(x) = \pi x + x^2(-\pi < x < \pi)$ 的傅里叶级数展开式为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$
则其中系数 b_3 的值为______.

(4) 设数量场 $u = \ln \sqrt{x^2 + y^2 + z^2}$,则 div(grad u)

(5)设 n 阶矩阵 **A** 的各行元素之和均为零,且 **A** 的秩为n-1,则

线性方程组 $\mathbf{AX} = \mathbf{0}$ 的通解为 .

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)
$$\mbox{if } f(x) = \int_0^{\sin x} \sin(t^2) dt, g(x) = x^3 + x^4, \ \mbox{if } x \to 0 \ \mbox{if }$$

, f(x) 是 g(x) 的

(A)等价无穷小 (B)同价但非 等价的无穷小

(2)双纽线 $(x^2 + y^2)^2 = x^2 - y^2$ 所围成的区域面积可用定积分表示为

(A)
$$2\int_0^{\frac{\pi}{4}} \cos 2\theta d\theta$$
 (B)

$$4\int_0^{\frac{\pi}{4}}\cos 2\theta d\theta$$

(C)
$$2\int_0^{\frac{\pi}{4}} \sqrt{\cos 2\theta} d\theta$$
 (D)

$$\frac{1}{2} \int_0^{\frac{\pi}{4}} (\cos 2\theta)^2 d\theta$$

(3)设有直线
$$l_1: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$$
 与 $l_2: \left\{ \begin{array}{c} x-y=6 \\ 2y+z=3 \end{array} \right.$ 则 l_1 与

 l_2 的夹角为

(A) $\frac{\pi}{6}$

(B) $\frac{\pi}{4}$

(C) $\frac{\pi}{3}$

D) $\frac{\pi}{2}$

(4)设曲线积分 $\int_{L} [f(t) - e^{x}] \sin y dx - f(x) \cos y dy$ 与路径无关,

其中 f(x) 具有一阶连续导数,且 f(0) = 0,则 f(x)等于

$$(A) \frac{e^{-x} - e^x}{2}$$

 $(B)\frac{e^x - e^{-x}}{2}$

(C)
$$\frac{e^x + e^{-x}}{2} - 1$$
 (D)

 $1 - \frac{e^x + e^{-x}}{2}$

(5)已知
$$\mathbf{Q} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{bmatrix}$$
, **P** 为三阶非零矩阵,且满足 $\mathbf{PQ} = 0$,则

(A) t = 6 时 **P** 的秩必为 1

(B) t = 6 时

P的秩必为2

(C) $t \neq 6$ 时 **P**的秩必为 1

(D) *t* ≠ 6 时

P的秩必为2

三、(本题共3小题,每小题5分,满分15分)

$$(1) \stackrel{?}{R} \lim_{x \to \infty} \left(\sin \frac{2}{x} + \cos \frac{1}{x}\right)^{x}.$$

$$(2) 求 \int \frac{x e^x}{\sqrt{e^x - 1}} dx.$$

(3)求微分方程 $x^2y' + xy = y^2$,满足初始条件 $y|_{x=1} = 1$ 的特解.

四、(本题满分6分)

计算 $\oint_{\Sigma} 2xzdydz + yzdzdx - z^2dxdy$, 其中 Σ 是由曲面 $z = \sqrt{x^2 + y^2} \, \exists \, z = \sqrt{2 - x^2 - y^2} \, \text{所围立体的表面外侧}.$

五、(本题满分7分)

求级数
$$\sum_{n=0}^{\infty} \frac{(-1)^n (n^2 - n + 1)}{2^n}$$
 的和.

六、(本题共2小题,每小题5分,满分10分)

(1) 设 在 $[0,+\infty)$ 上 函 数 f(x) 有 连 续 导 数 ,且 $f'(x) \ge k > 0$,f(0) < 0,证明 f(x) 在 $(0,+\infty)$ 内有且仅有一个零点. (2)设 b > a > e,证明 $a^b > b^a$.

七、(本题满分8分)

已知二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+3x_3^2+2ax_2x_3(a>0)$ 通过正交变换化成标准形 $f=y_1^2+2y_2^2+5y_3^2$,求参数 a 及所用的正交变换矩阵.

八、(本题满分6分)

设 \mathbf{A} 是 $n \times m$ 矩阵 \mathbf{B} 是 $m \times n$ 矩阵,其中 n < m, \mathbf{I} 是 n 阶单位 矩阵,若 $\mathbf{AB} = \mathbf{I}$,证明 \mathbf{B} 的列向量组线性无关.

九、(本题满分6分)

设物体 A 从点 (0,1) 出发,以速度大小为常数 v 沿 y 轴正向运动. 物体 B 从点 (-1,0) 与 A 同时出发,其速度大小为 2v,方向始终指向 A, 试建立物体 B 的运动轨迹所满足的微分方程,并写出初始条件.

十、填空题(本题共 2 小题,每小题 3 分,满分 6 分.把答案填在题中横线上)

- (1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为
 - (2)设随机变量 X 服从(0,2)上的均匀分布,则随机变量 $Y = X^2$
- 在(0,4)内的概率分布密度 $f_v(y) =$ ______.

十一、(本题满分6分)

设随机变量 X 的概率分布密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$.

- (1)求 X 的数学期望 EX 和方差 DX.
- (2)求 X 与|X|的协方差,并问 X 与|X|是否不相关?
- (3)问 X 与 |X| 是否相互独立?为什么?

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

(1)
$$\lim_{x \to 0} \cot \pi (\frac{1}{\sin x} - \frac{1}{x}) = \underline{\hspace{1cm}}$$
.

(2) 曲面 $z-e^x+2xy=3$ 在点 (1,2,0) 处的切平面方程为

____·

(3) 设
$$u = e^{-x} \sin \frac{x}{y}$$
, 则 $\frac{\partial^2 u}{\partial x \partial y}$ 在 点 $(2, \frac{1}{\pi})$ 处 的 值 为

-----•

(4) 设区域
$$D$$
 为 $x^2 + y^2 \le R^2$, 则 $\iint_D (\frac{x^2}{a^2} + \frac{y^2}{b^2}) dx dy$

=____

(5)已知 $\alpha = [1,2,3], \beta = [1,\frac{1}{2},\frac{1}{3}],$ 设 $\mathbf{A} = \alpha'\beta$, 其中 α' 是 α 的转

置,则 **A**ⁿ =_____.

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的

四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括 号内)

(1) 设

$$M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos^4 x dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) dx, P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin^3 x - \cos^4 x) dx,$$

则有

$$(A) N < P < M \tag{B}$$

M < P < N

$$(C) N < M < P \tag{D}$$

P < M < N

(2)二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f'_x(x_0,y_0)$ 、

 $f_{y}'(x_{0}, y_{0})$ 存在是 f(x, y) 在该点连续的

(A)充分条件而非必要条件

(B)必要条件

而非充分条件

(C)充分必要条件

(D)既非充分

条件又非必要条件

(3)设常数
$$\lambda > 0$$
, 且级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛,则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{|a_n|}{\sqrt{n^2 + \lambda}}$

(A)发散

(B)条件收敛

(C)绝对收敛

(D)收敛性与

λ有关

(4)
$$\lim_{x\to 0} \frac{a \tan x + b(1-\cos x)}{c \ln(1-2x) + d(1-e^{-x^2})} = 2$$
, 其中 $a^2 + c^2 \neq 0$, 则必有

(A)
$$b = 4d$$
 (B) $b = -4d$

(C)
$$a = 4c$$
 (D) $a = -4c$

(5)已知向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,则向量组

(A)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$$
 线性无关 (B)

$$\mathbf{\alpha}_1 - \mathbf{\alpha}_2, \mathbf{\alpha}_2 - \mathbf{\alpha}_3, \mathbf{\alpha}_3 - \mathbf{\alpha}_4, \mathbf{\alpha}_4 - \mathbf{\alpha}_1$$
 线性无关

(C)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 - \alpha_1$$
 线性无关 (D)

$$\mathbf{\alpha}_1 + \mathbf{\alpha}_2, \mathbf{\alpha}_2 + \mathbf{\alpha}_3, \mathbf{\alpha}_3 - \mathbf{\alpha}_4, \mathbf{\alpha}_4 - \mathbf{\alpha}_1$$
 线性无关

三、(本题共3小题,每小题5分,满分15分)

的值.

(2)将函数 $f(x) = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \arctan x - x$ 展开成 x 的幂级数.

$$(3) \stackrel{\text{dx}}{=} \int \frac{dx}{\sin(2x) + 2\sin x}.$$

四、(本题满分6分)

计算曲面积分 $\iint_S \frac{xdydz + z^2dxdy}{x^2 + y^2 + z^2}$, 其中 S 是由曲面

 $x^2 + y^2 = R^2$ 及 z = R, z = -R(R > 0) 两平面所围成立体表面的外侧.

五、(本题满分9分)

设 f(x) 具 有 二 阶 连 续 函 数 ,f(0)=0,f'(0)=1, 且 $[xy(x+y)-f(x)y]dx+[f'(x)+x^2y]dy=0$ 为一全 微 分 方 程 , 求 f(x) 及此全微分方程的通解.

六、(本题满分8分)

设 f(x) 在点 x=0 的某一邻域内具有二阶连续导数,且 $\lim_{x\to 0}\frac{f(x)}{x}=0$,证明级数 $\sum_{n=1}^{\infty}f(\frac{1}{n})$ 绝对收敛.

七、(本题满分6分)

已知点 A 与 B 的直角坐标分别为 (1,0,0) 与 (0,1,1). 线段 AB 绕

x 轴旋转一周所成的旋转曲面为 S. 求由 S 及两平面 z = 0, z = 1 所 围成的立体体积.

八、(本题满分8分)

设四元线性齐次方程组(I)为
$$\begin{cases} x_1 + x_2 = 0 \\ x_2 - x_4 = 0 \end{cases}$$

又已知某线性齐次方程组(II)的通解为 $k_1(0,1,1,0)+k_2(-1,2,2,1)$.

- (1)求线性方程组(I)的基础解析.
- (2)问线性方程组(I)和(II)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.

九、(本题满分6分)

设 \mathbf{A} 为 n 阶非零方阵 \mathbf{A}^* 是 \mathbf{A} 的伴随矩阵 \mathbf{A}' 是 \mathbf{A} 的转置矩阵 $\mathbf{A}^* = \mathbf{A}'$ 时,证明 $|\mathbf{A}| \neq 0$.

十、填空题(本题共 2 小题,每小题 3 分,满分 6 分.把答案填在题中横线上)

(1) 已知 A 、 B 两个事件满足条件 $P(AB) = P(\overline{AB})$,且 P(A) = p,则 P(B) =_______.

(2)设相互独立的两个随机变量 X,Y 具有同一分布率,且 X 的分布率为

X	0	1
P	$\frac{1}{2}$	$\frac{1}{2}$

则随机变量 $Z = \max\{X,Y\}$ 的分布率为_____

十一、(本题满分6分)

设随机变量 X 和 Y 分别服从正态分布 $N(1,3^2)$ 和 $N(0,4^2)$, 且

$$X$$
 与 Y 的相关系数 $\rho_{xy} = -\frac{1}{2}$,设 $Z = \frac{X}{3} + \frac{Y}{2}$,

- (1)求 Z 的数学期望 EZ 和 DZ 方差.
- (2)求 X 与 Z 的相关系数 ρ_{xz} .
- (3)问 X 与 Y 是否相互独立?为什么?

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

$$(1) \lim_{x \to 0} (1+3x)^{\frac{2}{\sin x}} = \underline{\hspace{1cm}}.$$

$$(2) \frac{d}{dx} \int_{x^2}^0 x \cos t^2 dt = \underline{\qquad}.$$

(3)设
$$(\mathbf{a} \times \mathbf{b})\mathbf{g} = 2$$
, 则 $[(\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c})]\mathbf{g}(\mathbf{c} + \mathbf{a}) = \underline{\hspace{1cm}}$

(4)幂级数
$$\sum_{n=1}^{\infty} \frac{n}{2^n + (-3)^n} x^{2n-1}$$
 的收敛半径 $R =$ ______

(5) 设三阶方阵 \mathbf{A} , \mathbf{B} 满足关系式 $\mathbf{A}^{-1}\mathbf{B}\mathbf{A} = 6\mathbf{A} + \mathbf{B}\mathbf{A}$, 且

$$\mathbf{A} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{7} \end{bmatrix}, 以 B = _____.$$

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1) 设有直线
$$L$$
: $x+3y+2z+1=0$,及平面 $2x-y-10z+3=0$

 $\pi: 4x-2y+z-2=0$, 则直线 *L*

(A)平行于 π

(B)在 π 上

(C)垂直于 π

(D)与 π 斜交

(2) 设在 [0,1] 上 f''(x) > 0, 则 f'(0), f'(1), f(1) - f(0) 或

f(0) - f(1) 的大小顺序是

(A)
$$f'(1) > f'(0) > f(1) - f(0)$$
 (B)

f'(1) > f(1) - f(0) > f'(0)

(C)
$$f(1) - f(0) > f'(1) > f'(0)$$
 (D)

$$f'(1) > f(0) - f(1) > f'(0)$$

(3)设 f(x) 可导, $F(x) = f(x)(1+|\sin x|)$,则 f(0) = 0 是 F(x)

在 x = 0 处可导的

(A)充分必要条件

(B)充分条件

但非必要条件

(C)必要条件但非充分条件

(D)既非充分

条件又非必要条件

(4)设
$$u_n = (-1)^n \ln(1 + \frac{1}{\sqrt{n}})$$
,则级数

(A)
$$\sum_{n=1}^{\infty} u_n$$
 与 $\sum_{n=1}^{\infty} u_n^2$ 都收敛

(B)
$$\sum_{n=1}^{\infty} u_n = 3$$

$$\sum_{n=1}^{\infty} u_n^2$$
 都发散

(C)
$$\sum_{n=1}^{\infty} u_n$$
 收敛,而 $\sum_{n=1}^{\infty} u_n^2$ 发散

(D)
$$\sum_{n=1}^{\infty} u_n$$
 收

敛,而 $\sum_{n=1}^{\infty} u_n^2$ 发散

(1) 计算曲面积分
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, $\mathbf{P}_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\mathbf{P}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ $x^2 + y^2 \le 2x$ 内的部分.

则必有

$$(A) \mathbf{A} \mathbf{P}_1 \mathbf{P}_2 = \mathbf{B} \tag{B}$$

 $\mathbf{AP}_2\mathbf{P}_1 = \mathbf{B}$

$$(C) \mathbf{P}_1 \mathbf{P}_2 \mathbf{A} = \mathbf{B} \tag{D}$$

 $P_2P_1A = B$

三、(本题共2小题,每小题5分,满分10分)

(1)设 $u = f(x, y, z), \varphi(x^2, e^y, z) = 0, y = \sin x$, 其中 f, φ 都具有

一阶连续偏导数,且 $\frac{\partial \varphi}{\partial z} \neq 0$. 求 $\frac{du}{dx}$.

(2) 设函数 f(x) 在区间 [0,1] 上连续,并设 $\int_0^1 f(x)dx = A$, 求 $\int_0^1 dx \int_x^1 f(x)f(y)dy.$

四、(本题共2小题,每小题6分,满分12分)

(1)计算曲面积分 $\iint_{\Sigma} z dS$, 其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 在柱体 $x^2 + y^2 \le 2x$ 内的部分.

(2)将函数 $f(x) = x - 1(0 \le x \le 2)$ 展开成周期为 4 的余弦函数.

五、(本题满分7分)

设曲线 L位于平面 xOy 的第一象限内,L上任一点 M 处的切线与 y 轴总相交,交点记为 A. 已知 $\left|\overline{MA}\right| = \left|\overline{OA}\right|$,且 L 过点 $(\frac{3}{2},\frac{3}{2})$,求 L 的方程.

六、(本题满分8分)

设函数 Q(x,y) 在平面 xOy 上具有一阶连续偏导数,曲线积分 $\int_{L} 2xydx + Q(x,y)dy$ 与 路 径 无 关 , 并 且 对 任 意 t 恒 有 $\int_{(0,0)}^{(t,1)} 2xydx + Q(x,y)dy = \int_{(0,0)}^{(1,t)} 2xydx + Q(x,y)dy$, 求 Q(x,y).

七、(本题满分8分)

假设函数 f(x) 和 g(x) 在 [a,b] 上存在二阶导数,并且 $g''(x) \neq 0, f(a) = f(b) = g(a) = g(b) = 0, 试证:$

(1)在开区间(a,b)内 g(x) ≠ 0.

(2)在开区间
$$(a,b)$$
 内至少存在一点 ξ , 使 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$.

八、(本题满分7分)

设三阶实对称矩阵 **A** 的特征值为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$, 对应于 λ_1

的特征向量为
$$\xi_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
, 求 **A**.

九、(本题满分6分)

设 \mathbf{A} 为 n 阶矩阵,满足 $\mathbf{A}\mathbf{A}' = \mathbf{I}(\mathbf{I} \neq n)$ 所单位矩阵, $\mathbf{A}' \neq \mathbf{A}$ 的转置矩阵), $|\mathbf{A}| < 0$, 求 $|\mathbf{A} + \mathbf{I}|$.

十、填空题(本题共 2 小题,每小题 3 分,满分 6 分.把答案填在题中横线上)

(1)设 X 表示 10 次独立重复射击命中目标的次数,每次射中目标的概率为 0.4,

则 X^2 的数学期望 $E(X^2) =$ ______.

(2)设 X 和 Y 为两个随机变量,且

$$P{X \ge 0, Y \ge 0} = \frac{3}{7}, P{X \ge 0} = P{Y \ge 0} = \frac{4}{7},$$

则 $P\{\max(X,Y) \ge 0\} =$ ______.

十一、(本题满分6分)

设随机变量 X 的概率密度为

$$f_X(x) = \begin{cases} e^{-x} & x \ge 0 \\ 0 & x < 0 \end{cases}, \qquad \left\{ \begin{cases} e^{-x} & x \ge 0 \\ e^{-x} & x \ge 0 \end{cases} \right.$$

求随机变量 $Y = e^X$ 的概率密度 $f_Y(y)$.

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

(1)设
$$\lim_{x\to\infty} (\frac{x+2a}{x-a})^x = 8$$
, 则 $a =$ ______.

- (2)设一平面经过原点及点(6,-3,2),且与平面4x-y+2z=8垂直,则此平面方程为_____.
 - (3) 微分方程 $y'' 2y' + 2y = e^x$ 的通解为______.
- (4) 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1,0,1) 处沿点 A 指向点 B(3,-2,2) 方向的方向导数为______.
 - (5)设 **A** 是 4×3矩阵,且 **A** 的秩 $r(\mathbf{A}) = 2$, 而 **B** = $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$,

则 $r(\mathbf{AB}) = _____.$

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)已知
$$\frac{(x+ay)dx+ydy}{(x+y)^2}$$
 为某函数的全微分, a 则等于

(A)-1 (B)0

(C)1 (D)2

(2)设 f(x) 具有二阶连续导数,且 f'(0) = 0, $\lim_{x\to 0} \frac{f''(x)}{|x|} = 1$,则

- (A) f(0) 是 f(x) 的极大值
- (B) f(0) 是 f(x) 的极小值
- (C)(0, f(0)) 是曲线 y = f(x) 的拐点
- (D) f(0) 不是 f(x) 的极值,(0, f(0)) 也不是曲线 y = f(x) 的 拐点

(3)设
$$a_n > 0 (n = 1, 2, L)$$
, 且 $\sum_{n=1}^{\infty} a_n$ 收敛,常数 $\lambda \in (0, \frac{\pi}{2})$,则级数

$$\sum_{n=1}^{\infty} (-1)^n (n \tan \frac{\lambda}{n}) a_{2n}$$

(A)绝对收敛

(B)条件收敛

(C)发散

(D)散敛性与

λ有关

(4) 设有 f(x) 连续的导数

 $, f(0) = 0, f'(0) \neq 0, F(x) = \int_0^x (x^2 - t^2) f(t) dt,$ 且 当 $x \to 0$ 时

,F'(x) 与 x^k 是同阶无穷小,则 k 等于

$$(A)1 (B)2$$

(C)3 (D)4

(5)四阶行列式
$$\begin{vmatrix} a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & a_3 & b_3 & 0 \\ b_4 & 0 & 0 & a_4 \end{vmatrix}$$
 的值等于

(A)
$$a_1 a_2 a_3 a_4 - b_1 b_2 b_3 b_4$$
 (B)

 $a_1 a_2 a_3 a_4 + b_1 b_2 b_3 b_4$

(C)
$$(a_1a_2 - b_1b_2)(a_3a_4 - b_3b_4)$$
 (D)

 $(a_2a_3-b_2b_3)(a_1a_4-b_1b_4)$

三、(本题共2小题,每小题5分,满分10分)

- (1)求心形线 $r = a(1 + \cos \theta)$ 的全长,其中 a > 0 是常数.
- (2)设 $x_1 = 10$, $x_{n+1} = \sqrt{6 + x_n}$ (n = 1, 2, L), 试证数列 $\{x_n\}$ 极限存在,并求此极限.

四、(本题共2小题,每小题6分,满分12分)

(1)计算曲面积分 $\iint_S (2x+z)dydz + zdxdy$, 其中 S 为有向曲面

 $z = x^2 + y^2$ (0 $\leq x \leq 1$), 其法向量与 z 轴正向的夹角为锐角

(2)设变换
$$\begin{cases} u = x - 2y \\ v = x + ay \end{cases}$$
 可把方程 $6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$ 简化为

$$\frac{\partial^2 z}{\partial u \partial v} = 0$$
, 求常数 a .

五、(本题满分7分)

求级数
$$\sum_{n=1}^{\infty} \frac{1}{(n^2-1)2^n}$$
 的和.

六、(本题满分7分)

设对任意 x > 0, 曲线 y = f(x) 上点 (x, f(x)) 处的切线在 y 轴

上的截距等于 $\frac{1}{x} \int_0^x f(t)dt$, 求 f(x) 的一般表达式.

七、(本题满分8分)

设 f(x) 在 [0,1] 上 具 有 二 阶 导 数 , 且 满 足 条 件 $|f(x)| \le a, |f''(x)| \le b,$ 其中 a,b 都是非负常数 , c 是 (0,1) 内任意一点.证明 $|f'(c)| \le 2a + \frac{b}{2}$.

八、(本题满分6分)

设 $A = \mathbf{I} - \boldsymbol{\xi} \boldsymbol{\xi}^T$, 其中 \mathbf{I} 是 n 阶单位矩阵 , $\boldsymbol{\xi}$ 是 n 维非零列向量 , $\boldsymbol{\xi}^T$ 是 $\boldsymbol{\xi}$ 的转置.证明

- (1) $\mathbf{A}^2 = \mathbf{A}$ 的充分条件是 $\boldsymbol{\xi}^T \boldsymbol{\xi} = 1$.
- (2)当 $\xi^T\xi=1$ 时,**A**是不可逆矩阵.

九、(本题满分8分)

已 知 二 次 型 $f(x_1,x_2,x_3) = 5x_1^2 + 5x_2^2 + cx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为 2, (1)求参数 c 及此二次型对应矩阵的特征值.

(2)指出方程 $f(x_1, x_2, x_3) = 1$ 表示何种二次曲面.

十、填空题(本题共 2 小题,每小题 3 分,满分 6 分.把答案填在题中横线上)

(1)设工厂 A 和工厂 B 的产品的次品率分别为 1%和 2%,现从由 A 和 B 的产品分别占 60%和 40%的一批产品中随机抽取一件,发现是 次品,则该次品属 A 生产的概率是_____.

(2)设 ξ , η 是两个相互独立且均服从正态分布 $N(0,(\frac{1}{\sqrt{2}})^2)$ 的随

机变量,则随机变量 $|\xi-\eta|$ 的数学期望 $E(|\xi-\eta|)=$ _____.

十一、(本题满分6分)

设 ξ , η 是两个相互独立且服从同一分布的两个随机变量,已知 ξ

的分布率为
$$P(\xi = i) = \frac{1}{3}, i = 1, 2, 3.$$

又设 $X = \max(\xi, \eta), Y = \min(\xi, \eta).$

(1)写出二维随机变量的分布率:

X	1	2	3
1			
2			

•		·
2		
.3		
-		

(2)求随机变量 X 的数学期望 E(X).

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

(1)
$$\lim_{x \to 0} \frac{3\sin x + x^2 \cos \frac{1}{x}}{(1 + \cos x)\ln(1 + x)} = \underline{\hspace{1cm}}.$$

(2)设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 3,则幂级数 $\sum_{n=1}^{\infty} n a_n (x-1)^{n+1}$

的收敛区间为

(3)对数螺线 $\rho = e^{\theta}$ 在点 $(\rho, \theta) = (e^{\frac{\pi}{2}}, \frac{\pi}{2})$ 处切线的直角坐标方程

为

(4) 设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{bmatrix}$$
, **B** 为三阶非零矩阵,且 $\mathbf{AB} = \mathbf{O}$,则 t

(5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依

次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)二元函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
,在点 $(0,0)$ 处

(A)连续,偏导数存在

(B)连续,偏导

数不存在

(C)不连续,偏导数存在

(D)连续,偏导

数不存在

(2)设在区间 [a,b]上 f(x) > 0, f'(x) < 0, f''(x) > 0. 令

$$S_1 = \int_a^b f(x)dx, S_2 = f(b)(b-a), S_3 = \frac{1}{2}[f(a) + f(b)](b-a),$$

则

(A)
$$S_1 < S_2 < S_3$$
 (B)

$$S_2 < S_1 < S_3$$

(C)
$$S_3 < S_1 < S_2$$
 (D)

$$S_2 < S_3 < S_1$$

(3)设
$$F(x) = \int_{x}^{x+2\pi} e^{\sin t} \sin t dt$$
,则 $F(x)$

(A)为正常数

(B)为负常数

(C)恒为零

(D)不为常数

(4)设
$$\mathbf{a}_{1} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}$$
, $\mathbf{a}_{2} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$, $\mathbf{a}_{3} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$, 则三条直线
$$a_{1}x + b_{1}y + c_{1} = 0,$$

$$a_{2}x + b_{2}y + c_{2} = 0,$$

$$a_{3}x + b_{3}y + c_{3} = 0$$

(其中 $a_i^2 + b_i^2 \neq 0, i = 1, 2, 3$)交于一点的充要条件是

(A)
$$\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3$$
 线性相关 (B) $\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3$

线性无关

(C)秩
$$r(\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3) =$$
秩 $r(\mathbf{\alpha}_1, \mathbf{\alpha}_2)$ (D) $\mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3$

线性相关, α_1 , α_2 线性无关

(5)设两个相互独立的随机变量 X 和 Y 的方差分别为 4 和 2,则随机变量 3X-2Y 的方差是

$$(A)8$$
 (B)16

$$(C)28$$
 $(D)44$

三、(本题共3小题,每小题5分,满分15分)

(1)计算
$$I = \iiint_{\Omega} (x^2 + y^2) dv$$
, 其中 Ω 为平面曲线
$$\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$$

轴旋转一周所成的曲面与平面 z=8所围成的区域.

(2)计算曲线积分
$$\int_{c}^{\infty} z-y dx + (x-z)dy + (x-y)dz$$
, 其中 c 是

曲线 $x^2 + y^2 = 1$ 从 z 轴正向往 z 轴负向看 c 的方向是顺时针的. x - y + z = 2

(3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为N,在t=0时刻已掌握新技术的人数为 x_0 ,在任意时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数t>0.求x(t).

四、(本题共 2 小题,第(1)小题 6 分,第(2)小题 7 分,满分 13 分)

(1)设直线
$$l: \left\{ \begin{array}{l} x+y+b=0 \\ x+ay-z-3=0 \end{array} \right.$$
 在平面 π 上,而平面 π 与曲面

$$z = x^2 + y^2$$
相切于点(1,-2,5),求 a,b 之值.

(2)设函数 f(u) 具有二阶连续导数,而 $z = f(e^x \sin y)$ 满足方程

五、(本题满分6分)

设 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$,且 $\lim_{x\to 0} \frac{f(x)}{x} = A(A$ 为常数),求 $\varphi'(x)$ 并讨论 $\varphi'(x)$ 在 x=0 处的连续性.

六、(本题满分8分)

设
$$a_1 = 0, a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n})(n = 1, 2, L)$$
,证明

(1) $\lim_{x\to\infty} a_n$ 存在.

(2)级数
$$\sum_{n=1}^{\infty} \left(\frac{a_n}{a_{n+1}} - 1 \right)$$
 收敛.

七、(本题共 2 小题,第(1)小题 5 分,第(2)小题 6 分,满分 11 分)

(1)设 B 是秩为2的 5×4矩阵

$$, \boldsymbol{\alpha}_1 = [1,1,2,3]^T, \boldsymbol{\alpha}_2 = [-1,1,4,-1]^T, \boldsymbol{\alpha}_3 = [5,-1,-8,9]^T$$
 是齐次线性

方程组 $\mathbf{B}x = \mathbf{0}$ 的解向量,求 $\mathbf{B}x = \mathbf{0}$ 的解空间的一个标准正交基.

(2)已知
$$\xi = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 是矩阵 $\mathbf{A} = \begin{bmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{bmatrix}$ 的一个特征向量.

- 1)试确定 a,b 参数及特征向量 ξ 所对应的特征值.
- 2)问 A 能否相似于对角阵?说明理由.

八、(本题满分5分)

设 \mathbf{A} 是 n 阶可逆方阵,将 \mathbf{A} 的第 i 行和第 j 行对换后得到的矩阵记为 \mathbf{B} .

- (1)证明 **B** 可逆.
- (2)求 AB^{-1} .

九、(本题满分7分)

从学校乘汽车到火车站的途中有 3 个交通岗,假设再各个交通岗遇到红灯的事件是相互独立的,并且概率都是 $\frac{2}{5}$. 设 X 为途中遇到红灯的次数,求随机变量 X 的分布律、分布函数和数学期望.

十、(本题满分5分)

设总体 X 的概率密度为

$$f(x) = \begin{cases} (\theta+1)x^{\theta} & 0 < x \le 1 \\ 0 & \text{ } \sharp \text{ } \text{ } \end{aligned}$$

其中 $\theta > -1$ 是未知参数, X_1 , X_2 ,L, X_n 是来自总体 X 的一个容量为 n 的简单随机样本,分别用矩估计法和极大似然估计法求 θ 的估计量.

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

(1)
$$\lim_{x\to 0} \frac{\sqrt{1+x} + \sqrt{1-x} - 2}{x^2} = \underline{\hspace{1cm}}$$

(2)设
$$z = \frac{1}{x} f(xy) + y\varphi(x+y), f, \varphi$$
 具有二阶连续导数,则 $\frac{\partial^2 z}{\partial x \partial y}$

=____.

(3) 设 l 为 椭 圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$, 其 周 长 记 为 a, 则

$$\int_{1}^{\infty} (2xy + 3x^2 + 4y^2) ds = \underline{\hspace{1cm}}$$

(4)设 **A** 为 n 阶矩阵, $|\mathbf{A}| \neq 0$, **A*** 为 **A** 的伴随矩阵,**E** 为 n 阶单位矩阵.若 **A** 有特征值 λ , 则 $(\mathbf{A}^*)^2$ + **E** 必有特征值______.

(5)设平面区域 D 由曲线 $y = \frac{1}{x}$ 及直线 $y = 0, x = 1, x = e^2$ 所围

成,二维随机变量 (X,Y) 在区域 D 上服从均匀分布,则 (X,Y) 关于 X 的边缘概率密度在 x=2 处的值为

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(1)设
$$f(x)$$
 连续,则 $\frac{d}{dx}\int_0^x tf(x^2-t^2)dt =$

$$(A) xf(x^2) (B) -xf(x^2)$$

$$(C) 2xf(x^2) (D)$$

 $-2xf(x^2)$

(2)函数 $f(x) = (x^2 - x - 2)|x^3 - x|$ 不可导点的个数是

$$(A)3 (B)2$$

(C)1
$$(D)0$$

(3)已知函数
$$y = y(x)$$
 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$, 且

当 $\Delta x \rightarrow 0$ 时, α 是 Δx 的高阶无穷小, $y(0) = \pi$,则 y(1) 等于

(A)
$$2\pi$$

(C)
$$e^{\frac{\pi}{4}}$$
 (D) $\pi e^{\frac{\pi}{4}}$

(4)设矩阵

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$

是满秩的,则直线 $\frac{x-a_3}{a_1-a_2} = \frac{y-b_3}{b_1-b_2} = \frac{z-c_3}{c_1-c_2}$ 与直线

$$\frac{x - a_1}{a_2 - a_3} = \frac{y - b_1}{b_2 - b_3} = \frac{z - c_1}{c_2 - c_3}$$

(A)相交于一点

(B)重合

(C)平行但不重合

- (D)异面
- (5) 设 A,B 是 两 个 随 机 事 件 , 且

 $0 < P(A) < 1, P(B) > 0, P(B \mid A) = P(B \mid \overline{A})$, 则必有

(A)
$$P(A \mid B) = P(\overline{A} \mid B)$$
 (B)

 $P(A \mid B) \neq P(\overline{A} \mid B)$

(C)
$$P(AB) = P(A)P(B)$$
 (D)

 $P(AB) \neq P(A)P(B)$

三、(本题满分5分)

求直线 $l: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 $\pi: x-y+2z-1=0$ 上的投影直线 l_0 的方程,并求 l_0 绕 y 轴旋转一周所成曲面的方程.

四、(本题满分6分)

确 定 常 数 λ , 使 在 右 半 平 面 x>0 上 的 向 量 $\mathbf{A}(x,y) = 2xy(x^4 + y^2)^{\lambda} \mathbf{i} - x^2(x^4 + y^2)^{\lambda} \mathbf{j}$ 为某二元函数 u(x,y) 的 梯度,并求 u(x,y).

五、(本题满分6分)

从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度 y(从海平面算起)与下沉速度 v之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水密度为 ρ ,仪器所受的阻力与下沉速度成正比,比例系数为k(k>0).试建立y与v所满足的微分方程,并求出函数关系式y=y(v).

六、(本题满分7分)

计 算 $\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^{1/2}}$, 其 中 Σ 为 下 半 平 面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧 , a 为大于零的常数.

七、(本题满分6分)

$$\Re \lim_{x \to \infty} \left[\frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2\pi}{n}}{n+\frac{1}{2}} + L + \frac{\sin \pi}{n+\frac{1}{n}} \right].$$

八、(本题满分5分)

设正向数列 $\{a_n\}$ 单调减少,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问级数

$$\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$$
是否收敛?并说明理由.

九、(本题满分6分)

设 y = f(x) 是区间 [0,1] 上的任一非负连续函数.

(1)试证存在 $x_0 \in (0,1)$, 使得在区间 $[0,x_0]$ 上以 $f(x_0)$ 为高的矩形面积,等于在区间 $[x_0,1]$ 上以 y=f(x) 为曲边的曲边梯形面积.

(2)又设 f(x) 在区间 (0,1) 内可导,且 $f'(x) > -\frac{2f(x)}{x}$,证明(1)中的 x_0 是唯一的.

十、(本题满分6分)

已知二次曲面方程 $x^2 + ay^2 + z^2 + 2bxy + 2xz + 2yz = 4$ 可以经

过正交变换
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{P} \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$$
 化为椭圆柱面方程 $\eta^2 + 4\xi^2 = 4$, 求 a,b 的

值和正交矩阵 P.

十一、(本题满分4分)

设 \mathbf{A} 是 n 阶矩阵,若存在正整数 k,使线性方程组 $\mathbf{A}^k x = \mathbf{0}$ 有解向量 $\mathbf{\alpha}$,且 $\mathbf{A}^{k-1}\mathbf{\alpha} \neq \mathbf{0}$.

证明:向量组 α , $\mathbf{A}\alpha$, \mathbf{L} , $\mathbf{A}^{k-1}\alpha$ 是线性无关的.

十二、(本题满分5分)

已知方程组

$$a_{11}x_1 + a_{12}x_2 + L + a_{1,2n}x_{2n} = 0$$

$$a_{21}x_1 + a_{22}x_2 + L + a_{2,2n}x_{2n} = 0$$

$$M$$

$$a_{n1}x_1 + a_{n2}x_2 + L + a_{n,2n}x_{2n} = 0$$

的一个基础解析为

 $(b_{11},b_{12},\mathbf{L},b_{1,2n})^T$, $(b_{21},b_{22},\mathbf{L},b_{2,2n})^T$, \mathbf{L} , $(b_{n1},b_{n2},\mathbf{L},b_{n,2n})^T$. 试写出 线性方程组

(II)
$$b_{11}y_1 + b_{12}y_2 + L + b_{1,2n}y_{2n} = 0$$

$$b_{21}y_1 + b_{22}y_2 + L + b_{2,2n}y_{2n} = 0$$

$$M$$

$$b_{n1}y_1 + b_{n2}y_2 + L + b_{n,2n}y_{2n} = 0$$

的通解,并说明理由.

十三、(本题满分6分)

设两个随机变量 X,Y 相互独立,且都服从均值为0、方差为 $\frac{1}{2}$ 的正态分布,求随机变量 |X-Y| 的方差.

十四、(本题满分4分)

从正态总体 $N(3.4,6^2)$ 中抽取容量为 n 的样本,如果要求其样本均值位于区间 (1.4,5.4) 内的概率不小于0.95,问样本容量 n 至少应取

多大?

附:标准正态分布表

$$\Phi(x) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

z	1.28	1.645	1.96	2.33
$\Phi(x)$	0.900	0.950	0.975	0.990

十五、(本题满分4分)

设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.

附: t 分布表

$$P\{t(n) \le t_p(n)\} = p$$

	0.95	0.975
35	1.6896	2.0301
36	1.6883	2.0281

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题 中横线上)

(1)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x \tan x}\right) = \underline{\hspace{1cm}}$$

$$(2) \frac{d}{dx} \int_0^x \sin(x-t)^2 dt = \underline{\qquad}.$$

- (3) $y'' 4y = e^{2x}$ 的通解为 y =.
- (4) 设 n 阶矩阵 A 的元素全为 1.则 A 的 n 个特征值是
- (5) 设两两相互独立的三事件 A.B 和 C 满足条件:

$$ABC = \emptyset, P(A) = P(B) = P(C) < \frac{1}{2},$$

且已知 $P(A \cup B \cup C) = \frac{9}{16}$,则 $P(A) = _______$

- 二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的 四个选项中、只有一个符合题目要求、把所选项前的字母填在题后的括 号内)
 - (1)设 f(x) 是连续函数, F(x) 是 f(x) 的原函数,则

(A)当 f(x) 是奇函数时, F(x) 必是偶函数

(B) $\stackrel{\text{def}}{=} f(x)$

是偶函数时,F(x)必是奇函数

(C)当 f(x) 是周期函数时, F(x) 必是周期函数 (D) 当 f(x)

是单调增函数时,F(x)必是单调增函数

(2)设
$$f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}} & x > 0\\ x^2 g(x) & x \le 0 \end{cases}$$
,其中 $g(x)$ 是有界函数,则 $f(x)$

在 x=0 处

(A)极限不存在

(B)极限存在,

但不连续

(C)连续,但不可导

(D)可导

(3)
$$f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2 - 2x & \frac{1}{2} < x < 1 \end{cases}$$

$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x, -\infty < x < +\infty,$$

其中 $a_n = 2\int_0^1 f(x)\cos n\pi x dx$ (n = 0,1,2,L),则 $S(-\frac{5}{2})$ 等于

 $(A)\frac{1}{2}$

(B) $-\frac{1}{2}$

 $(C)\frac{3}{4}$

(D) $-\frac{3}{4}$

(4)设 **A** 是 $m \times n$ 矩阵, **B** 是 $n \times m$ 矩阵,则

(A)当 m > n 时,必有行列式 | **AB** \neq 0

(B) ≝

m > n 时,必有行列式 $| \mathbf{AB} | = 0$

(C)当 n > m 时,必有行列式 | **AB** \nvDash C

(D) $\stackrel{\text{d}}{=}$ n > m

时,必有行列式 | **AB** | 0

(5)设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N(0,1和 N(1,1,则

(A)
$$P\{X + Y \le 0\} = \frac{1}{2}$$
 (B)

 $P\{X+Y \le 1\} = \frac{1}{2}$

(C)
$$P\{X - Y \le 0\} = \frac{1}{2}$$
 (D)

 $P\{X-Y \le 1\} = \frac{1}{2}$

三、(本题满分6分)

设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x, y, z) = 0 所确定的函数,其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数,求 $\frac{dz}{dx}$.

四、(本题满分5分)

求 $I = \int_L (e^x \sin y - b x (+ y d) + {}^x(e \cos ax dy$ 其中 a,b 为正的常数,L 为从点 A(2a,0沿曲线 $y = \sqrt{2ax - \hat{x}}$ 到点 O(0,0) 的弧.

五、(本题满分6分)

设函数 $y(x)(x \ge 0$ 二阶可导且 y'(x) > 0, y(0) 过曲线 y = y(x) 上任意一点 P(x, y)作该曲线的切线及 x 轴的垂线,上述两直线与 x 轴所围成的三角形的面积记为 S_1 ,区间 [0,x] 上以 y = y(x) 为曲线的曲边梯形面积记为 S_2 ,并设 $2S_1 - S_2$ 恒为 1,求曲线

y = y(x)的方程.

六、(本题满分7分)

论证:当 x > 0 时, $(x^2 - 1) \ln x \ge (x - 1)^2$.

七、(本题满分6分)

为清除井底的淤泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(见图).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克服重力需作多少焦耳的功?

(说明:①1N×1m=1Jm,N,s,J 分别表示 米,牛,秒,焦.②抓斗的高度及位于井口上方 的缆绳长度忽略不计.)

八、(本题满分7分)

设 S 为椭球面 $\frac{x^2}{2} + \frac{y^2}{2} + z^2 = 1$ 的上半部分,点 $P(x, y, z) \in S, \pi$

为 S 在点 P 处的切平面, $\rho(x,y,z)$ 为点 O(0,0,0) 到平面 π 的距离,

求∬
$$\frac{z}{\rho(x,y,z)}dS$$
.

九、(本题满分7分)

设
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$
:

(1)求
$$\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
的值.

(2)试证:对任意的常数 $\lambda > 0$, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

十、(本题满分8分)

设矩阵
$$\mathbf{A} = \begin{bmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{bmatrix}$$
,其行列式 $|\mathbf{A}| = -1$,又 \mathbf{A} 的伴随

矩 阵 \mathbf{A}^* 有 - 个 特 征 值 λ_0 ,属 于 λ_0 的 - 个 特 征 向 量 为 $\mathbf{\alpha} = (-1, -1, 1)^T$,求 a, b, c 和 λ_0 的值.

十一、(本题满分6分)

设 \mathbf{A} 为 m 阶实对称矩阵且正定, \mathbf{B} 为 $m \times n$ 实矩阵, \mathbf{B}^T 为 \mathbf{B} 的 转置矩阵, 试证 $\mathbf{B}^T \mathbf{A} \mathbf{B}$ 为正定矩阵的充分必要条件是 \mathbf{B} 的秩 $r(\mathbf{B}) = n$.

十二、(本题满分8分)

设随机变量 X 与 Y 相互独立,下表列出了二维随机变量 (X,Y) 联合分布率及关于 X 和关于 Y 的边缘分布率中的部分数值,试将其余数值填入表中的空白处.

X Y	\mathcal{Y}_1	y_2	y_3	$P(X=x_i)=p_{i\bullet}$
x_1		$\frac{1}{8}$		
x_2	$\frac{1}{8}$			

$P(Y=y_i)=p_{\bullet j}$	$\frac{1}{6}$		1
	0		

十三、(本题满分6分)

设
$$X$$
 的 概 率 密 度 为 $f(x) = \begin{cases} \frac{6x}{\theta^3}(\theta - x) & 0 < x < \theta \\ 0 & 其它 \end{cases}$

 X_1, X_2, L , X_n 是取自总体 X 的简单随机样本

(1)求 θ 的矩估计量 $\hat{\theta}$.

(2)求 $\hat{\theta}$ 的方差 $D(\hat{\theta})$.

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题 中横线上)

$$(1) \int_0^1 \sqrt{2x - x^2} \, dx = \underline{\qquad}.$$

- (2) 曲 面 $x^2 + 2y^2 + 3z^2 = 21$ 在点 (1,-2,-2) 的法线方程为
- (3)微分方程 xy'' + 3y' = 0 的通解为
- (4) 已知方程组 $\begin{vmatrix} 1 & 2 & 1 & | x_1 & | & 1 & | &$

(5)设两个相互独立的事件 A 和 B 都不发生的概率为 $\frac{1}{0}$, A 发生 B 不发生的概率与 B 发生 A 不发生的概率相等,则 P(A)

二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的

四个选项中、只有一个符合题目要求、把所选项前的字母填在题后的括 号内)

(1) 设 f(x) 、 g(x) 是 恒 大 于 零 的 可 导 函 数 , 且

f'(x)g(x) - f(x)g'(x) < 0,则当 a < x < b 时,有

(A)
$$f(x)g(b) > f(b)g(x)$$
 (B)

f(x)g(a) > f(a)g(x)

(C)
$$f(x)g(x) > f(b)g(b)$$
 (D)

f(x)g(x) > f(a)g(a)

(2)设 $S: x^2 + y^2 + z^2 = a^2(z \ge 0)$, S, 为 S 在第一卦限中的部分,

则有

$$(A) \iint_{S} x dS = 4 \iint_{S} x dS \tag{B}$$

$$\iint_{S} ydS = 4 \iint_{S_{1}} xdS$$

(C)
$$\iint_{S} zdS = 4 \iint_{S_{1}} xdS$$
 (D)
$$\iint_{S} xyzdS = 4 \iint_{S_{1}} xyzdS$$

$$\iint_{S} xyzdS = 4 \iint_{S_{1}} xyzdS$$

(3)设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则必收敛的级数为

$$(A) \sum_{n=1}^{\infty} (-1)^n \frac{u_n}{n}$$

(B)
$$\sum_{n=1}^{\infty} u_n^2$$

(C)
$$\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$$
 (D)

$$\sum_{n=1}^{\infty} (u_n + u_{n+1})$$

(4)设 n 维列向量组 $\mathbf{\alpha}_1$, \mathbf{L} , $\mathbf{\alpha}_m$ (m < n) 线性无关,则 n 维列向量组

$β_1$, L, $β_m$ 线性无关的充分必要条件为

- (A)向量组 α_1 , L, α_m 可由向量组 β_1 , L, β_m 线性表示
- (B)向量组 β_1 , L, β_m 可由向量组 α_1 , L, α_m 线性表示
- (C)向量组 α_1 ,L , α_m 与向量组 β_1 ,L , β_m 等价
- (D)矩阵 $\mathbf{A} = (\boldsymbol{\alpha}_1, \mathbf{L}, \boldsymbol{\alpha}_m)$ 与矩阵 $\mathbf{B} = (\boldsymbol{\beta}_1, \mathbf{L}, \boldsymbol{\beta}_m)$ 等价
- (5)设二维随机变量(X,Y)服从二维正态分布,则随机变量

 $\xi = X + Y$ 与 $\eta = X - Y$ 不相关的充分必要条件为

$$(A) E(X) = E(Y)$$
 (B)

$$E(X^{2})-[E(X)]^{2}=E(Y^{2})-[E(Y)]^{2}$$

$$(C) E(X^2) = E(Y^2)$$
 (D)

$$E(X^{2})+[E(X)]^{2}=E(Y^{2})+[E(Y)]^{2}$$

三、(本题满分6分)

$$\vec{x} \lim_{x \to \infty} \left(\frac{2 + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \frac{\sin x}{|x|} \right).$$

四、(本题满分5分)

设 $z = f(xy, \frac{x}{y}) + g(\frac{x}{y})$,其中 f 具有二阶连续偏导数,g 具有二

阶连续导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

五、(本题满分6分)

计算曲线积分 $I = \int \frac{xdy - ydx}{4x^2 + y^2}$,其中 L 是以点 (1,0) 为中心,R

为半径的圆周 (R > 1), 取逆时针方向.

六、(本题满分7分)

设对于半空间 x>0 内任意的光滑有向封闭曲面 S,都有 f(x) f

七、(本题满分6分)

求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \frac{x^n}{n}$ 的收敛区间,并讨论该区间端点处的收敛性.

八、(本题满分7分)

设有一半径为 R 的球体, P_0 是此球的表面上的一个定点,球体上任一点的密度与该点到 P_0 距离的平方成正比(比例常数 k>0),求球

体的重心位置.

九、(本题满分6分)

设 函 数 f(x) 在 $[0,\pi]$ 上 连 续 ,且 $\int_0^\pi f(x) dx = 0, \int_0^\pi f(x) \cos x dx = 0.$ 试证:在 $(0,\pi)$ 内至少存在两个 不同的点 ξ_1, ξ_2 ,使 $f(\xi_1) = f(\xi_2) = 0.$

十、(本题满分6分)

设矩阵
$$\mathbf{A}$$
 的伴随矩阵 $\mathbf{A}^* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8 \end{bmatrix}$, 且

 $\mathbf{ABA}^{-1} = \mathbf{BA}^{-1} + 3\mathbf{E}$,其中 \mathbf{E} 为 4 阶单位矩阵,求矩阵 \mathbf{B} .

十一、(本题满分8分)

某适应性生产线每年 1 月份进行熟练工与非熟练工的人数统计,然后将 $\frac{1}{6}$ 熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐. 新、老非熟练工经过培训及实践至年终考核有 $\frac{2}{5}$ 成为熟练工.设第 n 年 1 月份统计的熟练工与非熟练工所占百分比分别为 x_n 和 y_n ,记成

向量
$$\begin{pmatrix} x_n \\ y_n \end{pmatrix}$$
.

(1) 求 $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}$ 与 $\begin{pmatrix} x_n \\ y_n \end{pmatrix}$ 的 关 系 式 并 写 成 矩 阵 形 式:

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \mathbf{A} \begin{pmatrix} x_n \\ y_n \end{pmatrix}.$$

(2)验证 $\mathbf{\eta}_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $\mathbf{\eta}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 是 **A** 的两个线性无关的特征向量,

并求出相应的特征值.

$$(3) \stackrel{\mathcal{L}}{=} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$
时,求 $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}$.

十二、(本题满分8分)

某流水线上每个产品不合格的概率为 p(0 ,各产品合格与否相对独立,当出现 1 个不合格产品时即停机检修.设开机后第 1 次停机时已生产了的产品个数为 <math>X,求 X 的数学期望 E(X)和方差 D(X).

十三、(本题满分6分)

设某种元件的使用寿命 X 的概率密度为 $f(x;\theta) = \begin{cases} 2e^{-2(x-\theta)}x > \theta \\ 0 & x \le \theta \end{cases},$ 其中 $\theta > 0$ 为未知参数.又设 x_1, x_2, L, x_n

是 X 的一组样本观测值,求参数 θ 的最大似然估计值.

数学(一)试卷

- 一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)
- (1)设 $y = e^x(a \sin x + b \cos x)(a, b)$ 为任意常数)为某二阶常系数 线性齐次微分方程的通解,则该方程为

(2)
$$r = \sqrt{x^2 + y^2 + z^2}$$
, \mathbb{M} div(grad r) $\Big|_{(1,-2,2)} = \underline{\qquad}$.

(3) 交换 二次积分的积分次序: $\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$

(4)设 $\mathbf{A}^2 + \mathbf{A} - 4\mathbf{E} = \mathbf{O}$,则 $(\mathbf{A} - 2\mathbf{E})^{-1} =$

- (5) D(X)=2 ,则根据车贝晓夫不等式有估计 $P\{|X-E(X)|\geq 2\}\leq$ ______.
- 二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
 - (1)设函数 f(x) 在定义域内可导, v = f(x) 的图形如右图所示,

则 y = f'(x) 的图形为

(2) 设 f(x,y) 在 点 (0,0) 的 附 近 有 定 义 , 且

$$f_x'(0,0) = 3, f_y'(0,0) = 1$$
 则

(A)
$$dz|_{(0,0)} = 3dx + dy$$

(B)曲面 z = f(x, y) 在 (0,0,f(0,0)) 处的法向量为 $\{3,1,1\}$

(C)曲线
$$\begin{cases} z = f(x, y) \\ y = 0 \end{cases}$$
 在 $(0, 0, f(0, 0))$ 处的切向量为 $\{1, 0, 3\}$

(D)曲线
$$\begin{cases} z = f(x, y) \\ y = 0 \end{cases}$$
 在 (0,0, f (0,0)) 处的切向量为 {3,0,1}

(3)设 f(0) = 0则 f(x)在 x = 0处可导 😂

$$(A) \lim_{h \to 0} \frac{f(1-\cos h)}{h^2} 存在$$
 (B)

$$\lim_{h\to 0}\frac{f(1-\mathrm{e}^h)}{h}\, \bar{r}$$

(C)
$$\lim_{h\to 0} \frac{f(h-\sin h)}{h^2}$$
 存在 (D)

$$\lim_{h\to 0}\frac{f(2h)-f(h)}{h}$$
 存在

相似

不相似

(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 相关系数为

$$(A) -1$$
 $(B)0$

$$(C)\frac{1}{2} \tag{D)1}$$

三、(本题满分6分)

$$\Re \int \frac{\arctan e^x}{e^{2x}} dx .$$

四、(本题满分6分)

设 函 数 z = f(x,y) 在 点 (1,1) 可 微 ,且 $f(1,1) = 1, f'_x(1,1) = 2, f'_y(1,1) = 3 \quad , \quad \varphi(x) = f(x,f(x,x)) \quad , \quad \bar{x}$ $\frac{d}{dx} \varphi^3(x)\big|_{x=1} \, .$

五、(本题满分8分)

设
$$f(x) = \begin{cases} \frac{1+x^2}{x} \arctan x & x \neq 0 \\ 1 & x = 0 \end{cases}$$
,将 $f(x)$ 展开成 x 的幂级数,

并求
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1-4n^2}$$
 的和.

六、(本题满分7分)

计算
$$I = \mathbf{N}(y^2 - z^2)dx + (2z^2 - x^2)dy + (3x^2 - y^2)dz$$
,其中 L

是平面 x+y+z=2与柱面 |x|+|y|=1的交线,从 Z 轴正向看去,L 为逆时针方向.

七、(本题满分7分)

设 f(x) 在 (-1,1) 内具有二阶连续导数且 $f''(x) \neq 0$.证明:

(1)对于 $\forall x \in (-1,0)$ Y (0,1),存在惟一的 $\theta(x) \in (0,1)$,使 $f(x) = f(0) + xf'(\theta(x)x)$ 成立.

(2)
$$\lim_{x\to 0} \theta(x) = 0.5$$
.

八、(本题满分8分)

设有一高度为 h(t)(t 为时间)的雪堆在融化过程,其侧面满足方程

 $z = h(t) - \frac{2(x^2 + y^2)}{h(t)}$ (设长度单位为厘米,时间单位为小时),已知体

积减少的速率与侧面积成正比(系数为 0.9),问高度为 130 厘米的雪堆全部融化需多少时间?

九、(本题满分6分)

设 α_1, α_2, L , α_s 为线性方程组 **AX** = **O** 的一个基础解系,

$$\mathbf{\beta}_1 = t_1 \mathbf{\alpha}_1 + t_2 \mathbf{\alpha}_2, \mathbf{\beta}_2 = t_1 \mathbf{\alpha}_2 + t_2 \mathbf{\alpha}_3, \mathbf{L}, \mathbf{\beta}_s = t_1 \mathbf{\alpha}_s + t_2 \mathbf{\alpha}_1,$$

其中 t_1, t_2 为实常数,试问 t_1, t_2 满足什么条件时 $\beta_1, \beta_2, L, \beta_s$ 也为 $\mathbf{AX} = \mathbf{O}$ 的一个基础解系?

十、(本题满分8分)

已知三阶矩阵 \mathbf{A} 和三维向量 \mathbf{x} ,使得 \mathbf{x} , $\mathbf{A}\mathbf{x}$, $\mathbf{A}^2\mathbf{x}$ 线性无关,且满足 $\mathbf{A}^3\mathbf{x}=3\mathbf{A}\mathbf{x}-2\mathbf{A}^2\mathbf{x}$.

- (1)记 $\mathbf{P} = (\mathbf{x}, \mathbf{A}\mathbf{x}, \mathbf{A}^2\mathbf{x}),$ 求 \mathbf{B} 使 $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$.
- (2)计算行列式 $|\mathbf{A} + \mathbf{E}|$.

十一、(本题满分7分)

设某班车起点站上客人数 X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布, 每位乘客在中途下车的概率为 p(0 , 且中途下车与否相互独立. <math>Y 为中途下车的人数.求:

- (1)在发车时有n个乘客的条件下,中途有m人下车的概率.
- (2)二维随机变量(X,Y)的概率分布.

十二、(本题满分7分)

设 $X \sim N(\mu, \sigma^2)$ 抽取简单随机样本 $X_1, X_2, K, X_{2n} (n \ge 2)$,

样本均值
$$\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$$
 , $Y = \sum_{i=1}^{n} (X_i + X_{n+i} - 2\overline{X})^2$,求 $E(Y)$.

数学(一)试卷

一、填空题(本题共 5 小题,每小题 3 分,满分 15 分.把答案填在题中横线上)

$$(1) \int_{e}^{+\infty} \frac{dx}{x \ln^2 x} = \underline{\qquad}.$$

- (3) $yy'' + y'^2 = 0$ 满足初始条件 $y(0) = 1, y'(0) = \frac{1}{2}$ 的特解是
- (4) 已 知 实 二 次 型 $f(x_1,x_2,x_3)=a(x_1^2+x_2^2+x_3^2)+4x_1x_2+4x_1x_3+4x_2x_3$ 经正交变换可化为标准型 $f=6y_1^2$,则 a=______.
- (5)设随机变量 $X \sim N(\mu, \sigma^2)$,且二次方程 $y^2 + 4y + X = 0$ 无 实根的概率为 0.5,则 $\mu =$ _____.
- 二、选择题(本题共 5 小题,每小题 3 分,满分 15 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

- (1)考虑二元函数 f(x, y) 的四条性质:
- ① f(x,y) 在点 (x_0,y_0) 处连续,② f(x,y) 在点 (x_0,y_0) 处的一阶偏导数连续,
- ③ f(x,y) 在点 (x_0,y_0) 处可微, ④ f(x,y) 在点 (x_0,y_0) 处的一阶偏导数存在.

则有:

(B) $(3) \Rightarrow (2)$

 \Rightarrow ①

$$(C)$$
 \Rightarrow 4 \Rightarrow 1

(D) $\textcircled{3} \Rightarrow \textcircled{1}$

 \Rightarrow_{4}

(2)设
$$u_n \neq 0$$
,且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$,则级数 $\sum_{n \to \infty} (-1)^{n+1} (\frac{1}{u_n} + \frac{1}{u_{n+1}})$ 为

(A)发散

(B)绝对收敛

(C)条件收敛

(D)收敛性不

能判定.

(3)设函数 f(x) 在 R^+ 上有界且可导,则

(A) 当
$$\lim_{x \to +\infty} f(x) = 0$$
 时,必有 $\lim_{x \to +\infty} f'(x) = 0$ (B) 当

 $\lim_{x\to +\infty} f'(x)$ 存在时,必有 $\lim_{x\to +\infty} f'(x) = 0$

(C) 当
$$\lim_{x \to 0+} f(x) = 0$$
 时,必有 $\lim_{x \to 0+} f'(x) = 0$ (D) 当

 $\lim_{x\to 0+} f'(x)$ 存在时,必有 $\lim_{x\to 0+} f'(x) = 0$.

(4)设有三张不同平面,其方程为 $a_i x + b_i y + c_i z = d_i$ (i = 1,2,3) 它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为 2,则这三张平面可能的位置关系为

(5)设 X 和 Y 是相互独立的连续型随机变量,它们的密度函数分别为 $f_X(x)$ 和 $f_Y(y)$,分布函数分别为 $F_X(x)$ 和 $F_Y(y)$,则

(A)
$$f_X(x) + f_Y(y)$$
 必为密度函数 (B) $f_X(x)$

 $f_{v}(y)$ 必为密度函数

(C) $F_X(x) + F_Y(y)$ 必为某一随机变量的分布函数 (D) $F_X(x)$ $F_Y(y)$ 必为某一随机变量的分布函数.

三、(本题满分6分)

设函数 f(x) 在 x=0 的某邻域具有一阶连续导数,且 $f(0)f'(0) \neq 0$,当 $h \rightarrow 0$ 时,若 af(h) + bf(2h) - f(0) = o(h),试求 a,b 的值.

四、(本题满分7分)

已知两曲线 y = f(x) 与 $y = \int_0^{\arctan x} e^{-t^2} dt$ 在点 (0,0) 处的切线相同.求此切线的方程,并求极限 $\lim_{n \to \infty} nf(\frac{2}{n})$.

五、(本题满分7分)

计 算 二 重 积 分 $\iint_D e^{\max\{x^2,y^2\}} dxdy$,其 中 $D = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}.$

六、(本题满分8分)

设函数 f(x) 在 R 上具有一阶连续导数, L 是上半平面(y>0)内的有向分段光滑曲线,起点为(a,b),终点为(c,d).

$$i \exists I = \int \frac{1}{y} [1 + y^2 f(xy)] dx + \frac{x}{y^2} [y^2 f(xy) - 1] dy,$$

- (1)证明曲线积分 I 与路径 L 无关.
- (2)当 ab = cd 时,求 I 的值.

七、(本题满分7分)

(1)验证函数
$$y(x) = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!} (-\infty < x < +\infty)$$
满足微分方程 $y'' + y' + y = e^x$.

(2)求幂级数
$$y(x) = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$$
的和函数.

八、(本题满分7分)

设有一小山,取它的底面所在的平面为 xoy 面,其底部所占的区域 为 $D = \{(x,y) \mid x^2 + y^2 - xy \le 75\}$,小山的高度函数为 h(x,y) = $75 - x^2 - y^2 + xy$.

(1)设 $M(x_0, y_0)$ 为区域 D 上一点,问 h(x, y) 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为 $g(x_0, y_0)$,写出

 $g(x_0, y_0)$ 的表达式.

(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D的边界线上找出使(1)中g(x,y)达到最大值的点.试确定攀登起点的位置.

九、(本题满分6分)

已知四阶方阵 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4)$, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 均为四维列向量,其中 $\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 线性无关, $\boldsymbol{\alpha}_1 = 2\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3$.若 $\boldsymbol{\beta} = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4$, 求线性方程组 $\mathbf{A}x = \boldsymbol{\beta}$ 的通解.

十、(本题满分8分)

设A,B 为同阶方阵,

- (1)若 A,B 相似,证明 A,B 的特征多项式相等.
- (2)举一个二阶方阵的例子说明(1)的逆命题不成立.
- (3)当A,B 为实对称矩阵时,证明(1)的逆命题成立.

十一、(本题满分7分)

设维随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{2}\cos\frac{x}{2} & 0 \le x \le x \\ 0 & \text{!!} \end{cases}$$

对 X 独立地重复观察 4 次,用 Y 表示观察值大于 $\frac{\pi}{3}$ 的次数,求

 Y^2 的数学期望.

十二、(本题满分7分)

设总体 X 的概率分布为

X	0	1	2	3
P	θ^2	$2\theta(1-\theta)$	θ^2	$1-2\theta$

其中 θ ($0 < \theta < \frac{1}{2}$)是未知参数,利用总体 X 的如下样本值

3,1,3,0,3,1,2,3.

求 θ 的矩估计和最大似然估计值.

数学(一)试卷

一、填空题(本题共 6 小题,每小题 4 分,满分 24 分.把答案填在题中横线上)

(1)
$$\lim_{x\to 0} (-cx)^{\frac{1}{0^{1+n^2}}} = \underline{\qquad}$$
.

(2)曲面 $z = x^2 + y^2$ 与平面 2x + 4y - z = 0 平行的切平面的方程是______.

(3)设
$$x^2 = \sum_{n=0}^{\infty} a_n c$$
 p $x(-s\pi \le x \le \pi)$,则 $a_2 =$ _____.

(4)从
$$\mathbf{R}^2$$
 的基 $\mathbf{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{\alpha}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 到基 $\mathbf{\beta}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\mathbf{\beta}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 的过

渡矩阵为______.

(5)设二维随机变量 (
$$XY$$
, 的概率密度为 $f(\begin{cases} x, = \\ 0 \end{cases}$

$$0 \le x \le y \le 1$$

其它 ,则 $P\{X + Y \le 1\} =$ _____.

(6)已知一批零件的长度 X (单位:cm)服从正态分布 $N(\mu,1)$,从中随机地抽取 16 个零件,得到长度的平均值为 40 (cm),则 μ 的置信度为 0.95 的置信区间是

(注:标准正态分布函数值 $\Phi(1.96) = 0.975, \Phi(1.645) = 0.95.$)

- 二、选择题(本题共 6 小题,每小题 4 分,满分 24 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
 - (1)设函数 f(x) 在 $(-\infty,+\infty)$ 内连续,其导函数的图形如图所示,则 f(x) 有
 - (A)一个极小值点和两个极大值点
 - (B)两个极小值点和一个极大值点
 - (C)两个极小值点和两个极大值点
 - (D)三个极小值点和一个极大值点
 - (2)设 $\{a_n\},\{b_n\},\{c_n\}$ 均为非负数列,且 $\lim_{n\to\infty}a_n=0$, $\lim_{n\to\infty}b_n=1$,

 $\lim_{n\to\infty} c_n = \infty$,则必有

(A) $a_n < b_n$ 对任意 n 成立

(B) $b_n < c_n$

对任意 n 成立

(C)极限 $\lim_{n\to\infty} a_n c_n$ 不存在

(D) 极 限

 $\lim_{n\to\infty}b_nc_n$ 不存在

(3) 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续,且

$$\lim_{x \to 0, y \to 0} \frac{f(x, y) - xy}{(x^2 + y^2)^2} = 1, \text{II}$$

- (A)点(0,0)不是 f(x,y)的极值点
- (B)点(0,0)是 f(x,y)的极大值点
- (C)点(0,0)是 f(x,y)的极小值点
- (D)根据所给条件无法判断点(0,0)是否为 f(x,y)的极值点
- (4)设向量组 I: $\mathbf{\alpha}_1$, $\mathbf{\alpha}_2$, \mathbf{L} , $\mathbf{\alpha}_r$ 可由向量组 II: $\mathbf{\beta}_1$, $\mathbf{\beta}_2$, \mathbf{L} , $\mathbf{\beta}_s$ 线性表示,则
- (A)当 r < s 时,向量组 Π 必线性相关 (B) 当 r > s 时,向量组 Π 必线性相关
- (C)当 r < s时,向量组 I 必线性相关 (D) 当 r > s时,向量组 I 必线性相关
- (5) 设有齐次线性方程组 $\mathbf{A}x = 0$ 和 $\mathbf{B}x = 0$, 其中 \mathbf{A} , \mathbf{B} 均为 $m \times n$ 矩阵,现有 4 个命题:
 - ① $\Xi \mathbf{A}x = 0$ 的解均是 $\mathbf{B}x = 0$ 的解,则秩(\mathbf{A}) \geq 秩(\mathbf{B})

- ② 若秩(**A**) \geq 秩(**B**),则 **A**x = 0的解均是 **B**x = 0的解
- ③ 若 $\mathbf{A}x = 0$ 与 $\mathbf{B}x = 0$ 同解,则秩(\mathbf{A}) = 秩(\mathbf{B})
- ④ 若秩(**A**) = 秩(**B**),则 Ax = 0与 Bx = 0同解

以上命题中正确的是

$$(A)$$
 (B) (1) (3)

$$(C)$$
②4) (D) ③4)

(6)设随机变量 $X \sim t(n)(n > 1), Y = \frac{1}{X^2}$,则

$$(A)Y \sim \chi^2(n) \tag{B}$$

$$Y \sim \chi^2(n-1)$$

$$(C)Y \sim F(n,1) \tag{D}$$

$$Y \sim F(1, n)$$

三、(本题满分 10 分)

过坐标原点作曲线 $y = \ln x$ 的切线,该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.

(1)求 D 的面积 A.

(2)求 D 绕直线 x = e 旋转一周所得旋转体的体积 V.

四、(本题满分12分)

将函数 $f(x) = \arctan \frac{1-2x}{1+2x}$ 展开成 x 的幂级数,并求级数

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \text{ in } \pi.$$

五 、(本题满分 10 分)

已知平面区域 $D = \{(x, y) | 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D 的正向边界.试证:

(1)
$$\iint_{\mathbb{R}} e^{\sin y} dy - y e^{-\sin x} dx = \int_{\mathbb{R}} x e^{-\sin y} dy - y e^{\sin x} dx .$$

(2)
$$\int \int x e^{\sin y} dy - y e^{-\sin x} dx \ge 2\pi^2$$
.

六 、(本题满分 10 分)

某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为 k.k > 0).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数 r(0 < r < 1).问

(1)汽锤击打桩 3 次后,可将桩打进地下多深?

(2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)

七 、(本题满分 12 分)

设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数,且 $y' \neq 0, x = x(y)$ 是 y = y(x)的反函数.

(1)试将
$$x = x(y)$$
所满足的微分方程 $\frac{d^2x}{dy^2} + (y + \sin x)(\frac{dx}{dy})^3 = 0$

变换为 y = y(x)满足的微分方程.

(2)求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解.

八 、(本题满分 12 分)

设函数 f(x) 连续且恒大于零,

$$F(t) = \frac{\iint\limits_{\Omega(t)} f(x^2 + y^2 + z^2) dv}{\iint\limits_{D(t)} f(x^2 + y^2) d\sigma}, G(t) = \frac{\iint\limits_{D(t)} f(x^2 + y^2) d\sigma}{\int_{-1}^{t} f(x^2) dx},$$

其

中

$$\Omega(t) = \{(x, y, z) \middle| x^2 + y^2 + z^2 \le t^2 \}$$

$$D(t) = \{(x, y) | x^2 + y^2 \le t^2 \}.$$

(1)讨论 F(t) 在区间 $(0,+\infty)$ 内的单调性.

(2)证明当
$$t > 0$$
 时, $F(t) > \frac{2}{\pi}G(t)$.

九 、(本题满分 10 分)

设矩阵
$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$
, $\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, $\mathbf{B} = \mathbf{P}^{-1} \mathbf{A}^* \mathbf{P}$, 求

 $\mathbf{B} + 2\mathbf{E}$ 的特征值与特征向量,其中 \mathbf{A}^* 为 \mathbf{A} 的伴随矩阵, \mathbf{E} 为 3 阶单 位矩阵.

十 、(本题满分8分)

已知平面上三条不同直线的方程分别为

$$l_1: ax + 2by + 3c = 0$$
,

$$l_2: bx + 2cy + 3a = 0$$
,

$$l_3: cx + 2ay + 3b = 0$$
.

试证这三条直线交于一点的充分必要条件为a+b+c=0.

十一 、(本题满分 10 分)

已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求:

- (1)乙箱中次品件数的数学期望.
- (2)从乙箱中任取一件产品是次品的概率.

十二 、(本题满分8分)

设总体 X 的概率密度为

$$f(x) = \begin{cases} 2e^{-2(x-\theta)} & x > \theta \\ 0 & x \le 0 \end{cases}$$

其中 $\theta>0$ 是未知参数. 从总体 X 中抽取简单随机样本 X_1,X_2,Λ X_n ,记 $\hat{\theta}=\min(X_1,X_2,\Lambda$ X_n).

- (1)求总体 X 的分布函数 F(x).
- (2)求统计量 $\hat{\theta}$ 的分布函数 $F_{\hat{\theta}}(x)$.
- (3)如果用 $\hat{\theta}$ 作为 θ 的估计量,讨论它是否具有无偏性.

数学(一)试卷

- 一、填空题(本题共 6 小题,每小题 4 分,满分 24 分.把答案填在题中横线上)
 - (1) 曲线 $y = \ln x$ 上与直线 x + y = 1 垂直的切线方程为

(2) 己知 $f'(e^x) = xe^{-x}$,且 f(1) = 0,则 $f(x) = _____$.

(3)设 L 为正向圆周 $x^2 + y^2 = 2$ 在第一象限中的部分,则曲线积分 $\int_L x dy - 2y dx$ 的值为______.

(4) 欧拉方程 $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = 0 (x > 0)$ 的通解为

_____·

(5)设矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,矩阵 \mathbf{B} 满足 $\mathbf{ABA}^* = 2\mathbf{BA}^* + \mathbf{E}$,其

中 \mathbf{A}^* 为 \mathbf{A} 的伴随矩阵, \mathbf{E} 是单位矩阵,则 $|\mathbf{B}|$ =_____.

(6)设随机变量 X 服从参数为 λ 的指数分布,则 $P\{X > \sqrt{DX}\}=$

二、选择题(本题共 8 小题,每小题 4 分,满分 32 分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)

(7) 把 $x \to 0^+$ 时 的 无 穷 小 量 $\alpha = \int_0^x \cos t^2 dt, \beta = \int_0^{x^2} \tan \sqrt{t} dt, \gamma = \int_0^{\sqrt{x}} \sin t^3 dt$, 使排在后面的是前一个的高阶无穷小,则正确的排列次序是

$$(A) \alpha, \beta, \gamma$$

(B)
$$\alpha, \gamma, \beta$$

(C)
$$\beta, \alpha, \gamma$$

(D)
$$\beta, \gamma, \alpha$$

(8)设函数 f(x) 连续,且 f'(0) > 0,则存在 $\delta > 0$,使得

(A) f(x) 在(0, δ) 内单调增加

(B) f(x) 在

 $(-\delta,0)$ 内单调减少

(C)对任意的 $x \in (0, \delta)$ 有 f(x) > f(0)

(D)对任意的

 $x \in (-\delta, 0)$ 有 f(x) > f(0)

(9)设
$$\sum_{n=1}^{\infty} a_n$$
 为正项级数,下列结论中正确的是

(A)若
$$\lim_{n\to\infty} na_n = 0$$
,则级数 $\sum_{n=1}^{\infty} a_n$ 收敛

(B)若存在非零常数
$$\lambda$$
 ,使得 $\lim_{n\to\infty} na_n = \lambda$,则级数 $\sum_{n=1}^{\infty} a_n$ 发散

(C)若级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛,则 $\lim_{n\to\infty} n^2 a_n = 0$

(D)若级数
$$\sum_{n=1}^{\infty} a_n$$
 发散,则存在非零常数 λ ,使得 $\lim_{n\to\infty} na_n = \lambda$

(10)设
$$f(x)$$
 为连续函数, $F(t) = \int_{1}^{t} dy \int_{y}^{t} f(x) dx$,则 $F'(2)$ 等于

(A)
$$2f(2)$$
 (B) $f(2)$

(C)
$$-f(2)$$
 (D) 0

(11)设 **A** 是 3 阶方阵,将 **A** 的第 1 列与第 2 列交换得 **B**,再把 **B** 的 第 2 列加到第 3 列得 **C**,则满足 **AQ** = **C**的可逆矩阵 **Q** 为

$$\begin{array}{ccc}
(A) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
(B)

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 (D)

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- (12)设**A**,**B** 为满足**AB**=**O**的任意两个非零矩阵,则必有
- (A) A 的列向量组线性相关,B 的行向量组线性相关
- (B) A 的列向量组线性相关,B 的列向量组线性相关
- (C) \mathbf{A} 的行向量组线性相关, \mathbf{B} 的行向量组线性相关
- (D) A 的行向量组线性相关,B 的列向量组线性相关

(13) 设 随 机 变 量 X 服 从 正 态 分 布 N(0,1), 对 给 定 的 $\alpha(0<\alpha<1)$,数 u_{α} 满足 $P\{X>u_{\alpha}\}=\alpha$,若 $P\{|X|< x\}=\alpha$,则 x 等于

(A)
$$u_{\frac{\alpha}{2}}$$
 (B) $u_{1-\frac{\alpha}{2}}$

(C)
$$u_{1-\alpha}$$
 (D) $u_{1-\alpha}$

(14)设随机变量 X_1, X_2, Λ, X_n (n > 1)独立同分布,且其方差为

$$\sigma^2 > 0$$
. $\Leftrightarrow Y = \frac{1}{n} \sum_{i=1}^n X_i$, \mathbb{M}

$$(A)\operatorname{Cov}(X_1, Y) = \frac{\sigma^2}{n}$$
 (B)

 $Cov(X_1, Y) = \sigma^2$

$$(C) D(X_1 + Y) = \frac{n+2}{n} \sigma^2$$

$$D(X_1 - Y) = \frac{n+1}{n} \sigma^2$$
(D)

三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算步骤)

(15)(本题满分 12 分)

设
$$e < a < b < e^2$$
,证明 $\ln^2 b - \ln^2 a > \frac{4}{e^2}(b - a)$.

(16)(本题满分 11 分)

某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.

现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为

 $k = 6.0 \times 10^6$). 问从着陆点算起,飞机滑行的最长距离是多少?

(注:kg 表示千克,km/h 表示千米/小时)

(17)(本题满分 12 分)

计算曲面积分 $I = \iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$, 其中

∑ 是曲面 $z = 1 - x^2 - y^2$ ($z \ge 0$) 的上侧.

(18)(本题满分11分)

设有方程 $x^n + nx - 1 = 0$,其中 n 为正整数.证明此方程存在惟一

正实根 x_n ,并证明当 $\alpha > 1$ 时,级数 $\sum_{n=1}^{\infty} x_n^{\alpha}$ 收敛.

(19)(本题满分 12 分)

设 z = z(x, y) 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的 函数,求 z = z(x, y)的极值点和极值.

(20)(本题满分9分)

设有齐次线性方程组

$$\begin{cases} (1+a)x_1 + x_2 + L + x_n = 0, \\ 2x_1 + (2+a)x_2 + L + 2x_n = 0, \\ L L L L L L \\ nx_1 + nx_2 + L + (n+a)x_n = 0, \end{cases} (n \ge 2) ,$$

试问 a 取何值时,该方程组有非零解,并求出其通解.

(21)(本题满分9分)

设矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -3 \\ -1 & 4 & -3 \\ 1 & a & 5 \end{bmatrix}$$
的特征方程有一个二重根,求 a 的值,

并讨论 A 是否可相似对角化.

(22)(本题满分9分)

设
$$A, B$$
 为随机事件,且 $P(A) = \frac{1}{4}, P(B|A) = \frac{1}{3}, P(A|B) = \frac{1}{2},$ 令
$$X = \begin{cases} 1, & A$$
 发生,
$$0, A$$
 不发生;
$$Y = \begin{cases} 1, & B$$
 发生,
$$0, B$$
 不发生.

求:(1)二维随机变量(X,Y)的概率分布.

(2) X 和 Y 的相关系数 ρ_{XY} .

(23)(本题满分 9 分) 设总体 *X* 的分布函数为

$$F(x,\beta) \begin{cases} 1 - \frac{1}{x^{\beta}}, x > 1, \\ 0, x \le 1, \end{cases}$$

其中未知参数 $\beta > 1, X_1, X_2, \Lambda, X_n$ 为来自总体 X 的简单随机样本,

求:(1) β 的矩估计量.

(2) β 的最大似然估计量.

数学(一)试卷

一、填空题(本题共 6 小题,每小题 4 分,满分 24 分.把答案填在题中横线上)

(1)曲线
$$y = \frac{x^2}{2x+1}$$
 的斜渐近线方程为 ______.

- (2) 微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解为
- (3) 设 函 数 $u(x,y,z) = 1 + \frac{x^2}{6} + \frac{y^2}{12} + \frac{z^2}{18}$, 单 位 向 量

$$h = \frac{1}{\sqrt{3}} \{1,1,1\}, \text{ } | \frac{\partial u}{\partial n} | = .___.$$

(4)设 Ω 是由锥面 $z=\sqrt{x^2+y^2}$ 与半球面 $z=\sqrt{R^2-x^2-y^2}$ 围 成 的 空 间 区 域 , Σ 是 Ω 的 整 个 边 界 的 外 侧 , 则 $\iint_{\Sigma} x dy dz + y dz dx + z dx dy = \underline{\hspace{1cm}}.$

(5)设 $\mathbf{\alpha}_1,\mathbf{\alpha}_2,\mathbf{\alpha}_3$ 均为 3 维列向量,记矩阵

$$\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3),$$

$$\mathbf{B} = (\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2 + 4\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + 3\boldsymbol{\alpha}_2 + 9\boldsymbol{\alpha}_3),$$

如果 $|\mathbf{A}| = 1$,那么 $|\mathbf{B}| = ____.$

(6)从数 1,2,3,4 中任取一个数,记为 X , 再从 1,2, Λ ,X 中任取一

个数,记为 Y ,则 $P{Y = 2} = ____.$

二、选择题(本题共 8 小题,每小题 4 分,满分 32 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)

(7)设函数
$$f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}}$$
 ,则 $f(x)$ 在 $(-\infty, +\infty)$ 内

(A)处处可导 (B)恰有一个

不可导点

(C)恰有两个不可导点

(D)至少有三

个不可导点

(8)设 F(x) 是连续函数 f(x) 的一个原函数, " $M \Leftrightarrow N$ " 表示

"M 的充分必要条件是N",则必有

(A) F(x) 是偶函数 $\Leftrightarrow f(x)$ 是奇函数

(B) *F*(*x*) 是

奇函数 $\Leftrightarrow f(x)$ 是偶函数

(C) F(x) 是周期函数 $\Leftrightarrow f(x)$ 是周期函数

(D) *F*(*x*) 是

单调函数 $\Leftrightarrow f(x)$ 是单调函数

(9) 设函数 $u(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t) dt$, 其中函数 φ 具有二阶导数, ψ 具有一阶导数,则必有

(A)
$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$$
 (B)

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$$

$$(C)\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y^2}$$
 (D)

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial x^2}$$

(10)设有三元方程 $xy-z\ln y+e^{xz}=1$,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程

- (A)只能确定一个具有连续偏导数的隐函数 z = z(x, y)
- (B) 可确定两个具有连续偏导数的隐函数 x = x(y, z) 和 z = z(x, y)
- (C) 可确定两个具有连续偏导数的隐函数 y = y(x, z) 和 z = z(x, y)
- (D) 可确定两个具有连续偏导数的隐函数 x = x(y, z) 和 y = y(x, z)
- (11)设 λ_1,λ_2 是矩阵 **A** 的两个不同的特征值,对应的特征向量分别为 α_1,α_2 ,则 α_1 , **A** $(\alpha_1+\alpha_2)$ 线性无关的充分必要条件是

$$(A) \lambda_1 \neq 0 (B) \lambda_2 \neq 0$$

$$(C) \lambda_1 = 0 (D) \lambda_2 = 0$$

(12)设 **A** 为 $n(n \ge 2)$ 阶可逆矩阵,交换 **A** 的第 1 行与第 2 行得矩阵 **B**.**A***,**B*** 分别为 **A**,**B** 的伴随矩阵,则

(A)交换 \mathbf{A}^* 的第 1 列与第 2 列得 \mathbf{B}^*

(B) 交换 **A***

的第 1 行与第 2 行得 \mathbf{B}^*

(C)交换
$$\mathbf{A}^*$$
 的第 1 列与第 2 列得 $-\mathbf{B}^*$

(D) 交换 **A***

的第 1 行与第 2 行得 $-\mathbf{B}^*$

(13)设二维随机变量(X,Y)的概率分布为

X	0	1
0	0.4	a
1	b	0.1

已知随机事件 ${X = 0}$ 与 ${X + Y = 1}$ 相互独立,则

(A)
$$a = 0.2, b = 0.3$$
 (B)

a = 0.4, b = 0.1

(C)
$$a = 0.3, b = 0.2$$
 (D)

a = 0.1, b = 0.4

(14)设 X_1, X_2, Λ, X_n ($n \ge 2$) 为来自总体N(0,1) 的简单随机样

本, \overline{X} 为样本均值, S^2 为样本方差,则

$$(A) n\overline{X} \sim N(0,1) \tag{B}$$

 $nS^2 \sim \chi^2(n)$

$$(C)\frac{(n-1)\overline{X}}{S} \sim t(n-1)$$
 (D)

$$\frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1, n-1)$$

三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算步骤)

(15)(本题满分 11 分)

设
$$D = \{(x, y) | x^2 + y^2 \le \sqrt{2}, x \ge 0, y \ge 0 \}$$
, $[1 + x^2 + y^2]$ 表示

不 超 过 $1+x^2+y^2$ 的 最 大 整 数 . 计 算 二 重 积 分

$$\iint\limits_{D} xy[1+x^2+y^2]dxdy.$$

(16)(本题满分 12 分)

求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} (1 + \frac{1}{n(2n-1)}) x^{2n}$ 的收敛区间与和函数

f(x).

(17)(本题满分 11 分)

如图,曲线 C 的方程为 y = f(x),点

(3,2) 是它的一个拐点,直线 l_1 与 l_2 分别

是曲线 C 在点 (0,0) 与 (3,2) 处的切线,

其交点为(2,4).设函数 f(x) 具有三阶

连续导数,计算定积分

$$\int_0^3 (x^2 + x) f'''(x) dx$$
.

(18)(本题满分 12 分)

已知函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0)=0,f(1)=1.证明:

- (1)存在 $\xi \in (0,1)$, 使得 $f(\xi) = 1 \xi$.
- (2)存在两个不同的点 $\eta, \zeta \in (0,1)$,使得 $f'(\eta)f'(\zeta) = 1$.
- (19)(本题满分 12 分)

设函数 $\varphi(y)$ 具有连续导数,在围绕原点的任意分段光滑简单闭曲

线 L 上,曲线积分 $\int \frac{\phi(y)dx + 2xydy}{2x^2 + y^4}$ 的值恒为同一常数.

(1)证明:对右半平面 x>0 内的任意分段光滑简单闭曲线 C,有

$$\iint_{\mathbb{R}} \frac{\phi(y)dx + 2xydy}{2x^2 + y^4} = 0.$$

(2)求函数 $\varphi(y)$ 的表达式.

$$f(x_1, x_2, x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$$
 的秩为 2.

- (1)求 a 的值;
- (2)求正交变换 $x = \mathbf{Q}y$,把 $f(x_1, x_2, x_3)$ 化成标准形.
- (3)求方程 $f(x_1, x_2, x_3) = 0$ 的解.
- (21)(本题满分9分)

已知 3 阶矩阵 A 的第一行是 (a,b,c), a,b,c 不全为零,矩阵

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{bmatrix}$$
 (k 为常数),且 $\mathbf{AB} = \mathbf{O}$,求线性方程组 $\mathbf{A}x = \mathbf{0}$ 的通

解.

(22)(本题满分9分)

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 1 & 0 < x < 1, 0 < \oint < 2x \\ 0 & \exists \forall c \end{cases}$$

求:(1)(X,Y)的边缘概率密度 $f_X(x)$, $f_Y(y)$.

(2)
$$Z = 2X - Y$$
 的概率密度 $f_Z(z)$.

(23)(本题满分9分)

设 $X_1, X_2, \Lambda, X_n (n > 2)$ 为来自总体N(0,1)的简单随机样本,

 \overline{X} 为样本均值,记 $Y_i = X_i - \overline{X}, i = 1,2,\Lambda$, n.

求:(1) Y_i 的方差 DY_i , $i = 1,2,\Lambda$, n.

(2) Y_1 与 Y_n 的协方差 $Cov(Y_1, Y_n)$.

2006年全国硕士研究生入学统一考试

数学(一)试卷

- 一、填空题(本题共 6 小题,每小题 4 分,满分 24 分.把答案填在题中横线上)
 - $(1) \lim_{x \to 0} \frac{x \ln(1+x)}{1 \cos x} = \underline{\hspace{1cm}}.$
 - (2) 微分方程 $y' = \frac{y(1-x)}{x}$ 的通解是_____.
- (3) 设 Σ 是 锥 面 $z = \sqrt{x^2 + y^2}$ ($0 \le z \le 1$) 的 下 侧 , 则 $\iint_{\Sigma} x dy dz + 2y dz dx + 3(z-1) dx dy = \underline{\hspace{1cm}}.$
 - (4)点(2,1,0)到平面3x+4y+5z=0的距离z=_____.
 - (5)设矩阵 $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$, \mathbf{E} 为 2 阶单位矩阵,矩阵 \mathbf{B} 满足

 $\mathbf{B}\mathbf{A} = \mathbf{B} + 2\mathbf{E}$,则 $|\mathbf{B}| =$ _____.

(6)设随机变量 X 与 Y 相互独立,且均服从区间 [0,3] 上的均匀分布,则 $P\{\max\{X,Y\}\leq 1\}$ =_____.

二、选择题(本题共 8 小题,每小题 4 分,满分 32 分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)

(7)设函数 y = f(x) 具有二阶导数,且 f'(x) > 0, f''(x) > 0, Δx 为自变量 x 在 x_0 处的增量, Δy 与 dy 分别为 f(x) 在点 x_0 处对应的增量与微分.若 $\Delta x > 0$,则

$$(A) 0 < dx < \Delta y \tag{B}$$

 $0 < \Delta y < dy$

$$(C) \Delta y < dy < 0 \tag{D}$$

 $dy < \Delta y < 0$

(8)设 f(x, y) 为连续函数,则 $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(r\cos\theta, r\sin\theta) r dr$ 等于

(A)
$$\int_0^{\frac{\sqrt{2}}{2}} dx \int_x^{\sqrt{1-x^2}} f(x, y) dy$$
 (B)

$$\int_0^{\frac{\sqrt{2}}{2}} dx \int_0^{\sqrt{1-x^2}} f(x, y) dy$$

(C)
$$\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^2}} f(x, y) dx$$
 (C)

$$\int_0^{\frac{\sqrt{2}}{2}} dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$$

(9)若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数

$$(A) \sum_{n=1}^{\infty} |a_n| 收敛$$
 (B)

$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 收敛

(C)
$$\sum_{n=1}^{\infty} a_n a_{n+1}$$
 收敛 (D)

$$\sum_{n=1}^{\infty} \frac{a_n + a_{n+1}}{2}$$
 收敛

(10)设 f(x, y)与 $\varphi(x, y)$ 均为可微函数,且 $\varphi_y^1(x, y) \neq 0$.已知 (x_0, y_0) 是 f(x, y)在约束条件 $\varphi(x, y) = 0$ 下的一个极值点,下列选项正确的是

(A)若
$$f'_{x}(x_{0}, y_{0}) = 0$$
,则 $f'_{y}(x_{0}, y_{0}) = 0$ (B) 若

(C)若
$$f'_{x}(x_{0}, y_{0}) \neq 0$$
,则 $f'_{y}(x_{0}, y_{0}) = 0$ (D) 若

 $f'_{x}(x_{0}, y_{0}) \neq 0, \text{ } \emptyset f'_{y}(x_{0}, y_{0}) \neq 0$

(11)设 $\mathbf{\alpha}_1$, $\mathbf{\alpha}_2$, \mathbf{L} , $\mathbf{\alpha}_s$, 均为 n 维列向量, \mathbf{A} 是 $m \times n$ 矩阵,下列选项正确的是

(A)若 α_1 , α_2 , L, α_s , 线性相关,则 $A\alpha_1$, $A\alpha_2$, L, $A\alpha_s$, 线性相关

(B)若 α_1 , α_2 , L, α_s , 线性相关,则 $A\alpha_1$, $A\alpha_2$, L, $A\alpha_s$, 线性无关

(C)若 α_1 , α_2 , L , α_s , 线性无关,则 $A\alpha_1$, $A\alpha_2$, L , $A\alpha_s$, 线性相关

(D)若 α_1 , α_2 , L, α_s , 线性无关,则 $A\alpha_1$, $A\alpha_2$, L, $A\alpha_s$, 线性无关.

(12)设 **A** 为 3 阶矩阵,将 **A** 的第 2 行加到第 1 行得 **B**,再将 **B** 的

第 1 列的-1 倍加到第 2 列得
$$\mathbb{C}$$
 ,记 $\mathbb{P} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则

$$(A) \mathbf{C} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$$
 (B)

$$\mathbf{C} = \mathbf{P}\mathbf{A}\mathbf{P}^{-1}$$

$$(C) \mathbf{C} = \mathbf{P}^T \mathbf{A} \mathbf{P} \tag{D}$$

 $\mathbf{C} = \mathbf{P}\mathbf{A}\mathbf{P}^T$

(13)设A, B 为随机事件,且P(B) > 0, P(A|B) = 1,则必有

(A)
$$P(A \cup B) > P(A)$$
 (B)

 $P(A \cup B) > P(B)$

(C)
$$P(A \cup B) = P(A)$$
 (D)

 $P(A \cup B) = P(B)$

(14)设随机变量 X 服从正态分布 $N(\mu_{\rm l},\sigma_{\rm l}^2)$, Y 服从正态分布

 $N(\mu_2,\sigma_2^2)$,

且 $P\{|X - \mu_1| < 1\} > P\{|Y - \mu_2| < 1\}$, 则

(A)
$$\sigma_1 < \sigma_2$$
 (B) $\sigma_1 > \sigma_2$

(C)
$$\mu_1 < \mu_2$$
 (D) $\mu_1 > \mu_2$

三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算步骤)

(15)(本题满分 10 分)

设区域 $D=\left\{\left(x,y\right)\middle|x^2+y^2\leq 1,x\geq 0\right\}$, 计算二重积分

$$I = \iint\limits_{D} \frac{1+xy}{1+x^2+y^2} \, dx \, dy \, .$$

(16)(本题满分 12 分)

设数列 $\{x_n\}$ 满足 $0 < x_1 < \pi, x_{\pi+1} = \sin x_n (n = 1, 2, ...)$

求:(1)证明 $\lim_{x\to\infty} x_n$ 存在,并求之.

(2)计算
$$\lim_{x\to\infty} \left(\frac{x_{n+1}}{x_n}\right)^{\frac{1}{x_n^2}}$$
.

(17)(本题满分 12 分)

将函数 $f(x) = \frac{x}{2+x-x^2}$ 展开成 x 的幂级数.

(18)(本题满分 12 分)

设 函 数 f(u)在 $(0,+\infty)$ 内具有二阶导数,且

$$z = f\left(\sqrt{x^2 + y^2}\right)$$
满足等式 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

(1) 验证
$$f''(u) + \frac{f'(u)}{u} = 0$$
.

(2)若f(1) = 0, f'(1) = 1,求函数f(u)的表达式.

(19)(本题满分 12 分)

设在上半平面 $D = \{(x, y)|y>0\}$ 内,数 f(x, y) 是有连续偏导数, 且对任意的 t>0 都有

$$f(tx,ty) = t^2 f(x,y).$$

证明:对 L 内的任意分段光滑的有向简单闭曲线 L ,都有 $\int \int f(x,y)dx - xf(x,y)dy = 0$.

(20)(本题满分9分)

己知非齐次线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \\ ax_1 + x_2 + 3x_3 - bx_4 = 1 \end{cases}$$

有3个线性无关的解,

- (1)证明方程组系数矩阵 \mathbf{A} 的秩 $r(\mathbf{A}) = 2$.
- (2)求 a,b 的值及方程组的通解.
- (21)(本题满分9分)

设 3 阶实对称矩阵 **A** 的各行元素之和均为 3,向量 $\mathbf{\alpha}_1 = \begin{pmatrix} -1,2,-1 \end{pmatrix}^T, \mathbf{\alpha}_2 = \begin{pmatrix} 0,-1,1 \end{pmatrix}^T$ 是线性方程组 **A**x = 0的两个解.

- (1)求 A 的特征值与特征向量.
- (2)求正交矩阵 \mathbf{Q} 和对角矩阵 \mathbf{A} ,使得 $\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \mathbf{A}$.

(22)(本题满分9分)

随 机 变 量 x 的 概 率 密 度 为

的分布函数.

(1)求 Y 的概率密度 $f_Y(y)$.

(2)
$$F\left(-\frac{1}{2},4\right)$$
.

(23)(本题满分9分)

设总体 X 的概率密度为 F(X,0) = $\begin{cases} \theta & 0 < x < 1 \\ 1-\theta & 1 \le x < 2, \text{其中}\theta \\ 0 & \text{其它} \end{cases}$

是未知参数 $(0 < \theta < 1)$, X_1 , X_2 ... , X_n 为来自总体 X 的简单随机样本,

记 N 为样本值 $x_1, x_2 ..., x_n$ 中小于 1 的个数,求 θ 的最大似然估计.

2007年全国硕士研究生入学统一考试

数学(一)试卷

- 一、选择题(本题共 10 小题,每小题 4 分,满分 40 分,在每小题给的 四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号 内)
 - (1)当 $x \to 0^+$ 时.与 \sqrt{x} 等价的无穷小量是

(A)
$$1 - e^{\sqrt{x}}$$
 (B) $\ln \frac{1+x}{1-\sqrt{x}}$

$$(C)\sqrt{1+\sqrt{x}}-1\tag{D}$$

 $1-\cos\sqrt{x}$

(2)曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
,渐近线的条数为

$$(A)0$$
 $(B)1$

$$(C)2$$
 (D)3

(3)如图,连续函数 y = f(x)

在区间 [-3,-2],[2,3] 上的图形分别是直径为 1 的上、下半圆周,在区间 [-2,0],[0,2] 的图形分别是直径为 2 的上、下半圆周,设 $F(x) = \int_0^x f(t)dt .则下列结论正确的是$

(A)
$$F(3) = -\frac{3}{4}F(-2)$$
 (B)

$$F(3) = \frac{5}{4}F(2)$$

(C)
$$F(3) = \frac{3}{4}F(2)$$
 (D)

$$F(3) = -\frac{5}{4}F(-2)$$

(4)设函数 f(x) 在 x=0 处连续,下列命题错误的是

(A)若
$$\lim_{x \to 0} \frac{f(x)}{x}$$
 存在,则 $f(0) = 0$ (B) 若

$$\lim_{x\to 0} \frac{f(x) + f(-x)}{x}$$
 存在,则 $f(0) = 0$

(C)若
$$\lim_{x \to 0} \frac{f(x)}{x}$$
 存在,则 $f'(0) = 0$ (D) 若 $\lim_{x \to 0} \frac{f(x) - f(-x)}{x}$ 存在,则 $f'(0) = 0$

(5)设函数 f(x) 在(0, + ∞)上具有二阶导数,且 f''(x) > 0,令 $u_n = f(n) = 1, 2, L_n, n$,则下列结论正确的是

(A)若
$$u_1 > u_2$$
,则{ u_n }必收敛 (B)若 $u_1 > u_2$,

则 $\{u_n\}$ 必发散

(C)若
$$u_1 < u_2$$
,则{ u_n }必收敛 (D)若 $u_1 < u_2$,

则 $\{u_n\}$ 必发散

(6)设曲线 L: f(x,y)=1 (f(x,y) 具有一阶连续偏导数),过第 2 象限内的点 M 和第 \mathbb{N} 象限内的点 N, Γ 为 L 上从点 M 到 N 的一段 弧,则下列小于零的是

(A)
$$\int_{\Gamma} (x, y) dx$$
 (B)
$$\int_{\Gamma} f(x, y) dy$$

(C)
$$\int_{\Gamma} f(x, y) ds$$
 (D)

$$\int_{\Gamma} f'_{x}(x,y)dx + f'_{y}(x,y)dy$$

(7)设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则下列向量组线形相关的是

(A)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$$
 (B)

$$\mathbf{\alpha}_1 + \mathbf{\alpha}_2, \mathbf{\alpha}_2 + \mathbf{\alpha}_3, \mathbf{\alpha}_3 + \mathbf{\alpha}_1$$

(C)
$$\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$$
 (D)

$$\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + 2\boldsymbol{\alpha}_1$$

(8)设矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 则 \mathbf{A} 与 \mathbf{B}$$

(A)合同,且相似 (B)合同,但不 相似

(C)不合同,但相似 (D)既不合同, 也不相似

(9)某人向同一目标独立重复射击,每次射击命中目标的概率为 p(0 ,则此人第 4 次射击恰好第 2 次命中目标的概率为

(A)
$$3p(1-p)^2$$
 (B)

 $6p(1-p)^2$

(C)
$$3p^2(1-p)^2$$
 (D)

 $6p^2(1-p)^2$

(10)设随即变量 (X,Y) 服从二维正态分布,且 X 与 Y 不相关, $f_X(x)$, $f_Y(y)$ 分别表示 X,Y 的概率密度,则在 Y=y 的条件下, X 的条件概率密度 $f_{X|Y}(x|y)$ 为

(A)
$$f_X(x)$$
 (B) $f_Y(y)$

(C)
$$f_X(x)$$
 $f_Y(y)$ (D) $\frac{f_X(x)}{f_Y(y)}$

二、填空题(11-16 小题,每小题 4 分,共 24 分,请将答案写在答题 纸指定位置上)

$$(11) \int_{1}^{2} \frac{1}{x^{3}} e^{\frac{1}{x}} dx = \underline{\qquad}.$$

(12)设
$$f(u,v)$$
 为二元可微函数, $z = f(x^y, y^x)$,则 $\frac{\partial z}{\partial x} =$ _____.

(13)二阶常系数非齐次线性方程 y"-4y'+3y= $2e^{2x}$ 的通解为 y=_____.

(14) 设 曲 面 $\sum :|x|+|y|+|z|=1$, 则 \bigoplus_{Σ} (x+|y|)ds

(15)设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,则 \mathbf{A}^3 的秩为______.

(16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于 $\frac{1}{2}$ 的概率为_____.

三、解答题(17-24 小题,共 86 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤)

(17)(本题满分 11 分)

求 函 数
$$f(x,y) = x^2 + 2y^2 - x^2y^2$$
 在 区 域

 $D = \{(x, y) | x^2 + y^2 \le 4, y \ge 0\}$ 上的最大值和最小值.

(18)(本题满分 10 分)

计算曲面积分 $I = \iint_{\Sigma} xzdydz + 2zydzdx + 3xydxdy$, 其中 Σ 为

曲面
$$z = 1 - x^2 - \frac{y^2}{4}$$
 (0 \le z \le 1) 的上侧.

(19)(本题满分11分)

设函数 f(x), g(x) 在 [a,b] 上连续,在(a,b) 内具有二阶导数且存

在相等的最大值, f(a) = g(a), f(b) = g(b),证明:存在 $\xi \in (a,b)$,

使得
$$f''(\xi) = g''(\xi)$$
.

(20)(本题满分 10 分)

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $(-\infty, +\infty)$ 内收敛,其和函数 y(x)满足

$$y'' - 2xy' - 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$.

(1)证明:
$$a_{n+2} = \frac{2}{n+1}a_n, n = 1, 2, L$$
.

- (2)求 y(x)的表达式.
- (21)(本题满分11分)

设线性方程组

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

与方程

$$x_1 + 2x_2 + x_3 = a - 1$$
,

有公共解,求 a 的值及所有公共解.

(22)(本题满分 11 分)

设 3 阶 实 对 称 矩 阵 **A** 的 特 征 向 量 值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2.\alpha_1 = (1, -1, 1)^T$ 是 **A** 的属于特征值 λ_1 的一个特征向量,记 **B** = **A**⁵ -4**A**³ + **E**, 其中 **E** 为 3 阶单位矩阵.

- (1)验证 $\mathbf{\alpha}_1$ 是矩阵 \mathbf{B} 的特征向量,并求 \mathbf{B} 的全部特征值与特征向量
 - (2)求矩阵 B.
 - (23)(本题满分 11 分)

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} 2-x-y, 0 < x < 1, 0 < y < 1 \\ 0, 其他 \end{cases}$$

(1)求 $P\{X > 2Y\}$.

(2)求 Z = X + Y 的概率密度.

(24)(本题满分 11 分)

设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{2\theta}, 0 < x < \theta \\ \frac{1}{2(1-\theta)}, \theta \le x < 1 \\ 0, \text{ \#} \end{cases}$$

 X_1, X_2 L $, X_n$ 是来自总体 x 的简单随机样本, \overline{X} 是样本均值

- (1)求参数 θ 的矩估计量 $\hat{\theta}$.
- (2)判断 $4\bar{X}^2$ 是否为 θ^2 的无偏估计量,并说明理由.

2008年全国硕士研究生入学统一考试

数学(一)试卷

一、选择题(1-8 小题,每小题 4 分,共 32 分,下列每小题给出的四个 选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号 内.)

(1)设函数
$$f(x) = \int_0^{x^2} \ln(2+t)dt$$
 则 $f'(x)$ 的零点个数

$$(A)0$$
 $(B)1$

$$(C)2$$
 $(D)3$

(2)函数 $f(x, y) = \arctan \frac{x}{y}$ 在点 (0,1) 处的梯度等于

(A)
$$i$$

(C)
$$\boldsymbol{j}$$

(3) 在下列 微分 方程中,以 $y = C_1 e^x + C_2 \cos 2x + C_3 \sin 2x$ (C_1, C_2, C_3 为任意常数)为通解的是

(A)
$$y''' + y'' - 4y' - 4y = 0$$
 (B)

$$y''' + y'' + 4y' + 4y = 0$$

(C)
$$y''' - y'' - 4y' + 4y = 0$$
 (D)

$$y''' - y'' + 4y' - 4y = 0$$

(4)设函数 f(x) 在 $(-\infty, +\infty)$ 内单调有界, $\{x_n\}$ 为数列,下列命题正确的是

$$(A)$$
若 $\{x_n\}$ 收敛,则 $\{f(x_n)\}$ 收敛

(B)若 $\{x_n\}$ 单

调,则 $\{f(x_n)\}$ 收敛

(C)若
$$\{f(x_n)\}$$
 收敛,则 $\{x_n\}$ 收敛

(D) 若

 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 收敛

(5)设 **A** 为 *n* 阶非零矩阵, **E** 为 *n* 阶单位矩阵. 若 $\mathbf{A}^3 = 0$,则

(A) $\mathbf{E} - \mathbf{A}$ 不可逆, $\mathbf{E} + \mathbf{A}$ 不可逆

(B) \mathbf{E} -A 不

可逆, $\mathbf{E} + \mathbf{A}$ 可逆

(D) $\mathbf{E} - \mathbf{A}$ 可

逆, E + A 不可逆

(6)设**A** 为 3 阶实对称矩阵, 如 果 二 次 曲 面 方 程

$$(x, y, z)$$
A $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ =1 在正交变换

下的标准方程的图形如图,则 *A* 的正特征值个数为

- (A)0
- (B)1
- (C)2
- (D)3
- (7)设随机变量 X,Y 独立同分布且 X 分布函数为 F(x),则

 $Z = \max\{X,Y\}$ 分布函数为

$$(A) F^2(x) (B)$$

F(x)F(y)

(C)
$$1-\left[1-F(x)\right]^2$$
 (D)

$$[1-F(x)][1-F(y)]$$

(8)设随机变量 $X \sim N(0,1), Y \sim N(1,4)$ 且相关系数 $\rho_{xy} = 1, 则$

(A)
$$P\{Y = -2X - 1\} = 1$$
 (B)

 $P{Y = 2X - 1} = 1$

(C)
$$P{Y = -2X + 1} = 1$$
 (D)

$$P{Y = 2X + 1} = 1$$

二、填空题(9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.)

(9) 微分方程 xy'+y=0 满足条件 y(1)=1 的解是 y=

____·

(10)曲线 $\sin(xy) + \ln(y-x) = x$ 在点 (0,1) 处的切线方程为

____·

(11)已知幂级数 $\sum_{n=0}^{\infty} a_n (x+2)^n$ 在 x=0 处收敛,在 x=-4 处发散,

则幂级数 $\sum_{n=0}^{\infty} a_n (x-3)^n$ 的收敛域为 ______.

(12) 设 曲 面 Σ 是 $z = \sqrt{4 - x^2 - y^2}$ 的 上 侧 ,则 $\iint_{\Sigma} xydydz + xdzdx + x^2dxdy = \underline{\hspace{1cm}}.$

(13)设**A**为 2 阶矩阵, α_1 , α_2 为线性无关的 2 维列向量,

$$\mathbf{A}\mathbf{\alpha}_1 = 0, \mathbf{A}\mathbf{\alpha}_2 = 2\mathbf{\alpha}_1 + \mathbf{\alpha}_2,$$
则 **A** 的非零特征值为 ______.

(14)设随机变量 X 服从参数为 1 的泊松分布,则 $P\left\{X=EX^2\right\}$ =

三、解答题(15-23 小题,共 94 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分 10 分)

求极限
$$\lim_{x\to 0} \frac{\left[\sin x - \sin\left(\sin x\right)\right]\sin x}{x^4}$$
.

(16)(本题满分 10 分)

计算曲线积分 $\int_L \sin 2x dx + 2(x^2 - 1)y dy$,其中 L 是曲线 $y = \sin x$ 上从点(0,0)到点 $(\pi,0)$ 的一段.

(17)(本题满分 10 分)

已知曲线 $C: \begin{cases} x^2 + y^2 - 2z^2 = 0 \\ x + y + 3z = 5 \end{cases}$,求曲线 C 距离 XOY 面最远的

点和最近的点.

(18)(本题满分 10 分)

设f(x)是连续函数,

(1)利用定义证明函数 $F(x) = \int_0^x f(t)dt$ 可导,且 F'(x) = f(x).

(2) 当 f(x) 是 以 2 为 周 期 的 周 期 函 数 时,证 明 函 数 $G(x) = 2\int_0^x f(t)dt - x \int_0^2 f(t)dt \text{ 也是以 2 为周期的周期函数.}$

(19)(本题满分 10 分)

$$f(x) = 1 - x^2 (0 \le x \le \pi)$$
,用余弦级数展开,并求 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的

和

(20)(本题满分 11 分)

A = $\alpha \alpha^T$ + $\beta \beta^T$, α^T 为 α 的转置, β^T 为 β 的转置.证明:

- $(1) r(\mathbf{A}) \leq 2.$
- (2)若 α , β 线性相关,则r(A) < 2.
- (21)(本题满分11分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 2a & 1 & & \\ a^2 & 2a & O & \\ & O & O & 1 \\ & & a^2 & 2a \end{pmatrix}_{n \times n}$$
 , 现矩阵 \mathbf{A} 满足方程

$$\mathbf{AX} = \mathbf{B}, \text{ \sharp } + \mathbf{X} = (x_1, L, x_n)^T, \mathbf{B} = (1, 0, L, 0),$$

(1)求证
$$|\mathbf{A}| = (n+1)a^n$$
.

- (2) a 为何值,方程组有唯一解,求 x_1 .
- (3) a 为何值,方程组有无穷多解,求通解.
- (22)(本题满分 11 分)

设随机变量 X 与 Y 相互独立, X 的概率分布为

$$P\{X=i\} = \frac{1}{3}(i=-1,0,1), Y$$
 的概率密度为 $f_Y(y) = \begin{cases} 1 & 0 \le y \le 1 \\ 0 & 其它 \end{cases}$,

记
$$Z = X + Y$$
,

$$(1) \stackrel{?}{R} P \left\{ Z \le \frac{1}{2} \middle| X = 0 \right\}.$$

- (2)求Z的概率密度.
- (23)(本题满分 11 分)

设 X_1, X_2, L , X_n 是总体为 $N(\mu, \sigma^2)$ 的简单随机样本.

记
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$, $T = \bar{X}^2 - \frac{1}{n} S^2$

(1)证明 T 是 μ^2 的无偏估计量.

(2)当 $\mu = 0, \sigma = 1$ 时 ,求 DT.

2009年全国硕士研究生入学统一考试

数学(一)试卷

- 一、选择题(1-8 小题,每小题 4 分,共 32 分,下列每小题给出的四个 选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号 内.)
- (1)当 $x \to 0$ 时, $f(x) = x \sin ax$ 与 $g(x) = x^2 \ln(1 bx)$ 等价 无穷小,则

(A)
$$a = 1, b = -\frac{1}{6}$$
 (B)

$$a = 1, b = \frac{1}{6}$$

(C)
$$a = -1, b = -\frac{1}{6}$$
 (D)

$$a = -1, b = \frac{1}{6}$$

(2) 如 图 , 正 方 形 $\{(x,y)||x|\leq 1,|y|\leq 1\} \text{ 被其对角}$ 线 划 分 为 四 个 区 域 $D_k (k=1,2,3,4) \qquad , \qquad I_k = \iint_{D_k} y \cos x dx dy \qquad , \qquad 则$

$$\max_{1 \le k \le 4} \{I_k\} =$$

$$(A)I_1$$

$$(\mathrm{B})\,I_2$$

(C)
$$I_3$$

$$(\mathrm{D})\,I_4$$

(3)设函数 y = f(x)在区间 [-1,3]上的图形为

则函数 $F(x) = \int_0^x f(t) dt$ 的图形为

(4)设有两个数列 $\left\{a_{n}\right\}$, $\left\{b_{n}\right\}$,若 $\lim_{n\to\infty}a_{n}=0$,则

(A)当
$$\sum_{n=1}^{\infty} b_n$$
 收敛时, $\sum_{n=1}^{\infty} a_n b_n$ 收敛. (B) 当 $\sum_{n=1}^{\infty} b_n$

发散时, $\sum_{n=1}^{\infty} a_n b_n$ 发散.

(C)当
$$\sum_{n=1}^{\infty} |b_n|$$
 收敛时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛. (D)当 $\sum_{n=1}^{\infty} |b_n|$

发散时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 发散.

(5) 设 $\alpha_1, \alpha_2, \alpha_3$ 是 3 维向量空间 \mathbf{R}^3 的一组基,则由基

$$\mathbf{\alpha}_1, \frac{1}{2}\mathbf{\alpha}_2, \frac{1}{3}\mathbf{\alpha}_3$$
到基 $\mathbf{\alpha}_1 + \mathbf{\alpha}_2, \mathbf{\alpha}_2 + \mathbf{\alpha}_3, \mathbf{\alpha}_3 + \mathbf{\alpha}_1$ 的过渡矩阵为

$$(A) \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{pmatrix}
 (B)$$

$$\begin{pmatrix}
1 & 2 & 0 \\
0 & 2 & 3 \\
1 & 0 & 3
\end{pmatrix}$$

$$(C)\begin{pmatrix} \frac{1}{2} & \frac{1}{4} & -\frac{1}{6} \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{6} \\ \frac{1}{2} & -\frac{1}{4} & \frac{1}{6} \end{pmatrix}$$
 (D)

$$\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{6} \end{pmatrix}$$

(6)设 \mathbf{A} , \mathbf{B} 均为 2 阶矩阵, \mathbf{A}^* , \mathbf{B}^* 分别为 \mathbf{A} , \mathbf{B} 的伴随矩阵, 若

 $|\mathbf{A}| = 2, |\mathbf{B}| = 3,$ 则分块矩阵 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的伴随矩阵为

$$(A)\begin{pmatrix} O & 3B^* \\ 2A^* & O \end{pmatrix} \tag{B}$$

 $\begin{pmatrix} O & 2B^* \\ 3A^* & O \end{pmatrix}$

$$(C)\begin{pmatrix} O & 3A^* \\ 2B^* & O \end{pmatrix} \tag{D}$$

 $\begin{pmatrix} O & 2A^* \\ 3B^* & O \end{pmatrix}$

则 EX = (A)0 (B)0.3

(C)0.7 (D)

(8)设随机变量 X 与 Y 相互独立,且 X 服从标准正态分布 N(0,1), Y 的概率分布为 $P\{Y=0\}=P\{Y=1\}=\frac{1}{2}$,记 $F_Z(z)$ 为随

机变量 Z = XY 的分布函数,则函数 $F_Z(z)$ 的间断点个数为

(A)0 (B)1

(C)2 (D)3

二、填空题(9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.)

(9) 设函数 f(u,v) 具有二阶连续偏导数,z = f(x,xy),则 $\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}.$

(10)若二阶常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为 $y = (C_1 + C_2 x)e^x$,则 非 齐 次 方 程 y'' + ay' + by = x 满 足 条 件 y(0) = 2, y'(0) = 0 的解为 y =______.

(11) 已 知 曲 线 $L: y = x^2 \left(0 \le x \le \sqrt{2}\right)$,则 $\int_L x ds = \underline{\qquad}$

(12) $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$, Ω

$$\iiint_{\Omega} z^2 dx dy dz = \underline{\qquad}.$$

- (13)若 3 维列向量 α , β 满足 $\alpha^T\beta=2$, 其中 α^T 为 α 的转置,则矩阵 $\beta\alpha^T$ 的非零特征值为_____.
- (14)设 X_1, X_2, L , X_m 为来自二项分布总体 B(n, p) 的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差.若 $\overline{X} + kS^2$ 为 np^2 的无偏估计量,则 $k = \underline{\hspace{1cm}}$.
- 三、解答题(15-23 小题,共 94 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分9分)

求二元函数
$$f(x, y) = x^2(2 + y^2) + y \ln y$$
 的极值.

(16)(本题满分9分)

设 a_n 为曲线 $y = x^n$ 与 $y = x^{n+1} (n = 1, 2,)$ 所围成区域的面积,

记
$$S_1 = \sum_{n=1}^{\infty} a_n, S_2 = \sum_{n=1}^{\infty} a_{2n-1}$$
 ,求 S_1 与 S_2 的值.

(17)(本题满分 11 分)

椭球面 S_1 是椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 绕 x 轴旋转而成,圆锥面 S_2 是过点

(4,0)且与椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 相切的直线绕 x 轴旋转而成.

(1)求 S_1 及 S_2 的方程.

(2)求 S_1 与 S_2 之间的立体体积.

(18)(本题满分 11 分)

(1)证明拉格朗日中值定理:若函数 f(x)在 [a,b] 上连续,在

(a,b)可导,则存在 $\xi \in (a,b)$,使得 $f(b)-f(a)=f'(\xi)(b-a)$.

(2)证明:若函数 f(x)在 x=0 处连续,在 $(0,\delta)(\delta>0)$ 内可导,且

$$\lim_{x\to 0^+} f'(x) = A$$
,则 $f'_+(0)$ 存在,且 $f'_+(0) = A$.

(19)(本题满分 10 分)

计算曲面积分
$$I =$$
 $\int_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}$,其中 \sum 是曲面

$$2x^2 + 2y^2 + z^2 = 4$$
的外侧.

(20)(本题满分 11 分)

设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}, \boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$$

- (1)求满足 $\mathbf{A}\boldsymbol{\xi}_2 = \boldsymbol{\xi}_1$ 的 $\boldsymbol{\xi}_2 \cdot \mathbf{A}^2\boldsymbol{\xi}_3 = \boldsymbol{\xi}_1$ 的所有向量 $\boldsymbol{\xi}_2 \cdot \boldsymbol{\xi}_3 \cdot \mathbf{\xi}_3 \cdot \mathbf{\xi}_3$
- (2)对(1)中的任意向量 ξ , ξ , 证明 ξ_1,ξ_2,ξ_3 无关.
- (21)(本题满分11分)

设二次型
$$f(x_1,x_2,x_3) = ax_1^2 + ax_2^2 + (a-1)x_3^2 + 2x_1x_3 - 2x_2x_3$$
.

- (1)求二次型 f 的矩阵的所有特征值;
- (2)若二次型 f 的规范形为 $y_1^2 + y_2^2$,求 a 的值.
- (22)(本题满分11分)

袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.

$$(1)$$
 $\Re p\{X=1|Z=0\}.$

- (2)求二维随机变量(X,Y)概率分布.
- (23)(本题满分 11 分)

设总体 X 的概率密度为 $f(x) = \begin{cases} \lambda^2 x e^{-\lambda x}, x > 0 \\ 0, 其他 \end{cases}$,其中参数

 $\lambda(\lambda > 0)$ 未知, $X_1, X_2, ... X_n$ 是来自总体 X 的简单随机样本.

- (1)求参数 λ 的矩估计量.
- (2)求参数 λ 的最大似然估计量.

2010年全国硕士研究生入学统一考试

数学(一)试卷

一、选择题(1-8 小题,每小题 4 分,共 32 分,下列每小题给出的四个 选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号 内.)

(1)极限
$$\lim_{x\to\infty} \left[\frac{x^2}{(x-a)(x+b)} \right]^x =$$

(A)1 (B) e

(C) e^{a-b} (D) e^{b-a}

(2)设函数 z = z(x, y) 由方程 $F(\frac{y}{x}, \frac{z}{x}) = 0$ 确定,其中 F 为可微函

数,且 $F_2' \neq 0$,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =$

(A) x (B) z

(C) -x (D) -z

(3)设m,n为正整数,则反常积分 $\int_0^1 \frac{\sqrt[n]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性

(A)仅与m取值有关 (B)仅与n取值有关

(C)与*m*,*n* 取值都有关 值都无关

(4) $\lim_{x \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$

(A) $\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y^2)} dy$ (B)

(D)与 *m*, *n* 取

 $\int_0^1 dx \int_0^x \frac{1}{(1+x)(1+y)} \, dy$

(C) $\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y)} dy$ (D)

 $\int_0^1 dx \int_0^1 \frac{1}{(1+x)(1+y^2)} \, dy$

(5)设 **A** 为 $m \times n$ 型矩阵 ,**B** 为 $n \times m$ 型矩阵,若 **AB** = **E**,则

 $(A) 秩 (\mathbf{A}) = m, 秩 (\mathbf{B}) = m \tag{B}$

 $(\mathbf{A}) = m, \mathcal{H}(\mathbf{B}) = n$

(C)秩(**A**) = n, 秩(**B**) = m (D) 秩

 $(\mathbf{A}) = n$, 秩 $(\mathbf{B}) = n$

(6)设 **A** 为 4 阶对称矩阵,且 $A^2 + A = 0$, 若 **A** 的秩为 3,则 **A** 相似于

$$\begin{pmatrix} -1 & & & \\ & -1 & & \\ & & -1 & \\ & & & 0 \end{pmatrix}$$

(7)设随机变量
$$X$$
 的分布函数 $F(x) = 0$ $x < 0$ $0 \le x \le 1$, 则 $1 - e^{-x}$ $x > 2$

$$P{X = 1} =$$

$$(A)0$$
 $(B)1$

(C)
$$\frac{1}{2} - e^{-1}$$
 (D) $1 - e^{-1}$

(8)设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为 [-1,3] 上均匀分布的概率密度,

$$f(x) = \begin{cases} af_1(x) & x \le 0 \\ bf_2(x) & x > 0 \end{cases} (a > 0, b > 0)$$

为概率密度,则 a,b 应满足

(A)
$$2a+3b=4$$
 (B) $3a+2b=4$ (C) $a+b=1$ (D) $a+b=2$

二、填空题(9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.)

(9)设
$$x = e^{-t}$$
, $y = \int_0^t \ln(1+u^2) du$, 求 $\frac{d^2 y}{dx^2}\Big|_{t=0} = \underline{\qquad}$.

$$(10) \int_0^{\pi^2} \sqrt{x} \cos \sqrt{x} dy = \underline{\qquad}.$$

(11)已知曲线 L 的方程为 $y=1-|x|\{x\in[-1,1]\}$, 起点是 (-1,0),

终点是(1,0),

则曲线积分 $\int_L xydx + x^2dy =$ _______.

(12)设 $\Omega = \{(x, y, z) \mid x^2 + y^2 \le z \le 1\}$,则 Ω 的形心的竖坐标 \overline{z}

(13) 设
$$\mathbf{\alpha}_1 = (1, 2, -1, 0)^T, \mathbf{\alpha}_2 = (1, 1, 0, 2)^T, \mathbf{\alpha}_3 = (2, 1, 1, \alpha)^T$$
, 若由

 $\alpha_1, \alpha_2, \alpha_3$ 形成的向量空间的维数是 2,则 $\alpha =$ ______.

(14)设随机变量
$$X$$
 概率分布为 $P{X = k} = \frac{C}{k!}(k = 0,1,2,L)$,

则 $EX^2 =$ ______.

三、解答题(15-23 小题,共 94 分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分 10 分)

求微分方程 $y'' - 3y' + 2y = 2xe^x$ 的通解.

(16)(本题满分 10 分)

求函数 $f(x) = \int_{1}^{x} (x^2 - t) e^{-t^2} dt$ 的单调区间与极值.

(17)(本题满分 10 分)

(1)比较 $\int_0^1 \left| \ln t \right| [\ln(1+t)]^n dt$ 与 $\int_0^1 t^n \left| \ln t \right| dt (n=1,2,L)$ 的大小, 说明理由.

(2)记
$$u_n = \int_0^1 |\ln t| [\ln(1+t)]^n dt (n=1,2,L)$$
, 求极限 $\lim_{t\to\infty} u_n$.

(18)(本题满分 10 分)

求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n}$ 的收敛域及和函数.

(19)(本题满分 10 分)

设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的 切 平 面 与 xoy 面 垂 直,求 P 点 的 轨 迹 C, 并 计 算 曲 面 积 分

$$I = \iint_{\Sigma} \frac{(x+\sqrt{3})|y-2z|}{\sqrt{4+y^2+z^2-4yz}} dS, 其中 \Sigma 是椭球面 S 位于曲线 C 上方$$

的部分.

(20)(本题满分 11 分)

设
$$\mathbf{A} = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, \mathbf{b} = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
, 已知线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 存在

两个不同的解.

- (1)求 λ ,a.
- (2)求方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的通解.
- (21)(本题满分11分)

设二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 在正交变换 $\mathbf{x} = \mathbf{Q} \mathbf{y}$ 下的标准形

为
$$y_1^2 + y_2^2$$
,且**Q** 的第三列为($\frac{\sqrt{2}}{2}$,0, $\frac{\sqrt{2}}{2}$) T .

- (1)求 **A**.
- (2)证明 $\mathbf{A} + \mathbf{E}$ 为正定矩阵,其中 \mathbf{E} 为 3 阶单位矩阵.
- (22)(本题满分11分)

设 二 维 随 机 变 量 (X+Y) 的 概 率 密 度 为 $f(x,y) = A e^{-2x^2+2xy-y^2}, -\infty < x < \infty, -\infty < y < \infty, 求常数及 <math>A$ 条件 概率密度 $f_{Y|X}(y|x)$.

(23)(本题满分 11 分)

设总体 X 的概率分布为

X 1 2 3

P	$1-\theta$	θ – θ^2	$ heta^2$
---	------------	-----------------------	-----------

其中 $\theta \in (0,1)$ 未知,以 N_i 来表示来自总体 X 的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3),试求常数 a_1,a_2,a_3 ,使 $T = \sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量,并求T的方差.

2011 考研数学一真题试卷

一选择题

1.曲线 $y = (x-1)(x-2)^2(x-3)^2(x-4)^2$ 拐点

A (1, 0) B (2, 0) C (3, 0) D (4, 0)

2 设数列 $\{a_n\}$ 单调递减, $\lim_{n\to\infty}a_n=0, S_n=\sum_{k=1}^na_k(n=1,2,...)$ 无界,则幂级数

 $\sum_{k=1}^{n} a_k (x-1)^n$ 的收敛域

A(-1,1] B[-1,1) C[0,2) D(0,2]

3.设函数 f(x) 具有二阶连续导数,且 f(x)>0, f'(0)>0,则函数 $z=f(x)\ln f(y)$ 在点 (0,0) 处取得极小值的一个充分条件

A f(0) > 1, f''(0) > 0 B f(0) > 1, f''(0) < 0

C f(0) < 1, f''(0) > 0 D f(0) < 1, f''(0) < 0

4.设 $I = \int_0^{\frac{\pi}{4}} \ln \sin x dx$, $J = \int_0^{\frac{\pi}{4}} \ln \cot x dx$, $K = \int_0^{\frac{\pi}{4}} \ln \cos x dx$ 则I、J、K的大小关系是

 $A \mathrel{\mathsf{I}} < \mathsf{J} < \mathsf{K} \qquad B \mathrel{\mathsf{I}} < \mathsf{K} < \mathsf{J} \qquad C \mathrel{\mathsf{J}} < \mathsf{I} < \mathsf{K} \qquad D \mathrel{\mathsf{K}} < \mathsf{J} < \mathsf{I}$

5.设 A 为 3 阶矩阵,将 A 的第二列加到第一列得矩阵 B,再交换 B

 $P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$ 的第二行与第一行得单位矩阵。记

A=

 $A P_1 P_2 \qquad B P_1^{-1} P_2 \qquad C P_2 P_1 \qquad D P_2^{-1} P_1$

6.设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 是 4 阶矩阵, A^* 是 A 的伴随矩阵,若 $(1,0,1,0)^T$ 是方程组 Ax = 0 的一个基础解系,则 $A^*x = 0$ 的基础解系可为

 $A\alpha_1,\alpha_3$ $B\alpha_1,\alpha_2$ $C\alpha_1,\alpha_2,\alpha_3$ $D\alpha_2,\alpha_3,\alpha_4$

7.设 $F_1(x)$, $F_2(x)$ 为两个分布函数,其相应的概率密度 $f_1(x)$, $f_2(x)$ 是连续函数,则必为概率密度的是

 $A f_1(x) f_2(x) B 2 f_2(x) F_2(x) C f_1(x) F_2(x) D f_1(x) F_2(x) + f_2(x) F_1(x)$

8.设随机变量 X 与 Y 相互独立, 且 EX 与 EY 存在, 记 U=max{x,y},V={x,y},则 E(UV)=

A EUEV B EXEY C EUEY D EXEV

二填空题

9. 曲线
$$y = \int_0^x \tan t dt (0 \le x \le \frac{\pi}{4})$$
 的弧长 s=_____

10.微分方程 $y' + y = e^{-x} \cos x$ 满足条件 y(0)=0 的解为 y=_____

11. 设函数
$$F(x,y) = \int_0^{xy} \frac{\sin t}{1+t^2} dt$$
,则 $\frac{\partial^2 F}{\partial x^2}\Big|_{x=0} =$ ______

12.设 L 是柱面方程为 $x^2 + y^2 = 1$ 与平面z = x + y的交线,从z轴正向往z

轴负向看去为逆时针方向,则曲线积分
$$\int xzdx + xdy + \frac{y^2}{2}dz =$$

13.若二次曲面的方程为 $x^2 + 3y^2 + z^2 + 2axy + 2xz + 2yz = 4$,经正交变换化

为
$$y_1^2 + 4z_1^2 = 4$$
,则 $a =$ ______

三解答题

15 求极限
$$\lim_{x\to 0} (\frac{\ln(1+x)}{x})^{\frac{1}{e^x-1}}$$

16 设z = f(xy, yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x)可导,

且在 x=1 处取得极值 g(1)=1,求
$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{x=1,y=1}$$

17 求方程 k arctan x-x=0 不同实根的个数,其中 k 为参数。

18 证明: 1) 对任意正整数 n, 都有
$$\frac{1}{n+1} < \ln(1+\frac{1}{n}) < \frac{1}{n}$$

2) 设
$$a_n = 1 + \frac{1}{2} + ... + \frac{1}{n} - \ln n (n = 1, 2, ...)$$
,证明 $\{a_n\}$ 收敛。

19 已 知 函 数 f(x,y) 具 有 二 阶 连 续 偏 导 数 , 且 $f(1,y)=0, f(x,1)=0, \iint_D f(x,y) dx dy = a$,其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$,计算

二重积分
$$I = \iint_D xy \int_{xy}^{y} (x, y) dx dy$$
。

 $20. \ \alpha_1 = (1,0,1)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (1,3,5)^T$ 不能由 $\beta_1 = (1,a,1)^T$, $\beta_2 = (1,2,3)^T$, $\beta_3 = (1,3,5)^T$ 线性表出,①求a;②将 β_1 , β_2 , β_3 由 α_1 , α_2 , α_3 线性表出。

21.A 为三阶实矩阵,
$$R(A) = 2$$
,且 $A\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ -11 \end{pmatrix} = \begin{pmatrix} -11 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}$

(1) 求 A 的特征值与特征向量; (2) 求 A。

22.

X	0	1
P	1/3	2/3

Y	-1	0	1
P	1/3	1/3	1/3

$$P(X^2 = Y^2) = 1$$

求: (1)(X, Y)的分布; (2) Z=XY的分布; (3) ρ_{XY}

23.设 $x_1, x_2, ...x_n$ 为来自正态总体 $N(\mu_0, \sigma^2)$ 的简单随机样本,其中 μ_0 已 知, $\sigma^2 > 0$ 未知, \bar{x} 和 S^2 分别表示样本均值和样本方差。

- 1) 求参数 σ^2 的最大似然估计 σ^2
- 2) 计算 $E(\sigma^2)$ 和 $D(\sigma^2)$

答案:

CCABDDDB

填空题:

9.
$$\ln(1+\sqrt{2})$$
 10 $y=e^{-x}\sin x$ **11** 4 **12** π **13** $a=1$ **14** $\mu(\mu^2+\sigma^2)$

16 由 g(x)可导且在 x=1 处取极值 g(1)=1 所以 g'(1)=0

$$\begin{split} \frac{\partial z}{\partial x} &= f_1'[xy, yg(x)]y + f_2'[xy, yg(x)]yg'(x) \\ \frac{\partial^2 z}{\partial x \partial y} &= f_1'[xy, yg(x)] + y[xf_{11}''(xy, yg(x) + g(x)f_{12}''(xy, yg(x))] \\ \frac{\partial^2 z}{\partial x \partial y} &= f_x'(1,1) + f_{11}''(1,1) + f_{12}''(1,1) \end{split}$$

17解:

$$\Leftrightarrow f(x) = k \arctan x - x$$

$$f'(x) = \frac{k - 1 - x^2}{1 + x^2}$$

(1)当 $k-1 \le 0$,即 $k \le 1$ 时, $f'(x) \le 0$ (除去可能一点外 f'(x) < 0),所以 f(x)单调减少,又因为 $\lim_{x \to \infty} f(x) = +\infty$, $\lim_{x \to \infty} f(x) = -\infty$,所以方程只有一个根。

(2) 当
$$k-1 > 0$$
,即 $k > 1$ 时,由 $f'(x) = 0$ 得 $x = \pm \sqrt{k-1}$,

$$\stackrel{\text{def}}{=}$$
 $x \in (-\infty, -\sqrt{k-1})$ $\text{ if }, f'(x) < 0, \stackrel{\text{def}}{=}$ $x \in (-\sqrt{k-1}, \sqrt{k-1})$ $\text{ if }, f'(x) > 0;$

所以
$$x = -\sqrt{k-1}$$
 为极小点, $x = \sqrt{k-1}$ 为极大点

极小值为
$$-k$$
 arctan $\sqrt{k-1} + \sqrt{k-1}$, 极大值为 k arctan $\sqrt{k-1} - \sqrt{k-1}$,

令
$$\sqrt{k-1}=t$$
, 当 $k>1$ 时, $t>0$, 令 $g(t)=k$ arctan $\sqrt{k-1}-\sqrt{k-1}=(1+t^2)$ arctan $t-t$,

显然
$$g(0) = 0$$
,因为 $g'(t) = 2t$ arctan $t > 0$,所以 $g(t) > g(0) = 0$ (当 $t > 0$),

即
$$k$$
 arctan $\sqrt{k-1} - \sqrt{k-1} > 0$, 极小值 $-k$ arctan $\sqrt{k-1} + \sqrt{k-1} < 0$,

极大值
$$k$$
 arctan $\sqrt{k-1} - \sqrt{k-1} > 0$,

又因为
$$\lim_{x \to -\infty} f(x) = +\infty$$
, $\lim_{x \to +\infty} f(x) = -\infty$, 所以方程有三个根,分 别位于

$$(-\infty,\sqrt{k-1}),(-\sqrt{k-1},\sqrt{k-1})$$
及($\sqrt{k-1},+\infty$)内。

18证明:

$$(1) f(x) = \ln(1+x) \dot{\pi}[0,\frac{1}{n}] \dot{\infty} 用 中值定理, \ln(1+\frac{1}{n}) = \ln(1+\frac{1}{n}) - \ln 1 = \frac{1}{1+\xi} \frac{1}{n}$$

$$0 < \xi < \frac{1}{n}, \frac{1}{1+\frac{1}{n}} \frac{1}{1+\xi} < 1, 即 \frac{1}{1+\frac{1}{n}} \frac{1}{n} < \ln(1+\frac{1}{n}) < 1\frac{1}{n}$$

$$(2) a_{n+1} = 1+1/2 + \ldots + \frac{1}{n+1} - \ln(n+1)$$

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln n = \frac{1}{n+1} - \frac{1}{\xi}, n < \xi < n+1$$
其中 $a_{n+1} - a_n < 0, a_{n+1} < a_n$ 即 $\{a_n\}$ 单调递减
$$a_n = 1+1/2 + \ldots + \frac{1}{n} > \ln(1+\frac{1}{1}) + (1+\frac{1}{2}) + \ldots + \ln(1+\frac{1}{n}) - \ln n$$

$$= \ln 2 - \ln 3/2 + \ldots + \ln \frac{n+1}{n} - \ln n$$

$$= \ln(n+1) - \ln n = \ln \frac{n+1}{n} > 0$$

$$\{a_n\}$$
单调递减有界,故收敛。

19.解:

$$I = \iint_{D} xyf_{xy}''(x,y)dxdy = \int_{0}^{1} xdx \int_{0}^{1} yf_{xy}''(x,y)dy$$

$$\int_{0}^{1} yf_{xy}''(x,y)dy = \int_{0}^{1} ydf_{x}'(x,y) = yf_{xy}'(x,y)\Big|_{0}^{1} - \int_{0}^{1} f_{x}'(x,y)dy,$$

$$\exists \exists_{0}^{1} xdx \int_{0}^{1} yf_{xy}''(x,y)dy = \int_{0}^{1} xf_{x}'(x,1)dx - \int_{0}^{1} xdx \int_{0}^{1} yf_{x}'(x,y)dy$$

$$= xf(x,1)\Big|_{0}^{1} - \int_{0}^{1} xdx \int_{0}^{1} yf_{x}'(x,y)dy = -\int_{0}^{1} dy \int_{0}^{1} xf_{x}'(x,y)dx$$

$$= -\left[\int_{0}^{1} xf_{x}(x,y)\Big|_{0}^{1} dy - \int_{0}^{1} dy \int_{0}^{1} f_{x}(x,y)dx\right] = \int_{0}^{1} dy \int_{0}^{1} f(x,y)dx = \iint_{D} f(x,y)dxdy = a$$

20 解:

$$\begin{aligned} 1) &: \left|\alpha_{1},\alpha_{2},\alpha_{3}\right| = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{vmatrix} = 1 \neq 0 & \therefore r(\alpha_{1},\alpha_{2},\alpha_{3}) = 3 \\ \mathbb{X} &: \alpha_{1},\alpha_{2},\alpha_{3}$$
不能由 β_{1} , β_{2} , β_{3} 线性表示, $\therefore r(\beta_{1},\beta_{2},\beta_{3}) < 3$, 于是 $\left|\beta_{1}$, β_{2} , $\beta_{3}\right| = 0$, 解得 $a = 5$

$$2)(\alpha_{1},\alpha_{2},\alpha_{3},\beta_{1},\beta_{2},\beta_{3}) = \begin{pmatrix} 1 & 0 & 11 & 1 & 1 \\ 0 & 0 & 31 & 2 & 3 \\ 1 & 1 & 51 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 11 & 1 & 1 \\ 0 & 1 & 31 & 2 & 3 \\ 0 & 1 & 40 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 3 & 1 & 2 & 3 \\ 6 & 0 & 1 - 1 & 0 & 1 \end{pmatrix} \\ \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 4 & 2 & 0 \\ 0 & 0 & 1 - 1 & 0 & 1 \end{pmatrix}$$
 于是 $\begin{pmatrix} \beta_{1} = 2\alpha_{1} + 4\alpha_{2} - \alpha_{3} \\ \beta_{2} = \alpha_{1} + 2\alpha_{2} + 0\alpha_{3} \\ \beta_{1} = 0\alpha_{1} + 0\alpha_{2} + \alpha_{3} \end{aligned}$

21.解:

1)

$$\Leftrightarrow \alpha_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ 則A $\alpha_1 = -\alpha_1$, $A\alpha_2 = \alpha_2$,

根据特征值向量的定义,A的特征值为 $\lambda_1 = -1, \lambda_2 = 1$,对应的线性无关的特征向量为

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \because r(A) = 2 < 3, \therefore |A| = 0 \text{ if } \lambda_3 = 0$$

即
$$\left\{ \begin{array}{l} x_1 - x_3 = 0 \\ x_1 + x_3 = 0 \end{array} \right.$$
解得 $\left\{ \begin{array}{l} 0 \\ 1 \\ 0 \end{array} \right\}$

2)
$$\alpha_1 \alpha_2 \alpha_3$$
单位化得: $r_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, r_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, r_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \Leftrightarrow Q = (r_1, r_2, r_3) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$

则
$$Q^T A Q = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
,于是 $A = Q \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $Q^T = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

22.解:

1)
$$P(X^2 = Y^2) = 1 \Rightarrow P(X^2 \neq Y^2) = 0$$
, $\exists P(X = 0, Y = 1) = P(X = 0, Y = -1) = P(X = 1, Y = 0) = 0$
 $P(Y = 1) = P(X = 0, Y = 1) + P(X = 1, Y = 1) = \frac{1}{3}$

$$\therefore P(X=1,Y=1) = \frac{1}{3}, 同理如图:$$

Y	-1	0	1	
X	0	1/3	0	1/3

0	1/3	0	1/3	1/3
1	1/3	1/3	1/3	

2) Z取值为-1、0、1

$$P(XY = -1) = P(X = 1, Y = -1) = \frac{1}{3}, P(XY = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1)$$
$$+ P(X = 0, Y = -1) + P(X = 0, Y = 1) = \frac{1}{3}$$

$$P(XY = 1) = P(X = 1, Y = 1) = \frac{1}{3}$$

Z	-1	0	1
P	1/3	1/3	1/3

3)
$$EX = \frac{2}{3}$$
, $EY = 0$, $EXY = 0$, $DX = \frac{2}{9}$, $DY = \frac{2}{3}$, $\rho_{XY} = 0$

23.解:

(1)似然函数L =
$$f(x_1)f(x_2)...f(x_n) = \frac{1}{(\sqrt{2\pi})^n \sigma^n} e^{\sum_{i=1}^n (x_i - \mu_0)^2 \over 2\sigma^2}$$

取对数得,
$$\ln L = -n \ln \sqrt{2\pi} - \frac{n}{2} \ln \sigma^2 - \frac{\sum_{i=1}^{n} (x_i - \mu_0)^2}{2\sigma^2}$$

$$\sigma^2$$
的极大似然估计值 $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2$.

(2)因为
$$\frac{1}{\sigma^2}\sum_{i=1}^n (x_i - \mu_0)^2 \sim \chi^2(n)$$
所以 $E\frac{1}{\sigma^2}\sum_{i=1}^n (x_i - \mu_0)^2 = n$

于是
$$E\hat{\sigma}^2 = \frac{\sigma^2}{n} E(\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2) = \sigma^2,$$

$$D\hat{\sigma}^2 = \frac{\sigma^4}{n} D(\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2) = 2\sigma^4$$

因为
$$\frac{\sum\limits_{i=1}^{n}(x_{i}-\mu_{0})}{\sigma^{2}}\sim\chi^{2}(n)$$
,所以有D($\frac{\sum\limits_{i=1}^{n}(x_{i}-\mu_{0})}{\sigma^{2}}$) = $2n$

右式 =
$$D(\frac{\sum_{i=1}^{n}(x_i - \mu_0)}{\sigma^2}) = D(n\hat{\sigma}^2/\sigma^2) = 2n$$

则
$$D(\hat{\sigma}^2) = 2n\frac{\sigma^4}{n^2} = \frac{2\sigma^4}{n}$$