

针对SwinV1在更大模型方面存在的几点问题,Swin transformer V2提出了后规范化技术、对数空间连续位置偏置技术、大幅降低 GPU占用的实现等得到了具有超高性能的SwinV2,刷新了多个基准数据集的指标。 >>加入极市CV技术交流群,走在计算机视觉的 最前沿

极市导读

Swin Transformer V2: Scaling Up Capacity and Resolution

Ze Liu* Han Hu*† Yutong Lin Zhuliang Yao Zhenda Xie Yixuan Wei Jia Ning Zheng Zhang Li Dong Furu Wei Yue Cao **Baining Guo** Microsoft Research Asia

{v-zeliul, hanhu, t-yutonglin, t-zhuyao, t-zhxie, t-yixuanwei, v-jianing}@microsoft.com {vuecao, zhez, lidong1, fuwei, bainguo}@microsoft.com

论文链接: https://arxiv.org/pdf/2111.09883.pdf

代码链接: https://github.com/microsoft/Swin-Transformer

SwinTransformer重磅升级! MSRA提出SwinV2, 朝着更大容量、更高分辨率的更大模型出发, 在多个基准数据集(包含Im ageNet分类、COCO检测、ADE20K语义分割以及Kinetics-400动作分类)上取得新记录。针对SwinV1在更大模型方面存在 的几点问题,提出了后规范化技术、对数空间连续位置偏置技术、大幅降低GPU占用的实现等得到了具有超高性能的SwinV 2. 刷新了多个基准数据集的指标。

Abstract

本文提出一种升级版SwinTransformerV2,最高参数量可达3 Billion,可处理1536 imes 1536尺寸图像。通过提升模型容量与输入分 辨率,SwinTransformer在四个代表性基准数据集上取得了新记录:84.%@ImageNetV2、63.1 box 与54.4 max mAP@COC O、59.9mIoU@ADE20K以及86.8%@Kinetics-400(视频动作分类)。

所提技术可以广泛用于视觉模型缩放,Transformer的缩放技术再NLP语言建模中已得到广泛探索,但在视觉任务中尚未进行。主 要是因为以下几点训练与应用难题:

- 视觉模型通常面临尺度不稳定问题;
- 下游任务需要高分辨率图像、尚不明确如何将低分辨率预训练模型迁移为高分辨率版本;
- 此外, 当图像分辨率非常大时, **GPU显存占用** 也是个问题。

为解决上述问题, 我们以SwinTransformer作为基线, 提出了几种改进技术:

- 提出后规范化(Post Normalization)技术与可缩放(Scaled)cosine注意力提升大视觉模型的稳定性;
- 提出**log空间连续位置偏置** 技术进行低分辨率预训练模型向高分辨率模型迁移。
- 此外、我们还共享了至关重要的实现细节、它可以大幅节省GPU显存占用以使得大视觉模型训练变得可行。

基于上述技术与自监督预训练,我们成功训练了一个包含3B参数量的SwinTransformer模型并将其迁移到不同的高分辨率输入的 下游任务上,取得了SOTA性能。

Method

A Brief Review of Swin Transformer

Swin Transformer是一种通用的视觉骨干模型,在不同的视觉任务(包含图像分类、目标检测以及语义分割)上均取得了极强性 能。Swin Transformer的主要思想:**为常规Transformer Encoder架构引入了几个重要的视觉信号先验信息**, 包含分层、局部 以及平移不变形。基础Transformer单元提供了强建模能力,视觉信号先验信息使其对不同视觉任务极为友好。

Normalization Configuration 众所周知,规范化技术对于更深架构的训练非常重要。原始的SwinTransformer采用了常规的预 规范化技术,见下图。

Relative position bias 它是原始SwinTransformer的一个关键成分,它引入了一个额外参数化偏置,公式如下:

$$Attention(Q, K, V) = SoftMax(QK^T/\sqrt{d} + B)V$$

其中, $B\in R^{M^2 imes M^2}$ 是每个head的相对位置偏置,它对于稠密识别任务非常重要。当进行不同分辨率模型迁移时,常规方案是对该 偏置进行双三次插值近似。

Issues in scaling up model capacity and window resolution 在对SwinTransformer进行容量与窗口分辨率缩放过程中, 我们发现以下两个问题:

• 容量缩放过程中的不稳定问题,见下图。

Figure 2. Signal Propagation Plot [5, 62] for various model sizes. The H-size models are trained at a self-supervisied learning stage and other sizes are trained by the classification task. * indicates that we use a 40-epoch model before it crashes.

Figure 3. SwinV1-H versus SwinV2-H in training [59].

• 跨分辨率迁移时的性能退化问题,见下表。

	ImageNet*	ImageNet [†]			COCO		ADE20k			
method	W8, I256	W12, I384	W16, I512	W20, I640	W24, I768	W16	W32	W16	W20	W32
method	top-1 acc	top-1 acc	top-1 acc	top-1 acc	top-1 acc	APbox	APbox	mIoU	mIoU	mIoU
Parameterized position bias [35]	81.7	79.4/82.7	77.2/83.0	73.2/83.2	68.7/83.2	50.8	50.9	45.5	45.8	44.5
Linear-Spaced CPB	81.7	82.0/82.9	81.2/83.3	79.8/83.6	77.6/83.7	50.9	51.7	47.0	47.4	47.2
	(+0.0)	(+2.6/+0.2)	(+4.0/+0.3)	(+6.6/+0.4)	(+8.9/+0.5)	(+0.1)	(+0.8)	(+1.5)	(+1.6)	(+2.7)
Log-Spaced CPB	81.8	82.4/83.2	81.7/83.8	80.4/84.0	79.1/84.2	51.1	51.8	47.0	47.7	47.8
	(+0.1)	(+3.0/+0.5)	(+4.5/+0.8)	(+7.2/+0.8)	(+10.4/+1.0)	(+0.3)	(+0.9)	(+1.5)	(+1.9)	(+3.3)

Table 1. Comparison of different position bias computation approaches using Swin-T. * indicates the top-1 accuracy on ImageNet-1k trained from scratch. The models in * column will be used for testing on the ImageNet-1K image classification task using larger image/window resolutions, marked by †. For these results, we report both the results w.o./with fine-tuning. These models are also used for fine-tuning on COCO object detection and ADE20K semantic segmentation tasks.

Scaling up Model Capacity

正如上面所提到: 原始SwinTransformer采用了预规范化技术。可以看到: 当对模型容量进行缩放时,深层的激活值会极大提升

事实上,在预规范化配置下,每个残差模块的输出激活值与主分支直接合并,导致主分支在更深层的幅值越来越大,进而导致训练 不稳定。

Post Normalization 为缓解该问题,我们提出了Post Normalization(后规范化):每个残差模块的输出先进行规范化再与主分 支进行合并,因此主分支的幅值不会逐层累积。从上面的Figure2可以看到:使用后规范化的模型激活幅值更温和。

在最大的模型中,我们每6个Transformer模块额外引入一个LN单元以进一步稳定训练。

Scaled Cosine Attention 在原始自注意力计算过程中,像素对的像素性通过query与key的点积计算。我们发现:在大模型 中,某些模块与head的注意力图会被少量像素对主导。为缓解该问题,我们提出了Scaled Cosine Attention(SCA),公式如下:

$$\operatorname{Sim}(q_i,k_i) = \cos(q_i,k_i)/ au + B_{ij}$$

Scaling Up Window Resolution

接下来,我们引入一种log空间连续位置偏置方法以使得相对位置偏置跨窗口分辨率平滑迁移。

Continuous Relative Position Bias 不同于直接对偏置参数直接优化、连续位置偏置方法采用了针对相对坐标的元网络:

$$B(\Delta x, \Delta y) = \mathcal{G}(\Delta x, \Delta y)$$

注: \mathcal{G} 是一个很小的网络,比如2层MLP。它对任意相对坐标生成偏置参数,因而可以自然地进行任意可变窗口尺寸的迁移。在推 理阶段,每个相对位置的偏置可以预先计算并保存,按照原始方式进行推理。

Log-space Coordinates 当跨大窗口迁移时,有较大比例的相对坐标范围需要外插。为缓解该问题,我们采用了对数空间坐 标:

$$\hat{\Delta x} = sign(x) \cdot log(1 + |\Delta x|) \hat{\Delta y} = sign(y) \cdot log(1 + |\Delta y|)$$

通过对数空间坐标,在进行块分辨率迁移时,所需的外插比例会更小。比如,将 8×8 预训练模型向 16×16 迁移时,输入坐标范 围 从 $[-7,7] \times [-7,7]$ 调 整 为 $[-15,15] \times [-15,15]$, 外 插 比 例 为 $\frac{8}{7} = 1.14 \times$ 。 而 采 用 对 数 空 间 坐 标 , 输 入 坐 标 范 围 从 [-2.079 , 2.079] imes [-2.079 , 2.079]调整为[-2.773 , 2.773] imes [-2.773 , 2.773] , 外插比例为0.33 imes。下表则给出了不同 位置偏置下的迁移性能对比,可以看到: 当向更大窗口尺寸迁移时,对数空间连续位置偏置性能最佳。

	ImageNet*	ImageNet [†]			COCO		ADE20k			
mathod	W8, I256	W12, I384	W16, I512	W20, I640	W24, I768	W16	W32	W16	W20	W32
method	top-1 acc	top-1 acc	top-1 acc	top-1 acc	top-1 acc	AP ^{box}	APbox	mIoU	mIoU	mIoU
Parameterized position bias [35]	81.7	79.4/82.7	77.2/83.0	73.2/83.2	68.7/83.2	50.8	50.9	45.5	45.8	44.5
Linear-Spaced CPB	81.7	82.0/82.9	81.2/83.3	79.8/83.6	77.6/83.7	50.9	51.7	47.0	47.4	47.2
	(+0.0)	(+2.6/+0.2)	(+4.0/+0.3)	(+6.6/+0.4)	(+8.9/+0.5)	(+0.1)	(+0.8)	(+1.5)	(+1.6)	(+2.7)
Log-Spaced CPB	81.8	82.4/83.2	81.7/83.8	80.4/84.0	79.1/84.2	51.1	51.8	47.0	47.7	47.8
	(+0.1)	(+3.0/+0.5)	(+4.5/+0.8)	(+7.2/+0.8)	(+10.4/+1.0)	(+0.3)	(+0.9)	(+1.5)	(+1.9)	(+3.3)

Table 1. Comparison of different position bias computation approaches using Swin-T. * indicates the top-1 accuracy on ImageNet-1k trained from scratch. The models in * column will be used for testing on the ImageNet-1K image classification task using larger image/window resolutions, marked by †. For these results, we report both the results w.o./with fine-tuning. These models are also used for fine-tuning on COCO object detection and ADE20K semantic segmentation tasks.

Other Implementation

Implementation to save GPU memory 大分辨率输入与大容量模型存在的另一个问题是GPU显存占用不可接受问题。我们采 用了以下实现改善该问题:

- Zero-Redundancy Optimizer(ZeRO): 采用ZeRO优化器减少GPU显存占用,对整体训练速度影响极小;
- Activation check-pointing: 采用checkpoint技术节省GPU占用, 但会降低30%训练速度;
- Sequential Self-attention computation: 采用串式计算,而非batch模式,对整体训练速度影响极小。

通过上述实现,我们可以在Nvidia A100-40G GPU训练参数量3B的模型(COCO检测与ImageNet分类,输入为1536 imes 1536)。

Joining with a self-supervised approach

更大的模型需要更多地数据(data hungry)。为解决该问题,之前的大模型训练通过采用额外的数据或者自监督预训练。我们对这 两种策略进行了组合

- 额外数据: 我们对ImageNet-22K进行扩大五倍达到了70M数量;
- 自监督学习: 我们采用了自监督训练以更好的进行数据挖掘。

通过上述训练方案,我们训练了一个具有3B参数量的SwinTransformer模型并在多个基准数据集上取得了SOTA性能。

Model Configurations

我们保持与SwinTransformer相同的stage、block以及通道配置得到了四个版本的SwinTransformerV2:

- SwinV2-T: C96, layer number= {2,2,6,2}
- SwinV2-S: C96, layer number= {2,2,18,2}
- SwinV2-B: C128, layer number= {2,2,18,2}
- SwinV2-L: C192, layer number= {2,2,18,2}

我们进一步对SwinV2进行更大尺寸缩放得到了658M与3B参数模型:

- SwinV2-H: C=352, layer number={2,2,18,2}
- SwinV2-G: C=512, layer number={2,2,42,2}

Experiments

本文主要在ImageNetV1、ImageNetV2、COCO检测、ADE20K语义分割以及Kinetics-400视频动作分类方面进行了实验。

Method	param	pre-train images	pre-train length (#im)	pre-train im size	pre-train time	fine-tune im size	ImageNet-1K-V1 top-1 acc	ImaegNet-1K-V2 top-1 acc
SwinV1-B	88M	IN-22K-14M	1.3B	224^{2}	<30 [†]	384^{2}	86.4	76.58
SwinV1-L	197M	IN-22K-14M	1.3B	224^{2}	$<10^{\dagger}$	384^{2}	87.3	77.46
ViT-G [65]	1.8B	JFT-3B	164B	224^{2}	>30k	518 ²	90.45	83.33
V-MoE [44]	14.7B*	JFT-3B	-	224^{2}	16.8k	518^{2}	90.35	-
CoAtNet-7 [11]	2.44B	JFT-3B	-	224^{2}	20.1k	512^{2}	90.88	-
SwinV2-B	88M	IN-22K-14M	1.3B	192 ²	$< 30^{\dagger}$	384^{2}	87.1	78.08
SwinV2-L	197M	IN-22K-14M	1.3B	192^{2}	$<20^{\dagger}$	384^{2}	87.7	78.31
SwinV2-G	3.0B	IN-22K-ext-70M	3.5B	192^{2}	$< 0.5 k^{\dagger}$	640^{2}	90.17	84.00

Table 2. Comparison with previous largest vision models on ImageNet-1K V1 and V2 classification. * indicates the sparse model; the "pre-train time" column is measured by the TPUv3 core days with numbers copied from the original papers. † That of SwinV2-G is estimated according to training iterations and FLOPs.

上表给出了ImageNet分类任务上的性能对比,可以看到:

• 在ImageNetV1数据上, SwinV2-G取得了90.17%的精度;

- 在ImageNetV2数据上, SwinV2-G取得了84.0%的精度, 比之前最佳高0.7%;
- 相比SwinV1, SwinV2性能提升约0.4~0.8%。

Method	train	test	mini-v	al (AP)	test-dev (AP)	
Method	I(W) size	I(W) size	box	mask	box	mask
CopyPaste [17]	1280(-)	1280(-)	57.0	48.9	57.3	49.1
SwinV1-L [35]	800(7)	ms(7)	58.0	50.4	58.7	51.1
YOLOR [53]	1280(-)	1280(-)	-	-	57.3	-
CBNet [32]	1400(7)	ms(7)	59.6	51.8	60.1	52.3
DyHead [10]	1200(-)	ms(-)	60.3	-	60.6	-
SoftTeacher [60]	1280(12)	ms(12)	60.7	52.5	61.3	53.0
SwinV2-L		1100(32)	58.8	51.1	-	-
	1536(32)	1100 (48)	58.9	51.2	-	-
(HTC++)		ms (48)	60.2	52.1	60.8	52.7
SwinV2-G (HTC++)		1100(32)	61.7	53.3	-	-
	1536(32)	1100 (48)	61.9	53.4	-	-
		ms (48)	62.5	53.7	63.1	54.4

Table 3. Comparison with previous best results on COCO object detection and instance segmentation. I(W) indicates the image and window size. ms indicate multi-scale testing is employed.

上表比较了COCO检测任务上的性能,可以看到: 所提方案取得了63.1/54.4的box与mask mAP指标,比此前最佳高1.8/1.4。

Method	train I(W) size	test I(W) size	mIoU
SwinV1-L [35]	640(7)	640(7)	53.5*
Focal-L [61]	640(40)	640(40)	55.4*
CSwin-L [14]	640(40)	640(40)	55.7*
MaskFormer [8]	640(7)	640(7)	55.6*
FaPN [22]	640(7)	640(7)	56.7*
BEiT [3]	640(40)	640(40)	58.4*
SwinV2-L (UperNet)	640(40)	640(40)	55.9*
SwinV2-G (UperNet)	640(40)	640(40) 896 (56) 896 (56)	59.1 59.3 59.9 *

Table 4. Comparison with previous best results on ADE20K semantic segmentation. * indicates multi-scale testing is used.

上表比较了ADE20K语义分割任务上的性能,可以看到: **所提方案取得了59.9mloU指标,比此前最佳高1.5**。

Method	train I(W) size	test I(W) size	views	top-1
ViViT [1]	-(-)	-(-)	4×3	84.8
C:	$480 \times 480 \times 16$	$480{\times}480{\times}16$	10×5	940
SwinV1-L [36]	$(12\times12\times8)$	$\times 12 \times 8$) $(12 \times 12 \times 8)$		84.9
TokenLearner [45]	$256 \times 256 \times 64$	$256{\times}256{\times}64$	4×3	85.4
TokenLearner [43]	$(8 \times 8 \times 64)$	$(8\times8\times64)$	483	03.4
		$320\times320\times8$	1×1	83.2
		$(20\times20\times8)$		03.2
Video-SwinV2-G	$320\times320\times8$	<320×8 384×384×8		83.4
Video-Swiii v 2-G	$(20\times20\times8)$	$(24 \times 24 \times 8)$	1×1	65.4
		$384 \times 384 \times 8$	4×5	86.8
		$(24 \times 24 \times 8)$	473	00.0

Table 5. Comparison with previous best results on Kinetics-400 video action classification.

上表比较了Kinetics-400视频动作分类任务上的性能,可以看到: 所提方案取得了86.8%的精度,比此前最佳高1.4%。

如果觉得有用,就请分享到朋友圈吧!

极市平台

专注计算机视觉前沿资讯和技术干货,官网:www.cvmart.net 624篇原创内容

△点击卡片关注极市平台,获取最新CV干货

公众号后台回复"transformer"获取最新Transformer综述论文下载~

极市平货

课程/比赛: 珠港澳人工智能算法大赛 | 保姆级零基础人工智能教程

算法trick: 目标检测比赛中的tricks集锦丨从39个kaggle竞赛中总结出来的图像分割的Tips和Tricks

技术综述: 一文弄懂各种loss function | 工业图像异常检测最新研究总结(2019-2020)

	# @බ්පිරුම්ම #
	happy
	知乎:AlWalker
	AIWalker运营、CV技术深度Follower、爱造各种轮子
研究领域	或:专注low-level,对CNN、Transformer、MLP等前沿网络架构
	保持学习心态,倾心于AI技术产品化。
	公众号:AlWalker
作品精选	
• 吊打一切现有版本的Y(OLO!旷视重磅开源YOLOX:新一代目标检测性能速度担当!
	·力作!1774fps、COCO最高精度,分别适合高低端GPU的YOLO
• 图像增强领域大突破!	以1.66ms的速度处理4K图像,港理工提出图像自适应的3DLUT
	投稿方式:
添加	小编微信Fengcall(微信号: fengcall19),备注: 姓名-投稿
	Δ长按添加极市平台小编

觉得有用麻烦给个在看啦~

阅读原文

喜欢此内容的人还喜欢

当Swin Transformer遇上DCN,清华可变形注意力Transformer模型优于多数ViT 磐创AI