Clase 20: Resultados Potenciales

Haciendo Economía I Econ 2205

Ignacio Sarmiento-Barbieri

Universidad de los Andes

El valor esperado

- ▶ El valor esperado es uno de los conceptos probabilísticos más importantes que encontraremos en nuestra carrera.
- ▶ Si *X* es una variable aleatoria, el valor esperado (o esperanza) de *X*, lo denotamos como

$$E(X)$$
 (1)

- ▶ Es un promedio ponderado de todos los posibles valores de X.
- Los pesos están determinados por la función de densidad de probabilidad.
- A veces, el valor esperado se llama media poblacional, especialmente cuando queremos enfatizar que X representa alguna variable en una población.

<ロ > < 回 > < 回 > < 直 > < 直 > < 直 > のQで

Sarmiento-Barbieri (Uniandes) Clase 20 1/13

Recap: Esperanzas y Esperanzas Condicionales

El valor esperado: Definición

- Sea f(x) la función de densidad de probabilidad de X.
- ▶ El valor esperado de *X* es el promedio ponderado
 - Variables Discretas

$$E(X) = \sum_{i=1}^{k} x_i \cdot P(X = x_i)$$

Variables continuas

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

El valor esperado

- Propiedades de la esperanza:
 - ▶ Si c es una constante
 - ▶ Si a y b son constantes y X una VA, entonces
 - ▶ Si $a_1, ..., a_n$ son constantes y $X_1, ..., X_n$ VAs, entonces

La esperanza condicional

- La esperanza condicional desempeña un papel crucial en el análisis econométrico moderno.
- Aunque no siempre se expresa explícitamente, el objetivo de la mayoría de los estudios econométricos aplicados es estimar o probar hipótesis sobre la esperanza de una variable, llamada variable explicada o variable dependiente,
- ▶ Generalmente la denotamos con y condicionada a un conjunto de variables explicativas, variables independientes, regresores, variables de control o covariables, $X = (X_1, ..., X_K)$.
- La Una esperanza condicional es el valor esperado de a llamada variable dependiente, condicionada a los valores de las variables independientes.

Sarmiento-Barbieri (Uniandes) Clase 20 4/13

La esperanza condicional: Ejemplos

Modelo de Resultados Potenciales

- Las referencias para estas clases van a ser:
 - 1 Mastering Metrics de Angrist y Pischke (cap 1)
 - 2 Mostly Harmless Econometrics de Angrist y Pischke (cap 2)
 - 3 Causal Inference: The Mixtape de Cunningham (cap 4) (disponible online en su pagina web)
- ▶ Quiz sobre Resultados Potenciales → 2 de Noviembre

Sarmiento-Barbieri (Uniandes)

- ▶ En datos observacionales, es casi seguro que las correlaciones no reflejan una relación causal.
- Porqué?

- ► En datos observacionales, es casi seguro que las correlaciones no reflejan una relación causal.
- Porqué?
 - 1 Simultaneidad
 - 2 Variables Omitidas.

- ► En datos observacionales, es casi seguro que las correlaciones no reflejan una relación causal.
- Porqué?
 - 1 Simultaneidad
 - 2 Variables Omitidas.
 - 3 Comportamiento no aleatorio

- ▶ En datos observacionales, es casi seguro que las correlaciones no reflejan una relación causal.
- Porqué?
 - 1 Simultaneidad
 - 2 Variables Omitidas.
 - 3 Comportamiento no aleatorio
 - Las variables fueron elegidas endógenamente por personas que estaban tomando decisiones que pensaban que eran las mejores.
 - Al maximizar sujeto a restricciones, eligieron ciertas cosas que crean una correlación falsa con otras cosas.
 - ► Esto se ve especialmente en el modelo de resultados potenciales (HOY)

Sarmiento-Barbieri (Uniandes)

1 Recap: Esperanzas y Esperanzas Condicionales

- 2 Modelo de Resultados Potenciales
 - Motivación

- Comencemos con un ejemplo
- ► El Affordable Care Act (ACA) es una política súper interesante y controversial.
- ► El ACA requiere que todos los Americanos compren seguro de salud, aquellos que no lo compran son penalizados
- ▶ Hay muchas preguntas interesantes que surgen de una política como esta
- ▶ Una de ellas y lo que nos va e interesar es:

- Comencemos con un ejemplo
- ► El Affordable Care Act (ACA) es una política súper interesante y controversial.
- ▶ El ACA requiere que todos los Americanos compren seguro de salud, aquellos que no lo compran son penalizados
- ▶ Hay muchas preguntas interesantes que surgen de una política como esta
- Una de ellas y lo que nos va e interesar es:

¿Hay un efecto causal del seguro de salud sobre la salud de los personas?

8 / 13

- Comencemos con un ejemplo
- ► El Affordable Care Act (ACA) es una política súper interesante y controversial.
- ► El ACA requiere que todos los Americanos compren seguro de salud, aquellos que no lo compran son penalizados
- ▶ Hay muchas preguntas interesantes que surgen de una política como esta
- ▶ Una de ellas y lo que nos va e interesar es:

¿Hay un efecto causal del seguro de salud sobre la salud de los personas?

Veamos si podemos responder esta pregunta con datos.

Sarmiento-Barbieri (Uniandes)

- ▶ Vamos a usar datos de la Encuesta Nacional de Salud (NHIS) de EEUU.
- Este es una encuesta anual que pregunta información detallada sobre salud y seguro de salud.
- ► Entre otros cosas pregunta: ¿Como diría que es su estado de salud?
 - ▶ **5** Excelente
 - ▶ 4 Muy bueno
 - ▶ **3** Bueno
 - 2 Más o menos
 - ▶ 1 Malo

¿Como diría que es su estado de salud?

- ▶ Esta pregunta va a ser nuestra variable de resultado que queremos estudiar.
- La relación causal de interés está determinada por la variable que indica si tiene cobertura de salud privada
- ▶ Llamaremos a esta variable: "tratamiento"

Table 1.1
Health and demographic characteristics of insured and uninsured couples in the NHIS

	Husbands			Wives		
	Some HI (1)	No HI (2)	Difference (3)	Some HI (4)	No HI (5)	Difference (6)
		1	A. Health			
Health index	4.01 [.93]	3.70 [1.01]	.31 (.03)	4.02 [.92]	3.62 [1.01]	.39 (.04)

Source: Mastering Metrics

TABLE 1.1
Health and demographic characteristics of insured and uninsured couples in the NHIS

	Husbands			Wives		
	Some HI (1)	No HI (2)	Difference (3)	Some HI (4)	No HI (5)	Difference (6)
			A. Health			
Health index	4.01 [.93]	3.70 [1.01]	.31 (.03)	4.02 [.92]	3.62 [1.01]	.39 (.04)
		B. C	haracteristic	s		
Nonwhite	.16	.17	01 (.01)	.15	.17	02 (.01)
Age	43.98	41.26	2.71 (.29)	42.24	39.62	2.62 (.30)
Education	14.31	11.56	2.74 (.10)	14.44	11.80	2.64 (.11)
Family size	3.50	3.98	47 (.05)	3.49	3.93	43 (.05)
Employed	.92	.85	.07 (.01)	.77	.56	.21 (.02)
Family income	106,467	45,656	60,810 (1,355)	106,212	46,385	59,828 (1,406)
Sample size	8,114	1,281		8,264	1,131	

Notes: This table reports average characteristics for insured and uninsured married couples in the 2009 National Health Interview Survey (NHIS). Columns (1), (2), (4), and

Comparaciones fútiles

... El jardín de los senderos que se bifurcan es una imagen incompleta, pero no falsa, del universo tal como lo concebía Ts'ui Pen. A diferencia de Newton y de Schopenhauer, su antepasado no creía en un tiempo uniforme, absoluto. Creía en infinitas series de tiempos, en una red creciente y vertiginosa de tiempos divergentes, convergentes y paralelos. Esa trama de tiempos que se aproximan, se bifurcan, se cortan o que secularmente se ignoran, abarca todas la posibilidades. No existimos en la mayoría de esos tiempos; en algunos existe usted y no yo; en otros, yo, no usted; en otros, los dos.

...

El tiempo se bifurca perpetuamente hacia innumerables futuros. En uno de ellos soy su enemigo.

J.L. Borges, en "El jardin de senderos que se bifurcan"