

BROWDY AND NEIMARK, PLLC.

ATTORNEYS AT LAW

PATENT AND TRADEMARK CAUSES

SUITE 300

419 SEVENTH STREET, N W WASHINGTON, D. C. 20004-2299

TELEPHONE (202)-628-5197

February 25, 1998

TELECOPIER FACSIMILE (202) 737-3528 (202) 393-1012

E-MAIL BrwdyNmrk@digizen.net

> SENIOR COUNSEL ALVIN BROWDY

PATENT AGENT ALLEN C. YUN, PH.D.

Hon. Assistant Commissioner for Patents Box Patent Appln Washington, D.C. 20231

ANNE M KORNBAU

NORMAN I. LATKER

NICK BROMER* (*PA BAR ONLY)

OF COUNSEL IVER P COOPER

New Patent Application in U.S.

Applicant(s):

Matthew Todd GILLISPIE et al.

Title:

OSTEOCLASTGENIC INHIBITORY AGENT

Atty's Docket: GILLISPIE=1

Sir:

Attached herewith is the above-identified application for Letters Patent including:

- Specification (58 pages), claims (2 pages) and abstract (1 page)
- 3 Sheets Drawings (Figures 1-5) [X]

[X] Formal

[] Informal

Declaration and Power of Attorney (2 pages) [X]

[X] Newly executed

[] Copy from prior application no.

- Substitute sequence listing and statements in support of filing and [X] submissions in accordance with 37 C.F.R. §1.821-1.825 with diskette
- Supplemental Preliminary Amendment []
- Information Disclosure Statement with 1449 and 14 references
- A verified statement to establish small entity status under 37 CFR §1.9 and 37 CFR §1.27 (page(s))
- A check in the amount of \$ 790.00 (check no. 17937) to cover: The filing fee calculated as follows:

CLAIMS AS FILED						
FOR	NUMBER FILED	NUMBER E)	(TRA	RATE	BASIC FEE \$ 790.00	
TOTAL CLAIMS	11 - 20=	0		x 22	0	
INDEPENDENT CLAIMS	2 - 3=	0		x 82	0	
[] Multiple Dependent Claim Presented				x270		
[] Reduction	of 1/2 for small entity	,			- \$	
			TOTAL FILING FEE		\$ 790.00	

Any additional fee required by the filing of an enclosed preliminary or supplemental preliminary amendment has been calculated as shown below:

	CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NO. PREVIOUSLY PAID FOR	PRESENT EXTRA	RATE	CALCULATION	
TOTAL	*	MINUS	**	=	x \$ 22.00	\$	
INDEP	*	MINUS	***	=	x \$ 82.00	\$	
[] Multiple Dependent Claim Presented x \$270.00						\$	
Total of Above Calculations =						\$	
Reduction by 1/2 for filing by small entity						- \$	
Total Additional Fee =						\$	

	[]
[X]	Return Receipt Postcard (in duplicate)
The	following statements are applicable:
[X]	The benefit under 35 USC §119 is claimed of the filing date of: Japan
	Application No. 55468/1997 in Japan on 25 February 1997. A certified
	copy of said priority document [] is attached [] was filed in progenitor
	caseon
	Application Noin on A certified
	copy of said priority document [] is attached [] was filed in progenitor
	caseon
[]	The present application is a [] Continuation [] Divisional
	[] Continuation-in-part of prior application No
[]	Incorporation By Reference. The entire disclosure of the prior
	application, from which a copy of the oath or declaration is supplied
	herewith, is considered as being part of the disclosure of the accompanying
	application and is hereby incorporated by reference therein.
[]	A signed statement deleting inventor(s) named in the prior application is attached.
[]	Amend the specification by inserting before the first line the sentence:
	This is a continuation division of copending parent application
	Serial No. filed
[]	Certain documents were previously cited or submitted to the Patent and
	Trademark Office in the following prior application, which is
	relied upon under 35 USC §120. Applicants identify these documents by
	attaching hereto a form PTO-1449 listing these documents, and request that
	they be considered and made of record in accordance with 37 CFR §1.98(d).
	Per Section 1.98(d), copies of these documents need not be filed in this
	application.
[]	A verified statement claiming small entity status is enclosed in progenitor
	application no. , filed . Status is still proper and desired.
[]	The undersigned attorney of record hereby revokes the powers of attorney
	of:

- [] The undersigned attorney of record hereby appoints associate power of attorney, to prosecute this application and to transact all business in the Patent and Trademark Office in connection therewith to:
- [X] The Commissioner is hereby authorized to charge payment of the following additional fees associated with this communication or credit any overpayments to Deposit Account No. 02-4035:
 - [X] Any additional filing fees required under 37 CFR §1.16.
 - [X] Any patent application processing fees under 37 CFR §1.17.
- [X] The Commissioner is hereby authorized to charge payment of the following fees, based on any paper filed during the pendency of this application or any CPA thereof, to effect any amendment, petition, or other action requested in said paper or credit any overpayments to Deposit Account No. 02-4035:
 - [X] Any patent application processing fees under 37 CFR §1.17.
 - [] The issue fee set in 37 CFR §1.18 at or before mailing the Notice of Allowance, pursuant to 37 CFR §1.311(b).
 - [X] Any filing fees under 37 CFR §1.16 for presentation of extra claims.
 - [X] If a paper is untimely filed in this or any CPA thereof by Applicant(s), the Commissioner is hereby petitioned under 37 CFR. §1.136(a) for the minimum extension of time required to make said paper timely. In the event a petition for extension of time is made under the provisions of this paragraph, the Commissioner is hereby requested to charge any fee required under 37 CFR §1.17 to Deposit Account 02-4035.
- [X] The Commissioner is hereby authorized to credit any overpayment of fees accompanying this paper to Deposit Account No. 02-4035.

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C.

Roger L. Browdy

Registration No. 25,618

RLB:bcs f:\user3\98feb\gill.ntr

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:) Art Unit:
Matthew Todd GILLISPIE et al.) Washington, D.C.
U.S. App. No.:)
Filing Date: 25 February 1998) February 25, 1998)
For: OSTEOCLASTGENIC) Docket No.: GILLISPIE=1

STATEMENTS IN SUPPORT OF FILING AND SUBMISSIONS IN ACCORDANCE WITH 37 C.F.R. §1.821-1.825

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

Prior to the examination of the above-described application, please amend the present application as follows:

IN THE SPECIFICATION

Please substitute the attached Sequence Listing section, pages 40-55, for the Sequence Listing section as originally filed, pages 40-58.

IN THE CLAIMS

Please renumber original pages 59-60 as new pages 56-57, to take into account the additional Sequence Listing section.

IN THE ABSTRACT

Please number the abstract as page 58.

REMARKS

Applicants have added into the present specification a substitute paper copy Sequence Listing section according to 37

C.F.R. §1.821(c) as new pages 40-55, and have renumbered pages 59-61 as new page numbers 56-58. Furthermore, attached hereto is a 3 1/2" floppy disk containing the "Sequence Listing" in computer readable form in accordance with 37 C.F.R. §1.821(e).

The following statement is provided to meet the requirements of 37 C.F.R. 1.825(a) and 1.825(b).

I hereby state, in accordance with 37 C.F.R. §1.825(a), that the amendments included in the substitute sheets of the sequence listing are believed to be supported in the application as filed and that the substitute sheets of the sequence listing are not believed to include new matter.

I hereby further state, in accordance with 37 C.F.R. §1.825(b), that, on information and belief, the attached copy of the computer readable form is the same as the attached substitute paper copy of the sequence listing.

Applicants submit that the present application contains patentable subject matter and therefore urge the examiner to pass the case to issuance.

If the examiner has any questions or comments concerning the above described application, the examiner is urged to contact the undersigned at the phone number below.

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C.

Attorneys for Applicant(s)

Вy

Roger L. Browdy

Registration No. 25,618

RLB:bcs 419 Seventh Street, N.W. Washington, D.C. 20004

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528

f:\user3\98feb\gill.sam

OSTEOCLASTGENIC INHIBITORY AGENT

Background of the Invention

Field of the Invention

The present invention relates to an osteoclastgenic inhibitory agent comprising an interleukin-18 (hereinafter abbreviated as "IL-18") or its functional equivalent.

Description of the Prior Art

Osteoblasts' bone formation and osteoclasts' bone resorption are well balanced in healthy living bodies, and this keeps the bone tissues in normal conditions while old bone tissues are being replaced with fresh ones without altering the original bone shape. The phenomenon plays an important role in keeping living bodies' homeostasis such as the controlling of blood calcium concentration within a desired range. Once the balance is lost, especially when the bone resorption level exceeds the bone formation level, bone-related diseases and other diseases may be induced. Therefore, elucidation of the whole mechanism of bone resorption in living bodies, particularly, elucidation of osteoclasts is greatly highlighted due to scientific and clinical significance thereof.

However, the mechanism of osteoclast formation has not yet been completely elucidated even though interleukin 1 as a promoter and interleukin 4 as an inhibitor were found. This is because, similarly as various phenomena in living bodies, osteoclast formation in living bodies is controlled by the close and complicated relationship between promoters and inhibitors.

Based on these, it is greatly expected to establish an effective osteoclastgenic inhibitory agent from the viewpoint of scientific and clinical aspects.

Summary of the Invention

The object of the present invention is to provide a novel and effective osteoclastgenic inhibitory agent. To solve the object the present inventors energetically studied for IL-18, i.e., one of cytokines as communication transferring substances in immune systems, which induces production of interferon-γ (hereinafter abbreviated as "IFN-γ"), an important biologically active substance for immunocompetent cells, and granulocyte/macrophage colony-stimulating factor (hereinafter abbreviated as "GM-CSF"), and augments cytotoxicity and induces formation of killer cells. At the finding, IL-18 was described as an interferon-γ-inducing factor as reported by Haruki OKAMURA in Japanese Patent Kokai Nos. 27,189/96 and 193,098/96, and in Nature, Vol. 378, No. 6,552, pp. 88-91 (1995), and then called IL-18 according to the proposal of Shimpei USHIO et al., in The Journal of Immunology, Vol. 156, pp. 4,274-4,279 (1996).

The present inventors found that a particular gene, capable of inhibiting osteoclast formation from osteoclastic precursor cells *in vitro*, is specifically expressed in quantities in stroma cells derived from mouse myeloma. Their further detailed analysis revealed that (i) the gene encodes IL-18 that includes SEQ ID NO: 7 as a core sequence, (ii) IL-18 and functional equivalents thereof effectively inhibit osteoclast

formation, and (iii) the inhibition is mainly due to the action of GM-CSF induced and produced by IL-18.

Based on these, the present inventors solved the present object by an osteoclastgenic inhibitory agent comprising IL-18 or its functional equivalent as an effective ingredient.

Brief Description of the Accompanying Drawings

FIG. 1 shows the structure of the recombinant DNA pKGFHH2.

FIG. 2 shows the structure of the recombinant DNA pCSHIGIF/MUT35.

FIG. 3 shows the structure of the recombinant DNA pCSHIGIF/MUT42.

FIG. 4 shows the structure of the recombinant DNA pBGHuGF.

FIG. 5 shows the structure of the recombinant DNA pKGFMH2.

In these figures, KGFHH2 cDNA means a cDNA encoding the IL-18 according to the present invention: IGIF/MUT35; a DNA encoding the IL-18 according to the present invention: IGIF/MUT42; a DNA encoding the IL-18 according to the present invention: HuIGIF; a chromosomal DNA encoding the IL-18 according to the present invention: KGFMH2 cDNA; a cDNA encoding the IL-18 according to the present invention: SS; a gene for 5S ribosomal RNA: Ptac; a tac promoter: rrnBT1T2; a termination region of a ribosomal RNA operon: AmpR; an ampicillin resistent gene: pBR322ori; a replication origin of

Escherichia coli: CMV; a cytomegalovirus promoter: IFNss; a nucleotide sequence encoding a signal peptide for subtype $\alpha 2b$ of human interferon- α .

Detailed Description of the Invention

The present invention relates to an osteoclastgenic inhibitory agent comprising IL-18 or its functional equivalent as an effective ingredient. The wording "IL-18" as referred to in the invention includes polypeptides with the above property independently of their sources and origins. For example, the IL-18 used in the present invention includes, as internal partial amino acid sequences, the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3, as well as SEQ ID NO: 4 and SEQ ID NO: 5, and includes the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 7 as a whole. The wording "functional equivalent(s)" as referred to in the present invention includes (i) those wherein one or more amino acids in the amino acid sequence of IL-18 are replaced with different amino acids, (ii) those wherein one or more amino acids are added to the N- and/or C-termini of the amino acid sequence of IL-18, (iii) those wherein one or more amino acids are inserted into the internal sites of the amino acid sequence of IL-18, (iv) those wherein one or more amino acids in the N- and/or C-terminal regions of the amino acid sequence of IL-18 are deleted, and (v) those wherein one or more amino acids in the internal regions of the amino acid sequence of IL-18 are deleted; all of these modifications should be made within the range that does not

substantially lose the property of osteoclast formation by IL-18 among the inherent property of IL-18. Examples of such functional equivalents are described along with their detailed amino acid sequences in Japanese Patent Application No. 20,906/97 by the same applicant of the present applicant, i.e., polypeptides which are capable of inducing production of interferon-gamma by immunocompetent cells, wherein polypeptides contain either amino acid sequence wherein one or more cysteines are replaced with different amino acid(s) while leaving respective consensus sequences as shown in SEQ ID NOs: 1, 2 and 4 intact, or that wherein one or more amino acids are added, removed and/or replaced at one or more sites including those in the consensus sequences but excluding those of the replaced cysteine. The different amino acids to replace the cysteine(s) are not restricted to any types, as far as the resulting polypeptide, containing an amino acid sequence replaced with the different amino acid(s), exhibits an activity of inducing production of IFN-y by immunocompetent cells in the presence or absence of an appropriate cofactor, as the wild-type polypeptides containing SEQ ID NOs: 1, 2 and 4 as consensus partial amino acid sequences, and a stability significantly higher than that of the wild-type polypeptides. The different amino acids include serine, threonine, alanine, valine, leucine, isoleucine, histidine, tyrosine, phenylalanine, tryptophan, and methionine, among which the most preferable amino acid is serine or alanine. Embodiments of the amino acid sequences, containing SEQ ID NOs: 1, 2 and 4 as consensus partial amino acid sequences, in which one or more cysteines are to be replaced with different amino acid(s) are the wild-type polypeptides containing SEQ ID NO: 6 or 7. SEQ ID NO: 6 contains cysteines at the 38th, 68th, 76th, and 127th positions from the Nterminus. SEQ ID NO: 7 contains cysteines at the 7th, 75th, and 125th positions. The polypeptides include those containing the amino acid sequence of any one of SEQ ID NOs: 20-26, which are derived from the wild-type polypeptide containing SEQ ID NO: 6, those containing the amino acid sequence of SEQ ID NO: 27 or 28, which are derived from the wild-type polypeptide containing the amino acid sequence of SEQ ID NO: 7, and those containing an amino acid sequence derived from any one of SEQ ID NOs: 20-28 by adding, removing, and/or replacing one or more amino acids to and/or at position(s) excepting the positions where the cysteine(s) have been replaced while retaining the desired biological activities and stability. The wording "one or more amino acids" means the number of amino acids which conventional methods such as site-directed mutagenesis can usually add, remove or replace. The polypeptides containing any one of SEQ ID NOs: 20-28 possess both stability and biological activities significantly higher than those of the wild-type polypeptides.

The functional equivalents as referred to in the present invention further include glycosylated polypeptides of IL-18 and the above polypeptides. Any of these IL-18 and functional equivalents thereof, both of which are included to and referred to as "IL-18" in the present invention, unless specified otherwise, can be used in the present invention independently of their origins; those prepared by separating from natural sources such as cell cultures and from artificially

synthesized ones using recombinant DNA technology and peptide synthesis.

With economical viewpoint, methods of recombinant DNA technology are advantageously used; generally, desired IL-18 can be obtained by introducing DNAs encoding IL-18 into appropriate hosts derived from microorganisms, plants, and animals to form transformants, culturing the transformants in nutrient culture media in a conventional manner, and purifying the cultures by conventional methods used for purifying cytokines. Any DNAs can be used as the above DNAs as long as they contain a DNA encoding IL-18, and can be suitably selected depending on the purpose of the use of the present osteoclastgenic inhibitory agent or on the recombinant DNA technology used. For example, Japanese Patent Kokai Nos. 193,098/96, 231,598/96, and 27,189/96 by the same applicant of the present invention disclose in detail transformed culturing IL-18 by methods for producing microorganisms into which DNAs including a cDNA encoding mouse or human IL-18 are introduced; and Japanese Patent Application No. 185,305/96 by the same applicant of the present invention discloses in detail a method for producing IL-18 encoding human IL-18 by culturing transformed animal cells which have an introduced DNA that includes a chromosomal DNA encodes human IL-Japanese Patent Application No. 20,906/97 by the same 18. applicant of the present invention discloses in detail a method for producing IL-18 by culturing transformed animal cells having an introduced DNA which includes a DNA encoding a functional equivalent of human IL-18.

The aforesaid recombinant DNA technology has an

economical advantage, but depending on the hosts and DNA sequences used, the IL-18 thus obtained may have somewhat different physicochemical property from those of IL-18 produced and functions in vivo. Japanese Patent Application No. 67,434/96 by the same applicant of the present invention discloses in detail a preparation of IL-18 using established human cell lines as natural sources, and Japanese Patent Application No. 213,267/96 by the same applicant also discloses in detail the preparation using an interleukin-1β-converting The IL-18 obtained by those preparations can be enzyme. estimated to have substantially the same equal physicochemical property to that of IL-18 that is produced and functions in vivo, and the yield can be estimated to be slightly lower. However, such IL-18 has an advantage that it has a fewer effects when used as pharmaceuticals directed administering to warm-blooded animals in general and including When applying purification methods using monoclonal antibodies specific to IL-18, as disclosed in Japanese Patent Application No. 231,598/96 by the same applicant of the present invention, a relatively-high purity IL-18 can be obtained in a minimum labor and cost.

The present osteoclastgenic inhibitory agent comprising the aforesaid IL-18 includes any types and forms usable to inhibit osteoclast formation both *in vivo* and *in vitro*. The present agent can be advantageously used as ingredients for cell culture media for animal cells, which satisfactorily inhibit osteoclast formation, maintain, proliferate, and/or differentiate the desired cells; components

of screening kits for bone-related therapeutic agents; boneresorption regulatory agents; and agents for osteoclast-related The bone-resorption regulatory agents include diseases. medicaments and health foods that exert an osteoclastgenic inhibitory activity in vivo, control bone resorption to normal conditions, and improve unfavorable physical conditions such as relatively-insignificant arthralgia. The agents osteoclast-related diseases include medicaments used to prevent and/or treat diseases caused by an excessive osteoclast formation and/or its function. Examples of such diseases are hypercalcemia, osteoclastoma, Behcet's syndrome, osteosarcoma, arthropathy, chronic rheumatoid arthritis, deformity ostitis, primary hyperthyroidism, osteopenia, and osteoporosis. Varying depending on the types of agents and diseases to be treated, the present agent is usually formulated into a liquid, paste, or solid form which contains 0.000002-100 w/w %, preferably, 0.0002-0.5 w/w % of IL-18.

The present osteoclastgenic inhibitory agent can be IL-18 alone or compositions comprising IL-18 and one or more other ingredients such as carriers, excipients, diluents, adjuvants, antibiotics, and proteins such as serum albumin and gelatin as stabilizers; saccharides such as glucose, maltose, maltotriose, maltotetraose, trehalose, sucrose, isomaltose, lactose, panose, erlose, palatinose, lactosucrose, raffinose, fructooligosaccharide, galactooligosaccharide, lentinan, dextrin, pullulan, and sugar alcohols including sorbitol, maltitol, lactitol, and maltotriitol; buffers comprising phosphates or citrates mainly; and reductants such as 2-

mercaptoethanol, dithiothreitol, and reduced glutathione; and optionally biologically active substances such as interferon- α , interferon-y, interleukin-2, interleukin-3, interferon-β, interleukin-6, interleukin-12, TNF- α , TNF- β , GM-CSF, estrogen, progesterone, chlormadinone acetate, calcitonin, somatokine, insulin-like growth factor, ipriflavone, somatomedin, parathyroid hormone (PTH), norethisterone, busulfan, ancitabine, fluorouracil, tetrahydrofurfuryl fluorouracil, cytarabine, methotrexate, vitamin D_2 , active vitamin D, Krestin $^{(\!R\!)}$ or polysaccharide K, L-asparaginase, and OK-432 or Picibanil $^{(\!\mathrm{R}\!)}$; and calcium salts such as calcium lactate, calcium chloride, calcium monohydrogenphosphate, and L-calcium L-aspartate. When used as agents for administering to warm-blooded animals in general and including humans, i.e., agents for osteoclast-related diseases, the present agent can be preferably formulated into compositions by appropriately combining with one or more of the above physiologically-acceptable substances.

The present osteoclastgenic inhibitory agent includes medicaments in a unit dose form used for administering to warm-blooded animals in general and including humans. The wording "unit dose form" means those which contain IL-18 in an amount suitable for a daily dose or in an amount up to four fold by integers or up to 1/40 fold of the dose, and those in a physically separated and formulated form suitable for prescribed administrations. Examples of such formulations are injections, liquids, powders, granules, tablets, capsules, troches, collyriums, nebulas, and suppositories.

The present agent as an osteoclastgenic inhibitory

agent effectively treat and prevent osteoclast-related diseases independently of oral and parenteral administrations. Varying depending on the types and symptoms of patients' diseases, the present agent can be administered to the patients orally, intradermally, subcutaneously, muscularly, or intravenously at a dose of about 0.5 µg to 100 mg per shot, preferably, at a dose of about 2 µg to 10 mg per shot of IL-18, 2-6 fold a day or 2-10 fold a week for one day to one year.

In the below, with reference to experiments, the preparation, physicochemical property, and biological activity of the IL-18 according to the present invention are described: Experiment 1

Preparation of human IL-18

According to the method in Japanese Patent Kokai No. 231,598/96 by the same applicant of the present invention, an autonomously-replicable recombinant DNA, pKGFHH2, linked to a cDNA encoding human IL-18, was prepared. Dideoxyribonucleotide sequencing analyzed that, as shown in FIG. 1, in the recombinant DNA, KGFHH2 cDNA containing the base sequence of SEQ ID NO: 8 was linked to the downstream of Ptac, a Tac promoter. The recombinant DNA pKGFHH2 contained the amino acid sequences of SEQ ID NOs: 1 to 5; these amino acid sequences were respectively encoded by nucleotides 46-63, 88-105, 400-420, 151-165, and 214-228 in SEQ ID NO: 8.

According to the method in Japanese Patent Kokai No. 231,598/96, the recombinant DNA pKGFHH2 was introduced into an Escherichia coli Y1090 strain, ATCC 37197, and the strain was cultured. The produced polypeptide was purified by

immunoaffinity chromatography to obtain a purified human IL-18 with a purity of at least 95% in a yield of about 25 mg/ℓ culture. According to the method in Japanese Patent Kokai No. 193,098/96 by the same applicant of the present invention, the purified human IL-18 was analyzed for biological activity and physicochemical property as indicated below: When culturing human lymphocytes, collected by a conventional manner from a healthy donor, in the presence of the purified human IL-18, IFNy production was observed depending on the concentration of IL-18, resulting in a confirmation that IL-18 has an activity of inducing IFN-y production by lymphocytes as an immunocompetent In accordance with the method as reported by U. K. cell. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified IL-18 was subjected to SDS-PAGE, resulting in a major band with an IFN-y inducing activity at a position corresponding to 18,500±3,000 daltons. The IL-18 gave a pI of 4.9 ± 1.0 as determined by conventional chromatofocusing. Conventional analysis using "PROTEIN SEQUENCER MODEL 473A", an apparatus of Applied Biosystems, Inc., Foster City, USA, revealed that the IL-18 had the amino acid sequence of SEQ ID NO: 9, i.e., the amino acid sequence of SEQ ID NO: 8 where a methionine residue was linked to the N-terminus.

Experiment 2

Preparation of human IL-18

According to the method in Japanese Patent Application No. 67,434/96 by the same applicant of the present invention, THP-1 cells, ATCC TIB 202, a human monocyte cell line derived from a male with acute monocytic leukemia, were inoculated to

the dorsum subcutaneous tissues of new born hamsters, followed by feeding the hamsters for three weeks. Tumor masses, about 15 g weight each, formed in the subcutaneous tissues of each hamster, were extracted, dispersed in media, and disrupted. The polypeptide obtained from the disrupted cells was purified by immunoaffinity chromatography to obtain a purified human IL-18 in a yield of an about 50 ng/head.

Similarly, according to the method in Japanese Patent Application No. 67,434/96, the purified human IL-18 was analyzed and determined for biological activity and physicochemical property as indicated below: It was confirmed that culturing from healthy donors in lymphocytes, collected human conventional manner, in the presence of different concentrations of the human IL-18, resulted in an IL-18 dose-dependent IFN- γ production. This revealed that the human IL-18 has a biological activity of inducing IFN- γ production by lymphocytes as an immunocompetent cell. In accordance with the method as reported by U. K. Laemmli in *Nature*, Vol. 227, pp. 680-685 (1970), the purified human IL-18 was subjected to SDS-PAGE using 2 w/v % dithiothreitol as a reductant, resulting in a major band with position at a inducing activity production an IFN-7 corresponding to 18,000-19,500 daltons. According to the peptide map disclosed in Japanese Patent Application No. 67,434/96, the human IL-18 was treated with clostripain commercialized by Sigma Chemical Company, Missouri, USA, to obtain polypeptide fragments, followed by subjecting high-performance liquid fractionation to for fragments chromatography (HPLC) using "ODS-120T", a column commercialized by Tosoh Corporation, Tokyo, Japan, and analyzing the amino acid sequences of the fragments from the N-terminus to reveal the following amino acid sequences of SEQ ID NOs: 10 to 13. These amino acid sequences were completely coincided with amino acids 148-157, 1-13, 45-58, and 80-96 in SEQ ID NO: 6. The data shows that the human IL-18 obtained in Experiment 2 has the amino acid sequence of SEQ ID NO: 6 and all the partial amino acid sequences of SEQ ID NOs: 1 to 5.

Experiment 3

Preparation of functional equivalents

According to the method in Japanese Patent Application No. 20,906/97 by the same applicant of the present invention, it was prepared an autonomously-replicable recombinant DNA, pCSHIGIF/MUT35, was linked to a DNA encoding a functional equivalent of human IL-18 where cysteines 38, 68, and 76 in SEQ ID NO: 6 were respectively replaced with serine, serine, and alanine. Dideoxyribonucleotide sequence analysis revealed that as shown in FIG. 2, in the recombinant DNA, DNA IGIF/MUT35 with SEQ ID NO: 14 linked to the downstream of a base sequence encoding a signal peptide of subtype $\alpha 2b$ in human interferon- α in the same reading-frame, as reported by K. Henco et al., in Journal of Molecular Biology, Vol. 185, pp. 227-260 (1985), and had a stop codon for protein synthesis at further downstream. As shown in parallel in SEQ ID NO: 14, the amino acid sequence encoded by the recombinant DNA corresponded to SEQ ID NO: 6 where cysteines 38, 68, and 76 in SEQ ID NO: 6 were respectively replaced with serine, serine, and alanine. The recombinant DNA contained a nucleotide which encodes all the amino acid sequences of SEQ ID NOs: 1 to 4 and the one of SEQ ID NO: 5 where cysteine at amino acid 5 in SEQ ID NO: 5 was replaced with alanine. These amino acid sequences were respectively encoded by nucleotides 46-63, 88-105, 400-420, 151-165, and 214-228 in SEQ ID NO: 14.

According to the method in Japanese Patent Application No. 20,906/97 by the same applicant of the present invention, the recombinant DNA pCSHIGIF/MUT35 was introduced into COS-1 cells, ATCC CRL 1650, an established cell line derived from SV40 transformed African Green monkey kidney, followed by culturing the transformed cells. The produced polypeptide in the culture was purified by immunoaffinity chromatography to obtain a purified functional equivalent of human IL-18 in a yield of about 40 ng/ml culture. According to the method in Japanese Patent Application No. 20,906/97, the purified functional equivalent was analyzed and determined for biological activity and physicochemical property as indicated below: When culturing KG-1 cells, ATCC CCL 246, an established cell line derived from human acute myelogenous leukemia, in the presence of different concentrations of the purified functional equivalent of human depending IFN-γ production was observed IL-18, concentration of the IL-18, revealing that the IL-18 has a biological activity of inducing IFN-γ production by KG-1 cells as an immunocompetent cell. In accordance with the method as reported by U. K. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified functional equivalent was subjected to SDS-PAGE in the presence of 2 w/v % dithiothreitol as a reductant, resulting in a major band with an IFN-y production inducing activity at a position corresponding to 18,000-19,500 daltons. Conventional analysis using "PROTEIN SEQUENCER MODEL 473A", an apparatus of Applied Biosystems, Inc., Foster City, USA, revealed that the N-terminal region of the functional equivalent had the amino acid sequence of SEQ ID NO: 15 which corresponded to the amino acid sequence in the N-terminal region as shown in parallel in SEQ ID NO: 14.

Experiment 4

Preparation of functional equivalent

According to the method in Japanese Patent Application No. 20,906/97 by the same applicant of the present invention, it was prepared an autonomously-replicable recombinant DNA, pCSHIGIF/MUT42, which was linked to a DNA encoding for a functional equivalent of human IL-18 where cysteines 38, 68, 76, and 127 in SEQ ID NO: 6 were respectively replaced with serine, serine, alanine, and serine. Dideoxyribonucleotide sequencing revealed that, as shown in FIG. 3, in the recombinant DNA, DNA IGIF/MUT42 with SEQ ID NO: 16 linked to the downstream of a base sequence encoding a signal peptide for subtype $\alpha 2b$ of human interferon- α in the same reading frame, as reported by K. Henco et al., in Journal of Molecular Biology, Vol. 185, pp. 227-260 (1985), and had a stop codon for protein synthesis at further downstream. As shown in parallel in SEQ ID NO: 16, the amino acid sequence encoded by the recombinant DNA corresponded to SEQ ID NO: 6 where cysteines 38, 68, 76, and 127 in SEQ ID NO: 6 were respectively replaced with serine, serine, alanine, and serine. The recombinant DNA contained a nucleotide sequence which encodes all the amino acid sequences of SEQ ID NOs: 1 to

4 and the one of SEQ ID NO: 5 where cysteine 5 in SEQ ID NO: 5 was replaced with alanine. These amino acid sequences were respectively encoded by nucleotides 46-63, 88-105, 400-420, 151-165, and 214-228 in SEQ ID NO: 16.

According to the method in Japanese Patent Application No. 20,906/97 by the same applicant of the present invention, the recombinant DNA pCSHIGIF/MUT42 was introduced into COS-1 followed by culturing the cells, cells. The produced polypeptide in the culture was purified by immunoaffinity chromatography to obtain a purified functional equivalent of human IL-18 in a yield of about 20 ng/ml culture. According to the method in Japanese Patent Application No. 20,906/97, the purified functional equivalent was analyzed and determined for biological activity and physicochemical property as indicated When cultured KG-1 cells in the presence of different below: concentrations of the purified functional equivalent, a dosedependent IFN- γ production was observed, and this revealed that the functional equivalent has a biological activity of inducing IFN-y production by KG-1 cells as an immunocompetent cell. accordance with the method as reported by U. K. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified functional equivalent was subjected to SDS-PAGE in the presence of 2 $\rm W/\rm V$ % dithiothreitol as a reductant, resulting in a major band with an IFN- γ inducing activity at a position corresponding to 18,000-19,500 daltons. Conventional analysis using "PROTEIN SEQUENCER MODEL 473A", an apparatus of Applied Biosystems, Inc., Foster City, USA, revealed that the N-terminal region of the functional equivalent had the amino acid sequence of SEQ ID NO:

15 which completely corresponded to the amino acid sequence in the N-terminal region as shown in parallel in SEQ ID NO: 16.

Experiment 5

Preparation of human IL-18

According to the method in Japanese Patent Application No. 185,305/96 by the same applicant of the present invention, an autonomously-replicable recombinant DNA, pBGHuGF, linked to encoding human IL-18, was chromosomal DNA Dideoxyribonucleotide sequencing analysis revealed that as shown in FIG. 4, in the recombinant DNA, a chromosomal DNA, which encodes human IL-18, i.e., DNA HuIGIF with SEQ ID NO: 17, was linked to the downstream of a restriction site by a restriction enzyme, Hind III. As shown in SEQ ID NO: 17, the chromosomal DNA HuIGIF consists of 11,464 bp where the exon was fragmented by four introns positioning at nucleotides 83-1,453, 1,466-4,848, 4,984-6,317, and 6,452-11,224. Among the resting nucleotide sequence excluding these introns, nucleotides 3-11,443 from the 5'-terminus are the part that encodes a precursor of human IL-18, and nucleotides 4,866-4,983 are the part that encodes an active human IL-18. The chromosomal DNA contained nucleotides sequences encoding SEQ ID NOs: 1 to 5; these amino acid sequences were respectively encoded by nucleotides 4,911-4,928, 4,953-4,970, 11,372-11,392, 6,350-6,364, and 6,413-6,427 in SEQ ID NO: 17.

According to the method in Japanese Patent Application No. 185,305/96, the recombinant DNA pBGHuGF was introduced into CHO-K1 cells, ATCC CCL 61, an established cell line derived from Chinese hamster ovary, followed by culturing the cells. The

culture supernatant was contacted with a supernatant of cell disruptant prepared from a THP-1 cell culture to produce a purified by immunoaffinity polypeptide which was then chromatography to obtain a purified human IL-18 in a yield of about 15 mg/l culture. According to the method in Japanese Patent Application No. 185,305/96, the polypeptide was analyzed and determined for biological activity and physicochemical property as indicated below: It was confirmed that human lymphocytes, which were collected from a healthy donor, produced IFN-y depending on the purified human IL-18 concentration when cultured at different concentrations of the human IL-18, revealing that the human IL-18 has a biological activity of inducing IFN-y production by lymphocytes as an immunocompetent In accordance with the method as reported by U. K. cell. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified human IL-18 was subjected to SDS-PAGE in the presence of 2 w/v % dithiothreitol as a reductant, resulting in a major band with an IFN-y inducing activity at a position corresponding to 18,000-19,500 daltons. The N-terminal region of the human IL-18 contained the amino acid sequence of SEQ ID NO: 15 which completely corresponded to the amino acid sequence in the Nterminal region of SEQ ID NO: 17 for an active IL-18.

Experiment 6

Preparation of mouse IL-18

To a 0.5-ml reaction tube were added 8 μ l of 25 mM magnesium chloride, 10 μ l of 10 x PCR buffer, one μ l of 25 mM dNTP mix, one μ l of 2.5 units/ μ l of amplitaq DNA polymerase, one ng of a recombinant DNA, which encodes mouse IL-18 having the

nucleotide sequence of SEQ ID NO: 18 and the amino acid sequence of SEQ ID NO: 7, prepared from a phage DNA clone according to the method in Japanese Patent Kokai No. 27,189/96, and adequate amounts of a sense and antisense primers having nucleotide sequences represented by 5'-ATAGAATTCAAATGAACTTTGGCCGACTTCACTG-3' and 5'-ATAAAGCTTCTAACTTTGATGTAAGTT-3', respectively, which were chemically synthesized based on the amino acid sequences nearness to the N- and C-termini of SEQ ID NO: 7, and the mixture solution was brought up to a volume of 100 µl with sterilized distilled water. The solution thus obtained was subjected in a usual manner to PCR reaction of the following three cycles of successive incubations at 94°C for one minute, 43°C for one minute, and 72°C for one minute, and further 40 cycles of successive incubations at 94°C for one minute, 60°C for one minute, and 72°C for one minute.

The product obtained by the PCR reaction and "pCR-Script SK (+)", a plasmid vector commercialized by Stratagene Cloning Systems, California, USA, were in a conventional manner ligated together using a DNA ligase into a recombinant DNA which was then introduced into "XL-1 Blue MRF'Kan", an Escherichia coli strain commercialized by Stratagene Cloning Systems, California, USA., to obtain a transformant. The transformant was inoculated to L-broth (pH 7.2) containing 50 µg/ml ampicillin, followed by the incubation at 37°C for 18 hours under shaking conditions. The culture was centrifuged to obtain the proliferated transformants which were then treated with a conventional alkali-SDS method to isolate a recombinant DNA. A portion of the recombinant DNA isolated was analyzed by

dideoxyribonucleotide sequencing, revealing that the recombinant DNA contained restriction sites of Eco RI and Hind III at the 5'- and 3'-termini of SEQ ID NO: 18, respectively, and a DNA containing a methionine codon for initiating polypeptide synthesis and a TAG codon for terminating polypeptide synthesis, which were located in just before and after the N- and C-termini of the amino acid sequence as shown in parallel in SEQ ID NO: 18. The recombinant DNA contained the nucleotide sequences of SEQ ID NOs: 1 to 5. These amino acid sequences were encoded by nucleotides 46-63, 85-102, 394-414, 148-162, and 211-225 in SEQ ID NO: 18.

The remaining portion of the recombinant DNA was in a conventional manner cleaved with restriction enzymes of Eco RI and Hind II, and the resulting 0.1 µg of an Eco RI-Hind III DNA fragments, obtained by using "DNA LIGATION KIT VER 2", a DNA ligation kit commercialized by Takara Shuzo Co., Ltd., Tokyo, Japan, and 10 ng of pKK223-3, a plasmid vector commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been cleaved with a restriction enzyme were linked together, by incubating at 16°C for 30 min to obtain an autonomouslyreplicable recombinant DNA, pKGFMH2. Using competent cell method, an Escherichia coli Y1090 strain, ATCC 37197, was transformed using the recombinant DNA pKGFMH2, and the resulting transformant, KGFMH2, was inoculated to L-broth (pH 7.2) containing 50 μ g/ml ampicillin, and cultured at 37 $^{\circ}$ C for 18 hours under shaking conditions. The culture was centrifuged to collect the proliferated transformants, followed by applying a conventional SDS-alkali method to a portion of the transformants to extract the recombinant DNA pKGFMH2. Dideoxyribonucleotide sequencing analysis revealed that, as shown in FIG. 5, KGFMH2 cDNA containing the nucleotide sequence of SEQ ID NO: 18 was linked to the downstream of the Tac promoter in the recombinant DNA pKGFMH2.

Ampicillin was added to L-broth (pH 7.2), which had been sterilized by autoclaving, to give a concentration of 50 ug/ml, cooled to 37°C, and inoculated with the transformant KGFMH2, followed by the culture at 37°C for 18 hours. Eighteen liters of a fresh preparation of the same culture medium was placed in a 20-l jar fermenter, similarly sterilized as above, admixed with ampicillin, cooled to 37°C, and inoculated with one v/v % of the seed culture obtained in the above, followed by the culture at 37°C for 8 hours under aeration-agitation conditions. The resulting culture was centrifuged to collect the cultured cells which were then suspended in a mixture solution (pH 7.3) containing 150 mM sodium chloride, 16 hydrogenphosphate, and 4 mM sodium dihydrogenphosphate, disrupted by ultrasonication, and centrifuged to remove cell disruptant, and this yielded an about two liters supernatant.

To an about two liters of the supernatant was added 10 mM phosphate buffer (pH 7.3) containing ammonium sulfate to give a 40% ammonium saturation. The resulting sediment was removed by centrifugation, and the supernatant was mixed with ammonium sulfate to give an 85% ammonium saturation, allowed to stand at 4°C for 18 hours, and centrifuged at about 8,000 rpm for 30 min to obtain a newly formed sediment. The sediment thus

obtained was dissolved in 10 mM phosphate buffer (pH 6.6) containing 1.5 M ammonium sulfate to give a total volume of about 1,300 ml, and the solution was filtered, and fed to a column packed with about 800 ml of "PHENYL SEPHAROSE CL-6B", a gel commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, followed by washing the column with a fresh preparation of the same buffer and feeding to the column a linear gradient buffer of ammonium sulfate decreasing from 1.5 M to 0 M in 10 mM phosphate buffer (pH 6.6) at an SV (space velocity) 1.5. Fractions eluted at around 1 M ammonium sulfate were pooled, concentrated using a membrane filter, and dialyzed against 10 mM phosphate buffer (pH 6.5) at 4°C for 18 hours. The dialyzed solution was fed to a column packed with about 55 ml of "DEAE-5PW", a gel commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been equilibrated with 10 mM phosphate buffer (pH 6.5). The column was washed with a fresh preparation of the same buffer, and fed with a linear gradient buffer of sodium chloride increasing from 0 M to 0.5 M in 10 mM phosphate buffer (pH 6.5) at SV 5.5, followed by collecting fractions eluted at around 0.2 M sodium chloride. Thereafter, the fractions were pooled and concentrated similarly as above up to give an about nine milliliters, followed by dialyzing the concentrate against PBS (phosphate buffered saline) at 4°C for 18 hours, and feeding the dialyzed solution to a column packed with "SUPERDEX 75", a gel commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been equilibrated with a fresh preparation of the same PBS. The column was fed with a fresh preparation of the same PBS to collect fractions

with an IFN- γ inducing activity, and the fractions were pooled and concentrated with a membrane filter to obtain a purified mouse IL-18 in a yield of about 350 $\mu g/\ell$ culture.

According to the method in Japanese Patent Kokai No. 27,189/96, the purified mouse IL-18 was analyzed and determined for biological activity and physicochemical property as indicated below: Culturing mouse spleen cells, collected by a conventional manner, under different concentrations of the mouse resulted in an IFN- γ production depending on the concentrations of the mouse IL-18, and this revealed that the mouse IL-18 has an activity of inducing IFN-7 production by spleen cells as an immunocompetent cell. In accordance with the method as reported by U. K. Laemmli in Nature, Vol. 227, pp. 680-685 (1970), the purified human IL-18 was subjected to SDS-PAGE under non-reducing conditions, resulting in a major band with an IFN-y inducing activity at a position corresponding to 19,000±5,000 daltons. The N-terminal region of the mouse IL-18 contained the amino acid sequence of SEQ ID NO: 19 which corresponded to the N-terminal region of SEQ ID NO: 18.

With reference to Experiment 7, the biological activity of the IL-18 according to the present invention will be described in more detail, and Experiment 8 describes the cytotoxicity of the IL-18:

Experiment 7

Biological activity

Experiment 7-1

Induction of GM-CSF production

Using a heparinized syringe, blood was collected from

a healthy volunteer and diluted two fold with serum-free RPMI 1640 medium (pH 7.4). The diluent was overlaid on a ficoll and centrifuged, and the collected lymphocytes were washed with RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal calf serum, and suspended in a fresh preparation of the same medium to give a cell density of 1 x 10^6 cells/ml, followed by distributing the cell suspension to a 12-well microplate by two ml/well.

Using RPMI 1640 medium (pH 7.4) supplemented with 10 v/v % fetal calf serum, an IL-18 preparation obtained by the method in Experiment 1 was prepared into a one $\mu g/ml$ solution which was then distributed to the above microplate by 20-200 $\mu l/well$. To the microplate was further added a fresh preparation of the same buffer, supplemented with 500 $\mu l/ml$ of Concanavalin A, by 10 $\mu l/well$, followed by the incubation at 37°C for 48 hours in a 5 v/v % CO_2 incubator. After completion of the culture, supernatants in each well were sampled by 0.1 ml/well, and determined for GM-CSF content using a conventional enzyme immunoassay. In parallel, a culture system free of IL-18 as a control was provided and treated similarly as above. The data is in Table 1:

Table 1

IL-18* (nM)	GM-CSF yield (pg/ml)				
0	510				
0.7	2,150				
2.8	3,050				
5.6	3,950				
	, , , , , , , , , , , , , , , , , , ,				

Note: The symbol "*" means that IL-18 was added to the culture system in the presence of 2.5 μ g/ml of Concanavalin A.

an immunocompetent cell produced GM-CSF depending on the concentration of IL-18 when contacted with IL-18 in the presence of Concanavalin A as a cofactor. It was also confirmed that all of the IL-18 preparations and functional equivalents thereof, which were obtained by the methods in Experiments 2 to 5, induced GM-CSF production even when used alone similarly as above. An IL-18 preparation obtained by the method in Experiment 6 was tested in accordance with Experiment 7-1 except that the human lymphocytes used in the experiment were replaced with spleen cells prepared from mouse by a conventional manner, revealing that the IL-18 preparation also induced GM-CSF production.

Experiment 7-2

Inhibition of osteoclast formation

Experiment 7-2(a)

As reported by T. J. Martin and K. W. Ng in Journal of Cellular Biochemistry, Vol. 56, pp. 357-366 (1994), it is considered requisite for contacting osteoclastic precursor cells, derived from hematopoietic stem cells, with osteoblasts or bone marrow stromas to generally differentiate osteoclastic precursor cells into mature osteoclasts. As described by G. D. Roodman in Endocrine Reviews, Vol. 17, No. 4, pp. 308-332 (1996), it is generally recognized that osteoclasts have characters of multinucleated cells, tartaric acid-resistant acid

phosphatase (hereinafter abbreviated as "TRAP") activity, and a calcitonin receptor. In a co-culture system of osteoblasts and bone marrow cells as reported by Nobuyuki UDAGAWA et al., in Journal of Experimental Medicine, Vol. 182, pp. 1,461-1,468 these cells respond to factors such as dihydroxyvitamin D_3 , prostaglandin E_2 , adrenocortical hormone, interleukin 1, interleukin 6, and interleukin 11, to form osteoclast-like cells (hereinafter may be abbreviated as "OCL"). formed OCL has characters of vivo. osteoclasts in The Therefore, the co-culture system well reflects in vitro the processes of osteoclast formation in vivo. Using this system, experiments for osteoclast formation and osteoclastgenic inhibitory agents can be carried out.

The osteoclastgenic inhibitory activity of the IL-18 according to the present invention was studied using the above co-culture system. The osteoblasts used in this experiment were prepared in a conventional manner by treating a newborn mouse calvaria with 0.1 w/v % collagenase commercialized by Worthington Biochemical Co., Freefold, Australia, and 0.2 w/v % dispase commercialized by Godo Shusei Co., Ltd., Tokyo, Japan. The bone marrow cells were prepared from a mature mouse in a conventional manner. As a negative control, 2 x 10⁴ cells of a primary cell culture of osteoblasts and 5 x 10⁵ cells of bone marrow cells were co-cultured in each well of a 48-well microplate containing 0.4 ml/well of α -MEM medium supplemented with 10 v/v % fetal calf serum (hereinafter designated as "Medium" throughout Experiment 4-2) at 37°C for seven days in a 5 v/v % CO2 incubator. As a positive control, the above two-

types of cells were co-cultured similarly as in the negative control except that they were cultured in other wells containing 10^{-8}M of $1\alpha, 25$ -dihydroxyvitamin D_3 commercialized by Wako Pure 10⁻⁷M of prostaglandin Chemicals, Tokyo, Japan, and commercialized by Sigma Chemical Company, Missouri, USA. aforesaid two-types of cells were co-cultured similarly as in the positive control except that they were cultured in other wells containing $1\alpha, 25$ -dihydroxyvitamin D_3 commercialized by Japan, and prostaglandin Tokyo, Wako Pure Chemicals, commercialized by Sigma Chemical Company, Missouri, USA., in the same concentrations as used in the positive control, and a concentration of 0.01-10 ng/ml of an IL-18 preparation prepared by the method in Experiment 6. In every co-culture system, the media in each well were replaced with fresh preparations of the same media used in the co-culture systems on the 3rd day after the initiation of each culture. According to the method by Nobuyuki UDAGAWA in Journal of Experimental Medicine, Vol. 182, pp. 1,461-1,468 (1995), the cells on the 6th day after the initiation of each culture were fixed and stained based on TRAP activity, followed by counting the stained cells (hereinafter called "TRAP-positive cells") per well. Throughout Experiment 4-2, quadruplet wells under the same conditions were provided for each co-culture system, and the mean value for the TRAPpositive cells per well in each system was calculated. results are in Table 2:

Table 2

Number of TRAP-positive cells per well $^{st}2$	2	110	114	111	106	63	29	12	2	2	AND THE RESIDENCE OF THE PARTY
Osteoclastgenic formation factor*1	ſ	+	+	+	+	+	+	+	+	+	
IL-18 (ng/ml)	0	0	0.01	0.1	0.5	-	2	4	8	10	

The symbols of "+" and "-" show co-culture systems with and without $10^{-8}M$ 1 α , 25-dihydroxyvitamin D $_3$ and $10^{-7}M$ prostaglandin Note: *1:

 $\boldsymbol{E_2}\text{, respectively.}$ It shows a mean value of the data from quadruplet wells cultured under the same conditions. *2:

As shown in Table 2, the formation of TRAP-positive cells was not substantially observed in the negative control, but the distinct formation was observed in the positive control. In the co-culture systems, i.e., the positive control supplemented additionally with IL-18, the formation of TRAP-positive cells was inhibited depending on the concentration of IL-18, and the maximum inhibition, i.e., a level equal to that in the negative control, was found at eight ng/ml or more of IL-18. These data strongly indicates that IL-18 has a concrete activity of inhibiting OCL formation in vitro and also inhibits osteoclast formation.

Experiment 7-2(b)

As described hereinbefore, it was confirmed that there exist factors that induce the formation of osteoclast-like cells in the co-culture systems used throughout Experiment 7-2. Therefore, in this Experiment 7-2(b), it was studied whether the inhibitory activity of IL-18 on osteoclast formation observed in Experiment 7-2(a) was specific to some factors or not; the osteoclast-like cells were cultured by the same method as used in the negative control in Experiment 7-2(a) except for using a medium supplemented with 10^{-8} M 1α , 25-dihydroxyvitamin D_3 , 10^{-7} M prostaglandin E2, 200 ng/ml parathyroid hormone, 100 ng/ml interleukin 1, or 20 ng/ml interleukin 11. These culture systems were for positive controls. In parallel, the cells were cultured in other wells by the same method used in the positive controls except for using a medium containing 10 ng/ml of an IL-18 preparation obtained by the method in Experiment 6, in addition to any one of the above factors at the same concentration. After completion of the cultures, TRAP-positive cells in each well were counted, and the numbers were compared similarly as in Experiment 7-2(a). The results are in Table 3:

Table 3

Osteocla (Osteoclast formation factor*1 (concentration)	11-18*2	Number of TRAP-positive cells per well*3
۵	(M ₈ -O L)	1	94
ຼິ		+	3
t G	(M2-01)	1	77
FGE ₂	(HOT)	+	3
E	(12) ~~ (000)	1	63
다 나	(700 118/1117)	+	3
-	11 11 (100 ~~ 10)	ı	84
T	(TIII / BIT OOT)	+	3
- -	([/ 06)	1	71
1 1 1	(50 119/1111)	+	3

which were added to wells to give the concentrations as indicated in parentheses. The symbol "+" means that IL-18 was added to a well to give a concentration of 10 ng/ml, and the symbol "-" means that IL-18 was not added to. It shows a mean value of the data from quadruplet wells cultured under the same D_3 , PGE_2 , PTH, IL-11, and IL-1 are respectively $1\alpha,25\text{-dihydroxyvitamin}\ D_3$, prostaglandin E_2 , parathyroid hormone, interleukin-11, and interleukin-1 *2: .. 33. Note:

conditions.

As shown in Table 3, a distinct formation of TRAP-positive cells was observed in every positive control, but the formation was almost completely inhibited in the presence of IL-18. This strongly indicates that IL-18 has a wide and general activity of inhibiting osteoclast formation independently of osteoclast-formation-related factors.

Experiment 7-2(c)

It was studied whether the osteoclastgenic inhibition by IL-18, confirmed in Experiments 7-2(a) and 7-2(b), was caused by the action of the IL-18-induced GM-CSF. For positive and negative controls, the same co-culture systems employed in Experiment 7-2(a) were used. Using other wells, the co-culture of osteoblasts and bone marrow cells was carried out similarly as the method used for the positive controls except for using medium supplemented with $1\alpha,25$ -dihydroxyvitamin D_3 prostaglandin $\mathbf{E}_{\mathbf{z}}$ at the same concentrations used in the positive control, and with (i) 10 $\mu g/ml$ of an anti-mouse GM-CSF polyclonal antibody commercialized by R&D Systems, Minnesota, USA, (ii) 10 ng/ml of an IL-18 preparation obtained by the method in Experiment 6, (iii) (ii) plus 10 µg/ml of an antimouse polyclonal antibody, (iv) 0.1 ng/ml of a mouse GM-CSF commercialized by R&D Systems, Minnesota, USA, or (v) (iv) plus 10 µg/ml of an anti-mouse GM-CSF polyclonal antibody. After completion of the culture, TRAP-positive cells in each well were counted, and the numbers were compared similarly as Experiment 7-2(a). The data is shown in Table 4 where the symbols "i" to "v" coincide with those used in the co-culture systems other than the control systems.

4 Table

<pre>IL-18*3 GM-CSF*4 Anti-GM-CSF Number of TRAP-positive antibody*5 cells per well*6</pre>		122	112	3	111	4	106
Anti-GM-CSF antibody*5	•	1	+	1	+	ı	+
GM-CSF*4	ı	1	-	1	I	+	+
IL-18*3	ı	I	ľ	+	+	ı	1
Osteoclastgenic factor*2	1	+	+	+	+	+	+
Culture system*1	Z	Сı	1	ĻŢ	111	iv	>

controls, respectively, and the symbols "i" to "v" correspond to those in the five types co-culture systems used. where the symbol "+" means that $1\alpha,25-\text{dihydroxyvitamin}\ D_3$ and "1; where the symbols "N" and "P" mean negative and positive

prostaglandin E₂ were respectively added to a well to give respective concentrations of $10^{-8}M$ and $10^{-7}M$, and the symbol "-" means that these compounds were not added to. , 2;

The symbol "+" means that GM-CSF was added to a well to give a concentration of 0.1 $\rm ng/ml$, and the symbol "-" means that GM-CSF The symbol "+" means that IL-18 was added to a well to give a concentration of 10 ng/ml, and the symbol "-" means that IL-18 was not added to. , 3, *4;

The symbol "+" means that an anti-GM-CSF polyclonal antibody was added to a well to give a concentration of $\bar{10}$ $\mu g/ml$, and the symbol "-" means that the polyclonal antibody was not added to. was not added to. * 5

As shown in Table 4, the formation of TRAP-positive cells was almost completely inhibited by IL-18, cf., the co-culture system (ii), but the inhibition was almost completely inhibited by the addition of the anti-mouse polyclonal antibody, cf., the co-culture system (iii). Mouse GM-CSF exhibited an activity of inhibiting the formation of TRAP-positive cells similar to IL-18, cf., the co-culture system (iv), and the inhibition was almost completely inhibited by the addition of the anti-mouse GM-CSF polyclonal antibody, cf., the co-culture system (v). The sole use of the anti-mouse GM-CSF polyclonal antibody gave no influence on the formation of TRAP-positive cells, cf., the co-culture system (i). These data strongly indicates that the osteoclastgenic inhibition by IL-18 was due to the action of the IL-18-induced GM-CSF.

Experiment 8

Acute toxicity test

Eight-week-old mice were in a conventional manner injected percutaneously, orally, or intraperitoneally with either of IL-18 preparations obtained by the methods in Experiments 1 to 6. The results showed that these IL-18 preparations had an LD_{50} of about one mg/kg or more in mice independent of the route of administration. The data evidences that IL-18 can be incorporated into pharmaceuticals for warmblooded animals in general and including humans without causing no serious side effects.

As described in *Nikkei Biotechnology Annual Report* 1996, pp. 498-499 (1995), published by Nikkei BP Publisher, Tokyo, Japan (1995), the IL-18-induced GM-CSF has not yet been

clinically used in Japan, but applied clinically in USA and The fact would show that IL-18 has substantially no Europe. facts indicate that serious side effects. These osteoclastgenic inhibitory agent according to the present invention can be successively administered to warm-blooded animals in general and including humans to induce osteoclast satisfactory therapeutic formation and exert а prophylactic effect on osteoclast-related diseases without causing serious side effects.

The following Examples describe the present osteoclastgenic inhibitory agent according to the present invention:

Example 1

Liquid

Either of IL-18 preparations, obtained by the methods in Experiments 1 to 6, was dissolved in physiological saline containing one w/v % human serum albumin as a stabilizer to give a concentration of two mg/ml of the IL-18 preparation. The resulting solutions were in a conventional manner membrane filtered for sterilization into liquids.

The liquids have a satisfactory stability and can be arbitrarily used as ingredients for cell culture and agents in the form of an injection, ophthalmic solution, or collunarium for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Example 2

Dry agent

Fifty milligrams of either of IL-18 preparations, obtained by the methods in Experiments 1 to 6, was dissolved in 100 ml of physiological saline containing one w/v % purified gelatin as a stabilizer. The solutions thus obtained were in a conventional manner membrane filtered for sterilization, distributed to vials by one milliliter, lyophilized, and sealed with caps.

The products have a satisfactory stability and can be arbitrarily used as ingredients for cell culture and agents in the form of a dry injection for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Example 3

Dry agent

Fifty milligrams of either of IL-18 preparations, obtained by the methods in Experiments 1 to 6, was dissolved in 100 ml of physiological saline containing one w/v % trehalose as a stabilizer. The solutions were in a conventional manner membrane filtered for sterilization, distributed to vials by one milliliter, lyophilized, and sealed with caps.

The products have a satisfactory stability and can be arbitrarily used as ingredients for cell culture and agents in the form of a dry injection for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Example 4

Ointment

"HIVIS WAKO \mathtt{GEL}^{\circledR} 104", a carboxyvinylpolymer

commercialized by Wako Pure Chemical Industries, Ltd., Tokyo, Japan, and a high-purity trehalose were dissolved in a sterilized distilled water to give respective concentrations of 1.4 w/w % and 2.0 w/w %, and the solution was mixed to homogeneity with either of IL-18 preparations obtained by the methods in Experiments 1 to 6, and adjusted to pH 7.2 to obtain a paste containing about one mg of an IL-18 preparation per g of the product.

Each product thus obtained has a satisfactory spreadability and stability and can be arbitrarily used as an agent in the form of an ointment for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Example 5

Tablet

"FINETOSE®", an anhydrous crystalline α -maltose powder commercialized by Hayashibara Biochemical Laboratories, Inc., Okayama, Japan, was mixed to homogeneity with either of IL-18 preparations, obtained by the methods in Experiments 1 to 6, and "LUMIN" or 1-1'-1"-trihepthyl-11-chinolyl(4)·4·4'-penthamethinchynocyanine-1,1"-dijodide. The mixtures were in a conventional manner tabletted to obtain tablets, about 200 mg weight each, containing an about two milligrams of either of the IL-18 preparations and an about two milligrams of LUMIN per tablet.

The products have a satisfactory swallowability, stability, and cell-activating activity and can be arbitrarily used as agents in the form of a tablet for regulating bone

resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

As described above, the osteoclastgenic inhibitory agent according to the present invention effectively inhibits osteoclast formation. Therefore, the agent can be arbitrarily used as an ingredient for cell culture and agents for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

Thus the present invention with these useful activities and functions is a significant invention that would greatly contribute to this field.

While there has been described what is at present considered to be the preferred embodiments of the invention, it will be understood the various modifications may be made therein, and it is intended to cover in the appended claims all such modifications as fall within the true spirits and scope of the invention.

SEQUENCE LISTING

- (1) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v)FRAGMENT TYPE: internal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Asn Asp Gln Val Leu Phe 1 5

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i)SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: internal fragment
 - (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Phe Glu Asp Met Thr Asp 5

- (3) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v)FRAGMENT TYPE: internal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Phe Lys Leu Ile Leu Lys Lys 1 5

- (4) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: internal fragment

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Tyr Lys Asp Ser 1 5

- (5) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: internal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Ser Thr Leu Ser Cys 1 5

- (6) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 25 20 Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 45 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55 Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 85 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 105 Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 120 125 115 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 140 135

(7) INFORMATION FOR SEQ ID NO: 7:

145

(i)SEQUENCE CHARACTERISTICS: (A)LENGTH: 157 amino acids

150

Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp

155

A 1		Phe	Gly	Arg	Leu 5	His	Cys	Thr	Thr	Ala 10	Val	Ile	Arg	Asn	Ile 15	Asn	
A	sp (Gln	Val	Leu 20	Phe	Val	Asp	Lys	Arg 25	Gln	Pro	Val	Phe	Glu 30	Asp	Met	
Т	hr A	Asp	Ile 35	Asp	Gln	Ser	Ala	Ser 40	Glu	Pro	Gln	Thr	Arg 45	Leu	Ile	Ile	
	-	50	_	_	_		55				Leu	60					
6	5					70					Cys 75					80	
S	er :	Phe	Glu	Glu	Met 85	Asp	Pro	Pro	Glu	Asn 90	Ile	Asp	Asp	Ile	Gln 95	Ser	
A	sp	Leu	Ile	Phe 100	Phe	Gln	Lys	Arg	Val 105	Pro	Gly	His	Asn	Lys 110	Met	Glu	
P	he (Glu	Ser 115	Ser	Leu	Tyr	Glu	Gly 120	His	Phe	Leu	Ala	Cys 125	Gln	Lys	Glu	
Α		Asp 130	Ala	Phe	Lys	Leu	Ile 135	Leu	Lys	Lys	Lys	Asp 140	Glu	Asn	Gly	Asp	
	ys 45	Ser	Val	Met	Phe	Thr 150	Leu	Thr	Asn	Leu	His 155	Gln	Ser				
(8)I	NFOF	RMATI	ON F	or s	SEQ I	D NO): 8	:								
		(i)	SEQU	JENCE	Е СНА	ARAC'	ERIS	STICS	S:								
						: 471 nucle			airs						-		
			(()STF	RANDI	EDNES	SS: c	doub.	le								
		(ii				YPE:											
		(vi	.)OR]	GINA	AL SO	DURCI	S :										
						SM: 1 YPE:											
		(ix	()FE	TURE	E:												
		•	(<i>P</i>	AM(/	IE/KI	EY: r ON: 3			ide								
						FICA			HOD:	E							
		(xi)SEÇ	UENC	CE DI	ESCR	PTIC	ON: S	SEQ :	ID NO	D: 8:	:					
											C AT						48
1		-		5					10		G CC		_	15			96
				u Ph					y As		g Pr			e Gl			90
ATG	ACT	' GA'			C TG	T AG	A GA			A CC	C CG	G AC			T AT	'T'	144

(B)TYPE: amino acid (D)TOPOLOGY: linear

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 7:

(ii) MOLECULE TYPE: peptide

Met	Thr	Asp 35	Ser	Asp	Cys	Arg	Asp 40	Asn	Ala	Pro	Arg	Thr 45	Ile	Phe	Ile	
ATA	AGT	ATG	TAT	AAA	GAT	AGC	CAG	CCT	AGA	GGT	ATG	GCT	GTA	ACT	ATC	192
Ile	Ser 50	Met	Tyr	Lys	Asp	Ser 55	Gln	Pro	Arg	Gly	Met 60	Ala	Val	Thr	Ile	
TCT	GTG	AAG	TGT	GAG	AAA	ATT	TCA	ACT	CTC	TCC	TGT	GAG	AAC	AAA	ATT	240
Ser 65	Val	Lys	Cys	Glu	Lys 70	Ile	Ser	Thr	Leu	Ser 75	Cys	Glu	Asn	Lys	Ile 80	
ATT	TCC	TTT	AAG	GAA	ATG	AAT	CCT	CCT	GAT	AAC	ATC	AAG	GAT	ACA	AAA	288
Ile	Ser	Phe	Lys	Glu 85	Met	Asn	Pro	Pro	Asp 90	Asn	Ile	Lys	Asp	Thr 95	Lys	
AGT	GAC	ATC	ATA	TTC	TTT	CAG	AGA	AGT	GTC	CCA	GGA	CAT	GAT	AAT	AAG	336
Ser	Asp	Ile	Ile 100	Phe	Phe	Gln	Arg	Ser 105	Val	Pro	Gly	His	Asp 110	Asn	Lys	
ATG	CAA	TTT	GAA	TCT	TCA	TCA	TAC	GAA	GGA	TAC	TTT	CTA	GCT	TGT	GAA	384
Met	Gln	Phe 115	Glu	Ser	Ser	Ser	Tyr 120	Glu	Gly	Tyr	Phe	Leu 125	Ala	Cys	Glu	
AAA	GAG	AGA	GAC	CTT	TTT	AAA	CTC	ATT	TTG	AAA	AAA	GAG	GAT	GAA	TTG	432
Lys	Glu 13	Arg 30	Asp	Leu	Phe	Lys 135	Leu	Ile	Leu	Lys	Lys 140	Glu	Asp	Glu	Leu	
GGG		AGA	TCT	ATA	ATG		ACT	GTT	CAA	AAC		GAC				471
		Arg														

- (9) INFORMATION FOR SEQ ID NO: 9:
 - (i)SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 11 amino acids
 - (B)TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v)FRAGMENT TYPE: N-terminal fragment
 - (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Met Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser 1 5 10

- (10) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v)FRAGMENT TYPE: C-terminal fragment
 - (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Ser Ile Met Phe Thr Val Gln Asn Glu Asp $1 \hspace{1cm} 5 \hspace{1cm} 10$

- (11) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v)FRAGMENT TYPE: N-terminal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg

- (12) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v)FRAGMENT TYPE: internal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Thr Ile Phe Ile Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg
1 5 10

- (13) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 17 amino-acids
 - (B) TYPE: amino acid
 - (D)TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v)FRAGMENT TYPE: internal fragment
 - (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Ile Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 1 10 15

- (14) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 471 base pairs
 - (B)TYPE: nucleic acid
 - (C)STRANDEDNESS: double
 - (D)TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix)FEATURE:

- (A)NAME/KEY: mat peptide
- (B)LOCATION: 1..471
- (C)IDENTIFICATION METHOD: S

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TAC	$\mathbf{T}\mathbf{T}\mathbf{T}$	GGC	AAG	CTT	GAA	TCT	AAA	TTA	TCA	GTC	ATA	AGA	AAT	TTG	AAT	48
Tyr 1	Phe	Gly	Lys	Leu 5	Glu	Ser	Lys	Leu	Ser 10	Val	Ile	Arg	Asn	Leu 15	Asn	
GAC	CAA	GTT	CTC	TTC	ATT	GAC	CAA	GGA	AAT	CGG	CCT	CTA	TTT	GAA	GAT	96
Asp	Gln	Val	Leu 20	Phe	Ile	Asp	Gln	Gly 25	Asn	Arg	Pro	Leu	Phe 30	Glu	Asp	
ATG	ACT	GAT	TCT	GAC	TCT	AGA	GAT	AAT	GCA	CCC	CGG	ACC	ATA	TTT	ATT	144
Met	Thr	Asp 35	Ser	Asp	Ser	Arg	Asp 40	Asn	Ala	Pro	Arg	Thr 45	Ile	Phe	Ile	
ATA	AGT	ATG	TAT	AAA	GAT	AGC	CAG	CCT	AGA	GGT	ATG	GCT	GTA	ACT	ATC	192
Ile	Ser 50	Met	Tyr	Lys	Asp	Ser 55	Gln	Pro	Arg	Gly	Met 60	Ala	Val	Thr	Ile	
TCT	GTG	AAG	TCT	GAG	AAA	ATT	TCA	ACT	CTC	TCC	GCT	GAG	AAC	AAA	ATT	240
Ser 65	Val	Lys	Ser	Glu	Lys 70	Ile	Ser	Thr	Leu	Ser 75	Ala	Glu	Asn	Lys	Ile 80	
ATT	TCC	TTT	AAG	GAA	ATG	AAT	CCT	CCT	GAT	AAC	ATC	AAG	GAT	ACA	AAA	288
Ile	Ser	Phe	Lys	Glu 85	Met	Asn	Pro	Pro	Asp 90	Asn	Ile	Lys	Asp	Thr 95	Lys	
AGT	GAC	ATC	ATA	TTC	TTT	CAG	AGA	AGT	GTC	CCA	GGA	CAT	GAT	AAT	AAG	336
Ser	Asp	Ile	Ile 100	Phe	Phe	Gln	Arg	Ser 105	Val	Pro	Gly	His	Asp 110	Asn	Lys	
ATG	CAA	TTT	GAA	TCT	TCA	TCA	TAC	GAA	GGA	TAC	TTT	CTA	GCT	TGT	GAA	384
Met	Gln	Phe 115	Glu	Ser	Ser	Ser	Tyr 120	Glu	Gly	Tyr	Phe	Leu 125	Ala	Cys	Glu	
AAA	GAG	AGA	GAC	CTT	TTT	AAA	CTC	ATT	TTG	AAA	AAA	GAG	ĢAT	GAA	TTG	432
Lys	Glu 130	Arg	Asp	Leu	Phe	Lys 135	Leu	Ile	Leu	Lys	Lys 140	Glu	Asp	Glu	Leu	
GGG	GAT	AGA	TCT	ATA	ATG	TTC	ACT	GTT	CAA	AAC	GAA	GAC				471
Gly 145	Asp	Arg	Ser	Ile	Met 150	Phe	Thr	Val	Gln	Asn 155	Glu	Asp				

(15) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 10 amino acids
 - (B)TYPE: amino acid
 - (D)TOPOLOGY: linear

(ii)MOLECULE TYPE: peptide

- (v)FRAGMENT TYPE: N-terminal fragment
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser 1 5 10

(16) INFORMATION FOR SEQ ID NO: 16:

(i)SEQUENCE CHARACTERISTICS:

- (A)LENGTH: 471 base pairs
- (B)TYPE: nucleic acid
- (C)STRANDEDNESS: double
- (D)TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix)FEATURE:

- (A)NAME/KEY: mat peptide
- (B)LOCATION: 1..471
- (C)IDENTIFICATION METHOD: S

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 16:

						TCT										48
Tyr 1	Phe	Gly	Lys	Leu 5	Glu	Ser	Lys	Leu	Ser 10	Val	Ile	Arg	Asn	Leu 15	Asn	
GAC	CAA	GTT	CTC	TTC	ATT	GAC	CAA	GGA	AAT	CGG	CCT	CTA	TTT	GAA	GAT	96
Asp	Gln	Val	Leu 20	Phe	Ile	Asp	Gln	Gly 25	Asn	Arg	Pro	Leu	Phe 30	Glu	Asp	
ATG	ACT	GAT	TCT	GAC	TCT	AGA	GAT	AAT	GCA	CCC	CGG	ACC	ATA	TTT	ATT	144
Met	Thr	Asp 35	Ser	Asp	Ser	Arg	Asp 40	Asn	Ala	Pro	Arg	Thr 45	Ile	Phe	Ile	
ATA	AGT	ATG	TAT	AAA	GAT	AGC	CAG	CCT	AGA	GGT	ATG	GCT	GTA	ACT	ATC	192
Ile	Ser 50	Met	Tyr	Lys	Asp	Ser 55	Gln	Pro	Arg	Gly	Met 60	Ala	Val	Thr	Ile	
						ATT										240
Ser 65	Val	Lys	Ser	Glu	Lys 70	Ile	Ser	Thr	Leu	Ser 75	Ala	Glu	Asn	Lys	Ile 80	
						AAT										288
Ile	Ser	Phe	Lys	Glu 85	Met	Asn	Pro	Pro	Asp 90	Asn	Ile	Lys	Asp	Thr 95	Lys	
						CAG										336
Ser	Asp	Ile	Ile 100	Phe	Phe	Gln	Arg	Ser 105	Val	Pro	Gly	His	Asp 110	Asn	Lys	
ATG	CAA	TTT	GAA	TCT	TCA	TCA	TAC	GAA	GGA	TAC	TTT	CTA	GCT	TCT	GAA	384
Met	Gln	Phe 115	Glu	Ser	Ser	Ser	Tyr 120	Glu	Gly	Tyr	Phe	Leu 125	Ala	Ser	Glu	
AAA	GAG	AGA	GAC	CTT	TTT	AAA	CTC	ATT	TTG	AAA	AAA	GAG	GAT	GAA	TTG	432
Lys	Glu 130	Arg	Asp	Leu	Phe	Lys 135	Leu	Ile	Leu	Lys	Lys 140	Glu	Asp	Glu	Leu	
						TTC										471
Gly 145	Asp	Arg	Ser	Ile	Met 150	Phe	Thr	Val	Gln	Asn 155	Glu	Asp				

(17) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A)LENGTH: 11464 base pairs
- (B)TYPE: nucleic acid
- (C)STRANDEDNESS: double
- (D)TOPOLOGY: linear

(vi)ORIGINAL SOURCE: (A)ORGANISM: human (G)CELL TYPE: placenta	
<pre>(ix)FEATURE: (A)NAME/KEY: 5 UTR (B)LOCATION: 13 (C)IDENTIFICATION METHOD: E (A)NAME/KEY: leader peptide</pre>	
(B)LOCATION: 482 (C)IDENTIFICATION METHOD: S (A)NAME/KEY: intron (B)LOCATION: 831453	
(C)IDENTIFICATION METHOD: E (A)NAME/KEY: leader peptide (B)LOCATION: 14541465 (C)IDENTIFICATION METHOD: S (A)NAME/KEY: intron	
(B)LOCATION: 14664848 (C)IDENTIFICATION METHOD: E (A)NAME/KEY: leader peptide (B)LOCATION: 48494865 (C)IDENTIFICATION METHOD: S	
(A)NAME/KEY: mat peptide (B)LOCATION: 48664983 (C)IDENTIFICATION METHOD: S (A)NAME/KEY: intron	
(B)LOCATION: 49846317 (C)IDENTIFICATION METHOD: E (A)NAME/KEY: mat peptide (B)LOCATION: 63186451 (C)IDENTIFICATION METHOD: S	
(A)NAME/KEY: intron (B)LOCATION: 645211224 (C)IDENTIFICATION METHOD: E (A)NAME/KEY: mat peptide	
(B)LOCATION: 1122511443 (C)IDENTIFICATION METHOD: S (A)NAME/KEY: 3´ UTR (B)LOCATION: 1144411464 (C)IDENTIFICATION METHOD: E	
(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
AAG ATG GCT GCT GAA CCA GTA GAA GAC AAT TGC ATC AAC TTT GTG GCA Met Ala Ala Glu Pro Val Glu Asp Asn Cys Ile Asn Phe Val Ala -35 -30 -25	48
ATG AAA TTT ATT GAC AAT ACG CTT TAC TTT ATA G GTAAGG CTAATGCCAT Met Lys Phe Ile Asp Asn Thr Leu Tyr Phe Ile Ala -20 -15 -10	98
AGAACAAATA CCAGGTTCAG ATAAATCTAT TCAATTAGAA AAGATGTTGT GAGGTGAACT ATTAAGTGAC TCTTTGTGTC ACCAAATTTC ACTGTAATAT TAATGGCTCT TAAAAAAATA GTGGACCTCT AGAAATTAAC CACAACATGT CCAAGGTCTC AGCACCTTGT CACACCACGT GTCCTGGCAC TTTAATCAGC AGTAGCTCAC TCTCCAGTTG GCAGTAAGTG CACATCATGA	158 218 278 338

(ii) MOLECULE TYPE: genomic DNA

AAATCCCAGT	TTTCATGGGA	AAATCCCAGT	TTTCATTGGA	TTTCCATGGG	AAAAATCCCA	398
СТАСААААСТ	GGGTGCATTC	AGGAAATACA	ATTTCCCAAA	GCAAATTGGC	AAATTATGTA	458
		GTTCCGTGAA			ATGTTTGACA	518
AGTAAAAATT				CTGGAGTGCA		578
						638
CTCTGCTCAC			TTCAAGCAAT			
		CATCCCGCCA		ATTTTTGGGT		698
				TCCTGATCTC		758
				ACCACCACAC		818
AATTGATTCT	TATGATTAAT	CTCCTGTGAA	CAATTTGGCT	TCATTTGAAA	GTTTGCCTTC	878
ATTTGAAACC	TTCATTTAAA	AGCCTGAGCA	ACAAAGTGAG	ACCCCATCTC	TACAAAAAAC	938
				CTGAAGCAGG		998
				CCCTACACTC		1058
				ATAAAAAATT		1118
				GTAAAATCTC		1178
				GGTTTAAGTT		1238
				TGGGCCTTTT		1298
				AAAAATAGGA		1358
GAGGAGTAGC	AAAAGTAAAA	GCTAGAATGA	GATTGAATTC	TGAGTCGAAA	TACAAAATTT	1418
TACATATTCT	GTTTCTCTCT	TTTTCCCCCT	CTTAG CT	GAA GAT GAT	r G GTAAA	1470
				Glu Asp As	p Glu	
			-10		_	
СТАСАААТСА	Σ փահան Σ ահանաև	СФФФССДДДС		CTTGAGACAC	АТСТАТСТСА	1530
				ACCAATCTGC		1590
						1650
				TAAGAGATAC		
				CAGCTCTTAG		1710
				AGCCATGGAT		1770
				TTGTCCAAAA		1830
				CGGGTTGGTG		1890
GCAGAAAATT	CTGGAAGTAG	AGGAGATAGG	AATGGGTGGG	GCAAGAAGAC	CACATTCAGA	1950
GGCCAAAAGC	TGAAAGAAAC	CATGGCATTT	ATGATGAATT	CAGGGTAATT	CAGAATGGAA	2010
GTAGAGTAGG	AGTAGGAGAC	TGGTGAGAGG	AGCTAGAGTG	ATAAACAGGG	TGTAGAGCAA	2070
GACGTTCTCT	CACCCCAAGA	TGTGAAATTT	GGACTTTATC	TTGGAGATAA	TAGGGTTAAT	2130
				TGTAACAAAG	ACATCCAAAG	2190
				AAAGTCTAAG		2250
				CCCCAACCTT		2310
		GTTGATCTCA		TGAAAATCAT		2370
						2430
				CAGGCTCATT		
				CCATTGACTA		2490
				TCTTTATTCC		2550
				TCATTCTGGC		2610
				TGAGAGCCTA		2670
TATTACAAGA	AATGATGGTG	TCATGAATTA	AGGTAGACAT	AGGGGAGTGC	TGATGAGGAG	2730
CTGTGAATGG	ATTTTAGAAA	CACTTGAGAG	AATCAATAGG	ACATGATTTA	GGGTTGGATT	2790
TGGAAAGGAG	AAGAAAGTAG	AAAAGATGAT	GCCTACATTT	TTCACTTAGG	CAATTTGTAC	2850
CATTCAGTGA	AATAGGGAAC	ACAGGAGGAA	GAGCAGGTTT	TGGTGTATAC	AAAGAGGAGG	2910
ATGGATGACG	CATTTCGTTT	TGGATCTGAG	ATGTCTGTGG	AACGTCCTAG	TGGAGATGTC	2970
CACAAACTCT	TCTACATGTG	GTTCTGAGTT	CAGGACACAG	ATTTGGGCTG	GAGATAGAGA	3030
				GAGATAAAA		3090
				GCTGGGGGGA		3150
				GCAGACTAAC		3210
				ATTTCAAGAT		3270
				AGAACACAGC		3330
				TGGTGAAATG		3390
				ATGATACAGA		3450
				GCTGCAAAGT		3510
TGATGGAGCA	GTTTTAAATC	TCAAAATAAA	GAGCTTTGTG	CTTTTTTGAT	TATGAAAATA	3570
	•					

```
ATGTGTTAAT TGTAACTAAT TGAGGCAATG AAAAAAGATA ATAATATGAA AGATAAAAAT
                                                                   3630
ATAAAAACCA CCCAGAAATA ATGATAGCTA CCATTTTGAT ACAATATTTC TACACTCCTT
                                                                   3690
TCTATGTATA TATACAGACA CAGAAATGCT TATATTTTTA TTAAAAGGGA TTGTACTATA
                                                                   3750
CCTAAGCTGC TTTTTCTAGT TAGTGATATA TATGGACATC TCTCCATGGC AACGAGTAAT
                                                                   3810
TGCAGTTATA TTAAGTTCAT GATATTTCAC AATAAGGGCA TATCTTTGCC CTTTTTATTT
                                                                   3870
AATCAATTCT TAATTGGTGA ATGTTTGTTT CCAGTTTGTT GTTGTTATTA ACAATGTTCC
                                                                   3930
CATAAGCATT CCTGTACACC AATGTTCACA CATTTGTCTG ATTTTTTCTT CAGGATAAAA
                                                                   3990
CCCAGGAGGT AGAATTGCTG GGTTGATAGA AGAGAAAGGA TGATTGCCAA ATTAAAGCTT
                                                                   4050
CAGTAGAGGG TACATGCCGA GCACAAATGG GATCAGCCCT AGATACCAGA AATGGCACTT
                                                                   4110
TCTCATTTCC CCTTGGGACA AAAGGGAGAG AGGCAATAAC TGTGCTGCCA GAGTTAAATT
                                                                   4170
TGTACGTGGA GTAGCAGGAA ATCATTTGCT GAAAATGAAA ACAGAGATGA TGTTGTAGAG
                                                                   4230
GTCCTGAAGA GAGCAAAGAA AATTTGAAAT TGCGGCTATC AGCTATGGAA GAGAGTGCTG
                                                                   4290
AACTGGAAAA CAAAAGAAGT ATTGACAATT GGTATGCTTG TAATGGCACC GATTTGAACG
                                                                   4350
CTTGTGCCAT TGTTCACCAG CAGCACTCAG CAGCCAAGTT TGGAGTTTTG TAGCAGAAAG
                                                                   4410
ACAAATAAGT TAGGGATTTA ATATCCTGGC CAAATGGTAG ACAAAATGAA CTCTGAGATC
                                                                   4470
CAGCTGCACA GGGAAGGAAG GGAAGACGGG AAGAGGTTAG ATAGGAAATA CAAGAGTCAG
                                                                   4530
GAGACTGGAA GATGTTGTGA TATTTAAGAA CACATAGAGT TGGAGTAAAA GTGTAAGAAA
                                                                   4590
ACTAGAAGGG TAAGAGACCG GTCAGAAAGT AGGCTATTTG AAGTTAACAC TTCAGAGGCA
                                                                   4650
GAGTAGTTCT GAATGGTAAC AAGAAATTGA GTGTGCCTTT GAGAGTAGGT TAAAAAACAA
                                                                   4710
TAGGCAACTT TATTGTAGCT ACTTCTGGAA CAGAAGATTG TCATTAATAG TTTTAGAAAA
                                                                   4770
CTAAAATATA TAGCATACTT ATTTGTCAAT TAACAAAGAA ACTATGTATT TTTAAATGAG
                                                                   4830
ATTTAATGTT TATTGTAG AA AAC CTG GAA TCA GAT TAC TTT GGC AAG CTT
                                                                   4880
                    Glu Asn Leu Glu Ser Asp Tyr Phe Gly Lys Leu
                         -5
                                            1
GAA TCT AAA TTA TCA GTC ATA AGA AAT TTG AAT GAC CAA GTT CTC TTC
                                                                   4928
Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe
                                                        20
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC
                                                                   4976
Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp
                                30
           GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA
TGT AGA G
                                                                   5032
Cys Arg Asp
TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG
                                                                   5092
GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG
                                                                   5152
TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA
                                                                   5212
ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT
                                                                   5272
AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT
                                                                   5332
GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG
                                                                   5392
CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC
                                                                   5452
AGACCTTGTC TCTAAAATTA AAAAAAAAA AAAAAAAAC CTTAGGAAAG GAAATTGATC
                                                                   5512
AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGGCT GAGTTGAAGC
                                                                   5572
AGTGAATGTG CATTCTTTAA AAATACTGAA TACTTACCTT AACATATATT TTAAATATTT
                                                                   5632
TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA AATACTCAAA
                                                                   5692
AAAGTTGCAG CGTGTGTTT GTAATACACA TTAAACTGTG GGGTTGTTTG TTTGTTTGAG
                                                                   5752
5812
CTCACTACAA CCTCCACCTC CCACGTTCAA GCGÄTTCTCA TGCCTCAGTC TCCCGAGTAG
                                                                   5872
GTGGGATTAC AGGCATGCAC CACTTACACC CGGCTAATTT TTGTATTTTT AGTAGAGCTG
                                                                   5932
GGGTTTCACC ATGTTGGCCA GGCTGGTCTC AAACCCCTAA CCTCAAGTGA TCTGCCTGCC
                                                                   5992
TCAGCCTCCC AAACAAACAA ACAACCCCAC AGTTTAATAT GTGTTACAAC ACACATGCTG
                                                                   6052
CAACTTTTAT GAGTATTTTA ATGATATAGA TTATAAAAGG TTGTTTTTAA CTTTTAAATG
                                                                   6112
CTGGGATTAC AGGCATGAGC CACTGTGCCA GGCCTGAACT GTGTTTTTAA AAATGTCTGA
                                                                   6172
CCAGCTGTAC ATAGTCTCCT GCAGACTGGC CAAGTCTCAA AGTGGGAACA GGTGTATTAA
                                                                   6232
GGACTATCCT TTGGTTAAAT TTCCGCAAAT GTTCCTGTGC AAGAATTCTT CTAACTAGAG
                                                                   6292
TTCTCATTTA TTATATTTAT TTCAG AT AAT GCA CCC CGG ACC ATA TTT ATT
                                                                   6343
```

Asp Asn Ala Pro Arg Thr Ile Phe Ile

40 45	
ATA AGT ATG TAT AAA GAT AGC CAG CCT AGA GGT ATG GCT GTA ACT ATC	6391
Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile	
50 55 60	
TCT GTG AAG TGT GAG AAA ATT TCA ACT CTC TCC TGT GAG AAC AAA ATT	6439
Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile	
65 70 75 80	
ATT TCC TTT AAG GTAAG ACTGAGCCTT ACTTTGTTTT CAATCATGTT AATATAATCA	6496
Ile Ser Phe Lys	
ATATAATTAG AAATATAACA TTATTTCTAA TGTTAATATA AGTAATGTAA TTAGAAAACT	6556
CAAATATCCT CAGACCAACC TTTTGTCTAG AACAGAAATA ACAAGAAGCA GAGAACCATT	6616
AAAGTGAATA CTTACTAAAA ATTATCAAAC TCTTTACCTA TTGTGATAAT GATGGTTTTT	6676
CTGAGCCTGT CACAGGGGAA GAGGAGATAC AACACTTGTT TTATGACCTG CATCTCCTGA	6736
ACAATCAGTC TTTATACAAA TAATAATGTA GAATACATAT GTGAGTTATA CATTTAAGAA	6796
TAACATGTGA CTTTCCAGAA TGAGTTCTGC TATGAAGAAT GAAGCTAATT ATCCTTCTAT	6856
ATTTCTACAC CTTTGTAAAT TATGATAATA TTTTAATCCC TAGTTGTTTT GTTGCTGATC	6916 6976
CTTAGCCTAA GTCTTAGACA CAAGCTTCAG CTTCCAGTTG ATGTATGTTA TTTTTAATGT	7036
TAATCTAATT GAATAAAAGT TATGAGATCA GCTGTAAAAG TAATGCTATA ATTATCTTCA AGCCAGGTAT AAAGTATTTC TGGCCTCTAC TTTTTCTCTA TTATTCTCCA TTATTATTCT	7036
CTATTATTTT TCTCTATTTC CTCCATTATT GTTAGATAAA CCACAATTAA CTATAGCTAC	7156
AGACTGAGCC AGTAAGAGTA GCCAGGGATG CTTACAAATT GGCAATGCTT CAGAGGAGAA	7216
TTCCATGTCA TGAAGACTCT TTTTGAGTGG AGATTTGCCA ATAAATATCC GCTTTCATGC	7276
CCACCCAGTC CCCACTGAAA GACAGTTAGG ATATGACCTT AGTGAAGGTA CCAAGGGGCA	7336
ACTTGGTAGG GAGAAAAAG CCACTCTAAA ATATAATCCA AGTAAGAACA GTGCATATGC	7396
AACAGATACA GCCCCCAGAC AAATCCCTCA GCTATCTCCC TCCAACCAGA GTGCCACCCC	7456
TTCAGGTGAC AATTTGGAGT CCCCATTCTA GACCTGACAG GCAGCTTAGT TATCAAAATA	7516
GCATAAGAGG CCTGGGATGG AAGGGTAGGG TGGAAAGGGT TAAGCATGCT GTTACTGAAC	7576
AACATAATTA GAAGGGAAGG AGATGGCCAA GCTCAAGCTA TGTGGGATAG AGGAAAACTC	7636
AGCTGCAGAG GCAGATTCAG AAACTGGGAT AAGTCCGAAC CTACAGGTGG ATTCTTGTTG	7696
AGGGAGACTG GTGAAAATGT TAAGAAGATG GAAATAATGC TTGGCACTTA GTAGGAACTG	7756
GGCAAATCCA TATTTGGGGG AGCCTGAAGT TTATTCAATT TTGATGGCCC TTTTAAATAA	7816
AAAGAATGTG GCTGGGCGTG GTGGCTCACA CCTGTAATCC CAGCACTTTG GGAGGCCGAG	7876
GGGGGCGGAT CACCTGAAGT CAGGAGTTCA AGACCAGCCT GACCAACATG GAGAAACCCC	7936
ATCTCTACTA AAAATACAAA ATTAGCTGGG CGTGGTGGCA TATGCCTGTA ATCCCAGCTA	7996
CTCGGGAGGC TGAGGCAGGA GAATCTTTTG AACCCGGGAG GCAGAGGTTG CGATGAGCCT	8056
AGATCGTGCC ATTGCACTCC AGCCTGGGCA ACAAGAGCAA AACTCGGTCT CAAAAAAAA	8116
AAAAAAAAG TGAAATTAAC CAAAGGCATT AGCTTAATAA TTTAATACTG TTTTTAAGTA	8176
GGGCGGGGG TGGCTGGAAG AGATCTGTGT AAATGAGGGA ATCTGACATT TAAGCTTCAT CAGCATCATA GCAAATCTGC TTCTGGAAGG AACTCAATAA ATATTAGTTG GAGGGGGGA	8236 8296
GAGAGTGAGG GGTGGACTAG GACCAGTTTT AGCCCTTGTC TTTAATCCCT TTTCCTGCCA	8356
CTAATAAGGA TCTTAGCAGT GGTTATAAAA GTGGCCTAGG TTCTAGATAA TAAGATACAA	8416
CAGGCCAGGC ACAGTGGCTC ATGCCTATAA TCCCAGCACT TTGGGAGGGC AAGGCGAGTG	8476
TCTCACTTGA GATCAGGAGT TCAAGACCAG CCTGGCCAGC ATGGCGATAC TCTGTCTCTA	8536
CTAAAAAAA TACAAAAATT AGCCAGGCAT GGTGGCATGC ACCTGTAATC CCAGCTACTC	8596
GTGAGCCTGA GGCAGAAGAA TCGCTTGAAA CCAGGAGGTG TAGGCTGCAG TGAGCTGAGA	8656
TCGCACCACT GCACTCCAGC CTGGGCGACA GAATGAGACT TTGTCTCAAA AAAAGAAAAA	8716
GATACAACAG GCTACCCTTA TGTGCTCACC TTTCACTGTT GATTACTAGC TATAAAGTCC	8776
TATAAAGTTC TTTGGTCAAG AACCTTGACA ACACTAAGAG GGATTTGCTT TGAGAGGTTA	8836
CTGTCAGAGT CTGTTTCATA TATATACATA TACATGTATA TATGTATCTA TATCCAGGCT	8896
TGGCCAGGGT TCCCTCAGAC TTTCCAGTGC ACTTGGGAGA TGTTAGGTCA ATATCAACTT	8956
TCCCTGGATT CAGATTCAAC CCCTTCTGAT GTAAAAAAAA AAAAAAAAA GAAAGAAATC	9016
CCTTTCCCCT TGGAGCACTC AAGTTTCACC AGGTGGGGCT TTCCAAGTTG GGGGTTCTCC	9076
AAGGTCATTG GGATTGCTTT CACATCCATT TGCTATGTAC CTTCCCTATG ATGGCTGGGA	9136
GTGGTCAACA TCAAAACTAG GAAAGCTACT GCCCAAGGAT GTCCTTACCT CTATTCTGAA	9196
ATGTGCAATA AGTGTGATTA AAGAGATTGC CTGTTCTACC TATCCACACT CTCGCTTTCA ACTGTAACTT TCTTTTTTC TTTTTTTCTT TTTTTTTTT TTTTTGAAAC GGAGTCTCGC	9256
ACTOTANCE TOTTETTE TITTETT TITTETT TITTETT TITTETANAC GGAGTUTUGU	9316

TCTGTCGCCC AGGCTAGAGT GCAGTGGCAC GATCTCAGCT CACTGCAAGC TCTGCCTCCC 9376 GGGTTCACGC CATTCTCCTG CCTCACCCTC CCAAGCAGCT GGGACTACAG GCGCCTGCCA 9436 CCATGCCCAG CTAATTTTTT GTATTTTAG TAGAGACGGG GTTTCACCGT GTTAGCCAGG 9496 ATGGTCTCGA TCTCCTGAAC TTGTGATCCG CCCGCCTCAG CCTCCCAAAG TGCTGGGATT 9556 ACAGGCGTGA GCCATCGCAC CCGGCTCAAC TGTAACTTTC TATACTGGTT CATCTTCCCC 9616 TGTAATGTTA CTAGAGCTTT TGAAGTTTTG GCTATGGATT ATTTCTCATT TATACATTAG 9676 ATTTCAGATT AGTTCCAAAT TGATGCCCAC AGCTTAGGGT CTCTTCCTAA ATTGTATATT 9736 GTAGACAGCT GCAGAAGTGG GTGCCAATAG GGGAACTAGT TTATACTTTC ATCAACTTAG 9796 GACCCACACT TGTTGATAAA GAACAAAGGT CAAGAGTTAT GACTACTGAT TCCACAACTG 9856 ATTGAGAAGT TGGAGATAAC CCCGTGACCT CTGCCATCCA GAGTCTTTCA GGCATCTTTG 9916 AAGGATGAAG AAATGCTATT TTAATTTTGG AGGTTTCTCT ATCAGTGCTT AGGATCATGG 9976 GAATCTGTGC TGCCATGAGG CCAAAATTAA GTCCAAAACA TCTACTGGTT CCAGGATTAA 10036 CATGGAAGAA CCTTAGGTGG TGCCCACATG TTCTGATCCA TCCTGCAAAA TAGACATGCT 10096 GCACTAACAG GAAAAGTGCA GGCAGCACTA CCAGTTGGAT AACCTGCAAG ATTATAGTTT 10156 CAAGTAATCT AACCATTTCT CACAAGGCCC TATTCTGTGA CTGAAACATA CAAGAATCTG 10216 CATTTGGCCT TCTAAGGCAG GGCCCAGCCA AGGAGACCAT ATTCAGGACA GAAATTCAAG 10276 ACTACTATGG AACTGGAGTG CTTGGCAGGG AAGACAGAGT CAAGGACTGC CAACTGAGCC 10336 AATACAGCAG GCTTACACAG GAACCCAGGG CCTAGCCCTA CAACAATTAT TGGGTCTATT 10396 CACTGTAAGT TTTAATTTCA GGCTCCACTG AAAGAGTAAG CTAAGATTCC TGGCACTTTC TGTCTCTCT ACAGTTGGCT CAGAAATGAG AACTGGTCAG GCCAGGCATG GTGGCTTACA 10516 CCTGGAATCC CAGCACTTTG GGAGGCCGAA GTGGGAGGGT CACTTGAGGC CAGGAGTTCA 10576 GGACCAGCTT AGGCAACAAA GTGAGATACC CCCTGACCCC TTCTCTACAA AAATAAATTT 10636 TAAAAATTAG CCAAATGTGG TGGTGTATAC TTACAGTCCC AGCTACTCAG GAGGCTGAGG 10696 CAGGGGGATT GCTTGAGCCC AGGAATTCAA GGCTGCAGTG AGCTATGATT TCACCACTGC 10756 ACTTCTGGCT GGGCAACAGA GCGAGACCCT GTCTCAAAGC AAAAAGAAAA AGAAACTAGA 10816 ACTAGCCTAA GTTTGTGGGA GGAGGTCATC ATCGTCTTTA GCCGTGAATG GTTATTATAG 10876 AGGACAGAAA TTGACATTAG CCCAAAAAGC TTGTGGTCTT TGCTGGAACT CTACTTAATC 10936 TTGAGCAAAT GTGGACACCA CTCAATGGGA GAGGAGAGA GTAAGCTGTT TGATGTATAG 10996 GGGAAAACTA GAGGCCTGGA ACTGAATATG CATCCCATGA CAGGGAGAAT AGGAGATTCG 11056 GAGTTAAGAA GGAGAGGAGG TCAGTACTGC TGTTCAGAGA TTTTTTTTAT GTAACTCTTG 11116 AGAAGCAAAA CTACTTTTGT TCTGTTTGGT AATATACTTC AAAACAAACT TCATATATTC 11176 AAATTGTTCA TGTCCTGAAA TAATTAGGTA ATGTTTTTTT CTCTATAG GAA ATG AAT 11233 Glu Met Asn 85 CCT CCT GAT AAC ATC AAG GAT ACA AAA AGT GAC ATC ATA TTC TTT CAG 11281 Pro Pro Asp Asn Ile Lys Asp Thr Lys Ser Asp Ile Ile Phe Phe Glu 95 100 AGA AGT GTC CCA GGA CAT GAT AAT AAG ATG CAA TTT GAA TCT TCA TCA 11329 Arg Ser Val Pro Gly His Asp Asn Lys Met Gln Phe Glu Ser Ser 105 110 115 TAC GAA GGA TAC TTT CTA GCT TGT GAA AAA GAG AGA GAC CTT TTT AAA 11377 Tyr Glu Gly Tyr Phe Leu Ala Cys Glu Lys Glu Arg Asp Leu Phe Lys 120 125 130 135 CTC ATT TTG AAA AAA GAG GAT GAA TTG GGG GAT AGA TCT ATA ATG TTC 11425 Leu Ile Leu Lys Lys Glu Asp Glu Leu Gly Asp Arg Ser Ile Met Phe 140 145 ACT GTT CAA AAC GAA GAC TAGCTATTAA AATTTCATGC C 11464 Thr Val Gln Asn Glu Asp

(18) INFORMATION FOR SEQ ID NO: 18:

155

(i) SEQUENCE CHARACTERISTICS:

- (A)LENGTH: 471 base pairs
- (B) TYPE: nucleic acid
- (C)STRANDEDNESS: double

(D)TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(vi)ORIGINAL SOURCE:

(A)ORGANISM: mouse
(G)CELL TYPE: liver

(ix)FEATURE:

- (A)NAME/KEY: mat peptide
- (B)LOCATION: 1..471
- (C) IDENTIFICATION METHOD: S

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 18:

AAC	TTT	GGC	CGA	CTT	CAC	TGT	ACA	ACC	GCA	GTA	ATA	CGG	AAT	ATA	AAT	48
Asn 1	Phe	Gly	Arg	Leu 5	His	Cys	Thr	Thr	Ala 10	Val	Ile	Arg	Asn	Ile 15	Asn	
GAC	CAA	GTT	CTC	TTC	GTT	GAC	AAA	AGA	CAG	CCT	GTG	TTC	GAG	GAT	ATG	96
Asp	Gln	Val	Leu 20	Phe	Val	Asp	Lys	Arg 25	Gln	Pro	Val	Phe	Glu 30	Asp	Met	
ACT	GAT	ATT	GAT	CAA	AGT	GCC	AGT	GAA	CCC	CAG	ACC	AGA	CTG	ATA	ATA	144
Thr	Asp	Ile 35	Asp	Gln	Ser	Ala	Ser 40	Glu	Pro	Gln	Thr	Arg 45	Leu	Ile	Ile	
TAC	ATG	TAC	AAA	GAC	AGT	GAA	GTA	AGA	GGA	CTG	GCT	GTG	ACC	CTC	TCT	192
Tyr	Met 50	Tyr	Lys	Asp	Ser	Glu 55	Val	Arg	Gly	Leu	Ala 60	Val	Thr	Leu	Ser	
GTG	AAG	GAT	AGT	AAA	ATG	TCT	ACC	CTC	TCC	TGT	AAG	AAC	AAG	ATC	ATT	240
Val 65	Lys	Asp	Ser	Lys	Met 70	Ser	Thr	Leu	Ser	Cys 75	Lys	Asn	Lys	Ile	Ile 80	
TCC	TTT	GAG	GAA	ATG	GAT	CCA	CCT	GAA	AAT	ATT	GAT	GAT	ATA	CAA	AGT	288
Ser	Phe	Glu	Glu	Met 85	Asp	Pro	Pro	Glu	Asn 90	Ile	Asp	Asp	Ile	Gln 95	Ser	
GAT	CTC	ATA	TTC	TTT	CAG	AAA	CGT	GTT	CCA	GGA	CAC	AAC	AAG	ATG	GAG	336
Asp	Leu	Ile	Phe 100	Phe	Gln	Lys	Arg	Val 105	Pro	Gly	His	Asn	Lys 110	Met	Glu	
TTT	GAA	TCT	TCA	CTG	TAT	GAA	GGA	CAC	TTT	CTT	GCT	TGC	CAA	AAG	GAA	384
Phe	Glu	Ser 115	Ser	Leu	Tyr	Glu	Gly 120	His	Phe	Leu	Ala	Cys 125	Gln	Lys	Glu	
GAT	GAT	GCT	TTC	AAA	CTC	ATT	CTG	AAA	AAA	AAG	GAT	GAA	AAT	GGG	GAT	432
Asp	Asp 130	Ala	Phe	Lys	Leu	Ile 135	Leu	Lys	Lys	Lys	Asp 140	Glu	Asn	Gly	Asp	
AAA	TCT	GTA	ATG	TTC	ACT	CTC	ACT	AAC	TTA	CAT	CAA	AGT				471
Lys 145	Ser	Val	Met	Phe	Thr 150	Leu	Thr	Asn	Leu	His 155	Gln	Ser				

(19) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A)LENGTH: 9 amino acids
 - (B)TYPE: amino acid
 - (D)TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(v)FRAGMENT TYPE: N-terminal fragment

(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Asn Phe Gly Arg Leu His Cys Thr Thr 1 5

- (20) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25 Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 145 150

- (21) INFORMATION FOR SEQ ID NO: 21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

 Ser Val
 Lys
 Ser
 Glu
 Lys
 Ile
 Ser
 Thr
 Leu
 Ser
 Cys
 Glu
 Asn
 Lys
 Ile
 80

 Ile
 Ser
 Phe
 Lys
 Glu
 Met
 Asn
 Pro
 Pro
 Asp
 Asn
 Ile
 Lys
 Asp
 Thr
 Lys

 Ser
 Asp
 Ile
 Ile
 Phe
 Phe
 Glu
 Arg
 Ser
 Val
 Pro
 Gly
 His
 Asp
 Asn
 Lys

 Met
 Glu
 Phe
 Glu
 Arg
 Ser
 Ser
 Tyr
 Glu
 Gly
 Tyr
 Phe
 Leu
 Ala
 Cys
 Glu

 Lys
 Glu
 Arg
 Asp
 Leu
 Phe
 Lys
 Leu
 Ile
 Leu
 Lys
 Lys
 Glu
 Asp
 Glu
 Leu

 145
 150
 150
 155
 155
 155
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 110
 <t

(22) INFORMATION FOR SEQ ID NO: 22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 25 Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 45 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 85 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 105 110 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 120 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (23) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

(24) INFORMATION FOR SEQ ID NO: 24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ser Glu Asn Lys Ile 70 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

(25) INFORMATION FOR SEQ ID NO: 25:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 157 amino acids

- (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ala Glu Asn Lys Ile 75 70 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 120 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (26) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

130 135 140
Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp
145 150 155

(27) INFORMATION FOR SEQ ID NO: 27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

Asn Phe Gly Arg Leu His Ala Thr Thr Ala Val Ile Arg Asn Ile Asn 10 Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met 25 Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg Leu Ile Ile Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val Thr Leu Ser 55 Val Lys Asp Ser Lys Met Ser Thr Leu Ser Cys Lys Asn Lys Ile Ile Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser 85 Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu 100 105 Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Cys Gln Lys Glu 115 120 125 Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu Asn Gly Asp 135 Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser 150

(28) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Ser Gln Lys Glu Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu Asn Gly Asp Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser

WE CLAIM:

- An osteoclastgenic inhibitory agent, which comprises an interleukin-18 or its functional equivalent.
- 2. The inhibitory agent of claim 1, wherein said interleukin-18 includes the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 3 as partial amino acid sequences.
- 3. The inhibitory agent of claim 1, wherein said interleukin-18 includes the amino acid sequences of SEQ ID NO: 4 and SEQ ID NO: 5 as partial amino acid sequences.
- 4. The inhibitory agent of claim 1, wherein said interleukin-18 includes the amino acid sequence of SEQ ID NO:
- 5. The inhibitory agent of claim 1, wherein said interleukin-18 is human origin.
- 6. The inhibitory agent of claim 1, wherein said interleukin-18 includes the amino acid sequence of SEQ ID NO: 7.
- 7. The inhibitory agent of claim 1, which is a therapeutic agent for osteoclast-related diseases.
- 8. The inhibitory agent of claim 1, which contains a protein, buffer, or saccharide as a stabilizer.
- 9. The inhibitory agent of claim 1, which is in the form of a liquid, paste, or solid.
- 10. The inhibitory agent of claim 1, which contains 0.000002-100 w/w % of said interleukin-18.
 - 11. A method for treating and/or preventing

osteoclast-related diseases, which comprising administering said inhibitory agent of claim 1 to patients suffering from said diseases at a dose of about 0.5 μ g to 100 mg per shot, 2 to 6 fold a day or 2 to 10 fold a week for one day to one year.

Abstract of the Disclosure

An osteoclastgenic inhibitory agent which comprises an interleukin-18 and/or its functional equivalent. The agent can be arbitrarily used as an ingredient for cell culture and agents for regulating bone resorption and for osteoclast-related diseases, directed to treat and/or prevent hypercalcemia, osteoclastoma, osteoporosis, etc.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

<u>FIG. 5</u>

[|Supplemental

Atty.Docket:

Combined Declaration for Patent Application and Power of Attorney

COIII	Office Doorwarder -	or research L		
My resider I believe foriginal, matter w (insert full the specific [x [I am the original, first first and joint invented in the chick is claimed and title here) OSTEOCLAS cation of which (check on x) is attached hereto; I was filed in the United USSN*; o I was/will be filed in the stage of an intentional entry requested onUSSN*; § and was amended or (include dates of amendments) or amended by any	and citizenship are t and sole invent ventor (if plural for which a pat- STGENIC INHIBITO e) States under 35 U.S. T U.S. under 35 U.S.C al (PCT) application, F *; nation 371/\$102(e)date nis under PCT An. 19 and 3 d the contents of t amendment referr rademark Office (C. §111 on, as §371 by entry into the U.S. nation of the U.S.	onal
I hereby	claim foreign priorition(s) for patent or in other than the U.S., lings such application has	y benefits under a ventor's certificate sted below with the	35 U.S.C. §§ 119, 365 of ar e, or prior PCT application(; e "Yes" box checked and ha before that that of the appli	ve also identified
554	68/1997	Japan	25th February 1997	[x] []
	(Number)	(Country)	(Day Month Year Filed)	YES NO
	(Number)	(Country)	(Day Month Year Filed)	YES NO
	(Number)	(Country)	(Day Month Year Filed)	YES NO
Application of any peach of manner pall information	on(s) or prior PCT apprior U.S. provisional the claims of this approvided by the first para	plication(s) designat applications listed dication is not disc agraph of 35 U.S.C. § C.F.R. §1.56(a) whi	§ 120 of any prior U.S. ring the U.S. listed below, or below, and, insofar as the sclosed in such U.S. or PCT a 112, I acknowledge the duty to ich occurred between the filing on:	subject matter of pplication in the disclose to the PTO
(Ap	plication Serial NO.)	(Day Month Year File	d) (Status: perented, pe	ending, abandoned)
(Ap	plication Serial NO.)	(Day Month Year File	(Status: patented, pe	ending, abandoned)
revocat Tradema SHERIDA NORMAI	tion, to prosecute think Office connected then	is application and ewith. o-roger L. BROWDY, F	full power of substitution, to transact all business in EG. NO. 25,618 - ANNE M. KORNBAU, G. NO. 28,005 - ALLEN C. YUN,	n the Patent and
	ADDRESS ALL CORRESPOND BROWDY AND N 419 Seventh Street, Washington, D.C.2	IEIMARK,P.L.Ľ.C. N.W.	DIRECT ALL TELEPHONE CALLS TO: BROWDY AND NEIMARK (202)628-5197	

The undersigned hereby authorizes the U.S. Attorneys or Agents named herein to accept and follow instructions from <u>SUMA PATENT OFFICE</u> as to any action to be taken in the U.S. Patent and Trademark Office regarding this application without direct communication between the U.S. Attorney or Agent and the undersigned. In the event of a change of the persons from whom instructions may be taken, the U.S. Attorneys or Agents named herein will be so notified by the undersigned.

100,0

_	
	_
· · -	

Page	$\frac{2}{2}$ of $\frac{2}{2}$	Atty.Docket:
Title	OSTEOCLAS	TGENIC INITIBITORY AGENT
U.S.	Application file	1, Serial No
PCT	Application file	d Scrial No.

I hereby further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 T.S.C. § 1001 and that such willful false statements may icopardize the validity of the application or any patent issued thereon.

FULL NAME OF FIRST INVENTOR	INVENTOR'S ECHAPUI	<u> </u>	DATE FBA. 15.1798		
RESIDENCE Victoria, Australia		citizenshir Australian			
POST OFFICE ADDRESS Department of Medicine, the University of Melbourne and St. Vincent's Institute of Medical Research, 41 Victoria parade, Fitzroy 3065, the Commonwealth of Australia					
Full name of second joint inventor Nicole Joy Horwood	INVENTOR'S SIGNATURE		DATE - 15 , 1975		
RESIDENCE Victoria, Australia	CITIZENSHIP Auxtralian				
POST OFFICE ADDRESS Department of Medicine, the University of Melbourne and St. Vincent's Institute of Medical Research, 41 Victoria parade, Fitzroy 3065, the Commonwealth of Australia					
full name of third joint inventor Nobuyuki Udagawa	INVENTOR'S SIGNATURE		DATE Jan. 19. 1998		
residence Chiba, Japan		CITIZENSHIP Japanese			
Post office Address 16-7, 3 chome, Akehara, Kashiwa shi, Chiba, Japan					
full name of fourth Joint inventor Masashi Kurimoto	INVENTOR'S SIGNATURE		DATE 7.7998		
RESIDENCE Okayama, Japan		спідензнір Japanese			
Fost office address 7-25, 2-chome, Gakunan-cho, Okayama-shi, Okayama, Japan					
FULL NAME OF FIFTH JOINT INVENTION	INVENTORS BIGNATURE		DATE .		
RESIDENCE		CITIZENSHIP			
POST OFFICE ADDRESS					
Full name of Sixth Joint Inventor	INVENTOR'S SIGNATURE		DATE		
RESIDENCE		CITIZENSHIP			
Post office address					

ALL INVENTORS MUST REVIEW APPLICATION AND DECLARATION BEFORE SIGNING. ALL ALTERATIONS MUST BE INITIALED AND DATED BY ALL INVENTORS PRIOR TO EXECUTION. NO ALTERATIONS CAN HE MADE AFTER THE DECLARATION IS SIGNED. ALL PAGES OF DECLARATION MUST BE SEEN BY ALL INVENTORS.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: GILLISPIE, Matthew Todd HORWOOD, Nicole Joy UDAGAWA, Nobuyuki KURIMOTO, Masashi
- (ii) TITLE OF INVENTION: OSTEOCLASTGENIC INHIBITORY AGENT
- (iii) NUMBER OF SEQUENCES: 28
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: BROWDY AND NEIMARK
 - (B) STREET: 419 Seventh Street, N.W., Suite 300
 - (C) CITY: Washington
 - (D) STATE: D.C.
 - (E) COUNTRY: USA
 - (F) ZIP: 20004
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: Patent In Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 25-FEB-1998
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: JP 55,468/1997
 - (B) FILING DATE: 25-FEB-1997
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: BROWDY, Roger L.
 - (B) REGISTRATION NUMBER: 25,618
 - (C) REFERENCE/DOCKET NUMBER: GILLISPIE=1
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 628-5197
 - (B) TELEFAX: (202) 737-3528
- INFORMATION FOR SEQ ID NO: 1: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: internal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Asn Asp Gln Val Leu Phe

- INFORMATION FOR SEQ ID NO: 2: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: internal fragment

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
Phe Glu Asp Met Thr Asp
(2)
     INFORMATION FOR SEQ ID NO: 3:
      (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 7 amino acids
           (B) TYPE: amino acid
          (D) TOPOLOGY: linear
      (ii) MOLECULE TYPE: peptide
      (v) FRAGMENT TYPE: internal fragment
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
Phe Lys Leu Ile Leu Lys Lys
                 5
(2)
     INFORMATION FOR SEQ ID NO: 4:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 5 amino acids
           (B) TYPE: amino acid
          (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: internal fragment
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
Met Tyr Lys Asp Ser
     INFORMATION FOR SEQ ID NO: 5:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 5 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: internal fragment
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
Ser Thr Leu Ser Cys
(2)
     INFORMATION FOR SEQ ID NO: 6:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 157 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: peptide
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn
                                     10
Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp
            2.0
                                 25
Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile
                             40
Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile
```

```
55
                                            60
Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile
                    70
                                        75
Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys
                85
                                    90
Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys
           100
                                105
                                                    110
Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu
                            120
                                                125
Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu
                        135
                                            140
Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp
                    150
```

- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

```
Asn Phe Gly Arg Leu His Cys Thr Thr Ala Val Ile Arg Asn Ile Asn
                                    10
Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met
            20
                                25
Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg Leu Ile Ile
        35
                            40
Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val Thr Leu Ser
   50
                        55
                                            60
Val Lys Asp Ser Lys Met Ser Thr Leu Ser Cys Lys Asn Lys Ile Ile
                    70
                                        75
Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser
                85
                                    90
Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu
           100
                                105
                                                    110
Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Cys Gln Lys Glu
       115
                            120
                                                125
Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu Asn Gly Asp
   130
                        135
                                            140
Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser
                    150
```

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 471 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (vi)ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (G) CELL TYPE: liver
 - (ix) FEATURE:
 - (A) NAME/KEY: mat peptide
 - (B) LOCATION: 1..471
 - (C) IDENTIFICATION METHOD: E
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

TAC TIT GGC AAG CIT GAA TCT AAA TTA TCA GTC ATA AGA AAT TTG AAT

Tyr 1	Phe	Gly	Lys	Leu 5	Glu	Ser	Lys	Leu	Ser 10	Val	Ile	Arg	Asn	Leu 15	Asn	
GAC	CAA	GTT	CTC	TTC	ATT	GAC	CAA	GGA	AAT	CGG	CCT	CTA	TTT		GAT	96
Asp	Gln	Val	Leu 20	Phe	Ile	Asp	Gln	Gly 25	Asn	Arg	Pro	Leu	Phe	Glu	Asp	
ATG	ACT	GAT	TCT	GAC	TGT	AGA	GAT	AAT	GCA	CCC	CGG	ACC	ATA	TTT	ATT	144
Met	Thr	Asp 35	Ser	Asp	Cys	Arg	Asp 40	Asn	Ala	Pro	Arg	Thr 45	Ile	Phe	Ile	
ATA	AGT	ATG	TAT	AAA	GAT	AGC	CAG	CCT	AGA	GGT	ATG		GTA	ACT	ATC	192
Ile	Ser 50	Met	Tyr	Lys	Asp	Ser 55	Gln	Pro	Arg	Gly	Met 60	Ala	Val	Thr	Ile	
TCT	GTG	AAG	TGT	GAG	AAA	ATT	TCA	ACT	CTC	TCC		GAG	AAC	ΔΔΔ	בידי∆	240
Ser 65	Val	Lys	Cys	Glu	Lys 70	Ile	Ser	Thr	Leu	Ser 75	Cys	Glu	Asn	Lys	Ile 80	210
ATT	TCC	TTT	AAG	GAA	ATG	AAT	CCT	CCT	GAT	AAC	ATC	AAG	GAT	ACA	AAA	288
Ile	Ser	Phe	Lys	Glu 85	Met	Asn	Pro	Pro	Asp 90	Asn	Ile	Lys	Asp	Thr	Lys	200
AGT	GAC	ATC	ATA	TTC	TTT	CAG	AGA	AGT	GTC	CCA	GGA	CAT	GAT	AAT	AAG	336
Ser	Asp	Ile	Ile 100	Phe	Phe	Gln	Arg	Ser 105	Val	Pro	Gly	His	Asp	Asn	Lys	
ATG	CAA	TTT	GAA	TCT	TCA	TCA	TAC	GAA	GGA	TAC	TTT	CTA		TGT	GAA	384
Met	Gln	Phe 115	Glu	Ser	Ser	Ser	Tyr 120	Glu	Gly	Tyr	Phe	Leu 125	Ala	Cys	Glu	301
AAA	GAG	AGA	GAC	CTT	TTT	AAA	CTC	ATT	TTG	AAA	AAA		GAT	GAA	TTG	432
Lys	Glu 13	Arg	Asp	Leu	Phe	Lys 135	Leu	Ile	Leu	Lys	Lys	Glu	Asp	Glu	Leu	432
GGG	GAT	-	ጥርጥ	מידמ	ልጥር		ע הינה	Cirrin	("A A	777	140	CAC				4 7 7
Glv	Asp	Ara	Ser	Tle	Met	Phe	Thr	77a1	Gln	V CD	Clu	ACC				471
145		5			150			v CLIL	0111	155	GIU	Hab				

- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: N-terminal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Met Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: C-terminal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Ser Ile Met Phe Thr Val Gln Asn Glu Asp 1 10

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid

```
(D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: peptide
     (v) FRAGMENT TYPE: N-terminal fragment
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg
(2)
     INFORMATION FOR SEQ ID NO: 12:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 14 amino acids
           (B) TYPE: amino acid
           (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: peptide
     (v) FRAGMENT TYPE: internal fragment
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:
Thr Ile Phe Ile Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg
(2)
     INFORMATION FOR SEQ ID NO: 13:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 17 amino acids
           (B) TYPE: amino acid
           (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: peptide
     (v) FRAGMENT TYPE: internal fragment
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:
Ile Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys
                                       10
(2) INFORMATION FOR SEQ ID NO: 14:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 471 base pairs
           (B) TYPE: nucleic acid
           (C) STRANDEDNESS: double
           (D) TOPOLOGY: linear
     (ii) MOLECULE TYPE: cDNA
      (ix) FEATURE:
           (A) NAME/KEY: mat peptide
           (B) LOCATION: 1..471
           (C) IDENTIFICATION METHOD: S
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:
TAC TTT GGC AAG CTT GAA TCT AAA TTA TCA GTC ATA AGA AAT TTG AAT Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn
                                                                           48
                                       10
GAC CAA GTT CTC TTC ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT
Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp
             20
```

	ACT Thr															144
	AGT Ser	ATG					CAG				Met	GCT				192
Ser	50 GTG Val				Lys	ATT				Ser					Ile	240
	TCC Ser			Glu					Asp					Thr		288
	GAC Asp		Ile					Ser					Asp			336
	CAA Gln	Phe					Tyr					Leu				384
	GAG Glu					Lys										432
	130 GAT Asp															471
(2)	IN	FORM	OIT	v FOI	R SE() ID	NO:	15:								
	(i)) SEQT	JENCI	E CH	ARAC'	reris	STICS	3:								
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 10 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear																
(ii) MOLECULE TYPE: peptide																
	(v)) FRAC	MENT	r TYI	PE: I	N-te	rmina	al fi	ragme	ent						
	(x:	i)SE(QUEN	CE DI	ESCR:	IPTI	ON: S	SEQ :	ID NO	D: 15	5:					
Tyr 1	Phe	Gly	Lys	Leu 5	Glu	Ser	Lys	Leu	Ser 10							
(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID N	D: 1	6:								
	·	() ()	A) LEI 3) TYI C) STI O) TOI	NGTH PE: 1 RANDI POLO	: 47 nucle EDNE:	l bas eic a SS: a linea	se pa acid doub ar	airs								
	(i:	(1	A) NAI B) LO	ME/KI CATIO	: NC	14	pept: 71 MET		S							
	(x	i)SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ :	ID N	0: 1	6 :					
	TTT Phe								Ser					Leu		48
GAC				5					10					15		
woF	CAA Gln		Leu					Gly	AAT				Phe			96
ATO		Val GAT	Leu 20 TCT	Phe GAC	Ile TCT	Asp AGA	Gln GAT	Gly 25 AAT	AAT Asn GCA	Arg CCC	Pro CGG	Leu ACC	Phe 30 ATA	GAA Glu TTT	Asp ATT	96 144

Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ala Glu Asn Lys Ile 65 70 75 80 ATT TCC TTT AAG GAA ATG AAT CCT CCT GAT AAC ATC AAG GAA AAA 288 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys AAA AAA 288 AGT GAC ATC ATA ATC CAT ASP Asn Ile Lys AAA 90 95 AAT AAT AAG 90 95 AAT AAT AAG 90 95 AAT AAT AAG 90 AAT AAT AAT AAG 90 AAT AAT AAG AAG AAT AAT AAG AAT AAT AAT AAT AAT AAT																	
Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ala Glu Asn Lys Ile 65 70 75 80 ATT TCC TTT AAG GAA ATG AAT CCT CCT GAT AAC ATC AAA AAA 288 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys Bsp Leu Leu Lys Lys Glu Asp Glu Leu Leu Lys Lys Glu Asp	Ile		Met	Tyr	Lys	Asp		Gln	Pro	Arg	Gly		Ala	Val	Thr	Ile	
The Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys St St St St St St St S	Ser					Lys					Ser					Ile	240
Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 ATG CAA TTT GAA TCT TCA TCA TAC GAA GGA TAC TTT CTA GCT TCT GAA 384 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 125 AAA GAG AGA GAC CTT TTT AAA CTC ATT TTG AAA AAA GAG GAT GAA TTG 432 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 GGG GAT AGA TCT ATA ATG TTC ACT GTT CAA AAC GAA GAC 471 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 471					Glu					Asp		_			Thr		288
Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 115 120 125 AAA GAG AGA GAC CTT TTT AAA CTC ATT TTG AAA AAA GAG GAT GAA TTG 432 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 130 GGG GAT AGA TCT ATA ATG TTC ACT GTT CAA AAC GAA GAC 471 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 471				Ile					Ser					Asp			336
Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 130 135 140 GGG GAT AGA TCT ATA ATG TTC ACT GTT CAA AAC GAA GAC 471 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp			Phe					Tyr					Leu				384
Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp		Glu					Lys					Lys					432
	Gly					Met					Asn						471

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11464 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: genomic DNA

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: human
- (G) CELL TYPE: placenta

(ix) FEATURE:

- (A) NAME/KEY: 5■ UTR
- (B) LOCATION: 1..3
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: leader peptide (B) LOCATION: 4..82
- (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: intron (B) LOCATION: 83..1453
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: leader peptide
- (B) LOCATION: 1454..1465 (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: intron
- (B) LOCATION: 1466..4848
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: leader peptide (B) LOCATION: 4849..4865
- (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: mat peptide
- (B) LOCATION: 4866..4983
- (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: intron
- (B) LOCATION: 4984..6317
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: mat peptide (B) LOCATION: 6318..6451
- (C) IDENTIFICATION METHOD: S
- (A) NAME/KEY: intron
- (B) LOCATION: 6452..11224
- (C) IDENTIFICATION METHOD: E
- (A) NAME/KEY: mat peptide
- (B) LOCATION: 11225..11443

(C) IDENTIFICATION METHOD: S
(A) NAME/KEY: 3■ UTR
(B) LOCATION: 11444..11464
(C) IDENTIFICATION METHOD: E

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

	CA GTA GAA GAC AAT TGC ro Val Glu Asp Asn Cys		48
	AT ACG CTT TAC TTT ATA sn Thr Leu Tyr Phe Ile	G GTAAGG CTAATGCCAT	98
-20	-15	-10	
	ATAAATCTAT TCAATTAGAA		158
	ACCAAATTTC ACTGTAATAT		218
GTGGACCTCT AGAAATTAAC	CACAACATGT CCAAGGTCTC	AGCACCTTGT CACACCACGT	278
	AGTAGCTCAC TCTCCAGTTG		338
	AAATCCCAGT TTTCATTGGA		398
GTACAAAACT GGGTGCATTC	AGGAAATACA ATTTCCCAAA	GCAAATTGGC AAATTATGTA	458
AGAGATTCTC TAAATTTAGA	GTTCCGTGAA TTACACCATT	TTATGTAAAT ATGTTTGACA	518
AGTAAAAATT GATTCTTTTT	TTTTTTTCT GTTGCCCAGG	CTGGAGTGCA GTGGCACAAT	578
CTCTGCTCAC TGCAACCTCC	ACCTCCTGGG TTCAAGCAAT	TCTCCTGCCT CAGCCTTCTG	638
AGTAGCTGGG ACTACAGGTG	CATCCCGCCA TGCCTGGCTA	ATTTTTGGGT ATTTTTACTA	698
GAGACAGGGT TTTGGCATGT	TGTCCAGGCT GGTCTTGGAC	TCCTGATCTC AGATGATCCT	758
CCTGGCTCGG GCTCCCAAAG	TGCTGGGATT ACAGGCATGA	ACCACCACAC ATGGCCTAAA	818
AATTGATTCT TATGATTAAT	CTCCTGTGAA CAATTTGGCT	TCATTTGAAA GTTTGCCTTC	878
	AGCCTGAGCA ACAAAGTGAG		938
	CCTCCTACCT TCTGTGGAGG		998
	GCAGTGAGCT ATGATCCCAC		1058
	ACACACAAAA AAAAACCTTC		1118
	TTTAAGCAAT AAATTTAAAA		1178
	ATTGAAATTT TTAAACCCTA		1238
ATTACCTGAG AACACACTAA	GTCTGATAAG CTTCATTTTA	TGGGCCTTTT GGATGATTAT	1298
ATAATATTCT GATGAAAGCC	AAGACAGACC CTTAAACCAT	AAAAATAGGA GTTCGAGAAA	1358
	GCTAGAATGA GATTGAATTC		1418
TACATATICT GTTTCTCTCT		GAA GAT GAT G GTAAA	1470
		Glu Asp Asp Glu	
	-10	CHECK CLC LECTION	
GIAGAAATGA ATTTATTTTT	CTTTGCAAAC TAAGTATCTG AAAAAAATGG TTCTCATGCT	CTTGAGACAC ATCTATCTCA	1530
A TOTAL A CHARGA CARA	CTTTGGAATG AAGATGATCA	ACCAATCTGC CTTCAAAGAA	1590
	CTATGCCTTA AAAAATTCTC		1650
	TGGTCCTAAG ATTAGCATGA		1710 1770
	AAGGGATTGA AGCATTAGAA		1830
	GGAAGAAGCC TGGAAGGTTC		1890
GCAGAAATT CTGGAAGTAG	AGGAGATAGG AATGGGTGGG	GCANGANGAC CACATTCAGA	1950
	CATGGCATTT ATGATGAATT		2010
	TGGTGAGAGG AGCTAGAGTG		2070
GACGTTCTCT CACCCCAAGA	TGTGAAATTT GGACTTTATC	TTGGAGATAA TAGGGTTAAT	2130
TAAGCACAAT ATGTATTAGC	TAGGGTAAAG ATTAGTTTGT	TGTAACAAAG ACATCCAAAG	2190
ATACAGTAGC TGAATAAGAT	AGAGAATTTT TCTCTCAAAG	AAAGTCTAAG TAGGCAGCTC	2250
AGAAGTAGTA TGGCTGGAAG	CAACCTGATG ATATTGGGAC	CCCCAACCTT CTTCAGTCTT	2310
GTACCCATCA TCCCCTAGTT	GTTGATCTCA CTCACATAGT	TGAAAATCAT CATACTTCCT	2370
GGGTTCATAT CCCAGTTATC	AAGAAAGGGT CAAGAGAAGT	CAGGCTCATT CCTTTCAAAG	2430
ACTCTAATTG GAAGTTAAAC	ACATCAATCC CCCTCATATT	CCATTGACTA GAATTTAATC	2490
ACATGGCCAC ACCAAGTGCA	AGGAAATCTG GAAAATATAA	TCTTTATTCC AGGTAGCCAT	2550
ATGACTCTTT AAAATTCAGA	AATAATATA TTTTAAAATA	TCATTCTGGC TTTGGTATAA	2610
AGAATTGATG GTGTGGGGTG	AGGAGGCCAA AATTAAGGGT	TGAGAGCCTA TTATTTTAGT	2670
TATTACAAGA AATGATGGTG	TCATGAATTA AGGTAGACAT	AGGGGAGTGC TGATGAGGAG	2730
CTGTGAATGG ATTTTAGAAA	CACTTGAGAG AATCAATAGG	ACATGATTTA GGGTTGGATT	2790
TGGAAAGGAG AAGAAAGTAG	AAAAGATGAT GCCTACATTT	TTCACTTAGG CAATTTGTAC	2850
CATTCAGTGA AATAGGGAAC	ACAGGAGGAA GAGCAGGTTT	TGGTGTATAC AAAGAGGAGG	2910
ATGGATGACG CATTTCGTTT	TGGATCTGAG ATGTCTGTGG	AACGTCCTAG TGGAGATGTC	2970
CACAAACTCT TCTACATGTG	GTTCTGAGTT CAGGACACAG	ATTTGGGCTG GAGATAGAGA	3030
TATTGTAGGC TTATACATAG	AAATGGCATT TGAATCTATA	GAGATAAAAA GACACATCAG	3090
AGGAAATGTG TAAAGTGAGA	GAGGAAAAGC CAAGTACTGT	GCTGGGGGGA ATACCTACAT	3150
	AACCTAATAA ACAACAGAGA	GCAGACTAAC CAAAAGGGGA	3210

GAAGAAAAC CAAGAGAATT CCACCGACTC CCAGGAGAGC ATTTCAAGAT TGAGGGGATA	3270
GGTGTTGTGT TGAATTTTGC AGCCTTGAGA ATCAAGGGCC AGAACACAGC TTTTAGATTT	3330
AGCAACAAGG AGTTTGGTGA TCTCAGTGAA AGCAGCTTGA TGGTGAAATG GAGGCAGAGG	3390
CAGATTGCAA TGAGTGAAAC AGTGAATGGG AAGTGAAGAA ATGATACAGA TAATTCTTGC	3450
TAAAAGCTTG GCTGTTAAAA GGAGGAGAGA AACAAGACTA GCTGCAAAGT GAGATTGGGT	
	3510
TGATGGAGCA GTTTTAAATC TCAAAATAAA GAGCTTTGTG CTTTTTTGAT TATGAAAATA	3570
ATGTGTTAAT TGTAACTAAT TGAGGCAATG AAAAAAGATA ATAATATGAA AGATAAAAAT	3630
ATAAAAACCA CCCAGAAATA ATGATAGCTA CCATTTTGAT ACAATATTTC TACACTCCTT	3690
TCTATGTATA TATACAGACA CAGAAATGCT TATATTTTTA TTAAAAGGGA TTGTACTATA	3750
CCTAAGCTGC TTTTTCTAGT TAGTGATATA TATGGACATC TCTCCATGGC AACGAGTAAT	3810
TGCAGTTATA TTAAGTTCAT GATATTTCAC AATAAGGGCA TATCTTTGCC CTTTTTATTT	3870
AATCAATTCT TAATTGGTGA ATGTTTGTTT CCAGTTTGTT GTTGTTATTA ACAATGTTCC	3930
CATAAGCATT CCTGTACACC AATGTTCACA CATTTGTCTG ATTTTTCTT CAGGATAAAA	3990
CCCAGGAGGT AGAATTGCTG GGTTGATAGA AGAGAAAGGA TGATTGCCAA ATTAAAGCTT	4050
CAGTAGAGGG TACATGCCGA GCACAAATGG GATCAGCCCT AGATACCAGA AATGGCACTT	4110
TCTCATTTCC CCTTGGGACA AAAGGGAGAG AGGCAATAAC TGTGCTGCCA GAGTTAAATT	4170
TGTACGTGGA GTAGCAGGAA ATCATTTGCT GAAAATGAAA ACAGAGATGA TGTTGTAGAG	4230
GTCCTGAAGA GAGCAAAGAA AATTTGAAAT TGCGGCTATC AGCTATGGAA GAGAGTGCTG	4290
AACTGGAAAA CAAAAGAAGT ATTGACAATT GGTATGCTTG TAATGGCACC GATTTGAACG	4350
CTTGTGCCAT TGTTCACCAG CAGCACTCAG CAGCCAAGTT TGGAGTTTTG TAGCAGAAAG	
	4410
ACAAATAAGT TAGGGATTTA ATATCCTGGC CAAATGGTAG ACAAAATGAA CTCTGAGATC	4470
CAGCTGCACA GGGAAGGAAG GGAAGACGGG AAGAGGTTAG ATAGGAAATA CAAGAGTCAG	4530
GAGACTGGAA GATGTTGTGA TATTTAAGAA CACATAGAGT TGGAGTAAAA GTGTAAGAAA	4590
ACTAGAAGGG TAAGAGACCG GTCAGAAAGT AGGCTATTTG AAGTTAACAC TTCAGAGGCA	4650
GAGTAGTTCT GAATGGTAAC AAGAAATTGA GTGTGCCTTT GAGAGTAGGT TAAAAAACAA	4710
TAGGCAACTT TATTGTAGCT ACTTCTGGAA CAGAAGATTG TCATTAATAG TTTTAGAAAA	4770
CTAAAATATA TAGCATACTT ATTTGTCAAT TAACAAAGAA ACTATGTATT TTTAAATGAG	4830
ATTTAATGTT TATTGTAG AA AAC CTG GAA TCA GAT TAC TTT GGC AAG CTT	
	4880
Glu Asn Leu Glu Ser Asp Tyr Phe Gly Lys Leu	
-5 1 5	
GAA TCT AAA TTA TCA GTC ATA AGA AAT TTG AAT GAC CAA GTT CTC TTC	4928
Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe	
•	
10 15 20	
—- —— —— —— —— —— —— —— —— —— —— —— —— —	4976
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC	4976
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp	4976
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC lle Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35	
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA	4976 5032
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp	
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40	
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG	
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG	5032
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG	5032 5092 5152
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA	5032 5092 5152 5212
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT	5032 5092 5152 5212 5272
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT	5032 5092 5152 5212 5272 5332
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG	5032 5092 5152 5212 5272 5332 5392
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCCTTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCCAG GACTTTGAGG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC	5032 5092 5152 5212 5272 5332 5392 5452
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCCTGAGC CTGCCTTTGA AATCCCCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG TTGGATGCTT AATCCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGCTTTTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTTAGTACA CTGTGATCATA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5392 5452 5512
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATGT GATGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGGCT GAGTTGAAGC	5032 5092 5152 5212 5272 5332 5392 5452
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCCTGAGC CTGCCTTTGA AATCCCCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACA ACCTCTATAG TTGGATGCTT AATCCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGCTTTTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTTAGTACA CTGTGATCATA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5392 5452 5512
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATGT GATGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGGCT GAGTTGAAGC	5032 5092 5152 5212 5272 5332 5392 5452 5512 5572
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTT TTAGTTGGGG TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCCTAGAG CTGCCTTTGA ATCACCAATC CCTTTATGT GATGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGT GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TCTAAAATTA AAAAAAAAA AAAAAAAAAC CTCTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAATATCA AAGTTAGCT GAGTTGAAGC AGTGAATGTG CATTCTTTAA AAAACAATCT TTTAGAATTC AACATATATT TTAAATATTT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC ATATCTTTAA AATACTCAAA	5032 5092 5152 5212 5272 5332 5452 5512 5572 5632 5692
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTT TTAGTTGGGG TAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATAGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TCTAAAAATTA AAAAAAAAAA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5512 5572 5632 5692 5752
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGTACA ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TCTAAAAATTA AAAAAAAAA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5512 5632 5692 5752 5812
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGGTGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG ATCACCAATC CCTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTAGAG CTGCCTTTGA ATCACCAATC CCTTTATTGT GAATGCATA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTGCTTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGGCCAG GACTTTGAGG CTGTAGTACA CCTGTGATCA AACATGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TCTAAAAATAA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5512 5572 5632 5632 5752 5812 5872
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA ACTGTTTAAA ACCTCTATAG TTGGATGCTA AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGATCG ACCTGTGAAT ACCTGTGAA AACATGAATA AACAAAAAAAAAA	5032 5092 5152 5212 5272 5332 5392 5452 5572 5632 5632 5752 5872 5872 5872 5872 5932
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGCT TGTGACGCT GAAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACAAGAATT CCAAAATATCA AAGTTAGGCT GAGTTGAAGC AGGTGAATGTG CATTCTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATATCA AAGTTAAGCT GAGTTGAAGC AGTGAATGTG CATTCTTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAAGTTACCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC AACATATATT TTAAAATATTT TATTTAGCAT TTAAAAGTTA AAAACAATCT TTTAGAATTC AACATATATT TTAAAATATTT TAATTTAGCAT ACCTCTCACC CCAGGCTGAA GTGCAGTGGT GTGCTTCAGAG ATGCAGTTTCA CCTCCACCCC CCAGGCTGAA GTGCAGTGGT GTGCATCTCGG CTCACTACAA CCTCCACCCC CCAGGCTGAA GTGCAGTGCT TCCCGAGGTGG CTCACTACAA AGGCATGCAC CACTTACACC CGGCTTAATTT TTGTATTTTT AGTAGCTT GGGGATTTCAC CACCTCC CCACGTCCAA GCGATTCCCAA TTGCCTCAGTC TCCCGAGTTAG GGGGTTTCAC AGGCATGCC CACTTACACC CGGCTTAATTT TTGTATTTTT AGTAGCTT GGGGATTACC AGGCATGCC CACCTTCACCC CGGCTTAATTT TTGTATTTTT AGTAGCTTG GGGGTTTCACC ATGTTGGCCA GGCTGGTCT AAACCCCCTAA CCTCAAGTGA TCTGCCCGCCTTAACCCC CGGCTTAATTT TTGTATTTTT AGTAGGCTG GGGGTTTCACC ATGTTGGCCA GGCTGGTCTC AAACCCCCTAA CCTCAAGTGA TCTGCCCTGCC	5032 5092 5152 5212 5272 5332 5452 5572 5632 5632 56752 5872 5872 5872 5872 5872 5872 5872 5872
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCCCTGCT TGTTACAGCT GAAAATGCTG ATGGTTAAA ACCTCTATAG TTGGATGCTT GAAACCCTGCT TGTTACAGCT GAAAATGCTG ATGGTTAACA ACCTCTATAG TGGATGCTC GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGAACA ACATGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TGTACAGCT GAAAAAAAAAAAAAAAAAC CTTAGGAAAG GAAATTGATC AGACCTTGTC TCTAAAATTA AAAAAAAAAAAA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5572 5632 5692 5752 5812 5872 5812 5932 6052
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGATGCTT GATACCCTGCT TGTTACAGCT GAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATACA AAGTTAAGCT GAGTTGAAGC AGGTGAATGG CATCTTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATACA AAGTTAAGCT GAGTTGAAGC AGTGAATGG CGTTCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAAGTTACCAT TTAAAAGTTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAAGTTACCAA AACATGAATT TTTAGAATTC AACATAATT TTAAAAATATT TAAAAAGTTC AAAAAAAAAC CTTCAAGCC CGTGTGTTT GTAAAAATATA AAAAAAAAAC TTTAAAACTGTG GGGTTTGTTTTAAAAATATT TAAAAAGTTA AAAACAATCT TTTAGAATTC ACATATATT TTAAAATATT TTAAAAGTTA AAACAATCT TTTAGAATTC ACATATATT TTAAAATATT TTAAAAGTTA AAACAATCT TTTAGAATTC ACATATATT TTAGATTCTAGAG ATGCAGTTCC ACCTCCACCC CCACGTTCAA GCGATTCCA TGCCTCAGTC TCCCGAGTAG ATGCAGTTTC ACCTCACCC CCACGTTCAA GCGATTCCA TGCCTCAGTC TCCCGAGTAG ATGCAGTTTC ACCTCACCC CCACGTTCAA GCGATTCTCA TGCCTCAGTC TCCCGAGTAG ATGCAGTTTC ACCTTGACC CCACGTTCAA GCGATTCTCA TGCCTCAGTC TCCCGAGTAG ATGCAGTTTC ACCTTGACC CCACGTTCAA GCGCTCCA TTTTTTTTT AGTATTTTT AGTATTTT AGTATTTT AATATTT TTTTTTTT	5032 5092 5152 5212 5212 5332 5452 5572 5632 5692 5752 5812 5872 5932 5992 6052 6112
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT TAAAAAATTG GATACAATAA GACATTGCAT GGGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTG GATTGCATTA ACTGTTTAAAA ACCTCTATAG TTGGATGCTA AATCCCTGCT TGTTACAGCT GAAAATGCTG ATGGTTTAAAA ACCTCTATAG TTGGATGCT GTAATCCTAG CTACTTGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTACT GTAATCCTAG CTACTTGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTACC AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTCAGCCTG GGTGATATAC AGACCTTGTC TGCTTCCAA AACATGAATT CCAAAATATCA AAGTTAGCCT GAAAATATCA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5572 5632 5692 5752 5872 5872 5872 5992 6052 6112 6172
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACCTCTATAG TTGATGCTT GATACCCTGCT TGTTACAGCT GAAATGCTG ATAGTTTACC AGGTGTGGTG GCATCTATCT GTAATCCTAG CTACTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAGG CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGTGATATAC AGACCTTGTC TCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATACA AAGTTAAGCT GAGTTGAAGC AGGTGAATGG CATCTTTAA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAGTCTACTG TGCCTTCCAA AACATGAATT CCAAAATACA AAGTTAAGCT GAGTTGAAGC AGTGAATGG CGTTCTAAAATTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAAGTTACCAT TTAAAAGTTA AAAAAAAAAA AAAAAAAAAC CTTAGGAAAG GAAATTGATC AAAGTTACCAA AACATGAATT TTTAGAATTC AACATAATT TTAAAAATATT TAAAAAGTTC AAAAAAAAAC CTTCAAGCC CGTGTGTTT GTAAAAATATA AAAAAAAAAC TTTAAAACTGTG GGGTTTGTTTTAAAAATATT TAAAAAGTTA AAAACAATCT TTTAGAATTC ACATATATT TTAAAATATT TTAAAAGTTA AAACAATCT TTTAGAATTC ACATATATT TTAAAATATT TTAAAAGTTA AAACAATCT TTTAGAATTC ACATATATT TTAGATTCTAGAG ATGCAGTTCC ACCTCCACCC CCACGTTCAA GCGATTCCA TGCCTCAGTC TCCCGAGTAG ATGCAGTTTC ACCTCACCC CCACGTTCAA GCGATTCCA TGCCTCAGTC TCCCGAGTAG ATGCAGTTTC ACCTCACCC CCACGTTCAA GCGATTCTCA TGCCTCAGTC TCCCGAGTAG ATGCAGTTTC ACCTTGACC CCACGTTCAA GCGATTCTCA TGCCTCAGTC TCCCGAGTAG ATGCAGTTTC ACCTTGACC CCACGTTCAA GCGCTCCA TTTTTTTTT AGTATTTTT AGTATTTT AGTATTTT AATATTT TTTTTTTT	5032 5092 5152 5212 5212 5332 5452 5572 5632 5692 5752 5812 5872 5932 5992 6052 6112
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 35 TGT AGA G G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTCCCA Cys Arg Asp 40 TCTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT ACACAATAGA TCCACGATTA TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATAC CTTCTTAGGC CTGCCTTTGA ACCCCAATC CTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AAACCCCAATC CTACATTGT GAAAAAAATG GAAAAAATG GAAAAAAATG CTACATGAG GGCTCAAGAA AACATGAATA AACACATGAAT ACCCCACTGC TTGAGGCCAG GACTTTTAAAAAAAAATTA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5572 5632 5692 5752 5872 5872 5992 6052 6112 6172 6232
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 35 TGT AGA G G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTCCCA Cys Arg Asp 40 TCTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT ACACAATAGA TCCACGATTA TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATAC CTTCTTAGGC CTGCCTTTGA ACCCCAATC CTTTATTGT GATTGCATA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AAACCCCAATC CTACATTGT GAAAAAAATG GAAAAAATG GAAAAAAATG CTACATGAG GGCTCAAGAA AACATGAATA AACACATGAAT ACCCCACTGC TTGAGGCCAG GACTTTTAAAAAAAAATTA AAAAAAAAAA	5032 5092 5152 5212 5212 5332 5452 5572 5632 5692 5752 5872 5872 5992 6052 6112 6232 6292
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCCCAGATGA AAAGTCACAG GAGTGACAAT AATTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG AACACCAATC CCTTTATTGT GACTGCATTA ACAGGAAACT TTATAAAGGCA CCTCCTGAGC CTGCCCTTTGA ACACGAAACT GAAAAAAATTG GATACCAGAG GACTCAAGCA GGGGTCATGC CTCCTGAGC CTGCCCTTTGA ACACCCAATC CTGTTACAGCT GAAAATGCTG ATAGTTACAC CTGTGATCCT TGTTACAGCT GAAAAAATGCTG ACCTGTAATAC ACCCCTAGATG GACTTTAAGACCAG GACCTTTGAG GACCTTGTC TCTAAAAATTA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5572 5632 5692 5752 5872 5872 5992 6052 6112 6172 6232
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG GATACACAATC CCTTTATTGT GACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG CTGACATC CTTTACAGT GATACACTA ACCTCTATAA ACCTCTATAG TTGGATGCTT AATCCCTGCT TGTTACAGCT GAAAATGCTG AAAATATCA CTGTAGAGC CTGCCTTTGAA CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCTG GGATTGCTAGAGC CTGTAGTACA CTGTGATCGT ACCTGTGAAT AGCCACTGCA CTCCAGCCTG GGATTGCAGAGCA GGACGATTGC TTGAGAGCAGCA GGACGATTCC TTGAGAAAAAAAAAA	5032 5092 5152 5212 5212 5332 5452 5572 5632 5692 5752 5872 5872 5992 6052 6112 6232 6292
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 30 30 GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTGCCTTTT TTAGTTGGGG AAAAAAATTG GATACAATAA GACATTGCTA ACTGTTAAA ACTCTATAAG TTGGATGCTT AAAAAAATTG GATACAATAA GACATTGATA ACTGTTAAA ACCTCTATAAG TTGGATGCTT AATCCCTAGT CTGTTACAGT GAAAATGCTG ATGGATTACA AGGGATGACAG GGATGTACACA CTGTTGATGCATTA ACTGTTAAAA ACCTCTATAAG TTGGATGCTT AATCCCTAGT CTGATGCT GAAAATGCAG GGAGGATTGC CTGCAGTGC CTGCCTTTGAGC CTGCCTTTGAGC CTGCAGTAGAAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5572 5632 5632 5752 5872 5932 5992 6052 6112 6232 6292 6343
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 TGT AGA G GTATTTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA Cys Arg Asp 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAA AATTTCACTT ACAGGAAACT TTATAAGGCA TCCACGTTTT TTAGTTGGGG TAAAAAAATTG GATACAATAA GACATTGCTA GGGGTCATGC CTCTCTAGC CTGCCTTTGA ACTGCTATAA ACTGTTTAAA ACCTCTATAG TTGGATGCTT AATCCCAGT TGTTACAGCT GAAAATGCTG ATAGTTTACA CTGCTTAGA GCCACTGCA CTCCAGCCT GGACATACA CTGTTGGGA GGCTCAAGCA GGAGGATTGC TTGAGGCCAG GACTTTGAG CTGCTACTG GAAAAAAAAAA	5032 5092 5152 5212 5212 5332 5452 5572 5632 5692 5752 5872 5872 5992 6052 6112 6232 6292
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 30 30 35 35 35	5032 5092 5152 5212 5272 5332 5452 5572 5632 5632 5752 5872 5932 5992 6052 6112 6232 6292 6343
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 25 30 35 35 35 TGT AGA G GTATTTTT TTAATTCGCA AACATAGAAA TGACTAGCTA CTTCTTCCCA 40 TTCTGTTTTA CTGCTTACAT TGTTCCGTGC TAGTCCCAAT CCTCAGATGA AAAGTCACAG GAGTGACAAT AATTTCACTT ACAGGAAACT TTATAAAGGCA TCCACGTTTT TAGTTGGGG TAAAAAATTG GATACAATAA GACATTGCTA GGGTCATGC CTCTCTGAGC CTGCCTTTGA ATCACCAATC CCTTTATTGT GATTGCATTA ACTGTTTAAA ACTGTTTAAA GCTCTTATAA GTTGAGTGT TGAATCCCTGCT TGTTACAGCT GAAAAATGCTG ATAGTCTTACA GGGTCATGC CTCCTAGAGC GACATTGCTG CTGTGATACC TAGTCCTGGA GGCTCAAGCA GGAGATTGC TCCAGGCCTG GGGTCATACC TCTGTGAACC TCTGTGAACA AACATGCATA AACAACAACAAC ACACTGCA CCCAGGCTG GGTGATATAC AGGCCTTCCAA AACATGAATA AAAAAAAAA AAAAAAAAC CTCAGACGCTG GGTGATATAC AGGCCTTCCAA AACATGAATT AACAACTGCA CTCCAGCCTG GGTGATATAC AACATGAATTA AAAAAAAAAA	5032 5092 5152 5212 5272 5332 5452 5572 5632 5632 5752 5872 5932 5992 6052 6112 6232 6292 6343
ATT GAC CAA GGA AAT CGG CCT CTA TTT GAA GAT ATG ACT GAT TCT GAC Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp 30 30 35 35 35	5032 5092 5152 5212 5272 5332 5452 5572 5632 5632 5752 5872 5932 5992 6052 6112 6232 6292 6343

Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile
65 70 75 80 70 75 ATT TCC TTT AAG GTAAG ACTGAGCCTT ACTTTGTTTT CAATCATGTT AATATAATCA Ile Ser Phe Lvs ATATAATTAG AAATATAACA TTATTTCTAA TGTTAATATA AGTAATGTAA TTAGAAAACT CAAATATCCT CAGACCAACC TTTTGTCTAG AACAGAAATA ACAAGAAGCA GAGAACCATT AAAGTGAATA CTTACTAAAA ATTATCAAAC TCTTTACCTA TTGTGATAAT GATGGTTTTT CTGAGCCTGT CACAGGGGAA GAGGAGATAC AACACTTGTT TTATGACCTG CATCTCCTGA 6736 ACAATCAGTC TTTATACAAA TAATAATGTA GAATACATAT GTGAGTTATA CATTTAAGAA TAACATGTGA CTTTCCAGAA TGAGTTCTGC TATGAAGAAT GAAGCTAATT ATCCTTCTAT ATTTCTACAC CTTTGTAAAT TATGATAATA TTTTAATCCC TAGTTGTTTT GTTGCTGATC CTTAGCCTAA GTCTTAGACA CAAGCTTCAG CTTCCAGTTG ATGTATGTTA TTTTTAATGT TAATCTAATT GAATAAAAGT TATGAGATCA GCTGTAAAAG TAATGCTATA ATTATCTTCA AGCCAGGTAT AAAGTATTTC TGGCCTCTAC TTTTTCTCTA TTATTCTCCA TTATTATTCT CTATTATTTT TCTCTATTTC CTCCATTATT GTTAGATAAA CCACAATTAA CTATAGCTAC 7096 AGACTGAGCC AGTAAGAGTA GCCAGGGATG CTTACAAATT GGCAATGCTT CAGAGGAGAA 7216 TTCCATGTCA TGAAGACTCT TTTTGAGTGG AGATTTGCCA ATAAATATCC GCTTTCATGC CCACCCAGTC CCCACTGAAA GACAGTTAGG ATATGACCTT AGTGAAGGTA CCAAGGGGCA 7336 ACTTGGTAGG GAGAAAAAG CCACTCTAAA ATATAATCCA AGTAAGAACA GTGCATATGC AACAGATACA GCCCCCAGAC AAATCCCTCA GCTATCTCCC TCCAACCAGA GTGCCACCCC 7396 7456 7516 TTCAGGTGAC AATTTGGAGT CCCCATTCTA GACCTGACAG GCAGCTTAGT TATCAAAATA GCATAAGAGG CCTGGGATGG AAGGGTAGGG TGGAAAGGGT TAAGCATGCT GTTACTGAAC 7576 AACATAATTA GAAGGAAGG AGATGGCCAA GCTCAAGCTA TGTGGGATAG AGGAAAACTC AGCTGCAGAG GCAGATTCAG AAACTGGGAT AAGTCCGAAC CTACAGGTGG ATTCTTGTTG 7636 7696 AGGGAGACTG GTGAAAATGT TAAGAAGATG GAAATAATGC TTGGCACTTA GTAGGAACTG 7756 GGCAAATCCA TATTTGGGGG AGCCTGAAGT TTATTCAATT TTGATGGCCC TTTTAAATAA 7816
AAAGAATGTG GCTGGGCGTG GTGGCTCACA CCTGTAATCC CAGCACTTTG GGAGGCCGAG 7876
GGGGGCGGAT CACCTGAAGT CAGGAGTTCA AGACCAGCCT GACCAACATG GAGAAACCCC 7936 7936 ATCTCTACTA AAAATACAAA ATTAGCTGGG CGTGGTGGCA TATGCCTGTA ATCCCAGCTA 7996 CTCGGGAGGC TGAGGCAGGA GAATCTTTTG AACCCGGGAG GCAGAGGTTG CGATGAGCCT
AGATCGTGCC ATTGCACTCC AGCCTGGGCA ACAAGAGCAA AACTCGGTCT CAAAAAAAAA 8116
AAAAAAAAAG TGAAATTAAC CAAAGGCATT AGCTTAATAA TTTAATACTG TTTTTAAGTA 8176 GGGCGGGGG TGGCTGGAAG AGATCTGTGT AAATGAGGGA ATCTGACATT TAAGCTTCAT 8236 CAGCATCATA GCAAATCTGC TTCTGGAAGG AACTCAATAA ATATTAGTTG GAGGGGGGGA 8296
GAGAGTGAGG GGTGGACTAG GACCAGTTTT AGCCCTTGTC TTTAATCCCT TTTCCTGCCA 8356
CTAATAAGGA TCTTAGCAGT GGTTATAAAA GTGGCCTAGG TTCTAGATAA TAAGATACAA 8416 CAGGCCAGGC ACAGTGGCTC ATGCCTATAA TCCCAGCACT TTGGGAGGGC AAGGCGAGTG 8476 TCTCACTTGA GATCAGGAGT TCAAGACCAG CCTGGCCAGC ATGGCGATAC TCTGTCTCTA 8536
CTAAAAAAAA TACAAAAAATT AGCCAGGCAT GGTGGCATGC ACCTGTAATC CCAGCTACTC 8596
GTGAGCCTGA GGCAGAAGAA TCGCTTGAAA CCAGGAGGTG TAGGCTGCAG TGAGCTGAGA 8656 TCGCACCACT GCACTCCAGC CTGGGCGACA GAATGAGACT TTGTCTCAAA AAAAGAAAAA 8716 GATACAACAG GCTACCCTTA TGTGCTCACC TTTCACTGTT GATTACTAGC TATAAAGTCC 8776
TATAAAGTTC TTTGGTCAAG AACCTTGACA ACACTAAGAG GGATTTGCTT TGAGAGGTTA 8836 CTGTCAGAGT CTGTTTCATA TATATACATA TACATGTATA TATGTATCTA TATCCAGGCT 8896 TGGCCAGGGT TCCCTCAGAC TTTCCAGTGC ACTTGGGAGA TGTTAGGTCA ATATCAACTT 8956 TCCCTGGATT CAGATTCAAC CCCTTCTGAT GTAAAAAAAA AAAAAAAAA GAAAGAAATC CCTTTCCCCT TGGAGCACTC AAGTTTCACC AGGTGGGGCT TTCCAAGTTG GGGGTTCTCC 9016 AAGGTCATTG GGATTGCTTT CACATCCATT TGCTATGTAC CTTCCCTATG ATGGCTGGGA 9136 GTGGTCAACA TCAAAACTAG GAAAGCTACT GCCCAAGGAT GTCCTTACCT CTATTCTGAA 9196 ATGTGCAATA AGTGTGATTA AAGAGATTGC CTGTTCTACC TATCCACACT CTCGCTTTCA 9256
ACTGTAACTT TCTTTTTTC TTTTTTCTT TTTTTCTTT TTTTTGAAAC GGAGTCTCGC 9316
TCTGTCGCCC AGGCTAGAGT GCAGTGGCAC GATCTCAGCT CACTGCAAGC TCTGCCTCCC 9376 GGGTTCACGC CATTCTCCTG CCTCACCCTC CCAAGCAGCT GGGACTACAG GCGCCTGCCA 9436 CCATGCCCAG CTAATTTTT GTATTTTAG TAGAGACGGG GTTTCACCGT GTTAGCCAGG 9496 ATGGTCTCGA TCTCCTGAAC TTGTGATCCG CCCGCCTCAG CCTCCCAAAG TGCTGGGATT 9556 ACAGGCGTGA GCCATCGCAC CCGGCTCAAC TGTAACTTTC TATACTGGTT CATCTTCCCC 9616 TGTAATGTTA CTAGAGCTTT TGAAGTTTTG GCTATGGATT ATTTCTCATT TATACATTAG 9676 ATTTCAGATT AGTTCCAAAT TGATGCCCAC AGCTTAGGGT CTCTTCCTAA ATTGTATATT GTAGACAGCT GCAGAAGTGG GTGCCAATAG GGGAACTAGT TTATACTTTC ATCAACTTAG 9736 9796 GACCCACACT TGTTGATAAA GAACAAAGGT CAAGAGTTAT GACTACTGAT TCCACAACTG 9856 ATTGAGAAGT TGGAGATAAC CCCGTGACCT CTGCCATCCA GAGTCTTTCA GGCATCTTTG 9916 AAGGATGAAG AAATGCTATT TTAATTTTGG AGGTTTCTCT ATCAGTGCTT AGGATCATGG GAATCTGTGC TGCCATGAGG CCAAAATTAA GTCCAAAACA TCTACTGGTT CCAGGATTAA 10036 CATGGAAGAA CCTTAGGTGG TGCCCACATG TTCTGATCCA TCCTGCAAAA TAGACATGCT 10096 GCACTAACAG GAAAAGTGCA GGCAGCACTA CCAGTTGGAT AACCTGCAAG ATTATAGTTT 10156 CAAGTAATCT AACCATTTCT CACAAGGCCC TATTCTGTGA CTGAAACATA CAAGAATCTG 10216 CATTTGGCCT TCTAAGGCAG GGCCCAGCCA AGGAGACCAT ATTCAGGACA GAAATTCAAG 10276

ACT	ACTA!	TGG :	AACT	GGAG'	rg C	rtgg	CAGGG	AA 6	GACA	FAGT	CAA	GAC:	rgc	CAAC'	TGAGCC	10336
AAT	ACAG	CAG (GCTT	ACAC	AG G	AACC	CAGGO	CC.	TAGC	CCTA	CAA	'AAT'	TAT '	TGGG'	CTATT	10396
CAC	TGTA	AGT '	TTTA	TTTA	CA G	GCTC	CACTO	AA t	AGAG'	raag	CTA	AGAT"	rcc '	TGGC	ACTTTC	10456
TGT	CTCT														CTTACA	10516
CCT	GAA'	TCC (CAGC	ACTT'	rg go	GAGG	CCGAZ	A GT	GGGA	GGT	CAC	TTGA	GC	CAGG	AGTTCA	10576
															TTTAAA	10636
															CTGAGG	10696
	GGGG:														CACTGC	10756
ACT"	rctg														ACTAGA	10816
ACT	AGCC'	raa (GTTT	GTGG	A G	GAGG'	CATO	AT	CGTC	ETTA	GCC	TGAZ	ATG (GTTA	TATAG	10876
AGG	ACAG	AAA '	TTGA	CATTZ	AG C	CCAA	AAAGC	TT	GTGG:	CTT	TGC	rggaz	ACT	CTAC	TAATC	10936
TTG	AGCAZ	TAA	GTGG	ACAC	CA C	rcaa:	rggg <i>i</i>	GA	GGAGZ	AGAA	GTA	AGCTO	، بايلنان	TGATO	GTATAG	10996
															SATTCG	11056
															CTCTTG	11116
AGAZ	AGCAZ	AAA (CTAC'	TTTT	T TE	CTGT	rtggt	' AA'	rata(TTC	AAA	CAA	ACT '	ТСАТ	ATATTC	11176
															F AAT	11233
															. Asn	11233
													85		- 11011	
													00			
CCT	CCT	GAT	AAC	ATC	AAG	GAT	ACA	AAA	AGT	GAC	ATC	ATA	TTC	TTT	CAG	11281
														Phe		
		90			-	_	95	-		-		100				
AGA	AGT	GTC	CCA	GGA	CAT	GAT	AAT	AAG	ለጥር	~~~					max.	7 7 7 7 7
									A_1Q	CAA	TTT	GAA	TCT	TCA	TCA	11329
* *** 3	~	VCLI	PLO	Gly	His	Asp	Asn									11329
	105					110		Lys	Met	Gln	Phe 115	Glu	Ser	Ser	Ser	11329
	105					110		Lys	Met	Gln	Phe 115	Glu	Ser	Ser	Ser	
TAC	105 GAA	GGA	TAC	TTT	CTA	110 GCT	TGT	Lys GAA	Met AAA	Gln GAG	Phe 115 AGA	Glu GAC	Ser CTT	Ser TTT	Ser AAA	11377
TAC	105 GAA	GGA	TAC	TTT	CTA	110 GCT	TGT	Lys GAA	Met AAA	Gln GAG	Phe 115 AGA	Glu GAC	Ser CTT	Ser	Ser AAA	
TAC Tyr 120	105 GAA Glu	GGA Gly	TAC Tyr	TTT Phe	CTA Leu 125	110 GCT Ala	TGT Cys	Lys GAA Glu	Met AAA Lys	Gln GAG Glu 130	Phe 115 AGA Arg	Glu GAC Asp	Ser CTT Leu	Ser TTT Phe	Ser AAA Lys 135	11377
TAC Tyr 120 CTC	105 GAA Glu ATT	GGA Gly TTG	TAC Tyr AAA	TTT Phe AAA	CTA Leu 125 GAG	110 GCT Ala GAT	TGT Cys GAA	Lys GAA Glu TTG	Met AAA Lys GGG	Gln GAG Glu 130 GAT	Phe 115 AGA Arg	Glu GAC Asp TCT	Ser CTT Leu ATA	Ser TTT Phe ATG	Ser AAA Lys 135 TTC	
TAC Tyr 120 CTC	105 GAA Glu ATT	GGA Gly TTG	TAC Tyr AAA	TTT Phe AAA	CTA Leu 125 GAG	110 GCT Ala GAT	TGT Cys GAA	Lys GAA Glu TTG	Met AAA Lys GGG	Gln GAG Glu 130 GAT	Phe 115 AGA Arg	Glu GAC Asp TCT	Ser CTT Leu ATA	Ser TTT Phe ATG Met	Ser AAA Lys 135 TTC	11377
TAC Tyr 120 CTC Leu	105 GAA Glu ATT Ile	GGA Gly TTG Leu	TAC Tyr AAA Lys	TTT Phe AAA Lys 140	CTA Leu 125 GAG Glu	110 GCT Ala GAT Asp	TGT Cys GAA Glu	Lys GAA Glu TTG Leu	Met AAA Lys GGG Gly 145	Gln GAG Glu 130 GAT Asp	Phe 115 AGA Arg AGA Arg	Glu GAC Asp TCT	Ser CTT Leu ATA	Ser TTT Phe ATG	Ser AAA Lys 135 TTC	11377
TAC Tyr 120 CTC Leu ACT	105 GAA Glu ATT Ile GTT	GGA Gly TTG Leu CAA	TAC Tyr AAA Lys	TTT Phe AAA Lys 140 GAA	CTA Leu 125 GAG Glu GAC	110 GCT Ala GAT Asp	TGT Cys GAA	Lys GAA Glu TTG Leu	Met AAA Lys GGG Gly 145	Gln GAG Glu 130 GAT Asp	Phe 115 AGA Arg AGA Arg	Glu GAC Asp TCT	Ser CTT Leu ATA	Ser TTT Phe ATG Met	Ser AAA Lys 135 TTC	11377

(2) INFORMATION FOR SEQ ID NO: 18:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 471 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA to mRNA
- (vi)ORIGINAL SOURCE:

 - (A) ORGANISM: mouse (G) CELL TYPE: liver
- (ix) FEATURE:
 - (A) NAME/KEY: mat peptide
 - (B) LOCATION: 1..471
 - (C) IDENTIFICATION METHOD: S

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

AAC	TTT	GGC	CGA	CTT	CAC	TGT	ACA	ACC	GCA	GTA	ATA	CGG	AAT	ATA	AAT	48
1	FIIC	GIÀ	Arg	<u>Беи</u>	птр	СУВ	TILL	THE	10	vai	тте	Arg	Asn	Ile 15	Asn	
GAC	CAA	GTT	CTC	TTC	GTT	GAC	AAA	AGA	CAG	CCT	GTG	\mathtt{TTC}	GAG	GAT	ATG	96
Asp	Gln	Val	Leu 20	Phe	Val	Asp	Lys	Arg 25	Gln	Pro	Val	Phe	Glu 30	Asp	Met	
ACT	GAT	ATT	GAT	CAA	AGT	GCC	AGT	GAA	CCC	CAG	ACC	AGA	CTG	ATA	ATA	144
Thr	Asp	Ile 35	Asp	Gln	Ser	Ala	Ser	Glu	Pro	Gln	Thr	Arg	Leu	Ile	Ile	
TAC	ATG		ААА	GAC	AGT	GAA	40 GTA	ΔGΔ	GGA	CTC	ССT	45 GTG	አሮሮ	CTC	шСп	192
Tyr	Met	Tyr	Lys	Asp	Ser	Glu	Val	Arg	Gly	Leu	Ala	Val	Thr	Leu	Ser	192

	50					55					60					
					ATG											240
	Lys	Asp	Ser	Lys	Met	Ser	\mathtt{Thr}	Leu	Ser	Cys	Lys	Asn	Lys	Ile	Ile	
65					70					75					80	
					GAT											288
Ser	Phe	Glu	Glu		Asp	Pro	Pro	Glu	Asn	Ile	Asp	Asp	Ile	Gln	Ser	
				85					90					95		
					CAG											336
Asp	Leu	Ile		Phe	Gln	Lys	Arg	Val	Pro	Gly	His	Asn	Lys	Met	Glu	
			100					105					110			
					TAT											384
Phe	Glu		Ser	Leu	Tyr	Glu	Gly	His	Phe	Leu	Ala	Cys	Gln	Lys	Glu	
		115					120					125				
GAT	GAT	GCT	TTC	AAA	CTC	ATT	CTG	AAA	AAA	AAG	GAT	GAA	AAT	GGG	GAT	432
Asp	Asp	Ala	Phe	Lys	Leu	Ile	Leu	Lys	Lys	Lys	Asp	Glu	Asn	Gly	Asp	
	130					135					140					
					ACT											471
	Ser	Val	Met	Phe	Thr	Leu	Thr	Asn	Leu	His	Gln	Ser				
145					150					155						

- (2) INFORMATION FOR SEQ ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (v) FRAGMENT TYPE: N-terminal fragment
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Asn Phe Gly Arg Leu His Cys Thr Thr 5

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25 Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 35 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 50 55 60 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu
115 120 125 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 145 150 155

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 50 55 60 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 115 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (2) INFORMATION FOR SEQ ID NO: 22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25 Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 35 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 50 55 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 95 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 130 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (2) INFORMATION FOR SEQ ID NO: 23:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 157 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 35 45 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 60 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 70 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 115 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 145 150

- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 2.0 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ser Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 105 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 115 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 145 150

- (2) INFORMATION FOR SEQ ID NO: 25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 10 Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ala Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 115 120 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp 20 25 Met Thr Asp Ser Asp Ser Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 40 Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 55 60 Ser Val Lys Ser Glu Lys Ile Ser Thr Leu Ser Ala Glu Asn Lys Ile 70 75 Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110 Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Ser Glu 115 120 125 Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu 135 140 Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp 150

- (2) INFORMATION FOR SEQ ID NO: 27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

Asn Phe Gly Arg Leu His Ala Thr Thr Ala Val Ile Arg Asn Ile Asn

Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met 20 25 30 Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg Leu Ile Ile 40 Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val Thr Leu Ser 55 60 Val Lys Asp Ser Lys Met Ser Thr Leu Ser Cys Lys Asn Lys Ile Ile 70 75 Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser 85 Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu 100 105 110 Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Cys Gln Lys Glu 115 120 125 Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu Asn Gly Asp 135 140 Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser 145 150

(2) INFORMATION FOR SEQ ID NO: 28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

Asn Phe Gly Arg Leu His Cys Thr Thr Ala Val Ile Arg Asn Ile Asn 10 Asp Gln Val Leu Phe Val Asp Lys Arg Gln Pro Val Phe Glu Asp Met 20 25 Thr Asp Ile Asp Gln Ser Ala Ser Glu Pro Gln Thr Arg Leu Ile Ile 35 40 4.5 Tyr Met Tyr Lys Asp Ser Glu Val Arg Gly Leu Ala Val Thr Leu Ser 55 60 Val Lys Asp Ser Lys Met Ser Thr Leu Ser Cys Lys Asn Lys Ile Ile 70 Ser Phe Glu Glu Met Asp Pro Pro Glu Asn Ile Asp Asp Ile Gln Ser 85 90 95 95 Asp Leu Ile Phe Phe Gln Lys Arg Val Pro Gly His Asn Lys Met Glu 100 105 Phe Glu Ser Ser Leu Tyr Glu Gly His Phe Leu Ala Ser Gln Lys Glu Asp Asp Ala Phe Lys Leu Ile Leu Lys Lys Lys Asp Glu Asn Gly Asp 135 140 Lys Ser Val Met Phe Thr Leu Thr Asn Leu His Gln Ser 150