머신러닝 프로젝트 기획안

팀명	마당을 나온 수탉(Stock)
주제명	악성재고의 특징 분석 및 판매여부 예측

1. 역할분담

이름	역할
구경서	EDA, 데이터 시각화
김명진	분석 관련 자료 확보, 데이터 전처리
신민경	데이터 시각화, 발표 자료 제작
여혁수	모델링 알고리즘 제작, 발표
최은서	데이터 전처리, 알고리즘 제작

2. 주제 선정 배경

1. 산업적 배경

- 악성재고(Dead Stock)는 기업의 비용 부담과 수익성 저하를 유발하며, 특히 전자제품이나 패션 산업처럼 제품 수명 주기가 짧은 분야에서 수요 변화로 빠르게 진부화됨.
- 효율적인 재고 관리는 기업의 현금 흐름과 운영 효율성을 개선하는 중요한 요소이며, Harvard Business Review에 따르면 재고 회전율 개선은 기업 경쟁력을 높이는 핵심 전략임.

2. 데이터 활용의 중요성

• 데이터 기반 접근의 필요성

○ 전통적으로는 경험이나 직관에 의존한 재고 관리가 이루어졌으나, 데이터 분석과 머신러닝 기술을 통해 보다 정밀한 예측이 가능해짐.

• 데이터셋의 특성 활용

○ 판매량, 재고량, 할인율 등의 데이터를 분석함으로써 악성재고의 주요 특징을 파악할 수 있음.

3. 학문적/프로젝트적 배경

• 유의미한 인사이트 도출

○ 악성재고를 정확히 정의하고, 이를 분석하여 도출된 특징은 기업의 의사결정에 큰 도움을 줄 수 있음.

• 예측 모델의 적용 가능성

○ 머신러닝 알고리즘을 활용하여 악성재고의 판매 여부를 예측함으로써 실질적인 비즈니스 문제 해결에 기여할 수 있음.

4. 사회적/환경적 배경 (선택사항)

• 환경적 영향

- 악성재고의 처리는 폐기물 증가와 같은 환경문제를 초래할 수 있음.
- 효율적인 관리로 불필요한 자원 낭비를 줄이는 데 기여할 수 있음.

3. 프로젝트 목표

1. 악성재고의 주요 특징 분석

- a. 판매량, 재고량, 정가, 할인율 등 다양한 변수와 악성재고 간의 상관관계를 분석하여 악성재고의 공통된 특징과 패턴을 도출.
- b. 기업이 악성재고를 사전에 식별하고 관리하는 데 도움을 줄 수 있는 실질적인 인사이트를 제공.

2. 판매 여부 예측 모델 개발

- a. 머신러닝 기반 예측 모델을 활용하여 악성재고의 최근 6 개월간 판매 가능 여부를 예측.
- b. 다양한 모델의 성능을 평가하고, 예측 결과를 바탕으로 개선된 재고 관리 전략을 제안.

3. 비즈니스 의사결정 지원

악성재고를 줄이기 위해 프로모션, 재입고 조정 등 실질적인 대응 방안을 제안.

4. 활용 데이터

Historical Sales and Active Inventory

(https://www.kaggle.com/datasets/flenderson/sales-analysis)

5. 분석 방안

1. 데이터 탐색 및 전처리

1. 결측치 처리

- a. NaN 값이나 잘못된 데이터를 확인하고 적절히 대체하거나 제거.
- b. 예: 평균값 대체, 0으로 대체, 삭제 등.

2. 데이터 시각화

- a. 변수 간 상관관계 분석 및 분포 확인.
- b. 주요 변수(재고량, 할인율, 판매량 등)와 악성재고 여부의 관계를 파악.
- c. Seaborn 이나 Matplotlib 를 사용하여 히트맵, 상자그림(Boxplot), 산점도 등을 생성.

3. 이상치 탐지

극단적인 값(예: 너무 높은 재고량, 비정상적으로 낮은 실구매가 등)을 확인하고 처리.

4. 변수 변환 및 파생 변수 생성

- a. 기존 변수에서 추가적인 파생 변수 생성:
 - i. 예: 재고 회전율 = 판매량 / 재고량, 할인율 = (정가 실구매가) / 정가.
- b. 이진 변수를 인코딩하여 활용.

2. 탐색적 데이터 분석 (EDA)

악성재고 특징 도출

a. 악성재고 여부와 변수들(재고량, 판매량, 정가, 할인율 등) 간의 관계 분석.

- b. 그룹별 평균, 중간값 등 기술 통계를 활용.
- c. 예: 악성재고의 평균 재고량과 일반 재고의 재고량 비교.

3. 판매 여부 예측 모델링

1. 목표 정의

a. 예측 목표: 악성재고의 최근 6개월간 판매 여부(1: 판매됨, 0: 판매 안 됨).

2. 모델 선택 및 구축

- a. 주요 모델:
 - i. 로지스틱 회귀: 간단하고 해석 가능한 이진 분류 모델.
 - ii. **랜덤 포레스트**: 비선형 관계를 잘 다루며 변수 중요도 제공.
 - iii. XGBoost/LightGBM: 복잡한 데이터에서도 높은 성능 제공.
 - iv. KNN: 가까운 데이터 간 유사성 기반 예측.
- b. 성능 비교를 위해 여러 모델을 사용하고 최적 모델 선정.

3. 데이터 분할

- a. 데이터를 학습용/검증용/테스트용으로 분할.
- b. 예: 64% 학습, 16% 검증, 20% 테스트.

4. 하이퍼파라미터 튜닝

GridSearchCV 사용해 모델 최적화.

5. 평가 지표 설정

정확도(Accuracy), 정밀도(Precision), 재현율(Recall), F1-score 등을 활용.

4. 결과 분석 및 해석

1. 변수 중요도 파악

- a. 모델에서 중요한 변수(feature importance)를 시각화하고 해석.
- b. 예: 할인율, 재고량, 고객 실구매가가 예측에 미치는 영향.

2. 판매 여부와 주요 변수 간 상관관계 분석

a. 판매 가능성에 영향을 미치는 변수의 패턴 도출.

3. 의사결정 방안 제안

- a. 재고 관리 및 할인 정책 최적화를 위한 인사이트 제공.
- b. 예: 특정 할인율 이상에서는 판매 가능성이 높아지는 패턴 제안.

6. 결 론

1. 주요 결과 요약 (가정)

• 분석 결과

- 악성재고의 특징: (예시) 높은 재고량, 낮은 할인율, 특정 마케팅 유형(예: D)에서 악성재고 발생 비율이 높음.
- 예측 모델 성능: (예시) XGBoost 모델이 가장 높은 점수(예: 0.85)를 기록하며 판매 여부 예측에 적합한 성능을 보임.

• 핵심 인사이트

- 할인율이 30% 이상일 때 판매 확률이 유의미하게 증가.
- 특정 마케팅 유형(D)에서는 악성재고 발생률이 20% 이상 높아, 대체 전략 필요.

2. 비즈니스 적용 방안

• 재고 관리 전략

- 악성재고 가능성이 높은 품목에 대해 사전 조치를 시행(할인율 조정, 재입고 중단 등).
- 특정 변수(재고량, 할인율 등)를 고려한 프로모션 캠페인 설계.

3. 프로젝트의 한계

• 데이터 한계

- 데이터가 특정 기간 또는 특정 제품군 기준으로 분류되어 있지 않고 과도하게 일반화되어있음.
- 일부 변수(마케팅 유형, 실구매가 등)의 정의가 명확하지 않아 해석에 어려움이 있었음.

• 모델 한계

○ 판매 여부 예측의 정확도는 높지만, 실제 비즈니스 환경에서 적용할 때 고객 행동의 비예측 가능성 등 추가 요소 고려 필요.

4. 향후 과제

• 데이터 보강

- 고객 프로필, 계절성 데이터 등 추가적인 변수를 수집하여 예측 모델 성능 개선.
- 악성재고 발생 원인 분석을 위한 외부 데이터(시장 동향, 경쟁사 데이터 등) 통합.

• 모델 개선

- 시계열 모델을 적용하여 재고 및 판매량의 변화 추세를 반영한 예측 가능성 탐색.
- 신경망 기반의 비선형 모델 활용으로 성능 향상 시도.

• 비즈니스 검증

○ 실제 기업 환경에서 모델 적용 후 성과를 측정하고 피드백을 반영한 개선 과정 필요.