GEOMETRÍA DIFERENCIAL DE CURVAS Y SUPERFICIES. E. FERNÁNDEZ.

Problemas extra.

1. Sea $A \in \mathcal{O}(3)$ una matriz ortogonal. Sean v y w dos vectores cualesquiera de \mathbb{R}^3 . Demostrar la igualdad

$$Av \times Aw = \det(A)A(v \times w).$$

- 2. Sea $u, v:(a, b) \to \mathbb{R}^3$ aplicaciones diferenciables. Supongamos que existen constantes $a, b, c \in \mathbb{R}$ tales que u' = au + bv y v' = cu av. Demostrar que el vector $u(t) \times v(t)$ es constante.
- 3. Sea $v,w\in\mathbb{R}^3$ dos vectores cualesquiera con v no nulo. Demostrar que existe un cierto vector $u\in\mathbb{R}^3$ tal que $u\times v=w$ si y sólo si w es perpendicular a v. ¿Es único dicho vector?
- 4. Sean $\rho:(0,1)\to(0,\infty)$ y $\theta:(0,1)\to\mathbb{R}$ dos funciones diferenciables. Consideremos la curva plana

$$\alpha: (0,1) \to \mathbb{R}^2, t \mapsto \rho(t)(\cos(\theta(t)), \sin(\theta(t))).$$

- (i) Demostrar que α es regular si y sólo si $(\rho')^{-1}(0) \cap (\theta')^{-1}(0) = \emptyset$.
- (ii) Demostrar que $||\alpha'||^2 = (\rho')^2 + (\rho\theta')^2$.
- (iii) Asumiendo que α es regular y que los puntos críticos de ρ y θ son aislados, dibujar intuitivamente la curva α en un entorno de un punto crítico de ρ o θ .
- (iv) Probar que si $\lim_{t\to 0^+} \rho(t) = 0$ entonces $\alpha(t)$ admite una extensión continua a [0,1).
- (v) Probar que si $\lim_{t\to 0^+} \rho(t) = 0$ y ρ' y θ' convergen cuando t tiende a 0^+ entonces para todo $c \in (0,1)$ se tiene que

$$\lim_{t \to 0^+} L_t^c(\alpha) = M < \infty.$$

(vi) Usando los apartados anteriores demostrar que existe una curva regular α : $(0,1) \to \mathbb{R}^2$ que converge al origen cuando t tiende a 0^+ y tal que

$$\lim_{t \to 0^+} L_t^c(\alpha) = \infty,$$

para todo $c \in (0,1)$.