機器學習導論(4A) Homework 2

給定下列資料,欲利用梯度下降法建立自變數(x)與依變數(y)之間的線性迴歸模型: $h_{\theta}(x) = \theta_0 + \theta_1 x$ 。

i	X	y
1	-3	6
2	-1	4
3	0	2
4	1	0
5	4	-8

1. 考慮成本函數 (cost function)

$$E(\theta_0, \theta_1) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

請問代入上述給定資料,成本函數為何?請展開成下列表示式

$$E(\theta_0,\theta_1) = a\,\theta_0^2 + b\,\theta_0\theta_1 + c\,\theta_1^2 + d\,\theta_0 + e\,\theta_1 + f\circ$$

- 2. 若固定 $\theta_1 = 2$
 - (1) 成本函數 $g(\theta_0) = E(\theta_0, 2)$ 為何?
 - (2) 計算一階導函數 $g'(\theta_0)$ 。
 - (3) [程式題] 畫出 $g'(\theta_0)$ 的函數圖。
 - (4) 若目前 $\theta_0 = 1$, 請利用梯度下降法 ($\eta = 0.03$) 更新 θ_0 :

$$\theta_0 = \theta_0 - \eta \cdot g'(\theta_0)$$

- 3. 相反地,固定 $\theta_0 = 1$
 - (1) 成本函數 $p(\theta_1) = E(1, \theta_1)$ 為何?
 - (2) 計算一階導函數 $p'(\theta_1)$ 。
 - (3) [程式題] 畫出 $p'(\theta_1)$ 的函數圖。
 - (4) 若目前 $\theta_1 = 2$,請利用梯度下降法($\eta = 0.03$)更新 θ_1 :

$$\theta_1 = \theta_1 - \eta \cdot p'(\theta_1)$$

- 4. 假設目前的線性迴歸模型 $h_{\theta}(x) = 1 + 2x$ (亦即 $\theta_0 = 1, \theta_1 = 2$)
 - (1) 請利用梯度下降法 $(\eta = 0.03)$ 更新線性迴歸模型:

$$\theta_0 = \theta_0 - \eta \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right), \ \theta_1 = \theta_1 - \eta \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

(2) [程式題] 利用散點圖表示給定資料,並畫出原本的模型 $h_{\theta}(x) = 1 + 2x$,及更新後的新模型。