Detección de taps con acelerómetro

Procesamiento de señales: Fundamentos MSE 5Co2020

Presentación del TP Final

Esp. Ing. Jhonattan Camargo Junio 2020

Introducción al tema

Figure 2. Tap Signature Z-axis Sample Rate 2 kHz

Estrategia

- Configurar interna y de interrupción del acelerómetro para obtener los datos cada vez que estén listos y no hacer polling.
- Obtener la huella característica de un tap y graficarla en Python.

Estrategia

Estrategia

Respuesta del filtro

Técnica

- El procedimiento para determinar el tap consistió en:
 - Convolucionar la señal con el filtro.
 - Obtener la respuesta en frecuencia de la salida filtrada.
 - Determinar si la magnitud de la FFT y el máximo son mayores a un umbral.

Setup

- STM32F0 Cortex M0@ 48MHz.
- NXP MMA8652.
- Osciloscopio Hantek 6022BE.

Resultados

Conclusiones

- La detección de taps es altamente dependiente de muchos factores.
- El uso de filtro pasabanda, podría generar falsos positivos de taps con movimientos bruscos con muchos armónicos o de esa frecuencia.
- Hay acelerómetros con esta función embebida, lo que permitiría no usar el CPU para hacer cálculos.

¿Preguntas?

Gracias

Bibliografía

NXP - Single/Double and Directional
Tap Detection