DIGITAL CIRCUITS

Week-11, Lecture-2 Sequential Circuits

Sneh Saurabh 24th October, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Other types of Flip-flops

T Flip-Flop using D flip-flop

Problem:

A T flip-flop is realized using a D flip-flop using the circuit shown alongside.

Obtain the functionality of the T flip-flop in a form of *characteristics table* and *characteristics equation*

T	Q(t + 1)
0	
1	

T	Q(t+1)
0	Q(t)
1	Q'(t)

$$Q(t+1) = T \oplus Q$$

T Flip-Flop using JK Flip-flop

Problem:

A T flip-flop needs to be realized using a JK flip-flop. Find the implementation.

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

T	Q(t + 1)
0	Q(t)
1	Q'(t)

Pulse-triggered Flip-flop (1)

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

Problem-1

Analyze the behavior of the circuit shown above.

Pulse-triggered Flip-flop (2)

- Positive edge detector at enable pin
- Latch enabled for a short duration after the arrival of positive edge of the clock
- When latch is enabled D passes to Q
- Works as pulse-triggered Flip-flop
- Pulse width needs to be kept small

Flip-flop: Unstable state (Toggle)

Problem-2

Analyze the behavior of the circuit shown.

- D and Q are complement of each other
- The state of the flip-flop is unstable (toggle state)
- Frequency Divider circuit

D Latch: Race Condition

Problem-3

Analyze the behavior of the circuit.

- D and Q are complement of each other
- When En = 1, state changes rapidly between 0 and 1
- When En = 0, state can be either 0 or 1, difficult to predict
- This is a race condition
- The behavior is unpredictable and this circuit should be avoided

Flip-flop with Synchronous Preset

Problem-4

Implement a flip-flop with synchronous preset that is active high.

Digital Circuits: Practice Problems

Problems 5.1-5.4

from "Digital Design" – M. Morris Mano & Michael D. Ciletti, Ed-5, Pearson (Prentice-Hall).

Problems 7.1-7.9

from Fundamentals of Digital Logic with Verilog Design - S. Brown, Z. Vranesic

