数据 70% 30% 评估 训练模型 80% 20% 75% 25%

训练集建立模型评估模型分类回归聚类

文章1,文章2

文章3,文章4

fit_transform():输入数据直接转换

fit():输入数据,但不做事情 [[23,34,5],[20,19,45]] 计算平均值,方差等等 +transform(): 进行数据的转换

[[23,34,5],[20,19,45]]

[[2,3,4], [[1,2,3], [4,5,7]] [4,5,6]] 2.5,3.5,4.5 3,4, 5.5

每个算法API当中的参数

estimator

训练集测试集

x_train, y_train

1、调用fit fit(x_train, y_train)

估计器

estimator

- 1 \ y_predict = predict(x_test)
- 2、预测的准确率: score(x_test, y_test)

x_test, y_test

2、输入与测试集的数据

电影名称	打斗镜头	接吻镜头	电影类型	与未知电影的距离
California Man	3	104	爱情片	20.5
He's not Really into dues	2	100	爱情片	18.7
Beautiful Woman	1	81	爱情片	19.2
Kevin Longblade	101	10	动作片	115.3
Robo Slayer 3000	99	5	动作片	117.4
Amped II	98	2	动作片	118.9
?	18	90	未知	

如何求距离?

相似的样本,特征之间的值应该都是相近的

两个样本的距离可以通过如下公式计算,又叫欧式距离

比如说,a(a1,a2,a3),b(b1,b2,b3)

K-近邻算法: 需要做标准化处理

 $\sqrt{(a1-b1)^2+(a2-b2)^2+(a3-b3)^2}$

K 取值: 1,3,5,6

分类

特征值:x,y 坐标, 定位准确性,年,日,时,周 目标值:入住位置的id

处理: 0<x<10 0<y<10

- 1、由于数据量大,节省时间 x, y缩小
- 2、时间戳进行(年,月,日,周,时分秒), 当做新的特征
- 3、几千~几万,少于指定签到人数的位置删除

pd.to_datatime

样本数	职业	体型	女神是否喜欢
1	程序员	超重	不喜欢
2	产品	匀称	喜欢
3	程序员	匀称	喜欢
4	程序员	超重	喜欢
5	美工	匀称	不喜欢
6	美工	超重	不喜欢
7	产品	匀称	喜欢

条件: 所有特征之间是条件独立

自然语言处理 (不独立)

问题

记作: *P(A,B)*|
P(A, B) = P(A)P(B)

1、女神喜欢的概率?

4/7

错的

- 2、职业是程序员并且体型匀称的概率? P(程序员, 匀称) = 3/7 * 4/7 = 12/49
- 3、在女神喜欢的条件下, 职业是程序员的概率?

2/4 = 1/2

4、在女神喜欢的条件下,职业是产品,体重是超重的概率?

P(产品,超重|喜欢) = P(产品|喜欢)P(超重|喜欢) = 1/2*(1/4) = 1/8

记作: P(A|B)

特性: P(A1,A2|B) = P(A1|B)P(A2|B)

"朴素"贝叶斯 特征独立

P(科技 | 词1,词2,词3...) 文档1:词1,词2,词3......

P(娱乐 |词a,词b....)

公式可以理解为:

$$P(C|F1,F2,...) = \frac{P(F1,F2,...|C)P(C)}{P(F1,F2,...)}$$

其中c可以是不同类别

P(科技 |词1,词2,词3...) = P(F1,f2,f3|科技)P(科技)

P(娱乐 |词1,词2....) = P(F1,f2,f3|娱乐)P(娱乐)

训练集很多文档 词的列表 重要的词

训练集误差大,结果肯定不好 不许要调参

训练集统计结果(指定统计词频):

特征\统计	科技(30篇)	娱乐(60篇)	汇总(90篇)
"商场"	9	51	60
"影院"	8	56	64
"支付宝"	20	15	35
"云计算"	63	0	63
汇总(求和)	100	121	221

P(科技| 影院,支付宝,云计算) = P(影院,支付宝,云计算|科技)P(科技) =(8+1/100+1*4)(20/100)(63/100)(30/90) = 0.00456109

P(娱乐| 影院,支付宝,云计算)=P(影院,支付宝,云计算|娱乐)P(娱乐) = (56+1/121+1*4)(15+1/121+1*4)(0+1/121+1*4)(60/90) = 0.001

假设了 文章当中一些词语另外一些是独立没关系 不太靠谱

训练集当中去进行统计词这些工作 会对结果造成干扰

朴素贝叶斯: 文本分类

神经网络 效果要好

混淆矩阵

二分类

评估标准:准确率

精确率和召回率

 在分类任务下,预测结果(Predicted Condition)与正确标记 (True Condition)之间存在四种不同的组合,构成混淆矩阵 (适用于多分类)

是猫 预测结果不是猫

正例:猫 真

实结

反例:不是猫果

	正例	假例	
正例	true positive 真正例TP	false nega 伪反例FN true negat	
假例	false positive 伪正例FP	真反例TN	146

猫 混淆矩阵 狗 混淆矩阵

癌症检测

20癌症10080非癌症90 非癌症

100

交叉验证: 所有数据分成n等分

k = 1, 5, 7, 10

4折交叉验证

验证集 训练集 训练集 得出一个准确率 模型1

训练集 验证集 训练集 训练集 得出一个准确率 模型2

求平均值模型结果8

训练集 训练集 過证集 训练集 得出一个准确率 模型3

训练集 训练集 验证集 得出一个准确率 模型4

网格搜索: 调参数 K-近邻: 超参数K

a [2,3,5,8,10] b [20,70,80] 两两组合 15

1~16 17~32

1个字节 8bit

5次

 $5 = -(1/32\log 1/32 + 1/32\log 1/32 + \dots)$

开放一些数据信息 5 > -(1/4log1/4 + 1/4log1/4 +) 信息熵

1/6 1/6 1/10

德国 巴西 中国

ID	年龄	有工作	有自己的房子	信贷情况	类别
1	青年	否	否	一般	否
2	青年	否	否	好	否
3	青年	是	否	好	是
4	青年	是	是	一般	是
5	青年	否	否	一般	否
6	中年	否	否	一 般	否
7	中年	否	否	好	否
8	中年	是	是	好	是
9	中年	否	是	非常好	是
10	中年	否	是	非常好	是
11	老年	否	是	非常好	是
12	老年	否	是	好	是
13	老年	是	否	好	是
14	老年	是	否	非常好	是
15	老年	否	否	一般	否

一个特征条件之后,减少的信息熵的大小

 $H(D) = -(9/15\log 9/15 + 6/15\log (6/15))$

H(青年) = -(2/5log(2/5)+ 3/5log(3/5))

H(中年) = -(2/5log(2/5) + 3/5log(3/5))

H(老年) = -(4/5log(4/5)+ 1/5log(1/5))

决策树的分类依据之一: 信息增益

基尼系数:划分更加仔细

随机森林建立多个决策树的过程:

N个样本, M个特征

单个树建立过程:

1、随机在N个样本当中选择一个样本,重复N次 样本有可能重复

2、随机在M个特征当中选出m个特征

m取值

建立10颗决策树,样本,特征大多不一样

随机又放回的抽样 bootstrap

随机森林: n_estimator决策树的数量 maxx_depth:每颗树的深度限制