Assignment 2

CP468 – Artificial Intelligence

Dr. Sumeet Sehra

June 26, 2023

Steven Tohme

Natalie Song

Question 1:

a

A	В	C	D	BVC
F	F	F	F	F
F	F	F	T	F
F	F	T	F	T
F	F	T	T	T
F	T	F	F	T
F	T	F	T	T
F	T	T	F	T
F	T	T	T	T
T	F	F	F	F
T	F	F	T	F
T	F	T	F	T
T	F	T	T	T
T	T	F	F	T
T	T	F	T	T
T	T	T	F	T
T	T	T	T	T

 $2^4 = 16$ possible models. However, since there is one false conjunction there are $2^4 - 4 = 12$ models.

b.

A	В	C	D	$\neg A \lor \neg B \lor \neg C \lor \neg D$
F	F	F	F	T
F	F	F	T	T
F	F	T	F	T
F	F	T	T	T
F	T	F	F	T
F	T	F	T	T
F	T	T	F	T
F	T	T	T	T
T	F	F	F	T
T	F	F	T	T
T	F	T	F	T
T	F	T	T	T
T	T	F	F	T
T	T	F	T	T
T	T	T	F	T
T	T	T	T	F

 $2^4 = 16$ possible models, However, since there is one false conjunction there are $2^4 - 1 = 15$ models.

c.

A	В	C	D	$(\mathbf{A} \Rightarrow \mathbf{B}) \land \mathbf{A} \land \neg \mathbf{B} \land \mathbf{C} \land \mathbf{D}$
F	F	F	F	F
F	F	F	T	F
F	F	T	F	F
F	F	Т	Т	F

F	T	F	F	F
F	T	F	T	F
F	T	T	F	F
F	T	T	T	F
T	F	F	F	F
T	F	F	T	F
T	F	T	F	F
T	F	T	T	F
T	T	F	F	F
T	T	F	T	F
T	T	T	F	F
T	T	T	T	F

 $2^4 = 16$ possible models. However, since all the conjunctions are false there are **0** models.

d.

A	В	C	D	$(A \land B) \lor (C \land D)$				
F	F	F	F	F				
F	F	F	T	F				
F	F	T	F	F				
F	F	T	T	T				
F	T	F	F	F				
F	T	F	T	F				
F	T	T	F	F				
F	T	T	T	T				
T	F	F	F	F				
T	F	F	T	F				
T	F	T	F	F				
T	F	T	T	T				
T	T	F	F	T				
T	T	F	T	T				
T	T	T	F	T				
T	T	T	T	T				

 $2^4 = 16$ possible models. However, since there are 9 false junctions there are $2^4 - 9 = 5$ models.

e.

A	В	C	D	$\mathbf{B} \Rightarrow (\mathbf{A} \land \mathbf{B})$
F	F	F	F	T
F	F	F	T	T
F	F	T	F	F
F	F	T	T	F
F	T	F	F	T
F	T	F	T	T
F	T	T	F	T
F	T	T	T	T
T	F	F	F	T
T	F	F	T	T
T	F	T	F	F
Т	F	T	T	F
T	T	F	F	T
T	T	F	T	T

T	T	T	F	T
T	T	T	T	T

 $2^4 = 16$ possible models. However, since there is one false conjunction there are $2^4 - 4 = 12$ models.

Question 2:

a. Smoke \Rightarrow Smoke

Smoke	Smoke ⇒ Smoke
Т	Т
F	F

- T⇒T and F⇒F is valid as it contains only true, so the sentence is Valid
- b. Smoke \Rightarrow Fire

Smoke	Fire	Smoke ⇒ Fire
T	T	T
T	F	F
F	Т	T
F	F	Т

- Since it contains both the true and false values, it is neither
- c. $(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$

Smoke	Fire	¬Smoke	¬Fire	Smoke ⇒ Fire	(¬Smoke ⇒ ¬Fire	(Smoke ⇒ Fire) ⇒ (¬Smoke ⇒ ¬Fire)
T	T	F	F	T	T	T
T	F	F	T	F	T	T
F	T	T	F	T	F	F
F	F	Т	T	T	T	T

- Since it contains both the true and false values, it is neither
- a. Smoke ∨ Fire ∨ ¬Fire

Smoke	Fire	Smoke V Fire	¬Fire	Smoke ∨ Fire ∨ ¬Fire
Т	T	Т	F	T
Т	F	Т	T	T
F	T	T	F	T
F	F	F	T	T

- The statement contains only true, so it is valid
- b. $((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))$

Smoke	Heat	Fire	Smoke A Heat	Smoke ∧ Heat) ⇒ Fire	Smoke ⇒ Fire	Heat ⇒ Fire	(Smoke ⇒ Fire) ∨ (Heat ⇒ Fire)	((Smoke ∧ Heat) ⇒ Fire) ⇔ ((Smoke
							→ rnc)	\Rightarrow Fire) \lor

								(Heat ⇒ Fire))
Т	T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	F	T
T	F	T	F	T	T	T	T	T
T	F	F	F	T	F	T	T	T
F	T	T	F	T	T	T	T	T
F	T	F	F	T	T	F	T	T
F	F	T	F	T	T	T	T	T
F	F	F	F	T	T	T	T	T

- The statement contains only true, so it is valid
- c. $(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)$

Smoke	Heat	Fire	Smoke ⇒ Fire	Smoke A Heat	(Smoke ∧ Heat) ⇒ Fire	(Smoke ⇒ Fire) ⇒ ((Smoke ∧ Heat) ⇒ Fire)
T	T	T	T	T	T	T
Т	T	F	F	T	F	Т
Т	F	T	T	F	T	Т
T	F	F	F	F	T	Т
F	T	T	T	F	T	T
F	T	F	T	F	T	Т
F	F	T	T	F	T	Т
F	F	F	T	F	T	Т

- The statement contains only true, so it is valid
- d. Big \vee Dumb \vee (Big \Rightarrow Dumb)

Big	Dumb	Big∨ Dumb	Big ⇒ Dumb	Big ∨ Dumb ∨ (Big ⇒ Dumb)
T	T	T	T	T
T	F	Т	F	T
F	Т	Т	Т	Т
F	F	F	Т	Т

- The statement contains only true, so it is valid

Question 3:

- a. 3o Occupation(Emily, Surgeon) v Occupation(Emily, Lawyer)
- b. Occupation(Joe, Actor) $\land \exists o (Occupation(Joe, o) \land \neg (o=actor))$
- c. $\forall p(Occupation(p,Surgeon) \rightarrow Occupation(p,Doctor))$
- d. ∃p (Customer(Joe, p) ∧ Occupation(p, Lawyer))
- e. ∃p (Boss(p, Emily) ∧ Occupation(p, Lawyer))

- f. $\exists p \ (Occupation(p, Lawyer) \land \forall c \ (Customer(c, p) \rightarrow Occupation(c, Doctor)))$
- g. $\forall p (Occupation(p, Surgeon) \rightarrow \exists l (Occupation(l, Lawyer) \land Customer(p, l)))$

Question 4:

- a. Correct
- b. Correct
- c. Correct