Maple V Release 5: A Quick Reference

Prepared by:
Douglas Meade
Department of Mathematics
University of South Carolina

April 1998, updated for Release 5 (February 1997, updated for Release 4) (January 1995, original version for Release 3)

Symbols and Abbreviations

Symbol	Description	Example
:=	assignment	f := x^2/y^3;
;	terminate command; display result	int(x^2, x);
:	terminate command; hide result	int(x^2, x):
• •	specify a range or interval	plot(t*exp(-2*t), t=03);
{ }	set delimiter (a set is an unordered list)	{ y, x, y };
[]	list delimiter (lists are ordered)	[y, x, y];
%	refers to previous result (percent)	Int(exp(x^2), x=01):
	Note: Was " in previous releases	% = evalf(%);
11 11	string delimiter (double quote)	plot(sin(10*x) + 3*sin(x), x=02*Pi,
(see ?strings)	Note: New in Release 5	title="An interesting plot");
``(see ?names)	name delimiter (back quote)	`A name` := `This is a name.`;
´ ´(see ?uneval)	delayed evaluation (single quote)	x := 'x';
->	mapping (procedure) definition	$f := (x,y) \rightarrow x^2*sin(x-y);$
		f(Pi/2,0);
0	composition operator	(cos@arcsin)(x);
00	repeated composition operator	(D@@2)(ln);

Mathematical Operations, Functions, and Constants

Symbol	Description	Example
+, -, *, /, ^	add, subtract, multiply, divide, power	3*x^(-4) + x/Pi;
sin, cos, tan,	trigonometric functions	<pre>sin(theta-Pi/5) - sec(theta^2);</pre>
cot, sec, csc		
arcsin, arccos,	inverse trigonometric functions	arctan(2*x);
arctan, arccot,		
arcsec, arccsc		
exp	exponential function	exp(2*x);
ln	natural logarithm	ln(x*y/2);
log10	common logarithm (base 10)	log10(1000);
abs	absolute value	abs((-3)^5);
sqrt	square root	sqrt(24);
!	factorial	k!;
=, <>, <, <=, >, >=	equations and inequalities	diff(y(x), x) + x*y(x) = F(x);
	Note: E no longer exists; use exp(1)	<pre>exp(Pi) > Pi^exp(1);</pre>
Pi, I	π , i (mathematical constants)	exp(Pi*I);
	Note: Maple is case-sensitive	
infinity	infinity	int(x^(-2), x=1infinity);

NOTES:

- The document is also available on the World Wide Web; the Universal Resource Locator is http://www.math.sc.edu/~meade/maple/maple-ref/
- Please send comments, corrections, and suggestions for improvements to meade@math.sc.edu.

Commands

Command	Description	Example
restart	clear all Maple definitions	restart:
with	load a Maple package	<pre>with(DEtools); with(plots):</pre>
help (also ?)	display Maple on-line help	?DEplot
limit	calculate a limit	limit(sin(a*x)/x, x=0);
diff	compute the derivative of an expression	diff(a*x*exp(b*x^2)*cos(c*y), x)
int	definite or indefinite integration	int(sqrt(x), x=0Pi);
Limit	inert (unevaluated) form of limit	Limit($\sin(a*x)/x$, x=0);
Diff	inert (unevaluated) form of diff	Diff(a*x*exp(b*x^2)*cos(c*y), x);
Int	inert (unevaluated) form of int	<pre>Int(sqrt(x), x=0Pi);</pre>
value	evaluate an inert expression	$G := Int(exp(-x^2), x);$
	(typically used with Limit, Diff, or Int)	<pre>value(G);</pre>
plot	create a 2-dimensional plot of functions	plot(u^3, u=01, title="cubic");
		plot([sin(x), cos(x)], x=0Pi);
plot3d	create a 3-dimensional plot of functions	plot3d(sin(x)*cos(y),x=04*Pi,y=0Pi);
display	display plot structures	with(plots):
	(in plots package)	F:=plot(exp(x), x=03, style=line);
		G:=plot(1/x, x=03, style=point);
		<pre>display([F,G], title="2 curves");</pre>
solve	solve equations or inequalities	solve($x^4 - 5*x^2 + 6*x = 2, \{x\}$);
fsolve	solve using floating-point arithmetic	fsolve($t/10 + t*exp(-2*t) = 1, t$);
dsolve	solve ordinary differential equations;	dsolve(diff($y(x),x$)- $y(x)$ =1, $y(x)$);
	see ?dsolve for a list of available options	
odeplot	create 2D and 3D plots from solutions obtained	with(plots):
	by dsolve (with type=numeric);	S:=diff(x(t),t)=-y(t),diff(y(t),t)=x(t):
	see ?odeplot for more options	IC:=x(0)=1,y(0)=1:
	(in plots package)	P:=dsolve({S,IC}, {x(t),y(t)}, numeric):
		odeplot(P, [[t,x(t)],[t,y(t)]], 0Pi);
DE-1-+	anasta plat agga sisted with an ODE an austam of	odeplot(P, [x(t),y(t)], 0Pi);
DEplot	create plot associated with an ODE or system of ODEs; see ?DEplot for more information	ODE := diff(y(x),x) = 2*x*y(x); DEplot(ODE, [y(x)], x=-22,
	(in DEtools package)	y=-11, arrows=SMALL);
D	differential operator	ODE := $diff(y(x), x$2) + y(x) = 1;$
	(often used when specifying derivative	IC := $y(0)=1$, $D(y)(0)=1$;
	initial conditions for dsolve)	dsolve({ ODE, IC }, y(x));
subs	substitute values into an expression	subs(x=r^(1/3), 3*x*ln(x^3));
simplify	apply simplification rules to an expression	<pre>simplify(exp(a+ln(b*exp(c)));</pre>
factor	factor a polynomial	factor((x^3-y^3)/(x^4-y^4));
convert	convert an expression to a different form	convert($x^3/(x^2-1)$, parfrac, x);
collect	collect coefficients of like powers	collect((x+1)^3*(x+2)^2, x);
rhs	right-hand side of an equation	$rhs(y = a*x^2 + b);$
lhs	left-hand side of an equation	lhs($y = a*x^2 + b$);
numer	extract the numerator of an expression	numer((x+1)^3/(x+2)^2);
denom	extract the denominator of an expression	denom((x+1)^3/(x+2)^2);
evalf	evaluate using floating-point arithmetic	<pre>evalf(exp(Pi^2));</pre>
evalc	evaluate a complex-valued expression	evalc(exp(alpha+I*omega));
	(returns a value in the form a+I*b)	
evalb	evaluate a Boolean expression	<pre>evalb(evalf(exp(Pi) > Pi^exp(1)));</pre>
	(returns true or false)	
assign	perform assignments	S:=solve($\{x+y=1, 2*x+y=3\}, \{x,y\}$);
	(often used after solve or dsolve)	assign(S); x; y;
seq	create a sequence	seq([0,i], i=-33);
for while	repetition statement; see do for syntax	tot := 0;
do od		for i from 11 by 2 while i < 100 do
		tot := tot + i^2
25511110	inform Maple of additional properties of objects	od; assume(t>0);
assume	check assumptions on Maple objects	about(t);
about	check assumptions on maple objects	about(t /;