9 mai 2012

Test

Chacun des problèmes 1 à 9 est à choix multiple. Il n'y a qu'une seule réponse correcte par problème. Pour chacun des problèmes à choix multiple, on compte +3 points si la réponse est correcte, 0 point si la question reste sans réponse, -1 point si la réponse est fausse.

Le problème 10 vaut 4 points (2 points pour chaque définition).

Le problème 11 vaut 4 points.

Total possible: 35 points

Problème 1. Soit $\alpha : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'application \mathbb{R} -linéaire définie par $\alpha(x,y,z) = (ax+z,y+az,z)$, où $a \in \mathbb{R}$ est fixé. Est-ce que α est diagonalisable ?

- (A) Oui si a = 1, non sinon.
- (B) Oui si a = 0, non sinon.
- (C) Oui toujours.
- (D) Non jamais.

Problème 2. Soit M la matrice complexe $M = \begin{pmatrix} 1 & -1 \\ 0 & i \end{pmatrix}$. Soit $\phi : M_2(\mathbb{C}) \longrightarrow M_2(\mathbb{C})$ l'application \mathbb{C} -linéaire définie par $\phi(X) = MX$ pour tout $X \in M_2(\mathbb{C})$. Laquelle des assertions suivantes est correcte ?

- (A) Les valeurs propres de ϕ sont 1 et -1.
- (B) i est valeur propre de ϕ avec multiplicité algébrique 2.
- (C) 1 est valeur propre de ϕ avec multiplicité algébrique 1.
- (D) 1 est valeur propre de ϕ avec multiplicité géométrique 1.

Problème 3. On considère la matrice complexe $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & c \\ 0 & 1 & 0 \end{pmatrix}$, où $c \in \mathbb{C}$ est fixé. Laquelle des assertions suivantes est correcte ?

- (A) Le polynôme minimal de A est de degré 3 (quel que soit $c \in \mathbb{C}$).
- (B) Le polynôme minimal de A n'a pas de racine double (quel que soit $c \in \mathbb{C}$).
- (C) Le polynôme minimal de A est de degré 2 si c = 0, et de degré 3 si $c \neq 0$.
- (D) Le polynôme minimal de A est de degré 1 (quel que soit $c \in \mathbb{C}$).

Problème 4. Soit A une matrice complexe. Soit A = D + N la décomposition de A avec D diagonalisable, N nilpotente, et DN = ND. De même, soit $A^2 = C + M$ la décomposition de A^2 avec C diagonalisable, M nilpotente, et CM = MC. Laquelle des assertions suivantes est correcte ?

- (A) $M = ND + N^2$.
- (B) $M = N^2$.
- (C) $C = D^2 + 2ND$.
- (D) $C = D^2$.

Problème 5. Soit $V = \mathbb{R}^2$, avec base canonique $E = (e_1, e_2)$. Soit $f_1 = (1, 1)$ et $f_2 = (1, -1)$, si bien que $F = (f_1, f_2)$ est une autre base de V. Soit $F^* = (\phi_1, \phi_2)$ la base duale de F (base de l'espace dual V^*). Laquelle des assertions suivantes est correcte?

- (A) $\phi_1(e_1) = 1$.
- (B) $\phi_1(e_1) \neq \phi_1(e_2)$.
- (C) $\phi_2(e_1) = 1/2$.
- (D) $\phi_1(e_1 + e_2) = 0$.

Problème 6. Soit $\beta : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ la forme bilinéaire symétrique dont la matrice est $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ par rapport à la base canonique de \mathbb{R}^3 . Quelle est la signature de β ?

- (A) La signature vaut (2,1).
- (B) La signature vaut (1,2).
- (C) La signature vaut (2,0).
- (D) La signature vaut (3,0).

Problème 7. Soit $\beta: V \times V \to \mathbb{R}$ une forme bilinéaire symétrique sur un \mathbb{R} -espace vectoriel V. Soit $F = (f_1, \ldots, f_n)$ une base orthogonale (relativement à la forme β). Quelle est la dimension de $\mathrm{Vect}(f_1)^{\perp}$?

- (A) dim $(\operatorname{Vect}(f_1)^{\perp}) = n$ ou n-1, selon les valeurs de la forme β .
- (B) dim $(\text{Vect}(f_1)^{\perp}) = n 1$.
- (C) dim (Vect $(f_1)^{\perp}$) = 1.
- (D) $\dim \left(\operatorname{Vect} (f_1)^{\perp} \right) = p + q$, où (p,q) est la signature de la forme β .

Problème 8. Sur \mathbb{C}^3 , on définit le produit scalaire

$$\langle u, v \rangle = u_1 \overline{v}_1 + u_1 \overline{v}_2 + u_2 \overline{v}_1 + 3u_2 \overline{v}_2 + iu_2 \overline{v}_3 - iu_3 \overline{v}_2 + u_3 \overline{v}_3$$

où $u = (u_1, u_2, u_3) \in \mathbb{C}^3$ et $v = (v_1, v_2, v_3) \in \mathbb{C}^3$. (On admet que c'est bien un produit scalaire.) Soit (h_1, h_2, h_3) la base orthonormée obtenue par le procédé de Gram-Schmidt à partir de la base canonique de \mathbb{C}^3 . Combien vaut la première composante de h_3 (par rapport à la base canonique de \mathbb{C}^3)?

- (A) 0.
- (B) i.
- $(C) \quad \frac{-i}{\sqrt{2}}.$
- $(D) \quad \frac{1}{2\sqrt{2}}.$

Problème 9. Soit $V = \mathbb{R}[t]_{\leq 2}$ le \mathbb{R} -espace vectoriel des polynòmes de degré ≤ 2 , muni du produit scalaire

$$\langle p(t), q(t) \rangle = \int_{-1}^{1} p(t)q(t)dt$$
 (pour tous $p(t), q(t) \in \mathbb{R}[t]_{\leq 2}$).

Soit W = Vect(1,t). Que vant la projection orthogonale de $3t^2 - 2t + 7$ sur le sous-espace W?

- (A) 8 2t.
- (B) $16 \frac{4}{3}t$.
- (C) 0.
- (D) 2t.

Problème 10. Répondez de manière précise à chacune des questions suivantes.

- a) Qu'est-ce qu'une matrice hermitienne ?
- b) Qu'est-ce que la signature d'une forme bilinéaire symétrique sur un \mathbb{R} -espace vectoriel de dimension finie ?

Problème 11. Soit V un \mathbb{C} -espace vectoriel de dimension finie et soit $\beta: V \times V \to \mathbb{C}$ une forme sequilinéaire hermitienne. On suppose que, par rapport à une base $F = (f_1, \ldots, f_n)$ de V, la matrice de β est diagonale, avec des coefficients réels strictement positifs sur la diagonale. Montrer que β est un produit scalaire. Justifiez votre raisonnement et votre démarche.