Chapter 6

Medium Access Control protocols and Local Area Networks

介质访问控制协议和局域网

Part II: 局域网Local Area Networks

- 6.6 局域网概览Overview of LANs
- 6.7 以太网Ethernet 和 IEEE 802.3 令牌环Token Ring 和 FDDI 802.11 无线局域网
- 6.8 局域网桥接

网络互连设备:集线器、网桥和路由器

- •中继器/集线器Hub:物理层互连
 - 信号再生
 - 所有流量出现在所有互连的LAN中
 - 信道饱和、安全性与鲁棒性问题
- 网桥Bridge/二层交换机Switch: 在 MAC 或数据链路层互连
 - · MAC地址过滤
 - 本地流量局限在自身LAN中
- 路由器: 网络层互连
- 网关: 网络层更高的层互连

集线器、网桥和路由器

- ① 集线器: 星型拓扑结构中常用的中央节点
 - 双绞线:价格便宜,易于安装
 - -在以太网中就是简单的中继器
 - "智能集线器": 故障隔离、网络配置、统计

集线器、网桥和路由器

- 集线器
 - 中继器: 信号再生
 - 所有流量出现在所有LAN中
 - 网桥: MAC地址过滤(第2层)
 - 本地流量局限在自身LAN中
 - 路由器: 互联网路由(第3层)
 - 基于 IP 地址

网桥的一般问题

- 应用于多种网络类型数据链路层(与网络层无关)
- 但必须处理:
 - ①(各种网络)MAC 帧格式的差异
 - 2 数据速率、缓冲、定时器的差异
 - ③ 最大帧长的差异

*常见在相同类型LAN的情况,桥接是在 MAC 级别完成的

1、透明网桥

- 完全透明的 IEEE LAN 互连
- 使用查找表(lookup table), 及操作
 - ① 如果信源和目的地在同一LAN中, 则<mark>丢弃帧</mark>
 - ② 如果信源和目的地在不同LAN中, 则转发帧
 - ③ 如果目的地未知,则使用泛洪 (flooding)
- 使用反向学习建表
 - 观察到达帧的信源地址
 - 通过移除旧表项来适应拓扑的更改

网桥的工作流程:

- ① 缓存: 网桥接收到数据帧后, 会先将其缓存起来进行处理。
- ② 学习: 网桥会检查数据帧的源MAC地址,并在网桥表中进行查找。如果源地址不在表中, 网桥会将该地址和对应的端口信息加入到表中, 这个过程称为逆向学习法。
- ③ 过滤: 网桥会判断数据帧的目标地址是否在发送帧的同一网络段内。如果是, 网桥不会将帧转发到其他端口。
- ④ 转发:如果目标地址位于不同的网络段,网桥会将数据帧转 发到正确的网络段。
- ⑤ 泛洪flooding:如果网桥表中找不到目标地址,网桥会将数据帧发送到除了来源端口之外的所有端口。

课堂互动

	B1			B2		
	MAC地址	Port#	Operate	MAC地址	Port#	Operate
S3→S11						
S9→S3						
S5→S7						
S10→S3						
S3→S5						
S4→S5						_
S9→S10						

课堂互动

	B1				B2		
	MAC地址	Port#	Operate	MAC地址	Port#	Operate	
S3→S11	S3	2	泛洪(flooding)	S3	1	泛洪(flooding)	
S9→S3	S9	2	丢弃	S9	3	转发1#	
S5→S7	S5	3	泛洪(flooding)	S5	1	泛洪(flooding)	
S10→S3	S10	2	丢弃	S10	3	转发1#	
S3→S5	X	X	转发3#	Х	Х	丢弃	
S4→S5	S4	2	转发3#	S4	1	丢弃	
S9→S10	О	O		X	Х	丢弃	

自适应学习

- 在静态网络中,表最终存储所有地址,学习终止
- 在实际中,站点一直在增加和移动
 - ① 引入计时器(分钟)来老化每个表项并强制它重新学习
 - ② 如果帧到达的端口与表中的帧地址和端口不同,则立即更新;
 - ③ 如果帧到达的端口与表中的帧地址和端口相同,则刷新TTL。

地址	端口	TTL

例:二层交换

- 二层交换设备收到以太网帧,将其源MAC与接收接口的对应关系写入MAC表,作为以后的二层转发依据。如果MAC表中已有相同表项,那么就刷新该表项的老化时间。MAC表表项采取一定的老化更新机制,老化时间内未得到刷新的表项将被删除掉。
- 设备判断目的MAC地址是不是广播地址: a.如果目的MAC地址是广播地址,那么向所有接口转发(报文的入接口除外)。b.如果目的MAC地址不是广播地址,根据以太网帧的目的MAC去查找MAC表,如果能够找到匹配表项,则向表项所示的对应接口转发,如果没有找到匹配表项,那么向所有接口转发(报文的入接口除外)。

二层交换-网桥算法(MAC学习与转发)

网桥算法

```
创建一个包含数值对的空MAC表FDB;
While(1)
 获得下一个到达的帧;
 将I设置为该帧到达的入接口号(port);
 提取源MAC地址S;
 提取目的MAC地址D;
 for(entry in FDB){ //查MAC表;
   if FDB中没有(S,I)对,则将它加入到FDB中
  else{
     if(D, I)对出现在FDB中{ //水平分割
         丢弃帧;
     else{
        更新该(S,I)对的Time;
        转发该帧到出接口:
```

二层转发表FDB基本结构 (Forwarding Data Base)

Key	Value L		
MAC Address	Interface	Time	
00e0-fc12-3456	GE1/0/1(port 1)	9:00	
00e0-fc12-3457	GE1/0/2(port 2)	9:02	

2、避免循环

- 循环可能是意外或有意 创建的(增加冗余)
 - ※ 学习过程会引发广播风暴
 - ※ 广播风暴将导致整个网络 瘫痪
- 生成树算法spanning tree algorithm

生成树算法

- 1. 在所有网桥中选择一个根网桥
 - root bridge = the lowest bridge ID
- 2 除了根网桥之外,为每个网桥确定根端口
 - root port = port with the least-cost path to the root bridge (有多个则指 定最小端口号的那个)
- 3. 为每个局域网选择一个指定网桥
 - designated bridge = bridge has least-cost path from the LAN to the root bridge
 - · 指定端口designated port连接局域网和指定网桥
- 4. 所有根端口和所有指定端口都被置于"转发"状态,是唯一允许转发帧的端口。其他端口被置于"阻塞"状态。

1. 网桥1被选为根网桥

2. 除根网桥之外,为每个网桥选择根端口

3. 为每个局域网选择指 定网桥

4. 所有根端口和指定端口都进入转发状态

生成树的结果

例1: 请计算生成树

例2: 请计算生成树

2、源路由网桥

- IEEE 802.5 令牌环互连
- 每个源站点决定到目的地的路线
- 源路由(source route)网桥在发送帧时将详细的路由信息 插入在帧的首部中。

	Routing Control	Route 1/Bridge1 designator	Route 2/Bridg designator		Route m/Bridg designato	,
] :	2 bytes 2 bytes		2 bytes		2 bytes	 -
				·		'
	Destination address	Source address	Routing information	Data	FCS	

路由发现

- ① 为了发现到目的地的路由,每个站点广播一个单路由广播 帧 single-route broadcast frame
- 2 帧访问每个局域网一次并最终到达目的地
- ③ 目的地发送全路由广播帧all-routes broadcast frame, 该帧 生成所有路由返回到源
- 4 源收集路线并挑选最佳路线

查找从 S1 到 S3 的路由

红线表示生成树

特性	透明网桥	源路由网桥	
服务方式	无连接	有连接	
透明性	完全透明	不透明	
管理配置	自动	手工	
路由选择	较优	优	
确定目标	通过学习	通过探索帧	
故障处理	网桥	主机	
复杂性	网桥	主机	

3、虚拟局域网 VLAN

- 一个或多个LAN上的一组设备,被配置为可以像连接到同一条 线路一样进行通信,而实际上它们位于许多不同的LAN段上
- VLAN(虚拟局域网)的好处
 - 提高性能
 - 改进的可管理性
 - 网络调整和软件配置的简化
 - 物理拓扑独立性
 - 增加安全选项

基于端口的VLAN

网桥仅将帧转发到与同一 VLAN 关联的传出端口

图 多交换机端口定义

dank u

Aliquam Go raibh maith agat

děkuji Thank you

