Introduction to Tensor Spaces Appunti del Corso

Mirko Torresani

3 gennaio 2025

1 Fatti Introduttivi

Per noi gli spazi vettoriali saranno di dimensione finita, con campo base C.

Definizione 1.1. Il prodotto tensoriale $V_1 \otimes \cdots \otimes V_n$ è definito come lo spazio $\operatorname{Mult}(V_1, \ldots, V_n; \mathbb{C})$.

Definizione 1.2. Dato un tensore $f \in V \otimes W$, il suo rango rk f è

$$\operatorname{rk} f = \min\{s \mid f = \sum_{i=1}^{s} v_i \otimes w_i\}.$$

Proposizione 1.3. Il rango $\operatorname{rk} f$ è equivalentemente definibile come

- (i) il rango del morfismo $V^* \to V$ associato a f;
- (ii) posto $f = \sum c_{ij}v_i \otimes w_j$, con $(v_i)_i$ e $(w_j)_j$ rispettive basi, il rango di f è il rango della matrice $(c_{ij})_{i,j}$.

Nel caso in cui abbiamo un prodotto tensore di più spazi, le cose si complicano.

Definizione 1.4. Dato un elemento $f \in V_1 \otimes \cdots \otimes V_d$, il rango rk f è definito come

$$\operatorname{rk} f = \min\{s \mid f = \sum_{j=1}^{s} v_{j,1} \otimes \cdots \otimes v_{j,d}\}\$$

Un argomento, storicamente molto importate, riguarda il calcolo del rango tensoriale. Per una sua prima trattazione introduciamo la seguente notazione: se f è un vettore in $V_1 \otimes \cdots \otimes V_d$, allora f induce mappe

$$f_k \colon V_k^* \to \bigotimes_{i \neq k} V_i \quad f_k^{\dagger} \colon \bigotimes_{i \neq k} V_i^* \to V_k$$

per ogni k.

Definizione 1.5. Un tensore $f \in V_1 \otimes \cdots \otimes V_d$ si dice V_i -conciso, o i-conciso, se f_i .

Definizione 1.6. Il multi-rango di f è definito come

$$\operatorname{mrk} f = (\operatorname{rk} f_1, \dots, \operatorname{rk} f_d) =: (r_1, \dots, r_d),$$

dove rk f_k è il rango di f_k come mappa lineare (o equivalentemente il rango della mappa trasporta f_k^{\dagger}).

Per il resto della trattazione useremo la notazione di Einstein: quando lo stesso indice compare come pedice e apice, allora viene intesa una sommatoria rispetto a quell'indice, se non diversamente indicato.

Proposizione 1.7. Sia f un tensore, allora

$$\max_{i} r_i \le \operatorname{rk} f \le \min_{i} \prod_{j \ne i} r_j$$

Dimostrazione. Sia r il rango di f, e poniamo

$$f = \sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{d,i}.$$

L'immagine della funzione trasporta f_k^{\dagger} , da $\bigotimes_{i\neq k} V_i^* \to V_k$, è contenuta nel generato $\langle v_{k,1}, \ldots, v_{k,r} \rangle$, e quindi l'immagine ha dimensione ha al più dimensione r.

Se $\{u_{i,1},\dots,u_{i,r_i}\}$ è una base per l'immagine di f_i^{\dagger} , allora f si può scrivere come

$$f = \alpha^{j_1, \dots, j_d} \, u_{1, j_1} \otimes \dots \otimes u_{d, j_d}$$

e per ogni k

$$f = u_{1,j_1} \otimes \cdots \otimes u_{k-1,j_{k-1}} \otimes \left[\sum_{j_k=1}^{r_k} \alpha^{j_1,\dots,j_d} u_{k,j_k} \right] \otimes u_{k+1,j_{k+1}} \otimes \cdots \otimes u_{d,j_d}.$$

Conseguentemente per ogni k, il rango r è al più $\prod_{i\neq k} r_i$.

Corollario 1.8. Se rk f = 1, allora rk $f_k = 1$ per ogni k.

Corollario 1.9. Fissato un certo k, se $r_j = 1$ per ogni $j \neq k$ allora $\operatorname{rk} f_k = \operatorname{rk} f = 1$.

Proposizione 1.10. Sia f un tensore 1-conciso, tale che $r_1 \geq \cdots \geq r_d$ e che $\operatorname{rk} f = r_1$. Allora $f_1(V_1^*)$ è generato precisamente da r_1 tensori indecomponibili in $V_2 \otimes \cdots \otimes V_d$.

Dimostrazione. Sappiamo che $f = \sum_{i=1}^{r_1} v_{1,i} \otimes \cdots \otimes v_{d,i}$ via vettori arbitrari. Conseguentemente, l'immagine di

$$f_1^{\dagger} \colon \bigotimes_{i>1} V_i^* \to V_1$$

è generata da $\{v_{1,1},\ldots,v_{1,r_1}\}$. Siccome il rango di f_1 , e quindi quello di f_1^{\dagger} , è per ipotesi r_1 , quei vettori devono essere necessariamente indipendenti. Inoltre, per ipotesi, il tensore f è 1-conciso, e quindi f_1 è iniettivo. In definitiva, dim $V_1^* = \dim V_1 = r_1$ e $\{v_{1,1},\ldots,v_{1,r_1}\}$ formano una base di V_1 .

Consideriamo quindi la base duale $\{v_1^1, \dots, v_1^{r_1}\}$ di V_1^* . Per costruzione

$$f(V_1^*) = \langle f(v_1^1), \dots, f(v_1^{r_1}) \rangle = \langle v_{2,i} \otimes \dots \otimes v_{d,i} \rangle_{i=1,\dots,r_1}.$$

Come non-esempio consideriamo $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$, ed il tensore

$$f := e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_0 \otimes e_1 \otimes e_0 \otimes e_0.$$

Si può osservare che in effetti è 1-conciso, e che

$$f(V_1^*) = \langle e_0 \otimes e_1 + e_1 \otimes e_0, e_0 \otimes e_0 \rangle.$$

Tuttavia quest'ultima espressione non può essere ricondotta ad uno span di tensori indecomponibili. Inoltre, $\operatorname{mrk} f$ è (2,2,2). Conseguentemente, $\operatorname{rk} f = 3$ come ci si può immaginare.

Proposizione 1.11. Sia $f \in V_1 \otimes \cdots \otimes V_d$. Il rango di f coincide col minimo numero di elementi indecomponibili necessari per generare uno spazio che contiene $f_1(V_1^*)$.

Dimostrazione. Se r è il rango di f, allora f si scrive come $\sum_{i=1}^{r} v_{1,i} \otimes \cdots \otimes v_{d,i}$ e conseguentemente $f_1(V_1^*)$ è contenuto in $\langle v_{2,i} \otimes \cdots \otimes v_{d,i} \rangle_{i=1}^r$.

D'altra parte, supponiamo che $f_1(V_1^*)$ sia contenuto in $\langle v_{2,i} \otimes \cdots \otimes v_{d,i} \rangle_{i=1}^r$. Fissiamo una base $\{v_{1,1}, \ldots, v_{1,m}\}$ di V_1 , ed una conseguente base duale. Allora

$$f_1(v_1^k) = \alpha^{k,i} v_{2,i} \otimes \cdots \otimes v_{d,i} \quad 1 \le k \le r,$$

е

$$f = \alpha^{k,i} v_{1,k} \otimes v_{2,i} \otimes \cdots \otimes v_{d,i}.$$

Consideriamo ora il caso in cui tensoriamo solo per tre spazi.

Definizione 1.12. Siano A, B e C tre spazi vettoriali su \mathbb{C} . Inoltre sia $\{a_1, \ldots, a_n\}$ una base di A, e sia V un sottospazio di $B \otimes C$ con base $\{v_1, \ldots, v_m\}$. Una modificazione di $f \in A \otimes B \otimes C$ è una somma della forma

$$f + \sum_{i,j} a_i \otimes v_j$$
.

Analogo per V in $A \otimes B$ o in $A \otimes C$.

Definizione 1.13. Dato $V_1 \subseteq B \otimes C$, $V_2 \subseteq A \otimes C$ e $V_3 \subseteq A \otimes B$ il rango minimale modulo tre sottospazi V_1 , V_2 e V_3 è

 $\min \{ f \mod V_1 \ V_2 \ V_3) \coloneqq \min \{ \operatorname{rk} \tilde{f} \mid \tilde{f} \mod \operatorname{incazione} \text{ ottenuta da un singolo } V_i \} \, .$

Proposizione 1.14. Sia $f \in A \otimes B \otimes C$ un tensore conciso di rango r, e poniamo $f = \sum_{k=1}^{m} g_k \otimes c_k$ con $g_i \in A \otimes B$ $e \{c_1, \ldots, c_m\}$ una base di C. Se $g_1 \neq 0$, esistono constanti $\lambda_2, \ldots, \lambda_m \in \mathbb{C}$ tali che

$$\hat{f} = \sum_{j=2}^{m} (g_j - \lambda_j g_1) \otimes c_j \in A \otimes B \otimes (c_1^{\perp})^*$$

ha rango al più r-1. Se $\operatorname{rk} g_1=1$, allora \hat{f} ha rango almeno r-1 qualunque siano le costanti.

Dimostrazione. Sappiamo che esistono h_1, \ldots, h_r , tensori di rango 1 in $A \otimes B$, che generano uno spazio contenente $f_3(C^*)$. Quindi

$$g_j = \alpha^{j,t} h_t \in A \otimes B.$$

Conseguentemente

$$f = \alpha^{j,t} h_t \otimes c_j.$$

Possiamo assumere, senza perdita di generalità, $\alpha^{1,1} \neq 0$, e porre $\lambda_j := \alpha^{j,1}/\alpha^{1,1}$. Otteniamo quindi

$$\hat{f} = \sum_{j=2}^{m} (g_j - \lambda_j g_1) \otimes c_j$$

$$= \sum_{j=2}^{m} \left[\alpha^{j,t} h_t - \frac{\alpha^{j,1}}{\alpha^{1,1}} \alpha^{1,t} h_t \right] \otimes c_j$$

$$= \sum_{j=2}^{m} \left[\sum_{t=2}^{r} \left(\alpha^{j,t} - \frac{\alpha^{j,1} \alpha^{1,t}}{\alpha^{1,1}} \right) h_t \right] \otimes c_j$$

Ergo $\hat{f}_3(c_1^{\perp})$ è contenuto in $\langle h_2, \dots, h_r \rangle$, che uno span di tensori di rango 1. Quindi \hat{f} ha rango al più r-1.

Se il rango di $g_1 \in A \otimes B$ è 1, allora possiamo tranquillamente porre $h_1 = g_1$. In questo caso $\alpha^{1,t} = 0$ per ogni t > 1 e \hat{f} assume la forma seguente, indipendentemente dalle costanti $\lambda_i \in \mathbb{C}$:

$$\hat{f} = \sum_{j=2}^{m} \sum_{t=2}^{r} \alpha^{j,t} h_t \otimes c_j = \sum_{t=2}^{t} h_t \otimes \left[\sum_{j=2}^{m} \alpha^{j,t} c_j \right].$$

Ma questo implica che $\hat{f}_3(c_1^{\perp})$ coincide con $\langle h_2, \ldots, h_r \rangle$, da cui

$$\operatorname{rk} \hat{f} \ge \operatorname{rk} \hat{f}_3 = r - 1. \qquad \Box$$

Corollario 1.15. Sia $f \in A \otimes B \otimes C$, e sia f un tensore C-conciso. Fissato un sottospazio W di C^* , allora

$$\operatorname{rk} f \ge \operatorname{minrk}(f \mod 0 \ 0 \ f_3(W)) + \dim W,$$

e l'uguaglianza si ottiene se f(W) è generato da tensori di rango 1.

Dimostrazione. Applichiamo la proposizione precedente per un numero di volte pari a $\dim W$.

Corollario 1.16. Se $f \in A \otimes B \otimes C$ è conciso, e $U \subseteq A^*$, $V \subseteq B^*$, $W \subseteq C^*$ sono sottospazi, allora

$$\operatorname{rk} f \geq \operatorname{minrk}(f \mod f(U) \ f(V) \ f(W)) + \dim U + \dim V + \dim W,$$

e se f(U), f(V), f(W) sono generati da tensori dai rango 1, vale l'uguaglianza.

2 Algebre Tensoriali

Parliamo brevemente di algebre tensoriali.

Definizione 2.1. Dato un gruppo G, un G-modulo è, in questo contesto, un $\mathbb{C}[G]$ -modulo nel senso dell'algebra commutativa.

Definizione 2.2. Se G agisce su un \mathbb{C} -spazio V e W (tramite un morfismo $G \to GL(V)$)

- (i) G agisce su V^* via $\rho^*(g) = [\rho(g)^{-1}]^{\dagger}$;
- (ii) G agisce su $V \oplus W$ via $g \cdot (v, w) = (g \cdot v, g \cdot w)$;
- (iii) G agisce su $V \otimes W$ via $g \cdot (v \otimes w) = (g \cdot v) \otimes (g \cdot w)$.

Definizione 2.3. L'algebra tensoriale (TV, \otimes) è definita come

$$TV := \bigoplus_{d > 0} V^{\otimes d}$$
.

Vogliamo definire *l'algebra simmetrica*.

Definizione 2.4. I d-tensori simmetrici sono

$$S^{d}V := \{ \alpha \in V^{\otimes d} \mid \sigma \cdot \alpha = \alpha \ \forall \sigma \in S_{d} \},\,$$

e l'algebra simmetrica è

$$SV := \bigoplus_{d \ge 0} S^d V .$$

Definiamo ora la proiezione simmetrica π_S da TV in SV:

$$\pi_S(v_1 \otimes \cdots \otimes v_d) = \frac{1}{d!} \sum_{\sigma \in S_d} \sigma \cdot (v_1 \otimes \cdots \otimes v_d).$$

Proposizione 2.5. Lo spazio S^dV è generato dall'insieme $\{v^{\otimes d} \mid v \in V\}$.

Dimostrazione. Basta osservare che

$$\sum_{\sigma \in S_d} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)} = \sum_{\substack{I \subseteq \{1, \dots, d\}\\ I \neq \emptyset}} (-1)^{d-|I|} \left[\sum_{i \in I} v_i \right]^{\otimes d},$$

e che per ogni $\alpha \in S^dV$ la somma precedente coincide con $d! \cdot \alpha$.

L'algebra SVrisulta effettivamente un algebra, grazie all'introduzione del prodotto simmetrico \odot su SV come

$$\alpha \odot \beta = \pi_S(\alpha \otimes \beta)$$
.

Osservazione. Se v_1, \dots, v_n è una base di V, una base di S^dV è data da

$$\mathcal{B}_{S^dV} = \{v_{j_1} \odot \cdots \odot v_{j_d}\}_{1 \le j_1 \le \cdots \le j_d \le n}$$

e quindi

$$\dim S^d V = \binom{n+d-1}{d}.$$

In seguito sarà molto importante parlare di decomposizione di tensori. Un esempio in quella direzione viene ai prossimi risultati.

Proposizione 2.6. Dato un tensore $f \in S^2V$ di rango r, esso ammette una decomposizione della forma

$$f = \sum_{i=1}^{r} v_i \otimes v_i .$$

Proposizione 2.7. La rappresentazione di GL(V) sullo spazio vettoriale S^2V è irriducibile.

Dimostrazione. Sia $W \subseteq S^2V$ un GL(V)-sottomodulo contenente un tensore f non nullo. Sicuramente possiamo scrivere

$$f = \sum_{i=1}^{T} v_i \otimes v_i \quad v_i \in V, \lambda_i \in \mathbb{C}.$$

con v_1, \ldots, v_r indipendenti.

Sia un morfismo $g \in GL(V)$ per cui $g(v_1) = 2v_1$ e $g(v_i) = v_i$ per ogni i > 1. Allora vale che

$$W\ni \frac{1}{3}(g\cdot f-f)=v_1\otimes v_1\,,$$

e quindi

$$S^{2}V = \langle (g \cdot v_{1}) \otimes (g \cdot v_{1}) \rangle_{g \in GL(V)} \subseteq W \qquad \Box$$

Possiamo analogamente definire un rango simmetrico.

Definizione 2.8. Il rango simmetrico di $f \in S^dV$ è

$$\operatorname{rk}_{S} f := \min\{r \in \mathbb{N} \mid f = v_{1}^{\otimes d} + \dots + v_{r}^{\otimes d}\}.$$

Sicuramente rk $f \leq \text{rk}_S f$, e vale l'uguaglianza per d=2. È una congettura se sono uguali, detta *congettura di Comon*. Nel 2018 Shitov [2] ha pensato di trovare un controesempio, smentito da sé stesso nel 2024 [1].

Proposizione 2.9. Posto $\mathbb{C}[V]$ l'algebra delle funzioni $V \to \mathbb{C}$ generata da V^* , lo spazio S^dV^* è isomorfo a $\mathbb{C}[V]_d \simeq \mathbb{C}[x_1, \dots, x_n]_d$.

Dimostrazione. La mappa che funziona è

$$\Phi \colon S^d V^* \to \mathbb{C}[V]_d, \ \phi \mapsto f_{\phi},$$

con

$$f_{\phi}(v) = \phi(v, \dots, v)$$
.

Definizione 2.10 (Waring rank). Per ogni $f \in \mathbb{C}[x_1, \dots, x_n]_d$ il rango di Waring è

$$\operatorname{rk}_S f = \min\{r \in \mathbb{N} \mid f = l_1^d + \dots + l_r^d, \ l_i \text{ forma lineare}\}.$$

Definizione 2.11. I d-tensori antisimmetrici sono

$$\Lambda^d V := \left\{ \alpha \in V^{\otimes d} \mid \sigma \cdot \alpha = \operatorname{sgn}(\sigma) \alpha \ \forall \sigma \in S_d \right\},\,$$

e l'algebra antisimmetrica è

$$\Lambda V := \bigoplus_{d \geq 0} \Lambda^d V \,.$$

Definiamo la proiezione antisimmetrica π_{Λ} come

$$\pi_{\Lambda}(v_1 \otimes \cdots \otimes v_d) = \frac{1}{d!} \sum_{\sigma \in S_d} \operatorname{sgn}(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)}.$$

Analogamente a quanto fatto prima definiamo il prodotto antisimmetrico (owedge) come

$$\alpha \wedge \beta \coloneqq \pi_{\Lambda}(\alpha \otimes \beta)$$
.

Proposizione 2.12. Un insieme finito v_1, \ldots, v_d è linearmente indipendente se e solo se

$$v_1 \wedge \cdots \wedge v_d = 0$$
.

Corollario 2.13. Una base $\mathcal{B}_{\Lambda^d V}$ di $\Lambda^d V$ è

$$\mathcal{B}_{\Lambda^d V} = \{v_{j_1} \wedge \dots \wedge v_{j_d}\}_{1 \leq j_1 < \dots < j_d \leq n}$$

e quindi

$$\dim \Lambda^d V = \binom{n}{d} \,.$$

Proposizione 2.14. Lo spazio $\Lambda^2 V$ è un GL(V)-modulo irriducibile.

3 Decomposizione di Tensori

Dati due spazi A, B, lo spazio $G := GL(A) \times (B)$ è incluso in $GL(A \otimes B)$. Dei teoremi di semplice decomposizione sono dati dai seguenti.

Proposizione 3.1. Lo spazio $S^2(A \otimes B)$ si G-decompone come

$$S^2(A \otimes B) = (S^2A \otimes S^2B) \oplus (\Lambda^2A \otimes \Lambda^2B).$$

Ed allo stesso modo $\Lambda^2(A \otimes B)$ si G-decompone come

$$\Lambda^2(A \otimes B) = (S^2 A \otimes \Lambda^2 B) \oplus (S^2 A \otimes \Lambda^2 B).$$

Gli elementi di $(\mathbb{C}^2)^{\otimes 3}$ hanno le orbite secondo $(GL_2(\mathbb{C}))^3$ che seguono la seguente tabella:

orbita	r_1	r_2	r_3	$\operatorname{rk} f$	rappresentante
\overline{A}	1	1	1	1	$a_0\otimes b_0\otimes c_0$
B_1	1	2	2	2	$a_0 \otimes b_0 \otimes c_0 + a_0 \otimes b_1 \otimes c_1$
B_2	2	1	2	2	$a_0\otimes b_0\otimes c_0+a_1\otimes b_0\otimes c_1$
B_3	2	2	1	2	$a_0\otimes b_0\otimes c_0+a_1\otimes b_1\otimes c_0$
W	2	2	2	3	$a_0 \otimes b_1 \otimes c_1 + a_1 \otimes b_0 \otimes c_1 + a_1 \otimes b_1 \otimes c_0$
G	2	2	2	2	$a_0\otimes b_0\otimes c_0+a_1\otimes b_1\otimes c_1$

4 Varietà Algebriche Tensoriali

Definizione 4.1. Sia $Z \subseteq \mathbb{P}V$ un sottoinsieme dello spazio proiettivo su V. Il cono affine è $\hat{V} := \pi^{-1}(Z)$, con π la proiezione proiettiva.

Definizione 4.2. Se X l'insieme di zeri comuni di $S \subseteq S^{\bullet}V^*$, allora poniamo X := Z(S).

Definizione 4.3. Viceversa, dato $A \subseteq \mathbb{P}V$,

$$I(A) := \{ F \in S^{\bullet}V^* \mid F(a) = 0 \ \forall a \in \hat{A} \}$$

è l'ideale di A.

Definizione 4.4. L'embedding di Segre è dato da

Seg:
$$\mathbb{P}A \times \mathbb{P}B \to \mathbb{P}(A \otimes B)$$

([a], [b]) \mapsto [a \otimes b]

L'immagine è data dalla proiezione delle matrici dim $A \times \dim B$ di rango 1, cioè dal luogo di zeri di $\Lambda^2 A^* \otimes \Lambda^2 B^* \subseteq S^2(A \otimes B)$.

Proposizione 4.5. In generale l'analoga mappa da $\mathbb{P}A_1 \times \cdots \times \mathbb{P}A_n$ a $\mathbb{P}(A_1 \otimes \cdots \otimes A_n)$ dà come immagine un'insieme chiuso.

Definizione 4.6. La *d*-mappa di Veronese è

$$v_d \colon \mathbb{P}V \to \mathbb{P}(S^dV)$$
$$[a] \mapsto [a^{\otimes d}]$$

L'immagine è costituita da $\operatorname{Seg}((\mathbb{P}V)^n) \cap \mathbb{P}(S^dV)$, e quindi è una varietà proiettiva.

Definizione 4.7. Data una mappa f da V in sé, $f^{\wedge m}$ è la naturale endomorfismo di $\Lambda^m V$. Se $m = \dim V$, $f^{\wedge m}$ è la moltiplicazione per $\det(f)$.

Definizione 4.8. La Grasmanniana è

$$Gr(r, V) := \{ [v_1 \wedge \cdots \wedge v_r] \mid v_f \in V \} \subseteq \mathbb{P}(\Lambda^r V).$$

Osserviamo che nel proiettivo un tale prodotto wedge è insensibile a cambi di base del sottospazio generato. La Grassmaniana parametrizza quindi i sottospazi

Definizione 4.9. Per ogni $\phi \in V^*$ e $v \in V$, definiamo $\phi \, \lrcorner \, v \coloneqq \phi(v)$. Per induzione se $\phi \in V^*$, $v \in V$ e $f \in \Lambda^k V$ imponiamo

$$\phi \lrcorner (v \land f) := (\phi \lrcorner v) \land f - v \land (\phi \lrcorner f).$$

Infine imponiamo $(\phi \land g) \, \lrcorner \, f \coloneqq \phi \, \lrcorner \, (g \, \lrcorner \, f).$

Proposizione 4.10. $f \in \Lambda^r V$ può essere scritta come un prodotto wedge $w_1 \wedge \cdots \wedge w_r$ se e solo se

$$(\psi \,\lrcorner\, f) \wedge f = 0 \,\, \forall \psi \in \Lambda^{r-1} V^*$$

In particolare, se

$$f = p_{i_1 \dots i_r} v^{i_1} \wedge \dots \wedge v^{i_r}$$

allora l'equazione diventa

$$\sum_{k=1}^{r+1} (-1)^k p_{i_1 \dots i_{r-1} j_k} p_{j_1 \dots j_{k-1} j_{k+1} \dots j_{r+1}} = 0,$$

per ogni scelta di multiindici (i_1, \ldots, i_k) e (j_1, \ldots, j_k) . Avendo ottenuto una equazione polinomiale, Gr(r, V) è una varietà proiettiva.

Parliamo ora di spazi tangenti.

Definizione 4.11. Sia $M \subseteq V$ un sottoinsieme e $v \in V$. Allora

$$\hat{T}_v M := \left\{ \frac{d\gamma}{dt} \Big|_{t=0} \mid \gamma \colon \mathbb{C} \to M \text{ curva liscia} \right\}$$

è lo spazio tangente.

Osserviamo che lo spazio tangente su v o su λv rimane invariato per $\lambda \in \mathbb{C}^*$.

Definizione 4.12. Sia $X \subseteq \mathbb{P}V$ una varietà proiettiva. Un punto $v \in X$ si dice liscio se esiste un insieme aperto U (di Zarinksi) su cui lo spazio tangente $\hat{T}_w X$ ha la stessa dimensione per ogni $w \in U$. L'insieme dei punti singolari è un chiuso proiettivo.

Poniamo quindi

$$\dim X := \dim(\hat{T}_v X) - 1$$

con v un punto liscio.

Proposizione 4.13. Vale che

$$\hat{T}_{v_1 \otimes \cdots \otimes v_d} \operatorname{Seg}(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_d) = \sum_{i=1}^d v_1 \otimes \cdots \otimes v_{j-1} \otimes V_j \otimes v_{j+1} \otimes \cdots \otimes v_d.$$

Proposizione 4.14. Analogamente vale che

$$\hat{T}_{[v^{\otimes d}]}v_d(\mathbb{P}V) = \{[v^{\otimes\,(d-1)}\otimes w]\mid w\in V\}\,.$$

Riferimenti bibliografici

- [1] J. Draisma. «Erratum: A Counterexample to Comon's Conjecture». In: SIAM Journal on Applied Algebra and Geometry 8.1 (2024), pp. 225–225. https://doi.org/10.1137/23M1623781.
- [2] Y. Shitov. «A Counterexample to Comon's Conjecture». In: SIAM Journal on Applied Algebra and Geometry 2.3 (2018), pp. 428–443. https://doi.org/10.1137/17M1131970.