Homicide over the past decade Project-4 Group-1 SMU Data Science Bootcamp

Meet Our Team

Project Team Student Members:

- Carlos Delarosa
- Raj Agrawal
- Ann Ly
- John Banowsky

Faculty:

- Alex Booth Instructure
- Sherhone Grant TA
- Sean Fleming SSM

AGENDA

- Introduction
- Inspiration to select data
- About Data
- Analysis
 - Website
 - Data cleaning
 - Machine-learning
 - Tableau

Project Title & Description

- Title "Homicides over the past decade"
- We have selected above as our Title / theme to perform the data analysis
- PROJECT 4 Our main purpose is to use a standard dataset and utilize various tools that we learn so far i.e. – machine learning, Tableau
 - Ability to connect to a file set
 - Ability to fetch data and organize them with various useable data frame
 - Perform supervised model / predictions
 - To use correlation and create various Bar, Donut, line charts using Tableau
- Data Collection- The Washington Post collected data on more than 52,000 criminal homicides over the past decade in 50 of the largest American cities. The data included the location of the killing, whether an arrest was made and, in most cases, basic demographic information about each victim. Reporters received data in many formats, including paper, and worked for months to clean and standardize it, comparing homicide counts and aggregate closure rates with FBI data to ensure the records were as accurate as possible.

INSPIRATION

Why did you decide to use that topic? Inspiration, etc.

- Carlos My inspiration is to analyzing a homicides dataset to investigate how victim age influences arrest outcomes in cases
- Raj To learn more about homicides dataset and related investigation, and used acquired knowledge of the data science bootcamp for the data analysis. Eventually, participate in the volunteer program to help community to serve better.
- Ann I am interested in knowing more about the shared factors among all the homicide cases.
- **John** Homicides are never a good thing. Having a better understanding of which populations are affected will help us better address homicide to protect these demographics.

DATA

Homicides – Dataset from Kaggle https://www.kaggle.com/datasets/joebeachcapital/homicides

Population Data – Datasets from US Census

https://www.census.gov/data/datasets/time-series/demo/popest/intercensal-2000-2010-cities-and-towns.html

https://www.census.gov/programs-surveys/popest/technical-documentation/research/evaluation-estimates/2020-evaluation-estimates/2010s-cities-and-towns-total.html

CENSUS DATA CLEANING

SubEst2010.csv

Range	eIndex: 81625 entri	es, 0 t	to 81624	
Data	columns (total 20	columns	5):	
#	Column	Non-Nu	ull Count	Dtype
0	SUMLEV	81625	non-null	int64
1	STATE	81625	non-null	int64
2	COUNTY	81625	non-null	int64
3	PLACE	81625	non-null	int64
4	COUSUB	81625	non-null	int64
5	NAME	81625	non-null	object
6	STNAME	81625	non-null	object
7	ESTIMATESBASE2000	81625	non-null	int64
8	POPESTIMATE2000	81625	non-null	int64
9	POPESTIMATE2001	81625	non-null	int64
10	POPESTIMATE2002	81625	non-null	int64
11	POPESTIMATE2003	81625	non-null	int64
12	POPESTIMATE2004	81625	non-null	int64
13	POPESTIMATE2005	81625	non-null	int64
14	POPESTIMATE2006	81625	non-null	int64
15	POPESTIMATE2007	81625	non-null	int64
16	POPESTIMATE2008	81625	non-null	int64
17	POPESTIMATE2009	81625	non-null	int64
18	CENSUS2010POP	81625	non-null	int64
19	POPESTIMATE2010	81625	non-null	int64
dtype	es: int64(18), obje	ct(2)		
memor	ry usage: 12.5+ MB			

SubEst2020.csv

RangeIndex: 81415 entries, 0 to 81414

Data	columns (total 24	columns):	
#	Column	Non-Null Count	Dtype
0	SUMLEV	81415 non-null	int64
1	STATE	81415 non-null	int64
2	COUNTY	81415 non-null	int64
3	PLACE	81415 non-null	int64
4	COUSUB	81415 non-null	int64
5	CONCIT	81415 non-null	int64
6	PRIMGEO_FLAG	81415 non-null	int64
7	FUNCSTAT	81415 non-null	object
8	NAME	81415 non-null	object
9	STNAME	81415 non-null	object
10	CENSUS2010POP	81415 non-null	object
11	ESTIMATESBASE2010	81415 non-null	int64
12	POPESTIMATE2010	81415 non-null	int64
13	POPESTIMATE2011	81415 non-null	int64
14	POPESTIMATE2012	81415 non-null	int64
15	POPESTIMATE2013	81415 non-null	int64
16	POPESTIMATE2014	81415 non-null	int64
17	POPESTIMATE2015	81415 non-null	int64
18	POPESTIMATE2016	81415 non-null	int64
19	POPESTIMATE2017	81415 non-null	int64
20	POPESTIMATE2018	81415 non-null	int64
21	POPESTIMATE2019	81415 non-null	int64
22	POPESTIMATE042020	81415 non-null	int64
23	POPESTIMATE2020	81415 non-null	int64
dtype	es: int64(20), obje	ect(4)	
memor	ry usage: 14.9+ MB		

all_pop_data.csv

- Dropped 2000-2006 and 2018-2020
- Changed STNAME (state name) from full name to 2-letter abbreviation
- Edited cities in the NAME column to match the 50 cities from the homicide_data.csv

 Merged the two files together using City and State.

CENSUS DATA CLEANING

	NAME	STNAME	LOCATION	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
0	Alabama	AL	Alabama, AL	4672840	4718206	4757938	4779736	4799642	4816632	4831586	4843737	4854803	4866824	4877989
1	Abbeville	AL	Abbeville, AL	2784	2742	2714	2688	2694	2645	2629	2610	2602	2587	2578
5	Adamsville	AL	Adamsville, AL	4633	4594	4558	4522	4474	4453	4430	4399	4371	4335	4304
9	Addison	AL	Addison, AL	750	752	759	758	750	745	744	742	734	734	728
13	Akron	AL	Akron, AL	395	384	369	356	347	347	344	338	338	335	332

DATA CLEANING for MACHINE LEARNING

homicide_data.csv

	uid	reported_date	victim_last	victim_first	victim_race	victim_age	victim_sex	city	state	lat	lon	disposition
0	Alb- 000001	20100504	GARCIA	JUAN	Hispanic	78	Male	Albuquerque	NM	35.095788	-106.538555	Closed without arrest
1	Alb- 000002	20100216	MONTOYA	CAMERON	Hispanic	17	Male	Albuquerque	NM	35.056810	-106.715321	Closed by arrest
2	Alb- 000003	20100601	SATTERFIELD	VIVIANA	White	15	Female	Albuquerque	NM	35.086092	-106.695568	Closed without arrest
3	Alb- 000004	20100101	MENDIOLA	CARLOS	Hispanic	32	Male	Albuquerque	NM	35.078493	-106.556094	Closed by arrest
4	Alb- 000005	20100102	MULA	VIVIAN	White	72	Female	Albuquerque	NM	35.130357	-106.580986	Closed without arrest

- Fixed spelling and typing errors in specific instances.
- Dropped victim_last and victim_first
- Dropped data that did not have full demographic information
- Changed disposition to a binary "Arrest Made" or "No Arrest"
- Split "reported_date" into year, month, day of week, and season.
- Merged city and state columns into LCOATION

Dallas, TX, Phoenix, AZ, Kansas City, MO, where dropped entirely.

Original Homicide Count: 52179 Count of Usable Data: 47478

DATA CLEANING for MACHINE LEARNING

Merged "homicide_data.csv" and "all_pop_data.csv"

- Filtered the population data to the 50 cities in homicide data.
- Used a melt function to return the populations for each city by year.

	NAME	STNAME	LOCATION	YEAR	POPULATION
0	Birmingham	AL	Birmingham, AL	2007	218880
1	Fresno	CA	Fresno, CA	2007	477659
2	Long Beach	CA	Long Beach, CA	2007	460328
3	Los Angeles	CA	Los Angeles, CA	2007	3751872
4	Oakland	CA	Oakland, CA	2007	383500

- Merged on LOCATION
- Saved as a new csv file "ml_clean_homicide_data.csv"

uid	disposition	victim_sex	victim_race	victim_age	age_range	reported_date	reported_year	reported_month	reported_weekday	season	city	state	lat	Ion	LOCATION	POPULATION
Alb-000001	No Arrest	Male	Hispanic	78	8 65+	5/4/2010	2010	0 May	Tuesday	Spring	Albuquerque	NM	35.0957885	-106.5385549	9 Albuquerque, NM	545852
Alb-000002	Arrest Made	Male	Hispanic	17	7 0-17	2/16/2010	2010	0 February	Tuesday	Winter	Albuquerque	NM	35.0568104	-106.715321	1 Albuquerque, NM	545852
Alb-000003	No Arrest	Female	White	15	0-17	6/1/2010	2010	0 June	Tuesday	Summer	Albuquerque	NM	35.086092	-106.695568	8 Albuquerque, NM	545852
Alb-000004	Arrest Made	Male	Hispanic	32	30-44	1/1/2010	2010	0 January	Friday	Winter	Albuquerque	NM	35.0784929	-106.5560938	8 Albuquerque, NM	545852

DATA CLEANING for TABLEAU

Same

- Fixed spelling and typing errors in specific instances.
- Dropped victim_last and victim_first
- Changed disposition to a binary "Arrest Made" or "No Arrest"
- Split "reported_date" into year, month, day of week, and season.
- Merged city and state columns into LCOATION

Different

- Did not drop because of incomplete demographic information
- Kept Dallas, TX, Phoenix, AZ, and Kansas City, MO
- Saved as a new csv file
 "tbl_no_drop_homicide_data.csv"
- Used the population and homicides per year to calculate homicides per 100,000 population
- Saved as a new csv file "tbl_homicide_count_per_100000.csv"

	LOCATION	reported_year	uid	POPULATION	homicides_per_100000
0	Albuquerque, NM	2010	45	545852	8.243993
1	Albuquerque, NM	2011	38	552105	6.882749
2	Albuquerque, NM	2012	46	555074	8.287183
3	Albuquerque, NM	2013	33	557547	5.918784
4	Albuquerque, NM	2014	28	557566	5.021827

PLANNING

Color palette

Mixed selection – light / gray / additional

Expected Outcome - of the data analysis

- What are at least THREE research questions you want to explore/answer in this data source?
 - How race / age data summaries
 - Homicide over a period of time
 - Census data merge with homicide data to see population / demographic
- Additional Research Questions to Answer
 - Per 100,000 rate of homicides

- Capturing the audience attention with a video background
- Respecting the Topic with the tones of color

```
<a href="/">Home</a>
   <a href="/about us">About Us </a>
   <a href="/tableau">Homicide by City</a>
   <a href="/tableau1">Demographic</a>
   <a href="/datatable">Data Table</a>
   <a href="/ml form">Arrest Prediction</a>
   <a href="/resources">Resources</a>
   <a href="/df1_profile">Data Profile</a>
 <!-- video background -->
<video autoplay muted loop id = "bgvideo">
<source src ="static/assets/background.mp4" type="video/mp4">
Your browser does not support html5 video.
</video>
</body>
```


Embedding Ydata for dataset profiling

Overview of our dataset

Calling API

```
> js > JS tableau_1.js > ♡ ready() callback > ♡ click() callback
 var viz;
 $(document).ready(function() {
     initializeViz();
     $("#pdf").click(function() {
         exportPDF();
     $("#image").click(function() {
         exportImage();
     $("#crosstab").click(function() {
         exportCrossTab();
     $("#data").click(function() { You, 6 days ago • website with tableau
         exportData();
     $("#revert").click(function() {
         revertAll();
  function initializeViz() {
     var placeholderDiv = document.getElementById("tableauViz");
     var url = "https://public.tableau.com/views/SMU_Proj4_Group1_homicides_TD2/Dashboard1";
     var options = {
         width: placeholderDiv.offsetWidth,
         height: placeholderDiv.offsetHeight,
         hideTabs: true,
         hideToolbar: true,
```

Tableau page

Prediction form Challenges

```
@app.route("/makePredictions", methods=["POST"])
def make predictions():
    content = request.json["data"]
    print(content)
    year = int(content["year"])
    age = int(content["age"])
    population = int(content["population"])
    sex = content["sex"]
    race = content["race"]
    month = content["month"]
    weekday = content["weekday"]
    season = content["season"]
    city = content["city"]
    state = content["state"]
    preds = modelHelper.makePredictions(year,age,population,sex,race,month,weekday,season,city,state)
    return(jsonify({"ok": True, "prediction": str(preds)}))
```

```
$.ajax({
   type: "POST",
   url: "/makePredictions",
   contentType: 'application/json;charset=UTF-8',
   data: JSON.stringify({ "data": payload }),
   success: function(returnedData) {
       console.log(returnedData);
       if (returnedData["prediction"] === "1") {
           $("#output").text("Arrest made!");
        } else {
           $("#output").text("No Arrest made!");
   error: function(XMLHttpRequest, textStatus, errorThrown) {
       alert("Status: " + textStatus);
       alert("Error: " + errorThrown);
```

```
inp["victim_age"] = age
inp["reported_year"] = year
inp["POPULATION"] = population
inp[f"victim_sex_{sex}"] = 1
inp[f"victim_race_{race}"] = 1
inp[f"reported_month_{month}"] = 1
inp[f"reported_weekday_{weekday}"] = 1
inp[f"season_{season}"] = 1
inp[f"city_{city}"] = 1
inp[f"state {state}"] = 1
inp = pd.DataFrame([inp])
rtn = lgbm_model.predict_proba(inp)[0]
return rtn
```

```
#Read in the data
df = pd.read_csv("ml_clean_homicide_data.csv", encoding = 'latin1')
df
```

	uid	disposition	victim_sex	victim_race	victim_age	age_range	reported_date	reported_year	reported_month	reported_weekday	season	(
0	Alb- 000001	No Arrest	Male	Hispanic	78	65+	2010-05-04	2010	May	Tuesday	Spring	Albuquer
1	Alb- 000002	Arrest Made	Male	Hispanic	17	0-17	2010-02-16	2010	February	Tuesday	Winter	Albuquero
2	Alb- 000003	No Arrest	Female	White	15	0-17	2010-06-01	2010	June	Tuesday	Summer	Albuquer
3	Alb- 000004	Arrest Made	Male	Hispanic	32	30-44	2010-01-01	2010	January	Friday	Winter	Albuquero
4	Alb- 000005	No Arrest	Female	White	72	65+	2010-01-02	2010	January	Saturday	Winter	Albuquero
47473	Was- 001380	Arrest Made	Male	Black	29	18-29	2016-09-08	2016	September	Thursday	Fall	Washing
47474	Was- 001381	No Arrest	Male	Black	19	18-29	2016-09-13	2016	September	Tuesday	Fall	Washing
47475	Was- 001382	No Arrest	Male	Black	23	18-29	2016-11-14	2016	November	Monday	Fall	Washing
47476	Was- 001383	No Arrest	Male	Black	24	18-29	2016-11-30	2016	November	Wednesday	Fall	Washing
47477	Was- 001384	Arrest Made	Male	Black	17	0-17	2016-09-01	2016	September	Thursday	Fall	Washing
17478	rows × 1	7 columns										

df1 = pd.DataFrame(df[selected_cols])

47478 rows × 11 columns

		victim_age	victim_race	victim_sex	reported_weekday	reported_month	reported_year	season	city	state	POPULATION	disposition
	0	78	Hispanic	Male	Tuesday	May	2010	Spring	Albuquerque	NM	545852	No Arrest
	1	17	Hispanic	Male	Tuesday	February	2010	Winter	Albuquerque	NM	545852	Arrest Made
	2	15	White	Female	Tuesday	June	2010	Summer	Albuquerque	NM	545852	No Arrest
	3	32	Hispanic	Male	Friday	January	2010	Winter	Albuquerque	NM	545852	Arrest Made
	4	72	White	Female	Saturday	January	2010	Winter	Albuquerque	NM	545852	No Arrest

474	73	29	Black	Male	Thursday	September	2016	Fall	Washington	DC	687576	Arrest Made
474	74	19	Black	Male	Tuesday	September	2016	Fall	Washington	DC	687576	No Arrest
474	75	23	Black	Male	Monday	November	2016	Fall	Washington	DC	687576	No Arrest
474	76	24	Black	Male	Wednesday	November	2016	Fall	Washington	DC	687576	No Arrest
474	77	17	Black	Male	Thursday	September	2016	Fall	Washington	DC	687576	Arrest Made

Read in the CSV file for machine learning

Select columns from the DF that will be use for machine learning and put them in a DataFrame

```
df1["disposition"] = df1["disposition"].apply(lambda x: 1 if x == "Arrest Made" else 0)
                                                                                                               POPULATION disposition
                 victim race victim sex reported weekday reported month reported year
                                                                February
                                                                                                                    545852
                                                                                                                    545852
                                                 Tuesday
                                                                  June
                                                                                                                     545852
                                                Saturday
                                                                January
                                                                                                                    545852
 47473
              29
                       Black
                                                Thursday
                                                              September
                                                                                                                    687576
 47474
                       Black
                                                 Tuesday
                                                              September
                                                                                                                    687576
 47475
                                                                                                                    687576
 47476
                                                                                                                    687576
 47477
47478 rows x 11 columns
#value counts for disposition
df1.disposition.value counts()
1 23220
Name: disposition, dtype: int64
```

"We have designated 'disposition' as the target variable for our machine learning task. Consequently, we transformed the values in this column into a binary format, where 1 represents 'arrest made' and 0 signifies 'no arrest'."

Count the unique values of each categorical column in the DF, followed by applying One Hot Coding to these columns.

```
# plotting the heatmap and correlation
corrs = df2.corr()
sns.heatmap(corrs)
plt.show()
                                                                                           - 1.00
            victim race Black -
             victim sex Male
                                                                                           - 0.75
 reported weekday Thursday -
   reported month December -
       reported month March -
                                                                                           - 0.50
                  season Fall -
                  city_Atlanta -
                  city Buffalo -
                                                                                            0.25
                  city Denver
                 city Houston
                                                                                            0.00
             city Los Angeles
              city_Minneapolis -
          city_Oklahoma City
                                                                                             -0.25
             city_Sacramento -
               city Savannah
             city_Washington
                     state FL ·
                     state_LA
                    state_MO
                     state NY
                     state TX
```

```
#checking the correlation between the variables and target (disposition)
abs(corrs["disposition"]).sort_values(ascending=False)
disposition
                              1.000000
city Chicago
                              0.162975
                              0.162975
state IL
victim race White
                              0.106228
victim sex Female
                              0.102491
reported weekday_Saturday
                              0.000664
reported weekday Wednesday
                              0.000546
state MN
                              0.000473
city Minneapolis
                              0.000473
city Jacksonville
                              0.000296
Name: disposition, Length: 108, dtype: float64
```

The correlation between disposition and all other variables:

- Chicago: 16%

- IL: 16%

Victim Race: white: 11%Victim sex: Female: 10%

```
# Create our train/test set
X = df2.drop(columns=["disposition"])
y = df2["disposition"]
X train, X test, y train, y test = train test split(X,
                                                    random state=42,
                                                    stratify=y, test size = 0.2)
print(X train.shape, y train.shape)
print(X_test.shape, y_test.shape)
(37982, 107) (37982,)
(9496, 107) (9496,)
def doMLClassification(model, X train, y train, X test, y test):
    # fit the model
    model.fit(X_train, y_train)
    # predict the model
    train preds = model.predict(X train)
    test_preds = model.predict(X_test)
    test proba = model.predict proba(X test)[:,1]
    # make some pretty graphs
    print("TRAINING SET METRICS")
    print(confusion_matrix(y_train, train_preds))
    print(classification report(y train, train preds))
    print()
    print("TESTING SET METRICS")
    print(confusion_matrix(y_test, test_preds))
    print(classification report(y test, test preds))
    # ROC Curve
    auc = roc auc score(y test, test proba)
    fpr, tpr, thresholds = roc curve(y test, test proba)
    plt.plot(fpr, tpr)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(F"AUC: {auc}")
    plt.show()
```

- Set "disposition" as the target variable: Y
- Create out train/test set using train_test_split function
- Fit the model

init the model knn = KNeighborsClassifier(n_neighbors=25) doMLClassification(knn, X train, y train, X test, y test) TRAINING SET METRICS [[13083 6323] [7177 11399]] precision recall f1-score 0.65 0.67 0.66 19406 0.64 0.61 0.63 18576 37982 0.64 0.64 37982 weighted avg 37982 TESTING SET METRICS [[3099 1753] [1986 2658]] precision recall f1-score 0.62 0.57 0.61 9496 accuracy macro avg 0.61 0.61 weighted avg 0.61

MACHINE LEARNING

KNN Model:

Precision

Arrest(1): 60% in testing vs. 65% in training model

No Arrest(0): 61 % vs. 65% in training model

Recall:

Arrest: 57% in testing vs. 61% in training model

No Arrest: 64% in testing vs. 67% in training model

F1: Arrest: 59% in testing vs. 63% in training model

No Arrest: 62% in testing vs. 66% in training model

Accuracy: 61% for testing model and 64% for training set.

AUC score is 64% ---- the model is performing slightly better than random guessing, but it's still not providing a strong level of discrimination between

all the classes.

```
# init the model
rf = RandomForestClassifier(random state=42)
doMLClassification(rf, X_train, y_train, X_test, y_test)
TRAINING SET METRICS
[[19300 106]
[ 157 18419]]
              precision
                           recall f1-score
                                              support
                   0.99
                             0.99
                                       0.99
                                                 19406
           1
                   0.99
                             0.99
                                       0.99
                                                18576
                                       0.99
                                                 37982
    accuracy
                   0.99
                             0.99
                                       0.99
                                                 37982
   macro avg
weighted avg
                   0.99
                             0.99
                                       0.99
                                                 37982
TESTING SET METRICS
[[2876 1976]
 [1791 2853]]
                           recall f1-score
              precision
                                              support
                   0.62
                             0.59
                                       0.60
                                                  4852
                   0.59
                             0.61
                                       0.60
                                                  4644
                                       0.60
                                                  9496
    accuracy
                   0.60
                             0.60
                                       0.60
                                                  9496
   macro avg
weighted avg
                   0.60
                                       0.60
                             0.60
                                                  9496
```


Data indicating overfitting for the training set data metrics.

Testing model's performance is very low, accuracy score of only 60% AUC 64% -- still not a good model for classification and predicting outcome.

```
#init the model
ada = AdaBoostClassifier(random state=42)
doMLClassification(ada, X train, y train, X test, y test)
TRAINING SET METRICS
[[12422 6984]
[ 7283 11293]]
              precision
                           recall f1-score
                   0.63
                             0.64
                                       0.64
                                                19406
                                       0.61
                                                18576
                   0.62
                             0.61
                                       0.62
                                                37982
    accuracy
                                       0.62
                                                37982
   macro avg
                   0.62
                             0.62
                                       0.62
                                                37982
weighted avg
                   0.62
                             0.62
TESTING SET METRICS
[[3107 1745]
[1875 2769]]
              precision
                           recall f1-score
                                       0.63
                                                  4852
                   0.62
                             0.64
                                       0.60
                                                  4644
                   0.61
                             0.60
                                       0.62
                                                  9496
    accuracy
                                                  9496
                             0.62
                                       0.62
   macro avg
                   0.62
weighted avg
                                       0.62
```


ADA Model:

Precision

Arrest(1): 62% in testing vs. 61% in training model No Arrest(0): 62 % vs. 63% in training model

Recall:

Arrest: 60% in testing vs. 61% in training model No Arrest: 64% in testing vs. 64% in training model

F1: Arrest: 60% in testing vs. 61% in training model No Arrest: 63% in testing vs. 64% in training model

Accuracy: 62% for both testing and training models
The AUC score is 67% ---- the model performs significantly
better than random guessing. This suggests that the model has
some effectiveness in making predictions.

```
# init the model
et = ExtraTreesClassifier(random_state=42)
doMLClassification(et, X_train, y_train, X_test, y_test)
TRAINING SET METRICS
[[19401 5]
 [ 258 18318]]
              precision
                           recall f1-score
                                              support
                                                19406
                   0.99
                                       0.99
                   1.00
                             0.99
                                                18576
                                       0.99
    accuracy
                                       0.99
                                                37982
                   0.99
                                       0.99
                                                37982
   macro avg
weighted avg
                   0.99
                                       0.99
                                                37982
TESTING SET METRICS
[[2842 2010]
 [1901 2743]]
              precision
                           recall f1-score
                   0.60
                             0.59
                                       0.59
                                                 4852
                   0.58
                                       0.58
                                                 4644
                                       0.59
    accuracy
   macro avg
                   0.59
                             0.59
                                       0.59
 weighted avg
                   0.59
```


ExtraTrees Model:

Training model suggest overfitting
Testing model score are low in precision, recall, f1 and accuracy.
AUC of only 62%.
Not a good model.

```
gb = GradientBoostingClassifier(random_state=42)
doMLClassification(gb, X train, y train, X test, y test)
TRAINING SET METRICS
[[12619 6787]
[ 7069 11507]]
              precision
                           recall f1-score
                             0.65
                                       0.65
                                                19406
                                                18576
                                       0.64
                                                37982
    accuracy
                             0.63
                                                37982
weighted avg
                                                37982
TESTING SET METRICS
[[3110 1742]
[1825 2819]]
              precision
                           recall f1-score
                   0.63
                             0.64
                             0.61
                                                 4644
                                       0.62
                                                 9496
                             0.62
                                       0.62
                                                 9496
   macro avg
weighted avg
```


GradientBoostingClassifier Model:

Precision

Arrest(1): 62% in testing vs. 63% in training model

No Arrest(0): 63% in both models

Recall:

Arrest: 60% in testing vs. 61% in training model

No Arrest: 64% in testing vs. 64% in training model

F1: Arrest: 61% in testing vs. 62% in training model

No Arrest: 63% in testing vs. 64% in training model

Accuracy: 62% for testing and 64% training models
The AUC score is 68% ---- the model performs significantly
better than random guessing. This suggests that the model is
effectiveness in making predictions.

```
xgb = XGBClassifier(random state=42)
doMLClassification(xgb, X train, y train, X test, y test)
TRAINING SET METRICS
[[14182 5224]
 [ 5525 13051]]
                           recall f1-score
              precision
                             0.73
                                        0.73
                                                 19406
                   0.71
                             0.70
                                                 18576
    accuracy
                                       0.72
                                                 37982
   macro avg
                   0.72
                             0.72
                                       0.72
                                                 37982
                             0.72
                                        0.72
                                                 37982
weighted avg
TESTING SET METRICS
[[3117 1735]
 [1832 2812]]
                           recall f1-score
                   0.63
                                        0.64
                                       0.61
                                                  4644
                             0.62
                   0.62
weighted avg
```


XGB

Precision

Arrest(1): 62% in testing vs. 71% in training model

No Arrest(0): 63 % vs. 72% in training model

Recall:

Arrest: 61% in testing vs. 70% in training model No Arrest: 64% in testing vs. 73% in training model

F1: Arrest: 61% in testing vs. 71% in training model No Arrest: 64% in testing vs. 71% in training model

Accuracy: 62% for testing and 72% for training models
The AUC score is 67% ---- the model performs significantly
better than random guessing. This suggests that the model has
some effectiveness in making predictions.

```
# init the model
lgbm = LGBMClassifier(random state=42)
doMLClassification(lgbm, X_train, y_train, X_test, y_test)
[LightGBM] [Warning] Found whitespace in feature names, replace with underlines
[LightGBM] [Info] Number of positive: 18576, number of negative: 19406
[LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001127 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`
           [Info] Total Bins 564
           [Info] Number of data points in the train set: 37982, number of used features: 107
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.489074 -> initscore=-0.043712
[LightGBM] [Info] Start training from score -0.043712
[[12876 6530]
  6231 12345]]
                           recall f1-score
                                              support
                             0.66
                   0.65
                             0.66
                                       0.66
                                                37982
[[3048 1804]
 [1746 2898]]
                           recall f1-score
                   0.62
                             0.62
                                       0.62
                                       0.63
                             0.63
                                       0.63
                                                 9496
```


LGBM Classifier:

Precision

Arrest(1): 62% in testing vs. 65% in training model

No Arrest(0): 64 % vs. 67% in training model

Recall:

Arrest: 62% in testing vs. 66% in training model

No Arrest: 63% in testing vs. 66% in training model

F1: Arrest: 62% in testing vs. 66% in training model

No Arrest: 63% in testing vs. 67% in training model

Accuracy: 63% for testing and 66% for training models
The AUC score is 68% ---- the model performs significantly better than random guessing. This suggests that the model has some effectiveness in making predictions.

```
import pickle

filename = 'model.pkl'

# Save the model to a file
with open(filename, 'wb') as file:
    pickle.dump(lgbm, file)
```

We picked LGBM to do hyperparameter tuning and K fold cross-validation. We also need to deploy this model for the prediction tab on our website, so we saved the model as a pickle file.

HYPER PARAMETER TUNING: GRIDSEARCHCV

from sklearn.model_selection import GridSearchCV

```
# Define the hyperparameter grid for Gridsearchcv
param_grid = {
    'n_estimators': [100, 200, 300],
    'learning_rate': [0.01, 0.1, 0.2],
    'max_depth': [3, 4],
    'colsample_bytree': [0.8, 1.0],
    'subsample': [0.8, 1.0]
}

# Initialize GridSearchCV
grid = GridSearchCV(lgbm, param_grid, cv=5, scoring='accuracy', verbose=2)

# Perform the grid search
grid_result = grid.fit(X_train, y_train)
grid_result
```

We used GridSearchCV to perform hyper parameter tuning on LGBM model. The accuracy turned out to be 63%, same as the original model.

```
print("Best_params:", grid_search.best_params_)
print("Best_estimator:" , grid_search.best_estimator_)
print("Best Score:", round(grid_search.best_score_, 2))

Best_params: {'colsample_bytree': 1.0, 'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 300, 'subsample': 0.8}
Best_estimator: LGBMClassifier(max_depth=4, n_estimators=300, random_state=42, subsample=0.8)
Best Score: 0.63
```

MACHINE LEARNING – CROSS VALIDATION, KFOLD

```
from lightgbm import LGBMClassifier
from sklearn.model_selection import cross_val_score, KFold

# Initialize the LightGBM classifier
lgbm = LGBMClassifier()

# Define the number of folds for cross-validation
num_folds = 5

# Initialize a KFold object
kf = KFold(n_splits=num_folds, shuffle=True, random_state=42)

# Perform k-fold cross-validation
cv_scores = cross_val_score(lgbm, X, y, cv=kf, scoring='accuracy')

# Print the cross-validation scores
print(f'Cross-Validation Scores: {cv_scores}')
print(f'Mean Accuracy: {cv_scores.mean()}')
```

We use Cross validation, and Kfold to calculate the average accuracy of the LGBM classifier, the result is still 63%.

Cross-Validation Scores: [0.61973463 0.63142376 0.63363521 0.62474987 0.63475513] Mean Accuracy: 0.6288597199874186

DATA VISULASIZATION - TABLEAU

DATA VISULASIZATION - TABLEAU

Tableau dashboard – second page explains demography wise distributions of the homicides across US cities. The dashboard has filters based on "Arrest" "no arrest" & a range of count of homicides

