深度神经网络的另一个视角

深度学习概述

Adept form Hung-yi Lee's tutorial

Outline

Introduction to Machine Learning

"Three Steps" for Deep Learning

Machine Learning ≈ Looking for a Function

Speech Recognition

$$f($$
 $)=$ "How are you"

Image Recognition

Playing Go

Dialogue System

$$f($$
 "Hi" $)=$ "Hello" (what the user said) (system response)

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

A set of function

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_2($$

$$)=$$
 "money"

$$f_1($$

$$f_2($$

$$) =$$
 "snake"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

function f

Training Data

Supervised Learning

function input:

function output: "monkey"

"cat"

"dog"

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

II. Three Steps for Deep Learning

Neural Network

Neuron

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

Neural Network

神经元与Logistic Regression单元

- 线性回归(Linear Regression)
 - $y = \sum_i w_i x_i + b$
- Logistic回归(Logistic Regression)
 - Logistic函数: $(-\infty, +\infty)$ $y = \frac{L}{1 + e^{-k(z-z_0)}}$

- x_1 x_2 x_3 x_4 x_3 x_4 x_4 x_5 x_4 x_5 x_4 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5
- w, b are the parameters of this neuron i.e., this logistic regression model

- Sigmoid函数(Logistic函数的特例)

$$y = \frac{1}{1 + e^{-z}}$$

- 处理二元分类问题, y为输出的概率
 - 垃圾邮件过滤、**褒贬**识别

Sigmoid函数示意图

Neural Network

Different connections lead to different network structures

weights and biases.

Weights and biases are network parameters θ

Presynaptic

一个神经网络 i.e. 多个logistic regression单元同时运行

Fully Connect Feedforward Network

Fully Connect Feedforward Network

Fully Connect Feedforward Network

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given parameters θ , define a function

Given network structure, define a function set

神经网络特长1

□可解决线性不可分问题

□如: 异或 (XOR) 问题

神经网络特长2: Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

通用近似定理:即使是二层神经网络,都可以以任意精度近似任意一个连续函数。

Deep means many hidden layers

Why Deep? Analogy

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

less gates needed

Neural network

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler

less parameters

less data?

定理 2. 存在这样的布尔函数,可以由深度为 k 的多项式复杂度的逻辑门电路表示,等价的深度为 k-1 的逻辑门电路变为指数复杂度。这里深度指从输入到输出的最长路径的长度,复杂度指逻辑门的个数。

Deep = Many hidden layers 101 layers 152 layers 22 layers 3.57% 19 layers 8 layers 7.3% 6.7% 16.4% GoogleNet **Residual Net VGG AlexNet** Taipei (2014)(2012)(2014)(2015)101

Output Layer

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Output Layer

Softmax layer as the output layer

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

Example Application

Input

with Ink \rightarrow 1 w/o ink \rightarrow 0

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

小结: 损失函数

- 损失函数(Loss Function)
 - 评估参数好坏的准则
 - 为什么不直接使用准确率等指标进行评估?
- 两种常用的损失函数
 - 均方误差(Mean Squared Error,MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

• 交叉熵(Cross-Entropy, CE)

$$CE = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{c} y_j^{(i)} \log \hat{y}_j^{(i)} \qquad \longrightarrow \qquad CE = -\frac{1}{m} \sum_{i=1}^{m} \log \hat{y}_t^{(i)}$$

负对数似然损失

Negative Log Likelihood, NLL

$$CE = -\frac{1}{m} \sum_{i=1}^{m} \log \hat{y}_t^{(i)}$$

Three Steps for Deep Learning

Step 1: define a set of function Step 2: goodness of function Step 3: pick the best function

Training Data

Preparing training data: images and their labels

The learning target is defined on the training data.

Learning Target

Ink \rightarrow 1 No ink \rightarrow 0

The learning target is

Loss

A good function should make the loss of all examples as small as possible.

Loss can be **square error** or **cross entropy** between the network output and target

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{r=1}^{R} l_r$$

As small as possible

Find *a function in function set* that
minimizes total loss L

Find the network parameters θ^* that minimize total loss L

Three Steps for Deep Learning

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

How to pick the best function

Find *network parameters* θ^* that minimize total loss L

Enumerate all possible values

E.g. speech recognition: 8 layers and 1000 neurons each layer

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* $oldsymbol{ heta}^*$ that minimize total loss L

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* θ^* that minimize total loss L Pick an initial value for w Compute $\partial L/\partial w$ **Total** $w \leftarrow w - \eta \partial L / \partial w$ Loss L Repeat η is called "learning rate" \mathcal{W}

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* $oldsymbol{ heta}^*$ that minimize total loss L

Local Minima

The value of a network parameter w

Local Minima

Gradient descent never guarantee global minima

小结: 梯度下降

- 梯度(Gradient)
 - 以向量的形式写出的对多元函数各个参数求得的偏导数
 - 是函数值增加最快的方向
 - 沿着梯度相反的方向,更加容易找到函数的极小值
- 梯度下降算法 (Gradient Descent, GD)

算法 4.1 梯度下降算法

Input: 学习率 α ; 含有 m 个样本的训练数据

Output: 优化参数 θ

- 1. 设置损失函数为 $L(f(x; \theta), y)$;
- 2. 初始化参数 θ 。
- 3. while 未达到终止条件 do
- 4. 计算梯度 $g = \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)});$
- 5. $oldsymbol{ heta} = oldsymbol{ heta} lpha oldsymbol{g}_\circ$
- 6. end
- 小批次梯度下降法(Mini-batch Gradient Descent)
 - 每次随机采样小规模的训练数据来估计梯度
 - 提高算法的运行速度

This is the "learning" of machines in deep learning

Even alpha go using this approach.

People imagine

Actually

I hope you are not too disappointed :p

Three Steps for Deep Learning

Deep Learning is so simple

Now If you want to find a function

If you have lots of function input/output (?) as training data

Next

Network structures!