Jamie Haddock

Graduate Group in Applied Mathematics, Department of Mathematics, University of California, Davis

Math/Applied Math Seminar December 4, 2015

Joint work with Jesús De Loera and Deanna Needell

OPTIMIZATION

I think about problems of the sort:

$$\min f(x)$$

s.t. $g(x) \le 0$

OPTIMIZATION

I think about problems of the sort:

$$\min f(x)$$

s.t. $g(x) \le 0$

Today we'll consider a specific form of optimization problem...

LINEAR PROGRAMS

I think about problems of the sort:

$$\min c^T x$$
s.t. $Ax < b$ (LP)

LINEAR PROGRAMS

I think about problems of the sort:

$$\min c^T x$$
s.t. $Ax < b$ (LP)

 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ and we are optimizing over $x \in \mathbb{R}^n$.

LINEAR FEASIBILITY PROBLEM

In fact, we'll consider the linear feasibility problem (LF):

LINEAR FEASIBILITY PROBLEM

In fact, we'll consider the linear feasibility problem (LF):

Find x such that $Ax \leq b$ or conclude one does not exist.

LINEAR FEASIBILITY PROBLEM

In fact, we'll consider the linear feasibility problem (LF):

Find x such that $Ax \leq b$ or conclude one does not exist.

It can be shown that (LP) and (LF) are equivalent.

LF can be interpreted as seeking a point within a (possibly nonempty) polyhedron $P = \{x | Ax \le b\}$:

PROJECTION METHODS

MOTZKIN'S RELAXATION METHOD(S)

METHOD

Suppose $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $P := \{x \in \mathbb{R}^n : Ax \leq b\}$ is nonempty. Fix $0 < \lambda \le 2$. Given $x_0 \in \mathbb{R}^n$, iteratively construct approximations to P in the following way:

- 1. If x_k is feasible, stop.
- 2. Choose $i_k \in [m]$ as $i_k := \operatorname{argmax} a_i^T x_{k-1} b_i$. $i \in [m]$
- 3. Define $x_k := x_{k-1} \lambda \frac{a_{i_k}^T x_{k-1} b_{i_k}}{||a_{i_k}||^2} a_{i_k}$.
- 4. Repeat.

METHODS 00000000

MOTZKIN'S METHOD

METHOD

Suppose $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $P := \{x \in \mathbb{R}^n : Ax \leq b\}$ is nonempty. Given $x_0 \in \mathbb{R}^n$, iteratively construct approximations to P in the following way:

- 1. If x_k is feasible, stop.
- 2. Choose $i_k \in [m]$ with probability $\frac{||a_{i_k}||^2}{||A||_F^2}$.
- 3. Define $x_k := x_{k-1} \frac{(a_{i_k}^T x_{k-1} b_{i_k})^+}{\|a_{i_k}\|^2} a_{i_k}$.
- 4. Repeat.

Comparison of the Methods

Pro: convergence produces monotone decreasing distance

sequence

Con: computationally expensive for large systems

Kaczmarz Method

Pro: computationally inexpensive, able to analyze the expected

convergence rate

Con: slow convergence near the polyhedral solution set

METHOD (SKMM)

Suppose $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $P := \{x \in \mathbb{R}^n : Ax \leq b\}$ is nonempty. Fix $0 < \lambda \leq 2$. Given $x_0 \in \mathbb{R}^n$, iteratively construct approximations to P in the following way:

- 1. If x_k is feasible, stop.
- 2. Choose $\tau_k \subset [m]$ to be a sample of size β constraints chosen uniformly at random from among the rows of A.
- 3. From among these β rows, choose $i_k := \underset{i \in \tau_k}{\operatorname{argmax}} a_i^T x_{k-1} b_i$.
- 4. Define $x_k := x_{k-1} \lambda \frac{(a_{i_k}^T x_{k-1} b_{i_k})^+}{\|a_{i_k}\|^2} a_{i_k}$.
- 5. Repeat.

Generalized Method

Note that both previous methods are captured by the class of SKMM methods:

GENERALIZED METHOD

Note that both previous methods are captured by the class of SKMM methods:

1. The Kaczmarz method is SKMM where the sample size, $\beta=1$ and the relaxation parameter, $\lambda=1$.

GENERALIZED METHOD

Note that both previous methods are captured by the class of SKMM methods:

- 1. The Kaczmarz method is SKMM where the sample size, $\beta=1$ and the relaxation parameter, $\lambda=1$.
- 2. Motzkin's Relaxation methods are SKMM where the sample size, $\beta = m$.

EXPERIMENTAL RESULTS

THEOREM (AGMON)

For a normalized system, $||a_i|| = 1$ for all i = 1, ..., m, if the feasible region, $P := \{x | Ax \leq b\}$, is nonempty then the relaxation methods converges linearly:

$$d(x_k, P)^2 \le \left(1 - \frac{2\lambda - \lambda^2}{mL_2^2}\right)^k d(x_0, P)^2.$$

THEOREM (LEWIS, LEVENTHAL)

If the feasible region, $P := \{x | Ax \leq b\}$, is nonempty then the Randomized Kaczmarz method with relaxation parameter λ converges linearly in expectation:

$$\mathbb{E}[d(x_k, P)^2] \le \left(1 - \frac{2\lambda - \lambda^2}{\|A\|_F^2 L_2^2}\right)^k d(x_0, P)^2.$$

SKM METHOD CONVERGENCE RATE

THEOREM (DE LOERA, H., NEEDELL)

If the feasible region (for normalized A) is nonempty, then the SKM methods with samples of size β converges at least linearly in expectation: In each iteration,

$$\mathbb{E}[d(x_k, P)^2] \le \left(1 - \frac{2\lambda - \lambda^2}{S_{k-1}L_2^2}\right) d(x_{k-1}, P)^2$$

where $S_{k-1} = \max\{m - s_{k-1}, m - \beta + 1\}$ and s_{k-1} is the number of constraints satisfied by x_{k-1} . Clearly then,

$$\mathbb{E}[d(x_k, P)^2] \le \left(1 - \frac{2\lambda - \lambda^2}{mL_2^2}\right)^k d(x_0, P)^2.$$

IMPROVING THE RATE:

LEMMA

If the sequence generated by an SKM method, $\{x_k\}$, converges to P (without terminating) then $\{x_k\}$ converges to a unique, inclusion-minimal F_{τ^*} , some face of P.

Convergence Rate

IMPROVING THE RATE:

Lemma

There exists K after which the only constraints violated by x_k for $k \geq K$ are those which define or include F_{τ^*} , the unique, inclusion-minimal face to which the iterates are converging, i.e. if $a_i^T x_k > b_j$ for $k \geq K$ then $j \in \tau^*$ and $F_{\tau^*} \subset \{x | a_i^T x = b_j\}$.

IMPROVING THE RATE:

IMPROVED RATE

THEOREM (DE LOERA, H., NEEDELL)

If the feasible region, $P = \{x | Ax \leq b\}$ is generic and nonempty (for normalized A), then an SKM method with samples of size $\beta \leq m-n$ is guaranteed an increased convergence rate after some K:

$$\mathbb{E}[d(x_k, P)^2] \le \left(1 - \frac{2\lambda - \lambda^2}{mL_2^2}\right)^K \left(1 - \frac{2\lambda - \lambda^2}{(m - \beta + 1)L_2^2}\right)^{k - K} d(x_0, P)^2.$$

FINITENESS OF MOTZKIN'S METHOD

THEOREM (TELGEN)

Either the relaxation method* detects feasibility of the system, $Ax \leq b$ (with A normalized), within $k = \left\lceil \frac{2^{4L}}{n\lambda(2-\lambda)} \right\rceil$ iterations or the system is infeasible.

*with $x_0 = 0$

EXPECTED FINITENESS OF SKM METHODS

THEOREM (DE LOERA, H., NEEDELL)

If the system, $Ax \leq b$ is feasible, then with high probability the Sampling Kaczmarz-Motzkin method* with relaxation parameter $0 < \lambda < 2$ will detect feasibility within a given number of steps.

*with $x_0 = 0$

TERMINATION OF MOTZKIN'S REFLECTION METHOD

THEOREM (MOTZKIN, SCHOENBERG)

When $P = \{x | Ax \leq b\}$ is full dimensional, then Motzkin's method with $\lambda = 2$ will terminate with a solution.

TERMINATION OF SKM REFLECTION METHOD

THEOREM (DE LOERA, H., NEEDELL)

When $P = \{x | Ax \leq b\}$ is full dimensional, then the SKM methods with $\lambda = 2$ will terminate with a solution.

1. Provide a smoothed analysis for the SKM methods.

- 1. Provide a smoothed analysis for the SKM methods.
- 2. It is well known that the Random Kaczmarz update step is equivalent to the coordinate descent update step applied to the dual problem. I will explore connections of SKMM to variants of randomized coordinate descent in the dual variable space.

- 1. Provide a smoothed analysis for the SKM methods.
- 2. It is well known that the Random Kaczmarz update step is equivalent to the coordinate descent update step applied to the dual problem. I will explore connections of SKMM to variants of randomized coordinate descent in the dual variable space.
- 3. Provide theoretical guidance for selection of the optimal sample size, β , and optimal overshooting parameter, λ .

ACKNOWLEDGEMENTS

Thanks to you for attending!

Are there any questions?

References I

Kaczmarz, S. (1937).

Angenaherte auflosung von systemen linearer gleichungen.

Bull.Internat.Acad.Polon.Sci.Lettres A, pages 335-357.

Leventhal, D. and Lewis, A. S. (2010).

Randomized methods for linear constraints: convergence rates and conditioning.

Math. Oper. Res., 35(3):641-654.

65F10 (15A39 65K05 90C25); 2724068 (2012a:65083); Raimundo J. B. de Sampaio.

Motzkin, T. S. and Schoenberg, I. J. (1954).

The relaxation method for linear inequalities.

Canadian J. Math., 6:393-404.

Needell, D. (2010).

Randomized kaczmarz solver for noisy linear systems.

BIT, 50(2):395-403.

- ▶ Needell, D., Sbrero, N., and Ward, R. (2013).
 - Stochastic gradient descent and the randomized kaczmarz algorithm.
 - submitted.
- Needell, D. and Tropp, J. A. (2013).
 - Paved with good intentions: Analysis of a randomized block kaczmarz method.
 - Linear Algebra Appl.
- ► Schrijver, A. (1986).
 - Theory of linear and integer programming.
 - Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Ltd., Chichester.
 - A Wiley-Interscience Publication.
- Strohmer, T. and Vershynin, R. (2009).
 - A randomized kaczmarz algorithm with exponential convergence.
 - J. Fourier Anal. Appl., 15:262-278.