实验八: 74LS181 芯片功能测试

- 一、 实验目的
- 1. 了解 74LS181 芯片引脚和功能
- 2. 连接电路简单的验证 74LS181 的一些功能
- 3. 尝试设计电路使用 74LS181, 让 8421 编码转变为余三码

二、实验器材

实验箱、74LS181 芯片、导线若干

三、实验原理

741s181引脚图

ALU(算术逻辑单元)能进行多种算术运算和逻辑运算。一个4位的ALU—74LS181运算功能发生器能进行16种算术运算和逻辑运算。功能表如下:

	方式			M=1 逻辑运算	M=0 算术运算		
S3	S2	S1	S0	逻辑运算	CN=1 (无进位)	CN=0 (有进位)	
0	0	0	0	F=/A	F=A	F=A 加 1	
0	0	0	1	F=/ (A+B)	F=A+B	F=(A+B)加 1	
0	0	1	0	F=(/A)B	F=A+/B	F=(A+/B)加1	
0	0	1	1	F=0	F=负 1	F=0	
0	1	0	0	F=/ (AB)	F=A 加 A (/B)	F=A 加 A/B 加 1	
0	1	0	1	F=/B	F=(A+B)加 A/B	F=(A+B)加 A/B 加 1	
0	1	1	0	F=A⊕B	F=A 减 B 减 1	F=A 减 B	
0	1	1	1	F=A/B	F=A(/B)减1	F=A (/B)	
1	0	0	0	F=/A+B	F=A 加 AB	F=A 加 AB 加 1	
1	0	0	1	F=/ (A⊕B)	F=A 加 B	F=A 加 B 加 1	
1	0	1	0	F=B	F=(A+/B)加AB	F=(A+/B)加 AB 加 1	
1	0	1	1	F=AB	F=AB减1	F=AB	
1	1	0	0	F=1	F=A 加 A	F=A 加 A 加 1	
1	1	0	1	F=A+/B	F=(A+B)加 A	F=(A+B)加A加1	
1	1	1	0	F=A+B	F=(A+/B)加 A	F=(A+/B)加A加1	
1	1	1	1	F=A	F=A 减 1	F=A	

(上表中的"/"表示求反)

具体功能表

四、实验内容

- 1. 验证其算数运算功能(A+B)
- 2. 验证其逻辑运算功能 (A|B)
- 3. 设计电路将8421编码转变为余三码实验电路图:

五、 实验结果

1. 1001 加法运算(这里的加数,被加数和 F3-F0 没有取反)

输入信号	输出信号				
控制信号1	控制信号 2	加数	被加数	低位进位	F3-F0, CN+4=0

				~~~ · · · · · · · · · · · · · · · · · ·	表示有进位
s3-s0	M	A3-A0	B3-B0	CN=0 有进 位	CN+4F3F2F1F0
	0	0000	1100	0	1 1101
		0010	1100	0	1 1111
		0011	1100	0	0 0000
		1000	1100	0	0 0100
		0011	1100	1	1 1111
1001		0011	1101	0	0 0001
		0000	0011	1余三码	1 0011
		0001	0011	1	1 0100
		0010	0011	1	1 0101
		0011	0011	1	1 0110
		0100	0011	1	1 0111

功能满足: F=A+B+/CN

# 2. 1110 逻辑运算

输入信号	输出信号				
控制信号	控制信号	加数	被加数	CN	F3-F0
1	2				
S3-S0	M	A3-A0	B3-B0	CN=O 则加 1	
1110	1	0000	1111	1	1111
		1001	0001	1	1001

功能满足: Fn = An 或 Bn

3. 8421 码转余三码,只需要使用让 S3S2S1S0=1001, 实现加法器, M=0, 让一个加数为 0011, 另外一个加数为 8421 码,输出就是余 三码(注意这里实际输入时是低电平有效)

#### 六、 实验收获

- 1. 掌握了 74LS181 芯片的功能和用法
- 2. 验证了 74LS181 芯片的部分逻辑功能
- 3. 尝试设计使用 74LS181 实现 8421 编码到余三码的转换
- 4. 提高了动手能力和数电的思维能力