Solutions to Mike's Compendium of Problems

D. Zack Garza

Tuesday 4th August, 2020

Contents

1	Point-Set 2			
	1.1	2	2	
	1.2	4	3	
	1.3	6	5	
	1.4	8	5	
		1.4.1 Proof 1	5	
		1.4.2 Proof 2	3	
		1.4.3 Proof of Tube Lemma (Todo: Check)	3	
	1.5	9	7	
	1.6	10	7	
		1.6.1 Proof 1	7	
		1.6.2 Proof 2?)	
	1.7	11)	
	1.8	12 (Todo: Not Finished))	
	1.9	14)	
		1.9.1 Proof 1)	
		1.9.2 Proof 2?)	
	1.10	16)	
		1.10.1 Proof 1)	
		1.10.2 Proof 2	L	
	1.11	18	2	
	1.12	19	2	
	1.13	20	3	
	1.14	23	1	
	1.15	27	1	
		1.15.1 a	1	
		1.15.2 b	1	
	1.16		5	
	1.17			
		1.17.1 a	5	
		1.17.2 b	5	
	1.18		5	
	1.19			
	1.20			

	1.21 44	16
	1.21.1 a	
	1.21.2 b	17
2	Fundamental Group	17
_	2.1 1	17
_		
3	Covering Spaces	18
	3.1 1b	18 18
	3.2 1c	18
	3.4 7	19
	3.5 8	19
4	Cell Complexes	21
5	Homology and Degree Theory	21
6	Surfaces	21
7	Fixed Points	21
8	Miscellaneous Algebraic Topology	21
•	8.1 1 (Todo)	21
	8.2 2 (Todo)	21
	8.3 3	21
	8.4 4	21
9	Extra Problem Solutions	21
9	9.1 Point Set	
	9.1.1 Connectedness	21
	9.2 From Problem Sessions	
	9.2.1 1	22
	9.2.2 2	22
	9.2.3 3	22
	9.2.4 4	
	$9.2.5$ $6 \dots $	24
10	Spring 2019	24
	10.1 Problem 1	24
	10.2 Problem 2	24
	10.3 7	25

1 Point-Set

1.1 2

See Munkres p.164, especially for (ii).

- i. See definitions in review doc.
- ii. Direct proof:
- Let $\{U_i \mid j \in J\} \Rightarrow X$; then $0 \in U_j$ for some $j \in J$.
- In the subspace topology, U_i is given by some $V \in \tau(\mathbb{R})$ such that $V \cap X = U_i$
 - A basis for the subspace topology on \mathbb{R} is open intervals, so write V as a union of open intervals $V = \bigcup I_k$.
 - Since $0 \in U_j$, $0 \in I_k$ for some k.
- Since I_k is an interval, it contains infinitely many points of the form $x_n = \frac{1}{n} \in X$
- Then $I_k \cap X \subset U_j$ contains infinitely many such points.
- So there are only finitely many points in $X \setminus U_j$, each of which is in $U_{j(n)}$ for some $j(n) \in J$ depending on n.
- So U_j and the finitely many $U_{j(n)}$ form a finite subcover of X.
- iii. Todo: Need direct proof.

1.2 4

Statement: show that the *Lebesgue number* is well-defined for compact metric spaces.

Note: this is a question about the Lebesgue Number. See Wikipedia for detailed proof.

- Write $U = \{U_i \mid i \in I\}$, then $X \subseteq \bigcup_{i \in I} U_i$. Need to construct a $\delta > 0$.
- By compactness of X, choose a finite subcover U_1, \dots, U_n .
- Define the distance between a point x and a set $Y \subset X$: $d(x,Y) = \inf_{y \in Y} d(x,y)$.
 - Claim: the function $d(\cdot, Y): X \longrightarrow \mathbb{R}$ is continuous for a fixed set.
 - Proof: Todo, not obvious.

• Define a function

$$f: X \longrightarrow \mathbb{R}$$

 $x \mapsto \frac{1}{n} \sum_{i=1}^{n} d(x, X \setminus U_i).$

- Note this is a sum of continuous functions and thus continuous.
- Claim:

$$\delta \coloneqq \inf_{x \in X} f(x) = \min_{x \in X} f(x) = f(x_{\min}) > 0$$

suffices.

- That the infimum is a minimum: f is a continuous function on a compact set, apply the extreme value theorem: it attains its minimum.
- That $\delta > 0$: otherwise, $\delta = 0 \implies \exists x_0 \text{ such that } d(x_0, X \setminus U_i) = 0 \text{ for all } i$.
 - * Forces $x_0 \in X \setminus U_i$ for all i, but $X \setminus \bigcup U_i = \emptyset$ since the U_i cover X.
- That it satisfies the Lebesgue condition:

$$\forall x \in X, \exists i \text{ such that } B_{\delta}(x) \subset U_i$$

- * Let $B_{\delta}(x) \ni x$; then by minimality $f(x) \ge \delta$.
- * Thus it can not be the case that $d(x, X \setminus U_i) < \delta$ for every i, otherwise

$$f(x) \le \frac{1}{n}(\delta + \dots + \delta) = \frac{n\delta}{n} = \delta$$

- * So there is some particular i such that $d(x, X \setminus U_i) \geq \delta$.
- * But then $B_{\delta} \subseteq U_i$ as desired.

1.3 6

Facts used:

- Cantor's Intersection Theorem
- Bases for standard topology on \mathbb{R} .
- Definition of compactness
- Toward a contradiction, let $\{U_{\alpha}\} \rightrightarrows [0,1]$ be an open cover with no finite subcover.
- Then either $[0, \frac{1}{2}]$ or $[\frac{1}{2}, 1]$ has no finite subcover; WLOG assume it is $[0, \frac{1}{2}]$.
 Then either $[0, \frac{1}{4}]$ or $[\frac{1}{4}, \frac{1}{2}]$ has no finite subcover
- Inductively defining $[a_n, b_n]$ this way yields a sequence of closed, bounded, nested intervals (each with no finite subcover) with diam($[a_n, b_n]$) $\leq \frac{1}{2^n} \longrightarrow 0$, so Cantor's Nested Interval theorem applies and the intersection contains exactly one point $p \in [0,1]$.
- Since $p \in [0, 1], p \in U_{\alpha}$ for some α .
- Since a basis for $\tau(\mathbb{R})$ is given by open intervals, we can find an $\varepsilon > 0$ such that $(p-\varepsilon, p+\varepsilon) \subseteq U_{\alpha}$
- Then if $\frac{1}{2^N} < \varepsilon$, for $n \ge N$ we have

$$[a_n, b_n] \subseteq (p - \varepsilon, p + \varepsilon) \subseteq U_{\alpha}.$$

• But then $U_{\alpha} \rightrightarrows [a_n, b_n]$, yielding a finite subcover of $[a_n, b_n]$, a contradiction.

1.4 8

Topic: proof of the tube lemma.

Statement: show $X, Y \in \text{Top}_{\text{compact}} \iff X \times Y \in \text{Top}_{\text{compact}}$

1.4.1 Proof 1

⇐=:

- By universal properties, the product $X \times Y$ is equipped with continuous projections
- The continuous image of a compact set is compact, and $\pi_1(X \times Y) = X, p_2(X \times Y) = Y$
- So X, Y are compact.

- Let {U_j | j ∈ J} ⇒ X × Y.
 Fix x₀ ∈ X, the slice {x₀} × Y is compact and can be covered by finitely many elements $\left\{ U_j \mid j \leq m \right\} \rightrightarrows \left\{ x_0 \right\} \times Y.$

- Sum: write
$$N = \bigcup_{j=1}^{m} U_j$$
; then $\{x_0\} \times Y \subset N$.

- Apply the tube lemma to N: produce $\{x_0\} \times Y \in W \times Y \subset N$; then $\{U_j \mid j \leq m\} \Rightarrow W \times Y$.
- Now let $x \in X$ vary: for each $x \in X$, produce $W_x \times Y$ as above, then $\{W_x \times Y \mid x \in X\} \rightrightarrows X$.

 By above argument, every tube $W_x \times Y$ can be covered by *finitely* many U_j .
- Since $\{W_x \mid x \in X\} \rightrightarrows X$ and X is compact, produce a finite subset $\{W_k \mid k \leq m'\} \rightrightarrows X$.
- Then $\{W_k \times Y \mid k \leq m'\} \rightrightarrows X \times Y$; the claim is that it is a finite cover.
 - Finitely many k
 - For each k, the tube $W_k \times Y$ is covered by finitely by U_i
 - And finite \times finite = finite.

Shorter mnemonic:

19. U It is sufficient to consider a cover consisting of elementary sets. Since Y is compact, each fiber $x \times Y$ has a finite subcovering $\{U_i^x \times V_i^x\}$. Put $W^x = \cap U_i^x$. Since X is compact, the cover $\{W^x\}_{x \in X}$ has a finite subcovering W^{x_j} . Then $\{U_i^{x_j} \times V_i^{x_j}\}$ is the required finite subcovering.

1.4.2 Proof 2

Let π_X, π_Y denote the canonical projections, which we can note are continuous and preserve open sets.

 \implies : Suppose $X \times Y$ is compact, and let $\{U_{\alpha}\}, \{V_{\beta}\}$ be open covers of X and Y respectively.

Let $T_{\alpha\beta} = U_{\alpha} \times V_{\beta}$; then $\{T_{\alpha\beta}\}$ is an open cover of $X \times Y$. So there is a finite subcover $\{T_{ij}\}$, $\{\pi_X(T_{ij})\}$ is an open cover of X, and similarly for Y. So both X,Y are compact.

 \Leftarrow : Suppose X and Y are compact, and let $U_{\alpha} \rightrightarrows X \times Y$ be an open cover. Let $\pi_Y : X \times Y \longrightarrow Y$ be the canonical projection; then $\{\pi_Y(U_{\alpha})\} \rightrightarrows Y$ and by compactness of Y there is a finite subcover of the form $\{\pi_Y(U_i) \mid 1 \leq i \leq n\}$. Then $\{V_{x,i} \coloneqq \{x\} \times U_i\}$ is an open cover of $\{x\} \times Y$ for any fixed x.

So if we fix an $x \in X$, we can let $V_{x,i} \rightrightarrows \{x\} \times Y$ be any finite subcollection covering this slice. By the Tube Lemma, there is an open set W_x such that $\{x\} \times Y \subset W_x \times Y \subset \bigcup V_{x,i} = \{x\} \times Y$.

Then $\{W_x\} \rightrightarrows X$ as x varies is an open cover of X, and by compactness of X, there are finitely many $x_j \in X$ such that $W_{x_j} \rightrightarrows X$. But then $X \times Y = \bigcup_j W_{x_j} \times Y = \bigcup_j \bigcup_i W_{x_j} \times V_{x_j,i} \subset \bigcup_{\alpha} U_{\alpha}$ is a finite cover.

1.4.3 Proof of Tube Lemma (Todo: Check)

Proof of Tube Lemma:

- Let $\{U_j \times V_j \mid j \in J\} \rightrightarrows X \times Y$.
- Fix a point $x_0 \in X$, then $\{x_0\} \times Y \subset N$ for some open set N.
- By the tube lemma, there is a $U^x \subset X$ such that the tube $U^x \times Y \subset N$.

- Since $\{x_0\} \times Y \cong Y$ which is compact, there is a finite subcover $\{U_j \times V_j \mid j \leq n\} \Rightarrow \{x_0\} \times Y$.
- "Integrate the X": write

$$W = \bigcap_{j=1}^{n} U_j,$$

then $x_0 \in W$ and W is a finite intersection of open sets and thus open.

- Claim: $\{U_j \times V_j \mid j \leq n\} \rightrightarrows W \times Y$
 - Let $(x,y) \in W \times Y$; want to show $(x,y) \in U_j \times V_j$ for some $j \leq n$.
 - Then $(x_0, y) \in \{x_0\} \times Y$ is on the same horizontal line
 - $-(x_0,y) \in U_i \times V_i$ for some j by construction
 - So $y \in V_j$ for this j
 - Since $x \in W$, $x \in U_j$ for every j, thus $x \in U_j$.
 - So $(x,y) \in U_i \times V_i$

1.5 9

1.6 10

1.6.1 Proof 1

X is connected:

- Write $X = L \coprod G$ where $L = \{0\} \times [-1, 1]$ and $G = \{\Gamma(\sin(x)) \mid x \in (0, 1]\}$ is the graph of $\sin(x)$.
- $L \cong [0,1]$ which is connected
 - Claim: Every interval is connected (todo)
- Claim: G is connected (i.e. as the graph of a continuous function on a connected set)
 - The function

$$f: (0,1] \longrightarrow [-1,1]$$

 $x \mapsto \sin(x)$

is continuous (how to prove?)

- Products of continuous functions are continuous iff all of the components are continuous.
- Claim: The diagonal map $\Delta: Y \longrightarrow Y \times Y$ where $\Delta(t) = (t, t)$ is continuous for any Y since $\Delta = (\mathrm{id}, \mathrm{id})$
 - * Product of identity functions, which are continuous.
- The composition of continuous function is continuous, therefore

$$F: (0,1] \xrightarrow{\Delta} (0,1]^2 \xrightarrow{(\mathrm{id},f)} (0,1] \times [-1,1]$$
$$t \mapsto (t,t) \mapsto (t,f(t))$$

- Then G = F((0,1]) is the continuous image of a connected set and thus connected.
- Claim: X is connected
 - Suppose there is a disconnecting cover $X = A \coprod B$ such that $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ and $A, B \neq \emptyset$.
 - WLOG let $(x, \sin(x)) \in B$ for x > 0 (otherwise just relabeling A, B)
 - Claim: B = G

* It can't be the case that A intersects G: otherwise

$$X = A \coprod B \implies G = (A \bigcap G) \coprod (B \bigcap V)$$

disconnects G. So $A \cap G = \emptyset$, forcing $A \subseteq L$

- * Similarly L can not be disconnected, so $B \cap L = \emptyset$ forcing $B \subset G$
- * So $A \subset L$ and $B \subset G$, and since $X = A \coprod B$, this forces A = L and B = G.
- But any open set U in the subspace topology $L \subset \mathbb{R}^2$ (generated by open balls) containing $(0,0) \in L$ is the restriction of a ball $V \subset \mathbb{R}^2$ of radius r > 0, i.e. $U = V \cap X$.
 - * But any such ball contains points of G:

$$n \gg 0 \implies \frac{1}{n\pi} < r \implies \exists g \in G \text{ s.t. } g \in U.$$

- * So $U \bigcap L \bigcap G \neq \emptyset$, contradicting $L \bigcap G = \emptyset$.
- Claim: X is *not* path-connected.
 - Todo: "can't get from L to G in finite time".
 - Toward a contradiction, choose a continuous function $f: I \longrightarrow X$ with $f(0) \in G$ and $f(1) \in L$.
 - * Since $L \cong [0,1]$, use path-connectedness to create a path $f(1) \longrightarrow (0,1)$
 - * Concatenate paths and reparameterize to obtain $f(1) = (0,1) \in L \subset \mathbb{R}^2$
 - Let $\varepsilon = \frac{1}{2}$; by continuity there exists a $\delta \in I$ such that

$$t \in B_{\delta}(1) \subset I \implies f(t) \in B_{\varepsilon}(\mathbf{0}) \in X$$

- Using the fact that $[1 \delta, 1]$ is connected, $f([1 \delta, 1]) \subset X$ is connected.
- Let $f(1-\delta) = \mathbf{x}_0 = (x_0, y_0) \subset X \subset \mathbb{R}^2$.
- Define a composite map

$$F: [0,1] \longrightarrow \mathbb{R}F \qquad \qquad := \mathfrak{p}_{x-\mathrm{axis}} \circ f.$$

- * F is continuous as a composition of continuous functions.
- Then $F([1-\delta,1]) \subset \mathbb{R}$ is connected and thus must be an interval (a,b)
- Since $f(1) = \mathbf{0}$ which has x-component zero, $[0, b] \subset (a, b)$.
- Since $f(1-\delta) = \mathbf{x}$, $F(\mathbf{x}) = x_0$ and this $[0, x_0] \subset (a, b)$.
- Thus for all $x \in (0, x_0]$ there exists a $t \in [1 \delta, 1]$ such that $f(t) = (x, \sin(\frac{1}{x}))$.
- Now toward the contradiction, choose $x = \frac{1}{2n\pi \pi/2} \in \mathbb{R}$ with n large enough such that $x \in (0, x_0)$.
 - * Note that $\sin\left(\frac{1}{x}\right) = -1$ by construction.
 - * Apply the previous statement: there exists a t such that $f(t) = (x, \sin\left(\frac{1}{x}\right)) = (x, -1)$.
 - * But then

$$||f(t) - f(x)|| = ||(x, -1) - (0, 1)|| = ||(x, 2)|| > \frac{1}{2},$$

contradicting continuity of f.

1.6.2 Proof 2?

Let $X = A \bigcup B$ with $A = \{(0, y) \mid y \in [-1, 1]\}$ and $B = \{(x, \sin(1/x)) \mid x \in (0, 1]\}$. Since B is the graph of a continuous function, which is always connected. Moreover, $X = \overline{A}$, and the closure of a connected set is still connected.

Alternative direct argument: the subspace $X' = B \bigcup \{ \mathbf{0} \}$ is not connected. If it were, write $X' = U \coprod V$, where wlog $\mathbf{0} \in U$. Then there is an open such that $\mathbf{0} \in N_r(\mathbf{0}) \subset U$. But any neighborhood about zero intersects B, so we must have $V \subset B$ as a strict inclusion. But then $U \cap B$ and V disconnects B, a connected set, which is a contradiction.

To see that X is not path-connected, suppose toward a contradiction that there is a continuous function $f: I \longrightarrow X \subset \mathbb{R}^2$. In particular, f is continuous at **0**, and so

$$\forall \varepsilon \quad \exists \delta \mid \|\mathbf{x}\| < \delta \implies \|f(\mathbf{x})\| < \varepsilon.$$

where the norm is the standard Euclidean norm.

However, we can pick $\varepsilon < 1$, say, and consider points of the form $\mathbf{x}_n = (\frac{1}{2n\pi}, 0)$. In particular, we can pick n large enough such that $\|\mathbf{x}_n\|$ is as small as we like, whereas $\|f(\mathbf{x}_n)\| = 1 > \varepsilon$ for all n, a contradiction.

1.7 11

Consider the (continuous) projection $\pi: \mathbb{R}^2 \longrightarrow \mathbb{RP}^1$ given by $(x,y) \mapsto [y/x,1]$ in homogeneous coordinates. (I.e. this sends points to lines through the origin with rational slope).

Note that the image of π is $\mathbb{RP}^1 \setminus \{\infty\}$, which is homeomorphic to \mathbb{R} .

If we now define $f = \pi|_X$, we have $f(X) \to \mathbb{Q} \subset \mathbb{R}$. If X were connected, then f(X) would also be connected, but $\mathbb{Q} \subset \mathbb{R}$ is disconnected, a contradiction.

1.8 12 (Todo: Not Finished)

- Using the fact that $[0, \infty) \subset \mathbb{R}$ is Hausdorff, any retract must be closed, so any closed interval $[\varepsilon, N]$ for $0 \le \varepsilon \le N \le \infty$.
 - Note that $\varepsilon = N$ yields all one point sets $\{x_0\}$ for $x_0 \ge 0$.
- No finite discrete sets occur, since the retract of a connected set is connected.
- '

1.9 14

1.9.1 Proof 1

- Take two connected sets X, Y; then there exists $p \in X \cap Y$.
- Toward a contradiction: write $X \bigcup Y = A \coprod B$ with both $A, B \subset A \coprod B$ open.
- Since $p \in X \bigcup Y = A \coprod B$, WLOG $p \in A$. We will show B must be empty.

- Claim: $A \cap X$ is clopen in X.
 - $-A\bigcap X$ is open in X: ?
 - $-A\bigcap X$ is closed in X: ?
- The only clopen sets of a connected set are empty or the entire thing, and since $p \in A$, we must have $A \cap X = X$.
- By the same argument, $A \cap Y = Y$.
- So $A \cap (X \cup Y) = (A \cap X) \cup (A \cap Y) = X \cup Y$
- Since $A \subset X \bigcup Y$, $A \cap (X \bigcup Y) = A$
- Thus $A = X \bigcup Y$, forcing $B = \emptyset$.

1.9.2 Proof 2?

Let $X := \bigcup_{\alpha} X_{\alpha}$, and let $p \in \bigcap X_{\alpha}$. Suppose toward a contradiction that $X = A \coprod B$ with A, B nonempty, disjoint, and relatively open as subspaces of X. Wlog, suppose $p \in A$, so let $q \in B$ be arbitrary.

Then $q \in X_{\alpha}$ for some α , so $q \in B \cap X_{\alpha}$. We also have $p \in A \cap X_{\alpha}$.

But then these two sets disconnect X_{α} , which was assumed to be connected – a contradiction.

1.10 16

1.10.1 Proof 1

Topic: closure and connectedness in the subspace topology. See Munkres p.148

- $S \subset X$ is **not** connected if S with the subspace topology is not connected.
 - I.e. there exist $A, B \subset S$ such that
 - $*A, B \neq \emptyset,$
 - $*A \cap B = \emptyset$
 - $*A \coprod B = S.$
- Or equivalently, there exists a nontrivial $A \subset S$ that is clopen in S.

Show stronger statement: this is an iff.

\Longrightarrow :

- Suppose S is not connected; we then have sets $A \bigcup B = S$ from above and it suffices to show $\operatorname{cl}_Y(A) \cap B = A \cap \operatorname{cl}_X(B) = \emptyset$.
- A is open by assumption and $Y \setminus A = B$ is closed in Y, so A is clopen.
- Write $\operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \bigcap Y$.
- Since A is closed in Y, $A = \operatorname{cl}_Y(A)$ by definition, so $A = \operatorname{cl}_Y(A) = \operatorname{cl}_X(A) \cap Y$.
- Since $A \cap B = \emptyset$, we then have $\operatorname{cl}_Y(A) \cap B = \emptyset$.
- The same argument applies to B, so $cl_Y(B) \cap A = \emptyset$.

\iff

• Suppose displayed condition holds; given such A, B we will show they are clopen in Y.

• Since $\operatorname{cl}_Y(A) \cap B = \emptyset$, (claim) we have $\operatorname{cl}_Y(A) = A$ and thus A is closed in Y. – Why?

$$cl_{Y}(A) := cl_{X}(A) \bigcap Y$$

$$= cl_{X}(A) \bigcap \left(A \coprod B\right)$$

$$= \left(cl_{X}(A) \bigcap A\right) \coprod \left(cl_{X}(A) \bigcap B\right)$$

$$= A \coprod \left(cl_{X}(A) \bigcap B\right) \text{ since } A \subset cl_{Y}(A)$$

$$= A \coprod \left(cl_{Y}(A) \bigcap B\right) \text{ since } B \subset Y$$

$$= A \coprod \emptyset \text{ using the assumption}$$

$$= A.$$

• But $A = Y \setminus B$ where B is closed, so A is open and thus a nontrivial clopen subset.

1.10.2 Proof 2

Lemma: X is connected iff the only subsets of X that are closed and open are \emptyset , X.

If $S \subset X$ is not connected, then there exists a subset $A \subset S$ that is both open and closed in the subspace topology, where $A \neq \emptyset$, S.

Suppose S is not connected, then choose A as above. Then $B = S \setminus A$ yields a pair A, B that disconnects S. Since A is closed in $S, \overline{A} = A$ and thus $\overline{A} \cap B = A \cap B = \emptyset$. Similarly, since A is open, B is closed, and $\overline{B} = B \implies \overline{B} \cap A = B \cap A = \emptyset$.

1 POINT-SET

11

1.11 18

• Define a new function

$$g: X \longrightarrow \mathbb{R}$$

$$x \mapsto d_X(x, f(x)).$$

- Attempt to minimize. Claim: g is a continuous function.
- Given claim, a continuous function on a compact space attains its infimum, so set

$$m \coloneqq \inf_{x \in X} g(x)$$

and produce $x_0 \in X$ such that g(x) = m.

• Then

$$m > 0 \iff d(x_0, f(x_0)) > 0 \iff x_0 \neq f(x_0).$$

• Now apply f and use the assumption that f is a contraction to contradict minimality of m:

$$d(f(f(x_0)), f(x_0)) \le C \cdot d(f(x_0), x_0)$$

$$< d(f(x_0), x_0) \quad \text{since } C < 1$$

$$< m$$

• Proof that g is continuous: use the definition of g, the triangle inequality, and that f is a contraction:

$$d(x, f(x)) \le d(x, y) + d(y, f(y)) + d(f(x), f(y))$$

$$\implies d(x, f(x)) - d(y, f(y)) \le d(x, y) + d(f(x), f(y))$$

$$\implies g(x) - g(y) \le d(x, y) + C \cdot d(x, y) = (C + 1) \cdot d(x, y)$$

- This shows that g is Lipschitz continuous with constant C+1 (implies uniformly continuous, but not used).

1.12 19

Statement: prove that the product of two connected spaces is connected.

Solution:

Use the fact that a union of spaces containing a common point is still connected. Fix a point $(a,b) \in X \times Y$. Since the horizontal slice $X_b := X \times \{b\}$ is homeomorphic to X which is connected, as are all of the vertical slices $Y_x := \{x\} \times Y \cong Y$ (for any x), the "T-shaped" space $T_x := X_b \bigcup Y_x$ is connected for each x.

Note that $(a, b) \in T_x$ for every x, so $\bigcup_{x \in X} T_x = X \times Y$ is connected.

1.13 20

- a. See definitions in intro.
- b. Claim: the Topologist's sine curve X suffices.

Proof:

- Claim 1: X is connected.
 - Intervals and graphs of cts functions are connected, so the only problem point is 0.
- Claim 2: X is **not** locally connected.
 - Take any $B_{\varepsilon}(0) \in \mathbb{R}^2$; then projecting onto the subspace $\pi_X(B_{\varepsilon}(0))$ yields infinitely many arcs, each intersecting the graph at two points on $\partial B_{\varepsilon}(0)$.
 - These are homeomorphic to a collection of disjoint embedded open intervals, and any disjoint union of intervals is clearly not connected.

Space	Connected	Locally Connected
\mathbb{R}	√	√
$[0,1] \bigcup [2,3]$		\checkmark
Sine Curve	\checkmark	
\mathbb{Q}		

Todo: what's the picture?

1.14 23

Note: this is precisely the cofinite topology.

- 1. $\mathbb{R} \in \tau$ since $\mathbb{R} \setminus \mathbb{R} = \emptyset$ is trivially a finite set, and $\emptyset \in \tau$ by definition.
- 2. If $U_i \in \tau$ then $(\bigcup_i U_i)^c = \bigcap_i U_i^c$ is an intersection of finite sets and thus finite, so $\bigcup_i U_i \in \tau$.
- 3. If $U_i \in \tau$, then $(\bigcap_{i=1}^n U_i)^c = \bigcup_{i=1}^n U_i^c$ is a finite union of finite sets and thus finite, so $\bigcap U_i \in \tau$.

So τ forms a topology

To see that (\mathbb{R}, τ) is compact, let $\{U_i\} \rightrightarrows \mathbb{R}$ be an open cover by elements in τ .

Fix any U_{α} , then $U_{\alpha}^{c} = \{p_{1}, \dots, p_{n}\}$ is finite, say of size n. So pick $U_{1} \ni p_{1}, \dots, U_{n} \ni p_{n}$; then $\mathbb{R} \subset U_{\alpha} \bigcup_{i=1}^{n} U_{i}$ is a finite cover.

1.15 27

Notes: use diagonal trick to construct the Cauchy sequence.

1.15.1 a

 \Longrightarrow :

If X is totally bounded, let $\varepsilon = \frac{1}{n}$ for each n, and let $\{x_i\}$ be an arbitrary sequence. For n = 1, pick a finite open cover $\{U_i\}_n$ such that $\operatorname{diam} U_i < \frac{1}{n}$ for every i.

Choose V_1 such that there are infinitely many $x_i \in V_1$. (Why?) Note that diam $V_i < 1$. Now choose $x_i \in V_1$ arbitrarily and define it to be y_1 .

Then since V_1 is totally bounded, repeat this process to obtain $V_2 \subseteq V_1$ with diam $(V_2) < \frac{1}{2}$, and choose $x_i \in V_2$ arbitrarily and define it to be y_2 .

This yields a nested family of sets $V_1 \supseteq V_2 \supseteq \cdots$ and a sequence $\{y_i\}$ such that $d(y_i, y_j) < \max(\frac{1}{i}, \frac{1}{j}) \longrightarrow 0$, so $\{y_i\}$ is a Cauchy subsequence.

Then fix $\varepsilon > 0$ and pick x_1 arbitrarily and define $S_1 = B(\varepsilon, x_1)$. Then pick $x_2 \in S_1^c$ and define $S_2 = S_1 \bigcup B(\varepsilon, x_2)$, and so on. Continue by picking $x_{n+1} \in S_n^c$ (Since X is not totally bounded, this can always be done) and defining $S_{n+1} = S_n \bigcup B(\varepsilon, x_{n+1})$.

Then $\{x_n\}$ is not Cauchy, because $d(x_i, x_j) > \varepsilon$ for every $i \neq j$.

1.15.2 b

Take $X = C^0([0,1])$ with the sup-norm, then $f_n(x) = x^n$ are all bounded by 1, but $||f_i - f_j|| = 1$ for every i, j, so no subsequence can be Cauchy, so X can not be totally bounded.

Moreover, $\{f_n\}$ is closed. (Why?)

1.16 30

Let $A \subset X$ be compact, and pick a fixed $x \in X \setminus A$. Since X is Hausdorff, for arbitrary $a \in A$, there exists opens $U_a \ni a$ and $U_{x,a} \ni x$ such that $V_a \cap U_{x,a} = \emptyset$. Then $\{U_a \mid a \in A\} \rightrightarrows A$, so by compactness there is a finite subcover $\{U_{a_i}\} \rightrightarrows A$.

Now take $U = \bigcup_i U_{a_i}$ and $V_x = \bigcap_i V_{a_i,x}$, so $U \cap V = \emptyset$. Note that both U and V_x are open.

But then defining $V := \bigcup_{x \in X \setminus A} V_x$, we have $X \setminus A \subset V$ and $V \cap A = \emptyset$, so $V = X \setminus A$, which is open and thus A is closed.

1.17 31

1.17.1 a

Theorems used:

- Continuous bijection + open map (or closed map) \implies homeomorphism.
- Closed subsets of compact sets are compact.
- The continuous image of a compact set is compact.
- Closed subsets of Hausdorff spaces are compact.

So we'll show that f is a closed map.

Let $U \in X$ be closed.

- Since X is compact, U is compact
- Since f is continuous, f(U) is compact
- Since Y is Hausdorff, f(U) is closed.

1.17.2 b

Note that any finite space is clearly compact.

Take $f:([2],\tau_1) \longrightarrow ([2],\tau_2)$ to be the identity map, where τ_1 is the discrete topology and τ_2 is the indiscrete topology. Any map into an indiscrete topology is continuous, and f is clearly a bijection.

Let g be the inverse map; then note that $1 \in \tau_1$ but $g^{-1}(1) = 1$ is not in τ_2 , so g is not continuous.

1.18 32

 \Longrightarrow :

- Let $p \in X^2 \setminus \Delta$.
- Then p is of the form (x, y) where $x \neq y$ and $x, y \in X$.
- Since X is Hausdorff, pick N_x, N_y in X such that $N_x \cap N_y = \emptyset$.

1 POINT-SET

15

- Then $N_p := N_x \times N_y$ is an open set in X^2 containing p.
- Claim: $N_p \cap \Delta = \emptyset$.
 - If $q \in N_p \cap \Delta$, then q = (z, z) where $z \in X$, and $q \in N_p \implies q \in N_x \cap N_y = \emptyset$.
- Then $X^2 \setminus \Delta = \bigcup_p N_p$ is open.

 \Leftarrow

- Let $x \neq y \in X$.
- Consider $(x,y) \in \Delta^c \subset X^2$, which is open.
- Thus $(x, y) \in B$ for some box in the product topology.
- $B = U \times V$ where $U \ni x, V \ni y$ are open in X, and $B \subset X^2 \setminus \Delta$.
- Claim: $U \cap V = \emptyset$.
 - Otherwise, $z \in U \cap V \implies (z, z) \in B \cap \Delta$, but $B \subset X^2 \setminus \Delta \implies B \cap \Delta = \emptyset$.

1.19 38

 \mathbb{R} is clearly Hausdorff, and \mathbb{R}/\mathbb{Q} has the indiscrete topology, and is thus non-Hausdorff. So take the quotient map $\pi: \mathbb{R} \longrightarrow \mathbb{R}/\mathbb{Q}$.

Direct proof that \mathbb{R}/\mathbb{Q} isn't Hausdorff:

- Pick $[x] \subset U \neq [y] \subset V \in \mathbb{R}/\mathbb{Q}$ and suppose $U \cap V = \emptyset$.
- Pull back $U \longrightarrow A, V \longrightarrow B$ open disjoint sets in \mathbb{R}
- Both A, B contain intervals, so they contain rationals $p \in A, q \in B$
- Then $[p] = [q] \in U \cap V$.

1.20 42

Proof that \mathbb{R}/\mathbb{Q} has the indiscrete topology:

- Let $U \subset \mathbb{R}/\mathbb{Q}$ be open and nonempty, show $U = \mathbb{R}/\mathbb{Q}$.
- Let $[x] \in U$, then $x \in \pi^{-1}(U) := V \subset \mathbb{R}$ is open.
- Then V contains an interval (a, b)
- Every $y \in V$ satisfies $y + q \in V$ for all $q \in \mathbb{Q}$, since $y + q y \in \mathbb{Q} \implies [y + q] = [y]$.
- So $(a-q,b+q) \in V$ for all $q \in \mathbb{Q}$.
- So $\bigcup_{q \in \mathbb{O}} (a q, b + q) \in V \implies \mathbb{R} \subset V$.
- So $\pi(V) = \mathbb{R}/\mathbb{Q} = U$, and thus the only open sets are the entire space and the empty set.

1.21 44

1.21.1 a

- Suppose X has a countable basis $B = \{B_i\}$.
- Choose an arbitrary $x_i \in B_i$ for each i. Define $Q = \{x_i\}$.
- Let $y \in N_y \subset X$.
- By definition of a basis, there exists some B_i such that $y \in B_i \subset N_y$.
- Since $x_i \in B_i$, $Q \cap N_y \neq \emptyset$.
- Thus Q is dense in X.

1.21.2 b

- Let $\{q_i\}$ be a countable dense subset.
- Define $B_{i,j} = B_{\frac{1}{2}}(q_j)$, which is still countable.
- Property 1: Every $x \in B_{i,j}$
 - Take $x \in N_{\frac{1}{2}}(x) \ni q_j$ by density. Then $x \in B_{\frac{1}{2},j}$.
- Property 2: $x \in B_{i_1,j_1} \cap B_{i_2,j_2} \implies x \in B_{i_3,j_3} \subset B_{i_1,j_1} \cap B_{i_2,j_2}$:

 Take $i < \min(i_1,i_2)$, then $N_i(x) \ni q_j$. for some j.

 - Thus $x \in B_{i,j}$.

2 Fundamental Group

2.1 1

Proposition: $\gamma_1 \simeq \gamma_2 \iff \gamma_1, \gamma_2$ are conjugate in $\pi_1(X, x_0)$, i.e. $\exists [\alpha] \in \pi_1$ such that $[\gamma_1] =$ $[\alpha][\gamma_2][\alpha]^{-1}$.

Proof:

 \Longrightarrow : Clear, since $\gamma_1 \sim \gamma_2 \implies [\gamma_1] = [\gamma_2] \in \pi_1(X)$, so take $\alpha(t) = x_0$ the constant loop for all t.

 \Leftarrow : ? Forgot how these arguments go.

Counterexample where homotopic loops are not equal in π_1 , but just conjugate:

It's not a great picture, but the blue and red loops below are freely homotopic, but not homotopic relative to the basepoint x_0 . In $\pi_1(X, x_0)$, they are conjugate via the green loop.

3 Covering Spaces

3.1 1b

Homotopy lifting property:

 π clearly induces a map p_* on π_1 by functoriality, so we'll show that $\ker p_*$ is trivial. Let $\gamma: S^1 \longrightarrow \tilde{X} \in \pi_1(\tilde{X})$ and suppose $\alpha := p_*(\gamma) = [e] \in \pi_1(X)$. We'll show $\gamma \simeq [e]$ in $\pi_1(\tilde{X})$.

Since $\alpha = [e]$, $\alpha \simeq \text{const.}$ and thus there is a homotopy $H: I \times S^1 \longrightarrow X$ such that $H_0 = \text{const.}(x_0)$ and $H_1 = \gamma$. By the HLP, this lifts to $\tilde{H}: I \times S^1 \longrightarrow \tilde{X}$. Noting that $\pi^{-1}(\text{const.}(x_0))$ is still a constant loop, this says that γ is homotopic to a constant loop and thus nullhomotopic.

3.2 1c

Since both spaces are path-connected, the degree o the covering map π is precisely the index of the included fundamental group. This forces π to be a degree 1 covering and hence a homeomorphism.

3.3 6

Note $\pi_1 \mathbb{RP}^2 = \mathbb{Z}/2\mathbb{Z}$, so $\pi_1 X = (\mathbb{Z}/2\mathbb{Z})^2$.

The pullback of any neighborhood of the basepoint needs to be locally homeomorphic to one of

•
$$S^2 \vee S^2$$

• $\mathbb{RP}^2 \vee S^2$

And so all possibilities for regular covering spaces are given by

- $\bigvee^{2k} S^2$ "beads" wrapped into a necklace for any $k \geq 1$
- $\mathbb{RP}^2 \vee (\bigvee^k S^2) \vee \mathbb{RP}^2$
- $\vee^{\infty} S^2$, the universal cover

To get a threefold cover, we want the basepoint to lift to three preimages, so we can take

- S² ∨ S² ∨ S² wrapped
 ℝℙ² ∨ S² ∨ ℝℙ².

3.4 7

- $\mathbb{RP}_3 \vee S^2 \vee \mathbb{RP}^3$, which has $\pi_2 = 0 * \mathbb{Z} * 0 = \mathbb{Z}$ since $\pi_{i \geq 1} X = \pi_{i \geq 1} \tilde{X}$ and $\mathbb{RP}^3 = S^3$. $\mathbb{RP}^2 \vee S^3 \vee \mathbb{RP}^2$, which was $\pi_2 = \mathbb{Z} * 0 * \mathbb{Z} = \mathbb{Z} * \mathbb{Z} \neq \mathbb{Z}$

3.5 8

Yes,

Figure 1: Image

- 4 Cell Complexes
- 5 Homology and Degree Theory
- 6 Surfaces
- 7 Fixed Points
- 8 Miscellaneous Algebraic Topology
- 8.1 1 (Todo)
- 8.2 2 (Todo)
- 8.3 3
- 8.4 4
 - Any continuous map $\mathbb{RP}^n \xrightarrow{f} S^1$ induces a group morphism $\pi_1 \mathbb{RP}^n \xrightarrow{f_*} \pi_1 S^1$
 - Identify $\pi_1 \mathbb{RP}^n = \mathbb{Z}/2\mathbb{Z}$ and $\pi_1 S^1 = \mathbb{Z}$ to obtain a group morphism $f_* : \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z}$.
 - Claim: $f_* = 0$.
 - Recognizing this as a map of \mathbb{Z} -modules, we must have

$$0 = [2]_2 = 2 \cdot [1]_2 \implies 0 = f_*(0) = 2 \cdot f_*([1]_2).$$

since \mathbb{Z} -module maps send 0 to 0.

– But no element of the image \mathbb{Z} is annihilated by 2, so f_* can only be the zero map.

9 Extra Problem Solutions

- 9.1 Point Set
- 9.1.1 Connectedness
- 1. Reference
 A potentially shorter proof
 - Let $I = [0, 1] = A \bigcup B$ be a disconnection, so
 - $-A, B \neq \emptyset$
 - $-A \prod B = I$
 - $-\operatorname{cl}_I(A) \cap B = A \cap \operatorname{cl}_I(B) = \emptyset.$
 - Let $a \in A$ and $b \in B$ where WLOG a < b
 - (since either a < b or b < a, and $a \neq b$ since A, B are disjoint)
 - Let K = [a, b] and define $A_K := A \cap K$ and $B_K := B \cap K$.
 - Now A_K, B_K is a disconnection of K.
 - Let $s = \sup(A_K)$, which exists since \mathbb{R} is complete and has the LUB property
 - Claim: $s \in \operatorname{cl}_I(A_K)$. Proof:
 - If $s \in A_K$ there's nothing to show since $A_K \subset \operatorname{cl}_I(A_K)$, so assume $s \in I \setminus A_K$.
 - Now let N_s be an arbitrary neighborhood of s, then using ??? we can find an $\varepsilon > 0$ such that $B_{\varepsilon}(s) \subset N_s$

- Since s is a supremum, there exists an $a \in A_K$ such that $s \varepsilon < a$.
- But then $a \in B_{\varepsilon}(s)$ and $a \in N_s$ with $a \neq s$.
- Since N_s was arbitrary, every N_s contains a point of A_K not equal to s, so s is a limit point by definition.
- Since $s \in \operatorname{cl}_I(A_K)$ and $\operatorname{cl}_I(A_K) \cap B_K = \emptyset$, we have $s \notin B_K$.
- Then the subinterval $(x, b] \cap A_K = \emptyset$ for every x > c since $c := \sup A_K$.
- But since $A_K \coprod B_K = K$, we must have $(x, b] \subset B_K$, and thus $s \in \operatorname{cl}_I(B_K)$.
- Since A_K, B_K were assumed disconnecting, $s \notin A_K$
- But then $s \in K$ but $s \notin A_K \prod B_K = K$, a contradiction.

9.2 From Problem Sessions

9.2.1 1

- Let X be compact, $A \subset X$ closed, and $\{U_{\alpha}\} \rightrightarrows A$ be an open cover.
- By definition of the subspace topology, each $U_{\alpha} = V_{\alpha} \cap A$ for some open $V_{\alpha} \subset X$, and $A \subset \bigcup V_{\alpha}$.
- Since A is closed in $X, X \setminus A$ is open.
- Then $\{V_{\alpha}\}\bigcup\{X\setminus A\}\rightrightarrows X$ is an open cover, since every point is either in A or $X\setminus A$.
- By compactness of X, there is a finite subcover $\{U_j \mid j \leq N\} \bigcup \{X \setminus A\}$
- Then $(\{U_j\} \bigcup \{X \setminus A\}) \cap A := \{V_j\}$ is a finite cover of A.

9.2.2 2

- Let $f: X \longrightarrow Y$ be continuous with X compact, and $\{U_{\alpha}\} \rightrightarrows f(X)$ be an open cover.
- Then $\{f^{-1}(U_{\alpha})\} \rightrightarrows X$ is an open cover of X, since $x \in X \implies f(x) \in f(X) \implies f(x) \in U_{\alpha}$ for some α , so $x \in f^{-1}(U_{\alpha})$ by definition.
- By compactness of X there is a finite subcover $\{f^{-1}(U_j) \mid j \leq N\} \rightrightarrows X$.
- Then the finite subcover $\{U_j \mid j \leq N\} \Rightarrow f(X)$, since if $y \in f(X)$, $y \in U_\alpha$ for some α and thus $f^{-1}(y) \in f^{-1}(U_j)$ for some j since $\{U_j\}$ is a cover of X.

9.2.3 3

Note, alternative definition of "open":

- Let A be a compact subset of X a Hausdorff space, we will show $X \setminus A$ is open
- Fix $x \in X \setminus A$.
- Since X is Hausdorff, for every $y \in A$ we can find $U_y \ni y$ and $V_x(y) \ni x$ depending on y such that $U_x(y) \cap U_y = \emptyset$.
- Then $\{U_y \mid y \in A\} \rightrightarrows A$, and by compactness of A there is a finite subcover corresponding to a finite collection $\{y_1, \dots, y_n\}$.
- Magic Step: set $U = \bigcup U_{y_i}$ and $V = \bigcap V_x(y_i)$;

- $\begin{array}{ll} \text{ Note } A \subset U \text{ and } x \in V \\ \text{ Note } U \bigcap V = \emptyset. \end{array}$
- Done: for every $x \in X \setminus A$, we have found an open set $V \ni x$ such that $V \cap A = \emptyset$, so x is an interior point and a set is open iff every point is an interior point.

Figure 26.1

9.2.4 4

- It suffices to show that f is a closed map, i.e. if $U \subseteq X$ is closed then $f(U) \subseteq Y$ is again
- Let $U \in X$ be closed; since X is closed, U is compact

- Since closed subsets of compact spaces are compact.
- Since f is continuous, f(U) is compact
 - Since the continuous image of a compact set is compact.
- Since Y is Hausdorff and f(U) is compact, f(U) is closed
 - Since compact subsets of Hausdorff spaces are closed.

9.2.5 6

• Take $[0,1] \subset [0,1] \subset \mathbb{R}$. Then [0,1] is tautologically open in [0,1] as it is the entire space, but [0,1] is not open in \mathbb{R} since (e.g.) $\{1\}$ is not an interior point (every neighborhood intersects the complement $\mathbb{R} \setminus [0,1]$).

10 Spring 2019

10.1 Problem 1

Complete and totally bounded \implies compact. - Definition: A space X is totally bounded if for every $\varepsilon > 0$, there is a finite cover $X \subseteq \bigcup B_{\alpha}(\varepsilon)$ such that the radius of each ball is less than ε .

- Definition: A subset of a space $S \subset X$ is bounded if there exists a B(r) such that $r < \infty$ and $S \subseteq B(r)$ - Totally bounded \implies bounded - Counterexample to converse: N with the discrete metric. - Equivalent for Euclidean metric - Compact \implies totally bounded.

Counterexample for problem: the unit ball in any Hilbert (or Banach) space of infinite dimension is closed, bounded, and not compact.

Proof: Inductively, let $\mathbf{x}_1 \in B(1, \mathbf{0})$ and $A_1 = \operatorname{span}(\mathbf{x}_1)$, then choose $s = \mathbf{x} + A_1 \in B(1, \mathbf{0})/A_1$ such that $||s|| = \frac{1}{2}$ and then a representative \mathbf{x}_2 such that $||\mathbf{x}_2|| \le 1$. Then $||\mathbf{x}_2 - \mathbf{x}_1|| \ge \frac{1}{2}$ Then, let $A_2 = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2)$, (which is closed) and repeat this for $s = \mathbf{x} + A_2 \in B(1, \mathbf{0})/A_2$ to get an \mathbf{x}_3 such that $\|\mathbf{x}_3 - \mathbf{x}_{\leq 2}\| \geq \frac{1}{2}$.

This produces a non-convergent sequence in the closed ball, so it can not be compact.

Second counterexample: $(\mathbb{R}, (x, y) \mapsto \frac{|x - y|}{1 + |x - y|}).$

Best counterexample: $X = \begin{pmatrix} \mathbb{Z}, & \rho(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$. This metric makes X complete for any X, then take $\mathbb{N} \subset X$. All sets are closed, and bounded, so we have a complete, closed, bounded set that is not compact – take that cover $U_i = B(1, i)$.

Useful tool: $(X, d) \cong_{\text{Top}} (X, \min(d(x, y), 1))$ where the RHS is now a bounded space. This preserves all topological properties (e.g. compactness).

10.2 Problem 2

Definition: (X, τ) where $\tau \subseteq \mathcal{P}(X)$ is a topological space iff

•
$$\emptyset, X \in \tau$$

•
$$\emptyset, X \in \tau$$

• $\{U_i\}_{i \in I} \subseteq \tau \implies \bigcup_{i \in I} U_i \in \tau$

•
$$\{U_i\}_{i\in\mathbb{N}}\subseteq\tau\implies\bigcap_{i\in\mathbb{N}}U_i\in\tau$$

We can write $\overline{(X,\tau)} = (X \coprod \{ \mathrm{pt} \}, \tau \bigcup \tau')$ where $\tau' = \{ U \coprod \{ \mathrm{pt} \} \mid X - U \text{ is compact} \}$. We need to show that $T := \tau \bigcup \tau'$ forms a topology.

- We have $\emptyset, X \in \tau \implies \emptyset, X \in \tau \bigcup \tau'$.
- We just need to check that τ' is closed under arbitrary unions. Let $\{U_i\} \subset \tau'$, so $X U_i = K_i$ a compact set for each i. Then $\bigcup_i U_i = \bigcup_i X (X U_i) = \bigcup_i X K_i = X \bigcup_i K_i$

10.3 7

Let $f: S^1 \xrightarrow{\times k} S^1$.

Claim: The inclusion $S^1 \longrightarrow C_{\varphi}$ induces an isomorphism $\pi_1(C_{\varphi}) \cong \pi_1(S^1)/H$ where $H = N_{\pi_1(S^1)}(\langle f^* \rangle)$ is the normal subgroup generated by the induced map $f^*\pi_1(S^1) \longrightarrow \pi_1(S^1)$.

Since f is a k-fold cover, the induced map is multiplication by k on the generator $\alpha \in \pi_1(S^1)$, i.e. $\alpha \mapsto \alpha^k$. But then $\pi_1(S^1) \cong \mathbb{Z}$ and $H \cong k\mathbb{Z}$, so $\pi_1(C_{\varphi}) \cong \mathbb{Z}/m\mathbb{Z}$.

_