Saturation Problem Formalization

Marcelo A. Marotta Celia Ghedini Ralha Jonathan Mendes de Almeida

June 24, 2019

1 System Model

- Macrocell (MC)
 - MC Antennas: $M' = \{m'_1, m'_2, ..., m'_N\}, N \in \mathbb{N}, |M'| = n_{m'} | \forall m'_n \in M' : n \in \mathbb{N}$
 - MC Micro Data Centers: $S'=\{s'_1,s'_2,...,s'_{n_{s'}}\}, |S'|=n_{s'}|n_{s'}\in\mathbb{N}$
 - Link Budget: L' (mbps), $L' \in \mathbb{N}$
- Smallcell (SC)
 - SC Antennas: $M = \{m_1, m_2, ..., m_N\}, N \in \mathbb{N}, |M| = n_m | \forall m_n \in M : n \in \mathbb{N}$
 - SC Cluster: set of $n_c|n_c \le n_m$ antennas
 - MC Micro Data Centers: one MDC $s|s\in S=\{s_1,s_2,...,s_{n_s}\}, |S|=n_s|n_s\in\mathbb{N}$ for each SC Cluster
 - Link Budget: L
 (mbps), $L \in \mathbb{N}$
- Micro Data Center (MDC)
 - $-s|s \in S \cup S'$
- Covered Area
 - Distance, in kilometers (km), between MC antennas
 - Distance, in km, between SC antennas and MC antennas
- User Equipment (UE)
 - Static or Dynamic (moving)
- \bullet Number of allocated vBBU's (Virtual Base Band Unit) in time t (hour)
 - $-a_{is}(t) \in \mathbb{N}$: vector indicating the number of allocated vBBU's (of each machine class $i \in I$ for each MDC $s \in S \cup S'$) in time t decision variable

• Machine classes and specifications

- Classes $I = \{1, 2, ..., c\} | c \in \mathbb{N}, |I| = c$ machine classes
- Computational power $P_{is} = \{P_{s1}, P_{s2}, ..., P_{sc}, P_{s'1}, P_{s'2}, ..., P_{s'c}\} | \forall p \in P_{is} : p \in \mathbb{N}:$ vector of positive integers in Million Instructions Per Second (MIPS) for each machine class $i \in I$ and each type of MDC $s \in S \cup S'$
- Number of cores $N_{is} = \{N_{s1}, N_{s2}, ..., N_{sc}, N_{s'1}, N_{s'2}, ..., N_{s'c}\} | \forall n \in N_{is} : n \in \mathbb{N}:$ vector of positive integers indicating the number of cores for each machine class $i \in I$ and each type of MDC $s \in S \cup S'$
- Pricing $A_{is} = \{A_{s1}, A_{s2}, ..., A_{sc}, A_{s'1}, A_{s'2}, ..., A_{s'c}\} | \forall a \in A_{is} : a \in \mathbb{R}^+$: vector of positive real numbers indicating the pricing in United States Dollar (USD) for each machine class $i \in I$ and each type of MDC $s \in S \cup S'$

• Association

 $-b_{ism}(t)$: vector of zeros (not associated) and ones (associated) to represent the association between a machine class $i \in I$ in an MDC $s \in S \cup S'$ and an antenna $m \in M \cup M'$

Workload

- $-\Gamma_m(t) \in \mathbb{R}^+$: vector of real numbers between 0 and 1 indicating the percentage of usage of each antenna $m \in M \cup M'$ in time (hour)
- W: channel decoding process (number of instructions), $W \in \mathbb{N}$

• Migration

- $-c_{sm}(t)$: binary variable to indicate if a migration occurred in an antenna $m \in M \cup M'$ from an MDC $s \in S \cup S'$ in time t $(c_{sm}(t) = 1)$ or not $(c_{sm}(t) = 0)$ with $c_{sm}(t) \in \mathbb{Z}|0 \le c_{sm}(t) \le 1$
- -K: migration cost (USD), $K \in \mathbb{R}^+$

2 Problem Formalization

2.1 Objective Function

Minimize the cost and the number of allocated vBBU's:

$$min\left(\sum_{t}^{T}\sum_{i}^{I}\sum_{s}^{S}a_{is}(t)A_{is} + \sum_{t}^{T}\sum_{s}^{S}\sum_{m}^{M}c_{sm}(t)K\right)$$

$$\tag{1}$$

2.2 Decision Variables

$$b_{ism}(t) \tag{2}$$

$$a_{is}(t)$$
 (3)

2.3 Constraints

2.3.1 Horizontal Allocation

$$a_{is}(t)P_{is}N_{is} - \sum_{m}^{M} b_{ism}(t)W\Gamma_{m}(t) \ge 0 \qquad \forall t \in T; \forall i \in I; \forall s \in S \cup S'$$

$$(4)$$

2.3.2 Vertical Allocation

$$b_{ism}(t)\frac{P_{sm}}{P_{is}} \le 1 \qquad \forall t \in T; \forall i \in I; \forall s \in S \cup S'; m \in M \cup M'$$
 (5)

2.3.3 Migration Cost

$$c_{sm} + b_{sm}(t) - \sum_{s'|s'\neq s} b_{s'm}(t-1) = 1 \qquad \forall t \in T; \forall s \in S \cup S'; \forall m \in M$$
 (6)

3 Trade-offs

- Centralize (minimizing the number of MDC's in use) or distribute the workload?
- Association decision: why associate with a specific MDC and not with another?
- Workload transfer decision: keep the workload in one MDC or send to another?

4 Scenario Components Definition

4.1 Parameters

- Macrocell (MC)
 - MC MDC's: $S' = \{s'_1, s'_2, s'_3, s'_4, s'_5, s'_6, s'_7\}$
 - MC Antennas: $M' = \{m'_1, m'_2, m'_3, m'_4, m'_5, m'_6, m'_7\}$, one MC for each MC MDC
 - Link Budget: 900 mbps
- Smallcell (SC)
 - MC MDC's: $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$
 - SC Antennas: $M = \{m_1, m_2, m_3, m_4, ..., m_25, m_26, m_27, m_28\}$, four SC for each SC MDC
 - Link Budget: 300 mbps
- Micro Data Center (MDC)
 - $-s|s \in S \cup S'$

- Covered Area (3 scenarios)
 - 1. 1 km (urban)
 - 2. 25 km (urban-countryside)
 - 3. 50 km (countryside)
- Number of allocated vBBU's in time t (hour)
 - $-a_{is}(t)$: vector indicating the number of allocated vBBU's (of each type for each MDC) in time t (decision variable)
- Machine classes and specifications
 - $-I = \{1, 2, 3\}$
 - First column for machine specification values of MDC's $s \in S$ and the second

column for the power values for MDC's
$$s' \in S'$$

$$P_{is} = \begin{bmatrix} 0.5, 1.0, 1.5, 1.0, 2.0, 3.0 \end{bmatrix} = \begin{bmatrix} 0.5 & 1.0 \\ 1.0 & 2.0 \\ 1.5 & 3.0 \end{bmatrix}, N_{is} = \begin{bmatrix} 4, 8, 16, 16, 32, 64 \end{bmatrix} = \begin{bmatrix} 4 & 16 \\ 8 & 32 \\ 16 & 64 \end{bmatrix},$$

$$A_{is} = \begin{bmatrix} 20, 30, 40, 30, 50, 90 \end{bmatrix} = \begin{bmatrix} 20 & 30 \\ 30 & 50 \\ 40 & 90 \end{bmatrix}$$

- Association
 - $-b_{ism}(t)$: vector of zeros (not associated) and ones (associated) to represent the association between a machine class $i \in I$ in an MDC $s \in S \cup S'$ and an antenna $m \in M \cup M'$
- Workload
 - $\Gamma_m(t)$: vector of real numbers between 0 and 1 indicating the percentage of usage of each antenna $m \in M \cup M'$ in time t following a **normal distribution**
 - -W: 200.7 = 1400 instructions
- Migration
 - $-c_{sm}$: one if a migration occurred in an antenna $m \in M \cup M'$ from an MDC $s \in S \cup S'$ in time t or zero (no migration in time t)
 - K: migration cost