Numerical Analysis HW1

3220103612 章杨

September 2023

1 Problem1

引理: Intermediate Value Theorem:

If $f \in C[a,b]$ and K is any number between f (a) and f (b), then there exists a number c in (a, b) for which f (c) = K.

1.1 a.

不妨假设 $f(x_1) \leq f(x_2)$,那么一定有 $f(x_1) \leq \frac{f(x_1) + f(x_2)}{2} \leq f(x_2)$,根据介质定理,一定 $\exists \xi \in [a,b]$,使得 $\frac{f(x_1) + f(x_2)}{2} = f(\xi)$ 。

1.2 b.

不妨假设 $f(x_1) \leq f(x_2)$, 设 $K = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}$, 则

$$\begin{cases} f(x_1) - K = \frac{c_2(f(x_1) - f(x_2))}{c_1 + c_2} \le 0\\ f(x_2) - K = \frac{c_1(f(x_2) - f(x_1))}{c_1 + c_2} \ge 0 \end{cases}$$

得到 $f(x_1) \le K \le f(x_2)$,根据介质定理,一定 $\exists \xi \in [a,b]$,使得 $f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}$ 。

1.3 c.

取
$$f(x) = x^2$$
, 令 $x_1 = 1, x_2 = 2$ $c_1 = 2, c_2 = -1$, 则 $\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} = -2 \notin [f(x_1), f(x_2)]$

2 Problem2

2.1 a.

absolute error: $|f(x_0) - f(\tilde{x}_0)| = |f'(\xi)\epsilon| = |f'(x_0 + \theta\epsilon)\epsilon|, 0 < \theta < 1$, 当 ϵ 足够小时,原式 $= |f'(x_0)\epsilon|$ relative errors: $|f(x_0) - f(\tilde{x}_0)|/|f(x_0)| = |f'(\xi)\epsilon| = |f'(x_0 + \theta\epsilon)\epsilon|/|f(x_0)|, 0 < \theta < 1$, 当 ϵ 足够小时,原式 $=\epsilon$

2.2 b.

$$|f(x_0) - f(x_0)| = |f'(\xi)\epsilon| = |f'(x_0 + \theta\epsilon)\epsilon|, 0 < \theta < 1$$

 $i)f(x) = e^x$

2.3 c.

3 Problem3

3.1 a.

i)exactly: $\frac{17}{15}$ ii)three-digit chopping: $1.133 = 0.113 \times 10^{1}$ relative errors: 2.94×10^{-4} iii)three-digit rounding: $1.133 = 0.113 \times 10^{1}$ relative errors: 2.94×10^{-4}

3.2 b.

i)exactly: $\frac{301}{660}$ ii)three-digit chopping: 0.452relative errors: 8.90×10^{-3} iii)three-digit rounding: 0.453relative errors: 6.71×10^{-3}

4 Problem4

4.1 a.

令
$$f(x) = F(x) - c_1 L_1 - C_2 L_2 = O(x^{\alpha}) + O(x^{\beta})$$
,只需证明 $\lim_{x \to 0} \frac{f(x)}{x^{\gamma}} = A(A \neq 0)$,而
$$\lim_{x \to 0} \frac{f(x)}{x^{\gamma}} = \begin{cases} c_1(\alpha \leq \beta) \\ c_2(\alpha > \beta) \end{cases} \neq 0$$

证毕

4.2 b.

令
$$g(x) = G(x) - L_1 - L_2 = O(c_1^{\alpha} x^{\alpha}) + O(c_2^{\beta} x^{\beta})$$
, 只需证明 $\lim_{x \to 0} \frac{g(x)}{x^{\gamma}} = A(A \neq 0)$, 而
$$\lim_{x \to 0} \frac{g(x)}{x^{\gamma}} = \lim_{x \to 0} *(O(x^{\alpha}) + O(x^{\beta})) \neq 0$$

证毕

5 Problem5

result:

1: 0.500000 2: 0.250000 3: 0.375000 4: 0.312500 5: 0.281250 6: 0.265625 7: 0.257813 8: 0.253906 9: 0.255859 10: 0.256836 11: 0.257324 12: 0.257568 13: 0.257446 14: 0.257507 15: 0.257538 16: 0.257523 17: 0.257530 1 : 0.250000 2 : 0.275000 3 : 0.287500 4 : 0.293750 5 : 0.296875 6 : 0.298438 7 : 0.297656 8 : 0.297266 9 : 0.297461 10 : 0.297559 11 : 0.297510 12 : 0.297534 13 : 0.297522 14 : 0.297528

1.250000 : 1.225000 1.212500 : 1.201563 : 1.200781 : 1.200391 10: 1.200098 11: 1.200049 12: 1.200024 13: 1.200012 14: 1.200006 15 : 1.200003 16: 1.200002 17: 1.200001 18: 1.200000 can not find the solution.

图 1: 5a

图 2: 5b1

图 3: 5b2

6 Problem6

6.1 a.

选取 $g(x)=(2sin(\pi x)+4x)/3$, 选取原因如下:

- i) 寻找根的大致范围,发现在 [1,2] 的范围内存在两个根,第一个根的范围在 [1,1,3],在寻找 g(x) 的时候先考虑这一个区间
- ii) 加入参数 t, 使得 $x = \frac{2\sin(\pi * x) + tx}{t-1} = g(x)$ 则 $g'(x) = \frac{2\pi\cos(\pi x) + t}{t-1}$, 令 |g'(x)| < 1, 可以化简为 $-2 \leq \frac{2\pi\cos(\pi x) + 1}{t-1} \leq 0$, 取 t=4, 可以满足要求

图 4: 判断根范围

图 5: 待定系数 t

结果如图

error	р	р0
0.427413	1.427413	1.000000
0.130131	1.297282	1.427413
0.022122	1.275160	1.297282
0.003846	1.279006	1.275160
solution	is 1.27900	6 end.

图 6: 6a 结果

6.2 b.

选取 $g(x) = \frac{e^x}{3x}$, 取 p0=0.5 (这只是一个解,事实上应该有三个解)

```
error p p0
0.599148 1.099148 0.500000
0.188864 0.910283 1.099148
0.000300 0.909983 0.910283
solution is 0.909983 end.
```

图 7:6b 结果

7 Problem7

$$|p_{1}-p| \geq |g(p_{0})-p| = |g(p_{0})-g(p)| = |(p_{0}-p)g^{'}(p_{0}+\epsilon(p_{0}-p))| = |(p_{0}-p)||g^{'}(p_{0}+\epsilon(p_{0}-p))|,$$

故
$$|p_1-p| > |(p_0-p)|$$