第3学年 電気電子工学実験実習報告書

_ 4	<u></u>	強磁性体のヒステリシス現象			
		実験日 令和 04 年 07 月 14 日 (木) 令和 04 年 07 月 21 日 (木)			
		班	学生番号	氏名	
		1	3309	大山 主朗	
		共同実験者名			
		共同実験者名			
					_
		提出日		備考	評価
予定日	07/21	07/28			
提出日					

東京都立産業技術高等専門学校 電気電子エ学コース

1 目的

本実験では

- トランス鉄心に使用される強磁性体の B-H 特性測定を通し磁気回路と磁性材料について理解する.
- 変圧器鉄心の交流化特性を測定し、測定原理と鉄心のヒステリシス損算出法を理解する.
- 変圧器における励磁電流、電力、位相差の変化を観測する.

ことを目的とする.

2 原理

2.1 磁気回路

図 1 に示すように断面積 S [m²],平均磁路長 L [m] の鉄心に巻数 N_1 [Turn] のコイルを巻き,これに I [A] の電流を流すと,起磁力 $N_1 \cdot I$ [A · Turn] を生じる.この起磁力により

$$\phi = \frac{N_1 \cdot I}{R_m} \tag{1}$$

の磁束 ϕ [Wb] を生じる.ここで R_m は以下に示す磁気抵抗である.

$$R_m = \frac{L}{\mu_0 \mu_s S} \tag{2}$$

ただし, $\mu_0=4\pi\times 10^{-7}\,{\rm F/m}$ は真空の透磁率であり, μ_s は鉄心の比透磁率である.ここで,磁路 $1\,{\rm m}$ あたりの起磁力を磁化力 $H\,[{\rm A/m}]$ という. 磁化力 H は

$$H = \frac{N_1 \cdot I}{L} \tag{3}$$

である. また磁路断面積 $1 \,\mathrm{m}^2$ あたりの磁束を、磁束密度 $B \,[\mathrm{Wb/m}^2]$ という.

$$B = \frac{\phi}{S} \tag{4}$$

ここで、 $S[m^2]$ は磁路断面積を示す.

図 1: 磁気回路

鉄心の磁化力 H と磁束密度 B との関係を示す曲線を B-H 曲線といい,一般に図 2(a) のような飽和特性になる.また磁化力 H を正負の方向に増減すると,図 2(b) の様なヒステリシス曲線になる.

2.2 交流磁化特性

図 3 の変圧器のように、鉄心に巻かれた巻数 N_1 のコイルに交流電圧 V_1 を加えると、鉄心中に交番磁束 を作るための電流(励磁電流) i_0 が流れる.このとき磁束密度 B と磁化力 H との間にはヒステリシス特性があるため、励磁電流は図 6 のようにひずみを生ずる.この現象を逆に利用して、励磁電流 i_0 と交番磁束 ϕ の波形をなんらかの方法で取り出し、オシロスコープの X 軸に励磁電流 i_0 の波形,Y 軸に交番磁束 ϕ の波形を入力すれば、オシロスコープの画面に鉄心のヒステリシス特性(B-H 曲線)が描かれる.

励磁電流 i_0 の波形を直接取り出すのは難しいので、図 3 において励磁電流 i_0 が抵抗 R_h を流れるときの電圧変化、すなわち

$$V_h = i_0 R_h \tag{5}$$

図 2: B-H 曲線とヒステリシス曲線

図 3: 変圧器の交流磁化特性測定回路

として取り出す。また、交番磁束 ϕ は次の様にして取り出す。

図 3 において二次巻線 N_2 と鎖交する磁束の時間に対する変化が二次誘起電圧 e_2 として現れるため

$$e_2 = -N_2 \frac{d\phi}{dt} \tag{6}$$

となり,式(6)を変形すると

$$d\phi = \frac{1}{N_2} \times e_2 \times dt \tag{7}$$

となるから,交番磁束 ϕ は式 (7) を積分すれば求まることとなる.すなわち,二次巻線に発生する電圧 e_2 を時間で積分すればよい.そこで二次側に CR 積分回路を接続しコンデンサ C の両端から e_2 を積分した,交番磁束に比例した電圧をとりだす.

図 4: ヒステリシス現象のない場合

図 5: ヒステリシス現象のある場合

図 6: ヒステリシス現象

3 方法

3.1 使用器具

今回の実験で使用した器具を

3.2 実験手順

4 結果

- 5 考察
- 6 結論