

Department of Computer Science

DS5115 – Social Network Analysis

Spring 2019

Instructor Name: Saira Karim

TA Name (if any): N/A
Email address: saira.karim@nu.edu.pk

Email address: N/A

Office Location/Number: Civil Block ground floor Office Location/Number: N/A

Office Hours: TBA Office Hours: N/A

Course Information

Program: MS(DS) **Credit Hours:** 3 **Type:** Elective

Pre-requisites (if any): Course Website (if any) :

Class Meeting Time: Tue, Thurs 2:00 - 3:30 PM

Class Venue: CS-2

Course Description/Objectives/Goals?

This course presents mathematical methods and computational tools for Social Network Analysis (SNA). It includes interdisciplinary concepts including sociology, mathematics especially graph theory and probability theory, computer science and economics. This course will focus on designing and analyzing models to perform analysis on the social structures. This course will also address the computational challenges faced due to large network data and present some useful algorithms to deal with these challenges. In this course we will start with basic statistical descriptions of networks, analyze network structure, roles and positions of nodes in networks, connectivity patterns and methods for community detection. In the second part of the course we will discuss models and processes on how information flow through the network and ways to utilize this model in terms of community detection, role identification, product recommendation and detecting information outbreaks. It also includes discussion on how social networks evolve over time.

Course Textbook

- 1. David Easley and John Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World." Cambridge University Press 2010.
- 2. Recommended research papers.

Additional references and books related to the course:

1. Matthew O. Jackson "Social and Economic Networks". Princeton University Press 2008

Tentative Weekly Schedule

Week	Topics to be	Readings	Assignments/Projects?
	covered		
1	Introduction to		
	course and structure		
	of social network		
2	Introduction to graph		
	theory + introduction		
	to SNAP		
3	Measuring network		Assignment 1
	and Random graph		_
	model (Erdos-Reney)		
4	Small World		
	phenomena		
5	Link Analysis of the		
	network		
6	Role identification		Assignment 2
	using motifs and		
	graphlets		
7	Community structure		
8	Community detection		
	(spectral clustering)		
9	Node representation		Assignment 3
	learning		
10	Network effect and		
	information cascade		
11	Information cascade		
	continue		
12	Influence		Project Deliverable 1
	maximization		
13	Network centrality		
14	Network evolution		
15	Information Outbreak		Project Deliverable 2
	detection (optional)		.,

(Tentative) Grading Criteria

- 1. 3-4 Assignments (15%)
- 2. 4-5 Quizzes (10%)
- 3. 1 Midterm Exam (25%)
- 4. Final Exam (40%)
- 5. Project/Presentation (10%)

Course Policies

- 1. Quizzes may be un-announced.
- 2. No makeup for missed quiz or assignment.
- 3. Zero tolerance policy on plagiarism