

Autonomous Vehicle Simulation (AVS) Laboratory

AVS-Sim Technical Memorandum

Document ID: AVS-SIM-velocityPointing

GUIDANCE MODULE FOR VELOCITY AXIS POINTING

Prepared by	M. Cols			
Status: Initial Version				
Scope/Contents				
Generate the attitude reference to perform a constant pointing towards a Velocity orbit axis				

Rev:	Change Description	Ву
Draft	initial copy	M. Cols

Contents

1	Reference Frame Definition	1
2	Velocity Frame Rate Development	1
3	Angular Velocity Vectors	2

Fig. 1: Illustration of the planet orbit frames, Hill \mathcal{H} and Velocity \mathcal{V} .

1 Reference Frame Definition

The velocity frame is defined as $\mathcal{V}:\{\hat{\imath}_n,\hat{\imath}_v,\hat{\imath}_h\}$ as illustrated in Figure 1. Here $\hat{\imath}_v$ is aligned with the orbit velocity direction, $\hat{\imath}_h$ is aligned with the orbit normal direction and $\hat{\imath}_n$ is the normal vector that completes a right-handed coordinate frame. On the other hand, the Hill orbit frame is defined as $\mathcal{O}:\{\hat{\imath}_r,\hat{\imath}_\theta,\hat{\imath}_h\}$.

These two frames differ by a 3-axis rotation with the angle $-\beta$. In terms of β , the [VH] DCM to map from \mathcal{H} to \mathcal{V} is given by

$$[VH] = [M_3(-\beta)] = \begin{bmatrix} \cos \beta & -\sin \beta & 0\\ \sin \beta & \cos \beta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (1)

2 Velocity Frame Rate Development

Next the Velocity frame rate $\dot{\beta}$ relative to the orbit frame is determined. Note the following identities:

$$\tan \beta = \frac{e \sin f}{1 + e \cos f} \tag{2}$$

$$\cos^2 \beta = \frac{(1 + e \cos f)^2}{1 + e^2 + 2e \cos f} \tag{3}$$

Taking the derivative of Eq. (2) yields

$$\dot{\beta} = \frac{e(e + \cos f)}{1 + e^2 + 2e\cos f}\dot{f} \tag{4}$$

To find the relative angular acceleration $\ddot{\beta}$, Eq. (4) is differentiated again.

$$\ddot{\beta} = \frac{e(e + \cos f)}{1 + e^2 + 2e\cos f}\ddot{f} + \frac{e(e^2 - 1)\sin f}{(1 + e^2 + 2e\cos f)^2}\dot{f}^2 \tag{5}$$

3 Angular Velocity Vectors

Next, let us evaluate the Velocity frame angular velocities. As both the $\mathcal V$ and $\mathcal H$ frame rotate about the common $\hat \imath_h$ axis, note that

$$\omega_{V/H} = -\dot{\beta}\hat{\imath}_h \tag{6}$$

$$\omega_{H/N} = \dot{f}\hat{\imath}_h \tag{7}$$

This leads to

$$\omega_{V/N} = \omega_{V/H} + \omega_{H/N} = \frac{1 + e\cos f}{1 + e^2 + 2e\cos f} \dot{f} \hat{i}_h \tag{8}$$

Similarly, we find

$$\dot{\omega}_{V/N} = \dot{\omega}_{V/H} + \dot{\omega}_{H/N} = \left(\frac{1 + e\cos f}{1 + e^2 + 2e\cos f}\ddot{f} - \frac{e(e^2 - 1)\sin f}{(1 + e^2 + 2e\cos f)^2}\dot{f}^2\right)\hat{\imath}_h \tag{9}$$

The orbit frame angular rates and accelerations are determined through the standard astrodynamics relations:

$$\dot{f} = \frac{h}{r^2} \tag{10}$$

$$\ddot{f} = -\frac{\mu e \sin f}{r^3} \tag{11}$$