Advanced Theoretical Physics

 $$\operatorname{Dr}$ Kendon and Prof Gardiner Michaelmas Term 2019 - Epiphany Term 2020

Contents

I Quantum Optics	2
Lecture 1	3
Lecture 2	4
2.1 Learning Outcomes	4
2.2 Quantum Harmonic Oscillator	4
2.3 Two Oscillators - independent	6
Lecture 3	7
3.1 Learning Outcomes	7
3.2 Quantising the EM field	7
3.3 Multimode Fields	8

Part I Quantum Optics

Lecture 1

Syllabus:

- ➤ quantization of light
- > creation and annihilation operators
- ➤ Hamiltonian of the E field
- ➤ number states
- > coherent states
- > squeezed states

- ➤ photon bunching and anti-bunching
- ➤ density operator
- ➤ pure states, mixed sates, entangled states
- ➤ decoherence
- ➤ atom-light interactions
- ➤ applications

Ingredients:

- ➤ harmonic oscillators
- ➤ Gaussian integrals
- ➤ Hamiltonian mechanics (canonical variables q and p)
- maths of operators adjoint, self-adjoint, Hermitian, commutation relations
- ➤ QM in both Schrodinger and Heisenberg pictures
- ➤ density matrices
- ➤ classical EM Maxwell's equations in Coulomb gauge especially plane waves and dipoles

Hanbury Brown and Tiss:

$$G(\tau) = I_A(t)I_B(t+\tau) \tag{1.1}$$

Lecture 2

2.1 Learning Outcomes

To be able to state, explain and apply the operator formalism of the quantum harmonic oscillator, including:

- ➤ the Hamiltonian in terms of the creation and annihilation operators
- ➤ the number operator and number states, eigenstates of the Hamiltonian
- ➤ definition of the creation and annihilation operators, commutation relations, adjoint and self-adjoint operators
- ➤ mathematical properties of the number states, completeness
- > systems of two or more independent oscillators

2.2 Quantum Harmonic Oscillator

$$F = ma = m\ddot{x} \tag{2.1}$$

$$=-kx\tag{2.2}$$

$$x(t) = x_0 \sin \omega t \tag{2.3}$$

$$p_x(t) = p_0 \cos \omega t \tag{2.4}$$

$$V(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2 \tag{2.5}$$

$$\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + V(x)\psi(x) = E\psi \tag{2.6}$$

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega\tag{2.7}$$

Start with writing the Hamiltonian, then turn everything into operators

$$H = \frac{p^2}{2m} + \underbrace{\frac{1}{2}m\omega^2 x^2}_{V(x)} \tag{2.8}$$

$$p \to \hat{p} = -i\hbar \frac{d}{dx}, \ x \to \hat{x} \tag{2.9}$$

$$[\hat{x}, \hat{p}] = i\hbar \tag{2.10}$$

$$H = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \tag{2.11}$$

$$\hat{a} = \frac{1}{\sqrt{2m\hbar\omega}} (m\omega\hat{x} + i\hat{p}) \tag{2.12}$$

$$\hat{a}^{\dagger} = \frac{1}{\sqrt{2m\hbar\omega}} (m\omega\hat{x} - i\hat{p}) \tag{2.13}$$

$$\hat{x} = \left(\frac{\hbar}{2m\omega}\right)^{1/2} (\hat{a} + \hat{a}^{\dagger}) \tag{2.14}$$

$$\hat{p} = -i\left(\frac{m\hbar\omega}{2}\right)^{1/2}(\hat{a} - \hat{a}^{\dagger}) \tag{2.15}$$

$$[\hat{a}, \hat{a}^{\dagger}] = \hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} = 1$$
 (2.16)

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}) \tag{2.17}$$

$$\hat{a}^{\dagger}\hat{a} = \hat{n}, \ \hat{n}|n\rangle = n|n\rangle \tag{2.18}$$

$$\hat{H}|n\rangle = \hbar\omega \left(n + \frac{1}{2}\right)|n\rangle = E_n|n\rangle \tag{2.19}$$

How do the annihilation and creation operators, \hat{a} and \hat{a}^{\dagger} interact with the number states, $|n\rangle$?

$$\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle \tag{2.20}$$

$$\hat{a}|n\rangle = \sqrt{|n-1\rangle} \tag{2.21}$$

Together, the creation and annihilation operators are known as the *ladder operators*. Ladder operators move the system up or down the energy levels of the harmonic potential.

We now have a partly new mathematical representation. Notice that the potential still remains positive, it does not go negative. Therefore we must have:

$$\hat{a}|0\rangle = 0, \tag{2.22}$$

$$\hat{n} = \hat{a}^{\dagger} \hat{a} |0\rangle = 0. \tag{2.23}$$

$$\implies \hat{H}|0\rangle = E_0|0\rangle = \frac{1}{2}\hbar\omega|0\rangle \tag{2.24}$$

So the ground state is labelled '0' but does not have E = 0.

Now we introduce \hat{O}^{\dagger} as the adjoint of \hat{O} if

$$\langle \psi | \hat{O} | \phi \rangle = \langle \phi | \hat{O}^{\dagger} | \psi \rangle^* \, \forall \psi, \phi \tag{2.25}$$

A self-adjoint operator is equivalent to a Hermitian operator, i.e. \hat{n}, \hat{H} . For adjoint operators:

$$(\hat{A} + \hat{B})^{\dagger} = \hat{A}^{\dagger} + \hat{B}^{\dagger} \tag{2.26}$$

$$(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger} \tag{2.27}$$

$$(c\hat{A})^{\dagger} + c^*\hat{A}^{\dagger} \tag{2.28}$$

$$(\hat{A}^{\dagger})^{\dagger} = \hat{A} \tag{2.29}$$

More on the number states:

➤ they are orthogonal

$$\langle n|n\rangle = 1\tag{2.30}$$

$$\langle n|m\rangle = 0, \ n \neq m \tag{2.31}$$

$$\langle n|m\rangle = \delta_{n,m} \tag{2.32}$$

(2.33)

➤ they form a basis (note: not mathematically a Hilbert space, but a Banah(?) space)

$$|\psi\rangle = \sum_{n} c_n |n\rangle \tag{2.34}$$

$$0 \le n \le \infty \tag{2.35}$$

2.3 Two Oscillators - independent

$$|\psi_0\rangle = \sum_n c_n |n\rangle_0 \tag{2.36}$$

$$|\psi_1\rangle = \sum_m c_m |m\rangle_1 \tag{2.37}$$

$$|\psi_{01}\rangle = \sum_{n,m} c_{n,m} |n\rangle_0 |m\rangle_1 \tag{2.38}$$

What we are doing is "tensoring" the Hilbert spaces: $\mathcal{H}_0\otimes\mathcal{H}_1$:

$$|n\rangle_0|m\rangle_1 \equiv |n\rangle_0 \otimes |m\rangle_1. \tag{2.39}$$

Now we have the operators, \hat{a}_0 , \hat{a}_0^{\dagger} , \hat{a}_1 , \hat{a}_1^{\dagger} :

$$\hat{a}_0 \otimes \mathbb{I}_1, \ \mathbb{I}_0 \otimes \hat{a}_1, \dots$$
 (2.40)

$$[\hat{a}_0, \hat{a}_1] = [\hat{a}_0, \hat{a}_1^{\dagger}] = 0$$
 (2.41)

$$\hat{H} = \hat{H}_0 \otimes \mathbb{I}_1 + \mathbb{I}_1 \otimes \hat{H}_1 \tag{2.42}$$

Note this is for non-interacting oscillators. For interacting,

$$\hat{H} = \hat{H}_0 \otimes \mathbb{I}_1 + \mathbb{I}_1 \otimes \hat{H}_1 + \mathcal{H}_{int}. \tag{2.43}$$

Lecture 3

3.1 Learning Outcomes

To be familiar with the route to quantisation of the electromagnetic field, in particular to:

- Explain and state the description of the electromagnetic field in terms of modes, including polarization
- ➤ Be familiar with the equivalence between a mode of the field and a quantum harmonic oscillator
- To explain the form of (but not derive) expressions for the Hamiltonian of the electromagnetic field, and the electric and magnetic fields in terms of the creation and annihilation operatoes
- ➤ To recognise and explain the concepts of the Schrodinger and Heisenberg representations, and to explain which is being applied
- To explain and apply the concepts of adjoint and self-adjoint operators and their matrix elements

3.2 Quantising the EM field

Consider an EM scalar potential, $\phi = 0$ (no free charges), and a vector potential, A.

$$\underline{\mathbf{E}}(\underline{r},t) = \frac{\partial}{\partial t}\underline{A}$$

$$\underline{\mathbf{B}}(\underline{r},t) = \nabla \times \underline{A}(\underline{r},t)$$
 (3.1)

$$\vec{\nabla} \left[\vec{\nabla} \cdot \underline{A} \right] - \nabla^2 \underline{A} + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \underline{A} = 0 \tag{3.2}$$

Coulomb gauge, $\nabla \cdot A = 0$.

$$\underline{A} = \sum_{k} \left\{ \underline{A}_{\underline{k}} \exp\left[i(\underline{k} \cdot \underline{r} - \omega_{k} t)\right] + \underline{A}_{\underline{k}}^{*} \exp\left[-i(\underline{k} \cdot \underline{r} - \omega_{k} t)\right] \right\}$$
(3.3)

$$\omega_k = c|k|, \ \underline{k} \cdot \underline{A}_k = 0 \tag{3.4}$$

Polarisation vectors, \underline{e}_{k1} , \underline{e}_{k2} - orthonormal vectors perpendicular to \underline{k} .

$$\underline{A}_k = A_{k1}\underline{e}_{k1} + A_{k2}\underline{e}_{k2} \tag{3.5}$$

$$\underline{A} = \sum_{k,s} A_{\underline{k},s} \underline{e}_{\underline{k},s} \exp \left\{ i(\underline{k} \cdot \underline{r} - \omega_k t) \right\} + A_{\underline{k},s}^* \underline{e}_{\underline{k},s} \exp \left\{ -i(\underline{k} \cdot \underline{r} - \omega_k t) \right\}$$
(3.6)

The labels of the modes are \underline{k} , s, $s \in 1, 2$. They gives us the: direction; wavelength, $\frac{2\pi}{|\underline{k}|}$; and polarisation, s. To quantise this classically:

$$H = \frac{1}{2}\epsilon_0 \int \left(\underline{\mathbf{E}} \cdot \underline{\mathbf{E}} + c^2 \underline{\mathbf{B}} \cdot \underline{\mathbf{B}}\right) dV \tag{3.7}$$

$$=2\epsilon_0 V \sum_{\underline{k},s} \omega_k^2 A_{\underline{k},s} A_{\underline{k},s}^* \tag{3.8}$$

$$A_{\underline{k},s} = \frac{1}{2\omega_k \sqrt{\varepsilon_0 V}} \left\{ \omega_k q_{\underline{k},s} + i p_{\underline{k},s} \right\}$$
 (3.9)

$$A_{\underline{k},s}^* = \frac{1}{2\omega_k \sqrt{\epsilon_0 V}} \left\{ \omega_k q_{\underline{k},s} - i p_{\underline{k},s} \right\}$$
 (3.10)

 $q_{k,s}$, $p_{k,s}$ canonical coordinates (x, p).

$$H_{\underline{k},s} = \frac{1}{2} \left(p_{\underline{k},s}^2 + \omega_k^2 q_{\underline{k},s} \right) \tag{3.11}$$

Harmonic oscillator m = 1, $x \leftrightarrow p$. To transfer this from classical to quantum, you simply convert everything to its operator form. For a single mode:

$$\hat{H}_{\underline{k},s} = \left(\hat{a}_{\underline{k},s}^{\dagger} \hat{a}_{\underline{k},s} + \frac{1}{2}\right) \hbar \omega_k \tag{3.12}$$

$$[\hat{a}_{k,s}, \hat{a}_{k,s}^{\dagger}] = 1 \tag{3.13}$$

$$\hat{a}_{k,s}^{\dagger} \hat{a}_{k,s} = \hat{n}_{k,s} \tag{3.14}$$

Now we have eigenstates, $|n\rangle_{\underline{k},s}$. Note: modes are not always equal to photons, but you can have photons spread over several modes.

Going back on the substitution:

$$\hat{A}_{\underline{k},s} = \sqrt{\frac{\hbar}{2\omega_k \epsilon_0 V}} \hat{a}_{\underline{k},s} \qquad \qquad \hat{A}_{\underline{k},s}^{\dagger} = \sqrt{\frac{\hbar}{2\omega_k \epsilon_0 V}} \hat{a}_{\underline{k},s}^{\dagger} \qquad (3.15)$$

From these, we can find the quantised electric and magnetic field expressions. We will mostly be concerned with the electric field throughout this course as it has a much stronger interaction with matter than the magnetic.

$$\underline{\hat{\mathbf{E}}}_{\underline{k},s}(\underline{r},t) = i \left(\frac{\hbar \omega_k}{2\epsilon_0 V} \right)^{1/2} \underline{e}_{\underline{k},s} \left[\hat{a}_{\underline{k},s} \exp\{i(\underline{k} \cdot \underline{r} - \omega_k t)\} - \hat{a}_{\underline{k},s}^{\dagger} \exp\{-i(\underline{k} \cdot \underline{r} - \omega_k t)\} \right]$$
(3.16)

3.3 Multimode Fields

$$\hat{H}_{\underline{k},s} = \sum_{k,s} \hbar \omega_k \left(\hat{a}_{\underline{k},s}^{\dagger} \hat{a}_{\underline{k},s} + \frac{1}{2} \right) \tag{3.17}$$

So the modes are independent of each other, but will interact through matter. We have a basis of

$$|n_1 n_2 n_3 \dots\rangle \equiv |n_1\rangle_{k1,s} \otimes |n_2\rangle_{k2,s} \otimes \dots$$
 (3.18)

Now we can write the electric field operator:

$$\underline{\hat{\mathbf{E}}}(\underline{r},t) = \sum_{k,s} \underline{\hat{\mathbf{E}}}_{\underline{k},s}(\underline{r},t)$$
(3.19)

$$= \sum_{k,s} i \left(\frac{\hbar \omega_k}{2\epsilon_0 V} \right)^{1/2} \underline{e}_{\underline{k},s} \left\{ \hat{a}_{\underline{k},s} \exp[i(\underline{k} \cdot \underline{r} - \omega_k t)] + \hat{a}_{\underline{k},s}^{\dagger} \exp[-i(\underline{k} \cdot \underline{r} - \omega_k t)] \right\}$$
(3.20)

This is written in the Heisenberg representation. Now if we look at the expectation value, for one mode of the electric field

$$\underline{k}_{,s}\langle n|\underline{\hat{\mathbf{E}}}(\underline{r},t)|n'\rangle_{\underline{k},s} \tag{3.21}$$

This is time dependent as seen by the field operator and will oscillate in time through some means. As a reminder, consider an operator in the Heisenberg picture:

$$\hat{O}_{H}(t) = \hat{U}^{\dagger}(t, t_{0})\hat{O}\hat{U}(t, t_{0})$$
(3.22)

$$\hat{U}(t,t_0) = \exp\left[-i\frac{\hat{H}(t-t_0)}{\hbar}\right] \tag{3.23}$$