Visual Relation Detection

Deep Relation Network

ECCV2016(Oral) Lu C, Krishna R, Bernstein M, et al. Visual relationship detection with language priors[J]. arXiv preprint arXiv:1608.00187, 2016.

CVPR2017(Oral) Dai B, Zhang Y, Lin D. Detecting Visual Relationships with Deep Relational Networks[J]. arXiv preprint arXiv:1704.03114, 2017.

spatial, comparative, asymmetrical, verb, prepositional

spatial, comparative, asymmetrical, verb, prepositional

- Prediction recognition
 - Input: img + (lables, BBox) of Subject & Object
 - Output: Triplet (s; r; o), e.g. (girl, on, horse)
 - Metric: Recall@50
- Union box detection:
 - Input: img
 - Output: Triplet (s; r; o)
 - Metric: Recall@50 when IoU thresh=0.5
- Two boxes detection:
 - Similar to 2, except treating Subject & Object individually

Observation #1: Number of Visual Phases

	Images	Rel. Types	Rel. Instances	# Predicates per Obj. Category
Visual Phrases 6	2,769	13	2,040	120
Scene Graph 8	5,000	23,190	109,535	2.3
VGD	5,000	6,672	37,993	24.25

Observation #2: Unbalance Data

	Images	Rel. Types	Rel. Instances	# Predicates per Obj. Category
Visual Phrases 6	2,769	13	2,040	120
Scene Graph 8	5,000	23,190	109,535	2.3
VGD	5,000	6,672	37,993	24.25

10

Observation #3: Zero Shot Detection

	Images	Rel. Types	Rel. Instances	# Predicates per Obj. Category
Visual Phrases 6	2,769	13	2,040	120
Scene Graph 8	5,000	23,190	109,535	2.3
VGD	5,000	6,672	37,993	24.25

person ride horse 578 training examples

person wear hat 1023 training examples

horse wear hat 0 training examples

Observation #3: Zero Shot Detection

	Images	Rel. Types	Rel. Instances	# Predicates per Obj. Category
Visual Phrases 6	2,769	13	2,040	120
Scene Graph 8	5,000	23,190	109,535	2.3
VGD	5,000	6,672	37,993	24.25

Zero shot detection

person sit chair 948 training examples

12

hydrant on ground 29 training examples

person sit hydrant 0 training examples

Related Work

Combine Language Model

ECCV2016(Oral) Lu C, Krishna R, Bernstein M, et al. Visual relationship detection with language priors[J]. arXiv preprint arXiv:1608.00187, 2016.

Related Work

Combine Language Model

Weakness:

person ride bicycle 🙁

DRNet

Pipeline:

CVPR2017(Oral) Dai B, Zhang Y, Lin D. Detecting Visual Relationships with Deep Relational Networks[J]. arXiv preprint arXiv:1704.03114, 2017.

Pretrain

Object detection

Output: BBox + Appearance feature

Pair filtering

- low-cost neural network
- Filter out meaningless pair

Joint Recognition

- Appearance
- Spatial Configuration
- Statistical Relation

17

Statistical Relation (DRNet)

 Equivalents between Discriminative Model & Generative Model!

$$\begin{aligned} \mathbf{q}_{s}' &= \sigma \left(\mathbf{W}_{a} \mathbf{x}_{s} + \mathbf{W}_{sr} \mathbf{q}_{r} + \mathbf{W}_{so} \mathbf{q}_{o} \right), \\ \mathbf{q}_{r}' &= \sigma \left(\mathbf{W}_{r} \mathbf{x}_{r} + \mathbf{W}_{rs} \mathbf{q}_{s} + \mathbf{W}_{ro} \mathbf{q}_{o} \right), \\ \mathbf{q}_{o}' &= \sigma \left(\mathbf{W}_{a} \mathbf{x}_{o} + \mathbf{W}_{os} \mathbf{q}_{s} + \mathbf{W}_{or} \mathbf{q}_{r} \right). \end{aligned}$$

Statistical Relation (DRNet)

Toy Example

- Bayesian Net
- C is label, $x \sim \mathcal{N}(\mu, \sigma)$ is raw feature/observation
- We prove $p(C_1|x) = \sigma(w^Tx + w_0)$

$$p(C_{1}|x) = \frac{p(x|C_{1})p(C_{1})}{p(x|C_{1})p(C_{1}) + p(x|C_{2})p(C_{2})}$$

$$= \frac{1}{1 + \frac{exp[(x-\mu_{2})^{2}/2\sigma^{2}]p(C_{2})}{exp[(x-\mu_{1})^{2}/2\sigma^{2}]p(C_{1})}}$$

$$= \frac{1}{1 + \frac{p_{2}}{p_{1}}exp\left[\frac{\mu_{1}-\mu_{2}}{2\sigma^{2}}x + \frac{\mu_{2}^{2}-\mu_{1}^{2}}{2\sigma^{2}}\right]}$$

$$= \frac{1}{1 + exp(w^{T}x + w_{0})}$$

DRNet

Representation

Inference

$$p(r, s, o|\mathbf{x}_r, \mathbf{x}_s, \mathbf{x}_o) = \frac{1}{Z} \exp (\Phi(r, s, o|\mathbf{x}_r, \mathbf{x}_s, \mathbf{x}_o; \mathbf{W})).$$

$$\Phi = \psi_a(s|\mathbf{x}_s; \mathbf{W}_a) + \psi_a(o|\mathbf{x}_o; \mathbf{W}_a) + \psi_r(r|\mathbf{x}_r; \mathbf{W}_r) + \varphi_{rs}(r, s|\mathbf{W}_{rs}) + \varphi_{ro}(r, o|\mathbf{W}_{ro}) + \varphi_{so}(s, o|\mathbf{W}_{so}).$$

$$p(r|s, o, \mathbf{x}_r; \mathbf{W}) \propto \exp (\psi_r(r|\mathbf{x}_r; \mathbf{W}_r) + \varphi_{rs}(r, s|\mathbf{W}_{rs}) + \varphi_{ro}(r, o|\mathbf{W}_{ro})).$$

Unroll into a Network

$$\mathbf{q}_r = \boldsymbol{\sigma} \left(\mathbf{W}_r \mathbf{x}_r + \mathbf{W}_{rs} \mathbf{q}_s + \mathbf{W}_{ro} \mathbf{q}_o \right).$$

$$\begin{aligned} \mathbf{q}_{s}' &= \sigma \left(\mathbf{W}_{a} \mathbf{x}_{s} + \mathbf{W}_{sr} \mathbf{q}_{r} + \mathbf{W}_{so} \mathbf{q}_{o} \right), \\ \mathbf{q}_{r}' &= \sigma \left(\mathbf{W}_{r} \mathbf{x}_{r} + \mathbf{W}_{rs} \mathbf{q}_{s} + \mathbf{W}_{ro} \mathbf{q}_{o} \right), \\ \mathbf{q}_{o}' &= \sigma \left(\mathbf{W}_{a} \mathbf{x}_{o} + \mathbf{W}_{os} \mathbf{q}_{s} + \mathbf{W}_{or} \mathbf{q}_{r} \right). \end{aligned}$$

Experiments

Performance

		Predicate l	Recognition	Union Bo	x Detection	Two Boxes Detection	
		Recall@50 Recall@100		Recall@50 Recall@100		Recall@50	Recall@100
	VP [6]	0.97	1.91	0.04	0.07	-	-
0	Joint-CNN [49]	1.47	2.03	0.07	0.09	0.07	0.09
VRD	VR [1]	47.87	47.87	16.17	17.03	13.86	14.70
	DR-Net	80.78	81.90	19.02	22.85	16.94	20.20
	DR-Net + pair filter	-	-	19.93	23.45	17.73	20.88
	VP [6]	0.63	0.87	0.01	0.01	-	-
sVG	Joint-CNN [49]	3.06	3.99	1.24	1.60	1.21	1.58
	VR [1]	53.49	54.05	13.80	17.39	11.79	14.84
	DR-Net	88.26	91.26	20.28	25.74	17.51	22.23
	DR-Net + pair filter	-	-	23.95	27.57	20.79	23.76

		A_1	A_2	S	A_1S	A ₁ SC	A_1SD	A_2SD	A ₂ SDF
	Predicate Recognition	63.39	65.93	64.72	71.81	72.77	80.66	80.78	-
VRD	Union Box Detection	12.01	12.56	13.76	16.04	16.37	18.15	19.02	19.93
	Two Boxes Detection	10.71	11.22	12.16	14.38	14.66	16.12	16.94	17.73
N.S.	Predicate Recognition	72.13	72.54	75.18	79.10	79.18	88.00	88.26	-
	Union Box Detection	13.24	13.84	14.01	16.04	16.08	20.21	20.28	23.95
•	Two Boxes Detection	11.35	11.98	12.07	13.77	13.81	17.42	17.51	20.79

Experiments

Hyper Param

Experiments

Visualization

VR [1] (sky, in, water)

A₁ (sky, on, water)

S (sky, above, water)

A₁S (sky, above, water)

A₁SC (sky, above, water)

A₁SD (sky, above, water)

(giraffe, have, tree)
(giraffe, have, tree)
(giraffe, in, tree)
(giraffe, behind, tree)
(giraffe, behind, tree)
(giraffe, behind, tree)

(woman, ride, bicycle)
(woman, behind, bicycle)
(woman, wear, bicycle)
(woman, wear, bicycle)
(woman, ride, bicycle)
(woman, ride, bicycle)

(cat, have, hat) (cat, on, hat) (cat, have, hat) (cat, have, hat) (cat, have, hat) (cat, wear, hat)

Future Work

Thank You!