▼ Data Visualization

▼ Step-1

```
import seaborn as sns
import matplotlib.pyplot as plt
```

▼ Step-2 Load Dataset

iris = sns.load_dataset("iris")
iris.head()

₽		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa

▼ Step-3 Plot a Graph

```
sns.lineplot(x="sepal_length",y="sepal_width", data=iris)
plt.xlim(2)
plt.ylim(3)
plt.title("2022 session")
```


▼ Bar plot

sns.barplot(x="species",y="sepal_width", data=iris)

▼ Box Plot

<Axes: xlabel='species', ylabel='sepal_width'>

▼ Scatter Plot

 $\verb|sns.scatterplot(x="sepal_length",y="sepal_width", data=iris)|\\$

```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style="dark")

# Simulate data from a bivariate Gaussian
n = 10000
mean = [0, 0]
cov = [(2, .4), (.4, .2)]
rng = np.random.RandomState(0)
x, y = rng.multivariate_normal(mean, cov, n).T

# Draw a combo histogram and scatterplot with density contours
f, ax = plt.subplots(figsize=(6, 6))
sns.scatterplot(x=x, y=y, s=5, color=".15")
sns.histplot(x=x, y=y, bins=50, pthresh=.1, cmap="mako")
sns.kdeplot(x=x, y=y, levels=5, color="w", linewidths=1)
```

```
1.5
```

<seaborn.axisgrid.JointGrid at 0x7f498e91f430>

import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme()

Load the example flights dataset and convert to long-form
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month", "year", "passengers")

Draw a heatmap with the numeric values in each cell
f, ax = plt.subplots(figsize=(9, 6))
sns.heatmap(flights, annot=True, fmt="d", linewidths=.5, ax=ax)

<ipython-input-19-fd553bdfde69>:7: FutureWarning: In a future version of pandas all argu flights = flights_long.pivot("month", "year", "passengers") <Axes: xlabel='year', ylabel='month'>

Jan	112	115	145	171	196	204	242	284	315	340	360	417		- 600
Feb	118	126	150	180	196	188	233	277	301	318	342	391		
Mar	132	141	178	193	236	235	267	317	356	362	406	419		- 500
Apr	129	135	163	181	235	227	269	313	348	348	396	461		
Мау	121	125	172	183	229	234	270	318	355	363	420	472		
를 를	135	149	178	218	243	264	315	374	422	435	472	535		- 400
month Jul Jun	148	170	199	230	264	302	364	413	465	491	548	622		
מ				2.42	272	202	~	405	467	E0E				200

▼ Data Visualization

▼ Step-1

import seaborn as sns
import matplotlib.pyplot as plt

▼ Step-2 Load Dataset

flights = sns.load_dataset("flights")
flights.head()

	year	month	passengers
0	1949	Jan	112
1	1949	Feb	118
2	1949	Mar	132
3	1949	Apr	129
4	1949	May	121

▼ Step-3 Plot a Graph

```
sns.lineplot(x="MONTH",y="passengers", data=flights)
plt.xlim(2)
plt.ylim(3)
plt.title("2022 The Gangster")
```

Text(0.5, 1.0, '2022 The Gangster')

▼ BarPlot

<Axes: xlabel='month', ylabel='passengers'>

▼ BoxPlot

sns.boxplot(x="month",y="year", data=flights)

▼ Scatter Plot

sns.scatterplot(x="year",y="passengers", data=flights)

<Axes: xlabel='year', ylabel='passengers'>

▼ CatPlot

sns.catplot(x="month",y="passengers", data=flights,color="black")

<seaborn.axisgrid.FacetGrid at 0x7f498993b3a0>

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec month

import plotly.express as px
fig= px.scatter(iris, x="sepal_width", y="sepal_length", color="species", size="petal_length",hover_data=['petal_width'])
fig.show()

```
import plotly.express as px
gapminder= px.data.gapminder()
fig=px.scatter(gapminder, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country", size="pop", color="continent", hover
fig.show()
```

Colab paid products - Cancel contracts here

• ×