16.317: Microprocessor Systems Design I

Summer 2012

Lecture 5: Key Questions July 23, 2012

1. Explain the operation of the bit test instructions (BT, BTR, BTS,	, BIC
--	-------

2. Explain the operation of the bit scan instructions (BSF, BSR).

M. Geiger Lecture 5: Key Questions

3. **Example:** Given the following initial state, list <u>all</u> changed registers and/or memory locations and their new values. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:

EAX: 00000000H	Address		
EBX: 0000000AH	21100H	04	00
ECX: 00000000H	21102H	10	10
EDX: 00000000H	21104H	89	01
CF: 0	21106H	20	40
ESI: 00000008H	21108H	02	00
EDI: FFFF0000H	2110AH	00	16
EBP: 00000400H	2110CH	17	03
ESP: 00002000H	2110EH	FF	00
DS: 2110H	21110H	1E	00
SS: 1000H	21112H	06	00
	21114H	80	00
	21116H	0A	00

Instructions:

BT	WORD PTR [02H], 4
BTC	WORD PTR [10H], 1
BTS	WORD PTR [04H], 1
BSF	CX, WORD PTR [OEH]
BSR	DX. WORD PTR [09H]

4. Explain the operations of the flag control instructions (LAHF/SAHF, CLC/STC/CMC, CLI/STI).

5. **Example:** Given the following initial state, list <u>all</u> changed registers and/or memory locations and their new values. Where appropriate, you should also list the state of the carry flag (CF).

Initial state:

EAX: 00000000H	Address		
EBX: 0000000AH	10110H	04	00
ECX: 00000005H	10112H	10	10
EDX: 00000000H	10114H	89	01
ESI: 00000008H	10116H	20	40
EDI: FFFF0000H	10118H	02	00
EBP: 00000400H	1011AH	00	16
ESP: 00002000H	1011CH	17	03
DS: 100FH	1011EH	FF	00
SS: 1000H	10120H	1E	00
FLAGS: 00H	10122H	06	00
	10124H	80	00
	10126H	0A	00

<u>Instructions:</u>

LAHF		
MOV	[20]	H], AH
MOV	AH,	[30H]
SAHF		
VOM	AX,	[26H]
CMC		
RCL	AX,	CL

6. Describe the operation of the compare instruction.

7. Complete the following table that describes the different x86 condition codes.

Mnemonic (cc)	Condition tested	Status flag setting for true condition
0		
NO		
B, NAE, C		
NB, AE, NC		
S		
NS		
P, PE		
NP, PO		
E, Z		
NE, NZ		
BE, NA		
NBE, A		
L, NGE		
NL, GE		
LE, NG		
NLE, G		

8. Describe the operation of the SETcc instruction. How can this instruction be used?

9. Example: Show the results of the following instructions, assuming that DS:100H = 0001H, DS:102H = 0003H, DS:104H = 1011H, DS:106H = 1011H, DS:108H = ABCDH, DS:10AH = DCBAH

What complex condition does this sequence test?

MOV AX, [100H] **CMP** AX, [102H] **SETLE** BLAX, [104H] MOV CMPAX, [106H] **SETE** BH**AND** BL, BH **MOV** AX, [108H] CMP AX, [10AH] **SETNE** BHBL, BH OR

16.317: Microprocessor	Systems Design I
Summer 2012	

M. Geiger Lecture 5: Key Questions

10. Describe the two general classes of jump instruction.

11. Describe the different ways of specifying jump targets.

- 12. **Example:** Given CS = 1200H, IP = 0100H, and EBX = 14000020H, what are the target addresses of the following jump instructions?
- JMP 08H
- JPE FFF0H
- JE BX
- JNZ EBX
- 13. Given the instructions below, what are the resulting register values if:
 - AX = 0010H, BX = 0010H
 - AX = 1234H, BX = 4321H

What type of high-level program structure does this sequence demonstrate?

CMP AX, BX

JE L1

ADD AX, 1

JMP L2

L1: SUB AX, 1

L2: MOV [100H], AX

14. **Example:** Given the instructions below, what are the resulting register values if, initially, AX = 0001H?

What type of high-level program structure does this sequence demonstrate?

MOV CL, 5 L: SHL AX, 1

DEC CL JNZ L

15. **Example:** Given the instructions below, what are the resulting register values if, initially, AX = 0001H?

What type of high-level program structure does this sequence demonstrate?

- MOV CL, 5
- L: JZ END
 - ADD AX, AX
 - DEC CL
 - JMP L
- END: MOV [10H], AX

16. Describe the 80386 loop instructions, as well as how these instructions can be used in a typical program.

17. Rewrite the post-tested loop example from earlier to use a loop instruction.

MOV CL, 5

L: SHL AX, 1

DEC CL

JNZ L

M. Geiger Lecture 5: Key Questions

18. Describe the operation of the following program (Example 6.15-6.16). What is the final value of SI if the 15 bytes between 0A001 and 0A00F have the following values?

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E

MOV DL, 05 MOV AX, 0A00 MOV DS, AX MOV SI, 0000 MOV CX, 000F

AGAIN: INC SI

CMP [SI], DL LOOPNE AGAIN