Section 4.4 – Eigenvalues and Eigenvectors

In many problems in science and mathematics, linear equations $A\vec{x} = \vec{b}$ come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution of $A\vec{x} = \lambda \vec{x}$ or $\frac{d\vec{x}}{dt} = A\vec{x}$ (is changing with time) has nonzero solutions. (*All matrices are square*)

Definition

Suppose A is an $n \times n$ matrix and

$$\lambda \vec{x} = A \vec{x}$$

The values of λ are called eigenvalues of the matrix A and the nonzero vectors \vec{x} in \mathbb{R}^n are called the eigenvectors corresponding to that eigenvalue (λ) .

 λ is the eigenvalue associated with or corresponding to the eigenvector \vec{x} .

♣ One of the meanings of the word "eigen" in German is "proper"; eigenvalues are also called proper values, characteristic values, or latent roots.

Example

The vector $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector of $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$ corresponding to the eigenvalue $\lambda = 3$ since

$$A\vec{x} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$
$$= 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$= 3\vec{x} \mid$$

Eigenvalues and eigenvectors have a useful geometric interpretation in \mathbb{R}^2 and \mathbb{R}^3 .

The equation for the eigenvalues

Let's rewrite the equation $\lambda \vec{x} = A\vec{x}$.

$$A\vec{x} - \lambda \vec{x} = 0$$

 λ : are the eigenvalues and not a vector

$$A\vec{x} - \lambda I\vec{x} = 0$$

$$(A - \lambda I)\vec{x} = 0$$

The matrix $A - \lambda I$ times the eigenvectors \vec{x} is the zero vector.

The eigenvectors make up the nullspace of $A - \lambda I$.

Definition

The number λ is an eigenvalue of A if and only if $A - \lambda I$ is singular:

$$\det(A-\lambda I)=0$$

This equation $\det(A - \lambda I) = 0$ is called *characteristic equation* of A; the scalars satisfying this equation are the eigenvalues of A. when expanding the determinant $\det(A - \lambda I)$ is a polynomial in λ of degree n, called the *characteristic polynomial* of A.

Example

Find the eigenvalues of the matrix $A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$

Solution

$$\det(A - \lambda I) = \det\begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{vmatrix} 3 - \lambda & 2 \\ -1 & -\lambda \end{vmatrix}$$
$$= (3 - \lambda)(-\lambda) + 2$$
$$= \lambda^2 - 3\lambda + 2$$

The characteristic equation of A is:

$$\lambda^2 - 3\lambda + 2 = 0$$

The eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 2$

Theorem

If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A.

Example

Find the eigenvalues of the lower triangular matrix

$$A = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{3}{2} & 0 \\ 5 & -8 & -\frac{1}{4} \end{pmatrix}$$

Solution

The eigenvalues are: $\lambda_1 = \frac{1}{2}$, $\lambda_2 = \frac{3}{2}$, and $\lambda_3 = -\frac{1}{4}$

Theorem

If A is an $n \times n$ matrix, the following are equivalent.

- a) λ is an eigenvalue of A.
- **b**) The system of equations $(A \lambda I)\vec{x} = \vec{0}$ has nontrivial solutions.
- c) There is a nonzero vector \vec{x} in \mathbb{R}^n such that $A\vec{x} = \lambda \vec{x}$.
- d) λ is a real solution of the characteristic equation $\det(A \lambda I) = 0$

Eigenvectors

To find the eigenvector \vec{x} , for each eigenvalue λ solve $(A - \lambda I)\vec{x} = 0$ or $A\vec{x} = \lambda \vec{x}$

From the eigenvalues, the eigenvectors, in the form $V_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$, of the system can be determined by letting:

$$(A - \lambda_1 I)V_1 = 0$$
 and $(A - \lambda_2 I)V_2 = 0$

Example

Find the eigenvalues and the eigenvectors of the matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{pmatrix}$$
$$= (1 - \lambda)(4 - \lambda) - 4$$
$$= \lambda^2 - 5\lambda + 4 - 4$$
$$= \lambda^2 - 5\lambda$$
$$= \lambda(\lambda - 5) = \mathbf{0}$$

The eigenvalues of \mathbf{A} are: $\lambda_1 = 0$ $\lambda_2 = 5$

For $\lambda_1 = 0$, we have:

$$(A - \lambda_1 I)V_1 = 0$$

$$\begin{pmatrix} 1 - 0 & 2 \\ 2 & 4 - 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{cases} x + 2y = 0 \\ 0 \end{pmatrix}$$

$$x = -2y$$
If $y = -1 \Rightarrow x = 2$

Therefore, the eigenvector $V_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

Or
$$\begin{pmatrix} -2y \\ y \end{pmatrix} = y \begin{pmatrix} -2 \\ 1 \end{pmatrix} \implies V_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

For
$$\lambda_2 = 5 \implies \left(A - \lambda_2 I\right) V_2 = 0$$
:
$$\begin{pmatrix} 1 - 5 & 2 \\ 2 & 4 - 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies 2x - y = 0$$

$$\underbrace{2x = y}$$
Therefore, the eigenvector $V_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Therefore, the eigenvector $V_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Power of a Matrix

Theorem

If k is a positive integer, λ is an eigenvalue of a matrix A, and \vec{x} is a corresponding eigenvector, then λ^k is an eigenvalue of A^k and \vec{x} is a corresponding eigenvector.

Example

Find the eigenvalues of
$$A^7$$
 for $A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{pmatrix} -\lambda & 0 & -2\\ 1 & 2 - \lambda & 1\\ 1 & 0 & 3 - \lambda \end{pmatrix}$$
$$= \lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$

The eigenvalues of A: $\lambda_1 = 1$ and $\lambda_2 = 2$

The eigenvalues of A^7 are:

$$\lambda_1 = 1^7 = 1$$
 and $\lambda_2 = 2^7 = 128$

Theorem

A square matrix A is invertible iff $\lambda = 0$ is not an eigenvalue of A.

Summary

To solve the eigenvalue problem for an n by n matrix:

- 1. Compute the determinant of $A \lambda I$. With λ subtracted along the diagonal, this determinant starts with λ^n or $-\lambda^n$. It is a polynomial in λ of degree n.
- 2. Find the roots of this polynomial, by solving $\det(A \lambda I) = 0$. The *n* roots are the *n* eigenvalues of *A*. They make $A \lambda I$ singular.
- **3.** For each eigenvalue λ , solve $(A \lambda I)\vec{x} = \vec{0}$ to find an eigenvector \vec{x} .

Imaginary Eigenvalues

Example

Find the eigenvalues and the eigenvectors of the matrix $A = \begin{pmatrix} -2 & -1 \\ 5 & 2 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{vmatrix} -2 - \lambda & -1 \\ 5 & 2 - \lambda \end{vmatrix}$$
$$= (-2 - \lambda)(2 - \lambda) + 5$$
$$= \lambda^2 + 1 = 0$$

$$\Rightarrow \lambda^2 = -1$$

The eigenvalues are: $\lambda_{1,2} = \pm i$

For
$$\lambda_1 = i$$
: $(A - \lambda_1 I)V_1 = 0$

$$\begin{pmatrix} -2 - i & -1 \\ 5 & 2 - i \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow (-2 - i)x_1 - y_1 = 0$$

$$\Rightarrow (2 + i)x_1 = -y_1$$

Therefore, the eigenvector $V_1 = \begin{pmatrix} -1 \\ 2+i \end{pmatrix}$

$$\begin{split} &\lambda_1 = -i: \left(A - \lambda_2 I\right) V_2 = 0 \\ & \begin{pmatrix} -2 + i & -1 \\ 5 & 2 + i \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \rightarrow & \left(-2 + i\right) x_2 - y_2 = 0 \\ & \Rightarrow & \underbrace{\left(-2 + i\right) x_2 = y_2} \end{split}$$

Therefore, the eigenvector $V_2 = \begin{pmatrix} -1 \\ 2-i \end{pmatrix}$

Example

Find the eigenvalues and the eigenvectors of the matrix $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Solution

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix}$$
$$= \lambda^2 + 1 = 0$$
$$\Rightarrow \lambda^2 = -1$$

The eigenvalues are: $\lambda_{1,2} = \pm i$

The matrix A is a 90° rotation which has no real eigenvalues or eigenvectors. No vector $A\vec{x}$ stays in the same direction as \vec{x} (except the zero vector which is useless). If we add the eigenvalues together the result is zero which is the trace of A.

$$\lambda_{1} = i: \quad (A - \lambda_{1}I)V_{1} = 0$$

$$\begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{cases} -ix + y = 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \quad x = -iy \mid$$

Therefore, the eigenvector $V_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$

$$\lambda_{2} = -i: (A - \lambda_{2}I)V_{2} = 0$$

$$\begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow ix + y = 0$$

$$\Rightarrow y = -ix$$

Therefore, the eigenvector $V_2 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$

1. Find the eigenvalues and eigenvectors of A, A^2 , A^{-1} , and A + 4I:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \quad and \quad A^2 = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$

Check the trace $\lambda_1 + \lambda_2$ and the determinant $\lambda_1 \lambda_2$ for A and also A^2 .

2. Show directly that the given vectors are eigenvectors of the given matrix. What are the corresponding eigenvalues

$$\vec{v}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & -2 \\ -3 & 6 \end{bmatrix}$$

3. For which real numbers c does this matrix A have

$$A = \begin{pmatrix} 2 & -c \\ -1 & 2 \end{pmatrix}$$

- a) Two real eigenvalues and eigenvectors.
- b) A repeated eigenvalue with only one eigenvector
- c) Two complex eigenvalues and eigenvectors.
- **4.** Find the eigenvalues of A, B, AB, and BA:

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad AB = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \quad BA = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

- a) The eigenvalues of AB (are equal to) (are not equal to) eigenvalues of A times eigenvalues of B.
- b) The eigenvalues of AB (are equal to) (are not equal to) eigenvalues of BA.
- 5. When a+b=c+d show that (1, 1) is an eigenvector and find both eigenvalues of

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

6. The eigenvalues of A equal to the eigenvalues of A^T . This is because $\det(A - \lambda I)$ equals $\det(A^T - \lambda I)$. That is true because _____. Show by an example that the eigenvectors of A and A^T are not the same.

7. Let $A = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$. Compute the eigenvalues and eigenvectors of A.

8. Let
$$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$

- a) What is the characteristic polynomial for A (i.e. compute $det(A \lambda I)$?
- b) Verify that 1 is an eigenvalue of A. What is a corresponding eigenvector?
- c) What are the other eigenvalues of A?
- (9 58)For the following matrices:
 - Find the characteristic equation.
 - ii. Find the eigenvalues.
 - Find the eigenvectors. iii.

$$9. \quad \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$

19.
$$\begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}$$

28.
$$\begin{pmatrix} 5 & -4 \\ 2 & -1 \end{pmatrix}$$

10.
$$\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$$

20.
$$\begin{pmatrix} -4 & 2 \\ -\frac{5}{2} & 2 \end{pmatrix}$$

29.
$$\begin{pmatrix} 6 & -6 \\ 4 & -4 \end{pmatrix}$$

11.
$$\begin{pmatrix} 0 & 3 \\ 4 & 0 \end{pmatrix}$$

21.
$$\begin{pmatrix} -\frac{5}{2} & 2\\ \frac{3}{4} & -2 \end{pmatrix}$$

30.
$$\begin{pmatrix} 5 & -3 \\ 2 & 0 \end{pmatrix}$$

12.
$$\begin{pmatrix} -2 & -7 \\ 1 & 2 \end{pmatrix}$$

22.
$$\begin{pmatrix} 3 & -1 \\ 9 & -3 \end{pmatrix}$$

31.
$$\begin{pmatrix} 5 & -4 \\ 3 & -2 \end{pmatrix}$$

13.
$$\begin{pmatrix} 12 & 14 \\ -7 & -9 \end{pmatrix}$$

22.
$$\begin{pmatrix} 3 & -1 \\ 9 & -3 \end{pmatrix}$$

32.
$$\begin{pmatrix} 6 & -10 \\ 2 & -3 \end{pmatrix}$$

14.
$$\begin{pmatrix} -4 & 1 \\ -2 & 1 \end{pmatrix}$$

$$23. \quad \begin{pmatrix} -6 & 5 \\ -5 & 4 \end{pmatrix}$$

33.
$$\begin{pmatrix} 11 & -15 \\ 6 & -8 \end{pmatrix}$$

15.
$$\begin{pmatrix} 5 & 3 \\ -6 & -4 \end{pmatrix}$$

24.
$$\begin{pmatrix} 6 & -1 \\ 5 & 2 \end{pmatrix}$$

34.
$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

16.
$$\begin{pmatrix} -2 & 3 \\ 0 & -5 \end{pmatrix}$$

25.
$$\begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$$

35.
$$\begin{pmatrix} 9 & 2 \\ 2 & 6 \end{pmatrix}$$

17.
$$\begin{pmatrix} 2 & 0 \\ -4 & -2 \end{pmatrix}$$

26.
$$\begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix}$$

36.
$$\begin{pmatrix} 13 & 4 \\ 4 & 7 \end{pmatrix}$$

18.
$$\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$$

27.
$$\begin{pmatrix} 4 & 5 \\ -2 & 6 \end{pmatrix}$$

37.
$$\begin{pmatrix} 5 & -1 \\ 3 & -1 \end{pmatrix}$$

$$38. \quad \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix}$$

39.
$$\begin{pmatrix} -1 & -4 \\ 1 & -1 \end{pmatrix}$$

40.
$$\begin{pmatrix} -1 & 0 & 0 \\ 2 & -5 & -6 \\ -2 & 3 & 4 \end{pmatrix}$$

$$\mathbf{41.} \quad \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

42.
$$\begin{pmatrix} 2 & -7 & 0 \\ 5 & 10 & 4 \\ 0 & 5 & 2 \end{pmatrix}$$

$$43. \quad \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

$$44. \quad \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

45.
$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -8 & -5 & -3 \end{pmatrix}$$

$$46. \quad \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

$$\mathbf{47.} \quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

48.
$$\begin{pmatrix} -\frac{5}{2} & 1 & 1 \\ 1 & -\frac{5}{2} & 1 \\ 1 & 1 & -\frac{5}{2} \end{pmatrix}$$

49.
$$. \begin{pmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$$

$$\mathbf{50.} \quad \begin{pmatrix} 3 & 0 & -5 \\ \frac{1}{5} & -1 & 0 \\ 1 & 1 & -2 \end{pmatrix}$$

$$\mathbf{51.} \quad \begin{pmatrix}
-2 & 0 & 1 \\
-6 & -2 & 0 \\
19 & 5 & -4
\end{pmatrix}$$

52.
$$\begin{pmatrix} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & -1 \end{pmatrix}$$

59. Find the eigenvalues of
$$A^9$$
 for $A = \begin{pmatrix} 1 & 3 & 7 & 11 \\ 0 & \frac{1}{2} & 3 & 8 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$

60. Given:
$$A = \begin{bmatrix} -1 & 7 & -1 \\ 0 & 1 & 0 \\ 0 & 15 & -2 \end{bmatrix}$$
. Compute A^{11}

61. Find the eigenvalues of the matrices

$$A = \begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix}, \quad A^2 = \begin{pmatrix} 0.61 & 0.52 \\ 0.39 & 0.48 \end{pmatrix}, \quad A^{\infty} = \begin{pmatrix} 0.57143 & 0.57143 \\ 0.42857 & 0.42857 \end{pmatrix}, \quad and \quad B = \begin{pmatrix} 0.3 & 0.6 \\ 0.7 & 0.4 \end{pmatrix}$$

53.
$$\begin{pmatrix} 1 & 0 & 0 \\ 4 & 3 & 2 \\ -8 & -4 & -3 \end{pmatrix}$$
54.
$$\begin{pmatrix} -1 & -4 & -2 \\ 0 & 1 & 1 \\ -6 & -12 & 2 \end{pmatrix}$$

$$55. \quad \begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}$$

$$\mathbf{58.} \quad \begin{bmatrix} 10 & -9 & 0 & 0 \\ 4 & -2 & 0 & 0 \\ 0 & 0 & -2 & -7 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

- **62.** Given the matrix $\begin{bmatrix} -1 & -3 \\ -3 & 7 \end{bmatrix}$
 - a) Find the characteristic polynomial.
 - b) Find the eigenvalues
 - c) Find the bases for its eigenspaces
 - d) Graph the eigenspaces
 - e) Verify directly that $A\vec{v} = \lambda \vec{v}$, for all associated eigenvectors and eigenvalues.
- **63.** Given the matrix $\begin{bmatrix} 5 & 0 & -4 \\ 0 & -3 & 0 \\ -4 & 0 & -1 \end{bmatrix}$
 - a) Find the characteristic polynomial.
 - b) Find the eigenvalues
 - c) Find the bases for its eigenspaces
 - d) Graph the eigenspaces
 - e) Verify directly that $A\vec{v} = \lambda \vec{v}$, for all associated eigenvectors and eigenvalues.
- **64.** Explain why a 2×2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at most n distinct eigenvalues.
- **65.** Construct an example of a 2×2 matrix with only one distinct eigenvalue.
- **66.** Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} .
- 67. Show that if A^2 is the zero matrix, then the only eigenvalue of A is 0.
- **68.** Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^T .
- **69.** For $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, find one eigenvalue, without calculation. Justify your answer.
- **70.** For $A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$, find one eigenvalue, and two linearly independent eigenvectors, without

calculation. Justify your answer.

- 71. Consider an $n \times n$ matrix A with the property that the row sums all equal the same number S. Show that S is an eigenvalue of A.
- 72. Consider an $n \times n$ matrix A with the property that the column sums all equal the same number S. Show that S is an eigenvalue of A.

73. Let A be the matrix of the linear transformation T on \mathbb{R}^2

T: reflects points across some line through the origin.

Without writing A, find an eigenvalue of A and describe the eigenspace.

74. Let A be the matrix of the linear transformation T on \mathbb{R}^2

T: reflects points about some line through the origin.

Without writing A, find an eigenvalue of A and describe the eigenspace.

- 75. Show that if \vec{v} is an eigenvector of the matrix product AB and $B\vec{v} \neq \vec{0}$, then $B\vec{v}$ is an eigenvector of BA
- **76.** Explain and demonstrate that the eigenspace of a matrix *A* corresponding to some eigenvalue λ is a subspace.
- 77. If λ is an eigenvalue of the matrix A, prove that λ^2 is an eigenvalue of A^2 .