GREEN INVESTMENT CLASSIFICATOR

Giuseppe Grosso Matteo Fercia

Which country should we choose?

Social media

Energy

Economy

Pollution

Social Media

Scraped tweets:

Positive

Negative

→ Neutral

Energy

- Total production
- RE production
- % RE
- Avg consumption

Economy

Green Investment

Official Development Assistance (Oda)

Population

Pollution

Fossil Co2 emissions

Growth Co2 emissions

Per capita Co2 emissions

Exploratory Data Analysis

Classification

- Logistic Regression
- KNN
- Random forest
- SVM

Logistic Regression

Training set Call: alm(formula = `Risultato Investimento` ~ Population + `Investimenti Green` + Total_GWh_prod + Total_RE_Gwh, family = binomial, data = ds1, na.action = na.omit)Deviance Residuals: Min Median Max -5.641e-04 -2.000e-08 -2.000e-08 2.000e-08 5.469e-04 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.241e+00 1.246e+03 0.001 0.999 Population -1.326e-05 9.427e-04 -0.014 0.989 0.990 Total_GWh_prod -1.030e-02 6.877e-01 -0.015 0.988 Total RE Gwh 3.243e-02 2.137e+00 0.015 0.988 (Dispersion parameter for binomial family taken to be 1)

Null deviance: 4.6626e+01 on 36 degrees of freedom Residual deviance: 7.1783e-07 on 32 degrees of freedom

AIC: 10

Number of Fisher Scoring iterations: 25

```
Test set - CV
```

Generalized Linear Model

37 samples 16 predictors 2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 33, 34, 34, 33, 34, 33, ...
Resampling results:

Accuracy Kappa 0.785 0.5785714

Precision, Recall and F1-score

 $\label{eq:precision_glm} $$\operatorname{posPredValue}(\operatorname{predictions_glm},\ y_\operatorname{glm},\ \operatorname{positive}^{"}\operatorname{Positive}^{"})\ \#\ 1$$$\operatorname{recall_glm}\ <-\ \operatorname{sensitivity}(\operatorname{predictions_glm},\ y_\operatorname{glm},\ \operatorname{positive}^{"}\operatorname{Positive}^{"})\ \#\ 1$$$$$$}$

F1_glm <- (2 * precision_glm * recall_glm) / (precision_glm + recall_glm) # 1

KNN

Training set / Test set

Precision, Recall and F1-score

```
precision <- posPredValue(predictions, y, positive="Positive") # 0.4545455
recall <- sensitivity(predictions, y, positive="Positive") # 0.4166667
F1 <- (2 * precision * recall) / (precision + recall) # 0.4347826</pre>
```

Random Forest

Training set / Test set

Precision, Recall and F1-score

```
precision_rf <- posPredValue(predictions_rf, y_rf, positive="1") # 1
recall_rf <- sensitivity(predictions_rf, y_rf, positive="1") # 0.1666667
F1_rf <- (2 * precision_rf * recall_rf) / (precision_rf + recall_rf) # 0.2857143</pre>
```

Variable Importance Plot

SVM

1st SVM

```
hean(pred_test1==ds_svm_test$`Risultato Investimento`) #accuracy 0.8461538
precision_svm <- posPredValue(predictions_svm, y_svm, positive="1") # 0.6666667
recall_svm <- sensitivity(predictions_svm, y_svm, positive="1") # 0.6666667
F1_svm <- (2 * precision_svm * recall_svm) / (precision_svm + recall_svm) #0.6666667</pre>
pred
truth -1 1
-1 9 1
F1_svm <- (2 * precision_svm * recall_svm) / (precision_svm + recall_svm) #0.6666667</pre>
```

2nd SVM

```
pred_test2 <-predict(svm_model2,ds_svm_test)
table("truth"=ds_svm_test$`Risultato Investimento`, "pred"=pred_test2)
mean(pred_test2==ds_svm_test$`Risultato Investimento`) #[1] 0.8181818
mean(pred_test2!=ds_svm_test$`Risultato Investimento`) #[1] 0.1818182 tasso errata classificazione test</pre>
```

Precision, Recall and F1-score

```
precision_svm <- posPredValue(predictions_svm, y_svm, positive="1") # 0.6666667
recall_svm <- sensitivity(predictions_svm, y_svm, positive="1") # 0.6666667</pre>
```

```
F1_svm <- (2 * precision_svm * recall_svm) / (precision_svm + recall_svm) # 0.6666667
```

Cluster Analysis

- K-means Clustering
- Hierarchical Clustering
- Principal Component Analysis
- Clustering with PCA

K-Means Clustering - 1

K-Means Clustering - 2

K-Means Clustering - 3

Hierarchical Clustering

Hierarchical Clustering with Scaled Features Complete

Hierarchical Clustering with Scaled Features Average Linkage

Hierarchical Clustering with Scaled Features Single Linkage

dist(xsc) hclust (*, "complete") dist(xsc) hclust (*, "average") dist(xsc) hclust (*, "single")

Principal Component Analysis - 1

#Eigenvalues					
#	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
#Variance	5.905	4.053	1.350	1.015	0.433
#% of var.	45.424	31.180	10.386	7.810	
3.331					
#Cumulative % of var.	45.424	76.603	86.990	94.799	
98.130					
	Dim.5	Dim.6	Dim.7	Dim.8	Dim.9
W. T.					
#Variance	0.433	0.149	0.077	0.009	0.003
#% of var.	3.331	1.145	0.593	0.070	0.026
<pre>#Cumulative % of var. 99.963</pre>	98.130	99.275	99.868	99.938	

Principal Component Analysis - 2

Clustering with PCA

hClust Comp 1-4

