RIDGE REGRESSION

Generalized Ridge regression

Consider the regression model

$$Y = X\beta_* + \varepsilon,$$

where $X \in \mathbb{R}^{n \times d}$, β_* is an unknown vector in \mathbb{R}^d and $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$. Define the generalized Ridge estimator by:

$$\widehat{\beta} \in \operatorname{Argmin}_{\beta \in \mathbb{R}^d} \left\{ (Y - X\beta)^\top W (Y - X\beta) + (\beta - \beta_0)^\top \Delta (\beta - \beta_0) \right\} ,$$

where $\beta_0 \in \mathbb{R}^d$, $W \in \mathbb{R}^{n \times n}$ is a diagonal matrix with elements in [0,1], $\Delta \in \mathbb{R}^{d \times d}$ is a definite-positive matrix.

- 1. Provide the expression of $\widehat{\beta}$ when $\beta_0 = 0$, $W = I_n$ and $\Delta = \lambda I_d$ where $\lambda > 0$.
- 2. Solve the optimization problem in the general case.
- 3. Compute $\mathbb{E}[\widehat{\beta}]$ and show that the estimator is unbiased when $\beta_0 = \beta_*$.
- 4. Compute $\mathbb{V}[\widehat{\beta}]$ and the mean squared error $\mathbb{E}[\|\widehat{\beta} \beta_*\|_2^2]$ when $\beta_0 = \beta_*$.
- 5. Assume that $W = I_n$, $\beta_0 = 0$ and $\Delta = V\Lambda V^{\top}$ where $X = UDV^{\top}$ is a singular value decomposition of X and Λ is a diagonal matrix with positive diagonal components. Provide an expression of $\widehat{\beta}$ as a function of U, D, V, Λ and Y.