BÀI TẬP BỔ SUNG

Bài 1

Xét tập hợp M gồm các ma trận vuông 2x2 có dạng $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ với a, b, c $\in \mathbb{Z}_8$. Tập M là một vành với phép cộng và nhân ma trận, phần tử 0 là $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ và phần tử 1 là $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Gọi $\mathbf{U}(M)$ là tập các ma trận của M khả nghịch với phép nhân.

- a) Tính $\varphi(8)$.
- b) Giả sử $a, c \in \mathbb{Z}_8$. Tính $(a-c)(a^3 + a^2c + ac^2 + c^3)$.
- c) Giả sử $a, c \in \mathbf{U}(\mathbb{Z}_8)$. Chứng minh: $(a-c)(a^3+a^2c+ac^2+c^3)=\overline{0}$.

Ghi chú: Lưu ý rằng từ giả thiết $a - c \neq \overline{0}$ và $(a - c)(a^3 + a^2c + ac^2 + c^3) = \overline{0}$ ta không thể suy ra $a^3 + a^2c + ac^2 + c^3 = \overline{0}$. Bạn hãy cho ví dụ.

d) Giả sử $a, c \in \mathbf{U}(\mathbb{Z}_8)$. Chứng minh:

$$a^{31} + a^{30}c + a^{29}c^2 + a^{28}c^3 + \dots + a^2c^{29} + ac^{30} + c^{31} = \overline{0}.$$

Nếu không thể lý luận thì bạn có thể viết chương trình kiểm tra, chạy thử dựa vào tính chất $\mathbf{U}(\mathbb{Z}_8)$ chỉ có vài phần tử. Nhưng cách thức này sẽ khó nâng tổng quát.

- e) Tìm điều kiện cần và đủ mà a, b, c phải thỏa mãn để $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in \mathbf{U}(M)$.
- f) Đếm số lượng các phần tử của U(M).
- g) Tìm công thức cho $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^m$ và tính $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{8\varphi(8)}$.
- h) Chứng minh $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{8\varphi(8)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ với mọi ma trận $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in \mathbf{U}(M)$.

Bài 2

Luyện tập nhờ làm lại Bài 1, thay n = 8 bởi 11, 15, 27, 33.

Bài 3. Dựa vào ý tưởng của Bài 1 để giải trường hợp tổng quát hơn như sau. Trường hợp không thể giải quyết trường hợp n tổng quát, bạn hãy viết chương trình máy tính để khảo sát kết quả.

Giả sử n là số nguyên dương lớn hơn 1. Xét tập hợp $M_{\rm n}$ gồm các ma trận vuông 2x2 có dạng $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ với $a, b, c \in \mathbb{Z}_{\rm n}$. Tập $M_{\rm n}$ là một vành với phép cộng và nhân ma trận. Gọi $\mathbf{U}(M_{\rm n})$ là tập các phần tử đơn vị (phần tử khả nghịch với phép nhân) của $M_{\rm n}$.

a) Tìm điều kiện cần và đủ mà a,b,c phải thỏa mãn để $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in \mathbf{U}(M_{\mathrm{n}}).$

- b) Chứng minh $|U(M_n)| = n [\varphi(n)]^2$. Trong đó $\varphi(n)$ là hàm phi Euler.
- c) Chứng minh $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{n[\varphi(n)]^2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ với mọi ma trận $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in \mathbf{U}(M)$.
- d) Có thể thay lũy thừa $n [\varphi(n)]^2$ nói trên bởi một số m nhỏ hơn hay không? Bạn có thể thử nghiệm bằng chương trình máy tính trước khi khảo sát kết quả lý thuyết.
- e) Chứng minh nếu $D, E \in \mathbb{Z}_{1100}$ thỏa mãn $D \cdot E = \overline{1}$ thì $(\mathbf{x}^E)^D = \mathbf{x}$ với mọi ma trận $\mathbf{x} \in \mathbf{U}(M_{11})$. Nhờ đó ta có thể mã hóa ma trận trong $\mathbf{U}(M_{11})$ bằng E và giải mã bằng D.
- f) Cho ví dụ về 5 cặp khóa (E, D) để mã hóa các phần tử của $U(M_{11})$.
- g) Các ma trận nào trong $M_{11} \setminus U(M_{11})$ mà có thể mã hóa và giải mã như trên. Có bao nhiều ma trận như vậy?
- h) Thực tế có thể mã hóa các phần tử của $\mathbf{U}(M_{11})$ nhờ một sơ đồ mã hóa thu gọn hơn theo nghĩa là có thể tìm được số nguyên dương m<1100 sao cho nếu $E,D\in\mathbb{Z}_m$ thỏa mãn $(\mathbf{x}^E)^D=\mathbf{x}$ với mọi ma trận $\mathbf{x}\in \mathbf{U}(M_{11})$. Hãy khảo sát vấn đề này xem tồn tại m như vậy hay không, tìm m nhỏ nhất có thể được.

LỜI GIẢI ĐỀ ÔN THI CUỐI KỲ 2019 MÔN "PHƯƠNG PHÁP TOÁN CHO TIN HỌC"

Bài 1. Xét tập hợp M gồm các ma trận vuông 2×2 có dạng $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ với $a,b,c\in\mathbb{Z}_8$. Tập M là một vành với phép cộng và phép nhân ma trận, phần tử 0 là $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, còn phần tử 1 là $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Gọi U(M) là tập hợp các ma trận của M khả nghịch với phép nhân. a) Tính $\varphi(8)$.

Ta có $\varphi(8) = 4$ vì có 4 số 1,3,5,7 nguyên tố cùng nhau với 8 và không vươt quá 8.

b) Giả sử
$$a, c \in U(\mathbb{Z}_8)$$
. Tính $(a-c)(a^3 + a^2c + ac^2 + c^3)$.

Ta có $(a-c)(a^3+a^2c+ac^2+c^3)=a^4-c^4$.

c) Giả sử
$$a,c \in U(\mathbb{Z}_8)$$
. Chứng minh rằng $(a-c)(a^3+a^2c+ac^2+c^3)=\overline{0}$.

Lưu ý nếu giả thiết là $a-c \neq \overline{0}$ và $(a-c)(a^3+a^2c+ac^2+c^3)=\overline{0}$, ta không thể suy ra được $a^3+a^2c+ac^2+c^3=\overline{0}$. Hãy cho ví dụ.

$$\text{Vì } a,c \in U(\mathbb{Z}_8) \text{ nên } a^{\varphi(8)} = a^4 = \bar{1}, \ c^{\varphi(8)} = c^4 = \bar{1} \text{, suy ra } a^4 - c^4 = \bar{0} \, .$$

Ví dụ cho ý sau: Lấy a=1, c=5 là hai số thỏa mãn điều kiện $a, c \in U(\mathbb{Z}_8)$ và $a-c \neq \overline{0}$ nhưng tính toán trực tiếp cho thấy $a^3+a^2c+ac^2+c^3=\overline{4}$.

d) Giả sử
$$a,c \in U(\mathbb{Z}_8)$$
. Chứng minh

$$a^{31} + a^{30}c + \dots + ac^{30} + c^{31} = \overline{0}$$
.

Goi T là vế trái của biểu thức trên.

Ta có $a^4 = \bar{1}$ nên với mọi $n \in \mathbb{Z}^+$, nếu đặt n = 4k + r với r là số dư của n khi chia cho 4 thì $a^n = a^{4k+r} = a^{4k} \cdot a^r = \bar{1} \cdot a^r = a^r$, tức là lũy thừa của a trong \mathbb{Z}_8 là tuần hoàn chu kỳ 4.

Ta thấy rằng T là tổng của các số hạng có dạng $a^m \cdot c^n$ với m+n=31 là số chia 4 dư 3.

Nếu m chia hết cho 4 thì n chia 4 dư 3 và $a^m \cdot c^n = \overline{1} \cdot c^3 = c^3$. Từ 0 đến 31 có tất cả 32 số và trong đó, có đúng 8 số m chia hết cho 4 nên tổng tất cả các số hạng như thế (đó là $a^0c^{31}, a^4c^{27}, a^8c^{23}, \ldots, a^{28}c^3$) đều có thể viết thành c^3 trong \mathbb{Z}_8 , thế nên tổng của chúng là $8c^3 = \overline{0}$ trong \mathbb{Z}_8 . Tương tự nếu m chia 4 dư 1,2,3 thì theo thứ tự n chia 4 dư 2,1,0 và các biểu thức có dạng này lần lượt được viết thành ac^2, a^2c, a^3 . Ngoài ra, mỗi biểu thức xuất hiện đúng 8 lần nên tổng của mỗi nhóm đều là $\overline{0}$. Từ đó suy ra $T=\overline{0}$.

e) Tìm điều kiện cần và đủ của a,b,c để $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M)$.

 $\vec{\mathrm{De}} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M) \text{ thì nó khả nghịch với phép nhân. Theo giả thiết thì phần tử đơn vị của } U(M)$

$$\text{là} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ nên cần có} \begin{pmatrix} a' & 0 \\ b' & c' \end{pmatrix} \in U(M) \text{ sao cho} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} a' & 0 \\ b' & c' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ hay }$$

$$aa' = 1, ba' + cb' = 0, cc' = 1.$$

Do $aa'=cc'=\bar{1}$ nên $a,c,a',c'\in U(\mathbb{Z}_8)$ (là các phần tử khả nghịch trong \mathbb{Z}_8). Khi đó, với mọi $b\in\mathbb{Z}_8$, ta có $ba'+cb'=0 \Leftrightarrow c'(ba'+cb')=0 \Leftrightarrow bc'a'+b'=0$ nên chọn b'=-bc'a' là được.

Vì thế nên điều kiện cần và đủ là $a, c \in U(\mathbb{Z}_8)$ và $b \in \mathbb{Z}_8$.

f) Đếm số lượng các phần tử của U(M).

Theo câu e thì có 4 cách chọn cho a,c vì $\varphi(8)=4$, và 8 cách chọn b nên số lượng ma trận trong U(M) là $4^2 \cdot 8 = 128$.

g) Tìm công thức cho
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^m$$
 và tính $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{8\varphi(8)}$.

Bằng quy nạp, ta sẽ chứng minh công thức $\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}^m = \begin{bmatrix} a^m & 0 \\ b \cdot \frac{a^m - c^m}{a - c} & c^m \end{bmatrix}$ với mọi m = 1, 2, 3, ...

Ghi chú. Công thức này dự đoán được nhờ tính thử vài giá trị m nhỏ.

Thật vậy, với m = 1 thì đẳng thức trên đúng.

Giả sử ta đã có kết quả trên với m, xét lũy thừa m+1 thì theo công thức nhân ma trận:

$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{m+1} = \begin{pmatrix} a^m & 0 \\ b \cdot \frac{a^m - c^m}{a - c} & c^m \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} a^{m+1} & 0 \\ b \cdot \frac{a(a^m - c^m)}{a - c} + b \cdot c^m & c^{m+1} \end{pmatrix}.$$

Chú ý rằng $b \cdot \frac{a(a^m - c^m)}{a - c} + b \cdot c^m = \frac{b}{a - c} \left(a(a^m - c^m) + (a - c)c^m \right) = b \cdot \frac{a^{m+1} - c^{m+1}}{a - c}$. Do đó, khẳng định cũng đúng với m + 1 và theo quy nạp thì nó đúng với mọi m.

Từ đó suy ra
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{8\varphi(8)} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{32} = \begin{pmatrix} a^{32} & 0 \\ b \cdot \frac{a^{32} - c^{32}}{a - c} & c^{32} \end{pmatrix}.$$

h) Chứng minh rằng
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{8\varphi(8)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 với mọi ma trận $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M)$.

Theo công thức đã tính được ở trên thì $a^{32} = (a^4)^8 = \overline{1}$ vì $a \in U(\mathbb{Z}_8)$. Tương tự thì $c^{32} = \overline{1}$.

Ta cũng có $b \cdot \frac{a^{32} - c^{32}}{a - c} = b(a^{31} + a^{30}c + \dots + ac^{30} + c^{31})$. Ngoài ra, theo câu d thì biểu thức trong

dấu ngoặc bằng
$$\overline{0}$$
 trong \mathbb{Z}_8 nên ta có được $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{8\varphi(8)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Giải mẫu bài 2 với các câu hỏi $a \rightarrow h$ sẽ được đổi số tương ứng cho phù hợp.

Bài 2. Giải mẫu với n = 11.

a) Tính $\varphi(11)$.

Ta có $\varphi(11) = 10$ vì có 10 số 1,2,3,...,10 nguyên tố cùng nhau với 11 và không vượt quá 11.

b) Giả sử
$$a, c \in U(\mathbb{Z}_{11})$$
. Tính $(a-c)(a^9 + a^8c + \dots + ac^8 + c^9)$.

Ta có
$$(a-c)(a^9 + a^8c + \dots + ac^8 + c^9) = a^{10} - b^{10}$$

c) Giả sử
$$a,c \in U(\mathbb{Z}_{11})$$
. Chứng minh rằng $(a-c)(a^9+a^8c+\cdots+ac^8+c^9)=\overline{0}$.

$$\text{Vì } a,c \in U(\mathbb{Z}_{11}) \text{ nên } a^{\varphi(11)} = a^{10} = \bar{1}, \ c^{\varphi(11)} = c^{10} = \bar{1} \text{, suy ra } a^{10} - c^{10} = \bar{0} \, .$$

<u>Ghi chú quan trọng:</u> ở đây 11 là số nguyên tố nên nếu $a \neq c$ thì có thể suy ra dấu ngoặc thứ hai là $\overline{0}$. Điều này sẽ dùng cho câu <u>3(h) ở trang cuối!</u>

 $m \mathring{O}$ bài gốc, đề cho số 8 không phải là số nguyên tố nên không thể loại bỏ hiệu a-c đi được, và vì thế cần có $8\varphi(8)$ thay vì $\varphi(8)$ thì đề bài mới đúng.

d) Giả sử
$$a,c \in U(\mathbb{Z}_{11})$$
. Chứng minh $a^9 + a^8c + \cdots + ac^8 + c^9 = \overline{0}$.

Điều này đúng theo ghi chú quan trọng ở trên.

e) Tìm điều kiện cần và đủ của
$$a,b,c$$
 để $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M)$.

Tương tự câu e, điều kiện cần và đủ là $a,c \in U(\mathbb{Z}_{11})$ và $b \in \mathbb{Z}_{11}$.

f) Đếm số lượng các phần tử của U(M).

Kết quả là $10^2 \times 11 = 1100$.

g) Tìm công thức cho
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^m$$
 và tính $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{\varphi(11)}$.

Ghi chú: cách chứng minh công thức tương tự bài 1.

Từ công thức suy ra
$$\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}^{\varphi(11)} = \begin{bmatrix} a & 0 \\ b & c \end{bmatrix}^{10} = \begin{bmatrix} a^{10} & 0 \\ b \cdot \frac{a^{10} - c^{10}}{a - c} & c^{10} \end{bmatrix}$$
.

h) Chứng minh rằng
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{\varphi(11)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 với mọi ma trận $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M)$.

Theo công thức đã tính được ở trên thì $a^{\scriptscriptstyle 10}=\bar{1}$ vì $a\in U(\mathbb{Z}_{\scriptscriptstyle 11})$. Tương tự thì $c^{\scriptscriptstyle 10}=\bar{1}$.

Ta cũng có $b \cdot \frac{a^{10} - c^{10}}{a - c} = b(a^9 + a^8c + \dots + ac^8 + c^9)$. Ngoài ra, theo câu d thì biểu thức trong dấu ngoặc bằng $\bar{0}$ trong \mathbb{Z}_{11} nên ta có được $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{\varphi(11)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Bài 2. Giải mẫu với n = 15.

a) Tính $\varphi(15)$.

Ta có $\varphi(15) = \varphi(3)\varphi(5) = 2 \cdot 4 = 8$.

Ghi chú. ở trên là cách tính dùng công thức của hàm φ , nếu cẩn thận ta có thể liệt kê các số nguyên tố cùng nhau với 15 ra bằng cách nhẩm hoặc tra bảng.

b) Giả sử
$$a, c \in U(\mathbb{Z}_{15})$$
. Tính $(a-c)(a^7 + a^6c + \cdots + ac^6 + c^7)$.

Ta có
$$(a-c)(a^7 + a^6c + \dots + ac^6 + c^7) = a^8 - b^8$$
.

c) Giả sử
$$a,c \in U(\mathbb{Z}_{15})$$
. Chứng minh rằng $(a-c)(a^7+a^6c+\cdots+ac^6+c^7)=\overline{0}$.

Lưu ý nếu giả thiết là $a-c\neq \overline{0}$ và $(a-c)(a^7+a^6c+\cdots+ac^6+c^7)=\overline{0}$. ta không thể suy ra được $a^7+a^6c+\cdots+ac^6+c^7=\overline{0}$. Bạn hãy cho ví dụ.

Vì
$$a, c \in U(\mathbb{Z}_{11})$$
 nên $a^{\varphi(11)} = a^8 = \overline{1}, c^{\varphi(11)} = c^8 = \overline{1}$, suy ra $a^8 - c^8 = \overline{0}$.

Ví dụ cho ý sau: Lấy a=1, c=4 là hai số thỏa mãn điều kiện $a, c \in U(\mathbb{Z}_{15})$ và $a-c \neq \overline{0}$ nhưng tính tính trực tiếp cho thấy $a^7+a^6c+\cdots+ac^6+c^7=\frac{a^8-c^8}{a-c}=21845=\overline{5}\neq\overline{0}$.

Ghi chú. Mẹo ở đây là chỉ cần chọn các số a,c sao cho $a-c \notin U(\mathbb{Z}_{15})$ là có ngay ví dụ; ở trên ta chọn a=1,c=4 thì a-c=3; có thể chọn a=1,c=6 cũng được.

d) Giả sử $a, c \in U(\mathbb{Z}_{15})$. Chứng minh

$$a^{119} + a^{118}c + \dots + ac^{118} + c^{119} = \overline{0}$$
.

Ghi chú: 119 được tính bằng cách lấy $15 \times \varphi(15) = 120$ rồi trừ đi 1.

Ta có $a^8=\bar{1}$ nên với mọi $n\in\mathbb{Z}^+$, nếu đặt n=8k+r với r là số dư của n khi chia cho 8 thì $a^n=a^{8k+r}=a^{8k}\cdot a^r=\bar{1}\cdot a^r=a^r$, tức là lũy thừa của a trong \mathbb{Z}_{15} là tuần hoàn chu kỳ 8.

Ta thấy rằng T là tổng của các số hạng có dạng $a^m \cdot c^n$ với m + n = 119 chia 8 dư 7.

Nếu m chia hết cho 8 thì n chia 8 dư 7 và $a^m \cdot c^n = \overline{1} \cdot c^7 = c^7$. Từ 0 đến 119 có tất cả 120 số và trong đó, có đúng 15 số m chia hết cho 8 nên tổng tất cả các số hạng như thế (đó là $a^0c^{119}, a^8c^{111}, \ldots, a^{112}c^7$) đều có thể viết thành c^7 trong \mathbb{Z}_{15} , thế nên tổng của chúng là $15c^7 = \overline{0}$ trong \mathbb{Z}_{15} . Tương tự nếu m chia 8 dư 1,2,...,7 thì theo thứ tự n chia 8 dư 6,5,...,0 và các biểu thức có dạng này lần lượt được viết thành $ac^6, a^2c^5, \ldots, a^7$. Ngoài ra, mỗi biểu thức xuất hiện đúng 15 lần nên tổng của mỗi nhóm đều là $\overline{0}$. Từ đó suy ra $T = \overline{0}$.

e) Tìm điều kiện cần và đủ của a,b,c để $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M)$.

Tương tự câu e, điều kiện cần và đủ là $a,c \in U(\mathbb{Z}_{15})$ và $b \in \mathbb{Z}_{15}$.

f) Đếm số lượng các phần tử của U(M) .

Kết quả là $8^2 \times 15 = 960$.

g) Tìm công thức cho
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^m$$
 và tính $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{15\varphi(15)}$.

Ghi chú: cách chứng minh công thức tương tự bài 1.

Từ công thức suy ra
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{15\varphi(15)} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{120} = \begin{pmatrix} a^{120} & 0 \\ b \cdot \frac{a^{120} - c^{120}}{a - c} & c^{120} \end{pmatrix}.$$

h) Chứng minh rằng
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{15\varphi(15)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 với mọi ma trận $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M)$.

Theo công thức đã tính được ở trên thì $a^{120}=(a^8)^{15}=\bar{1}$ vì $a\in U(\mathbb{Z}_{15})$. Tương tự thì $c^{120}=\bar{1}$.

5

Ta cũng có
$$b \cdot \frac{a^{120} - c^{120}}{a - c} = b(a^{119} + a^{118}c + \dots + ac^{118} + c^{119}) = \overline{0} \text{ nên } \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{15\varphi(15)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Bài 2. Giải mẫu với n = 27.

a) Tính $\varphi(27)$.

Ta có
$$\varphi(27) = 3^2 \varphi(3) = 18$$
.

Ghi chú. ở trên là cách tính dùng công thức của hàm φ , nếu cẩn thận ta có thể liệt kê các số nguyên tố cùng nhau với 27 ra bằng cách nhẩm hoặc tra bảng.

b) Giả sử
$$a, c \in U(\mathbb{Z}_{27})$$
. Tính $(a-c)(a^{17} + a^{16}c + \cdots + ac^{16} + c^{17})$.

Ta có
$$(a-c)(a^{17}+a^{16}c+\cdots+ac^{16}+c^{17})=a^{18}-b^{18}$$
.

c) Giả sử
$$a, c \in U(\mathbb{Z}_{27})$$
. Chứng minh rằng $(a-c)(a^{17}+a^{16}c+\cdots+ac^{16}+c^{17})=\overline{0}$.

Lưu ý nếu giả thiết là $a-c \neq \overline{0}$ và $(a-c)(a^{17}+a^{16}c+\cdots+ac^{16}+c^{17})=\overline{0}$ ta không thể suy ra được $a^{17}+a^{16}c+\cdots+ac^{16}+c^{17}=\overline{0}$. Bạn hãy cho ví dụ.

$$\text{Vi } a,c \in U(\mathbb{Z}_{27}) \text{ nên } a^{\varphi(27)} = a^{18} = \overline{1}, \ c^{\varphi(27)} = c^{18} = \overline{1}, \text{ suy ra } a^{18} - c^{18} = \overline{0} \, .$$

Ví dụ cho ý sau: Lấy a=1,c=7 là hai số thỏa mãn điều kiện $a,c\in U(\mathbb{Z}_{27})$ và $a-c\neq \overline{0}$ nhưng tính tính trực tiếp cho thấy $(a-c)(a^{17}+a^{16}c+\cdots+ac^{16}+c^{17})=\frac{a^{18}-c^{18}}{a-c}=18 \pmod{27}$.

d) Giả sử $a, c \in U(\mathbb{Z}_{27})$. Chứng minh

$$a^{485} + a^{484}c + \dots + ac^{484} + c^{485} = \overline{0}$$
.

Ghi chú: 485 được tính bằng cách lấy $27 \times \varphi(27) = 486$ rồi trừ đi 1.

Ta có $a^{18}=\bar{1}$ nên với mọi $n\in\mathbb{Z}^+$, nếu đặt n=18k+r với r là số dư của n khi chia cho 18 thì $a^n=a^{18k+r}=a^{18k}\cdot a^r=\bar{1}\cdot a^r=a^r$, tức là lũy thừa của a trong \mathbb{Z}_{27} là tuần hoàn chu kỳ 18.

Ta thấy rằng T là tổng của các số hạng có dạng $a^m \cdot c^n$ với m+n=485 chia 18 dư 17.

Nếu m chia hết cho 18 thì n chia 18 dư 17 và $a^m \cdot c^n = \bar{1} \cdot c^{17} = c^{17}$. Từ 0 đến 485 có tất cả 486 số và trong đó, có đúng 27 số m chia hết cho 18 nên tổng tất cả các số hạng như thế (đó là $a^0c^{485}, a^{18}c^{467}, \ldots, a^{468}c^{17}$) đều có thể viết thành c^{17} trong \mathbb{Z}_{27} , thế nên tổng của chúng là $27c^{17} = \bar{0}$ trong \mathbb{Z}_{27} . Tương tự nếu m chia 18 dư $1,2,\ldots,17$ thì theo thứ tự n chia 18 dư $16,15,\ldots,0$ và các biểu thức có dạng này lần lượt được viết thành $ac^{16}, a^2c^{15}, \ldots, a^{17}$. Ngoài ra, mỗi biểu thức xuất hiện đúng 27 lần nên tổng của mỗi nhóm đều là $\bar{0}$. Từ đó suy ra $T=\bar{0}$.

6

e) Tìm điều kiện cần và đủ của
$$a,b,c$$
 để $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M)$.

Tương tự câu e, điều kiện cần và đủ là $a,c \in U(\mathbb{Z}_{27})$ và $b \in \mathbb{Z}_{27}$.

f) Đếm số lượng các phần tử của U(M).

Kết quả là $18^2 \times 27 = 8748$.

g) Tìm công thức cho
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^m$$
 và tính $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{27\varphi(27)}$.

Ghi chú: cách chứng minh công thức tương tư bài 1.

Từ công thức suy ra
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{27\varphi(27)} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{486} = \begin{pmatrix} a^{486} & 0 \\ b \cdot \frac{a^{486} - c^{486}}{a - c} & c^{486} \end{pmatrix}.$$

h) Chứng minh rằng
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{27\varphi(27)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 với mọi ma trận $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M)$.

Theo công thức đã tính được ở trên thì $a^{486}=(a^{18})^{27}=\bar{1}$ vì $a\in U(\mathbb{Z}_{27})$. Tương tự thì $c^{486}=\bar{1}$.

Ta cũng có $b \cdot \frac{a^{486} - c^{486}}{a - c} = b(a^{485} + a^{484}c + \dots + ac^{484} + c^{485})$. Ngoài ra, theo câu d thì biểu thức

trong dấu ngoặc bằng $\bar{0}$ trong \mathbb{Z}_{27} nên ta có được $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{27\varphi(27)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Bài 2. Giải mẫu với n = 33, câu này tương tự n = 15, ở dưới chỉ tóm tắt kết quả.

a) Tính $\varphi(33) = 20$.

b,c,d) Đổi thành $(a-c)(a^{19}+a^{18}c+\cdots+ac^{18}+c^{19})$. Ở ý ví dụ của câu c, chọn a=1,c=4 thì sẽ có $a^{19}+a^{18}c+\cdots+ac^{18}+c^{19}=\overline{11}\neq\overline{0}$.

f) Đếm số lượng các phần tử của U(M) là $20^2 \times 33 = 13200$.

Bài 3. Giả sử n là số nguyên dương lớn hơn 1, xét tập hợp M_n gồm các ma trận vuông 2×2 có dạng $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ với $a,b,c\in\mathbb{Z}_n$. Tập M_n là một vành với phép cộng và phép nhân ma trận, phần tử 0 là $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, còn phần tử 1 là $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Gọi $U(M_n)$ là tập hợp các ma trận của M_n khả nghịch.

a) Tìm điều kiện cần và đủ của a,b,c để $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M_{_{n}})$.

Để $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M_n)$ thì nó khả nghịch với phép nhân. Theo giả thiết thì phần tử đơn vị của

$$U(M_{\scriptscriptstyle n}) \ \text{là} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ nên cần có} \begin{pmatrix} a' & 0 \\ b' & c' \end{pmatrix} \in U(M_{\scriptscriptstyle n}) \text{ sao cho} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} a' & 0 \\ b' & c' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ hay}$$

$$aa' = \bar{1}, ba' + cb' = \bar{0}, cc' = \bar{1}.$$

Do $aa'=cc'=\bar{1}$ nên $a,c,a',c'\in U(\mathbb{Z}_n)$ (là các phần tử khả nghịch trong \mathbb{Z}_n). Khi đó, với mọi $b\in\mathbb{Z}_n$, ta có $ba'+cb'=0 \Leftrightarrow c'(ba'+cb')=0 \Leftrightarrow bc'a'+b'=0$ nên chọn b'=-bc'a' là được.

Vì thế nên điều kiện cần và đủ là $a, c \in U(\mathbb{Z}_n)$ và $b \in \mathbb{Z}_n$.

b) Chứng minh $|U(M_n)| = n[\varphi(n)]^2$.

Do $a,c \in U(\mathbb{Z}_n)$ nên có $\varphi(n)$ cách chọn a,c và có n cách chọn b. Do đó, số lượng phần tử có trong $U(M_n)$ là $n[\varphi(n)]^2$.

c) Chứng minh
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{n[\varphi(n)]^2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 với mọi $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M_n)$.

Ghi chú. Thực ra ở đây chỉ cần lũy thừa $n\varphi(n)$ như bài 1 là đủ.

Ta có
$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{n\varphi(n)} = \begin{pmatrix} a^{n\varphi(n)} & 0 \\ b \cdot \frac{a^{n\varphi(n)} - c^{n\varphi(n)}}{a - c} & c^{n\varphi(n)} \end{pmatrix}$$
 và $a^{n\varphi(n)} = (a^{\varphi(n)})^n = 1^n = \overline{1}$, tương tự với số c . Chú

ý rằng lũy thừa của a,c trong \mathbb{Z}_n tuần hoàn với chu kỳ $\varphi(n)$. Gọi T là biểu thức

$$\frac{a^{n\varphi(n)} - c^{n\varphi(n)}}{a - c} = \sum_{x + y = n\varphi(n) - 1} a^x c^y = a^{n\varphi(n) - 1} + a^{n\varphi(n) - 2} c + \dots + c^{n\varphi(n) - 1}.$$

Bằng cách giống như bài 1, ta xét số dư của lũy thừa x, y khi chia cho $\varphi(n)$.

Nếu x chia hết cho $\varphi(n)$ thì y chia $\varphi(n)$ dư $\varphi(n)-1$ và $a^x\cdot c^y=\bar 1\cdot c^{\varphi(n)-1}=c^{\varphi(n)-1}$. Từ 0 đến $n\varphi(n)-1$ có tất cả $n\varphi(n)$ số và trong đó, có đúng n số x chia hết cho $\varphi(n)$ nên tổng tất cả các số hạng như thế đều có thể viết thành $c^{\varphi(n)-1}$ trong \mathbb{Z}_n , thế nên tổng của chúng là $nc^{\varphi(n)-1}=\bar 0$ trong \mathbb{Z}_n . Tương tự nếu x chia $\varphi(n)$ dư $1,2,\ldots$ thì theo thứ tự y chia $\varphi(n)$ dư $\varphi(n)-2,\ldots,1,0$ và các biểu thức có dạng này lần lượt được viết thành $ac^{\varphi(n)-2},a^2c^{\varphi(n)-3},\ldots,a^{\varphi(n)-1}$. Ngoài ra, mỗi biểu thức xuất hiện đúng n lần nên tổng của mỗi nhóm đều là 0. Từ đó suy ra T=0.

Do đó,
$$b \cdot \frac{a^m - c^m}{a - c} = 0$$
 và $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{n\varphi(n)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Điều này kéo theo

$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{n[\varphi(n)]^2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{\varphi[n]} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Ghi chú. Đẳng thức trên đúng vì lũy thừa của ma trận đơn vị thì bằng chính nó.

d) Có thể thay lũy thừa $n[\varphi(n)]^2$ ở trên bằng số m nào nhỏ hơn không?

Ở câu c, ta đã chỉ ra có số $n\varphi(n) < n[\varphi(n)]^2$. Do đó, câu trả lời là khẳng định.

Ghi chú. Nếu đề đổi thành có số m nào nhỏ hơn $n\varphi(n)$ thỏa mãn không thì sẽ thành câu khó! Điều này liên quan đến việc tìm n để $\varphi(n)$ là số nguyên dương nhỏ nhất mà $\forall d \in U(\mathbb{Z}_n)$ thì $d^m = \overline{1}$. Mọi người quan tâm có thể xem thêm tai:

https://vi.wikipedia.org/wiki/C%C4%83n_nguy%C3%AAn_th%E1%BB%A7y_modulo_n

e) Chứng minh nếu $D, E \in \mathbb{Z}_{1100}$ thỏa mãn $D \cdot E = \bar{1}$ thì $(x^E)^D = x$ với mọi ma trận $x \in U(M_{11})$. Từ đó ta có thể mã hóa ma trận trong $U(M_{11})$ bằng E và giải mã bằng D.

Vì $D \cdot E = \bar{1}$ nên DE = 1100k + 1 với $k \in \mathbb{Z}$. Theo bài 2, ta đã chứng minh được

$$x^{\varphi(11)}=x^{10}=egin{pmatrix}1&0\0&1\end{pmatrix}$$
 với mọi $x\in U(M_{11}).$

Do đó
$$x^{1100k+1} = (x^{10})^{110k} \cdot x = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{110k} \cdot x = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot x = x$$
. Vì thế nên khi dùng lũy thừa E , ta đã

biến đổi ma trận ban đầu sang một ma trận khác (mã hóa), và sau đó lũy thừa lần nữa bằng D để đưa nó về ma trận ban đầu (giải mã).

f) Cho ví dụ về 5 khóa (E,D) để mã hóa các phần tử của $U(M_{11})$.

Ghi chú. Thực ra ở câu e, f, ta cũng chỉ cần \mathbb{Z}_{110} là đủ (110 = 11· φ (11)), không cần xét \mathbb{Z}_{1100} , điều này gây khó khăn khi cần chỉ ra ví dụ cho câu f vì số quá lớn.

Nếu đề vẫn giữ $\mathbb{Z}_{_{1100}}$ thì ta có thể dùng các cặp số sau:

$$(3,367), (7,943), (9,489), (13,677), (31,71).$$

Nếu đề đổi thành $\mathbb{Z}_{\mbox{\scriptsize 110}}$ thì ta có thể dùng các cặp số sau:

$$(3,37),(7,63),(9,49),(13,17),(19,29),(23,67),(27,53),(31,71),(39,79),(41,51).$$

g) Các ma trận nào trong $M_{11}\setminus U(M_{11})$ có thể mã hóa và giải mã như trên. Có bao nhiều ma trận như vậy?

Chú ý rằng $|M_{11}| = 11^3 = 1331$, còn $|U(M_{11})| = 1100$ nên $|M_{11} \setminus U(M_{11})| = 231$.

Để thực hiện được mã hóa, giải mã như trên đối với $x \in M_{11} \setminus U(M_{11})$ thì phải có m sao cho

$$x^m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 và $x^{m+1} = x$.

Ta có $U(\mathbb{Z}_{11})=1,2,...,10$ và ta biết $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M_{11}) \Leftrightarrow a,c \in U(\mathbb{Z}_{11}),b \in \mathbb{Z}_{11}$. Mà 11 là số nguyên tố nên $U(\mathbb{Z}_{11})=\{\bar{1},\bar{2},...,\bar{10}\}$. Vì thế nên ma trận trong $M_{11}\setminus U(M_{11})$ sẽ có a hoặc c là $\bar{0}$. Nhưng khi đó tính lũy thừa m lên, các số a^m,c^m không thể cùng bằng $\bar{1}$ được, vô lý.

Vây không tồn tai ma trân thỏa mãn đề bài.

h) Thực tế có thể mã hóa $x \in U(M_{11})$ bằng sơ đồ mã hóa thu gọn hơn theo nghĩa có thể tìm được số m < 1100 sao cho nếu $E, D \in \mathbb{Z}_m$ và $(x^E)^D = x$. Hãy khảo sát xem có tồn tại số m như thế hay không, tìm m nhỏ nhất có thể được.

Ta sẽ chứng minh rằng m = 10 < 1100 là số nhỏ nhất thỏa mãn.

Trước hết, theo ghi chú ở trang 3, ta đã chứng minh được

$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}^{10} = \begin{pmatrix} a^{10} & 0 \\ b \frac{a^{10} - c^{10}}{a - c} & c^{10} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ v\'oi mọi } \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in U(M_{11}).$$

Giả sử có số k < 10 thỏa mãn, nghĩa là trước hết ta phải có $a^k = c^k = \bar{1}$ trong \mathbb{Z}_{11} với mọi số $a, c \in U(\mathbb{Z}_{11})$.

Xét $a=\overline{2}$, ta thấy $a^2=\overline{4}, a^3=\overline{8}, a^4=\overline{5}, a^5=\overline{10}, a^6=\overline{9}, a^7=\overline{7}, a^8=\overline{3}, a^9=\overline{6}, a^{10}=\overline{1}$ thì không có lũy thừa k nào nhỏ hơn 10 để cho $a^k=\overline{1}$. Do đó không tồn tại k như thế.

Vì thế nên m = 10 là số nhỏ nhất thỏa mãn đề bài.

Ghi chú. Nếu bài toán này thay 11 bởi bất kỳ số nguyên tố p nào thì kết quả sẽ là $\varphi(p) = p - 1$, còn nếu thay bởi số n không nguyên tố thì kết quả sẽ là $n\varphi(n)$.