Лабораторная работа №1

Наименование работы: Проверка основного уравнения вращательного движения с помощью маятника Обербека.

Цель работы: Опытная проверка основного уравнения вращательного движения, оценка точности метода измерения.

Принадлежности: а) маятник Обербека,

- б) секундомер,
- в) штангенциркуль,
- г) линейка,
- д) технические весы,
- е) набор гирь и разновесок.

Рабочая формула: Значение момента силы M_1 и M_2 рассчитывается по формуле:

$$\frac{\mathrm{md}}{2} (\mathrm{g} - \underline{2h}) = \underline{4h*I},$$

$$\frac{\mathrm{d}t^2}{2}$$

где

т – масса груза, в кг,

d – диаметр вала, в м,

g – ускорение свободного падения, в м/с²,

h – высота падения, в м,

t – время падения, в с,

I - момент инерции, в кг * м².

Поскольку в нашем случае d=0.08м, h=0.45м, I=0.038 кг * m^2 , то рабочая формула примет вид:

$$M_1 = m*(0.392 - \frac{0.036}{t^2}),$$

$$M_2 = \frac{0.855}{t^2}$$
.

Таблица 1

Измеренные и рассчитанные величины

Номер опыта	t, c	T , c	Δt, c	ΔT , c	h, см	т, г	d, мм	I, кг * м²	М ₁ , Н*м	М ₂ , Н * м
1	6,38	6,353	0,0266	0,04472	45	72,1	80	0,038	0,0282	0,02118
2	6,419		0,0656							
3	6,373		0,0196							
4	6,256		0,0974							
5	6,339		0,0144							
6	4,732	4,726	0,0056	0,02512		121,5			0,04743	0,03827
7	4,768		0,0416							
8	4,702		0,0244							

Номер опыта	t, c	T , c	Δt, c	ΔT , c	h, см	т, г	d, мм	I, кг * м²	М ₁ , Н * м	М ₂ , Н * м
11	3,896	3,896	0,0004	0,00864	- 45	171,3	80	0,038	0,06674	0,05631
12	3,896		0,0004							
13	3,918		0,0216							
14	3,878		0,0184							
15	3,894		0,0024							
16	3,377	3,42	0,0426	0,04872		221,2			0,08603	0,07311
17	3,362		0,0576							
18	3,476		0,0564							
19	3,485		0,0654							
20	3,398		0,0216							

По приведенным выше формулам вычисляем значения M_1 и M_2 для каждой пятерки случаев.

1)
$$M_1 = 0.0721 * (0.392 - (0.036 / 6.3534^2)) \approx 0.0282 (H * m^2)$$

 $M_2 = 0.855 / 6.3534^2 = 0.02118 (H * m^2)$

2)
$$M_1 = 0.1215 * (0.392 - (0.036 / 4.7264^2)) \approx 0.04743 (H * M^2)$$

$$M_2 = 0.855 / 4.7264^2 = 0.03827 (H * M^2)$$

3)
$$M_1 = 0.1713 * (0.392 - (0.036 / 3.8964^2)) \approx 0.06674 (H * M^2)$$

$$M_2 = 0.855 / 3.8964^2 = 0.05632 (H * M^2)$$

4)
$$M_1 = 0.2212 * (0.392 - (0.036 / 3.4196^2)) \approx 0.08603 (H * M^2)$$

$$M_2 = 0.855 / 3.4196^2 = 0.07311 (H * M^2)$$

Проведем расчет погрешностей измерений. Предположим, что

$$\Delta \mathbf{m} = 0.001 \text{ K}$$
, $\Delta \mathbf{d} = 0.001 \text{ M}$, $\Delta \mathbf{h} = 0.01 \text{ M}$, $\Delta \mathbf{I} = 0.001 \text{ K}$ \mathbf{m}^2 , $\Delta \mathbf{t} = 0.001 \text{ c}$.

Значения относительной погрешности для M_1 :

$$\begin{split} \delta_1 &= \underline{\Delta M_1} = \underline{\Delta m} + \underline{\Delta d} + 2 * \underline{t\Delta h + h\Delta t} \\ M_1 & m & d & t(gt^2\text{-}2h) \end{split}$$

Для первой пятерки:

$$\delta_1 = \underbrace{0,001}_{0,0721} + \underbrace{0,001}_{0,08} + 2 * \underbrace{6,353*0,01 + 0,45*0,001}_{6,3534(9,8*6,3534^2 - 2*0,45)} \approx 0,0264207 \approx 2,64\%$$

Для второй пятерки:

$$\delta_1 = \underbrace{0,001}_{0,0721} + \underbrace{0,001}_{0,08} + 2 * \underbrace{4,726*0,01}_{4,7264} + \underbrace{0,45*0,001}_{9,8*4,7264^2} \approx 0,0264622 \approx 2,65\%$$

Для третьей пятерки:

$$\delta_1 = \underbrace{0.001}_{0.0721} + \underbrace{0.001}_{0.08} + 2 * \underbrace{3.896*0.01 + 0.45*0.001}_{3.8964(9.8*3.8964^2 - 2*0.45)} \approx 0.0265064 \approx 2.65\%$$

Для четвертой пятерки:

$$\delta_1 = \underbrace{0,001}_{0,0721} + \underbrace{0,001}_{0,08} + 2 * \underbrace{3,42*0,01}_{3,4196(9,8*3,4196^2 - 2*0,45)} \approx 0,0265479 \approx 2,65\%$$

Значения относительной погрешности для М2:

$$\delta_2 \!=\! \frac{\Delta M_2}{M_2} = \! \frac{\Delta I}{I} + \frac{\Delta h}{h} + \frac{\Delta d}{d} + \frac{2\Delta t}{t}$$

Для первой пятерки:

$$\delta_2 = \underbrace{0,001}_{0,038} + \underbrace{0,01}_{0,08} + \underbrace{0,001}_{0,45} + \underbrace{2*0,001}_{6,3534} \approx 0,153853 \approx 15,38\%$$

Для второй пятерки:

$$\delta_2 = \underbrace{0,001}_{0,038} + \underbrace{0,01}_{0,08} + \underbrace{0,001}_{0,45} + \underbrace{2*0,001}_{4,7264} \approx 0,153961 \approx 15,4\%$$

Для третьей пятерки:

$$\delta_2 = \underbrace{0,001}_{0,038} + \underbrace{0,01}_{0,08} + \underbrace{0,001}_{0,45} + \underbrace{2*0,001}_{3,8964} \approx 0,154051 \approx 15,4\%$$

Для четвертой пятерки:

$$\delta_2 = \underbrace{0,001}_{0,038} + \underbrace{0,01}_{0,08} + \underbrace{0,001}_{0,45} + \underbrace{2*0,001}_{3,4196} \approx 0,154123 \approx 15,41\%$$

Значения абсолютной погрешности для M_1 и M_2 :

Для первой пятерки:

$$\Delta M_1 = \delta_1 * M_1 = 0,0264207 * 0,0282 \approx 0,00074506374$$

$$\Delta M_2 = \delta_2 * M_2 = 0,153853 * 0,02118 \approx 0,00325860654$$

Для второй пятерки:

$$\begin{split} \Delta M_1 &= \delta_1 * M_1 = 0,0264622 * 0,04743 \approx 0,001255102146 \\ \Delta M_2 &= \delta_2 * M_2 = 0,153961 * 0,03827 \approx 0,00589208747 \end{split}$$

Для третьей пятерки:

$$\Delta M_1 = \delta_1 * M_1 = 0.0265064 * 0.06674 \approx 0.001769037136$$

$$\Delta M_2 = \delta_2 * M_2 = 0.154051 * 0.05631 \approx 0.00867461181$$

Для четвертой пятерки:

$$\Delta M_1 = \delta_1 * M_1 = 0,0265479 * 0,08603 \approx 0,002283915837$$

$$\Delta M_2 = \delta_2 * M_2 = 0,154123 * 0,07311 \approx 0,01126793253$$

Проверим значения моментов сил, используя неравенство

$$|M_1 - M_2| \le |\Delta M_1| + |\Delta M_2|$$

Подставим значения для

- первой пятерки: $|0,0282 0,02118| \leq |0,00074506374| + |0,00325860654| \\ 0,00302 \leq 0,00400367028 верно$
- второй пятерки: $|0,04743 0,03827| \le |0,001255102146| + |0,00589208747|$

 $0,00616 \le 0,007147189616$ - верно

- третьей пятерки: $|0,06674 0,05632| \le |0,001769037136| + |0,00867461181| \\ 0,01042 \le 0,010443648946 верно$
- четвертой пятерки: $|0,08603 0,07311| \leq |0,002283915837| + |0,01126793253| \\ 0,01292 \leq 0,013551848367 верно$

Расчет относительной погрешности эксперимента:

$$\gamma = \frac{\square \, \overline{\mathcal{T}}}{\overline{\mathcal{T}}} * 100\%$$

• для первой пятерки:

$$\gamma = \frac{0.04472}{6,353} * 100\% \approx 0.7\%$$

• для второй пятерки:

$$\gamma = \frac{0,02512}{4,726} * 100\% \approx 0,53\%$$

• для третьей пятерки:

$$\gamma = \frac{0,00864}{3,896} * 100\% \approx 0,22\%$$

• для четвертой пятерки:

$$\gamma = \frac{0.04872}{3.42} * 100\% \approx 1.42\%$$

Расчет собственной ошибки:

$$\alpha = \gamma - \delta_1$$

$$\alpha = \gamma - \delta_2$$

• для первой пятерки:

$$\alpha = 0.7\%$$
 - 2.64% < 0%

$$\alpha = 0.7\% - 15.38\% < 0\%$$

• для второй пятерки:

$$\alpha = 0.53\% - 2.65\% < 0\%$$

$$\alpha = 0.53\% - 15.4\% < 0\%$$

• для третьей пятерки:

$$\alpha = 0.22\% - 2.65\% < 0\%$$

$$\alpha = 0.22\% - 15.4\% < 0\%$$

• для четвертой пятерки:

$$\alpha = 1.42\% - 2.65\% < 0\%$$

$$\alpha = 1,42\% - 15,41\% < 0\%$$

Вывод Андрея: Опытная проверка основного уравнения вращательного движения доказала его верность, что кристально ясно дает нам понять, что эксперименты были проведены успешно. Оценка точности метода измерения была успешно проведена и показала результаты точности для каждого эксперимента менее 1,5% для каждой пятерки опытов, что подтверждает точность данных экспериментов.

Вывод Алины: Результаты лабораторной работы подтверждают применимость основного уравнения вращательного движения. Анализ погрешностей показывает приемлемый уровень точности измерений, с относительной погрешностью момента силы M_1 , не превышающей 2,8%. Полученные данные позволяют сделать вывод об успешной проверке основного уравнения и удовлетворительной точности использованных методов измерения.