Lattice Gas models: interaction of water with surfaces

Cesar L. Pastrana

1 Model

We study the interaction of water and surfaces using Monte Carlo simulations in the grand cannonical ensemble.

$$H = -\epsilon \sum_{\langle i,j \rangle} c_i c_j - b_s \sum_{i \in \mathcal{S}} c_i - \mu \sum_i c_i \tag{1}$$

We use periodic boundary conditions and a von Neumann neighborhood for the interaction between water-water and water-surface.

Parameter	Value
General parameters	
Temperature, T	$298 \mathrm{~K}$
Water-water, ϵ	3
AFM tip simulations	
Number lattice sites horizontal, w	100
Number lattice sites vertical, h	100
Tip radius R	10 nm
Tip surface distance y_0	0 - 5l
Relative humidity, s	0.30 - 0.65
Icosahedral virus simulations	
Virus radius, R	50 nm
Virus shell thickness, t	3 nm

Table 1: Simulation parameters.

General and simulation specific parameters

Figure 1: Water meniscus depepending on the distance to surface Retraction from $y_0 = 0$ to $y_0 = 5$ in steps of l ($y_0 = 0, l, 2l, 3l, 4l, 5l$). The blue areas corresponds to regions with a probability of occupancy n > 0.75 obtained from 2000 Monte Carlo steps equilibration. Saturation s = 0.30.

2 Meniscus between surface and AFM tips

We consider the AFM tip as the values above the parabola given by $y(x) = ax^2 + y_0$, where y_0 is the distance to the surface and $a = \frac{1}{2R}$, with R the desired radius of the tip.

Minimisation proceeds by randomly selecting lattice locations and comparing the energy change following the Metropolis criterion.

Figure 2: Water meniscus depe
pending on the distance to surface Retraction from $y_0=0$ to $y_0=5$
in steps of l ($y_0=0,l,2l,3l,4l,5l$). The blue areas corresponds to regions with a probability of occupancy n>0.75 obtained from 2000 Monte Carlo steps equilibration. Saturation s=0.50.

Figure 3: Water meniscus depepending on the distance to surface Retraction from $y_0=0$ to $y_0=5$ in steps of l ($y_0=0,l,2l,3l,4l,5l$). The blue areas corresponds to regions with a probability of occupancy n>0.75 obtained from 2000 Monte Carlo steps equilibration. Saturation s=0.65. Note the artifact on the upper part due to the limited sie of the mesh in the horiontal direction.

3 Icsaohedral viruses

References