

		Nhe I	Linker
1	GAT CCA GCA GCT GGG CTC GAG GTG CTA GCG GGA GGG GGT GGA TGT GGG		
	D P A A G L E V L A G G G G C G		
		Xa	
		Factor Xa	↓ Hind III
		hu IgG1	
49	ATC GAA GGT CGC AAG CTT ACT CAC ACA TGC CCA CCG TGC CCA GCA CCT		
	I E G R K L T H T C P P C P A P		
97	GAA GCC GAG GGG GCA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG		
	E A E G A P S V F L F P P K P K		
145	GAC ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG		
	D T L M I S R T P E V T C V V V		
193	GAC GTG AGC CAC GAA GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC		
	D V S H E D P E V K F N W Y V D		
241	GGC GTG GAG GTG CAT AAT GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC		
	G V E V H N A K T K P R E E Q Y		
289	AAC AGC ACG TAC CGT GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC		
	N S T Y R V V S V L T V L H Q D		
337	TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG GTC TCC AAC AAA GCC CTC		
	W L N G K E Y K C K V S N K A L		
385	CCA GCC TCC ATC GAG AAA ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA		
	P A S I E K T I S K A K G Q P R		
433	GAA CCA CAG GTG TAC ACC CTG CCC CCA TCC CGG GAT GAG CTG ACC AAG		
	E P Q V Y T L P P S R D E L T K		
481	AAC CAG GTC AGC CTG ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC		
	N Q V S L T C L V K G F Y P S D		
529	ATC GCC GTG GAG TGG GAG AGC AAT GGG CAG CGG GAG AAC AAC TAC AAG		
	I A V E W E S N G Q P E N N Y K		
577	ACC ACG CCT CCC GTG TTG GAC TCC GAC GGC TCC TTC TTC CTC TAC AGC		
	T T P P V L D S D G S F F L Y S		
625	AAG CTC ACC GTG GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA		
	K L T V D K S R W Q Q G N V F S		
673	TGC TCC GTG ATG CAT GAG GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC		
	C S V M H E A L H N H Y T Q K S		
721	CTC TCC CTG TCT CCG GGT AAA TGA C		
	L S L S P G K -		

FIG. 1A

FIG. 1B

1 ATG GAG ACA GAC ACA CTC CTG CTA TGG GTA CTG CTG CTC TGG GTT CCA
 M E T D T L L L W V L L W V P
 Hind III Nhe I
 49 GGT TCC ACT GGT GAC GCG GAT CCA GCA GCT GGG CTC GAG GTG CTA GCG
 G S T G D A D P A A G L E V L A
 Linker Enterokinase ↓ Hind III hu IgG1
 97 GGA GGG GGT GGA G TGT GGG G GAC D GAT D GAC D GAC D AAG K CTT ACT T CAC H ACA T TGC
 G G G G G C G G G D D D D D K L T C H T T G

FIG. 1C

1 GGA TCC GGG ATG AAG AAC CTT TCA TTT CCC CTC CTT TTC CTT TTC CTT
M K N L S F P L L F L F F L
52 GTC CCT GAA CTG CTG GGC TCC AGC ATG CCA CTG TGT CCC ATC GAT GAA GCC
V P E L L G S S M P L C P I D E A
103 ATC GAC AAG AAG ATC AAA CAA GAC TTC AAC TCC CTG TTT CCA AAT GCA ATA
I D K K I K Q D F N S L F P N A I
154 AAG AAC ATT GGC TTA AAT TGC TGG ACA GTC TCC TCC AGA GGG AAG TTG GCC
K N I G L N C W T V S S R G K L A
205 TCC TGC CCA GAA GGC ACA GCA GTC TTG AGC TGC TCC TGT GGC TCT GCC TGT
S C P E G T A V L S C S C G S A C
256 GGC TCG TGG GAC ATT CGT GAA GAA AAA GTG TGT CAC TGC CAG TGT GCA AGG
G S W D I R E E K V C H C Q C A R
307 ATA GAC TGG ACA GCA GCC CGC TGC TGT AAG CTG CAG GTC GCT TCC TCT CTA
I D W T A A R C C K L Q V A S S L
358 GCG GGA GGG GGT GGA TGT GGG ATC GAA GGT CGC AAG CTT ACT
A G G G C G I E G R K L T

FIG. 2A

1 GGA TCC GGG ATG AAG AAC CTT TCA TTT CCC CTC CTT TTC CTT TTC CTT CTT
M K N L S F P L L F L F F L
52 GTC CCT GAA CTG CTG GGC TCC AGC ATG CCA CTG TGT CCC ATC GAT GAA GCC
V P E L L G S S M P L C P I D E A
103 ATC GAC AAG AAG ATC AAA CAA GAC TTC AAC TCC CTG TTT CCA AAT GCA ATA
I D K K I K Q D F N S L F P N A I
154 AAG AAC ATT GGC TTA AAT TGC TGG ACA GTC TCC TCC AGA GGG AAG TTG GCC
K N I G L N C W T V S S R G K L A
205 TCC TGC CCA GAA GGC ACA GCA GTC TTG AGC TGC TCC TGT GGC TCT GCC TGT
S C P E G T A V L S C S C G S A C
256 GGC TCG TGG GAC ATT CGT GAA GAA AAA GTG TGT CAC TGC CAG TGT GCA AGG
G S W D I R E E K V C H C Q C A R
307 ATA GAC TGG ACA GCA GCC CGC TGC TGT AAG CTG CAG GTC GCT TCC TCT CTA
I D W T A A R C C K L Q V A S S L
358 GCG GGA GGG GGT GGA TGT GGG GAC GAT GAC GAC AAG CTT ACT
A G G G C G D D D K L T

FIG. 2B

FIG. 2C

A

FIG. 3A

B

FIG. 3B

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 5

FIG. 6

kDa 1 2 3

175 —

83 —

62 —

47.5 —

32.5 —

25 —

16.5 —

6.5 —

Fig 7

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 8D

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 11

FIG. 12

FIG. 13A

Sulfo SMPH

FIG. 13B

Sulfo SMPH

FIG. 13C

Sulfo SMPH

FIG. 13D

Sulfo GMBS

FIG. 13E

Sulfo MBS

FIG. 14A

FIG. 14B

FIG. 14C

FIG. 15A

FIG. 15B

FIG. 15C

A

FIG. 16 A

B

FIG. 16 B

FIG. 17 A

FIG. 17 B

Coupling of the murine and human VEGFR-2 peptide to Pili

FIG. 18 A

Coupling of the murine VEGFR-2 peptide to Q β

FIG. 18 B

Coupling of the murine VEGFR-2 peptide to cys-free HbcAg

FIG. 18 C

FIG. 18 D

FIG. 18 E

FIG. 18 F

FIG. 19 A

FIG. 19 B

FIG. 20

FIG. 21

© 0 8 7 0 " 8 6 8 0 5 0 0 T

Fig Qb mut S-MBS Flag

FIG. 22 A

Fig Qb mut SGMB S Flag

FIG. 22 B

Fig Qb mut SMPH Flag

FIG. 22 C

Fig Q β mutants-PLA $_2$ -Cys

FIG. 22 D

FIG. 23

FIG. 24

FIG. 25 A

FIG. 25 B

FIG. 26

FIG. 27 A

FIG. 27 B

FIG. 28 A

FIG. 28 B