15 oblivious: 散漫的 设从在 T(n) 对间内计算出判定语言L 锁门设计 M 来模拟M MÁK带 M 工作节第 i带年j介数 放在 成第 i+jk个位置(工作带) M(T,Q,6) M(F,Q,8) 121=211 Va∈ F,有a和â∈产与∠对应 在 O(T(M)) 对间内 将 所输入带内容移入 从工作带基权的 M总输入带 2、 成 對失在原点包置,对于每个 对从的单步模拟: 2.1 从左径右扫, 凌到 â , 将其记入 虿 , 助剂为 O(Ta)) 22在最右端 (著 k·Tim) 作鑑) 得到了M的 Swapshot,用了根拟。 2.3 国到曜左端,向右扫,对于M中向在投的Flead,可反至 O(TM) 銷的投 2.4 · 与2.3相反, 左移筑, 模拟 Mit Head 左移, 众 Herry 复立根左端 2.5 以上).1~2.4,代价 O(T(n)) , 弱复 T(n) 之 总化价 O(T(n)) 所以雜 2带 oblivious 壓机 超斜 O(T'(M) 用河内判定 LE (TIME (T(h))

ld设有 ··· La La Lfelk Ro Ri··· · - 些 Region
Li/Ri 有2·zi个元素 LR有一个元素
原图又机、M(T,Q,b) K带
新国之九、劢(P,Q,S) IFI= Irlk P= rk
在所中,允许回空平等 空平街台 0(金端),2 (平满)或者 2-2 (全空) 个在置(在山成下中)
其中 LR表示的是KT部的 head 包置 ,一定不是 回 , 且 ±k处有取价个回
算法: 初始时 Li /Ri 有半满
第 step 步模拟:
1 for i← [log step] to 1
1 for $i \in \Gamma$ by, step 1 to 1 2 if $(step = 0 \pmod{2^{i-1}})$ 84 21 1 248 10
3 校童 仁… Lo 是否至少 21-15#空金 300 10
4 如果不足,从上int 2 件 元春,并对 Rin 对称 都 7+16
S 推直 Ro. Ri 足香 到,21-1个非空气
b 如果不足,从 Rit1 杜 2 ¹⁺¹ 个元素,并对 Li+1 对称媒介
1 } }
8 }
9 此图 RoR(至少1个排笔4 ,LoLo至少15排空位
10 扫描 L ₁ L ₀ LR RoR ₁ ,完成模拟
第 4,6行 , 我们断言 J Li+1或 Ri+1 有元素
And: 对in/Rin 进行-泛操作, 以 Row Ri 至少有 zi-1个元素
以对 Li/Ri 操作时, Ro…Ri /Lo. Li新生少有 2-212-1个元本 > 21-1-1 个元本
所收 4.6价 每作可行
3-6分 O(zi) 这复杂区O(i·zi)=O(TbyT) 且以上辦省oblivious
J/

分析: 数组A不仅在接模拟,图为各种通数组长及是到工很大 所以我们考虑,用AT模拟A,记录 zigWoozigWoI---,仅空子符结本 N'的年日行散为O(T(n)), N'长之O(T(n)), head在标 赵 goccess 后,对于 Livio 在A1末尾加条深 对 山R. 从外提额我,对此山和记忆上的是否相同。 找到第个配对的,填在尺颌 写 q access 代价 O(Tin) TXITA' 技执 所以若f在Tin)被RAM Turny Mailine #其 fe DTIME (T(n)) 1.13 (mBII(nii) = Divide (pi, n) = 3 k: pik=n (b) (ampare (nom, i, j) = (n; = mj) = (p; (n \rightarrow \mathbf{p}j | m) 100 b = (016) V (70176) Each Symbol can be en code as Tby 1717 long binary strong There are at most T. k stymbols on the k topes The head occation can be enable as a south long bring string The state of Can also be enade with length The by 1217 so such a configuration can be represented by a bency story Mo... Mm R - 1 configuration (d) INIT M.x (n) = Vi(p; n <> Mi) : M (> (Ax pix=n) + Mi = A: (3x bx=N/W!) A(J3xbx=NJW!)

(+) Next (n,m) = (4) Bit (n,i) = Bit (m,i) < i + Head(n)) A (Bit (n,i) = Calculate (n,i) < i = Head(n))

JI

(e) HALTM(n) = Vi (Bit (n, i) = Bit (Not, i) ← i ∈ state digits)

1 Next State (nim)

(g) $VAHD_{M}(m,t) = \bigwedge_{i=1}^{t-1} Next_{M}(m_{i},m_{i+1})$	1.14 由 1.9 知, RAM TURING MACHINE 由TM习经大时间提出
]=1	(d) E(i)分k示 i)有力相连,不约用 邻集接矩阵有入数组
(h) HALTMx(t) = Im, VALIDM (m,t) 1 INITMx (mo) 1 HALTM (mt)	for je Ito n
	for i < 1 to n
(i) 微是 TRUE-EXP由 Mi计算、L表示一个数色结论的语言	for K + 1 to n
M(x) = TRUE-FXP(x) 女x&L 由htp M1(x) &L	if E(ij) NE(jk): set E(ik) ← 1
M2 (M, x) = M(x) KIR M2 EL	SUM C >
M3(M)= 7 M2 (MM) FILMSEL	for i < I ton
老 M3 (M3)=1 \$ M3 (M3=0	for je I ton
若 M3(M3)=0 內 M3(M3)=1 上記桶	if $E(i,j)$: $sum \leftarrow sum + 1$
FALL TRUE-EXP TITLE	if sum = 10? return toke true
	else roturn fulse
	IX上河由 RAMTM 在P内 技权, 所以 TM在 P内 可以制:
	(b) TRIANGLE FREE
	for j∈1 to N
	for i < 1 to N
	for K ← 1 +0 N
	if E(I,K) NE(K,j) NE(j i) return Fo
	return Trup
	Ju PA to RAM TM PIE

