Elektrodinamika 1

Elektromos áram, elektromos ellenállás, Joule-hő

Elektromos áram

- ➤ Töltésmegmaradás
- ➤ Energiamegmaradás

Elektromos vezető: szabad töltéshordozókkal rendelkező anyag (pl. fémek, elektrolit ...):

Fém vezető elektromos térbe helyezve (t = 0s): Kis, Δt idő után statikus állapot:

Hogy lehet $V(A) \neq V(B) \rightarrow U \neq 0$ állapotot fenntartani?

Feszültégforrás

(feszültség = potenciál különbség)

Áramirány = A + töltések relatív mozgásának iránya

$$I = \frac{\Delta Q}{\Delta t}$$

$$\left\lceil \frac{C}{s} \right\rceil = [A]$$

Elektromos áram

Feszültségforrás + zárt vezető hurok

 a) A feszültségforrást tartalmazó zárt vezető hurok sematikus áramköri rajza

b) A V potenciál (a függőleges tengelyen) a távolság függvényében (azaz a hurok mentén). A feszültségforrás negatív kapcsán belépő pozitív töltések potenciálja a telepen való áthaladás során ε-val megnő.

Az elektromos vezetés klasszikus modellje

A fémekben a szabad elektronok olyan bolyongó mozgást végeznek, mint a gázok molekulái. Amikor a fémben elektromos erőtér alakul ki, akkor az elektronok az E térerősség irányával ellentétes irányban, v, átlagos sebességgel vándorolnak. A (negatív töltésű) elektronok v_d átlagos sebességű vándorlása hozza létre az I áramot (a másik irányban).

Az elektron folyamatosan "ütközik" az atomrács atomjaival, eközben átlagos, v_D driftsebességgel halad

v_D driftsebesség

28-4 ábra

Az árnyékolással jelzett térrész elektronjai $\Delta t = \Delta \ell / v_d$ idő alatt a P sík túloldalára vándorolnak.

Feladat: Mekkora az elektronok sebessége telefon töltés közben?

- A töltőkábel 2 mm átmérőjű és réz anyagú
- A töltőfej 2 A áramot tud adni

A réz atomsúlya: $M=63,54\frac{g}{m \acute{o}l}$ Sűrűsége: $8,92\frac{g}{cm^3}$

Az elemi töltés: $1,602 \cdot 10^{-19} C$

Állandó A keresztmetszetű, L hosszúságú vezető, melynek végei között V potenciálkülönbséget tartunk fent. A potenciálkülönbség hatására a vezetőben E térerősség alakul ki, aminek következtében a vezetőben I áram folyik.

$$R=
horac{l}{A}$$
 (+ a hőmérséklettől is függ!)

ho: fajlagos ellenállás Mértékegység: Ω m

 σ : fajlagos vezetőképesség

$$\sigma = \frac{1}{\rho}$$

28-1 TÁBLÁZAT Fajlagos ellenállások és hőmérsékleti együtthatóik

thaladó áram áramerős tonciálkálónba gagnA		ρ fajlagos ellenállás 20° C -on (Ωm)		hőmér	α fajlagos ellenállás hőmérsékleti együttha- tója (1/°C)	
Szigetelők	ourezs frem	PLANCE	Ry a hero vinera	deno de a	e arányos, Mej	
Csillám		2	×10 ¹⁵	-50	$\times 10^{-3}$	
			× 10 ¹⁵	-80	× 10 ⁻³	
Üveglemez		, Al =2	×1011	-70	×10-3 /HO X	
Félvezetők	etlen az anya	ely függ	ezett állandó, am	lásnak nev	nol Raz ellenál	
Szilícium od 3 Hűszásál I		anyagból	640	ist 9 V275	× 10 ⁻³	
Germánium (1)		t a (28-	0,46	ometszeti	gyenletes kere	
Germánium Szén (grafit)		1,4	× 10 ⁻⁵	-0,5	× 10 × 10-3	
Vezetők			$R = \frac{pv}{h}$			
Alumínium		2,8	× 10 ⁻⁸	3.9	× 10 ⁻³	
Bronz		18	× 10 ⁻⁸ (Ω) m	0,5		
Réz		1,7	× 10 ⁻⁸	6,8		
Arany		2,4			$\times 10^{-3}$	
Vas	y egy mini	10	× 10 ⁻⁸	1	× 10 ⁻³	
	[84% Cu	at külön	boga anyagoidke	verskébel	készítik úgy,	
Manganin	12% Mn	44	× 10 ⁻⁸	<0,000	5×10^{-3}	
ener-dióda	4% Ni		gútdióda. c) \	slA (d	on a reprint deális ellen-	
Higany		96			$\times 10^{-3}$	
Nichrome*		100	$\times 10^{-8}$	0,4	$\times 10^{-3}$	
Platina			$\times 10^{-8}$	3,92	$\times 10^{-3}$	
Ezüst 2 zilkəbi xa xaz		1,6	×10 ⁻⁸	1,4 eszköz	mathiale emodelal	
Volfrám		5,7	×10-8	4,1	V 10-3 3010 (8	
Cink		5,9	× 10 ⁻⁸	4,5	× 10 ⁻³	

Joule-hő

dQ töltésen végzett munka:

$$dW = U \cdot dQ$$

$$P = \frac{dW}{dt} = U \cdot \frac{dQ}{dt} = U \cdot I$$

$$P = U \cdot I$$

Ohm-törvény \rightarrow $P=R\cdot I^2$

$$P = \frac{U}{R^2}$$

Elektromos áramsűrűség

=Egységnyi felületen átfolyó áram:
$$j=rac{I}{A}$$
 $\left[rac{A}{m}
ight]$

$$I = n \cdot e \cdot v_D \cdot A \longrightarrow j = n \cdot e \cdot v_D$$

Vektorosan: $\mathbf{j} = n \cdot e \cdot \mathbf{v}_D$

$$j = \frac{I}{A} = \frac{U}{R \cdot A} = \frac{E \cdot l}{\rho \cdot \frac{l}{A} \cdot A} = \frac{E}{\rho} = \sigma \cdot E$$

Vektorosan:
$$\mathbf{j} = \sigma \cdot \mathbf{E}$$

Differenciális / makroszkopikus Ohm-törvény

Anyagokban folyó áramok jellemzése:

Makroszkopikus Ohm-törvény:

Véges méretű vezető

$$I = \frac{V}{R}$$

Mikroszkopikus Ohm-törvény: Az anyag belsejében, minden pontban

$$\mathbf{j} = \sigma \mathbf{E}$$

