

Clustering

"Learning from unlabeled/unannotated data" (without supervision)

What can we predict from unlabeled data?

Density estimation

"Learning from unlabeled/unannotated data" (without supervision)

What can we predict from unlabeled data?

- Density estimation
- Groups or clusters in the data

"Learning from unlabeled/unannotated data" (without supervision)

Training data
$$\Longrightarrow$$
 Learning algorithm \Longrightarrow Prediction rule \widehat{f}_n

What can we predict from unlabeled data?

- Density estimation
- Groups or clusters in the data
- Low-dimensional structure
 - Principal Component Analysis (PCA) (linear)

"Learning from unlabeled/unannotated data" (without supervision)

Training data
$$\Longrightarrow$$
 Learning algorithm \Longrightarrow Prediction rule \widehat{f}_n

What can we predict from unlabeled data?

- Density estimation
- Groups or clusters in the data
- Low-dimensional structure
 - Principal Component Analysis (PCA) (linear)
 - Manifold learning (non-linear)

What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
 - high intra-class similarity
 - low inter-class similarity
 - It is the commonest form of unsupervised learning

Clustering is subjective

Simpson's Family

School Employees

Females

Males

What is similarity?

Hard to define! But we know it when we see it

 The real meaning of similarity is a philosophical question. We will take a more pragmatic approach - think in terms of a distance (rather than similarity) between vectors or correlations between random variables.

Distance metrics

$$x = (x_1, x_2, ..., x_p)$$

 $y = (y_1, y_2, ..., y_p)$

Euclidean distance

 $d(x,y) = 2 \sqrt{\sum_{i=1}^{p} |x_i - y_i|^2}$

Manhattan distance

$$d(x,y) = \sum_{i=1}^{p} |x_i - y_i|$$

Sup-distance

$$d(x,y) = \max_{1 \le i \le p} |x_i - y_i|$$

Correlation coefficient

$$x = (x_1, x_2, ..., x_p)$$

 $y = (y_1, y_2, ..., y_p)$

Random vectors (e.g. expression levels of two genes under various drugs)

Pearson correlation coefficient

$$\rho(x,y) = \frac{\sum_{i=1}^{p} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{p} (x_i - \overline{x})^2 \times \sum_{i=1}^{p} (y_i - \overline{y})^2}}$$

where
$$\overline{x} = \frac{1}{p} \sum_{i=1}^{p} x_i$$
 and $\overline{y} = \frac{1}{p} \sum_{i=1}^{p} y_i$.

Clustering Algorithms

- Hierarchical algorithms
 - Single-linkage
 - Average-linkage
 - Complete-linkage
 - Centroid-based

- K means clustering
- Mixture-Model based clustering

Hierarchical Clustering

Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to other clusters until there is only one cluster.

Greedy - less accurate but simple, typically computationally expensive

Top-Down divisive

Starts with all the data in a single cluster, and repeat:

Split each cluster into two using a partition based algorithm
 Until each object is a separate cluster.

More accurate but complex, can be computationally cheaper

Bottom-up Agglomerative Clustering

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

- Single-Link
 - Nearest Neighbor: similarity between their closest members.

- Complete-Link
 - Furthest Neighbor: similarity between their furthest members.

- Centroid
 - Similarity between the centers of gravity
- Average-Link
 - Average similarity of all cross-cluster pairs.

Single-Link Method

Euclidean Distance

Distance Matrix

(3)

Complete-Link Method

Euclidean Distance

	b	с	d
а	2	5	6
b		3	5
c			4

Distance Matrix

Dendrograms

Single-Link

Complete-Link

Single vs. Complete Linkage

Shape of clusters

Outliers

Single-linkage

allows anisotropic and non-convex shapes

sensitive to outliers

Complete-linkage

assumes isotopic, convex shapes

robust to outliers

Computational Complexity

- All hierarchical clustering methods need to compute similarity of all pairs of n individual instances which is $O(n^2)$.
- At each iteration,
 - Sort similarities to find largest one O(n²log n).
 - Update similarity between merged cluster and other clusters.
- In order to maintain an overall O(n²) performance, computing similarity to each other cluster must be done in constant time.
- So we get O(n² log n) or O(n³)

Partitioning Algorithms

- Partitioning method: Construct a partition of n objects into a set of K clusters
- Given: a set of objects and the number K
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic method: K-means algorithm

K-means Clustering

Algorithm

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

Iterate -

- Decide the class memberships of the N objects by assigning them to the nearest cluster centers
- 2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

Termination –

If none of the N objects changed membership in the last iteration, exit. Otherwise go to 1.

Computational Complexity

- At each iteration,
 - Computing distance between each of the n objects and the K cluster centers is O(Kn).
 - Computing cluster centers: Each object gets added once to some cluster: O(n).
- Assume these two steps are each done once for l iterations:
 O(lKn).
- Is K-means guaranteed to converge?

• Results are quite sensitive to seed selection.

Results are quite sensitive to seed selection.

Results are quite sensitive to seed selection.

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Select good seeds using a heuristic (e.g., object least similar to any existing mean)
 - Try out multiple starting points (very important!!!)
 - Initialize with the results of another method.
 - Further reading: k-means ++ algorithm of Arthur and Vassilvitskii

- Clusters may not be linearly separable
- Clusters may overlap
- Some clusters may be "wider" than others

Other Issues

- Shape of clusters
 - Assumes isotopic, convex clusters
- Sensitive to Outliers use K-medoids

- Number of clusters K
 - Objective function

$$\sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

Look for "Knee" in objective function

Can you pick K by minimizing the objective over K?