## Chris Jackson (Population Health): current interests

Current work

Survival and multistate modelling methods

Applications in multiple areas

Chronic disease prevention

Methods in microsimulation models

Also Value of Information, uncertainty quantification, design...

### Motivated by two contexts

- times to severe events (hospital admission, ICU, death...) in respiratory infections
- health economic decision models combining trial, disease registry and population data

- (a) extrapolation over time
- (b) scalability to bigger problems

### Motivated by two contexts

- times to severe events (hospital admission, ICU, death...) in respiratory infections
- health economic decision models combining trial, disease registry and population data

- (a) extrapolation over time
- (b) scalability to bigger problems

### Motivated by two contexts

- times to severe events (hospital admission, ICU, death...) in respiratory infections
- health economic decision models combining trial, disease registry and population data

- (a) extrapolation over time
- (b) scalability to bigger problems

### Motivated by two contexts

- times to severe events (hospital admission, ICU, death...) in respiratory infections
- health economic decision models combining trial, disease registry and population data

- (a) extrapolation over time
- (b) scalability to bigger problems





Estimating long-term, expected survival based on

individual shorter term survival data (e.g. from a clinical trial)

evport judgements

Paper finished on a flexible (spline) Bayesian survival model framework and software

https://arxiv.org/abs/2306.03957





Estimating long-term, expected survival based on

- individual shorter term survival data (e.g. from a clinical trial)
- aggregated longer term data from a broader population (e.g. registry, national data),

Paper finished on a flexible (spline) Bayesian survival model framework and software

https://arxiv.org/abs/2306.03957





Estimating long-term, expected survival based on

- individual shorter term survival data (e.g. from a clinical trial)
- aggregated longer term data from a broader population (e.g. registry, national data),
- expert judgements

Paper finished on a flexible (spline) Bayesian survival model framework and software

https://arxiv.org/abs/2306.03957





Estimating long-term, expected survival based on

- individual shorter term survival data (e.g. from a clinical trial)
- aggregated longer term data from a broader population (e.g. registry, national data),
- expert judgements

Paper finished on a flexible (spline) Bayesian survival model framework and software

https://arxiv.org/abs/2306.03957





More work to do (led by Astra Zeneca, with Fatemeh Torabi) on simulation studies to build confidence in it

This model/package could form infrastructure for flexible/versatile time-to-event modelling more generally

- hierarchical models
- multistate models
- high-dimensional data (lots of covariates)

## Scalability in multistate models



Each state transition is a time-to-event model: could have many covariates, and data are censored

#### Efficient model fitting

- ▶ Even 100+ parameters is challenging for identifiability
- Routinely-collected hospital data also have n > 10000

#### Efficient prediction from models

Requires individual-level simulation, but should be fast for routine use (e.g. monitoring hospital burden)

### Microsimulation models for chronic disease prevention

Complex mechanistic models informed by many sources of data Simulate from model to evaluate effect of an intervention



### Microsimulation models for chronic disease prevention

Complex mechanistic models informed by many sources of data

Simulate from model to evaluate effect of an intervention



Above model motivated by mid-life health checks

Oliver Church (PhD project): Generating trajectories of multiple risk factors

### Microsimulation models for chronic disease prevention

Complex mechanistic models informed by many sources of data Simulate from model to evaluate effect of an intervention



### Models for health impacts of transport changes

- ▶ focus on geographical detail rather than multiple risk factors
- ▶ applications in Manchester and Melbourne (led by MRC Epi)

## Mortality data to inform microsimulation models

Population mortality data is generally well recorded, however

- Limited individual-level predictors (age, gender, maybe area-level deprivation)
- Effect of having a disease not directly known: cause-specific mortality is recorded, but disease may also raise risk from other causes

Ongoing work: Bayesian synthesis of mortality data published at different levels of aggregation

infer mortality for an individual with specific characteristics / diseases

## Mortality data to inform microsimulation models

Population mortality data is generally well recorded, however

- Limited individual-level predictors (age, gender, maybe area-level deprivation)
- Effect of having a disease not directly known: cause-specific mortality is recorded, but disease may also raise risk from other causes

Ongoing work: Bayesian synthesis of mortality data published at different levels of aggregation

infer mortality for an individual with specific characteristics / diseases

## Mortality data to inform microsimulation models

Population mortality data is generally well recorded, however

- Limited individual-level predictors (age, gender, maybe area-level deprivation)
- Effect of having a disease not directly known: cause-specific mortality is recorded, but disease may also raise risk from other causes

Ongoing work: Bayesian synthesis of mortality data published at different levels of aggregation

infer mortality for an individual with specific characteristics / diseases

- given a Bayesian model, determine which uncertainties have the most impact on results/decisions
- prioritise/design data collection to reduce uncertainty
- edited textbook on this topic about to be submitted
- → Connects with projects proposed in QQR on
  - Informative prior distributions in complex Bayesian models
  - Design of observational data collection to inform epidemic modelling

- given a Bayesian model, determine which uncertainties have the most impact on results/decisions
- prioritise/design data collection to reduce uncertainty
- edited textbook on this topic about to be submitted
- $\rightarrow$  Connects with projects proposed in QQR on
  - Informative prior distributions in complex Bayesian models
  - Design of observational data collection to inform epidemic modelling

- given a Bayesian model, determine which uncertainties have the most impact on results/decisions
- prioritise/design data collection to reduce uncertainty
- edited textbook on this topic about to be submitted
- $\rightarrow$  Connects with projects proposed in QQR on
  - Informative prior distributions in complex Bayesian models
  - Design of observational data collection to inform epidemic modelling

- given a Bayesian model, determine which uncertainties have the most impact on results/decisions
- prioritise/design data collection to reduce uncertainty
- edited textbook on this topic about to be submitted
- → Connects with projects proposed in QQR on
  - Informative prior distributions in complex Bayesian models
    - i.e. how to quantify uncertain knowledge in the first place
  - Design of observational data collection to inform epidemic modelling

- given a Bayesian model, determine which uncertainties have the most impact on results/decisions
- prioritise/design data collection to reduce uncertainty
- edited textbook on this topic about to be submitted
- → Connects with projects proposed in QQR on
  - Informative prior distributions in complex Bayesian models
    - i.e. how to quantify uncertain knowledge in the first place
  - Design of observational data collection to inform epidemic modelling

- given a Bayesian model, determine which uncertainties have the most impact on results/decisions
- prioritise/design data collection to reduce uncertainty
- edited textbook on this topic about to be submitted
- $\rightarrow$  Connects with projects proposed in QQR on
  - Informative prior distributions in complex Bayesian models
    - i.e. how to quantify uncertain knowledge in the first place
  - Design of observational data collection to inform epidemic modelling