Lecture 8: Decision trees

Reading: Section 8.1

STATS 202: Data mining and analysis

Rajan Patel

Decision trees, 10,000 foot view

- 1. Find a partition of the space of predictors.
- 2. Predict a constant in each set of the partition.

Decision trees, 10,000 foot view

- 1. Find a partition of the space of predictors.
- Predict a constant in each set of the partition.
- 3. The partition is defined by splitting the range of one predictor at a time.

Decision trees, 10,000 foot view

- 1. Find a partition of the space of predictors.
- Predict a constant in each set of the partition.
- The partition is defined by splitting the range of one predictor at a time.
 - → Not all partitions are possible.

Example: Predicting a baseball player's salary

The prediction for a point in R_i is the average of the training points in R_i .

- ▶ Start with a single region R_1 , and iterate:
 - 1. Select a region R_k , a predictor X_j , and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

2. Redefine the regions with this additional split.

- ▶ Start with a single region R_1 , and iterate:
 - 1. Select a region R_k , a predictor X_j , and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

- 2. Redefine the regions with this additional split.
- ► Terminate when there are 5 observations or fewer in each region.

- ▶ Start with a single region R_1 , and iterate:
 - 1. Select a region R_k , a predictor X_j , and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

- 2. Redefine the regions with this additional split.
- Terminate when there are 5 observations or fewer in each region.
- ▶ This grows the tree from the root towards the leaves.

▶ Idea 1: Find the optimal subtree by cross validation.

- ▶ Idea 1: Find the optimal subtree by cross validation.
 - ightarrow There are too many possibilities, so we would still over fit.

- ▶ Idea 1: Find the optimal subtree by cross validation.
 - → There are too many possibilities, so we would still over fit.
- ▶ Idea 2: Stop growing the tree when the RSS doesn't drop by more than a threshold with any new cut.

- ▶ Idea 1: Find the optimal subtree by cross validation.
 - \rightarrow There are too many possibilities, so we would still over fit.
- ▶ Idea 2: Stop growing the tree when the RSS doesn't drop by more than a threshold with any new cut.
 - \rightarrow In our greedy algorithm, it is possible to find good cuts after bad ones.

Solution: Prune a large tree from the leaves to the root.

► Weakest link pruning:

Solution: Prune a large tree from the leaves to the root.

- Weakest link pruning:
 - ▶ Starting with T_0 , substitute a subtree with a leaf to obtain T_1 , by minimizing:

$$\frac{RSS(T_1) - RSS(T_0)}{|T_0| - |T_1|}.$$

Solution: Prune a large tree from the leaves to the root.

- Weakest link pruning:
 - Starting with T_0 , substitute a subtree with a leaf to obtain T_1 , by minimizing:

$$\frac{RSS(T_1) - RSS(T_0)}{|T_0| - |T_1|}.$$

Iterate this pruning to obtain a sequence $T_0, T_1, T_2, \dots, T_m$ where T_m is the null tree.

Solution: Prune a large tree from the leaves to the root.

- ► Weakest link pruning:
 - Starting with T_0 , substitute a subtree with a leaf to obtain T_1 , by minimizing:

$$\frac{RSS(T_1) - RSS(T_0)}{|T_0| - |T_1|}.$$

- Iterate this pruning to obtain a sequence $T_0, T_1, T_2, \dots, T_m$ where T_m is the null tree.
- \blacktriangleright Select the optimal tree T_i by cross validation.

... or an equivalent procedure

► Cost complexity pruning:

- Cost complexity pruning:
 - ► Solve the problem:

minimize
$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

- Cost complexity pruning:
 - ► Solve the problem:

minimize
$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

... or an equivalent procedure

- Cost complexity pruning:
 - ► Solve the problem:

$$\text{minimize } \sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

▶ When $\alpha = \infty$, we select the null tree.

- ► Cost complexity pruning:
 - ► Solve the problem:

minimize
$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

- When $\alpha = \infty$, we select the null tree.
- When $\alpha = 0$, we select the full tree.

- Cost complexity pruning:
 - ▶ Solve the problem:

- When $\alpha = \infty$, we select the null tree.
- When $\alpha = 0$, we select the full tree.
- ▶ The solution for each α is among T_1, T_2, \ldots, T_m from weakest link pruning.

- ► Cost complexity pruning:
 - ► Solve the problem:

minimize
$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2 + \alpha |T|.$$

- When $\alpha = \infty$, we select the null tree.
- When $\alpha = 0$, we select the full tree.
- ▶ The solution for each α is among T_1, T_2, \ldots, T_m from weakest link pruning.
- Choose the optimal α (the optimal T_i) by cross validation.

1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α .

- 1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α .
- 2. Split the training points into 10 folds.

- 1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α .
- 2. Split the training points into 10 folds.
- 3. For $k = 1, \dots, 10$,
 - For each tree T_i , use every fold except the kth to estimate the averages in each region.
 - \blacktriangleright For each tree T_i , calculate the RSS in the test fold.

- 1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α .
- 2. Split the training points into 10 folds.
- 3. For $k = 1, \dots, 10$,
 - For each tree T_i , use every fold except the kth to estimate the averages in each region.
 - For each tree T_i , calculate the RSS in the test fold.
- 4. For each tree T_i , average the 10 test errors, and select the value of α that minimizes the error.

- 1. Construct a sequence of trees T_0, \ldots, T_m for a range of values of α .
- 2. Split the training points into 10 folds.
- 3. For $k = 1, \dots, 10$,
 - For each tree T_i , use every fold except the kth to estimate the averages in each region.
 - \blacktriangleright For each tree T_i , calculate the RSS in the test fold.
- 4. For each tree T_i , average the 10 test errors, and select the value of α that minimizes the error.

WRONG WAY TO DO CROSS VALIDATION!

1. Split the training points into 10 folds.

- 1. Split the training points into 10 folds.
- 2. For k = 1, ..., 10, using every fold except the kth:
 - ▶ Construct a sequence of trees T_1, \ldots, T_m for a range of values of α , and find the prediction for each region in each one.
 - ightharpoonup For each tree T_i , calculate the RSS on the test set.

- 1. Split the training points into 10 folds.
- 2. For k = 1, ..., 10, using every fold except the kth:
 - Construct a sequence of trees T_1, \ldots, T_m for a range of values of α , and find the prediction for each region in each one.
 - \blacktriangleright For each tree T_i , calculate the RSS on the test set.
- 3. Select the parameter α that minimizes the average test error.

- 1. Split the training points into 10 folds.
- 2. For k = 1, ..., 10, using every fold except the kth:
 - ▶ Construct a sequence of trees T_1, \ldots, T_m for a range of values of α , and find the prediction for each region in each one.
 - \blacktriangleright For each tree T_i , calculate the RSS on the test set.
- 3. Select the parameter α that minimizes the average test error.

Note: We are doing all fitting, including the construction of the trees, using only the training data.

Example. Predicting baseball salaries

Example. Predicting baseball salaries

Classification trees

► They work much like regression trees.

Classification trees

- ▶ They work much like regression trees.
- ► We predict the response by **majority vote**, i.e. pick the most common class in every region.

Classification trees

- ▶ They work much like regression trees.
- ▶ We predict the response by **majority vote**, i.e. pick the most common class in every region.
- ▶ Instead of trying to minimize the RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

we minimize a classification loss function.

► The 0-1 loss or misclassification rate:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} \mathbf{1}(y_i \neq \hat{y}_{R_m})$$

▶ The Gini index:

$$\sum_{m=1}^{|T|} q_m \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}),$$

where $\hat{p}_{m,k}$ is the proportion of class k within R_m , and q_m is the proportion of samples in R_m .

The cross-entropy:

$$-\sum_{m=1}^{|T|} q_m \sum_{k=1}^{K} \hat{p}_{mk} \log(\hat{p}_{mk}).$$

► The Gini index and cross-entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.

- ► The Gini index and cross-entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.
- Motivation for the Gini index:

If instead of predicting the most likely class, we predict a random sample from the distribution $(\hat{p}_{1,m},\hat{p}_{2,m},\ldots,\hat{p}_{K,m})$, the Gini index is the expected misclassification rate.

► The Gini index and cross-entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.

Motivation for the Gini index:

If instead of predicting the most likely class, we predict a random sample from the distribution $(\hat{p}_{1,m},\hat{p}_{2,m},\ldots,\hat{p}_{K,m})$, the Gini index is the expected misclassification rate.

▶ It is typical to use the Gini index or cross-entropy for growing the tree, while using the misclassification rate when pruning the tree.

Example. Heart dataset.

► Very easy to interpret!

- Very easy to interpret!
- Closer to human decision-making.

- Very easy to interpret!
- Closer to human decision-making.
- Easy to visualize graphically.

- ▶ Very easy to interpret!
- Closer to human decision-making.
- Easy to visualize graphically.
- ▶ They easily handle qualitative predictors and missing data.

Example. Heart dataset.

How do we deal with categorical predictors?

Categorical predictors

- ▶ If there are only 2 categories, then the split is obvious. We don't have to choose the splitting point s, as for a numerical variable.
- ▶ If there are more than 2 categories:
 - ▶ Order the categories according to the average of the response:

```
ChestPain: a > ChestPain: c > ChestPain: b
```

- ightharpoonup Treat as a numerical variable with this ordering, and choose a splitting point s.
- This is the optimal way of partitioning.

Missing data

Problem: If a sample is missing variable X_j , and a tree contains a split according to $X_j > s$, then we may not be able to assign the sample to a region.

Solution:

- ▶ When choosing a new split with variable X_j (growing the tree):
 - ▶ Only consider the samples which have the variable X_j .
 - ► In addition to choosing the best split, choose a second best split using a different variable, and a third best, ...
- ► To propagate a sample down the tree, if it is missing a variable to make a decision, try the second best decision, or the third best, ...

Bagging

- ▶ Bagging = Bootstrap Aggregating
- ▶ In the Bootstrap, we replicate our dataset by sampling with replacement:
 - Original dataset: x = c(x1, x2, ..., x100)
 - Bootstrap samples: boot1 = sample(x, 100, replace = True), ..., bootB = sample(x, 100, replace = True).
- ► We used these samples to approximate the Standard Error of a parameter estimate:

$$SE(\hat{\beta}_1) \approx SD(\hat{\beta}_1^{(1)}, \dots, \hat{\beta}_1^{(B)})$$

Bagging

► In Bagging we average the predictions of a model fit to many Bootstrap samples.

Example. Bagging the Lasso

- Let $\hat{y}^{L,b}$ be the prediction of the Lasso applied to the bth bootstrap sample.
- ► Bagging prediction:

$$\hat{y}^{\mathsf{boot}} = \frac{1}{B} \sum_{b=1}^{B} \hat{y}^{L,b}.$$

When does Bagging make sense?

When a regression method or a classifier has a tendency to overfit, Bagging reduces the variance of the prediction.

- ▶ When *n* is large, the empirical distribution is similar to the true distribution of the samples.
- ▶ Bootstrap samples are like independent realizations of the data.
- ▶ Bagging amounts to averaging the fits from many independent datasets, which would reduce the variance by a factor 1/B.

Bagging decision trees

- ▶ **Disadvantage:** Every time we fit a decision tree to a Bootstrap sample, we get a different tree T^b .
 - \rightarrow Loss of interpretability
- ► For each predictor, add up the total amount by which the RSS (or Gini index) decreases every time we use the predictor in T^b .
- Average this total over each Boostrap estimate T^1, \ldots, T^B .

Out-of-bag (OOB) error

- ► To estimate the test error of a bagging estimate, we could use cross-validation.
- ► Each time we draw a Bootstrap sample, we only use 63% of the observations.
- ▶ Idea: use the rest of the observations as a test set.
- OOB error:
 - For each sample x_i , find the prediction \hat{y}_i^b for all bootstrap samples b which do not contain x_i . There should be around 0.37B of them. Average these predictions to obtain \hat{y}_i^{oob} .
 - Compute the error $(y_i \hat{y}_i^{\text{oob}})^2$.
 - Average the errors over all observations i = 1, ..., n.

Out-of-bag (OOB) error

The test error decreases as we increase ${\cal B}$ (dashed line is the error for a plain decision tree).

Random Forests

Bagging has a problem:

ightarrow The trees produced by different Bootstrap samples can be very similar.

Random Forests:

- ▶ We fit a decision tree to different Bootstrap samples.
- ightharpoonup When growing the tree, we select a random sample of m < p predictors to consider in each step.
- ► This will lead to very different (or "uncorrelated") trees from each sample.
- Finally, average the prediction of each tree.

Random Forests vs. Bagging

Random Forests, choosing m

The optimal m is usually around \sqrt{p} , but this can be used as a tuning parameter.