Characterizing Realizability Toposes

Jonas Frey

Cambridge, 30 June 2014

Theorem

A **locally small** category \mathcal{E} is equivalent to a realizability topos $\mathsf{RT}(\mathcal{A})$ over a PCA \mathcal{A} , if and only if

- \bigcirc \mathcal{E} is exact and locally cartesian closed,
- ${\color{red} {\mathfrak E}}$ has enough **projectives**, and the subcategory ${\color{red} {\bf Proj}}({\color{blue} {\mathcal E}})$ of projectives is closed under **finite limits**,
- the global sections functor Γ : ε → Set has a right adjoint Δ factoring through Proj(ε), and
- **④** there exists a **separated** and **discrete projective** $D \in \mathcal{E}$ such that for all projectives $P \in \mathcal{E}$ there exists a **closed** $u : P \to D$.

Here,

- $P \in \mathcal{E}$ is called *projective*, if $\mathcal{E}(P, e)$ is surjective for all regular epis e
- $A \in \mathcal{E}$ is called *separated*, if $\eta_A : A \to \Delta \Gamma A$ is monic
- $f: X \to Y$ is called *closed*, if $X \xrightarrow{f} Y$ is a pullback $\Delta \Gamma X \xrightarrow{\Delta \Gamma f} \Delta \Gamma Y$
- $D \in \mathcal{E}$ is called *discrete* if it is right orthogonal to all closed regular epis

Part I Realizability toposes

Realizability toposes

Realizability toposes = categorical incarnation of 'Kleene realizability'

Genesis

- Kleene On the interpretation of intuitionistic number theory, 1945
- Higgs A category approach to Boolean-valued set theory, 1973
- Fourman, Scott Sheaves and logic, 1979
- Hyland, Johnstone, Pitts Tripos theory, 1980
- Pitts The theory of triposes, 1982
- Hyland The effective topos, 1982
- sheaves on a complete Heyting algebra A are equivalent to 'A- sets'
- triposes generalize cHa's while admitting the same construction
- Kleene realizability (and more generally realizability over partial combinatory algebras) gives rise to triposes

Partial combinatory algebras

Definition

A **PCA** is a set \mathcal{A} with a partial binary operation

$$(-\cdot-):\mathcal{A}\times\mathcal{A}\rightharpoonup\mathcal{A}$$

having elements $k, s \in A$ such that

(i)
$$k \cdot x \cdot y = x$$
 (ii) $s \cdot x \cdot y \downarrow$ (iii) $s \cdot x \cdot y \cdot z \leq x \cdot z \cdot (y \cdot z)$

for all $x, y, z \in A$.

Example

First Kleene algebra: (\mathbb{N}, \cdot) with

$$n \cdot m \simeq \phi_n(m)$$
 for $n, m \in \mathbb{N}$,

where $(\phi_n)_{n\in\mathbb{N}}$ is an effective enumeration of partial recursive functions.

Triposes

Definition

A **tripos** is an indexed preorder $\mathcal{P}: \textbf{Set}^{op} \to \textbf{Ord}$ such that

- for all $J \in \mathbf{Set}$, $\mathcal{P}(J)$ is a **Heyting pre-algebra**
- for f: J → I, the reindexing map f*: P(I) → P(J) preserves Hpa structure, and has adjoints ∃_f ⊢ f* ⊢ ∀_f satisfying BC conditions
- P has a generic predicate i.e. there is a tr ∈ P(Prop) such that for all J ∈ Set, φ ∈ P(J) there exists n f : J → Prop with φ ≅ f*(tr)

Localic triposes

For any cHa A, the representable functor $\mathbf{Set}(-,A):\mathbf{Set}^{op}\to\mathbf{Ord}$ with pointwise ordering on the fibers is a tripos

Realizability triposes

The **realizability tripos** $\operatorname{rt}(\mathcal{A})$ over a PCA \mathcal{A} is given by the representable functor $\operatorname{Set}(-, P\mathcal{A})$, with fibers ordered by

```
\varphi \leq \psi :\Leftrightarrow \exists e \in \mathcal{A} \ \forall j \in J \ \forall a \in \varphi(j) \ . \ e \cdot a \in \psi(i) for \varphi, \psi : J \to P\mathcal{A}.
```

Toposes from triposes

Definition

Any tripos \mathcal{P} gives rise to a category $\mathbf{Set}[\mathcal{P}]$ of \mathcal{P} -sets .

- Objects: partial equivalence relations in ₱
- Morphisms: Equivalence classes of compatible functional relations
- Set[ℙ] is a topos for any tripos ℙ
- Toposes constructed from localic triposes Set(-, A) for cHa's A are equivalent to sheaf toposes Sh(A)
- Realizability triposes rt(A) give rise to realizability toposes RT(A)
- The realizability topos over the first Kleene algebra (N, ·) is Hyland's effective topos

The constant objects functor

Definition

Given a tripos ₱, the constant objects functor

$$\Delta: \mathsf{Set} o \mathsf{Set}[\mathcal{P}]$$

$$J \mapsto (J, \delta_J)$$

maps any set J to the discrete/diagonal equivalence relation δ_J in $\mathcal P$

• \triangle is bounded by 1 – every $A \in \mathbf{Set}[\mathcal{P}]$ is a subquotient

$$A \leftarrow \bullet \rightarrowtail \Delta(J)$$

in localic case, Δ is *left* adjoint to the global sections functor
 Γ = Sh(A)(1, −), giving a localic geometric morphism

$$(\Delta: \mathbf{Set} \to \mathbf{Sh}(A)) \dashv (\Gamma: \mathbf{Sh}(A) \to \mathbf{Set})$$

for realizability, △ is right adjoint to Γ

$$(\Gamma: \textbf{RT}(\mathcal{A}) \rightarrow \textbf{Set}) \dashv (\Delta: \textbf{Set} \rightarrow \textbf{RT}(\mathcal{A}))$$

The family fibration of a PCA

The **family fibration** $fam(A) : Set^{op} \to Ord$ of a PCA A is defined by $fam(A)(J) = (A^{J}, <)$, with

$$\varphi \leq \psi : \Leftrightarrow \qquad \qquad \varphi = \varphi$$

$$\exists e \in \mathcal{A} \ \forall j \in J. \ e \cdot \varphi(j) = \psi(j) \qquad \qquad \mathcal{A} \xrightarrow[e \cdot (-)]{} \mathcal{A}$$

for $\varphi, \psi: J \to A$.

- fam(A) has indexed finite meets
- rt(A) is free cocompletion of fam(A) under \exists (Hofstra [1])

[1] Pieter Hofstra – All realizability is relative, 2006

Realizability toposes by exact completion

Definition (Partitioned assemblies)

For PCA \mathcal{A} , the category $\mathsf{PAsm}(\mathcal{A})$ is the Grothendieck construction $\int (\mathsf{fam}(\mathcal{A}))$ of the family fibration $\mathsf{fam}(\mathcal{A})$

- **Objects:** pairs (I, φ) with $I \in \mathbf{Set}$ and $\varphi : I \to \mathcal{A}$
- **Morphisms** from (I, φ) to (J, ψ) : functions $f: I \to J$ such that $\exists e \in \mathcal{A} \ \forall i \in I$. $e \cdot \varphi(i) = \psi(fi)$

Theorem (Robinson, Rosolini 1990)

 $\mathsf{RT}(\mathcal{A})$ is equivalent to the ex/lex completion $\mathsf{PAsm}(\mathcal{A})_{\mathrm{ex}}$

Depends on the axiom of choice

General facts about exact completion imply that

- $\mathsf{PAsm}(\mathcal{A})$ can be identified the $\mathsf{Proj}(\mathsf{RT}(\mathcal{A})) \subseteq \mathsf{RT}(\mathcal{A})$
- RT(A) has enough projectives

Part II The Characterization

Main result

Theorem

A **locally small** category \mathcal{E} is equivalent to a realizability topos $\mathsf{RT}(\mathcal{A})$ over a PCA \mathcal{A} , if and only if

- \bigcirc \mathcal{E} is exact and locally cartesian closed,
- ${\color{red} {\mathfrak E}}$ has enough **projectives**, and the subcategory ${\color{red} {\bf Proj}}({\color{blue} {\mathcal E}})$ of projectives is closed under **finite limits**,
- the global sections functor Γ : ε → Set has a right adjoint Δ factoring through Proj(ε), and
- **④** there exists a **separated** and **discrete projective** $D \in \mathcal{E}$ such that for all projectives $P \in \mathcal{E}$ there exists a **closed** $u : P \to D$.

Here,

- $P \in \mathcal{E}$ is called *projective*, if $\mathcal{E}(P, e)$ is surjective for all regular epis e
- $A \in \mathcal{E}$ is called *separated*, if $\eta_A : A \to \Delta \Gamma A$ is monic
- $f: X \to Y$ is called *closed*, if $\bigvee_{f} \bigvee_{f} \bigvee_{f}$ is a pullback $\Delta \Gamma X \xrightarrow{\Delta \Gamma f} \Delta \Gamma Y$
- $D \in \mathcal{E}$ is called *discrete* if it is right orthogonal to all closed regular epis

Necessity of the conditions

- Conditions 1–3 are easy
- For condition 4, D is the partitioned assembly (A, id)
- Projectives in realizability toposes are separated, and for any partitioned assembly (J, φ), the map φ: (J, φ) → (A, id) is closed in RT(A)

• To see that (A, id) is discrete, we show right orthogonality to maps $g: (I, \varphi \circ g) \twoheadrightarrow (J, \varphi)$ with surjective g

Orthogonality to general closed epis follows for general reasons

Sufficiency of the conditions

- Assume € satisfies 1–4
- 2 implies that \mathcal{E} is an exact completion
- we have to construct a PCA \mathcal{A} such that $\mathsf{PAsm}(\mathcal{A}) \simeq \mathsf{Proj}(\mathcal{E})$
- use discrete combinatory objects, a special case of Hofstra's basic combinatory objects (Hofstra 2006)

Discrete combinatory objects

Definition

A discrete combinatory object (DCO) is a pair (A, \mathcal{F}_A) with $A \in \mathbf{Set}$ and $\mathcal{F}_A \subseteq (A \rightharpoonup A)$ a set of partial functions such that

- $id_A \in \mathcal{F}_A$
- $\forall \alpha, \beta \in \mathcal{F}_A \ \exists \gamma \in \mathcal{F}_A \ . \ \beta \circ \alpha \subseteq \gamma$

DCOs from PCAs

Any PCA \mathcal{A} gives rise to a BCO $(\mathcal{A}, \mathcal{F}_{\mathcal{A}})$ with

$$\mathcal{F}_{\mathcal{A}} = \{\phi_e \mid e \in \mathcal{A}\}$$
 where $\phi_e(a) = e \cdot a$

DCOs as indexed preorders

Definition

Let (A, \mathcal{F}_A) be a DCO

The family fibration fam(A, F_A): Set^{op} → Ord is given by fam(A, F_A)(J) = (A^J, ≤), with

$$\begin{array}{ll} \varphi \leq \psi & :\Leftrightarrow \\ \exists \alpha \in \mathcal{F}_{\! A} \, . \, \, \alpha \circ \varphi = \psi \\ \text{for } \varphi, \psi : J \to A \end{array}$$

PAsm(A, F_A) is the Grothendieck construction of fam(A, F_A). Objects are pairs (I ∈ Set, φ: I → A); morphisms (I, φ) → (J, ψ) are functions
 f: I → J such that ∃α ∈ F_A. α ∘ φ = ψ ∘ f.

• For PCAs we have $fam(A) = fam(A, \mathcal{F}_A)$ and $PAsm(A) = PAsm(A, \mathcal{F}_A)$

Indexed preorders representable by DCOs

Definition

Let $\mathcal{D}: \mathbf{Set}^{op} \to \mathbf{Ord}$ be an indexed preorder.

 $\mu \in \mathcal{D}(A)$ is called **discrete**, if for any span $I \overset{e}{\longleftarrow} J \overset{f}{\rightarrow} A$ with surjective e, and any $\varphi \in \mathcal{D}(I)$ with $e^*(\varphi) \leq f^*(\mu)$, there exists $h: I \rightarrow A$ with he = f.

In other words, μ is discrete, if (A, μ) is right orthogonal to all epicartesian maps in $\int \mathcal{D} \to \mathbf{Set}$.

Lemma

An indexed preorder ${\mathfrak D}$ is representable by a DCO iff it has a discrete generic predicate.

• To reconstruct a DCO structure from an indexed preorder \mathscr{D} with discrete generic predicate $\mu \in \mathcal{D}(A)$, take all the partial functions given by spans

$$A \stackrel{m}{\longleftrightarrow} U \stackrel{f}{\to} A$$
 with $m^*(\mu) \le f^*(\mu)$

Functional completeness

Lemma

 $fam(A, \mathcal{F}_A)$ has stable finite meets iff there exist $T \in A$, $\wedge : A \times A \to A$, and $\lambda, \rho \in \mathcal{F}_A$ such that

- ② for all $a, b \in A$ we have $\lambda(a \wedge b) = a$ and $\rho(a \wedge b) = b$, and
- DCOs such that $fam(A, \mathcal{F}_A)$ has stable finite meets are called **cartesian**.

Theorem (following [Hofstra 2006])

Let (A, \mathcal{F}_A) be a cartesian DCO. The exact completion $\operatorname{PAsm}(A, \mathcal{F}_A)_{\operatorname{ex}}$ is locally cartesian closed iff there exists a **universal function** $@\in \mathcal{F}_A$ such that for all $\alpha \in (A, \mathcal{F}_A)$ there exists a *total* $\tilde{\alpha} \in (A, \mathcal{F}_A)$ with

$$\alpha(a \wedge b) \leq \mathbb{Q}(\widetilde{\alpha}(a) \wedge b)$$
 for all $a, b \in A$.

We call cartesian DCOs with universal functions functionally complete.

Functional completeness and PCAs

• On DCOs (A, \mathcal{F}_A) with universal function, define a partial application by

$$a \cdot b := \mathbb{Q}(a \wedge b)$$
 for $a, b \in A$.

This makes (A, \cdot) into a PCA. Moreover we can show:

Lemma

An indexed preorder $\mathfrak D$ is equivalent to $fam(\mathcal A)$ for some PCA $\mathcal A$ iff

- ① ① has stable finite meets
- ② D has a discrete generic predicate
- $(\mathfrak{I}_{\mathfrak{D}})_{\mathfrak{e}_{x}}$ is locally cartesian closed
- 1 1 is equivalent to the terminal preorder
- Omitting condition 4 characterizes fam(A, A#) for inclusions of PCAs (relative realizability)

Finishing the proof

- Assume that E satisfies conditions 1–4 of the theorem.
- To finish the proof we have to find a PCA \mathcal{A} with $PAsm(\mathcal{A}) \simeq Proj(\mathcal{E})$
- Equivalently, find indexed preorder D satisfying the conditions of the lemma, such that ∫D ≃ Proj(E)
- As finite limit preserving reflector, $\Gamma : \mathbf{Proj}(\mathcal{E}) \to \mathbf{Set}$ is a *Street fibration*
- In the corresponding indexed category D, predicates on J ∈ Set are maps f: P → ΔJ in Proj(ε) which are inverted by Γ
- η_D: D → ΔΓD is a generic predicate, and D is posetal since D is (and thus all projectives are) separated
- Discreteness of η_D in $\mathfrak D$ follows from discreteness of D in $\mathcal E$
- $\mathfrak{D}(1)$ consists of monos into 1 with 1 global element. Thus $\mathfrak{D}(1) \simeq 1$.

Part III Without Choice and Generalizations

f-projectives

The theorem depends on the axiom of choice. This can be avoided using *f-projectives*

Definition

Let $\mathbb R$ be regular and locally small, such that $\Gamma:\mathbb R\to \mathbf{Set}$ has a regular right adjoint $\Delta.\ P\in\mathbb R$ is called **f-projective**, if every cospan $f:P\to X\twoheadleftarrow Y:e$

with e regular epic can be closed to g_{V} ψ_{f} with c closed regular epic.

Theorem

A locally small category \mathcal{E} is equivalent to a realizability topos $\mathsf{RT}(\mathcal{A})$ over a PCA \mathcal{A} , if and only if

- 2 is exact and locally cartesian closed,
- ② the global sections functor $\Gamma: \mathcal{E} \to \mathbf{Set}$ has a **regular** right adjoint Δ
- ① the subcategory $fProj(\mathcal{E})$ of f-projectives is closed under finite limits, and contains the image of Δ
- There exists a separated and discrete f-projective $D ∈ \mathcal{E}$ such that for all $A ∈ \mathcal{E}$ there exists a span D ∈ Φ A with c closed and e epic

Generalizations

Uniform preorders

- Dropping the discreteness condition gives a characterization of a class of toposes arising from a generalization of PCAs based on relations instead of partial functions: shallow relationally complete uniform preorders
- Examples are ordered PCAs, e.g. $P_{+}(A)$ nonempty subsets of a PCA

Realizability-like triposes

• Dropping furthermore all conditions relating to projectives gives a characterization of toposes induced by **realizability-like triposes** – a tripos $\mathcal P$ is called *realizability-like* if we have $\gamma \dashv \delta$: $\operatorname{sub}(\operatorname{Set}) \to \mathcal P$, where δ and γ are tripos transformations definable for every tripos $\mathcal P$ on Set .

