3-MEAN BUSTERS BEN TOWNSON, DAVID STEINMETZ, SHARAN DUGGAL

HIGGS-BOSON KAGGLE PROJECT

HIGGS-BOSON KAGGLE BACKGROUND & CHALLENGE

- Higgs-Boson particle had been theorized to exist 50 years ago, and was discovered in 2012.
- The particle can decays in various ways, and the discovery of multiple modes of decay increases confidence in the validity of the theory and the characteristics of the particle.
- The Kaggle challenge is to detect a tau tau decay of a Higgs boson "signal" versus other forms of particle decay classified as "background".
- The Kaggle data set included 800,000 simulated records which was split into a 250,000 record training set and a 550,000 record test set.

EXPLORATORY DATA ANALYSIS

ANALYSIS OF MISSING DATA

CORRELATION MATRIX OF HIGGS-BOSON DATA SET

MISSING DATA BY NUMBER OF JETS

Variables	PRI jet num 0	PRI jet num 1	PRI_jet_num_2_3
DER_mass_MMC	26123	7562	4429
DER_mass_transverse_met_lep	0	0	0
DER_mass_vis	0	0	0
DER_pt_h	0	0	0
DER_deltaeta_jet_jet	99913	77544	0
DER_mass_jet_jet	99913	77544	0
DER_prodeta_jet_jet	99913	77544	0
DER_deltar_tau_lep	0	0	0
DER_pt_tot	0	0	0
DER_sum_pt	0	0	0
DER_pt_ratio_lep_tau	0	0	0
DER_met_phi_centrality	0	0	0
DER_lep_eta_centrality	99913	77544	0
PRI_tau_pt	0	0	0
PRI_tau_eta	0	0	0
PRI_tau_phi	0	0	0
PRI_lep_pt	0	0	0
PRI_lep_eta	0	0	0
PRI_lep_phi	0	0	0
PRI_met	0	0	0
PRI_met_phi	0	0	0
PRI_met_sumet	0	0	0
PRI_jet_num	0	0	0
PRI_jet_leading_pt	99913	0	0
PRI_jet_leading_eta	99913	0	0
PRI_jet_leading_phi	99913	0	0
PRI_jet_subleading_pt	99913	77544	0
PRI_jet_subleading_eta	99913	77544	0
PRI_jet_subleading_phi	99913	77544	0
PRI_jet_all_pt	0	0	0

SIGNAL TO NOISE RATIO IN THE DATA

WEIGHT INFORMATION BY CLASS TYPE

# of Jets	Background Weights	Signal Weights
0 Jets	3.76	0.014
1 Jet	1.93	0.007
2+ Jets	0.88	0.004

ALL MODELS WERE RUN ON THE FULL TRAINING SET AS WELL AS ON A VERSION OF THE DATA THAT WAS SPLIT ON NUMBER OF JETS (AFTER REMOVING COLUMNS THAT ONLY REPRESENTED MISSING INFORMATION).

DATA SETS FOR MODELS

Removed Variables that were completely blank

DER_lep_eta_centrality_	DER_lep_eta_centrality
DER_deltaeta_jet_jet	DER_deltaeta_jet_jet
DER_mass_jet_jet	DER_mass_jet_jet
DER_prodeta_jet_jet	DER_prodeta_jet_jet
PRI_jet_subleading_pt	PRI_jet_subleading_pt
PRI_jet_subleading_eta	PRI_jet_subleading_eta
PRI_jet_subleading_phi	PRI_jet_subleading_phi
PRI_jet_leading_pt	
PRI jet leading eta	
PRI_jet_leading_phi	

K-MEANS CLUSTERING

MACHINE LEARNING MODELS

PARAMETER TUNING FOR RANDOM FORESTS ON SPLIT FILE

Records Tested: 5,000 w/ 1,000 trees	Jets = 0	Jets = 1	Jets = 2+	
Predictors "mtry" (odd #s: 3-19)	7	7	7	
Max # of nodes (3,5,8,10)	10	10	10	TEST
Threshold	0.35	0.5	0.5	
OOB Error	14.95	18.33	15.04	

TEST DATA AMS: 2.53

RANDOM FORESTS ON COMPLETE TRAINING SET

Records Tested: 5,000 w/ 1,000 trees	ALL TRAINING DATA with BAG-IMPUTED DATA	
Predictors "mtry"	7	
Max # of nodes	No Pruning	TEST DATA AMS: 2.9
Threshold	0.5	
OOB Error	16.01	

RELATIVE VARIABLE IMPORTANCE (TOP 20) - ALL TRAINING DATA

	_
	Importance
DER_mass_MMC	100.00
DER_mass_transverse_met_lep	88.15
DER_deltar_tau_lep	58.94
DER_mass_vis	57.93
PRI_tau_pt	53.26
DER_met_phi_centrality	52.72
PRI_met	49.18
PRI_met_sumet	39.03
DER_pt_h	36.19
DER_pt_ratio_lep_tau	30.96
DER_pt_tot	30.61
PRI_lep_eta	30.19
PRI_lep_pt	29.10
PRI_jet_leading_eta	28.53
DER_lep_eta_centrality	25.01
PRI_tau_eta	23.98
DER_sum_pt	22.89
DER_mass_jet_jet	21.92
PRI_jet_all_pt	21.62
DER_deltaeta_jet_jet	21.20

LOGISTIC REGRESSION

- Fitted Logistic regression model to predict log odds of signal vs background noise
- First tried using all data, and chose only significant variables
- Produced max AMS on training data of 2.06
- Predicted 66,232 signals in test data

LOGISTIC REGRESSION: DATA SPLIT BY NUMBER OF JETS

- Fitted Logistic Regression model to predict log odds of three sub-sets of data (zero jets, one jet, two or more jets)
- Significant variables to the model were different for each subset (beyond just "absent" variables).
- Produced max AMS on training data of 1.07
- Predicted 70,470 signals in test data

VARIABLE SELECTION FOR LOGISTIC REGRESSION MODEL

Variable	Full Model	Two+ Jets	One Jet	Zero Jets
DER_mass_MMC	***	***	***	**
DER_mass_transverse_met_lep	***	***	***	***
DER_mass_vis	***	***	***	***
DER_pt_h	***	***		
DER_deltaeta_jet_jet	***	***	#N/A	#N/A
DER_mass_jet_jet	***	***	#N/A	#N/A
DER_prodeta_jet_jet	***	***	#N/A	#N/A
DER_deltar_tau_lep	***	***	***	***
DER_pt_tot		***	***	
DER_sum_pt				
DER_pt_ratio_lep_tau	***	***	***	***
DER_met_phi_centrality	***	***	***	
DER_lep_eta_centrality	***	***	#N/A	#N/A
PRI_tau_pt				
PRI_tau_eta				
PRI_tau_phi				
PRI_lep_pt				
PRI_lep_eta				
PRI_lep_phi				
PRI_met	***	***	***	
PRI_met_phi				
PRI_met_sumet	***	***	***	***
PRI_jet_num	***	#N/A	#N/A	#N/A
PRI_jet_leading_pt				#N/A
PRI_jet_leading_eta				#N/A
PRI_jet_leading_phi				#N/A
PRI_jet_subleading_pt	**	***	#N/A	#N/A
PRI_jet_subleading_eta	***		#N/A	#N/A
PRI_jet_subleading_phi	***		#N/A	#N/A
PRI_jet_all_pt				-

Signif. codes: '***' .1 '**' .1 '*' .5 '.' .1 ' ' 1

EXTREME GRADIENT BOOSTING (XG BOOST)

- Modified code published https://github.com/dmlc/xgboost/tree/master/demo/kaggle-higgs by Tainqi Chen, the author of the xgboost package
- Tuned parameters maximizing AMS score, focusing on eta (learning rate), max_depth (maximum depth of trees), and nrounds (the number of learning iterations).
- Ultimately chose eta = .05, max_depth=12, nrounds=120.
- Selection of Threshold unimportant, as probabilities will be fed to ensembling model
- Produced max AMS on training data of 8.42 (overfit?)
- Predicted 36,965 signals, but possible error in selecting optimal threshold

ENSEMBLING

MODELS IN THE ENSEMBLE

RANDOM FORESTS

XG BOOST

dmlc XGBoost

LOGISTIC REGRESSIONS

ENSEMBLING DETAILS

- Different kinds of ensembling:
 - averaging
 - voting
 - weighting
- Four variables to optimize
- a, β, γ: model weights
- η: signal threshold
- a logit + β rf + γ xgboost = ensemble probability
- ensemble probability > threshold η

TWO-MODEL ENSEMBLE

THREE-MODEL ENSEMBLE

CONCLUSIONS/NEXT STEPS

- The xgboost model performs best in terms of time and accuracy, but lacks interpretability
- ▶ The logistic regression model is easier to understand, but cannot match the random forest and boosted models in accuracy
- The random forest provides some interpretability but also cannot match the boosted model in accuracy
- The xgboost dominates a two-model weighted ensemble with the logistic model
- The random forest appears to dominate a three-model weighted ensemble,
 but more investigation needs to be done
- More models such as a neural network can be added to the ensemble to further reduce variance and improve accuracy