Task-Oriented Dialog Systems

叶泽凯

CONTENTS

- Introduction
- Dataset
- Models
- Future work

INTRODUCTION

- Open-domain dialog systems
- Task-oriented dialog systems
- Question Answering System

Categories

- Pipeline
- End-to-end methods

Figure 2 General framework of a pipeline task-oriented dialog system.

DATASET

Knowledge Base (KB)

Address	Distance	POI type	POI	Traffic info	
5672 barringer street	parringer street 5 miles certain address 5672 barringer street		no traffic		
200 Alester Ave	2 miles	gas station	Valero	road block nearby	
899 Ames Ct	5 miles	hospital	Stanford Childrens Health	moderate traffic	
481 Amaranta Ave	1 miles	parking garage	Palo Alto Garage R	moderate traffic	

Dialogue

Driver Address to the gas station.

Car Valero'is located at 200 Alester Ave.

Driver OK, please give me directions via a route that avoids all heavy traffic.

Car Since there is a road block nearby, I found another route for you and I sent it on your screen.

CHALLENGES

- Data Efficiency
- Multi-turn Dynamics
- Ontology Integration

Figure 1: The proposed Mem2Seq architecture for task-oriented dialog systems. (a) Memory encoder with 3 hops; (b) Memory decoder over 2 step generation.

$$p_i^k = \operatorname{Softmax}((q^k)^T C_i^k),$$

$$o^k = \sum_i p_i^k C_i^{k+1}.$$

$$q^{k+1} = q^k + o^k.$$

$$h_t = \operatorname{GRU}(C^1(\hat{y}_{t-1}), h_{t-1});$$

$$P_{vocab}(\hat{y}_t) = \operatorname{Softmax}(W_1[h_t; o^1])$$

Andrea Madotto, Chien-Sheng Wu, Pascale Fung

(b) Local memory decoder

Figure 4: The dynamic fusion layer for fusing domain-shared feature and domain-specific feature.

			SMD		
Model	BLEU	F1	Navigate	Weather	Calendar
Wiodei			F1	F1	F1
Mem2Seq (Madotto et al., 2018)	12.6	33.4	20.0	32.8	49.3
DSR (Wen et al., 2018)	12.7	51.9	52.0	50.4	52.1
KB-retriever (Qin et al., 2019b)	13.9	53.7	54.5	52.2	55.6
GLMP (Wu et al., 2019a)	13.9	60.7	54.6	56.5	72.5
Shared-Private framework (Ours)	13.6	61.7	56.3	56.5	72.8
Dynamic Fusion framework (Ours)	14.4*	62.7*	57.9*	57.6*	73.1*