title here

Felipe B. Pinto 61387 – MIEQB

7 de fevereiro de 2024

Conteúdo

A análise granulométrica de um material em pó numa base de peso é representada por uma linha recta que vai de 0% em peso na dimensão de partícula de $1\mu m$ até 100% em peso na dimensão de partícula de $101\mu m$.

Q3 a.

Calcular o diâmetro médio em volume das partículas que constituem o sistema.

Resposta

$$\bar{d_V} = \frac{\int d \, dV}{\int dV} = \frac{\rho_s \int d \, dV}{\rho_s \int dV} = \frac{\int d \, dx}{\int dx} = \frac{\int_0^1 (100 \, x + 1) \, dx}{\int_0^1 dx} =$$

$$= \frac{100 \int_0^1 (x + 1/100) \, d(x + 1/100)}{1 - 0} = 100/2 \, \Delta \left((x + 1/100)^2 \right) \Big|_0^1 =$$

$$= 100/2 \, \left((1 + 1/100)^2 - (1/100)^2 \right) = 100/2 \, (1 + 2/100) =$$

$$= 51 \, \mu \text{m}$$

Q3 b.

Calcular o diâmetro médio superficial das partículas que constituem o sistema.

Resposta

$$\begin{split} \bar{d}_s &= \frac{\int d \, \mathrm{d}s}{\int \, \mathrm{d}s} = \frac{\int d \, \mathrm{d} \left(n \, \dot{k} \, d^2 \right)}{\int \, \mathrm{d} \left(n \, \dot{k} \, d^2 \right)} = \frac{\int d \, \mathrm{d} \left(\left(\frac{x}{\ddot{k} \, d^3 \, \rho_s} \right) \, \dot{k} \, d^2 \right)}{\int \, \mathrm{d} \left(\left(\frac{x}{\ddot{k} \, d^3 \, \rho_s} \right) \, \dot{k} \, d^2 \right)} = \\ &= \frac{\int \frac{\dot{k}}{\ddot{k} \, \rho_s} \, \mathrm{d}x}{\int \frac{\dot{k}}{\ddot{k} \, d \, \rho_s} \, \mathrm{d}x} = \frac{\frac{\dot{k}}{\ddot{k} \, \rho_s} \int \mathrm{d}x}{\frac{\dot{k}}{\ddot{k} \, \rho_s} \int d^{-1} \, \mathrm{d}x} \end{split}$$

$$d_{s} = 1 / \sum x_{i}/d_{i} = 1 / \int_{0}^{1} \frac{dx}{d} = 1 / \int_{0}^{1} \frac{dx}{100 x + 1} = 100 / \int_{0}^{1} \frac{dx}{x + 1/100} = 100 / \int_{0}^{1} \frac{d(x + 1/100)}{x + 1/100} = 100 / \left(\Delta \ln(x + 1/100) \Big|_{0}^{1} \right) = 100 / \left(\ln(1 + 1/100) - \ln(1/100) \right) = 100 / \ln 101 \approx 21.668 \,\mu\text{m}$$

II – Redução da granulometria de sólidos

Questão 1

Se se regularem uns rolos de moagem de $1\,\mathrm{m}$ de diâmetro de tal modo que as superfícies de moagem fiquem à distância de $12.5\,\mathrm{mm}$ e o ângulo de presa for 31°

Q1 a.

qual é o tamanho máximo de partículas que se deveria introduzir nos rolos?

Resposta

$$\cos \alpha = \cos(31/2) = \frac{r_1 + b}{r_1 + r_2} = \frac{(1.0/2) + (12.5/2)}{(1.0/2) + r_2} \Longrightarrow$$

$$\implies r_2 = \frac{0.5 + 6.25}{\cos(31/2)} - 0.5 = \frac{0.5 + 6.25}{\cos(31/2)} - 0.5 \cong 6.504759944566266$$

Q1 b.

Se a capacidade real da máquina é 12% da teórica, calcular o ritmo de produção em ${\rm kg~s^{-1}}$, quando a funcionar a 2.0 Hz, se a superfície de trabalho dos rolos tiver 0.4 m de comprimento e se a alimentação pesar 2500 ${\rm kg/m^3}$.

Resposta

$$\dot{m} = z A \mu \rho$$

III – Movimento de Particulas num fluido

Questão 1

Sujeita-se a elutriação uma mistura finamente moída de galena e calcário na proporção de 1 para 4 em peso, mediante uma corrente ascendente de água, que flui a $0.5\,\mathrm{cm/s}$. Supondo que a distribuição de tamanhos é a mesma para ambos os materiais e corresponde à que se indica no quadro seguinte, faça a estimativa da percentagem de galena no material arrastado e no material que fica para trás. Considere a viscosidade absoluta da água igual a $1\,\mathrm{mN}\,\mathrm{s}\,\mathrm{m}^{-2}$ e use a equação de Stokes.

Diâmetro (mícrons)	20	30	40	50	60	70	80	100
% em peso de finos	15	28	48	54	64	72	78	88

Dados:

- densidade da galena = 7.5
- densidade do calcáreo = 2.7

Resposta

$$\frac{F}{(\pi \, (d/2)^2) \, \rho \, u^2} = \frac{3 \, \pi \, \mu \, u \, d}{(\pi \, (d/2)^2) \, \rho \, u^2}$$

IV -	Sendimentação e Espressamento

Questão 1

Um ensaio de decantação em tubo de ensaio foi realizado com uma suspensão de carbonato de cálcio (massa específica: $2710\,\mathrm{kg/m^3}$) em água, cuja concentração inicial é de $236\,\mathrm{g/L}$. Os resultados do ensaio vêm expressos na seguinte tabela.

Tempo (h)	Altura de interface (cm)
0.0	36.0
0.25	32.4
0.5	28.6
1.0	21.0
1.75	14.7
3.0	12.3
4.75	11.6
12.0	9.8
20.0	8.0

Resposta

t (s)	C (kg/m ³)	e $(\frac{m^3 \text{ (solido)}}{m^3 \text{ (solução)}})$	u (g/m³)
0.0	236.000	0.913	
0.25	262.222	0.903	
0.5	297.063	0.890	
1.0	404.571	0.851	
1.75	577.959	0.787	
3.0	690.732	0.745	
4.75	732.414	0.730	
12.0	866.939	0.680	
20.0	1062.000	0.608	

Q1 a.

Determine a concentração de sólidos na zona de espessado em função do tempo

Resposta

$$C h A = C_0 h_0 A \implies C = C_0 \frac{h_0}{h}$$

Q1 b.

Determine a porosidade na zona de espessado em função do tempo.

Resposta

$$e: C = (1 - e) \rho_s \implies e = 1 - \frac{C}{2710}$$

Q1 c.

question body