Cyfrowe przetwarzanie sygnału

Zadanie 4

Przekształcenie Fouriera, Walsha-Hadamarda, kosinusowe i falkowe, szybkie algorytmy.

Celem ćwiczenia jest zapoznanie się z operacjami transformacji sygnałów dyskretnych przy użyciu wybranych metod.

Zakres funkcjonalności aplikacji

Do programu przygotowywanego w ramach dotychczasowych ćwiczeń należy dodać możliwość odczytu i zapisu sygnałów o wartościach zespolonych. Należy również umożliwić rysowanie wykresów sygnałów dyskretnych o wartościach zespolonych w postaci dwóch wykresów o wspólnej dziedzinie ułożonych jeden nad drugim. Można przyjąć, że sygnały zespolone będą tylko wynikiem transformacji Fouriera, a co za tym idzie będą prezentować funkcje w dziedzinie częstotliwości. Dostępne mają być dwa tryby prezentacji wykresu:

- (W1) górny wykres prezentuje część rzeczywistą amplitudy w funkcji częstotliwości, a wykres dolny część urojoną;
- (W2) górny wykres prezentuje moduł liczby zespolonej, a dolny argument liczby w funkcji częstotliwości.

Należy zaimplementować następujące transformacje sygnałów:

- (F1) dyskretna transformacja Fouriera algorytm z definicji oraz szybka transformacja Fouriera z decymacją w dziedzinie czasu (DIT FFT);
- (F2) dyskretna transformacja Fouriera algorytm z definicji oraz szybka transformacja Fouriera z decymacją w dziedzinie częstotliwości (DIF FFT);
- (T1) transformacja kosinusowa typu drugiego (DCT II) oraz szybka transformacja kosinusowa (FCT II);
- (T2) transformacja Walsha-Hadamarda oraz szybka transformacja Walsha-Hadamarda;
- (T3) transformacja falkowa (jeden poziom), warianty:
 - (DB4), (DB6), (DB8).

W implementacji należy uwzględnić możliwość transformacji sygnałów o liczbie próbek 2ⁿ dla n całkowitego w zakresie od n=1 do n=10 (próbki o długości od 2 do 1024).

Po wykonaniu transformacji program ma podać czas wykonywania operacji (porównanie szybkości działania algorytmów).

Wykorzystując mechanizmy z zadania pierwszego utworzyć i zapisać do pliku sygnał dany następującym równaniem:

• (S1) -
$$S(t) = 2\sin(\frac{2\pi}{2}t + \frac{\pi}{2}) + 5\sin(\frac{2\pi}{0.5}t + \frac{\pi}{2})f_{pr} = 16$$

• (S2) -
$$S(t) = 2\sin(\frac{2\pi}{2}t) + \sin(\frac{2\pi}{1}t) + 5\sin(\frac{2\pi}{0.5}t)f_{pr} = 16$$

• (S3) -
$$S(t) = 5\sin(\frac{2\pi}{2}t) + \sin(\frac{2\pi}{0.25}t) f_{pr} = 16$$

W sprawozdaniu należy umieścić wykresy prezentujące wygenerowane sygnały oraz ich transformaty. Należy także określić jak zmienia się szybkość wykonania obliczeń w zależności od rodzaju zastosowanego algorytmu (dla przypadków kiedy istnieje szybka transformacja).

Dyskretna transformacja Fouriera (DFT)

Dyskretna transformacja Fouriera jest przekształceniem macierzowym o postaci:

$$X(m) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi m}{N}n} \qquad 0 \le m \le N-1$$
 (F-1)

Przekształcenie do niego odwrotne wyraża się zależnością:

$$x(n) = \sum_{m=0}^{N-1} X(m) e^{j\frac{2\pi m}{N}n} \qquad 0 \le n \le N-1$$
 (F-2)

Oznaczenia w powyższych wzorach należy interpretować następująco:

x(n) – wektor próbek sygnału, kolejne próbki są oddalone od siebie o czas $\Delta t = 1/f_{pr}$ (1/częstotliwość próbkowania).

X(m) – wektor będący wynikiem transformacji sygnału x(n). Kolejne wartości oznaczają udział składowej o częstotliwości m^*f_0 w sygnale próbkowanym. Częstotliwość f_0 równa:

$$f_0 = \frac{1}{T} = \frac{1}{\Delta t N} = \frac{f_{pr}}{N}$$
 (F-3)

Wyrażenie $e^{\pm j\frac{2\pi m}{N}n}$ nazywamy jądrem transformacji (prostej ze znakiem "-" i odwrotnej ze znakiem "+"). Często dla poprawy czytelności stosowany jest zapis:

$$W_{N} = e^{j\frac{2\pi}{N}} \tag{F-4}$$

Wtedy równania transformacji prostej i odwrotnej mają postać:

$$X(m) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) W_N^{-mn} , \quad x(n) = \sum_{m=0}^{N-1} X(m) W_N^{mn} \qquad 0 \le m, n \le N-1$$
 (F-5)

Postać macierzowa:

$$\begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ \dots \\ X_{N-1} \end{bmatrix} = \frac{1}{N} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & W_N^{-1} & W_N^{-2} & \dots & W_N^{-(N-1)} \\ 1 & W_N^{-2} & W_N^{-4} & \dots & W_N^{-2(N-1)} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & W_N^{-(N-1)} & W_N^{-2(N-1)} & \dots & W_N^{-(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \dots \\ x_{N-1} \end{bmatrix}$$
 (F-6)

Szybka transformacja Fouriera (FFT)

Przedstawiona powyżej dyskretna transformacja Fouriera wymaga mnożenia macierzy o rozmiarze NxN przez wektor długości N. Algorytm taki wymaga N^2 mnożeń liczb zespolonych. Ilość tych operacji rośnie wprost proporcjonalnie do kwadratu długości wektora próbki danych, a więc jest to algorytm o złożoności $O(N^2)$. Wykorzystanie pewnych charakterystycznych cech transformacji pozwala budować znacznie wydajniejsze algorytmy, których złożoność obliczeniowa wynosi $O(N \log_2 N)$.

Decymacja w dziedzinie czasu

Równanie transformacji można zapisać rozdzielając próbki parzyste i nieparzyste do osobnych wektorów:

$$X(m) = \frac{1}{N} \left(\sum_{n=0}^{N/2 - 1} x(2n) W_N^{-m(2n)} + \sum_{n=0}^{N/2 - 1} x(2n+1) W_N^{-m(2n+1)} \right)$$
 (F-7)

Ze względu na fakt, że podział dotyczy próbek wejściowych, zależnych od czasu, podział ten jest nazwany decymacją w dziedzinie czasu.

Po wyciągnięciu czynnika W_N^{-m} przed znak sumy w drugim członie równanie ma postać:

$$X(m) = \frac{1}{N} \left(\sum_{n=0}^{N/2 - 1} x(2n) W_N^{-m(2n)} + W_N^{-m} \sum_{n=0}^{N/2 - 1} x(2n+1) W_N^{-m(2n)} \right)$$
 (F-8)

Oba wyrażenia określające sumowanie mają taką samą postać z tym, że lewe dotyczy wyrazów nieparzystych a prawe parzystych wejściowego wektora x(n). Dodatkowo zachodzi równość:

$$W_N^{-m(2n)} = (e^{j\frac{2\pi}{N}})^{-2mn} = e^{j\frac{2\pi}{N}(-2mn)} = e^{j\frac{2\pi}{N/2}(-mn)} = W_{N/2}^{-mn}$$
(F-9)

Zatem poprzednie wyrażenie można zapisać:

$$X(m) = \frac{1}{N} \left(\sum_{n=0}^{N/2 - 1} x(2n) W_{N/2}^{-mn} + W_N^{-m} \sum_{n=0}^{N/2 - 1} x(2n+1) W_{N/2}^{-mn} \right)$$
 (F-10)

Wyrażenia pod znakiem sumy są analogiczne do wejściowej postaci, przy czym sumowanie jest w zakresie do N/2 (suma dotyczy połowy próbek). Współczynnik *m* ma jednak wartości od *0* do *N-1*. Ponieważ mamy:

$$W_{N/2}^{-(m+N/2)n} = W_{N/2}^{-mn} W_{N/2}^{-(N/2)n} = W_{N/2}^{-mn} e^{-j\frac{2\pi}{N/2}(N/2)n} = W_{N/2}^{-mn} e^{-j2\pi n} = W_{N/2}^{-mn} (\cos(2\pi n) - j\sin(2\pi n)) = W_{N/2}^{-mn} (1 - j*0) = W_{N/2}^{-mn}$$
(F-11)

Oznacza to, że druga połowa wektora jest powtórzeniem pierwszej połowy. Dzięki temu zamiast wykonywać operację sumowania N-krotnie wystarczy wykonać ją N/2 razy, a następnie skopiować wyniki do drugiej połowy wektora. To samo należy zastosować do wektora obliczonego z próbek nieparzystych. Daje to oszczędność obliczeń, bo początkowo wymagane było mnożenie macierzy NxN, a obecnie mnożone są dwie macierze o wymiarach N/2xN/2, czyli jest to $2*(N/2)^2=N^2/2$ operacji. Pozostaje jeszcze

wykonanie *N* mnożeń przy składaniu obu wektorów, ale koszt tej operacji jest mniejszy, niż uzyskane dotychczas oszczędności.

Dodatkowo operację taką można zastosować wobec każdego z wektorów próbek parzystych i nieparzystych aż do uzyskania transformacji dwupunktowej. Zastosowanie rekurencji w tym przypadku jest jak najbardziej na miejscu. Wadą jest jednak to, że dla każdego zagnieżdżenia trzeba alokować nowe obszary pamięci na tablice. Dlatego też zostały opracowane algorytmy *in situ*, które operują na stałej ilości pamięci zamieniając wartości tablicy w kolejnych etapach. Zasada działania opiera się na tym, że najpierw wykonywane są obliczenia na najkrótszych wektorach (dwuelementowych). Następnie wyniki tych operacji składane są w wektory czteroelementowe, te w ośmio itd.

Jak poprzednio wykazano współczynnik W_N^k jest funkcją okresową względem wykładnika o okresie N. Ponieważ są to liczby zespolone kolejne wartości tego współczynnika dla wartości N=8 i N=4 można przedstawić na płaszczyźnie zespolonej jak poniżej:

Wartości tego współczynnika zestawiono w tabeli:

k	0	1	2	3	4	5	6	7
W _N ^k	1+0j	0,7071 +j0,7071	0+j	-0,7071 +j0,7071	-1-0j	-0,7071 -j0,7071	-0-j	0,7071 -j0,7071

Dwie prawidłowości, jakie można zaobserwować na podstawie wzorów, rysunku i tabelki:

- wartości współczynników dla wektora długości N/2 są równe parzystym współczynnikom obliczonym dla wektora o długości N;
- wartości współczynnika w drugiej połowie tabeli są przeciwne do wartości w pierwszej połowie, czyli $W_N^{(k+N/2)}=-W_N^{(k)}$.

Dzięki temu zamiast obliczać macierz współczynników o rozmiarze *NxN* wystarczy obliczyć wektor długości *N/*2.

Pierwszym krokiem szybkiego algorytmu działającego w miejscu jest przestawienie kolejności próbek. Wynika to z opisanej wcześniej konieczności rozdzielenia elementów parzystych i nieparzystych. Dla wektora o długości 8 próbek nowa kolejność jest ustalana następująco:

Ogólny algorytm przestawiania próbek w wektorze oparty jest o zmianę kolejności bitów w indeksie próbki (w zapisie dwójkowym):

Numer próbki wejściowej (dziesiętnie)	0	1	2	3	4	5	6	7
Numer próbki wejściowej (dwójkowo)	000	001	010	011	100	101	110	111
Numer próbki wyjściowej (dwójkowo)	000	100	010	110	001	101	011	111
Numer próbki wyjściowej (dziesiętnie)	0	4	2	6	1	5	3	7

Wektor z przestawionymi próbkami można traktować jako wektor zawierający *N* jednopunktowych transformat. Z tego powodu można zastosować wzór F-10 i złożyć je w *N*/2 transformat dwupunktowych, te następnie w *N*/4 czteropunktowych i w ten sposób uzyskać jedną transformatę *N*-punktową.

W każdym etapie składania współczynniki W_N^{-m} można pobierać z wyliczonego wcześniej wektora długości N/2. Należy jednak pamiętać, że długość tego wektora jest stała i jest to połowa długości transformaty. W zapisie W_N^{-m} N zmienia na każdym etapie, podwaja się ono w stosunku do wartości z poprzedniego etapu.

Wszystkie etapy obliczeń wygodnie jest zapisywać przy pomocy struktury zwanej motylkiem. Struktura ta wygląda następująco:

Przedstawione operacje należy interpretować następująco: wartość X(m+N/2) należy pomnożyć przez odpowiedni współczynnik W_N^{-m} odczytany z wektora. Wyniki po prawej stronie uzyskuje się jako suma wartości ze strony lewej (X(m)) oraz jako różnica tych wartości (X(m+N/2)). Znak minus wynika z faktu, że w drugiej połowie wektora współczynników są wartości przeciwne do tych z pierwszej. W zapisie macierzowym motylkowi odpowiada zapis:

$$\begin{bmatrix} X(m) \\ X(m+N/2) \end{bmatrix} = \begin{bmatrix} 1 & W_N^{-m} \\ 1 & -W_N^{-m} \end{bmatrix} \begin{bmatrix} X(m) \\ X(m+N/2) \end{bmatrix} dla m = 0, 1, ..., N/2 - 1$$
 (F-12)

Szybka transformacja wektora 8 próbek jest przedstawiona na rysunku poniżej. Pokazane jest które współczynniki są użyte do mnożenia składowej nieparzystej na poszczególnych etapach. Na rysunku pominięte są oznaczenia operacji dodawania i odejmowania, ale są one takie same, jak na rysunku prezentującym strukturę motylka.

Transformacja odwrotna przebiega w sposób analogiczny, jedynie wektor współczynników należy utworzyć bez znaku minus przed wykładnikiem oraz wynik nie jest dzielony przez *N*.

Decymacja w dziedzinie częstotliwości

Alternatywną metodą tworzenia szybkiego algorytmu jest decymacja w dziedzinie częstotliwości. Algorytm jest podobny do przedstawionego powyżej, ale jego wyprowadzenie rozpoczyna się od podziału wyniku transformacji na próbki parzyste i nieparzyste. Zasadnicza różnica polega na tym, że w pojedynczym motylku najpierw wykonywane są operacje dodawania i odejmowania, a dopiero potem wynik jest mnożony przez odpowiedni współczynnik transformacji.

Transformacja kosinusowa (DCT)

Istnieje kilka typów przekształcenia kosinusowego, które różnią się między sobą parametrami jądra przekształcenia. Wspólną cechą jest wykorzystanie funkcji kosinus o różnych fazach i okresach.

DCT II jest zdefiniowane w sposób następujący:

$$X_{m} = c(m) \sum_{n=0}^{N-1} x(n) \cos(\frac{\pi (2n+1)m}{2N}) , \qquad 0 \le m, n \le N-1$$
 (C-1)

Przekształcenie odwrotne dane jest wzorem:

$$x(n) = \sum_{m=0}^{N-1} c(m)X(m)\cos(\frac{\pi(2n+1)m}{2N}) , \qquad 0 \le m, n \le N-1$$
 (C-2)

$$c(0) = \sqrt{\frac{1}{N}}$$
, $c(m) = \sqrt{\frac{2}{N}}$ dla $0 \le m \le N - 1$ (C-3)

Szybka transformacja kosinusowa (FCT)

Istnieje wiele metod optymalizacji algorytmu DCT. Jedną z nich jest przekształcenie równania DCT do postaci pozwalającej wyodrębnić z niego człon stanowiący DFT. To z kolei pozwala na zastosowanie szybkich algorytmów opracowanych dla dyskretnej transformacji Fouriera.

Mając dany sygnał dyskretny jako funkcję x(n) dla $0 \le n \le N-1$ można zdefiniować sygnał y(n) następująco:

$$y(n)=x(2n)$$
 i $y(N-1-n)=x(2n+1)$ dla $0 \le n \le \frac{N}{2}-1$ (C-4)

Nowy sygnał y(n) jest w istocie sygnałem x(n) o zmienionej kolejności próbek: w pierwszej połowie znajdują się próbki parzyste, a w drugiej próbki nieparzyste, ale w odwróconej kolejności. Przykładowo:

$$x(n)$$
: 0 1 2 3 4 5 6 7

Transformatę sygnału x(n) można obliczyć korzystając z następującej zależności:

$$X(m) = Re[c(m)e^{-j\Pi m/2N}DFT_{N}(y(n))]$$
 (C-5)

Przekształcenie odwrotne dane jest równaniem:

$$v(n) = Re[IDFT_{M}\{c(m)e^{j\Pi m/2N}X(m)\}]$$
 (C-6)

Sygnał x(n) należy odtworzyć poprzez zmianę kolejności próbek w sygnale y(n) zgodnie z podaną wcześniej zależnością:

y(n): 0 1 2 3 4 5 6 7

x(n): 0 7 1 6 2 5 3 4

Transformacja Walsha-Hadamarda

Transformacja ta jest określona przekształceniem macierzowym następująco:

$$X = H_m x$$
 (WH-1)

Przekształcenie odwrotne ma postać:

$$x = H_m X$$
 (WH-2)

W powyższych równaniach x oznacza wektor próbek wejściowych, X jest wektorem próbek po transformacji natomiast H_m jest macierzą Hadamarda zdefiniowaną rekurencyjnie w następujący sposób:

$$H_{0}=1$$

$$H_{m}=\frac{1}{\sqrt{2}}\begin{bmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{bmatrix}$$
(WH-3)

Ze względu na taki sposób definicji macierzy ma ona rozmiar 2^m x 2^m.

Szybki algorytm transformacji Walsha-Hadamarda

Budowa algorytmu opiera się na zasadzie podziału wektora wynikowego na połowy i osobnym obliczaniu wartości dla pierwszej i drugiej połowy. Przyjmując jako *m* indeks

macierzy długość wektora próbek będzie wynosiła $N=2^m$. Czynnik skalujący $\frac{1}{\sqrt{2}}$ dla uproszczenia został pominięty, ale należy pamiętać, aby na końcu pomnożyć wynikowy wektor przez odpowiednią stałą.

$$\begin{bmatrix} X(0) \\ \dots \\ X(N/2-1) \\ X(N/2) \\ \dots \\ X(N-1) \end{bmatrix} = H_m \begin{bmatrix} x(0) \\ \dots \\ x(N/2-1) \\ x(N/2) \\ \dots \\ x(N-1) \end{bmatrix} = \begin{bmatrix} H_{m-1} & H_{m-1} \\ H_{m-1} & -H_{m-1} \end{bmatrix} \begin{bmatrix} x(0) \\ \dots \\ x(N/2-1) \\ x(N/2) \\ \dots \\ x(N-1) \end{bmatrix}$$
 (WH-4)

$$\begin{bmatrix} X(0) \\ \dots \\ X(N/2-1) \end{bmatrix} = \begin{bmatrix} H_{m-1} & H_{m-1} \end{bmatrix} \begin{bmatrix} x(0) \\ \dots \\ x(N/2-1) \\ x(N/2) \end{bmatrix} = \begin{bmatrix} x(0) \\ \dots \\ x(N/2-1) \end{bmatrix} + \begin{bmatrix} H_{m-1} \end{bmatrix} \begin{bmatrix} x(N/2) \\ \dots \\ x(N-1) \end{bmatrix} = \begin{bmatrix} H_{m-1} \end{bmatrix} \begin{bmatrix} x(0) + x(N/2) \\ \dots \\ x(N/2-1) + x(N-1) \end{bmatrix} \begin{bmatrix} x(0) \\ \dots \\ x(N/2-1) + x(N-1) \end{bmatrix} = \begin{bmatrix} X(0) \\ \dots \\ X(N/2-1) \\ \dots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} X(0) \\ \dots \\ X(N/2) \\ \dots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} X(0) \\ \dots \\ X(N/2) \\ \dots \\ X(N-1) \end{bmatrix} = \begin{bmatrix} X(0) - x(N/2) \\ \dots \\ X(N/2-1) - x(N-1) \end{bmatrix}$$

Do obliczenia pierwszej połowy wynikowej transformaty potrzebny jest wektor długości N/2 obliczony jako suma elementów wektora wejściowego oddalonych od siebie o N/2. Natomiast druga połowa jest liczona z wektora będącego różnicą elementów wektora wejściowego. Proces transformacji wektora o długości N=8 został przedstawiony graficznie za pomocą schematu motylkowego na poniższym rysunku.

Transformacja falkowa (przekształcenie falkowe - PF)

Jeden etap prostego PF opisuje schemat:

Bloki H i G są to odpowiednio filtry dolnoprzepustowy i górnoprzepustowy o odpowiedziach impulsowych.

$$H = [h_0, h_1, ..., h_{K-1}] \qquad G = [g_0, g_1, ..., g_{K-1}]$$
(TF-1)

Bloki te realizują operację splotu sygnału z odpowiednio filtrami H i G.

$$x_h(n) = \sum_{k=0}^{K-1} h_k x(n-k)$$
 $x_g(n) = \sum_{k=0}^{K-1} g_k x(n-k)$ (TF-2)

W blokach "↓2" wyrzucamy co drugą próbkę o indeksach nieparzystych (po filtrze H) i parzystych (po filtrze G).

Jeden etap PF dzieli sygnał N -punktowy x(n) na dwa N/2 punktowe sygnały wyjściowe $x_1(n)$ i $x_2(n)$.

Dla uzyskania całościowego PF stosujemy dwa schematy kontynuacji:

- równoległy, gdy etapy podziału stosowane są rekurencyjnie do każdego z sygnałów wyjściowych;
- piramidalny, gdy rekurencyjnie stosujemy etap podziału tylko do podziału jednego z sygnałów wyjściowych.

Jeden etap odwrotnego PF opisuje schemat.

Tutaj w blokach " \uparrow 2" wykonujemy wstawiania zerowych wartości w miejsca próbek wyrzuconych w podczas prostego PF. Bloki D i R są to filtry o odpowiedziach impulsowych $D = [d_0, d_1, ..., d_{K-1}], R = [r_0, r_1, ..., r_{K-1}].$

Kluczowym momentem syntezy szybkich PF jest dobór odpowiedzi impulsowych H, G, D i R tak, żeby spełniony był warunek idealnej rekonstrukcji opisany równaniem:

$$x \equiv P^{-1} P x \tag{TF-3}$$

gdzie x jest to wektor z elementów sygnału wejściowego x(n), P i P^{-1} są odpowiednio macierzami prostego i odwrotnego PF o rozmiarach NxN.

Macierz P tworzona jest poprzez cykliczne N-punktowe przesunięcie w prawo o dwa elementy pary odpowiedzi impulsowych H oraz G i ma strukturę rzadką.

$$\mathbf{P} = \begin{bmatrix} h_0 & h_1 & h_2 & h_3 & \dots & h_{K-2} & h_{K-1} \\ g_0 & g_1 & g_2 & g_3 & \dots & g_{K-2} & g_{K-1} \\ & & h_0 & h_1 & \dots & h_{K-4} & h_{K-3} & h_{K-2} & h_{K-1} \\ & & g_0 & g_1 & \dots & g_{K-4} & g_{K-3} & g_{K-2} & g_{K-1} \\ & & & & & & & & \\ & & & & &$$

gdzie pokazane tylko niezerowe elementy macierzy.

Składającą się z elementów filtrów D i R macierz P^{-1} jest odwrotną do macierzy P. O szybkości przekształcenia decyduje rzadkość macierzy. Oznacza to, ze tylko para macierzy P i P⁻¹ o rzadkiej strukturze tworzy szybkie przekształcenia falkowe.

Najprostsze podejście do syntezy pary wyżej wymienionych macierzy polega na znalezieniu ortogonalnej macierzy P. Wtedy zachodzi równość $P^{-1}=P^{T}$, która gwarantuje rzadkość macierzy P-1.

Warunki ortogonalności macierzy *P* opisują równania:

$$\sum_{k=0}^{K-1} h_k^2 = 1, \sum_{k=0}^{K-1} h_k h_{k+2p} = 0, p = K/2 - 1, K/2 - 2, ..., 1,$$

$$g_k = \pm (-1)^k h_{N-1-k}, k = 0, 1, ..., K - 1$$
(TF-5)

Jak widać z równań, mamy do znalezienia K wartości odpowiedzi impulsowej h_k mając K/2 równań. Niewystarczające K/2 równań możemy utworzyć w dowolny sposób, zakładając pożądane właściwości przekształcenia falkowego. Jeśli chcemy np. uzyskać ortogonalne przekształcenie falkowe o maksymalnej gładkości falki (falki Daubechies), to dodatkowo wykorzystujemy równania zerowania się momentów rzędu k.

$$\sum_{q=0}^{K-1} q^k (-1)^q h_{N-1-q} = 0, k = 0,1,2,..., K/2-1$$
 (TF-6)

Przykład PF: Przekształcenie falkowe Daubechies 4 (czwartego rzędu).

W tym przypadku warunki ortogonalności macierzy *P* przyjmują postać:

$$h_0^2 + h_1^2 + h_2^2 + h_3^2 = 1$$
, $h_0 h_2 + h_1 h_3 = 0$ (TF-7)

Równania zerowania momentów zerowego i pierwszego rzędu przyjmują postać:

$$h_3 - h_2 + h_1 - h_0 = 0$$
, $0h_3 - 1h_2 + 2h_1 - 3h_0 = 0$ (TF-8)

Rozwiązanie powyższego układu równań daje elementy filtru H:

$$H = \left[\frac{1+\sqrt{3}}{4\sqrt{2}}, \frac{3+\sqrt{3}}{4\sqrt{2}}, \frac{3-\sqrt{3}}{4\sqrt{2}}, \frac{1-\sqrt{3}}{4\sqrt{2}} \right], G = \left[h_3, -h_2, h_1, -h_0 \right]$$
 (TF-9)

Filtr H dla falki rzędu szóstego i ósmego mają następujące wartości:

$$H_{DB6}$$
=[0.47046721, 1.14111692, 0.650365, -0.19093442, -0.12083221, 0.0498175] (TF-10)

$$H_{DB8}$$
=[0.32580343, 1.01094572, 0.8922014, -0.03957503, -0.26450717, 0.0436163, 0.0465036, -0.01498699] (TF-11)