藏頭詩產生器 by Mark Chang

- o 動機
- o 目前演算法
- o 後續改良方法

動機

反情搜文字直書產生器 AntiIntelGather Home About Cor	ntact
把你的橫書轉直書	
反情搜文字直書產生器	
每行 6母子 5 5 5 5	
書反產情生搜器文字直	

http://antiintelgather.github.io/

罷免不能宣傳

藏頭詩產生器

見再兀止半過冤罷 不來江天是江教無 見江上上不南人盡 明山人青自來間日 月東自天知何萬月 夜風有明出時古明 深景分月門見人主

http://poem.kxgen.net/

搜尋

祭

蒐集語料庫

- の 語料庫(corpus):
 - 語言學上意指大量的文本,通常經過整理,具有既定格式與標記
- o 蒐集全唐詩兩萬首作為語料庫

找出句子

- o 直接從語料庫中,找出符合條件的句子
 - 罷 -> 罷唱離歌說遠遊
 - 0 免 -> 免令仙犬吠劉郎
 - 過 -> 過盡千帆皆不是
 - 0 半 -> 半夜潛身入洞房

缺點

- 0 句子和句子之間無關聯性
- o 可能找不到某字剛好在某個位置
- o 無變化性
- 0 抄襲!!

目前演算法

- o 從語料庫建立語言模型(Bigram)
- o 從語言模型算出比較有可能出現的句子(Viterbi)

語言模型

- 床前明月光,疑是地上霜。舉頭望明月,低頭思故鄉。
- O Unigram
 - 床|前|明|月|光|疑|是....
 - 頭:2、床:1....
- O Bigram
 - 床前|前明|明月|月光
 - o 明月:2、地上:1....

比較有可能出現的句子

- 若一個句子有五個字,任意挑選五個字,則這五個字符合語言模型的程度,可用機率來表示:
- $P(X_1=w_1, X_2=w_2, X_3=w_3, X_4=w_4, X_5=w_5)$
 - $= P(X_1 = W_1) \times P(X_2 = W_2 | X_1 = W_1)$
 - $\times P(X_3=w_3|X_2=w_2,X_1=w_1)$
 - $\times P(X_4=w_4|X_3=w_3, X_2=w_2, X_1=w_1)$
 - $\times P(X_5=w_5|X_4=w_4,X_3=w_3,X_2=w_2,X_1=w_1)$

比較有可能出現的句子

- Markov Assumption :
 - 每個字出現的機率,只跟前一個字有關
- $P(X_1=w_1, X_2=w_2, X_3=w_3, X_4=w_4, X_5=w_5)$ $= P(X_1=w_1) \times P(X_2=w_2 \mid X_1=w_1) \times P(X_3=w_3 \mid X_2=w_2) \times P(X_4=w_4 \mid X_3=w_3) \times P(X_5=w_5 \mid X_4=w_4)$
- Ex: 白日依山盡 $P(X_1=白, X_2=日, X_3=依, X_4=山, X_5=盡)$ $= P(X_1=白) \times P(X_2=日 \mid X_1=白) \times P(X_3=依 \mid X_2=日) \times P(X_4=山 \mid X_3=依) \times P(X_5=盡 \mid X_4=山)$

比較有可能出現的句子

$$P(X_2 = w_2 | X_1 = w_1)$$

$$P(X_1 = w_1, X_2 = w_2) / P(X_1 = w_1)$$

- $P(X_1 = w_1)$ $count(unigram(w_1)) / count(all unigrams)$
- $P(X_1 = w_1, X_2 = w_2)$ $count(bigram(w_1, w_2)) / count(all bigrams)$

產生句子

- 給定句子中的首字w₁,,找出其他四個字:w₂, w₃, w₄, w₅
- 算出使條件機率為最大值的 w₂, w₃, w₄, w₅
 - $P(X_1=w_1, X_2=w_2, X_3=w_3, X_4=w_4, X_5=w_5 \mid X_1=w_1)$
 - $=P(X_1=w_1, X_2=w_2, X_3=w_3, X_4=w_4, X_5=w_5) / P(X_1=w_1)$
 - = $P(X_2=w_2 | X_1=w_1) \times P(X_3=w_3 | X_2=w_2) \times P(X_4=w_4 | X_3=w_3) \times P(X_5=w_5 | X_4=w_4)$
- · 給定首字「罷」,產生另外四個字
 - $P(X_1=$ 罷, $X_2=w_2$, $X_3=w_3$, $X_4=w_4$, $X_5=w_5 \mid X_1=$ 罷)

Bigram Smoothing

- o 若在Bigram中未出現w₁, w₂組合
 - O 則 $P(X_1=w_1, X_2=w_2) = 0$,會使得整個句子機率為O
- o 為了避免此現象發生
 - \Rightarrow P(X₁=w₁, X₂=w₂) = 0.5 / count(all bigrams)

時間複雜度

- o 給定w₁,,求機率最大值的w₂, w₃, w₄, w₅
- o 若詞庫中有3000個字可挑選,則共有3000⁴種組合
- o 若詞庫大小為V,句子長度為L,則時間複雜度為O(V^L)

時間複雜度

- Max(aaaa, aaab, aaac, aaad, aaba, aabb, aabc ...)
- 共 V^L總組合,求其中的最大值。

Viterbi演算法

- O Dynamic Programming
- · 不需要先把所有組合算出來,再求最大值
- o 先算局部的最大值,傳遞下去
- O 若詞庫大小為V,句子長度為L,則時間複雜度為O(LV²)

Viterbi演算法

- 先算 Max(aa, ba, ca), 只保留最大值傳遞下去
- 每層(W_{i-1},W_i)需計算 V×V次
- 總共需計算 V×V×(L-1)次

計算結果

見再兀止半過冤罷 不來江天是江教無 見江上上不南人盡 明山人青自來間日 月東自天知何萬月 夜風有明出時古明 深景分月門見人主

缺點

- o 語句不夠通順
- 0 句子和句子之間無關聯性

源碼

- O Python版:
 - https://github.com/ckmarkoh/AcrosticPoem
- O Javascript版:
 - https://github.com/ckmarkoh/AcrosticPoemJS

後續改良方法

- Machine Translation
 - Phrase-based SMT Model
- O Neural Network
 - Neural Probabilistic Language Model
 - Multiplicative Recurrent Neural Network

Phrase-based SMT Model

- Ming Zhoua, Long Jianga, and Jing Heb. Generating Chinese Couplets and Quatrain Using a Statistical Approach
- O DEMO: http://couplet.msra.cn/app/couplet.aspx

$$S^* = \arg \max_{S} p(S | F)$$

$$= \arg \max_{S} \sum_{i=1}^{M} \lambda_i \log h_i(S, F)$$

Neural Probabilistic Language Model

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin. A Neural Probabilistic Language Model

Multiplicative Recurrent Neural Network

- O Ilya Sutskever, James Martens, Geoffrey Hinton. Generating Text with Recurrent Neural Networks
- O DEMO: http://www.cs.toronto.edu/~ilya/rnn.html

$$f_t = \operatorname{diag}(W_{fx}x_t) \cdot W_{fh}h_{t-1} \tag{7}$$

$$h_t = \tanh(W_{hf}f_t + W_{hx}x_t) \tag{8}$$

$$o_t = W_{oh}h_t + b_o (9)$$

The End