Moindres Carrés Slides 1ère année SN

Jean-Yves Tourneret(1)

(1) University of Toulouse, ENSEEIHT-IRIT-TéSA jyt@n7.fr http://perso.tesa.prd.fr/jyt/

Année 2022 - 2023

Bibliographie

Quelques références

- ▶ Joseph Salmon, Notes de cours "Modèles linéaires", http://josephsalmon.eu/MDI720.html
- Stephen Boyd and Lieven Vandenberghe, Introduction to Applied Linear Algebra. Vectors, Matrices, and Least Squares, Cambridge University Press, Cambridge, UK, 2018.
- ▶ John Fox, Robust Regression. Appendix to An R and S-PLUS Companion to Applied Regression, Sage Publications, Thousands Oaks, USA, 2002.

Plan du cours

Résumé

- ► Introduction
- Moindres carrés ordinaires
- ► Moindres carrés totaux
- Exemples

Notation "Boîte Noire"

Modèle de régression

$$f: \mathbb{R}^m \times \mathbb{R}^p \longrightarrow \mathbb{R}^q$$

 $(\boldsymbol{x}, \boldsymbol{\beta}) \longmapsto \boldsymbol{y} = f(\boldsymbol{x}, \boldsymbol{\beta})$

- ► modèle défini par la fonction *f*
- lacktriangle variables d'entrée $oldsymbol{x} \in \mathbb{R}^m$ (covariables, régresseurs, variables explicatives)
- lacktriangle variables de sortie $oldsymbol{y} \in \mathbb{R}^q$ (réponses, variables expliquées)
- ightharpoonup paramètres $oldsymbol{eta} \in \mathbb{R}^p$

Mesures

$$y_i = f(x_i, \beta), i \in \{1, ..., n\}$$

Problème : comment estimer β à partir de $(x_1,...,x_n)$ et $(y_1,...,y_n)$?

Modèles de régression

Modèle linéaire

$$y = f(x, \beta) = C(x)\beta + D(x)$$

avec $C: \mathbb{R}^m \longrightarrow \mathbb{R}^{q \times p}, D: \mathbb{R}^m \longrightarrow \mathbb{R}^q$ et $\beta \in \mathbb{R}^p$.

Régression linéaire - erreurs de modèle

Erreurs de modèle

Fonctions de coût

Frreurs verticales: $y_i = \beta_1 x_i + \beta_2 + \epsilon_i$. Critère à optimiser

$$J(\beta) = \sum_{i=1}^{n} (y_i - \beta_1 x_i - \beta_2)^2$$

Régression linéaire

Freurs horizontales : $y_i = \beta_1(x_i + \epsilon_i) + \beta_2$. Critère à optimiser

$$J(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left(\frac{y_i - \beta_2}{\beta_1} - x_i \right)^2$$

Régression non linéaire

Erreurs orthogonales. Critère à optimiser

$$J(\boldsymbol{\beta}) = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} \frac{(y_i - \beta_1 x_i - \beta_2)^2}{1 + \beta_1^2}$$

Régression non linéaire

Plan du cours

Résumé

- ► Introduction
- Moindres carrés ordinaires
- ► Moindres carrés totaux
- Exemples

Moindre carrés ordinaires (ordinary least squares)

Fonction de coût à optimiser

$$J(oldsymbol{eta}) = rac{1}{2} \sum_{i=1}^n \|oldsymbol{y}_i - f(oldsymbol{x}_i, oldsymbol{eta})\|^2, oldsymbol{eta} \in \mathbb{R}^p$$

Dans le cas linéaire unidimensionnel, on a

$$y_i = f(oldsymbol{x}_i, oldsymbol{eta}) = oldsymbol{C}(oldsymbol{x}_i)oldsymbol{eta} + oldsymbol{D}(oldsymbol{x}_i) \in \mathbb{R}.$$
 Donc

$$J(\boldsymbol{eta}) = rac{1}{2} \| \boldsymbol{A} \boldsymbol{eta} - \boldsymbol{b} \|^2, \ \boldsymbol{A} \in \mathbb{R}^{n imes p}, \boldsymbol{b} \in \mathbb{R}^n, \boldsymbol{eta} \in \mathbb{R}^p$$

avec

$$m{A} = \left[egin{array}{c} m{C}(m{x}_1) \ dots \ m{C}(m{x}_n) \end{array}
ight] \in \mathbb{R}^{n imes p}, m{b} = \left[egin{array}{c} y_1 - m{D}(m{x}_1) \ dots \ y_n - m{D}(m{x}_n) \end{array}
ight] \in \mathbb{R}^n,$$

Cas linéaire

Fonction de coût à optimiser

$$J(\boldsymbol{\beta}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{\beta} - \boldsymbol{b}\|^2, \ \boldsymbol{A} \in \mathbb{R}^{n \times p}, \boldsymbol{b} \in \mathbb{R}^n, \boldsymbol{\beta} \in \mathbb{R}^p$$

Utilisation de la pseudo-inverse

$$J(\boldsymbol{\beta}) = \frac{1}{2} (\boldsymbol{A}\boldsymbol{\beta} - \boldsymbol{b})^T (\boldsymbol{A}\boldsymbol{\beta} - \boldsymbol{b})$$
$$= \frac{1}{2} \boldsymbol{\beta}^T (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{A}^T \boldsymbol{b} + \frac{1}{2} \boldsymbol{b}^T \boldsymbol{b}.$$

Donc

$$\frac{\partial J(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{\beta} - \boldsymbol{A}^T \boldsymbol{b}$$

Si $n \ge p$ et rang(A) = p, alors

$$\hat{\beta}_{\text{OLS}} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b} = \boldsymbol{A}^+ \boldsymbol{b}$$

où $\boldsymbol{A}^+ = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T$ est la matrice pseudo inverse de \boldsymbol{A} .

Remarque : $P = A(A^TA)^{-1}A^T$ est une matrice de projection (elle vérifie $P^2 = P$ et $P^T = P$). Le terme $A\hat{\beta}_{OLS}$ peut s'interpréter comme la projection de b sur l'espace engendré par A (espace image de A) noté souvent R(A).

Interprétation géométrique

Equations normales

Quand on annule le gradient de $J(\beta)$, on obtient les équations normales

$$(\boldsymbol{A}^T\boldsymbol{A})\boldsymbol{\beta} = \boldsymbol{A}^T\boldsymbol{b}.$$

On peut retrouver ce résultat en remarquant qu'on cherche le point β tel que $A\beta$ est le plus proche de b. La solution de ce problème est la projection orthogonale de b sur l'espace image de A noté R(A) qui est telle que $A\beta-b$ est orthogonal à R(A):

$$\langle \boldsymbol{A}\boldsymbol{w}, \boldsymbol{A}\boldsymbol{\beta} - \boldsymbol{b} \rangle = 0, \forall \boldsymbol{w} \Leftrightarrow \langle \boldsymbol{w}, \boldsymbol{A}^T (\boldsymbol{A}\boldsymbol{\beta} - \boldsymbol{b}) \rangle = 0, \forall \boldsymbol{w}$$

ce qui conduit à

$$\mathbf{A}^{T}(\mathbf{A}\boldsymbol{\beta} - \mathbf{b}) = 0 \Leftrightarrow (\mathbf{A}^{T}\mathbf{A})\boldsymbol{\beta} = \mathbf{A}^{T}\mathbf{b}.$$

Utilisation de la décomposition en valeurs singulières (SVD)

SVD de la matrice \boldsymbol{A} de rang p

$$\hat{oldsymbol{eta}}_{\mathsf{SVD}} = \left(\sum_{i=1}^p rac{1}{\sigma_i} oldsymbol{u}_i oldsymbol{v}_i^T
ight) oldsymbol{b}$$

avec $m{A} = m{U} m{\Sigma} m{V}^T = \sum_{i=1}^p \sigma_i m{u}_i m{v}_i^T.$

SVD de la matrice $[\boldsymbol{A}, \boldsymbol{b}]$ de rang p+1

$$\hat{\beta}_{SVD} = \frac{-1}{v_{p+1,p+1}} \begin{pmatrix} v_{1,p+1} \\ \vdots \\ v_{p,p+1} \end{pmatrix}$$
 (1)

avec $[\boldsymbol{A} \ \boldsymbol{b}] = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T = \sum_{k=1}^{p+1} \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^T.$

Remarques

Calcul de la solution des moindres carrés

- ▶ Détermination de la pseudo-inverse : pour des problèmes de dimensionalité réduite. Le conditionnement de la matrice A^TA est proche de $(\operatorname{cond} A)^2$, ce qui peut poser problème pour de grandes valeurs de n et p.
- Utilisation de la SVD de A: solution très précise mais lente en grande dimension.
- ▶ Factorisation QR de A: si A est de rang p, on peut décomposer A sous la forme A = QR, où Q est une matrice orthogonale et R est une matrice triangulaire supérieure, d'où la solution
 - Factorisation : A = QR
 - ▶ Transformation du problème en : $R\beta = Q^Tb$. Résolution simple et rapide car R triangulaire supérieure.

Avantage: plus rapide que la SVD.

Preuve de (1)

Si le rang de la matrice $[\boldsymbol{A}\ \boldsymbol{b}]$ est p+1, alors sa SVD est $[\boldsymbol{A}\ \boldsymbol{b}] = \sum_{k=1}^{p+1} \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^T$. Donc, en posant $\boldsymbol{\beta}' = \begin{pmatrix} \beta \\ -1 \end{pmatrix}$ et $[\boldsymbol{A}'\ \boldsymbol{b}'] = \sum_{k=1}^p \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^T$, on a $J(\boldsymbol{\beta}) = \frac{1}{2} \|[\boldsymbol{A}\ \boldsymbol{b}]\boldsymbol{\beta}'\|^2,$ $= \frac{1}{2} \|[\boldsymbol{A}'\ \boldsymbol{b}']\boldsymbol{\beta}'\|^2 + \frac{1}{2} \|\sigma_{p+1}\boldsymbol{u}_{p+1}\boldsymbol{v}_{p+1}^T\boldsymbol{\beta}'\|^2,$ $\geq \frac{1}{2} \|\sigma_{p+1}\boldsymbol{u}_{p+1}\boldsymbol{v}_{p+1}^T\boldsymbol{\beta}'\|^2,$

avec égalité si

$$[\mathbf{A}'\ \mathbf{b}']\mathbf{\beta}'=\mathbf{0}.$$

Il suffit donc de chercher un vecteur $m{\beta}'$ de la forme $\begin{pmatrix} \beta \\ -1 \end{pmatrix}$ appartenant au noyau de la matrice $[m{A}' \ m{b}']$. Comme par construction les vecteurs singuliers sont orthogonaux, $m{v}_{p+1} = [v_{1,p+1},...,v_{p+1,p+1}]^T$ appartient à ce noyau et donc une solution est

$$\hat{\boldsymbol{\beta}}_{\text{SVD}} = \frac{-1}{v_{p+1,p+1}} \left(\begin{array}{c} v_{1,p+1} \\ \vdots \\ v_{p,p+1} \end{array} \right)$$

Comme la solution du problème des moindres carrés ordinaires est unique pour $n \ge p$ et rang(A) = p, cette solution est identique à celle obtenue avec la pseudo-inverse de A.

Rappels sur la décomposition en valeurs singulières (SVD)

Sot $m{X} \in \mathbb{R}^{n \times p}$ avec $n \geq p$, alors la décomposition en valeurs singulières ou SVD de $m{X}$ est

$$X = U\Sigma V^T$$

avec

- $m{U} \in \mathbb{R}^{n imes n}$ formée de n vecteurs propres orthonormés de $m{X}^T m{X}$
- $oldsymbol{V} \in \mathbb{R}^{p imes p}$ formée de p vecteurs propres orthonormés de $oldsymbol{X} oldsymbol{X}^T$
- $\Sigma \in \mathbb{R}^{n \times p}$ est une matrice rectangulaire dont les éléments non nuls sur la diagonale sont les valeurs singulières $s_1,...,s_p$ (les racines carrées des valeurs propres positives de X^TX ou de XX^T).

Propriétés de la SVD

- ▶ Valeurs singulières de $\boldsymbol{X}\boldsymbol{X}^T$ rang(X)=p donc les q-p plus petites valeurs propres de $\boldsymbol{X}\boldsymbol{X}^T$ vérifient $s_{p+1}=...=s_n=0.$
- ▶ SVD de $m{X}^T$ Si la SVD de $m{X}$ est $m{X} = m{U} m{\Sigma} m{V}^T$, alors $m{X}^T = m{V} m{\Sigma}^T m{U}$ est la SVD de $m{X}^T$.
- Meilleure approximation de rang k de X Soit $X \in \mathbb{R}^{n \times p}$ de SVD $X = \sum_{i=1}^p \sigma_i u_i v_i^T$ avec $p = \operatorname{rang}(X)$. Si k < p, alors $X_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ est la meilleure approximation de rang k de X, i.e.,

$$\|\boldsymbol{X} - \boldsymbol{X}_k\|_F = \arg\min_{\mathsf{rang}(D) = k} \|\boldsymbol{X} - \boldsymbol{X}_k\|_F$$

Expression de la pseudo-inverse de \boldsymbol{X} à l'aide de la SVD Soit $\boldsymbol{X} \in \mathbb{R}^{n \times p}$ de SVD $\boldsymbol{X} = \sum_{i=1}^p \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T$ avec $p = \operatorname{rang}(\boldsymbol{X})$ et $n \geq p$, alors

$$(oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X} = \sum_{i=1}^p rac{1}{\sigma_i}oldsymbol{u}_ioldsymbol{v}_i^T$$

Plan du cours

Résumé

- ► Introduction
- ► Moindres carrés ordinaires
- ► Moindres carrés totaux
- Exemples

Moindre carrés totaux ou "Orthogonal Distance Regression (ODR)"

Fonction de coût à optimiser

$$J(\boldsymbol{\beta}) = \sum_{i=1}^{n} \|\boldsymbol{y}_i - f(\boldsymbol{x}_i - \boldsymbol{\delta}_i, \boldsymbol{\beta})\|^2, \ \boldsymbol{\delta}_i \in \mathbb{R}^m, \boldsymbol{\beta} \in \mathbb{R}^p, \lambda > 0$$

Cas particulier d'une fonction linéaire

$$y_i = (\boldsymbol{x}_i - \boldsymbol{\delta}_i)^T \boldsymbol{\beta} + \boldsymbol{q}_0^T \boldsymbol{\beta} + q_1 + \epsilon_i$$

avec

$$y_i \in \mathbb{R}(q=1), \boldsymbol{x}_i \in \mathbb{R}^m, \boldsymbol{\beta} \in \mathbb{R}^m (p=m), \boldsymbol{q}_0 \in \mathbb{R}^m, q_1 \in \mathbb{R}, \epsilon_i \in \mathbb{R}$$

Moindre carrés totaux

Écriture matricielle

$$(A + E)\beta = b + \epsilon$$

avec

$$m{A} = \left[egin{array}{c} m{x}_1^T + m{q}_0^T \ dots \ m{x}_n^T + m{q}_0^T \end{array}
ight], m{E} = \left[egin{array}{c} -m{\delta}_1^T \ dots \ -m{\delta}_n^T \end{array}
ight], m{b} = \left[egin{array}{c} y_1 - q_1 \ dots \ y_n - q_1 \end{array}
ight], m{\epsilon} = \left[egin{array}{c} -\epsilon_1 \ dots \ -\epsilon_n \end{array}
ight]$$

Problème à résoudre

$$\min \|[\boldsymbol{E} \; \boldsymbol{\epsilon}]\|^2$$

avec

$$(\boldsymbol{A} + \boldsymbol{E})\boldsymbol{\beta} = \boldsymbol{b} + \boldsymbol{\epsilon}, \quad \boldsymbol{A}, \boldsymbol{E} \in \mathbb{R}^{n \times p}, \boldsymbol{\epsilon} \in \mathbb{R}^{n}, \boldsymbol{b} \in \mathbb{R}^{p}$$

La résolution de ce problème utilise la SVD de $[A \ b]$.

Plan du cours

Résumé

- ► Introduction
- Moindres carrés ordinaires
- ► Moindres carrés totaux
- Exemples

Problème

On cherche une transformation du plan notée T permettant de transformer des points $(u_i,v_i)\in\mathbb{R}^2$ en d'autres points $(u_i',v_i')\in\mathbb{R}^2$. Ce problème peut se ramener à déterminer les vecteurs $\boldsymbol{a}=(a_1,a_2,a_3)^T$ et $\boldsymbol{b}=(b_1,b_2,b_3)^T$ tels que

$$\begin{pmatrix} u_i' \\ v_i' \end{pmatrix} \approx \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \begin{pmatrix} u_i \\ v_i \end{pmatrix} + \begin{pmatrix} a_3 \\ b_3 \end{pmatrix}, \quad i = 1, ..., n$$

Illustration

Questions

- 1. Montrer que ce problème peut se formuler à l'aide d'un problème de régression linéaire $\arg\min_{\pmb{\beta}}\|\pmb{A}\pmb{\beta}-\pmb{b}\|^2$ avec $\pmb{\beta}=(a_1,a_2,a_3,b_1,b_2,b_3)^T$ et des matrices \pmb{A} et \pmb{b} que l'on précisera. On construira la matrice \pmb{A} de manière à obtenir une matrice diagonale par blocs.
- 2. Quelle est la solution de ce problème ?

Réponses

1. On a

$$oldsymbol{y}_i = \left(egin{array}{c} u_i' \ v_i' \end{array}
ight) = f(oldsymbol{x}_i,eta) = oldsymbol{C}(oldsymbol{x}_i)eta + oldsymbol{d}(oldsymbol{x}_i)$$

avec

$$\boldsymbol{x}_i = \left(\begin{array}{c} u_i \\ v_i \end{array}\right), \boldsymbol{C}(\boldsymbol{x}_i) = \left[\begin{matrix} u_i & v_i & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & u_i & v_i & 1 \end{matrix}\right], \boldsymbol{d}(\boldsymbol{x}_i) = \left[\begin{matrix} 0 \\ 0 \end{matrix}\right]$$

donc

$$\boldsymbol{A} = \begin{bmatrix} u_1 & v_1 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ u_n & v_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & u_1 & v_1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & u_n & v_n & 1 \end{bmatrix} \text{ et } \boldsymbol{b} = \begin{bmatrix} u_1' \\ \vdots \\ u_n' \\ v_1' \\ \vdots \\ v_n' \end{bmatrix}$$

Réponses

- 1. voir slide précédent
- 2. En posant

$$m{A} = egin{bmatrix} m{A}_1 & m{0} \ m{0} & m{A}_1 \end{bmatrix}, \quad m{b} = egin{bmatrix} m{b}_1 \ m{b}_2 \end{bmatrix}, \quad m{b}_1 = egin{bmatrix} u'_1 \ dots \ u'_n \end{bmatrix}, \qquad m{b}_2 = egin{bmatrix} v'_1 \ dots \ v'_n \end{bmatrix}$$

on obtient

$$\boldsymbol{\beta} = \begin{bmatrix} (\boldsymbol{A}_1^T \boldsymbol{A}_1)^{-1} \boldsymbol{A}_1 \boldsymbol{b}_1 \\ (\boldsymbol{A}_1^T \boldsymbol{A}_1)^{-1} \boldsymbol{A}_1 \boldsymbol{b}_2 \end{bmatrix}$$

Exemple 2 : transformation géométrique 2D (recalage d'images)

Illustration

Modélisation

$$oldsymbol{u}' = \left(egin{array}{c} x' \ y' \end{array}
ight) = f\left(oldsymbol{u}, oldsymbol{\gamma}
ight) \in \mathbb{R}^2 \ ext{avec} \ oldsymbol{u} = \left(egin{array}{c} x \ y \end{array}
ight), oldsymbol{\gamma} = \left(egin{array}{c} lpha \ eta \end{array}
ight)$$

- Questions
 - 1. Écrire le problème d'optimisation permettant d'estimer le vecteur γ en considérant un ensemble de n points transformés par la même transvection
 - 2. Quelle est la solution de ce problème ?

- Réponses
 - 1. On a

$$u' = f(u, \gamma) = \begin{bmatrix} y & 0 \\ 0 & x \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \begin{bmatrix} x \\ y \end{bmatrix}$$

donc en considérant n points, on a

$$\begin{bmatrix} x_1' \\ \vdots \\ x_n' \\ y_1' \\ \vdots \\ y_n' \end{bmatrix} = \begin{bmatrix} y_1 & 0 \\ \vdots & \vdots \\ y_n & 0 \\ 0 & x_1 \\ \vdots & \vdots \\ 0 & x_n \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

soit

$$egin{aligned} oldsymbol{b} &= egin{bmatrix} x_1' - x_1 \ dots \ x_n' - x_n \ y_1' - y_1 \ dots \ y_1' - y_2 \end{aligned} = oldsymbol{A} oldsymbol{\gamma} \end{aligned}$$

Réponses

1. Le problème d'optimisation consiste donc à rechercher le vecteur γ qui minimise $\|A\gamma-b\|^2$:

$$\min_{\gamma} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{\gamma} - \boldsymbol{b}\|^2$$

2. La solution du problème précédent est

$$\widehat{\boldsymbol{\gamma}} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b} = \boldsymbol{A}^+ \boldsymbol{b}.$$

En utilisant la structure particulière de A, on obtient

$$\boldsymbol{A}^T\boldsymbol{A} = \begin{bmatrix} \sum_{i=1}^n y_i^2 & 0 \\ 0 & \sum_{i=1}^n x_i^2 \end{bmatrix}$$

En supposant $\sum_{i=1}^n x_i^2 \neq 0$ et $\sum_{i=1}^n y_i^2 \neq 0$, on en déduit

$$(\pmb{A}^T \pmb{A})^{-1} = \begin{bmatrix} \frac{1}{\sum_{i=1}^n y_i^2} & 0\\ 0 & \frac{1}{\sum_{i=1}^n x_i^2} \end{bmatrix}$$

- Réponses
 - 1
 - 2. De plus

$$\boldsymbol{A}^{T}\boldsymbol{b} = \begin{bmatrix} y_{1} & \dots & y_{n} & 0 & \dots & 0 \\ 0 & \dots & 0 & x_{1} & \dots & x_{n} \end{bmatrix} \begin{bmatrix} x_{1}^{*} - x_{1} \\ \vdots \\ x_{n}^{'} - x_{n} \\ y_{1}^{'} - y_{1} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} (x_{i}^{'} - x_{i})y_{i} \\ \sum_{i=1}^{n} (y_{i}^{'} - y_{i})x_{i} \end{bmatrix}$$

d'où

$$\widehat{\gamma} = \begin{bmatrix} \widehat{\alpha} \\ \widehat{\beta} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sum_{i=1}^{n} y_i^2} & 0 \\ 0 & \frac{1}{\sum_{i=1}^{n} x_i^2} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} (x_i' - x_i) y_i \\ \sum_{i=1}^{n} (y_i' - y_i) x_i \end{bmatrix} = \begin{bmatrix} \frac{\sum_{i=1}^{n} (x_i' - x_i) y_i}{\sum_{i=1}^{n} y_i^2} \\ \frac{\sum_{i=1}^{n} (y_i' - y_i) x_i}{\sum_{i=1}^{n} x_i^2} \end{bmatrix}$$

Que faut-il savoir?

- Modéliser un problème d'estimation de paramètres à l'aide d'un problème des moindres carrés ordinaires
- Déterminer la solution d'un problème des moindres carrés ordinaires à l'aide du calcul d'une pseudo inverse ou d'une SVD
- Connaître l'existence de la méthode des moindres carrés totaux appelée
 Total Least Squares ou Orthogonal Distance Regression (ODR).

Pour aller plus loin

Régression robuste

Pour combattre la présence d'éléments aberrants ("outliers"), on peut utiliser des méthodes de régression robuste. Par exemple, dans le cas où la variable de sortie $y_i \in \mathbb{R}$ est univariée (ou unidimensionnelle), on peut citer les méthodes suivantes

 $ightharpoonup L_1$ -norm regression or Least Absolute Deviation Regression

$$\arg\min_{\boldsymbol{\beta}}|y_i-f(\boldsymbol{x}_i,\boldsymbol{\beta})|$$

correspond à une loi de Laplace pour le bruit ϵ_i tel que $y_i = f(x_i, \beta) + \epsilon_i$.

M Estimators

$$\arg\min_{\boldsymbol{\beta}} \rho \left(y_i - f(\boldsymbol{x}_i, \boldsymbol{\beta}) \right)$$

où ρ est une fonction qui pénalise les fortes valeurs.

Exemples de fonctions ρ

Exemple de résultats (M estimateur avec fonction "soft ℓ_1 ")

