20/03/2015

Benchmark Categorization with Comparative Judgement

San Verhavert

Digital Platform for the Assessment of Competences

Competencies and rubrics

- Marking and rubrics not necessarily valid and reliable judgements (Johnson & Svingby, 2007; Heldsinger & Humphry, 2010)
- Judgments are relative, not absolute (Lamming, 1990)
- =>lower accuracy in rubrics
- To reductionist (Pollitt, 2004)

Solution?

- Bramley, Bel and Pollitt (1998)
- The Law of Comparative Judgement (Thurstone, 1927)

The Law of Comparative Judgement (Thurstone, 1927)

The Law of Comparative Judgement (Thurstone, 1927)

$$X_{AB} = \frac{S_A - S_B}{\sigma_{AB}}$$

$$X_{AB} = S_A - S_B$$

P('A beats B')

$$X_{AB} = S_A - S_B$$

(Thurstone, 1927)

$$p(\text{`A beats B'})=p(A > B) = \frac{\exp(S_A - S_B)}{1 + \exp(S_A - S_B)}$$

Bradley-Terry-Luce Model (BTL; Bradley & Terry, 1952; Luce, 1959)

Rasch model (Rasch, 1960)

$$p(\alpha_{vj} = 1 | \alpha_j, \tau_v) = \frac{\exp(\alpha_j - \tau_v)}{1 + \exp(\alpha_j - \tau_v)}$$

$$p(A > B) = \frac{\exp(S_A - S_B)}{1 + \exp(S_A - S_B)}$$

$$\Leftrightarrow p(x_{AB} = 1 | \alpha_A, \alpha_B) = \frac{\exp(\alpha_A - \alpha_B)}{1 + \exp(\alpha_A - \alpha_B)}$$
 (BTL)

 $\forall x_{AB} \epsilon' comparison outcome' : A > B \iff x_{AB} = 1$

Efficiency?

- Time cost and monotony of the task (e.g. Bramley, 2007)
- 1224 judgement, 135 representations, 55 judges
 → Alpha= .68
- Solution: Adaptive selection (Pollitt, 2004, 2012)
 - Derived from CAT
 - Preliminary estimates to select pairs
 - >50% comparisons less
 - BUT

Adaptive selection and reliability

- Inflation of alpha
- Independence of judgments violated
- Circularity issue
- Robustness of BTL?

The solution in D-PAC

- Problem: categorization
 - → Assessment 1:

→CJ —xranking (scale) → benchmarks ← Time consuming

- → Assessment 2: again CJ?
- Solution:

→ Assessment 2:

- How do I accurately determine in which category a script belongs?
 - Example: Language proficiency

- How do I accurately determine in which category a script belongs?
 - Example: Language proficiency
 - 2. Phase 1

- How do I accurately determine in which category a script belongs?
 - Example: Language proficiency
 - 3. Phase
 - Previous judgements $\rightarrow \hat{\alpha}_i$
 - Nearest cutting point:

$$\min_{c}(|\alpha_{c}-\hat{\alpha}_{i}|)$$
 with c={1,2} and i={1,...,n}

Maximum Fischer Information (MFI):

$$\max_{j} (I_j(\alpha_c) = p_j(\alpha_c) (1 - p_j(\alpha_c))) \text{ with } j=\{1, ..., m\}$$

and c= chosen cutting point

$$p(\alpha_i) = \frac{\exp(\alpha_i - \alpha_j)}{1 + \exp(\alpha_i - \alpha_j)}$$
(BTL)

$$p(\alpha_i) = \frac{\exp(\alpha_i - \tau_j)}{1 + \exp(\alpha_i - \tau_j)} \text{ (Rasch)}$$

- How do I accurately determine in which category a script belongs?
 - Example: Language proficiency
 - 3. Phase
 - ...
 - Stopping criterion:
 - # judgements per representation=10
 - sequential probability ratio test (SPRT) (Wald, 1947)

Simulation study

- Benchmark categorization vs semi-random CJ
 - SPRT
 - Item selection (Eggen and Straetmans, 2000)
 - 1. MFI at current $\hat{\alpha}_i$
 - 2. MFI at midpoint critical inequality interval
 - 3. Kullback-Leibler informations at nearest cutting point
 - Ability estimates (55 judges, 135 papers, 1224 judgements)
 - 10 replications per condition
 - Measures:
 - # comparisons
 - $-\chi^2$
 - cohen's κ

Thank You!

Questions?

