

Introduction to Machine Learning Gradient Descent and Normal Equations

Nikolay Manchev

July 30, 2016

London Machine Learning Study Group

Housekeeping

Next events

http://www.meetup.com/London-Machine-Learning-Study-Group

Follow me

https://twitter.com/nikolaymanchev

Slides and code

 $A vailable\ at\ https://github.com/nmanchev/MachineLearningStudyGroup$

Outline

Linear Regression and Gradient Descent

Normal Equations

Linear Regression and Gradient De-

scent

Univariate Linear Regression

Fitting a linear regression model

$$X = \{x_1, x_2, \dots, x_N\}^T$$

 $y = \{y_1, y_2, \dots, y_N\}^T$

Cost function minimisation

Minimising the cost function leads us to the coefficients of the best fitting line.

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

Gradient Descent

Update rule

The derivative $\frac{d}{dw_0}J(w_0)$ provides the slope of the tangent line to the graph of the function at w_0

repeat until convergence { $w_0 := w_0 - \alpha \frac{d}{dw_0} J(w_0)$ }

- A positive $\alpha \frac{d}{dw_0} J(w_0)$ moves w_0 to the left
- A negative $\alpha \frac{d}{dw_0} J(w_0)$ moves w_0 to the right

Matrix Notation

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_N \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1D} \\ 1 & x_{21} & x_{22} & \dots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & x_{N2} & \dots & x_{ND} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_D \end{bmatrix}$$

Hypothesis: $\hat{\pmb{y}} = \pmb{X} \pmb{w}$

Cost function:
$$J(\boldsymbol{w}) = \frac{1}{2N} \sum_{i=1}^{N} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})^T (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})$$

Update rule:

repeat until convergence {

$$w_j := w_j - \alpha \frac{X^T (X w - y)}{N}$$

Choice of alpha

Not an easy choice

$$w_0 := w_0 - \alpha \frac{d}{dw_0} J(w_0)$$

- Small alpha slow convergence
- Large alpha risk of overshooting

- Lipschitz continuity $(\alpha = \frac{1}{L})$
- ullet L not readily available optimise manually
- Backtracking line search

Backtracking line search

Determine the maximum move along a given direction

Start with a large α and iteratively shrink it until an adequate decrease of the objective function.

Given a starting position w and a search direction p, we want to find a value of α that reduces $J(w + \alpha p)$ relative to J(w).

Backtracking Line Search

- 1. Select α_0 and control parameters $c \in (0,1)$ and $\tau \in (0,1)$
- 2. Set j=0 and $t=-c\,\boldsymbol{p}$
- 3. **repeat** {

$$j := j + 1$$
$$\alpha_j = \tau \alpha_{j-1}$$

} until {
$$J(\boldsymbol{w}) - J(\boldsymbol{w} + \alpha_j \boldsymbol{p}) \ge \alpha_j t$$
 }

Generic Line Search

- 1. pick an initial $oldsymbol{w}$
- 2. repeat until convergence {
 - 2.1 calculate a search direction p (descent direction)
 - 2.2 find an optimal α
 - $2.3 \ \boldsymbol{w} := \boldsymbol{w} + \alpha \boldsymbol{p}$

Normal Equations

Closed Form Solution

$$\frac{\partial}{\partial w}J(\boldsymbol{w}) = \frac{\boldsymbol{X}^T(\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y})}{N}$$

$$0 = \frac{X^{T}(Xw - y)}{N}$$
$$0 = X^{T}(Xw - y)$$
$$0 = X^{T}Xw - X^{T}y$$
$$X^{T}Xw = X^{T}y$$

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Gradient Descent vs. Normal Equations

Normal Equations

- No need to choose α
- No need to iterate to reach convergence
- Computing $(X^TX)^{-1}$ is expensive $O(n^3)$

Gradient Descent

- ullet Works well for large n
- Can produce a "good enough" solution with a run-time that's order of magnitude smaller [BB08]
- General optimisation algorithm

Data Set Example

UCI Machine Learning Repository -

archive.ics.uci.edu/ml

- Great resource for Machine Learning data sets
- Over 330 freely available sets
- Auto MPG Data Set
 - Fuel consumption in MPG
 - Attributes: mpg, cylinders, displacement, horsepower, weight, acceleration etc.

MPG vs Horsepower

Simple use-case

- Auto MPG Data Set
- Predicting MPG based on Horsepower

Z-score Normalization

- Rescale the features to give them properties of a standard normal distribution ($\mu = 0$, $\sigma = 1$).
- Z-score normalization is calculated as

$$z = \frac{x - \mu}{\sigma}$$

where

 μ is the mean of the population σ is the standard deviation

- General requirement for many machine learning algorithms
- Helps Gradient Descent converge faster

Z-score Normalization

Why normalizing the inputs works

- Gradient descent is curvature ignorant
- Brings all features to the same scale
- Gives the error surface a spherical shape. Look at [Hin14]

References I

- Olivier Bousquet and Léon Bottou, *The tradeoffs of large scale learning*, Advances in Neural Information Processing Systems 20 (J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, eds.), Curran Associates, Inc., 2008, pp. 161–168.
- Geoffrey Hinton, Neural Networks for Machine Learning, Lecture 6b, Video Lecture, 2014.