CONTACT PATTERNS BY AGE AND GEOGRAPHY WITH RECURRENT MOBILITY: INFLUENCE OF RELAXING ASSUMPTIONS

Jesse Knight^{1,2}, Huiting Ma¹, Amir Ghasemi³, Mackenzie Hamilton¹, Kevin Brown^{4,5}, and Sharmistha Mishra^{1,2,5,6}

¹MAP Centre for Urban Health Solutions, Unity Health Toronto ²Institute of Medical Science, University of Toronto ³Communications Research Centre Canada, Ottawa ⁴Public Health Ontario, Canada ⁵Dalla Lana School of Public Health, University of Toronto ⁶Division of Infectious Diseases, Department of Medicine, University of Toronto

BACKGROUND

- Contact patterns mediate dynamics of infectious diseases e.g. in transmission models stratified by **age** & geographic **patches** [1]
- Prem et al. [2] project age contact patterns onto 177 countries: "home", "work", "school", & "other" contacts from **POLYMOD**
- Arenas et al. [3] model patch/age contacts due to recurrent mobility: repeated daily travel between patches
- We [4] built-upon [3] to integrate age contact patterns from [2], and relax 3 assumptions made in [3]
- We explored the effect of each assumption on modelled contact patterns in the context of **reduced mobility** (April 2020)

RESEARCH QUESTION

How does each assumption below influence patch/age contact patterns?

Overall assumption in [3]: fixed age pattern for all patches & contact types 3 component **assumptions**:

- A1. Contact patterns are equal (averaged) across contact types
- A2. Contact patterns are not adjusted to per-patch age distributions
- A3. Contacts at "home" include visitors to the patch

CONTEXT + DATA

Figure 1. Map of 513 Ontario areas grouped into 10 patches (deciles) by covid-19 incidence

Notation: *g* : self patch *a*: self age group *y*: contact type g': other patch a': other age group

Main Output: $C_{qaq'a'y}$: # daily contacts of type-y per-person formed from patch/age ga to patch/age g'a'

Context: 513 Ontario areas grouped into 10 patches by covid-19 incidence (Figure 1) & population stratified into 5-year age groups

Data:

- Population distribution by age and patch $P_{qa} \leftarrow \text{Census}[5]$ (Figure 3)
- Mobility matrix $B_{qq'} \leftarrow \text{Cell phone data [6]}$ % residents who travelled from q to q' daily, including within-patch & % reduced mobility during t = April 2020 vs Jan-Feb 2020 (REF)
- Age contact patterns $C_{aa'y} \leftarrow \text{Prem et al.} [2]$
- # daily type-y contacts per-person from age group a to a'

METHODS

Estimating $C_{gag'a'y}$: # daily type-y contacts per-person from patch/age ga to patch/age g'a':

- Define two types of "mixing pools" (Figure 2):
- . Home pools: can only contact other residents of this patch
- 2. Travel pools: can contact anybody currently present
- For each contact type y & patch g*:
- Population from g' present in travel pool: $P_{g'a}^{g^*} = B_{g'g^*}P_{g'a}$
- Adjust age contact patterns $C_{aa'y}$ to $P_{a'a}^{g^*}$ per [7]
- Assume random mixing by patch gg' within pool
- Assume reduced mobility \rightarrow reduced non-home contacts
- Sum contacts from all patch g^* pools o Total contacts $C_{qaq'a'y}$

Figure 2. Illustration of travel vs home mixing pools for 3 toy patches

Experiment: We estimated & compared (subtracted) $C_{qaq'a'y}$ under different sets of assumptions:

• (A1+A2+A3) subtract (A2+A3) \rightarrow assumption A1 effect

(A2+A3) subtract (A3) → assumption A2 effect

(A3) subtract (·) → assumption A3 effect

We aggregated $C_{qaq'a'y}$ across patches/ages to show overall patterns by age aa' or patch gg'

RESULTS

Figure 5. Differences in # daily contacts per person (overall) estimated with vs (minus) without each assumption. Therefore: positive: overestimation with assumption negative: underestimation with assumption. Differences in (a) age patterns and (b) patch patterns. Individual effects of assumptions A1, A2, A3 in (i), (ii), and (iii); net effect of all three in (iv). Colour scale is square-root-

transformed to improve perception.

SUMMARY OF ASSUMPTION EFFECTS

- A1. If contact patterns averaged across types (Figure 5.i)
- → overestimate like-with-like age patterns from school/work
- → underestimate inter-generational contacts from home
- A2. If contact patterns not locally age-adjusted (Figure 5.ii)
- → overestimate contacts with smaller age groups
- → underestimate contacts with larger age groups
- A3. If contacts at home can include patch visitors (Figure 5.iii)
- → overestimate contacts formed with other patches
- → underestimate contacts formed within same patch

INTERPRETATION

- Fixing age patterns for all patches & contact types may underestimate intergenerational home contacts during reduced mobility
- Not adjusting contact patterns to per-patch age distributions may over/underestimate overall contacts in different patches
- Predominance of home contacts & within-patch mobility may result in relatively few contacts between patches
- Assumptions about contact patterns may influence model-based evaluations of patch/age-targeted interventions for infectious diseases
- Our approach to estimate contact patterns integrates empiric contact patterns and mobility data, and thus reduces the required assumptions

THANKS

Kristy Yiu, Gary Moloney, Linwei Wang, Yue Chen, Ruth Mwatelah, and Collin McGuire for helpful discussions and technical support; Prem et al. [2] for open-sourcing analysis code and numerical results.

REFERENCES

- [1] Sharmistha Mishra et al. "A Vaccination Strategy for Ontario COVID-19 Hotspots and Essential Workers". In: Science Briefs of the Ontario COVID-19 Science Advisory Table 2.26 (Apr. 2021). DOI: 10.47326/ocsat.2021.02.26.1.0.
- [2] Kiesha Prem et al. "Projecting contact matrices in 177 geographical regions: An update and comparison with empirical data for the COVID-19 era". In: PLoS Computational Biology 17.7 (July 2021). DOI: 10.1371/journal.pcbi.1009098.
- [3] Alex Arenas et al. "Modeling the Spatiotemporal Epidemic Spreading of COVID-19 and the Impact of Mobility and Social Distancing Interventions". In: *Physical Review X* 10.4 (Dec. 2020), p. 041055. DOI: 10.1103/PhysRevX.10.041055.
- [4] Jesse Knight et al. "Adaptive data-driven age and patch mixing in contact networks with recurrent mobility". In: medRxiv (Oct. 2021). DOI: 10.1101/2021.09.29.21264319.
- [5] Statistics Canada. Table 98-400-X2016008. 2016.
- [6] Amir Ghasemi et al. "Impact of a nighttime curfew on overnight mobility". In: medRxiv (Apr. 2021). DOI: 10.1101/2021.
- [7] Sergio Arregui et al. "Projecting social contact matrices to different demographic structures". In: PLoS Computational Biology 14.12 (Dec. 2018), e1006638. DOI: 10.1371/journal.pcbi.1006638.

All project code & most data are available at: github.com/mishra-lab/age-patch-mobility-mixing

