

Instability of a Supersonic Boundary-Layer with Localized Roughness

Olaf Marxen, Gianluca laccarino, Eric S.G. Shaqfeh

Center for Turbulence Research, Stanford University

Supported by NASA (Contract NNX07AC29A) & CTR

Thermal protection system (TPS) for re-entry vehicle

Introduction

- Quantification of the **heat loads on TPS surfaces** for reentry vehicles is required to ensure the safety of the crew
- TPS surface can exhibit **localized roughness**, which may increase heating due to early transition to turbulence

Figure: heat shield of the Space Shuttle in orbit during flight STS-114 with gap filler sticking out.

General configuration

Physical model and numerical method

Freestream and forcing parameters

Physical model and numerical method

- Similar setup as in Marxen & laccarino (2008) [1]
- Calorically perfect gas, Sutherland's law with T_S

Ma∞	Pr∞	γ_{∞}	R e _∞	T _S /T _∞
4.8	0.71	1.4	10 ⁵	1.993

3-D roughness ("square") on an adiabatic wall

height h _R	length I _R	X _{c.R}	h_R/δ_{99}	Re _x
0.1	0.4	15	0.55	1225

Steady-state base flow

Mean flow I: streamlines & shocks

Flow over surface with localized 3-D roughness at Ma=4.8

- Separation in front < separation in the back
- No shock present in x-y planes away from the roughness element(s)

Figure: Contours of $\partial \rho/\partial x = 0.4$ (black) together with contours of u=0 (blue) and selected streamlines (grey lines with arrows) in the center plane z=0.

Mean flow II: streamwise vortices

Flow over surface with localized 3-D roughness at Ma=4.8

Streamwise vortices (grey) → streamwise streak(s) → mean-flow gradients (color)

Figure: isosurface of λ_2 (light grey) and recirculation regions (dark grey)

Mean flow III: verification

Flow over surface with localized 3-D roughness at Ma=4.8

Overall good agreement between **body-fitted** (FLUENT) and **immersed boundary** results

Figure: Contours of **U** from body fitted (black contours) and immersed boundary method (red contours), planes cutting through the roughness.

Mean flow IV: verification (cont'd)

Flow over surface with localized 3-D roughness at Ma=4.8

Some difference in the spanwise position of the streamwise vortices / streaks behind the roughness

Figure: Contours of U & T from body fitted (black contours) and immersed boundary method (red contours) behind the roughness, x = 18.

Mean flow V: transient growth?

Flow over surface with localized 3-D roughness at Ma=4.8

- Streamwise vortices cause a streamwise (u') streak
- Transient growth in individual modes, but no significant growth visible in the sum (a non-linear effect?)

Figure: streamwise velocity u'_{max} for F=0 (steady component) for several spanwise wave numbers k and their sum. Location of the roughness in grey.

DNS of the perturbed flow and comparison with stability analysis by *Groskopf & Kloker, 2008* [1]

Disturbance evolution I: DNS with 2-D forcing

Localized 3-d roughness: disturbance flow

- TP 2-D forcing with frequency $F=2\pi f^*(\mu^*/(\rho^*u^{*2}))=0.41\times10^{-4}$ upstream of the roughness ("first mode")
- Fourier analysis in time, disturb. maximum over y&z

Figure: streamwise velocity u'_{max} for $F=0.41x10^{-4}$

Disturbance evolution II: DNS vs. bi-global theory

Localized 3-d roughness: disturbance flow

Theory (*Groskopf et al., 2008* [1])

Figure: u'_{max} (max. over z&y) for F=0.41x10⁻⁴ (red: DNS, black: theory) [1] Groskopf, G., Kloker, M., Marxen, O. (2008), Proc. of the Summer Program, CTR, Stanford

Disturbance evolution III: amplitude functions

Flow over surface with localized 3-D roughness at Ma=4.8

Presence of a y-mode in DNS due to 2-D forcing

Conclusions

Conclusions and outlook

- A localized 3-D roughness causes **boundary-layer separation** and (weak) **shocks**
- Most importantly, **streamwise vortices** occur which induce **streamwise (low U, high T) streaks**
- Immersed boundary method (volume force) suitable to represent roughness element in DNS
- **Favorable comparison** between bi-global stability theory and DNS for a "y-mode"

T Outlook:

 Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS)