Tarea 8

1. Muestra que, para el flujo bidimensional de un fluido Newtoniano incompresible con ${\bf f}$ conservativa, la vorticidad $\omega = \frac{1}{2} \nabla \times {\bf v}$ satisface la ecuación de difusión:

$$\rho \frac{D\omega}{Dt} = \mu \nabla^2 \omega$$

2. El campo de velocidades \mathbf{v} se dice irrotacional cuando la vorticidad es cero, es decir, $\nabla \times \mathbf{v} = 0$. Entonces existe un potencial de velocidad $\phi(\mathbf{x},t)$ tal que $\mathbf{v} = \nabla \phi$. Muestra que las ecuaciones de Navier–Stokes se pueden expresar de la forma:

$$\rho \nabla \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} (\nabla \phi)^2 \right) = \rho \mathbf{f} - \nabla p + (\lambda + 2\mu) \nabla (\nabla^2 \phi)$$

3. Demuestra que, en el caso de fuerza de cuerpo irrotacional $\mathbf{f} = -\nabla V$ y cuando la presión p es función únicamente de la densidad ρ , se obtiene:

$$\frac{\partial \phi}{\partial t} + \frac{1}{2} (\nabla \phi)^2 + V + P(\rho) - \frac{1}{\rho} (\lambda + 2\mu) \nabla^2 \phi = g(t)$$

donde $P(\rho) = \int_{p_0}^p \frac{dp}{\rho}$ y p_0 es una constante, mientras que g(t) es una función únicamente del tiempo.

- 4. Considera un fluido ideal, donde $\sigma = -p\mathbf{I}$, y fuerza de cuerpo conservativa $\mathbf{f} = -\nabla \phi$.
 - a) Para flujo estacionario, demuestra que:

$$\nabla \cdot \left(\mathbf{v} \left(\frac{v^2}{2} + \phi \right) \right) + \frac{1}{\rho} \mathbf{v} \cdot \nabla p = 0$$

b) Para flujo estacionario e irrotacional (i.e., $\nabla \times \mathbf{v} = 0$), demuestra que:

$$\nabla \left(\frac{v^2}{2} + \phi \right) + \frac{1}{\rho} \nabla p = 0$$

c) Determina la velocidad y el gasto volumétrico del fluido en la salida de la boquilla en la pared del depósito mostrado en la figura ($d \ll D$, con D el diámetro del contenedor.)

1