Universidad de la República, Facultad de Ciencias Económicas y Administración.

ECONOMETRÍA I - CURSO 2015

PRACTICO 9

EJERCICIO 1

Dados los datos siguientes para t = 1; 2; 3 y 4 respectivemente:

$$Y_t = 1; 2; 3; 4$$

$$X_{1t} = 1; 1; 1; 1$$

$$X_{1t} = 1; 1; 1; 1$$
 $X_{2t} = 0; 1; -1; 2$ $X_{3t} = 1; 1; 2; 0$

$$X_{3t} = 1; 1; 2; 0$$

Se considera el modelo: $Y_t = \beta_1 + \beta_2 \cdot X_{2t} + \beta_3 \cdot X_{3t} + u_t$, del cual se sabe que E(u)=0 y que $E(u.u')=s^2 V$, donde:

$$V = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

- a) Observar que V es definida positiva
- **b**) Estimar el vector β utilizando el estimador de MCO.
- c) Indique al menos dos formas de obtener el estimador MCG de B. Estimar el vector B utilizando el estimador de MCG. Analizar la diferencia entre éste y el estimador MCO. Explique por qué se conoce como estimador de Mínimos Cuadrados Ponderados al estimador MCG cuando V es una matriz diagonal.
- d) Estimar las matrices de varianzas y covarianzas de los estimadores obtenidos en b) y en c) y comparar ambas indicando el origen y las implicaciones de las diferencias.
- e) Indicar cual es el estimador más apropiado en este caso, justificando la elección.

EJERCICIO 2

Usando los datos del archivo "alimentacion.gdt" considere un modelo simple de gasto en alimentos de los hogares:

$$gasto alim_i = \beta_1 + \beta_2 ingreso_i + u_i$$

- a) Grafique gasto en alimentos en función del ingreso para la muestra. ¿Puede comentar algo respecto al supuesto de homoscedasticidad de las perturbaciones?
- b) Estime el modelo por MCO. ¿Cómo son estas estimaciones si el supuesto de homoscedasticidad no se cumple? Comente los resultados.
- c) ¿Qué se entiende por el estimador de Minimos Cuadrado Ponderados (MCP)? Asuma que los errores varían proporcionalmente con el nivel de ingresos de la familia. Estime el modelo considerado en el ejercicio usando MCP.
- d) ¿Qué se entiende por errores estándares robustos a heteroscedasticidad? Obtenga los resultados y compárelos con los resultados obtenidos en el punto 2.

EJERCICIO 3 – MCO, MCG y MV

Dado el modelo lineal general $y = X\beta + u$, suponga que la matriz X es no estocástica de rango completo (k), y que u es un vector de n variables aleatorias distribuidas normal e independientes con media nula y varianza constante σ_u^2 .

Se pide:

a) Escribir la función de verosimilitud para el vector u.

- **b**) Escribir la función de verosimilitud para la muestra de *n* observaciones de las variables incluidas en el modelo indicado. Señalar de qué variables depende y cómo depende de las mismas dicha función.
- c) Expresar en logaritmos la función de verosimilitud de b).
- **d**) Obtener los estimadores Máximo Verosímiles de y de la varianza de las perturbaciones (σ_u^2) . Comparar el estimador MV con el estimador MCO.
- e) Obtener la matriz de Información, $I(\beta, \sigma^2)$ y la cota de Cramér-Rao para los estimadores de β y σ^2 . ¿Cómo se relaciona esta cota con las propiedades de los estimadores?
- f) Señalar como cambia la forma de los estimadores MV si en lugar de suponer $Var(u) = \sigma^2 I$ se considera Var(u) = V cualesquiera (definida positiva). Compare dichos estimadores con los estimadores MCG.

EJERCICIO 4 – MCO+HCCE y Pruebas asintóticas robustas

Se cuenta con datos sobre detenciones durante el año 1986, respecto a 2.725 hombres nacidos en California entre los años 1960 o 1961 que fueron arrestados por lo menos una vez antes de 1986. Se desea investigar si el tiempo promedio de las penas en condenas anteriores tiene algún efecto en la cantidad de arrestos.

La base incluye información respecto a las siguientes variables:

narr86:	número de veces que arrestaron al hombre durante 1986
pcnv:	proporción (no %) de detenciones antes de 1986 en el que el hombre fue convicto
avgsen:	tiempo medio de las condenas anteriores (en meses)
avgsen2:	avgsen al cuadrado
ptime86:	cantidad de meses pasados en la prisión durante el año 1986
qemp86:	número de trimestres durante los cuales el hombre tuvo un empleo en 1986
inc86:	ingreso proveniente de actividades legales en 1986

A continuación se incluyen estadísticos descriptivos sobre las principales variables:

. tab narr86

times arrested 1986 | Freq.

Į.	Freq.	Percent	Cum.
0 1	1,970	72.29	72.29
1	559	20.51	92.81
2	121	4.44	97.25
3	42	1.54	98.79
4	12	0.44	99.23
5	13	0.48	99.71
6	4	0.15	99.85
7	1	0.04	99.89
9	1	0.04	99.93
10	1	0.04	99.96
12	1	0.04	100.00
+ Total	2,725	100.00	

. sum narr86 pcnv avgsen ptime86 qemp86 inc86

Variable	Obs	Mean	Std. Dev.	Min	Max
narr86	2725	.4044037	.8590768	0	12
pcnv	2725	.3577872	.395192	0	1
avgsen	2725	. 6322936	3.508031	0	59.2
ptime86	2725	.387156	1.950051	0	12
qemp86	2725	2.309028	1.610428	0	4
inc86	2725	54.96705	66.62721	0	541

. sum narr86 pcnv avgsen ptime86 qemp86 inc86 if narr86>0

Variable	Obs	Mean	Std. Dev.	Min	Max
narr86	755	1.459603	1.060202	1	12
pcnv	755	.2636689	.3284627	0	1
avgsen	755	.7258278	3.455056	0	39
ptime86	755	.205298	.9560493	0	8
qemp86	755	1.969934	1.533761	0	4
inc86	755	34.97762	50.7055	0	300.8

. pwcorr narr86 pcnv avgsen ptime86 qemp86 inc86, star(0.05)

1	narr86	pcnv	avgsen	ptime86	qemp86	inc86
+						
narr86	1.0000					
pcnv	-0.0725*	1.0000				
avgsen	0.0293	0.0258	1.0000			
ptime86	-0.0299	0.0539*	0.2353*	1.0000		
qemp86	-0.1741*	-0.0037	-0.1067*	-0.2660*	1.0000	
inc86	-0.1900*	-0.0089	-0.0958*	-0.1600*	0.7118*	1.0000

. pwcorr narr86 pcnv avgsen ptime86 qemp86 inc86 if narr86, star(0.05)

ا 	L	narr86	pcnv	avgsen	ptime86	qemp86	inc86
narr86		1.0000					
pcnv		0.1398*	1.0000				
avgsen		0.0498	0.0780*	1.0000			
ptime86		0.0834*	0.0909*	0.1054*	1.0000		
qemp86		-0.2305*	-0.1255*	-0.0885*	-0.1921*	1.0000	
inc86 l		-0.1873*	-0.1323*	-0.1029*	-0.1328*	0.7102*	1.0000

Se pide 1)

Analice las estadísticas descriptivas suministradas.

A continuación se estima el modelo:

 $narr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 avgsen + \beta_4 ptime + \beta_5 qemp + \beta_6 inc +$

- . * A: estimación habitual
- . reg narr86 pcnv avgsen avgsen2 ptime86 qemp86 inc86

Source	<u> </u>	ss	Df	:	MS		Number of obs F(6, 2718)		2725 24.69
Model	l	103.913208	6	17	.3188679		Prob > F	=	0.0000
Residual	l	1906.43395	2718	.70	01410577		R-squared		0.0517
Total	+- 	2010.34716	2724	.73	38012906		Adj R-squared Root MSE	=	0.0496 .8375
narr86	 !	Coef.	Std.	Err	. t	P> t	95% Conf.	In	terval]
pcnv	T- 	1559404	.040	7015	-3.83	0.000	2357493		0761314
avgsen	ı	.0232573	.009	7759	2.38	0.017	.0040884		0424262
avgsen2	ı	0005851	.000	3001	-1.95	0.051	0011737	3	.39e-06
ptime86	ı	0356565	.008	7678	-4.07	0.000	0528488		0184642
qemp86	ı	0533617	.014	5446	-3.67	0.000	0818813		0248421
inc86	ı	0016573	.000	3435	-4.82	0.000	0023308		0009837
cons	ı	.6810375	. 033	3653	20.41	0.000	.6156137		7464614

A continuación se estima el modelo utilizando el estimador MCO, pero corrigiendo la matriz de varianzas y covarianzas (estimación robusta a heteroscedasticidad):

- . * B: estimación con errores estándar robustos a heteroscedasticidad
- . reg narr86 pcnv avgsen avgsen2 ptime86 qemp86 inc86, robust

Se pide 2)

- 2.1) Explique en qué consiste el supuesto de homoscedasticidad y ausencia de autocorrelación en el contexto del modelo de regresión lineal múltiple. Indique qué propiedades deseables del estimador MCO de los coeficientes y la matriz de varianzas y covarianzas se pierden si no se cumple el supuesto de homoscedasticidad.
- 2.2) Escriba la forma de obtener los estadísticos robustos a heteroscedasticidad, utilizando la forma matricial del estimador de White de la matriz de varianzas y covarianzas. Señale cómo obtendría en la práctica el error estándar robusto para el regresor *pcnv*.
- 2.3) Construya un cuadro con los resultados de ambas regresiones, incluyendo la estimación de los coeficientes (Beta) y los estadísticos *t* correspondientes. Interprete los coeficientes estimados indicando qué cambios se observan entre las dos estimaciones.

Finalmente, se desea someter a prueba la hipótesis de que la duración de las penas anteriores afecta la cantidad de arrestos. Para ello se procede obteniendo los estadísticos de Wald, de razón de verosimilitudes y de los multiplicadores de Lagrange para la hipótesis

Ho:
$$\beta_2 = 0$$
, $\beta_3 = 0$

En el cuadro siguiente se presentan los estadísticos y los p-valores correspondientes cuando no se tiene en cuenta la potencial presencia de heteroscedasticidad

	Estadístico	p-valor
W	5.7375665	.05676796
RV	5.7462803	.05652116
ML	5.7402261	.05669252

En el cuadro siguiente se presentan los estadísticos y los p-valores correspondientes al contraste de Wald y de los Multiplicadores de Lagrange robustos a la presencia de heteroscedasticidad

	Estadístico	p-valor
W	8.3160973	.01563804
ML	6.2237693	.04451698

Se pide 3)

3.1) Explique cómo obtener los estadísticos de Wald, de Razón de Verosimilitudes y de los

Multiplicadores de Lagrange para la hipótesis

Ho:
$$\beta_2 = 0$$
, $\beta_3 = 0$

cuando se cumple el supuesto de homoscedasticidad y ausencia de autocorrelación.

- 3.2) Señale qué relación se espera entre los estadísticos de Wald, de Razón de Verosimilitudes y de los Multiplicadores de Lagrange y si ésta se cumple en el ejemplo analizado. Si no se cumple indique las posibles causas.
- 3.3) Explique cómo obtener los estadísticos de Wald y de los Multiplicadores de Lagrange para la hipótesis $Ho: \beta_2 = 0, \beta_3 = 0$, robustos a la presencia de heteroscedasticidad.
- 3.4) Concluya respecto a la validez de la hipótesis nula bajo análisis.