Master Degree in Physics of Data Final Dissertation 07/09/2023

Simulation studies for a double-crystal channeling experiment at the LHC

Candidate: Chiara Maccani

Supervisor: Massimiliano Ferro-Luzzi

Co-supervisor: Marco Zanetti

Electromagnetic dipole moments of charmed baryons

• MDM:
$$\mu = g \frac{eQ}{2m} s$$
, EDM: $\delta = d \frac{eQ}{2m} s$

$$\mathcal{H} = -\boldsymbol{\mu} \cdot \boldsymbol{B} - \boldsymbol{\delta} \cdot \boldsymbol{E} \stackrel{P,T}{\longrightarrow} \mathcal{H} = -\boldsymbol{\mu} \cdot \boldsymbol{B} + \boldsymbol{\delta} \cdot \boldsymbol{E}$$

- $\mathcal{H} = -\boldsymbol{\mu} \cdot \boldsymbol{B} \boldsymbol{\delta} \cdot \boldsymbol{E} \stackrel{P,T}{\longrightarrow} \mathcal{H} = -\boldsymbol{\mu} \cdot \boldsymbol{B} + \boldsymbol{\delta} \cdot \boldsymbol{E}$
- **Experimental method:** given a polarized incoming particle, let it travel through an intense electromagnetic field and measure

the spin precession angle

For charmed baryons no direct measurements exist due to their short. lifetime

- MDMs provide tests of hadronic structure models
- EDMs are source of possible physics Beyond the Standard

Polarization precession

$$\frac{ds}{d\tau} = -\mu \times B^* - \delta \times E^*$$

ns no direct
$$\rightarrow \Lambda_c^+ = (u,d,c), \quad \tau_{\Lambda_c^+} \sim 10^{-13} \ s$$
 at due to their short

Fixed target experiment exploiting crystal channeling

Channeling in bent crystals

 \rightarrow Particles can be trapped into the intense crystal interatomic electric field $E{\sim}10^{11}~v/m~$ for Silicon (lab frame)

$$E^* \approx \gamma E$$
, $B^* \approx -\gamma \beta \times \frac{E}{c}$

- Φ Spin precession angle
- θ_c Crystal bending angle

$$s_x \approx s_0 \frac{d}{g-1} (\cos \phi - 1), \qquad \phi \approx \frac{g-2}{2} \gamma \theta_c$$

→ reconstruct Φ by analizing the angular distribution of the baryon decay products

Double Crystal Experiment at LHC

- CRYI (Si) deflects protons from the secondary halo of the main LHC beam (6.8 TeV) onto a W target
- CRY2 (Si) induces a measurable precession (7.0 cm long and ~ 7.0 mrad bent)
- **Detector** to reconstruct the decay products

Proof of principles

- measure the channeling performance of CRY2 at energies in the TeV range
- improve operational techniques for crystal alignment, optimization of the proton on target rate and control of the secondary halo
- Estimate the background for the new IR3 detector

DD4hep

Software tool developed with the aim to have a Complete Detector Description Single source of information

Main components:

- ROOT geometry package (construction and visualization of geometry)
- Geant4 simulation toolkit

Compact Detector description constructor Generic Detector CAD DDDB Conditions CAD **Description Model** Drawing Converter Converter, DR based on ROOT TGeo Event Alianment Display Calibration Provided GDML TGeo → G4 Reco Analysis extensions Converte Converter Extensions Extensions Geant4 Reco Analysis Program Progran Program

Data flow:

- The compact description is provided in XML files
- DD4hep geometry is translated to the Geant4 geometry representation (shapes, materials, volumes and volume placements)
- DDG4 package: instantiate the physics setup by means of a set factories
- Simulation parameters: provided through a python script, supports HepMC input formats

DD4hep

Software tool developed with the aim to have a Complete Detector Description Single source of information

Main components:

- ROOT geometry package (construction and visualization of geometry)
- Geant4 simulation toolkit

Compact Detector description constructor Generic Detector CAD DDDB Conditions Description Model Converter Converter, DR based on ROOT TGeo Event Alianment Display Calibration Provided GDML TGeo → G4 Reco Analysis extensions Converte Converter Extensions Extensions Geant4 Reco. Analysis Program Program Program

Data flow:

- The compact description is provided in XML files
- DD4hep geometry is translated to the Ceant4 geometry representation (shapes, materials, volumes and volume placements)
- DDG4 package: instantiate the physics setup by means of a set factories
- Simulation parameters: provided through a python script, supports HepMC input formats

Geant4 Channeling and DD4hep interface

Geant4 Channeling Routine (Bagli 2014)

Crystal Channeling properties are contained into:

- · Physics List
- · Extended volumes
- Extended materials

Channeling was not supported in DD4hep:

the class responsible of creation of materials and volumes in DD4hep could handle only base versions

- ✓ UPGRADE
- Materials and volumes extensions are handled using plugins that make use of new specialized factories
- Information about which plugin to use and on channeling parameters can be specified as input in the XML file

DD4hep output distribution

Geant4 Channeling and DD4hep interface

- **✓ UPGRADE**
- Development of a DD4hep class to check particle parameters at each step in order to apply configuareble cuts to kill particles

- ✓ UPGRADE
- Introduction of the possibility to simulate beams characterized by a 2D gaussian distribution of positions x, y and angular directions θ_x, θ_y

Reproduction of beam distributions obtained with SixTrack simulations of CRYI

Slowdown problems

PRELIMINARY SIMULATION

to give a rough estimate of the amount of background and signal particles that can be observed in a scoring plane after CRY2 in the conditions of the proof of principles.

First simulation with a minimal setup:

- CRY2
- Proton gun of energy E_p = 1 TeV, Gaussian beam characteristics
- A silicon scoring plane $150 \times 150 \times 0.2 \ mm^3$ placed at a distance $d=1.04 \ m$ from the crystal
- 500 Events

The run lasted 178 hours

Cut Analysis

Basing on the 500 event simulation forcast the time reduction if **charged particles created in crystal** that satisfy a certain cut were killed at the beginning

 \triangleright Vertex Kinetic Energy: cut at $E_{k,vert} < 10 \, MeV$

Real test:

· Time reduction of a factor 7.3

Real test:

· Time reduction of a factor 12.22

2000 Events Simulation

Simulation setup:

- CRY2
- Proton gun of energy E_p = 1 TeV, Gaussian beam characteristics
- A silicon scoring plane of dimensions $150 \times 150 \times 0.2 \ mm^3$ placed at a distance $d = 1.04 \ m$ from the crystal
- Vertex kinetic energy cut of 10 MeV
- 2000 Events run in parallel using HTCondor

- 273×273 bins of $550 \ \mu m \times 550 \ \mu m^2$ (10 pixel)
- Energy deposit threshold at 1.8 keV (cut applied on each particle)

Signal Hit: protons coming from CRY1 and splitted by CRY2 that hit the tracker (orange)

Background Hit: particles created in interactions of primary protons with Si crystal that hit the tracker (yellow)

2000 Events Simulation - Cuts

\triangleright Apply a variable cut on |y| **position**

Cut on $|y| < 1.8 \, mm$

> Apply a variable cut on particle multiplicity

Cut on N < 11

2000 Events Simulation – After cuts

\rightarrow VeloPix dimension: $14.08 \times 14.08 \ mm^2$

 256×256 bins of dimension $55 \times 55 \mu m^2$ (1 pixel)

~ 45 % efficiency

Simulations with the target

- Tungsten target of $40 \times 80 \times 50 \ mm^3$ placed before CRY2
- Primary p-W interactions read from a Pythia Argantyr file, proton energy set to $E_p = 7 \, TeV$
- 100 events

Analytical approach

- Disable Geant4Channeling routine and consider particles at crystal entrance
- Compute the channeling critical angle condition (red curve)

$$\theta_c(pv) = \sqrt{\frac{2U(x_c)}{pv}} \left(1 - \frac{pv}{E(x_c)} \cdot \frac{1}{R}\right)$$

- Compute channeling probability
- Deflect particles that satisfy channeling conditions
- At least 42000 events simulation needed to produce a statistically significant bump

Conclusions

The existing **Geant4 crystal channeling** physics routine was interfaced to DD4hep and can now be used.

- The CPU computation time is very limiting, even after applying cuts
 Future work:
 - · Study other types of cuts
 - · Try to directly optimize the Geant4 Channeling Routine
 - Circumvent the use of this particular Geant4 channeling routine by implementing a model of the channeling phenomenon based on parametrization

Proof of principles tests: the presence of channeled protons should be clearly visible above the background in a VeloPix

 With the target: the presence of channeled particles in events with a p-W interaction is much more hidden in the background

Future work:

 Study how many tracking planes would be required to be able to identify clearly channeled particles from a p-W interaction

THANK YOU FOR YOUR ATTENTION

Channeling condition

$$\theta_c(R_c/R) = \theta_{c,0} \left(1 - \frac{R_c}{R}\right)$$
 where $\theta_{c,0} = \sqrt{\frac{2U(x_c)}{pv}}$ and $R_c = \frac{pv}{U'(x_c)}$
 $U(x_c) = 16 \text{ eV} = 1.6 \cdot 10^{-5} \text{ MeV}$ $U'(x_c) = 5.7 \text{ GeV/cm} = 5.7 \cdot 10^3 \text{ MeV/cm}$

Crystal bending radius: $R = 10 \text{ m} = 1 \cdot 10^3 \text{ cm}$

Critical momentum: $p_c = 5.7 \text{ TeV}$ since $R > R_c$

$$\theta_c(pv) = \sqrt{\frac{2U(x_c)}{pv}} \left(1 - \frac{pv}{U'(x_c)} \cdot \frac{1}{R}\right)$$

Assuming v = c

$$\theta_c(p) = \sqrt{\frac{2 \cdot 1.6 \cdot 10^{-5} \text{ MeV}}{p}} \left(1 - \frac{p}{5.7 \cdot 10^3 \text{ MeV/cm}} \cdot \frac{1}{1 \cdot 10^3 \text{ cm}} \right)$$

Dechanneling probability

$$F(\Theta, \rho)/A_{\rm S} = (1 - \rho)^2 \exp\left(-\frac{\Theta}{\Theta_{\rm D}\rho(1 - \rho)^2}\right)$$
 where $\rho = \frac{R_{\rm c}}{R}$

$$\Theta_{\rm D} = \frac{256}{9\pi} \frac{NZa_{\rm TF}d_{\rm p}^2}{\ln(2m_{\rm e}c^2\gamma/I) - 1}$$

For Silicon Si(110)

$$\Theta_{\mathrm{D}} = \frac{4.526}{\ln\left(5907.51 \cdot \frac{E}{m}\right) - 1}$$