离散 (2) hw3

王子轩 2023011307

wang-zx23@mails.tsinghua.edu.cn

P50 T1

设简单图G(m,n)有k个连通支,证明 $m \leq \frac{1}{2}(n-k+1)(n-k)$

解:不妨设这k个连通支分别为 $G_1, \dots G_k$,阶数分别是 $n_1, \dots n_k$ 边数分别为 $m_1, \dots m_k$.由于 $\forall i, n_i \geq 1 \text{ and } \sum_i n_i = n$ 所以 $n_i \leq n - k + 1$; 由于连通支内部边数最多是正则图,即 $m_i \leq rac{1}{2}(n_i-1)n_i$.因此有 $m = \sum_{i} m_i \leq \sum_{i} [rac{1}{2}(n_i - 1)n_i] \leq rac{1}{2}(n_i - 1)(n - k + 1) \leq rac{1}{2}(\sum_{i} n_i - k)(n - k + 1) = rac{1}{2}(n - k + 1)(n - k)$

P50 T2

证明G和G的补图中至少有一个是连通图

证明:假设G(V,E)是不连通的,下证其补图 $\overline{G}(V',E')$ 一定是连通的:设 V_1,V_2,\cdots,V_k 是它的的k个连通支的 点集, 即 $V = V_1 \cup \cdots V_k$.任意的 $u, v \in V$

- if $u \in V_i, v \in V_i, i \neq j, (u, v) \in E'$ thus $\exists P(u, v)$
- if $u,v \in V_i, \forall s \in V_i, j \neq i, (u,s) \in E', (s,v) \in E'$ thus $\exists P(u,s,v)$

综上,若G不是连通图,G一定是连通的。

P50 T3

证明若连通图的最长路径不唯一,则必定相交

证明: 我们采用反证法,不妨设G(V,E)两条相同长度的最长路分别为 l_1 和 l_2 ,其长度为k;由于G是连通图,一定 有: $\exists u \in l_1 \text{ and } v \in l_2 \text{ and } (u,v) \in E.u,v$ 分别可以作为 l_1 和 l_2 的分割点,我们分别找出其中较长的那一段, 分别记录为 l_1' 和 l_2' 。显然有 $l_1', l_2' \geq \lceil \frac{k}{2} \rceil$ 那么我们找到新的路径 $P' = l_1' - (u,v) - l_2'$ 长度为 $\lceil \frac{k}{2} \rceil \times 2 + 1 \geq k$

P50 T4

在简单图G(n,m)中,如果 $n\geq 4$ 并且 $m\geq 2n-3$,证明G中含有带弦的回路

证明: Lemma: 如果一个简单图G它的极长初级道路的端点度数> 3,则G一定存在带弦的回路.

引理证明如下:记极长初级道路为 $P(v_1v_2\cdots v_i)$,其中 $d(v_i)\geq 3$,则 v_i 一定会连到其他的 $v_a,v_b,\quad a,b\in [1,j)$ 上,由于P是极长的道路, v_a,v_b 必处在P上,不妨设a < b,那么 $(v_b \cdots v_j v_b)$ 组成了回路C,而 $e = (v_j,v_a)$ 为其上 的弦.

接下来我们使用数学归纳法来证明原命题:

- 归纳奠基: 对于n=4, m>5时候, G中必然存在带弦的回路
- 归纳假设: 假设对于 $n=k, m \geq 2k-3$,则G中含有带弦的回路
- 归纳地推: 对于n = k + 1, m > 2(k + 1) 3 = 2k 1情形,对于G中的极长初级道路P,其端点v的 d(v)若 ≥ 3 则由Lemma保证G一定存在带弦的回路. 若 $d(v) \leq 2$ 那么G的子图 $G - \{v\}$ 满足 n=k, $m\geq 2k-3$, 由归纳假设知道 $G-\{v\}$ 中一定存在带弦的回路, 则G中存在带弦的回路。

P50 T5

设G是不存在 K_3 回路的简单图,证明

(1)
$$\sum_i d^2(v_i) \leq mn$$
 (2) $m \leq rac{n^2}{4}$

(2)
$$m \leq \frac{n^2}{4}$$

证明:

(1) 设G的阶数为n,考虑图中的节点(u,v)之间有边,由于G中不存在 K_3 因此显然有 $d(u)-1+d(v)-1\leq n-2$ 即有 $d(u)+d(v)\leq n$ 对左右分别对所有的边 $e=(u,v)\in E$ 求和,即 $\sum_{e\in E}[d(u)+d(v)]\leq mn,\quad u\neq v$,左边是对全体的边求和,而一条边会对节点v贡献d(v),因此上式子化为 $\sum_i d^2(v_i)\leq mn$.

(2) 利用 Jensen不等式,对于下凸函数 $f(X)=\sum_i X_i^2$ 有 $Ef(X)\geq f(EX)$ 因此有 $\frac{\sum_i d^2(v_i)}{n}\geq (\frac{d(v_i)}{n})^2=(\frac{2m}{n})^2$. 再利用第一问的结论 $\sum_i d^2(v_i)\leq mn$ 我们有 $m\geq 4m^2/n^2$ 整理得到 $m\leq \frac{n^2}{4}$