STRUCTURAL PATTERNS HEURISTICS: BASIC IDEA AND CONCRETE INSTANCE

Michael Katz Carmel Domshlak IE&M, Technion

PRESENTATION IN ONE SLIDE

MAIN IDEA

Structurally-characterized tractable fragments of optimal planning can be operationalized in devising new admissible search heuristics.

- Focus on homomorphism abstractions
- Generalization of Pattern Database heuristics to Structural Patterns heuristics

PATTERN DATABASE (PDB) HEURISTICS

Select a (relatively small) set of subsets V_1, \ldots, V_k of V such that, for $1 \le i \le k$,

- **2** the size of V_i is sufficiently small to perform reachability analysis in $\Pi^{[V_i]}$ by an (either explicit or symbolic) exhaustive search

PATTERN DATABASE (PDB) HEURISTICS

Select a (relatively small) set of subsets V_1, \ldots, V_k of V such that, for $1 \le i \le k$,

- $\Pi^{[V_i]}$ is an over-approximating abstraction of Π , and
- **2** the size of V_i is sufficiently small to perform reachability analysis in $\Pi^{[V_i]}$ by an (either explicit or symbolic) exhaustive search

DISJOINT DECOMPOSITION

GENERALIZING THE STANDARD "ALL-OR-NOTHING" PDB DISJOINING

PROPOSITION

For any SAS⁺ problem $\Pi = \langle V, A, I, G \rangle$, any set of V's subsets $\mathcal{V} = \{V_1, \dots, V_m\}$, and any disjoint decomposition of Π over \mathcal{V} , we have $h^*(I) \geq \sum_{i=1}^m h_i^*(I^{[V_i]})$

ACHILLES HEEL OF PDBs

Select a (relatively small) set of subsets V_1, \ldots, V_k of V such that, for $1 \le i \le k$,

- **2** the size of V_i is sufficiently small to perform reachability analysis in $\Pi^{[V_i]}$ by an (either explicit or symbolic) **exhaustive search**

ALTERNATIVE WAY TO GO?

Select a (relatively small) set of subsets V_1, \ldots, V_k of V such that, for $1 \le i \le k$,

- the reachability analysis in $\Pi^{[V_i]}$ is tractable (not necessarily due to the size of but) due to the specific structure of $\Pi^{[V_i]}$
- \spadesuit Possibly $|V_i| = \Theta(|V|)!$

STRUCTURAL PATTERNS: THE PROMISE AND THE SKEPTICISM

PROMISE

 Generalization of PDBs to homomorphism abstractions of unlimited dimensionality

STRUCTURAL PATTERNS: THE PROMISE AND THE SKEPTICISM

PROMISE

 Generalization of PDBs to homomorphism abstractions of unlimited dimensionality

SKEPTICISM

- Structural patterns correspond to tractable fragments of optimal planning
- The palette of such known fragments is extremely limited

CAUSAL GRAPH STRUCTURAL PATTERNS (CGSPs)

DECOMPOSITION OVER CGSPS

DISJOINT CGSP DECOMPOSITION

DEFINITION

Let $\Pi = \langle V, A, I, G \rangle$ be a SAS⁺ problem, and $\mathbf{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_m\}$ be a set of subgraphs of the causal graph $CG(\Pi)$. A **disjoint CGSP decomposition of** Π **over G** is a set of CGSPs $\{\Pi_{\mathcal{G}_1}, \dots, \Pi_{\mathcal{G}_m}\}$ such that each action $a \in A$ satisfies $\mathcal{C}(a) \geq \sum_{i=1}^m \sum_{a' \in A_{\mathcal{G}_i}(a)} \mathcal{C}_{\mathcal{G}_i}(a')$

• For the formal specification of $\Pi_{\mathcal{G}_i}$ see the paper.

PROPOSITION

For any SAS⁺ problem $\Pi = \langle V, A, I, G \rangle$, any set of $CG(\Pi)$'s subgraphs $\mathbf{G} = \{\mathcal{G}_1, \dots, \mathcal{G}_m\}$, and any disjoint CGSP decomposition of Π over \mathbf{G} , we have $h^*(I) \geq \sum_{i=1}^m h_i^*(I_{\mathcal{G}_i})$

LOGISTICS EXAMPLE

SAS⁺ FORMULATION

$$V = \{p_1, p_2, c_1, c_2, c_3, t\}$$
 $Dom(p_1) = Dom(p_2) = \{A, B, C, D, E, F, G, c_1, c_2, c_3, t\}$
 $Dom(c_1) = Dom(c_2) = \{A, B, C, D\}$
 $Dom(c_3) = \{E, F, G\}$
 $Dom(t) = \{D, E\}$
 $I, G \mapsto \text{see picture}$

 $A \mapsto loads$, unloads, single-segment movements

LOGISTICS EXAMPLE

CAUSAL GRAPH + DOMAIN TRANSITION GRAPHS

DISJOINT FORK-DECOMPOSITION

DEFINITION

Let $\Pi = \langle V, A, I, G \rangle$ be a SAS⁺ problem. The **fork-decomposition**

$$\{\Pi_{\mathcal{G}_{\boldsymbol{\nu}}^f},\Pi_{\mathcal{G}_{\boldsymbol{\nu}}^{if}}\}_{\boldsymbol{\nu}\in\boldsymbol{V}}$$

is a disjoint CGSP decomposition of Π over subgraphs $\mathbf{G} = \{\mathcal{G}_{\nu}^{\mathsf{f}}, \mathcal{G}_{\nu}^{\mathsf{if}}\}_{\nu \in V}$ where, for $\nu \in V$,

$$V_{\mathcal{G}_{v}^{f}} = \{v\} \cup \operatorname{succ}(v), \quad E_{\mathcal{G}_{v}^{f}} = \bigcup_{u \in \operatorname{succ}(v)} \{(v, u)\}$$

$$V_{\mathcal{G}_{v}^{\mathsf{if}}} = \{v\} \cup \mathsf{pred}(v), \ \ E_{\mathcal{G}_{v}^{\mathsf{if}}} = \bigcup_{u \in \mathsf{pred}(v)} \{(u,v)\}$$

DISJOINT FORK-DECOMPOSITION

INFORMATIVE?

IN OUR EXAMPLE ...

OPTIMAL COST

Given uniform-cost actions, the optimal cost of solving the original problem is $h^* = 19$

SEMINAL ADMISSIBLE ESTIMATES

$$h_{\text{max}} = 8$$
 (Bonet and Geffner, '01)

 $h^2 = 13$ (Haslum and Geffner, '00)

FORK-DECOMPOSITION HEURISTICS VALUE

$$h_{\text{M}} = h_{\Pi_{c_1}^{\dagger}}^* + h_{\Pi_{c_2}^{\dagger}}^* + h_{\Pi_{c_3}^{\dagger}}^* + h_{\Pi_{t_1}^{\dagger}}^* + h_{\Pi_{p_1}^{\dagger}}^{*\dagger} + h_{\Pi_{p_2}^{\dagger}}^{*\dagger} = 15$$

Too good to be true?

PROBLEM!

FORKS AND INVERTED FORKS ARE HARD ...

- Even non-optimal planning for SAS⁺ problems with fork and inverted fork causal graphs is NP-complete (Domshlak & Dinitz, '01).
- Even if the domain-transition graphs of all variables are strongly connected, optimal planning for forks and inverted forks remain NP-hard (Helmert, '03-04).

Shall we give up?

TRACTABLE CASES OF PLANNING WITH FORKS

PROPOSITION

Given a sas⁺ problem $\Pi = \langle V, A, I, G \rangle$ inducing a fork causal graph with a root $r \in V$, if

- (I) |Dom(r)| = 2, or
- (II) for all $v \in V$, we have |Dom(v)| = O(1),

then finding a cost-optimal plan for Π is poly-time.

PROPOSITION

Given a 1-dependent SAS⁺ problem $\Pi = \langle V, A, I, G \rangle$ inducing an inverted fork causal graph with a root $r \in V$, if |Dom(r)| = O(1), then finding a cost-optimal plan for Π is poly-time.

CGSPs Meet Domain Decompositions

DISJOINT DOMAIN DECOMPOSITION

BASIC IDEA

- Disjoint decompositions can be applied at the level of variable domains
 - Apply various domain abstractions on problem variables
 - Normalize action costs in abstract problems to satisfy admissibility-preserving action cost distribution
 - Sum-up optimal costs of solving abstract problems
- Domain decompositions and CGSPs can be naturally combined!

BACK TO OUR EXAMPLE

BACK TO OUR EXAMPLE

$$\forall l \in Dom(p_1): \quad \phi'_{p_1,i}(l) = \begin{cases} 0, d(I[p_1], l) < 2i - 1\\ 1, d(I[p_1], l) = 2i - 1\\ 2, d(I[p_1], l) > 2i - 1 \end{cases}$$

STILL INFORMATIVE?

(INTRACTABLE) CGSPS

$$h_{\text{max}} = 8$$
 $h^2 = 13$ $h_{\text{M}} = 15$ $h^* = 19$

STILL INFORMATIVE? YES

(INTRACTABLE) CGSPs

$$h_{\text{max}} = 8$$
 $h^2 = 13$ $h_{\text{M}} = 15$ $h^* = 19$

(TRACTABLE) CGSPS WITH DOMAIN ABSTRACTIONS

$$h_{\text{max}} = 8$$
 $h^2 = 13$ $h_{\text{M}} = \frac{16}{16}$ $h^* = 19$

HMM ... WHAT?

Further abstraction gives a more precise estimate??

STILL INFORMATIVE? YES

(INTRACTABLE) CGSPS

$$h_{\text{max}} = 8$$
 $h^2 = 13$ $h_{\text{M}} = 15$ $h^* = 19$

(TRACTABLE) CGSPs WITH DOMAIN ABSTRACTIONS

$$h_{\text{max}} = 8$$
 $h^2 = 13$ $h_{\text{m}} = 16$ $h^* = 19$

HMM ... WHAT?

Further abstraction gives a more precise estimate??

HMM ... YES, THAT IS POSSIBLE!

- Domain abstraction may eliminate certain dependencies between the variables
- Less dependencies → Less action representatives → Less action cost erosion → (Potentially) higher estimate

CURRENT AND FUTURE WORK

THIS IS JUST THE BEGINNING ...

- Short-term
 - Implementation and empirical evaluation
 - "In theory there is no difference between theory and practice. In practice there is." (Yogi Berra)
- 2 Long-term
 - More tractability results for cost-optimal planning! (Katz & Domshlak, '07), ...
 - Optimization of structural patterns selection
 - Optimization of variable domains abstraction
 - Extensions to richer formalisms