Conventions Numpy Multi-layer Perceptron Back-propagation

Neural Networks

4. Multi-layer Perceptron & Back-propagation

Farkaš, Kuzma et al.

Center for Cognitive Science Department of Applied Informatics Faculty of Mathematics, Physics and Informatics UKBA

March 13th, 2018

Conventions Numpy Multi-layer Perceptron Back-propagation

Conventions

Conventions, vol. 1

```
c – scalar \mathbf{x} – column vector ("western" algebra) x_i – i-th element of a vector (scalar) \mathbf{W} – matrix \mathbf{w}_i – i-th row of matrix (vector) w_{i,j} – element in the i-th row and j-th column (scalar)
```

Conventions, vol. 2

```
c\mathbf{x}, c\mathbf{W} – scalar/elementwise multiplication – shape is preserved
```

```
    WX – matrix multiplication
    Wx – matrix-vector multiplication, i.e. applying transformation W to a vector x
```

```
xy – mistake x^Ty = x \cdot y – scalar/dot/inner product – result is a scalar x \times y – vector product – result is a vector xy^T – outer product – result is a matrix
```

Conventions
Numpy
Multi-layer Perceptron
Back-propagation

Numpy

Numpy

- np.zero, np.one np.eye
- uniform np.random.rand, normal/gaussian np.random.randn
- +, -, *, np.sin(...), np.exp(...) all work elementwise
- +=, -=, *= also work
- np.dot(a,b) = a.dot(b) = a @ b
- np.transpose(a) = a.transpose() = a.T
- transpose on a vector does nothing!
 - use np.inner or np.outer
 - alternatively, np.atleast_2d(x).T returns a matrix posing as a row vector
- np.linalg.norm
- np.min/max/mean/std(x, axis=0)

Conventions
Numpy
Multi-layer Perceptror
Back-propagation

Multi-layer Perceptron

Multi-layer Perceptron

■ virtual input for the bias term: $x_{n+1} = h_{m+1} = 1$

Activation functions

- logistic sigmoid:
 - $\log \log(x) = \frac{1}{1 + e^{-x}}$
 - $\log \log'(x) = \log \log(x)(1 \log \log(x))$
- hyperbolic tangent
- rectified linear units (ReLU)
- linear (makes sense only on output)
- ...

Conventions Numpy Multi-layer Perceptror Back-propagatior

Back-propagation

Back-propagation

$$g_i^{out} = (d_i - y_i) f'_{out}(b_i)$$

$$g_k^{hid} = \left(\sum_i w_{i,k}^{out} g_i^{out}\right) f_{hid}'(a_k)$$

$$\Delta \mathbf{W}^{out} = \mathbf{g}^{out} \mathbf{h}^T \quad \mathbf{W}^{out}(t+1) = \mathbf{W}^{out}(t) + \alpha \Delta \mathbf{W}^{out}(t)$$

$$\Delta \mathbf{W}^{hid} = \mathbf{g}^{hid} \mathbf{x}^T \qquad \mathbf{W}^{hid}(t+1) = \mathbf{W}^{hid}(t) + \alpha \Delta \mathbf{W}^{hid}(t)$$

Algorithm

Initialization:

- choose model parameters (# of hidden neurons)
- choose training parameters (learning rate, #epochs)
- 3. generate random initial weights

Training:

- until stopping criterion (accuracy / #epochs / time...):
 - with each training sample (x, d) in random order:
 - forward-pass: compute h, y
 - backward-pass: compute \mathbf{g}^{out} , \mathbf{g}^{hid}
 - adjust weights W^{hid}, W^{out}