Assignment-1

Abheek Ghosh 140123047

January 22, 2016

A custom header file with important functions. Code for C++

```
1 #include < iostream >
  #include < iomanip >
  using namespace std;
  //Our main uniform random values genrator class
  class UniformGenerator {
    public:
      UniformGenerator() {
10
        a=1,b=0,m=1; //Just some initializing values.
11
12
      unsigned long long int a,b,m;
13
14
      //The first value is the value of x0 and second no of terms in sequence.
15
      int generate(unsigned long int x, unsigned long int n) {
16
        long double u;
        long rep=x,k;
17
        cout << "Initial value, $x_0$ = " << x << "\n \ begin {center} \ \ begin {tabular} {|| c | c | c ||} 
18
            \\hline\n";
19
        cout << "\$i\$ index & \$x\$ & \$u\$ \\\ [0.5ex] \\\ hline \\\ hline";
        for(int j=0; j < n; ++j) {
20
          u = (long double)x/(long double)m;
21
          22
          x = (a*x + b) \% m;
23
24
          if(rep == x) {
25
           k=j+1;
26
            \mathbf{rep} = -1;
27
28
        cout << "\\end{tabular} \n \\end{center}";</pre>
        30
            n";
31
        return 0;
```

```
32
         int covariance (unsigned long int x, unsigned long int n) {
33
          long double u,v;
34
          cout << "Initial value, $x_0$ = "<< x<< "\n";
35
            u = (long double)x/(long double)m;
36
          for(int j=0; j < n; ++j) {
37
38
            x = (a*x + b) \% m;
39
            v = u;
40
            u = (long double)x/(long double)m;
            cout << "u" << j << "= " << set precision (10) << v << "\tu" << j +1 << "= " << u << "\n";
41
42
43
          cout << endl;
44
          return 0;
45
46
        //The first value is the value of x0, second no of terms in sequence
        //and third is the no. of intervals.
47
        int goodness (unsigned long long int x, unsigned long long int n, int k) {
48
          long double u;
49
          // Initializing the density array
50
          unsigned long long Density[k];
51
52
          for(int i=0; i < k; ++i) {
53
            Density[i] = 0;
54
55
          //Generating terms
56
          for(int j=0; j < n; ++j) {
57
            u = (long double)x/(long double)m;
58
            Density [(int)(u*k)]++;
59
            x = (a*x + b) \% m;
60
          //Printing frequency output
61
          u = (long double)1/(long double)k;
62
          cout<<"\n\\begin{center} \\begin{tabular}{||c | c||} \\hline\n";</pre>
63
          cout << "Range & Frequency \\\\ [0.5 ex] \\hline \\hline";</pre>
64
          for(int i=0; i < k; ++i) {
65
            cout << setprecision\,(2) << (u*i) << "-" << (u*(i+1)) << " & " << Density[i] << " \\ \\ n \\ hline \n";
66
67
           // cout << " \ t" << set precision (20) << ((long double) Density [i]/n) << endl;
68
          cout << " \setminus end{tabular} \setminus n \setminus end{center} \setminus n";
69
70
          return 0;
71
72
     };
```

1 Question 1

For $x = 0 \mod m$ we get only 0 for x. But for $x \neq 0 \mod m$ we get 10 distinct values for a=6 and 5 distinct values for a=3. So a=6 is better selection. The result has been tabulated below.

Code for C++

```
1 #include <iostream>
2 #include <iomanip>
3 #include "uniform.h" //Main file with functions
   using namespace std;
  int main() {
    UniformGenerator uni;
    //The values of variables
    cout << "Enter a, b and m respectively.\n";
10
11
    cin>> uni.a >> uni.b >> uni.m;
12
    for(int i=0;i<11;++i)
13
      uni.generate(i,12);
14
15
    return 0;
16 }
```

$$a = 6, b = 0, m = 11$$

Initial value, $x_0 = 0$

<i>i</i> index	x	и
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
11	0	0

Repetition after 1 terms.

<i>i</i> index	x	и
0	1	0.09090909091
1	6	0.5454545455
2	3	0.2727272727
3	7	0.6363636364
4	9	0.8181818182
5	10	0.9090909091
6	5	0.4545454545
7	8	0.7272727273
8	4	0.3636363636
9	2	0.1818181818
10	1	0.09090909091
11	6	0.5454545455

Repetition after 10 terms.

Initial value, $x_0 = 2$

<i>i</i> index	x	и
0	2	0.1818181818
1	1	0.09090909091
2	6	0.5454545455
3	3	0.2727272727
4	7	0.6363636364
5	9	0.8181818182
6	10	0.9090909091
7	5	0.4545454545
8	8	0.7272727273
9	4	0.3636363636
10	2	0.1818181818
11	1	0.09090909091

Repetition after 10 terms.

<i>i</i> index	x	и
0	3	0.2727272727
1	7	0.6363636364
2	9	0.8181818182
3	10	0.9090909091
4	5	0.4545454545
5	8	0.7272727273
6	4	0.3636363636
7	2	0.1818181818
8	1	0.09090909091
9	6	0.5454545455
10	3	0.2727272727
11	7	0.6363636364

Repetition after 10 terms.

Initial value, $x_0 = 4$

<i>i</i> index	x	и
0	4	0.3636363636
1	2	0.1818181818
2	1	0.09090909091
3	6	0.5454545455
4	3	0.2727272727
5	7	0.6363636364
6	9	0.8181818182
7	10	0.9090909091
8	5	0.4545454545
9	8	0.7272727273
10	4	0.3636363636
11	2	0.1818181818

Repetition after 10 terms.

<i>i</i> index	x	и
0	5	0.4545454545
1	8	0.7272727273
2	4	0.3636363636
3	2	0.1818181818
4	1	0.09090909091
5	6	0.5454545455
6	3	0.2727272727
7	7	0.6363636364
8	9	0.8181818182
9	10	0.9090909091
10	5	0.4545454545
11	8	0.7272727273

Repetition after 10 terms.

Initial value, $x_0 = 6$

<i>i</i> index	x	и
0	6	0.5454545455
1	3	0.2727272727
2	7	0.6363636364
3	9	0.8181818182
4	10	0.9090909091
5	5	0.4545454545
6	8	0.7272727273
7	4	0.3636363636
8	2	0.1818181818
9	1	0.09090909091
10	6	0.5454545455
11	3	0.27272727

Repetition after 10 terms.

<i>i</i> index	x	и
0	7	0.6363636364
1	9	0.8181818182
2	10	0.9090909091
3	5	0.4545454545
4	8	0.7272727273
5	4	0.3636363636
6	2	0.1818181818
7	1	0.09090909091
8	6	0.5454545455
9	3	0.2727272727
10	7	0.6363636364
11	9	0.8181818182

Repetition after 10 terms.

Initial value, $x_0 = 8$

<i>i</i> index	x	и
0	8	0.7272727273
1	4	0.3636363636
2	2	0.1818181818
3	1	0.09090909091
4	6	0.5454545455
5	3	0.2727272727
6	7	0.6363636364
7	9	0.8181818182
8	10	0.9090909091
9	5	0.4545454545
10	8	0.7272727273
11	4	0.3636363636

Repetition after 10 terms.

<i>i</i> index	x	и
0	9	0.8181818182
1	10	0.9090909091
2	5	0.4545454545
3	8	0.7272727273
4	4	0.3636363636
5	2	0.1818181818
6	1	0.09090909091
7	6	0.5454545455
8	3	0.2727272727
9	7	0.6363636364
10	9	0.8181818182
11	10	0.9090909091

Repetition after 10 terms.

Initial value, $x_0 = 10$

i index	x	и
0	10	0.9090909091
1	5	0.4545454545
2	8	0.7272727273
3	4	0.3636363636
4	2	0.1818181818
5	1	0.09090909091
6	6	0.5454545455
7	3	0.2727272727
8	7	0.6363636364
9	9	0.8181818182
10	10	0.9090909091
11	5	0.4545454545

Repetition after 10 terms.

$$a=3,b=0,m=11$$

<i>i</i> index	x	и
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
11	0	0

Repetition after 1 terms.

Initial value, $x_0 = 1$

i index	х	и
0	1	0.09090909091
1	3	0.27272727
2	9	0.8181818182
3	5	0.4545454545
4	4	0.3636363636
5	1	0.09090909091
6	3	0.2727272727
7	9	0.8181818182
8	5	0.4545454545
9	4	0.3636363636
10	1	0.09090909091
11	3	0.2727272727

Repetition after 5 terms.

<i>i</i> index	х	и
0	2	0.1818181818
1	6	0.5454545455
2	7	0.6363636364
3	10	0.9090909091
4	8	0.7272727273
5	2	0.1818181818
6	6	0.5454545455
7	7	0.6363636364
8	10	0.9090909091
9	8	0.7272727273
10	2	0.1818181818
11	6	0.5454545455

Repetition after 5 terms.

Initial value, $x_0 = 3$

<i>i</i> index	x	и
0	3	0.2727272727
1	9	0.8181818182
2	5	0.4545454545
3	4	0.3636363636
4	1	0.09090909091
5	3	0.2727272727
6	9	0.8181818182
7	5	0.4545454545
8	4	0.3636363636
9	1	0.09090909091
10	3	0.2727272727
11	9	0.8181818182

Repetition after 5 terms.

Initial value, $x_0 = 4$

<i>i</i> index	x	и
0	4	0.3636363636
1	1	0.09090909091
2	3	0.2727272727
3	9	0.8181818182
4	5	0.4545454545
5	4	0.3636363636
6	1	0.09090909091
7	3	0.2727272727
8	9	0.8181818182
9	5	0.4545454545
10	4	0.3636363636
11	1	0.09090909091

Repetition after 5 terms.

Initial value, $x_0 = 5$

<i>i</i> index	x	и
0	5	0.4545454545
1	4	0.3636363636
2	1	0.09090909091
3	3	0.2727272727
4	9	0.8181818182
5	5	0.4545454545
6	4	0.3636363636
7	1	0.09090909091
8	3	0.2727272727
9	9	0.8181818182
10	5	0.4545454545
11	4	0.3636363636

Repetition after 5 terms.

Initial value, $x_0 = 6$

<i>i</i> index	x	и
0	6	0.5454545455
1	7	0.6363636364
2	10	0.9090909091
3	8	0.7272727273
4	2	0.1818181818
5	6	0.5454545455
6	7	0.6363636364
7	10	0.9090909091
8	8	0.7272727273
9	2	0.1818181818
10	6	0.5454545455
11	7	0.6363636364

Repetition after 5 terms.

Initial value, $x_0 = 7$

<i>i</i> index	x	и
0	7	0.6363636364
1	10	0.9090909091
2	8	0.7272727273
3	2	0.1818181818
4	6	0.5454545455
5	7	0.6363636364
6	10	0.9090909091
7	8	0.7272727273
8	2	0.1818181818
9	6	0.5454545455
10	7	0.6363636364
11	10	0.9090909091

Repetition after 5 terms.

Initial value, $x_0 = 8$

<i>i</i> index	х	и
0	8	0.7272727273
1	2	0.1818181818
2	6	0.5454545455
3	7	0.6363636364
4	10	0.9090909091
5	8	0.7272727273
6	2	0.1818181818
7	6	0.5454545455
8	7	0.6363636364
9	10	0.9090909091
10	8	0.7272727273
11	2	0.1818181818

Repetition after 5 terms.

Initial value, $x_0 = 9$

<i>i</i> index	x	и
0	9	0.8181818182
1	5	0.4545454545
2	4	0.3636363636
3	1	0.09090909091
4	3	0.2727272727
5	9	0.8181818182
6	5	0.4545454545
7	4	0.3636363636
8	1	0.09090909091
9	3	0.2727272727
10	9	0.8181818182
11	5	0.4545454545

Repetition after 5 terms.

<i>i</i> index	x	и
0	10	0.9090909091
1	8	0.7272727273
2	2	0.1818181818
3	6	0.5454545455
4	7	0.6363636364
5	10	0.9090909091
6	8	0.7272727273
7	2	0.1818181818
8	6	0.5454545455
9	7	0.6363636364
10	10	0.9090909091
11	8	0.7272727273

Repetition after 5 terms.

2 Question 2

We observe that good random numbers are generated with the given values. The number distribute more uniformly with increase in data, showing probability of a number in each interval is approximately same.

Code for C++

```
#include < iostream >
  #include < iomanip >
  #include"uniform.h"
  using namespace std;
  int main() {
    UniformGenerator uni;
    //The values of variables
    uni.m = 244944;
10
11
    uni.a = 1597;
    uni.b = 0;
12
    //Taking x per our choice;
13
14
    unsigned long int x = 1;
    15
    //Number of values to generate.
16
    unsigned long int n = 100;
17
    for(int i=0; i<5;++i) {
19
     cout << " \n \s = " << n << " \n ";
20
     uni.goodness(x,n,20);
21
     n=n*10;
     cout << "\n\\\\\n) {1 pt}\n\n";
22
23
24
    return 0;
25 }
```

$$a = 1597, b = 0, m = 244944, x_0 = 1$$

Range	Frequency
0-0.05	8
0.05-0.1	5
0.1-0.15	4
0.15-0.2	5
0.2-0.25	3
0.25-0.3	5
0.3-0.35	3
0.35-0.4	6
0.4-0.45	5
0.45-0.5	5
0.5-0.55	8
0.55-0.6	5
0.6-0.65	4
0.65-0.7	8
0.7-0.75	6
0.75-0.8	3
0.8-0.85	5
0.85-0.9	3
0.9-0.95	1
0.95-1	8

Range frequencies for 100 random numbers generated using LCG

Range	Frequency
0-0.05	54
0.05-0.1	48
0.1-0.15	59
0.15-0.2	57
0.2-0.25	41
0.25-0.3	50
0.3-0.35	60
0.35-0.4	45
0.4-0.45	46
0.45-0.5	52
0.5-0.55	51
0.55-0.6	60
0.6-0.65	48
0.65-0.7	46
0.7-0.75	61
0.75-0.8	44
0.8-0.85	44
0.85-0.9	47
0.9-0.95	48
0.95-1	39

Range frequencies for 1000 random numbers generated using LCG

Range	Frequency
0-0.05	507
0.05-0.1	499
0.1-0.15	507
0.15-0.2	504
0.2-0.25	490
0.25-0.3	501
0.3-0.35	506
0.35-0.4	497
0.4-0.45	496
0.45-0.5	497
0.5-0.55	498
0.55-0.6	505
0.6-0.65	499
0.65-0.7	500
0.7-0.75	508
0.75-0.8	498
0.8-0.85	496
0.85-0.9	507
0.9-0.95	502
0.95-1	483

Range frequencies for 10000 random numbers generated using LCG

Range	Frequency
0-0.05	5012
0.05-0.1	5006
0.1-0.15	5014
0.15-0.2	5009
0.2-0.25	4962
0.25-0.3	5009
0.3-0.35	5008
0.35-0.4	5003
0.4-0.45	5005
0.45-0.5	4974
0.5-0.55	5007
0.55-0.6	5017
0.6-0.65	5002
0.65-0.7	5005
0.7-0.75	4985
0.75-0.8	5003
0.8-0.85	5000
0.85-0.9	5008
0.9-0.95	5003
0.95-1	4968

Range frequencies for 100000 random numbers generated using LCG

Range	Frequency
0-0.05	50070
0.05-0.1	50068
0.1-0.15	50070
0.15-0.2	50067
0.2-0.25	49729
0.25-0.3	50067
0.3-0.35	50072
0.35-0.4	50069
0.4-0.45	50068
0.45-0.5	49723
0.5-0.55	50071
0.55-0.6	50071
0.6-0.65	50071
0.65-0.7	50071
0.7-0.75	49726
0.75-0.8	50068
0.8-0.85	50066
0.85-0.9	50073
0.9-0.95	50066
0.95-1	49714

3 Question 3

The values generated are not good. The i + 1 value depends on i the value. The Autocorrelation is very high, which is not good for randomness. The density of values generated is near 5 lines. To improve this we must select values such that the no. of lines increases and distance between them decreases.

Code for C++

```
#include < iostream >
   #include < iomanip >
   #include"uniform.h"
   using namespace std;
   int main() {
     UniformGenerator uni;
     //The values of variables
10
     uni.m = 2048;
11
     uni.a = 1229;
     uni.b = 1;
12
     //Taking x per our choice;
13
     unsigned long int x = 1;
14
     //Number of values to generate.
15
     unsigned long int n = 2047;
16
17
     uni.covariance(x,n);
     return 0;
18
```