Problem VI

Part A

In the adjacent figure where the coordinate system is orthonormal:

- (C₁) is the representative curve of the function defined over]0; +∞[by: x → 1/x - (ln x)²;
- (C₂) is the representative curve of the function defined over |0; +∞ by: x → ln x +1;
- (C1) and (C2) intersect at the point of abscissa 1.
- Study graphically according to the values of x in]0; +∞[the relative position of (C₁) and (C₂).
- 2) Deduce according to the values of x in]0; $+\infty[$ the sign of $g(x) = \frac{1}{x} (\ln x)^2 \ln x 1$.

Part B

Let f be the function defined over]0; $+\infty[$ by: $f(x) = \frac{1 + \ln x}{1 + x \ln x}$.

Denotes by (C_f) the representative curve of f in an orthonormal system $(O; \overline{i}; \overline{j})$.

- 1) Calculate $\lim_{x\to 0^+} f(x)$ and show that $\lim_{x\to +\infty} f(x) = 0$. Interpret graphically both results.
- 2) Show that for every x in]0; $+\infty$ [, $f'(x) = \frac{g(x)}{(1+x \ln x)^2}$.
- 3) Deduce the sense of variation of the function f and then set up its table of variations.
- 4) Let (T) be the tangent to the curve (C_f) at its point of intersection with the x-axis. Show that $y = \left(\frac{e^2}{e-1}\right)x \frac{e}{e-1}$ is an equation of (T).
- Draw (T) and (C_f).
- 6) Determine graphically the values of the real parameter m for which the equation (e-1)f(x) = e²x - me admits two distinct roots.
- Determine an antiderivative F of f over]0; +∞[such that F(e) = 0.