Machine Learning for Tight-Binding Hamiltonian Project presentation

Ivan SCOLAN^{1,2} Paul RUELLOUX^{1,2} Alexis WIETZKE¹

¹M2 ICFP ENS PSL

²Magistère de Physique Fondamentale d'Orsay Université Paris-Saclay

April 4, 2024

Outline

- Introduction and model
- 2 Initialization amplitude
- Resetting
- 4 Conclusion

Brief introduction of the Tight Binding model

$$H = \sum_{j \neq i}^{N} t_{ij} c_i^{\dagger} c_j + \sum_{i} \epsilon_i c_i^{\dagger} c_i$$

$$H = \sum_{j \neq i} t_{ij} c_i^{\dagger} c_j + \sum_i \epsilon_i c_i^{\dagger} c_i$$

$$j - 2 \ j - 1 \quad j \quad j + 1^{t_{j+1,j+2}}$$
Matrix representation:
$$\begin{pmatrix} \epsilon_1 & t_{1,2} & 0 & \dots & 0 \\ t_{2,1} & \epsilon_2 & \ddots & \\ 0 & \ddots & \\ \vdots & & & t_{N-1,N} \\ 0 & & & t_{N,N-1} & \epsilon_N \end{pmatrix}$$
Figure: 1D tight-binding model

Goal of the algorithm

Goal of the algorithm:

- find the values for the t_{ii}'s and ϵ_i 's so that the the energy spectrum of the Hamiltonian matches the reference energy bands.
- provide a Tight-Binding Hamiltonian for the system

Class and methods

One class TBHNN() containing six methods

- initialise()
- read_training_set()
- define_TB_representation()
- reset_optimiser()
- reinitialise()
- compute_bands()

Then in our algorithm we have three functions

- main()
- stochastic_reset_fitting()
- no_reset()
- fitting()

Studied parameters

The parameters that we can play with:

- the optimiser (Adam,...)
- the loss (meanLoss, smooth L1 Loss,...)
- learning rate
- ullet amplitude of initialisation σ
- ullet threshold ϵ
- type of resetting (stochastic, fixed, no reset)

In this presentation we will focus on

- type of resetting
- ullet amplitude of initialisation σ

Tuning the reinitialize function

- The reinitialize function
- Hopping terms and energies initialised by random variables following $\sim \mathcal{N}(0,\sigma_{init})$
- Dependency to σ_{init}

Convergence dependency on σ_{init}

Figure: Percentage of convergence under 8000 steps, depending on σ (threshold=3e-3, $nb_{avg}=33$).

Average total number of steps for one convergence

Figure: Average total number of steps for one convergence, depending on σ (threshold=3e-3, determinist reset at d=8000, $nb_{avg}=33$).

Converging path length dependency on σ_{init}

Figure: Average length of a converging run, depending on σ (threshold=3e – 3, nb_{avg} = 33).

Motivation

- \bullet The SGD encounters zero, one or multiple plateau for ϵ small enough
- The energy landscape admits faster paths
- ullet Resetting \longleftrightarrow reinitializing the search to avoid plateau

Implementation

- (D) Deterministic for λ ≡ # steps before resetting
 (S) Stochastic for λ ≡ average # steps before resetting
 & exponentially distributed
- $N \equiv$ total number of steps before convergence $k_{S/D} \equiv$ number of resets

$$\Rightarrow k_D pprox rac{N}{\lambda} \quad k_S \sim Pois(\lambda N)$$

• N depends on the landscape *i.e.* on the chosen path, which depends on the (re)-initial state

 \longrightarrow non-trivial k_s and N dependency

Implementation

Figure: Loss function history for (S) and (D)

• If ϵ small enough we expect:

$$\lambda \to +\infty$$
: (S) and (D) should coincide: no resetting $\lambda < \lambda_{critical}(\epsilon)$: N diverges for (S) and (D)

• Is there an optimal λ at which (S) is better than (D) ?

Comparison of (S) and (D)

Convergence vs Poissonian resetting rate at $\varepsilon = 0.0005$

Figure: Comparison of (S) and (D): each point sampled over 20 runs

Stochastic vs deterministic reset

Figure: Comparison of the number of steps between the two resetting methods.

Stochastic Resetting + cutoff in order to avoid rare events \Rightarrow fastest convergence

Conclusion

- Good reproduction from ab-initio data using SGD
- Dependence on initialisation
- Stochastic resetting is shown to work best on average with a cutoff