

STM32F101xC/D/E 和 STM32F103xC/D/E

勘误表

STM32F101xC/D/E和STM32F103xC/D/E的使用限制

芯片的识别

该勘误表适用于STMicroelectronics STM32F101xC/D/E标准型和增强型系列中的A版本的芯片。该芯片家族以集成了ARM™ 32位 Cortex®-M3内核为特征,其勘误信息已经发布(详情请见第一章节)。

表3:产品升级一览表概述了STM32F101xC/D/E和STM32103xC/D/E芯片的使用限制。表2列出了完整的芯片序列号。

通过表1中所示的方法可以识别这批芯片:

- 通过芯片封装上产品标志下的版本号
- 通过包装盒标签上的产品标志的最后3个数字

表1: 芯片的识别⁽¹⁾

产品标志	标注在芯片上的版本代码(2)
STM32F103xC, STM32F103xD, STM32F103xE	"A"
STM32F101xC, STM32F101xD, STM32F101xE	"A"

- 1. DBGMCU_IDCODE寄存器中REV_ID位指明芯片的版本号(关于如何找到版本号的详情,请参见 STM32F10xxx 参考手册)
- 2. 关于如何在不同的芯片封装上识别版本号,请参考附件A: 芯片上的版本号

表2: 芯片概览

涉及到的芯片	芯片序列号		
STM32F101xCDE	STM32F101RC STM32F101VC STM32F101ZC		
	STM32F101RD STM32F101VD STM32F101ZD		
	STM32F101RE STM32F101VE STM32F101ZE		
STM32F103xCDE	STM32F103RC STM32F103VC STM32F103ZC		
	STM32F103RD STM32F103VD STM32F103ZD		
	STM32F103RE STM32F103VE STM32F103ZE		

1 ARMTM 32-bit Cortex®-M3 的使用限制

STM32F10xxx 内核的勘误表可以从如下网址获得:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.eat0420a/

还有一个勘误表PDF文档的直接链接地址:

http://infocenter.arm.com/help/topic/com.arm.doc.eat0420a/Cortex-M3-Errata-r1p1-v0.2.pdf

描述的所有使用限制对应用的影响都很小,并且是针对Cortex-M3内核中的r1p1-01rel0版本。

2 STM32F10xxx 芯片的使用限制

2.1 ADC 自动注入通道

问题描述

如果ADC时钟使用4或8的预分频,从普通模式转到注入转换时会自动插入一个ADC时钟周期的延迟。如果ADC使用2分频的时钟时,插入的延迟为2个ADC时钟周期。

暂时解决办法

无

2.2 ADC的混合同步注入+交替模式

问题描述

当ADC使用4分频的时钟时,交替采样的时间间隔并不平均;也就是说采样的间隔并不是标准的7个ADC时钟周期,而是8个ADC时钟周期和6个ADC时钟周期交替。

暂时解决办法

无

2.3 ADC通道0上的电压尖峰

问题描述

当ADC处于注入触发模式时,在某些特殊情况下,PAO引脚上会产生一个低幅度的电压脉冲尖峰信号。此脉冲信号由内部耦合器产生,并同步到注入序列的头尾,与正在使用的哪个ADC注入通道无关。

尖峰的幅度通常都小于150mV,并持续10ns(该数据是在把I/O口配置为高阻输入并且不连任何输入的情况下测得的)。如果把PA0用作数字输出,尖峰对输出信号没有任何影响。如果PA0是作为数字输入,只要驱动PA0端口的阻抗小于5 kΩ,该尖峰信号也不会被检测成一个错误的跳变。尖峰信号对A端口的其余引脚没有影响,在单ADC配置时,对ADC的转换注入结果也没有任何影响。

当使用双ADC,并且ADC处于注入触发模式时,为了避免任何副作用,建议合理配置模拟通道,把通道0配置成注入通道。

暂时解决办法

无

2.4 启动代码

问题描述

目前"系统内存启动代码"的固件还没有发布,因此不能使用系统内存启动代码来通过 USART端口下载应用程序。

暂时解决办法

无

2.5 选项字和保护功能

问题描述

目前用户暂时还不能访问信息内存块,因此不能使用读写保护功能,也不能对用户选项字节进行写操作。

暂时解决办法

选项字节由ST在芯片测试时就预先设置为默认的配置。

2.6 WFI/WFE指令之后的flash读操作

配置条件

- Flash预取指功能使能
- 设置2个等待时间的Flash时序
- 休眠模式下停止了FLITF的时钟

问题描述

如果在访问flash的过程中执行了WFI/WFE指令,进入休眠模式,但是休眠的时间很短(少于2个时钟周期),则下一个唤醒事件到来时,退出休眠模式,继续刚才的flash访问过程,则这个从Flash取出的指令会遭到破坏。

暂时解决办法

如果设置了2个等待时间的flash时序,并且flash预取指功能使能,休眠模式下不要停止FLITF时钟—即RCC_AHBENR寄存器中的FLITFEN位保持被设置的状态(即保持复位值)。

2.7 复用功能

在某些特殊的情况下,映射到同一个引脚上的多个复用功能可能会有一些使用限制。

2.7.1 USART1_RTS和CAN_TX

配置条件

- USART1时钟使能
- CAN时钟关闭
- I/O端口的引脚PA12 被配置为复用功能的输出

问题描述

即使CAN的时钟被禁止了,没有用到CAN_TX,但是如果PA12被配置成了复用功能的输出,PA12会被设置为1,这样就不能使用USART1 RTS了。

暂时解决办法

如果要使用USART1的RTS功能,不管是否要用到CAN功能,都必须将CAN进行重映射:如果要使用CAN的话,就把CAN重映射到另外的I/O (把CAN_REMAP[1:0]设置成"10"或者"11");如果不使用CAN的话,就把CAN的重映射配置成不使用(即CAN_REMAP[1:0]设置成"01")。

2.7.2 SPI1处于从模式+USART2处于同步模式

配置条件

- SPI1和USART2的时钟都使能
- PA4被配置为复用输出

问题描述

如果SPI1处于从模式,则USART2(由于USART2_CK)不能工作于同步模式。

暂时解决办法

无

2.7.3 SPI1处于主模式+USART2处于同步模式

配置条件

- SPI1和USART2的时钟都使能
- PA4被配置为复用输出

问题描述

如果SPI1处于主模式,并且SPI1_NSS配置为软件控制,则USART2不能工作于同步模式。因为以上的情况造成USART2_CK引脚上不能输出。

暂时解决办法

为了输出USART2 CK,必须设置SPI1 CR2寄存器中的SSOE位。

2.7.4 SPI2处于从模式+USART3处于同步模式

配置条件

- SPI2和USART3的时钟都使能
- PB12被配置为复用输出

问题描述

如果SPI2处于从模式,则USART3(由于USART3_CK)不能工作于同步模式。

暂时解决办法

无

2.7.5 SPI2处于主模式+USART3处于同步模式

配置条件

- SPI2和USART3的时钟都使能
- PB15被配置为复用输出

问题描述

如果SPI2处于主模式,并且SPI2_NSS配置为软件控制模式,则USART3不能工作于同步模式。因为以上情况造成USART3 CK引脚上不能输出。

暂时解决办法

为了输出USART3_CK,必须设置SPI2_CR2寄存器中的SSOE位。

2.7.6 I2C2 和SPI2 以及USART3

配置条件

- SPI2和I2C2的时钟都使能或者I2C2和USART3的时钟都使能
- PB12被配置为复用输出

问题描述

- I2C2的SMBALERT信号(即使这个功能没有用到)和输出模式下的SPI2_NSS之间的冲突
- I2C2 SMBALERT信号(即使这个功能没有用到)和USART3_CK之间的冲突
- 在这样的情况下, PB12引脚默认被置位。

解决办法

要想同时使用I2C2和SPI2,双方都要遵循一定的规则,如下:

如果要想I2C2的SMBALERT作输出,SPI2只能工作在主模式下,并且采取软件控制NSS的方式。

如果要想I2C2的SMBALERT作为输入,SPI既可以工作在主模式也可以工作在从模式,但是需要采取软件控制NSS的方式。

当使用I2C的时候,SPI2不能以其他配置来工作。

当使用I2C的时候,不管有没有用到SMBAL信号,都不能使用USART3的同步模式。

2.7.7 I2C1 和经过重映射并且工作在主模式下的SPI1

配置条件

- SPI1和I2C1的时钟都使能
- SPI1被重映射
- PB5配置成复用输出模式

问题描述

SPI1_MOSI信号和I2C1的SMBALERT信号(即使没有用到SMBALERT)之间的冲突

暂时解决办法

如果使用经过重映射后的SPI1,必须把I2C1的时钟禁止掉。

2.7.8 I2C1 和经过重映射的TIM3 CH2

配置条件

- TIM3和I2C1的时钟都使能
- PB5配置成复用输出模式

问题描述

TIM3_CH2信号和I2C1的SMBALERT信号(即使没有用到SMBALERT)之间的冲突。 因为PB15会被默认地置位,TIM3_CH2就不能工作在输出模式了。

暂时解决办法

为了避免冲突,这种情况下的TIM3_CH2只能用作输入。

2.7.9 SDIO和I2S2/I2S3

问题描述

当SDIO被配置成1位或者4位模式时,SDIO_D7和I2S_MCK3之间,以及SDIO_D6和I2S2_MCK之间会有冲突。

暂时解决办法

当使用SDIO时,不能使用I2S的MCK功能。

2.7.10 SDIO 和TIM4/TIM8

问题描述

- SDIO配置成1位或者4位模式,会和配置成输出的TIM4_CH3、TIM4_CH4发生冲突
- SDIO配置成1位或者4位模式,会和配置成输出的TIM8_CH1、TIM8_CH2、TIM8 CH4发生冲突

彼此冲突的信号如下:

- TIM8_CH1和SDIO_D6
- TIM8_CH2和SDIO_D7
- TIM8 CH4和SDIO D1
- TIM4 CH3和SDIO D4
- TIM4_CH4和SDIO_D5

暂时解决办法

当使用SDIO时,就不能使用TIM8_CH1,TIM8_CH2,TIM8_CH4的输出模式;也不能使用TIM4_CH3和TIM4_CH4。

2.7.11 SDIO 和经过重映射的TIM3

问题描述

当SDIO配置成1位或者4位模式,TIM3的通道被重映射到PC6到PC9,并且配置成输出模式,冲突发生在以下信号之间:

- TIM3_CH1和SDIO_D6
- TIM3_CH2和SDIO_D7
- TIM3 CH4和SDIO D1

暂时解决办法

当使用SDIO时,就不要使用TIM3_CH1,TIM3_CH2和TIM3_CH4的输出模式了。

2.7.12 SDIO 和经过重映射的USART3以及USART4

问题描述

当SDIO配置成1位模式,如下信号会和被重映射的USART3_TX引脚以及USART_TX引脚发生冲突。

- USART3 TX和SDIO D2
- USART4_TX和SDIO_D2

暂时解决办法

当使用SDIO的同时,要使用USART3_TX,就用它的默认引脚分配(PB10)或者将其重映射到PD8引脚。

当使用SDIO的同时,就不要使用USART_TX。

2.7.13 SDIO 和经过重映射的I2C1

配置条件

当SDIO配置成1位或者4位模式,会和被重映射到PB8/9引脚上的I2C1发生冲突。冲突发生在以下信号之间:

- I2C1_SCL和SDIO_D4
- I2C1_SDA和SDIO_D5

暂时解决办法

当使用SDIO的同时,不要重映射I2C1的功能到PB8/PB9。

2.7.14 SDIO 和经过重映射的CAN

问题描述

当SDIO配置成1位或者4位模式,会和被重映射到PB8/9引脚上的CAN发生冲突。冲突发生在CAN_TX和SDIO_D5信号之间。

暂时解决办法

当使用SDIO的同时,要使用CAN,就用它的默认引脚分配(PA11/PA12)或者将其重映射到PD0/PD1。

2.7.15 FSMC和 I2C1以及TIM4_CH2

问题描述

如果要使用FSMC功能,NADV被配置成复用输出,该信号会被默认地置位。这样就和TIM4 CH2和I2C1的SDA信号发生冲突。

暂时解决办法

当使用FSMC的同时,不要使用TIM4_CH2。如果要使用I2C1并且封装允许,就把该功能重映射到PB8/PB9。

2.7.16 FSMC和 经过重映射的USART2

问题描述

如果要使用FSMC,NE1被配置成复用输出,该信号会被默认地置位。这样就和USART2的CK信号发生冲突。

暂时解决办法

当使用FSMC的时候,就不要重映射USART2。

产品升级表

表3概括了下一版本的芯片的升级计划。

表3. 产品升级概览

章节		限制	确认并已纳入计划的 修改
章节2.1		ADC自动注入通道	
章节2.2		ADC混合同步注入+交替模式	
章节2.3		ADC通道0上的电压尖峰	
章节2.4		启动代码	•
章节2.5		选项字和保护功能	•
章节2.6		WFI/WFE指令后的Flash读操作	
	章节2.7.1	USART1_RTS和CAN_TX	
章节2.7; 复用功能	章节2.7.2	从模式下的SPI1和同步模式下的USART2	
	章节2.7.3	主模式下的SPI1和同步模式下的USART2	
	章节2.7.4	从模式下的SPI2和同步模式下的USART3	
	章节2.7.5	主模式下的SPI2和同步模式下的USART3	
	章节2.7.6	I2C2和SPI2以及USART3	•
	章节2.7.7	I2C1和重映射后主模式下的SPI1	•
	章节2.7.8	I2C1和重映射后的TIM3_CH2	•
	章节2.7.9	SDIO和I2S2/I2S3	•
	章节2.7.10	SDIO和TIM4以及TIM8	(1)
	章节2.7.11	SDIO和重映射后的TIM3	(2)
	章节2.7.12	SDIO和重映射后的USART3以及USART4	
	章节2.7.13	SDIO和重映射后的I2C1	•
	章节2.7.14	SDIO和重映射后的CAN	•

章节2.7.15	FSMC和I2C1以及TIM4_CH2	
章节2.7.16	FSMC和重映射后的USART2	

- (1)将在下一版本的芯片中,改善部分局限:SDIO_D4,SDIO_D5,SDIO_D6和SDIO_D7
- (2)将在下一版本的芯片中,改善部分局限:SDIO_D6和SDIO_D7

附录A 芯片上面的版本号

图1到图5分别显示了LFBGA144、LFBGA100、LQFP144、LQFP100和LQFP64这五种不同封装的芯片上版本标志的记号。

图1: LFGBA144封装的正面俯视图

图 2: LFBGA100 封装的正面俯视图

图3: LQFP144封装的正面俯视图

图4: LQFP100封装的正面俯视图

图5: LQFP64封装的正面俯视图

版本修订记录

表4: 文档版本记录

日期	版本	变化
2008年4月7号	1	初版