Листок 3. Линейные отображения, матрицы

- Определение **1.** Пусть L_1 , L_2 линейные пространства. Отображение линейных пространств $A \colon L_1 \to L_2$ называется линейным отображением (гомоморфизмом), если выполняются следующие условия: A(x+y) = A(x) + A(y), $A(\lambda x) = \lambda A(x)$. Множество всех линейных отображений из L_1 в L_2 обозначается $\operatorname{Hom}(L_1, L_2)$.
- 3 \diamond 1 Являются ли линейными следующие отображения $A\colon L_1 \to L_2$: **a)** Ax = 0 **б)** $L_1 = L_2$, Ax = x (такое отображение называется тождественным; обозначение: id или E); **в)** $L_1 = \mathbb{R}^4$, $L_2 = \mathbb{R}^3$, A(x,y,z,t) = (x+y,y+z,z+t) **г)** $L_1 = L_2 = \mathbb{R}^3$, A(x,y,z) = (x+1,y+1,z+1) **д)** $L_1 = L_2 = \mathbb{R}[x]$, $(Ap)(x) = p(\lambda x^2 + \nu)$, $\lambda, \nu \in \mathbb{R}$ **e)** $L_1 = L_2 = \mathbb{R}[x]$, $(Ap)(x) = q(x) \cdot p(x)$, $q \in \mathbb{R}[x]$ **ж***) L_1 пространство сходящихся последовательностей действительных чисел, $L_2 = \mathbb{R}$, $A(x) = \lim_{i \to \infty} x_i$
- **3** \diamond **2** Доказать, что Hom (L_1, L_2) линейное пространство относительно следующих операций: (A + B)x = Ax + Bx, $(\lambda A)x = \lambda (Ax)$.
- **3**\$\rightarrow\$3 Доказать, что произведение (композиция) линейных отображений есть линейное отображение.
- Определение **2.** \mathcal{A} *дром* линейного отображения A называется множество, состоящее из всех таких x, что Ax = 0. Обозначение: $\ker A$. Образ линейного отображения A обозначается $\operatorname{im} A$.
- **34** Доказать, что ядро и образ линейного отображения являются линейными пространствами.
- **3**◊**5** Найти ядра и образы линейных отображений задачи 1.
- **3** \diamond **6** Пусть A отображение пространства многочленов степени не выше n с действительными коэффициентами в пространство функций на $M \subset \mathbb{R}$, которое переводит многочлен в его ограничение на M. **a)** Доказать, что A линейно. **6)** При каких M ker A = 0?
- Определение **3.** Отображение $A \in \text{Hom}(L_1, L_2)$ называется изоморфизмом, если $\ker A = 0$ и $\operatorname{im} A = L_2$. Множество изоморфизмов обозначается $\operatorname{Iso}(L_1, L_2)$. В случае $L_1 = L_2$ изоморфизмы называются автоморфизмами. Обозначение: $\operatorname{Aut}(L_1)$.
- **3** \diamond **7** Пусть $A \in \text{Hom}(L_1, L_2)$. Доказать, что следующие утверждения эквивалентны: **a)** A изоморфизм; **б)** А взаимно однозначно; **в)** А обратимо, т. е. существует такое отображение $A^{-1} \in \text{Hom}(L_2, L_1)$, что $AA^{-1} = \text{id}$ и $A^{-1}A = \text{id}$.

- **3\(\delta\)** Пусть $A \in \text{Iso}(L_2, L_3)$, $B \in \text{Iso}(L_1, L_2)$, λ число, не равное нулю. Доказать, что $\lambda A \in \text{Iso}(L_2, L_3)$, $AB \in \text{Iso}(L_1, L_3)$, и выразить обратные к λA и AB отображения через A^{-1} и B^{-1} .
- Определение 4. Пусть даны базис (e_1, \ldots, e_m) линейного пространства L и базис (g_1, \ldots, g_n) линейного пространства M. Пусть A линейное отображение из L в M, $Ae_i = \sum a_i^j g_j$. Тогда набор чисел (a_i^j) , записываемый в виде таблицы с m столбцами и n строками, называют матрицей отображения A в базисах (e_i) , (g_j) . Если L = M, $(e_i) = (g_j)$, то говорят о матрице оператора в базисе (e_i) . Наконец, просто матрицей называют прямоугольную таблицу чисел (элементов поля).
- **3**09 Доказать, что отображение, сопоставляющее линейному отображению его матрицу в фиксированных базисах, взаимно однозначно.
- 3◊10 Найти матрицы отображений задачи 1.
- **3** \diamond **11** Пусть L пространство многочленов степени не выше n с действительными коэффициентами. Доказать, что следующие отображения являются линейными, и найти их матрицы в базисе $(x_n, \ldots, x, 1)$: **a)** Ap(x) = p(cx); **б)** Ap(x) = p(x+s).
- **3** \diamond **12** Пусть L_1 , L_2 , L_3 конечномерные линейные пространства, в которых заданы базисы. Пусть (a_i) , (b_i) , (c_n) матрицы отображений $A, B \in \text{Hom}(L_1, L_2)$, $C \in \text{Hom}(L_2, L_3)$ в этих базисах. Найти матрицы следующих отображений: **a**) id (единичная матрица, обозначение: δ_i^j или E); **б**) λA ; **в**) A + B; **г**) CA (правило «строка на столбец»).
- **3** \diamond **13 а)** Записать оператор Rot_{α} поворота плоскости на угол α матрицей. **б)** Проверить, что $Rot_{\alpha}Rot_{\beta}=Rot_{\alpha+\beta}$
- $3 \diamond 14$ Найти матрицу оператора A^n , если матрица оператора A имеет вид

a)
$$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$
 6) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ B) $\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$ r) $\begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$

д)
$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
 е) $\begin{pmatrix} \cosh \alpha & \sinh \alpha \\ \sinh \alpha & \cosh \alpha \end{pmatrix}$