Modified Euler and Runge Kutta Methods

Euler methods for numerical solution of ODEs

1. Explicit

2. Implicit

3. Heun's method

EXAMPLE
$$\frac{dy}{dx} = \frac{x^3 + 1}{y}$$
 $y(0) = 2$ $0 \le x \le 10, \Delta x = 0.5$

X	y _{exact}	y _{Heun}	y _{Imp.Euler}
0	2	2	2
1	2.55	2.575	2.63
2	4.00	4.073	4.33
3	7.106	7.20	6.97
4	11.83	11.929	12.02

4. Midpoint method (modified Euler)

5. Runge Kutta method

Based on Taylor series expansion

Second order

Fourth order