Lecture 22: Virtual Memory

Philipp Koehn

April 3, 2020

601.229 Computer Systems Fundamentals

Recall: Process Address Space

Virtual Memory

- ► Abstraction of physical memory
- ► Purpose
 - ▶ appearance of more available memory than physically exists (DRAM)
 - ► handles disk caching / loading
 - ▶ insulates memory of each process

Virtual Memory

- ► Abstraction of physical memory
- Purpose
 - ▶ appearance of more available memory than physically exists (DRAM)
 - ► handles disk caching / loading
 - ▶ insulates memory of each process
- ▶ Page table: maps from virtual address to physical addresses

Virtual Memory

- Abstraction of physical memory
- Purpose
 - ▶ appearance of more available memory than physically exists (DRAM)
 - handles disk caching / loading
 - ▶ insulates memory of each process
- ▶ Page table: maps from virtual address to physical addresses
- Memory management unit (MMU): hardware implementation of address translation

Warning

- ► This is going to get very complex
- ► Closely tied with multi-tasking (multiple processes)
- ▶ Partly managed by hardware, partly managed by software

Virtual addressing

Physical Addressing

► So far, assumed CPU addresses physical memory

Virtual Addressing

▶ Memory management unit (MMU): maps virtual to physical addresses

Address Space

- ► Virtual memory size: N = 2ⁿ bytes, e.g., 256TB
- ▶ Physical memory size: $M = 2^m$ bytes, e.g., 16GB
- ▶ Page (block of memory): $P = 2^p$ bytes, e.g., 4KB
- ► A virtual address can be encoded in *n* bits

Caching

Caching... Again?

- Yes, we already discussed caching, but for on-chip cache of DRAM memory
- ► Now
 - caching between RAM and disk
 - driven by a large virtual memory address space
 - to avoid unnecessary and duplicate loading
- Jargon
 - previously "block", now "page"
 - now: "swapping" or "paging"

Mapping

State of Virtual Memory Page

- ► Cached
 - ► allocated page
 - stored in physical memory

State of Virtual Memory Page

- Cached
 - ▶ allocated page
 - stored in physical memory
- Uncached
 - allocated page
 - not in physical memory

State of Virtual Memory Page

- Cached
 - ► allocated page
 - stored in physical memory
- Uncached
 - ► allocated page
 - not in physical memory
- Unallocated
 - not used by virtual memory system so far

► Array of page table entries (PTE)

Array of page table entries (PTE)
 (actually, a tree where the leaves store the page table entries)

- Array of page table entries (PTE)
 (actually, a tree where the leaves store the page table entries)
- ► Each PTE maps a virtual page to a physical page

- Array of page table entries (PTE)
 (actually, a tree where the leaves store the page table entries)
- ► Each PTE maps a virtual page to a physical page
- ► Valid bit
 - set if PTE currently maps to physical address (cached)
 - not set otherwise (uncached or unallocated)

- Array of page table entries (PTE)
 (actually, a tree where the leaves store the page table entries)
- ► Each PTE maps a virtual page to a physical page
- ► Valid bit
 - set if PTE currently maps to physical address (cached)
 - not set otherwise (uncached or unallocated)
- Mapped address
 - ▶ if cached: physical address in DRAM
 - ▶ if not cached: physical address on disk

Page Hit

Allocating Pages

- ▶ What happens when we load a program?
- ▶ We need to load its executable into memory
- ➤ Similar: create data objects when program is running ("allocating" memory)

Allocating Page

Allocating Page

- ► Map to data on disk
 - do not actual load
 - just create page table entries
 - ► let virtual memory system handle loading
- \Rightarrow On-demand loading

Process Memory

► Nothing loaded at startup

Process Memory

- ► Nothing loaded at startup
- ► Working set (or resident set)
 - pages of a process that are currently in DRAM
 - ▶ loaded by virtual memory system on demand

Process Memory

- Nothing loaded at startup
- ► Working set (or resident set)
 - pages of a process that are currently in DRAM
 - ▶ loaded by virtual memory system on demand
- ► Thrashing
 - memory actively required by all processes larger than physically available
 - frequent swapping of memory to/from disk
 - very bad: slows down machine dramatically