Álgebra Linear

Mestrado Integrado em Engenharia Informática

米	2,5	
0111101010000	Universidade do Minho Escola de Ciências	

Departamento de Matemática

5 novembro 2019 Duração: 2 horas

Nome: ______ Número: _____

Grupo I

Responda às questões deste grupo nos espaços indicados, sem apresentar os seus cálculos.

- **1.** Considere a matriz $A = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 1 & 3 \\ 0 & 2 & 1 \end{pmatrix}$.
 - a) A característica da matriz A é: 3.
 - **b)** $A^2 2I_3 = \begin{pmatrix} -5 & 4 & 6 \\ -4 & 1 & 6 \\ -4 & 4 & 5 \end{pmatrix}$.
 - c) A matriz A é equivalente por linhas à matriz $B = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & -5 \end{pmatrix}$? Sim.
 - **d)** O valor de x para o qual a matriz $\begin{pmatrix} 5 & 2 & -6 \\ -2 & -1 & x \\ 4 & 2 & -5 \end{pmatrix}$ é a inversa de A é: 3.
- 2. Considere a matriz $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 5 & 6 \\ -1 & -2 & 1 & 7 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.
 - **a)** $\det A = 4$.
 - **b)** O complemento algébrico do elemento 2 é: -5.
 - c) O elemento na posição (2,1) de A^{-1} é: $-\frac{5}{4}$.
 - **d)** Se $B \in \mathbb{R}^{4\times 4}$ é tal que $\det B = -\frac{1}{4}$, então $\det(-\frac{1}{2}ABA^T) \det(AB)^{-1} = \frac{3}{4}$.
- 3. Seja $A \in \mathbb{R}^{5 \times 4}$ uma matriz em escada. Considere as seguintes afirmações:
 - a) O sistema Ax = 0 não pode ter solução única.
 - **b)** O sistema $A^T x = b$ nunca é possível e determinado, seja qual for $b \in \mathbb{R}^{4 \times 1}$.
 - c) Se u e v são soluções do sistema homogéneo cuja matriz é A, então 2u+3v também é solução desse sistema.
 - **d)** A última linha de A é nula.

As afirmações verdadeiras são: b), c) e d).

(continua no verso)

4. Considere a matriz

$$A = egin{pmatrix} 1 & 1 & 1 & -1 \ 1 & 1 & 1 & 2 \ 1 & 1 & a & 1 \ 1 & b & 1 & 1 \end{pmatrix}, \ a,b \in \mathbb{R}.$$

- a) $\det A = -3(a-1)(b-1) (\det A = -3ab + 3a + 3b 3)$
- **b)** A matriz A é invertível se e só se $a \neq 1$ e $b \neq 1$.
- c) Para a=3 e b=2, a primeira coluna da matriz inversa de $A ext{ f} \begin{pmatrix} 7/6 \\ -1/3 \\ -1/6 \\ -1/3 \end{pmatrix}$.

Grupo II

Responda às questões deste grupo numa folha de teste, apresentando os seus cálculos.

1. Considere o seguinte sistema de equações lineares

$$\begin{cases} x - y + 2z = 3 \\ -2x + y + \alpha z = -2 , \ \alpha, \beta \in \mathbb{R}. \\ -x + 4z = \beta \end{cases}$$

a) Classifique-o, em função dos valores dos parâmetros α e β , quanto à existência e unicidade de solução.

$$\begin{pmatrix} 1 & -1 & 2 & 3 \\ -2 & 1 & \alpha & -2 \\ -1 & 0 & 4 & \beta \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & -1 & 4 + \alpha & 4 \\ 0 & -1 & 6 & \beta + 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 & 3 \\ 0 & -1 & 4 + \alpha & 4 \\ 0 & 0 & 2 - \alpha & \beta - 1 \end{pmatrix}.$$

Então:

- Para $\alpha \neq 2$, o sistema é possível e determinado (seja qual for o valor de β)
- Para $\alpha = 2$ e $\beta \neq 1$, o sistema é impossível;
- Para $\alpha=2$ e $\beta=1$, o sistema é possível e simplesmente indeterminado.
- b) No(s) caso(s) em que o sistema é indeterminado, indique duas das suas soluções.

O sistema é indeterminado para
$$lpha=2$$
 e $eta=1$; tem-se, nesse caso um sistema equivalente ao seguinte

$$\begin{cases} x - y + 2z = 3 \\ -y + 6z = 4 \end{cases}$$

Mas

$$\begin{cases} x - y + 2z = 3 \\ -y + 6z = 4 \end{cases} \iff \begin{cases} x + 4 - 6z + 2z = 3 \\ y = -4 + 6z \end{cases} \iff \begin{cases} x = 4z - 1 \\ y = 6z - 4, z \in \mathbb{R} \end{cases}$$

As soluções do sistema são todos os ternos da forma (4k-1,6k-4,k), com $k \in \mathbb{R}$; duas das suas soluções são, por exemplo, (-1,-4,0) e (3,2,1).

c) Determine os valores de α e β para os quais o sistema admite (1,0,1) como solução. O terno (1,0,1) é solução do sistema se e só se

$$\begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & \alpha \\ -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ \beta \end{pmatrix}.$$

Tem-se

$$\begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & \alpha \\ -1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ \beta \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 \\ -2 + \alpha \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ \beta \end{pmatrix} \Leftrightarrow -2 + \alpha = -2 \text{ e } \beta = 3 \Leftrightarrow \alpha = 0 \text{ e } \beta = 3.$$

- **2.** Seja $A \in \mathbb{R}^{n \times n}$. Mostre que:
 - a) $\alpha(A+A^T)$ é uma matriz simétrica, para todo $\alpha \in \mathbb{R}$; Uma matriz X é simétrica se e só se $X^T=X$. Temos

$$(\alpha(A + A^T))^T = \alpha(A + A^T)^T = \alpha(A^T + (A^T)^T) = \alpha(A^T + A) = \alpha(A + A^T)$$

Logo, $\alpha(A + A^T)$ é simétrica.

b) $\alpha(A-A^T)$ é uma matriz antissimétrica, para todo $\alpha \in \mathbb{R}$; Uma matriz X é antissimétrica se e só se $X^T=-X$. Temos

$$(\alpha(A - A^T))^T = \alpha(A - A^T)^T = \alpha(A^T - (A^T)^T) = \alpha(A^T - A) = -\alpha(A^T + A) = -\alpha(A - A^T).$$

Logo, $\alpha(A - A^T)$ é simétrica.

c) A pode ser escrita, de forma única, como A=S+T, onde S é uma matriz simétrica e T é uma matriz antissimétrica.

$$A + A^{T} + (A - A^{T}) = 2A \Rightarrow A = \underbrace{\frac{1}{2}(A + A^{T})}_{S} + \underbrace{\frac{1}{2}(A - A^{T})}_{T}.$$

A matriz $S=\frac{1}{2}(A+A^T)$ é simétrica e a matriz $T=\frac{1}{2}(A-A^T)$ é antissimétrica (de acordo com o provado nas alíneas anteriores) e tem-se A=S+T, o que mostra que A se pode escrever como soma de uma matriz simétrica com uma matriz antissimétrica.

Vejamos, agora, que a decomposição de A como soma de uma matriz simétrica com uma matriz antissimétrica é única.

Sejam S,S' matrizes simétricas e T,T' matrizes antissimétricas tais que A=S+T e A=S'+T'. Então, tem-se

$$A = S + T$$
 e $A = S' + T' \Rightarrow S + T = S' + T' \Rightarrow S - S' = T' - T$.

Mas, sendo S e S' simétricas, tem-se que S-S' é simétrica (ver demonstração abaixo) e sendo T e T' antissimétricas, tem-se que T'-T é antissimétrica (ver demonstração abaixo). Por outro lado, tem-se que a única matriz simultaneamente simétrica e antissimétrica é a matriz nula (exercício das aulas). Logo, temos S-S'=O e T'-T=O, de onde se segue que S=S' e T=T', como queríamos mostrar.

• Mostrar que, sendo S e S^\prime simétricas, então $S-S^\prime$ é simétrica.

Como S e S' são simétricas, tem-se $S^T=S$ e $S'^T=S'$. Então $(S-S')^T=S^T-S'^T=S-S'$, o que mostra que S-S' é simétrica.

• Mostrar que, sendo T e T^\prime antissimétricas, então $T^\prime - T$ é antissimétrica.

Sendo T e T' duas matrizes antissimétricas, tem-se $T^T=-T$ e $T'^T=-T'$. Então $(T'-T)^T=T'^T-T^T=-T'-(-T)=-(T'-T)$, o que mostra que T'-T é antissimétrica.

• Mostrar que a única matriz simultaneamente simétrica e antissimétrica é a matriz nula.

X simétrica e antissimétrica $\Rightarrow X^T = X$ e $X^T = -X \Rightarrow X = -X \Rightarrow 2X = O \Rightarrow X = O$.