

Professor David Harrison

April 25 HW5 handed out (last night)

May 2 HW5 due (Thursday)

worth 6% of your grade which is under the 10% limit for dead

week.

May 6-10 Finals week (M-F)

May 7 Final (Tuesday, 4:00pm)

OFFICE HOURS

Tuesday Wednesday 4:00-5:00 PM

day 12:30-2:30 PM

.

BLACKBOARD & GITHUB

Slides and a jupyter notebook for lectures 20 and 21 are on blackboard and in GitHub.

The project is at

https://github.com/dosirrah/CSCI443_AdvancedDataScience

PREVIOUSLY: SAID THIS WAS DUMB

For Pandas and Pandas on Spark DataFrame

```
states = customers_df["customer_state"][:10]
```

Command took 0.21 seconds -- by harrison@cs.olemis

Cmd 12

print(states)

PREVIOUSLY: SAID THIS WAS DUMB

For Pandas I ran this many times and I saw no significant difference between

and

states = customers_df["customer_state"].head(10)

For Pandas I ran this many times and I saw no significant difference between

and

```
states = customers_df["customer_state"].head(10)
```

PREVIOUSLY: SAID THIS WAS

Pandas uses numpy underneath.

Slicing does not allocate a new array.

Maintains reference to part of existing numpy array.

Thus creating a slice takes negligible time.

```
>>> import numpy as np
>>> np.array([4,6,2,6,2,1,1,9])
array([4, 6, 2, 6, 2, 1, 1, 9])
>>> arr = np.array([4,6,2,6,2,1,1,9])
>>> slice = arr[:5]
>>> type(slice)
<class 'numpy.ndarray'>
>>> arr[0]
>>> slice[0] = 5
>>> arr[0]
```


With Pands-on-Spark

Catalyst Optimizer will likely change it to

states = customers_df["customer_state"].head(10)

PREVIOUSLY: SEQUENCE OF TRANSFORMATIONS

PREVIOUSLY: TRANSFORMATIONS FORM A DAG

PREVIOUSLY: DIFFERENT TRANSFORMATIONS, DIFFERENT DEPENDENCIES

Narrow Dependencies:

Wide Dependencies:

PREVIOUSLY: CATALYST OPTIMIZER

Execution Model

PREVIOUSLY: CATALYST OPTIMIZER

CATALYST OPTIMIZER (PREVIOUSLY MISSING SLIDE)

PREVIOUSLY: CATALYST OPTIMIZER Optimizations like **Execution Model** moving filters as close to the data as possible so data is minimized before performing downstream SPARK SQ operations Code Generator Optimizer **DataFrames** Analyzer Physical plans odel Optimized Unresolved Selected Logical Physical **SQL** Queries Logical Physical Plan Query Plan Plan Plans Plan Catalog DataSet 2024 Csci443 17

PREVIOUSLY: CATALYST OPTIMIZER Physical plan defines how the logical plan will be **Execution Model** executed on the cluster. Includes details about data partitioning and SPARK SQL Catalyst Optil physical operations Prepare Code Generator Optimizer Physical pla **DataFrames** Analyzer odel Optimized Unresolved Selected Logical Physical **SQL** Queries Logical Physical Plan Query Plan Plan Plans Plan Catalog DataSet

21

Csci443

2024

PREVIOUSLY: CATALYST OPTIMIZER Cost model is used to pick the optimal plan. **Execution Model** SPARK SQL Catalyst Optimizer Prepare Code Generator Analyzer Optimizer Physical plans **DataFrames** odel Optimized Unresolved Selected Logical Physical Š **SQL** Queries Logical Physical Plan Query Plan Plan Plans Plan Catalog DataSet

2024 Csci443 22

CATALYST OPTIMIZER

Execution Model

Code generator outputs optimized Java bytecode

(Spark is primarily written in Scala running on the JVM)

2024 Csci443

23

OLIST: BRAZILIAN E-COMMERCE PLATFORM

OLIST

Dataset for homework 5. + \oslash Ψ 솄 <>

OLIST AND 3 COLLABORATORS · UPDATED 3 YEARS AGO

100,000 Orders with product, customer and reviews info

Data Card

Code (503)

Discussion (57)

Suggestions (0)

OLIST

- The dataset has been committed to github using git's large-file-storage (gitlfs).
- If you pull the class repository it will download a copy of the dataset to your local system. (see hw5/archive)

OR

 Or you can download the dataset from Kaggle.

```
dave@FogelmauashsMBP archive % ls -1
olist_customers_dataset.csv
olist_geolocation_dataset.csv
olist_order_items_dataset.csv
olist_order_payments_dataset.csv
olist_order_reviews_dataset.csv
olist_orders_dataset.csv
olist_products_dataset.csv
olist_sellers_dataset.csv
product_category_name_translation.csv
dave@FogelmauashsMBP archive %
```

24

Csci443

EXPLORATORY DATA ANALYSIS

- Purpose is to better understand the data.
 - Understand its structure
 - Understand its semantics
 - Understand the relationships between data.

2024 Csci443 /

DATA CLEANING

- Usually viewed as part of Exploratory Data Analysis.
- How do we deal with the messiness of real-world data?
- Identifying missing values.
 - Imputation (filling in missing values)
 - Exclusion
- Detecting outliers
- Detecting errors
 - Sometimes errors are obvious and correctable.

2024 Csci443 /

Understand size of data.

Is data bigger than physical memory?

If so, maybe Pandas isn't sufficient. Need cluster.

Understand computational requirements.

Do I intend to do machine learning?

Perhaps a machine with many GPUs is appropriate or Google Colab.

2024 Csci443 /

Understand computational requirements.

Am I planning to do many transformations, map-reduce operations or SQL operations.

Maybe Spark.

Diagram the relationships between datasets.

Summarize

- types of data
 - Numeric, categorical
 - Ordinal

the meaning (semantics) of each field,

customer_id = key to the orders dataset. Each order has a unique customer_id.	customer_unique = unique identifier of a customer.	# customer_zip_co == first five digits of customer zip code	△ customer_city = customer city name		
99441 unique values	96096 unique values	1003 100.0k	sao paulo 16 rio de janeiro 7 Other (77019) 77	%	
06b8999e2fba1a1fbc88 172c00ba8bc7	861eff4711a542e4b938 43c6dd7febb0	14409	franca		
18955e83d337fd6b2def 6b18a428ac77	290c77bc529b7ac935b9 3aa66c333dc3	09790	sao bernardo do campo		
4e7b3e00288586ebd087 12fdd0374a03	060e732b5b29e8181a18 229c7b0b2b5e	01151	sao paulo		

Look at some of the raw data

```
[134]: customers_df = pd.read_csv(os.path.join(DS, 'olist_customers_dataset.csv'))
    display(customers_df.head(10))
```

	customer_id	customer_unique_id	customer_zip_code_prefix	customer_city	customer_state
0	06b8999e2fba1a1fbc88172c00ba8bc7	861eff4711a542e4b93843c6dd7febb0	14409	franca	SP
1	18955e83d337fd6b2def6b18a428ac77	290c77bc529b7ac935b93aa66c333dc3	9790	sao bernardo do campo	SP
2	4e7b3e00288586ebd08712fdd0374a03	060e732b5b29e8181a18229c7b0b2b5e	1151	sao paulo	SP
3	b2b6027bc5c5109e529d4dc6358b12c3	259dac757896d24d7702b9acbbff3f3c	8775	mogi das cruzes	SP
4	4f2d8ab171c80ec8364f7c12e35b23ad	345ecd01c38d18a9036ed96c73b8d066	13056	campinas	SP
5	879864dab9bc3047522c92c82e1212b8	4c93744516667ad3b8f1fb645a3116a4	89254	jaragua do sul	sc
6	fd826e7cf63160e536e0908c76c3f441	addec96d2e059c80c30fe6871d30d177	4534	sao paulo	SP
7	5e274e7a0c3809e14aba7ad5aae0d407	57b2a98a409812fe9618067b6b8ebe4f	35182	timoteo	MG
8	5adf08e34b2e993982a47070956c5c65	1175e95fb47ddff9de6b2b06188f7e0d	81560	curitiba	PR
9	4b7139f34592b3a31687243a302fa75b	9afe194fb833f79e300e37e580171f22	30575	belo horizonte	MG

2011

DATA CLEANING: MISSING DATA

Is there missing data?

 If yes, we need to either using imputation to fill-in missing data

OR

We remove the records missing data.

NO missing data in this case.

```
1 customers_df.isnull().sum()
2
```

▶ (3) Spark Jobs

```
Out[10]: customer_id 0
customer_unique_id 0
customer_zip_code_prefix 0
customer_city 0
customer_state 0
dtype: int64
```

2024 Csci443

DATA CLEANING: MISSING DATA

If we only look for nulls, we may not catch some of the missing data. Other indicators of missing data:

- Empty strings
- "None"
- "N/A"
- 0
 - 0 can be tricky since it may be valid for some valid for numerical data.
- -1
 - -1 can also be tricky. Maybe used for positive or nonnegative integer numeric data to denote missing.

2024 Csci443 /

Pandas and Pandas-on-Spark can efficiently check for conditions across entire data sets:

```
import pandas as pd
# Data
data = {
    'Value': [0, 2, 3, 5, 0, 7, 0, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
zeroes = (df.select_dtypes(include=[np.number]) == 0)
display(zeroes)
```

Pandas and Pandas-on-Spark can efficiently check for conditions across entire data sets:

<pre>import pandas as pd</pre>
<pre># Data data = { 'Value': [0, 2, 3, 5, 0, 7, 0, 9], 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Helen'] }</pre>
<pre># Create DataFrame df = pd.DataFrame(data)</pre>
Display DataFrame display(df)
<pre>zeroes = (df.select_dtypes(include=[np.number]) == 0) display(zeroes)</pre>

	Value	Name
0	0	Alice
1	2	Bob
2	3	Charlie
3	5	David
4	0	Eve
5	7	Frank
6	0	Grace
7	9	Helen

Value

True

False

True

True

1 False

3 False

5 False

7 False

2024 Csci443

Pandas and Pandas-on-Spark can efficiently check for condicacross entire data sets:

import pandas as pd # Data data = { 'Value': [0, 2, 3, 5, 0, 7, 0, 9], 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Helen'] # Create DataFrame df = pd.DataFrame(data) # Display DataFrame display(df) zeroes = (df.select_dtypes(include=[np.number]) == 0) display(zeroes)

	Value	Name		Value
0	0	Alice	0	True
1	2	Bob	1	False
2	3	Charlie	2	False
3	5	David	3	False
4	0	Eve	4	True
5	7	Frank	5	False
6	0	Grace	6	True
7	9	Helen	7	False

zeroes

df

2024 Csci443 /

Selecting fields with NaN (Not-a-Number).

```
# Data with NaN values
data = {
    'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
            'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
nans = df.select_dtypes(include=[np.number]).isna()
display(nans)
```

Selecting fields with NaN (Not-a-Number).

```
# Data with NaN values
data = {
    'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
            'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
nans = df.select_dtypes(include=[np.number]).isna()
display(nans)
```


Combine selections of zeroes and NaNs.

```
# Data with NaN values
data = {
    'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
             'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
numconds = ((df.select_dtypes(include=[np.number]) == 0) |
    df.select_dtypes(include=[np.number]).isna())
display(numconds)
```

Logical OR

Combine selections of zeroes and NaNs.

```
# Data with NaN values
data = {
    'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
             'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
numconds = ((df.select_dtypes(include=[np.number]) == 0) |
    df.select_dtypes(include=[np.number]).isna())
display(numconds)
```


Let's assume we choose to discard the rows with missing data.

```
# Data with NaN values
data = {
    'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
             'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
numconds = ((df.select_dtypes(include=[np.number]) == 0)
    df.select_dtypes(include=[np.number]).isna())
display(numconds)
# axis=1 means create column that is true if any of the
# values in a row are true.
rows_to_drop = numconds.any(axis=1)
display(rows_to_drop)
filtered_df = df[~rows_to_drop]
display(filtered_df)
```

Let's assume we choose to discard the rows with

missing data.

```
# Data with NaN values
data = {
    'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
             'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
numconds = ((df.select_dtypes(include=[np.number]) == 0)
    df.select_dtypes(include=[np.number]).isna())
display(numconds)
# axis=1 means create column that is true if any of the
# values in a row are true.
rows_to_drop = numconds.any(axis=1)
display(rows_to_drop)
filtered_df = df[~rows_to_drop]
display(filtered_df)
```

	_	
	Value	Name
0	0.0	Alice
1	2.0	Bob
2	NaN	Charlie
3	5.0	David
4	0.0	Eve
5	7.0	Frank
6	NaN	Grace
7	9.0	Helen

df

Let's assume we choose to discard the rows with

missing data.

Data with NaN values
data = {
'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
'Frank', 'Grace', 'Helen']
}
Create DataFrame
<pre>df = pd.DataFrame(data)</pre>
Display DataFrame
display(df)
<pre>numconds = ((df.select_dtypes(include=[np.number]) == 0) df.select_dtypes(include=[np.number]).isna())</pre>
display(numconds)
axis=1 means create column that is true if any of the
values in a row are true.
rows_to_drop = numconds.any(axis=1)
display(rows_to_drop)
filtered_df = df[~rows_to_drop]
display(filtered_df)

	d	†		conds	
	Value	Name		Value	
0	0.0	Alice	0	True	
1	2.0	Bob	1	False	
2	NaN	Charlie	2	True	
3	5.0	David	3	False	
4	0.0	Eve	4	True	
5	7.0	Frank	5	False	
6	NaN	Grace	6	True	
7	9.0	Helen	7	False	

num

Let's assume we choose to discard the rows with

missing data.

```
# Data with NaN values
data = {
    'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
             'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
numconds = ((df.select_dtypes(include=[np.number]) == 0)
    df.select_dtypes(include=[np.number]).isna())
display(numconds)
# axis=1 means create column that is true if any of the
# values in a row are true.
rows_to_drop = numconds.any(axis=1)
display(rows_to_drop)
filtered_df = df[~rows_to_drop]
display(filtered_df)
```

	Value	Name		Value
0	0.0	Alice	0	True
1	2.0	Bob	1	False
2	NaN	Charlie	2	True
3	5.0	David	3	False
4	0.0	Eve	4	True
5	7.0	Frank	5	False
6	NaN	Grace	6	True
7	9.0	Helen	7	False

df

num

conds

drop True False True False True False True False dtype: bool rows_to_drop is now a Series.

rows

to

Let's assume we choose to discard the rows with

missing data.

```
# Data with NaN values
data = {
    'Value': [0, 2, np.nan, 5, 0, 7, np.nan, 9],
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve',
             'Frank', 'Grace', 'Helen']
# Create DataFrame
df = pd.DataFrame(data)
# Display DataFrame
display(df)
numconds = ((df.select_dtypes(include=[np.number]) == 0)
    df.select_dtypes(include=[np.number]).isna())
display(numconds)
# axis=1 means create column that is true if any of the
# values in a row are true.
rows_to_drop = numconds.any(axis=1)
display(rows_to_drop)
filtered_df = df[~rows_to_drop]
display(filtered_df)
```

	Value	Name
0	0.0	Alice
1	2.0	Bob
2	NaN	Charlie
3	5.0	David
4	0.0	Eve
5	7.0	Frank
6	NaN	Grace
7	9.0	Helen

df

	rows to				ered df
	drop			Value	Nama
0	True	,		Value	Name
1	False		1	2.0	Bob
2	True				
3	False		3	5.0	David
4	True		•	0.0	Davia
5	False		_	7.0	Frank
6	True		5	7.0	riank
7 dtyp	False e: bool	L	7	9.0	Helen
,					

DATA CLEANING: CATEGORICAL DATA

Only showed cleaning based on numeric types.

Should also check for empty strings, NaN.

Should also check for non-sensical values.

For categorical data, make sure all values represent defined φ at egories.

2024 Csci443 /

DATA CLEANING: IMPUTATION

What if we don't have enough data to drop rows with one or two missing fields?

What if we think removing the rows with missing data will introduce bias?/

• Ex: social desirability bias may cause someone to refuse to answer a question on a survey.

Answer: IMPUTE

Imputation = substituting values for missing data.

For numeric data the values are often based on the other values in a column

OR

 based on rows that have other correlating features like demographics.

2024 Csci443

DATA CLEANING: NUMERICAL IMPUTATION

Mean imputation: substitute mean of the feature column

Median imputation: substitute median of the feature column.

Mode imputation: substitute mode of the feature column

Linear interpolation: where there are surrounding numerical data, e.g., on a surface or in a time series, you may linear interpolate values for missing data points.

Polynomial/Spline interpolation: enables better estimates for non-linear surfaces or curves.

Linear/Polynomial regression: fit a curve that minimizes an error function (e.g., sum squared error).

2024 Csci44

DATA CLEANING: NUMERICAL IMPUTATION

Clustering: assign to the nearest cluster.

Random Forest Regression: use machine learning to infer the missing values.

Deep Learning: Generative algorithms. Go wild.

2024 Csci443 52

DATA CLEANING: CATEGORICAL IMPUTATION

Mode imputation: substitute the most common category.

Logistic Regression Classifier: useful for binary classification. Use other fields to infer the missing field.

Random Forest Classifier: another ML tool for inferring the value based on existing values.

Deep Learning (again).

2024 Csci443 / 53

Do geolocations make sense?

Let's consider a case of fixing erroneous rather than missing data.

2024 Csci443


```
indices_outside = geo_df[geo_df['geolocation_lng'] < w_long].index
indices_outside = indices_outside.append(o > e_long].index)
indices_outside = indices_outside.append(geo_df[geo_df['geolocation_lat'] > n_lat].index)
indices_outside = indices_outside.append(geo_df[geo_df['geolocation_lat'] < s_lat].index)
indices_inside = geo_df.index.difference(indices_outside)
filtered_df = geo_df.drop(indices_inside)
display(filtered_df)</pre>
```

	geolocation_zip_code_prefix	geolocation_lat	geolocation_Ing	geolocation_city	geolocation_state
387565	18243	28.008978	-15.536867	bom retiro da esperanca	SP
513631	28165	41 614052	-8 411675	vila nova de campos	R.I
513643	28155	-34.586422	-58.732101	santa maria	RJ
513754	28155	42.439286	13.820214	santa maria	RJ
514429	28333	38.381672	-6.328200	raposo	RJ
516682	28595	43.684961	-7.411080	portela	RJ
538512	29654	29.409252	-98.484121	santo antônio do canaã	ES
538557	29654	21.657547	-101.466766	santo antonio do canaa	ES
585242	35179	25.995203	-98.078544	santana do paraíso	MG
585260	35179	25.995245	-98.078533	santana do paraiso	MG

Add margin of 2 degrees in each direction.

distribution of zip codes


```
correct_santa_rosa = Rectangle((-54.457-0.5, -27.875-0.5), 1, 1, linewidth=1, edgecolor='g', facecolor='none')
plt.gca().add_patch(correct_santa_rosa)

santa_rosa = geo_df[(geo_df["geolocation_city"] == "santa rosa") & (geo_df["geolocation_state"] == "RS")]
plt.scatter(santa_rosa["geolocation_lng"], santa_rosa["geolocation_lat"], s=2)
plt.show()
```

distribution of zip codes


```
correct_santa_rosa = Rectangle((-54.457-0.5, -27.875-0.5), 1, 1, linewidth=1, edgecolor='g', facecolor='none')
plt.gca().add_patch(correct_santa_rosa)

santa_rosa = geo_df[(geo_df["geolocation_city"] == "santa rosa") & (geo_df["geolocation_state"] == "RS")]
plt.scatter(santa_rosa["geolocation_lng"], santa_rosa["geolocation_lat"], s=2)
plt.show()
```

distribution of zip codes

Use clustering and take the biggest cluster?

Use cluster centroid for zip codes > certain distance from the cluster centroid?

THANK YOU

David Harrison

Harrison@cs.olemiss.edu