

GEOMETRÍA

Capítulo 21

ÁREA DE REGIONES CÍRCULARES ® SACO OLIVEROS

MOTIVATING | STRATEGY

Uno de los grandes inventos del hombre fue la rueda (la que denominamos círculo) cuya mayor aplicación era en el transporte; hoy en día se fabrican en serie, círculos que tienen infinitas aplicaciones y para generar dicha producción se diseñan moldes llamados matrices utilizando para ello las fórmulas de cálculo de áreas de círculo.

<u>ÁREAS DE REGIONES CIRCULARES</u>

Círculo.- Es la unión de la circunferencia y

L : longitud de la circunferencia

$$L = 2\pi . r$$

Corona circular.-Es la región comprendida entre dos circunferencias concéntricas.

S : Área de la corona circular O: Centro

$$\mathbf{S} = \pi (\mathbf{R^2 - r^2})$$

$$\mathbf{S} = \pi . \mathbf{a}^2$$

$$S = \frac{\pi (AB)^2}{4}$$

HELICO | THEORY

Sector circular

Es una parte del círculo limitada por dos radios y su arco correspondiente.

O: Centro

$$S = \frac{\theta}{360} . \pi . r^2$$

Semicírculo

O: Centro

O: Centro

Segmento circular

Es aquella porción de círculo determinada por una cuerda de dicho círculo.

O: Centro

S : Área del segmento circular

$$S = \frac{\theta}{360} \cdot \pi \cdot r^2 - \frac{1}{2} \cdot R^2 \cdot sen\theta$$

1. Con una plancha metálica, José, fábrica un letrero de forma circular para evitar que otros autos se estacionen en la puerta de su garaje. ¿Qué área tendrá dicho letrero?

<u>Resolución</u>

Piden calcular el área de la región circular

$$S = \pi r^2 \qquad ... (1)$$

- Del dato: r=20 cm ... (2)
- Reemplazando 2 en 1

$$S = \pi . 20^2$$

$$S = 400\pi \text{ cm}^2$$

2. Determine el área de la región limitada por dos circunferencias interiores, cuyos radios miden 4 m y 6 m.

Resolución

- Piden: S_x
- $S_x = S_{(mayor)} S_{(menor)}$
- Reemplazando

$$S_x = \pi(6)^2 - \pi(4)^2$$

$$S_{x} = 36\pi - 16\pi$$

$$S_x = 20\pi \text{ m}^2$$

3. Si O es centro del cuadrante AOB, calcule el área de la región sombreada.

Resolución

Piden: S

$$S = \frac{1}{4} \cdot \pi \cdot r^2$$
 ... (1)

► ODC: Notable de 37° y 53°

$$r = 10$$
 ... (2)

Reemplazando 2 en 1.

$$S = \frac{1}{4} \cdot \pi \cdot 10^2$$

$$S = 25\pi u^2$$

4. En los semicírculos mostrados, calcule el área de la región sombreada.

Resolución

- Piden: S_x
- $S_{(mayor)} = S_x + S_{(menor)}$
- Reemplazando

$$\frac{1}{2}.\pi(6)^2 = S_x + \frac{1}{2}.\pi(4)^2$$

$$18\pi = S_x + 8\pi$$

$$10\pi u^2 = S_x$$

Resolución

5. Calcule el área de la región sombreada.

Piden: S
S =
$$\frac{\theta}{360^{\circ}} \pi . R^{2}$$
 ... (1)

En el gráfico:

$$OA = OB = 4$$

$$\rightarrow$$
 OC = $4\sqrt{2}$

• OAC: Notable de 45° y 45°

$$m \not AOC = m \not ACO = 45^{\circ}$$
 ... (2)

Reemplazando 2 en 1

$$S = \frac{45^{\circ}}{360^{\circ}} \pi.4^{\circ}$$

$$S = 2\pi u^2$$

6. Determine el área de la región sombreada, si ABCD es un cuadrado.

Resolución

• Piden: Sx

$$S_x = S(ABCD) - S(circulo)$$

Reemplazando

$$S_x = 2^2 - \pi(1)^2$$

$$S_{x} = 4 - \pi$$

$$(4 - \pi) m^2 = S_X$$

7. Para construir una hélice se ubican sobre una circunferencia seis puntos equidistantes dos a dos. ¿Qué cantidad de plancha metálica será necesario para realizar dicho trabajo?

Resolución

Piden: $S_1 + S_2$.

$$S_1 + S_2 = \frac{1}{2} \cdot \pi \cdot 30^2 + \frac{1}{2} \cdot \pi \cdot 6^2$$

$$S_1 + S_2 = \frac{1}{2} \cdot \pi \cdot 900 + \frac{1}{2} \cdot \pi \cdot 36$$

$$S_1 + S_2 = 450\pi + 18\pi$$

$$S_1 + S_2 = 468\pi \text{ cm}^2$$