Angles associés et trigonométrie.

Exercice 1*

Soit ABC un triangle équilatéral dont la mesure des côtés vaut $1 \, cm$.

On note I le milieu du segment [BC].

- Que représente la droite (AI) dans le triangle
- 2. Compléter le tableau cidessous:

	\widehat{CIA}	\widehat{CAB}	\widehat{CAI}	\widehat{IAC}
Mesure en radian				

- a. A l'aide du théorème de Pythagore, démontrer que : $AI = \frac{\sqrt{3}}{2} cm.$
 - b. Dans le triangle AIC, déterminer le sinus, le cosinus et la tangente des angles \widehat{IAC} et \widehat{ICA} . Puis, compléter le tableau suivant :

α	$\frac{\pi}{6}$ rad	$\frac{\pi}{3}$ rad
$\cos \alpha$		
$\sin \alpha$		
$\tan \alpha$		

Exercice 2

On considère le triangle rectangle-isocèle en C tel que BC=1 cm

1. Compléter le tableau suivant :

	\widehat{ACB}	\widehat{CAB}
Mesure en radian		

- a. A l'aide du théorème de Pvthagore, déterminer la mesure du côté [AB].
 - b. A l'aide du théorème de Pythagore, montrer que : $AB = \sqrt{2} \, cm$.
 - c. Dans le triangle rectangle ABC, déterminer le sinus, le cosinus et la tangente de l'angle CAB, puis compléter le tableau suivant :

α	$\cos \alpha$	$\sin \alpha$	$\tan \alpha$
$\frac{\pi}{4}$ rad			

Exercice 3

On considère le cercle trigonométrique & dans le plan muni d'un repère (O;I;J)

- 1. a. Déterminer les coordonnées cartésienne du point M.
 - Placer le point M' symétrique du point Mpar la symétrie d'axe (OJ). Donner les coordonnées cartésiennes du point M'. Puis, donner l'angle repérant le point M' dans le cercle

- c. Placer le point M'' symétrique du point M par la symétrie d'axe (OI). Donner les coordonnées cartésiennes du point M''. Puis, donner l'angle repérant le point M'' dans le cercle \mathscr{C} .
- a. Déterminer les coordonnées cartésienne du point N.
 - b. Placer le point N' symétrique du point N par la symétrie d'axe (OJ). Donner les coordonnées cartésiennes du point N'. Puis, donner l'angle repérant le point N'dans le cercle \mathscr{C} .
 - Placer le point N'' symétrique du point N par la symétrie d'axe (OI). Donner les coordonnées cartésiennes du point N''. Puis, donner l'angle repérant le point N''dans le cercle \mathscr{C} .

Exercice 4

B

1. Tracer un cercle trigonométrique et placer les points suivants dont le repérage par leur mesure principale :

a.
$$A\left(\frac{2\pi}{3}\right)$$

- a. $A\left(\frac{2\pi}{3}\right)$ b. $B\left(-\frac{3\pi}{4}\right)$ c. $C\left(\frac{5\pi}{6}\right)$ d. $D\left(\frac{\pi}{4}\right)$ e. $E\left(-\frac{\pi}{4}\right)$ f. $F\left(-\frac{\pi}{6}\right)$

- 2. Préciser les valeurs du cosinus et du sinus associées à chacun des angles repérant les points précédents.

Exercice 5

- 1. Simplifier chacune des expressions suivantes :
 - a. $\cos(x-\pi)$ b. $\sin(x-\frac{\pi}{2})$
- - c. $\sin\left(x+\frac{\pi}{2}\right)$ d. $\cos\left(x+\frac{\pi}{2}\right)$
- 2. A l'aide de la relation : $\tan x = \frac{\sin x}{\cos x}$ où $x \neq \frac{\pi}{2} + k \cdot \pi$ simplifier les expressions suivante

 - a. $\tan(x+\pi)$ b. $\tan(\frac{\pi}{2}-x)$

Exercice 6

- 1. Etablir l'égalité : $\cos \frac{\pi}{6} + \cos \frac{5\pi}{6} = 0$
- 2. Déterminer la valeur des coefficients α et β réalisant

l'égalité suivante :
$$2 \cdot \cos\left(-\frac{\pi}{7}\right) + 3 \cdot \cos\frac{8\pi}{7} - 2 \cdot \sin\frac{6\pi}{7} + \sin\left(-\frac{\pi}{7}\right) = \alpha \cdot \cos\frac{\pi}{7} + \beta \cdot \sin\frac{\pi}{7}$$

Exercice 7*

Simplifier l'écriture de chacune des expressions ci-dessous :

a.
$$\sin(3\pi+x)$$

a.
$$\sin(3\pi+x)$$
 b. $\cos(\frac{5\pi}{2}-x)$

c.
$$\cos\left(x-\frac{\pi}{2}\right)$$

c.
$$\cos\left(x-\frac{\pi}{2}\right)$$
 d. $\cos\left(\frac{\pi}{2}+x\right)$

e.
$$\sin(\pi - x) + \cos(\frac{\pi}{2} - x)$$

f.
$$3 \cdot \sin(\pi + x) - 2 \cdot \sin(\pi - x) + 4 \cdot \sin(x - \pi)$$

Exercice 8

1. Déterminer les valeurs exactes des expressions ci-

a.
$$\sin\left(\frac{7\pi}{3}\right)$$

a.
$$\sin\left(\frac{7\pi}{3}\right)$$
 b. $\cos\left(-\frac{5\pi}{4}\right)$ c. $\cos\left(\frac{5\pi}{6}\right)$

c.
$$\cos\left(\frac{5\pi}{6}\right)$$

Exprimer l'expression suivante à l'aide des rapports trigonométriques de $\frac{\pi}{\kappa}$:

$$A = 2 \cdot \cos \frac{4\pi}{5} + 3 \cdot \sin \frac{6\pi}{5} - 4 \cdot \sin \frac{3\pi}{10}$$

Exercice 9

1. On donne la valeur exacte ci-dessous :

$$\cos\frac{\pi}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}.$$

- a. En utilisant la formule $(\cos x) + (\sin x)^2 = 1$, déterminer la valeur exacte de $\sin \frac{\pi}{8}$
- b. En déduire la valeur exacte de $\cos \frac{5\pi}{8}$ en justifiant votre démarche.
- c. Etablir l'égalité : $\tan \frac{\pi}{8} = \sqrt{3 2\sqrt{2}}$.

2. On considère l'expression suivante :
$$A = \cos \frac{9\pi}{8} - 3 \cdot \sin \frac{5\pi}{8} + 2 \cdot \cos \frac{7\pi}{8}$$

Déterminer une écriture de l'expression de A en fonction des rapports trigonométriques de l'angle $\frac{\pi}{8}$.

Exercice 10

Dans le plan muni d'un repère (O; I; J), on considère le cercle trigonométrique représenté ci-dessous :

b. Dans l'intervalle des mesures principales, résoudre

$$\cos x = -\frac{\sqrt{2}}{2}$$

2. Dans l'intervalle des mesures principales, résoudre les équations suivantes :

a.
$$\sin x = \frac{1}{2}$$

b.
$$\cos x = \frac{1}{2}$$

a.
$$\sin x = \frac{1}{2}$$
 b. $\cos x = \frac{1}{2}$ c. $\sin x = -\frac{\sqrt{3}}{2}$

3. Résoudre dans \mathbb{R} , l'équation suivante :

$$\cos x = \frac{\sqrt{3}}{2}$$

Exercice 11

Résoudre dans \mathbb{R} les équations suivantes :

a.
$$\sin x = \frac{\sqrt{3}}{2}$$

a.
$$\sin x = \frac{\sqrt{3}}{2}$$
 b. $\cos x = \frac{\sqrt{2}}{2}$

Exercice 12

1. Résoudre dans l'ensemble $]-\pi;\pi]$ des mesures principales, les équations suivantes :

a.
$$\cos x = \frac{\sqrt{2}}{2}$$
 b. $\sin x = -\frac{1}{2}$

b.
$$\sin x = -\frac{1}{2}$$

c.
$$\sin x = \frac{\sqrt{3}}{2}$$
 d. $\cos x = -\frac{1}{2}$

d.
$$\cos x = -\frac{1}{2}$$

2. Résoudre dans \mathbb{R} les équations suivantes :

a.
$$\cos x = \frac{\sqrt{3}}{2}$$

a.
$$\cos x = \frac{\sqrt{3}}{2}$$
 b. $\sin x = -\frac{\sqrt{2}}{2}$