EE2211 Tutorial 4

(Systems of Linear Equations)

Question 1:

Given $\mathbf{X}\mathbf{w} = \mathbf{y}$ where $\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?
- (c) Solve for w if it is solvable.

Answer:

- (a) This is an even-determined system.
- (b) $\det(\mathbf{X}) = 1 \times 4 1 \times 3 = 1 \neq 0$. $\mathbf{X}^{-1} = \frac{1}{1} \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix}$.
- (c) $\widehat{\mathbf{w}} = \mathbf{X}^{-1}\mathbf{y} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

import numpy as np

$$m_list = [[1, 1], [3, 4]]$$

 $X = np.array(m_list)$

 $inv_X = np.linalg.inv(X)$

y = np.array([0, 1])

 $w = inv_X.dot(y)$

print(w)

(Systems of Linear Equations)

Question 2:

Given $\mathbf{X}\mathbf{w} = \mathbf{y}$ where $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is X invertible? Why?
- (c) Solve for w if it is solvable.

Answer:

- (a) This is an even-determined system.
- (b) **X** is NOT invertible since the determinant of $X=1 \times 6 2 \times 3 = 0$.
- (c) There is no solution for \mathbf{w} since the rows/columns of \mathbf{X} are inter-dependent. The two lines shown in the plot are parallel and has no intersection.

(Systems of Linear Equations)

Question 3:

Given
$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
 where $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 1 & -1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 \\ 0.1 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is X invertible? Why?
- (c) Find a solution for w if it is solvable.

Answer:

- (a) This is an over-determined system. (b) \mathbf{X} is NOT invertible but $\mathbf{X}^T\mathbf{X} = \begin{bmatrix} 6 & 9 \\ 9 & 21 \end{bmatrix}$ is. The determinant of $\mathbf{X}^T\mathbf{X} = 6 \times 21 9 \times 9 = 45$.
- (c) An approximated solution is given by

$$\widehat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 0.4667 & -0.2 \\ -0.2 & 0.1333 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0.1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.68 \\ -0.32 \end{bmatrix}.$$

import numpy as np

 $\# m_list = [[1, 2], [2, 4], [1, -1]]$

X = np.array(m_list)

 $\# inv_XTX = np.linalg.inv(X.transpose().dot(X))$

pinv = inv_XTX.dot(X.transpose())

y = np.array([0, 0.1, 1])

w = pinv.dot(y)

print(w)

import numpy as np

from numpy.linalg import inv

X = np.array([[1, 2], [2, 4], [1, -1]])

y = np.array([0, 0.1, 1])

w = inv(X.T @ X) @ X.T @ y

print(w)

(Systems of Linear Equations)

Question 4:

Given
$$\mathbf{X}\mathbf{w} = \mathbf{y}$$
 where $\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?
- (c) Solve for w if it is solvable.

Answer:

- (a) This is an under-determined system.
- (b) \mathbf{X} is NOT invertible but $\mathbf{X}\mathbf{X}^T$ is.

The determinant of
$$\mathbf{XX}^T = \det \begin{pmatrix} 2 & 2 & 1 \\ 2 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix} = 2 \begin{vmatrix} 4 & 0 \\ 0 & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & 0 \\ 1 & 2 \end{vmatrix} + 1 \begin{vmatrix} 2 & 4 \\ 1 & 0 \end{vmatrix} = 2 \times 8 - 2 \times 4 + (-4) = 4$$
.

(c)
$$\hat{\mathbf{w}} = \mathbf{X}^T (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 0.75 & 0.5 \\ -1 & 0.5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{bmatrix}$$

(Systems of Linear Equations)

Question 5:

Given
$$\mathbf{w}^T \mathbf{X} = \mathbf{y}^T$$
 where $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?
- (c) Solve for w if it is solvable.

Answer:

- (a) This is an even-determined system.
- (b) **X** is NOT invertible since the determinant of $\mathbf{X} = 1 \times 6 2 \times 3 = 0$.
- (c) There is no solution for w (two parallel lines).

(Systems of Linear Equations)

Question 6:

Given $\mathbf{w}^T \mathbf{X} = \mathbf{y}^T$ where

$$\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 1 & -1 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

- (a) What kind of system is this? (even-, over- or under-determined?)
- (b) Is **X** invertible? Why?

(c) Solve for w if it is solvable.

Answer:

- (a) This is an under-determined system (there are 3 unknowns with 2 equations).
- (b) **X** is NOT invertible but $\mathbf{X}^T\mathbf{X}$ is. The determinant of $\mathbf{X}^T\mathbf{X} = 6 \times 21 9 \times 9 = 45$.
- (c) A constrained solution (exact) is given by

$$\hat{\mathbf{w}}^T = (\mathbf{X}\mathbf{a})^T$$
 (The 3-dimensional vector \mathbf{w} can be constrained by projecting \mathbf{X} onto a 2-dimensional vector \mathbf{a})
$$= \mathbf{a}^T \mathbf{X}^T$$

$$= \mathbf{y}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

$$= \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0.4667 & -0.2 \\ -0.2 & 0.1333 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 0.0667 & 0.1333 & -0.3333 \end{bmatrix}.$$

Note: If we solve w (asked exactly from the question):

We can do a Transpose at first on both sides, say

$$(\mathbf{w}^{\mathrm{T}}\mathbf{X})^{\mathrm{T}} = \mathbf{y}^{\mathrm{T}} \implies \mathbf{X}^{\mathrm{T}}\mathbf{w} = \mathbf{y}$$

Assume that we have a new notation $\theta = X^T$ and we can then use the formula: $\mathbf{w} = X^T (XX^T)^{-1} \mathbf{y}$

$$\; = > \; w = \; \theta^T (\theta \, \theta^T)^{-1} y = X (X^T X)^{-1} y$$

Note: $\dim(\mathbf{X})$ is 3×2 , $\dim(\mathbf{a})$ is 2×1 , estimation is done/constrained on/to the lower dimension of (3×2) and then projected back to the higher dimension 3.

(Systems of Linear Equations)

Question 7:

This question is related to determination of types of system where an appropriate solution can be found subsequently. The following matrix has a left inverse.

$$\mathbf{X} = \begin{bmatrix} 2 & & 0 & & 0 \\ 0 & & 0 & & 1 \end{bmatrix}$$

- a) True
- b) False

Answer: b)

Solution: Left inverse is given by $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ where $\mathbf{X}^T\mathbf{X}$ should be invertible. In this case, $\mathbf{X}^T\mathbf{X}$ is not invertible so the matrix does not have a left inverse.

(Systems of Linear Equations)

Question 8:

MCQ: Which of the following is/are true about matrix A below? There could be more than one answer.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- a) A is invertible
- b) A is left invertible
- c) A is right invertible
- d) A has no determinant
- e) None of the above

Answer: c and d.