Mora Ayala José Antonio Análisis de Algoritmos

Instituto Politécnico Nacional Escuela Superior de Computo

Ejercicio 05

"Dominio Asintótico"

Mora Ayala José Antonio

Análisis de Algoritmos

Página 1|18

INSTRUCCIONES

Para los siguientes

Demuestre para los dos primeros ejercicios el dominio asintótico de f(x) sobre g(x) y para los ejercicios del 3 al 7 demostrar que las funciones tienen una correcta cota asignada (para las tres primeras funciones de complejidad tienen asignada correctamente la cota O "Cota superior ajustada" y que las últimas dos también tienen una correcta cota Θ "exacta")

- Incluir portada con los de datos del alumno, datos del trabajo y fotografía del alumno
- Incluir gráfica comparativa de las funciones y su función que la domina o cota (según sea el caso).
- Recordar manejar encabezados y pies de página.

$$f(x) = x^2$$

$$g(x) = 2x^2 + 300x - 1000$$

Dado el primer ejercicio la forma en que conseguiremos comprobar el dominio asintótico de f(x) sobre g(x) a partir del valor K_o = 8 y con una constante multiplicativa de 25, pues a partir de estos valores la función siempre crecerá de forma más rápida, como podemos observar la evaluación en los con los 3 primeros valores de x obtenemos valores negativos en la función de g, es por eso que para los cálculos se indico desde el inicio que el valor de K_o tendría que ser mayor a 3 obligatoriamente, pues para realizar los cálculos y poder quitar el valor absoluto como indica la formula es necesario no obtener números negativos.

х	f(x)	g(x)	cf(x)
1	1	-698	25
2	4	-392	100
3	9	-82	225
4	16	232	400
5	25	550	625
6	36	872	900
7	49	1198	1225
8	64	1528	1600
9	81	1862	2025
10	100	2200	2500
11	121	2542	3025
12	144	2888	3600
13	169	3238	4225
14	196	3592	4900
15	225	3950	5625
16/	256	4312	6400
17	289	4678	7225
1/8	324	5048	8100
19	361	5422	9025
20	400	5800	10000
			/

$\frac{1. f(x) = \chi^{2}}{g(x) = 2\chi^{2} + 300x - 1000}$	f domina a g	18cx)1 = W16cx)1 4x5c	
1 2x2+800x-10001 = m1x	2		
2x2+ 200x - 1000 = mx2			
2+ 300x-1000 ± m	81 x= 8 : K= m> 24 m	8 724; m=25	
25.87 ² m			

m	25
K _o	8

Previó al análisis anteriormente realizado se obtuvo la tabulación de valores correspondientes con las funciones resultantes evaluadas en los 20 primeros valores de x, tal como se indica observamos que con m=25 y partiendo del punto $K_o = 0$ el crecimiento de mf(x) es más rápido que g(x) tal como podemos observar en la gráfica.

$$f(x) = x^3$$

$$g(x) = 2x^3 - 30x + 500$$

La forma de demostrar el dominio asintótico de f(x) sobre g(x) se basa en el mismo principio que el ejercicio anterior con las siguientes operatividades

x	f(x)	g(x)	mf(x)
1	1	472	9
2	8	448	9
3	27	428	243
4	64	412	576
5	125	400	1125
6	216	392	1944
7	343	388	3087
8	512	388	4608
9	9 729 10 1000 11 1331 12 1728	392	6561
10		400	9000
11		412	11979
12		428	15552
13 2197 14 2744		448	19773
		472	24696
15	15 3375		30375
16	4096	532	36864
17	4913	568	44217
18 /	5832	608	52488
19	6859	652	61731
20	8000	700	72000

m	3
K _o	9

Aplicando una evaluación con diferentes valores de x a ambas funciones y a aquella que ya esta siendo multiplicado por la constante obtenida gracias al calculo (m=3) podemos ver en la siguiente grafica como el comportamiento de crecimiento de la función mf(x) es el esperado, siendo la de mostración de que en efecto f(x) domina asinoticamente a g(x) cuando partimos del 9 elemento con m=3

Página 6|18

$$f_t(n) = 3n^2 + 9n + 12 \in O(2n^2)$$

Para la demostración de que es cota superior se realizo el siguiente calculo.

Dado que tenemos nuestras n elevadas al cuadrado y no se están considerando los números negativos (pues es indicado que los valores son con números naturales) podemos prescindir de los valores absolutos con total libertad para proceder con el análisis pertinente obteniendo n=4 y m=4

	n	f(x)	g(x)	c*g(x)
	1	24	2	8
	2	42	8	32
	3	66	18	72
	4	96	32	128
	5	132	50	200
	6	174	72	288
	7	222	98	392
	8	276	128	512
	9	336	162	648
	10	402	200	800
	11	474	242	968
	12	552	288	1152
	13	636	338	1352
	14	726	392	1568
	15	822	450	1800
	16	924	512	2048
\nearrow	17	1032	578	2312
	18	1146	648	2592
	19	1266	722	2888
	20	1392	800	3200
1			/	

Página 8|18

$$f_t(n) = 2n + 8 \epsilon O(n)$$

Tal como en el ejercicio anterior realizamos el mismo procedimiento y procedemos a la evaluación de las funciones, valores que podemos encontrar en la tabla de la parte inferior así como los respectivos valores del cual se va a partir y mediante que constante multiplicativa lograremos esto.

	n	f(x)	g(x)	cg(x)
	1	10	1	11
	2	12	2	22
	3	14	3	33
	4	16	4	44
	5	18	5	55
	6	20	6	66
	7	22	7	77
	8	24	8	88
	9	26	9	99
	10	28	10	110
	11	30	11	121
	12	32	12	132
/	13	34	13	143
	14	36	14	154
	15	38	15	165
\	16 /	40	16	176
1	17	42	17	187
A	18	44	18	198
/ \	19	46	19	209
	20	48	20	220
	# 1 · · · /	\ \		

С	11	
Хо	1	

Página 10 | 18

$$f_t(n) = 2n^3 - 3n^2 + 9n + 120 \in O(n^3)$$

	n	n f(x)		cg(x)
1 128 2 142 3 174		128	1	8
		142	8	64
		174	27	216
	4	236	64	512
5 340		340	125	1000
	6	498	216	1728
	7	722	343	2744
	8	1024	512	4096
	9	1416	729	5832
11 2518 12 3252 13 4124	1910	1000	8000	
	2518	1331	10648	
	3252	1728	13824	
	4124	2197 17576		
	5146	2744	21952	
	15	6330	3375	27000
	16	7688	4096	32768
17 92	9232	4913	39304	
	18	/ 10974	5832	46656
	19	12926	6859	54872
1	20	15100	8000	64000
	1 //			

Página 11 | 18

Página 12 | 18

$$f_t(n) = 2n^3 + 3n^2 + 9n + 120 \in \theta(n^3 + n^2)$$

Tal como podemos observar para la demostración de una cota exacta tenemos 2 condiciones, una constante multiplicativa por la función g(x) debe ser mayor a 0 y menor que la función f(x) y a su vez debe existir otra constante multiplicativa por g(x) que haga que esta sea mayor que la función f(x), los cálculos pertinentes para la obtención de las 2 constantes se muestran en la imagen superior, así como una demostración mediante una tabla con los primeros 20 valores de n, por ultimo una grafica que nos permitirá observar el comportamiento de las funciones en cuestión.

	Ejercicio 6				
n	f(x)	g(x)	c1g(x)	c2g(x)	
1	134	2	2	28	
2	166	12	12	168	
3	228	36	36	504	
4	332	80	80	1120	
5	490	150	150	2100	
6	714	252	252	3528	
7	1016	392	392	5488	
8	1408	576	576	8064	
9	1902	810	810	11340	
10	2510	1100	1100	15400	
11	3244	1452	1452	20328	
12	4116	1872	1872	26208	
13	5138	2366	2366	33124	
14	6322	2940	2940	41160	
15	7680	3600	3600	50400	
16	9224	4352	4352	60928	
17	10966	5202	5202	72828	
18	12918	6156	6156	86184	
19	15092	7220	7220	101080	
20	17500	8400	8400	117600	

X ₀ =2	
c1	1
c2	14

Página 14 | 18

$$f_t(n) = 2n^2 + 9n \in \theta(n^2)$$

Para la demostración de esta cota exacta, se procedió de la misma manera que en el ejercicio anterior

n	f(x)	g(x)	c1g(x)	c2g(x)
1	11	1	1	6
2	26	4	4	24
3	45	9	9	54
4	68	16	16	96
5	95	25	25	150
6	126	36	36	216
7	161	49	49	294
8	200	64	64	384
9	243	81	81	486
10	290	100	100	600
11	341	121	121	726
12	396	144	144	864
13	455	169	169	1014
14	518	196	196	1176
15	585	225	225	1350
16	656	256	256	1536
17	731	289	289	1734
18	810	324	324	1944
19	893	361	361	2166
20	980	400	400	2400
21	1071	441	441	2646
22	1166	484	484	2904
23	1265	529	529	3174

N ₀	3
c1	1
c2	6

Página 15 | 18

Página 16 | 18

ANEXOS

Análisis realizados hechos a mano (operatividades)

Página 18 | 18