Типы уравнений

Бирюк Илья Александрович 8 октября 2024 г.

Содержание

1	Определение простого графа	3
2	Некоторые обобщения графов	3
3	Помеченные графы. Изоморфизм графов	4
4	Графические последовательности. Критерий графичности	6
5	Name	7
6	Метрические характеристики графов	8

1 Определение простого графа

Пусть $V \neq \emptyset$ - конечное множество и $V^{(2)}$ - множество всех двухэлементных подмножеств V. ($V^{(2)} = \{U \subseteq V | |U| = 2\}$). Упорядоченная пара (V, E), где $E \subseteq V^{(2)}$ называется **простым графом**, вершинами которого являются элементы V, а рёбрами - элементы E. **Пример:**

$$V = \{1, 2, 3, 4, 5, 6\}, E = \{\{1, 5\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{4, 5\}, \{3, 5\}\}$$

Число |V| называют **порядком графа**, а число |E| - **размером графа**.

$$G = (V, E), V = V(G), E = E(G)$$

Если порядок графа равен n, a размер равен m, то говорят, что это (n,m)-граф.

Две веришины u и v в графе **смежные**, если $\{u,v\} \in E(G)$. Два ребра e_1,e_2 **смежные**, если $e_1 \cap e_2 \neq \varnothing$

Вершина v и ребро e инцедентны если $v \in e$

Примечание: $\{u, v\} = uv$

Окружением веришины u в графе G называют множество: $N_G(u) = \{v \in V(G) | uv \in E(G)\}$

Определение. Число $deg_Gv = |N_G(v)|$ - мощность окружения вершины v - называют **степенью вершины** в G

Пусть $v \in V(G)$:

- $1. \ deg_Gv = 0 \leftrightarrow v$ изолированная вершина
- $2. \ deg_Gv = |V(G)| 1 \leftrightarrow v$ доминирующая вершина
- $3.\ deg_Gv=1\leftrightarrow v$ висячая вершина

Определение. Граф G называют **регулярным**, если он имеет одинаковые степени вершин.

Определение. Граф G называют **K-регулярным**, если $\forall v \in V(G), deg(v) = k$.

Определение. K_n - **полный граф**(граф со всеми возможными вершинами)

2 Некоторые обобщения графов

1. Мультиграф

Определение. Мультиграфом называют упорядоченную пару (V, E), где E - конечное мультимножество на множестве $V^{(2)}$ (V - конечное непустое множество)

2. Псевдограф

Определение. Псевдографом называют упорядоченную пару (V,E), где E - конечное мультимножество на $V^{(2)} \cup V$

3. Орграф(Ориентированный граф)

Определение. $E\subseteq V\times V=\{\{u,v\}|u\in V,v\in V\}$ - Орграф uv называется ∂y гой (вместо ребра)

4. Гиперграф

Определение. Гиперграфом называют граф, где $E\subseteq 2^V, 2^V=\{U|U\subseteq V\}$

3 Помеченные графы. Изоморфизм графов

Определение. Граф назовут **помеченным**, если его вершинам принадлежат некоторые попарно различные метки.

Пусть G_1, G_2 - помеченные графы порядка п. Графы G_1, G_2 равны, если $V(G_1) = V(G_2) \wedge E(G_1) = E(G_2)$

Теорема. Число всех помеченных графов порядка $n\geqslant 1$ обозначается l_n и равно $2^{C_n^2}=2^{\frac{n(n-1)}{2}}$

Доказательство. Пусть у графа п вершин и m рёбер. $0 \leqslant m \leqslant C_n^2$. Количество подмножеств множества всех возможных рёбер графа порядка n

$$C_{C_n^2}^0 + C_{C_n^2}^1 + C_{C_n^2}^2 + \dots + C_{C_n^2}^{C_n^2}$$

Доказательство. (n = 5 в качестве примера)

Изоморфизм графов

Пусть G и H - графы и $\phi:V(G)\to V(H)$ - биекция. Тогда ϕ - изоморфизм графа G на H, а G и H изоморфны. $G\cong H$

 g_n - число всех попарно неизоморфных графов порядка n.

Теорема. (Лойа)

$$g_n \geqslant \left[\frac{2^{C_n^2}}{n!}\right] u n u g_n \sim_{n \to \infty} \frac{2^{C_n^2}}{n!}$$

Свойства изоморфизма:

- 1. $G \cong G$ для конечных графов
- 2. $\forall G, H : G \cong H \leftrightarrow H \cong G$
- 3. $\forall G, H, F : G \cong H \cap H \cong F \rightarrow G \cong F$

4 Графические последовательности. Критерий графичности

Определение. Последовательность d_1, d_2, \ldots, d_n , где $d_i \in Z \geqslant 0$, где $n \geqslant 1$ и $d_1 \geqslant d_2 \geqslant \ldots \geqslant d_n$, называется графической, если $\exists G$ порядка n, степени вершин которого равны d_1, d_2, \ldots, d_n

$$(2) \int_{(3)}^{(3)} (0) = (3,3,3,2,1)$$

Определение. Граф, который соответствует последовательности называют **реализаци**ей этой графической последовательности. Теорема. (Гавела-Хакими), критерий графичности

Последовательность $(D=d_1,d_2,\ldots,d_n)$, где $n\geqslant 2$ и $d_1\geqslant d_2\geqslant\ldots\geqslant d_n$, является графической тогда и только тогда, когда последовательность $(D'=d_2-1,d_3-1,\ldots,d_{d_1+1},d_{d_1+2},\ldots,d_n)$ является графической.

5 Name

Теорема. Пусть G – это (n,m) граф, k – число компонент связности Тогда

$$n-k \leqslant m \leqslant \frac{(n-k)(n-k+1)}{2}$$
,.

 $\ensuremath{\text{Доказательство.}}\ m\leqslant n-k$ - Доказывается по мат индукции $m\leqslant \frac{(n-k)(n-k+1)}{2}$ - Берём $k\geqslant 2$

1. рисуем k полных графов

$$G_1$$
 G_2 \cdots G_k

- 2. Вынимаем из G_{k-1} точку и перемещаем её в G_k (сохраняя полноту). Возьмём, что $\forall n \leq k, V(G_k) \geqslant V(G_n)$. Тогда количество рёбер изменится на $V(G_k) (V(G_n) 1) > 0$.
- 3. Повторяем так, пока все кроме последнего подграфа не будут тривиальными (то есть пока они не будут иметь одну вершину).
- 4. Самый экстремальный случай, изолированные вершины и K_{n-k+1} , тогда число рёбер

$$C_{n-k+1}^2 = \frac{(n-k)(n-k+1)}{2}.$$

Теорема. Пусть G связный граф $u \in E(G)$.

- 1. $\it Ecnu \, \, принадлежит \, некоторому \, циклу, \, то \, граф \, G-e \, связен$
- 2. Если не принадлежит никакому циклу, то граф G-e содержит ровно 2 компоненты связности

Доказательство. Возьмём $e=uv, e\in E(G)$

- 1. Если принадлежит некоторому циклу, то граф G e связен
 - (а) Нарисуем цикл

(b) Удалим е

Как можно заметить, не появилось ни одной компоненты связности.

- 2. Если не принадлежит никакому циклу, то граф G-e содержит ровно 2 компоненты связности
 - (a) Учитывая условия выше, мы можем разделить граф на 2 части, имеющие маршрут к u без v и наоборот

(b) Удаляем ребро e, и видим, что появилось 2 компоненты связности

6 Метрические характеристики графов

Для параграфа: G - связен

Определение. Расстояние d(u,v) между вершинами $u \neq v$ графа G – длинна кратчайшей простой цепи, если u = v, то d(u,v) = 0

Свойства:

1. Свойство неотрицательности.

$$d(u,v) \geqslant 0$$
 и $d(u,v) = 0 \Leftrightarrow u = v, \forall u,v \in V(G).$

2. Свойство симметрии.

$$d(u, v) = d(v, u), \ \forall u, v \in V(G).$$

3. Свойство треугольников.

$$d(u, v) \leq d(u, w) + d(w, u), \ \forall u, v \in V(G).$$

Определение. Эксцентриситетом вершины называется величина

$$e(v) = \max d(v, u), v \in V(G),$$

то есть максимальное расстояние от вершины до другой какой-либо вершины графа).

Определение. Радиусом графа называется величина

$$r(G) = \min e(v), \ v \in V(G).$$

Определение. Диаметром графа называется величина

$$d(G) = \max e(v), \ v \in V(G).$$

Определение. Вершина в графа G называется центральной, если e(v) = r(G) и **периферической**, если e(v) = d(G).

Определение. Центр графа, множество всех его центральных вершин, перефирия, перефирийных.

Пример, в круге Эксцентриситет вершины:

$$\begin{array}{c}
3 \\
\hline
4 \\
r(P_5) = 2, d(P_5) = 4
\end{array}$$

Теорема. Для любого графа H существует граф G, центр которого порождает H.

Доказательство. 1. Возьмём граф H

2. Добавим к нему вершины x, y, z, t, x и y Соедениены со всеми вершинами H

Как видно $\forall v \in V(H), e(v) = r(G) = 2$

Теорема. Для любого связного графа ж верно: $r(G) \leqslant d(G) \leqslant 2r(G)$

Доказательство. .

1. $r(G) \leqslant d(G)$ - очевидно

2. $diam(G) \leqslant 2r(G)$. Берём две переферичиские(u,v) и одну центральную(w). Тогда данное равенство получается через равенство треугольника:

По свойству треугольников:

$$d(u,v) \leqslant d(u,w) + d(w,v) \to d(G) \leqslant 2r(G)$$