Partiel: Traitement du Signal

Cours: H. Aboushady et S. Baey Responsable du module: H. Mehrez 31 Octobre 2007

- Durée 2h00.
- Documents autorisés : 1 feuille A4
- L'examen est composé de 2 parties:
 - Poids indicatif de chaque partie:
 - PARTIE I : 10 points (H. Aboushady)
 - PARTIE II: 10 points (S. Baey)

Exercice I-1 (7.0 points)

Un système est définie par sa réponse impulsionnelle :

$$h(t) = [4e^{-t} + 3e^{-2t}]u(t)$$

- (a) Trouvez la fonction de transfert, H(s), de ce système.
- (b) Tracez le diagramme de Bode du module et de la phase de H(s) sur les feuilles en échelle logarithmique (données en page 4 et 5).
- (c) Tracez, dans le plan s, la position des pôles et des zéros de la fonction de transfert, H(s). Commentez sur la stabilité de ce système.
- (d) Quel type de filtre est réalisé par cette fonction de transfert ? Pourquoi ?
- (e) On applique un signal x(t), ci-dessous, au système h(t).

En utilisant la transformée de Laplace et la transformée de Laplace inverse, trouvez Y(s) puis y(t), la réponse du système au signal x(t).

Exercice I-1 (a)

Exercice I-1 (b)

Exercice I-1 (b)

Exercice I-1 (c) (d)

Exercice I-1 (e)

Exercice I-2 (3.0 points)

Un système temps-discret est défini par le schéma en bloc suivant :

(a) Trouvez la fonction de transfert H(z),

$$H(z) = \frac{Y(z)}{X(z)}$$

- (b) Tracez, dans le plan z, la position des pôles et des zéros. Commentez sur la stabilité de ce système.
- (c) Quelle type de filtre est réalisé par cette fonction de transfert ? Pourquoi ?
- (d) Tracez approximativement la réponse en fréquence $H(e^{j\Omega})$, de $\Omega=0$ à $\Omega=2\pi$.

PARTIE I NOM:

PRENOM:

Exercice I-2 (a) (b)

Exercice I-2 (c) (d)

TABLE 4.1 A Short Table of (Unilateral) Laplace Transforms

No.	x(t)	X(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5	$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
6	$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)^2}$
7	$t^n e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}} \qquad \text{for } \qquad \text{i.e.}$
8a	$\cos bt u(t)$	$\frac{s}{s^2+b^2}$
8ъ	$\sin bt u(t)$	$\frac{b}{s^2 + b^2} \qquad \qquad \stackrel{?}{\overset{?}{\longrightarrow}} \qquad \qquad \stackrel{?}{\longrightarrow} \qquad \qquad \stackrel{?}{\longrightarrow} \qquad \qquad \stackrel{?}{\longrightarrow} \qquad \qquad \stackrel{?}{\longrightarrow} \qquad \qquad \qquad \stackrel{?}{\longrightarrow} \qquad \qquad \qquad \stackrel{?}{\longrightarrow} \qquad \qquad \qquad \stackrel{?}{\longrightarrow} \qquad \qquad$
9a	$e^{-at}\cos bt u(t)$	$\frac{s+a}{(s+a)^2+b^2}$
9Ъ	$e^{-at}\sin bt u(t)$	$\frac{b}{(s+a)^2+b^2}$
10a	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
10b	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$
10c	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2c + B^2 - 2ABa}{c - a^2}}$	
	$\theta = \tan^{-1} \left(\frac{Aa - B}{A\sqrt{c - a^2}} \right)$	
	$b = \sqrt{c - a^2}$	
10d	$e^{-at}\left[A\cos bt + \frac{B - Aa}{b}\sin bt\right]u(t)$	$\frac{As+B}{s^2+2as+c}$
10d		$\frac{As+B}{s^2+2as+c}$

Operation	x(t)	X(s)
Addition	$x_1(t) + x_2(t)$	$X_1(s) + X_2(s)$
Scalar multiplication	kx(t)	kX(s)
Time differentiation	$\frac{dx}{dt}$	$sX(s)-x(0^{-})$
	$\frac{d^2x}{dt^2}$	$s^2X(s) - sx(0^-) - \dot{x}(0^-)$
	$\frac{d^3x}{dt^3}$	$s^3X(s) - s^2x(0^-) - s\dot{x}(0^-) - \ddot{x}(0^-)$
	$\frac{d^nx}{dt^n}$	$s^{n}X(s) - \sum_{k=1}^{n} s^{n-k}x^{(k-1)}(0^{-})$
Time integration	$\int_{0^{-}}^{\prime}x(\tau)d\tau$	$\frac{1}{s}X(s)$
	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s) + \frac{1}{s} \int_{-\infty}^{0^{-}} x(t) dt$
ime shifting	$x(t-t_0)u(t-t_0)$	$X(s)e^{-st_0} t_0 \ge 0$
requency shifting	$x(t)e^{s_0t}$	$X(s-s_0)$
requency differentiation	-tx(t)	$\frac{dX(s)}{ds}$
requency integration	$\frac{x(t)}{t}$	$\int_{s}^{\infty} X(z) dz$
aling	$x(at), a \geq 0$	$\frac{1}{a}X\left(\frac{s}{a}\right)$
me convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$
equency convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi j}X_1(s)*X_2(s)$
tial value	x(0 ⁺)	$\lim_{s\to\infty} sX(s) \qquad (n>m)$
ial value	$x(\infty)$	$\lim_{s \to 0} sX(s) \qquad [poles of sX(s) in LHP]$

TABLE 5.1	(Unilateral)	z-Transform Pairs
-----------	--------------	-------------------

TABI	LE 5.1 (Unilateral) z-Transform Pairs		
No.	x[n]	X[z]	
1	$\delta[n-k]$	z-k	
2	u[n]	$\frac{z}{z-1}$	aga ta
3	nu[n]	$\frac{z}{(z-1)^2}$	T
4	$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$	
5	$n^3u[n]$	$\frac{z(z^2+4z+1)}{(z-1)^4}$	
6	$\gamma^n u[n]$	$\frac{z}{z-\gamma}$	
7	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-\gamma}$	
8	$n\gamma^n u[n]$	$\frac{\gamma z}{(z-\gamma)^2}$	- (1) -(1)
9	$n^2 \gamma^n u[n]$	$\frac{\gamma z(z+\gamma)}{(z-\gamma)^3}$	
0	$\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^m m!} \gamma^n u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$	
1a	$ \gamma ^n \cos \beta n u[n]$	74 - (7) 31 COE B)	- 1 1 2 2 2
1ъ	$ \gamma ^n \sin \beta n u[n]$	$\frac{z y \sin\beta}{z^2-(2 y \cos\beta)z}$	CASSACRATION CONTRACTOR
2a	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{rz[z\cos\theta - \gamma \cos\theta}{z^2 - (2 \gamma \cos\beta)}$	os $(\beta - \theta)$]
2b	$r \gamma ^n \cos(\beta n + \theta)u[n]$ $\gamma = \gamma e^{j\beta}$	$\frac{(0.5re^{j\theta})z}{z-\gamma} + \frac{(0.5z)}{z}$	re ^{jθ})z γ*
2c	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{z(Az+B)}{z^2+2az+ \gamma ^2}$	2.12.20世纪·西班牙斯
	$r = \sqrt{\frac{A^2 \gamma ^2 + B^2 - 2AaB}{ \gamma ^2 - a^2}}$		
	$\beta = \cos^{-1} \frac{-a}{ \gamma }$	in the same of	
	$\theta = \tan^{-1} \frac{Aa - B}{A\sqrt{ \gamma ^2 - a^2}}$		

TABLE 5.2	z-Transform	Operations
-----------	-------------	-------------------

Operation	x[n]	X[z]
Addition	$x_1[n] + x_2[n]$	
Scalar multiplication	ax[n]	$X_1[z] + X_2[z]$ $aX[z]$
Right-shifting	x[n-m]u[n-m]	$\frac{1}{z^m}X[z]$
	x[n-m]u[n]	$\frac{1}{z^m}X[z] + \frac{1}{z^m} \sum_{n=1}^m x[-n]z^n$
	x[n-1]u[n]	$\frac{1}{z}X[z]+x[-1]$
	x[n-2]u[n]	$\frac{1}{z^2}X[z] + \frac{1}{z}x[-1] + x[-2]$
	x[n-3]u[n]	$\frac{1}{z^3}X[z] + \frac{1}{z^2}x[-1] + \frac{1}{z}x[-2]$
eft-shifting	x[n+m]u[n]	$z^m X[z] - z^m \sum_{n=0}^{m-1} x[n] z^{-n}$
	x[n+1]u[n]	zX[z]-zx[0]
	x[n+2]u[n]	$z^2X[z] - z^2x[0] - zx[1]$
	x[n+3]u[n]	$z^3X[z] - z^3x[0] - z^2x[1] - zx[$
ultiplication by γ^n	$\gamma^n x[n]u[n]$	$X\left[\frac{z}{\gamma}\right]$
ultiplication by n	nx[n]u[n]	$-z\frac{d}{dz}X[z]$
me convolution	$x_1[n] * x_2[n]$	$dz = X_1[z]X_2[z]$
ne reversal	x[-n]	X[1/z]
tial value	x[0]	$\lim_{z\to\infty}X[z]$
al value	$\lim_{N\to\infty}x[N]$	$\lim_{z \to 1} (z - 1)X[z] \qquad \text{poles of} \qquad .$