Introducing Mechanistic Interpretability:

Demistify black boxes with Circuit Analaysis¹ & Monosemanticity²

J. Setpal

February {1, 8}, 2024

¹ https://transformer-circuits.pub/2021/framework/

https://transformer-circuits.pub/2023/monosemantic-features/

Outline

Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity

Outline

Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity

Interpretability within Machine Learning is the **degree** to which we can understand the **cause** of a decision, and use it to consistently predict the model's prediction.

Interpretability within Machine Learning is the **degree** to which we can understand the **cause** of a decision, and use it to consistently predict the model's prediction.

This is easy for shallow learning.

Interpretability within Machine Learning is the **degree** to which we can understand the **cause** of a decision, and use it to consistently predict the model's prediction.

This is easy for shallow learning. For deep learning however, it is a **lot** harder.

Interpretability within Machine Learning is the **degree** to which we can understand the **cause** of a decision, and use it to consistently predict the model's prediction.

This is easy for shallow learning. For deep learning however, it is a **lot harder**.

Today, we will interpret deep neural networks (transformer).

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful?

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful?

If we are able to *completely* understand a toy model, we can:

- understand why attention works.

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful?

If we are able to *completely* understand a toy model, we can:

- understand why attention works.
- observe recurring patterns in complex models.

Most of interpretability seeks to extract representations from weights:

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on **reverse engineering neural networks**.

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on reverse engineering neural networks.

It seeks to understand functions that *individual neurons* play in the inference of a neural network.

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on **reverse engineering neural networks**.

It seeks to understand functions that *individual neurons* play in the inference of a neural network.

This can subsequently be used to offer high-level explanations for decisions, as well as guarantees during inference.

Outline

Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity

n-gram models used the following <u>incorrect</u> assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \approx p(x_t|x_{t-1};\theta)$$
 (1)

n-gram models used the following <u>incorrect</u> assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$
 (1)

Why ≈?

n-gram models used the following <u>incorrect</u> assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$
 (1)

Why $\not\approx$? It's because context is important!

n-gram models used the following <u>incorrect</u> assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$
 (1)

Why \approx ? It's because context is important!

But, so is *efficiency*. Self-Attention solves this by effectively creating a **trainable database**.

n-gram models used the following <u>incorrect</u> assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$
 (1)

Why \approx ? It's because context is important!

But, so is *efficiency*. Self-Attention solves this by effectively creating a **trainable database**.

We query it to subset the important tokens. For $\{x_i\}_{i=1}^t$,

$$\alpha_i = \sigma_{softmax} \left(\frac{q_i k_i^T}{\sqrt{d_k}} \right) \tag{2}$$

(3)

Where q_i, k_i, v_i are each independent parameter matrices.

n-gram models used the following <u>incorrect</u> assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \approx p(x_t|x_{t-1};\theta)$$
 (1)

Why \approx ? It's because context is important!

But, so is *efficiency*. Self-Attention solves this by effectively creating a **trainable database**.

We query it to subset the important tokens. For $\{x_i\}_{i=1}^t$,

$$\alpha_i = \sigma_{softmax} \left(\frac{q_i k_i^T}{\sqrt{d_k}} \right) \tag{2}$$

$$h(x) = \sum_{i=1}^{t} \alpha_i v_i \tag{3}$$

Where q_i, k_i, v_i are each independent parameter matrices,

We can represent attention using **tensor products**:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x \tag{4}$$

(5)

We can represent attention using **tensor products**:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x \tag{4}$$

$$= (A \otimes W_O W_V) \cdot x \tag{5}$$

We can represent attention using **tensor products**:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x \tag{4}$$

$$= (A \otimes W_O W_V) \cdot x \tag{5}$$

The disjointed nature of A, W_OW_V tells us a lot!

We can represent attention using **tensor products**:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x \tag{4}$$

$$= (A \otimes W_O W_V) \cdot x \tag{5}$$

The disjointed nature of A, W_OW_V tells us a lot!

a. A and W_OW_V are fundamentally independent entities.

We can represent attention using **tensor products**:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$

$$= (A \otimes W_O W_V) \cdot x$$
(4)

 $= (A \otimes MOMA) \cdot x \tag{2}$

- The disjointed nature of A, W_OW_V tells us a lot!
 - a. A and W_OW_V are fundamentally independent entities.
 - b. A describes which token information moves through, W_OW_V describes which residual subspace to read from and write to.

We can represent attention using **tensor products**:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$

$$= (A \otimes W_O W_V) \cdot x$$
(4)

The disjointed nature of A, W_OW_V tells us a lot!

- a. A and W_OW_V are fundamentally independent entities.
- b. A describes which token information moves through, W_OW_V describes which residual subspace to read from and write to.

$$MHA(x_0) = x_0 + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot x_0$$
 (6)

We can represent attention using **tensor products**:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x \tag{4}$$

$$= (A \otimes W_O W_V) \cdot x \tag{5}$$

The disjointed nature of A, W_OW_V tells us a lot!

- a. A and W_OW_V are fundamentally independent entities.
- b. A describes which token information moves through, W_OW_V describes which residual subspace to read from and write to.

$$MHA(x_0) = x_0 + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot x_0$$
 (6)

Our final transformer has the following equation:

$$T(t_0) = (I \otimes W_U) \cdot MHA((I \otimes W_E) \cdot t_0)$$
 (7)

We can represent attention using **tensor products**:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x \tag{4}$$

$$= (A \otimes W_O W_V) \cdot x \tag{5}$$

The disjointed nature of A, W_OW_V tells us a lot!

- a. A and W_OW_V are fundamentally independent entities.
- b. A describes which token information moves through, W_OW_V describes which residual subspace to read from and write to.

$$MHA(x_0) = x_0 + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot x_0$$
 (6)

Our final transformer has the following equation:

$$T(t_0) = (I \otimes W_U) \cdot MHA((I \otimes W_E) \cdot t_0)$$
 (7)

Why is this important?

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

(9)

(10)

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot I \otimes W_E)$$
 (9)

(10)

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot I \otimes W_E)$$
 (9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot I \otimes W_E)$$
 (9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

Here's the breakdown:

a. $W_U W_E$ approximate bigram statistics.

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot I \otimes W_E)$$
 (9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

Here's the breakdown:

- a. W_UW_E approximate bigram statistics.
- b. A^h dictates where the attention heads attend.

Reframing using Tensorization (2/3)

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot I \otimes W_E)$$
 (9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

Here's the breakdown:

- a. $W_U W_E$ approximate bigram statistics.
- b. A^h dictates where the attention heads attend.
- c. $W_U W_O^h W_V^h W_E$ describes the **behavior of logits if we attend to a** given token.

Reframing using Tensorization (2/3)

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W_O^h W_V^h) \cdot I \otimes W_E)$$
 (9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

Here's the breakdown:

- a. W_UW_E approximate bigram statistics.
- b. A^h dictates where the attention heads attend.
- c. $W_U W_O^h W_V^h W_E$ describes the **behavior of logits if we attend to a** given token.

Observation: The equation is linear, if we fix attention patterns.

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in tensor-product form.

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in **tensor-product form**.

First, we can display key-value matrix operations:

$$q_i = (I \otimes W_Q W_E) \cdot t_0 \tag{11}$$

$$k_i = (I \otimes W_K W_E) \cdot t_0 \tag{12}$$

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in tensor-product form.

First, we can display key-value matrix operations:

$$q_i = (I \otimes W_Q W_E) \cdot t_0 \tag{11}$$

$$k_i = (I \otimes W_K W_E) \cdot t_0 \tag{12}$$

And then apply them to unnormalized³ attention:

$$A = \sigma_{softmax} \left([q_i k_j^T]_{i,j} \right) \tag{13}$$

$$= \sigma_{softmax} \left(t_0^T \cdot (I \otimes W_E^T W_Q^T) \cdot (I \otimes W_K W_E) \cdot t_0 \right)$$
 (14)

$$= \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right) \tag{15}$$

³to ease computation.

Here's the two tensor equations combined:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

Here's the two tensor equations combined:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's the two tensor equations combined:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's my observations:

a. It's a much simpler recomposition of feedforward inference.

Here's the two tensor equations combined:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's my observations:

- a. It's a much simpler recomposition of feedforward inference.
- b. A is the *only* non-linear operation.

Here's the two tensor equations combined:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's my observations:

- a. It's a much simpler recomposition of feedforward inference.
- b. A is the *only* non-linear operation.
- c. A learns independently from the rest of the tensor equation.

Here's the two tensor equations combined:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's my observations:

- a. It's a much simpler recomposition of feedforward inference.
- b. A is the *only* non-linear operation.
- c. A learns independently from the rest of the tensor equation.

However, we're still missing one.

Importantly, both equations have (|voc|, |voc|) size matrices:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

These chained tensor operations are our **circuits**, and lie at the heart of the transformer architecture.

Importantly, both equations have (|voc|, |voc|) size matrices:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

These chained tensor operations are our **circuits**, and lie at the heart of the transformer architecture.

a. The **Output-Value(OV) Circuit** $W_U W_O^h W_V^h W_E$: determines how attending to a token affects logits.

Importantly, both equations have (|voc|, |voc|) size matrices:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
 (10)

$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
 (15)

These chained tensor operations are our **circuits**, and lie at the heart of the transformer architecture.

- a. The **Output-Value(OV) Circuit** $W_U W_O^h W_V^h W_E$: determines how attending to a token affects logits.
- b. The **Query-Key(QK) Circuit** $W_E^T W_Q^T W_K W_E$: determines which tokens to attend to.

Interpretation as Skip-Trigrams

We can think through inference procedure with single source token.⁴

⁴ for simplicity.

Interpretation as Skip-Trigrams

We can think through inference procedure with single source token.⁴

From there, we look at the largest QK and OV entries.

Some examples of large entries QK/OV circuit

Source Token	Destination Token	Out Token	Example Skip Tri-grams
" perfect"	" are", " looks",	"perfect", "super",	" perfect are perfect",
	" is", " provides"	"absolute", "pure"	" perfect looks super"
" large"	" contains", " using",	" large", " small",	" large using large",
	" specify", " contain"	" very", " huge"	" large contains small"
" two"	" One", "\n ", " has",	"two", "three", "four",	" two One two",
	"\r\n ", "One"	"five", "one"	" two has three"
"lambda"	"\$\\", "}{\\", "+\\",	"lambda" , "sorted",	"lambda \$\\lambda",
	"(\\", "\${\\"	" lambda", "operator"	"lambda +\\lambda"
"nbsp"	"&", "\"&", "}&",	"nbsp", "01", "gt", "00012",	"nbsp ",
	">&", "=&"	"nbs", "quot"	"nbsp > "
"Great"	"The", "The", "the",	"Great", "great",	"Great The Great",
	"contains", "/"	"poor", "Every"	"Great the great"

⁴for simplicity.

Eigenvalue Analysis

Most of the prominent behaviours include $\underline{\text{copying}}$. We can identify this using **eigenvalue analysis**.

Eigenvalue Analysis

Most of the prominent behaviours include <u>copying</u>. We can identify this using **eigenvalue analysis**. Recall from the definition of eigenvectors,

$$Wv = \lambda v; \lambda \in \mathbb{C}$$
 (16)

This is useful when we map a vector space upon itself.

Eigenvalue Analysis

Most of the prominent behaviours include <u>copying</u>. We can identify this using **eigenvalue analysis**. Recall from the definition of eigenvectors,

$$Wv = \lambda v; \lambda \in \mathbb{C}$$
 (16)

This is useful when we map a vector space upon itself.

Eigenvalue analysis of first layer attention head OV circuits

We use a log scale to represent magnitude, since it varies by many orders of magnitude.

Eigenvalue distribution for randomly initialized weights. Note that the mostly – and in some cases, entirely – positive eigenvalues we observe are very different from what we randomly expect.

Importantly, note that positive eigenvalues mean they are copying 'on average', and are not definitive.

Outline

Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity

Q: Is anyone familiar with the the curse of dimensionality?

Q: Is anyone familiar with the the curse of dimensionality?

A: For NNs, basically latent space $\propto |\text{layers}|^c$.

This makes them tough to analyze at scale.

Q: Is anyone familiar with the the curse of dimensionality?

A: For NNs, basically latent space $\propto |\text{layers}|^c$.

This makes them tough to analyze at scale. In addition, models are incredibly efficient at information compression.

Q: Is anyone familiar with the the curse of dimensionality?

A: For NNs, basically latent space $\propto |\text{layers}|^c$.

This makes them tough to analyze at scale. In addition, models are incredibly efficient at information compression.

This is **superposition**.

Q: Is anyone familiar with the the curse of dimensionality?

A: For NNs, basically latent space $\propto |\text{layers}|^c$.

This makes them tough to analyze at scale. In addition, models are *incredibly efficient* at information compression.

This is superposition.

When we perform an indvidual analysis of neurons, it fires for unrelated concepts.

This is **polysemanticity**.

Updated Architecture

Previously, we used an **attention-only** model, since the MLP was too hard to analyze mathematically.

Updated Architecture

Previously, we used an **attention-only** model, since the MLP was too hard to analyze mathematically.

Let's instead analyze the following architecture empirically:

Training Setup

	Transformer	Sparse Autoencoder
Layers	1 Attention Block 1 MLP Block	1 ReLU 1 Linear
MLP Size Dataset	512 The Pile (100B tokens)	$512 imes f \in \{1, \dots, 256\}^5$ Activations (8B samples)
Loss	Autoregressive Log-Likelihood	L2 Reconstruction L1 on hidden-layer activation

 $^{^{5}}f = 8$ for our analysis

Training Setup

	Transformer	Sparse Autoencoder
Layers	1 Attention Block 1 MLP Block	1 ReLU 1 Linear
MLP Size	512	$512 \times f \in \{1, \dots, 256\}^5$
Dataset	The Pile (100B tokens)	Activations (8B samples)
Loss	Autoregressive Log-Likelihood	L2 Reconstruction L1 on hidden-layer activation

 $\underline{\text{Objective: } \textit{polysemantic activations}} \xrightarrow{\textit{Tr}} \textbf{monosemantic features}.$

 $^{^{5}}f = 8$ for our analysis

Training Setup

	Transformer	Sparse Autoencoder
Layers	1 Attention Block 1 MLP Block	1 ReLU 1 Linear
MLP Size	512	$512 \times f \in \{1, \dots, 256\}^5$
Dataset	The Pile (100B tokens)	Activations (8B samples)
Loss	Autoregressive Log-Likelihood	L2 Reconstruction L1 on hidden-layer activation

Objective: polysemantic activations $\stackrel{Tr}{\rightarrow}$ monosemantic features.

The sparse, overcomplete autoencoder is trained against this objective.

- 1. **Sparse** because we constrain activations (L1 penalty).
- 2. Overcomplete because the hidden layer exceeds the input dimension.

 $^{^{5}}f = 8$ for our analysis

Given $X := \{x^j\}_{j=1}^K$; $x_i \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:

$$||X - DR||_F^2 \approx 0 \tag{17}$$

Given $X:=\{x^j\}_{j=1}^K; x_i\in\mathbb{R}^d$, we wish to find $D\in\mathbb{R}^{d\times n}, R\in\mathbb{R}^n$ s.t:

$$||X - DR||_F^2 \approx 0 \tag{17}$$

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i} \tag{18}$$

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
 (19)

where d_i is the 'feature direction' represented as columns of the W_D .

Given $X:=\{x^j\}_{j=1}^K; x_i\in\mathbb{R}^d$, we wish to find $D\in\mathbb{R}^{d\times n}, R\in\mathbb{R}^n$ s.t:

$$||X - DR||_F^2 \approx 0 \tag{17}$$

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i} \tag{18}$$

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E) \tag{19}$$

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

a. Training data $\propto n$ (interpretable features).

Given $X:=\{x^j\}_{j=1}^K; x_i\in\mathbb{R}^d$, we wish to find $D\in\mathbb{R}^{d\times n}, R\in\mathbb{R}^n$ s.t:

$$||X - DR||_F^2 \approx 0 \tag{17}$$

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i} \tag{18}$$

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E) \tag{19}$$

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

- a. Training data $\propto n$ (interpretable features).
- b. Tying b_D before the encoder and after the decoder improves performance.

Given $X:=\{x^j\}_{j=1}^K; x_i\in\mathbb{R}^d$, we wish to find $D\in\mathbb{R}^{d\times n}, R\in\mathbb{R}^n$ s.t:

$$||X - DR||_F^2 \approx 0 \tag{17}$$

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i} \tag{18}$$

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E) \tag{19}$$

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

- a. Training data $\propto n$ (interpretable features).
- b. Tying b_D before the encoder and after the decoder improves performance.
- c. Dead neurons are periodically *resampled* to improve feature representations.

Evaluating Interpretability

Reliable evaluations on interpretability were scored based on a rubric:

Features were found to be interpretable when score > 8.

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

This is effectively *invisible* when viewed through the polysemantic model!

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

This is effectively invisible when viewed through the polysemantic model!

We can evaluate each token using the log-likelihood ratio:

$$LL(t) = \log \left(P(t|\text{Arabic}) / P(t) \right)$$
Feature Activation Distribution (A/1/3450) (20)

Despite representing 0.13% of training data, arabic script makes up **81% of active tokens**:

Pinned Feature Sampling

They can be used to steer generation.

Pinned Feature Sampling

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors, and then sample from the model.

Pinned Feature Sampling

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors, and then sample from the model.

We observe that interpreted features are actively used by the model.

Finite State Automaton

A unique feature of features is their role as **finite state automaton**.

Finite State Automaton

A unique feature of features is their role as **finite state automaton**.

Unlike circuits, these work by daisy chaining features that increase the probability of another feature firing in a loop-like fashion.

Finite State Automaton

A unique feature of features is their role as **finite state automaton**.

Unlike circuits, these work by daisy chaining features that increase the probability of another feature firing in a loop-like fashion.

These present partial explanations of **memorizations** within transformers:

Reimplementation

If you can view this screen, I am making a mistake.

Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/mechinterp.pdf