日期 班级 姓名 学号

第九次作业

题目 1. 设 X 是复 Hilbert 空间, $T \in L(X)$, 证明: $T^* = T \iff (Tx, x) \in \mathbb{R}, (\forall \in X)$.

证明. "⇒":
$$(Tx,x) = (x,T^*x) = (x,Tx) = \overline{(Tx,x)}$$
, 则 $(Tx,x) \in \mathbb{R}$. " \Leftarrow ": 由于 $(Tx,x) \in \mathbb{R}$ 于是 $(Tx,x) = (x,Tx) = (x,T^*x)$,于是 $(x,(T-T^*)x) = 0$, $(\forall x \in X)$,于是 $T-T^* = 0 \Rightarrow T = T^*$.

题目 2. 设 X 为 Hilbert 空间, $T_1, T_2 \in L(X)$, $T_1^* = T_1, T_2^* = T_2$,证明: $T_1T_2 = T_2T_1 \iff T_1T_2 = (T_1T_2)^*$.

证明. 由于 $T_1T_2 = (T_1T_2)^{**} = (T_2^*T_1^*)^* = (T_2T_1)^*$

" \Rightarrow ": 由于 $T_1T_2 = T_2T_1$, 于是 $T_1T_2 = (T_1T_2)^*$.

" \leftarrow ":由于 $T_1T_2 = (T_1T_2)^* = (T_2T_1)^*$,两边同取共轭可得 $T_1T_2 = T_2T_1$.

题目 3. 设 X 为 Hilbert 空间, $T \in L(X)$,证明 $Ker(T^*) = R(T)^{\perp}$.

延明. 一方面,
$$\forall x \in \operatorname{Ker}(T^*)$$
,则 $0 = (T^*x, y) = (x, Ty)$,($\forall y \in X$),则 $x \in R(T)^{\perp} \Rightarrow \operatorname{Ker}(T) \subset R(T)^{\perp}$.另一方面, $\forall x \in R(T)^{\perp}$,则 $0 = (x, Ty) = (T^*x, y)$,($\forall y \in X$),则 $T^*x = 0 \Rightarrow x \in \operatorname{Ker}(T^*)$. 综上: $\operatorname{Ker}(T^*) = R(T)^{\perp}$.

题目 **4.** 证明 $(^{\perp}M)^{\perp} = \bar{M}$.

证明. $\forall x \in M$, $\forall f \in {}^{\perp}M$ 有 $\langle f, x \rangle = 0$, 则 $x \in ({}^{\perp}M)^{\perp}$, 令 $\{x_n\} \subset M$ 且 $x_n \to x \in X$, 由于 f 的连续性,则 $\langle f, x \rangle = \lim_{n \to \infty} f(x_n) = 0 \Rightarrow x \in ({}^{\perp}M)^{\perp}$,于是 $\bar{M} \subset ({}^{\perp}M)^{\perp}$.

假设 \bar{M} 是 $(^{\perp}M)^{\perp}$ 的真子集,则 $\exists x_0 \in (^{\perp}M)^{\perp} - \bar{M}$,且 $d := \rho(x_0, \bar{M}) > 0$,由 Hahn-Banach 定理推论可得 $\exists f \in X^*$ 使得 $f(x_0) = d$, $f|_{\bar{M}} = 0$,于是 $f \in ^{\perp}M$ 且 $f(x_0) = d > 0$,则 $x_0 \notin (^{\perp}M)^{\perp}$ 与 $x_0 \in (^{\perp}M)^{\perp}$ 矛盾. 故 $\bar{M} = (^{\perp}M)^{\perp}$.

题目 5. 设 X,Y 为 B^* 空间, $T \in L(X,Y)$ 则 $\operatorname{Ker}(T^*) = {}^{\perp}R(T)$, $\operatorname{Ker}(T) = \mathbb{R}(T^*)^{\perp}$.

证明.
$$\forall f \in \operatorname{Ker}(T^*), \ \mathbb{N}\langle f, Tx \rangle = \langle T^*f, x \rangle = 0, \ \mathbb{N}f \in {}^{\perp}R(T) \\ \forall f \in {}^{\perp}R(T), \ \mathbb{N}\langle T^*f, x \rangle = \langle f, Tx \rangle = 0, \ \mathbb{N}f \in \operatorname{Ker}(T^*) \\ \forall x \in \operatorname{Ker}(T), \ \mathbb{N}\langle T^*f, x \rangle = \langle f, Tx \rangle = f(0) = 0, \ \mathbb{N}x \in R(T^*)^{\perp} \\ \forall x \in R(T^*)^{\perp}, \ \mathbb{N}\langle f, Tx \rangle = \langle T^*f, x \rangle = 0, \ \mathbb{N}x \in \operatorname{Ker}(T) \\ \end{cases} \operatorname{Ker}(T) = {}^{\perp}R(T)$$

题目 6. 设 $X = \{\xi = (x_1, \dots, x_n) \in l^2 : \sum_{n \ge 1} |nx_n|^2 < \infty\}, ||\xi||_X = \sum_{n \ge 1} |nx_n|^2, T : x \to l^2,$ Tx = x, 证明 $\overline{R(T)} = l^2$.

证明. 方法一: 先证明 X 为 l^2 的子空间, $\forall \alpha, \beta \in \mathbb{K}$, $\forall \xi, \eta \in X$, 令 $\xi = \{x_n\}$, $\eta = \{y_n\}$, $\forall N > 0$,

$$\sum_{1 \leqslant n \leqslant N} |n(\alpha x_n + \beta y_n)|^2 = \alpha^2 \sum_{1 \leqslant n \leqslant N} n^2 x_n^2 + 2\alpha\beta \sum_{1 \leqslant n \leqslant N} n^2 x_n y_n + \beta^2 \sum_{1 \leqslant n \leqslant N} n^2 y_n^2$$

由于 $\xi, \eta \in X$,于是 $\sum_{1 \leqslant n \leqslant N} n^2 x_n^2, \sum_{1 \leqslant n \leqslant N} n^2 y_n^2$ 关于 N 收敛,又由于

$$\sum_{1 \leqslant n \leqslant M} n^2 x_n y_n \leqslant \left(\sum_{1 \leqslant n \leqslant M} |n x_n|^2 \right)^{\frac{1}{2}} \left(\sum_{1 \leqslant n \leqslant M} |n y_n|^2 \right)^{\frac{1}{2}}$$

于是

$$\lim_{N \to \infty} \sum_{1 \le n \le N} |n(\alpha x_n + \beta y_n)|^2 = \sum_{n \ge 1} |n(\alpha x_n + \beta y_n)|^2 < \infty$$

所以 $\alpha \xi + \beta \eta \in X$, $X \neq l^2$ 的闭子空间.

由 Hahn-Banach 定理推论可得,要证 $\overline{R(T)}=l^2$ 即 R(T) 在 l^2 中稠密,只需证: $\forall f\in (l^2)^*, f|_{R(T)}=0$ $\Rightarrow f=\theta$. 反设,存在 $f\neq\theta$ 使得 $f|_{R(T)}=0$,由于 l^2 是 Hilbert 空间,由 Riesz 表示定理可知,存在 $\eta_f\in l^2$, $\eta_f=\{y_n\}$ 使得 $\forall \xi\in X$, $\xi=\{x_n\}$ 有

$$f(\xi) = (\xi, \eta_f) = \sum_{n \ge 1} x_n \bar{y}_n = 0$$

由于 $f \neq \theta$,于是 $\eta_f \neq \theta$,即 $\exists y_n \neq 0$,令 $\xi = (\underbrace{0, \cdots, 0, 1}_{n \uparrow}, 0, \cdots) \in X$,则 $f(\xi) = \bar{y}_n \neq 0$ 与 $f(\xi) = 0$ 矛盾,则 $f|_{R(T)} = \theta \Rightarrow f = \theta$.

方法二: 由于 $\operatorname{Ker}(T^*)^\perp = \overline{R(T)}$,只需证 T^* 是单射,由于 l^2 是 Hilbert 空间,如果 $(X,||\cdot||_X)$ 也是 Hilbert 空间,则通过 $(Tx,y)_{l_2}=(x,T^*y)_X$ 可以求出 T^* 的具体表达式.

要证 $(X, ||\cdot||_X)$ 可构成 Hilbert 空间,只需证 $||\cdot||_X$ 满足平行四边形公式:

$$||x+y||_X^2 + ||x-y||_X^2 = \sum_{n\geqslant 1} |n(x_n+y_n)|^2 + \sum_{n\geqslant 1} |n(x_n-y_n)|^2$$
$$= 2\sum_{n\geqslant 1} |nx_n|^2 + 2\sum_{n\geqslant 1} |ny_n|^2 = 2(||x||_X^2 + ||y||_X^2)$$

则通过极化恒等式定义 X 上的内积是有意义的

$$(x,y)_X = \frac{1}{4} \left(||x+y||_X^2 - ||x-y||_X^2 + i||x+iy||_X^2 - i||x-iy||_X^2 \right)$$
$$= \frac{n^2}{4} \left[\sum_{n\geqslant 1} 4\operatorname{Re}(x_n \bar{y}_n) + i \sum_{n\geqslant 1} 4\operatorname{Im}(x_n \bar{y}_n) \right] = \sum_{n\geqslant 1} n^2 x_n \bar{y}_n$$

令 $T^*y = \{z_n\}$,于是

$$\sum_{n\geq 1} x_n \bar{y}_n = (Tx, y)_{l_2} = (x, T^*y)_X = \sum_{n\geq 1} n^2 x_n \bar{z}_n, \quad (\forall x \in X)$$

于是 $n^2 \bar{z}_n = \bar{y}_n$,则 $z_n = y_n/n^2$,于是 $T^* y = (y_1, y_2/2^2, \cdots, y_n/n^2, \cdots)$,故 $T^* y = \theta \iff y = \theta$,所以 T^* 为单射.

题目 7. 设 X 为自反空间,则 X^* 也是自反空间.

证明. 设 J 为 X 上的自然嵌入映射,于是 $J^* \in L(X^{***}, X^*)$,由于 J 是双射,则 $(J^{-1})^* = (J^*)^{-1} \in L(X^*, X^{***})$ 也是双射.

只需证 $(J^{-1})^*$ 是 X^* 到 X^{***} 的自然嵌入映射.

 $\forall \psi \in X^{***}, x^{**} \in X^{**},$ 只需证 $\exists g \in X^{*}$ 使得 $\langle \psi, x^{**} \rangle = \langle x^{**}, g \rangle$.

只需证 $(J^{-1})^*g = \psi$ 也即 $g = J^*\psi$.

只需证 $\langle \psi, x^{**} \rangle = \langle x^{**}, J^* \psi \rangle$.

由于 X 是自反空间,则 $\exists x \in X$ 使得 $x^{**} = J_x$,于是

$$\langle \psi, x^{**} \rangle = \langle \psi, J_x \rangle = \langle \psi, Jx \rangle = \langle J^*\psi, x \rangle = \langle J_x, J^*\psi \rangle = \langle x^{**}, J^*\psi \rangle$$

题目 8. 设 X 为 B 空间, 若 X^* 为自反空间, 则 X 是自反空间.

证明. 由上题可知, X^{**} 为自反空间,由于 $J(X) \subset X^{**}$,且 J 算子可逆,于是 $\exists c > 0$ 使得 $||Jx|| \ge c||x||$,设 $Jx_n \to y$,于是

$$||x_n - x_m|| \le \frac{1}{c}||Jx_n - Jx_m|| \to 0, \ (n, m \to \infty)$$

由于 X 是 B 空间,则 $x_n \to x \in X$,由 J 的连续性可知 $Jx = \lim_{n \to \infty} Jx_n = y \in J(X)$,则 J(X) 是 X^{**} 的闭子集. 下证 J(X) 在 X^{**} 中稠密.

 $\forall g \in X^{***}$,由于 X^* 是自反的,于是 $\exists f \in X^*$ 使得 $\forall x^{**} \in X^{**}$ 有 $\langle g, x^{**} \rangle = \langle x^{**}, f \rangle$. 若 $g|_{J(x)}=0$,则

$$\langle g,J(X)\rangle=\langle J(X),f\rangle=\langle f,X\rangle=f(X)=0$$

则 $f \equiv 0 \Rightarrow g \equiv 0$,由 Hahn-Banach 定理推论可得 J(X) 在 X^{**} 中稠密,于是 $J(X) = \overline{J(X)} = X^{**}$,故 X 是自反的.