「哲学者のための数学」練習問題の解答

ver. 2025年10月17日

1 集合

- 3.1 1 真. 2 偽. 3 真.
- 4.1 1 偽. 2 真. 3 真. 4 真.
- 4.2 $\Omega := \{x|x=x\}, \emptyset := \{x|x\neq x\}$. 他にも色々ありうる. Ω は条件が恒真式(トートロジー), \emptyset は矛盾式になればよい.
- 4.3 $[a] := \{x | x = a\}.$
- 5.1 2は本文同様なので省略する.3については以下の通り(4は3と同様なので略).

$$x \in (A \cup B)^c \iff \neg(x \in (A \cup B))$$
 : 補集合の定義より
$$\iff \neg(x \in A \lor x \in B)$$
 : \cup の定義より
$$\iff \neg(x \in A) \land \neg(x \in B)$$
 : \vee : ボ・モルガン則より
$$\iff (x \in A^c) \land (x \in B^c)$$
 : 補集合の定義より
$$\iff x \in (A^c \cap B^c)$$
 : \cap の定義より

- 5.2 結合律については本文通り、可換律については、本文同様 $A=\{1,2\}, B=\{1\}$ とすれば、 $A\setminus B=\{2\}$ であるのに対し $B\setminus A=\emptyset$ となり等しくならないことがわかる.
- 8.1 等しくない.例えば本文同様 $A=\{a_1,a_2,a_3\}, B=\{b_1,b_2\}$ とすると, $A\times B$ の元はすべて (a_i,b_j) となるが, $B\times A$ の元は (b_i,a_j) となり順序が異なる.

2 関係と関数

1.1

- 1. $\{(n,m) \in \mathbb{N} \times \mathbb{N} | \exists a \in \mathbb{N} (n = a \cdot m) \}$
- 2. $\{(x,y,z) \in X \times X \times X | y \text{ and } z \text{ are biological parents of } x\}$
- 2.1 「=」は反射的、対称的かつ推移的.「<」は推移的.「<」は反射的かつ推移的.
- 2.2 (1) 名前を知っている (2) 親類である (3) 母である (4) 子孫である.
- 3.2 5つ (北海道, 本州, 四国, 九州, 沖縄).
- 3.3 推移的でないため不可能. 例:山口/岡山/福岡
- 事例 3.1 同値類は一つひとつの可能世界である.
- 事例 3.2 推移性を満たさない.

4.1

- 1. $I_{Np}(t) = \emptyset$ for $t < t_0, t_1 < t$.
- 2. 時空的連続性の問題. 空間的に離れた部分集合, 時間的に連続していない集合が「個物」として認められてしまう.
- 5.1 $f \circ f(x) = f(f(x)) = f(x^3 2x) = (x^3 2x)^3 2(x^3 2x) = x^9 6x^7 + 12x^5 8x^3$
- 6.1 日本:Bob / アメリカ:Alice, Dave / フランス:Chris
- 6.2 $[a] = f^{-1}(y) = \{x \in X | f(x) = f(a)\}$. 反射性・対称性・推移性は「=」より従う(練習問題 2.1). つまり [反射性]:明らかに f(a) = f(a). [対称性]:f(a) = f(b) ならば f(b) = f(a). [推移性]:f(a) = f(b), f(b) = f(c) ならば f(a) = f(c).
- 6.3 この関数に入力する部分集合 A として単元集合 $\{x'\}$ をとると, $f(\{x'\}) = \{f(x)|x \in \{x'\}\}$ となるが, $\{x'\}$ に含まれる要素は x' だけなので,これは結局 f(x') だけからなる単元集合 $\{f(x')\}$ になる.よって単元集合の像は単元集合となり,これは元の関数 $f:x'\mapsto f(x')$ と同一視できる.
- 6.4 $x' \in \{x'\}$ であり,それ以外に $\{x'\}$ の要素はないので, $x' \in f^{-1}(f(\{x'\})) = \{x|f(x) \in f(\{x'\})\}$ を示せばよい.上の問題より $f(\{x'\}) = \{f(x')\}$ なので, $f(x') \in f(\{x'\})$.よって上の条件が満たされ $x' \in f^{-1}(f(\{x'\}))$ となる.
- 7.1 全射でない、つまりある $y\in Y$ に対し f(x)=y となる x が存在しないとする.すると $f^{-1}(y)=\emptyset$ となり、 f^{-1} が Y から X への関数にならない(関数は X の要素をあてがわねば ならない).

7.2 全射である. 任意の $[x] \in X/R$ は、そこに含まれる元 $x \in [x]$ に対して f(x) = [x]. しかし単射ではない. 例えば異なる $x \neq y$ に対し xRy であれば、 $x,y \in [x]$ となり、よって f(x) = f(y). 単射であるためには、R が自分自身のみと成立するとき、つまり $\forall x,y (x \neq y \Rightarrow \neg xRy)$ でなければならない.