

Modulkatalog

Verfahrenstechnik – Bachelor of Engineering (B.Eng.)

ANS41 Anwendungssysteme in Produktionsunternehmen

Kom	petenzzuordnur	'n
NOIII	petenzzuoranur	ıq

Wissensvertiefung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul ANS41 sind die Studierenden in der Lage typische Merkmale, Struktur und Funktionalität sowie das integrative Zusammenspiel von Anwendungssystemen in Forschung und Entwicklung, Beschaffung, Lagerhaltung, Produktion und Fertigung zu erläutern.

Daneben die Umsetzung von Anwendungswissen in konkrete Informationssysteme analysieren und beurteilen.

Weiterhin erlangt man die Fähigkeit Bedarf, Einsatzmöglichkeiten und Potenzial von Anwendungssystemen im technischen und logistischen Bereich abzuschätzen sowie das Erläutern der Ansätze von inner- und zwischenbetrieblich integrierten Systemen.

Überdies die ARIS Methode beschrieben sowie die prozessorientierte Ausrichtung von Anwendungs- und Informationssystemen beurteilen.

Inhalt

Forschung und Technik

Produktentwicklung und Konstruktion

CAD-Systeme

Computerunterstützte Berechnung und Simulation - CAE

Computer Aided Planning - CAP

Integriertes Produktdatenmanagement

Virtuelle Produktentwicklung am Beispiel Airbus

Beschaffung und Lagerhaltung

Organisationsstrukturen in Beschaffung und Lagerhaltung

Stammdaten in Beschaffung und Lagerhaltung

Geschäftsprozesse in der Beschaffung

Lagerverwaltung und Bestandsführung

Beschaffungs- und Bestandscontrolling

Formen der überbetrieblichen Zusammenarbeit

Produktion und Fertigung

Aufbau und Funktionen von PPS-Systemen

Organisationsstrukturen in der Produktion

Stammdaten in der Produktion

Produktionsplanung

Produktionssteuerung

Produktionscontrolling

Vor- und nachgelagerte Systeme

Unternehmensübergreifende Informationssysteme

Grundlagen

Techniken und Standards

E-Procurement

E-Commerce und E-CRM

Supply Chain Management

Portale und Marktplätze

Geschäftsprozessmodellierung

Geschäftsprozesse

Das ARIS-Konzept Ereignisgesteuerte Prozessketten (EPK) Objektorientierte Geschäftsprozessmodellierung

Voraussetzungen	Grundlagenkenntnisse im Themenfeld Anwendungssysteme und ihre Einsatzbereiche oder Grundlagen der Produktionswirtschaft.
Modulbausteine	ANS501 Studienbrief Forschung und Technik mit Onlineübungen ANS502 Studienbrief Beschaffung und Lagerhaltung mit Onlineübungen ANS503 Studienbrief Produktion und Fertigung mit Onlineübungen ANS504 Studienbrief Unternehmensübergreifende Informationssysteme mit Onlineübungen
	ANS102 Studienbrief Geschäftsprozessmodellierung mit Onlineübung Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Andrea Herrmann

AUT20 Messtechnik

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul AUT20 kennen die Studierenden die Grundlagen der elektrischen Messtechnik, mechanischer Größen sowie beispielhafte Anwendungen mit dem Ziel,

Automatisierungsaufgaben zur Lösung durch Automatisierungstechniker vorzubereiten.

Sie können geeignete Messverfahren und Messgeräte auswählen und elektrische Messungen nicht elektrischer Größen planen und durchführen.

Weiterhin sind die Studierenden in der Lage, statische Sensorkennlinien aufzunehmen und Sensoren zu kalibrieren.

Sie kennen grundlegende physikalische Prinzipien, nach denen Sensoren arbeiten sowie übliche Sensoren aus der praktischen Ingenieuranwendung und wählen sie aufgabenspezifisch aus.

Die Studierenden können auf den Grundlagen der PC-Messtechnik aufbauend Programme zur Messdatenerfassung und -auswertung mit einem beispielhaften Werkzeug erstellen.

Inhalt

Einführung, Grundlagen und Fehlerrechnung

Anwendungsbeispiele und Bedeutung der Messtechnik

Grundbegriffe und Normen

Charakterisierung von Messsignalen und Messeinrichtungen

Messfehler

Messprinzipien und Sensoren

Einführung zu Sensoren

Messprinzipien und Messeffekte

Messgröße Temperatur

Messgrößen Weg und Winkel

Messgröße Drehzahl

Messgröße Kraft und Drehmoment

Messgröße Druck

Messgröße Beschleunigung und Schwingungen

Praktisches Arbeiten mit Messgeräten, Sensoren und PC-Messdatenerfassung bzw. -verarbeitung

Messen mit Digitalmultimeter und digitalem Speicheroszilloskop

Sensorkennlinie aufnehmen und kalibrieren

Messdaten auswerten, Messunsicherheit bestimmen

Grundlagen der Programmierung und Datenerfassung mit LabView

Messdatenerfassung und Signalverarbeitung

Rechnergestützte Messdatenverarbeitung

Grundlagen des Programmierens und Messdatenerfassung mit LabView

Grundlagen der LabView-Programmierung

Messdatenerfassung mit der Multifunktionskarte USB-6008 von National

Instruments

Daten speichern

Voraussetzungen

Ingenieurwissenschaftliche Grundlagen der Physik und der Elektrotechnik

Modulbausteine	Moduleinführungsvideo	
	MST101 Studienbrief Einführung, Grundlagen und Fehlerrechnung mit 2 Onlineübungen	
	MST102 Studienbrief Messprinzipien und Sensoren mit 2 Onlineübungen MST201 Studienbrief Praktisches Arbeiten mit Messgeräten, Sensoren und PC-Messdatenerfassung bzwverarbeitung	
		MST202 Studienbrief Grundlagen des Programmierens und Messdatenerfassung mit LabView mit Programm LabView
	Pflicht-Onlineübung	
	Labor (2 Tage in Partnerhochschule)	
	Kompetenznachweis	2 Assignments (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte	
Sprache	Deutsch	
Studienleiter	Matthias Riege	

BIO20 Grundlagen der Bioökonomie

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls BIO20 kennen die Studierenden Grundbegriffe der Bioökonomie und können sie auf die Nachhaltigkeitsanforderungen von Ökologie und Ökonomie bewerten.
	Sie lernen die Bioökonomie als ein neues zukunftsorientiertes Wirtschaftssystem kennen, das aufbaut auf biogenen Stoffkreisläufen und biologischen Stoffwechselleistungen beziehungsweise Wissen über biologische Zusammenhänge und Funktionalitäten.
	Die Studierenden lernen bei dieser biologischen Transformation die Nutzung von fossilen Ressourcen stetig zu reduzieren und die Kreislaufwirtschaft von Roh- und Reststoffen im Sinne einer "Circular economy" zu erweitern und zu intensivieren.
	Sie entwickeln persönliche Fähigkeiten und gewisse praktische Fertigkeiten zur alternativen Verwendung für die in den Städten und bei Unternehmen anfallenden Rest- und Abfallströme insbesondere biogener Art.
	Sie bauen sich Kompetenzen auf, mit denen Sie neue oder optimierte Produkte für einen nachhaltigen Konsum entwickeln und anbieten.
	Konzeptionelle Grundlagen der Bioökonomie
Inhalt	Modernisierung der wirtschaftlichen Grundbegriffe Natur, Mensch und Kapital
	Erschließung neuer Stoffkreisläufe
	Stoffliche, strukturelle und energetische Potenziale biogener Rest- und Abfallstoffe als neue Rohstoffquellen
	Nachhaltige bioökonomische Bilanzierung von Verfahren
	Ökologische Betrachtung der Verfahren
	Betrachtung der Integrierbarkeit bioökonomischer Verfahren in einen Gesamtprozess
	Bioökonomie und Wirtschaftlichkeit
	Anwendungen auf aktuelle Themen der Bioökonomie
	Industrie
	Kommunen
	Landwirtschaft und Ernährung
	Bioenergie
Voraussetzungen	Grundkenntnisse der Physik und Chemie Grundkenntnisse der Betriebswirtschaft
Modulbausteine	BIO101 Studienbrief Grundlagen der Bioökonomie mit Onlineübung Fachbuch Barnim Jeschke, Thomas Heupel: Bioökonomie - Impulse für ein zirkuläres Wirtschaften
	BIO102-BH Begleitheft zum Fachbuch mit Onlineübung
	Onlinetutorium (1 Stunde)

Kompetenznachweis Klausur (1 Stunde)

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Rainer Gottschalk

BVT60 Biotechnische Verfahrenstechnik und Anlagenbau

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls BVT60 kennen die Studierenden Biotechnologie als wesentlichen Baustein der erneuerbaren Energien und des Klimaschutzes durch sinnvolle Nutzung vorhandener Rohstoffe und Abfälle zur Bereitstellung von Wärme, Strom und Kraftstoff sowie zur vollständigen Kreislauferschließung der immer wichtiger werdenden Pflanzennährstoffe.
	Sie erkennen, dass Biogastechnologie für den biotechnischen Anlagenbardie tragende Rolle auf absehbare Zeit in Deutschland behalten wird und zeitgleich dazu beiträgt, dass das enorme internationale Ausbaupotenzial gezielt genutzt werden kann.
	Weiterhin erkennen die Studierenden, dass die Fachliteratur in der Regel einen guten Überblick gibt und theoretische Lösungen bietet, die Praxis aber zur Anwendung der globalen Formeln zusätzliche Parameter braucht die aufwendig und mit großen Fehlerrisiken hergeleitet oder erst im Praxisbetrieb selbst gemessen werden müssen.
	Zudem können sie wegen fehlender dokumentierter Erfahrungswerte die digitale Transformation als Sprungbrett für eine zukünftige biotechnische Industrie 4.0-Plattform gezielt einsetzen und Treibhausgasemissionen in nutzbare und nachhaltige Kraftstoffe der Zukunft umwandeln
 Inhalt	Allgemeine Grundlagen zur Biogastechnologie
mat	Der anaerobe Stoffwechsel und Methoden zur mathematischen Beschreibung
	Beschreibung des Stoffverhaltens im Fermenterreaktor
	Hydraulische Verweilzeit sowie organische Raum- und Schlammbelastung
	Prozessstörungen und Synergien
	Bio-Verfahrenstechniken der Power-to-X-Technologien
Voraussetzungen	Grundlagen der Physik
	Grundlagen der Chemie
	Grundlagen der Mathematik
	Grundlagen der Thermodynamik
Modulbausteine	ABTE124-EL Fachbuch Langhans; Scholwin; Nelles: Handbuch zur Bilanzierung von Biogasanlagen für Ingenieure – Band 1 – Grundlagen und Methoden für die Bewertung und Bilanzierung in der Praxis mit
	BVT601-BH Begleitheft und Onlineübung
	Onlineseminar (2 Stunden)
Kompetenznachweis	Assignment

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Rainer Gottschalk

BWL26 BWL-Grundlagen

	BWL26 BWL-Grundlagen
Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul BWL26 können die Studierenden zentrale strategische, organisatorische und rechtliche Fragen bei der Gründung von Unternehmen erläutern.
	Sie können betriebliche Funktionsbereiche (primäre und sekundäre) in Unternehmen und ihre grundlegenden Methoden erklären.
	Weiterhin können die Studierenden für ein Beispielunternehmen den Leistungsprozess im engeren Sinne analysieren und Marktchancen und die finanzielle Struktur des Unternehmens bewerten.
	Zudem können sie grundlegende Aufgaben und Instrumente des Personalmanagements und des Rechnungswesens aufzählen und beurteilen.
Inhalt	Grundlagen des Produktionsmanagements und der Materialwirtschaft
	Begriffliche Grundlagen
	Geschichte der industriellen Produktion – ein Überblick
	Produktionsmanagement
	Materialwirtschaft
	Marketing
	Wandel der Märkte und des Marketings
	Wie kommt es zu einer Kaufentscheidung? – Eine Analyse des Kaufverhaltens
	Informationsbeschaffung für das Marketing: die Marketingforschung
	Marketingkonzeption – Ergebnis eines systematischen Vorgehens im Marketing
	Ausgangspunkt für die Entwicklung einer Marketingkonzeption: die Umwelt- und Unternehmensanalyse
	Entwicklung von Marketingzielen und Marketingstrategie
	Marketinginstrumentarium und Marketingmix
	Marketingcontrolling
	Organisation der Marketingfunktion
	Personalmanagement
	Grundlagen des Personalmanagements
	Rechtliche Grundlagen des Personalmanagements
	Personalplanung
	Personalbeschaffung
	Personaleinsatz
	Personalentwicklung
	Betriebliche Anreizsysteme
	Personalbeurteilung
	Personalcontrolling und Personaldatenverwaltung
	Personalführung
	Rechnungswesen
	Grundlagen
	Finanzbuchhaltung

Kosten- und Leistungsrechnung

Spezialaufgaben des Rechnungswesens **Grundlagen der Unternehmensführung**

Was ist Unternehmensführung St. Galler Managementkonzept Normatives Management Strategisches Management Operatives Management

Voraussetzungen	Keine.
Modulbausteine	RAE101-EL Studienbrief mit Rechtsänderungen BWL103 Studienbrief Grundlagen des Produktionsmanagements und der Materialwirtschaft mit Onlineübung BWL104 Studienbrief Marketing mit Onlineübung BWL105 Studienbrief Personalmanagement mit Onlineübung BWL106 Studienbrief Rechnungswesen mit Onlineübung BWL107 Studienbrief Grundlagen der Unternehmensführung mit Onlineübung Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Beate Holze

CHE20 Grundlagen der Chemie

ch erfolgreichem Abschluss des Moduls CHE20 erkennen die Idierenden, dass die Chemie den technischen Fortschritt erschließt. Prüber hinaus erkennen sie, wie chemisches Wissen in angestammte enieurdomänen einfließt und sind in der Lage, gefährliche in gefährliche Stoffe und umgekehrt umzuwandeln. Ekönnen Wissen überbiochemische Reaktionen und nachwachsende hrstoffe unter dem Vorbild Natur nutzen. Berdem erkennen sie, dass die anorganische und organische offchemie sowie die industrielle und nachhaltige Chemie die zukünftige enieurarbeit noch stärker prägen werden. Sätzlich können die Studierenden Wissen auf Basis mathematischsurwissenschaftlicher, technologischer und ökonomisch-rechtlicher undlagen vermitteln. Gemeine und Anorganische Chemie emie in Technik und Umwelt fbau der Materie riodensystem der Elemente rnchemie, Kernenergie, Oberflächenanalytik
dierenden, dass die Chemie den technischen Fortschritt erschließt. rüber hinaus erkennen sie, wie chemisches Wissen in angestammte enieurdomänen einfließt und sind in der Lage, gefährliche in gefährliche Stoffe und umgekehrt umzuwandeln. e können Wissen überbiochemische Reaktionen und nachwachsende hrstoffe unter dem Vorbild Natur nutzen. ßerdem erkennen sie, dass die anorganische und organische offchemie sowie die industrielle und nachhaltige Chemie die zukünftige enieurarbeit noch stärker prägen werden. sätzlich können die Studierenden Wissen auf Basis mathematischturwissenschaftlicher, technologischer und ökonomisch-rechtlicher undlagen vermitteln. gemeine und Anorganische Chemie emie in Technik und Umwelt fbau der Materie riodensystem der Elemente
enieurdomänen einfließt und sind in der Lage, gefährliche in gefährliche Stoffe und umgekehrt umzuwandeln. können Wissen überbiochemische Reaktionen und nachwachsende hrstoffe unter dem Vorbild Natur nutzen. ßerdem erkennen sie, dass die anorganische und organische offchemie sowie die industrielle und nachhaltige Chemie die zukünftige enieurarbeit noch stärker prägen werden. sätzlich können die Studierenden Wissen auf Basis mathematischturwissenschaftlicher, technologischer und ökonomisch-rechtlicher undlagen vermitteln. gemeine und Anorganische Chemie emie in Technik und Umwelt fbau der Materie riodensystem der Elemente
hrstoffe unter dem Vorbild Natur nutzen. ßerdem erkennen sie, dass die anorganische und organische offchemie sowie die industrielle und nachhaltige Chemie die zukünftige enieurarbeit noch stärker prägen werden. sätzlich können die Studierenden Wissen auf Basis mathematischturwissenschaftlicher, technologischer und ökonomisch-rechtlicher undlagen vermitteln. gemeine und Anorganische Chemie emie in Technik und Umwelt fbau der Materie riodensystem der Elemente
offchemie sowie die industrielle und nachhaltige Chemie die zukünftige enieurarbeit noch stärker prägen werden. Sätzlich können die Studierenden Wissen auf Basis mathematisch- turwissenschaftlicher, technologischer und ökonomisch-rechtlicher undlagen vermitteln. gemeine und Anorganische Chemie emie in Technik und Umwelt fbau der Materie riodensystem der Elemente
gemeine und Anorganische Chemie emie in Technik und Umwelt fbau der Materie riodensystem der Elemente
emie in Technik und Umwelt fbau der Materie riodensystem der Elemente
emie in Technik und Umwelt fbau der Materie riodensystem der Elemente
riodensystem der Elemente
•
rnchemie Kernenergie Oherflächenanalytik
monerne, Remenergie, Obernaenenanarytik
emische Bindung, Werkstoffe, Struktur
aktionen, Katalyse, Thermochemie
uren, Basen, Luftschadstoffe
sungen, Fällungen, Wasserchemie
ektrochemie
ganische Chemie
hlenwasserstoffe
offklassen und technische Anwendungen
lymerchemie
chhaltige Chemie
organische Stoffchemie, Gefahrstoffe und Arbeitsschutz
emie der Elemente
emikalien am Arbeitsplatz
nntnisse der Physik
nntnisse der Mathematik
chbuch Kurzweil: Chemie – Grundlagen, technische Anwendungen, hstoffe, Analytik und Experimente mit
OSIONE AUGUVIK IIIO EXDENNIENIE IIII
·
E201-BH Begleitheft mit Onlineübung und
E201-BH Begleitheft mit Onlineübung und E202-BH Begleitheft mit Onlineübung
E201-BH Begleitheft mit Onlineübung und

Kompetenznachweis Klausur (2 Stunden)

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Rainer Gottschalk

CHE21 Technische Chemie

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls CHE21 erkennen die Studierenden, dass die chemische Reaktionstechnik und die mechanischen und thermischen Grundoperationen die wichtigsten Lerninhalte in der Grundausbildung der Technischen Chemie sind.
	Sie erlangen die theoretischen Grundlagen für das Erreichen der praxisrelevanten Ziele und verfügen über Grundwissen der molekularen und chemischen Vorgänge.
	Sie vertiefen Wissen in der Reaktorauslegung, z.B. für Reaktormodellierung und -simulation und können neue chemische Prozesse wie z.B. die Umwandlung biologischer Rohstoffe in medizinisch relevante Wertstoffe, Mineraldünger und/oder Energie entwickeln.
	Zusätzlich sind die Studierenden in der Lage, eine chemische Reaktion vom Labormaßstab der Forschung sicher in den technischen Maßstab der Produktion zu übertragen (Scale-up).
labali.	Einführung in die chemische Reaktionstechnik
Inhalt	Begriffe und Definitionen der chemischen Reaktionstechnik
	Reaktionsanalyse
	Grundlagen der Wärmeübertragung
	Grundlagen der Reaktormodellierung
	Verweilzeitverteilung und Bilanzierung realer Reaktoren
	Reaktionstechnik einphasig komplexer Reaktionen
	Reaktionstechnik mehrphasiger Reaktionen
	Mikroreaktionstechnik
	Reaktionstechnik der Polyreaktion
Voraussetzungen	Grundlagen der Chemie
10.aa000. <u>_</u> ago	Grundlagen der Technischen Thermodynamik
	Grundlagen der Physik
	Grundlagen der Mathematik
Modulbausteine	Fachbuch Emig; Klemm: Chemische Reaktionstechnik mit
	CHE205-BH Begleitheft mit Onlineübung und
	CHE206-BH Begleitheft mit Onlineübung
	Onlineseminar (2 Stunden)
	Präsenztutorium (3 Stunden)
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch

Studienleiter

Rainer Gottschalk

CHE22 Physikalische Chemie

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage,
	die Grundbegriffe der Physikalischen Chemie wiederzugeben,
	die Grundlagen für Stoff-, Wärme und Impulstransport zusammenzufasser und zu beschreiben,
	Phasendiagramme zu interpretieren und Geschwindigkeitsgesetze herzuleiten,
	(grundlegende) thermodynamische, elektrochemische und kinetische Berechnungen durchzuführen,
	Anwendungsmöglichkeiten der physikalischen Chemie unter dem Gesichtspunkt der Umweltverträglichkeit zu beurteilen,
	ihre Kenntnisse auf Fragestellungen der verfahrenstechnischen Prozesse zu übertragen, um thermodynamische, elektrochemische und kinetische Berechnungen durchzuführen.
Inhalt	Grundbegriffe
	Systeme, Phase, Gleichgewicht, chemische Reaktion, Prozesse, Zustände, Zustandsgrößen und Prozessgrößen,
	Ideale Gase (Ideales Gasgesetz, ideale Gasmischungen, Dalton'sches Gesetz), Eigenschaften realer Gase (van der Waals-Gleichung und andere Realgasgleichungen, Bewegung von Molekülen - kinetische Gastheorie, Effusion, Graham'sches Gesetz)
	Hauptsätze der Thermodynamik und Berechnung von Zustandsänderungen
	Reinststoffsysteme (Aggregatzustände, Phasenübergänge, Phasendiagramme, Phasenregel)
	binäre und ternäre Mischungen und deren Phasengleichgewichte sowie deren technische Anwendungen
	chemische Reaktionen (Grundbegriffe, chemisches Gleichgewicht, Reaktionsenthalpie, Reaktionsentropie, Standardbildungsenthalpie, Satz von Hess, van`t Hoff-, Gibbs-Helmholtz Gleichungen, Gleichgewichtskonstante, Reaktionslaufzahl)
	Grundlagen der chemischen Reaktionskinetik (Elementarreaktion, Ordnung, Halbwertszeit, integrierte Geschwindigkeitsgesetze, kinetische Analyse experimenteller Daten, komplexe Reaktionen, Katalyse)
	Einführung in die Transportprozesse (Fundamentale Gleichungen für Stoff-, Wärme-, Impulstransport)
	Grenzflächenphänomene
	Einführung in die Elektrochemie
	Autokatalyse, Grundlagen der heterogenen Katalyse
Voraussetzungen	Grundlagenwissen Mathematik, Physik, Chemie
Modulbausteine	CHE207 Studienbrief Grundlagen der physikalischen Chemie I: Chemische Thermodynamik, Spektroskopie, Elektrochemie mit Onlineübung
	CHE208 Studienbrief Grundlagen der physikalischen Chemie II: Kinetik und Transportprozesse mit Onlineübung

Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Katharina Rostek

EET41 Erzeugung regenerativer Energie

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach Abschluss des Moduls verstehen die Studierenden die Wirkungsweise der Erzeugung elektrischer Energie bei unterschiedlichen Verfahren, die zu den "Erneuerbaren Energien" gehören.
	Sie kennen die technischen Charakteristika von Technologien und Anlagen zur Erzeugung elektrischer Energie sowie die Besonderheiten der Energieerzeugung bei "Erneuerbaren Energien".
Inhalt	Einführung in Quellen zur Erzeugung Erneuerbarer Energien
	Definition Erneuerbarer Energien
	Grundlegende Eigenschaften Erneuerbarer Energien
	Erneuerbare Energien zur Stromerzeugung
	Fluktuierende Erzeugung
	Erzeugungsvorhersage
	Solarthermie
	Physikalische Grundlagen
	Konzentrierende solarthermische Systeme zur Stromerzeugung
	Erzeugungscharakteristika
	Windkraft
	Physikalische Grundlagen
	Windkraft-Systeme
	Erzeugungscharakteristika
	Wasserkraft
	Physikalische Grundlagen
	Wasserkraft-Systeme
	Erzeugungscharakteristika
Voraussetzungen	Umfassende Kenntnisse in Mathematik für Ingenieure, Physik und Grundlagen der Elektrotechnik
Modulbausteine	ABTE055-EL Fachbuch Quaschning: Regenerative Energiesysteme –
	Technologie – Berechnung – Klimaschutz
	EET401-BH Begleitheft zum Fachbuch mit Onlineübung
	EET402 Studienbrief Aufgabensammlung mit Onlineübung
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Denise Reichel

EET61 Erzeugung konventioneller Energie

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls EET61 können die Studierenden die Wirkungsweise der Erzeugung elektrischer Energie bei unterschiedlichen konventionellen Verfahren verstehen und kennen technische Charakteristika von Technologien und Anlagen zur Erzeugung von elektrischer Energie und ihrer Verteilung.
Inhalt	Grundlagen der konventionellen Energieerzeugung
	Dampfkraftwerke
	Kernkraftwerke
	Gasturbinenkraftwerke
	Motorblockheizkraftwerke
	Brennstoffzellen
	Energienetze
	Energienetze
	Stromnetze
	Gasnetze
	Wärmenetze
	Sektorkopplung: Konvergenz von Strom, Wärme und Mobilität durch Energienetze
	Energiespeicher
	Grundlagen zu Energiespeichern
	Speicherung mechanischer Energie
	Speicherung thermischer Energie
	Speicherung chemischer Energie
	Elektrochemische Speicherung
Voraussetzungen	Umfassende Kenntnisse in Mathematik für Ingenieure und Physik Grundlagen der Elektrotechnik
Modulbausteine	ABTE020-EL Fachbuch Zahoransky (Hrsg.): Energietechnik – Systeme zu konventionellen und erneuerbaren Energieumwandlung. Kompaktwissen für Studium und Beruf
	EET601 Studienbrief Grundlagen der konventionellen Energieerzeugung mit Onlineübung
	EET602 Studienbrief Energienetze mit Onlineübung
	EET603 Studienbrief Energiespeicher mit Onlineübung
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte

Sprache	Deutsch
Studienleiter	Denise Reichel

EET71 Dezentrale Energiesystemlösungen (Labor)

Kompetenzzuordnung	Instrumentale Kompetenz		
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls EET71 können die Studierenden die erworbenen Kenntnisse in Energiesystemmodellierung sowie dezentraler und sektorübergreifender Energiesystemlösungen entwickeln und anwenden.		
Inhalt	Zielsetzung des Energiesystemmodells unter Definition von Zeitfenster, Region und den Sektoren Strom, Wärme, Verkehr; Festlegung Thema und externe Randbedingungen der Fallstudie; Definition zeitaktueller Dekarbonisierungsstrategien beispielsweise auf Basis Wasserstoff; Datenrecherche zu Potentialen, Makroökonomie, Technologien in Abhängigkeit lokaler Verfügbarkeiten und Bevölkerungsentwicklung; Definition makroökonomischer Szenarien; Einführung und Kennenlernen der Software für Simulationslabor, Durchführen von Simulationsrechnungen; Entwicklung von Primär- und Endenergiebilanzen, Energiedienstleistungen, Entwicklung der CO2 Absenkpfade und Energieimporte.		
Voraussetzungen	Umfassende Kenntnisse in Energiewirtschaft, Energieerzeugung und dezentraler Energiekonzepte.		
Modulbausteine	EET615-FS Fallstudie: Energiesystemmodellierung sektorübergreifender Energiekonzepte,		
	ABTE104-EL Fachbuch E-Book: Brauner, Günther, Systemeffizienz bei regenerativer Stromerzeugung,		
	ABTE109-EL Fachbuch E-Book : Teske, Sven, Achieving the Paris Climate Agreement Goals		
	ABTE110-EL Fachbuch E-Book : Friedemann, Alice J., Life after Fossil Fuels		
	Handbuch Simulationslabor (Dokumentation der Software),		
	Labor (8 Stunden),		
	Onlineseminar (2 Stunden, Vorbereitung Fallstudie).		
Kompetenznachweis	Assignment		
Lernaufwand	125 Stunden, 5 Leistungspunkte		
Sprache	Deutsch / Englisch		
Studienleiter	Rainer Gottschalk		

EFT03 English for technology

	Li 105 English for teermology		
Kompetenzzuordnung	mpetenzzuordnung Kommunikative Kompetenz		
Kompetenzziele	Das Modul EFT03 ermöglicht den Studierenden, englischsprachige E- Mails zu verstehen und selbst zu verfassen, englische Telefongespräche zu führen und an englischsprachigen Meetings teilzunehmen.		
	Weiterhin wenden sie den wichtigsten Wortschatz und die Grammatik für Besprechungen an und beherrschen fachsprachliche Grundkenntnisse aus dem Technikbereich beim Sprechen, Lesen, Schreiben und Hören.		
	Die Studierenden können fachspezifisches Vokabular (vorzugsweise aus den Bereichen Konstruktion, Werkstoffe, Fertigungsverfahren, Elektrotechnik, Produktion und Logistik, Energie und Umwelt) sowie eine große Anzahl von Strukturen und Funktionen des Englischen sicher anwenden.		
	Sie beherrschen englische Grundgrammatik beim Schreiben und Sprechen.		
	Interaktives Training		
Inhalt	Telefonate sicher führen		
	verschiedene berufliche Gesprächssituationen		
	Vorträge und Besprechungen geschäftliche Dokumente wie z.B. Berichte, Besprechungsprotokolle, Briefe oder Broschüren		
	Verhandlungen führen		
	informelle Kommunikationssituationen		
	Kontakt mit Kunden und Geschäftspartnern		
	Wortschatz aus der Automobilindustrie, Verarbeitungsindustrie, Energie- und Ölindustrie, Telekommunikationsindustrie		
	Manufacturing and Energy		
	Manufacturing		
	Energy		
	Electricity and Architecture		
	Electricity		
	Architecture		
	Recycling and Telecommunications		
	Recycling		
	Telecommunications		
Voraussetzungen	Englischkenntnisse auf Niveau B2		
Modulbausteine	Online-Content Rosetta Stone: B2: Areas of Expertise: Automotive,		
danadacionio	Industry and Manufacturing, Energy and Fuel; Videos: Technology and Telecommunications		
	MP3 English for Technology		
	EFT101 Studienbrief Manufacturing and Energy mit Onlineübung		
	EFT102 Studienbrief Electricity and Architecture mit Onlineübung		
	EFT103 Studienbrief Recycling and Telecommunications mit Onlineübung		
	Onlinetuterium (1 Stunde)		

Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (auf Englisch; 2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Englisch
Studienleiter	Verena Jung

ELT21 Elektrotechnik Grundlagen

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul ELT21 können die Studierenden Grundbegriffe der Elektrotechnik sicher verwenden und wesentliche Zusammenhänge und Wirkungsweisen der Elektrotechnik verstehen und auf einfache Problemstellungen anwenden.
	Sie sind in der Lage, durch Anwendung adäquater Verfahren Gleichstromkreise und deren Leistungsgrößen zu berechnen.
	Ebenso können sie das elektrostatische und magnetostatische Feld erklären und einfache Anordnungen berechnen.
	Die Studierenden beherrschen elektrotechnische Grundlagen für Anwendungen in Sensorik und Aktorik.
Inhalt	Grundbegriffe und Gleichstromkreise
	Grundgrößen der Elektrotechnik
	Lineare Gleichstromkreise
	Weitere Netzwerkberechnungsverfahren
	Stern-/Dreieckumwandlung
	Brückenschaltungen
	Maschenstromverfahren
	Knotenpotentialverfahren
	Grundlagen der numerischen Netzwerkanalyse
	Elektrisches Feld und Kondensator
	Elektrostatisches Feld
	Berechnung elektrostatischer Felder
	Kapazität von Kondensatoren
	Das elektrische Strömungsfeld
	Magnetisches Feld und Spule
	Beschreibung und Berechnung des magnetostatischen Feldes
	Magnetisches Feld in Eisen
	Kraftwirkungen im Magnetfeld
	Induktionsgesetz
Voraussetzungen	Grundlagen der Ingenieurmathematik: Funktionen, komplexe Zahlen, Differenzial- und Integralrechnung
Modulbausteine	ELT211 Studienbrief Grundbegriffe und Gleichstromkreise mit Onlineübung
	Video Tutorial 1
	Video Tutorial 2
	ELT225 Studienbrief Weitere Netzwerkberechnungsverfahren mit Onlineübung
	ELT226 Studienbrief Elektrisches Feld und Kondensator mit Onlineübung
	Video Tutorial 3
	Video Tutorial 4
	ELT227 Studienbrief Magnetisches Feld und Spule mit Onlineübung

Video Tutorial 5 Video Tutorial 6 ELT230 Studienbrief Übungsaufgaben

AB23-623 Fachbuch Schmidt: Taschenbuch der Elektrotechnik

Onlineseminar (4 Stunden) Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Sebastian Bauer

EUU63 Umwelttechnik und - management

Kom	petenzz	uordn	una
NOIII	Detenza	.uoi ui	IUIIU

Wissensvertiefung

Kompetenzziele

Nach erfolgreichem Abschluss des Moduls EUU63 kennen die Studierenden vernetzte stoffliche Zusammenhänge zwischen Umweltmedien Boden, Wasser und Luft und können Ursachen für Umweltbelastungen erkennen, einordnen und mithilfe aktueller Umweltmesstechniken quantifizieren und bewerten.

Sie können ausgewählte Technologien zur Begrenzung von Emissionen insbesondere in industriellen Produktionsprozessen und Produkten erklären sowie deren Einsatz für konkrete Problemstellungen auswählen und auslegen.

Außerdem kennen sie Struktur und Systematik umweltpolitischer und umweltrechtlicher Rahmenbedingungen und können die Kenntnisse im Bereich betrieblicher Umweltmanagementsysteme anwenden.

Zusätzlich sind sie in der Lage, Stoffströme bezüglich ihrer Umweltbelastung zu vergleichen und alternative Lösungen zu entwickeln, ökologische Produktprofile und Ökobilanzen zu erstellen und zu diskutieren.

Inhalt

Umweltprobleme, Human- und Ökotoxizität, Umweltmesstechnik

Ursachen von Umweltproblemen

Emissionsquellen

Umweltschadstoffe und deren human- und ökotoxische Wirkungen

Umweltmesstechnik

Umwelttechnologien

Wasserver- und Wasserentsorgung

Luftreinhaltung

Emissionsminderung bei Kraftfahrzeugen

Kreislauf- und Abfallwirtschaft

Rechtliche und ökonomische Grundlagen der Abfallwirtschaft

Kommunale Abfallwirtschaft

Kreislaufwirtschaft

Deponien

Sonderfall: Endlagerung radioaktiver Abfälle

Politische und rechtliche Rahmenbedingungen für Unternehmen im Umweltschutz- und Energiebereich

Grundlagen des Umwelt- und Energierechts

Anforderungen in den Teilgebieten des Umweltrechts

Umweltbezogenes Energiewirtschaftsrecht

Besondere Anforderungen an die betriebliche Organisation im Kontext des Umweltrechts

Umweltmanagementkonzepte und -instrumente

Einführung zu Umweltmanagementkonzepten

Internationale Norm für Umweltmanagementsysteme ISO 14001:2009

Europäische Umweltmanagementnorm EMAS

Niederschwellige Umweltmanagementansätze

Effekte der Einführung von Umweltmanagementkonzepten

Ausblick: Integration von Managementsystemen

Exkurs: Umweltmanagementinstrumente

Stoffstrommanagement und Ökobilanzierung

Grundsätzliches zu Ökobilanzen Ziel und Untersuchungsrahmen Erstellung der Sachbilanz

Wirkungsabschätzung

Auswertung, Prüfung, Veröffentlichung

Anwendung von Ökobilanzen bei der Produktkennzeichnung

Veranschaulichung an einem Beispiel

Voraussetzungen	Kenntnisse des Qualitätsmanagements		
Modulbausteine	UWT101 Studienbrief Umweltprobleme, Human- und Ökotoxizität, Umweltmesstechnik mit Onlineübung		
	UWT102 Studienbrief Umwelttechnologien mit Onlineübung		
	UWT103 Studienbrief Kreislauf- und Abfallwirtschaft mit Onlineübung		
	EUU101 Studienbrief Politische und rechtliche Rahmenbedingungen für Unternehmen im Umweltschutz- und Energiebereich mit Onlineübung		
	EUU102 Studienbrief Umweltmanagementkonzepte und -instrumente mit Onlineübung		
	EUU103 Studienbrief Stoffstrommanagement und Ökobilanzierung mit Onlineübung		
	Onlinetutorium (1 Stunde)		
Kompetenznachweis	Klausur (2 Stunden)		
	Assignment (Komplexaufgabe/Fallstudie als selbstständiges Projekt bearbeiten)		
Lernaufwand	125 Stunden, 5 Leistungspunkte		
Sprache	Deutsch		
Studienleiter	Ulrich Kreutle		

EUU83 Green Management I

	20000 Croon management
Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls EUU83 erwerben die Studierenden einen Überblick über die Handlungsebenen bei der Integration des Nachhaltigkeitsgedankens in die Produktion.
	Weiterhin erlangen sie die Fähigkeit zur Ermittlung, Bewertung und Gestaltung eines Konzepts für eine energieeffiziente, nachhaltigkeitsorientierte Produktion.
	Überdies erlangen sie die Befähigung zur Entwicklung von Konzepten zu Gestaltung von Koordinationsaufgaben unter Berücksichtigung der in der Produktion gegebenen Material-, Wert- und Informationsflüsse und einer angestrebten Nachhaltigkeit.
Inhalt	Nachhaltigkeit im produzierenden Gewerbe
iiiiait	Nachhaltigkeit für zukunftsorientierte Unternehmen
	Nachhaltige Produktion
	Nachhaltigkeit messen und bewerten: Kennzahlensysteme zur Nachhaltigkeit
	Nachhaltigkeit lenken und umsetzen: Nachhaltigkeitsmanagement
	Energieeffizienz in der Produktion
	Energieeffizienz in der Produktion
	Methoden zur Energieeffizienzsteigerung in der Produktion
	Ressourcenmanagement: Schwerpunkt Material
	Grundlagen des Ressourcenmanagements
	Ressourcenmanagement im Unternehmen
	Stoffstrommanagement
	Ressourceneffizienz durch produktionsintegrierten Umweltschutz
	Umweltmanagement
	Risikomanagement im produktiven Umfeld und nachhaltige Systemgestaltung in Unternehmensnetzwerken
	Risikomanagement in Unternehmen
	Risikomanagement im Produktionsbereich
	Recyclingnetzwerke – eine Einführung
	Koordination von Recyclingnetzwerken
	Koordinationsaufgaben in Produktion und Logistik nachhaltig gestalten
Voraussetzungen	Keine.
Modulbausteine	EUU801 Studienbrief Nachhaltigkeit im produzierenden Gewerbe mit Onlineübung
	EUU802 Studienbrief Energieeffizienz in der Produktion mit Onlineübung
	EUU803 Studienbrief Risikomanagement im produktiven Umfeld und nachhaltige Systemgestaltung in Unternehmensnetzwerken mit Onlineübung
	PEW815 Studienbrief Ressourcenmanagement: Schwerpunkt Material mit Onlineübung
· · · · · · · · · · · · · · · · · · ·	

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Ulrich Kreutle

EUU84 Green Management II

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls EUU84 besitzen die Studierenden die Kenntnis der Elemente einer Supply Chain als Bestandteil der Wertschöpfung und der Managementansätze zur Steigerung von Effizienz und Effektivität über Unternehmensgrenzen.
	Sie bekommen einen Überblick über die Ansatzpunkte zur Gestaltung einer nachhaltigkeitsorientierten Supply Chain.
	Weiterhin erwerben die Studierenden die Kenntnis der wesentlichen Elemente eines nachhaltigen Supply Chain Managements.
	Überdies eignen sie sich die Fähigkeit zur eigenständigen Konzeption von Lieferketten unter Berücksichtigung der gesellschaftlichen Verantwortung eines Unternehmens an.
	Sie erwerben die Fähigkeit zur Entwicklung eines Konzepts für die Gestaltung der Supply Chain bei der Entwicklung neuer, nachhaltigkeitsorientierter Produkte.
	Introduction to sustainable supply chain management
Inhalt	Supply chain management – some basic insights
	A status of research on sustainable supply chain management
	Putting sustainability in supply chain management
	Environmental and social issues
	Management of social issues in supply chains through CSR
	The use of environmental and social standards in the automotive supply chain
	Managing social issues in supply chains: Insights from the Indian dairy supply chain
	Cooperations and capabilities
	Supply chain management for sustainable products – Insights from research applying mixed-methodologies
	Determinants of a sustainable new product development
	Sustainable supply chain management practices and dynamic capabilities in the food industry
	Emerging issues
	Sustainable supply chain management at the base of the pyramid
	Supply Chain Management at the base of the pyramid
	Bio-energy supply chains
	Closed-loop supply chain management
	Purchasing of minor items
Voraussetzungen	Energieeffizienz
	Ressourcenmanagement
	Risikomanagement
Modulbausteine	EUU805 Studienbrief Introduction to sustainable supply chain management mit Onlineübung
	EUU806 Studienbrief Environmental and social issues mit Onlineübung
	EUU807 Studienbrief Cooperations and capabilities mit Onlineübung

EUU808 Studienbrief Emerging issues mit Onlineübung

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch / Englisch
Studienleiter	Ulrich Kreutle

KON33 Grundlagen der darstellenden Geometrie und Maschinenelemente

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Nach erfolgreichem Abschluss des Moduls kennen und beherrschen die Studierenden die Grundlagen des technischen Zeichnens in Theorie und Praxis. Sie können technische Zeichnungen sowohl zweifelsfrei lesen und interpretieren als auch inklusive aller fertigungsrelevanten Angaben normgerecht erstellen. Darüber hinaus beherrschen sie die Gestaltungsund Darstellungsgrundregeln und können diese ausführen. Die Studierenden können komplexere Produkte normgerecht in Zusammenbauzeichnungen mit allen nötigen Schnitten und Ansichten darstellen und bemaßen und mit den erarbeiteten Gestaltung- und Darstellungsgrundregeln einfache Konstruktionsaufgaben anhand von Prinzipskizzen darstellen und in Konzepte umsetzen. Außerdem kennen sie Aufbau und Funktionsweise einfacher Maschinenelemente und Verbindungstechniken im Maschinenbau und können diese anforderungsgerecht anwenden. Sie beherrschen die Grundlagen ihrer technischen Darstellung, können Elemente konstruktiv gestalten, beanspruchungsgerecht dimensionieren und in größere Konstruktionszusammenhänge einbringen. Ausgehend von beispielhaft behandelten Maschinenelementen können die Studierenden selbstständig weitere Maschinenelemente auswählen, gestalten und auslegen.

Inhalt

Technisches Zeichnen

Darstellen von Werkstücken

Bemaßen von Werkstücken

Darstellen und Bemaßen von Maschinenelementen

Zeichnungssysteme

Toleranzen

Passungen

Fertigungsgerechtes Bemaßen und Gestalten

Normzahlen, Toleranzen und Passungen; Klebe-, Löt- und Schweißverbindungen

Normzahlen

Toleranzen und Passungen

Klebeverbindungen

Lötverbindungen

Schweißverbindungen

Niet-, Schrauben-, Bolzen- und Stiftverbindungen

Nietverbindungen

Schraubenverbindungen

Bolzenverbindungen

Stiftverbindungen

Federn, Achsen, Wellen, Welle-Nabe-Verbindungen

Elastische Federn

Achsen, Wellen und Zapfen

Welle-Nabe-Verbindungen

Kupplungen und Bremsen

Kupplungen

Bremsen

Wälzlager, Gleitlager

Grundlagen von Lagerungen

Wälzlager

Gleitlager

Zahnrad- und Stirnradgetriebe

Überblick über mechanische Getriebe und Einordnung der

Zahnradgetriebe

Grundlegende Eigenschaften mechanischer Getriebe

Grundlagen der Zahnradgetriebe

Stirnradgetriebe mit Evolventenverzahnung

Toleranzen, Verzahnungsqualität

Entwurfsberechnung

Tragfähigkeitsnachweis

Kegelrad- und Schneckengetriebe

Kegelräder und Kegelradgetriebe

Schneckengetriebe

Tribologie

Hüllgetriebe

Kraftschlüssige Hülltriebe

Flachriementrieb, Keilriementrieb

Formschlüssige Hülltriebe

Ketten, Zahnriemen

Voraussetzungen

keine

Modulbausteine

AB72-372 Fachbuch Hoischen: Technisches Zeichnen - Grundlagen, Normen, Beispiele, Darstellende Geometrie. 35. Auflage 2016

KON101-BH Begleitheft Technisches Zeichnen mit Onlineübung

Fachbuch Wittel, Spura, Jannasch: Roloff/Matek Maschinenelemente. 25. Auflage 2021

MAE101-BH Begleitheft Normzahlen, Toleranzen und Passungen; Klebe-, Löt- und Schweißverbindungen mit **Onlineübung**

MAE102-BH Begleitheft Niet-, Schrauben-, Bolzen- und Stiftverbindungen mit **Onlineübung**

MAE103-BH Begleitheft Federn, Achsen, Wellen, Welle-Nabe-Verbindungen mit **Onlineübung**

MAE201-BH Begleitheft Kupplungen und Bremsen mit Onlineübung

MAE202-BH Begleitheft Wälzlager, Gleitlager mit Onlineübung

MAE203-BH Begleitheft Zahnrad- und Stirnradgetriebe mit Onlineübung

MAE204-BH Begleitheft Kegelrad- und Schneckengetriebe mit

Onlineübung

MAE205-BH Begleitheft Hüllgetriebe

Onlinetutorium (1 Std.)

Kompetenznachweis

Assignment (50 %)

Klausur (50 %) - 1 Std.

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	

MAT32 Grundlagen Mathematik I

	WATSZ Grundlagen Wathematik i
Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreichem Absolvieren dieses Moduls kennen die Studierenden die Definition, Eigenschaften und Darstellungsformen von Funktionen, Koordinatentransformation, Grenzwerte und Stetigkeiten.
	Sie erwerben Wissen über Polynome und gebrochen rationale Funktioner Potenz-, Wurzel-, Expotential- und Logarithmusfunktionen, Algebraische Funktionen, Trigonometrische und Hyperbel- sowie deren Umkehrfunktionen.
	Weiterhin kennen sie Folgen und Reihen, Beweisführung durch vollständige Induktion, Lineare Gleichungssysteme und deren Lösung, spezielle Typen linearer Gleichungssysteme, Numerische Verfahren und deren Anwendung sowie Vektorrechnung.
	Die Studierenden können einen Punkt, eine Gerade und eine Ebene im ndimensionalen Raum (Wissen und Methodenkompetenz) beschreiben.
Inhalt	Funktionen und ihre Eigenschaften
	Definition und Darstellungsformen einer Funktion
	Grundlegende Eigenschaften einer Funktion
	Koordinatentransformationen
	Grenzwerte und Stetigkeit
	Ganzrationale und gebrochen-rationale Funktionen, Potenz- und Wurzelfunktionen, Exponential- und Logarithmusfunktionen
	Polynome
	Gebrochen-rationale Funktionen
	Potenz- und Wurzelfunktionen
	Exponential- und Logarithmusfunktionen
	Algebraische Funktionen
	Trigonometrische und verwandte Funktionen
	Trigonometrische Funktionen
	Arkusfunktionen
	Hyperbelfunktionen
	Areafunktionen
	Folgen und Reihen
	Was verbirgt sich hinter dem Begriff Folgen und Reihen?
	Vollständige Induktion
	Arithmetische Folgen und Reihen
	Geometrische Folgen und Reihen
	Grenzwerte von Folgen und Reihen
	Lineare Gleichungssysteme
	Einführung
	Gauß Algorithmus

Gauß-Algorithmus

Spezielle Typen linearer Gleichungssysteme

Numerische Verfahren

Anwendungen

Vektorrechnung und Analytische Geometrie

Vektorrechnung ohne Koordinaten Vektoren in Koordinatendarstellung Punkte, Geraden und Ebenen Anwendungen

Voraussetzungen	Keine.
Modulbausteine	ABTE075-EL Fachbuch Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 1 – Ein Lehr- und Arbeitsbuch für das Grundstudium, Kapitel I-III
	MAT209 Studienbrief Funktionen und ihre Eigenschaften mit Onlineübung
	MAT210 Studienbrief Ganzrationale und gebrochen-rationale Funktionen, Potenz- und Wurzelfunktionen, Exponential- und Logarithmusfunktionen mit Onlineübung
	MAT211 Studienbrief Trigonometrische und verwandte Funktionen mit Onlineübung
	MAT212 Studienbrief Folgen und Reihen mit Onlineübung
	MAT213 Studienbrief Lineare Gleichungssysteme mit Onlineübung
	MAT214 Studienbrief Vektorrechnung und analytische Geometrie mit Onlineübung
	2 Onlineseminare (2x 2 Stunden)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Rainer Berkemer

MAT33 Grundlagen Mathematik II

Kompetenzzuordnung Wissensvertiefung

Kompetenzziele

Nach erfolgreichem Absolvieren dieses Moduls erwerben die Studierenden Wissen über das Programm MATLAB und seine Bedeutung in der Praxis.

Sie kennen die Besonderheiten der numerischen Mathematik sowie Computerarithmetik und Fehleranalyse.

Weiterhin sind sie in der Lage, lineare Gleichungssysteme und nichtlinearer Gleichungen zu lösen und beherrschen Interpolation und Approximation.

Sie erwerben detaillierte Kenntnisse über Numerische Integration, Rechnen mit Matrizen, Determinanten, Inverse Matrizen und Lineare Abbildungen, Eigenwerte und Eigenvektoren, Komplexe Zahlen und deren Rechenregeln sowie Potenzen, Wurzeln und Polynome, Komplexe Funktionen und deren Anwendungen.

Die Studierenden kennen die Grundlagen der Differentialrechnung, Ableitungsregeln und die Ableitung wichtiger Funktionstypen, das Ableiten der Umkehrfunktion und Methoden zur Analyse von Funktionen, Regel von de l'Hospital;

Kurvendiskussion, iterative Verfahren zur Nullstellenbestimmung, spezielle Extremwertaufgaben;

Potenzreihen und Taylor-Reihen, Integralrechnung, bestimmte und unbestimmte Integrale sowie deren Anwendungen (Wissen und Methodenkompetenz).

Inhalt Einführung in MATLAB

Mathematikprogramme in den Ingenieurwissenschaften

Einstieg in MATLAB

Skript-Dateien und Funktionen

Kontrollstrukturen

Einfache Benutzer-Interfaces (GUI)

Einführung in Simulink

Bedeutung von MATLAB für die Praxis

Numerischen Mathematik mit MATLAB

Besonderheiten der numerischen Mathematik

Computerarithmetik und Fehleranalyse

Lösung von linearen Gleichungssystemen

Lösung von nichtlinearen Gleichungen

Interpolation und Approximation

Numerische Integration

Lineare Algebra

Matrizen

Rechnen mit Matrizen

Determinanten

Inverse Matrix

Lineare Abbildungen Eigenwerte und Eigenvektoren

Anwendungen

Komplexe Zahlen und Funktionen

Einführung

Rechenregeln

Potenzen, Wurzeln und Polynome

Komplexe Funktionen

Anwendungen

Differentialrechnung

Einführung, Motivation und lineare Funktionen

Grundlagen der Differentialrechnung und die Ableitungsregeln

Über die Ableitungen wichtiger Funktionstypen

Das Ableiten von Umkehrfunktionen (u.a. Logarithmus)

Funktionsuntersuchungen - Wichtige Begriffe

Anwendungen der Differentialrechnung

Unbestimmte Ausdrücke und die Regel von de l'Hospital

(Vollständige) Kurvendiskussionen

Iterationsverfahren nach Newton

Extremwertaufgaben und weitere Anwendungen der Differentialrechnung

Potenzreihen und Taylor-Reihen

Integralrechnung

Unbestimmte Integration

Bestimmte Integration

Uneigentliche Integrale

Einige Anwendungen der Integralrechnung

Voraussetzungen

Mathematische Grundlagen (Algebra, Gleichungen, Trigonometrie)

Modulbausteine

ABTE075-EL Fachbuch Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 1, Kap. IV-VII

ABTE103-EL Fachbuch Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 2, Kap. I

IMA501 Studienbrief Einführung in MATLAB mit MATLAB-Programm und Onlineübung

IMA502 Studienbrief Numerische Mathematik mit MATLAB mit **Onlineübung**

MAT215 Studienbrief Lineare Algebra mit Onlineübung

MAT216 Studienbrief Komplexe Zahlen und Funktionen mit **Onlineübung**

MAT217 Studienbrief Differentialrechnung mit Onlineübung

MAT218 Studienbrief Anwendung der Differentialrechnung mit **Onlineübung**

MAT219 Studienbrief Integralrechnung mit Onlineübung

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Rainer Berkemer

PHY20 Grundlagenphysik für Ingenieure

Kompetenzzuordnung Wissensverbreiterung

Kompetenzziele Nach erfolgreichem Abschluss des Moduls PHY20 beherrschen die

Studierenden physikalische Grundkenntnisse aus den Bereichen Mechanik und Kinematik, der Schwingungs- und Wellenlehre sowie

Grundlagen der Wärmelehre.

Sie erkennen den atomaren Aufbau der Substanzen als Basis der

Werkstoffkunde und sie können physikalische Phänomene diskutieren und

darstellen.

Sie können die Gesetze der Physik zur Lösung technischer Probleme

heranziehen, an Beispielen erläutern und sicher anwenden.

Inhalt Physikalisches Messen, Kinematik

SI-Einheiten und Maßangaben

Auswertung von Messungen

Gleichförmige und ungleichförmige Bewegung

Zusammensetzen von Geschwindigkeit und Beschleunigung

Kreisbewegung Schwingungen

Mechanik: Impuls, Kraft und Energie

Impuls

Kraft

Newton'sche Grundgesetze der Mechanik

Spezielle Kräfte

Energie und Arbeit

Stoßprozesse

Mechanik starrer Körper, Drehbewegungen

Schwerpunkt

Trägheitsmoment

Mechanik der Flüssigkeiten und Gase, Schwingungen und Wellen

Ruhende Flüssigkeiten und Gase

Strömende Flüssigkeiten und Gase

Überlagerung von Schwingungen

Gedämpfte und erzwungene Schwingungen

Eindimensionale Wellen

Kugel- und Zylinderwellen

Doppler-Effekt

Überlagerung von Wellen

Brechung und Reflexion

Wärmelehre. Atome und der atomare Aufbau der Substanzen

Wärmemenge und Wärmekapazität

Wärmetransport

Thermische Ausdehnung von Festkörpern

Die Hauptsätze der Wärmelehre

Aussagen der Quantenmechanik

Das Bohr'sche Atommodell

Aufbau der Atome und Periodensystem Kristallstrukturen Chemische Bindung Molekulares Bild der Gase Zusammenfassung und Formelsammlung

Voraussetzungen	Mathematik- und Physikkenntnisse auf Hochschulreife-Niveau
Modulbausteine	ABTE026-EL Fachbuch Stroppe: Physik – Beispiele und Aufgaben (E-Book)
	PHY101 Studienbrief Physikalisches Messen, Kinematik mit Onlineübung
	PHY102 Studienbrief Mechanik: Impuls, Kraft und Energie mit Onlineübung
	PHY103 Studienbrief Mechanik der Flüssigkeiten und Gase, Schwingungen und Wellen mit Onlineübung
	PHY214 Studienbrief Felder
	PHY104 Studienbrief Wärmelehre. Atome und der atomare Aufbau der Substanzen mit Onlineübung
	PHY213 Studienbrief Zusammenfassung und Formelsammlung
	Präsenztutorium (1 Tag)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Sebastian Bauer

PMN63 Nachhaltige und ökonomische Verfahrenstechnik-Konzepte

Kompetenzzuordnung	Systemische Kompetenz
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls PMN63 können sich die Studierenden systematisch mit dem Begriff der Nachhaltigkeit auseinandersetzen und die Rahmenbedingungen für nachhaltige Unternehmensführung einordnen.
	Sie können entsprechende operative Unternehmensprozesse verstehen und diese erfolgreich unter Berücksichtigung von Nachhaltigkeit und dem verantwortlichen Umgang mit Ressourcen gestalten.
	Dazu können sie die Bezugsrahmen definieren und im Hinblick auf eine Integration ethischer Grundsätze im Führungsverhalten gestalten.
	Außerdem können die Studierenden die Ressourcenorientierung von Nachhaltigkeit unter Beachtung der ökonomischen, sozialen und ökologischen Aspekte erläutern und deren Ausgestaltung in den unterschiedlichen Facetten von Organisation und Führung definieren.
	Zusätzlich sind sie in der Lage, sich mit der Übertragung der Anforderungen unternehmerischer Nachhaltigkeitsprozesse auf konkrete Implementierungsentscheidungen praxisrelevanter Zukunftstechnologien zur Realisierung neuer Verfahrenstechnik-Konzepte auseinandersetzen.
Inhalt	Grundlagen des Nachhaltigkeitsmanagements
	Aktuelle Bedeutung der Nachhaltigkeit
	Grundlagen zum Nachhaltigkeitsmanagement
	Rahmenbedingungen für das unternehmerische Nachhaltigkeitsmanagement
	Verankerung des Nachhaltigkeitsmanagements im Unternehmen
	Ansätze für ein ganzheitliches Nachhaltigkeitsmanagement
	Nachhaltigkeitsorientierte Analyse der Anspruchsgruppen und Interaktionsthemen
	Nachhaltigkeitsorientierte Ordnungsmomente
	Nachhaltigkeitsorientierte Prozesse
	Nachhaltigkeitsorientierte Entwicklungsmodi
	Nachhaltigkeitsmanagement in den operativen Prozessen
	Voraussetzungen für ein operatives Nachhaltigkeitsmanagement
	Nachhaltigkeit in der Beschaffung
	Nachhaltigkeit in der Forschung und Entwicklung (F&E)
	Nachhaltigkeit in den Leistungserstellungsprozessen
	Nachhaltigkeit in den kundenorientierten Geschäftsprozessen
	Nachhaltigkeit in den Prozessen des Human Resource Managements
Voraussetzungen	Grundlagen der Systemtheorie
	Grundlagen des systemischen Denkens und Handelns
Modulbausteine	ABTE117-EL Fachbuch Neugebauer (Hrsg.): Ressourceneffizienz – Schlüsseltechnologien für Wirtschaft und Gesellschaft
	PMN103 Studienbrief Grundlagen des Nachhaltigkeitsmanagements mit

Onlineübung

PMN104 Studienbrief Verankerung des Nachhaltigkeitsmanagements im Unternehmen mit **Onlineübung**

PMN105 Studienbrief Nachhaltigkeitsmanagement in den operativen Prozessen mit **Onlineübung**

Onlineseminar (2 Stunden)

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Rainer Gottschalk

PRG25 Grundlagen der Informatik und Programmierung für Ingenieure

Kompetenzzuordn	una
-----------------	-----

Wissensverbreiterung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul PRG25 kennen die Studierenden Definitionen und Begriffsbildung und können Grundlagen des Aufbaus und der Arbeitsweise von Computersystemen beschreiben.

Sie beherrschen Grundbegriffe über Software und Programmierung.

Sie können Ansätze der Vernetzung von Rechnersystemen skizzieren und Basistechniken und Methoden zur Organisation von Daten beschreiben.

Die Studierenden sind in der Lage, Merkmale von Datenbanksystemen zu erläutern (Fach- und Methodenkompetenz).

In weiterer Folge können die Studierenden Grundbegriffe und grundlegende Ansätze der Programmierung definieren und beschreiben sowie grundlegende Datentypen und -strukturen und ihre Abbildung in Computern erläutern.

Sie können Komponenten der Programmentwicklung am Beispiel C++ abgrenzen (Fachkompetenz).

Inhalt

Grundlagen der Informatik

Was ist Informatik?

Informationen und Daten

Daten- und Informationsverarbeitung

Rechnersysteme und systemnahe Software

Struktur und Organisation von Computern: Rechnerarchitekturen

Peripheriegeräte Codieren von Daten

Betriebssysteme

Software

Klassifikation von Software

Betriebswirtschaftliche Anwendungssoftware

Betriebswirtschaftliche Daten

Die Benutzerschnittstelle

Softwarequalität

Kommunikation und Netzwerke

Grundlagen der Datenübertragung

Das OSI-Referenzmodell

Lokale Netze

Netztopologien und Zugangsverfahren

Kopplung

Netzmanagement

Internet

Das TCP/IP-Protokoll

IP-Adressen

Domain Name System

Die Internetschicht mit Routing

Die Transportschicht

Dienste im Internet

Das World Wide Web

Grundaufbau

Dynamische Webanwendungen

Intranet und Extranet

Anwendungsarchitekturen

Basisarchitekturen

Schichtenarchitektur

Client-Server-Architektur

Peer-to-Peer-Architektur

Publish-Subscribe-Architektur

Serviceorientierte Architekturen

Middleware

Virtualisierung

Cloud-Computing

Datenbanksysteme

Aufgaben

Relationale Systeme

NoSQL-Systeme

Vom Datenmodell zur Speicherung von Dateien

Allgemeines zur Datenorganisation

Entity-Relationship-Modelle

Relationale Datenmodellierung

Physische Datenorganisation

Datenbanksysteme

Structured Query Language (SQL)

Grundlagen der Programmierung

Informationen und Daten

Verarbeitung von Daten in Rechnern

Programmiersprachen

Datentypen und Datenstrukturen

Programmierung im Kleinen

Programmieren im Großen

Ein- und Ausgabe in Programmen

Softwareentwicklung

Voraussetzungen

Keine.

Modulbausteine

ABTE067-EL Fachbuch "Grundkurs Wirtschaftsinformatik Eine kompakte und praxisorientierte Einführung" von Abts, Dietmar und Mülder, Wilhelm

WIN201-BH Begleitheft Grundlagen und Anwendungen der Wirtschaftsinformatik mit Onlineübung

DAO101 Studienbrief Vom Datenmodell zur Speicherung von Dateien mit Onlineübung

PRG101 Studienbrief Grundlagen der Programmierung mit Onlineübung **Onlinetutorium** (1 Stunde)

Kompetenznachweis Klausur (2 Stunden)

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Matthias Riege

PWS40 Projektwerkstatt

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul PWS40 können die Studierenden Aufgabenstellungen mit einem wissenschaftlichen Anspruch auf Bachelorniveau und im Kontext der Themenfelder und Schwerpunkte des Studiengangs problem- und zielorientiert im Team und nach den Methoden eines modernen Projektmanagements bearbeiten und lösen.
	Sie sind in der Lage, das erworbene - auch interdisziplinäre - Fachwissen umzusetzen und anzuwenden.
	Im Detail werden sie die Fähigkeit erworben haben, geeignete Werkzeuge der Kooperation und Kommunikation einzusetzen und die Ergebnisse zielorientiert und nach den Regeln der Wissenschaftlichkeit zu dokumentieren und zu präsentieren.
Inhalt	Bearbeitung einer Projektaufgabe
innait	Selbstständig sowie in Gruppen unter Verwendung verschiedener Methoden und Diskurse; Beispiele: Modell- oder Konzeptentwicklung, Optimierungsempfehlungen, Untersuchungen, empirische Forschungsarbeit, Gestaltungsempfehlungen usw.
	Gegenstand der Projektarbeiten: Analyse, Planung, Konzeption, Gestaltung, Entwicklung, Einsatz und Bewertung von Lösungen für den Praxiseinsatz unter Berücksichtigung der Kompetenzfelder der Studiengangsschwerpunkte.
Voraussetzungen	Keine.
Modulbausteine	Keine.
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Ulrich Kreutle

REG25 Regelungstechnik

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Bei Abschluss dieses Modul REG25 kennen die Studierenden Begriffe und Definitionen der Regelungstechnik und können Systeme mit verschiedenen Regelungen zielgerichtet beeinflussen.
	Weiterhin kennen sie die Wirkungsweise von Regelkreisen und können diese mathematisch beschreiben.
	Die Studierenden sind in der Lage, die Stabilität dynamischer Systeme zu bestimmen und Regelkreise durch die Wahl geeigneter Regleralgorithmer zu entwerfen.
	Sie kennen Verfahren zur Bestimmung von Reglerparametern und könner diese entsprechend anwenden.
Inhalt	Signale und Systeme
	Eigenschaften von Signalen
	Testsignale
	Eigenschaften von Systemen
	Systemreaktionen
	Grundlagen und Beschreibung dynamischer Systeme
	Stabile und instabile Prozesse
	Beschreibung dynamischer Systeme durch das Strukturbild
	Mathematische Beschreibung und Entwurf von Regelungen
	Mathematische Beschreibung und Analyse von Regelungen
	Stabilität eines Regelkreises
	Entwurf von Regelkreisen - Regelkreissynthese
	Verfahren zur Bestimmung der Reglerparameter
	Zustandsraumdarstellung, Modellbildung und Identifikation
	Lineare Regelungssysteme
	Systembeschreibung im Zustandsraum
	Modellbildung und Identifikation
Voraussetzungen	Ingenieurwissenschaftliche Mathematik, Grundlagen der Elektrotechnik
Modulbausteine	REG202 Studienbrief Signale und Systeme
	REG101 Studienbrief Grundlagen und Beschreibung dynamischer Systeme
	REG102 Studienbrief Mathematische Beschreibung und Entwurf von Regelungen
	REG103 Studienbrief Zustandsraumdarstellung, Modellbildung und Identifikation
	Onlineübung zu den Studienbriefen REG101, REG102 und REG103
	Präsenztutorium (1 Tag)
Kompetenznachweis	Klausur (2 Stunden)

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Matthias Riege

SB518B Brückenkurs Mathematik

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	5007 und 5008 Brückenkurse Mathematik für Ingenieure
	Auffrischung der Schulkenntnisse der elementaren Mathematik als Grundlage eines erfolgreichen Ingenieurstudiums
	Vermittlung von Methoden zum Lösen von Aufgaben
	Verbesserung der Rechenfertigkeit beim Lösen von Aufgaben
Inhalt	5007 und 5008 Brückenkurs Mathematik für Ingenieure
	Elementare Grundlagen (Mengen, Zahlen, elementare Rechenoperationen)
	Gleichungen/Ungleichungen/Betragsgleichungen Funktionen
	Lineare Algebra (elementare Vektoralgebra, Elementares zu Matrizen und Determinanten, Gleichungssysteme)
	Infinitesimalrechnung (einfachste Differential- und einfachste Integralrechnung)
Voraussetzungen	Schulmathematik
Modulbausteine	5007 Brückenkurs 1 Mathematik für Ingenieure (1 Tag/ 6 Std.)
	5008 Brückenkurs 2 Mathematik für Ingenieure (2 Tag / 12 Std.)
Kompetenznachweis	
Lernaufwand	
Sprache	Deutsch
Studienleiter	

SB519B Brückenkurs Physik für 1 Ingenieure

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	5005 Brückenkurs Physik für Ingenieure
	 - Auffrischung der Schulkenntnisse der Physik als Grundlage eines erfolgreichen Ingenieurstudiums
	- Vermittlung von Strategien zum Lösen von Physik-Aufgaben
Inhalt	5005 Brückenkurs Physik für Ingenieure
	 Elementare und allgemeine Grundlagen (Arbeitsweise der Physik, Physikalische Größen, Grundkonzepte)
	- Mechanik (Kinematik und Dynamik der Massenpunkte)
	 Wärmelehre/Thermodynamik (Konzept der Thermodynamik, Thermische Eigenschaften physikalischer Körper, Hauptsätze der Thermodynamik, Thermodynamische Prozesse)
	 Elektrizitätslehre (elektrische Grundgrößen, elektrischer Widerstand, Ohmsches Gesetz, einfache Netzwerke/Kirchhoffsche Regeln, elektrische und magnetische Felder)
	 Schwingungen und Wellen (Kinematik und Dynamik von Schwingungen, freie und erzwungene Schwingung, Analogie mechanischer und elektrischer Schwingungen, Wellenphänomene)
	- Atomphysik (Atombau, Übergänge, Leitungsmechanismen in Festkörpern)
Voraussetzungen	Schulmathematik, Schulphysik
Modulbausteine	5005 Brückenkurs Physik für Ingenieure
inoudibadotomo	Seminar (3 Tage)
Kompetenznachweis	_
Lernaufwand	
Sprache	Deutsch
Studienleiter	

SQF24 Schlüsselqualifikationen für Studium und Beruf

	Otaaiaiii ana Berai
Kompetenzzuordnung	Systemische Kompetenz
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls SQF24 sind die Studierenden befähigt, die eigene Persönlichkeit und den eigenen Arbeitsstil einzuschätzen und Ansätze zu denen Verbesserung zu finden.
	Sie können Arbeits- und Kreativitätstechniken beschreiben und einfache Techniken sowie moderne Methoden des Zeitmanagements anwenden.
	Die Studierenden können Präsentationen didaktisch-methodisch planen, organisatorisch vorbereiten, selbst durchführen und nachbereiten.
	Weiterhin sind sie in der Lage, Präsentationen zu beurteilen und Verbesserungsansätze für Rhetorik und Körpersprache zu erkennen (Methoden-, Medien-, persönliche, kommunikative, soziale Kompetenz).
	Die Studierenden können Anforderungen an wissenschaftliche Einsendeaufgaben, Referate und Abschlussarbeiten beschreiben und erläutern und Möglichkeiten der wissenschaftlichen Recherche beschreiben, unterscheiden und korrekt zitieren (Methodenkompetenz).
	Oallington and and
Inhalt	Selbstmanagement
	Die Vielfalt des Lebens
	Lebenshaltungen
	Ziele
	Entscheidungs- und Handlungskompetenz
	Ziel- und Zeitmanagement Zeit braucht Ziele
	Methoden des Ziel- und Zeitmanagements
	Instrumente des Ziel- und Zeitmanagements
	Kreative Kompetenz
	Was ist kreative Kompetenz?
	Einflüsse auf die Kreativität
	Techniken der Kreativität
	Vom Lesen zum Schreiben
	Zielsicher Präsentieren
	Ist Präsentieren schwierig?
	Wege zu einer guten Präsentation
	Medieneinsatz
	Wissenschaftliches Arbeiten
	Wissenschaftliche Vorarbeit
	Wissenschaftliche Hauptarbeit
	Wissenschaftliche Nacharbeit
Voraussetzungen	Keine.
Modulbausteine	Orientierungswerkstatt (1 Tag + 2 x 0,5 Tage Präsenzseminar + 2 Stunden Onlineseminar)
	SQF232 Studienbrief Selbstmanagement
	OCEON Of the basis (7 is bound 7 is to a second

SQF233 Studienbrief Ziel- und Zeitmanagement

SQF234 Studienbrief Kreative Kompetenz SQF235 Studienbrief Zielsicher Präsentieren SQL301 Studienbrief Wissenschaftliches Arbeiten mit Onlineübung SQLD302-VH Download Vorgaben für wissenschaftliche Studien- und Abschlussarbeiten bei AKAD

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Marianne Blumentritt

SQF43 Projekt- und Qualitätsmanagement

Kom	petenzzuordnur	'n
NOIII	petenzzuoranur	ıq

Instrumentale Kompetenz

Kompetenzziele

Nach erfolgreicher Absolvierung dieses Moduls SQF43 kennen die Studierenden die Bestandteile des Projektmanagements und können Projekte inklusive der Analyse des Projektumfelds und der Stakeholder initialisieren.

Sie sind in der Lage, die systematische Strukturierung eines Projekts samt der Ablauf-, Ressource- und Terminplanung zu gewährleisten und die Instrumente der Projektplanung anzuwenden.

Sie können ein Konzept für das Projektcontrolling entwickeln. Die Studierenden erkennen Risiken, Verzögerungen und Herausforderungen bei der Durchführung eines Projekts frühzeitig und können den Teamentwicklungsprozess modellieren.

Im Detail werden sie die Fähigkeit erworben haben, die Möglichkeiten einer wirkungsvollen Kommunikation zu berücksichtigen und Widerstände und Konflikte im Projektteam sowie bei den Stakeholdern zu identifizieren und zu analysieren.

Die Studierenden können die Bedeutung des Projektmarketings, Change-Managements und Projekt-Qualitätsmanagements einzuschätzen sowie jeweils relevante Methoden und Instrumente einzusetzen.

Sie kennen die Rollen im Multiprojektmanagement und können den Prozess für ein Multiprojektmanagement implementieren.

Weiterhin sind die Studierenden in der Lage Einsatzmöglichkeiten der Instrumente des Multiprojektmanagements zu beurteilen und Techniken, Methoden und Strategien zur Umsetzung des Qualitätsmanagements in Betriebsabläufen anzuwenden.

Sie können Maßnahmen zur Qualitätsverbesserung gezielt aufgabenorientiert auswählen und umsetzen und Dokumentation zum Qualitätsmanagement führen.

Inhalt

Projektaufbau, Funktionen und Managementtechniken

Begriffe

Projektaufbau

Funktionen im Projekt Managementtechniken

Projekte initialisieren und planen

Projekte initialisieren

Projekte planen

Projekte abwickeln und abschließen

Projekte leiten und steuern

Risikomanagement

Problemmanagement

Projektberichte

Projektabschluss

Projektsitzungen und Workshops

Führen in Projekten und begleitende Aufgaben

Die Projektführung Das Projektteam

Kommunikation

Widerstand

Konflikte

Projektmarketing

Änderungs- und Konfigurationsmanagement

Qualität im Projekt

Lieferantenmanagement

Multiprojektmanagement

Multiprojektmanagement: Stellenwert und Standort

Multiprojektmanagement-Prozess

Multiprojektmanagement-Methoden

Multiprojektmanagement-Organisation

Multiprojektmanagement-Qualifikation

Implementierung des Multiprojektmanagements

Statistische Methoden im Qualitätsmanagement

Statistische Grundlagen

Datensammlung im Qualitätswesen

Verteilungen und Vertrauensbereiche

Wichtige Verteilungsformen und deren Regelkarten

Test auf Normalverteilung

Fähigkeitsbetrachtungen

Stichproben

Qualitätsnormen, QM-Systeme und gesellschaftliche Aspekte

Qualitätsnormen

Auditierung und Zertifizierung

VDI/VDE/DGQ 2618

QM-Systeme, TQM und Excellence-Modelle

Juristische Aspekte

Voraussetzungen

Keine.

Modulbausteine

SQF201 Studienbrief Projektaufbau, Funktionen und

Managementtechniken mit Onlineübungen

SQF401 Studienbrief Projekte initialisieren und planen mit Onlineübungen

SQF402 Studienbrief Projekte abwickeln und abschließen mit Onlineübungen

SQF403 Studienbrief Führen in Projekten und begleitende Aufgaben mit Onlineübungen

SQF404 Studienbrief Multiprojektmanagementmit Onlineübungen

QUM102 Studienbrief Statistische Methoden im Qualitätsmanagement mit **Onlineübung**

QUM103 Studienbrief Qualitätsnormen, QM-Systeme und gesellschaftliche Aspekte mit **Onlineübung**

Onlinetutorium (1 Stunde)

Kompetenznachweis

Klausur (1 Stunde)

Lernaufwand	125 Stunden, 5 Leistungspunkte	
Sprache	Deutsch	
Studienleiter	Ulrich Kreutle	

SWE22 Softwareentwicklung für Ingenieure

Kompetenzzuordnung Instrumentale Kompetenz

Kompetenzziele Nach erfolgreichem Abschluss des Moduls SWE22 können die

Studierenden die Prinzipien und Methoden der SW-Entwicklung beschreiben, Vorgehensweisen zur Erstellung komplexer SW-Systeme

anwenden, SW-Projekte durchführen sowie funktionale und objektorientierte Methoden der SW-Technik anwenden.

Darüber hinaus können sie Ansätze zur ergonomischen Gestaltung von

Software beschreiben.

Inhalt Einführung in die Systementwicklung

Einführung: Softwareentwicklung als Problem

Grundlegende Entwicklungsstrategien und Prinzipien Vorgehensmodelle: Softwareentwicklung als Prozess

Die Phasen der Softwareentwicklung

Phasenunabhängige Aufgaben

Objektorientierte Softwareentwicklung

Agile Softwareentwicklung

Softwaremanagement

Software-Management

Projektmanagement

Vorstudie und Lastenheft

Produktivität und Aufwandsschätzung

Innovations- und Risikomanagement

Funktionsorientierte Softwareentwicklung

Anforderungen an die SW-Entwicklung

Ansätze, Systematik und Werkzeuge der SW-Entwicklung

Elemente der funktions- und datenorientierten SW-Entwicklung

Grundsätze funktionsorientierter SW-Entwicklung

Methoden der funktionsorientierten SW-Entwicklung

Objektorientierte Softwareentwicklung

Objektorientierung

Objektorientierte Modellierung: UML

Objektorientierter Entwicklungsprozess

Komponentenbasierte Softwareentwicklung

Serviceorientierte Softwareentwicklung

Werkzeuge und Entwicklungsumgebungen

Serviceorientierte Architektur (SOA)

Software-Ergonomie und Interaktionsdesign im Internet

Grundlagen der Mensch-Computer-Kommunikation (MCK)

Benutzer- und Anwendungsklassen

Allgemeine Grundsätze der Softwareergonomie

Gestaltungskriterien für Computer-Arbeitsplätze

Entwicklung von Dialogschnittstellen

Benutzerunterstützung

Interaktionsdesign im Internet

Voraussetzungen	Programmierkenntnisse	
Modulbausteine	SWE101 Studienbrief Einführung in die Systementwicklung mit Onlineübung	
	SWE202 Studienbrief Softwaremanagement mit Onlineübung	
	SWE203 Studienbrief Funktionsorientierte Softwareentwicklung mit Onlineübung	
	SWE204 Studienbrief Objektorientierte Softwareentwicklung mit Onlineübung	
	SWE205 Studienbrief Software-Ergonomie und Interaktionsdesign im Internet mit Onlineübung	
	Onlineseminar (2 Stunden)	
Kompetenznachweis	Assignment	
Lernaufwand	125 Stunden, 5 Leistungspunkte	
Sprache	Deutsch	
Studienleiter	Andrea Herrmann	

THD30 Grundlagen der Technischen Thermodynamik

Kom	peten	77110r	dnun	a
NOIL	Detell	44 001	unun	·

Wissensverbreiterung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul THD30 beherrschen die Studierenden ingenieurtechnische Grundkenntnisse auf dem Gebiet der technischen Thermodynamik und erlangen die Fähigkeit des thermodynamischen Bilanzierens von Maschinen, Apparaten und Anlagen.

Sie verstehen die Bedeutung, Wertigkeit und Umwandelbarkeit von Energieformen und kennen thermodynamische Eigenschaften von reinen Stoffen und Gasgemischen.

Die Studierenden sind in der Lage, einfache thermodynamische Prozesse anhand von praxisnahen Beispielen zu berechnen.

Inhalt

Thermodynamik

Temperatur

Masse und Stoffmenge

Wärmemenge und Wärmekapazität

Wärmetransport

Thermische Ausdehnung von Festkörpern

Zustandsgleichung idealer Gase

Der Hauptsatz der Wärmelehre

Zustandsänderung idealer Gase

Kreisprozesse

Thermodynamische Potenziale

Irreversible Prozesse

Reale Gase

Reale Fluide und Grundlagen der Wärmeübertragung

Die Eigenschaften realer Fluide

Grundlagen der Wärmeübertragung

Gasgemische und feuchte Luft

Gasgemische

Thermodynamik der feuchten Luft

Verbrennungsrechnung

Allgemeine Grundlagen (Reaktionsgleichungen, Mengenbilanzen,

Verbrennungsprozesse, Brennstoffe)

Mengenberechnung bei vollständiger Verbrennung

Brennwert und Heizwert

Problemlösungsstrategien

Theorie der Problemlösung

Situations- bzw. Aufgabenanalyse

Einheitenvergleich und -analyse

Diagramme lesen

Problemeingrenzung oder Identifikation von Schlüsselwörtern

Annahmen und Größenordnungen

Abstraktion und Modellbildung

Organisatorische Vorbereitung

Voraussetzungen	Anwendungskenntnisse der Differenzial- und Integralrechnung sowie zur Grundlagenphysik für Ingenieure
Modulbausteine	PHY202 Studienbrief Thermodynamik mit Onlineübung THD101 Studienbrief Reale Fluide und Grundlagen der
	Wärmeübertragung THD102 Studienbrief Gasgemische und feuchte Luft THD103 Studienbrief Verbrennungsrechnung
	THD104 Studienbrief Problemlösungsstrategien Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Igor Shevchuk

THD31 Wärme- und Stoffübertragung

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls THD31 erwerben die Studierenden die grundlegenden Vorgänge, Gesetzmäßigkeiten und Berechnungsmethoden der Wärme- und Stoffübertragung und können diese Kenntnisse zur Auslegung, Bewertung und Optimierung von Maschinen, Anlagen und Prozessen anwenden.
Inhalt	Grundbegriffe, Wärmeleitung und Diffusion Wärmeleitung Diffusion Überlagerung von Vorgängen der Wärme- und Stoffübertragung Wärmeübergang und Stoffübergang Konvektiver Wärmeübergang Wärmedurchgang Stoffübergang Wärmestrahlung und Apparate zur Wärme- und Stoffübertragung Wärmestrahlung Apparate zur Wärme- und Stoffübertragung
Voraussetzungen	Grundkenntnisse zur Strömungsmechanik
Modulbausteine	THD201 Studienbrief Grundbegriffe, Wärmeleitung und Diffusion mit Onlineübung THD202 Studienbrief Wärmeübergang und Stoffübergang mit Onlineübung THD203 Studienbrief Wärmestrahlung und Apparate zur Wärme- und Stoffübertragung mit Onlineübung Onlineseminar (2 Stunden) Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1,5 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Igor Shevchuk

TME20 Grundlagen der Statik und Festigkeitslehre

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Nach erfolgreichem Abschluss dieses Moduls entwickeln die Studierenden Fähigkeiten zur Abstraktion und zur Modellbildung und beherrschen Grundbegriffe und Gesetzmäßigkeiten der Statik.

Sie sind in der Lage, statische Systeme zu analysieren und Wirkungs- und Schnittkräfte in Ebenen und räumlichen Kraftsystemen darzustellen, zu berechnen und auf Konstruktionen übertragen.

Die Studierenden können Gleichgewichtslagen herbeiführen, Schwerpunkte berechnen und Fachwerke rechnerisch analysieren.

Sie gewinnen Kenntnisse über Haftung und Reibung.

Ebenso erlernen und üben sie die selbstständige Bearbeitung von typischen Problemstellungen der Statik an praxisnahen Beispielen und können Beanspruchungen in stabförmigen Systemen bestimmen und Verformungen berechnen.

Sie sind in der Lage, Spannungen und Verformungen elastischer Körper zu berechnen und Lastannahmen zu treffen, um die Tragfähigkeit sicherzustellen.

Die Studierenden erkennen Knickprobleme und dimensionieren Bauteile nach Berechnung.

Sie können geeignete Werkstoffe auswählen, Beanspruchungen und Verformungen systematisch dokumentieren und formulieren und Sicherheitsanalysen durchführen.

Inhalt

Ebene Kräftesysteme

Grundbegriffe der Statik starrer Körper

Zentrale ebene Kräftesysteme

Allgemeine ebene Kräftesysteme

Statik ebener Tragwerke

Statik ebener Tragwerke

Ebene Fachwerke

Schwerpunkte, Schnittgrößen ebener Balkentragwerke

Schwerpunkte

Schnittgrößen ebener Balkentragwerke

Grundlastfälle Zug und Druck

Einführung

Grundlastfall Zug

Grundlastfall Druck

Ermittlung von Querschnittskennwerten

Grundlastfälle Biegung, Schub und Torsion

Grundlastfall Biegung Grundlastfall Schub

Grundlastfall Torsion

Voraussetzungen

Anwendungskenntnisse der linearen und Vektoralgebra, der komplexen Zahlen und der analytischen Geometrie

Modulbausteine TME101 Studienbrief Ebene Kräftesysteme mit Onlineübung

TME102 Studienbrief Statik ebener Tragwerke mit Onlineübung

TME103 Studienbrief Schwerpunkte, Schnittgrößen ebener

Balkentragwerke mit Onlineübung

TME201 Studienbrief Grundlastfälle Zug und Druck mit Onlineübung

TME202 Studienbrief Grundlastfälle Biegung, Schub und Torsion mit

Onlineübung

TME206 Studienbrief Formelsammlung

1 Onlineseminar (2 Stunden)

4 Online-Tutorien (je 1 Std.)

Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Otanilandaltan	Askins Diller Zingdon
Studienleiter	Achim Bjorn Ziegler
Sprache Studienleiter	125 Stunden, 5 Leistungspunkte Deutsch Achim Björn Ziegler

TME21 Strömungsmechanik

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls TME21 können die Studierenden grundlegende Gesetze und Prinzipien der Strömungsmechanik erfassen und anwenden.
	Darüber hinaus können sie Kräfte in stehenden Flüssigkeiten und Gasen
	ermitteln, Strömungsarten erkennen und unterscheiden, reibungsbehaftete Rohrströmungen für einfache Fälle berechnen sowie günstige Fließquerschnitte ermitteln.
	Die Studierenden kennen Strömungsvorgänge im kompressiblen Bereich sowie Düsenströmung, Verdichtungsstöße und die Theorie der Tragflügelumströmung.
	Außerdem sind sie in der Lage, einfache Probleme aus der Strömungsmechanik in praxisorientierten Aufgabenstellungen selbstständig zu berechnen.
Inhalt	Hydro- und Aerostatik
imait	Einordnung und Bedeutung der Strömungsmechanik
	Physikalische Eigenschaften von Flüssigkeiten und Gasen
	Ruhende Fluide
	Hydro- und Aerodynamik
	Grundbegriffe
	Gleichungen der Stromfadentheorie
	Strömungen mit Reibung
Voraussetzungen	Grundlagenkenntnisse der technischen Thermodynamik
Modulbausteine	TME401 Studienbrief Hydro- und Aerostatik mit Onlineübung
	TME402 Studienbrief Hydro- und Aerodynamik mit Onlineübung
	Onlineseminar (2 Stunden)
	Tutorium (6 Stunden)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Igor Shevchuk

VTA40 Planung und Bau verfahrenstechnischer Anlagen

Kompetenzzuordnung	Systemische Kompetenz	
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls VTA40 kennen die Studierenden das Zusammenspiel der verschiedenen Aktivitäten und können den verfahrenstechnischen Anlagenbau kennzeichnen.	
	Darüber hinaus kennen sie grundlegende Hilfsmittel zur Projektleitung als technisch-wirtschaftliche Organisationsaufgabe sowie die Grundsätze der praxisorientierten Planungssystematik zur optimalen Auslegung, Errichtung und zum kostengünstigen Betrieb der Anlage.	
	Sie begreifen die Integration von Produktionsanlagen in Gesamtprozesse und können Anlagen beispielhaft konzipieren, ihre Komponenten auswählen und dimensionieren.	
	Sie sind dazu in der Lage den Mitwirkenden der verschiedenen Stakeholder, Fachplanungsfunktionen und Behördenvertreter den eigenen Standort im Zusammenhang des Gesamtprojektes zu verdeutlichen.	
	Zusätzlich lernen sie die praxisorientierten Genehmigungsverfahren für allgemeine verfahrenstechnische Anlagen einschließlich der Vorschriften des Umweltschutzes kennen.	
	Projektleitung als technisch-wirtschaftliche Organisationsaufgabe	
Inhalt	Planung	
	Projektführung und -organisation	
	Projektziele und Ablaufplanung	
	Überwachung und Steuerung des Soll-/Istzustandes	
	Überwachung der Nahtstellen	
	Anlagenbau aus dem Blickwinkel der beteiligten Interessenten	
	Belange des Anlagenbetreibers	
	Standpunkt des Anlagenbauers	
	Vertragsformen Anlagenbetreiber-Anlagenbauer	
	Aufgaben der Ausrüstungshersteller	
	Gesetzliche Grundlagen für Anlagenbau und -betrieb	
	Überblick über die gesetzlichen Grundlagen Arbeitssicherheit und Arbeitsschutz	
	Genehmigungsverfahren für verfahrenstechnische Anlagen	
	Vorschriften des Umweltschutzes	
	voice: mineri dos em workestidizas	
Voraussetzungen	Grundlagen der allgemeinen Betriebswirtschaft, Kosten- und Leistungsrechnung, des Produktions-, Projekt- und Qualitätsmanagements sowie der Fertigungstechnik	
Modulbausteine	Fachbuch Bernecker: Planung und Bau verfahrenstechnischer Anlagen mit VTA404-BH Begleitheft	
	EEW622 Studienbrief Energie- und Planungsrecht	
	VTA401 Studienbrief Planung und Bau verfahrenstechnischer Anlagen, Teil 1	

Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Rainer Gottschalk

VTA41 Planung und Bau verfahrenstechnischer Anlagen II

Kom	notor	177110	rdnun	~

Systemische Kompetenz

Kompetenzziele

Nach erfolgreichem Abschluss des Moduls VTA41 begreifen die Studierenden die Integration von Produktionsanlagen in Gesamtprozessen und lernen wichtige Wissensbereiche aus verschiedenen Fachbereichen kennen.

Sie erlernen die praxisnahe Umsetzungsplanung sowie die Umsetzung von Materialien und Chemikalien, beziehungsweise Biochemikalien im technischen Maßstab.

Die Studierenden erarbeiten dazu Fähigkeiten, zukünftige Prozesse und Produktionsanlagen auf einer Industrie 4.0-Plattform zu entwickeln.

Sie lernen, wie sie zur Optimierung freier Ressourcen eine Produktionsumgebung aufbauen können, die sich selbst organisiert (z. B. Smart Factory als Mittelpunkt der Industrie 4.0 - Zukunft).

Darüber hinaus erarbeiten sie Fähigkeiten, sich nicht nur als Projektleiter systematisch in die Bewältigung der Einzel- und System-Problemstellungen einzuarbeiten.

Außerdem können die Studierenden Verfahren entwickeln und auslegen sowie Anlagen beispielhaft und praxisorientiert konzipieren sowie ihre Komponenten auswählen und dimensionieren.

Sie erkennen die betriebswirtschaftliche und ökologische Bedeutung bei der Auslegung von Komponenten in Produktionsprozessen und können ein ganzheitliches und zukunftsorientiertes Betriebs- und Instandhaltungskonzept in der Planungsabwicklungsphase entwerfen.

Zusätzlich lernen sie, wie sie die Produkte und die dazugehörige verfahrenstechnische Anlage bei Planung, Bau und Betrieb als technischwirtschaftliches, ökologisches und soziales Nachhaltigkeitskonzept entlang der Wertschöpfungskette entwickeln können.

Inhalt

Definition Vorprojekt

Entscheidungskriterien für Investitionen

Kostenermittlungen und -kontrollen

Termin- und Finanzplanung

Begutachtung

Verfahrensentwicklung

Labormaßstab

Halbtechnischer Maßstab

Verfahrensauslegung für großtechnische Anlagen (basic design)

Bilanzen und Fließbilder

Spezifikationen für Ausrüstungen

Umweltschutzeinflüsse

Einflüsse von Betriebsmittelbedingungen

IT-Einsatz bei verfahrenstechnischen Planungen/digitale Transformation

Planungsabwicklung

Termine

Aufstellungspläne

Fließbilder

Apparate

Maschinen- und Stahlbau

Rohrleitungen

Dämmung

Elektrotechnik

Mess-, Steuerungs- und Regelungstechnik

Automatisierung

Industrie 4.0 generell sowie Industrie 4.0-Plattform

Digitale Transformation

Smart Factory,

Kommunikation zwischen Produkt und Maschine,

Rolle des Menschen zwischen intelligenten Maschinen,

Ressourcenoptimierung,

Kreislaufwirtschaft,

CO2-Fußabdruck,

Nachhaltigkeit.

Voraussetzungen

Grundlagen des Konstruierens, der Maschinenelemente und

Energietechnik, der Betriebs- und Energiewirtschaft, Thermodynamik und

Elektrotechnik

Vertiefende Kenntnisse der Werkstofftechnik

Es wird darüber hinaus empfohlen, die Module THD31 (Wärme- und Stoffübertragung) und LPM40 (Produktions- und Materialmanagement)

vorher erfolgreich abgeschlossen zu haben.

Modulbausteine

Fachbuch Bernecker: Planung und Bau verfahrenstechnischer Anlagen

Fachbuch VDI Zentrum Ressourceneffizienz: Ressourceneffizienz durch Industrie 4.0 – Potenziale für kleine und mittlere Unternehmen (KMU) des

verarbeitenden Gewerbes

Fachbuch VDI Zentrum Ressourceneffizienz: Kurzanalyse Nr. 23 -

Ressourceneffizienz in der Wertschöpfungskette

VTA405-BH Begleitheft zu den Fachbüchern

VTA402 Studienbrief Planung und Bau verfahrenstechnischer Anlagen,

Teil 2

Onlineseminar (3 Stunden)

Onlinetutorium (1 Stunde)

Kompetenznachweis

Klausur (2 Stunden)

Lernaufwand

125 Stunden, 5 Leistungspunkte

Sprache

Deutsch

Studienleiter

Rainer Gottschalk

VTA42 Planung und Bau verfahrenstechnischer Anlagen III

Kompetenzzuordnung	Systemische Kompetenz
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls VTA42 erlernen die Studierenden die Beschaffung von technischen Ausrüstungen und Dienstleistungen zum Bau der verfahrenstechnischen Anlage sowie die Prozessanalysen und -simulationen.
	Sie können Abschlüsse von Kauf- und Werkslieferverträgen erarbeiten und unterschiedliche praxisrelevante Vertragsrechtssituationen und/oder allgemeine Vertragsbedingungen sowie immer wiederkehrende Punkte wie höhere Gewalt, Gefahrübergang, Mängelhaftung, Verzugsentschädigung kennenlernen.
	Sie erarbeiten systematische Vorgänge zur optimalen Gestaltung aller relevanten Montagevorgänge sowie die wichtigsten praxisrelevanten Bauleitungsfunktionen.
	Außerdem kennen sie die projektspezifischen Randbedingungen zur optimalen Durchführung der Inbetriebnahme (Vorbereitung, Durchführung Abnahme).
	Sie können die große Bedeutung einer intensiven Planungs- und Bauphase bezüglich erfolgreicher Inbetriebnahme und Abnahme sowie di Bedeutung von nachhaltigen Aspekten der Ressourceneffizienz und Emissionsreduzierung durch Implementierung KI-relevanter Vorgänge entlang der Wertschöpfungskette wahrnehmen.
	Zusätzlich erlernen sie die Umsetzung von Materialien und Chemikalien bzw. Biochemikalien im technischen Maßstab.
Inhalt	Beschaffung von verfahrenstechnischen Ausrüstungen und Dienstleistungen
	Allgemeine Vertragsbedingungen
	Abwicklungspraxis und Terminverfolgung
	Montage
	Organisation, Planung, Abwicklung und Funktionsprüfungen verfahrenstechnischer Anlagen
	Inbetriebnahme
	Inbetriebnahmegerechte Anlagenplanung
	Organisatorische Vorbereitung der Erstinbetriebnahme
	Vorbereiten der Anlage zur Inbetriebnahme
	Anfahren der Anlage
	In Abhängigkeit der Vertiefung Durchführung einer Prozessanalyse durch Simulationslabor und/ oder praxisrelevanter Betriebsdaten für energieverfahrensrelevante Modellrechnung und Visualisierung
	Virtuelles Labor sowie Simulationstools
	Präsenzseminar sowie Assignmentthemen
Voraussetzungen	Alle relevanten Ingenieur-Grundlagen der Physik, Mathematik, Betriebswirtschaft und des Projektmanagements
	Werkstoff-, thermodynamische und strömungsrelevante Wissensverarbeitung

Energietechnik und -wirtschaft

Planungsmodule VTA40 und VTA41

Modulbausteine	Fachbuch Bernecker: Planung und Bau verfahrenstechnischer Anlagen ABTE020-EL Fachbuch Zahoransky (Hrsg.): Energietechnik – Systeme zur konventionellen und erneuerbaren Energieumwandlung. Kompaktwissen für Studium und Beruf	
	SIM201 Studienbrief Einführung in verschiedene Simulationstechniken und -methoden mit Onlineübung	
	SIM202 Studienbrief Simulationstools mit Onlineübung	
	Präsenzseminar für Assignmentthemen (6 Stunden)	
	Onlinetutorium (1 Stunde)	
Kompetenznachweis	Klausur (2 Stunden)	
	Assignment	
Lernaufwand	250 Stunden, 10 Leistungspunkte	
Sprache	Deutsch	
Studienleiter	Rainer Gottschalk	

VTC20 Chemische Verfahrenstechnik

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, fachspezifisch erlerntes Grundlagenwissen der chemischen Verfahrenstechnik auf reale technische Prozesse zu übertragen und diese zu analysieren.
	Sie können mit Hilfe der erlernten spezifischen theoretischen Grundlagen an neue Problemstellungen angepasste Prozesse aus dem Bereich der chemischen Verfahrenstechnik analysieren und Vorschläge zu deren Optimierung ausarbeiten.
	Darüber hinaus sind die Studierenden in der Lage, theoretische Aufgabenstellungen aus der chemischen Verfahrenstechnik und physikalischen Chemie praxisnah in (energie-)effiziente und ressourcenschonende Prozesse umzusetzen, verstehen die grundlegende Vorgehensweise, Anlagen für die Aufgabenstellungen zu entwickeln, zu erproben und in Betrieb zu nehmen.
	Die Studierenden erkennen die entscheidenden Prozessschritte eines verfahrenstechnischen Prozesses und können diese herausarbeiten, analysieren, mathematisch berechnen und simulieren.
	Außerdem kennen sie die systematische Herangehensweise und Methodik bei der Auslegung, der Auswahl und Beschaffung von Komponenten und Anlagen für die Chemische Verfahrenstechnik, erkennen die Bedeutung einer (interdisziplinären) Teamarbeit und können im Sinne einer optimierten Lösung einer Fragestellung aus der chemischen Verfahrenstechnik auch mit an die Verfahrenstechnik angrenzenden Fachgebieten zielorientiert zusammenarbeiten.
Inhalt	Stöchiometrie, Stoffmengenbilanzen, Schlüsselreaktionen Verbrennungsrechnung (Energiebilanz und Zusammensetzung)
	Stoffliche und energetische Bilanzierung von chemischen Reaktoren
	Chemische Gleichgewichte (Gibbs-Energie, Reaktionsenthalpie und Reaktionsentropie)
	Reaktionskinetik
	Heterogen-katalysierte Reaktionen
	Reaktortypen und Reaktionsführung
	Verweilzeitverhalten von idealen und realen Reaktoren, Umsatz und Leistung von Reaktoren
	Kaskaden- und Dispersionsmodell
	Reaktionen im Rührkessel, in der Rührkesselkaskade und im Strömungsrohr (isotherm)
	Polytroper Rührkessel und Zünd-Lösch-Verhalten
Voraussetzungen	Grundlagenwissen Mathematik, Physik, Chemie und Physikalische Chemie
Modulbausteine	VTC101 Studienbrief Grundlagen Chemischer Verfahrenstechnik mit Onlineübung
	VTC102 Studienbrief Reaktortechnik und -prozesse mit Onlineübung Fachbuch G. Emig, E. Klemm: Technische Chemie, Springer Verlag Onlineseminar (6 Stunden)

Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Katharina Rostek

VTM20 Mechanische Verfahrenstechnik

Vertanrenstechnik	
Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls beherrschen die Studierenden die grundlegende Nomenklatur und Methodik des Fachgebiets und können Partikelgrößenanalysen durchführen und bewerten.
	Sie haben Verständnis für die physikalischen Grundlagen der behandelten Verfahren erworben und sind in der Lage, die wichtigsten mechanischen Verfahren durchzurechnen, fachspezifisch erlerntes Grundlagenwissen der mechanischen Verfahrenstechnik auf reale technische Prozesse zu übertragen und entsprechende Apparate und Maschinen auszulegen.
	Die Studierenden können mit Hilfe der erlernten spezifischen theoretischen Grundlagen verschiedene und bezogen auf spezifische Problemstellungen weiterentwickelte Prozesse aus dem Bereich der mechanischen Verfahrenstechnik verstehen, analysieren und Vorschläge zu deren Optimierung erarbeiten.
	Darüber hinaus sind sie damit in der Lage, theoretische Aufgabenstellungen aus der mechanischen Verfahrenstechnik praxisnah in verfahrenstechnische Prozesse umzusetzen unter Berücksichtigung von Nachhaltigkeitsaspekten wie Ressourceneinsparung und Energieeffizienz.
	Die Studierenden kennen die systematische Herangehensweise und Methodik bei der Auslegung, der Auswahl und Beschaffung von Anlagen(komponenten) der Mechanischen Verfahrenstechnik, erkennen die Bedeutung einer (interdisziplinären) Teamarbeit und können im Sinne einer optimierten Lösung einer Fragestellung aus der mechanischen Verfahrenstechnik auch mit an die Verfahrenstechnik angrenzenden Fachgebieten zielorientiert zusammenarbeiten.
	Grundoperationen der mechanischen Verfahrenstechnik
Inhalt	Zerkleinern (nass, trocken), Mischen (homogenisieren, dispergieren), Rühren, Trennen von Partikelmischungen und Stoffsystemen (fest/flüssig), Filtrieren, Agglomerieren
	Partikelanalyse und -messtechnik
	Kennzeichnung von Trenn- und Mischprozessen
	Durchströmung von Schüttungen und poröser Systeme
	Grundlagen der Rheologie
	Fließverhalten von Schüttgütern
	Mechanische Trennung in Kraftfeldern (Sedimentieren, Zentrifugieren, Sichten)
	Grundlagen der Wirbelschichttechnologie
	Pneumatische Förderung
Voraussetzungen	Grundlagenwissen Mathematik, Physik Kenntnisse der Strömungsmechanik und der Wärme- und Stoffübertragung
Modulbausteine	VTM101 Studienbrief Grundoperationen der Mechanischen Verfahrenstechnik mit Onlineübung
	VT14400 04 12 1 1 4 4 4 1

VTM102 Studienbrief Auslegung mechanischer Prozesse in der Verfahrenstechnik mit **Onlineübung**

Fachbuch Kraume, M.; Transportvorgänge in der Verfahrenstechnik, 39 Springer Vieweg, Berlin, 2020

Fachbuch Kraume, M.: Transportvorgänge in der Verfahrenstechnik, Aufgaben und Lösungen, Springer, 2020

Onlineseminar (6 Stunden)
Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Katharina Rostek

VTT20 Thermische Verfahrenstechnik

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Nach erfolgreichem Abschluss des Moduls beherrschen die Studierenden die grundlegende Nomenklatur und Methodik des Fachgebiets der thermischen Verfahrenstechnik und sind in der Lage, Gleichgewichtsdaten experimentell zu ermitteln und für ideale Systeme zu berechnen.

Sie kennen die Funktionsweise thermischer Trennverfahren und können diese beschreiben, vergleichend beurteilen und auf reale technische Prozesse übertragen unter Berücksichtigung von Größenabschätzungen für entsprechende Apparate und Auslegung weiterer Einflussgrößen.

Darüber hinaus sind sie in der Lage, selbständig Möglichkeiten und kritischen Punkte aus einem verfahrenstechnischen Prozess herauszuarbeiten und limitierende Faktoren hinsichtlich Effizienz, Leistung etc. zu benennen sowie Alternativen vorzuschlagen.

Die Studierenden können mit Hilfe der erlernten theoretischen Grundlagen verschiedene und bezogen auf spezifische Problemstellungen weiterentwickelte Prozesse aus dem Bereich der thermischen Trennverfahren verstehen, darstellen, vergleichen und Vorschläge zur Optimierung erarbeiten und sie verstehen, wie ein Prozess zu strukturieren ist, so dass eine Simulation erfolgen kann.

Außerdem sind damit in der Lage, für theoretische Aufgabenstellungen aus der mechanischen Verfahrenstechnik praxisnah verfahrenstechnische Prozesse auszuwählen und unter Berücksichtigung von Nachhaltigkeitsaspekten wie Ressourceneinsparung und Energieeffizienz auszulegen und umzusetzen.

Die Studierenden kennen die systematische Herangehensweise und Methodik bei der Auslegung, der Auswahl und Beschaffung von Anlagen(komponenten) der Thermischen Verfahrenstechnik, können die wesentlichen Prozessschritte bei der Anlagenauslegung selbständig erkennen, analysieren, diskutieren und präsentieren.

Sie können im Sinne einer optimierten Lösung einer Fragestellung aus der Thermischen Verfahrenstechnik auch mit an die Verfahrenstechnik angrenzenden Fachgebieten zielorientiert zusammenarbeiten.

Inhalt

Grundoperationen der thermischen Verfahrenstechnik

Verdampfung, Kondensation, Rektifikation, Destillation, Kristallisation, Trocknung, Absorption, Adsorption, Lösungseindampfung, Membranverfahren

Grundlagen der Bilanzen, Phasengleichgewichte, Stoffübergang, Theorie der Trennstufen

Prozessbilanzierung und Prozesskinetik an Beispielen verfahrenstechnischer Grundoperationen

Anwendungen von Wärme- und Stofftransport an Beispielen verfahrenstechnischer Grundoperationen

Vertiefte Kenntnisse der Bedeutung und Parameterabhängigkeiten von Stoffkenndaten

Kinetische Theorie der Gegenstromgemischzerlegung

Voraussetzungen

Grundlagenwissen Mathematik, Physik Kenntnisse der Strömungsmechanik und der Wärme- und Stoffübertragung und der Technischen Thermodynamik

Modulbausteine

VTT101 Studienbrief Grundoperationen der Thermischen Verfahrenstechnik mit **Onlineübung**

VTT102 Studienbrief Auslegung thermischer Trennverfahren in der Verfahrenstechnik unter Berücksichtigung von Nachhaltigkeitsaspekten mit **Onlineübung**

Fachbuch Mersmann, A., Kind, M., Stichlmair, J.: Thermische Verfahrenstechnik: Grundlagen und Methoden, Springer, Berlin

Fachbuch Kraume, M.; Transportvorgänge in der Verfahrenstechnik, Springer Vieweg, Berlin, 2020

Onlineseminar (6 Stunden)
Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Katharina Rostek

WST23 Grundlagen der Werkstoffkunde

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul WST23 kennen die Studierenden Einsatzpotenziale der technisch und wirtschaftlich relevanten metallischen Werkstoffe sowie Legierungsstrukturen und deren Einfluss auf das Eigenschaftsprofil.

Sie haben die wichtigsten Wärmebehandlungsverfahren für Eisen- und Nichteisenmetalle kennengelernt.

Die Studierenden können das bereits erworbene Wissen über Stähle und Nichteisenmetalle weiterentwickeln und eine Gegenüberstellung der Eigenschaftsprofile metallischer und nichtmetallischer Werkstoffe (Polymer- und Verbundwerkstoffe) machen.

Weiterhin können die Studierenden eine kritische

Entscheidungskompetenz hinsichtlich des Werkstoffeinsatzes entwickeln.

Sie kennen Werkstoffe der Elektro- bzw. Energietechnik und die wichtigsten Verfahren zur Werkstoffprüfung und erlernen elementare Kenntnisse über das elektronische Korrosionsverhalten der metallischen Werkstoffe.

Die Studierenden erwerben vertieftes Wissen über Kunststoffe und deren Einsatzpotenziale in Ergänzung zur Verwendung metallischer Kunststoffe und über die elektrischen Eigenschaften und das optische Verhalten der Kunststoffe.

Sie kennen die Wechselwirkungen der Polymere mit natürlicher Umgebung und Fakten zur Aufbereitung der Kunststoffe.

Die Studierenden erlangen Kenntnisse über Verarbeitungsverfahren und können zwischen synthetischen und natürlichen Kunststoffen unterscheiden.

Inhalt

Metallische Werkstoffe

Einteilung und Eigenschaften der Werkstoffe

Metallkunde der reinen Metalle

Legierungskunde

Eisenbasismetalle

Nichteisenmetalle

Legierungen für besondere technische Verwendungen

Sinterwerkstoffe

Leiterwerkstoffe

Aufbau, Verhalten und Werkstoffeigenschaften von Polymeren im festen Zustand

Entwicklung und historische Bedeutung der Kunststoffe

Kunststoffe – Eigenschaften und Anwendungen kurzgefasst

Der makromolekulare Aufbau der Kunststoffe

Bindungskräfte und Aufbau von Polymerwerkstoffen

Additive

Chemische Beständigkeit/Abbau von Polymeren

Recycling von Kunststoffen

Entstehung der inneren Struktur

Verformungsverhalten fester Kunststoffe

Mechanische Tragfähigkeit von Kunststoffen Reibung und Verschleiß Elektrische Eigenschaften von Kunststoffen Optische Eigenschaften von Kunststoffen Akustische Eigenschaften von Kunststoffen

Voraussetzungen	Keine.
Modulbausteine	WST303-EL Einführung in das Modul "Grundlagen der Werkstoffkunde"
modalisadistriit	AB73-373 Fachbuch Greven; Großkreutz: Werkstoffkunde und Werkstoffprüfung für technische Berufe mit
	WST105-BH Begleitheft Metallische Werkstoffe mit Onlineübung und Einsendeaufgabe
	ABTE006-EL E-Book Menges; Michaeli; Haberstroh; Schmachtenberg: Menges Werkstoffkunde Kunststoffe mit
	WST201-BH Begleitheft Aufbau, Verhalten und Werkstoffeigenschaften von Polymeren im festen Zustand mit Onlineübung
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Christoph Herden