Mathematical Finance Solution 6

Solution 6-1

a) First, assume that S is bounded. Note that then every simple strategy is admissible. Moreover, S is a uniformly integrable Q-martingale if and only if $E_Q[S_\tau - S_0] = 0$ for all stopping times (taking values in [0,T]). So let τ be an arbitrary stopping time, and consider the simple strategies $\vartheta^{\pm} := \pm 1_{\llbracket 0,\tau \rrbracket}$. Using that Q is an equivalent separating measure for S then gives

$$0 \ge E_Q[\vartheta^{\pm} \bullet S_T] = \pm E_Q[S_\tau - S_0]. \tag{1}$$

If S is locally bounded, then there exists an increasing sequence of stopping times $(\sigma_n)_{n\in\mathbb{N}}$ taking values in [0,T] with $\lim_{n\to\infty}P[\sigma_n=T]=1$ such that S^{σ_n} is bounded for all $n\in\mathbb{N}$. It suffices to show that for each $n\in\mathbb{N}$, S^{σ_n} is a uniformly integrable Q-martingale. To this end, fix $n\in\mathbb{N}$. It suffices to show that for each stopping time τ with $\tau\leq\sigma_n$ P-a.s., $E_Q[S_\tau-S_0]=0$. So let τ be such a stopping time, and consider as above the simple strategies $\vartheta^\pm:=\pm 1_{[0,\tau]}$. Then both strategies are admissible since S is bounded on $[0,\sigma_n]$ and $\tau\leq\sigma_n$ P-a.s., and the same argument as in the first step gives $E_Q[S_\tau-S_0]=0$.

b) By assumption, there exist a strictly positive predictable process $\psi = (\psi_t)_{t \in [0,T]}$, an \mathbb{R}^d -valued (local) Q-martingale M, and an \mathbb{R}^d -valued \mathcal{F}_0 -measurable random vector S_0 such that $S = S_0 + \psi \bullet M$. Let $\vartheta \in \Theta_{adm}$. Then by the associativity of the stochastic integral, $G(\vartheta) = \vartheta \bullet S = (\vartheta \psi) \bullet M$. Moreover, as $(\vartheta \psi) \bullet M$ is uniformly bounded from below by admissibility, it is a local Q-martingale by the Ansel-Stricker theorem. By Fatou's lemma, it is then also a Q-supermartingale, and hence

$$E_Q[G_T(\vartheta)] \le E_Q[G_0(\vartheta)] = 0. \tag{2}$$

c) First, since \mathcal{F}_t is P-trivial for all $t \in [0,T)$, a process $\xi = (\xi_t)_{t \in [0,T]}$ is adapted if and only if it is deterministic on [0,T) and ξ_T is $\sigma(X)$ -measurable. In particular, all left-continuous and adapted processes for the filtration $(\mathcal{F}_t)_{t \in [0,T]}$ are deterministic, and by a monotone class argument, the same is true for all predictable processes.

Next, if $\vartheta \in L(S)$ is arbitrary, then

$$G_T(\vartheta) = \vartheta \bullet S_T = \vartheta \bullet S_{T-} + \vartheta_T \Delta S_T = \lim_{t \uparrow T} \vartheta \bullet S_t + \vartheta_T X = 0 + \vartheta_T X = \vartheta_T X. \tag{3}$$

Since ϑ_T is deterministic and X is normally distributed, it follows that $\vartheta \in \Theta_{adm}$ if and only if $\vartheta_T = 0$. Thus, we may conclude that $G_T(\vartheta) = 0$ for all $\vartheta \in \Theta_{adm}$. Therefore the condition

$$E_Q[G_T(\vartheta)] \leq 0$$
 for all $\vartheta \in \Theta_{adm}$

is trivially satisfied for each probability measure $Q \approx P$ on \mathcal{F}_T . In particular, P itself is a separating measure.

Finally if $Q \approx P$ on \mathcal{F}_T is an equivalent probability measure, by the first step (whose results remain unchanged by an equivalent change of measure), $M = (M_t)_{t \in [0,T]}$ is a Q-martingale null at 0 for the filtration $(\mathcal{F}_t)_{t \in [0,T]}$ if and only if M_T is $\sigma(X)$ -measurable, Q-integrable with mean 0 and $M_t = 0$ for all $t \in [0,T)$. Moreover, if $\psi \in L^Q(M)$, then as M is constant and equal to 0 on [0,T),

$$\psi \bullet M_t = \begin{cases} 0 & \text{for } t < T, \\ \psi_T M_T & \text{for } t = T. \end{cases}$$
 (4)

Note that as ψ_T is constant, $\psi \bullet M$ is a true Q-martingale, and thus Q is an equivalent σ -martingale measure for S if and only if it is an equivalent martingale measure. Since $E[S_T] = \mu \neq 0$, P is not a martingale measure and hence also not a σ -martingale measure.

a) First, we show existence of a strong solution. To this end, note that $\mu \in L^2_{loc}((W_s)_{s \in [0,t]})$ for all t < T and define the process $\bar{Z} = (\bar{Z}_t)_{t \in [0,T)}$ by

$$\bar{Z}_t = \mathcal{E}\Big(-\int_0^{\cdot} \mu_s \, dW_s\Big)_t = \exp\Big(-\int_0^t \mu_s \, dW_s - \frac{1}{2} \int_0^t \mu_s^2 \, ds\Big), \quad t < T.$$
 (5)

Then for fixed $t \in (0,T)$ the process \bar{Z} restricted to [0,t] is a strictly positive continuous local martingale and the unique strong solution on [0,t] to the SDE

$$dZ_t = -Z_t \mu_t dW_t, \quad Z_0 = 1. \tag{6}$$

By Fatou's lemma, it follows that \bar{Z} is a strictly positive supermartingale on [0,t] for each fixed t < T and therefore also on [0,T). By the supermartingale convergence theorem, $\lim_{t \uparrow T} \bar{Z}_t$ exists P-a.s. Define the process $Z = (Z_t)_{t \in [0,T]}$ by $Z_t := \bar{Z}_t$ for t < T and $Z_T := \lim_{t \to T} \bar{Z}_t$. Clearly Z is continuous, adapted and nonnegative. To show that it is a local martingale, define for $n \in \mathbb{N}$ the stopping time

$$\tau_n := \inf\{t \in [0, T) : Z_t > n\} \wedge T. \tag{7}$$

Then $(\tau_n)_{n\in\mathbb{N}}$ is an increasing sequence of stopping times with $\lim_{n\to\infty}P[\tau_n=T]=1$. We proceed to show that for each fixed $n\in\mathbb{N},\,Z^{\tau_n}$ is a uniformly integrable martingale on [0,T]. Since Z is a supermartingale, this is equivalent to showing that $E[Z_{\tau_n}]=E[Z_0]=1$. To this end, note that Z^{τ_n} is uniformly bounded by n. Moreover, for each fixed $m\in\mathbb{N},\,Z^{\tau_n\wedge\frac{m-1}{m}}$ is a bounded local and hence uniformly integrable martingale on $[0,\frac{m-1}{m}]$. This implies in particular that $E[Z_{\tau_n\wedge\frac{m-1}{m}}]=1$. Now dominated convergence shows that $E[Z_{\tau_n}]=1$.

To show that Z satisfies (6) on [0,T], let $M \in \mathcal{H}_0^{2,c}$ be arbitrary. Then the fact that Z satisfies (6) on [0,t] for each fixed $t \in (0,T)$ gives

$$\langle Z, M \rangle_t = \int_0^t -Z_s \mu_s \, d\langle W, M \rangle_s, \quad t < T,$$
$$\langle Z, Z \rangle_t = \int_0^t Z_s^2 \mu_s^2 \, ds, \quad t < T,$$

Then monotone convergence gives

$$\int_0^T Z_s^2 \mu_s^2 ds = \langle Z, Z \rangle_T < \infty \quad P\text{-a.s.}, \tag{8}$$

and this together with the Kunita-Watanabe inequality and dominated convergence gives

$$\langle Z, M \rangle_T = \int_0^T -Z_s \mu_s \, d\langle W, M \rangle_s \tag{9}$$

Since $M \in \mathcal{H}^{2,c}$ was arbitrary, Z solves (6) on [0,T] by the definition of the stochastic integral. Next, we show uniqueness. So suppose that Z^1 and Z^2 are solutions of (6) on [0,T]. Then they are a fortiori solutions of (6) on [0,t] for each fixed $t \in (0,T)$. But for each fixed $t \in (0,T)$, the solution of (6) is unique, and so Z^1 and Z^2 coincide on [0,t] for each fixed $t \in (0,T)$, and by continuity also on [0,T]. b) Let $\widetilde{Z} = (\widetilde{Z}_t)_{t \in [0,T]}$ be a local P-martingale for the filtration $(\mathcal{F}_t^W)_{t \in [0,T]}$ with $\widetilde{Z}_0 = 1$ such that $\widetilde{Z}S$ is also local P-martingale for the filtration $(\mathcal{F}_t^W)_{t \in [0,T]}$. By Itô's representation theorem, we may assume that \widetilde{Z} has continuous paths and that there exists a predictable process $\widetilde{H} \in L^2_{loc}(W)$ such that

$$\widetilde{Z}_s = 1 + \int_0^t \widetilde{H}_s dW_s, \quad t \in [0, T]. \tag{10}$$

Now the product rule gives

$$\widetilde{Z}_t S_t - \widetilde{Z}_0 S_0 = \int_0^t S_s d\widetilde{Z}_s + \int_0^t \widetilde{Z}_s S_s dW_s + \int_0^t \widetilde{Z}_s S_s \mu_s ds + \int_0^t \widetilde{H}_s S_s ds, \quad t \in [0, T].$$

$$(11)$$

Since $\widetilde{Z}S - \widetilde{Z}_0S_0$, $\int S d\widetilde{Z}$ and $\int \widetilde{Z}S dW$ are continuous local martingales null at 0, if follows that $\int (\widetilde{Z}S\mu + \widetilde{H}S) ds$ is a continuous local martingale null at 0. Since it is of finite variation, it must be constant 0. But this implies that for a.a. ω , $\widetilde{Z}S\mu + \widetilde{H}S$ is 0 a.e. on [0,T]. Since S is strictly positive the same is true for $\widetilde{Z}\mu + \widetilde{H}$. But this implies that $\int (\widetilde{Z}\mu + \widetilde{H})^2 ds$ is constant 0 and hence $\int \widetilde{H} dW = \int (-\widetilde{Z}\mu) dW$, which shows that \widetilde{Z} solves (6) on [0,T]. By uniqueness of the solution, we may deduce that $\widetilde{Z} = Z$.

- c) Define $Q \ll P$ on \mathcal{F}_T by $dQ := Z_T dP$. Note that since Z is strictly positive on [0,T), $Q \approx P$ on \mathcal{F}_t for all $t \in (0,T)$. Moreover, S is a local Q-martingale by part (b). It suffices to show that all $\vartheta \in \Theta_{adm}$ with $\vartheta \bullet S_T \geq 0$ P-a.s. satisfy $\vartheta \bullet S_T = 0$ P-a.s. So let $\vartheta \in \Theta_{adm}$ with $\vartheta \bullet S_T \geq 0$ P-a.s. Then by absolute continuity, $\vartheta \bullet S_T \geq 0$ Q-a.s. and hence $\vartheta \bullet S \equiv 0$ by the fact that $\vartheta \bullet S$ is a Q-supermartingale (by Ansel-Stricker and Fatou) with $\vartheta \bullet S_0 = 0$. But since $Q \approx P$ on \mathcal{F}_t for all $t \in [0,T)$, this implies that $\vartheta \bullet S_t = 0$ P-a.s. for all $t \in [0,T)$, and continuity of $\vartheta \bullet S$ gives $\vartheta \bullet S_T = 0$ P-a.s.
- d) By the fundamental theorem of asset pricing, S satisfies NFLVR if and only if there exists a strictly positive P-martingale $\widetilde{Z} = (\widetilde{Z}_t)_{t \in [0,T]}$ with $\widetilde{Z}_0 = 1$ such that $\widetilde{Z}S$ is a local P-martingale. But if \widetilde{Z} exists, then part b) shows that $\widetilde{Z} = Z$. This establishes the claim.
- e) First, note that the process \widetilde{Z} is well defined by part a) since

$$\int_0^T \frac{1}{\sqrt{T-s}} ds = 2 < \infty \quad \text{and} \quad \int_0^t \frac{1}{T-s} ds = \log\left(\frac{1}{T-t}\right) < \infty, \quad t \in (0,T).$$
 (12)

Next, note that $Z = \widetilde{Z}^{\tau}$ and $\sup_{t \in [0,T]} Z_t \leq 2$ P-a.s., which shows that Z is a bounded local and hence true P-martingale. Moreover, $Z_{\tau} = 0$ on $\{\tau = T\}$ (since $\widetilde{Z}_T = 0$ P-a.s.) and $Z_{\tau} = 2$ on $\{\tau < T\}$, which implies that $P[Z_T = 0] = P[Z_T = 2] = 1/2$ by the fact that

$$1 = E[Z_T] = 0 \times P[Z_T = 0] + 2 \times P[Z_T = 2]. \tag{13}$$

Now the claim follows immediately from parts \mathbf{c}) and \mathbf{d}).

Solution 6-3

a) Take $\vartheta \in \ell^1$ with $\vartheta \cdot \Delta S \geq 0$. Then we have

$$0 \le \vartheta \cdot \Delta S(k) = \sum_{i \ge 1} \vartheta^i (-\delta_{k,i} + \delta_{k,i+1}) = \begin{cases} \vartheta^{k-1} - \vartheta^k, & k \ge 2; \\ -\vartheta^1, & k = 1. \end{cases}$$

This means that $0 \ge \vartheta^1 \ge \vartheta^2 \ge \cdots$, i.e. (ϑ^i) is a decreasing, nonpositive sequence. Assume $\exists k \text{ s.t. } \vartheta \cdot \Delta S(k) > 0$, then $\exists k \text{ s.t. } \vartheta^k \ne 0$. But then ϑ cannot be a summable sequence.

b) Assume $Q \approx P$ is an EMM, i.e., $q_k := Q[\{k\}]$ satisfy $q_k > 0 \quad \forall k, \sum q_k = 1$, and

$$0 = E_Q[\Delta S^i] = \sum_{k>1} q_k \Delta S^i(k) = -q_i + q_{i+1} \quad \forall i \ge 1$$

i.e. $(q_k)_{k\geq 1}$ is a constant sequence. This contradicts $q_k>0 \quad \forall k, \sum q_k=1$.