Estrutura de Dados

Hamilton José Brumatto

Bacharelado em Ciências da Computação - UESC

6 de junho de 2016

Árvores Binárias

Árvores de Expressão

- Considere a seguinte expressão: A + B
- Esta expressão pode ser representada na forma de uma árvore binária:
 - O raiz é a operação.
 - O filho esquerdo é o operando esquerdo.
 - O filho direito é o operando direito.

Árvores de Expressão

• Uma expressão maior: $A + (B - C) \times D \wedge (E \times F)$

Aplicações

- A primeira aplicação direta é que a árvore serve para conversão de formas de notação:
 - ullet Varredura em pré-ordem o expressão pré-fixa.

$$+A \times -BC \wedge D \times EF$$

- Varredura em pós-ordem → expressão pós-fixa.
 - $ABC DEF \times \wedge \times +$
- Varredura em ordem simétria (desde que antes de visitar o filho esquerdo imprima-se um "Abre parêntesis", e após visitar o filho direito imprima-se um "Fecha parêntesis" → expressão infixa.

$$(A + ((B - C) \times (D \wedge (E \times F))))$$

Aplicações

A segunda aplicação é o cálculo do valor da expressão

Algoritmo para calcular expressão

```
Algoritmo CALCULAR(Arvore a)
val \leftarrow 0
se a \neq vazia então
se info(a) = operacao então
op1 = Calcular(filhoEsq(a))
op2 = Calcular(filhoDir(a))
val \leftarrow Operacao(op1, info(a), op2)
senão
val \leftarrow info(a)
retorne val
```

Construção - Pós Fixa

- ullet A partir de uma expressão pós-fixa ightarrow
- Se o item lido é um operando, crie uma árvore folha com o operando como raiz e empilhe.
- Se o item lido é um operador:
 - crie uma árvore binária com o operador como raiz.
 - retire um operando da pilha e insira-o como filho direito.
 - retire um operando da pilha e insira-o como filho esquerdo.
 - empilhe a árvore resultante.
- No final do processo, resta na pilha a árvore de expressão.

C
В
A

Construção - Pós Fixa
$$ABC-DEF \times \land \times +$$

Construção - Pós Fixa
$$ABC-DEF \times \land \times +$$

F
E
D
B C
A

Construção - Pós Fixa
$$ABC-DEF \times \land \times +$$

Construção - Pós Fixa
$$ABC-DEF \times \land \times +$$

Construção - Infixa

- A partir de uma expressão infixa: É necessária uma total parentisação para evitar que a ordem de precedência de operandos seja determinante na ordem das operações:
- A expressão: $A + (B C) \times D \wedge (E \times F)$ deve ser escrita como:

$$(A + ((B - C) \times (D \wedge (E \times F))))$$

- O algoritmo irá ler: operando1, operacao, operando2 e construir uma árvore de expressão com estes três elementos.
- Ao encontrar um abre-parêntesis chama-se recursivamente o algoritmo.
- A última leitura é um fecha-parêntesis, quando retorna a árvore ao chamador.
- Na leitura de um operador, se não houver símbolo, o operando1 é a árvore de expressão.

Construção - Infixa

```
Algoritmo ConstruirInfixa
    S \leftarrow \text{lerSimbolo()}
    se S = '(' \text{ então})
         op1 \leftarrow ConstruirInfixa()
    senão
         op1 \leftarrow NovaArvore(S)
    S \leftarrow \text{lerSimbolo()}
    se S = \emptyset então retorne op1
    senão
         op \leftarrow NovaArvore(S)
         S \leftarrow \text{lerSimbolo()}
         se S = '(' \text{ então})
              op2 ← ConstruirInfixa()
         senão
              op2 \leftarrow NovaArvore(S)
         op \rightarrow InsereFilhoEsq(op1)
         op \rightarrow InsereFilhoDir(op2)
         lerSimbolo() retorne op
```

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$$S \leftarrow \text{lerSimbolo()} : S = '('op1 :$$

op:

op2 :

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$$se(S = '(') \rightarrow então$$

op1 :

op:

op2 :

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

 $op1 \leftarrow ConstruirInfixa()$

op1:

op:

op2:

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$$S \leftarrow \mathsf{lerSimbolo}() : S = A \ op1 : op : op2 : op1 \leftarrow \mathsf{ConstruirInfixa}() op1 : op : op2 : op2 :$$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$$\begin{array}{cccc} op1 \leftarrow \mathsf{NovaArvore}(S) & op1 : \stackrel{\triangle}{} & op : & op2 : \\ op1 \leftarrow \mathsf{ConstruirInfixa}() & op1 : & op : & op2 : \end{array}$$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$op \leftarrow NovaArvore(S)$	op1 : 🗚	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	ор :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$$\frac{\mathsf{se}(S = \c'(\c') \to \mathsf{ent\~ao} \qquad op1 : \c(\c) \qquad op: \c(\c) \qquad op2 :}{op1 \leftarrow \mathsf{ConstruirInfixa}() \qquad op1 : \qquad op: \qquad op2 :}$$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$$op2 \leftarrow ConstruirInfixa()$$
 $op1 : A$ $op : +$ $op2 :$ $op1 \leftarrow ConstruirInfixa()$ $op1 : op : op2 :$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$S \leftarrow lerSimbolo() : S = '('$	op1 :	op:	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$\mathbf{se}(S = \c'(\c') o \mathbf{ent}\mathbf{ ilde{ao}}$	op1 :	op:	op2 :	
op2 ← ConstruirInfixa()	op1 : 🗚	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	ор :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$S \leftarrow lerSimbolo() : S = B$	op1 :	op:	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :

$\operatorname{se}(S=\ '(\ ') \to \operatorname{senão}$	op1 :	op:	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :

$op1 \leftarrow NovaArvore(S)$	op1 : 🕝	op:	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$S \leftarrow \text{lerSimbolo}() : S = -$	- op1 : 🕒	op:	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$\operatorname{\underline{se}}(S=\emptyset) o \operatorname{senão}$	op1 : 🕑	op :	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$op \leftarrow NovaArvore(S)$	op1 : 🕝	op : (-)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$S \leftarrow \text{lerSimbolo}() : S = C$	op1: (B)	op : (-)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$\operatorname{se}(S=\ '(\ ')\to\operatorname{senão}$	op1 : 🕑	op : (-)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$op2 \leftarrow NovaArvore(S)$	op1 : (B)	op : (-)	op2 : 🖒
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :

$op \rightarrow InsereFilhoEsq(op1)$	op1 : (B)	op : (B)	op2 : (c)
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :

$op \rightarrow InsereFilhoDir(op2)$	op1 : (B)	on : (B)	(c) op2 : (c)
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : 🗚	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :

	_	(-)	_
lerSimbolo()	op1 : (B)	op : (B) (C)	op2 : (c)
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :

		(-)	
retorne op	op1 : (B)	op : (B) (C)	op2 : (c)
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :

	ت کے)		
$op1 \leftarrow ConstruirInfixa()$	op1 :(B)	(c) op :	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

	_ (_	_		
$se(S=\emptyset) o senão$	op1 : 🕑	© op :	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

	(-	-)		
$op \leftarrow NovaArvore(S)$	op1 : (B)	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$se(S = \c'(\c') o ent ilde{ao}$	op1 : B	c) op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

			_	
$op2 \leftarrow ConstruirInfixa()$	op1 :(B)	(c) op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$S \leftarrow \text{lerSimbolo}() : S = D$	op1 :	op :	op2 :	
	(-			
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$\operatorname{se}(S=\ '(\ ')\to\operatorname{senão}$	op1 :	op :	op2 :	
	(-			
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

$op1 \leftarrow NovaArvore(S)$	op1 : 🕞	op:	op2 :	
	<u></u>			
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕑	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🗚	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$S \leftarrow lerSimbolo() : S = \land$	op1 : 🕞	op:	op2 :	
	(-	-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$\mathbf{se}(S=\emptyset) o \mathbf{senão}$	op1 : (D)	op:	op2 :	
	<u></u>)		
$op2 \leftarrow ConstruirInfixa()$	op1 : (B)	© op : (×)	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

$op \leftarrow NovaArvore(S)$	op1 : 🕞	op : ∧	op2 :	
	<u></u>) _		
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕑	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🗚	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$S \leftarrow lerSimbolo() : S = '(')$	op1 : 🕞	op : ∧	op2 :	
	<u> </u>) _		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$\operatorname{se}(\mathcal{S}=\ '(\ ') \to \operatorname{ent} \widetilde{\operatorname{ao}}$	op1 : (D)	op : 🔨	op2 :	
	<u></u>)		
$op2 \leftarrow ConstruirInfixa()$	op1 :(B)	(c) op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🗚	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	<u>_</u>)		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

$S \leftarrow lerSimbolo() : S = E$	op1:	op :	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

$\mathbf{se}(S = '(') \rightarrow \mathbf{senão}$	op1 :	op :	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	ор : ∧	op2 :	
	(-	-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$		_		

$op1 \leftarrow NovaArvore(S)$	op1 : 😉	op:	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-			
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	OD:	op2 :	

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

$S \leftarrow \text{lerSimbolo}() : S \Rightarrow$	< op1 : (Ĕ)	op:	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : (B)	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

$\operatorname{se}(S=\emptyset) o \operatorname{senão}$	op1 : 🔳	op :	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-			
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🗚	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

$op \leftarrow NovaArvore(S)$	op1 : (E)	op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🗚	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	on2 ·	

$S \leftarrow \text{lerSimbolo}() : S = F$	- op1 : (Ĕ)	op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : 🔨	op2 :	
	(-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : (B)	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

$\operatorname{se}(S=\ '(\ ')\to\operatorname{senão}$	op1 : 🗉	op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕖	op : 🔿	op2 :	
	(-			
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
op2 ← ConstruirInfixa()	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

$op2 \leftarrow NovaArvore(S)$	op1 : 🗉	op : (×)	op2 : \digamma	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : 🔨	op2 :	
	(-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

		(×)		
$op \rightarrow InsereFilhoEsq(op1)$	op1 : (E)	op : (E)	△ op2 : (F)	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-	-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

		(×)		
$op \rightarrow InsereFilhoDir(op2)$	op1 : (E)	op : E	F) op2 : (F)	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-	-)		
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	ор :	op2 :	

		(×)		
lerSimbolo()	op1 : (E)	op : E	F op2 : F	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-			
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :	

		(\times)		
retorne op	op1 : (E)	op : (E)	F) op2 : (F)	
$op2 \leftarrow ConstruirInfixa()$	op1 : 🕞	op : ∧	op2 :	
	(-			
$op2 \leftarrow ConstruirInfixa()$	op1 : B	© op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	ор :	op2 :	

op2 ← ConstruirInfixa()	op1 : (D)	op : ∧	op2 : (E) (F)
op2 ← ConstruirInfixa()	op1 : B	c) op : (×)	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :

		$\bigcirc^{(\land)} \wedge$	$\langle \times \rangle$
$op \rightarrow InsereFilhoEsq(op1)$	op1 : 🕞	op :	op2 : (F)
op2 ← ConstruirInfixa()	op1:(B)) (c) op : (x)	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :

		0		<u> </u>
$op \rightarrow InsereFilhoDir(op2)$	op1 : 🕞	op :	op2 : (E)	F
op2 ← ConstruirInfixa()	op1 : B	c) op : (×)	op2 :	
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	ор:	op2 :	

		0	
lerSimbolo()	op1 : (D)	op : (E)	op2: E F
	(-)		
$op2 \leftarrow ConstruirInfixa()$	op1 :(B)	(c) op : (×)	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : 🗚	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :

retorne op	op1 : (D)	op :	<i>F</i> op2 : <i>E F</i>
$op2 \leftarrow ConstruirInfixa()$	op1 : (B)	c) op : (×)	op2 :
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op :	op2 :

				\gtrsim _
$op2 \leftarrow ConstruirInfixa()$	op1 :(₿)	(c) op : (×)	op2 : (Ē)	F
$op2 \leftarrow ConstruirInfixa()$	op1 : 🗚	op : (+)	op2 :	
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :	

		(×) (B) (C)	
$op \rightarrow InsereFilhoEsq(op1)$	op1 :(B)	(c) op :	op2 : (E) (F)
$op2 \leftarrow ConstruirInfixa()$	op1 : (A)	op : (+)	op2 :
$op1 \leftarrow ConstruirInfixa()$	op1 :	op:	op2 :

 $op \rightarrow InsereFilhoEsq(op1) \quad op1 : (A)$

 $op \rightarrow InsereFilhoDir(op2) \quad op1: (A)$

lerSimbolo() op1: (A)

retorne op op1: (A)

 $op1 \leftarrow ConstruirInfixa()$

op:

op2:

Construção - Infixa
$$(A+((B-C)\times(D\wedge(E\times F))))$$

 $S \leftarrow \text{lerSimbolo()}$

op:

op2 :

$$se(S = \emptyset) \rightarrow então$$

op:

op2 :

retorne op1

op:

op2 :

Códigos de Huffman

- Representa uma técnica de compressão de dados que pode atingir valores entre 20 e 90%.
- É aplicado em arquivos de símbolos (texto) onde existe um distribuição diferenciada na freqüência com que cada símbolo aparece.
- Codifica-se os símbolos com tamanhos distintos de bits.
 Símbolos mais frequentes recebem menos bits, símbolos menos frequentes recebem mais bits.
- Na média o número de bits do arquivo será menor.

Exemplo do código de Huffman

- Considere o alfabeto $C = \{a, b, c, d, e, f\}$.
- Um dado arquivo possui a freqüência indicada na tabela abaixo para os caracteres do alfabeto.
- Também na tabela estão indicadas duas possíveis codificações para cada objeto, uma de tamanho fixo e outra de tamanho variável.

	а	Ь	С	d	e	f
Freqüência (milhares)	45	13	12	16	9	5
Código: Tamanho Fixo	000	001	010	011	100	101
Código: Tamanho Variável	0	101	100	111	1101	1100

• Qual o tamanho do arquivo para cada uma das codificações?

Calculando o custo para cada tipo de codificação

• Codificação com códigos de tamanho fixo:

$$Totaldebits = 3 \times 100.000 = 300.000bits$$

Codificação com códigos de tamanho variável:

$$\underbrace{1 \times 45}_{a} + \underbrace{3 \times 13}_{b} + \underbrace{3 \times 12}_{c} + \underbrace{3 \times 16}_{d} + \underbrace{4 \times 9}_{e} + \underbrace{4 \times 5}_{f} = 224.000 bits$$

 Há um ganho de aproximadamente 25% se utilizarmos a codificação de tamanho variável.

O método

- A solução implica no uso de uma "codificação livre de prefixo".
- Em uma codificação livre de prefixo, para quaisquer símbolos distintos i e j codificados, a codificação de i não é prefixo da codificação de j.
- No exemplo anterior, usando a codificação variável para a palavra "abc" obtemos: 0101100.
 - O único caracter começado com 0 e que portanto utiliza somente um bit é o 'a';
 - A sequência 101 define o caracter 'b' e não há qualquer outro caracter que inicie com o código 101;
 - O restante 100 representa o caracter 'c'.

Representando o código

- Precisamos identificar uma estrutura que associe um código ao caracter, de forma que na decodificação encontremos facilmente o símbolo utilizando o código fornecido.
- Uma solução é utilizar uma árvore binária:
 - Um filho esquerdo está associado a um bit 0.
 - Um filho direito a um bit 1.
 - Nas folhas se encontram os símbolos.
 - O código lido 0 ou 1 faz com que na navegação na árvore chegue a um símbolo.
 - Ao achar um símbolo o próximo código é aplicado a partir do raiz.

Código de tamanho fixo na forma de árvore

	а	Ь	С	d	e	f
Freqüência (milhares)	45	13	12	16	9	5
Código	000	001	010	011	100	101

Código de tamanho variável na forma de árvore

	a	b	С	d	e	f
Freqüência (milhares)	45	13	12	16	9	5
Código	0	101	100	111	1101	1100

Propriedades da árvore de código

- Cada código é livre de prefixo: Só há um único caminho para chegar a uma folha, que não passa por outra folha, assim o código de um símbolo não é um prefixo de outro símbolo.
- Uma codificação ótima deve ser representado por uma árvore binária cheia, cada vértice interno tem dois filhos. Seja uma codificação com um vértice interno que só tenha um filho:
 - Se o filho for uma folha. Podíamos colocar esta folha no lugar do vértice e economizaríamos um bit para o código deste símbolo.
 - Se o filho for outro vértice. A partir deste vértice buscamos uma folha, colocamos esta folha como segundo filho do vértice. Economizaríamos no mínimo um bit.
- Buscamos uma árvore binária cheia com |C| folhas (o tamanho do alfabeto) e |C-1| vértices internos.

Entendendo a proposta de solução

- Começar com |C| árvores folhas isoladas e realizar seqüencialmente |C-1| operações de agregação, agregando duas árvores a um novo vértice raiz comum. O raiz passa a ter como "peso" a soma dos custos de cada árvore agregada.
- A escolha do par de árvores que serão agregadas dependerá do custo de cada árvore. As duas árvores de menor custo serão escolhidas.
- O raiz de uma árvore carrega como informação o custo da árvore.

O algoritmo de Huffman

Entrada: Conjunto de caracteres de C e a freqüências f de cada caracter Saída: Raiz da árvore binária representando codificação ótima livre de prefixo **Algoritmo** HUFFMAN(C) $n \leftarrow |C|$ $Q \leftarrow C$ para $i \leftarrow 1$ até n-1 faça $z \leftarrow$ **novo** Arvore $z.esq \leftarrow Extrai_Minimo(Q)$ $z.dir \leftarrow Extrai_Minimo(Q)$ z.info = z.esq.info + z.dir.infoInsere(Q, z)**retorne** Extrai_Minimo(Q)

Árvore Binária de Busca

- Árvore Binária de Busca utiliza uma classificação de ordem ao inserir um elemento.
- Dado um raiz da árvore ou subárvore:
 - Todos os descendentes do lado esquerdo tem valores menor ou igual ao valor da raiz.
 - Todos descendentes do lado direito tem valores maior que o da raiz.
- A inserção de um elemento se dá a partir do raiz da árvore.
 - Se o elemento for menor ou igual, tenta-se inserir no filho esquerdo.
 - Se o elemento for maior, tenta-se inserir no filho direito.
- O elemento é inserido quando atinge uma árvore vazia.
- O nome se dá pois para encontrar se um elemento está na árvore a busca é feita de forma semelhante a uma busca binária em uma sequência ordenada.

Inserindo Elementos: 4 8 5 0 2 8 1 3 5 9

Inserindo Elementos: 4850281359

Inserindo Elementos: 4850281359

Como ficaria uma busca em ordem nesta árvore?

Inserindo Elementos: 4850281359

Como ficaria uma busca em ordem nesta árvore: 0 1 2 3 4 5 5 8 8 9

Ordenação por Insersão em árvore Binária

- São n elementos inseridos.
- Cada elemento inserido percorre a altura da árvore.
- No pior caso a altura da árvore é n (sequência já ordenada) $\rightarrow O(n^2)$
- No melhor caso a árvore binária é completa, a altura é $\log n \to O(n \log n)$
- No caso médio a altura da árvore é proporcional a $\log n \to O(n \log n)$

Heap

- Heap é uma árvore binária quase completa.
- Por ser uma árvore quase completa, o Heap é uma árvore implementada em vetor.
- Veja a ordem dos elementos em um heap:

Definição

- Considere um vetor A[1,..,n] representando um Heap.
- Cada posição do vetor corresponde a um nó da árvore do Heap.
- O pai de um nó i é $\lfloor i/2 \rfloor$.
- Um nó i tem 2i como filho esquerdo e 2i + 1 como filho direito.
- Naturalmente, o nó i tem filho esquerdo apenas se $2i \le n$. e tem filho direito apenas se $2i + 1 \le n$.
- Um nó i é uma folha se não tem, ou seja, se 2i > n.
- As folhas são |n/2| + 1, ..., n 1, n.

Níveis do Heap

• Cada nível p, exceto talvez o último, tem exatamente 2^{p-1} nós, e esses são:

$$2^{p-1}, 2^{p-1} + 1, 2^{p-1} + 2, \dots, 2^p - 1$$

- O nó i pertence ao nível $\lfloor \log i \rfloor$.
- O número total de níveis é $1 + \lfloor \log n \rfloor$

Max-Heap e Min-Heap

- Um nó *i* satisfaz a propriedade de (max)-heap se:
 - $A[\lfloor i/2 \rfloor] \geqslant A[i]$ (ou seja, pai \geqslant filho).
- Uma árvore binária completa é um (max)-heap se todo nó distinto da raiz satisfizer a propriedade de (max)-heap.
- O (máx)imo ou (mai)or elemento de um (max)-heap está na raiz da árvore.
- De forma análoga é definido o Min-Heap (basta trocar max por min).

Construindo um Heap Máximo

- São Duas Etapas:
 - Max-Heapfy (Joga um elemento menor para uma folha)
 - Pegamos um elemento na posição i e comparamos com seus filhos: 2i e 2i+1.
 - Trocamos com o maior.
 - Continuamos recursivamente a partir da nova posição deste elemento.
 - Build-Max-Heap (Construir o Heap-Máximo)
 - A partir do primeiro elemento n\u00e3o folha (de tr\u00e1s para frente): n/2
 - Iterativamente aplicamos o algoritmo Max-Heapfy até o elemento na posição 1.
- Garantimos a cada iteração que os pais são sempre os maiores e que os menores elementos sempre são jogados para as folhas.

Este Heap não é máximo, mas o elemento "33" não tem descendentes menores que ele.

Algoritmo Max-Heapfy

Algoritmo MAX_HEAPFY(A,n,i)
$$e \leftarrow 2 * i$$
 $d \leftarrow 2 * i + 1$
 $se \ e \le n \ e \ A[e] > A[i] \ então$
 $max \leftarrow e$
 $senão$
 $max \leftarrow i$
 $se \ d \le n \ e \ A[d] > A[max] \ então$
 $max \leftarrow d$
 $se \ max \ne i \ então$
 $A[i] \leftrightarrow A[max]$
 $Max_Heapfy(A, n, max)$

Heap Máximo atingido

Algoritmo Build_Max_Heap

```
Algoritmo BUILD_MAX_HEAP(A,n)
para i \leftarrow \lfloor n/2 \rfloor até 1 faça
Max_Heapfy(A, n, i)
```

Heap Sort

- O algoritmo de ordenação por Seleção em estrutura Heap segue as sequintes etapas:
 - Primeiro construimos um Heap Máximo.
 - O primeiro elemento é o maior da sequência. Trocamos este com o último, o último já está na posição. Vamos considerar agora a sequência sem este elemento.
 - 3 Aplicamos um Max-Heapfy nos n-1 elementos restantes e o elemento pequeno que ficou no raiz é jogado para uma folha.
 - Repete-se o processo até que sobre somente um elemento na sequência considerada.

Ordenação: Build-Max-Heap

Nível

6

22

Ordenação: Build-Max-Heap

Heap Máximo atingido

33

66

55

44

Ordenação: Troca de Elementos e Max-Heapfy

Ordenação: Troca de Elementos e Max-Heapfy

Sequência classificada em ordem crescente

Algoritmo Heap-Sort

```
Algoritmo HEAP_SORT(A, n)
Build_Max_Heap(A, n)
para i \leftarrow n até 2 faça
A[1] \leftrightarrow A[i]
Max_Heapfy(A, i - 1, 1)
```

Algoritmo Heap-Sort - Custo

- O algoritmo Max-Heapfy executa em $O(\log n)$, que é a altura da árvore.
- O algoritmo Build-Max-Heap possui um cálculo mais complexo de complexidade, mas é O(n).
- O Algoritmo Heap-Sort aplica n vezes o Max-Heapfy, portanto é $O(n \log n)$.

Considerações finais sobre a estrutura Heap

- É uma estrutura de árvore binária que pode ser mantida em vetores.
- Não é simples de manutenção em alguma lista dinâmica. Se quiser uma estrutura dinâmica, então que seja árvore, mesmo.
- O Heap Máximo, por manter sempre o maior elemento no ínicio, é eficaz para representação de filas com prioridades.
 - A fila inicialmente deve ser um Heap-Máximo.
 - Insere-se o elemento no final da fila.
 - Ele vai trocando de posi
 ço com o pai, enquanto for maior que o mesmo.
 - No final, continuaremos com um Heap-Máximo.
- A inserção de elemento na fila é $O(\log n)$ e a retirada é O(1) (com o custo de andar a fila no vetor, a não ser que trate de forma circular).

Realizar a 8ª lista de exercícios