NAIVE BAYERS

Naive Bayes is a simple probabilistic classifier that predicts the category of an item based on the likelihood of its features, assuming each feature is independent of the others

- Multinomial Naive Bayes: Best for count-based features or text data.
- Bernoulli Naive Bayes: Best for binary features.
- Gaussian Naive Bayes: Best for continuous features with normal distribution.

```
In [1]: import seaborn as sns
In [2]: sns.get_dataset_names()
```

```
Out[2]: ['anagrams',
          'anscombe',
          'attention',
          'brain_networks',
          'car_crashes',
          'diamonds',
           'dots',
          'dowjones',
          'exercise',
          'flights',
          'fmri',
          'geyser',
          'glue',
          'healthexp',
          'iris',
           'mpg',
          'penguins',
          'planets',
          'seaice',
          'taxis',
          'tips',
          'titanic',
          'anagrams',
          'anagrams',
           'anscombe',
          'anscombe',
           'attention',
          'attention',
          'brain_networks',
          'brain_networks',
           'car_crashes',
          'car_crashes',
          'diamonds',
          'diamonds',
          'dots',
          'dots',
          'dowjones',
          'dowjones',
          'exercise',
          'exercise',
          'flights',
          'flights',
```

```
'fmri',
'fmri',
'geyser',
'geyser',
'glue',
'glue',
'healthexp',
'healthexp',
'iris',
'iris',
'mpg',
'mpg',
'penguins',
'penguins',
'planets',
'planets',
'seaice',
'seaice',
'taxis',
'taxis',
'tips',
'tips',
'titanic',
'titanic',
'anagrams',
'anscombe',
'attention',
'brain_networks',
'car_crashes',
'diamonds',
'dots',
'dowjones',
'exercise',
'flights',
'fmri',
'geyser',
'glue',
'healthexp',
'iris',
'mpg',
'penguins',
'planets',
```

```
'seaice',
'taxis',
'tips',
'titanic']
```

Out[3]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	•••					
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [4]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                  Non-Null Count Dtype
    Column
    sepal_length 150 non-null
                                  float64
1 sepal_width 150 non-null
                                  float64
2 petal_length 150 non-null
                                  float64
    petal_width 150 non-null
                                  float64
    species
                                  object
                  150 non-null
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

In [5]: data.describe()

Out[5]: sepal length sepal width petal length petal width

	sepai_ieiigtii	sepai_width	petai_leligtii	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [6]: data.shape

Out[6]: (150, 5)

In [7]: data.isnull().sum()

```
Out[7]: sepal_length 0 sepal_width 0 petal_length 0 petal_width 0 species 0 dtype: int64
```

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.scatterplot(x=data["sepal_length"],y=data["petal_length"],hue=data["species"])
plt.show()
```


In [9]: from sklearn.model_selection import train_test_split

```
x = data.drop("species",axis=1) #Features
         y = data["species"] # target
         # Split the data into training and tesing sets
         x_train, x_test, y_train, y_test =train_test_split(x,y)
In [10]: x_train.shape
Out[10]: (112, 4)
In [11]: y_train.shape
Out[11]: (112,)
In [12]: x_test.shape
Out[12]: (38, 4)
In [13]: y_test.shape
Out[13]: (38,)
In [14]: # KNN
         from sklearn.neighbors import KNeighborsClassifier
         # create a KNN classifier
         knn = KNeighborsClassifier(n_neighbors=3)
         # fit the model
         knn.fit(x_train , y_train)
Out[14]:
                 KNeighborsClassifier
         KNeighborsClassifier(n_neighbors=3)
In [15]: # Predict on the test set
         y_pred = knn.predict(x_test)
         from sklearn.metrics import accuracy score , confusion matrix , classification report
```

```
# Calculate accuracy
         accuracy = accuracy_score(y_test , y_pred)
         print("Accuracy: ",accuracy)
         # classification report
         cr = classification_report(y_test ,y_pred)
         print("Classification report: ",cr)
         # confusion matrix
         cm = confusion_matrix(y_test , y_pred)
         print("Confusion Matrix : \n",cm)
        Accuracy: 0.9473684210526315
        Classification report:
                                              precision
                                                           recall f1-score
                                                                              support
              setosa
                           1.00
                                     1.00
                                               1.00
                                                           15
          versicolor
                           1.00
                                     0.86
                                               0.92
                                                           14
           virginica
                           0.82
                                     1.00
                                               0.90
                                                            9
            accuracy
                                               0.95
                                                           38
                                               0.94
                                                           38
           macro avg
                           0.94
                                     0.95
        weighted avg
                           0.96
                                     0.95
                                               0.95
                                                           38
        Confusion Matrix:
         [[15 0 0]
         [ 0 12 2]
         [0 0 9]]
In [16]: from sklearn.naive_bayes import GaussianNB
In [17]: # Create a Gaussian Naive Bayes model
         model = GaussianNB()
         # Train the model
         model.fit(x train, y train)
Out[17]:
         ▼ GaussianNB
         GaussianNB()
          from sklearn.metrics import accuracy_score , confusion_matrix , classification_report
In [18]:
```

```
In [19]: # Make prediction
         y_pred = model.predict(x_test)
In [20]: cm = confusion_matrix(y_test, y_pred)
         print("Confusion Matrix :\n", cm)
        Confusion Matrix :
         [[15 0 0]
         [ 0 12 2]
         [0 0 9]]
In [21]: # Evaluate accuracy
         accuracy = accuracy_score(y_test , y_pred)
         print("Accuracy: ", accuracy)
        Accuracy: 0.9473684210526315
In [22]: cr= classification_report(y_test,y_pred)
         print("Classification report :",cr)
        Classification report :
                                              precision
                                                           recall f1-score support
                           1.00
                                     1.00
                                               1.00
                                                           15
              setosa
          versicolor
                           1.00
                                     0.86
                                               0.92
                                                           14
           virginica
                           0.82
                                                            9
                                     1.00
                                               0.90
                                               0.95
                                                           38
            accuracy
           macro avg
                           0.94
                                     0.95
                                               0.94
                                                           38
        weighted avg
                                     0.95
                                                           38
                           0.96
                                               0.95
```

Conclusion

In this analysis, we compared K-Nearest Neighbors (KNN) and Gaussian Naive Bayes (GNB) classifiers using the Iris dataset.

1. **Data Visualization**: We visualized the relationship between sepal length and petal length, providing insights into species distribution.

2. Model Training and Evaluation:

• **KNN**: Trained with (k = 3), we evaluated its accuracy, confusion matrix, and classification report.

• **GNB**: We also trained a GNB model and assessed its performance using the same metrics.

3. Performance Insights:

- Both models were evaluated on accuracy and detailed metrics (precision, recall, F1-score).
- The results showed how each model handled the classification of different iris species.

Key Takeaways:

- **Model Performance**: The choice of model matters; KNN may perform better with local patterns, while GNB is simpler and relies on feature independence.
- Comprehensive Evaluation: Using multiple metrics helps in understanding model effectiveness.
- Continuous Improvement: Exploring different models and hyperparameters can enhance results.

This analysis underscores the importance of model selection and thorough evaluation to achieve the best classification performance.