ECE2810J Data Structures and Algorithms

k-d Trees

- ► Learning Objectives:
- Know what a k-d tree is and its difference over basic binary search tree
- Know how to implement search, insertion, and removal for a k-d tree

Multidimensional Search

- Example applications:
 - ▶ find person by last name and first name (2D)
 - ► find location by **latitude** and **longitude** (2D)
 - find book by author, title, year published (3D)
 - find restaurant by city, cuisine, popularity, sanitation, price (5D)

- Solution: k-d tree
 - \triangleright $O(\log n)$ insert and search times

k-d Tree

- ▶ A k-d tree is a binary search tree
- At each level, keys from a different search dimension is used as the discriminator
 - Nodes on the left subtree of a node have keys with value < the node's key value along this dimension</p>
 - ▶ Nodes on the right subtree have keys with value ≥ the node's key value along this dimension
- We cycle through the dimensions as we go down the tree
 - ► For example, given keys consisting of x- and y-coordinates
 - ▶ level 0 discriminates by the x-coordinate
 - ▶ level 1 by the **y-coordinate**
 - level 2 again by the x-coordinate
 - ▶ level 3 again by the **y-coordinate**
 - etc...

Example

k-d tree for points in a 2-D plane

k-d Tree Insert

- If new item's key is equal to the root's key, return;
- If new item has a key smaller than that of root's along the dimension of the current level, recursive call on left subtree
- ▶ Else, recursive call on the right subtree
- ▶ In recursive call, cyclically increment the dimension

dim refers to the dimension of the root

Insert Example

- Insert H
- ▶ Initial function call: insert(A, H, 0) // 0 indicates dimension x

k-d Tree Search

- Search works similarly to insert
 - ▶ In recursive call, cyclically increment the dimension

```
node *search(node *root, Key k, int dim) {
  if(root == NULL) return NULL;
  if(k == root->item.key)
    return root;
  if(k[dim] < root->item.key[dim])
    return search(root->left, k, (dim+1)%numDim);
  else
    return search(root->right, k, (dim+1)%numDim);
}
```

Time complexities of insert and search are all $O(\log n)$

k-d Tree Remove

- ▶ If the node is a leaf, simply remove it (e.g., remove (50,50))
- If the node has only one child, can we do the same thing as BST (i.e., connect the node's parent to the node's child)?

k-d Tree Removal of Non-leaf Node

- ▶ If the node R to be removed has right subtree, find the node M in right subtree with the minimum value of the current dimension
 - ▶ Replace the value of *R* with the value of *M*
 - ▶ Recurse on *M* until a leaf is reached. Then remove the leaf
- ► Else, find the node *M* in left subtree with the maximum value of the current dimension. Then replace and recurse

k-d Tree Removal Example

k-d Tree Removal Example

k-d Tree Removal Example

k-d Tree Removal Example: Summary

Find Minimum Value in a Dimension

▶ Different from the basic BST, because it may not be the left-most descendent.

Find the node with minimum value in dimension y

Find Min-Y: Naïve Approach

Find Minimum Value in a Dimension

```
node *findMin(node *root, int dimCmp, int dim) {
// dimCmp: dimension for comparison
  if(!root) return NULL;
  node *min = findMin(root->left, dimCmp, (dim+1)%numDim);
  if(dimCmp != dim) {
    rightMin = findMin(root->right, dimCmp, (dim+1)%numDim);
    min = minNode(min, rightMin, dimCmp);
  }
  return minNode(min, root, dimCmp);
}
```

minNode takes two nodes and a dimension as input, and returns the node with the smaller value in that dimension

Time Complexity of Removal

- Stop condition of FindMin
 - ▶ A node whose current discriminator is the target dimension
 - ▶ Also the node does not have a left child (no left subtree)
- ► Why?
 - ▶ If the node has a left child, the left child < the node

Visual Explanation

Complexity of FindMin

- FindMin does not explore the right subtree
 - ▶ If the discriminator of the current level is the target dimension
 - Ignore both the node and the right subtree

A General Analysis

- If there are M dimensions
- Nodes are evenly distributed
 - ▶ Prune ½ of the tree in every M levels
- Assume a total of L levels
- ► The whole process touches (½)^{L/M} Nodes

Multidimensional Range Search

- Example
 - ▶ Buy ticket for travel between certain dates and certain times
 - Look for apartments within certain price range, certain districts, and number of bedrooms
 - Find all restaurants near you
- k-d tree supports efficient range search, which is similar to that of basic BST but more complex!

k-d Tree Range Search

```
void rangeSearch(node *root, int dim,
  Key searchRange[][2], Key treeRange[][2],
  List results)
```

- Cycle through the dimensions as we go down the level
- searchRange[][2] holds two values (min, max) per dimension
 - Define a hyper-cube
 - min of dimension j at searchRange[j][0], max at searchRange[j][1]
- treeRange[][2] holds lower bound and upper bound per dimension for the tree rooted at root.
 - Need to be updated as we go down the levels
 - Need to check if a search range overlaps a subtree range

Range Searching Example

If query box doesn't overlap bounding box, stop recursion

If bounding box is a subset of query box, report all the points in current subtree

If bounding box overlaps query box, recurse left and right.

Range Query PseudoCode

```
def RangeQuery(Q, T):
   if T == NULL: return empty_set()
   if BB(T) doesn't overlap Query: return 0
   if Query subset of BB(T): return AllNodesUnder(T)

set = empty_set()
   if T.data in Query: set.union({T.data})

set.union(RangeQuery(Q, T.left))
   set.union(RangeQuery(Q, T.right))

return set
```

Nearest Neighbor Search

- Very similar to ranged search.
- Observation: ranged search is efficient if the range is small.
- Idea:
 - Given an element, find a good but not the best candidate
 - ► Outline a small range
 - ► Range search in reverse order

What Is a Good Candidate?

- Suppose we want to find the closest neighbor of K
- ▶ If we were to add **K** into the k-d tree
 - ▶ Its parent H should be in close vicinity of K
 - ► H could be a **good** candidate

What Is the Range?

- Compute the Radius
 - Better candidates must locate within the circle (or the sphere)
- ► K-d tree can't efficiently search the range of a sphere
 - ▶ Set the range as a "rectangle" (or a cuboid in high dimensions)

dimension

Top down vs Bottom up

- Bottom up
- Each node defines a "space", or a domain

Stop when a node completely encompasses the target search space

G

Bottom up Search

- Top down
- Why top down is inefficient:
 - ▶ We start with a small cube already, no need to start big

G

Implementing Nearest Neighbor Search

Modifications to the nodes in k-d tree struct node { vector<int> keys; // Or a key structure Value value; vector<pair<int, int> > domain; // The domain of the current node node* left subtree; node* right_subtree;

Exercise

- Canvas _> Exercise -> KD Trees:
 - Implement your nearest neighbor search