TS226

-

Codes correcteur d'erreur

Romain Tajan

29 septembre 2020

Plan

- Introduction
- 2 Code Convolutif
- ▶ Un premier exemple de code convolutif
- Définition des codes convolutifs
 Codes convolutifs récursifs
 Codes convolutifs systématiques
- Représentation octale
 Notation octale des codes non récursifs
 Notation octale des codes récursifs
- Code convolutif comme machine à états
 Diagramme d'état des codes convolutifs

Plan

Introduction

- 2 Code Convolutif
- Un premier exemple de code convolutif
- Définition des codes convolutifs
- Représentation octale

Plan

Introduction

- 2 Code Convolutif
- ▶ Définition des codes convolutifs
- Représentation octale
- ▶ Code convolutif comme machine à états

Un paradigme différent du codage en bloc : encodage "en ligne"

Message: $\mathbf{u} = [\quad 1 \quad \quad 0 \quad \quad 1 \quad \quad 0 \quad \quad 1 \quad \quad \dots \quad]$ Mot de code: $\mathbf{c} = [\quad \dots \quad \quad]$

Un paradigme différent du codage en bloc : encodage "en ligne"

Message: $\mathbf{u} = [\ 1 \ 0 \ 1 \ 0 \ 1 \ \dots]$ Mot de code: $\mathbf{c} = [\ \dots]$

CC | Exemple

Codes Convolutifs

Un paradigme différent du codage en bloc : encodage "en ligne"

Message: $\mathbf{u} = [\ \mathbf{1} \ 0 \ 1 \ 0 \ 1 \ \dots]$

Un paradigme différent du codage en bloc : encodage "en ligne"

Message: $\mathbf{u} = [\ \ \, \mathbf{1} \ \ \, 0 \ \ \, 1 \ \ \, 0 \ \ \, 1 \ \ \, \dots \]$ Mot de code: $\mathbf{c} = [\ \ \, c_0^{(1)} \ \ \, c_0^{(2)} \ \ \, \dots \ \ \,]$

Un paradigme différent du codage en bloc : encodage "en ligne"

Message: $\mathbf{u} = [\ \ \, \mathbf{1} \ \ \, 0 \ \ \, 1 \ \ \, 0 \ \ \, 1 \ \ \, \dots \]$ Mot de code : $\mathbf{c} = [\ \ \, \mathbf{1} \ \ \, \mathbf{1} \ \ \, \dots \]$

Un paradigme différent du codage en bloc : encodage "en ligne"

Message: $\mathbf{u} = [\ 1 \ \ \mathbf{0} \ \ 1 \ \ 0 \ \ 1 \ \dots \]$ Mot de code : $\mathbf{c} = [\ 1 \ \ 1 \ \ c_1^{(1)} \ c_1^{(2)} \ \dots \]$

Un paradigme différent du codage en bloc : encodage "en ligne"

Un paradigme différent du codage en bloc : encodage "en ligne"

 Message :
 u = [1
 0
 1
 0
 1
 ...]

 Mot de code :
 c = [1
 1
 0
 0
 0
 ...]

Un paradigme différent du codage en bloc : encodage "en ligne"

Un paradigme différent du codage en bloc : encodage "en ligne"

Un paradigme différent du codage en bloc : encodage "en ligne"

Quel est le prochain état?

- **A** [0, 1, 0, 1, 0, 1]
- **B** [1, 0, 1, 0, 1, 0]
- **(** [1, 0, 1, 1, 0, 0]
- Aucune des réponses A, B ou C.

CC | Exemple

Codes Convolutifs

Un paradigme différent du codage en bloc : encodage "en ligne"

Quel est la sortie?

- **A** [0, 1]
- **B** [1, 0]
- **(**0, 0]
- **(1**, 1)

$$c_n^{(2)} = 1 \cdot u_n + 0 \cdot u_{n-1} + 1 \cdot u_{n-2} + 1 \cdot u_{n-3} + 0 \cdot u_{n-4} + 1 \cdot u_{n-5} + 1 \cdot u_{n-6}$$

$$c_n^{(2)} = 1 \cdot u_n + 0 \cdot u_{n-1} + 1 \cdot u_{n-2} + 1 \cdot u_{n-3} + 0 \cdot u_{n-4} + 1 \cdot u_{n-5} + 1 \cdot u_{n-6}$$

$$c_n^{(2)} = 1 \cdot u_n + 0 \cdot u_{n-1} + 1 \cdot u_{n-2} + 1 \cdot u_{n-3} + 0 \cdot u_{n-4} + 1 \cdot u_{n-5} + 1 \cdot u_{n-6}$$

$$c_n^{(2)} = 1 \cdot u_n + 0 \cdot u_{n-1} + 1 \cdot u_{n-2} + 1 \cdot u_{n-3} + 0 \cdot u_{n-4} + 1 \cdot u_{n-5} + 1 \cdot u_{n-6}$$

$$\underline{\mathbf{On remarque}} : c_n^{(i)} = \sum_{k=0}^m g_k^{(i)} u_{n-k}$$

En utilisant la TZ :
$$C^{(i)}(z) = U(z)G^{(i)}(z)$$

$$\underline{\text{lci}}: \quad \mathbf{g}^{(1)} = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1] \\
\mathbf{q}^{(2)} = [1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1]$$

Code Convolutif: définition

Code convolutif

Code Convolutif (CC) : code tel que ses mots de codes sont obtenu par filtrages numériques linéaires à valeurs dans $\mathbb{F}_2 = \{0,1\}$ des messages binaires.

Message :
$$U(z) = \sum_{k=0}^{+\infty} u_i z^{-i}$$
 [transformée en Z de la séquence message $(u_k)_{k \in \mathbb{N}}$]

Mot de code :
$$\mathbf{C}(z) = [C^{(0)}(z), C^{(1)}(z), \cdots, C^{(n_s-1)}(z)]$$
 [$C^{(i)}(z)$ sortie du filtre i]

$$C^{(i)}(z) = U(z)G^{(i)}(z)$$

La définition générale de $G^{(i)}(z)$ est la suivante :

$$G^{(i)}(z) = \frac{a_0^{(i)} + a_1^{(i)}z^{-1} + \dots + a_m^{(i)}z^{-m}}{1 + b_1^{(i)}z^{-1} + \dots + b_m^{(i)}z^{-m}}$$

Encodeur récursif / Non récursif

Un encodeur est dit **récursif** s'il existe une boucle de rétroaction de sa sortie sur son entrée (s'il existe i tel que $B^{(i)}(z) \neq 1$).

$$G^{(i)}(z) = \frac{a_0^{(i)} + a_1^{(i)}z^{-1} + \dots + a_m^{(i)}z^{-m}}{1 + b_1^{(i)}z^{-1} + \dots + b_m^{(i)}z^{-m}}$$

Encodeur systématique / Non systématique

Un encodeur est dit **systématique** s'il existe une sortie i telle que $C^{(i)}(z) = U(z)$.

 \Leftrightarrow S'il existe une sortie *i* telle que $G^{(i)}(z) = 1$.

Quizz Encodeur Récursif, Encodeur Systématique

Cet encodeur est:

- A Récursif et systématique,
- B Récursif et non systématique,
- Non Récursif et systématique,
- Non Récursif et non systématique,

Quizz Encodeur Récursif, Encodeur Systématique

Ces deux encodeurs produisent le même code?

- A Vrai
- B Faux

Exemple:
$$\mathbf{g}^{(1)} = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1]$$
 $\mathbf{g}^{(2)} = [1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1]$

Ce encodeur est noté (171, 133)₈

Notation octale des codes convolutifs récursifs

Cet encodeur sera noté $(1, \frac{133}{171})_8$.

$$\overset{\mathbf{c}_n}{\longrightarrow} u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\rightarrow} u_n = 0$$

$$\overset{\mathbf{c}_n}{\longrightarrow} u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 0$$

$$\overset{\mathbf{c}_n}{\longrightarrow} u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n =$$

$$u_n = 0$$

$$\stackrel{\mathbf{c}_n}{\longrightarrow} u_n = 1$$

$$u_n = 0$$

$$\stackrel{\mathbf{C}_n}{\longrightarrow} u_n = \frac{1}{2}$$

Dernier QCM

Comment avez-vous trouvé ce cours?

- Très difficile
- B Difficile
- Moyen
- Simple
- Très simple