Today's Agenda: Floyd Warshall
Graph Coloring.
Bi-partite graph
Construct Roads. shortest distance from every other node. pairs shortest path) every node to sternediate Consider ereg hade idea relax the edges with smaller curdo. edge

Code Interndrag Node. for (j=0; jc N; j++) {

for (j=0; jc N; j++) { $\begin{array}{c}
A \left(A \left(i \right) \left(k \right) + A \left(k \right) \left(i \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(k \right) \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left(i \right) \left(i \right) + A \left(i \right) \right) \\
A \left(A \left($ 7.C -7 O(N3): S.C -7 O(1) 95 shootest distance 5/w 2 Or nodes always possible 2. A For -ve with cycle Flord washall will give an incorrect

Graph Colormy

Fooncis Guthoie (1852)

Dolo not

Leed more than

4 colours to

colos ans

map.

mm. no of colors' required to
Color all the nodes such that
no fwo adjacent nodes shoe the
Some color -7 Chronotic Number

Bi-partite Graph	_	
- Any	graph wi	th C-N = 2.
7 A graph de can divide all	colled b	ipatite of me
set , juch t	hat all	the ldyld
are across	tle set	
0		Col.
	0	
5	0	23456
	3	0 7 Green. 1 7 Red.
	5	1 -) " Red.
	6	32491
Set 1	Set 2.	
	8:25.	
	0.25	

col(N), +i col(i]=-1, Code. for (1=0; 1<N; 1++) { if ('col(i) = = -1) { col(i) =0; If (MS(grogh, i) = = false){

3 rehn felse; Jehrn ds (goph, src) { boole a for (mt nbr: graph (soc)){, J (col(nbr) = = col(src))

2 retur false,} A (col(nbo) == -1) { col(nbr) = 1 - col(soc); 11 opposite colour

•

O:- A country consists of Naties Connected by (NI) roads Kmy of that Country wants to construct max. roads such "that cities can be divided ent set & there is no road b/w cities en the same set. Food max. no. of new soads that can be created? Note: All cities con be visited one city. reeded = 12.

#	Usry Co rdelify set:	rept of the	bî pakte nodes	groph, neach
	O- ',	b -		
	Horner		a * b - (