Università Bocconi

Microeconomics

Prof. Elisa Borghi & Prof. Maristella Botticini

Lecture T4

Chapter 6: Demand

Road map

- 1. Comparative statics analysis
- 2. When the own price changes
 - i. price-offer curve
 - ii. (direct) demand function (x is function of p)
 - a) ordinary goods
 - b) Giffen goods
 - iii. inverse demand function (p is function of x)
- 3. When the price of the other good changes
 - i. (gross) complements
 - ii. (gross) substitutes
 - iii. unrelated goods
- 4. When the income changes
 - i. income-offer curve
 - ii. shifts of the demand function
 - iii. Engel curve

1. Properties of Demand Functions --- Comparative statics

 Comparative statics analysis of ordinary demand functions is the study of how ordinary demands

$$x_1^*(p_1, p_2, m)$$

$$x_2^*(p_1, p_2, m)$$

change as prices (p_1, p_2) and income (m) change.

2. Own-Price Changes

• QUESTION: How does $x_1^*(p_1, p_2, m)$ change **as** p_1 **changes**, holding p_2 and m constant?

• Suppose only p_1 increases, from p_1' to p_1'' and then to p_1''' .

2. Own-Price Changes (fixed p_2 and m) --- initial budget set

2. Own-Price Changes (fixed p_2 and m) --- new budget set

2. Own-Price Changes (fixed p_2 and m) --- new budget set

2. Own-Price Changes (fixed p_2 and m) --- optimal choice

2. Own-Price Changes (Fixed p_2 and m) --- demand curve

2. Own-Price Changes (fixed p_2 and m) --- new optimal choice

2. Own-Price Changes (fixed p_2 and m) --- demand curve

2. Own-Price Changes (fixed p_2 and m) --- new optimal choice

2. Own-Price Changes (fixed p_2 and m) --- demand curve

2. Own-Price Changes (fixed p_2 and m) --- demand curve !!!

2. Own-Price Changes (fixed p_2 and m)

2. Own-Price Changes (fixed p_2 and m) --- price offer curve

2. Own-Price Changes --- Price offer curve and demand curve

DEFINITION

■ The curve containing all the utility-maximizing bundles traced out as p_1 changes, with p_2 and m constant, is the p_1 -price offer curve.

DEFINITION

• The plot of the x_1 -coordinate of the p_1 -price offer curve against p_1 is the **direct demand curve** for commodity 1.

2. Own-Price Changes --- Direct and inverse demand functions

• Usually we ask "Given the price for commodity 1, what is the quantity demanded of commodity 1?"

DIRECT DEMAND FUNCTION (*x* is function of *p*)

• But we could also ask the **inverse** question "At what price for commodity 1 would a given quantity of commodity 1 be demanded?"

INVERSE DEMAND FUNCTION (*p* is function of *x*)

2. Own-Price Changes --- Ordinary goods

DEFINITION

- A good is called **ordinary** if the quantity demanded of it always increases as its own price decreases.
- ... and vice versa.

2. Own-Price Changes --- Ordinary goods: optimal bundles

2. Own-Price Changes --- Ordinary goods: the price offer curve

2. Own-Price Changes --- Ordinary goods --- demand curve

2. Own-Price Changes --- Giffen goods

DEFINITION

• If, for *some* values of its own price, the quantity demanded of a good rises as its own price increases, then the good is called **Giffen good.**

2. Own-Price Changes --- Giffen goods: optimal bundles

2. Own-Price Changes --- Giffen goods: price offer curve

2. Own-Price Changes --- Giffen goods: demand curve

 $\boldsymbol{x_1}$

3. Cross Price Changes

QUESTION

• How does the value of $x_1^*(p_1, p_2, m)$ change as p_2 changes, holding both p_1 and m constant?

3. Cross Price Changes --- (gross) substitutes and complements

DEFINITION

If an increase in p_2

- *increases* demand for commodity 1, then commodity 1 is a **gross substitute** for commodity 2.
- reduces demand for commodity 1, then commodity 1 is a **gross complement** for commodity 2.

(Symmetric definition if p_1 increases.)

3. Cross Price Changes --- example

Suppose

$$x_1^* = \frac{m}{p_1 + p_2}$$

• SO . . .

$$\frac{\partial x_1^*}{\partial p_2} = -\frac{m}{\left(p_1 + p_2\right)^2} < 0.$$

Therefore commodity 2 is a gross complement for commodity 1.

3. Cross Price Changes --- example

- Consider the demand function of commodity 1.
- Suppose the price of commodity 2 decreases.
- Then the individual will demand more of x_2 AND of x_1 given that the two commodities are gross complements.

3. Cross Price Changes --- example

- If the price of good 2 decreases, p_1 the demand curve for good 1 shifts outward.
- Hence, good 2 is a gross complement for good 1.

4. Income Changes

QUESTION

• How does the value of $x_1^*(p_1, p_2, m)$ change as m changes, holding both p_1 and p_2 constant?

4. Income Changes

Fixed p_1 and p_2 .

4. Income Changes: optimal bundles

Fixed p_1 and p_2 .

4. Income Changes: income offer curve

Fixed p_1 and p_2 .

4. Income Changes: Engel curve

DEFINITION

A plot of quantity demanded against income is called an **Engel curve.**

4. Income Changes: Engel curve for good 1

4. Income Changes: Engel curve for good 2

4. Income Changes --- Example: Engel curve for Cobb Douglas preferences

- Let $u(x_1, x_2) = x_1^a x_2^b$ be the Cobb Douglas utility function.
- The ordinary demand equations are

$$x_1^* = \frac{am}{(a+b)p_1}$$
 $x_2^* = \frac{bm}{(a+b)p_2}$

4. Income Changes --- Example: Engel curve for Cobb Douglas preferences

$$x_1^* = \frac{am}{(a+b)p_1}; x_2^* = \frac{bm}{(a+b)p_2}$$

• Rearranging to isolate *m*, these are

$$m = \frac{(a+b)p_1}{a} x_1^*$$

$$m = \frac{(a+b)p_2}{b} x_2^*$$

4. Income Changes --- Example: Engel curve for Cobb Douglas preferences

• Engel curve for good 1 $m = \frac{(a+b)p_1}{a}x_1^*$

$$m = \frac{(a+b)p_1}{a}x_1^*$$

• Engel curve for good 2 $m = \frac{(a+b)p_2}{b}x_2^*$

4. Income Changes --- Normal goods

DEFINITION

• A good for which quantity demanded rises with income is called **normal**.

• Therefore a normal good's Engel curve is positively sloped.

4. Income Changes --- Inferior goods

DEFINITION

- A good for which quantity demanded decreases with income is called **inferior**.
- Therefore an inferior good's Engel curve is negatively sloped.

4. Income Changes --- Normal goods: income offer curve and Engel curves

4. Income Changes --- Inferior (x_1) and normal (x_2) goods: optimal bundles

4. Income Changes --- Inferior (x_1) and normal (x_2) goods: optimal bundles --- Income offer curve

4. Income Changes --- Inferior (x_1) and normal (x_2) goods: optimal bundles --- Engel curves

Chapter 6: Take home message

Which is the key concept we learned in this chapter?

Comparative statics analysis

