2022-2023 MP2I

DM 1, pour le vendredi 30/09 (ou le lundi 03/10)

Je vous rappelle les consignes en devoir à la maison :

• Vous pouvez chercher les exercices à plusieurs, me poser des questions dessus mais la rédaction doit être personnelle.

- Écrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Les différents exercices sont indépendants.

Exercice. Dans tout l'exercice, on fixe $n \in \mathbb{N}$ et on pose $u_n = \sum_{k=0}^n \frac{(-1)^k}{\binom{n}{k}}$.

1) En effectuant le changement d'indice j = n - k, montrer que $u_n = (-1)^n u_n$. En déduire la valeur de u_n quand n est impair.

On pose alors pour
$$n \in \mathbb{N}$$
, $v_n = \frac{1}{n+1} \sum_{k=0}^n \left(\frac{(-1)^k \times k}{\binom{n}{k}} \right)$.

- 2) Montrer de la même façon que si n est pair, $2v_n = \frac{n}{n+1}u_n$.
- 3)
- a) Exprimer $\binom{n+1}{k}$ en fonction de $\binom{n}{k}$, n et k pour $k \in [0, n]$.
- b) En déduire que $u_n u_{n+1} = v_n + (-1)^n$.
- 4) Déterminer alors u_n en fonction de n lorsque n est pair.

PROBLÈME

RÉSOLUTION D'UNE ÉQUATION FONCTIONNELLE

Le but de ce problème est de trouver l'ensemble des fonctions $f:\mathbb{R}\to\mathbb{R}$ dérivables en 0 telles que :

$$\forall x \in \mathbb{R}, \ f(2x) = \frac{2f(x)}{1 + (f(x))^2}.$$

Les parties I et II sont indépendantes.

Partie I. Étude de fonctions

On pose
$$\varphi: x \mapsto \frac{e^{2x}-1}{e^{2x}+1}$$
 et $\psi: x \mapsto \frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)$.

1) Étude de φ

- a) Déterminer le domaine de définition de φ et étudier sa parité.
- b) Étudier les variations de φ et déterminer ses limites en $-\infty$ et $+\infty$.
- c) Tracer le graphe de φ . On fera apparaître la tangente au graphe en θ .
- 2) Étude de ψ
 - a) Déterminer le domaine de définition de ψ et étudier sa parité. On notera ce domaine de définition I dans la suite.
 - b) Vérifier que ψ est dérivable sur I et que $\forall x \in I, \ \psi'(x) = \frac{1}{1 x^2}$.
 - c) Étudier les variations de ψ et déterminer ses limites aux bords de I.
 - d) Tracer le graphe de ψ . On fera apparaître la tangente au graphe en θ .
- 3) Vérifier que pour tout $y \in I$, $\varphi(\psi(y)) = y$.

Partie II. Une première équation

On cherche dans cette partie à déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que :

$$\forall x \in \mathbb{R}, \ f(2x) = 2f(x).$$

- 4) Dans toute cette question, on suppose qu'il existe f solution.
 - a) Déterminer f(0) et donner la définition de f est dérivable en 0.
 - b) Soit $x \in \mathbb{R}^*$. On pose pour $n \in \mathbb{N}$, $u_n = \frac{f\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}}$ et on rappelle la propriété dite de composition des limites :

si
$$\lim_{x \to x_0} f(x) = l$$
 et que $\lim_{n \to +\infty} u_n = x_0$, alors $\lim_{n \to +\infty} f(u_n) = l$.

- i) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers f'(0).
- ii) Montrer par récurrence que $\forall n \in \mathbb{N}, \ u_n = \frac{f(x)}{r}$.
- c) En déduire que $\exists a \in \mathbb{R} / \forall x \in \mathbb{R}, \ f(x) = ax$.
- 5) Déterminer l'ensemble des fonctions solutions du problème posé dans cette partie.

Partie III. La résolution proprement dite

On cherche dans cette partie les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que :

$$\forall x \in \mathbb{R}, \ f(2x) = \frac{2f(x)}{1 + (f(x))^2}.$$

- 6) On suppose dans cette question que f est une solution à ce problème.
 - a) Déterminer les valeurs possibles de f(0).
 - b) Montrer que -f est également solution du problème étudié.
 - c) Montrer que $\forall u \in \mathbb{R}, -1 \le \frac{2u}{1+u^2} \le 1$ et en déduire que $\forall x \in \mathbb{R}, -1 \le f(x) \le 1$.
- 7) On suppose dans cette question que f est solution du problème posé et que f(0) = 1. On fixe $x \in \mathbb{R}$ et on définit la suite $(u_n)_{n \in \mathbb{N}}$ par :

2

$$\forall n \in \mathbb{N}, \ u_n = f\left(\frac{x}{2^n}\right).$$

On admet que $(u_n)_{n\in\mathbb{N}}$ converge vers f(0) (donc vers 1) quand n tend vers l'infini. Ceci se montre en utilisant le fait que f est dérivable en 0 donc continue en 0.

- a) Montrer que pour $n \in \mathbb{N}$, $u_n = \frac{2u_{n+1}}{1 + u_{n+1}^2}$.
- b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ garde un signe constant et préciser celui-ci.
- c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et en déduire qu'elle est constante égale à 1.
- d) Que peut-on alors dire de la fonction f?
- e) Que peut-on dire si l'hypothèse « f(0) = 1 » est remplacée par « f(0) = -1 »?
- 8) On suppose à présent que f est solution du problème posé et que f(0) = 0.
 - a) On suppose par l'absurde qu'il existe $x \in \mathbb{R}$ tel que f(x) = 1. On pose à nouveau :

$$\forall n \in \mathbb{N}, \ u_n = f\left(\frac{x}{2^n}\right).$$

Cette suite converge toujours vers f(0) quand n tend vers l'infini.

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est constante égale à 1 et en déduire une absurdité.

On montre de même (on ne demande pas de le faire) qu'il n'existe pas de x réel tel que f(x) = -1. On définit alors la fonction g par :

$$\forall x \in \mathbb{R}, \ g(x) = \psi(f(x)).$$

- b) Vérifier que g est bien définie, dérivable en 0 et que $\forall x \in \mathbb{R}, \ g(2x) = 2g(x)$.
- c) En déduire une expression de f en fonction d'un paramètre a réel et de la fonction φ .
- 9) Déterminer l'ensemble des fonctions solutions du problème posé dans cette partie.