## Assignment 3 Supplement Algorithm Design and Analysis

bitjoy.net

January 13, 2016

## 1 Greedy Algorithm

给定一系列自然数  $d_1 \ge d_2 \ge ... \ge d_n \ge 0$ ,如果存在一个图,其每个顶点的度数分别是  $d_1, d_2, ..., d_n$ ,当且仅当存在另一个图,其每个顶点的度数分别为  $d_2 - 1, d_3 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n$ 。

下面我们来证明这个定理。

 $\Leftarrow$  如果存在一个图,其每个顶点的度数分别为  $d_2-1,d_3-1,...,d_{d_1+1}-1,d_{d_1+2},...,d_n$ ,则我们添加一个顶点  $v_1$ ,将  $v_1$  和后面  $d_1$  个点都连一条边,则新的图中,顶点  $v_1,v_2,...,v_n$  的度数分别为  $d_1,d_2,...,d_n$ 。

⇒ 如果存在一个图,其每个顶点的度数分别为  $d_1, d_2, ..., d_n$ ,且满足  $d_1 \ge d_2 \ge ... \ge d_n \ge 0$ ,则  $v_1$  恰和后面  $d_1$  个顶点都有一条边。如果把  $v_1$  及其  $d_1$  条边删掉,则形成了一个顶点度数分别为  $d_2 - 1, d_3 - 1, ..., d_{d_1+1} - 1, d_{d_1+2}, ..., d_n$  的图。

假设存在某个点  $i \in [2, d_1 + 1]$  和  $v_1$  没有边,则  $v_1$  为了凑够  $d_1$  条边,必须和某个点  $j \in [d_1 + 2, n]$  有一条边。同时因为  $d_i \geq d_j$ ,必存在一个点 k, $v_i$  连了但  $v_j$  没连。所以我们删除边  $(v_i, v_k)$  和  $(v_1, v_j)$ ,添加上边  $(v_1, v_i)$  和  $(v_j, v_k)$ ,则每个顶点的度数都没有改变,但  $v_1$  和其后  $d_1$  个顶点都有了连边。所以上面证明的第二步成立。



Figure 1: 原图 G,  $v_1$  并没有和其后  $d_1$  个点都有边。



Figure 2: 转换后的图 G',  $v_1$  和其后  $d_1$  个点都有边, G' 和 G 等价。

## GRAPH-EXISTING(D)

```
if D = NULL
 2
         return true
 3
    sort D in descending order
    remove d_1 from D
 4
    for i = 2 to d_1 + 1
 5
 6
         d_i = d_i - 1
 7
         if d_i < 0
 8
              return false
 9
         elseif d_i == 0
              remove d_i from D
10
    return GRAPH-EXISTING(D)
```

时间复杂度为  $O(n^2 log n)$ 。

## 4 Greedy Algorithm

和第 3 题类似,分别把 A 和 B 从大到小排序,然后把  $a_i$  和  $b_i$  配对,得到的  $\prod\limits_{i=1}^n a_i^{b_i}$  最大。

使用 exchange argument 证明如下:

假设用该算法得到的解为 S,对于另一个解  $S' \neq S$ ,必存在某两对  $(a_i,b_i)$  和  $(a_j,b_j)$ ,他们是逆序对,即  $a_i \geq a_j$  且  $b_i \leq b_j$ ,乘积为  $T' = a_i^{b_i} a_j^{b_j}$ 。如果交换这两对,使得  $(a_i,b_j)$  和  $(a_j,b_i)$ ,消除了逆序对,新的乘积为  $T = a_i^{b_j} a_j^{b_i}$ ,我们要证明  $T \geq T'$ 。

$$\frac{T}{T'} = \frac{a_i^{b_j} a_j^{b_i}}{a_i^{b_i} a_j^{b_j}} = a_i^{b_j - b_i} a_j^{b_i - b_j} = (\frac{a_i}{a_j})^{b_j - b_i} \ge 1$$

所以  $T \ge T'$ 。也就是说,由 S' 转换到 S 的过程中,并没有减小乘积,所以 S 是最优解。