Topic: Coterminal angles in a particular interval

Question: Which angle in the interval $(-3\pi/5,7\pi/5]$ is coterminal with $67\pi/5$?

Answer choices:

$$A \qquad -\frac{2\pi}{5}$$

$$\mathsf{B} \qquad -\frac{3\pi}{5}$$

$$C \qquad \frac{7\pi}{5}$$

D
$$-\frac{\pi}{5}$$

Solution: C

We'll let $\theta = 67\pi/5$ and α be the angle within $(-3\pi/5, 7\pi/5]$ that's coterminal with θ . We'll use $\alpha = \theta + n(2\pi)$ and solve for the value of n that makes α lie in that interval.

$$-3\pi/5 < \alpha \le 7\pi/5$$

$$-3\pi/5 < \theta + n(2\pi) \le 7\pi/5$$

$$-\frac{3\pi}{5} < \frac{67\pi}{5} + n(2\pi) \le \frac{7\pi}{5}$$

$$-\frac{70\pi}{5} < n(2\pi) \le -\frac{60\pi}{5}$$

$$-14\pi < n(2\pi) \le -12\pi$$

$$-7 < n \le -6$$

Because n has to be an integer, we know n=-6. To find α , we'll substitute n=-6 into $\theta+n(2\pi)$.

$$\alpha = \frac{67\pi}{5} + (-6)(2\pi)$$

$$\alpha = \frac{67\pi}{5} - \frac{60\pi}{5}$$

$$\alpha = \frac{7\pi}{5}$$

Topic: Coterminal angles in a particular interval

Question: Which angle in the interval $(380^{\circ},740^{\circ}]$ is coterminal with 145° ?

Answer choices:

A 380°

B -215°

C 740°

D 505°

Solution: D

The interval $(380^{\circ},740^{\circ}]$ is a full 360° rotation. Notice how, because we have a parenthesis around the 380° and a bracket around the 740° , it means that the angle 380° exactly isn't included in the interval, but the angle 740° exactly *is* included.

We'll let $\theta=145^\circ$, and then we'll say that α is the coterminal angle that lies within $(380^\circ,740^\circ]$. Then we can say

$$380^{\circ} < \alpha \le 740^{\circ}$$

But since α is coterminal with θ , we substitute $\alpha = \theta + n(360^{\circ})$ into the inequality.

$$380^{\circ} < \theta + n(360^{\circ}) \le 740^{\circ}$$

$$380^{\circ} < 145^{\circ} + n(360^{\circ}) \le 740^{\circ}$$

$$235^{\circ} < n(360^{\circ}) \le 595^{\circ}$$

$$0.65 < n \le 1.65$$

Remember, n has to be an integer, which means n=1. And therefore, to find α , we'll substitute n=1 into $\alpha=\theta+n(360^\circ)$.

$$\alpha = 145^{\circ} + 1(360^{\circ})$$

$$\alpha = 145^{\circ} + 360^{\circ}$$

$$\alpha = 505^{\circ}$$

Topic: Coterminal angles in a particular interval

Question: Which angle in the interval $[25\pi/4,33\pi/4)$ is coterminal with $-33\pi/4$?

Answer choices:

$$A \qquad \frac{31\pi}{4}$$

$$\mathsf{B} \qquad \frac{25\pi}{4}$$

$$C \qquad \frac{23\pi}{4}$$

$$D \qquad \frac{33\pi}{4}$$

Solution: A

We'll let $\theta = -33\pi/4$ and α be the angle within $[25\pi/4,33\pi/4)$ that's coterminal with θ . We'll use $\alpha = \theta + n(2\pi)$ and solve for the value of n that makes α lie in that interval.

$$\frac{25\pi}{4} \le \alpha < \frac{33\pi}{4}$$

$$\frac{25\pi}{4} \le \theta + n(2\pi) < \frac{33\pi}{4}$$

$$\frac{25\pi}{4} \le -\frac{33\pi}{4} + n(2\pi) < \frac{33\pi}{4}$$

$$\frac{29\pi}{2} \le n(2\pi) < \frac{33\pi}{2}$$

$$7.25 \le n < 8.25$$

Because n has to be an integer, we know n=8. To find α , we'll substitute n=8 into $\theta+n(2\pi)$.

$$\alpha = \frac{-33\pi}{4} + 8(2\pi)$$

$$\alpha = -\frac{33\pi}{4} + \frac{64\pi}{4}$$

$$\alpha = \frac{31\pi}{4}$$

