# Syntax Analysis

Md Shad Akhtar Assistant Professor IIIT Dharwad

# **Bottom-Up Parsing**

## Bottom-Up parsing

- Construct a parse tree for an input string beginning at the leaves (the bottom) and working up towards the root (the top)
  - $\circ$  Reducing a string w to the start symbol of a grammar.
  - At each reduction step a particular substring matching the right side of a production is replaced by the symbol on the left of that production.
  - Gives the right-most derivation in the reverse order.

# Bottom-Up parsing: An example

G:  $S \rightarrow aABe$ 

 $A \to Abc \mid b$ 

 $\mathsf{B}\to\mathsf{d}$ 

Input: abbcde

- Procedure
  - Scan the string from left to right looking for a substring that matches the right side of a production:
     b and d qualifies
    - Choose *leftmost* b and apply A→ b, So string becomes aAbcde
  - Scan left to right: Abc, b and d qualifies
    - Choose *leftmost* Abc and apply A→ Abc, So string becomes aAde
  - Scan left to right: d qualifies
    - Apply  $B \rightarrow d$ , so the string becomes aABe
  - Scan left to right: aABe qualifies
    - Apply S → aABe
- abbcde ⇒ aAbcde ⇒ aAde ⇒ aABe ⇒ S

Right-most derivation

#### Handle

- Handle of a string is a substring that
  - matches the right side of a production rule; and
  - whose reduction to the nonterminal on the left side of the production represents one step along the reverse of a rightmost derivation;
- Therefore, *not every substring (or more specifically, the leftmost substring)* that matches the right side of a production rule is *handle*.

```
E.g.:

G: E \rightarrow E + T \mid T

T \rightarrow T * F \mid F

F \rightarrow id \mid (E)

Input: id_1 * id_2
```

```
\begin{array}{ll} \operatorname{id}_1 * \operatorname{id}_2 & \mathit{matched substring}\{\operatorname{id}_1, \operatorname{id}_2\} \\ \Rightarrow & \mathsf{F} * \operatorname{id}_2 & \mathit{matched substring}\{\mathsf{F}, \operatorname{id}_2\} \\ \Rightarrow & \mathsf{T} * \operatorname{id}_2 & \mathit{matched substring}\{\mathsf{T}, \operatorname{id}_2\} \\ \mathbf{In the next step, shall we reduce the leftmost} \\ \mathbf{substring} \; \mathsf{E} \to \mathsf{T} \; \mathbf{or} \; \mathsf{F} \to \operatorname{id}_2? \end{array}
```

## **Shift-Reduce Parsing**

- A stack implementation of bottom-up parsing
  - Shift → Current input symbol is pushed onto the stack
  - Reduce → Right side of a production is replaced by the left side non-terminal in the stack.
- Shift zero or more input symbols onto the stack, until it is ready to reduce a string □ to a non-terminal A on top of the stack, if the grammar has production A → □.
- Repeat the process, until
  - It generate an error signal OR
  - Stack contains the start symbol and input is empty. Accept the input.

# **Shift-Reduce Parsing**

G:  $E \rightarrow E + T \mid T$   $T \rightarrow T * F \mid F$  $F \rightarrow id \mid (E)$ 

Input: id<sub>1</sub> \* id<sub>2</sub>







Observe, handle is always at the top of stack.

# Shift-Reduce Parsing: Few key points

- Four primary operations
  - Shift → Current input symbol is pushed onto the stack
  - Reduce → Right side of a production is replaced by the left side non-terminal on the stack.
  - Accept → Announce successful completion of parsing
  - Error → Discover a syntax error and call error handling mechanism.
- Handle always appear on top of the stack
- For an unambiguous grammar, for every right-sentential form there is exactly one handle.
  - ∘ Remember given  $S \Rightarrow^* \alpha$ ,
    - If α contains non-terminals, it is called as a sentential form of G

#### **Conflicts**

- There are grammars for which shift-reduce parsing cannot be used.
- Shift-Reduce parser for such grammars may have a configuration where the parser cannot decide whether to
  - Shift the symbols onto the stack or Reduce the handle to a non-terminal OR
  - Reduce the handle with some non-terminal A or B.
- These situations are called conflicts.
  - Shift/Reduce conflict
  - Reduce/Reduce conflict

# Conflicts: Example 1

- Ambiguous grammar can not have shift-reduce parser
- stmt → if expr then stmt |
   if expr then stmt else stmt |
   other



# Conflicts: Example 2

 Let the configuration is Stack

\$.... id ( id



Reduce with param  $\rightarrow$  id OR Reduce with expr  $\rightarrow$  id

# **LR Parsers**

#### LR Parser

- LR(k) parsers are the most powerful and efficient shift-reduce parser
  - $\circ$  Left-to-right scanning, Right-most derivation (with k lookahead symbols)
  - o In general, k = 1
  - o In both LL(k) and LR(k), if k is omitted, it is assumed LL(1) and LR(1)
- A grammar for which we can construct a LR parser are called LR grammar
- Three main types of parse
  - Simple LR or SLR or LR(0)
  - Canonical LR or LR(1)
  - Look-ahead LR or LALR
- Parsing of all three parsers are similar, only their parsing tables are different

## Why LR parsers?

- LR parsers can be constructed to recognize virtually all programming language constructs for which CFGs can be written.
- LR parsers are most general non-backtracking shift-reduce parser and yet its implementation is as efficient as others.
- An LR parser can detect a syntactic error as soon as it is possible to do on a left-to-right scan of the input
- Class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers or LL methods

LL(1) grammars  $\subset LR(1)$  grammars

# LR parsing



# Configuration of LR parsing

- Each symbol on stack has an associated state.
- Initial stack configuration \$ S<sub>0</sub> (no symbol is associated with S<sub>0</sub>)

$$(\$ S_0 X_1 S_1 \dots X_m S_m, \qquad a_i a_{i+1} \dots a_n \$)$$
Stack Input

•  $S_m$  and  $a_i$  decides the next parser action by consulting the parsing table M.

# Configuration of LR parsing

- $S_m$  and  $a_i$  decides the next parser action by consulting the parsing table M.
  - Shift:
    - Push  $a_i$  and its associated state  $S_i$  onto the stack

$$(\$S_0X_1S_1...X_mS_m, \quad \mathbf{a}_i a_{i+1}...a_n\$) \rightarrow (\$S_0X_1S_1...X_mS_m\mathbf{a}_i S_i)$$

$$a_{i+1}...a_n\$)$$

- Reduce:
  - If  $A \to X_{m-r-1}S_{m-r-1}.....X_mS_m$  is a handle
    - Pop  $r = |X_{m-r-1}S_{m-r-1}....X_mS_m|$  items from the stack
    - Push A and S onto the stack, where  $S = GOTO[S_{m-r}, A]$

$$(\$S_0X_1S_1...X_mS_m, \quad a_i a_{i+1}...a_n\$) \rightarrow (\$S_0X_1S_1...X_{m-r}S_{m-r} A S_n, \quad a_i a_{i+1}...a_n\$)$$

# Canonical set of "items" for LR(0) automation

- LR parser makes shift-reduce decision based on the states in an automation.
- Each state contains a set of items that reflects the progress in parsing.
- Collection of sets of LR(0) items are called canonical LR(0) collection.
- An LR(0) item (or simply item) of a grammar G is a production with a dot (.) at some position of the right side of the rule.
  - $\circ$  For the production A  $\rightarrow$  XYZ, we have four items
    - $\blacksquare$  A  $\rightarrow$  XYZ
    - $A \rightarrow X YZ$
    - $A \rightarrow XY Z$
    - $\blacksquare$  A  $\rightarrow$  XYZ.

The position of • indicates the amount of processing completed.

- 1. Parser has PROCESSED X on a portion of the input; and
- 2. HOPE to derive the rest of the input from YZ

## (Dot) Closure of items

- To build the LR(0) automation, we need to find the closure of each item set(*I*)
- Let the grammar G:  $E \to E + T \mid T$   $T \to T * F \mid F$   $F \to (E) \mid id$
- Then, the dot closure of item  $E \rightarrow \cdot E + T$  is



### (Dot) Closure of items

#### Closure (I)

- 1. Add every item in I to Closure (I)
- 2. If  $A \to \alpha . B\beta$  is in Closure(I) and  $B \to \gamma$  is a production a. Add item  $B \to . \gamma$  to Closure(I)
- 3. Repeat step 2, until no new items can be added to Closure(I).

# Transition function GOTO()

- If Closure(I) has an item  $A \to \alpha . B\beta$ • GOTO (I, B) = Closure( $A \to \alpha B . \beta$ )
- Let Closure(I) = {[ $E \rightarrow .T$ ], [ $E \rightarrow E. + T$ ]}

  o GOTO (I, +) = { [ $E \rightarrow E + .T$ ],

  [ $T \rightarrow .T * F$ ]

  [ $T \rightarrow .F$ ]

  [ $F \rightarrow .(E)$ ]

  [ $F \rightarrow .id$ ] }

- The state of the automation is defined by the Closure(I) of items
- The GOTO(I, X) function defines the transition from state I on symbol X

- For every grammar, augment a production  $S' \rightarrow S$ , if S was the starting symbol.
  - ∘ S' becomes new start symbol
  - $\circ$   $S' \rightarrow S$  signifies the acceptance of the input.

# Computation of the canonical LR(0) collection

```
Items(G')
```

- 1.  $C = \text{Closure}(\{[S' \rightarrow .S]\})$
- 2. Repeat
  - **a.** For each set of items I in C
    - i. For each grammar symbol X
      - 1. If  $\mathrm{GOTO}(I,X)$  is not empty and not in C
        - a. Add GOTO(I, X) to C
- $oldsymbol{3}.$  Until no new sets of items are added to C

 $\mathbf{0} \colon E' \to E$ 

**1:**  $E \rightarrow E + T$ 

**2**:  $E \rightarrow T$ 

**3:**  $T \rightarrow T * F$ 

**4:** 
$$T \rightarrow F$$

**5**: 
$$F \to (E)$$

**6**: 
$$F \rightarrow id$$

$$E' \rightarrow E$$

$$E \rightarrow E \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow .T$$

$$T \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow id$$

 $\mathbf{0} \colon E' \to E$ 

**4:**  $T \rightarrow F$ 

**1:**  $E \rightarrow E + T$ **5**:  $F \to (E)$ 

**2**:  $E \rightarrow T$ **6**:  $F \rightarrow id$  **3:**  $T \rightarrow T * F$ 





 $\begin{array}{|c|c|c|c|c|}\hline \textbf{0} \colon E' \to E & \textbf{1} \colon E \to E + T & \textbf{2} \colon E \to T & \textbf{3} \colon T \to T * F \\ \textbf{4} \colon T \to F & \textbf{5} \colon F \to (E) & \textbf{6} \colon F \to id & \end{array}$ 



 $\mathbf{0} \colon E' \to E$ **1:**  $E \rightarrow E + T$ **4:**  $T \rightarrow F$ 

**5**:  $F \to (E)$ 

**2**:  $E \rightarrow T$ **6**:  $F \rightarrow id$  **3:**  $T \rightarrow T * F$ 

#### $\mathbf{0} \colon E' \to E$ **1:** $E \rightarrow E + T$ **2:** $E \rightarrow T$ **3:** $T \rightarrow T * F$ LR(0) Automation **4:** $T \rightarrow F$ **5**: $F \to (E)$ **6**: $F \rightarrow id$ $E' \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $F \rightarrow id$ $F \rightarrow (E)$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $T \rightarrow F$ . $F \rightarrow id$

#### LR(0) Automation **4:** $T \rightarrow F$ **6**: $F \rightarrow id$ **5**: $F \rightarrow (E)$ $E' \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow \cdot (E)$ $F \rightarrow id$ $F \rightarrow (E)$ $E \rightarrow E + T$ id $F \rightarrow id$ . $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $T \rightarrow F$ . $F \rightarrow id$

**1:**  $E \rightarrow E + T$ 

**2:**  $E \rightarrow T$ 

**3:**  $T \rightarrow T * F$ 

 $\mathbf{0} \colon E' \to E$ 

**4**:  $T \rightarrow F$ 

 $\mathbf{0} \colon E' \to E$ 

**1:**  $E \rightarrow E + T$ 

**5**:  $F \rightarrow (E)$ 

**2:**  $E \rightarrow T$ 

**6**:  $F \rightarrow id$ 

**3:**  $T \rightarrow T * F$ 



 $F \rightarrow (E)$  $F \rightarrow id$ 

 $I_o$ 



 $T \rightarrow F$ .

- $T \rightarrow F$  $F \rightarrow (E)$ 
  - $F \rightarrow id$

 $E \rightarrow E + . T$ 

 $T \rightarrow T * F$ 

- $F \rightarrow (E)$
- $E \rightarrow E + T$
- $E \rightarrow T$

 $T \rightarrow F$ 

 $F \rightarrow (E)$ 

 $F \rightarrow id$ 

 $I_4$ 

- $T \rightarrow T * F$

## LR(0) Automation $E' \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$

 $F \rightarrow id$ .

 $T \rightarrow F$ .

 $F \rightarrow (E)$ 

 $F \rightarrow id$ 

 $I_{o}$ 



 $T \rightarrow F$ 

 $F \rightarrow (E)$ 

 $F \rightarrow id$ 

 $E \rightarrow T$ 

 $T \rightarrow F$ 

 $F \rightarrow \cdot (E)$ 

 $F \rightarrow id$ 

 $I_4$ 

 $\mathbf{0} \colon E' \to E$ 



**3:**  $T \rightarrow T * F$ 

**2:**  $E \rightarrow T$ 

**6**:  $F \rightarrow id$ 



**1:**  $E \rightarrow E + T$ 



**2:**  $E \rightarrow T$ 

**6**:  $F \rightarrow id$ 



**3:**  $T \rightarrow T * F$ 





 $\mathbf{0} \colon E' \to E$ 

**4**:  $T \rightarrow F$ 



1:  $E \rightarrow E + T$ 

**5**:  $F \rightarrow (E)$ 





 $F \rightarrow id$ .

 $T \rightarrow F$ .



 $T \rightarrow F$ 

 $F \rightarrow (E)$ 

 $F \rightarrow id$ 

 $I_4$ 

 $T \rightarrow F$ 



$$\rightarrow F \rightarrow (E \cdot)$$

 $E \rightarrow E \cdot + T$ 

**4**:  $T \rightarrow F$ 

 $\mathbf{0} \colon E' \to E$ 

**5**:  $F \rightarrow (E)$  $E \rightarrow E + T$ 

1:  $E \rightarrow E + T$ 

 $E \rightarrow E + T$ .

**2**:  $E \rightarrow T$ 

**6**:  $F \rightarrow id$ 

**3:**  $T \rightarrow T * F$ 

 $E' \rightarrow \cdot E$  $E \rightarrow E + T$  $E \rightarrow T$  $T \rightarrow T * F$ 

 $T \rightarrow F$ 

 $F \rightarrow (E)$ 

 $F \rightarrow id$ 

 $I_{o}$ 

 $F \rightarrow id$ .

 $T \rightarrow F$ .

- - - $F \rightarrow \cdot (E)$

 $F \rightarrow (E .)$ 

 $E \rightarrow E \cdot + T$ 

 $T \rightarrow T * . F$ 

 $T \rightarrow T \cdot *F$ 

- $T \rightarrow F$  $F \rightarrow \cdot (E)$  $F \rightarrow id$

 $F \rightarrow (E)$ 

id  $E \rightarrow .T$ 

 $E \rightarrow E + T$ 

 $T \rightarrow T * F$ 

 $T \rightarrow F$ 

 $F \rightarrow \cdot (E)$ 

 $F \rightarrow id$ 

 $E \rightarrow E + T$ 

 $T \rightarrow F$ 

 $F \rightarrow \cdot (E)$ 

 $F \rightarrow id$ 

**5**:  $F \rightarrow (E)$ 

1:  $E \rightarrow E + T$ 

**2:**  $E \rightarrow T$ 

**6**:  $F \rightarrow id$ 

 $E \rightarrow E + T$ .  $T \rightarrow T$ . \* F

**3:**  $T \rightarrow T * F$ 



 $T \rightarrow F$ .

 $F \rightarrow (E)$ 

 $F \rightarrow id$ 

- id
- $F \rightarrow \cdot (E)$  $F \rightarrow id$  $\boldsymbol{F}$

 $\mathbf{0} \colon E' \to E$ 

**4**:  $T \rightarrow F$ 

- $T \rightarrow T * . F$  $F \rightarrow \cdot (E)$
- $F T \to T * F$ .
- $I_{o}$  $F \rightarrow id$  $F \rightarrow (E)$  $E \rightarrow E + T$  $F \rightarrow id$ . id  $E \rightarrow .T$  $T \rightarrow T * F$  $F \rightarrow (E .)$  $T \rightarrow F$  $E \rightarrow E \cdot + T$

#### $\mathbf{0} \colon E' \to E$ 1: $E \rightarrow E + T$ **2:** $E \rightarrow T$ **3:** $T \rightarrow T * F$ LR(0) Automation **4**: $T \rightarrow F$ **6**: $F \rightarrow id$ **5**: $F \rightarrow (E)$ $E \rightarrow E + T$ . $T \rightarrow T$ . \* F $E' \rightarrow \cdot E$ $E \rightarrow E + T$ $E \rightarrow E + T$ $T \rightarrow F$ $E \rightarrow T$ $F \rightarrow \cdot (E)$ $T \rightarrow T * F$ id $F \rightarrow id$ $T \rightarrow F$ $F \rightarrow (E)$ $T \rightarrow T * . F$ $\boldsymbol{F}$ $T \longrightarrow T \cdot *F$ $F \rightarrow id$ $T \rightarrow T * F$ . $F \rightarrow \cdot (E)$ $I_{o}$ $F \rightarrow id$ id T $F \rightarrow (E)$ $E \rightarrow E + T$ $F \rightarrow id$ . id $E \rightarrow .T$ $T \rightarrow T * F$ $F \rightarrow (E .)$ $F \rightarrow (E)$ . $T \rightarrow F$ $E \rightarrow E \cdot + T$ $F \rightarrow (E)$ $T \rightarrow F$ . $F \rightarrow id$

# LR(0) Automation $E' \rightarrow .E$ $E \rightarrow .E + T$ $E \rightarrow E \cdot ... + T$

$$\begin{array}{c}
\mathbf{0}: E' \to E \\
\mathbf{4}: T \to F
\end{array}$$

**1**: 
$$E \to E + T$$
  
**5**:  $F \to (E)$ 

$$\mathbf{6:} F \rightarrow id$$

**2:**  $E \rightarrow T$ 

 $E \rightarrow E + T$ .



**3:**  $T \rightarrow T * F$ 



 $E \rightarrow E + T$ 

#### Constructing SLR parsing table

- Remember, LR parsing table has two parts
  - Action: Takes only terminals
  - GOTO: Takes only non-terminals

#### SLR-Table(G')

- 1. Construct LR(0) collection for the grammar G'
- 2. Let  $I_i$  represents state  $S_i$ , then the parsing action for state i are as follows
  - a. If  $[A \to \alpha.a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_j$ 
    - i. Action[i, a] = "shift j"
  - b. If  $[A \rightarrow \alpha]$  is in  $I_i$ 
    - i. Action[i, a] = "reduce  $A \rightarrow a$ " for all  $a \in FOLLOW(A)$
  - c. If  $[S' \rightarrow S]$  is in  $I_i$ 
    - i. Action[i, \$] = "accept"
- 3. For all non-terminals A,
  - a. if  $GOTO(I_i, A) = I_i$ ,
    - i. GOTO[i, A] = j

GOTO(S, X): Transition from state S to a new state on non-terminal symbol X

For all transitions on non-terminals in state 0

GOTO(0, E) = 1GOTO(0, T) = 2

GOTO(0, F) = 3

| 04-4- |    | Action |   |   |   |    |   | GOTO |   |  |
|-------|----|--------|---|---|---|----|---|------|---|--|
| State | id | +      | * | ( | ) | \$ | E | Т    | F |  |
| 0     |    |        |   |   |   |    | 1 | 2    | 3 |  |
| 1     |    |        |   |   |   |    |   |      |   |  |
| 2     |    |        |   |   |   |    |   |      |   |  |
| 3     |    |        |   |   |   |    |   |      |   |  |
| 4     |    |        |   |   |   |    |   |      |   |  |
| 5     |    |        |   |   |   |    |   |      |   |  |
| 6     |    |        |   |   |   |    |   |      |   |  |
| 7     |    |        |   |   |   |    |   |      |   |  |
| 8     |    |        |   |   |   |    |   |      |   |  |
| 9     |    |        |   |   |   |    |   |      |   |  |
| 10    |    |        |   |   |   |    |   |      |   |  |
| 11    |    |        |   |   |   |    |   |      |   |  |
|       | •  | 1      | 1 | 1 | ' |    | • |      |   |  |

State

**Action** 

\$

Ε

2

9

**GOTO** 

3

3

F

GOTO(S, X): Transition from state S to a new state on non-terminal symbol X

For all transitions on non-terminals in

$$GOTO(4, F) = 3$$

For all transitions on non-terminals in state 6

$$GOTO(6, T) = 9$$

$$GOTO(6, F) = 3$$

For all transitions on non-terminals in state 7

$$GOTO(7, F) = 10$$

0

id







$$S, T) = 9$$

2 3

5

6

7

8

9

10



If  $[A \rightarrow \alpha .a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ then

Action[i, a] = "shift]

For all transitions on terminals in state 0

Action[0, id] = "shift 5" or "s5"

Action[0, (] = "s4"]

State

+

**s4** 

**Action** 

\$

Ε

|   | , -       | $\imath$       | ` 1' | , | J |  |
|---|-----------|----------------|------|---|---|--|
| n |           |                |      |   |   |  |
|   | Λ otion[i | a1 - "obift a" |      |   |   |  |

3

5

7

8

9

10

11

2

id

**s5** 

Note: *a* is terminal

6



**GOTO** 

F

If  $[A \rightarrow a.a\beta]$  is in  $I_i$  and  $\mathrm{GOTO}(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 1

Action[1, +] = "s6"

| Ctata |    |    |   |    |   |    |   |   |    |
|-------|----|----|---|----|---|----|---|---|----|
| State | id | +  | * | (  | ) | \$ | E | Т | F  |
| 0     | s5 |    |   | s4 |   |    | 1 | 2 | 3  |
| 1     |    | s6 |   |    |   |    |   |   |    |
| 2     |    |    |   |    |   |    |   |   |    |
| 3     |    |    |   |    |   |    |   |   |    |
| 4     |    |    |   |    |   |    | 8 | 2 | 3  |
| 5     |    |    |   |    |   |    |   |   |    |
| 6     |    |    |   |    |   |    |   | 9 | 3  |
| 7     |    |    |   |    |   |    |   |   | 10 |
| 8     |    |    |   |    |   |    |   |   |    |
| 9     |    |    |   |    |   |    |   |   |    |
| 10    |    |    |   |    |   |    |   |   |    |
| 11    |    |    |   |    |   |    |   |   |    |

Action

**GOTO** 

If  $[A \to \alpha .a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 2

Action[2, \*] = "s7"

0

2

3

6

7

8

9

10

11

State

id s5

+

s6

**Action** 

s4

**GOTO** 

2

9

F

3

3

3

10

\$

Ε

5

**s7** 

If  $[A \rightarrow a.a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 3 None

8

9

10

11

# State

+

s6

id

Action

\$

Ε

| 8 | 2 | 3  |
|---|---|----|
|   |   |    |
|   | 9 | 3  |
|   |   | 10 |
|   |   |    |
|   |   |    |
|   |   |    |
|   |   |    |
|   |   |    |

**GOTO** 

F

If  $[A \rightarrow a.a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ 

Action[i, a] = "shift j"

For all transitions on terminals in state 4

Action[4, id] = "s5"

State

0

5

6

7

8

9

10

11

id s5

+

s6

**Action** 

\$

Ε

**GOTO** 

2

2

9

F

3

3

3

10

then

2 3

s5

s7

s4

**s4** 

Note: *a* is terminal



Action[4, ( ] = "s4"

If  $[A \rightarrow a.a\beta]$  is in  $I_i$  and  $\mathrm{GOTO}(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 5 None

| 0  | s5 |    |    | s4 |   |   | 1 | 2 | 3  |
|----|----|----|----|----|---|---|---|---|----|
| 1  |    | s6 |    |    |   |   |   |   |    |
| 2  |    |    | s7 |    |   |   |   |   |    |
| 3  |    |    |    |    |   |   |   |   |    |
| 4  | s5 |    |    | s4 |   |   | 8 | 2 | 3  |
| 5  |    |    |    |    |   |   |   |   |    |
| 6  |    |    |    |    |   |   |   | 9 | 3  |
| 7  |    |    |    |    |   |   |   |   | 10 |
| 8  |    |    |    |    |   |   |   |   |    |
| 9  |    |    |    |    |   |   |   |   |    |
| 10 |    |    |    |    |   |   |   |   |    |
| 11 |    |    |    |    |   |   |   |   |    |
|    |    | 1  | 1  | 1  | 1 | 1 | • |   | 1  |

Action

State

id

+

**GOTO** 

\$

Ε

If  $[A \rightarrow a.a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ 

Action[i, a] = "shift j"

For all transitions on terminals in state 6

Action[6, id] = "s5"

Action[6, ( ] = "s4"

State

0

id

s5

s5

**s**5

+

s6

s4

s4

**s4** 

**Action** 

\$

Ε

**GOTO** 

2

2

9

F

3

3

3

10

then

2

3

5

6

8

9

10

11

s7

Note: *a* is terminal

If  $[A \rightarrow a.a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ 

For all transitions on terminals in state 7

Action[7, id] = "s5"

Action[7, ( ] = "s4"

0

State

id s5

+

s6

**Action** 

s4

\$

Ε

**GOTO** 

2

2

9

F

3

3

3

10

then Action[i, a] = "shift j"

2 3

5

7

8

9

10

11

s5

**s**5

s7

s4

s4

**s4** 

Note: *a* is terminal

6

s5

If  $[A \rightarrow a.a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 8

Action[8, +] = "s6"

Action[8, ) ] = "s11"

2

3

5

6

7

8

9

10

11

State

id

s5

s5

s5

s5

+

s6

**s6** 

s7

**Action** 

s4

s4

s4

s4

s11

\$

Ε

2

**GOTO** 



F



| 8 | 2 | 3  |
|---|---|----|
|   |   |    |
|   | 9 | 3  |
|   |   | 10 |
|   |   |    |
|   |   |    |
|   |   |    |
|   |   |    |
| • |   |    |

If  $[A \to \alpha .a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ then

Note: *a* is terminal

For all transitions on terminals in state 9 Action[9, \*] = "s7"

| 0 |
|---|
|   |

State

#### id s5

| Action[ $i$ , $a$ ] = "shift $j$ " |  |
|------------------------------------|--|
|                                    |  |

s6

**s7** 

s6

+

**Action** 

s4

s4

s4

s4

s11

**GOTO** 

2

9

F

3

3

3

10

\$

Ε

5

6

7

8

9

10

11

2

3

s5

s5

If  $[A \to \alpha .a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ 

For all transitions on terminals in state 10 None

State 0

id

s5

s5

s5

s5

+

s6

s4

**Action** 

then Action[i, a] = "shift j"

2 3

s6

s7

s7

s4

s4

s4

s11

\$

Ε

**GOTO** 

2

9

F

3

3

3

10

Note: *a* is terminal





5

9

10

If  $[A \rightarrow a.a\beta]$  is in  $I_i$  and  $GOTO(I_i, a) = I_i$ 

Action[i, a] = "shift j"

Note: *a* is terminal

then

For all transitions on terminals in state 11 None

| 2  |    |    |
|----|----|----|
| 3  |    |    |
| 4  | s5 |    |
| 5  |    |    |
| 6  | s5 |    |
| 7  | s5 |    |
| 8  |    | s6 |
| 9  |    |    |
| 10 |    |    |
| 44 |    |    |

State

0

| id | +  | *  | (  | ) | \$<br>Е |
|----|----|----|----|---|---------|
| s5 |    |    | s4 |   | 1       |
|    | s6 |    |    |   |         |
|    |    | s7 |    |   |         |
|    |    |    |    |   |         |

Action

**GOTO** 

F



$$\begin{split} \text{If } [\mathcal{A} \to \alpha.] \text{ is in } I_i \\ \text{Action}[i \,,\, a] &= \text{``reduce } \mathcal{A} \to \alpha\text{'`} \text{ for all } \\ a &\in \text{FOLLOW}(\mathcal{A}) \end{split}$$

Statse 0, 4, 6, 7 and 8 does not have any such production

| 04-4- |    |    | GOTO |    |     |    |   |   |    |
|-------|----|----|------|----|-----|----|---|---|----|
| State | id | +  | *    | (  | )   | \$ | E | Т | F  |
| 0     | s5 |    |      | s4 |     |    | 1 | 2 | 3  |
| 1     |    | s6 |      |    |     |    |   |   |    |
| 2     |    |    | s7   |    |     |    |   |   |    |
| 3     |    |    |      |    |     |    |   |   |    |
| 4     | s5 |    |      | s4 |     |    | 8 | 2 | 3  |
| 5     |    |    |      |    |     |    |   |   |    |
| 6     | s5 |    |      | s4 |     |    |   | 9 | 3  |
| 7     | s5 |    |      | s4 |     |    |   |   | 10 |
| 8     |    | s6 |      |    | s11 |    |   |   |    |
| 9     |    |    | s7   |    |     |    |   |   |    |
| 10    |    |    |      |    |     |    |   |   |    |
| 11    |    |    |      |    |     |    |   |   |    |

| State |
|-------|
| 0     |

id

s5

s5

s5

+

s6

r2

**Action** 

\$

r2

Ε

F

3

3

**GOTO** 

2

2

If  $[A \rightarrow \alpha]$  is in  $I_i$ 

Action[i, a] = "reduce  $A \rightarrow a$ " for all a $\in FOLLOW(A)$ 

Action[2, +] = "reduce  $E \rightarrow T$ " or "r2" Action[2, ] = r2

Action[2, \$] = "r2"

r2 means reduction by production no 2.

2

3

4

5

6

s7

s4

r2

For all terminals in Follow(E $\rightarrow$ T) in state 2

s4

s4

[Remember, we numbered the productions]

| 7  | s5 |    |    | s4 |     |   |  | 10 |
|----|----|----|----|----|-----|---|--|----|
| 8  |    | s6 |    |    | s11 |   |  |    |
| 9  |    |    | s7 |    |     |   |  |    |
| 10 |    |    |    |    |     |   |  |    |
| 11 |    |    |    |    |     |   |  |    |
| I  |    | 1  | 1  | 1  | ı   | 1 |  | 1  |

$$\begin{split} \text{If } [\mathcal{A} \to \alpha.] \text{ is in } I_i \\ \text{Action}[i \text{ , } a] = \text{``reduce } \mathcal{A} \to \alpha\text{'`} \text{ for all } \\ a \in \text{FOLLOW}(\mathcal{A}) \end{split}$$

For all terminals in Follow( $T \rightarrow F$ ) in state 3 Action[3, +] = "r4"

Action[3, \*] = "r4"

Action[3, )] = "r4"

Action[3, \$] = "r4"

| 04-4- | Action |    |    |    |    |     |    | GOTO |   |    |
|-------|--------|----|----|----|----|-----|----|------|---|----|
|       | State  | id | +  | *  | (  | )   | \$ | E    | Т | F  |
|       | 0      | s5 |    |    | s4 |     |    | 1    | 2 | 3  |
|       | 1      |    | s6 |    |    |     |    |      |   |    |
|       | 2      |    | r2 | s7 |    | r2  | r2 |      |   |    |
|       | 3      |    | r4 | r4 |    | r4  | r4 |      |   |    |
|       | 4      | s5 |    |    | s4 |     |    | 8    | 2 | 3  |
|       | 5      |    |    |    |    |     |    |      |   |    |
|       | 6      | s5 |    |    | s4 |     |    |      | 9 | 3  |
|       | 7      | s5 |    |    | s4 |     |    |      |   | 10 |
|       | 8      |    | s6 |    |    | s11 |    |      |   |    |
|       | 9      |    |    | s7 |    |     |    |      |   |    |
|       | 10     |    |    |    |    |     |    |      |   |    |
|       | 11     |    |    |    |    |     |    |      |   |    |
|       |        | •  | 1  | 1  | 1  | 1   | 1  |      |   |    |

If  $[\mathcal{A} \to \alpha.]$  is in  $I_i$  Action $[i\,,\,a]$  = "reduce  $\mathcal{A} \to \alpha$ " for all  $a \in \mathsf{FOLLOW}(\mathcal{A})$ 

For all terminals in Follow( $F \rightarrow id$ ) in state 5 Action[5, +] = "r6"

Action[5, )] = "r6"

Action[5, \$] = "r6"

| State | Action |    |    |    |    |     |    | GOTO |   |    |
|-------|--------|----|----|----|----|-----|----|------|---|----|
|       | State  | id | +  | *  | (  | )   | \$ | E    | Т | F  |
| _     | 0      | s5 |    |    | s4 |     |    | 1    | 2 | 3  |
|       | 1      |    | s6 |    |    |     |    |      |   |    |
|       | 2      |    | r2 | s7 |    | r2  | r2 |      |   |    |
|       | 3      |    | r4 | r4 |    | r4  | r4 |      |   |    |
|       | 4      | s5 |    |    | s4 |     |    | 8    | 2 | 3  |
|       | 5      |    | r6 | r6 |    | r6  | r6 |      |   |    |
|       | 6      | s5 |    |    | s4 |     |    |      | 9 | 3  |
|       | 7      | s5 |    |    | s4 |     |    |      |   | 10 |
|       | 8      |    | s6 |    |    | s11 |    |      |   |    |
|       | 9      |    |    | s7 |    |     |    |      |   |    |
|       | 10     |    |    |    |    |     |    |      |   |    |
| _     | 11     |    |    |    |    |     |    |      |   |    |

Action[i, a] = "reduce  $A \rightarrow a$ " for all a $\in FOLLOW(A)$ 

For all terminals in Follow(E→E+T) in state 9

| S | ta | ıt | е |
|---|----|----|---|
|   |    |    |   |
|   |    |    |   |
| - | -  | -  | - |

0

+

s6

r2

r4

**Action** 

s4

s4

s4

s4

\$

Ε

2

2

9

**GOTO** 

3

F

If  $[A \rightarrow \alpha]$  is in  $I_i$ 

2

3

5

6

7

8

9

10

11

id

s5

s7

r2

r4

s11

r1

r2

r4

r6

r1

8

3

3

10

4

s5

s7

r4

s5

s5

r6

s6

r1

r6

r6

Action[9, \$] = "r1"

Action[i, a] = "reduce  $A \rightarrow a$ " for all a $\in FOLLOW(A)$ 

#### For all terminals in Follow( $T \rightarrow T^*F$ ) in state 10

Action[10, +] = "r3" Action[10, \*] = "r3"

Action[10, )] = "r3"

| State |  |
|-------|--|
|       |  |

id

s5

+

s6

r4

**Action** 

s4

\$

Ε

2

2

9

**GOTO** 

If  $[A \rightarrow \alpha]$  is in  $I_i$ 

r2

s7

r2

8

F

3

3

3

10

Action[10, \$] = "r3"

5

s5

s5

s5

r6

s6

r1

r3

r6

s7

r3

r4

s4

s4

s4

r6

s11

r1

r3

r2

r4

r6

r1

r3

r4

7 8

9

10

11

6

2

3

4

Action[11, \$] = "r5"

| State |  |
|-------|--|
|       |  |
|       |  |

0

id s5

+

r2

**Action** 

Ε

8

2

F

3

3

3

10

**GOTO** 

2

9

If  $[A \rightarrow \alpha]$  is in  $I_i$ Action[i, a] = "reduce  $A \rightarrow a$ " for all a $\in FOLLOW(A)$ 

2

s6

s7

s4

r2

\$

r2

r6

3 r4 r4 r4 r4 For all terminals in Follow( $F \rightarrow (E)$ ) in state 11 s5 4 s4 Action[11, +] = "r5"

Action[11, \*] = "r5" Action[11, )] = "r5"

6

5

s5

r6

r6

r6

s4

7 s5 s4 8 s6 s11 9 r1 s7 r1 r1 10 r3 r3 r3 r3 11 r5 r5 r5 r5

0

State

3

4

5

6

7

8

9

10

11

id

s5

s5

s5

s5

Action

Action[i, \$] = "accept"

2

r4

r6

s6

r1

r3

r5

+

s7

r4

r6

s7

r3

r5

s4

s4

s4

s4

r2

r4

r6

s11

r1

r3

r5

acc

Ε

\$

r2

r4

r6

r1

r3

r5

**GOTO** 

2

9

F

3

3

3

10

Action[1, \$] = "accept"

If  $[S' \rightarrow S]$  is in  $I_i$ 



All empty entries are "error" case.

#### SLR parsing algorithm

- 1. Let a be the first symbol in w\$
- 2. Repeat
  - $\mathbf{a}$ . Let  $\mathbf{s}$  be the state on top of the stack
  - b. If Action[s, a] == s#t
    - i. Push t on to the stack
    - ii. Let a be the next symbol
  - c. Else if Action[s, a] == reduce  $A \rightarrow B$ 
    - i. Pop |B| symbols off the stack
    - ii. Push GOTO[t, A] on to the stack
    - iii. Output production  $A \rightarrow B$
  - d. Else if Action[s, a] == "accept"
    - i. Halt
  - e. Else
    - i. Error: Call error handler

#### **SLR** parsing

#### Input: id \* id + id

#### **Stack** 0 0.5 03 02 027 0275 0 2 7 10 0.2 0 1 0 1 6 0165 0 1 6 3 0169

0 1

#### **Symbol** id F T \* id T \* F Ε E + E + idE + FE + TΕ

```
Input
                               Action
  id * id + id $
                      Shift
     * id + id $
                      Reduce F \rightarrow id
     * id + id $
                      Reduce T \rightarrow F
     * id + id $
                      Shift
       id + id $
                      Shift
                      Reduce F \rightarrow id
          + id $
          + id $
                      Reduce T \rightarrow T * F
          + id $
                      Reduce E \rightarrow T
          + id $
                      Shift
            id $
                      Shift
                      Reduce F \rightarrow id
                      Reduce T \rightarrow F
                      Reduce E \rightarrow E + T
                      Accept
```

#### LR(0) Automation: Another example

Grammar G: 
$$S \rightarrow L = R \mid R$$
  
 $L \rightarrow *R \mid id$   
 $R \rightarrow I$ 

Construct SLR parser for the above grammar

$$I_{0}: S' \rightarrow .S$$

$$S \rightarrow .L = R$$

$$S \rightarrow .R$$

$$L \rightarrow .*R$$

$$L \rightarrow .id$$

$$R \rightarrow .L$$

$$I_{4}: S' \rightarrow S.$$

```
I_{2}: S \rightarrow L \cdot = R
R \rightarrow L \cdot
I_{3}: S \rightarrow R \cdot
I_{4}: L \rightarrow * \cdot R
R \rightarrow \cdot L
L \rightarrow \cdot * R
L \rightarrow \cdot id
```



Parsing table entry for state 2

Action[2, =] = "shift 6" or "reduce  $R \rightarrow L$ "?

 $L \rightarrow *R$ .

 $R \rightarrow L$ .

 $S \rightarrow L = R$ .

#### SLR(1) grammar

- If any cell in the parsing table has multiple entries, then
  - Grammar is not SLR(1) or LR(0)

#### Grammar G:

$$S \rightarrow L = R \mid R$$
  
 $L \rightarrow *R \mid id$   
 $R \rightarrow L$ 



- Every SLR(1) grammar is unambiguous.
- But, there are many unambiguous grammar that are not SLR(1)

#### LR(0) Automation: Another example - 2

Grammar G:  $S \rightarrow AaAb \mid BbBa$   $A \rightarrow \varepsilon$  $B \rightarrow \varepsilon$ 

Construct SLR parser for the above grammar



Follow(A) = 
$$\{a, b\}$$
  
Follow(B) =  $\{a, b\}$