

Title: Targeted Delivery of Informational Content with Privacy Protection Inventor: Juels
Serial No. Not yet assigned
Atty Docket No. RSA-044 (7216/66)
Atty/Agent: Ira V. Heffan
Express Mail Mailing Label No. EL750476114US



FIGURE 2

Title: Targeted Delivery of Informational Content with

Privacy Protection Inventor: Juels

Serial No. Not yet assigned Atty Docket No. RSA-044 (7216/66)

Atty/Agent: Ira V. Heffan

Express Mail Mailing Label No. EL750476114US



**STEP 31** 

$$C_i$$
 computes  $r_i = f(P_{Ci})$ 

**STEP 32** 

$$C_i \xrightarrow{r_i} A$$

**STEP 33** 

**STEP 34** 

$$C_i \leftarrow A$$

**STEP 35** 

Title: Targeted Delivery of Informational Content with Privacy Protection Inventor: Juels Serial No. Not yet assigned Atty Docket No. RSA-044 (7216/66)





**PS** 

**STEP 41** 

**STEP 42** 

**STEP 43** 

$$C_1$$
 computes  $r_1 = f(P_{C1})$   
 $C_2$  computes  $r_2 = f(P_{C2})$ 

 $C_2$  computes  $r_2 = f(P_{C2})$ 

 $C_3$  computes  $r_3 = f(P_{C3})$ 

$$C_1 \xrightarrow{r_1} PS$$

 $\mathbf{r_3}$  . **PS** 

$$(x_1, r_1) (x_2, r_2) (x_3, r_3)$$
PS \_\_\_\_\_\_\_ A STEP 44

r<sub>i</sub> causes A to select ad<sub>ri</sub>

**STEP 45** 

$$(x_1, ad_1) (x_2, ad_2) (x_3, ad_3)$$
PS  $\longrightarrow$  A STEP 46

$$C_1, C_2, C_3 \stackrel{ad_i}{\longleftarrow} PS$$
 STEP 47

P In S A

Title: Targeted Delivery of Informational Content with # Privacy Protection Inventor: Juels

Serial No. Not yet assigned Atty Docket No. RSA-044 (7216/66)

Atty/Agent: Ira V. Heffan Express Mail Mailing Label No. EL750476114US



f

**STEP 51** 

$$C_1, C_2, C_3 \leftarrow$$

**STEP 52** 

$$C_1$$
 computes  $r_1 = f(P_{C1})$  and encrypts  $E_y[r_1]$   
 $C_2$  computes  $r_2 = f(P_{C2})$  and encrypts  $E_y[r_2]$   
 $C_3$  computes  $r_3 = f(P_{C3})$  and encrypts  $E_y[r_3]$ 

**STEP 53** 

$$C_{1} \xrightarrow{\{E_{y}[r_{1}], x_{1}\}} BB$$

$$C_{2} \xrightarrow{\{E_{y}[r_{2}], x_{2}\}} BB$$

$$C_{3} \xrightarrow{\{E_{y}[r_{3}], x_{3}\}} BB$$

**STEP 54** 

Servers collect 
$$V_1 = \{ E_y[r_i], x_i \}_{i=1}^k$$

**STEP 55** 

Servers mix  $V_1$  by random secret permutation  $\sigma_1$ to obtain  $V_2 = \{r_1(t), F_1(\sigma_1(t))\}^{k}$ 

to obtain 
$$V_2 = \{r_{\sigma l}(i), E_y[\sigma_1(i)]\}$$
 $i = 1$ 

**STEP 56** 

Servers replace each  $r_j$  in  $V_2$  with  $ad_{r_j}$ 

to obtain 
$$V'_2 = \{ad_r, E_y[\sigma_1(i)]\}_{i=1}^k$$

**STEP 57** 

Servers mix  $V_2$  by random secret permutation  $\sigma_2$ 

to obtain 
$$V_3 = \{(E_y[ad_{\sigma_2(i)}], \sigma_2(i)\}_{i=1}^k$$

**STEP 58** 

Servers apply quorum controlled asymmetric proxy re-encryption

to obtain 
$$V_4 = (E_{yci}[ad_{ri}], i)_{i=1}^k$$

STEP 59

$$C_1, C_2, C_3 \longleftarrow A$$

**STEP 60** 

C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub> decrypt E<sub>yci</sub>[ad<sub>ri</sub>] to receive ad<sub>ri</sub>

FIGURE 5

Title: Targeted Delivery of Informational Content with Privacy Protection Inventor: Juels

Serial No. Not yet assigned y Docket No. RSA-044 (7216/66)

My/Agent: Ira V. Heffan Express Mail Mailing Label No. EL750476114US

f

| STEP 61 | C - A                                                                                                                     |
|---------|---------------------------------------------------------------------------------------------------------------------------|
| STEP 62 | C computes $r = f(P)$ and encrypts $E_y[r]$                                                                               |
| STEP 63 | $C \xrightarrow{E_y[r_1]} BB$                                                                                             |
| STEP 64 | Servers encrypt $ad_i$ to generate $U_1 = \{(j, E_y[ad_j])\}_{j=1}^n$                                                     |
| STEP 65 | Servers mix $U_1$ by random secret permutation $\sigma$ to obtain $U_2 = (E_y[\sigma(j)], E_y[ad_{\sigma(j)}])^n_{j=1}$   |
| STEP 66 | Servers perform a distributed plaintext equality test to find $E_y[j] \sim E_y[r]$ and obtain $U_3 = (E_y[r], E_y[ad_r])$ |
| STEP 67 | Servers apply quorum controlled asymmetric proxy re-encryption to obtain $E_{\text{yci}}[ad_r]$                           |
| STEP 68 | $\mathbf{C} \leftarrow \mathbf{E}_{yci}[ad_r]$                                                                            |

 ${f C}$  decrypts  $E_{yci}[ad_r]$  to receive  $ad_r$ 

## FIGURE 6

**STEP 69**