



# Conception Avancée de Bases de Données



TP Hash Join Linear Probing



#### Travail à faire

- Ecrire un programme C utilisant uniquement 3 "tableaux" R,S,RS, qui réalise une jointure par hachage.
  - R,S du TP1
  - Hachage de R et SeqScan de S.
    - Créer une librairie HashLinearProbing.
      - Qui réalise le hachage des valeurs d'un tableau d'entrée.





## R hash table Build phase





#### Hash(i, R(i))

R





**Hash Table** 



#### Hash Join





OutPut ( S.Read(4) )

#### Hash Join





## Hash join R S





- R is stored in the R hash table :
  - Join Attribute is the Hash Key,
    - Y= Key,
  - The RID is the value
    - RID = Value





- Seq scan on S
  - For each record of S we use the Join Attribute as the probe key in R hash table
    - If S Join Attribute probe is not null then output the value into RS.

## HashLinearProbing

- Variables internes
  - Int M: nombre de buckets
  - "Tableau" keys de taille M
  - "Tableau" values de taille M
- Fonction interne
  - hash(key) qui renvoi le "hash code" de key modulo M.
- Fonctions Publiques
  - put (key,value)
  - get (key)
  - remove (key)







### Testes de HashLinearProbing

- Tester avec le jeu de données du cours Rhash (Moodle).
- Put()de la table R complète
- Get() de tous les éléments

- Clefs absentes
  - Tester la recherche d'une "Key" absente dans la table de hachage.
  - Tester la suppression d'une "Key" absente.



# Rhash pour les tests de la table de hash.



В 0 Ε P Χ Ν K M

## Principe de livraison (soumission) Version Makefile

- Bundle au format ZIP (pas de .rar ni .7z)
  - Nom du ZIP : NomPrénomTPXY.zip
- Bundle compatible Mac OS, Windows, Linux
- Créer une soummission :
  - Nom de la soumission : NomPrénomTPXY
- Soumettre le ZIP sur Moodle

# Principe de livraison (soumission) Version Eclipse

- Créer un projet eclipse CDT :
  - Nom du projet : NomPrénomTPXY
  - C.
- 2. Insérer dans chaque fichier un entête
- Exporter le projet au format ZIP (pas de .rar ni .7z)
  - Nom du ZIP : NomPrénomTPXY.zip
- 3. Créer une soummission:
  - Nom de la soumission : NomPrénomTPXY
- 4. Soumettre le ZIP sur Moodle

## Nommage soumission et projet eclipse



- Important
  - Le Nom du projet,
  - Le nom du zip (pas de .rar ni .7z),
  - Le nom de la soumission
- doivent commencer par votre nom et prénom puis numéro de TP, sans blancs :
  - FuchsEmmanuelTP1

Ne pas oublier le cartouche (en tête, header)

## Cartouche (header) des fichiers sources



```
/**
* TP n°:
* Titre du TP:
*
* Date:
*
* Nom :
* Prenom:
*
* email:
*
* Remarques:
```

## Projet Eclipse





## Projet Eclipse, header









### Création de la soumission



### Création de la soumission











## Faire un test d'import



- Vérifier les chemins de fichiers.
  - Fichiers en entrée : R.txt S.txt
  - Fichier en sortie : RS.txt
- Les fichiers R, S doivent se trouver dans le projet eclipse donc dans le ZIP livré.
- Le fichier RS doit être réinitialisé à chaque execution.

Attention grosse source de défaut.

Import 1

Switch workspace Then:





## Import 2



