Objetivos de aprendizaje Tema 13

Análisis Matemático II

Javier Gómez López

17 de junio de 2022

- 1. Conocer y comprender el enunciado de los siguientes resultados, así como la forma en que se usan en la práctica:
 - a) Teorema de Tonelli, con especial atención al caso particular de una función característica.

En lo que sigue, fijamos $p, q \in \mathbb{N}$, para tomar N = p + q. Sea Z un conjunto no vacío arbitrario, aunque sólo usaremos $Z = \mathbb{R}$ y $Z = [0, \infty]$. Dada una función $f : \mathbb{R}^N \to Z$, para cada $x \in \mathbb{R}^p$ definimos una función $f_x : \mathbb{R}^q \to Z$ escribiendo

$$f_x(y) = f(x, y) \qquad \forall y \in \mathbb{R}^q$$

Suele decirse que f_x es la **sección vertical** de f en el punto x. Análogamente, fijado $y \in \mathbb{R}^q$, definimos la **sección horizontal** de f en el punto y, que es la función $f^y : \mathbb{R}^p \to Z$ dada por

$$f^y(x) = f(x, y) \qquad \forall x \in \mathbb{R}^p$$

Enunciamos ahora el teorema buscado:

Teorema (Tonelli). Si $f: \mathbb{R}^N \to [0, \infty]$ es una función medible positiva, se tiene:

- (i) La función f_x es medible p.c.t $x \in \mathbb{R}^p$, y anáogamente, f^Y es medible p.c.t $y \in \mathbb{R}^q$
- (ii) Las función φ y Ψ , definidas c.p.d en \mathbb{R}^p y \mathbb{R}^q respectivamente, por

$$\varphi(x) = \int_{\mathbb{R}^q} f(x, y) dy \quad p.c.t \quad x \in \mathbb{R}^p \qquad y \qquad \Psi(y) = \int \mathbb{R}^p f(x, y) dx \quad p.c.t \quad y \in \mathbb{R}^q$$

son medibles y verifican que:

$$\int_{\mathbb{R}^N} f(x,y)d(x,y) = \int_{\mathbb{R}^p} \varphi(x)dx = \int_{\mathbb{R}^q} \Psi(y)dy$$

Estudiemos ahora el caso en el que trabajemos con una función característica. Dado un conjunto $E \subset \mathbb{R}^N$, pensemos ahora lo que debe ocurrir para que se tenga que $\chi_E \in \mathcal{F}$, donde \mathcal{F} es la familia de las funciones que cumples las dos condiciones del teorema de Tonelli. Fijado $x \in \mathbb{R}^p$, la sección vertical $(\chi_E)_x$ es la función característica del conjunto dado por

$$E_x = \{ y \in \mathbb{R}^q : (x, y) \in E \} \subset \mathbb{R}^q$$

Es natural decir que E_x es la **sección vertical** de E en el punto x. Análogamente, dado $y \in \mathbb{R}^q$, la **sección horizontal** de E en el punto y es el conjunto $E^y = \{x \in \mathbb{R}^p : (x,y) \in E\} \subset \mathbb{R}^p$. Reenunciemos ahora el teorema:

Teorema. Para todo conjunto medible $E \subset \mathbb{R}^N$ se tiene:

- (i) La sección vertical $E_x \subset \mathbb{R}^q$ es medible p.c.t $x \in \mathbb{R}^p$ y la sección horizontal $E^y \subset \mathbb{R}^p$ es medible p.c.t $y \in \mathbb{R}^q$.
- (ii) Las funciones $x \mapsto \lambda_q(E_x)$ e $y \mapsto \lambda_p(E^y)$, definidas c.p.d en \mathbb{R}^p y \mathbb{R}^q respectivamente, son medibles y se verifica que

$$\lambda_N(E) = \int_{\mathbb{R}^p} \lambda_q(x) dx = \int_{\mathbb{R}^q} \lambda_p(E^y) dy$$

b) Teorema de Fubini

El teorema de Tonelli se utiliza principalmente como criterio de integrabilidad. Pero lo que ahora realmente nos interesa es comprobar que, supuesto que f sea integrable en \mathbb{R}^N , su integral pueda calcularse también usando sus integrales iteradas. Eso es precisamente lo que afirma el siguiente teorema:

Teorema (Fubini). Para toda función $f \in \mathcal{L}_1(\mathbb{R}^N \text{ se tiene:}$

- (i) $f_x \in \mathcal{L}_1(\mathbb{R}^q)$ p.c.t $x \in \mathbb{R}^p$ y $f^y \in \mathcal{L}_1(\mathbb{R}^p)$ p.c.t $y \in \mathbb{R}^q$
- (ii) Las funciones φ y Ψ , definidas c.p.d en \mathbb{R}^p y \mathbb{R}^q respectivamente, por

$$\varphi(x) = \int_{\mathbb{R}^q} f(x, y) dy \quad p.c.t \quad x \in \mathbb{R}^p \qquad y \qquad \Psi(y) = \int_{\mathbb{R}^p} f(x, y) dx \quad p.c.ty \in \mathbb{R}^q$$

verifican que $\varphi \in \mathcal{L}_1(\mathbb{R}^p)$ y $\Psi \in \mathcal{L}_1(\mathbb{R}^q)$ con:

$$\int_{\mathbb{R}^N} f(x,y)d(x,y) = \int_{\mathbb{R}^p} \varphi(x)dx = \int_{\mathbb{R}^q} \Psi(y)dy$$