# Module 07 - Maximal Flow





### **Model Formulation**

Write the formulation of the model into here prior to implementing it in your Excel model. Be explicit with the definition of the decision variables, objective function, and constraints.

MAX: X70 Subject to:

- +X70-X01-X02-X03=0
- +X01+X41-X13=0
- +X02-X24-X26-X27=0
- +X03+X13+X43-X6=0
- +X24-X41-X43-X46-X47=0
- +X25-X57=0
- +X26+X36+X46-X67=0
- +X47+X57+X67-X70=0

#### **Nonnegativity Constraints**

Xi >= 0

## **Model Optimized for Maximal Flow**

Implement your formulation into Excel and be sure to make it neat. This section should include:

|          | Maximal Flo            | ow -> 54               | 1     |                        |        |         |          |          |
|----------|------------------------|------------------------|-------|------------------------|--------|---------|----------|----------|
| Units of | Li                     | inks                   | Upper |                        |        |         |          | Supply / |
| Flow     | From                   | То                     | Bound | Nodes                  | Inflow | Outflow | Net Flow | Demand   |
| 0        | 0 Caramel Corn Caverns | 1 Gummy Grotto         | 498   | 0 Caramel Corn Caverns | 541    | 541     | 0        | 0        |
| 288      | 0 Caramel Corn Caverns | 2 Hazelnut Haven       | 288   | 1 Gummy Grotto         | 0      | 0       | 0        | 0        |
| 253      | 0 Caramel Corn Caverns | 3 Jelly River Delta    | 429   | 2 Hazelnut Haven       | 288    | 288     | 0        | 0        |
| 0        | 1 Gummy Grotto         | 3 Jelly River Delta    | 121   | 3 Jelly River Delta    | 253    | 253     | 0        | 0        |
| 163      | 2 Hazelnut Haven       | 4 Praline Park         | 163   | 4 Praline Park         | 163    | 163     | 0        | 0        |
| 125      | 2 Hazelnut Haven       | 5 Sherbet Shoreline    | 168   | 5 Sherbet Shoreline    | 125    | 125     | 0        | 0        |
| 0        | 2 Hazelnut Haven       | 6 Toffee Town          | 167   | 6 Toffee Town          | 269    | 269     | 0        | 0        |
| 253      | 3 Jelly River Delta    | 6 Toffee Town          | 253   | 7 Twizzler Tunnels     | 541    | 541     | 0        | 0        |
| 147      | 4 Praline Park         | 7 Twizzler Tunnels     | 400   |                        |        |         |          |          |
| 0        | 4 Praline Park         | 1 Gummy Grotto         | 175   |                        |        |         |          |          |
| 0        | 4 Praline Park         | 3 Jelly River Delta    | 72    |                        |        |         |          |          |
| 16       | 4 Praline Park         | 6 Toffee Town          | 59    |                        |        |         |          |          |
| 125      | 5 Sherbet Shoreline    | 7 Twizzler Tunnels     | 147   |                        |        |         |          |          |
| 269      | 6 Toffee Town          | 7 Twizzler Tunnels     | 269   |                        |        |         |          |          |
| 541      | 7 Twizzler Tunnels     | 0 Caramel Corn Caverns | 99999 |                        |        |         |          |          |

# **Model with Stipulation**

Please copy the tab of your original model before continuing with the next part to avoid messing up your original solution.

| Units of |                        | Links                  | Upper |
|----------|------------------------|------------------------|-------|
| Flow     | From                   | То                     | Bound |
| 0        | 0 Caramel Corn Caverns | 1 Gummy Grotto         | 498   |
| 288      | 0 Caramel Corn Caverns | 2 Hazelnut Haven       | 288   |
| 253      | 0 Caramel Corn Caverns | 3 Jelly River Delta    | 429   |
| 0        | 1 Gummy Grotto         | 3 Jelly River Delta    | 121   |
| 163      | 2 Hazelnut Haven       | 4 Praline Park         | 163   |
| 125      | 2 Hazelnut Haven       | 5 Sherbet Shoreline    | 168   |
| 0        | 2 Hazelnut Haven       | 6 Toffee Town          | 167   |
| 253      | 3 Jelly River Delta    | 6 Toffee Town          | 253   |
| 147      | 4 Praline Park         | 7 Twizzler Tunnels     | 400   |
| 0        | 4 Praline Park         | 1 Gummy Grotto         | 175   |
| 0        | 4 Praline Park         | 3 Jelly River Delta    | 72    |
| 16       | 4 Praline Park         | 6 Toffee Town          | 59    |
| 125      | 5 Sherbet Shoreline    | 7 Twizzler Tunnels     | 147   |
| 269      | 6 Toffee Town          | 7 Twizzler Tunnels     | 269   |
| 541      | 7 Twizzler Tunnels     | 0 Caramel Corn Caverns | 99999 |

The model is recommending the amount of units that should travel between different locations to maximize units that can flow through network. All networks highlighted in green are bottlenecks because you can't increase units of flow because they are already at capacity. To increase optimal solution you'd have to increase capacity of green highlighted to maximize after you get red maximized.

- · Using a copy of the network, show how many units pass through each edge
- Identify the edges that are underutilized and those that are at capacity with different colors (you can also color the nodes RED for underutilized and GREEN for at capacity)
  - An edges is underutilized if edges go to it that aren't at capacity
  - An edges is at capacity when it has edges that are at capacity (especially if they are all at capacity)
- · Write a brief statement on what would help increase the optimal solution