

D-A05907;



# TOXICOLOGICAL TESTING OF SELECTED HAZARDOUS MATERIALS FOR TRANSPORTATION PURPOSES

K.C. Back
A.A. Thomas
J.D. MacEwen



APRIL 1976
INTERIM REPORT



U.S. DEPARTMENT OF TRANSPORTATION

Materials Transportation Bureau

Office of Hazardous Materials Operations

Washington, D.C. 20590

#### NOTICE

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

#### Technical Report Documentation Page

|                                                                                                                                                                |                                                           | T = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1. Report No.                                                                                                                                                  | 2 Government Accession No.                                | 3. Recipient's Catalog I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No               |
| DOT/MTB/OHMO-76/3                                                                                                                                              |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| 4. Title and Subtitle                                                                                                                                          |                                                           | 5. Report Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Toxicological Testing of Se                                                                                                                                    |                                                           | April 1976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                |
| for Transportation Purposes                                                                                                                                    | •                                                         | 6 Performing Organizat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion Code         |
|                                                                                                                                                                |                                                           | 8. Performing Organizati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion Repart No    |
| 7 Author s)                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| K. C. Back, A. A. Thomas and                                                                                                                                   |                                                           | AMRL-TR-78-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| 9. Performing Organ sation Name and Address 6570th Aerospace Medical Res                                                                                       |                                                           | 10 Work Unit No TRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15)              |
| Wright-Patterson AFB, Ohio 4                                                                                                                                   | 5433 (*Toxic Hazards Resear                               | CHI Contract or Grant No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.               |
| Unit, Dept. of Community and                                                                                                                                   | Environmental Medicine,                                   | DOT-AS-40079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| University of Calif., Irvine                                                                                                                                   | a contractor to the Air                                   | 13 Type of Report and :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Period Covered   |
| 12. Spansoring Agency Name and Address                                                                                                                         | Force                                                     | Interim Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| Office of Hazardous Material<br>Materials Transportation Bur                                                                                                   |                                                           | July 1974-Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h 1976           |
| Transportation, Washington,                                                                                                                                    | •                                                         | 14. Sponsoring Agency C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tode             |
| 15. Supplementary Notes                                                                                                                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| 16. Abstract                                                                                                                                                   |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| prescribed for classificatio Hazardous Materials regulati for skin corrosivity. Aqueo bases were tested to establi concentrations.  Test results are reported. | ons. Some of these materia<br>us solutions of several com | ls were also examon inorganic ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mined<br>ids and |
|                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                | THE PLAN FOR                                              | NTIS White Section COUNTY STATES OF COUNTY OF | 1<br>1<br>1<br>1 |
| 17. Key Words Hazardous materia                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                |
| portation, Toxicological tes                                                                                                                                   | ·                                                         | available to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| corrosion, dermal toxicity,                                                                                                                                    |                                                           | National Technica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| toxicity, oral toxicity.                                                                                                                                       | mation Servi                                              | ce, Springfield,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Va. 22151        |
|                                                                                                                                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|                                                                                                                                                                | I I                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| 19. Security Classif, (of this report)                                                                                                                         | 20. Security Classif, (of this page)                      | 21. No. of Pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22. Price        |
| 19. Security Classif. (of this report) Unclassified                                                                                                            | 20. Security Classif. (of this page) Unclassified         | 21. No. of Pages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22. Price        |

Form DOT F 1700.7 (8:72)

Reproduction of completed page authorized

# TOXICOLOGICAL TESTING OF SELECTED HAZARDOUS MATERIALS FOR TRANSPORTATION PURPOSES

A series of acute toxicity studies were conducted on industrial chemicals under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory. These studies were conducted by the Toxic Hazards Research Unit of the Department of Community and Environmental Medicine of the University of California, Irvine. The information obtained in these studies was used to classify these compounds into categories which might help define shipping and handling requirements related to the acute toxicity hazard associated with each chemical compound. The materials were classified according to a system described in Department of Transportation Report No. TES-20-72-3. The classification system used is shown below:

|                                              | Extremely Toxic                                         | Highly Toxic                                 | Toxic                                               |
|----------------------------------------------|---------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|
| Inhalation, 1 Hour<br>LC 50                  | 500 mg/m <sup>3</sup><br>or less<br>(50 ppm or<br>less) | >500-2000 mg/m <sup>3</sup><br>(>50-200 ppm) | >2000 -200,000 mg/m <sup>3</sup> (>200 -20,000 ppm) |
| Oral, 14-Day Single<br>Dose LC 50            | 5 mg/Kg<br>orless                                       | >5-50 mg/Kg                                  | >50-5000 mg/Kg                                      |
| Skin Absorption<br>(Dermal) LD <sub>50</sub> | 20 mg/Kg<br>orless                                      | <b>&gt;20-2</b> 00 mg/Kg                     | <b>&gt;2</b> 00 -20,000 mg/Kg                       |

Since the new classifications were based solely on acute toxicity, all forms of a material (concentrates, solutions, mixtures, etc.) have been assigned to the same toxicity categories regardless of concentration of the active ingredients. No consideration was given to hazard potential of the materials reclassified. For purposes of uniformity all inhalation toxicity data was converted to  $mg/m^2$  if given in other units of measurement. These values may be converted to parts per million by use of the following formula:

$$\rho pm = \frac{24.50 \text{ x mg/m}^3}{\text{mol. wt.}}$$

Conversion of units from  $mg/m^3$  to ppm may, in certain instances change the classification in which borderline compounds may fall. In those instances where this happens the  $mg/m^3$  unit should take precedence.

Toxicity data sheets are presented in Appendix A for all compounds on which requested studies are complete. Each compound has been assigned a code number and the data are presented in numerical order using the coded system.

For a number of compounds the only determination requested by the Department of Transportation was skin corrosion which cannot be used for toxicity classification. Therefore, data sheets could not be prepared and the results of these studies are presented in Table 1 which include all material examined in this manner. The classification of the compounds studied is shown in Table 2. Information concerning the source, lot number and purity or grade of the individual compounds is given in Appendix B.

The test results reported herein are only for those materials actually tested and should not be assumed to represent all materials of the same generic name, because different raw materials and processing may result in variation as to purity of the substance and the nature of impurities.

Table 1. Corrosiveness of LOT Selected Compounds on Albino Rabbit Skin

| Code | Compound                    | 1     |   | 2 | 8 | + | rc | 9 | Result       |
|------|-----------------------------|-------|---|---|---|---|----|---|--------------|
| 107  | Perchloromethylmercaptan    |       | ၁ | 0 | O | 0 | 0  | 0 | Noncorrosive |
| 165  | Ethyl Chloroformate         |       | 0 | 0 | c | 0 | 0  | ı | Noncorrosive |
| 180  | Methyl (hloroformate        |       | 0 | 0 | С | 0 | 0  | i | Noncorrosive |
| 183  | Nitric Acid, Aq. Sol.       | 8%    | 0 | + | 0 | 0 | ၁  | + | Corrosive    |
|      | Nitric Acid, Aq. Sol.       | %9    | 0 | 0 | 0 | 0 | 0  |   | Noncorrosive |
|      | Nitric Acid, Aq. Sol.       | %+    | 0 | 0 | 0 | С | 0  | • | Noncorrosive |
| 251  | Phenol, Solid               |       | + | + | ı | ı | ı  | 1 | Corrosive    |
| 252  | Propionic Acid, Aq. Sol.    | 15%   | 0 | 0 | 0 | 0 | 0  | 1 | Noncorrosive |
|      | Propionic Acid. Aq. Sol.    | 1%    | 0 | 0 | 0 | 0 | 0  | 1 | Noncorrosive |
| 253  | Hydrochloric Acid. Solution | 20%   | + | + | ı | ì | ı  | i | Ccrrosive    |
|      | Hydrochloric Acid, Solution | 17%   | 0 | + | С | + | ì  | ı | (Arrosive    |
|      | Hydrochloric Acid, Solution | 15%   | + | 0 | ၁ | 0 | 0  | 0 | Noncorrosive |
|      | Hydrochloric Acid, Solution | 701   | 0 | ၁ | ၁ | 0 | 0  | 1 | Noncorrosive |
|      | Hydrocnloric Acid. Solution | 5%    | ၁ | 0 | 0 | 0 | 0  | 1 | Noncorrosive |
|      | Hydrochloric Acid, Solution | 1%    | 0 | 0 | 0 | ၁ | 0  | ı | Noncorrosive |
|      | Hydrochloric Acid. Solution | 0.1%  | 0 | ၁ | 0 | c | 0  | ı | Noncorrosive |
|      | Hydrochloric Acid, Solution | 0.01% | 5 | O | o | c | 0  | ŀ | Noncorrosive |

| ٥١ | Code | Compound                          |       | 1 | 2 | 3 | 4 | ıĊ | 9 | Result       |
|----|------|-----------------------------------|-------|---|---|---|---|----|---|--------------|
| 7  | 254  | Sodium Hydroxide, Solution        | 4%    | + | + | + | ၁ | i  | ı | Corrosive    |
|    |      | Sodium Hydroxide, Solution        | 2%    | + | 0 | 0 | + | +  | ì | Corrosive    |
|    |      | Sodium Hydroxide, Solution        | 1%    | 0 | 0 | 0 | 0 | 0  | 1 | Noncorrosive |
|    |      | Sodium Hydroxide, Solution        | 0.1%  | 0 | 0 | 0 | Э | 0  | I | Noncorrosive |
|    |      | Sodium Hydroxide, Solution        | 0.01% | 0 | 0 | 0 | 0 | 0  | 1 | Noncorrosive |
| 2  | 255  | Sulfuric Acid, Aq. Solution       | 4%    | 0 | 0 | 0 | 0 | 0  |   | Noncorrosive |
|    |      | Sulfuric Acid, Aq. Solution       | 0.1%  | 0 | 0 | 0 | 0 | ၁  | ı | Noncorrosive |
| 4  |      | Sulfuric Acid, Aq. Solution       | 0.01% | 0 | 0 | 0 | 0 | 0  | ı | Noncorrosive |
|    | 256  | Hydrofluoric Acid, Aq. Solution   | 4%    | 0 | 0 | 0 | 0 | O  | 1 | Noncorrosive |
|    |      | Hydrofluoric Acid, Aq. Solution   | 0.1%  | 0 | 0 | c | ၁ | 0  | 1 | Noncorrosive |
|    |      | Hydrofluoric Acid, Aq. Solution   | 0.01% | 0 | 0 | ၁ | 0 | 0  | ı | Noncorrosive |
| 2  | 258  | Cresol (Coal Tar)                 |       | + | + | 4 | , | ı  | ı | Corrosive    |
| 2  | 259  | Cresol (Petroleum)                |       | + | 0 | + | + | +  | + | Corrosive    |
| 7  | 260  | o-Cresol, Practical               |       | + | + | ι | ı | i  | ı | Corrosive    |
| 2  | 261  | m-Cresol, Practical               |       | + | + | i | ı | ı  | 1 | Corrosive    |
| 2  | 262  | p-Cresol, Practical               |       | + | + | ì | i | 1  | ı | Corrosive    |
| 2  | 263  | Sodium Trichloro-s-triazinetrione |       | 0 | 0 | 0 | 0 | 0  | ı | Noncorrosive |

| Code | ge<br>Je | Compound                          |     | - | 2 | 8 | 4 | ις | 9 | Result        |
|------|----------|-----------------------------------|-----|---|---|---|---|----|---|---------------|
| 264  | 4        | Fumaric Acid                      |     | 0 | 0 | 0 | 0 | ၁  | ı | Noncorrosive  |
| 265  | ıδ       | Maleic Anhydride                  |     | + | 0 | + | + | i  | ı | Corrosive     |
| 266  | 9        | Ammonium Hydroxide                | 20% | + | + | I | 1 | ı  | 1 | Corrosive     |
|      |          | Ammonium Hydroxide                | 15% | 0 | + | 0 | 0 | 0  | + | Corrosive     |
|      |          | Ammonium Hydroxide                | 12% | + | + | 1 | ı | ı  | 1 | Corrosive     |
|      |          | Ammonium Hydroxide                | 10% | 0 | C |   | 0 | Ü  | C | Non-corrosive |
|      |          | Ammonium Hydroxide                | 5%  | 0 | 0 | 0 | 0 | 0  | ı | Noncorrosive  |
| 5    |          | Ammonium Hydroxide                | 1%  | 0 | 0 | 0 | 0 | 0  | ı | Noncorrosive  |
| 267  | 25       | Oxalic Acid                       | 2%  | 0 | 0 | 0 | 0 | 0  | , | Noncorrosive  |
| 268  | <u>8</u> | Sodium Sulfide, Aq. Solution      | 36% | + | + | 1 | ı | ı  | ı | Corrosive     |
| 269  | 69       | Sodium Sulfhydrate, Aq. Solution  | 45% | + | + | ı | ı | ı  | ı | Corrosive     |
| 270  | 0.       | 3-Methylbutyric Acid              |     | 0 | 0 | 0 | 0 | 0  | i | Noncorrosive  |
| 271  | 1        | Tris-2-Hydroxyethylisocyanurate   |     | 0 | 0 | 0 | O | 0  | 0 | Noncorrosive  |
| 273  | 73       | p-Cresol, 98+% (Sherwin-Williams) |     | + | + | 1 | 1 | ı  | ı | Corrosive     |
| 274  | 4        | Potassium Hydroxide, Aq. Solution | 4%  | + | + | 1 | ı | 1  | 1 | Corrosive     |
|      |          | Potassium Hydroxide, Aq. Solution | 2%  | + | + | ı | ı | 1  | 1 | Corrosive     |
|      |          | Potassium Hydroxide, Aq. Solution | 1%  | 0 | 0 | 0 | 0 | 0  | 0 | Noncorrosive  |

| Code   | Compound                                                |      | - | 2 | m | 4 | 10 | 9 | Result       |
|--------|---------------------------------------------------------|------|---|---|---|---|----|---|--------------|
| 275    | Acetic Acid, Aq. Solution                               | 100% | 0 | 0 | 0 | 0 | 0  |   | Noncorrosive |
|        | Acetic Acid, Aq. Solution                               | %08  | 0 | O | 0 | 0 | 0  |   | Noncorrosive |
|        | Acetic Acid, Aq. Solution                               | 40%  | 0 | 0 | 0 | ၁ | 0  |   | Noncorrosive |
|        | Acetic Acid, Aq. Solution                               | 20%  | 0 | 0 | 0 | 0 | 0  |   | Noncorrosive |
| 286 -a | Carburetor Cleaner 'Pennzoil Gumout"                    |      | 0 | 0 | c | 0 | 0  |   | Noncorrosive |
| 286 -b | Carburetor Cleaner "DuPont No. 7<br>Carburetor Cleaner" |      | 0 | 0 | 0 | 0 | 0  |   | Noncorrosive |
| 286-с  | Carburetor Cleaner "Berryman B-12<br>Chemtool"          |      | 0 | 0 | 0 | 0 | 0  |   | Noncorrosive |
| 288    | Chromic Nitrate                                         |      | 0 | 0 | c | 0 | 0  |   | Noncorrosive |
| 284    | Calcium Chromate                                        |      | 0 | 0 | 0 | 0 | 0  |   | Noncorrosive |

+ = Caused visible destruction or irreversible alteration in skin tissue after 4 hours contact.

o = Did not cause visible destruction or irreversible alteration in skin tissue after 4 hours contact.

<sup>- =</sup> Not tested, a positive of 2/6 or 0/5 has already been produced.

Table 2. Classification of Compounds Based on Acute Toxicity Tests

| Code<br>Number | Compound ,                        | Toxicity<br>Classification |
|----------------|-----------------------------------|----------------------------|
| 107            | Perchloromethylmercaptan          | Extremely Toxic            |
| 143            | Boron Trichloride                 | Toxic                      |
| 144            | Boron Trifluoride                 | Highly Toxic               |
| 165            | Ethyl Chloroformate               | Highly Toxic               |
| 170            | Hexamethylene Diamine             | Toxic                      |
| 180            | Methyl Chloroformate              | Highly Toxic               |
| 248            | n-Butyl Acrylate                  | Below Toxic                |
| 249            | Methyl Acrylate                   | Below Toxic                |
| 250            | Monoethanolamine                  | Toxic                      |
| 251            | Phenol (Solid)                    | Toxic                      |
| 257            | Ethyl Mercaptan                   | Below Toxic                |
| 258            | Cresol (Coal Tar)                 | Toxic                      |
| 259            | Cresol (Petroleum)                | Toxic                      |
| 260            | o-Cresol                          | Toxic                      |
| 261            | m-Cresol                          | Toxic                      |
| 262            | p-Cresol                          | Toxic                      |
| 263            | Sodium Trichloro-s-Triazinetrione | Toxic                      |
| 264            | Fumaric Acid                      | Below Toxic                |
| 265            | Maleic Anhydride                  | Toxic                      |
| <b>2</b> 67    | Oxalic Acid, 5%                   | Toxic                      |
| 270            | 3-Methylbutyric Acid              | Toxic                      |
| 271            | Tris-2-Hydroxyethylisocyanurate   | Toxic                      |
| 273            | p-Cresol (Sherwin Williams)       | Highly Toxic               |
| 285            | Nitrogen Trifluoride              | Toxic                      |
| 287            | Phosphotungstic Acid              | Toxic                      |
| 291            | Silicon Tet-afluoride             | Toxic                      |

APPENDIX A
DATA SHEETS

COMPOUND: PERCHLOROMETHYLMERCAPTAN CODE: 107

CLASSIFICATION: EXTREMELY TOXIC

#### INFIAL ATTON TOXICITY

| 1.11               | IALA LION           | TOARCHT       |      |
|--------------------|---------------------|---------------|------|
| SPECIES            | CONC.               | SYS. **       | REF. |
| Man                |                     | -             |      |
| male<br>Rat female | 84 (11)<br>122 (16) | 1-Hr.<br>LC50 |      |
| Mouse              |                     |               |      |
| Log                |                     | <del></del>   |      |
| Monkey             |                     | <del></del>   |      |
| Other              |                     |               |      |
|                    |                     |               |      |
|                    |                     |               |      |

#### ORAL TOXICITY

| SPUCIES    | DOSL*** | SYS. ** | RLF |
|------------|---------|---------|-----|
| Man        |         |         |     |
| Rat        |         |         |     |
| Mouse      |         |         |     |
| Dog        |         |         |     |
| Monkey     |         |         |     |
| Cot        |         |         |     |
| Guinea Pig |         |         |     |
| Other      |         |         |     |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES       | ROUTE  | DOSE*** | SYS. ** RE1  | ·. |
|---------------|--------|---------|--------------|----|
| . Rabbit      | Dermal | 1782    | LD50 -       |    |
| Rabbit        | Dermal | -       | Noncorrosive |    |
| S             |        |         |              |    |
| ·             |        |         |              | _  |
| ·             |        |         |              |    |
| ' <del></del> |        |         |              |    |

\* Concentration in  $mg/M^3$ . Parenthetical values are ppm. 
\*\* System for expression of toxicity 
\*\*\*Dose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat 1-Hour LC50: Male = 84 mg/m<sup>3</sup>
95% confidence limits (74-97) or 11 ppm
10-13 ppm

Female = 122 mg/m<sup>3</sup> 95% confidence limits (99-168) or 16 ppm 18-22 ppm

Rabbit 14-Day Dermal LD<sub>50</sub>: 1782 mg/kg (24 Hour Skin Contact) 95% confidence limits (938-3384)

Perchloromethylmercaptan was found to be noncorrosive to intact rabbit skin.

Data fall in "Extremely Toxic" category.

ACUTE INHALATION TOXICITY OF PERCHLOROMETHYLMERCAPTAN TO RATS

| Ma    | ile             | Fem        | ale             |
|-------|-----------------|------------|-----------------|
| ppm   | Mortality Ratio | ppm        | Mortality Ratio |
| 16. 9 | 5/5             | <b>4</b> 3 | 5 5             |
| 14.0  | 3, 5            | 31         | 5.5             |
| 11.2  | 4,5             | 28         | 4.5             |
| 10.8  | 2/5             | 20         | <b>2</b> × 5    |
| 9.0   | 1/5             | 16         | 3,5             |
| 7.0   | 0/5             | 10         | 1 / 5           |

#### ACUTE DERMAL TOXICITY OF PERCHLOROMETHYLMERCAPTAN TO RABBITS

| Dose (mg/kg) | Mortality Ratio |
|--------------|-----------------|
| 2000         | 2/3             |
| 1000         | 1/3             |
| 500          | 0/3             |

COMPOUND: BORON TRICHLORIDE

CODE: 143

CLASSIFICATION. TOXIC

#### INHAL ATON TOXICTTY

| INI                        | IAL.AHON 4                   | CONTCLEY       |      |
|----------------------------|------------------------------|----------------|------|
| SPECIES                    | CONC. *                      | SYS. **        | REF. |
| Vlan<br>male<br>Rat female | 12,197(2541)<br>21,266(4418) | l-Hr.<br>L.C50 |      |
| Mouse                      |                              |                |      |
| Dog                        |                              |                |      |
| Monkey                     |                              |                |      |
| :<br>Other<br>}            |                              |                |      |
|                            |                              |                |      |
|                            |                              |                |      |
|                            |                              |                |      |

#### ORAL TOXICITY

| SPECILS   | DOSE***     | SYS. **     | REF         |  |  |
|-----------|-------------|-------------|-------------|--|--|
| Man       | <del></del> |             |             |  |  |
| Rat       |             |             |             |  |  |
| Mouse     |             | <del></del> | <del></del> |  |  |
| Dog       |             |             |             |  |  |
| Monkey    |             |             |             |  |  |
| Cat       |             |             |             |  |  |
| Gumea Pig |             | <del></del> |             |  |  |
| Other     |             |             |             |  |  |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE | DOSE | SYS.        | REF.          |
|----------|-------|------|-------------|---------------|
| 1.       |       |      |             |               |
| 2        |       |      |             |               |
| 3.<br>4. |       |      |             |               |
| 5.       |       |      |             |               |
| lo. ———  |       |      | <del></del> | - <del></del> |

\* Concentration in  $mg/M^3$ . Parenthetical values are ppm. 
\*\* System for expression of toxicity 
\*\*\*Dose in mg/kg

1 -4

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat 1-Hour LC<sub>50</sub>:

Female: 21, 266 mg/m $^3$  % confidence limits (18, 880-23, 750) or 4418 ppm 3940-4953 ppm.

Data fall in "Toxic" category.

#### ACUTE INHALATION TOXICITY OF BORON TRICHLORIDE TO RATS

| 3     | Male            | Fe            | male            |
|-------|-----------------|---------------|-----------------|
| ppm   | Mortality Ratio | ppm           | Mortality Ratio |
| 3742  | 5 5             | 5 <b>2</b> 01 | 4 5             |
| 37.17 | 4 5             | <b>4</b> 370  | 3 5             |
| 3019  | 4 5             | 4092          | 0 5             |
| 262~  | 5 5             | 3792          | 2 5             |
| 2270  | 1 5             | 3443          | 1 5             |
| 2032  | 1 5             | 2844          | 0 5             |

CODE: 144

| CLASSIFICATION. HIGHLY T                                   | LOXIC                  |
|------------------------------------------------------------|------------------------|
| INHAL VHON TOXICTLY                                        | ORAL TOXICITY          |
| SPECIFS CONC. SYS. ** REF.                                 | SPECIES DOSE SYS. REF. |
| Man<br>male 1076(387) 1-Hour<br>Rat female 1034(371) 1.C50 | Man Rat                |
| Mouse                                                      | Mouse                  |
| Dog                                                        | Dog                    |
| Monkey                                                     | Monkey                 |
| Cther                                                      | Cat                    |
|                                                            | Guinea Pig             |
|                                                            | Other                  |

| 1   |   |
|-----|---|
| į.  |   |
| 1.  |   |
| ! ! | • |
| ١.  |   |
| Ι'  |   |
|     |   |

OTHER ROUTES OF ADMINISTRATION

DOSE\*

SYS. \*

REF.

\* Concentration in  $mg/M^3$ . Parenthetical values are ppm. \* System for expression of toxicity \*\*\*Dose in mg/Kg A-6

ROUTE

SPECIES

COMPOUND: BORON TRIFLUORIDE

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat 1-Hour LC<sub>50</sub>: Male =  $\frac{1076 \text{ mg/m}^3}{95\%}$  confidence limits (890-1298) or 387 ppm 320-467 ppm

Female = 1031 mg/m<sup>3</sup> 95% confidence limits (815-1304) or 371 ppm 293-469 ppm

Data fall in 'Highly Toxic' category.

ACUTE INHALATION TOXICITY OF BORON TRIFLUORIDE TO RATS

|     | Male                | 17           | emale           |
|-----|---------------------|--------------|-----------------|
| ppm | Mortality Ratio     | ppm          | Mortality Ratio |
| 675 | 5/5                 | 864          | 5 5             |
| 513 | 3 5                 | 7 <b>2</b> 3 | 5 5             |
| 437 | 3 - 5               | 650          | 3 5             |
| 398 | <b>4</b> / <b>5</b> | 557          | 3 5             |
| 317 | 1.5                 | 468          | 4 5             |
|     |                     | 399          | 3 5             |
|     |                     | 312          | 3 5             |
|     |                     | 290          | 0 5             |
|     |                     | <b>2</b> 66  | 2 5             |

COMPOUND: ETHYL CHLOROFORMATE (Ethyl Chlorocarbonate)

CODE: 165

CLASSIFICATION. HIGHLY TOXIC

INDIAL AUTON TOXICITY

| 1 \1                      | JALATION               | TOVICTLE       |             |
|---------------------------|------------------------|----------------|-------------|
| SPECIES                   | CONC. *                | SYS. **        | REF,        |
| Man<br>male<br>Rat fomale | 640 (145)<br>728 (165) | 1-Hr.<br>1.C50 |             |
| Mouse                     |                        |                | <del></del> |
| Dog                       |                        |                |             |
| Monkey                    |                        |                |             |
| Other                     |                        |                |             |
|                           |                        |                |             |
|                           |                        |                |             |

ORAL TOXICITY

| SPECIES                   | DOSE ***   | SYS.             | RE 1.    |
|---------------------------|------------|------------------|----------|
| Man<br>male<br>Rat female | 467<br>268 | 1.1)50<br>1.1)50 |          |
| Mouse                     |            |                  |          |
| Dog                       |            |                  | <u> </u> |
| Monkey                    |            |                  |          |
| Cat                       |            |                  |          |
| Guinea Pig                |            |                  |          |
| Other                     |            |                  |          |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES   | ROUTE  | DOSE*** | SYS. **  | REF. |
|-----------|--------|---------|----------|------|
| l. Rabbit | Dermal | 7120    | LD50     |      |
| 2. Rabbit | Dermal |         | Noncorr. |      |
| 3,        |        |         |          |      |
| +         |        |         |          |      |
| 5         |        | ·       |          |      |
| 6         |        |         |          |      |
|           |        |         |          |      |

<sup>\*\*</sup> Concentration in mg/M $^3$ . Parenthetical values are ppm. \*\*\* System for expression of toxicity \*\*\*\*Dose in mg/Kg \$A\$-8

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat 1-Hour LC<sub>50</sub>: Male =  $640 \text{ mg/m}^3$ 95% confidence limits (609-671) or 145 ppm138-152 ppm

Female = 728 mg/m<sup>3</sup>
95% confidence limits (654-813) or 165 ppm
148-184 ppm

Rat Oral LD<sub>50</sub>: Male = 467 mg/kg (Single Dose) 95% confidence limits (313-690)

Female = 268 mg/kg 95% confidence limits (181-396)

Rabbit 14-Day Dermal LD<sub>50</sub>: 7120 mg/kg (24-Hour Skin Contact) Confidence limits could not be calculated.

Ethyl chloroformate was found to be noncorrosive to intact rabbit skin.

Inhalation data fall in "Highly Toxic" category.

#### ACUTE INHALATION TOXICITY OF ETHYL CHLOROFORMATE TO RATS

|            | Male            | Fe  | male            |
|------------|-----------------|-----|-----------------|
| <u>ppm</u> | Mortality Ratio | ppm | Mortality Ratio |
| 152        | 4/5             | 184 | 4 5             |
| 138        | 1/5             | 148 | 1 5             |
| 117        | 0 / 5           | 118 | 0 5             |
| 101        | 0/5             |     |                 |

165

## ACUTE ORAL TOXICITY OF ETHYL CHLOROFORMATE TO RATS

| <b>*</b> Male |                 | Pen          | nale            |
|---------------|-----------------|--------------|-----------------|
| Dose (mg kg)  | Mortality Ratio | Dose (mg kg) | Mortality Ratio |
| 1000          | 5 5             | 500          | 5 5             |
| 500           | 3 5             | 250          | 2.5             |
| 250           | 0.5             | 125          | 0.5             |

#### ACUTE DERMAL TOXICITY OF ETHYL CHLOROFORMATE TO RABBITS

| Dose (mg kg) | Mortality Ratio |
|--------------|-----------------|
| 8000         | 3 3             |
| 6350         | 0.3             |
| 5040         | 0 3             |

COMPOUND: HEXAMETHYLENE DIAMINE (1.6-Hexanediamine)

CODE: 170

CLASSIFICATION

DIXUT

| INHALATION TOXICITY |                           |                      |      |
|---------------------|---------------------------|----------------------|------|
| SPECIES             | CONC.*                    | SYS. * *             | REF. |
| l<br>Maa            |                           |                      |      |
| l                   | Saturated<br><u>Vapor</u> | No<br><u>Death</u> s |      |
| Niouse              |                           |                      |      |
| प्रिष्ट             |                           |                      |      |
| Monkey              |                           |                      |      |
| Other               |                           |                      |      |
|                     |                           |                      |      |

|                           | ORAL TO    | XICHY        | _   |
|---------------------------|------------|--------------|-----|
| SPECILS I                 | DOSE: **   | SYS. **      | RLI |
| Man<br>male<br>Rot female | 800<br>746 | LD50<br>LD50 |     |
| Mouse                     | 7.10       |              |     |
| Dog<br>Monkey             |            |              |     |
| Cat                       |            |              |     |
| Guinea Pig                |            |              |     |
| Other                     |            |              |     |

## OTHER ROUTES OF ADMINISTRATION

| SPECIES   | ROUTE  | DOSE*** | SYS. *** | REF. |
|-----------|--------|---------|----------|------|
| 1. Rabbit | Dermal | 1114    | 1.1)50   |      |
| 3.        |        |         |          |      |
| 4.<br>5.  |        |         |          |      |
| 6.        |        |         |          |      |

Concentration in mg/M<sup>3</sup>
\* System for expression of toxicity
\*\*\*Dose in mg/Kg

A-11

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat 1-Hour LC<sub>50</sub>: Could not be calculated. Male and female rats exposed for 1 hour to saturated vapors of hexamethylene diamine survived the 14-day postexposure observation period.

Rat Oral LD<sub>50</sub>: Male = 800 mg/kg95% confidence limits (472-1357)

> Female = 746 mg/kg 95% confidence limits (505-1104)

Rabbit 14-Day Dermal LD $_{50}$ : 1114 mg/kg (24-Hour Skin Contact) 95% confidence limits (600-2115)

Data fall in "Toxic" category.

ACUTE ORAL TOXICITY OF HEXAMETHYLENE DIAMINE TO RATS

| Male         |                 | Female       |                 |
|--------------|-----------------|--------------|-----------------|
| Dose (mg kg) | Mortality Ratio | Dose (mg kg) | Mortality Racio |
| 1600         | 5 5             | 1600         | 5 5             |
| 800          | <b>2</b> 5      | 800          | 3 5             |
| 400          | 1/5             | 400          | 0.5             |

#### ACUTE DERMAL TOXICITY OF HEXAMETHYLENE DIAMINE TO RABBITS

| Dose (mg kg) | Mortality Ratio |
|--------------|-----------------|
| 2500         | 3/3             |
| 1250         | <b>2</b> /3     |
| 625          | 0/3             |

COMPOUND: METHYL CHLOROFORMATE (Methyl chlorocarbonate)

CLASSIFICATION:

HIGHLY TOXIC

| INHALATION TO | X | CL. | 1 Y |
|---------------|---|-----|-----|
|---------------|---|-----|-----|

| INF                       | IALATION  | TOXICITY  | _    |
|---------------------------|-----------|-----------|------|
| SPECIES                   | CONC.*    | SYS. **   | REF. |
| Man<br>male<br>Rat female | 342 (88)  | 1-Hr.     |      |
| Rat female                | 401 (103) | $LC_{50}$ |      |
| Mouse                     |           |           |      |
| Dog                       |           |           |      |
| Monkey                    |           |           |      |
| Other                     |           |           |      |
|                           |           |           |      |
|                           |           |           |      |

#### ORAL TOXICITY

CODE: 180

| OKAL TOXICITY             |            |                                      |             |
|---------------------------|------------|--------------------------------------|-------------|
| SPECIES I                 | OOSE***    | SYS. **                              | REF.        |
| Man<br>male<br>Rat female | 187<br>107 | LD <sub>50</sub><br>LD <sub>50</sub> |             |
| Mouse                     |            |                                      |             |
| Dog                       |            |                                      | <del></del> |
| Monkey                    | ··         | <del></del>                          |             |
| Cat                       |            |                                      |             |
| Guinea Pig                |            |                                      |             |
| Other                     |            |                                      |             |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE  | DOSE*** | <u>SYS. **</u>   | REF. |
|----------|--------|---------|------------------|------|
| . Rabbit | Dermal | 7120    | LD <sub>50</sub> |      |
| Rabbit   | Dermal | -       | Noncorr.         |      |
| •        |        |         |                  |      |
|          |        |         |                  |      |
| •        |        |         |                  |      |
| •        |        |         |                  |      |
|          |        |         |                  |      |

- \* Concentration in mg/ $M^3$ . Parenthetical values are ppm. \*\* System for expression of toxicity
- \*\*\*Dose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat 1-Hour LC<sub>50</sub>: Male =  $342 \text{ mg/m}^3$ 95% confidence limits (249-478) or 88 ppm (64-123 ppm)

> Female =  $401 \text{ mg/m}^3$ 95% confidence limits (350-460) or 103 ppm (90-118 ppm)

Rat Oral LD<sub>50</sub>: Male = 187 mg/kg (Single Dose) 95% confidence limits (126-276)

Female = 107 mg/kg 95% confidence limits (73-159)

Rabbit 14-Day Dermal LD<sub>50</sub>: 7120 mg/kg (24-Hour Skin Contact) Confidence limits could not be calculated.

Methylchloroformate was found to be noncorrosive to rabbit skin.

Data fall in 'Highly Toxic' category.

## ACUTE INHALATION TOXICITY OF METHYL CHLOROFORMATE TO RATS

| Male |                 | Female |                     |
|------|-----------------|--------|---------------------|
| ppm  | Mortality Ratio | ppm    | Mortality Ratio     |
| 101  | 5,5             | 128    | 4.5                 |
| 92   | 2/5             | 120    | <b>4</b> ∉ <b>5</b> |
| 78   | 0/5             | 110    | 3 5                 |
| 42   | 1/5             | 97     | 2 5                 |

## ACUTE ORAL TOXICITY OF METHYL CHLOROFORMATE TO RATS

| Male         |                 | Female       |                 |
|--------------|-----------------|--------------|-----------------|
| Dose (mg kg) | Mortality Ratio | Dose (mg/kg) | Mortality Ratio |
| 400          | 5 5             | 200          | 5 5             |
| 200          | 3 5             | 100          | 2 5             |
| 100          | 0 5             | 50           | 0 5             |

## ACUTE DERMAL TOXICITY OF METHYL CHLOROFORMATE TO RABBITS

| Dose (mg/kg) | Mortality Ratio |
|--------------|-----------------|
| 8000         | 3 3             |
| 6380         | 0 3             |
| 5040         | 0 3             |

COMPOUND: n-BUTYL ACRYLATE

CODE: 248

CLASSIFICATION. BELOW TOXIC

#### INHALATION TOXICITY

# CONC. \* SPECIES SYS. \*\* REF. Man male 32,325(360) Partial Rat female 26,724(5100) <u>Lethali</u>ty Mouse Dog Monkey Other

#### ORAL TOXICITY

| SPECIES            | DOSE***        | SYS. **      | REF |
|--------------------|----------------|--------------|-----|
| Man                |                |              |     |
| male<br>Rat female | 6169<br>2 4921 | LD50<br>LD50 |     |
| Mouse              |                |              |     |
| Dog                |                |              |     |
| Monkey             |                |              |     |
| Cat                |                |              |     |
| Guinea Pig         |                |              |     |
| Other              |                |              |     |
|                    |                |              |     |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES   | ROUTE  | DOSE***     | SYS. ** | REF.        |
|-----------|--------|-------------|---------|-------------|
| l. Rabbit | Dermal | 5657        | LD50    | <del></del> |
| 3.        |        |             |         |             |
| 4.<br> 5. |        |             |         |             |
| 6         |        | <del></del> |         |             |

\* Concentration in  $mg/M^3$ . Parenthetical values are ppm. \*\* System for expression of toxicity

\*\*\*Dose in mg/Kg

A -16

248

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

One hour inhalation exposures to near saturated vapor concentration produced only partial mortality in male and female rats observed for 14 days postexposure. A concentration of  $32,325 \text{ mg/m}^3$  (6360 ppm) killed 2 of 5 male rats and a vapor concentration of 26,724 mg/m<sup>3</sup> (5100 ppm) resulted in deaths of 4 of 5 female rats exposed. Because of this very low toxic response it was not possible to obtain LC<sub>50</sub> values for n-butyl acrylate.

Rat Oral LD<sub>50</sub>: (Single Dose)

Male - 6190 mg/kg

95% confidence limits (4567-8332)

Female - 4921 mg/kg

95% confidence limits (4321-5604)

Rabbit 14-Day Dermal LD<sub>50</sub>: 5657 mg/kg

(24 Hour Skin Contact)

95% confidence limits (1451-22, 050)

Data fall in "Below Toxic" category.

ACUTE ORAL TOXICITY OF n-BUTYL ACRYLATE TO RATS

| Male         |                 | Fem          | ale             |
|--------------|-----------------|--------------|-----------------|
| Dose (mg kg) | Mortality Ratio | Dose (mg kg) | Mortality Ratio |
| 2002         |                 | (270         |                 |
| 8000         | 4 5             | 6350         | 5 5             |
| 4000         | 0.5             | 5040         | 3 5             |
| 2000         | 0 5             | 4000         | 0 5             |

# ACUTE DERMAL TOXICITY OF n-BUTYL ACRYLATE TO RABBITS

| Dose (mg/kg) | Mortality Ratio |
|--------------|-----------------|
| 8000         | 2/3             |
| 4000         | 1/3             |
| 1000         | 0/3             |

CODE: 249 COMPOUND: METHYL ACRYLATE

CLASSIFICATION: BELOW TOXIC

#### INHALATION TOXICITY

# CONC.\* REF. SPECIES SYS. \*\* Man See Justification Section Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

| SPECIES    | DOSE*** | SYS. ** | REF. |
|------------|---------|---------|------|
| Man        |         |         |      |
| Rat        |         |         |      |
| Mouse      |         |         |      |
| Dog        |         |         |      |
| Monkey     |         |         |      |
| Cat ·      | ·       |         |      |
| Guinea Pig |         |         |      |
| Other      |         |         |      |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE | DOSE*** | SYS. ** | REF. |
|----------|-------|---------|---------|------|
| 1.       |       |         |         |      |
| 2        |       |         |         |      |
| 4        |       |         |         |      |
| 5.<br>6. |       |         |         |      |
| ·        |       |         |         |      |

 $\begin{tabular}{ll} * & Concentration in mg/M^3 \\ ** & System for expression of toxicity \\ \end{tabular}$ 

\*\*\*Dose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

One hour inhalation exposures to near saturated vapors of methyl arcylate caused only partial mortality in albino rats. Because of the low toxicity it was not possible to determine a 14-day LC<sub>50</sub> for one hour exposures. One male rat of five died after exposure to 33.238 ppm and 3 of 5 female rats succumbed to 34,315 ppm.

Data fall in "Below Toxic" category.

CODE: 250 COMPOUND: MONOETHANOLAMINE (Ethanolamine)

TOXIC CLASSIFICATION:

#### INHALATION TOXICITY

# SYS. \*\* SPECIES CONC.\* REF. Man Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

| SPECIES           | DOSE***         | SYS. **      | REF.        |
|-------------------|-----------------|--------------|-------------|
| Man               |                 |              |             |
| male<br>Rat femal | 1970<br>le 1715 | LD50<br>LD50 |             |
| Mouse             |                 |              |             |
| Dog               |                 |              | <del></del> |
| Monkey            | <del> </del>    |              |             |
| Cat               |                 | <del></del>  |             |
| Guinea Pig        |                 | <del></del>  |             |
| Other             | <del></del>     |              |             |
| L                 |                 |              |             |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE | DOSE*** | SYS. ** | REF. |
|----------|-------|---------|---------|------|
| l.       |       |         |         |      |
| 2.       |       |         |         |      |
| 3.<br>4. |       |         |         |      |
| 5        |       |         |         |      |
| ·        |       |         |         |      |

\* Concentration in mg/M $^3$  \*\* System for expression of toxicity \*\*\*Dose in mg/Kg

250

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat Oral LD<sub>50</sub>: (Single Dose)

 $\begin{array}{c} \text{Males 1970 mg/kg} \\ \text{95\% confidence limits (1431-2712)} \end{array}$ 

Females 1715 mg/kg

95% confidence limits (1159-2537)

Data fall in "Toxic" category.

PHENOL COMPOUND: (Solid)

CODE: 251

CLASSIFICATION:

TOXIC

## INHALATION TOXICITY

## SPECIES CONC.\* SYS. \*\* REF. Man Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

|            | ORTHE TO |             |      |
|------------|----------|-------------|------|
| SPECIES    | DOSE***  | SYS. **     | REF. |
| Man        |          |             |      |
| Rat        |          |             |      |
| Mouse      |          |             |      |
| Dog        |          |             |      |
| Monkey     |          |             |      |
| Cat        |          |             |      |
| Guinea Pig |          | <del></del> |      |
| Other      |          |             |      |
|            |          |             |      |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE  | DOSE*** | SYS. **   | REF.        |
|----------|--------|---------|-----------|-------------|
| . Rabbit | Dermal | 1403    | LD50      |             |
| Rabbit   | Dermal |         | Corrosive |             |
| •        |        |         |           |             |
| ·        |        |         |           | <del></del> |
| ·        |        |         |           |             |
|          |        |         |           |             |

\* Concentration in mg/M<sup>3</sup>
\*\* System for expression of toxicity
\*\*\*Dose in mg/Kg

251

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rabbit 14-Day Dermal LD<sub>50</sub>: 1403 mg/kg

(24 -Hour Skin Contact)

95% confidence limits (739-2665)

Phenol was found to be corrosive to rabbit skin.

Data fall in "Toxic" category.

#### ACUTE DERMAL TOXICITY OF PHENOL TO RABBITS

| Dose (mg/kg) | Mortality Ratio |
|--------------|-----------------|
| 2500<br>1250 | 3/3<br>1/3      |
| 625          | 0/3             |

COMPOUND:

ETHYL MERCAPTAN

(Ethanethiol)

CODE: 257

CLASSIFICATION: BELOW TOXIC

#### INHALATION TOXICITY

# SPECIES SYS. \*\* CONC.\* REF. Man See Justification Section Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

| OKAL TOXICITT |         |         |      |  |  |  |
|---------------|---------|---------|------|--|--|--|
| SPECIES       | DOSE*** | SYS. ** | REF. |  |  |  |
| Man           |         |         |      |  |  |  |
| Rat           |         |         |      |  |  |  |
| Mouse         |         |         |      |  |  |  |
| Dog           |         |         |      |  |  |  |
| Monkey        |         |         |      |  |  |  |
| Cat           |         |         |      |  |  |  |
| Guinea Pig    |         |         |      |  |  |  |
| Other         |         |         |      |  |  |  |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES       | ROUTE | DOSE*** | SYS. ** | REF. |
|---------------|-------|---------|---------|------|
| 1             |       |         |         |      |
| 2             |       |         |         |      |
| $\frac{3}{4}$ |       |         |         |      |
| 5.            |       |         |         |      |
| 6.            |       |         |         |      |
| ļ             |       |         |         |      |

- \* Concentration in  $mg/M^3$  \*\* System for expression of toxicity

\*\*\*Dose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

One hour inhalation exposures of rats to ethyl mercaptan at concentrations below the lower explosive limit did not cause mortality. At 28,400 ppm 5 male rats survived a 1-hour exposure and at 27,700 ppm 3 of 5 female rats died during exposure.

Data fall in "Below Toxic" category.

COMPOUND: CRESOL

(From Coal Tar)

CODE: 258

CLASSIFICATION:

TOXIC

#### INHALATION TOXICITY

| Hammitton tomorri |         |             |      |  |
|-------------------|---------|-------------|------|--|
| SPECIES           | CONC.*  | SYS. **     | REF. |  |
| Man               |         |             |      |  |
| Rat               |         | <del></del> |      |  |
| Mouse             |         |             |      |  |
| Dog               |         |             |      |  |
| Monkey            |         |             |      |  |
| Other             | <u></u> |             |      |  |
|                   |         |             |      |  |
|                   |         |             |      |  |
|                   |         |             |      |  |

|            | ORAL TO | XICITY  | 3           |
|------------|---------|---------|-------------|
| SPECIES    | DOSE*** | SYS. ** | REF         |
| Man        |         |         |             |
| Rat        |         |         |             |
| Mouse      |         |         |             |
| Dog        |         |         | <del></del> |
| Monkey     |         |         |             |
| Cat :      |         |         |             |
| Guinea Pig |         |         |             |
| Other      |         |         |             |
|            |         |         |             |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES   | ROUTE  | DOSE*** | <u>SYS.**</u> | REF. |
|-----------|--------|---------|---------------|------|
| l. Rabbit | Dermal | 2000    | LD50          |      |
| 2. Rabbit | Dermal |         | Corrosive     |      |
| 3.<br>    |        |         |               |      |
| 4.<br>5.  |        |         | <del></del>   |      |
| 6.        |        |         | <del></del>   |      |
|           |        |         |               |      |

\* Concentration in mg/M<sup>3</sup>
\*\* System for expression of toxicity
\*\*\*Dose in mg/Kg

A -27

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rabbit 14-Day Dermal LD $_{50}$ : 2000 mg/kg (24-Hour Skin Contact) 25% confidence limits (14/0-5860)

Cresol derived from coal tar was found to be corrosive to intact rabbit skin.

Data fall in "Toxic" category.

#### ACUTE DERMAL TOXICITY OF CRESOL (COAL TAR) TO RABBITS

| Mortality Ratio |
|-----------------|
| 3 / 3           |
| 1/3             |
| 1/3             |
|                 |

COMPOUND: CRESOL

(From Petroleum)

CODE:

259

CLASSIFICATION.

TOXIC

#### INHALATION TOXICITY

## SYS. \*\* CONC. \* SPECIES REF. Man Rat Mouse Dog Monkey Other

| ORAL TOXICITY |             |             |      |  |
|---------------|-------------|-------------|------|--|
| SPECIES       | DOSE***     | SYS. **     | REF. |  |
| Man           |             |             |      |  |
| Rat           |             |             |      |  |
| Mouse         |             | <del></del> |      |  |
| Dog           |             |             |      |  |
| Monkey        |             |             |      |  |
| Cat           |             |             |      |  |
| Guinea Pig    | <del></del> | <del></del> |      |  |
| Other         |             |             |      |  |
| L             |             |             |      |  |

## OTHER ROUTES OF ADMINISTRATION

| SPECIES                                 | ROUTE       | DOSE*** | SYS. **   | REF |
|-----------------------------------------|-------------|---------|-----------|-----|
| Rabbit                                  | Dermal      | 2000    | LD50      |     |
| Rabbit                                  | Dermal      | -       | Corrosive |     |
|                                         |             |         |           |     |
| · · - · · · · · · · · · · · · · · · · · |             |         |           |     |
|                                         |             |         |           |     |
|                                         | <del></del> |         |           |     |
|                                         |             |         |           |     |

 $\begin{tabular}{ll} * & Concentration in $mg/M^3$ \\ ** & System for expression of toxicity \\ \end{tabular}$ 

\*\*\*Dose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rabbit 14-Day Dermal LD<sub>50</sub>: 2000 mg/kg

(24-Hour Skin Contact) 95% confidence limits (750-5400)

Cresol derived from petroleum was found to be corrosive to intact rabbit skin.

Data fall in "Toxic" category.

ACUTE DERMAL TOXICITY OF CRESOL (FROM PETROLEUM)
TO RABBITS

| Dose (mg/kg) | Mortality Ratio |
|--------------|-----------------|
| 4000         | 3/3             |
| 2000         | 1/3             |
| 1000         | 1 - 3           |

CODE: 260 COMPOUND: o-CRESOL, PRACTICAL

CLASSIFICATION. TOXIC

## INHALATION TOXICITY

| SPECIES | CONC.       | SYS. **     | REF. |
|---------|-------------|-------------|------|
| Man     |             |             |      |
| Rat     |             | -           |      |
| Mouse   |             |             |      |
| Dog     |             |             |      |
| Monkey  | <del></del> |             |      |
| Other   |             | <del></del> |      |
|         |             |             |      |
|         |             |             |      |

#### ORAL TOXICITY

| ORM. TOMOTT |         |         |      |  |
|-------------|---------|---------|------|--|
| SPECIES     | DOSE*** | SYS. ** | REF. |  |
| Man         |         |         |      |  |
| Rat         |         |         |      |  |
| Mouse       |         |         |      |  |
| Dog         |         |         |      |  |
| Monkey      |         |         |      |  |
| Cat         |         |         |      |  |
| Guinea Pig  |         |         |      |  |
| Other       |         |         |      |  |
|             |         |         |      |  |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES   | ROUTE    | DOSE*** | SYS.      | REF. |
|-----------|----------|---------|-----------|------|
| I. Rabbit | Dermal   | 891     | LD50      |      |
| 2. Rabbit | Dermal   |         | Corrosive |      |
| 3.        |          |         |           |      |
| 1.        |          |         |           |      |
| 5         |          |         |           |      |
| 6         | <u> </u> |         |           |      |
|           |          |         |           |      |

\* Concentration in  $mg/M^3$  \*\* System for expression of toxicity \*\*\*Pose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rabbit 14-Day Dermal LD<sub>50</sub>: 891 mg/kg (24-Hour Skin Contact) 895% confidence limits (460-1690)

o-Cresol was found to be corrosive to intact rabbit skin.

Data fall in "Toxic" category.

#### ACUTE DERMAL TOXICITY OF o-CRESOL TO RABBITS

| Mortality Ratio |  |
|-----------------|--|
| 3/3             |  |
| 2/3             |  |
| 0/3             |  |
|                 |  |

COMPOUND: m-CRESOL, PRACTICAL CODE: 261

TOXIC CLASSIFICATION.

## INHALATION TOXICITY

# CONC. \* SYS. \*\* SPECIES REF. Man Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

| SPECIES    | DOSE***     | SYS. ** | REF.        |  |  |  |
|------------|-------------|---------|-------------|--|--|--|
| Man        |             |         |             |  |  |  |
| Rat        |             |         |             |  |  |  |
| Mouse      |             |         |             |  |  |  |
| Dog        |             |         |             |  |  |  |
| Monkey     |             |         | <del></del> |  |  |  |
| Cat        |             |         |             |  |  |  |
| Guinea Pig | <del></del> |         |             |  |  |  |
| Other      |             |         |             |  |  |  |

#### OTHER ROUTES OF ADMINISTRATION

| SPECI              | ES ROU          | re dose     | *** SYS. ** | REF.        |
|--------------------|-----------------|-------------|-------------|-------------|
| l. <u>Rabb</u>     | it <u>D</u> eri | mal 2830    | LD50        |             |
| $\frac{2}{3}$ Rabb | it <u>Der</u> r | nal -       | Corros      | sive        |
| 4. ———             |                 |             |             | <del></del> |
| 5.                 |                 |             |             |             |
| o                  |                 | <del></del> |             |             |

\* Concentration in mg/M $^3$  \*\*\* System for expression of toxicity \*\*\*Dose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rabbit 14-Day Dermal LD<sub>50</sub>: 2830 mg/kg (24-Hour Skin Contact) 2830 mg/kg 95% confidence limits could not be calculated.

m-Cresol was found to be corrosive to intact rabbit skin.

Data fall in "Toxic" category.

#### ACUTE DERMAL TOXICITY OF m-CRESOL TO RABBITS

| Dose (mg kg) | Mortality Ratio |
|--------------|-----------------|
| 4000         | 3,3             |
| 2000         | 0 - 3           |
| 1000         | 0/3             |
| 2000         | 0.3             |

CODE: 262

| CLASSIFIC | CATION.  | -           | тохіс |        |            |         |         |     |
|-----------|----------|-------------|-------|--------|------------|---------|---------|-----|
| INI       | IALATION | TOXICITY    |       |        |            | ORAL TO | XICITY  |     |
| SPECIES   | CONC.*   | SYS. **     | REF.  | ]      | SPECIES    | DOSE*** | SYS. ** | REF |
| Man       |          |             |       | i<br>I | Man        |         |         |     |
| Rat       |          |             |       |        | Rat        |         |         |     |
| Mouse     |          |             |       | j      | Mouse      |         |         |     |
| Dog       |          | <del></del> |       |        | Dog        |         |         |     |
| Monkey    |          |             |       |        | Monkey     |         |         |     |
| Other     |          |             |       |        | Cat '      |         |         |     |
|           |          |             |       |        | Guinea Pig |         |         |     |
|           |          |             |       |        |            |         |         |     |

#### OTHER ROUTES OF ADMINISTRATION

Other

|                 | SPECIES     | ROUTE  | DOSE*** | SYS. **  | REF.        |
|-----------------|-------------|--------|---------|----------|-------------|
| ı.              | Rabbit      | Dermal | 222     | LD50     |             |
| 2.              | Rabbit      | Dermal |         | Corrosiv | e           |
| $\frac{3}{4}$ . |             |        |         |          |             |
| 4.<br>5.        | <del></del> |        |         |          | <del></del> |
| 6.              |             |        |         |          |             |
|                 |             |        |         |          |             |

- \* Concentration in mg/M $^3$ \*\* System for expression of toxicity
  \*\*\*Dose in mg/Kg

COMPOUND:

p-CRESOL

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rabbit 14-Day Dermal LD<sub>50</sub>: 222 mg/kg (24-Hour Skin Contact) 95% confide 95% confidence limits (117-422)

p-Cresol was found to be corrosive to intact rabbit skin.

Data fall in "Toxic" category.

## ACUTE DERMAL TOXICITY OF p-CRESOL TO RABBITS

| Dose (mg/kg) | Mortality Ratio |  |  |
|--------------|-----------------|--|--|
| 2000         | 3/3             |  |  |
| 1000         | 3/3             |  |  |
| 500          | 3/3             |  |  |
| 250          | 1/3             |  |  |

COMPOUND: SODIUM TRICHLORO-s-TRIAZINETRIONE **26**3 CODE:

CLASSIFICATION.

TOXIC

#### INHALATION TOXICITY

# SPECIES CONC. \* SYS. \*\* REF. Man Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

| CDECILE            | DOCTION     | CVC **           | DEE  |
|--------------------|-------------|------------------|------|
| SPECIES            | DOSE***     | <u>SYS. **</u>   | REF. |
| Man                |             |                  |      |
| male<br>Rat female | 406<br>466  | LD <sub>50</sub> |      |
| Mouse              |             |                  |      |
| Dog                |             |                  |      |
| Monkey             |             |                  |      |
| Cat                | <del></del> |                  |      |
| Guinea Pig         |             |                  |      |
| Other              |             |                  |      |

## OTHER ROUTES OF ADMINISTRATION

|                    | SPECIES | ROUTE  | DOSE*** | SYS. **   | REF. |
|--------------------|---------|--------|---------|-----------|------|
| 1.                 | Rabbit  | Dermal | 20,000  | Not Letha | 1    |
| 2.                 | Rabbit  | Dermal |         | Noncorro  | sive |
| 3.<br>4.           |         |        |         |           |      |
| 5.                 |         |        |         |           |      |
| 6.                 |         |        |         |           |      |
| $oxedsymbol{oxed}$ |         |        |         |           |      |

\* Concentration in  $mg/M^3$ 

\*\* System for expression of toxicity
\*\*\*Dose in mg/Kg

A -37

263

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat Oral LD<sub>50</sub>: (Single Dose)

Male - 406 mg/kg

95% confidence limits (295-559)

Female - 466 mg/kg

95% confidence limits (315-690)

Rabbit 14-Day Dermal  $\rm LD_{50}$ : Could not be calculated. No deaths occurred after (24-Hour Skin Contact) skin exposure to 20 g/kg dose.

Sodium trichloro-s-triazinetrione was found to be noncorrosive to intact rabbit skin.

Data fall in "Toxic" category.

ACUTE ORAL TOXICITY OF SODIUM TRICHLORO-s-TRIAZINETRIONE TO RATS

| Ma           | ile             | F <b>em</b> ale |                 |  |
|--------------|-----------------|-----------------|-----------------|--|
| Dose (mg kg) | Mortality Ratio | Dose (mg kg)    | Mortality Ratio |  |
| 1000         | 5⊬5             | 1000            | 5 5             |  |
| 500          | 4 5             | 500             | 3 / 5           |  |
| 250          | 0 / 5           | 250             | 0 5             |  |

COMPOUND: FUMARIC ACID

CODE: 264

CLASSIFICATION.

BELOW TOXIC

#### INHALATION TOXICITY

# CONC. \* SYS. \*\* SPECIES REF. Man Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

|                           | ONAL TO         | AICHI                                |      |
|---------------------------|-----------------|--------------------------------------|------|
| SPECIES                   | DOSE***         | SYS. **                              | REF. |
| Man<br>male<br>Rat female | 10.720<br>9,330 | LD <sub>50</sub><br>LD <sub>50</sub> |      |
| Mouse                     | <del></del>     |                                      |      |
| Dog                       |                 |                                      |      |
| Monkey                    |                 |                                      |      |
| Cat                       |                 |                                      |      |
| Guinea Pig                |                 | <del></del>                          |      |
| Other                     |                 |                                      |      |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE  | DOSE*** | SYS. **    | REF. |
|----------|--------|---------|------------|------|
| . Rabbit | Dermal | 20,000  | Not Lethal | l    |
| Rabbit   | Dermal |         | Noncorros  | ive  |
| •        |        |         |            |      |
|          |        |         |            |      |
| ·        |        |         |            |      |
|          |        |         |            |      |
|          |        |         |            |      |

\* Concentration in mg/M<sup>3</sup>
\*\* System for expression of toxicity
\*\*\*Dose in mg/Kg

264

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat Oral LD<sub>50</sub>: (Single Dose)

Male - 10,720 mg/kg

95% confidence limits (7, 250-15, 858)

Female - 9,330 mg/kg

95% confidence limits (6, 308-13, 800)

Rabbit 14-Day Dermal LD<sub>50</sub>: Could not be calculated. No deaths occurred after (24-Hour Skin Contact) skin exposure to 20 g/kg dose.

Fumaric Acid was found to be noncorrosive to intact rabbit skin.

Data fall in "Below Toxic" category.

#### ACUTE ORAL TOXICITY OF FUMARIC ACID TO RATS

| Mal          | le              | Female       |                 |  |
|--------------|-----------------|--------------|-----------------|--|
| Dose (mg/kg) | Mortality Ratio | Dose (mg/kg) | Mortality Ratio |  |
| 20,000       | 5/5             | 20,000       | 5/5             |  |
| 10.000       | <b>2</b> /5     | 10,000       | 3/5             |  |
| 5,000        | 0/5             | 5,000        | 0/5             |  |

COMPOUND: MALEIC ANHYDRIDE

CODE: 265

CLASSIFICATION:

TOXIC

#### INHALATION TOXICITY

|         | IIMEM TON | TOMESTI       |             |
|---------|-----------|---------------|-------------|
| SPECIES | CONC.*    | <u>SYS.**</u> | REF.        |
| Man     |           |               |             |
| Rat     |           |               |             |
| Mouse   |           |               |             |
| Dog     |           |               | <del></del> |
| Monkey  |           |               |             |
| Other   |           |               | <del></del> |
|         |           |               |             |
|         |           |               |             |

#### ORAL TOXICITY

| SPECIES    | DOSE***     | SYS. ** | REF. |
|------------|-------------|---------|------|
| Man        |             |         |      |
| Rat        |             |         |      |
| Mouse      |             |         |      |
| Dog        |             |         |      |
| Monkey     | <del></del> |         |      |
| Cat:       |             |         |      |
| Guinea Pig |             |         |      |
| Other      |             |         |      |
|            |             |         |      |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE  | DOSE*** | <u>SYS. **</u> | REF. |
|----------|--------|---------|----------------|------|
| . Rabbit | Dermal | 2620    | LD50           |      |
| . Rabbit | Dermal | -       | Corrosive      |      |
|          |        |         |                |      |
| •        |        |         |                |      |
|          |        |         |                | ,    |
| •        |        |         |                |      |

- \* Concentration in mg/M<sup>3</sup>

  \*\* System for expression of toxicity

  \*\*\*Dose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

265

Rabbit 14-Day Dermal LD<sub>50</sub>: 2620 mg/kg (24-hour skin contact) 95% confidence limits (1930-3550)

Maleic anhydride was found to be corrosive to intact rabbit skin.

Data fall in "Toxic" category.

#### ACUTE DERMAL TOXICITY OF MALEIC ANHYDRIDE TO RABBITS

| Dose (mg kg) | Mortality Ratio |
|--------------|-----------------|
| 4000         | 3 - 3           |
| 3170         | 3 3             |
| 2520         | 1/3             |
| 2000         | 0/3             |

COMPOUND: OXALIC ACID, 5% Solution

CODE: 267

CLASSIFICATION.

TOXIC

#### INHALATION TOXICITY

|         | MODIALIAN | TOMETT      |             |
|---------|-----------|-------------|-------------|
| SPECIES | CONC, *   | SYS. **     | REF.        |
| Man     |           |             |             |
| Rat     |           |             | <del></del> |
| Mouse   |           |             |             |
| Dog     |           |             |             |
| Monkey  |           |             |             |
| Other   |           | <del></del> |             |
|         |           |             |             |
|         |           |             |             |

#### ORAL TOXICITY

| CACHE TOMICITY            |             |                                        |      |
|---------------------------|-------------|----------------------------------------|------|
| SPECIES                   | DOSE****    | SYS. *-                                | REF. |
| Man<br>male<br>Rat female | 475<br>375  | I.D <sub>50</sub><br>I.C <sub>50</sub> |      |
| Mouse                     | <del></del> |                                        |      |
| Dog                       |             |                                        |      |
| Monkey                    |             |                                        |      |
| Cat                       | <del></del> |                                        |      |
| Guinea Pig                |             |                                        |      |
| Other                     |             |                                        |      |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE       | DOSE*** | SYS. ** REF. |
|----------|-------------|---------|--------------|
| . Rabbit | Dermal      | 20,000  | Not Lethal   |
| . Rabbit | Dermal      | -       | Noncorrosive |
| •        |             |         |              |
|          |             |         |              |
| ·        |             |         |              |
| ·        | <del></del> |         |              |
|          |             |         |              |

- \* Concentration in mg/M<sup>3</sup>

  \*\* System for expression of toxicity

  \*\*\*Dose in mg/Kg

  \*\*\*\*[Dose in ml/Kg

267

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat Oral LD<sub>50</sub>: Male 9.5 ml/kg

(Single Dose) 95% confidence limits (5.4-12.3)

Female 7.5 inl 95% confidence limits (5.0-11.0)

Rabbit 14-Day Dermal LD<sub>50</sub>: Could not be calculated. (24-Hour Skin Contact) 
No deaths occurred after skin exposure to 20 g/kg dose.

A 5% aqueous solution of oxalic acid was found to be noncorrosive to intact rabbit skin.

Data fall in "Toxic" category.

ACUTE ORAL TOXICITY OF 5% OXALIC ACID TO RATS

| Ma           | <u>Male</u>     |              | Female          |  |  |
|--------------|-----------------|--------------|-----------------|--|--|
| Dose (mg kg) | Mortality Ratio | Dose (mg kg) | Mortality Ratio |  |  |
| 32           | 5/5             | 32           | 5 5             |  |  |
| 16           | 4 5             | 16           | 5 5             |  |  |
| 8            | <b>2</b> /5     | 8            | $3 \cdot 5$     |  |  |
| 4            | 0/5             | 4            | 0/5             |  |  |

COMPOUND: 3-METHYLBUTYRIC ACID (Isovaleric Acid)

CODE: 270

CLASSIFICATION:

JIXCT

#### INHALATION TOXICITY

## SPECIES CONC.\* SYS. \*\* REF. Man Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

|           | ORAL IC | 'X IC.11 1 |      |
|-----------|---------|------------|------|
| SPECIES   | DOSE*** | SYS. **    | REF. |
| Man       |         |            |      |
| Rat       |         |            |      |
| Mouse     |         |            |      |
| Dog       |         |            |      |
| Monkey    |         |            |      |
| Cat       |         |            |      |
| Gumea Pig |         |            |      |
| Other     |         | -          |      |
|           |         |            |      |

#### OTHER ROUTES OF ADMINISTRATION

| ROUTE  | DOSE*** | SYS.** | REF. |
|--------|---------|--------|------|
| Dermal | 3560    | LD50   |      |
|        |         |        |      |
|        |         |        |      |
|        |         |        |      |
|        |         |        |      |

Concentration in mg/M<sup>3</sup>
 System for expression of toxicity

\*\*\*Dose in mg/Kg

270

Data generated under contract between the Department of Transportation a and the United States Air Force Toxic Hazards Laboratory.

Rabbit 14-day Dermal LD50: 3560 mg/kg

95% confidence limits (1880-6770)

3-Methylbutyric acid was found to be noncorrosive to intact rabbit skin.

Data fall in "Toxic" category.

ACUTE DERMAL TOXICITY OF 3-METHYLBUTYRIC ACID TO RABBITS

| Dose (mg/kg) | Mortality Ratio |
|--------------|-----------------|
| 8000         | 3/3             |
| 4000         | 2/3             |
| 2000         | 0/3             |

COMPOUND: TRIS-2-HYDROXYETHYLISOCYANURATE CODE: 271

CLASSIFICATION. TOXIC

#### INHALATION TOXICITY

# SPECIES CONC. \* SYS. \*\* REF. Man Rat Mouse Dog Monkey Other

#### ORAL TOXICITY

| SPECIES    | DOSE***              | SYS. **               | REF. |
|------------|----------------------|-----------------------|------|
| Man        |                      |                       |      |
|            | $\frac{20,000}{100}$ | 0/5 - Mor $3/5$ - Mor |      |
| Mouse      |                      |                       |      |
| Dog        |                      |                       |      |
| Monkey     |                      |                       |      |
| Cat        |                      |                       |      |
| Guinea Pig |                      |                       |      |
| Other      |                      |                       |      |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES   | ROUTE  | DOSE*** | SYS. ** REF.      |
|-----------|--------|---------|-------------------|
| l. Rabbit | Dermal | 20,000  | 0/3 - Mort. Ratio |
| 2. Rabbit | Dermal |         | Noncorrosive      |
| 3.<br>4.  |        |         |                   |
| 5.        |        |         |                   |
| 6.        |        |         |                   |
|           |        |         |                   |

\* Concentration in mg/M<sup>3</sup>
\*\* System for expression of toxicity
\*\*\*Dose in mg/Kg

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Oral Toxicity: Oral doses of 20,000 mg/kg of tris-2-hydroxyethylisocyanurate

were given to albino rats. No male rats died at this maximum

achievable dose while only 3 of 5 female rats died. Calculation

of LD<sub>50</sub> values cannot be performed.

Dermal Toxicity: Dose of 20,000 mg/kg placed on the skin of albino rabbits was

not lethal. These amounts of 70-75 grams of the compound

did not produce any erythema or skin corrosion.

Data fall in "Below Toxic" category.

COMPOUND: p-CRESOL

(98+%, Sherwin-Williams)

CODE: 273

CLASSIFICATION.

HIGHLY TOXIC

| INHALATION TOXICITY |         |         |      | ORAL TOXICITY_ |      |         |      |
|---------------------|---------|---------|------|----------------|------|---------|------|
| SPECIES             | CONC. * | SYS. ** | REF. | SPECIES        | DOSE | SYS. ** | REF. |
| Man                 |         |         |      | Man            |      |         |      |
| Rat                 |         |         |      | Rat            |      |         |      |
| Mouse               |         |         |      | Mouse          |      |         |      |
| Dog                 |         |         |      | Dog            |      |         |      |
| Monkey              |         |         |      | Monkey         |      |         |      |
| Other               |         |         |      | Cat            |      |         |      |
| •                   |         |         |      | Guinea Pig     |      |         |      |
|                     |         |         |      | Other          |      |         |      |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES   | ROUTE  | DOSE***                               | SYS. **     | REF. |
|-----------|--------|---------------------------------------|-------------|------|
| 1. Rabbit | Dermal | 174                                   | LD50        |      |
| 2. Rabbit | Dermal |                                       | Corrosive   |      |
| 3         |        |                                       |             |      |
| 4.<br>5.  |        |                                       |             |      |
| 6.        |        | · · · · · · · · · · · · · · · · · · · | <del></del> |      |
| ·         |        |                                       |             |      |

\* Concentration in  $mg/M^3$ \*\* System for expression of toxicity
\*\*\*Dose in mg/Kg

A-49

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rabbit 14-Day Dermal LD<sub>50</sub>: 174 mg/kg (24-Hour Skin Contact) 95% confidence limits (120-270)

Para cresol was found to be corrosive to intact rabbit skin.

Data fall in 'Highly Toxic' category.

ACUTE DERMAL TOXICITY OF p-CRESOL (SHERWIN-WILLIAMS)
TO RABBITS

| Mortality Ratio |
|-----------------|
| <b>2</b> /3     |
| 2/3             |
| 1/3             |
|                 |

COMPOUND: NITROGEN TRIFLUORIDE

CODE: 285

CLASSIFI ATION.

TOXIC

| INI        | IALATION             | TOXICITY          |        |
|------------|----------------------|-------------------|--------|
| SPECIES    | CONC.*               | SYS. **           | REF.   |
| Man        |                      | <del></del>       |        |
| Rat 1 Hi   | 19,430<br>(6700)     | LC50              | 285.1  |
| Mouse 1-Hr | 21.750<br>(7500)     | LC <sub>50</sub>  | 285.1  |
| Dog I-Hr   |                      | ALC50             | 285.1  |
| Monkey1-H  | 29,000<br>r (10,000) | ALC <sub>50</sub> | _285.1 |
| Other      |                      | <del></del>       |        |
|            |                      |                   |        |
|            |                      |                   |        |
|            |                      |                   |        |

#### ORAL TOXICITY

| ORAL TOXICITY |         |                |      |  |  |
|---------------|---------|----------------|------|--|--|
| SPECIES       | DOSE*** | <u>SYS. **</u> | REF. |  |  |
| Man           |         |                |      |  |  |
| Rat           |         |                |      |  |  |
| Mouse         |         |                |      |  |  |
| Dog           |         |                |      |  |  |
| Monkey        |         | <del></del>    |      |  |  |
| Cat           |         |                |      |  |  |
| Guinea Pig    |         | <del></del>    |      |  |  |
| Other         |         |                |      |  |  |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE | DOSE*** | <u>SYS. **</u> | REF. |
|----------|-------|---------|----------------|------|
| 1.       |       |         |                |      |
| 2.<br>3. |       |         |                |      |
| 4<br>5.  |       |         |                |      |
| 6.       |       |         |                |      |

\* Concentration in mg/M<sup>3</sup>. Parenthetical values are ppm...
\*\* System for expression of toxicity
\*\*\*Dose in mg/Kg

285

Data fall in "Toxic" category.

#### REFERENCES:

285.1 Vernot. E. H., C. C. Haun, J. D. MacEwen and G. F. Egan, <u>Toxicol.</u> and App. Pharmacol., 26:1, 1973.

| COMPOUND: | PHOSPHOTUNGSTIC ACID | CODE: | 287 |
|-----------|----------------------|-------|-----|
|           |                      |       |     |

CLASSIFICATION.

TOXIC

|--|

| IIV     | HALATION |             |             |
|---------|----------|-------------|-------------|
| SPECIES | CONC. *  | SYS. **     | REF.        |
| Man     |          |             |             |
| Rat     |          |             |             |
| Mouse   |          | <del></del> |             |
| Dog     |          |             | -           |
| Monkey  |          |             |             |
| Other   |          |             | <del></del> |
|         |          |             |             |
|         |          |             |             |
|         |          |             |             |

#### ORAL TOXICITY

| SPECIES                   | DOSE***      | SYS. **      | REF.        |
|---------------------------|--------------|--------------|-------------|
| Man<br>male<br>Rat female | 3297<br>4925 | LD50<br>LD50 |             |
| Mouse                     |              |              | <del></del> |
| Dog                       |              |              |             |
| Monkey                    |              |              | <u> </u>    |
| Cat                       |              |              |             |
| Guinea Pig                |              |              |             |
| Other                     |              |              |             |

#### OTHER ROUTES OF ADMINISTRATION

| SPECIES  | ROUTE | DOSE*** | SYS. ** | REF. |
|----------|-------|---------|---------|------|
| l.<br>2. |       |         |         |      |
| 3.<br>4. |       |         |         |      |
| 5.<br>6. |       |         |         |      |
| 0        |       |         |         |      |

\* Concentration in mg/M $^3$  \*\* System for expression of toxicity \*\*\*Dose in mg/Kg

A -53

Data generated under contract between the Department of Transportation and the United States Air Force Toxic Hazards Laboratory.

Rat Oral LD<sub>50</sub>: Male - 3297 mg/kg

(Single Dose) 95% confidence limits (2558-4249)

Female - 4925 mg/kg 95% confidence limits (3577 -6780)

Data fall in "Toxic" category.

#### ACUTE ORAL TOXICITY OF PHOSPHOTUNGSTIC ACID TO RATS

| Ma            | le              | Female       |                 |  |
|---------------|-----------------|--------------|-----------------|--|
| Dose (mg/kg)  | Mortality Ratio | Dose (mg/kg) | Mortality Ratio |  |
|               |                 |              |                 |  |
| 4000          | 4/5             | 8000         | 5/5             |  |
| 3175          | 2/5             | 4000         | 1/5             |  |
| 25 <b>2</b> 0 | 1/5             | 2000         | 0/5             |  |

COMPOUND: SILICON TETRAFLUORIDE

CODE: 291

CLASSIFICATION:

OIXCT

#### IND AT ATTOM TOYICITY

|        | INH | ALA HON     | TOXICHY |             |
|--------|-----|-------------|---------|-------------|
| SPECIE | S   | CONC.*      | SYS. ** | REF.        |
| Man    |     |             |         | -           |
| Rat    | 391 | 9 (922)     | LC50    | 1           |
| Mouse  |     |             |         |             |
| Dog    |     |             |         | - <u></u> - |
| Monkey |     | <del></del> |         |             |
| Other  |     |             |         |             |
|        |     |             |         |             |
|        |     |             |         |             |
|        |     |             |         |             |

| ORAL TOXICITY |         |                |      |  |
|---------------|---------|----------------|------|--|
| SPECIES       | DOSE*** | <u>SYS. **</u> | REI. |  |
| Man           |         |                |      |  |
| Rat           |         |                |      |  |
| Mouse         |         |                |      |  |
| Dog           |         |                |      |  |
| Monkey        |         |                |      |  |
| Cat           |         |                |      |  |
| Guinea Pig    |         |                |      |  |
| Other         |         |                |      |  |
|               |         |                |      |  |

## OTHER ROUTES OF ADMINISTRATION

| SPECIES | ROUTE | DOSE*** | SYS. ** | REF. |
|---------|-------|---------|---------|------|
|         |       |         |         |      |
|         |       |         |         |      |
|         |       |         |         |      |
| ·       |       |         |         |      |
| ·       |       |         |         |      |
| ·       |       |         |         |      |

- \* Concentration in  $mg/M^3$ . Parenthetical values are ppm. \*\* System for expression of toxicity \*\*\*Dose in mg/Kg

291

Data fall in "Toxic" category.

## REFERENCES:

Scheel, L. D., W. C. Lane and W. E. Coleman, Amer. Ind. Hyg. Assoc. J., 29:41. 1968

# APPENDIX B IDENTIFICATION OF CHEMICALS TESTED

| Chemical                       | Purity             | Source      | Lot Number |
|--------------------------------|--------------------|-------------|------------|
| Perchloromethyl -<br>mercaptan | Practical          | Eastman     | A7A        |
| Boron Trichloride              | CP                 | Matheson    | -          |
| Boron Trifluoride              | Cb                 | Matheson    | -          |
| Ethyl Chloroformate            | BP 92-93 C         | Baker       | 322609     |
| Hexamethylene<br>Diamine       | Practical          | Baker       | 2-3542     |
| Methyl<br>Chloroformate        | Practical          | MCB         | MX 860-500 |
| Nitric Acid                    | Reagent            | Mallinkrodt | ATX        |
| n-Butyl Acrylate               | -                  | МСВ         | BX 1765-1  |
| Methyl Acrylate                | Practical          | MCB         | 18         |
| Moroethanolamine               | MP 10-12 C         | Baker       | 315606     |
| Phenol (Solid)                 | Reagent, ACS       | MCB         | 510        |
| Propionic Acid                 | BP 140-142 C       | Baker       | 404002     |
| Hydrochloric Acid              | Analytical Reagent | Mallinkrodt | WBD P      |
| Sodium Hydroxide               | Reagent            | MCB         | 406907     |
| Sulfuric Acid                  | Reagent            | Baker       | 321040     |
| Hydrofluoric Acid              | 5 <b>2</b> %       | Mallinkrodt | BEE        |
| Ethyl Mercaptan                | Baker              | Baker       | 308901     |
| Cresol (Coal Tar               | NF                 | Koppers     | 7580151    |
| Cresol (Petroleum)             | USP                | Productol   | 9398       |

| Chemical                              | Purity            | Source               | Lot Number   |
|---------------------------------------|-------------------|----------------------|--------------|
| o-Cresol                              | Practical         | MCB                  | 34           |
| m-Cresol                              | Practical         | мсв                  | 29           |
| p-Cresol                              | Practical         | МСВ                  | 11           |
| Sodium Trichloro-s-<br>Triazinetrione | Technical         | Monsanto             | KD 095151    |
| Fumaric Acid                          | 9 <del>91</del> % | МСВ                  | A 11 E 22    |
| Maleic Anhydride                      | MP 53-55 C        | MCB                  | 48           |
| Ammonium Hydroxide                    | Reagent ACS       | B & A                | D J11191     |
| Oxalic Acid                           | Technical         | MCB                  | 26           |
| Sodium Sulfide                        | Reagent           | MCB                  | 39           |
| Sodium Sulfhydrate                    | Technical         | MCB                  | 30           |
| 3-Methylbutyric Acid                  | BP 174-176 C      | МСВ                  | VX -30       |
| Tris-2-Hydroxyethyl-isocyanurate      | -                 | Allied               | Sample =5061 |
| p-Cresol<br>(Sherwin-Williams)        | 98%               | Sherwin-<br>Williams | CCA 5260     |
| Potassium Hydroxide                   | Technical         | Fisher               | 744243       |
| Acetic Acid                           | Reagent ACS       | City Chemical        | EE 83-2      |
| Gumout                                | Commercial        | Pennzoil             | 7205         |
| No. 7 Carburetor<br>Cleaner           | Commercial        | DuPont               | 3711N        |
| B-12 Chemtool                         | Commercial        | Berryman             | B-100        |
| Phosphotungstic Acid                  | Reagent           | МСВ                  | 23           |