

Overview

- The goal of this project is to create a 3D object tracker that is capable of tracking and identifying objects.
 - Object locations are tracked by LIDAR/Radar fusion
 - Object identification is performed by YOLO image classification

Overview

- Both Lidar and Radar generate noisy boxes off the road
- This project focuses on tracking only dynamic objects (e.g. vehicles)

Overview

Extended Kalman Filter

- The EKF was adapted from the object tracker in Homework 4.
- The state transition was adapted to compensate for the tracked objects movement when the vehicle is turning.

$$X_{k+1} = \begin{bmatrix} \dot{x}t + t\left(-\dot{\psi}x\sin\left(\dot{\psi}t\right) + \dot{\psi}y\cos\left(\dot{\psi}t\right)\right) + x\\ \dot{x}\\ \dot{y}t + t\left(-\dot{\psi}x\cos\left(\dot{\psi}t\right) - \dot{\psi}y\sin\left(\dot{\psi}t\right)\right) + y\\ \dot{y} \end{bmatrix}$$

Sensor Fusion

- LIDAR and radar are not time synced
- The EKF projects back to the time of the measurement before incorporating the information. Then project the state forward again.

Radar Filtering

- Radar objects are filtered out if they
 - Do not correspond to a YOLO object and
 - Do not have a velocity

Sensor Noise Calculation

For the LIDAR the sensor noise is adaptive to the number of points in the point cloud. The R matrix is calculated as:

$$R_{lidar} = \begin{bmatrix} \frac{r_{lidar}}{\lceil n/100 \rceil} & 0\\ 0 & \frac{r_{lidar}}{\lceil n/100 \rceil} \end{bmatrix}$$

where n = number of points, and r_{lidar} is the base noise value for the lidar information.

LIDAR Segmentation (original)

- Original lidar approach used Euclidean clusters from HW3
- Lidar boxes noisy (objects frequently split/merge together)

LIDAR Segmentation

- LIDAR segmentation utilizes radar information to more efficiently perform clustering
 - LIDAR points sampled near radar measurements
 - Bottom 20% of the cloud for each object is removed
 - LIDAR object centroids update the EKF

Object Identification

Objects are identified through YOLO image classification using the camera feed from the vehicle.

Object Correlation

 Objects in the camera frame are correlated to the 3D objects tracked by the system using intersection over union (IoU)

Object Correlation

- 3D objects projected to a 2D plane & aligned with the detections of the YOLO Classification.
- The class labels are stored in the object
- Object labels persist after they have left the camera view:

Demonstration

- Running system on road_data_sample_with_labels .bag
- Tracks and labels vehicles in the environment
- Merges lidar and radar information

Challenges

- Radar/LIDAR positions do not match perfectly
- Timing issues with Radar readings vs LIDAR, needed compensation in filter
- Ideal object detection pipeline would fuse raw LIDAR, Radar, and camera before box discretization, e.g. with a neural network

OAKLAND UNIVERSITY...