SOLUTIONS TO MATH 223 FINAL EXAM, FALL 2005

1. (a) The Chain Rule for differentiable functions $g: \mathbb{R}^n \to \mathbb{R}^m$ and $f: \mathbb{R}^m \to \mathbb{R}^p$ states that $f \circ g: \mathbb{R}^n \to \mathbb{R}^p$ is also differentiable, and that at each point $\mathbf{x} \in \mathbb{R}^n$,

$$[D(f \circ g)(\mathbf{x})] = [Df(g(\mathbf{x}))] \circ [Dg(\mathbf{x})].$$

(b) Writing $\mathbf{x} = \binom{x_1}{x_2}$, we have that $h\binom{x_1}{x_2} = g(x_1^2 + x_2^2)$. To find the partial derivatives of h, we compute using g and the chain rule:

$$D_1 h \binom{x_1}{x_2} = D_1 g(x_1^2 + x_2^2) = 2x_1 g'(x_1^2 + x_2^2)$$

$$D_2 h \binom{x_1}{x_2} = D_2 g(x_1^2 + x_2^2) = 2x_2 g'(x_1^2 + x_2^2).$$

The equation $x_2D_1h(\mathbf{x}) = x_1D_2h(\mathbf{x})$ is now seen to be true by inspection.

2. (a) A k-dimensional manifold in \mathbb{R}^n is a subset M of \mathbb{R}^n such that, at each point $x \in M$, there is an open set U containing x with the property that $M \cap U$ is the graph of a C^1 function of k variables.

The Implicit Function Theorem can be used to prove that a set is a manifold in

The implicit Function Theorem can be used to prove that a set is a manifold in the following way: suppose that $f: \mathbb{R}^n \to \mathbb{R}^{n-k}$ is a C^1 function, and $M \subset \mathbb{R}^n$ is defined by $M = f^{-1}(0)$. Suppose, moreover, that at each point $x \in M$, the derivative map $Df(x): \mathbb{R}^n \to \mathbb{R}^{n-k}$ is onto. Then the Implicit Function Theorem says precisely that at each point $x \in M$, there is a neighborhood U of x and a function $g: \mathbb{R}^k \to \mathbb{R}^{n-k}$ such that the set $U \cap M$ is the graph of g, where the domain variables of g are the variables corresponding to the non-pivotal columns of Df(x). Therefore M is a manifold, by the above definition.

(b) Define $f: \operatorname{Mat}_{2\times 3} \to \operatorname{SMat}_{2\times 2}$ by

$$f(\mathbf{A}) = \mathbf{A}\mathbf{A}^{\top} - \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix};$$

then $U = f^{-1}(\mathbf{0})$. The derivative of this map is

$$Df(\mathbf{A}) : \mathbf{H} \mapsto \mathbf{A}\mathbf{H}^{\top} + \mathbf{H}\mathbf{A}^{\top}.$$

In coordinates this becomes

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} h_{11} & h_{21} \\ h_{12} & h_{22} \\ h_{13} & h_{23} \end{bmatrix} + \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

$$= \begin{bmatrix} 2a_{11}h_{11} + 2a_{12}h_{12} + 2a_{13}h_{13} & a_{11}h_{21} + a_{21}h_{11} + a_{12}h_{22} + a_{22}h_{12} + a_{13}h_{23} + a_{23}h_{13} \\ a_{11}h_{21} + a_{21}h_{11} + a_{12}h_{22} + a_{22}h_{12} + a_{13}h_{23} + a_{23}h_{13} \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{21} & a_{22} \end{bmatrix}$$

We can write this as a map $\mathbb{R}^6 \to \mathbb{R}^3$ (making use of the fact that the image of f, hence of $Df(\mathbf{A})$, lies in the space of symmetric matrices):

$$\begin{pmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \end{pmatrix} \mapsto \begin{bmatrix} 2a_{11} & 2a_{12} & 2a_{13} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 & 2a_{21} & 2a_{22} & 2a_{23} \end{bmatrix} \begin{pmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \end{pmatrix}.$$

The first and third rows are clearly linearly independent when at least one element of each row of \mathbf{A} is non-zero; but this is necessary, because the equation $\mathbf{A}\mathbf{A}^{\top} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ says, in particular, that the length of the first row of \mathbf{A} is 2 and the length of the second row of \mathbf{A} is 3. The second row is in the span of the first and third rows iff the first and second rows of \mathbf{A} are linearly dependent; but the equation $\mathbf{A}\mathbf{A}^{\top} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ also implies that the rows of \mathbf{A} are orthogonal, which means that they are linearly independent (because they are non-zero). Therefore $Df(\mathbf{A})$ is onto at every $\mathbf{A} \in U$, and U is a manifold.

(c) At \mathbf{A}_0 , the tangent space is the set of all $\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \end{bmatrix}$ such that

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} h_{11} & h_{21} \\ h_{12} & h_{22} \\ h_{13} & h_{23} \end{bmatrix} + \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} h_{11} - h_{12} + h_{11} - h_{12} & h_{21} - h_{22} + h_{11} + h_{12} + h_{13} \\ h_{11} + h_{12} + h_{13} + h_{21} - h_{22} & h_{21} + h_{22} + h_{23} + h_{21} + h_{22} + h_{23} \end{bmatrix}$$

$$= \begin{bmatrix} 2h_{11} - 2h_{22} & h_{21} - h_{22} + h_{11} + h_{12} + h_{13} \\ h_{21} - h_{22} + h_{11} + h_{12} + h_{13} & 2h_{21} + 2h_{22} + 2h_{23} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

The (1,2) and (2,1) entries of this matrix are identical, so we ignore one of them. This leaves us with the equations $h_{11} = h_{22}$, $h_{21} + h_{12} + h_{13} = 0$, and $h_{21} + h_{22} + h_{23} = 0$. By the last two equations, $h_{12} + h_{13} = h_{22} + h_{23}$. Therefore a basis for the tangent space $T_{\mathbf{A}_0}U$ is

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \qquad \text{and} \qquad \begin{bmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

from the equations $h_{11} = h_{22}$, $h_{21} = -h_{22} - h_{23}$, and $h_{12} = h_{22} - h_{23} - h_{13}$.

3. (a) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function and let $\mathbf{a}_0 \in \mathbb{R}^n$. Suppose $Df(\mathbf{a}_0)$ is invertible, and set

$$\mathbf{a}_1 = \mathbf{a}_0 - [Df(\mathbf{a}_0)]^{-1} f(\mathbf{a}_0).$$

Suppose further that $Df(\mathbf{x})$ satisfies a Lipschitz condition with Lipschitz constant M on $\overline{B_r(\mathbf{a}_1)}$, where $r = |\mathbf{a}_1 - \mathbf{a}_0| = |[Df(\mathbf{a}_0)]^{-1}f(\mathbf{a}_0)|$, i.e.,

$$|Df(\mathbf{x}) - Df(\mathbf{y})| \le M|\mathbf{x} - \mathbf{y}|$$
 for all $\mathbf{x}, \mathbf{y} \in \overline{B_r(\mathbf{a}_1)}$.

Then Kantorovich's Theorem says that the equation $f(\mathbf{x}) = \mathbf{0}$ has a unique solution in $\overline{B_r(\mathbf{a}_1)}$, provided that the following inequality is satisfied:

$$M \cdot |[Df(\mathbf{a}_0)]^{-1}|^2 \cdot |f(\mathbf{a}_0)| \le \frac{1}{2}.$$

Moreover, Newton's method starting at \mathbf{a}_0 converges to this solution.

(b) The derivative of p is $7x^6 - 1$. At $a_0 = 2$, this derivative becomes $p'(2) = 7 \cdot 2^6 - 1 = 7 \cdot 64 - 1 = 447$. Thus the first step of Newton's method gives the next guess as

$$a_1 = 2 - \frac{1}{447}(-2) = 2 + \frac{2}{447} = \frac{896}{447}.$$

Now we look for a Lipschitz constant on [2, 2.01] (since 2/447 < 2/400 = .005, this interval contains the ball we're interested in). We have:

$$\begin{aligned} |7x^6 - 1 - (7y^6 - 1)| &= 7|x^6 - y^6| \\ &= 7|x - y||x^5 + x^4y + x^3y^2 + x^2y^3 + xy^4 + y^5| \\ &\le 42|x - y||2.01|^5 \le 42 \cdot 33 \cdot |x - y|. \end{aligned}$$

Now we check the Kantorovich inequality:

$$(42)(33)\left(\frac{1}{447^2}\right)(2) \le \frac{42^2}{447^2} \cdot 2 \le \frac{2}{10^2} \le \frac{1}{2}.$$

Therefore Kantorovich's Theorem implies that Newton's method will converge to a root in the interval (2, 2.01).

[Note: We could have computed a Lipschitz constant for p' by finding a bound for the second derivative, instead of using the factorization of $x^6 - y^6$. In this case, we even get the same constant. The second derivative of p is $p''(x) = 42x^5$, which on [2, 2.01] is bounded by $42 \cdot |2.01|^5 \approx 42 \cdot 33$.]

4. (a) The fact that I is linear follows immediately from the properties of integrals:

$$I(p+q) = \int_{-1}^{1} (p(x) + q(x)) dx = \int_{-1}^{1} p(x) dx + \int_{-1}^{1} q(x) dx = I(p) + I(q)$$
$$I(cp) = \int_{-1}^{1} cp(x) dx = c \int_{-1}^{1} p(x) dx = cI(p).$$

(b) Let **A** be a $k \times n$ matrix, with rank r. Then the Fundamental Theorem of Linear Algebra states that

$$null(\mathbf{A}) = (row(\mathbf{A}))^{\perp}$$

and $col(\mathbf{A}) = (null(\mathbf{A}^{\top}))^{\perp}$.

 $null(\mathbf{A})$ is the nullspace of \mathbf{A} , with dimension n-r. $col(\mathbf{A})$ is the column space of \mathbf{A} , and $row(\mathbf{A})$ is the row space of \mathbf{A} (i.e., the column space of \mathbf{A}^{\top}); these both have dimension r. $null(\mathbf{A}^{\top})$ therefore has dimension k-r.

(c) Let $bx \in W$. We compute directly:

$$I(bx) = \int_{-1}^{1} bx \, dx = \frac{b}{2} x^{2} \Big|_{-1}^{1} = \frac{b}{2} - \frac{b}{2} = 0,$$

and therefore $W \subset \ker I$. It is not the full kernel of I, however: I maps from a three-dimensional space to a one-dimensional space, so its kernel must have at least dimension 2, by the rank-nullity formula. But W is only one-dimensional.

5. (a) The partial derivatives of f are

$$D_1 f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y - 1,$$
 $D_2 f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x + 1,$ and $D_3 f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2z.$

These all vanish only at the point $\mathbf{x}_0 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$, and therefore this is the only critical point of f. f is a quadratic polynomial, so its Taylor polynomial of degree two at \mathbf{x}_0 is

$$P_{f,\mathbf{x}_0}^2 \begin{pmatrix} -1 + h_x \\ 1 + h_y \\ 0 + h_z \end{pmatrix} = f \begin{pmatrix} -1 + h_x \\ 1 + h_y \\ 0 + h_z \end{pmatrix} = (-1 + h_x)(1 + h_y) - (-1 + h_x) + (1 + h_y) + (h_z)^2$$
$$= -1 + h_x - h_y + h_x h_y + 1 - h_x + 1 + h_y + h_z^2$$
$$= 1 + h_x h_y + h_z^2.$$

The quadratic terms yield the quadratic form

$$\frac{1}{4} \left((h_x + h_y)^2 - (h_x - h_y)^2 \right) + h_z^2,$$

which has signature (2,1). Therefore \mathbf{x}_0 is a saddle of f.

(b) F is our constraint function. Its Jacobian is

$$DF\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 2(x+1) & 2(y-1) & 2z \end{bmatrix}.$$

By the Lagrange multiplier theorem, a constrained critical point on $S_{\sqrt{2}}(\mathbf{x}_0)$ occurs at a point where

$$Df \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda DF \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$
 i.e.,
$$\begin{cases} y - 1 = 2\lambda(x+1) \\ x + 1 = 2\lambda(y-1) \\ 2z = 2\lambda z \end{cases}$$
.

The final equation says either $\lambda = 1$ or z = 0.

If $z \neq 0$, solving the other equations yields x = -1, y = 1. Then the constraint

function F shows that $z = \pm \sqrt{2}$. Thus $\begin{pmatrix} -1\\1\\\pm \sqrt{2} \end{pmatrix}$ are constrained critical points

of f.

If z = 0, then the first two equations imply that $\lambda = \pm 1/2$ or $\lambda = 0$. But if $\lambda = 0$, then y = 1 and x = -1, yielding the point \mathbf{x}_0 , which is not on $S_{\sqrt{2}}(\mathbf{x}_0)$. Therefore $\lambda = \pm 1/2$. In the case $\lambda = 1/2$, we get y = x + 2, while if $\lambda = -1/2$,

$$y = -x$$
. Both of these lead to $x = 0, -2$. Thus $\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}$ are also constrained critical points of f .

(c) We showed in part (a) that the only critical point in the interior of the ball is at \mathbf{x}_0 , and that this point is a saddle; therefore it cannot be an extremum. We compute f at the constrained critical points (on the surface of the ball) found in (b):

$$f\begin{pmatrix} -1\\1\\\pm\sqrt{2}\end{pmatrix} = 3 \qquad f\begin{pmatrix} 0\\2\\0 \end{pmatrix} = 2 \qquad f\begin{pmatrix} -2\\0\\0 \end{pmatrix} = 2$$
$$f\begin{pmatrix} 0\\0\\0 \end{pmatrix} = 0 \qquad f\begin{pmatrix} -2\\2\\0 \end{pmatrix} = 0$$

Therefore the maximum of f on $\overline{B_{\sqrt{2}}(\mathbf{x}_0)}$ is 3 and the minimum is 0.

6. The vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ is orthogonal to H. Hence the normalized vector

$$\mathbf{v} = \frac{1}{\sqrt{a^2 + b^2 + c^2}} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

is a normal vector to H at every point. (\mathbf{v} is well-defined because a, b, and c are not all zero.) Thus the Gauss map $H \to S^2$ is the constant map $\mathbf{x} \mapsto \mathbf{v}$ for all $\mathbf{x} \in H$. The derivative of this map is the zero map at every point, which has determinant zero. Therefore the Gaussian curvature of H is 0 everywhere.