Chapter 8: Deadlocks

Outline

- System Model
- Deadlock Characterization
- Methods for Handling Deadlocks
- Deadlock Prevention
- Deadlock Avoidance
- Deadlock Detection
- Recovery from Deadlock

Chapter Objectives

- Illustrate how deadlock can occur when mutex locks are used
- Define the four necessary conditions that characterize deadlock
- Identify a deadlock situation in a resource allocation graph
- Evaluate the four different approaches for preventing deadlocks
- Apply the banker's algorithm for deadlock avoidance
- Apply the deadlock detection algorithm
- Evaluate approaches for recovering from deadlock

System Model

- System consists of resources
- Resource types R_1, R_2, \ldots, R_m
 - CPU cycles, memory space, I/O devices
- Each resource type R_i has W_i instances.
- Each process utilizes a resource as follows:
 - request
 - use
 - release

Deadlock with Semaphores

- Data:
 - A semaphore s₁ initialized to 1
 - A semaphore s₂ initialized to 1
- Two threads T_1 and T_2

```
wait(s<sub>1</sub>)
wait(s<sub>2</sub>)
```

```
T<sub>2</sub>:
    wait(s<sub>2</sub>)
    wait(s<sub>1</sub>)
```


Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

- Mutual exclusion: only one thread at a time can use a resource
- Hold and wait: a thread holding at least one resource is waiting to acquire additional resources held by other threads
- No preemption: a resource can be released only voluntarily by the thread holding it, after that thread has completed its task
- **Circular wait:** there exists a set $\{T_0, T_1, ..., T_n\}$ of waiting threads such that T_0 is waiting for a resource that is held by T_1, T_1 is waiting for a resource that is held by $T_2, ..., T_{n-1}$ is waiting for a resource that is held by T_n , and T_n is waiting for a resource that is held by T_n .

Resource-Allocation Graph

A set of vertices *V* and a set of edges *E*.

- V is partitioned into two types:
 - $T = \{T_1, T_2, ..., T_n\}$, the set consisting of all the threads in the system.
 - $R = \{R_1, R_2, ..., R_m\}$, the set consisting of all resource types in the system
- request edge directed edge T_i → R_j
- assignment edge directed edge $R_j \rightarrow T_i$

Resource Allocation Graph Example

- One instance of R₁
- Two instances of R₂
- One instance of R₃
- Three instance of R₄
- T₁ holds one instance of R₂ and is waiting for an instance of R₁
- T₂ holds one instance of R₁, one instance of R₂, and is waiting for an instance of R₃
- T₃ is holds one instance of R₃

Resource Allocation Graph with a Deadlock

Graph with a Cycle But no Deadlock

Resource Allocation Graph

Thread	hread Allo	cation	Req	uest
	R1	R2	R1	R2
Γ1	1 0	1	1	0
Γ2	2 1	0	0	0
Г3	3 1	0	0	1
Γ 4	4 0	1	0	0
		1 0 0	1 0 0 0	0 0 1 0

(R1,R2)

Availability(2, 2)

(0, 0)

After T2 execution:

1, 0

After T4 execution:

(1, 1)

After T1 execution:

(1, 2)

After T3 execution:

(2, 2)

Basic Facts

- If graph contains no cycles ⇒ no deadlock
- If graph contains a cycle ⇒
 - if only one instance per resource type, then deadlock
 - if several instances per resource type, possibility of deadlock 🧾

Methods for Handling Deadlocks

- Ensure that the system will never enter a deadlock state:
 - Deadlock prevention
 - Deadlock avoidance
- Allow the system to enter a deadlock state and then recover
- Ignore the problem and pretend that deadlocks never occur in the system.

Deadlock Prevention

Invalidate one of the four necessary conditions for deadlock:

- Mutual Exclusion –must hold for non-sharable resources
- Hold and Wait must guarantee that whenever a thread requests a resource, it does not hold any other resources
 - Require threads to request and be allocated all its resources before it begins execution or allow thread to request resources only when the thread has none allocated to it.
 - Low resource utilization; starvation possible

Deadlock Prevention (Cont.)

No Preemption:

- If a process that is holding some resources requests another resource that cannot be immediately allocated to it, then all resources currently being held are released
- Preempted resources are added to the list of resources for which the thread is waiting
- Thread will be restarted only when it can regain its old resources, as well as the new ones that it is requesting

Circular Wait:

 Impose a total ordering of all resource types, and require that each thread requests resources in an increasing order of enumeration

Circular Wait

- Invalidating the circular wait condition is most common.
- Simply assign each resource (i.e., mutex locks) a unique number.
- Resources must be acquired in order.

Deadlock Avoidance

Requires that the system has some additional *a priori* information available

- Simplest and most useful model requires that each thread declare the maximum number of resources of each type that it may need
- The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can never be a circular-wait condition
- Resource-allocation state is defined by the number of available and allocated resources, and the maximum demands of the processes

Safe State

- When a thread requests an available resource, system must decide if immediate allocation leaves the system in a safe state
- System is in **safe state** if there exists a sequence $< T_1, T_2, ..., T_n >$ of ALL the threads in the systems such that for each T_i , the resources that T_i can still request can be satisfied by currently available resources + resources held by all the T_i , with j < I
- That is:
 - If T_i resource needs are not immediately available, then T_i can wait until all T_i have finished
 - When T_j is finished, T_i can obtain needed resources, execute, return allocated resources, and terminate
 - When T_i terminates, T_{i+1} can obtain its needed resources, and so on

Basic Facts

- If a system is in safe state ⇒ no deadlocks
- If a system is in unsafe state ⇒ possibility of deadlock
- Avoidance ⇒ ensure that a system will never enter an unsafe state.

Safe, Unsafe, Deadlock State

Avoidance Algorithms

- Single instance of a resource type
 - Use a resource-allocation graph
- Multiple instances of a resource type
 - Use the Banker's Algorithm

Resource-Allocation Graph Scheme

- Claim edge $T_i \rightarrow R_j$ indicated that process T_j may request resource R_j ; represented by a dashed line
- Claim edge converts to request edge when a thread requests a resource
- Request edge converted to an assignment edge when the resource is allocated to the thread
- When a resource is released by a thread, assignment edge reconverts to a claim edge
- Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

- Suppose that thread T_i requests a resource R_i
- The request can be granted only if converting the request edge to an assignment edge does not result in the formation of a cycle in the resource allocation graph

Banker's Algorithm

- Multiple instances of resources
- Each thread must a prior claim maximum use
- When a thread requests a resource, it may have to wait <a>=
- When a thread gets all its resources it must return them in a finite amount of time

Data Structures for the Banker's Algorithm

Let n = number of processes, and m = number of resources types.

- Available: Vector of length m. If available [j] = k, there are k instances of resource type R_j available
- Max: $n \times m$ matrix. If Max[i,j] = k, then process T_i may request at most k instances of resource type R_i
- Allocation: $n \times m$ matrix. If Allocation[i,j] = k then T_i is currently allocated k instances of R_j
- **Need**: $n \times m$ matrix. If Need[i,j] = k, then T_i may need k more instances of R_i to complete its task

$$Need [i,j] = Max[i,j] - Allocation [i,j]$$

Safety Algorithm

 Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available
Finish
$$[i]$$
 = false for i = 0, 1, ..., n - 1

- Find an i such that both:
 - (a) Finish [i] = false
 - (b) *Need_i* ≤ *Work*If no such *i* exists, go to step 4
- 3. Work = Work + Allocation;
 Finish[i] = true
 go to step 2
- 4. If **Finish** [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process P_i

 $Request_i = request \ vector for process T_i$. If $Request_i[j] = k$ then process T_i wants k instances of resource type R_j

- If Request_i ≤ Need_i go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim
- If Request_i ≤ Available, go to step 3. Otherwise T_i must wait, since resources are not available
- 3. Pretend to allocate requested resources to T_i by modifying the state as follows:

Available = Available - Request; Allocation; = Allocation; + Request; Need; = Need; - Request;

- If safe ⇒ the resources are allocated to T_i
- If unsafe ⇒ T_i must wait, and the old resource-allocation state is restored

Example of Banker's Algorithm

1057

5 threads T₀ through T₄;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

• Snapshot at time T₀:

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>	- 725		Need
	ABC	ABC	ABC	3 3 2		ABC
T_0	010	753	332		Τ	
T_1	200	322	3 3 2 After T1 execution:		1 ₀	743
T_2	302	902	5 3 2 After T3 execution:		/ ₁	122
T_3	211	222	7 4 3 After T4 execution:		I_2	600
T_4	002	4 3 3	6 4 5 After T2 execution:		T_{s}	011
	725		9 4 7 After TO execution:		T_4	431

Example (Cont.)

The content of the matrix **Need** is defined to be **Max – Allocation**

• The system is in a safe state since the sequence $< T_1, T_3, T_4, T_2, T_0 >$ satisfies safety criteria

Example: P_1 Request (1,0,2)

Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true

	<u>Allocatio</u>	<u>n Nee</u>	<u>ed</u>	<u>Available</u>	2 3 0
	ABC	ABC	AB	C	After T1 execution: 5 3 2
T_{0}	010	7 4 3	230		After T3 execution:
_	302				743
T_2	302	600			After T4 execution: 7 4 5
T_3	211	011			After T0 execution:
T_4	002	4 3 1			7 5 5 After T2 execution:
					1057

- Executing safety algorithm shows that sequence $< T_1, T_3, T_4, T_0, T_2 >$ satisfies safety requirement
- Can request for (3,3,0) by T₄ be granted?
- Can request for (0,2,0) by T₀ be granted?

Deadlock Detection

- Allow system to enter deadlock state
- Detection algorithm
- Recovery scheme

- Maintain wait-for graph
 - Nodes are threads
 - $T_i \rightarrow T_j$ if T_i is waiting for T_j
- Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists a deadlock
- An algorithm to detect a cycle in a graph requires an order of n² operations, where n is the number of vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph

Corresponding wait-for graph

Several Instances of a Resource Type

- Available: A vector of length m indicates the number of available resources of each type
- Allocation: An n x m matrix defines the number of resources of each type currently allocated to each thread.
- Request: An n x m matrix indicates the current request of each thread. If Request [i][j] = k, then thread T_i is requesting k more instances of resource type R_i.

Detection Algorithm

- 1. Let **Work** and **Finish** be vectors of length **m** and **n**, respectively Initialize:
 - a) Work = Available
 - b) For *i* = 1,2, ..., *n*, if *Allocation*_i ≠ 0, then *Finish*[i] = *false*; otherwise, *Finish*[i] = *true*
- 2. Find an index *i* such that both:
 - a) Finish[i] == false
 - b) Request, ≤ Work

If no such *i* exists, go to step 4

Detection Algorithm (Cont.)

- 3. Work = Work + Allocation;
 Finish[i] = true
 go to step 2
- 4. If **Finish[i]** == **false**, for some i, $1 \le i \le n$, then the system is in deadlock state. Moreover, if **Finish[i]** == **false**, then T_i is deadlocked

Algorithm requires an order of $O(m \times n^2)$ operations to detect whether the system is in deadlocked state

Example of Detection Algorithm

- Five threads T_0 through T_4 ; three resource types A (7 instances), B (2 instances), and C (6 instances)
- Snapshot at time T₀:

<u>Allocation</u>		Request	<u>Available</u>	
	ABC	ABC	ABC	
T_{0}	010	000	000	
T_1°	200	202		
T_2	303	000		
T_3	2 1 1	100		
T_4	002	002		

• Sequence $< T_{0'}$ $T_{2'}$ $T_{3'}$ $T_{4'}$ T_{4} will result in **Finish[i] = true** for all **i**

Example (Cont.)

T₂ requests an additional instance of type C

Request

ABC

 $T_0 = 0.00$

 T_1 202

 $T_{2} 001$

 $T_3 = 100$

 T_{Δ} 002

- State of system?
 - Can reclaim resources held by thread T_0 , but insufficient resources to fulfill other processes; requests
 - Deadlock exists, consisting of processes T_1 , T_2 , T_3 , and T_4

Detection-Algorithm Usage

- When, and how often, to invoke depends on:
 - How often a deadlock is likely to occur?
 - How many processes will need to be rolled back?
 - 4 one for each disjoint cycle
- If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and so we would not be able to tell which of the many deadlocked threads "caused" the deadlock.

Recovery from Deadlock: Process Termination

- Abort all deadlocked threads
- Abort one process at a time until the deadlock cycle is eliminated
- In which order should we choose to abort?
 - Priority of the thread
 - How long has the thread computed, and how much longer to completion
 - 3. Resources that the thread has used
 - 4. Resources that the thread needs to complete
 - 5. How many threads will need to be terminated
 - 6. Is the thread interactive or batch?

- Selecting a victim minimize cost
- Rollback return to some safe state, restart the thread for that state
- Starvation same thread may always be picked as victim, include number of rollback in cost factor

End of Chapter 8

