Using Statistical Tests

EES 4891/5891
Probability & Statistics for Geosciences
Jonathan Gilligan

Class #16: Thursday, March 06 2025

Setting Up

Setting Up

• Accept the GitHub Classroom exercise at https://classroom.github.com/a/rpZxd6KB

• Create a new RStudio project from the repository you create from the exercise assignment.

Learning Goals

Learning Goals

- Understand how to apply Chi-Squared (χ^2) and Komogorov-Smirnoff tests and when to use one or the other.
- Understand how Bayesian hypothesis testing can work for binomial data
- Understand how to use R to perform many of these tests.

Comments on Using χ^2 Tests

Comments on Using χ^2 Tests

- χ^2 test:
 - H_0 : your data O_i are described by the theoretical distribution.
 - 1. Make a histogram of your data with N_b bins, $O_i = \#$ observations in bin;
 - 2. Make a histogram of the theoretically expected counts E_i
 - 3. Calculate test statistic ξ^2

$$\Xi^2 = \sum_{i=1}^{N_b} \frac{(E_i - O_i)^2}{E_i}$$

■ The closer Ξ^2 is to zero, the closer your observed data are to the theoretical expectation.

- If H_0 is true, then Ξ^2 behaves like a random variable drawn from a $\chi^2_{\nu-1}$ distribution.
 - The probability that you would see $\Xi^2 \ge$ what you observed, if H_0 is true is

$$1 - \mathsf{CDF}_{\chi^2_{
u-1}}(\Xi^2) = \int_{-\infty}^{\Xi^2} \chi^2_{
u-1}(x) \mathsf{d}x$$

4. For a test level α , reject H_0 if

$$1-\mathsf{CDF}_{\chi^2_{
u-1}}$$

- $oldsymbol{lpha}$ is the probability of a Type-I error (false positive)
- How many bins (N_b) to use?
 - Rule of thumb:
 - Roughly 80% of the bins should have $E_i > 5$

Kolmogorov-Smirnov Test

- Kolmogorov-Smirnov Test
 - Data: x_i , i = 1, 2, ... N
 - 1. Sort your data from smallest to largest. The empirical cumulative distribuion $F_N(x)$ is given by the pairs $(x_i, i/N)$ with y range from 0 to 1.
 - 2. Calculate F(x): CDF for the theoretical distribution
 - 3. The test statistic is *D*:

$$D = \max_{x} |F_N(x) - F(x)|$$

- 4. Reject H_0 at level α if $D > C_N(\alpha)$
 - $C_N(\alpha)$ is universal. It doesn't depends on the theoretical distribution

- Choosing between χ^2 and K-S tests:
 - KS only works for data with continuous values. χ^2 also works with discrete values.
 - KS doesn't account for diminishing degrees of freedom if you estimate parameters from data.
 - You need a lot of data
 - F(x) can be very hard to calculate for some distributions
 - KS can be preferable if the theoretical distribution can't satisfy the χ^2 condition of 80% of bins having $E_i > 5$.
 - χ^2 can be inconvenient to set up with continuous values.
 - KS can be preferable for date with continuous values.

Bayesian Hypothesis Testing

Sunny Resort Example

- A resort advertises that 6/7 = 85.7% of its days are cloud-free (H_0).
- Observations of 25 days of weather report 15 cloud-free days (60%).
- Can we reject H_0 and conclude that the resort's advertising is misleading?
- Frequentist approach:
 - 1. Test statistic f = k/N = 15/25 = 0.6
 - 2. H_0 : $f = f_c = 6/7 = 0.857$
 - 3. H_a : $f < f_c$, the resort is exaggerating.
 - 4. Null distribution: Probability of X cloud-free days out of 25, if the true fraction of cloud-free days is f_c

$$\mathbb{P}(X=k|f=f_c)=\binom{25}{k}f_c^k(1-f_c)^{25-k}$$

- Test whether to reject H_0 :
 - 5. *p*-value:

$$\mathbb{P}(X \leq 15) = \sum_{k=0}^{15} {25 \choose k} f_c^{k} (1 - f_c)^{25-k}$$

```
## [1] 0.001466964
```

• p = 0.0015, So it is very unlikely that we could see this data if H_0 were true.

Bayesian Approach

- Bayesian approach:
 - Given the data, and a prior, calculate the posterior probability distribution for f.
 - 1. Likelihood for **N** days of observations is a *binomial distribution*:

$$\mathbb{P}(X=k|f)=\binom{N}{k}f^k(1-f)^{N-k}$$

- 2. Prior for *f* :
 - We know that $0 \le f \le 1$.
 - A *beta* distribution $B(x|\alpha,\beta)$ is a good prior for probabilities.
 - $B(x|\alpha=1,\beta=1)$ is a uniform distribution with equal probabilities for all possible values of f.

- 3. Calculate the posterior.
 - The beta distribution has a special property:
 - It's a *conjugate prior* to a *binomial* distribution.
 - a *binomial* likelihood and a *beta* prior always gives a different *beta* for the posterior:

$$\mathbb{P}(f|X=k) = B(f|\alpha'=\alpha+k,$$
 $\beta'=N-k+\beta)$

Beta Distributions

Priors and Posteriors

Exercises with R