Dokumentacja końcowa

8. "Przygotowanie pod maraton"

Treść zadania:

W lasku Kampinoskim jest wiele ścieżek biegowo-rowerowych. Przygotowując się pod maraton zawodnik chce przebiec wszystkimi ścieżkami. Każdą ze ścieżek można pobiec w obu kierunkach i każda z nich ma określoną długość.

Należy wyznaczyć taką trasę biegaczowi która pokryje wszystkie ścieżki gdzie sumaryczny dystans będzie najmniejszy.

Dane wejściowe:

dla 4 skrzyżowań i 5 ścieżek:

013

124

235

0310

0 2 12

<u>Odp</u>: 41

Zrozumienie problemu:

Problem postawiony w treści zadania jest problemem chińskiego listonosza. Sprowadza się on do znalezienia cyklu przechodzącego przez wszystkie krawędzie grafu co najmniej raz, w którym suma wag krawędzi jest najmniejszą możliwą sumą wag krawędzi spośród wszystkich takiego rodzaju cykli w grafie.

Założenia implementacji:

Informacje o grafie będą przechowywane w listach sąsiedztwa. Dla każdego wierzchołka w liście będą znajdować się jego sąsiedzi z wagą krawędzi między nimi.

Informacje o cyklu będą przechowywane w wektorze – zapis wierzchołków cyklu, oraz długość cyklu w zmiennej typu unsigned int.

Użyty język: C++

Opis algorytmu rozwiązującego problem postawiony w zadaniu:

Problem chińskiego listonosza można podzielić na trzy podproblemy:

- 1. Gdy każdy wierzchołek jest parzystego stopnia (dochodzi do niego parzysta ilość krawędzi), istnieje w grafie cykl Eulera (cykl, który przechodzi przez każdą krawędź dokładnie raz) aby otrzymać wynik, wyszukujemy cykl Eulera przy pomocy rekurencyjnej procedury DFS i sumujemy wagi wszystkich krawędzi.
- 2. Dwa wierzchołki są nieparzystego stopnia należy znaleźć najkrótszą ścieżkę między wierzchołkami nieparzystego stopnia (do tego posłuży nam algorytm Dijkstry), zdublować krawędzie, którymi prowadzi ścieżka i znaleźć cykl Eulera, a następnie zsumować wagi wszystkich krawędzi multigrafu.
- 3. Więcej niż dwa wierzchołki są nieparzystego stopnia:
 - a. Wyszukujemy wszystkie wierzchołki nieparzystego stopnia.
 - b. Za pomocą algorytmu Dijkstry znajdujemy najkrótsze ścieżki między nieparzystymi wierzchołkami.
 - c. Wyszukujemy skojarzenie tych wierzchołków w pary o najmniejszej sumie wag krawędzi brute-force wykorzystujący algorytm DFS
 - d. Krawędzie wchodzące w skład wyznaczonych ścieżek skojarzenia dublujemy w grafie początkowym.
 - e. Znajdujemy cykl Eulera i sumujemy wagi wszystkich krawędzi multigrafu.

Algorytm generujący grafy:

Analizowane programem grafy możemy podzielić na trzy różne rodzaje:

- 1. Grafy zawierające cykl Eulera
- 2. Graf z dwoma nieparzystymi wierzchołkami
- 3. Grafy z większą ilością nieparzystych wierzchołków (większą niż 2)

Dla każdego rodzaju stworzyłam osobne generatory:

W pierwszym etapie w każdym z generatorów dodaję do wektora podaną przez użytkownika liczbę wierzchołków, mieszam je, a następnie łączę je ze sobą po kolei (0-1, 1-2, ... n-3 – n-2, n-2 – n-1).

Grafy eulerowskie:

- 1. Łączę ze sobą ostatni i pierwszy wierzchołek (n-1-0)
- 2. Sprawdzam czy użytkownik chce więcej krawędzi niż powstało przy wstępnym łączeniu wierzchołków:
 - a. Jeśli tak przechodzę do kroku wspólnego dla wszystkich generatorów.
 - b. Jeśli nie kończę działanie generatora.

Grafy z dwoma nieparzystymi wierzchołkami:

- 1. Sprawdzam czy użytkownik chce więcej krawędzi niż powstało przy wstępnym łączeniu wierzchołków:
 - a. Jeśli tak losuję dwa wierzchołki (jeden o nieparzystym stopniu, drugi o parzystym) i łączę
 je. Następnie znowu sprawdzam czy użytkownik chce więcej krawędzi w grafie niż do tej
 pory powstało:
 - i. Jeśli tak przechodzę do kroku wspólnego dla wszystkich generatorów.
 - ii. Jeśli nie kończę działanie generatora.
 - b. Jeśli nie kończę działanie generatora.

Grafy z większą niż 2 liczbą nieparzystych wierzchołków:

Graf powstały po wstępnym łączeniu wierzchołków posiada dwa nieparzyste wierzchołki.

- 1. Dopóki graf nie posiada tylu nieparzystych wierzchołków, jaką zażądał użytkownik losuję dwa wierzchołki o parzystych stopniach i łączę je ze sobą krawędzią.
- 2. Sprawdzam czy użytkownik chce więcej krawędzi niż powstało do tej pory:
 - a. Jeśli tak przechodzę do kroku wspólnego dla wszystkich generatorów.
 - b. Jeśli nie kończę działanie generatora.

Krok wspólny dla wszystkich generatorów:

- 1. Sprawdzam jaka zostaje reszta z dzielenia liczby krawędzi, która pozostała do stworzenia przez 3:
 - a. Jeśli 1 losuję jeden z wierzchołek i dodaję pętlę
 - b. Jeśli 2 losuję dwa wierzchołki i dodaję między nimi dwie krawędzie
 - c. Jeśli trzy losuję trzy wierzchołki i dodaję między nimi po jednej krawędzi.
- 2. Sprawdzam czy użytkownik chce więcej krawędzi niż powstało do tej pory:
 - a. Jeśli tak (liczba ta jest zawsze podzielna przez 3) losuję trzy wierzchołki i dodaję między nimi po jednej krawędzi.
 - b. Jeśli nie kończę działanie generatora.

Testowanie:

Testowanie będzie miało trzy wersje:

- 1. Poprawność w kilku plikach txt będą zapisane informacje na temat grafów, a odpowiedź na postawiony problem będzie znana. Dzięki temu będzie można sprawnie sprawdzić czy algorytm działa poprawnie.
- 2. Poprawność testowanie wg danych generowanych automatycznie (losowo) z ewentualną parametryzacją określaną przez użytkownika.
- 3. Złożoność aby testować algorytm pod kątem złożoności, powstanie generator dużych grafów spójnych.

Kompilacja

Kompilacja wykonuje się poprzez wywołanie make w folderze z plikami źródłowymi.

Wywołanie:

./aal <flags> <parameters>

Argumenty wywołania:

Flagi	Parametry	Znaczenie
-file	<file_name></file_name>	Wykonuje program z danymi z pliku
		o nazwie <i>file_name</i> . Plik musi znajdować się
		w folderze data
-eulerian	<pre><number_of_vertices> <number_of_edges></number_of_edges></number_of_vertices></pre>	Wykonuje program z wygenerowanymi
		danymi. Generowany jest graf, który posiada
		cykl eulera.
-2odd	<pre><number_of_vertices> <number_of_edges></number_of_edges></number_of_vertices></pre>	Wykonuje program z wygenerowanymi
		danymi. Generowany jest graf, który posiada
		dwa nieparzyste wierzchołki
-moreOdd	<pre><number_of_vertices> <number_of_edges></number_of_edges></number_of_vertices></pre>	Wykonuje program z wygenerowanymi
	<number_of_odd_vertices></number_of_odd_vertices>	danymi. Generowany jest graf, który posiada
		więcej niż dwa nieparzyste wierzchołki.

Parametry number_of_vertices, number_of_edges i number_of_odd_vertices służą do sparametryzowania generatora.

Dodatkową flagą dodawaną przed innymi jest flaga -analysis, która sprawia, że liczony jest czas wykonania głównego algorytmu, potrzebny do analiz złożoności.

Format pliku w wywołaniu z parametrem -file:

v01 v02 le0

v11 v12 le1

...

vi1 vi2 lei

vi1 - indeks początkowego wierzchołka opisywanej krawędzi

vi2 - indeks końcowego wierzchołka opisywanej krawędzi

lei - długość opisywanej krawędzi

Wierzchołki numerowane są od 0 po kolei liczbami naturalnymi.

Wyjście

Na wyjściu otrzymujemy przebieg cyklu Eulera oraz jego długość.

Wyświetlana wcześniej struktura grafu wspomaga analizę problemu.

Dekompozycja:

Projekt podzielony jest na pakiety:

- Graph struktura danych jaką jest graf i wszelkie metody potrzebne do przeanalizowania go.
- Generator klasa generatora grafów, zależnego od parametrów wywołania programu.
- Funkcja main wczytuje parametry wywołania, uruchamia generator grafów lub wczytuje graf z pliku i rozwiązuje problem.

Ocena złożoności:

Aby poprawnie wykonać pomiary złożoności obliczeniowej, uprościłam problem i przyjęłam stałą zależność liczby krawędzi od liczby wierzchołków. Dla grafów rzadkich $E=(\ |V|\ *\ (|V|-1)\ *\ 0.5)\ *\ 0.25,$ dla gęstych $E=(\ |V|\ *\ (|V|-1)\ *\ 0.5)\ *\ 0.5.$ Stąd wynika zmiana szacowanych złożoności algorytmów:

Rozwiązanie problemu postawionego w zadaniu dla:

- Grafów Eulera: $O(V)*O(E) + O(V^2) = O(V) * O(V^2) + O(V^2) = O(V^3)$
- Grafów z dwoma nieparzystymi wierzchołkami: $O(V^3) + O(V^2) = O(V^3)$

 \bullet Grafów z liczbą nieparzystych wierzchołków większą niż 2: $c*O(V^2)$, gdzie c – ilość wierzchołków nieparzystych.

Pomiary czasów wykonania:

Wszystkie pomiary zostały wykonane dla 50 różnych, losowo wygenerowanych grafów o tej samej liczbie wierzchołków i krawędzi, podanej jako parametry wywołania. Wyniki podane w tabelach są średnimi arytmetycznymi wszystkich pomiarów dla określonych parametrów.

Czasy zawarte w tabelach podane są w mikrosekundach.

Pomiary i porównanie złożoności z teoretyczną złożonością asymptotyczną (pesymistyczną):

Dla grafów rzadkich:

	Eulerian graph			2 odd vertices			more odd vertices		
	O(V^3)			O(V^3)			c*O(V^2)		
rzadkie	V	T(V)	q(V)	V	T(V)	q(V)	V	T(V)	q(V)
1237	100	1000000	1,120635	100	1000000	1,306868	100	80000	1,049046
2793	150	3375000	1,034458	150	3375000	1,035566	150	180000	0,9984
4975	200	8000000	1,006521	200	8000000	0,982131	200	320000	0,973256
7781	250	15625000	1	250	15625000	1	250	500000	1
11212	300	27000000	1,008242	300	27000000	1,021747	300	720000	1,053048
15268	350	42875000	1,00467	350	42875000	1,034629	350	980000	1,127977
19950	400	64000000	1,07699	400	64000000	1,029599	400	1280000	1,195941

Dla grafów o gęstości "pośredniej":

	Eulerian graph			2 odd vertices			more odd vertices		
	O(V^3)			O(V^3)			c*O(V^2)		
pośrednie	V	T(V)	q(V)	V	V T(V) q(V)		V	T(V)	q(V)
2475	100	1000000	0,988535	100	1000000	0,94131	100	1000000	1,735809
5587	150	3375000	0,966332	150	3375000	0,901858	150	3375000	1,309372
9950	200	8000000	1,053031	200	8000000	0,989286	200	8000000	1,106237
15562	250	15625000	1	250	15625000	1	250	15625000	1
22425	300	27000000	1,036144	300	27000000	1,003896	300	27000000	0,989586
30537	350	42875000	0,983457	350	42875000	0,977865	350	42875000	0,961402
39900	400	64000000	1,090197	400	64000000	0,972914	400	64000000	0,940947

Dla grafów gęstych:

Dia graiow gestyen.									
	Eulerian graph			2 odd vertices			more odd vertices		
	O(V^3)			O(V^3)			c*O(V^2)		
geste	V	T(V)	q(V)	V	V T(V) q(V)		V	T(V)	q(V)
3712	100	1000000	0,86868	100	1000000	0,886381	100	1000000	1,377406
8381	150	3375000	0,924495	150	3375000	0,942704	150	3375000	1,093606
14925	200	8000000	0,968185	200	8000000	0,99988	200	8000000	1,001823
23343	250	15625000	1	250	15625000	1	250	15625000	1
33637	300	27000000	0,972028	300	27000000	0,960059	300	27000000	0,977681
45806	350	42875000	0,97066	350	42875000	0,99173	350	42875000	0,924742
59850	400	64000000	0,998248	400	64000000	0,964648	400	64000000	0,959138

Wnioski:

Analizując wyniki q(V) można zauważyć, że dla grafów eulerowskich złożoność została dosyć dobrze oszacowana. Lekko odbiega od normy w przypadku grafów gęstych dla małej liczby wierzchołków - występuje minimalne niedoszacowanie.

W przypadków grafów z dwoma nieparzystymi wierzchołkami oszacowanie jest trochę gorsze, ale wciąż nie najgorsze. Widzimy, że dla małej ilości wierzchołków w grafie oszacowanie nie sprawdza się.

Gdy w grafie występuje więcej niż 2 wierzchołki nieparzyste (analizowana ilość - 8), dla gęstości pośredniej i grafów gęstych występuje przeszacowanie, zaś dla grafów rzadkich - niedoszacowanie.

Wszelkie przeszacowania mogą wynikać z przyjętej pesymistycznej złożoności czasowej. Rzeczywiste wyniki mogą być lepsze niż oszacowane.

Natomiast niedoszacowania mogą wynikać z dużej ilości wywołań funkcji, dodawania elementów do *std::vector* i innych operacji, które nie są wprost związane z logiką algorytmu.

8 nieparzystych wierzchołków

V	rzadkie		pos	rednie	gęste		
200	4975	163010	9950	381031	14925	735082	
250	7781	261702	15562	672732	23343	1433095	
300	11212	396842	22425	1150375	33637	2421118	

10 nieparzystych wierzchołków

V	rz	adkie	pos	średnie	gęste		
200	4975	5798941	9950	5528800	14925	6129935	
250	7781	5936505	15562	5945874	23343	7096090	
300	11212	5789614	22425	6773513	33637	8255550	

Zrobiłam też kilka pomiarów dla większej ilości nieparzystych wierzchołków – 10.

Porównując te dwie tabele, widzimy, że czas działania algorytmu wraz ze wzrostem ilości nieparzystych wierzchołków, bardzo mocno rośnie.

Pierwsze kolumny w każdej z rozważanych grup grafów określają ilość krawędzi.