

<u>Home</u> <u>Gameboard</u> Chemistry **Foundations** Stoichiometry Solids 3

Solids 3

GCSE A Level

Essential Pre-Uni Chemistry B4.3	C C C P P P
Calculate the amount of substance in:	
Part A (a)	
$1.001\mathrm{g}$ of $\mathrm{CaCO_3}\mathrm{(s)}$, to 3 significant figures	
Part B (b)	
$197\mathrm{kg}$ of $\mathrm{Au}(\mathrm{s})$, to 3 significant figures	
Part C (c)	
$1.4\mathrm{g}$ of $\mathrm{CO}\left(\mathrm{g}\right)$, to 2 significant figures	
Part D (d)	

 $2.006\,\mathrm{kg}$ of $\mathrm{Hg}\,(\mathrm{l}),$ to 4 significant figures

Part E	(e)
11.1 g of	lithium carbonate, to 3 significant figures
Part F	(f)
10.0 mg o	of lead(II) iodide, to 3 significant figures

Home Gameboard Chemistry Foundations Stoichiometry Reactions 1

Reactions 1

GCSE A Level

Essential Pre-Uni Chemistry B6.1

Calculate the amount of oxygen needed, and amount of carbon dioxide produced, in each of the cases below.

Part A
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

$$C_3H_8+5\,O_2\longrightarrow 3\,CO_2+4\,H_2O$$
, using $1.0\,mol$ of C_3H_8

Calculate the amount of oxygen needed.

Calculate the amount of carbon dioxide produced.

Part B
$$C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

$$C_2H_6O+3\,O_2\longrightarrow 2\,CO_2+3\,H_2O$$
, using $0.2\,mol$ of of C_2H_6O

Calculate the amount of oxygen needed.

Calculate the amount of carbon dioxide produced.

Part C
$$2 CO + O_2 \longrightarrow 2 CO_2$$

$$2\,\mathrm{CO} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{CO}_2$$
, using $4.0\,\mathrm{moles}$ of CO

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Part D
$$C_6H_{12}O_6 + 6\,O_2 \longrightarrow 6\,CO_2 + 6\,H_2O$$

$$C_6H_{12}O_6+6\,O_2\longrightarrow 6\,CO_2+6\,H_2O$$
, using $0.040\,moles$ of $C_6H_{12}O_6$

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Part E
$$C_2H_4O_2 + 2O_2 \longrightarrow 2CO_2 + 2H_2O$$

$$C_2H_4O_2 + 2\,O_2 \longrightarrow 2\,CO_2 + 2\,H_2O$$
, using $0.10\,moles$ of $C_2H_4O_2$

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Home Gameboard Chemistry Foundations Stoichiometry Reactions 2

Reactions 2

Essential Pre-Uni Chemistry B6.2

By considering a balanced equation each time, calculate the amount of water produced by complete combustion of the following in oxygen.

Part E (e)

 $0.0030\,\mathrm{moles}$ of methane

Gameboard:

STEM SMART Chemistry Week 5

Home Gameboard Chemistry Foundations Stoichiometry Reactions 3

Reactions 3

Essential Pre-Uni Chemistry B6.3

Consider the equation for each reaction and hence calculate the amount of acid required for complete reaction in each of the following cases.

Part E (e)
$14.8\mathrm{g}$ of calcium hydroxide reacting with $\mathrm{H_2SO_4}.$ Give your answer to 3 significant figures.
Part F (f)
$10\mathrm{g}$ of magnesium oxide reacting with nitric acid. Give your answer to 2 significant figures.
Gameboard:
STEM SMART Chemistry Week 5

Home Gameboard Chemistry Foundations Stoichiometry Balancing Equations

Balancing Equations

Part A Be and O

Balance the following equation, reducing coefficients to the smallest possible integers:

$$\mathrm{Be} + \mathrm{O}_2 \longrightarrow \mathrm{BeO}$$

Part B Ce and O

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Ce + O_2 \longrightarrow CeO_2$$

Part C Cr and Cl

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Cr + Cl_2 \longrightarrow CrCl_3$$

Balance the following equation, reducing coefficients to the smallest possible integers:

$$C + CO_2 \rightarrow CO$$

Part E NaCl and $CaCO_3$

Balance the following equation, reducing coefficients to the smallest possible integers:

$$NaCl + CaCO_3 \longrightarrow Na_2CO_3 + CaCl_2$$

Part F Fe_2O_3 and CO

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Fe_2O_3 + CO \longrightarrow Fe + CO_2$$

Created for isaacphysics.org by Andrea Chlebikova

Gameboard:

STEM SMART Chemistry Week 5

Home Gameboard Chemistry Foundations Stoichiometry TNT

TNT

TNT is used as an explosive. It can decompose according to the following equation:

$$2C_{7}H_{5}N_{3}O_{6}\left(s\right)\longrightarrow7\,CO\left(g\right)+7\,C\left(s\right)+5\,H_{2}O\left(g\right)+3\,N_{2}\left(g\right)$$

Part A RMM

Calculate the relative molecular mass of TNT, rounding your answer to an integer.

Part B Moles of gas

The volume of gas produced at $400\,^{\circ}\mathrm{C}$, when $10\,\mathrm{g}$ of TNT explode, is to be calculated.

How many moles of gas are produced from $1\,\mathrm{mol}$ of TNT?

Part C Volume of gas

At $400\,^{\circ}\mathrm{C}$ and $1\,\mathrm{atm}$, $1\,\mathrm{mol}$ of gas occupies $55\,\mathrm{dm}^3$.

Calculate the volume of gas produced under these conditions from $10\,\mathrm{g}$ of TNT.

Home Gameboard Chemistry Foundations Stoichiometry Gases 1

Gases 1

GCSE A Level

Essential Pre-Uni Chemistry B3.1

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A} = 6.02\, imes\,10^{23}\,{
m mol}^{-1}.$

Part A (a)

Calculate the volume occupied by $4.0\,\mathrm{moles}$ of gas at RTP.

Part B (b)

Calculate the volume occupied by $0.030\,\mathrm{moles}$ of gas at RTP.

Part C (c)

Calculate the volume occupied by $5.0 \times\ 10^{18}$ atoms of helium gas at RTP.

Part D (d)
Calculate the volume occupied by $1.2 imes 10^{24}$ molecules of ozone at RTP.
Part E (e)
Calculate the volume occupied by $8.0\mathrm{g}$ of O_2 at RTP.
Part F (f)
Calculate the volume occupied by $1.1\mathrm{kg}$ of carbon dioxide at RTP.
Gameboard:
STEM SMART Chemistry Week 5

Home Gameboard Chemistry Foundations Stoichiometry Gases 2

Gases 2

GCSE A Level

Essential Pre-Uni Chemistry B3.2

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}.$

Part A (a)

Calculate the amount of gas (at RTP) in $4.8\,\mathrm{dm^3}$.

Part B (b)

Calculate the amount of gas (at RTP) in $12\,\mathrm{m}^3.$

Part C (c)

Calculate the amount of gas (at RTP) in $400\,\mathrm{cm}^3$. Give your answer to 2 significant figures.

Calculate the amount of gas (at RTP) in $18\,\mathrm{ml}.$

Gameboard:

STEM SMART Chemistry Week 5

Home Gameboard Chemistry Foundations Stoichiometry Gases 5

Gases 5

GCSE A Level

Essential Pre-Uni Chemistry B3.5

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}$.

Part A (a)

Calculate the the mass of $1.0\,\mathrm{m}^3$ of neon at RTP.

Part B (b)

Calculate the mass of $20\,\mathrm{cm}^3$ of $(\mathrm{CH_3})_2\mathrm{O}$ at RTP.

Part C (c)

Calculate the the mass of $420\,\mathrm{cm}^3$ of ammonia at RTP. Give your answer to 2 significant figures.

Gameboard:

STEM SMART Chemistry Week 5

Home Gameboard Chemistry Foundations Stoichiometry Compounds TBC

Compounds TBC

When calcium oxide is heated with carbon, an ionic compound, **D**, containing 62.5% of calcium and 37.5% of carbon (by mass), is formed. Under similar conditions, aluminium metal and carbon produce compound **E** which contains 75% of aluminium and 25% of carbon.

When treated with cold water:

- compound **D** produces a gaseous hydrocarbon **F** containing 92.3% of carbon
- compound **E** produces another gaseous hydrocarbon **G** containing 75% of carbon

Part A D
Determine the empirical formula of compound D .
Part B E
Determine the empirical formula of compound E .
Part C F

Determine the empirical formula of compound **G**.

Part E Reaction to form D

Write a balanced equation for the reaction of calcium oxide with carbon, using the empirical formula for **D** you have previously deduced.

$$CaO + \bigcirc C \longrightarrow \bigcirc + CO$$

Items:

1 2 3 4 5 D 2D 3D 4D 5D

Part F Reaction to form E

Write a balanced equation for the reaction of aluminium metal and carbon to form **E** (do not include state symbols).

Part G Reaction of E with water

Assuming the empirical formula you deduced for **G** is also its molecular formula, write a balanced equation for the reaction when compound **E** is treated with water.

$$\mathsf{E} + \bigcirc \mathsf{H}_2\mathsf{O} \longrightarrow \bigcirc \mathsf{Al}(\mathsf{OH})_3 + \bigcirc \mathsf{G}$$

Items:

Adapted with permission from UCLES, A Level Chemistry, November 1990, Special Paper, Question 5