

Representación interna de la información Lic. Diego Krauthamer

Agenda

- > ¿Cómo representa internamente en un dispositivo?
- Sistemas numéricos.
- Preguntas de revisión conceptual
- Bibliografía

Sistemas de numeración

Llamaremos **sistema de numeración** en base **b**, a la representación de números mediante un alfabeto compuesto por **b** símbolos o cifras¹.

¹Fundamentos de informática y programación. Quetglas, Toledo, Cerverón Leo.

Sistemas de numeración en Base 10, 2, 8 y 16

Decimal

- •Es el sistema de numeración que utilizamos habitualmente.
- •Se lo denomina como un sistema de base 10.
- •Comprende cifras del 0 al 9.

Binario

- •Es el sistema de numeración que utilizan los dispositivos electrónicos.
- •Se lo denomina como un sistema base 2.
- •Se compone de dos cifras 0 y 1.

Octal

- •Es un sistema de numeración que facilita las conversiones en informática.
- •Es una variante del sistema binario.
- •Se compone de 8 cifras, 0 a 7.

Hexadecimal

- •Es un sistema de numeración que facilita las conversiones en informática.
- •Es una variante del sistema binario.
- •Se compone de 16 cifras, 0 a 9 y letras desde la A a la F.

Sistemas de numeración en Base 10, 2, 8 y 16/ Resumen

Base	Sistema	Cifras que emplea
10	Decimal	0,1,2,3,4,5,6,7,8,9
2	Binario	0,1
8	Octal	0,1,2,3,4,5,6,7
16	Hexadecimal	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,G.

La Tabla ASCII

- La tabla ASCII (American Standard Code For Informatition Interchange o código estándar para el intercambio de información) es una tabla que contiene los caracteres (letras, números y símbolos) que se utilizan en los dispositivos.
- Fue creado en 1963 por el Comité Estadounidense de Estándares (Ahora ANSI).
- Posee 256 códigos, cada uno de ellos corresponden a caracteres.

Figura Extracto de la tabla ASCII

Conversión de número binario a decimal:

- Un número binario se compone esencialmente de un byte (8 bits) por ejemplo: 0100 0000 corresponde al número decimal 64, que es el símbolo @.
- Se realiza a través del método de sumatoria de potencias de dos, como se muestra a continuación:

Numero Binario	0	1	0	0	0	0	0	0
Potencias de base 2	27	26	2 ⁵	24	23	2 ²	21	20
Resultado potencia	0	64	0	0	0	0	0	0

La sumatoria es igual a (empezando desde la derecha): 0+0+0+0+0+0+64+0=64.

Conversión de numero decimal a binario (método de divisiones sucesivas)

- Divido el número decimal por dos hasta que el dividendo sea 1.
- 2. 2. Copio el cociente y los restos comenzando por la derecha..
- 3. Nos queda el número binario: 1000 0000
- 4. En este caso nos falta un número para completar el byte se rellena con ceros.

Conversión de número hexadecimal a decimal o binario

Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Binario	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

- 1. Convierto cada dígito decimal a cuatro dígitos binarios (4 bits) según la tabla anterior. Por ejemplo queremos convertir el número hexadecimal A23.
- 2. De la tabla anterior podemos concluir:
 - 2.1) "A" convertido a binario: es "1010" ya que la letra "A" en base 10 corresponde a número al número 10.
 - 2.2) "2" convertido a binario es "0010".
 - 2.3) "3" convertido a binario es "0011"
 - 2.4) Finalmente nos queda: 1010 0010 0011

Conversión de decimal a octal/1

- Un número binario octal se compone de tres dígitos cuyas cifras se encuentran comprendidas entre el 0 y el 7.
- Queremos convertir el número 64 a base 8.

	Sistema Octal							
Potencias de base 8	83	8 ²	81	80				
Resultado potencia	512	64	8	1				
Resultado potencia								

1. Buscamos un divisor en potencia de 8 que no sea más gran de que nuestro número a convertir. Vemos que si elegimos 512 nos pasamos, por lo tanto elegimos 64. Nuevamente recurrimos al método de divisiones sucesivas

Conversión de decimal a octal/2

- 2. Dividimos 64 por 8 obteniendo resto 0.
- 3. Repetimos la operación.
- 4. El resultado de convertir el número decimal 64 a octal es 100.

Sucesivas

Preguntas de revisión conceptual.

- 1. ¿Qué es un sistema numeración?
- 2. Realice un cuadro sinóptico con los distintos sistemas de numeración y sus principales características.
- 3. Realice la conversión del número binario 0010 0000 a, decimal, y hexadecimal.
- 4. Realice la conversión del número decimal 512 a binario, y octal.
- 5. Realice la conversión del número decimal 16 a binario y hexadecimal.

Bibliografía obligatoria

- Fundamentos de informática y programación. Quetglas, Toledo, Cerverón Leo. http://robotica.uv.es/Libro/Indice.html
- Matemáticas para programadores, sistemas de numeración y aritmética binaria. William Barden, w. Editorial Anaya Multimedia. 1998.

Bibliografía Ampliatoria

Tabla ASCII
http://conceptodefinicion.de/ascii/