

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística

Projeto de monografia

Título: Modelo epidemiológico com compartimentos SEIQHRF em redes: implementação e inferência via

MCMC

Aluno: Luís Fernando Israel Assunção Orientador: Adrian Pablo Hinojosa Luna

1. Introdução

O avanço de epidemias em populações fechadas é um problema que pode ser modelado como um processo Markoviano temporal com um número finito de estados, também chamados de compartimentos (Kendall 1956). As estimativas fornecidas por esses modelos sob o efeito de diferentes intervenções informam a construção de políticas públicas eficientes no combate às doenças estudadas.

No último ano, muitos modelos foram propostos para estimar a propagação e os impactos da COVID-19 (Coronavirus Disease 2019). Uma das propostas para capturar os efeitos sociais e estruturais da pandemia é utilizar o conjunto de estados SEIQHRF (Susceptible-Exposed-Quarantined-Hospitalized-Recovered-Fatality) (Churches 2020).

Na UFMG, o projeto *COVID-19: proposta de um modelo epidemiológico que incorpora estruturas sociais de contágio* tem mapeado o grafo de relações pessoais do Aglomerado da Serra em Belo Horizonte, com o objetivo de modelar a progressão da COVID-19 em contextos de aglomerações urbanas. Esse projeto motivou a implementação de modelos de redes utilizando os estados SEIQHRF nesta monografia.

2. Metodologia

2.1 Estados, infecções e progressões

Diferentes doenças e intervenções estão associadas a conjuntos de estados distintos. Um conjunto de estados muito utilizado na literatura é o SIR (Susceptible-Infected-Recovered) (Keeling and Rohani 2008), onde:

• Susceptible: suscetível à infecção;

• Infected: infectado e sintomático. Pode infectar suscetível;

• Recovered: recuperado.

O SEIQHRF introduz quatro estados SIR:

- Exposed: infectado e assintomático. Pode infectar o suscetível;
- Quarantined: infectado e sintomático. Pode infectar o suscetível, com menor probabilidade de encontro que os demais estados infectados;
- Hospitalized: infectado e sintomático. Não encontra suscetíveis e tem maior probabilidade de morte;
- Fatality: morte.

A Figura 1 ilustra os caminhos de infecção e progressão do SEIQHRF.

Figura 1 – Infecções (linhas pontilhadas) e progressões (linhas sólidas) dos compartimentos SEIQHRF.

2.2 Tipos de modelos

Existem três tipos de modelos que descrevem o processo de fluxo entre compartimentos (Jenness, Goodreau, and Morris 2018):

- 1. **Deterministic Contact Models (DCM)**: modelos determinísticos a nível de estado, nos quais equações diferenciais descrevem o fluxo entre compartimentos. Essa classe de modelos possui soluções analíticas. Contudo, esses modelos são macroscópicos e, portanto, não descrevem subpopulações (faixas etárias, por exemplo), nem estruturas sociais;
- 2. Individual Contact Models (ICM): modelos estocásticos a nível de indivíduo. Não há soluções analíticas para essa classe de modelos, que são ajustados por meio de algoritmos de Markov Chain Monte Carlo (Andersson and Britton 2000). Cada indivíduo é inicializado em um estado, e a progressão entre estados depende das probabilidades de contato e infecção entre pares de indivíduos. Esses modelos podem descrever subpopulações, mas não descrevem estruturas sociais complexas;
- 3. Network Models: modelos estocásticos a nível de indivíduo. Essa classe de modelos é similar à classe ICM. Contudo, os indivíduos são representados como vértices de um grafo, e o contato é restrito a pares de vértices conectados por arestas. Nesse sentido, são modelos mais adequados para condicionar a progressão das infecções a estruturas sociais.

Até a data da proposição desta monografia, existem apenas implementações de ICM com os estados SEIQHRF. O foco da monografia será implementar e estudar network models com os copartimentos em questão.

2.3 Modelos exponenciais de grafos aleatórios

Formalmente, um grafo aleatório $Y \in \mathcal{Y}$ consiste em um conjunto de n vértices e m arestas $\{Y_{ij} : i = 1, \ldots, n; j = 1, \ldots, n\}$, no qual $Y_{ij} = 1$ se os vértices (i, j) são conectados e $Y_{ij} = 0$ caso contrário.

Exponential random graph models (ERGM) são um modelos da família exponencial que descrevem grafos aleatórios. Um ERGM é definido como:

$$P(Y = y | \theta) = \frac{\exp(\theta^T s(y))}{c(\theta)}, \quad \forall y \in \mathcal{Y}$$

onde θ é um vetor de parâmetros, s(y) é um vetor de estatísticas suficientes e $c(\theta)$ é uma constante normalizadora. As estatísticas suficientes podem ser funções da rede, ou atributos dos vértices.

ERGMs são adequados para a modelagem de redes sociais (Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications 2012).

3. Objetivos

O objetivo principal deste trabalho é implementar o conjunto de estados em um network model, utilizando a linguagem de programação R (R Core Team 2021) e os pacotes ergm (Handcock et al. 2020) para a simulação de grafos e EpiModel (Jenness, Goodreau, and Morris 2018) para o ajuste dos modelos via MCMC.

O objetivo secundário é realizar simulações com dados sintéticos para validar as inferências e a robustez do modelo, usando ERGMs com e sem subpopulações de faixa etária. Além disso, há um terceiro objetivo, de rodar o modelo utilizando os dados coletados no Aglomerado da Serra. Contudo, a factibilidade desse terceiro objetivo depende do andamento do projeto em questão.

Referências

Andersson, Håkan, and Tom Britton. 2000. "Stochastic Epidemic Models and Their Statistical Analysis, Volume 151 of Lecture Notes in Statistics." In *Lecture Notes in Statistics*. Vol. 151. https://doi.org/10.1007/978-1-4612-1158-7.

Churches, Tim. 2020. "Tim Churches Health Data Science Blog: Modelling the Effects of Public Health Interventions on COVID-19 Transmission Using r - Part 2." https://timchurches.github.io/blog/posts/2020-03-18-modelling-the-effects-of-public-health-interventions-on-covid-19-transmission-part-2/.

Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications. 2012. Structural Analysis in the Social Sciences. Cambridge University Press. https://doi.org/10.1017/CBO9780511894701.

Handcock, Mark S., David R. Hunter, Carter T. Butts, Steven M. Goodreau, Pavel N. Krivitsky, and Martina Morris. 2020. Ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks. The Statnet Project (https://statnet.org). https://CRAN.R-project.org/package=ergm.

Jenness, Samuel M., Steven M. Goodreau, and Martina Morris. 2018. "EpiModel: An r Package for Mathematical Modeling of Infectious Disease over Networks." *Journal of Statistical Software, Articles* 84 (8): 1–47. https://doi.org/10.18637/jss.v084.i08.

Keeling, Matt J., and Pejman Rohani. 2008. *Modeling Infectious Diseases in Humans and Animals*. Princeton University Press. http://www.jstor.org/stable/j.ctvcm4gk0.

Kendall, David G. 1956. "DETERMINISTIC AND STOCHASTIC EPIDEMICS IN CLOSED POPULATI-ONS." In *Volume 4 Contributions to Biology and Problems of Health*, edited by Jerzy Neymann, 149–66. University of California Press. https://doi.org/doi:10.1525/9780520350717-011.

R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Belo Horizonte, 25 de maio de 2021

Luís Fernando Israel Assunção

Adrian Pablo Hinojosa Luna