

CARTA AL ESTUDIANTE Análisis de Series Temporales XS0127 Il Ciclo Lectivo 2024

Características del curso

Unidad: Escuela de Estadística, Universidad de Costa Rica

Profesor: Shu Wei Chou Chen (shuwei.chou@ucr.ac.cr)

Horas: Luis Alberto Juárez Potoy (<u>luis.juarezpotoy@ucr.ac.cr</u>)

Créditos: 4 horas contacto semanales: 2 teoría y 2 práctica.

Requisitos: 4 créditos¹

XS3310 Teoría Estadística,

XS2130 Modelos de Regresión Aplicados

Correquisitos: ninguno

Modalidad: Presencial

Grupo	Profesor	Horario	Atención a estudiantes	
1	Shu Wei Chou Chen	Martes y viernes 13:00 a 14:50	Viernes 15:00 a 16:50	
2	Luis Alberto Juárez Potoy	Martes y jueves 18:00 a 19:50	Jueves 16:00 a 17:50	

Descripción

El análisis de series de tiempo es un campo de la estadística que estudia la teoría y los métodos que analizan el comportamiento de datos dependientes en el tiempo. En este curso se presentan los fundamentos del análisis de series de tiempo y los procedimientos para asegurar su aplicación correcta, incluyendo los análisis exploratorios, modelación y pronósticos de este tipo de datos. Además de los fundamentos teóricos, los estudiantes realizan aplicaciones usando lenguajes de programación estadística y desarrollan un trabajo de investigación que se lleva a cabo con una situación real.

__

¹ Definición de crédito: Según el Convenio para unificar la definición de crédito en la Educación Superior de Costa Rica y el Reglamento de Régimen Académico Estudiantil (art. 3, inciso c), se define un crédito como la unidad valorativa del trabajo del estudiante, que equivale a tres horas reloj semanales de trabajo del mismo, durante 15 semanas, aplicadas a una actividad que ha sido supervisada, evaluada y aprobada por el profesor.

Objetivo general

Aplicar los fundamentos del análisis de series de tiempo en la exploración, modelación y pronóstico de este tipo de datos para apoyar la toma de decisiones en diversos campos del conocimiento.

Objetivos específicos

Al finalizar el curso el/la estudiante estará en la capacidad de:

- Conocer los fundamentos básicos del análisis de las series cronológicas y las situaciones en las que se puede realizar análisis de series cronológicas para contribuir a alcanzar los objetivos de investigación.
- 2. Aplicar las técnicas de descomposición de series de tiempo para una interpretación adecuada de los componentes de tendencia, estacional e irregular.
- 3. Implementar las técnicas de suavizamiento exponencial y de regresión con series temporales adecuadas para realizar pronósticos.
- 4. Implementar modelos ARIMA de acuerdo con el enfoque Box & Jenkins, análisis de intervención y regresiones dinámicas, para describir y realizar pronósticos de series temporales.
- 5. Conocer los fundamentos básicos de los modelos lineales multivariados de series temporales para modelar y pronosticar series temporales con varias variables simultáneas.

Habilidades y conocimientos (perfil de salida)

Habilidades	Conocimientos
HM02 - Emplear lenguaje matemático para expresar propiedades estadísticas	CM04 - Conocimientos avanzados de aspectos teórico-matemáticos que dan fundamento al uso de las técnicas de análisis estadístico

HE01 - Identificar y aplicar modelos estadísticos apropiados según el problema de investigación HT02 - Crear, interpretar y modificar programas de código escrito en lenguajes de programación (ej: R, Python y SQL)	CE01 - Conocimientos avanzados de técnicas clásicas y modernas de análisis de datos univariados y multivariados para comprender los fenómenos en diferentes áreas del conocimiento CE02 - Aplicación de modelos estadísticos a problemas de diversas áreas del conocimiento CT09 - Conocimientos básicos en diseño de algoritmos CT10 - Conocimientos básicos en Github como portafolio de proyectos para potenciales empleadores CT11 - Conocimientos básicos en el uso de herramientas en la nube (ej: Rcloud, Google colab, Jupyter)
HI05 - Contextualizar el problema de investigación y los resultados al campo de aplicación HI06 - Aprender elementos del campo de aplicación de forma autónoma HI07 - Comprender artículos científicos tanto de estadística como de disciplinas sustantivas a las cuales aplica la estadística	CI07 - Conocimiento de estrategias de aprendizaje autodidacta CI08 - Conocimientos intermedios de técnicas de lectura (en español e inglés)

Contenidos

- 1. Introducción al análisis de series temporales:
 - a) Introducción a los procesos estocásticos y series de tiempo.
 - b) Análisis exploratorio de series de tiempo.
- 2. Método de descomposición de series:
 - a) Descomposición clásica.
 - b) Descomposición STL.
- 3. Técnicas de suavizamiento exponencial:
 - a) Simple.
 - b) Holt.
 - c) Holt-Winters.

- 4. Regresión con series de tiempo:
- 5. Modelos de series temporales:
 - a) Series estacionarias y diferenciación de series.
 - b) Función de autocorrelación simple y parcial.
- 6. Modelos lineales univariados (ARIMA de Box&Jenkins):
 - a) Identificación, estimación, diagnóstico y predicción de modelos ARIMA.
 - b) Modelos ARIMA estacionales.
- 7. Modelos de regresión dinámica:
 - a) Regresión con errores tipo ARIMA.
 - b) Tendencia determinística y estocástica.
 - c) Análisis de intervención.
 - d) Predictores rezagados.
 - e) Predicción.
- 8. Modelos lineales multivariados de series temporales.

Metodología

El curso es teórico-práctico y exige el uso frecuente de la computadora. Se espera que el estudiante aprenda los fundamentos teóricos para el análisis de series temporales y que realice aplicaciones prácticas utilizando lenguajes de programación estadística. Se propone una combinación de actividades, tales como:

- 1. Combinación de clases magistrales, con la participación activa del estudiantado.
- 2. Desarrollo de laboratorios guiados, usando lenguajes de programación como R o Python.
- 3. Asignación de tareas, exámenes cortos o proyectos para mantener al estudiantado en contacto con la materia del curso.
- 4. Desarrollo de una investigación en grupos para que cada uno analice una serie temporal.
- 5. Cada grupo entrega un informe escrito con formato de artículo científico y realiza una exposición del tema investigado.

Evaluación

	Valor
Evaluaciones cortas	15%
Exposición de casos	15%
Proyecto Final	20%
Examen Parcial I	25%
Examen Parcial II	25%
Total	100%

Cronograma (tentativo)

Semana	Día	3	Mes	Tema	Detalles
1	13		Agosto	1. Introducción	
1		16			
2	20				
2		23			
2	27			2. Descomposición de series	
3		30			
4	3		3. Suavizamiento exponencial 4. Regresión Septiembre	3. Suavizamiento	Evaluación 1
4		6		exponencial	
				_	Anteproyecto de
5	10	••			investigación
6	17				
		20		5. Modelos de series	Evaluación 2
7	24			temporales	
	27				
8	1		Octubre		Examen Parcial I (2 de octubre)
		4		6. ARIMA de Box&Jenkins	
0	8				
9		11			Evaluación 3

10	15				
10		18			
11	22				
11		25			
12	29		Noviembre ¹		Exposición de casos
12		1			Exposición de casos
13	5			7. Modelos de regresión dinámica	Exposición de casos
13		8			
14	12				
17		15			Evaluación 4
	19			8. Modelos multivariados	
15		22			Segundo parcial (20 de noviembre)
	26				
16		29			Entrega y exposición de trabajo final

Bibliografía

- Brockwell, P.J.; Davis, R.A. (1991). Time Series: Theory and Methods. Segunda Edición.
 Springer.
- Hernández, O. (2011). Introducción a las series cronológicas. Editorial UCR.
- Hyndman, R. & Athanasopoulos, G. (2021). Forecasting: principles and practice. Tercera Edición, OTexts: Melbourne, Australia. https://otexts.com/fpp3/
- Makridakis, Wheelwright, McGee. 1998. Forecasting: Methods and applications. Tercera edición. John Wiley & Sons.
- Pankratz, Alan. (1983). Forecasting with Univariate Box-Jenkins Models. Concepts and cases.
 John Wiley and Sons. USA.
- Pankratz, Alan. 1991. Forecasting with Dynamic Regression Models. John Wiley and Sons. USA.
- Shumway, R. & Stoffer, D. (2016). Time series Analysis and its applications. Fourth Edition. Springer.

