CS MI48 HWI

- 1 a) Voluntary Bias only people who want to share their opinion will post online
 - · Response Bios people who share their opinion online tend to have strong feelings on the 155ve
 - · Under coverage bras not all students use Reddit
 - · Over-coverage bras students could make multiple posts on multiple accounts, causing their opinion to be magnified
 - · Non-response bias not every student with a Reddit account will make a post about the issue
 - b) 1) The tool probably saw that successful applicants were mostly male, as there were just more males applying /getting hired. The model then began looking at features of these males and prioritized those (such as 'gender' feature). This caused applicants with 'gender' = female' to get discriminated against.
 - ii) Dropping the 'gender' field from the data may not entirely resolve this issue, as there can be other information in an application that hints at an applicant's gender. For instance, if they attended an all-girls school or were in a woman's sports team, the gender can be inferred.

(0,49	41213 = 3
(1,21	4+2+3 = 3
(2,3)	2+3-1 = 2
(3,1)	3+1+0: 4/3
(4,0)	3+1+0 = 4/3

2 b)	(0,3,3) (1,8,2) (3,8,1)
	1-NN: (0.3,3) (1.8,2) (3.8,1) (0.3,3) (1.8,2) (3.8,1)
	$[(3-3)^2 + (2-2)^2 + ((-1)^2] + 3 = 0.00 \text{ MSE}$
	3-NN: (0.3,3) (1.8,2) (3.8,1)
	(0.3, 2) (1.8, 2) (3.8,2)
	$[(3-2)^2 \cdot (2-2)^2 \cdot (1-2)^2] + 3 = 0.67 \text{ MSE}$
	5-NN: (0.3,3) (1.8,2) (3.8,1)
	$\sqrt{(0.3, 1.2)}$ $(1.7, 1.2)$ $(3.7, 1.2)$
	$[(3-1.2)^2 + (2-1.2)^2 + (1-1.2)^2] \div 3 = 1.31 \text{ MSE}$
	K=1 yields the best results as the MSE=0.00. However, these
	perfect predictions will not generalize well as the model is
	Overfitted specifically to this dataset. Realistically, K=3 is probably
	the hest option since the MSE is relatively low and it will generalize better.
c)	If using 1-NN on training data, then R2=1. This is a bad
	model since it is overfitted to the clata. If using m-NN
	(where $n = number of data points)$ then the $R^2 = 0$. This is
	also a bad model as it is underfitted to the data.
- 1)	
3, la)	Intercept: B. = -2.7327 × 109 Slope: B. = 1.4907 × 106
	9 = 1490700 x - 2732700000
	Population in 2010: 2.6367 x 108 people
11.\	7. 03 . 60227 ()
(0)	The R2 is 0.9323, which means that the estimated regression
	line fits the data very well. A higher R2 could be achieved if
4	not using a straight line, but a curve instead to fit the data.
h (1)	The residuals are in a parabola, which means this model isn't ideal,
2	For a linear model, we want to see that the plot of residuals
D ATTACH	exhibits a random pattern. 1×108
D PHOTO	
N	1750 1800 1850 1900 1950 2000
	17,50 1,500 15,00 15,00 15,00 2,000

	3
2 0)	5
3. 41	From the plot and its relatively high R2 value, we can see
	that drinking more wine is indeed strongly correlated with reduced
	heart disease. However, a strong correlation does not necessarily
	imply causation. There could be other lifestyle choices among
	various cantiles (such as proper diet and exercise) that truly
	explain the difference in heart disease deaths.
0.1	- X
5a)	Consumption based on Income
	17 Intercept: Bo = 4.27 Slope: B, = 0.62 R2 = 0.5816
	Income based on Working Experience
	→ Intercept: Bo = 35.4 Slope: Bi = 7.58 R2 = 0.6027
37)	Contraction has 1 a T 102 - 0 COM
- (0.0)	Consumption based on Income : R=0.5816
	Income based on Working Experience: R2 = 0.6027
	There is a slight association between consumption and income
	that indicates that individuals who earn more money tend to
	also spend more money
	There is a slight association between income and working experience that indicates individuals who have more experience tend to
	· · · · · · · · · · · · · · · · · · ·
	make more money (most likely due to larger skillset)
4.)	Intercept: $\hat{B_0} = 4.53$ Slope: $\hat{B_1} = 0.0992$
	For this linear model, we observe R2 = 0.2107. This is quite low,
10)	which shows a weak linear relationship between x and y.
40)	B, has a standard error of 0.006, and a t-value of 16.323.
	The value Politi is 0.000, which is less than the standard
	p-value threshold of 0.05. Thus, we reject the null hypothesis
	and say there is actually a significant linear relationship between
	x and y
94)	95% confidence interval: [0.0872, 0.1112]
,	This confidence interval does not suggest that B. is meaningfully
	different from 0.

4e)	I believe that this contradiction is the result of a large
	Sample size (1100 points). The sample slope is significantly
	different from 0 while not being meaningfully different
	from O. When anatyzing data, it would probably be smart to look
	at a scatter plot that comes with the linear regression to help visualize the data.
50)	The linear model gives R2 = 0.749. This is a pretty good linear
	model since R2 > 0.5 by a decent amount, but it is still
	far from perfect (R2=1).
56)	We get a 95% prediction interval of {47.237, 73.529} minutes.
	This result indicates that we are 95% confident that the time
	until the next erupton falls between 47,237 and 73.529 minutes
50)	No. You can not determine if you can see the eruption as 50
	minutes falls in the range of 47.237 minutes to 73.529 minutes.
	You can not be certain that the eruption will occur in the next 50 minutes
4. a)	Option 2 is preferable. This option ensures that there is no ordinal
	relationship between the three fish species (ie 1 is more similar
	to 2 than it is to 3), Option I does imply this ordinal relationship,
	so Option 2 (one-hot encoding) makes better sense.
6)	Y= Bo + B, X, + B2 X2 + B3 X2 + B4 X, X2 + B5 X, X2 + E
17	(Bo + Bix, + B2 + B4x, + E fish species A
	= $\begin{cases} \beta_0 + \beta_1 X_1 + \beta_3 + \beta_5 X_1 + \epsilon \end{cases}$ fish species B
	(Bo + B, X, + ∈ else /otherwise

	5
?? ()	Po : expected market sales of Fish Species C at 0 weight
	Bi expected market sales for fish species a per unit change in weight
??	Be: Expected difference in market sales between Fish Species A and C
	at 0 weight
71	Bs: expected difference in market sales between Fish species B and C
	at 0 weight
	By: expected difference in market sales between Fish species A
	and c per unit change in weight
	Bo: expected difference in market sales between Fish species B
	and C per unit change in weight
5. a	The accuracy would be 99%, Accuracy is not a very useful measurement
	in this case because it is an extremely unbalanced dotaset.
	It is smarter to use precision since it looks at the number of
	correct positives over the total number of positive guesses. This
	later is less sensitive to unbalanced datasets, making it
	much more suited to this situation.
ь)	The problem with this dataset is that it is extremely unbalanced.
	A method that may help resolve this problem is to asyment
	the dataset with synthetic data samples of the minority class.