

OTÁVIO DE LIMA SOARES

Relatório 1 GCC253 - Complexidade e projeto de algoritmos.

Lista de ilustrações

Figura 1 – Resultados do teste de Friedman para a tabela 1	4
Figura 2 – Resultado da hipótese da tabela 1	5
Figura 3 – Resultados do teste Friedman Two-way para a tabela 1	6
Figura 4 – Friedman no cenário simétrico da tabela 2	7
Figura 5 – Resultado da hipótese da tabela 2 no cenário simétrico	7
Figura 6 – Friedman no cenário assimétrico da tabela 2	8
Figura 7 – Resultado da hipótese da tabela 2 no cenário assimétrico	8
Figura 8 - Friedman na tabela 3	9
Figura 9 – Resultado da hipótese para a tabela 3	9
Figura 10 - Friedman na Tabela 4	10
Figura 11 – Resultado da hipótese para a tabela 4	10
Figura 12 — Friedman na Tabela 5	11
Figura 13 – Resultado da hipótese para a tabela 5 A3	12
Figura 14 - Friedman na Tabela 6	13
Figura 15 – Resultado da hipótese para a tabela 6 A1	13
Figura 16 - Friedman tabela 5 A3	18
Figura 17 - Friedman tabela 5 A4	19
Figura 18 - LegendFriedman tabela 5 A5	20
Figura 19 — Friedman tabela 5 A6	21
Figura 20 - Friedman tabela 5 A7	22
Figura 21 – Resultado da hipótese tabela 5 A3	22
Figura 22 – Resultado da hipótese tabela 5 A4	23
Figura 23 – Resultado da hipótese tabela 5 A5	23
Figura 24 – Resultado da hipótese tabela 5 A6	23
Figura 25 – Resultado da hipótese tabela 5 A7	24
Figura 26 – Legenda	24
Figura 27 – Legenda	25
Figura 28 – Legenda	25
Figura 29 – Legenda	26

Sumário

1	Introdução	3
2	Desenvolvimento	4
3	Conclusão1	4
4	Referências1	5
	Referências	16
	APÊNDICES	17

1 Introdução

Este documento tem como objetivo relatar os resultados de um estudo feito para a disciplina de Complexidade e Projeto de Algoritimos. O estudo consiste na análise de dados referentes a desempenho de alguns algoritmos em determinadas situações e através da utilização de testes estatísticos não paramétricos para determinar quais são os algoritmos que apresentam melhor desempenho em relação aos demais.

2 Desenvolvimento

Um teste não paramétrico é um teste de hipótese de que não requer que a distribuição da população seja caracterizada por certos parâmetros. Por exemplo, muitos testes de hipóteses contam com o pressuposto de que a população segue uma distribuição normal com parâmetros μ e σ . Os testes não paramétricos não têm essa suposição, de forma que eles são úteis quando os dados são fortemente não normais e resistentes à transformação, que é o caso dos dados presentes nas tabelas referentes ao desempenho dos algoritmos, utilizadas como base para a produção deste relatório, o que torna necessário a utilização de testes não paramétricos para a determinação do melhor algoritmo.

Para a realização desta comparação utilizou-se o software SPSS Statistics da IBM para a realização de testes de Friedman com intervalo de confiança de 99% e com hipótese nula de que não há diferença entre as distribuições de resultados testados, para ranquear os algoritmos em cada uma das tabelas, e Friedman Two-way, para realizar uma comparação dois a dois a fim de determinar se há uma diferença estatística significativa entre os mesmos para que possamos afirmar se um algoritmo é realmente melhor que o outro.

2.1. Tabela 1

Figura 1 – Resultados do teste de Friedman para a tabela 1

	Descriptive Statistics							
							Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
K	7	1952,00	948,447	86	3226	1850,00	2018,00	2451,00
R	7	1988,00	977,667	85	3349	1852,00	2078,00	2463,00
В	7	1973,86	972,627	86	3321	1880,00	1984,00	2478,00
D	7	3828,29	811,181	2078	4643	3851,00	4008,00	4122,00

Friedman Test

Ranks

	Mean Rank
K	1,50
R	2,14
В	2,36
D	4,00

Test Statistics^a

N	7
Chi-Square	14,478
df	3
Asymp. Sig.	,002
Exact Sig.	,000
Point Probability	,000

a. Friedman Test

Hypothesis Test Summary **Null Hypothesis** Decision Test Sig. Related-Samples Friedman's Two-Way Analysis of Variance by Reject the The distributions of K, R, B and D .002 null are the same. hypothesis. Ranks Asymptotic significances are displayed. The significance level is ,01.

Figura 2 – Resultado da hipótese da tabela 1

As figuras acima demonstram que o teste de Friedman acusou que há uma certa diferenciação entre os valores da função objetivo dos algoritmos K, R, B e D. Por isso foi utilizados o teste de Friedman Two-way para que através de uma comparação dois a dois, pudesse ser feita uma inferência a respeito de qual é o melhor algoritmo presente na tabela 1.

Figura 3 – Resultados do teste Friedman Two-way para a tabela 1

Pairwise Comparisons

Each node shows the sample average rank.

Sample 1-Sam	Test Statistic	Std. Error ⊜	Std. Test⊜ Statistic	Sig. ⊜	Adj.Sig.⊜
K-R	-,643	,690	-,932	,352	1,000
K-B	-,857	,690	-1,242	,214	1,000
K-D	-2,500	,690	-3,623	,000	,002
R-B	-,214	,690	-,311	,756	1,000
R-D	-1,857	,690	-2,691	,007	,043
B-D	-1,643	,690	-2,381	,017	,104

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.
Asymptotic significances (2-sided tests) are displayed. The significance level is ,01.

Dado os resultados do testes por pares pode-se concluir que o algoritmo K apresentou um desempenho ligeiramente melhor que os demais algoritmos desta primeira tabela tabela.

2.2 Tabela 2

Como a tabela 2 apresenta cenários de teste com matrizes simétricas e assimétricas realizou-se testes em separado para essas duas situações a fim de determinar a melhor solução para cada uma delas.

2.2.1 Matrizes Simétricas

Figura 4 – Friedman no cenário simétrico da tabela 2

	Descriptive Statistics							
						la.	Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
R	5	4299,60	7933,896	228	18397	240,50	256,00	10380,50
F	5	20829,40	35300,223	255	82483	260,00	2615,00	50506,00
٧	5	13858,20	12519,876	4773	35118	5947,00	7121,00	25138,00

Friedman Test

	Mean Rank
R	1,20
F	2,00
٧	2,80

Test Statistics^a

N	5
Chi-Square	6,400
df	2
Asymp. Sig.	,041
Exact Sig.	,039
Point Probability	,015

a. Friedman Test

Figura 5 - Resultado da hipótese da tabela 2 no cenário simétrico

Visto que a hipótese nula do teste de Friedman foi aceita não foi necessário a utilização de mais um teste, visto que já foi comprovado que os algoritmos apresentaram resultados muito parecidos quando se trata da utilização de matrizes simétricas como dado de entrada.

2.2.2 Matrizes Assimétricas

Figura 6 – Friedman no cenário assimétrico da tabela 2

[Conjunto_de_dados2] C:\Users\Usuario\Desktop\CPA TESTES\tabela 2\TAbela 2 a.sav

Descriptive Statistics

							Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
R	2	8372,00	10988,439	602	16142	451,50	8372,00	12106,50
F	2	5843,00	7655,138	430	11256	322,50	5843,00	8442,00
٧	2	16717,00	8727,112	10546	22888	7909,50	16717,00	17166,00

Friedman Test

Ranks

	Mean Rank
R	2,50
F	1,50
٧	2,00

Test Statistics^a

N	2
Chi-Square	1,000
df	2
Asymp. Sig.	,607
Exact Sig.	,833
Point Probability	,333

a. Friedman Test

Figura 7 – Resultado da hipótese da tabela 2 no cenário assimétrico

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, F and V are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,607	Retain the null hypothesis.

Assim como nos resultados apresentados na seção acima não foi necessario a aplicação de Friedman Two-way nos dados acima, pois a hipótese nula foi aceita, demonstrando que os algoritmos também possuem desempenho similar quando utiliza-se matrises assimetricas como dado de entrada.

2.3 Tabela 3

Figura 8 – Friedman na tabela 3

Descriptive Statistics

	N			13771			Percentiles	
		Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
R	9	1795,11	2021,015	228	5084	259,50	915,00	4041,50
G	9	2021,00	2522,583	270	6855	274,50	702,00	4239,50

Friedman Test

Ranks

	Mean Rank
R	1,28
0	1,72

Test Statistics^a

N	9
Chi-Square	2,000
of	1
Asymp. Sig.	,157
Exact Sig.	,289
Point Probability	,219

a. Friedman Test

Figura 9 – Resultado da hipótese para a tabela 3

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of G and R are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,157	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is ,01.

Assim como apresentados nos resultados para a tabela 2 os algoritmos G e R presentes na tabela 3 não apresentam diferença diferença significativa entre si.

2.4 Tabela 4

Figura 10 – Friedman na Tabela 4

Descriptive Statistics

							Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
В	4	1036,75	96,026	968	1179	976,00	1000,00	1134,25
R	4	1045,25	88,511	1000	1178	1000,00	1001,50	1134,25
K	4	1060,50	99,413	1001	1208	1001,00	1016,50	1164,00

Friedman Test

Ranks

	Mean Rank
В	1,50
R	1,50
K	3,00

Test Statistics^a

N	4
Chi-Square	6,857
df	2
Asymp. Sig.	,032
Exact Sig.	,037
Point Probability	,019

a. Friedman Test

Figura 11 – Resultado da hipótese para a tabela 4

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of B, R and K are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,032	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is ,01.

De forma análoga aos resultados das tabelas 2 e 3 a tabela 4 também apresentou como resultado a aceitação da hipótese nula, sendo assim os algoritmos B, R e K são

estatisticamente iguais dentro do cenário de testes da tabela 4.

2.5 Tabela 5

A tabela 5 assim como a tabela 2 foi dividida em cenários de aplicação para teste. Os testes não-paramétricos também foram realizados em separado para cada área. Como todos os testes apresentaram como resultados a aceitação da hipótese nula para todas as áreas de aplicação, as figuras abaixo apresentam apenas os resultados da área 3 porêm o restante dos resultados encontram-se no apêndice deste documento.

Figura 12 – Friedman na Tabela 5

Descriptive Statistics								
							Percenties	
	N	Mean	Std Deviation	Minimum	Maximum	25th	50th (Median)	75th
R	3	14351,67	22385,401	513	40178	513,00	2364,00	40178,00
B	3	15223,33	23874,468	514	42770	514,00	2386,00	42770,00
K	3	14542,00	22730,906	51.4	40768	514,00	2344,00	40769,00
A	3	14451,33	22637,348	513	40571	513,00	2270,00	40571.00

Friedman Test

Ranks

	Mean Rank
R	1,83
В	3,83
K	2,83
A	1,50

Test Statistics

N	- 3
Chi-Square	6,429
df	3
Asymp. Sig.	,093
Exact Sig.	,076
Point Probability	,028

a. Friedman Test

Figura 13 - Resultado da hipótese para a tabela 5 A3

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, B, K and A are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,093	Retain the null hypothesis

Asymptotic significances are displayed. The significance level is ,01.

2.6 Tabela 6

Assim como a tabela 5 a tabela 6 também contém separação por áreas e os testes foram realizados separadamente. Devido ao fato de todas a áreas terem produzido resultado igual que é a aceitação da hipótese nula apresenta-se apenas os resultados a Área 1, porém o restante dos resultados encontram-se em apêndice para conferência.

Figura 14 – Friedman na Tabela 6

Descriptive Statistics

							Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
G	4	3640,25	3974,025	323	9107	522,25	2565,50	7833,00
Α	4	2877,50	2719,414	597	6599	731,00	2157,00	5744,50
R	4	3149,25	2988,926	602	7139	734,75	2428,00	6285,00
В	4	3104,00	2773,518	619	6576	747,75	2610,50	5953,75
K	4	3193,50	3093,347	712	7463	817,25	2299,50	6463,75

Friedman Test

Ranks

	Mean Rank
G	2,75
Α	2,00
R	3,00
В	3,75
K	3,50

Test Statistics^a

N	4
Chi-Square	3,158
df	4
Asymp. Sig.	,532
Exact Sig.	,588
Point Probability	,036

a. Friedman Test

Figura 15 – Resultado da hipótese para a tabela 6 A1

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, B, K and A are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,261	Retain the null hypothesis.

3 Conclusão

O objetivo deste trabalho foi identificar os melhores algoritmos dentre uma lista de tabelas de resultados de testes fornecidas pelo professor. A distribuição dos dados não se enquadrou nos padrões de distribuição normal, logo, a melhor maneira de analisar os dados é a utilização de testes não-paramétricos. No entanto, aplicaram-se os testes não-paramétricos de Friedman e Friedman Two-way, com intervalo de confiança de 99% e hipótese nula de que não há diferença entre as distribuições de resultados produzidas pelos algoritmos. Os resultados dos testes de Friedman em sua maioria apontaram para a aceitação da hipótese nula afirmando que não há diferença significativa entre o desempenho dos algoritmos, descartando então a necessidade de utilização dos testes de Friedman Two-way na maioria dos casos. A partir dessa análise, conclui-se que em termos estatísticos os algoritmos apresentam desempenho muito parecido, o que impossibilita a escolha de um único algoritmo que se sobressaia aos demais, dados os resultados das funções objetivo fornecidas.

(GLEN, 2014; MINITAB®, b; MINITAB®, a)

GLEN, S. Friedman's Test / Two Way Analysis of Variance by Ranks. 2014. Disponível em: https://www.statisticshowto.com/friedmans-test/. Acesso em: 13 de junho de 2020.

MINITAB®. Como escolher entre um teste não paramétrico e um teste paramétrico. Disponível em: https://blog.minitab.com/pt/como-escolher-entre-um-teste-nao-parametrico-e-um-teste-parametrico. Acesso em: 09 jun. 2020.

MINITAB®. Compreendendo os métodos não paramétricos. Disponível em: https://support.minitab.com/pt-br/minitab/19/help-and-how-to/statistics/nonparametrics/supporting-topics/understanding-nonparametric-methods/#:~:text=Entretanto%2C%20testes%20n%C3%A3o%20param%C3%A9tricos%20n%C3%A3o,e%20provenientes%20da%20mesma%20distribui%C3%A7%C3%A3o. Acesso em: Acesso em: 11 jun. 2020.

Tabela 5.

Figura 16 – Friedman tabela 5 A

	Descriptive Statistics								
							Percentiles		
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th	
R	3	14351,67	22385,401	513	40178	513,00	2364,00	40178,00	
В	3	15223,33	23874,468	514	42770	514,00	2386,00	42770,00	
K	3	14542,00	22730,806	514	40768	514,00	2344,00	40768,00	
Α	3	14451,33	22637,348	513	40571	513,00	2270,00	40571,00	

Friedman Test

Ranks

	Mean Rank
R	1,83
В	3,83
K	2,83
Α	1,50

Test Statistics^a

N	3
Chi-Square	6,429
df	3
Asymp. Sig.	,093
Exact Sig.	,076
Point Probability	,028

a. Friedman Test

Figura 17 – Friedman tabela 5 A4

Descriptive Statistics

							Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
R	6	14596,67	9280,033	1141	23729	3894,25	18681,50	21333,50
В	6	14655,67	9469,751	1141	24453	3855,25	17902,00	22445,25
K	6	14803,83	9568,641	1143	25670	3981,00	18728,00	21137,75
Α	6	14293,50	9293,124	1142	25102	3824,75	17596,00	20980,00

Friedman Test

Ranks

	Mean Rank
R	2,42
В	2,42
K	3,50
Α	1,67

Test Statistics^a

N	6
Chi-Square	6,254
df	3
Asymp. Sig.	,100
Exact Sig.	,096
Point Probability	,006

a. Friedman Test

Figura 18 – LegendFriedman tabela 5 A5

Descriptive Statistics

							Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
R	5	150127,40	92753,145	38716	279780	62796,00	163236,00	230904,50
В	5	149388,40	90917,827	38715	273905	62795,50	163257,00	229047,00
K	5	151278,60	93265,278	38796	279780	62808,50	163235,00	233770,50
Α	5	132611,40	66706,369	38716	187761	62768,50	163235,00	187142,50

Friedman Test

Ranks

	Mean Rank
R	2,70
В	2,50
K	2,80
Α	2,00

Test Statistics^a

N	5
Chi-Square	1,295
df	3
Asymp. Sig.	,730
Exact Sig.	,763
Point Probability	,024

a. Friedman Test

Figura 19 – Friedman tabela 5 A6

Descriptive Statistics

						Percentiles			
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th	
R	8	26584,25	26667,664	3413	84947	5574,50	20791,50	36665,25	
В	8	26909,50	26775,915	3707	84746	5440,50	21907,00	37003,75	
K	8	26927,75	26940,369	3584	85694	5458,00	22051,00	36602,00	
A	8	25770,00	26808,018	3367	85694	5537,50	19403,50	33551,00	

Friedman Test

Ranks

1	Mean Rank
R	2,94
В	2,69
K	2,56
A	1,81

Test Statistics^a

N	8
Chi-Square	3,971
df	3
Asymp. Sig.	,265
Exact Sig.	,274
Point Probability	,005

a. Friedman Test

Figura 20 – Friedman tabela 5 A7

Descriptive Statistics									
					Percentiles				
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th	
R	5	384,60	296,837	228	915	242,00	261,00	589,00	
В	5	391,00	295,512	240	919	245,50	268,00	598,00	
K	5	393,20	297,033	238	924	250,00	271,00	597,50	
Α	5	372,40	272,763	222	859	236,50	251,00	569,00	

Friedman Test

Ranks

	Mean Rank
R	2,00
В	2,90
K	3,40
Α	1,70

Test Statistics^a

N	5
Chi-Square	5,694
df	3
Asymp. Sig.	,127
Exact Sig.	,126
Point Probability	,007

a. Friedman Test

Figura 21 – Resultado da hipótese tabela 5 A3

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, B, K and A are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,093	Retain the null hypothesis.

Figura 22 – Resultado da hipótese tabela 5 A4

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, B, K and A are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,100	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is ,01.

Figura 23 – Resultado da hipótese tabela 5 A5

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, B, K and A are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,730	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is ,01.

Figura 24 – Resultado da hipótese tabela 5 A6

Hypothesis Test Summary

ı	Null Hypothesis	Test	Sig.	Decision
1 The distri	butions of R, B, K and A ame.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,265	Retain the null hypothesis.

Figura 22 – Resultado da hipótese tabela 5 A4

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, B, K and A are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,127	Retain the null hypothesis.

Asymptotic significances are displayed. The significance level is ,01.

Tabela 6

Descriptive Statistics

							Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
G	6	7248,00	3217,933	1997	12078	5512,25	7478,00	8849,25
Α	6	8873,33	4780,048	2160	16141	5928,75	7775,00	13188,25
R	6	9000,67	4823,827	2327	16142	5968,25	7773,00	13640,75
В	6	9036,50	4877,871	2284	16144	5957,50	7772,50	13834,00
K	6	8875,83	4782,142	2160	16141	5928,75	7775,00	13199,50

Friedman Test

Ranks

	Mean Rank
G	1,75
Α	3,42
R	3,17
В	3,08
K	3,58

Test Statistics^a

Ν	6
Chi-Square	5,578
df	4
Asymp. Sig.	,233
Exact Sig.	,239
Point Probability	,004

a. Friedman Test

Figura 27 – Legenda

Descriptive Statistics

						Percentiles		
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
G	4	199556,50	145083,398	45721	391413	71620,00	180546,00	346503,50
Α	4	200051,75	154140,260	43821	408400	68258,25	173993,00	357904,00
R	4	201763,25	158677,657	44078	418863	68627,25	172056,00	364606,50
В	4	209965,00	172882,333	43926	449564	68369,25	173185,00	388340,75
K	4	214118,50	173096,436	43657	452085	70081,25	180366,00	391908,25

Friedman Test

Ranks

	Mean Rank
G	3,75
Α	2,00
R	2,75
В	2,75
K	3,75

Test Statistics^a

N	4
Chi-Square	3,600
df	4
Asymp. Sig.	,463
Exact Sig.	,500
Point Probability	,021

a. Friedman Test

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, B, K and A are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,996	Retain the null hypothesis.

Figura 27 – Legenda

Hypothesis Test Summary

	Null Hypothesis	Test	Sig.	Decision
1	The distributions of R, B, K and A are the same.	Related- Samples Friedman's Two-Way Analysis of Variance by Ranks	,440	Retain the null hypothesis.