

M n-dimensional manifold Local orientation at p:

M n-dimensional manifold Local orientation at p: Choice of generator, $\mu_p \in H_n(M, M \setminus p)$

M n-dimensional manifold Local orientation at p:

Choice of generator,

$$\mu_p \in H_n(M, M \setminus p) \cong H_n(U, U \setminus p) \cong \mathbb{Z},$$
(U homeomorphic to \mathbb{R}^n)

 $p \in B \subset U \subset M$, B homeomorphic to an open ball in \mathbb{R}^n . M n-dimensional manifold

Local orientation at p:

Choice of generator,

$$\mu_p \in H_n(M, M \setminus p) \cong H_n(U, U \setminus p) \cong \mathbb{Z},$$

(*U* homeomorphic to \mathbb{R}^n)

$$p \in B \subset U \subset M$$
,

B homeomorphic to an open ball in \mathbb{R}^n .

The map, $i_{p_*}: H_n(M, M \setminus B) \to H_n(M, M \setminus p)$

induces an isomorphism

M n-dimensional manifold

Local orientation at p:

Choice of generator,

$$\mu_p \in H_n(M, M \setminus p) \cong H_n(U, U \setminus p) \cong \mathbb{Z},$$

(*U* homeomorphic to \mathbb{R}^n)

 $p \in B \subset U \subset M$,

B homeomorphic to an open ball in \mathbb{R}^n .

The map, $i_{p_*}: H_n(M, M \setminus B) \to H_n(M, M \setminus p)$

induces an isomorphism

An orientation on M:

 $p \in B \subset U \subset M$, B homeomorphic to an open ball in \mathbb{R}^n . The map, $i_{p_*}: H_n(M, M \setminus B) \to H_n(M, M \setminus p)$ induces an isomorphism An orientation on $M: p \to \mu_p \in H_n(M, M \setminus p)$

 $p \in B \subset U \subset M$, B homeomorphic to an open ball in \mathbb{R}^n . The map, $i_{p_*}: H_n(M, M \setminus B) \to H_n(M, M \setminus p)$ induces an isomorphism An orientation on $M: p \to \mu_p \in H_n(M, M \setminus p)$ such that

 $p \in B \subset U \subset M$, B homeomorphic to an open ball in \mathbb{R}^n . The map, $i_{p_*}: H_n(M, M \setminus B) \to H_n(M, M \setminus p)$ induces an isomorphism An orientation on $M: p \to \mu_p \in H_n(M, M \setminus p)$ such that for each p, there exists a B (homeomorphic to an open ball in \mathbb{R}^n) such that

 $p \in B \subset U \subset M$, B homeomorphic to an open ball in \mathbb{R}^n . The map, $i_{p_*}: H_n(M, M \setminus B) \to H_n(M, M \setminus p)$ induces an isomorphism An orientation on $M: p \to \mu_p \in H_n(M, M \setminus p)$ such that

for each p, there exists a B (homeomorphic to an open ball in \mathbb{R}^n) such that

if $\mu_p = i_{p_*}(\mu_B)$ for some $\mu_B \in H_n(M, M \setminus B)$ for some $\mu_B \in B$, then for any $q \in B$, $\mu_q = i_{q_*}(\mu_B)$

 $\pi: \widetilde{M} \to M \text{ such that }$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

$$\pi: M \to M \text{ such that }$$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

$$\pi: M \to M \text{ such that }$$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

$$\pi: M \to M \text{ such that }$$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B_1 \cap B_2$.

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If $\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$, then $x \in B \subset B_1 \cap B_2$.

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

$$H_n(M, M \setminus B) \longrightarrow H_n(M, M \setminus y)$$

$$\uparrow \qquad \qquad \downarrow$$

$$H_n(M, M \setminus B_i)$$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

$$\pi: M \to M \text{ such that }$$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Therefore,
$$\mu_y \in U_{\mu_{B_1}}$$
.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable. Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

$$\mu_{B} \in H_{n}(M, M \setminus B) \longrightarrow \mu_{y} \in H_{n}(M, M \setminus y)$$

$$\uparrow \qquad \qquad \downarrow \qquad \downarrow$$

Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$. $U_{\mu_B} \subset U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$. $U_{\mu_B} \subset U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$. So U_{μ_B} form a basis.

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$. $U_{\mu_B} \subset U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$

So U_{μ_B} form a basis.

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$. $U_{\mu_B} \subset U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$

So U_{μ_B} form a basis.

$$\pi^{-1}(B) = \{ \mu_p \mid p \in B \}$$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$. $U_{\mu_B} \subset U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$

So U_{μ_B} form a basis.

$$\pi^{-1}(B) = \{ \mu_p \mid p \in B \}$$

= $\{ i_{p_*}(\mu_B) \mid p \in B \} \sqcup \{ -i_{p_*}(\mu_B) \mid p \in B \}$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$. $U_{\mu_B} \subset U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$

So U_{μ_B} form a basis.

$$\pi^{-1}(B) = \{ \mu_p \mid p \in B \}$$

$$= \{ i_{p_*}(\mu_B) \mid p \in B \} \sqcup \{ -i_{p_*}(\mu_B) \mid p \in B \}$$

$$= U_{\mu_B} \sqcup U_{-\mu_B}$$

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$. $U_{\mu_B} \subset U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$

So U_{μ_B} form a basis.

Each B is evenly covered:

$$\pi^{-1}(B) = \{ \mu_p \mid p \in B \}$$

$$= \{ i_{p_*}(\mu_B) \mid p \in B \} \sqcup \{ -i_{p_*}(\mu_B) \mid p \in B \}$$

$$= U_{\mu_B} \sqcup U_{-\mu_B}$$

 $\pi|_{U_{\mu_B}}$ bijection onto U_{μ_B} .

1.
$$\pi^{-1}(p) = \{\mu_p, -\mu_p\}$$

2. \widetilde{M} is disconnected if and only if M is orientable.

Proof.
$$\widetilde{M} := \{ \mu_p \mid \mu_p \in H_n(M, M \setminus p) \}$$

 $\pi : \widetilde{M} \to M$, defined by $\pi(\mu_p) := p$.

Given $B \subset U \subset M$, where U is homeomorphic to \mathbb{R}^n and B homeomorphic to an open ball in \mathbb{R}^n , and $\mu_B \in H_n(M, M \setminus B)$, define $U_{\mu_B} := \{i_{p_*}(\mu_B) \mid p \in B\}$

If
$$\mu_x \in U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$$
, then $x \in B \subset B_1 \cap B_2$.
If $\mu_y \in U_{\mu_B}$, then $\mu_y = i_{y_*}(\mu_B)$

$$\mu_{B} \in H_{n}(M, M \setminus B) \longrightarrow \mu_{y} \in H_{n}(M, M \setminus y)$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mu_{B_{1}} \in H_{n}(M, M \setminus B_{i})$$

Therefore, $\mu_y \in U_{\mu_{B_1}}$. Similarly, $\mu_y \in U_{\mu_{B_2}}$. $U_{\mu_B} \subset U_{\mu_{B_1}} \cap U_{\mu_{B_2}}$

So U_{μ_B} form a basis.

Each B is evenly covered:

$$\pi^{-1}(B) = \{ \mu_p \mid p \in B \}$$

$$= \{ i_{p_*}(\mu_B) \mid p \in B \} \sqcup \{ -i_{p_*}(\mu_B) \mid p \in B \}$$

$$= U_{\mu_B} \sqcup U_{-\mu_B}$$

 $\pi|_{U_{\mu_B}}$ bijection onto U_{μ_B} .

Maps basic open sets (i.e. U_{μ_B}) to basic open sets (i.e. B).

Lemma. \widetilde{M} is orientable.

Lemma. \widetilde{M} is orientable.

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an isomorphism

Lemma. \widetilde{M} is orientable.

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an isomorphism

$$\mu_p \in \widetilde{M}$$
 also determines $\mu_p \in H_n(M, M \setminus p)$

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an isomorphism

 $\mu_p \in M$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

Define offentiation,
$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an isomorphism

 $\mu_p \in \widetilde{M}$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

Define offentiation,
$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an isomorphism

 $\mu_p \in \widetilde{M}$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

$$H_n(\widetilde{M}, \widetilde{M} \setminus U_{\mu_B}) \xrightarrow{\pi_*} H_n(M, M \setminus B)$$

Proof. $\pi_*: H_n(\widetilde{M},\widetilde{M}\setminus \mu_p)\to H_n(M,M\setminus p)$ is an isomorphism

 $\mu_p \in M$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

$$H_n(\widetilde{M}, \widetilde{M} \setminus U_{\mu_B}) \xrightarrow{\pi_*} H_n(M, M \setminus B)$$

$$H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \xrightarrow{\pi_*} H_n(M, M \setminus p)$$

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an isomorphism

 $\mu_p \in \widetilde{M}$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus U_{\mu_{B}}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus B)$$

$$\downarrow^{i_{\mu p_{*}}} \qquad \qquad \downarrow^{i_{p_{*}}}$$

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus \mu_{p}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus p)$$

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an $H_n(\widetilde{M}, \widetilde{M} \setminus U_{\mu_B}) \xrightarrow{\pi_*} H_n(M, M \setminus B)$ isomorphism

 $\mu_p \in M$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus U_{\mu_{B}}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus B)$$

$$\downarrow^{i_{\mu p_{*}}} \qquad \qquad \downarrow^{i_{p_{*}}}$$

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus \mu_{p}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus p)$$

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an $H_n(\widetilde{M}, \widetilde{M} \setminus U_{\mu_B}) \xrightarrow{\pi_*} H_n(M, M \setminus B)$ isomorphism

 $\mu_p \in M$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus U_{\mu_{B}}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus B)$$

$$\downarrow^{i_{\mu p_{*}}} \qquad \qquad \downarrow^{i_{p_{*}}}$$

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus \mu_{p}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus p)$$

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an $H_n(\widetilde{M}, \widetilde{M} \setminus U_{\mu_B}) \xrightarrow{\pi_*} H_n(M, M \setminus B)$ isomorphism $|_{i_p}$

 $\mu_p \in \widetilde{M}$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus U_{\mu_{B}}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus B)$$

$$\downarrow^{i_{\mu_{p_{*}}}} \qquad \qquad \downarrow^{i_{p_{*}}}$$

$$\downarrow^{i_{p_{*}}}$$

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus \mu_{p}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus p)$$

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an $H_n(\widetilde{M}, \widetilde{M} \setminus U_{\mu_B}) \xrightarrow{\pi_*} H_n(M, M \setminus B)$ isomorphism

 $\mu_p \in M$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

 π_* is an isomorphism (excision)

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus U_{\mu_{B}}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus B)$$

$$\downarrow^{i_{\mu_{p_{*}}}} \qquad \qquad \downarrow^{i_{p_{*}}}$$

$$\downarrow^{i_{p_{*}}} \qquad \qquad \downarrow^{i_{p_{*}}}$$

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus \mu_{p}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus p)$$

Replacing μ_p by any $\mu_q \in U_{\mu_p}$, and p by q, the same diagram holds

Proof. $\pi_*: H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p) \to H_n(M, M \setminus p)$ is an $H_n(\widetilde{M}, \widetilde{M} \setminus U_{\mu_B}) \xrightarrow{\pi_*} H_n(M, M \setminus B)$ isomorphism

 $\mu_p \in \widetilde{M}$ also determines $\mu_p \in H_n(M, M \setminus p)$

Define orientation,

$$\mu_p \to \pi_*^{-1}(\mu_p) \in H_n(\widetilde{M}, \widetilde{M} \setminus \mu_p)$$

Checking compatibility:

Given $\mu_p \in M$, there is a B containing p therefore, there is a U_{μ_B} containing μ_p .

 π_* is an isomorphism (excision)

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus U_{\mu_{B}}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus B)$$

$$\downarrow^{i_{\mu p_{*}}} \qquad \qquad \downarrow^{i_{p_{*}}}$$

$$\downarrow^{i_{p_{*}}}$$

$$H_{n}(\widetilde{M}, \widetilde{M} \setminus \mu_{p}) \xrightarrow{\pi_{*}} H_{n}(M, M \setminus p)$$

Replacing μ_p by any $\mu_q \in U_{\mu_p}$, and p by q, the same diagram holds, so $\pi_*^{-1}(\mu_q) = i_{\mu_{q_*}}(\mu_{\mu_R})$.

Lemma. A 2-sheeted cover of a connected space can have no more than two components.

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover.

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover. Fix $x_0 \in X$

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover.

Fix $x_0 \in X$

Consider any $\tilde{x} \in \widetilde{X}$.

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover.

Fix $x_0 \in X$

Consider any $\tilde{x} \in \tilde{X}$. Any path joining $\pi(\tilde{x})$ with x_0 can lift to a path

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover. Fix $x_0 \in X$

Consider any $\tilde{x} \in \tilde{X}$. Any path joining $\pi(\tilde{x})$ with x_0 can lift to a path that joins \tilde{x} with an element of the fibre of x_0 ,

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover. Fix $x_0 \in X$

Consider any $\tilde{x} \in X$. Any path joining $\pi(\tilde{x})$ with x_0 can lift to a path that joins \tilde{x} with an element of the fibre of x_0 , so the elements of the fibre represent the path homotopy classes.

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover. Fix $x_0 \in X$

Consider any $\tilde{x} \in \tilde{X}$. Any path joining $\pi(\tilde{x})$ with x_0 can lift to a path that joins \tilde{x} with an element of the fibre of x_0 , so the elements of the fibre represent the path homotopy classes.

 \widetilde{X} is connected if and only if the two points in the same fibre can be connected by a path.

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover. Fix $x_0 \in X$

Consider any $\tilde{x} \in \tilde{X}$. Any path joining $\pi(\tilde{x})$ with x_0 can lift to a path that joins \tilde{x} with an element of the fibre of x_0 , so the elements of the fibre represent the path homotopy classes.

 \widetilde{X} is connected if and only if the two points in the same fibre can be connected by a path.

Each component contains exactly one point of each fibre.

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover. Fix $x_0 \in X$

Consider any $\tilde{x} \in \tilde{X}$. Any path joining $\pi(\tilde{x})$ with x_0 can lift to a path that joins \tilde{x} with an element of the fibre of x_0 , so the elements of the fibre represent the path homotopy classes.

 \widetilde{X} is connected if and only if the two points in the same fibre can be connected by a path.

Each component contains exactly one point of each fibre. π restricted to each component is a bijection. Also continuous and open.

Lemma. A 2-sheeted cover of a connected space M disconnected $\implies M$ orientable can have no more than two components. If it has two components, then each is homeomorphic to the ground space.

Proof. $\pi: \widetilde{X} \to X$ is a 2-sheeted cover. Fix $x_0 \in X$

Consider any $\tilde{x} \in \tilde{X}$. Any path joining $\pi(\tilde{x})$ with x_0 can lift to a path that joins \tilde{x} with an element of the fibre of x_0 , so the elements of the fibre represent the path homotopy classes.

 \widetilde{X} is connected if and only if the two points in the same fibre can be connected by a path.

Each component contains exactly one point of each fibre. π restricted to each component is a bijection. Also continuous and open.

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1,

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous,

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected then $s(V) = \widetilde{V}_i$ for i = 0 or 1.

So M orientable is equivalent to

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected then $s(V) = \widetilde{V}_i$ for i = 0 or 1.

So M orientable is equivalent to finding continuous $s:M\to\widetilde{M}$

Assignment $p \to \mu_p$ equivalent to $s: M \to M$ such that If M is connected, $\pi \circ s = Id$.

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected then $s(V) = \widetilde{V}_i$ for i = 0 or 1.

So M orientable is equivalent to finding continuous $s: M \to \widetilde{M}$ such that $\pi \circ s = Id$.

Assignment $p \to \mu_p$ equivalent to $s: M \to \widetilde{M}$ such that If \widetilde{M} is connected, connect two points of a fibre by γ , $\pi \circ s = Id$.

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected then $s(V) = \widetilde{V}_i$ for i = 0 or 1.

So M orientable is equivalent to finding continuous $s: M \to \widetilde{M}$ such that $\pi \circ s = Id$.

Assignment $p \to \mu_p$ equivalent to $s: M \to \widetilde{M}$ such that If \widetilde{M} is connected, connect two points of a fibre by γ , so $\pi \circ s = Id$.

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = \widetilde{V}_1 \sqcup \widetilde{V}_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected then $s(V) = \widetilde{V}_i$ for i = 0 or 1.

So M orientable is equivalent to finding continuous $s: M \to \widetilde{M}$ such that $\pi \circ s = Id$.

Assignment $p \to \mu_p$ equivalent to $s: M \to \widetilde{M}$ such that If \widetilde{M} is connected, connect two points of a fibre by γ , so $\pi \circ s = Id.$

 $\pi(\gamma)$ is a loop. Then $s(\pi(\gamma))$ is a lift of a loop

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = V_1 \sqcup V_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected then $s(V) = V_i$ for i = 0 or 1.

So M orientable is equivalent to finding continuous $s: M \to M$ such that $\pi \circ s = Id$.

 $\pi \circ s = Id.$

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = V_1 \sqcup V_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected then $s(V) = V_i$ for i = 0 or 1.

So M orientable is equivalent to finding continuous $s: M \to M$ such that $\pi \circ s = Id$.

Assignment $p \to \mu_p$ equivalent to $s: M \to \widetilde{M}$ such that If \widetilde{M} is connected, connect two points of a fibre by γ , so $\pi(\gamma)$ is a loop. Then $s(\pi(\gamma))$ is a lift of a loop contradicting uniqueness of a lift.

 $\pi \circ s = Id.$

Restrict to an evenly covered neighbourhood $V \subset M$. $\pi^{-1}(V) = V_1 \sqcup V_2$

If s is such that $s(V) = \widetilde{V}_i$ for i = 0 or 1, then s is an inverse of the homeomorphism $\pi|_{\widetilde{V}_1}$ so continuous.

Conversely, if s is continuous, then if V is connected then $s(V) = V_i$ for i = 0 or 1.

So M orientable is equivalent to finding continuous $s: M \to M$ such that $\pi \circ s = Id$.

Assignment $p \to \mu_p$ equivalent to $s: M \to \widetilde{M}$ such that If \widetilde{M} is connected, connect two points of a fibre by γ , so $\pi(\gamma)$ is a loop. Then $s(\pi(\gamma))$ is a lift of a loop contradicting uniqueness of a lift.

So, M connected $\implies M$ not orientable.