Name: Sandeep Vishwakarma FEYNN LABS Online Vehicle Booking Market

- Please find the descriptions of the columns present in the dataset as below.
- 1. datetime hourly date + timestamp
- 2. season spring, summer, autumn, winter
- 3. holiday whether the day is considered a holiday
- 4. workingday whether the day is neither a weekend nor holiday
- 5. weather Clear, Cloudy, Light Rain, Heavy
- 6. temp temperature in Celsius
- 7. atemp "feels like" temperature in Celsius
- 8. humidity relative humidity
- 9. windspeed wind speed
- 10. Total_booking number of total booking

In [3]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import math
%matplotlib inline

from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from xgboost import XGBRFRegressor
from sklearn.ensemble import GradientBoostingRegressor
```

In [4]:

```
Requirement already satisfied: xgboost in c:\users\gf63\anaconda3\lib\site-packages (1.7.3)
Requirement already satisfied: numpy in c:\users\gf63\anaconda3\lib\site-packages (from x gboost) (1.20.3)
Requirement already satisfied: scipy in c:\users\gf63\anaconda3\lib\site-packages (from x gboost) (1.7.1)
```

DATA COLLECTION AND PREPERATION

train=df train.join(df train label)

```
In [5]:

df_train= pd.read_csv('train.csv')

In [6]:

col=['Total_booking']
df_train_label= pd.read_csv('train_label.csv', header=None, names=col)

In [7]:
```

#appending the train label dataset to train.csv as 'Total booking' column.

```
In [8]:
```

Out[8]:

train

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	Total_booking
0	5/02/2012 19:00	Summer	0	1	Clear + Few clouds	22.14	25.760	77	16.9979	504
1	9/05/2012 4:00	Fall	0	1	Clear + Few clouds	28.70	33.335	79	19.0012	5
2	1/13/2011 9:00	Spring	0	1	Clear + Few clouds	5.74	6.060	50	22.0028	139
3	11/18/2011 16:00	Winter	0	1	Clear + Few clouds	13.94	16.665	29	8.9981	209
4	9/13/2011 13:00	Fall	0	1	Clear + Few clouds	30.34	33.335	51	19.0012	184
8703	1/16/2012 6:00	Spring	1	0	Clear + Few clouds	4.10	6.820	54	6.0032	13
8704	11/10/2011 1:00	Winter	0	1	Mist + Cloudy	16.40	20.455	87	0.0000	11
8705	4/12/2011 3:00	Summer	0	1	Mist + Cloudy	23.78	27.275	56	8.9981	1
8706	11/07/2012 1:00	Winter	0	1	Mist + Cloudy	11.48	13.635	61	16.9979	92
8707	1/10/2011 10:00	Spring	0	1	Mist + Cloudy	5.74	6.060	50	19.9995	31

8708 rows × 10 columns

```
In [9]:
```

```
df_test= pd.read_csv('test-project.csv')
```

In [10]:

```
col=['Total_booking']
df_test_label= pd.read_csv('test_label.csv', header=None, names=col)
```

In [11]:

```
#appending the train_label dataset to train.csv as 'Total_booking' column.
test=df_test.join(df_test_label)
```

In [12]:

test

Out[12]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	Total_booking
0	5/10/2012 11:00	Summer	0	1	Clear + Few clouds	21.32	25.000	48	35.0008	256
1	6/09/2012 7:00	Summer	0	0	Clear + Few clouds	23.78	27.275	64	7.0015	87
2	3/06/2011 20:00	Spring	0	0	Light Snow, Light Rain	11.48	12.120	100	27.9993	11
3	10/13/2011 11:00	Winter	0	1	Mist + Cloudy	25.42	28.790	83	0.0000	84
4	6/02/2012 12:00	Summer	0	0	Clear + Few clouds	25.42	31.060	43	23.9994	668
2173	3/08/2012 3:00	Spring	0	1	Clear + Few clouds	18.86	22.725	63	26.0027	3

2174	1/12/2012 12:00	SPARB	holiday	workingday	Mist + Weather	te:194	21 9428	humidity	windspeed	Total_bookiृत्र्व
2175	3/07/2012 22:00	Spring	0	1	Clear + Few clouds	18.86	22.725	59	19.9995	159
2176	5/12/2011 5:00	Summer	0	1	Clear + Few clouds	17.22	21.210	94	8.9981	29
2177	7/18/2012 16:00	Fall	0	1	Clear + Few clouds	30.34	34.850	66	16.9979	224

2178 rows × 10 columns

In [13]:

```
#feature engineering
from datetime import datetime
import calendar
```

In [14]:

```
# Creating new columns from date time column
train['date']= train.datetime.apply(lambda x : x.split()[0])
train['hour']= train.datetime.apply(lambda x : x.split()[1].split(":")[0])
train["weekday"]= train.date.apply(lambda dateString : calendar.day_name[datetime.strptime(dateString, "%m/%d/%Y").weekday()])
train["month"]= train.date.apply(lambda dateString : calendar.month_name[datetime.strptime(dateString, "%m/%d/%Y").month])

test['date']= test.datetime.apply(lambda x : x.split()[0])
test['hour']= test.datetime.apply(lambda dateString : calendar.day_name[datetime.strptime(dateString, "%m/%d/%Y").weekday()])
test["month"]= test.date.apply(lambda dateString : calendar.month_name[datetime.strptime(dateString, "%m/%d/%Y").weekday()])
test["month"]= test.date.apply(lambda dateString : calendar.month_name[datetime.strptime(dateString, "%m/%d/%Y").month])
```

In [15]:

train

Out[15]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	Total_booking	date	hou
0	5/02/2012 19:00	Summer	0	1	Clear + Few clouds	22.14	25.760	77	16.9979	504	5/02/2012	1
1	9/05/2012 4:00	Fall	0	1	Clear + Few clouds	28.70	33.335	79	19.0012	5	9/05/2012	
2	1/13/2011 9:00	Spring	0	1	Clear + Few clouds	5.74	6.060	50	22.0028	139	1/13/2011	
3	11/18/2011 16:00	Winter	0	1	Clear + Few clouds	13.94	16.665	29	8.9981	209	11/18/2011	1
4	9/13/2011 13:00	Fall	0	1	Clear + Few clouds	30.34	33.335	51	19.0012	184	9/13/2011	1
8703	1/16/2012 6:00	Spring	1	0	Clear + Few clouds	4.10	6.820	54	6.0032	13	1/16/2012	
8704	11/10/2011 1:00	Winter	0	1	Mist + Cloudy	16.40	20.455	87	0.0000	11	11/10/2011	
8705	4/12/2011 3:00	Summer	0	1	Mist + Cloudy	23.78	27.275	56	8.9981	1	4/12/2011	
0706	11/07/2012	Winter	n	4	Mist +	11 /0	10 605	64	16 0070	00	11/07/2012	

0100	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	Total_booking	date	hou
8707	1/10/2011 10:00	Spring	0	1	Mist + Cloudy	5.74	6.060	50	19.9995	31	1/10/2011	1
8708 r	ows × 14 c	olumns										

Task 1:

1. Visualize data using different visualizations to generate interesting insights

In [16]:

```
#Explore data
sns.pairplot(train[["temp","humidity","windspeed","Total_booking"]], diag_kind ='kde')
```

Out[16]:

<seaborn.axisgrid.PairGrid at 0x1f1e7ee7670>

2. Outlier Analysis

In [17]:

```
train.describe()
```

Out[17]:

	holiday	workingday	temp	atemp	humidity	windspeed	Total_booking
count	8708.000000	8708.000000	8708.000000	8708.000000	8708.000000	8708.000000	8708.000000
mean	0.028480	0.680294	20.243020	23.655552	61.649173	12.843891	193.007005
std	0.166348	0.466389	7.813494	8.501107	19.199578	8.190314	181.552211
min	0.000000	0.000000	0.820000	0.760000	0.000000	0.000000	1.000000
25%	0.000000	0.000000	13.940000	16.665000	46.000000	7.001500	43.000000
50%	0.000000	1.000000	20.500000	24.240000	61.000000	12.998000	148.000000
75%	0.000000	1.000000	26.240000	31.060000	77.000000	16.997900	286.000000
max	1.000000	1.000000	41.000000	45.455000	100.000000	56.996900	977.000000

In [18]:

```
train.Total_booking.hist()
```

Out[18]:

<AxesSubplot:>

In [19]:

```
rev_stat=train.Total_booking.describe()
print(rev_stat)
# calculating interquartile range
iqr=rev_stat['75%']-rev_stat['25%']
upper=rev_stat['75%']+1.5*iqr
lower=rev_stat['25%']-1.5*iqr
print('iqr=',iqr)
print('The upper and lower bounds for suspected outliers are {} and {}'.format(lower,uppe r))
```

```
8708.000000
count
          193.007005
mean
          181.552211
std
            1.000000
min
25%
           43.000000
50%
          148.000000
75%
          286.000000
max
          977.000000
```

Name: Total_booking, dtype: float64

iqr= 243.0

The upper and lower bounds for suspected outliers are -321.5 and 650.5

In [20]:

```
outliers=train[train.Total booking>upper].index.tolist()
```

train[train.Total_booking>upper]

Out[20]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	Total_booking	date	hou
5	8/17/2012 17:00	Fall	0	1	Clear + Few clouds	33.62	12.120	36	22.0028	791	8/17/2012	1
27	5/02/2012 18:00	Summer	0	1	Clear + Few clouds	22.96	26.515	73	15.0013	813	5/02/2012	1
30	7/10/2012 17:00	Fall	0	1	Clear + Few clouds	31.98	35.605	49	12.9980	872	7/10/2012	1
52	6/05/2012 18:00	Summer	0	1	Clear + Few clouds	24.60	31.060	43	12.9980	790	6/05/2012	1
70	5/18/2012 18:00	Summer	0	1	Clear + Few clouds	26.24	31.060	38	15.0013	669	5/18/2012	1
8478	3/14/2012 8:00	Spring	0	1	Clear + Few clouds	18.04	21.970	82	0.0000	662	3/14/2012	
8582	10/15/2012 8:00	Winter	0	1	Mist + Cloudy	24.60	30.305	64	26.0027	737	10/15/2012	
8676	5/12/2012 13:00	Summer	0	0	Clear + Few clouds	26.24	31.060	36	12.9980	659	5/12/2012	1
8681	8/08/2012 17:00	Fall	0	1	Mist + Cloudy	32.80	37.880	55	19.0012	858	8/08/2012	1
8695	10/11/2012 17:00	Winter	0	1	Clear + Few clouds	20.50	24.240	39	19.0012	827	10/11/2012	1

242 rows × 14 columns

In [21]:

#Original data with outliers
train.shape

Out[21]:

(8708, 14)

In [22]:

for index in outliers:
 train.drop(index,inplace=True)

In [23]:

After removing outliers
train.shape

Out[23]:

(8466, 14)

3. Missing value analysis

In [24]:

```
#we observed there is no missing values in our dataset
train.isnull().sum()
```

Out[24]:

datetime season 0 0 holiday 0 workingday 0 weather temp 0 atemp humidity windspeed Total_booking date 0 hour 0 weekday month 0 dtype: int64

4. Visualizing Total_booking Vs other features to generate insights

In [25]:

```
plt.figure(figsize=(10,5))
sns.barplot(x = 'weather', y = 'Total_booking', data = train,palette='rainbow')
```

Out [25]:

<AxesSubplot:xlabel='weather', ylabel='Total booking'>

In [26]:

```
plt.figure(figsize=(10,5))
sns.barplot(x = 'weekday', y = 'Total_booking', data = train)
```

Out[26]:

<AxesSubplot:xlabel='weekday', ylabel='Total_booking'>


```
75 - 50 - 25 - Wednesday Thursday Friday Tuesday weekday Saturday Monday Sunday
```

In [27]:

```
plt.figure(figsize=(12,5))
sns.barplot(x = 'month', y = 'Total_booking', data = train)
```

Out[27]:

<AxesSubplot:xlabel='month', ylabel='Total_booking'>

In [28]:

```
plt.figure(figsize=(10,5))
sns.barplot(x = 'season', y = 'Total_booking', data = train)
```

Out[28]:

<AxesSubplot:xlabel='season', ylabel='Total booking'>

5. Correlation Analysis

```
In [29]:
correlation = train.corr()
fig = plt.figure(figsize = (12,10))
sns.heatmap(correlation, cmap ='viridis', annot = True, vmax = 1, square = True, vmin=-1)
plt.show()
ult value of numeric_only in DataFrame.corr is deprecated. In a future version, it will d
```

efault to False. Select only valid columns or specify the value of numeric_only to silenc e this warning.

correlation = train.corr()

In [30]:

del(train["atemp"]) # remove to avoid multicollinearity- Temp & atemp are highly correlat ed

Task 2:

1. Feature Engineering

```
In [31]:
```

```
# Creating new columns from date time column
train['date'] = train.datetime.apply(lambda x : x.split()[0])
train['hour'] = train.datetime.apply(lambda x : x.split()[1].split(":")[0])
train["weekday"] = train.date.apply(lambda dateString : calendar.day name[datetime.strptim
e(dateString, "%m/%d/%Y").weekday()])
train["month"] = train.date.apply(lambda dateString : calendar.month name[datetime.strpti
me (dateString, "%m/%d/%Y") .month])
test['date'] = test.datetime.apply(lambda x : x.split()[0])
```

```
test['hour'] = test.datetime.apply(lambda x : x.split()[1].split(":")[0])
test["weekday"] = test.date.apply(lambda dateString : calendar.day_name[datetime.strptime(
dateString,"%m/%d/%Y").weekday()])
test["month"] = test.date.apply(lambda dateString : calendar.month_name[datetime.strptime(
dateString,"%m/%d/%Y").month])
In [32]:
del(train["datetime"])
In [33]:
del(train["date"])
In [34]:
train.dtypes
Out[34]:
                    object
season
                    int64
holiday
workingday
                    int64
weather
                   object
temp
                  float64
humidity
                    int64
windspeed
                   float64
                    int64
Total booking
                   object
hour
weekday
                    object
month
                    object
dtype: object
In [35]:
train.columns.nunique()
Out[35]:
11
In [36]:
train = pd.get_dummies(train)
train.head()
Out[36]:
  holiday workingday temp humidity windspeed Total_booking season_Fall season_Spring season_Summer season_Wind
0
       0
                 1 22.14
                             77
                                   16.9979
                                                  504
                                                              0
                                                                          0
                                                                                        1
                 1 28.70
                              79
                                   19.0012
                                                    5
                                                                           0
1
       0
                                                              1
                                                                                        0
2
       0
                    5.74
                              50
                                   22.0028
                                                  139
                                                              0
                                                                           1
                                                                                        0
                                    8.9981
3
       0
                 1 13.94
                              29
                                                  209
                                                              0
                                                                           0
                                                                                        0
       0
                 1 30.34
                              51
                                                  184
                                                                           0
                                                                                        0
                                   19.0012
5 rows × 57 columns
In [37]:
train.shape
Out[37]:
(8466, 57)
```

Splitting into X and y

```
In [38]:

X = train.drop('Total_booking', axis =1)
y = train['Total_booking']

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
print(X_train.shape)
print(X_test.shape)

(6772, 56)
(1694, 56)
```

2. Regression Analysis

```
In [39]:
```

```
# Decision Tree Model
DT model = DecisionTreeRegressor()
DT_model.fit(X_train,y_train)
y pred DT = DT model.predict(X test)
y pred train = DT model.predict(X train)
# RANDOM FOREST
RF model = RandomForestRegressor ( random state = 0)
RF_model.fit(X_train,y_train)
y_pred_RF = RF_model.predict(X_test)
y pred train = RF model.predict(X train)
# XG BOOST
XG \mod = XGBRFRegressor()
XG model.fit(X_train, y_train)
y pred XG = XG model.predict(X test)
# SVM
SVM model = SVR()
SVM model.fit(X train, y_train)
y pred SVM = SVM model.predict(X test)
# KNN
KNN model = KNeighborsRegressor()
KNN model.fit(X train, y train)
y pred KNN = KNN model.predict(X test)
# Gradient Boosting
GB model = GradientBoostingRegressor()
GB_model.fit(X_train, y_train)
y pred GB = GB model.predict(X test)
```

PERFORMANCE METRICS

```
In [ ]:
```

```
from sklearn.metrics import r2_score, mean_squared_error
print("R squared value for DT :", r2_score(y_test, y_pred_DT))
print("R squared value for RF:", r2_score(y_test, y_pred_RF))
print("R squared value for XG:", r2_score(y_test, y_pred_XG))
print("R squared value for SVM:", r2_score(y_test, y_pred_SVM))
print("R squared value for KNN:", r2_score(y_test, y_pred_KNN))
print("R squared value for GB:", r2_score(y_test, y_pred_GB))
print("MSE for DT :", mean_squared_error(y_test, y_pred_DT))
print("MSE for RF:", mean_squared_error(y_test, y_pred_RF))
```

```
print("MSE for XG:", mean squared error(y test, y pred XG))
print("MSE for SVM:", mean_squared_error(y_test, y_pred_SVM))
print("MSE for KNN:", mean squared error(y test, y pred KNN))
print("MSE for GB:", mean_squared_error(y_test, y_pred_GB))
R squared value for DT : 0.6696310894622542
R squared value for RF: 0.8354197771760357
R squared value for XG: 0.5130508896569834
R squared value for SVM: 0.1679652652268958
R squared value for KNN: 0.23901017222862841
R squared value for GB: 0.7178058017450006
MSE for DT : 8295.258116883117
MSE for RF: 4132.45733999822
MSE for XG: 12226.842270076166
MSE for SVM: 20891.623476073764
MSE for KNN: 19107.751499409682
MSE for GB: 7085.635599917184
```

3. Ensemble Model

```
In [ ]:
```

```
# RANDOM FOREST-
from sklearn.ensemble import RandomForestRegressor
# 1000 trees, samples creation with replacement(bootsrap = true), n_jobs = -1 full proce
ssing of system

RF_reg = RandomForestRegressor(n_estimators = 1000, n_jobs = -1, random_state=0)

#fit the model
RF_reg = RF_reg.fit(X_train, y_train)

#Predict the model
y_pred_RFR = RF_reg.predict(X_test)
print("R squared:",r2_score(y_test,y_pred_RFR))
```

R squared: 0.8382149833105221

4. Grid search cv

```
In [ ]:
```

Fitting 3 folds for each of 12 candidates, totalling 36 fits

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done 36 out of 36 | elapsed: 7.3min finished
Out[]:
```

```
min impurity decrease=0.0,
                                           min impurity split=None,
                                           min samples leaf=1,
                                           min samples split=2,
                                           min weight fraction leaf=0.0,
                                           n estimators=1000, n jobs=-1,
                                           oob score=False, random state=0,
                                           verbose=0, warm start=False),
            iid='deprecated', n jobs=-1,
            pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
            scoring=None, verbose=2)
grid search.best params
{'bootstrap': True, 'max depth': 40, 'n estimators': 1200}
grid search.best estimator
RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                     max depth=40, max features='auto', max leaf nodes=None,
                     max samples=None, min impurity decrease=0.0,
                     min impurity split=None, min samples leaf=1,
                     min samples split=2, min weight fraction leaf=0.0,
                     n estimators=1200, n jobs=-1, oob score=False,
                     random state=0, verbose=0, warm start=False)
cvrf grid = grid search.best estimator
#Predict the model
y_pred_clf = cvrf_grid.predict(X_test)
print("R squared value for GridSearch :", r2 score(y test, y pred clf))
print("MSE for GridSearch :", mean squared error(y test, y pred clf))
R squared value for GridSearch: 0.8382697341494291
MSE for GridSearch: 4060.897553461924
# FEATURE IMPORTANCE
feat importances = pd.Series(cvrf grid.feature importances , index=X train.columns)
f, ax = plt.subplots(figsize=(10,5))
feat importances.nlargest(10).plot(kind='barh')
<matplotlib.axes. subplots.AxesSubplot at 0x476c2e8508>
```

In []:

Out[]:

In []:

Out[]:

In []:

In []:

In []:

Out[]:

hour 1 hour 2 hour_19 windspeed

> hour_18 hour_8

max samples=None,

Comparing with the test-project dataset and predicting the output with grid search cv model

In []:

test

Out[]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	Total_booking	date	hou
0	5/10/2012 11:00	Summer	0	1	Clear + Few clouds	21.32	25.000	48	35.0008	256	5/10/2012	1
1	6/09/2012 7:00	Summer	0	0	Clear + Few clouds	23.78	27.275	64	7.0015	87	6/09/2012	
2	3/06/2011 20:00	Spring	0	0	Light Snow, Light Rain	11.48	12.120	100	27.9993	11	3/06/2011	2
3	10/13/2011 11:00	Winter	0	1	Mist + Cloudy	25.42	28.790	83	0.0000	84	10/13/2011	1
4	6/02/2012 12:00	Summer	0	0	Clear + Few clouds	25.42	31.060	43	23.9994	668	6/02/2012	1
2173	3/08/2012 3:00	Spring	0	1	Clear + Few clouds	18.86	22.725	63	26.0027	3	3/08/2012	
2174	1/12/2012 12:00	Spring	0	1	Mist + Cloudy	13.94	17.425	81	7.0015	144	1/12/2012	1
2175	3/07/2012 22:00	Spring	0	1	Clear + Few clouds	18.86	22.725	59	19.9995	159	3/07/2012	2
2176	5/12/2011 5:00	Summer	0	1	Clear + Few clouds	17.22	21.210	94	8.9981	29	5/12/2011	
2177	7/18/2012 16:00	Fall	0	1	Clear + Few clouds	30.34	34.850	66	16.9979	224	7/18/2012	1

2178 rows × 14 columns

```
In [ ]:
```

del(test["datetime"])

In []:

```
del(test["atemp"])
```

In []:

```
del(test["date"])
In [ ]:
test.shape
Out[]:
(2178, 11)
In [ ]:
test.columns
Out[]:
Index(['season', 'holiday', 'workingday', 'weather', 'temp', 'humidity',
        'windspeed', 'Total booking', 'hour', 'weekday', 'month'],
      dtype='object')
In [ ]:
test = pd.get dummies(test)
test.head()
Out[]:
  holiday workingday temp humidity windspeed Total_booking season_Fall season_Spring season_Summer season_Wint
       0
                 1 21.32
0
                              48
                                   35.0008
                                                  256
                                                              0
                                                                           0
1
       0
                 0 23.78
                                    7.0015
                                                   87
                                                              0
                                                                           0
                              64
                                                                                         1
2
       0
                 0 11.48
                             100
                                   27.9993
                                                              0
                                                   11
3
       0
                 1 25.42
                              83
                                    0.0000
                                                   84
                                                              0
                                                                           0
                                                                                         0
       0
                 0 25.42
                              43
                                   23.9994
                                                  668
                                                              0
                                                                           0
                                                                                         1
5 rows × 56 columns
In [ ]:
test.shape
Out[]:
(2178, 56)
In [ ]:
# Fitting Grid Search Model to test dataset
New pred = cvrf grid.predict(test)
print("R squared for prediction v/s test_label:",r2_score(df_test_label, New_pred))
print("MSE for prediction v/s test_label :", mean_squared_error(df_test_label, New_pred))
```

Appending the prediction values column with the test-project dataset

R squared for prediction v/s test_label: 0.797753772723576 MSE for prediction v/s test label : 6508.497062539411

```
In []:

New_pred = pd.DataFrame(New_pred)
New_pred.columns = ['Predictions']
New_pred
```

```
Out[]:
```

Predictions 0 214.892812 1 157.762059 2 77.260000 3 164.358417 4 444.000000 2173 12.273333 2174 138.090833 2175 135.948958 2176 24.306667 2177 381.943333

2178 rows × 1 columns

In []:

```
df_test= pd.read_csv('test-project.csv')
col=['Total_booking']
df_test_label= pd.read_csv('test_label.csv', header=None, names=col)
test=df_test.join(df_test_label)
Dataset_testpred = test.join(New_pred)
Dataset_testpred
```

Out[]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	Total_booking	Predictions
0	5/10/2012 11:00	Summer	0	1	Clear + Few clouds	21.32	25.000	48	35.0008	256	214.892812
1	6/09/2012 7:00	Summer	0	0	Clear + Few clouds	23.78	27.275	64	7.0015	87	157.762059
2	3/06/2011 20:00	Spring	0	0	Light Snow, Light Rain	11.48	12.120	100	27.9993	11	77.260000
3	10/13/2011 11:00	Winter	0	1	Mist + Cloudy	25.42	28.790	83	0.0000	84	164.358417
4	6/02/2012 12:00	Summer	0	0	Clear + Few clouds	25.42	31.060	43	23.9994	668	444.000000
•••											
2173	3/08/2012 3:00	Spring	0	1	Clear + Few clouds	18.86	22.725	63	26.0027	3	12.273333
2174	1/12/2012 12:00	Spring	0	1	Mist + Cloudy	13.94	17.425	81	7.0015	144	138.090833
2175	3/07/2012 22:00	Spring	0	1	Clear + Few clouds	18.86	22.725	59	19.9995	159	135.948958
2176	5/12/2011 5:00	Summer	0	1	Clear + Few clouds	17.22	21.210	94	8.9981	29	24.306667
2177	7/18/2012 16:00	Fall	0	1	Clear + Few clouds	30.34	34.850	66	16.9979	224	381.943333

2178 rows × 11 columns

In []: