F18T3A2

a) Bestimme Art und Lage aller lokalen Extrema der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto xe^{x-y^2}$

b) Zeige, dass alle stationären Lösungen des Differentialgleichungssystems

$$\dot{x} = 2xy \tag{1}$$

$$\dot{y} = 1 + x \tag{2}$$

stabil sind, wobei $(x,y) \in \mathbb{R}^2$. Verwende dazu das Resultat aus Teilaufgabe a).

Zu a):

$$(\nabla f) \begin{pmatrix} x \\ y \end{pmatrix} = \underbrace{e^{x-y^2}}_{\neq 0} \begin{pmatrix} 1+x \\ x(-2y) \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ d.h.}$$

$$1+x=0 \quad \wedge \quad -x2y=0 \quad \Rightarrow \quad x=-1 \quad \wedge \quad y=0$$

 $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ ist der einzige kritische Punkt von f.

$$(Hes f) \begin{pmatrix} x \\ y \end{pmatrix} = e^{x-y^2} \begin{pmatrix} 1+x+1 & (1+x)(-2y) \\ -2xy-2y & (-2y)x(-2y)-2x \end{pmatrix}$$
$$(Hes f) \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} e^{-1}$$

hat Eigenwerte $\frac{1}{e}$, $\frac{2}{e} > 0$.

 $\Rightarrow \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ isoliertes lokales Minimum von f.

Zu b):

Wie in a) hat
$$\begin{pmatrix} 2xy \\ 1+x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 nur die Lösung $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$.
$$\langle (\nabla f) \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} 2xy \\ 1+x \end{pmatrix} \rangle = e^{x-y^2} \langle \begin{pmatrix} 1+x \\ -2xy \end{pmatrix}, \begin{pmatrix} 2xy \\ 1+x \end{pmatrix} \rangle = 0$$

 $\Rightarrow f \text{ Erhaltungsgröße für } \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2xy \\ 1+x \end{pmatrix} \text{ und da die stationäre Lösung } \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ ein isoliertes lokales Minimum der Erhaltungsgröße f ist, gibt es eine Umgebung von U von $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$, sodass $f \begin{pmatrix} -1 \\ 0 \end{pmatrix} < f \begin{pmatrix} x \\ y \end{pmatrix}$ für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in U \setminus \left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\}$

 $\Rightarrow V: U \to \mathbb{R}$ Lyapunov
funktion

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto f \begin{pmatrix} x \\ y \end{pmatrix} - f \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 zu
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 2xy \\ 1+x \end{pmatrix}, \text{ die Stabilität von } \begin{pmatrix} -1 \\ 0 \end{pmatrix} \text{ zeigt.}$$

Achtung: Da die die Jacobimatrix der Funktion $g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2xy \\ 1+x \end{pmatrix}$ nur Eigenwerte mit $Re(\lambda) = 0$ besitzt, kann darüber keine Aussage über die Stabilität getroffen werden.

Bemerkung: Hat eine Erhaltungsgröße $E:U\to\mathbb{R}$ für $\begin{pmatrix}\dot x\\\dot y\end{pmatrix}=g\begin{pmatrix}x\\y\end{pmatrix}$ an einer Ruhelage $\begin{pmatrix}x_0\\y_0\end{pmatrix}\in U$ ein isoliertes lokales Extremum, dann ist $\begin{pmatrix}x_0\\y_0\end{pmatrix}$ stabiles

- Minimum wie in der Aufgabe
- Maximum: Auch -E ist Erhaltungsgröße und -E hat bei $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ isoliertes lokales Minimum.