Simple linear regression

Overview

Quick review of box plots and correlation

Simple linear regression

Review of descriptive statistics

Quick review of box plots and correlation

Review Box Plots: Ozone in NYC (May-Sept 1973)

R: boxplot(airquality\$Ozone)

Review: scatter plots and the correlation coefficient

Relationship between cigarettes sold and cancer deaths

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

The **correlation** is measure of the strength and direction of a <u>linear</u> <u>association</u> between two variables

Florida lakes

create a scatter plot
plot(x, y)

calculate the correlation
cor(x, y)

Correlation cautions

1. A strong positive or negative correlation does not (necessarily) imply a cause and effect relationship between two variables.

2. A correlation near zero does not (necessarily) mean that two variables are not associated. Correlation only measures the strength of a <u>linear</u> relationship.

3. Correlation can be heavily influenced by outliers. Always plot your data!

Regression

Regression is method of using one variable x <u>to predict</u> the value of a second variable y

• i.e., $\hat{y} = f(x)$

In linear regression we fit a line to the data, called the regression line

Cigarette cancer regression line

Text-figure 2.—Correlation between average annual ageadjusted death rates for respiratory tract cancer (1956– 61) and per capita cigarette sales (1960) in 44 States.

Equation for a line

What is the equation for a line?

$$\hat{y} = a + b \cdot x$$

Regression lines

$$\hat{y} = a + b \cdot x$$

Response = $a + b \cdot Explanatory$

The slope b represents the predicted change in the response variable y given a one unit change in the explanatory variable x

The intercept a is the predicted value of the response variable y if the explanatory variable x were 0

Cancer smoking regression line

Relationship between cigarettes sold and cancer deaths

$$\hat{y} = a + b \cdot x$$

$$a = 6.47$$

$$b = 0.53$$

R:
$$lm(y \sim x)$$

Using the regression line to make predictions

If a state sold 25 (hundred) cigarettes per person

How many cancer deaths (per 100,000 people) would you expect?

$$a = 6.47$$
, $b = .53$

$$\hat{y} = 6.47 + .53 \cdot x$$

Relationship between cigarettes sold and cancer deaths

Notation

The letter **b** is typically used to denote the slope of the sample

The Greek letter β is used to denote the slope of the population

Population: β

Sample estimates: b

Residuals

The **residual** is the difference between <u>an observed</u> (y_i) and a <u>predicted</u> <u>value</u> (\hat{y}_i) of the response variable

$$Residual_i = Observed_i - Predicted_i = y_i - \hat{y}_i$$

Cancer smoking residuals

Relationship between cigarettes sold and cancer deaths

Cancer smoking residuals

Cancer obs (y)	Cancer pred (ŷ)	Residuals (y - ŷ)
17.05	16.10	0.95
19.80	20.13	-0.33
15.98	16.12	-0.14
22.07	21.60	0.47
22.83	22.93	-0.10
24.55	24.25	0.30
27.27	27.88	-0.61
23.57	21.24	2.14

Line of 'best fit'

The **least squares line**, also called 'the line of best fit', is the line which minimizes the sum of squared residuals

Relationship between cigarettes sold and cancer deaths

Try to find the line of best fit

Cancer smoking residuals

Cancer obs (y)	Cancer pred (ŷ)	Residuals (y - ŷ)	Residuals ² (y - ŷ) ²
17.05	16.10	0.95	0.90
19.80	20.13	-0.33	0.11
15.98	16.12	-0.14	0.02
22.07	21.60	0.47	0.22
22.83	22.93	-0.10	0.01
24.55	24.25	0.30	0.09
27.27	27.88	-0.61	0.37
23.57	21.24	2.14	4.59

Regression caution # 1

Avoid trying to apply the regression line to predict values far from those that were used to create the line. i.e., do not extrapolate too far

Regression caution # 2

Plot the data! Regression lines are only appropriate when there is a linear trend in the data.

Regression caution #3

Be aware of outliers – they can have an huge effect on the regression line.

Regression lines in R

```
# download the smoking data
> download_data("smoking_cancer.Rda")
# create a scatter plot and calculate the correlation
> plot(smoking$CIG, smoking$LUNG)
# fit a regression model
> Im_fit <- Im(smoking$LUNG ~ smoking$CIG)
# examine the a and b coefficients
> coef(lm_fit)
# add the regression line to the plot
> abline(lm_fit)
```

Concepts for the relationship between two quantitative variables

A scatterplot graphs the relationship between two variables

The **correlation** is measure of the strength and direction of a <u>linear association</u> between two variables

Value between -1 and 1

In **linear regression** we fit a <u>line</u> to the data, called the **regression line**

• We get coefficients for the slope (b) and the y-intercept (a)

The **residual** is the difference between <u>an observed</u> (y_i) and a <u>predicted value</u> (\hat{y}_i) of the response variable

• The regression line minimizes the sum of squared residuals

Review of descriptive statistics

Who is this?

Intro to data

What is Statistics?

What are...

Observational units?

Variables?

Categorical variables?

Quantitative variables?

	flight [‡]	date [‡]	carrier $^{\scriptsize \scriptsize $	origin [‡]	dest [‡]	air_time $^{\Diamond}$	arr_delay $^{\diamondsuit}$
1	1545	1-1-2013	UA	EWR	IAH	227	11
2	1714	1-1-2013	UA	LGA	IAH	227	20
3	1141	1-1-2013	AA	JFK	MIA	160	33
4	725	1-1-2013	B6	JFK	BQN	183	-18
5	461	1-1-2013	DL	LGA	ATL	116	-25
6	1696	1-1-2013	UA	EWR	ORD	150	12
7	507	1-1-2013	B6	EWR	FLL	158	19

Sampling

What is a ...?

- sample
- population
- statistic
- parameter

What is statistical inference?

Plato's cave

Quiz: parameters and statistics

	Sample Statistic	Population Parameter
Mean	Ī.	μ
Standard deviation		
Proportion		
Correlation		
Regression slope		

Quiz: parameters and statistics

	Sample Statistic	Population Parameter
Mean	χ	μ
Standard deviation	S	σ
Proportion	ĝ	π
Correlation	r	ρ
regression slope	b	β

Population parameters vs. sample statistics

π, μ, σ, ρ, β

Categorical data

What is the main statistic we discussed for categorical data?

How can we plot categorical data?

Categorical data

What is the main statistic we discussed for categorical data?

- π or p̂
- proportion = number in category/total

How can we plot categorical data?

Quantitative data?

What is a good way to visualize the shape of quantitative data?

Measure of central tendency: the mean

Measure of central tendency: the median

Which is resistant to outliers, the mean or the median?

The standard deviation

Which distribution has a larger standard deviation?

The standard deviation

Which distribution has a larger standard deviation?

statistic: s

What is the formula for the standard deviation?

$$s = \sqrt{\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

z-scores and percentiles

What is a z-score and why is it useful?

$$z\text{-score}(x_i) = \frac{x_i - \bar{x}}{s}$$

What is the pth percentile?

Histogram of Ages of people arrested for marijuana use

Normal pillow

What percent of the pillow's mass is ± 1 standard deviations from the mean?

What is a five-number summary and a box plot?

Box plot quiz

What is:

- Q1?
- Q3?
- The median?
- Most extreme values that are not outliers
- Outliers

Side-by-side boxplots

Side-By-Side (Comparative) Boxplots

Age of Best Actor/Actress Oscar Winners (1970-2001)

Relationships between measures

Q: What is this type of plot called?

Relationship between cigarettes sold and cancer deaths

Q: What statistic have we used to describe the linear relationship between quantitative variables?

$$r = \frac{1}{(n-1)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Does correlation imply causation?

What is our primary focus in Statistics?

Can you handle The TRUTH®?

