Conocimientos Previos

Conjuntos

- \square {a, b, c} { n | P(n) } (p. ej. { n | n > 5})
- $\square \in , \cup, \cap, \emptyset$
- $\square A \subseteq B$, $A \subseteq B$ $(A \subseteq B \ y \ A \neq B)$
- □ Diferencia de conjuntos: $A B \{x \mid x \in A \land x \notin B \}$
- □ ...

• Propiedades elementales de conjuntos

- \square A \subseteq B y B \subseteq C \Rightarrow A \subseteq C
- $\square A \subseteq B \ y \ B \subseteq A \Rightarrow A = B$

Lógica

- $\square \land, \lor, \lnot$
- □ ∀,∃

Demostraciones

- \square p \Rightarrow q es equivalente a \neg q \Rightarrow \neg p (contrarrecíproco)
- \square p \Rightarrow q no tiene nada que ver con q \Rightarrow p (recíproco)
- □ Reducción al absurdo: para demostrar $p \Rightarrow q$, demostrar $p \land \neg q \Rightarrow$ falso (absurdo)

Inducción

- Principio de Inducción Matemática:
 - \square Sea $S \in N$, si
 - (i) $1 \in S$
 - (ii) $\forall k \in S \quad k+1 \in S$
 - entonces S = N
- PIM "fuerte"
 - \square Sea S \in N, si
 - (i) $1 \in S$
 - (ii) $\forall x \in S / 1 \le x \le k \quad k+1 \in S$
 - entonces S = N
- La base de la inducción puede ser 0, 1, o bien otro n₀ ∈ N (ó incluso a Z)
- Demostrar P por inducción:
 - □ Demostrar P(1) (base de la inducción)
 - □ Demostrar que $P(k) \Rightarrow P(k+1)$ (inducción)
 - P(k) es la hipótesis de inducción
 - □ Por el PIM se cumple P

Introducción LGA (I)

- Lenguaje
 - □ Natural / artificial (formal)
 - □ Palabras sobre un alfabeto + gramática
- Gramática
 - □ Estructura de un lenguaje (Chomsky)
- Autómata (Máquina Abstracta)
 - ☐ Circuitos combinatorios y secuenciales (Shannon)
 - □ Recibe / transmite información (cadenas de símbolos)
 - □ "Cinta" de entrada, conjunto de estados, salida y en algunos casos dispositvos auxiliares de memoria

Introducción LGA (II)

Introducción LGA (III)

Gramática	Lenguaje	Máquina
Tipo 0: Sin Restricciones	Recursivamente enumerable / Sin restricciones	Máquina de Turing
Tipo 1: Sensible al Contexto	Dependiente del Contexto	Autómata Linealmente Acotado
Tipo 2: De Contexto Libre	Independiente del Contexto	Autómata de Pila
Tipo 3: Regular	Regular	Autómata Finito

- Tipo 3: Analizadores léxicos, búsquedas con expresiones regulares
- Tipos 2 y 1: Sintaxis de lenguajes de programación (compiladores)
- Tipo 0: Computadores de própósito general