Application of Information Theory, Lecture 12

Accessible Entropy and Statistically Hiding Commitments

Iftach Haitner

Tel Aviv University.

January 20, 2015

Section 1

Commitment Schemes

- Digital analogue of a safe
- Numerous applications (e.g., zero-knowledge, coin-flipping, secure computations,)

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- Commit stage: The sender S has private input $\sigma \in \{0,1\}^*$ and the common input is 1^n . The commitment stage results in a **joint** output c, the commitment, and a **private** output d of S, the decommitment.
- Reveal stage: S sends the pair (d, σ) to R, and R either accepts or rejects.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- ► Commit stage: The sender S has private input $\sigma \in \{0,1\}^*$ and the common input is 1ⁿ. The commitment stage results in a **joint** output c, the commitment, and a **private** output d of S, the decommitment.
- Reveal stage: S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- Commit stage: The sender S has private input $\sigma \in \{0,1\}^*$ and the common input is 1ⁿ. The commitment stage results in a **joint** output c, the commitment, and a **private** output d of S, the decommitment.
- Reveal stage: S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Hiding:. In commit stage: for any R^* and equal length $\sigma, \sigma' \in \{0, 1\}^*$, $\Delta^{R^*}((S(\sigma), R^*)(1^n), (S(\sigma), R^*)(1^n)) = \text{neg}(n)$.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

- Commit stage: The sender S has private input $\sigma \in \{0,1\}^*$ and the common input is 1ⁿ. The commitment stage results in a **joint** output c, the commitment, and a **private** output d of S, the decommitment.
- Reveal stage: S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Hiding: In commit stage: for any R* and equal length $\sigma, \sigma' \in \{0, 1\}^*$, $\Delta^{R^*}((S(\sigma), R^*)(1^n), (S(\sigma), R^*)(1^n)) = \text{neg}(n)$.

Binding: The following happens with negligible prob. for any S*:

 $S^*(1^n)$ interacts with $R(1^n)$ in the commit stage resulting in a commitment c. Then S^* outputs two pairs (d, σ) and (d', σ') with $\sigma \neq \sigma'$ and $R(c, d, \sigma) = R(c, d', \sigma') = Accept$.

▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- Suffices to construct "bit commitments"

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- Suffices to construct "bit commitments"
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- Suffices to construct "bit commitments"
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.
- We focus on computationally binding, and statistically hiding commitments (SHC)

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- Suffices to construct "bit commitments"
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.
- We focus on computationally binding, and statistically hiding commitments (SHC)
- Canonical decommitment: d is S's coin and c is protocol's transcript of the commit stage, and decomitment verifies consistency.

- ▶ Negligible function: μ : $\mathbb{N} \mapsto \mathbb{N}$ is negligible, if for any $p \in \text{poly } \exists n_p \in \mathbb{N}$ s.t. $\frac{1}{p(n)} < \mu(n)$ for all $n > n_p$.
- Hiding: Perfect, statistical, computational.
- Binding: Perfect, statistical, computational.
- Impossible to have simultaneously both properties to be statistical.
- Suffices to construct "bit commitments"
- OWFs imply both statistically binding and computationally hiding commitments, and (more difficult) computationally binding and statistically hiding commitments.
- We focus on computationally binding, and statistically hiding commitments (SHC)
- Canonical decommitment: d is S's coin and c is protocol's transcript of the commit stage, and decomitment verifies consistency.
- We will focus on constructing the commit algorithm

Section 2

Inaccessible Entropy

Definition 2 (collision resistant hash family (CRH))

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \mathsf{neg}(n)
```

Implies SHC. (?)

Definition 2 (collision resistant hash family (CRH))

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \mathsf{neg}(n)
```

Implies SHC. (?)

Definition 2 (collision resistant hash family (CRH))

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

Implies SHC. (?) Believed not to be implied by OWFs.

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- Mhat is the entropy of x given h, y and the coins A's used to sample y?

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- Mhat is the entropy of x given h, y and the coins A's used to sample y?

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- Implies SHC. (?) Believed not to be implied by OWFs.
- ▶ Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given h, y and the coins A's used to sample y? (essentially) 0!

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- Implies SHC. (?) Believed not to be implied by OWFs.
- ▶ Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given h, y and the coins A's used to sample y? (essentially) 0!
- ▶ The 3-block generator G(h, x) = (h, f(x), x) has inaccessible entropy n/2

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- ▶ Implies SHC. (?) Believed not to be implied by OWFs.
- ▶ Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given h, y and the coins A's used to sample y? (essentially) 0!
- ► The 3-block generator G(h, x) = (h, f(x), x) has inaccessible entropy n/2
- Does inaccessible entropy generator implies SHC?

```
A function family \mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\} is collision resistant, if \forall PPT A \Pr_{\substack{h \leftarrow \mathcal{H}_n \\ (x,x') \leftarrow A(1^n,h)}} [x \neq x' \in \{0,1\}^* \land h(x) = h(x')] = \text{neg}(n)
```

- Implies SHC. (?) Believed not to be implied by OWFs.
- Assume for simplicity that $h \in \mathcal{H}_n$ is 2^n to one and that a PPT cannot find a collision in any $h \in \mathcal{H}_n$
- Given $h(U_n)$, the (min) entropy of U_n is n/2.
- Consider PPT A that on input h first outputs y, and then outputs $x \in h^{-1}(y)$ (possibly using additional random coins)
- What is the entropy of x given h, y and the coins A's used to sample y? (essentially) 0!
- ► The 3-block generator G(h,x) = (h, f(x), x) has inaccessible entropy n/2
- Does inaccessible entropy generator implies SHC?
- Does OWF implies inaccessible entropy generator?

► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.

- ► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} \big[H_X(X) \big]$

- ► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} [H_X(X)]$
- Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an m-block generator and let $(G_1,\ldots,G_m) = G(U_n)$

- ► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} [H_X(X)]$
- ► Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an m-block generator and let $(G_1,\ldots,G_m)=G(U_n)$
- ► For $\mathbf{g} = (g_1, ..., g_m) \in \text{Supp}(G_1, ..., G_m)$, let

$$\mathsf{RealH}_{G}(\mathbf{g}) = \sum_{i \in [m]} H_{G_{i}|G_{1},...,G_{i-1}}(g_{i}|g_{1},...,g_{i-1})$$

- ▶ Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{X \leftarrow X} [H_X(X)]$
- ► Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an *m*-block generator and let $(G_1,\ldots,G_m) = G(U_n)$
- ► For $\mathbf{g} = (g_1, ..., g_m) \in \text{Supp}(G_1, ..., G_m)$, let

RealH_G(**g**) =
$$\sum_{i \in [m]} H_{G_i|G_1,...,G_{i-1}}(g_i|g_1,...,g_{i-1})$$

► The real Shannon entropy of G is $E_{g \leftarrow G(U_n)}[RealH_G(g)]$

- ► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{x \leftarrow X} [H_X(x)]$
- ► Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an *m*-block generator and let $(G_1,\ldots,G_m) = G(U_n)$
- ► For $\mathbf{g} = (g_1, ..., g_m) \in \text{Supp}(G_1, ..., G_m)$, let

RealH_G(
$$\mathbf{g}$$
) = $\sum_{i \in [m]} H_{G_i|G_1,...,G_{i-1}}(g_i|g_1,...,g_{i-1})$

- ► The real Shannon entropy of G is $E_{g \leftarrow G(U_n)}[RealH_G(g)]$
- ightharpoonup $E_{\mathbf{g}\leftarrow G(U_n)}[\mathsf{RealH}_G(\mathbf{g})] = \sum_{i\in [m]} H(G_i|G_1,\ldots,G_{i-1}) = G(U_n)$

- ► Sample entropy: for rv X let $H_X(x) = -\log \Pr_X[x]$.
- $\vdash H(X) = \mathsf{E}_{x \leftarrow X} [H_X(x)]$
- ► Let $G: \{0,1\}^n \mapsto (\{0,1\}^\ell)^m$ be an *m*-block generator and let $(G_1,\ldots,G_m) = G(U_n)$
- ▶ For $g = (g_1, ..., g_m) \in \text{Supp}(G_1, ..., G_m)$, let

$$\mathsf{RealH}_{G}(\mathbf{g}) = \sum_{i \in [m]} H_{G_{i}|G_{1},...,G_{i-1}}(g_{i}|g_{1},...,g_{i-1})$$

- ▶ The real Shannon entropy of G is $E_{\mathbf{q} \leftarrow G(U_n)}[RealH_G(\mathbf{g})]$
- ightharpoonup $E_{\mathbf{g}\leftarrow G(U_n)}\left[\mathsf{RealH}_G(\mathbf{g})\right] = \sum_{i\in [m]} H(G_i|G_1,\ldots,G_{i-1}) = G(U_n)$
- In the actual construction, we sometimes measure the (real) entropy of some of the output blocks.

► Let G be an m block generator

- ▶ Let *G* be an *m* block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .

- ▶ Let G be an m block generator
- Let \widetilde{G} be an m-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- Let $\widetilde{T} = (R_1, W_1, \widetilde{G}_1, \dots, R_m, W_m, \widetilde{G}_m)$ be the induced rv's in a random execution of \widetilde{G}

- ▶ Let G be an m block generator
- Let \widetilde{G} be an m-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- Let $\widetilde{T} = (R_1, W_1, \widetilde{G}_1, \dots, R_m, W_m, \widetilde{G}_m)$ be the induced rv's in a random execution of \widetilde{G}
- ▶ $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m) \in \text{Supp}(\widetilde{T})$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.

- ▶ Let G be an m block generator
- Let \widetilde{G} be an m-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- Let $\widetilde{T} = (R_1, W_1, \widetilde{G}_1, \dots, R_m, W_m, \widetilde{G}_m)$ be the induced rv's in a random execution of \widetilde{G}
- ▶ $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m) \in \text{Supp}(\widetilde{T})$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- ▶ We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.

- ▶ Let G be an m block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- Let $\widetilde{T} = (R_1, W_1, \widetilde{G}_1, \dots, R_m, W_m, \widetilde{G}_m)$ be the induced rv's in a random execution of \widetilde{G}
- ► $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m) \in \text{Supp}(\widetilde{T})$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- ▶ We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.

AccH<sub>G,
$$\widetilde{G}$$</sub>(\mathbf{t}) = $\sum_{i \in [m]} H_{\widetilde{G}_i|R_1,...,R_{i-1}}(g_i|r_1,...,r_{i-1})$

- ▶ Let G be an m block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- Let $\widetilde{T} = (R_1, W_1, \widetilde{G}_1, \dots, R_m, W_m, \widetilde{G}_m)$ be the induced rv's in a random execution of \widetilde{G}
- ▶ $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m) \in \text{Supp}(\widetilde{T})$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.

$$\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) = \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_i | R_1, \dots, R_{i-1}}(g_i | r_1, \dots, r_{i-1})$$

► The accessible entropy of \widetilde{G} (with respect to G) is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{G}}(\mathbf{t}) > k \right] \leq \mathsf{neg}(n)$.

- ▶ Let G be an m block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- Let $\widetilde{T} = (R_1, W_1, \widetilde{G}_1, \dots, R_m, W_m, \widetilde{G}_m)$ be the induced rv's in a random execution of \widetilde{G}
- ► $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m) \in \text{Supp}(\widetilde{T})$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.
- $\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) = \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_i | R_1, \dots, R_{i-1}}(g_i | r_1, \dots, r_{i-1})$
- ► The accessible entropy of \widetilde{G} (with respect to G) is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{G}}(\mathbf{t}) > k \right] \leq \mathsf{neg}(n)$.

- ▶ Let G be an m block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- Let $\widetilde{T} = (R_1, W_1, \widetilde{G}_1, \dots, R_m, W_m, \widetilde{G}_m)$ be the induced rv's in a random execution of \widetilde{G}
- ► $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m) \in \text{Supp}(\widetilde{T})$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.
- $\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) = \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_i \mid R_1, \dots, R_{i-1}}(g_i \mid r_1, \dots, r_{i-1})$
- ► The accessible entropy of \widetilde{G} (with respect to G) is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) > k \right] \le \mathsf{neg}(n)$. Why not $\mathsf{E}_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) \right]$?

- ▶ Let G be an m block generator
- Let \widetilde{G} be an *m*-block generator, that uses coins r_i before outputting its i'th block (w_i, g_i) .
- Let $\widetilde{T} = (R_1, W_1, \widetilde{G}_1, \dots, R_m, W_m, \widetilde{G}_m)$ be the induced rv's in a random execution of \widetilde{G}
- ▶ $t = (r_1, w_1, g_1, ..., r_m, w_m, g_m) \in \text{Supp}(\widetilde{T})$ is valid with respect to G, if $(g_1, ..., g_i) = G(w_i)_{1,...,i}$ for every $i \in [m]$.
- We will assume for simplicity that the string t in consideration is always valid, and omit the w's from the notation.

$$\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) = \sum_{i \in [m]} H_{\widetilde{\mathsf{G}}_i|R_1,\ldots,R_{i-1}}(g_i|r_1,\ldots,r_{i-1})$$

- ► The accessible entropy of \widetilde{G} (with respect to G) is at most k, if $\Pr_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) > k \right] \le \mathsf{neg}(n)$. Why not $\mathsf{E}_{\mathbf{t} \leftarrow \widetilde{T}} \left[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t}) \right]$?
- G has inaccessible entropy d, if the accessible entropy of any PPT \widetilde{G} is smaller be at least d than its real entropy

▶ Let $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^{2n} \mapsto \{0,1\}^n\}$ be 2^n -to one collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.

- ▶ Let $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^{2n} \mapsto \{0,1\}^n\}$ be 2^n -to one collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.
- Let G be the 3-block generator G(h, x) = (h, h(x), x)

- ▶ Let $\mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\}$ be 2^n -to one collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.
- Let G be the 3-block generator G(h, x) = (h, h(x), x)
- ▶ Real entropy of *G* is $\log |\mathcal{H}_n| + n$

- ► Let $\mathcal{H} = \{\mathcal{H}_n: \{0,1\}^{2n} \mapsto \{0,1\}^n\}$ be 2^n -to one collision resistant, and assume for simplicity that a PPT cannot find a collision for any $h \in \mathcal{H}_n$.
- Let G be the 3-block generator G(h, x) = (h, h(x), x)
- ▶ Real entropy of *G* is $\log |\mathcal{H}_n| + n$
- ► Accessible entropy of G is $\log |\mathcal{H}_n| + \frac{n}{2}$

Section 3

Manipulating Inaccessible Entropy

Let *G* be *m*-bit generator.

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

Let *G* be *m*-bit generator.

For $\ell \in \text{poly let } G^{\otimes \ell}$ be the following $\ell - 1 \cdot m$ -bit generator

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

- Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.
- Assume the real entropy of G is k_R , then

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

- Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.
- Assume the real entropy of G is k_R , then
 - **1.** $k_R^{\otimes \ell}$, the real entropy of $G^{\otimes \ell}$, is at least $k_R^{\otimes \ell} = (\ell 1)K_R$

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

- Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.
- Assume the real entropy of G is k_R , then
 - **1.** $k_R^{\otimes \ell}$, the real entropy of $G^{\otimes \ell}$, is at least $k_R^{\otimes \ell} = (\ell 1)K_R$
 - **2.** For any $i \in [(\ell 1) \cdot m]$ and $(g_1, \dots, g_{i-1}) \in \text{Supp}(G_1^{\otimes \ell}, \dots, G_{i-1}^{\otimes \ell})$: $H(G_i^{\otimes \ell} | G_1^{\otimes \ell}, \dots, G_{i-1}^{\otimes \ell}) = k/\ell$

Let *G* be *m*-bit generator.

$$G^{\otimes \ell}(x_1,...,x_{\ell},i) = G(x_1)_i,...,G(x_1)_m,...,G(x_{\ell})_1,...,G(x_{\ell})_{i-1}$$

- Assume the accessible entropy of G is (at most) k_A , then $k_A^{\otimes \ell}$, the accessible entropy of $G^{\otimes \ell}$, is at most $k(\ell-2)+m$.
- Assume the real entropy of G is k_R , then
 - **1.** $k_R^{\otimes \ell}$, the real entropy of $G^{\otimes \ell}$, is at least $k_R^{\otimes \ell} = (\ell 1)K_R$
 - **2.** For any $i \in [(\ell-1) \cdot m]$ and $(g_1, \dots, g_{i-1}) \in \text{Supp}(G_1^{\otimes \ell}, \dots, G_{i-1}^{\otimes \ell})$: $H(G_i^{\otimes \ell} | G_1^{\otimes \ell}, \dots, G_{i-1}^{\otimes \ell}) = k/\ell$
- Assume $k_R \ge k_A + 1$, then for $\ell = m + 2$, it holds that $k_R^{\otimes \ell} \ge k_A^{\otimes \ell} + 1$

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

Assume accessible entropy of G is (at most) k_A , then the accessible entropy of G is at most $k_A^{\ell} = \ell \cdot k_A$.

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

- Assume accessible entropy of G is (at most) k_A , then the accessible entropy of G is at most $k_A^{\ell} = \ell \cdot k_A$.
- ▶ Assume $H(G_i|G_1,...,G_{i-1}) = k_R$ for any $i \in [m]$, then for any $i \in [m]$ and $(g_1^{\ell},...,g_{i-1}^{\ell}) \in \text{Supp}(G_1^{\ell},...,G_{i-1}^{\ell})$: $k_{min}^{\ell} = H_{\infty}(G_i^{\ell}|G_1^{\ell},...,G_{i-1}^{\ell}) \approx \ell k_R$

Let G be an m-block generator and for $\ell \in \text{poly}$, let G^{ℓ} be the ℓ -fold parallel repetition of G.

- Assume accessible entropy of G is (at most) k_A , then the accessible entropy of G is at most $k_A^{\ell} = \ell \cdot k_A$.
- ▶ Assume $H(G_i|G_1,...,G_{i-1}) = k_R$ for any $i \in [m]$, then for any $i \in [m]$ and $(g_1^\ell,...,g_{i-1}^\ell) \in \text{Supp}(G_1^\ell,...,G_{i-1}^\ell)$: $k_{min}^\ell = H_\infty(G_i^\ell|G_1^\ell,...,G_{i-1}^\ell) \approx \ell k_R$
- ▶ If $k_A \le k_B 1$, then $\forall n \in \text{poly } \exists \ell \in \text{poly such that } \ell k_{min}^{\ell} > k_A^{\ell} + n$

Section 4

Inaccessible Entropy from OWF

The generator

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

Assume that f is a OWF then G has accessible entropy at most $n - \log n$.

▶ Recall f is OWF if

$$\Pr_{X \leftarrow \{0,1\}^n; y = f(X)} [\text{Inv}(y) \in f^{-1}(y)] = \text{neg}(n) \text{ for any PPT Inv.}$$

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

- ► Recall f is OWF if $\Pr_{X \leftarrow \{0,1\}^n; y = f(X)} \left[\operatorname{Inv}(y) \in f^{-1}(y) \right] = \operatorname{neg}(n)$ for any PPT Inv.
- ► The real entropy of G is n

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

- ► Recall f is OWF if $\Pr_{X \leftarrow \{0,1\}^n; y = f(X)} \left[\operatorname{Inv}(y) \in f^{-1}(y) \right] = \operatorname{neg}(n)$ for any PPT Inv.
- ► The real entropy of G is n
- Hence, entropy gap is log n

Definition 3

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$, let G be the (n+1)-block generator $f(x)_1, \ldots, f(x)_n, x$.

Lemma 4

- ► Recall f is OWF if $\Pr_{X \leftarrow \{0,1\}^n; y = f(X)} \left[\operatorname{Inv}(y) \in f^{-1}(y) \right] = \operatorname{neg}(n)$ for any PPT Inv.
- ▶ The real entropy of G is n
- Hence, entropy gap is log n
- Proof idea

Assume $\exists \ \mathsf{PPT}\ \widetilde{G}\ \mathsf{with}\ \mathsf{Pr}_{\mathbf{t}\leftarrow\widetilde{T}}\Big[\mathsf{AccH}_{\mathsf{G},\widetilde{\mathsf{G}}}(\mathbf{t})>n-\log n\Big] \geq \varepsilon = 1/\operatorname{poly}(n).$ (recall $\widetilde{T}=(R_1,\widetilde{\mathsf{G}}_1,\ldots,R_m,\widetilde{\mathsf{G}}_m)$ is the coins and blocks of $\widetilde{\mathsf{G}}$)

```
Assume \exists \ \mathsf{PPT}\ \widetilde{G} \ \mathsf{with}\ \mathsf{Pr}_{\mathbf{t}\leftarrow\widetilde{T}}\left[\mathsf{AccH}_{\mathsf{G},\widetilde{G}}(\mathbf{t}) > n - \log n\right] \geq \varepsilon = 1/\operatorname{poly}(n). (recall \widetilde{T} = (R_1,\widetilde{G}_1,\ldots,R_m,\widetilde{G}_m) is the coins and blocks of \widetilde{G})
```

Algorithm 5 (lnv(z))

- **1.** For i = 1 to n, do the following for n^2/ε times:
 - **1.1** Sample r_i uniformly at random and let g_i be the i'th output block of $\widetilde{G}(r_1, \ldots, r_i)$.
 - **1.2** If $g_i = z_i$, move to next value of *i*.
 - 1.3 Abort, if the maximal number of attempts is reached.
- **2.** Finish the execution of $\widetilde{G}(r_1, \ldots, r_{n+1})$, and output its (n+1) output block.

Assume $\exists \ \mathsf{PPT}\ \widetilde{G} \ \mathsf{with}\ \mathsf{Pr}_{\mathbf{t}\leftarrow\widetilde{T}}\left[\mathsf{AccH}_{G,\widetilde{G}}(\mathbf{t}) > n - \log n\right] \geq \varepsilon = 1/\operatorname{poly}(n).$ (recall $\widetilde{T} = (R_1,\widetilde{G}_1,\ldots,R_m,\widetilde{G}_m)$ is the coins and blocks of \widetilde{G})

Algorithm 5 (lnv(z))

- **1.** For i = 1 to n, do the following for n^2/ε times:
 - **1.1** Sample r_i uniformly at random and let g_i be the i'th output block of $\widetilde{G}(r_1, \ldots, r_i)$.
 - **1.2** If $g_i = z_i$, move to next value of *i*.
 - 1.3 Abort, if the maximal number of attempts is reached.
- **2.** Finish the execution of $\widetilde{G}(r_1, \ldots, r_{n+1})$, and output its (n+1) output block.

We finish the proof showing that

$$\Pr_{x \leftarrow \{0,1\}^n} \left[\mathsf{Inv}(f(x)) \in f^{-1}(f(x)) \right] \ge \frac{\varepsilon}{4n}$$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{Y_i \mid \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \leq \log(\frac{4n}{\varepsilon})$ for all $i \in [n]$.

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{Y_i \mid \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \le \log(\frac{4n}{\varepsilon})$ for all $i \in [n]$.

Let
$$\mathcal{Z} := \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{Y_i \mid \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \le \log(\frac{4n}{\varepsilon})$ for all $i \in [n]$.

Let
$$\mathcal{Z} := \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$$

For any $z \in \mathcal{Z}$:

$$\Pr\left[\operatorname{Inv}(z) \in f^{-1}(z)\right] \ge 1 - n \cdot \left(1 - \frac{\varepsilon}{4n}\right)^{n^2/\varepsilon} \ge 1 - O(n \cdot 2^{-n}) \ge \frac{1}{2}$$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{Y_i \mid \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \le \log(\frac{4n}{\varepsilon})$ for all $i \in [n]$.

Let
$$\mathcal{Z} := \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$$

For any $z \in \mathcal{Z}$:

$$\Pr\left[\operatorname{Inv}(z) \in f^{-1}(z)\right] \ge 1 - n \cdot \left(1 - \frac{\varepsilon}{4n}\right)^{n^2/\varepsilon} \ge 1 - O(n \cdot 2^{-n}) \ge \frac{1}{2}$$

We complete the proof showing that

- **1.** $\Pr_{\widetilde{T}}[S] \ge \varepsilon/2$, and
- **2.** $\Pr_{x \leftarrow \{0,1\}^n} [f(x) \in \mathcal{Z}] \ge \Pr_{\widetilde{T}} [\mathcal{S}] / n$

Let $S \subseteq \text{Supp}(\widetilde{T})$ denote the set of transcripts $\mathbf{t} = (r_1, g_1, \dots, r_{n+1}, g_{n+1})$ with

- 1. $AccH_{G,\widetilde{G}}(\mathbf{t}) \ge n \log n$, and
- **2.** $H_{Y_i \mid \widetilde{G}_1, \dots, \widetilde{G}_{i-1}}(g_i \mid g_1, \dots, g_{i-1}) \le \log(\frac{4n}{\varepsilon})$ for all $i \in [n]$.

Let
$$\mathcal{Z} := \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$$

For any $z \in \mathcal{Z}$:

$$\Pr\left[\operatorname{Inv}(z) \in f^{-1}(z)\right] \ge 1 - n \cdot \left(1 - \frac{\varepsilon}{4n}\right)^{n^2/\varepsilon} \ge 1 - O(n \cdot 2^{-n}) \ge \frac{1}{2}$$

We complete the proof showing that

- **1.** $\Pr_{\widetilde{\tau}}[S] \ge \varepsilon/2$, and
- **2.** $\Pr_{x \leftarrow \{0,1\}^n} [f(x) \in \mathcal{Z}] \ge \Pr_{\widetilde{T}} [\mathcal{S}] / n$

Yielding that $\Pr_{x \leftarrow \{0,1\}^n} \left[\mathsf{Inv}(f(x)) \in f^{-1}(f(x)) \right] \ge \frac{\varepsilon}{4n}$.

$\mathcal S$ is large

S is large

$$\Pr_{\widetilde{I}}[S] \ge \Pr\left[\mathsf{AccH}_{G,\widetilde{G}}(T) \ge n - \log n\right]$$

$$- \Pr_{(g_1,\dots,g_{n+1}) \leftarrow (\widetilde{G}_1,\dots,\widetilde{G}_{n+1})} \left[\exists i \in [n] : H_{\widetilde{G}_i|\widetilde{G}_1,\dots,\widetilde{G}_{i-1}}(g_i \mid g_1,\dots,g_{i-1}) > \log(\frac{4n}{\varepsilon})\right]$$

S is large

$$\Pr_{\widetilde{T}}[\mathcal{S}] \ge \Pr\left[\mathsf{AccH}_{G,\widetilde{G}}(T) \ge n - \log n\right]$$

$$- \Pr_{(g_1,\dots,g_{n+1}) \leftarrow (\widetilde{G}_1,\dots,\widetilde{G}_{n+1})} \left[\exists i \in [n] : H_{\widetilde{G}_i|\widetilde{G}_1,\dots,\widetilde{G}_{i-1}}(g_i \mid g_1,\dots,g_{i-1}) > \log(\frac{4n}{\varepsilon})\right]$$

$$\ge \varepsilon - n \cdot 2 \cdot \frac{\varepsilon}{4n} = \varepsilon/2$$

For
$$t = (r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$
 let

$$P(t) := \prod_{i=1}^{n+1} \Pr \left[R_i = r_i \mid (R_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

For $t = (r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$ let

$$P(t) := \prod_{i=1}^{n+1} \Pr \left[R_i = r_i \mid (R_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

Compute

$$\Pr_{\widetilde{T}}[t] = \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[R_1 = r_1 \mid \widetilde{G}_1 = g_1]$$

$$\cdot \Pr[\widetilde{G}_2 = g_2 \mid R_1 = r_1] \cdot \Pr[R_2 = r_2 \mid \widetilde{G}_2 = g_2] \cdots$$
(1)

For $t = (r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$ let

$$P(t) := \prod_{i=1}^{n+1} \Pr \left[R_i = r_i \mid (R_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

Compute

$$\Pr_{\widetilde{T}}[t] = \Pr[\widetilde{G}_{1} = g_{1}] \cdot \Pr[R_{1} = r_{1} \mid \widetilde{G}_{1} = g_{1}]
\cdot \Pr[\widetilde{G}_{2} = g_{2} \mid R_{1} = r_{1}] \cdot \Pr[R_{2} = r_{2} \mid \widetilde{G}_{2} = g_{2}] \cdots
= 2^{-\sum_{i=1}^{m} H_{\widetilde{G}_{i}\mid R_{1},...,R_{i-1}}(g_{i}\mid r_{1},...,r_{i-1})} \cdot P(t)$$
(1)

For $t = (r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$ let

$$P(t) := \prod_{i=1}^{n+1} \Pr \left[R_i = r_i \mid (R_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

Compute

$$\Pr_{\widetilde{T}}[t] = \Pr[\widetilde{G}_1 = g_1] \cdot \Pr[R_1 = r_1 \mid \widetilde{G}_1 = g_1]
\cdot \Pr[\widetilde{G}_2 = g_2 \mid R_1 = r_1] \cdot \Pr[R_2 = r_2 \mid \widetilde{G}_2 = g_2] \cdots
= 2^{-\sum_{i=1}^{m} H_{\widetilde{G}_i \mid R_1, \dots, R_{i-1}} (g_i \mid r_1, \dots, r_{i-1})} \cdot P(t)
= 2^{-\operatorname{AccH}_{G, \widetilde{G}}(t)} \cdot P(t)$$
(1)

For
$$t = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$
.

$$P(t) = \prod_{i=1}^{n+1} \Pr \left[R_i = r_i \mid (R_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

For
$$t = (r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$
.

$$P(t) = \prod_{i=1}^{n+1} \Pr \left[R_i = r_i \mid (R_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right]$$

$$= \prod_{i=1}^{n+1} \Pr \left[R_i = r_i \mid (R_{1,...,i-1}, \widetilde{G}_i) = (r_{1,...,i-1}, g_i) \right] \cdot \Pr \left[\widetilde{G}_i = g_i \mid \widetilde{G}_{n+1} = g_{n+1} \right]$$

For
$$t = (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$
.

$$P(t) = \prod_{i=1}^{n+1} \Pr\left[R_{i} = r_{i} \mid (R_{1,...,i-1}, \widetilde{G}_{i}) = (r_{1,...,i-1}, g_{i})\right]$$

$$= \prod_{i=1}^{n+1} \Pr\left[R_{i} = r_{i} \mid (R_{1,...,i-1}, \widetilde{G}_{i}) = (r_{1,...,i-1}, g_{i})\right] \cdot \Pr\left[\widetilde{G}_{i} = g_{i} \mid \widetilde{G}_{n+1} = g_{n+1}\right]$$

$$= \prod_{i=1}^{n+1} \Pr\left[R_{i} = r_{i} \mid (R_{1,...,i-1}, \widetilde{G}_{i}, \widetilde{G}_{n+1}) = (r_{1,...,i-1}, g_{i}, g_{n+1})\right]$$

$$\cdot \Pr\left[\widetilde{G}_{i} = g_{i} \mid \widetilde{G}_{n+1} = g_{n+1}\right]$$

For
$$t = (r_1, g_1, ..., r_{n+1}, g_{n+1}) \in \text{Supp}(\widetilde{T})$$
.

$$P(t) = \prod_{i=1}^{n+1} \Pr\left[R_{i} = r_{i} \mid (R_{1,...,i-1}, \widetilde{G}_{i}) = (r_{1,...,i-1}, g_{i})\right]$$

$$= \prod_{i=1}^{n+1} \Pr\left[R_{i} = r_{i} \mid (R_{1,...,i-1}, \widetilde{G}_{i}) = (r_{1,...,i-1}, g_{i})\right] \cdot \Pr\left[\widetilde{G}_{i} = g_{i} \mid \widetilde{G}_{n+1} = g_{n+1}\right]$$

$$= \prod_{i=1}^{n+1} \Pr\left[R_{i} = r_{i} \mid (R_{1,...,i-1}, \widetilde{G}_{i}, \widetilde{G}_{n+1}) = (r_{1,...,i-1}, g_{i}, g_{n+1})\right]$$

$$\cdot \Pr\left[\widetilde{G}_{i} = g_{i} \mid \widetilde{G}_{n+1} = g_{n+1}\right]$$

$$= \Pr_{\widetilde{T}}\left[t \mid \widetilde{G}_{n+1} = g_{n+1}\right]$$

 $\boldsymbol{\mathcal{Z}}$ is large, cont..

Z is large, cont..

► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$

- ► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$
- ▶ By definition $2^{-AccH_{G,\widetilde{G}}(t)} \le n \cdot 2^{-n}$, for any $t \in S$

- ► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$
- ▶ By definition $2^{-AccH_{G,\widetilde{G}}(t)} \le n \cdot 2^{-n}$, for any $t \in S$
- $\blacktriangleright \ \ \text{We saw } \mathsf{Pr}_{\widetilde{\mathcal{T}}}\left[\mathbf{t}\right] = 2^{-\mathsf{AccH}_{G,\widetilde{G}}(t)} \cdot \mathsf{Pr}_{\widetilde{\mathcal{T}}}\left[t \middle| \widetilde{G}_{n+1} = g_{n+1} \right] \text{ for any } \mathbf{t} \in \mathsf{Supp}(T).$

- ► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$
- ▶ By definition $2^{-AccH_{G,\widetilde{G}}(t)} \le n \cdot 2^{-n}$, for any $t \in S$
- $\blacktriangleright \ \ \text{We saw } \mathsf{Pr}_{\widetilde{\mathcal{T}}}\left[\mathbf{t}\right] = 2^{-\mathsf{AccH}_{G,\widetilde{G}}(t)} \cdot \mathsf{Pr}_{\widetilde{\mathcal{T}}}\left[t \middle| \widetilde{G}_{n+1} = g_{n+1} \right] \text{ for any } \mathbf{t} \in \mathsf{Supp}(T).$

Z is large, cont..

- ► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$
- ▶ By definition $2^{-AccH_{G,\widetilde{G}}(t)} \le n \cdot 2^{-n}$, for any $t \in S$
- $\blacktriangleright \ \ \text{We saw } \mathsf{Pr}_{\widetilde{T}}\left[\mathbf{t}\right] = 2^{-\mathsf{AccH}_{G,\widetilde{G}}(t)} \cdot \mathsf{Pr}_{\widetilde{T}}\left[t \middle| \widetilde{G}_{n+1} = g_{n+1}\right] \text{ for any } \mathbf{t} \in \mathsf{Supp}(T).$

Hence

$$\Pr_{\widetilde{\mathcal{T}}}\left[\mathcal{S}\right] \leq n \cdot 2^{-n} \cdot \sum_{\mathbf{t} \in \mathcal{S}} \Pr_{\widetilde{\mathcal{T}}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1}\right]$$

- ► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$
- ▶ By definition $2^{-AccH_{G,\widetilde{G}}(t)} \le n \cdot 2^{-n}$, for any $t \in S$
- $\blacktriangleright \ \ \text{We saw } \Pr_{\widetilde{\mathcal{T}}}\left[\mathbf{t}\right] = 2^{-\mathsf{AccH}_{G,\widetilde{G}}(t)} \cdot \Pr_{\widetilde{\mathcal{T}}}\left[t \middle| \widetilde{G}_{n+1} = g_{n+1}\right] \text{ for any } \mathbf{t} \in \mathsf{Supp}(T).$

Hence

$$\begin{split} \Pr_{\widetilde{T}}\left[\mathcal{S}\right] &\leq n \cdot 2^{-n} \cdot \sum_{\mathbf{t} \in \mathcal{S}} \Pr_{\widetilde{T}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1}\right] \\ &= n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \sum_{\mathbf{t} = (\dots, g_{n+1}) \in \mathcal{S} : f(g_{n+1}) = z} \Pr_{\widetilde{T}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1}\right] \end{split}$$

\mathcal{Z} is large, cont..

- ► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$
- ▶ By definition $2^{-AccH_{G,\widetilde{G}}(t)} \le n \cdot 2^{-n}$, for any $t \in S$
- $\blacktriangleright \ \, \text{We saw Pr}_{\widetilde{\mathcal{T}}}\left[\mathbf{t}\right] = 2^{-\mathsf{AccH}_{G,\widetilde{G}}(t)} \cdot \mathsf{Pr}_{\widetilde{\mathcal{T}}}\left[t \middle| \widetilde{G}_{n+1} = g_{n+1} \right] \text{ for any } \mathbf{t} \in \mathsf{Supp}(T).$

Hence

$$\begin{split} \Pr_{\widetilde{T}}\left[\mathcal{S}\right] &\leq n \cdot 2^{-n} \cdot \sum_{\mathbf{t} \in \mathcal{S}} \Pr_{\widetilde{T}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1}\right] \\ &= n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \sum_{\mathbf{t} = (\dots, g_{n+1}) \in \mathcal{S}: f(g_{n+1}) = z} \Pr_{\widetilde{T}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1}\right] \\ &= n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \sum_{y \in f^{-1}(z)} \sum_{\mathbf{t} = (\dots, y)} \Pr_{\widetilde{T}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = y\right] \end{split}$$

\mathcal{Z} is large, cont..

- ► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$
- ▶ By definition $2^{-AccH_{G,\widetilde{G}}(t)} \le n \cdot 2^{-n}$, for any $t \in S$
- $\blacktriangleright \ \, \text{We saw Pr}_{\widetilde{\mathcal{T}}}\left[\mathbf{t}\right] = 2^{-\mathsf{AccH}_{G,\widetilde{G}}(t)} \cdot \mathsf{Pr}_{\widetilde{\mathcal{T}}}\left[t \middle| \widetilde{G}_{n+1} = g_{n+1} \right] \text{ for any } \mathbf{t} \in \mathsf{Supp}(T).$

Hence

$$\begin{aligned} &\Pr_{\widetilde{T}}[\mathcal{S}] \leq n \cdot 2^{-n} \cdot \sum_{\mathbf{t} \in \mathcal{S}} \Pr_{\widetilde{T}} \left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1} \right] \\ &= n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \sum_{\mathbf{t} = (\dots, g_{n+1}) \in \mathcal{S}: f(g_{n+1}) = z} \Pr_{\widetilde{T}} \left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1} \right] \\ &= n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \sum_{y \in f^{-1}(z)} \sum_{\mathbf{t} = (\dots, y)} \Pr_{\widetilde{T}} \left[\mathbf{t} \middle| \widetilde{G}_{n+1} = y \right] \\ &\leq n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \left| f^{-1}(z) \middle| \end{aligned}$$

\mathcal{Z} is large, cont..

- ► Recall, $\mathcal{Z} = \{z \in \{0,1\}^n : \exists (r_1, g_1, \dots, r_{n+1}, g_{n+1}) \in \mathcal{S} \text{ s.t. } f(g_{n+1}) = z\}$
- ▶ By definition $2^{-AccH_{G,\widetilde{G}}(t)} \le n \cdot 2^{-n}$, for any $t \in S$
- $\blacktriangleright \ \ \text{We saw } \Pr_{\widetilde{\mathcal{T}}}\left[\mathbf{t}\right] = 2^{-\mathsf{AccH}_{G,\widetilde{G}}(t)} \cdot \Pr_{\widetilde{\mathcal{T}}}\left[t \middle| \widetilde{G}_{n+1} = g_{n+1} \right] \text{ for any } \mathbf{t} \in \mathsf{Supp}(\mathcal{T}).$

Hence

$$\begin{split} \Pr_{\widetilde{T}}\left[\mathcal{S}\right] &\leq n \cdot 2^{-n} \cdot \sum_{\mathbf{t} \in \mathcal{S}} \Pr_{\widetilde{T}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1}\right] \\ &= n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \sum_{\mathbf{t} = (\dots, g_{n+1}) \in \mathcal{S}: f(g_{n+1}) = z} \Pr_{\widetilde{T}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = g_{n+1}\right] \\ &= n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \sum_{y \in f^{-1}(z)} \sum_{\mathbf{t} = (\dots, y)} \Pr_{\widetilde{T}}\left[\mathbf{t} \middle| \widetilde{G}_{n+1} = y\right] \\ &\leq n \cdot 2^{-n} \cdot \sum_{z \in \mathcal{Z}} \left| f^{-1}(z) \right| \\ &= n \cdot \Pr_{x \leftarrow \{0, 1\}^n}\left[f(x) \in \mathcal{Z}\right]. \Box \end{split}$$

Section 5

SHC from Inaccessible Entropy

► Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is *n*-bit smaller than the sum of the min entropies.

- Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is n-bit smaller than the sum of the min entropies.
- Use universal hashing to get a "generator" with zero accessible entropy block

- Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is n-bit smaller than the sum of the min entropies.
- Use universal hashing to get a "generator" with zero accessible entropy block
- Use target-collision-resistant hash family (a non-interactive cryptographic tool implied by OWF) to get weakly binding SHC

- Entropy equalization + gap amplification to get generator that has the same min-entropy in each block and whose accessible entropy is n-bit smaller than the sum of the min entropies.
- Use universal hashing to get a "generator" with zero accessible entropy block
- Use target-collision-resistant hash family (a non-interactive cryptographic tool implied by OWF) to get weakly binding SHC
- Amplify the above into full-fledged SHC

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- **2.** R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- **3.** S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^k -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- **2.** R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- **3.** S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let \widetilde{S} be an arbitrary algorithm and let Y^1 , Y^2 , H^1 , H^2 be value of y^1 , y^2 , h^1 , h^2 in a random execution of (\widetilde{S}, R) .

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- **2.** R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- **3.** S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let \widetilde{S} be an arbitrary algorithm and let Y^1 , Y^2 , H^1 , H^2 be value of y^1 , y^2 , h^1 , h^2 in a random execution of $(\widetilde{S}, \mathbb{R})$.

Claim 7

$$\Pr\left[\exists x \neq x' \in \mathcal{T}: H^{1}(x) = H^{1}(x') = Y^{1} \wedge H^{2}(x) = H^{3}(x') = Y^{3}\right] \in 2^{-\Omega(n)}.$$

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- **2.** R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- **3.** S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let \widetilde{S} be an arbitrary algorithm and let Y^1 , Y^2 , H^1 , H^2 be value of y^1 , y^2 , h^1 , h^2 in a random execution of $(\widetilde{S}, \mathbb{R})$.

Claim 7

$$\Pr\left[\exists x \neq x' \in \mathcal{T} \colon H^1(x) = H^1(x') = Y^1 \land H^2(x) = H^3(x') = Y^3\right] \in 2^{-\Omega(n)}.$$

Proof: ?

Let $\mathcal{T} \subseteq \{0,1\}^{\ell}$ be 2^{k} -size set.

Let \mathcal{H}^1 be ℓ -wise independent family mapping ℓ -bit strings to k-bit strings Let \mathcal{H}^2 be 2-universal family mapping ℓ -length strings to n-bit strings

Protocol 6 ((S,R))

- 1. S selects $x \in \mathcal{T}$
- **2.** R sends $h^1 \leftarrow \mathcal{H}^1$ to S
- **3.** S sends $y^1 = h^1(x)$ to R
- **4.** R sends $h^2 \leftarrow \mathcal{H}^2$ to S
- **5.** S sends $y^2 = h^2(x)$ to R

Let \widetilde{S} be an arbitrary algorithm and let Y^1 , Y^2 , H^1 , H^2 be value of y^1 , y^2 , h^1 , h^2 in a random execution of (\widetilde{S}, R) .

Claim 7

$$\Pr\left[\exists x \neq x' \in \mathcal{T}: H^{1}(x) = H^{1}(x') = Y^{1} \wedge H^{2}(x) = H^{3}(x') = Y^{3}\right] \in 2^{-\Omega(n)}.$$

Proof: ? Can we do it in a single round?

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
Protocol 8 (G' = (S, R))
```

S sets $x \leftarrow \{0,1\}^s$

- 1. R sends $h_i^1 \leftarrow \mathcal{H}^1$ to S
- **2.** S sends $y_i^1 = h_i^1(G(x)_i)$ to R
- 3. R sends $h_i^2 \leftarrow \mathcal{H}^2$ to S
- **4.** S sends $y_i^2 = h_i^2(G(x)_i)$ to R
- **5.** S sends $g_i = G(x)_i$ to R

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
Protocol 8 (G' = (S, R))

S sets x \leftarrow \{0, 1\}^s

For i = 1 to m:

1. R sends h_i^1 \leftarrow \mathcal{H}^1 to S

2. S sends y_i^1 = h_i^1(G(x)_i) to R

3. R sends h_i^2 \leftarrow \mathcal{H}^2 to S

4. S sends y_i^2 = h_i^2(G(x)_i) to R

5. S sends g_i = G(x)_i to R
```

• We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
Protocol 8 (G' = (S, R))
S sets x \leftarrow \{0, 1\}^s
```

1. R sends
$$h_i^1 \leftarrow \mathcal{H}^1$$
 to S

- **2.** S sends $y_i^1 = h_i^1(G(x)_i)$ to R
- 3. R sends $h_i^2 \leftarrow \mathcal{H}^2$ to S
- **4.** S sends $y_i^2 = h_i^2(G(x)_i)$ to R
- **5.** S sends $g_i = G(x)_i$ to R
- We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).
- Assume the blocks of G has real min-entropy (k + n + t), then the blocks of G' has real min-entropy roughly t

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
Protocol 8 (G' = (S, R))
S sets x \leftarrow \{0, 1\}^s
```

1. R sends
$$h_i^1 \leftarrow \mathcal{H}^1$$
 to S

2. S sends
$$y_i^1 = h_i^1(G(x)_i)$$
 to R

3. R sends
$$h_i^2 \leftarrow \mathcal{H}^2$$
 to S

4. S sends
$$y_i^2 = h_i^2(G(x)_i)$$
 to R

5. S sends
$$g_i = G(x)_i$$
 to R

- We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).
- Assume the blocks of G has real min-entropy (k + n + t), then the blocks of G' has real min-entropy roughly t
- Assume G has accessible entropy mk, then w.p. 1 − negl(n) in an execution of G' exists block with accessible entropy 0:

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

```
Protocol 8 (G' = (S, R))
S sets x \leftarrow \{0, 1\}^s
```

1. R sends
$$h_i^1 \leftarrow \mathcal{H}^1$$
 to S

2. S sends
$$y_i^1 = h_i^1(G(x)_i)$$
 to R

3. R sends
$$h_i^2 \leftarrow \mathcal{H}^2$$
 to S

4. S sends
$$y_i^2 = h_i^2(G(x)_i)$$
 to R

5. S sends
$$g_i = G(x)_i$$
 to R

- We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).
- Assume the blocks of G has real min-entropy (k + n + t), then the blocks of G' has real min-entropy roughly t
- Assume G has accessible entropy mk, then w.p. 1 − negl(n) in an execution of G' exists block with accessible entropy 0:

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H}^1 be ℓ -wise function family mapping ℓ -bit strings of k-bit strings. Let \mathcal{H}^2 be 2-universal function family mapping ℓ -bit strings to n-bit strings.

Protocol 8 (G' = (S, R))

S sets $x \leftarrow \{0,1\}^s$

- 1. R sends $h_i^1 \leftarrow \mathcal{H}^1$ to S
- **2.** S sends $y_i^1 = h_i^1(G(x)_i)$ to R
- **3.** R sends $h_i^2 \leftarrow \mathcal{H}^2$ to S
- **4.** S sends $y_i^2 = h_i^2(G(x)_i)$ to R
- **5.** S sends $g_i = G(x)_i$ to R
- We view G' as an m-block "interactive generator" (the blocks are g_1, \ldots, g_m).
- Assume the blocks of G has real min-entropy (k + n + t), then the blocks of G' has real min-entropy roughly t
- Assume G has accessible entropy mk, then w.p. 1 − negl(n) in an execution of G' exists block with accessible entropy 0:

$$H_{\widetilde{G}_{i}|R_{1},...,R_{i-1},H_{1},...,H_{i},Y_{i}}(g_{i}|r_{1},...,r_{i-1},(h_{1}^{1},h_{1}^{2}),...,(h_{i}^{1},h_{i}^{2}),(y_{i}^{1},y_{i}^{2})) = 0$$
), where H_{i}/Y_{i} are the values of $(h_{i}^{1},h_{i}^{2})/(y_{i}^{1},y_{i}^{2})$ in random execution of \widetilde{G} .

Definition 9 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if

$$\Pr_{(x,a)\leftarrow\mathsf{A}_1(1^n);h\leftarrow\mathcal{H}_n;x'\leftarrow\mathsf{A}_2(a,h)}\left[x\neq x'\wedge h(x)=h(x')\right]=\mathsf{neg}(n)$$

for any pair of PPT's A_1 , A_2 .

Definition 9 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if

$$\Pr_{(x,a)\leftarrow\mathsf{A}_1(1^n);h\leftarrow\mathcal{H}_n;x'\leftarrow\mathsf{A}_2(a,h)}\left[x\neq x'\wedge h(x)=h(x')\right]=\mathsf{neg}(n)$$

for any pair of PPT's A_1 , A_2 .

Relaxed variant of collision resistant.

Definition 9 (target collision-resistant functions (TCR))

A function family $\mathcal{H} = \{\mathcal{H}_n\}$ is target collision resistant, if

$$\Pr_{(x,a)\leftarrow \mathsf{A}_1(1^n);h\leftarrow \mathcal{H}_n;x'\leftarrow \mathsf{A}_2(a,h)}\left[x\neq x'\wedge h(x)=h(x')\right]=\mathsf{neg}(n)$$

for any pair of PPT's A_1 , A_2 .

Relaxed variant of collision resistant.

Theorem 10

OWFs imply efficient compressing TCRs.

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

Let G be m-block generator of block size ℓ and input length s. Let \mathcal{H} be a TCR family mapping strings of length ℓ to string of length k. Let \mathcal{G} be 2-universal Boolean function family over strings of length ℓ .

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- ► Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding.

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- ► Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding.

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding. Proof:

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding. Proof:
 - **1.** For some $i \in [m]$, cheating \widetilde{S} must send hash of zero-entropy block.

```
Protocol 11 (Com = (S(\sigma), R))

S sets x \leftarrow \{0,1\}^s and R sets i^* \leftarrow [m]

For i = 1 to m:

1. R sends h_i \leftarrow \mathcal{H} to S

2. S sends y_i = h_i(G(x)_i) to R

3. If i = i^*:

3.1 R sends g \leftarrow \mathcal{G} to S

3.2 S sends g(G(x)_i) \oplus \sigma to R

3.3 Parties stop the execution.
```

- Assume the blocks of G has real min entropy (k + n), then Com is statistically hiding
- Assume G has a zero entropy block, then Com is $\frac{1}{m}$ binding. Proof:
 - **1.** For some $i \in [m]$, cheating \widetilde{S} must send hash of zero-entropy block.
 - 2. If $i^* = i$, we have binding

▶ OWF over *n* bits implies $\Theta(n)$ -round SHC

- ▶ OWF over *n* bits implies $\Theta(n)$ -round SHC
- ► Can be pushed to $\Theta(n/\log n)$ rounds

- ▶ OWF over *n* bits implies $\Theta(n)$ -round SHC
- ► Can be pushed to $\Theta(n/\log n)$ rounds
- Tight (at least for certain type of reductions)