JustIT Data Skills Workshop Week 5

# Project: Analyzing Employee Data Using MySQL and Power BI

By Riyad Hasan

## **Questions**

#### 1. What is the total number of employees in the company?

To answer this question, an SQL query was used, it reads as follows:

```
-- total employees
select
count(distinct(employees.emp_no)) AS TotalEmployees
from employees
;
```

Distinct is used to ensure that repeated employee numbers i.e. the same employee are not included in the count. Using this query returns that the total number of employees is **300,024**.

A card visual was created on Power BI displaying this result.



Figure 1. Card Visual of Total Number of Employees

#### 2. What is the average salary by department?

To answer this question, joins were used to relate several different tables including the salaries, employees, demt\_emp and departments table. The query is written below:

```
-- avg salary by dept
select departments.dept_no
departments.dept_name,
avg(salaries.salary) AS AvgSalary
from salaries
inner join employees
on salaries.emp_no = employees.emp_no
inner join dept_emp
on employees.emp_no = dept_emp.emp_no
inner join departments
on dept_emp.dept_no = departments.dept_no
group by departments.dept_name
order by AvgSalary
;
```

The results of this query have been tabulated below:

| dept_no | dept_name   | AvgSalary  |
|---------|-------------|------------|
| d007    | Sales       | 80667.6058 |
| d001    | Marketing   | 71913.2000 |
| d002    | Finance     | 70489.3649 |
| d008    | Research    | 59665.1817 |
| d004    | Production  | 59605.4825 |
| d005    | Development | 59478.9012 |

| d009 | Customer Service   | 58770.3665 |
|------|--------------------|------------|
| d006 | Quality Management | 57251.2719 |
| d003 | Human Resources    | 55574.8794 |

This shows that the Sales department has the highest average salary, whilst Human Resources department has the lowest average salary.

A bar chart displaying this was created on Power BI.

## Average Salary by Department



Figure 2. Bar Chart showing Average Salary per Department

### 3. Who are the top 10 highest paid employees?

The following query was used to answer this question:

```
-- top 10 highest paid employees
select employees.emp_no,
        employees.first_name,
        employees.last_name,
        salaries.salary
from employees
inner join salaries
on employees.emp_no = salaries.emp_no
order by salaries.salary desc
limit 10
;
```

The results of the above query have been tabulated below.

| emp_no | first_name | Last_name | salary |
|--------|------------|-----------|--------|
| 43624  | Tokuyasu   | Pesch     | 158220 |
| 43624  | Tokuyasu   | Pesch     | 157821 |
| 254466 | Honesty    | Mukaidono | 156286 |
| 47978  | Xiahua     | Whitcomb  | 155709 |
| 253939 | Sanjai     | Luders    | 155513 |
| 109334 | Tsutomu    | Alameldin | 155377 |
| 109334 | Tsutomu    | Alameldin | 155190 |
| 109334 | Tsutomu    | Alameldin | 154888 |

| 109334 | Tsutomu | Alameldin | 154885 |
|--------|---------|-----------|--------|
| 80823  | Willard | Baca      | 154459 |

## 4. How many employees are there in each department?

The following query was used:

```
-- employees count by dept
select departments.dept_name,
count(distinct(employees.emp_no)) AS TotalEmployees
from employees
inner join dept_emp
on employees.emp_no = dept_emp.emp_no
inner join departments
on dept_emp.dept_no = departments.dept_no
group by departments.dept_name
order by TotalEmployees desc
;
```

The following table was generated.

| dept_name                 | TotalEmployees |
|---------------------------|----------------|
| Development               | 85707          |
| Production                | 73485          |
| Sales                     | 52245          |
| Customer Service          | 23580          |
| Research                  | 21126          |
| Marketing                 | 20211          |
| <b>Quality Management</b> | 20117          |
| Human Resources           | 17786          |
| Finance                   | 17346          |

This shows Development department has the most employees whilst the Finance department has the least.

A pie chart to show this distribution was created.





Figure 3. Pie chart of Employee Count by Department

#### 5. What is the trend of average salaries over the years?

To answer this question, a yearly basis approach was taken. The query below was used:

```
-- salary trend over time (yearly trend)
select YEAR(to_date) AS year,
avg(salary) AS AvgSalary
from salaries
group by year
having year != 9999
order by year asc
;
```

In Line 1, the YEAR() function is used to extract only the year from the full date since a yearly basis approach is being used. Line 5 is used to remove open-ended salaries data entries from the query, since many of the entries in the salaries table are not complete and use 9999 as the year to convey the date of the salary is not known. The results are ordered by years ascending so a trend over time can be observed.

The following table was returned.

| Year | AvgSalary  |
|------|------------|
| 1985 | 51542.7753 |
| 1986 | 53182.9938 |
| 1987 | 54104.2295 |
| 1988 | 54967.9753 |
| 1989 | 55871.6536 |
| 1990 | 56849.8019 |
| 1991 | 57844.4753 |
| 1992 | 58796.7907 |
| 1993 | 59778.0252 |
| 1994 | 60756.9129 |
| 1995 | 61729.9795 |
| 1996 | 62687.4633 |
| 1997 | 63615.9766 |
| 1998 | 64567.3876 |
| 1999 | 65533.1352 |
| 2000 | 66549.9994 |
| 2001 | 68597.4674 |
| 2002 | 70558.5668 |

Creating a rough line chart in excel shows the trend:



Figure 4. Yearly trend of Salary

This shows that the salary has steadily increased over time.

#### 6. What is the gender distribution within each department?

To calculate this, a longer query was used:

```
-- gender distribution by department
select
departments.dept_name,
sum(case when employees.gender = "M" then 1 else 0 END) as Males,
sum(case when employees.gender = "F" then 1 else 0 END) as Females,
count(*) AS Total
from employees
inner join dept_emp
on employees.emp_no = dept_emp.emp_no
inner join departments
on dept_emp.dept_no = departments.dept_no
group by departments.dept_name
order by Total desc
;
```

Line 3 uses the case when expression to sum all instances when there is a row in the gender column of the employees table where the gender is "M" i.e. Male. Line 4 does the same when gender is "F" i.e. female. The query groups by department name so the gender distribution of employees for the department is outputted, shown below.

| dept_name          | Males | Females | Total |
|--------------------|-------|---------|-------|
| Development        | 51449 | 34258   | 85707 |
| Production         | 43936 | 29549   | 73485 |
| Sales              | 31391 | 20854   | 52245 |
| Customer Service   | 14132 | 9448    | 23580 |
| Research           | 12687 | 8439    | 21126 |
| Marketing          | 12174 | 8037    | 20211 |
| Quality Management | 12039 | 8078    | 20117 |
| Human Resources    | 10711 | 7075    | 17786 |
| Finance            | 10331 | 7015    | 17346 |

Two charts were created for this. One is a stacked column chart showing the gender distribution and total count of employees in each department. The other is a 100% stacked column chart showing the percentage gender distribution of employees in each department.



Figure 5. Gender distribution of employees in each department

The chart on the left shows the gender distribution along with the totals, so we can see the employee counts for each department and their gender breakdown. Whereas the chart on the right only shows the gender distribution so insights pertaining to that are more apparent. For example, we can clearly see that the gender distribution across all departments is 60% Male and 40% Female. This means the gender distribution of the company is 60:40 male: female.

# **Advanced Analytical Questions**

#### 1. Employee Retention Analysis

The following query was used:

```
select
departments.dept_name,
avg(ABS(DATEDIFF(to_date, from_date))) AS Tenure
from dept_emp
inner join departments
on dept_emp.dept_no = departments.dept_no
where to_date != '9999-01-01'
group by departments.dept_name
order by Tenure desc
;
```

DATEDIFF() in Line 3 returns the difference between two dates in the form of days. So here, it finds the difference between the date an employee began their role and the date they left and outputs this in days. ABS() is used to ensure absolute values are used in case the difference is outputted as a negative value. In Line 7 we use "!=" to exclude the date '9999-01-01' from the query because this is used as a dummy date for unknown data or for employees who are currently working in the role. We do not want to consider presently working employees as their tenure is still ongoing. If we do not exclude this, the results will be skewed.

Using this query, the following table was outputted.

| _dept_name                | Tenure    |
|---------------------------|-----------|
| Finance                   | 1697.6763 |
| Development               | 1693.9246 |
| Sales                     | 1684.3591 |
| Human Resources           | 1679.3472 |
| Production                | 1646.9722 |
| <b>Quality Management</b> | 1591.6703 |
| Research                  | 1584.6174 |
| Marketing                 | 1559.7880 |
| Customer Service          | 1541.8701 |

Using this data, a bar chart is created in Power BI.

Average Tenure of Employees (in days) by Department



Figure 6. Average Tenure of Employees by Department

Finance department has the longest average tenure whilst customer service has the shortest. However, there is not a wide difference for average tenure of employees across departments.

#### 2. Salary Progression Analysis

The dataset is insufficient to answer this question as it does not contain any information about promotions. Thus the question cannot be answered.

#### 3. Gender Pay Gap Analysis

The following query was used.

```
select
departments.dept_name,
avg(case when employees.gender = "M" then salary END) as MaleAvgSalary,
avg(case when employees.gender = "F" then salary END) as FemaleAvgSalary,
avg(salary) as AvgSalary
from employees
inner join salaries
on employees.emp_no = salaries.emp_no
inner join dept_emp
on salaries.emp_no = dept_emp.emp_no
inner join departments
on dept_emp.dept_no = departments.dept_no
group by departments.dept_name
;
```

Lines 3 and 4 use the case when expression to find the average of all entries that meet a specific condition, in this case when there is a row in the gender column of the employees table where the gender is "M" or "F" i.e. Male or Female.

The following table was generated.

| MaleAvgSalary | FemaleAvgSalary                                                                                              | AvgSalary                                                                                                                                                                                                                                                                               |
|---------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 59507.6407    | 59435.6436                                                                                                   | 59478.9012                                                                                                                                                                                                                                                                              |
| 80736.6783    | 80563.8577                                                                                                   | 80667.6058                                                                                                                                                                                                                                                                              |
| 59676.2339    | 59500.2896                                                                                                   | 59605.4825                                                                                                                                                                                                                                                                              |
| 55462.1302    | 55744.9599                                                                                                   | 55574.8794                                                                                                                                                                                                                                                                              |
| 59656.4158    | 59678.3021                                                                                                   | 59665.1817                                                                                                                                                                                                                                                                              |
| 57214.7315    | 57305.1893                                                                                                   | 57251.2719                                                                                                                                                                                                                                                                              |
| 58682.6523    | 58901.5697                                                                                                   | 58770.3665                                                                                                                                                                                                                                                                              |
| 72087.8209    | 71643.4196                                                                                                   | 71913.2000                                                                                                                                                                                                                                                                              |
| 70456.5559    | 70537.7665                                                                                                   | 70489.3649                                                                                                                                                                                                                                                                              |
|               | 59507.6407<br>80736.6783<br>59676.2339<br>55462.1302<br>59656.4158<br>57214.7315<br>58682.6523<br>72087.8209 | 59507.6407       59435.6436         80736.6783       80563.8577         59676.2339       59500.2896         55462.1302       55744.9599         59656.4158       59678.3021         57214.7315       57305.1893         58682.6523       58901.5697         72087.8209       71643.4196 |

Looking at this data, we can see that male and female average salaries are very close together for each department. There are some departments where the male average salary is slightly higher whilst there are some departments where the female average salary is higher. Thus, it seems there is no gender pay gap. To visualise this a clustered column chart was created on Power BI.

#### Male and Female Average Salary by Department



Figure 7. Male and Female Average Salary by Department.

Based on this chart, we can see that male and female average salaries across each department are almost identical and match the average salary for each department. Therefore, we can say there is no gender pay gap in any department in this company.

#### 4. Promotion Rate Analysis

The dataset is insufficient to answer this question as it does not contain any information about promotions. Thus the question cannot be answered.

#### 5. Managerial Effectiveness Analysis

The dataset is insufficient to answer this question as it does not contain any information about the specific manager of each employee; it only tells us the department the employee works in and each department can have multiple managers. Thus the question cannot be answered.

#### 6. Hiring Trends Analysis

The following query was used.

```
select YEAR(dept emp.from date) AS year,
sum(case when dept_no = "d001" then 1 END) as Marketing,
sum(case when dept_no = "d002" then 1 END) as Finance,
sum(case when dept no = "d003" then 1 END) as HumanResources,
sum(case when dept no = "d004" then 1 END) as Production,
sum(case when dept_no = "d005" then 1 END) as Development,
sum(case when dept_no = "d006" then 1 END) as QualityManagement,
sum(case when dept_no = "d007" then 1 END) as Sales,
sum(case when dept_no = "d008" then 1 END) as Research,
sum(case when dept_no = "d009" then 1 END) as CustomerService
from employees
inner join dept emp
on dept_emp.emp_no = employees.emp_no
group by year
having year != 9999
order by year asc;
```

Line 1 selects the year from each start date of the role for each employee, since we want to investigate the trend over years. Lines 2-10 use case when functions to sum each instance of a new hire for each department. This will create columns for the number of hires for each department. The data is grouped by year so each year will be a new row. This allows us to find the hiring trends of each department over time.

The following table is outputted (dept\_no is used for column headings so the table fits the page. Refer to the query above to see the department name each dept\_no corresponds to).

| Year | d001 | d002 | d003 | d004 | d005 | d006 | d007 | d008 | d009 |
|------|------|------|------|------|------|------|------|------|------|
| 1985 | 1040 | 1041 | 1001 | 4127 | 5092 | 977  | 3090 | 1039 | 973  |
| 1986 | 1100 | 1097 | 1117 | 4529 | 5456 | 1109 | 3351 | 1179 | 1216 |
| 1987 | 1103 | 1103 | 1178 | 4524 | 5584 | 1202 | 3362 | 1154 | 1224 |
| 1988 | 1174 | 1158 | 1147 | 4623 | 5513 | 1218 | 3416 | 1200 | 1287 |
| 1989 | 1174 | 1185 | 1143 | 4556 | 5754 | 1216 | 3459 | 1255 | 1301 |
| 1990 | 1217 | 1150 | 1152 | 4697 | 5608 | 1228 | 3460 | 1231 | 1296 |
| 1991 | 1257 | 1086 | 1185 | 4629 | 5541 | 1258 | 3342 | 1318 | 1368 |
| 1992 | 1307 | 1119 | 1139 | 4743 | 5827 | 1211 | 3492 | 1318 | 1392 |
| 1993 | 1369 | 1128 | 1154 | 4714 | 5614 | 1284 | 3437 | 1344 | 1458 |
| 1994 | 1307 | 1102 | 1255 | 4650 | 5623 | 1265 | 3558 | 1399 | 1459 |
| 1995 | 1238 | 1163 | 1205 | 4899 | 5749 | 1293 | 3487 | 1351 | 1523 |
| 1996 | 1388 | 1210 | 1231 | 4974 | 5832 | 1432 | 3372 | 1449 | 1625 |
| 1997 | 1394 | 1177 | 1181 | 5167 | 5768 | 1387 | 3481 | 1450 | 1767 |
| 1998 | 1480 | 1140 | 1161 | 5102 | 5739 | 1533 | 3477 | 1508 | 1793 |
| 1999 | 1543 | 1146 | 1199 | 5116 | 5740 | 1483 | 3682 | 1608 | 1835 |
| 2000 | 490  | 202  | 202  | 1209 | 810  | 481  | 492  | 581  | 883  |
| 2001 | 416  | 86   | 82   | 802  | 310  | 335  | 194  | 481  | 765  |
| 2002 | 214  | 53   | 54   | 424  | 147  | 205  | 93   | 261  | 415  |

Using Power BI, a stacked area chart is created using this data.



Figure 8. Hiring trends over time by Department

The chart shows that from 1985-1999, all departments had a slow rise in their hiring numbers, with some short periods of minor hikes or slumps. The largest departments, Development and Production, had the most stagnant hiring trend whilst the smaller departments, like Finance and Human Resources, had slightly more hiring growth year on year. In 2000, there was a major drop in hiring numbers for all departments, suggesting the company may have had a hiring freeze. This trend continues for the remainder of the years (2001 and 2002) where the hiring numbers continued to fall.

#### 7. Employee Age Distribution

Before creating a query to find the age distribution, we create a generated column in the employee table to find the age of each employee, called emp\_age.

```
ALTER TABLE employees

ADD emp_age INT

AS (TIMESTAMPDIFF(YEAR, employees.birth_date, "2024-08-10"));
```

ALTER TABLE indicates which table we want to manipulate, in this case we want to add something to the employees table. ADD indicates we want to add a new column, called emp\_age and set as the INT (integer) data type. AS indicates we want to set the values for each row in this column with the following. In this case, we want to find the age in years of each employee on the date 10<sup>th</sup> August 2024. We use TIMESTAMPDIFF() to determine the age, it has three arguments; The time unit we want the age outputted in, in this case years. The start date, in this case the birth date of each employee. And the end date, in this case the date 10<sup>th</sup> August 2024. This successfully creates a generated column called emp\_age.

Now a query can be made, as follows.

```
select
departments.dept name,
count(case when emp_age between 59 and 60 THEN 1 END) AS "59-60",
count(case when emp_age between 61 and 62 THEN 1 END) AS "61-62"
count(case when emp_age between 63 and 64 THEN 1 END) AS "63-64"
count(case when emp_age between 65 and 66 THEN 1 END) AS "65-66",
count(case when emp age between 67 and 68 THEN 1 END) AS "67-68"
count(case when emp_age between 69 and 70 THEN 1 END) AS "69-70",
count(case when emp_age >= 71 THEN 1 END) AS "71+",
count(*) AS total
from employees
inner join dept_emp
on dept_emp.emp_no = employees.emp_no
inner join departments
on dept emp.dept no = departments.dept no
group by departments.dept name
```

Since we want to create a histogram, we use age bins. Using max() and min() functions for emp\_age, we discover the max age is 72 and min age is 59, so these are the max and min values for each age bin. We decide to use 7 age bins, each bin having 2 ages i.e. our age bins are: 59-60, 61-62 ... 69-70 and 71+. Lines 3-7 are used to find the counts for each age bin using the case when function for the ages that belong in the age bin. For example. Line 3 queries MySQL to count each row where the employees age is between (and including) 59 and 60. This is performed for the remaining age bins. The data is also grouped by department. The following table was outputted:

| _dept_name         | 59-60 | 61-62 | 63-64 | 65-66 | 67-68 | 69-70 | 71+  |
|--------------------|-------|-------|-------|-------|-------|-------|------|
| Customer Service   | 2731  | 3622  | 3566  | 3551  | 3645  | 3758  | 2707 |
| Development        | 9693  | 13170 | 13439 | 13251 | 13146 | 13164 | 9844 |
| Finance            | 1996  | 2616  | 2686  | 2645  | 2672  | 2681  | 2050 |
| Human Resources    | 2088  | 2622  | 2725  | 2752  | 2639  | 2780  | 2180 |
| Marketing          | 2259  | 3048  | 3128  | 3216  | 3120  | 3122  | 2318 |
| Production         | 8169  | 11414 | 11333 | 11320 | 11207 | 11298 | 8744 |
| Quality Management | 2203  | 3122  | 3092  | 3095  | 3050  | 3184  | 2371 |
| Research           | 2542  | 3163  | 3281  | 3183  | 3147  | 3251  | 2559 |
| Sales              | 5863  | 8085  | 7993  | 8125  | 8082  | 8019  | 6078 |

Using Excel, stacked column charts were created to emulate a histogram. The x-axis counted each age bin whilst the y-axis contained the counts of employees for each age bin, effectively emulating a histogram. 2 charts were created. One shows the total age distribution whilst the other is divided by department.



Figure 9. Histogram of Age Distribution of Employees



Figure 10. Histogram of Employee Age Distribution by Department

The histograms shows that the employee age frequency is most dense in the five inside age bins and least dense in the outside age bins (59-60 and 71+). However, all five interior bins have a close frequency. The data has a low amount of skew so we can say it is symmetrical data. The distribution only has one peak so it possibly follows a normal distribution. The distribution is platykurtic (negative kurtosis) i.e. the distribution curve is flatter than a normal distribution where the values are less concentrated around the middle bin. The histogram that is separated by department shows that all departments follow the same distribution.

#### 8. Departmental Performance Analysis

The following query is used.

```
select YEAR(salaries.from_date) AS year,
ROUND(avg(case when dept_no = "d001" then salary END),2) as Marketing, ROUND(avg(case when dept_no = "d002" then salary END),2) as Finance,
ROUND(avg(case when dept_no = "d003" then salary END),2) as HumanResources,
ROUND(avg(case when dept_no = "d004" then salary END),2) as Production,
ROUND(avg(case when dept_no = "d005" then salary END),2) as Development,
ROUND(avg(case when dept_no = "d006" then salary END),2) as
QualityManagement,
ROUND(avg(case when dept_no = "d007" then salary END),2) as Sales,
ROUND(avg(case when dept_no = "d008" then salary END),2) as Research,
ROUND(avg(case when dept_no = "d009" then salary END),2) as CustomerService
from salaries
inner join dept_emp
on dept_emp.emp_no = salaries.emp_no
group by year
having year != 9999
order by year asc
```

The case when function is used again to find the average salary of entries that meet a condition, in this case when the row is a specific dept\_no. This function is nested within a ROUND() function so the outputted average is to 2 decimal places since it's a currency.

The following table was generated (dept\_no is used for column headings so the table fits the page. Refer to the guery above to see the department name each dept\_no corresponds to).

| Year | d001     | d002     | d003     | d004     | d005     | d006     | d007     | d008     | d009     |
|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 1985 | 61614.57 | 60285.39 | 44956.80 | 48924.27 | 48706.24 | 46644.21 | 69975.04 | 49098.05 | 48195.14 |
| 1986 | 62379.13 | 61078.81 | 45990.08 | 49865.65 | 49676.34 | 47458.51 | 70909.17 | 49992.76 | 49081.52 |
| 1987 | 63151.05 | 61838.28 | 46780.81 | 50770.94 | 50609.80 | 48234.48 | 71867.92 | 50950.01 | 49940.20 |
| 1988 | 64027.49 | 62671.56 | 47598.95 | 51700.66 | 51596.05 | 49249.16 | 72796.53 | 51630.08 | 50806.60 |
| 1989 | 65069.63 | 63667.71 | 48591.53 | 52702.98 | 52546.74 | 50238.07 | 73700.45 | 52711.22 | 51645.64 |
| 1990 | 66057.55 | 64651.19 | 49552.67 | 53633.87 | 53530.38 | 51261.53 | 74701.31 | 53752.32 | 52641.50 |
| 1991 | 66959.96 | 65581.09 | 50491.18 | 54612.60 | 54501.91 | 52236.98 | 75700.20 | 54677.77 | 53600.37 |
| 1992 | 67866.46 | 66588.74 | 51498.36 | 55532.41 | 55420.83 | 53266.58 | 76637.19 | 55567.61 | 54635.97 |
| 1993 | 68795.01 | 67511.21 | 52463.74 | 56580.33 | 56404.96 | 54256.32 | 77594.13 | 56529.05 | 55641.58 |
| 1994 | 69758.67 | 68511.62 | 53435.23 | 57552.81 | 57375.95 | 55189.46 | 78536.81 | 57434.77 | 56635.63 |
| 1995 | 70793.81 | 69332.83 | 54369.71 | 58482.82 | 58334.30 | 56202.43 | 79470.75 | 58397.94 | 57662.33 |
| 1996 | 71730.81 | 70268.24 | 55283.82 | 59447.48 | 59284.03 | 57116.78 | 80474.60 | 59362.89 | 58636.14 |
| 1997 | 72687.65 | 71193.91 | 56293.54 | 60375.54 | 60230.54 | 58059.90 | 81447.48 | 60421.26 | 59558.86 |
| 1998 | 73642.32 | 72170.06 | 57338.39 | 61338.96 | 61207.56 | 58960.41 | 82452.91 | 61424.09 | 60498.42 |
| 1999 | 74498.73 | 73163.24 | 58358.06 | 62336.36 | 62194.85 | 59930.48 | 83352.61 | 62427.98 | 61506.60 |
| 2000 | 76563.73 | 75184.64 | 60394.79 | 64372.65 | 64228.09 | 61949.64 | 85379.02 | 64439.27 | 63530.60 |
| 2001 | 78686.35 | 77346.87 | 62523.60 | 66512.96 | 66363.76 | 64088.74 | 87516.13 | 66567.50 | 65659.40 |
| 2002 | 80512.40 | 79257.90 | 64486.00 | 68434.13 | 68335.69 | 66012.17 | 89480.37 | 68792.22 | 67657.34 |
|      |          |          |          |          |          |          |          |          |          |

Using this data, a line chart was created on Power BI.





Figure 11. Hiring trends over time, by department.

This chart shows that average salary for all departments grew steadily over time. We can see a steady growth for all departments from 1985-1999, where there is an increase in growth rate. All departments share the same growth rate pattern. As such, we can conclude that departmental performance, measured via average salary, became better over time for all departments. Interestingly, this spike in average salary growth coincides with a sharp decline in hiring, which perhaps suggests the company downsized in its staff numbers and paid its remaining employees more.

#### 9. Employee Turnover Analysis

The turnover rate can be calculated with the following formula.

$$TurnoverRate = \frac{Employees who have left}{\frac{Employees at start date + Employees at end date}{2}} \times 100$$

The following query is used.

```
-- finding the start date
select
MIN(from_date)
from dept_emp
;
-- full query
Select
departments.dept_name,
(sum(case when dept_emp.to_date != "9999-01-01" then 1 END) /
    (sum(case when dept_emp.to_date = "9999-01-01" then 1 END) +
    sum(case when dept_emp.from_date = "1985-01-01" then 1 END)
    ) / 2
) * 100 AS TurnoverRate
from dept_emp
inner join departments
```

```
on dept_emp.dept_no = departments.dept_no
group by departments.dept_name
order by TurnoverRate asc
;
```

The formula begins on Line 3 until 7, where several case when statements are used. Employees who left can be found by summing every instance when to\_date (date employee worked until) is not 9999-01-01, since this date is used as a dummy to represent employees who are currently working in the role. So by counting all employees who don't have this date, we can count all the employees who have left the company. Conversely, employees at end date i.e. employers currently working at the company can be found by summing every instance when to\_date is 9999-01-01. Employees at start date can be found by first finding the minimum from\_date (i.e. start date) using the MIN() function. This was returned as 1985-01-01. Thus, by summing every instance when from\_date is 1985-01-01 we can count all the employees at the start date.

This query generates the table below.

| dept_name                 | TurnoverRate |
|---------------------------|--------------|
| Customer Service          | 17.10586225  |
| Marketing                 | 18.08596640  |
| Research                  | 18.40758965  |
| Production                | 18.92974390  |
| Human Resources           | 18.94720520  |
| <b>Quality Management</b> | 19.14827795  |
| Sales                     | 19.28810140  |
| Finance                   | 19.73388000  |
| Development               | 19.80956880  |
|                           |              |

A bar chart displaying this was created on Power BI.

#### Turnover Rate (%) for each Department



Figure 12. Turnover Rate by Department

We can see that all departments have a similar turnover rate, ranging between 17-20%. Customer Service has the lowest turnover rate at 17.1% whilst Finance and Development have the largest turnover rates at 19.7% and 19.8% respectively.

# 10. Employee Satisfaction Analysis

This question asks to use salary progression, however salary progression cannot be determined as stated in Question 3 of this section. By extension, this question cannot be answered.

# **Dashboard**

A screenshot of the final dashboard is displayed on the following page. Please refer to the attached Power BI file to see the interactive dashboard. Note that due to the full data not being loaded into Power BI due to computational limitations (rather outputted tables from SQL were added manually), there is not a full degree of interactivity for every chart.



Figure 13. Screenshot of Dashboard.