# Churn Optimization PowerCo





### Meeting agenda

#### **Discuss**

- Insights learned form the data
- First model draft
- Suggestions on churn strategy





In recent years, post-liberalization of the energy market in

Europe, PowerCo has had a growing problem with increasing customer defections above industry average. The churn issue is most acute in the SME division and thus PowerCo want it to be the first priority

PowerCo has asked whether it is possible to predict the customers which are most likely to churn so that they can trial a range of pre-emptive actions.

There is a hypothesis that clients are switching to cheaper providers so the first action to be trialed will be to offer customers with high propensity of churning a 20% discount.





During the meeting BCG will propose the solution to the problem as well as will share the insights learned from the data provided by Power Co.

Churn model results as well as recommendation on churn strategy will be covered during the meeting.

Next project steps will be discussed at the end of the meeting.





Project Design and Data



## Data

#### Data has been provided in 5 csv files

```
-ml_case_training_data.csv (16096 records)
-ml_case_test_data (4024 records)
-ml_case_training_hist_data (193002 records)
-ml_case_test_hist_data (48236 records)
-churn target data
```





Observation point - Data for the clients provided at observation point (January 2016)
Outcome window - Churn events were captured at 3 months time window after

observation point (from January 2016 to March 2016)

Prices data
 was provided 12 months back from observation point





# **Exploratory Data Analysis**



## **Exploratory Data Analysis**

- Missing values counts
- Categorical variables exploration
- Continuous variables exploration
- Insights learned from the data



#### Missing values





#### Missing values





Column activity\_new has 59.3004% missing values.
Column campaign\_disc\_ele has 100.0000% missing values.
Column channel\_sales has 26.2053% missing values..
Column date\_first\_activ has 78.2058% missing values.
Column forecast\_base\_bill\_ele has 78.2058% missing values.
Column forecast\_base\_bill\_year has 78.2058% missing values.
Column forecast\_bill\_12m has 78.2058% missing values.
Column forecast\_cons has 78.2058% missing values.

Column activity\_new has 58.4990% missing values.
Column campaign\_disc\_ele has 100.0000% missing values.
Column channel\_sales has 26.2425% missing values.
Column date\_first\_activ has 78.2058% missing values.
Column forecast\_base\_bill\_ele has 78.2058% missing values.
Column forecast\_base\_bill\_year has 78.2058% missing values.
Column forecast\_bill\_12m has 78.2058% missing values.
Column forecast\_cons has 78.2058% missing values.

.



#### Missing values – Historic Price Data





There is about 0.7% of missing values for all types of prices for train\_hist file

There is about 0.6% of missing values for all types of prices for test\_hist file

#### Data-Categorical variables by churn



Distributions for channel sales and nb\_prod\_act are quite different for churned and non churned clients. Non churned clients have variable set of services. Some channels are not present for churned clients. Churned clients consume gas less



#### Data-Categorical variables by churn





More discount predicted options for churned customers



6 Current churn rate is about 10%



#### Data-Continuous variables by churn-consumption

3000000

4000000

2000000

cons\_last\_month





0.000050

1000000

#### Data-Continuous variables by churn-forecast consumption



- Current paid consumption and forecasted consumption can take negative values
- A lot of ~0 values. Negative values can take place.

#### Data-Continuous variables by churn-forecast bill







- A lot of forecasted values are equal to 0 or N/A .Negative values can take place.
- Only few number of clients have huge forecasted bills

#### Data-Continuous variables by churn-forecast price



#### Data-Continuous variables by churn



- There were peaks in time when clients started working with PowerCo
- By forecasted meter rent 2 main types of clients can be observed.

#### Data-Continuous variables by churn







- Very few clients generate huge margins.
  There is no dramatic distinction in terms of churn separation.
- However for margin type variables more clients generate huge net\_margins





30% total company net\_margin is done by 6% of the highest net\_margin companies

50% total company net\_margin is done by 14 % of the highest net\_margin companies

80% total company net\_margin is done by 37. % of the highest net\_margin companies

90% total company net\_margin is done by 53 % of the highest net\_margin companies



#### Data-Categorical - Prices data - Mean client yearly price\_var to price\_fix



Respective price\_var values are partialy linearly dependent on price\_fix values

#### Correlation



Consumption type and bill type variables are highly correlated among each other



#### Correlation with churn

| Variable Name            | Pearson Correlation with churn (positive) |
|--------------------------|-------------------------------------------|
| origin_up                | 0.098807                                  |
| margin_gross_pow_ele     | 0.080158                                  |
| margin_net_pow_ele       | 0.063187                                  |
| forecast_meter_rent_12m  | 0.029971                                  |
| net_margin               | 0.029308                                  |
| forecast_price_energy_p2 | 0.025597                                  |
| forecast_discount_energy | 0.012344                                  |
| pow_max                  | 0.009456                                  |
| forecast_cons_12m        | 0.007395                                  |
| forecast_bill_12m        | 0.006909                                  |
| forecast_price_pow_p1    | 0.004034                                  |
| imp_cons                 | 0.003417                                  |
| forecast_cons_year       | 0.002756                                  |

| Variable Name            | Pearson Correlation with churn (negative) |
|--------------------------|-------------------------------------------|
| num_years_antig          | -0.071565                                 |
| cons_12m                 | -0.051759                                 |
| cons_last_month          | -0.046931                                 |
| cons_gas_12m             | -0.04088                                  |
| channel_sales            | -0.032198                                 |
| has_gas                  | -0.032033                                 |
| nb_prod_act              | -0.023811                                 |
| activity_new             | -0.023541                                 |
| forecast_cons            | -0.005247                                 |
| forecast_price_energy_p1 | -0.003337                                 |
| forecast_base_bill_year  | 0.000433                                  |
| forecast_base_bill_ele   | 0.000433                                  |
| forecast_cons_year       | 0.002756                                  |
| imp_cons                 | 0.003417                                  |
| forecast_price_pow_p1    | 0.004034                                  |





## Feature Generation



## Sets of features

#### Features based on dates

- Days \_since \_activation
- Days\_to\_contract\_end
- Days\_since\_first\_contract
- Days\_to\_renewal
- Days\_since\_last\_prod\_mod

#### Features based on historic prices

- -avg price
- -mean price
- -median price
- -mean price
- -max price
- -etc.

#### Polynomial features

- -Polynomial combinations of original features
- ^2,^3 from original features
- -etc.

- Label encoding
- One hot encoding for categorical features





## Model



#### Types of algorithms tested

#### 3 algorithms has been tested

- Logistic Regression
- RANDOM FOREST
- LIGHT GBM

Cross validation on 5 stratified folds has been implemented





#### Model results

- Models have been trained on various sets of features
   (original set, with prices, with polynomial combinations)
- Polynomial subset of features has not shown significant uplift in the model performance
- Final set of features contained original set of features as well as historic price based historic variables (aggregations)
- Logistic regression has been taken as a baseline and ensemble models compared with it.
- As data is unbalanced the under sampling technique has been implemented.
   Model built on unbalanced data had problems with low precision and recall.
   Ubdersampling has improved the situation and model generalization has been tested on unbalanced data after training.



#### Model results- Logistic regression



Logistic regression has been taken as a baseline model and shows the lowest performance (standard parameters)

However the model validated quite well on K-fold cross validation



LightGBM required parameters tuning as was overfitting heavily with standard parameters. For instance num\_leaves hyper parameter has improved heavy overfitting problem.



#### Final model draft result



Random Forest showed the best result in terms of performance and generalization. The set of the most powerful variables can be seen on the graph. Variables are quite interpretable

However some variables should be discussed during the meeting.

Number of price based variables enter the model. However these variables are not top predictors.



# Pricing Strategy





Approach suggested is to check the optimal price discount at which client will not churn based on the built model starting from very small discount values (in case churn model contains historic pricing components)

Provided data contains var and fix prices based on which various discount options can be simulated (e.g. 1, 2, 3, 4, 5, ... 20%) discounts)

From the other hand optimization should consider margin which customer brings to the company. Hence optimization should consider the revenue that customer brings to a company. This means that 20% discount for all the clients may not be the optimal strategy. Each client can get individual discount taking margin prioritization into consideration.



# THANKS!

