Lecture 24: Similarity Transformations; Singular Value Decompositions (Sections 5.6-6.3)

Thang Huynh, UC San Diego 3/12/2018

Similar transformations

- ▶ Definition. Two $n \times n$ matrices A and B are called similar if $B = M^{-1}AM$ for some invertible $n \times n$ matrix M.
- **Example.** If A can be diagonalized, Λ and A are similar.
- ▶ Property. If A and B are similar, they have the same eigenvalues. Every eigenvector x of A corresponds to an eigenvector $M^{-1}x$ of B.

 $A - \lambda I$ and $B - \lambda I$ have the same determinant.

Triangular forms with a unitary M

Theorem. (Schur's Theorem) There is a unitary matrix U such that $U^{-1}AU = T$ is triangular. The eigenvalues of A appear along the diagonal of this similar matrix T.

Triangular forms with a unitary M

Theorem. (Schur's Theorem) There is a unitary matrix U such that $U^{-1}AU=T$ is triangular. The eigenvalues of A appear along the diagonal of this similar matrix T.

Example. $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$ has the eigenvalue $\lambda = 1$ (twice).

$$U^{-1}AU = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = T.$$

2

Theorem. (Spectral Theorem) Every real symmetric A can be diagonalized by an orthogonal matrix Q. Every Hermitian matrix can be diagonalized by a unitary U:

(real)
$$Q^{-1}AQ = \Lambda \text{ or } A = Q\Lambda Q^T$$
 (complex)
$$U^{-1}AU = \Lambda \text{ or } A = U\Lambda U^H$$

Example. Consider
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

► Example. Consider
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. Then A is symmetric with repeated eigevalues $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = -1$.

► Example. Consider $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Then A is symmetric with repeated eigevalues $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = -1$.

• For
$$\lambda_1 = \lambda_2 = 1$$
, eigenvectors $\mathbf{x}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

• For
$$\lambda_3 = -1$$
, eigenvector $\mathbf{x}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.

These are the columns of Q.

▶ Definition. The matrix N is normal if it commutes with its conjugate transpose N^H : $NN^H = N^HN$.

▶ Definition. The matrix N is normal if it commutes with its conjugate transpose N^H : $NN^H = N^HN$. For such matrices, the triangular $T = U^{-1}NU$ is the diagonal Λ . Normal matrices are exactly those that have a complete set of orthonormal eigenvectors.

- ▶ Definition. The matrix N is normal if it commutes with its conjugate transpose N^H : $NN^H = N^HN$. For such matrices, the triangular $T = U^{-1}NU$ is the diagonal Λ . Normal matrices are exactly those that have a complete set of orthonormal eigenvectors.
- ► Example.
 - Symmetric and Hermitian matrices are normal.

- ▶ Definition. The matrix N is normal if it commutes with its conjugate transpose N^H : $NN^H = N^HN$. For such matrices, the triangular $T = U^{-1}NU$ is the diagonal Λ . Normal matrices are exactly those that have a complete set of orthonormal eigenvectors.
- ► Example.
 - Symmetric and Hermitian matrices are normal.
 - Orthogonal and unitary matrices are also normal.

▶ Property. If *N* is normal, then so is the triangular $T = U^{-1}NU$.

- ▶ Property. If *N* is normal, then so is the triangular $T = U^{-1}NU$.
- ightharpoonup Property. A triangular T that is normal must be diagonal. (Why?)

Recall that if A is diagonalized, A is similar to a diagonal matrix Λ whose entries are eigenvalues of A.

Recall that if A is diagonalized, A is similar to a diagonal matrix Λ whose entries are eigenvalues of A. How if A cannot be diagonalized?

If A has s independent eigenvectors, it is similar to a matrix with s blocks:

Jordan form
$$J = M^{-1}AM = \begin{vmatrix} J_1 \\ & \ddots \\ & & J_s \end{vmatrix}$$
.

▶ Property. Two matrices are similar if and only if they share the same Jordan form *J*.

If A has s independent eigenvectors, it is similar to a matrix with s blocks:

Jordan form
$$J = M^{-1}AM = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_s \end{bmatrix}$$
.

Each J_i has only a single eigenvalue λ_i and one eigenvector:

Jordan block
$$J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \cdot & & \\ & & \cdot & 1 \\ & & & \lambda_i \end{bmatrix}$$
.

▶ Property. Two matrices are similar if and only if they share the same Jordan form *J*.

▶ Example.
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
, and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ all lead to $J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

► Example.
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$, and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ all lead to $J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

These four matrices have eigenvalues 1 and 1 with only one eigenvector. How to find a matrix M such that $M^{-1}TM = J$?

9

▶ Example.
$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$
, and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ all lead to $J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

These four matrices have eigenvalues 1 and 1 with only one eigenvector. How to find a matrix M such that $M^{-1}TM = J$?

▶ Definition. If A is an $n \times n$ matrix, a generalized eigenvector of A corresponding to the eigenvalue λ is a nonzero vector \mathbf{x} satisfying

$$(A - \lambda I)^p \mathbf{x} = 0$$

for some positive integer p.

$$T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 has an eigenvalue $\lambda = 1$ of multiplicity 2. We want to find generalized eigenvectors from the equations:

 $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ has an eigenvalue $\lambda=1$ of multiplicity 2. We want to find generalized eigenvectors from the equations:

•
$$(A-I)x = 0 \Rightarrow x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, and

•
$$(A-I)^2 \mathbf{x} = 0 \Longrightarrow \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
.

 $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ has an eigenvalue $\lambda=1$ of multiplicity 2. We want to find generalized eigenvectors from the equations:

•
$$(A - I)\mathbf{x} = 0 \Rightarrow \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, and
• $(A - I)^2\mathbf{x} = 0 \Rightarrow \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

 $T=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ has an eigenvalue $\lambda=1$ of multiplicity 2. We want to find generalized eigenvectors from the equations:

•
$$(A - I)\mathbf{x} = 0 \Rightarrow \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, and
• $(A - I)^2\mathbf{x} = 0 \Rightarrow \mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

$$M^{-1}TM = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = J.$$

Example. For
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Which of the

following matrices are the Jordan forms of A and B?

$$J_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad J_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad J_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Recall we can decompose a matrix A as LU or QR.

Recall we can decompose a matrix A as LU or QR.

(SVD) Any $m \times n$ matrix A can be factored into

$$A = U\Sigma V^T = (orthogonal)(diagonal)(orthogonal).$$

• columns of U (m by m) are eigenvectors of AA^T

Recall we can decompose a matrix A as LU or QR.

(SVD) Any $m \times n$ matrix A can be factored into

$$A = U\Sigma V^T = (orthogonal)(diagonal)(orthogonal).$$

- columns of U (m by m) are eigenvectors of AA^T
- columns of V (n by n) are eigenvectors of $A^{T}A$

Recall we can decompose a matrix A as LU or QR.

(SVD) Any $m \times n$ matrix A can be factored into

$$A = U\Sigma V^T = (orthogonal)(diagonal)(orthogonal).$$

- columns of U (m by m) are eigenvectors of AA^T
- columns of V (n by n) are eigenvectors of $A^{T}A$
- The r singular values on the diagonal of Σ (m by n) are the square roots of the nonzero eigenvalues of both AA^T and A^TA.

Example. Consider
$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
.

► Example. Consider $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. Then A has rank 2, and $AA^T = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ with eigenvalues $\lambda = 3$ and 1.

► Example. Consider $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. Then A has rank 2, and $AA^T = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ with eigenvalues $\lambda = 3$ and 1.

$$A = U\Sigma V^T = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6}\\ -1/\sqrt{2} & 0 & 1/\sqrt{2}\\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}.$$