тример Решения:

1) Интеграл от рациональной функции:

Пусть дан интеграл: $\int_C \frac{P(z)}{O(z)} dz$, где P(z) и Q(z) - многочлены, C - контур.

Пример:

$$\int_C \frac{1}{z^2+1} dz$$

Решение:

Этот интеграл может быть вычислен с помощью полюсов функции $\frac{1}{z^2+1}$, которые являются корнями $z^2 + 1 = 0$, т.е., $z = \pm i$.

Так как полюсы простые, вычет в каждой из точек равен:

$$Res(\frac{1}{z^{2}+1}, i) = \lim_{z \to i} (z - i) \frac{1}{z^{2}+1} = \frac{1}{2i}$$

 $Res(\frac{1}{z^{2}+1}, -i) = \lim_{z \to -i} (z + i) \frac{1}{z^{2}+1} = -\frac{1}{2i}$

Теперь, суммируя вычеты и используя теорему о вычетах: $\int_C \frac{1}{z^2+1} dz = 2\pi i \, (\frac{1}{2i} - \frac{1}{2i}) = \pi i$

$$\int_C \frac{1}{z^2 + 1} dz = 2\pi i \left(\frac{1}{2i} - \frac{1}{2i} \right) = \pi i$$

2) Определенный интеграл с использованием полуокружностей или контуров через особые точки:

Пусть дан интеграл: $\int_{-\infty}^{\infty} \frac{e^{iaz}}{z^2+1} dz$, где a > 0.

Решение:

Для решения этого интеграла можно использовать полукруговой контур в верхней полуплоскости C_R , состоящий из полукруга вверх радиуса R и линии от -R до R.

Функция имеет полюсы в z=i и z=-i, и оба полюса находятся в верхней полуплоскости.

Вычеты в этих точках:

$$Res(\frac{e^{iaz}}{z^2+1},i) = e^{-a}$$

$$Res(\frac{e^{iaz}}{z^2+1},-i)=e^a$$

По теореме о вычетах:

$$\int_{C_R} \frac{e^{iaz}}{z^2+1} dz = 2\pi i (e^{-a} + e^a)$$

Предел интеграла по дуге полукруга при $R o \infty$ будет стремиться к нулю.

Итак, по теореме о вычетах:

$$\int_{-\infty}^{\infty} \frac{e^{iaz}}{z^2+1} dz = 2\pi i (e^{-a} + e^a)$$

3) Интеграл с полюсами внутри контура:

Пусть дан интеграл: $\int_C \frac{1}{z(z-1)^2} dz$, где C - контур, охватывающий область 0 < |z| < 1 и |z-1|11 < 1.

17.12.2023, 22:19

Решение:

В данном случае у функции есть полюс первого порядка в z=0 и полюс второго порядка в z=1.

Вычет в
$$z=0$$
: $Res(\frac{1}{z(z-1)^2},0)=\lim_{z\to 0}\frac{d}{dz}(z-0)\frac{1}{z(z-1)^2}=1$

Вычет в
$$z = 1$$
:

$$Res(\frac{1}{z(z-1)^2}, 1) = \lim_{z \to 1} \frac{1}{1!} \frac{d}{dz} [(z-1)^2 \frac{1}{z(z-1)^2}] = \lim_{z \to 1} \frac{1}{z} = 1$$

По теореме о вычетах:

$$\int_C \frac{1}{z(z-1)^2} dz = 2\pi i (1+1) = 4\pi i$$