Assignment 10

Nishan Dhoj Karki

11/13/2022

1 NP-completeness proofs

For this assignment, consider the following language: QUAD3SAT = $\{\langle \phi \rangle \mid \phi \text{ is a 3-CNF formula having at least 4 different satisfying assignments}\}$

- 1. (30 points) Prove that QUAD3SAT \in NP.
- 2. (70 points) Prove that 3SAT \leq_P QUAD3SAT.

If we know that 3SAT is NP-complete (which is true), then together, the above proofs show that QUAD3SAT is also NP-complete.

1.1 Proof: QUAD3SAT \in NP.

To show QUAD3SAT \in NP let us Construct a poly-time verifier V for QUAD3SAT:

V = "On input $\langle \langle \phi \rangle, c \rangle$, where c is the collection of assignments for ϕ .

- 1. Check if the collection c has at least 4 different assignments.
- 2. Check if all the assignments in c have a boolean value assigned to them.
- 3. Set count = 0.
- 4. For each assignment b_i in c, where b_i is i^{th} element in the collection c:
 - (a) Check if b_i has values for all variables in ϕ
 - (b) Substitute the value of each literal with values assigned in b_i for positive literals and its negation for negative literals
 - (c) Check if every clause evaluates to true
 - (d) If all the above test passes, increase the count by 1
- 5. On completion, if $count \geq 4$, ACCEPT
- 6. Else REJECT."

Here, we have constructed a verifier V where each steps of its computation can be verified in polynomial time. The verifier V accepts $\langle \langle \phi \rangle, c \rangle$ if for some c, ϕ is satisfiable using 4 or more different assignments. V rejects if ϕ is unsatisfiable for any c. This construction of the verifier V suggests that the QUAD3SAT can be verified in polynomial time. Hence, QUAD3SAT \in NP.

1.2 Proof: 3SAT \leq_P QUAD3SAT.

Here we show that there exists a polynomial time reduction from 3SAT to QUAD3SAT. If such reduction exists than it shows that QUAD3SAT is NP-Hard and thus asserts QUAD3SAT is NP-complete.

Let F be the reduction function:

F = "On input $\langle \phi \rangle$, where ϕ is a 3-CNF formula:

- 1. Introducing two variables x and y, such that $x, y \notin \phi$
- 2. Construct ϕ_1 as follows: $\phi_1 = \phi \wedge (x \vee x \vee \overline{x}) \wedge (y \vee y \vee \overline{y})$
- 3. Output $\langle \phi_1 \rangle$ "

Here, we have constructed ϕ_1 by addition of 2 different clauses with at least 4 different satisfying assignment to ϕ . The variables i.e. x and y are introduced such that $x, y \notin \phi$. If $\phi \in 3SAT$ then by definition of 3SAT, there exists at least one satisfiable assignment for ϕ . If there exist a satisfiable assignment for ϕ then by our above construction, the newly constructed ϕ_1 will have at least 4 satisfiable assignment as the newly added variables i.e. x and y in ϕ_1 are unique to the variables in ϕ . Also, if $\phi \notin 3SAT$ then $\phi_1 \notin QUAD3SAT$ as every clause of ϕ_1 has to be satisfiable for the ϕ_1 to be satisfiable and ϕ_1 is constructed by addition of clauses to ϕ .

From our construction above,

$$\langle \phi \rangle \in 3SAT \iff \langle \phi_1 \rangle \in QUAD3SAT \text{ and } \langle \phi \rangle \notin 3SAT \iff \langle \phi_1 \rangle \notin QUAD3SAT$$

Here, the following reduction is polynomial time as the addition of clauses and their variable takes polymonial time. Thus, $3SAT \leq_p QUAD3SAT$.