Name: ID:

·
1
<u>'</u>
<u>'</u>

1. (9 points) See Figure 1. Construct a network of linear units that is capable of representing the XOR function of two inputs. x_1 and x_2 are two input nodes (values can be 0 or 1, XOR(0,0)=0, XOR(1,1)=0, XOR(0,1)=1, XOR(1,0)=1), T_1 , T_2 , T_3 are three thresholds of activation functions (if in_value > T_k , out_value=1; if in_value T_k , out_value=0). T_k are weights for linear combination. Please fill the values of T_k and T_k in the table below. T_k can be either 0 or 1, T_k can be either 1 or 0 or -1. (assume no bias)

2. (6 points) See Figure 2. Suppose the inputs are given by x_1 and x_2 , and the activation functions at each unit (x_3, x_4, o_5, o_6) is given by the function g. Write out the values o_5 and o_6 at the output nodes (nodes 5 and 6) of figure 2 in terms of the weights $w_{i,j}$ and the inputs x_k . In the Figure 2, nodes 1 and 2 correspond to x_1 and x_2 , nodes 5 and 6 correspond to o_5 and o_6 and nodes 3 and 4 correspond to intermediate values (say x_3 and x_4).

Example: $x_3 = g(w_{1,3}x_1 + w_{2,3}x_2)$, Please fill: $x_4 = o_5 = o_6 =$