

Dynamic Routing Terminology

- × OSPF: Open Shortest Path First routing protocol
- × RIPv2 routing: Routing Information Protocol version 2
- × Link-state: Protocol used to create a topology map
- × Distance-vector: Protocol used to advertise distance and direction of routes
- Default route: Used when no other route in table matches; usually leads to general Internet
- × Route summarization: Consolidates routing information (faster but less secure)
- Metric: quantitative value used to measure the distance to a given network

Purpose of Dynamic Routing Protocols

- × Discovery of remote networks
- × Maintaining up-to-date routing information
- × Choosing the best path to destination networks
- Ability to find a new best path if the current path is no longer available

Components of Dynamic Routing Protocols

- X Data structures (neighbor table, topology table, routing table)
- × Routing protocol messages discover neighboring routers and exchange routing information
- × Algorithm for facilitating routing information and for best path determination

Dynamic vs. Static

Dynamic

- × Better scalability
- × Often results in faster speeds
- Lessadministrativeoversight

Static

- Requires lots of administrative oversight
- × Slightly more stable and secure
- × Useful for creating default routes

How a Routing Protocol Works

- 1. The router sends and receives routing messages on its interfaces.
- 2. The router shares routing messages and information with other routers that are using the same protocol.
- 3. Routers exchange routing information to learn about remote networks.
- 4. When a router detects a topology change, the routing protocol can advertise this change to other routers.

RIPv2 Routing

- × Uses a distance-vector algorithm called the Bellman-Ford algorithm
- × Uses hop count to determine best path
- Each router only has information on directly connected networks
- × Sends out periodic updates
- × Legacy protocol replaced by OSPF and EIGRP

OSPF Routing

- V Uses a link-state algorithm called Dijkstra's algorithm (aka SPF)
- × Uses bandwidth speed to determine best path
- × Event-based updates
- × Creates a topology map of each area
- × Fast convergence
- "Areas" can be used for management and troubleshooting

LSA Flooding

- × Occurs when too many LSA (Link-State Acknowledgement) messages are sent at once
- Creates latency
- Resolved by automatically designating a DR (Designated Router) and BDR (Backup DR) based on router ID
- V Using a DR/BDR reduces adjacencies

- × Represents reliability
- × Lower AD is better
- If a router has multiple routes to the same destination, it will use the one with the lowest AD

loute Source	Administrative Distance
Connected	0
Static	1
EIGRP summary route	5
External BGP	20
Internal EIGRP	90
IGRP	100
OSPF	110
IS-IS	115
RIP	120
External EIGRP	170
Internal BGP	200

OSPF Configuration

Step Description	Placement	Command	Category	Notes
enable ospf/enter OSPF config	every ospf router	router ospf [process id]	requirement	
assign a router ID	ospf config	router-id [router-id]	requirement	router ID is arbitrary router ID is in dotted-decimal notation
add associated networks	ospf config	network [network ip] [wildcard] area [area #]	requirement	use area 0 unless told otherwise IPs added should be all directly connected networks (minus the Internet if applicable)
set passive interfaces	ospf config	passive-interface [interface]	optional	recommended use on interfaces that do not lead to a router
disable log messages	ospf config	no log-adjacency-changes	optional	use if there are a ridiculous amount of log messages

OSPF Configuration Examples

```
R1(config) # router ospf 10
R1(config-router) # network 172.16.1.0 0.0.0.255 area 0
R1(config-router) # network 172.16.3.0 0.0.0.3 area 0
R1(config-router) # network 192.168.10.4 0.0.0.3 area 0
R1(config-router) #
```

```
R1(config) # router ospf 10
R1(config-router) # passive-interface GigabitEthernet 0/0
R1(config-router) # end
R1#
```

RIPv2 Configuration

Step Description	Placement	Command	Category	Notes
enable RIP routing/configuration	router config	router rip	requirement	
advertise directly connected networks	RIP config	network [network ip]	requirement	
set passive interfaces	RIP config	passive-interface [interface leading to a LAN]	optional	recommended
set RIP version	RIP config	version [#]	optional	
disable automatic summarization	RIP config for RIP v2	no auto-summary	optional	
create a default static route on the router directly connected to the internet	router config	ip route 0.0.0.0 0.0.0.0 [interface leading to the internet]	optional	required for internet connectivity
advertise the default route	RIP config	default-information originate	optional	required for internet

RIPv2 Configuration Examples

Advertising Networks

R1(config)# ip route 0.0.0.0 0.0.0 S0/0/1 209.165.200.226
R1(config)# router rip
R1(config-router)# default-information originate

Configuring a Default Route

Credits

Special thanks to all the people who made and released these awesome resources for free:

- × Presentation template by SlidesCarnival
- × Photographs by <u>Unsplash</u>