

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name: Kyle Williams						
UB Person Number:	Instructions:					
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 					
1 2 3 4	5 6 7 TOTAL GRADE					

15	10	10	17	14	7	2	2		77	В
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.
- a) II: W= 2V2, b=-6? How do you know that W= V,+V3, b=2? There are no other values W= 3v,+2v2, b=0? of b Which work?
- b) The set is not liverly independent because there is a linear combination of vectors V, and Vz which give V3.

$$3V_{1} + 2V_{2} = V_{3}$$

$$3\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + 2\begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 6 \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \\ -6 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = V_{3}$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{bmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 \\ 0 & 1 & 0 & | & 0 & | & 0 \end{bmatrix} \xrightarrow{R_3 - R_1} \begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & | & 1 & | \\ 0 & 1 & 0 & | & 0 & | & 0 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & | & 1 & | \\ 0 & 0 & 1 & -1 & | & -1 & | & 0 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & | & 1 & | \\ 0 & 0 & -1 & | & -2 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 & | 2 - 1 & | \\
0 & 1 & 0 & | & -1 & | \\
0 & 0 & | & | & 2 - 2 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 2 & | & 2 - 1 & | \\
0 & 1 & 0 & | & -1 & | \\
0 & 0 & | & | & 2 - 2 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 - | \\
0 & 1 & 0 & | & -1 & | \\
0 & 0 & | & | & 2 - 2 & |
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 3 & -1 \\ 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that
$$A^{T}C = B$$
 (where A^{T} is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$X_{1} + X_{2} + 0 \times_{3}^{2} = 1$$

$$X_{3} + X_{2} + 0 \times_{3}^{2} = 4$$

$$X_{3} = 6 \therefore X_{1} = 8$$

$$X_{3} = 6 \therefore X_{1} = 8$$

$$X_{2} + X_{2} - X_{3} = 3$$

$$X_{1} + X_{2} + 0 \times_{3}^{2} = 7$$

$$X_{2} + X_{3} = 6$$

$$X_{1} = X_{3} = 5$$

$$C_{1} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 2 \\ 2x_{1} + x_{2} + 2x_{3} = 5 \\ 2x_{1} + 2x_{3} = 5 \end{bmatrix} = \begin{bmatrix} x_{1} + x_{3} = 6 \\ x_{1} = x_{3} = 5 \\ 2x_{1} + x_{2} - x_{3} = 2 \end{bmatrix}$$

$$C_{2} = \begin{bmatrix} 5 \\ -3 \\ 5 \end{bmatrix}$$

$$C_{3} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 2 & 1 - 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} \begin{bmatrix} x_{1} + x_{2} + 0 \\ 3 = 2x_{1} + 0x_{2} + 2x_{3} = 4 \\ 2x_{1} + 2x_{2} + 2x_{3} = 4 \end{bmatrix} = \begin{bmatrix} x_{1} + 2x_{3} = 4 \\ -x_{1} + 2x_{3} = 4 \end{bmatrix}$$

$$\therefore x_{2} = -1$$

$$\therefore x_{2} = -1$$

$$G^{2}\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \xrightarrow{\text{Simplet}} C = (A^{T}) \cdot B$$

$$G^{2}\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \xrightarrow{\text{Simplet}} C = (A^{T}) \cdot B$$

$$G^{2}\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \xrightarrow{\text{Then use }} A^{T}$$

= (A') T.B Then use A' from problem 2.

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

b)
$$u^{2}\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1-2 \\ 1-3 \end{bmatrix}\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}^{2} \begin{bmatrix} 10 \\ -2 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If u, v, w are vectors in ℝ³ such that w + u ∈ Span(u, v) then w ∈ Span(u, v).

True; If there is a linear combination of vectors V and U that equal V.

W, w must be in the span of u and V. Since addition and subtraction of one vector from another is a linear operator, the problem un be considered as the following:

W=(W+U)-U: If W+U=X,V+XzU, then W=X,V+(Xz-1)U, which is a linear combination of u and V: WESpan(U,V)

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True, any subset of a linearly independent set of vectors must

Why?

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

Fake; Linear dependence independence is only guerosteed to be preserved if A is a matrix which defines a linear transformation. Since this workthen is not specified, then linear dependence cannot be gueranteed after transformation.

Every matrix defines

a linear transformation.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True, Some T is a linear operator whose operation preserves the dimensions of the original vectors, then any vector UE Spen(V, W) must be in the span of T(V), V(W). Additionally, since there are 3 vectors in 2 spaces, and it is known that UE Spen(V, W), V and W either are linearly dependent on one another, and u, or are linearly independent. Since T is a linear transformation, these properties are maintained, meaning T(W) E Spen T(V), T(W) by definition (3 vectors in 2 space; 2 are linearly independent; V and W) or because all 3 vectors were linearly dependent to begin with.

This just states that this property is time, without explaining why.

