Câu 1. Đường cong trong hình vẽ bên dưới có phương trình trong hệ toạ độ cực là

- **A.** $r = \cos^2 \varphi$.
- **B.** $r = 1 + \cos^2 \varphi$. **C.** $r = \cos^3 \varphi$.
- **D.** $r = 1 + \cos \varphi$.
- **Câu 2.** Đường cong có phương trình tham số $\begin{cases} x(t) = 3 + \sin t \cdot \cos t \\ y(t) = 5 + \sin^2 t \end{cases}$ là
 - **B.** Môt đường Elip. **C.** Môt đường Parabol. **D.** Môt đoan thẳng. A. Môt đường tròn.
- Câu 3. Trong hình vẽ, xe A kéo xe B bằng một sợi dây dài 39m qua một ròng rọc ở độ cao 12m. Xe A chay với vân tốc không đổi 2m/s theo chiều mũi tên. Tính vân tốc của xe B khi xe A cách N một khoảng là 5m.

- **A.** 0.87m/s.
- **B.** 1,24m/s.
- \mathbb{C} . 2m/s.
- **D.** 0.53m/s.

- **E.** 1,04m/s.
- **F.** 1,86m/s.
- **Câu 4.** Cho hàm số f(x) liên tục trên $[0,+\infty)$, khả vi trên $(0,+\infty)$ và thoả mãn điều kiện $f'(x) + e^{x+f(x)} = 0, \forall x > 0; f(0) = 1$. Giá trị $8f(\frac{1}{10})$ thuộc khoảng nào dưới đây?

 - **A.** (5,6). **B.** (0,1).
- **C.** (2,3).
- **D.** (3,4).

- **E.** (4,5). **F.** (1,2).
- Câu 5. Cho hàm số $f(x) = \begin{cases} \frac{10(x-1)}{\sqrt{|1-x^2|}} & \text{khi } x \in \left(\frac{-1}{2}, +\infty\right) \setminus \{1\} \\ 0 & \text{khi } x = 1 \end{cases}$. Gọi F(x) là một nguyên hàm của
 - f(x) với F(0) = 0. Giá trị F(3) thuộc khoảng nào dưới đây?

 - **A.** (4,5). **B.** (3,4).
- **C.** (5,6). **D.** (7,8).

- **E.** (1,3).
- **F.** (6,7).
- Câu 6. Đường cong có phương trình nào dưới đây đi qua gốc toạ độ?

A.
$$I = \frac{1}{3} \int (t^6 - t^3) dt$$
.

B.
$$I = \frac{1}{3} \int (t^5 - t^2) dt$$
.

C.
$$I = \frac{1}{3} \int (t^6 + t^3) dt$$
.

D.
$$I = \frac{1}{3} \int (t^5 + t^2) dt$$
.

$$\mathbf{E.} \ I = \frac{1}{3} \int \left(t^4 + t \right) \mathrm{d}t \ .$$

Câu 15. Cho tích phân bất định $I = \int \frac{\ln(1-2x)}{x^2} dx$. Theo phương pháp tích phân từng phần

ta thu được

A.
$$I = -\frac{\ln(1-2x)}{x} + \int \frac{2dx}{x(2x-1)}$$
.

B.
$$I = -\frac{\ln(1-2x)}{x} - \int \frac{2dx}{x(2x-1)}$$
.

C.
$$I = \frac{\ln(1-2x)}{x} + \int \frac{2dx}{x(2x-1)}$$
.

D.
$$I = \frac{\ln(1-2x)}{x} - \int \frac{dx}{x(2x-1)}$$
.

E.
$$I = -\frac{\ln(1-2x)}{x} + \int \frac{dx}{x(2x-1)}$$
.

Câu 16. Cho hàm số $f(x) = \begin{cases} e^{-1/x^2} & \text{khi } x \neq 0 \\ 0 & \text{khi } x = 0 \end{cases}$. Tìm khẳng định sai?

- A. Đồ thị hàm số không có tiệm cận.
- B. Hàm số không có cực trị.
- C. $f^{(n)}(0) = 0$ với mọi $n \in \mathbb{N}$.
- D. Hàm số khả vi vô hạn lần trên tập số thực.
- E. Hàm số khả vi trên tập số thực.
- F. Hàm số liên tục trên tập số thực.

Câu 17. Giả sử $P_n[x]$ là đa thức bậc n có n nghiệm thực phân biệt $(n \ge 3)$. Tìm khẳng định đúng.

- **A.** Phương trình $(P_n[x])' = 0$ có đúng n-1 nghiệm thực phân biệt.
- **B.** Phương trình $(P_n[x])^n = 0$ có đúng n-2 nghiệm thực phân biệt.
- C. Chưa thể kết luận được gì về số nghiệm thực của phương trinh $(P_n[x])' = 0$.
- **D.** Số nghiệm thực của phương trình $(P_n[x])' = 0$ phụ thuộc vào tính chẵn, lẻ của n.
- **E.** Chưa thể kết luận được gì về số nghiệm thực của phương trinh $(P_n[x])'' = 0$.

Câu 18. Hàm số nào sau đây không chẵn, không lẻ?

A.
$$f(x) = |x| + x^4 + 1, x > 0$$
.

B.
$$f(x) = \ln(x - \sqrt{x^2 - 1})$$
.

C.
$$f(x) = \ln(2x + \sqrt{4x^2 + 1})$$
.

D.
$$f(x) = \arcsin(\arctan x)$$
.

E.
$$f(x) = \cosh x + \sin x \cdot \tanh x$$
.

Câu 19. Tính tích phân bất định $\int \frac{e^{2x} dx}{e^{2x} + 5}$ được kết quả là

A.
$$\frac{1}{2}\ln(e^{2x}+5)+C$$
. **B.** $\ln(e^{2x}+5)+C$

A.
$$\frac{1}{2}\ln(e^{2x}+5)+C$$
. **B.** $\ln(e^{2x}+5)+C$. **C.** $2\ln(e^{2x}+5)+C$. **D.** $x-5\ln(e^{2x}+5)+C$.

E.
$$x - \frac{5}{2} \ln(e^{2x} + 5) + C$$
.

Câu 20. Cho hàm số $f(x) = \frac{x}{\sqrt{x^2 + 1}}$. Hàm số $f \circ f(x)$ là

A.
$$f \circ f(x) = \frac{x}{\sqrt{2x^2 + 1}}$$
.

B.
$$f \circ f(x) = \frac{x}{\sqrt{x^2 + 1}}$$
.

C.
$$f \circ f(x) = \frac{x}{(x^2+1)^2 \sqrt{2x^2+1}}$$
.

D.
$$f \circ f(x) = \frac{x^2}{x^2 + 1}$$
.

Câu 21. Tìm hàm ngược của hàm số $f(x) = \arctan \sqrt{2^x - 3}, x > \log_2 3$

A.
$$f^{-1}(x) = \log_2(\tan^2 x + 3)$$
.

B.
$$f^{-1}(x) = \tan \sqrt{2^x - 3}$$
.

C.
$$f^{-1}(x) = \tan^2(\log_2 x + 3)$$
.

D.
$$f^{-1}(x) = \operatorname{arccot} \sqrt{2^x + 3}$$
.

Câu 22. Tính tích phân bất định $\int \frac{dx}{x^2 + 6x + 25}$ được kết quả là

A.
$$\frac{1}{4} \arctan \frac{x+3}{4} + C$$
. **B.** $\arctan \frac{x+3}{4} + C$

A.
$$\frac{1}{4}\arctan\frac{x+3}{4}+C$$
. **B.** $\arctan\frac{x+3}{4}+C$. **C.** $\frac{1}{4}\arctan(x+3)+C$. **D.** $\ln(x^2+6x+25)+C$.

E.
$$4\arctan(x+3)+C$$
.

Câu 23. Tích phân $\int \frac{x^2+1}{x^4+1} dx, x > 0$ bằng

A.
$$\frac{1}{\sqrt{2}}\arctan\left(\frac{x^2-1}{\sqrt{2}x}\right)+C, C \in \mathbb{R}$$
.

B. $\frac{1}{\sqrt{2}}\arctan\left(\frac{x^2+1}{\sqrt{2}x}\right)+C, C \in \mathbb{R}$.

B.
$$\frac{1}{\sqrt{2}}\arctan\left(\frac{x^2+1}{\sqrt{2}x}\right)+C, C \in \mathbb{R}$$

C.
$$\frac{1}{\sqrt{2}}\operatorname{arccot}\left(\frac{x^2-1}{\sqrt{2}x}\right) + C, C \in \mathbb{R}$$

C.
$$\frac{1}{\sqrt{2}}\operatorname{arccot}\left(\frac{x^2-1}{\sqrt{2}x}\right) + C, C \in \mathbb{R}$$
. D. $\frac{1}{\sqrt{2}}\operatorname{arccot}\left(\frac{x^2+1}{\sqrt{2}x}\right) + C, C \in \mathbb{R}$.

E. Không tồn tại ở dạng hàm sơ cấp.

Câu 24. Đặt $x = \tan t$, tích phân $\int \frac{dx}{\left(x^2 + 1\right)^2}$ được đưa về tích phân nào dưới đây?

A.
$$\frac{1}{2} \int (1 + \cos 2t) dt$$
.

A.
$$\frac{1}{2}\int (1+\cos 2t)dt$$
. **B.** $\frac{1}{2}\int (1+\sin 2t)dt$. **C.** $\int \tan^2 tdt$.

C.
$$\int \tan^2 t dt$$

$$\mathbf{D.} \int \cot^2 t \mathrm{d}t.$$

E.
$$\int \cot^4 t dt$$
.

Câu 25. Cho tích phân bất định $I = \int \frac{x}{1 + e^{3x^2}} dx$. Với phép biến đổi $t = e^{3x^2}$, ta thu được

A.
$$I = \frac{1}{6} \int \frac{dt}{t(t+1)}$$
. **B.** $I = \frac{1}{3} \int \frac{dt}{t(t+1)}$. **C.** $I = \frac{1}{3} \int \frac{dt}{t+1}$. **D.** $I = \frac{1}{6} \int \frac{dt}{t+1}$.

$$\mathbf{B.} \ I = \frac{1}{3} \int \frac{\mathrm{d}t}{t(t+1)}$$

$$C. I = \frac{1}{3} \int \frac{\mathrm{d}t}{t+1}$$

D.
$$I = \frac{1}{6} \int \frac{dt}{t+1}$$

E.
$$I = \int \frac{\mathrm{d}t}{t+1}$$
.

Câu 26. Cho tích phân bất định $I = \int x \ln \sqrt[3]{\frac{x+1}{x-1}} dx$. Theo phương pháp tích phân từng phần ta thu được

A.
$$I = \frac{1}{6} (x^2 - 1) \ln \frac{x+1}{x-1} - \frac{1}{6} \int (x^2 - 1) \left(\frac{1}{x+1} - \frac{1}{x-1} \right) dx$$
.

B.
$$I = \frac{1}{6}(x^2 - 1)\ln\frac{x+1}{x-1} - \frac{1}{6}\int(x^2 - 1)\frac{x-1}{x+1}dx$$
.

C.
$$I = \frac{1}{2} (x^2 - 1) \ln \sqrt[3]{\frac{x+1}{x-1}} - \frac{1}{3} \int (x^2 - 1) \sqrt[3]{\frac{x-1}{x+1}} \cdot \frac{2}{(x-1)^2} dx$$
.

D.
$$I = \frac{1}{2} (x^2 - 1) \ln \sqrt[3]{\frac{x+1}{x-1}} - \frac{1}{3} \int (x^2 - 1) \sqrt[3]{\frac{x+1}{x-1}} \cdot \frac{2}{(x-1)^2} dx$$
.

Câu 35. Khi $x \to 0$ ta có $\ln(1 + x \tan^3 x) \sim ax^b$, với $a, b \in \mathbb{R}$. Tính a + b.

A. 5. B. 6. C. 9.

D. 11.

Câu 38. Cho hàm số $f(x) = \operatorname{arccot} \frac{1}{x}$ có điểm gián đoạn tại x = 0. Bước nhảy của f(x) tại x = 0 bằng

 $\mathbf{A}. -\pi$.

 $\frac{\mathbf{C}}{4}$.

 $\mathbf{D}. \frac{\pi}{2}.$

Câu 39. Cho hàm số $f(x) = \ln(2x + \sqrt{4x^2 + 25})$. Biết $f'(1) = \frac{a}{b}$, với $\frac{a}{b}$ là phân số tối giản. Khi đó $\frac{8a^3}{b^2}$ thuộc khoảng nào dưới đây?

B. (4,9). **C.** (0,1). **D.** (9,12).

E. $(12, +\infty)$.

Câu 40. Cho hàm số f(x) thoả mãn điều kiện $\frac{\mathrm{d}}{\mathrm{d}x}[f(2x)] = e^{x^2}$, $\forall x \in \mathbb{R}$. Giá trị f'(2) thuộc khoảng nào dưới đây? **A.** (1,2). **B.** (2,9). **C.** (0,1).

Câu 41. Tìm miền giá trị của hàm số $f(x) = \log(10 - x^2)$.

A. $(-\infty, 1]$.

B. (0,1].

C. $(-\sqrt{10}, \sqrt{10})$. D. $(0, \sqrt{10})$.

Câu 42. Tính tích phân bất định $\int_{r}^{1} \left[\ln \left(x^3 \right) + 2 \right]^4 dx$ được kết quả là

A. $\frac{1}{15} \left[\ln \left(x^3 \right) + 2 \right]^5 + C$.

B. $\frac{1}{12} \left[\ln \left(x^3 \right) + 2 \right]^5 + C$.

C. $\frac{1}{12} \left[\ln \left(x^3 \right) + 2 \right]^4 + C$.

D. $\frac{1}{9} \left[\ln \left(x^3 \right) + 2 \right]^3 + C$.

E. $\frac{1}{5} \left[\ln \left(x^3 \right) + 2 \right]^5 + C$.

Câu 43. Cho ba số thực a,b,c thoả mãn giới hạn $\lim_{x\to 0} \frac{\sqrt{1+x-3\cos 2x-a-bx-cx^2}}{x^3}$ hữu hạn. Tính a+b+c?

A. $\frac{35}{9}$.

B. 4.

C. $\frac{31}{8}$. D. $\frac{37}{8}$.

E. $\frac{25}{6}$.

F. 6.

Câu 44. Tìm chu kỳ của hàm tuần hoàn $f(x) = \tan \frac{x}{2} + 3\tan \frac{x}{3}$?

A. $T=6\pi$.

B. $T = 5\pi$. **C.** $T = \frac{\pi}{6}$. **D.** $T = \pi$.

Câu 45. Cho hàm số f(x) xác định và có đạo hàm cấp 2 liên tục trên khoảng $(0,+\infty)$ và thoả mãn

 $\int x^4 e^{x^2} dx = \frac{f(x)}{x} + C, x > 0. \text{ Biết } g(x) \text{ là một nguyên hàm của hàm số } xf''(x) \text{ với } g(1) = e.$

Khi đó $\frac{g(2)}{1000}$ thuộc khoảng nào dưới đây?

A. (3,4).

B. (2,3).

 $\mathbf{C}.(0,2).$

D. (4,9).

E. (11,14). **F.** (9,11).

Câu 46. Cho hàm số $f(x) = x^2 \ln(x)$. Tính $f^{(5)}(1)$?

A. 4.

C. 6.

D. 10.

Câu 47. Hàm số $f(x) = x - 5\sqrt[5]{x^4}$ có mấy điểm cực trị?

C. 0.

D. 3.

Câu 48. Cho hàm số $f(x) = \arctan(x^2)$. Tính $f^{(10)}(0)$?

A. 725760.

B. 425764.

C. 522542.

D. 223460.

E. 531764.

Câu 49. Tính giới hạn $\lim_{x \to -3^{-}} \frac{6}{2+3^{\frac{1}{x+3}}}$?

A. 3.

B. 0.

D. $\frac{6}{2+9\sqrt{3}}$.

Câu 50. Cho x là số thực, ký hiệu [x] là số nguyên lớn nhất không vượt quá x. Xét hàm số

 $f(x) = \begin{cases} \frac{\lfloor x \rfloor}{x} & \text{khi } x \neq 0 \\ 1 & \text{khi } x = 0 \end{cases}$. Khẳng định nào đúng?

A. x = 0 là điểm gián đoạn loại hai của hàm số f(x).

B. x = 0 là điểm gián đoạn bỏ được của hàm số f(x).

C. x = 0 là điểm gián đoạn loại một không bỏ được của hàm số f(x).

D. x = 0 là điểm liên tục của hàm số f(x).

Câu 51. Hàm ngược của hàm số $f(x) = \frac{e^x + e^{-x}}{2}, x < 0$ là

A.
$$f^{-1}(x) = \ln(x - \sqrt{x^2 - 1}), x > 1$$
.

B. $f^{-1}(x) = \ln(x + \sqrt{x^2 - 1}), x > 1$.

C. $f^{-1}(x) = \ln|x - \sqrt{x^2 - 1}|, |x| > 1$.

D. $f^{-1}(x) = \ln|x + \sqrt{x^2 - 1}|, |x| > 1$.

Câu 52. Hàm số nào sau đây không phải là hàm số tuần hoàn?

A. $f(x) = \sin(x^2)$.

B. $f(x) = \sin\sqrt{x}$.

C. $f(x) = \sin^2 x$.

D. $f(x) = \sqrt{\sin x}$.

E. $f(x) = \sin 2x + \cos 3x$.

Câu 53. Trong các trường họp nào sau đây, có thể khẳng định hàm số $f(x)$ liên tục đều trên \mathbb{R} ?

A. Hàm số khả vi và có đạo hàm bị chặn trên \mathbb{R} .

B. Tổn tại hằng số $L > 0$ sao cho $|f(x) - f(y)| \le L|x - y|$ với mọi $x, y \in \mathbb{R}$.

C. Hàm số $f(x)$ liên tục đều trên mọi đoạn $[a,b] \subset \mathbb{R}$.

D. Hàm số khả vi trên \mathbb{R} .

E. Hàm số $f(x)$ liên tục trên mọi đoạn $[a,b] \subset \mathbb{R}$.

Câu 54. Khi $x \to 0$ ta có $\sqrt[3]{1 + 6x^2 \sin x} - 1 \sim mx^\alpha$, với $m, \alpha \in \mathbb{R}$. Tính $m + \alpha$?

A. 5.

B. 6.

C. 9.

D. 11.

Câu 55. Cho hàm số $f(x) = e^x + x$ có hàm số ngược là $g(x)$. Tính $g'(1)$?

A. $\frac{1}{2}$.

B. 1.

C. 0.

D. $e + 1$.

Câu 57. Cho $\lim_{x \to 0} \frac{4x + 1 - e^{4x}}{\ln(\cos 7x)} = \frac{a}{b}$, với $\frac{a}{b}$ là phân số tổi giản. Khi đó $\frac{a^2}{b + 13}$ thuộc khoảng nào sau đây?

A. $(4,5)$.

B. $(5,6)$.

C. $(3,4)$.

D. $(6,+\infty)$.

Câu 58. Hàm số $f(x) = x^4 \ln^{10} x$ có máy điểm cục trị?

A. 2.

B. 1.

C. 0.

D. 3.

Câu 59. Cho hàm số $f(x) = e^{x^2} . x^3 . \cos x$. Tính $f^{(20)}(0)$.

A. 0.

B. 124.

C. 1024.

D. 720.

E. 24.

Câu 60. Tìm $a \in \mathbb{R}$ để hàm số $f(x) = \begin{cases} \operatorname{arccot} \frac{1}{x}, (\forall x \neq 0) \\ a, (x = 0) \end{cases}$ liên tục tại x = 0?

A. Không tồn tại a. **B.** a = 0.

C. $a = \frac{\pi}{2}$. **D.** $a = \pi$.