Berechenbarkeit und Komplexität

Dozent: Mathias Weller (Skript adaptiert von Rolf Niedermeier)
Betreuer: Leon Kellerhals. Vincent Froese und Philipp Zschoche

Sekretariat: Christlinde Thielcke

Viele Fleißige Tutorinnen und Tutoren

Fachmentorin: Niloofar Nazemi

TU Berlin
Fakultät IV
Fachgebiet Algorithmik und Komplexitätstheorie
https://www.akt.tu-berlin.de

Informatikstudium an der TU Berlin

1. Semester 27 LP	Rechner- organisation (6 LP)	Einführung in die Programmierung (6 LP)			Analysis I und Lineare Algebra für Ingenieurwissenschaften (12 LP)	
2. Semester 30 LP	System- programmierung (6 LP)	Algorithmen und Datenstrukturen (6 LP)	Informationssys- teme und Daten- analyse (6 LP)		Formale Sprachen und Automaten (6 LP)	Diskrete Strukturen (6 LP)
3. Semester 30 LP	Rechnernetze und Verteilte Systeme (6 LP)	Softwaretechnik und Program- mierparadigmen (6 LP)	Wissenschaft- liches Rechnen (6 LP)		Berechenbarkeit und Komplexität (6 LP)	Logik (6 LP)
4.–6. Semester 93 LP	Wahlpflicht Technische Informatik (6 LP)				icht Theoretische ormatik (6 LP)	Stochastik für Informatik (9 LP)
	Wahlpflichtbereich Katalog Informatik (27–33 LP)					Informatik und Gesellschaft (6 LP)
	Wahlbereich (15–18 LP)				Bachelorarbeit (12 LP)	

LP = Leistungspunkte nach dem ECTS-System (1 LP entspricht etwa 30 Zeitstunden)
Technische Grundlagen der Informatik Methodisch-praktische Grundlagen der Informatik
Theoretische Informatik Marchael Grundlagen des wiss. Arbeitens/Informatik in gesellschaftlicher Relevan
Grundlagen der Mathematik 💹 Wahlpflichtbereich 🔲 Wahlbereich 🗀 Bachelorarbeit

Organisation

Vorlesungsbetrieb:

- ▶ Vorlesung: Screencasts und PDF-Folien verfügbar über ISIS
- "Freie Großübung" + "Modulkonferenz"

Tutorien:

- ► Tutorien: siehe ISIS und MOSES
- Tutor*innensprechstunde: TBA

Prüfungen: Portfolioprüfung

- Multiple-Choice-Test: 25 PP (ca. Mitte Dezember)
- ► Hausaufgabe in Dreiergruppen 25 PP (im Januar)
- ► Schriftlicher Test: 50 PP (Termin wird über ISIS bekanntgegben)

Ergänzendes Material

Literatur:

- Uwe Schöning. Theoretische Informatik-kurz gefasst. Spektrum Akademischer Verlag 2008 (5. Auflage).
- ▶ Elaine Rich. Automata, Computability, and Complexity. Pearson 2008.
- Cristopher Moore, Stephan Mertens. The Nature of Computation. Oxford University Press 2011

Weiteres Material:

YouTube-Kanal NLogSpace (https://www.youtube.com/channel/UCMWYg3eBFp5bbqjlllUku_w)

Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursion
- 5. Die Ackermannfunktion
- 6. (Un-)Entscheidbarkeit, Halteproblem und Reduzierbarkeit
- 7. Das Postsche Korrespondenzproblem
- 8. Komplexität Einführung
- 9. NP-Vollständigkeit
- 10. PSPACE

Das "hello, world"-Problem

Ziel: Entwicklung von Programm *E* mit folgender Spezifikation:

Input: Programm *P*

Output: "Top", wenn *P* den string "hello, world" ausgibt, "Flop", sonst

Bemerkung: *E* hat "Typ höherer Ordnung" (d.h. Eingabe ist (Text eines) Programms *P*).

```
Beispiel für Eingabe P

main(){
   printf("hello, world");
}
```

- \rightarrow Existiert ein Programm *E* für diese spezielle Eingabe *P*?
- → Existiert ein Programm E auch für beliebige Programme P?

Wiederholung: Endliche Automaten

Definition (Endlicher Automat)

- ► Ein (deterministischer) endlicher Automat (kurz DFA) ist ein Quintupel $M = (Z, \Sigma, \delta, z_0, E)$ mit
 - ► Z ist eine nichtleere, endliche Menge von **Zuständen**,
 - $ightharpoonup \Sigma$ ist ein nichtleeres, endliches Alphabet von **Eingabezeichen** mit $Z \cap \Sigma = \emptyset$,
 - ▶ $\delta: Z \times \Sigma \to Z$ ist die partielle Überführungsfunktion,
 - $ightharpoonup z_0 \in Z$ ist der **Startzustand** und
 - $ightharpoonup E \subseteq Z$ ist die Menge der **Endzustände**.
- ▶ Zu M definieren wir die partielle Funktion $\hat{\delta}: Z \times \Sigma^* \to Z$ induktiv für alle $z \in Z$:

$$\hat{\delta}(z,\epsilon) := z$$
 $\forall_{x \in \Sigma^*}$ $\hat{\delta}(z,ax) := \hat{\delta}(\delta(z,a),x)$ falls $\delta(z,a)
eq \bot$

- ▶ Ein DFA $M = (Z, \Sigma, \delta, z_0, E)$ akzeptiert ein Wort $w \in \Sigma^*$ falls $\hat{\delta}(z_0, w) \in E$
 - ▶ Die von *M* akzeptierte Sprache ist $T(M) := \{x \in \Sigma^* \mid \hat{\delta}(z_0, x) \in E\}$.

Wiederholung: Endliche Automaten II

Beispielautomat

$$M = (\{z_0, z_1, z_2\}, \{0, 1\}, \delta, z_0, \{z_2\}) \text{ mit } \begin{array}{c|ccc} \delta & z_0 & z_1 & z_2 \\ \hline 0 & z_0 & z_2 & z_1 \\ 1 & z_1 & z_0 & z_2 \end{array}$$

 $z_i \sim$ das bisher gelesene Wort ist die Binärkodierung einer Zahl n mit Rest i modulo 3.

 $T(M) = \{ w \in \{0,1\}^* \mid w \text{ ist Binärdarstellung einer Zahl } n \text{ mit } n \text{ mod } 3 = 2 \}.$

Frage: Sind die Binärdarstellungen der Zahlen n mit $n \mod 4 = 1$ von einem DFA erkennbar?

Grenzen endlicher Automaten

Gibt es jeweils einen endlichen Automaten zur Erkennung folgender Sprachen?

- ▶ $\{w \in \{0,1\}^* \mid w \text{ ist Binärdarstellung einer geraden Zahl}\}$ ✓ Letztes Zeichen muss eine 0 sein.
- ▶ $\{a^nb^n \mid 0 \le n \le 1000\}$ ✓ Sprache enthält nur 1001 Wörter. Jede endliche Sprache ist regulär.
- ► $\{a^nb^n \mid n \ge 0\}$ X
 Mit endlich vielen Zuständen können wir uns nicht "merken" wieviele a's wir schon gelesen haben.
 Erkennung mit Kellerautomaten möglich.
- ► $\{(abc)^n \mid n \ge 0\}$ ✓ ählich zur " $n \mod 3 = 2$ " Sprache.
- ► $\{a^n b^m c^k \mid n, m, k \ge 0\}$ ✓ Müssen uns nur "merken" welche Buchstaben noch folgen dürfen.
- ► $\{a^nb^nc^n \mid n \ge 0\}$ X Siehe a^nb^n . Erkennung mittels Turing-Maschinen.
- ► $\{a^i b^j c^i d^j \mid i, j \ge 0\}$ X Siehe oben. Erkennung mittels Turing-Maschinen.

Die Turing Maschine

Alan Mathison Turing, 1912-1954.

Inspiration: "Menschliche Computer" 1890.

LEGO Turing Maschine

Informell

endliche Kontrolle + unendliches Band

Quellen:

http://therunnereclectic.files.wordpress.com/2014/11/alan-turing-running.jpg

http://en.wikipedia.org/wiki/Harvard_Computers

http://cs.cmu.edu/~soonhok/images/20120718_LegoTM/legotm.png

Definition Turing-Maschinen

Definition ((deterministische) Turing-Machine)

Eine **Turing-Maschine** (kurz DTM) ist ein Septupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ mit

- ► Z, einer nicht-leeren, endlichen Menge von **Zuständen**,
- **Σ**, dem **Eingabealphabet**,
- ▶ $\Gamma \supseteq \Sigma$, dem **Arbeits** oder **Bandalphabet** mit $\Gamma \cap Z = \emptyset$,

Berechenbarkeit und Komplexität

- ▶ δ : $(Z \setminus E) \times \Gamma \to Z \times \Gamma \times \{L, R, N\}$, die partielle Überführungsfunktion
- $ightharpoonup z_0 \in Z$, dem **Startzustand**,
- $ightharpoonup \Box \in \Gamma \setminus \Sigma$, dem **Blanksymbol** und
- $ightharpoonup E \subseteq Z$, der Menge der **Endzustände**.

Interpretation: Wenn M im Zustand z das Zeichen a liest und $\delta(z, a) = (z', a', p)$, so

- \triangleright geht M in Zustand z' über,
- ▶ überschreibt das a durch ein a'
- bewegt den Lese/Schreibkopf gemäß p (nach Links, Rechts, oder gar Nicht)

Konfigurationen

Definition (Konfiguration, Folgekonfiguration)

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\square,E)$ eine TM. Eine **Konfiguration** von M ist ein Wort azb mit $a,b\in\Gamma^*$ und $z\in Z$. (überflüssige \square -Symbole an den Rändern der Konfiguration weglassen)

Die **Startkonfiguration** zu einem Wort $x \in \Sigma^*$ ist z_0x .

Sei
$$k=a_1\ldots a_m z b_1\ldots b_n$$
 eine Konfiguration (falls $n=0$, dann $b_1:=\square$). Dann $k\vdash^0_M k$
$$k\vdash^1_M \qquad a_1\ldots a_m z'cb_2\ldots b_n \qquad \text{falls } \delta(z,b_1)=(z',c,N)$$

$$k\vdash^1_M \qquad a_1\ldots a_m cz'b_2\ldots b_n \qquad \text{falls } \delta(z,b_1)=(z',c,R)$$

$$k\vdash^1_M \qquad a_1\ldots a_{m-1}z'a_m cb_2\ldots b_n \qquad \text{falls } \delta(z,b_1)=(z',c,L) \text{ und } m>0$$

$$k\vdash^1_M \qquad z'\square cb_2\ldots b_n \qquad \text{falls } \delta(z,b_1)=(z',c,L) \text{ und } m=0.$$

k ist **haltend** (d.h. k hat keine Folgekonfiguration) falls $\delta(z, b_1) = \bot k$ ist **akzeptierend** falls $z \in E$

Weiter sei $k \vdash_M^{i+1} k' \iff \exists_q k \vdash_M^1 q \vdash_M^i k'$ für alle i und $k \vdash_M^* k' \iff \exists_{i \in \mathbb{N}} k \vdash_M^i k'$

Beispiel Turing-Maschine: Binärzahl inkrementieren

Beispiel: Eingabe 101 z₀101 $1z_001$ $10z_01$ $101z_{0}$ \vdash^1_M $10z_11$ $1z_100$ $\vdash^1_{\mathcal{M}}$ z₂110 *z*₂ □110 z_e110 z_e110 haltend & akzeptierend

Frage: Was macht *M* bei leerer Eingabe? Bei Eingabe 000?

Akzeptieren und Halten einer TM

Definition (Akzeptieren, Halten)

Turing-Maschine $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$:

- ▶ *M* hält auf $w \in \Sigma^*$, falls eine haltende Konfiguration k' existiert mit $z_0 w \vdash_M^* k'$.
- ▶ M akzeptiert $w \in \Sigma^*$, falls eine akzeptierende Konfiguation k' existiert mit $z_0w \vdash_M^* k'$.
- \blacktriangleright M akzeptiert Sprache T(M) enthält genau die Wörter w die M akzeptiert. Formal,

$$T(M) := \{ w \in \Sigma^* \mid \exists_{\alpha,\beta \in \Gamma^*} \exists_{z \in E} : z_0 w \vdash_M^* \alpha z \beta \}.$$

Beispiel Turing-Maschine: akzeptiere $\{0^n1^n \mid n \in \mathbb{N}\}$

