

SPARCLE Curation

predicting protein architecture names

2024 NCBI Codeathon - Team Gwadz-Yang

Marc Gwadz (Team Leader), NCBI, NLM, NIH

Mingzhang Yang (Technical Lead), NCBI, NLM, NIH

Christopher Meyer (Writer), University of Chicago - Center for Translational Data Science

Franziska Ahrend, ORISE Fellow NIDDK, NIH

Yixiang Deng, Post-doc MIT, Harvard

Shaojun Xie, Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research

Input/processing

Model

Evaluation

Inference

Future Work

SPARCLE, the Subfamily Protein Architecture Labeling Engine, is a resource for the functional characterization and labeling of protein sequences that have been grouped by their characteristic conserved domain architecture.

A domain architecture is defined as the sequential order of conserved domains in a protein sequence.

Conserved domains can be clustered into superfamilies that generate over-lapping annotations on the same protein

Goal: Develop Machine Learning methods to use curated architectures to apply names (and other information) to un-curated architectures

Inference

Future Work

Pre-processing:

- Curated Names were manually reduced to decrease # categories and help in testing.
- Common / uninformative words in TitleStrings (articles, prepositions, "protein" etc.) were eliminated prior to vectorization.
- Input/Output Data organized into One-Hot encoded matrices and vectors (SentencePiece)

Preparation of the features and outputs

Input/processing

Model

Evaluation

Inference

Future Work

- Strategy A: One-Hot encoding for features
 - o features size [48297] (Superfamilies, Specific CDs)
 - o outputs as curated name strings
- Strategy B: Label encoding and Tokenization
 - o feature size [450] (Superfamilies, Specific CDs, TitleStrings)

o outputs as curated name strings or tokenized vector (size:60)

Input/processing

Model

Evaluation

Inference

Future Work

Decision Tree

Interpretability and Transparency

Categorical Data Handling

Reveals Feature Importance

 Models Non-Linear Relationships

Accuracy

Perfect match: >32%

Input/processing

Model

Evaluation

Inference

Future Work

Actual	Predicted	Equal
T-complex protein 1 subunit	T-complex protein 1 subunit	True
mannose-6-phosphate isomerase	mannose-6-phosphate isomerase	True
PUA domain-containing protein	PUA domain-containing protein	True
hybrid sensor histidine kinase/response regulator	hybrid sensor histidine kinase/response regulator	True
hybrid sensor histidine kinase/response regulator	hybrid sensor histidine kinase/response regulator	True
lysine decarboxylase	lysine decarboxylase	True
SANT/Myb-like DNA-binding domain-containing pr	SANT/Myb-like DNA-binding domain-containing pr	True
MFS transporter	MFS transporter	True
enoyl-CoA hydratase	enoyl-CoA hydratase	True
LCP family protein	LCP family protein	True
cell division protein	cell division protein	True
methyl-accepting chemotaxis protein	methyl-accepting chemotaxis protein	True
E3 ubiquitin-protein ligase	E3 ubiquitin-protein ligase	True
helix-hairpin-helix domain-containing protein	helix-hairpin-helix domain-containing protein	True
adenylate/guanylate cyclase domain-containing	adenylate/guanylate cyclase domain-containing	True
cadherin repeat domain-containing protein	cadherin repeat domain-containing protein	True
LacI family DNA-binding transcriptional regulator	LacI family DNA-binding transcriptional regulator	True
BTB/POZ domain and ankyrin repeat-containing p	BTB/POZ domain and ankyrin repeat-containing p	True
dTDP-glucose 4,6-dehydratase	dTDP-glucose 4,6-dehydratase	True
class I SAM-dependent methyltransferase	class I SAM-dependent methyltransferase	True
FRMD7 family protein	FRMD7 family protein	True
non-ribosomal peptide synthetase	non-ribosomal peptide synthetase	True
BTB/POZ domain-containing protein	BTB/POZ domain-containing protein	True
cation diffusion facilitator family transporter	cation diffusion facilitator family transporter	True
transposase	transposase	True

Accuracy

Perfect match: >32%

Input/processing Similar match: 39%

Predicted	Actual
peroxisome biogenesis factor	peroxisomal biogenesis factor
methylmalonyl-CoA mutase	methylmalonyl-CoA mutase subunit
ubiquitin carboxyl-terminal hydrolase	ubiquitin carboxyl-terminal hydrolase family p
C2H2-type zinc finger protein	C2HC-type zinc finger protein
AP-3 complex subunit	AP-4 complex subunit

Predicted	Actual
DUF4278 domain-containing protein	DUF4299 domain-containing protein
DUF4346 domain-containing protein	DUF4345 domain-containing protein
DUF2515 domain-containing protein	DUF3015 domain-containing protein
DUF5035 domain-containing protein	DUF5043 domain-containing protein

Predicted	Actual
ROK family transcriptional regulator	ParB/RepB/Spo0J family partition protein
leucinetRNA ligase	flagellar brake protein
heat shock 70 family protein	transposase
Myb family transcription factor	GATOR complex protein
low molecular weight protein-tyrosine-phosphat	2-aminoethylphosphonate ABC transporter substr
PTS galactitol transporter subunit	PTS phosphocarrier protein NPr
YusG family protein	DUF3083 family protein
class I SAM-dependent methyltransferase	MspA family porin
DUF4430 domain-containing protein	CPBP family intramembrane glutamic endopeptidase
NADH dehydrogenase subunit	coproporphyrinogen III oxidase

Model

Evaluation

Inference

Future Work

Input/processing

Model

Evaluation

Inference

Future Work

Challenges for training/testing:

- Sparse data (many architectures only have rare superfamilies)
- Large number of categories and some inconsistencies in Curated names

While most super superfamilies occur in very few Architectures, others can occur many times in both curated and uncurated Architectures.

Architectures with frequently occurring superfamilies can hopefully be leveraged to auto-name numerous related architectures.

Input/processing

Model

Evaluation

Inference

Future Work

- Standardized/generic target names
- Collect all the information / knowledge about every domain model to create a corpus.
 - With this corpus, we can generate word embedding for every single domain model.
 - Then we can create biologically meaningful vectors for the specificArch and superfamilyArch.
- Try other ML methods and employ better validation methods
- Parameter optimization: change "opt" variable to use different regressors.
 - O We used "Ridge regression" (opt=ridge), a linear model with performance score $R^2 = 0.25$.
 - O This is fastest, but would love to evaluate other methods.
- Evaluate choice and filtering of input features
 e.g. limiting text to informative strings
- Curator inspection of proposed names for uncurated data

Team Leader Marc Gwadz

Franziska Ahrend

Technical Lead Mingzhang Yang

Yixiang Deng

Writer **Christopher Meyer**

Shaojun Xie

