Университет ИТМО

Физико-технический мегафакультет

Физический факультет

Группа <u>3220</u>	К работе допущен		
Студент <u>Гафурова Ф. Ф.</u>	Работа выполнена		
Преподаватель <u>Пулькин Н. С.</u>	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №1.05

«Исследования колебаний физического маятника»

1. Цели работы.

1. Изучение характеристик затухающих колебаний физического маятника.

2. Задачи, решаемые при выполнении работы.

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

3. Объект исследования.

Физический маятник

4. Метод экспериментального исследования.

- Измерение периода N числа колебаний маятника с разными положениями груза, параллельно отмечая время, когда амплитуда отклонения маятника от равновесного положения будет равна 25, 20, 15, 10 и 5.
- Построение графиков зависимостей амплитуды колебаний от времени и квадрата периода от момента инерции.

- Определение, какой тип трения играет главную роль в затухании колебаний: сухое трение или вязкое.
- Вычисление экспериментальной и теоретической приведенной длины маятника при разных его конфигурациях.

5. Рабочие формулы и исходные данные.

Зависимость логарифма отношения амплитуд от времени

$$ln\frac{A}{A_0} = -\beta t,$$

Зависимость амплитуды колебаний от ширины зоны застоя

$$A(t = nT) = A_0 - 4n\Delta\varphi_3$$
.

Расстояния центров грузов от оси вращения

$$R = l_1 + (n-1)l_0 + b/2$$

Момент инерции грузов

$$I_{\rm rp} = m_{\rm rp} (R_{\rm Bepx}^2 + R_{\rm HMK}^2 + 2R_{\rm fok}^2).$$

Период колебаний маятника от момента инерции

$$T=2\pi\sqrt{rac{I}{mgl}}.$$

Приведенная длина маятника от момента инерции

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l.$$

6. Измерительные приборы.

Таблица 1. Характеристики средств измерения

Nº ⊓/⊓	Наименование средства измерения	Предел измерений	Цена деления	Погрешность прибора
1	Секундомер	500c	0.01 c	5 MC
2	Шкала	60°	1°/дел.	1°

Таблица 5. Параметры установки

	Параметры установки				
1.	Масса каретки	(47,0 ± 0,5) г			
2.	Масса шайбы	(220,0 ± 0,5) r			
3.	Масса грузов на крестовине	(408,0 ± 0,5) г			
4.	Расстояние от оси до первой риски	(57,0 ± 0,5) мм			
5.	Расстояние между рисками	(25,0 ± 0,2) MM			
6.	Диаметр ступицы	(46,0 ± 0,5) MM			
7.	Диаметр груза на крестовине	(40,0 ± 0,5) MM			
8.	Высота груза на крестовине	(40,0 ± 0,5) MM			
9.	Расстояние, проходимое грузом (h)	(700,0 ± 0,1) мм			

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления

4. Передняя крестовина

8. Результаты прямых измерений и их обработки (*таблицы*, *примеры расчетов*).

Замеры времени 10 колебаний маятника

t ₁	18,20
t ₂	18,01
t ₃	18,26

$$\bar{t} = \frac{t_1 + t_2 + t_3}{3} = \frac{18,20 + 18,01 + 18,26}{3} = 18,16 \text{ c.}$$

$$N = 10$$

$$T = \frac{\bar{t}}{N} = \frac{18,16}{10} = 1,816 \text{ c.}$$

Таблица 2

Амплитуда отклонения	25°	20°	15°	10°	5°
Время					
t ₁ , c	35,12	65,97	89,09	120,8	153,47
t ₂ , c	35,91	62,92	95,78	126,65	161,79
t ₃ , c	34,11	64,06	91,86	122,83	155,78
<i>ī</i> , c	35,25	64,32	92,24	123,43	158,35

Таблица 3

Положение боковых	t ₁	t ₂	t ₃	\bar{t}	T
грузов					
1 риска	15,23	15,36	15,35	15,31	1,531
2 риски	16,27	16,15	16,25	16,22	1,622
3 риски	17,35	17,25	17,44	17,35	1,735
4 риски	18,7	18,63	18,7	18,68	1,868
5 рисков	19,93	20,14	20,09	20,05	2,005
6 рисков	21,32	21,07	21,35	21,25	2,125

$$T(1 \text{ риска}) = \frac{\bar{t}}{N} = \frac{15,31}{10} = 1,531$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

t, c	A,°	ln(A/A₀)
0	30	0,000
35,25	25	-0,092
64,32	20	-0,198
92,24	15	-0,320

123,43	10	-0,463
158,35	5	-0,633

Ширина зоны застоя равна:

$$\Delta_{\varphi 3} = \frac{A_0 - A(t = nT)}{4n} = \frac{A_0 - A(\bar{t}_{25^{\circ}})}{4 * \frac{\bar{t}_{25^{\circ}}}{T}} = 0.06^{\circ}$$

Колебания прекратятся через n_{max} периодов колебаний:

$$n_{max} = \frac{A_0}{4\Delta_{\omega 3}} \approx 125$$

$$\beta = \frac{\sum_{i=1}^{5} t_i A_i}{\sum_{i=1}^{5} t_i^2} = 0.041 c^{-1}$$

$$\theta = \frac{1}{\beta} = 245 c$$

Среднее значение всех экспериментальных значений T^2 и I:

$$\overline{T^2} = \frac{1}{N} \sum T_i^2 = 3.34 \ c^2$$

$$\bar{I} = \frac{1}{N} \sum I_i = 4.4 \text{ Kp} * \text{M}^2$$

Таблица 4

Риски	1	2	3	4	5	6
$R_{ m Bepx}$			0,077			
$R_{\text{ниж}}$			0,202			
$R_{ m fok}$	0,077	0,102	0,127	0,152	0,177	0,202
$I_{ m rp}$	0,024	0,028	0,032	0,037	0,045	0,052
I	0,032	0,035	0,04	0,046	0,05	0,06
$l_{ m пр эксп}$	0,6	0,67	0,76	0,88	1,02	1,14
$l_{ m np\ Teop}$	0,5	0,56	0,64	0,73	0,84	0,96

$$I_{\text{rp1}} = m_{\text{rp}} \left(R_{\text{Bepx}}^2 + R_{\text{Hиж}}^2 + 2 R_{60\text{K}}^2 \right) = 0.408 * (0.077^2 + 0.202^2 + 2 * 0.077^2) \approx 0.024 \text{K} \text{G} * \text{M}^2$$

$$I_1 = I_{\text{гр1}} + I_0 = 0.024 + 0.008 = 0.032$$
кг * м²

$$T^2 = 4\pi^2 \frac{I}{mgl} \implies ml = \frac{4\pi^2 \sum_{i=1}^6 I_i^2}{g \sum_{i=1}^6 I_i T_i^2} = 0,057 \; \mathrm{KF} \cdot \mathrm{M}$$

$$l_{\text{Teop}} = \frac{ml}{4m_{\text{FD}}} = \frac{0,057}{4*0,408} = 0,035 \text{ M}$$

$$l_{
m пр\, эксп\, 1} = rac{T_1^2 g}{4\pi^2} pprox 0,6 \, {
m M}$$

$$l_{ ext{пр теор 1}} = rac{I_1}{ml} pprox 0$$
,5 м

10. Графики (перечень графиков, которые составляют Приложение 2)

Рисунок 1 - График зависимости амплитуды от времени

Рисунок 2 - График зависимости квадрата периода от момента инерции

11. Окончательные результаты

Риски	1	2	3	4	5	6
$l_{ m np \; m s\kappa cn}$	0,6	0,67	0,76	0,88	1,02	1,14
$l_{\text{пр теор}}$	0,5	0,56	0,64	0,73	0,84	0,96

Ширина зоны застоя равна:

$$\Delta_{\phi 3} = 0.06^{\circ}$$

Колебания маятника с грузами, установленными на третьей риске, прекратятся через 125 периодов колебаний.

12. Выводы и анализ результатов работы

При выполнении лабораторной работы мной были изучены затухающие колебания физического маятника и измерены периоды колебаний при разных положениях грузов на боковых спицах. При расчётах я выявила экспоненциальную зависимость амплитуды затухающих колебаний от времени, из чего можно сделать вывод, что влияние вязкого трения является очень сильным (график 1).

Экспериментальные и теоретические значения длины маятника всех положений грузов (кроме груза на первой риске) оказались схожими, с погрешностью менее 10%, следовательно точность измерений достаточно высока.