Corrigé contrôle continu numéro 1

Exercice 1. Question de cours.

- 1. cours.
- 2. cours
- 3. Définissons

$$f_1: \mathbb{R} \to \mathbb{R}^2$$

$$x \mapsto (x,0).$$

 f_1 est un application injective. En effet soit $(x_1,x_2) \in \mathbb{R}^2$ tel que $f_1(x_1) = f_1(x_2)$ alors $(x_1,0) = (x_2,0)$ et donc $x_1 = x_2$. L' application est non surjective : $(1,1) \in \mathbb{R}^2$ n'a pas d'antécédent par f_1 .

$$f_2: \mathbb{R} \to [0, +\infty[$$

 $x \mapsto x^2.$

 f_2 est surjective, en effet, soit $y \in [0, +\infty[$ on a $y = f_2(\sqrt{y})$. f_2 n'est pas injective, -1 et 1 ont même image par f_2 .

Exercice 2. Une formule à démontrer par récurrence.

On fixe a un réel différent de 1. Definissons pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$: " $1 + a + ... + a^n = \frac{1 - a^{n+1}}{1 - a}$ ". **Initialisation.**

Initialisons au rang 0. $\mathcal{P}(0)$ est vraie : le membre de gauche vaut 1 tandis que celui de droite est égal à $\frac{1-a^1}{1-a}=1$. **Hérédité.**

Soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$ vraie.

$$\begin{array}{l} 1+a+\ldots+a^{n+1}=1+a+\ldots+a^n+a^{n+1}\\ &=\frac{1-a^{n+1}}{1-a}+a^{n+1}\quad \text{(d'après l'hypothèse de récurrence)}\\ &=\frac{1-a^{n+1}+(1-a)a^{n+1}}{1-a}+a^{n+1}\\ &=\frac{1-a^{n+2}}{1-a}\,. \end{array}$$

 $\mathcal{P}(n+1)$ est donc vraie.

Conclusion.

D'après le théorème de récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Dans le cas a=1, on peut écrire la formule $1+1^1+...+1^n=n+1$, pour tout $n\in\mathbb{N}$.

Exercice 3. A propos des sup et des inf.

- 1. $A = \mathbb{N}$, est non majoré donc A ne peut avoir de borne supérieure et a fortiori de plus grand élément. A est minoré et non vide donc A admet une borne inférieure. 0 est un minorant et $0 \in A$ donc 0 est le plus petit élément et la borne inférieure de A.
- 2. $B=]0,1[\ \cup\ \{2\}]$. B est non vide et majoré, il admet donc une borne supérieure. 2 est un majorant et $2\in B$ donc 2 est la borne supérieur et le plus grand élément de B. B est non vide et minoré, il admet donc une borne inférieure. On a, pour tout $x\in B$, $x\geq 0$ et pour tout $0<\varepsilon<1,\frac{\varepsilon}{2}<0+\varepsilon$, et $\frac{\varepsilon}{2}\in B$. 0 vérifie donc la caractérisation de la borne inférieure donc $\inf(B)=0$. En revanche, B n'admet pas de plus petit élément car sinon on aurait $\min(B)=\inf(B)=0$ et qui est impossible.

Exercice 4. Quantificateurs, négations etc...

Soit $f:]0, +\infty[\to \mathbb{R}$, on dit que f vérifie la propriéte (LM) si et seulement si

$$\exists A > 0 \ \exists \delta > 0 \ \text{tels que} \ \forall x > 0, \ (x < \delta \Rightarrow f(x) < A).$$

Cette propriété décrit le caractère "localement majoré au voisinage de 0" d'une fonction.

1. La négation de la propriété (LM) s'écrit

$$\forall A > 0 \ \forall \delta > 0; \exists x > 0, \text{ tel que } x < \delta \text{ et } f(x) \ge A).$$

- 2. $\forall 0 < x \le 2, x^2 \le 4 < 5$, donc f_1 vérifie la propriété (LM). 5 joue le rôle de A et 2 celui de δ , bien sûr il y avait beaucoup d'autres choix possibles.
 - Montrons que f_2 ne vérifie pas la propriété (LM) on va donc montrer que f_2 vérifie sa négation. Soit A>0 et $\delta>0$, considérons un réel $0< x_0<\min(1/A,\delta)$. On a bien $x_0<\delta$ et $f_2(x_0)=\frac{1}{x_0}\geq A$.
 - $-f_3$ vérifie la propriété (LM), en effet, pour tout $0 \le x \le 123$, $cos(x) \le 1$.