Topic-wise Solved Papers Mathematics

33333333

Sets

CHAPTER

1

- 1. If A, B and C are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then
 - [2009]

- (a) A = C
- (b) B = C
- (c) $A \cap B = \phi$
- (d) A = B
- 2. Let $X = \{1,2,3,4,5\}$. The number of different ordered pairs (Y,Z) that can formed such that $Y \subseteq X$, $Z \subseteq X$ and $Y \cap Z$ is empty is : [2012]
- (a) 5^2
- (b) 3^5
- (c) 2^5
- (d) 5^3
- 3. If $f(x) + 2f(\frac{1}{x}) = 3x$, $x \ne 0$ and

 $S = \{x \in R : f(x) = f(-x)\}; \text{ then } S:$

[2016]

- (a) contains exactly two elements.
- (b) contains more than two elements.
- (c) is an empty set.
- (d) contains exactly one element.

	Answer Key														
1	2	3					•	•			•				
(b)	(b)	(a)													

SOLUTIONS

1. (b) Let $x \in A$ and $x \in B \iff x \in A \cup B$

$$\Leftrightarrow \ x \in A \cup C \quad (\because \ A \cup B = A \cup C)$$

$$\Leftrightarrow x \in C$$

$$\therefore B = C.$$

Let $x \in A$ and $x \in B \Leftrightarrow x \in A \cap B$

$$\Leftrightarrow x \in A \cap C \quad (\because A \cap B = A \cap C)$$

$$\Leftrightarrow x \in C$$
 $\therefore B = C$

2. (b) Let $X = \{1,2,3,4,5\}$

Total no. of elements = 5

Each element has 3 options. Either set Y or set Z or none. $(: Y \cap Z = \emptyset)$

So, number of ordered pairs = 3^5

3. (a) $f(x) + 2f(\frac{1}{x}) = 3x$ (1)

$$f(\frac{1}{x}) + 2f(x) = \frac{3}{x}$$
(2)

Adding (1) and (2)
$$\Rightarrow$$
 f(x)+f $\left(\frac{1}{x}\right)$ =x+ $\frac{1}{x}$

Substracting (1) from (2)

$$\Rightarrow f(x) - f\left(\frac{1}{x}\right) = \frac{3}{x} - 3x$$

On adding the above equations

$$\Rightarrow f(x) = \frac{2}{x} - x$$

$$f(x) = f(-x) \Rightarrow \frac{2}{x} - x = \frac{-2}{x} + x \Rightarrow x = \frac{2}{x}$$

$$x^2 = 2$$
 or $x = \sqrt{2}, -\sqrt{2}$