Домашнее задание 1

Вариант 62

Исходный граф:

V/V	e1	e2	e 3	e4	e 5	e6	e7	e8	e9	e10	e11	e12
e1	0	4		2	1				2			2
e2	4	0		3	1		3		4	5		2
e 3			0			3		2	5	5		
e4	2	3		0	1		2	4	4		5	1
e 5	1	1		1	0	1			3		1	
e6			3		1	0		4	4	3		2
e 7		3		2			0	3		4	1	4
e8			2	4		4	3	0	2	4	4	3
e9	2	4	5	4	3	4		2	0			1
e10		5	5			3	4	4		0	1	
e11				5	1		1	4		1	0	2
e12	2	2		1		2	4	3	1		2	0

Уберём веса (сделаем граф невзвешенным)

V/V	e1	e2	e 3	e4	e 5	e6	e7	e 8	e9	e10	e11	e12
e1	0	1		1	1				1			1
e2	1	0		1	1		1		1	1		1
e 3			0			1		1	1	1		
e4	1	1		0	1		1	1	1		1	1
e 5	1	1		1	0	1			1		1	
e6			1		1	0		1	1	1		1
e 7		1	1				0	1		1	1	1
e8			1	1		1	1	0	1	1	1	1
e 9	1	1	1	1	1	1		1	0			1
e10		1	1			1	1	1		0	1	
e11				1	1		1	1		1	0	1
e12	1	1		1		1	1	1	1		1	0

Найдём гамильтонов цикл

Включаем в S вершину e1. S={e1}

Возможная вершина: e2. S= {e1, e2}

Возможная вершина: e4. S= {e1, e2, e4}

Возможная вершина: e3. S= {e1, e2, e4, e3}

Возможная вершина: e5. S= {e1, e2, e4, e3, e5}

Возможная вершина: e9. S= {e1, e2, e4, e3, e5, e9}

Возможная вершина: e6. S= {e1, e2, e4, e3, e5, e9, e6}

Возможная вершина: e8. S= {e1, e2, e4, e3, e5, e9, e6, e8}

Возможная вершина: e10. S= {e1, e2, e4, e3, e5, e9, e6, e8, e10}

Возможная вершина: e11. S= {e1, e2, e4, e3, e5, e9, e6, e8, e10, e11}

Возможная вершина: e12. S= {e1, e2, e4, e3, e5, e9, e6, e8, e10, e11, e12}

Возможная вершина: e7. S= {e1, e2, e4, e3, e5, e9, e6, e8, e10, e11, e12, e7}

Гамильтонов цикл найден. S={e1,e2,e4,e3,e5,e9,e6,e8,e10,e11,e12,e7}

Построим граф пересечений

Перенумеруем вершины графа, чтобы ребра гамильтонова цикла были внешними:

до перенумерации	e1	e2	e4	e3	e5	e9	e6	e8	e10	e11	e12	e7
после перенумерации	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12

Тогда матрица смежности будет выглядеть следующим образом:

V/V	e1	e2	e 3	e4	e 5	e6	e 7	e8	e9	e10	e11	e12
e1	0	X	1				1	1			1	e
e2		0	X		1				1			
e 3			0	X		1			1	1		1
e4				0	X				1	1	1	1
e 5					0	X				1		
е6						0	X			1		1
e7							0	X	1		1	
e8								0	X			
e9									0	X		
e10										0	X	
e11											0	X
e12												0

А сам граф так:

Определим p29, для чего в матрице R выделим подматрицу R29. Ребро (e2e9) пересекается с (e1e3), (e1e7), (e1e8)

Определим p25, для чего в матрице R выделим подматрицу R25. Peбpo (e2e5) пересекается с (e1e3)

Определим p312, для чего в матрице R выделим подматрицу R312. Ребро (e3e12) пересекается с (e1e7), (e1e8), (e1e11), (e2e5), (e2e9)

Определим p310, для чего в матрице R выделим подматрицу R310. Ребро (e3e10) пересекается с (e1e7), (e1e8), (e2e5), (e2e9)

Определим р39, для чего в матрице R выделим подматрицу R39. Ребро (e3e9) пересекается с (e1e7), (e1e8), (e2e5)

Определим p36, для чего в матрице R выделим подматрицу R36. Ребро (e3e6) пересекается с (e2e5)

Определим p412, для чего в матрице R выделим подматрицу R412. Peбpo(e4e12) пересекается с (e1e7), (e1e8), (e1e11), (e2e5), (e2e9), (e3e6), (e3e9), (e3e10)

Определим p411, для чего в матрице R выделим подматрицу R411. Ребро (e4e11) пересекается с (e1e7), (e1e8), (e2e5), (e2e9), (e3e6), (e3e9), (e3e10)

Определим p410, для чего в матрице R выделим подматрицу R410. Ребро (e4e10) пересекается с (e1e7), (e1e8), (e2e5), (e2e9), (e3e6), (e3e9)

Определим р49, для чего в матрице R выделим подматрицу R49. Ребро (e4e9) пересекается с (e1e7), (e1e8), (e2e5), (e3e6)

Определим p510, для чего в матрице R выделим подматрицу R510. Ребро (e5e10) пересекается c (e1e7), (e1e8), (e2e9), (e3e6), (e3e9), (e4e9)

Найдено 15 пересечений графа. Закончим поиск.

	p13	p29	p17	p18	p25	p312	p111	p310	p39	p36	p412	p411	p410	p49	p510
p13	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0
p29	1	1	1	1	0	1	0	1	0	0	1	1	1	0	1
p17	0	1	1	0	0	1	0	1	1	0	1	1	1	1	1
p18	0	1	0	1	0	1	0	1	1	0	1	1	1	1	1
p25	1	0	0	0	1	1	0	1	1	1	1	1	1	1	0
p312	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
p111	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0
p310	0	1	1	1	1	0	0	1	0	0	1	1	0	0	0
p39	0	0	1	1	1	0	0	0	1	0	1	1	1	0	1
p36	0	0	0	0	1	0	0	0	0	1	1	1	1	1	1
p412	0	1	1	1	1	0	1	1	1	1	1	0	0	0	0
p411	0	1	1	1	1	0	0	1	1	1	0	1	0	0	0
p410	0	1	1	1	1	0	0	0	1	1	0	0	1	0	0
p49	0	0	1	1	1	0	0	0	0	1	0	0	0	1	1
p510	0	1	1	1	0	0	0	0	1	1	0	0	0	1	1

В 1 строке ищем первый нулевой элемент - r1 3. Записываем дизъюнкцию

Записываем дизъюнкцию

М1 3 4=М1 3Vr4=1110110110111111V010101010111111=1111110110111111 В строке М1 3 4 находим номера нулевых элементов, составляем список $J'=\{7,10\}$.

Записываем дизъюнкцию

Построено ψ1={u1 3,u1 7,u1 8,u1 11,u3 6}

Записываем дизъюнкцию

M1 3 4 10=M1 3

 $4 \lor r 10 = 11111101101111111 \lor 000010000111111 = 11111110111111111$

В строке М1 3 4 10 остались незакрытые 0.

Записываем дизъюнкцию

M1 3 10=M1 3Vr10=11101101101111111V000010000111111=1110110111111111 В строке M1 3 10 остались незакрытые 0.

Записываем дизъюнкцию

Записываем дизъюнкцию

M1 6=r1 \lor r6=11001000000000000 \lor 0111111100000000=1111111100000000 В строке М1 6 находим номера нулевых элементов, составляем список J'={8,9,10,11,12,13,14,15}.

Записываем дизъюнкцию

M1 6 8=M1 6 \lor r8=111111100000000 \lor 011110010011000=1111111110011000 В строке M1 6 8 находим номера нулевых элементов, составляем список $J'=\{9,10,13,14,15\}$.

Записываем дизъюнкцию

М1 6 8 9=М1 6 8 \lor r9=1111111110011000 \lor 001110001011101=11111111111011101 В строке М1 6 8 9 находим номера нулевых элементов, составляем список J'={10,14}.

Записываем дизъюнкцию

M1 6 8 9 10=M1 6 8

В строке М1 6 8 9 10 все 1.

Построено ψ2={u1 3,u3 12,u3 10,u3 9,u3 6}

Записываем дизъюнкцию

M1 6 8 9 14=M1 6 8

В строке М1 6 8 9 14 все 1.

Построено ψ3={u1 3,u3 12,u3 10,u3 9,u4 9}

Записываем дизъюнкцию

M1 6 8 10=M1 6

В строке М1 6 8 10 остались незакрытые 0.

M1 6 8 13=M1 6

В строке М1 6 8 13 находим номера нулевых элементов, составляем список J'={14,15}.

Записываем дизъюнкцию

M1 6 8 13 14=M1 6 8

В строке М1 6 8 13 14 все 1.

Построено ψ 4={u1 3,u3 12,u3 10,u4 10,u4 9}

Записываем дизъюнкцию

M1 6 8 13 15=M1 6 8

В строке М1 6 8 13 15 все 1.

Построено ψ5={u1 3,u3 12,u3 10,u4 10,u5 10}

Записываем дизъюнкцию

M1 6 8 14=M1 6

В строке М1 6 8 14 остались незакрытые 0.

Записываем дизъюнкцию

M1 6 8 15=M1 6

В строке М1 6 8 15 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 6 9 находим номера нулевых элементов, составляем список

J'={10,14}. Строки 10, 14 не закроют ноль на 8 позиции.

Записываем дизъюнкцию

В строке М1 6 10 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 6 11 находим номера нулевых элементов, составляем список

J'={12,13,14,15}.

Записываем дизъюнкцию

M1 6 11 12=M1 6

В строке М1 6 11 12 находим номера нулевых элементов, составляем список J'={13,14,15}.

M1 6 11 12 13=M1 6 11

В строке М1 6 11 12 13 находим номера нулевых элементов, составляем список J'={14,15}.

Записываем дизъюнкцию

M1 6 11 12 13 14=M1 6 11 12

13vr14=1111111111111100v001110000100011=111111

111111111

В строке М1 6 11 12 13 14 все 1.

Построено ψ6={u1 3,u3 12,u4 12,u4 11,u4 10,u4 9}

Записываем дизъюнкцию

M1 6 11 12 13 15=M1 6 11 12

В строке М1 6 11 12 13 15 все 1.

Построено ψ 7={u1 3,u3 12,u4 12,u4 11,u4 10,u5 10}

Записываем дизъюнкцию

M1 6 11 12 14=M1 6 11

В строке М1 6 11 12 14 остались незакрытые 0.

Записываем дизъюнкцию

M1 6 11 12 15=M1 6 11

В строке М1 6 11 12 15 остались незакрытые 0.

Записываем дизъюнкцию

M1 6 11 13=M1 6

В строке М1 6 11 13 находим номера нулевых элементов, составляем список J'={14,15}. Строки 14, 15 не закроют ноль на 12 позиции.

Записываем дизъюнкцию

M1 6 11 14=M1 6

В строке М1 6 11 14 остались незакрытые 0.

Записываем дизъюнкцию

M1 6 11 15=M1 6

В строке М1 6 11 15 остались незакрытые 0.

Записываем дизъюнкцию

Записываем дизъюнкцию

 $M1\ 6\ 14$ = $M1\ 6$ Vr14=11111111000000000V001110000100011=1111111100100011 В строке $M1\ 6\ 14$ остались незакрытые 0.

Записываем дизъюнкцию

M1 6 15=M1 6 \lor r15=111111100000000 \lor 011100001100011=1111111101100011 В строке М1 6 15 остались незакрытые 0.

Записываем дизъюнкцию

M1 7=r1 \lor r7=110010000000000000001100010000=110011100010000В строке M1 7 находим номера нулевых элементов, составляем список J'= $\{8,9,10,12,13,14,15\}$.

Записываем дизъюнкцию

M1 7 8=M1 $7 \lor r$ 8=110011100010000 \lor 011110010011000=1111111110011000 В строке M1 7 8 находим номера нулевых элементов, составляем список $J'=\{9,10,13,14,15\}$.

Записываем дизъюнкцию

Записываем дизъюнкцию

M1 7 8 9 10=M1 7 8

В строке М1 7 8 9 10 все 1.

Построено ψ 8={u1 3,u1 11,u3 10,u3 9,u3 6}

Записываем дизъюнкцию

M178914=M178

В строке М1 7 8 9 14 все 1.

Построено ψ 9={u1 3,u1 11,u3 10,u3 9,u4 9}

M1 7 8 10=M1 7

Записываем дизъюнкцию

M1 7 8 13=M1 7

Записываем дизъюнкцию

M1 7 8 13 14=M1 7 8

ποστροσπο φτο (ατ σ)ατ τημο το,ατ το,

Записываем дизъюнкцию

M1 7 8 13 15=M1 7 8

Построено ψ11={u1 3,u1 11,u3 10,u4 10,u5 10}

Записываем дизъюнкцию

M1 7 8 14=M1 7

Записываем дизъюнкцию

M1 7 8 15=M1 7

Записываем дизъюнкцию

M1 7 9=M1 7\r9=110011100010000\v001110001011101=1111111101011101 В строке M1 7 9 находим номера нулевых элементов, составляем список J'={10,14}. Строки 10, 14 не закроют ноль на 8 позиции.

Записываем дизъюнкцию

M1 7 10=M1 $7 \lor r$ 10=110011100010000 \lor 000010000111111=110011100111111 В строке M1 7 10 остались незакрытые 0.

Записываем дизъюнкцию

М1 7 12=М1 7 \lor r12=110011100010000 \lor 011110011101000=1111111111111000 В строке М1 7 12 находим номера нулевых элементов, составляем список J'={13,14,15}.

M1 7 12 13=M1 7

В строке М1 7 12 13 находим номера нулевых элементов, составляем список J'={14,15}.

Записываем дизъюнкцию

M1 7 12 13 14=M1 7 12

В строке М1 7 12 13 14 все 1.

Построено ψ 12={u1 3,u1 11,u4 11,u4 10,u4 9}

Записываем дизъюнкцию

M1 7 12 13 15=M1 7 12

В строке М1 7 12 13 15 все 1.

Построено ψ 13={u1 3,u1 11,u4 11,u4 10,u5 10}

Записываем дизъюнкцию

M1 7 12 14=M1 7

В строке М1 7 12 14 остались незакрытые 0.

Записываем дизъюнкцию

M1 7 12 15=M1 7

В строке М1 7 12 15 остались незакрытые 0.

Записываем дизъюнкцию

В строке М1 7 13 находим номера нулевых элементов, составляем

список J'={14,15}. Строки 14, 15 не закроют нули на позициях 8, 12

Записываем дизъюнкцию

М1 7 14=М1 $7 \lor r$ 14= $110011100010000 \lor 001110000100011=1111111100110011$ В строке М1 7 14 остались незакрытые 0.

Записываем дизъюнкцию

M1 7 15=M1 $7 \lor r$ 15=110011100010000 \lor 011100001100011=1111111101110011 В строке M1 7 15 остались незакрытые 0.

Записываем дизъюнкцию

M1 9=r1 \lor r9=1100100000000000 \lor 001110001011101=111110001011101 В строке М1 9 находим номера нулевых элементов, составляем список J'={10,14}. Строки 10, 14 не закроют нули на позициях 6, 7, 8

Записываем дизъюнкцию

Записываем дизъюнкцию

M1 11=r1vr11=1100100000000000000V011110111110000=1111101111110000 В строке M1 11 находим номера нулевых элементов, составляем список $J'=\{12,13,14,15\}$. Строки 12, 13, 14, 15 не закроют ноль на 6 позиции.

Записываем дизъюнкцию

М1 12=r1vr12=1100100000000000000000011110011101000=111110011101000 В строке М1 12 находим номера нулевых элементов, составляем список J'= $\{13,14,15\}$. Строки 13, 14, 15 не закроют нули на позициях 6, 7, 11

Записываем дизъюнкцию

Записываем дизъюнкцию

М1 14=r1 \lor r14=1100100000000000 \lor 001110000100011=111110000100011 В строке М1 14 остались незакрытые 0.

Записываем дизъюнкцию

M1 15=r1 \lor r15=110010000000000 \lor 011100001100011=1111110001100011 В строке M1 15 остались незакрытые 0. В 2 строке ищем первый нулевой элемент - r2 5.

Записываем дизъюнкцию

M2 $5=r2 \lor r5=111101010011101 \lor 1000110111111110=1111110111111111$ В строке M2 5 находим номера нулевых элементов, составляем список J'= $\{7\}$.

Записываем дизъюнкцию

Записываем дизъюнкцию

M2 7 9=M2 $7 \lor r$ 9=111101110011101 \lor 001110001011101=1111111111011101 В строке M2 7 9 находим номера нулевых элементов, составляем список $J'=\{10,14\}$.

Записываем дизъюнкцию

M2 7 9 10=M2 7

В строке М2 7 9 10 все 1.

Построено ψ15={u2 9,u1 11,u3 9,u3 6}

Записываем дизъюнкцию

M2 7 9 14=M2 7

В строке М2 7 9 14 все 1.

Построено ψ 16={u2 9,u1 11,u3 9,u4 9}

Записываем дизъюнкцию

Записываем дизъюнкцию

Записываем дизъюнкцию

Записываем дизъюнкцию

M2 10=r2vr10=111101010011101v000010000111111=111111010111111 В строке M2 10 остались незакрытые 0.

Записываем дизъюнкцию

M2 14=r2Vr14=111101010011101V001110000100011=11111110101111111 В строке M2 14 остались незакрытые 0. В 3 строке ищем первый нулевой элемент - r3 4.

Записываем дизъюнкцию

M3 4=r3 \lor r4=0110010110111111 \lor 010101011011111=011101011011111 В строке M3 4 находим номера нулевых элементов, составляем список J'={5,7,10}.

Записываем дизъюнкцию

M3 4 5=M3 4 Vr5=01110101101111111 V100011011111110=111111011111111 В строке M3 4 5 находим номера нулевых элементов, составляем список $J'=\{7\}$.

Записываем дизъюнкцию

Записываем дизъюнкцию

Записываем дизъюнкцию

МЗ 4 10=МЗ 4 \lor r10=0111010110111111 \lor 000010000111111=011111011111111 В строке МЗ 4 10 остались незакрытые 0.

Записываем дизъюнкцию

M3 5=r3\r5=0110010110111111\v100011011111110=111011011111111 В строке M3 5 находим номера нулевых элементов, составляем список J'={7}. Строка 7 не закроет ноль на 4 позиции.

Записываем дизъюнкцию

M3 7=r3Vr7=0110010110111111V000001100010000=011001111011111 В строке M3 7 находим номера нулевых элементов, составляем список J'= $\{10\}$. Строка 10 не закроет нули на позициях 1, 4

Записываем дизъюнкцию

Записываем дизъюнкцию

M4 5=r4 \lor r5=0101010110111111 \lor 1000110111111110=110111011111111 В строке M4 5 находим номера нулевых элементов, составляем список J'={7}. Строка 7 не закроет ноль на 3 позиции.

Записываем дизъюнкцию

M4 7=r4 \lor r7=0101010110111111 \lor 0000001100010000=010101111011111 В строке M4 7 находим номера нулевых элементов, составляем список J'={10}. Строка 10

не закроет нули на позициях 1, 3

Записываем дизъюнкцию

Записываем дизъюнкцию

M5 7 15=M5 7 \lor r15=1000111111111110 \lor 011100001100011=111111111111111 В строке М5 7 15 все 1. Построено ψ 18={ \upmu 2 5, \upmu 1 11, \upmu 5 10}

Записываем дизъюнкцию

Из матрицы R(G') видно, что строки с номерами j > 5 не смогут закрыть ноль в позиции 1

Семейство максимальных внутрение устойчивых множеств фG построено. Это:

```
ψ1={u1 3,u1 7,u1 8,u1 11,u3 6}
```

ψ2={u1 3,u3 12,u3 10,u3 9,u3 6}

 ψ 3={u1 3,u3 12,u3 10,u3 9,u4 9}

 ψ 4={u1 3,u3 12,u3 10,u4 10,u4 9}

 ψ 5={u1 3,u3 12,u3 10,u4 10,u5 10}

 ψ 6={u1 3,u3 12,u4 12,u4 11,u4 10,u4 9}

 ψ 7={u1 3,u3 12,u4 12,u4 11,u4 10,u5 10}

ψ8={u1 3,u1 11,u3 10,u3 9,u3 6}

 Ψ 9={u1 3,u1 11,u3 10,u3 9,u4 9}

 ψ 10={u1 3,u1 11,u3 10,u4 10,u4 9}

 ψ 11={u1 3,u1 11,u3 10,u4 10,u5 10}

 ψ 12={u1 3,u1 11,u4 11,u4 10,u4 9}

 ψ 13={u1 3,u1 11,u4 11,u4 10,u5 10}

 ψ 14={u2 9,u2 5,u1 11}

 ψ 15={u2 9,u1 11,u3 9,u3 6}

 ψ 16={u2 9,u1 11,u3 9,u4 9}

 ψ 17={u1 7,u1 8,u2 5,u1 11}

 ψ 18={u2 5,u1 11,u5 10}

Для каждой пары множеств вычислим значение критерия $\alpha_y\beta=|\psi y|+|\psi \beta|-|\psi y\cap \psi \beta|$:

```
\alpha 12 = |\psi 1| + |\psi 2| - |\psi 1 \cap \psi 2| = 5 + 5 - 2 = 8
\alpha 13 = |\psi 1| + |\psi 3| - |\psi 1 \cap \psi 3| = 5 + 5 - 1 = 9
\alpha 14 = |\psi 1| + |\psi 4| - |\psi 1 \cap \psi 4| = 5 + 5 - 1 = 9
\alpha 15 = |\psi 1| + |\psi 5| - |\psi 1 \cap \psi 5| = 5 + 5 - 1 = 9
\alpha 16 = |\psi 1| + |\psi 6| - |\psi 1 \cap \psi 6| = 5 + 6 - 1 = 10
\alpha 17 = |\psi 1| + |\psi 7| - |\psi 1 \cap \psi 7| = 5 + 6 - 1 = 10
\alpha 18 = |\psi 1| + |\psi 8| - |\psi 1 \cap \psi 8| = 5 + 5 - 3 = 7
\alpha 19 = |\psi 1| + |\psi 9| - |\psi 1 \cap \psi 9| = 5 + 5 - 2 = 8
\alpha 110 = |\psi 1| + |\psi 10| - |\psi 1 \cap \psi 10| = 5 + 5 - 2 = 8
\alpha 111 = |\psi 1| + |\psi 11| - |\psi 1 \cap \psi 11| = 5 + 5 - 2 = 8
\alpha 112 = |\psi 1| + |\psi 12| - |\psi 1 \cap \psi 12| = 5 + 5 - 2 = 8
\alpha 113 = |\psi 1| + |\psi 13| - |\psi 1 \cap \psi 13| = 5 + 5 - 2 = 8
\alpha 114 = |\psi 1| + |\psi 14| - |\psi 1 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 115 = |\psi 1| + |\psi 15| - |\psi 1 \cap \psi 15| = 5 + 4 - 2 = 7
\alpha 116 = |\psi 1| + |\psi 16| - |\psi 1 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 117 = |\psi 1| + |\psi 17| - |\psi 1 \cap \psi 17| = 5 + 4 - 3 = 6
\alpha 118 = |\psi 1| + |\psi 18| - |\psi 1 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 23 = |\psi 2| + |\psi 3| - |\psi 2 \cap \psi 3| = 5 + 5 - 4 = 6
\alpha 24 = |\psi 2| + |\psi 4| - |\psi 2 \cap \psi 4| = 5 + 5 - 3 = 7
\alpha 25 = |\psi 2| + |\psi 5| - |\psi 2 \cap \psi 5| = 5 + 5 - 3 = 7
\alpha 26 = |\psi 2| + |\psi 6| - |\psi 2 \cap \psi 6| = 5 + 6 - 2 = 9
\alpha 27 = |\psi 2| + |\psi 7| - |\psi 2 \cap \psi 7| = 5 + 6 - 2 = 9
\alpha 28 = |\psi 2| + |\psi 8| - |\psi 2 \cap \psi 8| = 5 + 5 - 4 = 6
\alpha 29 = |\psi 2| + |\psi 9| - |\psi 2 \cap \psi 9| = 5 + 5 - 3 = 7
\alpha 210 = |\psi 2| + |\psi 10| - |\psi 2 \cap \psi 10| = 5 + 5 - 2 = 8
\alpha 211 = |\psi 2| + |\psi 11| - |\psi 2 \cap \psi 11| = 5 + 5 - 2 = 8
\alpha 212 = |\psi 2| + |\psi 12| - |\psi 2 \cap \psi 12| = 5 + 5 - 1 = 9
\alpha 213 = |\psi 2| + |\psi 13| - |\psi 2 \cap \psi 13| = 5 + 5 - 1 = 9
\alpha 214 = |\psi 2| + |\psi 14| - |\psi 2 \cap \psi 14| = 5 + 3 - 0 = 8
\alpha 215 = |\psi 2| + |\psi 15| - |\psi 2 \cap \psi 15| = 5 + 4 - 2 = 7
\alpha 216 = |\psi 2| + |\psi 16| - |\psi 2 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 217 = |\psi 2| + |\psi 17| - |\psi 2 \cap \psi 17| = 5 + 4 - 0 = 9
\alpha 218 = |\psi 2| + |\psi 18| - |\psi 2 \cap \psi 18| = 5 + 3 - 0 = 8
\alpha 34 = |\psi 3| + |\psi 4| - |\psi 3 \cap \psi 4| = 5 + 5 - 4 = 6
\alpha 35 = |\psi 3| + |\psi 5| - |\psi 3 \cap \psi 5| = 5 + 5 - 3 = 7
\alpha 36 = |\psi 3| + |\psi 6| - |\psi 3 \cap \psi 6| = 5 + 6 - 3 = 8
\alpha 37 = |\psi 3| + |\psi 7| - |\psi 3 \cap \psi 7| = 5 + 6 - 2 = 9
\alpha 38 = |\psi 3| + |\psi 8| - |\psi 3 \cap \psi 8| = 5 + 5 - 3 = 7
\alpha 39 = |\psi 3| + |\psi 9| - |\psi 3 \cap \psi 9| = 5 + 5 - 4 = 6
\alpha 310 = |\psi 3| + |\psi 10| - |\psi 3 \cap \psi 10| = 5 + 5 - 3 = 7
\alpha 311 = |\psi 3| + |\psi 11| - |\psi 3 \cap \psi 11| = 5 + 5 - 2 = 8
```

```
\alpha 312 = |\psi 3| + |\psi 12| - |\psi 3 \cap \psi 12| = 5 + 5 - 2 = 8
\alpha 313 = |\psi 3| + |\psi 13| - |\psi 3 \cap \psi 13| = 5 + 5 - 1 = 9
\alpha 314 = |\psi 3| + |\psi 14| - |\psi 3 \cap \psi 14| = 5 + 3 - 0 = 8
\alpha 315 = |\psi 3| + |\psi 15| - |\psi 3 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 316 = |\psi 3| + |\psi 16| - |\psi 3 \cap \psi 16| = 5 + 4 - 2 = 7
\alpha 317 = |\psi 3| + |\psi 17| - |\psi 3 \cap \psi 17| = 5 + 4 - 0 = 9
\alpha 318 = |\psi 3| + |\psi 18| - |\psi 3 \cap \psi 18| = 5 + 3 - 0 = 8
\alpha 45 = |\psi 4| + |\psi 5| - |\psi 4 \cap \psi 5| = 5 + 5 - 4 = 6
\alpha 46 = |\psi 4| + |\psi 6| - |\psi 4 \cap \psi 6| = 5 + 6 - 4 = 7
\alpha 47 = |\psi 4| + |\psi 7| - |\psi 4 \cap \psi 7| = 5 + 6 - 3 = 8
\alpha 48 = |\psi 4| + |\psi 8| - |\psi 4 \cap \psi 8| = 5 + 5 - 2 = 8
\alpha 49 = |\psi 4| + |\psi 9| - |\psi 4 \cap \psi 9| = 5 + 5 - 3 = 7
\alpha 410 = |\psi 4| + |\psi 10| - |\psi 4 \cap \psi 10| = 5 + 5 - 4 = 6
\alpha 411 = |\psi 4| + |\psi 11| - |\psi 4 \cap \psi 11| = 5 + 5 - 3 = 7
\alpha 412 = |\psi 4| + |\psi 12| - |\psi 4 \cap \psi 12| = 5 + 5 - 3 = 7
\alpha 413 = |\psi 4| + |\psi 13| - |\psi 4 \cap \psi 13| = 5 + 5 - 2 = 8
\alpha 414 = |\psi 4| + |\psi 14| - |\psi 4 \cap \psi 14| = 5 + 3 - 0 = 8
\alpha 415 = |\psi 4| + |\psi 15| - |\psi 4 \cap \psi 15| = 5 + 4 - 0 = 9
\alpha 416 = |\psi 4| + |\psi 16| - |\psi 4 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 417 = |\psi 4| + |\psi 17| - |\psi 4 \cap \psi 17| = 5 + 4 - 0 = 9
\alpha 418 = |\psi 4| + |\psi 18| - |\psi 4 \cap \psi 18| = 5 + 3 - 0 = 8
\alpha 56 = |\psi 5| + |\psi 6| - |\psi 5 \cap \psi 6| = 5 + 6 - 3 = 8
\alpha 57 = |\psi 5| + |\psi 7| - |\psi 5 \cap \psi 7| = 5 + 6 - 4 = 7
\alpha 58 = |\psi 5| + |\psi 8| - |\psi 5 \cap \psi 8| = 5 + 5 - 2 = 8
\alpha 59 = |\psi 5| + |\psi 9| - |\psi 5 \cap \psi 9| = 5 + 5 - 2 = 8
\alpha 510 = |\psi 5| + |\psi 10| - |\psi 5 \cap \psi 10| = 5 + 5 - 3 = 7
\alpha 511 = |\psi 5| + |\psi 11| - |\psi 5 \cap \psi 11| = 5 + 5 - 4 = 6
\alpha 512 = |\psi 5| + |\psi 12| - |\psi 5 \cap \psi 12| = 5 + 5 - 2 = 8
\alpha 513 = |\psi 5| + |\psi 13| - |\psi 5 \cap \psi 13| = 5 + 5 - 3 = 7
\alpha 514 = |\psi 5| + |\psi 14| - |\psi 5 \cap \psi 14| = 5 + 3 - 0 = 8
\alpha 515 = |\psi 5| + |\psi 15| - |\psi 5 \cap \psi 15| = 5 + 4 - 0 = 9
\alpha 516 = |\psi 5| + |\psi 16| - |\psi 5 \cap \psi 16| = 5 + 4 - 0 = 9
\alpha 517 = |\psi 5| + |\psi 17| - |\psi 5 \cap \psi 17| = 5 + 4 - 0 = 9
\alpha 518 = |\psi 5| + |\psi 18| - |\psi 5 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 67 = |\psi 6| + |\psi 7| - |\psi 6 \cap \psi 7| = 6 + 6 - 5 = 7
\alpha 68 = |\psi 6| + |\psi 8| - |\psi 6 \cap \psi 8| = 6 + 5 - 1 = 10
\alpha 69 = |\psi 6| + |\psi 9| - |\psi 6 \cap \psi 9| = 6 + 5 - 2 = 9
\alpha 610 = |\psi 6| + |\psi 10| - |\psi 6 \cap \psi 10| = 6 + 5 - 3 = 8
\alpha 611 = |\psi 6| + |\psi 11| - |\psi 6 \cap \psi 11| = 6 + 5 - 2 = 9
\alpha 612 = |\psi 6| + |\psi 12| - |\psi 6 \cap \psi 12| = 6 + 5 - 4 = 7
\alpha 613 = |\psi 6| + |\psi 13| - |\psi 6 \cap \psi 13| = 6 + 5 - 3 = 8
\alpha 614 = |\psi 6| + |\psi 14| - |\psi 6 \cap \psi 14| = 6 + 3 - 0 = 9
\alpha 615 = |\psi 6| + |\psi 15| - |\psi 6 \cap \psi 15| = 6 + 4 - 0 = 10
\alpha 616 = |\psi 6| + |\psi 16| - |\psi 6 \cap \psi 16| = 6 + 4 - 1 = 9
```

```
\alpha 617 = |\psi 6| + |\psi 17| - |\psi 6 \cap \psi 17| = 6 + 4 - 0 = 10
\alpha 618 = |\psi 6| + |\psi 18| - |\psi 6 \cap \psi 18| = 6 + 3 - 0 = 9
\alpha 78 = |\psi 7| + |\psi 8| - |\psi 7 \cap \psi 8| = 6 + 5 - 1 = 10
\alpha 79 = |\psi 7| + |\psi 9| - |\psi 7 \cap \psi 9| = 6 + 5 - 1 = 10
\alpha 710 = |\psi 7| + |\psi 10| - |\psi 7 \cap \psi 10| = 6 + 5 - 2 = 9
\alpha 711 = |\psi 7| + |\psi 11| - |\psi 7 \cap \psi 11| = 6 + 5 - 3 = 8
\alpha 712 = |\psi 7| + |\psi 12| - |\psi 7 \cap \psi 12| = 6 + 5 - 3 = 8
\alpha 713 = |\psi 7| + |\psi 13| - |\psi 7 \cap \psi 13| = 6 + 5 - 4 = 7
\alpha 714 = |\psi 7| + |\psi 14| - |\psi 7 \cap \psi 14| = 6 + 3 - 0 = 9
\alpha 715 = |\psi 7| + |\psi 15| - |\psi 7 \cap \psi 15| = 6 + 4 - 0 = 10
\alpha 716 = |\psi 7| + |\psi 16| - |\psi 7 \cap \psi 16| = 6 + 4 - 0 = 10
\alpha 717 = |\psi 7| + |\psi 17| - |\psi 7 \cap \psi 17| = 6 + 4 - 0 = 10
\alpha 718 = |\psi 7| + |\psi 18| - |\psi 7 \cap \psi 18| = 6 + 3 - 1 = 8
\alpha 89 = |\Psi 8| + |\Psi 9| - |\Psi 8 \cap \Psi 9| = 5 + 5 - 4 = 6
\alpha 810 = |\psi 8| + |\psi 10| - |\psi 8 \cap \psi 10| = 5 + 5 - 3 = 7
\alpha 811 = |\psi 8| + |\psi 11| - |\psi 8 \cap \psi 11| = 5 + 5 - 3 = 7
\alpha 812 = |\psi 8| + |\psi 12| - |\psi 8 \cap \psi 12| = 5 + 5 - 2 = 8
 \alpha 813 = |\psi 8| + |\psi 13| - |\psi 8 \cap \psi 13| = 5 + 5 - 2 = 8
 \alpha 814 = |\psi 8| + |\psi 14| - |\psi 8 \cap \psi 14| = 5 + 3 - 1 = 7
 \alpha 815 = |\psi 8| + |\psi 15| - |\psi 8 \cap \psi 15| = 5 + 4 - 3 = 6
 \alpha 816 = |\psi 8| + |\psi 16| - |\psi 8 \cap \psi 16| = 5 + 4 - 2 = 7
 \alpha 817 = |\psi 8| + |\psi 17| - |\psi 8 \cap \psi 17| = 5 + 4 - 1 = 8
 \alpha 818 = |\psi 8| + |\psi 18| - |\psi 8 \cap \psi 18| = 5 + 3 - 1 = 7
 \alpha 910 = |\psi 9| + |\psi 10| - |\psi 9 \cap \psi 10| = 5 + 5 - 4 = 6
 \alpha 911 = |\psi 9| + |\psi 11| - |\psi 9 \cap \psi 11| = 5 + 5 - 3 = 7
 \alpha 912 = |\psi 9| + |\psi 12| - |\psi 9 \cap \psi 12| = 5 + 5 - 3 = 7
 \alpha 913 = |\psi 9| + |\psi 13| - |\psi 9 \cap \psi 13| = 5 + 5 - 2 = 8
 \alpha 914 = |\psi 9| + |\psi 14| - |\psi 9 \cap \psi 14| = 5 + 3 - 1 = 7
 \alpha 915 = |\psi 9| + |\psi 15| - |\psi 9 \cap \psi 15| = 5 + 4 - 2 = 7
 \alpha 916 = |\psi 9| + |\psi 16| - |\psi 9 \cap \psi 16| = 5 + 4 - 3 = 6
 \alpha 917 = |\psi 9| + |\psi 17| - |\psi 9 \cap \psi 17| = 5 + 4 - 1 = 8
 \alpha 918 = |\psi 9| + |\psi 18| - |\psi 9 \cap \psi 18| = 5 + 3 - 1 = 7
 \alpha 1011 = |\psi 10| + |\psi 11| - |\psi 10 \cap \psi 11| = 5 + 5 - 4 = 6
\alpha 1012 = |\psi 10| + |\psi 12| - |\psi 10 \cap \psi 12| = 5 + 5 - 4 = 6
\alpha 1013 = |\psi 10| + |\psi 13| - |\psi 10 \cap \psi 13| = 5 + 5 - 3 = 7
\alpha 1014 = |\psi 10| + |\psi 14| - |\psi 10 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 1015 = |\psi 10| + |\psi 15| - |\psi 10 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 1016 = |\psi 10| + |\psi 16| - |\psi 10 \cap \psi 16| = 5 + 4 - 2 = 7
\alpha 1017 = |\psi 10| + |\psi 17| - |\psi 10 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 1018 = |\psi 10| + |\psi 18| - |\psi 10 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 1112 = |\psi 11| + |\psi 12| - |\psi 11 \cap \psi 12| = 5 + 5 - 3 = 7
\alpha 1113 = |\psi 11| + |\psi 13| - |\psi 11 \cap \psi 13| = 5 + 5 - 4 = 6
\alpha 1114 = |\psi 11| + |\psi 14| - |\psi 11 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 1115 = |\psi 11| + |\psi 15| - |\psi 11 \cap \psi 15| = 5 + 4 - 1 = 8
```

```
\alpha 1116 = |\psi 11| + |\psi 16| - |\psi 11 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 1117 = |\psi 11| + |\psi 17| - |\psi 11 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 1118 = |\psi 11| + |\psi 18| - |\psi 11 \cap \psi 18| = 5 + 3 - 2 = 6
\alpha 1213 = |\psi 12| + |\psi 13| - |\psi 12 \cap \psi 13| = 5 + 5 - 4 = 6
\alpha 1214 = |\psi 12| + |\psi 14| - |\psi 12 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 1215 = |\psi 12| + |\psi 15| - |\psi 12 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 1216 = |\psi 12| + |\psi 16| - |\psi 12 \cap \psi 16| = 5 + 4 - 2 = 7
\alpha 1217 = |\psi 12| + |\psi 17| - |\psi 12 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 1218 = |\psi 12| + |\psi 18| - |\psi 12 \cap \psi 18| = 5 + 3 - 1 = 7
\alpha 1314 = |\psi 13| + |\psi 14| - |\psi 13 \cap \psi 14| = 5 + 3 - 1 = 7
\alpha 1315 = |\psi 13| + |\psi 15| - |\psi 13 \cap \psi 15| = 5 + 4 - 1 = 8
\alpha 1316 = |\psi 13| + |\psi 16| - |\psi 13 \cap \psi 16| = 5 + 4 - 1 = 8
\alpha 1317 = |\psi 13| + |\psi 17| - |\psi 13 \cap \psi 17| = 5 + 4 - 1 = 8
\alpha 1318 = |\psi 13| + |\psi 18| - |\psi 13 \cap \psi 18| = 5 + 3 - 2 = 6
\alpha 1415 = |\psi 14| + |\psi 15| - |\psi 14 \cap \psi 15| = 3 + 4 - 2 = 5
\alpha 1416 = |\psi 14| + |\psi 16| - |\psi 14 \cap \psi 16| = 3 + 4 - 2 = 5
\alpha 1417 = |\psi 14| + |\psi 17| - |\psi 14 \cap \psi 17| = 3 + 4 - 2 = 5
\alpha 1418 = |\psi 14| + |\psi 18| - |\psi 14 \cap \psi 18| = 3 + 3 - 2 = 4
\alpha 1516 = |\psi 15| + |\psi 16| - |\psi 15 \cap \psi 16| = 4 + 4 - 3 = 5
\alpha 1517 = |\psi 15| + |\psi 17| - |\psi 15 \cap \psi 17| = 4 + 4 - 1 = 7
\alpha 1518 = |\psi 15| + |\psi 18| - |\psi 15 \cap \psi 18| = 4 + 3 - 1 = 6
 \alpha 1617 = |\psi 16| + |\psi 17| - |\psi 16 \cap \psi 17| = 4 + 4 - 1 = 7
\alpha 1618 = |\psi 16| + |\psi 18| - |\psi 16 \cap \psi 18| = 4 + 3 - 1 = 6
\alpha 1718 = |\psi 17| + |\psi 18| - |\psi 17 \cap \psi 18| = 4 + 3 - 2 = 5
```

Результаты вычислений запишем в матрицу $A = || \alpha_{\gamma} \delta ||$.

	ψ1	ψ2	ψ3	ψ4	ψ5	ψ6	ψ7	ψ8	ψ9	ψ10	ψ11	ψ12	ψ13	ψ14	ψ15	ψ16	ψ17	ψ18
ψ1		8	9	9	9	10	10	7	8	8	8	8	8	7	7	8	6	7
ψ2			6	7	7	9	9	6	7	8	8	9	9	8	7	8	9	8
ψ3				6	7	8	9	7	6	7	8	8	9	8	8	7	9	8
ψ4					6	7	8	8	7	6	7	7	8	8	9	8	9	8
ψ5						8	7	8	8	7	6	8	7	8	9	9	9	7
ψ6							7	10	9	8	9	7	8	9	10	9	10	9
ψ7								10	10	9	8	8	7	9	10	10	10	8
ψ8									6	7	7	8	8	7	6	7	8	7
ψ9										6	7	7	8	7	7	6	8	7
ψ10											6	6	7	7	8	7	8	7
ψ11												7	6	7	8	8	8	6
ψ12													6	7	8	7	8	7
ψ13														7	8	8	8	6
ψ14															5	5	5	4
ψ15																5	7	6
ψ16																	7	6
ψ17																		5

```
\max = \alpha 1 6 = 10

\psi 1 = \{u1 3,u1 7,u1 8,u1 11,u3 6\}

\psi 6 = \{u1 3,u3 12,u4 12,u4 11,u4 10,u4 9\}
```

В суграфе H, содержащем максимальное число непересекающихся рёбер, рёбра, вошедшие в $\psi 1$, проводим внутри гамильтонова цикла, а в $\psi 6$ – вне его.

Удаляем из ЧG' ребра, вошедшие в ψ1, ψ6 и удаляем пустые множества

```
ψ2={u3 10,u3 9}

ψ3={u3 10,u3 9}

ψ4={u3 10}

ψ5={u3 10, u5 10}

ψ7={u5 10}

ψ8={u3 10,u3 9}

ψ9={u3 10,u3 9,u4 9}

ψ11={u3 10,u5 10}

ψ13={u5 10}

ψ14={u2 9,u2 5}

ψ15={u2 9, u3 9}

ψ16={u2 9, u3 9,u4 9}

ψ17={u2 5}

ψ18={u2 5,u5 10}
```

Удаляем одинаковые множества:

```
ψ2={u3 10,u3 9}
ψ5={u3 10, u5 10}
ψ14={u2 9,u2 5}
ψ15={u2 9, u3 9}
ψ18={u2 5,u5 10}
```

Не реализованы рёбра $\{p2\ 9\ p2\ 5\ p3\ 10\ p3\ 9\ p5\ 10\}$ В суграфе J рёбра, вошедшие в $\psi2$, проводим внутри гамильтонова цикла, а в $\psi14$ – вне его.

Не реализовано ребро {р5 10}

Все рёбра графа реализованы. Толщина графа m = 3.