Anomaly Detection

Quiz, 5 questions

5/5 points (100%)

/

1/1 point

2.

Suppose you have trained an anomaly detection system that flags anomalies when p(x) is less than ε , and Anomaly Detectionalidation set that it has too many false positives (flagging too many things points (100%) Quiz, smoothings). What should you do?

Decrease arepsilon

Correct

By decreasing ε , you will flag fewer anomalies, as desired.

igcap Increase arepsilon

1/1 point

3

Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines. You model uses

$$p(x) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2).$$

You have two features x_1 = vibration intensity, and x_2 = heat generated. Both x_1 and x_2 take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that $x_1 \approx x_2$. One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large x_1 , small x_2), even though the particular values of x_1 and x_2 may not fall outside their typical ranges of values. What additional feature x_3 should you create to capture these types of anomalies:

$$x_3=rac{x_1}{x_2}$$

Correct

This is correct, as it will take on large values for anomalous examples and smaller values for normal examples.

$$x_3=x_1^2 imes x_2$$

$$x_3=x_1+x_2$$

$$x_3 = x_1 \times x_2$$

1/1 point

4

Which of the following are true? Check all that apply.

If you have a large labeled training set with many positive examples and many negative Anomalyelables, tile anomaly detection algorithm will likely perform just as well as a supervised points (100%) Quiz, 5 question algorithm such as an SVM.

a questioned rining digorita in results and service.
Un-selected is correct
If you do not have any labeled data (or if all your data has label $y=0$), then is is still possible to learn $p(x)$, but it may be harder to evaluate the system or choose a good value of ϵ .
Correct Only negative examples are used in training, but it is good to have some labeled data of both types for cross-validation.
When choosing features for an anomaly detection system, it is a good idea to look for features that take on unusually large or small values for (mainly the) anomalous examples.
Correct These are good features, as they will lie outside the learned model, so you will have small values for $p(x)$ with these examples.
If you are developing an anomaly detection system, there is no way to make use of labeled data to improve your system.
Un-selected is correct

1/1 point

5.

Quiz, 5 questions

You have a 1-D dataset $\{x^{(1)},\dots,x^{(m)}\}$ and you want to detect outliers in the dataset. You first plot the

Anomalya Dettection this:

5/5 points (100%)

Suppose you fit the gaussian distribution parameters μ_1 and σ_1^2 to this dataset. Which of the following values for μ_1 and σ_1^2 might you get?

Correct

This is correct, as the data are centered around -3 and tail most of the points lie in [-5, -1].

$$\bigcirc \quad \mu_1=-6, \sigma_1^2=4$$

$$\qquad \qquad \mu_1=-3, \sigma_1^2=2$$

$$\mu_1=-6,\sigma_1^2=2$$

