Sprawozdanie z laboratorium III

Bartłomiej Ankowski 23.03.2015

1 Wstep

Celem trzeciego laboratorium było zamodelowanie struktur przechowujacych dane w implementacji tablicowej oraz porównanie czasu wypełnienia ich danymi ze struktorami opartymi na wskaźnikach. Porównywane beda:

1.1

Lista:

- -Wskaźnikowa
- -Tablicowa

1.2

Kolejka:

-Wskaźnikowa

1.3

Stos:

- -Wskaźnikowy
- -Tablicowy

2 Teoria

Teoretyczne wyprowadzenie złożoności obliczeniowej dla Stosu

2.1

- Strategia inkramentalna o stała c
- Tablica zostanie zastapiona k=n/c razy
- Całkowity czas wykonania n operacji Push:

$$n + c + 2c + 3c + 4c + \dots + kc = n + c(1 + 2 + 3 + 4 + \dots + k) =$$

n + ck(k+1)/2

-Ponieważ c jest stała T(n) jest w $O(n+k^2)$,
tj. $O(n^2)$

Liczba danych	Lista	Stos	Kolejka
100	0,0046	0,0036	0,0038
10000	0,2766	0,2056	0,2222
1000000	27,5064	20,794	21.587
100000000	2683,99	2037,09	2072.72

- -Strategia Podwajania(ciag geomentryczny)
- -Tablica zostanie zastapiona $k = \log_2 n$
- -Całkowity czas wykonania n opearacji Push:

$$n+1+2+4+8+\ldots+2^k = n+2^{k+1}-1=2n-1$$

$$n+2^{k+1}-1=2n-1$$

-Zatem złożoność obliczeniowa wynosi O(n).

3 Realizacja

W stosunku do programu z laboratorum drugiego wprowadzone kosmetyczne zmiany w klasie Benchmark oraz dodane dwie klasy modelujace liste w ujeciu tablicowym. Obie dziedzicza od klasy Struktury, która jest klasa bazowa dla wszystkich zaimplementowanych struktur danych. W obu klasach opartych o rozwiniecie tablicowe zastosowana została realokacja dynamicznej tablicy w zależnosci od przyjetej strategii o określony rozmiar.

4 Test

Program został przetestowany dla wygenerowanych liczb pseudolosowych z zakeresu od 1 do 100. Wynik przedstawia średnie czasy dla 10 powtórzeń.

Liczba danych	Lista +1	Lista x4	Lista x2
100	0,0207	0,0201	0,0206
1000	1,3219	1,4089	1,4318
10000	123,944	133,611	132,791
100000	12976,5	13241,5	13237,4
200000	64068,9	67053,1	66047,2

Liczba danych	Stos x2	Stos x3	Stos x5
100	0,0236	0,0058	0,0034
10000	0,1652	0,1352	0,1126
1000000	12,538	12,0026	11,0547
100000000	1389,5	1131,37	1134,24

5 Wnioski

Na podstawie wykonanych pomiarów możemy stwierdzić,
iż rozwiniecie wskaźnikowe dla listy jest znacznie lepszym rozwiazaniem niż realokacja dynamiczna tablicy d
anych. Nawet w przypadku zwiekszania rozmiaru tablicy do wartości 200% nie wpłyneło na przyrost wydajności i wraz ze strategia zwiekszania tablicy każdorazowo o jeden posiada notacje $\mathrm{O}(n^2)$.

Dzieje sie tak za sprawa ,iż z defnicji można dodać element w dowolnym miejscu listy, co wiaże sie każdorazowo z tworzeniem tablicy tymczasowej i za jej pomoca można przenieść elementy do nowej tablicy.Z tego właśnie powodu nie ma różnicy miedzy tymi dwiema strategiami dla listy, gdyż nawet w przypadku, gdy podwajamy rozmiar, musimy dbać o to , aby umożliwić dodanie elementu w dowolne miejsce listy ,a to sprowadza sie do każdorazowej realokacji tablicy tymczasowej. Inaczej spraw wyglada dla stosu zamodelowanego przy użyciu tablicy dynamicznej