1. [3 punts]

- a) Doneu la definició de combinació lineal i de vectors linealment independents.
- b) Siguin v_1, v_2, v_3, v_4 vectors diferents d'un espai vectorial E. Demostreu les afirmacions següents si són sempre certes o doneu-ne un contraexemple si són falses en general.
 - i) Si v_1, v_2, v_3 són linealment independents, aleshores v_1, v_2, v_3, v_4 són linealment independents.
 - ii) Si v_1, v_2, v_3 són linealment dependents, aleshores v_1, v_2, v_3, v_4 són linealment dependents.
 - iii) Si v_1, v_2, v_3 són linealment independents i v_4 no és combinació lineal de v_1, v_2, v_3 , aleshores v_1, v_2, v_3, v_4 són linealment independents.
 - iv) Si v_1, v_2, v_3, v_4 són linealment dependents, aleshores v_4 és combinació lineal de v_1, v_2, v_3 .
- **2.** [3 punts] Considereu el subespai S_a de \mathbb{R}^4 generat per:

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \\ a \end{pmatrix} \right\}.$$

- a) Calculeu la dimensió de S_a segons el valor del paràmetre a.
- b) Doneu una base de S_{-1} i completeu-la fins a una base de \mathbb{R}^4 .
- c) Quines condicions han de satisfer x, y, z, t per tal que $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$ sigui de S_{-1} ?
- d) Determineu si algun dels vectors següents és de S_{-1} : $u = \begin{pmatrix} 25 \\ 12 \\ -12 \\ -25 \end{pmatrix}$, $v = \begin{pmatrix} 31 \\ 14 \\ 14 \\ -31 \end{pmatrix}$.
- **3.** [4 punts]
 - a) Sigui $f: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ una aplicació lineal tal que

$$f(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, f(\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, f(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}) = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, f(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

- i) Doneu la matriu associada a f en les bases canòniques.
- ii) Calculeu la dimensió i una base dels subespais nucli i imatge de f i determineu si l'aplicació és injectiva, exhaustiva o bijectiva.
- b) La matriu associada a un endomorfisme f de \mathbb{R}^3 en la base canònica és

$$A = \begin{pmatrix} -3 & -4 & 0 \\ -4 & 3 & 0 \\ -12 & -6 & 5 \end{pmatrix}.$$

- i) Trobeu el polinomi característic, i els valors i vectors propis d'f. Comproveu que f diagonalitza i doneu una base B en que diagonalitzi, la matriu P de canvi de base de B a la base canònica i la matriu diagonal D associada a f en la base B. Quina relació hi ha entre A, D i P?
- ii) En cas que f sigui bijectiva calculeu la matriu associada a f^{-1} en la base B donada a l'apartat anterior.

Instruccions

- Cal que JUSTIFIQUEU TOTES LES RESPOSTES.
- Les inverses s'han de calcular amb el mètode de Gauss-Jordan i els sistemes d'equacions lineals amb el mètode de Gauss.
- La durada de l'examen és de 2h.
- Cal entregar els 3 exercicis per separat.
- Escriviu amb tinta negra o blava.
- No es poden utilitzar apunts, llibres, calculadores, mòbils, ...

Informacions

- Les notes es publicaran com a tard el dia 16 de gener a la tarda.
- La revisió es farà el divendres 17 de gener a les 15:15 a l'aula A5-202.