Foundations of Software Fall 2022

Week 5

Plan

PREVIOUSLY: untyped lambda calculus

TODAY: types!!

- 1. Two example languages:
 - $1.1\,$ typing arithmetic expressions
 - 1.2 simply typed lambda calculus (STLC)
- 2. For each:
 - 2.1 Define types
 - 2.2 Specify typing rules
 - 2.3 Prove soundness: progress and preservation

NEXT: lambda calculus extensions NEXT: polymorphic typing

Types

Outline

- 1. begin with a set of terms, a set of values, and an evaluation relation
- 2. define a set of types classifying values according to their "shapes"
- 3. define a typing relation t : T that classifies terms according to the shape of the values that result from evaluating them
- 4. check that the typing relation is sound in the sense that,

 - 4.1 if t : T and t \longrightarrow v, then v : T 4.2 if t : T, then evaluation of t will not get stuck

Recall: Arithmetic Expressions – Syntax

```
terms
t ::=
        true
                                             constant true
                                             constant false
        false
        if t then t else t
                                             conditional
                                             constant zero
        succ t
                                             successor
        pred t
                                             predecessor
        iszero t
                                             zero test
                                            values
                                             true value
        false
                                             false value
                                             numeric value
                                            numeric values
nv ::=
       0
                                             zero value
        succ nv
                                             successor value
```

Recall: Arithmetic Expressions - Evaluation Rules

```
if true then t_2 else t_3 \longrightarrow t_2 (E-IFTRUE)

if false then t_2 else t_3 \longrightarrow t_3 (E-IFFALSE)

pred \ 0 \longrightarrow 0 \qquad (E-PREDZERO)
pred \ (succ \ nv_1) \longrightarrow nv_1 \qquad (E-PREDSUCC)
iszero \ 0 \longrightarrow true \qquad (E-ISZEROZERO)
iszero \ (succ \ nv_1) \longrightarrow false \qquad (E-ISZEROSUCC)
```

Recall: Arithmetic Expressions - Evaluation Rules

$$\begin{array}{c} t_1 \longrightarrow t_1' \\ \\ \text{if } t_1 \text{ then } t_2 \text{ else } t_3 \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3 \end{array} \text{ (E-IF)} \\ \\ \frac{t_1 \longrightarrow t_1'}{\text{succ } t_1 \longrightarrow \text{succ } t_1'} \end{array} \tag{E-Succ)}$$

$$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathtt{pred}\ \mathtt{t}_1 \longrightarrow \mathtt{pred}\ \mathtt{t}_1'} \tag{E-Pred}$$

$$\frac{t_1 \longrightarrow t_1'}{\text{iszero } t_1 \longrightarrow \text{iszero } t_1'} \qquad \qquad \text{(E-IsZero)}$$

Types

In this language, values have two possible "shapes": they are either booleans or numbers.

$$\begin{array}{ccc} T & ::= & & \textit{types} \\ & & \textit{Bool} & & \textit{type of booleans} \\ & & \textit{Nat} & & \textit{type of numbers} \end{array}$$

Typing Rules

$$\begin{array}{c} \text{true:Bool} \\ \text{false:Bool} \\ \end{array} \qquad \begin{array}{c} \text{(T-True)} \\ \text{(T-FALSe)} \\ \end{array} \\ \\ \frac{t_1:\text{Bool}}{\text{if } t_1:\text{Bool}} \quad t_2:T \quad t_3:T} \\ \text{if } t_1:\text{then } t_2:\text{else } t_3:T \\ \end{array} \qquad \begin{array}{c} \text{(T-Ir)} \\ \text{O:Nat} \\ \end{array} \qquad \begin{array}{c} \text{(T-Zero)} \\ \\ \frac{t_1:\text{Nat}}{\text{succ } t_1:\text{Nat}} \\ \end{array} \qquad \begin{array}{c} \text{(T-Succ)} \\ \end{array} \\ \\ \frac{t_1:\text{Nat}}{\text{pred } t_1:\text{Nat}} \\ \end{array} \qquad \begin{array}{c} \text{(T-Pred)} \\ \end{array} \\ \\ \frac{t_1:\text{Nat}}{\text{iszero } t_1:\text{Bool}} \end{array} \qquad \begin{array}{c} \text{(T-IsZero)} \\ \end{array}$$

Typing Derivations

Every pair (t,T) in the typing relation can be justified by a derivation tree built from instances of the inference rules.

$$\frac{\frac{-}{\text{0:Nat}}\text{T-ZERO}}{\text{iszero 0:Bool}} \text{T-IsZERO} \qquad \frac{\frac{-}{\text{0:Nat}}}{\text{0:Nat}} \text{T-ZERO} \qquad \frac{\frac{-}{\text{0:Nat}}}{\text{pred 0:Nat}} \text{T-PRED}$$

$$\frac{\text{if iszero 0 then 0 else pred 0:Nat}}{\text{1-If}} \text{T-If}$$

Proofs of properties about the typing relation often proceed by induction on typing derivations.

Imprecision of Typing

Like other static program analyses, type systems are generally *imprecise*: they do not predict exactly what kind of value will be returned by every program, but just a conservative (safe) approximation.

$$\frac{\mathtt{t}_1: \mathtt{Bool} \qquad \mathtt{t}_2: T \qquad \mathtt{t}_3: T}{\mathtt{if} \ \mathtt{t}_1 \ \mathtt{then} \ \mathtt{t}_2 \ \mathtt{else} \ \mathtt{t}_3: T} \tag{T-IF}$$

Using this rule, we cannot assign a type to

if true then 0 else false

even though this term will certainly evaluate to a number.

Type Safety

The safety (or soundness) of this type system can be expressed by two properties:

- 1. Progress: A well-typed term is not stuck $\textit{If } t \ : \ \textit{T, then either } t \textit{ is a value or else } t \longrightarrow t' \textit{ for some } t'.$
- 2. Preservation: Types are preserved by one-step evaluation If t: T and t \longrightarrow t', then t': T.

Inversion

I emma:

```
1. If true : R, then R = Bool.
2. If false: R, then R = Bool.
3. If if t_1 then t_2 else t_3: R, then t_1: Bool, t_2: R, and
   t_3:R.
4. If 0 : R, then R = Nat.
5. If succ t_1 : R, then R = Nat and t_1 : Nat.
6. If pred t_1: R, then R = Nat and t_1: Nat.
```

7. If iszero $t_1 : R$, then R = Bool and $t_1 : Nat$.

Inversion

I emma:

```
1. If true : R, then R = Bool.
 2. If false: R, then R = Bool.
 3. If if t_1 then t_2 else t_3 : R, then t_1 : Bool, t_2 : R, and
    t_3:R.
 4. If 0 : R, then R = Nat.
 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
 6. If pred t_1: R, then R = Nat and t_1: Nat.
 7. If iszero t_1 : R, then R = Bool and t_1 : Nat.
Proof: ...
```

Inversion

Lemma:

```
1. If true : R, then R = Bool.
 2. If false: R, then R = Bool.
 3. If if t_1 then t_2 else t_3: R, then t_1: Bool, t_2: R, and
    t_3:R.
 4. If 0 : R, then R = Nat.
 5. If succ t_1 : R, then R = Nat and t_1 : Nat.
 6. If pred t_1: R, then R = Nat and t_1: Nat.
 7. If iszero t_1: R, then R = Bool and t_1: Nat.
Proof: ...
```

This leads directly to a recursive algorithm for calculating the type of a term...

Typechecking Algorithm

```
typeof(t) = if t = true then Bool
            else if t = false then Bool
            else if t = if t1 then t2 else t3 then
             let T1 = typeof(t1) in
             let T2 = typeof(t2) in
             let T3 = typeof(t3) in
             if T1 = Bool and T2=T3 then T2
             else "not typable"
            else if t = 0 then Nat
            else if t = succ t1 then
             let T1 = typeof(t1) in
              if T1 = Nat then Nat else "not typable"
            else if t = pred t1 then
             let T1 = typeof(t1) in
              if T1 = Nat then Nat else "not typable"
            else if t = iszero t1 then
              let T1 = typeof(t1) in
              if T1 = Nat then Bool else "not typable"
```

Properties of the Typing Relation

Recall: Typing Rules (T-True) true : Bool false : Bool (T-False) $\mathtt{t}_1:\mathtt{Bool}$ $\mathtt{t}_2:\mathtt{T}$ $\mathtt{t}_3:\mathtt{T}$ (T-IF) if t_1 then t_2 else $t_3:T$ 0 : Nat (T-Zero) $t_1: Nat$ (T-Succ) $\verb+succ+t_1 : \verb+Nat+$ t₁ : Nat (T-Pred) $pred t_1 : Nat$ t₁: Nat (T-IsZero) $iszero t_1 : Bool$

Recall: Inversion

Lemma:

```
    If true: R, then R = Bool.
    If false: R, then R = Bool.
    If if t<sub>1</sub> then t<sub>2</sub> else t<sub>3</sub>: R, then t<sub>1</sub>: Bool, t<sub>2</sub>: R, and t<sub>3</sub>: R.
    If 0: R, then R = Nat.
    If succ t<sub>1</sub>: R, then R = Nat and t<sub>1</sub>: Nat.
    If pred t<sub>1</sub>: R, then R = Nat and t<sub>1</sub>: Nat.
```

7. If iszero t_1 : R, then R = Bool and t_1 : Nat.

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof:

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either \mathtt{true} or $\mathtt{false}.$
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool.

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

```
        v ::=
        values

        true
        true value

        false
        false value

        nv
        numeric value

        nv ::=
        numeric values

        0
        zero value

        succ nv
        successor value
```

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv, since the inversion lemma tells us that v would then have type Nat, not Bool. Part 2 is similar.

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof:

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t\longrightarrow t'$.

Proof: By induction on a derivation of t : T.

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t:T.

The T-T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t:T.

The T-T-TALSE, and T-ZERO cases are immediate, since t in these cases is a value.

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t:T.

The T-T-FALSE, and T-ZERO cases are immediate, since t in these cases is a value.

By the induction hypothesis, either \mathbf{t}_1 is a value or else there is some \mathbf{t}_1' such that $\mathbf{t}_1 \longrightarrow \mathbf{t}_1'$. If \mathbf{t}_1 is a value, then the canonical forms lemma tells us that it must be either \mathbf{t} rue or \mathbf{f} alse, in which case either \mathbf{E} -IFTRUE or \mathbf{E} -IFFALSE applies to \mathbf{t} . On the other hand, if $\mathbf{t}_1 \longrightarrow \mathbf{t}_1'$, then, by \mathbf{E} -IF,

 $t \longrightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3.$

Progress

Theorem: Suppose t is a well-typed term (that is, t: T for some type T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Proof: By induction on a derivation of t: T.

The cases for rules T-ZERO, T-SUCC, T-PRED, and T-IsZERO are similar

(Recommended: Try to reconstruct them.)

Preservation

Theorem: If t : T and t \longrightarrow t', then t' : T.

Preservation

Theorem: If t:T and $t\longrightarrow t'$, then t':T.

Proof: By induction on the given typing derivation.

Preservation

Theorem: If t:T and $t\longrightarrow t'$, then t':T.

Proof: By induction on the given typing derivation.

Case T-TRUE: t = true T = Bool

Then t is a value.

Preservation

Theorem: If t:T and $t\longrightarrow t'$, then t':T.

 ${\it Proof:}\ \, {\rm By\ induction\ on\ the\ given\ typing\ derivation}.$

Case T-IF:

 $\mathtt{t} = \mathtt{if} \ \mathtt{t}_1 \ \mathtt{then} \ \mathtt{t}_2 \ \mathtt{else} \ \mathtt{t}_3 \ \mathtt{t}_1 : \mathtt{Bool} \ \mathtt{t}_2 : \mathtt{T} \ \mathtt{t}_3 : \mathtt{T}$

There are three evaluation rules by which $t\longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Preservation

Theorem: If t : T and t \longrightarrow t', then t' : T.

Proof: By induction on the given typing derivation.

Case $\operatorname{T-IF}$:

```
\mathsf{t} = \mathsf{if} \ \mathsf{t}_1 \ \mathsf{then} \ \mathsf{t}_2 \ \mathsf{else} \ \mathsf{t}_3 \ \mathsf{t}_1 : \mathsf{Bool} \ \mathsf{t}_2 : \mathsf{T} \ \mathsf{t}_3 : \mathsf{T}
```

There are three evaluation rules by which $t\longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

 $\label{eq:Subcase} \begin{array}{lll} \textit{Subcase} \; E\text{-}IFTRUE: & t_1 = true & t' = t_2 \\ \\ \text{Immediate, by the assumption} \; t_2 : T. \end{array}$

(E-IFFALSE subcase: Similar.)

Preservation

```
\textit{Theorem:} \ \mathsf{If} \ \mathsf{t} \ : \ \mathtt{T} \ \mathsf{and} \ \mathsf{t} \longrightarrow \mathsf{t}', \ \mathsf{then} \ \mathsf{t}' \ : \ \mathtt{T}.
```

Proof: By induction on the given typing derivation.

Case T-IF:

```
\mathsf{t} = \mathsf{if} \ \mathsf{t}_1 \ \mathsf{then} \ \mathsf{t}_2 \ \mathsf{else} \ \mathsf{t}_3 \quad \mathsf{t}_1 : \mathsf{Bool} \quad \mathsf{t}_2 : \mathsf{T} \quad \mathsf{t}_3 : \mathsf{T}
```

There are three evaluation rules by which $t\longrightarrow t'$ can be derived: E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

```
Subcase E-IF: t_1 \longrightarrow t_1' t'=if t_1' then t_2 else t_3 Applying the IH to the subderivation of t_1: Bool yields t_1': Bool. Combining this with the assumptions that t_2: T and t_3: T, we can apply rule T-IF to conclude that if t_1' then t_2 else t_3: T, that is, t': T.
```

Messing With It

Messing with it: Remove a rule

What if we remove E-PREDZERO ?

Messing with it: Remove a rule

What if we remove E-PREDZERO ?

Then ${\tt pred}\ 0$ type checks, but it is stuck and is not a value. Thus the progress theorem fails.

Messing with it: If

What if we change the rule for typing if's to the following?:

$$\frac{\texttt{t}_1 : \texttt{Bool} \qquad \texttt{t}_2 : \texttt{Nat} \qquad \texttt{t}_3 : \texttt{Nat}}{\texttt{if} \ \texttt{t}_1 \ \texttt{then} \ \texttt{t}_2 \ \texttt{else} \ \texttt{t}_3 : \texttt{Nat}} \tag{T-IF}$$

Messing with it: If

What if we change the rule for typing if's to the following?:

$$\frac{\texttt{t}_1 : \texttt{Bool} \qquad \texttt{t}_2 : \texttt{Nat} \qquad \texttt{t}_3 : \texttt{Nat}}{\texttt{if} \ \texttt{t}_1 \ \texttt{then} \ \texttt{t}_2 \ \texttt{else} \ \texttt{t}_3 : \texttt{Nat}} \tag{T-IF}$$

The system is still sound. Some ${\tt if}$'s do not type, but those that do are fine.

Meassing with it: adding bit

 $\begin{array}{ll} \textbf{t} & ::= & \textit{terms} \\ & ... \\ & \textit{bit}(t) & \textit{boolean to natural} \end{array}$

- 1. evaluation rule
- 2. typing rule
- 3. progress and preservation updates

The Simply Typed Lambda-Calculus

The simply typed lambda-calculus

The system we are about to define is commonly called the simply typed lambda-calculus, or λ_{\to} for short.

Unlike the untyped lambda-calculus, the "pure" form of λ_{\rightarrow} (with no primitive values or operations) is not very interesting; to talk about λ_{\rightarrow} , we always begin with some set of "base types."

- So, strictly speaking, there are *many* variants of λ_{\rightarrow} , depending on the choice of base types.
- ► For now, we'll work with a variant constructed over the booleans.

Untyped lambda-calculus with booleans

```
t ::=
                                              terms
                                                variable
                                                abstraction
        \lambda x.t
        t t
                                                application
                                                constant true
        true
        false
                                                constant false
        if t then t else t
                                                conditional
v ::=
                                              values
        \lambda {\tt x.t}
                                                abstraction value
                                                true value
        true
                                                false value
        false
```

"Simple Types"

 $\begin{array}{ccc} T & ::= & & \\ & Bool \\ & T{\rightarrow} T & \end{array}$

types type of booleans types of functions

What are some examples?

Type Annotations

We now have a choice to make. Do we...

annotate lambda-abstractions with the expected type of the argument

$$\lambda x: T_1.$$
 t₂

(as in most mainstream programming languages), or

continue to write lambda-abstractions as before

$$\lambda x$$
. t_2

and ask the typing rules to "guess" an appropriate annotation (as in OCaml)?

Both are reasonable choices, but the first makes the job of defining the typing rules simpler. Let's take this choice for now.

Typing rules

$$\frac{\texttt{t}_1: \texttt{Bool} \qquad \texttt{t}_2: \texttt{T} \qquad \texttt{t}_3: \texttt{T}}{\texttt{if} \ \texttt{t}_1 \ \texttt{then} \ \texttt{t}_2 \ \texttt{else} \ \texttt{t}_3: \texttt{T}} \tag{T-IF}$$

Typing rules

$$\frac{\mathtt{t}_1: \mathtt{Bool} \qquad \mathtt{t}_2: \mathtt{T} \qquad \mathtt{t}_3: \mathtt{T}}{\mathtt{if} \ \mathtt{t}_1 \ \mathtt{then} \ \mathtt{t}_2 \ \mathtt{else} \ \mathtt{t}_3: \mathtt{T}} \qquad \qquad (\mathtt{T-IF})$$

$$\frac{???}{\lambda x: T_1. t_2: T_1 \rightarrow T_2}$$
 (T-Abs)

Typing rules

$$\frac{\texttt{t}_1 : \texttt{Bool} \qquad \texttt{t}_2 : \texttt{T} \qquad \texttt{t}_3 : \texttt{T}}{\texttt{if} \ \texttt{t}_1 \ \texttt{then} \ \texttt{t}_2 \ \texttt{else} \ \texttt{t}_3 : \texttt{T}} \qquad \qquad \texttt{(T-IF)}$$

$$\frac{\Gamma,\,x\!:\!T_1\vdash\,t_2\,:\,T_2}{\Gamma\vdash\lambda x\!:\!T_1.t_2\,:\,T_1\!\to\!T_2} \tag{T-Abs}$$

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \tag{T-VAR}$$

Typing rules

$$\frac{\Gamma \vdash t_1 : Bool \qquad \Gamma \vdash t_2 : T \qquad \Gamma \vdash t_3 : T}{\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : T} \quad \text{(T-IF$)}$$

$$\frac{\Gamma, \, x\!:\!T_1 \vdash \, t_2 \,:\, T_2}{\Gamma \vdash \lambda x\!:\!T_1.\, t_2 \,:\, T_1 \!\to\! T_2} \tag{T-Abs}$$

$$\frac{x\!:\!T\in\Gamma}{\Gamma\vdash x:T} \tag{T-Var}$$

$$\frac{\Gamma \vdash \mathtt{t}_1 : \mathtt{T}_{11} {\rightarrow} \mathtt{T}_{12} \qquad \Gamma \vdash \mathtt{t}_2 : \mathtt{T}_{11}}{\Gamma \vdash \mathtt{t}_1 \ \mathtt{t}_2 : \mathtt{T}_{12}} \qquad \text{(T-App)}$$

Typing Derivations

What derivations justify the following typing statements?

- ightharpoonup \vdash (λ x:Bool.x) true : Bool
- ► f:Bool→Bool ⊢

f (if false then true else false) : Bool

► f:Bool→Bool ⊢

 $\lambda x : Bool.$ f (if x then false else x) : $Bool \rightarrow Bool$

Properties of λ_{\rightarrow}

The fundamental property of the type system we have just defined is *soundness* with respect to the operational semantics.

- 1. Progress: A closed, well-typed term is not stuck If $\vdash t:T$, then either t is a value or else $t\longrightarrow t'$ for some t'.
- 2. Preservation: Types are preserved by one-step evaluation If $\Gamma \vdash t$: T and $t \longrightarrow t'$, then $\Gamma \vdash t'$: T.

Proving progress

Same steps as before...

Proving progress

Same steps as before...

- ▶ inversion lemma for typing relation
- canonical forms lemma
- progress theorem

Inversion

Lemma:

```
1. If \Gamma \vdash \mathtt{true} : R, then R = Bool.
2. If \Gamma \vdash false : R, then R = Bool.
3. If \Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R \text{, then } \Gamma \vdash t_1 : Bool \text{ and }
     \Gamma \vdash t_2, t_3 : R.
```

Inversion

Lemma:

```
1. If \Gamma \vdash \mathtt{true} : R, then R = Bool.
 2. If \Gamma \vdash false : R, then R = Bool.
 3. If \Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R \text{, then } \Gamma \vdash t_1 : Bool \text{ and }
     \Gamma \vdash t_2, t_3 : R.
 4. If \Gamma \vdash x : R, then
```

Inversion

Lemma:

```
1. If \Gamma \vdash \text{true} : R, then R = Bool.
 2. If \Gamma \vdash false : R, then R = Bool.
 3. If \Gamma \vdash \mathtt{if} \ t_1 \ \mathtt{then} \ t_2 \ \mathtt{else} \ t_3 : R \mathtt{, then} \ \Gamma \vdash t_1 : \mathtt{Bool} \ \mathtt{and}
      \Gamma \vdash t_2, t_3 : R.
 4. If \Gamma \vdash x : R, then x : R \in \Gamma.
```

Inversion

```
Lemma:
 1. If \Gamma \vdash \text{true} : R, then R = Bool.
   2. If \Gamma \vdash false : R, then R = Bool.
   3. If \Gamma \vdash \mathtt{if} \ \mathtt{t}_1 \ \mathtt{then} \ \mathtt{t}_2 \ \mathtt{else} \ \mathtt{t}_3 : R \mathtt{, then} \ \Gamma \vdash \mathtt{t}_1 : \mathtt{Bool} \ \mathtt{and}
        \Gamma \vdash t_2, t_3 : R.
   4. If \Gamma \vdash x : R, then x : R \in \Gamma.
   5. If \Gamma \vdash \lambda x:T_1.t_2:R, then
```

Inversion

Lemma:

```
1. If \Gamma \vdash \mathtt{true} : R, then R = Bool.
```

- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma\vdash$ if t_1 then t_2 else $t_3:R,$ then $\Gamma\vdash t_1:$ Bool and $\Gamma\vdash t_2,t_3:R.$
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma\vdash \lambda x\colon T_1\:.\:t_2:R$, then $R=T_1{\to}R_2$ for some R_2 with $\Gamma,\:x\colon T_1\vdash \:t_2:R_2.$

Inversion

Lemma:

```
1. If \Gamma \vdash \mathtt{true} : R, then R = Bool.
```

- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma\vdash$ if t_1 then t_2 else $t_3:R,$ then $\Gamma\vdash t_1:$ Bool and $\Gamma\vdash t_2,t_3:R.$
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x\!:\!T_1.t_2:R_t$ then $R=T_1\!\to\!R_2$ for some R_2 with $\Gamma,\,x\!:\!T_1 \vdash \ t_2:R_2.$
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then

Inversion

Lemma:

- 1. If $\Gamma \vdash \mathtt{true} : \mathtt{R}$, then $\mathtt{R} = \mathtt{Bool}$.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma\vdash$ if t_1 then t_2 else $t_3:R,$ then $\Gamma\vdash t_1:$ Bool and $\Gamma\vdash t_2,t_3:R.$
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma\vdash \lambda x\!:\!T_1.t_2:R$, then $R=T_1{\to}R_2$ for some R_2 with $\Gamma,\,x\!:\!T_1\vdash\ t_2:R_2.$
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} {\rightarrow} R$ and $\Gamma \vdash t_2 : T_{11}$.

Canonical Forms

Lemma:

Canonical Forms

Lemma:

1. If v is a value of type Bool, then

Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1{\to}T_2,$ then v has the form $\lambda x\!:\!T_1.\,t_2.$

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$

Proof: By induction on typing derivations.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because ${\bf t}$ is closed). The abstraction case is immediate, since abstractions are values.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because ${\bf t}$ is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $\mathtt{t}=\mathtt{t}_1 \ \mathtt{t}_2$ with $\vdash \mathtt{t}_1 : \mathtt{T}_{11} {\rightarrow} \mathtt{T}_{12}$ and $\vdash \mathtt{t}_2 : \mathtt{T}_{11}$.

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because ${\bf t}$ is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $\mathbf{t}=\mathbf{t}_1\ \mathbf{t}_2$ with $\vdash \mathbf{t}_1: T_{11} {\rightarrow} T_{12}$ and $\vdash \mathbf{t}_2: T_{11}.$ By the induction hypothesis, either \mathbf{t}_1 is a value or else it can make a step of evaluation, and likewise $\mathbf{t}_2.$

Progress

Theorem: Suppose t is a closed, well-typed term (that is, \vdash t : T for some T). Then either t is a value or else there is some t' with t \longrightarrow t'.

Proof: By induction on typing derivations. The cases for boolean constants and conditions are the same as before. The variable case is trivial (because ${\bf t}$ is closed). The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $\mathbf{t}=\mathbf{t}_1~\mathbf{t}_2$ with $\vdash \mathbf{t}_1:T_{11}{\rightarrow}T_{12}$ and $\vdash \mathbf{t}_2:T_{11}.$ By the induction hypothesis, either \mathbf{t}_1 is a value or else it can make a step of evaluation, and likewise $\mathbf{t}_2.$ If \mathbf{t}_1 can take a step, then rule E-APP1 applies to $\mathbf{t}.$ If \mathbf{t}_1 is a value and \mathbf{t}_2 can take a step, then rule E-APP2 applies. Finally, if both \mathbf{t}_1 and \mathbf{t}_2 are values, then the canonical forms lemma tells us that \mathbf{t}_1 has the form $\lambda x{:}T_{11}.\mathbf{t}_{12},$ and so rule E-APPABS applies to $\mathbf{t}.$