Boundary Control of Turbulent Flow Fields? I Try Linearizations and Flow Decompositions for Controller Design

Jan Heiland

Seminar der AG ModNumDiff, TU Berlin

March 9, 2011

Outline of the Talk

- Introduction of the problem and the model
- Linearization of the model
- Decomposition of the flow field
- Resulting descriptor system

The Underlying Problem

- Stirring of two fluids
- Reynoldsnumber $Re \sim 30,000$
- In industrial applications:
 - continuous phase $\sim 90\%$
 - ullet dispersed phase $\sim 10\%$
- Imagine droplets of oil swimming in water

Can we use the stirrer speed to obtain a desired droplet population in optimal time?

The Model for the Flow

The Reynolds-Averaged Navier-Stokes Equations with the $k-\varepsilon$ model:

$$\begin{split} \frac{\partial v}{\partial t} + (v \cdot \nabla)v + \nabla p + \frac{2}{3}\nabla k - \operatorname{div} \nu^* S &= f_v \\ \operatorname{div} v &= 0 \\ \frac{\partial [k\varepsilon]}{\partial t} + (v \cdot \nabla)[k\varepsilon] - \operatorname{div} \Gamma_{[k\varepsilon]} \nabla [k\varepsilon] &= f_{[k\varepsilon]} \end{split}$$

in a domain $\Omega \subset \mathbb{R}^3$ in a time interval (0,T] plus completing initial and boundary conditions

 $p \dots$ pressure $v \dots$ (mean) velocity $\varepsilon \dots$ energy dissipation rate $k \dots$ turbulent kinetic energy

 $\nu^* = \nu^*(k,\varepsilon) \; ... \; \text{turbulent}$ kinematic viscosity $\Gamma_{[k\varepsilon]} \; ... \; \text{diffusion coefficient}$ $S = \nabla v^T + \nabla v \; ... \; \text{stress tensor}$

Description and Modelling of the Droplet Population

Count the drops and measure their diameter *d*

to obtain the density distribution

of the droplet population wrt to the diameter

Density Functions and Moments

The considered density distribution $n:[0,d_{\mathsf{max}}] \to \mathbb{R}_{\geq 0}$ is defined via

$$\int_{d_b}^{d_u} n(d) \mathrm{d}d = ext{ Number of drops with diameter } d \in [d_b, d_u).$$

Instead of computing the whole distribution we only compute some moments

$$m_k = \int_0^{d_{\text{max}}} d^k n(d) dd,$$

being aware of the illposedness of the problem

$$\{m_0, m_1, m_2, \dots\} \stackrel{?}{\rightarrow} n(d)$$

Use and Computation of the Moments

To describe the population one uses a characteristic diameter

$$d_{32} := \frac{\sum d_i^3}{\sum d_i^2} = \frac{m_3}{m_2}$$

with the sums over all drops and the standard deviation

$$\sigma^2 = \sum (d_i - d_{\text{mean}})^2 = \frac{m_2}{m_0} - \frac{m_1^2}{m_0^2}$$

that can be expressed in terms of the moments.

The moments [m] are computed together with the flow via

$$\frac{\partial [m]}{\partial t} + (v \cdot \nabla)[m] - \operatorname{div} \Gamma_m \nabla[m] = f_m$$

The Complete System

In $\Omega \times (0, T]$ solve

$$\frac{\partial v}{\partial t} + (v \cdot \nabla)v + \nabla p + \frac{2}{3}\nabla k - \operatorname{div} v^* S = f_v$$

$$\frac{\partial [k\varepsilon]}{\partial t} + (v \cdot \nabla)[k\varepsilon] - \operatorname{div} \Gamma_{k\varepsilon} \nabla [k\varepsilon] = f_{k\varepsilon}$$

$$\frac{\partial [m]}{\partial t} + (v \cdot \nabla)[m] - \operatorname{div} \Gamma_m \nabla [m] = f_m$$

$$\operatorname{div} v = 0$$

for given initial and boundary conditions.

Especially for the stirrer we act on the system by imposing

$$v|_{\text{stirrer}} = \omega(t)$$

Linearization

The nonlinearities

$$\frac{\partial v}{\partial t} + (v \cdot \nabla)v + \nabla p + \frac{2}{3}\nabla k - \operatorname{div} \nu^* S = f_v$$

$$\frac{\partial [k\varepsilon]}{\partial t} + (v \cdot \nabla)[k\varepsilon] - \operatorname{div} \Gamma_{k\varepsilon} \nabla [k\varepsilon] = f_{k\varepsilon}$$

$$\frac{\partial [m]}{\partial t} + (v \cdot \nabla)[m] - \operatorname{div} \Gamma_m \nabla [m] = f_m$$

$$\operatorname{div} v = 0$$

are "fixed" by using reference trajectories of the variables:

$$v_{\infty}(t), k_{\infty}(t), \varepsilon_{\infty}(t)$$
 and $[m]_{\infty}(t)$

Linearized Model

which gives

$$\begin{split} \frac{\partial v}{\partial t} + (v_{\infty} \cdot \nabla)v + (v \cdot \nabla)v_{\infty} + \nabla p + \frac{2}{3}\nabla k - \operatorname{div} v_{\infty}^{*}S &= f_{v} \\ \frac{\partial [k\varepsilon]}{\partial t} + (v \cdot \nabla)[k\varepsilon]_{\infty} + (v_{\infty} \cdot \nabla)[k\varepsilon] - \operatorname{div} \Gamma_{k\varepsilon_{\infty}}\nabla[k\varepsilon] &= f_{k\varepsilon_{\infty}} \\ \frac{\partial [m]}{\partial t} + (v \cdot \nabla)[m]_{\infty} + (v_{\infty} \cdot \nabla)[m] - \operatorname{div} \Gamma_{m_{\infty}}\nabla[m] &= f_{m_{\infty}} \\ \operatorname{div} v &= 0 \end{split}$$

Short Hand Form

With the abbreviations (exemplarily for the $[k\varepsilon]$) equation:

$$\begin{split} c_{[k\varepsilon]_{\infty}} \bullet &:= -(\bullet \cdot \nabla)[k\varepsilon]_{\infty} \\ L_{[k\varepsilon]} \bullet &:= \operatorname{div} \Gamma_{k\varepsilon_{\infty}} \nabla \bullet -(v_{\infty} \cdot \nabla) \bullet \end{split}$$

the system writes as

$$\underbrace{\begin{bmatrix} I & & & \\ & I & \\ & & I & \end{bmatrix}}_{:=E} \underbrace{\frac{\partial}{\partial t} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix}}_{[k\varepsilon]} = \underbrace{\begin{bmatrix} L_v + c_{v_{\infty}} & \frac{2}{3}\nabla & & -\nabla \\ c_{[k\varepsilon]_{\infty}} & L_{[k\varepsilon]} \\ c_{[m]_{\infty}} & & L_{[m]} & \\ \text{div} & & & \end{bmatrix}}_{:=A} \underbrace{\begin{bmatrix} v \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix}}_{[k\varepsilon]} + f$$

Even Shorter Form

We write the above system as

$$\begin{bmatrix} E \end{bmatrix} \frac{\partial}{\partial t} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix} = \begin{bmatrix} A_v \middle| A_{k\varepsilon mp} \end{bmatrix} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix} + f$$

with the splitting of A according to the subscripted variables. The control is still present in the boundary condition

$$v|_{\text{stirrer}} = \omega(t)$$

Flow Decomposition

Idea: Given stirrer speed $\omega(t)$

• Construct a divergence free flow-field $v_s(\omega)$ with

$$v_s|_{\text{stirrer}} = \omega(t)$$

Compute the velocity in the tank as

$$v + v_s$$

• $[m], [k\varepsilon]$ remain unchanged

Decomposed System

Then the controlled system becomes

$$\begin{bmatrix} E \end{bmatrix} \frac{\partial}{\partial t} \begin{bmatrix} v + v_s \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix} = \begin{bmatrix} A_v \middle| A_{k\varepsilon mp} \end{bmatrix} \begin{bmatrix} v + v_s \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix} + f$$

which is

$$\begin{bmatrix} E \end{bmatrix} \frac{\partial}{\partial t} \begin{bmatrix} v \\ k\varepsilon \end{bmatrix} = \begin{bmatrix} A_v \middle| A_{k\varepsilon mp} \end{bmatrix} \begin{bmatrix} v \\ k\varepsilon \end{bmatrix} + \begin{bmatrix} A_v - \begin{bmatrix} \frac{\partial}{\partial t} \\ 0 \\ 0 \\ 0 \end{bmatrix} v_s + f$$

with $v|_{\text{stirrer}} = 0$ and further boundary conditions.

Descriptor System

A spatial discretization then leads to the descriptor system:

$$\mathbf{E}(t)rac{d}{dt}egin{bmatrix} v \ [karepsilon] \ [m] \ p \end{bmatrix} = \mathbf{A}(t)egin{bmatrix} v \ [karepsilon] \ [m] \ p \end{bmatrix} + \mathbf{B}(t)v_s + \mathbf{f}$$

with initial conditions for $v, [k\varepsilon]$ and [m].

System Specific Simplifications

We use the notation

$$u := \begin{bmatrix} v_s \\ \frac{\partial}{\partial t} v_s \end{bmatrix}$$

and set wlog $\mathbf{f} = 0$.

With M denoting the mass matrix of the spatial discretization we can set

$$\mathbf{B}(t) = egin{bmatrix} A_{vv} & -M \ A_{[karepsilon],v} & 0 \ A_{[m]v} & 0 \ C & 0 \end{bmatrix} := egin{bmatrix} B_{v}(t) \ B_{[karepsilon]}(t) \ B_{[m]}(t) \ 0 \end{bmatrix}$$

since C is the discretized div-operator and $u = v_s$ is divergence free.

The Strangeness Becomes Visible

With C^T standing for the discretized ∇ -operator the system reads

$$\begin{bmatrix} M & & & \\ & M & & \\ & & M & \\ & & & \end{bmatrix} \frac{d}{dt} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix} = \begin{bmatrix} A_{vv}(t) & \frac{2}{3}C^T & -C^T \\ * & * & \\ * & & * & \\ C & & & \end{bmatrix} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix} + \begin{bmatrix} B_{v}(t) \\ B_{[k\varepsilon]}(t) \\ B_{[m]}(t) \\ 0 \end{bmatrix} u$$

This is a differential-algebraic equation system.

The Strangeness Becomes Visible

The strangeness is hidden in the rows and lines connected with p

$$\begin{bmatrix} M & & & \\ & M & & \\ & & M & \\ & & & \end{bmatrix} \frac{d}{dt} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix} = \begin{bmatrix} A_{vv}(t) & \frac{2}{3}C^T & -C^T \\ * & * & \\ * & & * & \\ C & & & \end{bmatrix} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \\ p \end{bmatrix} + \begin{bmatrix} B_{v}(t) \\ B_{[k\varepsilon]}(t) \\ B_{[m]}(t) \\ 0 \end{bmatrix} u$$

and can be removed by hand...

Removing the Strangeness

Thereto consider the first and the last line given by

$$M\dot{v} = A_{vv}(t)v + \frac{2}{3}C^{T}k - C^{T}p + B_{v}(t)u$$
$$0 = Cv.$$

Rearrange the first and differentiate the last:

$$\dot{v} + M^{-1}C^{T}p = M^{-1}(A_{vv}(t)v + \frac{2}{3}C^{T}k + B_{v}(t)u)$$

 $0 = C\dot{v}$

Apply C to the first and use the second to get

$$CM^{-1}C^{T}p = CM^{-1}(A_{vv}(t)v + \frac{2}{3}C^{T}k + B_{v}(t)u)$$

or, since $CM^{-1}C^T$ is invertible for reasonable discretizations,

$$C^{T}p = \underbrace{C^{T}(CM^{-1}C^{T})^{-1}CM^{-1}}_{:=\mathscr{P}}(A_{vv}(t)v + \frac{2}{3}C^{T}k + B_{v}(t)u)$$

The Strangeness-free System

Thus, replacing $C^T p$ in the descriptor system using

$$C^{T}p = \underbrace{C^{T}(CM^{-1}C^{T})^{-1}CM^{-1}}_{:=\mathscr{P}}(A_{vv}(t)v + \frac{2}{3}C^{T}k + B_{v}(t)u)$$

one obtains the equivalent ODE system,

$$\begin{bmatrix} M & & \\ & M & \\ & & M \end{bmatrix} \frac{d}{dt} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \end{bmatrix} = \begin{bmatrix} (I - \mathscr{P})A_{vv}(t) & \mathbf{0} \\ & * & * \\ & * & * \end{bmatrix} \begin{bmatrix} v \\ [k\varepsilon] \\ [m] \end{bmatrix} + \begin{bmatrix} (I - \mathscr{P})B_{v}(t) \\ B_{[k\varepsilon]}(t) \\ B_{[m]}(t) \end{bmatrix} u$$

for which one can apply e.g. the LQR-theory for controller design

Conclusion and Outlook

Conclusion

- Linearization AND flow decomposition transform the original system into a descriptor system with variable coefficients
- For these systems there are some theoretical results available concerning controller design
- A possible way is to find a strangeness-free formulation and use standard theory

Upcoming Tasks

- Analyse the original and the descriptor system for controllability
- Design the controller
- The controller will give the $v_s(t)$, but for the simulation we need $\omega(t)$

Last Slide

- Thank you for your attention
- I am very interested in your advice and suggestions