

DEX-0291

CC

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 September 2002 (06.09.2002)

PCT

(10) International Publication Number
WO 02/068633 A2

(51) International Patent Classification⁷: C12N 15/09,
C12Q 1/68, G01N 33/574, C07K 14/47

(US). LIU, Chenghua [CN/US]; 1125 Ranchero Way, #14,
San Jose, CA 95117 (US).

(21) International Application Number: PCT/US01/43612

(74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrell
P.C., 66 E. Main Street, Marlton, NJ 08053 (US).

(22) International Filing Date:

21 November 2001 (21.11.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/252,500 22 November 2000 (22.11.2000) US

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KB, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZW.

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
US 60/252,500 (CIP)
Filed on 22 November 2000 (22.11.2000)

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

(71) Applicant (*for all designated States except US*): DEXUS, INC. [US/US]; 343 Oyster Point Boulevard,
South San Francisco, CA 94080 (US).

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

WO 02/068633

(54) Title: COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES AND PROTEINS

(57) Abstract: The present invention relates to newly identified nucleic acids and polypeptides present in normal and neoplastic lung cells, including fragments, variants and derivatives of the nucleic acids and polypeptides. The present invention also relates to antibodies to the polypeptides of the invention, as well as agonists and antagonists of the polypeptides of the invention. The invention also relates to compositions comprising the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists of the invention and methods for the use of these compositions. These uses include identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung, identifying lung tissue, monitoring and identifying and/or designing and antagonists of polypeptide of the invention. The uses also include gene therapy, production of transgenic animals and cells, and production of engineered lung tissue for treatment and research.

-1-

**COMPOSITIONS AND METHODS
RELATING TO LUNG SPECIFIC GENES AND PROTEINS**

This application claims the benefit of priority from U.S. Provisional Application
5 Serial No. 60/252,500 filed November 22, 2000, which is herein incorporated by
reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to newly identified nucleic acid molecules and
10 polypeptides present in normal and neoplastic lung cells, including fragments, variants
and derivatives of the nucleic acids and polypeptides. The present invention also relates
to antibodies to the polypeptides of the invention, as well as agonists and antagonists of
the polypeptides of the invention. The invention also relates to compositions comprising
the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists
15 of the invention and methods for the use of these compositions. These uses include
identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-
cancerous disease states in lung, identifying lung tissue and monitoring and identifying
and/or designing agonists and antagonists of polypeptides of the invention. The uses also
include gene therapy, production of transgenic animals and cells, and production of
20 engineered lung tissue for treatment and research.

BACKGROUND OF THE INVENTION

Throughout the last hundred years, the incidence of lung cancer has steadily
increased, so much so that now in many countries, it is the most common cancer. In fact,
lung cancer is the second most prevalent type of cancer for both men and women in the
25 United States and is the most common cause of cancer death in both sexes. Lung cancer
deaths have increased ten-fold in both men and women since 1930, primarily due to an
increase in cigarette smoking, but also due to an increased exposure to arsenic, asbestos,
chromates, chloromethyl ethers, nickel, polycyclic aromatic hydrocarbons and other
agents. *See Scott, Lung Cancer: A Guide to Diagnosis and Treatment*, Addicus Books
30 (2000) and Alberg *et al.*, in Kane *et al.* (eds.) *Biology of Lung Cancer*, pp. 11-52, Marcel
Dekker, Inc. (1998). Lung cancer may result from a primary tumor originating in the

-2-

lung or a secondary tumor which has spread from another organ such as the bowel or breast. Although there are over a dozen types of lung cancer, over 90% fall into two categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). *See Scott, supra.* About 20-25% of all lung cancers are characterized as SCLC, while 70-80% are diagnosed as NSCLC. *Id.* A rare type of lung cancer is mesothelioma, which is generally caused by exposure to asbestos, and which affects the pleura of the lung. Lung cancer is usually diagnosed or screened for by chest x-ray, CAT scans, PET scans, or by sputum cytology. A diagnosis of lung cancer is usually confirmed by biopsy of the tissue. *Id.*

SCLC tumors are highly metastatic and grow quickly. By the time a patient has been diagnosed with SCLC, the cancer has usually already spread to other parts of the body, including lymph nodes, adrenals, liver, bone, brain and bone marrow. *See Scott, supra; Van Houtte et al. (eds.), Progress and Perspective in the Treatment of Lung Cancer, Springer-Verlag (1999).* Because the disease has usually spread to such an extent that surgery is not an option, the current treatment of choice is chemotherapy plus chest irradiation. *See Van Houtte, supra.* The stage of disease is a principal predictor of long-term survival. Less than 5% of patients with extensive disease that has spread beyond one lung and surrounding lymph nodes, live longer than two years. *Id.* However, the probability of five-year survival is three to four times higher if the disease is diagnosed and treated when it is still in a limited stage, i.e., not having spread beyond one lung. *Id.*

NSCLC is generally divided into three types: squamous cell carcinoma, adenocarcinoma and large cell carcinoma. Both squamous cell cancer and adenocarcinoma develop from the cells that line the airways; however, adenocarcinoma develops from the goblet cells that produce mucus. Large cell lung cancer has been thus named because the cells look large and rounded when viewed microscopically, and generally are considered relatively undifferentiated. *See Yesner, Atlas of Lung Cancer, Lippincott-Raven (1998).*

Secondary lung cancer is a cancer initiated elsewhere in the body that has spread to the lungs. Cancers that metastasize to the lung include, but are not limited to, breast cancer, melanoma, colon cancer and Hodgkin's lymphoma. Treatment for secondary lung cancer may depend upon the source of the original cancer. In other words, a lung

-3-

cancer that originated from breast cancer may be more responsive to breast cancer treatments and a lung cancer that originated from the colon cancer may be more responsive to colon cancer treatments.

The stage of a cancer indicates how far it has spread and is an important indicator 5 of the prognosis. In addition, staging is important because treatment is often decided according to the stage of a cancer. SCLC is divided into two stages: limited disease, *i.e.*, cancer that can only be seen in one lung and in nearby lymph nodes; and extensive disease, *i.e.*, cancer that has spread outside the lung to the chest or to other parts of the body. For most patients with SCLC, the disease has already progressed to lymph nodes 10 or elsewhere in the body at the time of diagnosis. *See Scott, supra.* Even if spreading is not apparent on the scans, it is likely that some cancer cells may have spread away and traveled through the bloodstream or lymph system. In general, chemotherapy with or without radiotherapy is often the preferred treatment. The initial scans and tests done at first will be used later to see how well a patient is responding to treatment.

15 In contrast, non-small cell cancer may be divided into four stages. Stage I is highly localized cancer with no cancer in the lymph nodes. Stage II cancer has spread to the lymph nodes at the top of the affected lung. Stage III cancer has spread near to where the cancer started. This can be to the chest wall, the covering of the lung (pleura), the middle of the chest (mediastinum) or other lymph nodes. Stage IV cancer has spread to 20 another part of the body. Stage I-III cancer is usually treated with surgery, with or without chemotherapy. Stage IV cancer is usually treated with chemotherapy and/or palliative care.

A number of chromosomal and genetic abnormalities have been observed in lung 25 cancer. In NSCLC, chromosomal aberrations have been described on 3p, 9p, 11p, 15p and 17p, and chromosomal deletions have been seen on chromosomes 7, 11, 13 and 19. *See Skarin (ed.), Multimodality Treatment of Lung Cancer, Marcel Dekker, Inc. (2000); Gemmill et al., pp. 465-502, in Kane, supra; Bailey-Wilson et al., pp. 53-98, in Kane, supra.* Chromosomal abnormalities have been described on 1p, 3p, 5q, 6q, 8q, 13q and 17p in SCLC. *Id.* The loss of the short arm of chromosome 3p has also been seen in 30 greater than 90% of SCLC tumors and approximately 50% of NSCLC tumors. *Id.*

A number of oncogenes and tumor suppressor genes have been implicated in lung cancer. *See Mabry, pp. 391-412, in Kane, supra and Sclafani et al., pp. 295-316, in*

-4-

Kane, *supra*. In both SCLC and NSCLC, the p53 tumor suppressor gene is mutated in over 50% of lung cancers. See Yesner, *supra*. Another tumor suppressor gene, FHIT, which is found on chromosome 3p, is mutated by tobacco smoke. *Id.*; Skarin, *supra*. In addition, more than 95% of SCLCs and approximately 20-60% of NSCLCs have an absent or abnormal retinoblastoma (Rb) protein, another tumor suppressor gene. The *ras* oncogene (particularly K-*ras*) is mutated in 20-30% of NSCLC specimens and the c-*erbB2* oncogene is expressed in 18% of stage 2 NSCLC and 60% of stage 4 NSCLC specimens. See Van Houtte, *supra*. Other tumor suppressor genes that are found in a region of chromosome 9, specifically in the region of 9p21, are deleted in many cancer cells, including p16^{INK4A} and p15^{INK4B}. See Bailey-Wilson, *supra*; Sclafani *et al.*, *supra*. These tumor suppressor genes may also be implicated in lung cancer pathogenesis.

In addition, many lung cancer cells produce growth factors that may act in an autocrine fashion on lung cancer cells. See Siegfried *et al.*, pp. 317-336, in Kane, *supra*; Moody, pp. 337-370, in Kane, *supra* and Heasley *et al.*, 371-390, in Kane, *supra*. In SCLC, many tumor cells produce gastrin-releasing peptide (GRP), which is a proliferative growth factor for these cells. See Skarin, *supra*. Many NSCLC tumors express epidermal growth factor (EGF) receptors, allowing NSCLC cells to proliferate in response to EGF. Insulin-like growth factor (IGF-I) is elevated in greater than 95% of SCLC and greater than 80% of NSCLC tumors; it is thought to function as an autocrine growth factor. *Id.* Finally, stem cell factor (SCF, also known as steel factor or kit ligand) and c-Kit (a proto-oncoprotein tyrosine kinase receptor for SCF) are both expressed at high levels in SCLC, and thus may form an autocrine loop that increases proliferation. *Id.*

Although the majority of lung cancer cases are attributable to cigarette smoking, most smokers do not develop lung cancer. Epidemiological evidence has suggested that susceptibility to lung cancer may be inherited in a Mendelian fashion, and thus have an inherited genetic component. Bailey-Wilson, *supra*. Thus, it is thought that certain allelic variants at some genetic loci may affect susceptibility to lung cancer. *Id.* One way to identify which allelic variants are likely to be involved in lung cancer susceptibility, as well as susceptibility to other diseases, is to look at allelic variants of genes that are highly expressed in lung.

The lung is susceptible to a number of other debilitating diseases as well, including, without limitation, emphysema, pneumonia, cystic fibrosis and asthma. *See* Stockley (ed.), Molecular Biology of the Lung, Volume I: Emphysema and Infection, Birkhauser Verlag (1999), hereafter Stockley I, and Stockley (ed.), Molecular Biology of the Lung, Volume II: Asthma and Cancer, Birkhauser Verlag (1999), hereafter Stockley II. The cause of many of these disorders is still not well understood and there are few, if any, good treatment options for many of these noncancerous lung disorders. Thus, there also remains a need for understanding of various noncancerous lung disorders and for identifying treatments for these diseases.

10 The development and differentiation of the lung tissue during embryonic development is also very important. All of the epithelial cells of the respiratory tract, including those of the lung and bronchi, are derived from the primitive endodermal cells that line the embryonic outpouching. *See* Yesner, *supra*. During embryonic development, multipotent endodermal stem cells differentiate into many different types of specialized cells, which include ciliated cells for moving inhaled particles, goblet cells for producing mucus, Kulchitsky's cells for endocrine function, and Clara cells and type II pneumocytes for secreting surfactant protein. *Id.* Improper development and differentiation may cause respiratory disorders and distress in infants, particularly in premature infants, whose lungs cannot produce sufficient surfactant when they are born.

15 Further, some lung cancer cells, particularly small cell carcinomas, appear multipotent, and can spontaneously differentiate into a number of cell types, including small cell carcinoma, adenocarcinoma and squamous cell carcinoma. *Id.* Thus, a better understanding of lung development and differentiation may help facilitate understanding of lung cancer initiation and progression.

20 Accordingly, there is a great need for more sensitive and accurate methods for predicting whether a person is likely to develop lung cancer, for diagnosing lung cancer, for monitoring the progression of the disease, for staging the lung cancer, for determining whether the lung cancer has metastasized and for imaging the lung cancer. There is also a need for better treatment of lung cancer. There is also a great need for diagnosing and

25 treating noncancerous lung disorders such as emphysema, pneumonia, lung infection, pulmonary fibrosis, cystic fibrosis and asthma. There is also a need for compositions and methods of using compositions that are capable of identifying lung tissue for forensic

purposes and for determining whether a particular cell or tissue exhibits lung-specific characteristics.

SUMMARY OF THE INVENTION

5 The present invention solves these and other needs in the art by providing nucleic acid molecules and polypeptides as well as antibodies, agonists and antagonists, thereto that may be used to identify, diagnose, monitor, stage, image and treat lung cancer and non-cancerous disease states in lung; identify and monitor lung tissue; and identify and design agonists and antagonists of polypeptides of the invention. The invention also
10 provides gene therapy, methods for producing transgenic animals and cells, and methods for producing engineered lung tissue for treatment and research.

Accordingly, one object of the invention is to provide nucleic acid molecules that are specific to lung cells, lung tissue and/or the lung organ. These lung specific nucleic acids (LSNAs) may be a naturally-occurring cDNA, genomic DNA, RNA, or a fragment
15 of one of these nucleic acids, or may be a non-naturally-occurring nucleic acid molecule. If the LSNA is genomic DNA, then the LSNA is a lung specific gene (LSG). In a preferred embodiment, the nucleic acid molecule encodes a polypeptide that is specific to lung. In a more preferred embodiment, the nucleic acid molecule encodes a polypeptide that comprises an amino acid sequence of SEQ ID NO: 165 through 284. In another
20 highly preferred embodiment, the nucleic acid molecule comprises a nucleic acid sequence of SEQ ID NO: 1 through 164. By nucleic acid molecule, it is also meant to be inclusive of sequences that selectively hybridize or exhibit substantial sequence similarity to a nucleic acid molecule encoding an LSP, or that selectively hybridize or exhibit substantial sequence similarity to an LSNA, as well as allelic variants of a nucleic
25 acid molecule encoding an LSP, and allelic variants of an LSNA. Nucleic acid molecules comprising a part of a nucleic acid sequence that encodes an LSP or that comprises a part of a nucleic acid sequence of an LSNA are also provided.

A related object of the present invention is to provide a nucleic acid molecule comprising one or more expression control sequences controlling the transcription and/or
30 translation of all or a part of an LSNA. In a preferred embodiment, the nucleic acid molecule comprises one or more expression control sequences controlling the

transcription and/or translation of a nucleic acid molecule that encodes all or a fragment of an LSP.

Another object of the invention is to provide vectors and/or host cells comprising a nucleic acid molecule of the instant invention. In a preferred embodiment, the nucleic acid molecule encodes all or a fragment of an LSP. In another preferred embodiment, the nucleic acid molecule comprises all or a part of an LSNA.

Another object of the invention is to provided methods for using the vectors and host cells comprising a nucleic acid molecule of the instant invention to recombinantly produce polypeptides of the invention.

10 Another object of the invention is to provide a polypeptide encoded by a nucleic acid molecule of the invention. In a preferred embodiment, the polypeptide is an LSP. The polypeptide may comprise either a fragment or a full-length protein as well as a mutant protein (mutein), fusion protein, homologous protein or a polypeptide encoded by an allelic variant of an LSP.

15 Another object of the invention is to provide an antibody that specifically binds to a polypeptide of the instant invention..

Another object of the invention is to provide agonists and antagonists of the nucleic acid molecules and polypeptides of the instant invention.

Another object of the invention is to provide methods for using the nucleic acid molecules to detect or amplify nucleic acid molecules that have similar or identical nucleic acid sequences compared to the nucleic acid molecules described herein. In a preferred embodiment, the invention provides methods of using the nucleic acid molecules of the invention for identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung. In another preferred embodiment, the invention provides methods of using the nucleic acid molecules of the invention for identifying and/or monitoring lung tissue. The nucleic acid molecules of the instant invention may also be used in gene therapy, for producing transgenic animals and cells, and for producing engineered lung tissue for treatment and research.

The polypeptides and/or antibodies of the instant invention may also be used to identify, diagnose, monitor, stage, image and treat lung cancer and non-cancerous disease states in lung. The invention provides methods of using the polypeptides of the invention to identify and/or monitor lung tissue, and to produce engineered lung tissue.

The agonists and antagonists of the instant invention may be used to treat lung cancer and non-cancerous disease states in lung and to produce engineered lung tissue.

Yet another object of the invention is to provide a computer readable means of storing the nucleic acid and amino acid sequences of the invention. The records of the 5 computer readable means can be accessed for reading and displaying of sequences for comparison, alignment and ordering of the sequences of the invention to other sequences.

DETAILED DESCRIPTION OF THE INVENTION

Definitions and General Techniques

Unless otherwise defined herein, scientific and technical terms used in connection 10 with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid 15 chemistry and hybridization described herein are those well-known and commonly used in the art. The methods and techniques of the present invention are generally performed according to conventional methods well-known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook *et al.*, Molecular Cloning: 20 A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press (1989) and Sambrook *et al.*, Molecular Cloning: A Laboratory Manual, 3d ed., Cold Spring Harbor Press (2001); Ausubel *et al.*, Current Protocols in Molecular Biology, Greene Publishing Associates (1992, and Supplements to 2000); Ausubel *et al.*, Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular 25 Biology – 4th Ed., Wiley & Sons (1999); Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1990); and Harlow and Lane, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1999); each of which is incorporated herein by reference in its entirety.

Enzymatic reactions and purification techniques are performed according to 30 manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and

pharmaceutical chemistry described herein are those well-known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.

The following terms, unless otherwise indicated, shall be understood to have the
5 following meanings:

A "nucleic acid molecule" of this invention refers to a polymeric form of nucleotides and includes both sense and antisense strands of RNA, cDNA, genomic DNA, and synthetic forms and mixed polymers of the above. A nucleotide refers to a ribonucleotide, deoxynucleotide or a modified form of either type of nucleotide. A
10 "nucleic acid molecule" as used herein is synonymous with "nucleic acid" and "polynucleotide." The term "nucleic acid molecule" usually refers to a molecule of at least 10 bases in length, unless otherwise specified. The term includes single- and double-stranded forms of DNA. In addition, a polynucleotide may include either or both naturally-occurring and modified nucleotides linked together by naturally-occurring
15 and/or non-naturally occurring nucleotide linkages.

The nucleic acid molecules may be modified chemically or biochemically or may contain non-natural or derivatized nucleotide bases, as will be readily appreciated by those of skill in the art. Such modifications include, for example, labels, methylation, substitution of one or more of the naturally occurring nucleotides with an analog,
20 internucleotide modifications such as uncharged linkages (*e.g.*, methyl phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged linkages (*e.g.*, phosphorothioates, phosphorodithioates, etc.), pendent moieties (*e.g.*, polypeptides), intercalators (*e.g.*, acridine, psoralen, etc.), chelators, alkylators, and modified linkages (*e.g.*, alpha anomeric nucleic acids, etc.) The term "nucleic acid molecule" also includes
25 any topological conformation, including single-stranded, double-stranded, partially duplexed, triplexed, hairpinned, circular and padlocked conformations. Also included are synthetic molecules that mimic polynucleotides in their ability to bind to a designated sequence via hydrogen bonding and other chemical interactions. Such molecules are known in the art and include, for example, those in which peptide linkages substitute for
30 phosphate linkages in the backbone of the molecule.

A "gene" is defined as a nucleic acid molecule that comprises a nucleic acid sequence that encodes a polypeptide and the expression control sequences that surround

-10-

the nucleic acid sequence that encodes the polypeptide. For instance, a gene may comprise a promoter, one or more enhancers, a nucleic acid sequence that encodes a polypeptide, downstream regulatory sequences and, possibly, other nucleic acid sequences involved in regulation of the expression of an RNA. As is well-known in the
5 art, eukaryotic genes usually contain both exons and introns. The term "exon" refers to a nucleic acid sequence found in genomic DNA that is bioinformatically predicted and/or experimentally confirmed to contribute a contiguous sequence to a mature mRNA transcript. The term "intron" refers to a nucleic acid sequence found in genomic DNA that is predicted and/or confirmed to not contribute to a mature mRNA transcript, but
10 rather to be "spliced out" during processing of the transcript.

A nucleic acid molecule or polypeptide is "derived" from a particular species if the nucleic acid molecule or polypeptide has been isolated from the particular species, or if the nucleic acid molecule or polypeptide is homologous to a nucleic acid molecule or polypeptide isolated from a particular species.

15 An "isolated" or "substantially pure" nucleic acid or polynucleotide (*e.g.*, an RNA, DNA or a mixed polymer) is one which is substantially separated from other cellular components that naturally accompany the native polynucleotide in its natural host cell, *e.g.*, ribosomes, polymerases, or genomic sequences with which it is naturally associated. The term embraces a nucleic acid or polynucleotide that (1) has been
20 removed from its naturally occurring environment, (2) is not associated with all or a portion of a polynucleotide in which the "isolated polynucleotide" is found in nature, (3) is operatively linked to a polynucleotide which it is not linked to in nature, (4) does not occur in nature as part of a larger sequence or (5) includes nucleotides or internucleoside bonds that are not found in nature. The term "isolated" or "substantially pure" also can
25 be used in reference to recombinant or cloned DNA isolates, chemically synthesized polynucleotide analogs, or polynucleotide analogs that are biologically synthesized by heterologous systems. The term "isolated nucleic acid molecule" includes nucleic acid molecules that are integrated into a host cell chromosome at a heterologous site, recombinant fusions of a native fragment to a heterologous sequence, recombinant
30 vectors present as episomes or as integrated into a host cell chromosome.

A "part" of a nucleic acid molecule refers to a nucleic acid molecule that comprises a partial contiguous sequence of at least 10 bases of the reference nucleic acid

-11-

molecule. Preferably, a part comprises at least 15 to 20 bases of a reference nucleic acid molecule. In theory, a nucleic acid sequence of 17 nucleotides is of sufficient length to occur at random less frequently than once in the three gigabase human genome, and thus to provide a nucleic acid probe that can uniquely identify the reference sequence in a

5 nucleic acid mixture of genomic complexity. A preferred part is one that comprises a nucleic acid sequence that can encode at least 6 contiguous amino acid sequences (fragments of at least 18 nucleotides) because they are useful in directing the expression or synthesis of peptides that are useful in mapping the epitopes of the polypeptide encoded by the reference nucleic acid. *See, e.g., Geysen et al., Proc. Natl. Acad. Sci.*

10 USA 81:3998-4002 (1984); and United States Patent Nos. 4,708,871 and 5,595,915, the disclosures of which are incorporated herein by reference in their entireties. A part may also comprise at least 25, 30, 35 or 40 nucleotides of a reference nucleic acid molecule, or at least 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 or 500 nucleotides of a reference nucleic acid molecule. A part of a nucleic acid molecule may comprise no other

15 nucleic acid sequences. Alternatively, a part of a nucleic acid may comprise other nucleic acid sequences from other nucleic acid molecules.

The term "oligonucleotide" refers to a nucleic acid molecule generally comprising a length of 200 bases or fewer. The term often refers to single-stranded deoxyribonucleotides, but it can refer as well to single- or double-stranded

20 ribonucleotides, RNA:DNA hybrids and double-stranded DNAs, among others. Preferably, oligonucleotides are 10 to 60 bases in length and most preferably 12, 13, 14, 15, 16, 17, 18, 19 or 20 bases in length. Other preferred oligonucleotides are 25, 30, 35, 40, 45, 50, 55 or 60 bases in length. Oligonucleotides may be single-stranded, *e.g.* for use as probes or primers, or may be double-stranded, *e.g.* for use in the construction of a

25 mutant gene. Oligonucleotides of the invention can be either sense or antisense oligonucleotides. An oligonucleotide can be derivatized or modified as discussed above for nucleic acid molecules.

Oligonucleotides, such as single-stranded DNA probe oligonucleotides, often are synthesized by chemical methods, such as those implemented on automated

30 oligonucleotide synthesizers. However, oligonucleotides can be made by a variety of other methods, including *in vitro* recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms. Initially, chemically synthesized DNAs

-12-

typically are obtained without a 5' phosphate. The 5' ends of such oligonucleotides are not substrates for phosphodiester bond formation by ligation reactions that employ DNA ligases typically used to form recombinant DNA molecules. Where ligation of such oligonucleotides is desired, a phosphate can be added by standard techniques, such as

5 those that employ a kinase and ATP. The 3' end of a chemically synthesized oligonucleotide generally has a free hydroxyl group and, in the presence of a ligase, such as T4 DNA ligase, readily will form a phosphodiester bond with a 5' phosphate of another polynucleotide, such as another oligonucleotide. As is well-known, this reaction can be prevented selectively, where desired, by removing the 5' phosphates of the other

10 polynucleotide(s) prior to ligation.

The term "naturally-occurring nucleotide" referred to herein includes naturally-occurring deoxyribonucleotides and ribonucleotides. The term "modified nucleotides" referred to herein includes nucleotides with modified or substituted sugar groups and the like. The term "nucleotide linkages" referred to herein includes nucleotides linkages

15 such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranimidate, and the like. See e.g., LaPlanche *et al.* *Nucl. Acids Res.* 14:9081-9093 (1986); Stein *et al.* *Nucl. Acids Res.* 16:3209-3221 (1988); Zon *et al.* *Anti-Cancer Drug Design* 6:539-568 (1991); Zon *et al.*, in Eckstein (ed.) Oligonucleotides and Analogues: A Practical

20 Approach, pp. 87-108, Oxford University Press (1991); United States Patent No. 5,151,510; Uhlmann and Peyman *Chemical Reviews* 90:543 (1990), the disclosures of which are hereby incorporated by reference.

Unless specified otherwise, the left hand end of a polynucleotide sequence in sense orientation is the 5' end and the right hand end of the sequence is the 3' end. In

25 addition, the left hand direction of a polynucleotide sequence in sense orientation is referred to as the 5' direction, while the right hand direction of the polynucleotide sequence is referred to as the 3' direction. Further, unless otherwise indicated, each nucleotide sequence is set forth herein as a sequence of deoxyribonucleotides. It is intended, however, that the given sequence be interpreted as would be appropriate to the

30 polynucleotide composition: for example, if the isolated nucleic acid is composed of RNA, the given sequence intends ribonucleotides, with uridine substituted for thymidine.

The term "allelic variant" refers to one of two or more alternative naturally-occurring forms of a gene, wherein each gene possesses a unique nucleotide sequence. In a preferred embodiment, different alleles of a given gene have similar or identical biological properties.

5 The term "percent sequence identity" in the context of nucleic acid sequences refers to the residues in two sequences which are the same when aligned for maximum correspondence. The length of sequence identity comparison may be over a stretch of at least about nine nucleotides, usually at least about 20 nucleotides, more usually at least about 24 nucleotides, typically at least about 28 nucleotides, more typically at least about

10 32 nucleotides, and preferably at least about 36 or more nucleotides. There are a number of different algorithms known in the art which can be used to measure nucleotide sequence identity. For instance, polynucleotide sequences can be compared using FASTA, Gap or Bestfit, which are programs in Wisconsin Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisconsin. FASTA, which includes, e.g.,

15 the programs FASTA2 and FASTA3, provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson, *Methods Enzymol.* 183: 63-98 (1990); Pearson, *Methods Mol. Biol.* 132: 185-219 (2000); Pearson, *Methods Enzymol.* 266: 227-258 (1996); Pearson, *J. Mol. Biol.* 276: 71-84 (1998); herein incorporated by reference). Unless otherwise specified, default

20 parameters for a particular program or algorithm are used. For instance, percent sequence identity between nucleic acid sequences can be determined using FASTA with its default parameters (a word size of 6 and the NOPAM factor for the scoring matrix) or using Gap with its default parameters as provided in GCG Version 6.1, herein incorporated by reference.

25 A reference to a nucleic acid sequence encompasses its complement unless otherwise specified. Thus, a reference to a nucleic acid molecule having a particular sequence should be understood to encompass its complementary strand, with its complementary sequence. The complementary strand is also useful, e.g., for antisense therapy, hybridization probes and PCR primers.

30 In the molecular biology art, researchers use the terms "percent sequence identity", "percent sequence similarity" and "percent sequence homology"

-14-

interchangeably. In this application, these terms shall have the same meaning with respect to nucleic acid sequences only.

The term "substantial similarity" or "substantial sequence similarity," when referring to a nucleic acid or fragment thereof, indicates that, when optimally aligned 5 with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 50%, more preferably 60% of the nucleotide bases, usually at least about 70%, more usually at least about 80%, preferably at least about 90%, and more preferably at least about 95-98% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, 10 such as FASTA, BLAST or Gap, as discussed above.

Alternatively, substantial similarity exists when a nucleic acid or fragment thereof hybridizes to another nucleic acid, to a strand of another nucleic acid, or to the complementary strand thereof, under selective hybridization conditions. Typically, 15 selective hybridization will occur when there is at least about 55% sequence identity, preferably at least about 65%, more preferably at least about 75%, and most preferably at least about 90% sequence identity, over a stretch of at least about 14 nucleotides, more preferably at least 17 nucleotides, even more preferably at least 20, 25, 30, 35, 40, 50, 60, 70, 80, 90 or 100 nucleotides.

Nucleic acid hybridization will be affected by such conditions as salt 20 concentration, temperature, solvents, the base composition of the hybridizing species, length of the complementary regions, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. "Stringent hybridization conditions" and "stringent wash conditions" in the context of nucleic acid hybridization experiments depend upon a number of different 25 physical parameters. The most important parameters include temperature of hybridization, base composition of the nucleic acids, salt concentration and length of the nucleic acid. One having ordinary skill in the art knows how to vary these parameters to achieve a particular stringency of hybridization. In general, "stringent hybridization" is performed at about 25°C below the thermal melting point (T_m) for the specific DNA 30 hybrid under a particular set of conditions. "Stringent washing" is performed at temperatures about 5°C lower than the T_m for the specific DNA hybrid under a particular set of conditions. The T_m is the temperature at which 50% of the target sequence

-15-

hybridizes to a perfectly matched probe. See Sambrook (1989), *supra*, p. 9.51, hereby incorporated by reference.

The T_m for a particular DNA-DNA hybrid can be estimated by the formula:

$$T_m = 81.5^\circ\text{C} + 16.6 (\log_{10}[\text{Na}^+]) + 0.41 \text{ (fraction G + C)} - 0.63 \text{ (% formamide)} - (600/l)$$

5 where l is the length of the hybrid in base pairs.

The T_m for a particular RNA-RNA hybrid can be estimated by the formula:

$$T_m = 79.8^\circ\text{C} + 18.5 (\log_{10}[\text{Na}^+]) + 0.58 \text{ (fraction G + C)} + 11.8 \text{ (fraction G + C)}^2 - 0.35 \text{ (% formamide)} - (820/l).$$

The T_m for a particular RNA-DNA hybrid can be estimated by the formula:

10 $T_m = 79.8^\circ\text{C} + 18.5 (\log_{10}[\text{Na}^+]) + 0.58 \text{ (fraction G + C)} + 11.8 \text{ (fraction G + C)}^2 - 0.50 \text{ (% formamide)} - (820/l).$

In general, the T_m decreases by 1-1.5°C for each 1% of mismatch between two nucleic acid sequences. Thus, one having ordinary skill in the art can alter hybridization and/or washing conditions to obtain sequences that have higher or lower degrees of sequence identity to the target nucleic acid. For instance, to obtain hybridizing nucleic acids that contain up to 10% mismatch from the target nucleic acid sequence, 10-15°C would be subtracted from the calculated T_m of a perfectly matched hybrid, and then the hybridization and washing temperatures adjusted accordingly. Probe sequences may also hybridize specifically to duplex DNA under certain conditions to form triplex or other higher order DNA complexes. The preparation of such probes and suitable hybridization conditions are well-known in the art.

An example of stringent hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or Northern blot or for screening a library is 50% formamide/6X SSC at 42°C for at least ten hours and preferably overnight (approximately 16 hours). Another example of stringent hybridization conditions is 6X SSC at 68°C without formamide for at least ten hours and preferably overnight. An example of moderate stringency hybridization conditions is 6X SSC at 55°C without formamide for at least ten hours and preferably overnight. An example of low stringency hybridization conditions 30 for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or Northern blot or for screening a library is 6X SSC at 42°C for at least ten hours. Hybridization conditions to identify

-16-

nucleic acid sequences that are similar but not identical can be identified by experimentally changing the hybridization temperature from 68°C to 42°C while keeping the salt concentration constant (6X SSC), or keeping the hybridization temperature and salt concentration constant (e.g. 42°C and 6X SSC) and varying the formamide concentration from 50% to 0%. Hybridization buffers may also include blocking agents to lower background. These agents are well-known in the art. *See Sambrook et al.* (1989), *supra*, pages 8.46 and 9.46-9.58, herein incorporated by reference. *See also Ausubel (1992), supra, Ausubel (1999), supra, and Sambrook (2001), supra.*

Wash conditions also can be altered to change stringency conditions. An example 10 of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (*see Sambrook (1989), supra*, for SSC buffer). Often the high stringency wash is preceded by a low stringency wash to remove excess probe. An exemplary medium stringency wash for duplex DNA of more than 100 base pairs is 1x SSC at 45°C for 15 minutes. An exemplary low stringency wash for such a duplex is 4x SSC at 40°C for 15 minutes. In 15 general, signal-to-noise ratio of 2x or higher than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization.

As defined herein, nucleic acid molecules that do not hybridize to each other under stringent conditions are still substantially similar to one another if they encode polypeptides that are substantially identical to each other. This occurs, for example, 20 when a nucleic acid molecule is created synthetically or recombinantly using high codon degeneracy as permitted by the redundancy of the genetic code.

Hybridization conditions for nucleic acid molecules that are shorter than 100 nucleotides in length (e.g., for oligonucleotide probes) may be calculated by the formula: $T_m = 81.5^\circ\text{C} + 16.6(\log_{10}[\text{Na}^+]) + 0.41(\text{fraction G+C}) - (600/N)$, 25 wherein N is change length and the $[\text{Na}^+]$ is 1 M or less. *See Sambrook (1989), supra*, p. 11.46. For hybridization of probes shorter than 100 nucleotides, hybridization is usually performed under stringent conditions (5-10°C below the T_m) using high concentrations (0.1-1.0 pmol/ml) of probe. *Id.* at p. 11.45. Determination of hybridization using mismatched probes, pools of degenerate probes or "guessmers," as well as hybridization 30 solutions and methods for empirically determining hybridization conditions are well-known in the art. *See, e.g., Ausubel (1999), supra; Sambrook (1989), supra*, pp. 11.45-11.57.

The term "digestion" or "digestion of DNA" refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes referred to herein are commercially available and their reaction conditions, cofactors and other requirements for use are known and routine to the skilled artisan. For analytical purposes, typically, 1 µg of plasmid or DNA fragment is digested with about 2 units of enzyme in about 20 µl of reaction buffer. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 µg of DNA are digested with 20 to 250 units of enzyme in proportionately larger volumes. Appropriate buffers and substrate amounts for particular restriction enzymes are described in standard laboratory manuals, such as those referenced below, and they are specified by commercial suppliers. Incubation times of about 1 hour at 37°C are ordinarily used, but conditions may vary in accordance with standard procedures, the supplier's instructions and the particulars of the reaction. After digestion, reactions may be analyzed, and fragments may be purified by electrophoresis through an agarose or polyacrylamide gel, using well-known methods that are routine for those skilled in the art.

The term "ligation" refers to the process of forming phosphodiester bonds between two or more polynucleotides, which most often are double-stranded DNAs. Techniques for ligation are well-known to the art and protocols for ligation are described in standard laboratory manuals and references, such as, e.g., Sambrook (1989), *supra*.

Genome-derived "single exon probes," are probes that comprise at least part of an exon ("reference exon") and can hybridize detectably under high stringency conditions to transcript-derived nucleic acids that include the reference exon but do not hybridize detectably under high stringency conditions to nucleic acids that lack the reference exon. Single exon probes typically further comprise, contiguous to a first end of the exon portion, a first intronic and/or intergenic sequence that is identically contiguous to the exon in the genome, and may contain a second intronic and/or intergenic sequence that is identically contiguous to the exon in the genome. The minimum length of genome-derived single exon probes is defined by the requirement that the exonic portion be of sufficient length to hybridize under high stringency conditions to transcript-derived nucleic acids, as discussed above. The maximum length of genome-derived single exon probes is defined by the requirement that the probes contain portions of no more than one

exon. The single exon probes may contain priming sequences not found in contiguity with the rest of the probe sequence in the genome, which priming sequences are useful for PCR and other amplification-based technologies.

The term "microarray" or "nucleic acid microarray" refers to a substrate-bound collection of plural nucleic acids, hybridization to each of the plurality of bound nucleic acids being separately detectable. The substrate can be solid or porous, planar or non-planar, unitary or distributed. Microarrays or nucleic acid microarrays include all the devices so called in Schena (ed.), DNA Microarrays: A Practical Approach (Practical Approach Series), Oxford University Press (1999); *Nature Genet.* 21(1)(suppl.):1 - 60 (1999); Schena (ed.), Microarray Biochip: Tools and Technology, Eaton Publishing Company/BioTechniques Books Division (2000). These microarrays include substrate-bound collections of plural nucleic acids in which the plurality of nucleic acids are disposed on a plurality of beads, rather than on a unitary planar substrate, as is described, *inter alia*, in Brenner *et al.*, *Proc. Natl. Acad. Sci. USA* 97(4):1665-1670 (2000).

The term "mutated" when applied to nucleic acid molecules means that nucleotides in the nucleic acid sequence of the nucleic acid molecule may be inserted, deleted or changed compared to a reference nucleic acid sequence. A single alteration may be made at a locus (a point mutation) or multiple nucleotides may be inserted, deleted or changed at a single locus. In addition, one or more alterations may be made at any number of loci within a nucleic acid sequence. In a preferred embodiment, the nucleic acid molecule comprises the wild type nucleic acid sequence encoding an LSP or is an LSNA. The nucleic acid molecule may be mutated by any method known in the art including those mutagenesis techniques described *infra*.

The term "error-prone PCR" refers to a process for performing PCR under conditions where the copying fidelity of the DNA polymerase is low, such that a high rate of point mutations is obtained along the entire length of the PCR product. See, e.g., Leung *et al.*, *Technique* 1: 11-15 (1989) and Caldwell *et al.*, *PCR Methods Applic.* 2: 28-33 (1992).

The term "oligonucleotide-directed mutagenesis" refers to a process which enables the generation of site-specific mutations in any cloned DNA segment of interest. See, e.g., Reidhaar-Olson *et al.*, *Science* 241: 53-57 (1988).

The term "assembly PCR" refers to a process which involves the assembly of a PCR product from a mixture of small DNA fragments. A large number of different PCR reactions occur in parallel in the same vial, with the products of one reaction priming the products of another reaction.

5 The term "sexual PCR mutagenesis" or "DNA shuffling" refers to a method of error-prone PCR coupled with forced homologous recombination between DNA molecules of different but highly related DNA sequence *in vitro*, caused by random fragmentation of the DNA molecule based on sequence similarity, followed by fixation of the crossover by primer extension in an error-prone PCR reaction. *See, e.g.,* Stemmer,
10 *Proc. Natl. Acad. Sci. U.S.A.* 91: 10747-10751 (1994). DNA shuffling can be carried out between several related genes ("Family shuffling").

The term "*in vivo* mutagenesis" refers to a process of generating random mutations in any cloned DNA of interest which involves the propagation of the DNA in a strain of bacteria such as *E. coli* that carries mutations in one or more of the DNA repair
15 pathways. These "mutator" strains have a higher random mutation rate than that of a wild-type parent. Propagating the DNA in a mutator strain will eventually generate random mutations within the DNA.

The term "cassette mutagenesis" refers to any process for replacing a small region of a double-stranded DNA molecule with a synthetic oligonucleotide "cassette" that
20 differs from the native sequence. The oligonucleotide often contains completely and/or partially randomized native sequence.

The term "recursive ensemble mutagenesis" refers to an algorithm for protein engineering (protein mutagenesis) developed to produce diverse populations of phenotypically related mutants whose members differ in amino acid sequence. This
25 method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis. *See, e.g.,* Arkin *et al.*, *Proc. Natl. Acad. Sci. U.S.A.* 89: 7811-7815 (1992).

The term "exponential ensemble mutagenesis" refers to a process for generating combinatorial libraries with a high percentage of unique and functional mutants, wherein
30 small groups of residues are randomized in parallel to identify, at each altered position, amino acids which lead to functional proteins. *See, e.g.,* Delegrave *et al.*, *Biotechnology Research* 11: 1548-1552 (1993); Arnold, *Current Opinion in Biotechnology* 4: 450-455

-20-

(1993). Each of the references mentioned above are hereby incorporated by reference in its entirety.

“Operatively linked” expression control sequences refers to a linkage in which the expression control sequence is contiguous with the gene of interest to control the gene of interest, as well as expression control sequences that act in *trans* or at a distance to control the gene of interest.

The term “expression control sequence” as used herein refers to polynucleotide sequences which are necessary to affect the expression of coding sequences to which they are operatively linked. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Expression control sequences include appropriate transcription initiation, termination, promoter and enhancer sequences; efficient RNA processing signals such as splicing and polyadenylation signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance translation efficiency (*e.g.*, ribosome binding sites); sequences that enhance protein stability; and when desired, sequences that enhance protein secretion. The nature of such control sequences differs depending upon the host organism; in prokaryotes, such control sequences generally include the promoter, ribosomal binding site, and transcription termination sequence. The term “control sequences” is intended to include, at a minimum, all components whose presence is essential for expression, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.

The term “vector,” as used herein, is intended to refer to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double-stranded DNA loop into which additional DNA segments may be ligated. Other vectors include cosmids, bacterial artificial chromosomes (BAC) and yeast artificial chromosomes (YAC). Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome. Viral vectors that infect bacterial cells are referred to as bacteriophages. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (*e.g.*, bacterial vectors having a bacterial origin of replication). Other vectors can be integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable

of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply, "expression vectors"). In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" may 5 be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include other forms of expression vectors that serve equivalent functions.

The term "recombinant host cell" (or simply "host cell"), as used herein, is intended to refer to a cell into which an expression vector has been introduced. It should 10 be understood that such terms are intended to refer not only to the particular subject cell but to the progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term "host cell" as used herein.

15 As used herein, the phrase "open reading frame" and the equivalent acronym "ORF" refer to that portion of a transcript-derived nucleic acid that can be translated in its entirety into a sequence of contiguous amino acids. As so defined, an ORF has length, measured in nucleotides, exactly divisible by 3. As so defined, an ORF need not encode the entirety of a natural protein.

20 As used herein, the phrase "ORF-encoded peptide" refers to the predicted or actual translation of an ORF.

As used herein, the phrase "degenerate variant" of a reference nucleic acid sequence intends all nucleic acid sequences that can be directly translated, using the standard genetic code, to provide an amino acid sequence identical to that translated from 25 the reference nucleic acid sequence.

The term "polypeptide" encompasses both naturally-occurring and non-naturally-occurring proteins and polypeptides, polypeptide fragments and polypeptide mutants, derivatives and analogs. A polypeptide may be monomeric or polymeric. Further, a polypeptide may comprise a number of different modules within a single polypeptide 30 each of which has one or more distinct activities. A preferred polypeptide in accordance with the invention comprises an LSP encoded by a nucleic acid molecule of the instant invention, as well as a fragment, mutant, analog and derivative thereof.

The term "isolated protein" or "isolated polypeptide" is a protein or polypeptide that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is free of other proteins from the same species (3) is expressed by a cell from a different species, or (4) does not occur in nature. Thus, a polypeptide that is chemically synthesized or synthesized in a cellular system different from the cell from which it naturally originates will be "isolated" from its naturally associated components. A polypeptide or protein may also be rendered substantially free of naturally associated components by isolation, using protein purification techniques well-known in the art.

A protein or polypeptide is "substantially pure," "substantially homogeneous" or "substantially purified" when at least about 60% to 75% of a sample exhibits a single species of polypeptide. The polypeptide or protein may be monomeric or multimeric. A substantially pure polypeptide or protein will typically comprise about 50%, 60%, 70%, 80% or 90% W/W of a protein sample, more usually about 95%, and preferably will be over 99% pure. Protein purity or homogeneity may be indicated by a number of means well-known in the art, such as polyacrylamide gel electrophoresis of a protein sample, followed by visualizing a single polypeptide band upon staining the gel with a stain well-known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well-known in the art for purification.

The term "polypeptide fragment" as used herein refers to a polypeptide of the instant invention that has an amino-terminal and/or carboxy-terminal deletion compared to a full-length polypeptide. In a preferred embodiment, the polypeptide fragment is a contiguous sequence in which the amino acid sequence of the fragment is identical to the corresponding positions in the naturally-occurring sequence. Fragments typically are at least 5, 6, 7, 8, 9 or 10 amino acids long, preferably at least 12, 14, 16 or 18 amino acids long, more preferably at least 20 amino acids long, more preferably at least 25, 30, 35, 40 or 45, amino acids, even more preferably at least 50 or 60 amino acids long, and even more preferably at least 70 amino acids long.

A "derivative" refers to polypeptides or fragments thereof that are substantially similar in primary structural sequence but which include, e.g., *in vivo* or *in vitro* chemical and biochemical modifications that are not found in the native polypeptide. Such modifications include, for example, acetylation, acylation, ADP-ribosylation, amidation,

-23-

covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of 5 cystine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. Other modification include, *e.g.*, labeling with 10 radionuclides, and various enzymatic modifications, as will be readily appreciated by those skilled in the art. A variety of methods for labeling polypeptides and of substituents or labels useful for such purposes are well-known in the art, and include radioactive isotopes such as ^{125}I , ^{32}P , ^{35}S , and ^3H , ligands which bind to labeled antiligands (*e.g.*, antibodies), fluorophores, chemiluminescent agents, enzymes, and 15 antiligands which can serve as specific binding pair members for a labeled ligand. The choice of label depends on the sensitivity required, ease of conjugation with the primer, stability requirements, and available instrumentation. Methods for labeling polypeptides are well-known in the art. *See Ausubel (1992), supra; Ausubel (1999), supra, herein incorporated by reference.*

20 The term “fusion protein” refers to polypeptides of the instant invention comprising polypeptides or fragments coupled to heterologous amino acid sequences. Fusion proteins are useful because they can be constructed to contain two or more desired functional elements from two or more different proteins. A fusion protein comprises at least 10 contiguous amino acids from a polypeptide of interest, more 25 preferably at least 20 or 30 amino acids, even more preferably at least 40, 50 or 60 amino acids, yet more preferably at least 75, 100 or 125 amino acids. Fusion proteins can be produced recombinantly by constructing a nucleic acid sequence which encodes the polypeptide or a fragment thereof in frame with a nucleic acid sequence encoding a different protein or peptide and then expressing the fusion protein. Alternatively, a 30 fusion protein can be produced chemically by crosslinking the polypeptide or a fragment thereof to another protein.

The term "analog" refers to both polypeptide analogs and non-peptide analogs. The term "polypeptide analog" as used herein refers to a polypeptide of the instant invention that is comprised of a segment of at least 25 amino acids that has substantial identity to a portion of an amino acid sequence but which contains non-natural amino acids or non-natural inter-residue bonds. In a preferred embodiment, the analog has the same or similar biological activity as the native polypeptide. Typically, polypeptide analogs comprise a conservative amino acid substitution (or insertion or deletion) with respect to the naturally-occurring sequence. Analogs typically are at least 20 amino acids long, preferably at least 50 amino acids long or longer, and can often be as long as a full-length naturally-occurring polypeptide.

The term "non-peptide analog" refers to a compound with properties that are analogous to those of a reference polypeptide of the instant invention. A non-peptide compound may also be termed a "peptide mimetic" or a "peptidomimetic." Such compounds are often developed with the aid of computerized molecular modeling.

Peptide mimetics that are structurally similar to useful peptides may be used to produce an equivalent effect. Generally, peptidomimetics are structurally similar to a paradigm polypeptide (*i.e.*, a polypeptide that has a desired biochemical property or pharmacological activity), but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: --CH₂NH--, --CH₂S--, --CH₂-CH₂--,

--CH=CH--(cis and trans), --COCH₂--, --CH(OH)CH₂--, and --CH₂SO--, by methods well-known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (*e.g.*, D-lysine in place of L-lysine) may also be used to generate more stable peptides. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (*Rizo et al., Ann. Rev. Biochem.* 61:387-418 (1992), incorporated herein by reference). For example, one may add internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.

A "polypeptide mutant" or "mutein" refers to a polypeptide of the instant invention whose sequence contains substitutions, insertions or deletions of one or more amino acids compared to the amino acid sequence of a native or wild-type protein. A mutein may have one or more amino acid point substitutions, in which a single amino

-25-

acid at a position has been changed to another amino acid, one or more insertions and/or deletions, in which one or more amino acids are inserted or deleted, respectively, in the sequence of the naturally-occurring protein, and/or truncations of the amino acid sequence at either or both the amino or carboxy termini. Further, a mutein may have the 5 same or different biological activity as the naturally-occurring protein. For instance, a mutein may have an increased or decreased biological activity. A mutein has at least 50% sequence similarity to the wild type protein, preferred is 60% sequence similarity, more preferred is 70% sequence similarity. Even more preferred are muteins having 80%, 85% or 90% sequence similarity to the wild type protein. In an even more 10 preferred embodiment, a mutein exhibits 95% sequence identity, even more preferably 97%, even more preferably 98% and even more preferably 99%. Sequence similarity may be measured by any common sequence analysis algorithm, such as Gap or Bestfit.

Preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming 15 protein complexes, (4) alter binding affinity or enzymatic activity, and (5) confer or modify other physicochemical or functional properties of such analogs. For example, single or multiple amino acid substitutions (preferably conservative amino acid 20 substitutions) may be made in the naturally-occurring sequence (preferably in the portion of the polypeptide outside the domain(s) forming intermolecular contacts. In a preferred embodiment, the amino acid substitutions are moderately conservative substitutions or conservative substitutions. In a more preferred embodiment, the amino acid substitutions 25 are conservative substitutions. A conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to disrupt a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent 30 sequence). Examples of art-recognized polypeptide secondary and tertiary structures are described in Creighton (ed.), Proteins, Structures and Molecular Principles, W. H. Freeman and Company (1984); Branden *et al.* (ed.), Introduction to Protein Structure, Garland Publishing (1991); Thornton *et al.*, *Nature* 354:105-106 (1991), each of which are incorporated herein by reference.

As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage. See Golub *et al.* (eds.), Immunology - A Synthesis 2nd Ed.,

Sinauer Associates (1991), which is incorporated herein by reference. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as - , -disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids may also be suitable components for polypeptides of the present invention.

5 Examples of unconventional amino acids include: 4-hydroxyproline, γ -carboxyglutamate, -N,N,N-trimethyllysine, -N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylsine, s-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the lefthand direction is the amino terminal direction and the right hand
10 direction is the carboxy-terminal direction, in accordance with standard usage and convention.

A protein has "homology" or is "homologous" to a protein from another organism if the encoded amino acid sequence of the protein has a similar sequence to the encoded amino acid sequence of a protein of a different organism and has a similar biological
15 activity or function. Alternatively, a protein may have homology or be homologous to another protein if the two proteins have similar amino acid sequences and have similar biological activities or functions. Although two proteins are said to be "homologous," this does not imply that there is necessarily an evolutionary relationship between the proteins. Instead, the term "homologous" is defined to mean that the two proteins have
20 similar amino acid sequences and similar biological activities or functions. In a preferred embodiment, a homologous protein is one that exhibits 50% sequence similarity to the wild type protein, preferred is 60% sequence similarity, more preferred is 70% sequence similarity. Even more preferred are homologous proteins that exhibit 80%, 85% or 90% sequence similarity to the wild type protein. In a yet more preferred embodiment, a
25 homologous protein exhibits 95%, 97%, 98% or 99% sequence similarity.

When "sequence similarity" is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions. In a preferred embodiment, a polypeptide that has "sequence similarity" comprises conservative or moderately conservative amino acid substitutions.
30 A "conservative amino acid substitution" is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino

acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well-known to those of skill in the art. *See, e.g., Pearson, Methods Mol. Biol.* 24: 307-31 (1994), herein incorporated by reference.

For instance, the following six groups each contain amino acids that are conservative substitutions for one another:

- 1) Serine (S), Threonine (T);
- 10 2) Aspartic Acid (D), Glutamic Acid (E);
- 3) Asparagine (N), Glutamine (Q);
- 4) Arginine (R), Lysine (K);
- 5) Isoleucine (I), Leucine (L), Methionine (M), Alanine (A), Valine (V), and
- 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

15 Alternatively, a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet *et al.*, *Science* 256: 1443-45 (1992), herein incorporated by reference. A "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.

Sequence similarity for polypeptides, which is also referred to as sequence identity, is typically measured using sequence analysis software. Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions. For instance, GCG contains programs such as "Gap" and "Bestfit" which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. *See, e.g.,* GCG Version 6.1. Other programs include FASTA, discussed *supra*.

A preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially blastp or tblastn. *See, e.g., Altschul *et al.*, J. Mol. Biol.* 215: 403-410 (1990); Altschul *et al.*, *Nucleic Acids Res.* 25:3389-402 (1997); herein incorporated by reference. Preferred parameters for blastp are:

-28-

Expectation value: 10 (default)
Filter: seg (default)
Cost to open a gap: 11 (default)
Cost to extend a gap: 1 (default)
5 Max. alignments: 100 (default)
Word size: 11 (default)
No. of descriptions: 100 (default)
Penalty Matrix: BLOSUM62

The length of polypeptide sequences compared for homology will generally be at
10 least about 16 amino acid residues, usually at least about 20 residues, more usually at
least about 24 residues, typically at least about 28 residues, and preferably more than
about 35 residues. When searching a database containing sequences from a large number
of different organisms, it is preferable to compare amino acid sequences.

Database searching using amino acid sequences can be measured by algorithms
15 other than blastp are known in the art. For instance, polypeptide sequences can be
compared using FASTA, a program in GCG Version 6.1. FASTA (e.g., FASTA2 and
FASTA3) provides alignments and percent sequence identity of the regions of the best
overlap between the query and search sequences (Pearson (1990), *supra*; Pearson (2000),
supra. For example, percent sequence identity between amino acid sequences can be
20 determined using FASTA with its default or recommended parameters (a word size of 2
and the PAM250 scoring matrix), as provided in GCG Version 6.1, herein incorporated
by reference.

An "antibody" refers to an intact immunoglobulin, or to an antigen-binding
portion thereof that competes with the intact antibody for specific binding to a molecular
25 species, e.g., a polypeptide of the instant invention. Antigen-binding portions may be
produced by recombinant DNA techniques or by enzymatic or chemical cleavage of
intact antibodies. Antigen-binding portions include, *inter alia*, Fab, Fab', F(ab')₂, Fv,
dAb, and complementarity determining region (CDR) fragments, single-chain antibodies
(scFv), chimeric antibodies, diabodies and polypeptides that contain at least a portion of
30 an immunoglobulin that is sufficient to confer specific antigen binding to the
polypeptide. An Fab fragment is a monovalent fragment consisting of the VL, VH, CL
and CH1 domains; an F(ab')₂ fragment is a bivalent fragment comprising two Fab

fragments linked by a disulfide bridge at the hinge region; an Fd fragment consists of the VH and CH1 domains; an Fv fragment consists of the VL and VH domains of a single arm of an antibody; and a dAb fragment consists of a VH domain. See, e.g., Ward *et al.*, *Nature* 341: 544-546 (1989).

5 By "bind specifically" and "specific binding" is here intended the ability of the antibody to bind to a first molecular species in preference to binding to other molecular species with which the antibody and first molecular species are admixed. An antibody is said specifically to "recognize" a first molecular species when it can bind specifically to that first molecular species.

10 A single-chain antibody (scFv) is an antibody in which a VL and VH region are paired to form a monovalent molecule via a synthetic linker that enables them to be made as a single protein chain. See, e.g., Bird *et al.*, *Science* 242: 423-426 (1988); Huston *et al.*, *Proc. Natl. Acad. Sci. USA* 85: 5879-5883 (1988). Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but
15 using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites. See e.g., Holliger *et al.*, *Proc. Natl. Acad. Sci. USA* 90: 6444-6448 (1993); Poljak *et al.*, *Structure* 2: 1121-1123 (1994). One or more CDRs may be incorporated into a molecule either covalently or noncovalently to make it
20 an immunoadhesin. An immunoadhesin may incorporate the CDR(s) as part of a larger polypeptide chain, may covalently link the CDR(s) to another polypeptide chain, or may incorporate the CDR(s) noncovalently. The CDRs permit the immunoadhesin to specifically bind to a particular antigen of interest. A chimeric antibody is an antibody that contains one or more regions from one antibody and one or more regions from one
25 or more other antibodies.

An antibody may have one or more binding sites. If there is more than one binding site, the binding sites may be identical to one another or may be different. For instance, a naturally-occurring immunoglobulin has two identical binding sites, a single-chain antibody or Fab fragment has one binding site, while a "bispecific" or
30 "bifunctional" antibody has two different binding sites.

An "isolated antibody" is an antibody that (1) is not associated with naturally-associated components, including other naturally-associated antibodies, that accompany

-30-

it in its native state, (2) is free of other proteins from the same species, (3) is expressed by a cell from a different species, or (4) does not occur in nature. It is known that purified proteins, including purified antibodies, may be stabilized with non-naturally-associated components. The non-naturally-associated component may be a protein, such 5 as albumin (e.g., BSA) or a chemical such as polyethylene glycol (PEG).

A “neutralizing antibody” or “an inhibitory antibody” is an antibody that inhibits the activity of a polypeptide or blocks the binding of a polypeptide to a ligand that normally binds to it. An “activating antibody” is an antibody that increases the activity of a polypeptide.

10 The term “epitope” includes any protein determinant capable of specifically binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three-dimensional structural characteristics, as well as specific charge characteristics. An antibody is said to specifically bind an antigen when
15 the dissociation constant is less than 1 μ M, preferably less than 100 nM and most preferably less than 10 nM.

The term “patient” as used herein includes human and veterinary subjects.

Throughout this specification and claims, the word “comprise,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated 20 integer or group of integers but not the exclusion of any other integer or group of integers.

The term “lung specific” refers to a nucleic acid molecule or polypeptide that is expressed predominantly in the lung as compared to other tissues in the body. In a preferred embodiment, a “lung specific” nucleic acid molecule or polypeptide is 25 expressed at a level that is 5-fold higher than any other tissue in the body. In a more preferred embodiment, the “lung specific” nucleic acid molecule or polypeptide is expressed at a level that is 10-fold higher than any other tissue in the body, more preferably at least 15-fold, 20-fold, 25-fold, 50-fold or 100-fold higher than any other tissue in the body. Nucleic acid molecule levels may be measured by nucleic acid 30 hybridization, such as Northern blot hybridization, or quantitative PCR. Polypeptide levels may be measured by any method known to accurately quantitate protein levels, such as Western blot analysis.

Nucleic Acid Molecules, Regulatory Sequences, Vectors, Host Cells and Recombinant Methods of Making Polypeptides

Nucleic Acid Molecules

5 One aspect of the invention provides isolated nucleic acid molecules that are specific to the lung or to lung cells or tissue or that are derived from such nucleic acid molecules. These isolated lung specific nucleic acids (LSNAs) may comprise a cDNA, a genomic DNA, RNA, or a fragment of one of these nucleic acids, or may be a non-naturally-occurring nucleic acid molecule. In a preferred embodiment, the nucleic acid
10 molecule encodes a polypeptide that is specific to lung, a lung-specific polypeptide (LSP). In a more preferred embodiment, the nucleic acid molecule encodes a polypeptide that comprises an amino acid sequence of SEQ ID NO: 165 through 284. In another highly preferred embodiment, the nucleic acid molecule comprises a nucleic acid sequence of SEQ ID NO: 1 through 164.

15 An LSNA may be derived from a human or from another animal. In a preferred embodiment, the LSNA is derived from a human or other mammal. In a more preferred embodiment, the LSNA is derived from a human or other primate. In an even more preferred embodiment, the LSNA is derived from a human.

By "nucleic acid molecule" for purposes of the present invention, it is also meant
20 to be inclusive of nucleic acid sequences that selectively hybridize to a nucleic acid molecule encoding an LSNA or a complement thereof. The hybridizing nucleic acid molecule may or may not encode a polypeptide or may not encode an LSP. However, in a preferred embodiment, the hybridizing nucleic acid molecule encodes an LSP. In a more preferred embodiment, the invention provides a nucleic acid molecule that
25 selectively hybridizes to a nucleic acid molecule that encodes a polypeptide comprising an amino acid sequence of SEQ ID NO: 165 through 284. In an even more preferred embodiment, the invention provides a nucleic acid molecule that selectively hybridizes to a nucleic acid molecule comprising the nucleic acid sequence of SEQ ID NO: 1 through 164.

30 In a preferred embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under low stringency conditions. In a more preferred embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under moderate stringency conditions. In a more preferred

-32-

embodiment, the nucleic acid molecule selectively hybridizes to a nucleic acid molecule encoding an LSP under high stringency conditions. In an even more preferred embodiment, the nucleic acid molecule hybridizes under low, moderate or high stringency conditions to a nucleic acid molecule encoding a polypeptide comprising an 5 amino acid sequence of SEQ ID NO: 165 through 284. In a yet more preferred embodiment, the nucleic acid molecule hybridizes under low, moderate or high stringency conditions to a nucleic acid molecule comprising a nucleic acid sequence selected from SEQ ID NO: 1 through 164. In a preferred embodiment of the invention, the hybridizing nucleic acid molecule may be used to express recombinantly a 10 polypeptide of the invention.

By "nucleic acid molecule" as used herein it is also meant to be inclusive of sequences that exhibits substantial sequence similarity to a nucleic acid encoding an LSP or a complement of the encoding nucleic acid molecule. In a preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule 15 encoding human LSP. In a more preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule encoding a polypeptide having an amino acid sequence of SEQ ID NO: 165 through 284. In a preferred embodiment, the similar nucleic acid molecule is one that has at least 60% sequence identity with a nucleic acid molecule encoding an LSP, such as a polypeptide 20 having an amino acid sequence of SEQ ID NO: 165 through 284, more preferably at least 70%, even more preferably at least 80% and even more preferably at least 85%. In a more preferred embodiment, the similar nucleic acid molecule is one that has at least 90% sequence identity with a nucleic acid molecule encoding an LSP, more preferably at least 95%, more preferably at least 97%, even more preferably at least 98%, and still 25 more preferably at least 99%. In another highly preferred embodiment, the nucleic acid molecule is one that has at least 99.5%, 99.6%, 99.7%, 99.8% or 99.9% sequence identity with a nucleic acid molecule encoding an LSP.

In another preferred embodiment, the nucleic acid molecule exhibits substantial sequence similarity to an LSNA or its complement. In a more preferred embodiment, the 30 nucleic acid molecule exhibits substantial sequence similarity to a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 164. In a preferred embodiment, the nucleic acid molecule is one that has at least 60% sequence identity

with an LSNA, such as one having a nucleic acid sequence of SEQ ID NO: 1 through 164, more preferably at least 70%, even more preferably at least 80% and even more preferably at least 85%. In a more preferred embodiment, the nucleic acid molecule is one that has at least 90% sequence identity with an LSNA, more preferably at least 95%,
5 more preferably at least 97%, even more preferably at least 98%, and still more preferably at least 99%. In another highly preferred embodiment, the nucleic acid molecule is one that has at least 99.5%, 99.6%, 99.7%, 99.8% or 99.9% sequence identity with an LSNA.

A nucleic acid molecule that exhibits substantial sequence similarity may be one
10 that exhibits sequence identity over its entire length to an LSNA or to a nucleic acid molecule encoding an LSP, or may be one that is similar over only a part of its length. In this case, the part is at least 50 nucleotides of the LSNA or the nucleic acid molecule encoding an LSP, preferably at least 100 nucleotides, more preferably at least 150 or 200 nucleotides, even more preferably at least 250 or 300 nucleotides, still more preferably at
15 least 400 or 500 nucleotides.

The substantially similar nucleic acid molecule may be a naturally-occurring one that is derived from another species, especially one derived from another primate, wherein the similar nucleic acid molecule encodes an amino acid sequence that exhibits significant sequence identity to that of SEQ ID NO: 165 through 284 or demonstrates
20 significant sequence identity to the nucleotide sequence of SEQ ID NO: 1 through 164. The similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule from a human, when the LSNA is a member of a gene family. The similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule derived from a non-primate, mammalian species, including without limitation, domesticated
25 species, *e.g.*, dog, cat, mouse, rat, rabbit, hamster, cow, horse and pig; and wild animals, *e.g.*, monkey, fox, lions, tigers, bears, giraffes, zebras, etc. The substantially similar nucleic acid molecule may also be a naturally-occurring nucleic acid molecule derived from a non-mammalian species, such as birds or reptiles. The naturally-occurring substantially similar nucleic acid molecule may be isolated directly from humans or other
30 species. In another embodiment, the substantially similar nucleic acid molecule may be one that is experimentally produced by random mutation of a nucleic acid molecule. In another embodiment, the substantially similar nucleic acid molecule may be one that is

experimentally produced by directed mutation of an LSNA. Further, the substantially similar nucleic acid molecule may or may not be an LSNA. However, in a preferred embodiment, the substantially similar nucleic acid molecule is an LSNA.

By "nucleic acid molecule" it is also meant to be inclusive of allelic variants of an

5 LSNA or a nucleic acid encoding an LSP. For instance, single nucleotide polymorphisms (SNPs) occur frequently in eukaryotic genomes. In fact, more than 1.4 million SNPs have already identified in the human genome, International Human Genome Sequencing Consortium, *Nature* 409: 860-921 (2001). Thus, the sequence determined from one individual of a species may differ from other allelic forms present

10 within the population. Additionally, small deletions and insertions, rather than single nucleotide polymorphisms, are not uncommon in the general population, and often do not alter the function of the protein. Further, amino acid substitutions occur frequently among natural allelic variants, and often do not substantially change protein function.

In a preferred embodiment, the nucleic acid molecule comprising an allelic

15 variant is a variant of a gene, wherein the gene is transcribed into an mRNA that encodes an LSP. In a more preferred embodiment, the gene is transcribed into an mRNA that encodes an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In another preferred embodiment, the allelic variant is a variant of a gene, wherein the gene is transcribed into an mRNA that is an LSNA. In a more preferred embodiment, the gene

20 is transcribed into an mRNA that comprises the nucleic acid sequence of SEQ ID NO: 1 through 164. In a preferred embodiment, the allelic variant is a naturally-occurring allelic variant in the species of interest. In a more preferred embodiment, the species of interest is human.

By "nucleic acid molecule" it is also meant to be inclusive of a part of a nucleic

25 acid sequence of the instant invention. The part may or may not encode a polypeptide, and may or may not encode a polypeptide that is an LSP. However, in a preferred embodiment, the part encodes an LSP. In one aspect, the invention comprises a part of an LSNA. In a second aspect, the invention comprises a part of a nucleic acid molecule that hybridizes or exhibits substantial sequence similarity to an LSNA. In a third aspect,

30 the invention comprises a part of a nucleic acid molecule that is an allelic variant of an LSNA. In a fourth aspect, the invention comprises a part of a nucleic acid molecule that encodes an LSP. A part comprises at least 10 nucleotides, more preferably at least 15,

17, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400 or 500 nucleotides. The maximum size of a nucleic acid part is one nucleotide shorter than the sequence of the nucleic acid molecule encoding the full-length protein.

By "nucleic acid molecule" it is also meant to be inclusive of sequence that

5 encoding a fusion protein, a homologous protein, a polypeptide fragment, a mutein or a polypeptide analog, as described below.

Nucleotide sequences of the instantly-described nucleic acids were determined by sequencing a DNA molecule that had resulted, directly or indirectly, from at least one enzymatic polymerization reaction (*e.g.*, reverse transcription and/or polymerase chain

10 reaction) using an automated sequencer (such as the MegaBACE™ 1000, Molecular Dynamics, Sunnyvale, CA, USA). Further, all amino acid sequences of the polypeptides of the present invention were predicted by translation from the nucleic acid sequences so determined, unless otherwise specified.

In a preferred embodiment of the invention, the nucleic acid molecule contains

15 modifications of the native nucleic acid molecule. These modifications include nonnative internucleoside bonds, post-synthetic modifications or altered nucleotide analogues. One having ordinary skill in the art would recognize that the type of modification that can be made will depend upon the intended use of the nucleic acid molecule. For instance, when the nucleic acid molecule is used as a hybridization probe,

20 the range of such modifications will be limited to those that permit sequence-discriminating base pairing of the resulting nucleic acid. When used to direct expression of RNA or protein *in vitro* or *in vivo*, the range of such modifications will be limited to those that permit the nucleic acid to function properly as a polymerization substrate.

When the isolated nucleic acid is used as a therapeutic agent, the modifications will be

25 limited to those that do not confer toxicity upon the isolated nucleic acid.

In a preferred embodiment, isolated nucleic acid molecules can include nucleotide analogues that incorporate labels that are directly detectable, such as radiolabels or fluorophores, or nucleotide analogues that incorporate labels that can be visualized in a subsequent reaction, such as biotin or various haptens. In a more preferred embodiment,

30 the labeled nucleic acid molecule may be used as a hybridization probe.

-36-

Common radiolabeled analogues include those labeled with ^{33}P , ^{32}P , and ^{35}S , such as ^{32}P -dATP, ^{32}P -dCTP, ^{32}P -dGTP, ^{32}P -dTTP, ^{32}P -3'dATP, ^{32}P -ATP, ^{32}P -CTP, ^{32}P -GTP, ^{32}P -UTP, ^{35}S -dATP, α - ^{35}S -GTP, α - ^{33}P -dATP, and the like.

Commercially available fluorescent nucleotide analogues readily incorporated
5 into the nucleic acids of the present invention include Cy3-dCTP, Cy3-dUTP, Cy5-
dCTP, Cy3-dUTP (Amersham Pharmacia Biotech, Piscataway, New Jersey, USA),
fluorescein-12-dUTP, tetramethylrhodamine-6-dUTP, Texas Red®-5-dUTP, Cascade
Blue®-7-dUTP, BODIPY® FL-14-dUTP, BODIPY® TMR-14-dUTP, BODIPY®
TR-14-dUTP, Rhodamine Green™-5-dUTP, Oregon Green® 488-5-dUTP, Texas
10 Red®-12-dUTP, BODIPY® 630/650-14-dUTP, BODIPY® 650/665-14-dUTP, Alexa
Fluor® 488-5-dUTP, Alexa Fluor® 532-5-dUTP, Alexa Fluor® 568-5-dUTP, Alexa
Fluor® 594-5-dUTP, Alexa Fluor® 546-14-dUTP, fluorescein-12-UTP,
tetramethylrhodamine-6-UTP, Texas Red®-5-UTP, Cascade Blue®-7-UTP, BODIPY®
FL-14-UTP, BODIPY® TMR-14-UTP, BODIPY® TR-14-UTP, Rhodamine
15 Green™-5-UTP, Alexa Fluor® 488-5-UTP, Alexa Fluor® 546-14-UTP (Molecular
Probes, Inc. Eugene, OR, USA). One may also custom synthesize nucleotides having
other fluorophores. See Henegariu *et al.*, *Nature Biotechnol.* 18: 345-348 (2000), the
disclosure of which is incorporated herein by reference in its entirety.

Haptens that are commonly conjugated to nucleotides for subsequent labeling
20 include biotin (biotin-11-dUTP, Molecular Probes, Inc., Eugene, OR, USA;
biotin-21-UTP, biotin-21-dUTP, Clontech Laboratories, Inc., Palo Alto, CA, USA),
digoxigenin (DIG-11-dUTP, alkali labile, DIG-11-UTP, Roche Diagnostics Corp.,
Indianapolis, IN, USA), and dinitrophenyl (dinitrophenyl-11-dUTP, Molecular Probes,
Inc., Eugene, OR, USA).

25 Nucleic acid molecules can be labeled by incorporation of labeled nucleotide
analogues into the nucleic acid. Such analogues can be incorporated by enzymatic
polymerization, such as by nick translation, random priming, polymerase chain reaction
(PCR), terminal transferase tailing, and end-filling of overhangs, for DNA molecules,
and *in vitro* transcription driven, e.g., from phage promoters, such as T7, T3, and SP6, for
30 RNA molecules. Commercial kits are readily available for each such labeling approach.
Analogues can also be incorporated during automated solid phase chemical synthesis.
Labels can also be incorporated after nucleic acid synthesis, with the 5' phosphate and 3'

-37-

hydroxyl providing convenient sites for post-synthetic covalent attachment of detectable labels.

Other post-synthetic approaches also permit internal labeling of nucleic acids.

For example, fluorophores can be attached using a cisplatin reagent that reacts with the

5 N7 of guanine residues (and, to a lesser extent, adenine bases) in DNA, RNA, and PNA to provide a stable coordination complex between the nucleic acid and fluorophore label (Universal Linkage System) (available from Molecular Probes, Inc., Eugene, OR, USA and Amersham Pharmacia Biotech, Piscataway, NJ, USA); *see Alers et al., Genes, Chromosomes & Cancer* 25: 301- 305 (1999); Jelsma et al., *J. NIH Res.* 5: 82 (1994);
10 Van Belkum et al., *BioTechniques* 16: 148-153 (1994), incorporated herein by reference. As another example, nucleic acids can be labeled using a disulfide-containing linker (FastTag™ Reagent, Vector Laboratories, Inc., Burlingame, CA, USA) that is photo- or thermally-coupled to the target nucleic acid using aryl azide chemistry; after reduction, a free thiol is available for coupling to a hapten, fluorophore, sugar, affinity ligand, or
15 other marker.

One or more independent or interacting labels can be incorporated into the nucleic acid molecules of the present invention. For example, both a fluorophore and a moiety that in proximity thereto acts to quench fluorescence can be included to report specific hybridization through release of fluorescence quenching or to report

20 exonucleotidic excision. *See, e.g., Tyagi et al., Nature Biotechnol.* 14: 303-308 (1996); Tyagi et al., *Nature Biotechnol.* 16: 49-53 (1998); Sokol et al., *Proc. Natl. Acad. Sci. USA* 95: 11538-11543 (1998); Kostrikis et al., *Science* 279: 1228-1229 (1998); Marras et al., *Genet. Anal.* 14: 151-156 (1999); U. S. Patent 5,846,726; 5,925,517; 5,925,517; 5,723,591 and 5,538,848; Holland et al., *Proc. Natl. Acad. Sci. USA* 88: 7276-7280
25 (1991); Heid et al., *Genome Res.* 6(10): 986-94 (1996); Kuimelis et al., *Nucleic Acids Symp. Ser.* (37): 255-6 (1997); the disclosures of which are incorporated herein by reference in their entireties.

Nucleic acid molecules of the invention may be modified by altering one or more native phosphodiester internucleoside bonds to more nuclease-resistant, internucleoside
30 bonds. *See Hartmann et al. (eds.), Manual of Antisense Methodology: Perspectives in Antisense Science*, Kluwer Law International (1999); Stein et al. (eds.), *Applied Antisense Oligonucleotide Technology*, Wiley-Liss (1998); Chadwick et al. (eds.),

-38-

Oligonucleotides as Therapeutic Agents - Symposium No. 209, John Wiley & Son Ltd (1997); the disclosures of which are incorporated herein by reference in their entireties. Such altered internucleoside bonds are often desired for antisense techniques or for targeted gene correction. See Gamper *et al.*, *Nucl. Acids Res.* 28(21): 4332-4339 (2000), 5 the disclosure of which is incorporated herein by reference in its entirety.

Modified oligonucleotide backbones include, without limitation, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 10 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Representative United States patents that teach the preparation of the above 15 phosphorus-containing linkages include, but are not limited to, U. S. Patents 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, the disclosures of which are incorporated herein by 20 reference in their entireties. In a preferred embodiment, the modified internucleoside linkages may be used for antisense techniques.

Other modified oligonucleotide backbones do not include a phosphorus atom, but have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or 25 more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and 30 methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts. Representative U.S. patents that teach the preparation of the above backbones include, but are not limited to, U.S.

-39-

Patent 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437 and 5,677,439; the disclosures of 5 which are incorporated herein by reference in their entireties.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage are replaced with novel groups, such as peptide nucleic acids (PNA). In PNA compounds, the phosphodiester backbone of the nucleic acid is replaced with an amide-containing backbone, in particular by repeating N-(2-aminoethyl) glycine 10 units linked by amide bonds. Nucleobases are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone, typically by methylene carbonyl linkages. PNA can be synthesized using a modified peptide synthesis protocol. PNA oligomers can be synthesized by both Fmoc and tBoc methods. Representative U.S. 15 patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Patent 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Automated PNA synthesis is readily achievable on commercial synthesizers (see, e.g., "PNA User's Guide," Rev. 2, February 1998, Perseptive Biosystems Part No. 60138, Applied Biosystems, Inc., Foster City, CA).

PNA molecules are advantageous for a number of reasons. First, because the 20 PNA backbone is uncharged, PNA/DNA and PNA/RNA duplexes have a higher thermal stability than is found in DNA/DNA and DNA/RNA duplexes. The T_m of a PNA/DNA or PNA/RNA duplex is generally 1°C higher per base pair than the T_m of the corresponding DNA/DNA or DNA/RNA duplex (in 100 mM NaCl). Second, PNA molecules can also form stable PNA/DNA complexes at low ionic strength, under 25 conditions in which DNA/DNA duplex formation does not occur. Third, PNA also demonstrates greater specificity in binding to complementary DNA because a PNA/DNA mismatch is more destabilizing than DNA/DNA mismatch. A single mismatch in mixed a PNA/DNA 15-mer lowers the T_m by 8–20°C (15°C on average). In the corresponding DNA/DNA duplexes, a single mismatch lowers the T_m by 4–16°C (11°C on average). 30 Because PNA probes can be significantly shorter than DNA probes, their specificity is greater. Fourth, PNA oligomers are resistant to degradation by enzymes, and the lifetime of these compounds is extended both *in vivo* and *in vitro* because nucleases and proteases

-40-

do not recognize the PNA polyamide backbone with nucleobase sidechains. See, e.g., Ray *et al.*, *FASEB J.* 14(9): 1041-60 (2000); Nielsen *et al.*, *Pharmacol Toxicol.* 86(1): 3-7 (2000); Larsen *et al.*, *Biochim Biophys Acta.* 1489(1): 159-66 (1999); Nielsen, *Curr. Opin. Struct. Biol.* 9(3): 353-7 (1999), and Nielsen, *Curr. Opin. Biotechnol.* 10(1): 71-5 5 (1999), the disclosures of which are incorporated herein by reference in their entireties.

Nucleic acid molecules may be modified compared to their native structure throughout the length of the nucleic acid molecule or can be localized to discrete portions thereof. As an example of the latter, chimeric nucleic acids can be synthesized that have discrete DNA and RNA domains and that can be used for targeted gene repair and 10 modified PCR reactions, as further described in U.S. Patents 5,760,012 and 5,731,181, Misra *et al.*, *Biochem.* 37: 1917-1925 (1998); and Finn *et al.*, *Nucl. Acids Res.* 24: 3357-3363 (1996), the disclosures of which are incorporated herein by reference in their entireties.

Unless otherwise specified, nucleic acids of the present invention can include any 15 topological conformation appropriate to the desired use; the term thus explicitly comprehends, among others, single-stranded, double-stranded, triplexed, quadruplexed, partially double-stranded, partially-triplexed, partially-quadruplexed, branched, hairpinned, circular, and padlocked conformations. Padlock conformations and their utilities are further described in Banér *et al.*, *Curr. Opin. Biotechnol.* 12: 11-15 (2001); 20 Escude *et al.*, *Proc. Natl. Acad. Sci. USA* 14: 96(19):10603-7 (1999); Nilsson *et al.*, *Science* 265(5181): 2085-8 (1994), the disclosures of which are incorporated herein by reference in their entireties. Triplex and quadruplex conformations, and their utilities, are reviewed in Praseuth *et al.*, *Biochim. Biophys. Acta.* 1489(1): 181-206 (1999); Fox, *Curr. Med. Chem.* 7(1): 17-37 (2000); Kochetkova *et al.*, *Methods Mol. Biol.* 130: 189-201 25 (2000); Chan *et al.*, *J. Mol. Med.* 75(4): 267-82 (1997), the disclosures of which are incorporated herein by reference in their entireties.

Methods for Using Nucleic Acid Molecules as Probes and Primers

The isolated nucleic acid molecules of the present invention can be used as 30 hybridization probes to detect, characterize, and quantify hybridizing nucleic acids in, and isolate hybridizing nucleic acids from, both genomic and transcript-derived nucleic acid samples. When free in solution, such probes are typically, but not invariably,

detectably labeled; bound to a substrate, as in a microarray, such probes are typically, but not invariably unlabeled.

In one embodiment, the isolated nucleic acids of the present invention can be used as probes to detect and characterize gross alterations in the gene of an LSNA, such 5 as deletions, insertions, translocations, and duplications of the LSNA genomic locus through fluorescence *in situ* hybridization (FISH) to chromosome spreads. *See, e.g., Andreeff et al. (eds.), Introduction to Fluorescence In Situ Hybridization: Principles and Clinical Applications, John Wiley & Sons (1999), the disclosure of which is incorporated herein by reference in its entirety.* The isolated nucleic acids of the present invention can 10 be used as probes to assess smaller genomic alterations using, *e.g.*, Southern blot detection of restriction fragment length polymorphisms. The isolated nucleic acid molecules of the present invention can be used as probes to isolate genomic clones that include the nucleic acid molecules of the present invention, which thereafter can be restriction mapped and sequenced to identify deletions, insertions, translocations, and 15 substitutions (single nucleotide polymorphisms, SNPs) at the sequence level.

In another embodiment, the isolated nucleic acid molecules of the present invention can be used as probes to detect, characterize, and quantify LSNA in, and isolate LSNA from, transcript-derived nucleic acid samples. In one aspect, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to detect, 20 characterize by length, and quantify mRNA by Northern blot of total or poly-A⁺- selected RNA samples. In another aspect, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to detect, characterize by location, and quantify mRNA by *in situ* hybridization to tissue sections. *See, e.g., Schwarchzacher et al., In Situ Hybridization, Springer-Verlag New York (2000), the disclosure of which is incorporated herein by reference in its entirety.* In another preferred embodiment, the isolated nucleic acid molecules of the present invention can be used as hybridization probes to measure the representation of clones in a cDNA library or to isolate hybridizing 25 nucleic acid molecules acids from cDNA libraries, permitting sequence level characterization of mRNAs that hybridize to LSNA, including, without limitations, identification of deletions, insertions, substitutions, truncations, alternatively spliced forms and single nucleotide polymorphisms. In yet another preferred embodiment, the 30 nucleic acid molecules of the instant invention may be used in microarrays.

All of the aforementioned probe techniques are well within the skill in the art, and are described at greater length in standard texts such as Sambrook (2001), *supra*; Ausubel (1999), *supra*; and Walker *et al.* (eds.), The Nucleic Acids Protocols Handbook, Humana Press (2000), the disclosures of which are incorporated herein by reference in 5 their entirety.

Thus, in one embodiment, a nucleic acid molecule of the invention may be used as a probe or primer to identify or amplify a second nucleic acid molecule that selectively hybridizes to the nucleic acid molecule of the invention. In a preferred embodiment, the probe or primer is derived from a nucleic acid molecule encoding an LSP. In a more 10 preferred embodiment, the probe or primer is derived from a nucleic acid molecule encoding a polypeptide having an amino acid sequence of SEQ ID NO: 165 through 284. In another preferred embodiment, the probe or primer is derived from an LSNA. In a more preferred embodiment, the probe or primer is derived from a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164.

15 In general, a probe or primer is at least 10 nucleotides in length, more preferably at least 12, more preferably at least 14 and even more preferably at least 16 or 17 nucleotides in length. In an even more preferred embodiment, the probe or primer is at least 18 nucleotides in length, even more preferably at least 20 nucleotides and even more preferably at least 22 nucleotides in length. Primers and probes may also be longer 20 in length. For instance, a probe or primer may be 25 nucleotides in length, or may be 30, 40 or 50 nucleotides in length. Methods of performing nucleic acid hybridization using oligonucleotide probes are well-known in the art. See, e.g., Sambrook *et al.*, 1989, *supra*, Chapter 11 and pp. 11.31-11.32 and 11.40-11.44, which describes radiolabeling of short probes, and pp. 11.45-11.53, which describe hybridization conditions for oligonucleotide 25 probes, including specific conditions for probe hybridization (pp. 11.50-11.51).

Methods of performing primer-directed amplification are also well-known in the art. Methods for performing the polymerase chain reaction (PCR) are compiled, *inter alia*, in McPherson, PCR Basics: From Background to Bench, Springer Verlag (2000); Innis *et al.* (eds.), PCR Applications: Protocols for Functional Genomics, Academic 30 Press (1999); Gelfand *et al.* (eds.), PCR Strategies, Academic Press (1998); Newton *et al.*, PCR, Springer-Verlag New York (1997); Burke (ed.), PCR: Essential Techniques, John Wiley & Son Ltd (1996); White (ed.), PCR Cloning Protocols: From Molecular

Cloning to Genetic Engineering, Vol. 67, Humana Press (1996); McPherson *et al.* (eds.), PCR 2: A Practical Approach, Oxford University Press, Inc. (1995); the disclosures of which are incorporated herein by reference in their entireties. Methods for performing RT-PCR are collected, *e.g.*, in Siebert *et al.* (eds.), Gene Cloning and Analysis by

5 RT-PCR, Eaton Publishing Company/Bio Techniques Books Division, 1998; Siebert (ed.), PCR Technique:RT-PCR, Eaton Publishing Company/ BioTechniques Books (1995); the disclosure of which is incorporated herein by reference in its entirety.

PCR and hybridization methods may be used to identify and/or isolate allelic variants, homologous nucleic acid molecules and fragments of the nucleic acid molecules

10 of the invention. PCR and hybridization methods may also be used to identify, amplify and/or isolate nucleic acid molecules that encode homologous proteins, analogs, fusion protein or muteins of the invention. The nucleic acid primers of the present invention can be used to prime amplification of nucleic acid molecules of the invention, using transcript-derived or genomic DNA as template.

15 The nucleic acid primers of the present invention can also be used, for example, to prime single base extension (SBE) for SNP detection (*See, e.g.*, U.S. Patent 6,004,744, the disclosure of which is incorporated herein by reference in its entirety).

Isothermal amplification approaches, such as rolling circle amplification, are also now well-described. *See, e.g.*, Schweitzer *et al.*, *Curr. Opin. Biotechnol.* 12(1): 21-7
20 (2001); U.S. Patents 5,854,033 and 5,714,320; and international patent publications WO 97/19193 and WO 00/15779, the disclosures of which are incorporated herein by reference in their entireties. Rolling circle amplification can be combined with other techniques to facilitate SNP detection. *See, e.g.*, Lizardi *et al.*, *Nature Genet.* 19(3): 225-32 (1998).

25 Nucleic acid molecules of the present invention may be bound to a substrate either covalently or noncovalently. The substrate can be porous or solid, planar or non-planar, unitary or distributed. The bound nucleic acid molecules may be used as hybridization probes, and may be labeled or unlabeled. In a preferred embodiment, the bound nucleic acid molecules are unlabeled.

30 In one embodiment, the nucleic acid molecule of the present invention is bound to a porous substrate, *e.g.*, a membrane, typically comprising nitrocellulose, nylon, or positively-charged derivatized nylon. The nucleic acid molecule of the present invention

can be used to detect a hybridizing nucleic acid molecule that is present within a labeled nucleic acid sample, e.g., a sample of transcript-derived nucleic acids. In another embodiment, the nucleic acid molecule is bound to a solid substrate, including, without limitation, glass, amorphous silicon, crystalline silicon or plastics. Examples of plastics 5 include, without limitation, polymethylacrylic, polyethylene, polypropylene, polyacrylate, polymethylmethacrylate, polyvinylchloride, polytetrafluoroethylene, polystyrene, polycarbonate, polyacetal, polysulfone, celluloseacetate, cellulosenitrate, nitrocellulose, or mixtures thereof. The solid substrate may be any shape, including rectangular, disk-like and spherical. In a preferred embodiment, the solid substrate is a 10 microscope slide or slide-shaped substrate.

The nucleic acid molecule of the present invention can be attached covalently to a surface of the support substrate or applied to a derivatized surface in a chaotropic agent that facilitates denaturation and adherence by presumed noncovalent interactions, or some combination thereof. The nucleic acid molecule of the present invention can be 15 bound to a substrate to which a plurality of other nucleic acids are concurrently bound, hybridization to each of the plurality of bound nucleic acids being separately detectable. At low density, e.g. on a porous membrane, these substrate-bound collections are typically denominated macroarrays; at higher density, typically on a solid support, such as glass, these substrate bound collections of plural nucleic acids are colloquially termed 20 microarrays. As used herein, the term microarray includes arrays of all densities. It is, therefore, another aspect of the invention to provide microarrays that include the nucleic acids of the present invention.

Expression Vectors, Host Cells and Recombinant Methods of Producing Polypeptides

Another aspect of the present invention relates to vectors that comprise one or 25 more of the isolated nucleic acid molecules of the present invention, and host cells in which such vectors have been introduced.

The vectors can be used, *inter alia*, for propagating the nucleic acids of the present invention in host cells (cloning vectors), for shuttling the nucleic acids of the present invention between host cells derived from disparate organisms (shuttle vectors), 30 for inserting the nucleic acids of the present invention into host cell chromosomes (insertion vectors), for expressing sense or antisense RNA transcripts of the nucleic acids of the present invention *in vitro* or within a host cell, and for expressing polypeptides

encoded by the nucleic acids of the present invention, alone or as fusions to heterologous polypeptides (expression vectors). Vectors of the present invention will often be suitable for several such uses.

Vectors are by now well-known in the art, and are described, *inter alia*, in Jones 5 *et al.* (eds.), Vectors: Cloning Applications: Essential Techniques (Essential Techniques Series), John Wiley & Son Ltd. (1998); Jones *et al.* (eds.), Vectors: Expression Systems: Essential Techniques (Essential Techniques Series), John Wiley & Son Ltd. (1998); Gacesa *et al.*, Vectors: Essential Data, John Wiley & Sons Ltd. (1995); Cid-Arregui 10 (eds.), Viral Vectors: Basic Science and Gene Therapy, Eaton Publishing Co. (2000); Sambrook (2001), *supra*; Ausubel (1999), *supra*; the disclosures of which are incorporated herein by reference in their entireties. Furthermore, an enormous variety of vectors are available commercially. Use of existing vectors and modifications thereof being well within the skill in the art, only basic features need be described here.

Nucleic acid sequences may be expressed by operatively linking them to an 15 expression control sequence in an appropriate expression vector and employing that expression vector to transform an appropriate unicellular host. Expression control sequences are sequences which control the transcription, post-transcriptional events and translation of nucleic acid sequences. Such operative linking of a nucleic sequence of this invention to an expression control sequence, of course, includes, if not already part 20 of the nucleic acid sequence, the provision of a translation initiation codon, ATG or GTG, in the correct reading frame upstream of the nucleic acid sequence.

A wide variety of host/expression vector combinations may be employed in expressing the nucleic acid sequences of this invention. Useful expression vectors, for example, may consist of segments of chromosomal, non-chromosomal and synthetic 25 nucleic acid sequences.

In one embodiment, prokaryotic cells may be used with an appropriate vector. Prokaryotic host cells are often used for cloning and expression. In a preferred embodiment, prokaryotic host cells include *E. coli*, *Pseudomonas*, *Bacillus* and *Streptomyces*. In a preferred embodiment, bacterial host cells are used to express the 30 nucleic acid molecules of the instant invention. Useful expression vectors for bacterial hosts include bacterial plasmids, such as those from *E. coli*, *Bacillus* or *Streptomyces*, including pBluescript, pGEX-2T, pUC vectors, col E1, pCR1, pBR322, pMB9 and their

-46-

derivatives, wider host range plasmids, such as RP4, phage DNAs, e.g., the numerous derivatives of phage lambda, e.g., NM989, λGT10 and λGT11, and other phages, e.g., M13 and filamentous single-stranded phage DNA. Where *E. coli* is used as host, selectable markers are, analogously, chosen for selectivity in gram negative bacteria: e.g.,
5 typical markers confer resistance to antibiotics, such as ampicillin, tetracycline, chloramphenicol, kanamycin, streptomycin and zeocin; auxotrophic markers can also be used.

In other embodiments, eukaryotic host cells, such as yeast, insect, mammalian or plant cells, may be used. Yeast cells, typically *S. cerevisiae*, are useful for eukaryotic
10 genetic studies, due to the ease of targeting genetic changes by homologous recombination and the ability to easily complement genetic defects using recombinantly expressed proteins. Yeast cells are useful for identifying interacting protein components, e.g. through use of a two-hybrid system. In a preferred embodiment, yeast cells are useful for protein expression. Vectors of the present invention for use in yeast will
15 typically, but not invariably, contain an origin of replication suitable for use in yeast and a selectable marker that is functional in yeast. Yeast vectors include Yeast Integrating plasmids (e.g., YIp5) and Yeast Replicating plasmids (the YRp and YEp series plasmids), Yeast Centromere plasmids (the YCp series plasmids), Yeast Artificial Chromosomes (YACs) which are based on yeast linear plasmids, denoted YLp, pGPD-2,
20 2μ plasmids and derivatives thereof, and improved shuttle vectors such as those described in Gietz *et al.*, *Gene*, 74: 527-34 (1988) (YIplac, YEplac and YCplac). Selectable markers in yeast vectors include a variety of auxotrophic markers, the most common of which are (in *Saccharomyces cerevisiae*) URA3, HIS3, LEU2, TRP1 and LYS2, which complement specific auxotrophic mutations, such as ura3-52, his3-D1,
25 leu2-D1, trp1-D1 and lys2-201.

Insect cells are often chosen for high efficiency protein expression. Where the host cells are from *Spodoptera frugiperda*, e.g., Sf9 and Sf21 cell lines, and expresSF™ cells (Protein Sciences Corp., Meriden, CT, USA)), the vector replicative strategy is typically based upon the baculovirus life cycle. Typically, baculovirus transfer vectors
30 are used to replace the wild-type AcMNPV polyhedrin gene with a heterologous gene of interest. Sequences that flank the polyhedrin gene in the wild-type genome are positioned 5' and 3' of the expression cassette on the transfer vectors. Following co-

transfection with AcMNPV DNA, a homologous recombination event occurs between these sequences resulting in a recombinant virus carrying the gene of interest and the polyhedrin or p10 promoter. Selection can be based upon visual screening for lacZ fusion activity.

5 In another embodiment, the host cells may be mammalian cells, which are particularly useful for expression of proteins intended as pharmaceutical agents, and for screening of potential agonists and antagonists of a protein or a physiological pathway. Mammalian vectors intended for autonomous extrachromosomal replication will typically include a viral origin, such as the SV40 origin (for replication in cell lines

10 expressing the large T-antigen, such as COS1 and COS7 cells), the papillomavirus origin, or the EBV origin for long term episomal replication (for use, e.g., in 293-EBNA cells, which constitutively express the EBV EBNA-1 gene product and adenovirus E1A). Vectors intended for integration, and thus replication as part of the mammalian chromosome, can, but need not, include an origin of replication functional in mammalian

15 cells, such as the SV40 origin. Vectors based upon viruses, such as adenovirus, adeno-associated virus, vaccinia virus, and various mammalian retroviruses, will typically replicate according to the viral replicative strategy. Selectable markers for use in mammalian cells include resistance to neomycin (G418), blasticidin, hygromycin and to zeocin, and selection based upon the purine salvage pathway using HAT medium.

20 Expression in mammalian cells can be achieved using a variety of plasmids, including pSV2, pBC12BI, and p91023, as well as lytic virus vectors (e.g., vaccinia virus, adeno virus, and baculovirus), episomal virus vectors (e.g., bovine papillomavirus), and retroviral vectors (e.g., murine retroviruses). Useful vectors for insect cells include baculoviral vectors and pVL 941.

25 Plant cells can also be used for expression, with the vector replicon typically derived from a plant virus (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) and selectable markers chosen for suitability in plants.

30 It is known that codon usage of different host cells may be different. For example, a plant cell and a human cell may exhibit a difference in codon preference for encoding a particular amino acid. As a result, human mRNA may not be efficiently translated in a plant, bacteria or insect host cell. Therefore, another embodiment of this invention is directed to codon optimization. The codons of the nucleic acid molecules of

the invention may be modified to resemble, as much as possible, genes naturally contained within the host cell without altering the amino acid sequence encoded by the nucleic acid molecule.

Any of a wide variety of expression control sequences may be used in these vectors to express the DNA sequences of this invention. Such useful expression control sequences include the expression control sequences associated with structural genes of the foregoing expression vectors. Expression control sequences that control transcription include, e.g., promoters, enhancers and transcription termination sites. Expression control sequences in eukaryotic cells that control post-transcriptional events include splice donor and acceptor sites and sequences that modify the half-life of the transcribed RNA, e.g., sequences that direct poly(A) addition or binding sites for RNA-binding proteins. Expression control sequences that control translation include ribosome binding sites, sequences which direct targeted expression of the polypeptide to or within particular cellular compartments, and sequences in the 5' and 3' untranslated regions that modify the rate or efficiency of translation.

Examples of useful expression control sequences for a prokaryote, e.g., *E. coli*, will include a promoter, often a phage promoter, such as phage lambda pL promoter, the trc promoter, a hybrid derived from the trp and lac promoters, the bacteriophage T7 promoter (in *E. coli* cells engineered to express the T7 polymerase), the TAC or TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, or the araBAD operon. Prokaryotic expression vectors may further include transcription terminators, such as the aspA terminator, and elements that facilitate translation, such as a consensus ribosome binding site and translation termination codon, Schomer *et al.*, *Proc. Natl. Acad. Sci. USA* 83: 8506-8510 (1986).

Expression control sequences for yeast cells, typically *S. cerevisiae*, will include a yeast promoter, such as the CYC1 promoter, the GAL1 promoter, the GAL10 promoter, ADH1 promoter, the promoters of the yeast α -mating system, or the GPD promoter, and will typically have elements that facilitate transcription termination, such as the transcription termination signals from the CYC1 or ADH1 gene.

Expression vectors useful for expressing proteins in mammalian cells will include a promoter active in mammalian cells. These promoters include those derived from mammalian viruses, such as the enhancer-promoter sequences from the immediate early

gene of the human cytomegalovirus (CMV), the enhancer-promoter sequences from the Rous sarcoma virus long terminal repeat (RSV LTR), the enhancer-promoter from SV40 or the early and late promoters of adenovirus. Other expression control sequences include the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the 5 promoters of acid phosphatase. Other expression control sequences include those from the gene comprising the LSNA of interest. Often, expression is enhanced by incorporation of polyadenylation sites, such as the late SV40 polyadenylation site and the polyadenylation signal and transcription termination sequences from the bovine growth hormone (BGH) gene, and ribosome binding sites. Furthermore, vectors can include 10 introns, such as intron II of rabbit β-globin gene and the SV40 splice elements.

Preferred nucleic acid vectors also include a selectable or amplifiable marker gene and means for amplifying the copy number of the gene of interest. Such marker genes are well-known in the art. Nucleic acid vectors may also comprise stabilizing sequences (*e.g.*, ori- or ARS-like sequences and telomere-like sequences), or may 15 alternatively be designed to favor directed or non-directed integration into the host cell genome. In a preferred embodiment, nucleic acid sequences of this invention are inserted in frame into an expression vector that allows high level expression of an RNA which encodes a protein comprising the encoded nucleic acid sequence of interest. Nucleic acid cloning and sequencing methods are well-known to those of skill in the art and are 20 described in an assortment of laboratory manuals, including Sambrook (1989), *supra*, Sambrook (2000), *supra*; and Ausubel (1992), *supra*, Ausubel (1999), *supra*. Product information from manufacturers of biological, chemical and immunological reagents also provide useful information.

Expression vectors may be either constitutive or inducible. Inducible vectors 25 include either naturally inducible promoters, such as the trc promoter, which is regulated by the lac operon, and the pL promoter, which is regulated by tryptophan, the MMTV-LTR promoter, which is inducible by dexamethasone, or can contain synthetic promoters and/or additional elements that confer inducible control on adjacent promoters. Examples of inducible synthetic promoters are the hybrid P_{lac}/ara-1 promoter and the 30 PLtetO-1 promoter. The PLtetO-1 promoter takes advantage of the high expression levels from the PL promoter of phage lambda, but replaces the lambda repressor sites with two copies of operator 2 of the Tn10 tetracycline resistance operon, causing this promoter to

-50-

be tightly repressed by the Tet repressor protein and induced in response to tetracycline (Tc) and Tc derivatives such as anhydrotetracycline. Vectors may also be inducible because they contain hormone response elements, such as the glucocorticoid response element (GRE) and the estrogen response element (ERE), which can confer hormone

5 inducibility where vectors are used for expression in cells having the respective hormone receptors. To reduce background levels of expression, elements responsive to ecdysone, an insect hormone, can be used instead, with coexpression of the ecdysone receptor.

In one aspect of the invention, expression vectors can be designed to fuse the expressed polypeptide to small protein tags that facilitate purification and/or

10 visualization. Tags that facilitate purification include a polyhistidine tag that facilitates purification of the fusion protein by immobilized metal affinity chromatography, for example using NiNTA resin (Qiagen Inc., Valencia, CA, USA) or TALON™ resin (cobalt immobilized affinity chromatography medium, Clontech Labs, Palo Alto, CA, USA). The fusion protein can include a chitin-binding tag and self-excising intein,

15 permitting chitin-based purification with self-removal of the fused tag (IMPACT™ system, New England Biolabs, Inc., Beverley, MA, USA). Alternatively, the fusion protein can include a calmodulin-binding peptide tag, permitting purification by calmodulin affinity resin (Stratagene, La Jolla, CA, USA), or a specifically excisable fragment of the biotin carboxylase carrier protein, permitting purification of *in vivo*

20 biotinylated protein using an avidin resin and subsequent tag removal (Promega, Madison, WI, USA). As another useful alternative, the proteins of the present invention can be expressed as a fusion protein with glutathione-S-transferase, the affinity and specificity of binding to glutathione permitting purification using glutathione affinity resins, such as Glutathione-Superflow Resin (Clontech Laboratories, Palo Alto, CA,

25 USA), with subsequent elution with free glutathione. Other tags include, for example, the Xpress epitope, detectable by anti-Xpress antibody (Invitrogen, Carlsbad, CA, USA), a myc tag, detectable by anti-myc tag antibody, the V5 epitope, detectable by anti-V5 antibody (Invitrogen, Carlsbad, CA, USA), FLAG® epitope, detectable by anti-FLAG® antibody (Stratagene, La Jolla, CA, USA), and the HA epitope.

30 For secretion of expressed proteins, vectors can include appropriate sequences that encode secretion signals, such as leader peptides. For example, the pSecTag2 vectors (Invitrogen, Carlsbad, CA, USA) are 5.2 kb mammalian expression vectors that

carry the secretion signal from the V-J2-C region of the mouse Ig kappa-chain for efficient secretion of recombinant proteins from a variety of mammalian cell lines.

Expression vectors can also be designed to fuse proteins encoded by the heterologous nucleic acid insert to polypeptides that are larger than purification and/or 5 identification tags. Useful fusion proteins include those that permit display of the encoded protein on the surface of a phage or cell, fusion to intrinsically fluorescent proteins, such as those that have a green fluorescent protein (GFP)-like chromophore, fusions to the IgG Fc region, and fusion proteins for use in two hybrid systems.

Vectors for phage display fuse the encoded polypeptide to, e.g., the gene III 10 protein (pIII) or gene VIII protein (pVIII) for display on the surface of filamentous phage, such as M13. See Barbas *et al.*, Phage Display: A Laboratory Manual, Cold Spring Harbor Laboratory Press (2001); Kay *et al.* (eds.), Phage Display of Peptides and Proteins: A Laboratory Manual, Academic Press, Inc., (1996); Abelson *et al.* (eds.), Combinatorial Chemistry (Methods in Enzymology, Vol. 267) Academic Press (1996). 15 Vectors for yeast display, e.g. the pYD1 yeast display vector (Invitrogen, Carlsbad, CA, USA), use the -agglutinin yeast adhesion receptor to display recombinant protein on the surface of *S. cerevisiae*. Vectors for mammalian display, e.g., the pDisplay™ vector (Invitrogen, Carlsbad, CA, USA), target recombinant proteins using an N-terminal cell surface targeting signal and a C-terminal transmembrane anchoring domain of platelet 20 derived growth factor receptor.

A wide variety of vectors now exist that fuse proteins encoded by heterologous nucleic acids to the chromophore of the substrate-independent, intrinsically fluorescent green fluorescent protein from *Aequorea victoria* ("GFP") and its variants. The GFP-like chromophore can be selected from GFP-like chromophores found in naturally occurring 25 proteins, such as *A. victoria* GFP (GenBank accession number AAA27721), *Renilla reniformis* GFP, FP583 (GenBank accession no. AF168419) (DsRed), FP593 (AF272711), FP483 (AF168420), FP484 (AF168424), FP595 (AF246709), FP486 (AF168421), FP538 (AF168423), and FP506 (AF168422), and need include only so much of the native protein as is needed to retain the chromophore's intrinsic 30 fluorescence. Methods for determining the minimal domain required for fluorescence are known in the art. See Li *et al.*, *J. Biol. Chem.* 272: 28545-28549 (1997). Alternatively, the GFP-like chromophore can be selected from GFP-like chromophores modified from

-52-

those found in nature. The methods for engineering such modified GFP-like chromophores and testing them for fluorescence activity, both alone and as part of protein fusions, are well-known in the art. *See Heim et al., Curr. Biol.* 6: 178-182 (1996) and *Palm et al., Methods Enzymol.* 302: 378-394 (1999), incorporated herein by reference in its entirety. A variety of such modified chromophores are now commercially available and can readily be used in the fusion proteins of the present invention. These include EGFP ("enhanced GFP"), EBFP ("enhanced blue fluorescent protein"), BFP2, EYFP ("enhanced yellow fluorescent protein"), ECFP ("enhanced cyan fluorescent protein") or Citrine. EGFP (*see, e.g.*, Cormack *et al.*, *Gene* 173: 33-38 (1996); United States Patent Nos. 6,090,919 and 5,804,387) is found on a variety of vectors, both plasmid and viral, which are available commercially (Clontech Labs, Palo Alto, CA, USA); EBFP is optimized for expression in mammalian cells whereas BFP2, which retains the original jellyfish codons, can be expressed in bacteria (*see, e.g.*, Heim *et al.*, *Curr. Biol.* 6: 178-182 (1996) and Cormack *et al.*, *Gene* 173: 33-38 (1996)).

Vectors containing these blue-shifted variants are available from Clontech Labs (Palo Alto, CA, USA). Vectors containing EYFP, ECFP (*see, e.g.*, Heim *et al.*, *Curr. Biol.* 6: 178-182 (1996); Miyawaki *et al.*, *Nature* 388: 882-887 (1997)) and Citrine (*see, e.g.*, Heikal *et al.*, *Proc. Natl. Acad. Sci. USA* 97: 11996-12001 (2000)) are also available from Clontech Labs. The GFP-like chromophore can also be drawn from other modified GFPs, including those described in U.S. Patents 6,124,128; 6,096,865; 6,090,919; 6,066,476; 6,054,321; 6,027,881; 5,968,750; 5,874,304; 5,804,387; 5,777,079; 5,741,668; and 5,625,048, the disclosures of which are incorporated herein by reference in their entireties. *See also Conn (ed.), Green Fluorescent Protein (Methods in Enzymology, Vol. 302)*, Academic Press, Inc. (1999). The GFP-like chromophore of each of these GFP variants can usefully be included in the fusion proteins of the present invention.

Fusions to the IgG Fc region increase serum half life of protein pharmaceutical products through interaction with the FcRn receptor (also denominated the FcRp receptor and the Brambell receptor, FcRb), further described in International Patent Application Nos. WO 97/43316, WO 97/34631, WO 96/32478, WO 96/18412.

For long-term, high-yield recombinant production of the proteins, protein fusions, and protein fragments of the present invention, stable expression is preferred. Stable

expression is readily achieved by integration into the host cell genome of vectors having selectable markers, followed by selection of these integrants. Vectors such as pUB6/V5-His A, B, and C (Invitrogen, Carlsbad, CA, USA) are designed for high-level stable expression of heterologous proteins in a wide range of mammalian tissue types and

5 cell lines. pUB6/V5-His uses the promoter/enhancer sequence from the human ubiquitin C gene to drive expression of recombinant proteins: expression levels in 293, CHO, and NIH3T3 cells are comparable to levels from the CMV and human EF-1a promoters. The bsd gene permits rapid selection of stably transfected mammalian cells with the potent antibiotic blasticidin.

10 Replication incompetent retroviral vectors, typically derived from Moloney murine leukemia virus, also are useful for creating stable transfectants having integrated provirus. The highly efficient transduction machinery of retroviruses, coupled with the availability of a variety of packaging cell lines such as RetroPack™ PT 67, EcoPack2™-293, AmphotoPack-293, and GP2-293 cell lines (all available from Clontech Laboratories, Palo Alto, CA, USA), allow a wide host range to be infected with high efficiency; varying the multiplicity of infection readily adjusts the copy number of the integrated provirus.

15 Of course, not all vectors and expression control sequences will function equally well to express the nucleic acid sequences of this invention. Neither will all hosts function equally well with the same expression system. However, one of skill in the art may make a selection among these vectors, expression control sequences and hosts without undue experimentation and without departing from the scope of this invention. For example, in selecting a vector, the host must be considered because the vector must be replicated in it. The vector's copy number, the ability to control that copy number, the

20 ability to control integration, if any, and the expression of any other proteins encoded by the vector, such as antibiotic or other selection markers, should also be considered. The present invention further includes host cells comprising the vectors of the present invention, either present episomally within the cell or integrated, in whole or in part, into the host cell chromosome. Among other considerations, some of which are described

25 above, a host cell strain may be chosen for its ability to process the expressed protein in the desired fashion. Such post-translational modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation,

and acylation, and it is an aspect of the present invention to provide LSPs with such post-translational modifications.

Polypeptides of the invention may be post-translationally modified. Post-translational modifications include phosphorylation of amino acid residues serine, threonine and/or tyrosine, N-linked and/or O-linked glycosylation, methylation, acetylation, prenylation, methylation, acetylation, arginylation, ubiquination and racemization. One may determine whether a polypeptide of the invention is likely to be post-translationally modified by analyzing the sequence of the polypeptide to determine if there are peptide motifs indicative of sites for post-translational modification. There are a number of computer programs that permit prediction of post-translational modifications. See, e.g., www.expasy.org (accessed August 31, 2001), which includes PSORT, for prediction of protein sorting signals and localization sites, SignalP, for prediction of signal peptide cleavage sites, MITOPROT and Predotar, for prediction of mitochondrial targeting sequences, NetOGlyc, for prediction of type O-glycosylation sites in mammalian proteins, big-PI Predictor and DGPI, for prediction of prenylation-anchor and cleavage sites, and NetPhos, for prediction of Ser, Thr and Tyr phosphorylation sites in eukaryotic proteins. Other computer programs, such as those included in GCG, also may be used to determine post-translational modification peptide motifs.

General examples of types of post-translational modifications may be found in web sites such as the Delta Mass database <http://www.abrf.org/ABRF/Research Committees/deltamass/deltamass.html> (accessed October 19, 2001); "GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources" Cooper et al. Nucleic Acids Res. 29; 332-335 (2001) and <http://www.glycosuite.com/> (accessed October 19, 2001); "O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins" Gupta et al. Nucleic Acids Research, 27: 370-372 (1999) and <http://www.cbs.dtu.dk/databases/OGLYCBASE/> (accessed October 19, 2001); "PhosphoBase, a database of phosphorylation sites: release 2.0.", Kreegipuu et al. Nucleic Acids Res 27(1):237-239 (1999) and <http://www.cbs.dtu.dk/databases/PhosphoBase/> (accessed October 19, 2001); or <http://pir.georgetown.edu/pirwww/search/textresid.html> (accessed October 19, 2001).

Tumorigenesis is often accompanied by alterations in the post-translational modifications of proteins. Thus, in another embodiment, the invention provides polypeptides from cancerous cells or tissues that have altered post-translational modifications compared to the post-translational modifications of polypeptides from normal cells or tissues. A number of altered post-translational modifications are known. One common alteration is a change in phosphorylation state, wherein the polypeptide from the cancerous cell or tissue is hyperphosphorylated or hypophosphorylated compared to the polypeptide from a normal tissue, or wherein the polypeptide is phosphorylated on different residues than the polypeptide from a normal cell. Another common alteration is a change in glycosylation state, wherein the polypeptide from the cancerous cell or tissue has more or less glycosylation than the polypeptide from a normal tissue, and/or wherein the polypeptide from the cancerous cell or tissue has a different type of glycosylation than the polypeptide from a noncancerous cell or tissue. Changes in glycosylation may be critical because carbohydrate-protein and carbohydrate-carbohydrate interactions are important in cancer cell progression, dissemination and invasion. See, e.g., Barchi, *Curr. Pharm. Des.* 6: 485-501 (2000), Verma, *Cancer Biochem. Biophys.* 14: 151-162 (1994) and Dennis et al., *Bioessays* 5: 412-421 (1999).

Another post-translational modification that may be altered in cancer cells is prenylation. Prenylation is the covalent attachment of a hydrophobic prenyl group (either farnesyl or geranylgeranyl) to a polypeptide. Prenylation is required for localizing a protein to a cell membrane and is often required for polypeptide function. For instance, the Ras superfamily of GTPase signaling proteins must be prenylated for function in a cell. See, e.g., Prendergast et al., *Semin. Cancer Biol.* 10: 443-452 (2000) and Khwaja et al., *Lancet* 355: 741-744 (2000).

Other post-translation modifications that may be altered in cancer cells include, without limitation, polypeptide methylation, acetylation, arginylation or racemization of amino acid residues. In these cases, the polypeptide from the cancerous cell may exhibit either increased or decreased amounts of the post-translational modification compared to the corresponding polypeptides from noncancerous cells.

Other polypeptide alterations in cancer cells include abnormal polypeptide cleavage of proteins and aberrant protein-protein interactions. Abnormal polypeptide cleavage may be cleavage of a polypeptide in a cancerous cell that does not usually occur

in a normal cell, or a lack of cleavage in a cancerous cell, wherein the polypeptide is cleaved in a normal cell. Aberrant protein-protein interactions may be either covalent cross-linking or non-covalent binding between proteins that do not normally bind to each other. Alternatively, in a cancerous cell, a protein may fail to bind to another protein to

5 which it is bound in a noncancerous cell. Alterations in cleavage or in protein-protein interactions may be due to over- or underproduction of a polypeptide in a cancerous cell compared to that in a normal cell, or may be due to alterations in post-translational modifications (see above) of one or more proteins in the cancerous cell. See, e.g., Henschen-Edman, *Ann. N.Y. Acad. Sci.* 936: 580-593 (2001).

10 Alterations in polypeptide post-translational modifications, as well as changes in polypeptide cleavage and protein-protein interactions, may be determined by any method known in the art. For instance, alterations in phosphorylation may be determined by using anti-phosphoserine, anti-phosphothreonine or anti-phosphotyrosine antibodies or by amino acid analysis. Glycosylation alterations may be determined using antibodies

15 specific for different sugar residues, by carbohydrate sequencing, or by alterations in the size of the glycoprotein, which can be determined by, e.g., SDS polyacrylamide gel electrophoresis (PAGE). Other alterations of post-translational modifications, such as prenylation, racemization, methylation, acetylation and arginylation, may be determined by chemical analysis, protein sequencing, amino acid analysis, or by using antibodies

20 specific for the particular post-translational modifications. Changes in protein-protein interactions and in polypeptide cleavage may be analyzed by any method known in the art including, without limitation, non-denaturing PAGE (for non-covalent protein-protein interactions), SDS PAGE (for covalent protein-protein interactions and protein cleavage), chemical cleavage, protein sequencing or immunoassays.

25 In another embodiment, the invention provides polypeptides that have been post-translationally modified. In one embodiment, polypeptides may be modified enzymatically or chemically, by addition or removal of a post-translational modification. For example, a polypeptide may be glycosylated or deglycosylated enzymatically. Similarly, polypeptides may be phosphorylated using a purified kinase, such as a MAP

30 kinase (e.g., p38, ERK, or JNK) or a tyrosine kinase (e.g., Src or erbB2). A polypeptide may also be modified through synthetic chemistry. Alternatively, one may isolate the polypeptide of interest from a cell or tissue that expresses the polypeptide with the

desired post-translational modification. In another embodiment, a nucleic acid molecule encoding the polypeptide of interest is introduced into a host cell that is capable of post-translationally modifying the encoded polypeptide in the desired fashion. If the polypeptide does not contain a motif for a desired post-translational modification, one

5 may alter the post-translational modification by mutating the nucleic acid sequence of a nucleic acid molecule encoding the polypeptide so that it contains a site for the desired post-translational modification. Amino acid sequences that may be post-translationally modified are known in the art. See, e.g., the programs described above on the website www.expasy.org. The nucleic acid molecule is then be introduced into a host cell that is

10 capable of post-translationally modifying the encoded polypeptide. Similarly, one may delete sites that are post-translationally modified by either mutating the nucleic acid sequence so that the encoded polypeptide does not contain the post-translational modification motif, or by introducing the native nucleic acid molecule into a host cell that is not capable of post-translationally modifying the encoded polypeptide.

15 In selecting an expression control sequence, a variety of factors should also be considered. These include, for example, the relative strength of the sequence, its controllability, and its compatibility with the nucleic acid sequence of this invention, particularly with regard to potential secondary structures. Unicellular hosts should be selected by consideration of their compatibility with the chosen vector, the toxicity of the

20 product coded for by the nucleic acid sequences of this invention, their secretion characteristics, their ability to fold the polypeptide correctly, their fermentation or culture requirements, and the ease of purification from them of the products coded for by the nucleic acid sequences of this invention.

The recombinant nucleic acid molecules and more particularly, the expression

25 vectors of this invention may be used to express the polypeptides of this invention as recombinant polypeptides in a heterologous host cell. The polypeptides of this invention may be full-length or less than full-length polypeptide fragments recombinantly expressed from the nucleic acid sequences according to this invention. Such polypeptides include analogs, derivatives and muteins that may or may not have

30 biological activity.

Vectors of the present invention will also often include elements that permit *in vitro* transcription of RNA from the inserted heterologous nucleic acid. Such vectors

typically include a phage promoter, such as that from T7, T3, or SP6, flanking the nucleic acid insert. Often two different such promoters flank the inserted nucleic acid, permitting separate *in vitro* production of both sense and antisense strands.

Transformation and other methods of introducing nucleic acids into a host cell

- 5 (e.g., conjugation, protoplast transformation or fusion, transfection, electroporation, liposome delivery, membrane fusion techniques, high velocity DNA-coated pellets, viral infection and protoplast fusion) can be accomplished by a variety of methods which are well-known in the art (See, for instance, Ausubel, *supra*, and Sambrook *et al.*, *supra*).
Bacterial, yeast, plant or mammalian cells are transformed or transfected with an
- 10 expression vector, such as a plasmid, a cosmid, or the like, wherein the expression vector comprises the nucleic acid of interest. Alternatively, the cells may be infected by a viral expression vector comprising the nucleic acid of interest. Depending upon the host cell, vector, and method of transformation used, transient or stable expression of the polypeptide will be constitutive or inducible. One having ordinary skill in the art will be
- 15 able to decide whether to express a polypeptide transiently or stably, and whether to express the protein constitutively or inducibly.

A wide variety of unicellular host cells are useful in expressing the DNA sequences of this invention. These hosts may include well-known eukaryotic and prokaryotic hosts, such as strains of, fungi, yeast, insect cells such as *Spodoptera frugiperda* (SF9), animal cells such as CHO, as well as plant cells in tissue culture. Representative examples of appropriate host cells include, but are not limited to, bacterial cells, such as *E. coli*, *Caulobacter crescentus*, *Streptomyces* species, and *Salmonella typhimurium*; yeast cells, such as *Saccharomyces cerevisiae*, *Schizosaccharomyces pombe*, *Pichia pastoris*, *Pichia methanolica*; insect cell lines, such as those from *Spodoptera frugiperda*, e.g., Sf9 and Sf21 cell lines, and expresSFTM cells (Protein Sciences Corp., Meriden, CT, USA), *Drosophila* S2 cells, and *Trichoplusia ni* High Five® Cells (Invitrogen, Carlsbad, CA, USA); and mammalian cells. Typical mammalian cells include BHK cells, BSC 1 cells, BSC 40 cells, BMT 10 cells, VERO cells, COS1 cells, COS7 cells, Chinese hamster ovary (CHO) cells, 3T3 cells, NIH 3T3 cells, 293 cells, HEPG2 cells, HeLa cells, L cells, MDCK cells, HEK293 cells, WI38 cells, murine ES cell lines (e.g.; from strains 129/SV, C57/BL6, DBA-1, 129/SVJ), K562 cells, Jurkat cells, and BW5147 cells. Other mammalian cell lines are well-known and

readily available from the American Type Culture Collection (ATCC) (Manassas, VA, USA) and the National Institute of General Medical Sciences (NIGMS) Human Genetic Cell Repository at the Coriell Cell Repositories (Camden, NJ, USA). Cells or cell lines derived from lung are particularly preferred because they may provide a more native
5 post-translational processing. Particularly preferred are human lung cells.

Particular details of the transfection, expression and purification of recombinant proteins are well documented and are understood by those of skill in the art. Further details on the various technical aspects of each of the steps used in recombinant production of foreign genes in bacterial cell expression systems can be found in a number
10 of texts and laboratory manuals in the art. See, e.g., Ausubel (1992), *supra*, Ausubel (1999), *supra*, Sambrook (1989), *supra*, and Sambrook (2001), *supra*, herein incorporated by reference.

Methods for introducing the vectors and nucleic acids of the present invention into the host cells are well-known in the art; the choice of technique will depend
15 primarily upon the specific vector to be introduced and the host cell chosen.

Nucleic acid molecules and vectors may be introduced into prokaryotes, such as *E. coli*, in a number of ways. For instance, phage lambda vectors will typically be packaged using a packaging extract (e.g., Gigapack® packaging extract, Stratagene, La Jolla, CA, USA), and the packaged virus used to infect *E. coli*.

20 Plasmid vectors will typically be introduced into chemically competent or electrocompetent bacterial cells. *E. coli* cells can be rendered chemically competent by treatment, e.g., with CaCl₂, or a solution of Mg²⁺, Mn²⁺, Ca²⁺, Rb⁺ or K⁺, dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III), Hanahan, *J. Mol. Biol.* 166(4):557-80 (1983), and vectors introduced by heat shock. A wide variety of chemically competent
25 strains are also available commercially (e.g., Epicurian Coli® XL10-Gold® Ultracompetent Cells (Stratagene, La Jolla, CA, USA); DH5 competent cells (Clontech Laboratories, Palo Alto, CA, USA); and TOP10 Chemically Competent *E. coli* Kit (Invitrogen, Carlsbad, CA, USA)). Bacterial cells can be rendered electrocompetent, that is, competent to take up exogenous DNA by electroporation, by various pre-pulse
30 treatments; vectors are introduced by electroporation followed by subsequent outgrowth in selected media. An extensive series of protocols is provided online in Electroprotocols

-60-

(BioRad, Richmond, CA, USA) (http://www.biorad.com/LifeScience/pdf/New_Gene_Pulser.pdf).

Vectors can be introduced into yeast cells by spheroplasting, treatment with lithium salts, electroporation, or protoplast fusion. Spheroplasts are prepared by the 5 action of hydrolytic enzymes such as snail-gut extract, usually denoted Glusulase, or Zymolyase, an enzyme from *Arthrobacter luteus*, to remove portions of the cell wall in the presence of osmotic stabilizers, typically 1 M sorbitol. DNA is added to the spheroplasts, and the mixture is co-precipitated with a solution of polyethylene glycol (PEG) and Ca²⁺. Subsequently, the cells are resuspended in a solution of sorbitol, mixed 10 with molten agar and then layered on the surface of a selective plate containing sorbitol.

For lithium-mediated transformation, yeast cells are treated with lithium acetate, which apparently permeabilizes the cell wall, DNA is added and the cells are co-precipitated with PEG. The cells are exposed to a brief heat shock, washed free of PEG and lithium acetate, and subsequently spread on plates containing ordinary selective 15 medium. Increased frequencies of transformation are obtained by using specially-prepared single-stranded carrier DNA and certain organic solvents. Schiestl *et al.*, *Curr. Genet.* 16(5-6): 339-46 (1989).

For electroporation, freshly-grown yeast cultures are typically washed, suspended in an osmotic protectant, such as sorbitol, mixed with DNA, and the cell suspension 20 pulsed in an electroporation device. Subsequently, the cells are spread on the surface of plates containing selective media. Becker *et al.*, *Methods Enzymol.* 194: 182-187 (1991). The efficiency of transformation by electroporation can be increased over 100-fold by using PEG, single-stranded carrier DNA and cells that are in late log-phase of growth. Larger constructs, such as YACs, can be introduced by protoplast fusion.

25 Mammalian and insect cells can be directly infected by packaged viral vectors, or transfected by chemical or electrical means. For chemical transfection, DNA can be coprecipitated with CaPO₄ or introduced using liposomal and nonliposomal lipid-based agents. Commercial kits are available for CaPO₄ transfection (CalPhos™ Mammalian Transfection Kit, Clontech Laboratories, Palo Alto, CA, USA), and lipid-mediated 30 transfection can be practiced using commercial reagents, such as LIPOFECTAMINE™ 2000, LIPOFECTAMINE™ Reagent, CELLFECTIN® Reagent, and LIPOFECTIN® Reagent (Invitrogen, Carlsbad, CA, USA), DOTAP Liposomal Transfection Reagent,

-61-

FuGENE 6, X-tremeGENE Q2, DOSPER, (Roche Molecular Biochemicals, Indianapolis, IN USA), Effectene™, PolyFect®, Superfect® (Qiagen, Inc., Valencia, CA, USA).

Protocols for electroporating mammalian cells can be found online in Electroprotocols (Bio-Rad, Richmond, CA, USA) (<http://www.bio-rad.com/LifeScience/pdf/>)

5 New_Gene_Pulser.pdf); Norton *et al.* (eds.), Gene Transfer Methods: Introducing DNA
into Living Cells and Organisms, BioTechniques Books, Eaton Publishing Co. (2000);
incorporated herein by reference in its entirety. Other transfection techniques include
transfection by particle bombardment and microinjection. See, e.g., Cheng *et al.*, *Proc.
Natl. Acad. Sci. USA* 90(10): 4455-9 (1993); Yang *et al.*, *Proc. Natl. Acad. Sci. USA*
10 87(24): 9568-72 (1990).

Production of the recombinantly produced proteins of the present invention can
optionally be followed by purification.

Purification of recombinantly expressed proteins is now well known by those skilled in
the art. See, e.g., Thorner *et al.* (eds.), Applications of Chimeric Genes and Hybrid
15 Proteins, Part A: Gene Expression and Protein Purification (Methods in Enzymology,
Vol. 326), Academic Press (2000); Harbin (ed.), Cloning, Gene Expression and Protein
Purification : Experimental Procedures and Process Rationale, Oxford Univ. Press
(2001); Marshak *et al.*, Strategies for Protein Purification and Characterization: A
Laboratory Course Manual, Cold Spring Harbor Laboratory Press (1996); and Roe (ed.),
20 Protein Purification Applications, Oxford University Press (2001); the disclosures of
which are incorporated herein by reference in their entireties, and thus need not be
detailed here.

Briefly, however, if purification tags have been fused through use of an
expression vector that appends such tags, purification can be effected, at least in part, by
25 means appropriate to the tag, such as use of immobilized metal affinity chromatography
for polyhistidine tags. Other techniques common in the art include ammonium sulfate
fractionation, immunoprecipitation, fast protein liquid chromatography (FPLC), high
performance liquid chromatography (HPLC), and preparative gel electrophoresis.

Polypeptides

30 Another object of the invention is to provide polypeptides encoded by the nucleic
acid molecules of the instant invention. In a preferred embodiment, the polypeptide is a
lung specific polypeptide (LSP). In an even more preferred embodiment, the polypeptide

is derived from a polypeptide comprising the amino acid sequence of SEQ ID NO: 165 through 284. A polypeptide as defined herein may be produced recombinantly, as discussed *supra*, may be isolated from a cell that naturally expresses the protein, or may be chemically synthesized following the teachings of the specification and using methods well-known to those having ordinary skill in the art.

In another aspect, the polypeptide may comprise a fragment of a polypeptide, wherein the fragment is as defined herein. In a preferred embodiment, the polypeptide fragment is a fragment of an LSP. In a more preferred embodiment, the fragment is derived from a polypeptide comprising the amino acid sequence of SEQ ID NO: 165 through 284. A polypeptide that comprises only a fragment of an entire LSP may or may not be a polypeptide that is also an LSP. For instance, a full-length polypeptide may be lung-specific, while a fragment thereof may be found in other tissues as well as in lung. A polypeptide that is not an LSP, whether it is a fragment, analog, mutein, homologous protein or derivative, is nevertheless useful, especially for immunizing animals to prepare anti-LSP antibodies. However, in a preferred embodiment, the part or fragment is an LSP. Methods of determining whether a polypeptide is an LSP are described *infra*.

Fragments of at least 6 contiguous amino acids are useful in mapping B cell and T cell epitopes of the reference protein. See, e.g., Geysen *et al.*, *Proc. Natl. Acad. Sci. USA* 81: 3998-4002 (1984) and U.S. Patents 4,708,871 and 5,595,915, the disclosures of which are incorporated herein by reference in their entireties. Because the fragment need not itself be immunogenic, part of an immunodominant epitope, nor even recognized by native antibody, to be useful in such epitope mapping, all fragments of at least 6 amino acids of the proteins of the present invention have utility in such a study.

Fragments of at least 8 contiguous amino acids, often at least 15 contiguous amino acids, are useful as immunogens for raising antibodies that recognize the proteins of the present invention. See, e.g., Lerner, *Nature* 299: 592-596 (1982); Shinnick *et al.*, *Annu. Rev. Microbiol.* 37: 425-46 (1983); Sutcliffe *et al.*, *Science* 219: 660-6 (1983), the disclosures of which are incorporated herein by reference in their entireties. As further described in the above-cited references, virtually all 8-mers, conjugated to a carrier, such as a protein, prove immunogenic, meaning that they are capable of eliciting antibody for the conjugated peptide; accordingly, all fragments of at least 8 amino acids of the proteins of the present invention have utility as immunogens.

Fragments of at least 8, 9, 10 or 12 contiguous amino acids are also useful as competitive inhibitors of binding of the entire protein, or a portion thereof, to antibodies (as in epitope mapping), and to natural binding partners, such as subunits in a multimeric complex or to receptors or ligands of the subject protein; this competitive inhibition 5 permits identification and separation of molecules that bind specifically to the protein of interest, U.S. Patents 5,539,084 and 5,783,674, incorporated herein by reference in their entireties.

The protein, or protein fragment, of the present invention is thus at least 6 amino acids in length, typically at least 8, 9, 10 or 12 amino acids in length, and often at least 15 10 amino acids in length. Often, the protein of the present invention, or fragment thereof, is at least 20 amino acids in length, even 25 amino acids, 30 amino acids, 35 amino acids, or 50 amino acids or more in length. Of course, larger fragments having at least 75 amino acids, 100 amino acids, or even 150 amino acids are also useful, and at times preferred.

15 One having ordinary skill in the art can produce fragments of a polypeptide by truncating the nucleic acid molecule, *e.g.*, an LSNA, encoding the polypeptide and then expressing it recombinantly. Alternatively, one can produce a fragment by chemically synthesizing a portion of the full-length polypeptide. One may also produce a fragment by enzymatically cleaving either a recombinant polypeptide or an isolated naturally- 20 occurring polypeptide. Methods of producing polypeptide fragments are well-known in the art. *See, e.g.*, Sambrook (1989), *supra*; Sambrook (2001), *supra*; Ausubel (1992), *supra*; and Ausubel (1999), *supra*. In one embodiment, a polypeptide comprising only a fragment of polypeptide of the invention, preferably an LSP, may be produced by chemical or enzymatic cleavage of a polypeptide. In a preferred embodiment, a 25 polypeptide fragment is produced by expressing a nucleic acid molecule encoding a fragment of the polypeptide, preferably an LSP, in a host cell.

By "polypeptides" as used herein it is also meant to be inclusive of mutants, fusion proteins, homologous proteins and allelic variants of the polypeptides specifically exemplified.

30 A mutant protein, or mutein, may have the same or different properties compared to a naturally-occurring polypeptide and comprises at least one amino acid insertion, duplication, deletion, rearrangement or substitution compared to the amino acid sequence

of a native protein. Small deletions and insertions can often be found that do not alter the function of the protein. In one embodiment, the mutein may or may not be lung-specific. In a preferred embodiment, the mutein is lung-specific. In a preferred embodiment, the mutein is a polypeptide that comprises at least one amino acid insertion, duplication, 5 deletion, rearrangement or substitution compared to the amino acid sequence of SEQ ID NO: 165 through 284. In a more preferred embodiment, the mutein is one that exhibits at least 50% sequence identity, more preferably at least 60% sequence identity, even more preferably at least 70%, yet more preferably at least 80% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In yet a more 10 preferred embodiment, the mutein exhibits at least 85%, more preferably 90%, even more preferably 95% or 96%, and yet more preferably at least 97%, 98%, 99% or 99.5% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284.

A mutein may be produced by isolation from a naturally-occurring mutant cell, 15 tissue or organism. A mutein may be produced by isolation from a cell, tissue or organism that has been experimentally mutagenized. Alternatively, a mutein may be produced by chemical manipulation of a polypeptide, such as by altering the amino acid residue to another amino acid residue using synthetic or semi-synthetic chemical techniques. In a preferred embodiment, a mutein may be produced from a host cell 20 comprising an altered nucleic acid molecule compared to the naturally-occurring nucleic acid molecule. For instance, one may produce a mutein of a polypeptide by introducing one or more mutations into a nucleic acid sequence of the invention and then expressing it recombinantly. These mutations may be targeted, in which particular encoded amino acids are altered, or may be untargeted, in which random encoded amino acids within the 25 polypeptide are altered. Muteins with random amino acid alterations can be screened for a particular biological activity or property, particularly whether the polypeptide is lung-specific, as described below. Multiple random mutations can be introduced into the gene by methods well-known to the art, e.g., by error-prone PCR, shuffling, oligonucleotide-directed mutagenesis, assembly PCR, sexual PCR mutagenesis, *in vivo* 30 mutagenesis, cassette mutagenesis, recursive ensemble mutagenesis, exponential ensemble mutagenesis and site-specific mutagenesis. Methods of producing muteins with targeted or random amino acid alterations are well-known in the art. *See, e.g.,*

-65-

Sambrook (1989), *supra*; Sambrook (2001), *supra*; Ausubel (1992), *supra*; and Ausubel (1999), U.S. Patent 5,223,408, and the references discussed *supra*, each herein incorporated by reference.

By "polypeptide" as used herein it is also meant to be inclusive of polypeptides homologous to those polypeptides exemplified herein. In a preferred embodiment, the polypeptide is homologous to an LSP. In an even more preferred embodiment, the polypeptide is homologous to an LSP selected from the group having an amino acid sequence of SEQ ID NO: 165 through 284. In a preferred embodiment, the homologous polypeptide is one that exhibits significant sequence identity to an LSP. In a more preferred embodiment, the polypeptide is one that exhibits significant sequence identity to an comprising an amino acid sequence of SEQ ID NO: 165 through 284. In an even more preferred embodiment, the homologous polypeptide is one that exhibits at least 50% sequence identity, more preferably at least 60% sequence identity, even more preferably at least 70%, yet more preferably at least 80% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In a yet more preferred embodiment, the homologous polypeptide is one that exhibits at least 85%, more preferably 90%, even more preferably 95% or 96%, and yet more preferably at least 97% or 98% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In another preferred embodiment, the homologous polypeptide is one that exhibits at least 99%, more preferably 99.5%, even more preferably 99.6%, 99.7%, 99.8% or 99.9% sequence identity to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284. In a preferred embodiment, the amino acid substitutions are conservative amino acid substitutions as discussed above.

In another embodiment, the homologous polypeptide is one that is encoded by a nucleic acid molecule that selectively hybridizes to an LSNA. In a preferred embodiment, the homologous polypeptide is encoded by a nucleic acid molecule that hybridizes to an LSNA under low stringency, moderate stringency or high stringency conditions, as defined herein. In a more preferred embodiment, the LSNA is selected from the group consisting of SEQ ID NO: 1 through 164. In another preferred embodiment, the homologous polypeptide is encoded by a nucleic acid molecule that hybridizes to a nucleic acid molecule that encodes an LSP under low stringency, moderate stringency or high stringency conditions, as defined herein. In a more preferred

embodiment, the LSP is selected from the group consisting of SEQ ID NO: 165 through 284.

The homologous polypeptide may be a naturally-occurring one that is derived from another species, especially one derived from another primate, such as chimpanzee, 5 gorilla, rhesus macaque, baboon or gorilla, wherein the homologous polypeptide comprises an amino acid sequence that exhibits significant sequence identity to that of SEQ ID NO: 165 through 284. The homologous polypeptide may also be a naturally- occurring polypeptide from a human, when the LSP is a member of a family of polypeptides. The homologous polypeptide may also be a naturally-occurring 10 polypeptide derived from a non-primate, mammalian species, including without limitation, domesticated species, e.g., dog, cat, mouse, rat, rabbit, guinea pig, hamster, cow, horse, goat or pig. The homologous polypeptide may also be a naturally-occurring polypeptide derived from a non-mammalian species, such as birds or reptiles. The naturally-occurring homologous protein may be isolated directly from humans or other 15 species. Alternatively, the nucleic acid molecule encoding the naturally-occurring homologous polypeptide may be isolated and used to express the homologous polypeptide recombinantly. In another embodiment, the homologous polypeptide may be one that is experimentally produced by random mutation of a nucleic acid molecule and subsequent expression of the nucleic acid molecule. In another embodiment, the 20 homologous polypeptide may be one that is experimentally produced by directed mutation of one or more codons to alter the encoded amino acid of an LSP. Further, the homologous protein may or may not encode polypeptide that is an LSP. However, in a preferred embodiment, the homologous polypeptide encodes a polypeptide that is an LSP.

25 Relatedness of proteins can also be characterized using a second functional test, the ability of a first protein competitively to inhibit the binding of a second protein to an antibody. It is, therefore, another aspect of the present invention to provide isolated proteins not only identical in sequence to those described with particularity herein, but also to provide isolated proteins ("cross-reactive proteins") that competitively inhibit the 30 binding of antibodies to all or to a portion of various of the isolated polypeptides of the present invention. Such competitive inhibition can readily be determined using immunoassays well-known in the art.

As discussed above, single nucleotide polymorphisms (SNPs) occur frequently in eukaryotic genomes, and the sequence determined from one individual of a species may differ from other allelic forms present within the population. Thus, by "polypeptide" as used herein it is also meant to be inclusive of polypeptides encoded by an allelic variant

5 of a nucleic acid molecule encoding an LSP. In a preferred embodiment, the polypeptide is encoded by an allelic variant of a gene that encodes a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO: 165 through 284. In a yet more preferred embodiment, the polypeptide is encoded by an allelic variant of a gene that has the nucleic acid sequence selected from the group consisting of SEQ ID

10 NO: 1 through 164.

In another embodiment, the invention provides polypeptides which comprise derivatives of a polypeptide encoded by a nucleic acid molecule according to the instant invention. In a preferred embodiment, the polypeptide is an LSP. In a preferred embodiment, the polypeptide has an amino acid sequence selected from the group

15 consisting of SEQ ID NO: 165 through 284, or is a mutein, allelic variant, homologous protein or fragment thereof. In a preferred embodiment, the derivative has been acetylated, carboxylated, phosphorylated, glycosylated or ubiquitinated. In another preferred embodiment, the derivative has been labeled with, e.g., radioactive isotopes such as ¹²⁵I, ³²P, ³⁵S, and ³H. In another preferred embodiment, the derivative has been

20 labeled with fluorophores, chemiluminescent agents, enzymes, and antiligands that can serve as specific binding pair members for a labeled ligand.

Polypeptide modifications are well-known to those of skill and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of

25 glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as, for instance Creighton, Protein Structure and Molecular Properties, 2nd ed., W. H. Freeman and Company (1993). Many detailed reviews are available on this subject, such as, for example, those provided by Wold, in Johnson (ed.), Posttranslational Covalent Modification of Proteins, pgs. 1-12, Academic Press (1983);

30 Seifert *et al.*, *Meth. Enzymol.* 182: 626-646 (1990) and Rattan *et al.*, *Ann. N.Y. Acad. Sci.* 663: 48-62 (1992).

-68-

It will be appreciated, as is well-known and as noted above, that polypeptides are not always entirely linear. For instance, polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of posttranslation events, including natural processing event and events brought about by 5 human manipulation which do not occur naturally. Circular, branched and branched circular polypeptides may be synthesized by non-translation natural process and by entirely synthetic methods, as well. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. In fact, blockage of the amino or carboxyl group in a polypeptide, or both, by a 10 covalent modification, is common in naturally occurring and synthetic polypeptides and such modifications may be present in polypeptides of the present invention, as well. For instance, the amino terminal residue of polypeptides made in *E. coli*, prior to proteolytic processing, almost invariably will be N-formylmethionine.

Useful post-synthetic (and post-translational) modifications include conjugation 15 to detectable labels, such as fluorophores. A wide variety of amine-reactive and thiol-reactive fluorophore derivatives have been synthesized that react under nondenaturing conditions with N-terminal amino groups and epsilon amino groups of lysine residues, on the one hand, and with free thiol groups of cysteine residues, on the other.

Kits are available commercially that permit conjugation of proteins to a variety of 20 amine-reactive or thiol-reactive fluorophores: Molecular Probes, Inc. (Eugene, OR, USA), e.g., offers kits for conjugating proteins to Alexa Fluor 350, Alexa Fluor 430, Fluorescein-EX, Alexa Fluor 488, Oregon Green 488, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, and Texas Red-X.

A wide variety of other amine-reactive and thiol-reactive fluorophores are 25 available commercially (Molecular Probes, Inc., Eugene, OR, USA), including Alexa Fluor® 350, Alexa Fluor® 488, Alexa Fluor® 532, Alexa Fluor® 546, Alexa Fluor® 568, Alexa Fluor® 594, Alexa Fluor® 647 (monoclonal antibody labeling kits available from Molecular Probes, Inc., Eugene, OR, USA), BODIPY dyes, such as BODIPY 493/503, BODIPY FL, BODIPY R6G, BODIPY 530/550, BODIPY TMR, BODIPY 30 558/568, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY TR, BODIPY 630/650, BODIPY 650/665, Cascade Blue, Cascade Yellow, Dansyl, lissamine rhodamine B, Marina Blue, Oregon Green 488, Oregon Green 514,

Pacific Blue, rhodamine 6G, rhodamine green, rhodamine red, tetramethylrhodamine, Texas Red (available from Molecular Probes, Inc., Eugene, OR, USA).

The polypeptides of the present invention can also be conjugated to fluorophores, other proteins, and other macromolecules, using bifunctional linking reagents. Common 5 homobifunctional reagents include, e.g., APG, AEDP, BASED, BMB, BMDB, BMH, BMOE, BM[PEO]3, BM[PEO]4, BS3, BSOCOES, DFDNB, DMA, DMP, DMS, DPDPB, DSG, DSP (Lomant's Reagent), DSS, DST, DTBP, DTME, DTSSP, EGS, HBVS, Sulfo-BSOCOES, Sulfo-DST, Sulfo-EGS (all available from Pierce, Rockford, IL, USA); common heterobifunctional cross-linkers include ABH, AMAS, ANB-NOS, 10 APDP, ASBA, BMPA, BMPH, BMPS, EDC, EMCA, EMCH, EMCS, KMUA, KMUH, GMBS, LC-SMCC, LC-SPDP, MBS, M2C2H, MPBH, MSA, NHS-ASA, PDPH, PMPI, SADP, SAED, SAND, SANPAH, SASD, SATP, SBAP, SFAD, SIA, SIAB, SMCC, SMPB, SMPH, SMPT, SPDP, Sulfo-EMCS, Sulfo-GMBS, Sulfo-HSAB, Sulfo-KMUS, Sulfo-LC-SPDP, Sulfo-MBS, Sulfo-NHS-LC-ASA, Sulfo-SADP, Sulfo-SANPAH, 15 Sulfo-SIAB, Sulfo-SMCC, Sulfo-SMPB, Sulfo-LC-SMPT, SVSB, TFCS (all available Pierce, Rockford, IL, USA).

The polypeptides, fragments, and fusion proteins of the present invention can be conjugated, using such cross-linking reagents, to fluorophores that are not amine- or thiol-reactive. Other labels that usefully can be conjugated to the polypeptides, 20 fragments, and fusion proteins of the present invention include radioactive labels, echosonographic contrast reagents, and MRI contrast agents.

The polypeptides, fragments, and fusion proteins of the present invention can also usefully be conjugated using cross-linking agents to carrier proteins, such as KLH, bovine thyroglobulin, and even bovine serum albumin (BSA), to increase 25 immunogenicity for raising anti-LSP antibodies.

The polypeptides, fragments, and fusion proteins of the present invention can also usefully be conjugated to polyethylene glycol (PEG); PEGylation increases the serum half-life of proteins administered intravenously for replacement therapy. Delgado *et al.*, *Crit. Rev. Ther. Drug Carrier Syst.* 9(3-4): 249-304 (1992); Scott *et al.*, *Curr. Pharm. Des.* 4(6): 423-38 (1998); DeSantis *et al.*, *Curr. Opin. Biotechnol.* 10(4): 324-30 (1999), incorporated herein by reference in their entireties. PEG monomers can be attached to the protein directly or through a linker, with PEGylation using PEG monomers activated

with tresyl chloride (2,2,2-trifluoroethanesulphonyl chloride) permitting direct attachment under mild conditions.

In yet another embodiment, the invention provides analogs of a polypeptide encoded by a nucleic acid molecule according to the instant invention. In a preferred embodiment, the polypeptide is an LSP. In a more preferred embodiment, the analog is derived from a polypeptide having part or all of the amino acid sequence of SEQ ID NO: 165 through 284. In a preferred embodiment, the analog is one that comprises one or more substitutions of non-natural amino acids or non-native inter-residue bonds compared to the naturally-occurring polypeptide. In general, the non-peptide analog is structurally similar to an LSP, but one or more peptide linkages is replaced by a linkage selected from the group consisting of --CH₂NH--, --CH₂S--, --CH₂-CH₂--, --CH=CH--(cis and trans), --COCH₂--, --CH(OH)CH₂-- and --CH₂SO--. In another embodiment, the non-peptide analog comprises substitution of one or more amino acids of an LSP with a D-amino acid of the same type or other non-natural amino acid in order to generate more stable peptides. D-amino acids can readily be incorporated during chemical peptide synthesis: peptides assembled from D-amino acids are more resistant to proteolytic attack; incorporation of D-amino acids can also be used to confer specific three-dimensional conformations on the peptide. Other amino acid analogues commonly added during chemical synthesis include ornithine, norleucine, phosphorylated amino acids (typically phosphoserine, phosphothreonine, phosphotyrosine), L-malonyltyrosine, a non-hydrolyzable analog of phosphotyrosine (*see, e.g., Kole et al., Biochem. Biophys. Res. Com.* 209: 817-821 (1995)), and various halogenated phenylalanine derivatives.

Non-natural amino acids can be incorporated during solid phase chemical synthesis or by recombinant techniques, although the former is typically more common. Solid phase chemical synthesis of peptides is well established in the art. Procedures are described, *inter alia*, in Chan *et al.* (eds.), Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Practical Approach Series), Oxford Univ. Press (March 2000); Jones, Amino Acid and Peptide Synthesis (Oxford Chemistry Primers, No 7), Oxford Univ. Press (1992); and Bodanszky, Principles of Peptide Synthesis (Springer Laboratory), Springer Verlag (1993); the disclosures of which are incorporated herein by reference in their entireties.

Amino acid analogues having detectable labels are also usefully incorporated during synthesis to provide derivatives and analogs. Biotin, for example can be added using biotinoyl-(9-fluorenylmethoxycarbonyl)-L-lysine (FMOC biocytin) (Molecular Probes, Eugene, OR, USA). Biotin can also be added enzymatically by incorporation

5 into a fusion protein of a *E. coli* BirA substrate peptide. The FMOC and *t*BOC derivatives of dabcyl-L-lysine (Molecular Probes, Inc., Eugene, OR, USA) can be used to incorporate the dabcyl chromophore at selected sites in the peptide sequence during synthesis. The aminonaphthalene derivative EDANS, the most common fluorophore for pairing with the dabcyl quencher in fluorescence resonance energy transfer (FRET)

10 systems, can be introduced during automated synthesis of peptides by using EDANS-FMOC-L-glutamic acid or the corresponding *t*BOC derivative (both from Molecular Probes, Inc., Eugene, OR, USA). Tetramethylrhodamine fluorophores can be incorporated during automated FMOC synthesis of peptides using (FMOC)-TMR-L-lysine (Molecular Probes, Inc. Eugene, OR, USA).

15 Other useful amino acid analogues that can be incorporated during chemical synthesis include aspartic acid, glutamic acid, lysine, and tyrosine analogues having allyl side-chain protection (Applied Biosystems, Inc., Foster City, CA, USA); the allyl side chain permits synthesis of cyclic, branched-chain, sulfonated, glycosylated, and phosphorylated peptides.

20 A large number of other FMOC-protected non-natural amino acid analogues capable of incorporation during chemical synthesis are available commercially, including, e.g., Fmoc-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, Fmoc-3-endo-aminobicyclo[2.2.1]heptane-2-endo-carboxylic acid, Fmoc-3-exo-aminobicyclo[2.2.1]heptane-2-exo-carboxylic acid, Fmoc-3-endo-amino-

25 bicyclo[2.2.1]hept-5-ene-2-endo-carboxylic acid, Fmoc-3-exo-amino-bicyclo[2.2.1]hept-5-ene-2-exo-carboxylic acid, Fmoc-cis-2-amino-1-cyclohexanecarboxylic acid, Fmoc-trans-2-amino-1-cyclohexanecarboxylic acid, Fmoc-1-amino-1-cyclopentanecarboxylic acid, Fmoc-cis-2-amino-1-cyclopentanecarboxylic acid, Fmoc-1-amino-1-cyclopropanecarboxylic acid, Fmoc-D-2-amino-4-(ethylthio)butyric acid, Fmoc-L-2-

30 amino-4-(ethylthio)butyric acid, Fmoc-L-buthionine, Fmoc-S-methyl-L-Cysteine, Fmoc-2-aminobenzoic acid (anthranillic acid), Fmoc-3-aminobenzoic acid, Fmoc-4-aminobenzoic acid, Fmoc-2-aminobenzophenone-2'-carboxylic acid, Fmoc-N-(4-

-72-

aminobenzoyl)- β -alanine, Fmoc-2-amino-4,5-dimethoxybenzoic acid, Fmoc-4-aminohippuric acid, Fmoc-2-amino-3-hydroxybenzoic acid, Fmoc-2-amino-5-hydroxybenzoic acid, Fmoc-3-amino-4-hydroxybenzoic acid, Fmoc-4-amino-3-hydroxybenzoic acid, Fmoc-4-amino-2-hydroxybenzoic acid, Fmoc-5-amino-2-hydroxybenzoic acid, Fmoc-2-amino-3-methoxybenzoic acid, Fmoc-4-amino-3-methoxybenzoic acid, Fmoc-2-amino-3-methylbenzoic acid, Fmoc-2-amino-5-methylbenzoic acid, Fmoc-2-amino-6-methylbenzoic acid, Fmoc-3-amino-2-methylbenzoic acid, Fmoc-3-amino-4-methylbenzoic acid, Fmoc-4-amino-3-methylbenzoic acid, Fmoc-3-amino-2-naphtoic acid, Fmoc-D,L-3-amino-3-phenylpropionic acid, Fmoc-L-Methyldopa, Fmoc-2-amino-4,6-dimethyl-3-pyridinecarboxylic acid, Fmoc-D,L-amino-2-thiophenacetic acid, Fmoc-4-(carboxymethyl)piperazine, Fmoc-4-carboxypiperazine, Fmoc-4-(carboxymethyl)homopiperazine, Fmoc-4-phenyl-4-piperidinecarboxylic acid, Fmoc-L-1,2,3,4-tetrahydronorharman-3-carboxylic acid, Fmoc-L-thiazolidine-4-carboxylic acid,

15 all available from The Peptide Laboratory (Richmond, CA, USA).

Non-natural residues can also be added biosynthetically by engineering a suppressor tRNA, typically one that recognizes the UAG stop codon, by chemical aminoacylation with the desired unnatural amino acid. Conventional site-directed mutagenesis is used to introduce the chosen stop codon UAG at the site of interest in the protein gene. When the acylated suppressor tRNA and the mutant gene are combined in an *in vitro* transcription/translation system, the unnatural amino acid is incorporated in response to the UAG codon to give a protein containing that amino acid at the specified position. Liu *et al.*, *Proc. Natl Acad. Sci. USA* 96(9): 4780-5 (1999); Wang *et al.*, *Science* 292(5516): 498-500 (2001).

25 *Fusion Proteins*

The present invention further provides fusions of each of the polypeptides and fragments of the present invention to heterologous polypeptides. In a preferred embodiment, the polypeptide is an LSP. In a more preferred embodiment, the polypeptide that is fused to the heterologous polypeptide comprises part or all of the amino acid sequence of SEQ ID NO: 165 through 284, or is a mutein, homologous polypeptide, analog or derivative thereof. In an even more preferred embodiment, the nucleic acid molecule encoding the fusion protein comprises all or part of the nucleic

acid sequence of SEQ ID NO: 1 through 164, or comprises all or part of a nucleic acid sequence that selectively hybridizes or is homologous to a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 164.

The fusion proteins of the present invention will include at least one fragment of

5 the protein of the present invention, which fragment is at least 6, typically at least 8, often at least 15, and usefully at least 16, 17, 18, 19, or 20 amino acids long. The fragment of the protein of the present to be included in the fusion can usefully be at least 25 amino acids long, at least 50 amino acids long, and can be at least 75, 100, or even 150 amino acids long. Fusions that include the entirety of the proteins of the present invention have

10 particular utility.

The heterologous polypeptide included within the fusion protein of the present invention is at least 6 amino acids in length, often at least 8 amino acids in length, and usefully at least 15, 20, and 25 amino acids in length. Fusions that include larger polypeptides, such as the IgG Fc region, and even entire proteins (such as GFP

15 chromophore-containing proteins) are particular useful.

As described above in the description of vectors and expression vectors of the present invention, which discussion is incorporated here by reference in its entirety, heterologous polypeptides to be included in the fusion proteins of the present invention can usefully include those designed to facilitate purification and/or visualization of

20 recombinantly-expressed proteins. *See, e.g., Ausubel, Chapter 16, (1992), supra.*

Although purification tags can also be incorporated into fusions that are chemically synthesized, chemical synthesis typically provides sufficient purity that further purification by HPLC suffices; however, visualization tags as above described retain their utility even when the protein is produced by chemical synthesis, and when so

25 included render the fusion proteins of the present invention useful as directly detectable markers of the presence of a polypeptide of the invention.

As also discussed above, heterologous polypeptides to be included in the fusion proteins of the present invention can usefully include those that facilitate secretion of recombinantly expressed proteins — into the periplasmic space or extracellular milieu for

30 prokaryotic hosts, into the culture medium for eukaryotic cells — through incorporation of secretion signals and/or leader sequences. For example, a His⁶ tagged protein can be purified on a Ni affinity column and a GST fusion protein can be purified on a

glutathione affinity column. Similarly, a fusion protein comprising the Fc domain of IgG can be purified on a Protein A or Protein G column and a fusion protein comprising an epitope tag such as myc can be purified using an immunoaffinity column containing an anti-c-myc antibody. It is preferable that the epitope tag be separated from the protein
5 encoded by the essential gene by an enzymatic cleavage site that can be cleaved after purification. See also the discussion of nucleic acid molecules encoding fusion proteins that may be expressed on the surface of a cell.

Other useful protein fusions of the present invention include those that permit use of the protein of the present invention as bait in a yeast two-hybrid system. See Bartel *et al.* (eds.), The Yeast Two-Hybrid System, Oxford University Press (1997); Zhu *et al.*, Yeast Hybrid Technologies, Eaton Publishing (2000); Fields *et al.*, *Trends Genet.* 10(8): 286-92 (1994); Mendelsohn *et al.*, *Curr. Opin. Biotechnol.* 5(5): 482-6 (1994); Luban *et al.*, *Curr. Opin. Biotechnol.* 6(1): 59-64 (1995); Allen *et al.*, *Trends Biochem. Sci.* 20(12): 511-6 (1995); Drees, *Curr. Opin. Chem. Biol.* 3(1): 64-70 (1999); Topcu *et al.*, *Pharm. Res.* 17(9): 1049-55 (2000); Fashena *et al.*, *Gene* 250(1-2): 1-14 (2000); ; Colas *et al.*, (1996) Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. *Nature* 380, 548-550; Norman, T. *et al.*, (1999) Genetic selection of peptide inhibitors of biological pathways. *Science* 285, 591-595, Fabbrizio *et al.*, (1999) Inhibition of mammalian cell proliferation by genetically selected peptide aptamers that
15 functionally antagonize E2F activity. *Oncogene* 18, 4357-4363; Xu *et al.*, (1997) Cells that register logical relationships among proteins. *Proc Natl Acad Sci U S A.* 94, 12473-12478; Yang, *et al.*, (1995) Protein-peptide interactions analyzed with the yeast two-hybrid system. *Nuc. Acids Res.* 23, 1152-1156; Kolonin *et al.*, (1998) Targeting cyclin-dependent kinases in Drosophila with peptide aptamers. *Proc Natl Acad Sci U S A* 95,
20 14266-14271; Cohen *et al.*, (1998) An artificial cell-cycle inhibitor isolated from a combinatorial library. *Proc Natl Acad Sci U S A* 95, 14272-14277; Uetz, P.; Giot, L.; al, e.; Fields, S.; Rothberg, J. M. (2000) A comprehensive analysis of protein-protein interactions in *Saccharomyces cerevisiae*. *Nature* 403, 623-627; Ito, *et al.*, (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. *Proc Natl Acad Sci U S A* 98, 4569-4574, the disclosures of which are incorporated herein by
25 reference in their entireties. Typically, such fusion is to either *E. coli* LexA or yeast

-75-

GAL4 DNA binding domains. Related bait plasmids are available that express the bait fused to a nuclear localization signal.

Other useful fusion proteins include those that permit display of the encoded protein on the surface of a phage or cell, fusions to intrinsically fluorescent proteins, such 5 as green fluorescent protein (GFP), and fusions to the IgG Fc region, as described above, which discussion is incorporated here by reference in its entirety.

The polypeptides and fragments of the present invention can also usefully be fused to protein toxins, such as *Pseudomonas* exotoxin A, *diphtheria* toxin, *shiga* toxin A, *anthrax* toxin lethal factor, ricin, in order to effect ablation of cells that bind or take up 10 the proteins of the present invention.

Fusion partners include, *inter alia*, *myc*, hemagglutinin (HA), GST, immunoglobulins, β -galactosidase, biotin trpE, protein A, β -lactamase, -amylase, maltose binding protein, alcohol dehydrogenase, polyhistidine (for example, six histidine at the amino and/or carboxyl terminus of the polypeptide), lacZ, green fluorescent protein 15 (GFP), yeast _ mating factor, GAL4 transcription activation or DNA binding domain, luciferase, and serum proteins such as ovalbumin, albumin and the constant domain of IgG. See, e.g., Ausubel (1992), *supra* and Ausubel (1999), *supra*. Fusion proteins may also contain sites for specific enzymatic cleavage, such as a site that is recognized by enzymes such as Factor XIII, trypsin, pepsin, or any other enzyme known in the art. 20 Fusion proteins will typically be made by either recombinant nucleic acid methods, as described above, chemically synthesized using techniques well-known in the art (e.g., a Merrifield synthesis), or produced by chemical cross-linking.

Another advantage of fusion proteins is that the epitope tag can be used to bind the fusion protein to a plate or column through an affinity linkage for screening binding 25 proteins or other molecules that bind to the LSP.

As further described below, the isolated polypeptides, mutoins, fusion proteins, homologous proteins or allelic variants of the present invention can readily be used as specific immunogens to raise antibodies that specifically recognize LSPs, their allelic variants and homologues. The antibodies, in turn, can be used, *inter alia*, specifically to 30 assay for the polypeptides of the present invention, particularly LSPs, e.g. by ELISA for detection of protein fluid samples, such as serum, by immunohistochemistry or laser scanning cytometry, for detection of protein in tissue samples, or by flow cytometry, for

detection of intracellular protein in cell suspensions, for specific antibody-mediated isolation and/or purification of LSPs, as for example by immunoprecipitation, and for use as specific agonists or antagonists of LSPs.

One may determine whether polypeptides including muteins, fusion proteins, homologous proteins or allelic variants are functional by methods known in the art. For instance, residues that are tolerant of change while retaining function can be identified by altering the protein at known residues using methods known in the art, such as alanine scanning mutagenesis, Cunningham *et al.*, *Science* 244(4908): 1081-5 (1989); transposon linker scanning mutagenesis, Chen *et al.*, *Gene* 263(1-2): 39-48 (2001); combinations of homolog- and alanine-scanning mutagenesis, Jin *et al.*, *J. Mol. Biol.* 226(3): 851-65 (1992); combinatorial alanine scanning, Weiss *et al.*, *Proc. Natl. Acad. Sci USA* 97(16): 8950-4 (2000), followed by functional assay. Transposon linker scanning kits are available commercially (New England Biolabs, Beverly, MA, USA, catalog. no. E7-102S; EZ::TNTM In-Frame Linker Insertion Kit, catalogue no. EZI04KN, Epicentre Technologies Corporation, Madison, WI, USA).

Purification of the polypeptides including fragments, homologous polypeptides, muteins, analogs, derivatives and fusion proteins is well-known and within the skill of one having ordinary skill in the art. See, e.g., Scopes, Protein Purification, 2d ed. (1987). Purification of recombinantly expressed polypeptides is described above. Purification of chemically-synthesized peptides can readily be effected, e.g., by HPLC.

Accordingly, it is an aspect of the present invention to provide the isolated proteins of the present invention in pure or substantially pure form in the presence of absence of a stabilizing agent. Stabilizing agents include both proteinaceous or non-proteinaceous material and are well-known in the art. Stabilizing agents, such as albumin and polyethylene glycol (PEG) are known and are commercially available.

Although high levels of purity are preferred when the isolated proteins of the present invention are used as therapeutic agents, such as in vaccines and as replacement therapy, the isolated proteins of the present invention are also useful at lower purity. For example, partially purified proteins of the present invention can be used as immunogens to raise antibodies in laboratory animals.

In preferred embodiments, the purified and substantially purified proteins of the present invention are in compositions that lack detectable ampholytes, acrylamide monomers, bis-acrylamide monomers, and polyacrylamide.

The polypeptides, fragments, analogs, derivatives and fusions of the present invention can usefully be attached to a substrate. The substrate can be porous or solid, planar or non-planar; the bond can be covalent or noncovalent.

For example, the polypeptides, fragments, analogs, derivatives and fusions of the present invention can usefully be bound to a porous substrate, commonly a membrane, typically comprising nitrocellulose, polyvinylidene fluoride (PVDF), or cationically derivatized, hydrophilic PVDF; so bound, the proteins, fragments, and fusions of the present invention can be used to detect and quantify antibodies, *e.g.* in serum, that bind specifically to the immobilized protein of the present invention.

As another example, the polypeptides, fragments, analogs, derivatives and fusions of the present invention can usefully be bound to a substantially nonporous substrate, such as plastic, to detect and quantify antibodies, *e.g.* in serum, that bind specifically to the immobilized protein of the present invention. Such plastics include polymethylacrylic, polyethylene, polypropylene, polyacrylate, polymethylmethacrylate, polyvinylchloride, polytetrafluoroethylene, polystyrene, polycarbonate, polyacetal, polysulfone, celluloseacetate, cellulosenitrate, nitrocellulose, or mixtures thereof; when the assay is performed in a standard microtiter dish, the plastic is typically polystyrene.

The polypeptides, fragments, analogs, derivatives and fusions of the present invention can also be attached to a substrate suitable for use as a surface enhanced laser desorption ionization source; so attached, the protein, fragment, or fusion of the present invention is useful for binding and then detecting secondary proteins that bind with sufficient affinity or avidity to the surface-bound protein to indicate biologic interaction there between. The proteins, fragments, and fusions of the present invention can also be attached to a substrate suitable for use in surface plasmon resonance detection; so attached, the protein, fragment, or fusion of the present invention is useful for binding and then detecting secondary proteins that bind with sufficient affinity or avidity to the surface-bound protein to indicate biological interaction there between.

Antibodies

In another aspect, the invention provides antibodies, including fragments and derivatives thereof, that bind specifically to polypeptides encoded by the nucleic acid molecules of the invention, as well as antibodies that bind to fragments, muteins, derivatives and analogs of the polypeptides. In a preferred embodiment, the antibodies are specific for a polypeptide that is an LSP, or a fragment, mutein, derivative, analog or fusion protein thereof. In a more preferred embodiment, the antibodies are specific for a polypeptide that comprises SEQ ID NO: 165 through 284, or a fragment, mutein, derivative, analog or fusion protein thereof.

The antibodies of the present invention can be specific for linear epitopes, discontinuous epitopes, or conformational epitopes of such proteins or protein fragments, either as present on the protein in its native conformation or, in some cases, as present on the proteins as denatured, as, *e.g.*, by solubilization in SDS. New epitopes may be also due to a difference in post translational modifications (PTMs) in disease versus normal tissue. For example, a particular site on a LSP may be glycosylated in cancerous cells, but not glycosylated in normal cells or visa versa. In addition, alternative splice forms of a LSP may be indicative of cancer. Differential degradation of the C or N-terminus of a LSP may also be a marker or target for anticancer therapy. For example, a LSP may be N-terminal degraded in cancer cells exposing new epitopes to which antibodies may selectively bind for diagnostic or therapeutic uses.

As is well-known in the art, the degree to which an antibody can discriminate as among molecular species in a mixture will depend, in part, upon the conformational relatedness of the species in the mixture; typically, the antibodies of the present invention will discriminate over adventitious binding to non-LSP polypeptides by at least 2-fold, more typically by at least 5-fold, typically by more than 10-fold, 25-fold, 50-fold, 75-fold, and often by more than 100-fold, and on occasion by more than 500-fold or 1000-fold. When used to detect the proteins or protein fragments of the present invention, the antibody of the present invention is sufficiently specific when it can be used to determine the presence of the protein of the present invention in samples derived from human lung.

Typically, the affinity or avidity of an antibody (or antibody multimer, as in the case of an IgM pentamer) of the present invention for a protein or protein fragment of the present invention will be at least about 1×10^{-6} molar (M), typically at least about 5×10^{-7}

7 M, 1×10^{-7} M, with affinities and avidities of at least 1×10^{-8} M, 5×10^{-9} M, 1×10^{-10} M and up to 1×10^{-13} M proving especially useful.

The antibodies of the present invention can be naturally-occurring forms, such as IgG, IgM, IgD, IgE, IgY, and IgA, from any avian, reptilian, or mammalian species.

5 Human antibodies can, but will infrequently, be drawn directly from human donors or human cells. In this case, antibodies to the proteins of the present invention will typically have resulted from fortuitous immunization, such as autoimmune immunization, with the protein or protein fragments of the present invention. Such antibodies will typically, but will not invariably, be polyclonal. In addition, individual
10 polyclonal antibodies may be isolated and cloned to generate monoclonals.

Human antibodies are more frequently obtained using transgenic animals that express human immunoglobulin genes, which transgenic animals can be affirmatively immunized with the protein immunogen of the present invention. Human Ig-transgenic mice capable of producing human antibodies and methods of producing human
15 antibodies therefrom upon specific immunization are described, *inter alia*, in U.S. Patents 6,162,963; 6,150,584; 6,114,598; 6,075,181; 5,939,598; 5,877,397; 5,874,299; 5,814,318; 5,789,650; 5,770,429; 5,661,016; 5,633,425; 5,625,126; 5,569,825; 5,545,807; 5,545,806, and 5,591,669, the disclosures of which are incorporated herein by reference in their entireties. Such antibodies are typically monoclonal, and are typically
20 produced using techniques developed for production of murine antibodies.

Human antibodies are particularly useful, and often preferred, when the antibodies of the present invention are to be administered to human beings as *in vivo* diagnostic or therapeutic agents, since recipient immune response to the administered antibody will often be substantially less than that occasioned by administration of an
25 antibody derived from another species, such as mouse.

IgG, IgM, IgD, IgE, IgY, and IgA antibodies of the present invention can also be obtained from other species, including mammals such as rodents (typically mouse, but also rat, guinea pig, and hamster) lagomorphs, typically rabbits, and also larger mammals, such as sheep, goats, cows, and horses, and other egg laying birds or reptiles
30 such as chickens or alligators. For example, avian antibodies may be generated using techniques described in WO 00/29444, published 25 May 2000, the contents of which are hereby incorporated in their entirety. In such cases, as with the transgenic human-

-80-

antibody-producing non-human mammals, fortuitous immunization is not required, and the non-human mammal is typically affirmatively immunized, according to standard immunization protocols, with the protein or protein fragment of the present invention.

As discussed above, virtually all fragments of 8 or more contiguous amino acids 5 of the proteins of the present invention can be used effectively as immunogens when conjugated to a carrier, typically a protein such as bovine thyroglobulin, keyhole limpet hemocyanin, or bovine serum albumin, conveniently using a bifunctional linker such as those described elsewhere above, which discussion is incorporated by reference here.

Immunogenicity can also be conferred by fusion of the polypeptide and fragments 10 of the present invention to other moieties. For example, peptides of the present invention can be produced by solid phase synthesis on a branched polylysine core matrix; these multiple antigenic peptides (MAPs) provide high purity, increased avidity, accurate chemical definition and improved safety in vaccine development. Tam *et al.*, *Proc. Natl. Acad. Sci. USA* 85: 5409-5413 (1988); Posnett *et al.*, *J. Biol. Chem.* 263: 1719-1725 15 (1988).

Protocols for immunizing non-human mammals or avian species are well-established in the art. See Harlow *et al.* (eds.), Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory (1998); Coligan *et al.* (eds.), Current Protocols in Immunology, John Wiley & Sons, Inc. (2001); Zola, Monoclonal Antibodies: Preparation 20 and Use of Monoclonal Antibodies and Engineered Antibody Derivatives (Basics: From Background to Bench), Springer Verlag (2000); Gross M, Speck *J.Dtsch. Tierarztl. Wochenschr.* 103: 417-422 (1996), the disclosures of which are incorporated herein by reference. Immunization protocols often include multiple immunizations, either with or without adjuvants such as Freund's complete adjuvant and Freund's incomplete adjuvant, 25 and may include naked DNA immunization (Moss, *Semin. Immunol.* 2: 317-327 (1990)).

Antibodies from non-human mammals and avian species can be polyclonal or 30 monoclonal, with polyclonal antibodies having certain advantages in immunohistochemical detection of the proteins of the present invention and monoclonal antibodies having advantages in identifying and distinguishing particular epitopes of the proteins of the present invention. Antibodies from avian species may have particular advantage in detection of the proteins of the present invention, in human serum or tissues (Vikinge *et al.*, *Biosens. Bioelectron.* 13: 1257-1262 (1998)).

Following immunization, the antibodies of the present invention can be produced using any art-accepted technique. Such techniques are well-known in the art, Coligan, *supra*; Zola, *supra*; Howard *et al.* (eds.), Basic Methods in Antibody Production and Characterization, CRC Press (2000); Harlow, *supra*; Davis (ed.), Monoclonal Antibody Protocols, Vol. 45, Humana Press (1995); Delves (ed.), Antibody Production: Essential Techniques, John Wiley & Son Ltd (1997); Kenney, Antibody Solution: An Antibody Methods Manual, Chapman & Hall (1997), incorporated herein by reference in their entireties, and thus need not be detailed here.

Briefly, however, such techniques include, *inter alia*, production of monoclonal antibodies by hybridomas and expression of antibodies or fragments or derivatives thereof from host cells engineered to express immunoglobulin genes or fragments thereof. These two methods of production are not mutually exclusive: genes encoding antibodies specific for the proteins or protein fragments of the present invention can be cloned from hybridomas and thereafter expressed in other host cells. Nor need the two necessarily be performed together: e.g., genes encoding antibodies specific for the proteins and protein fragments of the present invention can be cloned directly from B cells known to be specific for the desired protein, as further described in U.S Patent 5,627,052, the disclosure of which is incorporated herein by reference in its entirety, or from antibody-displaying phage.

Recombinant expression in host cells is particularly useful when fragments or derivatives of the antibodies of the present invention are desired.

Host cells for recombinant production of either whole antibodies, antibody fragments, or antibody derivatives can be prokaryotic or eukaryotic.

Prokaryotic hosts are particularly useful for producing phage displayed antibodies of the present invention.

The technology of phage-displayed antibodies, in which antibody variable region fragments are fused, for example, to the gene III protein (pIII) or gene VIII protein (pVIII) for display on the surface of filamentous phage, such as M13, is by now well-established. See, e.g., Sidhu, *Curr. Opin. Biotechnol.* 11(6): 610-6 (2000); Griffiths *et al.*, *Curr. Opin. Biotechnol.* 9(1): 102-8 (1998); Hoogenboom *et al.*, *Immunotechnology*, 4(1): 1-20 (1998); Rader *et al.*, *Current Opinion in Biotechnology* 8: 503-508 (1997); Aujame *et al.*, *Human Antibodies* 8: 155-168 (1997); Hoogenboom, *Trends in*

Biotechnol. 15: 62-70 (1997); de Kruif *et al.*, 17: 453-455 (1996); Barbas *et al.*, *Trends in Biotechnol.* 14: 230-234 (1996); Winter *et al.*, *Ann. Rev. Immunol.* 433-455 (1994). Techniques and protocols required to generate, propagate, screen (pan), and use the antibody fragments from such libraries have recently been compiled. See, e.g., Barbas 5 (2001), *supra*; Kay, *supra*; Abelson, *supra*, the disclosures of which are incorporated herein by reference in their entireties.

Typically, phage-displayed antibody fragments are scFv fragments or Fab fragments; when desired, full length antibodies can be produced by cloning the variable regions from the displaying phage into a complete antibody and expressing the full length 10 antibody in a further prokaryotic or a eukaryotic host cell.

Eukaryotic cells are also useful for expression of the antibodies, antibody fragments, and antibody derivatives of the present invention.

For example, antibody fragments of the present invention can be produced in *Pichia pastoris* and in *Saccharomyces cerevisiae*. See, e.g., Takahashi *et al.*, *Biosci. Biotechnol. Biochem.* 64(10): 2138-44 (2000); Freyre *et al.*, *J. Biotechnol.* 76(2-3):1 15 57-63 (2000); Fischer *et al.*, *Biotechnol. Appl. Biochem.* 30 (Pt 2): 117-20 (1999); Pennell *et al.*, *Res. Immunol.* 149(6): 599-603 (1998); Eldin *et al.*, *J. Immunol. Methods.* 201(1): 67-75 (1997); Frenken *et al.*, *Res. Immunol.* 149(6): 589-99 (1998); Shusta *et al.*, *Nature Biotechnol.* 16(8): 773-7 (1998), the disclosures of which are incorporated herein 20 by reference in their entireties.

Antibodies, including antibody fragments and derivatives, of the present invention can also be produced in insect cells. See, e.g., Li *et al.*, *Protein Expr. Purif.* 21(1): 121-8 (2001); Ailor *et al.*, *Biotechnol. Bioeng.* 58(2-3): 196-203 (1998); Hsu *et al.*, *Biotechnol. Prog.* 13(1): 96-104 (1997); Edelman *et al.*, *Immunology* 91(1): 13-9 (1997); 25 and Nesbit *et al.*, *J. Immunol. Methods* 151(1-2): 201-8 (1992), the disclosures of which are incorporated herein by reference in their entireties.

Antibodies and fragments and derivatives thereof of the present invention can also be produced in plant cells, particularly maize or tobacco, Giddings *et al.*, *Nature Biotechnol.* 18(11): 1151-5 (2000); Gavilondo *et al.*, *Biotechniques* 29(1): 128-38 (2000); 30 Fischer *et al.*, *J. Biol. Regul. Homeost. Agents* 14(2): 83-92 (2000); Fischer *et al.*, *Biotechnol. Appl. Biochem.* 30 (Pt 2): 113-6 (1999); Fischer *et al.*, *Biol. Chem.* 380(7-8): 825-39 (1999); Russell, *Curr. Top. Microbiol. Immunol.* 240: 119-38 (1999); and Ma *et*

al., Plant Physiol. 109(2): 341-6 (1995), the disclosures of which are incorporated herein by reference in their entireties.

Antibodies, including antibody fragments and derivatives, of the present invention can also be produced in transgenic, non-human, mammalian milk. *See, e.g.*

5 Pollock *et al.*, *J. Immunol Methods.* 231: 147-57 (1999); Young *et al.*, *Res. Immunol.* 149: 609-10 (1998); Limonta *et al.*, *Immunotechnology* 1: 107-13 (1995), the disclosures of which are incorporated herein by reference in their entireties.

Mammalian cells useful for recombinant expression of antibodies, antibody fragments, and antibody derivatives of the present invention include CHO cells, COS 10 cells, 293 cells, and myeloma cells.

Verma *et al.*, *J. Immunol. Methods* 216(1-2):165-81 (1998), herein incorporated by reference, review and compare bacterial, yeast, insect and mammalian expression systems for expression of antibodies.

Antibodies of the present invention can also be prepared by cell free translation, 15 as further described in Merk *et al.*, *J. Biochem.* (Tokyo) 125(2): 328-33 (1999) and Ryabova *et al.*, *Nature Biotechnol.* 15(1): 79-84 (1997), and in the milk of transgenic animals, as further described in Pollock *et al.*, *J. Immunol. Methods* 231(1-2): 147-57 (1999), the disclosures of which are incorporated herein by reference in their entireties.

The invention further provides antibody fragments that bind specifically to one or 20 more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

25 Among such useful fragments are Fab, Fab', Fv, F(ab)'₂, and single chain Fv (scFv) fragments. Other useful fragments are described in Hudson, *Curr. Opin. Biotechnol.* 9(4): 395-402 (1998).

It is also an aspect of the present invention to provide antibody derivatives that bind specifically to one or more of the proteins and protein fragments of the present 30 invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or

one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

Among such useful derivatives are chimeric, primatized, and humanized antibodies; such derivatives are less immunogenic in human beings, and thus more 5 suitable for *in vivo* administration, than are unmodified antibodies from non-human mammalian species. Another useful derivative is PEGylation to increase the serum half life of the antibodies.

Chimeric antibodies typically include heavy and/or light chain variable regions (including both CDR and framework residues) of immunoglobulins of one species, 10 typically mouse, fused to constant regions of another species, typically human. *See, e.g.*, United States Patent No. 5,807,715; Morrison *et al.*, *Proc. Natl. Acad. Sci USA* 81(21): 6851-5 (1984); Sharon *et al.*, *Nature* 309(5966): 364-7 (1984); Takeda *et al.*, *Nature* 314(6010): 452-4 (1985), the disclosures of which are incorporated herein by reference in their entireties. Primatized and humanized antibodies typically include heavy and/or 15 light chain CDRs from a murine antibody grafted into a non-human primate or human antibody V region framework, usually further comprising a human constant region, Riechmann *et al.*, *Nature* 332(6162): 323-7 (1988); Co *et al.*, *Nature* 351(6326): 501-2 (1991); United States Patent Nos. 6,054,297; 5,821,337; 5,770,196; 5,766,886; 5,821,123; 5,869,619; 6,180,377; 6,013,256; 5,693,761; and 6,180,370, the disclosures of 20 which are incorporated herein by reference in their entireties.

Other useful antibody derivatives of the invention include heteromeric antibody complexes and antibody fusions, such as diabodies (bispecific antibodies), single-chain diabodies, and intrabodies.

It is contemplated that the nucleic acids encoding the antibodies of the present 25 invention can be operably joined to other nucleic acids forming a recombinant vector for cloning or for expression of the antibodies of the invention. The present invention includes any recombinant vector containing the coding sequences, or part thereof, whether for eukaryotic transduction, transfection or gene therapy. Such vectors may be prepared using conventional molecular biology techniques, known to those with skill in 30 the art, and would comprise DNA encoding sequences for the immunoglobulin V-regions including framework and CDRs or parts thereof, and a suitable promoter either with or without a signal sequence for intracellular transport. Such vectors may be transduced or

transfected into eukaryotic cells or used for gene therapy (Marasco et al., *Proc. Natl. Acad. Sci. (USA)* 90: 7889-7893 (1993); Duan et al., *Proc. Natl. Acad. Sci. (USA)* 91: 5075-5079 (1994), by conventional techniques, known to those with skill in the art.

The antibodies of the present invention, including fragments and derivatives thereof, can usefully be labeled. It is, therefore, another aspect of the present invention to provide labeled antibodies that bind specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention.

The choice of label depends, in part, upon the desired use.

For example, when the antibodies of the present invention are used for immunohistochemical staining of tissue samples, the label is preferably an enzyme that catalyzes production and local deposition of a detectable product.

Enzymes typically conjugated to antibodies to permit their immunohistochemical visualization are well-known, and include alkaline phosphatase, β -galactosidase, glucose oxidase, horseradish peroxidase (HRP), and urease. Typical substrates for production and deposition of visually detectable products include o-nitrophenyl-beta-D-galactopyranoside (ONPG); o-phenylenediamine dihydrochloride (OPD); p-nitrophenyl phosphate (PNPP); p-nitrophenyl-beta-D-galactopyranoside (PNPG); 3',3'-diaminobenzidine (DAB); 3-amino-9-ethylcarbazole (AEC); 4-chloro-1-naphthol (CN); 5-bromo-4-chloro-3-indolyl-phosphate (BCIP); ABTS®; BluoGal; iodonitrotetrazolium (INT); nitroblue tetrazolium chloride (NBT); phenazine methosulfate (PMS); phenolphthalein monophosphate (PMP); tetramethyl benzidine (TMB); tetranitroblue tetrazolium (TNBT); X-Gal; X-Gluc; and X-Glucoside.

Other substrates can be used to produce products for local deposition that are luminescent. For example, in the presence of hydrogen peroxide (H_2O_2), horseradish peroxidase (HRP) can catalyze the oxidation of cyclic diacylhydrazides, such as luminol. Immediately following the oxidation, the luminol is in an excited state (intermediate reaction product), which decays to the ground state by emitting light. Strong enhancement of the light emission is produced by enhancers, such as phenolic

compounds. Advantages include high sensitivity, high resolution, and rapid detection without radioactivity and requiring only small amounts of antibody. See, e.g., Thorpe *et al.*, *Methods Enzymol.* 133: 331-53 (1986); Kricka *et al.*, *J. Immunoassay* 17(1): 67-83 (1996); and Lundqvist *et al.*, *J. Biolumin. Chemilumin.* 10(6): 353-9 (1995), the disclosures of which are incorporated herein by reference in their entireties. Kits for such enhanced chemiluminescent detection (ECL) are available commercially.

5 The antibodies can also be labeled using colloidal gold.

As another example, when the antibodies of the present invention are used, e.g., for flow cytometric detection, for scanning laser cytometric detection, or for fluorescent 10 immunoassay, they can usefully be labeled with fluorophores.

There are a wide variety of fluorophore labels that can usefully be attached to the antibodies of the present invention.

For flow cytometric applications, both for extracellular detection and for intracellular detection, common useful fluorophores can be fluorescein isothiocyanate 15 (FITC), allophycocyanin (APC), R-phycoerythrin (PE), peridinin chlorophyll protein (PerCP), Texas Red, Cy3, Cy5, fluorescence resonance energy tandem fluorophores such as PerCP-Cy5.5, PE-Cy5, PE-Cy5.5, PE-Cy7, PE-Texas Red, and APC-Cy7.

Other fluorophores include, *inter alia*, Alexa Fluor® 350, Alexa Fluor® 488, Alexa Fluor® 532, Alexa Fluor® 546, Alexa Fluor® 568, Alexa Fluor® 594, Alexa 20 Fluor® 647 (monoclonal antibody labeling kits available from Molecular Probes, Inc., Eugene, OR, USA), BODIPY dyes, such as BODIPY 493/503, BODIPY FL, BODIPY R6G, BODIPY 530/550, BODIPY TMR, BODIPY 558/568, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY TR, BODIPY 630/650, BODIPY 650/665, Cascade Blue, Cascade Yellow, Dansyl, lissamine 25 rhodamine B, Marina Blue, Oregon Green 488, Oregon Green 514, Pacific Blue, rhodamine 6G, rhodamine green, rhodamine red, tetramethylrhodamine, Texas Red (available from Molecular Probes, Inc., Eugene, OR, USA), and Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, all of which are also useful for fluorescently labeling the antibodies of the present invention.

30 For secondary detection using labeled avidin, streptavidin, captavidin or neutravidin, the antibodies of the present invention can usefully be labeled with biotin.

When the antibodies of the present invention are used, e.g., for Western blotting applications, they can usefully be labeled with radioisotopes, such as ^{33}P , ^{32}P , ^{35}S , ^3H , and ^{125}I .

As another example, when the antibodies of the present invention are used for 5 radioimmunotherapy, the label can usefully be ^{228}Th , ^{227}Ac , ^{225}Ac , ^{223}Ra , ^{213}Bi , ^{212}Pb , ^{212}Bi , ^{211}At , ^{203}Pb , ^{194}Os , ^{188}Re , ^{186}Re , ^{153}Sm , ^{149}Tb , ^{131}I , ^{125}I , ^{111}In , ^{105}Rh , ^{99m}Tc , ^{97}Ru , ^{90}Y , ^{90}Sr , ^{88}Y , ^{72}Se , ^{67}Cu , or ^{47}Sc .

As another example, when the antibodies of the present invention are to be used for *in vivo* diagnostic use, they can be rendered detectable by conjugation to MRI 10 contrast agents, such as gadolinium diethylenetriaminepentaacetic acid (DTPA), Lauffer *et al.*, *Radiology* 207(2): 529-38 (1998), or by radioisotopic labeling.

As would be understood, use of the labels described above is not restricted to the application for which they are mentioned.

The antibodies of the present invention, including fragments and derivatives 15 thereof, can also be conjugated to toxins, in order to target the toxin's ablative action to cells that display and/or express the proteins of the present invention. Commonly, the antibody in such immunotoxins is conjugated to *Pseudomonas* exotoxin A, *diphtheria* toxin, *shiga* toxin A, *anthrax* toxin lethal factor, or ricin. See Hall (ed.), Immunotoxin Methods and Protocols (Methods in Molecular Biology, vol. 166), Humana Press (2000); 20 and Frankel *et al.* (eds.), Clinical Applications of Immunotoxins, Springer-Verlag (1998), the disclosures of which are incorporated herein by reference in their entireties.

The antibodies of the present invention can usefully be attached to a substrate, and it is, therefore, another aspect of the invention to provide antibodies that bind 25 specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, attached to a substrate.

30 Substrates can be porous or nonporous, planar or nonplanar.

-88-

For example, the antibodies of the present invention can usefully be conjugated to filtration media, such as NHS-activated Sepharose or CNBr-activated Sepharose for purposes of immunoaffinity chromatography.

For example, the antibodies of the present invention can usefully be attached to 5 paramagnetic microspheres, typically by biotin-streptavidin interaction, which microspheres can then be used for isolation of cells that express or display the proteins of the present invention. As another example, the antibodies of the present invention can usefully be attached to the surface of a microtiter plate for ELISA.

As noted above, the antibodies of the present invention can be produced in 10 prokaryotic and eukaryotic cells. It is, therefore, another aspect of the present invention to provide cells that express the antibodies of the present invention, including hybridoma cells, B cells, plasma cells, and host cells recombinantly modified to express the antibodies of the present invention.

In yet a further aspect, the present invention provides aptamers evolved to bind 15 specifically to one or more of the proteins and protein fragments of the present invention, to one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present invention, or the binding of which can be competitively inhibited by one or more of the proteins and protein fragments of the present invention or one or more of the proteins and protein fragments encoded by the isolated nucleic acids of the present 20 invention.

In sum, one of skill in the art, provided with the teachings of this invention, has available a variety of methods which may be used to alter the biological properties of the antibodies of this invention including methods which would increase or decrease the stability or half-life, immunogenicity, toxicity, affinity or yield of a given antibody 25 molecule, or to alter it in any other way that may render it more suitable for a particular application.

Transgenic Animals and Cells

In another aspect, the invention provides transgenic cells and non-human 30 organisms comprising nucleic acid molecules of the invention. In a preferred embodiment, the transgenic cells and non-human organisms comprise a nucleic acid molecule encoding an LSP. In a preferred embodiment, the LSP comprises an amino

acid sequence selected from SEQ ID NO: 165 through 284, or a fragment, mutein, homologous protein or allelic variant thereof. In another preferred embodiment, the transgenic cells and non-human organism comprise an LSNA of the invention, preferably an LSNA comprising a nucleotide sequence selected from the group consisting of SEQ 5 ID NO: 1 through 164, or a part, substantially similar nucleic acid molecule, allelic variant or hybridizing nucleic acid molecule thereof.

In another embodiment, the transgenic cells and non-human organisms have a targeted disruption or replacement of the endogenous orthologue of the human LSG. The transgenic cells can be embryonic stem cells or somatic cells. The transgenic non-human 10 organisms can be chimeric, nonchimeric heterozygotes, and nonchimeric homozygotes. Methods of producing transgenic animals are well-known in the art. *See, e.g., Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual*, 2d ed., Cold Spring Harbor Press (1999); Jackson *et al.*, *Mouse Genetics and Transgenics: A Practical Approach*, Oxford University Press (2000); and Pinkert, *Transgenic Animal Technology: A 15 Laboratory Handbook*, Academic Press (1999).

Any technique known in the art may be used to introduce a nucleic acid molecule of the invention into an animal to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection. (*see, e.g., Paterson et al., Appl. Microbiol. Biotechnol.* 40: 691-698 (1994); *Carver et al., Biotechnology* 11: 20 1263-1270 (1993); *Wright et al., Biotechnology* 9: 830-834 (1991); and U.S. Patent 4,873,191 (1989 retrovirus-mediated gene transfer into germ lines, blastocysts or embryos (*see, e.g., Van der Putten et al., Proc. Natl. Acad. Sci., USA* 82: 6148-6152 (1985)); gene targeting in embryonic stem cells (*see, e.g., Thompson et al., Cell* 56: 313-321 (1989)); electroporation of cells or embryos (*see, e.g., Lo, 1983, Mol. Cell. Biol.* 25: 3: 1803-1814 (1983)); introduction using a gene gun (*see, e.g., Ulmer et al., Science* 259: 1745-49 (1993); introducing nucleic acid constructs into embryonic pluripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (*see, e.g., Lavitrano et al., Cell* 57: 717-723 (1989))).

Other techniques include, for example, nuclear transfer into enucleated oocytes of 30 nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (*see, e.g., Campbell et al., Nature* 380: 64-66 (1996); *Wilmut et al., Nature* 385: 810-813 (1997)). The present invention provides for transgenic animals that carry the transgene (*i.e., a*

-90-

nucleic acid molecule of the invention) in all their cells, as well as animals which carry the transgene in some, but not all their cells, i. e., mosaic animals or chimeric animals.

The transgene may be integrated as a single transgene or as multiple copies, such as in concatamers, e. g., head-to-head tandems or head-to-tail tandems. The transgene

5 may also be selectively introduced into and activated in a particular cell type by following, e.g., the teaching of Lasko *et al. et al.*, *Proc. Natl. Acad. Sci. USA* 89: 6232-6236 (1992). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

10 Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using

15 techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, *in situ* hybridization analysis, and reverse transcriptase-PCR (RT-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

20 Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels

25 because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is

30 appropriate for an experimental model of interest.

Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of

the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Methods for creating a transgenic animal with a disruption of a targeted gene are 5 also well-known in the art. In general, a vector is designed to comprise some nucleotide sequences homologous to the endogenous targeted gene. The vector is introduced into a cell so that it may integrate, via homologous recombination with chromosomal sequences, into the endogenous gene, thereby disrupting the function of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus 10 inactivating the endogenous gene in only that cell type. *See, e.g., Gu et al., Science 265: 103-106 (1994).* The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. *See, e.g., Smithies et al., Nature 317: 230-234 (1985); Thomas et al., Cell 51: 503-512 (1987); Thompson et al., Cell 5: 313-321 (1989).*

15 In one embodiment, a mutant, non-functional nucleic acid molecule of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous nucleic acid sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another 20 embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive 25 targeted gene. *See, e.g., Thomas, supra and Thompson, supra.* However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site *in vivo* using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to 30 express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (*e.g.*, knockouts) are administered to a patient *in vivo*. Such cells may be obtained from an animal or patient or an MHC

compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (*e.g.*, lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered *in vitro* using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt

5 the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, *e.g.*, by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc.

10 The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, *e.g.*, in the circulation, or intraperitoneally.

15 Alternatively, the cells can be incorporated into a matrix and implanted in the body, *e.g.*, genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. *See, e.g.*, U.S. Patents 5,399,349 and 5,460,959, each of which is incorporated by reference herein in its entirety.

20 When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well-known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the

25 introduced cells to be recognized by the host immune system.

Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such

30 conditions and/or disorders.

Computer Readable Means

A further aspect of the invention relates to a computer readable means for storing the nucleic acid and amino acid sequences of the instant invention. In a preferred embodiment, the invention provides a computer readable means for storing SEQ ID NO:

5 1 through 164 and SEQ ID NO: 165 through 284 as described herein, as the complete set of sequences or in any combination. The records of the computer readable means can be accessed for reading and display and for interface with a computer system for the application of programs allowing for the location of data upon a query for data meeting certain criteria, the comparison of sequences, the alignment or ordering of sequences
10 meeting a set of criteria, and the like.

The nucleic acid and amino acid sequences of the invention are particularly useful as components in databases useful for search analyses as well as in sequence analysis algorithms. As used herein, the terms "nucleic acid sequences of the invention" and "amino acid sequences of the invention" mean any detectable chemical or physical
15 characteristic of a polynucleotide or polypeptide of the invention that is or may be reduced to or stored in a computer readable form. These include, without limitation, chromatographic scan data or peak data, photographic data or scan data therefrom, and mass spectrographic data.

This invention provides computer readable media having stored thereon
20 sequences of the invention. A computer readable medium may comprise one or more of the following: a nucleic acid sequence comprising a sequence of a nucleic acid sequence of the invention; an amino acid sequence comprising an amino acid sequence of the invention; a set of nucleic acid sequences wherein at least one of said sequences comprises the sequence of a nucleic acid sequence of the invention; a set of amino acid
25 sequences wherein at least one of said sequences comprises the sequence of an amino acid sequence of the invention; a data set representing a nucleic acid sequence comprising the sequence of one or more nucleic acid sequences of the invention; a data set representing a nucleic acid sequence encoding an amino acid sequence comprising the sequence of an amino acid sequence of the invention; a set of nucleic acid sequences
30 wherein at least one of said sequences comprises the sequence of a nucleic acid sequence of the invention; a set of amino acid sequences wherein at least one of said sequences comprises the sequence of an amino acid sequence of the invention; a data set

representing a nucleic acid sequence comprising the sequence of a nucleic acid sequence of the invention; a data set representing a nucleic acid sequence encoding an amino acid sequence comprising the sequence of an amino acid sequence of the invention. The computer readable medium can be any composition of matter used to store information or
5 data, including, for example, commercially available floppy disks, tapes, hard drives, compact disks, and video disks.

Also provided by the invention are methods for the analysis of character sequences, particularly genetic sequences. Preferred methods of sequence analysis include, for example, methods of sequence homology analysis, such as identity and
10 similarity analysis, RNA structure analysis, sequence assembly, cladistic analysis, sequence motif analysis, open reading frame determination, nucleic acid base calling, and sequencing chromatogram peak analysis.

A computer-based method is provided for performing nucleic acid sequence identity or similarity identification. This method comprises the steps of providing a
15 nucleic acid sequence comprising the sequence of a nucleic acid of the invention in a computer readable medium; and comparing said nucleic acid sequence to at least one nucleic acid or amino acid sequence to identify sequence identity or similarity.

A computer-based method is also provided for performing amino acid homology identification, said method comprising the steps of: providing an amino acid sequence
20 comprising the sequence of an amino acid of the invention in a computer readable medium; and comparing said an amino acid sequence to at least one nucleic acid or an amino acid sequence to identify homology.

A computer-based method is still further provided for assembly of overlapping nucleic acid sequences into a single nucleic acid sequence, said method comprising the
25 steps of: providing a first nucleic acid sequence comprising the sequence of a nucleic acid of the invention in a computer readable medium; and screening for at least one overlapping region between said first nucleic acid sequence and a second nucleic acid sequence.

Diagnostic Methods for Lung Cancer
30 The present invention also relates to quantitative and qualitative diagnostic assays and methods for detecting, diagnosing, monitoring, staging and predicting cancers by

comparing expression of an LSNA or an LSP in a human patient that has or may have lung cancer, or who is at risk of developing lung cancer, with the expression of an LSNA or an LSP in a normal human control. For purposes of the present invention, "expression of an LSNA" or "LSNA expression" means the quantity of LSG mRNA that can be

5 measured by any method known in the art or the level of transcription that can be measured by any method known in the art in a cell, tissue, organ or whole patient. Similarly, the term "expression of an LSP" or "LSP expression" means the amount of LSP that can be measured by any method known in the art or the level of translation of an LSG LSNA that can be measured by any method known in the art.

10 The present invention provides methods for diagnosing lung cancer in a patient, in particular squamous cell carcinoma, by analyzing for changes in levels of LSNA or LSP in cells, tissues, organs or bodily fluids compared with levels of LSNA or LSP in cells, tissues, organs or bodily fluids of preferably the same type from a normal human control, wherein an increase, or decrease in certain cases, in levels of an LSNA or LSP in

15 the patient versus the normal human control is associated with the presence of lung cancer or with a predilection to the disease. In another preferred embodiment, the present invention provides methods for diagnosing lung cancer in a patient by analyzing changes in the structure of the mRNA of an LSG compared to the mRNA from a normal control. These changes include, without limitation, aberrant splicing, alterations in

20 polyadenylation and/or alterations in 5' nucleotide capping. In yet another preferred embodiment, the present invention provides methods for diagnosing lung cancer in a patient by analyzing changes in an LSP compared to an LSP from a normal control. These changes include, e.g., alterations in glycosylation and/or phosphorylation of the LSP or subcellular LSP localization.

25 In a preferred embodiment, the expression of an LSNA is measured by determining the amount of an mRNA that encodes an amino acid sequence selected from SEQ ID NO: 165 through 284, a homolog, an allelic variant, or a fragment thereof. In a more preferred embodiment, the LSNA expression that is measured is the level of expression of an LSNA mRNA selected from SEQ ID NO: 1 through 164, or a

30 hybridizing nucleic acid, homologous nucleic acid or allelic variant thereof, or a part of any of these nucleic acids. LSNA expression may be measured by any method known in the art, such as those described *supra*, including measuring mRNA expression by

Northern blot, quantitative or qualitative reverse transcriptase PCR (RT-PCR), microarray, dot or slot blots or *in situ* hybridization. *See, e.g., Ausubel (1992), supra; Ausubel (1999), supra; Sambrook (1989), supra; and Sambrook (2001), supra.* LSNA transcription may be measured by any method known in the art including using a reporter gene hooked up to the promoter of an LSG of interest or doing nuclear run-off assays. Alterations in mRNA structure, *e.g.*, aberrant splicing variants, may be determined by any method known in the art, including, RT-PCR followed by sequencing or restriction analysis. As necessary, LSNA expression may be compared to a known control, such as normal lung nucleic acid, to detect a change in expression.

10 In another preferred embodiment, the expression of an LSP is measured by determining the level of an LSP having an amino acid sequence selected from the group consisting of SEQ ID NO: 165 through 284, a homolog, an allelic variant, or a fragment thereof. Such levels are preferably determined in at least one of cells, tissues, organs and/or bodily fluids, including determination of normal and abnormal levels. Thus, for 15 instance, a diagnostic assay in accordance with the invention for diagnosing over- or underexpression of LSNA or LSP compared to normal control bodily fluids, cells, or tissue samples may be used to diagnose the presence of lung cancer. The expression level of an LSP may be determined by any method known in the art, such as those described *supra*. In a preferred embodiment, the LSP expression level may be 20 determined by radioimmunoassays, competitive-binding assays, ELISA, Western blot, FACS, immunohistochemistry, immunoprecipitation, proteomic approaches: two-dimensional gel electrophoresis (2D electrophoresis) and non-gel-based approaches such as mass spectrometry or protein interaction profiling. *See, e.g., Harlow (1999), supra; Ausubel (1992), supra; and Ausubel (1999), supra.* Alterations in the LSP 25 structure may be determined by any method known in the art, including, *e.g.*, using antibodies that specifically recognize phosphoserine, phosphothreonine or phosphotyrosine residues, two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and/or chemical analysis of amino acid residues of the protein. *Id.*

In a preferred embodiment, a radioimmunoassay (RIA) or an ELISA is used. An 30 antibody specific to an LSP is prepared if one is not already available. In a preferred embodiment, the antibody is a monoclonal antibody. The anti-LSP antibody is bound to a solid support and any free protein binding sites on the solid support are blocked with a

protein such as bovine serum albumin. A sample of interest is incubated with the antibody on the solid support under conditions in which the LSP will bind to the anti-LSP antibody. The sample is removed, the solid support is washed to remove unbound material, and an anti-LSP antibody that is linked to a detectable reagent (a radioactive substance for RIA and an enzyme for ELISA) is added to the solid support and incubated under conditions in which binding of the LSP to the labeled antibody will occur. After binding, the unbound labeled antibody is removed by washing. For an ELISA, one or more substrates are added to produce a colored reaction product that is based upon the amount of an LSP in the sample. For an RIA, the solid support is counted for radioactive decay signals by any method known in the art. Quantitative results for both RIA and 10 ELISA typically are obtained by reference to a standard curve.

Other methods to measure LSP levels are known in the art. For instance, a competition assay may be employed wherein an anti-LSP antibody is attached to a solid support and an allocated amount of a labeled LSP and a sample of interest are incubated 15 with the solid support. The amount of labeled LSP detected which is attached to the solid support can be correlated to the quantity of an LSP in the sample.

Of the proteomic approaches, 2D PAGE is a well-known technique. Isolation of individual proteins from a sample such as serum is accomplished using sequential separation of proteins by isoelectric point and molecular weight. Typically, polypeptides 20 are first separated by isoelectric point (the first dimension) and then separated by size using an electric current (the second dimension). In general, the second dimension is perpendicular to the first dimension. Because no two proteins with different sequences are identical on the basis of both size and charge, the result of 2D PAGE is a roughly square gel in which each protein occupies a unique spot. Analysis of the spots with 25 chemical or antibody probes, or subsequent protein microsequencing can reveal the relative abundance of a given protein and the identity of the proteins in the sample.

Expression levels of an LSNA can be determined by any method known in the art, including PCR and other nucleic acid methods, such as ligase chain reaction (LCR) and nucleic acid sequence based amplification (NASBA), can be used to detect malignant 30 cells for diagnosis and monitoring of various malignancies. For example, reverse-transcriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population in a complex mixture of thousands of other

mRNA species. In RT-PCR, an mRNA species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR reaction.

Hybridization to specific DNA molecules (*e.g.*, oligonucleotides) arrayed on a

5 solid support can be used to both detect the expression of and quantitate the level of expression of one or more LSNA_s of interest. In this approach, all or a portion of one or more LSNA_s is fixed to a substrate. A sample of interest, which may comprise RNA, *e.g.*, total RNA or polyA-selected mRNA, or a complementary DNA (cDNA) copy of the RNA is incubated with the solid support under conditions in which hybridization will

10 occur between the DNA on the solid support and the nucleic acid molecules in the sample of interest. Hybridization between the substrate-bound DNA and the nucleic acid molecules in the sample can be detected and quantitated by several means, including, without limitation, radioactive labeling or fluorescent labeling of the nucleic acid molecule or a secondary molecule designed to detect the hybrid.

15 The above tests can be carried out on samples derived from a variety of cells, bodily fluids and/or tissue extracts such as homogenates or solubilized tissue obtained from a patient. Tissue extracts are obtained routinely from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva or any other bodily secretion or derivative thereof. By blood it is meant to include whole blood,

20 plasma, serum or any derivative of blood. In a preferred embodiment, the specimen tested for expression of LSNA or LSP includes, without limitation, lung tissue, fluid obtained by bronchial alveolar lavage (BAL), sputum, lung cells grown in cell culture, blood, serum, lymph node tissue and lymphatic fluid. In another preferred embodiment, especially when metastasis of a primary lung cancer is known or suspected, specimens

25 include, without limitation, tissues from brain, bone, bone marrow, liver, adrenal glands and colon. In general, the tissues may be sampled by biopsy, including, without limitation, needle biopsy, *e.g.*, transthoracic needle aspiration, cervical mediastinoscopy, endoscopic lymph node biopsy, video-assisted thoracoscopy, exploratory thoracotomy, bone marrow biopsy and bone marrow aspiration. See Scott, *supra* and Franklin, pp.

30 529-570, in Kane, *supra*. For early and inexpensive detection, assaying for changes in LSNA_s or LSP_s in cells in sputum samples may be particularly useful. Methods of obtaining and analyzing sputum samples is disclosed in Franklin, *supra*.

All the methods of the present invention may optionally include determining the expression levels of one or more other cancer markers in addition to determining the expression level of an LSNA or LSP. In many cases, the use of another cancer marker will decrease the likelihood of false positives or false negatives. In one embodiment, the

5 one or more other cancer markers include other LSNA or LSPs as disclosed herein. Other cancer markers useful in the present invention will depend on the cancer being tested and are known to those of skill in the art. In a preferred embodiment, at least one other cancer marker in addition to a particular LSNA or LSP is measured. In a more preferred embodiment, at least two other additional cancer markers are used. In an even more

10 preferred embodiment, at least three, more preferably at least five, even more preferably at least ten additional cancer markers are used.

Diagnosing

In one aspect, the invention provides a method for determining the expression levels and/or structural alterations of one or more LSNA and/or LSPs in a sample from a patient suspected of having lung cancer. In general, the method comprises the steps of obtaining the sample from the patient, determining the expression level or structural alterations of an LSNA and/or LSP and then ascertaining whether the patient has lung cancer from the expression level of the LSNA or LSP. In general, if high expression relative to a control of an LSNA or LSP is indicative of lung cancer, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times higher, and more preferably are at least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of lung cancer, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times lower, more preferably are at least five times lower, even more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control. The normal human control may be from a different patient or from uninvolved tissue of the same patient.

The present invention also provides a method of determining whether lung cancer has metastasized in a patient. One may identify whether the lung cancer has metastasized by measuring the expression levels and/or structural alterations of one or more LSNA and/or LSPs in a variety of tissues. The presence of an LSNA or LSP in a certain tissue

-100-

at levels higher than that of corresponding noncancerous tissue (e.g., the same tissue from another individual) is indicative of metastasis if high level expression of an LSNA or LSP is associated with lung cancer. Similarly, the presence of an LSNA or LSP in a tissue at levels lower than that of corresponding noncancerous tissue is indicative of

5 metastasis if low level expression of an LSNA or LSP is associated with lung cancer. Further, the presence of a structurally altered LSNA or LSP that is associated with lung cancer is also indicative of metastasis.

In general, if high expression relative to a control of an LSNA or LSP is indicative of metastasis, an assay for metastasis is considered positive if the level of expression of the

10 LSNA or LSP is at least two times higher, and more preferably are at least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of metastasis, an assay for metastasis is considered positive if the level of expression of the LSNA or LSP is at least two times

15 lower, more preferably are at least five times lower, even more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control.

The LSNA or LSP of this invention may be used as element in an array or a multi-analyte test to recognize expression patterns associated with lung cancers or other

20 lung related disorders. In addition, the sequences of either the nucleic acids or proteins may be used as elements in a computer program for pattern recognition of lung disorders.

Staging

The invention also provides a method of staging lung cancer in a human patient.

25 The method comprises identifying a human patient having lung cancer and analyzing cells, tissues or bodily fluids from such human patient for expression levels and/or structural alterations of one or more LSNA or LSPs. First, one or more tumors from a variety of patients are staged according to procedures well-known in the art, and the expression level of one or more LSNA or LSPs is determined for each stage to obtain a

30 standard expression level for each LSNA and LSP. Then, the LSNA or LSP expression levels are determined in a biological sample from a patient whose stage of cancer is not known. The LSNA or LSP expression levels from the patient are then compared to the

standard expression level. By comparing the expression level of the LSNA^s and LSP^s from the patient to the standard expression levels, one may determine the stage of the tumor. The same procedure may be followed using structural alterations of an LSNA or LSP to determine the stage of a lung cancer.

5 *Monitoring*

Further provided is a method of monitoring lung cancer in a human patient. One may monitor a human patient to determine whether there has been metastasis and, if there has been, when metastasis began to occur. One may also monitor a human patient to determine whether a preneoplastic lesion has become cancerous. One may also monitor 10 a human patient to determine whether a therapy, e.g., chemotherapy, radiotherapy or surgery, has decreased or eliminated the lung cancer. The method comprises identifying a human patient that one wants to monitor for lung cancer, periodically analyzing cells, tissues or bodily fluids from such human patient for expression levels of one or more LSNA^s or LSP^s, and comparing the LSNA or LSP levels over time to those LSNA or 15 LSP expression levels obtained previously. Patients may also be monitored by measuring one or more structural alterations in an LSNA or LSP that are associated with lung cancer.

If increased expression of an LSNA or LSP is associated with metastasis, treatment failure, or conversion of a preneoplastic lesion to a cancerous lesion, then 20 detecting an increase in the expression level of an LSNA or LSP indicates that the tumor is metastasizing, that treatment has failed or that the lesion is cancerous, respectively. One having ordinary skill in the art would recognize that if this were the case, then a decreased expression level would be indicative of no metastasis, effective therapy or failure to progress to a neoplastic lesion. If decreased expression of an LSNA or LSP is 25 associated with metastasis, treatment failure, or conversion of a preneoplastic lesion to a cancerous lesion, then detecting a decrease in the expression level of an LSNA or LSP indicates that the tumor is metastasizing, that treatment has failed or that the lesion is cancerous, respectively. In a preferred embodiment, the levels of LSNA^s or LSP^s are determined from the same cell type, tissue or bodily fluid as prior patient samples.

30 Monitoring a patient for onset of lung cancer metastasis is periodic and preferably is done on a quarterly basis, but may be done more or less frequently.

-102-

The methods described herein can further be utilized as prognostic assays to identify subjects having or at risk of developing a disease or disorder associated with increased or decreased expression levels of an LSNA and/or LSP. The present invention provides a method in which a test sample is obtained from a human patient and one or 5 more LSNA and/or LSPs are detected. The presence of higher (or lower) LSNA or LSP levels as compared to normal human controls is diagnostic for the human patient being at risk for developing cancer, particularly lung cancer. The effectiveness of therapeutic agents to decrease (or increase) expression or activity of one or more LSNA and/or LSPs of the invention can also be monitored by analyzing levels of expression of the 10 LSNA and/or LSPs in a human patient in clinical trials or in *in vitro* screening assays such as in human cells. In this way, the gene expression pattern can serve as a marker, indicative of the physiological response of the human patient or cells, as the case may be, to the agent being tested.

Detection of Genetic Lesions or Mutations

15 The methods of the present invention can also be used to detect genetic lesions or mutations in an LSG, thereby determining if a human with the genetic lesion is susceptible to developing lung cancer or to determine what genetic lesions are responsible, or are partly responsible, for a person's existing lung cancer. Genetic lesions can be detected, for example, by ascertaining the existence of a deletion, insertion 20 and/or substitution of one or more nucleotides from the LSGs of this invention, a chromosomal rearrangement of LSG, an aberrant modification of LSG (such as of the methylation pattern of the genomic DNA), or allelic loss of an LSG. Methods to detect such lesions in the LSG of this invention are known to those having ordinary skill in the art following the teachings of the specification.

25 Methods of Detecting Noncancerous Lung Diseases

The invention also provides a method for determining the expression levels and/or structural alterations of one or more LSNA and/or LSPs in a sample from a patient suspected of having or known to have a noncancerous lung disease. In general, 30 the method comprises the steps of obtaining a sample from the patient, determining the expression level or structural alterations of an LSNA and/or LSP, comparing the expression level or structural alteration of the LSNA or LSP to a normal lung control,

-103-

and then ascertaining whether the patient has a noncancerous lung disease. In general, if high expression relative to a control of an LSNA or LSP is indicative of a particular noncancerous lung disease, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times higher, and more preferably are at 5 least five times higher, even more preferably at least ten times higher, than in preferably the same cells, tissues or bodily fluid of a normal human control. In contrast, if low expression relative to a control of an LSNA or LSP is indicative of a noncancerous lung disease, a diagnostic assay is considered positive if the level of expression of the LSNA or LSP is at least two times lower, more preferably are at least five times lower, even 10 more preferably at least ten times lower than in preferably the same cells, tissues or bodily fluid of a normal human control. The normal human control may be from a different patient or from uninvolved tissue of the same patient.

One having ordinary skill in the art may determine whether an LSNA and/or LSP is associated with a particular noncancerous lung disease by obtaining lung tissue from a 15 patient having a noncancerous lung disease of interest and determining which LSNA and/or LSPs are expressed in the tissue at either a higher or a lower level than in normal lung tissue. In another embodiment, one may determine whether an LSNA or LSP exhibits structural alterations in a particular noncancerous lung disease state by obtaining lung tissue from a patient having a noncancerous lung disease of interest and determining 20 the structural alterations in one or more LSNA and/or LSPs relative to normal lung tissue.

Methods for Identifying Lung Tissue

25 In another aspect, the invention provides methods for identifying lung tissue. These methods are particularly useful in, e.g., forensic science, lung cell differentiation and development, and in tissue engineering.

In one embodiment, the invention provides a method for determining whether a sample is lung tissue or has lung tissue-like characteristics. The method comprises the 30 steps of providing a sample suspected of comprising lung tissue or having lung tissue-like characteristics, determining whether the sample expresses one or more LSNA and/or LSPs, and, if the sample expresses one or more LSNA and/or LSPs, concluding that the sample comprises lung tissue. In a preferred embodiment, the LSNA encodes a

polypeptide having an amino acid sequence selected from SEQ ID NO: 165 through 284, or a homolog, allelic variant or fragment thereof. In a more preferred embodiment, the LSNA has a nucleotide sequence selected from SEQ ID NO: 1 through 164, or a hybridizing nucleic acid, an allelic variant or a part thereof. Determining whether a

5 sample expresses an LSNA can be accomplished by any method known in the art. Preferred methods include hybridization to microarrays, Northern blot hybridization, and quantitative or qualitative RT-PCR. In another preferred embodiment, the method can be practiced by determining whether an LSP is expressed. Determining whether a sample expresses an LSP can be accomplished by any method known in the art.

10 Preferred methods include Western blot, ELISA, RIA and 2D PAGE. In one embodiment, the LSP has an amino acid sequence selected from SEQ ID NO: 165 through 284, or a homolog, allelic variant or fragment thereof. In another preferred embodiment, the expression of at least two LSNA and/or LSPs is determined. In a more preferred embodiment, the expression of at least three, more preferably four and even

15 more preferably five LSNA and/or LSPs are determined.

In one embodiment, the method can be used to determine whether an unknown tissue is lung tissue. This is particularly useful in forensic science, in which small, damaged pieces of tissues that are not identifiable by microscopic or other means are recovered from a crime or accident scene. In another embodiment, the method can be

20 used to determine whether a tissue is differentiating or developing into lung tissue. This is important in monitoring the effects of the addition of various agents to cell or tissue culture, *e.g.*, in producing new lung tissue by tissue engineering. These agents include, *e.g.*, growth and differentiation factors, extracellular matrix proteins and culture medium. Other factors that may be measured for effects on tissue development and differentiation

25 include gene transfer into the cells or tissues, alterations in pH, aqueous:air interface and various other culture conditions.

Methods for Producing and Modifying Lung Tissue

In another aspect, the invention provides methods for producing engineered lung tissue or cells. In one embodiment, the method comprises the steps of providing cells, introducing an LSNA or an LSG into the cells, and growing the cells under conditions in which they exhibit one or more properties of lung tissue cells. In a preferred

embodiment, the cells are pluripotent. As is well-known in the art, normal lung tissue comprises a large number of different cell types. Thus, in one embodiment, the engineered lung tissue or cells comprises one of these cell types. In another embodiment, the engineered lung tissue or cells comprises more than one lung cell type. Further, the

5 culture conditions of the cells or tissue may require manipulation in order to achieve full differentiation and development of the lung cell tissue. Methods for manipulating culture conditions are well-known in the art.

Nucleic acid molecules encoding one or more LSPs are introduced into cells, preferably pluripotent cells. In a preferred embodiment, the nucleic acid molecules

10 encode LSPs having amino acid sequences selected from SEQ ID NO: 165 through 284, or homologous proteins, analogs, allelic variants or fragments thereof. In a more preferred embodiment, the nucleic acid molecules have a nucleotide sequence selected from SEQ ID NO: 1 through 164, or hybridizing nucleic acids, allelic variants or parts thereof. In another highly preferred embodiment, an LSG is introduced into the cells.

15 Expression vectors and methods of introducing nucleic acid molecules into cells are well-known in the art and are described in detail, *supra*.

Artificial lung tissue may be used to treat patients who have lost some or all of their lung function.

Pharmaceutical Compositions

20 In another aspect, the invention provides pharmaceutical compositions comprising the nucleic acid molecules, polypeptides, antibodies, antibody derivatives, antibody fragments, agonists, antagonists, and inhibitors of the present invention. In a preferred embodiment, the pharmaceutical composition comprises an LSNA or part thereof. In a more preferred embodiment, the LSNA has a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 through 164, a nucleic acid that hybridizes thereto, an allelic variant thereof, or a nucleic acid that has substantial sequence identity thereto. In another preferred embodiment, the pharmaceutical composition comprises an LSP or fragment thereof. In a more preferred embodiment, the LSP having an amino

25 acid sequence that is selected from the group consisting of SEQ ID NO: 165 through 284, a polypeptide that is homologous thereto, a fusion protein comprising all or a portion of the polypeptide, or an analog or derivative thereof. In another preferred embodiment, the

30

pharmaceutical composition comprises an anti-LSP antibody, preferably an antibody that specifically binds to an LSP having an amino acid that is selected from the group consisting of SEQ ID NO: 165 through 284, or an antibody that binds to a polypeptide that is homologous thereto, a fusion protein comprising all or a portion of the 5 polypeptide, or an analog or derivative thereof.

Such a composition typically contains from about 0.1 to 90% by weight of a therapeutic agent of the invention formulated in and/or with a pharmaceutically acceptable carrier or excipient.

Pharmaceutical formulation is a well-established art, and is further described in 10 Gennaro (ed.), Remington: The Science and Practice of Pharmacy, 20th ed., Lippincott, Williams & Wilkins (2000); Ansel *et al.*, Pharmaceutical Dosage Forms and Drug Delivery Systems, 7th ed., Lippincott Williams & Wilkins (1999); and Kibbe (ed.), Handbook of Pharmaceutical Excipients American Pharmaceutical Association, 3rd ed. 15 (2000), the disclosures of which are incorporated herein by reference in their entireties, and thus need not be described in detail herein.

Briefly, formulation of the pharmaceutical compositions of the present invention will depend upon the route chosen for administration. The pharmaceutical compositions utilized in this invention can be administered by various routes including both enteral and parenteral routes, including oral, intravenous, intramuscular, subcutaneous, inhalation, 20 topical, sublingual, rectal, intra-arterial, intramedullary, intrathecal, intraventricular, transmucosal, transdermal, intranasal, intraperitoneal, intrapulmonary, and intrauterine.

Oral dosage forms can be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Solid formulations of the compositions for oral administration can contain 25 suitable carriers or excipients, such as carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, or microcrystalline cellulose; gums including arabic and tragacanth; proteins such as gelatin and collagen; inorganics, such as kaolin, calcium 30 carbonate, dicalcium phosphate, sodium chloride; and other agents such as acacia and alginic acid.

Agents that facilitate disintegration and/or solubilization can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate, microcrystalline cellulose, corn starch, sodium starch glycolate, and alginic acid.

5 Tablet binders that can be used include acacia, methylcellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (Povidone™), hydroxypropyl methylcellulose, sucrose, starch and ethylcellulose.

Lubricants that can be used include magnesium stearates, stearic acid, silicone fluid, talc, waxes, oils, and colloidal silica.

10 Fillers, agents that facilitate disintegration and/or solubilization, tablet binders and lubricants, including the aforementioned, can be used singly or in combination.

Solid oral dosage forms need not be uniform throughout. For example, dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which can also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, 15 polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.

Oral dosage forms of the present invention include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, 20 such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Additionally, dyestuffs or pigments can be added to the tablets or dragee coatings 25 for product identification or to characterize the quantity of active compound, *i.e.*, dosage.

Liquid formulations of the pharmaceutical compositions for oral (enteral) administration are prepared in water or other aqueous vehicles and can contain various suspending agents such as methylcellulose, alginates, tragacanth, pectin, kelgin, 30 carrageenan, acacia, polyvinylpyrrolidone, and polyvinyl alcohol. The liquid formulations can also include solutions, emulsions, syrups and elixirs containing, together with the active compound(s), wetting agents, sweeteners, and coloring and flavoring agents.

The pharmaceutical compositions of the present invention can also be formulated for parenteral administration. Formulations for parenteral administration can be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions.

For intravenous injection, water soluble versions of the compounds of the present invention are formulated in, or if provided as a lyophilate, mixed with, a physiologically acceptable fluid vehicle, such as 5% dextrose ("D5"), physiologically buffered saline, 0.9% saline, Hanks' solution, or Ringer's solution. Intravenous formulations may include carriers, excipients or stabilizers including, without limitation, calcium, human serum albumin, citrate, acetate, calcium chloride, carbonate, and other salts.

10 Intramuscular preparations, *e.g.* a sterile formulation of a suitable soluble salt form of the compounds of the present invention, can be dissolved and administered in a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution. Alternatively, a suitable insoluble form of the compound can be prepared and administered as a suspension in an aqueous base or a pharmaceutically acceptable oil
15 base, such as an ester of a long chain fatty acid (*e.g.*, ethyl oleate), fatty oils such as sesame oil, triglycerides, or liposomes.

Parenteral formulations of the compositions can contain various carriers such as vegetable oils, dimethylacetamide, dimethylformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, polyols (glycerol, propylene glycol, liquid polyethylene
20 glycol, and the like).

Aqueous injection suspensions can also contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Non-lipid polycationic amino polymers can also be used for delivery. Optionally, the suspension can also contain suitable stabilizers or agents that increase the solubility of
25 the compounds to allow for the preparation of highly concentrated solutions.

Pharmaceutical compositions of the present invention can also be formulated to permit injectable, long-term, deposition. Injectable depot forms may be made by forming microencapsulated matrices of the compound in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature
30 of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot

injectable formulations are also prepared by entrapping the drug in microemulsions that are compatible with body tissues.

The pharmaceutical compositions of the present invention can be administered topically.

5 For topical use the compounds of the present invention can also be prepared in suitable forms to be applied to the skin, or mucus membranes of the nose and throat, and can take the form of lotions, creams, ointments, liquid sprays or inhalants, drops, tinctures, lozenges, or throat paints. Such topical formulations further can include chemical compounds such as dimethylsulfoxide (DMSO) to facilitate surface penetration
10 of the active ingredient. In other transdermal formulations, typically in patch-delivered formulations, the pharmaceutically active compound is formulated with one or more skin penetrants, such as 2-N-methyl-pyrrolidone (NMP) or Azone. A topical semi-solid ointment formulation typically contains a concentration of the active ingredient from about 1 to 20%, e.g., 5 to 10%, in a carrier such as a pharmaceutical cream base.

15 For application to the eyes or ears, the compounds of the present invention can be presented in liquid or semi-liquid form formulated in hydrophobic or hydrophilic bases as ointments, creams, lotions, paints or powders.

For rectal administration the compounds of the present invention can be administered in the form of suppositories admixed with conventional carriers such as
20 cocoa butter, wax or other glyceride.

Inhalation formulations can also readily be formulated. For inhalation, various powder and liquid formulations can be prepared. For aerosol preparations, a sterile formulation of the compound or salt form of the compound may be used in inhalers, such as metered dose inhalers, and nebulizers. Aerosolized forms may be especially useful for
25 treating respiratory disorders.

Alternatively, the compounds of the present invention can be in powder form for reconstitution in the appropriate pharmaceutically acceptable carrier at the time of delivery.

The pharmaceutically active compound in the pharmaceutical compositions of the
30 present invention can be provided as the salt of a variety of acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts

tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.

After pharmaceutical compositions have been prepared, they are packaged in an appropriate container and labeled for treatment of an indicated condition.

5 The active compound will be present in an amount effective to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

A "therapeutically effective dose" refers to that amount of active ingredient, for example LSP polypeptide, fusion protein, or fragments thereof, antibodies specific for
10 LSP, agonists, antagonists or inhibitors of LSP, which ameliorates the signs or symptoms of the disease or prevents progression thereof; as would be understood in the medical arts, cure, although desired, is not required.

The therapeutically effective dose of the pharmaceutical agents of the present invention can be estimated initially by *in vitro* tests, such as cell culture assays, followed
15 by assay in model animals, usually mice, rats, rabbits, dogs, or pigs. The animal model can also be used to determine an initial preferred concentration range and route of administration.

For example, the ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population) can be determined in
20 one or more cell culture of animal model systems. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as LD50/ED50. Pharmaceutical compositions that exhibit large therapeutic indices are preferred.

The data obtained from cell culture assays and animal studies are used in formulating an initial dosage range for human use, and preferably provide a range of
25 circulating concentrations that includes the ED50 with little or no toxicity. After administration, or between successive administrations, the circulating concentration of active agent varies within this range depending upon pharmacokinetic factors well-known in the art, such as the dosage form employed, sensitivity of the patient, and the route of administration.

30 The exact dosage will be determined by the practitioner, in light of factors specific to the subject requiring treatment. Factors that can be taken into account by the practitioner include the severity of the disease state, general health of the subject, age,

-111-

weight, gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.

5 Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Where the therapeutic agent is a protein or antibody of the present invention, the therapeutic protein or antibody agent typically is administered at a daily dosage of 0.01 mg to 30 mg/kg of body weight of the patient (e.g., 1 mg/kg to 5 mg/kg). The pharmaceutical formulation can be
10 administered in multiple doses per day, if desired, to achieve the total desired daily dose.

 Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors.

 Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, 15 conditions, locations, etc.

 Conventional methods, known to those of ordinary skill in the art of medicine, can be used to administer the pharmaceutical formulation(s) of the present invention to the patient. The pharmaceutical compositions of the present invention can be administered alone, or in combination with other therapeutic agents or interventions.

20 Therapeutic Methods

 The present invention further provides methods of treating subjects having defects in a gene of the invention, e.g., in expression, activity, distribution, localization, and/or solubility, which can manifest as a disorder of lung function. As used herein, 25 “treating” includes all medically-acceptable types of therapeutic intervention, including palliation and prophylaxis (prevention) of disease. The term “treating” encompasses any improvement of a disease, including minor improvements. These methods are discussed below.

Gene Therapy and Vaccines

30 The isolated nucleic acids of the present invention can also be used to drive *in vivo* expression of the polypeptides of the present invention. *In vivo* expression can be driven from a vector, typically a viral vector, often a vector based upon a replication

-112-

incompetent retrovirus, an adenovirus, or an adeno-associated virus (AAV), for purpose of gene therapy. *In vivo* expression can also be driven from signals endogenous to the nucleic acid or from a vector, often a plasmid vector, such as pVAX1 (Invitrogen, Carlsbad, CA, USA), for purpose of “naked” nucleic acid vaccination, as further described in U.S. Patents 5,589,466; 5,679,647; 5,804,566; 5,830,877; 5,843,913; 5,880,104; 5,958,891; 5,985,847; 6,017,897; 6,110,898; and 6,204,250, the disclosures of which are incorporated herein by reference in their entireties. For cancer therapy, it is preferred that the vector also be tumor-selective. *See, e.g.*, Doronin *et al.*, *J. Virol.* 75: 3314-24 (2001).

10 In another embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising a nucleic acid of the present invention is administered. The nucleic acid can be delivered in a vector that drives expression of an LSP, fusion protein, or fragment thereof, or without such vector. Nucleic acid compositions that can drive expression of an LSP are
15 administered, for example, to complement a deficiency in the native LSP, or as DNA vaccines. Expression vectors derived from virus, replication deficient retroviruses, adenovirus, adeno-associated (AAV) virus, herpes virus, or vaccinia virus can be used as can plasmids. *See, e.g.*, Cid-Arregui, *supra*. In a preferred embodiment, the nucleic acid molecule encodes an LSP having the amino acid sequence of SEQ ID NO: 165 through
20 284, or a fragment, fusion protein, allelic variant or homolog thereof.

In still other therapeutic methods of the present invention, pharmaceutical compositions comprising host cells that express an LSP, fusions, or fragments thereof can be administered. In such cases, the cells are typically autologous, so as to circumvent xenogeneic or allotypic rejection, and are administered to complement
25 defects in LSP production or activity. In a preferred embodiment, the nucleic acid molecules in the cells encode an LSP having the amino acid sequence of SEQ ID NO: 165 through 284, or a fragment, fusion protein, allelic variant or homolog thereof.

Antisense Administration

Antisense nucleic acid compositions, or vectors that drive expression of an LSG
30 antisense nucleic acid, are administered to downregulate transcription and/or translation of an LSG in circumstances in which excessive production, or production of aberrant protein, is the pathophysiologic basis of disease.

Antisense compositions useful in therapy can have a sequence that is complementary to coding or to noncoding regions of an LSG. For example, oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred.

5 Catalytic antisense compositions, such as ribozymes, that are capable of sequence-specific hybridization to LSG transcripts, are also useful in therapy. *See, e.g., Phylactou, Adv. Drug Deliv. Rev. 44(2-3): 97-108 (2000); Phylactou et al., Hum. Mol. Genet. 7(10): 1649-53 (1998); Rossi, Ciba Found. Symp. 209: 195-204 (1997); and Sigurdsson et al., Trends Biotechnol. 13(8): 286-9 (1995)*, the disclosures of which are
10 incorporated herein by reference in their entireties.

Other nucleic acids useful in the therapeutic methods of the present invention are those that are capable of triplex helix formation in or near the LSG genomic locus. Such triplexing oligonucleotides are able to inhibit transcription. *See, e.g., Intody et al., Nucleic Acids Res. 28(21): 4283-90 (2000); McGuffie et al., Cancer Res. 60(14): 3790-9*
15 (2000), the disclosures of which are incorporated herein by reference. Pharmaceutical compositions comprising such triplex forming oligos (TFOs) are administered in circumstances in which excessive production, or production of aberrant protein, is a pathophysiologic basis of disease.

In a preferred embodiment, the antisense molecule is derived from a nucleic acid
20 molecule encoding an LSP, preferably an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284, or a fragment, allelic variant or homolog thereof. In a more preferred embodiment, the antisense molecule is derived from a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

25 *Polypeptide Administration*

In one embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising an LSP, a fusion protein, fragment, analog or derivative thereof is administered to a subject with a clinically-significant LSP defect.

30 Protein compositions are administered, for example, to complement a deficiency in native LSP. In other embodiments, protein compositions are administered as a vaccine to elicit a humoral and/or cellular immune response to LSP. The immune response can

be used to modulate activity of LSP or, depending on the immunogen, to immunize against aberrant or aberrantly expressed forms, such as mutant or inappropriately expressed isoforms. In yet other embodiments, protein fusions having a toxic moiety are administered to ablate cells that aberrantly accumulate LSP.

5 In a preferred embodiment, the polypeptide is an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred embodiment, the polypeptide is encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164, or a part, allelic variant, substantially similar or hybridizing nucleic acid
10 thereof.

Antibody, Agonist and Antagonist Administration

In another embodiment of the therapeutic methods of the present invention, a therapeutically effective amount of a pharmaceutical composition comprising an antibody (including fragment or derivative thereof) of the present invention is
15 administered. As is well-known, antibody compositions are administered, for example, to antagonize activity of LSP, or to target therapeutic agents to sites of LSP presence and/or accumulation. In a preferred embodiment, the antibody specifically binds to an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred
20 embodiment, the antibody specifically binds to an LSP encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

The present invention also provides methods for identifying modulators which bind to an LSP or have a modulatory effect on the expression or activity of an LSP.
25 Modulators which decrease the expression or activity of LSP (antagonists) are believed to be useful in treating lung cancer. Such screening assays are known to those of skill in the art and include, without limitation, cell-based assays and cell-free assays. Small molecules predicted via computer imaging to specifically bind to regions of an LSP can also be designed, synthesized and tested for use in the imaging and treatment of lung
30 cancer. Further, libraries of molecules can be screened for potential anticancer agents by assessing the ability of the molecule to bind to the LSPs identified herein. Molecules identified in the library as being capable of binding to an LSP are key candidates for

further evaluation for use in the treatment of lung cancer. In a preferred embodiment, these molecules will downregulate expression and/or activity of an LSP in cells.

In another embodiment of the therapeutic methods of the present invention, a pharmaceutical composition comprising a non-antibody antagonist of LSP is administered. Antagonists of LSP can be produced using methods generally known in the art. In particular, purified LSP can be used to screen libraries of pharmaceutical agents, often combinatorial libraries of small molecules, to identify those that specifically bind and antagonize at least one activity of an LSP.

In other embodiments a pharmaceutical composition comprising an agonist of an LSP is administered. Agonists can be identified using methods analogous to those used to identify antagonists.

In a preferred embodiment, the antagonist or agonist specifically binds to and antagonizes or agonizes, respectively, an LSP comprising an amino acid sequence of SEQ ID NO: 165 through 284, or a fusion protein, allelic variant, homolog, analog or derivative thereof. In a more preferred embodiment, the antagonist or agonist specifically binds to and antagonizes or agonizes, respectively, an LSP encoded by a nucleic acid molecule having a nucleotide sequence of SEQ ID NO: 1 through 164, or a part, allelic variant, substantially similar or hybridizing nucleic acid thereof.

Targeting Lung Tissue

The invention also provides a method in which a polypeptide of the invention, or an antibody thereto, is linked to a therapeutic agent such that it can be delivered to the lung or to specific cells in the lung. In a preferred embodiment, an anti-LSP antibody is linked to a therapeutic agent and is administered to a patient in need of such therapeutic agent. The therapeutic agent may be a toxin, if lung tissue needs to be selectively destroyed. This would be useful for targeting and killing lung cancer cells. In another embodiment, the therapeutic agent may be a growth or differentiation factor, which would be useful for promoting lung cell function.

In another embodiment, an anti-LSP antibody may be linked to an imaging agent that can be detected using, e.g., magnetic resonance imaging, CT or PET. This would be useful for determining and monitoring lung function, identifying lung cancer tumors, and identifying noncancerous lung diseases.

EXAMPLES**Example 1: Gene Expression analysis**

LSGs were identified by mRNA subtraction analysis using standard methods.

The sequences were extended using GeneBank sequences, Incyte's proprietary database.

5 From the nucleotide sequences, predicted amino acid sequences were prepared.
DEX0291_1, DEX0291_2 correspond to SEQ ID NO.1, 2 etc. DEX0134 was the parent sequence found in the mRNA subtractions.

	DEX0291_1	DEX0134_1	DEX0291_165
	DEX0291_2	flex DEX0134_1	
10	DEX0291_3	DEX0134_2	DEX0291_166
	DEX0291_4	flex DEX0134_2	
	DEX0291_5	DEX0134_3	DEX0291_167
	DEX0291_6	flex DEX0134_3	DEX0291_168
	DEX0291_7	DEX0134_4	DEX0291_169
15	DEX0291_8	flex DEX0134_4	DEX0291_170
	DEX0291_9	DEX0134_5	DEX0291_171
	DEX0291_10	flex DEX0134_5	
	DEX0291_11	DEX0134_6	DEX0291_172
	DEX0291_12	flex DEX0134_6	
20	DEX0291_13	DEX0134_7	DEX0291_173
	DEX0291_14	flex DEX0134_7	
	DEX0291_15	DEX0134_8	DEX0291_174
	DEX0291_16	flex DEX0134_8	DEX0291_175
	DEX0291_17	DEX0134_9	
25	DEX0291_18	DEX0134_10	DEX0291_176
	DEX0291_19	DEX0134_11	DEX0291_177
	DEX0291_20	flex DEX0134_11	
	DEX0291_21	DEX0134_12	DEX0291_178
	DEX0291_22	flex DEX0134_12	DEX0291_179

-117-

	DEX0291_23	DEX0134_13	DEX0291_180
	DEX0291_24	DEX0134_14	DEX0291_181
	DEX0291_25	DEX0134_15	DEX0291_182
	DEX0291_26	flex DEX0134_15	DEX0291_183
5	DEX0291_27	DEX0134_16	DEX0291_184
	DEX0291_28	flex DEX0134_16	DEX0291_185
	DEX0291_29	DEX0134_17	DEX0291_186
	DEX0291_30	flex DEX0134_17	DEX0291_187
	DEX0291_31	DEX0134_18	DEX0291_188
10	DEX0291_32	DEX0134_19	DEX0291_189
	DEX0291_33	DEX0134_20	DEX0291_190
	DEX0291_34	flex DEX0134_20	DEX0291_191
	DEX0291_35	DEX0134_21	DEX0291_192
	DEX0291_36	flex DEX0134_21	
15	DEX0291_37	DEX0134_22	DEX0291_193
	DEX0291_38	flex DEX0134_22	DEX0291_194
	DEX0291_39	DEX0134_23	
	DEX0291_40	DEX0134_24	DEX0291_195
	DEX0291_41	DEX0134_25	
20	DEX0291_42	DEX0134_27	DEX0291_196
	DEX0291_43	flex DEX0134_27	
	DEX0291_44	DEX0134_28	
	DEX0291_45	DEX0134_29	DEX0291_197
	DEX0291_46	flex DEX0134_29	DEX0291_198
25	DEX0291_47	DEX0134_30	DEX0291_199
	DEX0291_48	flex DEX0134_30	DEX0291_200
	DEX0291_49	DEX0134_31	DEX0291_201
	DEX0291_50	flex DEX0134_31	
	DEX0291_51	DEX0134_32	DEX0291_202

-118-

	DEX0291_52	DEX0134_33	
	DEX0291_53	DEX0134_34	DEX0291_203
	DEX0291_54	flex DEX0134_34	DEX0291_204
	DEX0291_55	DEX0134_35	DEX0291_205
5	DEX0291_56	flex DEX0134_35	DEX0291_206
	DEX0291_57	DEX0134_36	DEX0291_207
	DEX0291_58	flex DEX0134_36	DEX0291_208
	DEX0291_59	DEX0134_37	DEX0291_209
	DEX0291_60	flex DEX0134_37	DEX0291_210
10	DEX0291_61	DEX0134_38	DEX0291_211
	DEX0291_62	flex DEX0134_38	DEX0291_212
	DEX0291_63	DEX0134_39	DEX0291_213
	DEX0291_64	flex DEX0134_39	
	DEX0291_65	DEX0134_40	DEX0291_214
15	DEX0291_66	flex DEX0134_40	
	DEX0291_67	DEX0134_41	DEX0291_215
	DEX0291_68	flex DEX0134_41	
	DEX0291_69	DEX0134_42	DEX0291_216
	DEX0291_70	flex DEX0134_42	
20	DEX0291_71	DEX0134_43	
	DEX0291_72	DEX0134_44	DEX0291_217
	DEX0291_73	flex DEX0134_44	DEX0291_218
	DEX0291_74	DEX0134_46	
	DEX0291_75	flex DEX0134_46	
25	DEX0291_76	DEX0134_47	DEX0291_219
	DEX0291_77	flex DEX0134_47	DEX0291_220
	DEX0291_78	DEX0134_48	DEX0291_221
	DEX0291_79	flex DEX0134_48	DEX0291_222
	DEX0291_80	DEX0134_49	DEX0291_223

-119-

	DEX0291_81	flex DEX0134_49	DEX0291_224
	DEX0291_82	DEX0134_51	DEX0291_225
	DEX0291_83	flex DBX0134_51	
	DEX0291_84	DEX0134_52	DEX0291_226
5	DEX0291_85	flex DEX0134_52	
	DEX0291_86	DEX0134_53	DEX0291_227
	DEX0291_87	flex DEX0134_53	DEX0291_228
	DEX0291_88	DEX0134_54	DEX0291_229
	DEX0291_89	flex DEX0134_54	DEX0291_230
10	DEX0291_90	DEX0134_55	DEX0291_231
	DEX0291_91	flex DEX0134_55	
	DEX0291_92	DEX0134_56	DEX0291_232
	DEX0291_93	flex DEX0134_56	DEX0291_233
	DEX0291_94	DEX0134_57	DEX0291_234
15	DEX0291_95	DEX0134_58	DEX0291_235
	DEX0291_96	flex DEX0134_58	
	DEX0291_97	DEX0134_60	DEX0291_236
	DEX0291_98	flex DEX0134_60	
	DEX0291_99	DEX0134_61	DEX0291_237
20	DEX0291_100	flex DEX0134_61	
	DEX0291_101	DEX0134_62	DEX0291_238
	DEX0291_102	flex DEX0134_62	DEX0291_239
	DEX0291_103	DEX0134_63	DEX0291_240
	DEX0291_104	DEX0134_64	DEX0291_241
25	DEX0291_105	flex DEX0134_64	
	DEX0291_106	DEX0134_65	DEX0291_242
	DEX0291_107	flex DEX0134_65	DEX0291_243
	DEX0291_108	DEX0134_66	DEX0291_244
	DEX0291_109	flex DEX0134_66	

-120-

DEX0291_110 DEX0134_67
DEX0291_111 flex DEX0134_67 DEX0291_245
DEX0291_112 DEX0134_68 DEX0291_246
DEX0291_113 flex DEX0134_68 DEX0291_247
5 DEX0291_114 DEX0134_69 DEX0291_248
DEX0291_115 flex DEX0134_69 DEX0291_249
DEX0291_116 DEX0134_70 DEX0291_250
DEX0291_117 flex DEX0134_70 DEX0291_251
DEX0291_118 DEX0134_71 DEX0291_252
10 DEX0291_119 DEX0134_72 DEX0291_253
DEX0291_120 flex DEX0134_72
DEX0291_121 DEX0134_73 DEX0291_254
DEX0291_122 flex DEX0134_73 DEX0291_255
DEX0291_123 DEX0134_74 DEX0291_256
15 DEX0291_124 flex DEX0134_74
DEX0291_125 DEX0134_75 DEX0291_257
DEX0291_126 flex DEX0134_75
DEX0291_127 DEX0134_76 DEX0291_258
DEX0291_128 flex DEX0134_76 DEX0291_259
20 DEX0291_129 DEX0134_77 DEX0291_260
DEX0291_130 flex DEX0134_77
DEX0291_131 DEX0134_78 DEX0291_261
DEX0291_132 flex DEX0134_78
DEX0291_133 DEX0134_79 DEX0291_262
25 DEX0291_134 DEX0134_80 DEX0291_263
DEX0291_135 flex DEX0134_80 DEX0291_264
DEX0291_136 DEX0134_81 DEX0291_265
DEX0291_137 DEX0134_82 DEX0291_266
DEX0291_138 DEX0134_83 DEX0291_267

-121-

DEX0291_139 flex DEX0134_83
DEX0291_140 DEX0134_84 DEX0291_268
DEX0291_141 flex DEX0134_84
DEX0291_142 DEX0134_85 DEX0291_269
5 DEX0291_143 DEX0134_86 DEX0291_270
DEX0291_144 flex DEX0134_86
DEX0291_145 DEX0134_87
DEX0291_146 DEX0134_88 DEX0291_271
DEX0291_147 DEX0134_89 DEX0291_272
10 DEX0291_148 flex DEX0134_89
DEX0291_149 DEX0134_90 DEX0291_273
DEX0291_150 flex DEX0134_90 DEX0291_274
DEX0291_151 DEX0134_91 DEX0291_275
DEX0291_152 flex DEX0134_91
15 DEX0291_153 DEX0134_92 DEX0291_276
DEX0291_154 flex DEX0134_92
DEX0291_155 DEX0134_93 DEX0291_277
DEX0291_156 flex DEX0134_93
DEX0291_157 DEX0134_94
20 DEX0291_158 DEX0134_95 DEX0291_278
DEX0291_159 DEX0134_96 DEX0291_279
DEX0291_160 DEX0134_97 DEX0291_280
DEX0291_161 flex DEX0134_97 DEX0291_281
DEX0291_162 DEX0134_98 DEX0291_282
25 DEX0291_163 DEX0134_99 DEX0291_283
DEX0291_164 flex DEX0134_99 DEX0291_284

The chromosomal locations were as follows:

30 DEX0291_6 chromosome 14

-122-

	DEX0291_12	chromosome 2
	DEX0291_16	chromosome 19
	DEX0291_19	chromosome 17
	DEX0291_21	chromosome 1
5	DEX0291_23	chromosome 12
	DEX0291_24	chromosome 16
	DEX0291_26	chromosome 10
	DEX0291_28	chromosome 4
	DEX0291_31	chromosome 11
10	DEX0291_33	chromosome 11
	DEX0291_34	chromosome 11
	DEX0291_36	chromosome 5
	DEX0291_38	chromosome 11
	DEX0291_39	chromosome 16
15	DEX0291_40	chromosome 13
	DEX0291_41	chromosome 13
	DEX0291_42	chromosome 10
	DEX0291_43	chromosome 10
	DEX0291_44	chromosome 7
20	DEX0291_46	chromosome 12
	DEX0291_48	chromosome 10
	DEX0291_52	chromosome 7
	DEX0291_53	chromosome 7
	DEX0291_56	chromosome X
25	DEX0291_58	chromosome 15
	DEX0291_59	chromosome 7
	DEX0291_60	chromosome 7
	DEX0291_61	chromosome 5
	DEX0291_62	chromosome 5

-123-

	DEX0291_68	chromosome 5
	DEX0291_70	chromosome 8
	DEX0291_73	chromosome 2
	DEX0291_77	chromosome 8
5	DEX0291_78	chromosome 16
	DEX0291_79	chromosome 16
	DEX0291_85	chromosome 15
	DEX0291_89	chromosome 20
	DEX0291_91	chromosome 2
10	DEX0291_93	chromosome 1
	DEX0291_94	chromosome 15
	DEX0291_98	chromosome 15
	DEX0291_99	chromosome 2
	DEX0291_101	chromosome 8
15	DEX0291_102	chromosome 8
	DEX0291_107	chromosome 4
	DEX0291_111	chromosome 7
	DEX0291_118	chromosome 7
	DEX0291_123	chromosome 4
20	DEX0291_124	chromosome 4
	DEX0291_127	chromosome 6
	DEX0291_128	chromosome 16
	DEX0291_131	chromosome 3
	DEX0291_132	chromosome 3
25	DEX0291_135	chromosome 1
	DEX0291_138	chromosome 18
	DEX0291_139	chromosome 18
	DEX0291_141	chromosome 3
	DEX0291_142	chromosome 1

-124-

	DEX0291_146	chromosome 5
	DEX0291_150	chromosome 1
	DEX0291_151	chromosome 7
	DEX0291_152	chromosome 7
5	DEX0291_153	chromosome 5
	DEX0291_156	chromosome 12
	DEX0291_160	chromosome 8
	DEX0291_161	chromosome 8
	DEX0291_162	chromosome 17
10	DEX0291_163	chromosome 6
	DEX0291_164	chromosome 6

LSGs were also identified by a systematic analysis of gene expression data in the LIFESEQ® Gold database available from Incyte Genomics Inc (Palo Alto, CA) using the data mining software package CLASP™ (Candidate Lead Automatic Search Program). CLASP™ is a set of algorithms that interrogate Incyte's database to identify genes that are both specific to particular tissue types as well as differentially expressed in tissues from patients with cancer. LifeSeq® Gold contains information about which genes are expressed in various tissues in the body and about the dynamics of expression in both normal and diseased states. CLASP™ first sorts the LifeSeq® Gold database into defined tissue types, such as breast, ovary and prostate. CLASP™ categorizes each tissue sample by disease state. Disease states include "healthy," "cancer," "associated with cancer," "other disease" and "other." Categorizing the disease states improves our ability to identify tissue and cancer-specific molecular targets. CLASP™ then performs a simultaneous parallel search for genes that are expressed both (1) selectively in the defined tissue type compared to other tissue types and (2) differentially in the "cancer" disease state compared to the other disease states affecting the same, or different, tissues. This sorting is accomplished by using mathematical and statistical filters that specify the minimum change in expression levels and the minimum frequency that the differential expression pattern must be observed across the tissue samples for the gene to be

considered statistically significant. The CLASP™ algorithm quantifies the relative abundance of a particular gene in each tissue type and in each disease state.

To find the LSGs of this invention, the following specific CLASP™ profiles were utilized: tissue-specific expression (CLASP 1), detectable expression only in cancer tissue (CLASP 2), highest differential expression for a given cancer (CLASP 4); differential expression in cancer tissue (CLASP 5), and. cDNA libraries were divided into 60 unique tissue types (early versions of LifeSeq® had 48 tissue types). Genes or ESTs were grouped into “gene bins,” where each bin is a cluster of sequences grouped together where they share a common contig. The expression level for each gene bin was calculated for each tissue type. Differential expression significance was calculated with rigorous statistical significant testing taking into account variations in sample size and relative gene abundance in different libraries and within each library (for the equations used to determine statistically significant expression see Audic and Claverie “The significance of digital gene expression profiles,” Genome Res 7(10): 986-995 (1997), including Equation 1 on page 987 and Equation 2 on page 988, the contents of which are incorporated by reference). Differentially expressed tissue-specific genes were selected based on the percentage abundance level in the targeted tissue versus all the other tissues (tissue-specificity). The expression levels for each gene in libraries of normal tissues or non-tumor tissues from cancer patients were compared with the expression levels in tissue libraries associated with tumor or disease (cancer-specificity). The results were analyzed for statistical significance.

The selection of the target genes meeting the rigorous CLASP™ profile criteria were as follows:

- (a) CLASP 1: tissue-specific expression: To qualify as a CLASP 1 candidate, a gene must exhibit statistically significant expression in the tissue of interest compared to all other tissues. Only if the gene exhibits such differential expression with a 90% of confidence level is it selected as a CLASP 1 candidate.
- (b) CLASP 2: detectable expression only in cancer tissue: To qualify as a CLASP 2 candidate, a gene must exhibit detectable expression in tumor tissues and undetectable expression in libraries from normal individuals and libraries

-126-

from normal tissue obtained from diseased patients. In addition, such a gene must also exhibit further specificity for the tumor tissues of interest.

- (c) CLASP 4: highest differential expression for a given cancer: To qualify as a CLASP 4 candidate, a gene must be differentially expressed in tumor libraries in the tissue of interest compared to normal libraries for all tissues. In
5 addition, it must be one of the 50 genes with the highest differential expression.
- (d) CLASP 5: differential expression in cancer tissue: To qualify as a CLASP 5 candidate, a gene must be differentially expressed in tumor libraries in the
10 tissue of interest compared to normal libraries for all tissues. Only if the gene exhibits such differential expression with a 90% of confidence level is it selected as a CLASP 5 candidate.

DEX0291_86 Lung 5 H

DEX0291_87 Lung 5 H

15

The individual tissue expression levels from the Incyte LifeSeq database were as follows:

	DEX0291_1	SEQ ID NO: 1	UTR .0044	PAN .0059	BMR .0064	TON .0299
	DEX0291_10	SEQ ID NO: 10	OVR .0021	PRO .0034	UNC .004	THR .0045
	DEX0291_100	SEQ ID NO: 100	LMN .0028	NOS .0073		
20	DEX0291_101	SEQ ID NO: 101	INS .0067	GLB .0139	UTR .0182	NOS .022
	DEX0291_104	SEQ ID NO: 104	UTR .0044	PAN .0059	BMR .0064	TON .0299
	DEX0291_105	SEQ ID NO: 105	UTR .0044	PAN .0059	BMR .0064	TON .0299
	DEX0291_108	SEQ ID NO: 108	LMN .0028	UNC .004		
	DEX0291_111	SEQ ID NO: 11	FTS .0006	SPL .0021	LNG .0034	INS .0038
25	DEX0291_110	SEQ ID NO: 110	LIV .0038	THY .004	CRD .0068	
	DEX0291_112	SEQ ID NO: 112	BLD .0225			
	DEX0291_113	SEQ ID NO: 113	BLD .0225			
	DEX0291_114	SEQ ID NO: 114	PNS .0047	CRD .0068	BON .0169	
	DEX0291_115	SEQ ID NO: 115	PNS .0047	CRD .0068	BON .0169	
30	DEX0291_116	SEQ ID NO: 116	LNG .0006	OVR .001	PRO .0017	BLD .0048
	DEX0291_117	SEQ ID NO: 117	LNG .0006	OVR .001	PRO .0017	BLD .0048
	DEX0291_118	SEQ ID NO: 118	LNG .0006	LMN .0028		
	DEX0291_119	SEQ ID NO: 119	PAN .0047	NOS .0073	GLB .0139	
	DEX0291_12	SEQ ID NO: 12	FTS .0006	SPL .0021	LNG .0034	INS .0038
35	DEX0291_120	SEQ ID NO: 120	PAN .0047	NOS .0073	GLB .0139	
	DEX0291_123	SEQ ID NO: 123	UNC .004	NOS .0073	LIV .0076	ADR .0089
	DEX0291_124	SEQ ID NO: 124	UNC .004	NOS .0073	LIV .0076	ADR .0089
	DEX0291_127	SEQ ID NO: 127	INS .001	BLD .0016	LNG .0017	MAM .0019
	DEX0291_128	SEQ ID NO: 128	PNS .007			
40	DEX0291_13	SEQ ID NO: 13	OVR .0154	LNG .0296		
	DEX0291_131	SEQ ID NO: 131	UTR .0006	LMN .0028	FAL .0063	
	DEX0291_132	SEQ ID NO: 132	UTR .0006	LMN .0028	FAL .0063	
	DEX0291_137	SEQ ID NO: 137	LMN .0056	PNS .0094	MAM .0194	FAL .0251
	DEX0291_138	SEQ ID NO: 138	INS .001	MAM .0028	UNC .004	FAL .0126
45	DEX0291_139	SEQ ID NO: 139	INS .001	MAM .0028	UNC .004	FAL .0126

-127-

	DEX0291_14	SEQ ID NO: 14	OVR .0154	LNG .0296		
	DEX0291_142	SEQ ID NO: 142	THR .0023			
	DEX0291_146	SEQ ID NO: 146	PRO .0003	INL .0004	CON .0007	PAN .0008
5	DEX0291_147	SEQ ID NO: 147	UTR .0075	PLE .0449		
	DEX0291_148	SEQ ID NO: 148	UTR .0075	PLE .0449		
	DEX0291_15	SEQ ID NO: 15	INS .0789			
	DEX0291_151	SEQ ID NO: 151	UTR .0006	PAN .0012		
	DEX0291_152	SEQ ID NO: 152	UTR .0006	PAN .0012		
10	DEX0291_155	SEQ ID NO: 155	BLV .0016	PRO .0017	MAM .0019	PNS .0023
	DEX0291_158	SEQ ID NO: 158	OVR .0021	KID .0039	GLB .0046	FAL .0063
	DEX0291_160	SEQ ID NO: 160	THY .002			
	DEX0291_161	SEQ ID NO: 161	THY .002			
	DEX0291_18	SEQ ID NO: 18	BRN .0006	FAL .0063		
	DEX0291_19	SEQ ID NO: 19	UTR .0063	LMN .0167	BON .0225	
15	DEX0291_2	SEQ ID NO: 2	UTR .0044	PAN .0059	BMR .0064	TON .0299
	DEX0291_20	SEQ ID NO: 20	UTR .0063	LMN .0167	BON .0225	
	DEX0291_21	SEQ ID NO: 21	PAN .0353	LMN .0416	OVR .0503	INT .1052
	DEX0291_22	SEQ ID NO: 22	PAN .0353	LMN .0416	OVR .0503	INT .1052
	DEX0291_23	SEQ ID NO: 23	CRD .0114	KID .0128	ADR .0209	PLE .0449
20	DEX0291_25	SEQ ID NO: 25	LIV .0057			
	DEX0291_26	SEQ ID NO: 26	LIV .0057			
	DEX0291_27	SEQ ID NO: 27	PRO .0034	FAL .0063		
	DEX0291_29	SEQ ID NO: 29	UTR .0013	ADR .0015		
	DEX0291_33	SEQ ID NO: 33	MAM .0005	LNG .0006	ADR .0015	BLV .0016
25	DEX0291_34	SEQ ID NO: 34	MAM .0005	LNG .0006	ADR .0015	BLV .0016
	DEX0291_37	SEQ ID NO: 37	BRN .0031	THR .0045		
	DEX0291_38	SEQ ID NO: 38	BRN .0031	THR .0045		
	DEX0291_45	SEQ ID NO: 45	GLB .0093			
	DEX0291_47	SEQ ID NO: 47	PNS .0047	CRD .0068	BON .0169	
30	DEX0291_48	SEQ ID NO: 48	PNS .0047	CRD .0068	BON .0169	
	DEX0291_49	SEQ ID NO: 49	UTR .0263	NOS .066		
	DEX0291_5	SEQ ID NO: 5	THR .0091	BMR .0129	LMN .0139	
	DEX0291_51	SEQ ID NO: 51	LIV .0019	OVR .0031	URE .0112	
	DEX0291_53	SEQ ID NO: 53	PAN .0071	NOS .0073	LMN .0083	PRO .0119
35	DEX0291_54	SEQ ID NO: 54	PAN .0071	NOS .0073	LMN .0083	PRO .0119
	DEX0291_55	SEQ ID NO: 55	LNG .0006	OVR .001	PRO .0017	BLD .0048
	DEX0291_56	SEQ ID NO: 56	LNG .0006	OVR .001	PRO .0017	BLD .0048
	DEX0291_59	SEQ ID NO: 59	SPL .0042			
	DEX0291_65	SEQ ID NO: 65	FTS .0012	INS .0019	SPL .0021	KID .009
40	DEX0291_66	SEQ ID NO: 66	FTS .0012	INS .0019	SPL .0021	KID .009
	DEX0291_67	SEQ ID NO: 67	BRN .0023	LIV .0038	URE .0112	
	DEX0291_68	SEQ ID NO: 68	BRN .0023	LIV .0038	URE .0112	
	DEX0291_7	SEQ ID NO: 7	CON .0011			
	DEX0291_70	SEQ ID NO: 70	CRD .0023	BLD .0064		
45	DEX0291_71	SEQ ID NO: 71	PRO .0003	UTR .0004	BLO .0006	PRO .0006
	DEX0291_72	SEQ ID NO: 72	CON .0113	LIV .0189	ADR .0209	
	DEX0291_74	SEQ ID NO: 74	CON .0113	LIV .0189	ADR .0209	
	DEX0291_75	SEQ ID NO: 75	CON .0113	LIV .0189	ADR .0209	
	DEX0291_78	SEQ ID NO: 78	THY .006	KID .009	GLB .0093	LIV .0132
50	DEX0291_79	SEQ ID NO: 79	THY .006	KID .009	GLB .0093	LIV .0132
	DEX0291_8	SEQ ID NO: 8	CON .0011			
	DEX0291_80	SEQ ID NO: 80	NOS .0073	STO .0081	ESO .0102	
	DEX0291_86	SEQ ID NO: 86	BLO .0006	BLV .0006	INL .0012	LNG .0017
	DEX0291_87	SEQ ID NO: 87	BLO .0006	BLV .0006	INL .0012	LNG .0017
55	DEX0291_88	SEQ ID NO: 88	CRD .0023	PNS .0047	INT .015	URE .0225
	DEX0291_89	SEQ ID NO: 89	CRD .0023	PNS .0047	INT .015	URE .0225
	DEX0291_9	SEQ ID NO: 9	OVR .0021	PRO .0034	UNC .004	THR .0045
	DEX0291_90	SEQ ID NO: 90	LMN .0028	NOS .0073		

-128-

5	DEX0291_91	SEQ ID NO: 91	LMN .0028	NOS .0073
	DEX0291_92	SEQ ID NO: 92	INL .0045	
	DEX0291_93	SEQ ID NO: 93	INL .0045	
	DEX0291_95	SEQ ID NO: 95	CRD .0023	BLD .0064
10	DEX0291_97	SEQ ID NO: 97	ADR .0104	KID .0141 PLE .015
	DEX0291_98	SEQ ID NO: 98	ADR .0104	KID .0141 PLE .015
	DEX0291_99	SEQ ID NO: 99	LMN .0028	NOS .0073
	Abbreviation for tissues:			
	BLO Blood; BRN Brain; CON Connective Tissue; CRD Heart; FTS Fetus; INL Intestine, Large INS Intestine, Small; KID Kidney; LIV Liver; LNG Lung; MAM Breast; MSL Muscles; NRV Nervous Tissue; OVR Ovary; PRO Prostate; STO Stomach; THR Thyroid Gland; TNS Tonsil Adenoids; UTR Uterus			

Example 2: Relative Quantitation of Gene Expression

15 Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation detection system utilizing the 5'- 3' nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5' reporter dye and a downstream, 3' quencher dye. During PCR, the 5'-3' nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected

20 by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, CA, USA). Amplification of an endogenous control is used to standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ATPase, or 18S ribosomal RNA (rRNA) is used as this

25 endogenous control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample were used as the basis for comparative results (calibrator). Quantitation relative to the "calibrator" can be obtained using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

30 The tissue distribution and the level of the target gene are evaluated for every sample in normal and cancer tissues. Total RNA is extracted from normal tissues, cancer tissues, and from cancers and the corresponding matched adjacent tissues. Subsequently, first strand cDNA is prepared with reverse transcriptase and the polymerase chain reaction is done using primers and Taqman probes specific to each target gene. The

35 results are analyzed using the ABI PRISM 7700 Sequence Detector. The absolute numbers are relative levels of expression of the target gene in a particular tissue compared to the calibrator tissue.

-129-

One of ordinary skill can design appropriate primers. The relative levels of expression of the LSNA versus normal tissues and other cancer tissues can then be determined. All the values are compared to normal tissue (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular 5 tissue from different individuals.

The relative levels of expression of the LSNA in pairs of matching samples and 1 cancer and 1 normal/normal adjacent of tissue may also be determined. All the values are compared to normal tissue (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for 10 that same tissue from the same individual.

In the analysis of matching samples, the LSNA show a high degree of tissue specificity for the tissue of interest. These results confirm the tissue specificity results obtained with normal pooled samples.

Further, the level of mRNA expression in cancer samples and the isogenic normal 15 adjacent tissue from the same individual are compared. This comparison provides an indication of specificity for the cancer stage (*e.g.* higher levels of mRNA expression in the cancer sample compared to the normal adjacent).

Altogether, the high level of tissue specificity, plus the mRNA overexpression in matching samples tested are indicative of SEQ ID NO: 1 through 164 being diagnostic 20 markers for cancer.

Sequences	Sequence ID	ddx QPCR code
DEX0134_10	DEX0291_18	Lng261
DEX0134_17	DEX0291_29	Lng262
	DEX0291_30	
25 DEX0134_2	DEX0291_3	Lng259
	DEX0291_4	
DEX0134_24	DEX0291_40	Lng260
DEX0134_77	DEX0291_129	Lng264
	DEX0291_130	
30 DEX0134_80	DEX0291_134	Lng256
	DEX0291_135	
DEX0134_96	DEX0291_159	Lng228

35 DEX0134_10; DEX0291_18 (SEQ ID NO:18); Lng261

Experiments are underway to test primers and probes for QPCR.

-130-

**DEX0134_17; DEX0291_29(SEQ ID NO: 29); DEX0291_30(SEQ ID NO: 30);
Lng262**

Experiments are underway to test primers and probes for QPCR.

5 Primers Used for QPCR Expression Analysis in DEX291_29

Primer Probe Oligo	Start From	End To	queryLength	subjctDescript
lng262For	33	50	18	DEX0134_17
lng262Rev	122	101	22	DEX0134_17
lng262Probe	54	74	21	DEX0134_17

DEX0134_2; DEX0291_3(SEQ ID NO: 3); DEX0291_4(SEQ ID NO:4) ; Lng259

Experiments are underway to test primers and probes for QPCR.

10 **DEX0134_24; DEX0291_40(SEQ ID NO: 40) ; Lng260**

Experiments are underway to test primers and probes for QPCR.

15 **DEX0134_77; DEX0291_129(SEQ ID NO: 129); DEX0291_130(SEQ ID NO: 130);
Lng264**

Experiments are underway to test primers and probes for QPCR.

20 **DEX0134_80; DEX0291_134(SEQ ID NO: 134); DEX0291_135(SEQ ID NO: 135);
Lng256**

Experiments are underway to test primers and probes for QPCR.

25 **DEX0134_96; DEX0291_159(SEQ ID NO: 159); Lng228**

Experiments are underway to test primers and probes for QPCR.

Primers Used for QPCR Expression Analysis

Primer Probe Oligo	Start From	End To	queryLength	subjctDescript
lng228For	814	837	24	DEX0134_96
lng228Rev	940	917	24	DEX0134_96
lng228Probe	906	877	30	DEX0134_96

30

Example 3: Protein Expression

The LSNA is amplified by polymerase chain reaction (PCR) and the amplified DNA fragment encoding the LSNA is subcloned in pET-21d for expression in *E. coli*. In addition to the LSNA coding sequence, codons for two amino acids, Met-Ala, flanking

35 the NH₂-terminus of the coding sequence of LSNA, and six histidines, flanking the

-131-

COOH-terminus of the coding sequence of LSNA, are incorporated to serve as initiating Met/restriction site and purification tag, respectively.

An over-expressed protein band of the appropriate molecular weight may be observed on a Coomassie blue stained polyacrylamide gel. This protein band is
5 confirmed by Western blot analysis using monoclonal antibody against 6X Histidine tag.

Large-scale purification of LSP was achieved using cell paste generated from 6-liter bacterial cultures, and purified using immobilized metal affinity chromatography (IMAC). Soluble fractions that had been separated from total cell lysate were incubated with a nickle chelating resin. The column was packed and washed with five column
10 volumes of wash buffer. LSP was eluted stepwise with various concentration imidazole buffers.

Example 4: Protein Fusions

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also
15 should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector. For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a
20 polynucleotide of the present invention, isolated by the PCR protocol described in Example 2, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced. If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the
25 vector can be modified to include a heterologous signal sequence. *See, e. g., WO 96/34891.*

Example 5: Production of an Antibody from a Polypeptide

In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such
30 cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine

-132-

serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100, µg/ml of streptomycin. The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; 5 however, it is preferable to employ the parent myeloma cell line (SP20), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands *et al.*, *Gastroenterology* 80: 225-232 (1981).

The hybridoma cells obtained through such a selection are then assayed to 10 identify clones which secrete antibodies capable of binding the polypeptide. Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, 15 protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein specific antibody and can be 20 used to immunize an animal to induce formation of further protein-specific antibodies. Using the Jameson-Wolf methods the following epitopes were predicted. (Jameson and Wolf, CABIOS, 4(1), 181-186, 1988, the contents of which are incorporated by reference).

25	DEX0291_166	Antigenicity Index(Jameson-Wolf)
	positions	AI avg length
	21-37	1.23 17
30	DEX0291_168	Antigenicity Index(Jameson-Wolf)
	positions	AI avg length
	69-80	1.07 12
35	DEX0291_169	Antigenicity Index(Jameson-Wolf)
	positions	AI avg length
	15-25	1.06 11
	DEX0291_170	Antigenicity Index(Jameson-Wolf)
	positions	AI avg length
	54-64	1.06 11
	DEX0291_175	Antigenicity Index(Jameson-Wolf)
	positions	AI avg length
	166-176	1.36 11
	41-65	1.18 25

-133-

	190-207	1.15	18
	71-84	1.03	14
DEX0291_177 Antigenicity Index(Jameson-Wolf)			
5	positions	AI avg	length
42-54 1.12 13			
DEX0291_182 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	35-50	1.20	16
DEX0291_183 Antigenicity Index(Jameson-Wolf)			
10	positions	AI avg	length
	48-66	1.16	19
	68-87	1.13	20
DEX0291_184 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
15	52-93	1.05	42
DEX0291_185 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	199-209	1.24	11
	4-26	1.22	23
20	322-353	1.09	32
	408-462	1.08	55
	467-482	1.01	16
	30-49	1.01	20
DEX0291_187 Antigenicity Index(Jameson-Wolf)			
25	positions	AI avg	length
	67-80	1.15	14
DEX0291_193 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	5-34	1.13	30
30	DEX0291_194 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	58-71	1.33	14
	195-210	1.06	16
	37-52	1.04	16
35	DEX0291_196 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	70-87	1.15	18
DEX0291_199 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
40	79-91	1.10	13
DEX0291_200 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	262-289	1.09	28
	225-234	1.07	10
45	412-426	1.03	15
DEX0291_203 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	66-77	1.26	12
DEX0291_204 Antigenicity Index(Jameson-Wolf)			
50	positions	AI avg	length
	109-141	1.04	33
	61-78	1.03	18
	46-58	1.00	13
DEX0291_205 Antigenicity Index(Jameson-Wolf)			
55	positions	AI avg	length
	12-37	1.03	26
DEX0291_206 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length

-134-

	91-100	1.19	10
	DEX0291_208 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	33-45	1.18	13
5	105-122	1.10	18
	58-103	1.02	46
	DEX0291_212 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	373-393	1.24	21
10	70-81	1.20	12
	430-457	1.11	28
	485-533	1.07	49
	204-254	1.06	51
	289-314	1.04	26
15	141-165	1.03	25
	462-478	1.03	17
	126-135	1.02	10
	172-202	1.02	31
	318-363	1.02	46
20	10-34	1.01	25
	98-119	1.00	22
	DEX0291_216 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	10-21	1.35	12
25	DEX0291_218 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	662-694	1.20	33
	36-61	1.12	26
	98-118	1.10	21
30	283-334	1.02	52
	699-740	1.01	42
	DEX0291_221 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	20-32	1.17	13
35	DEX0291_225 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	61-72	1.16	12
	3-58	1.07	56
	DEX0291_226 Antigenicity Index(Jameson-Wolf)		
40	positions	AI avg	length
	7-20	1.02	14
	DEX0291_228 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	73-83	1.05	11
45	170-183	1.01	14
	DEX0291_238 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	13-41	1.11	29
	DEX0291_239 Antigenicity Index(Jameson-Wolf)		
50	positions	AI avg	length
	38-54	1.25	17
	DEX0291_241 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	35-56	1.07	22
55	DEX0291_243 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	35-48	1.10	14
	DEX0291_245 Antigenicity Index(Jameson-Wolf)		

-135-

	positions	AI avg	length
	144-155	1.04	12
DEX0291_247 Antigenicity Index(Jameson-Wolf)			
5	positions	AI avg	length
	44-57	1.14	14
	93-107	1.06	15
	69-84	1.02	16
DEX0291_249 Antigenicity Index(Jameson-Wolf)			
10	positions	AI avg	length
	262-289	1.09	28
	225-234	1.07	10
	412-426	1.03	15
DEX0291_251 Antigenicity Index(Jameson-Wolf)			
15	positions	AI avg	length
	91-100	1.19	10
DEX0291_255 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	14-25	1.18	12
DEX0291_256 Antigenicity Index(Jameson-Wolf)			
20	positions	AI avg	length
	12-21	1.11	10
DEX0291_257 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	21-31	1.19	11
25	DEX0291_259 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	595-607	1.25	13
	446-457	1.15	12
	80-92	1.09	13
30	632-641	1.08	10
	246-257	1.06	12
	1054-1073	1.06	20
	336-383	1.05	48
	955-975	1.02	21
35	1477-1505	1.02	29
	425-439	1.01	15
DEX0291_264 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	22-32	1.02	11
40	DEX0291_276 Antigenicity Index(Jameson-Wolf)		
	positions	AI avg	length
	53-73	1.06	21
DEX0291_280 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
45	32-48	1.04	17
DEX0291_281 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	34-48	1.23	15
DEX0291_282 Antigenicity Index(Jameson-Wolf)			
50	positions	AI avg	length
	58-113	1.10	56
DEX0291_284 Antigenicity Index(Jameson-Wolf)			
	positions	AI avg	length
	111-131	1.05	21

The predicted helicities were as follows:

DEX0291_169	PredHel=2	Topology=o24-43i55-77o
DEX0291_170	PredHel=3	Topology=i29-48o63-82i94-116o
DEX0291_175	PredHel=5	Topology=i144-166o209-231i312-334o349-371i373-
5	395o	
DEX0291_183	PredHel=1	Topology=o20-42i
DEX0291_190	PredHel=1	Topology=i57-79o
DEX0291_193	PredHel=1	Topology=o33-52i
DEX0291_195	PredHel=1	Topology=i21-38o
10	DEX0291_209	PredHel=1 Topology=o36-58i
DEX0291_213	PredHel=1	Topology=o20-37i
DEX0291_218	PredHel=1	Topology=o616-638i
DEX0291_223	PredHel=2	Topology=o20-42i55-86o
15	DEX0291_229	PredHel=2 Topology=i5-22o27-45i
DEX0291_239	PredHel=1	Topology=i58-80o
DEX0291_247	PredHel=2	Topology=o20-42i205-227o
DEX0291_254	PredHel=1	Topology=i7-29o
20	DEX0291_259	PredHel=6 Topology=o761-780i828-850o865-883i896-918o983-1005i1035-1052o
DEX0291_260	PredHel=1	Topology=o55-77i
DEX0291_262	PredHel=1	Topology=o50-67i
DEX0291_270	PredHel=1	Topology=i20-39o
DEX0291_272	PredHel=1	Topology=o10-32i
25	DEX0291_279	PredHel=3 Topology=o42-64i99-121o126-148i
DEX0291_281	PredHel=1	Topology=i82-103o
DEX0291_283	PredHel=2	Topology=i13-35o55-77i

Examples of post-translational modifications (PTMs) of the LSP of this invention are listed below. In addition, antibodies that specifically bind such post-translational modifications may be useful as a diagnostic or as therapeutic. Using the ProSite database (Bairoch et al., Nucleic Acids Res. 25(1):217-221 (1997), the contents of which are incorporated by reference), the following PTMs were predicted for the LSPs of the invention (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_prosite.html most recently accessed October 23, 2001).

DEX0291_165	Pkc_Phospho_Site 8-10;
35	DEX0291_166 Asn_Glycosylation 29-32; Ck2_Phospho_Site 9-12; Pkc_Phospho_Site 25-27;31-33;
DEX0291_167	Myristyl 4-9;30-35;32-37; Prokar_Lipoprotein 24-34;
DEX0291_169	Ck2_Phospho_Site 20-23; Pkc_Phospho_Site 20-22;90-92;
DEX0291_170	Ck2_Phospho_Site 59-62; Pkc_Phospho_Site 2-4;9-11;17-19;21-23;59-61;
DEX0291_172	Ck2_Phospho_Site 29-32;34-37; Myristyl 10-15;
40	DEX0291_173 Pkc_Phospho_Site 33-35;
DEX0291_175	Asn_Glycosylation 191-194;396-399; Ck2_Phospho_Site 164-167;308-311;344-347;405-408;414-417; Leucine_Zipper 291-312;298-319; Myristyl 97-102;174-179;176-181;258-263;375-380;431-436; Pkc_Phospho_Site 304-306;308-310; Tyr_Phospho_Site 62-70;
45	DEX0291_176 Camp_Phospho_Site 13-16; Ck2_Phospho_Site 5-8; Pkc_Phospho_Site 9-11;16-18;

-137-

DEX0291_177 Myristyl 20-25;52-57; Pkc_Phospho_Site 60-62;86-88;
DEX0291_178 Ck2_Phospho_Site 25-28;33-36;46-49; Pkc_Phospho_Site 15-17;50-52;
DEX0291_179 Ck2_Phospho_Site 58-61;80-83;84-87; Pkc_Phospho_Site 28-30;
DEX0291_181 Ck2_Phospho_Site 11-14;46-49; Pkc_Phospho_Site 2-4;46-48;
5 DEX0291_182 Ck2_Phospho_Site 16-19;30-33; Myristyl 20-25; Pkc_Phospho_Site 47-49;
DEX0291_183 Asn_Glycosylation 80-83; Ck2_Phospho_Site 82-85; Myristyl 26-31;30-35;63-68;
Pkc_Phospho_Site 10-12;82-84;
DEX0291_184 Myristyl 16-21;40-45;44-49; Pkc_Phospho_Site 59-61;77-79;
DEX0291_185 Amidation 15-18;88-91; Asn_Glycosylation 186-189;396-399; Camp_Phospho_Site
10 476-479; Ck2_Phospho_Site 31-34;74-77;110-113;198-201;423-426;
Fibrin_Ag_C_Domain 430-442; Myristyl 27-32;40-45;43-48;169-174;194-199;362-
367;447-452;458-463;470-475; Pkc_Phospho_Site 336-338;392-394;411-413;474-
476;479-481; Tyr_Phospho_Site 202-208;288-295;
DEX0291_186 Pkc_Phospho_Site 29-31;
15 DEX0291_187 Amidation 105-108; Bzip_Basic 125-139;126-139; Ck2_Phospho_Site 51-54;115-118;
Glycosaminoglycan 23-26; Myristyl 2-7;37-42;96-101;102-107; Pkc_Phospho_Site 7-
9;144-146;
DEX0291_188 Pkc_Phospho_Site 10-12;
DEX0291_189 Ck2_Phospho_Site 19-22; Pkc_Phospho_Site 3-5;41-43; Tyr_Phospho_Site 5-13;
20 DEX0291_190 Myristyl 49-54; Pkc_Phospho_Site 24-26; Prokar_Lipoprotein 38-48;
DEX0291_191 Ck2_Phospho_Site 35-38;95-98; Myristyl 6-11;
DEX0291_192 Myristyl 22-27; Pkc_Phospho_Site 43-45;
DEX0291_193 Camp_Phospho_Site 15-18; Myristyl 24-29;27-32; Pkc_Phospho_Site 47-49;55-57;
DEX0291_194 Asn_Glycosylation 30-33; Camp_Phospho_Site 62-65;120-123; Ck2_Phospho_Site 65-
25 68;79-82;131-134;136-139;138-141;152-155; Myristyl 69-74;73-78;100-105;198-203;
Pkc_Phospho_Site 79-81;133-135;193-195;
DEX0291_196 Asn_Glycosylation 32-35; Ck2_Phospho_Site 56-59;
DEX0291_197 Asn_Glycosylation 36-39; Myristyl 12-17; Pkc_Phospho_Site 20-22;
DEX0291_198 Ck2_Phospho_Site 73-76; Myristyl 12-17;17-22;66-71; Pkc_Phospho_Site 91-93;
30 DEX0291_199 Asn_Glycosylation 125-128; Camp_Phospho_Site 70-73; Ck2_Phospho_Site 118-121;
Myristyl 61-66;131-136; Pkc_Phospho_Site 32-34;68-70;80-82;89-91;140-142;153-155;
DEX0291_200 Amidation 2-5; Asn_Glycosylation 74-77;127-130; Ck2_Phospho_Site 76-79;230-
233;242-245;262-265;423-426;566-569; Leucine_Zipper 95-116; Myristyl 34-39;419-
424;499-504;536-541; Pkc_Phospho_Site 276-278;380-382;387-389;442-444;591-593;
35 Tyr_Phospho_Site 561-568;562-568;
DEX0291_202 Myristyl 5-10;
DEX0291_203 Ck2_Phospho_Site 31-34;48-51; Myristyl 4-9; Pkc_Phospho_Site 84-86;
Prokar_Lipoprotein 39-49;

-138-

DEX0291_204 Asn_Glycosylation 64-67; Ck2_Phospho_Site 33-36;166-169;188-191;234-237;236-239;
Pkc_Phospho_Site 66-68;140-142;243-245;249-251; Tyr_Phospho_Site 124-132;

DEX0291_205 Camp_Phospho_Site 22-25; Myristyl 70-75; Pkc_Phospho_Site 13-15;

DEX0291_206 Ck2_Phospho_Site 66-69;96-99; Glycosaminoglycan 50-53; Myristyl 47-52;49-54;53-
58;62-67; Pkc_Phospho_Site 12-14;132-134;141-143;192-194;210-212;
Prokar_Lipoprotein 159-169;

DEX0291_207 Asn_Glycosylation 70-73; Ck2_Phospho_Site 15-18;81-84;

DEX0291_208 Asn_Glycosylation 75-78; Camp_Phospho_Site 84-87; Ck2_Phospho_Site 36-39;78-81;
Pkc_Phospho_Site 111-113;

10 DEX0291_209 Asn_Glycosylation 30-33; Myristyl 5-10; Pkc_Phospho_Site 26-28;

DBX0291_210 Asn_Glycosylation 56-59;90-93;173-176; Ck2_Phospho_Site 24-27;58-61;92-95;138-
141;148-151;270-273; Myristyl 45-50;49-54;306-311;312-317;354-359;397-402;426-
431;433-438; Peroxidase_2 252-263; Pkc_Phospho_Site 70-72;138-140;145-147;163-
165;195-197;207-209;252-254;263-265;275-277;325-327;359-361;402-404;444-446;

15 DEX0291_211 Wd_Repeats 267-281;351-365;

DEX0291_211 Myristyl 5-10;

DEX0291_212 Amidation 102-105;521-524; Asn_Glycosylation 33-36;62-65;201-204;230-233;313-
316;342-345;343-346;454-457;536-539; Ck2_Phospho_Site 194-197;204-207;388-
391;511-514; Myristyl 183-188;220-225; Pkc_Phospho_Site 6-8;143-145;177-179;286-
288;345-347;398-400;404-406;521-523; Zinc_Finger_C2h2 25-45;53-73;81-101;109-
129;137-157;165-185;193-213;221-241;249-269;277-297;305-325;333-353;361-
381;389-409;417-437;445-465;473-493;

DEX0291_213 Myristyl 24-29;

DEX0291_214 Pkc_Phospho_Site 9-11;

25 DEX0291_215 Myristyl 5-10;8-13;11-16;

DEX0291_216 Camp_Phospho_Site 18-21; Pkc_Phospho_Site 17-19;60-62;

DEX0291_217 Pkc_Phospho_Site 30-32;

DEX0291_218 Asn_Glycosylation 72-75;261-264;370-373;474-477;516-519; Camp_Phospho_Site 224-
227;366-369; Ck2_Phospho_Site 36-39;180-183;253-256;333-336;380-383;457-
460;778-781; Myristyl 177-182;217-222;266-271;319-324;368-373;381-386;384-
389;393-398;482-487;575-580;585-590;649-654;731-736;732-737; Pkc_Phospho_Site
50-52;151-153;315-317;475-477;507-509;513-515;637-639;653-655;694-696;
Tyr_Phospho_Site 193-200;290-296;681-688;

30 DEX0291_219 Ck2_Phospho_Site 39-42; Myristyl 47-52;48-53; Pkc_Phospho_Site 39-41;

35 DEX0291_220 Asn_Glycosylation 20-23; Ck2_Phospho_Site 123-126; Glycosaminoglycan 72-75;
Myristyl 30-35;75-80; Pkc_Phospho_Site 123-125; Prokar_Lipoprotein 70-80;
Tyr_Phospho_Site 107-114;

DEX0291_221 Amidation 29-32; Asn_Glycosylation 23-26; Ck2_Phospho_Site 36-39;
Pkc_Phospho_Site 24-26;36-38;

-139-

DEX0291_222 Ck2_Phospho_Site 78-81; Myristyl 34-39;36-41; Pkc_Phospho_Site 96-98;

DEX0291_223 Myristyl 27-32;31-36;33-38;60-65;64-69;66-71;67-72;70-75;77-82;84-89;93-98;95-
100;98-103; Prokar_Lipoprotein 27-37;58-68;

DEX0291_224 Asn_Glycosylation 30-33;181-184; Camp_Phospho_Site 37-40; Ck2_Phospho_Site 7-
5 10; Pkc_Phospho_Site 83-85;

DEX0291_225 Asn_Glycosylation 24-27; Ck2_Phospho_Site 3-6;72-75; Myristyl 20-25;
Pkc_Phospho_Site 48-50;

DEX0291_226 Pkc_Phospho_Site 19-21;

DEX0291_227 Leucine_Zipper 10-31; Pkc_Phospho_Site 3-5;

10 DEX0291_228 Asn_Glycosylation 182-185; Camp_Phospho_Site 27-30; Ck2_Phospho_Site 21-24;41-
44;78-81;98-101;112-115; Myristyl 53-58;96-101;103-108; Pkc_Phospho_Site 9-11;58-
60; Tyr_Phospho_Site 76-82;

DEX0291_229 Myristyl 13-18;

DEX0291_231 Pkc_Phospho_Site 16-18;

15 DEX0291_233 Ck2_Phospho_Site 79-82; Myristyl 22-27;47-52; Pkc_Phospho_Site 15-17;97-99;
Prokar_Lipoprotein 42-52;

DEX0291_235 Asn_Glycosylation 44-47; Myristyl 30-35;

DEX0291_236 Ck2_Phospho_Site 40-43; Pkc_Phospho_Site 40-42;

DEX0291_237 Ck2_Phospho_Site 13-16; Myristyl 19-24;23-28;54-59; Pkc_Phospho_Site 32-34;95-97;

20 DEX0291_238 Amidation 14-17; Pkc_Phospho_Site 14-16;

DEX0291_239 Ck2_Phospho_Site 30-33; Myristyl 52-57;53-58;71-76; Pkc_Phospho_Site 49-51;

DEX0291_240 Amidation 119-122; Camp_Phospho_Site 121-124; Ck2_Phospho_Site 124-127;181-
184; Glycosaminoglycan 115-118; Myristyl 5-10;13-18;14-19;16-21;18-23;19-24;20-
25;21-26;22-27;23-28;33-38;36-41;37-42;55-60;90-95;103-108;105-110;106-111;108-
25 113;116-121;136-141;170-175; Pkc_Phospho_Site 9-11;

DEX0291_241 Asn_Glycosylation 19-22;53-56; Ck2_Phospho_Site 4-7;80-83; Myristyl 52-57;
Pkc_Phospho_Site 103-105;

DEX0291_242 Leucine_Zipper 10-31;

DEX0291_243 Myristyl 10-15;57-62;

30 DEX0291_244 Rgd 15-17;

DEX0291_245 Ck2_Phospho_Site 144-147; Myristyl 5-10;165-170;

DEX0291_247 Asn_Glycosylation 73-76;101-104;167-170; Camp_Phospho_Site 230-233;
Ck2_Phospho_Site 159-162;194-197; Glycosaminoglycan 33-36; Leucine_Zipper 198-
219; Myristyl 2-7;34-39;74-79;87-92;112-117;116-121;119-124;149-154;164-169;186-
35 191;217-222; Pkc_Phospho_Site 43-45;77-79;129-131;134-136;171-173;

DEX0291_248 Ck2_Phospho_Site 34-37; Myristyl 43-48; Pkc_Phospho_Site 58-60; Tyr_Phospho_Site
16-24;

DEX0291_249 Amidation 2-5; Asn_Glycosylation 74-77;127-130; Ck2_Phospho_Site 76-79;230-
233;242-245;262-265;423-426;566-569; Leucine_Zipper 95-116; Myristyl 34-39;419-

-140-

424;499-504;536-541; Pkc_Phospho_Site 276-278;380-382;387-389;442-444;591-593;
Tyr_Phospho_Site 561-568;562-568;

DEX0291_251 Ck2_Phospho_Site 66-69;96-99; Glycosaminoglycan 50-53; Myristyl 47-52;49-54;53-
58;62-67; Pkc_Phospho_Site 12-14;132-134;141-143;192-194;210-212;

5 Prokar_Lipoprotein 159-169;

DEX0291_252 Camp_Phospho_Site 27-30; Myristyl 15-20; Pkc_Phospho_Site 5-7;

DEX0291_253 Asn_Glycosylation 55-58;

DEX0291_254 Pkc_Phospho_Site 9-11;

DEX0291_255 Camp_Phospho_Site 20-23; Myristyl 67-72;

10 DEX0291_256 Camp_Phospho_Site 15-18; Ck2_Phospho_Site 23-26; Pkc_Phospho_Site 18-20;30-32;

DEX0291_257 Asn_Glycosylation 2-5;27-30; Myristyl 15-20; Pkc_Phospho_Site 4-6;

DEX0291_258 Ck2_Phospho_Site 53-56;

DEX0291_259 Amidation 362-365;513-516;968-971; Asn_Glycosylation 133-136;144-147;233-
236;298-301;478-481;601-604;635-638;638-641;830-833; Ck2_Phospho_Site 9-12;235-
15 238;300-303;343-346;459-462;587-590;698-701;706-709;788-791; Myristyl 35-40;53-
58;68-73;69-74;102-107;211-216;229-234;296-301;473-478;728-733;747-752;
Pkc_Phospho_Site 86-88;212-214;235-237;343-345;353-355;480-482;617-619;706-
708;729-731;818-820;925-927; Prokar_Lipoprotein 978-988; Tyr_Phospho_Site 697-
704;891-898;

20 DEX0291_260 Ck2_Phospho_Site 17-20;49-52;77-80; Pkc_Phospho_Site 45-47;

DEX0291_261 Pkc_Phospho_Site 5-7;32-34;

DEX0291_262 Asn_Glycosylation 76-79; Ck2_Phospho_Site 16-19;45-48; Myristyl 6-11;9-14;56-
61;58-63; Pkc_Phospho_Site 25-27;84-86;

DEX0291_264 Asn_Glycosylation 19-22; Camp_Phospho_Site 31-34; Ck2_Phospho_Site 40-43;74-77;

25 25 Myristyl 37-42;90-95;

DEX0291_267 Asn_Glycosylation 56-59;98-101; Myristyl 66-71;

DEX0291_268 Pkc_Phospho_Site 33-35;

DEX0291_269 Ck2_Phospho_Site 8-11;

DEX0291_270 Asn_Glycosylation 3-6; Ck2_Phospho_Site 6-9;

30 DEX0291_271 Myristyl 10-15;

DEX0291_272 Myristyl 9-14; Pkc_Phospho_Site 3-5;

DEX0291_273 Ck2_Phospho_Site 29-32; Pkc_Phospho_Site 29-31;

DEX0291_274 Ck2_Phospho_Site 215-218; Pkc_Phospho_Site 184-186;

DEX0291_275 Myristyl 2-7; Pkc_Phospho_Site 15-17;

35 DEX0291_276 Ck2_Phospho_Site 5-8; Pkc_Phospho_Site 21-23;33-35;44-46;65-67;

DEX0291_279 Myristyl 78-83;122-127; Pkc_Phospho_Site 25-27; Prokar_Lipoprotein 49-59;

DEX0291_280 Asn_Glycosylation 11-14; Camp_Phospho_Site 33-36;34-37; Pkc_Phospho_Site 32-
34;37-39;51-53;

DEX0291_281 Ck2_Phospho_Site 35-38;44-47;

-141-

DEX0291_282 Camp_Phospho_Site 109-112;123-126;161-164; Ck2_Phospho_Site 98-101;141-144;150-153;151-154; Myristyl 38-43; Pkc_Phospho_Site 23-25;71-73;78-80;98-100;133-135;141-143;150-152;155-157;156-158;

DEX0291_283 Asn_Glycosylation 2-5; Myristyl 19-24; Pkc_Phospho_Site 51-53;

5 DEX0291_284 Ck2_Phospho_Site 5-8;14-17;25-28;102-105;137-140;148-151; Myristyl 60-65;91-96;

Example 6: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA is isolated from individual patients or from a family of individuals that have a phenotype of interest. cDNA is then generated from these RNA samples using

10 protocols known in the art. *See, Sambrook (2001), supra.* The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO: 1 through 164. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky *et al.*, *Science* 252(5006): 706-9 (1991). *See also* Sidransky *et al.*, *Science* 278(5340): 1054-9 (1997).

PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies). The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations are then 20 cloned and sequenced to validate the results of the direct sequencing. PCR products is cloned into T-tailed vectors as described in Holton *et al.*, *Nucleic Acids Res.*, 19: 1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

Genomic rearrangements may also be determined. Genomic clones are 25 nick-translated with digoxigenin deoxyuridine 5' triphosphate (Boehringer Manheim), and FISH is performed as described in Johnson *et al.*, *Methods Cell Biol.* 35: 73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium 30 iodide, producing a combination of C-and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. *Id.* Image collection, analysis and

-142-

chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated
5 disease.

Example 7: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

Antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific
10 antibodies, at a final concentration of 0.2 to 10 µg/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described above. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced. The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results.
15 The plates are then washed three times with deionized or distilled water to remove unbound polypeptide. Next, 50 µl of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbound conjugate. 75 µl of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl
20 phosphate (NPP) substrate solution are added to each well and incubated 1 hour at room temperature.

The reaction is measured by a microtiter plate reader. A standard curve is prepared, using serial dilutions of a control sample, and polypeptide concentrations are plotted on the X-axis (log scale) and fluorescence or absorbance on the Y-axis (linear
25 scale). The concentration of the polypeptide in the sample is calculated using the standard curve.

Example 8: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the
30 individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of

administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 , $\mu\text{g}/\text{kg}/\text{day}$ 5 to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 $\mu\text{g}/\text{kg}/\text{hour}$ to about 50 mg/kg/hour, either by 1-4 injections per day or by continuous 10 subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are 15 administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of 20 administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semipermeable polymer matrices in the form of shaped articles, e. g., films, or microcapsules. Sustained- 25 release matrices include polylactides (U. S. Pat. No.3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22: 547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15: 167-277 (1981), and R. Langer, Chem. Tech. 12: 98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained- 30 release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE Epstein et al., Proc. Natl. Acad. Sci. USA 82: 3688-3692 (1985); Hwang et al., Proc. Natl. Acad.

-144-

Sci. USA 77: 4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U. S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent 5 cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable 10 carrier, I. e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation.

For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides. Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with 15 liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as 20 liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic 25 acid; low molecular weight (less than about ten residues) polypeptides, e. g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrans; chelating agents such 30 as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

5 Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e. g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

10 Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1 % (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized

15 polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of

20 pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

Example 9: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or

25 normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the

30 activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 µg/kg of the polypeptide for six consecutive days. Preferably, the

polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided above.

Example 10: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present
5 invention. This technology is one example of a method of decreasing levels of a
polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a
polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0
and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the
10 treatment was well tolerated. The formulation of the antisense polynucleotide is provided
above.

Example 11: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of
expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a
15 subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and
separated into small pieces. Small chunks of the tissue are placed on a wet surface of a
tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned
upside down, closed tight and left at room temperature over night. After 24 hours at room
temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of
20 the flask and fresh media (e. g., Ham's F12 media, with 10% FBS, penicillin and
streptomycin) is added. The flasks are then incubated at 37°C for approximately one
week.

At this time, fresh media is added and subsequently changed every several days.

After an additional two weeks in culture, a monolayer of fibroblasts emerge. The
25 monolayer is trypsinized and scaled into larger flasks. pMV-7 (Kirschmeier, P. T. et al.,
DNA, 7: 219-25 (1988)), flanked by the long terminal repeats of the Moloney murine
sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf
intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using
glass beads.

30 The cDNA encoding a polypeptide of the present invention can be amplified
using PCR primers which correspond to the 5'and 3'end sequences respectively as set
forth in Example 1. Preferably, the 5'primer contains an EcoRI site and the 3'primer

includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to

5 transform bacteria HB 101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then

10 added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media,

15 containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media.

If the titer of virus is high, then virtually all fibroblasts will be infected and no

20 selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

25 **Example 12: Method of Treatment Using Gene Therapy-*In Vivo***

Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide.

30 The polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known

in the art, see, for example, WO 90/11092, WO 98/11779; U. S. Patent 5,693,622; 5,705,151; 5,580,859; Tabata H. et al. (1997) *Cardiovasc. Res.* 35 (3): 470-479, Chao J et al. (1997) *Pharmacol. Res.* 35 (6): 517-522, Wolff J. A. (1997) *Neuromuscul. Disord.* 7 (5): 314-318, Schwartz B. et al. (1996) *Gene Ther.* 3 (5): 405-411, Tsurumi Y. et al. 5 (1996) *Circulation* 94 (12): 3281-3290 (incorporated herein by reference).

The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

10 The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Felgner P. L. et 15 al. (1995) *Ann. NY Acad. Sci.* 772: 126-139 and Abdallah B. et al. (1995) *Biol. Cell* 85 (1): 1-7) which can be prepared by methods well known to those skilled in the art.

20 The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target 25 cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

25 The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide 30 matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by

-149-

the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are

5 differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

For the naked polynucleotide injection, an effective dosage amount of DNA or

10 RNA will be in the range of from about 0.05 µg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be

15 determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the

20 nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

The dose response effects of injected polynucleotide in muscle *in vivo* is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard

25 recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the

30 anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about

-150-

0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

After an appropriate incubation time (e. g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual 5 quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice.

10 The results of the above experimentation in mice can be used to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.

Example 13: Transgenic Animals

The polypeptides of the invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea 15 pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e. g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides of the invention in humans, as part of a gene therapy protocol.

Any technique known in the art may be used to introduce the transgene (i. e., 20 polynucleotides of the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40: 691-698 (1994); Carver et al., Biotechnology (NY) 11: 1263-1270 (1993); Wright et al., Biotechnology (NY) 9: 830-834 (1991); and Hoppe et al., U. S. Patent 4,873,191 (1989)); retrovirus mediated gene 25 transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci., USA 82: 6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56: 313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3: 1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e. g., Ulmer et al., Science 259: 1745 (1993)); introducing nucleic acid 30 constructs into embryonic pluripotent stem cells and transferring the stem cells back into the blastocyst; and sperm mediated gene transfer (Lavitrano et al., Cell 57: 717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl.

Rev. Cytol. 115: 171-229 (1989), which is incorporated by reference herein in its entirety.

Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated 5 oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campell et al., Nature 380: 64-66 (1996); Wilmut et al., Nature 385: 810813 (1997)).

The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, I. e., mosaic animals or chimeric. The transgene may be integrated as a single transgene 10 or as multiple copies such as in concatamers, e. g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., Proc. Natl. Acad. Sci. USA 89: 6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of 15 interest; and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal 20 sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al., Science 265: 103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell 25 type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression 30 of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and reverse transcriptase-PCR

-152-

(rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

Once the founder animals are produced, they may be bred, inbred, outbred, or

5 crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous

10 transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

15 Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

20 **Example 14: Knock-Out Animals**

Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination. (E. g., see Smithies et al., Nature 317: 230-234 (1985); Thomas & Capecchi, Cell 51: 503512 (1987); Thompson et al., Cell 5: 313-321 (1989); each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfet cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such

approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e. g., see Thomas & Capecchi 1987 and Thompson 1989, *supra*).

However this approach can be routinely adapted for use in humans provided the

5 recombinant DNA constructs are directly administered or targeted to the required site *in vivo* using appropriate viral vectors that will be apparent to those of skill in the art.

In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e. g., knockouts) are administered to a 10 patient *in vivo*. Such cells may be obtained from the patient (I. e., animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e. g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered *in vitro* using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or

15 alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e. g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc.

20 The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e. g., in the circulation, or intraperitoneally.

25 Alternatively, the cells can be incorporated into a matrix and implanted in the body, e. g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U. S. Patent 5,399,349; and Mulligan & Wilson, U. S. Patent 5,460,959 each of which is incorporated by reference herein in its 30 entirety).

When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the

-154-

development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

5 Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

10 All patents, patent publications, and other published references mentioned herein are hereby incorporated by reference in their entireties as if each had been individually and specifically incorporated by reference herein. While preferred illustrative embodiments of the present invention are described, one skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments,

15 which are presented for purposes of illustration only and not by way of limitation. The present invention is limited only by the claims that follow.

CLAIMS

We claim:

1. An isolated nucleic acid molecule comprising
 - (a) a nucleic acid molecule comprising a nucleic acid sequence that encodes 5 an amino acid sequence of SEQ ID NO: 165 through 284;
 - (b) a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO; 1 through 164;
 - (c) a nucleic acid molecule that selectively hybridizes to the nucleic acid molecule of (a) or (b); or
- 10 (d) a nucleic acid molecule having at least 60% sequence identity to the nucleic acid molecule of (a) or (b).

15

2. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is a cDNA.
3. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is genomic DNA.

20

4. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule is a mammalian nucleic acid molecule.

25

5. The nucleic acid molecule according to claim 4, wherein the nucleic acid molecule is a human nucleic acid molecule.

6. A method for determining the presence of a lung specific nucleic acid (LSNA) in a sample, comprising the steps of:

- (a) contacting the sample with the nucleic acid molecule according to claim 1 under conditions in which the nucleic acid molecule will selectively hybridize to a lung specific nucleic acid; and
- 30 (b) detecting hybridization of the nucleic acid molecule to a LSNA in the sample, wherein the detection of the hybridization indicates the presence of a LSNA in the sample.

7. A vector comprising the nucleic acid molecule of claim 1.
8. A host cell comprising the vector according to claim 7.
5
9. A method for producing a polypeptide encoded by the nucleic acid molecule according to claim 1, comprising the steps of (a) providing a host cell comprising the nucleic acid molecule operably linked to one or more expression control sequences, and (b) incubating the host cell under conditions in which the polypeptide is produced.
10
10. A polypeptide encoded by the nucleic acid molecule according to claim 1.
11. An isolated polypeptide selected from the group consisting of:
 - (a) a polypeptide comprising an amino acid sequence with at least 60% sequence identity to of SEQ ID NO: 165 through 284 ; or
15
 - (b) a polypeptide comprising an amino acid sequence encoded by a nucleic acid molecule comprising a nucleic acid sequence of SEQ ID NO: 1 through 164.
12. An antibody or fragment thereof that specifically binds to the polypeptide
20 according to claim 11.
13. A method for determining the presence of a lung specific protein in a sample, comprising the steps of:
 - (a) contacting the sample with the antibody according to claim 12 under
25 conditions in which the antibody will selectively bind to the lung specific protein; and
 - (b) detecting binding of the antibody to a lung specific protein in the sample, wherein the detection of binding indicates the presence of a lung specific protein in the sample.
- 30 14. A method for diagnosing and monitoring the presence and metastases of lung cancer in a patient, comprising the steps of:

-157-

- (a) determining an amount of the nucleic acid molecule of claim 1 or a polypeptide of claim 6 in a sample of a patient; and
- (b) comparing the amount of the determined nucleic acid molecule or the polypeptide in the sample of the patient to the amount of the lung specific marker in a normal control; wherein a difference in the amount of the nucleic acid molecule or the polypeptide in the sample compared to the amount of the nucleic acid molecule or the polypeptide in the normal control is associated with the presence of lung cancer.

15. A kit for detecting a risk of cancer or presence of cancer in a patient, said kit comprising a means for determining the presence the nucleic acid molecule of claim 1 or a polypeptide of claim 6 in a sample of a patient.

16. A method of treating a patient with lung cancer, comprising the step of administering a composition according to claim 12 to a patient in need thereof, wherein said administration induces an immune response against the lung cancer cell expressing the nucleic acid molecule or polypeptide.

17. A vaccine comprising the polypeptide or the nucleic acid encoding the polypeptide of claim 11.

1

SEQUENCE LISTING

<110> Macina, Roberto
Recipon, Herve
Chen, Sei-Yu
Sun, Yongming
Liu, Chenghua
diaDexus, Inc.

<120> Compositions and Methods Relating to Lung Specific Genes and Proteins

<130> DEX-0292

<150> 60/252,500
<151> 2000-11-22

<160> 284

<170> PatentIn version 3.1

<210> 1
<211> 338
<212> DNA
<213> Homo sapien

<400> 1
tggatacggag cggacagccc gggcaggtag cgcatactag caaaggtaat ggtgatctag 60
caaacaaaat tggttctag cagttagaag tgagcaggag cacttgtatt atagtattta 120
aataatcctg gttaatctct ttttaagccg agtaaccctt ccagattttgc ctttttattt 180
attgaggctg gctttatttt ctctactttt ttttcccggtt ttatagcagt taattatttt 240
tgtgattattt atgcaagaag cattgccctt gagttaaact gttattgttt cataaggcagc 300
tattaaaata actgagcatg ttttatgaac atacacta 338

<210> 2
<211> 2446
<212> DNA
<213> Homo sapien

<400> 2
aaggatcctt aattaaatta atcccccccccc cccttttttt ttgtattctt gccagtacag 60
tatatggttt ttctacccca attacatact gggttttgtt ccacatcaat aaaggcccaa 120
atcattgaag atacaaaacc gtacatgcag gctgggtgtc tggtagtca atggctgatt 180
tgcttcact gtcttagtgc tatgtgcagc ctgaaaactgg ctccctaaaa ggaaagccgg 240
gtcagtcatac ttgaaaaat gacatgtaaa agtaaatcga taattgtttt gagagacgg 300
acatgtttta aagggtggcc ttaagcttca gtaacattgtt cattttgtga cttttgttg 360
tcacacctgt accctaacctt gacaggaatt aactactgtt tttttgtggg gcagaaagca 420

aaacctggtg ttgtgacttt tatacctaattt gttcttaggc aaggtagtg agaagaaaaca	480
caaaccaga tgcatgcatt gtgcattttt ttgttagacaa gctactttt cttctgtccc	540
tttaacaaat ttgcagcaat tacccctccct ttggggtcta gagtgaaagc taatttgtgg	600
gtagatgaga ttgcagaaga atggatgtcc atggctgtga acactgcaca ctgcacatcc	660
atctccagtg ctcacactgt gcagctacca ctccctggct gcgtgccatg ctgtcggggtt	720
gcagatttgc acacataaaat tcctcaggaa gagtttgcat gagcatcacc tcgcaatatt	780
ctgtactgac caaacaaaggg atttgaacgt ttttcagcac aaaaggataa cttccgagtg	840
gtggtctgtta cgccatactag caaaggtaat ggtgatctag caaacaaaaat tggtttctgc	900
agttagaagt gagcaggagc acttgtatta tagtattta ataatcctgg ttaatcttt	960
tttaagccga gtaacccttc cagattttgc ctttttattt ttgaggctgg ctttattttc	1020
ttctactttt tttcccgaaa tatagcagtt aattttttt gtgatttata tgcaagaagc	1080
attgcccttg agttaaactg ttattgtttc ataaggagct attaaaataa ctgagcattt	1140
ttttatgaac atacactaat ctgagatact gaaaagctt gcaactaaaa agcaaaaacaa	1200
cctacattag tcatctagcc attgtttgga tggtttgagt tgattttta tgggcctct	1260
tttagcttgg aatattacgt ttacttttaat ccaagtctag gcctttaaa gggccttaa	1320
aattaaagtt cagaatgtga atcccttga catctattac aggtttatag gaccttttg	1380
gttgcatttttca tacgattgtta taaatgaagt taactttgtc agaagttaaa	1440
atggaggcata taggagttcc tggagaaatg gctctctgt ttcttcatt accccactga	1500
agttcaccccc agtttctggc cacaagaata tgagaaagga accctgttgt tttccaaggg	1560
aaatcattcc tctctgtccc cactgttgat taactaaagt cctggacacc ttcccttcctc	1620
cactggccaa gacccacccctt gacccacccctt gaacctttt tcagagccga gtggcatgaa	1680
tatgtgtact gtttctgctt ctgttgcattttt agtggctgtg ggagaattaa aggaaatgt	1740
aatttgagct tcattcatag gggAACCTAC tatataattgc atccctgctg gttggaaatt	1800
atcttcatct ctggactgca ttgttttagaa aaatgttaat ggcttacaat tctgagaact	1860
ttattgtgtg gctctggggtaaattctt gtggtttggaa aaaaaataaa tattttgtat	1920
tgattctcac gtcatttcaa tggatgtact atgtactaaa tgcactaaga ctgggtattc	1980
tcttagaaga gtgcgttttggaaacagat ggcagttcac tctcatttttgc tctatttgc	2040
aatattacag ccacacactt caggataact tactcaaattt tgaagtcatg ggaagctatg	2100
gcttagtaaca ggaatgcttg tgaaaaattt ggagggcaag cacgagcaga ggcttttgc	2160

3

actcactaggc acagccagag caaggatgaa gcatgaagtc ttgttccctag tggtgcttgt	2220
atgtcagaag ccatagttag ctcagccccgg gcgttctgca catcatctct ttaatcccag	2280
aaaaacaaat ggcggatgaa actcctattg acctgggata caagccctga ctggctct	2340
tgtatcttttgcgtgggttctg aatcactcct tctgtatttag ggcataact ttcactctaa	2400
aacttgtggtaatgaaata aatcttgtac agatgtaaaa aaaaaaa	2446

<210> 3
<211> 460
<212> DNA
<213> Homo sapien

acacacccaa atgtattcca agaccatact ctgtgacagc tgaaagatca aatttttgc	60
ttgctatcca gagatgagcc ttctgctcca ctgggaacctt ggctctacca gtcacagac	120
ccctttggaa agctgcagaa ataaaacact cccctctatg cctcactaca caagattaat	180
acacttctag tgaaagaaga atttaatgc acttgagatg aaagaagcca gatgcttcc	240
tatttatgtc ctttccaacc atttagagtg cggggatgg aagtgttagca aggcttgacc	300
tgcaactccc aggaccctgc tggcatgtc aatcccaagg gcagaaatat ctcttctaga	360
atccttccag ctcacctcca ctgtggctac aagtgaaagc cataagtcaa acgggagctg	420
caggaagcca cacttactgc actgtccaag aataaatcaa	460

<210> 4
<211> 594
<212> DNA
<213> Homo sapien

acacacccaa atgtattcca agaccatact ctgtgacagc tgaaagatca aatttttgc	60
ttgctatcca gagatgagcc ttctgctcca ctgggaacctt ggctctacca gtcacagac	120
ccctttggaa agctgcagaa ataaaacact cccctctatg cctcactaca caagattaat	180
acacttctag tgaaagaaga atttaatgc acttgagatg aaagaagcca gatgcttcc	240
tatttatgtc ctttccaacc atttagagtg cggggatgg aagtgttagca aggcttgacc	300
tgcaactccc aggaccctgc tggcatgtc aatcccaagg gcagaaatat ctcttctaga	360
atccttccag ctcacctcca ctgtggctac aagtgaaagc cataagtcaa acgggagctg	420
caggaagcca cacttactgc actgtccaag aataaatcaa aagctttaa tagcaagaag	480
taaaaataaa agcagcacgt cttaaaaat aaaatttcct acaactgaca aaataaagga	540
cgaacacgca ctgggtgttt cttaaccact agtggacaag caaaggaaaa aagc	594

<210> 5		
<211> 283		
<212> DNA		
<213> Homo sapien		
<400> 5		
actactaaag gcaaccggca tggactcata atatttgcgg ggacagcaaa aagactaaaa	60	
gttctaagga agaaaatgcg aacccttgata gtttgaata gttaaaaaga cagtgttagaa	120	
actgcttagg cagttggatt atggactatt agatgatact tgggtctgat aatggtataa	180	
ggagaataaa gtathtaggg atccaatatt acgcctgcag ctccccaa atagttcatg	240	
ggggaggggg atgtgttaat ggttaactga agtctaacta gat	283	
<210> 6		
<211> 2237		
<212> DNA		
<213> Homo sapien		
<400> 6		
ttttttttttt caagaaaaaa aaatcacttt aattgaggaa cacttcagt ttgtgacaaa	60	
attatgctgt gaatcaggtg ttgcaaatta tggcccactg cctgctttt tgtaagttt	120	
attggaacac agctacattc agtccatggc tgctttttaga atacaacagt agactttaac	180	
atttggaca gggAACAGAA accAGAGCCA tacAGCTAAT aaACTGAAA atatTTACAA	240	
gtttagtgc ttacaaaatcc atctgctgac ccctgctctg taccattgtt ctcttctgat	300	
ggtctgttta ctAAAAATA AAAACTTCAC AAACATGTA AAAATAGATT tgccatttaa	360	
aatgtgc ttcaagtttga ctttttagga tgcaattaat tcactaaata cagaacttaa	420	
ctaaggacaa aatttAAAGA tcagcattct ttcccttccc atcacgctca acttaacatg	480	
aagaactgta aacatcctaa gcttacaaca aacctatcta gttagacttc agttaaccac	540	
ttacacatcc ccctccccca tgaactattt ggaaaaagct gcaggcgtaa tattggatcc	600	
ctaaatactt tattctccctt ataccattat cagacccaag tatcatctaa tagtccataa	660	
tcaaactgcc taagcagttt ctacactgat tttttaacta tttcaaaacta tcaaggttcg	720	
cattttcttc ctttagaactt ttagtctttt tcttcccaa aatatttgag tccatgccag	780	
ttgccttttag ttgtacccaa ataatggttt gtctatttcc taaaagtagt actcttaat	840	
ttaaaatttag tttttttt gttgtcattt ttccttcttc ctcatgtgg tttttttttt	900	
gagcttgagc atccagattt caaaattaaa aaataaaaga taatctagtt taatataat	960	
tagttgaatc accttaagtc tagactgctg tatgagcacc cattatctt cactatattc	1020	

5

catcatcccc	caacatatcc	acagtagatg	aaggcagtt	tgctcaaaca	ttgttttat	1080
cctgtcatgt	ctgttcagaa	atgcctgtct	attcagaaac	ccacgtctaa	taacaaaatc	1140
ttggactgg	tactatcaa	acccaacaac	atacagactc	ctcagctagg	ccctagggat	1200
attttctac	cttgatttcc	aatgttcat	tgaaagaatg	cttaattcta	atttggaaaa	1260
aagttttgg	cttcccactt	ctgcttaca	cgttcatctt	tcttgaatc	aatccaatc	1320
caatctata	tctaagaacc	tgctcaaatc	ttggttcttc	aaagcttcc	ctggtatttt	1380
gcattttgc	tttgaatagt	tccacgaagg	ataacttctt	actccttcct	tcatctttct	1440
gtatcttgca	tatagtaaat	attaatgact	tgttgattt	ttgttattcct	aacttggcta	1500
taaagaaaat	cagatgtctt	caccagtcgt	tcaaacttca	ggtctgccta	cagattcata	1560
gatggctgtg	gattttata	attttgtcac	aaagtttagt	gtaactacag	gttatctcag	1620
aatatctttt	ttggcgata	aatttttttc	ttttcctttt	ttagacagtc	tctctctctg	1680
tcgcccaggc	tagagtgcag	tggcgtgate	cggcgtca	acaacctctg	cctcctgggt	1740
tcaagagatt	cttagcctca	gcctcccgag	tagctaggt	tacaggcgcg	caccacctcc	1800
atgcccagct	cttttgtatt	tttaagtaga	gacagggttt	caccatgtt	gtcaggctgg	1860
tctcgaactt	ctgacttcag	gcaaccttag	ccgcctcgcc	ctcccaaagt	gtctggattt	1920
caggcacaag	ccactgcacc	cagccttatt	accataaatc	atcttgcgt	ttgttacctga	1980
taagattcta	tttgctttt	tttattcata	gagaccacaa	acagatcgca	gttccagggtt	2040
tctcaaactg	gagcatctgc	ttaatttcc	cataaaatca	gtcttattct	ttctgacagc	2100
tctgagactc	ctccggccac	gactaggtgc	tgtcctggag	gaaacggtgg	aggacggccg	2160
cacaaaaacc	aatctacctg	atgaaaactc	cgttcccttc	tcgcccagaaa	cataaaatgc	2220
gatggatacg	ctcgtgc					2237

<210> 7
<211> 777
<212> DNA
<213> Homo sapien

<400> 7	.					
tggttcgcgc	gctgggttacc	tttctgtttt	aaaatgttca	aataatgtat	tttttaaaaa	60
tgtgtatca	ttcaaggaaa	cggaaaaaca	agtctaaata	aaaccgggtc	ctaaagttt	120
ctctaggagt	cattattctt	cctttgcagt	ctcaattcta	tttactccgt	aacaagtaaa	180
ctgttttatac	ctttcggctg	ggaaggataa	tttttaccc	accaagatga	tgacaatgcc	240
actgcagtgc	tcacccagca	agaaaacacat	aaatatgaag	cagcgtcaaa	gtcttctat	300

gaagtgtatg caagaattga tttgaatgc attaattcag gaattcagtg gagaggctcc	360
tactataacct agcagatcta aacttgagct catgataaca ctgcacaaag ctatggtaga	420
taaaaagtat aggtaatgcc aatagaacaa ttccactgac aacacaaact cctccaagaa	480
ttcttccagg cactgtgata ggatacatat ctccatagcc aactgtagtc atagagataa	540
tcacccacca gcaggcagca ggaatgctgg taaagtccctt gttggatgtt tccaggtcca	600
gcccatgttc aagaagctga gaaagtgcac taaagattgc catggcaaca caaatgaaga	660
cagtaacata accatctctc ggtacacgt ttgagagtca accgagtgct gaagaccatt	720
aagtgacggc agctggcgta atcatgtcta gctgttctgt gtgaatgttc gtcaacc	777

<210> 8
<211> 911
<212> DNA
<213> Homo sapien

<400> 8	
ggttgacgaa cattcacaca gaacagctag acatgattac gccagctgcc gtcacttaat	60
ggtcttcagc actcgggtga ctctcaaacg tgctaccgag agatggttat gttactgtct	120
tcatttgtt tgccatggca atcttagtg cactttctca gcttcttcaa catgggctgg	180
acctggaaac atccaacaag gactttacca gcattcctgc tgcctgctgt gggtgattat	240
ctctatgact acagttggct atggagatat gtatcctatc acagtgcctg gaagaattct	300
tggaggagtt tgtgttgtca gtgaaattgt tctattggca ttacctatca ctttatcta	360
ccatagcttt gtgcagtgtt atcatgagct caagtttaga tctgctaggt atagtaggag	420
cctctccact gaattcctga attaatgcat tgcaaataa ttcttgata cacttcata	480
aaagactttt atgctgcttc atatttatgt gtttcttgcg gggtagcact tgcaatggca	540
ttgtcatcat cttggtaggg taaaaattat cttcccagc cgaaggata aaacagttt	600
cttggatgg agtaaataga attgagactg caaaggaaga ataatgactc ctatgtaaa	660
ctttaggacc cggtttatt tagacttggtt ttcccttgc cttgaatgat tacacattt	720
taaaaaatac attatttgaa cattttaaaa cagaaaggta ctatttcca atgttttcc	780
atcttatgaa ttcagaagaa gcttggaaact tatagtgttt tttgtttgag agtaacattt	840
tcatttctaa atgtttata atttctcata tcaatgtcag aagtatcctg gaaacatatg	900
tcacatgcga g	911

<210> 9
<211> 445
<212> DNA

<213> Homo sapien

<400> 9		
gcccgggg caggtacatg tgcactaaa tgtaatagca ccaacattca ttatattatg	60	
aaggggatac ttataagaa ttataaatta ttttacatg attaaataat tttggcagag	120	
taagtccgca ggacttaaat aaccagtcag ccttagtatac tacatctgga ccaggaagcc	180	
tttgtttaca gacacagatt ccctgtgaag ttctccaggg tgtaaagaag gccccaggga	240	
ggtgccgacg ggtatgtgagg gtcgccttc agctcaggcg agcctgcaag caacagggca	300	
gttgggaagg gtcacaggca caggaaggga gcagtggca accattgatt acatcaaacc	360	
aggatggttt cttctttta aagaaacttt tgtgagtgtt tacccacccc catccacaca	420	
aatatgctct ctagaaatg tgaaa	445	

<210> 10

<211> 1254

<212> DNA

<213> Homo sapien

<400> 10		
gtccgcctaa ttaaagatct tttttttttt tttttttta ttgttaagca tatttgtata	60	
ttttttacta gttatttcat acttgcctg aaagaataca cattcaaaaa gcttgaatt	120	
aggcaatgtc agtctcatca aacaaaacca gcattggaag cgaatattaa caaatatcag	180	
aatgaaattha caaaatatac atcccgacc tcataaaaca tgaattttat aagcacttcc	240	
ataaaacataa gaaaaatagc tttgacaata actatggaa aacattatta ttaataatct	300	
tgtatactgt acatgtgcac ttaaatgtaa tagcaccaac attcattata ttatgaaggg	360	
gatactttat aagaattata aattttttt acatgattaa ataattttgg cagagtaagt	420	
ccgcaggact taaataacca gtcagccta gtatctacat ctggaccagg aagcctttgt	480	
gttacagaca cagattccct gtgaagttct ccagggtgta aagaaggccc cagggaggtg	540	
ccgacgggat gtgagggctg ctttcagct caggcgagcc tgcaagcaac agggcagttt	600	
gggaagggtc acaggcacag gaagggagca gtgggcaacc attgattaca tcaaaccagg	660	
atggtttctt cttttaaag aaactttgt tgagtgtta cccacccca tccacacaaa	720	
tatgctctct aggaaatgtg aaagtataag cttcagaaaa atgttttct catcctttaa	780	
tttctggttt tatgatcaaa tggccgaag acactgcctc ttttgctca aaatagttga	840	
cattgtcatt gcttctagtt ttctagctcc tactatgctt actatgtcca tgggtgccat	900	
tgacgtcttt ggctatttat catctctaga aaagaaaaaa aaaacattaa aattttagga	960	
tgtaggattc acaataaatac tcttaccaaa tcctccttaa atccctaaac tctctacctg	1020	

gctctgactc caggatcacc ctttcagttc tttccatgtt tttcttcgga aaatgttagtt	1080
tcttaacctt tctaccacc cttctcgctt actcttaggt ctgcagccac agtgatagtt	1140
ctaagttgca aacctgatca tgtccttcca gtacttagtc gttaaaaat cttcctactt	1200
cccgcagatt gaagcctgaa ctcttaata ggcatctaag gacttggacc ogga	1254

<210> 11
<211> 838
<212> DNA
<213> Homo sapien

<400> 11	
gcccgcccag gtacttaact aattgggctg aggatgaata tatcagccac agcacattaa	60
agaatgagcc aaggattgtc atggttggtc actttttaaa gtattgatta ctgcaactgg	120
agaatggaaa gtgtatattg gtgacccaa cctcagttc tgagcaactcc tgctctgtgg	180
tgagaatcag acaaaaattc atcggggtga aaaaggcatt acctgattca cacccttgc	240
ttgctagccc tcttccattc atttctcaca cagcacttgc tctgttaat cctctctctg	300
tctcagacca tgcttgcccc ttcaaagggt atggttcagg ctcccttcaa gacattggag	360
tttctctctg gggaaagaga gccccctact ggtttggctt cagtctaggt ccaccatccc	420
tctcgatctg gcatcttggaa gattaattta aaaggcaagc tcaccacaat gtaaggctat	480
ggtctggcca accttgcctt gggaaactgtg acaccaaagc ccccaggact atctgcctct	540
ccaggagcca gatagaatga catgccttt tcctaattgt ccacattcca ccccccaagcc	600
actgccactg tggccaagc catccatctt gcaatctca tctaaaacag ctctcatttc	660
atgccagtt tgtcaaacct gcaccgtcac aagatattca gaagatgaaa acgttagaag	720
acacccctga attaaaagca cttaactagca gggggtgat tatccaaaag tgccgtgatc	780
ggttgtacct gggttctca ccaatggaat cagtcctgg tgaacaagca tgtgggtg	838

<210> 12
<211> 1033
<212> DNA
<213> Homo sapien

<400> 12	
attnaaggct gtacttaact aatttggctt gaggatgaat atatcagcca cagcacatta	60
aagaatgago caaggatttg tcactgggtgg tcactttta aagtatttga ttactgcaac	120
tggagaatga aaagtgtata ttggtgacgc caacctcagt ttctgagcac tcctgctctg	180
tgggtgagaat cagacaaaaa ttcatcgaaa tgaaaaaaaaa aaggcattac ctgattcaca	240

cccttgcctt	gctagccctc	ttccattcat	ttctcacaca	gcactttgct	ctgttaaatc	300
ctctctctgt	ctcagaccat	tgcttgcucc	ttcaaagggt	atggttcagg	ctccttcaa	360
gacatttgg	gttctctct	gggaaagag	agccccctac	tggttggct	tcaagtctagg	420
tccaccatcc	ctctcgatct	ggcatcttgg	agattaattt	aaaaggcaag	ctcaccacaa	480
tgtaaggcta	tggtctggcc	aaccttgctt	ttgggaactg	tgacacccaaa	gccccccagga	540
ctatctgcct	ctccaggagc	cagatagaat	gacatgcctt	tttcctaatt	gtccacattc	600
cacccccaac	ccactgccac	tgtggccaa	gccatccatc	ttgcaatctt	catctaaaac	660
agctctcatt	tcatgccagt	tttgctaaaa	cctgcaccgt	cacaagatat	tcagaagatg	720
aaaacgtaga	agacacccct	gaattaaaaa	cacttacata	gcagtggctg	gaattactcc	780
aaaacgtgcc	cagtgatcgc	actgtaacat	gggatttct	cacccaaata	ggcaactcat	840
gcttcctgag	tgtaatcaa	gcatgtggtg	ttttggggcc	atatgcacca	ggtttctatt	900
ttagaaacct	tcagctgtct	tgcttatgta	ccgtatgtaa	atttattctt	tttaaaaatc	960
acttttattt	gatttgact	tattaaatgc	tttaaaagcc	aaaaaaaaaa	aaaaaaaaaa	1020
aaaaatttgt	cg					1033

<210> 13
 <211> 824
 <212> DNA
 <213> Homo sapien

<400> 13	acatatgaaa	gtgacctcca	aggggattgg	tgaatagtca	taaggatctt	caggctgaac	60
	agactatgtc	tggggaaaga	acggattatg	ccccattaaa	taacaagttg	tgttcaagag	120
	tcaagcagt	gagctcagag	gcccttctca	ctgagacagc	aacattttaa	ccaaaccaga	180
	ggaagtattt	gtggaactca	ctgcctcagt	ttgggtaaag	gatgagcaga	caagtcaact	240
	aaagaaaaaa	gaaaagcaag	gaggagggtt	gagcaatcta	gagcatggag	ttgttaagtg	300
	ctctctggat	ttgagttgaa	gagcatccat	ttgagttgaa	ggccgcaggg	cacaatgagc	360
	tctcccttct	accaccagaa	agtccctgg	caggtctcag	gtagtgcgg	gtggctcagc	420
	tgggtttta	attagcgcatt	tctctatcca	acatttaatt	gtttgaaagc	ctccatata	480
	ttagattgtg	cttgtattt	ttgttgtgt	tgctctatct	tattgtatat	gcattgagta	540
	ttaacctgaa	tgtttgtta	cttaaatatt	aaaaaacact	gttatcc tac	aaagaaaaaa	600
	aaacaaaaca	aaaaaaaaaca	agggtgggg	taatccgtcg	ggcataagct	gtccccctgtg	660
	tgactggggt	tctccgtccc	catccccatc	tccgtgacac	acaaaaaagg	ccagacggcg	720

10

cacatgcact caccgaccag tacaaccaca caaggaaacg acgtggcac accaacaacc	780
gacagcagaa agcaatacag aaaacaacaa caaccacacc tcac	824

<210> 14
<211> 1093
<212> DNA
<213> Homo sapien

<400> 14	
accttagatg gttggaccat cagatgtttg ggcaaaactg aaagctctt gcaaccacac	60
accttcctg agttacatc actgccctt tgagcagaaa gtctaaattc cttccaagac	120
agttagaattc catcccagta ccaaagccag ataggcccc taggaaactg aggtaagagc	180
agtctctaaa aactacccac agcagcattg gtgcagggga acttggccat tagttatta	240
ttttagagga aagtccctac atcaatagta catatgaaag tgacctccaa ggggatttgt	300
gaataactcat aaggatcttc aggctgaaca gactatgtct gggaaagaa cggattatgc	360
cccataaat aacaagttgt gttcaagagt cagagcagtg agctcagagg cccttctcac	420
tgagacagca acatttaaac caaaccagag gaagtatttg tggaactcac tgcctcagtt	480
tggtaaagg atgagcagac aagtcaacta aaaaaaaag aaaagcaagg aggagggttg	540
agcaatctag agcatggagt ttgttaagtg ctctctggat ttgagttgaa gagcatccat	600
ttgagttgaa ggccacaggg cacaatgagc tctcccttct accaccagaa agtccctggt	660
caggtctcag gtagtgcgt gtggctcagc tgggtttta attagcgcatt tctctatcca	720
acatttaatt gtttggaaagc ctccatatacg ttagattgtg ctttgcattt ttgttgggt	780
tgctctatct tattgtatat gcattgagta ttaacctgaa tgtttggta cttaaatatt	840
aaaaacactg ttatcctaca aaaaaaaaaa aaaaaaaaaa aaaaaacaa ggggggggt	900
aatccgtcgg gcataagctg tccctgtgt gactgggtt ctccgtcccc atccccatct	960
ccgtgacaca caaaaaaggc cagacggcgc acatgcactc accgaccagt acaaccacac	1020
aaggaaacga cgtaggcaca ccaacaacccg acagcagaaa gcaatacaga aaacaacaac	1080
aaccacacacct cac	1093

<210> 15
<211> 428
<212> DNA
<213> Homo sapien

<400> 15	
atgttagcgtat ggcattggtca ctaatctgct cacggcgcag tgtggatgga tggtcgcggc	60
gaggtgtttt tgctgtctta atttactaaa ttgcctaatt ttttagttgtat ttctctacag	120

agcttacctt	gtgttagctat	ttctctttta	ctgttgcttt	ggtgtgttct	tgaagtttga	180
ttgattattt	ttggtcattt	agttcttagt	gtagtttgct	agatgcatta	ttaagattct	240
tttgtgtctg	acacttgtgg	tgagttgctt	ttgaaatctg	ttgagatttc	catgtgaaga	300
actgataatc	aggctottga	tctgcttccc	taaattactt	tttagagcc	caaaccagg	360
gtttagggtg	agggtttgta	atacaaagaa	acacttccat	cacttctgcc	cttaaccctt	420
gcctctat						428

<210> 16
<211> 6823
<212> DNA
<213> Homo sapien

<400> 16						
aaacttggag	agacgcagga	caggatcccc	gcggcagaag	gacggagaga	aaggggaccc	60
cgggacggga	aaggcgaga	gcaggcgccg	gcggcgccgg	cggcgccccca	gggcaggggcg	120
ggcgccccgg	cagagggcgc	gcggtegcgg	tgtcgccctc	cgccccgccc	gggtcacagt	180
gccccctccc	tcgcgcctta	gccgcctgc	cgggctattt	ttacgcgcgg	acaccggaca	240
ccggacaccc	ggctggggcg	gcggcgccgg	cggccgaggc	ggccgaggcg	gggcccgcacc	300
ggggccgggc	gtcggggcca	cacgtcggtt	cgcgggtcgc	cggggctgcg	cgcgcctatgg	360
agccgcggtg	cccgccgccc	tgcggctgt	gcgagcgct	ggtgctcaac	gtggccgggc	420
tgcgcgttca	gacgcgggcg	cgcacgcgtgg	gccgcctccc	ggacactctg	ctaggggacc	480
cagcgcgccc	cggccgcctc	tacgacgacg	cgcgcgcga	gtatttcctc	gaccggcacc	540
ggcccagctt	cgcacgcgtg	ctctactact	accagtccgg	tggcgccgt	ggcgccggccgg	600
cgcacgtgcc	gctcgacgtc	ttcttggaaag	agggtggcctt	ctacgggctg	ggcgccggccgg	660
ccctggcacg	cctgcgcgag	gacgagggt	gcccgggtcc	gcccggccgc	ccccctgcccc	720
ggcgccctt	cgcacgcgtt	ctgtggctgc	ttttcgagtt	tcccggagac	tctcaggccg	780
cgcgcgtgt	cgcgcgtgtc	tccgtgtgg	tcatcctcgt	ctccatcgtc	gtcttctgcc	840
tgcagacgt	gcctgacttc	cgcgcgtgtc	gacgacggcac	ggggcttgct	gctgcagccg	900
cagccggccc	gttccccgt	cgcgtgtatg	gctccagcca	aatgcctgga	aatccacccc	960
ccctggccctt	caatgaccccg	tttttcgtgg	tggagacgt	gtgtatgtt	tggttctcct	1020
ttgagctgt	ggtacgcctc	ctgggtctgtc	caagcaaggc	tatcttcttc	aagaacgtga	1080
tgaacctcat	cgcattttgt	gtatccttc	cctactttgt	ggcactgggc	acccgagctgg	1140
cccgccagcg	agggtgggc	cagcaggcca	tgtcactggc	catcctgaga	gtcatccgat	1200

tggtgcggtgt	cttccgcata	ttcaagctgt	ccccggcactc	aaagggcctg	caaatcttgg	1260
gccagacgct	tcgggcctcc	atgcgtgagc	tgggcctcct	catcttttc	ctcttcatcg	1320
gtgtggtcct	ctttccagc	gccgtctact	ttgccgaagt	tgaccgggtg	gactcccatt	1380
tcactagcat	ccctgagtcc	ttctggtggg	cggtagtcac	catgactaca	gttggctatg	1440
gagacatggc	acccgtcact	gtgggtggca	agatagtggg	ctctctgtgt	gccattgcgg	1500
gcgtgtgtac	tatccctcg	ccagtgcgg	tcattgtctc	caatttcagc	tactttatc	1560
acccggagac	agagggcgaa	gaggctggga	tgttcagcca	tgtggacatg	cagccttgg	1620
gcccactgga	gggcaggcc	aatggggggc	tggtgacgg	ggaggtacct	gagctaccac	1680
ctccactctg	ggcaccccca	gggaaacacc	tggtcaccga	agtgtgagga	acagttgagg	1740
tctgcaggac	ctcacacetc	cctagaggg	gggagggagg	gcagggtgga	gggcaaggct	1800
ggggggaggg	gattgggttt	aggaagagct	aggttaagtc	gtaacgagtg	gggaaacact	1860
gagtcttgtt	gggtcttggg	ttgtgtggtt	tggtagctcc	tgtgggtacc	tcctgaagca	1920
gcagcgaatg	gcaatgggtt	gtgtgtgtt	aatgaagact	caattggttc	atattactct	1980
gagtttgca	aagctcatgg	agcctttgg	ggtagtgtt	agataggttt	ggtcgtatca	2040
tttgtgagt	ttccttaggtc	agtgttggtt	ttgggtgggt	tgtgagtctg	ggatagtgt	2100
gtccagctgc	attgtgttagg	attctgtgg	ttgggtggtc	ccctagggcc	atgttgggtc	2160
aagtttagatg	gtccccatg	gcattgttga	gatcgaatgt	gtgtggtgtt	aagtttcgtt	2220
gagacatggt	ggaaattgtg	tagctctgt	attcttccag	ggcatgtta	tttaggttc	2280
tgtgaacttg	cgagtcatgt	agaaatgtga	agagtccagt	ggtagaaattt	gagtttcta	2340
ggtcacattg	ggtaagttt	gtatgaccaa	atgaatctt	tagggtctg	ttgggtttaa	2400
ctgtgttagag	gtgtgtggct	ggacattttt	cgtggccaca	gcgagttgag	ttgtgttgaa	2460
ttgtacaacc	atatgagcct	tgtaaggcca	gttcagttgg	gtcatgccac	tgtttgagtc	2520
tcatagggcc	atgctgaatt	gagttccatt	gagttgtgtc	actatgtgag	tcctacagga	2580
agttgggtt	agttggactg	tgcgaacgag	ttccataggg	ccacatcggt	ctgttttgc	2640
tttagtggta	gcaccaggac	ccaaaggaaa	tagcagtggg	gaagcatcat	gtatctggga	2700
gcatgcagt	gcgagggtc	tgggaggtgt	gccgagctgg	ctccccagct	cgctgttaggg	2760
ggcgggactg	gattctgtat	ccatgggatt	gggtgttcat	ccagaggcga	ctgggttaat	2820
taggaagagg	tggatgctcc	tcctgtttac	cccacatcca	cttcattgtg	ctgttcactc	2880
ccattctccc	ctacagttt	atgctcagac	atggaggtca	gagccacaag	ggaaagggga	2940

13

gagggggaga aaactgtact ctgtccagac atgatagagg gacagagcca aaaggataga	3000
gaaagagacc cagaaaaagg aagaggtgga aacccagaga gacagagacc caaagggaga	3060
gaaacagaga ctcagggaga gggagacaat gacctggagg gtgggtatg gcagagacgc	3120
agaagagagg aacagaaaatc cagagtgggg agacagagac caagagcagg ggatagaagc	3180
cgggcgaagt ggcctatgcc tgtaatctca gcactctggg agaccgagga agggggattt	3240
attgaggcca ggagttcaag accagcctgg gcaacatggt gagaccccat ctctacaaaa	3300
aatacaaaaa tttagctgagt gtggtggcac atgcctgtga tcccagctac tcaggaagct	3360
gaggcagaaa gatcccttga ccctgagagg tagaggctgc attgagccat gattgcacca	3420
ctgcactcca gcctggcaa cagagggagc ccccgctca acaaacaac aaaaagagcc	3480
agtggggag ggagggacag agacccagag ggcagcgtca gacacccaga gttggagaca	3540
gaacaacaga gtctcaggga aagagaacca caatagaaaa aggccagaaaa ggccgggcgc	3600
ggtggtcac gcctgtatc ccagcacttt gggaggccga ggtggcaaa ttacgaggtc	3660
aggagatcca gaccatctg gctaacadcg tgaaaccctg tgcctactaa aaattcaaaa	3720
aattagccgg gtgtactggc atgtgcctgt aatcctagct acttgggagg ctgaggcagg	3780
agaatcactt gaacctggga ggccggagctt gcagtgagcc aagatcacgc cactgcact	3840
cagcctgggc gacagagcga gactctgtct caaaaataaa tgactagata aaaaaaaaaaa	3900
ttgtttggagt acatttcccc tgcattttag agattaggac agtggtaact ttctagttgc	3960
cgtcttcaca gacaaacttg aaaggtatta aggaaaaat tccacatgc tctggcctt	4020
ttttgtattc tgattgccac gttaatctgt aatcgtaag taccatgaa agaatgttt	4080
tcaagtatcag tgctttttg gtactttaac aagtattgta ggcacggtgg atttttttga	4140
aatacccatg tgtccaatag caagtttaagg aacctagcgc atcaaatttt gttttctca	4200
ttcatttggaa accttatttt cgcaaaaaac ctagctggaa taataatgcc atattgtatt	4260
ttgcacactg ctttattttc tagaggctct gggagcaat tacattcatc acattacctc	4320
tgctctctca agattaaagt ctttcagcaa cattcttat tgtcatcata aggaaaaact	4380
tttacgc当地 tgatagtca ttcacattag tttacacta tagatgtat tcagaaatttgc	4440
ctttctcttt ggtaaaagaag ataaataggt gaattttatt gcctgtgttt tcaggcttca	4500
gaggtacctg gcaccttact caagaaaaaa caaaaaacag ctttacttca aaagcatgtg	4560
cctctggtaa attatccatc acttttgtt taaagtggtc cctccaagaa taatgtggca	4620
tacacagtgg gtttgggtgt aaggcagatg taatagatga cttcaaaagc ctgctcctta	4680
ctgcactctg gacaaggccc tggctgtat agtttggctt cctctgttaa gtcattctac	4740

aaggtgactt	gccatttgaa	cttcgtaaag	agacctcagc	agtttagactg	agaaaagtta	4800
gagtgcgtga	gttatgaagt	catacatttt	tgataaaaata	cctgtggaaa	accagggatc	4860
ctctccgttt	tctctctctt	gcctccccct	ttccctccat	tcctctgtcg	cctccccctc	4920
tcctccactt	tcttaagaa	tcaggggta	cagaataacc	tacaaacaac	ctcttcaaag	4980
tacccttgaa	aattgaagtt	caatcttaag	tttttgctg	tcttaattt	actagaattg	5040
cctaattttt	agttgatttc	tctacagagc	ttagcttgc	tagttatttc	tctttactg	5100
ttgcttttgt	gtgtctgaa	gtttgattga	ttattttgtt	tcattgagtt	cttagtgttag	5160
tttgcttagat	gattattaag	attctttgt	gtctgacact	tgtggtgagt	tgctttgaa	5220
atctgttag	atttccatgt	gagaactgat	aatcaggctc	ttgatctgct	tccctaaatt	5280
acttttttag	agcccaaacc	ccaggtttag	ggtgagggtt	tgtataacaa	agaaacactt	5340
ccatcacttc	tgcccttaac	cctgcctct	attacctaag	cttagtaagt	agttttctta	5400
atattgtcca	atgttttgtt	ttatctgcat	tgtttttgtt	tttttaattt	gtgggtgttc	5460
tgacgtgtga	aatttaagga	aagagccatt	ttttaaaaat	gccgagcagg	gcaatgcaag	5520
tacagccaaa	tattagactt	gatgtgcaat	cttcggcct	tttaatctg	gggtattata	5580
ggcagttactt	taaattgcaa	agtcttccgg	gcctattttc	ctctacattt	ttgtaattaa	5640
ctctgggggc	ttacttgttt	tggcagttact	gaaatcaaag	gagctggttc	ttctttctc	5700
ccaattattt	tcatatgaaa	gcacctacaa	ttagcctgtt	agtccatttc	agatacatca	5760
aatatcagtg	aatgctttac	tattcgcaca	tttaagcatc	tttgcattttac	ataaaattag	5820
agtagaaaaa	ccagtgttca	attttttac	ttgttgagct	tgtaaaatgc	cagcaattta	5880
aaactaggac	ttttcccccc	ataagccaaag	gaggtagaat	tactaataca	agggttaaag	5940
aaggtagatt	ttgtttcaa	tatttggta	atattagaaa	gattcttccc	acagggaaga	6000
actagcaagt	gtcccaattt	ttccaaacg	ttggggaggg	gaaaattcac	tgtatcatga	6060
aaccctaagg	gtttgttgca	cttcctgctt	tttaggcctg	gataacagta	tcaccatcct	6120
tatttacaga	agggtaaaac	tgactcttaa	tgagaaaagc	tttataagtt	caagggttgt	6180
aaaatatgaa	ctacttaggg	tcgtttgcct	tccatggaa	cttggctaga	cttagaaaaaa	6240
gctgtttgtt	gtgctaatgt	aaaagtgtca	tacaatttag	aagatttttg	aagatggtaa	6300
acttagaaga	attctatgtt	ctgaaatgca	cactttaga	atgttttct	ttgaaaacag	6360
gctaatagtt	ctttcttttt	ttgacaaagt	ttcagctcct	ctttaaagtt	attgtgtcat	6420
ttttctggtt	taaatttccc	ttatatttcc	acctgtaaatg	tcagtggcaa	caacatcata	6480

15

cttcacttac ttgttaattt acttttacc cttattctaa gagcaagttg agttgaactg	6540
aatcttcctt gtcttagtaa caatgtataa atagtggctt ttctgtacaa aaggttgtaa	6600
tgcctcctga tggatataat tttgtgattg tatttaaaag ttgaataaaat cacaccagct	6660
tcctgaaaat gttcataatg catctttgg aaaacaaata catcctact ttgtgcataat	6720
ttgcattaac atggcaaaga ttgtatgaaa tacctgtttt tcagaaaata aaggttcagt	6780
ctcaaaagat aaaaaaaaaa aaaaaaaaaa aaaaaaggcg gtc	6823

<210> 17
<211> 984
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (211)..(456)
<223> a, c, g or t

<400> 17	
tggccctttg agatttccta tctcaccgtt acttcagttt acccttgcag ggggccagg	60
agtcaagaat ataccgtgtt cctccagggt ttaagccgc catgccttcc cgagagcata	120
accaacttga caggggtgcc cagttacccc acaaaactgaa ggaaggagat cttcccccg	180
tccccaggag tgctctcaac cagcctcaga nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	240
nnnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	300
nnnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	360
nnnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	420
nnnnnnnnnnn nnnnnnnnnn nnnnnncctt aaccggccta ccacgacccc	480
actgaacagc gcatgacgcc acgagacccgg aacgacaagg cgacccaaga cagaaatcag	540
actcaaacac aacagaccaa gataaacccgg caaatccacc acagaaatcc agggcagaaa	600
aaccgacagc aacagcacaa actcgtgaga ccaaaagagc gacacaaaag ggacaaagg	660
aaacacgaac agaaaagcca gcctatgacc agcacgacac aacccaaac gccaccagag	720
cacccagacc gagccataga caacaacacc gacagccata acgtacggac tgctgccac	780
aacccaaacc agcacaata aagacgcacg gaacccacata tgcagagcct ccactgaatg	840
gcgccacccg cacggacacg acagcaacccg ccgcaatcag accaaggact ccccaacaga	900
ccacggagag acccgcaaca agcggcagca caagacacag atcggacaac accaagaaga	960
taggagagag ccccaggtaa caac	984

<210> 18		
<211> 186		
<212> DNA		
<213> Homo sapien		
<400> 18		
ggtcgcggcg aggtacaaaac gtgctgtaat tataagtctg tggtgagtt ccattttatg	60	
ctacacatta aggctttaa ttttgttaa aaggaatttt tggaatagtc ttcattgaga	120	
ctcttttaa tcttataactt tctaatttag aattataaga cattcaattt gaattataga	180	
aaaatt	186	
<210> 19		
<211> 418		
<212> DNA		
<213> Homo sapien		
<400> 19		
gatttgacta tatagccatg gtccttaatc atgctgagcg gcgcagtgtg atggatcgcc	60	
cgggcaggtc acattggaat ttgaatgcag tggccaggac agcagcttga taaaccacot	120	
tataggtagg taagcaagcc acgggattcc ctcggctggg ctggtgatgg ggaggggcgc	180	
agtggacagg aagcggcag ggcctgagga ccctgtactt taatgggcca caacagggct	240	
cagctcctct cagaacttct gctacaatca gagttaagac cagatacatg ctacctaagg	300	
ccatgaacct gacaatatct gctccagaga agccctgagc cctcgcccta ggtccctatg	360	
attataaacc caatggtaag cccaaagtctc acctttctaa atattctgtt tatcagtt	418	
<210> 20		
<211> 1811		
<212> DNA		
<213> Homo sapien		
<400> 20		
atccccctaa tctgggggcc caatctcccc ccaggggctc ttccaagaca ccgaggctt	60	
cgctcgccc ttttaacag cctgcggtgt cttttatata tacgctccct gggggcccg	120	
gtcaccacaa cgtgtggtag tgaaaatagtg gcgcctctgg agggaaattcc ttgatggcgc	180	
cggcctcttg tatgtgttag aagacgctct ttactatggt gtggcttagt actaattgt	240	
gattcatcga tgcggccttt ttttttttt tgacggttcc tatataacgt ttattctgg	300	
aagttaaagt agatacagca atataccaaa aaaaaaaaaa aaaaaaaaaa agacaaaaaa	360	
cctcacaata atataaattt ttacactatg aagtacacat tggaatttga atgcagtggc	420	
caggacagca gcttataaac caccttatacg gtaggtaaagc aacccacggg attccctcg	480	

17

ctgggctggg gatggggagg gggcagtggc caggaagcgg gcagggcctg aggaccctgt 540
tcttaatgg gccacaacag ggctcagctc ctctcagaac ttttgctaca atcagagtttta 600
agaccagata catgctacctt aaggccatga acttgacaat atctgctcca gagaagccct 660
gaaccctcgcccttaggtcccc tatgatttaa acccaatggta aagcccaagt ctcacccttc 720
taaatattct gtttatcagt taagcttattt atgtactgaa gagtgttgct ggagaagtttt 780
gagctctgca tgacacatca actgtctcca ggcaggagga ctggggcgaa ccctgttcat 840
cctagagaag gtcgtctccc ccttaattca gagaccagct aatttggattt aacaaacacaga 900
attccacacaga aactctgtatc agctgaggca aggtggtttt gagttgccaa atccggccat 960
gcctctgagt cagaggcagc ccatccagca cgtgttaggt gttcccatac gcacaggaga 1020
ggcgagctag ccagccaagg cgggcaggcg gggaggccct ctagctgttc tgcctcacct 1080
gtggggccccc agcagggagg agtcaccagc ctcagaggga ggccaggtat acaccctcat 1140
acgagggcag actcaagttt atcagtaagc ctttgccttg catgaactga atgaagacgc 1200
cattacaagt gccactggat atcaccaaga aactggctaa gaaccatattt cctgagctca 1260
accagacacg tcgctgggc cccatagtgt gcatcatgtc caacctgtaa ctctctcccc 1320
ctcttcttcc atgaggcttctt gagaccagga ttccctaaaac aaacaggatg agggaccttt 1380
agacacgcaa ggagacatgc ctctagcagg atcagggggc ctggggtcgg gaggggtgggg 1440
caggaaggaa gccagaatca gaagtatccc agccotgata aggcacccac agaaacaacc 1500
tagcctctga aacagcagat caagtccagg gagaaaggga gtcaaggttttaaagcaccct 1560
ctgcccagcc ttactcacta aaaggccaaat acattacaaa ggaaaataag tctattttata 1620
aaaaaaaaatgc taaaatgcctt agattctcct taaaccttcc tatttcaaca ccaaaggcca 1680
ggttgcagct tcagatgtctt taagggttttgcctgaagcc cgtttcaggg attatataaaa 1740
ttaccagcctttaaaggttgc taaaatgcctttaaagcaccacaggaggctgtttaaagcaccct 1800
ttttttttttt t 1811

```
<210> 21
<211> 602
<212> DNA
<213> Homo sapien
```

```
<400> 21
cggccgcgg caggtacagg ttttttggt aatgcgattt aaaatttta aaaacatggg      60
cttcatgaaa acaccattgt tactaacttg ggcttagatg ggaatcta at gtgaata gttt 120
caagtttatgg gacttgtcta aatgtgtcta tactctaaac ctgggggaa ag gtgggtgtgga 180
```

18

acattgactt gactacagtc	gaatacatgt tggaaatcat	tcccaatcat aagacatcg	240
cgtttctgta ggatgactgc	atatgttcag agtagtttt	tgaatttggt tcccttagct	300
ttagggatgt gatgttagat	tccaaaatgt ttacaagaaa	acctaagtct tcaaaagcac	360
aactttgtt gcttaggact	ttgcatcaac tggtgttcca	gacctcactt caacttcttg	420
gtctctgaac tggttttagc	tagcatgcat gagagacagt	tttcatgtat gctagctaaa	480
accagttcag agacagttt	catgtataat gtttctgctc	tgcaactgga aagtggttt	540
cttgcacaa atgctgatga	aaacttcatg actatgagac	ttttcttctg tgtatcaaga	600
aa			602

<210> 22
<211> 4114
<212> DNA
<213> Homo sapien

<400> 22			
tttttttttt aattaggata	atgcctttat taacgaaaat	gaaacgttca ttccctccttc	60
cactcctttt cgttggtttt	ttggacacag ctcacctgat	cctgctaaaa acgttgcag	120
tctgcttggg gcttccctcc	ttgattgact cacgctgggg	gatgtcttga aaagtattta	180
tccacttcat gggaatgagc	cctccaatat cagccaacat	caatcattct tacctaaaga	240
ataataagaa aaagttaata	taaaagacaa gggtataaaa	taaagggttg aaaatgctag	300
tcaacttcaa aatttaaaga	gtaaaaatcc agagataaag	attggggta agttacagca	360
aaaaaaaaata ggaagaaaact	tcatggtggg gggaaaatct	aaaattattc ttacataaaa	420
taagtagaca cctgaattag	aatgaaaact gtattttctt	taaaatgtaa aagcctgact	480
ctcagttca ccagtctgag	cacaagttt actgcaaccc	aaaatataact atcccttatg	540
tgaaggtatg tgacaacgtt	gacctcacca aatgagttt	aacatcagct ctttttcat	600
atgaaagcac ataccctgct	ccccattcaa gtatgtctc	cattgtcagg caggctgacc	660
accttcagca ggagtccccc	aagagtgc aactccctt	cccacagtac acaacgctgt	720
agttgttgc ctgcaatcct	ttgtatttac ctcattctt	cccatctaaag tcctcactga	780
gttttaaagt tagggctgga	aaagctatgc cttactggga	cagcaaggaa ccaattttt	840
tctgagggag aagacattca	ccttcactat atgcctggca	gggccacagt gcacaaaaca	900
aagatcagcc ttcattcaag	ttccaggtti ttcttcctcc	ctgaatgatt actgcaaagg	960
gtatatgaag taagagttcc	ctgttgcaca tgtaccatcc	ataagggata ctatatcggt	1020
ttgcattctt cccccattc	tccacattgt cctatcttaa	gtccaagccc ttttcactct	1080

19

caaaaaaaaaaaa aaaaaaaatat ttttttcagc actgggtttc aaaagcaacg tttttatggt	1140
taatggttta ccagcaactg ttgagatttc cagttgagtc taaaaaattg ccaatcatta	1200
tctagcagca atgacagatg attaggagca gtcaaattcct ctgaattctt tccctaatacg	1260
gcagccattt gagaactgca ctagctgaca tcactaaaac attatcagct aaagccaaaa	1320
ccaaataaaag gcccagacca acatcctggc tctctaaaac ctgtccaaaa tcattaagtg	1380
aaaggcagta aatgcaggac tgtggatcat gtcactgcag ctgacaatga ttaacaatacg	1440
gagacatgca acccccatta aggttaaaag tccaaaacta gtcacacgca tctctttatt	1500
ggggaaaaagt gagactatta tgcattcttgc ttagggtttgc aaccttgcattt gaagagcacc	1560
cattgcattt ctttcatctt tcagaaagca ccggtatctg ttccaagggc ctaacagtac	1620
gaaaatacat tctggcatca cacctctgaa cccaaagactg ttctcattaa aaataatttt	1680
ggttttaac aaaattatga aatacaatgc aagcacctcg gtatagcatt attactgaaa	1740
ccacttaatt cccagcttt tgagttttt aaaaaaaccctt actgcactaa gattcacaat	1800
tcattgctac atacaatattt aagcttagtaa gaacacacta acgtcacaag tttctcattt	1860
taaaagtgcaa aagcctaattc atctgaaagt gaacagggtt aggccaaaatt aacccccac	1920
ccaaataaaag ttccctgaagt ccatatattt tataccaatg acattctcta aaaattgtt	1980
ctgactggta agaaatagac ctgagttttt atttctaaca cccaatcaact aaaccacggc	2040
agcaagcact ggccaccgat ttaatggatt acgacacagg aaaccccatc agggttctat	2100
gtaatttagt gatactcatg tcactaatat tgagcattat acttgatctg cattatattt	2160
ttgatatgca gaggctaaac tagtcatcat ttgctcttc atctatcagt agagtccaaa	2220
gttgtttgct tgaatggact acatgtttaa gtacaagtct gtcccccacct tgtgaattgc	2280
ttgccaacga gcaagctttt tcttgatatac cagaagaaaa gtctcatagt catgaagttt	2340
tcatcagcat ttatgcaaag taaaccactt tccagttaca gagcagaaac attatacatg	2400
aaaactgtct ctcattcatg ctagctaaaa ccagttcaga gaccaagaag ttgaagttag	2460
gtctggaaaca acagttgatg caaaagtccata agcaacaaaa gttgtgtttt tgaagactta	2520
ggttttttt taaacatttt ggactataac atcacatccc taaagctaag ggaaccaaatt	2580
tcaaaaaagct actctgaaca tatgcagtca tcctacagaa acgacgatgt cttatgattt	2640
ggaatgattt ccaacatgtt ttcgactgtt gtcaagtccaa tggtttccacac caccttcccc	2700
caggtttaga gtatagacac atttagacaa gtcccaataac ttgaactatt cacattagat	2760
tcccatctaa gcccaagttt gtaacaatgg tggtttcatg aagcccatgt ttttaaaaat	2820
tttaaatcgc attacaaaaa aacctgtact tttagttcaa ctcaacttgc agaattacca	2880

agattgcata atgaaattac tgatattgcc gatctatggg caggtcagtt tgctacaata	2940
gagactaatt atcacatgtc atacggtcca tgtcaagggtg ctaaaaagcac cctagttccc	3000
aagtatagtt tagttccctc tcccccacac cactgatgtg ttccatgtta tcttcagtt	3060
caatgcaact aaaggaaacc acaactgagt cagatataacc aaagaatcaa gttgcactt	3120
ttatctgaga actgcaacag cactgaattc tgccctgacaa attacagctc taaccccaca	3180
cccacacagt tttgatgtaa gctagctta ccataacaagt gtttaggtgct gcactgtaat	3240
ttcatgtcag aaatgtgatg ccagaatgcc cacggaataa aagtacatac aagtcaccaa	3300
gttagattat atgcttgtaa cctacctgta tgca gtcggc aatgagaatc ttggagcaag	3360
caggaatact acatccgggt ccta atgtcc attgccattt gcggta ctac gttccctcaca	3420
gttacgcact gcagaaatgc tggctaaatg cagttatgta gcaggccact ac ttaatag	3480
tgcataattt cagtc aaga acaccagaaa acattccgccc acaacttagt ggcttgccca	3540
agaaaagcca agtatctaaa tttaatctg ccataatatg ccactaaaa attgcacagg	3600
cgtAACATTA caattttcccc atttttttagc tgtttatatt agtggta caaa tacatctata	3660
aagagtggtg gggtaggtc tgtaattttgt caggcagaat tcagtgcgt tgca gttctc	3720
agataaaaaag tgcaaaacttg atttttttgtt atatctgact cagttgtgtg gtgtccctta	3780
gttgcattgt aactgaagat aacatggAAC acatcagtgg tgtgggtta ggtctgtat	3840
ttgtcaggca gagtgagggtt tttgtggag ctggcagatc caaagttgga ggtgaaatgg	3900
tataaaaaatg gtcaagaaat tcgacccagt accaaataca tcttgaaca caaaggatgc	3960
cagagaatcc ttgttatcaa taactgtcag atgacagatg attcagagta ttatgtgaca	4020
gccggtgatg cgaaatgttc cactgagctc ttcgtaagag agcctccatt tatggtgccg	4080
agcagctgga tagaaacccc cgctgattgt tgtt	4114

<210> 23
 <211> 234
 <212> DNA
 <213> Homo sapien

<400> 23	
agtgtttgca acagcaccat ttgtcaaatt caaagatgct caaaagggtgt tccctacttt	60
gcatgagagg gagagctttg taacaggaaa ttgtataagg caaactctctt attcattcct	120
aaggcctctg ttcatcccta atgtttacat ggttctctac tctgaaggc accaacatgg	180
acctcacctt cttaacatgg aaaatcaaaa tctaaatgaa tacaattaaa agga	234

<210> 24		
<211> 600		
<212> DNA		
<213> Homo sapien		
<400> 24		
actgcattgg tggcttctcc atagggaggg ggtcctatct catagactcc aaacttcatg	60	
atggcaggga ggatatctgg atttgctcac ccctgtatTT tcagagcctc acacagtgcc	120	
cggAACATGG taaACATTa atactatctg tcaaaaacAA atgactgAAA gagcagatgg	180	
aaAGAGCAA tcctgcATTg aagAGATATC catggTggCC ctAAAactac tcaaaccaga	240	
tgtctttca gCTTCCCact ggAAAATGGA ccggTggca aaccaccatc tcacatctca	300	
gcgagagggt caatgtgcaa aagtattta atagcgacga ggtcccacac cccatcccag	360	
gacagccccc agcatcctgc tccaacataa gcagaaaaag acaatgaggt gcaaagagct	420	
tatctcctgg gatggTTccc gggTggTctg cattGCCaca cagcacatca tgctttgatc	480	
ctgaaggaca aggccccaat aaggcctatt tctcagcaca gtctaaaat cacctggAAA	540	
tcattccacc taggccccct cgtgaatcag cactgatccc aagcgacacg ggaaccccta	600	
<210> 25		
<211> 496		
<212> DNA		
<213> Homo sapien		
<400> 25		
ggcaggTaca ttgtataat aaccacaaaa taattgtata aggagaaaaa taataactga	60	
cattcatggc cctctgcaag gcacagtatc tgctttctca tttggcctt cgTTggTTcc	120	
atcctttgaa ggtctgagag cagcaggccc attccatgaa caccaagcc cttcctacca	180	
cGCCAGCCCA gactGCCatt tcccctccag aaggccagt ttcatcatcg atagggctag	240	
agaccatccc ggagtccccca tgTTcagga ctcccgaatc ttcaaatagt ccatcttAA	300	
gaagggatct cctggcagct aagagggtga agctaatcgt tctacaaagt agtgcctaAC	360	
tgttgataag atggcagtgt gtaggaagct gtgtgttggg tcggattccc cttttcatga	420	
gccattttct gtggtaggtt ccacggacat ggacaccatg gcctcatgga agcatgaaca	480	
gctccaacac agggTG	496	
<210> 26		
<211> 1690		
<212> DNA		
<213> Homo sapien		
<400> 26		
atgcctagca cggatgctgg tgccTcgcaG ggtttacgaa tgatctgtcc cgtctccagt	60	

gacgccctct caggaccac taccgaagtc attaggactc ctttgttgc agatgacagt	120
taccgagctc agataagagg tggcaaagag tgccagtc ccatcaaggg tggaccacac	180
aggtggacag ctcagagagg cctggatgcc ggggatggc tctcagcaga tgtaggagga	240
gctcaagtgc tggcaacagg caagaccct ggggctgaaa ttgattcaa gtacgccctc	300
atcgggactg ctgtgggtgt cgccatatct gctggcttcc tggccctgaa gatctgcatt	360
atcaggaggc acttatttga cgacgactct tcggacctga aaagcacacc tggggccctc	420
agtgacaccca tcccgtaaa gaagagagcc ccaaggcgaa accacaattt ctccaaaaga	480
gatgcacagg tgattgagct gtaggtgagc agtgacgtga agaggggttc tagccccgtg	540
gaaaacagcc catggtaac atctcaggat gttctgcatt caaacaccca aggctggtaa	600
tgaactttca catggactga atattggagg caaataatag aaggaataga atatacagt	660
cctctgtcct gaaggaaaat atcatgcctc ttctggaaga aacggactgc acagaggaag	720
gattgagcaa tttagcctgc agtggaaagaa ggtggacacc aaaagctca ccctgtgtt	780
gagctgttca tgcttccatg aggccatggt gtccatgtcc gtggAACCTA ccacagaaaa	840
tggctcatga aaagggaaat ccgacccaac acacagctc ctacacactg ccattttatc	900
aacagttagg cactacttg tagaacgatt agcttcaccc tcttagctgc caggagatcc	960
cttcttaaag atggactatg tgaagattcg ggagtccctga aacatggga ctccggatg	1020
gtctctagcc ctatcgatga tgaacactgg cttctggag gggaaatggc agtctggct	1080
ggcgtggtag gaaggcctt ggtgttcatg gaatggcct gctgctctca gacottcaaa	1140
ggatggaacc aacgaaggac caaatgagaa agcagatgct gtgcctgca gagggccatg	1200
aatgtcagtt attattttc tccttataca attattttgt ggttattatt acaatgtaca	1260
tggctgttgc atagaagaca tgactggtgg aggctgagga aagccatgac attctacaat	1320
tgccatcagg ctaaggcccc gtgagcattt ctctcccttgc taatattaac cctgtatttc	1380
tgggatcaca tcacggaata ttctttgcct ttccactttc cagggaaatct ctcggactgg	1440
gctaccctcc ttgtgtgtga tgaaagatga gctatatttc agaacaagt gctgtgttgc	1500
catgatttgc ctggactccc agggcgtctc ttacccaact tgataacgat gctgttcatt	1560
agcagcctt gttaactgat aaccaagagc ggtaatgtga tactcataag caattttctg	1620
tgtgttagat aaaataaacc atcttgcatt gggaaaaaaa aaaaaaaaaa aaaaaaaaaa	1680
aaaggcggtc	1690

<211> 461
 <212> DNA
 <213> Homo sapien

<400> 27
 gggtgataat catataggcg aatggtctct agatgctgct cgagcggcgc agtgtgtatgg 60
 atgcggcccg gcaggtacca agtcggcagg cccttcctct atcatggatg ctgggtgact 120
 tcgggaagtc accacctctt cccaagcctg ttcccataat cacagatgtg gggccatggc 180
 ctgcgtatgt gtctccacag gtctttcac ctctgtgagt ccaagtcagg tcaatcagca 240
 aggacccatc tctgccctgg gtcagctcct cagaaccaac ccccagcatc cctaaagcaa 300
 aagcctcacc tcaaggcgtg ctcaagaagag agcaccttca gcatgagttg ttgctgaaag 360
 atctaataag ctgtgtttcc tggaaagtgg tgctttactt agccctgtgg acaacttctc 420
 tatgcattctg tgtgagcaga tgatcattgt attacctttt a 461

<210> 28
 <211> 4043
 <212> DNA
 <213> Homo sapien

<400> 28
 ccgcctaatt aaagatcttt tttttttttt ttttttctc ataaaacagga actttattaa 60
 actacatgtt acataaaaga acatataaaat ggaccattaa atacatttag tttattttaa 120
 acaaattttac atagatactt attacattt ctccattgtt ttcttaaatt atttttccaa 180
 gcttactacc gataaaaggt aatacaatga tcatctgctc acacagatgc atagagaagt 240
 tgtccacagg gctaagtaaa gcaccacttc ccagggaaaca cagcttatta gatcttccag 300
 caacaactca tgctgaaggt gctctttctt gagcagccct tgaggtgagg cttttgttt 360
 agagatgctg ggggttgggt ctgaggagct gacccaggc agagatgggt ctttgctgt 420
 tgacctgact tggactcaca gaggtggaaa gacctgtgga gaccatcatc gaggccatgg 480
 cccccacatct gtgatatggg aaacaggctt gggaaagaggt ggtgacttcc caaagtcacc 540
 cagcatccat gatagaggaa gggctggga gcttggtacc cagggttctt ccaagaggtc 600
 ccgatccctc tgcttatccac aaatccacaa acttagaatac acttgcattc atttccacc 660
 accatggacc ttatgctttg aactgttttg tctacctgtat taaatataatac ttctttagg 720
 cttcttgaga tggtaaaaag cagtcagga ttcccataag caactttgtg gagccctgg 780
 aataacctact cagggctgtt tttacaagag gttttgtggc caggtgcttt actacttcag 840
 ccataacgtt tacctttaaa actcagctga cttatggaaag ctcagcattt ccaattcgct 900
 tagatgacag gcaacagtct gcagaaggaa ggttctaacg tcaaccacgt ggattcccca 960

caaacgcata	atattgcct	aaatccatct	atctaccaat	gtcagatcta	aatgagggtt	1020
tcactaataa	gtgacctaaa	ataaaaaaaaa	acacaaaaaa	gtttctaaa	aaaaaaaattc	1080
caagaatttc	cccgttccc	aattagtctc	agaggagtcg	tgaaatggc	attgggtaga	1140
aaaagtccat	gtttcaact	gtttctttg	aataaagcct	gattccccca	ctctgcccc	1200
aaactttcc	cgtatgatata	cattcttctg	aaagcaattt	catgctttta	gtctgctta	1260
aaaaacctga	cttggttctt	ctcaggattt	aaaaaccact	gtaccaagga	agagatgtcc	1320
acgttaaaaaa	ctattattaa	gagacagaga	caaggagaga	gagactctct	ccaggccatg	1380
ttagaaaaga	aggaagtgct	gggagcacac	aaagagagaa	gaaaggctgg	gagacagaat	1440
ggtttgcacc	tccctgtAAC	cagagtgaac	acaggtcata	gcagcTTCA	ctcagtttta	1500
taacagacac	acgaatggag	gaacatggga	ttggaaagac	gcacactgtc	aaacagccct	1560
gatgccttc	cactaaaata	tggcacttct	agattccaga	gaaatccagc	attctaccag	1620
gggctgccac	ccatctgcag	ggaaggctgc	cctgcaacca	tgaggccctc	aaggctcata	1680
ctccactgct	cacaatgcgc	gccctgaata	catggaagca	tctgatttct	gtctgagtcc	1740
aactttccct	cctgttccta	gacagactca	cacccagagt	catgcacgga	gaagtggcga	1800
agccagacaa	tcttcaggga	gacacagccc	atcacaggat	acccaaggct	tatgggaag	1860
tccagttgcc	agcaacggac	cctgtgtggg	caggtgaaac	tctgaagcca	gagaacacag	1920
gaagataaaa	atatcttcat	actgaggata	tactgcacaa	gtgtggtggc	tcacacctgt	1980
aatcccagca	ccttgggagg	ccaaagtggg	ctgatagctt	gagcctagga	gtttgaaact	2040
agcctggca	acataatgag	accctaactc	tacaaaaaaaaa	aaaaaaatac	aaaaaaaaaa	2100
aaaaaaaaatca	gctgtgtgg	tagtatgtgc	ctgttagtccc	agctatccag	gaggctgaga	2160
tgggagatca	cctgagccca	caacctggag	tcttgatcat	gctactgaac	tgtgcctgg	2220
gcaacagagg	atagtgagat	cctgtctcaa	aaaaaaaaat	taattaaaaa	gccagggaaac	2280
aagacttagc	tctaacatct	aacatagctg	acaaaggagt	aatttgatgt	ggaattcaac	2340
ctgatattta	aaagttataa	aatatctata	attcacaatt	tgggtaaga	taaagcactt	2400
gcagttcca	aagattttac	aagtttacct	ctcatattta	tttccttatt	gtgtctattt	2460
tagagcacca	aatatatact	aaatggaatg	gacagggat	tcagatatta	ttttcaaagt	2520
gacattattt	gctgttggtt	aatatatgtct	ctttttgttt	ctgtcaacca	aaggatggac	2580
agtgattcag	aaccgtcaag	acggtagtgt	tgactttggc	aggaaatggg	atccatataa	2640
acagggattt	ggaaatgttg	caaccaacac	agatgggaag	aattactgtg	gcctaccagg	2700

25

taacgaacag gcatgc	aaaaaa	taaaatcatt ctat	ttgaaa	tggttggattttt tttaattaaa	2760
aaacattcat ttttggaa	gc ctgttttagg	cagttaagag gagtttcctg	acaaaaatgt	2820	
gaaaggctaaa gataagggaa	gaaaggcagt ttttagttc	ccaaaatttt atttttggtg	2880		
agagatttta ttttggttt	cttttaggtg aatattggct	tggaaatgat aaaatttagcc	2940		
agcttaccag gatgggaccc	acagaacttt tgatagaaat	ggaggactgg aaaggagaca	3000		
aagtaaaggc tcactatgga	ggattcactg tacagaatga	agccaacaaa taccagatct	3060		
cagtgaacaa atacagagga	acagccggt aatgcctcat	ggatggagca tctcagctga	3120		
tgggagaaaa caggaccatg	accattcaca acggcatgtt	cttcagcacg tatgacagag	3180		
acaatgacgg ctggtatgtg	tggcactctt tgctcctgct	ttaaaaatca cactaatatc	3240		
attactcaga atcattaaca	atattttaa tagctaccac	ttcctggca cttactgtca	3300		
gccactgtcc taagctctt	atgcatact cgaaagcatt	tcaactataa ggttagacatt	3360		
cttattctca ttttacagat	gagatttaga gagattacgt	gatttgtcca atgtcacaca	3420		
actacccaga gataaaacta	gaatttgagc acagttactt	tctgaataat ggcatttag	3480		
ataaataacct atatctctat	attctaaagt gtgtgtgaaa	actttcattt tcatttccag	3540		
ggttctctga tactaagggt	tgtaaaagct attattccag	tataaagtaa caaacacagt	3600		
ccctagatgg attgccacaa	aggcccagtt atctctctt	cttgctatag ggcacaggag	3660		
gtcttggtg tattagtgt	actctatgta tagcacccaa	aggaaagact actgtgcaca	3720		
cgagtgttagc agtctttat	ggtaatctg caaaacgtaa	cttgaccacc gtagttctgt	3780		
ttctaataac gccaaacaca	tttctttca ggtaacatc	agatcccaga aaacagtgtt	3840		
ctaaagaaga cggtggtgga	tggtggtata atagatgtca	tgcagccaat ccaaacggca	3900		
gatactactg gggtgacag	tacacctggg acatggcaaa	gcatggcaca gatgatggtg	3960		
tagtatggat gaatttggaa	gggtcatggt actcaatgag	gaagatgagt atgaagatca	4020		
ggcccttctt cccacagcaa	tag		4043		

<210> 29

<211> 176

<212> DNA

<213> Homo sapien

<400> 29

ttataataac aaaaaaaagtg	tgagggatg ttttcccaag	cccccttctc cgggtggcgg	60
ctctcgatgtg aggaccatg	gtgacagagt ctctctcatc	tcctcactct gaaagcattc	120
cactggggag agtcaaccct	ggctcggggc ttcctccaca	cagcacacgg cccttc	176

<210> 30
<211> 1332
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (623)..(642)
<223>

<220>
<221> misc_feature
<222> (623)..(642)
<223> a, c, g or t

<400> 30
atcccgggaa cttgacacct cgtccgggg cagcagcgcc tctcctgcgc acgcccagtc 60
ctactccagc ggccggccgcg gccagcagaa attccggta gatatgcctg gctcaggcag 120
tgcattcatc cccaccatca acgccatcac gaccagccag gacctgcagt ggatggtca 180
gccccacagtg atcacctcca tgtccaaaccc ataccctcgc tcgcacccct acagccccct 240
gcccgggcctg gcctctgtcg ctggacacat ggccctccca agacctggcg tgatcaagac 300
cattggcacc accgtggcc gcaggaggag agatgagcag ctgtctcctg aagaggagga 360
gaagcgtcgc atccgggggg agaggaacaa gctggctgca gccaagtgcc ggaaccgacg 420
ccgggagctg acagagaagc tgcaggcggt gaggaactct gcttagggtg ggagcacctc 480
tgggtgggct ggagtgagag ccccgggggt cctgatcctc tctccacag ctgtctcctt 540
acccacaaaat gcccatacaga tgagtcaagt gagatagagc tttccttcct ttggacacat 600
gggtcagcat tgtgttgatt gannnnnnnn nnnnnnnnnn nnngtggcggt tagcaccagc 660
cagggcccag aggaaagaaa tgaacaacct tctgtggggg tgctagccac gtttttacg 720
cagcacctga gtgttctctg ctcacagaac tgtggggct cctgggtgag ggatgatgga 780
gggtgggagc cagggcaggt ccagacctgc cccatccagg gctgctccc gaggttccag 840
ccactcccat gcctgcccgc atcaggagtg gcccagcctg gcctaagcac tctgggttgg 900
gccagagaga agtcttgatg gagataggtc acgtggcagc agggttgtat tttcttgggg 960
ttttctcatt tccttatgg gcaggcggt tccccacctc tatcatgaac tcagagctgt 1020
ggccatggta ccgcgtcgtg ctcttgtgag tcactctccc gtgcgccta attgcccaga 1080
cctggggacc cgcagccctg ccctccctc tgtaagctt gacgtgacca acgtcacgta 1140
actcccttca gagcctggcc ctgcaggaag ggccgtgtgc tgtgtggagg aagccccgag 1200

27

ccagggttga ctctccccag tggaatgctt tcagagttag gagatgagag agactctgtc	1260
agtggtcctc acagtgactg cccaggatgg ggcttggaa aacatcccct cacacttttt	1320
ttgttattat aa	1332

<210> 31
<211> 571
<212> DNA
<213> Homo sapien

<400> 31	
gcccgggggg caggtacctg tagtcccagc tactgaggag gctgaagcag gaggatccct	60
cgagcacaaa agtttcaggc tggtaagc tatgactgtg ccactgcaca ccagcctgag	120
ttacagaggg agatccaaac tctaaaaaac taaaacaaca ataaatatata acaagaatca	180
taacataaag ggattcatgc ttagaaaaaa tccataaaact cccttctaaa tattgagaca	240
ctccaggcctt cttagaca aataacttct aattattcca tattttcaa gttattaacc	300
aagataaaaga atctctcagt tagtggggaa aatgaaaatt attaagaata gaattgtctt	360
ctgactttaa aaacaattta gactttaaaa catgaactgt ttactcagggc tggtgataact	420
ctagtttgtt agtataccat acttgaagat atcatcaaga tcactatagt tgtatataatt	480
ctctatTTTT atatgtaatg ttaacttagt tcaagtatTT tttgcttgta tcgttaactg	540
atcatcaaatac acaatcctaa agatataatca g	571

<210> 32
<211> 240
<212> DNA
<213> Homo sapien

<400> 32	
ccgggcaggt acatattcta cagaaaaaaaaa tcaaataatgt atacaataa gtatgcacag	60
gatttagaat cttacataaa aatgtattta acttggctgg agtgtgtgtg tggttttccc	120
aggttaagta aaatttagaaa gccagaatca caagccacaa aaaagaaaaa ctgataaatt	180
agataccatc aaaattaaaaa tctctaactg ctacaaataa taccatcaag aatggaaatt	240

<210> 33
<211> 1026
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (883)..(883)
<223> a, c, g or t

<400> 33
 aatagctcgccggttt tgatggatga gcgcacgaggt caggaggacc tgtatcacaa 60
 aaaaaaaagaa aagggaaaaaa agaagagaaa gcagcagcat gatacctgac atgacagatg 120
 tgggagaccc acagcctgca gacactgtgt ggctggaagg tggcgacggg agtggtgccg 180
 gtggagtgtg gagctgtctg aaagtgcgc agcagacagt agaagcatag gtgggcgaag 240
 cccaggtgac cctcaaaacg ttgcacaaga acatcaggaa aaaagaacta gaatcctta 300
 agaaaaatgt tcttcatgta tgagagacta aagtgattt tctaagaaag ttcagccctt 360
 ctctgactta cctggacatt tctagatact tccaaaggac cctctggaa tccatagctt 420
 cctaatctgg agatgggagg tcataaggaa gacgctgtgg ggttccttga agtttcttgg 480
 gttcacagag gagccccctc acttgggttt ctcccgtgag ccagcctcca cctgccaaag 540
 acactctggt cctcgatatacg tgtagtatgg ggctcaggc ctctccaaca acagagagga 600
 gctgatgctg tagggctgac cccgtgactt cctggagttc tcaccctgtc cagtgtttt 660
 agattcttcc cacctccccca tcctcaccag ccggatcggt cgctgtcag tgggtcagc 720
 atggtaaga aagtcatttc cttggtgac agtattcctc ttatctctc attacactgg 780
 aaatgttatt tctgtgtat catccgtgct ccaacgtttc tagtctgtca ggctcacctt 840
 ctctctggaa agaattgctt aacttgacat tccatgtgcc gcntataaaa tatattttga 900
 aagaacaaaa aaaaccaaaa aaaaaaaaaac ggtgggggta acctgggcca aaacgcgtcc 960
 ccgggggtgaa ttgttctccg cccactcaa ccccaccaac aaaaaaaaaa acagacaaaaa 1020
 aacaaaaa 1026

<210> 34
 <211> 1545
 <212> DNA
 <213> Homo sapien

<400> 34
 gcccacaatgc acatcgaggc cgtctcaacc acagggcatg gggaaagcat cctgaagggt 60
 aacctggcta gactcacccct gttccacata gaacaaggaa agacggtaga agaggctgctg 120
 gacctatcgat tgggttatataa gaagtcaagg gttaaagggt tagtggcct catcggtt 180
 agcaaaacag gagactgggt ggcaaagtgg acctccaccc ccatgcccgt ggcagccgcc 240
 aaggacggca agctgcactt cgaaattgat cctgacgata ctactatcac cgaccctcccc 300
 taagccgctg gaagattgta ttccagatgc tagcttagag gtcaagtaca gtctcctcat 360
 gagacatagc ctaatcaatt agatctagaa ttggaaaaat tggccgtct gtcacttgg 420

29

ttgttgcctt aataagcatt tgaatgtttg gttgtggggc gggttctgaa gcgtatgagag	480
aatgcccgt attaggagga ttacttgagc cctggaggtc aaagctgagg tgagccatga	540
ttactccact gcactccagc ctgggcaaca gagccaggcc ctgtatcaaa aaaaaaaagaa	600
aaggaaaaaa agaaagaaag cagcagcatg atcctgacat gacagatgtg ggagacccac	660
agcctgcaga cactgtggc tggaaagggtgg gaaggggaggg gccgggtggag gtggagctgt	720
ttgaaaagtga cacagcagca gtagaagcag tgggtggcga agcccaggtg accctcagaa	780
cgttgcacaa gaacatcagg gaaaagaacc agaatcctt aaggaaaatg ttcttcatgt	840
atgagagact aaagtgattt ttctaagaaa gttcagccct tctctgactt acctggacat	900
ttcttagatac ttccaaagga ccctctgggaa atccatagct tcctaattcg gagatggag	960
gtcataaggg agacgctgtg gggttccttg aagtttcttg ggttcacaga ggagccccct	1020
cacttggtgt tctccctgtga gccagcctcc acctgccaaa gacactctgg tcctcgtata	1080
gtgagtaatg gggctcaggg cctctccaac aacagagagg agctgatgct gttagggctga	1140
ccccgtgact tcctgagtcc tcacccctgtc cagtgtttt agattcttcc cacccccca	1200
tcctcaccag ccggatcggg cgctgtgcag tgtggtcagc atggtaaga aagtcatttc	1260
ctcgggtggc agtattccctc tttatctctc attacactgg aaatgttatt tctgctgtat	1320
catccgtgct caacgtttta gtctgtcagg ctcacctct ctctggaaag aatttgctta	1380
acttgacatt ccatgtgccg ctaataaaat atattttgaa agaaaaaaaaaaaaaaaaaa	1440
aaaaaaaaacg gtggggtaa cctggggcaa aacgcgtccc cggggtaat tttctccgc	1500
cccaactcaac cccaccaaca aaaaaataaa cagacaaaaa acaaa	1545

<210> 35
<211> 338
<212> DNA
<213> Homo sapien

<400> 35 tgatcactca ctataggcct ggtgctctag atcatgctcg agcggcgcag tgtgatggat	60
ggccgcggcgg gcaggtactc agaatggagg ggctggaagt gggccagtg gtcctggtag	120
tcaagcctccc cttctgacac aagaattatc gtggAACAGC ttgtgtgacc gatcaactgg	180
tctctccatc tttaagccat tgtcttggtg actctgttac tgcagagttt ggggaggtct	240
catggcttct cgggatccctaa tttcctgagc ttccctgaag ccaacttctg gccactggta	300
tgtgatgcga gcacagtgc tccctctgtc cttccagg	338

<210> 36

<211> 1851
<212> DNA
<213> Homo sapien

<400> 36
ggccgcataatt tttttttttt tttttttttt tttttcaagg ttggaaaatc ccactttact 60
tcaagtgaag tcactgggtt gtccccatga aatatctcca caatgggtgt gctagacctt 120
tactctctgt ggcaccacca agacccccc accctgccag agccctctga agtgtactca 180
aatggaggg gctggaagtg gggccagtttgc ttctggtagt cagcctcccc ttctgacaca 240
agaattatcg tggaacagct tgggtgaccc atcaactggt ctctccatct ttaagccatt 300
gtcttggttga ctctgttact gcagagtttgc gggaggtctc atggcttctc gcatccatt 360
tcctgagctt ccctgaagcc aacttctggc cactggtatg tgatgcgagc acagtgcctc 420
ctccctgcctcc tccaggaagc ttctgctgat tgaacgcagg ccagatggcg agatccggag 480
caacccctt agatcaaggg aagaaagggg cacaagaggg gagtaggtaa caagataaaa 540
ggagctccct ccctgatgac tacagagcca tcgtggcagc cctgggcctc catttcagac 600
gttcatcttgc cctaagccac caccatcagg gtctcagtca gtcatcatttc tcatttactc 660
gggtggctgg gtgagggcgg aatactaccttcc tccagctgtc tgagattaag cctaagccac 720
caccatcagg gtctcagtca gtcatcatttc tcatttactc ggggtggctgg gcgagggcgg 780
aatactaccttcc tccagctgtc tgagattaag cagaacagca gctaaagcag taacagcagg 840
tctccttcag cagcttgcca cagggaaagag ggtcccggtt gaaccgaact caacttccac 900
ctgcgcagag gtagctacca tttgcgtaga ggtagctggg tcttttaaggt tagagggaaag 960
gcgcaggag ggagagacgg cgggtggggg ttgaacaaag tggagattca caaaagcaga 1020
ctagggcggg cgacgtgatc agatgaccc tgcggcggc agcctcctgc cctccctcccc 1080
ttcgtgcgcc ggctggagcg aagagtttttgc ttgacagccg tgagcttccc cgccaggaac 1140
ttactggggc tgcacatcaccc tagaaacgttgc gctttggcttgc tgggaaacgc tgcctctgt 1200
gaagtcttc ttcgcggggg tggacgggttgc gctgcgcgcc cagcgttctt ctgcgggttct 1260
cacagcccgcc cgccgcggcc gcctcggggc cctttgcggg gaggcctcag gtcagcggccg 1320
cccttgcgttgc ggcgggagag cagagcggcc ccagggcctc tgagctccgg ccccgccacg 1380
tcccgccctc tcctccgcgtt gcgggagccg gggcgccctcg gaggaaacc ttccggacac 1440
aggccgggag aagaggggccc gtggcgccat cgccgcgttgc cctgggttgc gccatgtttt 1500
tttttttttgc agacggagtt tcgcttttgc tgcccggttgc ggagggcaat ggcgcggctc 1560
cqgcgcgttgc caqccgcggccgc ctccgcgggttgc qaaaggactc tccggcctca ggccgcgggtg 1620

31

ttcttgtaaa ttagaaccgg cctatgcgcc aagcgccgggt ctcgcggctg cgagagagg	1680
cccagcaggg ggccccggacc ccgggaggcg gggcctggcc gagctgcgc aacccgggt	1740
gttctggcta cgggtaccccg gacctgcaca acgaccgttc tccattcccg acctccgcac	1800
cctacccgggt ccgcaggca ctttcctcct ctctctcagg cacgtcctcg a	1851

<210> 37
<211> 409
<212> DNA
<213> Homo sapien

gagagcaagt tcaagcaggg ccaggaacag gacagccggc aggagagcag gctcaacgag	60
gactttctgg gaatgctggt ccacaccagg tccctgctga aggagacact ggacatctct	120
gtgggactca ggaacaaaata cgagctgctg gccctcacca tttaggagcca tgggacccga	180
ctaggtcggc tgaaaaatga ttatcttaaa gtataggtgg aaggatacaa atgctagaaa	240
gagggaatca aatcagcccc gtttggagg gtgggggaca gaagatgggg ctacatttcc	300
cccataccta ctatttttt atatccgat ttgcactttt agaatacatc taaggtcatc	360
tttcaaaaaga gaaaaattgg acacttgagt gacttgttt tagttgtt	409

<210> 38
<211> 2112
<212> DNA
<213> Homo sapien

ttgagagcag agagatcctc agatatctt tagccaaagg aaaagctccg cattccacc	60
cagtccagaa attgaaatac tatcaggggg caagagcctt tctctccagc tacacactcc	120
atctcccccggg agcaagggga aactccgaga ggagggcaac agagccagca tcttgcagg	180
ccccccggagg aggggttccc cgctacgcct gtgcggagg agttccagtc accgagcgg	240
ggcgcaagg gtgggtgcat cctgcgtgc ggccccgcgc ctacccagac gctgggtgc	300
agagccacat gaagcctgct gggactggg ggccaggag cagcaagcca gctggactg	360
aggcggacgc tgtctcaggg agacgctgac tcgcaaagac actcccttcc ttgtgcctgg	420
gtaaaaaagtc tcctcctggg gtccctggcc atcctgaata tccagaatgg tggttctgaa	480
tttcttctgc atgagttct tctgcacact gtgtcaaggc tacttcgtg gccccctcta	540
cccagagatg tccaatggg ctctgcacca ctacttcgtg cccgtatggg actatgagga	600
gaacgtatgac cccgagaagt gccagctgct cttcagggtg agtgaccaca ggccgtgctc	660
ccagggggag gggagccagg ttggcagcct gctgagcctc accctgcggg aggagttcac	720

cgtgctgggc cgccaggtgg aggatgctgg ggcgcgtgctg gagggcatca gcaaaagcat	780
ctcctacgac ctagacgggg aagagagcta tggcaagttac ctgcggcggg agtcccacca	840
gatcggggat gcctactcca actcggacaa atccctcaact gagctggaga gcaagttcaa	900
gcagggccag gaacaggaca gccggcagga gagcaggctc aacgaggact ttctggaaat	960
gctggtccac accaggtccc tgctgaagga gacactggac atctctgtgg ggctcaggga	1020
caaatacgag ctgctggccc tcaccattag gagccatggg acccgactag gtcggctgaa	1080
aaatgattat cttaaagtat aggtggaaagg atacaaatgc tagaaagagg gaatcaaatc	1140
agccccgtt tggaggggtgg gggacagaag atggggctac atttcccca tacctactat	1200
tttttatat cccgatttgc actttgagaa tacatctaag gtcatcttc aaaagagaaa	1260
aattggacac ttgagtgact ttgttttag ttttgtttt gtacattatt tatgtgattt	1320
ttatgaaatt gtcacctgga aagaacaatt ttaagcaatg tcattctag atgggtttct	1380
aattctgcag agacacccgt ttccagccaca tctaaaagag cacagttat gtggtgccga	1440
ataaaacttc cccatcctgc agattatgtg gaaataccca aagataatag tgcatagctc	1500
cttcagcct ctagcattca ctccctggct cccaaagcta tcccaagttgc ctgttttca	1560
aatgaggttc aaggtgctgc ttgcattgcc tgccaaacccca tggaagttgt ttcttacttc	1620
tttctctct tatttattaa ccatggtctg agagttttt ttgttctatg taacagtatt	1680
gccacaaaaac tataggcaaa tcgtgtttgc agggagatc ctgatgcctc tgtgggtgt	1740
tgttaagttaa agtggccaca tttaagaagg ccaagcttgc tagtggttgc acagtcacac	1800
tgatatgctg atttgctctt tctcattgtt tgtctatgtt ttgtcatcag tgctatagta	1860
aattacaaag aaataggttag attgtatgaa cataccacaa aatgcctatg atttaggtta	1920
ccaaatgtatt ctttctcatt tggggtttttgc cttctgtctg tctgtttatt ggaaacttgt	1980
acttcaagta gggggaatcc taattctaat aactccttag ctaagttta ttattcaggc	2040
aataaacatg ttttcatgtt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	2100
aaaaagatcg gc	2112

```

<210> 39
<211> 713
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (260)..(539)
<223> a, c, g or t

```

<400> 39
 ccgcccgggc aggtacctac ctgatgaagc tgttcatgct tccagcatca aactggacgt 60
 ttactgtctg cccaaaagcc agtttccaaa aggtttgctt ccctctgttc agtggattct 120
 tgactacata taggtcatat atttcaaaaa ataatgccta gctatttcta ctttggaaatc 180
 atgactaaag ccaaaccaca accacagcaa agataaccta aggatttgtt taccagaaaat 240
 acctacaaaaa aagttgcan nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 300
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 360
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 420
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 480
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnc 540
 caccctgcca aaaagttgc catggccgg caggcaaagt tgcaaccgga gccgttcctg 600
 ggtgaaaagc ttggcggtaa tccttgcct atccttgcct ccttgtgtgg acatttgc 660
 tccccgctcc ccaatctccc ccataccctc ccacaaaaaa aaaccaggac aac 713

<210> 40
<211> 338
<212> DNA
<213> Homo sapien

<400> 40
 ctgatTTaaa gtcatagaat ttactgaaat acctacacag ctctgaatcc aacattttg 60
 tcatggttat tagaagaaac caaaacaact gactgaaaat gaaatgttca gtcagacagt 120
 gtttgcac atctttttt ttttgaagtt ttgaatcatc cattcacaga aaacacttgt 180
 ttatggtat aatgcaaaac ttttgaacca aaaaaaccta ctaaaaatgc ttgcgtaaa 240
 gtgattggct tttcattcat gctttgaaat aaaattatct agaaagggtg gagaagggtt 300
 tgccgaacag ccatttcct gatgtgcctt agattaga 338

<210> 41
<211> 805
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (241)..(520)
<223> a, c, g or t

<400> 41

34

aatgctgctc gagcgccgc	agttatgatg gatgtggctg	cggccgaggt ctcagttcc	60
ctatttgtaa aatggaaata	atggtagctg cctcaaacct	cattacgaat tcaatgagtt	120
aaacttgaaa agacttatta	cagtagctgg cacataaaga	cttgatagta gtttatatgg	180
atgctatctc atattagcat	atatggaatt aatagtgtat	cactatactt tttttcttt	240
nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	300
nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	360
nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	420
nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	480
nnnnnnnnnn nnnnnnnnnn	nnnnnnnnnn nnnnnnnnnn	ttactatgct atcaattcca	540
tatatggaac ggtgtttcc	cttcagagc tcttaaagc	tctgcagaag atttacatgt	600
gtttatagag ctaagagaaa	tcgggccatg gaaatgtggg	tgtgtacta acaaatttaa	660
cctcttcatg ttatattaat	catgcataat tctatcttca	tcctctgaaa gtggcctaga	720
gcaaccatca cagtaggaag	cttgggtatc atggccatag	ctggcctgg tgtgaattgt	780
ttcgtcaatc caaaaaaaaaa	aaaaag		805

<210> 42

<211> 300

<212> DNA

<213> Homo sapien

<400> 42

gaatgtatga tcactatagg	gccatgggtt atctagatgc	tgctcgagcg cgccgcagtgt	60
gatggatcgt ggtcgccgcg	aggtacccct tgagcctggg	caaggtgcac gacacacact	120
tggtcactgg aggaaatgtat	gagtagagag tgacaagcag	aggagggag ctttgggcct	180
gagtcctctg gggcacaaga	gtggttgagg cttggcactt	gccacctaga tttcagacaa	240
tgtgtcagga atcctggatg	cccagaaaga aacctgctca	gggtctggag ccccaacata	300

<210> 43

<211> 561

<212> DNA

<213> Homo sapien

<400> 43

ggactgagaa ttcctgtgg	ctcctgagat cagtttcttt	ccaccagatt gtaaacaagc	60
tgtggaaagt tttagttctt	agcgactcca cgaccccacac	tagtcaggca gaagccccca	120
tgtacaaggt accccttgag	ccttggcaag gtgcatacaca	cacacttggg cactggagga	180
aatgatgagt agagagtgac	aagcagagga gggagcttt	gggcctgagt cctctggggc	240

acaagagtgg ttgaggcctg gcacttgcca cctagatttc agacaatgtg tcaggaatcc	300
tggatgccca gaaagaaaacc tgctcagggt ctggagcccc aacataaaagc ttttatttag	360
gcaatgttga gcactaatat gtggttggag ctctgcaggg ggtctccatg ggtgcactgt	420
gtagcaaagc tgtgggagaa aggccttacc cctcaaaatt ccagaattat aaatctatca	480
gccgcttgca acttcagcct ggaaaagcca tggcattaa actccaaact gtgagagcag	540
ccatgtggct gcaccctcaa g	561

<210> 44
<211> 530
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (102)..(182)
<223> a, c, g or t

<400> 44	
gttttaaaaa gaggagctcc cctgcatgag atctcacttt ttgcctgcta ccatttatgt	60
aagatgtgac ttgctccctc ttgccttcca tcatgactgt gnnnnnnnnnn nnnnnnnnnnn	120
nnnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn	180
nngcccgccg cgggcgtctc cacccgcctc tccgcccgg ccccacccccc gccgccccgc	240
gcccacgag cagatcgag cagcaggccg cgaggagcag gcgagcggcc gccagtaggc	300
gcgacgcgtg ccgcggagac gacgccccgg gcgtcacgc cgctgaggcc gaggacagcg	360
atgcgccgcg cgaggcgcgg agcgaggagg agcggcgtgg accgccccag cggccgagga	420
cgggcgagcg ggcggggag gcccgaaggc gaggaggagg tgcgggacgg gggacgaga	480
agaggagaag agagggaaa gggagggggg ggagcggaga agagggaggc	530

<210> 45
<211> 709
<212> DNA
<213> Homo sapien

<400> 45	
acaaaatagt aatgatagcc atgaaagttt taccttattc tgtgagaagt gttcttaaac	60
ttattaagt tctaaactaa ggttagtgc tttttaaag gaaagttgtc ccaggattca	120
tcctaaagaa agaaaaagtt aattcaactg atccaccaat ggaatttagat gggtagagtt	180
gggttcttga gtttaccac cacttagttc ccgctgaatt ttgtacttc ctgtgtttgc	240

36

atcctctgtt cctattctgc ccttgctctg tgtcatctca gtcatttgac ttagaaaagtg	300
cccttcaaaa ggaccctgtt cactgctgca cttttcaatg aattaaaatt tatttctgtt	360
ctagctggga acacaaacaa caactcaact acaaaaatcac gctctgtggg cagtatccct	420
tgcgccctta gcctttcccc cgggtgtcac tttgtcttcg cccccccatt cccccccact	480
ctccccacact ctccctcttc ccatcacttc cttccctctc tccccgtctc gtcggggcc	540
cgtcagcgcg cgtcgcgcgc gcgccgtgcg gtcgcctcg cegtgtctcc ctctctccg	600
ccgcgtcccc gccgcgcgcg gtctgcccgt ccctcgtctt cccgtccccct cctccgccccg	660
ccgcctcccc ccgcgggtct gccactcgct ccctagtgcg cgegwgcccc	709

<210> 46
<211> 1808
<212> DNA
<213> *Homo sapien*

```
<220>
<221> misc_feature
<222> (153)..(153)
<223> a, c, g or t
```

<400> 46
tcataagagt gaaatagtca gctgctgacg gcaccctcagc cacgccacty ttactcagtt 60
cagtggttgt gcttgcgtgg taggatgtgg tgcagccctc tctacgctct tctattttg 120
gtatatttgc tatttaacct tcaaataagct tcnaattctt tttttcttgg actggcttca 180
ttctgaattt gtgctaaaat aatcttcat aaagagacct cagtttatacg cgtaacagac 240
tacacaatgc actgatgttt tcataatgtt taagggaccc actgcaagaa gggtgctgcc 300
tccttttaat tgtatttcatt tagattttga ttttccatgt taagaaggtag aggtccatgt 360
tggtgccctt cagagtagag aaccatgtaa acattaggaa tgaacagagg ccttaggaat 420
gaatagagag tttgccttat acaatttcct gttacaaagc tctccctctc atgcaaagta 480
gggaacacct tttgagcatc tttgaatttg acaaatggtg ctgttgcaaa cactttttt 540
ttgagatgaa gtctcgccgt tgtcacccgg gctggagtgc agtggcgtga tctcggtca 600
ctgcaacttc caccttcctgg gttccagcag ttctcctgcc tcagcctccc aagtagctga 660
gattacagggc gcctgccacc ccacctggct gattttgcataattttagtag agacggggtt 720
tcaccatgtt ggccaggctg attaactcct gacccatggc gatccacccct tctcggtctc 780
ccaaagtgc gggattacgg gtgtgagcca ccgtgccccgg cctgcacaaaca cattttaatt 840
gacaacacta gggctgttgt acaaaaatagt aatgatagcc atggaaagttt taccttattc 900

37

tgtgagaagt gttcttaaac ttatataagt tctaaactaa ggtttagtgc ttttttaaag	960
gaaaagggtgtc ccaggattca tcctaaagaa agcaaaagtt aattcaactg atccaccaat	1020
ggaatttagat gggtagagtt gggttcttga gttttaccac cacttagttc ccactgaatt	1080
ttgttaacttc ctgtgtttgc atcctctgtt cctattctgc ctttgctctg tgtcatctca	1140
gtcatttgac ttagaaaagtg cccttcaaaa ggaccctgtt cactgctgca cttttcaatg	1200
aattaaaatt tatttctgtt ctagtggaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1260
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1320
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa actgagaaga ggggtgccg	1380
tgcttgtcct tctccccacg ggccggcgca gcgcgtgcac cacccccgtg gtgttaagtt	1440
aaaagggggc agcggggcccg ctcaggcggg tgtatataag agagagagag agggggcggct	1500
tacacacaaa atagatctgg cggcagaagg aggcaataa aaaagttgtt ttcagaagtc	1560
ctcatgatac ttgggctgaa gaagacaaga acatccttt cagaatgcgg atgttagagat	1620
aatatcaatc gaaggagcca caccacccta agtagaaaat tagtcagggt cctcagtc	1680
tattgagcag taaaaatatt caatgattca gaagtcgtta cggatctaca acagcaagca	1740
tgtatgttact tcctgcccg gaagactgag actttgctgc tcgagtatct ataagacaaa	1800
taatatcg	1808

<210> 47
<211> 760
<212> DNA
<213> Homo sapien

<400> 47 aatgctgctc gagccgcgcg ttatgtatg gatgccgcg ggcaggtact gggtcccag	60
cgtgggtgggt atttgcacca ctgggtggcc agctcagcag ccccccacct ctctttattc	120
tctccaaagc tggctttct gactatcatt gtggtaggg gaggacagat gctaaagggtg	180
gaagctgacc tggagaaaaga gacacacggg gtgactgtgg caaaggacag ctggaaaaga	240
aactctatca cttcttcatt ggcaaccaca aggcacccga ggccatggca ctcccagagg	300
ctgtgcgcag tagccaagcc tctcaacctc ttctggccct gcgtcctgca gcgaagtctc	360
tgtctgttact cttcgatgag gtgctaaaa atgctacccg gggtggtgg	420
gtctggctt cagtctggcc cagttcagag aaagttgcag agatcagggg ccaaggatgt	480
catagccccca gttgtcctc agggcccaa tcctagggca ggggtgtcat ggaagcaaga	540
actatggaaa cctagctcca gtctgcaggc tctgagcccc tagttcctca ctccagcggg	600

38

gctccctcac tgcacagaac ccaccccttc tgtgtggca ctgctgacca cacagatgac	660
ccagacccaa agagcctggc agaagctctg tgcgttggag ctggctccg tcctccggc	720
tggttcaggg ggatcaggaa ggctctttc acctgtggct	760

<210> 48
<211> 4940
<212> DNA
<213> Homo sapien

<400> 48	
tgaagtttagagccggc cgctgcaggc cagaagggtgg gagccagcgg gggcatcgcc	60
gccccggccc ctctaagtgc cggggcccaa gtcaccgcg agccgcctgc aagcagcggc	120
gcctcggccc tcgacactgctg cgcggccct gtgtggagc cgtccctcccg cggcgcccc	180
cgggaccggg gacccaagcc aatcgaaagc tccaaaccatg gccatggggc tcttcccgct	240
gtgtctggtg gtgggtacgg ccatcatcaa ccacccgctg ctgttcccgc gggagaacgc	300
cacagtcccc gagaacgagg aggagatcat cgcggccacc aggagaagct	360
gcagctggag cagttgcgcc tggaggagga ggtggctcgg ctggcgcccg aaaaggaggc	420
actggagcag gtggcgagg aggccaggca gcagaacgag acacgcgtgg cttggacact	480
ctggagcacc ctctgcataa tcotcttcct gatgatcgag gtgtggcgcc aggaccacca	540
ggagggggccc tcacactgagt gcctggccgg tgaggaggat gagctgcctg ggctgggggg	600
cgcccccttg cagggcctca ccctgccccaa caaggccacg cttggccact tttatgagcg	660
ctgcattccgg gggccacgg ccatgcacgc ccttacccgg gagttcctgg aaggcttcgt	720
ggatgacttg ctgaaagccc tgaggagct ctgcaacccgg gacaccgaca tggaggtgg	780
ggacttcatt ggcgtggaca gcatgtacga gaactggcag gtggacaggc cactgctgt	840
ccaccttttc gtgccttca caccggccga cccttacccgc ttccacccag agctctggtg	900
ctccggccgc tcagtgcacc tggatcgcca gggctacggc cagattaagg tggcccgcc	960
cgtatggggac acattgagct gcatctgcgg caagaccaag ctcggggaaag acatgctgt	1020
tctcctgcac ggcaggaaaca gcatggcgcc tccctgcggc gacatggaga acctgctgt	1080
tgccacagat tccctgtacc tggacacgat gcaggtcatg aagtggttcc agacggccct	1140
caccagagcc tggaaaggca tcgcccacaa gtacgagttc gacctggcct ttggccagct	1200
ggacagcccc gggtccctga agatcaagtt ccgttcaggg aagttcatgc cttcaacct	1260
gattcctgtg atccagtgtg atgactcgga cctgtacttt gtctcccacc ttcccaggga	1320
gccctctgag ggcaccccaag cttccagcac agactggctc ctgtcccttg ctgtctatga	1380

gcgacacttc	ctcaggacga	cactaaaggc	actgccc gag	ggcgccctgcc	acctcagctg	1440
cctgcagata	gcatccttcc	tgctctccaa	gcagagccgc	ctgaccggtc	ccagcgggct	1500
cagcagctac	cacctgaaga	cggccctact	gcacccctta	ctccctccggc	aggccgcccga	1560
ctggaaggcg	gggcagctgg	acgctcgtct	gcacgagttg	ctgtgcttcc	tggagaagag	1620
cttgctccag	aagaagctcc	accacttctt	catcggaac	cgcaagggtgc	ctgaggccat	1680
gggactccct	gaggccgtgc	tcagggccga	gcccctcaac	ctcttccggc	ccttcgtcct	1740
gcagcgaagc	ctttaccgta	agacactgga	ctccttctat	gagatgctca	agaatgcccc	1800
agcgctcatt	agcgagtatt	ccctacatgt	cccctcagac	cagcctaccc	caaaaagctg	1860
acgtctttta	cagaatgtgg	gatcctcgag	ctaagatgag	ggcatccctc	acgttcacac	1920
ccctggtggc	atctgccagc	cctgttctgg	ggacaaggcg	ggcttctgtg	ggagccatgc	1980
tcagcctgcc	aggaagccaa	gcccctacagt	gcagaggaaa	cagaatttca	acgggaagct	2040
ggtttgttcc	ataccattgg	gatctgctgg	taaagctgtt	atttgggttt	agggactgat	2100
cccttgcagt	ttacttctgg	atcaccatga	atggccaaga	tgggtggcaga	acacgctgtg	2160
gaccctgagt	tagagacaat	gcaaatgttg	gattgggtgt	aattttttt	aatcccaga	2220
tccagtcgt	acttgaatat	gagcagagga	tctacaagaa	tgctgacagg	gaaccgtgtt	2280
aagacccagc	acccctattc	ccaggagctt	ctggcctgac	catctgcagc	caaagcacta	2340
acagggacag	atatgggaat	gtccaccttt	gatccgcac	ctgcacaata	gtggtcccac	2400
catggctgcc	acttttttat	actatttgg	gaaaagacct	tgtataaatt	cgaggcccga	2460
gtgactaacg	tctctgtcac	acgaaatgg	gtacttggtg	gcatagagaa	acacaattag	2520
ccactttttc	agctacactt	ctcaactcagc	tgcaccctac	acttctca	caggtgcacc	2580
cccttctgct	gtccttccc	caacgtactg	ggtcccagac	gtgggtggta	tttgcacac	2640
tgggtgccag	ctcagcagcc	ccccacctct	ctttattctc	tccaaagctg	gtcttctga	2700
ctatcattgt	ggtaggggga	ggacagatgc	taaaggtgga	agctgacctg	gagaaagaga	2760
cacacggggt	gactgtggca	aaggacagct	ggaaaagaaaa	ctctatca	tcttcattgg	2820
caaccacaag	gcacccctgagg	ccatggca	cccagaggt	gtgcgcagag	ccaaggctot	2880
caaccccttc	tggccctgcg	tcctgcagcg	aagtctctgc	tgtaagacag	tagactcctt	2940
cgatgagg	ctcaaaaatg	ctacccgggg	tgggtggtg	tggcttgcag	tctggcccag	3000
ttcagagaaa	gttgcagaga	tcaggggcca	aggatgtcat	agcccaggt	tgtcctcagg	3060
gtcccaatcc	tagggcaggg	tgtgcatgga	agcaagaact	atggaaacct	agctccagtc	3120
tgcaggctct	gagccctag	ttcctca	cagcggggct	ccctca	tc acagaaccca	3180

ccccttctgt	gtgggcactg	ctgaccacac	agatgaccca	gacccaaaga	gcctggcaga	3240
agctctgtgg	ttggagctgg	gctccgtctc	caggtctggt	tcagggggat	caggaaggct	3300
cttttccacc	tgtggcttca	ctggcccttt	gagatttctt	atctcaccgt	tacttcaggta	3360
acccttgcag	ggggccaggg	agtcaagaat	ataccgtgtt	cctccagggt	ttaagccggc	3420
catgccttcc	cgagagcata	accaacttga	caggggtgcc	cagttacccc	acaaactgaa	3480
ggaaggagat	cttccccca	tccccaggag	tgctctcaac	cagcctcaga	aagcttgaga	3540
agatggaccc	tttgcacc	agggttaatt	cctgggtgggg	cagctcggt	gtgatcaggg	3600
caaccaaacc	tataggaagc	cttccagtgt	gagctggaat	tagactgaac	atgtgcttgg	3660
gcctgcctct	ccctagacgc	agttgcgggg	cactccaggg	aatgaaccag	ctcaagtgtg	3720
tccctaaca	cagcctggag	ctaccccaa	tccctcacag	cctgaccctc	ctcattccat	3780
cagatgcatt	tgtagaatcg	gggcaaattt	ccttattttat	ttatggccca	tgcctttccc	3840
cctcttcatc	ctgatcccgt	tttgctttga	agagacccca	gtaacaaaaa	aacagcctcc	3900
agaagccaaa	accatgcctg	gatctccat	agcttctctt	ttgcttccag	gagaaagttc	3960
actgaaaaaa	aaatatcttc	tggcttcttgc	tgtgtacaga	gacaacagaa	ctcgggtgggg	4020
aaacggaaat	cttttctgca	ccaaagctgc	ttctaaagca	gaaagcagtg	gggctcttgg	4080
tgtttcatgc	tgccttattt	atattaaagg	aagaattaaa	tcttgoaagg	agtaaaaaatg	4140
gtcactgttt	ggttttaaa	cttcagggaaa	tctgtgaggc	tcccaggca	gagttggggaa	4200
caggggggtg	gatttccat	tgacaaagca	gaagcttca	ctccctttt	attcttacac	4260
ttcaggaga	ctttaaaaaa	taacaaaaca	gaacatttct	accctgtctt	tgaggcaact	4320
tgtgtgctgc	ccgcagggt	ccagaaagg	ccttggaaag	ctggctgttag	ggtggattcc	4380
agcctaagac	cttatttcac	agagctaatg	tcagcgagaa	atataggagc	tggaactaac	4440
aggaagcttt	tgggtttaa	agaaagagat	tgtattttaa	atagaggatt	ttgagtcctc	4500
tagggactt	tggccttcc	actaaggaca	accctgcct	ctttcccccag	agtctcttcc	4560
ccaaggatgc	ttgactttcc	ccagcaactg	ctcacttgct	ttgcaaaata	acaagggtga	4620
aatgaataga	gttggcccct	aggccaagag	gctggttatg	ttggggaaagg	gccttatatc	4680
ctcaaaagct	ctagccccctc	tgcattgcctg	gctgaagcac	agccccgcgt	tgagaacctg	4740
gggggtggagc	tctgggtcat	catcaagggt	gtcatccgaa	tcacccagac	aacctggtcc	4800
attgccccga	ccccgccttg	aacctacatg	gtgctcagaa	tccagtcgg	agtggtcagg	4860
ctaggctcga	tttttaaaga	tttcccccaa	gtgtctgatg	tacccctagc	tgaggaagag	4920

ctcagttta	tggtaccgac	4940				
<210>	49					
<211>	782					
<212>	DNA					
<213>	Homo sapien					
<400>	49					
accattctga	acgatgttaa	agcaagtgtg	gtttatttat	ggcatgaacc	atgtaacttg	60
aaatatgaac	ttacaaggag	gggcactcat	taggtAACAA	gttcttacac	caaacttcot	120
tgatgaaata	agccaaaata	atcctaaaat	tcattaaaaa	gaacttgata	aaagactcaa	180
ataaaatgtta	gaaagagccc	ataatTTAG	gactcctata	aaattctcc	tgTTTgttaa	240
tgctattaaa	actcagattc	aaggaaata	ccagcttcca	cttgagtcac	tttgaatAG	300
ttaattcaac	agcaccatgt	tagaaatata	ttggcagCCA	agactctgaa	ctctgcagaa	360
acatttgttt	cacccagact	tcaaactcta	gccctgacta	tgatgcccct	gtgtgcattt	420
acaataaaaga	ctccaaacgga	gggagcctgt	tggTgttaaa	ttgtttacat	ttctttatac	480
aaataatgtg	cttcagtgC	cttagttaca	gctcccttc	tgtttctgt	tccaaaggga	540
ttctgttagta	tgttaggtgt	ttttcttagg	taaagtctct	tattgtact	gaaaggaa	600
tggTctctaa	acactggtca	ctgtagcagg	taaacactac	tctaacgtgg	gagaaatgag	660
cctccatgct	gaggtagggg	gtgccctaaa	gcctgttatt	tatgtgtga	aaacgaaatg	720
ggTTTgctac	ctgataagct	gggggatcca	tggcctagct	gttcctgggt	aatgtttcg	780
ca						782
<210>	50					
<211>	2675					
<212>	DNA					
<213>	Homo sapien					
<400>	50					
ggTTTatcct	aaattactca	accCCTTgta	gccttgacaa	atTTTACCTT	aaaaccaaaa	60
tgaaacacaa	aaattaatcc	ttaataatga	tagcaagtga	tctttttttt	tagttttagc	120
ctcctttttt	caatagtaat	atTTAAACCC	actcttgacc	aattgtttgc	ccaaatattc	180
ttgtcatttG	gagtcagtgg	aaaatccagc	acaccaagca	ccagtcttct	tctgaggcaa	240
aagaaaaagtG	ttgtcatttt	cactctgttg	gagctgcaca	cttttttct	ttttttttt	300
ttttttttgt	cgtgtaagaa	ggatgctgg	cagagctgca	gaaaatATGA	ggcaattaaa	360
agtcttttagc	tgttagcaaa	cctgTTtagtt	ttacttctgc	attgaaccag	cctcagaagc	420
tacttactgc	tttatgtact	cttgggcat	taatgccttc	tctgtaatta	tatctcgTT	480

ttgcttgaca	gtgacccatgc	cagtaattgc	atcggtgcatt	gccatgaaag	gtaaacacat	540
tgtgaactga	acttaccaag	cagattctgt	aagaaagcgc	tggtgaggc	tgaacactgt	600
tgacacatca	tttttattgg	aagagtatta	actgggtgcct	cttctgaaac	acaccaaccc	660
atattcctct	gctcccccaa	agctgtttct	gatcctgctg	ggagcaacta	actagttatt	720
atgcacatct	gctccagacc	cagctctta	acttcacggt	tttacagctt	gtttttctt	780
tttctttct	tttcttttt	tttttaaaaa	aagcaccttt	tttttgtt	tccccttaat	840
aaaagaggtt	tctaatttat	gtttctctaa	gatttccttt	ggttgtattt	agaaacacaa	900
atagttttat	aatcaggatt	gcatttgc	tggtaaaag	aggagagctg	tgctttctac	960
ccaaagttt	ttggtaatgg	agccggctcg	cccttcctac	aaactcaaga	ggctcattgt	1020
tcaagggtgt	acaacattna	attgcattgtc	ctctaacgct	ttgaaacctt	tagagggaaag	1080
atcctcattt	tttacaattt	tgttcctttt	catcatagaa	aacatgttt	agataaaaata	1140
caaactttac	ctacccaaa	ttcataaaagt	acattttagt	ctgtatagca	ctaaaactta	1200
gagatacaga	cactgtactt	acttttaag	aatttagagac	agtaactcca	aaaataattt	1260
tccttttttc	tttctttttt	ttttttaca	ataaggctct	tgaaaattgt	cattacttgt	1320
gttttcctat	acattcatct	gtgtgaaagc	ctttttcttc	tttgatttaa	aaaaattata	1380
cagttaatgg	tttagaactt	agaactactt	agaattaatg	ctaaagtgtc	aggaagaaat	1440
taatttagct	tcaataattt	tgactggcct	caggaattct	cccttcacca	cctgcccacc	1500
tcacctcacc	tcacctcacc	gcacccgacc	gcacccgacc	gcacccgacc	agagccagag	1560
cagctgcttg	tctgcagcag	gacacggttc	ctacatacgt	ttcagttctt	tcatggtaag	1620
ctcaatggac	tttgaattgt	ttacagtgt	gtatgtccaa	ttgttaaatg	taccattctg	1680
aacgatgtta	aagcaagtgt	ggtttattta	tggcatgaac	catgttaactt	gaaatatgaa	1740
cttacaagga	ggggcactca	ttaggtaca	agttcttaca	ccaaacttcc	ttgatgaaat	1800
aagccaaaat	aatcctaaaa	ttcattagaa	gaacttgata	aaagactcaa	ataaatgtta	1860
gaaagagccc	gtattttag	gactcctata	aaattcttcc	ttgtttgtta	atgctttaaa	1920
aactcagatt	caagggaaat	accagcttcc	acttgagtca	ctttgaaata	gttaattcaa	1980
cagcaccatg	ttagaaatat	attggcagcc	aagactctga	actctgcaga	aacatttttt	2040
tcacccagac	ttcaaactct	agccctgact	atgatgcccc	tgtgtgcatt	tacaataaag	2100
actccaacgg	agggagccgt	ttggtgtaa	attgtttaca	tttctttata	caaataatgt	2160
gcttcagtg	ccttagttac	agctccctt	ctgtttctt	ttccaaggat	tctgttagtat	2220

43

gtatgtgttt tcttaggtaa agtctcttt tgctactgaa agggaaatgg tctctaaaca	2280
ctggtcactg tagcaggtaa acactactct aacgtggaga aatgagcttc atgctgaggt	2340
agtggttgcc tttagagctgt tatttatgct gtagaaaacg aaaatggtt tgctacctga	2400
taagcttcag attagatata gccctaaagt tatccctgtac ctgcattaaa ttttcatttt	2460
agaagagaat cttgggtttg gtaattcatt ttttttaag atcattatgt gcaaaacacc	2520
aagtttaaaa aataaactcac agaatggcct tagtttcaa tgtctgatgg tatatttg	2580
agttgtgtta tctgtatat acatcccaga ataaaggagt gaattaaata gtttaaaaaa	2640
aaaaaaaaaaa aaaaaaqatc tttaattaaq cqgtc	2675

```
<210> 51  
<211> 168  
<212> DNA  
<213> Homo sapien
```

<400> 51
acaacacaac ctgttaggta gcaggctggg tattacctga gtaaaaagtc cctattcttt 60
ccatcttcc atgctattta aaagcatgtg gtgatcccttc aataaattaa agatataaca 120
aattatttqa tgccattaaqq cggcctggat caccaattct aagtcttt 168

```
<210> 52
<211> 1139
<212> DNA
<213> Homo sapien
```

```
<220>
<221> misc_feature
<222> (291)..(576)
<223> a, c, q or t
```

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnntaac	catatttttt ccaattatta	600
aaaaatctt ttcccccta aggaatgtgt	ttctaaggtc accatgtttt tagtgcttca	660
gttgacttg tctacatcta aagttaactc	tttaaggctt acatttatga ttataattct	720
ttccatcgag ggatttagtc tccattattt	tcatgtttct tgatttttt cattataactt	780
agttcttctt ttgtcttaggt tttatatata	ccttaattaa ttcttcttg gctgttttat	840
atctatgttg ctgtcagcat gggaaatctct	attattagaa agctattaac tttaaaata	900
tgtatcttg gtgatttctt tgccctaaca	gtttagatgg cctgttgctc ttctaaatct	960
taaatcatag gtattctatt ttgggttgtt	tgttccatta cactgtcata gtttttgata	1020
ttttcattac tattgaggta ctgtggttt	ccaatgttct gttggtaacga atactttcca	1080
tctgttgggg agctcaaact gggaccaggc	acgttcgtga tgttcgcacc ccccacccc	1139

<210> 53
<211> 681
<212> DNA
<213> Homo sapien

<400> 53		
ggtacggggga gaacatatca aaaaggggaa ggatggattc	ccttgatgcc caggattaca	60
gtggcaccta aagcacattt tttttttct gagccaacca	gctaaaggat cactgcagct	120
aaatacagat agagaagcaa caaagccagg caaataccca	tcagagacag tgacaagagc	180
agctgggggc acgggggagg cggaaggaag agaaagaagg	ggaggagcct ccagagtccc	240
agcccccaacc ccctctgcca tgggctaccc ttgctccca	aaaatcccgt tggggttgaa	300
gtgaggagga ctgcaggctg gggtaaaaat acacaaggac	agcccaacaa aatacaacaa	360
ggactagcat cagtctcccc cttaactccga ccccaagaa	aaataccctt attggtgact	420
agtattttatg aaaatctgta aggagactat tctatgttagt	ggctctaat cccatataca	480
cagcagctgc ctgtgtgggg aacctttca aatcagtat	tgccggaaaca aacagtattt	540
tcagcttctt acgggtcccc tgcaggcttt taccaagacc	ttggtaagt cccagtcaca	600
tttactttct gtcttcatct agaaaagggt gaggaaagag	ggagggacaa ggtgctccag	660
gtgctagtaa gctgggtatc c		681

<210> 54
<211> 3191
<212> DNA
<213> Homo sapien

<400> 54

45

gtgctgccga	gtagtcccg	aagcgaagca	gcgatggcgg	agagtccgac	tgaggaggcg	60
gcaacggcgg	gcgcgggggc	ggcgcccccc	ggggcgagca	gcgttgctgg	tgttgtggc	120
gttagcggca	gcggcgccgg	gttcggcccg	ccttcctgc	cggatgtgtg	ggcgccggcg	180
gcggcagcgg	gctcccggcc	tcagccgctg	cccacggggc	cgcgctgctt	agccactggg	240
accccacgct	cagctccgac	tgggacggcg	agcgcaccgc	gccgcagtgt	ctactccgga	300
tcaagcggga	tatcatgtcc	attataagg	agcctccctcc	aggaatgttc	gttgtacctg	360
atactgtta	catgactaag	attcatgcat	tgatcacagg	cccatttgac	actccttatg	420
aagggggttt	cttcctgttc	gtgtttcggt	gtccgcccga	ctatccatc	cacccacctc	480
gggtcaaact	gatgacaacg	ggcaataaca	cagtgagggtt	taaccccaac	ttctaccgca	540
atgggaaagt	ctgcttgagt	attctaggta	catggactgg	acctgcctgg	agcccagccc	600
agagcatctc	ctcagtgctc	atctctatcc	agtccctgat	gactgagaac	ccctatcaca	660
atgagcccg	cttgaacag	gagagacatc	caggagacag	caaaaactat	aatgaatgta	720
tccggcacga	gaccatcaga	gttcagtc	gtgacatgat	ggaaggaaag	tgtccctgtc	780
ctgaacccct	acgaggggtg	atggagaagt	cctttctgga	gtattacgac	ttctacgagg	840
tggcctgcaa	agatcgctg	caccccaag	gccaaactat	gcaggaccct	tttggagaga	900
agcggggcca	ctttgactac	cagtcctct	tgatgcgcct	gggactgata	cgtcagaaag	960
tgctggagag	gctccataat	gagaatgcag	aaatggactc	tgatagcagt	tcatctggga	1020
cagagacaga	cottcatggg	agcctgaggg	tttagaccct	gctccatct	cccccccccc	1080
cactcaagag	tcccagcaga	atccctccc	cccacccag	ggatggagag	gcactgtgt	1140
tctccctcca	gactcgaagt	catcctgcaa	gatggcaaga	accaagcaag	ctccgatccc	1200
aggggtgtgg	agtggggcc	tgttcccggt	ctgacctct	tggcaactgga	gcatctgggg	1260
cttcgttcat	ccattcatcc	cgtatcaggg	ggccaaggta	ccttacagg	agcacctaga	1320
gcgagggcct	ttggcaaaaa	caaaacaacc	aacacacctc	tccacagggc	cagtcctta	1380
gggataagtg	gaagatggaa	attgcaattc	caagagggag	tgtgccccaa	tgatttatgg	1440
ggataacctgg	aaggagctt	gggggtgggg	ctgtctgtga	cacttaagca	gtctgggtgg	1500
ttgtcttattt	gtctgtcttc	agtcttgaag	cagggcttcc	caatgccctt	ttcctccctg	1560
cttcccttcc	cccatttattt	cccacaggcc	agcataattt	tgttttccct	aatttatagt	1620
cactgttcta	gacagaccaa	agagaaggaa	cagtggtgga	gtctaggctg	ctgatcagta	1680
agctttacct	agcacctgag	cacccctc	ccctccctc	tttccctcacc	cttttctaga	1740
tgtaagacag	aaagtaaatg	tgactggac	ttaaccaagg	tcttgtaaa	gcctgcattgg	1800

caccgttaaga agctgaaaat actgtttgtt cccgcaatca ctgatttcaa aagttccaa	1860
cacaggcage tgctgttat atgggattag agccactaca tagaatagtc tcttacagat	1920
tttcataaaat actagtcaca ataagggtat ttttcttggg ggtggagtaa gggggagact	1980
gatgctagtc cttgttat ttttcttggc tgtccttgc tatattcacc ccagcctgta	2040
gtcctcctca cttcaacccc aggatttgtt gggagcaag ggttagccat ggcagagggg	2100
gttggggctg ggactctgga ggctcctccc cttcttctc ttccctctgc ctccccctg	2160
cccccagctg ctcttgcac tgtctctgat gggatttgc ctggcttgc tgcttctcta	2220
tatgtattta gctgcagtga tcctttagct ggttggctca gaaaaaaaaa aatgtgtttt	2280
aggtgccctg taatcctggg catcaaggga atccatcctt ccccttttg atatgttctc	2340
cccgtaatcc cagatttatt gttatggctc ccagtggta ttggcgattc ttgtgatgca	2400
gggcctcagt cagtgtccag ccatgcataa gggagaggat agtgtgtacc tgccctgccc	2460
tctgctatga aggtctctgc cttgtggatc atgggactcc cttggagga tctgtgcaaa	2520
ggggggctgg gcacaaagga gaatgtccta tttgggaggg caggaagcaa aggaactgga	2580
cagggattgg tgggcttggg gaacggaagt ttatcttgg tacccttgc gaggctgggt	2640
ctcttcacat gaagatcgaa aagggaccct gcttccaatt tccctcttcc attcctcgag	2700
ctactccagg gctcagaaga atgtcttgg tctgtggatc cagttttgc tgcgtatccat	2760
ttaagtgttc ccacttcaa gtgacaatcc tctccttggc cctgccatag ggcagagcat	2820
gtctggcata gcagcctgac ttttatgccc taatcttgc ttgaggaaat atatgcacag	2880
gagtcaaaga gatgtctta tatctgactg ttataatga agttttgcgt tctgttgggt	2940
tccctttgg ctgccatcaa cgctgttttgc cacgcccac gtcgtggggta ttggagggt	3000
tggttcagca cgcattggtc cttgttcacc ccctcctagg ccgttgcggg gcaacgacgcc	3060
cgattgttgg accccttctc tgctcgccggcg gctggcgca cgccttctcg agggccacgc	3120
cccgcccttgg gcccgcctt ggggctcagg aggccctctg gtgcgcgtct ccgggcgcct	3180
cccgccaccgg t	3191

<210> 55
<211> 385
<212> DNA
<213> Homo sapien

<400> 55	
actgctaacc cctgccaggc ccagctgccca cacccttctt gggagaagca tggcctacag	60
aatgaagagg gggaccagga acccctgtgg gagaggctt gacctgaagc agtgcacact	120

ctggctcctc	ctgccttggc	tgactgggtt	cctggaccat	gtgcatttca	ctgggccatg	180
ggatctacat	ctccttgc	ccccagctgg	tctgatccct	gccaggccc	cttccttct	240
gctcatggtc	ttcaggtggc	ctgatcatgg	aaagtaagga	gttaggcatt	accttctggg	300
agtgaaccct	gactccatcc	ccctattgcc	accctaacc	atcatgcaaa	cttctccctc	360
cctgggtaa	ttcaacagtt	aaaag				385

<210> 56
<211> 1977
<212> DNA
<213> Homo sapien

<400> 56	ttcacccggc	cctcgctgt	cacccata	gagaaggggc	tgcctgcagg	aagaaagcac	60
	ggcccacgccc	cctccagtca	catactgcct	gtggccctg	gtgtatgt	gggggctgcc	120
	gaggcactgc	tgcactcacc	aggcacgtgc	tggtcggcaa	acttgatgtt	gatgtatgt	180
	ttgcctggct	ctgtggggca	gtaggtcacc	tggcgggaca	ggtgcctggc	tgctacaac	240
	catgcaatga	gccatgcccc	gccctggaca	cccccgccca	gcatctggc	ctccacgctt	300
	gggaccgtgg	gagcggccaa	cagagctatg	tctggagaca	tatgataaac	cacccatcaggc	360
	cccaccaagc	cgccgcaccc	gtagaccaga	ccccaaaggac	cctggccacc	atggggccaga	420
	gagcattacc	ttcatctctg	gctctgtga	gccggccctt	gagtccccc	cctgtgcct	480
	gctctggcga	ccctgggtgt	gggagtggtg	ccgggctgcc	ttctgcttcc	gcccgtgcc	540
	gggattgcct	ccagcgctgt	ggaggcctgt	gtgcggggat	gcagcccc	cctgtctact	600
	gaggactccc	actgagggga	ctgctgaagc	caactggtgc	caaggagcac	aatggagtgc	660
	cccccagccc	tgatctgca	ccccccagac	gggcgggatg	gccaggcggg	ctgcaagtca	720
	accatggca	gcagcttcag	ctaccccgat	gttaagctca	aaggcatccc	tgtgtatccc	780
	tacccgagag	gccacccccc	cagccctga	tgccggactcc	tgctgcaagg	agccactggc	840
	cgatccccca	cccatgcgag	cacagcctgc	ccagcacctt	tgccagtagt	cctcggtgg	900
	ccgaggagta	ctatttttc	catgagtcgg	acctggacct	gccggagatg	ggcagtggct	960
	ccatgtcgag	ccgagaaatt	gatgtgctca	tcttcaagaa	gctgacagag	gctgttcagc	1020
	gtacaccaga	tcgatgagct	ggccaagtgc	acatcagaca	ctgtgttcc	ggagaagacc	1080
	agtaagatct	cggaacctat	cagcagcatc	acgcaggact	accacctgga	tgagcaggat	1140
	gctgaggggcc	gcctggta	cgccatcatt	cgcattagta	cccggaaagag	ccgtgctcgc	1200
	ccacagac	cgagggtcg	ttcaactcgg	gctgctgcc	caaccgctgc	tgcccctgac	1260

agtggccatg agaccatggt gggctcaggt ctcagccagg atgagctgac agtgcagatc 1320
 tcccaggaga cgactgcaga tgccatgcc cggaagctga ggccttatgg agctccaggg 1380
 taccaggcaa gccatgactc atccttccag ggcaccgaca cagactcgac gggggcaccc 1440
 ttgctccagg tgtactgcta acccctgcca ggcccagctg ccacaccctt tctgggagaa 1500
 gcatggccta cagaatgaag agggggacca ggaaccctg tggagagggc ttagacctga 1560
 agcagtgccc actctggctc ctccctgcctt ggctgactgg gttcctggac catgtgcatt 1620
 tcactgggcc atgggatcta catctccttg catccccagc tggctctgatc cctgccaggg 1680
 ccccttcctt cctgctcatg gtcttcaggt ggctgatca tggaaaagtaa ggagttaggc 1740
 attaccttctt gggagtgaac cctgactcca tccccctatt gccaccctaa ccaatcatgc 1800
 aaacttctcc ctccctgggg taattcaaca gttaaaagaa gcttatctt aatgtattgt 1860
 attgggggggt gggcagggcc cactctatgt tatgttaagg agttgggtct ggttcttggc 1920
 tgatgttctg tatcttaaca tgaccacagt ttgttaagtac ctcgctcgcg accacgc 1977

<210> 57
 <211> 629
 <212> DNA
 <213> Homo sapien

<400> 57
 tgggtgatct agtctgtcga gcgcgcatgt gatggatagc gtggtcgcgg gcccggaggt 60
 tacatggtgg cctatacaaa agcactccat gtttctgcct gaataacgta cgttgatcgc 120
 ttggttgcct gagcaaatgt ataagggagc tgcttggagg ggaaaggaac acaataaaac 180
 gcctctggag gtatttcaaa gagtagttc tcaaattctt ctgattcagg aagaggatga 240
 cgagagggag agaacgtgga attactaaa gtcatctaac tcattggct tggtaaca 300
 gaaagaattc tggtttgtgg ctgaatctga tttaacagct gccaatagct cattactct 360
 aagatgtata tctaattcaa aactagatgc tccccctcc ctcttttcc cctaaaagct 420
 gggaaacttgt aagtaaatgg cctagtgaaa tagacactgg ctattttaga aaaagggtca 480
 gaaggttagac caggaactat gtatcaagaa gaagtaagt aggctcaagc ccaggccacc 540
 taggctgtgt ttattcagtc cacccaatcc aatgtcaaag ccccaagtgg gccagtgtta 600
 cctttatctt cccattttgc tatttctga 629

<210> 58
 <211> 3535
 <212> DNA
 <213> Homo sapien

<400> 58	
gtgataggca gcttccttc tttcaacag tgataccatc gaaaatcaa ataaatcaa	60
gctgaggttt tgtgctact gaaaggctg tcaacccag aaggccgaca caaaaaaaaaat	120
ggtatgtcaa gatgcaccgt ctttcaaattt ggcctggag agtcaaattt cctggagag	180
ggggcctgcc cttctctgct gtgtccttc ggcttccag tttagctccc aagaccagga	240
cccaactgggg catataaaat ctctgctgta tccttcggc ttccagttt agctcccaag	300
accaggaccc actggggcat ataaaaaaatg caaaaatcaa aatcaaacaa caagttctga	360
gttacttagg aaacagactt cgcatattcaa tcagagaggc cacagagcaa ggtctaaact	420
tctggcttct agacaaattt ctgatagaac attttaaatgt gggaaagtggc ttccccagg	480
cccatccccctt gtttagggat agagttgata tcattttat aggtgccatg tatgcctctg	540
cctgaattttt ttaatttgc ttttgagctt tttagattgc acgagggaga acaaggcctt	600
tgctgttgtt gataggaaag acttaaccta aaattaaacc agcaagaaag cattagtaaa	660
aatctaaacaa tatgaaggc tcttatgagt catttttttcaaaaatgaa aactccagaa	720
acgcacagga acgaaatacc tcccgaaaac atgaagcaat catcgaagac tcactggtaa	780
tatTTTAAAGTATAACAG ATCAAAGCAA AAAGAAGCCA TGTGTAACAA AGAGAAATGT	840
GCATGAAATT TTAAAGGCAG TATTAAGTGC AAGAGGAGTA ACATGAAATA AACATTCTT	900
CACATGGCTA CTGGGAATAT AAATTCGCT CCAGAAAGGC CGTAGCAGTT TGACGATAGG	960
TGGCAAAACC TTAAGATTGT GTACTGGGC CCAGAATTTT TATTCTAGG AATGTATCCT	1020
GAGGAAATTAA TCCGAGATCC CCACAAAACTG CAATGTTAG GAATTGTCCT TATAGCATTT	1080
CATACACAAAG AAAAACAGAG AAAAGCCTGA TCCCTGTCAAG TGGAAAAGGG GTTCAATGAA	1140
TTACGGTGTG TCTGCATGAG GCTTTATGA CATTAAAAAT TGTGAAACAA CGGCCTGGCA	1200
CAGTGGCTCA TGCCTGTAAT CCCAGAACTT TGGGAGGCCA AGGTGGGCGG ATAACCTGAG	1260
GTCAGGAGTT TGAGACTAGC CTGGCCAATA TGGTGAACCC CCGTCTCTAC TAAAAATAACA	1320
AAAATTAGCT GGGCGTGGTG GCAGGCGCCT GTAGTCCCAG CTGCTCGGGA GGCTGAGGCA	1380
GGAGAATCGC TTGAACCCGG GAGGCGGAGG TTCCAGTAAG CCAAGATCGT GCCACTGCAC	1440
TCCAGCCTGG GTGACAAGAG TGAGACTCCG TCTCAAATA AAAAAGGGGG AAAAAGTAA	1500
AACAAAAATA AAGTCTATGC CCATTAAGAC GTCTTCTAAAT TCAGTTGTGA TTGTCTGCTC	1560
CTACTTTAAA AAATATTAA GCTTGATGTT TAATTATTCC CTTTCAGCAA ATTGGATCA	1620
AAAAATTAAA GTATGTGACA AGATCAGGTC ACCTTGAATT TCCACACAACT CTCAAGACAC	1680
TGAATAGCAA AAAAGTAACA TTACACAGTA ATGATTAGGA TATTCCTTA GACTTGTCTG	1740

gatctttggc	cttaaggtaa	catgtaaaag	tagtgaagcc	tttccttca	tggccctgtg	1800
caatgtAACG	gttttctgcc	tcctcttcag	ctggaaAGCgt	tagtggtAGT	atgggcacag	1860
aatatatgtA	cactggcgat	gctgaccatg	cctcccaggt	accctggctc	tgggttcctt	1920
gacctaggGA	acaagattgg	atgaggcaga	tcttgagcc	catgtgacta	tagaatttgc	1980
tgtatgtata	attttacaat	aacaatggat	aggaatttta	cctctttt	tattagtttta	2040
atattattta	atattatgtA	cataagtgtt	cactcgctA	attaaaaaca	ttgagtaaac	2100
caagttttta	tatagactac	ccttgccata	tgatgcttt	tttctctaA	aatatgcagt	2160
ttaaaatcctg	aggaatcaat	gcccagcatt	tcaccacatc	tgaactctgt	gtgggcattc	2220
ttcactcgcc	tacaaggggT	aaacaaggct	accagaactt	gaatttgact	tatagggagc	2280
tacccaggaa	ggggaaagcc	cttggggactt	tttccaaaac	aatcttctat	ttgaactgtt	2340
catcagccaa	agtagtccac	tgaggtgaca	aagctttcag	aaatacaaag	atgggaagat	2400
aaaggtaaca	ctggcccact	tggggctttg	acattggatt	gggtggactg	aataaaacaca	2460
gcctaggtgg	cctgggcttg	agcctcaact	acttctcctt	gatacatagt	tcctggctca	2520
ctttctgacc	ctttttctaa	aatagccagt	gtctatttca	ctaggccatt	tacttacaag	2580
tccccagctt	ttagggaaaa	aagagggagg	ggggagcattc	tagtttgaa	ttagatatac	2640
atcttagaaag	taatgagcta	ttggcagctg	ttaaatcaga	ttcagccaca	aaccagaatt	2700
ctttctgttt	gaacaagacc	aatgagttag	atgactttaa	taattccact	tttctctccc	2760
tctcttctcc	tcttcctgaa	atcagagaga	tgagaaaacta	ctcttgaaa	tacctccaga	2820
ggcgTTTtat	tgtgttcctt	tcccctccaa	gcagctccct	ttatacaatt	ttgctcaggc	2880
aaccaaggac	agagtatcgG	cagaaacatg	gagtgtttt	gtataggcca	cctgtacata	2940
aaagtgtaat	tatTTatTTA	atTTTCCAT	ttgtatcata	ttaaagcttt	gtacagtgtt	3000
ttaagttctg	ttttaaaatt	atTTTGTATT	ttatTTTtat	aacctagtaa	taaaatattc	3060
attccgcatt	caaaaaaaaaa	cacacacaca	acccaaacaa	ccaaaaacaa	acagaaccaa	3120
aagatagaaa	ccaaacacag	caacagacag	acacaagaga	agacgaaaac	aaccacacaa	3180
acagcacaca	caaccgcagc	ggagaaccaa	caaagccaaa	cgcaagacag	cacaacaagg	3240
gacaaaacac	acacgttagca	caaagcagcc	gcagaaccga	acacacatct	aaagacaggc	3300
gacaacaaca	tagcaggccg	tagcaccgac	aaccactaaa	ccataactat	ccagcggaga	3360
tcaGATCACA	gaagccgaca	cagaaagaaa	agcatgtatg	caacgcata	caccgcaggG	3420
cgGataaaaaa	cactcgtagg	cgggaccGCC	gcagaacgat	cgaaggctaa	caaacaagct	3480

51

agtagatcac aagtacgtga ccacgcccctc ttatctataa aggaggaaga gggag	3535
<210> 59	
<211> 348	
<212> DNA	
<213> Homo sapien	
<400> 59	
cgaatgatgc tatatagggc catgggtgca ctgatgcatg gctcgagcgg ccgcagtgtg	60
atggatcgcg gcgaggtaact tctgccatca ttttattcca ttccagcgct ctggcatgca	120
agataatcca tctctaaaat tcaagacttc caaattgaga tgaacgatta tgggcttggg	180
ttggggttta taaccaatcc gatcattgtat cattttgttcc cggctctgg gatcactgct	240
aagcccaatg gtccttctc catcaactgca tcctacaact tccacatctt cttctgttt	300
cttacgggtc tccaggtcct ttcaaatgtt ctcaaactct tcaatgtc	348
<210> 60	
<211> 2497	
<212> DNA	
<213> Homo sapien	
<400> 60	
ttataacccta tgctcgacca cttggagtgt tcaacctcgt tcaccgggt ttatgggt	60
aaaccacgct tgctcgccg tgggttttgg aacgcttgcc ctgtaccata cctatgcgcc	120
cgtggtctat acggaagggt ctaaaacttt tctacggcta atgcggccca caaagtttt	180
tctttgtgtg tttttgttg gatgcctcac agtggtccaa aatatattta tttttaaaaaa	240
cagaaaatca gatcagttt atagagtcaa atttcaaga gacaaaccag agtttggatt	300
ccagcttaga gtgcaagtga agcatcagta atctcatgca gaagatttgt ctctgcagga	360
ggtacattct gcttgactgc aagcactcaa ttctctaaat ctgggttgta cttctgccat	420
cattttatttc cattccagcg ctctggcatg caagataatc catctctaaa attcaagact	480
tccaaattga gatgaacgat tattgggtt ggggtgggt ttataaccaa tccgatcatt	540
gatcattttgt tcccggtct tgggatcaact gctaagccca atggctcctt ctccatcaact	600
gcctcctaca acttccacat ctcccttctg tttcttacgg gtctccaggt ctttcgaat	660
gttctcaaacc tcttcaatgt catcaagctt tagctctagg cgtgttggtt tccgtctcag	720
catactgaag tcaacactaa gggccaaacc cagtgaacta ttagcaattc acaggattat	780
cctcccgctc caaacagatc tttaaatgtgt acgtcattca tttaaacaac acttcttgg	840
ttccagctac agagttaaaa ggtacagtca taatctttt tcaagccggc ctagccccctt	900
cccggaacctt cggctcccccc ccaacgaaac tactgctaa ccaactggac tacacttcccc	960

agactgcttg gagcctctct ctcgcagaa ctcgtttc cgcgagctt tcctggagg	1020
tcttaggagg atgccccta atgccacgac gccatttct actacgactt ccatcatgt	1080
ccggccgct ccggggcgg tgaccctct tggcccacgt cttgtcagtg acgcacttcc	1140
tgcaccaaaa actaaagcac ccgacgactt agttgtccg gtcgtgaaga aaccacacat	1200
ctattatgga agtttggaaag agaaggagag ggagcgtctg gccaaaggag agtctggat	1260
tttggggaaa gacggactta aacggggat cgaagcttga aatattaata taacctctgg	1320
agaagtgttt gaaatttgaag agcatatcag cgagcgacag gcagaagtat tggctgagtt	1380
tgagagaagg aagcgagccc ggcagatcaa tgtttccaca gatgactcag aggtcaaagc	1440
ttgccttaga gccttgggg aacccatcac acttttttgg gagggtcctg ctgaaagaag	1500
agaaagggtta agaaatatcc tctcagttgt cggtaactgat gcctgaaaaa agacaaaaaa	1560
ggatgatgag aagtctaaaaa agtccaaaga agatgtatcag caaacctggt atcatgaagg	1620
accaaatacg ttgaaggtgg caagactatg gattgctaatttgc ccagggcaat	1680
gaaacgcttg gaagaggccc gactccataa ggagattct gagacaacaa ggacctccca	1740
gatgcaagag ctgcacaagt ctctccggc tttgaataat tttgcagtc agattgggaa	1800
tgatcggcct atctcctact gtcactttag tcccaattcc aagatgctgg ccacagcttgc	1860
ttgtgatgaa ccagtggcag atattgaagg ccatacagtg cgtgtggcgc gggtaatgt	1920
gcattcattca ggacgtttcc tggcaccac ctgctatgac cgatgtggc gcttatgggaa	1980
tttggaggct caagaggaga tcctgcatca ggaaggccat agcatgggtg tgtatgacat	2040
tgccctccat caagatggct cttggctgg cactggggaa ctggatgcat ttggatcgagt	2100
ttgggaccta cgcacaggac gttgtatcat gttcttagaa ggccacctga aagaaatcta	2160
tggaaataat ttctccccca atggctatca cattgcaacc ggcagtggc acaacacctg	2220
caaagtgtgg gacctccgac agcggcggtt cgtctacacc atccctgctc atcagaactt	2280
agtgactgggt gtcaagtttgc agcctatcca tggaaacttc ttgcctactg gtgcctatga	2340
taacacagcc aagatcttggc cgacccagg ctggtccccg ctgaagactc tggctggcca	2400
cgaaggcaaa gtatggggcc tagatatttc ttccgatggg cagctcatag ccacttgctc	2460
atatgacagg accttcaagc tggatggc tgaatag	2497

<210> 61
 <211> 604
 <212> DNA
 <213> Homo sapien

<400> 61
catctgatca cgtcgcccgc cctagtctgc ttttgtaat ctccactttg ttcaaccccc 60
acccggcgtc tctccctccc tgogccttcc ctctaaccctt aaagacccag ctacctctac 120
gcaaatggta gctacctctg cgccagggtgaa agttgagttc ggttcacgcg ggacccttt 180
ccctgtggca agctgctgaa ggagacctgc tgttactgct ttagctgctg ttctgcttaa 240
tctcagacag ctggaaggta gtattccgcc ctcgcccagc caccggagta aatgagaatg 300
atgactgact gagaccctga tgggtggtggc ttaggcttaa tctcagacag ctggaaggta 360
gtattccgcc ctcaccaggc caccggagta aatgagaatg atgactgact gagaccctga 420
tgggtggtggc ttaggcaaga tgaacgtctg aaatggaggc ccagggctgc cacgatggct 480
ctgttagtcat cagggaggga gctcctttta tcttgttacc tactccctc ttgtgcccct 540
ttctccctt gatctaagaa ggttgctccg ggatctcgcc atctggcctg cgttcaatca 600
gcag 604

<210> 62
<211> 4733
<212> DNA
<213> Homo sapien
<400> 62
atggagagaa accagaacag aaaagtggaa aattccaaaa accagagcgt ctcttctcct 60
ccaaaggatc acagctccctc accagcaagg gaacaaaact ggatggagaa tgagtttgc 120
gaattgacag aagtaggctt cagaagggtca gtaataacaa actcctccga gctaaaggag 180
catgctctaa cccatcacaa ggaagctaaa aaccccttggaa aaagtgttac cactcctgt 240
gacgaaaaatgtt ctttggggatcc cacacccatgc ctgttagtgc ggggctcctg 300
gtcatcacag ccacatgtgg actccctgc tctgtacctc ccagcctttc tgccaacagc 360
actggcctca cagtgcgttc ctggggattt agtgagatag ctataatgtg gagtcgctgc 420
tgcctgctaa ctcgcccaga cgttcttgcgtt gttcacatt tgaagacgag cactgaggat 480
gaggaaccaa ctgaagaata tgaaaatgtt ggaaatgcag catctaagtgc gccaaaagtgc 540
gaggatccta tccctgaatc taagggttggt gacacatgtg tttgggatag caaggttagag 600
aatcaacaga aaaagccgtt ggaaaacagg atgaaggagg acaaaaaggcag catcaggaa 660
gcaatcagca aagccaaagag tacagcaaataataaagacag aacagggagg tgaggcatct 720
gagaagagct tgcacatgtgg cccacagcat atcacacacc agactatgcc tataggacag 780
agaggcagtgc agcaaggcaaa acgtgtggag aacattaatg gaacccctca ccctgtct 840
cagcagaaaa ccaatgtgt taagaaatataaataatgtg atgaatgtgg gaaatcccttc 900

aaatataatt cccgcottgt tcaacataaa attatgcaca ctggggaaaa gcgctatgaa	960
tgtgatgact gtggagggac tttccggagc agctcgagcc ttcgggtcca caaacggatc	1020
cacactgggg agaagccgta caagtgtgag gaatgtggga aagcctacat gtcctactcc	1080
agccttataa accacaaaag cacccattct ggggagaaga actgtaaatg tgatgaatgt	1140
ggaaaatcct tcaattatag ctctgttctg gaccagcata aaaggatcca cactggggag	1200
aagccctatg aatgtggtga gtgtgggaag gccttcagga acagctctgg gtcagagtc	1260
cacaaaagga tcccacacggg ggagaagccc tatgaatgcg acatctgtgg gaaaaccttc	1320
agtaacagct ctggccttag ggtccataaa aggatccaca caggtgagaa accttacgaa	1380
tgtgatgagt gtgggaaggc cttcattact ttagaaacac ttctcaacca taaaagcatc	1440
cactttggag ataaaccta taaatgtgat gagtgtgaga aatctttaa ttatagctct	1500
cttctcattc agcataaaagt catccacact ggagagaaac cttatgaatg tgatgaatgt	1560
gggaaggctt tcaggaacag ctcaggcctc atagtgcata aaaggatcca cacaggagag	1620
aaaccttaca agtgtgatgt ctgtggaaa gcattcagct atagtcagg cctcgagtc	1680
cataaaagca ttcaccctgg gaagaaagcc catgaatgta aggagtgtgg gaaatcctt	1740
agttataact cactacttct tcaacacaga actattcata ccggagagag accttatgta	1800
tgtgatgtgt gtggggaaaac gttcagaaac aatgcaggcc tcaaagtcca caggaggctc	1860
catactgggg aaaaaccata taagtgtgat gtgtgtggaa aagcctatat ctcacgctct	1920
agccttaaaa atcacaaagg aatccacctt ggggagaagc cctataaatg tagtattgt	1980
gagaaatcct tcaactacag ctctgccctt gaacagcata aaaggattca taccagggaa	2040
aaaccctttg ggtgtgatga gtgtggtaaa gcttcagaa ataattctgg ctttaagta	2100
cataaacgaa tcccacactgg ggaacgcacct tacaaatgtg aagaatgtgg gaaagcatac	2160
atctctctct cgagccttat aaatcataaa agtgtacacc ctggggagaa gcccttaag	2220
tgtgacgagt gtgagaaggc cttcatcaca taccgaaccc ttacaaacca caaaaaagtt	2280
catcttgggg agaagcccta caaatgtgat gtgtgtgaga aatctttaa ttacacatcg	2340
ctccttctc agcacagaag ggtccacact agagagaaac cctatgaatg tgacaggtgt	2400
gagaaggctt tcagaaacaa ctcaagcctt aaagttcata aaagaatcca tactggggag	2460
aggccctatg aatgtgatgt gtgtggaaaa gcctacatct cacactcaag ccttattaac	2520
cataagagta cccaccctgg caagacaccc catabatgtg atgaatgtgg aaaagcttt	2580
ttctcaagca gaactcttat aagccataaa agagtcacatc ttggggagaa acccttcaag	2640

55

tgtgttgagt	gtggaaatc	tttcagttac	agctctctcc	tttctcagca	caagaggatc	2700
cacacagggg	agaaacccta	tgtgtgtgat	aggtgtggga	aggccttcag	gaacagctca	2760
ggcctcacag	tgcataaaaag	gatccacaca	ggtgagaaac	cctatgaatg	tgatgagtgt	2820
gggaaggcat	acatctcaca	ctcaagtctt	atcaatcata	aaagtgtcca	ccagggaaag	2880
cagccctata	atttgtgagtg	tggaaatcc	ttcaattata	gatcagtctt	tgaccagcac	2940
aaaaggatcc	acactggaaa	gaagccatac	cgatgtaatg	agtgtgcaca	tatacccaac	3000
gccaccgcgg	acctcatgaa	agtggaccat	gaagaggagc	cccagctctc	cgagccctac	3060
ctttctaaac	aaaagaagct	catggccaag	atcttggagc	atgtatgtgt	gagctacctg	3120
aagaagatcc	tcggggaaact	ggccatggtg	ctggaccaga	ttgaggcggg	gctggagaag	3180
aggaagctgg	agaacgaggc	actttcccag	tggaaagaat	ttgatgccat	ttccgcacac	3240
ccaaattcct	gttggcagga	taatcagcaa	gtaatacaga	gagctgcttc	cttcaacagc	3300
tgcattcagc	acaaaaccga	gggcccatta	tgtggagaaa	tatccttcag	agaagcatgt	3360
gatctttgtt	ctgccttttgc	ccctttgaag	catatgatct	ttgttcctac	tccctgttcg	3420
tacactccct	cccctttga	aatccttaat	aaaaacctgc	tggttttacg	gctcaggaag	3480
cttctgctga	ttgaacgcag	gccagatggc	gagatccgga	gcaaccttct	tagatcaagg	3540
ctacagagcc	atcgtggcag	ccctgggcct	ccatttcaga	cgttcatctt	gcctaagcca	3660
ccaccatcag	ggtctcagtc	agtcatcatt	ctcatttact	cgggtggctg	ggtgagggcg	3720
gaataactacc	ttccagctgt	ctgagattaa	gcctaagcca	ccaccatcag	ggtctcagtc	3780
agtcatcatt	ctcatttact	cgggtggctg	ggcgagggcg	gaataactacc	ttccagctgt	3840
ctgagattaa	gcagaacacgc	agctaaagca	gtaacagcag	gtctccttca	gcagcttgc	3900
acagggaaaga	gggtcccgcg	tgaaccgaac	tcaacttcca	cctgcgcaga	ggtagctacc	3960
atttgcgtag	agtagctgg	gtcttaagg	ttagagggaa	ggcgcaggga	gggagagacg	4020
gcgggtgggg	gttgaacaaa	gtggagattc	acaaaagcag	actagggcgg	gcfgacgtat	4080
cagatgacct	gtgcggcgg	cagcctcctg	ccctcctccc	ttcgtgcgc	cggtggagc	4140
gaagagttct	tttgcacagcc	gtgagcttcc	ccgccaggaa	cttactgggg	ctgcacatcacc	4200
ctagaaacgt	ggctttggc	tgtggaaacg	ctgcctctgt	ggaagtctct	cctgcggggg	4260
gtggacgggt	cgctgcgcgc	ccagcgttct	tctgcgggttc	tcacagcccc	ccgcggcccg	4320
ccgcctcggg	gacccttgc	ggggaggcct	caggtcagcg	ccgcggccctg	cgatggcggg	4380
agagcagacg	ggccccaggg	cctctgagct	ccggccccgg	cacgtcccgc	cctctctcc	4440

gcttgcggga	gccggggcgc	ctcgaggaga	aacttccccg	gacacaggcc	gggagaagag	4500
ggggccgtgg	cgcacatcgcc	gcagcggtcc	tggtttcggc	catgtttttt	ttttttttt	4560
tgagacggag	tttcgcgttt	tttgcggcagg	ctggagggca	atggcgccgt	ctcggtccc	4620
tgca gcccc	gcctccggg	ttgaagggac	tctccggcct	caggccgcgg	tgttcttgc	4680
aattagaacc	ggcctatgcg	ccaagcgcgg	gtctcgccgc	tgcggagaga	ggc	4733

<210> 63
<211> 577
<212> DNA
<213> Homo sapien

<400> 63						
aaaaacaaac	aaaaaaacca	gttatttact	tggctataac	aatgtctgt	aatggtaaag	60
acagaaaaca	acctaagttg	ttcattgggg	gactagataa	atttaaattt	gttacattcc	120
atacaatgt	gaagataaaag	tagctgtgag	gaacgatgcg	cctccctccct	ttacagatgt	180
ggaatgaccg	ccaagataca	gccaggaaaa	aagcaagaag	agaacagttt	gtgatctgt	240
gtttcagttc	aaaataacca	atttaaaaaa	aatgtctcta	gaaggctaca	taagaggct	300
tgagacagt	ggtcctgtgg	gagggatgt	gggttaacagg	caacaggatg	ggagggatgg	360
tcaccataca	tctttggca	cactctgcat	ttgaaacat	atgattggtt	ttccctagtc	420
taacaaaata	actttaggtc	caactgactg	tagtaaattt	gtcactagca	aaaaaaaaaa	480
aaaaaaacaaa	aaaagcgtgg	ggggAACCCG	gggccaacgc	gggtccccgg	tggggatgg	540
gtttccggc	tccaaatttcc	ccccattttgc	cgcacaa			577

<210> 64
<211> 744
<212> DNA
<213> Homo sapien

<400> 64						
aaaaacaaac	aaaaaaacca	gttatttact	tggctataac	aatgtctgt	aatggtaaag	60
acagaaaaca	acctaagttg	ttcattgggg	gactagataa	atttaaattt	gttacattcc	120
atacaatgt	gaagataaaag	tagctgtgag	gaacgatgcg	cctccctccct	tacagatgt	180
gaatgaccgc	caagatacac	agccaggaaa	aaagcaagaa	gagaacagtt	tgtgatctgc	240
tgtttcagtt	caaataaca	atttaaaaaa	atgtctctag	aaggctacat	aaggaggctgg	300
tgagacagt	gctctgtggg	agggaaagt	ggtaacagg	aacaggatgg	gagggattgt	360
caccatacat	ctttttgcac	actctgcatt	ttgaaacata	tgattgtatt	tcctagtcta	420

57

acaaaataac attaggtcca actgactgta gtaaattgtc actagaatct ttgtcttggaa	480
gtcattttat tttatTTTC acagaagggc atatggtag atagcctaaa acagcagggg	540
agggagcagt gtgtgtctagg agctgccaca tgccaggcac ctgatagata ccagctctat	600
ctcacgctcc ccctgtccct tgaggttagt gtttctgttt ctacttacaa gaaaatagac	660
taaggcgtaa agtaacacaa tcacggtcac acatgtggca agcagcacag cctggatttg	720
aagctaggca agtctgactc taag	744

<210> 65

<211> 318

<212> DNA

<213> Homo sapien

<400> 65

taagtgtttt aaagaaaacta gagcagcaga gaagagagac tcagaagcccc gtggcacggc	60
tttctcgccg tcccctccag cgagggggtc tccattgctg cagttgcggg ttttgtccaa	120
ccaggtcagg aggctgccccg gccccctccc cactctcaa gttgcttgtt aaacacagag	180
tcgtaatttg tggctaaata taactagtgt gttctcacgg aaagtataat tcagggtgt	240
cattgtatga gtttatcaac aagacccatc tgggttaaat taaagtgatt ttcataaaagg	300
gcagaagcgc ccctttac	318

<210> 66

<211> 2505

<212> DNA

<213> Homo sapien

<400> 66

ctgcgcgcgc aataatcggt tggtgggtat ctctccattt ttcctgggc cattagtcaa	60
agggcaaatt agaaacaatt tcggacgac aaaaatttgc tcttaattct tcccaccaga	120
ggcgcagggg gacaagtcca gaggccaggc ctgaggctgg ggctggcgcc aggagggta	180
ggcggggtag aggtggggta gaggtggggg atctaagatg gttcacagca cagagaccc	240
cctcaactgg agggcagcag cagtcaccc ccacccaga atcagtgttc cagaggacag	300
ctggggcag ggggttagga acaatcccac tccctctgg aagaggctt gaccccccac	360
cccacccatc tgcctgtacg ggtccctctg ctatcgactg gggcgagttc ttttcatgag	420
ggccttgccct ggtgcctgga gggAACAGGG tggggggaa aggtctgtgt gttcccccct	480
caccccccct gctcagcgggt gtggcctctg gctctggggaa ggatcgggaa gccccagggt	540
ccgtgccttg gagtgggggg acagcctttt ctctgccaca gcttctgcct ttgggggctt	600
acccttccta ggagcagaac tgggtgtggag gggaaagagga cggtaaggt tccgaaggaa	660

agggggctgc ccccaactgaa aacgaaggctt ccagtcacag ccccttcatt atttatcagg 720
accaggggga tgaggtggca ggggaggggg ctgcatggag ggagtgcctt caccctcgta 780
cccagcgctt gccccctccc gaccaggctt gggctgaggc ccagggtaag ggggctgagg 840
caggccacag aggagcaaga cttgtcaggg gccagacctg ggttaggagga ttgtcctcca 900
ggcacacacg gcccccaagcc ccccagcctg tcgaactggg ctctcccaga aggtccccgg 960
ctccagccca agcagggagc caggttgggg gtgtgggaag gcagaagtcc cagggatcct 1020
gggggaggctt caggttgtac ctgcaggcca cagtctcctc gacagacctc ggacgagggtt 1080
gtaaatgttt taaagaaaact agagcagcag agaagagaga ctcagaagcc cgtggcacgg 1140
ctttctcgcc gtccttcca gcgagggggctt ctccattgtt gcagttgcgg gttttgtcca 1200
accaggtcag gaggctgccc ggccccctcc caactctcaa agttgttgc taaacacaga 1260
gtcgttaattt gtggctaaat ataactatgt tggttcacg gaaaagtataa ttcagggtgc 1320
tcattgtatg aggttatcaa caagacccat ctgggttaaa ttaaagtgtat tttcataaag 1380
ggcagaagcg cccctttgcc tggtttcccc tgcctttta ttgtgacag tgttattgtt 1440
gcaattatta gaggggatca aggaagggtgg gagttgccag ggaccccccag gctgaggagg 1500
gagcctccca gccccccctcc actcaccatt gtcctgctgc ccctccagcc ccctggtcac 1560
tgtcacctct gggctggag ggctggagaa aggcccagga gcccaggaa cctccaccat 1620
gccaggctgc ctccctaaa ggccggctcc ttccccccag gcagccagtc tgggggtgg 1680
cctggaggggg cagggttctc tggaatctc tgggccaagg gatgccctt ggggatctgc 1740
tggaaataaag agtaatcggt ttcccttgca ggaggttgac cggaaacagc cctccgtctt 1800
cctgcccattt agatgagga caggaagcca gacccggggag agaaagccca gatcagacag 1860
atgggggttg ggagggccta gtggctgaaa ctgcctgtt tggggacaat gctcaggcag 1920
gaccaatcca aacgaggggca ctgcttatgt ggcccttcgg gacatcctc caaggcagag 1980
cctggcttcg ggccctccct gcaaggacac ctgcctccac tccctgccag accaggcctg 2040
gctgcagagg cgaggggcg gcagggctgc ctgtctccac tggttggcg tggttacacg 2100
tgtcgtgtc agggtgtctg gacagtgggg gtggggggcc tccggggccc agactttcccc 2160
acgctccca agagcagcag atgttaggtct cccggctccc aaacctctga gatgctgctc 2220
tgtctgaaat catcatataa ataatcattt tttaatacaa ggggtgggg gtgtcaggca 2280
agttccatga aattgtgaat tagccgctgc tccaaataaa tgcctgttcc ggcccgagag 2340
caqccqcqctt qcggccqctg cgcccccaat aatcggtgc tgggtatctc tccatttgc 2400

59

ccctgggcca tttagtccaaa gggcacaatt agaaacaatt tcttgacgac aaaaattgac	2460
tcttaattct tcccaccaga ggcgcagggg ggacaagtcc cagag	2505

<210> 67
<211> 247
<212> DNA
<213> Homo sapien

<400> 67 actgaggcgc tacggaatgc aaggcactgt aggaagttagg gtgagtatac tccccacaag ggctcagggt cagggcagggg aggtgagata aaaacccaca gccatacact agctggcctg	60
tcctgagggt tgtgaggcac aaaatgctag gagactagag aagtaagaaa tgtcttgaca	120
tgaggagaaa tcaaggaaag catggttta gaacatgtgt gggatgtttt ttgtatcgag	180
actgaag	240
	247

<210> 68
<211> 2458
<212> DNA
<213> Homo sapien

<400> 68 ttgcgttgtt ttgggtgatc ttgtggtgcc gtcgcgcgc tcatgcttgtt tttctcagcg gtgctatctg tgcgtcggtt tggtgtctg ctgcacgggc tggtgcgcacg cgtggttgt	60
gctcgtatgtt aatgggtgc ggcgtttgtg cctatgggc ctgtcaagt atggggccct	120
ttgtggccct tcggggattt ttggggggcg cgcccggtgc ttgtggttgg acggccgctc	180
tgaggatgtc aggttagcccg ttactgggtt cggaaagtttt tgcaagattt agataaatgt	240
tttagtaatta caggaaaaact aacttgtaaa aatcttaaag acattgaatg gtttaatgtt	300
ctgagcagct acggaatgca aggcaactgtt ggagtaggggt gagtataactc cccacaagg	360
ctcagggtca ggcaggggag gtgagataaa aacccacagc catacactag ctggcctgtc	420
ctgagggttg tgaggcacaa aatgcttagga gactagagaa gtaagaaatgt tcttgacatg	480
aggagaaatc aaggaaagca tggttttttaga acatgtgtgg gatgtttttt gtatcgagac	540
tgaagaggct ttttaaagtg gagggaaaggc aaactgagggc atagagatgc caataccagg	600
tcttgcagg aagaacagag tccaatttgg ctgcaggata gggcatatgt aggggaggg	660
ataagactgg catggggca gagggggact tgaatgtcag gtgacagagt caaagcttgc	720
actcaagtag gtgattgata ggtgatctt ggggctttt agcaggaaga gtgataaattc	780
aacattggct taggacaatc cctttggctt tggcgaaattt gtgactcagg taagggacag	840
ttgggggaga caaggatggg aagatgcattt ataaatgggc cctgagcttgc gcaggcaaca	900
	960

ggaaggcagt gcaatgtttt gtagaaatag acttagcaga gcaggcgccc	1020
gcatttcagc gagaccacag attcttagcc actgttatgac ttgaaggta tactaactcc	1080
cctgaacctg tctcatctac aaaatggca tagtagcacc tatgtcatag ggttgctta tggcaggtaa	1140
ttattcttgt aaagcatttgc acacagctct gatgacacat gggaaatgct cagtaaatat	1200
taatgtcaact aattccagtc aattccatta actggaatttta attagttgga gtaggaagg	1260
aaacaggtgt cagctgggtc gactgaagga agcagagatc tcaggaagca gtacatggtg	1320
gtacagtggg agcatggcat ctgtggggga gactgtctgc agtgggatcc cacctctatt	1380
gttggccagc tgtgatctt tacaggatac ttaaccctt tctagctcag tttctttagc	1440
tgtaaaagcca gcgcaatgtt accatggagc tggtatgtga aagcaatgca tgtaagtgt	1500
gttagtatgtg cctgatacat tggtagtgcc cagtaaatgt tagttatcag gtgaggggtg	1560
ggatgtgggg ttgagtagat ttgcctcgtc cactcataga ggcaggatgt gcaaggaggg	1620
gtggagacat gcagcaaggg attgggcattt aagggtttct ccaggccccgg ggagaacact	1680
cggcctggag atattcagga gtccctggcc cagaggatgatacactctg cagggatatg	1740
agccacgatg ggagtgttgcataaggcccta aggaagcaat cagacacttc cagaatagag	1800
gacatttgct aagacagctg gcctggatgc ttcaaaaagt atcatggaa aatatgtcg	1860
ggttgttgta gactgaaagt gactagagtt gaaacaaaaa gaatgtatga accttgatgg	1920
gacctggtttgc ttgtcggttgc tttaaagac aaacattctg gagacaatttgc ttgaataactg	1980
attaaggcgttgc ctgtatttgc aatgttataaag aagttactgt ttatattttt aggcatgatc	2040
atcttaatgttgc aatcatgttag aacgggttgc ttgtgctcag gaaatctatg tggtaataact	2100
caggggttcga aatgtcatttgc tatgtacaca tgcattgggtt ggagagaata gtaaatctgg	2160
caaaatgtta acaactatttgc aatccaagtgc gagagtatgt atctgagtat tcattgtgt	2220
atgcctttcaa ctttttctgg atgtgtggaa tttttcaata taaaaaaaaaaa agaaaaaaaaaa	2280
gaggcctatg gaaaaactgg gaaccaggatg gcaacaggaa aaggaattct ttgaaggaaa	2340
aacaggatcc acctaccaag agagcaatttgc caagggagag attaaggcaca caatgtcg	2400
tgcaaataga tcatcatatt tggtcactgg gagattgtgg cagcttggaa atagtccg	2458

<210> 69
<211> 894
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature

<222> (341)..(341)
<223> a, c, g or t

```
<210> 70
<211> 1335
<212> DNA
<213> Homo sapien
```

```
<220>
<221> misc_feature
<222> (278)..(278)
<223> a, c, g or t
```

```
<400> 70
cgtggtcgca gcgaggtaact ccgcatactct tttacttctt ttgtaaaagta ttgactctgg 60
aaggctacag tatacaaagt ctcaacatgt tttttaaaag aaataaggag caagcgactg 120
ccctgctaga aatcacaaac cgattttgt agaatatttt gtgccccagg cattaatttc 180
actgactcca gaacctgcag ttccagagaat gatttcttat gatgataaaaa atcgaatggg 240
atcagacgat ggtttgcatt tttttaatt aacttggnaa taggacacct caagtttgag 300
atttcattt cttttagaac acagtcacaa gattaatctg gtgaatcctt ttgtcacagt 360
```

tctcggtgtgt gtgtgcgcgt ctccgtgtgt gtgtgtgtgc atgtgtgtaa aactggtcac	420
atttattgc tttttggacc attgaatagt tgaaaagtaa gaatttttta attggcatga	480
gacggttcct caactgttaa attaaccaac tttgacctgt ctttagaaaa aggcttattt	540
gtatgattt gggctaactc cccggggacc atattaaatg aaaaaaatgc tccttgggt	600
gacacaccct acaaagtatt tgctgttacg aacataaacg cccacattct taatatctaa	660
tatTTTgac cagtgtatTT ttatgctgtc atctgaaccc tagagaagca gtgtcagagg	720
aaaccttggt gtcacatgtg tcttagcaaa agggttacca tgatcgaggg tcatgtgacc	780
aaaagatgct ccagagaagc ttgagaattt gtttcaagtt gggaggaggg ttggagatac	840
aaaaatcaact ctgctctaca ggactcttca gctgtctatg caagaaattc cgTTTCTCT	900
ttcagcacct ggaaagacac agcagcccc ac tgaggcgata ggtgattcac taagcacaag	960
aggaatgttt tctaaggcaag gcgtcccttg cctctcaaaac aaatGCCCTC caagtttgtt	1020
agggtttcta ttccTGcaac ttgtggtatac aaaaccattt cctgaaatttgc tcaaaggact	1080
gccaaaataa atgttttcc ccTTTctaag aaaaaaaaaa tgacagtgtt catatttgac	1140
acttgtgtat tggactctct tttgaatgaa taaaaaggaa aaggggTTTg gtgtattcc	1200
tgatggggtg cgtgttgtt ttcatgccat ggtttgtgaa ttttaattgt ggtttcccat	1260
ttcgTTgttg taactggca gaaattaaaa aagaaaaatc aataaaaata caaagaaatg	1320
gtttaaaaaaaa aaaaaa	1335

<210> 71
<211> 137
<212> DNA
<213> Homo sapien

<400> 71 cgcccaggtt cgcacaagca ggcccagctg ggagacgcta ggataactaa gacctggtca	60
gcccctgag gagtctgtc tggataaagg gagacacaca ctagcttggc cttatgcgtt	120
cagcggagct gtgtaga	137

<210> 72
<211> 694
<212> DNA
<213> Homo sapien

<400> 72 ccggccgggc aggtaccaac cccagcacac cccaacagcc tttcctcgcc ccctcctcag	60
gcctcctaatt tactctttct cagcctggag tgtggggccg ttaccgtcctt cttccccctt	120

63

ctccttcat actgcactta accttgctgg aagacttaat gatggagatt tagggcaatc	180
tgtggctgct tggacccttc cctggaccaa aggaacttaa aacccaaacc tgacactgga	240
atgaaatcca agttttaaa tatcacctt caatcaactca cagatctcac tctatcttaa	300
aataactcagc ctcactcctt aatgagtgct tgctgaaggg agaaaattcc atttaaaaaa	360
cgtattcaact ttactgatta ctgtgcaatt tgaattaagt cacgattctt tagtaaatgg	420
aggtgagaat ctcagattca aattgtcaga gaccatgatt tagaagtcta ccaaacaccc	480
agtttccttc cactgtttta gggtaacagg aaaacatgag attggggtgg tgtccgctat	540
taaatggaac cacacatcat gaaattcaat tctcatgtta agacattctg tattgtggga	600
tgtcaaaaagt atttccaaa cttcgtttgc acctgcagag ttggagatgg cttacctccc	660
tataacttca agtttgttc acaaagcttgcgt	694

<210> 73
<211> 8095
<212> DNA
<213> *Homo sapien*

<400> 73 tttttttttt gccacctaga gatgataatt tattgtttta ccatgactca gaagagaaaac 60
aacataaaaga gaatatttca aatccccaca atttccttcc tcaacctcac tactcttaac 120
atttcatttat cagacgccac tggcttccta aaatggacca ctgactatgt atgtgtacac 180
atttcatttat gctgcctttt ctcttatgtat taaaacttta gccctcattc gaggttcca 240
atggttactt ttagtggagg agttccctag cttttaaaaa accactttc ctctaagatt 300
ccattatatta ttgaaagaag tctttctaga aatgttaagg aggatttaa atgaacacat 360
tcaattaaaa aaaaaatcac gtattgaaca tctaccaaagc atctggactc ttcggAACCT 420
agtaaaaatga aaaaatccag ttttaacaac agtaacttca ttctgcgggt atacagagac 480
aagcacgttt ctttttttgg tctaatttat tctaaacgaa gaagctggga actgacaaaa 540
caggacaggt tgtttttaat ccagtctaca aataaacaag acaatgcctg agttagccct 600
ctatatagat ttaggcttat gctgacctcg ttgtaaaatc tgtatTTAac taaaagttaa 660
taaaaaataca tatgttcatt tttttataat tactgatttt gcttggctat cccacccctt 720
accccccAAC tcataatattt ttaggacaag atttcctgc ataaccacAA cctgtctcct 780
cccccccaac ccccatcata gatgtttca aataagaacc cctgcgatca gcagaagcat 840
ctctaatcta acatgcttg tccttgctag ggcaggctaa aagcttAA aagcaaccgg 900
atgctcttct ctgggttgagg tgagggGAAG gcgctcggtt accaACCCCA gcacacccca 960

acagccttc	ctcgccccct	cctcaggcct	cctaattact	ctttctcage	ctggagtgtg	1020
ggccgttac	cgtcctcttc	ccccctctcc	ttccatactg	cactaacct	tgctggaaga	1080
cttaatgatg	gagatttagg	gcaactgtgg	ctgcttggac	ccttccctgg	accaaaggaa	1140
ctaaaaccc	aaacctgaca	ctggaatgaa	atccaagttt	ttaaatatca	ccttcataatc	1200
actcacagat	ctcactctat	cttaaaaatac	tcagcctcac	tccttaatga	gtgcttgctg	1260
aaggagaaaa	attccatttt	aaaaacgtat	tcactttact	gattactgtg	caatttgaat	1320
taagtcacga	ttcttagta	aatggaggtg	agaatctcag	attcaaattg	tcagagacca	1380
tgatttagaa	gtctaccaa	caccagttt	cottccactg	ttttagggta	acaggaaaac	1440
atgagattgg	ggtgtgtcc	gctattaaat	ggaaccacac	atcatgaaat	tcaattctca	1500
tgttaagaca	ttctgtattt	tggatgtca	aaagtatttc	ccaaactttc	gtttgacctg	1560
cagagttgga	gatggcttac	ctccctataa	cttcaagttt	gtttcacaaa	gtttgaaaaa	1620
gtaaaacaga	taatttcatt	ttcagataat	aaaaaatctg	aatagcaaaa	taattgcttt	1680
taaatgtagt	gtgtccactc	aaaaaaaaa	aaccctaaat	ctatgttaga	aaaactttc	1740
aaataatgcc	ttttattaaa	ttctccagta	gtagttgaaa	aaaaatcta	ccctaatttc	1800
tatgaaatga	tctatttata	tcactgactt	ttcttttct	ctgattctat	atttcattta	1860
acaatctgca	gactttcacc	ccatccc	gatggaaaaa	ccctagcccc	ctcgatctc	1920
tgagaagttg	ctcagagtag	gacacagaga	aatatggccc	ccaccctggg	aagtactgct	1980
gtcactgttt	aagtgtat	cagttctgtt	actccaattc	atacacacag	tctccatga	2040
ggatggtagg	atgaacctgg	ttagctggct	ttggataagt	agatcagcat	gactacctgg	2100
aataaaagtg	actgactcta	ggataaaaat	taaaaaaaga	ttcttcaca	gcaacgagtc	2160
tttgc当地	ctctctccta	ataatcacaa	accaggggaa	aaaaagtggg	agcagggAAC	2220
acaggaacac	agccaaaggg	aatattgcaa	aatgcttccc	gagcttcatac	agacagactt	2280
cttgc当地	cacgacttgg	tgcatctgca	cacaattccg	ggaaatggccc	accttgcgt	2340
tctcctatcc	ccaattttct	ttctttcttt	ctttcttttt	ttcttttttt	tgagacagag	2400
tctctgttac	ccaggcttgg	gtcagtggt	gcaatctcg	ctcactggca	acctctgcct	2460
cccgattta	ggtgatttctc	ctgcctcagc	ctcctgagta	gctggacta	caggcgcccc	2520
ccaccacgcc	cggcttaattt	ttgtatTTT	agtagagaca	ggcttcacc	acgttggcca	2580
ggctggcttc	aaactcctga	cctcaagtga	tccgcccacc	tctgcctccc	aaagtgcgtga	2640
gattacagga	gtgagccacc	gtgcctggcc	agtcttatcc	tcccccaac	cttttttttt	2700
ttttgacat	ggagtctcac	gccatcaccc	aggctggagt	gcagtggcgc	catcttggct	2760

cactgcaacc	tcggcctccc	atgttcaagt	gatcctcctg	cctcagecetc	ctgagtagct	2820
gggactacag	atgaagacaa	gcacctgtgg	tgcccccac	tgcaagaagt	cagggaggca	2880
ttccacagcc	tgggtgccc	cagtcctgcc	ctgtaccctc	tggggccctt	ttggcacgg	2940
ggcagcgctt	ccagatttcc	tttcagaaaag	atgcagtct	tccgcagctg	ggccatgcag	3000
atctcctggc	atccaacttg	ttggaaacag	tggccctctg	ctcaatgtat	agactggg	3060
ggggaaacag	gaggacat	caaggaaagg	atggagcgtg	gatatgaatg	ggaagcggg	3120
ggtggggag	ctcatcagca	tcctcagagg	ggctcatgcc	cacgctgcaa	cacagaatgg	3180
gacttgcag	atgttttag	tcgactctga	gtgccccgtg	ctgagaaacc	tgaaagcaca	3240
ccacacctatg	gctgcgcgtg	ttgcacgctc	aaggctgagt	tcacatagtt	ctgttagcctc	3300
ctcctacacc	aagtcaaggc	ggccctgtgt	gaccagtaga	agagatggg	tgtcaacttc	3360
gagggtgctt	ccaggcgagg	ctggcctgaa	tgagaatgag	gagcaggacg	ctccccaa	3420
gattgcctt	gacatcagcc	tggccacat	ctacaagttc	agacccattc	agcagctaa	3480
ttccaggagc	atcacggaga	atctccggcg	agctcagcac	caaggcaggc	actgtgctgg	3540
ctgtggggcg	gatgtacag	aaactgtgtt	atcggacacg	ggtcctgatc	taggccccaa	3600
gagagagttc	ttgtacaaga	aagaattggg	gccaggcatg	tttctggcgc	tgtgtgccc	3660
ggcccagccg	ggggcctaca	ctgatgagaa	cctcatggg	ctgattgagc	tgctgtgccc	3720
caccagcctg	gacgtgggc	tccgcctgct	gcccaaagtt	gacctccagc	agcttctcct	3780
cttgctcctg	gagaacatcc	gggagtggcc	agggaaaggcg	cttccttcca	ggacagatgt	3840
cccacggctt	gcagatggct	gggcccagga	gacggtgcta	gcccttcctc	tgagagaagg	3900
ggtgcaggct	gccgccaccg	tgcccatct	cctgtacaac	ctggaggatg	gcttgtcaga	3960
ccatccccctg	gaccaggggcc	ccgctgcct	gccggcgcc	cctgcagccc	tgccctcggt	4020
ccagctctca	catcgccaaa	gaagccaaag	atacaggcac	ctggggaaac	cgttgacgg	4080
tttgctgtt	ccagttttgg	ctgcttctca	agatcacgaa	gcccagggc	ctctgcaagg	4140
gtttctgcaa	gttcagcagt	tcatcgctgg	agggcgcttc	cttccaggac	agatgtccc	4200
cggcttgcag	atggctggc	cccaggagac	ggtgctagcc	cttcctctga	gagaagggt	4260
gcaggctgcc	gccaccgcgc	ccatccctct	gtacaacctg	gaggatggct	tgctcagacca	4320
tccccctggac	cagggggccc	gctgcctgc	ccggcgcccc	tgcagccctg	cctcggtctcc	4380
agctcccaca	tcgccaaaga	agccaaagat	gcaggcacct	ggggaaacgt	ttcccactga	4440
ctggagccccc	ccgccccgtgg	aattcctcaa	cccgagggtg	ctgcaggcca	gtcgggaggc	4500

cccgccccag	aggtgtggtgg	gtgtggtggg	cccccagggc	ctgaggagac	tggctggtga	4560
gctgcccgag	gagttggagc	aggaacacct	ggacttggac	ccgaagaggg	gcctggcctt	4620
gccagagaag	ctgttctgga	acacgtcagg	cctgagccag	caggctgcgg	ccccagagtt	4680
ttcctggggg	ggctcaggaa	gctacttcaa	caaccctggac	tacttactgc	aggagaagag	4740
ggaacaggcc	ctggagcagg	agcgagagag	gctgcttcgt	caggagtgtc	tcaatctcaa	4800
ctccttgat	cttgcataag	aggaagtgcc	actcacaccc	gagcacagaa	agaggcaaga	4860
gagctctctg	gggcctttc	ataagggtac	caatcctatt	catgaaggct	ccaccctcat	4920
gcctcatcac	ctcccaaagg	ccccacttcc	taataccttc	accctggggc	tttccttccg	4980
gagacaagca	gtaaataaga	tcagtgaagt	tgtgctgcaa	gggctcctga	gaaaggctaa	5040
cgcgtggggc	ataaggagtg	ctggaaagg	tgtggctct	gatgatgtgg	gctctaatac	5100
tgtggcttt	gatgatgaag	gctctgatga	tgaagggatg	ctggtgaaa	agtactcagt	5160
gtccctgcag	accatcccgc	cggccatcc	aggtagact	gtgttctgc	ccaggtgtca	5220
ccccctgcca	tgcattctgg	actcctact	cctgaagcca	cgcagccacc	ttgaagggct	5280
gttcctcagg	cagtatgctg	agcattggga	cctcaaggat	gaggaagatg	cagtctctgc	5340
ccttagggag	cttacagcag	caggaagttt	ctgtcatagg	acagacccag	ggctcaccaa	5400
gactcaagca	gatgatgaag	cctggggctc	actggccaa	tcagcgtatt	cagactggct	5460
ggctgcttat	gaggctttg	ggccagggct	gcctgctcag	tggcagctg	actctagctg	5520
ctgcaaaatg	ccttcactc	aaaggaaaa	gctttgcac	atcccctccc	tcacatgcct	5580
tgaaacaagc	actttcaaag	acaaagacat	aaacaacaaa	agggtgcagg	ctgagttgcc	5640
aacttacagt	gtcattggc	cgattcaggt	tcttgactgc	tgcacaaaag	aatttgagag	5700
caagtacaaa	gcaaaagtag	gtaaagaagt	ttattgcaaa	gcgaagatct	cctgggaggc	5760
ccccgtggag	aagaagactg	agtgtatcca	gaaaggaaag	aacaaccagg	tgggtgcttg	5820
gacgctgctc	ctgggtctgc	cttcacccca	ggacgtctcc	tcccattctg	gccctcgcc	5880
tctcaactaac	cgacacaccc	tctgccccca	gaccgagtgc	ttcaacttca	tccgcttcct	5940
gcagccctac	aatgcctccc	acctgtacgt	ctgtggcacc	tacgccttcc	agcccaagtg	6000
cacctacgtc	aacatgtca	ctttcacttt	ggagcatgga	gagtttgaag	atgggaaggg	6060
caagtgtccc	tatgaccagg	ctaaggccca	tgctggcctt	cttggatgt	gtgagctgt	6120
ctcggccaca	ctcaacaact	tcctggcacc	ggaaccatt	atcctgcgt	acatggggcc	6180
ccaccactcc	atgaagacag	agtacctggc	ctttggctc	aacgaacctc	actttgtagg	6240
ctctgcctat	gtacctgaga	gtgtggcag	cttcacgggg	gacgacgaca	aggctactt	6300

cttcttcagg gagcgggcag tggagtccga ctgctatgcc gagcaggtgg tggctcggt	6360
ggccccgtgtc tgcaaggcg atatgggggg cgcacggacc ctgcagagga agtggaccac	6420
gttcctgaag gcgcggctgg catgctctgc cccgaactgg cagctctact tcaaccagct	6480
gcaggcgatg cacaccctgc aggacacctc ctggcacaac accaccttct ttggggtttt	6540
tcaaggcacag tggggtgaca tgtacctgtc ggccatctgt gagtaccagt tggaaagagat	6600
ccagcgggtg tttgaggggcc cctataagga gtaccatgag gaagcccaga agtgggaccg	6660
ctacactgac cctgtaccca gccctcgcc tggctcggtc attaacaact ggcacatcg	6720
ccacggctac accagctccc tggagctacc cgacaacatc ctcaacctcg tcaagaagca	6780
cccgctgatg gaggagcagg tggggcctcg gtggagccgc cccctgctcg tgaagaaggg	6840
caccaacttc acccacctgg tggccgaccg ggttacagga cttgatggag ccacctatac	6900
agtgctgttc attggcacag gagacggctg gctgctcaag gctgtgagcc tggggccctg	6960
ggttcacctg attgaggagc tgcagctgtt tgaccaggag cccatgagaa gcctggtgct	7020
atctcagagc aaggtaaagc tgctcttgc cggctcccgc tctcagactgg tgcagctgcc	7080
cgtggccgac tgcataagt atcgctcctg tgcagactgt gtcctcgccc gggaccccta	7140
ttgcgcctgg agcgtcaaca ccagccgctg tgtggccgtg ggtggccact ctggatctct	7200
actgatccag catgtgatga cctcggacac ttcaggcatc tgcaacctcc gtggcagtaa	7260
gaaagtcaagg cccactcccc aaaacatcac ggtggtggcg ggcacagacc tgggtctgcc	7320
ctgccacctc tcctccaaact tggcccatgc cgcgtggacc tttgggggccc gggacctgccc	7380
tgcggAACAG cccgggtctt tcctctacga tgcccggtc caggccctgg ttgtgatggc	7440
tgcggACCC CGCCATGCCG gggctacca ctgctttca gaggagcagg gggcgccggct	7500
ggctgctgaa ggctaccttg tggctgtcggt ggcaggcccg tcgggtaccc tggaggcccg	7560
ggccccccctg gaaaacctgg ggctgggtgt gctggcggtg gtggccctgg gggctgtgtg	7620
cctgggtctg ctgctgtcggt tgctgtcatt ggcggccgg ctgcgggaag agctggagaa	7680
agggggccaag gtcactgaga ggaccttggt gtacccctg gagctgcccc aggagccccac	7740
cagtcccccc ttccggccct gtcctgaacc agatgagaaa ctttgggatc ctgtcggtta	7800
ctactattca gatggctccc ttaagatagt acctggcat gcccggtgcc agcccggtgg	7860
ggggccccct tcgccacctc caggcatccc aggccagcct ctgccttctc caactcggt	7920
tcacactgggg ggtggcgga actcaaatgc caatggttac gtgcgtttac aactaggagg	7980
ggaggaccgg ggagggctcg ggcacccct gcctgagctc gcggatgaac tgagacgcaa	8040

actgcagcaa cgccagccac tgcccactc caaccccgag gagtcatcag tatga	8095
<210> 74	
<211> 435	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (86)..(86)	
<223> a, c, g or t	
<400> 74	
ggatgttcga tcactatacg ctttgtcctc tagatgctgc tcgagcggcg cagtgtatg	60
gatgtcgccgg ccgaggtaact tccanggtg gggccatat ttctctgtgt cctactctga	120
gcaacttctc agagatacga gggggctagg gttttccat ctggaaatg gggtgaaagt	180
ctgcagattg tttaaatgaaa tatagaatca gcagaaaaag aaaagtcagt gatataaataa	240
gatcatttca tagaaatttag ggttagatttt tatttcaact actactggag aatttaataa	300
aaggcattat ttgaaaagtt ttcttaacat agattttaggg ttttttttt tagagtggac	360
acactacatt taaaagcaat tatttgcgt atccagattt ttatttatct gaaaatgaaa	420
ttatctgttt tactt	435
<210> 75	
<211> 608	
<212> DNA	
<213> Homo sapien	
<400> 75	
ggggggcata ttctctgtg tcctactctg agcaacttct cagagatacg agggggctag	60
ggttttccca tctggaaaat ggggtgaaag tctgcagatg tttaaatgaaa tatagaatca	120
gagaaaaaga aaagtcagt atataaatag atcatttcat agaaattagg gtatgtttt	180
atttcaacta ctactggaga atttaataaa aggcatatt tgaaaagttt ttcttaacata	240
gatttagggt tttttttttt agagggaca cactcccttc ctactccccca acaagggct	300
cactatcccc aaagaaggag ctgtggggga cccacgacgc agccccggta cgggattaca	360
gcatattctc atctcgggcc ccgaggctgc ctgtggggcg agggagacc tcccatcacg	420
gagacagatc acagaccacg agtgccttc ccggaccggg acgtggccctc cagagcaggc	480
accagctttt tccctctcta gacagaaata ttttggtaag gttctggggc agggagggag	540
catgaagtac gaggaaaact tgaattccag attcttaatg caaagtattt atcatttcta	600
ccagaaat	608

<210> 76
 <211> 727
 <212> DNA
 <213> Homo sapien

<400> 76
 gatgattcga ctcactatgg gcgaatgtgc ctctagatgc tgctcgagcg gcgcagtgtg 60
 atgggtcgcg gcgaggtaact tcctagacac ttagttaa aagaataatt tcctgttagaa 120
 aaacctaatac taataggacc tactcataat ttggcaaaaat catcctcata attccatgtct 180
 actgaaatgg gggtgtata aagaaaaat catttggtaac agggtttatt 240
 aaagcaccaa tatatgcccga aactttgca gtgcactgga agttcagaga taagaaagcc 300
 acagtttctg ccatcaaaaat gcttaggaatc tagaggtctc aaacatcaga ggtcccttca 360
 aactatgtct accagggaaaa taaaatacct gatttcattcc ctgcaaacaa ctctatacag 420
 acagaaatgc ttccatgctt ggaaactata gaaaattgaa catgaaaatg agagcaaaga 480
 ttctacatca aaatggcaat gatccaatca gcccagtcaa ggctgagtgg gttgaatggg 540
 gacttcgagt ttggattcaa tgcttgaac ttcatagctc cagagaagct gtgcaaaaag 600
 gggggattct agggaatctg aggaagattt ttggagaaac cagtttctt cttgtctcc 660
 aatccctgct aagattgata ccagtcaagg agctgagttt ctttcatttc attatgttgaa 720
 ccaagag 727

<210> 77
 <211> 3052
 <212> DNA
 <213> Homo sapien

<400> 77
 ggaggtggag gggaggagtgc cctgcattggc catgggattt ttcttcattt cctttctcaa 60
 ctgcacccag cagcagtggt ttttgcattt ctttttgcattt acagcaggaa tctgggagaa 120
 ggaacatcat cgttttccat agcatggaaa catcaatctt attccagaga agggaaagaag 180
 tccccaaagg tatgtccggt ttaacagttt ctcaagtggg ccaggaagtt ctttttcatg 240
 ttctgggctc aatcgtgatg ctttgatttc acttggatttt ttacttttag ttttgtctct 300
 aacatctggaa gcaaagatca gaagacctga gttccagatt tattctgtga ctcaatcaact 360
 gcttcaatca ctgagggacg tggatgtatgc ttctttgcctc tgagcttctg cttcttgcattc 420
 taaaaagaca ggtgggtgttt ctgggtgatc aaaatctttt cttgtctgt gtatctttaga 480
 atccatggaaa ttatgtctct ttgcatttat gataacaaat caaaatatga atcacaattt 540

70

tcttacaggg ttgctgaggt taaagccgtg aaagcctggg aacaaatctc cccagggaag	600
gtttaagcaa gcattaactc tttcttctgc aagttccccc attcattgct agggtgttgt	660
ctgatagcca ccatgcacag ttgactttcc ttgggaaatc atgagtctt tattttgca	720
atttggcttt atctcctaca catcatccag atggtgcaac atctggtaact atatgtccaa	780
tggaattgcc acaactcagc cactgagatc caacattcct gcctctcttc attccaagat	840
tccttctgtt ctttattgtg gtagacaaga gcaagcattt ttatggcag agatgtactt	900
atttaaaaag caatttgaa agcatttgat ttaataatta ggattgtttc tccacgattc	960
tttttctgaa aaaaaatttt tttgggttaa attttagagtt cataagtaac accaaagact	1020
gagacaatga agtccatgca tactgtaaaa aaataacata aataacagtc cctagtatgc	1080
atcagtcatt gtactagagg ctttgtgtgt acattgattt tctcacttga aaatcaaaac	1140
acggcagaag agtcaaatgc ttttgaatgt gctgaaactc aaattttctt ccaggtcatc	1200
tctgtatgat tcctcttttta cactgccatt actggcttct aaaaccacta aagctatgca	1260
gatagcctgg tcctaacatg ttctaaactg ggcatttagt aggggctgcc tgctggcttg	1320
tttaggggccc agttggctca gtttggatg gtttaatatc agcaacaata gcattgggtt	1380
gatttgaata taaacaactt agacttaaa agttcatct gaaaaacaag ccttcaagga	1440
caagtgagga catgaagcaa attcctaagg atgcctgggg ttcaggaagc aaagaagaat	1500
ctttggttat tcatgaaaac caaataccag ctagtggca tcttctggga aagcacaggg	1560
gtgggagaat cctgggggtgt gtttggcagc actgtccaaa gtacagttga cttcttaggc	1620
tgctgaacaa atttcttctc ttgccccagg agaatttgat ctgcaggttc ccataagtag	1680
agtaacatct ttctctgaa ataggtgctg tgtcaaagtc tgtatcataa gtttcttttg	1740
gtcaacataa tgaaatgaaa gtaactcagc tccttgactg gtatcaatct tagcagggat	1800
taggagacaa gaagaaagct gtttctcca acaatctcc tcagattccc tagaatcccc	1860
ccttttgca cagcttctct ggagctatga agttcaaagc attgaatcca aactcgaagt	1920
ccccattcaa cccactcagc cttgactggg ctgattggat cattgccatt ttgatgtaga	1980
atctttgttc tcattttcat gttcaatttt ctatagttc caagcttagga agcatttctg	2040
tctgtataga gttgtttgca gggatgaaat caggtatttt atttcctgg tagacatagt	2100
ttgaaggggac ctctgatgtt tgagacctct agattcctag cattttgatg gcagaaaactg	2160
tggtttctt atctctgaac ttccagtgca ctgcaaagtt ctggcataat attggtgctt	2220
aataaaaccct gttaaatgaa taaacaaatg atttttctt tattacaccc ccatttcagt	2280
agcatggaat tatgaggatg attttgc当地 attatgagta ggtccttata gattagttt	2340

ttctacagga aattattc ttcaactaca gtgtcttagga agtaccc ttgc acaaaaataga	2400
cacaggatgc ataattgtt attaattagt tcattttAAC ctatacacct tggggttatc	2460
tagttatgtt ttcatgaaaa ctagggctt gtaatatcaa tgtcatgtct aataagccta	2520
aatttccagt tctaaaaaca aagttattca acaacacttt ctcaatttga tgtgttttc	2580
tttcctgaa ataattttt ttcttaagct tttgatattt gctttgtgc tgacatttga	2640
tagtcaaaac tcaaacgatc tcaagtactt ctttctcagc tcaataggat catgtttcgc	2700
ttaacatttgc tgaagttgat ttatctaattt cattttgatc ttgctaaaat atgaccctta	2760
aaatttttca tgtcacattt tgacccagaa agaccaaata catacatgag atcatagttt	2820
tacctgataa tatcactcct agtttgatga tggaaattaat ttgtcaatattt ttcatggagt	2880
tctgctgaaa cgatttgcattt ttcttggca agtttcagaa cgaccagcat atctgtggtc	2940
atgtcatctt gggcatgtt aaccagttcc attggattat catgctgttc ctttgtctga	3000
caaaaggatc ttgtgaaaag cacacactgt ttcttccat aactcacatt ca	3052

<210> 78
<211> 416
<212> DNA
<213> Homo sapien

<400> 78 gcccgggggg caggttagcct ttttctctcc agccttgaat tgttccctgt tggcttccccca	60
aggggccatc tgctggtaca gtccacactt ccaaagccaa gaccggagag ggctttcact	120
gcccccaagcc tctctctgtt gaccttggga ttctgtcttg gcagaatcct ttgtcagcgg	180
ctcttgcctt gtcttcctgtt tttggccaca gctctttcaa tcaatgggttta ttctagaacc	240
gcaggatgtt agagctggaa gggacgcgtt accggtttac acaaggggaa actcctcgag	300
gctctggaggg ggacggaggg ttttggtgac agagcgagag ctaaaatttga ggattcctga	360
atccagatct tgcttccat cagccatctt tctcccaata aatttatgtt atgtgc	416

<210> 79
<211> 1451
<212> DNA
<213> Homo sapien

<400> 79 taaaaactttt gtcccgatcc atccagaaaaa gagtaggttag ctgcattctg acagcctggc	60
aaagtcaaga aagttgaagg agaaacatac ctttggagag ggggtttct taaaaacttag	120
tgtaagaaa tgcttaggaa ttttttttcc ttatTTTCA taactaaagc tttcacccag	180

72

agccggctct gtttgcactt tgctgccgac attgcaaact ttttggcagg gtgggagact	240
gagtctcatt ctgtcaccca ggctggagtg cagtggcccg atctcagctt actgcaacct	300
ctgcccctcca gggttctggc aattccgcct cagtccctg agtagctggg attacaggca	360
tgcgccacca caccgggtta attttgtat ttttagtaga gaccaggtt catcatgtt	420
ggcaggatgg tcttgaaccc ctgaccttag gtgatctgcc catctcggcc tctcaaagt	480
ctgggattac aagtgtgagc catcgcccc ggcctgcaaa ctttttgta ggtatttctg	540
gtaaacaaaat ccttaggtta tcttgctgt ggttgtggtt tggctttagt catgattca	600
aagtagaaat agcttaggcat tatttttga aatatatgac ctatatgttag tcaagaatcc	660
actgaacaga gggaaagcaaa cctttggaa actggcttt gggcagacag taaacgtcca	720
gtttgatgct ggaagcatga acagcttcat caggtaggta ctcctcaact ctgatgagtt	780
tgcctttca gcctaagggg gtggaaaggga gttgtttgag aatagcaaat acgcatgtt	840
attgcgagtg tgtggagaca aaggcagttc ccaccacagt taggtcctgg ccgttgtt	900
gttccttcgc ctgcgatgct cttgtacgt ctcacccctc ctctcccgcc tctgccttct	960
gctgggtcaa aggtggcctt ttctctcca gccttgaatt gttccctgtt ggcttcccaa	1020
ggcccatct gctggtacag tccacacttc caaagccaag acccgagagg gcttcaactg	1080
ccccaaagctt ctctcctgtt accttggat tctgtttgg cagaatcctt tgtcagcggc	1140
tcttgctctg tccttcctgt ttggccacag ctcttcaat caatgggtat tctagaaccg	1200
caggatgtca gagctggaaag ggacgcgata ccggtttaca caaggggaaa ctccctcgagg	1260
ctctgggagg gacggagggt tttggtgaca gagcgagagc taaaattttag gattcctgaa	1320
tccagatctt gcctccatc agccatctt ctccccataa atttttgttt tgtgcaaggc	1380
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	1440
aatgagcgg c	1451

<210> 80
<211> 1336
<212> DNA
<213> *Homo sapien*

```
<400> 80
ccgaggtaca aaggcttga ggtccatgga ctatacttgt cccccattat catcccaggt      60
ggtgcttga ccctgccata ccctggctat taagataaaa agatttgtgg acattaaaaat    120
tatgaatatg tcagtaataa tccagcacac attgaaatat tgacacagat taccataatt    180
tgtgcaacat cttataaaca atgtcatttc catagtagtc taaggcttca ccagcctggc    240
```

73

ccactgtatc tagactttag gttcatttta ataattatgc ttccttctc tgtatcattt	300
ggaaagtga taaaatatcac ttcccttagat accttcattc agtgatataat ctggcttta	360
caattaaatt ggaaaaggta agtttcttt tggtgggtt agagttggac catcaattct	420
aatctacaaa aggaaattca tgatttcaact ctgacgccta ggatctagcc aaggctggtc	480
tgcagtatca aatgtccaaa ctcatctact attagccata ttttgtgagt cgtttgcata	540
aactttgtca aaaatgcctt tgccatgatt ttgttgctat ctggatttca aacatggaca	600
gttaggaaga tgtgcattga agtaggaaaa tttgttcaga ttgctgtatt tatttttac	660
attaaacatg gacatgtctc tcaaaaaaaaaaaaaaa ggctgggggt actcgcccc	720
atagcgggttc ccggggggaa atgggtaccc gcccacacatc ccacacacaca accgagcacc	780
cccccccccacc cccaaaccaca atacatataa cacaaacctt acataaaaaa cactaacaca	840
acaaacacac aacaaaaaaaaa acacaccaac acacaaatca ccataacaca acaacataca	900
ccacaacaca caacaaccccc gcccacccccc caccactcaa caccaccaca caacacaaca	960
cccgccaccga cccccacaca cccccggcccc acccaccaca cgccccacca caccaccacc	1020
cacacacaca cacactcccc caacacacac acacccccccc caacacccac ccaccccccac	1080
aacaccaccc caccacacca cgccacccaca cccccacacac cgccaccaccc acaccccccac	1140
gaccacccac cacacacacc cacacaccccc cacacccacc cacaccccca cccctccccca	1200
ccaccacacc acacccaaaca tctcactcca ctctctcccc ccaccacccca cactcaacca	1260
catcatcaact cccctctaca cacaacaaca tcaccaacac tccacctgca cacacactca	1320
ctccccacac acatcacc	1336

```
<210> 81  
<211> 1605  
<212> DNA  
<213> Homo sapien
```

<400> 81	attataagg cccttcaa at ttgtggcttc ctttctcata ct tctcaagt ata atgaa ag	60
ggggagaaaa accccaccat caacaca aaa gaaggctata aagactgtgc accttttaac	120	
aagtcaattt gtagtcagtc cctgggcctg tctttttttt ttttaattt tgaagctacc	180	
tgagggtttag aattccttca gccctagctg ct tttattct gctttttatt taaacaaaaa	240	
gagggggagg atctgaagga aactagttt ctgtacaaag gctttgaggt ccatggacta	300	
tacttgtccc atttatcatc ccaggtggtg ct tgaccct gccataccct ggctattaag	360	
ataaaaagat ttgtggacat taaaattatg aatatgtcag taataatcca gcacacattg	420	

74

aaatattgac acagattacc ataatttgta caacatctt taaaacaatgt catttcata	480
gtagtctaag gcttcaccag cctggccac tgttatctaga cttaggttc attttataa	540
ttatgcttc cttctctgta tcatttggga agttgataaa tatcacttcc tttagatacct	600
tcattcagtg atatatctgg ctttacaat taaaattggaa aaggtaagtt tctctttgg	660
gggtttagag ttggaccatc aattctaatac tacaaaagga aattcatgat ttcaactctga	720
cgcctaggat ctagccaagg ctggctcgca gtatcagatg tccaaactca tctactatta	780
gccatatttt gtgagtcgtt tgtctaaact ttgtcaaaaa tgccttgcc atgatttgt	840
tgttatctgg atttcaaaca tggacagtta ggaagatgtg cattgaagta ggaaaatttt	900
gttcagattt gctgttattt atttttaaa taaaaatgg aaatgtaaaa aaaaaaaaaaa	960
aaaaaaaaag gctgggggta ctcggggcca tagcggttcc cggggggaaa tgggtacccg	1020
cccaacaatcc cacacaacaa ccgagcaccc ccccccaccc ccaaccacaa tacatataac	1080
acaaacctta cataaaaaac actaacacaa caaacacaca aaaaaaaaaa cacaccaaca	1140
cacaaatcac cataacacaa caacatacac cacaacacac aacaaccccg cccacccccc	1200
accactcaac accaccacac aacacaacac ccgcaccgac ccccacacac ccccgcccc	1260
ccaccacac gccccaccac accaccaccc acacacacac acactccac cacacacaca	1320
cacccccc aacacccacc caccccaaca acaccaccc accacacccac gcacccacac	1380
cccacacacc gccaccacca caccccaacg accacccacc acacacaccc acacacccccc	1440
acacccaccc acacccaccc ccctccccac caccacacca caccaacat ctcactccac	1500
tctctcccc caccacccac actcaaccac atcatcaactc ccctctacac acaacaacat	1560
caccaacact ccacctgcac acacactcac tccccacaca tcacc	1605

<210> 82
<211> 952
<212> DNA
<213> Homo sapien

<400> 82 tatatatagg cgcatggct aaatgatcat gctcgagcgg cgcaagtgtga tggatcgtgg	60
tcgcggcgag gtaccaggtg aagtgattgg cctgcagtta gggctgtgtt gtgcaaaaat	120
cacttgtttt ggggtgttag aaccacattt aggcgagaag atcacttttgg gggagcttgg	180
gaactgagggc aggccgcagg tgcagcagag gcatgagctt gccccggccccc gccctttgt	240
ctatgctcat ggagtgaagg gggggccagc ggaatggccc aaacaactga tttgttttc	300
tttttttaaa tcttttcag acaaatacca ttgtgtttaa gcgaaatgtg tgtataatgc	360

75

caaatacgt taccccacaa ccctgcacac ctctacactg gactgtaatt tcttggcct	420
agtttgtctt gctagactgt aagctccgtg agagcaggga ccgtgtctgc ttgttgagtg	480
ggctttcccc tgtgcctgcc agcatgcctg gcatctagca ggtttctgt aaagatggga	540
ttagtttcta aaccctccag ctcaggagt ggctccatcc tctgaggctc tggggccctc	600
tggcaggcta gtcattttc tgccatgtac gtacaatgtt ttatttcat gttgtatTTT	660
cctttcttagc cagtaagcaa agctcctact ggagcaagtt tctttgtggt gttatctctg	720
tatcctttca tcagggccag gccagagtaa gtaggtgtt cgaagggttt tggtaatgaa	780
tgactttggt acccccggca gtctggctca ctgtctgccc ttgtctaattc tagatgaagc	840
ccgattcgaa ggggggattt ccggagtgct tggggttgga aaaatctctt attgccgggt	900
actcattggg tcgggcgggg gcgagtgggg actgctggtc gggatgtcg cc	952

<210> 83
<211> 1933
<212> DNA
<213> Homo sapien

<400> 83 caccctttt gatagcatgt tatgaggctc accaaggctt atcccttggc agtatccctg	60
gcctgttctc cccatctccc ctgcctctg ctcaccagtt ccctaaatgt atcttcatct	120
cactagccct acagactgtg cacagagctg tttctacctc cagtacatg cttccggcca	180
ggtttctccc cttccgcct caatcttccc ctcaccaact taaggctta gggcccttc	240
taggagggcag tcccccaactt ccagagccag ggtataggct acttctatgt gtcccatggt	300
actgccacag aagagtctca gctctctcca ggattcagtt ctaaggctag tgcctaagat	360
aaaaatggag tgtaattaaa attccttta gaaatctaag gaagggtccc tattgaagac	420
caacatcttgc aggtcccatg tagtcatatc ttgcccattgt gggAACACAT tactgtttgg	480
ttgagtagcca ggtgaagtga ttggcctgca gttaggctg tttgtgcaaa aaatcacttg	540
ttttggggtg tttagaaccac atttaggcga gaagatcaact tttggggagc ttgggaactg	600
aggcaggccg caggtgcagc agaggcatga gttgccccgg gcccgcctc ttgtctatgc	660
tcatggagtg aaggagggc cagcggaatg gcccaaacaa ctgattttgtt tttttttttt	720
taaatctttt tcagacaaat accattgtgt ttaagcggaaa tttgtgtata atgccaaatc	780
actgtacccc acaaccctgc acacctctac actggactgt aatttcttgc tccatgtttt	840
tcttgctaga ctgtaagctc cgtgagagca gggaccgtgt ctgcttggc agtgggcttt	900
ccccctgtgcc tgccagcatg cctggcatct agcaggctt ctgtaaagat gggatgagtt	960

76

tgtaaaacctt	ccagcctcag	gagtggctcc	atccctctgag	gctctggggc	cctctggcag	1020
gcttagtcatt	tttctgccat	gtacgtacaa	tgctttatTT	tcatgttgta	ttttccttTC	1080
tagccagtaa	gcaagctcct	aatgagcaag	tttctttgtg	gtgttatctc	tgtatccttt	1140
catcaggcca	gcccagagta	agttagtgctt	cggaaagtgtt	tggtaaatga	atgaattatg	1200
gtaacccago	ccagttctgg	catcactgtc	tgcaggttag	tctaattcca	gatgaaagcc	1260
ccagattcga	aaaagggaag	attattcaga	agtgcataatg	gttgtataag	aaaaaaaaat	1320
ctcattaaat	agacctgagt	aaacttcaaa	ttttgatgat	ctggccatgt	cgagactgaa	1380
gcttaccago	tctctaaagc	atttgctagg	gaatcatgca	gatggtccaa	aatattttt	1440
agaaaaagcat	tcatctgtcc	cgggatagaa	gtagaggaag	ctggtaggca	ggcgctagac	1500
cctaaagaag	gactgctgag	ccagttctta	agccagtggc	tctttgcct	aaagcagcat	1560
tcctcaaact	tctcactcga	agcattaagt	tacggtgaga	tgctaacaca	cgcttttagac	1620
ttaagtcaaa	atttactgtg	aagccacagc	aaaccatggc	ttcacagatg	aattagttgc	1680
tacacaaata	agttcgatac	ataagtacag	taattgctt	taaaccttat	aataaggcagt	1740
aaattagaag	ttaaaccatg	tttttctttt	acgaactgaa	agaagagaat	gcttttgata	1800
ctgagaatcg	cacactgtgt	ccagggcagat	tgttcttgca	taaccagacc	cacaataaaat	1860
atctacaact	tttcttacat	gtttataaaa	taaatcttag	aaaaaaaaaa	aaaaaaaaaa	1920
aaaaaggcg	gcc					1933

<210> 84
<211> 376
<212> DNA
<213> Homo sapien

<400> 84	gctgtggtcgc	agccgaggta	ctccactcca	aatttcccaa	gaaattcaga	agaattgtga	60
	acaagttgct	ggtttcacaa	tactgcaagg	acactgcaag	gttattccaa	gttcctcagc	120
	aagtgtttac	acattgggcc	aaggacagat	tttcctgga	gaaggatttt	accactgcca	180
	ccatcttgaa	attcttcatc	gttttggAAC	acagagccat	agattttcat	ttctgcactc	240
	agctctgttc	tgagaccggg	gccatagggg	ttcttgaga	gacagggcag	atggaagaag	300
	tggaaggcat	ctgccacact	gtagagtgcc	tttaagccac	ccccattgcc	tgagttgttt	360
	tccttttta	caaatg					376

<210> 85
<211> 1325
<212> DNA

<213> Homo sapien

<400> 85
 gcccccactt tttttttttt ttttttttc agagacggag agatttattt taaggaattt 60
 tgtggctggc aagtccgaaa tccatagggc aggctggcag gctaaaaagt taagtgggg 120
 ttaatgccat agaccggagt cctgagttt aattccacag ggcaacaggc tggaaactca 180
 gatagggttt ctatgttgta gtctcaagga gaattccatc ttcttagga aacctaattc 240
 tttgttctta atgcctcaa ctgattggac agggcccacc cgtagtatgg tggtaacct 300
 gctttactga tttaagcggtt aatctcatct aaaaaaatac ctttaccacc atgtccagac 360
 tagtgtttga ccaaacaatg agttggata ctccacgcaa ggtgacgtgc aaaatgaacc 420
 atcacagcac ttcttggtc ttcatgtgcc cacctggtac atgggggtac aactatctgg 480
 cccaaagggg tggtcaatcc tgagtggata aataatagga atttagtcct atgatgtgtc 540
 ttgatttttc ttttcttttc ttaccttcct atttttatta acccgggtct tctgcgccca 600
 aagactcagc ctcattcagg accatattat gttcatactt ctgctgcgtc caaggagtgt 660
 tgacgaaaaa gtggggcctt ggagggtag aggccaaggg acagttccc ctctgccctt 720
 tgaagttcac gatcttccat gcaacaaaat tgtttctgt gaaaagcagg aatgaataa 780
 caacagcgta ggtgcgttgg ctatgtccgg tggcatttct tcagaatttt cataatgac 840
 acctgatttt ggaggcattt gatattttta aatacatcca gatgttgttt cagttgcttc 900
 ctcttgggtt cttttgctt ttctgttgg agcgtcactt aaattcgtgt catttcatgt 960
 tggtacaggt actccacttc aaatttccca agaaattcag aagaattgtg aacaagttgc 1020
 tggtttcaca atactgcaag acactgcaag ttattccaag ttccctcagca agtgtttaca 1080
 cattggggca aggacagatt ttccctggag aaggattttt ccactgccac catcttgaaa 1140
 ttcttcatcg ttttggaca cagagccata gattttattt tctgcactca gctctgttct 1200
 gagaccgggg ccataggggt tcttggagag acagggcaga tggagaagaat ggaaggcatc 1260
 tgccacactg tagagtgcct ttaagccacc cccattgcct gagttttt cctttttac 1320
 aaatg 1325

<210> 86

<211> 744

<212> DNA

<213> Homo sapien

<400> 86
 gcgtggtcgc ggcgaggtac tttaactta aaaaaatgaa catcttgta gagaattttc 60
 tggggAACAT ggtgttcaat gaacaaggcac aagcatttggaa aatgctaaaa ttctttttt 120

cctcaagatt ggaagtttat tttctgactc attcatgaaa gtcattcctt aattggaggc	180
ccaccattca attattcatac tattaattcc ttgatccttc atttatccat tctgcaaact	240
tttcttgagc accagcacgg gtggccattt gtggacttct cttcattcct atgtgtttc	300
ttatcaaagt gatccactct cgaaaggctc otcccagtc tgtgggtggg ttcaagtcat	360
gccagggcca gggggcccat ctcctcgttt agctctaggc aaaatccagg ggatctgcag	420
tggggagcgg gggcaggaag ctggagggaa ggcctgtgaa gggtagggat gtggaaagac	480
aaggtgacag aaggacccaa taggaccttt ctatatctct ggcttagcat tttctacatc	540
atattgtaat cgtcttattt gctagtttc ttccttactg tgagtgacta acagtcatct	600
ttatccccaaag tgcctggtaa ataataagtg atcaataat gttgattgac taaatgtaaa	660
aaaaaaaaaaaaaaa aaaaaaggc tggggaaatc agggccaagg cttgtccggg gtgaaattgt	720
ttccccccac aaaaaaaaaaa aaac	744

<210> 87
<211> 1833
<212> DNA
<213> Homo sapien

<400> 87	
tgctccagga aagttctgtt actccagggc ctctctctt tcctgataac atggccagca	60
agaaaagtaat tacagtgtt ggagcaacag gggaaagctgg tggcagactc cgccaaagcac	120
ctgggtctga agcacgttgt gtacagcggc ctggagaacg tcaagcgact gacggatggc	180
aagctggagg tgccgcactt tgacagcaag ggcgaggtgg aggacttctt ctggtccatt	240
ggcatccccca tgaccagtgt ccgcgtggcg gcctactttt aaaaactttctt cgccggcgtgg	300
cggcccgta aagcctctga tggagattac tacacctgg ctgtaccgat gggagatgta	360
ccaatggatg gatatctgt tgctgatatt ggagcagccg tctcttagcat ttttaattctt	420
ccagaggaat ttttaggcaa ggcgtgggg ctcagtgcag aagcactaac aatacagcaa	480
tatgctgatg ttttgtccaa ggctttgggg aaagaagtcc gagatgcaaa gattaccccg	540
gaagcttcg agaagctggg attccctgca gcaaaggaaa tagccaatat gtgtcggttc	600
tatgaaatga agccagaccg agatgtcaat ctcacccacc aactaaatcc caaaagtcaaa	660
agcttcagcc agtttatctc agagaaccag ggagccttca agggcatgta gaaaatcagc	720
tgttcagata ggccctctgca ccacacagcc tctttcctct ctgatccttt tccctttac	780
ggcacaacat tcatgttgac agaacatgct ggaatgcaat tgtttgcac accgaaggat	840
ttccctgcggc cgcctttca gtaggaagca ctgcattggt gataggacac ggttaatttga	900

ttcacattt	aacttgctagt	tagtgataag	ggtgttacaa	ctgtttggta	aaatgagaag	960
cctcggaaact	tggagcttct	ctccctaccac	taatgggagg	gcagattata	ctgggatttc	1020
tcctgggtga	gtaatttcaa	gccctaattgc	tgaaattccc	ctaggcagct	ccagtttct	1080
caactgcatt	gcaaaaattcc	cagtgaactt	ttaagtactt	ttaacttaaa	aaaatgaaca	1140
tctttgtaga	gaattttctg	gggaacatgg	tgttcaatga	acaagcacaa	gcattggaaa	1200
tgctaaaatt	cagtttgcc	tcaagattgg	aagtttattt	tctgactcat	tcatgaagtc	1260
atctattgag	ccaccattca	attattcatc	tattaattcc	ttgatccttc	atttatccat	1320
tctgcaaact	tttcttgagc	accagcacgg	gtggccat	gtggacttct	cttcattcct	1380
atgtgtttc	ttatcaaagt	gatccactct	cgaaaggctc	ctttccagtc	tgtgggttggg	1440
ttcaagtcat	gccagggcca	gggggccccat	ctcctcg	tttccatggc	aaaatccagg	1500
ggatctgcag	tggggagcgg	gggcaggaag	ctggagggaa	ggcctgtgaa	gggttagggat	1560
gtggaaagac	aaggtgacag	aaggacccaa	taggacctt	ctatatctct	ggcttagcat	1620
tttctacatc	atattgtat	cgtcttattt	gctagtttc	ttccttactg	tgagtgacta	1680
acagtcatct	ttatcccagt	gcctggtaca	taataagtga	tcaataaatg	ttgattgact	1740
aaatgtaaaa	aaaaaaaaaa	aaaaagggt	gggggaatca	gggccaaggc	ttgtccgggg	1800
tgaaattgtt	tccccccaca	aaaaaaaaaa	aac			1833

<210> 88
<211> 251
<212> DNA
<213> Homo sapien

<400> 88	ttaaaaatgt	aaaaaaatga	aaaaaaaagt	tttgagcatt	atttgcatca	ttgggataca	60			
	tatgtca	cactt	cacaagatgt	tcaattt	gaaat	acca	ctcattctct	atgtcctgtt	120	
	gtctgt	tagtg	tgcttc	agtt	catatt	gatgt	acct	aaatc	cgttga	180
	gaaaggagta	agtactacta	ttcattgttc	tattt	gttta	taatctgtat	tataaaattt	gacaa	ttcatgacaa	240
	cacataatta	a								251

<210> 89
<211> 458
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (327)..(327)

<223> a, c, g or t

<220>
 <221> misc_feature
 <222> (435)..(457)
 <223> a, c, g or t

<400> 89 ttgatattta tttagaaaaac aaggaaaagc ttttaattgt gtgcaatttt gtaagacaga ttataaaacaa atagaacaat gaatagtggg acttactcct ttcttgtcat gaatccagga tttaggtcaa ctcaatatga aaaactgaag cacactacag acaacaggac atagagaatg agtggtattt cttcaaaattt gaacatcttg tgaagtgaca tatgtatccc aatgatgcaa ataatgctcc actctgtcgc tcaggctgga gtgcagtggc gcaatttagaa ctcactgcag ccctaaccct cttggcttaa acaatcnctc caccttagcc ctctgagtag ctagcaactac aggcacacgc caccacaccc agctaacttt tttgaatttt tggagacagg gttcacctta tttttctcg tgccnnnnnn nnnnnnnnnn nnnnnnnnc	60 120 180 240 300 360 420 458
---	---

<210> 90
<211> 251
<212> DNA
<213> Homo sapien

<400> 90 tggtcgcggc gaggtacaaa aacatggcag taggacaact ttgagctcaa cgcgccgacc tccccaggac ctctcacacc cacctgaccc atccaagggc cacaccaccc cgacagatac tcccaccacc tttagaaaaag agtcacccaa tctggagaaa ggtgtggagg ttacatctt agaaagaaat catttaaat acatgaacat tagagaacac agtaaccgtg cttccaccca gcacggggag g	60 120 180 240 251
---	--------------------------------

<210> 91
<211> 2399
<212> DNA
<213> Homo sapien

<400> 91 ggccgcacatct ttttattttt ttttttttc ttacaaatgt gagtttattt tgcattctaa cccaaggcaca gatcccacat acagacttct cgtccgcact atggtagt aacaagtgc aaatatgctt tatttcaggt acaaaaacat ggcagtagga caactttgag ctcaacgccc acctccccag gacctctcac acccacctga cccatccaag ggccacacca ccccgacaga tactccccacc accttttagaa aagagtccacc caatctggag aaaggtgtgg aggttacatc	60 120 180 240 300
---	--------------------------------

tttagaaaga aatcatttta aatacatgaa cattagagaa cacagtaacc gtgcttccac	360
ccagcacggg gaggctgcag agaggcaccc caaacagtc ccttcttcc tgtggtaac	420
caagcaagcc ccgcaaagct tttcccagca gagcacaccc agccagcaat gaggcctcag	480
gacagagcca gcactgtgac aaaagaacctt gtcccaccta tctgagagca tgagatctgc	540
aagtgggatc cggactggac accaggaagc tcaacctggc tcgggccatc agtagctgtg	600
ggaccctggc ccccatctaa cctcccagtt gacttcctga aaactgggct agtgggggccc	660
tccccattgc ttttagggagg atcgagttag aagctgacca aatgcgcaga acacaaagcc	720
tagcctgtta gccccagctg ctatcaactac tgttactcac gaagaaaagga actgcagtgg	780
ctgctgtctg cccctggagt gaagacacca ggggtgcaca gaggctggac aagccacagg	840
gggctggatg gccacagccg gacctcggac ccatctcccg tggactcct tccatttgag	900
gctgtccatc ctccaatggc agatgcagaa ttctcaggcc caggataccc ttatggaggg	960
ccggggggcg gccccctcaaa accaccaagc tgaggccact gtgagcagtc ccctttgttag	1020
caggaagagc agctggacac atggaaagag gcttgcagge tccagagaag caaaaaggtc	1080
ctcagtccttcc aaggtaactag gtggaggtga gatcaggctg cccctccctg gacaagagtg	1140
tgagctggcc aggaggccac tgctgcccac cactgctcaa agtccttctc cacgcatcaa	1200
ccctgagggga cctggccagg ggatgcagac caaaggccca gcgggtcccc aggaacagga	1260
agcaggcggc aagaaggaaa gcaaaggct ctgcattccc accacgaggc ggggtggact	1320
ctgcaggagc cagctgaagc accagaacct tccaaggggg gctgcccagc cacacaggac	1380
acgagatgctg tgataggcag ggttaatgca gaaaccgctc atctgaatgc ttcccctgct	1440
tccaagcgc aaccaagtca ttttattctt ttaaaaaagc cttactgtc tgaggcttcc	1500
tttaaataat ccaacaggga tggaggtaat ggaggtctgg ctcagtagtc agcagacttt	1560
ttctgttaacg ggctagacgg taaatatttt gggctttcag agccaagagg caaaatcaat	1620
attatgttgg cgtaagagca aacaaatttc cacaattttt aaattgataa aatccaaaat	1680
acaataattt agtacatatt tttggtaat acatgtctac taaaaataag aatttttttt	1740
tttgtgatgg gggagaaaac acttcattgg gttcaaagat aatattccct atcataaaatc	1800
agtggcataa acagccagtg ggccaggtgg gcccaccgta tgctagctga caagggcagt	1860
cacacaccgg taagtgtga tacaggatga ggggtgcggga gctgaggatg ttgttcttct	1920
tgatgaaggc ctgaaaactt cccctggccc ctgctgcccc cctcaggcct cctcaggacg	1980
aaggccatga ggacagggttc ccactctggc cttcgctgg gggacatggt ttggttcccc	2040

82

catgccagg ctggccagct	ggggcccaag cactgaccgt	ccttccccac cttatccat	2100
cagctgcct gcacaggagc	agaaaaccca tgcctcagag	ctacttccta aggacactgc	2160
ccttagaagg ccctaaagtg	gcagagccgg ggatggcagg	tgcagccctg gccactagca	2220
cagcagttgc cctcagatct	gttagctgtg acccatagat	tgggggaggg aggaaagcca	2280
ggaggagctt ttgcagaaag	gtctggaagc taagtgggg	tttcaggagc ttcagggtg	2340
cccctggca ggtcccaagg	aggcctgggg tgcctgacca	gcacotcact ggccctcaa	2399

<210> 92
<211> 595
<212> DNA
<213> Homo sapien

<400> 92	gtgatcgact cactatacgca	tgttatctag atgcatgctt	cgagcggcgc ctagtgatgg	60	
	ataggctcgcg	gcgaggtaaaaaaaaa	aatcattaag gcaaattctac	aaaggaccag taaggcactg	120
	gggcacagca	gctgactgca	ggaagtctat gtaacttccg	gtagtaaaac agccttaat	180
	gcagacatag	gtgtgaaaaaa	ttcagtgtta	tgttttttt tcagtgtcaa cctgcaccta	240
	aagcacaaaa	gttcacttca	agtcacttca	atgtaataaa caattccat tcatcacatt	300
	accagtgaaa	agagaaataa	ttcactgggc	tagaaggaat tagaagcagg aataaagaaa	360
	atgccttttgc	gtttacactt	actaaagaga	atgtctttaa ctctccaagg aataccattc	420
	cgcttgcgtca	aattatacca	attaattagg	actcctctat attccatttta atgtcgatc	480
	attacataac	ttcaatagaa	taaacacttt	tttcccactt tgctataata atagctaggg	540
	atacctcaac	aatataataa	tggttaaat tatgaccatt	tctctttggc cttgt	595

<210> 93
<211> 1457
<212> DNA
<213> Homo sapien

<400> 93	cttatacctag	agaataactc	tgtatgaata	aaattgctta	attgagtctc	ttactaaata	60
	agtaactagt	gccatgcttt	tgtgagctct	tggtatggcc	catattactt	tgtttttttt	120
	ttttttatttgc	ttgttttgc	atagtcttgc	tctgtcgccc	aggctgcagt	gcagtggcac	180
	aatctcagct	cactgcaacc	tctgcctcct	gggttcaagc	aattctcctg	tctcagcctc	240
	ctgggttagct	gggactacag	gtgcacgtcc	ccatgcctgg	ctaacttttgc	tatTTTTAGT	300
	agagacaggg	tttcaccacg	ttggtcaggc	tggtctcgaa	ttcctaacct	caggtgatcc	360
	acctgccttgc	gcctccaaa	gtgctgagat	tacaggcgtg	agccaccgcg	cctggcctgt	420

ttgtttttt aacatgattt ttctctaagg ttaaataccca caaggccaaa gagaaatggt	480
cataatttaa accattatta tatttgttag gtatccctag ctattattat agcaaagtgg	540
gaaaaaaagtg tttattctat tgaagttatg taatgatccg acattaatgg gaatataagag	600
gagtcctaatt taattggat aatttcacaa agcggaatgg tattcctgg agagttaaag	660
acattctctt tagtaagtgt aaaccaaagg gcattttctt tattcctgct tctaattcct	720
tctagcccag tgaatttattt ctctttcac tggtaatgtg atgaatggga attgtttatt	780
acattgaagt gacttgaagt gacctttgt gctttaggtg caggttgaca ctgaaaaaaaa	840
aacaaaacac tgaatttttc acacctatgt ctgcattaaa ggctttta ctaccggaag	900
ttacatagac ttccctgcagt cagctgctgt gccccagtgc cttactggc cttttagat	960
ttgccttaat gatttgtaca aatgactggg aggccccat gctgcctgtg tcctggtagaa	1020
ccttaatgaa ggggcccgtct taggcacagt gcaaaacaag catttgcct gtactgttag	1080
agccaaaatt gtgatgagca atactgataa ttgtccagtt tatgtcatct ttcccagatt	1140
ttaaaatctg ttctagatat tcttagctt aaccactttt gatttgaaa tgtatttaggt	1200
gttgtcccat tattactgta aaatgaagtt ttgaatcttc ttgttaataa actgtggatt	1260
tcccccctca atttcttaaa caacaacaaa aaaatgctt aagattgtct ttgagtgtaa	1320
gatctgcctt ttcagaaagg gagtgttagt ttgttaatgtt aaaaaataaa gacctcattc	1380
aataaaaagtt gaagtcatct tttaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1440
aaaaaaaaaa actcgac	1457

<210> 94
 <211> 936
 <212> DNA
 <213> Homo sapien

<400> 94	
tatcaactata gcgatgtgtct tagatcatg ctcgagcggc gcagtggtat ggattgtgg	60
ctgccggcga ggtacacaac gccttctat ttgatctca tgactgtaga cgggtgcccc	120
attccccctg aaacaacggt tgcgagggtt gcgcattact gtttcgcctg tgcattacta	180
tcttgctgtt actactagcg atgatcttgc atcgaattgt atctcagcca cttatcctct	240
cagttatgtt caattaccat tgcatacttg tatacctcat ggagaaggga gttctctcca	300
gtcccaaccc atgaatgtgt tatcgattcg cgcatcggtt cgctcgcaac ctccagataaa	360
cactcttcat actttatcac taccttccat cttagtcaaa gctcaagaca aaaattnaac	420
aaaatgacac ctagccattc acctattaca accatcgacg tataagacac accattcgac	480

gtgaggaaat gacacacgta	tttccatcaa cgagagtgt	ggatgggagg gcaggacaca	540
gactggaagt cagcttca	gcgtataccccac ttactcacaa	gggctgacca tgatggccct	600
gctcttgc	atggacagcc agtggcactg atgcctgcag	gactgcgtgt	660
gccgacaaga	tgatgcacat tttaatattc	aaaatgtaaa caaagtatcc	720
aaaaaaagcc	aaagaatggc tttacttaac	aaattttaa attgcctta aaagtgactt	780
tttggcataa	tgccttctt aaaaaaagaa	ctctcacaaa aaaccatccc	840
aaaacaatgc	ctagatca	tcagaactga aatcctcaga tgaaacaggt	900
tgactgcta	cctctcagaa ggcttggcg	tatcat	936

<210> 95
<211> 480
<212> DNA
<213> Homo sapien

<400> 95	tctcgagccg cgccagagt	atggatgcgg ccgcggca ggtacttatt aagcagagca	60
	cttgcataa	ttcagaactg actcctgatt atcttaagcc	120
	ataaaagac	tcaagtttg	180
	catggactt	ttgtcctt tggccctga	240
	gtgtgccc	tctctgcca gcactaataa	300
	cacgttggaa	gagcaaagga tttccacca	360
	gcgtgccaga	tgatttat aggcaggac	420
	cttcattgaa	aagaaggaa gggacactgt	480
	ctttaatgca	catttaaggt tctttctgat	
	tattggcaat	ctctatgaac caacacttaa	
	tccatggct	aacagagaga tttttttt	
	tttaatgtga	agaggattaa agaataaaga	
	aaaaacaaaa	aagtctttat tctaaaataa	
	gaaatcagcc	ccatctgtgg cacagttctc	
	atgcagaata	ttgcacccag tgtgaactag	

<210> 96
<211> 1111
<212> DNA
<213> Homo sapien

<400> 96	cgtccaatca	gaggctctgt atttataat aacccgtgt	60
	ggattatgt	ctccagtgaa	
	tataactgga	gcctaaattc acaaccttaa	120
	gatctgacag	ccagatgtgg aaggctcaca	
	aagagctctg	ctaataagta atatgttgc	180
	aaagtgtct	gctaagtaag gtacttatta	
	agcagagcac	tttgcataat	240
	tcagaactga	ctcctgatta tcttaagcca	
	ttaaaagact	ttaatgttgc atggactttt	300
	ttgtcctt	ggccctgag tgtgccccat	
	ctctgcccag	cactaataac acgttggaa	360
	agcaaaaggat	ttcccaccag cgtgccagat	
	gatttatata		

85

ggcagggacc	ttcattgaaa	agaagggaaag	ggacactgtc	ttaaatgcac	attnaagggtt	420
ctttctgatt	attggcaatc	tctatgaacc	aacacttaat	ccatgggcta	acagagagat	480
ttttttttt	taatgtgaag	aggattaaag	aataaagaaa	aaacaaaaaa	gtcttataact	540
aaaataagaa	atcagccccca	tcttggcaca	gttctcatgc	agaatattgc	acccagtgt	600
aactaacgct	agaagcttca	aactgtataa	attnaaatgt	attngcata	tataaaaata	660
aagataaaaca	tatacatatt	ttacactagt	tatggaacag	caatgaacgt	cagtcgatcc	720
ctctttcaca	tttaacagaa	ctgaaaatctg	agtgcctaa	atactgccac	ctgtactgt	780
actatggctt	atatgtgcac	ggaaaacaaa	atccctgaga	agccattcga	ctttttttt	840
tttttttct	tttcttcaag	tagcgcgctc	cttggaggat	cacagttctg	aggttcaggt	900
tgtaaaacat	ttgctccatg	ttctcgtcca	tgcttcccc	caccaccccc	tcccccacctc	960
ttccccagtc	atccaaaag	caccctgcaa	gcacgcgttg	tcactcaagt	tcacagaaca	1020
cgctggggtg	agtgcagagg	gtctgccagg	tgcaaaagat	ggtccaggt	ttcagatgt	1080
ctctttctc	catggaaatt	ccacagccac	a			1111

<210> 97

<211> 395

<212> DNA

<213> Homo sapien

<400> 97

gcgtggtcgc	ggcgaggtac	caccagctac	ttcagagtga	agaaagaaaag	tgtcttcgc	60
cactggttct	taaggagtgg	atctccggtc	cacatctccc	aatgctgctt	agcccaggaa	120
atgaagacag	ctgacaacac	agaggaacat	taacgaaaag	aacaaacccc	aaacttgaaa	180
tgcataactg	ggactgctgg	aatgggccaa	ggcataaccac	ggcgggtcac	tgtcaccagg	240
agggcgctg	tgttttagaa	gggagtggcc	aacaccgtct	ggccaacctg	gaagggagcc	300
aacgtgacag	ctaagaacac	tagacaagca	tcctagcctt	ctcacccatc	gatctcagtg	360
tgatcttgcc	acagagccac	tggcaagcca	ttcgg			395

<210> 98

<211> 3813

<212> DNA

<213> Homo sapien

<400> 98

ttttttttt	gcatacagaa	ttattttatt	taacttaaac	catgttagtac	tttactagaa	60
aaaaggcagag	taagagaaaac	taacgttgcc	ttagcttcag	ccattcaaaa	tagacagttt	120
ctttttcca	ttatgtaaag	aatccagagt	atatcgcaat	aacaggaata	aattcttaca	180

acagaatata caaaaacatt ttgaaatttt ttcatctac tgattttta tataaacagg 240
attnnnnnttagg aataatttat acacagaaag tcattttatg taacaaattg gccatgttat 300
tacccctttt tttcttactt aaaaaaaaaatt ttttttaac aagaaaaactc agaaaatgca 360
ttatggcgcc tgcatccatt ccattccgc ttctggtttg atttttttta tcccagacaa 420
agggatacccc agaggttagac aaactctggc aaacctctca cctcaacccctc actggcttag 480
aaagcagaca ggtgtttca cggggcgctct cttccaccgg tggatgtgtg tgtgcaacgc 540
caaacatcca aatgaaaagt tgaaaacaaa acccaaatacg tttccagatc tttctctat 600
gtagcgcaaa aaccccaaggt gtttcccatg atagagatat tgtggagttt gggagacatg 660
gccaacaatc cactggagtt agaggaagt gagtcaactt taaaaccaat ttttgtgtat 720
gttatagttt ttataaaaaa ttctttctg tattggaaat acgtatcttc ggggttctgc 780
cttaaataaaa atagggtctc ttctgtgttc taacaaagca gtaatcaatc atgatacgg 840
gcatgtaagc aaatggcctg tgtgccccat agctgtcatc gtttatgtga tcactgtgtat 900
tgctgtaatc atcatgaaaaa ccattggctg tgcaagtcaag tcttcccatg tccatggcac 960
tgtgctgaca atgacggcag ccagaccaat caagccagat gccgaacggg gccatgcact 1020
gctgggctcc aacacctcgg ctgtttccat ggccaatgag gttctttcca tctgtaaagt 1080
agctacactc caaagggaaa tgaccagtga aaaatgatcc ccgctcccaa ccagagggtt 1140
ctggaaagac ccagatactg aagatacaga actacttggttt aatcatcat cattcccttg 1200
ttataaacta gggccaaaaa gcatgggggg aaaagagggtt gaaccacggg tggggtcagg 1260
gagaaatcct ttttggcat attgtaaagc tagcttagtaa acaggtgtcc taaaaaaaaaa 1320
aaaaaaaaatgg atcacaacaa cacatttgca cacacagaga aaaaaaaaaagt gtctttaaat 1380
tattttcgcc aattataaaac tacaaacatt ttataaaattt attctgttct tacaaaaatg 1440
caatgaaaca tttaatttagt tcttgtaaac cagatctcg tcaactgact acccgtaatc 1500
tactggactt aagagcccta ttgaaaacgc taatgagtga ctatgtttttttaa caatgtgac 1560
cagaaagatg cggacacacaca cacgtggac ataaaaatga gtgatcgta tgggtctcgca 1620
gaaacaaaaac gctaaaagtca tgccccagaa ctgacaactg acgagtgcga tggatgtttgt 1680
gttcttgaaac aattcgccctt aactccgaga tcagttccat gagtaggtat ttaggtttct 1740
ttgttggaaac caaatgccccca cgatgactg ctgagccctcg atgtggctcg atagcttcaa 1800
gaacaatcaa gttcaaaacc ttgcccacat tccttccaag ccctgcaccc tgctgctcgat 1860
aactcttctc tggcccgaa tccctgtgac aatggttctg taccaccaccc cgggtcattc 1920

87

caccatcaag gagcactcac ttctccaaat gacgcaacca gtcatctaag atgaaggcca	1980
aaaatgaaac cctctgacct gtccaaggtc tgtatcttca gcatctctgg caacagaggt	2040
tcaagtctaaa taacatcctc tcttgaagtt ctcatttcta ccaccagcta cttcagagtg	2100
aagaaagaaa gtgtcttgc ccactggttc ttaaggagtg gatctctggc ccacatctcc	2160
caatgctgct tagcccagga aatgaagaca gctgacaaca cagaggaaca ttaacgaaaa	2220
gaacaaaccc caaacttcaa atgcataact gggactgctg gaatgggcca aggcatacca	2280
cggcagggtca ctgtcaccag gagggcgccgt gtgttttaga agggagtgcc caacaccgtc	2340
tggccaccct ggaaggagcc aacgtgacag ctaagaacac tagacaagca tcctagcctt	2400
ctcacccatc gatctcagtg tgatcttgc acagagccac tggcaagcca ttccggctgcc	2460
agcctgcaga ggtggactgc tgtggaaaaa gttcagtgg aacaaactgg cctagaatct	2520
ggtgccagag aatagttggc tcataaatct tttatccaa agcacccaa tgtgcaccga	2580
gcatctcgcc atttggtagt tccacagtga ctgctttctt atttacgaa gccacttttc	2640
gtaccattga aatgtgactc cgcatctaa gaaacaggcc aggagaggcc aggtcggccca	2700
cgaacacggc cttccatctt ccaaggagga ggctcggtcc aaaggatgt caaacgtcat	2760
gacatccccac gaaggagacc tgggtggc tgggttttga tcaaggtaa cagtgtctcc	2820
agtacacacc agctcctgct gcctcaggga agggctgtgt gggagaacgt cttaatgctc	2880
acatcaattc catgatgtgc ctcagtggtt catatgactt caagcagtgt gagctgctgg	2940
cagaaggagg ttgcatgaa aatgccacaa ctcagctaa gattattgg aacacacaga	3000
gaaaaatcaa gaggcagaga aatcagcatg aagttaggct agaactgtgg atagatgtat	3060
ccttggata gtcaagggtgg gtgggttggc ccagtaaat gactgcacca tcacacaagc	3120
caagttttctt cttttattga ggtgtttctg aagcatttgc tatgtatggc actacactgt	3180
tagtgttttc tacttaaaag ctacctacat aaaacaaaaaa caaaatgaca tcagtaactc	3240
ggacagttta aacaaaaaccc ttataaccag ctgaatgatc ttagaaatc cagttgtgg	3300
aaccggtagg tatgtgcacg agaggagagg ccattattcc aaggggtcac ctacagtgt	3360
gaagaacaaa accctgatcc aacagtattt ctaatgacc ttaagatccc cggggcctg	3420
ggagagatgg gtcgcgttcc agcaggaggc tcctgagcgc cttcacttag gctggaaattg	3480
ccgaggagcc atccacgctt aggcaaaagct gccccccaca cttcccgacgaaatcatcag	3540
tgcctgtaag agcagctgct ggaagagggg agcgagccgt ctgtcctgtg agcagcagga	3600
ccagggagac ggaggtacag ccctggcgccgg gggggcggtga cgccacgagc ctcggcgccg	3660
gccactggc tttccagccg gaaggtttgg tacatctctg tctaccctta gggaaaggagg	3720

tgagggagaa gttgagaggg cagcctggag ggggaggggga ctctgctcct gcgtgttcc	3780
tatcagggac tggctgtgag gtccggagct ctg	3813
<210> 99	
<211> 960	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (716)..(716)	
<223> a, c, g or t	
<400> 99	
atgctcgagc cggcgcatat gtgatggatc gcccgggcag gtaccttggg gactgaggac	60
cttttggctt ctctggagcc tgcaagcctc ttccccatgtg tccagctgtcttcctgtcta	120
caaaggggac tgctcacagt ggcctcagct tgggtggttt gagggggccgc cccccggccc	180
tccataaggg tatcctgggc ctgagaattc tgcattctgcc attggaggat ggacagcctc	240
aatggaaagg agtcccacgg gagatgggtc cgaggtccgg ctgtggccat ccagccccct	300
gtggcttgtc cagcctctgt gcacccctgg tgtcttcaactc ccagggcag acagcagcca	360
ctgcagttcc tttcttcgtg agtaacagta gtgatagcag ctggggctaa caggcttaggc	420
tttgtgttct ggcatttgg tcagcttctc actcgatcct ccctaaagca atggggaggc	480
ccccactagc ccagtttca ggaagtcaac tgggaggta gatggggcc agggtcccac	540
atgctgtga tggcccggc caggttggc ttccctgggtt ccagttccga tccccacttg	600
cagatctcat gctctcagat aggtgggaca agttcttttgc tcacagtgtcttcctgtc	660
ctgaggcctc attgctggct gggtgtgctc atgcgtggga aaaagcttgg gccgttnaact	720
atggccatac ctgttccctg tgtggacatt gttctccgc tcccatcccc atccccccgc	780
acccaaccca ccccaacacc cacacccac gcccccaaac gcccacaccc acaacacccac	840
accccccac ccccacccac ccacacccac cccaaacaccc acaccctcgc ccccccccca	900
cctccaccca cccaccaacc cacaacacac cacacacccac ccaccaccag caccaccacc	960
<210> 100	
<211> 2754	
<212> DNA	
<213> Homo sapien	
<400> 100	
gccagaagca gcctcagtt ggcaagggtgt ggagatgact gctgtccct tagcatttgg	60

89

ggaaaacagg	ctccctcggt	agctcgatga	tcctcttttgc	atcttgttg	acctcctgga	120
gagtggtatga	cgctgggtggc	cttagctttt	ctagacagtgt	taaattgcac	tgggcgtatgt	180
ccccagagca	gggcaaggtc	tctagagcgg	gtctcccaca	tgactggctt	cacacaggca	240
cttccgcctcg	ggttgcata	tctgtgtcat	cttaccggtc	cagggttgca	ggttaggaaat	300
gtttgtaccc	tcttctgatt	gccacccct	tcccatcgcc	ccttagggac	agggcttgag	360
ggccagttag	gctgtggca	ggcacccca	gcctccttgg	gacctgccc	ggggcaccct	420
gagagctcct	gaaacccca	cttagcttcc	agacctttct	gaaaaagctc	ctcctggctt	480
tcctccctcc	cccaatctat	gggtcacagc	taacagatct	gaggcaact	gctgtgctag	540
tggccagggc	tgcacctgcc	atccccggct	ctgccacttt	agggccttct	agaggcagtg	600
tccttaggaa	gtagctctga	ggcatgggtt	ttctgctct	gtgcagggca	gctgatggga	660
taagggtgggg	aaggacggtc	agtgtttggg	ccccagctgg	ccagcctggc	gatggggaaa	720
ccaaaccatg	tccccccagcg	aagggccaga	gtggaaacct	gtcctcatgc	ccttcgtct	780
gaggagccct	gagggtggca	gcagggggca	ggggaaagttt	tcaggccttc	atcaaagaga	840
acaacatcct	cagctccgca	cccctcatcc	tgtatcagca	cttaccggtg	tgtgactgcc	900
cttgcagct	agcatacggt	gggcccaccc	ggcccactgg	ctgttatgc	cactgattta	960
tgataggaa	tattatctt	gaacccaatg	aagtgttttc	tccccatca	aaaaaaaaaa	1020
aattcttatt	tttagtagac	atgtatttac	aaaaatatg	tactcaatta	ttgtatTTG	1080
gattttatca	atttaaaaat	tgtggaaatt	tgtttgctct	tacgccaaca	taatattgat	1140
tttgcctctt	ggctctgaaa	gccaaaaata	tttaccgtct	agcccgttac	agaaaaagtc	1200
tgcgtactac	tgagccagac	ctccattacc	tccatccctg	ttggattatt	taaagaaagc	1260
ctcagacagt	aagggctttt	ttaaaaagaat	aaaatgactt	gttttgcgt	tggaagcagg	1320
ggaagcattc	agatgagcgg	tttctgcatt	aaccctgcct	atcacgcata	tgcgtct	1380
tgtggctggc	gagccccct	tggaagggttc	tgggtgttca	gctggctct	gcagagtcca	1440
ccccgcctcg	tgggtggaaat	gcagagccct	ttgtttct	tcttgcgc	tgccttctgt	1500
tcctggggac	ccgctgggcc	tttggctgtc	atccccctggc	caggccc	agggttgcgt	1560
cgtggagaag	gactttgagc	agtgggtggc	agcagtggcc	tcctggcc	ctcacactct	1620
tgtcctggga	ggggcagcct	gatctcacct	ccaccttagta	ccttggggac	tgaggacctt	1680
ttggcttctc	tggagcctgc	aagccttcc	ccatgtgtcc	agctgctt	cctgctacaa	1740
aggggactgc	tcacagtggc	ctcagcttgg	tggtttgag	ggggccccc	ccggccctcc	1800
ataagggtat	cctgggcctg	agaattctgc	atctgccatt	ggaggatgga	cagcctcaaa	1860

tggaaggagt cccacgggag atgggtccga ggtccggctg tggccatcca gccccctgtg	1920
gcttgcctcg cctctgtgca cccctggtgt cttaactcca ggggcagaca gcagccactg	1980
cagttccttt cttcgtgagt aacagtagtg atagcagctg gggctaacag gctaggctt	2040
gtgttctgcg catttggtca gcttctact cgatcctccc taaagcaatg gggaggcccc	2100
cactagccca gtttcagga agtcaactgg gaggttagat gggggccagg gtcccacagc	2160
tactgatggc ccgagccagg ttgagcttcc tgggtccag tccggatccc acttgcagat	2220
ctcatgctct cagataggtg ggacaagttc ttttgcaca gtgctggctc tgtcctgagg	2280
cctcattgct ggctgggtgt gctctgctgg gaaaagctt gcccccttg cttggtaac	2340
cacagaagag aaggggactg tttgggtgc ctctctgcag cctcccccgtg ctgggtggaa	2400
gcacggttac tgggttctct aatgttcatg tatttaaat gatttcttcc taaagatgta	2460
acctccacac ctttctccag attgggtgac tctttctaa aggtggtggg agtatctgtc	2520
gggggtgggtgt ggcccttggg tgggtcaggt ggggtgtgaga ggtcctgggg aggtgggcgt	2580
tgagctcaa gttgtccctac tgccatgttt ttgtacctga aataaagcat atttgcact	2640
tgttactgtta ccatagtgcg gacgagaagt ctgtatgtgg gatctgtgct tgggttagaa	2700
tgcaaataaa actcacattt gtaagaaaaa aaaaaaaaaat aaaaagatgc ggcc	2754

<210> 101
<211> 301
<212> DNA
<213> Homo sapien

<400> 101 cagcggggga atgtatagac aatatggccc atgggtcact aatgctgcga gcgccgcgg	60
agatgtgatg gatggtcgcg gccgaggtac atttaatcca tcttctccat ttctcttc	120
aggagccagc tatgagattt cagtgcattt ctggccagc ggatgttcat tctccactaa	180
acttcatctt ttactaagca aaggggatt attccatgag gcagccagga gcaaggggcc	240
atgatattca tgactttgtc tgctggcat ttttcaaagt gtccttgaat tcactcagca	300
a	301

<210> 102
<211> 4318
<212> DNA
<213> Homo sapien

<400> 102 gttgtatatg cttttttttt ttccaaataa acttgtcacc ctgcattggcc ttggcaaata	60
---	----

91

agtgaaggcag	aaataggaac	acagtccaca	ttcaagttga	ggaacagtgt	atctttaaga	120
gctgaccttt	gggtgacctg	gaaaggggga	aagatggcta	agcatggaga	gaaacgaggc	180
aagagacaag	ctatgataca	acaccgcttc	agcccctgcc	ctcaatagca	cacaacccac	240
atatcagctt	tctctagaga	aggaacctac	tgttagtgc	tcctacttt	gcaatgttg	300
tgctacgcca	gaatttctcc	agtttttttc	attatcatcc	ccctgagaaa	aaaattacat	360
tgaatttaaa	tttccctaa	taagagaaat	taaatatgaa	agaataggat	tttgttgggt	420
aagattgagc	tttggaaaggt	cacgaaccat	tattctatct	aagggtgtg	ttttgttttg	480
ttttttttg	ttttttttg	ttttttttt	tgcaatccc	ctccccctga	accaattca	540
cattggaaat	gcaggaccta	gactgctgaa	taaaaagcta	cttcttctat	aattgtcagg	600
ttctctccaa	tttctcagct	tcctcaaaga	catggggtgg	agttgggtgt	gccatcaactg	660
agagagctct	ggaactttt	actcttagt	acatttttag	attttaggggt	tcatggcctt	720
ccacatgttg	ccaccaactg	gtgatctctg	ccccttcatg	ctgatcaaga	aagtagaaac	780
tcctcgctgc	tttcagggtt	gcagtcgcag	aaacattgcc	tgctgtggac	tgtcagcaca	840
aaactgggac	actgggtgtca	tttagactgt	cagcagtgca	catgattgta	cgatagactc	900
caggcaacca	tgtgcacatg	tgcaagatga	cctctcccc	aagagaaggg	ttacggtcta	960
attaaatgtt	taccaagatg	gtaccagtgg	gctctcccg	tgtccttgg	tgttattgga	1020
gctgggttat	gacagactca	aggaaatttt	ttaaggaaaa	tgaagaagaa	atcaaccttt	1080
atggttctct	ttcattggaa	gaggagaata	aggaaagaaa	tggcaggtag	agagggaggg	1140
ggaaaggaat	agaaatggca	tgtctttgat	gctgtggctt	gtgtggggac	aatgggaaga	1200
gcacagcagg	cacaacatat	ctgtgttagt	gccacgtgg	atctgttaag	tatggccaga	1260
gcctcacata	taagtgaaga	gagtaagac	aattcttgct	ctttgaacaa	taatagtcta	1320
tagaatttct	attggcaaac	catcccagac	aacctgac	atcaaacaaa	agcaaataat	1380
ccctgtctca	gaactgctgg	tctaaaagct	agaaggggca	tgataatgga	aattgctaga	1440
aaagagagaa	tgctctactc	tcttcctgt	gcctacctac	ccccatccta	aaccctgtaa	1500
aacagaattt	caaaatagat	gtcaaataatg	aagtaattca	gacttccaaa	gaaggaaaga	1560
gttctgccc	gggcagtatg	agcaaatcca	cagggatgtt	aagatttgg	ccaaactcaa	1620
ggtttatggg	cagtgaggct	agagtcttt	gagagtaaac	ccttgcattt	gggacaagga	1680
gaatatgtga	agttcaggag	tgctcacact	agagcaagat	ccagaaaaaa	aaaaatccaa	1740
tggcatttta	aacttagattg	cattatca	caatgctgtt	actttgagca	gacaaatcag	1800
ttgaatggga	gggcaaatgg	cagaaatgaa	caaaagctat	taggtgaaag	catccccat	1860

gtatcagttg tgagatgatt tttgttaat gatgatcagg tttacattga agtggcttgg	1920
aagacgtatt tcagaggac tgggttgta ctgcaaaact ctgaacacta gagcagggttc	1980
tactagcact tggcagtaa ggtagcgggt gtgtattatg ctattgccat agttctcgtc	2040
tttgtggatt cacataccct ttcccatgag gagcttgcta ctaacagcct cctgttctg	2100
ttgttttat atgggagaag agaaagagct tggaaattca attgtctaaa caattggtat	2160
gatttacaag aaggcaaacc attcaggaga tggtaaacag tgtatcatc ttagcattca	2220
atacaatgtt tattataaaa tatacacctg agtttatgtt tttctgccag gctgaaggc	2280
aataatgtct tgctatgcaa acactctatt ttatgtgtga attttttaa ctgttaatttt	2340
atgtgtgaat ttttttaact aaactctatc atcattttct atgttgacat ctttttttt	2400
tttaatctg tttccaactc tgagtctgtg aactatctct tctgactgga tgctggccta	2460
aaatcctatt agtgcttaaa cagacctcaa aacactctga acctgttaggc caatacagag	2520
atgttgttct ttgatataatc ttgggtcctt gatggcttca acaaacaagg tcataattt	2580
tttaattca gtgtttctg tagatacctt cttctcagtt tcattaagaa gagtaaccat	2640
ctttggtttt ccaaagaatg gaaactccta ccctagactt tagacttaga gcgtctgcct	2700
ttcacgatga gtaagagatc cagaatgtt aggggatgtg cgtcagcccc cctggtagcag	2760
tggcaaagct gaatgcgaac ttgaggcctc ctgaggcctg accttctatg cccccagccc	2820
tccaccccaa gcacctttt gtgtggctgg aaacacatga cattggatgt gatTTTCTC	2880
aagcccttca ctgtggaagg catggagac tgcccagcat tggcatgtg gctgttaacg	2940
tttccatttc aagtccctga ttcttactgg agaagttaag gagccactta atgtttcac	3000
agacctctga ttctgttgc aatgtggcat tccagtgagt acaacctgt tgctataaaag	3060
aaagcagcat attttgacaa ttttatttct tccttggta cttacatttt tattacaaaa	3120
atggccgtta taaaaaaaaa cagaaggct gggcagtggc ttgctcccta gaaactgaga	3180
ttccgaagca ggtgtttctt ctcccctaga ctcagaggta catttaatcc atcttctcca	3240
tttcctcctt caggaccagc tatgagattc agtgcatttc tagcccaagcg gatgttcatt	3300
ctccactaaa cttcatctt tactaagcaa agggggatta ttccatgagg cagccaggag	3360
caaggggccaa tgatattcat gactttgtct gctggcatt tttcaaagtg tccttgaatt	3420
cattcagcaa acaaagctt ctggagaatc tctcaaaact taggcctgc tccatttggc	3480
caaaaatgat ggctgctcca aaactctgaa cttctaaaaa ctccatctgc tacatttattt	3540
ctggagtttta aacatgactt tttctgtctt tgagtataga tgtgtttgtt taattaacga	3600

93

agcacaagtc	tgttaagcag	aaggctccaa	gctgtattct	atacttggga	atccttggtg	3660
ccatctttat	tctaccaagt	gc当地atcacc	atggctaaag	tggcgctata	ttacagcctg	3720
tgtcctaagc	ttagaagctt	taatgtactt	ttttaaatga	aaagtattag	aggggggttga	3780
acattgtAAC	taaAGcataa	agttAGACCA	attACATGCA	gagATGTTA	tttaatattg	3840
tgtgagctga	gtccttctgt	ataAAattatt	tgcACACTT	tcttgcATGA	tgaACTGATT	3900
ttttatAGTT	gtttgtacca	gacGGTGGCA	tatTTTGTa	aaaaACTTT	gacACTGAAT	3960
tgcaataAAA	tgTTTTCCA	acaAAAAAAA	aaaaaaaaaa	tgcGGCAGAG	gctgcGGGGC	4020
gacgcgcggg	ccggcgcAGC	catGGTGAAG	attAGCTTC	agcccGCCGT	ggctggcATC	4080
aaggcgaca	aggCTGACAA	ggcgtcggcg	tcggcccCTG	cGCCGGCCTC	ggccACCGAG	4140
atcctgctga	cGCCGGCTAG	ggaggAGCAG	ccccCACAAc	atcgatCCAA	gagggggggc	4200
tcagtgggcg	gcgtgtgcta	cctgtcgatg	ggcatGGTCG	tgctgctCAT	gggcctcGTG	4260
ttcgcctctg	tctacatcta	cagataCTTC	ttccttgcgc	agctggcccg	agatgcgg	4318

<210> 103
 <211> 2288
 <212> DNA
 <213> Homo sapien

 <220>
 <221> misc_feature
 <222> (948) .. (949)
 <223> a, c, g or t

<400> 103	tgtgacggaa	acattcacac	ggaacagcta	ggccatgata	cgcAGCTTC	cccgtctatg	60
	ggataccaaa	gttgcAGCA	attaatttac	attacaaaaa	aggAGAAACC	attatTTATG	120
	ctatcaccaa	agccataccc	ttaaaAGTAA	aaACACATCT	ccacttgata	ttagtaattt	180
	gagAAAACtt	agcatatcta	caactactgc	ttaatccaca	acttttcatt	gattcaACAT	240
	tatcacttaa	atgcAGATGC	aaaATAACCC	ttgcatGGCA	aACATGTTA	ctctgtgcta	300
	atgAAACttat	gaaACAGTTC	ctgcaAGTTC	acAGACACAG	tcaatCAATG	attgactaca	360
	gaACAGACTG	gtgAGTGTta	ccAAAAACAA	aAGACCTGCC	cAGGGACCA	ctAGGGGTGG	420
	aggAAAGAACa	cctgggtctc	actcaCTGGG	cacttgatgc	tttcatTTTT	atctgtAAGC	480
	cAGGGACCAA	ttatattaat	attgtatgaa	tacactgcta	ctggggAAAAG	cattcattca	540
	acAGATGCC	agctacatac	tctgtaccag	gtAGTGTGTT	aAGTGTGAA	acAGGGAAGG	600
	acaAGGcaca	tcctacgggg	gctcgAGTG	tggcAGGtg	ctgagCTAAC	gcACACACAC	660

94

aagggctggg tacctgccag atctgtatca ctccggagcc aacgacctgt ctctctgaat	720
gatctctggc atggtaaaag agttaactgc tatttcaaac aggctgaaca caaaaactttt	780
tttgccttcg cttactgcac tgcttctcaa acttgactca cgctggcttc acggcctgcg	840
acgtactgca ctcacgaact tactcctgct gaacgccttg cgccgctaac tccactgcgc	900
tcactacgcc tgcttctccc tgctgctgca cacactctgc tctactcnnc cgctcacaat	960
ctctccacac aacataccgg agccagcccc cccccctcc ccccggggg cccctgccc	1020
cccccccccc ccccccccaac actataactc ctgcgctcag cgccctcacct	1080
gccccccgac tccccccagc tccggcccac acaccatgcc ccgcagccca accctcgcca	1140
ctccccacact gcacccctccgc gcctccaaac agccccccgog accaacacac accggggccca	1200
cacgcccact acccccgccc gcccagccca cccaccactc ccgacatgcc ccctccgccc	1260
ctccaccata gaacacccctcc gccccggccc cgccggccgac ggccccgaca ccgcgggggg	1320
gccccccgcca acgccccgac gccaccaccc ccacacacgc acccagccac	1380
cactacccgc caccatcccc accccaccac tccccccgg cccacaacca ccggccggcc	1440
acccaccaac acacgcccgc acgaccccca cccccccccg cccaccaccac tcgccccggcc	1500
aacaacccgccc acccacaacg cgcccgcccc accggccccag ccacccatcc acacccaaact	1560
accagcccccc gccccccccc ccccgccacc gcaccccaact ccaccaagac gaaaactccc	1620
gacaccgccc actaaacgca ttacagcaag ccgctgagac ccgaaaacaa ccccccgcaa	1680
gcagaggcac cgctaccatc aaacgcaaca accacacaac gcacggctat catccccccc	1740
ccaccgtgac cacaacgca ccaccccgcc cgaccagcac gccacacccc cacggccatc	1800
acgcacagca ccacacccca cgcaactcaca cgacgaaata cccccacgccc agccggccaa	1860
ctccccccccc ctacggcaca aaccacacg ggggacccac acctaccaca cacacgcaac	1920
acaggacgca tcagaactac ctaaccacac gcacgaacac acaacagcac accacccccc	1980
aaccacggac gcacgagctg tcgacccact accaccacac acgatgaccc gacacagcgt	2040
gcgagcgcca taccgcgga gcagcacagc caatgcacgg cccacgacg gcgacacgccc	2100
gccatcccttc agcctcgccg caccggcgtc caccgaacca agaccaagac gcagaatcgcc	2160
aggccgcacc acacccgcta cggtccgtag cgagacagca aacaacaaga cgactgcggc	2220
gccggccacca cggccaagca actacgcaca accaccgacg cctcatcacc ccaccaccac	2280
aacactta	2288

<210> 104

<211> 592

<212> DNA
<213> Homo sapien

<400> 104
ggatatcgac taactataagg ccatgttgac taatgctgct cgagccggcg ctgtgtgatg 60
gattggtcgc ggccgaggta cacatattca tgccactcgg ctctgaaaag aggttcaagg 120
tgggtcaagg tgggtcttgg ccagtggagg aaggaaggtg tccaggactt taggttaatc 180
aacagtgggg acagagagga atgattccc ttgtgaaaac aacagggttc ctttctcata 240
ttcttgtggc cagaaactgg ggtgaacttc agttgtggtg taattgaaat gaaacagtga 300
gagccatttc tccatggaac tcctatgacc tccatTTAA cttctgacaa agttaacttc 360
atttatacaa tctgtatTTG aaaacagtaa tcacaaccaa aaaggtccta taaaacctgta 420
atagatgtca aaggattca cattctgaac tttaattttt aggacccttt aaaaggccta 480
gacttggatt aaagtaaacg taatattcca agctaaaacg aggcaccata aaaaatcaac 540
tcaaaacatc caaacaatgg ctagatggac taatgttagt tgTTTGTCTT tt 592

<210> 105
<211> 2180
<212> DNA
<213> Homo sapien

<400> 105
ttttttttt acatctgtac aagatttatt tcatttacca caagTTTAg agtggaaAGTA 60
tatGCCCTAA tacagaagga gtgattcaga acccacaaaa agatcaagag ccaaAGTCAG 120
ggCTTGTATC ccaggtoaat aggagTTCA tccGCCATTt gTTTTCTGG gattaaAGAG 180
atgatgtca gaacGCCCGG gctgagctca ctatggcttc tgacatacaa gcaccactag 240
gaacaagact tcatgcttca tccttgctct ggctgtgcta gtgagtggca aaAGCCTCTG 300
ctcgtgcttgc ccctccaaat ttttccaaAG cattcctgtt actagccata gcttccccatG 360
acttcacatt tgagtaagtt atcctgaagt gtgtggctgt aatattgaca aatagaacta 420
atgagagtga actGCCatCT gtttaacAAA acgcactttt ctaagagaat acccagtctt 480
agtgcatttA gtacatagtc acaacattGA aatgacgtGA gaatcaatac aaaaatatttA 540
tttttttca aaccacagaa ttcttaacCC cagagCCACA caataaaAGTT ctcagaatttG 600
taAGCCATTA acatTTTCTT aaacaatgca gtccagagat gaagataatt tccaaccAGC 660
agggatgcaa tatatagttag gttcccctat gaatgaagct caaatttagca tttccTTAA 720
ttctcccaca gCcactccat caacagaAGC agaaacAGTA cacatattca tgccactcgg 780
ctctgaaaag aggttcaagg tgggtcaagg tgggtcttgg ccagtggagg aaggaaggtg 840

96

tccaggactt	tagttaatca	acagtgggga	cagagaggaa	tgatttcct	tggaaaacaa	900
caggggtcct	ttctcatatt	cttgtggcca	gaaactgggg	tgaacttcag	tgggtaatg	960
aaagaaaacag	gagagccatt	tctccaggaa	ctcctatgac	ctccatttta	acttctgaca	1020
aagttaactt	catttataca	atcgatttga	aaacagtaat	cacaacccaa	aaggtcctat	1080
aaacctgtaa	tagatgtcaa	agggattcac	attctgaact	ttaattttaa	ggacccttta	1140
aaaggcctag	acttggatta	aagtaaacgt	aatattccaa	gctaaaagag	gcaccataaa	1200
aaatcaactc	aaaacatcca	aacaatggct	agatgactaa	tgttaggtgt	tttgctttt	1260
agttgcaaag	ctttcagta	tctcagatta	gtgtatgttc	ataaaaacaat	gctcagttat	1320
tttaatagct	gcttatgaaa	caataacagt	ttaactcaag	ggcaatgctt	cttgcataat	1380
aatcacaaaa	ataatataact	gctataaaac	gggaaaaaaaa	gtagaagaaa	ataaagccag	1440
cctcaataat	aaaaaggcaa	aatctggagg	ggttactcgg	cttaaaaaga	gattaaccag	1500
gattatttaa	atactataat	acacagtgt	cctgctca	tctaactgca	gaaaccaatt	1560
ttgtttgcta	gatcaccatt	acctttgcta	gtatgcgtac	agaccaccac	tcggaagttt	1620
tcctttgtg	ctgaaaaacg	ttcaaatccc	ttgtttggtc	agtacagaat	attgcgaggt	1680
gatgctcatg	caaactcttc	ctgaggaatt	tatgtgtca	aatctgcaac	ccgacagcat	1740
ggcacgcagc	cagggagtgg	tagctgcaca	gtgtgagcac	tggagatgga	tgtgcagtgt	1800
gcagtgttca	cagccatgga	catcattct	tctgcaatct	catctaccca	caaattagct	1860
ttcactctag	accccaaagg	gaggtaatt	gctgcaaatt	tgttaaagg	acagaagaaa	1920
aagtagctt	tctacaaaat	aatgcacaat	gcatgcac	gggtttgtgt	ttcttctcac	1980
taaccttgcc	taagaaccat	tagataaaa	gtcacaacac	caggtttgc	tttctgcccc	2040
acaaaaaaaaac	agtagttaat	tcctgtcagg	ttagggtaca	ggtgtgacaa	caaaaggta	2100
caaaatgaca	atgttactga	agcttaaggc	caacctttaa	aacatgtacc	gtctctcaaa	2160
acaattatcg	atttactttt					2180

<210> 106
<211> 611
<212> DNA
<213> Homo sapien

<400> 106	cggcgtctg	gcbcaggatc	gttacggagc	tatctggag	gaggaagccg	tccacccaag	60
	ctcacccgac	tggttcaagg	ttaacaatgg	agagcctcac	aaacacacgg	aggcacttgc	120
	gagaggcaga	ggctggggcc	acagagctgt	gaggagagag	tgaatctccg	tgcacatggcag	180

97

acatgttgtg	agaggcagag	gctggggccg	cagagctgtg	aggagacagt	aatctccgt	240
gcacggcaga	cacacaaacc	ccatcctcag	ctgcagattc	acaggagagc	atgggggcaa	300
gtggctctg	cagttataca	gcaggacagc	gcacggcctt	ggcaggcca	caatttctta	360
aagggaatgg	gaaaatgaga	gcttacggaa	agcaggataa	agcgcctcc	actcatgctg	420
aaaagcacga	agacctgctt	tccaggaatg	acctgcctga	ggccgggaca	gtcagctacc	480
aatgcaagac	acaagagcaa	gaaggccaa	gtcagagag	cgcaagttaa	ctcctccagc	540
tccaagacac	agggtgagag	caggctacgt	gtggcagag	acggcatcta	tctgcccattc	600
tctggaaaaa	g					611

<210> 107

<211> 1845

<212> DNA

<213> Homo sapien

<400> 107						
cacgaccatc	tcgcactacc	ctgactacag	ctggagcgc	cagaggcgag	ccctggtgga	60
ggaagaggtg	agctgagtgg	ggcctatgct	gggggaagct	ggcccttccc	acattccacg	120
ccctgagtgc	ggagtgcgt	tttccgcccgg	ggtgctttga	gtctcgctct	gtcaccaggc	180
tggagtgcag	tggtgcaatc	ccggctca	gcaacctccg	cctcctgggt	tcaagcgatt	240
cttctgcctc	tgcctccga	gtagctgggg	ttacaggcac	acaccaccac	gcccagctaa	300
ttttgtgtt	tttggtaggg	acggggtttc	accgtgttg	ccaggatgg	ctctatctct	360
tgacgtcatt	tgtgatccac	ccgcgtcagc	ctcccaaagt	gctggattta	caggcgtgag	420
caatgtataa	aacagacttt	atttttaga	gcagttgaag	gtaacaggaa	gtggagctga	480
aaacacaggg	tggccccatc	catgcctct	cacagccct	cttcctctg	agcccctcac	540
gtccttggct	ctcctccgaa	gcttctttc	ccagagatgg	gcagatagat	gccgtctctg	600
cccacacgta	gcctgctctc	accctgtgtc	ttggagctgg	aggagttaac	ttgcgtctc	660
tgcacttggg	ccttcttgct	cttgcgtctt	gcattggtag	ctgactgtcc	cggcctcagg	720
caggtcattc	ctggaaagca	ggtcttcgtg	ctttcagca	tgagtggagg	gcgctttatc	780
ctgctttccg	taagctctca	ttttcccatt	ccctttaaga	aattgtggcc	tgcccaaggc	840
cgtgcgtgt	cctgctgtat	aactgcagag	cccacttgcc	ccctgctctc	ctgtgaatct	900
gcagctgagg	atggggtttg	tgtgtctgcc	gtgcacggag	attcactgtc	tcctcacagc	960
tctgcggccc	cagcctctgc	ctctcacaac	atgtctgcca	tgcacggaga	ttcactctct	1020
cctcacagct	ctgtggcccc	agcctctgcc	tctcgcaagt	gcctccgtgt	gtttgtgagg	1080

98

ctctccattg ttaaccttga accagtcggg tgagcttggg tggacggctt cctcctccca	1140
gataccctca cgtaccctgg gttctgggt gtcacagaag ctgctctggg tgccggccact	1200
ctggagcggg gcccttgc caggtgagac acccttctcc tcagcaagcg gacttggtgc	1260
gcagcaggcc aataacgtcgg tgccgacatg ccatgaagca cgggaggccg taggagattg	1320
agggaggtga atgactcagt cctcatcgta aggagcgcgc tgaggccgaa gatgagcagc	1380
ggagctggtg catggggccg actggcccca tccatgccct ctcacagccc ctcccttcctc	1440
tgagccccctc acgtccttgg ctctcctccg aagttcttt tcccagagat ggggcagata	1500
gatgccgtct ctgcccacac gttagctgtc otcaccctgt gtcttggagc tggaggagtt	1560
aacttgcgtct ctctgcactt gggccttctt gotcttgtgt ctgcatttgg tagctgactg	1620
tcccgccctc aggcaggtaa ttccctggaaa gcaggcttc gtgcctttca gcatgagtgg	1680
aggcgcttt atccctgctt ccgtaagctc tcattttccc attcccttta agaaattgtg	1740
gcctgccccaa ggccgtgcgc tgtcctgtc tgtaactgca gagcccactt gccccctgtc	1800
ctcctgtgaa tctgcagctg aggatgggt ttgtgtgtct accgt	1845

<210> 108

<211> 160

<212> DNA

<213> Homo sapien

<400> 108

ctgttacttc cttttgttgt cagagggttt ttgacaatgg caagggggga ttttagtgag	60
atccaggtgg tggtggcttc ttggtccact cagttgcac acatgcaaga ggagggtctg	120
tggccctca gccgtgtgg tggcctcctt cctcaagctt	160

<210> 109

<211> 4621

<212> DNA

<213> Homo sapien

<400> 109

ctgagagaag cacggggggga ttgattggtg ctttttagaga acacacctag atacaaatgt	60
gatacatttc tataactcaaa ttagaacaca tgataatgtt gatttttca ttcatcaaag	120
acaatcaccc attatagttt taattctcag tattttggctt ctcttggta tgatcgttat	180
tacttttctt tcataaggat tggatatgtt ttttaggtct atcaaaaaact aaagtctctg	240
aagtgacact ggtacaagca attcaacttga atttctaaaa acagataaaa tataatggac	300
cggccggggc cgccggggagt tttttatggaaatattt agatgatgcc ctatgataag	360
atgagacaaa tggatggggag ggaaggagga tggcccttct ctagaatcag caaacccaaat	420

ggttctgtga aggtcagacc caagcttggc gcagctggc tggatgcaga tccaggagct	480
gcagagtgtg gaacaggaaa ggctctgccc agggccccacg agtcttagca ttccctgctgg	540
cagatttagag atcttagtta aatttgacca agaaaggagc ttagctaaga ggtctttgtt	600
tccagaggac ccaagactac cagactcctg tgcaagtctgc ctgtctgcag agcctccaat	660
cacggtttaa agtggtcttg gcctcccagc ccccaactgct gcagccttca gagccagcct	720
ctggactcag cgccaggagc ctcccttcct gctgccctgg tacctgtcat cctagtgtca	780
cctatttgtt ttgcacagca ttctggagaa catgtgcctc acaaagtgtat cctgttttc	840
tcaccctcca aagctgaggt ggctaaggga ggcagggggtg agagagctca ctctctaaac	900
cacaggcagg gcaagggtgt tctaggccgt gtccccctccc tggggaatgg tcactactcc	960
tcagcatggc cacaggcccc tgtgggttttggagttttgtctt gactgtactgg aatgggctga	1020
ccccagccgt ttccctgctg tggaaggcagc aaggtagggg cactgctcgg tggtttgcata	1080
agctcagagg cagccacgga tggtaggaa caggaagcca cactgctaag gtgtgatgag	1140
ctagaaggga gacatcctgg acttcaagtgc agacaagtgc agaggaggcc actccactta	1200
ggaccccttccctt ctttagacccgt catgagcacg tggggatggc cttctcagcc catcttccac	1260
ctggcgcatg aacctcagtg ttaaaccagg taccctggga ctgcccctcg cctctcagag	1320
ccctacctgt cctggacttg aaggcgagca tcaggcaggc cttctcagcc catcttccac	1380
caggagtgcgca gagccagggt gctgagagga gcagggactg taactacagt aggaggcaac	1440
tttgctggtg tcattcctgc tcggattgac tttgtgtcc ctcccatcca cagctatggt	1500
agccagtatt tccccccagc ctctctatgt gggaaagagtg gctagaacca ggcattctc	1560
agtcgaattt aggaagacca agactcatgt tcctgacagg acggtcattc cctcatggca	1620
tcactgactc agttctaatt cctccccctcc tggggatggc tggggatggc aacctgtgcc	1680
tgcagctgtt tcttccaccc tccctggagct cacaattggc gttcatgtt cagtcttgc	1740
ctccataatgt ttccagacag ggcaggggat aggacagcca taatctatga aagctgtgaa	1800
acaaaccctg ggtttatatacg acctcagatg gtctcatctg aaggcttgc ccacttccca	1860
gtgagcagag ggtttgggaa acaaagaggt agctgaagag tgggggtttt tccctgtatc	1920
ctgattttca gaaaggcgtt tagtctctga gctgtggctt gtagctggct ggctgaccag	1980
gggacgggggg tctaataggg tggatgcacca taggacaccc tctgtgttttgc gcttccctt	2040
tctgtgtgtt ttgtgtgtgt gtgtgcattt acacacacaaa atctgtatcc ccaggaggc	2100
ctccctgcagt cactgggggc tcttccgtgg tgcaccatcc catgagagca gatcagaggg	2160

100

ctgtggtcag	gacttcctcc	cgagctgccc	tccctccctg	ggatgagttt	cctctccacc	2220
tgctccaagg	tgccttacga	ggtgcagctc	ttcacctggc	cacatggcat	ccatcaccgt	2280
gttgagaaat	ggtgggacgt	tggctggata	ttgtgtgcta	tgaatctgat	ttgtccaaat	2340
ctggacctca	gccaaagccac	ctgtggtgga	accttgcaga	tcaaggcat	gaacaaattt	2400
cttgttaacta	ttggaaataa	actaatgagg	tagaactgtc	atatccaaat	ggaagaggtg	2460
gttggtaactg	ttacttcctt	ttgctgtcag	agggttgtt	acaatggcaa	ggggggatgt	2520
tagttagatc	caggtggtgg	tggcttcttg	gtccactcag	cttgcacaca	tgcaagagga	2580
gggtctgtgg	ccccctcagcc	gtgctggtgg	cctccttcct	caagctttaa	cttgcgcct	2640
ccctggcaac	agggagtcat	gggttaatgt	cacctgtcat	gcctcttct	tcagggaaaa	2700
tattaaaagg	ctcaaattcca	agctgtgact	tcccttagac	agtgtaaagcc	tgtagggtgc	2760
agccccaaagt	ttatgtccaa	aggctgcctc	agaaccctgg	agggagcagc	gcccgagctgg	2820
cagctcaactc	tccccttgca	gttcaactggc	cttttcgcag	ccaggcttaag	ataggcagtg	2880
caaggagctt	cccactggcc	agagcagctg	cctttagaa	tgtggggctg	gcttttagaa	2940
gtttcacacg	cttgcagcta	agagtgcaga	gtctctgtt	ttacttcgtg	aaacatttagc	3000
agctctgagg	ggcttggctt	ttggtaaggg	acttatagtc	tgacttgcca	caagcacctt	3060
gagctcctgg	gttgggttgtt	ggttgggtgg	ttgggttgtt	ttaaatttga	tttttctttt	3120
cctgaagttt	gttagaaagtc	agacctatgc	aaggaaaaacc	atggcccaact	tcagcagcca	3180
tccagtgggg	gtgcttaatc	ggtggtggt	ggattcatgg	aaacgtttttt	ttgaaatgaa	3240
agagaagatg	atgtacttac	attgtaaaat	ggtttacaat	aaagttggc	atcttattac	3300
agtttttttt	aaaaagaaac	catcacattt	gtggttgtt	gttggggttt	ctctggagtt	3360
gaaacagctt	ggcagggtca	aaaaagatc	ccctgtgaat	tagaaggttc	tccccaggg	3420
ccagagttag	aaggaacctt	acgaagcctc	atggcaggag	tgggagccag	caactgccc	3480
gtgaaaagcc	aaacatgctc	ttgccatgtc	catctccact	tcttcgctag	tgagaattaa	3540
agcaagtccg	tctctgagga	ggacatcg	ttggggaggt	agagtataag	cagtgagtag	3600
cccacatcct	tgccctgag	gctgccccgc	tggaaggagg	tccctggca	gagccgcagc	3660
atcaggtgcc	atctgcaggg	gcacccctgg	aactagtgg	aggccccac	aaggcctggc	3720
ctgcccctcag	ctgccttgc	gcccacatgtc	cacatcctgg	gcattcctca	tgtcagcact	3780
tgtctcagat	caagcctggc	agtccctctca	ttggcctcct	ggagccaggg	tgtcaggagg	3840
gggattgggg	tgggttcaa	agtatgacag	caatggagtg	gcatttggga	taaccaaattt	3900
tcagtgcctg	gtttagttcc	atctgcctgg	agccttcgag	gataaaaata	atctccatca	3960

101

taaactgaaa aggacttaga tatgtgtgtt actgggaggg ctgcgaccta tgcacaccta	4020
ttccccatac ccaccccaagg cgtaggctcc tggcctgtgc cctggggat cttccccttg	4080
caaggagggg tgtgttagga gcttctagca aaggagagct aagtgacctt ccggggagcc	4140
cttgggcctg ttcttgtc tcagctcag tatctggagt gggcttcact ctccccacc	4200
ctcttgagc aactgaaact gtcctgcagg ccagccccc tgcggtgcc tcacctactc	4260
ggaggtgagt aggctcagggc ctgagcctga gcctgttcc cacctctgtc tcatcagtgc	4320
tgtcaccatc gagcatggtt tcctccctgg tccttccag accccttact cccccccttc	4380
tgaacttgca gttggaatag gatagaggac aaggacatca gaaaaaacat gagcaactcc	4440
ccaggctccc tttacacctac tttctccacc tgtgaacctg tggtagcccc tctctgagtt	4500
tgctgcaagg gcccagtgag cttgccataa tcagacgcag cagacacggg aagctcctgc	4560
tctgccacca tgcagggatg gaaaatctgt ccactggaat ccagggaaag ggatggaaga	4620
g	4621

<210> 110
<211> 303
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (176)..(255)
<223> a, c, g or t

<400> 110	
tccctgttat tgttccgtat attacctgta agcagatact gtattttatt tttagctatt	60
tgacagaaca catcaactcag aaaaagtcaa gtttcagagc aaacagtcaa gaaatcagt	120
tgattgtaga caaaaagtcg gttcacagaa cggagcagcg gggggaggaa gggaaannnnn	180
nnnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn	240
nnnnnnnnnnnn nnnnnncccgg gggcagccgg ggctatgagg ggacgtgctg atgcgtgatg	300
atg	303

<210> 111
<211> 1848
<212> DNA
<213> Homo sapien

<400> 111	
tgtttttttg agacacgggt ctctggtaa ccccggttgg ggtgcctatgg tgccatctcg	60

102

gctcaactggc aacctttgcc	tccccgattt aaggcggtt	tttcccgctt ctagccctcc	120
tttagtatgc ttgggactac	agggcgccca cctctcacgc	ccggcttatac tctctgtaat	180
tcttagtaga gacaggctt	tcacccacgg tggcccgct	ggtctccaac tcctggctc	240
cagtggtccg cccccctttg	ccttcccaag tgctggatt	accggggtgg ggccccctg	300
cctggcccgt cctatccctcc	cccccacctt tttttttttt	tttttgacat ggagtctcac	360
gccatcaccc aggctggagt	gcagtggcgc catctggct	caetgcaacc tccgcctccc	420
atgttcaagt gatcctcctg	cctcagcctc ctgagtagct	gggactacag gcgcccgc	480
ccacgcccag ctatttttt	gtatTTTtag tagagacggg	gtttcgccat gtagccagg	540
atggtctcga tctcctgacc	tttgtatcca cccgccttgg	tctccaaag tgctggatt	600
acaggcctga gccactgtgc	ccagccttat cctcaatttt	ctaagcataa ggatttaaga	660
gttagtggga aagcatgact	acggttaaaa agaacctgg	cagctgaagc agtcccactt	720
ggccattcca gtacacttcc	tactctcgct tcatggagaa	gaccgtctac tgacaagaga	780
atccatcccc tttgcacaca	gtggcacct gacagctcag	aggtaactt cttggtttg	840
aggaaaaatt caaaaggctg	cacgttaaaa ggagttgttc	catttcagtg ccccattagc	900
ctgttttcc tcagaaattt	accaatctct tgatgtgata	agcaccaaac tatgaagctt	960
ttcccttcct ctccccgctg	ctccgttctg tgaaccgact	ttttgtctac aatcacactg	1020
atttcttcac tgtttgcct	gaaacttcac ttttctgag	tgatgtgttc tgtcaaata	1080
gctaaaataa aatacagtat	ctgcttacag gtaatatacg	gaacaataac aaggactga	1140
aggtacaaaa cacacacgga	cattatggc atataaaaata	tatagaagta cctaacgtt	1200
acaatTTTtgc taagaagtt	cacatTTTgc tatttttttta	aagcatttcc ccacatTTTt	1260
tttcatctgt agatcctctg	cagtaagat tgagcacccc	cccgcacactt ttttttttg	1320
tacagagcct cgctctgtca	ctcaaggctg gagtgccagt	ggcatgatct tagctcactg	1380
caacccgc ctcgcagggtt	caagccatc tcctgcctca	gcctcccgag tagctggac	1440
tacaggcgtg cgccactgtg	cccagctaat tttttttgt	atTTTTtagta gagacaagg	1500
ttcaccatgt tggccagggt	ggtctcgAAC tactgacctc	gtgatccgccc tgctcggcc	1560
tcccaaagtg ctgcgattac	aggcgtgagc cactgcgc	ggccaagatt gagctccctc	1620
ttgcaatgtt tctcaaattt	atcacgattt gaacataccg	acggaattca ttttctgtct	1680
gaagcaatga gtgctataca	tgaaagttt cctcacat	aatattcatc aagtTTTattt	1740
acagtataag cttccgatg	ctaaggcgtg agatgtgatt	aaaggctttg ccgtattcat	1800
cacattcagg aggctggggg	ggggggatta atttaattaa	ggatcctt	1848

<210> 112
<211> 333
<212> DNA
<213> Homo sapien

<400> 112
ggccgaggtc tagaatgggt gaaggaatgt gtttagtgtct ggagccatga aggccttgtg 60
ctgaccaagc tgctcacctc ggaggagctg gctctgttg gctccaggct gctggtcttg 120
ggctccctcc tgcttctctt ctgtggcctt ctctgctgtg tcactgctat gtgcttccac 180
cctgcgcggg gagtcccact ggtctagaac ccggctctga gggcactggc ctagttcccg 240
acttggttct cagggtgtgaa tcaacttctt gggccttggc tctgagttgg aaaaggtttt 300
agaaaaaagtg aagagctgga atgtggggga aaa 333

<210> 113
<211> 2269
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (2266)..(2266)
<223> a, c, g or t

<400> 113
gcgagcggct ggcggatccg acgcgcgaga ccgggagggg acgagggcgt tgcaatcg 60
cggggcgggg gcttccggg gaggggggtgc tcaggtgcac cagcggcggc ggaccctcag 120
actctgcctt cccctccctt taacccccctt ccagccggac gggaggcggg gcagggtctga 180
gcatttgtga cacctacatt tccgtggctc ctttttttc ccccgacccc ttttatctc 240
ttcgccttcc agaagttctt ttccatcagg ccgtcgacc ttgcgtggga aggagcaccc 300
cacttggaaag caggaggcgg ggttcagatc ttggccctac ccctcctgtg taaaagtccg 360
cgagccctcag ttccctcacc agtattttt gcctcgctt acccggtttt gaggatctgt 420
acgagaaaga gaaaggaagt ggacatttg tgaattcctg catggccaaa taccacgcag 480
actgcttcat ccgccacgtt taatccttat tacttggtgt tctcagaact cccatttc 540
ggattcttaa gtcacagag tcagtgaata acagaaagg attcagatct agccgtttag 600
ctgcacagtg gagttttctt ccagagtctt cccttgtctg ggctctggct ggaactattc 660
ctcagccaaa tccctcgcccc agaacagtgc ttccgtttc tccagctgag aagtctccct 720
ttcagttcc ttcttccagc acggagtaca ctgcttgcc tccacttaga ttacttcaga 780

104

aatgaaaatgc	agcaaataatt	tatccagcag	tgcagggagt	tgaacttttgc	gagtcgggaa	840
ccttggattc	ttgttctggc	tctgccactt	actgtgtggc	cttgggaagt	cctttgtctt	900
ctctgagctt	tctttctct	ttgcgtaaaaa	gcccgtgtct	tgtcccattc	tccctccctg	960
tcttccagca	ggctctcccc	ggaggctcag	ccccctctgc	tccccatggg	caactgccag	1020
gcagggcaca	acctgcaccc	gtgtctggcc	caccacccac	ctctggcttg	tgccactttg	1080
atcctgctgc	tccttggcct	ctctggctg	ggccttggca	gcttcctcct	cacccacagg	1140
actggcctgc	gcagccctga	catccccag	gactgggtct	cttttttag	atctttggc	1200
cagctgaccc	tgtgtcccgag	aatgggaca	gtcacaggga	agtggcgagg	gtctcacgtc	1260
gtgggcttgc	tgaccaccc	gaacttcgga	gacggccag	acaggaacaa	gacccggaca	1320
ttccaggcca	cagtcctggg	aagtcagatg	ggattgaaag	gatcttcgtc	aggacaactg	1380
gtccttatca	cagccagggt	gaccacagaa	aggactgcag	gaacctgcct	atatttttagt	1440
gctgttccag	gaatcctacc	ctccagccag	ccacccatat	cctgctcaga	ggagggggct	1500
ggaaatgcca	ccctgagccc	tagaatgggt	gaggaatgtg	ttagtgtctg	gagccatgaa	1560
ggccttgc	tgaccaagct	gctcacctcg	gaggagctgg	ctctgtgtgg	ctccaggctg	1620
ctggcttgg	gctccttcct	gcttcttttc	tgtggccttc	tctgctgtgt	cactgctatg	1680
tgcttccacc	cgcgcggga	gtcccactgg	tctagaaccc	ggctctgagg	gcactggcct	1740
agtccccgac	ttgtttctca	ggtgtgaatc	aacttcitgg	gccttggctc	tgagttggaa	1800
aaggaaaaaa	aaaaagtgaa	gagctggaaat	gtggggggaaa	ataaaaaagct	tttttgcucca	1860
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1920
aaaaaaaaaa	caagcaaaaa	gacaagagaa	gaaaacacaa	gaagaaaaaa	aaaccacaaa	1980
caaagacaaa	agaaaaagaaa	agaagagacg	aaaagagaga	aacaagaaaag	aggagaggac	2040
aaagagcaag	aacgaagaga	gaagaaaaga	gagcacacaa	agagaagaga	agaagcgaga	2100
ggaagcgaaaa	aagagagagg	aaaaagagaa	aagaagagaa	gaccaaaccc	gagaagaaga	2160
gagagggaaag	gcgagcgcagc	aaagagcacg	agaagagaag	aaaggaagcg	agggtgccaa	2220
gagaagcggaa	gagaacgaga	gggagaaaag	agggagagaga	agaagnagt		2269

<210> 114

<211> 550

<212> DNA

<213> Homo sapien

<400> 114

agagatataat agcccgctctg ggctaacttg tgcctcttag atcatgcgtc gagcggctgc

60

105

cagtgttatg tatcgctggc cgccggccgag gtacacacaaa gaagccagaa gatattttt 120
 tttcagtgaa ctttcctcctg gaagcaaagg agaagctatg ggagatccag gcatggtttt 180
 ggcttctgga ggctgtttt tggttactgg ggtctttca aagcaaaacg ggatcaggat 240
 gaagagggggg aaaggcatgg gccataaata aataaggaaa tttgccccga ttctacaaat 300
 gcatctgatg gaatgaggag ggtcaggctg tgagggattg gggtagctc caggctgctg 360
 ttagggacac acttgagctg gttcattccc tggagtgcggc cgcaactgcg tctagggaga 420
 ggcaggccca agcacatgtt cagtctaatt ccagctcaca ctggaaggct tcctataggt 480
 ttggttgcggc tgatcacagc cgagctgcggc caccaggaat taaccctggt gggcaaagg 540
 tccatcttctt 550

<210> 115

<211> 4441

<212> DNA

<213> Homo sapien

<400> 115
 agcgggggca tcgcccggcccg cgccctctta agtgcggggc cgcaagctcc accgcagccg 60
 cctgcaagca gcggcgcttc ggcctcgac ctgcgcgcaa agcctgtgct ggagccgtcc 120
 tcccgcgccg gggaccggga ccggggaccc aagccaatcg aaagctccaa ccatggccat 180
 ggggctttc cgcgtgtgtc tgggtgttgt gacggccatc atcaaccacc cgctgctgtt 240
 cccgcgggag aacgccacag tccccgagaa cgaggaggag atcatccgca agatgcaggc 300
 gcaccaggag aagctgcagc tggagcagtt gcgcctggag gaggagggtgg ctccggctggc 360
 ggccgaaaag gaggcactgg agcaggtggc ggaggagggc aggccagcaga acgagacacg 420
 cgtggcctgg gacctctgga gcaccctctg catgatectc ttccctgatga tcgaggtgt 480
 gggcaggac caccaggagg ggcctcacc tgagtgcctg ggccgtgagg aggatgagct 540
 gcctggctg gggggcgccc cttgcaggc ctcaccctg cccacaagg ccacgcttgg 600
 ccacttttat gagcgctgca tccggggggc cacggccgat gcagccgta cccgggagtt 660
 cctggaaaggc ttctgtggatg acttgctgga agccctgagg agcctctgca accgggacac 720
 cgacatggag gtggaggact tcattggcgt ggacagcatg tacgagaact ggcaggtgg 780
 caggccactg ctgtgccacc ttttcgtgcc cttcacacccc cccgagccct accgcttcca 840
 cccagagctc tgggtctccg gccgctcagt gcccctggat cgccagggtc acggccagat 900
 caaggtggtc cgccggatg gggacacatt gagctgcattc tgccggcaaga ccaagctcg 960
 ggaagacatg ctgtgtctcc tgcacggcag gaacagcatg ggcctccct gccggcgacat 1020

106

ggagaacctg	ctgtgtgcc	cagattccct	gtacctggac	acgatgcagg	tcatgaagt	1080
gttccagacg	gccctcacca	gagcctggaa	gggcatacgcc	cacaagtacg	agttcgacct	1140
ggccttggc	cagctggaca	gcccggggtc	cctgaagatc	aagttccgtt	cagggaaagt	1200
catgccttc	aacctgattc	ctgtgatcca	gtgtgatgac	tcggacctgt	actttgtctc	1260
ccaccttccc	agggagccct	ctgagggcac	cccagcctcc	agcacagact	ggctcctgtc	1320
cttgctgtc	tatgagcgac	acttcctcag	gacgacacta	aaggcactgc	ccgagggcgc	1380
ctgccacctc	agctgcctgc	agatagcatc	cttcctgctc	tccaagcaga	gccgcctgac	1440
cggccccagc	gggctcagca	gctaccacct	gaagacggcc	ctactgcacc	tcctactcct	1500
ccggcaggcc	gccgactgga	aggcggggca	gctggacgct	cgtctgcacg	agttgctgt	1560
cttcctggag	aagagcttgc	tccagaagaa	gctccaccac	ttcttcatcg	gcaaccgcaa	1620
ggtgcctgag	gcccattggac	tccctgaggc	cgtgctcagg	gccgagcccc	tcaacctctt	1680
ccggcccttc	gtcctgcagc	gaaggcttta	ccgtaagaca	ctggactcct	tctatgagat	1740
gctcaagaat	gccccagcgc	tcattagcga	gtattcccta	catgtcccct	cagaccagcc	1800
taccccaaaa	agctgacgtc	ttttacagaa	tgtgggatcc	tcgagctaag	atgagggcat	1860
ccotcacgtt	cacaccctg	gtggcatctg	ccagccctgt	tctggggaca	aggcgggctt	1920
tcgtggagc	cgtgctcagc	ctgccaggaa	gccaagccct	acagtgcaga	ggaaacagaa	1980
tttcaacggg	aagctggttt	gcttcataacc	attgggatct	gctggtaaag	ctgttatttg	2040
ggtttaggga	ctgatccctt	gcagttact	tctggatcac	catgaatggc	caagatggtg	2100
gcagaacacg	ctgtggaccc	tgagttagag	acaatgcaa	tgtggattg	ggtgtaattc	2160
tttttgaatc	ccagatccag	tctgtacttg	aatatgagca	gaggatctac	aagaatgctg	2220
acagggAACCC	gtgttaagac	ccagcacccc	tattcccagg	agtttctggc	ctgaccatct	2280
gcagccaaAG	cactaacagg	gacagatatg	ggaatgtcca	ccttgatcc	gcatcctgca	2340
caatagtgg	cccaccatgg	ctgccacttt	tttatactat	ttggagaaaa	gacccttgtat	2400
aaattcgagg	cccgagtgac	taacgtctct	gtcacacgg	aatgggtact	tggtggcata	2460
gagaaacaca	attagccact	ttttcagcta	cacttctcac	tcagctgcac	cctacacttc	2520
tcactcaggt	gcacccctt	ctgctgtcct	ttccccaaacg	tactgggtcc	cgagcgtgg	2580
gggtatTTG	cacactgggt	gccagctcag	cagcccccca	cctctttta	ttctctccaa	2640
agctggctt	tctgactatc	attgtggtag	ggggaggaca	gatgctaaag	gtgaaagctg	2700
acctggaaaa	agagacacac	ggggtgactg	tggcaaagga	cagctggaaa	agaaactcta	2760
tcacttcttc	attggcaacc	acaaggcacc	tgaggccatg	gcactcccag	aggctgtgcg	2820

107

cagagccaag cctctcaacc tcttctggcc ctgcgtcctg cagcgaagtc tctgctgtaa	2880
gacagtagac tccttcgatg aggtgctcaa aaatgctacc cgggggtggtg gtgtctggct	2940
tgcagtctgg cccagttcag agaaaagttgc agagatcagg ggc当地ggat gtc当地agccc	3000
caggttgtcc tcagggtccc aatcctaggg caggggtgtgc atggaagcaa gaactatgga	3060
aacctagctc cagtctgcag gctctgagcc cctagttcct cactccagcg gggctccctc	3120
actgcacaga acccaccctt tctgtgtggg cactgctgac cacacagatg acccagaccc	3180
aaagagcctg gcagaagctc tgtgggttggaa gctgggctcc gtctccaggt ctgggttccagg	3240
gggatcagga aggctttttt ccacctgtgg cttcaactggc cttttgagat ttccatctc	3300
accgttactt cagttaccct tgcagggggc cagggagtca agaatataacc gtgttccctcc	3360
agggttaag cccggccatgc cttcccgaga gcataaccaa cttgacaggg gtgcccagtt	3420
acccccacaaa ctgaaggaag gagatccttc ccccatcccc aggagtgctc tcaaccagcc	3480
tcagaaagct tgagaagatg gaccctttgc ccaccagggta taattcctgg tggggcagct	3540
cggctgtgat cagggcaacc aaacctatacg gaagccttcc agtgtgagct ggaatttagac	3600
tgaacatgtg cttgggcctg cctccctcta gacgcagttg cggggcactc caggaaatga	3660
accagctcaa gtgtgtccct aacagcagcc tggagctacc cccaaatccct cacagcctga	3720
ccctcctcat tccatcagat gcattttagt aatcggggca aatttcctta tttattttatg	3780
ccccatgcct ttccccctct tcacccctgat cccgtttgc tttgaagaga ccccaatgtac	3840
caaaaaacag cctccagaag ccaaaaccat gcctggatct cccatagctt ctcctttgct	3900
tccaggagaa agttcaactga aaaaaata tcttctggct tcttgtgtgt acagagacaa	3960
cagaactcgg tggggaaacg ggaatctttt ctgcaccaaa gctgcttcta aagcagaaag	4020
cagtggggct cttgggtttt catgctgcct tatttatatt aaaggaagaa ttaaatcttg	4080
caaggagtaa aaatggtcac tgttggttt ttaaacttca ggaaatctgt gaggctccca	4140
gggcagagtt gggcacaggg gggtgattt cctattgaca aagcagaagc tttcaactccc	4200
tttttattct tacactttca ggagacttta aaaaataaca aaacagaaca tttctaccct	4260
gtctttgagg caacttgtgt gctgcccgc当地 gggctccaga aagggcttt gaaagctggc	4320
cgttagggtgg attccagcct aagaccttat ttcacagagc taatgtcagc gagagatata	4380
ggagctggaa ctaacaggag cgtttggttt tagagaaaga ggaggtgtct tggataactc	4440
t	4441

108

<211>	120					
<212>	DNA					
<213>	Homo sapien					
<400>	116					
acttacaaac	tgtggtcatg	ttaagataca	gaacatcagc	caagaaccag	aaccaactcc	60
ttaacataac	atagagtggg	ccctgcccac	cccccaatac	aatacattt	agataagctt	120
<210>	117					
<211>	1977					
<212>	DNA					
<213>	Homo sapien					
<400>	117					
ttcacccggc	cctcgctgt	cacottcaca	gagaaggggc	tgcctgcagg	aagaaagcac	60
ggcccacgcc	cctccagtca	catactgcct	gtggggccctg	gtgttagtgag	gggggctgcc	120
gagggactgc	tgcactcacc	aggcacgtgc	tggtcggcaa	acttgatgtt	gatgtatgtag	180
ttgcctggct	ctgtggggca	gtaggtcacc	tggcgggaca	ggtgcctggc	tgctacaaac	240
catgcaatga	gccatcccc	gccctggaca	ccccggcca	gcatctggc	ctccacgctt	300
gggaccgtgg	gagcggccaa	cagagctatg	tctggagaca	tatgataaac	cacccagcc	360
cccaccaagc	cgccgcaccc	gtagaccaga	ccccaaaggac	cctggccacc	atggggccaga	420
gagcattacc	ttcatctctg	gctctgctga	gccggccctt	gagtccccc	cctgctgcct	480
gctctggcga	ccctgggtgt	gggagtggtg	ccgggctgcc	ttctgcttcc	gccccgtgcc	540
gggattgcct	ccagcgctgt	ggaggcctgt	gtgcggggat	gcagccctg	cctgtctact	600
gaggactccc	actgagggga	ctgtgaagc	caactggtgc	caaggagcac	aatggagtgc	660
ccccccagccc	tgatcgtca	ccccccagac	cgccgggatg	gccaggcggg	ctgcaagtca	720
accatgggca	gcagcttcag	ctaccccgat	gttaagctca	aaggcatccc	tgtgtatccc	780
taccccgagag	gccacctccc	cagccctga	tgccggactcc	tgctgcaagg	agccactggc	840
cgatccccca	cccatgcgag	cacagcctgc	ccagcacctt	tgccagtagt	cctcggtggct	900
ccgaggagta	ctattcttc	catgagtcgg	acctggaccc	gccggagatg	ggcagtggct	960
ccatgtcgag	ccgagaaatt	gatgtgctca	tcttcaagaa	gctgacagag	gctgttcaggc	1020
gtacaccaga	tcgatgagct	ggccaagtgc	acatcagaca	ctgtgttccct	ggagaagacc	1080
agtaagatct	cgAACCTTAT	cagoagcatc	acgcaggact	accacctgg	tgagcaggat	1140
gctgagggcc	gcctggta	cgccatcatt	cgcattagta	cccgaaagag	ccgtgctcgc	1200
ccacagaccc	cgagggctcg	ttcaactcgg	gctgctgccc	caaccgctgc	tgccccctgac	1260
agtggccatg	agaccatgg	gggctcaggt	ctcagccagg	atgagctgac	agtgcagatc	1320

109

tcccaggaga	cgactgcaga	tgccatcgcc	cggaaagctga	ggccttatgg	agctccaggg	1380
tacccagcaa	gccatgactc	atccttccag	ggcacccgaca	cagactcgtc	gggggcaccc	1440
ttgctccagg	tgtactgcta	accctgcca	ggcccagctg	ccacacccctt	tctgggagaa	1500
gcatggccta	cagaatgaag	agggggacca	ggaacccctg	tggagaggc	ttagacctga	1560
agcagtgccc	actctggctc	ctcctgcctt	ggctgactgg	gttcctggac	catgtgcatt	1620
tcactgggcc	atgggatcta	cattccttg	catccccagc	tggctgatc	cctgccaggg	1680
ccccttcctt	cctgctcatg	gtcttcaggt	ggcctgatca	tggaaagtaa	ggagtttaggc	1740
attacttct	gggagtgaac	cctgactcca	tccccctatt	gccaccctaa	ccaatcatgc	1800
aaacttctcc	ctccctgggg	taattcaaca	gttaaaagaa	gcttatctta	aatgtattgt	1860
attgggggggt	gggcagggcc	cactctatgt	tatgttaagg	agttgttct	ggttcttggc	1920
tgatgttctg	tatcttaaca	tgaccacagt	ttgttaagtac	ctcgctcgcg	accacgc	1977

<210> 118
<211> 182
<212> DNA
<213> Homo sapien

<400> 118	catgttctct	aatgcatgct	ccgacggcgc	atgtgatgga	tcgcggcgag	tgaaaagcaa	60
	gagccagaat	taagaggtt	ggtcagtctg	gcagtgagtt	catgcattt	gaggtgttct	120
	tcaagatgac	taatgttcaa	aaattgagac	atctgttgcg	gttctttttt	tttttttttc	180
	cc						182

<210> 119
<211> 875
<212> DNA
<213> Homo sapien

<400> 119	ggtcgcggcc	gaggtaccac	attggtccac	ttgacactaa	ccaatcgatc	attttttttt	60
	aatcaagaaa	gctagattct	atcagataaa	atcaactgctt	ctaaagagtt	taaatctagt	120
	tagaaaaagt	tatagaaatg	tttgc当地	taagtaacag	atagagtcag	tagaggataa	180
	gatcaaaaac	aaaaccaagc	aaaagatgag	ttcaggggag	tttgc当地	agtggcaaaa	240
	ctgacttaact	taggaaagaa	agttataaaa	cagggaaaata	tgagatgaac	cttgagtgtat	300
	gtgaaagatt	tagataatg	gaaaggaagg	agaaaaatgga	gttctttagg	tggttgtat	360
	tggaggagga	aatgaataca	cacatcttgt	tgacttaaac	ccagacattc	agcagctctc	420

110	
tatacatatc tggaaaagac tgcacagtca cctcctgtct ctcaccccag gtattactta	480
gaattattat catatttccc ttcccttaaa gtaagtaagg gtgatggta caatatggag	540
aactatgatt ttccatcaa cctaataata attgtattta ttgagttctg ttaagcattt	600
tacatattaa ctcaacttaag ccttcaaca gcctgggcaa aataggtatt attatcccc	660
attttacagg caaagaaaac tgaggtttaa ggtaactgtg ccgaaagtgc catataacag	720
ggctcacatt cagtatctgc agttgcaagc tcatgatcta tagtgccaag ttgcataatgg	780
tagtccatgt cacattatta ccctttata tccctggaat tttcatggc aaccattagt	840
attcatttta atatcaactaa acttccagcc ctgat	875

<210> 120

<211> 987

<212> DNA

<213> Homo sapien

<400> 120	
ggtcgcggcc gaggtaccac attggtccac ttgacactaa ccaatcgatc atttttttt	60
aatcaagaaa gctagattct atcagataaa atcactgctt ctaaagagtt taaatctagt	120
tagaaaaagt tatagaaatg tttgcaaaga taagtaacag atagagtcag tagaggataa	180
gatcaaaaac aaaaccaagc aaaagatgag ttcaggggag tttgccatca agtggcaaaa	240
ctgacttact taggaaagaa agttataaaa cagaaaaata tgagatgaac cttgagtgtat	300
gtggaagatt tagataaatg gaaaggaagg agaaaatgga gttctttagg tggttgtaat	360
tggaggagga aatgaataca cacatcttgt tgacttaaac ccagacattc agcagctctc	420
tatacatatc tggaaaagac tgcacagtca cctcctgtct ctcaccccag gtattactta	480
gaattattat catatttccc ttcccttaaa gtaagtaagg gtgatggta caatatggag	540
aactatgatt ttccatcaa cctaataata attgtattta ttgagttctg ttaagcattt	600
tacatattaa ctcaacttaag ccttcaaca gcctgggcaa aataggtatt attatcccc	660
attttacagg caaagaaaac tgaggtttaa ggtaactgtg ccgaaagtgc catataacag	720
ggctcacatt cagtatctgc agttgcaagc tcatgatcta tagtgccaag ttgcataatgg	780
tagtccatgt cacattatta cccctttta tatccctgga attttccat gggcaaccat	840
tagctatttc atttaataat cacctaaaac tttcagttct tctgattaaa attacgctgg	900
agtgatagaa tgtatttca tgatagaaat tggaaaaaaa aatggggaaat gaagtttattc	960
agcatttcag acttgggggg tttttttt	987

<210> 121

111

<211> 295
<212> DNA
<213> Homo sapien

<400> 121
cgtggtcgca gcgaggata taaagctatg atttgcattt ggaactcatt taaattaaag 60
ttaccaaggg aattccatat gtaaaactttt cctggaaacta tgaacttctg agacttcaga 120
aagattttga ctgtgttagt tattctgtgt tgccatgg ggtccgcctt tgtgttgctg 180
agctggagag cgtgcctctg ctgcgcgcgt gtgtcagtag tgggattgc actttgttt 240
ccagctacag gccaaatttgc acacccatgtt gagacttcac caagaagaga gaatg 295

<210> 122
<211> 3210
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (954)..(1013)
<223> a, c, g or t

<220>
<221> misc_feature
<222> (1958)..(2054)
<223> a, c, g or t

<400> 122
tagtgttaat tctactatga tgagtatttt tatatgtaaa gctttctctg aatttaggt 60
tttttaagc ctagatctca ggacattgaa agactatgaa aaaatagaat acagttttaa 120
cattcttgac atagttgaca attgacactt gcttccagt gatgttact agtacagttt 180
tcaataactg ttactgcat atatttatt tggaaaatag tgggttggtt tttttccccc 240
ctggtaattt ctttctatac tttgcatac ttattttat tgacatggaa cttgagagac 300
tttaagaagt ttgttaggaa aaatacacac cgagaaaata aaaactctag gaaaagttca 360
caatgtttta aaaatagttt tgtacataaa gctatgattt ttgcattggaa actcatttaa 420
attnaaagtta ccaagggaaat tccatatgtt aactttctt tgaactatgtt acttctgaga 480
cttcagaaag atttgactgtt gtaggttattt ctgtgttgcg ctatgggtc cgcctttgtg 540
ttgtgtgactt ggagagcgtt cctctgtgtt cgcgtgtgtt cagtagtggg gattgcactt 600
ttgtttccag ctacaggcca aatttgagca ctttaagaga cttcaccaag aagagagaat 660
gaagcttggaa gaaaggagag acttttggaa gaagaaataa ttgcatttctc taaaaagaaa 720
gctacccctcg agatatttca cagccagtcc tttctggcaa caggcagcaa cctcaggaag 780

112

gacaaggacc	gtaagaggta	agaggcccag	ccaccctcag	gttgctgccc	tgcccacact	840
tgtcacattg	ccctgtcgga	tcttccttgc	gcttcttact	tctgcttcct	tatgctttgt	900
cttccttctc	caactaaatg	tcagctcctg	gagaggagag	accttgtccc	tctnnnnnnnn	960
nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnnnnnnnnn	nnnttgcca	1020
aatgaatga	atgaacaaaa	taaaaataca	tcacagtgtg	aaaaggatca	gttagctggg	1080
ggaaaatggc	tgctcttatt	aatagccca	gctgtggccc	tagtacacag	ctaattggctg	1140
ctgacctacc	atgagttatt	ttgaatttca	tgtctaaata	aagctgtgcc	ctttgttggg	1200
gaattataga	cataagatag	tattttattt	aattaattct	taggttcagt	tttttagaac	1260
aaattctact	gatactgatt	tttgtgagaat	ttttatttta	ataagggAAC	caggctgtcg	1320
attcgaaactc	ctgtgcattt	atgtcagac	ttgtgaaacc	aatggggac	gtaaagacgc	1380
agagaaaagg	agagagggcc	acagtgcag	ggggcagcca	tgagtagcat	gtggatgata	1440
atcgcaaggc	gtgttaggtt	ggggtatgtg	ttaaaatcag	ttacccaagt	tttagaaaat	1500
aagtttattt	ttcctttttt	ataatttct	tctgtacttt	gtgtcccttg	ttttatTTCT	1560
cccaacttaag	tatccctgtc	ggttaacta	tttggcttctt	gaggaaattc	atcatgcctt	1620
gttctattca	gaatgctcat	ttggggact	ctgcctcagt	ttactctagc	tacctctgtg	1680
ctagcagcgt	tgcattgtcc	catgtcccc	acagagcaac	acatctggtt	taatgctctc	1740
actgcattct	tttcagaccc	atttcagaa	tattgcaact	caacttaaa	ataggaaaac	1800
ataaccttgg	cccattggtg	gcttcaatt	tttaaatatg	gagaagtaaa	ccacaggact	1860
ttggcagatt	ttattggctt	atatatTTA	caggtatttt	tgtttgggg	ttatgttttt	1920
ttggaaaaga	ggaaggaatt	ctcatgtatg	atcttcnnn	nnnnnnnnnn	nnnnnnnnnn	1980
nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	nnnnnnnnnn	2040
nnnnnnnnnn	nnnnnttattt	ttgaaagaat	aaatagtata	aaagctgtat	tttattcaag	2100
cattgaattt	agaaagataa	actataaatt	tattactgt	tttcaacatg	cttggattt	2160
taaagctaat	ggatcttttta	ttaataccctt	ttttcccttc	atcttaaccc	agtgttacta	2220
aaatttagatt	tcccattttt	tcccctatat	gaaagataat	ttacatttac	cttgtaaaaa	2280
ttatcaccct	gctccacttg	agaaccctgc	tgttgtttgc	aaaatcagga	ccaaagcccat	2340
atttttttag	agctctctag	aagaatttat	cttcaagaaa	atatggtttg	gtgtttttgg	2400
ttttttcttt	tcttttcaa	agtcccatgg	ccagatatcc	tataatatac	tagatgcatg	2460
tttgctaatt	tttacttgaa	tttttttaa	attgtaccaa	tcaaaagggtt	ctttttcttt	2520

113

ccagctccaa	tttttgtaa	aacagaagtt	ccagagcaca	gaaggtcatc	atcacaagca	2580
aactttatta	aaaaaaaaact	agaagtgtgc	tttgattttg	ctgttatttg	ttttatcact	2640
tctatatttg	gtgaacagcc	acagttactg	atatttatgg	aaaagtactt	tcaagtacaa	2700
ggtcaatacaca	taagccagag	tgaatgatac	tacaagttga	gcatctctaa	ttcaaaaatc	2760
tgaaaatccag	aagcttcaaa	atctgaatct	tttgagcac	tgacttgacc	ccacaagtgg	2820
aaaattcccc	acccgacacc	tttgcttct	gatggttcag	tttaaacaga	tttgtttct	2880
tgcacaaaat	ttttgtataa	attacttca	ggctatatgt	ataagggtga	tgtgaaacat	2940
gaattatgtat	attagagtgc	ggtcccgtag	tgtatatgca	gatattccaa	acctgaaatc	3000
caaaaacactt	ctggcccta	agcattttgc	actaagggtat	actcagcttgc	tacctatata	3060
ttcctatata	ttcactgttg	tttagaaatgt	ttaagttgt	gttctgtgt	aatctaaat	3120
cttttctttt	gctaccaagc	tattgtcaact	gcagtgcatt	ataccaaaga	gcgaagtcag	3180
tgccactgaa	aatacagaac	cattatatcg				3210

<210> 123

<211> 662

<212> DNA

<213> Homo sapien

<400> 123

gggtggtcgc	ggcgaggtag	ctgcatactaa	aatagaattt	atttttcttg	agacacgtct	60
ttcaggcaga	ggaaaggtaa	tgggcacaca	aaccttgate	atcttcttat	aaaacaaggc	120
agcatccaca	tttcaatact	gtagcatatg	aaataatttc	tcaattccta	ctctgtcata	180
gcttaaatga	cttactgatt	aaaatatgag	taacaataat	tctggagctg	aaagacattc	240
tcaagccaaa	aggtaacatt	aaacaatgtt	ttactttaaa	tttaatgtca	tgttagggtca	300
ctaaaaacaa	aatgttaaggg	ataaaatgtaa	gtgcataaaaa	cagagataat	accaatttcc	360
acaaaatacaa	cttttattat	ccaaaatcat	cttggaaagga	ctttttctaa	tatgcccatt	420
ttctaaataa	gattaaccat	ttgatggaa	tatttccat	tgtatcacct	ccttccttga	480
ctttttcttc	atcaacttag	ggcctgggtt	gtaggcactg	tggcttttg	ggatagttaa	540
atgggtgcaa	tttggctgag	accggccctg	tcttaaatgg	cccaggctac	agggcttgcc	600
aaatggcttg	tggtttgcaa	cctcttcctt	tgatatccat	tgaagaacac	atgtcctacc	660
ct						662

<210> 124

<211> 1845

<212> DNA

<213> Homo sapien

<400> 124	
tgtcagattt atggcctgtg ctgttgagta gttccgtctg attgacgtgg cgattcggat	60
gtggtcgggt gtggtgagtg gctgggtggg ctttcggtgg gtggtgtgtg tgccggccgg	120
ggtttgtgtg tgcgtgtgtc gcggcggtgt gggctgtggg tcggacggag ggcttggtgg	180
cgttgttaag aggctcggtt gtcggcgaaa gtgtgttctg ttgggggctc gtctgtccg	240
ttcggtggtc cggcgtgggt gtgtggatat cgtggtgctg cgtgggttgcg tggctgcgt	300
ggtgccggcg tggcttatgt tgggtttaa tgcgttgctc gtggggtcgg tggggtcgt	360
gcgggtgtgg ggtgtgtatg tgggtgttt gtgcgtatgg ggctgtgtgt atgtgttgg	420
ggccgcggta ggagtccggc catctcctga tttattctt tacagtttc tatgttttga	480
attgatatac attcttagaa taaaatgcag tacctgcac taaaatagaa tttattttc	540
ttgagacacg tcttcaggc agaggaaagg taatggcac acaaaccttgc atcatcttct	600
tataaaacaa ggcagcatcc acattcaat actgttagcat atgaaataat ttctcaattc	660
ctactctgtc atagcttaaa tgacttactg attaaaatat gagtaacaat aattctggag	720
ctgaaagaca ttctcaagcc aaaaggtaac attaaacaat gtttacttt aaatttaatg	780
tcatgttaggg tcactaaaaa caaatgtaa gggataaaatg taagtgcata aaacagagat	840
aataccaatt tccacaaata caacttttat tatccaaaat catctggaa ggacttttc	900
taatatgccc attttctaaa taagattaac catttgatgg gaatattcc aattgtatca	960
cctccttcct tgacttttc ttcatcaact tagggcctgg gttgtaggca ctgtggctct	1020
ttggatagt taaatgggtg caattggct gagaccgccc ctgtctaaa tggcccaggc	1080
tacaggcctt gccaaatggc tttggttgc aacctttcc tttgatatacc attgaagaac	1140
acatgtccta ccctcttgat tgcaagcttc tatctgctat tggctatcag gagcataaca	1200
gataaggctt aaggcccttc cagttccaaa agccattgac caaccctgtg aggcactatg	1260
agagattgga gattactgag gaatcttttc caataacata tgatataaa aggtatgt	1320
gattctatga agagtgaata aaaattgaaa acaaaaaccaaa tcttggtaa actattaaat	1380
gaagtttaa aaaataatgg agtgggtaga tgtattgcct atcaaattaa aattcaggga	1440
acacgtgtca gttatcacct ttataagtat gatctataag gttgaattaa ctaaagatct	1500
aaccctaaac taagtggat attactgggt tactaaatat agatgaatgg cttccctttt	1560
cctttaaaga tggagaatc tcaaaagtat gcctgaatca gaagcagagg actcatgttc	1620
taatgacacg tctgatcatc accctgagtt ccataaagct atagcatatt gtatgtaaa	1680

115

gtatatcagc atgtgagtgg agagatttaa gggatagat ctctacgtat ttccagctct	1740
gtcaccaact ggtgacatga ctttggcag aaactgtctt attgattccc tcgtgccaa	1800
ttcttgctcg aggccaaatt ccctatacg aacttattga acaga	1845

<210> 125
<211> 306
<212> DNA
<213> Homo sapien

<400> 125	
gcggcgccgg gcaggtacat aagtgtcaact cgccctaatta aaaacattga gtaaaccagg	60
tttttatata gactaccctt gccatatgtat gtccttttc tctaataata tgcatgtttaa	120
atcctgagga atcaatgccc agcatttcac cacatctgaa ctctgtgtgg gcattttca	180
ctcgccataca agggtaaac aaggctacca gaacttgaat ttgacttata gggagctacc	240
caggaagggg aaagcccttg ggacttttc caaaaacaatc ttctatttga actgttcatc	300
agccaa	306

<210> 126
<211> 2049
<212> DNA
<213> Homo sapien

<400> 126	
aaaaaaaaaaa gtaaaacaaa aataaagtct atgcccatta agacgtcttc taattcagtt	60
tgattgtct gtcctactt aaaaaatata ttaagcttga tgtttaatta ttccctttca	120
gcaaatttgg atcagaaaat taaagtatgt gacaagatca ggtcaccttg aattttccaca	180
caatctcaag acactgaata gcaaaaaagt aacattacac agtaatgatt aggatatttc	240
cttagacttt gctggatctt tggcttaag gtaacatgtaa aagttagtga agectttctt	300
ttcatggccc tgtgcaatgt aacggtttc tgcctcttc tcagctggaa gcgttagtgg	360
tagtatgggc acagaatata tgtacactgg cgatgctgac catgcctccc aggtaccctg	420
gctctgggtt ctttgaccta gggacaaga ttggatgagg cagatcttg agcccatgtg	480
actatagaat ttgctgatga tataatttttcaataacaat ggataggaat ttacacttc	540
tttttattat ttaatattat tttacataag ttttcactcg cotaattaaa	600
aacattgagt aaaccaagtt ttatataaga ctacccttgc catatgatgc tcttttctc	660
taataatatg cagtttaat cctgaggaat caatgcccag catttcacca catctgaact	720
ctgtgtggc attcttcaact cgcctacaag gggtaaaca ggctaccaga acttgaattt	780
gacttatagg gagctaccca ggaaggggaa agcccttggg acttttcca aaacaatctt	840

ctatTTgaac	tgttcatcag	ccaaagttagt	ccactgaggt	gacaaagctt	tcagaaatac	900
aaagatggga	agataaaaggt	aacactggcc	cacttgggc	tttgacattt	gattgggtgg	960
actgaataaa	cacagcctag	gtggcctggg	cttgcgcctc	acttacttct	ccttgataca	1020
tagttcctgg	tctaccttct	gaccctttt	ctaaaatagc	cagtgtctat	ttcactaggc	1080
catttactta	caagttccca	gcttttaggg	aaaaaaagagg	gaggggggag	catctagttt	1140
tgaatttagat	atacatctta	gaagtaatga	gctattggca	gctgttaat	cagattcagc	1200
cacaaaccag	aattcttct	tgttgaacaa	gaccaatgag	ttagatgact	ttaataattc	1260
cactttctc	tccctcttct	ctcctcttcc	tgaaatcaga	gagatgagaa	actactcttt	1320
gaaatacaccc	cagaggcggt	ttattgtgtt	cctttcccct	ccaaggcagct	ccctttatac	1380
aattttgctc	aggcaaccaa	ggacagagta	tcggcagaaa	catggagtgc	ttttgtatag	1440
gccacacctgta	cataaaagtg	taattatTTA	tttaattttc	ccatttgtat	catattaaag	1500
ctttgtacag	tgttttaagt	tctgtttaa	aattatTTG	tatTTTatTT	ttataaccta	1560
gtaataaaat	attcattccg	catgcAAAAAA	aaaacacaca	cacaacccaa	acaacccaaa	1620
acaaaacagaa	ccaaaagata	gaaaccaaAC	acagcaacag	acagacacaa	gagaagacga	1680
aaacaaccac	acaaaacagca	cacacaaccc	cagcggagaa	ccaacaaAGC	caaacgcaag	1740
acagcacaac	aagggacaaa	acacacacgt	agcacaaAGC	agccgcagaa	ccgaacacac	1800
atctaaagac	aggcgacaac	aacatagcag	gccgtgcac	cgacaaccac	taaaccataa	1860
ctatccagcg	gagatcagat	cacagaagcc	gacacagaaa	gaaaagcatg	tatgcaacgc	1920
atgacacccgc	agggcggata	aaaacactcg	taggcggac	cggcgcagaa	cgatcgaagg	1980
ctaacaacaaca	agcttagtaga	tcacaagtac	gtgaccacgc	cctcttatct	ataaaggagg	2040
aagagggag						2049

<210> 127
<211> 286
<212> DNA
<213> Homo sapien

<400> 127	acatctgggtt	gcggagaaaag	aaaaaaacttc	tcaaagaaga	atTTGAAGTG	agctttaagg	60
	gttgaatgga	atTTTTactg	ttagaggttag	agaaaatacaa	tatcataaaag	aaagatgtga	120
	tccctacaag	aggattacgt	ggtaagttga	aagacattaa	acagtccaac	ctggcatttgc	180
	tcaaaaactat	atacgttggg	cacagaactg	aagaccaggt	gtcaaaggag	gatggctctg	240
	tccccctttgt	gtccccagtg	cctaaagcag	tgtttgggtgc	aagctt		286

<210> 128
<211> 12421
<212> DNA
<213> Homo sapien

<400> 128

agccccacggg atcgcccacg cgtcggggca ggtcaaggag gaggctgaaa gagcctgagc	60
tgtgcctct ccattccact gctgtggcag ggtcagaaat cttggataga gaaaacctt	120
tgcaaacggg aatgttatctt tgtaattcct agcacgaaaag actctaacag gtgttgctgt	180
ggccagttca ccaaccagca tatccccct ctgccaagtg caacacccag caaaaaatgaa	240
gaggaaaaca aacaggtgga gactcagcct gagaaatggt ctgttgccaa gcacaccaca	300
gagctaccca acagattcct atggagttct tgaattccag ggtggcggat attccaataa	360
agccatgtat atccgtgtat cctatgacac caagccagac tcactgtcc atctcatgg	420
gaaagattgg cagctggAAC tccccaaAGt cttaatatct gtgcattggag gcctccagaa	480
cTTTgAgATG cAGCCCAAGC tgAAACAAgT cTTTGGAAA gGCCTGATCA aggCTGCTAT	540
gaccaccggg gcctggatct tcacccgggg tgcAGCACA ggtgttatca gccacgtagg	600
ggatgccttg aaagaccact cctccaaAGt cAGAGGCCGG gTTTGTGCTA tagGAATTG	660
tccatgggc atcgtggaga ataaggaaga cctgggttggaa aaggatgtaa caagagtgt	720
ccagaccatg tccaaACCTC taagtaagct ctctgtgctc aacaactccc acacccactt	780
catcctggct gacaatggca ccctggcaa gtagggcgcc gaggtgaAGC tgcgaaggct	840
gctggaaaAG cacatctccc tccagaAGAT caacacaAGA ctggggcagg gcgtcccc	900
cgtgggtctc gtgggtggagg gggggccctaa cgtgggtgtcc atcgtcttgg aatacctgca	960
agaagagcct cccatccctg tggtgatttG tgatggcAGC ggacgtgcct eggacatcct	1020
gtcctttgcg cacaAGTAact gtgaAGAAGG cgGAATAATA aatgAGTCccc tcAGGGAGCA	1080
gcttctagtt accattcaga aaacatTTAA ttataATAAG gcacaATCAC atcagCTGTT	1140
tgcaattata atggagtGCA tgaAGAAGAA agaACTCGTC actgtgttca gaATGGGTTc	1200
tgagggccAG caggacatcg agatggcaat ttAAACTGCC ctgctgaaAG gaACAAACGT	1260
atctgctcca gatcagctga gcttggcact ggcttggAAC cgCGTGGACA tagcacgaa	1320
ccagatctt gtctttggc cccactggac gcccctggGA agcctggcac ccccGACGGA	1380
cagcaaAGCC acggagaAGG agaAGAAGCC acccatggcc accaccaagg gaggaAGAGG	1440
aaaAGGGAAA ggcaAGAAGA aaggAAAAGT gaaAGAGGAA gtggAGGAAG aaACTGACCC	1500
ccggaAGATA gagctgctGA actgggtgaa tgctttggag caAGCGATGC tagatgttt	1560

agtcttagat cgtgtcgact ttgtgaagct cctgattgaa aacggagtga acatgcaaca	1620
ctttctgacc attccgagggc tggaggagct ctataacaca agactgggtc caccaaacac	1680
acttcatctg ctggtgaggg atgtaaaaaa gagcaacctt ccgcctgatt accacatcg	1740
cctcatagac atcgggctcg tgctggagta cctcatggga ggagcctacc gtcgcaacta	1800
cactcgaaa aactttcgga cccttacaa caacttgtt ggaccaaaga ggcctaaagc	1860
tcttaaactt ctggaaatgg aagatgatga gcctccagct aaagggaaaga aaaaaaaaaaa	1920
aaagaaaaag gaggaagaga tcgcacattga tgtggacgac cctgcgtga gtcggttcca	1980
gtatcccttc cacgagctga tggtgtggc agtgcgtatg aaacgccaga aaatggcagt	2040
gttcctctgg cagcgagggg aagagagcat ggccaaggcc ctggtggcct gcaagctcta	2100
caaggccatg gcccacgagt cctccgagag tgatctggtg gatgacatct cccaggactt	2160
ggataacaat tccaaagact tcggccagct tgctttggag ttattagacc agtcctataa	2220
gcatgacgag cagatcgcta tgaaactcct gacctacgag ctgaaaaact ggagcaactc	2280
gacctgcctc aaactggccg tggcagccaa acaccggac ttcatcgctc acacctgcag	2340
ccagatgctg ctgaccgata tgtggatggg aagactgcgg atgcgaaaga accccggcct	2400
gaaggttatac atggggattc ttctaccccc caccatctt ttttggaat ttgcacata	2460
tgatgatttc tcgtatcaaa catccaagga aaacgaggat ggcaaagaaa aagaagagga	2520
aaatacggat gcaaatgcag atgcgtgc acagaaagggg gatgaggaga acgagcataa	2580
aaaacagaga agtattccca tcggaacaaa gatctgtaa ttctataacg cgcccattgt	2640
caagttctgg ttttacacaa tatcatactt gggctacctg ctgctgttta actacgtcat	2700
cctggtgcgg atggatggct ggccgtccct ccaggagtgg atcgcatct cctacatcg	2760
gagcctggcg ttagagaaga tacgagagat cctcatgtca gaaccaggca aactcagcca	2820
gaaaatcaaa gtttggcttc aggagtactg gaacatcaca gatctcgtgg ccatttccac	2880
attcatgatt ggagcaattc ttgcctaca gaaccagccc tacatggct atggccgggt	2940
gatctactgt gtggatatca tcttctggta catccgtgtc ctggacatct ttgggtgtcaa	3000
caagtatctg gggccatacg tgatgatgat tggaaagatg atgatcgaca tgctgtactt	3060
tgtggtcatc atgcgtgc tgctcatgag ttccggagta gcccgtcaag ccattctgca	3120
tccagaggag aagcccttgg gaaaactggc ccgaaacatc ttctacatgc cctactggat	3180
gatctatgga gaggtgtttg cagaccagat agacctctac gccatggaaa ttaatctcc	3240
ttgtggtgag aacctatatg atgaggaggg caagcggctt cctccctgtta tccccggcgc	3300

119

ctggctcact ccagcactca tggcgtgcta tctactggtc gccaacatcc tgctggtaa	3360
cctgctgatt gctgtgttca acaatacctt ctttgaagta aaatcaatat ccaaccagg	3420
gtggaagttc cagcgatatac agctgattat gacatttcat gacaggccag tcctgcccc	3480
accatgatgc attttaagcc acatctacat catcattatg cgtctcagcg gccgctgcag	3540
aaaaaaagaga gaaggggacc aagaggaacg ggatcgtgga ttgaagctct tccttagcga	3600
cgaggagcta aagaggctgc atgagttcga ggagcagtgc gtgcaggagc acttccggga	3660
gaaggaggat gagcagcagt cgtccagcga cgagcgcatac cgggtcactt ctgaaagagt	3720
tgaaaatatg tcaatgaggt tggaagaaat caatgaaaga gaaaacttttta tgaaaacttc	3780
cctgcagact gttgacccctc gacttgcata gctagaagaa ttatctaaca gaatggtaa	3840
tgctcttgcgaa aatcttgcgg gaatcgacag gtctgacctg atccaggcac ggtcccgggc	3900
ttcttctgaa tgtgaggcaa cgtatcttct ccggcaaagc agcatcaata gcgcgtatgg	3960
ctacagcttg tatcgatatac attttaacgg agaagagtta ttatttgagg atacatctct	4020
ctccacgtca ccagggacac gagtcaggaa aaaaacctgt tcctccgtaa taaaggaaga	4080
gaaggacgtg aaaaacgcacc tagtcccaga atgtcagaac agtcttcacc tttcactggg	4140
cacaaggcaca tcagcaaccc cagatggcag tcacccgtca gtagatgact taaagaacgc	4200
tgaagagtca aaatttaggtc cagatattgg gatttcaaag gaagatgtg aaagacagac	4260
agactctaaa aaagaagaaa ctatttcccc aagtttaaat aaaacagatg tgatacatgg	4320
acaggacaaa tcagatgttc aaaacactca gctaacagtg gaaacgacaa atatagaagg	4380
cactatttcc tatccccctgg aagaaaccaa aattacacgc tatttccccg ataaaacgtat	4440
caatgcttgcgaa aaccaggatg tagagtacag ttcaatcagc gaccagcaat tgacgacgga	4500
cggtgggtt aaccaggatg tagagtacag ttcaatcagc gaccagcaat tgacgacgga	4560
atggcaatgc caagttcaaa agatcacgcg ctctcatagc acagatattc cttacattgt	4620
gtcggaaagct gcagtgcag ctgagcaaaa agagcagttt gcagatgtc aagatgaaca	4680
ccatgtcgct gaagcaattc ctgcattccc tcgcttgcctt ctaaccatta ctgacagaaaa	4740
tggatggaa aacttactgt ctgtgaagcc agatcaaact ttgggattcc catctctcag	4800
gtcaaaaaagt ttacatggac atccttagaa tgtgaaatcc attcaggaa agtttagacag	4860
atctggacat gccagtagtg taagcagctt agtaattgtg tctggaaatga cagcagaaga	4920
aaaaaaaggtt aagaaagaga aagcttccac agaaactgaa tgcttagtctg ttttggatcc	4980
ttaattttttttt ttttttaaca gtcataacca ctaatgggtc tcataatggc catctaaaca	5040
tcatcaattt ctaaaaaacat tttccttaaa aaattttggaa aattcagact tgatttacaa	5100

120

tttaatgcac taaaagtagt atttgttag catatgttag taggcttagt ttttccagt 5160
tgcagtagta tcaaataaaa gtgatgatac tgtaacgaag ataaattggc taatcagtat 5220
acaagattat acaatctctt tattactgag ggccaccaaa tagccttagga agtgcctcg 5280
agcaactgaag tcaccattag gtcactcaag aagtaagcaa cttagctggc tcagtggctt 5340
atgcctgtaa tccttagcact ttgggaggct gaggtaggcg gattgcttga ggccaggagt 5400
tcaagaccaa cacggccaat gtggcgaaac cccgtctcta ctgaaaaata caaaattagc 5460
cgggtgtggc ggtgggtgct tgttagtctca gctacttggg aggctgaagc aagagaattg 5520
cttgaatcca ggaggaggag gttgcagtga gcccatcata tgccactaca ctccagcctg 5580
ggtgacagag tgagggactg tctcaaaaaa aaaaaaaaaa aaaaaaaaaa tactgaacta 5640
ggcacattgac atccaagatg tccacttggc cttttctaa gtgtacttca ctttgtttc 5700
attcctcctc taaagcttt taacaaactg tcactcatgt tctaaaaaca aacaaatgtc 5760
tttcatctca tttttactc agcattatct atcaaaggga ctggatgtcc catctagttt 5820
gtactttagt ttcttagctca ttacatagga aatgcaaata aaaaacacaa tgagatacca 5880
cttcacacccc actaagatgg ccataactta tttttttaa aaaaaggaaa aggaaaataa 5940
taagtgttgg tgaggaagtg gacagaaatt ggaattctca tacattgctg gtggaatgt 6000
ggaatggttc aactgctgtg gaaaacagtt tgtctgtcc tcaaaaagct aaacatagaa 6060
ttaacatatg acccagcagt tccactccta gatatatacc caagagaatg caaaataggc 6120
attcaaacaa atacaggtac acaaacattc atagcagcac tattccaat agccaaaagt 6180
cagaaaacaac ccaaagtcca tcaatgaatg agtggataaa taaattgtgc tataaacaca 6240
taatacaatt ttatggcc ataaaaatga agtgttata catgctacta tgtaaataaa 6300
tctcaaaaac ttgtactaag tgaaagaagc cagacacaaa aggtctcata caattcgatt 6360
tatataaaat agcaagaata gataaaacca tagagacaga aagcagattg gtgggtgctg 6420
ggggctggag gaaggaagga atggagagta tctgcttaat gggatgggtt ttcccttttag 6480
aggagaacat ttttttggaa actttaaata aaggtggtgg ttatgcaaca ttgttaacaa 6540
tactaagtgg cactgaactt ctcactttaa aatagttaat tttatgttat gtgaagttt 6600
cctcaataaa aaaattctta aaaaaaaaaa ctcagtgata tccaaaccatt aaaaaatata 6660
agttacatag ctcgtatata atcaacttac ttattactgc actatgaggg gcacccagat 6720
atgtaagaca gagtcccaac ctttggtgt tggaggacta tctaaggata cagagattaa 6780
taaaaaataaa agaactacca cgaaagaagt gcccctccaag tacaaagaga gttcaaatat 6840

121

aactgtgagt ggactcaagc cagccagtat gtttagagaaa aactgcagtt tgcaaacaga	8700
actgaataag tcttatgatg taaaaaaccc ttctccttta ttgatgcaaa accagaatac	8760
gagacagcag atggacacac ctaggtgtc ctgtggaaat gaacaatttt tggataacag	8820
ttttgagaaa gttaaacgga gacttgattt agatattgat ggttgcaaa aagaaaactg	8880
cccttatgtc ataacaagtg gaataactga acaagaaagg caacatttc cagaaaaaaag	8940
ataccctaag gnatctggct tcgtaacaa gaataaaatg ttaggaacta gttccaaaga	9000
aagcgaggag ttactaaaaa gcaagatgtt agctttgaa gaaatgcgga agagactaga	9060
agaacagcac gcccagcaat tatcactact catagctgag cagggaaaggg aacaagaaag	9120
actgaaaaag gtttttagtc tggaaataca agcaaaattt aacaaaataa ctgcagtggc	9180
aaaaggattt cttactcgta gacttatgca gacagataag ctgaagcaac ttgcacaaac	9240
tgtaaaattt cgagctgcct tgtacggat tcatgacata ttctttgtaa tggatgcagc	9300
tgaaaagatg tctattctac atcatgatcg agaagttcgc aaagagaaaa tgctcaggca	9360
aatggataaa atgaaaaagtc cacgagtggc tcttcagct gcaacacaga agtctcttga	9420
taggaagaaa tacatgaatg ttggaaatag caggtacgag tggatatact ttcttactca	9480
tactgagctg aacactggag ggcccggttgc ggagatgatc ctgtttccctg tcataggta	9540
ccatctcatg aacaaccaca gaccaccacc cccgaatgaa aacatggcgt ctgcagaagg	9600
tgctgtgcgg ccgctgcggg gcggccagct gcccttcaca aacatggcgg ccgaggggtg	9660
cggggagtgg cggggtaagg atgggaagcc gagcagacgg ccccagaaca agcggtcatg	9720
tgactggaa gatggccgtc ttcttgcgtt tattattaag gatattacaa agaatacaga	9780
tgaacagcca gatgaagagc tacgttaggt cacagagtca aagacaaaga aagtgaaccg	9840
gaaaggaagc acttcttcca cgtccctc ctcctccagc tccgtggtgg acccgctgag	9900
cagcgtccctc gatgggactg accccctctc catgtttgca gccactgctg accccgcagc	9960
cttggcagct gccatggaca gctccagaag gaaacgtgat agagatgata actccgttgt	10020
aggatcggat ttgagcctt ggaccaacaa acggggagaa atccttgcgg ggtacaccac	10080
tacccggaaat ctgtcttata atctgtttat gggatctgaa aaaggcaaag ctgggactgc	10140
cacattggca atgtcagaga aggtgcggac ccggctggag gagctggatg actttgagga	10200
gggttcccaa aaggagctgt tgaacttgac tcagcaggat tacgtgaacc gcatacgagga	10260
gctcaaccaa tcgctgaagg atgcctggc ctcagaccag aaagtgaagg ctctaaaaat	10320
agtcatccag tggtaaaacgc ttcttcaga caccagtgtt attcagttct acccaagcaa	10380

123

atttgtcctt atcaccgaca tacttgatac atttggaaag ctcgtgtacg agcgcatctt 10440
ttccatgtgt gtggatagcc gcagcgtctt accaggatgt tttttagtt acgtggaggc 10500
atccatcctg aaatgtaaaca aattcctctc caaaaacggga atttcagagt gcctgccccg 10560
gttgacatgc atgatcagag ggatcggaga cccactagtg tcggtgtatg cccgtgccta 10620
cctgtgccgg gtggaaatgg aagtggcccc acatctcaa gaaaccctaa ataagaactt 10680
ttttgacttc ctccctacgt tcaaacagat tcatgggat acggtccaga accagctgg 10740
ggtccaagga gtggagctcc catcttacct ccccttgcac ccgcctgcca tggactggat 10800
cttccagtgc atctcctacc atgccccgaa ggctctgctg accgagatga tggaaagggtg 10860
taagaaaacta ggaaacaatg ccttgctgtt gaattctgtg atgtctgcct tccgggctga 10920
gttcatcgcc acaaggctca tggatttcat tggcatgatt aaagagtgtg atgaatctgg 10980
tttccccaaag catcttcttt ttgcatact gggattaaac ttggccttgg ctgatcctcc 11040
tgagagtgac cgacttcaga ttctcaacga agcttggaaa gtcataacta agctgaagaa 11100
cccacaggac tacattaatt gtgccgaatg gtgggtggaa tacacctgca agcatttcac 11160
gaaacgagag gtgaataaccg ttttggcaga tgtcatcaag cacatgactc cagatcgtgc 11220
atttgaagat tcctacccca agcttcagtt aataattaag aaagttatttgc cccacttcca 11280
tgacttctca gttctttct cagtgaaaaa atttctgccg tttctggaca tggccaaaaa 11340
agagagtgtg cgggtggagg tttgcaaatg catcatggac gccttatca agcatcaaca 11400
agagcccacc aaggaccggg tcatctgaa tgcccttttgc catgttgca agaccatgca 11460
tgactctgtg aatgcactca ctcttgagga tgagaaaaga atgctgtcat atttgattaa 11520
tggatttata aaaatggttt ccttggccg tgatttgaa caacagctga gttttatgt 11580
tgagtccagg tcatgtttt gcaatctgga gcctgttctt gtgcagttga ttcatgcctg 11640
tggtgcctac tgcttcatca ccatccccctc cctggcgggc atcttcacac gtctcaatct 11700
ctacactgcat tctggtcagg tggccttggc caaccagtgc ctctccaaag ctgatgcttt 11760
tttcaaaagcc gctataagcc ttgttccggaa agttccaaag atgattaata ttgatggaa 11820
gatgcggcca tcggaatcgt tccttctgga attcctctgc aatttctttt ctactttatt 11880
aatagttcccg gatcatcctg aacatgggtt cctgtttctt gttcgagagc ttctcaacgt 11940
gatccaggac tacaccctggg aggacaacag cgatgagaaaa atccgcacatc acacactgcgt 12000
cctgcacatctc ctctccggca tgagccagga gacgtacctt taccacatag acaaagtgg 12060
ctccaacgac agcctctacg ggggagactc caagttcctg gcagaaaaca acaagctgtg 12120
tgagacggtg atggctcaga tcctagagca tctgaaaacc ctggccaagg acgaggccct 12180

124

gaagcgccag agctcggtgg gccttcctt cttaacagc atctggccc atggggacct	12240
acgcaacaac aagctcaacc agctctccgt caacctgtgg cacctggcac agaggcacgg	12300
ctgtgcagac accaggacca tggtaaaaac gctagaatac atcaagaagc aaagcaaaca	12360
accagacatg actcatctga cggagctggc cctcagactc cctctgcaaa caaggacctg	12420
a	12421

<210> 129
<211> 1494
<212> DNA
<213> Homo sapien

<400> 129	
cggccgccgg gcaggtacta ggttctgaca tcagtgaagt agcttccatt tcatttctct	60
gagtgtttca ctcagcaaga gactatgcga caactacgtg ctgggtgttc cagatgtatt	120
gaactctgga caaaactgctt gacttcagcc tcttgaacta ttgttaatac acggggcagct	180
tgttatatacg ctcccattgg tatacaactt gctaattaaa tggaaaatac ccttggggcc	240
acgtgccatt gtgcttggtgc tatacaacca tggtaaaattc cccaggcatt ttattgggcg	300
cagtgtccac atggccgtg tggttgtttaa caacccttgg aagtgtcag gggaaagattc	360
tgaagaaacc cattccttag tcgccaaggc gattggtttgc acatgcccgc cggctctatt	420
ctaaccctaac agacagaatt acggaagaca ttttatgtgc ttgttgtgc cgctatgtgt	480
ttgtggctgc ggtgacaaac ccagttgcta aacacatacc ttccaaggcc tttacctttt	540
gcaacgcaat gtggcctttg cacacaagta ctggagaggg aagattaccg aactatatga	600
aaaccctct gtgcggaaacg gtggcccatg gaacttggct atttggccac atggcttagtt	660
aaggccacct aaaacggcaa aattttgggt tggtcgccta agcgtttgtt caaatcagtt	720
gcccctaattt gggccctttg ggtgcacggc caactttatc cgccgaagtt tccgattcgt	780
aatagaatcg tagcatcatg acatgaaacg acacacacac acacaaaaca cactacaata	840
gcagcgctca ctgatgcagc gagcggtaaa taaccaccct ccgacagaga ggggcccc	900
gaccacaaaa tagagacgca gtgttagagta ctacacacca cccaggttgt tagttggta	960
gtgcagacac aacattcttc ttgtgaatat aaagcattcc cgcgagtgtat ccttcctact	1020
accagtatta tcatccctac tcatgtatg gctacatgt gcaacaatta ttcatgcacg	1080
tgcgagtgtat agcgacacaa acatacggtg atacatctaa ctagacgcta acgcacatca	1140
gcatccaacg agaatatatt atgaacagat ggagcacgac tgaagtcgta ggttattcg	1200
cacatgtgg acgtatgttgtt atccggagat gtcaactgac aggagtgcac agtggccacag	1260

ggcttacggc agtagtagca ccatacggt gacctagaga tggattggta aatcaaagta	1320
gtgagggagg ggcggaatgg gaagcgtgac gggatgtga tgtagctgt cggagttgga	1380
cggagggagg catgggagga acgtgtgagc aatagagccg gcgaggtgtc tacaggaagg	1440
gagagcagag gcgagcacgg agcgatcgct ggagctgcag ctgcccaggc ggcg	1494

<210> 130
<211> 1774
<212> DNA
<213> Homo sapien

<400> 130	
tgtgagttcc acagaagatt tcagttgaaa agcactattt atgttctta ctgtggacag	60
catttagagg aaacatttta agcagcacgt tcataatttcc tctgttcacg tacttagtca	120
acagctcttcc attgtgcgtc tatcgtgtgc aaggcagtgt tctacatgtc atggggtaaa	180
caagatgaca aatccctgtc cccttagaaa agagcttgca accacagtgg ctgttgaaa	240
gaagcaacag tggtgctaaa agacaccagg taaactggaa aggaaaattc atcatatagc	300
gtacttagtt ctgacatcag tgaagtagct tccatttcat ttcttgaggc ttcatcagaa	360
gagatatgcg acaatacgtg ctgggtgttc cagatgtatt gaactctggc caaactgctt	420
gacttcagcc tcttgaacta ttgttaatac acgggcagct tgtttatatacg ctcccattgg	480
tatacaactt gctaattaaa tggaaaatac cttgggccc acgtgccatt gtgcttgtc	540
tatacaacca tggtaaattc cccaggcatt ttattggcgc cagtgtccac atggccgtg	600
tgttggtatt caacccttgg aagtgcgtc gggaaagattc tgaagaaaacc cattccttag	660
tcgccaago gattggtttg acatgcccgc cggctctatt ctaacctaac agacagaatt	720
acggaagaca ttttatgtgc ttgttgtgc cgctatgtgt ttgtggctgc ggtgacaaac	780
ccagttgcta aacacatacc ttccaaggcc tttacctttt gcaacgcaat gtggcctttg	840
cacacaagta ctggagaggg aagattaccg aactatataga aaacccctct gtgcggaaac	900
gtggcccatg gaacttggct atttggccac atggctagtt aaggccacct aaaacggcaa	960
aattttgggt tggtcgccta agcggttggt caaatcagtt gcccctaattt tggccctttt	1020
ggtgcacggc caactttatc cgccgaagtt tccgattcgt aatagaatcg tagcatcatg	1080
acatgaaacg acacacacac acacaaaaca cactacaata gcagcgtca ctgatgcagc	1140
gagcggtaaa taaccaccct ccgacagaga ggggcggacc gaccacaaaa tagagacgca	1200
gtgttagagta ctacacacca cccaggttgc tagttggta gtgcagacac aacattttt	1260
ttgtgaatat aaagcattcc cgcgagtgtat ctttcctact accagtatta tcatccctac	1320

tcatgctatg gctacatcggt	1380
acatacggtg atacatctaa ctagacgcta acgcacatca gcatccaacg agaatatatt	1440
atgaacagat ggagcacgac tgaagtcgta ggttgattcg cacatgctgg acgtatgagt	1500
atccggagat gtcaactgac aggagtgcgt gttggcacag ggcttacggc agtagtagca	1560
ccatacggct gacctagaga tggattggta aatcaaagta gtgagggagc ggcggaatgg	1620
gaagcgtgac gggatgtga tgtagctgt cgagttgga cggaggagg catggagga	1680
acgtgtgagc aatagagccg gcgaggtgtc tacaggaagg gagagcagag ggcgacacgg	1740
agcgatcgct ggagctgcag ctggccaggc ggcg	1774

<210> 131
<211> 531
<212> DNA
<213> Homo sapien

<400> 131	
ccgaggtact taattcttg gcaacaaaca gcaagttttt atggtttaat tgtatttcct	60
ctctagagat cacaataactc tgggtatTTT atatcccttc taaaggtcat ttgggtttc	120
aaatgggaag aatagtcaag ctaagctgga ctaaacctaa gtaatatTTT atctcatcaa	180
aagaagttat taatctaact gggtagcat gagtcattca ttttttagac atgataaatg	240
ggaaacatat caaatcatta gataaattct gacctggaat tgaattcccc ctttcttaaa	300
atcttttaa tttgttttt tcatactc agtatggaac tcttaactga taagggagag	360
attcttgatc tggAACCGTT ccctgccatt ctccTTTTT ctctctgtct aggtagctgg	420
ttccatagtg cccgtcacga gggccattt cagtttgatg acattagact gcttacactc	480
agctggatgc cttgtgttt gcagcaacat gattttacag tatgttttc t	531

<210> 132
<211> 4309
<212> DNA
<213> Homo sapien

<400> 132	
tggggcatga agttctgccca ctaaggcata accagtaccc aagttaggaaa ggattattga	60
tccctggagt aaagattcct agttgcggg gatctacta ttgatcccc ggagtaaaga	120
ttccttagctc gcaggaatct tacttgcaca cttaaggaaa ataccagagg gagccactag	180
caaccgaaaa atgaaggaaa gatttaattt ctctaccag gtacaaatcc aatgcatagt	240
atagtatatg ttatatgcag aaagggcact ggaggtgtga gagccctttg ggtaacagct	300

127

ctgctagttt	ttacccac acttctctt cttcttaatc tctggttct cgtctgaaaa	360
atgagataat	tggacttagat taatagttct cagcctttc tagaacaaca aatttagatta	420
tctctgaagt	cctttccaa aatttcatgc ttccagtctc tccccgtgat tgcatattat	480
ccctaggcta	attaaaagtg tgctggtaa tcagttctt tacttttt tctctctttt	540
ttttattctg	tgttcaggtt tcatttgacc aacaacttgc tcttaatctt actgcgatga	600
ctgaaatctc	caaagaggag agtata>tagttt ctataggctt agtaataata atcttgtaaa	660
caattcatta	ttttttaaaaa cttaatgctg tgtgcctaat cagtgtttag tatgactaaa	720
atgtaaatga	gaaccaaata tgacactaac gctggcacta aattttat ttacttgtgt	780
acttaaagta	ctttactggc ctgttggaa attgattgtt ataagattca cacctggttt	840
tggcagaaac	agcttttaa agatacaatt aggctgactt aaaaatgttt tttattccac	900
agaatgtatc	tttattatgt cattcttacc gtctctctgc ctttttgac catcatgtaa	960
ctacgcagta	gtaaatcatg ggggcaggc tgatgaat ttactgtttt taaaactaaa	1020
atgtaaatgag	cataggaaga gacagctttt ctggtaaca tggcagttt ccggtaatac	1080
cagccttgat	gaataggcta aagacagctg tgtactatgg acattcaact tcactggatt	1140
gcctggctta	gttttcaagt tattgtctt ccgtgaaaca tggtgttgc ctgtacacat	1200
tttagaaatag	tggcaagaat gttctttaga actgcagata acccaacaga gaataaccata	1260
ccaatatatc	ggtttcttccct gttacataga gatttggat ttcagtgtat gttatggttt	1320
ttgactcacc	tgtgtgtcag tcctgctaga gagacagtat agaatcaaga atttcttgat	1380
gtcttttaa	aaatagagat tataatggcc ttgctagttg tcctgtgaag tgacagacc	1440
ttaattagaa	atcttttaat cctgcttcc attttacttc tccaccattt attttaaca	1500
ttcattctct	gaaaatagtt atgattttta gtgtattgg ctatgtttaa gaaattccat	1560
ttcaaaagtct	taatatgtaa caatcttcat tttttataaa attgaaggac atttttgagg	1620
caaacttact	tttatagctc attttctccc tagttaagga gaattctctg gtttcatata	1680
gagaatggct	agctctgtga taccccaccc tctttgtggc ctaccagttg ctgttgtgtt	1740
gcttaaaatt	gcagatattc tcataaacat gatgattttt ggcacaggcc tttctttgct	1800
attgatttca	aaataaaagtt gggcaatccg atttgaacta cttaataaaa cataatttag	1860
cattcctgtt	atgagaaagt attttcaaaa gataaccaga tttatttcta ggatttagaga	1920
tggcaaatac	caatgatagt attttccca agagcaatca cagattaatc tataaatatg	1980
agaagtcgca	ttattgtact taattcttg gcaacaaaca gcaagttttt attgttaat	2040
tgtatttcct	ctctagagat cacaatactc tgggtatattt atatcccttc taaaggtcat	2100

ttgggtttc aaatgggaag aatagtcaag ctaagctgga ctaaacctaa gtaatattt 2160
ttctcatcaa aagaagttat taatctaact gggttagcat gagtcattca ttttttagac 2220
atgataaatg ggaaacatat caaatcatta gataaattct gacctggaat tgaattcccc 2280
ctttcttaaa atcttttaa tttgctttt tcatalogt agtatggaac tcttaactga 2340
taaggagaga ttcttgatct ggaaccgttc cctgccattc tcctgaaaa ctctctgtct 2400
aggtagctgg ttccatagtg cccgtcacga gggccattt cagttttagt acatttagact 2460
gcttacactc agctggatgc cttgctgtt gcagcaacat gattttacag tatgctttc 2520
tcaaagcttt gcattctaa tggagatata aatggtgta attccaaata taaatatgtt 2580
tatgacacta atcatatgct tttaacaata actttttgat aacttattgc cctgtaagtt 2640
aacacctaca cggagtgact gttgccatca gaaaatcccc tttcacctgc tagagagat 2700
gaaagtagtg cgtggctcc acttttcagt taacgagtagt caagcttcta gtagggctg 2760
cttatctgac ccatgtgggg tcttggccct tgttacttcc ctgggttcgt cccttcagct 2820
ggaaaggctg ttgaaaacac ttgccaggaa acagtaaagc tgtgagagaa tcttctagtc 2880
ttagatata tagaaatgagt accagttgat gctaacaacga tacttagact ttgagggct 2940
tccatccaag ctttggcatg aatctgttag acacggttt cttcactcct ctgataatct 3000
tttttccag aatggttttt tggttgtt gttgttaaca aattctaaac atccagtgtt 3060
actttttgtt ttgtttgtt tggttgtt tggttgtt tggttgcct tcaggaaagt 3120
ccttttcga gtaggtattt attgtccct gaaaactctc agcagtgtct gtgcaggctc 3180
tgtgcatgct ttgtatgagt tcggcttcaa caatgcattt gaagtcaccc gggatgtcca 3240
gttctggcat gtcttcattt attgtgttt taaacatgtt tcatgtttca tgtcattttc 3300
caaacctcac ttacatctt actcagagaa gttaatcaag gaatgaaatt tctaggggaa 3360
tagggatgat gaggggtgggt tggggcttg agtgaagtca acttggggta tttgctttaa 3420
agtgtttct aaagcagttc ctaacagtat ttagagattc cctggatgt ttgtggctca 3480
acttattctg gacaaagtgt gtgtgggggt ggtcttactg agatttgcat tcttaatgca 3540
ggacaggctc taaatttcat ctgtactcta aatttgtat tgaatccaag aagataacag 3600
agacagtgct cctgttgtaa tggttctggc aagtgcctcc taaaatgcac atcgaattct 3660
gttttctggg cttttctcc aatggtgcta ggagataccg ttgatttctg cagctttct 3720
cagtgggtggg aagaagtctt tgggattgtt gagcaagggg cagctggacc atccactaaa 3780
ttttttgtt caagacacat tagagaccct cctgtatatac tagtaagtca taataaaaggt 3840

129

gcttggaaaa	gccttaaatt	tgaagacaca	tggaggcggt	agaaaattaa	acttgtaaga	3900
ggagaaaaac	atgccattag	gtaacgcaga	gttgtaacta	ctggctaaga	ctcaatggaa	3960
cttccacttg	ctctaaaacc	agggaaaggga	gtgggacgat	aagtctttg	aagacatcag	4020
ctcactgtgc	tgagagaggg	accaaactca	aggaaacctc	tgatctatac	attcaactgc	4080
tgcatttttt	tataaataca	tgtaaatgtc	ctgttgtaat	atttgatctt	ggaaataaaaa	4140
acaaaaaactt	ttcgtagaaa	aaacacacac	gacaaaaaca	aaatttgggg	ggccggcgcc	4200
aagaagttc	aaccacatgt	gtggggccgg	cccaggtgaa	ggaaatggca	agtggccaag	4260
aaccggccag	aaggggggtt	tcccaaaaaa	cgcgcggg	cgcgttga		4309

<210> 133

<211> 730

<212> DNA

<213> Homo sapien

<400> 133

gccgccccgc	aggtaaacg	tggagattc	cctctggaa	aatcacccag	caagtgaaat	60
ccgaccacaga	gggggacaca	ggagtgc	cgtggacag	cgtggccacc	actgggaggg	120
gctctggcag	tttttcttgt	tttttacgct	gcgatgtctg	tgaatcttga	gagcccagct	180
gatgcgttgt	aacctcacct	ggggcgatg	tggaacattc	caggcctggc	aggggctatg	240
cctgccatgc	agacctcacc	cgagccatct	caccctgggt	ctgtcagagt	cccacgtgct	300
gtcgcccc	acccacccccc	gacggggcca	tgctcctgg	catgctgtga	ttcattcatc	360
attccatggg	caggtgtggg	attgtctctg	tgtttctgtc	tgctttttaa	agaagatgag	420
gtaagcatgg	aaaacaaaac	aaacgtggta	accccatcac	tcagacgtgt	ccactgttag	480
cattcggaa	caggtgagag	cagtctggcg	cacaggtttt	aaggctggct	ggcccagact	540
ttggtcttgc	gctgtgtgat	cttggggaaa	tcactgattt	ctgagccctt	ttcccagctg	600
ctttttctct	tggggctgg	agaaggaata	agagagttag	tgtcaaaaaaa	aaaaaaaaaa	660
aaagcttggg	gttaatcatt	ggcaaataatg	ttcccggtt	aaattgtttc	ggtcaaatcc	720
atttggagaa						730

<210> 134

<211> 226

<212> DNA

<213> Homo sapien

<400> 134

gccccggcag	gtactgggtt	gcagcaagct	atgatgccct	gagggtccct	gaagacaagt	60
aagaacacac	tcaacttgc	actcagaaac	gcagccctt	aaggcttcca	gataagaata	120

130

atgactgggt aaagccaggc tgccaccta gctgaagcta caggttagtg actaaggaaa	180
cactgatgtc aggccagcct aggccaacctt ctccatgtgt tctttg	226

<210> 135
<211> 937
<212> DNA
<213> Homo sapien

<400> 135	
tttttttttgc agatggagtc tcgctcaagt gcccaggcta gagacagtgg ctcaatctca	60
gctcactgca acctccgcct cctggattca aacgattctc ctgcctcgcc cttctgagta	120
gctgggattt caggcatgcc ccaccacgcc cggttaattt ttgtatTTT ggttagagatg	180
gggtttcacc atattgtcca ggctggtctc aaacccctga cctcaggtga tctggccacc	240
tcaagctttc aaagtgtga gattataggc gtgagccact gtgcccagcc gcagaaaaagc	300
ttcttacctt gagcaggggc atctctcggt cctgctggat taaaaggtgc atttcgttga	360
tctgctgccc cacaaggggc ggtactgggt tgcagcaagc tatgtatgccc tgaggTTCCC	420
tgaagacaag taagaacaca ctcaacttgt cactcagaaa cgcagccctt aaaggcttcc	480
agataagaat aatgactggg taaagccagg ctgccaccta agctgaagct acaggttaggt	540
gactaaggaa acactgatgt cagGCCAGCC taggccaact tctccatgtg ttctttgcga	600
caccaagctt taagtggatc cctcttggag cctgactccc acaatcaggg agagctgaaa	660
gtaagtgcga cagcactgtg gattctcaat tccgcagggg gcaaccaacg ggctgtggat	720
tttcattttt gcttatactt caatcaagat cacaaaacgt ttaagatcat gagctgcttt	780
aatttggaaag aaagtacaga tgacagaatc tgggacattt tcttcccttg caagtagatg	840
ctataaggct cagagactta aaataaaactc aaactaaggc ataatcattt aatgattcc	900
agttcagaag ttttagtgct taaaatggcag cctgagg	937

<210> 136
<211> 96
<212> DNA
<213> Homo sapien

<400> 136	
gccccgggcag gtaccaatca atttgaaaaa tgaaaggaa aataacttatac tttcctataat	60
gaattggaa aataaaagga tatgaaaagg taaata	96

<210> 137
<211> 151
<212> DNA

131

<213> Homo sapien

<400> 137
aaaatgtagg cagcaaaagt ggaagaggag aggcagctgg tgcactaatt caggtgagag 60
gtaaaagatgg atgggttaggg ctgaaggatg gtggggcagg tggtgagaag tgacttggtt 120
ctggagacat atgaaggaag atggtcaggc a 151

<210> 138
<211> 604
<212> DNA
<213> *Homo sapien*

<400> 138
cgtggtcgat gcgaggtaact ttcttagacc agtgtaacct cacacccatg tttggcttt 60
ccaacccatga cttgaaaggc atatttgtat ctttttatta gtgatagtga agctgtgaca 120
ctaacccttt atacaaaaga gtaaagaaag aaaaactaca gcgattaaga tgagaacagt 180
tctgcagttg ttgaactaga tcacagcatt gtaggcagaa taaaaaatgt tcataatctga 240
gaatattcct ttcgccatct tttcccaagg ccagacccctc tggggagca cagttaaaag 300
taacattctg ggccttgtaa tcggaggcgt gtgtctccag ctggcagcct tggggatata 360
tataatgcag gactgtggaa aacagttggc atagaatatt ttcacctaaa aaagaaaagaa 420
aagacataca aaactggatt aattgcaaaa agagaataca gtaaaatacc atataactgg 480
acaaagctag aagaaccttt agaagatttg tctgaaaaca gatttcaaga gtgagcttt 540
atacactgct cactaatttg cttgattact accaactctt cttaaagtta acacgtttaa 600
ataa 604

```
<210> 139  
<211> 4461  
<212> DNA  
<213> Homo sapien
```

```
<400> 139
tgagtttcc cctgttggcc agggatggc tcgatctcct gacctcgtga tctgtccacc 60
tcggcttccc caagtgttgg gattacaggc atgagccacc gcgccccagcc tagccatatt 120
tttatctgca tatatcagaa tgtttctctc ctttgaactt attaacccaaa aaggaacatg 180
cttttcatac ctagagtcct aatttcttca tcatgaaggt tgctattcaa attgatccat 240
cattttaatt ttaccaatgg ctcaaaaatt ctgttcagta aatgtctttg tgactggcca 300
atggcataaaa ttatgtttaa gattatgaac ttttctgaca gttgcagcccc atgttttccc 360
tacgataccatc qatttccatc ttggggcata ttggattgtt gtatccaaga ccgtcagaat 420
```

132

aatgatagtg	tgtggctcc	agaggtagtc	agaatcctgc	tattgagttc	tttttatatc	480
ttcctttcc	attttttatt	accattttgt	ttgttttagac	tacacttgt	agggatttag	540
ggcaaaatta	tctcttgag	tggaaattcct	gtgttttag	ccttacaacc	aggaaatatg	600
agctatacta	gatagcctca	tgatagcatt	tacgataaga	acttatctcg	tgtgttcatg	660
taatttttg	agttaggaact	gttttatctt	gaatattgta	gctaactata	tatagcagaa	720
ctgcctcagt	cttttaaga	aggaaataaa	taatatatgt	gtatgaattt	atataatacat	780
atacactcat	agacaaactt	aacagttggg	gtcattctaa	cagtaaaac	aattgttcca	840
ttgtttaat	ctcagatcct	ggtaaaatgt	tcttaatttg	tctgtgtaca	ttttccttc	900
atggacagac	cattggagta	cattaatttt	cttaatctgc	cattggcag	ttcatttaat	960
ataccatttt	ttggcaactt	ggtaactaag	aatcacagcc	aaaatttgtt	aacatcaaag	1020
aaagctctgc	catatacccc	gttactaaat	tattatacat	ccagcagatt	ctgggatgta	1080
ctaaaccttagg	gttaactttg	ttgttgtga	taatactaga	ttgctccctc	tttaattctt	1140
cttctggcgc	aagggtgctg	cttaagttac	cctggaaat	actactacaa	ggtcaaattt	1200
tctagtatct	tacagcctga	ttgaaggtga	ttcagatctt	tgctcaatat	aatggattt	1260
tccaagattc	tctggccat	ccttgaccct	caggtgatct	cgctggagta	tattaactta	1320
acttcagtgc	cagttggttt	ggtgcctga	gatccataat	gaatccagaa	cttcaccatt	1380
gcttagatat	aagagtccct	tggaagaata	atgccactga	tgtgggggt	cagaagggt	1440
attaactcaa	catagagggc	tttagattt	ttcttcaaaa	aaatttcgag	aaaagtattc	1500
tttaccctc	caaacagttt	acagctctta	gtttctccaa	atatgctctt	tgatttactt	1560
attttttgtt	aaagatggtt	atttattgaa	caatgaaatc	cgtaatatat	tgatttaagg	1620
acaaaaagtga	agtttttagaa	ttataaaaagt	acttaaatat	tatataattt	ccatttcata	1680
attgtttcc	tttctctgtg	gctttaaagt	tttgactat	tttacaatgt	taatcactag	1740
gtaacttgcc	atatttctgg	ttctatatta	agttctatcc	tttataatgc	tgttattata	1800
aagctggttt	ttagcatttg	tctgttagcaa	tagaaatttt	actaagtctc	tgttctccca	1860
gtaagttttt	tctttctca	gtaagtcct	aagaaaacat	ttgtttgcc	ctcttactat	1920
tcccaatctt	ggattgttcg	agctgaaaaaa	aaatttgatg	agaaacagga	ggatccttt	1980
ctgggtgaata	taggttcctg	ctttaagaat	gtggaaatcc	attgctttat	ataactaata	2040
tacacacaga	ttaattaaaa	ttgtgagaaa	taattcacac	atgacaagta	ggtaacatgc	2100
atgagttttg	aatttttta	aaaacccaac	tgtttgacaa	aatatagaac	ccaaattggt	2160
actttcttag	accagtgtaa	cctcacacac	cagttttgct	tttccaaccc	tgacttgaaa	2220

ggcatatttg tatctttta ttagtgatag tgaagctgt acactaacct tttatacaaa	2280
agagtaaaga aagaaaaact acagcgatta agatgagaac agttctgcag ttgttgaact	2340
agatcacagc attgtaggca gaataaaaaa tgttcatatc tgagaatatt ccttcgcca	2400
tctttccca aggccagacc tcctggtgg gcacagttaa aagtaacatt ctgggcctt	2460
gtaatcggag ggctgtgtct ccagctggca gccttgcatt taatataaa tgcaggactg	2520
tggaaaacag ttggcataga atatttcac ctaaaaaaaga aaaaaaagac atacaaaact	2580
ggattaattg caaaaagaga atacagtaaa ataccatata actggacaaa gctagaagaa	2640
cctttagaag atttgcgtga aaacagattt caagagttag cttttataca ctgctcacta	2700
atttgcttga ttactaccaa ctcttcttaa agttaacacg tttaaataag gtatttctgg	2760
acttccatgc cttagccaa gcttagagga actagccatt agctagtgtat gtaaaaatata	2820
tttggggact gatgccctta aaggttatgc ccttgcggat tcttacctt tctctgtga	2880
tattaaggaa cgagtggta gtgttctcag ggtgaccagc tgccctaaag tgccctggat	2940
tgagggtttc cctggatgcg ggactttccc tggataaaaaa acttttagca gagtttgtat	3000
tatatgtgga ttttctgtat aagtagcaca tcagaggcct taaccactgc caaaaagcga	3060
ttctccattt agagtacata tcttgcactt aagaaattca tttgctctga ttttaatct	3120
tgtaaagttt ttgctaaact caaaacaagt cccaggcaca ccagaaggag ctgaccaccc	3180
taggtgttct tggatattt ccttacttcc ctatgtgtc atagttgcattt ctaaactcag	3240
ctgcactatg gctgtcaaca ttctgtatac ttattggat atgtgccatc cagtcattta	3300
gtactttgaa tggaaacatga gatttataac acaggtataa gctgaaggta ccagtatgg	3360
ggtagactc acacttagt atccagctaa ggtaactgtat gttataatgg aacagagaag	3420
aggccaaacta gatagctaag ttcttctgaa cctatgtgtat tatgtaaatgtt caaatcatgc	3480
gtccttatgg ggttaaactt aatctgaaat ttacatttt catagtaaaa ggaaaccaat	3540
tgttgcatat ttctttctt gtgaggaaat acatggcatt tgatgtctg gctgtactg	3600
catttccatg tctgttctgc tcgagaagcc agaatgtgtt gttaacattt ttccgtgaat	3660
gttgtgttaa aatgattaaa tgcattcagcc aatggcaagt gaaggaattt ggtgtctgt	3720
tgcagactga gcagtttctc tcaattgttag cctcataactc ataaggtgct taccagctag	3780
aacattgagc acgtgaggtg agatttttt tctctgtatgg cattaaacttt gtaatgcaat	3840
atgatggatg cagaccctgt tcttgcattt cttctggaaat ctttagtggc tgcattcattt	3900
gtgcactgtg atggagatataatgtgtt ctttgcattt cttctggaaat ctttagtggc tgcattcattt	3960

134

aagtacgatg tggttccctt tttattttta ttaaaacaatg agctgaggct ttattacagc	4020
tggtttcaa gttaaaatttgc ttgaataactg atgtctttct cccacctaca ccaaataattt	4080
tagtctatTTT aaagtacaaa aaaagttctg cttaagaaaa cattgcttac atgtcctgtg	4140
atttctggtc aattttata tatatttgta tgcatcatct gtatgtgctt tcactttttt	4200
ccttggttgc tcttacctgt gttaacagcc ctgtcaccgt tgaaagggtgg acagtttcc	4260
tagcattaaa agaaagccat ttgagttgtt taccatgtt ctatggact aatttttaat	4320
tgttttaatt tttatttaaa ctgatctttt tttatatggg attacattttt ggtgttcact	4380
ccctaaatta tatggaaacc aaaaaaaagtg attgtatttc acatatggaa aaaaaaaaaaa	4440
aaaaaaaaaaa aatatgcggc c	4461

<210> 140

<211> 321

<212> DNA

<213> Homo sapien

<400> 140

cgaccggcgc tttgtgatgg atccggccgg gcaggtactc tggtagccca gtttgcaga	60
gccaggttcc agcagggatg gtagccagcc tgggcacact tttctgtatt gtatTTGAAC	120
ctcatttcct gatgctcatc cagaagttcc tggctgggtg agtaggtgaa cagttcaagg	180
ctgtgtggat gaaactctgg catctttta cagtgctgtc cggcagggca gtgtgaggcc	240
actctgtcct ctttgacct ctttcttctt cagcagccaa atggaggctc tctaaagggtg	300
atgatttaact tggcataaac a	321

<210> 141

<211> 1438

<212> DNA

<213> Homo sapien

<400> 141

gggggacaca gcactgcctg aagcagcata ttgttaggtca gccagttccc gttgacacgc	60
agaaagacag tactgctggg gttcattttc tggaaagcc aggcagagcc tgaggaagct	120
tcatggaaag gcagcatgga acttgagctg agccacggag gatggggaaag tgggagaagg	180
tcatcgaggt agctggaaag gagagtgttc ccagggagca ttttagaggt gggAACATTc	240
aggtgcatac aggtgagagt ggagatgctc cagggagttt gacagcaagc acttggcagt	300
gatacagggg caggggtaca gtctgaaagt gctggactgg ggtactctgg tagccaagg	360
ttgcaagagc cagggttcc agcagggatg gtagccagcc tggccacact tttctgtatt	420
gtatTTGAAC cccatttcct gatgctcatc cagaagttcc tggctgggtg agtaggtgaa	480

135

cagttcaagg ctgtgtggat gaaaactctgg c	540
atctcttta cagtgctgtc cgccaggcca	
gtgtgaggcc actctgtcct cctttgaccc ttttttttt cagcagccaa atggaggc	600
tctaaagggtg atgattaact tggcataaac atgccaagct ttccctgagcg tttgc	660
attgggctgt ctcttgctgc tctgagacag ggagactggc tgtctggctg accagcc	720
ggggctgagg tctggctgtc aagttgcagg ttccaggcaa ccagaattc ctgggtgtca	780
cctggctcta gagatttagag cagcagtgtt gtcactaga actttgtgca gtgatagtgt	840
tctttaatct gcactgtcta gtactgttagc catggccac ctgtgacttt caagcc	900
aatgtggct accggccagg cacagtggct catgcctgtt atccagggtt gtccaa	960
ttggcttccc tggccacaa tggaagaaga attgtcttgg gccacacata atatacaga	1020
acactaatga tagctgatga gctttaaaaa aaaaatcaca aaaaatatct cataatgtt	1080
taggaaagtt tacgaatttg tggggctg catttgaagt ggtcctggc cttggctgc	1140
gggtgggaca aagcttgtt taatcccagc attttggag gtggaggcag gacgatcact	1200
tgggcccagg agtttgagac caggctggc aatatggcgg atcccatctc cacaaaaatt	1260
gcaaagttac cgggatggtg tcaggcgcta tagtccagct gcttggaga ctgagcagga	1320
agaatgctta gctgttaggga cagttgcggg cggatacagt atggcccagc caggcaaggt	1380
gaccgcgttcc aaaaaaacaa cattggccgg cttataggta ataaacacaa acgatgta	1438

<210> 142
<211> 368
<212> DNA
<213> Homo sapien

<400> 142 ggccgagggtt agcatttaat ctactggaaat aagctggttt ctgtggctta tacctgttagt	60
cccagatact tgggaggctg aggccaggaga atcacttgag accagcctgg gcaatata	120
gagacctcac ctctaaaaaa gtttttata aatttacttg tctaaagtgg ggaaaggaa	180
attattctgt tttcttattc ttgcttcaag actatgacag attgaaaga gaattctaaa	240
gcagatttag agaacctgct tctcttctta tctcctaatac cctaaattgt aatttagctc	300
ttatctgtat tgtgtttgt tttggtaaag ggatgatttt tacattgagt tttaaagtag	360
aataagaa	368

<210> 143
<211> 540
<212> DNA
<213> Homo sapien

137

agtgacccca aggaactttt tacagccagc ctctggatac cagatatagc atttacaact	1020
tctgatatgc tagacaaatt ttccatagtt ttaattttct taaagacata tagtgagtga	1080
acaccaacac tggaaaggag gtagtgttaa tttgatcaaattt tattgatattt cccccactga	1140
ttcagaaagt gttgtctt tctctaggat atctcaaaac cttccaattt tttct	1195

<210> 145
<211> 787
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> (344)..(634)
<223> a, c, g or t

<400> 145 acattttagag aaggtaaaa gaaacagtga gaaatgtaaa cattcaaaat gataattgaa	60
tctctcagtt gtggaaataa ttatcagaga catgcaactg aaaatgtctc acctttcatc	120
ttttttctt aattcataaa gttatcttgt agaatttgat gagaccctcc tagtcattct	180
caactggggc ggtgtgtca ccgaatggtg tttgagatgt ttggggctag ggcacatTTT	240
tggttgtcac agcaactggg gtggcatttg ctgcccagtg ccaggaatag taacattatg	300
aatgccagga cagtgtgtc agtaaagtct tccatccaaa aggnnnnnnn nnnnnnnnnnn	360
nnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn	420
nnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn	480
nnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn	540
nnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn nnnnnnnnnnn	600
nnnnnnnnnn nnnnnnnnnnn nnnncgaaaa catccgtaa aaaaaaacac	660
cccccggtcg cttgtccctt ccccttgtg acaaactttt tcaaatccag aaagctgcgg	720
gtaatcatgg gcataggct gttcctgtgg taaaattgtt ttccggccaa tccccaaaac	780
aaaaaaaa	787

<210> 146
<211> 193
<212> DNA
<213> Homo sapien

<400> 146 tggtcgcggc gaggtacagg ccgcctactt actgcccgtc ctgacccagg attcttagga	60
ggggaaaagtg ctatccctgg ggccaggcag ggagccacag ccactcaactg cattctcaga	120

attctatcct accaccccaa agattgacct gaaagagact ccccttcctc agtcatgttag	180
aagtcccttta cat	193

<210> 147
<211> 661
<212> DNA
<213> Homo sapien

<400> 147	
tcatgccgag cgcgccatg agtgatggat tggtcgcggc cgaggtagc agtcctgtta	60
tttttctctt tggccctatt tggctgctta tattaatgca tcagaacttt atgtataatc	120
atatggattt atacgtaaat taagaaaaaa tgtccatttc attcagttca tatgttctaa	180
acgtattgct gatcattctt aaatgagact ccaggtttac attcttacat aaagtgcagg	240
gatcccgaag ttagccccaa agatccccctt gccttttca gacttgctca aatgttacct	300
tatcagtggg gccttcctg accacacttt aaaaacctca acacccaccc atgggccttg	360
tcctccttcc cggcttcatt ttttggcata tacttatcaa atgtgaacat atgatgcatt	420
tgctttatTT atcatcgatc ttcaactca ggcatgtaag ctctgtgagt gcaaagatTT	480
tcatctagct aatcttccag aacagtgtct ggcacagaga aggagctcta tgaatatgtg	540
ttgaatgaat gactatctt gccttgtaaa ccccatgcta ttggctctct cttcaggtgg	600
ctgaccactg caccccaggg catgctggaa agacaggagt cccaaGCCCT cccttctgct	660
c	661

<210> 148
<211> 1897
<212> DNA
<213> Homo sapien

<400> 148	
agttttgcgt tgcccttgt tgcttgcgtc cgtcgttgtt ttgcctgtgg cttctgcccgt	60
ctttttgtgg gctcgccgtt gcccgtgcct gcccgtgtca cccttggcgc ccgcctgggt	120
gctggggtcc gcgattgcag tccttgata gtgttagtga ggggggctgt cgtcggtgtt	180
gtgtatggtc cgcatggggg agtcattagc atgttgagtt gactgtctcc cggccgttt	240
aacgtgcgtc tggaaaggtaa atttttgtaa atcaagtagt tggaactaaa tccaacactg	300
ataattgcca tttcaaacac tgatctgaaa agtgaattag aagctgtaca atatcatcat	360
tagaaattct gcatatggct aataaatatt ccttttaaaa ttaatagagt ctaaagtctt	420
ccacatgatc tttacagata gagtggaca ctatagaatt ctgattatat gatTTAGATT	480

139

ttagggatgt tttaacattt tcaaaccact agaaggacat tgggaacaga aagtaataga	540
gccaacgtca cgtggtaatg atcaatagtc cagttctacg aggagaacaa ttttaagctc	600
ttcactgagg ccaattctgc tgtattctaa ttccttttag gttcttggtg gtagagtaat	660
gagctatgac catctctgga atactggtga ggaaaatggc agcagtaaag aaatgaggaa	720
aatattacct aattaatgat aaagtttaggt ccagtacaga gtcctgttat ttttctctt	780
ggccctattt ggctgcttt attaatgcat cagaacttta tgtataatca tatggattt	840
tacgtaaatt aagaaaaat gtccatttca ttcagttcat atgttctaaa cgtattgctg	900
atcatttcta aatgagactc caggttaca ttcttacata aagtgcaggg atcccgaagt	960
tagccccaaa gatccccttgc ccttttcag acttgctcaa atgttacctt atcagtgggg	1020
ccttcctga ccacacttta aaaacctcaa cacccaccca tgggccttgt ctccttccc	1080
ggcttcattt tttggcatac acttatcaaa tgtgaacata tgatgcattt gctttattt	1140
tcatcgatct tcactcactg gcatgttaagc tctgtgagtg caaagatttt catctagcta	1200
tcttccagaa cagtgtctgg cacagagaag gagctctatg aatatgtt gaatgaatga	1260
ctatcttgc ctgttaaacc ccatgctatt ggctctctct tcaggtggct gaccactgca	1320
ccccaggcga tgctggaaag gacaggagtc ccaagccctc cttctgctc tactccaagc	1380
tttcttctt gggcatttgc actcaagtca ggttagtactt ctctatgtct gagcacagac	1440
gggctgtgtt catgtatttgc tacatatgtg tgaatagaca gagaaacttag tagcatgggt	1500
atgtggggga atccatcttt tagggagaga tttatctact gttttgtgt ttagtctcac	1560
ctcagaccag gttaagctgg ccagggctca tagtttcaa agagcaacag aaaaaatctg	1620
tttagcttac attctaagca tttttttttt atcttccttgc aaagctatcc actttttaatt	1680
tcatctcata ctacagagaa aatattatggaa gaaactgata gctttccaga aggttactga	1740
aatcaattttttt ttttcagtgtt cttcactggc accattcata gtagctaaca ttagccactt	1800
tccgtggcc tggcgtgtt tttaaagtgtt ttacatatat tattttttt aatccgcaca	1860
atgatccctt caagtaggtt ctgttattat tcccaat	1897

<210> 149

<211> 254

<212> DNA

<213> Homo sapien

<400> 149

ccgaggttacc catctagctt ctggggctcc actgacagct gaggacagtc cacacccgac	60
ctggacccca cccccccctg ggtctgttcca ttcagtcggcc ggcctgagcc tctggccaa	120

	140
agccacacctct tctgagcagg caggcagagc gaaagactgg gagcagcaga caggggcaga	180
gcacggccca tgagccacc ctcacttcc cagattggtc agagttacat ggtcaccttc	240
cctgcacctg cacc	254
<210> 150	
<211> 1993	
<212> DNA	
<213> Homo sapien	
<220>	
<221> misc_feature	
<222> (1822)..(1822)	
<223> a, c, g or t	
<400> 150	
aaggatcctt aattaaatta atccccccccc cccggggcgg cccagcggat cgtgcccg	60
cggccgagcg cagctacagg agggtgtcca gaagccacaa gccatggctg tggggAACAT	120
caacgagctg cccgagaaca tcctgctgga gctgttcacg cacgtgcccgg cccgcccAGCT	180
gctgctgaac tgccgcctgg tctgcagcct ctggcgggac ctcatcgacc tcgtgaccct	240
ctggaaacgc aagtgcctgc gagagggctt catcaactgag gactgggacc agcccgtggc	300
cgactggaag atcttctact tcttacggag cctgcacagg aacccctgc acaaccctgc	360
cgctgaagag gggttcaggt tctggagcct ggatgtaat ggaggcgatg agtggaaagg	420
ggaggatctc tctcgagacc agaggaagga attcccaat gaccaggttc gcagccaggc	480
cagattgcgg gtccaaagtac cagctgtgcg ttcaagctt gtcgtccgcg cacgcgcctc	540
tggggacctt ccagccagac ccggcgacca tccagcagaa gagcgtatgcc aagtggaggg	600
aggctctccca cacattctcc aactacccgc ccggcgatcc ctacatctgg tttcagcact	660
gcggcgatggc cactcattac tggccggctt ggtacggccc gagggtcacc aacagcagca	720
tcaccatcgg gcccccgctg ccctgacacc ccctgagccc ccatactgctg aaccctgact	780
ggtaaacaac tgctgtcaga aaagggctgg gcttggaaag gggaggtggg ggccagggtgt	840
ccccagaccc ctaacccttg ccccttagcag cctcttcttt gtggagcctc tcagtgtggg	900
cagccctcgc atgctgggtt cggggccagct ctccccgaaa ggtcttgacc tgaatgtgg	960
ccggggaaagg ctgcgtgtgc ccctttcaga gacggagcac ctgagatgtg ggaggtgcag	1020
catgttcccc tgggccccctc agaaaagtcga gcttggaggg cagcctggat ctgtctctcc	1080
cttccccctcc tgggaccatt ctacctgtgt tctttgaccc tcggagcagg gacaggcaag	1140
acaactggca agcttgcagc tgccctgatg gtgcaggtgc agggaggtga ccatgttaact	1200

141

ctgaccaatc tggaaagtgg aggggtggct catggccgt gctctgcccc tgtctgctgc	1260
tcccagtctt tcgctctgcc tgccctgtca gaagaggtgg ctttggccca gaggctcagg	1320
ccgggactga gatggacaga cccagggtgg ggtggggtcc aggtcgggtg tggactgtcc	1380
tcactgtcag tggagccccca gaagctagat gggtaccagg tggggttagg ttcccagagg	1440
actgagggaa tcctgtacag gatgtcccag ggtagatggg gagcaggatt gggacctgt	1500
ctgacagctg gacacatgag ccctggatga gtatggtagg gggttgaag aatcccctgt	1560
ccacctccca aatccaggcc cgccccccctc tggcttggag agcattccaa gcccccaccc	1620
caccctaga actgccattc ccaagacctc tgtctccag ccaaccaccc ttggaacttg	1680
cctcttgtcc tgctggaaag atagcagtgt tctcctgact tcgcctact gcatgcagcc	1740
aaaaaaaaagg tgtgccagt ctaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	1800
aaaaaaaaaaa aaaaaaaaaa anaaaaaaaaaaa acataaaaaac tattgcttgcgtt	1860
ggattggctt tgcgtatcta ctttcagtgc ttctgtcatt tccttcttcc tagctgctta	1920
tcatgcata ggctacactg tgctcatttc tcaattttac ccagttctaa tggaatgg	1980
gtgttttagat ttt	1993

<210> 151

<211> 170

<212> DNA

<213> Homo sapien

<400> 151

gcgtggcgcg gccgaggtac atactcatat ttataaggac ttccctacta ggagagattc	60
ctgggttctta cagaataaaa ttcttggcta cttgtcttat agctctgaac agacttattt	120
tcccagagag tatgtttattt atgtaatagc gagttgcctg accccccaaa	170

<210> 152

<211> 1394

<212> DNA

<213> Homo sapien

<400> 152

taggtctgtta tagaatacga ctgaaagatt ttgactgttg atttcctttt aagagattct	60
cctgttctcc tcttcagagg aaagagagag gagagaggga gagaggagag aaaagagaga	120
agagagggtg acttttcatt atatgccttt gtaatattta atctcctccc ttttctcacc	180
cccttgagca tgtatgcttt tcaacaatta aaaagattaa aaagctctta aatagataag	240
aatttcttag agcaactagt aagtacacta actgccaatt gtttgaaat gtagacattc	300
tgaaaaatca aaatgattgt gccgaatgta ttttaaaagg ctaaaatatt atagcatttc	360

aaagtacata ctcatattta taaggacttc ctcactagga agattcctgg gttctacaga	420
ataaaaattct tggctacttg tcttatacgct ctgaacagac ttatTTTccc agagagtatg	480
tttattatgt aatagcgagt tgcctgaccc cccaaaaagc tgtgttctat catattaaaa	540
taaggcaaaa tgattacttt cagattaaga aattgtggga ctctagatct tgTTTATATAG	600
tgaagttctt taaaaaactg aggtcttgggt tctgaataat agtgggttta cattaattta	660
tttagaatttgc tcattggggg tatctctgac ctatTTTtat aaaataatct caatTTTaa	720
aataggagta aaatgctcat tggcataagc cagtaataat aatttagtat tttccaagt	780
atttatagtc aatgtgttgc catgaacttt tttaaggat gtttttaatt ttAgAgtgc	840
ttaaaaagc aatatggcat ctggctctgt agaagtagaa aacatggtaa cttcaatgtg	900
atataTTTgc ttTTTcccc tcttaggtct ttggggtaaa aaaaatccaa agTTTactca	960
atTTTatttgc tacatataatt acctacaat tataGGGTG agacctgctt gctgcctgtt	1020
catacctgtc agtgatacta atacctcccg tctgtacagt gtttcatagt ttccaaagg	1080
ttctcgcatg gttcctcaact tgagcctgggt gaggaaatac ctgtaaacat gggtagaagt	1140
tttagtccct tggtaaaactc tggTATAATA tcaaaaccag gaaattgttc acagattcta	1200
aggattgggg aaaagagaaaa aataaaacaaa ttgctcagga gtAgAAATTGA aaaaaagaaa	1260
aaaaaaaaaaa aaaatttggg ggccggccga aatttaaaca gttggggggg ccagggtggaa	1320
tggaaaggcga ggaaacggga gatgggttgc caaaaaagcg gggcgggtga aaaaggcgg	1380
gggggtacga gggt .	1394

<210> 153
 <211> 368
 <212> DNA
 <213> Homo sapien

<400> 153	
gcactgagaa aggatATGGA caagtcaGTC agcattcaca attaAGAGAA aaACATCTGT	60
gctttggaaa atgttcttca aggatAGAGA attgtGCCCT atgtCCACCA aatttgcATG	120
agatCTTTat aagattAGAC AGCCAGTGGa TAAGGCCCT tatCTTCTT CATGGATGGC	180
tgaggAAATT CTCCGCCTTC CCTGACATCA GCTGCATAAC TGTATTCTG CCTCGTGGAA	240
ataAAAGTAGA TGATCAGGCA CTTGCGGTTT GTTCTTAATA CAAGAAAGAC AATTGATT	300
ttaAAAGTT TGATTGTag AATAATGTAa GACAATATGT TTCTTCTAC TTGGTTTT	360
ccattcaa	368

<210> 154
<211> 864
<212> DNA
<213> Homo sapien

<400> 154
ttgatatatatt gcattttga gcattaggct tctaggttat ttgttaact cataggcagg 60
tttagtacac agtgctgttt atgacagaaaa aaaattttat cctacctctg aaataattgt 120
actttctgtg attcagataa aaactttata gaaaactccct aatgaaaata ttgaagcatt 180
aaccagaaaa tgagttagt ttttgttcc aaaatgatgc aacaggaaaa cctttaacta 240
cttataatcc cgtatagtca ccatcaccac aaagtattga aaatctgttt tctctttac 300
taagtgtctg cacggtcact tatgtatacc caaagccaga aagatatttt tatctcagg 360
aaattccaga aatggaaaca ttttgttgcataattgattt atttctgtct caccaaagat 420
gtgttttcca cgttagcaaag aacatcagcc ccacgttata gggacaaggc gagtccccaa 480
tcgtaccatc tgctgagcac tgagaaagga tatggacaag tcagtcagca ttcacaatta 540
agagaaaaac atctgtgttt tgaaaaatgt tcttcaagga tagagaattt tgccctatgt 600
ccaccaaatt tgcatgagat ctttataaga ttagacagcc agtggataag gccccttata 660
tttcttcatg gatggctgag gaaattctcc gccttcctg acatcagctg cataactgta 720
tttctgcctc gtggaaataa agtagatgat caggcacttgc cggtttgttc ttaataacaag 780
aaagacaatt tgattttaa aagtttgat ttgtagaata atgtaagaca atatgtttct 840
ttctactttt gttttccat tcaa 864

<210> 155
<211> 179
<212> DNA
<213> Homo sapien

<400> 155
gcccccggt gttatggagt agcgtggttc gccccggagg tacatgtttt taaaaaatga 60
ctacatgttt cacctggtcc tattttgtct atttggacca tacttttaag atgaatttgc 120
cttacataca tgttaagtct gatttatctc cccacatttt taaacactaa atgaagctt 179

<210> 156
<211> 1849
<212> DNA
<213> Homo sapien

<400> 156
gcttgatacg ctccctaagga atttgccttc gagcaagcaa ttccggcacga ggctcgaacc 60
cctgacacctca agtgatcagc ccgcctcagc ttcccaagat gctgggatttta caggtgttat 120

ccactgcacc cggccggcat tatgatttg tgtactctt aaatggttat ctttgtggat
gatttttttt ttttaagctg aaacttacct catgaataac ttgattaaag tagtaggtga
ttaaaatttc aatagaatca aatgagacaa aaattttaaa ctgactcatt tgagttcaa
cttacagtc attgaccata aagcacacta aaaatgtaaat ttatTTTAA atacatctga
aataaaaata cttactaaaa aggaagaagc cgaagatgtt tatttagacc agcacacaat
tttatttca attagccta ttctaatatt tagcttttag atctttcata cacatttca
cgtactttgc aatttagagacc agaaagactt gtaggtctt ctgcagaatg agtgggtcct
tgcaaagtga gtggaaact tactcctaga tcagaaatgt ttgcctctt gagtaaaatg
tttcttcag atgagccata gagggggcac ctttactca acttttctt gtttggaaac
tttggggccc atactgtttt cagcctttt gttataatta gaaattgtga gaagcttcat
ttagtgtttt aaaaatgtggg gagataaatc agacttaaca tgtatgtaa atcaattcac
ttaaaagtat ggtccaaata gcaaaaatag gaccaggtga aacatgttagt catttttaa
aaacatgtac ttggctttt gtgtgtgtct gtttattcc attagaataa atgtgtcctt
gatgtaaatg caaagcattt ctccctgatt aaattgtaga tgtagacttt acaatataat
tcaataataa aaagtaatta acctctaaaa aaaaaaaaaa aaaaaaaaaa aaaaaacac
ttgtggcg cgccgcggc ccggagaaaa gttttaaaa cccttcgtat ggccgcgagga
ggggccccag gtaggggaac ggaacacagg ggccacggcg gtgttagcaag agggaaaacc
cggtggcgaa gaaaaaggcgtt gtagggggcgtt acccaataaa aagcgcgccc ggggggaacc
ggaggcgaa gaaaaaggcgtt tggaaaacaa gactctcaga aagagggaga gggttcagcg gagggcaca
ataaaaggggg gactcctcac aacaccgggg aggagctccc gaagaggaga cgccccgaaa
tagacaacaa ttacagcccc cgggcgcgcc gggggcagat accagaagac gaagcacgag
acgaagtagc acaagaagaa aggacagaca gaagcgagac gagaggacag aagggaggag
agagaggcgg agggcgagggc gaaaacaagg ggacgacagc aacgagaaga gaaagaaaaa
cacgacggag gaacggggcg gaaaaaggac gagaaagccg agagcaggcg ggcggggca
cacggggaa acgaagagca aggaaagaag acaacaggag aggaggggag ggaagcgagc
gaagagcgta gagacgcccga gcaacaagaa gctagagaca gcagtagaca cggacagaca
gacacgggtga tggtagccgg ggcggggggc catcttgggc gcgaatgctt cggccggggaa
cagacagcgc agggcgagca gagcgagggaa acgcagggaa cgacgcgaca gacaggaggt
cagaagaagg gaagatgtgt gcagcgggaa gaccaacggaa gaaggagag
1849

<210> 157
 <211> 903
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> (139)..(139)
 <223> a, c, g or t

<400> 157	
ttgtttgttt ttttctttt tttacatttt ttttttttg tggacgaaac attcacacag	60
aaacagctag gaccagatta cgccagcttc atgagacctc tcctatctgg gcacggttag	120
ttggctgact ctgggagcnc aggctgttgc ttcccagtct ggtggtaat cctccatgg	180
ctggttgagt cctttcaac tagttttgt gttgtttttt gaacctcaag tcactgactc	240
cttcagcagt ggttaagga agtatcttaa ttttaaatc acatgttgac catgcagcca	300
attgttggcc cgttagagtga aaaaaaccag accacaagat tgagggtttt gagctggaga	360
aaggaaaaag aaaaagcagg ctgtgactct ctggggaaag aactgaaaga tgacactagg	420
aattctcaaa gcgagaggaa aaggaaaggc ccttttcgg aaatgaccc tcataaaacac	480
accctccagg gttacacctg ccactgtgtc ttccacggac agacaagctg cacttttagca	540
gtcctgaata cctagagact tccttaacag agagtggga atctcgcat cttgcattgg	600
gatgggagct cgaagggaga acctcagcct tccagaaggt tatataaaac cagttgagaa	660
tttccctaag aatggagcag tggacaaaaca attgttattt taatccaaat acatgagtct	720
acctacataa tggagaaatg ctaacttaca gaaagcgtca ggcttgggt tctcgaactg	780
gttttaattt cctttataa aattacagcg aattatacaa ttacattgtat taattgtaat	840
cagttctgag tctagataac aaaacacaac acacacaaac aaacaaacaa cctctcctca	900
aac	903
<210> 158	
<211> 368	
<212> DNA	
<213> Homo sapien	
<400> 158	
gcggcgcccc ggcaggtaca gtggcaacag cattagacta agtggAACAT cccAGCAGGC	60
tgcttttagaa tccgctcatt tgactagata cgatgttaatt ggctgtcttt aaaaaACGCG	120
cacacacaca caatctgata ggcatatctc atgcccattc aatatggaaat gttcttcgt	180
tgctgaattt aagcctgtat tttaaggttt gtggttcctc ggccacaatg ggtgatgtca	240

ctgatagaac gaagctgagt ttccaagggt tggggctgtg caagagtaaa cactagagct	300
ttagttgtta tccagctggc aagcacggaa gtcttgaag aatgtaatgt aaaaagggaa	360
aagaatgt	368

<210> 159
 <211> 1548
 <212> DNA
 <213> Homo sapien

<400> 159	
gtcgccgcg aggtacatag acacaggaca attaataatt tggaaaacaa aagacttact	60
tatctccata tctgctaatt gtctccaaat ctccctaaaa tgcacttatt agcaatcatt	120
tttcaccacc catttaccca aacaacagga caaagactca atttcctatt ttatacaaaa	180
catgataagt cagccaagta ggttctggac cggtacaacaa gggagatatt aaattatagt	240
atttatataa aagtggccca ttctgtgtat acaaaacgtc tcattatgtg gaccaagaaa	300
catataaaat atatcaatat ataagttgga aaaaataaca aaaaagcaca cacattaata	360
aataatcata ttacacacac ccacatctat attctcttat atacacgcac acacaactgt	420
gtgtcttaac aacaaactct ccattttata aaatatctca ctgtatctct ttataaccac	480
aagaaagatg gaaacacaat aaacacccaa aacaaagaca cacagaaatc atttgtgcgc	540
ctatatataa taatcacact cagtatattt aaccaacact tccccccca tatcatctaa	600
tttatgttagt actctataat gtatcatcta gtatattatg tagaaaagtg gcgccccata	660
tattatacag ccgggcgccc acgtgtatata caaacaacag ctgttgcgt tctgcccgg	720
gagcacaaaaa ggtgtataac aacaaatgtat tatattcttc acccgaggaa gaagataatg	780
agaagggagt aataataacc agcgaagaag gggcgggggg acataataac accgctaattc	840
aacacccaaag aacgcgggcc aaacgaaaca acaacacaaa cgagatgttgcgttgcacac	900
cagtaacacc tacatgtcag cgccgcagcga caaaacaagg gcgttgcgttgcacac	960
aaaaaaaaactgc ggcaaaggga accacaccac cgacacacac accccatgtg ggaaagagaa	1020
aaaaaaaaacac atagttgagg acacccaaaaa aaggacagga ggaaaaacac actgtgggt	1080
gtgcaaaaca cacgttgcgt taacaacacc gcaggagatc acaaaagaaaa acaccccaag	1140
acacaacaaa atataagcga acaccacaac aacacaacaa cgaaacaaaaa caagaaaaaa	1200
caaaacacac aaccgaaaca aacaacccaa acgaccacca gaagcacaca acacgagacc	1260
aggacacac cagacgcaga cagacacgag atgatgcaca cgcgcacatcgccgagccagc	1320
aaacggcacg ccaacaagca agacggccag cgagaaacac gagcatgtcg aagttaggaca	1380

147

gcccgccaag acgacaaaaa accgaggaga agagaggaag aacacagaaa cgcgaggaa	1440
aggacaacgc aggagggcag ataacggcg acaagcgc aaaggagca gagaagacag	1500
aaggcaagac acgaaacaaa aacacacaac gaacaaacac gcgagagg	1548

<210> 160
<211> 552
<212> DNA
<213> Homo sapien

<400> 160	
agaagactga ctcataatagg gcgtatgtca ctagatcatg ccgagcggcg ccattgtat	60
ggatcttagt ttggctactg ccgttagtgg acaatatggc acatggaaat taaaaagtcc	120
ataaacgtgc ctcctaaca cgagaataag aaaggtggct gaagtagata atttcagtga	180
cggaggggat gaaatatttt ttggtaatt gatgtatga tgactcacta tgcccttattt	240
cctatttta aaaacacaga atgagcaagt cattcctgaa caaaaattta ctgtgtgtat	300
aacatacacc tcaaaatgaa ttttaaggga acatattact aatcaaataa cacagtttat	360
gcttttcaa tttccacaaa ttgttaatta tgatacttaa gggAACCTT acaatataa	420
acaagtcatt tcaatattat tcatacatcct taacttctga aagtttggtt tatgttatct	480
tatctagaaa gaaaactact tacaatctc atttcccac aaaattaatt caacatccaa	540
ccttaaaaat aa	552

<210> 161
<211> 3937
<212> DNA
<213> Homo sapien

<400> 161	
tgtatgtggg attacaggca tacaccacca cacccagcta ttttttgta tttttgttag	60
agacaggttt ctccatgttg gtcaggctgg tctcgaaactc ccgacctcag gtgtatccgc	120
cacccggcc tcccaaagtg atgattttat ttttattttt aattgtatta atctgcatt	180
agataatgac tttgtgaagg gtgtgtgttg tgtgcaaaac ttaaggtatt gggtgagagt	240
taaatacatt attttataa tatgttggtt atagtctagt tactaatgat ttttttaag	300
tactttataaaaatcat ttttaaaatt gtttgtttt aaaagccaat atacgttgca	360
gaatttaggaa cagtatttat atttatttac acaagacatt gtgcatacg atcctagtaa	420
aacacccatca tgaatgagta atgttatctc ccagaattac attaaaatta tttctaaaaa	480
gtatcaaagt cattacccctt tgctttat gacccacacc tcaccagctc ctggctttt	540

148

cttcactgtt	gcccttattt	tgaggcaatt	tttcttaaaa	tatgactttt	atgcaccaca	600
tttagtagag	gcagtgacat	cagtgatctc	agtacccatc	agctgtcccc	ctcctctgcc	660
cttcctcata	tcttctacct	tgtgaccatt	tcccttaccg	gttcatgttc	tcctttatct	720
ctgctttct	ttcttagcca	ggatacttcc	ctcacaactc	tcactccaa	attcttttag	780
atatacattt	ttctggatat	tggctgctga	aatctgaagc	tctggtaaag	ttccttagtat	840
cagagatcaa	tcctggagga	ggcctagttc	actattagat	tacaaagact	cctcacaaag	900
taaaggaaaa	tcaccttcaa	aaccacaacc	ctttatgtt	tcaagtctaa	tatgagtgtt	960
tttacgaagt	atttctttct	accattgtt	caagaatgt	aatgtaaaaa	aaaatacaag	1020
agagttgggt	agatatgcat	gcttgaggaa	acttgcttt	actgtttcc	tacttgtatc	1080
cccagttcag	ttgaatttac	aaggacctac	aagatggtca	tgttgttctt	ggtatgtgct	1140
accccaattt	tagtgtttct	ttctttatct	taaatcagta	attattcagt	tgattgttta	1200
tactatataa	tgaagtaaca	aaaacatttt	ggtttgtatg	tttaagtaa	cagttgtgca	1260
aattcctctt	gtttgttagg	tgctcccttt	gaatattttg	tgaactgtgt	cagagggaga	1320
gggggtggtgg	ctaggaagag	ggtcagaaag	aagctagagg	gaggtcagga	gaagggtaac	1380
agggaggatg	caaagcagac	atctaccctg	gtcaccccg	gatcaggata	tctgtcctt	1440
tttcatgttg	aattcaaaaa	ttggatctca	cttaggctt	gaaggtgaca	gccatctctg	1500
atagctgagc	ataagtaaag	aaaggtggag	tgccgatgca	gaaaggaaaa	tattcagctt	1560
tcctctctta	gatgcactt	tgaagatggc	ctttggaga	caatctgaca	ggttaaaaca	1620
ggaactgttg	gaattattct	agctgtact	acctattggc	tatgtgttga	ttgatcctag	1680
aaagaaaaaaaa	taattttca	tttagatct	tgattgaatt	taagatgtat	ttatatgcct	1740
acaaaaggtc	tgtcttgtaa	ctgttgtata	aaataaacct	aatctatggt	ttcattttta	1800
atctaaaaaa	agttgtgcct	taacaatagg	gcattgtatg	ttaataaggg	aaaacaacct	1860
ttttagtaga	tggggaaaa	taggaacttt	ttgccattaa	aacttaagtt	cttttgatgt	1920
tttaatatt	atagttgggg	gagattcatt	aaaattaaat	tgaataaaaa	ttatTTTgc	1980
ataaccttagc	atttacaact	aaagtatgtt	ttttataaga	actggcatct	tgtatgtat	2040
aggtctgaaa	taatatttca	tctttgatt	tttaatttta	ataatattag	accaggatag	2100
atcacagttt	tacaaatctt	agtttaaat	aaattatTC	agtgtgctgt	tagtcctcta	2160
cagtcatttt	ggtttaaaaa	gtgactattt	atttatggta	gcatatcaat	aatttattaa	2220
tgttaaaaaaa	tactgtgtat	gacattacaa	accagaacag	ttcctggggg	agaggattct	2280
aattgattgg	cagttctgag	aggcaagaa	gaatggaact	ttatacttca	aaaggaggtt	2340

ttggtttac caggtactgc ttatgtaaat cgtttatttt tatttcata aagcctggca	2400
agtatatgca ttccaaattta ccattggcaa agctttattt attttaagg ttggatgttg	2460
aattaatttt gtggaaaaat gagatttcta agtagtttc tttctagata agataacata	2520
aaccAAactt tcagaagtta aggatgatga ataataattga aatgacttgt tatataattgt	2580
aagggttccc ttaagtatca taattaacaa tttgtggaaa ttgaaaaaagc ataaactgtg	2640
ttatttgatt agtaataatgt tcccttaaaa ttcattttga ggtgtatgtt atacacacag	2700
taaatttttgc ttcaggaatg acttgctcat tctgtgttt taaaaatagg aaataaggca	2760
tagtgagtca tcattacatc aattaaccaa aaaatatttc atcccctccg tcactgaaat	2820
tatctatttc agccacccctt cttattctcg tgtaggagg gcacgtttat ggacttttta	2880
atttccatgt gccatattgt ccactaccgg cagtagccaa agctagctgt ttcagtcccc	2940
cagaagagac agtgctctgc catgatgaca gggcaactgct agggctggtt tttcttggtt	3000
ttcccttttg gcagtgtgga cttaggaac tagatgtata tgcacaaggg attgagttta	3060
cactaaaact aggaaatgga gtttcaatc tatgttcttg cctcttcata cttttatTTA	3120
tttttgcata tcctgcctta tactggctta acaatgagat aaaataaaaa tacctttgaa	3180
tactctttc ctttcatgc atttaaagcc atggaggaac tagaccatta gctgttgcgg	3240
tcacatgcTTT agacaccagt ttacttagcg tgtaggacc ttccctcaccc atactaccaa	3300
atttaaatgg gtcccgactt caccctctgg aaggaagtaa actcttctct ccccatggtt	3360
tcagagcagt ttttacctgc aagcaccatc tctgtatgtc ctcttactag attatacagt	3420
tottgagagg gattgcacatc tggtgtttt gtatttccac ctcaccccca gcacatagcc	3480
cagtctcttg cacaattaa gtacttaatg tgtaggagc taaattgaat aaaggattat	3540
tagcattagc atatttgcgt cttgggtgt ataagctggt tggtgtttt gttacctttg	3600
caaataattta tgattatcac ccccccacat actaaattgt tttaaaaagt ttgccttcc	3660
cttcagatac tacccaggc aatttgctgt agataatgtg attgcttcca atgacataat	3720
tatcccaaac tctctgcccc ggatatactt tgccaaacga aatttgaatt ctctgaataa	3780
atgggtcatg tctaaaaaaaaaaa aaaattgggg gcgggcgaaa aattttaaac	3840
atgtgggggg gggcaatgaa agaaggcagg tccaagacgg ggaagggggt cacaaaaagc	3900
gggggggttga aaaggggggg tggtaggt aacgggg	3937

<210> 162

<211> 852

<212> DNA

150

<213> Homo sapien

<400> 162

cggccgcccc	ggcaggtaacc accatgccca gctaattttt atatttttag tagagatggg	60
gttttgc	cat attggccagg ctggctcaa actcctgaac tcaagtata acacccacct	120
tggcctccca	aagtgcgtggg attacaggta tgagccacca cactggcca atgcttaata	180
tttaatgt	tctcaacaat aaaaccaaga agaaacaaag cctttgact tgtagaaatg	240
tattaagt	tag tatttaaag aaactttata gttgtgacat tgaaagactg ttgggggtggg	300
gggaggaaaa	ttttacttt ccacatcta gtaaccttat gctattctgt atttttactg	360
tatattgct	ttacaataaa tataaaatga aaatgtttat gttgacaaaa agaacaaaaaa	420
acaacaaaca	acaaaaaaca aaaggctggg ggtgtcacac ctgtgggcca aaagctgg	480
tccctggggg	tggacatgg gtttatccc ggccccacaa ttccccaccc aaatattacc	540
gggagacaac	gggaagaacg acacaacaca caaaaagaca caacacacaa aaccaccaca	600
cagcaacg	cgctcatcg aggacgacca caagacgaga gcagaaggaa aaggacaac	660
aaaaaaaaagc	aagtagcacg atcacaacac agagccacga caagaagaga aggacaatga	720
cggaaacgag	cagcagcaca agacacagac aagacaaaag caagaaagac agaacacgac	780
agaagacaac	aagagacgaa acaacaaaaa agccacacaa aaaagcgagc gaaaacaaga	840
accaactaac	ac	852

<210> 163

<211> 685

<212> DNA

<213> Homo sapien

<400> 163

caccgatgat	taaccagtac agacgctgtt ccactagatc atggcgagcg gttcgagtg	60
ttatagtagt	gcgcggctga catacttcat ctgtttttt ttgttgtgt tttgtttttt	120
aaccaaaatg	gcattttttt ggctgtcatt gtcgagata tattttattgt gttttacaaa	180
catgagta	tatgtatgtatataaa ccaaacttat atatataaaaaa gtcaagggca	240
tgtatactag	atattttaaa gagttattta tcaaggaaaa aagatgtgtg ttataaaatgt	300
aacagagtct	atattttcta tataatgttag atagtcaaac atagcttata aattatagga	360
ggttttggtt	ttttttttt ttattaaagg aaaaaaaagaa gaaaaaaaaa gacaatgaat	420
gcaactgttc	tttgtttttt taaggccaaa ctactgtgga agctgggagg cggccctccc	480
tgccggccctc	cagcagccct gtgcctgcgg cttaggagtc cagagctgat gcccgttgc	540
atctctgcga	tgctcgatgc tcggagccag cggtcagcat cactcagccca gctggccctgt	600

gccgctctga cgtggcttcc agctgttctc cgcaatttgc attggtgaaa taaaggaatg	660
aaaaggataa ataaagattt aaaag	685
<210> 164	
<211> 2396	
<212> DNA	
<213> Homo sapien	
<400> 164	
cggccactga attcccttgc ggccgcagaa tttttttttt ttttttttgt attttctttt	60
aaatctttat ttatcctttt cattccttta tcccaccaat gcaaattgcg gagaacagct	120
ggaagccacg tcagagcggc acaggccagc tggctgagtg atgctgaccg ctggctccga	180
gcatcgagca tcgcagagat cacaacgggc atcagctctg gagctcctag cggcaggcac	240
agggctgctg gaggccccca gggagggccg cctcccaagct tccacagtag tttggcccta	300
aaaacactaa gaacagttgc attcattgtc ttttttttc ttctttttt cctttaataaa	360
taaaaaagaa aaccaaaacc tcctataatt tataagctat gtttgactat ctacattata	420
tagaaaatat agactctgtt tactttataa cacacatctt ttcccttga taaataactc	480
tttaaaaatat ctagtataca tgccctgact tcttatatat ataagtttg ttttatacat	540
atacatacat atataactcat gttgtaaaa cacaataaat atataactcga caatgacagc	600
caaacaaaatg ccatttttgt taaaaaacac aacaacaaca ataaaaagca gatgaagtac	660
tataaaagca ccaggcagca gacagaaagc cacatttgct agaaacttct ccctcccctg	720
ggcaaggcac agggcagaat actaaatacg tccaggtgcc tgaaagagaa ggaaggcagc	780
aaaggaatgg gtcagatcac aagctttgt tttgtttctt agcctggat tagaccaaga	840
atcacaagta agtcattgcg tttataagga aaaaccaagg ggctcattca acagcttagc	900
ccttgtggtg gctgcagggg acagtagaga cctggaaggg gaaggagaga gacagtgacc	960
tggtgacaac tccatgacta ttgtctagcc cctgcctaca tctgcccagg caagctttg	1020
attgccacac taagcatcaa gccattgcat ataatatgtt cttttcatga ctctattcac	1080
tgctgggtgt aacagaaaagg agtattcagt agtgcaacac tttgggaggc tgaatgagag	1140
ccacagtttc ggtggccccc tcaaggcgtc cagcaaatgg ggactgtgac gtgggggaga	1200
aaaaggccag tgggccattt cttccactc ctgagacagt accggcttca cttccagatg	1260
ccactggaa cactgagccc atcacctttt aaagaagcgc aggaggtctt gactttcct	1320
atgagaagtc ccagaagccc cagtcagtct ggggtgggggg tccccgtaaa ctcagagcac	1380
gctccagctg ctggctcctg tgccctggcg ggagaaggcg gagaggcggg catgcctgcc	1440

152

gctgagaaaag acataataac gctccagctg cacacccctt ttcttcacg gccctcctct	1500
ttctccccaa aaggaaacta aaatgtgggg ttctgatcat tgattttaa acaagctccc	1560
caatgtcatg gcctctgctc tgtaaactcc aaggctctga tggccaaaaa ctagggcggt	1620
ggtgaggcag taggcggtgt caaggctaga tttgtattaa tatctaggag tgggtgggg	1680
atgcaggtgg agggtgagcc aagtagacca agcctcagga aatcccagag gtgaagattt	1740
gatgcacatc ccccatcctt gccaaataaa atacaagttt gaggtcattt ttcacattac	1800
agtcacaatg ggacattttt aacagctcg tttctgagta cattcaagac ataattgaat	1860
ttatTTTaaa aaatggattt cccggctggg cacggtgat cacgcctgtc atcccagcac	1920
tttgggaggt caaggaagcc ccttcttcac aggacatcctt ggtgttcctc actgggcagg	1980
aggagatcga agccatgagc aagacgtgcc gagacattgc aaagcacctc ccagacggct	2040
gccctgcgt gctggtcctt cctctgtacg cctccctgcc ctatgcacag cagctccgag	2100
tcttccaagg ggcccaaag ggctatcgca aagtgtatcat ttcaaccaac atcgctgaaa	2160
cctccataac cattacagga ataaaatatg tagttgacac gggcatggtt aaagcaaaga	2220
agtataaccc tgacagtgg tttgaggtgt tagcagtgc aacggatcg aagacgcagg	2280
cttggcagcg cacagggagg gctggcagag aggacagtgg catctgctac cggctctaca	2340
cgaggacga gtttgagaag tttgataaga tgaccgtgcc agagatccag aggtag	2396

<210> 165

<211> 11

<212> PRT

<213> Homo sapien

<400> 165

Met Arg Tyr Leu Pro Gly Leu Ser Ala Arg Ile		
1	5	10

<210> 166

<211> 45

<212> PRT

<213> Homo sapien

<400> 166

Met Ser Ile Pro Arg Ala Glu Ile Ser Leu Leu Glu Ser Phe Gln Leu			
1	5	10	15

Thr Ser Thr Val Ala Thr Ser Glu Ser His Lys Ser Asn Gly Ser Cys		
20	25	30

153

Arg Lys Pro His Leu Leu His Cys Pro Arg Ile Asn Gln
35 40 45

<210> 167
<211> 37
<212> PRT
<213> Homo sapien

<400> 167

Met Ile Leu Gly Ser Asp Asn Gly Ile Arg Arg Ile Lys Tyr Leu Gly
1 5 10 15

Ile Gln Tyr Tyr Ala Cys Ser Phe Phe Gln Ile Val His Gly Gly Gly
20 25 30

Gly Cys Val Ser Gly
35

<210> 168
<211> 82
<212> PRT
<213> Homo sapien

<400> 168

Ser Leu Ser Val Ala Gln Ala Arg Val Gln Trp Arg Asp Pro Gly Ser
1 5 10 15

Leu Gln Pro Leu Pro Pro Gly Phe Lys Arg Phe Leu Ser Leu Ser Leu
20 25 30

Pro Ser Ser Ala Gly Tyr Arg Arg Ala Pro Pro Pro Cys Pro Ala Leu
35 40 45

Leu Tyr Phe Ala Val Glu Thr Gly Phe His His Val Gly Gln Ala Gly
50 55 60

Leu Glu Leu Leu Thr Ser Gly Asn Pro Ala Pro Pro Arg Pro Pro Lys
65 70 75 80

Val Leu

<210> 169
<211> 103
<212> PRT
<213> Homo sapien

154

<400> 169

Met Ala Ile Phe Ser Ala Leu Ser Gln Leu Leu Glu His Gly Leu Asp
1 5 10 15

Leu Glu Thr Ser Asn Lys Asp Phe Thr Ser Ile Pro Ala Ala Cys Trp
20 25 30

Trp Val Ile Ile Ser Met Thr Thr Val Gly Tyr Gly Asp Met Tyr Pro
35 40 45

Ile Thr Val Pro Gly Arg Ile Leu Gly Gly Val Cys Val Val Ser Gly
50 55 60

Ile Val Leu Leu Ala Leu Pro Ile Thr Phe Ile Tyr His Ser Phe Val
65 70 75 80

Gln Cys Tyr His Glu Leu Lys Phe Arg Ser Ala Arg Tyr Ser Arg Ser
85 90 95

Leu Ser Thr Glu Phe Leu Asn
100

<210> 170
<211> 131
<212> PRT
<213> Homo sapien

<400> 170

Arg Thr Ala Arg His Asp Tyr Ala Ser Cys Arg His Leu Met Val Phe
1 5 10 15

Ser Thr Arg Leu Thr Leu Lys Arg Cys Tyr Arg Glu Met Val Met Leu
20 25 30

Leu Val Phe Ile Cys Val Ala Met Ala Ile Phe Ser Ala Leu Ser Gln
35 40 45

Leu Leu Glu His Gly Leu Asp Leu Glu Thr Ser Asn Lys Asp Phe Thr
50 55 60

Ser Ile Pro Ala Ala Leu Leu Trp Val Ile Ile Ser Met Thr Thr Val
65 70 75 80

Gly Tyr Gly Asp Met Tyr Pro Ile Thr Val Pro Gly Arg Ile Leu Gly

155
85 90 95

Gly Val Cys Val Val Ser Gly Ile Val Leu Leu Ala Leu Pro Ile Thr
100 105 110

Phe Ile Tyr His Ser Phe Val Gln Cys Tyr His Glu Leu Lys Phe Arg
115 120 125

Ser Ala Arg
130

<210> 171
<211> 23
<212> PRT
<213> Homo sapien

<400> 171

Met Val Ala His Cys Ser Leu Pro Val Pro Val Thr Leu Pro Asn Cys
1 5 10 15

Pro Val Ala Cys Arg Leu Ala
20

<210> 172
<211> 57
<212> PRT
<213> Homo sapien

<400> 172

Met Asn Gly Arg Gly Leu Ala Arg Gln Gly Cys Glu Ser Gly Asn Ala
1 5 10 15

Phe Phe Thr Pro Met Asn Phe Cys Leu Ile Leu Thr Thr Glu Gln Glu
20 25 30

Cys Ser Glu Thr Glu Val Gly Val Thr Asn Ile His Phe Pro Phe Ser
35 40 45

Ser Cys Ser Asn Gln Tyr Phe Lys Lys
50 55

<210> 173
<211> 50
<212> PRT
<213> Homo sapien

<400> 173

156

Met Ser Gly Glu Arg Thr Asp Tyr Ala Pro Leu Asn Asn Lys Leu Cys
1 5 10 15

Ser Arg Val Arg Ala Val Ser Ser Glu Ala Leu Leu Thr Glu Thr Ala
20 25 30

Thr Phe Lys Pro Asn Gln Arg Lys Tyr Leu Trp Asn Ser Leu Pro Gln
35 40 45

Phe Gly
50

<210> 174
<211> 31
<212> PRT
<213> Homo sapien

<400> 174

Met Val Thr Asn Leu Leu Thr Ala Gln Cys Gly Trp Met Val Ala Ala
1 5 10 15

Arg Cys Phe Cys Cys Leu Asn Leu Leu Asn Cys Leu Ile Phe Ser
20 25 30

<210> 175
<211> 456
<212> PRT
<213> Homo sapien

<400> 175

Met Glu Pro Arg Cys Pro Pro Pro Cys Gly Cys Cys Glu Arg Leu Val
1 5 10 15

Leu Asn Val Ala Gly Leu Arg Phe Glu Thr Arg Ala Arg Thr Leu Gly
20 25 30

Arg Phe Pro Asp Thr Leu Leu Gly Asp Pro Ala Arg Arg Gly Arg Phe
35 40 45

Tyr Asp Asp Ala Arg Arg Glu Tyr Phe Phe Asp Arg His Arg Pro Ser
50 55 60

Phe Asp Ala Val Leu Tyr Tyr Tyr Gln Ser Gly Gly Arg Leu Arg Arg
65 70 75 80

157

Pro Ala His Val Pro Leu Asp Val Phe Leu Glu Glu Val Ala Phe Tyr
85 90 95

Gly Leu Gly Ala Ala Ala Leu Ala Arg Leu Arg Glu Asp Glu Gly Cys
100 105 110

Pro Val Pro Pro Glu Arg Pro Leu Pro Arg Arg Ala Phe Ala Arg Gln
115 120 125

Leu Trp Leu Leu Phe Glu Phe Pro Glu Ser Ser Gln Ala Ala Arg Val
130 135 140

Leu Ala Val Val Ser Val Leu Val Ile Leu Val Ser Ile Val Val Phe
145 150 155 160

Cys Leu Glu Thr Leu Pro Asp Phe Arg Asp Asp Arg Asp Gly Thr Gly
165 170 175

Leu Ala Ala Ala Ala Ala Gly Pro Phe Pro Ala Pro Leu Asn Gly
180 185 190

Ser Ser Gln Met Pro Gly Asn Pro Pro Arg Leu Pro Phe Asn Asp Pro
195 200 205

Phe Phe Val Val Glu Thr Leu Cys Ile Cys Trp Phe Ser Phe Glu Leu
210 215 220

Leu Val Arg Leu Leu Val Cys Pro Ser Lys Ala Ile Phe Phe Lys Asn
225 230 235 240

Val Met Asn Leu Ile Asp Phe Val Ala Ile Leu Pro Tyr Phe Val Ala
245 250 255

Leu Gly Thr Glu Leu Ala Arg Gln Arg Gly Val Gly Gln Gln Ala Met
260 265 270

Ser Leu Ala Ile Leu Arg Val Ile Arg Leu Val Arg Val Phe Arg Ile
275 280 285

Phe Lys Leu Ser Arg His Ser Lys Gly Leu Gln Ile Leu Gly Gln Thr
290 295 300

Leu Arg Ala Ser Met Arg Glu Leu Gly Leu Leu Ile Phe Phe Leu Phe
305 310 315 320

158

Ile Gly Val Val Leu Phe Ser Ser Ala Val Tyr Phe Ala Glu Val Asp
325 330 335

Arg Val Asp Ser His Phe Thr Ser Ile Pro Glu Ser Phe Trp Trp Ala
340 345 350

Val Val Thr Met Thr Thr Val Gly Tyr Gly Asp Met Ala Pro Val Thr
355 360 365

Val Gly Gly Lys Ile Val Gly Ser Leu Cys Ala Ile Ala Gly Val Leu
370 375 380

Thr Ile Ser Leu Pro Val Pro Val Ile Val Ser Asn Phe Ser Tyr Phe
385 390 395 400

Tyr His Arg Glu Thr Glu Gly Glu Ala Gly Met Phe Ser His Val
405 410 415

Asp Met Gln Pro Cys Gly Pro Leu Glu Gly Lys Ala Asn Gly Gly Leu
420 425 430

Val Asp Gly Glu Val Pro Glu Leu Pro Pro Pro Leu Trp Ala Pro Pro
435 440 445

Gly Lys His Leu Val Thr Glu Val
450 455

<210> 176
<211> 28
<212> PRT
<213> Homo sapien

<400> 176

Met Ser Tyr Asn Ser Lys Leu Glu Ser Ile Arg Leu Lys Arg Val Ser
1 5 10 15

Met Lys Thr Ile Pro Lys Ile Pro Phe Thr Gln Asn
20 25

<210> 177
<211> 91
<212> PRT
<213> Homo sapien

<400> 177

159

Met Ala Leu Gly Ser Met Tyr Leu Val Leu Thr Leu Ile Val Ala Glu
1 5 10 15

Val Leu Arg Gly Ala Glu Pro Cys Cys Gly Pro Leu Lys Tyr Arg Val
20 25 30

Leu Arg Pro Cys Pro Leu Pro Val His Cys Ala Pro Pro His His Gln
35 40 45

Pro Ser Arg Gly Asn Pro Val Ala Cys Leu Pro Thr Tyr Lys Val Val
50 55 60

Tyr Gln Ala Ala Val Leu Ala Thr Ala Phe Lys Phe Gln Cys Asp Leu
65 70 75 80

Pro Gly Arg Ser Ile Thr Leu Arg Arg Ser Ala
85 90

<210> 178

<211> 54

<212> PRT

<213> Homo sapien

<400> 178

Met Lys Phe Ser Ser Ala Phe Val Gln Ser Lys Pro Leu Ser Ser Cys
1 5 10 15

Arg Ala Glu Thr Leu Tyr Met Lys Thr Val Ser Glu Leu Val Leu Ala
20 25 30

Ser Ile His Glu Asn Cys Leu Ser Cys Met Leu Ala Lys Thr Ser Ser
35 40 45

Glu Thr Lys Lys Leu Lys
50

<210> 179

<211> 88

<212> PRT

<213> Homo sapien

<400> 179

Gly Arg Val Arg Phe Val Val Glu Leu Ala Asp Pro Lys Leu Glu Val
1 5 10 15

Lys Trp Tyr Lys Asn Gly Gln Glu Ile Arg Pro Ser Thr Lys Tyr Ile

160
20 25 30

Phe Glu His Lys Gly Cys Gln Arg Ile Leu Phe Ile Asn Asn Cys Gln
35 40 45

Met Thr Asp Asp Ser Glu Tyr Tyr Val Thr Ala Gly Asp Ala Lys Cys
50 55 60

Ser Thr Glu Leu Phe Val Arg Glu Pro Pro Phe Met Val Pro Ser Ser
65 70 75 80

Trp Ile Glu Thr Pro Ala Asp Cys
85

<210> 180
<211> 26
<212> PRT
<213> Homo sapien

<400> 180

Met Val Leu Tyr Ser Glu Gly His Gln His Gly Pro His Leu Leu Asn
1 5 10 15

Met Glu Asn Gln Asn Leu Asn Glu Tyr Asn
20 25

<210> 181
<211> 57
<212> PRT
<213> Homo sapien

<400> 181

Met Thr Glu Arg Ala Asp Gly Lys Ser Gln Ser Cys Ile Glu Glu Ile
1 5 10 15

Ser Met Val Ala Leu Lys Leu Leu Lys Pro Asp Val Ser Ser Ala Ser
20 25 30

His Trp Lys Met Asp Arg Trp Ala Asn His His Leu Thr Ser Gln Arg
35 40 45

Glu Gly Gln Cys Ala Lys Val Phe Lys
50 55

<210> 182
<211> 67

161

<212> PRT
<213> Homo sapien

<400> 182

Met Asn Thr Lys Ala Leu Pro Thr Thr Pro Ala Gln Thr Ala Ile Ser
1 5 10 15

Pro Pro Glu Gly Gln Cys Ser Ser Ser Ile Gly Leu Glu Thr Ile Pro
20 25 30

Glu Ser Pro Cys Phe Arg Thr Pro Glu Ser Ser Asn Ser Pro Ser Leu
35 40 45

Arg Arg Asp Leu Leu Ala Ala Lys Arg Val Lys Leu Ile Val Leu Gln
50 55 60

Ser Ser Ala
65

<210> 183
<211> 91
<212> PRT
<213> Homo sapien

<400> 183

Asp Val Gly Gly Ala Gln Val Leu Ala Thr Gly Lys Thr Pro Gly Ala
1 5 10 15

Glu Ile Asp Phe Lys Tyr Ala Leu Ile Gly Thr Ala Val Gly Val Ala
20 25 30

Ile Ser Ala Gly Phe Leu Ala Leu Lys Ile Cys Met Ile Arg Arg His
35 40 45

Leu Phe Asp Asp Asp Ser Ser Asp Leu Lys Ser Thr Pro Gly Gly Leu
50 55 60

Ser Asp Thr Ile Pro Leu Lys Lys Arg Ala Pro Arg Arg Asn His Asn
65 70 75 80

Phe Ser Lys Arg Asp Ala Gln Val Ile Glu Leu
85 90

<210> 184
<211> 101
<212> PRT

162

<213> Homo sapien

<400> 184

Met	Arg	Pro	Gly	Arg	Tyr	Gln	Ala	Pro	Arg	Pro	Phe	Leu	Tyr	His	Gly
1						5			10					15	

Cys	Trp	Val	Thr	Ser	Gly	Ser	His	His	Leu	Phe	Pro	Ser	Leu	Phe	Pro
							20		25				30		

Ile	Ser	Gln	Met	Trp	Gly	His	Gly	Leu	Asp	Asp	Gly	Leu	His	Arg	Ser
						35			40			45			

Phe	His	Leu	Cys	Glu	Ser	Lys	Ser	Gly	Gln	Ser	Ala	Arg	Thr	His	Leu
			50			55				60					

Cys	Pro	Gly	Ser	Ala	Pro	Gln	Asn	Gln	Pro	Pro	Ala	Ser	Leu	Lys	Gln
65					70				75					80	

Lys	Pro	His	Leu	Lys	Gly	Cys	Ser	Glu	Glu	Ser	Thr	Phe	Ser	Met	Ser
						85			90				95		

Cys	Cys	Trp	Lys	Ile											
				100											

<210> 185

<211> 489

<212> PRT

<213> Homo sapien

<400> 185

Gly	Trp	Thr	Val	Ile	Gln	Asn	Arg	Gln	Asp	Gly	Ser	Val	Asp	Phe	Gly
1					5				10				15		

Arg	Lys	Trp	Asp	Pro	Tyr	Lys	Gln	Gly	Phe	Gly	Asn	Val	Ala	Thr	Asn
						20			25			30			

Thr	Asp	Gly	Lys	Asn	Tyr	Cys	Gly	Leu	Pro	Gly	Asn	Glu	Gln	Ala	Cys
						35			40			45			

Lys	Ile	Lys	Ser	Phe	Tyr	Leu	Lys	Trp	Asp	Phe	Phe	Ala	Leu	Lys	Asn
						50		55			60				

Ile	His	Cys	Trp	Lys	Pro	Val	Leu	Gly	Ser	Ala	Glu	Glu	Phe	Pro	Asp
65						70			75				80		

163

Lys Asn Val Glu Ala Lys Asp Lys Gly Arg Lys Ala Val Phe Ser Phe
85 90 95

Pro Lys Phe Tyr Phe Trp Ala Glu Ile Leu Phe Cys Phe Ser Phe Gly
100 105 110

Glu Tyr Trp Leu Gly Asn Asp Lys Ile Ser Gln Leu Thr Arg Met Gly
115 120 125

Pro Thr Glu Leu Leu Ile Glu Met Glu Asp Trp Lys Gly Asp Lys Val
130 135 140

Lys Ala His Tyr Gly Gly Phe Thr Val Gln Asn Glu Ala Asn Lys Tyr
145 150 155 160

Gln Ile Ser Val Asn Lys Tyr Arg Gly Thr Ala Gly Asn Ala Leu Met
165 170 175

Asp Gly Ala Ser Gln Leu Met Gly Glu Asn Arg Thr Met Thr Ile His
180 185 190

Asn Gly Met Phe Phe Ser Thr Tyr Asp Arg Asp Asn Asp Gly Trp Tyr
195 200 205

Val Trp His Ser Leu Leu Leu Ala Lys Ser His Ala Tyr His Tyr
210 215 220

Ser Glu Ser Leu Thr Ile Phe Leu Ile Ala Thr Thr Ser Trp Ala Leu
225 230 235 240

Thr Val Ser His Cys Pro Lys Leu Phe Met His His Ser Lys Ala Phe
245 250 255

Gln Leu Ala Gly Arg His Ser Tyr Ser His Phe Thr Asp Glu Ile Ala
260 265 270

Arg Asp Tyr Val Ile Cys Pro Met Ser His Asn Tyr Pro Glu Ile Lys
275 280 285

Leu Glu Phe Glu His Ser Tyr Phe Leu Asn Asn Glu His Leu Asp Lys
290 295 300

Tyr Leu Tyr Leu Tyr Ile Leu Lys Cys Val Ala Lys Leu Ser Phe Ser
305 310 315 320

164

Phe Pro Gly Phe Ser Asp Thr Lys Gly Cys Lys Ser Tyr Tyr Ser Ser
325 330 335

Ile Lys Ala Gln Thr Gln Ser Leu Asp Gly Leu Pro Gln Arg Pro Ser
340 345 350

Tyr Leu Ser Phe Leu Leu Ala Gly Thr Gly Gly Leu Trp Cys Ile Ser
 355 360 365

Val	Thr	Leu	Cys	Ile	Ala	Pro	Lys	Gly	Lys	Thr	Thr	Val	His	Thr	Ser
370						375						380			

Val Ala Val Phe Tyr Gly Ala Ser Ala Lys Arg Asn Leu Thr Thr Val
 385 390 395 400

Val Leu Phe Leu Ile Thr Pro Asn Thr Phe Ser Phe Arg Leu Thr Ser
405 410 415

Asp Pro Arg Lys Gln Cys Ser Lys Glu Asp Gly Gly Gly Trp Trp Tyr
420 425 430

Asn Arg Cys His Ala Ala Asn Pro Asn Gly Arg Tyr Tyr Trp Gly Gly
435 440 445

Gln Tyr Thr Trp Asp Met Ala Lys His Gly Thr Asp Asp Gly Val Val
450 455 460

Trp Met Asn Trp Lys Gly Ser Trp Tyr Ser Met Arg Lys Met Ser Met
465 470 475 480

Lys Ile Arg Pro Phe Phe Pro Gln Gln
485

<210> 186
<211> 33
<212> PRT
<213> Homo sapien

<400> 186

Met	Val	Thr	Glu	Ser	Leu	Ser	Ser	Pro	His	Ser	Glu	Ser	Ile	Pro	Leu
1				5						10					15

Gly Arg Val Asn Pro Gly Ser Gly Leu Pro Pro His Ser Thr Arg Pro
20 25 30

165

Phe

<210> 187
<211> 149
<212> PRT
<213> Homo sapien

<400> 187

Pro Gly Asn Leu Asp Thr Ser Ser Arg Gly Ser Ser Gly Ser Pro Ala
1 5 10 15

His Ala Glu Ser Tyr Ser Ser Gly Gly Gly Gln Gln Lys Phe Arg
20 25 30

Val Asp Met Pro Gly Ser Gly Ser Ala Phe Ile Pro Thr Ile Asn Ala
35 40 45

Ile Thr Thr Ser Gln Asp Leu Gln Trp Met Val Gln Pro Thr Val Ile
50 55 60

Thr Ser Met Ser Asn Pro Tyr Pro Arg Ser His Pro Tyr Ser Pro Leu
65 70 75 80

Pro Gly Leu Ala Ser Val Ala Gly His Met Ala Leu Pro Arg Pro Gly
85 90 95

Val Ile Lys Thr Ile Gly Thr Thr Val Gly Arg Arg Arg Arg Asp Glu
100 105 110

Gln Leu Ser Pro Glu Glu Glu Lys Arg Arg Ile Arg Arg Glu Arg
115 120 125

Asn Lys Leu Ala Ala Ala Lys Cys Arg Asn Arg Arg Arg Glu Leu Thr
130 135 140

Glu Lys Leu Gln Ala
145

<210> 188
<211> 41
<212> PRT
<213> Homo sapien

<400> 188

166

Met Thr Val Pro Leu His Thr Ser Leu Ser Tyr Arg Gly Arg Ser Gln
1 5 10 15

Leu Leu Lys Thr Lys Thr Thr Ile Asn Ile Tyr Lys Asn His Asn Ile
20 25 30

Lys Gly Phe Met Leu Arg Lys Asn Pro
35 40

<210> 189
<211> 45
<212> PRT
<213> Homo sapien

<400> 189

Met Tyr Thr Asn Lys Tyr Ala Gln Asp Leu Glu Ser Tyr Ile Lys Met
1 5 10 15

Tyr Leu Thr Trp Leu Glu Cys Val Cys Val Phe Pro Arg Leu Ser Lys
20 25 30

Ile Arg Lys Pro Glu Ser Gln Ala Thr Lys Lys Lys Asn
35 40 45

<210> 190
<211> 91
<212> PRT
<213> Homo sapien

<400> 190

Met Phe Leu Cys Asn Val Leu Arg Val Thr Trp Ala Ser Pro Thr Tyr
1 5 10 15

Ala Ser Thr Val Cys Cys Val Thr Phe Arg Gln Leu His Thr Pro Pro
20 25 30

Ala Pro Leu Pro Ser Pro Pro Ser Ser His Thr Val Ser Ala Gly Cys
35 40 45

Gly Ser Pro Thr Ser Val Met Ser Gly Ile Met Leu Leu Leu Ser Leu
50 55 60

Leu Phe Ser Leu Phe Phe Phe Val Ile Gln Val Leu Leu Thr Ser
65 70 75 80

Ser Leu Ile His Gln Asn Ala Arg Ser Ser Tyr

167

85

90

<210> 191
<211> 100
<212> PRT
<213> Homo sapien

<400> 191

Ala Asp Asn Asp Ile Gly Ala Val Ser Thr Thr Gly His Gly Glu Ser
1 5 10 15

Ile Leu Lys Val Asn Leu Ala Arg Leu Thr Leu Phe His Ile Glu Gln
20 25 30

Gly Lys Thr Val Glu Glu Ala Ala Asp Leu Ser Leu Gly Tyr Met Lys
35 40 45

Ser Arg Val Lys Gly Leu Gly Gly Leu Ile Val Val Ser Lys Thr Gly
50 55 60

Asp Trp Val Ala Lys Trp Thr Ser Thr Ser Met Pro Trp Ala Ala Ala
65 70 75 80

Lys Asp Gly Lys Leu His Phe Gly Ile Asp Pro Asp Asp Thr Thr Ile
85 90 95

Thr Asp Leu Pro
100

<210> 192
<211> 54
<212> PRT
<213> Homo sapien

<400> 192

Met Glu Glu Gln Glu Glu Ala Leu Cys Ser His His Ile Pro Val Ala
1 5 10 15

Arg Ser Trp Leu Gln Gly Ser Ser Gly Asn Arg Ile Pro Arg Ser His
20 25 30

Glu Thr Ser Pro Asn Ser Ala Val Thr Glu Ser Thr Arg Gln Trp Leu
35 40 45

Lys Asp Gly Glu Thr Ser
50

<210> 193
<211> 63
<212> PRT
<213> Homo sapien

<400> 193

Met Ile Ile Leu Lys Tyr Arg Trp Lys Asp Thr Asn Ala Arg Lys Arg
1 5 10 15

Glu Ser Asn Gln Pro Arg Phe Gly Gly Trp Gly Thr Glu Asp Gly Ala
20 25 30

Thr Phe Pro Pro Tyr Leu Leu Phe Phe Tyr Ile Pro Ile Cys Thr Leu
35 40 45

Arg Ile His Leu Arg Ser Ser Phe Lys Arg Glu Lys Leu Asp Thr
50 55 60

<210> 194
<211> 211
<212> PRT
<213> Homo sapien

<400> 194

Met Val Phe Leu Lys Phe Phe Cys Met Ser Phe Phe Cys His Leu Cys
1 5 10 15

Gln Gly Tyr Phe Asp Gly Pro Leu Tyr Pro Glu Met Ser Asn Gly Thr
20 25 30

Leu His His Tyr Phe Val Pro Asp Gly Asp Tyr Glu Glu Asn Asp Asp
35 40 45

Pro Glu Lys Cys Gln Leu Leu Phe Arg Val Ser Asp His Arg Arg Cys
50 55 60

Ser Gln Gly Glu Gly Ser Gln Val Gly Ser Leu Leu Ser Leu Thr Leu
65 70 75 80

Arg Glu Glu Phe Thr Val Leu Gly Arg Gln Val Glu Asp Ala Gly Arg
85 90 95

Val Leu Glu Gly Ile Ser Lys Ser Ile Ser Tyr Asp Leu Asp Gly Glu
100 105 110

169

Glu Ser Tyr Gly Lys Tyr Leu Arg Arg Glu Ser His Gln Ile Gly Asp
115 120 125

Ala Tyr Ser Asn Ser Asp Lys Ser Leu Thr Glu Leu Glu Ser Lys Phe
130 135 140

Lys Gln Gly Gln Glu Gln Asp Ser Arg Gln Glu Ser Arg Leu Asn Glu
145 150 155 160

Asp Phe Leu Gly Met Leu Val His Thr Arg Ser Leu Leu Lys Glu Thr
165 170 175

Leu Asp Ile Ser Val Gly Leu Arg Asp Lys Tyr Glu Leu Leu Ala Leu
180 185 190

Thr Ile Arg Ser His Gly Thr Arg Leu Gly Arg Leu Lys Asn Asp Tyr
195 200 205

Leu Lys Val
210

<210> 195
<211> 54
<212> PRT
<213> Homo sapien

<400> 195

Met Asp Asp Ser Lys Leu Gln Lys Lys Lys Asp Val Asp Lys His Cys
1 5 10 15

Leu Thr Glu His Phe Ile Phe Ser Gln Leu Phe Trp Phe Leu Leu Ile
20 25 30

Thr Met Thr Lys Met Leu Asp Ser Glu Leu Cys Arg Tyr Phe Ser Lys
35 40 45

Phe Tyr Asp Phe Lys Ser
50

<210> 196
<211> 88
<212> PRT
<213> Homo sapien

<400> 196

170

Met Leu Gly Leu Gln Thr Leu Ser Arg Phe Leu Ser Gly His Pro Gly
1 5 10 15

Phe Leu Thr His Cys Leu Lys Ser Arg Trp Gln Val Pro Ser Leu Asn
20 25 30

His Ser Cys Ala Pro Glu Asp Ser Gly Pro Lys Leu Pro Ser Ser Ala
35 40 45

Cys His Ser Leu Leu Ile Ile Ser Ser Ser Asp Gln Val Cys Val Met
50 55 60

His Leu Ala Gln Ala Gln Gly Val Pro Arg Arg Asp His Asp Pro Ser
65 70 75 80

His Cys Ala Arg Ser Ser Ser Ile
85

<210> 197
<211> 48
<212> PRT
<213> Homo sapien

<400> 197

Met Thr Glu Met Thr Gln Ser Lys Gly Arg Ile Gly Thr Glu Asp Ala
1 5 10 15

Asn Thr Gly Ser Tyr Lys Ile Gln Arg Glu Leu Ser Gly Gly Lys Thr
20 25 30

Gln Glu Pro Asn Ser Thr His Leu Ile Pro Leu Val Asp Gln Leu Asn
35 40 45

<210> 198
<211> 121
<212> PRT
<213> Homo sapien

<400> 198

Phe Phe Ala Asp Glu Val Ser Arg Leu Ser Pro Gly Leu Glu Cys Ser
1 5 10 15

Gly Val Ile Ser Ala His Cys Asn Phe His Leu Leu Gly Ser Ser Ser
20 25 30

Ser Pro Ala Ser Ala Ser Gln Val Ala Glu Ile Thr Gly Ala Cys His

171

35

40

45

Pro Thr Trp Leu Ile Phe Val Ile Leu Val Glu Thr Gly Phe His His
50 55 60

Val Gly Gln Ala Asp Ala Leu Leu Thr Ser Gly Asp Pro Pro Phe Ser
65 70 75 80

Ala Ser Gln Ser Ala Gly Ile Thr Gly Val Ser His Arg Ala Arg Pro
85 90 95

Ala Asn Thr Phe Ala Leu Thr Thr Leu Gly Leu Leu Tyr Lys Ile Val
100 105 110

Met Ile Ala Met Glu Val Leu Pro Pro
115 120

<210> 199
<211> 162
<212> PRT
<213> Homo sapien

<400> 199

Met Asp Ala Ala Gly Gln Val Leu Gly Pro Glu Arg Gly Gly Tyr Leu
1 5 10 15

Pro His Trp Val Ala Ser Ser Ala Ala Pro His Leu Ser Leu Phe Ser
20 25 30

Pro Lys Leu Val Phe Leu Thr Ile Ile Val Val Gly Gly Gln Met
35 40 45

Leu Lys Val Glu Ala Asp Leu Glu Lys Glu Thr His Gly Val Thr Val
50 55 60

Ala Lys Asp Ser Trp Lys Arg Asn Ser Ile Thr Ser Ser Leu Ala Thr
65 70 75 80

Thr Arg His Pro Arg Pro Trp His Ser Gln Arg Leu Cys Ala Val Ala
85 90 95

Lys Pro Leu Asn Leu Phe Trp Pro Cys Val Leu Gln Arg Ser Leu Cys
100 105 110

Cys Lys Thr Val Asp Ser Phe Asp Glu Val Leu Lys Asn Ala Thr Arg

172

115

120

125

Gly Gly Gly Val Trp Leu Ala Val Trp Pro Ser Ser Glu Lys Val Ala
130 135 140

Glu Ile Arg Gly Gln Gly Cys His Ser Pro Arg Leu Ser Ser Gly Ser
145 150 155 160

Gln Ser

<210> 200
<211> 594
<212> PRT
<213> Homo sapien

<400> 200

Val Pro Gly Arg Lys Leu His Arg Ser Arg Leu Gln Ala Ala Ala Pro
1 5 10 15

Arg Pro Ser Thr Cys Ala Gln Ser Leu Cys Trp Ser Arg Pro Pro Ala
20 25 30

Ala Gly Thr Gly Thr Gly Asp Pro Ser Gln Ser Lys Ala Pro Thr Met
35 40 45

Ala Met Gly Leu Phe Arg Val Cys Leu Val Val Val Thr Ala Ile Ile
50 55 60

Asn His Pro Leu Leu Phe Pro Arg Glu Asn Ala Thr Val Pro Glu Asn
65 70 75 80

Glu Glu Glu Ile Ile Arg Lys Met Gln Ala His Gln Glu Lys Leu Gln
85 90 95

Leu Glu Gln Leu Arg Leu Glu Glu Val Ala Arg Leu Ala Ala Glu
100 105 110

Lys Glu Ala Leu Glu Gln Val Ala Glu Glu Gly Arg Gln Gln Asn Glu
115 120 125

Thr Arg Val Ala Trp Asp Leu Trp Ser Thr Leu Cys Met Ile Leu Phe
130 135 140

Leu Met Ile Glu Val Trp Arg Gln Asp His Gln Glu Gly Pro Ser Pro

173

145	150	155	160
Glu Cys Leu Gly Gly Glu Glu Asp Glu Leu Pro Gly Leu Gly Gly Ala			
165		170	175
Pro Leu Gln Gly Leu Thr Leu Pro Asn Lys Ala Thr Leu Gly His Phe			
180		185	190
Tyr Glu Arg Cys Ile Arg Gly Ala Thr Ala Asp Ala Ala Arg Thr Arg			
195		200	205
Glu Phe Leu Glu Gly Phe Val Asp Asp Leu Leu Glu Ala Leu Arg Ser			
210		215	220
Leu Cys Asn Arg Asp Thr Asp Met Glu Val Glu Asp Phe Ile Gly Val			
225		230	235
Asp Ser Met Tyr Glu Asn Trp Gln Val Asp Arg Pro Leu Leu Cys His			
245		250	255
Leu Phe Val Pro Phe Thr Pro Pro Glu Pro Tyr Arg Phe His Pro Glu			
260		265	270
Leu Trp Cys Ser Gly Arg Ser Val Pro Leu Asp Arg Gln Gly Tyr Gly			
275		280	285
Gln Ile Lys Val Val Arg Ala Asp Gly Asp Thr Leu Ser Cys Ile Cys			
290		295	300
Gly Lys Thr Lys Leu Gly Glu Asp Met Leu Cys Leu Leu His Gly Arg			
305		310	315
Asn Ser Met Ala Pro Pro Cys Gly Asp Met Glu Asn Leu Leu Cys Ala			
325		330	335
Thr Asp Ser Leu Tyr Leu Asp Thr Met Gln Val Met Lys Trp Phe Gln			
340		345	350
Thr Ala Leu Thr Arg Ala Trp Lys Gly Ile Ala His Lys Tyr Glu Phe			
355		360	365
Asp Leu Ala Phe Gly Gln Leu Asp Ser Pro Gly Ser Leu Lys Ile Lys			
370		375	380

174

Phe Arg Ser Gly Lys Phe Met Pro Phe Asn Leu Ile Pro Val Ile Gln
385 390 395 400

Cys Asp Asp Ser Asp Leu Tyr Phe Val Ser His Leu Pro Arg Glu Pro
405 410 415

Ser Glu Gly Thr Pro Ala Ser Ser Thr Asp Trp Leu Leu Ser Phe Ala
420 425 430

Val Tyr Glu Arg His Phe Leu Arg Thr Thr Leu Lys Ala Leu Pro Glu
435 440 445

Gly Ala Cys His Leu Ser Cys Leu Gln Ile Ala Ser Phe Leu Leu Ser
450 455 460

Lys Gln Ser Arg Leu Thr Gly Pro Ser Gly Leu Ser Ser Tyr His Leu
465 470 475 480

Lys Thr Ala Leu Leu His Leu Leu Leu Arg Gln Ala Ala Asp Trp
485 490 495

Lys Ala Gly Gln Leu Asp Ala Arg Leu His Glu Leu Leu Cys Phe Leu
500 505 510

Glu Lys Ser Leu Leu Gln Lys Lys Leu His His Phe Phe Ile Gly Asn
515 520 525

Arg Lys Val Pro Glu Ala Met Gly Leu Pro Glu Ala Val Leu Arg Ala
530 535 540

Glu Pro Leu Asn Leu Phe Arg Pro Phe Val Leu Gln Arg Ser Leu Tyr
545 550 555 560

Arg Lys Thr Leu Asp Ser Phe Tyr Glu Met Leu Lys Asn Ala Pro Ala
565 570 575

Leu Ile Ser Glu Tyr Ser Leu His Val Pro Ser Asp Gln Pro Thr Pro
580 585 590

Lys Ser

<210> 201
<211> 38
<212> PRT

175

<213> Homo sapien

<400> 201

Met	Ser	Leu	His	Ala	Glu	Val	Gly	Gly	Ala	Leu	Lys	Pro	Val	Ile	Tyr
1					5				10					15	

Ala	Val	Lys	Thr	Lys	Trp	Val	Cys	Tyr	Leu	Ile	Ser	Trp	Gly	Ile	His
		20					25						30		

Gly	Leu	Ala	Val	Pro	Gly										
		35													

<210> 202

<211> 16

<212> PRT

<213> Homo sapien

<400> 202

Met	Glu	Arg	Ile	Gly	Thr	Phe	Tyr	Ser	Gly	Asn	Thr	Gln	Pro	Ala	Thr
1						5				10					15

<210> 203

<211> 87

<212> PRT

<213> Homo sapien

<400> 203

Met	Ala	Glu	Gly	Val	Gly	Ala	Gly	Thr	Leu	Glu	Ala	Pro	Pro	Leu	Leu
1					5				10					15	

Ser	Leu	Pro	Ser	Ala	Ser	Pro	Val	Pro	Pro	Ala	Ala	Leu	Val	Thr	Val
					20			25					30		

Ser	Asp	Gly	Tyr	Leu	Pro	Gly	Phe	Val	Ala	Ser	Leu	Ser	Val	Phe	Ser
						35			40			45			

Cys	Ser	Asp	Pro	Leu	Ala	Gly	Trp	Leu	Arg	Lys	Lys	Lys	Met	Cys	Phe
						50		55		60					

Arg	Cys	His	Cys	Asn	Pro	Gly	His	Gln	Gly	Asn	Pro	Ser	Phe	Pro	Phe
65						70			75				80		

Leu	Ile	Cys	Ser	Pro	Arg	Thr									
					85										

<210> 204

176

<211> 252
<212> PRT
<213> Homo sapien

<400> 204

Met Ser Ile Tyr Lys Glu Pro Pro Pro Gly Met Phe Val Val Pro Asp
1 5 10 15

Thr Val Asp Met Thr Lys Ile His Ala Leu Ile Thr Gly Pro Phe Asp
20 25 30

Thr Pro Tyr Glu Gly Gly Phe Phe Leu Phe Val Phe Arg Cys Pro Pro
35 40 45

Asp Tyr Pro Ile His Pro Pro Arg Val Lys Leu Met Thr Thr Gly Asn
50 55 60

Asn Thr Val Arg Phe Asn Pro Asn Phe Tyr Arg Asn Gly Lys Val Cys
65 70 75 80

Leu Ser Ile Leu Gly Thr Trp Thr Gly Pro Ala Trp Ser Pro Ala Gln
85 90 95

Ser Ile Ser Ser Val Leu Ile Ser Ile Gln Ser Leu Met Thr Glu Asn
100 105 110

Pro Tyr His Asn Glu Pro Gly Phe Glu Gln Glu Arg His Pro Gly Asp
115 120 125

Ser Lys Asn Tyr Asn Glu Cys Ile Arg His Glu Thr Ile Arg Val Ala
130 135 140

Val Cys Asp Met Met Glu Gly Lys Cys Pro Cys Pro Glu Pro Leu Arg
145 150 155 160

Gly Val Met Glu Lys Ser Phe Leu Glu Tyr Tyr Asp Phe Tyr Glu Val
165 170 175

Ala Cys Lys Asp Arg Leu His Leu Gln Gly Gln Thr Met Gln Asp Pro
180 185 190

Phe Gly Glu Lys Arg Gly His Phe Asp Tyr Gln Ser Leu Leu Met Arg
195 200 205

Leu Gly Leu Ile Arg Gln Lys Val Leu Glu Arg Leu His Asn Glu Asn

177

210

215

220

Ala Glu Met Asp Ser Asp Ser Ser Ser Ser Gly Thr Glu Thr Asp Leu
225 230 235 240

His Gly Ser Leu Arg Val His Gly Ser Leu Arg Val
245 250

<210> 205

<211> 91

<212> PRT

<213> Homo sapien

<400> 205

Met Ala Tyr Arg Met Lys Arg Gly Thr Arg Asn Pro Cys Gly Arg Gly
20 25 30

Leu Asp Leu Lys Gln Cys Pro Leu Trp Leu Leu Leu Pro Trp Leu Thr
 35 40 45

Gly Phe Leu Asp His Val His Phe Thr Gly Pro Trp Asp Leu His Leu
50 55 60

Leu Ala Ser Pro Ala Gly Leu Ile Pro Ala Arg Ala Pro Ser Phe Leu
65 70 75 80

Leu Met Val Phe Arg Trp Pro Asp His Gly Lys
85 90

<210> 206

<211> 213

<212> PRT

<213> Homo sapien

<400> 206

Ser	Pro	His	Gln	Ala	Ala	Ala	Pro	Val	Asp	Gln	Thr	Pro	Arg	Thr	Leu
1				5					10					15	

Ala Thr Met Gly Gln Arg Ala Leu Pro Ser Ser Leu Ala Leu Leu Ser
20 25 30

Arg Pro Leu Ser Pro Pro Pro Ala Ala Cys Ser Gly Asp Pro Gly Cys
35 40 45

Gly Ser Gly Ala Gly Leu Pro Ser Ala Ser Ala Ala Gly Ile Ala
50 55 60

Ser Ser Ala Val Glu Ala Val Cys Gly Asp Ala Ala Pro Ala Cys Leu
65 70 75 80

Leu Arg Thr Pro Leu Arg Gly Leu Leu Lys Pro Thr Gly Pro Arg Ser
85 90 95

Thr Met Glu Cys Pro Pro Ala Leu Ile Val His Pro Pro Thr Gly Gly
100 105 110

Met Ala Arg Arg Ala Ala Ser Gln Pro Trp Ala Ala Ala Ser Ala Thr
115 120 125

Pro Met Leu Ser Ser Lys Ala Ser Leu Cys Ile Pro Thr Glu Arg Pro
130 135 140

Pro Pro Gln Pro Leu Met Arg Thr Pro Ala Ala Arg Ser His Trp Pro
145 150 155 160

Ile Pro His Pro Ala Ser Thr Ala Cys Pro Ala Pro Leu Pro Val Val
165 170 175

Leu Val Ala Pro Arg Ser Thr Ile Leu Ser Met Ser Arg Thr Trp Thr
180 185 190

Cys Arg Arg Trp Ala Val Ala Pro Cys Arg Ala Glu Lys Leu Met Cys
195 200 205

Ser Ser Ser Arg Ser
210

<210> 207
<211> 92
<212> PRT
<213> Homo sapien

<400> 207

Met Tyr Lys Gly Ala Ala Trp Arg Gly Lys Glu His Asn Lys Thr Pro
1 5 10 15

Leu Glu Val Phe Gln Arg Val Val Ser Gln Ile Ser Leu Ile Gln Glu
20 25 30

Glu Asp Asp Glu Arg Glu Arg Thr Trp Asn Tyr Leu Lys Ser Ser Asn
35 40 45

Ser Leu Val Leu Phe Asn Lys Lys Glu Phe Trp Phe Val Ala Glu Ser
50 55 60

Asp Leu Thr Ala Ala Asn Ser Ser Leu Leu Leu Arg Cys Ile Ser Asn
65 70 75 80

Ser Lys Leu Asp Ala Pro Pro Ser Leu Phe Phe Pro
85 90

<210> 208

<211> 130

<212> PRT

<213> Homo sapien

<400> 208

Met Val Cys Glu Asp Ala Pro Ser Phe Gln Met Ala Trp Glu Ser Gln
1 5 10 15

Met Ala Trp Glu Arg Gly Pro Ala Leu Leu Cys Cys Val Leu Ser Ala
20 25 30

Ser Gln Leu Ser Ser Gln Asp Gln Asp Pro Leu Gly His Ile Lys Ser
35 40 45

Leu Leu Tyr Pro Phe Gly Phe Pro Val Glu Leu Pro Arg Pro Gly Pro
50 55 60

Thr Gly Ala Tyr Lys Lys Val Lys Asn Gln Asn Gln Thr Thr Ser Ser
65 70 75 80

Glu Leu Leu Arg Lys Gln Thr Ser His Phe Asn Gln Arg Gly His Arg
85 90 95

Ala Arg Ser Lys Leu Leu Ala Ser Arg Gln Ile Pro Asp Arg Thr Phe
100 105 110

Lys Cys Gly Lys Trp Leu Pro Gln Val Pro Ser Pro Val Val Pro Ser
115 120 125

Pro Val
130

180

<210> 209
<211> 63
<212> PRT
<213> Homo sapien

<400> 209

Met Asn Asp Tyr Gly Leu Gly Leu Gly Phe Ile Thr Asn Pro Ile Ile
1 5 10 15

Asp His Leu Phe Pro Ala Leu Gly Ile Thr Ala Lys Pro Asn Gly Ser
20 25 30

Phe Ser Ile Thr Ala Ser Tyr Asn Phe His Ile Phe Leu Leu Phe Leu
35 40 45

Thr Gly Leu Gln Val Leu Ser Asn Val Leu Lys Leu Phe Asn Val
50 55 60

<210> 210
<211> 451
<212> PRT
<213> Homo sapien

<400> 210

Ala Thr Lys Thr Lys Ala Pro Asp Asp Leu Val Ala Pro Val Val Lys
1 5 10 15

Lys Pro His Ile Tyr Tyr Gly Ser Leu Glu Glu Lys Glu Arg Glu Arg
20 25 30

Leu Ala Lys Gly Glu Ser Gly Ile Leu Gly Lys Asp Gly Leu Lys Ala
35 40 45

Gly Ile Glu Ala Gly Asn Ile Asn Ile Thr Ser Gly Glu Val Phe Glu
50 55 60

Ile Glu Glu His Ile Ser Glu Arg Gln Ala Glu Val Leu Ala Glu Phe
65 70 75 80

Glu Arg Arg Lys Arg Ala Arg Gln Ile Asn Val Ser Thr Asp Asp Ser
85 90 95

Glu Val Lys Ala Cys Leu Arg Ala Leu Gly Glu Pro Ile Thr Leu Phe
100 105 110

181

Gly Glu Gly Pro Ala Glu Arg Arg Glu Arg Leu Arg Asn Ile Leu Ser
115 120 125

Val Val Gly Thr Asp Ala Leu Lys Lys Thr Lys Lys Asp Asp Glu Lys
130 135 140

Ser Lys Lys Ser Lys Glu Glu Tyr Gln Gln Thr Trp Tyr His Glu Gly
145 150 155 160

Pro Asn Ser Leu Lys Val Ala Arg Leu Trp Ile Ala Asn Tyr Ser Leu
165 170 175

Pro Arg Ala Met Lys Arg Leu Glu Glu Ala Arg Leu His Lys Glu Ile
180 185 190

Pro Glu Thr Thr Arg Thr Ser Gln Met Gln Glu Leu His Lys Ser Leu
195 200 205

Arg Ser Leu Asn Asn Phe Cys Ser Gln Ile Gly Asp Asp Arg Pro Ile
210 215 220

Ser Tyr Cys His Phe Ser Pro Asn Ser Lys Met Leu Ala Thr Ala Cys
225 230 235 240

Cys Asp Glu Pro Val Ala Asp Ile Glu Gly His Thr Val Arg Val Ala
245 250 255

Arg Val Met Trp His Pro Ser Gly Arg Phe Leu Gly Thr Thr Cys Tyr
260 265 270

Asp Arg Ser Trp Arg Leu Trp Asp Leu Glu Ala Gln Glu Glu Ile Leu
275 280 285

His Gln Glu Gly His Ser Met Gly Val Tyr Asp Ile Ala Phe His Gln
290 295 300

Asp Gly Ser Leu Ala Gly Thr Gly Gly Leu Asp Ala Phe Gly Arg Val
305 310 315 320

Trp Asp Leu Arg Thr Gly Arg Cys Ile Met Phe Leu Glu Gly His Leu
325 330 335

Lys Glu Ile Tyr Gly Ile Asn Phe Ser Pro Asn Gly Tyr His Ile Ala
340 345 350

182

Thr Gly Ser Gly Asp Asn Thr Cys Lys Val Trp Asp Leu Arg Gln Arg
355 360 365

Arg Cys Val Tyr Thr Ile Pro Ala His Gln Asn Leu Val Thr Gly Val
370 375 380

Lys Phe Glu Pro Ile His Gly Asn Phe Leu Leu Thr Gly Ala Tyr Asp
385 390 395 400

Asn Thr Ala Lys Ile Trp Thr His Pro Gly Trp Ser Pro Leu Lys Thr
405 410 415

Leu Ala Gly His Glu Gly Lys Val Met Gly Leu Asp Ile Ser Ser Asp
420 425 430

Gly Gln Leu Ile Ala Thr Cys Ser Tyr Asp Arg Thr Phe Lys Leu Trp
435 440 445

Met Ala Glu
450

<210> 211
<211> 34
<212> PRT
<213> Homo sapien

<400> 211

Met Glu Ala Gln Gly Cys His Asp Gly Ser Val Val Ile Arg Glu Gly
1 5 10 15

Ala Pro Phe Ile Leu Leu Pro Thr Pro Leu Leu Cys Pro Phe Leu Pro
20 25 30

Leu Ile

<210> 212
<211> 610
<212> PRT
<213> Homo sapien

<400> 212

Gly Lys Ala Phe Ile Thr Cys Arg Thr Leu Leu Asn His Lys Ser Ile
1 5 10 15

183

His Phe Gly Asp Lys Pro Tyr Lys Cys Asp Glu Cys Glu Lys Ser Phe
20 25 30

Asn Tyr Ser Ser Leu Leu Ile Gln His Lys Val Ile His Thr Gly Glu
35 40 45

Lys Pro Tyr Glu Cys Asp Glu Cys Gly Lys Ala Phe Arg Asn Ser Ser
50 55 60

Gly Leu Ile Val His Lys Arg Ile His Thr Gly Glu Lys Pro Tyr Lys
65 70 75 80

Cys Asp Val Cys Gly Lys Ala Phe Ser Tyr Ser Ser Gly Leu Ala Val
85 90 95

His Lys Ser Ile His Pro Gly Lys Lys Ala His Glu Cys Lys Glu Cys
100 105 110

Gly Lys Ser Phe Ser Tyr Asn Ser Leu Leu Leu Gln His Arg Thr Ile
115 120 125

His Thr Gly Glu Arg Pro Tyr Val Cys Asp Val Cys Gly Lys Thr Phe
130 135 140

Arg Asn Asn Ala Gly Leu Lys Val His Arg Arg Leu His Thr Gly Glu
145 150 155 160

Lys Pro Tyr Lys Cys Asp Val Cys Gly Lys Ala Tyr Ile Ser Arg Ser
165 170 175

Ser Leu Lys Asn His Lys Gly Ile His Leu Gly Glu Lys Pro Tyr Lys
180 185 190

Cys Ser Tyr Cys Glu Lys Ser Phe Asn Tyr Ser Ser Ala Leu Glu Gln
195 200 205

His Lys Arg Ile His Thr Arg Glu Lys Pro Phe Gly Cys Asp Glu Cys
210 215 220

Gly Lys Ala Phe Arg Asn Asn Ser Gly Leu Lys Val His Lys Arg Ile
225 230 235 240

His Thr Gly Glu Arg Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Tyr
245 250 255

Ile Ser Leu Ser Ser Leu Ile Asn His Lys Ser Val His Pro Gly Glu
260 265 270

Lys Pro Phe Lys Cys Asp Glu Cys Glu Lys Ala Phe Ile Thr Tyr Arg
275 280 285

Thr Leu Thr Asn His Lys Lys Val His Leu Gly Glu Lys Pro Tyr Lys
290 295 300

Cys Asp Val Cys Glu Lys Ser Phe Asn Tyr Thr Ser Leu Leu Ser Gln
305 310 315 320

His Arg Arg Val His Thr Arg Glu Lys Pro Tyr Glu Cys Asp Arg Cys
325 330 335

Glu Lys Val Phe Arg Asn Asn Ser Ser Leu Lys Val His Lys Arg Ile
340 345 350

His Thr Gly Glu Arg Pro Tyr Glu Cys Asp Val Cys Gly Lys Ala Tyr
355 360 365

Ile Ser His Ser Ser Leu Ile Asn His Lys Ser Thr His Pro Gly Lys
370 375 380

Thr Pro His Thr Cys Asp Glu Cys Gly Lys Ala Phe Phe Ser Ser Arg
385 390 395 400

Thr Leu Ile Ser His Lys Arg Val His Leu Gly Glu Lys Pro Phe Lys
405 410 415

Cys Val Glu Cys Gly Lys Ser Phe Ser Tyr Ser Ser Leu Leu Ser Gln
420 425 430

His Lys Arg Ile His Thr Gly Glu Lys Pro Tyr Val Cys Asp Arg Cys
435 440 445

Gly Lys Ala Phe Arg Asn Ser Ser Gly Leu Thr Val His Lys Arg Ile
450 455 460

His Thr Gly Glu Lys Pro Tyr Glu Cys Asp Glu Cys Gly Lys Ala Tyr
465 470 475 480

Ile Ser His Ser Ser Leu Ile Asn His Lys Ser Val His Gln Gly Lys

185

485

490

495

Gln Pro Tyr Asn Cys Glu Cys Gly Lys Ser Phe Asn Tyr Arg Ser Val
500 505 510

Leu Asp Gln His Lys Arg Ile His Thr Gly Lys Lys Pro Tyr Arg Cys
515 520 525

Asn Glu Cys Ala His Ile Pro Asn Ala Thr Ala Asp Leu Met Lys Val
530 535 540

Asp His Glu Glu Glu Pro Gln Leu Ser Glu Pro Tyr Leu Ser Lys Gln
545 550 555 560

Lys Lys Leu Met Ala Lys Ile Leu Glu His Asp Asp Val Ser Tyr Leu
565 570 575

Lys Lys Ile Leu Gly Glu Leu Ala Met Val Leu Asp Gln Ile Glu Ala
580 585 590

Glu Leu Glu Lys Arg Lys Leu Glu Asn Glu Ala Leu Ser Gln Trp Lys
595 600 605

Glu Phe
610

<210> 213
<211> 47
<212> PRT
<213> Homo sapien

<400> 213

Met Cys Ala Lys Trp Gly Glu Ile Gly Ala Gly Lys Pro Ile Pro His
1 5 10 15

Arg Gly Pro Ala Leu Ala Pro Gly Ser Pro His Ala Phe Phe Val Phe
20 25 30

Phe Phe Phe Ala Ser Asp Gln Phe Thr Thr Val Ser Trp Thr
35 40 45

<210> 214
<211> 25
<212> PRT
<213> Homo sapien

186

<400> 214

Met Glu Thr Pro Ser Leu Glu Gly Thr Pro Arg Lys Pro Cys His Gly
1 5 10 15

Leu Leu Ser Leu Ser Ser Leu Leu Leu
20 25

<210> 215

<211> 29

<212> PRT

<213> Homo sapien

<400> 215

Met Ser Ser Tyr Gly Met Gln Gly Thr Val Gly Ser Arg Val Ser Ile
1 5 10 15

Leu Pro Thr Arg Ala Gln Gly Gln Ala Gly Glu Val Arg
20 25

<210> 216

<211> 64

<212> PRT

<213> Homo sapien

<400> 216

Met Val Thr Leu Asp Leu Leu Glu Arg Ala Gln Cys Asp Gly Ser Trp
1 5 10 15

Ser Arg Arg Gly Thr Pro Leu Leu Phe Tyr Phe Phe Cys Lys Val Leu
20 25 30

Thr Leu Glu Gly Tyr Ser Ile Gln Ser Leu Asn Met Phe Phe Lys Arg
35 40 45

Asn Lys Glu Gln Ala Thr Ala Leu Leu Glu Ile Thr Asn Arg Phe Leu
50 55 60

<210> 217

<211> 50

<212> PRT

<213> Homo sapien

<400> 217

Met Glu Pro His Ile Met Lys Phe Asn Ser His Val Lys Thr Phe Cys
1 5 10 15

187

Ile Val Gly Cys Gln Lys Tyr Phe Pro Asn Phe Arg Leu Thr Cys Arg
20 25 30

Val Gly Asp Gly Leu Pro Pro Tyr Asn Phe Lys Phe Val Ser Gln Ser
35 40 45

Leu Ala
50

<210> 218
<211> 785
<212> PRT
<213> Homo sapien

<400> 218

Lys Ala Lys Ile Ser Trp Glu Ala Pro Val Glu Lys Lys Thr Glu Cys
1 5 10 15

Ile Gln Lys Gly Lys Asn Asn Gln Val Gly Ala Trp Thr Leu Leu Leu
20 25 30

Val Leu Pro Ser Pro Gln Asp Val Ser Ser His Ser Gly Pro Arg Ala
35 40 45

Leu Thr Asn Arg Thr Pro Phe Cys Pro Gln Thr Glu Cys Phe Asn Phe
50 55 60

Ile Arg Phe Leu Gln Pro Tyr Asn Ala Ser His Leu Tyr Val Cys Gly
65 70 75 80

Thr Tyr Ala Phe Gln Pro Lys Cys Thr Tyr Val Asn Met Leu Thr Phe
85 90 95

Thr Leu Glu His Gly Glu Phe Glu Asp Gly Lys Gly Lys Cys Pro Tyr
100 105 110

Asp Pro Ala Lys Gly His Ala Gly Leu Leu Val Asp Gly Glu Leu Tyr
115 120 125

Ser Ala Thr Leu Asn Asn Phe Leu Gly Thr Glu Pro Ile Ile Leu Arg
130 135 140

Asn Met Gly Pro His His Ser Met Lys Thr Glu Tyr Leu Ala Phe Trp
145 150 155 160

188

Leu Asn Glu Pro His Phe Val Gly Ser Ala Tyr Val Pro Glu Ser Val
165 170 175

Gly Ser Phe Thr Gly Asp Asp Asp Lys Val Tyr Phe Phe Arg Glu
180 185 190

Arg Ala Val Glu Ser Asp Cys Tyr Ala Glu Gln Val Val Ala Arg Val
195 200 205

Ala Arg Val Cys Lys Gly Asp Met Gly Gly Ala Arg Thr Leu Gln Arg
210 215 220

Lys Trp Thr Thr Phe Leu Lys Ala Arg Leu Ala Cys Ser Ala Pro Asn
225 230 235 240

Trp Gln Leu Tyr Phe Asn Gln Leu Gln Ala Met His Thr Leu Gln Asp
245 250 255

Thr Ser Trp His Asn Thr Thr Phe Phe Gly Val Phe Gln Ala Gln Trp
260 265 270

Gly Asp Met Tyr Leu Ser Ala Ile Cys Glu Tyr Gln Leu Glu Glu Ile
275 280 285

Gln Arg Val Phe Glu Gly Pro Tyr Lys Glu Tyr His Glu Glu Ala Gln
290 295 300

Lys Trp Asp Arg Tyr Thr Asp Pro Val Pro Ser Pro Arg Pro Gly Ser
305 310 315 320

Cys Ile Asn Asn Trp His Arg Arg His Gly Tyr Thr Ser Ser Leu Glu
325 330 335

Leu Pro Asp Asn Ile Leu Asn Phe Val Lys Lys His Pro Leu Met Glu
340 345 350

Glu Gln Val Gly Pro Arg Trp Ser Arg Pro Leu Leu Val Lys Lys Gly
355 360 365

Thr Asn Phe Thr His Leu Val Ala Asp Arg Val Thr Gly Leu Asp Gly
370 375 380

Ala Thr Tyr Thr Val Leu Phe Ile Gly Thr Gly Asp Gly Trp Leu Leu
385 390 395 400

189

Lys Ala Val Ser Leu Gly Pro Trp Val His Leu Ile Glu Glu Leu Gln
405 410 415

Leu Phe Asp Gln Glu Pro Met Arg Ser Leu Val Leu Ser Gln Ser Lys
420 425 430

Val Lys Leu Leu Phe Ala Gly Ser Arg Ser Gln Leu Val Gln Leu Pro
435 440 445

Val Ala Asp Cys Met Lys Tyr Arg Ser Cys Ala Asp Cys Val Leu Ala
450 455 460

Arg Asp Pro Tyr Cys Ala Trp Ser Val Asn Thr Ser Arg Cys Val Ala
465 470 475 480

Val Gly Gly His Ser Gly Ser Leu Leu Ile Gln His Val Met Thr Ser
485 490 495

Asp Thr Ser Gly Ile Cys Asn Leu Arg Gly Ser Lys Lys Val Arg Pro
500 505 510

Thr Pro Lys Asn Ile Thr Val Val Ala Gly Thr Asp Leu Val Leu Pro
515 520 525

Cys His Leu Ser Ser Asn Leu Ala His Ala Arg Trp Thr Phe Gly Gly
530 535 540

Arg Asp Leu Pro Ala Glu Gln Pro Gly Ser Phe Leu Tyr Asp Ala Arg
545 550 555 560

Leu Gln Ala Leu Val Val Met Ala Ala Gln Pro Arg His Ala Gly Ala
565 570 575

Tyr His Cys Phe Ser Glu Glu Gln Gly Ala Arg Leu Ala Ala Glu Gly
580 585 590

Tyr Leu Val Ala Val Val Ala Gly Pro Ser Val Thr Leu Glu Ala Arg
595 600 605

Ala Pro Leu Glu Asn Leu Gly Leu Val Trp Leu Ala Val Val Ala Leu
610 615 620

Gly Ala Val Cys Leu Val Leu Leu Leu Val Leu Ser Leu Arg Arg
625 630 635 640

190

Arg Leu Arg Glu Glu Leu Glu Lys Gly Ala Lys Ala Thr Glu Arg Thr
645 650 655

Leu Val Tyr Pro Leu Glu Leu Pro Lys Glu Pro Thr Ser Pro Pro Phe
660 665 670

Arg Pro Cys Pro Glu Pro Asp Glu Lys Leu Trp Asp Pro Val Gly Tyr
675 680 685

Tyr Tyr Ser Asp Gly Ser Leu Lys Ile Val Pro Gly His Ala Arg Cys
690 695 700

Gln Pro Gly Gly Pro Pro Ser Pro Pro Gly Ile Pro Gly Gln
705 710 715 720

Pro Leu Pro Ser Pro Thr Arg Leu His Leu Gly Gly Arg Asn Ser
725 730 735

Asn Ala Asn Gly Tyr Val Arg Leu Gln Leu Gly Gly Glu Asp Arg Gly
740 745 750

Gly Leu Gly His Pro Leu Pro Glu Leu Ala Asp Glu Leu Arg Arg Lys
755 760 765

Leu Gln Gln Arg Gln Pro Leu Pro Asp Ser Asn Pro Glu Glu Ser Ser
770 775 780

Val
785

<210> 219
<211> 66
<212> PRT
<213> Homo sapien

<400> 219

Met Lys Met Arg Ala Lys Ile Leu His Gln Asn Gly Asn Asp Pro Ile
1 5 10 15

Ser Pro Val Lys Ala Glu Trp Val Glu Trp Gly Leu Arg Val Trp Ile
20 25 30

Gln Cys Phe Glu Leu His Ser Ser Arg Glu Ala Val Gln Lys Gly Gly
35 40 45

Ile Leu Gly Asn Leu Arg Lys Ile Val Gly Glu Thr Ser Phe Leu Leu
50 55 60

Val Ser
65

<210> 220
<211> 128
<212> PRT
<213> Homo sapien

<400> 220

Glu Val Glu Gly Arg Ser Ala Cys Met Ala Met Gly Leu Phe Phe Ile
1 5 10 15

Pro Phe Leu Asn Cys Thr Gln Gln Trp Phe Leu Leu Gly Leu Leu
20 25 30

Lys Thr Ala Gly Ile Trp Glu Lys Glu His His Arg Leu Ser Gln His
35 40 45

Gly Asn Ile Asn Leu Ile Pro Glu Lys Gly Arg Ser Pro Gln Arg Tyr
50 55 60

Val Arg Phe Asn Ser Phe Ser Ser Gly Pro Gly Ser Ser Phe Ser Cys
65 70 75 80

Ser Gly Leu Asn Arg Asp Ala Leu Ile Ser Leu Gly Ile Leu Leu
85 90 95

Val Leu Ser Leu Thr Ser Gly Ala Lys Ile Arg Arg Pro Glu Phe Gln
100 105 110

Ile Tyr Ser Val Thr Gln Ser Leu Leu Gln Ser Leu Arg Asp Val Val
115 120 125

<210> 221
<211> 64
<212> PRT
<213> Homo sapien

<400> 221

Met Gly Ile Leu Glu Pro Gln Asp Val Arg Ala Gly Arg Asp Ala Ile
1 5 10 15

192

Pro Val Tyr Thr Arg Gly Asn Ser Ser Arg Leu Trp Glu Gly Arg Arg
20 25 30

Val Leu Val Thr Glu Arg Glu Leu Lys Leu Arg Ile Pro Glu Ser Arg
35 40 45

Ser Cys Leu Pro Ser Ala Ile Phe Leu Pro Ile Asn Leu Cys Tyr Val
50 55 60

<210> 222

<211> 105

<212> PRT

<213> Homo sapien

<400> 222

Cys Lys Leu Phe Gly Arg Val Gly Asp Ala Val Ser Phe Cys His Pro
1 5 10 15

Gly Trp Ser Ala Val Ala Arg Ser Gln Leu Thr Ala Thr Ser Ala Leu
20 25 30

Gln Gly Ser Gly Asn Ser Ala Ser Val Ser Ala Val Ala Gly Ile Thr
35 40 45

Gly Met Arg His His Thr Arg Leu Ile Phe Val Phe Leu Val Glu Thr
50 55 60

Arg Phe His His Val Gly Gln Asp Gly Leu Glu Pro Leu Thr Ser Gly
65 70 75 80

Asp Leu Pro Ile Ser Ala Ser Gln Ser Ala Gly Ile Thr Ser Val Ser
85 90 95

His Arg Ala Arg Pro Ala Asn Phe Phe
100 105

<210> 223

<211> 109

<212> PRT

<213> Homo sapien

<400> 223

Met Met Trp Leu Ser Val Gly Gly Gly Arg Glu Trp Ser Glu Met
1 5 10 15

193

Leu Gly Val Val Trp Trp Trp Gly Gly Val Gly Val Trp Val Gly Val
20 25 30

Gly Val Cys Gly Cys Val Trp Trp Val Val Val Gly Val Trp Trp Trp
35 40 45

Arg Cys Val Gly Cys Gly Cys Val Val Trp Trp Gly Gly Val Val Gly
50 55 60

Val Gly Gly Cys Trp Gly Gly Cys Val Cys Val Val Gly Val Cys Val
65 70 75 80

Cys Val Gly Gly Gly Val Val Gly Arg Val Val Gly Gly Ala Gly Val
85 90 95

Cys Gly Gly Arg Cys Gly Cys Cys Val Val Trp Trp Cys
100 105

<210> 224

<211> 196

<212> PRT

<213> Homo sapien

<400> 224

Thr Arg Pro Gln Ser His Thr Thr Glu His Pro Pro Pro Pro Pro
1 5 10 15

Thr Thr Ile His Ile Thr Gln Thr Leu His Lys Lys Thr Asn Thr Thr
20 25 30

Asn Thr Gln Gln Lys Lys His Thr Asn Thr Gln Ile Thr Ile Thr Gln
35 40 45

Gln His Thr Pro Gln His Thr Thr Pro Pro Thr Pro His His Ser
50 55 60

Thr Pro Pro His Asn Thr Pro Ala Pro Pro Pro His Thr Pro Ala
65 70 75 80

Pro Pro Thr Thr Arg Pro Thr Pro Pro Pro Thr His Thr His Thr
85 90 95

Pro Thr Thr His Thr His Pro Pro Gln His Pro Pro Thr Pro Thr Thr
100 105 110

194

Thr Thr Pro Pro His His Ala Pro Thr Pro His Thr Pro Pro Pro Pro Thr
115 120 125

Thr Pro Pro Arg Pro Pro Thr Thr His Thr His Thr Pro Pro His Pro
130 135 140

Pro Thr Pro Pro Pro Leu Pro Thr Thr Pro His Pro Thr Ser His
145 150 155 160

Ser Thr Leu Ser Pro His His Pro His Ser Thr Thr Ser Ser Leu Pro
165 170 175

Ser Thr His Asn Asn Ile Thr Asn Thr Pro Pro Ala His Thr Leu Thr
180 185 190

Pro His Thr Ser
195

<210> 225
<211> 92
<212> PRT
<213> Homo sapien

<400> 225

Met Thr Ser Leu Pro Glu Gly Pro Arg Ala Ser Glu Asp Gly Ala Thr
1 5 10 15

Pro Glu Ala Gly Gly Phe Thr Asn Ser Ser His Leu Tyr Arg Arg Pro
20 25 30

Ala Arg Cys Gln Ala Cys Trp Gln Ala Gln Gly Lys Ala His Ser Thr
35 40 45

Ser Arg His Gly Pro Cys Ser His Gly Ala Tyr Ser Leu Ala Arg Gln
50 55 60

Thr Arg Asn Lys Lys Leu Gln Ser Ser Val Glu Val Cys Arg Val Val
65 70 75 80

Gly Tyr Ser Asp Leu Ala Leu Tyr Thr His Phe Ala
85 90

<210> 226
<211> 42
<212> PRT
<213> Homo sapien

195

<400> 226

Met Lys Ile Tyr Gly Ser Val Phe Gln Asn Asp Glu Glu Phe Gln Asp
 1 5 10 15

Gly Gly Ser Gly Lys Ile Leu Leu Gln Glu Lys Ser Val Leu Gly Pro
20 25 30

Met Cys Lys His Leu Leu Arg Asn Leu Glu
35 40

<210> 227

<211> 57

<212> PRT

<213> Homo sapien

<400> 227

Met	Leu	Ser	Gln	Arg	Tyr	Arg	Lys	Val	Leu	Leu	Gly	Pro	Ser	Val	Thr
1					5					10					15

Leu Ser Phe His Ile Pro Thr Leu His Arg Pro Ser Leu Gln Leu Pro
20 25 30

Ala Pro Ala Pro His Cys Arg Ser Pro Gly Phe Cys Leu Glu Leu Asn
35 40 45

Glu Glu Met Gly Pro Leu Ala Leu Ala
50 55

<210> 228

<211> 205

<212> PRT

<213> Homo sapien

<400> 228

Gln Gln Gly Lys Leu Val Ala Asp Ser Ala Lys His Leu Gly Leu Lys
1 5 10 15

His Val Val Tyr Ser Gly Leu Glu Asn Val Lys Arg Leu Thr Asp Gly
20 25 30

Lys Leu Glu Val Pro His Phe Asp Ser Lys Gly Glu Val Glu Glu Tyr
35 40 45

Phe Trp Ser Ile Gly Ile Pro Met Thr Ser Val Arg Val Ala Ala Tyr
50 55 60

196

Phe Glu Asn Phe Leu Ala Ala Trp Arg Pro Val Lys Ala Ser Asp Gly
65 70 75 80

Asp Tyr Tyr Thr Leu Ala Val Pro Met Gly Asp Val Pro Met Asp Gly
85 90 95

Ile Ser Val Ala Asp Ile Gly Ala Ala Val Ser Ser Ile Phe Asn Ser
100 105 110

Pro Glu Glu Phe Leu Gly Lys Ala Val Gly Leu Ser Ala Glu Ala Leu
115 120 125

Thr Ile Gln Gln Tyr Ala Asp Val Leu Ser Lys Ala Leu Gly Lys Glu
130 135 140

Val Arg Asp Ala Lys Ile Thr Pro Glu Ala Phe Glu Lys Leu Gly Phe
145 150 155 160

Pro Ala Ala Lys Glu Ile Ala Asn Met Cys Arg Phe Tyr Glu Met Lys
165 170 175

Pro Asp Arg Asp Val Asn Leu Thr His Gln Leu Asn Pro Lys Val Lys
180 185 190

Ser Phe Ser Gln Phe Ile Ser Glu Asn Gln Gly Ala Phe
195 200 205

<210> 229
<211> 46
<212> PRT
<213> Homo sapien

<400> 229

Met Lys Lys Lys Val Leu Ser Ile Ile Cys Ile Ile Gly Ile His Met
1 5 10 15

Ser Leu His Lys Met Phe Asn Leu Lys Glu Ile Pro Leu Ile Leu Tyr
20 25 30

Val Leu Leu Ser Val Val Cys Phe Ser Phe Leu Ile Leu Ser
35 40 45

<210> 230
<211> 53

197

<212> PRT
<213> Homo sapien

<400> 230

Val Ala Gln Ala Gly Val Gln Trp Arg Asn Ala Asn Ser Leu Gln Pro
1 5 10 15

Ala Pro Ser Trp Leu Lys Gln Ala Leu His Leu Ser Pro Leu Ser Ser
20 25 30

Ala His Tyr Arg His Thr Pro Pro His Pro Ala Asn Phe Phe Glu Phe
35 40 45

Leu Glu Thr Gly Phe
50

<210> 231
<211> 30
<212> PRT
<213> Homo sapien

<400> 231

Met Gly Gln Val Gly Val Arg Gly Pro Gly Glu Val Arg Ala Leu Ser
1 5 10 15

Ser Lys Leu Ser Tyr Cys His Val Phe Val Pro Arg Arg Asp
20 25 30

<210> 232
<211> 39
<212> PRT
<213> Homo sapien

<400> 232

Met Val Phe Leu Gly Glu Leu Lys Thr Phe Ser Leu Val Ser Val Asn
1 5 10 15

Gln Arg Ala Phe Ser Leu Phe Leu Leu Leu Ile Pro Ser Ser Pro Val
20 25 30

Asn Tyr Phe Ser Phe His Trp
35

<210> 233
<211> 107
<212> PRT
<213> Homo sapien

198

<400> 233

Phe Phe Phe Phe Leu Leu Leu Phe Cys Asp Ser Leu Ala Leu Ser Pro
1 5 10 15

Arg Leu Gln Cys Ser Gly Thr Ile Ser Ala His Cys Asn Leu Cys Leu
20 25 30

Leu Gly Ser Ser Asn Ser Pro Val Ser Ala Ser Trp Val Ala Gly Thr
35 40 45

Thr Gly Ala Cys His His Ala Trp Leu Thr Phe Val Phe Leu Val Glu
50 55 60

Thr Gly Phe His His Val Gly Gln Ala Gly Leu Glu Phe Leu Thr Ser
65 70 75 80

Gly Asp Pro Pro Ala Leu Ala Ser Gln Ser Ala Glu Ile Thr Gly Val
85 90 95

Ser His Arg Ala Trp Pro Val Cys Phe Phe Asn
100 105

<210> 234

<211> 57

<212> PRT

<213> Homo sapien

<400> 234

Met Cys Ile Ile Leu Ser Ala His Ala Val Leu Gln Ala Ser Val Pro
1 5 10 15

Leu Ala Val His Val Ser Pro His Ala Arg Ala Gly Pro Ser Trp Ser
20 25 30

Ala Leu Val Ser Lys Trp Val Tyr Ala Glu Ala Asp Phe Gln Ser Val
35 40 45

Ser Cys Pro Pro Ile Gln His Ser Arg
50 55

<210> 235

<211> 50

<212> PRT

<213> Homo sapien

199

<400> 235

Met Lys Val Pro Ala Tyr Ile Asn His Leu Ala Arg Trp Trp Glu Ile
1 5 10 15

Leu Cys Ser Ser Asn Val Leu Leu Val Leu Gly Arg Asp Gly Ala His
20 25 30

Ser Gly Ala Lys Glu Asp Lys Lys Ser Met Gln Asn Leu Ser Leu Leu
35 40 45

Met Ala
50

<210> 236

<211> 44

<212> PRT

<213> Homo sapien

<400> 236

Met His Asn Trp Asp Cys Trp Asn Gly Pro Arg His Thr Thr Ala Gly
1 5 10 15

His Cys His Gln Glu Gly Ala Cys Val Leu Glu Gly Ser Gly Gln His
20 25 30

Arg Leu Ala Asn Leu Glu Gly Ser Gln Arg Asp Ser
35 40

<210> 237

<211> 146

<212> PRT

<213> Homo sapien

<400> 237

Met Gly Ala Arg Val Pro His Ala Ala Asp Gly Pro Ser Gln Val Glu
1 5 10 15

Leu Pro Gly Val Gln Ser Gly Ser Pro Leu Ala Asp Leu Met Leu Ser
20 25 30

Asp Arg Trp Asp Lys Phe Phe Cys His Ser Ala Gly Leu Cys Pro Glu
35 40 45

Ala Ser Leu Leu Ala Gly Cys Ala His Ala Trp Glu Lys Ala Trp Ala
50 55 60

200

Val Asn Tyr Gly His Thr Cys Ser Leu Cys Gly His Cys Ser Pro Ala
65 70 75 80

Pro Ile Pro Ile Pro Pro His Pro Thr His Pro Asn Thr His Thr Pro
85 90 95

Arg Pro Gln Thr Pro Thr Pro His Pro Pro Pro Thr Pro Thr
100 105 110

Pro Pro His Pro Pro Gln His Pro His Pro Arg Pro Pro Pro Thr Ser
115 120 125

Thr His Pro Pro Thr His Asn Thr Pro His Thr Thr His His Gln His
130 135 140

His His
145

<210> 238
<211> 47
<212> PRT
<213> Homo sapien

<400> 238

Met Tyr Arg Gln Tyr Gly Pro Trp Cys Thr Asn Ala Ala Ser Gly Arg
1 5 10 15

Arg Asp Val Met Asp Gly Arg Gly Arg Gly Thr Phe Asn Pro Ser Ser
20 25 30

Pro Phe Pro Pro Ser Gly Ala Ser Tyr Glu Ile Ser Val His Phe
35 40 45

<210> 239
<211> 91
<212> PRT
<213> Homo sapien

<400> 239

Met Val Lys Ile Ser Phe Gln Pro Ala Val Ala Gly Ile Lys Gly Asp
1 5 10 15

Lys Ala Asp Lys Ala Ser Ala Ser Ala Pro Ala Pro Ala Ser Ala Thr
20 25 30

201

Glu Ile Leu Leu Thr Pro Ala Arg Glu Glu Gln Pro Pro Gln His Arg
35 40 45

Ser Lys Arg Gly Gly Ser Val Gly Gly Val Cys Tyr Leu Ser Met Gly
50 55 60

Met Val Val Leu Leu Met Gly Leu Val Phe Ala Ser Val Tyr Ile Tyr
65 70 75 80

Arg Tyr Phe Phe Leu Ala Gln Leu Ala Arg Asp
85 90

<210> 240

<211> 188

<212> PRT

<213> Homo sapien

<400> 240

Met Arg Leu Val Gly Gly Val Gly Ser Phe Arg Leu Gly Gly Val Gly
1 5 10 15

Cys Gly Gly Gly Gly Gly Ala Gly Ala Gly Ser Trp Val Trp Met
20 25 30

Gly Gly Trp Gly Gly Gly Ala Gly Ala Leu Trp Val Ala Val Val Gly
35 40 45

Gly Ala Arg Trp Trp Gly Gly Ala Gly Trp Gly Ser Cys Gly Arg Val
50 55 60

Leu Val Gly Gly Arg Ala Val Val Val Gly Arg Val Gly Val Val Gly
65 70 75 80

Trp Gly Trp Trp Arg Val Val Val Ala Gly Cys Val Cys Gly Gly Gly
85 90 95

Trp Arg Trp Trp Arg Ala Gly Val Gly Gly Gly Gly Ala Val Ser
100 105 110

Gly Pro Ser Gly Ala Gly Pro Gly Arg Arg Cys Ser Met Val Glu Arg
115 120 125

Arg Arg Gly His Val Gly Ser Gly Gly Trp Ala Gly Arg Pro Gly Val
130 135 140

202

Val Gly Val Trp Ala Arg Cys Val Leu Val Ala Gly Ala Val Trp Arg
145 150 155 160

Arg Gly Gly Ala Val Trp Glu Trp Arg Gly Leu Gly Cys Gly Ala Trp
165 170 175

Cys Val Gly Arg Ser Trp Gly Glu Cys Gly Gly Arg
180 185

<210> 241

<211> 110

<212> PRT

<213> Homo sapien

<400> 241

Met Lys Leu Thr Leu Ser Glu Val Lys Met Glu Val Ile Gly Val Pro
1 5 10 15

Trp Arg Asn Gly Ser His Cys Phe Ile Ser Ile Thr Pro Gln Leu Lys
20 25 30

Phe Thr Pro Val Ser Gly His Lys Asn Met Arg Lys Glu Pro Cys Cys
35 40 45

Phe His Lys Gly Asn His Ser Ser Leu Ser Pro Leu Leu Ile Asn Leu
50 55 60

Lys Ser Trp Thr Pro Ser Phe Leu His Trp Pro Arg Pro Thr Leu Thr
65 70 75 80

His Leu Glu Pro Leu Phe Arg Ala Glu Trp His Glu Tyr Val Tyr Leu
85 90 95

Gly Arg Asp Gln Ser Ile Thr Gln Arg Arg Leu Glu Gln His
100 105 110

<210> 242

<211> 102

<212> PRT

<213> Homo sapien

<400> 242

Met Pro Ser Leu Pro Thr Arg Ser Leu Leu Ser Pro Cys Val Leu Glu
1 5 10 15

Leu Glu Glu Leu Thr Cys Ala Leu Cys Thr Trp Ala Phe Leu Leu

203

20

25

30

Cys Leu Ala Leu Val Ala Asp Cys Pro Gly Leu Arg Gln Val Ile Pro
35 40 45

Gly Lys Gln Val Phe Val Leu Phe Ser Met Ser Gly Gly Arg Phe Ile
50 55 60

Leu Leu Ser Val Ser Ser His Phe Pro Ile Pro Phe Lys Lys Leu Trp
65 70 75 80

Pro Ala Gln Gly Arg Ala Leu Ser Cys Cys Ile Thr Ala Glu Pro Thr
85 90 95

Cys Pro His Ala Leu Leu
100

<210> 243
<211> 86
<212> PRT
<213> Homo sapien

<400> 243

Leu Ala Val Ser Leu Cys His Gln Ala Gly Val Gln Trp Cys Asn Pro
1 5 10 15

Gly Ser Leu Gln Pro Pro Pro Pro Gly Phe Lys Arg Phe Phe Cys Leu
20 25 30

Cys Leu Pro Ser Ser Trp Gly Tyr Arg His Thr Pro Pro Arg Pro Ala
35 40 45

Asn Phe Cys Val Phe Gly Arg Asp Gly Val Ser Pro Cys Trp Pro Gly
50 55 60

Trp Ser Leu Ser Leu Asp Val Ile Cys Asp Pro Pro Arg Gln Pro Pro
65 70 75 80

Lys Val Leu Gly Leu Gln
85

<210> 244
<211> 53
<212> PRT
<213> Homo sapien

204

<400> 244

Met Leu Leu Pro Phe Ala Val Arg Gly Leu Leu Thr Met Ala Arg Gly
1 5 10 15

Asp Val Ser Glu Ile Gln Val Val Val Ala Ser Trp Ser Thr Gln Leu
20 25 30

Ala His Met Gln Glu Glu Gly Leu Trp Pro Leu Ser Arg Ala Gly Gly
35 40 45

Leu Leu Pro Gln Ala
50

<210> 245

<211> 183

<212> PRT

<213> Homo sapien

<400> 245

Leu Thr Pro Ala Gly Val Pro Trp Cys His Leu Gly Ser Leu Gln Pro
1 5 10 15

Leu Pro Pro Arg Phe Lys Ala Val Phe Ser Arg Leu Ala Pro Ser Leu
20 25 30

Glu Tyr Ala Trp Asp Tyr Arg Ala Pro Thr Ser His Ala Arg Leu Ile
35 40 45

Ser Leu Ala Phe Leu Val Glu Thr Gly Phe Ser Pro Thr Val Ala Arg
50 55 60

Leu Val Ser Asn Ser Trp Pro Pro Val Val Arg Pro Pro Leu Pro Ser
65 70 75 80

Gln Ser Ala Gly Ile Thr Gly Val Gly Pro Pro Cys Leu Ala Arg Pro
85 90 95

Ile Leu Pro Pro His Pro Phe Phe Phe Phe Asp Met Glu Ser His
100 105 110

Ala Ile Thr Gln Ala Gly Val Gln Trp Arg His Leu Gly Ser Leu Gln
115 120 125

Pro Pro Pro Pro Met Phe Lys Ala Ser Ser Cys Leu Ser Leu Ser
130 135 140

205

Ser Trp Asp Tyr Arg Arg Pro Pro Pro Arg Pro Ala Ile Phe Cys Ile
145 150 155 160

Phe Ser Arg Asp Gly Val Ser Pro Cys Ala Pro Gly Trp Ser Arg Ser
165 170 175

Pro Asp Leu Thr Pro Asp Leu
180

<210> 246

<211> 12

<212> PRT

<213> Homo sapien

<400> 246

Met Ala Pro Asp Thr Asn Thr Phe Leu His Pro Phe
1 5 10

<210> 247

<211> 240

<212> PRT

<213> Homo sapien

<400> 247

Met Gly Asn Cys Gln Ala Gly His Asn Leu His Leu Cys Leu Ala His
1 5 10 15

His Pro Pro Leu Val Cys Ala Thr Leu Ile Leu Leu Leu Gly Leu
20 25 30

Ser Gly Leu Gly Leu Gly Ser Phe Leu Leu Thr His Arg Thr Gly Leu
35 40 45

Arg Ser Pro Asp Ile Pro Gln Asp Trp Val Ser Phe Leu Arg Ser Phe
50 55 60

Gly Gln Leu Thr Leu Cys Pro Arg Asn Gly Thr Val Thr Gly Lys Trp
65 70 75 80

Arg Gly Ser His Val Val Gly Leu Leu Thr Thr Leu Asn Phe Gly Asp
85 90 95

Gly Pro Asp Arg Asn Lys Thr Arg Thr Phe Gln Ala Thr Val Leu Gly
100 105 110

206

Ser Gln Met Gly Leu Lys Gly Ser Ser Ala Gly Gln Leu Val Leu Ile
115 120 125

Thr Ala Arg Val Thr Thr Glu Arg Thr Ala Gly Thr Cys Leu Tyr Phe
 130 135 140

Ser	Ala	Val	Pro	Gly	Ile	Leu	Pro	Ser	Ser	Gln	Pro	Pro	Pro	Ile	Ser	Cys
145					150					155						160

Ser Glu Glu Gly Ala Gly Asn Ala Thr Leu Ser Pro Arg Met Gly Glu
165 170 175

Glu Cys Val Ser Val Trp Ser His Glu Gly Leu Val Leu Thr Lys Leu
180 185 190

Leu Thr Ser Glu Glu Leu Ala Leu Cys Gly Ser Arg Leu Leu Val Leu
195 200 205

Gly Ser Phe Leu Leu Leu Phe Cys Gly Leu Leu Cys Cys Val Thr Ala
210 215 220

Met Cys Phe His Pro Arg Arg Glu Ser His Trp Ser Arg Thr Arg Leu
225 230 235 240

<210> 248

<211> 75

<212> PRT

<213> Homo sapien

<400> 248

Met	Arg	Arg	Ala	Val	Ala	Ser	Val	Met	Tyr	Arg	Trp	Ser	Arg	Pro	Arg
1				5					10					15	

Tyr Thr Gln Glu Ala Arg Arg Tyr Phe Phe Phe Ser Glu Leu Ser Pro
20 25 30

Gly Ser Lys Gly Glu Ala Met Gly Asp Pro Gly Met Val Leu Ala Ser
35 40 45

Gly Gly Cys Phe Leu Val Thr Gly Val Ser Ser Lys Gln Asn Gly Ile
50 55 60

Arg Met Lys Arg Gly Lys Gly Met Gly His Lys
65 70 75

<210> 249
<211> 594
<212> PRT
<213> Homo sapien

<400> 249

Val Pro Gly Arg Lys Leu His Arg Ser Arg Leu Gln Ala Ala Ala Pro
1 5 10 15

Arg Pro Ser Thr Cys Ala Gln Ser Leu Cys Trp Ser Arg Pro Pro Ala
20 25 30

Ala Gly Thr Gly Thr Gly Asp Pro Ser Gln Ser Lys Ala Pro Thr Met
35 40 45

Ala Met Gly Leu Phe Arg Val Cys Leu Val Val Val Thr Ala Ile Ile
50 55 60

Asn His Pro Leu Leu Phe Pro Arg Glu Asn Ala Thr Val Pro Glu Asn
65 70 75 80

Glu Glu Glu Ile Ile Arg Lys Met Gln Ala His Gln Glu Lys Leu Gln
85 90 95

Leu Glu Gln Leu Arg Leu Glu Glu Glu Val Ala Arg Leu Ala Ala Glu
100 105 110

Lys Glu Ala Leu Glu Gln Val Ala Glu Glu Gly Arg Gln Gln Asn Glu
115 120 125

Thr Arg Val Ala Trp Asp Leu Trp Ser Thr Leu Cys Met Ile Leu Phe
130 135 140

Leu Met Ile Glu Val Trp Arg Gln Asp His Gln Glu Gly Pro Ser Pro
145 150 155 160

Glu Cys Leu Gly Gly Glu Asp Glu Leu Pro Gly Leu Gly Gly Ala
165 170 175

Pro Leu Gln Gly Leu Thr Leu Pro Asn Lys Ala Thr Leu Gly His Phe
180 185 190

Tyr Glu Arg Cys Ile Arg Gly Ala Thr Ala Asp Ala Ala Arg Thr Arg
195 200 205

208

Glu Phe Leu Glu Gly Phe Val Asp Asp Leu Leu Glu Ala Leu Arg Ser
210 215 220

Leu Cys Asn Arg Asp Thr Asp Met Glu Val Glu Asp Phe Ile Gly Val
225 230 235 240

Asp Ser Met Tyr Glu Asn Trp Gln Val Asp Arg Pro Leu Leu Cys His
245 250 255

Leu Phe Val Pro Phe Thr Pro Pro Glu Pro Tyr Arg Phe His Pro Glu
260 265 270

Leu Trp Cys Ser Gly Arg Ser Val Pro Leu Asp Arg Gln Gly Tyr Gly
275 280 285

Gln Ile Lys Val Val Arg Ala Asp Gly Asp Thr Leu Ser Cys Ile Cys
290 295 300

Gly Lys Thr Lys Leu Gly Glu Asp Met Leu Cys Leu Leu His Gly Arg
305 310 315 320

Asn Ser Met Ala Pro Pro Cys Gly Asp Met Glu Asn Leu Leu Cys Ala
325 330 335

Thr Asp Ser Leu Tyr Leu Asp Thr Met Gln Val Met Lys Trp Phe Gln
340 345 350

Thr Ala Leu Thr Arg Ala Trp Lys Gly Ile Ala His Lys Tyr Glu Phe
355 360 365

Asp Leu Ala Phe Gly Gln Leu Asp Ser Pro Gly Ser Leu Lys Ile Lys
370 375 380

Phe Arg Ser Gly Lys Phe Met Pro Phe Asn Leu Ile Pro Val Ile Gln
385 390 395 400

Cys Asp Asp Ser Asp Leu Tyr Phe Val Ser His Leu Pro Arg Glu Pro
405 410 415

Ser Glu Gly Thr Pro Ala Ser Ser Thr Asp Trp Leu Leu Ser Phe Ala
420 425 430

Val Tyr Glu Arg His Phe Leu Arg Thr Thr Leu Lys Ala Leu Pro Glu
435 440 445

Gly Ala Cys His Leu Ser Cys Leu Gln Ile Ala Ser Phe Leu Leu Ser
450 455 460

Lys Gln Ser Arg Leu Thr Gly Pro Ser Gly Leu Ser Ser Tyr His Leu
465 470 475 480

Lys Thr Ala Leu Leu His Leu Leu Leu Arg Gln Ala Ala Asp Trp
485 490 495

Lys Ala Gly Gln Leu Asp Ala Arg Leu His Glu Leu Leu Cys Phe Leu
500 505 510

Glu Lys Ser Leu Leu Gln Lys Lys Leu His His Phe Phe Ile Gly Asn
515 520 525

Arg Lys Val Pro Glu Ala Met Gly Leu Pro Glu Ala Val Leu Arg Ala
530 535 540

Glu Pro Leu Asn Leu Phe Arg Pro Phe Val Leu Gln Arg Ser Leu Tyr
545 550 555 560

Arg Lys Thr Leu Asp Ser Phe Tyr Glu Met Leu Lys Asn Ala Pro Ala
565 570 575

Leu Ile Ser Glu Tyr Ser Leu His Val Pro Ser Asp Gln Pro Thr Pro
580 585 590

Lys Ser

<210> 250
<211> 23
<212> PRT
<213> Homo sapien

<400> 250

Met Tyr Cys Ile Gly Gly Trp Ala Gly Pro Thr Leu Cys Tyr Val Lys
1 5 10 15

Glu Leu Val Leu Val Leu Gly
20

<210> 251
<211> 213

210

<212> PRT

<213> Homo sapien

<400> 251

Ser Pro His Gln Ala Ala Ala Pro Val Asp Gln Thr Pro Arg Thr Leu
1 5 10 15

Ala Thr Met Gly Gln Arg Ala Leu Pro Ser Ser Leu Ala Leu Leu Ser
20 25 30

Arg Pro Leu Ser Pro Pro Pro Ala Ala Cys Ser Gly Asp Pro Gly Cys
35 40 45

Gly Ser Gly Ala Gly Leu Pro Ser Ala Ser Ala Ala Gly Ile Ala
50 55 60

Ser Ser Ala Val Glu Ala Val Cys Gly Asp Ala Ala Pro Ala Cys Leu
65 70 75 80

Leu Arg Thr Pro Leu Arg Gly Leu Leu Lys Pro Thr Gly Pro Arg Ser
85 90 95

Thr Met Glu Cys Pro Pro Ala Leu Ile Val His Pro Pro Thr Gly Gly
100 105 110

Met Ala Arg Arg Ala Ala Ser Gln Pro Trp Ala Ala Ala Ser Ala Thr
115 120 125

Pro Met Leu Ser Ser Lys Ala Ser Leu Cys Ile Pro Thr Glu Arg Pro
130 135 140

Pro Pro Gln Pro Leu Met Arg Thr Pro Ala Ala Arg Ser His Trp Pro
145 150 155 160

Ile Pro His Pro Ala Ser Thr Ala Cys Pro Ala Pro Leu Pro Val Val
165 170 175

Leu Val Ala Pro Arg Ser Thr Ile Leu Ser Met Ser Arg Thr Trp Thr
180 185 190

Cys Arg Arg Trp Ala Val Ala Pro Cys Arg Ala Glu Lys Leu Met Cys
195 200 205

Ser Ser Ser Arg Ser
210

<210> 252
<211> 32
<212> PRT
<213> Homo sapien

<400> 252

Met His Glu Leu Thr Ala Arg Leu Thr Gln Pro Leu Asn Ser Gly Ser
1 5 10 15

Cys Phe Ser Leu Ala Ala Ile His His Met Arg Arg Arg Ser Met His
20 25 30

<210> 253
<211> 58
<212> PRT
<213> Homo sapien

<400> 253

Met Ser Leu Gln Leu Gln Ile Leu Asn Val Ser Pro Val Ile Trp His
1 5 10 15

Phe Arg His Ser Tyr Leu Lys Pro Gln Phe Ser Leu Pro Val Lys Trp
20 25 30

Gly Ile Ile Ile Pro Ile Leu Pro Arg Leu Leu Lys Gly Leu Ser Glu
35 40 45

Leu Ile Cys Lys Met Leu Asn Arg Thr Gln
50 55

<210> 254
<211> 34
<212> PRT
<213> Homo sapien

<400> 254

Met Gly Ser Ala Phe Val Leu Leu Ser Trp Arg Ala Cys Leu Cys Cys
1 5 10 15

Arg Ala Val Ser Val Val Gly Ile Ala Leu Leu Phe Pro Ala Thr Gly
20 25 30

Gln Ile

212

<210> 255
<211> 74
<212> PRT
<213> Homo sapien

<400> 255

Lys Arg Phe Phe Phe Pro Ala Pro Ile Phe Cys Lys Thr Glu Val
1 5 10 15

Pro Glu His Arg Arg Ser Ser Gln Ala Asn Phe Ile Lys Lys Lys
20 25 30

Leu Glu Val Cys Phe Asp Phe Ala Val Ile Cys Phe Ile Thr Ser Ile
35 40 45

Phe Gly Glu Gln Pro Gln Leu Leu Ile Phe Met Glu Lys Tyr Phe Gln
50 55 60

Val Gln Gly Gln Tyr Ile Ser Gln Ser Glu
65 70

<210> 256
<211> 34
<212> PRT
<213> Homo sapien

<400> 256

Met Ile Lys Val Cys Val Pro Ile Thr Phe Pro Leu Pro Glu Arg Arg
1 5 10 15

Val Ser Arg Lys Ile Asn Ser Ile Leu Asp Ala Gly Thr Ser Pro Arg
20 25 30

Pro Arg

<210> 257
<211> 37
<212> PRT
<213> Homo sapien

<400> 257

Met Asn Ser Ser Asn Arg Arg Leu Phe Trp Lys Lys Ser Gln Gly Leu
1 5 10 15

Ser Pro Ser Trp Val Ala Pro Tyr Lys Ser Asn Ser Ser Ser Gly Ser
20 25 30

Leu Val Tyr Pro Leu
35

<210> 258
<211> 73
<212> PRT
<213> Homo sapien

<400> 258

Met Glu Phe Leu Leu Leu Glu Val Glu Lys Tyr Asn Ile Ile Lys Lys
1 5 10 15

Asp Val Ile Pro Thr Arg Gly Leu Arg Gly Lys Leu Lys Asp Ile Lys
20 25 30

Gln Ser Asn Leu Val Ile Val Lys Thr Ile Tyr Val Gly His Arg Thr
35 40 45

Glu Asp Gln Val Ser Lys Glu Asp Gly Ser Val Pro Phe Val Ser Pro
50 55 60

Val Pro Lys Ala Val Phe Gly Ala Ser
65 70

<210> 259
<211> 1533
<212> PRT
<213> Homo sapien

<400> 259

Met Tyr Ile Arg Val Ser Tyr Asp Thr Lys Pro Asp Ser Leu Leu His
1 5 10 15

Leu Met Val Lys Asp Trp Gln Leu Glu Leu Pro Lys Leu Leu Ile Ser
20 25 30

Val His Gly Gly Leu Gln Asn Phe Glu Met Gln Pro Lys Leu Lys Gln
35 40 45

Val Phe Gly Lys Gly Leu Ile Lys Ala Ala Met Thr Thr Gly Ala Trp
50 55 60

Ile Phe Thr Gly Gly Val Ser Thr Gly Val Ile Ser His Val Gly Asp
65 70 75 80

214

Ala Leu Lys Asp His Ser Ser Lys Ser Arg Gly Arg Val Cys Ala Ile
85 90 95

Gly Ile Ala Pro Trp Gly Ile Val Glu Asn Lys Glu Asp Leu Val Gly
100 105 110

Lys Asp Val Thr Arg Val Tyr Gln Thr Met Ser Asn Pro Leu Ser Lys
115 120 125

Leu Ser Val Leu Asn Asn Ser His Thr His Phe Ile Leu Ala Asp Asn
130 135 140

Gly Thr Leu Gly Lys Tyr Gly Ala Glu Val Lys Leu Arg Arg Leu Leu
145 150 155 160

Glu Lys His Ile Ser Leu Gln Lys Ile Asn Thr Arg Leu Gly Gln Gly
165 170 175

Val Pro Leu Val Gly Leu Val Val Glu Gly Gly Pro Asn Val Val Ser
180 185 190

Ile Val Leu Glu Tyr Leu Gln Glu Glu Pro Pro Ile Pro Val Val Ile
195 200 205

Cys Asp Gly Ser Gly Arg Ala Ser Asp Ile Leu Ser Phe Ala His Lys
210 215 220

Tyr Cys Glu Glu Gly Ile Ile Asn Glu Ser Leu Arg Glu Gln Leu
225 230 235 240

Leu Val Thr Ile Gln Lys Thr Phe Asn Tyr Asn Lys Ala Gln Ser His
245 250 255

Gln Leu Phe Ala Ile Ile Met Glu Cys Met Lys Lys Lys Glu Leu Val
260 265 270

Thr Val Phe Arg Met Gly Ser Glu Gly Gln Gln Asp Ile Glu Met Ala
275 280 285

Ile Leu Thr Ala Leu Leu Lys Gly Thr Asn Val Ser Ala Pro Asp Gln
290 295 300

Leu Ser Leu Ala Leu Ala Trp Asn Arg Val Asp Ile Ala Arg Ser Gln
305 310 315 320

Ile Phe Val Phe Gly Pro His Trp Thr Pro Leu Gly Ser Leu Ala Pro
325 330 335

Pro Thr Asp Ser Lys Ala Thr Glu Lys Glu Lys Lys Pro Pro Met Ala
340 345 350

Thr Thr Lys Gly Gly Arg Gly Lys Gly Lys Lys Lys Gly Lys
355 360 365

Val Lys Glu Glu Val Glu Glu Glu Thr Asp Pro Arg Lys Ile Glu Leu
370 375 380

Leu Asn Trp Val Asn Ala Leu Glu Gln Ala Met Leu Asp Ala Leu Val
385 390 395 400

Leu Asp Arg Val Asp Phe Val Lys Leu Leu Ile Glu Asn Gly Val Asn
405 410 415

Met Gln His Phe Leu Thr Ile Pro Arg Leu Glu Glu Leu Tyr Asn Thr
420 425 430

Arg Leu Gly Pro Pro Asn Thr Leu His Leu Leu Val Arg Asp Val Lys
435 440 445

Lys Ser Asn Leu Pro Pro Asp Tyr His Ile Ser Leu Ile Asp Ile Gly
450 455 460

Leu Val Leu Glu Tyr Leu Met Gly Gly Ala Tyr Arg Cys Asn Tyr Thr
465 470 475 480

Arg Lys Asn Phe Arg Thr Leu Tyr Asn Asn Leu Phe Gly Pro Lys Arg
485 490 495

Pro Lys Ala Leu Lys Leu Leu Gly Met Glu Asp Asp Glu Pro Pro Ala
500 505 510

Lys Gly Lys Lys Lys Lys Lys Lys Lys Lys Glu Glu Glu Ile Asp Ile
515 520 525

Asp Val Asp Asp Pro Ala Val Ser Arg Phe Gln Tyr Pro Phe His Glu
530 535 540

Leu Met Val Trp Ala Val Leu Met Lys Arg Gln Lys Met Ala Val Phe

216

545 550 555 560

Leu Trp Gln Arg Gly Glu Glu Ser Met Ala Lys Ala Leu Val Ala Cys
565 570 575

Lys Leu Tyr Lys Ala Met Ala His Glu Ser Ser Glu Ser Asp Leu Val
580 585 590

Asp Asp Ile Ser Gln Asp Leu Asp Asn Asn Ser Lys Asp Phe Gly Gln
595 600 605

Leu Ala Leu Glu Leu Leu Asp Gln Ser Tyr Lys His Asp Glu Gln Ile
610 615 620

Ala Met Lys Leu Leu Thr Tyr Glu Leu Lys Asn Trp Ser Asn Ser Thr
625 630 635 640

Cys Leu Lys Leu Ala Val Ala Ala Lys His Arg Asp Phe Ile Ala His
645 650 655

Thr Cys Ser Gln Met Leu Leu Thr Asp Met Trp Met Gly Arg Leu Arg
660 665 670

Met Arg Lys Asn Pro Gly Leu Lys Val Ile Met Gly Ile Leu Leu Pro
675 680 685

Pro Thr Ile Leu Phe Leu Glu Phe Arg Thr Tyr Asp Asp Phe Ser Tyr
690 695 700

Gln Thr Ser Lys Glu Asn Glu Asp Gly Lys Glu Lys Glu Glu Glu Asn
705 710 715 720

Thr Asp Ala Asn Ala Asp Ala Gly Ser Arg Lys Gly Asp Glu Glu Asn
725 730 735

Glu His Lys Lys Gln Arg Ser Ile Pro Ile Gly Thr Lys Ile Cys Glu
740 745 750

Phe Tyr Asn Ala Pro Ile Val Lys Phe Trp Phe Tyr Thr Ile Ser Tyr
755 760 765

Leu Gly Tyr Leu Leu Leu Phe Asn Tyr Val Ile Leu Val Arg Met Asp
770 775 780

217

Gly Trp Pro Ser Leu Gln Glu Trp Ile Val Ile Ser Tyr Ile Val Ser
785 790 795 800

Leu Ala Leu Glu Lys Ile Arg Glu Ile Leu Met Ser Glu Pro Gly Lys
805 810 815

Leu Ser Gln Lys Ile Lys Val Trp Leu Gln Glu Tyr Trp Asn Ile Thr
820 825 830

Asp Leu Val Ala Ile Ser Thr Phe Met Ile Gly Ala Ile Leu Arg Leu
835 840 845

Gln Asn Gln Pro Tyr Met Gly Tyr Gly Arg Val Ile Tyr Cys Val Asp
850 855 860

Ile Ile Phe Trp Tyr Ile Arg Val Leu Asp Ile Phe Gly Val Asn Lys
865 870 875 880

Tyr Leu Gly Pro Tyr Val Met Met Ile Gly Lys Met Met Ile Asp Met
885 890 895

Leu Tyr Phe Val Val Ile Met Leu Val Val Leu Met Ser Phe Gly Val
900 905 910

Ala Arg Gln Ala Ile Leu His Pro Glu Glu Lys Pro Ser Trp Lys Leu
915 920 925

Ala Arg Asn Ile Phe Tyr Met Pro Tyr Trp Met Ile Tyr Gly Glu Val
930 935 940

Phe Ala Asp Gln Ile Asp Leu Tyr Ala Met Glu Ile Asn Pro Pro Cys
945 950 955 960

Gly Glu Asn Leu Tyr Asp Glu Glu Gly Lys Arg Leu Pro Pro Cys Ile
965 970 975

Pro Gly Ala Trp Leu Thr Pro Ala Leu Met Ala Cys Tyr Leu Leu Val
980 985 990

Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Val Phe Asn Asn Thr
995 1000 1005

Phe Phe Glu Val Lys Ser Ile Ser Asn Gln Val Trp Lys Phe Gln
1010 1015 1020

218

Arg Tyr Gln Leu Ile Met Thr Phe His Asp Arg Pro Val Leu Pro
1025 1030 1035

Pro Pro Met Ile Ile Leu Ser His Ile Tyr Ile Ile Ile Met Arg
1040 1045 1050

Leu Ser Gly Arg Cys Arg Lys Lys Arg Glu Gly Asp Gln Glu Glu
1055 1060 1065

Arg Asp Arg Gly Leu Lys Leu Phe Leu Ser Asp Glu Glu Leu Lys
1070 1075 1080

Arg Leu His Glu Phe Glu Glu Gln Cys Val Gln Glu His Phe Arg
1085 1090 1095

Glu Lys Glu Asp Glu Gln Gln Ser Ser Ser Asp Glu Arg Ile Arg
1100 1105 1110

Val Thr Ser Glu Arg Val Glu Asn Met Ser Met Arg Leu Glu Glu
1115 1120 1125

Ile Asn Glu Arg Glu Thr Phe Met Lys Thr Ser Leu Gln Thr Val
1130 1135 1140

Asp Leu Arg Leu Ala Gln Leu Glu Glu Leu Ser Asn Arg Met Val
1145 1150 1155

Asn Ala Leu Glu Asn Leu Ala Gly Ile Asp Arg Ser Asp Leu Ile
1160 1165 1170

Gln Ala Arg Ser Arg Ala Ser Ser Glu Cys Glu Ala Thr Tyr Leu
1175 1180 1185

Leu Arg Gln Ser Ser Ile Asn Ser Ala Asp Gly Tyr Ser Leu Tyr
1190 1195 1200

Arg Tyr His Phe Asn Gly Glu Glu Leu Leu Phe Glu Asp Thr Ser
1205 1210 1215

Leu Ser Thr Ser Pro Gly Thr Gly Val Arg Lys Lys Thr Cys Ser
1220 1225 1230

Phe Arg Ile Lys Glu Glu Lys Asp Val Lys Thr His Leu Val Pro
1235 1240 1245

Glu Cys Gln Asn Ser Leu His Leu Ser Leu Gly Thr Ser Thr Ser
1250 1255 1260

Ala Thr Pro Asp Gly Ser His Leu Ala Val Asp Asp Leu Lys Asn
1265 1270 1275

Ala Glu Glu Ser Lys Leu Gly Pro Asp Ile Gly Ile Ser Lys Glu
1280 1285 1290

Asp Asp Glu Arg Gln Thr Asp Ser Lys Lys Glu Glu Thr Ile Ser
1295 1300 1305

Pro Ser Leu Asn Lys Thr Asp Val Ile His Gly Gln Asp Lys Ser
1310 1315 1320

Asp Val Gln Asn Thr Gln Leu Thr Val Glu Thr Thr Asn Ile Glu
1325 1330 1335

Gly Thr Ile Ser Tyr Pro Leu Glu Glu Thr Lys Ile Thr Arg Tyr
1340 1345 1350

Phe Pro Asp Glu Thr Ile Asn Ala Cys Lys Thr Met Lys Ser Arg
1355 1360 1365

Ser Phe Val Tyr Ser Arg Gly Arg Lys Leu Val Gly Gly Val Asn
1370 1375 1380

Gln Asp Val Glu Tyr Ser Ser Ile Thr Asp Gln Gln Leu Thr Thr
1385 1390 1395

Glu Trp Gln Cys Gln Val Gln Lys Ile Thr Arg Ser His Ser Thr
1400 1405 1410

Asp Ile Pro Tyr Ile Val Ser Glu Ala Ala Val Gln Ala Glu Gln
1415 1420 1425

Lys Glu Gln Phe Ala Asp Met Gln Asp Glu His His Val Ala Glu
1430 1435 1440

Ala Ile Pro Arg Ile Pro Arg Leu Ser Leu Thr Ile Thr Asp Arg
1445 1450 1455

Asn Gly Met Glu Asn Leu Leu Ser Val Lys Pro Asp Gln Thr Leu

220

1460

1465

1470

Gly Phe Pro Ser Leu Arg Ser Lys Ser Leu His Gly His Pro Arg
1475 1480 1485

Asn Val Lys Ser Ile Gln Gly Lys Leu Asp Arg Ser Gly His Ala
1490 1495 1500

Ser Ser Val Ser Ser Leu Val Ile Val Ser Gly Met Thr Ala Glu
1505 1510 1515

Glu Lys Lys Val Lys Lys Glu Lys Ala Ser Thr Glu Thr Glu Cys
1520 1525 1530

<210> 260

<211> 92

<212> PRT

<213> Homo sapien

<400> 260

Met Ile Ile Leu Val Val Gly Arg Ile Thr Arg Gly Asn Ala Leu Tyr
1 5 10 15

Ser Gln Glu Glu Cys Cys Val Cys Thr Thr Gln Leu Thr Thr Trp Val
20 25 30

Val Cys Ser Thr Leu His Cys Val Ser Ile Leu Trp Ser Val Arg Pro
35 40 45

Ser Leu Ser Glu Gly Gly Tyr Leu Pro Leu Ala Ala Ser Val Ser Ala
50 55 60

Ala Ile Val Val Cys Phe Val Cys Val Cys Val Val Ser Cys His Asp
65 70 75 80

Ala Thr Ile Leu Leu Arg Ile Gly Asn Phe Gly Gly
85 90

<210> 261

<211> 66

<212> PRT

<213> Homo sapien

<400> 261

Met Glu Leu Leu Thr Asp Lys Gly Glu Ile Leu Asp Leu Glu Pro Phe
1 5 10 15

221

Pro Ala Ile Leu Leu Phe Ser Leu Cys Leu Gly Ser Trp Phe His Ser
20 25 30

Ala Arg His Glu Gly Pro Phe Gln Phe Asp Asp Ile Arg Leu Leu Thr
35 40 45

Leu Ser Trp Met Pro Cys Cys Leu Gln Gln His Asp Phe Thr Val Cys
50 55 60

Phe Ser
65

<210> 262
<211> 90
<212> PRT
<213> Homo sapien

<400> 262

Met Trp Asn Ile Pro Gly Leu Ala Gly Ala Met Pro Ala Met Gln Thr
1 5 10 15

Ser Pro Glu Pro Ser His Pro Gly Ser Val Arg Val Pro Arg Ala Val
20 25 30

Ala Pro His Pro Pro Pro Thr Gly Pro Cys Ser Trp Ser Cys Cys Asp
35 40 45

Ser Phe Ile Ile Pro Trp Ala Gly Val Gly Leu Ser Leu Cys Phe Cys
50 55 60

Leu Leu Phe Lys Glu Asp Glu Val Ser Met Glu Asn Lys Thr Asn Val
65 70 75 80

Val Thr Pro Ser Leu Arg Arg Val His Cys
85 90

<210> 263
<211> 13
<212> PRT
<213> Homo sapien

<400> 263

Met Ser Gly Gln Pro Arg Pro Thr Ser Pro Cys Val Leu
1 5 10

<210> 264
<211> 100
<212> PRT
<213> Homo sapien

<400> 264

Phe Phe Leu Arg Trp Ser Leu Ala Gln Val Ala Gln Ala Ala Arg Gln
1 5 10 15

Trp Leu Asn Leu Ser Ser Leu Gln Pro Pro Pro Pro Gly Phe Lys Arg
20 25 30

Phe Ser Cys Leu Gly Leu Leu Ser Ser Trp Asp Tyr Arg His Ala Pro
35 40 45

Pro Arg Pro Ala Ile Phe Val Phe Leu Val Glu Met Gly Phe His His
50 55 60

Ile Val Gln Ala Gly Leu Lys Pro Leu Thr Ser Gly Asp Leu Ala Thr
65 70 75 80

Ser Ala Phe Gln Ser Ala Glu Ile Ile Gly Val Ser His Cys Ala Gln
85 90 95

Pro Gln Lys Ser
100

<210> 265
<211> 10
<212> PRT
<213> Homo sapien

<400> 265

Met Lys Gly Lys Ile Leu Ile Phe Pro Ile
1 5 10

<210> 266
<211> 43
<212> PRT
<213> Homo sapien

<400> 266

Met Ser Pro Glu Pro Ser His Phe Ser Pro Pro Ala Pro Pro Ser Phe
1 5 10 15

Ser Pro Thr His Pro Ser Leu Pro Leu Thr Trp Ile Ser Ala Pro Ala

223

20

25

30

Ala Ser Pro Leu Pro Leu Leu Leu Pro Thr Phe
35 40

<210> 267
<211> 124
<212> PRT
<213> Homo sapien

<400> 267

Met Val Phe Tyr Cys Ile Leu Phe Leu Gln Leu Ile Gln Phe Cys Met
1 5 10 15

Ser Phe Leu Ser Phe Leu Gly Glu Asn Ile Leu Cys Gln Leu Phe Ser
20 25 30

Thr Val Leu His Tyr Ile Leu Lys Gln Gly Cys Gln Leu Glu Thr Gln
35 40 45

Pro Ser Asp Tyr Lys Ala Gln Asn Val Thr Phe Asn Cys Ala Pro Pro
50 55 60

Gly Gly Leu Ala Leu Gly Lys Asp Gly Glu Arg Asn Ile Leu Arg Tyr
65 70 75 80

Glu His Phe Leu Phe Cys Leu Gln Cys Cys Asp Leu Val Gln Gln Leu
85 90 95

Gln Asn Cys Ser His Leu Asn Arg Cys Ser Phe Ser Phe Phe Thr Leu
100 105 110

Leu Tyr Lys Arg Leu Val Ser Gln Leu His Tyr His
115 120

<210> 268
<211> 67
<212> PRT
<213> Homo sapien

<400> 268

Met Pro Glu Phe His Pro His Ser Leu Glu Leu Phe Thr Tyr Ser Pro
1 5 10 15

Ser Gln Glu Leu Leu Asp Glu His Gln Glu Met Arg Phe Lys Tyr Asn
20 25 30

224

Thr Glu Lys Cys Ala Gln Ala Gly Tyr His Pro Cys Trp Asn Leu Ala
35 40 45

Leu Ala Asn Trp Ala Thr Arg Val Pro Ala Arg Ala Asp Pro Ser Gln
50 55 60

Ser Ala Gly
65

<210> 269
<211> 23
<212> PRT
<213> Homo sapien

<400> 269

Met Thr Asp Leu Lys Glu Asn Ser Lys Ala Asp Leu Glu Asn Leu Leu
1 5 10 15

Leu Phe Leu Ser Pro Asn Pro
20

<210> 270
<211> 46
<212> PRT
<213> Homo sapien

<400> 270

Met Glu Asn Leu Ser Ser Ile Ser Glu Val Val Asn Ala Ile Ser Gly
1 5 10 15

Ile Gln Arg Leu Ala Val Lys Ser Ser Leu Gly Ser Leu Tyr Leu Thr
20 25 30

Phe Phe Leu Val Ser Ile Leu Lys Met Gln Ser His Ile Leu
35 40 45

<210> 271
<211> 15
<212> PRT
<213> Homo sapien

<400> 271

Met Thr Glu Glu Gly Glu Ser Leu Ser Gly Gln Ser Leu Gly Trp
1 5 10 15

225

<210> 272
<211> 46
<212> PRT
<213> Homo sapien

<400> 272

Met Pro Ser Ala Arg Met Ser Asp Gly Leu Val Ala Ala Glu Val Gln
1 5 10 15

Ser Pro Val Ile Phe Leu Phe Gly Pro Ile Trp Leu Leu Ile Leu Met
20 25 30

His Gln Asn Phe Met Tyr Asn His Met Asp Leu Tyr Val Asn
35 40 45

<210> 273
<211> 32
<212> PRT
<213> Homo sapien

<400> 273

Met Gly Arg Ala Leu Pro Leu Ser Ala Ala Pro Ser Leu Ser Leu Cys
1 5 10 15

Leu Pro Ala Gln Lys Arg Trp Leu Trp Pro Arg Gly Ser Gly Arg Asp
20 25 30

<210> 274
<211> 224
<212> PRT
<213> Homo sapien

<400> 274

Met Ala Val Gly Asn Ile Asn Glu Leu Pro Glu Asn Ile Leu Leu Glu
1 5 10 15

Leu Phe Thr His Val Pro Ala Arg Gln Leu Leu Leu Asn Cys Arg Leu
20 25 30

Val Cys Ser Leu Trp Arg Asp Leu Ile Asp Leu Val Thr Leu Trp Lys
35 40 45

Arg Lys Cys Leu Arg Glu Gly Phe Ile Thr Glu Asp Trp Asp Gln Pro
50 55 60

Val Ala Asp Trp Lys Ile Phe Tyr Phe Leu Arg Ser Leu His Arg Asn
65 70 75 80

Leu Leu His Asn Pro Cys Ala Glu Glu Gly Phe Trp Ser Leu
85 90 95

Asp Val Asn Gly Gly Asp Glu Trp Lys Val Glu Asp Leu Ser Arg Asp
100 105 110

Gln Arg Lys Glu Phe Pro Asn Asp Gln Val Arg Ser Gln Ala Arg Leu
115 120 125

Arg Val Gln Val Pro Ala Val Arg Ser Ala Pro Val Val Arg Ala Arg
130 135 140

Ala Ser Gly Asp Leu Pro Ala Arg Pro Gly Asp His Pro Ala Glu Glu
145 150 155 160

Arg Cys Gln Val Glu Gly Leu Pro His Ile Leu Gln Leu Pro Ala
165 170 175

Arg Arg Pro Leu His Leu Val Ser Ala Arg Arg Arg Gly His Ser Leu
180 185 190

Leu Gly Arg Leu Val Arg Pro Glu Gly His Gln Gln Gln His His His
195 200 205

Arg Ala Pro Ala Ala Leu Thr Pro Pro Glu Pro Pro Ser Ala Glu Pro
210 215 220

<210> 275
<211> 33
<212> PRT
<213> Homo sapien

<400> 275

Met Gly Gly Gln Ala Thr Arg Tyr Tyr Ile Ile Asn Ile Leu Ser Gly
1 5 10 15

Lys Ile Ser Leu Phe Arg Ala Ile Arg Gln Val Ala Lys Asn Phe Ile
20 25 30

Leu

<210> 276
<211> 77

227

<212> PRT
<213> Homo sapien

<400> 276

Met Asn Gly Lys Thr Lys Val Glu Arg Asn Ile Leu Ser Tyr Ile Ile
1 5 10 15

Leu Gln Ile Lys Thr Phe Lys Asn Gln Ile Val Phe Leu Val Leu Arg
20 25 30

Thr Asn Arg Lys Cys Leu Ile Ile Tyr Phe Ile Ser Thr Arg Gln Lys
35 40 45

Tyr Ser Tyr Ala Ala Asp Val Arg Glu Gly Gly Glu Phe Pro Gln Pro
50 55 60

Ser Met Lys Lys Asp Lys Gly Pro Tyr Pro Leu Ala Val
65 70 75

<210> 277
<211> 39
<212> PRT
<213> Homo sapien

<400> 277

Met Tyr Val Arg Ser Ile His Leu Lys Ser Met Val Gln Ile Ala Lys
1 5 10 15

Ile Gly Pro Gly Glu Thr Cys Ser His Phe Leu Lys Thr Cys Thr Ser
20 25 30

Ala Ala Asn His Ala Thr Pro
35

<210> 278
<211> 26
<212> PRT
<213> Homo sapien

<400> 278

Met Pro Ile Arg Leu Cys Val Cys Ala Arg Phe Leu Lys Thr Ala Asn
1 5 10 15

Tyr Ile Val Ser Ser Gln Met Ser Gly Phe
20 25

228

<210> 279
<211> 149
<212> PRT
<213> Homo sapien

<400> 279

Met Leu Val Phe Ser Ala Gly Arg Leu Ala Cys Trp Arg Ala Val Cys
1 5 10 15

Trp Leu Gly Arg Cys Ala Cys Ala Ser Ser Arg Val Cys Leu Arg Leu
20 25 30

Val Leu Ser Trp Ser Arg Val Val Cys Phe Trp Trp Ser Phe Trp Leu
35 40 45

Phe Val Ser Val Val Cys Phe Val Phe Ser Cys Phe Val Ser Leu Leu
50 55 60

Cys Cys Cys Gly Val Arg Leu Tyr Phe Val Val Ser Trp Gly Val Phe
65 70 75 80

Phe Cys Asp Leu Leu Arg Cys Cys Tyr Asp Asn Val Cys Phe Ala His
85 90 95

Pro Thr Val Cys Phe Ser Ser Cys Pro Phe Phe Gly Val Leu Asn Tyr
100 105 110

Val Phe Phe Ile Leu Phe Pro His Trp Gly Val Cys Val Gly Gly Val
115 120 125

Val Pro Phe Ala Ala Val Phe Ser Gly Phe Phe Trp Ser Cys Pro Cys
130 135 140

Phe Val Ala Ala Arg
145

<210> 280
<211> 54
<212> PRT
<213> Homo sapien

<400> 280

Met Ile Leu Lys Gly Thr Leu Thr Ile Tyr Asn Lys Ser Phe Gln Tyr
1 5 10 15

Tyr Ser Ser Ser Leu Thr Ser Glu Ser Leu Val Tyr Val Ile Leu Ser

229

20

25

30

Arg Lys Lys Thr Thr Tyr Lys Ser His Phe Pro Thr Lys Leu Ile Gln
35 40 45

His Pro Thr Leu Lys Ile
50

<210> 281
<211> 114
<212> PRT
<213> Homo sapien

<400> 281

Val Ala Gly Ile Thr Gly Ile His His His Thr Gln Leu Phe Phe Cys
1 5 10 15

Ile Phe Val Arg Asp Arg Phe Leu His Val Gly Gln Ala Gly Leu Glu
20 25 30

Leu Pro Thr Ser Gly Asp Pro Pro Thr Ser Ala Ser Gln Ser Asp Asp
35 40 45

Phe Ile Phe Ile Phe Asn Cys Ile Asn Leu His Leu Asp Asn Asp Phe
50 55 60

Val Lys Gly Val Cys Cys Val Gln Asn Leu Arg Tyr Trp Leu Arg Val
65 70 75 80

Lys Tyr Ile Ile Phe Ile Ile Cys Trp Val Ala Ser Ser Tyr Ala Ala
85 90 95

Phe Phe Leu Ser Thr Phe Ile Lys Ser Ser Phe Leu Lys Leu Phe Ile
100 105 110

Ile Phe

<210> 282
<211> 171
<212> PRT
<213> Homo sapien

<400> 282

Met Leu Phe Cys Ile Phe Thr Val Tyr Cys Phe Tyr Asn Lys Tyr Lys
1 5 10 15

230

Met Lys Met Phe Met Leu Thr Lys Arg Thr Lys Asn Asn Lys Gln Gln
20 25 30

Lys Thr Lys Gly Trp Gly Cys His Thr Cys Gly Pro Lys Ala Gly Phe
35 40 45

Pro Gly Gly Gly His Leu Val Leu Ser Arg Pro His Asn Ser Pro Pro
50 55 60

Lys Tyr Tyr Arg Glu Thr Thr Gly Arg Thr Thr Gln His Thr Lys Arg
65 70 75 80

His Asn Thr Gln Asn His His Thr Ala Thr Pro Ala His Arg Arg Gln
85 90 95

Arg Thr Arg Arg Glu Gln Lys Glu Lys Gly Gln Gln Lys Lys Ala Ser
100 105 110

Ser Thr Ile Thr Thr Gln Ser His Asp Lys Lys Arg Arg Thr Met Thr
115 120 125

Lys Thr Ser Ser Ser Thr Arg His Arg Gln Asp Lys Ser Lys Lys Asp
130 135 140

Arg Thr Arg Gln Lys Thr Thr Arg Asp Glu Thr Thr Lys Lys Pro His
145 150 155 160

Lys Lys Ala Ser Glu Asn Lys Asn Gln Leu Thr
165 170

<210> 283
<211> 90
<212> PRT
<213> Homo sapien

<400> 283

Met Asn Ala Thr Val Leu Ser Val Phe Lys Ala Lys Leu Leu Trp Lys
1 5 10 15

Leu Gly Gly Pro Pro Cys Gly Pro Pro Ala Ala Leu Cys Leu Pro
20 25 30

Leu Gly Ala Pro Glu Leu Met Pro Val Val Ile Ser Ala Met Leu Asp
35 40 45

Ala Arg Ser Gln Arg Ser Ala Ser Leu Ser Gln Leu Ala Cys Ala Ala
50 55 60

Leu Thr Trp Leu Pro Ala Val Leu Arg Asn Leu His Trp Trp Asp Lys
65 70 75 80

Gly Met Lys Arg Ile Asn Lys Asp Leu Lys
85 90

<210> 284
<211> 154
<212> PRT
<213> Homo sapien

<400> 284

Lys Glu Ala Pro Ser Ser Gln Asp Ile Leu Val Phe Leu Thr Gly Gln
1 5 10 15

Glu Glu Ile Glu Ala Met Ser Lys Thr Cys Arg Asp Ile Ala Lys His
20 25 30

Leu Pro Asp Gly Cys Pro Ala Met Leu Val Leu Pro Leu Tyr Ala Ser
35 40 45

Leu Pro Tyr Ala Gln Gln Leu Arg Val Phe Gln Gly Ala Pro Lys Gly
50 55 60

Tyr Arg Lys Val Ile Ile Ser Thr Asn Ile Ala Glu Thr Ser Ile Thr
65 70 75 80

Ile Thr Gly Ile Lys Tyr Val Val Asp Thr Gly Met Val Lys Ala Lys
85 90 95

Lys Tyr Asn Pro Asp Ser Gly Leu Glu Val Leu Ala Val Gln Arg Val
100 105 110

Ser Lys Thr Gln Ala Trp Gln Arg Thr Gly Arg Ala Gly Arg Glu Asp
115 120 125

Ser Gly Ile Cys Tyr Arg Leu Tyr Thr Glu Asp Glu Phe Glu Lys Phe
130 135 140

Asp Lys Met Thr Val Pro Glu Ile Gln Arg
145 150

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 September 2002 (06.09.2002)

PCT

(10) International Publication Number
WO 02/068633 A3

(51) International Patent Classification⁷: **C12N 15/09**,
C12Q 1/68, G01N 33/574, C07K 14/47 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way, #14,
San Jose, CA 95117 (US).

(21) International Application Number: PCT/US01/43612 (74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrell
P.C., 66 E. Main Street, Marlton, NJ 08053 (US).

(22) International Filing Date:
21 November 2001 (21.11.2001)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,
ZW.

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/252,500 22 November 2000 (22.11.2000) US

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:
US 60/252,500 (CIP)
Filed on 22 November 2000 (22.11.2000)

Published:
— with international search report

(71) Applicant (*for all designated States except US*): DI-
ADEXUS, INC. [US/US]; 343 Oyster Point Boulevard,
South San Francisco, CA 94080 (US).

(88) Date of publication of the international search report:
27 March 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): MACINA, Roberto,
A. [AR/US]; 4118 Crescendo Avenue, San Jose, CA 95136
(US). RECIPON, Herve [FR/US]; 85 Fortuna Avenue,
San Francisco, CA 94115 (US). CHEN, Sei-Yu [—/US];
160 Mira Street, Foster City, CA 94404 (US). SUN, Yong-
ming [CN/US]; 551 Shoal Drive, Redwood City, CA 94065

WO 02/068633 A3

(54) Title: COMPOSITIONS AND METHODS RELATING TO LUNG SPECIFIC GENES AND PROTEINS

(57) Abstract: The present invention relates to newly identified nucleic acids and polypeptides present in normal and neoplastic lung cells, including fragments, variants and derivatives of the nucleic acids and polypeptides. The present invention also relates to antibodies to the polypeptides of the invention, as well as agonists and antagonists of the polypeptides of the invention. The invention also relates to compositions comprising the nucleic acids, polypeptides, antibodies, variants, derivatives, agonists and antagonists of the invention and methods for the use of these compositions. These uses include identifying, diagnosing, monitoring, staging, imaging and treating lung cancer and non-cancerous disease states in lung, identifying lung tissue, monitoring and identifying and/or designing and antagonists of polypeptide of the invention. The uses also include gene therapy, production of transgenic animals and cells, and production of engineered lung tissue for treatment and research.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/43612

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/09 C12Q1/68 G01N33/574 C07K14/47

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12Q G01N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, EMBL, BIOSIS, MEDLINE, PAJ, WPI Data, SEQUENCE SEARCH

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE EMBL [Online] 2 July 2000 (2000-07-02) DIAS NETO E. ET AL.: "QV0-HT0368-090200-099-d10 HT0368 Homo sapiens cDNA, mRNA sequence." retrieved from EBI Database accession no. BE156557 XP002204032 99.3% identity (100% ungapped) in 309 nt overlap (338-31:20-327) with SEQ ID NO:1. abstract -& EMANUEL DIAZ NETO ET AL: "SHOTGUN SEQUENCING OF THE HUMAN TRANSCRIPTOME WITH ORF EXPRESSED SEQUENCE TAGS" PNAS, vol. 97, no. 7, 28 March 2000 (2000-03-28), pages 3491-3496, XP000996193 the whole document</p> <p>-/-</p>	1,2,4-8, 15

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the International search

7 August 2002

Date of mailing of the International search report

07.11.2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Schmitz, T

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/43612

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p style="text-align: center;">---</p> <p>DATABASE EMBL [Online] 16 February 2000 (2000-02-16) PHILLIMORE, B.: "Human DNA sequence from clone RP11-427L15 on chromosome 10" retrieved from EBI Database accession no. AL139407 XP002204033 99.3% identity (100% ungapped) in 309 nt overlap (338-31:11807-12114) with SEQ ID NO:1. abstract</p> <p style="text-align: center;">---</p>	1,2,4-8
X,P	<p>WO 01 22920 A (HUMAN GENOME SCIENCES INC ;ROSEN CRAIG A (US); BARASH STEVEN C (US) 5 April 2001 (2001-04-05) SEQ ID NO:969: 99.3% identity (100% ungapped) in 309 nt overlap (31-338:827-1134) with SEQ ID NO:1.</p> <p style="text-align: center;">---</p>	1-17
A	<p>WO 00 08206 A (MACINA ROBERTO A ;SUN YONGMING (CN); YANG FEI (CN); RECIPON HERVE) 17 February 2000 (2000-02-17) the whole document</p> <p style="text-align: center;">---</p>	
A	<p>WO 99 60160 A (DIADEXUS LLC ;SUN YONGMING (US); YANG FEI (US); MACINA ROBERTO A () 25 November 1999 (1999-11-25) the whole document</p> <p style="text-align: center;">-----</p>	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 01/43612

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claim 16 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

1-17 all partially

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: claims 1-17 (all partially)

A nucleic acid molecule as defined by SEQ ID NO:1.

Further vectors and host cells comprising said nucleic acid sequence. Polypeptides encoded by said nucleic acid sequence, a method of producing said polypeptide, an antibody binding to said polypeptide. Methods for determining the presence of said nucleic acid or polypeptide in a sample. A kit, a vaccine and methods of treatment and diagnosis involving said nucleic acid or polypeptide.

Invention 2: claims 1-17 (all partially)

As subject 1, but referring to SEQ ID NO:2

Invention 3: claims 1-17 (all partially)

As subject 1, but referring to SEQ ID NO:3

.
:
. .

Invention 164: claims 1-17 (all partially)

As subject 1, but referring to SEQ ID NO:164

INTERNATIONAL SEARCH REPORT

Information on patent family members

National Application No

PCT/US 01/43612

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0122920	A	05-04-2001	AU WO	7721500 A 0122920 A2	30-04-2001 05-04-2001	
WO 0008206	A	17-02-2000	EP JP WO	1104486 A1 2002522046 T 0008206 A1	06-06-2001 23-07-2002 17-02-2000	
WO 9960160	A	25-11-1999	CA EP JP WO	2328138 A1 1082459 A1 2002515262 T 9960160 A1	25-11-1999 14-03-2001 28-05-2002 25-11-1999	