第五章习题解

5-1 已知一低通信号
$$m(t)$$
 的频谱为 $M(f) = \begin{cases} 1 - \frac{|f|}{200}, & |f| < 200\\ 0, & 其他 \end{cases}$

- (1) 假设以 f_s =300Hz 的速率对 m(t)进行理想抽样, 试画出已抽样信号 $m_s(t)$ 的频谱草图;
- (2) 若用 f_s =400Hz的速率抽样,重做上题。

[解] (1)

可见 $f_s \ge 2f_H$,则 $M_s(f)$ 是 M(f) 的周期性重复而不重叠; $f_s < 2f_H$,则已抽样信号的频谱发生重叠。

- **5-4** 已知某信号 m(t)的频谱 M(f)如图所示。将它通过传输函数为 $H_1(f)$ 的滤波器后再进行 理想抽样。
 - (1) 抽样速率应为多少?
 - (2) 若设抽样速率 $f_s = 3f_1$,试画出已抽样信号 $m_s(t)$ 的频谱;
 - (3) 接收端的接收网络应具有怎样的传输函数 $H_2(f)$,才能由 $m_s(t)$ 不失真地恢复 m(t)。

[解] (1) 抽样速率 $f_s > 2f_1$

(2)

- **5-10** 采用 13 折线 A 律编码,设最小量化间隔为 1 个单位,已知抽样脉冲值为+635 单位。
 - (1) 求此时编码器输出码组,并计算量化误差:
 - (2) 写出对应于该7位码(不包括极性码)的均匀11位码(采用自然二进编码);

[解] (1) 极性码 C₁=1

+635 单位位于第七段, 所以 C₂C₃C₄=110

 \therefore C₅=0 635<512+256

635<512+128 ∴ C₆=0

 \therefore C₇=1 635>512+64

635>512+64+32 ∴ C₈=1

所以输出码组为: $C_1C_2C_3C_4C_5C_6C_7C_8=1\ 1\ 1\ 0\ 0\ 0\ 1\ 1$

相应恢复电平为: $\hat{m} = 512 + 64 + 32 + 16 = 624 \ \text{$\rlap{$\dot{\mu}$}$} \ \text{$\dot{\alpha}$}$

量化误差: |m-m̂|=11单位

(2) 对应于该七位码的均匀 11 位自然码为

01001110000

- 5-11 采用 13 折线 A 律编码,设最小量化间隔为 1 个单位,已知抽样为-95 量化单位:
 - (1) 求此时编码器输出码组,并计算量化误差。
 - (2) 写出对应于该7位码(不包括极性码)的均匀量化11位码。

[解] (1) 极性码 C₁=0

m=95 位于第 4 段, C₂C₃C₄=011

因为 95<64+32 ∴C₅=0

95>64+16 :: $C_6=1$

95>64+16+8 ∴C₇=1

95>64+16+8+4 :: C₈=1

所以输出码组为: $C_1C_2C_3C_4C_5C_6C_7C_8=0\ 0\ 1\ 1\ 0\ 1\ 1\ 1$

恢复电平为: $\hat{m} = 64 + 16 + 8 + 4 + 2 = 94$

所以量化误差为: $|\mathbf{m} - \hat{\mathbf{m}}| = 1$

(2) 对应 7 位码的 11 位均匀量化码为

00001011110

- **5-16** 单路话音信号的最高频率为 4kHz, 抽样速率为 8kHz, 以 PCM 方式传输。设传输信号的波形为矩形脉冲,其宽度为 τ ,且占空比为 1:
 - (1) 抽样后信号按8级量化,求PCM基带信号第一零点频宽;
 - (2) 若抽样后信号按 128 级量化, PCM 二进制基带信号第一零点频宽又为多少?
- [解] (1) 第一零点频宽为 1/T, T 为矩形脉冲的宽度。因为占空比为 1, 所以矩形脉冲的 宽度和传输信号的周期相等。即传输信号的频率值与第一零点频宽相等

由于采用 8 级量化,所以传输信号的频率应该是抽样频率的 3 倍,那么第一零点频宽为:

$$f_b = k f_s = 3 \times 8 = 24 \text{ (kHz)}$$

(2) $f_b = kf_s = 7 \times 8 = 56$ (kHz),分析同(1)