

PRECISION SINGLE OPERATIONAL AMPLIFIER

- INPUT OFFSET VOLTAGE : 3mV max. OVER TEMPERATURE
- FREQUENCY COMPENSATION WITH A SINGLE 30pF CAPACITOR (C1)
- OPERATION FROM ±5V to ±15V
- LOW POWER CONSUMPTION: 50mW AT±15V
- CONTINUOUS SHORT-CIRCUIT PROTECTION
- OPERATION AS A COMPARATOR WITH DIFFERENTIAL INPUTS AS HIGH AS ±30V
- NO LATCH-UP WHEN COMMON-MODE RANGE IS EXCEEDED
- SAME PIN CONFIGURATION AS THE LM101A

ORDER CODES

Part	Temperature	Package				
Number	Range	N	D			
UA748C	0°C, +70°C	•	•			
UA748I	-40°C, +105°C					
UA748M	-55°C, +125°C	•				
Example: UA748CN						

DESCRIPTION

The UA748 is a general purpose operational amplifier built on a single silicon chip. The resulting close match and tight thermal coupling gives low offsets and temperature drift as well as fast recovery from thermal transients.

- Short-circuit protection
- Offset voltage null capability
- Large common-mode and differential voltage ranges
- Low power consumption
- No latch-up

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimize compensation for best high frequency performance at any gain. The low power dissipation permits high voltage operation and simplifies packaging in full-temperature range systems.

PIN CONNECTIONS (top view)

December 1997 1/8

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	UA748M	UA748I	UA748C	Unit	
V _{cc}	Supply Voltage		V			
V _{id}	Differential Input Voltage		±30		V	
Vi	Input Voltage	±15				
P _{tot}	Power Dissipation	500				
	Output Short-circuit Duration	Infinite				
T _{oper}	Operating Free Air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C	
T _{stg}	Storage Temperature Range	-65 to +150	-65 to +150	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS

 $\pm 5\text{V} \le \text{V}_{\text{CC}} \le \pm 20\text{V}, \text{C1} = 30\text{pF}, \text{T}_{\text{amb}} = +25^{\circ}\text{C}$ (unless otherwise specified)

Symbol	Parameter		UA748I/M			UA748C		
	Farameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage ($R_S \le 10k\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		0.2	2 3		2	7.5 10	mV
l _{io}	Input Offset Current $T_{amb} = +25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max.}$		25	75 10		70	250 300	nA
l _{ib}	Input Bias Current $T_{amb} = +25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max.}$		1.5	10 20		2	50 70	nA
A_{vd}	Large Signal Voltage Gain *	50 25	100		25 15	10		V/mV
SVR	Supply Voltage Rejection Ratio ($R_S \le 10k\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	80 80	96		70 70	96		dB
I _{CC}	Supply Current, no load $ T_{amb} = +25^{\circ}C $ $ T_{min.} \leq T_{amb} \leq T_{max.} $		1.8	3		1.8	3	mA
V _{icm}	Input Common Mode Voltage Range ($V_{CC} = \pm 20V$) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	±15 ±15			±15 ±15			V
CMR	Common-mode Rejection Ratio (R _S \leq 10k Ω) $T_{amb} = +25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max.}$	80 80	96		70 70	96		dB
los	Output Short-circuit Current (V _{CC} = ±15V)	10	30	50	10	30	50	mA
±V _{OPP}	$ \begin{array}{ll} \text{Output Voltage Swing } (V_{CC} = \pm 15 \text{V}) \\ \text{$T_{amb} = +25^{\circ}C$} & R_{L} = 10 \text{k}\Omega \\ \text{$R_{L} = 2 \text{k}\Omega$} \\ \text{$T_{min.} \leq T_{amb} \leq T_{max.}$} & R_{L} = 10 \text{k}\Omega \\ \text{$R_{L} = 2 \text{k}\Omega$} \end{array} $	12 10 12 10	14 13		12 10 12 10	14 13		V
SR	Slew Rate $(V_i = \pm 10V, R_L = 2k\Omega, C_L = 100pF, unity gain)$	0.25	0.5		0.25	0.5		V/µs
t _r	Rise Time $(V_i = \pm 20 \text{mV}, R_L = 2 \text{k}\Omega, C_L = 100 \text{pF}, \text{unity gain})$		0.3			0.3		μs
K _{OV}	Overshoot $(V_i = 20mV, R_L = 2k\Omega, CL = 100pF, unity gain)$		5			5		%
ZI	Input Impedance (V _{CC} = ±15V)	1.5	4		1.5	4		MΩ
Ro	Output Resistance (V _{CC} = ±15V)		75			75		Ω
GBP	Gain Bandwidth Product $(V_i = 10 \text{mV}, R_L = 2 \text{k}\Omega, C_L = 100 \text{pF}, f = 100 \text{kHz})$	0.5	1		0.5	1		MHz
THD	Total Harmonic Distortion (f = 1kHz, A_V = 20dB, R_L =2k Ω , V_O = 2 V_{PP} , C_L = 100pF)		0.015			0.015		%
DV _{io}			10 20	100 200		10 20	300 600	pA/°C
Dlio	$ \begin{array}{l} \text{Input Offset Voltage Drift} \\ T_{\text{min.}} \leq T_{\text{amb}} \leq T_{\text{max.}} \end{array} $		3	15		6	30	μV/°C

TIME (µb)

TYPICAL APPLICATIONS

PRACTICAL DIFFERENTIATOR

SINGLE SUPPLY OPERATION

PULSE WIDTH MODULATOR

FEED-FORWARD COMPENSATION

LARGE SIGNAL FEED-FORWARD TRANSIENT RESPONSE

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

Dim.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0260	
i			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.069	
a1	0.1		0.25	0.004		0.010	
a2			1.65			0.065	
a3	0.65		0.85	0.026		0.033	
b	0.35		0.48	0.014		0.019	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.020	
c1		•	45°	(typ.)	•	•	
D	4.8		5.0	0.189		0.197	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.150		0.157	
L	0.4		1.27	0.016		0.050	
M			0.6			0.024	
S	8° (max.)						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

