Homework 2

DSA1101 Introduction to Data Science

September 7, 2018

Name:

Matriculation card number:

Problem 1 (15 points). The k-means clustering algorithm: Suppose we have data for six objects on two features:

object	x_1	x_2
A	1	1
В	1.5	2
С	3	4
D	3.5	5
E	4.5	5

We set k = 2 to cluster the six data points into two clusters, \mathcal{P} and \mathcal{Q} , and initialize the algorithm with the centroids $(x_{1,\mathcal{P}}, x_{2,\mathcal{P}}) = (2, 2)$ and $(x_{1,\mathcal{Q}}, x_{2,\mathcal{Q}}) = (4, 4)$.

(a) Fill up the following table to identify the objects in each cluster during the first iteration of the k-means algorithm:

cluster	object(s)
\mathcal{P}	A, B
Q	C, D, E

(b) Compute the new centroids for the two clusters based on cluster assignment in (a). Please show your working.

New centroid for
$$\mathcal{P}$$
: $\left(\frac{1+1.5}{2}, \frac{1+2}{2}\right) = (1.25, 1.5)$
New centroid for \mathcal{Q} : $\left(\frac{3+3.5+4.5}{3}, \frac{4+5+5}{3}\right) \approx (3.67, 4.67)$

(c) Based on the centroids computed in (b), fill up the following table to identify the objects in each cluster during the second iteration of the k-means algorithm:

cluster	object(s)
\mathcal{P}	A, B
Q	C, D, E

(d) Calculate the Within Sum of Squares (WSS) for the clustering assignment in (c). Please show your working.

Sum of squares for cluster
$$\mathcal{P}$$
: $(1-1.25)^2 + (1-1.5)^2 + (1.5-1.25)^2 + (2-1.5)^2 = 0.625$

Sum of squares for cluster
$$Q$$
: $(3-3.67)^2 + (4-4.67)^2 + (3.5-3.67)^2 + (5-4.67)^2 + (4.5-3.67)^2 + (5-4.67)^2 \approx 1.833$

$$\rightarrow WSS \approx 0.625 + 1.833 = 2.458$$

Problem 2 (10 points). The k-nearest neighbor classifier

Suppose we have labelled training data for three objects with two features:

object	x_1	x_2	y
A	4	1	1
В	4.5	4	0
С	2.5	2	0

Here y is a categorical outcome with only two levels, y = 1 or y = 0.

(a) Predict the value of the outcome y for the following objects, using the k-nearest neighbor classifier with k = 1, based on the training data set.

object	x_1	x_2	Predicted y
D	2	2	0
Е	3	2.5	0
F	4	1.5	1

(b) The actual value of outcome y for the objects in (a) are

object	x_1	x_2	Actual y
D	2	2	0
Е	3	2.5	1
F	4	1.5	0

Compute the accuracy, true positive rate, false positive rate and false negative rate of the classifier based on the actual and predicted values of y computed in (a). The definitions are as follows:

		Predicted y		
		1	0	
Actual y	1	\ \ /	False Negatives (FN)	
Actual y	0	False Positives (FP)	True Negatives (TN)	

answer:

		Predicted y	
		1	0
Actual y	1	0	1
	0	1	1

$$accuracy = \frac{0+1}{0+1+1+1} = \frac{1}{3}$$

$$TPR = \frac{0}{0+1} = 0$$

$$FPR = \frac{1}{1+1} = \frac{1}{2}$$

$$FNR = \frac{1}{0+1} = 1$$