

Abelian gauge extensions with Higgs mixing

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

In collaboration with

Farinaldo S. Queiroz (IIP), Clarissa Siqueira(São Paulo University) and Carlos Yaguna (UPTC) [In progress...]

Local Abelian extensions of the SM

Anomaly cancellation of a gauge $U(1)_X$ extension

It is known that if we extend the SM by a local $U(1)_X$ and a set of α singlet chiral fields, N_{α} , the cubic and mixed gauge anomalies can be written in terms of two $U(1)_X$ charge, e.g, u and d, where u and d represent the charges of the right-handed up and down quarks, respectively

$$\sum_{\alpha} n_{\alpha}^{3} = -3(2\mathbf{d} + \mathbf{u})^{3}$$

$$\sum_{\alpha} n_{\alpha} = -3(2\mathbf{d} + \mathbf{u}).$$
(1)

where n_{α} is the $U(1)_{X}$ -charge of N_{α} .

If the set of N_{α} is just the set of heavy singlet chiral fields of the type-I seesaw

$$\sum_{\alpha} n_{\alpha}^{3} = -3$$

$$\sum_{\alpha} n_{\alpha} = -3$$

such that

$$2d + u = 1, \to u = 1 - 2d. \tag{2}$$

In this way, we can write the solution in terms of just one parameter: d

Examples of d with vector-like Dirac fermionic dark matter and mass mixing

For a vector-like fermionic dark matter candidate χ , $U(1)_X$ can guarantee the stability

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_X$	$U(1)_{B-L}$	$U(1)_R$	$U(1)_{\mathcal{D}}$	$U(1)_{\not U}$
d_R	1	-1/3	d	1/3	1	0	1/2
u_R	1	+2/3	1 - 2d	1/3	-1	1	0
Q	2	1/6	$1/2 - \frac{d}{2}$	1/3	0	1/2	1/6
L	2	-1/2	-3/2 + 3d/2	-1	0	-3/2	-3/4
e_R	1	-1	-2 + 3d	-1	1	-2	-1/2
N_R	1	0	-1	-1	-1	-1	-1
Н	2	1/2	1/2 - 3d/2	0	-1	1/2	-1/4
Φ_s	1	0	2	2	2	2	2
χL	1	0	1/5	1/5	1/5	1/5	1/5
XR	1	0	1/5	1/5	1/5	1/5	1/5

Table 1: d will be a continuos variable reconverted to rational whenever necessary \rightarrow mass mixing!

Gauged Type-I seesaw with χ and ${\rm mass\ mixing}$

$$\mathcal{L} \supset y_{2}^{d} \overline{Q} H d_{R} + y_{2}^{\mu} \overline{Q} \widetilde{H} u_{R} + y_{2}^{e} \overline{L} H e_{R} + y^{D} \overline{L} \widetilde{H} N_{R} + Y^{M} \overline{(N_{R})^{c}} \Phi_{s} N_{R} + \text{h.c.}$$

$$+ i \overline{\chi} \gamma_{\mu} \left(\partial_{\mu} - i g_{X} \chi Z_{\mu}^{\prime} \right) \chi - m_{\text{DM}} \overline{\chi} \chi + (\mathcal{D}_{\mu} H)^{\dagger} \mathcal{D}^{\mu} H + (\mathcal{D}_{\mu} \Phi_{s})^{*} \mathcal{D}_{\mu} \Phi_{s} - V ,$$

$$(3)$$

and the scalar potential is,

$$V = \mu^2 H^{\dagger} H + \frac{\lambda}{2} \left(H^{\dagger} H \right)^2 + m_s^2 \Phi_s^{\dagger} \Phi_s + \frac{\lambda_s}{2} \left(\Phi_s^{\dagger} \Phi_s \right)^2 + \lambda_{sH} H^{\dagger} H \Phi_s^{\dagger} \Phi_s \tag{4}$$

where

$$H = \begin{pmatrix} G^+ \\ (\nu + H^0 + i G^0)/\sqrt{2} \end{pmatrix}$$
 (5)

and,

$$\Phi_s = \left(S + v_s + iG^{0}\right)/\sqrt{2}.\tag{6}$$

for any ψ

$$\mathcal{L} \supset -rac{g_X}{4} \left[(X_R + X_L) \psi \gamma_\mu \psi + (X_R - X_L) \psi \gamma_\mu \gamma_5 \psi \right] \mathbf{Z}^{\prime \mu},$$

1

Neutrino Masses

Neutrino masses are generated via the last two terms of Eq.(3). They induce the presence of Dirac and Majorana mass terms, which consequently lead to the mass matrix,

$$\begin{pmatrix} \nu & N_R \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu \\ N_R \end{pmatrix} \tag{8}$$

where $m_D = y^D v_2/(2\sqrt{2})$ and $M_R = y^M v_s/(s\sqrt{2})$. From the diagonalization procedure, we conclude that,

$$m_{\nu} = m_D^T m_D / M_R, \ m_N = M_R,$$
 (9)

for $M_R \gg m_D$.

Therefore, it is clear that our model naturally account for neutrino masses via the type-I seesaw mechanism, and usual can reproduce neutrino oscillation data