Politecnico di Bari Analisi Matematica – modulo A – Corso C

A.A. 2017/2018 Prova parziale 06 novembre 2017 Traccia A

_Nome______No Matricola_____Corso___

1)	(a)	Determinare la forma cartesiana del numero complesso	
		$\left rac{i}{i-1} ight e^{irac{\pi}{2}}.$	
	(b)	Determinare il dominio della seguente funzione; stabilire se è monotona crescente e care il tipo di monotonia; motivare la risposta:	specifi-
		$f(x) = \sqrt{\pi - \arccos x}.$	
			8 pts.
2) Calcolare i limiti in 0, da destra, e in $+\infty$ per la funzione			
		$f(x) = \frac{(\sin x)^2 - \sqrt{x} + 2x}{(\sin(2\sqrt{x}))^2 + x + \sqrt{2x}}.$	
	Cos	a si può dire riguardo ai suoi zeri nell'intervallo $(0, +\infty)$? Motivare la risposta.	
			8 pts.
3)	Cal	colare il seguente integrale: $\int \frac{x^2-1}{x^2+2x+1} \mathrm{d}x.$	
			6 pts.
4)	Din	nostrare che per ogni $x \in \mathbb{R}$: $D(\sin x) = \cos x$.	
			8 pts.

Politecnico di Bari Analisi Matematica – modulo A – Corso C

A.A. 2017/2018 Prova parziale 06 novembre 2017 Traccia B

_Nome______No Matricola_____Corso___

8 pts.

1)	(a)	Determinare la forma cartesiana del numero complesso	
		$\left \frac{2-i}{i}\right e^{-\pi i}.$	
	(b)	Determinare il dominio della seguente funzione; stabilire se è monotona crescente e scare il tipo di monotonia; motivare la risposta:	specifi
		$f(x) = \log\left(\frac{\pi}{2} - \arctan x\right).$	
			8 pts
2)	Cal	colare i limiti in 0, da destra, e in $+\infty$ per la funzione	
		$f(x) = \frac{\arctan(\sqrt{x}) + \sqrt[3]{x} - x^2}{\sqrt{x} + 2\sqrt[3]{x} + x^2}.$	
	Cos	a si può dire riguardo ai suoi zeri nell'intervallo $(0, +\infty)$? Motivare la risposta.	
			8 pts
3)	Cale	colare il seguente integrale: $\int \frac{x^2+2}{x^2+3x+2} \mathrm{d}x.$	
			6 pts
4)	Din	nostrare che per ogni $\alpha \in \mathbb{R}$ e per ogni $x > 0$: $D(x^{\alpha}) = \alpha x^{\alpha - 1}$.	

Politecnico di Bari

Analisi Matematica – modulo A – Corso C

A.A. 2017/2018 Prova parziale 06 novembre 2017 Traccia C

Cognome	_Nome	_Nº Matricola	Corso

1) (a) Determinare in forma cartesiana

$$\sqrt[3]{-8i}$$
.

(b) Stabilire che l'insieme X seguente è limitato, ha massimo e calcolare, inoltre, l'estremo inferiore:

$$X = \left\{ \arctan \frac{1}{n} : n \in \mathbb{N} \setminus \{0\} \right\}.$$

8 pts.

2) Determinare l'immagine della seguente funzione, determinando i suoi punti di minimo e massimo locale, la sua monotonia e i suoi asintoti:

$$f(x) = x^3 e^{-x^2} - 1.$$

8 pts.

3) Calcolare il seguente integrale:

$$\int \frac{x}{\sqrt{1-x}} \mathrm{d}x.$$

6 pts.

4) Dimostrare, senza usare il Teorema di de L'Hopital, né la formula di Taylor, che per ogni a>0, $a\neq 1$,

$$\lim_{x\to 0}\frac{\log_a(1+x)}{x}=\frac{1}{\log a}.$$

8 pts.

Politecnico di Bari

Analisi Matematica – modulo A – Corso C

A.A. 2017/2018 Prova parziale 06 novembre 2017 Traccia D

Cognome_		_Nome_	Nº Matricola	Corso		
1)	(a)	Determinare in forma cartesiana $\sqrt[4]{-}$	-81.			
	(b)	Stabilire che l'insieme X seguente è illimitat minimo: $X = \left\{2^{1+}\right.$	so superiormente, limitato inferi $n : n \in \mathbb{N}$.	formente ed ha		
				8 pts.		
2)	Determinare l'immagine della seguente funzione, determinando i suoi punti di minimo e massimo locale, la sua monotonia e i suoi asintoti:					
		$f(x) = x^2 e^{-x^2}$	- x + 1.			
				8 pts.		
3)	Calo	colare il seguente integrale: $\int x \sqrt{1+}$	$\overline{\cdot x} \mathrm{d}x.$			
				6 pts.		
4)	Dim	nostrare, senza usare il Teorema di de L'Hopit	al, né la formula di Taylor, che			

 $\lim_{x \to 0} \frac{\sin x}{x} = 1.$

8 pts.