This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-175954

(43)Date of publication of application: 30.06.1998

(51)Int.CI.

C07D213/65

A61K 31/44

A61K 31/44

A61K 31/44

(21)Application number: 08-359480

(71)Applicant: KISSEI PHARMACEUT CO LTD

(22)Date of filing:

12.12.1996

(72)Inventor:

IYOBE AKIRA

HIRATA KAZUMITSU

KAMATA KOJI

YAZAKI TOSHIKAZU **FUJIKURA HIDENORI**

KASAI KIYOSHI SATO FUMIYASU

(54) 4-AMINOMETHYL-3-HYDROXYPYRIDINE DERIVATIVE AND MAILLARD REACTION INHIBITOR **CONTAINING THE SAME**

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject new compound different in chemical structure from a conventional compound having Maillard reaction inhibitory action, useful for a preventive and a therapeutic agent for diseases related to Maillard reaction or an additive for cosmetics and foods.

SOLUTION: This compound is shown by formula I [A is (CH2)2-E-R4 or CH(OH)-R5 (E is a lower alkylene; R4 is H, an aryl, etc.; R5 is a higher alkyl, etc.); R1, R2 and R3 are each H or a lower alkyl] such as 4-aminomethyl-3-

hydroxy-2-methyl-5-(4-phenylbutyl)pyridine. When A in the formula I is (CH2)2-E-R4, the hydroxyl group at the benzyl position of a compound of formula II is oxidized with an oxidizing agent such as manganese dioxide to give a carbonyl compound, which is reacted with hydroxylamine and the oxime group is reduced by a conventional method to give the objective compound. A pharmacologically permissible salt of the compound has similar medicinal effect.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] A general formula [Formula 1]

Example 95-[N- The 5-carboxymethyl-2-isopropylidene hydrazono thiazolidine compounded according to the method indicated by manufacture JP,46-15936,B of carbamoyl methyl]-2-isopropylidene hydrazono thiazolidine-4-ON (4-ethoxycarbonyl phenyl) In 10MI Solution (4-ON 0.37G and 4-Ethyl Aminobenzoate Ester 0.26G) of N.N-dimethylformamide, - A in [Type General formula-(CH2)2-E-R4 (E in a formula is a low-grade alkylene group or single bond) R4 — a hydrogen atom, an aryl group, a low-grade alkoxy carbonyl group, a carbamoyl group, monochrome, or a JI low-grade alkylation carbamoyl group — it is — it is expressed — a radical general formula-CH(OH)-R5 [or] (R5 in a formula — a high-class alkyl group —) It is the radical expressed, and even if R1, R2, and R3 are the same, they may differ an aryl group or an aralkyl radical — it is — The 4-aminomethyl-3-hydroxy pyridine derivatives expressed with] which is a hydrogen atom or a low-grade alkyl group. [Claim 2] A general formula [Formula 2]

A in [type is general formula-(CH2)2-E-R4 (E in a formula is a low-grade alkylene group or single bond). R4 — a hydrogen atom, an aryl group, a low-grade alkoxy carbonyl group, a carbamoyl group, monochrome, or a JI low-grade alkylation carbamoyl group — it is — it is expressed — a radical general formula-CH(OH)-R5 [or] (R5 in a formula — a high-class alkyl group —) It is the radical expressed, and even if R1, R2, and R3 are the same, they may differ. an aryl group or an aralkyl radical — it is — The Maillard reaction inhibitor which contains the 4-aminomethyl-3-hydroxy pyridine derivatives expressed with] which is a hydrogen atom or a low-grade alkyl group, respectively, or those salts that are permitted in pharmacology as an active principle.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] This invention relates to 4-aminomethyl-3-hydroxy pyridine derivatives useful as drugs, and those salts permitted in pharmacology.

[0002] It is a general formula useful also as prevention and the therapy agent of the disease relevant to [if it states in more detail, this invention has Maillard reaction inhibition activity, and] a Maillard reaction, and an additive of cosmetics and food. [0003]

[Formula 3]

R^S HO

(T)

[0004] A in [type is a general formula. [0005] -(CH2)2-E-R4 [0006] They are the radical expressed with (E in a formula is a low-grade alkylene group or single bond, and R4 is a hydrogen atom, an aryl group, a low-grade alkoxy carbonyl group, a carbamoyl group, or a carbamoyl group, or a general formula.

[0007] -CH(OH)-R5 [0008] (— a formula — inside — R — five — high-class — an alkyl group — an aryl group — or — the aralkyl — a radical — it is —) — expressing — having — a radical — it is — R — one — R — two — and — R — three — being the same — even when — differing — **** — respectively — a hydrogen atom — or — low-grade — an alkyl group — it is —] — expressing — having — four — — aminomethyl — —— three — — hydroxy one

[0009] [Description of the Prior Art] In the field of food chemistry, reducing sugars, such as a glucose, react with an amine compound in food, and it is observed that lipofuscin generates. On the other hand, it is checked that the same reaction has occurred also in in the living body in recent years, it is thought that it is involving strongly as one of the onset factors of diseases, such as diabetic complication and arteriosclerosis, and the spotlight is captured.

[0010] It is called the Maillard reaction and the above-mentioned reaction is a Maillard reaction in the living body, Carbonyl compounds, such as reducing sugars, such as a glucose, a fructose, and a pentose, those phosphoric ester, or an ascorbic acid, react nonenzymatic with the isolation amino group of protein in the living body, and a Schiff base is formed. By reactions, such as said phase where this is changed into an AMADORI transition product by chemistry transition, and continuing oxidation, dehydration, a polymerization, cleavage Protein denaturalizes between molecules and with intramolecular arch forming, brown is presented and decomposition by the protease advances by poor solubility by a series of reactions which consist of a later stage which results in a difficult anaphase resultant (AGE:Advanced Glycation End Products).

[0011] The amount of generation of AGE generated in process of the Maillard reaction concerned and its precursive product increases to the concentration and reaction time of sugar and protein correlatively. Therefore, it is known for blood with which the protein in the living body which has the half-life of aging with the long period exposed to continuation of a hyperglycemia condition like diabetes mellitus and sugar or protein in a long organization, and path clearance fall, such as a patient of a kidney disease, or the protein under organization that it will be easy to receive a Maillard reaction.

[0012] As protein in the living body which receives a Maillard reaction from these things, there is much protein, such as glomerular basement membrane of the collagen and elastin of connective tissues, such as eyeball lens crystallin ** serum albumin, the skin, and a blood vessel wall, nerve myelin protein, hemoglobin, and the kidney, and the Maillard reaction is considered to be one of the causes of the onset of the disease resulting from diabetic complication caused by denaturation, abnormalities, or depression of these proteins, such as a retinopathy, a nephropathy, a cardio-vascular system failure, neuropathy, and a cataract, arteriosclerosis Therefore, development research is tried in order to find out the new compound which checks a Maillard reaction towards prevention and the therapy of these diseases.

[Problem(s) to be Solved by the Invention] The purpose of this invention is offering a different compound in [the compound which has the conventional Maillard reaction inhibitory action) chemical structure.

[0014]

[Embodiment of the Invention] This invention is a general formula. [0015]

[Formula 4]

(I)

[0016] A in [type is a general formula. [0017] -(CH2)2-E-R4 [0018] They are the radical expressed with (E in a formula is a low-grade alkylene group or single bond, and R4 is a hydrogen atom, an aryl group, a low-grade alkoxy carbonyl group, a carbamoyl group, monochrome, or a Jl low-grade alkylation carbamoyl group), or a general formula.

[0019] -CH(OH)-R5 [0020] (— a formula — inside — R — five — high-class — an alkyl group — an aryl group — or — the aralkyl — a radical — it is —) — expressing — having — a radical — it is — R — one — R — two — and — R — three — being the same — even when — differing — **** — respectively — a hydrogen atom — or — low-grade — an alkyl group — it is —] — expressing — having — four — — aminomethyl — — three — bydroxy one

[0021] It sets to this invention here. With a low-grade alkyl group A methyl group, an ethyl group of the shape of a straight chain of the carbon numbers 1-6. such as a propyl group, butyl, a pentyl radical, an isopropyl group, and an isobutyl radical, and the letter of branching is said. With a high-class alkyl group, a heptyl radical, an octyl radical, a nonyl radical, a decyl group. The alkyl group of the shape of a straight chain of the carbon numbers 7-15, such as an undecyl radical, dodecyl, a tridecyl radical, a tetradecyl radical, and a pentadecyl group, and the letter of branching is said. With a low-grade alkylene group, a methylene group, ethylene, a trimethylene radical, a tetramethylen radical. The alkylene group of the shape of a straight chain of the carbon numbers 1-6, such as a pentamethylene radical and a hexamethylene radical, and the letter of branching is said. An aryl group means aromatic hydrocarbon radicals, such as a phenyl group and a naphthyl group. An aralkyl radical means said low-grade alkyl group which has said aryl group. With a low-grade alkoxy carbonyl group, a methoxycarbonyl group, an ethoxycarbonyl radical, A propoxy carbonyl group, a butoxycarbonyl radical, an isopropoxycarbonyl radical, Saying the alkoxy carbonyl group of the shape of a straight chain of the carbon numbers 2-7, such as an iso butoxycarbonyl radical and a tert-butoxycarbonyl radical, and the letter of branching, monochrome or a JI low-grade alkylation carbamoyl group means one or the carbamoyl group replaced two by said low-grade alkyl group.

[0022] The 4-aminomethyl-3-hydroxy pyridine derivative expressed with said general formula (I) of this invention is the following, and can be made and manufactured. [0023] For example, the general formula among the compounds expressed with said general formula (I) of this invention [0024]

[Formula 5]

.Ė−R⁴ (Ia)

[0025] The compound expressed (with the semantics as the above with E, R1, R2, R3, and R4 in a formula) is a general formula. [same] [0026] [Formula 6]

.E-R1 (II)

[0027] After oxidizing the hydroxyl group of the benzylic position of a compound expressed (with the semantics as the above with E, R1, R2, R3, and R4 in a formula) using oxidizing agents, such as a manganese dioxide, and obtaining a carbonyl compound, it can be made to be able to react with a hydroxylamine, an oxime compound can be

obtained, and then an oxime radical can be manufactured by returning according to a conventional method. [same] [0028] Moreover, the general formula among the compounds expressed with said general formula (1) of this invention [0029]

[0030] The compound expressed (with the semantics as the above with R1, R2, R3, and R5 in a formula) is a general formula. [same] [0031]

[0032] It is [the aldehyde compound expressed (with / R6 in a formula is an amino group which has a protective group, and / the semantics as the above with R1, R2, and R3), and] a general formula. [same] [0033] X-Mg-R5 (IV)

KS), and J a general formula. Learner J. 1995 Army To (LY)

[0034] After making organic metal reagents, such as a Grignard reagent with which it is expressed (with [X in a formula is a halogen atom and] the semantics as the above with R5 [same]), react, it can manufacture by removing a protective group.

[0035] The compound expressed with the general formula (II) used as a start raw material in said manufacture method is a general formula.

[0037] It is a general formula about the aldehyde compound expressed (with [R7 and R8 in a formula become together, they form the protective group of hydroxyl groups, such as acetonide, and] the semantics as the above with R1, R2, and R3). [same] [0038] X-CH2-E-R9 (VI

[0039] It is made to react with the Wittig reagent prepared from the compound and triphenyl phosphine which are expressed (with [R9 in a formula is a hydrogen atom, an anyl group, or a low-grade alkoxy carbonyl group, and] the semantics as the above with same E and X), the obtained olefin compound is returned according to a conventional method, and it is a general formula. [0040]

[0041] After obtaining the compound expressed (with the semantics as the above with E, R1, R2, R3, R7, R8, and R9 in a formula) and amidating an ester group according to a conventional method by request, it can manufacture by removing the protective group of a hydroxyl group. [same]

[0042] Moreover, the general formula among the compounds expressed with said general formula (II) used as a start raw material in said manufacture method [0043]

[0046] It is the general formula which the malonic-acid monoester expressed with (R11 in a formula is a low-grade alkyl group) was made to react to the bottom of existence of a base, and was obtained. [0047]

[0048] After returning the olefin compound expressed (with the semantics as the above with R1, R2, R3, R7, R8, and R11 in a formula) according to a conventional method and amidating an ester group according to a conventional method by request, it can also manufacture by removing the protective group of a hydroxyl group. [same] [0049] The aldehyde compound expressed with the general formula (III) used as a start raw material in said manufacture method and (V) is a general formula. [0050] [Formula 14]

[0051] After protecting the amino group of the 4th place or hydroxyl group of a pyridine ring of a pyridine derivative expressed (with [R12 in a formula is an amino group or a hydroxyl group, and] the semantics as the above with R1, R2, and R3) by the suitable protective group, the hydroxyl group of the benzylic position can be manufactured by oxidizing using oxidizers, such as a manganese dioxide, respectively. [same]

[0052] [whether the compound expressed with the general formula (X) used in said manufacture method purchases a commercial reagent, and] it can manufacture by using a method given in reference, methods similar to them, those combination, and the synthetic means of common use (J. — Am.Chem.Soc. — 1245–1247 pages (1939) 61 volumes) J. Am.Chem.Soc., 66 volumes, 2088–2092 pages (1944), J.Org.Chem., 27 volumes, 2705–2706 etc. pages (1962), etc.

[0053] The 4-aminomethyl-3-hydroxy pyridine derivative expressed with said general formula (I) of this invention can be made into the salt permitted in pharmacology by the conventional method. As such a salt, a salt with inorganic bases, such as an acid addition salt with organic acids, such as an acid addition salt with inorganic acids, such as a hydrochloric acid, a hydrobromic acid, a hydrobromic acid, a hydrobromic acid, a hydrochloric acid, a sulfuric acid, a nitric acid, and a phosphoric acid, a formic acid, an acetic acid, methansulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, a propionic acid, a citric acid, a succinic acid, a tartaric acid, a fumaric acid, butanoic acid, a malonic acid, a maleic acid, a lactic acid, a malic acid, carbonic acid, an aspartic acid, and glutamic acid, sodium salt, and

[0054] As a compound expressed with said general formula (I) of this invention, solvate with the solvent permitted as drugs, such as water and ethanol, is also contained. [0055] Although it has one or more asymmetric carbon atoms depending on the class of the substituent and two optical isomerisms, R arrangement and S arrangement, exist in each asymmetrical carbon, the compound expressed with said general formula (I) of this invention is set to this invention, the isomer of a gap may be used for it, and even if it is the mixture of those isomers, it is not cared about.

[0056] In the compound expressed with said general formula (I) of this invention, R3 has the desirable compound which is a hydrogen atom.

```
[0057] The compound expressed with said general formula (I) of this invention is in which used the lysozyme and the fructose. In the Maillard reaction inhibition activity trial
of vitro, the inhibition activity beyond it which was very excellent was shown in dimerization of a lysozyme as compared with the activity of aminoguanidine known as material
which has Maillard reaction inhibition activity.
[0058] Thus, the compound expressed with said general formula (I) of this invention and its salt permitted in pharmacology are compounds useful as drugs, such as
prevention of the disease in which it has the outstanding Maillard reaction inhibition activity, and a Maillard reaction participates, and a therapy agent.

[0059] The compound expressed with said general formula (i) of this invention and its salt permitted in pharmacology have the outstanding Maillard reaction inhibition activity, and is useful to the disease in which the Maillard reaction is participating. The disease considered to be caused by aging of diabetic complication, such as a coronary artery
nature disease, peripheral circulatory bisturdance, the cerebrovascular disease, the diabetes-mellitus sexual nerosis, a nephropathy, arteriosclerosis, arthrosclerosis, a
cataract, a retinopathy, **********, and diabetic ********, atherosclerosis, glomerulonephritis, senile cataract, an osteoarthropathy, perimeter [joint] ******, the
arthrosclerosis, senile osteoporosis, etc. as such a disease can be mentioned, and it is very useful as prevention and the therapy agent of the disease concerned. Moreover,
since a Maillard reaction advances also in the cosmetics and food containing protein or amino acid as everyone knows and deterioration of protein and amino acid takes
place, it is useful as a compound which checks the Maillard reaction concerned also in cosmetics or food.
[0060] When using for an actual therapy the compound expressed with said general formula (I) of this invention, and its salt permitted in pharmacology, a medicine is
 prescribed for the patient taking-orally-wise as pharmaceutical preparation, such as suitable drugs pharmaceutical preparation, for example, a tablet, powder, a fine grain
 agent, a granule, a capsule, liquids and solutions, injections, external preparations, and ophthalmic solutions, or parenterally. These drugs pharmaceutical preparation can be
 prepared by using the support and the excipient for pharmaceutical preparation which are usually used, and other additives by the galenical pharmacy-method performed in
 [0061] Although the amylum tritici which is carmellose calcium, carmellose, hydroxypropylcellulose, carboxy-methyl-starch sodium, crossing carmellose sodium, tragacanth,
 starch, or a starch derivative, amylum oryzae, amylum maydis, potato starch, pregelatinization starch, partial pregelatinization starch, a dextrin, a pullulan, hydroxypropyl
 starch, etc. can be used as disintegrator, these are not limited as disintegrator and can also be used as an excipient.
 [0062] As a binder, the amylum tritici which is hydroxyethyl cellulose, hydroxypropylcellulose, polyvinyl alcohol, povidone, starch, or a starch derivative, amylum oryzae,
 amylum maydis, potato starch, pregelatinization starch, partial pregelatinization starch, a dextrin, a pullulan, hydroxypropyl starch, etc. can be used.
 [0063] As lubricant, although calcium stearate, magnesium stearate, stearin acid, talc, cetanol, polyoxyl 40 stearate, a leucine, a RABURI wax, sodium lauryl sulfate, paraffin,
 polyoxy-ethylene-glycol fatty acid ester, fatty acid ester, etc. can be used, these are not limited as lubricant and can also be used as an excipient
 [0064] About a tablet, a coat may be carried out with films, such as a lactose, cane sugar, gelatin, hydroxypropylcellulose, hydroxypropyl methylcellulose, polyvinyl-acetal
 diethylamino acetate, a methacrylic acid copolymer, or hydroxypropylmethylcellulose phthalate.
 [0065] About liquids and solutions, purified water, polyol, cane sugar, invert sugar, grape sugar, etc. can be used as a diluent, for example. Moreover, according to a request, a
  colubilizing agent, a wetting agent, suspension, a sweetening agent, a flavor agent, an aromatic, antiseptics, etc. may be added other than a diluent.
 [0066] About injections, distilled water, a physiological saline, alcohol, glycerol, polyol, vegetable oil, etc. can be used as a diluent, for example. Moreover, according to a
 request, a buffer, an isotonizing agent, antiseptics, a wetting agent, an emulsifier, a dispersant, a stabilizing agent, a solubilizing agent, etc. may be added other than a diluent
 [0067] As ophthalmic solutions, a buffer, an isotonizing agent, a stabilizing agent, a preservative, an antioxidant, a viscous agent, antiseptics, a solubilizing agent, etc. may be
 added according to a request.
 [0068] As support of suppositories, a lipid, a low, half-solid or liquefied polyol, natural oil, or hardened oil can be used. Moreover, otherwise, a dispersant, a distributed
   diuvant, absorption enhancers, etc. may be added.
 [0069] Although the dose is suitably determined by the degree of the target patient's age, sex, weight, and a symptom, in internal use, in the case of 1-1000mg of adult 1
  sunny, and parenteral administration, a medicine is prescribed in general for the patient in 1 time or several steps within the limits of 0.1-100mg per day by adult.
 [0070] When using the compound expressed with said general formula (I) of this invention as ophthalmic solutions, it can blend in 0.05 W/V% - 5 W/V% of range, and can
 prepare with a conventional method, and the count of administration is suitably determined by the degree of a patient's symptom etc.
 [0071] Moreover, when using the compound expressed with said general formula (I) of this invention as external preparations or cosmetics, it can blend so that the content of
 the compound of this invention may become a part for 0.05 - 10 weight to a product, and can manufacture by preparing with a conventional method using the external use
 basis or cosmetics basis usually used. Furthermore, the compound of this invention can also be used as a food additive.
  [Example] Although the following examples of reference and examples explain the contents of this invention to details further, this invention is not limited to the contents.
 [0073] Example of reference 15-hydroxymethyl - 2,2-dimethoxy propane 305ml and 121.6g of p-toluenesulfonic acid were added to the acetone 425ml solution of 38.0g of
 the 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine pyridoxine hydrochlorides, and it was made to react at a room temperature for 17 hours. After it made reaction mixture into weak base nature and it carried out vacuum concentration up to about 1/2 amount by the sodium carbonate, water was added and chloroform
  extracted. After carrying out sequential washing of the organic layer with 2 convention sodium-hydroxide aqueous solution and water, it dried with sulfuric anhydride
  magnesium. A hexane is added to the residue of the shape of an oil acquired after distilling off a solvent under reduced pressure, and it crystallizes, and is 5-hydroxymethyl.
   - 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 30.3g was obtained.
  [0074] White solid-state 1 H-NMR(CDCl3,400MHz) deltappm:1.56 (6H, s), 1.75 (1H, t, J= 5.4Hz), 2.41 (3H, s), 4.59 (2H, d, J= 5.4Hz), 4.94 (2H, s), 7.94 (1H, s)
  [0075] Example of reference 25-formyl - 2, 2, 8-trimethyl-4H-1, 3-[4 and 5-JIOKISHINO c] pyridine 5-hydroxymethyl - 9.97g of manganese dioxides was added to 60ml
  solution of 2, 2, and 8-trimethyl-4H-1 and 3-[4 and 5-JIOKISHINO c] pyridine 2.0g methylene chlorides, and heating reflux was carried out for 35 minutes. After cooling to a
  room temperature and carrying out cerite filtration of the reaction mixture, it condenses under reduced pressure of a filtrate, and it is 5-formyl. - 2, 2, 8-trimethyl-4H-1, and
  3-[4 and 5-JIOKISHINO c] pyridine 1.90g was obtained.
  [0076] White solid-state 1 H-NMR(CDCl3,400MHz) deltappm:1.56 (6H, s), 2.51 (3H, s), 5.18 (2H, s), 8.47 (1H, s), 10.04 (1H, s)
  [0077] example of reference 35-(4-phenyl-1-butenyl)- 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 5-formyl - potassium tert-butoxide 290mg was added
  to 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 1.1g tetrahydrofuran 20ml suspension under ice-cooling, and it agitated for 10 minutes. Subsequently, after
  agitating for 40 minutes at a room temperature, 3-phenylpropyl triphenyl phosphonium bromide 500mg was added, and it agitated at the room temperature for 3 hours. Water
   was added to the reaction mixture, ethyl acetate extracted, it dried with sulfuric anhydride magnesium after washing with saturation brine, and the solvent was distilled off
   under reduced pressure, the residue — a silica gel column chromatography (elution solvent: a hexane / ethyl-acetate =3/1) — refining — 5-(4-phenyl-1-butenyl)— of the
   mixture of Z body:E body =4:1 -- 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 600mg was obtained.
  [0078] Z body 1 H-NMR(CDCl3,400MHz) deltappm:1.53 (6H, s),
   2.40(3H,s),2.51(2H,q,J=7.3Hz),2.72(2H,t,J=7.3Hz),4.56(2H,s),5.84(1H,dt,J=11.4Hz,7.3Hz),6.09(1H,brd,J=11.4Hz),7.11(2H,d,J=7.3Hz),7.17(1H,t,J=7.3Hz),7.25(2H,t,J=7.3Hz),7.83(1H,s)
   [0079] E body 1 H-NMR(CDCl3,400MHz) deltappm:1.53 (6H, s), 2.38 (3H, s), 2.53 (2H, m), 2.80 (1H, t, J= 7.3Hz) and 4.71 (2H, s), 6.08-6.18 (2H, m), and 7.15-7.34 (5H, m) and
   8.05 (1H, s)
   [0080] example of reference 45-(4-phenyl butyl)- 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 5-(4-phenyl-1-butenyl)- a 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 600mg methanol solution — 200mg of 10% palladium-carbon powder in addition, it agitated for 90 minutes under the room temperature
   hydrogen ambient atmosphere, the bottom of reduced pressure of the filtrate after ****(ing) a catalyst — condensing — 5-(4-phenyl butyl)- 2, 2, 8-trimethyl-4H-1, and
   3-[4 and 5-JIOKISHINO c] pyridine 400mg was obtained.
   [0081] White solid-state 1 H-NMR(CDCl3,400MHz) deltappm:1.53 (6H, s),
   1.53-1.85(4H,m),2.41(3H,s),2.44(2H,t,J=7.5Hz),2.64(2H,t,J=7.5Hz),4.75(2H,s),7.14-7.19(3H,m),7.29(2H,t,J=7.3Hz),7.86(1H,s)
   [0082] example of reference 53-hydroxy-4-hydroxymethyl-2-methyl-5-(4-phenyl butyl) pyridine 5-(4-phenyl butyl)- 10ml of 2 convention hydrochloric acids was added to
   the 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JiOKISHINO c] pyridine 400mg methanol 10ml solution, and it agitated at 80 degrees C for 2 hours. It condensed under reduced
   pressure of reaction mixture, saturation sodium bicarbonate water was added, acidity or alkalinity was made into weak base nature, and ethyl acetate extracted. After
   saturation brine's having washed the organic layer and drying with sulfuric anhydride magnesium, the solvent was distilled off under reduced pressure and
   3-hydroxy-4-hydroxymethyl-2-methyl-5-(4-phenyl butyl) pyridine 210mg was obtained.
   [0083] white solid-state 1 H-NMR(CDCl3,400MHz) deltappm:1.47 (2H, qui, J= 7.5Hz), 1.63 (2H, qui, J= 7.5Hz), 2.39 (3H, s), 2.46 (2H, t, J= 7.5Hz), 2.59 (2H, t, J= 7.5Hz) and
   4.92 (2H, s), and 7.10- 7.30 (5H, m) and 7.67 (1H, s)
   [0084] Example of reference 63-hydroxy-2-methyl -5 - (4-phenyl butyl) 200mg of manganese dioxides was added to 20ml solution of pyridine-4-carbaldehyde 3-hydroxy-4
    - hydroxymethyl-2-methyl-5-(4-phenyl butyl) pyridine 200mg methylene chlorides, heating reflux was carried out for 30 minutes, 300mg of manganese dioxides was added
   further, and heating reflux was carried out for 30 minutes. Cerite filtration of the reaction mixture was carried out, it condensed under reduced pressure of a filtrate, and
   3-hydroxy-2-methyl-5-(4-phenyl butyl) pyridine-4-carbaldehyde 190mg was obtained.
```

[0086] Example of reference 73-hydroxy-2-methyl-5-(4-phenyl butyl) pyridine-4-carbaldehyde 173mg of sodium acetate and 118mg of hydroxylamine hydrochlorides were added to the - methyl-5-(4-phenyl butyl) pyridine-4-carbaldehyde 185mg methanol / 6ml (5/1) solution of oxime 3-hydroxy-2 water, and it agitated for 20 minutes at the room temperature. After ****(ing) a sludge, sequential washing is carried out with water, and a methanol / water (2/1) solution, and it is 3-hydroxy-2-methyl-5-(4-phenyl butyl) pyridine-4-carbaldehyde. Oxime 160mg was obtained.

[0087] white solid-state 1 H-NMR(CDCi3+CD3OD, 400MHz) deltappm:1.54-1.78 (4H, m), 2.46 (3H, s), 2.62-2.73 (4H, m), 7.15-7.30 (5H, m), and 7.79 (1H, s) and 8.42 (1H, s)

[0085] light yellow oil 1H-NMR(CDCl3,400MHz) deltappm: -- 1.63-1.80 (4H, m), 2.50 (3H, s), 2.65 (2H, t, J= 7.4Hz) and 2.90 (2H, t, J= 7.4Hz), 7.20-7.34 (5H, m), and 7.96 (1H,

[0087] white solid-state 1 H-NMR(CDCI3+CD3DD, 400MHz) deltappm:1.34-1.78 (4H, m), 2.46 (3H, 5), 2.62-2.73 (4H, m), 7.13-7.30 (3H, m), and 7.78 (1H, a) and 6.42 (4H, a) [0088] Example 14-aminomethyl-3-hydroxy-2-methyl-5-(4-phenyl butyl) pyridine-4-carbaldehyde 200mg of zinc powder was added to oxime 65mg 3ml solution of acetic acids, and it agitated for 30 minutes at the room temperature. Cerite filtration of the reaction mixture was carried out, and vacuum concentration of the filtrate was carried out. After it added water to the residue and the sodium hydrogencarbonate neutralized, ethyl acetate extracted. The organic layer was dried with sulfuric anhydride magnesium, and the solvent was distilled off under reduced pressure. The silica gel column chromatography (elution solvent:

s), 10.30 (1H, s) and 11.39 (1H, s)

```
chloroform / methanol =20/1) refined the residue, and 4-aminomethyl-3-hydroxy-2-methyl-5-(4-phenyl butyl) pyridine 40mg was obtained.
[0089] White solid-state 1 H-NMR(CDCl3,400MHz) deltappm:1.49 (2H, qui, J= 7.4Hz),
1.66(2H.qui,J=7.4Hz),2.42(3H,s),2.52(2H,t,J=7.4Hz),2.62(2H,t,J=7.4Hz),4.08(2H,s),7.12-7.32,(5H,m),7.78(1H,s)
[0090] example of reference 8(E)-5-(2-ethoxycarbonyl ethenyl)- — 7.76g [ of 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine malonic-acid monoethyl ester potassium salt ], and piperidine 0.36ml pyridine 30ml suspension — 1.22ml of concentrated sulfuric acid — subsequently — 5-formyl — — 2, 2, 8-trimethyl-4H-1, and 3-[4]
and 5-JIOKISHINO c) pyridine 1.89 In addition, it agitated at 120 degrees C for 1 hour. After cooling to a room temperature, the reaction solution was dissolved in the
methylene chloride and sequential washing was carried out with saturation sodium bicarbonate water and saturation brine. After drying with sulfuric anhydride magnesium, the
solvent was distilled off under reduced pressure, the obtained residue — a silica gel column chromatography (elution solvent; a hexane / ethyl-acetate =1/1) — refining
(E)-5-(2-ethoxycarbonyl ethenyl)- 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 1.92g was obtained.
[0091] White solid-state 1 H-NMR(CDCl3,270MHz) deltappm:1.34 (3H, t, J= 7Hz), 1.56 (6H, s), 2.43 (3H, s), 4.28 (2H, q, J= 7Hz), 4.92 (2H, s), 6.36 (1H, d, J= 16Hz), 7.53 (1H, d,
 J= 16Hz), 8.26 (1H, s)
[0092] example of reference 95-(2-ethoxy carbonylethyl)- 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 5-(2-ethoxycarbonyl ethenyl)- a 2, 2,
8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 1.92g ethanol 35ml solution — 3.46ml of 2 convention hydrochloric acids, and 200mg of 10% palladium-carbon
powder In addition, it agitated under the room temperature hydrogen ambient atmosphere for 3 hours. The catalyst was ****(ed) and vacuum concentration of the filtrate
 was carried out. The residue was dissolved in the methylene chloride and sequential washing was carried out with saturation sodium bicarbonate water and saturation brine
the bottom of reduced pressure of the solvent after drying a methylene chloride solution with sulfuric anhydride magnesium — distilling off — 5-(2-ethoxy carbonylethyl)- 2,
2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 2.17g was obtained.
[0093] Colorless oil 1 H-NMR(CDCl3,400MHz) deltappm:1.24 (3H, t, J= 7.1Hz), 1.54 (6H, s), 2.38 (3H, s), 2.59 (2H, t, J= 7.5Hz), 2.76 (2H, t, J= 7.5Hz), 4.13 (2H, q, J= 7.1Hz),
 4.83 (2H, s), 7.88 (1H, s)
[0094] example of reference 105-(2-ethoxy carbonylethyl)-3-hydroxy-4-hydroxymethyl-2-methylpyridine 5-(2-ethoxy carbonylethyl)- the H-1 and 3-[4 and 5-JIOKISHINO
 c] pyridine 2.17g formic acid / 40ml (1/1) solution of 2, 2, and 8-trimethyl-4 water was agitated at 50 degrees C overnight. Ethyl acetate was added to the reaction mixture
 after radiationnal cooling, 2 convention sodium-hydroxide aqueous solution was added, and acidity or alkalinity was extracted as pH7. After drying an organic layer with
 sulfuric anhydride magnesium, it distilled off under reduced pressure of a solvent and 5-(2-ethoxy carbonylethyl)-3-hydroxy-4-hydroxymethyl-2-methylpyridine 748mg was
 [0095] White solid-state 1 H-NMR(CDCi3,400MHz) deltappm:1.23 (3H, t, J= 7.2Hz), 2.42 (3H, s), 2.51 (2H, t, J= 7.5Hz), 2.81 (2H, t, J= 7.5Hz), 4.10 (2H, q, J= 7.2Hz), 4.99 (2H,
 s), 7.76 (1H, s)
 [0096] 3.2g of manganese dioxides was added to example of reference 115-(2-ethoxy carbonylethyl)-3-hydroxy-2-methylpyridine-4-carbaldehyde 5-(2-ethoxy
 carbonylethyl)-3-hydroxy-4-hydroxymethyl-2-methylpyridine 740mg 40ml solution of methylene chlorides, and, subsequently it agitated for 30 minutes at 35 degrees C with
 the room temperature for 2 hours. Cerite filtration was carried out, insoluble matter was removed, vacuum concentration of the filtrate was carried out, and 5-(2-ethoxy
 carbonylethyl)-3-hydroxy-2-methylpyridine-4-carbaldehyde 607mg was obtained.
 [0097] Brown solid-state 1 H-NMR(CDCl3,400MHz) deltappm:1.24 (3H, t, J= 7.1Hz), 2.51 (3H, s), 2.68 (2H, t, J= 7.5Hz), 3.25 (2H, t, J= 7.5Hz), 4.13 (2H, q, J= 7.1Hz), 8.02 (1H,
 s), 10,5 (1H, s), 11.5 (1H, s)
 [0098] Example of reference 125-(2-ethoxy carbonylethyl)-3-hydroxy-2-methylpyridine-4-carbaldehyde 630mg of sodium acetate and 427mg of hydroxylamine
 hydrochlorides were added to oxime 5-(2-ethoxy carbonylethyl)-3-hydroxy-2-methylpyridine-4-carbaldehyde 607mg water / methanol (3/1) 12ml solution, and it agitated at
 the room temperature for 2 hours. Water is added to a reaction mixture, a sludge is ****(ed) under ice-cooling, and it is 5-(2-ethoxy carbonylethyl)-3.
 Hydroxy-2-methylpyridine-4-carbaldehyde oxime 555mg was obtained.
 [0099] Off-white solid-state 1 H-NMR(DMSO-d6,400MHz) deltappm:1.14 (3H, t, J= 7.1Hz),
 2.35(3H,s),2.54(2H,t,J=7.5Hz),2.97(2H,t,J=7.5Hz),4.03(2H,q,J=7.1Hz),7.86(1H,s),8.55(1H,s),10.6(1H,s),12.1(1H,s)
 [0100] Example 24-aminomethyl-5-(2-ethoxy carbonylethyl)-3-hydroxy-2-methylpyridine and dihydrochloride 5-(2-ethoxy carbonylethyl)-3-hydroxy-2-methylpyridine and dihydrochloride 5-(2-ethoxy carbonylethyl)-3-hydroxy-2-methylpyridine-4-carbaldehyde 3mg of 10% palladium-carbon powder was added to oxime 10mg 0.5ml solution of acetic acids, and it agitated under the hydrogen ambient atmosphere of room temperature 3.8 atmospheric pressure for 1 hour. After *****(ing) a catalyst, the hydrogen chloride-2-propanol solution was
 added, reduced pressure distilling off of the solvent was carried out, and 4-aminomethyl-5-(2-ethoxy carbonylethyl)-3-hydroxy-2-methylpyridine and 12mg of
 dihydrochloride were obtained.
 [0101] white --- amorphous --- 1 H-NMR(DMSO-d6,400MHz) deltappm:1.18 (3H, t, J= 7.1Hz), 2.63(3H,s),2.70(2H,t,J=7.6Hz),3.06(2H,t,J=7.6Hz),4.07(2H,t,J=7.1Hz),4.15(1H,br
  s),8.21(1H,s),8.35-8.45(3H,br)
 [0102] example of reference 135-(2-carbamoyl ethyl)- 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 5-(2-ethoxy carbonylethyl)- 2, 2, and
  8-trimethyl-4H-JIOKISHINO [ 1 and 3-] [4 and 5-c] pyridine 1.0g and 77mg of ammonium chlorides In addition to 30% aqueous ammonia / dioxane (1/1) 20ml, heating
  churning was carried out at 100 degrees C among the sealed tube for 12 hours. Reduced pressure distilling off of the solvent was carried out, saturation sodium bicarbonate
  water was added, and chloroform extracted, the bottom of the reduced pressure after drying an organic layer with sulfuric anhydride magnesium — a solvent — distilling off — 5-(2-carbamoyl ethyl)- 2, 2, 8-trimethyl-4H-1, and 3-[4 and 5-JIOKISHINO c] pyridine 422mg was obtained.
  [0103] white solid-state 1H-NMR(CDCl3,400MHz) deltappm: — 1.54 (6H, s), 2.38 (3H, s), 2.45-2.55 (2H, m), and 2.75- 2.85 (2H, m), 4.85 (2H, s), and 5.20- 5.45 (2H, m) and
  7.88 (1H. s)
  [0104] example 34-aminomethyl-5-(2-carbamoyl ethyl)-3-hydroxy-2-methylpyridine and dihydrochloride 5-(2-carbamoyl ethyl)- H-1 and 2, 2, and 8-trimethyl-4
  JIOKISHINO [ 3-] [4 and 5-c] pyridine it used and 4-aminomethyl-5-(2-carbamoyl ethyl)-3-hydroxy-2-methylpyridine and dihydrochloride were compounded according to
  the method of the example 12 of reference, and an example 2 from the example 10 of reference.
  [0105] light yellow solid-state 1 H-NMR(DMSO-d6,400MHz) deltappm:2.40- 2.55 (2H, m), 2.56 (3H, s), 2.90-3.00 (2H, m), 4.16 (2H, br s), 6.95 (1H, br s), 7.47 (1H, br s) and
  8.12 (1H, br s), and 8.20-8.40 (3H, br)
  [0106] 58ml of 1 convention sodium-hydroxide aqueous solutions was added to the tetrahydrofuran / 600ml (1/1) suspension of water of 14N-(tert-butoxycarbonyl)
  pyridoxamine pyridoxamine of examples of reference, dihydrochloride, and 6.8g of monohydrates, and the carbonic acid G tert-butyl 6.1g tetrahydrofuran 100ml solution was dropped slowly. After agitating at a room temperature for 3 hours, reduced pressure distilling off of the reaction solution was carried out up to about 1/3 amount. The
   citric-acid aqueous solution was added 10%, and acidity or alkalinity of this solution was made into the acescence, and subsequently the sodium hydrogencarbonate was
   added and it was made alkalinity. Ethyl acetate extracted this mixture, and after saturation sodium bicarbonate water washed the organic layer, it dried with sulfuric anhydride
   magnesium. After carrying out reduced pressure distilling off of the solvent and ****(ing) the depositing crystal, it washed by the hexane and N-(tert-butoxycarbonyl)
   pyridoxamine 5.5g was obtained.
   [0107] white powder 1 H-NMR(CDCl3,400MHz) deitappm:1.4 (9H, s), 2.5 (3H, s), 4.2 (2H, d, J= 6.8Hz) and 4.7 (2H, s), and 5.6- 5.7 (1H, br), 7.7 (1H, s), and 9.4-9.6 (1H, br)
   [0108] 11g of manganese dioxides was added to example of reference 154-tert-butoxycarbonyl aminomethyl-3-hydroxy-2-methylpyridine-5-carbaldehyde
   N-(tert-butoxycarbonyl) pyridoxamine 1.4g 60ml solution of methylene chlorides, and it agitated at the room temperature for 3 hours. Cerite filtration was carried out.
   insoluble matter was removed, and the filtrate was distilled off under reduced pressure. The silica gel column chromatography (elution solvent: a methylene chloride /
   methanol =20/1) refined the residue, and 4-tert-butoxycarbonyl aminomethyl-3-hydroxy-2-methylpyridine-5-carbaldehyde 0.4g was obtained.
   [0109] White solid-state 1 H-NMR(CDCl3,400MHz) deltappm:1.4 (9H, s), 2.6 (3H, s) and 4.4 (2H, d, J= 6.8Hz), 5.5-5.9 (1H, m), 8.4 (1H, s), 10.0 (1H, brs), 10.0 (1H, s)
   [0110] Phenyl magnesium bromide (2.0M tetrahydrofuran solution) 1.2ml was added to the example of reference 164-tert-butoxycarbonyl
   aminomethyl-3-hydroxy-5-(alpha-hydroxybenzyl)-2-methylpyridine 4-tert-butoxycarbonyl aminomethyl-3-hydroxy-2-methylpyridine-5-carbaldehyde 0.10g tetrahydrofuran
   20ml solution at 0 degree C under the nitrogen air current, and it agitated for 3 hours. Little water was added to the reaction mixture and reduced pressure distilling off of
   the solvent was carried out. The silica gel column chromatography (elution solvent: a methylene chloride / methanol =10/1) refined the residue, and 4-tert-butoxycarbonyl
   aminomathyl-3-hydroxy-5-(alpha-hydroxybenzyl)-2-methylpyridine 0.12g was obtained.
   [0111] White solid-state 1 H-NMR(CDCl3,400MHz) deltappm:1.4 (9H, s),
   2.5(3H,s),4.0(1H,dd,J=15.6,6,3Hz),4.2(1H,dd,J=15.6,7.1Hz),4.8-5.0(1H,m),5.9(1H,s),6.8-6.9(1H,m),7.2-7.4(5H,m),7.8(1H,s),9.7(1H,br)
   [0112] The hydrogen chloride-ethanol solution was added to example 44-aminomethyl-3-hydroxy-5-(alpha-hydroxybenzyl)-2-methylpyridine and dihydrochloride
   4-tert-butoxycarbonyl aminomethyl-3-hydroxy-5-(alpha-hydroxybenzyl)-2-methylpyridine 0.12g, and it agitated at the room temperature for 1 hour. It condensed under
    reduced pressure of a reaction mixture, the residue was crystallized by the diethylether—tetrahydrofuran, and
    4-aminomethyl-3-hydroxy-5-(alpha-hydroxybenzyl)-2-methylpyridine and 0.12g of dihydrochloride were obtained.
    [0113] 8.8 (1H, s) White crystal 1 H-NMR(DMSO-d6,400MHz) deltappm:3.4 (3H, s), 4.3 (2H, s) and 6.9 (1H, s), 8.0-8.2 (5H, m), 9.2 (3H, br s)
    [0114] The tetrahydrofuran was used for the solvent from example of reference 174-tert-butoxycarbonyl aminomethyl-3-hydroxy-2-methyl-5-(1-hydroxy DESHIRU)
    pyridine 1-BUROMO nonane 2.1g, and magnesium 0.24g, and nonyl magnesium bromide was prepared according to the conventional method. N-(tert-butoxycarbonyl)
    pyridoxamine 0.54g was added to this tetrahydrofuran solution at 0 degree C. After agitating one evening, returning to a room temperature slowly, the ammonium-chloride
    aqueous solution was added to the reaction mixture, and the methylene chloride extracted. Saturation brine washed this organic layer, and after drying with sulfuric anhydride
    magnesium, the solvent was distilled off under reduced pressure. The silica gel column chromatography (elution solvent: ethyl acetate) refined the residue, and
    4-tert-butoxycarbonyl aminomethyl-3-hydroxy-5-(1-hydroxy DESHIRU)-2-methylpyridine 0.22g was obtained.
    [0115] white solid-state 1 H-NMR(CDCl3,400MHz) deltappm:0.9 (3H, t, J= 6.9Hz), 1.2-1.4 (14H, m), 1.6-1.9 (2H, m), 2.4 (3H, s) and 4.3 (2H, s), and 4.9-5.0 (1H, m) and 7.9
    (1H. s)
    [0116] The hydrogen chloride-ethanol solution was added to example 54-aminomethyl-3-hydroxy-5-(1-hydroxy DESHIRU)-2-methylpyridine and dihydrochloride 4-tert-butoxycarbonyl aminomethyl-3-hydroxy-2-methyl-5-(1-hydroxy DESHIRU) pyridine 0.22g, and it agitated at the room temperature for 5 hours. Reduced pressure
    distilling off of the solvent was carried out, and 4-aminomethyl-3-hydroxy-5-(1-hydroxy DESHIRU)-2-methylpyridine and 0.19g of dihydrochloride were obtained.
    [0117] white solid-state 1 H-NMR(DMSO-d6,400MHz) deltappm:0.9 (3H, t, J= 6.8Hz), 1.1-1.5 (15H, m), and 1.5-1.7 (1H, m), 2.6 (3H, s), 4.1-4.3 (2H, m), and 4.8-5.0 (1H, m),
```

8.2 (1H, s), and 8.2–8.4 (3H, br)

[0118] It dissolved in the 0.5M sodium phosphate buffer solution (pH7.4) so that a trial compound might be set to 10mg [ml] /, 200mM, 0.2, or 2mM(s) in an example 6

Maillard-reaction inhibition activity trial lysozyme and a fructose list, respectively, and the incubation was carried out for one week at 37 degrees C.

[0119] SDS-PAGE separates an incubation sample and it is Coomassie. Brilliant Blue The yield of a dimer [as opposed to / as opposed to / at R-250 / after dyeing / total protein with a densitometer I was measured.

[0120] The inhibition activity of the yield blank test compound of the dimer under the trial compound existence over the yield of the dimer under trial compound.

nonexistence was searched for.

[0121]

[A table 1]

化合物	阻害活性(%)	
	薬物設度0.2mM	聚物濃度 2 ml
実施例 1	93.7	95.6
実施例 2		89.2
実施例 3	1 3. 1	7 4 . 1
実施例 5	84.6	98.9
73117=97	2. 9	1 7. 2

[0122] Example of formula 1 tablet Chief remedy 100mg Corn starch 50mg Lactose 70mg Hydroxypropylcellulose 7mg Magnesium stearate 3mg (a total of 230mg)
[0123] Example of formula 2 fine-grain agent Chief remedy 100mg Mannite 190mg Corn starch 100mg Hydroxypropylcellulose 10mg (a total of 400mg)
[0124] Example of formula 3 capsule Chief remedy 100mg (a total of 180mg)
 Lactose 18mg Crystalline cellulose 35mg Corn starch 25mg Magnesium stearate 2mg

[Translation done.]

(19) 日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出額公開番号

特開平10-175954

(43)公開日 平成10年(1998)6月30日

(51) Int. C1. 6

識別記号

FI

C 0 7 D 213/65

C 0 7 D 213/65 A 6 1 K 31/44

A 6 1 K 31/44

ABXADP

ADP

AED

AED

ABX

審査請求 未請求 請求項の数2

雷魯

(全11頁)

(21)出願番号

特願平8-359480

(71)出願人 000104560

キッセイ薬品工業株式会社

長野県松本市芳野19番48号

(22)出願日

平成8年(1996)12月12日

(72) 発明者 伊與部 亮

長野県南安曇郡穂高町大字穂高5049-6

MEDIOホタカ A101

(72) 発明者 平田 一満

長野県南安曇郡豊科町大字豊科2180-4

フォーブルしろがね 206

(72)発明者 鎌田 晃爾

長野県松本市大字島内4363-1 フレグラ

ンスメロディー A101

最終頁に続く

(54) 【発明の名称】 4-アミノメチルー3-ヒドロキシピリジン誘導体およびそれらを含有するメイラード反応阻害剤

(57) 【要約】

【課題】メイラード反応阻害作用を有する新規な4-ア ミノメチルー3ーヒドロキシピリジン誘導体を提供す

の化合物を二酸化マンガンで酸化後、ヒドロキシルアミ ンでオキシム化し、常法に従い還元することにより製造 する。

【解决手段】

【化1】

[Aは-(CH2)2-E-R4(Eはアルキレン基又 は単結合、R⁴はH、アリール基、アルコキシカルボニ ル基等)又は-CH (OH) -R5 (R5はアルキル 基、アリール基等)、R'~R'はH又はアルキル基] の化合物及び塩。例えば

【化2】

【特許請求の範囲】 【請求項1】一般式

[化1]

[式中のAは、一般式

- (CH2) 2-E-R4

(式中のEは低級アルキレン基または単結合であり、R ↑は水素原子、アリール基、低級アルコキシカルボニル 基、カルバモイル基、モノまたはジ低級アルキル置換カ ルバモイル基である)で表される基または、一般式 -CH (OH) -R ⁶

(式中のR 5 は高級アルキル基、アリール基またはアル アルキル基である)で表される基であり、R¹、R²お よびRつは同じでも異なっていてもよく、それぞれ水素 原子または低級アルキル基である〕で表される4ーアミ ノメチルー3-ヒドロキシピリジン誘導体およびそれら 20 R¹、R²およびR³は同じでも異なっていてもよく、 の薬理学的に許容される塩。

【請求項2】一般式

[化2]

[式中のAは、一般式

- (CH₂)₂-E-R⁴

(式中のEは低級アルキレン基または単結合であり、R ↑は水素原子、アリール基、低級アルコキシカルボニル 基、カルバモイル基、モノまたはジ低級アルキル置換カ ルバモイル基である)で表される基または、一般式 $-CH(OH)-R^{B}$

(式中のR cは高級アルキル基、アリール基またはアル アルキル基である)で表される基であり、R'、R²お よびR~は同じでも異なっていてもよく、それぞれ水素 原子または低級アルキル基である〕で表される4ーアミ ノメチルー3-ヒドロキシピリジン誘導体またはそれら 40 の薬理学的に許容される塩を有効成分として含有するメ イラード反応阻害剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、医薬品として有用 な4-アミノメチル-3-ヒドロキシピリジン誘導体お よびそれらの薬理学的に許容される塩に関するものであ る。

【0002】さらに詳しく述べれば、本発明はメイラー ド反応阻害活性を有しており、メイラード反応に関連す 50 により、または蛋白質の半減期が長い組織にある生体内

る疾患の予防および治療剤として、また化粧品および食 品の添加物としても有用な、一般式

[0003]

[化3]

$$\begin{array}{cccc}
R^3 & NH_2 \\
HO & A \\
R^1 & N & R^2
\end{array}$$
(I)

【0004】〔式中のAは、一般式

 $[0005] - (CH_2)_2 - E - R^4$

【0006】 (式中のEは低級アルキレン基または単結 合であり、RTは水素原子、アリール基、低級アルコキ シカルボニル基、カルバモイル基、モノまたはジ低級ア ルキル置換カルバモイル基である)で表される基また は、一般式

[0007] -CH (OH) -R 5

【0008】(式中のR~は髙級アルキル基、アリール 基またはアルアルキル基である)で表される基であり、 それぞれ水素原子または低級アルキル基である〕で表さ れる4ーアミノメチルー3ーヒドロキシピリジン誘導体 およびそれらの薬理学的に許容される塩並びにそれらを 有効成分として含有するメイラード反応阻害剤に関する ものである。

[0009]

【従来の技術】食品化学の分野では、食品中でグルコー ス等の還元糖がアミン化合物と反応し、褐色色素が生成 することが観察されている。一方、近年、生体内におい 30 ても同様の反応が生起していることが確認され、糖尿病 性合併症や動脈硬化症などの疾患の発症要因の一つとし て強く関与していると考えられて注目を浴びている。

【0010】上記の反応はメイラード反応と呼ばれてお り、生体内のメイラード反応は、グルコース、フルクト ースおよびペントース等の還元糖、それらのリン酸エス テルあるいはアスコルビン酸等のカルボニル化合物が生 体内蛋白質の遊離アミノ基と非酵素的に反応してシッフ 塩基が形成され、これが化学転移によりアマドリ転移生 成物に変換される前記段階と、続く酸化、脱水、重合、 開裂等の反応により、蛋白が分子間および分子内架橋形 成を伴い変性し、褐色を呈し難溶性でプロテアーゼによ る分解が困難である後期反応生成物(AGE: Adva nced Glycation End Produc ts)に至る後期段階からなる一連の反応により進行す

【0011】当該メイラード反応の過程で生成するAG Eおよびその前駆生成物の生成量は、糖と蛋白の濃度お よび反応時間に相関して増加する。従って、糖尿病のよ うな高血糖状態の持続、糖に暴露される期間が長い加齢

の蛋白質、クリアランスが低下するような腎臓疾患の患 者等の血液や組織中の蛋白質ではメイラード反応を受け やすいことが知られている。

【0012】これらのことより、メイラード反応を受け る生休内の蛋白質としては、眼球レンズクリスタリン、 血清アルブミン、皮膚や血管壁等の結合組織のコラーゲ ンやエラスチン、神経ミエリン蛋白質、ヘモグロビン、 腎臓の糸球体基底膜等の多くの蛋白質があり、メイラー ド反応は、これらの蛋白の変性、異常または機能低下に より引き起こされる網膜症、腎症、心臓血管系障害、神 10 キシカルボニル基、プロポキシカルボニル基、プトキシ 経障害や白内障等の糖尿病性合併症や動脈硬化症あるい は老化に起因する疾患の発症原因の一つと考えられてい る。そのため、これらの疾患の予防および治療に向け て、メイラード反応を阻害する新規な化合物を見出すべ く開発研究が試みられている。

[0013]

【発明が解決しようとする課題】本発明の目的は、従来 のメイラード反応阻害作用を有する化合物とは化学構造 的に異なる化合物を提供することである。

[0014]

【発明の実施の形態】本発明は、一般式

[0015]

【化4】

【0016】 [式中のAは、一般式

[0017] - (CH2) 2-E-R4

【0018】(式中のEは低級アルキレン基または単結 合であり、R⁴は水素原子、アリール基、低級アルコキ シカルボニル基、カルバモイル基、モノまたはジ低級ア ルキル置換カルバモイル基である)で表される基また は、一般式

 $[0019] - CH (OH) - R^{6}$

【0020】 (式中のRでは高級アルキル基、アリール 基またはアルアルキル基である)で表される基であり、 RI、R2およびR3は同じでも異なっていてもよく、 それぞれ水素原子または低級アルキル基である〕で表さ 40 れる4-アミノメチルー3-ヒドロキシピリジン誘導体 およびそれらの薬理学的に許容される塩並びにそれらを 有効成分として含有するメイラード反応阻害剤に関する ものである。

【0021】ここで、本発明において、低級アルキル基 とはメチル基、エチル基、プロピル基、ブチル基、ペン チル基、イソプロピル基、イソブチル基等の炭素数1~ 6の直鎖状または枝分かれ状のアルキル基をいい、高級 アルキル基とはヘプチル基、オクチル基、ノニル基、デ シル基、ウンデシル基、ドデシル基、トリデシル基、テ 50

トラデシル基、ペンタデシル基等の炭素数7~15の直 鎖状または枝分かれ状のアルキル基をいい、低級アルキ レン基とはメチレン基、エチレン基、トリメチレン基、 テトラメチレン基、ペンタメチレン基、ヘキサメチレン 基等の炭素数1~6の直鎖状または枝分かれ状のアルキ レン基をいい、アリール基とはフェニル基、ナフチル基 等の芳香族炭化水素基をいい、アルアルキル基とは前記 アリール基を有する前記低級アルキル基をいい、低級ア ルコキシカルボニル基とはメトキシカルボニル基、エト カルボニル基、イソプロポキシカルボニル基、イソプト キシカルボニル基、tert-ブトキシカルボニル基等 の炭素数2~7の直鎖状または枝分かれ状のアルコキシ カルポニル基をいい、モノまたはジ低級アルキル置換カ ルバモイル基とは前記低級アルキル基で1つまたは2つ 置換されたカルバモイル基をいう。

【0022】本発明の前記一般式(1)で表される4-アミノメチルー3-ヒドロキシピリジン誘導体は、以下 のようにして製造することができる。

【0023】例えば、本発明の前記一般式(I)で表さ 20 れる化合物のうち、一般式

[0024]

【化5】

$$R^3$$
 NH_2 $E-R^4$ (Ia)

【0025】 (式中のE、R¹、R²、R³およびR⁴ 30 は前記と同じ意味をもつ)で表される化合物は、一般式 [0026]

【化6】

HO
$$R^3$$
HO $E-R^4$ (II)

【0027】 (式中のE、R¹、R²、R³およびR⁴ は前記と同じ意味をもつ) で表される化合物のベンジル 位の水酸基を、二酸化マンガン等の酸化剤を用いて酸化 し、カルボニル化合物を得た後、ヒドロキシルアミンと 反応させ、オキシム化合物を得、次にオキシム基を常法 に従い還元することにより製造することができる。

【0028】また、本発明の前記一般式(1)で表され る化合物のうち、一般式

[0029]

【化7】

10

【 0 0 3 0 】 (式中の R ¹ 、 R ² 、 R ⁸ および R ⁵ は前 記と同じ意味をもつ) で表される化合物は、一般式

[0031]

【化8】

【0032】(式中のR°は保護基を有するアミノ基であり、R¹、R²およびR³は前記と同じ意味をもつ)で表されるアルデヒド化合物と、一般式

 $[0.033] X-Mg-R^{5}$ (IV)

【0034】(式中のXはハロゲン原子であり、R⁵は前記と同じ意味をもつ)で表されるGrignard試 20 薬等の有機金属試薬を反応させた後、保護基を除去することにより製造することができる。

【0035】前記製造方法において出発原料として用い られる一般式(11)で表される化合物は、一般式

[003.6]

[化9]

(z,i:

$$R^8O$$
 R^3
 CHO
 CHO
 R^1
 N
 R^2

【0037】(式中のR⁷およびR⁸は一緒になってアセトナイド等の水酸基の保護基を形成しており、R¹、R²およびR³は前記と同じ意味をもつ)で表されるアルデヒド化合物を、一般式

 $[0038] X-CH_2-E-R^{9}$ (VI)

【0039】(式中のR°は水素原子、アリール基または低級アルコキシカルボニル基であり、EおよびXは前記と同じ意味をもつ)で表される化合物およびトリフェニルホスフィンより調製されるWittig試薬と反応 40 させ、得られたオレフィン化合物を常法に従い還元し、一般式

[0.040]

【化10】

$$R^8O R^3$$
 $R^7O E-R^9$ (VII)

【0041】 (式中のE、R¹、R²、R³、R⁷、R 50 あり、R¹ R²およびR³は前記と同じ意味をもつ)

*およびR*は前記と同じ意味をもつ)で表される化合物を得、所望により常法に従いエステル基をアミド化した後、水酸基の保護基を除去することにより製造することができる。

【0042】また、前記製造方法において出発原料として用いられる前記一般式(II)で表される化合物のうち、一般式

[0043]

【化11】

$$HO$$
 R^3
 R^{10}
 R^1
 R^2
(IIa)

【0044】(式中のR・いは低級アルコキシカルボニル基、カルバモイル基、モノまたはジ低級アルキル置換カルバモイル基であり、R・、R²およびR³は前記と同じ意味をもつ)で表される化合物は、前記一般式

(V) で表されるアルデヒド化合物と、一般式

[0045]

【化12】

【0046】(式中のR) 「は低級アルキル基である)で表されるマロン酸モノエステルを塩基の存在下に反応させ、得られた、一般式

[0047]

[化13]

30

【0048】 (式中のR'、R²、R'、R⁷、R¹およびR'は前記と同じ意味をもつ)で表されるオレフィン化合物を、常法に従い遠元し、所望により常法に従いエステル基をアミド化した後、水酸基の保護基を除去することにより製造することもできる。

【0049】前記製造方法において出発原料として用い られる一般式 (III) および (V) で表されるアルデ ヒド化合物は、一般式

[0050]

【化14】

$$R^3$$
 R^{12}
 OH
 X
 R^1
 N
 R^2

【0051】(式中のR^{・2}はアミノ基または水酸基で あり、R^{・1}、R²お上びR²は前記と同じ意味をもつ) で表されるピリジン誘導体のピリジン環の4位のアミノ 基または水酸基を適当な保護基で保護した後、ベンジル 位の水酸基を二酸化マンガン等の酸化剤を用いて酸化す ることによりそれぞれ製造することができる。

【0052】前記製造方法において用いられる一般式 (X) で表される化合物は市販の試薬を購入するか、文 献記載の方法、それらと類似の方法、それらの組み合わ せおよび慣用の合成手段を用いることにより製造するこ とができる(J. Am. Chem. Soc., 61巻, 1245~1247ページ (1939年)、J. Am. Chem. Soc., 66巻, 2088~2092ペー

ジ (1944年) 、 J. Org. Chem. , 27巻, 2705~2706ページ (1962年) 等)。

Ę. .

【0053】本発明の前記一般式(1)で表される4-アミノメチルー3-ヒドロキシピリジン誘導体は、常法 により薬理学的に許容される塩とすることができる。こ のような塩としては、塩酸、臭化水素酸、ヨウ化水素 酸、硫酸、硝酸、リン酸等の無機酸との酸付加塩、ギ 酸、酢酸、メタンスルホン酸、ベンゼンスルホン酸、p - トルエンスルホン酸、プロピオン酸、クエン酸、コハ 20 ク酸、酒石酸、フマル酸、酪酸、シュウ酸、マロン酸、 マレイン酸、乳酸、リンゴ酸、炭酸、アスパラギン酸、 グルタミン酸等の有機酸との酸付加塩、ナトリウム塩、 カリウム塩等の無機塩基との塩を挙げることができる。

【0054】本発明の前記一般式(1)で表される化合 物としては、水、エタノール等の医薬品として許容され る溶媒との溶媒和物も含まれる。

【0055】本発明の前記一般式(I)で表される化合 物は、その置換基の種類によっては1個以上の不斉炭素 原子を有し、各不斉炭素においてR配置およびS配置の 30 2つの光学異性が存在するが、本発明においてはいすれ の異性体を使用してもよく、それらの異性体の混合物で あっても構わない。

【0056】本発明の前記一般式(1)で表される化合 物において、R3は水素原子である化合物が好ましい。 【0057】本発明の前記一般式(1)で表される化合 物は、リソチームとフルクトースを用いたin vit r oのメイラード反応阻害活性試験において、メイラー ド反応阻害活性を有する物質として知られているアミノ グアニジンの活性と比較してリゾチームの二量化におい 40 シン、ラブリワックス、ラウリル硫酸ナトリウム、バラ て、それ以上の非常に優れた阻害活性を示した。

【0058】このように、本発明の前記一般式(1)で 表される化合物およびその薬理学的に許容される塩は優 れたメイラード反応阻害活性を有するものであり、メイ ラード反応が関与する疾患の予防および治療剤等の医薬 品として有用な化合物である。

【0059】本発明の前記一般式(Ⅰ)で表される化合 物およびその薬理学的に許容される塩は、優れたメイラ ード反応阻害活性を有しており、メイラード反応が関与 している疾患に対して有用である。このような疾患とし 50 ムで皮膜してもよい。

ては、冠動脈性疾患、末梢循環障害、脳血管障害、糖尿 病性神経症、腎症、動脈硬化症、関節硬化症、白内障、 網膜症、凝固障害症、糖尿病性骨減少症等の糖尿病性合 併症、アテローム性動脈硬化症、糸球体腎炎、老人性白 内障、骨関節症、関節周囲硬直症、関節硬化症、老人性 骨粗鬆症等の老化によって引き起こされると考えられて いる疾患等を挙げることができ、当該疾患の予防および 治療剤として非常に有用である。また、周知の通り、蛋 白質やアミノ酸を含有する化粧品、食品においてもメイ 10 ラード反応が進行し、蛋白質やアミノ酸の劣化が起こる ため、化粧品や食品においても当該メイラード反応を阻 害する化合物として有用である。

【0060】本発明の前記一般式(I)で表される化合 物およびその薬理学的に許容される塩を実際の治療に用 いる場合、適当な医薬品製剤、例えば、錠剤、散剤、細 粒剤、顆粒剤、カプセル剤、液剤、注射剤、外用剤、点 眼剤等の製剤として経口的または非経口的に投与され る。これらの医薬品製剤は一般の調剤において行われる 製剤学的方法により、通常用いられている製剤用の担体 や賦形剤、その他の添加剤を用いることにより、調製す ることができる。

【0061】崩壊剤としては、カルメロースカルシウ ム、カルメロース、低置換度ヒドロキシプロピルセルロ ース、カルボキシメチルスターチ ナトリウム、クロスカ ルメロースナトリウム、トラガント、澱粉若しくは澱粉 誘導体である小麦澱粉、米澱粉、トウモロコシ澱粉、馬 鈴薯澱粉、α化澱粉、部分α化澱粉、デキストリン、プ ルラン、ヒドロキシプロピルスターチ等を使用すること ができるが、これらは崩壊剤として限定されるものでは なく賦形剤として使用することもできる。

【0062】結合剤としては、ヒドロキシエチルセルロ ース、ヒドロキシプロピルセルロース、ポリビニルアル コール、ポビドン、澱粉若しくは澱粉誘導体である小麦 澱粉、米澱粉、トウモロコシ澱粉、馬鈴薯澱粉、α化澱 粉、部分α化澱粉、デキストリン、プルラン、ヒドロキ シプロビルスターチ等を使用することができる。

【0063】滑沢剤としては、ステアリン酸カルシウ ム、ステアリン酸マグネシウム、ステアリン酸、タル ク、セタノール、ステアリン酸ポリオキシル40、ロイ フィン、ポリオキシエチレングリコール脂肪酸エステル および脂肪酸エステル等を使用することができるが、こ れらは滑沢剤として限定されるものではなく賦形剤とし て使用することもできる。

【0064】錠剤については、乳糖、ショ糖、ゼラチ ン、ヒドロキシプロビルセルロース、ヒドロキシプロピ ルメチルセルロース、ポリビニルアセタールジエチルア ミノアセテート、メタアクリル酸コポリマーまたはヒド ロキシプロピルメチルセルロースフタレート等のフィル

【0065】液剤については、希釈剤としては、例え ば、精製水、ポリオール、ショ糖、転化糖、ブドウ糖等 を使用することができる。また、希釈剤の他に、所望に 応じ、溶解補助剤、湿潤剤、懸濁剤、甘味剤、風味剤、 芳香剤、防腐剤等を添加してもよい。

【0066】注射剤については、希釈剤としては、例え ば、蒸留水、生理食塩水、アルコール、グリセロール、 ポリオール、植物油等を使用することができる。また、 希釈剤の他に所望に応じ緩衝剤、等張化剤、防腐剤、湿 潤剤、乳化剤、分散剤、安定化剤、溶解補助剤等を添加 10 してもよい。

【0067】点眼剤としては、所望に応じ、緩衝剤、等 張化剤、安定化剤、保存剤、酸化防止剤、粘稠剤、防腐 剤、溶解補助剤等を添加してもよい。

【0068】坐剤の担体としては、脂質、ロウ、半固形 または液状のポリオール、天然油または硬化油等を使用 することができる。また、他に分散剤、分散補助剤、吸 収促進剤等を添加してもよい。

【0069】その投与量は対象となる患者の年齢、性 別、体重、症状の度合いにより適宜決定されるが、経口 20 投与の場合、概ね成人1日当たり1~1000mg、非 経口投与の場合、概ね成人で1日当たり0.1~100 mgの範囲内で、一回または数回に分けて投与される。 【0070】本発明の前記一般式(Ⅰ)で表される化合 物を点眼剤として使用する場合、0.05W/V%~5 W/V%の範囲で配合して常法により調製することがで き、その投与回数は患者の症状の度合い等により適宜決

【〇〇71】また、本発明の前記一般式(I)で表され る化合物を外用剤または化粧品として使用する場合、製 30 品に対して本発明の化合物の含有量が0.05~10重 量分となるように配合し、通常用いられる外用基剤また は化粧品基剤を用いて常法により調製することにより製 造することができる。さらに、本発明の化合物は食品添 加物として使用することもできる。

[0072]

定される。

【実施例】本発明の内容を以下の参考例および実施例で さらに詳細に説明するが、本発明はその内容に限定され るものではない。

【0073】参考例1

5-ヒドロキシメチル-2, 2, 8-トリメチル-4H -1, 3-ジオキシノ〔4, 5-c〕ピリジン 塩酸ピリドキシン38.0gのアセトン425m1溶液 に2, 2-ジメトキシプロパン305mlおよびヮート ルエンスルホン酸121.6gを加え、室温で17時間 反応させた。反応液を炭酸ナトリウムで弱塩基性にし

て、約1/2量まで減圧濃縮した後、水を加えクロロホ ルムで抽出した。有機層を2規定水酸化ナトリウム水溶 液および水で順次洗浄した後、無水硫酸マグネシウムで 乾燥した。減圧下で溶媒を留去した後、得られた油状の 50 6.09 (1H, brd, J=11.4Hz), 7.1

残留物にヘキサンを加え結晶化し、5-ヒドロキシメチ ルー2,2,8-トリメチル-4H-1,3-ジオキシ ノ〔4, 5-c〕ピリジン30. 3gを得た。

【0074】白色固体

'H NMR (CDC13, 400MIIz) δ ppm: 1. 56 (6H, s), 1. 75 (1H, t, J=5. 4Hz), 2.41 (3H, s), 4.59 (2H, d, J=5. 4Hz), 4.94 (2H, s), 7.94 (1H, s)

【0075】参考例2

5-ホルミルー2、2、8-トリメチルー4H-1、3 ージオキシノ〔4, 5-c〕ピリジン 5-ヒドロキシメチル-2, 2, 8-トリメチル-4H -1, 3-ジオキシノ〔4, 5-c〕ピリジン2. Og の塩化メチレン60m1溶液に一酸化マンガン9.97 gを加え35分間加熱還流した。室温まで冷却した後、 反応混合物をセライトろ過した後、ろ液を減圧下で濃縮 し、5-ホルミルー2、2、8-トリメチルー4H-1, 3-ジオキシノ [4, 5-c] ピリジン1. 90g を得た。

【0076】白色固体

¹H-NMR (CDCl₁₁, 400MHz) δ p p m: 1. 56 (6H, s), 2. 51 (3H, s), 5. 1 8 (2H, s), 8. 47 (1H, s), 10. 04 (1H, s)

【0077】参考例3

5- (4-フェニル-1-プテニル) -2, 2, 8-ト リメチルー4H-1, 3ージオキシノ〔4, 5-c〕ピ リジン

5-ホルミル-2, 2, 8-トリメチル-4H-1, 3 ージオキシノ [4, 5-c] ピリジン1. 1gのテトラ ヒドロフラン20ml懸濁液に氷冷下、カリウムter tープトキシド290mgを加え10分間撹拌した。次 いで室温で40分間撹拌した後、3-フェニルプロピル トリフェニルホスホニウムプロミド500mgを加え、 室温で3時間撹拌した。反応混合物に水を加え酢酸エチ ルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウ ムで乾燥し、減圧下で溶媒を留去した。残留物をシリカ ゲルカラムクロマトグラフィー(溶出溶媒:ヘキサン/ 40 酢酸エチル=3/1)にて精製し、2体:E体=4:1 の混合物の5-(4-フェニル-1-ブテニル)-2, 2, 8-トリメチル-4H-1, 3-ジオキシノ [4,

【0078】 Z体

5-c] ピリジン600mgを得た。

'H-NMR (CDCl 1, 400MHz) δ ppm; 1. 53 (6H, s), 2. 40 (3H, s), 2. 5 1 (2H, q, J = 7. 3Hz), 2. 72 (2H, t, J=7.3Hz), 4.56 (2H, s), 5 8 4 (1H, dt, J=11.4Hz, 7.3Hz),

1 (2H, d, J=7.3Hz), 7.17 (1H, t, J=7.3Hz), 7.25 (2H, t, J=7. 3Hz), 7.83 (1H, s)

【0079】E体

'II NMR (CDC1, 400MIIz) δ p p m · 1 53 (6H, s), 2 38 (3H, s), 2 5 3 (2H, m), 2 80 (1H, t, J=7.3H z), 4 71 (2H, s), 6 08-6 18 (2H, m), 7 15-7 34 (5H, m), 8 05 (1H, s)

【0080】参考例4

5-(4-フェニルブチル)-2, 2, 8-トリメチル -4H-1, 3-ジオキシノ [4, 5-c] ピリジン 5-(4-フェニルー1-プテニル)-2, 2, 8-ト リメチルー4H-1, 3-ジオキシノ [4, 5-c] ピ リジン600mgのメタノール溶液に10%パラジウム -炭素粉末200mgを加え室温水素雰囲気下で90分 間撹拌した。触媒をろ去した後、ろ液を減圧下で濃縮 し、5-(4-フェニルブチル)-2, 2, 8-トリメ チルー4H-1, 3-ジオキシノ [4, 5-c] ピリジ 20 ン400mgを得た。

【0081】白色固体

'H-NMR (CDCl₃, 400MHz) δ p p m: 1 53 (6H, s), 1 53-1.85 (4H, m), 2.41 (3H, s), 2.44 (2H, t, J =7 5Hz), 2.64 (2H, t, J=7.5H z), 4.75 (2H, s), 7.14-7.19 (3 H, m), 7.29 (2H, t, J=7.3Hz), 7.86 (1H, s)

【0082】参考例5

3ーヒドロキシー4ーヒドロキシメチルー2ーメチルー5ー(4ーフェニルブチル)ピリジン5ー(4ーフェニルブチル)ー2,2,8ートリメチルー4H-1,3ージオキシノ(4,5-c)ピリジン400mgのメタノール10ml容液に、2規定塩酸10mlを加え80℃で2時間撹拌した。反応液を減圧下で濃縮し、飽和重曹水を加えて液性を弱塩基性にして酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去し、3ーヒドロキシー4ーヒドロキシメチルー2ーメチ40ルー5ー(4ーフェニルブチル)ピリジン210mgを得た。

【0083】白色固体

'H-NMR (CDCl₃, 400MHz) δ p p m:
1. 47 (2H, qui, J=7.5Hz), 1.63
(2H, qui, J=7.5Hz), 2.39 (3H, s), 2.46 (2H, t, J=7.5Hz), 2.5
9 (2H, t, J=7.5Hz), 4.92 (2H, s), 7.10-7.30 (5H, m), 7.67 (1H, s)

【0084】参考例6

ル) ピリジン-4-カルバルデヒド
3-ヒドロキシ 4 ヒドロキシメチル 2 メチル
5 (4-フェニルブチル) ピリジン200mgの塩化
メチレン20ml溶液に二酸化マンガン200mgを加
え30分間加熱還流し、更に二酸化マンガン300mg
を加え30分間加熱還流した。反応混合物をセライトろ
過し、ろ液を減圧下で濃縮し、3-ヒドロキシー2-メ
10 チルー5-(4-フェニルブチル) ピリジン-4-カル

12

3-ヒドロキシー2-メチルー5- (4-フェニルブチ

バルデヒド190mgを得た。 【0085】淡黄色オイル

'H-NMR (CDCl., 400MHz) δ p p m · 1. 63-1. 80 (4H, m), 2. 50 (3H, s), 2. 65 (2H, t, J=7. 4Hz), 2. 9 0 (2H, t, J=7. 4Hz), 7. 20-7. 34 (5H, m), 7. 96 (1H, s), 10. 30 (1H, s), 11. 39 (1H, s)

【0.086】参考例7

20 3-ヒドロキシー2-メチルー5- (4-フェニルブチル) ピリジンー4ーカルバルデヒド オキシム3-ヒドロキシー2-メチルー5- (4-フェニルブチル) ピリジンー4ーカルバルデヒド185mgのメタノール/水(5/1)6ml溶液に、酢酸ナトリウム173mgおよび塩酸ヒドロキシルアミン118mgを加え、室温で20分間撹拌した。析出物をろ取した後、水、メタノール/水(2/1)溶液で順次洗浄し、3-ヒドロキシー2-メチルー5- (4-フェニルブチル)ピリジンー4-カルバルデヒド オキシム160mgを30 得た。

【0087】白色固体

'H-NMR (CDCl.+CD.OD, 400MHz) δppm: 1.54-1.78 (4H, m), 2.46 (3H, s), 2.62-2.73 (4H, m), 7.15-7.30 (5H, m), 7.79 (1H, s), 8.42 (1H, s)

【0088】実施例1

4-アミノメチルー3-ヒドロキシー2-メチルー5-(4-フェニルプチル) ピリジン

40 3-ヒドロキシー2-メチルー5- (4-フェニルブチル) ピリジン-4-カルバルデヒド オキシム65mg の酢酸3m1溶液に、亜鉛粉末200mgを加え室温で30分間撹拌した。反応混合物をセライトろ過し、ろ液を減圧濃縮した。残留物に水を加え、炭酸水素ナトリウムで中和した後、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(溶出溶媒:クロロホルム/メタノール=20/1)にて精製し、4-アミノメチルー3-ヒドロキシー2-メチルー50 5- (4-フェニルブチル)ピリジン40mgを得た。

【0089】白色固体

¹ H-NMR (CDCl₃, 400MHz) δppm: 1. 49 (2H, qui, J = 7.4Hz), 1. 66 (2H, qui, J=7.4Hz), 2.42(3H,s), 2.52 (2H, t, J = 7.4Hz), 2.6 2 (2H, t, J=7.4Hz), 4.08 (2H,s), 7.12-7.32, (5H, m), 7.78(1H, s)

【0090】参考例8

(E) -5-(2-エトキシカルボニルエテニル)-2, 2, 8-トリメチルー4H-1, 3-ジオキシノ [4, 5-c] ピリジン

マロン酸モノエチルエステル・カリウム塩7. 76gお よびピペリジン0.36mlのピリジン30ml懸濁液 に濃硫酸1.22ml、次いで5-ホルミルー2,2, 8-トリメチルー4H-1, 3-ジオキシノ〔4, 5c] ピリジン1. 89gを加え、120℃で1時間撹拌 した。室温まで冷却した後、反応溶液を塩化メチレンに 溶解し、飽和重曹水および飽和食塩水で順次洗浄した。 無水硫酸マグネシウムで乾燥した後、溶媒を減圧下で留 20 去した。得られた残留物をシリカゲルカラムクロマトグ ラフィー (溶出溶媒:ヘキサン/酢酸エチル=1/1) にて精製し、(E)-5-(2-エトキシカルボニルエ テニル) -2, 2, 8-トリメヺルー4H-1, 3ージ オキシノ〔4, 5-c〕ピリジン1. 92gを得た。

【0091】白色固体

'H-NMR (CDCl₃, 270MHz) δppm: 1. 34 (3H, t. J = 7 Hz), 1. 56 (6H, s), 2. 43 (3H, s), 4. 28 (2H, q, J =7 Hz), 4. 92 (2H, s), 6. 36 (1H, d, J=16Hz), 7.53 (1H, d, J=16Hz), 8. 26 (1H, s)

【0092】参考例9

5-(2-エトキシカルボニルエチル)-2,2,8-トリメチルー4H-1, 3-ジオキシノ〔4, 5-c〕 ピリジン

5-(2-エトキシカルボニルエテニル)-2,2,8 ートリメチルー4H-1,3-ジオキシノ〔4,5c] ピリジン1. 92gのエタノール35ml溶液に2 規定塩酸3.46mlおよび10%パラジウム-炭素粉 40 H, s), 2.68 (2H, t, J=7.5Hz), 末200mgを加え、室温水素雰囲気下で3時間撹拌し た。触媒をろ去し、ろ液を減圧濃縮した。残留物を塩化 メチレンに溶解し、飽和重曹水および飽和食塩水で順次 洗浄した。塩化メチレン溶液を無水硫酸マグネシウムで 乾燥した後、溶媒を減圧下で留去し、5-(2-エトキ シカルボニルエチル) -2, 2, 8-トリメチル-4H -1, 3-ジオキシノ [4, 5-c] ピリジン2. 17 gを得た。

【0093】無色オイル

1. 24 (3H, t, J = 7. 1Hz), 1 54 (6 H, s), 2 38 (3H, s), 2 59 (2H, t, J=7.5Hz), 2.76 (2H, t, J=7. 5Hz), 4. 13 (2H, q, J=7. 1Hz), 4. 83 (2H, s), 7. 88 (1H, s)

5- (2-エトキシカルボニルエチル) -3-ヒドロキ シー4-ヒドロキシメチルー2-メチルピリジン 5-(2-エトキシカルボニルエチル)-2,2,8-10 トリメチルー4H-1, 3-ジオキシノ [4, 5-c] ピリジン2 17gのギ酸/水(1/1) 40ml溶液 を50℃で一晩撹拌した。放冷後、反応混合物に酢酸エ チルを加え、2規定水酸化ナトリウム水溶液を加えて液 性をpH7として抽出した。有機層を無水硫酸マグネシ ウムで乾燥した後、溶媒を減圧下で留去し、5-(2-エトキシカルボニルエチル) -3-ヒドロキシ-4-ヒ ドロキシメチルー2-メチルピリジン748mgを得 た。

【0095】白色固体

【0094】参考例10

H-NMR (CDCl., 400MHz) Sppm: 1. 23 (3H, t, J = 7. 2Hz), 2. 42 (3 H, s), 2. 51 (2H, t, J=7. 5Hz), 2. 81 (2H, t, J=7, 5Hz), 4. 10 (2) H, q, J = 7.2 Hz, 4.99 (2H, s), 7. 76 (1H, s)

【0096】参考例11

5- (2-エトキシカルボニルエチル) -3-ヒドロキ シー2-メチルピリジン-4-カルバルデヒド 5- (2-エトキシカルボニルエチル) -3-ヒドロキ シー4-ヒドロキシメチルー2-メチルピリジン740 mgの塩化メチレン40ml溶液に二酸化マンガン3。 2gを加え、室温で2時間次いで35℃で30分間撹拌 した。不容物をセライトろ過して除き、ろ液を減圧濃縮 し、5-(2-エトキシカルボニルエチル)-3-ヒド ロキシー2ーメチルピリジン-4ーカルバルデヒド60 7 m g を得た。

【0097】茶色固体

TH-NMR (CDC13, 400MHz) &ppm: 1. 24 (3H, t, J = 7. 1Hz), 2. 51 (3 3. 25 (2H, t, J=7. 5Hz), 4. 13 (2) H, q, J = 7. 1 H z), 8. 02 (1 H, s), 1 0. 5 (1H, s), 11. 5 (1H, s)

【0098】参考例12

5- (2-エトキシカルボニルエチル) -3-ヒドロキ シー2-メチルピリジン-4-カルバルデヒド オキシ

5- (2-エトキシカルボニルエチル) -3-ヒドロキ シー2-メチルピリジン-4-カルバルデヒド607m ¹ H-NMR (CDCl₃, 400MH₂) δ p p m: 50 g の 水/メタノール (3/1) 12 m l 溶液に酢酸ナト

15

リウム630mgおよび塩酸ヒドロキシルアミン427 mgを加え、室温で2時間撹拌した。反応混合物に水を 加え、氷冷下で析出物をろ取し、5- (2-エトキシカ ルボニルエチル)-3-ヒドロキシ-2-メチルピリジ ン-4-カルバルデヒドオキシム555mgを得た。

【0099】灰白色固体

'H-NMR (DMSO-dc, 400MHz) δpp m:1.14 (3H, t, J=7.1Hz), 2.35 (3H, s), 2.54 (2H, t, J=7.5H)3 (2H, q, J=7.1Hz), 7.86 (1H,s), 8. 55 (1H, s), 10. 6 (1H, s), 12. 1 (1H, s)

【0100】実施例2

4-アミノメチル-5- (2-エトキシカルボニルエチ ル)-3-ヒドロキシ-2-メチルピリジン・二塩酸塩 5- (2-エトキシカルボニルエチル) -3-ヒドロキ シー2-メチルピリジシ-4-カルバルデヒド オキシ ム10mgの酢酸0.5ml溶液に10%パラジウムー 炭素粉末3mgを加え、室温3.8気圧の水素雰囲気下 20 で1時間撹拌した。触媒をろ去した後、塩化水素ー2-プロパノール溶液を加え溶媒を減圧留去し、4-アミノ メチルー5- (2-エトキシカルボニルエチル) -3-ヒドロキシー2ーメチルピリジン・二塩酸塩12mgを 得た。

【0101】白色アモルファス

'H-NMR (DMSO-d₆, 400MHz) δpp m: 1. 18 (3H, t, J=7.1Hz), 2.63(3H, s), 2. 70 (2H, t, J=7.6H)z), 3.06.(2H, t, J=7.6Hz), 4.0 30 7 (2H, q, J=7.1Hz), 4. 15 (1H, b)r s), 8. 21 (1H, s), 8. 35-8. 45 (3H, br)

【0102】参考例13

5- (2-カルバモイルエチル) -2, 2, 8-トリメ チルー4H-1, 3-ジオキシノ [4, 5-c] ピリジ

5-(2-エトキシカルボニルエチル)-2,2,8-トリメチル-4H-1, 3-ジオキシノ〔4, 5-c〕 ピリジン1. 0gおよび塩化アンモニウム77mgを3 40 4-9.6(1H, br) 0%アンモニア水/ジオキサン (1/1) 20mlに加 え、封管中100℃で12時間加熱撹拌した。溶媒を減 圧留去し、飽和重曹水を加えクロロホルムで抽出した。 有機層を無水硫酸マグネシウムで乾燥した後、減圧下で 容媒を留去し、5-(2-カルバモイルエチル)-2, 2, 8-トリメチルー4H-1, 3-ジオキシノ〔4, 5-c] ピリジン422mgを得た。

【0103】白色固体

 1 H-NMR (CDCl₃, 400MHz) δ ppm: 1.54(6H, s), 2.38(3H, s), 2 4 50

5-2.55 (2H, m), 2.75-2.85 (2 H, m), 4.85 (2H, s), 5.20-5.45

(2H, m), 7 88 (1H, s)

【0104】 実施例3

4ーアミノメチルー5ー(2ーカルバモイルエチル)-3-ヒドロキシー2-メチルピリジン・二塩酸塩 5-(2-カルバモイルエチル)-2,2,8-トリメ チルー4H-1, 3ージオキシノ〔4, 5-c〕ピリジ ンを用いて、参考例10から参考例12および実施例2 z) , 2. 97 (2H, t, J=7. 5Hz) , 4. 0 10 の方法に準じて、4-アミノメチルー5- (2-カルバ モイルエチル) -3-ヒドロキシ-2-メチルピリジン ・二塩酸塩を合成した。

【0105】淡黄色固体

 $^{t}H-NMR$ (DMSO-da, 400MHz) δpp m: 2.40-2.55 (2H, m), 2.56 (3)H, s), 2. 90-3 00 (2H, m), 4. 16 (2H, br s), 6.95 (1H, br s), 7.47 (1H, br s), 8.12 (1H, br s), 8.20-8.40 (3H, br)

【0106】参考例14

N- (tert-ブトキシカルボニル) ビリドキサミン ピリドキサミン・二塩酸塩・一水和物6.8gのテトラ ヒドロフラン/水(1/1)600ml懸濁液に1規定 水酸化ナトリウム水溶液58mlを加え、炭酸ジーte r tープチル6. 1gのテトラヒドロフラン100ml 溶液をゆっくり滴下した。室温で3時間撹拌した後、反 応溶液を約1/3量まで減圧留去した。この溶液の液性 を10%クエン酸水溶液を加えて弱酸性とし、次いで炭 酸水素ナトリウムを加えてアルカリ性にした。この混合 物を酢酸エチルで抽出し、有機層を飽和重曹水で洗浄し た後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留 去し、析出した結晶をろ取した後、ヘキサンで洗浄し、 N- (tert-ブトキシカルボニル) ピリドキサミン 5.5gを得た。

【0107】白色粉末

'H-NMR (CDC1, 400MHz) δppm: 1. 4 (9H, s), 2. 5 (3H, s), 4. 2 (2 H, d, J = 6.8 Hz), 4.7 (2H, s), 5. 6-5.7(1H, br), 7.7(1H, s), 9.

【0108】参考例15

4-tertープトキシカルポニルアミノメチルー3-ヒドロキシー2-メチルピリジン-5-カルバルデヒド N- (tertープトキシカルボニル) ピリドキサミン 1. 4gの塩化メチレン60m l 溶液に二酸化マンガン 11gを加え室温で3時間撹拌した。不溶物をセライト ろ過して除き、ろ液を減圧下で留去した。残留物をシリ カゲルカラムクロマトグラフィー(溶出溶媒・塩化メチ レン/メタノール=20/1) にて精製し、4-ter t-ブトキシカルボニルアミノメチル-3-ヒドロキシ

-2-メチルピリジン-5-カルバルデヒド0. 4gを 得た。

【0109】白色固体

H-NMR (CDCl₃, 400MHz) &ppm: 1 4 (9H, s), 2. 6 (3H, s), 4. 4 (2 H, d, J = 6.8 Hz), 5.5-5.9 (1 H, m), 8.4 (1H, s), 10.0 (1H, br s), 10.0 (1H, s)

【0110】参考例16

ヒドロキシー5- (α-ヒドロキシベンジル) -2-メ チルピリジン

4-tert-ブトキシカルポニルアミノメチル-3-ヒドロキシ-2-メチルピリジン-5-カルバルデヒド 0.10gのテトラヒドロフラン20ml溶液に窒素気 . 流下、0℃にてフェニルマグネシウムプロミド (2.0 Mテトラヒドロフラン溶液) 1. 2mlを加え、3時間 撹拌した。反応混合物に少量の水を加え、溶媒を減圧留 去した。残留物をシリカゲルカラムクロマトグラフィー (溶出溶媒:塩化メチレン/メタノール=10/1)に 20 て精製し、4-tert-ブトキシカルボニルアミノメ チルー3 ヒドロキシ 5 - (α ヒドロキシベンジ ル) -2-メチルピリジン0.12gを得た。

【0111】白色固体

'H-NMR (CDCla, 400MHz) δppm: 1. 4 (9H, s), 2. 5 (3H, s), 4. 0 (1 H, dd, J = 15.6, 6.3 Hz), 4.2 (1 H, dd, J = 15.6, 7. 1 Hz), 4. 8 - 5. 0 (1H, m), 5. 9 (1H, s), 6. 8-6. 9(1H, m), 7.2-7.4(5H, m), 7.8(1H, s), 9.7 (1H, br)

【0112】実施例4

4-アミノメチルー3-ヒドロキシー5- (α-ヒドロ キシベンジル) -2-メチルピリジン・二塩酸塩 4-tert-ブトキシカルポニルアミノメチル-3-ヒドロキシー5- (α-ヒドロキシベンジル) -2-メ チルピリジン0.12gに塩化水素-エタノール溶液を 加え室温で1時間撹拌した。反応混合物を減圧下で濃縮 し、残留物をジエチルエーテルーテトラヒドロフランに - (α-ヒドロキシベンジル) - 2-メチルピリジン・ 二塩酸塩0.12gを得た。

【0113】白色結晶

 $^{1}H-NMR$ (DMSO-d₆, 400MHz) δ pp m: 3. 4 (3H, s), 4. 3 (2H, s), 6. 9 (1H, s), 8 0-8.2 (5H, m), 8.8 (1H, s), 9 2 (3H, br s)

【0114】 参考例17

4 – t e r t – ブトキシカルボニルアミノメチルー 3 – ヒドロキシー2-メチル-5-(1-ヒドロキシデシ 50 する試験化合物存在下の二量体の生成率から試験化合物

ル) ピリジン

1ープロモノナン2.1gおよびマグネシウム0.24 gからテトラヒドロフランを溶媒に用いて、常法に従っ てノニルマグネシウムプロミドを調製した。このテトラ ヒドロフラン溶液にU℃にてN-(tertーブトキシ カルボニル) ピリドキサミン 0.54 gを加えた。ゆっ くりと室温に戻しながら1晩撹拌した後、反応混合物に 塩化アンモニウム水溶液を加え塩化メチレンで抽出し た。この有機層を飽和食塩水で洗浄し、無水硫酸マグネ 4-tert-プトキシカルボニルアミノメチル-3- 10 シウムで乾燥した後、減圧下で溶媒を留去した。残留物 をシリカゲルカラムクロマトグラフィー (溶出溶媒:酢 酸エチル) にて精製し、4-tertープトキシカルボ ニルアミノメチルー3ーヒドロキシー5ー(1ーヒドロ キシデシル) -2-メチルピリジン0.22gを得た。 【0115】白色固体

18

'H-NMR (CDCl₄, 400MH_z) δppm: 0. 9 (3H, t, J = 6. 9Hz), 1. 2-1. 4 (14H, m), 1.6-1.9 (2H, m), 2.4(3H, s), 4 3 (2H, s), 4. 9-5. 0 (1H, m), 7.9(1H, s)

【0116】実施例5

4 アミノメチルー3ーヒドロキシー5ー(1ーヒドロ キシデシル) -2-メチルピリジン・二塩酸塩 4-tert-ブトキシカルボニルアミノメチルー3-ヒドロキシー2-メチルー5-(1-ヒドロキシデシ ル) ピリジン0. 22gに塩化水素-エタノール溶液を 加え、室温で5時間撹拌した。溶媒を減圧留去し、4-アミノメチルー3ーヒドロキシー5ー (1ーヒドロキシ デシル) -2-メチルピリジン・二塩酸塩0 19gを 30 得た。 、

【0117】白色固体

 $^{1}H-NMR$ (DMSO-d_G, 400MHz) δ pp m: 0.9 (3H, t, J=6.8Hz), 1.1-1. 5(15H, m), 1. 5-1. 7(1H, m), 2. 6 (3H, s), $4 \cdot 1 - 4 \cdot 3$ (2H, m), 4. 8-5. 0 (1H, m), 8. 2 (1H, s), 8.2-8.4 (3H, br)

【0118】実施例6

メイラード反応阻害活性試験

より結晶化し、4-アミノメチル-3-ヒドロキシ-5 40 リゾチーム、フルクトース並びに試験化合物をそれぞれ 10mg/m1、200mM、0. 2または2mMにな るよう0. 5Mリン酸ナトリウム緩衝液 (pH7. 4) に溶解し、37℃で1週間インキュペーションした。 【0119】インキュベーションサンプルをSDS-P AGEによって分離し、Coomassie Bril liant Blue R-250で染色後、デンシト メーターにて全蛋白に対する二量体の生成率を測定し

【0120】試験化合物非存在下の二量体の生成率に対

20

19

の阻害活性を求めた。

[0121]

*【表1】

*

化合物	阻害活性 (%)	
	薬物農度0.2mk	薬物濃度 2 mM
実施例 1	9 3 . 7	95.6
実施例 2		89.2
実施例3	1 3. 1	7 4 . 1
実施例 5	8 4 . 6	98.9
てミノグアニジン	2. 9	17.2

【0122】処方例1

, . . .

錠剤

主票 100mg トウモロコシデンプン 50mg 乳糖 70mg ヒドロキシプロピルセルロース 7mg ステアリン酸マグネシウム 3mg (合計230mg)

【0123】処方例2

細粒剤

主薬 100mg
マンニット 190mg
トウモロコシデンプン 100mg
ヒドロキシプロピルセルロース 10mg
(合計400mg)

【0124】処方例3

カプセル剤

主薬100mg乳糖18mg結晶セルロース35mgトウモロコシデンプン25mgステアリン酸マグネシウム2mg(合計180mg)

フロントページの続き

(72) 発明者 矢崎 敏和

(72)発明者 河西 潔

長野県南安曇郡穂高町大字有明5944-95

長野県南安曇郡穂高町大字柏原4509 キッ

(72)発明者 藤倉 秀紀 セイ第三青友寮

滕宮 秀紀 長野県松本市大字島内5000-3 サンライ (72)発明者 佐藤 文康

フ犬飼 A202 長野県松本市筑摩 2-12-3