Regression

```
Double-click (or enter) to edit
```

```
import numpy as np
import pandas as pd
```

df=pd.read_csv('/content/House Price India.csv')

df.head()

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	numb vie
	6762810145	42491	5	2.50	3650	9050	2.0	0	
	1 6762810635	42491	4	2.50	2920	4000	1.5	0	
:	2 6762810998	42491	5	2.75	2910	9480	1.5	0	
;	3 6762812605	42491	4	2.50	3310	42998	2.0	0	
	4 6762812919	42491	3	2.00	2710	4500	1.5	0	

5 rows × 23 columns

df.isnull().sum()

```
id
                                         0
Date
                                         0
number of bedrooms
                                         0
number of bathrooms
                                         0
living area
                                         0
lot area
number of floors
                                         0
waterfront present
                                         0
number of views
                                         0
condition of the house
                                         0
grade of the house
Area of the house(excluding basement)
Area of the basement
Built Year
Renovation Year
                                         0
Postal Code
                                         0
Lattitude
                                         0
Longitude
                                         0
                                         0
living_area_renov
lot_area_renov
                                         0
Number of schools nearby
                                         0
Distance from the airport
                                         0
Price
                                         0
dtype: int64
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14620 entries, 0 to 14619
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	id	14620 non-null	int64
1	Date	14620 non-null	int64

Assignmenty 2.ipynb - Colaboratory

2	number of bedrooms	14620	non-null	int64
3	number of bathrooms	14620	non-null	float64
4	living area	14620	non-null	int64
5	lot area	14620	non-null	int64
6	number of floors	14620	non-null	float64
7	waterfront present	14620	non-null	int64
8	number of views	14620	non-null	int64
9	condition of the house	14620	non-null	int64
10	grade of the house	14620	non-null	int64
11	Area of the house(excluding basement)	14620	non-null	int64
12	Area of the basement	14620	non-null	int64
13	Built Year	14620	non-null	int64
14	Renovation Year	14620	non-null	int64
15	Postal Code	14620	non-null	int64
16	Lattitude	14620	non-null	float64
17	Longitude	14620	non-null	float64
18	living_area_renov	14620	non-null	int64
19	lot_area_renov	14620	non-null	int64
20	Number of schools nearby	14620	non-null	int64
21	Distance from the airport	14620	non-null	int64
22	Price	14620	non-null	int64
	57 (54/4) : (54/40)			

dtypes: float64(4), int64(19)
memory usage: 2.6 MB

from sklearn.preprocessing import LabelEncoder

le=LabelEncoder()

df.head()

	id	Date	number of bedrooms	number of bathrooms	living area	lot area	number of floors	waterfront present	number of views	condition of the house	•••	Built Year	Renova
0	6762810145	42491	5	2.50	3650	9050	2.0	0	4	5		1921	
1	6762810635	42491	4	2.50	2920	4000	1.5	0	0	5		1909	
2	6762810998	42491	5	2.75	2910	9480	1.5	0	0	3		1939	
3	6762812605	42491	4	2.50	3310	42998	2.0	0	0	3		2001	
4	6762812919	42491	3	2.00	2710	4500	1.5	0	0	4		1929	

5 rows × 23 columns

x = df.iloc[:,0:4].values
y = df.iloc[:,4:5].values

from sklearn.model_selection import train_test_split

 $xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.3, random_state=0)$

xtrain.shape, xtest.shape ((10234, 4), (4386, 4))

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

regressor = Sequential()

```
regressor.add(Dense(4,activation='relu'))
regressor.add(Dense(12,activation='relu'))
regressor.add(Dense(8,activation='relu'))
regressor.add(Dense(9,activation='relu'))
regressor.add(Dense(1,activation='linear'))
regressor.compile(optimizer='adam',loss='mse',metrics=['mse'])
regressor.fit(xtrain,ytrain,batch_size=10,epochs=300)
  Fnoch 273/300
  Epoch 274/300
  1024/1024 [============== ] - 2s 2ms/step - loss: 4200702.5000 - mse: 4200702.5000
  Epoch 275/300
  Epoch 276/300
  Epoch 277/300
  1024/1024 [============== ] - 2s 2ms/step - loss: 4189655.0000 - mse: 4189655.0000
  Epoch 278/300
  Epoch 279/300
  Epoch 280/300
  Epoch 281/300
  1024/1024 [============== ] - 2s 2ms/step - loss: 4174928.7500 - mse: 4174928.7500
  Epoch 282/300
  Epoch 283/300
  Epoch 284/300
  Epoch 285/300
  Epoch 286/300
  Fnoch 287/300
  Epoch 288/300
  1024/1024 [============== ] - 2s 2ms/step - loss: 4149248.5000 - mse: 4149248.5000
  Epoch 289/300
  1024/1024 [=============== ] - 2s 2ms/step - loss: 4145592.7500 - mse: 4145592.7500
  Epoch 290/300
  Epoch 291/300
  Epoch 292/300
  1024/1024 [============== ] - 2s 2ms/step - loss: 4134633.7500 - mse: 4134633.5000
  Epoch 293/300
  Epoch 294/300
  Epoch 295/300
  1024/1024 [============== ] - 3s 3ms/step - loss: 4123681.7500 - mse: 4123681.7500
  Epoch 296/300
  Fnoch 297/300
  Epoch 298/300
  1024/1024 [=============== ] - 2s 2ms/step - loss: 4112757.7500 - mse: 4112757.7500
  Epoch 299/300
  Epoch 300/300
  <keras.callbacks.History at 0x7f8da9418eb0>
ypred = regressor.predict(xtest)
```

from sklearn.metrics import r2_score

```
r2_score(ytest,ypred)*100
     -374.53426194770475
ypred.flatten()
     array([303.58432, 303.58432, 303.58432, ..., 303.58432, 303.58432,
            303.58432], dtype=float32)
pd.DataFrame({'Actual value':ytest.flatten(),
              'Predicted value':ypred.flatten()}).head(10)
                                         1
         Actual value Predicted value
     0
                1440
                             303.58432
      1
                4270
                             303.58432
      2
                 1010
                             303.58432
```

```
303.58432
3
           1970
           2320
                         303.58432
5
           1390
                         303.58432
6
           4070
                         303.58432
7
           2050
                         303.58432
8
           6880
                         303.58432
9
           2690
                         303.58432
```

```
regressor.predict([[1000456,23235554,1232334,2]])
```

```
regressor.predict([[1000,2354,1234,2]])
```

```
1/1 [======] - 0s 44ms/step array([[-339.50894]], dtype=float32)
```