User: Grant Aarons Project: Assignment 4

```
name: Grant Aarons Assignment 4
   log: C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\logs\stata_4.smcl
log type: smcl
opened on: 13 Feb 2017, 15:37:54
 1 . * Use s or t to get smcl or text log file
  > Grant Aarons
  > gaarons@london.edu
  > Econometrics 1, London Business School
 3 . global programdir C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\programs
 4 . global datadir C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\data
5 . global outputdir C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\output
 6 . /*
  > Program: stata_41.do
   > Description: Introduction to econometrics in stata
7 .
 8 . *******************
  . ******************* START QUESTION 3 ******************
10 . ************
11 . do $programdir/stata_41.do
12 . /*
  > Grant Aarons
  > gaarons@london.edu
  > Econometrics 1, London Business School
  > Assignment 4
13 . * Load the data
14 . import excel "$datadir/problems.xls", sheet("problems12") firstrow clear
15 . * pause Dataset has been loaded
17 . * Generate all neccessary or helpful variables
18 . *gen datenum = year+(quarter-1)*(0.25)
19 . gen t = _n
20 . gen newt = tq(1948q1) + t - 1
21 . tsset newt, quarterly
          time variable: newt, 1948q1 to 2002q4 delta: 1 quarter
23 . gen cpta = (realconsumptionofnondurables + realconsumptionofservices)/population
24 . gen ypta = (realdisposableincome)/population
25 .
26 . * Prettier ways of doing this but whatever
27 . gen lcpta_1 = l.cpta
  (1 missing value generated)
28 . gen lcpta_2 = 1.lcpta_1
   (2 missing values generated)
29 . gen lcpta_3 = 1.lcpta_2
   (3 missing values generated)
30 . gen lcpta_4 = 1.lcpta_3
   (4 missing values generated)
```

```
Econometrics 1 Monday February 13 17:08:30 2017
31 . gen lcpta_5 = l.lcpta_4
          (5 missing values generated)
32 . gen lcpta_6 = 1.lcpta_5
          (6 missing values generated)
33 . gen lypta_1 = l.ypta
         (1 missing value generated)
34 .
35 . * first difference income per capita
         (1 missing value generated)
37 . *cpta add lag 1
38 . gen fd_cpta = cpta-lcpta_1
         (1 missing value generated)
39 . 40 . * Logical thing to do, take logs and then do all the generated variables again . . . ` \dot{}
42 . gen ln_ypta = ln(ypta)
43 . 44 . * Prettier ways of doing this but whatever \frac{1}{2\pi} = 
          (1 missing value generated)
46 . gen ln_lcpta_2 = l.ln_lcpta_1
         (2 missing values generated)
47 . gen ln_lcpta_3 = l.ln_lcpta_2
          (3 missing values generated)
48 . gen ln_lcpta_4 = 1.ln_lcpta_3
          (4 missing values generated)
49 . gen ln_lcpta_5 = l.ln_lcpta_4
         (5 missing values generated)
50 . gen ln_lcpta_6 = l.ln_lcpta_5
          (6 missing values generated)
51 . gen ln_lypta_1 = l.ln_ypta
         (1 missing value generated)
53 . * logarithm of first difference income per capita
54 . gen ln_fd_ypta = ln_ypta-ln_lypta_1
          (1 missing value generated)
55 . * logarithm of first difference consumption per capita
56 . gen ln_fd_cpta = ln_cpta-ln_lcpta_1
          (1 missing value generated)
58 . gen instrument1 = ln_lcpta_2 - ln_lcpta_3
         (3 missing values generated)
59 . gen instrument2 = ln_lcpta_3 - ln_lcpta_4
          (4 missing values generated)
60 . gen instrument3 = ln_lcpta_4 - ln_lcpta_5
          (5 missing values generated)
61 . gen instrument4 = ln_lcpta_5 - ln_lcpta_6
          (6 missing values generated)
```

```
Econometrics 1 Monday February 13 17:08:30 2017 Page 3
62 .
63 . *** Part A
64 . * Do the simple regression of C_t on 4 period lags of C_t and a constant
65 . reg cpta lcpta_1 lcpta_2 lcpta_3 lcpta_4
                                        MS
                                                     Number of obs
        Source
                                                     F(4, 211)
                                                                     > 99999.00
                                   4 .001205593
211 5.7561e-09
         Model
                   .004822372
                                                     Prob > F
                                                                          0.0000
                                                                     =
                                                                          0.9997
      Residual
                   1.2145e-06
                                                     R-squared
                                                                     =
                                                     Adj R-squared
                                                                     =
                                                                          0.9997
         Total
                  .004823586
                                   215 .000022435
                                                     Root MSE
                                                                          7.6e-05
```

216

cpta	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lcpta_1 lcpta_2 lcpta_3 lcpta_4 _cons	1.192335 1281352 .1443307 2074643 .0000244	.0673783 .1057009 .105489 .06753	17.70 -1.21 1.37 -3.07	0.000 0.227 0.173 0.002 0.207	1.059514 3365003 0636167 3405841 0000136	1.325156 .08023 .3522782 0743444 .0000623

```
67 . * Test the hypothesis that the beta_2 = beta_3 = beta_4 = 0 68 . test lcpta_2=lcpta_3=lcpta_4=0
```

- (1) lcpta_2 lcpta_3 = 0 (2) lcpta_2 lcpta_4 = 0 (3) lcpta_2 = 0

$$F(3, 211) = 8.41$$

 $Prob > F = 0.0000$

70 . *pause Part A completed

71 . 72 . *** Part B

73 . * Set up the LHS variable to match the C_t - C_{t-1} in the homework write up 74 . * Do the simple regression of C_t - C_{t-1} on first difference per capita income

75 . * and a constant 76 . reg fd_cpta fd_ypta

Source	SS	df	MS	Number of obs	=	219
				F(1, 217)	=	55.15
Model	2.8226e-07	1	2.8226e-07	Prob > F	=	0.0000
Residual	1.1105e-06	217	5.1177e-09	R-squared	=	0.2027
				Adj R-squared	=	0.1990
Total	1.3928e-06	218	6.3890e-09	Root MSE	=	7.2e-05

fd_cpta	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
fd_ypta _cons	.176198 .00006	.0237255 5.40e-06	7.43 11.12	0.000	.1294361 .0000494	.22296

```
78 . *pause Part B completed
```

79 .

80 . *** Part C

81 . * Take logs of the relevant variables before running any regressions

82 . * Run 2SLS with robust White standard errors as the question requests

83 . * Run the first stage regression, where we try to separate the endogeneity of 84 . * first difference output from residuals from regression of consumption on fd output

85 . reg ln_fd_ypta instrument1 instrument2 instrument3 instrument4

	Source	SS	df	MS	Number of obs	=	214
_					F(4, 209)	=	2.51
	Model	.000976969	4	.000244242	Prob > F	=	0.0430
	Residual	.020344562	209	.000097342	R-squared	=	0.0458
_					Adj R-squared	=	0.0276
	Total	.021321531	213	.000100101	Root MSE	=	.00987

ln_fd_ypta	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
instrument1	0185833	.1358824	-0.14	0.891	2864591	.2492925
instrument2	.3372076	.1367773	2.47	0.014	.0675677	.6068475
instrument3	.170375	.1363403	1.25	0.213	0984035	.4391535
instrument4	2218674	.1351864	-1.64	0.102	4883711	.0446363
_cons	.0039572	.0012099	3.27	0.001	.0015721	.0063423

86 . predict x_hat

(option \mathbf{xb} assumed; fitted values) (6 missing values generated)

87 . reg ln_fd_cpta x_hat, robust

Linear regression

Number of obs 214 F(1, 212) 4.59 = Prob > F = 0.0332 R-squared 0.0323 Root MSE .00513

_	ln_fd_cpta	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	x_hat	.4369222	.2038442	2.14	0.033	.0351009	.8387434
	_cons	.002613	.0012046	2.17	0.031	.0002384	.0049875

88 .

89 . * Should get the same results as the one-shot Stata command:

90 . ivregress 2sls ln_fd_cpta (ln_fd_ypta=instrument1 instrument2 instrument3 instrument4), robust

Instrumental variables (2SLS) regression

Number of obs 214 Wald chi2(1) = 4.65 Prob > chi2 = 0.0310 R-squared = 0.0685 Root MSE .00501

ln_fd_cpta	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ln_fd_ypta	.4369222	.2025541	2.16	0.031	.0399234	.833921
_cons	.002613	.0011573	2.26	0.024		.0048811

Instrumented: ln_fd_ypta

Instruments: instrument1 instrument2 instrument3 instrument4

92 . * The two results have exact same coefficient values, but the top two step that

93 . * I set up for 2 SLS has a larger SE because I have not corrected for the compounded SE

94 . * from the first stage. Should use 1 step command, because corrects for this which

95 . * I was not told to do, and do not want to do here.

97 . * In MATLAB, I will try to replicate the larger SE version that hasnt had correction

98 . * for regressor/regression compounding of the SE.

99 . *pause Part C completed

100 .

end of do-file

102 . log close _all

name: Grant Aarons Assignment 4
log: C:\Users\gaarons\Git\Notes\Stata\2016F\Metrics\logs\stata_4.smcl

log type: smcl

closed on: 13 Feb 2017, 15:37:54