

Maschinelles Lernen I - Grundverfahren V08 Grundlagen des Reinforcement Learning

Sommersemester 2018/2019
Prof. Dr. J.M. Zöllner, Karam Daaboul & Karl Kurzer

INSTITUT FÜR ANGEWANDTE INFORMATIK UND FORMALE BESCHREIBUNGSVERFAHREN INSTITUT FÜR ANTHROPOMATIK UND ROBOTIK

Einordnung von Reinforcement Learning

Daten werden generiert Belohnungsmaximierung $\max_{\tau} R(\tau)$

Reinforcement Learning

Daten sind nicht annotiert Strukturapproximation $x \approx x'$

Unüberwachtes Lernen Überwachtes Lernen

Daten sind annotiert Funktionsapproximation

$$x \rightarrow y$$

Lernen durch Belohnung/Bestrafung

Bedeutende Fortschritte

Grandmaster level in StarCraft II using multi-agent reinforcement learning

[Vinyals, 2019]

Solving the Rubik's Cube Without Human Knowledge

[McAleer, Agostinelli, Shmakov 2018]

Mastering the game of Go without human knowledge

[Silver, Schrittwieser, Simonyan 2017]

Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

[Silver, Hubert, Schrittwieser 2017]

Mastering the game of Go with deep neural networks and tree search

[Silver, Huang 2016]

Human-level control through deep reinforcement learning

[Mnih, Kavukcuoglu, Silver 2015]

Von Atari zu AlphaStar

06.12.2019

Atari

AlphaStar

Reinforcement Learning (RL)

- Bestandteile des RL ProblemsMarkov'scher Entscheidungsprozess
- Grundlegende Lösungsverfahren
 Dynamische Programmierung (DP)
 Monte Carlo Learning
 Temporal Difference Learning
- Reinforcement Learning Algorithmen SARSA Q-Learning
- DQN

Markov'scher Entscheidungsprozess (MDP)

- Formalisierung der sequentiellen Entscheidungsfindung
 - S ist ein endlicher Satz von Zuständen
 - A ist ein endlicher Satz von Aktionen
 - P ist die Transitionswahrscheinlichkeitsmatrix

$$\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

lacksquare ist die Belohnungsfunktion

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]$$

 $ightharpoonup \gamma$ ist der Diskontierungsfaktor $\in [0,1]$

Quelle: Sutton2017

Quelle: Wikipedia

Zustände und Beobachtungen

- lacktriangle Ein Zustand s ist eine vollständige Beschreibung des Zustands der Welt.
 - Es gibt keine Informationen, die dem Zustand verborgen bleiben.
 - Welt vollständig beobachtbar
- Eine Beobachtung o ist eine unvollständige Beschreibung des Zustands der Welt.
 - Es gibt Informationen, die der Beobachtung verborgen bleiben.
 - Welt unvollständig beobachtbar

Zustand

Beobachtung

Markov Eigenschaft

Definition

Ein Zustand erfüllt die Markov Eigenschaft wenn und nur wenn:

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

Die Zukunft ist unabhängig von der Vergangenheit, wenn man die Gegenwart betrachtet

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

Sobald der Zustand bekannt ist, kann die Historie verworfen werden

Aktionen

- Unterschiedliche Umgebungen ermöglichen unterschiedliche Arten von Aktionen.
- Die Menge aller gültigen Aktionen in einer bestimmten Umgebung wird als Aktionsraum bezeichnet.
- Aktionsräume können diskret oder kontinuierlich sein

Diskontierung

- Die meisten Markov Entscheidungsprozesse werden diskontiert! Warum?
 - Mathematisch praktisch
 - Vermeidet unendliche Belohnungen in zyklischen Markovprozessen
 - Impliziert Unsicherheit über die Zukunft
 - Verhalten von Tier und Mensch zeigt Präferenzen für sofortige Belohnungen

Modelle

- Ein Modell sagt voraus, was die Umgebung als n\u00e4chstes tun wird
- P prognostiziert den nächsten Zustand:

$$\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

 \blacksquare \mathcal{R} prognostiziert die nächste (unmittelbare) Belohnung:

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$$

Belohnung (Reward)

- lacktriangle Eine **Belohnung** R_t ist ein skalares Feedbacksignal
- Beschreibt die Güte der Aktion zum Zeitpunkt t
- Der Agent versucht die kummulierte Belohnung zu maximieren
- Basis für Reinforcement Learning ist die Belohnungshypothese

Definition

06.12.2019

Ziele können als Maximierung der kummulierten Belohnung beschrieben werden.

Strategie (Policy)

- \blacksquare Eine Strategie π beschreibt das Verhalten des Agenten
- Psychologisch gesehen: Reiz-Reaktions-Modell
 - Abhängig vom aktuellen Zustand
 - **Deterministische Strategie**: $a = \pi(s)$
 - Stochastische Strategie: $a \sim \pi(\cdot | s)$
 - $\blacksquare \ \pi(a|s) = \mathbb{P}[A_t = a \mid S_t = s]$
 - **2.B.** Gaussverteilung: $\alpha \sim N(\mu(s); \sigma(s)^2)$

Stochastische Strategie 1.0 $\mu = 0, \quad \sigma^2 = 0.2, \quad \mu = 0, \quad \sigma^2 = 1.0, \quad \mu = 0, \quad \sigma^2 = 5.0, \quad \mu = -2, \quad \sigma^2 = 0.5, \quad \mu = -2, \quad \sigma^2 = 0.5, \quad \sigma^2$

Zustandswertfunktion (State Value Function)

V-Funktion $\rightarrow V(s)$

- Die Bewertungsfunktion ist eine Vorhersage der zukünftigen Belohnung
- Bewertet die Güte eines Zustands

$$V_{\pi}(s) = \sum_{a \in A} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V_{\pi}(s') \right)$$

Definition

06.12.2019

Die Zustandswertfunktion eines MDP ist die erwartete kummulierte Belohnung ausgehend vom Zustand s wenn im folgenden die Strategie π verfolgt wird.

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1}) | S_t = s]$$

Aktionswertfunktion (Action Value Function)

Q-Funktion $\rightarrow Q(s, a)$

- Die Bewertungsfunktion ist eine Vorhersage der zukünftigen Belohnung
- Bewertet die Güte einer Aktion in einem Zustand

$$Q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \sum_{a' \in A} \pi(a'|s') Q_{\pi}(s',a')$$

Definition

06.12.2019

Die Aktionswertfunktion eines MDP ist die erwartete kummulierte Belohnung ausgehend vom Zustand s und der Aktion a wenn im folgenden die Strategie π verfolgt wird.

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma Q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Optimale Wertfunktionen

Die optimale Zustandswertfunktion ist der Maximalwert über alle Strategien

$$V^*(s) = \max_{\pi} V_{\pi}(s)$$

Die optimale Aktionswertfunktion ist der Maximalwert über alle Strategien

$$Q^*(s,a) = \max_{\pi} Q_{\pi}(s,a)$$

- Die optimale Wertfunktion gibt den bestmöglichen Wert eines MDP an
- Ein MDP ist gelöst, wenn die optimale Wertfunktion bekannt ist

06.12.2019

Bellman Optimalitätsgleichung

Bellman Optimalitätsgleichung für die Zustandswertfunktion

$$V^*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V^*(s') \right)$$

Bellman Optimalitätsgleichung für die Aktionswertfunktion

$$Q^*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \max_{a'} Q^*(s',a')$$

Reinforcement Learning (RL)

- Bestandteile des RL Problems Markov'scher Entscheidungsprozess
- Grundlegende Lösungsverfahren
 Dynamische Programmierung (DP)
 Monte Carlo Methoden
 Temporal Difference Learning
- Reinforcement Learning Algorithmen SARSA Q-Learning
- DQN

Institut AIFB

Beispiel – Grid World

Initiale Strategie

	ı	ı	I	1
V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
→	↓	↔	 	←
↓	,	,	•	+
V: 0.00	V: 0.00			V: 0.00
+				R: -0.2 †
	↔			``` ĕ -[
•				'
V: 0.00	V: 0.00		V: 0.00	V: 0.00
+	R: -0.2		R: 1.0_1	
↑	\``` ° * ↓}		```	←]
•				'
V: 0.00	V: 0.00		V: 0.00	V: 0.00
•				
	↔		↔	←
Y	·			•
V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
 				+
	←๋	←┻→	↑	+
	l	<u> </u>		

- **Zustandsraum** $S \in [0,24]$
- Aktionsraum $a(s) \forall S \in$ [hoch, runter, links, rechts]
- Transitionswahrscheinlichkeitsmatrix $\mathcal{P}_{ss'}^a$ ist deterministisch
- \blacksquare \mathcal{R} die Belohnungsfunktion \mathcal{R}_s^a ist deterministisch
- Belohnung bei Ausführung der Aktion in Zustand
- Diskontierungsfaktor $\gamma = 0.9$

Dynamische Programmierung (DP) – Policy Iteration

 $\hat{\pi}^*$ Schätzung von π^* Initialisiere V(s) und $\hat{\pi}^*(s) \in A(s) \ \forall \ s \in S$ zufällig

1. Strategieevaluation

Wiederhole bis $\Delta \leq \epsilon$

$$\Delta \leftarrow 0$$

Für alle $s \in S$

$$v \leftarrow V(s)$$

$$V_{\widehat{\pi}^*}(s) \leftarrow \mathcal{R}_s^{\widehat{\pi}^*(s)} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{\widehat{\pi}^*(s)} V_{\widehat{\pi}^*}(s')$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

2. Strategieverbesserung

$$\hat{\pi}^* \leftarrow \hat{\pi}^{*'}$$

Für alle $s \in S$

$$\hat{\pi}^{*'}(s) \leftarrow \arg\max_{a} \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} V_{\widehat{\pi}^{*}}(s')$$

Wenn $\hat{\pi}^* = \hat{\pi}^{*'}$, dann terminiere

Sonst evaluiere $\hat{\pi}^{*'} \rightarrow$ Evaluierung Strategie

Initiale Strategie

V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
L	₩	₩	₩	
V: 0.00	V: 0.00			V: 0.00
†	‡			R: -0.2
V: 0.00	V: 0.00		V: 0.00	V: 0.00
†	R: -0.2		R: 1.0 ↔	-
V: 0.00	V: 0.00		V: 0.00	V: 0.00
1	+		+	-
V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
<u> </u>	़ ♣	₊ ‡₊	₊ ‡₊	

Strategieevaluation (Schritt 1)

V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
	₩	₩	₩	≒
V: 0.00	V: 0.00			V: -0.20
†	↔			R: -0.2
V: 0.00	V: -0.20		V: 1.00	V: 0.00
↓ →	R: -0.2		R: 1.0	-‡
V: 0.00	V: 0.00		V: 0.00	V: 0.00
†	+}		+	-
V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
<u></u>	₊ ± ,	↔	♣\$	↓

$$V_{\widehat{\pi}^*}(s) \leftarrow \mathcal{R}_s^{\widehat{\pi}^*(s)} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{\widehat{\pi}^*(s)} V_{\widehat{\pi}^*}(s')$$

Strategieevaluation (Schritt 2)

V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: -0.09
L	₩	₩	₩	
V: 0.00	V: -0.05			V: -0.26
!	++			R: -0.2
V: -0.06	V: -0.25		V: 1.00	V: 0.24
!	R: -0.2		R: 1.0	-
V: 0.00	V: -0.05		V: 0.23	V: 0.00
↑	+		+	-
V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
<u></u>	↓	↓	↓	

Strategieevaluation (Schritt 3)

V: 0.00		V: -0.01	V: 0.00	V: -0.03	V: -0.12
1	,	₩	₩	↓	⋾
V: -0.03		V: -0.07			V: -0.23
1	}	‡			R: -0.2
V: -0.07		V: -0.29		V: 1.00	V: 0.22
1	}	R: -0.2		R: 1.0	†
V: -0.03		V: -0.07		V: 0.28	V: 0.14
1	}	+		‡	+
V: 0.00		V: -0.01	V: 0.00	V: 0.07	V: 0.00
1	<u></u>	↓	↔	↓	↓
		^*/ \		^ *()	

$$V_{\widehat{\pi}^*}(s) \leftarrow \mathcal{R}_s^{\widehat{\pi}^*(s)} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{\widehat{\pi}^*(s)} V_{\widehat{\pi}^*}(s')$$

Strategieverbesserung (Schritt 4)

Strategieevaluation (Schritt 5)

$$V_{\widehat{\pi}^*}(s) \leftarrow \mathcal{R}_s^{\widehat{\pi}^*(s)} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{\widehat{\pi}^*(s)} V_{\widehat{\pi}^*}(s')$$

Strategieevaluation (Schritt 6)

Strategieevaluation (Schritt 7)

$$V_{\widehat{\pi}^*}(s) \leftarrow \mathcal{R}_s^{\widehat{\pi}^*(s)} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{\widehat{\pi}^*(s)} V_{\widehat{\pi}^*}(s')$$

Strategieevaluation (Schritt 19)

$$V_{\widehat{\pi}^*}(s) \leftarrow \mathcal{R}_s^{\widehat{\pi}^*(s)} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{\widehat{\pi}^*(s)} V_{\widehat{\pi}^*}(s')$$

Strategieverbesserung (Schritt 20)

Dynamische Programmierung (DP) – Value Iteration

 $\hat{\pi}^*$ Schätzung von π^* Initialisiere V(s) und $\hat{\pi}^*(s) \in A(s) \ \forall \ s \in S$ zufällig

1. Strategie evaluation

Wiederhole bis $\Delta \leq \epsilon$

$$\Delta \leftarrow 0$$

Für alle $s \in S$

$$v \leftarrow V(s)$$

$$V_{\widehat{\pi}^*}(s) \leftarrow \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V^*(s') \right)$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

2. Strategiebestimmung

Für alle $s \in S$

$$\hat{\pi}^*(s) \leftarrow \arg\max_{a} \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V_{\hat{\pi}^*}(s')$$

Evaluation/Verbesserung (Schritt 1/2)

V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
┌	₩	₩	₩	←
V: 0.00	V: 0.00			V: -0.20
† →	↓			R: -0.2
V: 0.00	V: -0.20		V: 1.00	V: 0.00
1	R: -0.2		R: 1.0	←
V: 0.00	V: 0.00		V: 0.00 ↑	V: 0.00
	₩			-
V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
Ĺ,	↔	↔	₊ ‡	

Evaluation/Verbesserung (Schritt 3/4)

V: 0.00	V: 0.00	V: 0.00	V: 0.00	V: 0.00
L	₩	₩	₩	←
V: 0.00	V: 0.00			V: -0.20
†	↓			R: -0.2
V: 0.00	V: -0.20		V: 1.00	V: 0.90
1	R: -0.2		R: 1.0	←
V: 0.00	V: 0.00		V: 0.90 ↑	V: 0.00
↑	₩			🗗
V: 0.00	V: 0.00	V: 0.00	V: 0.00↑	V: 0.00
<u></u>	,	↓		<u></u>

$$V_{\widehat{\pi}^*}(s) \leftarrow \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V^*(s') \right)$$

Evaluation/Verbesserung (Schritt 5/6)

Evaluation/Verbesserung (Schritt 7/8)

$$V_{\widehat{\pi}^*}(s) \leftarrow \max_{\alpha} \left(\mathcal{R}_s^{\alpha} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{\alpha} V^*(s') \right)$$

Evaluation/Verbesserung (Schritt 9/10)

Evaluation/Verbesserung (Schritt 11/12)

$$V_{\widehat{\pi}^*}(s) \leftarrow \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V^*(s') \right)$$

Evaluation/Verbesserung (Schritt 13/14)

Evaluation/Verbesserung (Schritt 15/16)

$$V_{\widehat{\pi}^*}(s) \leftarrow \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V^*(s') \right)$$

Evaluation/Verbesserung (Schritt 17/18)

$$V_{\widehat{\pi}^*}(s) \leftarrow \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a V^*(s') \right)$$

Policy Iteration (Schritt 20)

Monte Carlo Methoden (MC)

- lernen direkt aus Erfahrungsepisoden
- sind modellfrei: benötigt kein Wissen über MDP-Übergänge / Belohnungen
- lernen aus kompletten Episoden: kein Bootstrapping
- verwenden die einfachste Idee: Wert = durschnittliche Belohnung
- Problem: kann nur auf episodische MDPs angewendet werden
 - Alle Episoden müssen terminieren

06.12.2019

Monte Carlo Methoden (MC) – Exploring Starts

 $\hat{\pi}^*$ Schätzung von π^*

Initialisiere $\hat{V}^*(s) \forall s \in S$ zufällig

Wiederhole:

Generiere Episode mit $\hat{\pi}^*$ von zufälligem Zustand mit zufälliger Aktion

Für alle Tupel s, a der Episode (von s_T zu s_0):

 $G \leftarrow \text{Entlohnung welche auf } s_t, a_t \text{ folgt}$

Füge G zu Entlohnungen(s, a) hinzu

 $\hat{Q}_{\pi^*}(s, a) \leftarrow Durchschnitt(Entlohnungen(s, a))$

Bestimmung Aktionswertfunktion

Für jedes *s* der Episode:

$$\hat{\pi}^*(s) \leftarrow \arg\max_{a} \hat{Q}_{\pi^*}(s, a)$$

Verbesserung Strategie

06.12.2019

Temporal-Difference Learning (TD)

- lernt direkt aus Erfahrungsepisoden
- ist modellfrei: benötigt kein Wissen über MDP-Übergänge / Belohnungen
- lernt aus unvollständigen Episoden, durch Bootstrapping
- aktualisiert eine Schätzung mit einer Schätzung

Temporal-Difference Prediction (TD)

 \widehat{Q}_{π^*} Schätzung von Q_{π^*} $\hat{\pi}^*$ Schätzung von π^* α Lernrate

Wiederhole:

Generiere Episode mit $\hat{\pi}^*$

Für alle Tupel *s*, a, R der Episode:

$$\widehat{Q}_{\pi^*}(s,a) \leftarrow \widehat{Q}_{\pi^*}(s,a) + \alpha \left[R + \gamma \widehat{Q}_{\pi^*}(s',\widehat{\pi}^*(s)) - \widehat{Q}_{\pi^*}(s,a) \right]$$

Bestimmung Aktionswertfunktion

Für jedes *s* der Episode:

$$\hat{\pi}^*(s) \leftarrow \arg\max_{a} \hat{Q}_{\pi^*}(s, a)$$

Verbesserung Strategie

Bootstrapping und Sampling

Bootstrapping (shallow backups)

Aktualisierung beruht auf Schätzung

- Dynamische Programmierung
- Temporal Difference Learning

Sampling (sample backups)

Aktualisierung beruht auf Erwartungswert

- Monte Carlo Methoden
- Temporal Difference Learning

Quelle: Silver2015

Reinforcement Learning (RL)

- Bestandteile des RL ProblemsMarkov'scher Entscheidungsprozess
- Grundlegende Lösungsverfahren
 Dynamische Programmierung (DP)
 Monte Carlo Methoden
 Temporal Difference Learning
- Reinforcement Learning Algorithmen SARSA Q-Learning
- DQN

SARSA - (State, Action, Reward, State, Action)

Initialisiere $Q(s, a) \forall s \in S, a \in A(s)$ zufällig

Wiederhole (für jede Episode):

Initialisiere s

Wähle a von s mit Strategie abgeleitet von Q (z.B. ϵ -greedy)

Wiederhole (für jeden Schritt der Episode):

Nimm Aktion a, beobachte R, s'

Wähle a' von s' mit Strategie abgeleitet von Q (z.B. ϵ -greedy)

$$Q(s,a) \leftarrow Q(s,a) + \alpha [R + \gamma Q(s',a') - Q(s,a)]$$

 ϵ -greedy

$$a = \begin{cases} \arg\max_{a} Q(s, a), & x \sim U[0, 1] < \epsilon \\ a \in A(s), & x \sim U[0, 1] \ge \epsilon \end{cases}$$

Q-Learning

Initialisiere $Q(s, a) \forall s \in S, a \in A(s)$ zufällig

Wiederhole (für jede Episode):

Initialisiere s

Wiederhole (für jeden Schritt der Episode):

Wähle a von s mit Strategie abgeleitet von Q (z.B. ϵ -greedy)

Nimm Aktion a, beobachte R, s'

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[R + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

 ϵ -greedy

$$a = \begin{cases} \arg\max_{a} Q(s, a), & x \sim U[0, 1] < \epsilon \\ a \in A(s), & x \sim U[0, 1] \ge \epsilon \end{cases}$$

On-Policy Learning / Off-Policy Learning

- On-Policy Methoden evaluieren oder verbessern die Strategie, welche verwendet wird um Entscheidungen zu treffen
- "Learning on the job"

- Off-Policy Methoden evaluieren oder verbessern eine Strategie, welche sich von der Strategie unterscheidet um Entscheidungen zu generieren
- "Look over someone's shoulder"

Exploration vs Exploitation

- Reinforcement Learning ist Trial-and-Error-Lernen
- Aktionen müssen undendlich oft ausprobiert werden
- Änderung der Suchstrategie von global (Exploration) zu lokal (Exploitation) während des Lernprozesses
- Beispiel: ε-greedy/decreasing
 - Folge Strategie $\pi(s)$ mit Wahrscheinlichkeit 1ϵ , sonst zufällige Aktion
 - Epsilon konvergiert im Laufe des Trainings gegen 0, $\epsilon = \frac{1}{n+1}$

Lernen von Aktionssequenzen

- Belohnung erst nach einer Sequenz von Aktionen bekannt
 - Schach: Züge bauen aufeinander auf (nicht nur der einzelne Zug relevant)
- Belohnung erst am Ziel
 - Schach: erst am Spielende ist klar wer gewonnen hat
- → bei langen Aktionssequenzen kann erst am Ende der Sequenz gelernt werden
- → frühere Aktionen können für den schlechten Ausgang verantwortlich sein

Die Vorwärtssicht TD(λ)

- Aktualisiert die Bewertungsfunktion in Richtung der λ-Entlohnung
- Vorfwärtssicht schaut in die Zukunft um die Entlohnung zu berechnen
- Ähnlich zu Monte Carlo: kann nur für terminierte Episoden berechnet werden

Quelle: Sutton2017

Die Rückwärtssicht TD(λ) und Eligibility Traces

- Erstelle eine Verantwortlichkeitsspur für jeden Zustand
- \bullet δ_t : TD Fehler, rückwärts gerichtet auf gerade besuchten Zustand
- \blacksquare $E_t(s)$: Verantwortlichkeitsspur

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

Quelle: Sutton2017

Taxonomie des Reinforcement Learning

- Bewertungsbasiert
 - Keine Strategie
 - Bewertungsfunktion
- Strategiebasiert
 - Strategie
 - Keine Bewertungsfunktion
- Actor Critic
 - Strategie
 - Bewertungsfunktion

RL mit Funktionsapproximation – Deep RL

- Warum?
 - Reinforcement Learning wird häufig auf komplexen Problemen angewandt
 - Backgammon: 10²⁰ Zustände
 - Go: 10¹⁷⁰ Zustände
 - StarCraft II: quasi kontinuierlich
 - Unmöglich alle Werte in Tabelle zu speichern
- Wie?
 - Linearkombination von Merkmalen
 - Neurale Netze

Quelle: Silver2015

Reinforcement Learning (RL)

- Bestandteile des RL ProblemsMarkov'scher Entscheidungsprozess
- Grundlegende Lösungsverfahren
 Dynamische Programmierung (DP)
 Monte Carlo Methoden
 Temporal Difference Learning
- Reinforcement Learning Algorithmen SARSA Q-Learning
- DQN

Q-Learning

Initialisiere $Q(s, a) \forall s \in S, a \in A(s)$ zufällig

Wiederhole (für jede Episode):

Initialisiere s

Wiederhole (für jeden Schritt der Episode):

Wähle a von s mit Strategie abgeleitet von Q (z.B. ϵ -greedy)

Nimm Aktion a, beobachte r, s'

$$T = r + \gamma \max_{\alpha'} Q(s', a')$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha [T - Q(s, a)]$$

Temporal Difference Error

 ϵ -greedy

$$a = \begin{cases} \arg\max_{a} Q(s, a), & x \sim U[0, 1] < \epsilon \\ a \in A(s), & x \sim U[0, 1] \ge \epsilon \end{cases}$$

Q-Learning mit Funktionsapproximation

Initialisiere $Q_{\theta}(s, a) \ \forall \ s \in S, a \in A(s)$ zufällig

Wiederhole (für jede Episode):

Initialisiere s

Wiederhole (für jeden Schritt der Episode):

Wähle a von s mit Strategie abgeleitet von Q (z.B. ϵ -greedy)

Nimm Aktion a, beobachte r, s'

$$T = r + \gamma \max_{a'} Q_{\theta}(s', a')$$

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathbb{E}_{s' \sim \mathcal{P}_{ss'}^{a}} [(T - Q_{\theta}(s, a))^{2}]$$
nicht stationär

Korrelation

 ϵ -greedy

$$a = \begin{cases} \arg\max_{a} Q(s, a), & x \sim U[0, 1] < \epsilon \\ a \in A(s), & x \sim U[0, 1] \ge \epsilon \end{cases}$$

Target Network

- Das Target (Sollwert) wird nicht mit den aktuellen Aktionswerten des Netzes berechnet, sondern mit einer niederfrequent aktualisierten Kopie des Netzes
 - Periodische Aktualisierung des Target Network

$$T = R + \gamma \max_{a'} Q_{\theta'}(s', a')$$

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathbb{E}_{s' \sim \mathcal{P}_{ss'}^{a}} [(T - Q_{\theta}(s, a))^{2}]$$

- Stabileres Training
 - Bricht die Korrelation von Aktionswert (Q) und Target
 - Resultiert in einer statischeren Verteilung der Labels

Experience Replay

- Ein endlicher Erfahrungsspeicher aus welchem zufällige Erfahrungen (s_t, a_t, r_t, s_{t+1}) gezogen werden um zu lernen
 - Erfahrungen werden zunächst im Erfahrungsspeicher gespeichert
 - Um zu lernen werden Minibatches aus zufälligen Erfahrungen aus dem Erfahrungsspeicher erstellt
- Stabileres Training
 - Bricht die Korrelation von Erfahrungen welche durch Trajektorien entstehen
 - Resultiert in einer statischeren Verteilung der Daten
 - Führt zu besserer Dateneffizienz

Deep Q-Learning

Initialisiere Erfahrungspuffer D mit Kapazität N Initialisiere Q_{θ} mit zufälligen Gewichten θ

Initialisiere $Q_{\theta'}$ mit $\theta' = \theta$

Wiederhole (für jede Episode):

Initialisiere s

Wiederhole (für jeden Schritt der Episode):

Wähle a von s mit Strategie abgeleitet von Q

Nimm Aktion a, beobachte r, s'

Speicher Erfahrung (s, a, r, s') in D

Ziehe eine zufällige Stichprobe von Erfahrungen aus D

$$T = \begin{cases} r & \text{Falls die Episode im nächsten Schritt terminiert} \\ r + \gamma \max_{a'} Q_{\theta'}(s', a') & \text{ansonsten} \end{cases}$$

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathbb{E}_{s' \sim \mathcal{P}_{ss'}^{a}} \left[\left(T - Q_{\theta}(s, a) \right)^{2} \right]$$

Alle C Schritte $Q_{\theta'} = Q_{\theta}$

Learning How to Drive in a Real World Simulation with Deep Q-Networks

Charakteristika – Q-Learning

- Strategie wird nur implizit gelernt/verbessert
- Lernt deterministische Strategien
- Generell weniger stabil (siehe Erweiterungen)
- Dateneffizient (Off-Policy)
- Diskrete Aktionsräume

Lernen und Planen

Zwei grundlegende Probleme bei der sequentiellen Entscheidungsfindung

- Reinforcement Learning
 - Die Umgebung ist zunächst unbekannt
 - Der Agent interagiert mit der Umgebung
 - Der Agent verbessert seine Strategie
- Planen

- Ein Modell der Umgebung ist bekannt
- Der Agent führt mit seinem Modell Berechnungen durch (ohne externe Interaktion)
- Der Agent verbessert seine Strategie

Literatur

- R. Sutton 2018 "Reinforcement Learning: An Introduction"
- S. Levine 2018 "Deep Reinforcement Learning" (Berkley Course on RL)
- P. Abbeel 2017 "Deep RL Bootcamp" (Berkley Course on RL)
- D. Silver 2015 "Reinforcement Learning" (UCL Course on RL)
- OpenAi 2018 "SpinningUp"