$\begin{array}{c} \textbf{Projeto Mathematical Ramblings} \\ \textbf{mathematical ramblings.blogspot.com} \end{array}$

Seja V o espaço vetorial de todas as funções em t sobre \mathbb{R} , mostre que $\sin t$ e $\cos t$ são linearmente independentes.

Demonstração:

Basta mostrar que, se $a(\sin t) + b(\cos t) = 0$ (I), então a = b = 0.

Integrando (I) de 0 a π :

$$a \int_0^{\pi} \sin t \ dt + b \int_0^{\pi} \cos t \ dt = 0 \ \Rightarrow \ 2a = 0 \ \Rightarrow \ a = 0 \ \left(\text{II} \right)$$

Substituindo (II) em (I): b = 0.

Quod Erat Demonstrandum.

Documento compilado em Sunday 23rd May, 2021, 20:23, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso:

S

NC

NC

SA

 ${\it Atribuição-Não Comercial-Compartilha Igual~(CC~BY-NC-SA)}.$