Job No.: 412miranda rob carport Address: 45b Baigent Road, Miranda, New Zealand Date: 29/07/2024

Latitude: -37.209456 Longitude: 175.31877 Elevation: 48 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4 m
Wind Region	NZ1	Terrain Category	2.04	Design Wind Speed	41.29 m/s
Wind Pressure	1.02 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp, i = -0.3

For roof CP,e from 0 m To 1.83 m Cpe = -0.9867 pe = -0.90 KPa pnet = -1.10 KPa

For roof CP,e from 1.83 m To 3.65 m Cpe = -0.8567 pe = -0.78 KPa pnet = -0.98 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward $\,$ CP,e $\,$ from 0 m $\,$ To 8 m $\,$ Cpe = 0.7 $\,$ pe = 0.64 KPa $\,$ pnet = 0.95 KPa

For side wall CP,e from 0 m To 3.65 m Cpe = pe = -0.60 KPa pnet = -0.60 KPa

Maximum Upward pressure used in roof member Design = 1.10 KPa

Maximum Downward pressure used in roof member Design = 0.40 KPa

Maximum Wall pressure used in Design = 0.95 KPa

Maximum Racking pressure used in Design = 1.04 KPa

Design Summary

Purlin Design

Purlin Spacing = 800 mm Purlin Span = 5850 mm Try Purlin 250x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.97

K8 Upward =0.54 S1 Downward =12.68 S1 Upward =22.76

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	1.16 Kn-m	Capacity	3.40 Kn-m	Passing Percentage	293.10 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.64 Kn-m	Capacity	4.53 Kn-m	Passing Percentage	171.59 %
$M_{0.9D\text{-W}nUp}$	-2.99 Kn-m	Capacity	-3.16 Kn-m	Passing Percentage	105.69 %
V _{1.35D}	0.79 Kn	Capacity	12.06 Kn	Passing Percentage	1526.58 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 1.64 Kn Capacity 16.08 Kn Passing Percentage 980.49 % $V_{0.9D-WnUp}$ -2.05 Kn Capacity -20.10 Kn Passing Percentage 980.49 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 16.21 mm

Limit by Woolcock et al, 1999 Span/240 = 24.17 mm

Deflection under Dead and Service Wind = 18.92 mm

Limit by Woolcock et al, 1999 Span/100 = 58.00 mm

Reactions

Maximum downward = 1.64 kn Maximum upward = -2.05 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design External

External Rafter Load Width = 3000 mm External Rafter Span = 7831 mm Try Rafter 360x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.81

K8 Upward =0.81 S1 Downward =17.01 S1 Upward =17.01

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	7.76 Kn-m	Capacity	17.70 Kn-m	Passing Percentage	228.09 %
$M_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	16.10 Kn-m	Capacity	23.60 Kn-m	Passing Percentage	146.58 %
$M_{0.9D\text{-W}nUp}$	-20.12 Kn-m	Capacity	-29.50 Kn-m	Passing Percentage	146.62 %
V _{1.35D}	3.96 Kn	Capacity	27.61 Kn	Passing Percentage	697.22 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	8.22 Kn	Capacity	36.82 Kn	Passing Percentage	447.93 %
$ m V_{0.9D-WnUp}$	-10.28 Kn	Capacity	-46.02 Kn	Passing Percentage	447.67 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 24.94 mm

Limit by Woolcock et al, 1999 Span/240= 33.33 mm

Deflection under Dead and Service Wind = 29.10 mm

Limit by Woolcock et al, 1999 Span/100 = 80.00 mm

Reactions

Maximum downward = 8.22 kn Maximum upward = -10.28 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -50.09 kn > -10.28 Kn

Single Shear Capacity under short term loads = -14.56 Kn > -10.28 Kn

Intermediate Design Sides

Intermediate Spacing = 4000 mm Intermediate Span = 3499 mm Try Intermediate 2x200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =11.27 S1 Upward =0.70

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 2.91 Kn-m
 Capacity
 7.46 Kn-m
 Passing Percentage
 256.36 %

 V0.9D-WnUp
 3.32 Kn
 Capacity
 32.16 Kn
 Passing Percentage
 968.67 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 20.61 mm Limit by Woolcock et al, 1999 Span/100 = 34.99 mm

Reactions

Maximum = 3.32 kn

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 3000 mm Try Girt SG8 Dry

Moisture Condition = Wet (Moisture in timber is less than 18% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = NaN

K8 Upward =NaN S1 Downward =NaN S1 Upward =NaN

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.00 Kn-m Capacity NaN Kn-m Passing Percentage NaN % V0.9D-WnUp 0.00 Kn Capacity 0.00 Kn Passing Percentage NaN %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = NaN mm

Limit by Woolcock et al, 1999 Span/100 = 30.00 mm

Sag during installation = NaN mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 4000 mm

Try Girt 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.50 S1 Downward =11.27 S1 Upward =23.76

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.71 Kn-m	Capacity	1.87 Kn-m	Passing Percentage	109.36 %
V _{0.9D-WnUp}	1.71 Kn	Capacity	16.08 Kn	Passing Percentage	940.35 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 12.76 mm

Limit by Woolcock et al. 1999 Span/100 = 40.00 mm

Sag during installation =15.52 mm

Reactions

Maximum = 1.71 kn

End Pole Design

Geometry For End Bay Pole

Geometry

200 UNI H5	Dry Use	Height	3640 mm
Area	31400 mm2	As	23550 mm2
Ix	78500000 mm4	Zx	785000 mm3
Iy	78500000 mm4	Zx	785000 mm3

 $Lateral\ Restraint \\ \hspace{2.5cm} mm\ c/c$

Loads

Total Area over Pole = 24 m^2

Dead	6.00 Kn	Live	6.00 Kn
Wind Down	9.60 Kn	Snow	0.00 Kn
Moment Wind	9.34 Kn-m		
Phi	0.8	K8	0.76

K1 snow 0.8 K1 Dead 0.6

K1wind 1

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	343.00 Kn	PhiMnx Wind	16.35 Kn-m	PhiVnx Wind	55.77 Kn
PhiNcx Dead	205.80 Kn	PhiMnx Dead	9.81 Kn-m	PhiVnx Dead	33.46 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.63 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.39 < 1 OK$

Deflection at top under service lateral loads = 30.33 mm < 39.90 mm

Ds = 0.6 mm Pile Diameter

L= 1500 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 24 m^2

Moment Wind = 9.34 Kn-m Shear Wind = 3.11 Kn

Pile Properties

Safety Factory 0.55

Hu = 6.68 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.94 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.78 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

6/7

L = 1500 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 9.34 Kn-m Shear Wind = 3.11 Kn

Pile Properties

Safety Factory 0.55

Hu = 6.68 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.94 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.78 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1500) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1500)

Skin Friction = 18.17 Kn

Weight of Pile + Pile Skin Friction = 23.08 Kn

Uplift on one Pile = 21.00 Kn

Uplift is ok