

# Erweitertes Datenmanagement in R im tidyverse

**Prof. Dr. Rainer Stollhoff** 

Vgl.

R for Data Science, Grolemund & Wickham, http://r4ds.had.co.nz/exploratory-data-analysis.html

## Agenda

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

- Daten einlesen
- Daten transformieren

#### Daten einlesen



## read \* tibble



#### Daten einlesen



Input File "Nr" "Gebiet" "gehört zu", "Wahlberechtigte", "Wähler" "Ungült" ^
1. "Flensburg - Schleswig" 1, 228471, 171914, 1596, 170318, 68120, 4
2. "Nordfriesland - Dithmarschen Nord" 1, 186568, 139194, 1197, 1:
3. "Steinburg - Dithmarschen Nord" 1, 186568, 139194, 1197, 1:
3. "Steinburg - Dithmarschen Süd" 1, 176636, 132017, 1134, 120883, 4. "Rendsburg-Eckernforde", 1, 200811, 15734, 1224, 13049, 53109, 3672, 5, Kiel", 1, 204650, 153273, 1594, 151679, 46560, 46991, 11114, 21743, 6, "Plon - Neuminster", 1, 174937, 131713, 1224, 130489, 53109, 3772, 7, "Pinneberg", 1, 238533, 187715, 1620, 186095, 73816, 56460, 111270, 8, "Segeberg - Stormarn-Nitte", 1, 247296, 193280, 1508, 191772, 788, 5926berg - Stormarn-Nord", 1, 181522, 138439, 1150, 137289, 10, "Herzogtum Lauenburg - Stormarn-Süd", 1, 244930, 19334, 1569, 11, "Lubeck", 1, 181638, 130961, 2228, 12873, 3, 4532, 45378, 5, 16785, 12, "Schwerin - Ludwigslust-Parchim I - Nordwestmecklenburg II - Landkri, 1, Rostock - Landkreis Rostock II", 13, 22913, 164016, 1777, 16; 15, "Vorpommern-Rugen - Vorpommern-Gerifswald I", 13, 240887, 165 "Vorpommern-Rügen – Vorpommern-Greifswald I",13,240887,16(
"Mecklenburgische Seenplatte I – Vorpommern-Greifswald II'
"Mecklenburgische Seenplatte IT – Jandkreis Rostork III" Data Frame V1 Flensburg – Schleswig Nordfriesland – Dithmarschen Nord Steinburg – Dithmarschen Süd Rendsburg-Eckernförde Kiel Plön – Neumünster Pinneberg Segeberg - Stormarn-Mitte Ostholstein - Stormarn-Nord Herzogtum Lauenburg - Stormarn-Süd Lübeck Schwerin – Ludwigslust-Parchim I – Nordwestmecklenburg I Ludwigslust-Parchim II – Nordwestmecklenburg II – Landkr Rostock – Landkreis Rostock II Vorpommern-Rügen – Vorpommern-Greifswald I Mecklenburgische Seenplatte I – Vorpommern-Greifswald II Import Cancel

Technische Hochschule

**Technical University** 

of Applied Sciences

Wildau

#### Daten aufräumen



In a tidy data set:



in its own column





Each **observation** is saved in its own **row** 

Tidy data complements R's **vectorized operations**. R will automatically preserve
observations as you manipulate variables.
No other format works as intuitively with R.



|    | L | п | _                          | 4 |
|----|---|---|----------------------------|---|
| та | n |   | $\boldsymbol{\mathcal{C}}$ | - |

```
#> # A tibble: 6 x 4
```

#> country year cases population

#> <chr> <int> <int> <int>

#> 1 Afghanistan 1999 745 19987071

#> 2 Afghanistan 2000 2666 20595360

#> 3 Brazil 1999 37737 172006362

#> 4 Brazil 2000 80488 174504898

#> 5 China 1999 212258 1272915272

#> 6 China 2000 213766 1280428583

#### country, year, cases, population



In a tidy data set:



in its own column





Tidy data complements R's **vectorized operations**. R will automatically preserve
observations as you manipulate variables.
No other format works as intuitively with R.



| + 2 | h                  | ( 0 |
|-----|--------------------|-----|
| La  | $\boldsymbol{\nu}$ |     |

#> # A tibble: 12 x 4

#> country year type count

#> <chr> <int> <chr> <int>

#> 1 Afghanistan 1999 cases 745

#> 2 Afghanistan 1999 population 19987071

#> 3 Afghanistan 2000 cases 2666

#> 4 Afghanistan 2000 population 20595360

#> 5 Brazil 1999 cases 37737

#> 6 Brazil 1999 population 172006362

#> # ... with 6 more rows

#### country, year, cases, population



In a tidy data set:



in its own column





Tidy data complements R's **vectorized operations**. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R.

rate = cases/population



table3

#> # A tibble: 6 x 3

#> \* <chr>

#> country year rate

<int> <chr>

#> 1 Afghanistan 1999 745/19987071

#> 2 Afghanistan 2000 2666/20595360

#> 3 Brazil 1999 37737/172006362

#> 4 Brazil 2000 80488/174504898

#> 5 China 1999 212258/1272915272

#> 6 China 2000 213766/1280428583

#### country, year, cases, population



In a tidy data set:



in its own column





Each **observation** is saved in its own **row** 

Tidy data complements R's **vectorized operations**. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R.



```
table4a # cases
#> # A tibble: 3 x 3
    country
                `1999` `2000`
#> * <chr>
                <int> <int>
#> 1 Afghanistan
                   745 2666
#> 2 Brazil
                 37737 80488
#> 3 China
                212258 213766
table4b # population
#> # A tibble: 3 x 3
    country
                    `1999`
                               2000
                     <int>
#> * <chr>
                                <int>
#> 1 Afghanistan
                  19987071
                             20595360
#> 2 Brazil
                 172006362
                            174504898
#> 3 China
                1272915272 1280428583
```



| country     | year | cases  | country    | 1999   | 2000   |
|-------------|------|--------|------------|--------|--------|
| Afghanistan | 1999 | 745    | Afghanista | 7/15   | 2666   |
| Afghanistan | 2000 | 2666   | Brazil     | 37737  | 80488  |
| Brazil      | 1999 | 37737  | China      | 212258 | 213766 |
| Brazil      | 2000 | 80488  |            |        |        |
| China       | 1999 | 212258 |            |        |        |
| China       | 2000 | 213766 |            | table4 |        |





| country     | year | key        | value      |
|-------------|------|------------|------------|
| Afghanistan | 1999 | cases      | 745        |
| Afghanistan | 1999 | population | 19987071   |
| Afghanistan | 2000 | cases      | 2666       |
| Afghanistan | 2000 | population | 20595360   |
| Brazil      | 1999 | cases      | 37737      |
| Brazil      | 1999 | population | 172006362  |
| Brazil      | 2000 | cases      | 80488      |
| Brazil      | 2000 | population | 174504898  |
| China       | 1999 | cases      | 212258     |
| China       | 1999 | population | 1272915272 |
| China       | 2000 | cases      | 213766     |
| China       | 2000 | population | 1280428583 |
|             | +    | ahla2      |            |

table2

tidyr::spread(pollution, size, amount)
Spread rows into columns.





tidyr::separate(storms, date, c("y", "m", "d"))

Separate one column into several.

| country     | year | rate                  |
|-------------|------|-----------------------|
| Afghanistan | 1999 | <b>745</b> / 19987071 |
| Afghanistan | 2000 | 2666 / 20595360       |
| Brazil      | 1999 | 37737 / 172006362     |
| Brazil      | 2000 | 80488 / 174504898     |
| China       | 1999 | 212258 / 1272915272   |
| China       | 2000 | 213766 / 1280428583   |

| ta | b            | le3 |
|----|--------------|-----|
| ıa | $\mathbf{v}$ |     |

|             |      | _      | _          |
|-------------|------|--------|------------|
| country     | year | cases  | population |
| Afghanistan | 1999 | 745    | 19987071   |
| Afghanistan | 2000 | 2666   | 20595360   |
| Brazil      | 1999 | 37737  | 172006362  |
| Brazil      | 2000 | 80488  | 174504898  |
| China       | 1999 | 212258 | 1272915272 |
| China       | 2000 | 213766 | 1280428583 |
|             |      |        |            |





tidyr::unite(data, col, ..., sep)

Unite several columns into one.

|          | 4    |                     |
|----------|------|---------------------|
| ountry   | year | rate                |
| anistan  | 1999 | 745 / 19987071      |
| hanistan | 2000 | 2666 / 20595360     |
| il       | 1999 | 37737 / 172006362   |
| zil      | 2000 | 80488 / 174504898   |
| ina      | 1999 | 212258 / 1272915272 |
| hina     | 2000 | 213766 / 1280428583 |

table6

#### Arbeiten mit tibbles







## Agenda

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

- Daten einlesen
- Daten transformieren



## tidyr Data







Tidy data complements R's **vectorized operations**. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R.



## and piping operations



#### Tibble Datensätze in R



In a tidy data set:



in its own column





Tidy data complements R's vectorized operations. R will automatically preserve observations as you manipulate variables. No other format works as intuitively with R.



| <b>⊕</b> F | R-exploDA-tidyr.R* × | mpg ×   |         |        | 7     | /iew(      | mpc   | g)    |       |      |         |
|------------|----------------------|---------|---------|--------|-------|------------|-------|-------|-------|------|---------|
| <b>(</b>   | 🔷   🖅   🔻 Filter     |         |         |        |       |            |       |       |       | Q,   |         |
| •          | manufacturer ‡       | model ‡ | displ ‡ | year ‡ | cyl ‡ | trans ‡    | drv 💠 | cty ‡ | hwy ‡ | fl ‡ | class ‡ |
| 1          | audi                 | a4      | 1.8     | 1999   | 4     | auto(I5)   | f     | 18    | 29    | р    | compact |
| 2          | audi                 | a4      | 1.8     | 1999   | 4     | manual(m5) | f     | 21    | 29    | р    | compact |
| 3          | audi                 | a4      | 2.0     | 2008   | 4     | manual(m6) | f     | 20    | 31    | р    | compact |

| (a) F    | -exploDA-tidyr.R* × | mpg ×              |         |        | 7     | 7iew(      | mpc   | J)    |       |      |                 |
|----------|---------------------|--------------------|---------|--------|-------|------------|-------|-------|-------|------|-----------------|
| <b>(</b> | 🗦   🚛   🖓 Filter    |                    |         |        |       |            |       |       |       | Q,   |                 |
| •        | manufacturer ‡      | model <sup>‡</sup> | displ ‡ | year 🔅 | cyl ‡ | trans ‡    | drv 💠 | cty ‡ | hwy ‡ | fl ÷ | class ‡         |
| 1        | audi                | a4                 | 1.8     | 1999   | 4     | auto(I5)   | f     | 18    | 29    | р    | compact         |
| 2        | audi                | a4                 | 1.8     | 1999   | 4     | manual(m5) | f     | 21    | 29    | р    | compact         |
| 3        | audi                | a4                 | 2.0     | 2008   | 4     | manual(m6) | f     | 20    | 31    | р    | compact         |
| 4        | audi                | a4                 | 2.0     | 2008   | 4     | auto(av)   | f     | 21    | 30    | p    | compact         |
| 5        | audi                | a4                 | 2.8     | 1999   | 6     | auto(I5)   | f     | 16    | 26    | p    | compact         |
| 6        | audi                | a4                 | 2.8     | 1999   | 6     | manual(m5) | f     | 18    | 26    | р    | compact         |
| 7        | audi                | a4                 | 3.1     | 2008   | 6     | auto(av)   | f     | 18    | 27    | р    | compact         |
| 8        | audi                | a4 quattro         | 1.8     | 1999   | 4     | manual(m5) | 4     | 18    | 26    | р    | compact         |
| 9        | audi                | a4 quattro         | 1.8     | 1999   | 4     | auto(I5)   | 4     | 16    | 25    | p    | compact         |
| 10       | audi                | a4 quattro         | 2.0     | 2008   | 4     | manual(m6) | 4     | 20    | 28    | p    | compact         |
| 11       | audi                | a4 quattro         | 2.0     | 2008   | 4     | auto(s6)   | 4     | 19    | 27    | p    | compact         |
| 12       | audi                | a4 quattro         | 2.8     | 1999   | 6     | auto(I5)   | 4     | 15    | 25    | p    | compact         |
| 13       | audi                | a4 quattro         | 2.8     | 1999   | 6     | manual(m5) | 4     | 17    | 25    | p    | compact         |
| 14       | audi                | a4 quattro         | 3.1     | 2008   | 6     | auto(s6)   | 4     | 17    | 25    | р    | compact         |
| 15       | audi                | a4 quattro         | 3.1     | 2008   | 6     | manual(m6) | 4     | 15    | 25    | р    | compact         |
| 16       | audi                | a6 quattro         | 2.8     | 1999   | 6     | auto(I5)   | 4     | 15    | 24    | р    | midsize         |
| 77       | 22:                 | - ^                | 2.1     | 2000   | _     |            |       |       | 25    | _    | and all all and |

#### str(mpg)

```
Classes 'tbl_df', 'tbl' and 'data.frame': 234 obs. of 11 variables:
$ manufacturer: chr "audi" "audi" "audi" "audi" ...
              : chr "a4" "a4" "a4" "a4" ...
               : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
 $ displ
               : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
 $ year
               : int 4444666444...
 $ cyl
              : chr "auto(15)" "manual(m5)" "manual(m6)" "auto(av)" ...
: chr "f" "f" "f" "f" "...
 $ trans
 $ drv
               : int 18 21 20 21 16 18 18 18 16 20 ...
 $ cty
 $ hwy
               : int 29 29 31 30 26 26 27 26 25 28 ...
              chr "p" "p" "p" "p" ...
chr "compact" "compact" "compact" ...
$ f1
$ class
```

#### Operationen mit tibbles



## **Subset Observations (Rows)**



```
dplyr::filter(iris. Sepal.Length > 7)
 Extract re > ## Alle Hondas
          > filter(.data=mpg,manufacturer=="honda")
dplyr::dist # A tibble: 9 x 11
            manufacturer model displ
                                       year
                                               cyl trans
                                                               drv
                                                                              hwy fl
                                                                                         class
                                                                        cty
 Remove
            <chr>
                          <chr> <db1> <int>
                                             <int> <chr>
                                                               <chr> <int>
                                                                            <int> <chr> <chr>
dplyr::san
            honda
                          civic
                                  1.6
                                        1999
                                                 4 manual(m5) f
                                                                               33 r
                                                                                         subcompact
 Random
            honda
                                  1.6
                                        1999
                                                 4 auto(14)
                                                                               32 r
                                                                                         subcompact
                          civic
                          civic
                                  1.6
                                        <u>1</u>999
                                                  4 manual(m5) f
                                                                               32 r
                                                                                         subcompact
            honda
dplvr::san
                          civic
                                        1999
                                                                               29 p
          4 honda
                                                  4 manual(m5) f
                                                                                         subcompact
 Random
          5 honda
                          civic
                                  1.6
                                        1999
                                                                               32 r
                                                  4 auto(14)
                                                                                         subcompact
dplyr::slic 6 honda
                          civic
                                  1.8
                                        2008
                                                  4 manual(m5) f
                                                                               34 r
                                                                                         subcompact
                          civic
                                        2008
                                                  4 auto(15)
                                                                               36 r
                                                                                         subcompact
            honda
 Select ro
          8 honda
                                                  4 auto(15)
                          civic
                                        2008
                                                                               36 c
                                                                                         subcompact
dplyr::top
         9 honda
                          civic
                                        2008
                                                  4 manual(m6) f
                                                                         21
                                                                               29 p
                                                                                         subcompact
 Select ar >
```

|    | Logic in R - ?Comparison, ?base::Logic |                   |                   |  |  |  |  |  |  |
|----|----------------------------------------|-------------------|-------------------|--|--|--|--|--|--|
| <  | Less than                              | !=                | Not equal to      |  |  |  |  |  |  |
| >  | Greater than                           | %in%              | Group membership  |  |  |  |  |  |  |
| == | Equal to                               | is.na             | Is NA             |  |  |  |  |  |  |
| <= | Less than or equal to                  | !is.na            | Is not NA         |  |  |  |  |  |  |
| >= | Greater than or equal to               | &, ,!,xor,any,all | Boolean operators |  |  |  |  |  |  |

#### Operationen mit tibbles

## **Subset Variables** (Columns)



#### dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

#### Helper functions for select -?select

select(iris, contains("."))

Select columns whose name contains a character string.

select(iris, ends\_with("Length"))

Select columns whose name ends with a character string.

select(iris, everything())

Select every column.

select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num\_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.

select(iris, one\_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts\_with("Sepal"))

Select columns whose name starts with a character string.

select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).

select(iris, -Species)

Select all columns except Species.



```
> ## Verbrauchsvariablen
> select(.data = mpg, cty,hwy)
# A tibble: 234 x 2
     cty
           hwy
   <int> <int>
      18
            29
      21
            29
      20
            31
            30
      21
      16
            26
      18
            26
      18
            27
            26
      18
            25
      16
      20
      with 224 more rows
>
```

> ## Die ersten 3

```
> select(.data = mpg, 1:3)
# A tibble: 234 x 3
   manufacturer model
                            displ
                             <db7>
   <chr>
                 <chr>
  audi
                 a4
                              1.8
  audi
                              1.8
                 a4
  audi
                               2
  audi
  audi
                              2.8
6 audi
                 a4
                              2.8
   audi
                 a4
                              3.1
 8 audi
                 a4 quattro
                              1.8
 9 audi
                 a4 quattro
                              1.8
                 a4 quattro
                              2
    . with 224 more rows
>
```

#### Sortieren mit arrange ()





> ## Wer hat die niedrigste Reichweite? > arrange(mpg, cty) # A tibble: 234 x 11 manufacturer model <chr> <chr> 1 dodge dakota pickup 4wd dodge durango 4wd ram 1500 pickup 4wd 3 dodge ram 1500 pickup 4wd 4 dodge 5 jeep grand cherokee 4wd 6 chevrolet c1500 suburban 2wd 7 chevrolet k1500 tahoe 4wd 8 chevrolet k1500 tahoe 4wd 9 dodge caravan 2wd 10 dodge dakota pickup 4wd

# ... with 224 more rows

- hwy fl displ year cyl trans drv class cty <db1> <int> <int> <chr> <chr> <int> <int> <chr> <chr> 4.7 <u>2</u>008 8 auto(15) pick~ 12 e 4.7 <u>2</u>008 12 e 8 auto(15) suv <u>2</u>008 8 auto(15) 4.7 12 e pick~ <u>2</u>008 8 manual(m6) 4 4.7 12 e pick~ 4.7 2008 8 auto(15) 4 12 e suv 5.3 <u>2</u>008 8 auto(14) 15 e suv 5.3 2008 8 auto(14) 11 14 e suv 5.7 <u>1</u>999 8 auto(14) 11 15 r suv 6 auto(14) f 3.3 2008 11 17 e mini~ 5.2 <u>1</u>999 8 manual(m5) 4 17 r pick~
  - > ## Und wer die höchste?
  - > arrange(mpg, desc(cty))
  - # A tibble: 234 x 11

| # A CIDDIC. ZJT |             |             |              |             |             |             |             |             |             |             |
|-----------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| manufacturer    | model       | displ       | _            | _           | trans       | drv         | cty         | hwy         | f1          | class       |
| <chr></chr>     | <chr></chr> | <db1></db1> | <int></int>  | <int></int> | <chr></chr> | <chr></chr> | <int></int> | <int></int> | <chr></chr> | <chr></chr> |
| 1 volkswagen    | new beetle  | 1.9         | <u>1</u> 999 | 4           | manual(m5)  | f           | 35          | 44          | d           | subcompact  |
| 2 volkswagen    | jetta       | 1.9         | <u>1</u> 999 | 4           | manual(m5)  | f           | 33          | 44          | d           | compact     |
| 3 volkswagen    | new beetle  | 1.9         | <u>1</u> 999 | 4           | auto(14)    | f           | 29          | 41          | d           | subcompact  |
| 4 honda         | civic       | 1.6         | <u>1</u> 999 | 4           | manual(m5)  | f           | 28          | 33          | r           | subcompact  |
| 5 toyota        | corolla     | 1.8         | <u>2</u> 008 | 4           | manual(m5)  | f           | 28          | 37          | r           | compact     |
| 6 honda         | civic       | 1.8         | 2008         | 4           | manual(m5)  | f           | 26          | 34          | r           | subcompact  |
| 7 toyota        | corolla     | 1.8         | <u>1</u> 999 | 4           | manual(m5)  | f           | 26          | 35          | r           | compact     |
| 8 toyota        | corolla     | 1.8         | 2008         | 4           | auto(14)    | f           | 26          | 35          | r           | compact     |
| 9 honda         | civic       | 1.6         | 1999         | 4           | manual(m5)  | f           | 25          | 32          | r           | subcompact  |
| 10 honda        | civic       | 1.8         | 2008         | 4           | auto(15)    | f           | 25          | 36          | r           | subcompact  |
| # with 224 r    | more rows   |             |              |             |             |             |             |             |             | •           |

#### Statistiken mit summarise ()



#### **Summarise Data**



dplyr::summarise(iris, avg = mean(Sepal.Length))

Summarise data into single row of values.

dplyr::summarise\_each(iris, funs(mean))

Apply summary function to each column.

dplyr::count(iris, Species, wt = Sepal.Length)

Count number of rows with each unique value of variable (with or without weights).



Summarise uses summary functions, functions that take a vector of values and return a single value, such as:

| dply | /r::first |
|------|-----------|
|------|-----------|

First value of a vector.

dplyr::last

Last value of a vector.

dplyr::nth

Nth value of a vector.

dplyr::n

# of values in a vector.

dplyr::n\_distinct

# of distinct values in a vector.

IQR

IOR of a vector.

#### min

Minimum value in a vector.

max

Maximum value in a vector.

mean

Mean value of a vector.

median

Median value of a vector.

var

Variance of a vector.

sd

Standard deviation of a vector.

```
> summarise(mpg,mean(cty))
# A tibble: 1 x 1
   mean(cty)`
        <db1>
         16.9
```

```
> ## Wieviele Autos gibt es pro Hersteller?
> count(mpg, manufacturer)
# A tibble: 15 x 2
   manufacturer
                     n
                <int>
   <chr>
  audi
                   18
  chevrolet
                   19
                   37
 3 dodge
                   25
 4 ford
 5 honda
                     9
 6 hyundai
  jeep
 8 land rover
9 lincoln
10 mercury
11 nissan
                   13
12 pontiac
                     5
13 subaru
                   14
14 toyota
                   34
                   27
15 volkswagen
```

#### Statistiken mit summarise()



#### **Summarise Data**



dplyr::summarise(iris, avg = mean(Sepal.Length))

Summarise data into single row of values.

dplyr::summarise\_each(iris, funs(mean))

Apply summary function to each column.

#### dplyr::count(iris, Species, wt = Sepal.Length)

Count number of rows with each unique value of

Use `summarise\_all()`, `summarise\_ To map `funs` over all variables,

Summarise uses **summa** # A tibble: 1 x 11 take a vector of values ar **manufacturer mod** 

manufacturer model displ year

<db7> <db7> <db7> <db7> <db7> <db7> NA NA 3.47 2004.

## First value of a vector. dplyr::last Warning messages:

Last value of a vector.

1: In mean.default(manufacturer):
argument is not numeric or logic

7. In mean default (model) . Mean value of a vector.

#### dplyr::n median

# of values in a vector.

Nth value of a vector.

#### dplyr::n\_distinct

dplyr::first

dplyr::nth

# of distinct values in a vector.

#### IQR

IQR of a vector.

Median value of a vector.

#### var

Variance of a vector.

#### sd

Standard deviation of a

vector.

```
> ## Wieviele Autos gibt es pro Hersteller?
> count(mpg, manufacturer)
# A tibble: 15 x 2
   manufacturer
                    n
   <chr>
                 <int>
  audi
 2 chevrolet
 3 dodge
4 ford
5 honda
6 hyundai
 7 jeep
 8 land rover
9 lincoln
10 mercury
11 nissan
                   13
12 pontiac
13 subaru
                   14
14 toyota
                   34
15 volkswagen
```

## **Gruppenweise Betrachtung**



## **Group Data**

dplyr::group\_by(iris, Species)

Group data into rows with the same value of Species.

dplyr::ungroup(iris)

Remove grouping information from data frame.

iris %>% group\_by(Species) %>% summarise(...)

Compute separate summary row for each group.



> ## Minimale, Maximale und durchschnittliche Reichweite je Hersteller
> summarise(group\_by(mpg,manufacturer),min(cty),max(cty),mean(cty))

# A tibble: 15 x 4

| manufacturer | `min(cty)`                                                                                     | `max(cty)`                                                                                                                                                                                                                                                                                                                   | `mean(cty)`                                                                                                                                                                            |
|--------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <chr></chr>  | <db1></db1>                                                                                    | <db1></db1>                                                                                                                                                                                                                                                                                                                  | <db7></db7>                                                                                                                                                                            |
| audi         | 15                                                                                             | 21                                                                                                                                                                                                                                                                                                                           | 17.6                                                                                                                                                                                   |
| chevrolet    | 11                                                                                             | 22                                                                                                                                                                                                                                                                                                                           | 15                                                                                                                                                                                     |
| _            | 9                                                                                              | 18                                                                                                                                                                                                                                                                                                                           | 13.1                                                                                                                                                                                   |
| ford         | 11                                                                                             | 18                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                     |
| honda        | 21                                                                                             | 28                                                                                                                                                                                                                                                                                                                           | 24.4                                                                                                                                                                                   |
| hyundai      | 16                                                                                             | 21                                                                                                                                                                                                                                                                                                                           | 18.6                                                                                                                                                                                   |
| jeep         | 9                                                                                              | 17                                                                                                                                                                                                                                                                                                                           | 13.5                                                                                                                                                                                   |
| land rover   | 11                                                                                             | 12                                                                                                                                                                                                                                                                                                                           | 11.5                                                                                                                                                                                   |
| lincoln      | 11                                                                                             | 12                                                                                                                                                                                                                                                                                                                           | 11.3                                                                                                                                                                                   |
| mercury      | 13                                                                                             | 14                                                                                                                                                                                                                                                                                                                           | 13.2                                                                                                                                                                                   |
| nissan       | 12                                                                                             | 23                                                                                                                                                                                                                                                                                                                           | 18.1                                                                                                                                                                                   |
| pontiac      | 16                                                                                             | 18                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                     |
| subaru       | 18                                                                                             | 21                                                                                                                                                                                                                                                                                                                           | 19.3                                                                                                                                                                                   |
| toyota       | 11                                                                                             | 28                                                                                                                                                                                                                                                                                                                           | 18.5                                                                                                                                                                                   |
| volkswagen   | 16                                                                                             | 35                                                                                                                                                                                                                                                                                                                           | 20.9                                                                                                                                                                                   |
|              | <pre><chr> audi chevrolet dodge ford honda hyundai jeep land rover lincoln mercury</chr></pre> | <chr> <db></db> audi         chevrolet       11         dodge       9         ford       11         honda       21         hyundai       16         jeep       9         land rover       11         mercury       13         nissan       12         pontiac       16         subaru       18         toyota       11</chr> | audi 15 21 chevrolet 11 22 dodge 9 18 ford 11 18 honda 21 28 hyundai 16 21 jeep 9 17 land rover 11 12 lincoln 11 12 mercury 13 14 nissan 12 23 pontiac 16 18 subaru 18 21 toyota 11 28 |

### **Piping Operationen**



• Mit dem pipe Operator %>% werden die Ergebnisse eines Funktionsaufrufs zum Argument des nächsten Funktionsaufrufs

```
### so nicht - Gruppierungen gehen verloren
group_by(mpg,manufacturer)
summarise(mpg,mean(cty))

### aber mit pipe
group_by(mpg,manufacturer) %>%
summarise(mean(cty))

### entspricht das dem verschachelten Aufruf
summarise(group_by(mpg,manufacturer),mean(cty))

### und ist besser lesbar
```



### Tidyr Data Analysis - Beispiel



```
mpg %>%
     group_by(manufacturer) %>%
     summarise(hwy_lp100km = mean(1/hwy)*4.55/1.61*100) %>%
     arrange(hwy_lp100km)
                                  # W CINNIC: TO V F
                                     manufacturer hwy_lp100km
                                                            \langle db 7 \rangle
> ## Mutatis mutandis
                                                             8.73
> mpg %>%
   group_by(manufacturer) %>%
                                                             9.91
   summarise(hwy_lp100km = mean(1/hwy*4.55/1.61*100)) %>%
                                                            10.6
   arrange(hwy_lp100km)
# A tibble: 15 x 2
                                                            10.7
  manufacturer hwy_lp100km
                                                            10.8
  <chr>
                   <db1>
                                                            11.1
 1 honda
                    8.73
 2 volkswagen
                    9.91
                                                            12.0
 3 hyundai
                   10.6
                                                            12.1
                   10.7
 4 pontiac
                                                            13.7
 5 audi
                   10.8
 6 subaru
                   11.1
                                                            15.0
                   12.0
 7 nissan
                                                            15.7
                   12.1
8 toyota
                                                            16.4
9 chevrolet
                   13.7
10 ford
                   15.0
                                                            16.6
11 mercury
                   15.7
                                                            16.7
12 dodge
                   16.4
                                                            17.3
13 jeep
                   16.6
14 lincoln
                   16.7
15 land rover
                   17.3
> ## ist leider schon weg
> select(mpg,hwy_lp100km)
Error in .f(.x[[i]], ...) : object 'hwy_lp100km' not found
```

#### Neue Variablen in tibbles

### **Make New Variables**



dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)

Compute and append one or more new columns.

dplyr::mutate\_each(iris, funs(min\_rank))

Apply window function to each column.

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)

Compute one or more new columns. Drop original columns.

```
## so bleibst bestehen
mpg2 \leftarrow mutate(mpg, hwy_lp100km = 1/hwy*4.55/1.61*100)
mpg2 %>% group_by(manufacturer) %>% summarise(MW=mean(hwy_lp100km))
> ## so verschwindet der Rest
> mpg2 <- transmute(mpg, hwy_lp100km = 1/hwy*4.55/1.61*100)</pre>
> mpg2
# A tibble: 234 x 1
  hwy_lp100km
         <db1>
         9.75
         9.75
         9.12
         9.42
        10.9
        10.9
        10.5
        10.9
 9
        11.3
         10.1
     with 224 more rows
```



## Statistiken mit mutate each





Mutate uses **window functions**, functions that take a vector of values and return another vector of values, such as:

#### **Make New Variables**



dplyr::mutate(iris, sepal = Sepal.Length + Sepal. Width)

Computer and append one or more new columns.

dplyr::mu ate\_each(iris, funs(min\_rank))

Apply window function to each column

dplyr::transmute(iris, sepal = Sepal.Length + Sepal. Width)

Compute one or more new columns. Drop original columns.

dplyr::lead

Copy with values shifted by 1.

dplyr::lag

Copy with values lagged by 1.

dplyr::dense\_rank

Ranks with no gaps.

dplyr::min\_rank

Ranks. Ties get min rank.

dplyr::percent\_rank

Ranks rescaled to [0, 1].

dplyr::row\_number

Ranks. Ties got to first value.

dplyr::ntile

Bin vector into n buckets.

dplyr::between

Are values between a and b?

dplyr::cume\_dist

Cumulative distribution.

dplyr::cumall

Cumulative all

dplyr::cumany

Cumulative any

dplyr::cummean

Cumulative **mean** 

cumsum

Cumulative **sum** 

cummax

Cumulative max

cummin

Cumulative **min** 

cumprod

Cumulative **prod** 

pmax

Element-wise max

pmin

Element-wise min