1.
$$\Omega \cdot 5n^3 + 2n' + 3n < 5n^3 + 2n^3 + 3n^3 = 10n^3 = 10n^3$$

 $5n^3 + 2n' + 3n = 0(n^2)$ $(n_0 = 1, c = 10)$

C.
$$d(n) \leq c_1 \cdot f(n)$$
 for $n \geq n_1$
 $e(n) \leq c_1 \cdot f(n)$ for $n \geq n_2$
assume that $n_1 > n_2$
then,
 $d(n)e(n) \leq c_1(c_1) \cdot f(n) \cdot g(n)$ for $n \geq n_1$,
 $d(n)e(n) = 0$ If $(n) \cdot g(n)$, where $n_0 = n_1$, $c = c_1(c_1)$

- 2. 0 0 6 Cn2)
 - (2) (3)
 - (3) θ (n^2)
 - 9 (nlog2n)