Final Project Report:

Antalya Rental Prices Predictions

Submission Date: June 2, 2025

Submitted by: Kaan Yazıcıoğlu (97364)

1. About the Data

This dataset was sourced from <u>Kaggle</u> and contains rental apartment listings from the Muratpaşa district of Antalya, Turkey. The original dataset was in Turkish, and I translated all feature names into English for clarity. After cleaning and preprocessing, the dataset included:

• Total records used: 712

Training set: 80% (569 records)
Testing set: 20% (143 records)

Target variable: `rent_price` (monthly rent in Turkish Lira currency)

Selected input features:

- `rooms` ("2+1" converted to 3) (integer)
- 'net m2' (usable area in square meters) (integer)
- 'elevator' (binary: 0 or 1) (bool)
- `compound` (binary: 0 or 1) (bool)
- `fee` (monthly maintenance cost) (integer)
- `furnished` (binary: 0 or 1) (bool)
- `is_new_building` (1 = building younger than 15 years, 0 = 15+ years old) (bool)

2. Data Cleaning and Feature Engineering

Several preprocessing steps were required to prepare the dataset:

- Replaced Turkish column headers with English equivalents.
- Converted `rooms` column (e.g., "3+1") to total room count using custom function.
- Converted `building_age` text categories (e.g., "21-25") to approximate numeric values.
- Removed rows with missing or invalid values in `rooms` and `building_age`.
- Created a new binary feature: `is_new_building` = 1 if building is newer than 15 years.
- Removed extreme outlier records where `rent_price > 50000`, which reduced model overfitting and improved generalization.

3. Model Development and Comparison

I developed and compared two regression models to predict rental prices:

Linear Regression

- Simple and interpretable model.
- Train R² score: 0.356
- Test R² score: 0.303

Random Forest Regressor

- Tree-based ensemble model that can learn non-linear patterns.
- Train R² score: 0.716
- Test R² score: 0.490

After tuning the input features and removing outliers, Random Forest outperformed Linear Regression in both accuracy and stability.

4. Error Analysis and Model Evaluation

To measure how far off the model predictions were from the actual rent prices:

- Mean Absolute Error (MAE): 4307 TL
- Root Mean Squared Error (RMSE): 6264 TL

The histogram of prediction errors showed that:

- Most errors fall within the ±5000 TL range.
- Error distribution was fairly symmetric, indicating no major bias.

These results suggest that while the model is not perfect, it provides useful estimates within a realistic margin of error.

5. Feature Importance

Using the feature importance attribute of the Random Forest model, I ranked the features:

- 'net_m2' the strongest predictor
- 2. 'fee' positive correlation with rent
- 3. `furnished` minor but noticeable effect
- 4. `rooms` contributes moderately
- 5. `is_new_building` low but meaningful influence
- 6. 'elevator', 'compound' minimal impact

This analysis helped validate the choice of input variables and showed that usable area is the most critical driver of rental price.

6. What I Learned

- Net usable area and monthly fees are the most important features in predicting rent.
- Outlier removal significantly improves model performance.
- Tree-based models like Random Forest are better suited for real estate pricing tasks.
- Creating a new binary feature (`is_new_building`) helped simplify and improve predictions.

7. Limitations and Future Work

Although the model works well, several limitations were noted:

- No location coordinates or neighborhood-level data was available.
- Features like heating type, parking, or floor level were not included in the final model.
- The model does not account for seasonality or long-term market changes.

Improvements for future versions:

- Add geolocation and property surroundings.
- Use more advanced models like Gradient Boosting or XGBoost.
- Gather more records for better generalization.

8. Summary and Final Thoughts

This project showed how to use real estate data to build a basic rental price prediction model. After preprocessing and experimentation with different algorithms, I achieved an R² score of **0.49** on the test set using Random Forest.

While not perfectly accurate, this model offers a solid baseline for automated rental estimation. Further improvements could make it practical for real estate agents or listing platforms.

Overall, this project gave me valuable hands-on experience with:

- Data preprocessing
- Feature engineering
- Regression models
- Model evaluation
- Real-world data challenges