Teoría de Galois

Carlos Gómez-Lobo

1 Anillos

A continuación vamos a repasar algunos conceptos sobre anillos y especialmente anillos de polinomios, empezando por la definición de anillo.

Definición 1.1: Anillo

Un **anillo** es un conjunto no vacío dotado de dos operaciones, que denotaremos como suma (+) y multiplicación (\cdot) y que cumplen las siguientes propiedades:

- \bullet (R, +): grupo abeliano
- $\bullet \ (R,\cdot)$: operación binaria interna y cumple la propiedad asociativa

Si además (R, \cdot) tiene identidad, es decir, existe un elemento $e \in R$ tal que $e \cdot r = r \cdot e = r \ \forall r \in R$, diremos que R es un anillo con unidad y si además es abeliano, entonces será un anillo conmutativo.

A nosotros en esta asignatura nos interesarán especialmente estos últimos y nos referiremos a estos simplemente como anillos sin especificar que son conmutativos y sin unidad.

Ejemplos: $\mathbb{Z}, \mathbb{Z}_n, \mathbb{R}, \mathbb{C}, \mathbb{Q}, M_n(\mathbb{R})$ (no conmutativo), etc.

Notación:

- 0 para el elemento neutro de la suma
- -a para el elemento inverso aditivo (opuesto).
- 1 para el elemento neutro de la multiplicación
- \bullet a^{-1} para el inverso multiplicativo, si existe
- $na = \underbrace{a + \dots + a}_{\text{n veces}}$ • $a^n = \underbrace{a \cdot \dots \cdot a}_{\text{veces}}$

Definición 1.2: Cuerpo

Un anillo (R, +, -) es un **cuerpo** si $(R^* = R \setminus \{0\}, \cdot)$ es un grupo abeliano.

Ejemplos: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ p primo, etc.

Notación:
$$\mathbb{Z}_n$$
 $\begin{cases} \text{grupo aditivo} \to \mathbb{C}_n \\ \text{anillo} \to \mathbb{Z}_n \\ \text{cuerpo} \to \mathbb{F}_n(\text{n primo}) \end{cases}$

Definición 1.3: Divisor de cero

Sea R un anillo. Diremos que un elemento $a \in R$, $a \neq 0$ es un **divisor de cero** si $\exists b \in R$, $b \neq 0$ tal que $a \cdot b = 0$.

Ejemplo: En $\mathbb{Z}_6: \bar{2}, \bar{3} \neq \bar{0}$ y $\bar{2} \cdot \bar{3} = 0$.

Definición 1.4: Dominio de integridad

Sea R un anillo, si R no tiene divisores de cero, entonces se dice que es un **dominio de integridad**.

Ejemplos: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p$

Definición 1.5: "Divide a"

Diremos que a divide a b en R si $\exists c \in R$ tal que $b = a \cdot c$ y escribiremos a|b.

1.1 Subanillos

Definición 1.6: Subanillo

Diremos que $S \subset R$ es un subanillo si $(S, +, \cdot)$ es un anillo.

Observación: $S \subset R$ es un subanillo s y solo si:

- 1) $S \neq \emptyset$
- $2) \ \forall a, b \in S, a + b \in S$
- 3) $\forall a, b \in S, a \cdot b \in S$
- 4) $1 \in S$

Ejemplo: $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

Definición 1.7: Menor subanillo que contiene a un elemento

Dado un anillo R y un elemento a, podemos definir el **menor subanillo que contiene a R y al elemento a** como $R[a] = \left\{\sum r_i \cdot a^k, \forall r \in R; i, k \in \mathbb{N}\right\}$

Ejemplo: $\mathbb{Z}[i] = \{a + bi, a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Otra forma de ver este anillo es como la intersección de todos los subanillos de \mathbb{C} que contienen a \mathbb{Z} y a i.

Observación: De la misma forma podemos definir el menor cuerpo que contiene a un elemento y que denotamos como R(a).

$$\underline{\text{Ejemplo:}} \ \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}, \ a, b \in \mathbb{Q}\}, \ \mathbb{Q}(\sqrt{2}) = \left\{\underbrace{\frac{a + b\sqrt{2}}{c + d\sqrt{2}}}_{\neq 0}, \ a, b, c, d \in \mathbb{Q}\right\}, \ \mathbb{Q} \subset \mathbb{Q}[\sqrt{2}] \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$$

2

1.2 Anillos de polinomios

Definición 1.8: Anillo de polinomios

Sea R un anillo, llamaremos a R[x] al **anillo de polinomios con coeficientes en R** y que será de la forma $R[x] = \left\{ \sum_{k=0}^{n} r_k x^k, \ \forall r \in R \right\}.$

Ejemplos: $\mathbb{C}[x]$, $\mathbb{R}[x]$, $\mathbb{Q}[x]$, $\mathbb{Z}[x]$, etc.

Definición 1.9: Coeficiente director

El **coeficiente director** de un polinomio es el coeficiente distinto de 0 que multiplica a la x de mayor grado.

Notación: Grado de p(x) := deg(p(x))

Proposición 1.1

El grado del producto de dos polinomios puede tener distintos valores en función de si el anillo sobre el que se construye es o no un DI:

$$deg(p(x) \cdot q(x)) = \begin{cases} deg(p(x)) + deg(q(x)) \text{ si } R \text{ es dominio de integridad} \\ \leq deg(p(x)) + deg(q(x)) \text{ si no lo es} \end{cases}$$

Demostración: Obvio.

$$\underline{\text{Ejemplo:}} \ \mathbb{Z}_4, \ \frac{p(x) = 2x + 1}{q(x) = 2x} \bigg\} \ deg(p(x) \cdot q(x) = 1 < 2$$

Proposición 1.2

Sea R un cuerpo, entonces R es siempre dominio de integridad y para cualesquiera polinomios de R[x] se cumple que $deg(p(x)) \cdot deg(q(x)) = deg(p(x)) + deg(q(x))$.

<u>Demostración</u>: Para demostrar que un cuerpo siempre es un DI vamos a ver por reducción al absurdo que todo elemento de un anillo que tenga inverso multiplicativo no es divisor de cero.

Suponemos que $r \neq 0 \in R$ es divisor de cero, es decir, $\exists r^{-1}$ tal que $r' \neq 0, r \cdot r' = 0$. Ahora suponemos además que r es invertible, es decir, $\exists r^{-1}$ tal que $r \cdot r^{-1} = 1$. Entonces $r \cdot r^{-1} = 1 \implies (r' \cdot r) \cdot r^{-1} = b \implies 0 = b$. Contradicción.

De la misma forma se puede ver que una unidad no puede ser un divisor de cero y como en un cuerpo todos sus elementos son unidades, no hay ningún divisor de cero y por tanto es un dominio de integridad. Por esto y por la proposición 1.1, queda demostrado.

3

Proposición 1.3

Sea K un cuerpo, entonces el anillo de polinomios asociado a K, K[x] **no** es un cuerpo y sus únicos elementos invertibles son los pertecientes al cuerpo K no nulos.

<u>Demostración:</u> Sea $p(x) \in K[x]$, $p(x) \neq 0$ invertible en K[x]. Entonces $p(x) \cdot p^{-1}(x) = 1$, deg(1) = 0 y como por la proposición 1.1, $deg(p(x) \cdot p^{-1}(x)) \leq deg(p(x)) + deg(p^{-1}(x))$, se tiene que $deg(p(x)) = deg(p^{-1}(x)) = 0$, por lo que los únicos elementos invertibles en K[x] son los de grado 0, que son los no nulos que pertenecen a K. Entonces, puesto que no todos los elementos de K[x] son invertibles, K[x] no es un cuerpo.

Definición 1.10: Polinomio mónico

Un polinomio mónico es aquel cuyo coeficiente director es 1.

1.3 Ideales en un anillo

Definición 1.11: Ideal

Sea R un anillo. Un **ideal** en R es un subconjunto no vacío $I \subset R$ tal que:

- i) (I, +) es un subgrupo de R.
- ii) $\forall r \in R, \ \forall a \in I, \ r \cdot a \in I \ (Propiedad de absorción).$

Proposición 1.4: Criterio para ideales

Para que un subanillo $I\subset R,\ I\neq\emptyset$ sea un ideal tiene que cumplir que:

- i) $\forall a, b \in I, a b \in I (a + b \in I).$
- ii) $\forall r \in R, \ \forall a \in I, \ r \cdot a \in I.$

Ejemplos:

- 1) R anillo cualquiera
 - i) R es un ideal (el ideal trivial).
 - ii) {0} siempre es un ideal.

Si $I \subset R$ es un ideal e $I \neq R$, diremos que I es un ideal propio.

- 2) En \mathbb{Z} todos los anillos de la forma $I = \{2n : n \in \mathbb{Z}\}$ son ideales.
- 3) $\mathbb{Q}[x]$, $I = \{p(x) : p(r_0) = 0, r_0 \in \mathbb{Q}\}$

Comprobación: Sean $p(x), q(x), t(x) \in \mathbb{Q}[x]$ tal que $p(r_0) = q(r_0) = 0$, t(x) cualquiera, entonces:

- i) $s(r_0) = p(r_0) q(r_0) = 0 \implies s(x) \in I$.
- ii) $z(r_0) = p(r_0) \cdot t(r_0) = 0 \implies z(x) \in I$.

4)

Proposición 1.5

Todos los ideales de \mathbb{Z} son de la forma $\{kn : n \in \mathbb{Z}\}.$

Demostración: Sale del algoritmo de la división.

Observación: Sea R un anillo y sean $I, J \subset R$ ideales, entonces:

- i) En general, $I \cup J$ no es un ideal.
- ii) $I \cap J$ es un ideal

Proposición 1.6

Sea K un anillo, entonces K es un cuerpo si y solo si continene dos ideales: $\{0\}$ y K.

Demostración:

 \implies) Sea $I \in K$, $I \neq \{0\}$ un ideal y $r \in I$, $r \neq 0$ uno de sus elementos. Por ser K un cuerpo $\exists r^{-1}$ tal que $r \cdot r^{-1} = 1 \in I$ (Propiedad de absorción) $\implies I = K$.

 \Leftarrow) Sea K un anillo y $r \in K$, $r \neq 0$. Vamos a ver que r tiene un inverso.

Definimos $I := \{rs : s \in K\}$ que es un ideal. Puesto que $I \neq \{0\}$ y solo hay dos ideales, $I = K \implies 1 \in K \implies \exists s \in K \text{ tal que } s \cdot r = 1 \implies s = r^{-1}$.

Definición 1.12: Ideal generado

Sea R un anillo y $\{r_i\}$ una familia de elementos de R. Diremos que el **ideal generado** por $\{r_i\}_{i\in I}$ es el ideal más pequeño que contiene a $\{r_i\}_{i\in I}$ y lo denotamos por $\langle r_i\rangle_{i\in I}=\Big\{\sum s_jr_i:s_j\in R\Big\}$.

Ejemplo: En $\mathbb{Z}[x]$ el ideal generado por $\langle 2, x \rangle = \{2q(x) + xp(x) : q(x), p(x) \in \mathbb{Z}\}$

Definición 1.13: Ideal principal

Sea R un anillo, diremos que $I \subset R$ es un **ideal principal** si $\exists a \in R$ tal que $I = \langle a \rangle$.

Ejemplo:

- 1) En \mathbb{Z} todos los ideales son principales.
- 2) $\langle 2, x \rangle \subset \mathbb{Z}[x]$ no es principal.

Comprobación: Suponemos que $\exists g(x) \in \mathbb{Z}[x]$ tal que $\langle 2, x \rangle = \langle g(x) \rangle$, entonces $\exists q(x)$ tal que $g(x) \cdot q(x) = 2 \implies deg(g(x)) = 0 \implies g(x) = k \in \mathbb{Z} \implies k = \pm 1, \pm 2$

Supongamos que
$$k=\pm 1$$
. Entonces $\langle g(x)\rangle=\langle \pm 1\rangle=\langle 2,x\rangle=\mathbb{Z}[x]$. Sin embargo, $1=\underbrace{2p(x)}_{\text{coef. par}}+\underbrace{q(x)x}_{\text{gyado}\geq 1}$.

Contradicción.

Ahora si suponemos que $k=\pm 2 \implies \langle g(x)\rangle = \langle \pm 2\rangle = \langle 2,x\rangle =$ polinomios con coeficientes pares, pero $x\notin \langle \pm 2\rangle$. Contradicción.

Definición 1.14: Dominio de ideales principales (DIP)

Sea R un anillo , si todos los ideales contenidos en R con principales se dice que es un **dominio** de ideales principales.

Proposición 1.7

Sea K un cuerpo entonces K[x] es un dominio de ideales principales.

<u>Demostración:</u> Sea $I \subset K[x]$ un ideal.

- Si $I = \{0\}$
- Suponemos que $I \neq \{0\} \implies \exists p(x) \in I, \ p(x) \neq 0 \ \text{y podemos definir } \Lambda = \{deg(p(x)) : p(x) \in I\} \neq \emptyset, \ \Lambda \subset \mathbb{N}.$ Por la propiedad de buen orden de \mathbb{N} podemos afirmar que Λ tiene un elemento mínimo n, por lo que $\exists p(x) \in I$ tal que deg(px) = n y además $\langle p(x) \rangle \subseteq I$. Ahora vamos a demostrar por el algoritmo de la división de polinomios que $\langle p(x) \rangle = I$.

Sea $s(x) \in I \implies s(x) = q(x)p(x) + r(x)$ y hay dos posibilidades para r(x):

$$\circ \ r(x) = 0 \implies p(x) \mid q(x) \checkmark$$

$$\circ \ r(x) \neq 0, \ \underbrace{\underbrace{s(x)}_{\in I} = q(x)\underbrace{p(x)}_{\in I} + r(x)}_{\text{}} \overset{Prop.1}{\Longrightarrow} r(x) \in I. \text{ Contradicción porque } deg(r(x)) < deg(p(x))$$

que es el grado mínimo en I.

Ejemplo: Usando un argumento similar con el algoritmo de la división en \mathbb{Z} se puede probar que este es un DIP.

Observación: El generador de un ideal $I \subset K[x]$ no tiene por qué ser único: si $I = \langle p(x) \rangle$ y $a \in K$, entonces $I = \langle ap(x) \rangle$. Para describir estos anillos de forma canónica utilizaremos como generador un polinomio mónico.

1.4 Anillos cociente

Definición 1.15: Anillo conciente

Sea $I \subset R$ un ideal en R, podemos definir como en los grupos al conjunto R/I como el **anillo** cociente según la relación de equivalencia $a = b \iff a - b \in I$.

Ahora vamos a comprobar algunas cosas sobre la definición anterior:

1. La relación de equivalencia usada es realmente una relación de equivalencia estudiando sus tres propiedades:

- i) Reflexiva: $a a = 0 \in I \checkmark$
- ii) Simétrica: $a=b \implies a-b \in I \implies (a-b) \cdot -1 \in I \implies (b-a) \in I \implies b=a$
- iii) Transitiva: a=b y $b=c \implies a-b \in I$ y $b-c \in I \stackrel{\text{Prop. } 1}{\Longrightarrow} a-b+b-c=a-b \in I \implies a=c$
- 2. El conjunto cociente resultado tiene estructura de anillo. Para ello solo es necesario comprobar que el producto está bien definido, es decir, de dos elementos no depende del representante escogido.

Sean
$$\bar{a} = \{a+I\}, \bar{b} = \{b+I\}, \text{ entonces } (a+I)(b+I) = ab + \underbrace{aI}_{\in I} + \underbrace{bI}_{\in I} + I = ab + I \implies \bar{a}\bar{b} = \overline{ab} \checkmark$$

Observación:

- 1. Si el anillo R es conmutativo y con unidad, entonces R_{I} tamibién lo es y su unidad es $\bar{1}$.
- 2. $\forall a \in I, \ \bar{c} = 0.$

Ejemplos:

- 1) $\mathbb{Z}_{n\mathbb{Z}} = \mathbb{Z}_n$
- 2) $R_R = \{0\}$
- 3) $R_{10} = R$
- 4) $S = \mathbb{R}[x]/\langle x^2 + 1 \rangle$: ¿Qué pinta tiene? En primer lugar, vamos a comprobar que todo elemento de S es equivalente a un elemento de la forma ax + b, $a, b \in \mathbb{R}$. Sea $p(x) \in \mathbb{R}[x]$, ¿ $\overline{p(x)}$? $p(x) = q(x)(x^2 + 1) + r(x)$ donde r(x) = 0 ó $deg(r(x)) \le 1 \implies p(x) r(x) \in \langle x^2 + 1 \rangle \implies p(x) = r(x)$.

1.5 Homomorfismos de anillos

Definición 1.16: Homomorfismo de anillos

Sean R y T anillos. Un homomorfismo de anillos $f:R\longrightarrow T$ es una función que verifica las siguientes propiedades:

i)
$$f(r+r') = f(r) + f(r'), \forall r, r' \in R$$

ii)
$$f(r \cdot r') = f(r) \cdot f(r'), \ \forall r, r' \in R$$

iii) (Homomorfismo de anillos unitarios) $f(1_R) = 1_T$

<u>Observación:</u> Nosotros siempre utilizaremos homomorfismos de anillos unitarios y nos referiremos a ellos simplemente como homomorfismos.

Ejemplos:

1) Con este ejemplo vamos a comprobar cuántos homomorfismos existen de \mathbb{Z} en \mathbb{Z} . Si utilizamos las propiedades vistas anteirormente, tenemos que $1 \longrightarrow 1 \stackrel{\text{Prop. 1}}{\Longrightarrow} n = \underbrace{1 + \dots + 1}_{} \longrightarrow f(n) = \underbrace{1 + \dots + 1}_{}$

$$\underbrace{f(1) + \cdots f(1)}_{\text{n veces}} \implies f = Id$$

2) Sea R un anillo cualquiera:

$$\begin{array}{ccc} f: \mathbb{Z} \longrightarrow R \\ 1 & \longrightarrow 1_R \\ n & \longrightarrow f(n) = \underbrace{1_R + \cdots 1_R}_{\text{n veces}} \end{array}$$

Un caso especial de este tipo es cuando $p \in \mathbb{Z}$ es un primo y $f(p) = 0_R$, entonces la función:

$$\bar{F}: R \longrightarrow R$$
 $a \longrightarrow a^p$

Es un homomorfismo de anillos llamado el "homomorfismo de frobenius" y cumple que en R, $(a+b)^p = a^p + b^p$.

3) En este comprobaremos si existe algún homomorfismo de $\mathbb{Z}[i]$ en $\mathbb{Z}[\sqrt{2}]$:

$$\begin{array}{ccc} f: \mathbb{Z}[i] & \longrightarrow & \mathbb{Z}[\sqrt{2}] \\ & 1 & \longrightarrow & 1 \\ n \in \mathbb{Z} & \longrightarrow & n \in \mathbb{Z} \end{array}$$

La función f mandará al elemento i a un elemento de $\mathbb{Z}[\sqrt{2}]$ de la forma $a + b\sqrt{2}$, sin embargo:

$$f(i^2) = \begin{cases} f(i)^2 = \left(a + b\sqrt{2}\right)^2 \ge 0 \\ f(-1) = -1 \end{cases} \implies \text{Contradicción}$$

4) Sea $\mathbb{Z}[x]$ el anillos de polinomios con coeficientes enteros y T un anillo cualquiera:

$$f: \mathbb{Z}[x] \longrightarrow T$$

$$x \longrightarrow t \in T$$

$$p(x) \longrightarrow p(t)$$

Proposición 1.8: Propiedades de los homomorfismos de anillos

Sea $f: R \longrightarrow T$ un homomorfismo de anillos:

- 1) Si $S \in R$ es un subanillo, entonces $f(S) \in T$ es un subanillo
- 2) Si $J \in T$ es un ideal, entonces $f^{-1}(J)$ es un ideal de R.
- 3) Si f es sobreyectivo e $I \in R$ un ideal, entonces f(I) es un ideal en T.
- 4) $Ker f = f^{-1}(\{0\})$ es un ideal en R.
- 5) f es inyectivo \iff $Ker f = \{0\}.$

Demostración:

- 1) Por las propiedades de homomorfismos f(S) es un grupo aditivo y el producto es interno y asociativo.
- 2) Teniendo que $\forall s_1, s_2 \in f^{-1}(J)$, $\exists t_1, t_2 \in J$ tal que $s_1 = f^{-1}(t_1)$, $s_2 = f^{-1}(t_2)$, vamos a comprobar que cumple las propiedades de un ideal:

i)
$$\underbrace{t_1 - t_2}_{\in f^{-1}(J)} = f(s_1) - f(s_2) = f(s_1 - s_2) \in f^{-1}(J) \implies s_1 - s_2 \in J$$

ii)
$$\forall t \in T, \ t_1 \cdot t \in f^{-1}(J) \implies \exists r \in R \text{ tal que } f(r) = t_1 \cdot t = f(s_1) - t \implies t = f(\underbrace{r - s_1}_{r'}) \implies t_1 \cdot t = f(s_1 \cdot s') \in f(J) \implies s_1 \cdot s' \in J$$

3) Como f es sobreyectivo, podemos afirmar que $\forall t \in T, \exists r \in R$ tal que f(r) = t y teniendo $t_1, t_2 \in f(I)$ tal que $t_1 = f(s_1), t_2 = f(s_2), s_1, s_2 \in I$ entonces:

i)
$$t_1 - t_2 = f(s_1) - f(s_2) = f(\underbrace{s_1 - s_2}_{\in I}) \in f(I)$$

ii)
$$t_1 \cdot t \stackrel{\text{sobre}}{=} f(s_1) \cdot f(s) = f(\underbrace{s_1 \cdot s}_{\in I}) \in f(I)$$

- 4) Comprobamos una vez más que cumple las propiedades de un ideal teniendo $s_1, s_2 \in Ker f$:
 - i) $f(s_1 s_2) = f(s_1) f(s_2) = 0 \implies s_1 s_2 \in Ker f$
 - ii) $\forall r \in R, \ f(s_1 \cdot r) = f(s_1) \cdot f(r) = 0 \cdot f(r) = 0 \implies s_1 \cdot r \in I$
- 5) Vamos a demostrar ambas implicaciones:
 - \implies) Es obvio que la antiimagen del 0_T es el 0_S , y por ser inyectiva es el único.
 - \Leftarrow) Vamos a demostrarlo por reducción al absurdo. Supongamos que f no es inyectiva, es decir, $\exists r_1, r_2 \in R, \ r_1 \neq r_2$ tal que $f(r_1) = f(r_2) = t, t \in T$, entonces:

$$f(r_1-r_2)=f(r_1)-f(r_2)=t-t=0 \implies r_1-r_2 \in Ker f \implies r_1-r_2=0 \implies r_1=r_2 \implies \text{Contradicción}$$

Observación: Si $I \in R$ es un ideal, en general $f(I) \in T$ no es un ideal.

Corolario 1.1

Sea K un cuerpo y $f: K \longrightarrow T$, entonces f es necesariamente inyectivo.

<u>Demostración</u>: Como $Ker\ f$ es un ideal en K y este es un cuerpo, entonces por la proposición 1.6 $Ker\ f$ tiene que ser o bien K, que no puede ser porque 1_K no iría a 1_T , o bien $\{0\}$, por lo que es inyectivo.

Observación: Si $f: R \longrightarrow T$ es un homomorfismo de anillos biyectivo, entonces su inverso $f^{-1}: T \longrightarrow R$ es un homomorfismo de anillos. Por tanto, todo homomorfismo de anillos biyectivo es un isomorfismo.

Teorema 1.1: 1^{er} Teorema de isomorfía

Sea $f: R \longrightarrow T$ es un homomorfismo de anillos, entonces:

1) Existe un homomorfismo de anillos \bar{f} de $R_{Ker\ f}$ en T que está bien definido tal que $\forall r \in R,\ \bar{f}(\bar{r}) := f(r).$

2) \bar{f} es inyectivo y por tanto hay un isomorfismo:

$$R_{Ker\ f} \simeq f(R) \in T$$

1.6 Característica de un anillo

Sea R un anillo cualquiera y f un homomorfismo de \mathbb{Z} en R, entonces se tiene que $Ker\ f\in\mathbb{Z}$ es un ideal pero, ¿cómo son los ideales de \mathbb{Z} ?

- a) $Ker\ f = \{0\} \implies \mathbb{Z} \hookrightarrow R$, es decir, \mathbb{Z} es un subanillo de R.
- b) $ker f = \langle n \rangle, n \neq 0$

Utilizando el primer teorema de isomorfía podemos ver que $\mathbb{Z}_{n\mathbb{Z}} \hookrightarrow R$, por lo que podemos pensar que \mathbb{Z}_n es un subanillo de R. Con esto llegamos a la siguiente definición:

Definición 1.17: Característica de un anillo

Sea R un anillo y f un homomorfismo de anillos de \mathbb{Z} en R, entonces definimos la característica de un anillo como:

 $char(R) = \begin{cases} 0 \text{ si } Ker \ f = 0 \\ n \text{ si } ker \ f = \langle n \rangle \end{cases}$

Otro modo de definir char(R), es decir que es el orden de 1_R como elemento de (R, +). Si el orden de 1_R no es finito, entonces decimos que char(R) = 0.

Notación: Cuando decimos por ejemplo que $\mathbb{Z} \subset R$ o alguno de sus conjuntos cocientes en realidad hacemos una abuso de lenguaje y a lo que nos referimos es a que existe un anillo S tal que $\mathbb{Z} \simeq S \subset R$.

Observación: Volviendo al ejemplo del homomorfismo de Frobenius, se tiene que si char(R) = p, entonces la función $A \xrightarrow{F} R$ es un homomorfismo de anillos.

Ejemplos:

- 1) $char(\mathbb{Z}) = 0$
- 2) $char(\mathbb{Q}) = 0$ (inyectivo)
- 3) $char(\mathbb{R}) = char(\mathbb{C}) = 0$

4)
$$char(\mathbb{Z}_n) = n\left(\mathbb{Z} \longrightarrow \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}\right)$$

$$5) \ char(R) = char(R[x]) \ \left(\begin{matrix} \mathbb{Z} \longrightarrow R & \hookrightarrow R[x] \\ 1 \longrightarrow 1_R \longrightarrow 1_R \end{matrix} \right)$$

6) Sea
$$R = \mathbb{Z} \times \mathbb{Z}_5$$
 con las operaciones coordenada a coordenada, $char(R) = 0$ $\begin{pmatrix} \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}_5 \\ 1 \longrightarrow (1, \bar{1}) \end{pmatrix}$

Proposición 1.9: Característica de un dominio de integridad

Sea R un dominio de integridad, entonces la característica de R será 0 o prima.

Demostración: Por el primer teorema de isomorfía, tenemos que:

Entonces, $\mathbb{Z}/_{Ker\ f} = \mathbb{Z}/_{n\mathbb{Z}} \subset R$ y como \bar{f} es inyectiva y R un DI, \mathbb{Z}_n tiene que ser también un DI, por lo que n solo podrá ser primo o 0.

Corolario 1.2: Característica de un cuerpo

Sea K un cuerpo , entonces su característica será 0 o prima.

Demostración: Resultado directo pues todo cuerpo es un DI.

Proposición 1.10

Sea R un anillo , $I \subset R$ un ideal y π una función de la forma:

$$\begin{array}{ccc}
R & \xrightarrow{\pi} & R/I \\
a & \longrightarrow & \bar{a} \mod(I)
\end{array}$$

Entonces π es un homomorfismo de grupos y se tiene que:

- 1. Si π es sobreyectivo y $J \subset R$ un ideal, entonces $\pi(J) \subset R/I$ es un ideal.
- 2. Si $a \in R$ entonces $\pi(a) = \pi(a+I)$.
- 3. Si $J \subset R$ es un ideal, entonces $\pi(J) = \pi(J+I)$, siendo J+I el ideal más pequeño que contiene a J y a I.
- 4. Sea $L \subset R/I$ un ideal, entonces $\pi^{-1}(L)$ es un ideal en R y además $I \subset \pi^{-1}(L)$.
- 5. Sean $J_1, J_2 \subset R$ ideales tal que $I \subset J_1 \subsetneq J_2$ entonces $\pi(J_1) \subsetneq \pi(J_2)$.

<u>Demostración:</u> Vamos a demostrar el punto 5. Está claro que $\pi(J_1) \subset \pi(J_2)$ pero, ¿cómo sabemos que son distintos? Lo comprobamos por redicción al absurdo. Para ello supondremos que $\pi(J_1) = \pi(J_2)$, por lo que $\exists a \in J_2 \setminus J_1$, $b \in J_1$ tal que $\pi(a) = \pi(b)$. Enotnces $\underbrace{a}_{\in J_2 \setminus J_1} = \underbrace{b}_{\in J_1} + \underbrace{r}_{\in I \subset J_1}$. Contradicción.

Teorema 1.2: Correspondencia biyectiva

Sean R un anillo , $I \in R$ un ideal y π un homomorfismo de R en R/I, entonces se tiene que existe una **correspondencia biyectiva** entre los ideales de R que contienen a I y los ideales de R/I.

Demostración: Se deja como ejercicio para el lector.

Ejemplos:

1) Sea $\pi: \mathbb{Z} \longrightarrow \mathbb{Z}/_{6\mathbb{Z}}$. Vamos a estudiar los ideales que contienen a $\langle 6 \rangle$:

$$\langle 6 \rangle \subset \left\{ \begin{array}{l} \langle 6 \rangle & \langle \bar{6} \rangle = \{ \bar{0} \} \\ \langle 2 \rangle & \longleftrightarrow \langle \bar{2} \rangle = \{ \bar{2}, \ \bar{4}, \ \bar{6} \} \\ \langle 3 \rangle & \longleftrightarrow \langle \bar{3} \rangle = \{ \bar{0}, \ \bar{3} \} \\ \mathbb{Z} & \langle \bar{1} \rangle = \mathbb{Z}_6 \end{array} \right.$$

2) Sea $\pi: \mathbb{Q}[x] \longrightarrow \mathbb{Q}[x]/\langle x^2 - 1 \rangle$. Repetimos:

$$\langle x^2 - 1 \rangle \subset \left\{ \begin{array}{l} \langle x^2 - 1 \rangle & \langle \overline{x^2 - 1} \rangle = \{\overline{0}\} \\ \langle x - 1 \rangle & \longleftrightarrow & \langle \overline{x - 1} \rangle \\ \langle x + 1 \rangle & \longleftrightarrow & \langle \overline{x + 1} \rangle \\ \langle 1 \rangle & \langle \overline{1} \rangle \end{array} \right.$$

En este caso es muy práctico porque es muy sencillo saber cuántos y qué anillos pertenecen a $\mathbb{Q}[x]$ y contienen a $\langle x^2 - 1 \rangle$.

11

1.7 Ideales primos y maximales

Definición 1.18: Ideal primo

Sea R un anillo e $I \in R$ un ideal , se dice que I es un **ideal primo** si:

- i) $I \subsetneq R$.
- ii) Si $\forall a, b \in R, \ a \cdot b \in I \implies a \in I \ ób \in I.$

Ejemplos:

- 1) En \mathbb{Z} , $\langle 6 \rangle$ no es primo ya que $2 \cdot 3 \in \langle 6 \rangle$ pero $2, 3 \notin \langle 6 \rangle$, mientras que $\langle 3 \rangle$ sí lo es.
- 2) En \mathbb{Z}_6 , $\langle 0 \rangle$ no es primo porque $\bar{2} \cdot \bar{3} = \bar{0}, \ \bar{2}, \bar{3} \notin \{\bar{0}\}.$

Proposición 1.11

Un anillo R es un dominio de integridad si y solo si $\{0\}$ es primo.

Demostración: Obv.

Proposición 1.12

Sea R un anillo e $I \subset R$ un ideal , I es primo si y solo si R/I es un dominio de integridad.

Demostración: Sale directa de traducir la condición de un ideal primo al cociente R_{I} :

$$a \cdot b \in I \iff a \in I \text{ ó } b \in I$$

 $\bar{a} \cdot \bar{b} = \bar{0} \iff \bar{a} = 0 \text{ ó } \bar{b} = 0$

Definición 1.19: Ideal maximal

Sea R un anillo e $I \subset R$ un ideal, diremos que I es un ideal maximal si:

- i) $I \subseteq R$
- ii) Si existe un ideal $J \subset R$ tal que $I \subset J$ entonces o bien I = J o J = R.

Ejemplos:

- 1) En $\mathbb Z$ los ideales maximales son los generados por números primos.
- 2) En \mathbb{Z}_6 , $\langle \bar{2} \rangle$ y $\bar{3}$ son maximales

<u>Observación:</u> Como la correspondencia biyectiva respeta los contenidos de los ideales tamibén se extiende a los ideales maximales.

Proposición 1.13

Sea R un anillo e $I \subsetneq R$ un ideal , entonces I es maximal si y solo si $R \not/_I$ es un cuerpo .

Demostración:

- \implies) Si I es maximal, por la correspondencia biyectiva, R_{I} solo tiene dos ideales, $\{0\}$ y R_{I} , por lo que es un cuerpo.
- \iff Si R_{I} es un cuerpo entonces solo tiene dos ideales, $\{0\}$ y R_{I} , y por la correspondencia biyectiva I solo está contenido en I y en R, por lo que I es maximal.

Corolario 1.3

Todo ideal maximal es también primo.

<u>Demostración:</u> Sea R un anillo e $I \subset R$ un ideal, I maximal $\stackrel{1.13}{\Longrightarrow} R/I$ es cuerpo $\stackrel{1.2}{\Longrightarrow} R/I$ es DI $\stackrel{1.11}{\Longrightarrow} I$ es prmio.

Observación: El recíproco no es cierto en general.

1.8 Ideales primos y maximales en K[x]

Proposición 1.14

Sean $I, J \in K[x]$ dos ideales tal que $I = \langle p(x) \rangle$ y $J = \langle q(x) \rangle$ entonces $I \subset J \iff q(x) \mid p(x)$.

Demostración: Se deja como ejercicio.

Definición 1.20: Elemento irreducible

En un anillo R se dice que un elemento a es **irreducible** si para $a=b\cdot c,\ b,c\in R,$ se tiene que b ó c son unidades.

Ejemplo: En $\mathbb Z$ los elementos irreducibles son los primos.

Proposición 1.15

Sea K[x] el anillo de polinomios generado por el cuerpo K, se tiene que $\forall p(x) \in K[x]$ si deg(p(x)) = 1 entonces p(x) es irreducible.

 $\underline{\text{Demostraci\'on:}} \text{ Supongamos que } p(x) = s(x) \cdot q(x), \text{ entonces } deg(s(x)) + deg(q(x)) = 1 \implies q(x) \circ p(x)$ debe ser una unidad.

Proposición 1.16

Sea K[x] el anillo de polinomios generado por el cuerpo K, se tiene que $\forall p(x) \in K[x], p(x) \neq 0$ tal que p(x) no es ireducible $\exists q(x), s(x) \in K[x]$ con deg(q(x)), deg(s(x)) < deg(p(x)) tal que $p(x) = q(x) \cdot s(x)$.

<u>Demostración</u>: Por reducción al absurdo, suponemos por ejemplo que deg(q(x)) = deg(p(x)), entonces $deg(s(x)) = 0 \implies s(x)$ es una unidad $\implies p(x)$ es irreducible. Contradicción.

Ejemplo: En $\mathbb{Z}[x]$ el polinomio 2x + 2 no es irreducible ya que $2x + 2 = 2 \cdot (x + 1)$ y ni 2 ni x + 1 son unidades.

Definición 1.21: Elemento primo

Sea R un anillo , se dice que $a \in R$ es **primo** si cada vez que $a|b \cdot c$ entonces a|b ó a|c. Esto es lo mismo que decir que a es **primo** si $\langle a \rangle$ es primo.

Ejemplos:

- 1) En \mathbb{Z} los elementos primos son, sorpresa, los primos.
- 2) Consideremos $R = \mathbb{Z}[\sqrt{-3}] \subset \mathbb{C}$ y el elemento $(1+\sqrt{-3})$, vemos que es irreducible y $(1+\sqrt{-3})(1-\sqrt{-3}) = 2 \cdot 2$ pero $(1+\sqrt{-3}) \nmid 2$ por lo que $1+\sqrt{-3}$ no es primo.

Proposición 1.17

Todo elemento primo es irreducible.

<u>Demostración</u>: Supongamos que $a \in R$ es primo. Tenemos que $a = b \cdot c$ para algunos $b, c \in R$, en particular, $a|b \cdot c$ y por ser a primo entonces a|b ó a|c. Sin perder en generalidad suponemos que a|b y por tanto $\exists k \in R$ tal que $b = a \cdot k$. Si sustituimos en la expresión inicial, obtenemos que $a = a \cdot k \cdot c$, que por la propiedad cancelativa vemos que $k \cdot c = 1$ lo que implica que c es unidad en c.

Observación: El recíproco en general no es cierto.

Teorema 1.3

Sea $I = \langle p(x) \rangle \subset K[x]$ un ideal, entonces I es maximal si y solo si p(x) es irreducible.

Demostración:

- \Longrightarrow) Vamos a comprobarlo por reducción al absurdo. Para ello, supongamos que p(x) no es irreducible, es decir, $\exists q(x), s(x)$ tal que $p(x) = q(x) \cdot s(x)$, deg(q(x), s(x)) > 1, entonces tendríamos que $I = \langle p(x) \rangle \subsetneq \langle q(x) \rangle \subsetneq K[x]$. Contradicción porque I es un ideal maximal.
- \iff De nuevo, vamos a probarlo por reducción al absurdo. Empezamos suponiendo que existe un ideal J tal que $I \subsetneq J \subsetneq K[x]$, entonces como K[x] es un dominio de ideales principales, existe un polinomio q(x) tal que $J = \langle q(x) \rangle$ y que cumple que $q(x)|p(x), q(x) \notin K$ porque $I \subsetneq J$. Por tanto tenemos que $\exists s(x) \in K[x]$ tal que $p(x) = q(x) \cdot s(x)$ con $s(x) \notin K$ ya que si no I = J, pero si deg(q(x), s(x)) > 1 entonces p(x) no es irreducible. Contradicción.