10-605/10-805 Machine Learning with Large Datasets

Fall 2020

Probabilities Recap

Outline

- Setup
- Random variables
- Distribution function
- Expectation
- Multivariate Distributions
- Independence
- ROC curve
- Probability in Hashing (birthday paradox)

Setup

Sample Space

A set of all possible outcomes or realizations of some random trial.

Event

A subset of sample space

Probability Axioms

- \circ P(A) ≥ 0 for every A
- \circ P(Ω)=1;
- o If A1, A2, . . . are disjoint, then

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Random variables

Definition

 \circ A random variable is a function that maps from the sample space to the reals (X : $\Omega \to R$), i.e., it assigns a real number X(ω) to each outcome ω.

Example

- X returns 1 if a coin is heads and 0 if a coin is tails. Y returns the number of heads after 3 flips of a fair coin.
- Random variables can take on many values, and we are often interested in the distribution over the values of a random variable, e.g., P(Y = 0)

Distribution function

Definition

- Suppose X is a random variable, x is a specific value that it can take,
- Cumulative distribution function (CDF) is the function $F: R \rightarrow [0, 1]$, where $F(x) = P(X \le x)$.
- If X is discrete \Rightarrow probability mass function: f(x) = P(X = x).

Distribution function (cont.)

 If X is continuous ⇒ probability density function for X if there exists a function f such that f(x) ≥ 0 for all x,

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

and for every $a \le b$,

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

If F(x) is differentiable everywhere, f(x) = F'(x).

Example of distributions

Discrete variable	Probability function	Mean	Variance
Uniform $X \sim U[1, \ldots, N]$	1/ <i>N</i>	$\frac{N+1}{2}$	
Binomial $X \sim Bin(n, p)$	$\binom{n}{x}p^x(1-p)^{(n-x)}$	np	
Geometric $X \sim Geom(p)$	$(1-p)^{x-1}p$	1/p	
Poisson $X \sim Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	
Continuous variable	Probability density function	Mean	Variance
Uniform $X \sim U(a, b)$	1/ (b-a)	(a + b)/2	
Gaussian $X \sim \mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$	μ	
Gamma $X \sim \Gamma(\alpha, \beta) \ (x \ge 0)$	$\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$ $\frac{1}{\Gamma(\alpha)\beta^a} x^{a-1} e^{-x/\beta}$	$\alpha \beta$	
Exponential $X \sim exponen(\beta)$	$\frac{1}{\beta}e^{-\frac{X}{\beta}}$	β	

Expectation

Expected Values

Discrete random variable X

$$E[g(X)] = \sum_{x \in \chi} g(x)f(x)$$

Continuous random variable X

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Expectation (cont.)

Mean and variance

$$\mu = E(X)$$

$$var[X] = E[(X - \mu)^2]$$

We also have

$$var[X] = E[X^2] - \mu^2$$

Multivariate Distributions

Definition

$$F_{X,Y}(x,y) := P(X \le x, Y \le y)$$

and

$$f_{X,Y}(x,y) := \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

Marginal Distribution of X (discrete case)

$$f_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = \sum_y f_{X,Y}(x, y)$$

What about continuous variable?

Independence

Independent Variables

X and Y are independent if and only if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

Or

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

Independence (cont.)

IID variable

 Independent and identically distributed (IID) random variables are drawn from the same distribution and are all mutually independent.

Linearity of Expectation

Even if the events are not independent, this property still holds

$$E[\sum_{x=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$$

Confusion matrix

Actual Values

	,	Positive (1)	Negative (0)
d Values	Positive (1)	TP	FP
Predicted Values	Negative (0)	FN	TN

True Positive Rate (TPR) =
$$\frac{TP}{TP+FN}$$

False Positive Rate (FPR) =
$$\frac{FP}{TN+FP}$$

- Statistics Computed from Confusion Matrix
 - Precision: Out of all the predicted positive instances, how many were predicted correctly.

 Recall: Out of all the positive classes how many instances were identified correctly (Same as TPR)

Introduction to AUC - ROC Curve

 how good the model is for distinguishing the given classes, in terms of the predicted probability

Assumption

- n=number of people
- k=365
- P(person i is born on day j) = 1/k

We are interested in the event A that at least two people have the same birthday.

$$P(A) = 1 - P(\bar{A})$$

$$= 1 - \frac{k}{k} \cdot \frac{k-1}{k} \cdot \dots \cdot \frac{k-n+1}{k}$$

$$= 1 - \frac{k!}{(k-n)!k^n}.$$

Hashing

- Similar to assignments of birthdays
- n items mapped into k slots

Hashing problems dealing with probabilities

- the expected number of items mapping to same slot
- the expected number of empty slots
- the expected number of collisions

Items per slot

Consider the following indicator random variable

$$X_i = \begin{cases} 1 & \text{if item } i \text{ is mapped to slot } 1; \\ 0 & \text{otherwise.} \end{cases}$$

The number of items mapped to slot 1 is therefore

$$X = X_1 + X_2 + \dots + X_n$$

The expected number of items mapped to slot 1 is

$$E(X) = \sum_{i=1}^{n} E(X_i) = \frac{n}{k}.$$

Empty slots

The probability that slot j remains empty after mapping all n items is

$$(1-\frac{1}{k})^n$$

The expected number of empty slots is

$$E(X) = \sum_{j=1}^{k} E(X_j) = k \left(1 - \frac{1}{k}\right)^n.$$

If k = n, we can get a max limitation of 0.367

Collisions

- X empty slots
- (k-X) items hashed without collision
- o (n-k+X) collisions occur

$$E(Z) = n - k + E(X)$$
$$= n - k + k \left(1 - \frac{1}{k}\right)^{n}.$$

