Machine Learning I: Supervised Methods

B. Keith Jenkins

Announcements

- Course Project Assignment has been posted on D2L
 - Includes descriptions of 3 datasets
 - Requirements
 - · Tips to help you
 - · Grading criteria
- There will be 2 more homeworks (HW7, HW8)
- No Slido poll questions today

Reading

- Bishop 9.1
 - K-means clustering (we will use this with Radial Basis Function ANNs)

Today's lecture

- Multiple layer feedforward ANNs (part 2)
 - Feedforward ANNs as universal function approximators
 - Proof by construction (D=1)
 - Summary and comments

* - Added post-lecture:

· Equation numbers for all wpq;

· Last comment on p. 12.

Feed forward ANN's: fundamental capabilities and limitations

- Classification

- Regression

- Function approximation.

ANN, for any input x, will give outports: $\hat{g}_i(x)$, $i=1, \cdots, d_{i}$.

> Regression: outputs \hat{y} , $\hat{y}_2(x)$, $\hat{y}_2(x)$.

Like approximating "some unknown function y: (x)

> Classification: (i) approx. binary-valued (unknown) fons. y(x)

(ii) approx. discriment for. g(x) or g(x).

For ML (regr. & classin) the fin. we are approximating is unknown.

Question: how general of a function can a multilayer feedforward ANN approximate, to (ideally) any degree of accuracy?

Theoretical example of universal function approximation using ReLU

Problem: approximate any function y(x) using a λ -layer ANN, over the region R_{χ} . Assume a 1D problem, ReLU for the hidden layer.

Use a piecewise linear approximation.

Choose data points (grid points) (x; y;), y; = y(xi), i=0,1,2,...,N-1.

=) hidden unit outputs $v_m(x_n)$, m = 1, ..., M-1; M-1 = # hidden units. $Hidden bias node output <math>v_0 = 1$.

Let M= N= # "data points" (or "grid points")

Goal: find weights that will give f(x) as a piecewise-linear approximation to y(x)

$$\hat{f}(x) = w_{(0)}^{(2)} v_{0}(x) + \sum_{m=1}^{M-1} w_{(m)}^{(2)} v_{m}(x), \quad v_{m}(x) = h_{RelU}(w_{m_{1}}^{(1)} x + w_{m_{0}}^{(1)})$$

=
$$h_0 \left(w^{(1)} x + w^{(1)} \right)$$

$$h_{ReLU}(a) = ba$$

$$V_m(x) = \max \{0, b(w_m(1)x + w_{mo}(1))\}$$

Let ReLU parameter b=1 (=) slope 1). Let $w_{m1}^{(1)} = 1$ $\forall m$ $v_{m}(x) = max {0, } x + w_{mo}^{(1)}$

$$\hat{f}(x) = w_{(0)}^{(2)} v_{0}(x) + \sum_{m=1}^{M-1} w_{(m)}^{(2)} max \{0, x+w_{m0}\}$$

We will want:

How to express using hell?

$$\Rightarrow h(x) = h_{Relv}(x-a_0)$$

$$= \max \{0, x-a_0\}$$

Order the N data points so that: $\chi_0 < \chi_1 < \chi_2 < \cdots < \chi_{N-1}$ in which duplicate data points are omitted.

For simplicity, assume $x_0 = x_{min}$ and $z_{N-1} = x_{max}$ (we have data points at edges of region R_x).

Comment: this proof also applies (with minor modifications) if $\chi_{min} < \chi_0$ and $\chi_{N-1} < \chi_{max}$.

Let $\hat{f}_{n-1}(x)$ be the function approximation based on data points $x_{0,1}x_{1,1},...,x_{n-1}$.

=> f (x) uses only data point (xo, yo).

(2) Let: $\hat{f}_{o}(x) = y_{o}$.

In the ANN (Fig. 1), this can be done by:

For $\hat{f}_i(x)$ use data $(x_0, y_0), (x_i, y_i)$. \Rightarrow or, use $\hat{f}_0(x)$ and (x_i, y_i) .

What is $\hat{f}_{s}(x_{i}) \stackrel{?}{=} y_{0}$ $\Rightarrow \hat{f}_{s}(x_{i}) \neq y_{i}$ in general

Use $v_i(x)$ to correct $\hat{f}_o(x_i)$, so that $\hat{f}_i(x_i) = y_i$.

Place "hinge" of the RelU for v, at xo:

(4)
$$f(x) = w_{i0} v_{o}(x) + w_{i1} max \{0, x + w_{i0}\}$$

(4) Choose $w_{i0}^{(1)} = -x_{0}$

$$\hat{f}_{i}(x) = \hat{f}_{o}(x) + w_{ij}^{(2)} \max\{0, x - x_{o}\}$$

$$\hat{f}_{1}(x) = \hat{f}_{0}(x) + w_{11}^{(2)} v_{1}(x) = \hat{f}(x) ; f v_{m}(x) = 0, m > 1.$$

What slope w, (2) will make f, (x,) = y, ?

$$\hat{f}_{1}(x) - \hat{f}_{0}(x) = w_{1}(x) + (x)$$

$$s(ope = w_{ij}^{(2)} = \frac{y_i - y_o}{x_i - x_o}$$

$$y_1 - y_0 = w_1(2)(x_1 - x_0)$$
 because $x_1 > x_0$.

$$\hat{\xi}(x)$$
 $\hat{\chi}(x, y, y)$

$$\Rightarrow \hat{f}_{i}(x_{i}) = y_{i} \Rightarrow 0 \text{ error at } x_{i}$$

$$(x_0, y_0)$$
 $(x_1, \hat{f}_0(x_1))$ $\hat{f}_0(x_2)$

Now consider nth segment (for n = 2):

$$\hat{f}(x) = \hat{f}_{0}(x) + \sum_{m=1}^{N-1} w_{1m} \max \{0, x-x_{m-1}\} + \sum_{m=n+1}^{M-1} w_{1m} \max \{0, x-x_{m-1}\}$$

$$\triangleq \hat{f}_{n-1}(x)$$

$$= 0 \text{ in region } x_{n-1} \leq x \leq x_{n}$$

+ win max 20, x-xn-13

This is the estimate based on (xi, yi), i=0,1, ..., n.

$$\hat{f}_{n}(x) = \hat{f}_{n-1}(x) + w_{1n}^{(2)} v_{n}(x), \quad v_{n}(x) = \max \{0, x-x_{n-1}\}$$

Assume we have $\hat{f}_{n-1}(x_{n-1}) = y_{n-1} \Rightarrow 0$ error at x_{n-1} .

Generally fn-1 (xn) + yn.

$$\hat{f}_{n}(x) = \hat{f}_{n-1}(x) + w_{in}^{(2)} \max \{0, \chi - \chi_{n-1}\}$$

Choose to make fn (xn) = yn

because $x \leq x_n$

$$\hat{f}_{n}(x_{n}) = \hat{f}_{n-1}(x_{n}) + w_{1n}^{(2)}(x_{n} - x_{n-1}) \quad \text{because } x_{n} > x_{n-1}.$$

$$\hat{f}_{n}(x_{n}) - \hat{f}_{n-1}(x_{n}) = w_{1n}^{(2)}(x_{n} - x_{n-1})$$

$$y_{n} - \hat{f}_{n-1}(x_{n}) = w_{1n}^{(2)}(x_{n} - x_{n-1})$$

$$w_{1n}^{(2)} = \frac{y_{n} - \hat{f}_{n-1}(x_{n})}{x_{n} - x_{n-1}}, \quad n \ge \lambda.$$

$$\hat{f}_{n}(x) = \hat{f}_{n-1}(x)$$

$$\hat{f}_{n}(x) = \hat{f}_{n}(x) = \hat{f}_{n}(x_{n})$$

$$\hat{f}_{n}(x) = \hat{f}_{n}(x_{n}) = \hat{f}_{n}(x_{n})$$

$$\hat{f}_{n}(x) = \hat{f}_{n}(x_{n}) = \hat{f}_{n}(x_{n})$$

By induction, error can be made 0 at every data point, and $\hat{f}(x)$ gives linear approximation to y(x) between neighboring data points.

Summary

- o Feedforward ANN with (hidden layer (2 layers of weights).
- · Weights wm, (1) = 1 Ym (all weights from input x in first layer)
- · Hidden units use ReLU activation functions h(a) = max {0,a} (unit slope)
- · Weights wmo = -xm-1 give offset of each hidden-unit ReLU

$$v_{m}(x) = \max\{0, x + w_{mo}^{(1)}\} = \max\{0, x - x_{m-1}\}$$

o Second layer weights win give slope of ReLU of vn (x) so that

$$\hat{f}_{n}(x) = \hat{f}_{o}(x) + \left(\sum_{m=1}^{n-1} w_{m}(x) v_{m}(x)\right) + w_{n}(x)$$

Sum of contributions from all vm(x), m<n.

gives error-free estimate at x_n : $\hat{f}_n(x_n) = y_n$.

* • All weight values are given in Eqs. (1), (3), (4)-(7).

o Example result (N=9 data points)

Comments

- 1. f(x) is a piecewise-linear approximation of y(x).
- 2. By taking N (=M) sufficiently large, error of approximation

$$\mathcal{E} = \frac{1}{\chi_{\text{max}} - \chi_{\text{min}}} \int_{\mathbb{R}_{X}} (\hat{f}(x) - y(x))^{2} dx$$

can be made arbitrarily small, for essentially any realistic function function y(x).

- 3. Thus, this ANN shows that a (ID) universal function approximator is possible with a 2-layer feedforward ANN.
- 4. Can be extended to higher dimensional inputs D=2.

 (D>2 most easily proven using Fourier-series approach instead of piecewise-linear).