Claim 1. (Twice Amended) A 1,3-dioxolo-[4,5-

h][2,3]benzodiazepine compound of the formula I

A CH3
B
N—R1
R2

wherein

A represents a hydrogen atom

B means a hydrogen atom,

 R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R, \text{ wherein}$

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

and R^4 mean, independently, a hydrogen atom, a C_{3-6} cycloalkyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen

C' Pont atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent consists of a C_{1-4} alkoxy group, or

and R^4 form with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

n has a value of 0, 1 or 2,

m has a value of 0, 1 or 2, Δr

- A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case
- R^1 represents a group of the formula $-CO-(CH_2)_p-R^6$, wherein
 - R^6 stands for a halo atom, a phenoxy group, a $C_{1\text{-}4}$ alkoxy group or a group of the formula $-NR^7R^8$, wherein
 - R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, a C_{3-6} cycloalkyl group or a C_{1-4} alkyl group which latter is optionally

Cil Cont substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

and R⁸ form together with the adjacent nitrogen R^7 atom, an oxopyrrolidinyl group, a phthalimido group, or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an the heteroatom, and said oxygen atom as heterocyclic group is optionally substituted identical different by to 3 \or substituent(s) selected from\ the group consisting of a hydroxy group, a phenyl group, a phenoxy group, a phenyl $(C_{1-4} \text{ alkyl})$ group or a phenoxy(C_{1-4} alkyl) group, wherein in case of the substituents listed the phenyl or henoxy group is optionally substituted by 1 \to 3 identical or different substituent(s), wherein the substituent is a halo atom or a C1-4 alkoxy

C' D' font

group, and, in case of the phenoxy(C_{1-4} alkyl) group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- p has\a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a (C_{1-4} alkanoyl)amino group, with the proviso that
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,
- 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group, and
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-14} alkyl

group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group,

and pharmaceutically suitable acid addition salts thereof.

Pont

Claim 2. (Twice Amended) A 1,3-dioxolo-[4,5-h][2,3] benzodiazepine compound as claimed in Claim 1, wherein

- A represents a hydrogen atom,
 - B means a hydrogen atom,
 - R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R$, wherein
 - R represents a chloro atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein
 - R^3 and R^4 mean, independently, a hydrogen atom, a cyclopropyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two methyl group(s), or a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and the heterocyclic group is optionally substituted by a phenyl group

) (D) which latter is optionally substituted by 1 to 3 methoxy groups, or

R³ and R⁴ form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 methoxy groups,

n has a value of $0 \setminus 1$ or 2,

m has a value of 0, \ or 2,

 ${\ensuremath{\mathsf{R}}}^2$ stands for a nitro group or an amino group, with the proviso that

- 1) if n and m have a value of 0, then one of \mathbb{R}^3 and \mathbb{R}^4 represents a hydrogen atom, and the other of \mathbb{R}^3 and \mathbb{R}^4 is different from a hydrogen atom, a phenyl group or a C_1 -, alkyl group, and
- 2) if n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group,

and pharmaceutically suitable acid addition salts thereof.

Claim 5. (Twice Amended) A 8-methyl-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound as claimed in Claim 1, wherein in formula I

A forms together with B a valence bond between the carbon atoms in positions 8 and 9,

- R^1 represents a group of the formula $-CO-(CH_2)_p-R^6$ wherein
 - R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein
 - R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, or a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a morpholino group, wherein the phenyl group is optionally substituted by one or two C_{1-2} alkoxy group(s), or
 - and R⁸ form together with the adjacent nitrogen atom an oxopyrrolidinyl group, a phthalimido group or a saturated heterocyclic group having 5 or 6 members and comprising one or two nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by 1 to 2 identical or different substituents(s) selected from the group consisting of a hydroxy

group, a phenyl group, a phenoxy group, a phenyl (C_{1-4} alkyl) group or a phenoxy(C_{1-4} alkyl) group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by a halo atom or a C_{1-4} alkoxy group,

- p has a value of 0, 1 or 2,
- ${\ensuremath{\mathsf{R}}}^2$ stands for a nitro group or an amino group, with the proviso that
- 1) if R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group, and
- 2) if R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_1 alkyl group,

and pharmaceutically suitable acid addition salts thereof.

Claim 6. (Twice Amended) A 8-methyl-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound as claimed in Claim 5, wherein

A forms together with B a valence bond between the carbon atoms in positions 8 and 9,

- R² represents a nitro group or an amino group,
- R^1 stands for a group of the formula $-CO-(CH_2)_p-R^6$, wherein

 R^6 means a chloro atom, a phenoxy group, or a group of the formula $-NR^7R^8$, wherein

and R^8 represent, independently, a hydrogen atom, a guanyl group or a C_{1-3} alkyl group optionally substituted by a phenyl group, a dimethoxyphenyl group or a morpholino group, or

and R⁸ form with the adjacent nitrogen atom, an oxopyrrolindinyl group, a phthalimido group or a saturated heterocyclic group having 5 or 6 members and comprising one or two nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by one or two identical or different substituent(s) selected from the group consisting of a hydroxy group, a methoxyphenyl group, a fluorophenyl group, a benzyl group or a (methoxy-phenoxy)-(hydroxypropyl) group,

p has a value of 0, 1 or 2, with the proviso that

if R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-3} alkyl group,

and pharmaceutically suitable acid addition salts thereof.

Claim 9. (Amended)

A pharmaceutical composition

comprising a 1,3-dioxolo-[4,5-h][2,8]benzodiazepine compound of the formula I

wherein

A represents a hydrogen atom,

B means a hydrogen atom,

 R^1 stands for a group of the formula

-(CH₂) $_n$ -CO-(CH₂) $_m$ -R, wherein

R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein

 R^3 and R^4 mean, independently, a hydrogen atom, a C_{3-6} cycloalkyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or

C3 Port a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which is optionally substituted by 1 to 3 substituent(s), wherein the substituent consists of a C_{1-4} alkoxy group, or

 R^3 and R^4 form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

n has a value of 0, 1 or 2,

m has a value of 0, 1 or 2, or

- A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case
- R^1 represents a group of the formula $-CO-(CH_2)_p-R^6$, wherein
 - R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein
 - R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, a C_{3-6} cycloalkyl group or a C_{1}

C3 Dat substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C₁₋₄ alkoxy group, or

and R⁸ form together with the adjacent nitrogen R^7 atom, an oxopyrrolidinyl group, a phthalimido group which latter is optionally substituted, or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterodyclic group is optionally substituted by 1 to 3 identical or different substituent(s) selected\ from the group consisting of a hydroxy group, a phenyl group, a phenoxy group, a phenyl($C_{1-4} \setminus alkyl$) group or a phenoxy $(C_{1-4} \text{ alkyl})$ group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by 1 to 3 identical or different substituent(s),

C3 Post wherein the substituent is a halo atom or a C_{1-4} alkoxy group, and, in case of the phenoxy(C_{1-4} alkyl) group, the alkyl group is optionally substituted by 1 or 2 hydroxy group(s),

- p has a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1\text{--}4} \text{ alkanovl}) \text{ amino group, with the proviso}$ that
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,
- 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of \mathbb{R}^3 and \mathbb{R}^4 represents a hydrogen atom, and the other of \mathbb{R}^3 and \mathbb{R}^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group, and

C3
Port

if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-14} alkyl group,

or a pharmaceutically suitable acid addition salt thereof as the active ingredient and one or more conventional carrier(s).

Claim 10. (Twice Amended) A pharmaceutical composition as claimed in Claim 9 comprising a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I, wherein

- A represents a hydrogen atom,
- B means a hydrogen atom,
- R^1 stands for a group of the formula $-\left(CH_2\right)_n-CO-\left(CH_2\right)_m-R, \text{ wherein}$
 - R represents a chloro atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein
 - R^3 and R^4 mean, independently, a hydrogen atom, a cyclopropyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two methyl group(s), or a C_{1-4} alkyl group which latter is optionally substituted by a

 C^3

phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 hitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 methoxy groups, or

R³ and R⁴ form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 methoxy groups,

n has a value of 0, 1 or 2, m has a value of 0, 1 or 2,

 ${\ensuremath{\mathsf{R}}}^2$ stands for a nitro group or an amino group, with the proviso that

- 1) if n and m have a value of 0, then one of \mathbb{R}^3 and \mathbb{R}^4 represents a hydrogen atom, and the other of \mathbb{R}^3 and \mathbb{R}^4 is different from a hydrogen atom, a phenyl group or a C_{1-4} alkyl group, and
- 2) if n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-4} alkyl group, then the other of

C3

 \mathbb{R}^3 and \mathbb{R}^4 is different from a hydrogen atom or a \mathbb{C}_{1-4} alkyl group,

or a pharmaceutically suitable acid addition salt thereof as the active ingredient.

64

Claim 13. (Twice Amended) A pharmaceutical composition as claimed in Claim 9 comprising an 8-methyl-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I, wherein

A forms together with B a valence bond between the carbon atoms in positions 8 and 9,

 R^1 represents a group of the formula $-CO-(CH_2)_p-R^6$, wherein

 R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein

 R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, or a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a morpholino group, wherein the phenyl group is optionally substituted by one or two C_{1-2} alkoxy group(s), or

and R⁸ form together with the adjacent nitrogen atom, an oxopyrrolidinyl group, a phthalimido group or a saturated heterocyclic group having 5 or 6

members and comprising one or two nitrogen atom(s) of a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by 1 to 2 identical or different substituent(s) selected from the group consisting of a hydroxy group, a phenyl group, a phenoxy group, a phenyl (C_{1-4} alkyl) group or a phenoxy (C_{1-4} alkyl) group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by a halo atom or a C_{1-4} alkoxy group,

- p has a value of 0, $1 \circ 2$,
- ${\ensuremath{\mathsf{R}}}^2$ stands for a nitro group or an amino group, with the proviso that
- 1) if R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a $C_{1\text{--}4}$ alkoxy group, and
- 2) if R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,

or a pharmaceutically suitable acid addition salt thereof as the active ingredient.

Claim 14. (Twice Amended) A pharmaceutical composition as claimed in Claim 13 comprising an 8-methyl-7H-1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I, wherein

A forms together with B a valence bond between the carbon atoms in positions 8 and 9,

- R² represents a nitro group or an amino group,
- R^1 stands for a group of the formula $-CO-(CH_2)_p-R^6$, wherein
 - R^6 means a chloro atom, a phenoxy group, or a group of the formula $-NR^7R^8$, wherein
 - R^7 and R^8 represent, independently, a hydrogen atom, a guanyl group or a C_{1-3} alkyl group optionally substituted by a phenyl group, a dimethoxyphenyl group or a morpholino group, or
 - R⁷ and R⁸ form with the adjacent nitrogen atom, an oxopyrrolindinyl group, a phthalimido group or a saturated heterocyclic group having 5 or 6 members and comprising one or two nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted by one or two identical or different substituent(s) selected from the group consisting of a hydroxy group, a methoxyphenyl group, a fluorophenyl group,

a benzyl group or a (methoxy-phenoxy)(hydroxypropyl) group,

p has a value of 0, 1 or 2, with the proviso that

if R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-3} alkyl group,

or a pharmaceutically suitable acid addition salt thereof as the active ingredient.

CS Down 3 Claim 16. (Twice Amended) A method of treatment in which a patient suffering from epilepsy or being in a state after stroke is treated with a non-toxic dose of a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I,

wherein

- A represents a hydrogen atom,
- B means a hydrogen atom,

 R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R$, wherein

C5

- R represents a halo atom, a pyridyl group or a group of the Kormula $-NR^3R^4$, wherein
 - and R4 mean, independently, a hydrogen atom, a R^3 C_{3-6} dycloalkyl group, a C_{1-4} alkoxy group, an phenyl group optionally \group, amino а substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 hitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group\is optionally substituted by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent consists of a C_1 alkoxy group, or
 - R^3 and R^4 form, with the adjacent hitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

C5 P3 h has a value of 0, 1 or 2,

m has a value of 0, 1 or 2, or

- A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case
- R^1 represents a group of the formula $-CO-(CH_2)_{\mathbb{P}} R^6$, wherein
 - R^6 stands for a halo atom, a phenoxy group, a C_{1-4} alkoxy group or a group of the formula $-NR^7R^8$, wherein
 - R^7 and R^8 mean, independently, a hydrogen atom, a guanyl group, a C_{3-6} cycloalkyl group or a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or
 - ${
 m R}^7$ and ${
 m R}^8$ form together with the adjacent nitrogen atom, an oxopyrrolidinyl group, a phthalimido group, or a saturated heterocyclic group having 5 or 6 members and comprising one or

C5 Cont more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted 1 to 3 identical or different bу substituent(s) selected from the consisting of a hydroxy group, a phenyl group, a phenoxy group, a phenyl(C_{1-4} alkyl) group or a phenoxy(C_{1-4} alkyl) group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a halo atom or a C_{1-4} alkoxy group, and, in case of the phenoxy $(C_{1-4} \text{ alkyl})$ alkyl \group optionally the is group, substituted by 1 or 2 hydroxy group(s),

- p has a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1\text{--}4} \text{ alkanoyl}) \text{ amino group, with the proviso }$ that
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,

C5

- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^8 is different from a hydrogen atom or a C_{1-4} alkyl group,
- 3) if each of R and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-14} alkyl group, and
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of R^3 and R^4 stands for a hydrogen atom or a C_{1-14} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group,

or a pharmaceutically suitable acid addition salt thereof.

Claim 17. (Twice Amended) A process for preparing a pharmaceutical composition suitable for the treatment of epilepsy or a state after stroke, characterized in that a 1,3-dioxolo-[4,5-h][2,3]benzodiazepine compound of the formula I,

Cs-Cont

$$\begin{array}{c|c} A & CH_3 \\ \hline N & R^1 \\ \hline R^2 & \\ \end{array}$$
 wherein

- A represents a hydrogen atom,
- B means a hydrogen atom
- R^1 stands for a group of the formula $-(CH_2)_n-CO-(CH_2)_m-R$, wherein
 - R represents a halo atom, a pyridyl group or a group of the formula $-NR^3R^4$, wherein
 - R^3 and R^4 mean, independently, a hydrogen atom, a C_{3-6} cycloalkyl group, a C_{1-4} alkoxy group, an amino group, a phenyl group optionally substituted by one or two C_{1-4} alkyl group(s), a C_{1-4} alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and comprising 1 to 3 nitrogen atom(s) or a nitrogen atom and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted

C5 Cont by a phenyl group which latter is optionally substituted by 1 to 3 substituent(s), wherein the substituent consists of a C_{1-4} alkoxy group, or

 R^3 and R^4 form, with the adjacent nitrogen atom and optionally with a further nitrogen atom or an oxygen atom, a saturated or unsaturated heterocyclic group having 5 or 6 members, being optionally substituted by a phenyl group that is optionally substituted by 1 to 3 substituents, wherein the substituent is a C_{1-4} alkoxy group,

n has a value of 0, $1 \setminus \text{or 2}$,

m has a value of 0, 1 or 2, or

- A forms together with B a valence bond between the carbon atoms in positions 8 and 9, and in this case
- represents a group of the formula -CO-(CH₂)_p-R⁶, wherein
 - R^6 stands for a halo atom, a phenoxy group, a $C_{1\text{-}4}$ alkoxy group or a group of the formula $-NR^7R^8$, wherein
 - ${
 m R}^7$ and ${
 m R}^8$ mean, independently, a hydrogen atom, a guanyl group, a ${
 m C}_{3-6}$ cycloalkyl group or a ${
 m C}_{1-4}$ alkyl group which latter is optionally substituted by a phenyl group or a saturated heterocyclic group having 5 or 6 members and

comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, wherein the phenyl group is optionally substituted by 1 to 3 identical or different substituent(s), wherein the substituent is a C_{1-4} alkoxy group, or

Don't

 R^7

and R⁸ form together with the adjacent nitrogen atom, an oxôpyrrolidinyl group, a phthalimido group, or a \saturated heterocyclic group having 5 or 6 members and comprising one or more nitrogen atom(s) or a nitrogen and an oxygen atom as the heteroatom, and said heterocyclic group is optionally substituted identical different 1 3 or by selected substituent(s) ħrom. the consisting of a hydroxy group, a phenyl group, a phenoxy group, a phenyl $(C_{1-4} \text{ alkyl})$ group or a phenoxy $(C_{1-4} \text{ alkyl})$ group, wherein in case of the substituents listed the phenyl or phenoxy group is optionally substituted by λ to 3 identical or different substituent(s), wherein the substituent is a halo atom or a C_{1-4} alkoxy group, and, in case of the phenoxy(C_{1-4} alkyl)

group, the alkyl group is optionally
substituted by 1 or 2 hydroxy group(s),

- p \setminus has a value of 0, 1 or 2,
- R^2 stands for a nitro group, an amino group or a $(C_{1-1} \ \, alkanoyl) \, amino \, \, group, \, \, with \, \, the \, \, proviso \, \, that$
- 1) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group and p has a value of 0, then R^6 is different from a C_{1-4} alkoxy group,
- 2) if A forms together with B a valence bond, R^2 stands for a nitro group or an amino group, p has a value of 0 or 1, and R^6 represents a group of the formula $-NR^7R^8$, then one of R^7 and R^6 is different from a hydrogen atom or a C_{1-4} alkyl group,
- 3) if each of A and B stands for a hydrogen atom, n and m have a value of 0, then one of R^3 and R^4 represents a hydrogen atom, and the other of R^3 and R^4 is different from a hydrogen atom, a phenyl group or a C_{1-14} alkyl group, and
- 4) if each of A and B stands for a hydrogen atom, n has a value of 0, m has a value of 1 or 2, and one of \mathbb{R}^3 and \mathbb{R}^4 stands for a

C5 Cont hydrogen atom or a C_{1-4} alkyl group, then the other of R^3 and R^4 is different from a hydrogen atom or a C_{1-4} alkyl group,

 0^3

or a pharmaceutically suitable acid addition salt thereof, together with one or more conventional carrier(s), is converted to a pharmaceutical composition.