Week 7

Integration on Forms

7.1 Chapter 3: Integration on Forms

From Guillemin and Haine (2018).

5/26: • Change of variables form

• Change of variables formula: If $U, V \subset \mathbb{R}^n$ open and $f: U \to V$ a C^1 diffeomorphism, then for every $\phi: V \to \mathbb{R}$ continuous, the left integral below exists iff the right integral below exists and if they are equal.

$$\int_{V} \phi(y) \, dy \qquad \qquad \int_{U} (\phi \circ f)(x) |\det Df(x)| \, dx$$

- Guillemin and Haine (2018) refers us elsewhere for some types of proofs. They, instead, will focus
 on Lax's differential-forms-heavy proof that, nevertheless, can be modified to avoid references to
 differential forms and be based solely on the language of elementary multivariable calculus^[1].
- Lax's proof is also desirable since it leads into a change of variables theorem for maps other than
 diffeomorphisms, and involves a topological invariant (the degree of a map), thereby providing
 a first brush with topology.
- Henceforth, let f be a C^{∞} diffeomorphism.
- Support (of ν): The following set, where $\nu \in \Omega^k(\mathbb{R}^n)$. Denoted by supp(ν). Given by

$$\operatorname{supp}(\nu) = \overline{\{x \in \mathbb{R}^n : \nu_x \neq 0\}}$$

- Compactly supported (k-form ν): A k-form ν for which supp(ν) is compact.
- $\Omega_c^k(\mathbb{R}^n)$: The set of all C^{∞} k-forms which are compactly supported.
- $\Omega_c^k(U)$: The set of all C^{∞} k-forms which are compactly supported and $\operatorname{supp}(\omega) \in U$ for all $\omega \in \Omega_c^k(U)$, where $U \subset \mathbb{R}^n$ open.
- Integral (of ω over \mathbb{R}^n): The usual integral of f over \mathbb{R}^n , where $\omega = f \, \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_n$ is compactly supported and $f \in C_0^\infty(\mathbb{R}^n)^{[2]}$. Denoted by $\int_{\mathbb{R}^n} \omega$. Given by

$$\int_{\mathbb{R}^n} \omega = \int_{\mathbb{R}^n} f \, \mathrm{d}x$$

• Property P (possessing set U): The property of a set U that for every form $\omega \in \Omega_c^m(U)$ such that $\int_U \omega = 0$, $\omega \in d(\Omega_c^{m-1}(U))$.

¹Guillemin and Haine (2018) recommends we read the original article; could be worthwhile if I can find it!

²Recall that $C_0^{\infty}(\mathbb{R}^n)$ is the space of all bump functions on \mathbb{R}^n .

• Theorem 3.2.3: Let $U \subset \mathbb{R}^{n-1}$ open and $A \subset \mathbb{R}$ an open interval. Then if U has property $P, U \times A$ does as well.

Proof. ...

- Theorem 3.2.2 (Poincaré lemma for rectangle): Let ω be a compactly supported n-form with supp $(\omega) \subset \operatorname{int}(Q)$, where $Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Then the following are equivalent.
 - 1. $\int \omega = 0$.
 - 2. There exists a compactly supported (n-1)-form μ with $\operatorname{supp}(\mu) \subset \operatorname{int}(Q)$ satisfying $d\mu = \omega$.

Proof $(2 \Rightarrow 1)$. As given in class on 5/2.

One additional note: We can compute $\int_{\mathbb{R}^n} \partial f_i/\partial x_i \, dx$ by Fubini's theorem.

Proof $(1 \Rightarrow 2)$. We induct on dim Q. For the base case n = 1, the interval A has property P by Exercise 3.2.i. Now suppose inductively that we have proven that $A_1 \times \cdots \times A_{n-1}$ has property P, where $A_i = (a_i, b_i)$. Then by Theorem 3.2.3, $A_1 \times \cdots \times A_n = A_1 \times \cdots \times A_{n-1} \times A_n$ has property P. \square

- We now seek to generalize Theorem 3.2.2 to arbitrary connected open subsets of \mathbb{R}^n .
- Theorem 3.3.1 (Poincaré lemma for compactly supported forms): Let $U \subset \mathbb{R}^n$ connected and open, and let let $\omega \in \Omega_c^n(U)$ satisfy $\operatorname{supp}(\omega) \subset U$. Then the following are equivalent.
 - 1. $\int_{\mathbb{R}^n} \omega = 0.$
 - 2. There exists a compactly supported (n-1)-form μ with $\operatorname{supp}(\mu) \subset U$ and $\omega = d\mu$.

Proof $(2 \Rightarrow 1)$. The support of μ is contained in a large rectangle, so the integral of $d\mu$ is zero by Theorem 3.2.2.

$$Proof (1 \Rightarrow 2)$$
. ...

- **Proper** (continuous map): A continuous map $f: U \to V$, where $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^k$ are open, such that for every $K \subset V$ compact, the preimage $f^{-1}(K)$ is compact.
 - Proper mappings have many nice properties (see the Exercises 3.4).
 - One example is that if $f \in C^{\infty}$ and $\omega \in \Omega_c^k(V)$ satisfies $\operatorname{supp}(\omega) \subset V$, then $f^*\omega \in \Omega_c^k(U)$.
- **Degree** (of f): The topological invariant of $f: U \to V$, a C^{∞} map with $U, V \subset \mathbb{R}^n$ open and connected, defined as follows for all $\omega \in \Omega^n_c(V)$. Denoted by $\operatorname{deg}(f)$. Given by

$$\int_U f^*\omega = \deg(f) \int_V \omega$$

- A coordinate-based formula for the degree.
 - Let $\omega = \phi(y) dy_1 \wedge \cdots \wedge dy_n$ and $x \in U$.
 - Then

$$f^*\omega = (\phi \circ f)(x) \det(Df(x)) dx_1 \wedge \cdots \wedge dx_n$$

- It follows that

$$\int_{V} \phi(y) \, \mathrm{d}y = \deg(f) \int_{U} (\phi \circ f)(x) \det(Df(x)) \, \mathrm{d}x$$

• We now seek to prove that the degree, as defined, exists for suitable functions.

Proof. ...

• Proposition 3.4.4: Let $U, V, W \subset \mathbb{R}^n$ open and connected, and $f: U \to V$ and $g: V \to W$ proper C^{∞} maps. Then

$$\deg(g \circ f) = \deg(g)\deg(f)$$

Proof. Let $\omega \in \Omega_c^n(W)$. Then since $(g \circ f)^*\omega = f^*(g^*\omega)$,

$$\deg(g \circ f) \int_{W} \omega = \int_{U} (g \circ f)^{*} \omega$$

$$= \int_{U} f^{*}(g^{*} \omega)$$

$$= \deg(f) \int_{V} g^{*} \omega$$

$$= \deg(f) \deg(g) \int_{W} \omega$$

$$\deg(g \circ f) = \deg(g) \deg(f)$$

as desired. \Box

• Theorem 3.4.6: Let A be a non-singular $n \times n$ matrix and $f_A : \mathbb{R}^n \to \mathbb{R}^n$ the associated linear mapping. Then

$$\deg(f_A) = \begin{cases} +1 & \det(A) > 0\\ -1 & \det(A) < 0 \end{cases}$$

- Note that the non-singularity condition allows us to ignore the case det(A) = 0 (since singular matrices have zero determinant).
- Theorem 3.4.7: Let $B \subset V$ compact and $A = f^{-1}(B)$. Then for all U_0 open with $A \subset U_0 \subset U$, there exists V_0 open with $B \subset V_0 \subset V$ and $f^{-1}(V_0) \subset U_0$.
- Orientation-preserving (diffeomorphism): A diffeomorphism $f: U \to V$, where $U, V \subset \mathbb{R}^n$ are open and connected, such that $\det[Df(x)] > 0$ for all $x \in U$.
- Orientation-reversing (diffeomorphism): A diffeomorphism $f: U \to V$, where $U, V \subset \mathbb{R}^n$ are open and connected, such that $\det[Df(x)] < 0$ for all $x \in U$.
 - We know that $\det[Df(x)]$ is nonzero (if it were zero at some x, one of f and its inverse would not be differentiable there, contradicting the definition of a diffeomorphism).
 - This combined with the fact that the determinant is a continuous function of x proves that its sign is the same for all $x \in U$.
 - Thus, orientation-preserving and orientation-reversing are well-defined.
- Theorem 3.5.1: The degree of f is +1 if f is orientation-preserving and -1 if f is orientation-reversing.

$$Proof.$$
 ...

• Theorem 3.5.2: Let $\phi: V \to \mathbb{R}$ be a compactly supported continuous function. Then

$$\int_{U} (\phi \circ f)(x) |\det(Df(x))| dx = \int_{V} \phi(y) dy$$

Proof. ...

• Guillemin and Haine (2018) goes through the nitty gritty analytic details of the proof.