The following is paraphrased from pages 8-9 of [PMA].

1 Archimedean property of \mathbb{R}

Theorem 1 (Theorem 1.19, p. 8, [PMA]). There exists an ordered field \mathbb{R} which has the least-upper-bound property. Moreover, \mathbb{R} contains \mathbb{Q} as a subfield.

A consequence of Theorem 1 is:

Theorem 2 (Archimedean property of \mathbb{R}). Let x > 0 and y be real numbers. Then there exists a positive integer n such that nx > y.

Proof. Suppose to the contrary that for all positive integers n we have $nx \leq y$. Then the set $A = \{nx : n \in \mathbb{N}\}$ is non-empty and bounded above, so by the least-upper-bound property of \mathbb{R} the supremum $\alpha = \sup A$ exists in \mathbb{R} . Since x > 0, we have $\alpha - x < \alpha$ so that $\alpha - x$ is not an upper bound for A. Hence there exists a positive integer m such that $\alpha - x < mx$, which gives $\alpha < (m+1)x$; but this contradicts the fact that α is the supremum of A.

2 Density of \mathbb{Q} in \mathbb{R}

Lemma 1. Any real number lies between two consecutive integers. That is, for any $x \in \mathbb{R}$ there exists an $m \in \mathbb{Z}$ such that $m - 1 \le x < m$.

Proof. By the Archimedean property, there exist positive integers m_1, m_2 such that $m_1 > x$ and $m_2 > -x$, which gives $-m_2 < x < m_1$. This implies that the set $A = \{n \in \mathbb{Z} : x < n\}$ is non-empty $(m_1 \in A)$ and bounded below (by $-m_2$). Then by the well-ordering principle, A has a least element; call it m. Since this is the least element of A, we must have $m-1 \notin A$ and so $m-1 \le x < m$.

Theorem 3. Between any two real numbers there exists a rational number. That is, for any $x, y \in \mathbb{R}$ with x < y there exists a $p \in \mathbb{Q}$ such that x .

Proof. By the Archimedean property, there exists a positive integer n such that n(y-x) > 1. By Lemma 1, there exists an integer m such that $m-1 \le nx < m$. Combining these inequalities gives $nx < m \le 1 + nx < ny$, which implies $x < \frac{m}{n} < y$. So the desired rational is $p = \frac{m}{n}$.

[PMA] Rudin, W. (1976) Principles of Mathematical Analysis. 3rd edn.