Introduction to Markov processes: Markov chains

EM13-Probability and statistics: Courses 15-16

September 2014

Manuel SAMUELIDES¹ Zhigang SU²

¹Professor
Institut Supereur de l'Aeronautique et de l'Espace

²Professor Sino-European Institute of Aviation Engineering Civil Aviation University of China Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义 Example of random walk

Example of graph transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

小结

1.1

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES. Zhigang SU

西中国民航大学

定义

Example of random walk Example of graph transitions Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

1. Construction of a Markov chain from a sequence of i.d.d. random variables:

- 1 Let (X, U) be an independent couple of random vectors. Show the following disjunction principle $E(f(X,U)|X) = \int f(X,u)dP_U(u)$
- 2 Let (U_n) an i.d.d. sequence of random variables with values in \mathcal{U} , X_0 a random variable with values in ε and independent of the (U_n) and $g: \mathcal{U} \times \varepsilon \to \varepsilon$ a measurable function. Set

$$X_n = g(X_{n-1}, U_n)$$

Show that (X_n) is a Markov chain.

$$\Pi = \begin{bmatrix} \frac{1}{3} & a & 0 & 0\\ b & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{4} & c\\ 0 & \frac{2}{5} & d & \frac{3}{5} \end{bmatrix}$$

- **1** Compute the necessary values of parameters a, b, c, d.
- 2 Draw the graph of the Markov chain.
- 3 Classify according to their dynamics each state.
- 4 Determine the classes and their nature.
- 5 Is the Markov chain irreducible (可约)?
- **6** What is the stationary law of the subchain restricted to states $\{1,2\}$
- **?** Compute the law of the first return time T_1 to state 1, and its expectation $E(T_1)$.
- 8 Compute $p_{11}(n) = \frac{1}{7}[3 + 4(-\frac{1}{6})^n]$ and $\lim_{n\to\infty} p_{11}(n)$.
- ① Use a theorem from the course to check $E(T_1)$ from $\lim_{n\to\infty} p_{11}(n)$.

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

小结

stopping times

- **3. Ehrenfest urn** Let a box which is divided into two parts. It contains n balls. At each time a ball is selected randomly and its location is changed. Let X_t be the number of balls in one of the two parts at time t. Shows (X_t) is an ergodic(遍历) Markov chain and compute is invariant law.
- **4. Random walk on a graph** We consider a finite non-oriented graph $\mathcal{G}=(\mathcal{V},\varepsilon)$ where \mathcal{V} is the set of n vertices and $\varepsilon\subset\mathcal{V}\times\mathcal{V}$ is the set of edges. For each vertex i we consider $\mathcal{V}_{\rangle}=\{j\in\mathcal{V}\text{ such that }(j,i)\in\varepsilon\text{ and }n_i=\sharp(\mathcal{V}_{\rangle})\text{ which is the arity of }i.$

The graph is connex in the sense that for each couple of vertices there is always a path (sequence of adjacent edges) that connect them. (Cont.)

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

A random walk on $\mathcal G$ is a Markov chain with transition probability defined by:

$$P(X_{t=1} = j | X_t = i) = \frac{1}{n_i}, \quad j \in \mathcal{V}_{\rangle}$$

- 1 Show that this Markov chain is recurrent positive.
- 2 Check that $\pi^*(i) = \frac{n_i}{\sum_j n_j}$ is the invariant probability distribution of the chain.
- 3 Show that this invariant law (equilibrium state in statistical physics) checks the detailed balance property:

$$P(X_t = i, X_{t+1} = j) = P(X_t = j, X_{t+1} = i)$$

- 4 Show the random walk on a graph is not always ergodic with a very simple example (2 nodes)
- **5** Show that if at least a node is connected to itself, then the random walk is ergodic.

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

5. The bankrupt of the player This problem was one of the earliest problem in probability theory in XVIII-th century(AD). We consider two players which are playing one against the other with a constant sum of the two fortunes equal to a. That means that if X_n is the fortune of one player at time n, we have

$$0 < x < a \Rightarrow \begin{cases} P(X_{n+1} = x + 1 | X_n = x) = p \\ P(X_{n+1} = x - 1 | X_n = x) = 1 - p \end{cases}$$

Game is stopping when $X_n=0$ where our player is bankrupted or when $X_n=a$ where its opponent is bankrupted. Mathematically we shall write

$$P(X_{n+1} = 0 | X_n = 0) = 1$$

and we shall say that 0 and \boldsymbol{a} are absorbing barriers.

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义 Example of random walk

Example of graph transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

- Show that all the states x such that 0 < x < a are transitory</p>
- 2 Let T be the term of the game. Show that $P(T=n+p|X_n=x)=P(T=p|X_0=x)$
- 3 Set $t_x = E(T|X_0 = x)$, prove that

$$t_x = pt_{x+1} + (1-p)t_{x-1}$$

with the boundary conditions $t_0 = t_a = 0$.

- 4 If p = q = 0.5, check that $t_x = x(x a)$
- **5** Set $p_x=P(X_T=a)$. Write the difference equation that governs p_x and the boundary conditions. Check that $p_x=\frac{x}{a}$ if p=0.5.

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

process

Example of random walk Example of graph transitions Definition of a Markov

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

stopping times

小结

1.7

 Basically, a random walk is an increasing sum of independent identically distributed random variables with values in a finite-dimensional vector space:

$$Sn = X_1 + \cdots + X_n$$

or recursively

$$S_1 = X_1;$$
 $S_n = S_{n-1} + X_n$

 It is possible to add boundary conditions as absorbing boundary or reflecting boundary as is shown in the following graph. Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk

Example of graph transitions Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

stopping times

Graphic representations of random walk

(a) without boundary

(b) with absorbing boundaries

(c) with reflecting boundaries

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph

transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

stopping times

Example of graph transitions

- More generally, we can consider a random exploration on an oriented graph.
- If node i is connected to node j by the link $i \to j$, we endowed this node with a probability p_{ij} of the occurrence of this move if the system is in state i
- The sum of all the probabilities from a node has to be equal to one.
- If it is less, then it can be completed by adding the connection $i \rightarrow i$
- This representation is currently applied in modelization of reliability, maintenance, networks, web exploration, robotics...

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk

Example of graph transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

Random walk on a tree

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

正义 Example of random walk

Example of graph transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

stopping times

Cartography

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk

Example of graph transitions

Definition of a Markov

process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

Introduction to stochastic processes

- A stochastic process is a measurable application $(t,\omega) \in \mathcal{T} \times \Omega \to X_t(\omega) \in \epsilon$
- \mathcal{T} is the time set which can be discrete $\mathcal{T} = \mathbb{N}$ or $\mathcal{T} = \mathbb{Z}$ or continuous $\mathcal{T} = [a, b], \mathcal{T} = \mathbb{R}^+$ or $\mathcal{T} = \mathbb{R}$
- ϵ is the state space of the process, it may be discrete (finite or denumerable, or continuous (finite-dimensional vector space, bounded domain, manifold).
- ϵ is endowed with a σ -algebra of measurable events $(\mathcal{P}(\epsilon))$ if ϵ is discrete or the Borel σ -algebra if ϵ is continuous)
- $\Omega \in \epsilon^{\mathcal{T}}$ may be considered as the set of feasible trajectories in the state space. In that case, we have $X_t(\omega) = \omega_t$

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES. Zhigang SU

Homework

定义 transitions

Example of random walk Example of graph

Definition of a Markov

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫特相关知识 Markov properties of stopping times

Probabilistic model

- Let $(t_1,\ldots,t_n)\in\mathcal{T}^n$ be a finite set of times, then the law of (X_{t_1},\ldots,X_{t_n}) is said a finite probability distribution of the process.
- All the stochastic calculus (微积分) about the process are based on the finite probability distributions which define completely the probability law on Ω (Kolmogorov theorem)
- For $t \in \mathcal{T}$, we define the σ -algebra \mathcal{F}_t of the past at time t as generated by all the random variables X_s for s < t.
- In advanced control modelling we can consider the sub-σ-algebra of the information available at time t. A strategy is always made of control actions that are measurable for the tribe of available information.
- In the same way, we can define the future at time t.

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk

Example of graph

transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

Example of random walk
Example of graph
transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

小结

Definition

A Markov process (X_t) is a stochastic process such that the conditional law of any future event at time t, given the past at time t is equal to its conditional probability by the present state

$$\forall (t_0 = t < t_1, \dots, t_n) \in \mathcal{T}^{n+1},$$

$$\mathbb{P}(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n | \mathcal{F}_t) = \mathbb{P}(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n | X_t)$$

Markov Chain

A Markov process with discrete time-set is called a Markov chain

A simple characterization

Theorem

A stochastic process is a Markov process if and only if

$$\forall (t_0 = t < t_1) \in \mathcal{T}^2, \quad \mathbb{P}(X_{t_1} \in A | \mathcal{F}_t) = \mathbb{P}(X_{t_1} \in A | X_t)$$

Proof By recurrence over n. Suppose the property is true till n. Consider

$$\mathbb{P}(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n, X_{t_{n+1}} \in A_{n+1} | \mathcal{F}_t)$$

$$= \mathbb{P}(X_{t_{n+1}} \in A_{n+1} | X_{t_n} \in A_n) \mathbb{P}(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n | \mathcal{F}_t)$$

$$= \mathbb{P}(X_{t_{n+1}} \in A_{n+1} | X_{t_n} \in A_n) \mathbb{P}(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n | X_t)$$

$$= \mathbb{P}(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n, X_{t_{n+1}} \in A_{n+1} | X_t)$$

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

- From the previous theorem, we infer that the probability law of a Markov process with time set $\mathcal{T}=\mathbb{N}$ or $\mathcal{T}=\mathbb{R}^+$ is completely defined by the law of initial time \mathbb{P}_{X_0} and the stochastic kernel of probability transition from X_s to X_t for any $(s,t)\in\mathcal{T}\times\mathcal{T}$ such that s< t
- Such kernel checks: $\forall 0 < s < t < u$

$$\int dP_{X_u}(z|X_t = y)dP_{X_t}(y|X_s = x) = dP_{X_u}(z|X_s = x)$$

Proof

$$\iint g(x,z)dP_{X_u}(z|X_t = y)dP_{X_t}(y|X_s = x)$$

$$= \iint g(x,z)dP_{X_u}(z|X_t = y, X_s = x)dP_{X_t}(y|X_s = x)$$

$$= \iint g(x,z)dP_{X_u,X_t}(z,y)|X_s = x)$$

$$= \int g(x,z)dP_{X_u}(z|X_s = x)$$

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions

Definition of a Markov

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

A simple characterization

Introduction to Markov processes: Markov chains Manuel

SAMUELIDES, Zhigang SU

④中国人航大学

Homework

transitions

定义 Example of random walk Example of graph

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

小结

Definition

A Markov process is said time-homogeneous or with stationary transition if for any $s < t, \label{eq:transition}$

$$dP_{X_t}(y|X_s = x) = dP_{X_{t-s}}(y|X_0 = x)$$

Its dynamic is defined by a one-parameter semi-group of probabilistic kernels $t\in\mathcal{T}\to dP_t(y|x)$ checking

$$\int_{\epsilon} dP_s(z|y)dP_t(y|x) = dP_{s+t}(z|x)$$

This equation is called the Chapman-Kolmogorov equations

Examples of Markov semi-groups

When $\mathcal{T}=\mathbb{N}$, we speak about Markov chains. In this course we shall focus on Markov chains with discrete state space. Main examples of Markov semi-groups are

- $\mathcal{T} = \mathbb{N}$, ϵ finite, $P_1(j|i) = p_{ij}$ any Markov matrix.
- $\mathcal{T} = \mathbb{N}$, $\epsilon = \mathbb{N}$, $P_t(j|i) = \mathcal{B}(t,p)$, binomial law for discrete random walk.
- $\mathcal{T} = \mathbb{N}$, $\epsilon = \mathbb{N}$, $P_t = \mathcal{P}(\lambda t)$ Poisson process
- $\mathcal{T} = \mathbb{N}$, $\epsilon = \mathbb{R}$, $P_t = \mathcal{N}(mt, \sigma^2 t)$ Gaussian process

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions

Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识

Markov properties of stopping times

Homework

定义

Example of graph transitions Definition of a Markov

尔可夫链的状态分割

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

Markov properties stopping times

- From now on, we focus on Markov chains with discrete time $\mathcal{T} = \mathbb{N}$. The states are labelled by integers and letters such as i, j, k, \ldots
- The Markov semi-group is defined by its generator for time unit which is a finite or infinite stochastic matrix $\mathbf{P} = (p_{ij}) = \mathbf{P}(j|i)$ such as $\forall (i,j) \geq 0$ and $\forall i, \sum_{i} p_{ij} = 1$.
- P is called the transition matrix of the chain.
- The matrix \mathbf{P}^n gives the probability of $X_n=j$ given $X_0=i$. Its general term is noted $p_{ij}^{(n)}$.

Matrix formalism

- The matrix formalism is very useful when the state space is finite and may be extended when it is denumerable.
- The probability distributions on the state space are represented by line vectors with positive coordinates with sum 1. Such vectors are called stochastic vectors.
- The transition matrix is a square matrix, the lines of which are stochastic vectors. Such a matrix is called a stochastic matrix.
- The product of a stochastic vector by a stochastic matrix is a stochastic vector.
- The product of two stochastic matrixes, any power of a stochastic matrix are stochastic matrixes.

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov

N 中 人 证证 1700 (20 万)

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

🍅 中國民航大学

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

小结

• If a stochastic vector π is the probability distribution of the chain at time t and if $\mathbf P$ is the transition matrix of the chain, then πP is the probability distribution at time t+1:

$$\mathbb{P}(X_{t+1} = j) = \sum_{i} \mathbb{P}(X_{t+1} = j | X_t = i) \mathbb{P}(X_t = i)$$

- With the same notations $\pi \mathbf{P}^n$ is the probability distribution at time t+n
- Invariant stochastic vectors such that $\pi P = \pi$ represent invariant probability distribution by the Markov dynamics.

Examples of bounded random walks

Random walk with absorbing boundaries

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 - p & 0 & p & 0 & 0 \\ 0 & 1 - p & 0 & p & 0 \\ 0 & 0 & 1 - p & 0 & p \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

· Random walk with reflecting boundaries

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1-p & 0 & p & 0 & 0 \\ 0 & 1-p & 0 & p & 0 \\ 0 & 0 & 1-p & 0 & p \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

stopping times

Example of a random walk on a tree

	0	0.6	0.4	0	0	0	0	0	0
	0	0	0		0.5				
	0	0	0.2	0	0	0.4	0.4	0	0
	0	0	0.2	0	0	0	0	0.6	0.4
P =	0	0	0	0	1	0	0	0	0
	0	0	0	0	0			0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0			1	0
	0	0	0	0	0	0	0	0	1

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

100中国人航大学

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

いり人類的小心のカラ

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

Example of cartography

$$P = \begin{bmatrix} 0 & 0.5 & 0.4 & 0 \\ 0.8 & 0 & 0 & 0.2 \\ 0.2 & 0 & 0 & 0.8 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

N川大蛙的仏念ガ头

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

Partition into classes (分类)

Definition

We say that state j is accessible (可达) from state i if there is a path of non null probability which goes from i to j. If j is accessible from i and i is accessible form j, we say that i and j belong to **the same class (**同类**)**.

Example

- In the examples of infinite random walk and random walk with reflecting boundaries, all the states belong to the same class.
- In the example of random walk with absorbing boundaries, each state of the boundary is alone in its class.

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk
Example of graph
transitions
Definition of a Markov

可大链的状态分别

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

stopping times

 $(T_{ij} = t) = (x_0 = i) \cap (X_1 \neq j) \cdots \cap (X_{n-1} \neq j) \cap (X_n = j)$

We have

So we have

$$Pr(T_{ij} = 1) = p_{ij}, \quad Pr(T_{ij} = t + 1) = \sum Pr(T_{ik} = t)p_{kj}$$

$$I \cap (I_{ij} - \iota)$$

 $\mathbf{E}(T_{ij}) = 1 + \sum p_{kj} \mathbf{E}(T_{ik})$

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES. Zhigang SU

Homework

定义

process

Example of random walk Example of graph transitions Definition of a Markov

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

Recurrent (常返) and transient (暂留)

Recurrent (常返) and transient (暂留)

- States i which check $\mathbb{P}(T_{ii} < \infty) = 1$ are called recurrent, other states are called transient.
- If recurrent state i checks $\mathbb{E}(T_{ii}) < \infty$, state i is said positive recurrent (正常返),
- if $\mathbb{E}(T_{ii}) = \infty$, state i is said null recurrent (零常返)
- All the states of one class are of the same type.
- If the state is transient, the number of returns follows a geometric law with finite expectation.

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk
Example of graph
transitions
Definition of a Markov

7.可未链的状态分

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

stopping times

Periodicity and aperiodicity

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

🍅 中國民航大学

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of stopping times

J. 744

Definition

We say that a recurrent state is periodic of period d if it can only reoccur at times that are multiple of d. Otherwise, we say that this state is aperiodic.

- It can be shown that positive recurrence, null recurrence, periodicity and aperiodicity are properties of class (see exercises)
- In the following examples, show the properties pf the chain, write transition matrix, compute the eigenvalues and the stationary distribution. (For numerical applications p=0.4 can be taken)

Examples

Irreducible recurrent
Period 2 Markov chain

Ergodic Markov chain

Ergodic Markov chain

2 classes: 1 transitory &1 ergodic

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

可人姓的小恋刀头

马尔可夫链的遍历性

马尔可夫链相关知识

Markov properties of stopping times

Let $X_t \in \epsilon$ be a Markov chain with a transition probability kernel $P: x \in \epsilon \to P_x = P(\cdot|x)$. A probability law π on ϵ is said a stationary distribution if $\int_{\epsilon} P_x(\cdot) d\pi(x) = \pi(\cdot)$, i.e. if π is the probability law of X_0 , it is the probability law of the state of the process X_t at any time $t \in \mathbb{N}$.

- Markov chains have not always stationary distribution, notably null recurrent or transient irreducible chains as the random walk or the binomial counting process have no stationary distribution.
- Positive recurrent Markov chains have a unique invariant measure π^* which checks $\forall x \in \epsilon, \pi^*(x) = \frac{1}{\mathbb{E}(T_{xx})}$

④ 中國人航大学

Homework

定义

Example of random walk Example of graph transitions

Definition of a Markov process

马尔可夫链的状态分类

T夫链的遍

马尔可夫链相关知识 Markov properties of

stopping times

Ergodic Markov chain

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

④中国人航大学

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

马尔可夫链的状态分类

可去链的遍

马尔可夫链相关知识 Markov properties of stopping times

小结

Definition

Anergodic Markov chain (X_t) is defined as an irreducible, aperiodic, positive recurrent Markov chain.

As it is positive recurrent, it has a unique stationary distribution π^* . The following law of large numbers is also valid for infinite Markov chain and explains the term ergodic.

Theorem

For any initial probability π_0 on ϵ , for any $f\in L^1(\epsilon,\pi^*), \frac{f(X_0)+f(X_1)+\cdots+f(X_n)}{n+1}$ converges almost surely, in probability and in law towards $\mathbb{E}_{\pi^*}(f(X))$

This theorem is admitted.

Spectral properties of a Markov matrix

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

🍅 中國民航大学

Proposition

Any Markov matrix P have 1 as eigenvalue and spectral radius.

Proof

Quite simple

$$\sum_{j} |\sum_{i} \pi_i P_{ij}| \leq \sum_{i} |\pi_i| \sum_{i} P_{ij} \leq \sum_{i} |\pi_i|$$

We need to go further and to extract positive eigenvectors. It is possible form the Perron-Frobenius theorem. We prefer to restrict to a more specific class of Markov matrix.

Homework

定义

Example of random walk Example of graph transitions

Definition of a Markov process

马尔可夫链的状态分类

可止数 663色 F

马尔可夫链相关知识 Markov properties of stopping times

Spectral theorem of a regular Markov matrix

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

🍅 中國民航大学

Homework

定义 Example of random walk Example of graph

transitions

Definition of a Markov process

马尔可夫链的状态分类

可去链的遍历

马尔可夫链相关知识 Markov properties of stopping times

小结

Definition

Aregular Markov matrixis a (finite) Markov matrix P such that there exists a power P^n of P where all the components are strictly positive.

Theorem

A regular Markov matrix admits a unique invariant stochastic vector (positive coordinates) π_∞ . Moreover when $n\to\infty$ P^n converges to a matrix where all the lines are equal to π_∞

This theorem is admitted.

Definition of stopping times

Definition

A stopping time $T \in T$ of a stochastic process $(X_t)_{t \in \mathcal{T}}$ is a random variable which takes its values in the time set and such that $\forall t \in \mathcal{T}, (T \leq t) \in \mathcal{F}_t$

- Typically, the first (or successive) access time to a subset, boudary... is a stopping time. For instance T_{ij} is a stopping time.
- When the time set is discrete, it enough to check that $\forall t, (T=t) \in \mathcal{F}_t$. The information contained in the past of t is enough to decide that T=t.

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk
Example of graph
transitions
Definition of a Markov
process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识

Markov properties of stopping times

Theorem

Let T a stopping time for an homogeneous Markov process (X_t) .

Then

 $P(X_{T+t} \in A | X_T = x_0, X_{T-1} = x_{-1}, \dots, X_{T-n} = x_{-n})$ $= P(X_t \in A | X_0 = x_0)$

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES. Zhigang SU

Homework

定义

process

Example of random walk Example of graph transitions Definition of a Markov

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识

Markov properties of stopping times

Proof of the strong Markov property

Introduction to Markov processes: Markov chains

> Manuel SAMUELIDES. Zhigang SU

西中国氏航大学

Homework

Example of random walk Example of graph

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识

Markov properties of stopping times

小结

$$P(X_{T+t} \in A | X_T = x_0, X_{T-1} = x_{-1}, \dots, X_{T-n} = x_{-n})$$

$$=\sum_{r}P(X_{T+t}\in A\cap (T=P)|X_T=x_0,X_{T-1}=x_{-1},\ldots,X_{T-n}=x_{\text{Example}}^{\text{Homew}})$$

$$=\sum_{p}P(X_{T+t}\in A|T=P,X_{T}=x_{0},X_{T-1}=x_{-1},\ldots,X_{T-n}=x_{-n})^{\text{transitions}}_{\text{process}}$$

$$P(T = P | X_T = x_0, X_{T-1} = x_{-1}, \dots, X_{T-n} = x_{-n})$$

$$= P(X_p \in A | X_0 = x_0)$$

Corollary

Let (X_t) be a Markov process and T a stopping time, then the process $Y_t = X_{T\Lambda t}$ is a Markov process which is adapted at the filtration $\mathcal{F}_t o f(X_t)$, i.e. for any tY_t is \mathcal{F}_t -measurable.

Summary

- We have defined the model of Markov process which is the stochastic version of the state representation of dynamic systems in engineering.
- We have defined the model of Markov process which is the stochastic version of the state representation of dynamic systems in engineering.
- In the case of finite state space, it amounts to linear algebra computation.
- A classification of Markov dynamics has been produced with regards to large time limit.
- The hypothesis for a large time stationary limit independent of inital conditions have been investigated.

Introduction to Markov processes: Markov chains

Manuel SAMUELIDES, Zhigang SU

Homework

定义

Example of random walk Example of graph transitions Definition of a Markov process

马尔可夫链的状态分类

马尔可夫链的遍历性

马尔可夫链相关知识 Markov properties of

stopping times