Test 1 Solutions

1.

Going Out:
$$v = 7.81 \text{ m/s}$$

 $t = 0.98 \text{ hr} = 3528 \text{ s}$
 $d = vt = (7.81 \text{ m/s})(3528 \text{ s})$
 $= 27554 \text{ m}$
 $v = 27554 \text{ m}$

$$\nabla^{2}(0) = \hat{0}$$

 $\nabla^{2}(t=0.98hrs) = -27554 \hat{1}$

b)
$$\Delta \vec{x} = \vec{x}_{s} - \vec{z}_{i}$$

$$= -27554\hat{i} - 0\hat{i}$$

$$= -27554 i$$

$$= \hat{O} - \hat{O} = \hat{O}$$

$$= \hat{O} - \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O} + \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O} + \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O} + \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O} + \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O} + \hat{O} = \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O} + \hat{O} = \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} = \hat{O} + \hat{O} = \hat{O} = \hat{O}$$

$$= \hat{O} + \hat{O} + \hat{O} = \hat{O}$$

8238s

= 6.69 m/s

$$V_i = Snls$$
 $V_i = Snls$
 $V_i = Snl$

c)
$$\Delta x_{ac} = V_1 t + \frac{1}{2}at^2$$

 $= (5.00)(480) + \frac{1}{2}(0.07)(480)$
 $= 10,464 \text{ m}$
 $\Delta x_{dei} = V_1 t + \frac{1}{2}at^2$
 $= (38.6)(59.4) + \frac{1}{2}(-0.650)(59.4)$
 $= 1146 \text{ m}$

3.
$$t = 5.3s$$

$$\therefore \Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j}$$

$$= 80.8\hat{i} + 2.3\hat{j} dj$$

b) max. altitude.

$$V_{iy} = V_i \sin 60^\circ = (30.49)(\sin 60^\circ)$$

 $= 26.4 \text{ m/s}$

$$V_{tg} = 0$$

$$\alpha = -9.8 \text{ m/s}^2$$

$$\Delta g = \frac{?}{.}$$

$$V_{43}^{2} = V_{13}^{2} + 2a_{y} \Delta y$$

$$O = (26.4)^{2} - 2(9.8)(\Delta y)$$

$$\Delta y = \frac{(26.4)^{2}}{2(9.8)} = 35.6 \text{ m} (6)$$