CMPINF0401 Recitation

TUESDAYS 11:00-12:50

MICHAEL BARTLETT

Overview

- Datatypes
- Manipulating Strings
- Arithmetic
- User Input
- ► Lab 2

Datatypes

- Primitives vs. objects
 - Primitive examples: boolean, byte, short, long, int, double, float, char (all lowercase!)
 - boolean: true/false value
 - char: character ('a'.,'x')
 - ▶ short, long, int, double, float, and byte are all numbers of varying lengths
 - ▶ Most of the time, you'll use int and double of these six
 - Only double and float can be decimal values
 - Object examples: String, Scanner, and many... many more (capital first letter!)
- Side note: You always need to put the datatype before the name of your variable
 - i.e.) String myName = Michael;

Strings

- We can make a new String (think: array of char) like this:
 - String myName = "Michael";
- Strings are immutable!
 - ▶ This means that they cannot be change once they're created
 - Therefore, whenever you want to do something to a string, you have to call a method that is a part of the String class in Java.
 - i.e.) Make myName all uppercase:
 - myName = myName.toUpperCase();

Manipulating Strings

- More common operations are:
 - ▶ str.toUpperCase(); → returns str in all uppercase letters
 - ▶ str.toLowerCase(); → returns str in all lowercase letters
 - ▶ str.charAt(int num); → returns a char at index num in str
 - ▶ str.length(); → returns an int giving the length of str
- As seen on the previous slide, we have to set our String equal to the method call in order to update its value since all these methods are **returning** a String.
- ▶ You can concatenate Strings also to form one string using the "+" operator
 - String firstName = "Michael";
 - String lastName = "Bartlett";
 - String fullName = firstName + "" + lastname;

String Methods

```
String str = "Coding is FUN!";
String upper = str.toUpperCase();
String lower = str.toLowerCase();
char secondLetter = str.charAt(1);
int strLength = str.length();
Coding is FUN!
14
```

- ▶ Note: string indexing starts at 0!
 - ▶ str.charAt(0); would return 'C' while str.charAt(14); gives an error

Manipulating Numeric Data: Operations and Operator Precedence

Operator	Purpose	Example	Equivalent
+=	Addition	x += 2	x = x + 2
-=	Subtraction	x -= 2	x = x - 2
/=	Division	x /= 2	x = x / 2
*=	Multiplication	x *= 2	x = x * 2
%=	Modulus	ж %= 2	x = x % 2

▶ There are shorthand ways of using these operations!

More Operations and Operator Precedence

Level	Operator	Description	Associativity
16	· ()	access array element access object member parentheses	left to right
15	++	unary post-increment unary post-decrement	not associative
14	++ + - !	unary pre-increment unary pre-decrement unary plus unary minus unary logical NOT unary bitwise NOT	right to left
13	() new	cast object creation	right to left
12	* / %	multiplicative	left to right
11	+ - +	additive string concatenation	left to right
10	<< >> >>>	shift	left to right
9	< <= > >= instanceof	relational	not associative
8	== !=	equality	left to right
7	&	bitwise AND	left to right
6	^	bitwise XOR	left to right
5	1	bitwise OR	left to right
4	3.3	logical AND	left to right
3	11	logical OR	left to right
2	?:	ternary	right to left

A Quick Note About Integer Division

- Integer division and floating point (decimal) division are different!
- If you're dividing two integers, you will end up with a whole number (int).
 Otherwise, you'll end up with a decimal (double)

```
public static void main(String[] args) {
   System.out.println(10/3);
   System.out.println(10.0/3);
   System.out.println(10/3.0);
   System.out.println(10.0/3.0);
}
```

A Quick Note About Integer Division

```
public static void main(String[] args) {
    System.out.println(10/3);
    System.out.println(10/3.0);
    System.out.println(10/3.0);
    System.out.println(10.0/3.0);
}
```

Getting User Input

- To get user input we need to use a Scanner.
 - ▶ To initialize a Scanner, we make a variable to "hold" our scanner and then make a new Scanner using System.in
 - Scanner keyboard = new Scanner(System.in)
 - Once you have a Scanner, you can get input from the user and set the input equal to a variable:
 - String name = keyboard.next() // .next takes the next token as a String
 - int num = keyboard.nextInt() // Takes the user input as an int
 - ▶ If an int isn't entered the program will crash since it's expecting an int. This exception could be handled though.
 - ▶ More methods: https://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html

Lab 2

- Assignment:
 - https://canvas.pitt.edu/courses/127916/files/8050342?module_item_id=2735237
- You only need to write two lines of code for this lab:
 - One to set userName equal to the part of the input
 - Another to set income equal to the other part of the input
- Hint: When using Scanner methods, you can have the user enter multiple tokens at once and then separate them by calling the correct method:
 - ▶ i.e.) We have a Scanner called keyboard and we want to get two Strings from it for separate variables
 - stringOne = keyboard.next()
 - .next() only takes in one token at a time so if a user entered two strings with a space in between, this will only read the first one. .nextLine will read in the entire line
 - stringTwo = keyboard.next()
 - Use this hint for your lab where you need to set userName (String) and income (double) from one prompt for the user.