

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΚΑΙ ΥΛΙΚΩΝ

Ηρώων Πολυτεχνείου 5, Κτίριο Θεοχάρη Πολυτεχνειούπολη Ζωγράφου, 157 73 Ζωγράφου

Δρ Σταύρος Κ. Κουρκουλής, Καθηγητής Πειραματικής Μηχανικής

Τηλέφωνα: +210 772 1313, +210 772 1263 (γραφείο)

+210 772 4025, +210 772 4235, +210 772 1317, +210 7721310 (εργαστήρια)

Τηλεομοιότυπο (Fax): +210 7721302

Διεύθυνση ηλεκτρονικού ταχυδρομείου (e-mail): stakkour@central.ntua.gr

MHXANIKH I (ΣΤΑΤΙΚΗ)

15η σειρά ασκήσεων: Ισορροπία σε δύο διαστάσεις

Άσκηση 1

Το επίπεδο σώμα του Σχ.1 στηρίζεται με άρθρωση στο Α και το σχοινί ΓΕ.

- α. Υπολογίστε το γεωμετρικό κέντρο του σώματος.
- **β.** Να βρεθεί η γωνία θ για την οποία η δύναμη στο σχοινί ΓΕ καθίσταται η μικρότερη δυνατή.
- γ. Για τη γωνία αυτή να υπολογισθούν οι αντιδράσεις στήριξης του σώματος (πάχος t=1 cm και ειδικό βάρος του υλικού του σώματος $\gamma=10^5~\text{N/m}^3$).

Οι διαστάσεις στο σχήμα δίνονται σε cm.

Ασκηση 3

Στο δικτύωμα του Σχ.3 (Α: άρθρωση, Ε: κύλιση) οι κόμβοι Α, Δ, Ε ευρίσκονται επί τόξου κύκλου (Ο, R= 7.5m) η δε ράβδος ΔΒ εκτείνεται κατά την ΟΔ. Επί των κόμβων Β, Γ ισορροπεί δοκός βάρους 2 kN/m. Να προσδιορισθούν οι αντιδράσεις στις στηρίξεις.

Άσκηση 2

Η επίπεδη επιφάνεια του Σχ.2 στηρίζεται με άρθρωση και κύλιση. Το πάχος της πλάκας είναι ίσο με t=5 mm ενώ το ειδικό βάρος του υλικού κατασκευής της είναι γ=50 kN/m³.

- **α.** Προσδιορίστε το γεωμετρικό κέντρο του σώματος.
- **β.** Υπολογίστε τις αντιδράσεις στηρίξεως.

Άσκηση 4

Ο ραβδωτός φορέας του Σχ.4 στηρίζεται με άρθρωση και κύλιση. Το αναρτημένο σώμα, βάρους W έχει πάχος t=10 mm και είναι κατασκευασμένο από υλικό ειδικού βάρους γ=78 kN/m³. Προσδιορίστε τις αντιδράσεις στηρίξεως.

Το καμπύλο τμήμα του αναρτημένου σώματος είναι τεταρτοκύκλιο.

Άσκηση 5

Τα τρία πλαίσια του Σχ.5 έχουν τις ίδιες διαστάσεις, φέρουν το ίδιο φορτίο αλλά στηρίζονται με διαφορετικό τρόπο. Υπολογίστε τις αντιδράσεις σε κάθε στήριξη συναρτήσει των μεγεθών q και L. (Στο σημείο Ε του Πλαισίου 2 υπάρχει εσωτερική άρθρωση)

Άσκηση 6

Από τους κόμβους Ζ και Ε του δικτυωτού φορέα του Σχ.6 αναρτάται με κατακόρυφα σχοινιά ΖΗ και ΕΘ ομογενής πλάκα πάχους 10 mm από μεταλλο ειδικού βάρους Px10⁵ N/m³. Να υπολογισθούν οι αντιδράσεις στηρίξεως συναρτήσει των P, θ.

 $\int \int (a - \frac{10^{2} \text{m}}{451 \text{ n}(60,26^{\circ}) + 3\cos(60,26^{\circ})} dx = \frac{10^{5} \text{N/m}^{3}}{4 - \frac$

Efy=0=> V+Ty-wy=0(=) V=Wy-Ty= Wco(30)-Tsind=3,46 N

EFX =0 => H-WX-TX=0=> H= WSIN(30) + TEOSD = 4,19 N

Avunon 2 a) Aro donnon 1, seipol 10 èxu des: A= 2,60 m2 C(1,03, 1,65) Exw t = Smm = 5.103m un X = SOKN/m3 = SO.103N/m3 Ago V=At=13,3.10-3 ONSTE WEXY= 50.13, 3.10-3.103 = 665 N REE son oxylasos

$$\begin{aligned} & \{f_{x=0} = \} \neq_{\geq 0} \quad (1) \\ & \{f_{y=0} = \} \neq_{\geq 0} \quad (1) \\ & \{H_{y=0} = \} \neq_{\geq 0} \quad (2) \\ & \{H_{y=0} = \} \neq_{\geq 0} \quad (2) \\ & \{H_{y=0} = \} \neq_{\geq 0} \quad (2) \\ & \{H_{y=0} = \} \neq_{\geq 0} \quad (2) \\ & \{H_{y=0} = \} \neq_{\geq 0} \quad (3$$

(2) 23 V= 342,475N

Housen 3

Stu(40) = AA' => AA' = PSSU(40) = 4,82 COS(40) = OA' => OA' = PCOS(46) = 3,75m

W= (.2 = 7,5.2 = 13KN

SFx=0=> H=Rx=> R= H = 3,86+ (1)

Efy=0 => V+Ry=W=> V=W- Rcos(is) (2)

EM = 0 => 5,75. Ry + (7,5-4,82). Rx = W. (5,75-25,-1,25)(=)

=15,75. (OS(S)R+2,68.51n(S)R=2Wen

G(5,55 +0,69) R=30 G R=30 4,81KN acker (3)

(2) (3) H= 1,254N (2) (3) N=15-4,65=10,35KN

Apa Exw: SFX=0 => R+H=0 => R=-H(1) EMy=0=) V=2W=3,2kN (2) EMy=0=) 2R=(2+1,24)W+6W=)R=9.24W=-7,392kN(3) 0315 H=-7,392UN

Plano 3 | Feq = 90.L Efx=0=) H=0 (1) 2Fy=0=) V+N=Feq=90.L(2) 2Nx=0=) N.K= Feq. E-) N=90L(3) 2 (3) N= 90L-901 - 90L

Aca X= 23,86 557m

To bapos ans adding: W= XV = XAt-P.105.6,640.102 6,64.103P-

From Fy= Fsind = 5Psind FX= Fcos D = 5Pcos D

EFX=0=> H+R+ 5PCOSD=2P => H+P=2P-5PCOSD (1). EFY=0=> V=4P+4P+6640P=> V=6648P (2) EM=0=) 2R+6.5PSIND +2.5PCOSD=4P+2.4P+W.XC=>

> R=-30Psind-10Pcos0 + 12P + 36984,8P = -15Psind-5Pcos0 + 18498,4P (3)

(1) => H= 2P-5cos OP+15P51nD+5PcosD-18498,4P=15P51nD-18496,4P