

OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic Perception, Reconstruction and Generation

OmniObject3D,

这是一个包含大量 高质量真实扫描 3D 对象的大词汇量 3D 对象数据集, 以促进现实世界中 3D 感知、重建和 生成的发展。

Perception

Novel View Synthesis

Surface Reconstruction

Generation

- 1) 大词汇量: 它包括190个日常类别中的6,000个扫描对象,与流行的2D数据集 (例如ImageNet和LVIS) 共享公共类别,有助于追求可推广的3D表示。
- 2) 丰富注释:每个3D对象都使用2D和3D 传感器捕获,提供**纹理网格、点云、多视角 渲染图像和多个真实捕获视频**。
- 3) 逼真扫描: 专业扫描仪支持高质量物体扫描, 具有精确形状和逼真外观。

Statistics and Distribution

Dataset	Real	Full 3D	Video	#Objects	#Classes	R ^{LVIS} (%)
ShapeNet		✓		51k	55	4.1
ModelNet		✓		12k	40	2.4
3D-Future		✓		16k	34	1.3
ABO		✓		8k	63	3.5
Toys4K		✓		4k	105	7.7
CO3D	✓		✓	19K	50	4.2
DTU	✓	✓		124	-	0
ScanObjectNN	✓			15k	15	1.3
GSO	✓	✓		1k	17	0.9
AKB-48	✓	✓		2k	48	1.8
Ours	✓	✓	✓	6k	190	10.8

Exploring Vision Transformers as Diffusion Learners

U-ViT

Predicted noise (+): Add ©: Concatenate + Linear Transformer Block Conv3×3 Rearrange to 3×H×W **MLP** Norm Linear Multi-Head Transformer Block Attention Norm Transformer Block Embeddings Transformer Block Transformer Block Long skip connection Transformer Block \boldsymbol{x}_t \square 4 \square 5 **Embedding Layer** All as words

IU-ViT

ASymmetriC ENcoder Decoder (ASCEND)

Figure 3. Illustrative architecture of U-ViT (Left), U-Net (Middle) and ASCEND (Right).

UnidifFuser 能够通过设置适当的时间步长生成各种类型的数据,例如图像、文本、文本到图像、图像到文本和图像-文本对。

UnidifFuser 在FID和CLIP分数的定量结果中不仅优于现有的通用模型,而且在文本到图像生成等代表性任务中还可以与Stable Difsion和DALL•E 2等定制模型相媲美

Figure 4. Implementation of UniDiffuser on image-text data. (a) First, we encode images and texts into latent space. (b) Second, we train UniDiffuser parameterized by a transformer (Bao et al., 2022a) in the way illustrated in Figure 2 on the latent embeddings.

Open Vocabulary Semantic Segmentation with Patch Aligned Contrastive Learning

RLHF

预训练3D模型

Human Augmented

奖励模型的训练

基于 RL 进行语言模型优化

