SeisSol_ParamStudies Manual

<u>iris.christadler@lmu.de</u>, <u>M.Marchandon@lmu.de</u> <u>https://github.com/christadler/SeisSol_ParamStudies</u>

This is a bunch of generic scripts and templates that allows you to use SeisSol for parameter studies. It was developed for DT-Geo (DTC-E4, Block 3) to generate a catalogue for AltoTiberina

How to Use the SeisSol_ParamStudies Workflow

- 1. Set-up one test case (Examples/)
 - a. Use the right directory structure
 - b. Adapt and test the slurm job file
- 2. Decide on the parameters that should change (Inputs/parameter_study_list.csv)
 - a. Create a csv file for all runs
- 3. Create .jinja Templates (Inputs/Templates/)
 - a. for all input files that should use parameters from the .csv file
 - b. all input files that don't change should be copied to Inputs/Files/
- Adapt Scripts/template_parameters.py
 - a. Adapt tp_param_list, tp_list, tp_mapping & add user_name + user info below
- 5. Finally adapt Inputs/Templates/SeisSol_slurm_JobFarm.slurm.jinja (with help)

... now run Scripts/main.py to generate one folder for each run in Outputs/, copy the Outputs/ directory to SuperMucNG and submit the slurm_xxx.scripts

Set-up Test Case (and copy it to the Examples/ dir)

On SuperMucNG set up your file structure: (In your *workdir*, Output should go to *scratch*)

- inputs/
 - <xyz>.yaml
 - o parameters.par
- mesh/
- seissol bin/
 - e.g. SeisSol_Release_dskx_4_elastic
- JobSubmission.slurm

```
inputs/parameters.par exemple:

MeshFile =
'../../mesh/mesh topo1km 7 faults smoothed v3 small
z'

OutputFile =
'/hppfs/scratch/0A/di35ban/AltoTiberina/outputs/0001/
```

```
Slurm script example:
cd <path in work dir>
mkdir -p <path in scratch for output?
srun -n $SLURM NTASKS
 ./seissol bin/<binary file> parameters.pa
 These files are used for post-processing
myfile=<path in scratch for output>/<name>-surfa
e.xdmf
echo "Myfile: $myfile'
cd <path in scratch for output?
<post processing>
```

2. Build Inputs/parameter_study_list.csv

	Α	В	C	D	E	F	G	Н	1
1	id	nucleation	d_c	У	mu_s	R	xha_x	xha_y	xha_z
2	0	1	0.4	0.6	0.35	0.65	295214.0	4817590.0	-8238.0
3	1	1	0.4	0.6	0.35	0.7	295214.0	4817590.0	-8238.0
4	2	1	0.4	0.6	0.35	0.75	295214.0	4817590.0	-8238.0
5	3	1	0.4	0.6	0.35	8.0	295214.0	4817590.0	-8238.0
6	4	1	0.4	0.6	0.35	0.85	295214.0	4817590.0	-8238.0
7	5	1	0.4	0.6	0.4	0.7	295214.0	4817590.0	-8238.0
8	6	1	0.4	0.6	0.4	0.75	295214.0	4817590.0	-8238.0
9	7	1	0.4	0.6	0.4	0.8	295214.0	4817590.0	-8238.0
10	8	1	0.4	0.6	0.4	0.85	295214.0	4817590.0	-8238.0
11	9	1	0.4	0.6	0.45	0.75	295214.0	4817590.0	-8238.0
12	10	1	0.4	0.6	0.45	0.8	295214.0	4817590.0	-8238.0
13	11	1	0.4	0.6	0.45	0.85	295214.0	4817590.0	-8238.0
14	12	1	0.4	0.6	0.45	0.9	295214.0	4817590.0	-8238.0
15	13	1	0.4	0.6	0.5	0.7	295214.0	4817590.0	-8238.0
16	14	1	0.4	0.6	0.5	8.0	295214.0	4817590.0	-8238.0
17	15	1	0.4	0.6	0.5	0.85	295214.0	4817590.0	-8238.0
18	16	1	0.4	0.6	0.5	0.9	295214.0	4817590.0	-8238.0
19	17	1	0.4	0.6	0.55	0.7	295214.0	4817590.0	-8238.0
20	18	1	0.4	0.6	0.55	0.8	295214.0	4817590.0	-8238.0
21	19	1	0.4	0.6	0.55	0.85	295214.0	4817590.0	-8238.0

Example from AltoTiberina:

Each line represents one run.

Column A holds the "id", starting with zero. It will be used as identifier/"prefix".

The following columns are named according to the parameters of the templates.

3a. Create .jinja Templates in Inputs/Templates 3b. Copy all other Input Files to Inputs/Files/

To create the .jinja Template, just replace the variable with {{<var_name>}}

Examples:

```
function f (x)
     R = \{\{R\}\}
      return {
       S = (1.0/R-1.0)
      end
- !GroupFilter
 # This is for the Gubbio fault
 groups: [66,67,68,69,70,71]
 components: !LuaMap
   returns: [S]
   function: |
    function f (x) initial stress
     R = \{\{R\}\}
                    .yaml.jinja
      return {
       S = (1.0/R-1.0)
```

4. Adapt Scripts/template_parameters.py

```
tp_param_list = ["nucleation", "d_c", "y", "mu_s", "R"]
# list of all jinja template files (except slurm tmpl for stage 2)
# to be filled by user
# stored in dir "../Input/Templates/*SeisSol_slurm_JobFarm.slurm.jinja"
# "AltoTiberina_forced_rupture_time.yaml" (xha) is currently not used
tp_list = ["AltoTiberina_fault.yaml",
           "AltoTiberina_initial_stress.yaml",
           "AltoTiberina_sig_zz.yaml",
           "AltoTiberina_forced_rupture_time.yaml"]
                                                template_parameters.py
# mapping of parameters to jinja templates
# "AltoTiberina_forced_rupture_time.yaml" : ["xha"],
tp_mapping = { "AltoTiberina_fault.yaml" : ["mu_s", "d_c"],
               "AltoTiberina_initial_stress.yaml": ["R"],
               "AltoTiberina_sig_zz.yaml": ["y"],
               "AltoTiberina_forced_rupture_time.yaml": ["xha_x", "xha_y", "xha_z"]
```

tp_param_list all parameters/columns from the .csv-file tp_list all jinja templates that should be used tp mapping mapping of parameters to jinja templates user name (and choose TEST or PRODUCTION) tp_slurm_account tp_slurm_email

tp output file dir

5. Finally adapt Inputs/Templates/SeisSol_slurm_JobFarm.slurm.jinja

should not be necessary for testing the AltoTiberina catalogue

... now run Scripts/main.py to generate one folder for each run in Outputs/

copy the Outputs/ directory to SuperMucNG, add the mesh and .asagi-files (as described in slide "Set-Up Test Case" and submit the slurm_xxx.scripts