- 1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.4. This means (check all that apply):
 - Our estimate for $P(y=0|x;\theta)$ is 0.4.
 - Our estimate for $P(y=1|x;\theta)$ is 0.6.
 - Our estimate for $P(y=1|x;\theta)$ is 0.4.
 - Our estimate for $P(y=0|x;\theta)$ is 0.6.
- 2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2).$

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

2 wrong

Which of the following are true? Check all that apply.			
	,	heta) will be a convex function, so gradient descent should converge to the obal minimum.	
	$h_{ heta}$	ding polynomial features (e.g., instead using $(x)=g(heta_0+ heta_1x_1+ heta_2x_2+ heta_3x_1^2+ heta_4x_1x_2+ heta_5x_2^2)$) could increase howell we can fit the training data.	
		e positive and negative examples cannot be separated using a straight line. , gradient descent will fail to converge.	
		cause the positive and negative examples cannot be separated using a aight line, linear regression will perform as well as logistic regression on this ta.	
2 try below right			
Which of the following are true? Check all that apply.			
		$J(\theta)$ will be a convex function, so gradient descent should converge to the global minimum.	
		Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) could increase how well we can fit the training data.	
		The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.	
		Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.	

- 3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.
 - $\qquad \theta := \theta \alpha \tfrac{1}{m} \textstyle \sum_{i=1}^m \left(\theta^T x y^{(i)} \right) x^{(i)}.$
 - $\boxed{\qquad} \quad \theta_j := \theta_j \alpha \tfrac{1}{m} \sum_{i=1}^m \big(h_\theta(x^{(i)}) y^{(i)}\big) x_j^{(i)} \text{ (simultaneously update for all } j\text{)}.$
 - $\theta_j := \theta_j \alpha \tfrac{1}{m} \sum_{i=1}^m \left(\tfrac{1}{1+e^{-\theta T} x^{(i)}} y^{(i)} \right) x_j^{(i)} \text{ (simultaneously update for all } j).$
 - $\theta_j := \theta_j \alpha \tfrac{1}{m} \sum_{i=1}^m \big(h_\theta(x^{(i)}) y^{(i)}\big) x^{(i)} \text{ (simultaneously update for all } j).$
- 3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

 - $\theta := \theta \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) y^{(i)} \right) x^{(i)}.$
 - $\boxed{ \qquad } \theta_j := \theta_j \alpha \tfrac{1}{m} \sum_{i=1}^m \left(\theta^T x y^{(i)} \right) x_j^{(i)} \text{ (simultaneously update for all } j \text{)}. }$
 - $\theta := \theta \alpha \frac{1}{m} \sum_{i=1}^{m} \left(\theta^{T} x y^{(i)} \right) x^{(i)}.$

above 3 wrong

3wrong

4.	Which	of the following statements are true? Check all that apply.	
		The cost function $J(\theta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.	
		Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.	
		For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).	
		The sigmoid function $g(z)=rac{1}{1+e^{-z}}$ is never greater than one (>1).	
4.	Which	h of the following statements are true? Check all that apply.	
		The one-vs-all technique allows you to use logistic regression for problems in which each $\boldsymbol{y}^{(i)}$ comes from a fixed, discrete set of values.	
		For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).	
		Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).	
		The cost function $J(\theta)$ for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.	

5. Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = 6, \theta_1 = -1, \theta_2 = 0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

5. Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = 6, \theta_1 = 0, \theta_2 = -1$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

