$\star \star$ Exercice 1

- Voir correction —

Résoudre le système suivant :

$$\begin{cases} x+y &=& 3\\ \ln(x) + \ln(y) &=& 0 \end{cases}$$

* ----•

— Voir correction —

On considère la fonction $f: x \longmapsto x e^{-x}$ définie sur $[0, +\infty[$.

- 1) Étudier les variations de f sur $[0, +\infty[$
- 2) Déterminer la limite de f(x) lorsque x tend vers $+\infty$
- 3) Calculer l'équation de la tangente à la courbe de f en x=0 et en x=1On rappelle que lorsque f est une fonction dérivable, l'équation de la tangente à la courbe de f au point d'abscisse a est

$$y = f'(a)(x - a) + f(a)$$

- 4) Représenter la courbe représentative de f dans un repère, en faisant apparaître les tangentes aux points d'abscisse 0 et 1.
 - Exercice 3 -

Voir correction —

Déterminer l'ensemble de définition des fonctions suivantes :

$$1) \ f: x \mapsto \frac{3x+1}{2x+5}$$

3)
$$f: x \mapsto \frac{1}{\sqrt{x^2 + 1}}$$

2)
$$f: x \mapsto \ln\left(\frac{x^2 - 3x + 2}{x + 7}\right)$$

4)
$$f: x \mapsto \tan(\exp(x^2))$$

Exercice 4

——— Voir correction —

Pour chacune des fonctions suivantes

- Déterminer l'ensemble de définition
- Étudier les limites aux bornes de l'ensemble de définition et préciser les équations des asymptotes éventuelles.
- Étudier les variations

1)
$$f_1(x) = (x+2)e^{-x}$$

4)
$$f_4(x) = \ln(2 + \sin x)$$

2)
$$f_2(x) = \ln(x+1) - x^2$$

5)
$$f_5(x) = \ln(\cos^2 x)$$

3)
$$f_3(x) = \sqrt{e^x - 1 - x}$$

6)
$$f_6(x) = \sqrt{\tan x}$$

Exercice 5

- Voir correction -

Étudier l'existence d'asymptotes horizontales pour les fonctions suivantes :

1)
$$f_1(x) = \frac{e^x + 2x}{e^x - x}$$

4)
$$f_4(x) = \frac{x^2 + x + e^{2x}}{x^2 - e^x}$$

2)
$$f_2(x) = \frac{\ln x + x^2}{1 - \ln x}$$

$$5) f_5 = \frac{(\ln x)^{100}}{\sqrt{x}}$$

3)
$$f_3(x) = \frac{x^2 + x + 1}{1 - 3x}$$

6)
$$f_6 = \frac{1 + \sqrt{e^x}}{1 + e^{\sqrt{x}}}$$

Exercice 6 -

— Voir correction –

Soit 0 < a < b deux réels fixés. On considère la fonction f définie pour tout $x \in \mathbb{R}$ par

$$f(x) = \sqrt{x+b} - \sqrt{x+a}$$

1) Montrer que $f(x) = \frac{b-a}{\sqrt{x+a} + \sqrt{x+b}}$

HKBL

2) En déduire la limite de f(x) lorsque x tend vers $+\infty$.

Soit $n,m\in\mathbb{N}^*$ deux entiers et soit f la fonction définie par

$$\forall x \in]1, +\infty[, \quad f(x) = \frac{x^n - 1}{x^m - 1}$$

- 1) Montrer que $\lim_{x\to 1} \frac{x^n-1}{x-1} = n$ et $\lim_{x\to 1} \frac{x^m-1}{x-1} = m$
- 2) En déduire la limite de f(x) lorsque x tend vers 1.

Soit f la fonction définie sur [0,1[par

$$\forall x \in [0, 1[, f(x)] = \frac{e^{-8x}}{1 - x}$$

Dresser le tableau de variations complet (avec limites) de la fonction f. Représenter la courbe représentative de f dans un repère.

Soit f la fonction définie par :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} e^{-1/x^2} & \text{si } x > 0 \\ 0 & \text{si } x \le 0 \end{cases}$$

- 1) Montrer que f est continue sur \mathbb{R}
- 2) Étudier les asymptotes de f et représenter sa courbe représentative dans un repère.

On considère la fonction $f: x \longmapsto x \sin\left(\frac{1}{x}\right)$.

- 1) Déterminer le domaine de définition de f
- 2) Montrer que f peut se prolonger par continuité en une fonction \widehat{f} continue sur \mathbb{R} .

Soit f la fonction définie par :

$$f: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R}$$
$$x \longmapsto (x-1) \ln(|x-1|)$$

Montrer que f peut se prolonger par continuité en une fonction \widehat{f} continue sur \mathbb{R} .

On considère la fonction $f: x \longmapsto x + \ln x$

- 1) Montrer qu'il existe un unique réel $\alpha \in]0, +\infty[$ tel que $f(\alpha) = 0$.
- 2) Donner un encadrement d'amplitude 1 de α

Exercice 13 — Voir correction —

1) f est la fonction définie sur $[0; +\infty[$ par :

$$f(x) = x e^x - 1$$

TD 7 : Analyse réelle

- a) Déterminer la limite de la fonction f en $+\infty$ et étudier ses variations.
- b) Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $[0; +\infty[$
- c) Déterminer le signe de f(x) suivant la valeur de x
- 2) g est la fonction définie sur $[0; +\infty[$ par :

$$g(x) = (x-1)(e^x - 1)$$

- a) Déterminer la limite de la fonction g en $+\infty$ et étudier le sens de variation de g
- b) Montrer que $g(\alpha) = -\frac{(\alpha 1)^2}{\alpha}$

- Exercice 14 ———— Voir correction —

Soit $f:[0,1]\to[0,1]$ une fonction continue. Montrer que f admet un point fixe, c'est à dire qu'il existe un réel $x\in[0,1]$ tel que f(x)=x.

- Exercice 15 — Voir correction —

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{-x^2}}{1+x^2}$.

- 1) Montrer que l'équation $f(x) = \frac{1}{2}$ admet exactement deux solutions dans \mathbb{R} . On note x_1 et x_2 ces solutions.
- 2) Montrer que $x_1 = -x_2$ et que $|x_1| < 1$.

Exercice 16 — Voir correction —

Soit $k \in \mathbb{R}$. Déterminer en fonction de la valeur de k le nombre de solutions de l'équation $x^4 - x^3 = k$.

Montrer que l'équation $\cos(x) = e^{-x^2}$ admet une infinité de solutions.

* * *

Exercice 18 ———— Voir correction —

Pour tout $n \in \mathbb{N}$, on note f_n la fonction définie sur [0,1] par $f_n(x) = x^n + x - 1$

- 1) Montrer que pour tout $n \in \mathbb{N}$, il existe un unique réel $x_n \in]0,1[$ tel que $f_n(x_n)=0.$
- 2) Montrer que la suite (x_n) est strictement croissante.
- 3) En déduire que (x_n) converge vers une limite $\ell \leq 1$.
- 4) On suppose que $\ell < 1$. Étudier la la limite de $(f_n(x_n))$ et conclure.

Exercice 19 — Voir correction —

On admet dans cet exercice que $0.69 < \ln 2 < 0.7$.

Partie 1

On considère l'application $g:]0; +\infty[\to \mathbb{R}$ définie par $g(x) = x^2 + \ln x$

- 1) Montrer que g est continue et strictement croissante sur $]0;+\infty[$ et déterminer les limites de g en 0 et en $+\infty$
- 2) Montrer que l'équation g(x)=0 admet une unique solution sur $]0;+\infty[$. On note α l'unique solution de cette équation.
- 3) Montrer que $\frac{1}{2} < \alpha < 1$.

Partie 2

On note $I=\left[\frac{1}{2};1\right]$ et on considère l'application $f:I\to\mathbb{R}$ définie par $f(x)=x-\frac{1}{4}x^2-\frac{1}{4}\ln x$

- 4) a) Montrer que f est strictement croissante sur I
 - b) Montrer que $\frac{1}{2} < f(\frac{1}{2}) < f(1) < 1$
 - c) En déduire que $\forall x \in I, \ f(x) \in I$
- 5) On considère la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$
 - a) Calculer u_1

HKBL

- b) Montrer que $\forall n \in \mathbb{N}, u_n \in I$
- c) Montrer que la suite (u_n) est décroissante.
- d) Montrer que la suite (u_n) converge et que sa limite est α .

Exercice 20 — Voir correction —

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue qui admet une limite finie en $+\infty$ et en $-\infty$. Montrer que f est bornée sur \mathbb{R} .

Exercice 21 — Voir correction —

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1 - e^{3x}}{1 + e^{3x}}$.

- 1) Déterminer $f(\mathbb{R})$
- 2) Montrer que f réalise une bijection de \mathbb{R} vers $f(\mathbb{R})$.
- 3) Déterminer une expression de $f^{-1}(x)$ en fonction de x.

Exercice 22 — Voir correction —

On considère les fonctions chet sh (cosinus et sinus hyperboliques) définies sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2} \quad \text{et} \quad \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$$

- 1) Montrer que $\forall x \in \mathbb{R}, ch^2(x) \sinh^2(x) = 1$
- 2) Étudier la parité de ch et sh
- 3) Montrer que $\forall a, b \in \mathbb{R}$, $\operatorname{ch}(a+b) = \operatorname{ch}(a)\operatorname{ch}(b) + \operatorname{sh}(a)\operatorname{sh}(b)$ et $\operatorname{sh}(a+b) = \operatorname{ch}(a)\operatorname{sh}(b) = \operatorname{sh}(a)\operatorname{ch}(b)$.
- 4) Justifier que ch et sh sont dérivables sur \mathbb{R} et montrer que $\forall x \in \mathbb{R}$, $\operatorname{ch}'(x) = \operatorname{sh}(x)$ et $\operatorname{sh}'(x) = \operatorname{ch}(x)$.
- 5) Montrer que $x \mapsto \operatorname{sh}(x)$ est strictement croissante sur \mathbb{R}
- 6) Étudier les limites de sh(x) en $+\infty$ et en $-\infty$ et en déduire que sh admet une bijection réciproque.
- 7) Déterminer une formule explicite de $sh^{-1}(x)$.
- 8) Justifier que sh^{-1} est dérivable sur \mathbb{R} et montrer que sa dérivée est $x \mapsto \frac{1}{\sqrt{x^2+1}}$.

*
Exercice 23 — Voir correction —

Soit $P: \mathbb{R} \to \mathbb{R}, x \longmapsto \sum_{k=0}^n a_k x^k$ une fonction polynôme de degré $n \ge 1$.

Montrer que P est une fonction paire si et seulement si tous ses coefficients de degrés impairs sont nuls. Montrer que P est une fonction impaire si et seulement si tous ses coefficients de degrés pairs sont nuls.

Exercice 24 — Voir correction —

Soit P un polynôme de degré n > 1.

- 1) Montrer que si n est impair, alors P admet au moins une racine réelle.
- 2) Montrer que si n pair, alors P admet un extremum global.

- Exercice 25 — Voir correction —

Dans cet exercice, on s'intéresse au problème suivant : étant donné (a_1, a_2, \ldots, a_n) une famille de n réels distincts, et b_1, b_2, \ldots, b_n une famille de n réels quelconques, on souhaite déterminer un polynôme P de degré n-1 tel que $\forall k \in [\![1,n]\!], P(a_k) = b_k$ (c'est un problème **d'interpolation**)).

1) Pour tout $k \in [\![1,n]\!]$, on pose $L_k = \prod_{\substack{j=1 \ j \neq k}}^n \frac{X-a_j}{a_k-a_j}$ appelé k-ième **polynôme interpolateur de Lagrange**. Montrer que $\forall (k,i) \in [\![1,n]\!]^2$ on a

$$L_k(a_i) = \begin{cases} 1 & \text{si } i = k \\ 0 & \text{sinon} \end{cases}$$

- 2) Soit $P \in \mathbb{R}_{n-1}[X]$. Montrer que $P = \sum_{k=1}^{n} P(a_k) L_k$.
- 3) En déduire un polynôme qui répond au problème posé.

Montrer que pour tout x > 0, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$

Correction des exercice

Correction de l'exercice 1 :

Pour que l'équation soit bien définie on cherche des solutions dans $]0; +\infty[$. Pour tout $x, y \in]0, +\infty[$, on a

$$\begin{cases} x+y &= 3 \\ \ln(x) + \ln(y) &= 0 \end{cases} \iff \begin{cases} y &= 3-x \\ \ln(x) + \ln(3-x) &= 0 \end{cases}$$
$$\iff \begin{cases} y &= 3-x \\ \ln(x(3-x)) &= \ln(1) \end{cases}$$
$$\iff \begin{cases} 3x-x^2=1 \end{cases}$$

Les solutions de l'équation $-x^2+3x-1=0$ sont $x_1=\frac{-3-\sqrt{5}}{-2}=\frac{3+\sqrt{5}}{2}$ et $x_2=\frac{3-\sqrt{5}}{2}$. Ces deux solutions appartiennent à $]0;+\infty[$. Finalement,

$$\begin{cases} x+y &=& 3\\ \ln(x)+\ln(y) &=& 0 \end{cases} \iff \begin{cases} y &=& 3-x\\ &&& x \in \left\{\frac{3-\sqrt{5}}{2}\;;\; \frac{3+\sqrt{5}}{2}\right\} \end{cases}$$

Remarquons que $3 - \frac{3 - \sqrt{5}}{2} = \frac{6 - 3 + \sqrt{5}}{2} = \frac{3 + \sqrt{5}}{2}$ et que $3 - \frac{3 + \sqrt{5}}{2} = \frac{6 - 3 - \sqrt{5}}{2} = \frac{3 - \sqrt{5}}{2}$. Ainsi, les solutions de l'équation sont $(x, y) = \left(\frac{3 - \sqrt{5}}{2}, \frac{3 + \sqrt{5}}{2}\right)$ et $(x, y) = \left(\frac{3 + \sqrt{5}}{2}, \frac{3 - \sqrt{5}}{2}\right)$

Correction de l'exercice 2:

1) La fonction f est dérivable sur \mathbb{R} comme produit de fonctions dérivables sur \mathbb{R} , et pour tout $x \in \mathbb{R}$ on a

$$f'(x) = e^{-x}(1-x)$$

Pour tout $x \in \mathbb{R}$, $e^{-x} > 0$, on en déduit le tableau de signes suivant :

x	$-\infty$		1		$+\infty$
f'(x)		+	Ö	_	
f					<u></u>

- 2) En $+\infty$, on a $\lim_{x\to +\infty} f(x) = 0$ par croissances comparées.
- 3) L'équation de la tangente à la courbe au point d'abscisse a est T_a: y = f'(a)(x a) + f(a).
 On a f'(0) = 1, f'(1) = 0, f(0) = 0 et f(1) = e⁻¹.
 On en déduit que l'équation de la tangente à la courbe de f au point d'abscisse 0 est y = x et l'équation de la tangente à la courbe de f au point d'abscisse 1 est y = e⁻¹.
- 4) On a

Correction de l'exercice 3:

1) Pour tout $x \in \mathbb{R}$, f(x) est défini si et seulement si $2x + 5 \neq 0$, si et seulement si $x \neq -\frac{5}{2}$.

Ainsi, $\mathcal{D}_f = \mathbb{R} \setminus \{-\frac{5}{2}\} =]-\infty, -\frac{5}{2}[\cup]-\frac{5}{2}, +\infty[.]$

2) Pour tout $x \in \mathbb{R}$,

$$f(x)$$
 est défini $\iff \frac{x^2 - 3x + 2}{x + 7} > 0$ $\iff \frac{(x - 1)(x - 2)}{x + 7} > 0$

On résout $\frac{x^2 - 3x + 2}{x + 7} > 0$ sur \mathbb{R} et on obtient

x	$-\infty$	- 7		1		2		$+\infty$
$x^2 - 3x + 2$	+		+	0	_	0	+	
x+7	_	0	+		+		+	
$\frac{x^2 - 3x + 2}{x + 7}$	_		+	0	_	0	+	

$$S =]-7, 1[\cup]2, +\infty[.$$
Ainsi, $\mathcal{D}_f =]-7, 1[\cup]2, +\infty[$

- 3) Pour tout $x \in \mathbb{R}$ on a $x^2 \ge 0$ donc $x^2 + 1 \ge 1 > 0$. Ainsi, $\sqrt{x^2 + 1}$ est défini pour tout $x \in \mathbb{R}$ et de plus $\sqrt{x^2 + 1} > 0$ pour tout $x \in \mathbb{R}$.

 Ainsi, f est définie sur \mathbb{R} , $\mathcal{D}_f = \mathbb{R}$.
- 4) La fonction tangente est définie sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$. Ainsi, pour tout $x \in \mathbb{R}$, on a

$$f(x)$$
 est défini $\iff \exp(x^2) \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$

$$\iff x^2 \neq \ln\left(\frac{\pi}{2} + k\pi\right), \quad k \in \mathbb{N} \qquad \text{car } \ln(x) \text{ n'est défini que pour } x > 0$$

$$\iff x \neq -\ln\left(\frac{\pi}{2} + k\pi\right) \quad \text{et} \quad x \neq \ln\left(\frac{\pi}{2} + k\pi\right), \quad \forall k \in \mathbb{N}$$

Finalement,
$$\mathcal{D}_f = \mathbb{R} \setminus \{-\ln\left(\frac{\pi}{2} + k\pi\right), \ln\left(\frac{\pi}{2} + k\pi\right) \mid k \in \mathbb{N}\}$$

Correction de l'exercice 4:

1) f_1 est définie sur \mathbb{R} car x+2 et e^{-x} sont définies pour tout $x \in \mathbb{R}$.

On a
$$\lim_{x \to -\infty} (x+2) e^{-x} = -\infty$$
 par produit.

 $\lim_{x \to +\infty} x e^{-x} = 0$ par croissance comparée donc $\lim_{x \to +\infty} f_1(x) = 0$.

De plus, f est dérivable sur \mathbb{R} comme produit de fonctions dérivables et pour tout $x \in \mathbb{R}$,

$$f'(x) = e^{-x} - (x+2) e^{-x}$$
$$= e^{-x} (-x-3)$$

Pour tout $x \in \mathbb{R}$, -x > 0 donc f(x) est du même signe que -x - 1. On en déduit le tableau suivant :

La courbe représentative de f_1 admet une asymptote horizontale d'équation y = 0.

— $\ln(x+1)$ est défini si et seulement si x > -1, donc f_2 est définie sur $]-1,+\infty[$.

— En -1, on a $\lim_{x \to -1} \ln(x+1) = \lim_{X \to 0} \ln(X) = -\infty$, et $\lim_{x \to -1} x^2 = 1$, donc par somme de limites $\lim_{x \to -1} f(x) = -\infty$.

En
$$+\infty$$
, on a $f_2(x) = -x^2 \left(1 - \frac{\ln(x+1)}{x^2}\right)$

Or, pour $x \ge 0$, on a $0 \le \frac{\ln(x+1)}{x^2} \le \frac{\ln(x+1)}{(x+1)^2}$ car $\forall x \in [0, +\infty[, x^2 \le (x+1)^2]$.

Par croissance comparée, on a $\lim_{x\to +\infty} \frac{\ln X}{X^2} = 0$ donc $\lim_{x\to +\infty} \frac{\ln(x+1)}{(x+1)^2} = 0$. Par comparaison, on en conclut que

$$\lim_{x \to +\infty} \frac{\ln(x+1)}{x^2} = 0$$

Ainsi, par opérations, on a $\lim_{x \to +\infty} f(x) = -\infty$.

 f_2 est dérivable comme somme de fonctions dérivables, et pour tout $x \in]-1,+\infty$ on a

$$f'(x) = \frac{1}{x+1} - 2x$$
$$= \frac{1 - 2x(x+1)}{x+1}$$
$$= \frac{-2x^2 - 2x + 1}{x+1}$$

$$\frac{\text{Etude du signe de } -2x^2 - 2x + 1 : \Delta = 4 + 8 = 12}{x_1 = \frac{2 - \sqrt{12}}{-4} = \frac{\sqrt{3} - 1}{2} \text{ et } x_2 = \frac{2 + \sqrt{12}}{-4} = \frac{-\sqrt{3} - 1}{2}}$$

On en déduit le tableau de variations suivant

x	1		$\frac{\sqrt{3}-1}{2}$		$+\infty$
$-2x^2 - 2x + 1$		+	0	_	
x + 1		+		+	
f_2	$-\infty$		$f_2(x_1)$		→ -∞

3) $-\sqrt{e^x-1-x}$ est défini si $e^x-1-x>0$.

Or pour tout $x \in \mathbb{R}$, $e^x \ge 1 + x$ (on le prouve en étudiant les variations de la fonction $g: x \mapsto e^x - x - 1$). Ainsi, f_3 est définie pour tout $x \in \mathbb{R}$.

— En $+\infty$, on a $f_3(x) = \sqrt{e^x (1 - e^{-x} - x e^{-x})}$

Par croissance comparée, $\lim_{x\to +\infty} x e^{-x} = 0$. Par opérations sur les limites, on a donc $\lim_{x\to +\infty} e^x (1-e^{-x}-xe^{-x}) = +\infty$

Par composition, comme $\lim_{X\to+\infty} \sqrt{X} = +\infty$, on a $\lim_{x\to+\infty} f_3(x) = +\infty$

En $-\infty$, on a $\lim_{x\to -\infty} (e^x - 1 - x) = +\infty$ par opérations, donc par composition $\lim_{x\to -\infty} f_3(x) = +\infty$.

— f est dérivable pour tout x tel que $e^x - 1 - x \neq 0$, c'est à dire $x \neq 0$ (voir étude de la fonction $g: x \mapsto e^x - x - 1$) et on a

$$f'(x) = \frac{e^x - 1}{2\sqrt{e^x - 1 - x}}$$

On en déduit le tableau suivant

x	$-\infty$		0		$+\infty$
$e^x - 1$		_	0	+	
$2\sqrt{e^x - 1 - x}$		+	0	+	
f'(x)		_		+	
f	+∞		0		$+\infty$

- 4) $\forall x \in \mathbb{R}, -1 \le \sin x \le 1 \text{ donc } 1 \le 2 + \sin x \iff 3.$ f_4 est donc définie sur \mathbb{R} .
 - $f_4(x)$ n'a pas de limite aux bornes de l'ensemble de définition. En effet, $\forall n \in \mathbb{Z}, f_4(\frac{\pi}{2} + n\pi) = \begin{cases} \ln(3) & \text{si } n \text{ est pair} \\ 0 & \text{si } n \text{ est impair} \end{cases}$
 - f est dérivable sur $\mathbb R$ comme compoée de fonction dérivables, et pour tout $x \in \mathbb R$ on a :

$$f'(x) = \frac{\cos x}{2 + \sin x}$$

Or $2 + \sin x \ge 1 > 0$ pour tout $x \in \mathbb{R}$, donc f'(x) est du même signe que $\cos x$.

Ainsi, $f'(x) \ge 0$ si $x \in [-\frac{\pi}{2} + 2k\pi ; \frac{\pi}{2} + 2k\pi]$ avec $k \in \mathbb{Z}$, et f'(x) < 0 sinon.

On en déduit que f est croissante sur tout intervalle de la forme $x \in [-\frac{\pi}{2} + 2k\pi \ ; \ \frac{\pi}{2} + 2k\pi]$ et décroissante sur tout intervalle de la forme $[\frac{\pi}{2} + 2k\pi \ ; \ \frac{3\pi}{2} + 2k\pi]$ avec $k \in \mathbb{Z}$.

5) — Pour tout $x \in \mathbb{R}$, $0 \le \cos^2(x) \le 1$. Ainsi $f_5(x)$ est définie si et seulement si $\cos(x) \ne 0$.

Sur \mathbb{R} , on a $\cos x = 0 \iff x = \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$.

Aini, f_5 est définie sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}.$

— Tout réel de la forme $\frac{\pi}{2} + k\pi$ est une borne de l'ensemble de définition de f_5 .

Soit $k \in \mathbb{Z}$, on a $\lim_{x \to \frac{\pi}{2} + k\pi} \cos^2(x) = 0$ et $\lim_{X \to 0} \ln(X) = -\infty$, donc par composition $\lim_{x \to \frac{\pi}{2} + k\pi} f_5(x) = -\infty$.

— f_5 est 2π -périodique. On étudie ses variations sur l'intervalle $[-\pi,\pi]$.

De plus, f_5 est paire donc on étudie ses variations sur $[0,\pi] \setminus \{\pi/2\}$.

 f_5 est dérivable sur $[0, \frac{\pi}{2}[$ et sur $]\frac{\pi}{2}, \pi]$ et on a

$$f'(x) = \frac{-2\sin x \cos x}{\cos^2(x)}$$

$$= \frac{-\sin(2x)}{\cos^2(x)}$$

Sur $[0, 2\pi]$, $\sin X \ge 0 \iff X \in [0, \pi]$, donc sur $[0, \pi]$, $\sin(2x) \ge 0 \iff 2x \in [0, \pi] \iff x \in [0, \frac{\pi}{2}]$ On en déduit le tableau de variation suivant

x	0	$\frac{\pi}{2}$	π
$-\sin(2x)$	_	0 +	
$\cos^2(x)$	+	0 +	
$f_5'(x)$	_	+	
$f_5(x)$	0	$-\infty$ $-\infty$	0

On en déduit par parité de f_5 le tableau de variation sur $[-\pi, \pi]$:

Et les variations de f_5 sur son ensemble de définition peuvent être déduite par 2π -périodicité de f.

6) — $f_6(x)$ est défini si et seulement si $\tan x \ge 0$

Dans $[0,\pi]$ on a $\tan x \ge 0 \iff x \in [0,\frac{\pi}{2}]$. Comme tan est π -périodique, on a dans \mathbb{R} :

$$\tan x \ge 0 \Longleftrightarrow x \in [0 + k\pi, \frac{\pi}{2} + k\pi] \ k \in \mathbb{Z}$$

$$\iff x \in \bigcup_{k \in \mathbb{Z}} [k\pi \ ; \ \frac{\pi}{2} + k\pi[$$

Ainsi f_6 est définie sur $\bigcup_{k\in\mathbb{Z}} [k\pi \ ; \ \frac{\pi}{2} + k\pi[.$

— Pour tout $k \in \mathbb{Z}$, $k\pi$ et $\frac{\pi}{2} + k\pi$ sont des bornes de l'ensemble de définition de f_6 .

Soit $k \in \mathbb{Z}$, $\lim_{x \to k\pi} \tan x = 0$ et comme $\lim_{X \to 0} \sqrt{X} = 0$ on a $\lim_{x \to k\pi} f_6(x) = 0$.

De plus, $\lim_{\substack{x \to \frac{\pi}{2} + k\pi \\ x < \frac{\pi}{2} + k\pi}} \tan x = +\infty$, et $\lim_{X \to +\infty} \sqrt{X} = +\infty$ donc par composition de limites $\lim_{x \to \frac{\pi}{2} + k\pi} f_6(x) = +\infty$.

— Pour que f_6 soit dérivable, il faut en plus que $\tan x \neq 0$. Ainsi, f_6 est dérivable sur $\bigcup_{k \in \mathbb{Z}} |k\pi|$; $\frac{\pi}{2} + k\pi[$ et pour tout x dans cet ensemble on a

$$f'(x) = \frac{\tan'(x)}{2\sqrt{\tan x}}$$
$$= \frac{1 + \tan^2(x)}{2\sqrt{\tan x}}$$

Pour tout x dans l'ensemble de dérivabilité, $\tan^2(x) > 0$ donc $1 + \tan^2(x) \ge 1 > 0$ et $2\sqrt{\tan x} > 0$.

Ainsi, f_6 est strictement croissante sur tout intervalle où elle est définie.

Sur $[0,\pi]$, on a donc le tableau de variation suivant :

x	0	$\frac{\pi}{2}$	π
f'(x)		+	
f(x)	0 -	+\infty	

Et comme f_6 est π -périodique ce tableau donne également les variations de f sur tout son ensemble de définition.

Correction de l'exercice 5 :

1) — Limite en
$$+\infty$$
: $f_1(x) = \frac{e^x(1 + 2x e^{-x})}{e^x(1 - x e^{-x})} = \frac{1 + 2x e^{-x}}{1 - x e^{-x}}$

par croissances comparées $\lim_{x \to +\infty} x e^{-x}$ donc par opérations $\lim_{x \to +\infty} f_1(x) = 1$

— Limite en
$$-\infty$$
: $f_1(x) = \frac{x(\frac{e^x}{2} + 2)}{x(\frac{e^x}{x} - 1)} = \frac{\frac{e^x}{x} + 2}{\frac{e^x}{x} - 1}$ donc par opérations, $\lim_{x \to -\infty} f_1(x) = -2$.

La courbe représentative de f_1 admet donc deux asymptotes horizontales d'équation y = 1 et y = -2.

2) — Limite en
$$+\infty$$
: $f_2(x) = \frac{x^2(1 + \frac{\ln x}{x})}{\ln x(\frac{1}{\ln x} - 1)} = \frac{x^2}{\ln x} \times \frac{1 + \frac{\ln x}{x}}{\frac{1}{\ln x} - 1}$. Par opérations on en déduit que $\lim_{x \to +\infty} = -\infty$.

— f n'est pas définie sur $]-\infty,0]$.

Ainsi la courbe représentative de f_3 n'admet aucune asymptote horizontale.

— En $+\infty$ et en $-\infty$:

$$f_3(x) = \frac{x^2 \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)}{x \left(\frac{1}{x} - 3\right)}$$
$$= x \times \frac{1 + \frac{1}{x} + \frac{1}{x^2}}{\frac{1}{x} - 3}$$

donc $\lim_{x\to +\infty} f_3(x) = -\infty$ et $\lim_{x\to +\infty} = +\infty$. f_3 n'a pa d'asymptote horizontale.

— Le dénominateur de $f_3(x)$ s'annule en $x=\frac{1}{3}$. De plus, $\lim_{x\to\frac{1}{3}}(x^2+x+1)=\frac{13}{9}$, donc $\lim_{x\to\frac{1}{3}}f_3(x)=-\infty$ et $\lim_{x\to\frac{1}{3}}f_3(x)=-\infty$ et

$$\lim_{\substack{x \to \frac{1}{3} \\ x < \frac{1}{3}}} f_3(x) = +\infty$$

La courbe représentative de f_3 admet donc une asymptote vertiale d'équation $x=\frac{1}{2}$.

-- En $+\infty$:

$$f_4(x) = \frac{e^{2x} (x^2 e^{-2x} + x e^{-2x} + 1)}{e^x (x^2 e^{-x} - 1)}$$
$$= e^x \times \frac{x^2 e^{-2x} + x e^{-2x} + 1}{x^2 e^{-x} - 1}$$

Or pour tout $n \in \mathbb{N}$, $\lim_{x \to +\infty} x^n e^{-x} = 0$ donc par opération $\lim_{x \to +\infty} f_4(x) = -\infty$.

-- En $-\infty$:

$$f_4(x) = \frac{x^2 \left(1 + \frac{1}{x} + \frac{e^{2x}}{x^2}\right)}{x^2 \left(1 - \frac{e^x}{x^2}\right)}$$
$$= \frac{1 + \frac{1}{x} + \frac{e^{2x}}{x^2}}{1 - \frac{e^x}{x^2}}$$

Or $\lim_{x\to -\infty} e^x = \lim_{x\to -\infty} e^{2x} = 0$, donc par opérations sur les limites, $\lim_{x\to -\infty} f(x) = 1$ La courbe représentative de f_4 admet une asymptote horizontale d'équation y=1 5) $\lim_{x\to +\infty} f_5(x) = 0$ par croissance comparée, donc la courbe représentative de f_5 admet une asymptote horizontale d'équation y = 0.

 f_5 n'est pas définie sur $]-\infty,0]$.

6) f_6 est définie sur $[0, +\infty[$. $\forall x \in [0, +\infty[, \sqrt{e^x} = e^{x/2}]$. Ainsi

$$f_6(x) = \frac{e^{x/2} (e^{-x/2} + 1)}{e^{\sqrt{x}} (e^{-\sqrt{x}} + 1)}$$
$$= e^{x/2 - \sqrt{x}} \times \frac{e^{-x/2} + 1}{e^{-\sqrt{x}} + 1}$$

Or par opérations $\lim_{x \to +\infty} \frac{e^{-x/2} + 1}{e^{-\sqrt{x}} + 1} = 1$.

De plus,
$$\frac{x}{2} - \sqrt{x} = x \left(\frac{1}{2} - \frac{\sqrt{x}}{x}\right) = x \left(\frac{1}{2} - \frac{1}{\sqrt{x}}\right)$$
 donc $\lim_{x \to +\infty} \frac{x}{2} - \sqrt{x} = +\infty$ par produit.

On en conclut que $\lim_{x \to +\infty} f_6(x) = +\infty$

La courbe représentative de f_6 n'admet aucune asymptote horizontale.

Correction de l'exercice 6:

1) Soit x > 0, on a

$$(\sqrt{x+b} - \sqrt{x+a})(\sqrt{x+b} + \sqrt{x+a}) = (\sqrt{x+b})^2 - (\sqrt{x+a})^2$$
$$= x+b-(x+a)$$
$$= b-a$$

d'où l'égalité
$$\sqrt{x+b} - \sqrt{x+a} = \frac{b-a}{\sqrt{x+a} + \sqrt{x+b}}$$

2) Lorsque x tend vers $+\infty$, on a $\lim_{x\to +\infty} \sqrt{x+a} = \lim_{x\to +\infty} \sqrt{x+b} = +\infty$, donc par quotient $\lim_{x\to +\infty} f(x) = 0$

Correction de l'exercice 7 :

1) $\frac{x^n-1}{x-1}$ est le taux d'accroissement de la fonction $x\mapsto x^n$ entre 1 et x. Lorsque x tend vers 1, ce taux d'accroissement

tend vers le nombre dérivé de
$$x \mapsto x^n$$
 en 1.
Or $(x^n)' = nx^{n-1}$, donc $\lim_{x \to 1} \frac{x^n - 1}{x - 1} = n \times 1^{n-1} = n$.

Sans utiliser le taux d'accroissement, on peut aussi écrire $x^n - 1 = (x - 1) \sum_{k=0}^{n-1} x^k$ donc $\forall x \neq 1, \frac{x^n - 1}{x - 1} = 1$ $\sum_{k=0}^{n-1} x^k \xrightarrow[x \to 1]{} \sum_{k=0}^{n-1} 1 = n.$

2) On a pour tout x > 1, $\frac{x^n - 1}{x^m - 1} = \frac{x^n - 1}{x - 1} \times \frac{x - 1}{x^m - 1}$ donc $\lim_{x \to 1} f(x) = \frac{n}{m}$ par quotient de limites.

Correction de l'exercice 8 : f est dérivable sur [0,1] comme quotient de fonctions dérivables dont le dénominateur ne s'annule pas.

Pour tout $x \in [0, 1]$,

$$f'(x) = \frac{-8e^{-8x}(1-x) + e^{-8x}}{(1-x)^2}$$
$$= \frac{e^{-8x}(8x-7)}{(1-x)^2}$$

Pour tout $x \in [0, 1[$, on a $e^{-8x} > 0$ et $(1 - x)^2 > 0$. f'(x) est donc du même signe que 8x-7:

x	$0 \qquad \qquad \frac{7}{8}$	1
8x-7	- 0 +	
f(x)	1	+ ∞

De plus, f(0) = 1 et $\lim_{\substack{x \to 1 \\ x < 1}} (1 - x) = 0^+$, donc $\lim_{x \to 1} f(x) = +\infty$

Courbe représentative de f:

Correction de l'exercice 9:

1) f est continue sur $]0, +\infty[$ comme composée de fonctions continues, et continue sur $]-\infty, 0]$ comme fonction constante. Montrons que f est continue en 0:

À gauche on a $\lim_{\substack{x \to 0 \\ x < 0}} = 0$ car f(x) est constante pour x < 0.

À droite on a $\lim_{\substack{x\to 0\\x>0}}\left(-\frac{1}{x^2}\right)=-\infty$ et comme $\lim_{X\to -\infty}\mathrm{e}^X=0$ on a par composition $\lim_{x\to 0}\mathrm{e}^{-1/x^2}=0$.

Ainsin f est bien continue en 0.

2) $\lim_{x \to -\infty} f(x) = 0$ donc la courbe représentative de f admet une asymptote horizontale d'équation y = 0.

 $\lim_{x\to +\infty} \left(-\frac{1}{x^2}\right) = 0 \text{ donc par composition } \lim_{x\to +\infty} f(x) = 1.$

Ainsi la courbe représentative de f admet également une asymptote horizontale d'équation y = 1.

f est continue sur \mathbb{R} donc elle n'admet aucune asymptote verticale.

Correction de l'exercice 10:

1) sin est définie sur \mathbb{R} et $\frac{1}{x}$ est définie sur \mathbb{R}^* donc f est définie sur \mathbb{R}^* .

2) Pour tout $x \neq 0, -1 \leq \sin\left(\frac{1}{x}\right) \leq 1$ donc $-|x| \leq x \sin\left(\frac{1}{x}\right) \leq |x|$

Or $\lim_{x\to 0}|x|=0$ donc par encadrement $\lim_{x\to 0}f(x)=0$. Ainsi on peut prolonger f en une fonction \hat{f} définie par

$$\hat{f}: \mathbb{R} \longrightarrow \mathbb{R}
x \longmapsto \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Correction de l'exercice 11:

 $x \mapsto |x-1|$ est continue sur [0;1[et sur $]1;+\infty[$ et strictement positive sur ces intervalles. Ainsi, $x\mapsto \ln(|x-1|)$ est continue sur [0;1[et sur $]1;+\infty[$, donc f a aussi par produit et somme de fonctions continues.

Pour x > 1, on pose u = x - 1 et on obtient par composition de limites $\lim_{\substack{x \to 1 \\ x > 1}} (x - 1) \ln(|x - 1|) = \lim_{\substack{x \to 1 \\ x > 1}} (x - 1) \ln(|x - 1$

 $\lim_{\substack{u\to 0\\u>0}}u\ln(u)=0$ par croissance comparée. De même, si x<1 on pose u=1-x et on obtient par composition de limites

$$\lim_{\substack{x \to 1 \\ x < 1}} (x - 1) \ln(|x - 1|) = \lim_{\substack{x \to 1 \\ x < 1}} (x - 1) \ln(1 - x) = \lim_{\substack{u \to 0 \\ u > 0}} (-u) \ln(u) = 0 \text{ par croissance comparée.}$$

On trouve donc $\lim_{\substack{x\to 1\\x>1}} f(x) = \lim_{\substack{x\to 1\\x<1}} f(x) = 0$, donc on peut prolonger f par continuité en une fonction \widehat{f} définie par

$$\begin{split} \widehat{f}: \mathbb{R} &\longrightarrow \mathbb{R} \\ x &\longmapsto \begin{cases} (x-1)\ln(|x-1|) \text{ si } x \neq 1 \\ 0 \text{ si } x = 1 \end{cases} \end{split}$$

Correction de l'exercice 12:

1) f est dérivable sur $]0, +\infty[$ comme somme de fonctions dérivables, et pour tout $x \in]0, +\infty[$, $f'(x) = 1 + \frac{1}{x} > 0$ donc f est strictement croissante sur $]0, +\infty[$.

Lorsque x tend vers 0, on a $\lim_{x\to 0} f(x) = -\infty$ par somme. Lorsque x tend vers $+\infty$, on a $\lim_{x\to +\infty} f(x) = +\infty$.

On a $0 \in]-\infty, +\infty[$ et f est continue comme somme de fonctions continues, et strictement croissante sur $]0, +\infty[$, donc d'après le corollaire du théorème des valeurs intermédiaires, il existe un unique réel $\alpha \in]0, +\infty[$ tel que $f(\alpha) = 0$.

2) On a f(1) = 1 et $\lim_{x \to 0} f(x) = -\infty$, donc $0 < \alpha < 1$.

Correction de l'exercice 13:

1) a) $\lim_{x \to +\infty} x e^x = +\infty$ par produit, donc $\lim_{x \to +\infty} f(x) = +\infty$ par somme.

f est dérivable comme produit et somme de fonctions dérivables, et pour tout $x \in [0, +\infty[$ on $f'(x) = e^x + x e^x = e^x(1+x)$.

Pour tout x > 0, $1 + x \ge 1 \ge 0$ et $e^x > 0$ donc f'(x) > 0, f est strictement croissante sur $[0, +\infty[$.

- b) $f(0) = 0 \times e^0 1 = -1$ et $\lim_{x \to +\infty} f(x) = +\infty$. On a $0 \in]-1, +\infty[$, f est continue car dérivable sur $[0, +\infty[$ et strictement croissante sur cet intervalle. D'après le corollaire du théorème des valeurs intermédiaires, il existe donc un unique $\alpha \in]0, +\infty[$ tel que $f(\alpha) = 0$.
- c) f est strictement croissante sur $[0, +\infty[$ et $f(\alpha) = 0$, ainsi f(x) < 0 si $x < \alpha$ et f(x) > 0 si $x > \alpha$.
- 2) a) $\lim_{x \to +\infty} (x-1) = +\infty$ et $\lim_{x \to +\infty} e^x 1 = +\infty$ donc par produit $\lim_{x \to +\infty} g(x) = +\infty$. g est dérivable sur $[0, +\infty[$ comme produit de fonction dérivables, et pour tout $x \in [0, +\infty[$ on a

$$g'(x) = e^{x} - 1 + (x - 1) e^{x}$$
$$= x e^{x} - 1$$
$$= f(x)$$

ainsi, d'après la question 1.c, on a le tableau de variations suivant :

x	0 α	$+\infty$
g'(x)	- 0	+
g	$0 \qquad (\alpha - 1)(e^{\alpha} - 1)$	+∞

b) On a
$$g(\alpha)=(\alpha-1)(\mathrm{e}^{\alpha}-1).$$

Or $f(\alpha)=0$ donc $\alpha\,\mathrm{e}^{\alpha}=1$ donc $\mathrm{e}^{\alpha}=\frac{1}{\alpha}.$ Ainsi,

$$g(\alpha) = (\alpha - 1) \left(\frac{1}{\alpha} - 1\right)$$
$$= (\alpha - 1) \times \frac{1 - \alpha}{\alpha}$$

$$=-\frac{(\alpha-1)^2}{\alpha}$$

Correction de l'exercice 14 : On pose g(x) = f(x) - x. Puisque f(x) est à valeur dans [0,1], on a $0 \le f(x) \le 1$ pour tout $x \in [0,1]$ donc $g(0) = f(0) \ge 0$ et $g(1) = f(1) - 1 \le 0$.

Ainsi, $0 \in [g(1), g(0)]$ et g est continue sur [0, 1] comme somme de fonctions continues donc d'après le théorème des valeurs intermédiaires il existe réel $\alpha \in [0, 1]$ tel que $g(\alpha) = 0$, donc tel que $f(\alpha) = \alpha$.

Correction de l'exercice 15:

1) Pour tout $x \in \mathbb{R}$, $1 + x^2 \ge 1 > 0$ donc $1 + x^2$ ne s'annule pas sur \mathbb{R} . Ainsi f est dérivable comme quotient de fonctions dérivables, et pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{-2x e^{-x^2} (1+x^2) - 2x e^{-x^2}}{(1+x^2)^2}$$
$$= \frac{-2x e^{-x^2} (2+x^2)}{(1+x^2)^2}$$

or pour tout $x \in \mathbb{R}$, $e^{-x^2} > 0$, $2 + x^2 \ge 2 > 0$ et $(1 + x^2)^2 \ge 0$, donc f'(x) est du même signe que -2x. De plus, $\lim_{x \to +\infty} e^{-x^2} = 0$ par composition et $\lim_{x \to -\infty} e^{-x^2} = 0$ par composition. Par quotient, on a donc $\lim_{x \to +\infty} f(x) = 0$ et $\lim_{x \to -\infty} f(x) = 0$. On en déduit le tableau de variation suivant :

x	$-\infty$	0	$+\infty$
f'(x)	-	+ 0	_
f(x)	0	1	0

f est dérivable sur $\mathbb R$ donc elle est continue, ainsi d'après le tableau de variation précédent et d'après le théorème des valeurs intermédiaires, l'équation $f(x) = \frac{1}{2}$ admet une unique solution dans l'intervalle $]-\infty,0[$ et une unique solution dans l'intervalle $]0,+\infty[$. On note x_1 et x_2 ces deux solutions

2) x_1 est telle que $f(x_1) = \frac{1}{2}$. Or, pour tout $x \in \mathbb{R}$, $f(-x) = \frac{e^{-(-x)^2}}{1 + (-x)^2} = \frac{e^{-x^2}}{1 + x^2} = f(x)$ (f est paire), donc $f(-x_1) = f(x_1) = \frac{1}{2}$. Puisque l'équation $f(x) = \frac{1}{2}$ n'a que deux solutions, alors $-x_1$ est l'autre solution donc $-x_1 = x_2$. On a $f(1) = \frac{e^{-1}}{2} < \frac{1}{2}$ car -1 < 0 donc $e^{-1} < 1$.

Ainsi, d'après le tableau de variation de f, les solutions de $f(x) = \frac{1}{2}$ sont dans l'intervalle [-1,1]

x	$-\infty$	$\frac{\mathrm{e}^{-1}}{2}$	0	$\frac{\mathrm{e}^{-1}}{2}$	$+\infty$
f(x)	0	1	, 1 <u> </u>	1_	· 0

Correction de l'exercice 16 : On pose $f_k(x)=x^4-x^3-k$, et on s'intéresse aux solutions de l'équation $f_k(x)=0$. f_k est dérivable en tant que fonction polynôme de degré 4 et pour tout $x\in\mathbb{R},$ $f_k'(x)=4x^3-3x^2=x^2(4x-3)$ Pour tout $x\in\mathbb{R},$ $x^2\geq 0$ donc f'(x) est du même signe que 4x-3. On a $\lim_{x\to -\infty} f(x)=\lim_{x\to +\infty} f(x)=+\infty$. De plus, f(0)=-k et

$$f\left(\frac{3}{4}\right) = \frac{3^4}{4^4} - \frac{3^3}{4^3} - k = \frac{3^4 - 4 \times 3^3}{4^4} - k = \frac{3^3(3-4)}{4^4} - k = -\frac{3^3}{4^4} - k$$

On en déduit le tableau suivant

x	$-\infty$	0		$\frac{3}{4}$		$+\infty$
f'(x)		- 0	_	0	+	
f(x)	1	-k —	*	$-\frac{3^3}{4^4} - k$		→ +∞

f est continue sur $\mathbb R$ car c'est une fonction polynômiale, d'après le théorème des valeurs intermédiaires et le tableau de variations ci-dessus, on en déduit qu'il y a plusieurs cas selon la valeur de k:

- Si $k < -\frac{3^3}{4^4}$, alors $-\frac{3^3}{4^4} k > 0$ donc le minimum de f est strictement positif, f(x) = 0 n'a pas de solution.
- Si $k = -\frac{3^3}{4^4}$, alors f(x) s'annule lorsque $x = \frac{3}{4}$
- Si $-\frac{3^3}{4^4} < k < 0$, alors f(x) = 0 admet une solution dans $\left[0, \frac{3}{4}\right]$ et une solution dans $\left[\frac{3}{4}\right] + \infty$.
- Si k=0, alors 0 est l'unique solution de f(x)=0 dans] $-\infty$, $\frac{3}{4}$ [, et f(x)=0 admet une autre solution dans] $\frac{3}{4}$, $+\infty$ [.
- Si k > 0, alors f(x) = 0 admet une solution dans $]-\infty,0[$ et une solution dans $]\frac{3}{4},+\infty[$.

Correction de l'exercice 17 : Posons $f(x) = \cos x - e^{-x^2}$, et montrons que f(x) s'annule une infinité de fois.

Pour tout $k \in \mathbb{Z}$, $\cos(k\pi) = (-1)^k$, donc $f(k\pi) = (-1)^k - e^{-k^2\pi^2}$. Or, $-k^2\pi^2 < 0$ donc $0 < e^{-k^2\pi^2} < 1$ pour tout $k \in \mathbb{Z}$. Ainsi, si k est pair, $f(k\pi) = 1 - e^{-k^2\pi^2} > 0$ et si k est impair, $f(k\pi) = -1 - e^{-k^2\pi^2} < 0$.

Comme f est continue sur \mathbb{R} (en tant que différence de fonctions continues), on peut appliquer le théorème des valeur intermédiaires à tout intervalle de la forme $[2k\pi, (2k+1)\pi]$ et on obtient que pour tout $k \in \mathbb{Z}$, f(x) s'annule dans l'intervalle $[2k\pi, (2k+1)\pi]$, autrement dit l'équation f(x)=0 admet une infinité de solutions.

Correction de l'exercice 18:

- 1) f_n est dérivable sur [0,1] en tant que fonction polynômiale, et pour tout $x \in \mathbb{R}$, $f'_n(x) = nx^{n-1} + 1$. Ainsi, pour tout $x \in [0,1]$, $f'_n(x) \ge 1 > 0$ donc f est strictement croissante sur [0,1]. De plus, f(0) = -1 et f(1) = 1, donc d'après le théorème des valeurs intermédiaires il existe un unique réel $x_n \in]0,1[$ tel que $f_n(x_n)=0.$
- 2) Montrons que pour tout $n \in \mathbb{N}$, $x_{n+1} > x_n$. Soit $n \in \mathbb{N}$, on sait que $f_n(x_n) = 0$ donc que $x_n^n + x_n - 1 = 0$. On a $f_{n+1}(x_n) = x_n^{n+1} + x_n - 1$. Or, $0 < x_n < 1$ donc $x_n^{n+1} < x_n^n$. On en déduit que $f_{n+1}(x_n) < x_n^n + x_n - 1 = 0$. Ainsi, on en déduit d'après le théorème des valeurs intermédiaires que l'unique solution à l'équation $f_{n+1}(x) = 0$ se situe dans l'intervalle $]x_n, 1[$, autrement dit $x_{n+1} \in]x_n, 1[$ donc $x_n < x_{n+1}.$
 - Ceci étant vrai pour tout $n \in \mathbb{N}$, on en déduit que (x_n) est strictement croissante.
- 3) Pour tout $n \in \mathbb{N}$, $x_n \in]0,1[$, donc (x_n) est majorée par 1. Elle est croissante d'après la question précédente, donc elle converge vers un réel ℓ tel que $\ell \leq 1$.
- 4) Supposons que $\ell < 1$.

Pour tout $n \in \mathbb{N}$, $f_n(x_n) = 0$ par définition. D'autre part, $f_n(x_n) = x_n^n + x_n - 1$.

Comme (x_n) est strictement croissante et x_n converge vers ℓ , on a $\forall n \in \mathbb{N}$ $x_n \leq \ell < 1$.

Ainsi, pour tout $n \in \mathbb{N}$, $f_n(x_n) \leq \ell^n + \ell - 1$.

Comme $\ell < 1$, $\lim_{n \to +\infty} \ell^n = 0$, donc par passage à la limite on obtient $\ell - 1 = 0$, contradiction. on en conclut que $\ell = 1$.

Correction de l'exercice 19 : Partie 1

- 1) $x \mapsto x^2$ et $x \mapsto \ln x$ sont des fonctions dérivables sur $]0; +\infty[$ donc g est dérivable (donc continue) sur cet intervalle et $\forall x \in]0; +\infty[, g'(x) = 2x + \frac{1}{x} = \frac{2x^2 + 1}{x}]$. Or, $\forall x > 0, x^2 > 0$ donc $2x^2 + 1 > 0$ et x > 0 donc g'(x) > 0, on en conclut que g est strictement croissante sur $]0; +\infty[$.
- 2) On a $\lim_{x\to 0} x^2 = 0$ et $\lim_{x\to 0} \ln x = -\infty$ donc $\lim_{x\to 0} g(x) = -\infty$, et $\lim_{x\to +\infty} x^2 = +\infty$ et $\lim_{x\to +\infty} \ln x = +\infty$ donc $\lim_{x\to +\infty} g(x) = -\infty$

On a montré à la question précédente que g est continue et strictement croissante sur $]0; +\infty[$ et $0 \in]\lim_{x \to +\infty} g(x); \lim_{x \to +\infty} g(x)[$ donc d'après le théorème des valeurs intermédiaires il existe un unique réel $\alpha \in]0; +\infty[$ tel que $g(\alpha) = 0$.

3) On a $g\left(\frac{1}{2}\right) = \frac{1}{2^2} + \ln\left(\frac{1}{2}\right) = \frac{1}{4} - \ln(2)$. Or $\ln(2) > 0$, 69 d'après l'énoncé donc $g\left(\frac{1}{2}\right) < 0$, 25 - 0, $69 \leqslant -0$, 44 < 0. De plus, $g(1) = 1^2 + \ln(1) = 1$.

Comme $0 \in]g(1/2); g(1)[$ on en déduit que $\alpha \in]\frac{1}{2}; 1[$ d'après le théorème des valeurs intermédiaires.

Partie 2

a) $x \mapsto x - \frac{1}{4}x^2$ est un polynôme de degré 2 donc dérivable sur I $x \mapsto -\frac{1}{4} \ln x$ est dérivable sur I car $I \subset]0; +\infty[$

Ainsi, f est dérivable sur I comme somme de fonctions dérivables. De plus, pour tout $x \in I$ on a

$$f'(x) = 1 - \frac{1}{2}x - \frac{1}{4x}$$
$$= \frac{4x - 2x^2 - 1}{4x}$$

Pour tout $x \in I$, $x \ge \frac{1}{2} > 0$ donc f'(x) est du même signe que $-2x^2 + 4x - 1$. Le discriminant de ce polynôme est

$$\Delta = 4^2 - 4 \times (-2) \times (-1) = 8 > 0$$
 donc il a deux racines : $x_1 = \frac{-4 - \sqrt{8}}{-4} = \frac{2 + \sqrt{2}}{2}$ et $x_2 = \frac{-4 + \sqrt{8}}{-4} = \frac{2 - \sqrt{2}}{2}$

Or,
$$\sqrt{2} > 1$$
 donc $2 - \sqrt{2} < 1$ et ainsi $\frac{2 - \sqrt{2}}{2} < \frac{1}{2}$.

De même, $2+\sqrt{2}>3$ donc $\frac{2+\sqrt{2}}{2}>\frac{3}{2}>1$. Ainsi l'intervalle I est inclus entre les racines de $-2x^2+4x-1$, ce polynôme est donc de signe constant sur cet intervalle et ne s'annule pas dans I car $x_1 \notin I$ et $x_2 \notin I$, et donc $\forall x \in I, f'(x) > 0$. On en conclut que f est strictement croissante sur I.

b)
$$f\left(\frac{1}{2}\right) = \frac{1}{2} - \frac{1}{4} \times \frac{1}{2^2} - \frac{1}{4}\ln\left(\frac{1}{2}\right) = \frac{1}{2} - \frac{1}{16} + \frac{1}{4}\ln(2) = \frac{7}{16} + \frac{1}{4}\ln(2)$$

Or, $0,69 < \ln(2)$ donc $\frac{1}{4} \times 0,69 < \frac{1}{4} \ln(2)$ et ainsi $\frac{7}{16} + \frac{1}{4} \times 0,69 < f\left(\frac{1}{2}\right)$. On a $\frac{7}{16} + \frac{1}{4} \times 0,69 = \frac{7+4\times0,69}{16} = \frac{7+4\times0,69}{16}$

$$\frac{9,76}{16} > \frac{1}{2} \text{ donc } f\left(\frac{1}{2}\right) > \frac{1}{2}.$$

 $f(1) \text{ est plus simple à calculer}: f(1) = 1 - \frac{1}{4} \times 1^2 - \frac{1}{4} \ln(1) = \frac{3}{4}, \text{ donc } f(1) < 1.$

On a de plus $f(1) > f\left(\frac{1}{2}\right)$ car f est strictement croissante sur $\left[\frac{1}{2};1\right]$.

Finalement, on a bien $\frac{1}{2} < f\left(\frac{1}{2}\right) < f(1) < 1$.

c) Pour tout $x \in I$, on a $\frac{1}{2} \le x \le 1$ donc $f\left(\frac{1}{2}\right) \le f(x) \le 1$ car f est croissante sur I, et donc

$$\frac{1}{2} < f\left(\frac{1}{2}\right) \leqslant f(x) \leqslant f(1) < 1$$

Ainsi, $f(x) \in [\frac{1}{2}; 1]$. On a bien $\forall x \in I, f(x) \in I$.

- a) $u_1 = f(u_0) = f(1) = \frac{3}{4}$
 - b) $u_0 = 1$ donc $u_0 \in I$ et d'après la question 4.c) si $u_n \in I$ pour un certain entier n, alors $f(u_n) \in I$ donc $u_{n+1} \in I$. Ainsi la propriété « $u_n \in I$ » est vraie pour n=0 et est héréditaire, donc par principe de récurrence elle est vraie pour tout $n \in \mathbb{N}$.
 - c) Montrons par récurrence la propriété $\mathcal{P}(n)$: « $u_{n+1} \leqslant u_n$ »
 - Initialisation : $u_1 = \frac{3}{4}$ et $u_0 = 1$ donc $u_1 \leqslant u_0$.
 - **Hérédité**: Supposons que $u_{n+1} \leq u_n$ pour un certain entier n.

Puisque $u_{n+1} \in I$, $u_n \in I$ et que f est strictement croissante sur I, on a $f(u_{n+1}) \leqslant f(u_n)$ d'où $u_{n+2} \leqslant u_{n+1}$. La propriété est donc vraie au rang n+1.

- Conclusion: Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$ on a $u_{n+1} \leq u_n$, donc que la suite (u_n) est décroissante.
- d) La suite (u_n) est décroissante d'après la question précédente, et pour tout $n \in \mathbb{N}$, $u_n \in I$ donc $u_n \geq \frac{1}{2}$. (u_n) est décroissante et minorée donc elle converge vers un réel ℓ .

On a $\lim_{n \to +\infty} u_{n+1} = \ell$ par unicité de la limite, et $\lim_{n \to +\infty} f(u_n) = f(\ell)$ car f est continue sur I.

Ainsi, par passage à la limite dans l'égalité $u_{n+1} = f(u_n)$, on a $\ell = f(\ell)$ donc $\ell = \ell - \frac{1}{4}\ell^2 - \frac{1}{4}\ln(\ell)$. On en déduit que $\ell^2 + \ln(\ell) = 0$ donc que ℓ est solution de l'équation g(x) = 0. Cette équation admet pour unique solution α d'après la première partie, donc $\ell = \alpha$.

Correction de l'exercice 20 : Soit $\ell = \lim_{x \to +\infty} f(x)$ et $\ell' = \lim_{x \to -\infty} f(x)$.

Posons $\varepsilon = 1$. Il existe A < B deux réels tels que $\forall x > B$, $f(x) \in]\ell + 1$, $\ell - 1[$ et $\forall x < A$, $f(x) \in]\ell' - 1$, $\ell' + 1[$. De plus, f est continue sur [A, B] donc d'après le théorème des bornes atteintes f est bornée sur [A, B]. Soit $(m_0, M_0) \in \mathbb{R}^2$ tels que $\forall x \in [A, B], m_0 \leq f(x) \leq M_0$.

Posons maintenant $m = \min(\ell - 1, \ell' - 1, m_0)$ et $M = \max(\ell + 1, \ell' + 1, M_0)$. Alors, pour tout réel x, soit $x \in]-\infty$, A[auquel cas $m \le \ell' - 1 < f(x) < \ell' + 1 \le M$, soit $x \in]B, +\infty[$ auquel cas $m \le \ell - 1 < f(x) < \ell + 1 \le M$, soit $x \in [A, B]$ auquel cas $m \le m_0 \le f(x) \le m_0 \le M$. Dans tous les cas on a $m \le f(x) \le M$, ainsi f est bornée par $f(x) \in M$ sur $f(x) \in M$.

Correction de l'exercice 21:

1) $f(\mathbb{R}) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R}, y = f(x) \} = \{ f(x) \mid x \in \mathbb{R} \}.$

Commençons par étudier les variations et les limites de f:

Par opérations
$$\lim_{x \to -\infty} f(x) = 1$$
 et $f(x) = \frac{e^{3x}(e^{-3x} - 1)}{e^{3x}(e^{-3x} + 1)} = \frac{e^{-3x} - 1}{e^{-3x} + 1}$ donc $\lim_{x \to +\infty} f(x) = -1$

De plus, f est dérivable sur $\mathbb R$ comme quotient de fonctions dérivables, et

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{-3e^{3x}(1+e^{3x}) - 3(1-e^{3x})e^{3x}}{(1+e^{3x})^2}$$
$$= \frac{-6e^{3x}}{(1+e^{3x})^2}$$

donc pour tout $x \in \mathbb{R}$, f'(x) < 0. On en déduit que f est strictement décroissante.

Finalement, f est continue comme quotient de fonctions continues et strictement décroissante, $\lim_{x\to -\infty} f(x)=1$ et $\lim_{x\to +\infty} f(x)=-1$, donc d'après le théorème des valeurs intermédiaires tout réel $y\in]-1,1[$ admet un unique antécédent par f. On en conclut que $f(\mathbb{R})=]-1,1[$.

- 2) $f: \mathbb{R} \to f(\mathbb{R})$ est continue et strictement décroissante sur \mathbb{R} . D'après le théorème de la bijection réciproque, f réalise une bijection de \mathbb{R} vers $f(\mathbb{R})$.
- 3) Soit $x \in \mathbb{R}$ et $y \in]-1,1[$, on a

$$y = f(x) \iff y = \frac{1 - e^{3x}}{1 + e^{3x}}$$

$$\iff (1 + e^{3x})y = 1 - e^{3x}$$

$$\iff e^{3x}(y+1) = 1 - y$$

$$\iff e^{3x} = \frac{1 - y}{1 + y}$$

$$\iff 3x = \ln\left(\frac{1 - y}{1 + y}\right)$$

$$\iff x = \frac{1}{3}\ln\left(\frac{1 - y}{1 + y}\right)$$

$$\iff x = \frac{1}{3}\ln\left(\frac{1 - y}{1 + y}\right)$$

donc la bijection réciproque de f est définie pour tout $x \in]-1,1[$ par $f^{-1}(x)=\frac{1}{3}\ln\left(\frac{1-x}{1+x}\right)$.

Correction de l'exercice 22:

1) f est dérivable comme somme de fonctions dérivables.

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{e^x + e^{-x}}{2}$$

Or $\forall x \in \mathbb{R}, e^x > 0$ et $e^{-x} > 0$ donc f'(x) > 0. Ainsi, f est strictement croissante sur \mathbb{R} .

2) Par somme de limites, $\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$ et $\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty$.

Comme sh est continue et strictement croissante, on en déduit d'après le théorème de la bijection réciproque que sh réalise une bijection de \mathbb{R} vers \mathbb{R} .

3) Soit $y \in \mathbb{R}$ et $x \in \mathbb{R}$. Alors

$$y = \operatorname{sh}(x) \iff y = \frac{e^x - e^{-x}}{2}$$

$$\iff 2y = e^x - e^{-x}$$

$$\iff 2y e^x = e^{2x} - 1 \qquad \operatorname{car} e^x \neq 0$$

$$\iff (e^x)^2 - 2y e^x - 1 = 0$$

On pose $X = e^x$ et on résout $X^2 - 2yX - 1 = 0$. On trouve $\Delta = 4y^2 + 4 > 0$ donc il y a deux valeurs de X qui annulent $X^2 - 2yX - 1$:

$$X_1 = \frac{2y - \sqrt{4y^2 + 4}}{2} = y - \sqrt{y^2 + 1}$$
 et $X_2 = \frac{2y + \sqrt{4y^2 + 4}}{2} = y + \sqrt{y^2 + 1}$

L'équation $e^x = y - \sqrt{y^2 + 1}$ d'inconnue x n'a pas de solution $cary - \sqrt{y^2 + 1} < 0$.

L'équation $e^x = y + \sqrt{y^2 + 1}$ d'inconnue x admet pour solution $x = \ln(y + \sqrt{y^2 + 1})$ (on a $\forall y \in \mathbb{R}, y^2 + 1 > y^2$ donc $\sqrt{y^2 + 1} > |y|$ donc $y + \sqrt{y^2 + 1} > 0$).

Finalement, l'équation shx=y admet pour unique solution $x=\ln(y+\sqrt{y^2+1})$, donc la bijection réciproque de sh est sh⁻¹: $x\mapsto \ln(x+\sqrt{x^2+1})$

4) Notons $f(x) = \ln(x + \sqrt{x^2 + 1})$. $x \mapsto x^2 + 1$ est dérivable et à valeurs strictement positives sur \mathbb{R} donc $x \mapsto \sqrt{x^2 + 1}$ est dérivable sur \mathbb{R} et à valeurs strictement positive comme vu à la question précédente. Ainsi, f est dérivable comme composée de fonctions dérivables, et :

$$\forall x \in \mathbb{R}, \quad f'(x) = \frac{1 + \frac{2x}{2\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}}$$
$$= \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}(x + \sqrt{x^2 + 1})}$$
$$= \frac{1}{\sqrt{x^2 + 1}}$$

Correction de l'exercice 23 : Les sens réciproques sont les plus faciles. Supposons que k impair $\Rightarrow a_k = 0$, alors $\forall x \in \mathbb{R}, \ P(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k} x^{2k} \ \text{donc} \ P(-x) = \sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k} (-x)^{2k} = \sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k} x^{2k} = P(x).$ De même, si k pair $\Rightarrow a_k = 0$, alors $\forall x \in \mathbb{R}, \ P(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k+1} x^{2k+1} \ \text{donc} \ P(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k+1} (-x)^{2k+1} = -\sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k+1} - \sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k+1}$

Passons aux sens réciproques :

Supposons que P est une fonction paire, c'est à dire que $\forall x \in \mathbb{R}, \ P(-x) = P(x)$. Alors $\forall x \in \mathbb{R}, \sum_{k=0}^{n} a_k (-x)^k = \sum_{k=0}^{n} a_k x^k$ donc $\sum_{k=0}^{n} a_k (x^k - (-x)^k) = 0$.

Or pour tout $k \in [0, n]$, $x^k - (-x)^k = \begin{cases} 0 & \text{si } k \text{ est pair} \\ 2x^k & \text{si } k \text{ est impair} \end{cases}$

On en déduit que $\forall x \in \mathbb{R}$, $\sum_{k=0}^{\lfloor n/2 \rfloor} a_{2k+1} x^{2k+1} = 0$. Or un polynôme est nul si et seulement si tous ses coefficients sont nuls, donc $\forall k \in [0, \lfloor n/2 \rfloor], a_{2k+1} = 0$, tous les coefficients de degré impairs de P sont donc nuls.

On procède de façon totalement analogue dans le cas où P est une fonction impaire.

Correction de l'exercice 24:

1) Notons a_n le coefficient dominant de P. En $+\infty$ et en $-\infty$ on a $P(x) \underset{x \to \pm \infty}{\sim} a_n x^n$. Si $a_n > 0$ on a donc $\lim_{n \to +\infty} P(x) = \lim_{n \to +\infty} a_n x^n = +\infty$ et $\lim_{n \to +\infty} P(x) = \lim_{n \to +\infty} a_n x^n = -\infty$.

Or, P est une fonction polynômiale donc est continue sur \mathbb{R} , et $0 \in]\lim_{x \to -\infty} P(x)$; $\lim_{x \to +\infty} P(x)$ [donc d'après le théorème des valeurs intermédiaires il existe un réel $x_0 \in \mathbb{R}$ tel que $P(x_0) = 0$.

De même, si $a_n < 0$, on a $\lim_{x \to -\infty} P(x) = +\infty$ et $\lim_{x \to +\infty} P(x) = -\infty$ et on conclut de la même manière.

Dans tous les cas, P admet au moins une racine réelle.

2) Supposons que $a_n > 0$, on a alors $\lim_{x \to -\infty} P(x) = \lim_{x \to +\infty} P(x) = +\infty$.

Soit $a \in \mathbb{R}$ quelconque. Puisque $\lim_{x \to -\infty} P(x) = \lim_{x \to +\infty} P(x) = +\infty$, il existe un réel x_0 et un réel x_1 tel que $\forall x \leq x_0$, P(x) > P(a) et $\forall x \geq x_1, P(x) > P(a)$.

À cause des inégalités strictes, on a nécessairement $x_0 < a < x_1$. Puisque P est continue sur \mathbb{R} donc sur $[x_0, x_1]$, P atteint son minimum sur $[x_0, x_1]$. Il existe $c \in [x_0, x_1]$ tel que $\forall x \in [x_0, x_1], P(c) \leq P(x)$ et en particulier $P(c) \leq P(a)$. Ainsi pour tout réel x, trois cas sont possibles :

- Si $x \le x_0$, alors $P(x) > P(a) \ge P(c)$.
- Si $x \in [x_0, x_1]$ alors $P(x) \ge P(c)$
- Si $x \ge x_1$, alors $P(x) > P(a) \ge P(c)$.

dans tous les cas on a $P(x) \ge P(c)$ donc P(c) est le minimum de P sur \mathbb{R} et il est atteint en c.

Correction de l'exercice 26 : On pose $f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$.

On a
$$f(1) = \arctan(1) + \arctan(1) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$
.
Montrons que f est constante : f est dérivable sur $]0; +\infty[$ comme quotient de fonctions dérivables, et pour tout $x \in]0; +\infty[$,
$$f'(x) = \frac{1}{1+x^2} + \left(-\frac{1}{x^2}\right) \times \frac{1}{1+\frac{1}{x^2}} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$$

donc f est constante sur $]0, +\infty[$. Finalement, pour tout $x > 0, f(x) = \frac{\pi}{2}$.

