CSEN 1003: Compilers

Tutorial 3 - Context Free Grammars

16/2/2020 - 19/2/2020

Function of the Syntax Analyser

- 1 Determines if the input program is grammatical.
- Q Generate error messages if the input is not grammatical.
- **3** Generate a parse tree.

For the Upcoming 5 Tutorials: Parsers!

Today's Plan

1 Context Free Grammars

Context Free Grammars

Definition

A context free grammar is a quadruple $\langle V, \Sigma, R, S \rangle$ where:

- V is a set of variables.
- Σ is the alphabet (terminals).
- R is a set of rules.
- *S* is the start variable.

Example

$$E \rightarrow E + E \mid E * E \mid T$$

$$T \rightarrow id \mid num$$

Derivations and Parse Trees

Example

Consider the following context-free grammar with the alphabet

$$\Sigma = \{+, *, a\}$$
:

$$S \rightarrow SS+ \mid SS* \mid a.$$

Show that S derives aa+a*.

Derivations and Parse Trees

Example

Consider the following context-free grammar with the alphabet

$$\Sigma = \{+, *, a\}$$
:

$$S \rightarrow SS + |SS*|$$
 a.

Show that S derives aa+a*.

• The language of a Grammar *G* is the set:

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

Derivations and Parse Trees

Example

Consider the following context-free grammar with the alphabet $\Sigma = \{+, *, a\}$:

$$S \rightarrow SS+ \mid SS* \mid a.$$

Show that S derives aa+a*.

• The language of a Grammar *G* is the set:

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

 A parser checks whether a program P is in the language of the grammar.

Grammar Ambiguity

Definition

A grammar G is ambiguous if there is some $w \in L(G)$ with more than one parse tree.

Example

Is the following grammar ambiguous?

$$S \rightarrow 1S0 \mid 1S \mid \varepsilon$$

Example

Is the following grammar ambiguous?

$$S \rightarrow aSbS \mid aS \mid \varepsilon$$

CFG Design

Example

Give a context-free grammar (CFG) for each of the following languages:

- ① $L = \{a^m b^n c^k \mid k = m + n \text{ and } m, n, k \ge 0\}$ over the alphabet $\Sigma = \{a, b, c\}$.
- **2** $L = \{a^m b^n \mid n \neq m\}$ over the alphabet $\Sigma = \{a, b\}$.
- 3 $L = \{ w \mid w \text{ is a palindrome } \}$ over the alphabet $\Sigma = \{ a, b, c \}$.

Grammar Correctness

Example

Consider the following grammar *G*:

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & \mathsf{aSc} \mid \mathcal{T} \\ \mathcal{T} & \rightarrow & \mathsf{bTc} \mid \varepsilon \end{array}$$

and the language $L = \{a^m b^n c^k \mid k = m + n \text{ and } m, n, k \ge 0\}$. Prove that G is a correct grammar for L.