Contents

1		Section 5.1 1.1 5.1.9															I									
	1.1	5.1.9 .																								-
	1.2	5.1.11																								-
	1.3	5.1.19																								4
	1.4	5.1.24																								•
	1.5	5.1.31																								•
	1.6	5.1.33																								4
	1.7	5.1.35																								4
	1.8	5.1.37																								4
	1.9	5.1.38																								ļ
	1.10	5.1.39																								ļ
	1.11	5.1.44																								ļ
	1.12	5.1.45																								ļ
	1.13	5.1.52																								(

1 Section 5.1

$1.1 \quad 5.1.9$

A homogeneous second-order linear differential equation, two functions y_1 and y_2 , and a pair of initial conditions are given. First verify that y_1 and y_2 are solutions of the differential equation. Then find a particular solution of the form $y = c_1y_1 + c_2y_2$ that satisfies the given initial conditions. Primes denote derivatives with respect to x.

$$y'' + 2y' + y = 0; y_1 = e^{-x}, y_2 = xe^{-x}; y(0) = 9, y'(0) = -10$$

(a) Why is the function $y_1 = e^{-x}$ a solution to the differential equation?

The function $y_1 = e^{-x}$ is a solution because when the function, its first derivative $y'_1 = -e^{-x}$ and its second derivative, $y''_1 = e^{-x}$, are substituted into the equation, the result is a true statement.

(b) Why is the function $y_2 = xe^{-x}$ a solution to the differential equation?

The function $y_2 = xe^{-x}$ is a solution because when the function, its derivative, $y_2' = e^{-x} - xe^{-x}$, and its second derivative, $y_2'' = -e^{-x} - e^{-x} + xe^{-x}$, are substituted into the equation, the result is a true statement.

(c) The particular solution of the form $y = c_1y_1 + c_2y_2$ that satisfies the initial conditions y(0) = 9 and y'(0) = -10 is $y = 9e^{-x} - xe^{-x}$.

$1.2 \quad 5.1.11$

A homogeneous second-order linear differential equation, two functions y_1 and y_2 , and a pair of initial conditions are given. First verify that y_1 and y_2 are

solutions of the differential equation. Then find a particular solution of the form $y = c_1y_1 + c_2y_2$ that satisfies the given initial conditions. Primes denote derivatives with respect to x.

$$y'' - 2y' + 2y = 0; y_1 = e^x \cos(x), y_2 = e^x \sin(x); y(0) = 11, y'(0) = 14$$

- (a) The function $y_1 = e^x \cos(x)$ is a solution because when the function its first derivative $y_1' = e^x \cos(x) e^x \sin(x)$, and its second derivative, $y_1'' = e^x \cos(x) e^x \sin(x) e^x \sin(x) e^x \cos(x)$, are substituted into the equation, the result is a true statement.
- (b) The function $y_2 = e^x \sin(x)$ is a solution because when the function, its first derivative, $y_2' = e^x \sin(x) + e^x \cos(x)$, and its second derivative, $y_2'' = e^x \sin(x) + e^x \cos(x) + e^x \cos(x) e^x \sin(x)$, are substituted into the equation, the result is a true statement.
- (c) The particular solution of the form $y = c_1y_1 + c_2y_2$ that satisfies the initial conditions y(0) = 11 and y'(0) = 14 is

$$y = c_1 y_1 + c_2 y_2$$

$$y = c_1 (e^x \cos(x)) + c_2 (e^x \sin(x))$$

$$c_1 (e^0 \cos(0)) + c_2 (e^0 \sin(0)) = 11$$

$$c_1 = 11$$

$$y = c_1 (e^x \cos(x)) + c_2 (e^x \sin(x))$$

$$y' = c_1 (e^x \cos(x) - e^x \sin(x)) + c_2 (e^x \sin(x) + e^x \cos(x))$$

$$14 = (11) (e^0 \cos(0) - e^0 \sin(0)) + c_2 (e^0 \sin(0) + e^0 \cos(0))$$

$$14 = (11) + c_2$$

$$c_2 = 3$$

$$y = (11)(e^x \cos(x)) + (3)(e^x \sin(x))$$

$$y = (11)(e^x \cos(x)) + (3)(e^x \sin(x))$$

$1.3 \quad 5.1.19$

Show that $y_1 = 1$ and $y_2 = \sqrt{x}$ are solutions of $yy'' + (y')^2 = 0$, but that their sum $y = y_1 + y_2$ is not a solution.

(a)

$$y_{1} = 1$$

$$y'_{1} = 0$$

$$y''_{1} = 0$$

$$yy'' + (y')^{2} = 0$$

$$(1)(0) + (0)^{2} = 0$$

$$0 = 0$$

(b)

$$y_2 = \sqrt{x}$$

$$y_2' = \frac{1}{2}x^{-1/2}$$

$$y_2'' = -\frac{1}{4}x^{-3/2}$$

$$yy'' + (y')^2 = 0$$

$$(\sqrt{x})\left(-\frac{1}{4}x^{-3/2}\right) + \left(\frac{1}{2}x^{-1/2}\right)^2 = 0$$

$$-\frac{1}{4x} + \frac{1}{4x} = 0$$

$$0 = 0$$

(c) Now consider the function $y = y_1 + y_2$.

$$y = y_1 + y_2$$

$$y = (1) + (\sqrt{x})$$

$$y' = 0 + \frac{1}{2}x^{-1/2}$$

$$y' = \frac{1}{2}x^{-1/2}$$

$$y'' = -\frac{1}{4}x^{-3/2}$$

(d) For the function $y = y_1 + y_2$:

$$yy'' = (1 + \sqrt{x}) \left(-\frac{1}{4}x^{-3/2} \right)$$
$$yy'' = -\frac{1 + \sqrt{x}}{4x^{3/2}}$$
$$(y')^2 = \left(\frac{1}{2}x^{-1/2} \right)^2$$
$$(y')^2 = \frac{1}{4x}$$

(e) Why is the proof complete?

For the function $y = y_1 + y_2$, when the expressions above for yy'' and $(y')^2$ are substituted into the equation, the result is a false statement.

1.4 5.1.24

Determine whether the functions y_1 and y_2 are linearly dependent on the interval (0,1).

$$y_1 = \sin(t)\cos(t), y_2 = 3\sin(2t)$$

$$y_2 = 3\sin(2t) = 6\sin(t)\cos(t)$$
$$y_1 \equiv y_2$$

$1.5 \quad 5.1.31$

Show that $y_1 = \sin(x^2)$ and $y_2 = \cos(x^2)$ are linearly independent functions, but that their Wronskian vanishes at x = 0. Why does this imply that there is no differential equation of the form y'' + p(x)y' + q(x)y = 0, with both p and q continuous everywhere, having both y_1 and y_2 as solutions?

- (a) Two functions defined on an open interval I are said to be linearly independent on I provided that neither is a constant multiple of the other.
- (b) The functions $y_1 = \sin(x^2)$ and $y_2 = \cos(x^2)$ are linearly independent because $\frac{y_1}{y_2} = \tan(x^2)$ is not a constant-valued function and $\frac{y_2}{y_1} = \cot(x^2)$ is not a constant-valued function.
- (c) Given two function f and g, the Wronskian of f and g is the determinant defined as follows.

$$W(f,g) = \begin{bmatrix} f & g \\ f' & g' \end{bmatrix} = fg' - f'g$$

(d) The Wronskian for these functions, $W(\sin(x^2), \cos(x^2)) = -2x$, vanishes at x = 0 because it has a factor of x.

$1.6 \quad 5.1.33$

Find a general solution to the differential equation given below. Primes denote derivatives with respect to t.

$$y'' + 4y' - 21y = 0$$

$$r^{2} + 4r - 21 = 0$$

$$(r - 3)(r + 7) = 0$$

$$r = 3, -7$$

$$y = c_{1}(e^{3t}) + c_{2}(e^{-7t})$$

$1.7 \quad 5.1.35$

Find a general solution to the differential equation given below. Primes denote derivatives with respect to x.

$$y'' + 8y' = 0$$

$$r^2 + 8r = 0$$

$$r = 0, -8$$

$$y = c_1 + c_2(e^{-8x})$$

$1.8 \quad 5.1.37$

Find a general solution to the differential equation given below. Primes denote derivatives with respect to x.

$$6y'' - 5y' - y = 0$$

$$6r^{2} - 5r - 1 = 0$$

$$r = 1, -\frac{1}{6}$$

$$y = c_{1}(e^{x}) + c_{2}(e^{-x/6})$$

1.9 5.1.38

$$12y'' + 5y' - 3y = 0$$

$$12r^{2} + 5r - 3 = 0$$

$$r = \frac{1}{3}, -\frac{3}{4}$$

$$y = c_{1}(e^{t/3}) + c_{2}(e^{-3t/4})$$

$1.10 \quad 5.1.39$

$$9y'' + 6y' + y = 0$$

$$9r^{2} + 6r + 1 = 0$$

$$r = -\frac{1}{3}$$

$$y(x) = c_{1}(e^{-x/3}) + xc_{2}(e^{-x/3})$$

1.11 5.1.44

The equation below is a general solution to a homogeneous second-order differential equation ay'' + by' + cy = 0 with constant coefficients. Find such an equation.

$$y(x) = c_1 e^{7x} + c_2 e^{-7x}$$

What are the simplest integer coefficients a > 0, b, and c for a homogeneous second-order differential equation with the given general solution?

$$r = 7, -7$$

$$(r+7)(r-7) = 0$$

$$r^2 - 49 = 0$$

$$r^2 - 49 = 0$$

$1.12 \quad 5.1.45$

The equation below is a general solution to a homogeneous second-order differential equation ay'' + by' + cy = 0 with constant coefficients. Find such an equation.

$$y(x) = c_1 e^{-2x} + c_2 x e^{-2x}$$
$$r = -2$$
$$(r+2)^2 = 0$$
$$r^2 + 4r + 4 = 0$$
$$r^2 + 4r + 4 = 0$$

$1.13 \quad 5.1.52$

A second-order Euler equation is one of the form $ax^2y'' + bxy' + cy = 0$, where a, b, and c are constants. If x > 0, then the substitution $v = \ln(x)$ transforms the equation into the constant coefficient linear equation below, with independent variable v.

$$a\frac{d^2y}{dv^2} + (b-a)\frac{dy}{dv} + cy = 0$$

Make the substitution $v = \ln(x)$ to find the general solution of $x^2y'' + xy' - 4y = 0$, for x > 0.

$$v = \ln(x)$$

$$x = e^{v}$$

$$y' = e^{-v} \frac{dy}{dv}$$

$$y'' = e^{-2v} \left(\frac{d^{2}y}{dv^{2}} - \frac{dy}{dv}\right)$$

$$e^{2v} \left(e^{-2v} \left(\frac{d^{2}y}{dv^{2}} - \frac{dy}{dv}\right)\right) + e^{v} \left(e^{-v} \frac{dy}{dv}\right) - 4y = 0$$

$$\left(\frac{d^{2}y}{dv^{2}} - \frac{dy}{dv}\right) + \frac{dy}{dv} - 4y = 0$$

$$\frac{d^{2}y}{dv^{2}} - 4y = 0$$

$$r^{2} - 4 = 0$$

$$r^{2} - 4 = 0$$

$$r^{2} = 4$$

$$r = 2, -2$$

$$y = c_{1}e^{2v} + c_{2}e^{-2v}$$

$$y = c_{1}e^{2\ln(x)} + c_{2}e^{-2\ln(x)}$$

$$y = c_{1}e^{2\ln(x)} + c_{2}e^{-2\ln(x)}$$