Algorithm Analysis and Design.

Bubble sort $O(n^2)$. "Worst case"

Worst case analysis of algorithms. How many graphs are possible on n vertices? Twi 1/V/V.Y mar { ti} mar stens A: Bubble Sort Ai,: Merge Sort max {ti/i} < c'. nlogn

Asymptotics

Big Oh notation.

Let f and g be functions from R R. We say that f(n): O(g(n)) if I no large enough sit 4 n > no c.g(u) $f(n) \leq c \cdot g(n)$

Basic Graph Algorithms.

Breadth First Search.

Visited

Netghbours

BFS(1)

- · Layered tree
 - Layer O contains the start mode.
 - Layer 1 contains the neighbours of start node.
 - + j>,2, Layer L; contains all vertices
 - that are not already in L,,..., Lj-1
 - and those that have an edge to a vertex in Lj-i

Klienberg Z Tandos S Enkson (VIUC)

SDasGupta Papadiniitoon Vazirani

S Goodwich Tammassia

Bookkeeping: Explored/Visited?

C layer/address.

For every vertex visited, we examine the neighbours

D. dre

N — denotes the of edges.

And = 2|E|

M = 2m

Obs: Layer no s implicitly hold the information about "shortest distance of a vertex" from the root.

Say this is false for the sake of contradiction.

Thm: All elements in Layer Lj are at a distance of j from the root-

Base case: Layer j=1. Contents of Layer 1 are neighbours of the root node-

1.H: Lj-1

Inductive step: $v \in L_j$, u is a predecessor of $v \in L_j$, and $(v,v) \in E$ $v \notin L_1 \cup \cdots \cup L_{j-1}$.