ECON3113 Microeconomic Theory I

Tutorial #12
Insurance and Asset Investment

Today's tutorial

- The same model to understand:
 - Insurance
 - Asset Investment
- Assessment quiz #5

Insurance: the setting

 People have the same wealth that varies according to the state of the world

	Good state	Bad state
Wealth	$W_g = w$	$W_b = w - L$
Probability	1- <i>p</i>	p

- ullet So if the bad state happens, wealth falls by L
- Assume people are all at point E
- What does the 45 degree line represent?

Insurance: expected utility

- Assume that insurance buyers maximise expected utility of wealth in each state
 - Expected utility = $p \times U$ (wealth in bad state) + $(1 p) \times U$ (wealth in good state)

$$= pU(W_b) + (1-p)U(W_g)$$

• Then for given expected utility \overline{U} , we have:

•
$$\overline{U} = pU(W_b) + (1-p)U(W_q)$$

- We can find the slope $\frac{dW_b}{dW_g} = -\frac{1-p}{p} \cdot \frac{U'(W_g)}{U'(W_b)}$
- That is, the MRS
- Assume that insurance buyers are risk averse:
 - Concave expected utility function

Insurance: the proposition

- Insurance allows us to transfer wealth across states
- Suppose an insurance company offers us a deal:
 - Coverage q to repay q in the bad state, at a premium (paid in good and bad states) of πq
 - π is the price of insurance per unit of coverage
 - With insurance we then have:
 - $W_g = w \pi q$
 - $W_b = w \pi q L + q$
- By choosing $q \in [0, L]$, we can achieve combinations of W_g , W_b such that the 'budget constraint' is satisfied:
 - $(1-\pi)W_g + \pi W_b = w \pi L$
- With boundary conditions $W_g \le w$; $W_b \le w \pi L$

Insurance: solving the insurance buyer's optimization problem

- We can formulate the problem as follows:
 - $\max_{W_g \le w; W_b \le w \pi L} (1-p) W_g + p W_b$ subject to the 'budget constraint' $(1-\pi) W_g + \pi W_b = w \pi L$
- Assuming an interior solution, this has tangency condition:
 - MRS = Price ratio
 - ie $-\frac{1-p}{p} \cdot \frac{U'(W_g)}{U'(W_h)} = -\frac{1-\pi}{\pi}$

Insurance: solving the insurance buyer's optimization problem

- A key definition: Actuarially fair insurance
 - Insurance is actuarially fair when the premium is equal to the expected loss from the event being insured
 - In this case, expected loss = pq, and premium = πq
 - Therefore, actuarially fair insurance requires that $\pi = q$
- Note also that for an insurance company, for each insurance contract expected profit $=\pi q-pq$
- Therefore, actuarially fair insurance ⇒ expected profits = 0
 - An outcome consistent with a perfectly competitive market for insurance

Insurance: solving the insurance buyer's optimization problem

- If we assume a perfectly competitive insurance market, then we have expected profits =0 and $\pi=p$
- We have tangency condition:

$$\bullet \quad -\frac{1-p}{p} \cdot \frac{U'(W_g)}{U'(W_b)} = -\frac{1-\pi}{\pi}$$

- With $\pi=p$, this becomes $U'\big(W_g\big)=U'(W_b)$
- Since we have assumed a concave expected utility function, it is the case that $W_g=W_b$ in this case
 - That is, the optimal choice in this case is full insurance (ie coverage is for the full amount of the expected loss)

Equilibrium with full information and risk averse buyers

- Equilibrium is at the point A
- Full insurance is chosen
- Maximum utility is achieved when MRS = $\frac{1-\pi}{\pi}$

Slope =
$$-\frac{1-\pi}{\pi}$$

The case with positive expected profits

 If the market for insurance is not perfectly competitive, then companies may make positive expected profits

•
$$\pi q - pq > 0 \Rightarrow \pi > p$$

Now look at the tangency condition and the new 'price ratio':

$$\bullet \quad -\frac{1-p}{p} \cdot \frac{U'(W_g)}{U'(W_b)} = -\frac{1-\pi}{\pi}$$

• Since
$$\pi > p$$
, $\frac{1-\pi}{\pi} < \frac{1-p}{p} \Rightarrow U'(W_g) < U'(W_b)$

- With U concave, this means $W_g>W_b$
- That is, insurance buyers buy partial insurance

Investment: the setting

- Assume that we have starting wealth \$w and we can invest it in as asset that costs $\$\pi$
- Each unit of the asset pays R in the good state of the world and zero in the bad state of the world
- The probability of the good state is (1-p)
- If we buy x units of the asset, then we have wealth:
 - Good state: $W_g = w \pi x + Rx$
 - Bad state: $W_b = w \pi x$
- And we can choose x to achieve combinations of W_g , W_b that satisfy:
 - $\pi W_g + (R \pi)W_b = wR$

Investment: solving the investor's optimization problem

- We can formulate the problem as follows:
 - $\max_{W_g;W_b} (1-p)W_g + pW_b$ subject to the 'budget constraint' $\pi W_g + (R-\pi)W_b = wR$
- Assuming an interior solution, this has tangency condition:
 - MRS = Price ratio

• ie
$$-\frac{1-p}{p} \cdot \frac{U'(W_g)}{U'(W_b)} = -\frac{\pi}{R-\pi}$$

- In this case, an actuarially fair price is defined as one at which price is given by expected pay-off
 - ie $\pi = (1 p)R$
- And then $\frac{1-p}{p} = \frac{\pi}{R-\pi}$, and so $U'(W_g) = U'(W_b)$
- If we assume that investors are risk averse, then $W_g=W_g$ and investors do not buy any of the asset

Investment: solving the investor's optimization problem

- If the asset has a positive expected value, then $\pi < (1-p)R$
- In this case $\frac{\pi}{R-\pi} < \frac{1-p}{p}$, and so $U'\big(W_g\big) < U'(W_b)$
- ie Given a concave expected utility function, $W_g>W_b$
- And so the investor buys a positive amount of the asset
- If the asset has a negative expected return, then the amount 'bought' is negative
 - The investor's optimal choice is to short sell the asset

Investment: solving the investor's optimization problem

Summary:

- With zero expected return, investors buy none of the asset
- With positive expected return, investors buy a positive amount of the asset
- With negative expected return, investors short sell the asset (not shown)