<u>LVA-Nr.: 138.094 EDV 2 (SS2018)</u>

Übung (8.–9.5.2018): Keplerproblem

Problemstellung:

Die Bewegungsgleichung für einen Planeten mit der Masse m_e im Gravitationsfeld der Sonne ist gegeben durch:

$$m_e \frac{d^2 \vec{r}(t)}{dt^2} = -G \ \vec{r}(t) \frac{m_s m_e}{|\vec{r}(t)|^3}.$$

 \vec{r} ist ein Vektor in \mathbb{R}^2 . Die notwendigen Konstanten und Parameter sind gegeben durch:

$$m_s = 1.989 \times 10^{30} \text{ kg},$$
 $m_e = 5.972 \times 10^{24} \text{ kg},$ $r_e = 1.4959787 \times 10^{11} \text{ m},$ $G = 6.67408 \times 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}.$

Aufgaben:

1. Arbeiten Sie mit geeigneten Einheiten. Wechseln Sie von SI (kg, m, s) nach Erdmassen, AU (astronomical units) und Tagen.

$$m_s=$$
 $m_e,$ $m_e=1,$
$$r_e=1 \; {\rm AU},$$
 $G=$ $\frac{{
m r_e^3}}{{
m m_e\cdot Davs^2}}$

2. Schreiben Sie die Bewegungsgleichung in ein System von Differentialgleichungen erster Ordnung um.

Schreiben Sie ein Programm, daß das System gekoppelter Differentialgleichungen mit Hilfe des expliziten Euler-Verfahrens erster Ordnung integriert. Die Anfangswerte sind gegeben durch:

$$\vec{r}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathrm{AU}, \qquad \ \, \dot{\vec{r}}(0) = \begin{pmatrix} 0 \\ -0.017326 \end{pmatrix} \mathrm{AU/Day}.$$

- 3. Verwenden Sie das Euler-Verfahren um die Bewegungsgleichung über einen Zeitraum von 365 Tagen zu integrieren und erzeugen Sie eine Grafik des Orbits mit gnuplot. Verwenden Sie dazu unterschiedliche Zeitschritte mit $\Delta t = 1$ Day und $\Delta t = 0.01$ Day.
- 4. Implementieren Sie das Runge-Kutta-Verfahren (RK4). Wiederholen Sie 3 mit RK4 anstelle des Euler-Verfahrens.
- 5. Die Gesamtenergie des Systems ist gegeben durch

$$E(t_n) = \frac{m_e |\dot{\vec{r}}(t_n)|^2}{2} - \frac{G \ m_s \ m_e}{|\vec{r}(t_n)|}.$$

Berechnen Sie $E(t_n)$ mit Hilfe des Euler- und RK4-Verfahrens ($\Delta t = 0.01$ Day) als Funktion der Zeit. Erzeugen Sie mit gnuplot eine Grafik die $E(t_n)$ darstellt. Ist die berechnete Gesamtenergie eine Erhaltungsgröße?

VORSICHT: Betrachten Sie $E(t_n)$ für beide Verfahren genau!

Bonus:

Ändern Sie die Anfangsgeschwindigkeit so, daß die Lösung $\vec{r}(t)$ dem Hohmann-Transfer-Orbit zwischen Erde und Mars entspricht. Nehmen Sie dazu an, daß die Marsumlaufbahn in etwa kreisförmig mit einem Radius von 1.5AU ist. Achten Sie auf die Konvergenz des Transfer-Orbits mit der Schrittweite. Wie lange dauert der Transfer?