

SEQUENCE LISTING

<110> Medvet Science Pty Ltd

<120> A Method of Modulating Cellular Activity

<130> 12185280/TDO

<150> 2003900230

<151> 2003-01-21

<150> 2002951668

<151> 2002-09-19

<150> PS1448

<151> 2002-03-28

<150> PS1538

<151> 2002-04-05

<150> PS1621

<151> 2002-04-08

<160> 14

<170> PatentIn version 3.1

<210> 1

<211> 10

<212> PRT

<213> mammalian

<400> 1

Lys Thr Pro Ala Ser Pro Val Val Val Gln

1

5

10

<210> 2
<211> 14
<212> PRT
<213> mammalian

<400> 2

Cys Gly Ser Lys Thr Pro Ala Ser Pro Val Val Val Gln Gln
1 5 10

<210> 3
<211> 11
<212> PRT
<213> mammalian

<400> 3

Ser Lys Thr Pro Ala Ser Pro Val Val Val Gln
1 5 10

<210> 4
<211> 21
<212> DNA
<213> mammalian

<400> 4

cggctgctgg cgcccatgaa c

21

<210> 5
<211> 24
<212> DNA
<213> mammalian

<400> 5

tgtggacctc gaggctgaga agta

24

<210> 6
<211> 27
<212> DNA
<213> mammalian

<400> 6
agtgagaagg ctcggcgctt gggggag

27

<210> 7
<211> 20
<212> DNA
<213> mammalian

<400> 7
aagagtgggc gccaaagacac

20

<210> 8
<211> 28
<212> DNA
<213> mammalian

<400> 8
aagagtggga tccaaaggcgc ctgcctcc

28

<210> 9
<211> 24
<212> DNA
<213> mammalian

<400> 9
aagacacacctg cggcgcccggt tgttg

24

<210> 10
<211> 24
<212> DNA
<213> mammalian

<400> 10
acacctgccc aaccgggtgt ggtc

24

<210> 11
<211> 19
<212> DNA
<213> mammalian

<400> 11
tctcaactggg cagtgggtgc

19

<210> 12
<211> 384
<212> PRT
<213> mammalian

<400> 12

Met Asp Pro Ala Gly Gly Pro Arg Gly Val Leu Pro Arg Pro Cys Arg
1 5 10 15

Val Leu Val Leu Leu Asn Pro Arg Gly Gly Lys Gly Lys Ala Leu Gln
20 25 30

Leu Phe Arg Ser His Val Gln Pro Leu Leu Ala Glu Ala Glu Ile Ser
35 40 45

Phe Thr Leu Met Leu Thr Glu Arg Arg Asn His Ala Arg Glu Leu Val
50 55 60

Arg Ser Glu Glu Leu Gly Arg Trp Asp Ala Leu Val Val Met Ser Gly
65 70 75 80

Asp Gly Leu Met His Glu Val Val Asn Gly Leu Met Glu Arg Pro Asp
85 90 95

Trp Glu Thr Ala Ile Gln Lys Pro Leu Cys Ser Leu Pro Ala Gly Ser
100 105 110

Gly Asn Ala Leu Ala Ala Ser Leu Asn His Tyr Ala Gly Tyr Glu Gln
115 120 125

Val Thr Asn Glu Asp Leu Leu Thr Asn Cys Thr Leu Leu Leu Cys Arg
130 135 140

Arg Leu Leu Ser Pro Met Asn Leu Leu Ser Leu His Thr Ala Ser Gly
145 150 155 160

Leu Arg Leu Phe Ser Val Leu Ser Leu Ala Trp Gly Phe Ile Ala Asp
165 170 175

Val Asp Leu Glu Ser Glu Lys Tyr Arg Arg Leu Gly Glu Met Arg Phe
180 185 190

Thr Leu Gly Thr Phe Leu Arg Leu Ala Ala Leu Arg Thr Tyr Arg Gly
195 200 205

Arg Leu Ala Tyr Leu Pro Val Gly Arg Val Gly Ser Lys Thr Pro Ala
210 215 220

Ser Pro Val Val Val Gln Gln Gly Pro Val Asp Ala His Leu Val Pro
225 230 235 240

Leu Glu Glu Pro Val Pro Ser His Trp Thr Val Val Pro Asp Glu Asp
245 250 255

Phe Val Leu Val Leu Ala Leu Leu His Ser His Leu Gly Ser Glu Met
260 265 270

Phe Ala Ala Pro Met Gly Arg Cys Ala Ala Gly Val Met His Leu Phe
 275 280 285

Tyr Val Arg Ala Gly Val Ser Arg Ala Met Leu Leu Arg Leu Phe Leu
 290 295 300

Ala Met Glu Lys Gly Arg His Met Glu Tyr Glu Cys Pro Tyr Leu Val
 305 310 315 320

Tyr Val Pro Val Val Ala Phe Arg Leu Glu Pro Lys Asp Gly Lys Gly
 325 330 335

Met Phe Ala Val Asp Gly Glu Leu Met Val Ser Glu Ala Val Gln Gly
 340 345 350

Gln Val His Pro Asn Tyr Phe Trp Met Val Ser Gly Cys Val Glu Pro
 355 360 365

Pro Pro Ser Trp Lys Pro Gln Gln Met Pro Pro Pro Glu Glu Pro Leu
 370 375 380

<210> 13
<211> 26
<212> DNA
<213> primers

<400> 13
taaagcttgc caccatggtg agcaag

26

<210> 14
<211> 29
<212> DNA
<213> primers

<400> 14
atggatccat cttgtacagc tcgtccatg

29