Appunti di Ricerca Operativa e Pianificazione delle Risorse

A cura di: Francesco Refolli Matricola 865955

Anno Accademico 2022-2023

Chapter 1 Note sul Corso

todo: segnare delle note

Modelli nella Ricerca Operativa

2.1 Introduzione

Problemi di Ottimizzazione Dato un problema di ottizzazione:

$$opt f(x)$$
$$s.a.x \in X$$

si danno le seguenti definizioni:

f(x) La **funzione obiettivo** e' la funzione della quale cerchiamo un argmento xinX ottimale. L'operatore di ottimizzazione *opt* trova argomenti ottimi o ottimali. Non potendo sempre disporre di ottimi assoluti, si indagano gli ottimali, i quali, come dice il nome, possono essere multipli.

opt Questo operatore e' un placeholder che sta per:

$$opt = \begin{cases} max \\ min \end{cases}$$

In particular si nota che max f(x) = -min(-f(x)).

E' possibile ridursi a entrambe le situazioni per sfruttare i vantaggi di eventuali semplificazioni o riduzioni del problema iniziale!

X La **regione d'ammissibilita'** e' un sottoinsieme $X \subseteq \mathbb{R}^n$ che delimita' le possibili soluzioni al problema di ottimizzazione. Le soluzioni che non soddisfano questo requisito sono dette **soluzioni inammissibili**.

x La generica soluzione $x \in X$. In caso di funzione multivariabile, questa assume la forma di una n-upla, come si nota dal dominio della **funzione obiettivo**.

Ottimizzazione Vincolata o non Vincolata

Vincoli Se l'ottimizzazione cerca soluzioni in una regione di ammissibilità X che sia un sottoinsieme proprio di \mathbb{R}^n , ovvero nel caso in cui non coincida, si parla di Ottimizzazione Vincolata. Nel caso in cui $X = \mathbb{R}^n$ questa e' definita Ottimizzazione non Vincolata.

Esempi Alcuni esempi di ottimizzazione vincolata sono:

- Se $X = \mathbb{Z}^n$ si definisce **Ottimizzazione Intera**.
- Se $X = (0,1)^n$ si definisce **Ottimizzazine Binaria**.
- Se le variabili appartengono a spazi differenti (es: $\mathbb{N} \times \mathbb{Z} \times \mathbb{R}$), si parla di **Ottimiz-** zazione Mista.

Programmazione Matematica Se la regione di ammissibilita' X e' espressa tramite vincoli aritmetici (equazioni e disequazioni), si tratta di **Programmazione Matematica**.

Ogni vincolo e' definito come segue:

$$v(x) = \begin{cases} g(x) \ge 0\\ g(x) = 0\\ g(x) \le 0 \end{cases}$$

Di consequenza la regione X e' esprimibile con:

$$X = \{x \mid x \in \mathbb{R}^n \land g_i(x) \begin{cases} \geq \\ = \\ \leq \end{cases}$$

Esiti di Problemi

- Si dice **Problema Inammissibile** se $X = \emptyset$. Si dice **Problema Illimitato** se non esise un ottimale, in particolare:
- Se $opt = min \land foreachc \in R, existsxin \in Xsothatf(x) \leq c$, e' illimitato inferiormente
- Se $opt = max \land foreachc \in R, existsxin \in Xsothatf(x) \ge c$, e' illimitato superiormente
- Si dice **Problema con Soluzioni Ottime Multiple** (o Infinite) se tutte le soluzioni ottimali hanno lo stesso grado di ottimizzazione, ovvero se non esiste una soluzione migliore delle altre.
- Si dice **Problema con Soluzione Ottima Unica** nel caso semplice in cui esiste una e una sola soluzione ottimale (= ottimo).

Localizzazione di Ottimi Un ottimo locale $y \in X$ si dice globale se:

$$\begin{cases} f(y) \ge f(x) & opt = max \\ f(y) \le f(x) & opt = min \end{cases}$$

E' importante notare che un problema di ottimizzazione puo' avere sia piu' di un ottimo locale, che piu' di un ottimo globale. Un ottimo globale e' anche locale. Si mette in evidenza che i vincoli possono assumere caratteristiche non lineari se scomponibili in fattori lineari.

Linearita' Si ricorda che una funzione e' lineare se, per esempio e' nella forma $\sum a_i x_i + b$.

Programmazione Lineare I vincoli sono espressi tramite equazioni e disequzioni lineari, la funzione obiettivo e' lineare.

Programmazione Lineare Intera E' un problema di programmazione lineare con regione d'ammissione ristretta a $X = \mathbb{Z}^n$.

Programmazione non Lineare I vincoli o la funzione obiettivo hanno caratteristiche non lineari.

Introduzione alla Programmazione Lineare

Esempio La Wyndor Glass CO produce vetri di elevata qualita', incluso finestre e porte.

- Impianto 1: produce cornici in alluminio e le altre componenti
- Impiano 2: produce cornici di legno
- Impianto 3: produce i vetri e assembla i prodotti

Si vuole produrre:

- Prodotto 1 una porta di vetro (impianti 1, 3)
- Prodotto 2 finestra con doppia apertura (impianti 2, 3)

La domanda e' virtualmente infinita. I prodotti sono raggruppati in lotti da 20 unita'. I tassi sono *Lotti/Settimana*. Determinare i tassi di produzione per massimizzare la produzione e il profitto finale.

Dati

Impianto	Prodotto 1	Prodotto 2	Tempo Produttivo
Impianto 1	1	0	4
Impianto 2	0	2	12
Impianto 3	3	2	18
Profitto	3000	5000	

$$maxZ = 3 \cdot x_1 + 5 \cdot x_2 \tag{3.1}$$

$$x_1 \le 4 \tag{3.2}$$

$$2 \cdot x_2 \le 12 \tag{3.3}$$

$$3 \cdot x_1 + 2 \cdot x_2 \le 18 \tag{3.4}$$

$$x_1 \ge 0 \tag{3.5}$$

$$x_2 \ge 0 \tag{3.6}$$

Considerazioni

- Z = valore di misura di prestazione.
- x_i = livello di attivita' j.
- c_j = incremento del valore della misura di prestazione Z corrispondente all'incremento di un'unita' del valore dell'attivita' x_j .
- b_i = quantita' di risorsa i allocabile alle attivita' x_i .
- $a_{ij} = \text{quantita'}$ di risorsa i consumata da ogni attivita' x_j .

In Programmazione Lineare la regione ammissibile e' un Poliedro Convesso in \mathbb{R}^n Se la regione e' limitata si dice Politopo.

$$opt Z = \sum_{j=1}^{n} c_j \cdot x_j \tag{3.7}$$

$$vincoli \Rightarrow \sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i$$
 (3.8)

$$c_i \to coefficiente\ di\ costo$$
 (3.9)

$$a_{ij} \to termine \ noto \ sinistro$$
 (3.10)

$$b_i \to termine\ noto\ destro$$
 (3.11)

Assunzioni Un problema PL si poggia su quattro assunzioni implicite.

Proporzionalita' Il contributo di ogni attivita' al valore della funzione obiettivo e del vincolo e' proporzionale al livello di attivita'.

Additivita' Il valore della funzione obiettivo e dei vincoli e' dato dalla somma dei contributi individuali delle rispettive attivita'.

Continuita' Qualunque valore delle variabili decisionali in \mathbb{R}^n e' accettabile.

Certezza' I parametri di un problema di PL devono essere noti con certezza.

Divisibilita' Questa assunzione non e' sempre garantita, varia in base al problema. Le variabili decisionali possono assumere qualsiasi valore all'interno della Regione di Ammissibilita', inclusi i valori non interi che soddisfino i vincoli. Quindi le variabili decisionali sono variabili continue.

In certi problemi puo' essere necessario avere soluzioni intere perche' la logica non ci consente di spezzare unita' intrinsecamente e logicamente atomice: non si possono assumere 3.5 dipendenti!

Considerazioni Pratiche

Vincoli Prolissi Alcuni vincoli possono includerne altri, in quel caso e' inutile conservarli entrambi, si puo' lasciare quello piu' "forte".

Soluzioni Intere La soluzione del problema di PL non garantisce l'assunzione di divisibilità. In certi casi sono opportune o necessarie per senso logico soluzioni intere, ma non sempre le soluzione di un problema PL le possono garantire.

Se la soluzione ottimale del problema PL e' intera allora e' anche ottimale per il problema considerato. Altrimenti si presentano due strade:

Aggiungere vincoli che garantiscano che la variaibili di decisione siano interi, riducendo il problema PL in PLI (Programmazione Lineare Intera)

Arrotondare la soluzione (per eccesso o difetto, in modo opportuno), ma questo non garantisce l'ottimalita' della soluzione intera cosi' ottenuta.

Algoritmo del Simplesso

Introduzione Questo algoritmo di tipo greedy permette di risolvere problemi di Programmazione Lineare. E' uno degli algoritmi piu' efficienti che si conoscano. Il tempo nel caso medio e' $\Theta(n)$, lineare rispetto al numero di variabili. Il tempo nel caso peggiore e' $O(e^n)$, esponenziale rispetto al numero di variabili.

Definizioni

Frontiera La Frontiera del Vincolo e' un vincolo della regione ammissibile che abbia < oppure =.

Vertice Un Vertice e' l'intersezione di due Frontiere di Vincolo. I Vertici Ammissibili sono quelli che stanno nella Regione Ammissibile. Due Vertici si dicono adiacenti se condividono n-1 Frontiere di Vincolo.

Spigolo Uno Spigolo e' il segmento che collega due Vertici adiacenti. Gli Spigoli Ammissibili sono quelli che stanno nella Regione Ammissibile.

Test di Ottimalita' Si consideri ogni problema PL tale da ammettere soluzioni ottimali, se una soluzione vertice non ammette soluzioni certice a lei adiacenti con valore della funzione obiettivo Z migliore, allora la soluzione in questione e' ottimale.

Algoritmo

Inizializzazione Scegliere il vertice (0,0) come soluzione iniziale, (vantaggiosa senza complicazione) se questa fa parte della Regione Ammissibile.

Passo Si valuta lo spostamento nei vertici ammissibili adiacenti. Con il test di ottimalita' si valuta se ci si puo' fermare. Ci si sposta nel vertice che garantisce il valore della funzione obiettivo migliore.

Concetti Chiave

- 1 Il metodo del simplesso non esplora, ma ispeziona solo i vertici ammissibili adiacenti. Per ogni problema PL trovare una soluzione richiede di trovare il vertice ammissibile migliore. Si richiede che la Regione Ammissibile sia limitata. Il numero di vertici sale esponenzialmente.
 - 2 E' un algoritmo iterativo con due passi, Inizializzazione e Test di Ottimalita'.
- **3** Quando possibile l'inizializzazione a (0,0) e' preferibile e "ottimale". Si possono applicare algoritmi apposititi per garantire l'ammissibilita' della soluzione iniziale.
- 4 E' piu' vantaggioso ascoltare gli adiacenti che tentare di verificare vertici piu' lontani perche' in minore quantita'.
- 5 A partire dal vertice corrente compara i risultati ma non calcola ogni volta i valori della funzione, ma i tassi di miglioramento della funzione obiettivo.
- **6** E' assicurato che si ottiene ad ogni passo una soluzione migliore perche' si cerca il migliore tasso di crescita.

Part I Laboratorio

11-10-2022

5.1

Outlet	Boys	Women	Men	Cost
TV	5	1	3	600
Mag	2	6	3	500
Target	24	18	24	

$$5x + 2y \ge 24\tag{5.1}$$

$$x + 6y \ge 18 \tag{5.2}$$

$$3x + 3y \ge 24\tag{5.3}$$

$$C(x,y) = 600x + 500y (5.4)$$

5.2

Gasoline	Vapor	Octane	Price
Regular	≤ 7	≥ 80	9.80
Premium	≤ 6	≥ 100	12

Stock	Vapor	Octane	Barrels
A	8	83	2700
В	20	109	1350
С	4	74	4100

$$\frac{A_i * V_A + B_i * V_B + C_i * V_C}{A_i + B_i + C_i} \le V_i$$

$$\frac{A_i * O_A + B_i * O_B + C_i * O_C}{A_i + B_i + C_i} \ge O_i$$
(5.5)

$$\frac{A_i * O_A + B_i * O_B + C_i * O_C}{A_i + B_i + C_i} \ge O_i \tag{5.6}$$

$$\sum_{i=0}^{n} A_i \le Q_A \tag{5.7}$$

$$\sum_{i=0}^{n} B_i \le Q_B \tag{5.8}$$

$$\sum_{i=0}^{n} C_i \le Q_C \tag{5.9}$$

$$C_{scarto} = P_{scarto} * (Q_A - \sum_{i=0}^{n} A_i + Q_B - \sum_{i=0}^{n} B_i + Q_C - \sum_{i=0}^{n} C_i)$$
 (5.10)

$$C_i = P_i * (A_i + B_i + C_i) (5.11)$$

$$max C = C_{scarto} + \sum_{i=0}^{n} C_i$$
 (5.12)

5.3

Zone

1	2	3	4	5	6
12	11	10	9	8	7
13	14	15	16	17	18
24	23	22	21	20	19
25	26	27	28	29	30
36	35	34	33	32	31

Ogni ripetitore copre anche le zone adiacenti.