Odwzorowania liniowe

1. Sprawdź z definicji, czy odwzorowanie T jest liniowe:

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x_1, x_2) = (3x_1 - 2x_2, x_2)$,

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $T(x_1, x_2, x_3) = (x_1, x_3)$,

(c)
$$T: \mathbb{R}^2 \to \mathbb{R}, \ T(x_1, x_2) = x_1 x_2,$$

(d)
$$T: \mathbb{R}^3 \to \mathbb{R}^4$$
, $T(x_1, x_2, x_3) = (x_1, 2x_2, x_3 - x_2, x_1 + x_2 + x_3)$,

(e)
$$T: \mathbb{R}^3 \to \mathbb{R}^4$$
, $T(x_1, x_2, x_3) = (x_1, x_3, x_2, x_3)$,

(f)
$$T: \mathbb{R}^2 \to \mathbb{R}, \ T(x_1, x_2) = 5x_1 + x_2,$$

(g)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x_1, x_2) = (x_1, 1)$,

(h)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x_1, x_2) = (x_1 + 2, 2x_2)$.

Jeśli odwzorowanie jest liniowe, wyznacz jego macierz, jądro i sprawdź, czy to odwzorowanie jest izomorfizmem.

2. Dane jest odwzorowanie liniowe T takie, że:

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(1,3) = (1,1)$, $T(1,1) = (0,1)$. Obliczyć $T(-1,3)$.

(b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(1,2) = (1,0,1)$, $T(1,1) = (0,1,1)$. Obliczyć $T(2,1)$.

(c)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(2, -1) = (1, -1, 1)$, $T(-1, 0) = (0, 1, 0)$. Obliczyć $T(-1, 2)$.

3. Niech R_{Θ} oznacz macierz obrotu o kąt $\Theta \in [0, 2\pi)$. Czy $R_{\Theta_1}R_{\Theta_2} = R_{\Theta_1 + \Theta_2}$? Wyznacz $R_{\Theta}R_{-\Theta}$.

4. Dane są odwzorowania $T(x_1, x_2) = (x_1 + x_2, 0), S(x_1, x_2) = x_1, 2x_1 - x_2$ Czy

- (a) $\mathcal{M}_{T \circ S}$ jest nieosobliwa?
- (b) Rank $M_T = 1$.
- (c) S + T jest izomorfizmem?
- (d) $R(x_1, x_2) = T(S(x_1, x_2)) + (1, 0)$ nie jest odwzorowaniem liniowym.

5. Dla danego odwzorowania liniowego T wyznaczyć jego macierz M_T , sprawdzić, czy jest to izomorfizm, jeżli to możliwe wyznaczyć $M_{T^{-1}}$ i T^{-1} .

(a)
$$T(x_1, x_2) = (3x_1 + x_2, -x_1 + 4x_2),$$

(b)
$$T(x_1, x_2, x_3) = (4x_1 - 3x_2, x_1 + x_2, 5x_3),$$

(c)
$$T(x_1, x_2, x_3) = (2x_2 - 2x_1, 4x_1 + 2x_2, x_1 + x_2).$$

6. Dane są odwzorowania liniowe: T oraz S: $S(x_1, x_2, x_3) = (x_1 - x_2 + 2x_3, -x_1 + x_3, x_1 - x_2 + 3x_3)$ a macierz złożenia $M_{S \circ T} = \begin{bmatrix} -1 & 0 \\ 3 & -4 \\ 1 & -3 \end{bmatrix}$. Wyznaczyć wzór odwzorowania T.

7. Dana jest macierz $A=\begin{bmatrix}-2&-1&1\\0&0&-1\\2&1&0\end{bmatrix}$ oraz baza $B=(e_1,e_2,e_3)$ w przestrzeni \mathbb{R}^3

- (a) pokaż, że $B_2(v_1, v_2, v_3)$, gdzie $v_1 = -3e_1 + e_2$, $v_2 = e_1 + e_2 + e_3$, $v_3 = 3e_1 e_2 e_3$ jest bazą w \mathbb{R}^3 .
- (b) Zakładając, że A jest macierzą odwzorowania liniowego w bazie B_2 , wyznacz T(w) dla $w = 3e_1 e_2 e_3$
- (c) Wyznacz jądro odwzorowania T oraz jego bazę.