```
In [3]:
         1 import pandas as pd
            import numpy as np
         3 import matplotlib.pyplot as plt
          4 import plotly.express as px
          5 import plotly.graph_objects as go
            import plotly.io as pio
            pio.templates.default="plotly_white"
         7
         8
         9
            data = pd.read_csv(r'C:\Users\mamta\Desktop\DESKTOP MAMTA\Bsc Projects\ml project
         10
            print(data.head(2))
             ID Customer_ID Month
                                              Name
                                                                  SSN Occupation \
                                                     Age
           5634
                        3392
                                  1 Aaron Maashoh 23.0 821000265.0 Scientist
           5635
        1
                        3392
                                  2 Aaron Maashoh 23.0 821000265.0 Scientist
           Annual_Income Monthly_Inhand_Salary Num_Bank_Accounts
                                                                   ... Credit_Mix \
        0
                19114.12
                                    1824.843333
                                                                               Good
                                                               3.0
        1
                19114.12
                                    1824.843333
                                                               3.0
                                                                               Good
                                                                   . . .
           Outstanding_Debt Credit_Utilization_Ratio Credit_History_Age
        0
                     809.98
                                             26.82262
                                                                   265.0
                     809.98
        1
                                             31.94496
                                                                   266.0
           Payment_of_Min_Amount Total_EMI_per_month Amount_invested_monthly \
        0
                                            49.574949
                              No
                                                                      21.46538
        1
                                            49.574949
                                                                      21.46538
                              No
                         Payment_Behaviour Monthly_Balance Credit_Score
          High_spent_Small_value_payments
                                               312.494089
                                                                    Good
                                                                    Good
            Low_spent_Large_value_payments
                                                284.629162
        1
```

[2 rows x 28 columns]

memory usage: 21.4+ MB

None

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	ID	100000 non-null	int64
1	Customer_ID	100000 non-null	int64
2	Month	100000 non-null	int64
3	Name	100000 non-null	object
4	Age	100000 non-null	float64
5	SSN	100000 non-null	float64
6	Occupation	100000 non-null	object
7	Annual_Income	100000 non-null	float64
8	Monthly_Inhand_Salary	100000 non-null	float64
9	Num_Bank_Accounts	100000 non-null	float64
10	Num_Credit_Card	100000 non-null	float64
11	Interest_Rate	100000 non-null	float64
12	Num_of_Loan	100000 non-null	float64
13	Type_of_Loan	100000 non-null	object
14	Delay_from_due_date	100000 non-null	float64
15	Num_of_Delayed_Payment	100000 non-null	float64
16	Changed_Credit_Limit	100000 non-null	float64
17	Num_Credit_Inquiries	100000 non-null	float64
18	Credit_Mix	100000 non-null	object
19	Outstanding_Debt	100000 non-null	float64
20	Credit_Utilization_Ratio	100000 non-null	float64
21	Credit_History_Age	100000 non-null	float64
22	Payment_of_Min_Amount	100000 non-null	object
23	Total_EMI_per_month	100000 non-null	float64
24	Amount_invested_monthly	100000 non-null	float64
25	Payment_Behaviour	100000 non-null	object
26	Monthly_Balance	100000 non-null	float64
27	Credit_Score	100000 non-null	object
dtyp	es: float64(18), int64(3),	object(7)	

```
In [5]:
             print(data.isnull().sum())
        ID
                                      0
                                      0
        Customer_ID
                                      0
        Month
        Name
                                      0
        Age
                                      0
        SSN
                                      0
        Occupation
                                      0
        {\tt Annual\_Income}
                                      0
        Monthly_Inhand_Salary
                                      0
        Num_Bank_Accounts
                                      0
        Num_Credit_Card
                                      0
        Interest_Rate
                                      0
        Num\_of\_Loan
                                      0
                                      0
        Type_of_Loan
                                      0
        Delay_from_due_date
                                      0
        Num_of_Delayed_Payment
                                      0
        Changed_Credit_Limit
                                      0
        Num_Credit_Inquiries
        Credit Mix
                                      0
        Outstanding_Debt
                                      0
        Credit_Utilization_Ratio
                                      0
                                      0
        Credit_History_Age
        Payment_of_Min_Amount
                                      0
        Total_EMI_per_month
                                      0
        Amount_invested_monthly
                                      0
        Payment_Behaviour
                                      0
        Monthly_Balance
                                      0
                                      0
        Credit_Score
        dtype: int64
In [6]:
          1
            #credit score column values
             data["Credit_Score"].value_counts()
Out[6]: Standard
                     53174
        Poor
                     28998
        Good
                     17828
```

Name: Credit_Score, dtype: int64

Credit Scores Based on Occupation

<Figure size 500x400 with 0 Axes>

Credit Score Based on Annual Income

Credit Scores Based on Monthly Inhand Salary

Credit Scores Based on Number of Bank Accounts

Credit Scores Based on Number of Credit Cards

Credit Scores Based on the Average Interest Rate

Credit Scores Based on Number of Loans

Credit Scores Based on the Average Number of Days Delayed for Cred

Credit Scores Based on Number of Delayed Payments

Credit Scores Based on Outstanding Debt

Credit Scores Based on Credit Utilization Ratio

Credit Scores Based on Credit History Age

Credit Scores Based on Total Number of EMI's per month

Credit Scores Based on Amount Invested Monthly

Credit Scores Based on Monthly Balance Left


```
In [22]:
             data["Credit_Mix"]=data["Credit_Mix"].map({"Standard":1,"Good":2,"Bad":0})
In [23]:
             from sklearn.model_selection import train_test_split
           1
           2
             x = np.array(data[["Annual_Income", "Monthly_Inhand_Salary", "Num_Bank_Accounts",
           3
                                "Num_Credit_Card","Interest_Rate","Num_of_Loan","Delay_from_due
           4
                                "Num_of_Delayed_Payment", "Credit_Mix", "Outstanding_Debt", "Credi
           5
                                "Monthly_Balance"]])
             y = np.array(data[["Credit_Score"]])
In [24]:
           1 xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size = 0.33,random_state=42
             from sklearn.ensemble import RandomForestClassifier
           3
             model = RandomForestClassifier()
             model.fit(xtrain,ytrain)
         C:\Users\mamta\AppData\Local\Temp\ipykernel_19276\790351916.py:4: DataConversionWarn
```

C:\Users\mamta\AppData\Local\Temp\ipykernel_19276\790351916.py:4: DataConversionWarn
ing:

A column-vector y was passed when a 1d array was expected. Please change the shape of y to $(n_samples,)$, for example using ravel().

```
Out[24]: 
• RandomForestClassifier

RandomForestClassifier()
```

```
In [25]:
           1 def credit_score_prediction():
                   a = float(input("Annual Income: "))
                   b = float(input("Monthly Inhand Salary: "))
           3
                   c = float(input("Number of Bank Accounts: "))
            4
                   d = float(input("Number of Credit Cards: "))
            5
                   e = float(input("Interest rate: "))
f = float(input("Number of Loans: "))
g = float(input("Average number of days delayed by the person: "))
            6
            7
            8
           9
                   h = float(input("Number of delayed payments: "))
          10
                   i = input("Credit Mix (Bad: 0, Standard: 1, Good: 3): ")
                   j = float(input("Outstanding Debt: "))
          11
                   k = float(input("Credit History Age: "))
          12
                   1 = float(input("Monthly Balance: "))
          13
          14
                   return [a,b,c,d,e,f,g,h,i,j,k,l]
          15
          16 | features = np.array(credit_score_prediction())
          17 print("Predicted Credit Score = ", model.predict(features))
          Annual Income: 2500000
          Monthly Inhand Salary: 218000
          Number of Bank Accounts: 2
          Number of Credit Cards: 1
          Interest rate: 12
          Number of Loans: 2
          Average number of days delayed by the person: 5
          Number of delayed payments: 1
          Credit Mix (Bad: 0, Standard: 1, Good: 3): 3
          Outstanding Debt: 1200
          Credit History Age: 2
          Monthly Balance: 500
          Predicted Credit Score = ['Good']
 In [ ]:
 In [ ]:
```