N1. O name to konservicio compositi $\times \in [0,l]$ c narausuan par pegerennen $T_0 = 300$ $(a^2 = 10^6)$ u namenen konbenombroso ziena $(+b\frac{\partial y}{\partial x}, b = 10^6)$, norga sebin konen menno-manyoban, a na npaban zagana nocomannea mennepanyoa, pabuan 500, l = 0,1m.

Гассистрин однороднит теплоизомурованный с боков стермень конечной динна ℓ , имеющий постоянную по динне темущу и настояно тонкий, гтоба в медой напент врешени температуру тела во всех тогках почеречного сетения мотно было бы ститать одинаховой. Выбрана ось х (по оси стермий), стертень совпадает с отредках ℓ 0; ℓ 1 на х. Гассистрии часть стермых на ℓ 1 (х, х + ℓ 2): по закоту Уурке наимество теплоты

DQ1, nyromenarousero areba nanpalo repez ceresure le morne x za lyeur [t, t+at]:

 $\Delta Q_{1} = -KS_{\Delta}t \cdot \frac{\partial u(x,t)}{\partial x}, \text{ age } K - \text{keappopulsive tim prency such a letterm}$ $\Delta Ux \Delta Q_{2}, \Delta Q_{2} = -KS_{\Delta}t, \frac{\partial u(x+\Delta x,t)}{\partial x} = -KS_{\Delta}t \left(\frac{\partial u(x,t)}{\partial x} + \frac{\partial u(x+\Delta x,t)}{\partial x} - \frac{\partial u(x,t)}{\partial x}\right) =$ $= -KS \left(\frac{\partial u(x,t)}{\partial x} + \frac{\partial^{2}u(x,t)}{\partial x^{2}}\Delta x\right)\Delta t, \quad x_{1} \in [x,\Delta x+x]$ $\Delta Q = \Delta Q_{1} - \Delta Q_{2} = KS_{\Delta}x_{\Delta}t, \frac{\partial^{2}u(x,t)}{\partial x^{2}}\Delta x$

Compare compares: $\Delta Q = C P V_{\Delta Y} = C S S_{\Delta Y \Delta X}, C - y general meniolinkaems Transpur ypulmenue Jananca: <math>E S_{\Delta Y \Delta X} = K S_{\Delta Y \Delta X} = K S_{\Delta X} = K S_$

taigen ypabretue menionpolognocmi; $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$, $a^2 = \frac{K}{CS}$ B cryrae naiwwx vonbenmbroro ziena $b_1 \frac{\partial u}{\partial x}$: $u_t = a^2 u_{xx} + b u_x$

Haraussoe yarobne - Haraussoe parnjegelettue meuneparnyn 6 emejorne nyn t = 0: $U(x,0) = T_0$

Knalbre yerobur-yerobur na nonvan:

- 1) Tepboro paga, korga na mulankenne zagana menneparnypa; $u(\ell,t) = \mu_1(t)$
- 2) Bronoro paga, korga reben konen menionzampoban: $u_{x}(0,t) = M_{2}(t)$

Как видно по традину распределения температури в конетном стертне $x \in [0, \ell]$, левый конету темпомурирован, а на правом задана постоянная температура, равная 500. Начаниче распределение $7_0 = 300$, а затем ветупает в силу конвективный глем $\ell \cdot \frac{\partial u}{\partial x}$ M. e. все краевие условия випомияются, градик построен верно.

N2. O chodognan noudamen nonernors omenmen $x \in [0,\pi]$, $q^2 = 10^6$ e naraustan omkronennen $\psi_1 = x$, $\psi_2 = \Re - x$, korga rehañ konen glumemar ho zakoreg $M_1 = t$, a na npaban zagaro yenne $M_2 = -t$.

Гассистрини струкц (точкий стермень), гаматую с двух сторон, натанутую

в нагальний помент времени сплой То; $y=M_2$ f(x,t)-распределенная по Ох внешрях нагружа. Если сна сеть, по канбания выпутавнике, инаге они свободние. Палагаем, то уми д мам (т.е. $\sin d \approx t_g d \approx L$, $\cos d \approx 1$)

 $7^{\pm U_2}$ $7_0 + F|_{x}$ $7_0 + F|_{x+\alpha x}$ $7_0 + F|_{x+\alpha x}$ $2^{\pm U_3}$

Выедетвие этого дина струки в первоначанном и отклоненной состояниях сохраняется, а значит дини их не меняются со временей. Помая ста натятения это сумия начанной сти нататения То и упругой сти F(x,t). То закону Гука:

 $\frac{|CDI-IAB|}{|ABI|} = \frac{u(x+\Delta x,t)-u(x,t)}{\Delta x} = \frac{u_x(x+\theta_{\Delta}x,t)_{\Delta x}}{\Delta x} = u_x(x+\theta_{\Delta}x,t), \quad 0 \leq \theta < 1$

Baron Tyra rym $0 \rightarrow 0$: $F(x,t) = ESu_x(x,t)$

Thogorome Koredamur: maceyayaya bee cum, genembyrongul Ha ax Ha och Ox u munueman II zanon Haromona: $[T_0 + F(x+ax,t)]\cos \lambda|_{x+ax} - [T_0 + F(x,t)]\cos \lambda|_x = \Delta n \cdot u_{tt}(x,t)$, $\Delta n = S_{ax}S$ $ES u_{1x}(x+ax,t) - ES u_{1x}(x,t) = S_{ax}S u_{1x}(x,t)$

hymax $\rightarrow 0$: $\frac{E}{8} \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[u_{1x} (x + \Delta x, t) - u_{1x} (x, t) \right] = u_{1tt} (x, t) \Rightarrow u_{1tt} = \sigma^2 u_{1xx}$, $u_{1x} = u_{1x} = u_{1xx}$, $u_{1x} = u_{1xx}$, u_{1x}

Thoreperhone novedames: enpolypyen bee cum, genembylongue Ha ax ma oct Oy: $[T_0 + F(x + ax, t) \sin x]_{x+ax} - [T_0 + F(x,t)] \sin x]_x + f(x,t) \otimes x \otimes S = S_{ax} \otimes y_{2tt}$ Tarasaen $\sin x = \frac{t_2 d}{\sqrt{1+t_2^2 d}} \approx t_2 d = y_{2x}$

 $[T_{0} u_{2x}(x+\alpha x,t) - T_{0} u_{2x}(x,t)] + E_{0} u_{2x}(x+\alpha x,t) + g_{0} u_{2x}(x+\alpha x) + g_{0} u_{2x}(x,t) + g_{0} u_{2x}(x,t) + g_{0} u_{2x}(x,t) + g_{0} u_{2x}(x,t)] + F_{0} u_{2x}(x,t) + G_{0} u_{2x$

Haranshere yelobus: $U(x,0) = \varphi_1(x) - navalustoe$ ommissience moren empyren $U_t(x,0) = \varphi_2(x) - navalustoe$ exopoint moren empyren

Kpaebne yersbur:

περδοιο μεσα: γραμινα περευειμαετικά πο zanosvy; $u(0,t) = \mu(t)$ n.m. πέτπκο zanpennena; u(l,t) = 0

Broporo poga: na manuse zagana yenna: $u_x(0,t) = \mu(t)$ nu yannya cheologna: $u_x(l,t) = 0$

Πηρεπιείο ροσα: κοτιήσε γηρηρο ζακρεπιείω: $u_x - T_1 v(o,t) = \mu(t)$

Как мотно заметить по тадыну свободних комбаний констои стертня, на горизонтальной оси у нас "х". Нагачная скорость $\varphi_2 = \pi - x$. Левый конец двитется по закону $M_1 = t$, а на травам задане устине $M_2 = -t$.

M. e. bee kpselste yerobux bonarnesomex, magnin noempoen bepno.

Кан видно по учадочку задачи Дирикие для уравнения Лапласа в круге радиуган $r_0 = 1$, у нас писется заданная на учанице зеункумя $4(r_0, \varphi) = 2 \sin \varphi$, $\varphi \in [0, 2\pi]$. П. е. все условия выпалняются, значит учадочк построен верно.