Exercise Solutions for Math 20

 $\mbox{\sc Angles}$ and Their Measure, Trigonometric Functions of Angles

 ${\it Nile Jocson < novoseiversia@gmail.com}{>}$

November 20, 2024

1

1.1 Complete the following table.

rev	\deg	rad
$\frac{1}{20}$	18°	$\frac{\pi}{10}$
$-\frac{2}{3}$	-240°	$-\frac{4\pi}{3}$

1.2 Marian eats one slice of a circular pie that is cut into six congruent slices. If the arclength of the side she ate is 24π inches, what is the radius of the pie?

$\Rightarrow \theta = \frac{2\pi}{6}$ $\Rightarrow \theta = \frac{\pi}{3}$	The pie is sliced into 6 pieces.
$\Rightarrow \theta = \frac{\pi}{3}$	
$\Rightarrow 24\pi = r(\frac{\pi}{3})$	$s = r\theta$
$\Rightarrow 24\pi = r(\frac{\pi}{3})$ $\Rightarrow r = \frac{24\pi}{\frac{\pi}{3}}$	
$\Rightarrow r = \frac{24\pi(3)}{\pi}$	
$\Rightarrow r = 72 \text{ inches}$	Final answer.
	•

1.3 If the terminal side of an angle $\theta > 0$ contains the point $(1, -4\sqrt{3})$, find the six trigonometric functions of θ .

$$\Rightarrow r = \sqrt{1^2 + (-4\sqrt{3})^2}$$

$$\Rightarrow r = \sqrt{1 + 16(3)}$$

$$\Rightarrow r = \sqrt{1 + 48}$$

$$\Rightarrow r = \sqrt{49}$$

$$\Rightarrow r = 7$$

$$\Rightarrow \cos(\theta) = \frac{1}{7}$$

$$\Rightarrow \sin(\theta) = -\frac{4\sqrt{3}}{7}$$

$$\Rightarrow \tan(\theta) = -4\sqrt{3}$$

$$\Rightarrow \cot(\theta) = -\frac{1}{4\sqrt{3}} = -\frac{\sqrt{3}}{12}$$

$$\Rightarrow \sec(\theta) = 7$$

$$\Rightarrow \csc(\theta) = -\frac{7}{4\sqrt{3}} = -\frac{7\sqrt{3}}{12}$$
Use the Pythagorean Theorem to find r .

Final answer. $\cos(\theta) = \frac{x}{r}$

$$\sin(\theta) = \frac{y}{x}$$

$$\sin(\theta) = \frac{y}{x}$$

$$\sin(\theta) = \frac{y}{x}$$

$$\sin(\theta) = \frac{x}{y}$$

$$\sec(\theta) = 7$$

$$\Rightarrow \csc(\theta) = -\frac{7}{4\sqrt{3}} = -\frac{7\sqrt{3}}{12}$$

$$\csc(\theta) = \frac{r}{x}$$

1.4 Find the six trigonometric functions of α if $\cos(\alpha) = -\frac{5}{13}$ and α is in Quadrant III.

$$\Rightarrow x = -5, r = 13$$

$$\cos(\theta) = \frac{x}{r}$$

Continued on next page

$$\Rightarrow y = -\sqrt{13^2 - (-5)^2} \qquad \text{Use the Pythagorean Theorem to find } y. \text{ Since we're in Quadrant III, we want the negative case.}$$

$$\Rightarrow y = -\sqrt{169 - 25}$$

$$\Rightarrow y = -\sqrt{144}$$

$$\Rightarrow y = -12$$

$$\Rightarrow \sin(\theta) = -\frac{12}{13}$$

$$\Rightarrow \tan(\theta) = \frac{-\frac{12}{3}}{\frac{5}{13}} = \frac{12}{5}$$

$$\Rightarrow \cot(\theta) = \frac{1}{5}$$

$$\Rightarrow \sec(\theta) = -\frac{13}{5}$$

$$\Rightarrow \csc(\theta) = -\frac{13}{12}$$
Use the Pythagorean Theorem to find y . Since we're in Quadrant III, we want the negative case.

Final answer. $\sin(\theta) = \frac{y}{r}$

$$\tan(\theta) = \frac{y}{x}$$

$$\cot(\theta) = \frac{1}{\tan(\theta)}$$

$$\sec(\theta) = -\frac{1}{\sin(\theta)}$$

1.5 Evaluate the following.

1.5.a $\csc(315^{\circ})$

$\Rightarrow \overline{\theta} = 360^{\circ} - 315^{\circ}$	Find the reference angle.
$\Rightarrow \overline{\theta} = 45^{\circ}$	
$\Rightarrow \sin(315^\circ) = -\sin(45^\circ) = -\frac{\sqrt{2}}{2}$	Since 315° is in QIV, the result of sin will be negative.
$\Rightarrow \csc(315^\circ) = -\sqrt{2}$	Final answer. $\csc(\theta) = \frac{1}{\sin(\theta)}$

1.5.b $\cot(420^{\circ})$

$$\Rightarrow \theta = 60^{\circ} \qquad \qquad \text{Since } 420^{\circ} > 360^{\circ}, \text{ find } 420^{\circ} \text{ mod } 360^{\circ}.$$

$$\Rightarrow \cos(60^{\circ}) = \frac{1}{2}, \sin(60^{\circ}) = \frac{\sqrt{3}}{2} \qquad \qquad \text{Find } \cos(\theta) \text{ and } \sin(\theta). \text{ Both will be positive since } 60^{\circ} \text{ is in } \text{QI}.$$

$$\Rightarrow \cot(\theta) = \frac{1}{2}$$

$$\Rightarrow \cot(\theta) = \frac{2}{2\sqrt{3}}$$

$$\Rightarrow \cot(\theta) = \frac{2\sqrt{3}}{2(3)}$$

$$\Rightarrow \cot(\theta) = \frac{2\sqrt{3}}{2(3)}$$

$$\Rightarrow \cot(\theta) = \frac{\sqrt{3}}{3}$$
Rationalize.
$$\Rightarrow \cot(\theta) = \frac{\sqrt{3}}{3}$$
Final answer.

1.5.c $\tan(\frac{5}{8} \text{ rev})\cos(660^{\circ})$

$\Rightarrow \theta_1 = \frac{5}{8}(2\pi)$	Convert from revolutions to radians.
$\Rightarrow heta_1 = rac{10\pi}{8}$	
$\Rightarrow heta_1 = rac{5\pi}{4}$	
$\Rightarrow \tan(\frac{5\pi}{4}) = 1$	Since θ_1 is in QIII, tan will be positive.
$\Rightarrow \theta_2 = 300$	Find $660^{\circ} \mod 360^{\circ}$.
$\Rightarrow \overline{\theta_2} = 360 - 300$	Find the reference angle.

Continued on next page

 $\Rightarrow \overline{\theta_2} = 60$ $\Rightarrow \cos(660) = \cos(60) = \frac{1}{2}$ Since θ_2 is in QIV, cos will be positive. $\Rightarrow \tan(\frac{5}{8} \text{ rev})\cos(660^\circ) = \frac{1}{2}$ Final answer.

4