# Taxonomy Construction of Unseen Domains via Graph-based Cross-Domain Knowledge Transfer

Chao Shang, Sarthak Dash, Md Faisal Mahbub Chowdhury, Nandana Mihindukulasooriya, Alfio Gliozzo ACL2020

#### Problem definition

Taxonomy: classify things into hierarchical structures e.g. graph/tree

Examples: wordnet

The problem: Given a list of domain-specific terms from a target unseen domain as input, how to construct a taxonomy for that target unseen domain

Or: given a list of terminologies in an unseen domain, how to organize them into a taxonomy

### Problem setting

- Train set:
  - A large corpus
  - A set of golden taxonomies from some known domains
- Testing set
  - An unseen corpus
  - A set of terminologies of target unknown domain
- Output
  - A taxonomy of the target unknown domain

#### Framework



#### Build cross-domain noisy graph

- Extract candidates: "is-a" pairs from a large collection of input using substring matching and pattern-based approaches
  - This graph is very noisy
  - ...animals other than dogs such as cats...
  - -> (cat, is-a, dog)
- Subgraph extraction  $G_{input} = (V_{input}, E_{input})$ 
  - V\_input is a set of interested terms
  - E\_input contains (v\_i, v\_j) if (v\_i, v\_j) appear in the noisy graph

## Cross domain graph encoder

Neighbor aggregation

0

 $\circ$ 

0

0

$$H^{l+1} = GNN_l(A, H^l) = \sigma(\tilde{A}H^l\Theta^l)$$

- Semantic Clustering Aggregation
  - Generate soft assignment

$$S^{l} = softmax(GNN_{l,cluster}(A, H^{l}))$$

Generate cluster embedding Hc

$$H_c^l = (S^l)^T H^l \in \mathbb{R}^{n_c \times d_l}$$

Generate cluster graph

$$A_c = (S^l)^T A S^l \in \mathbb{R}^{n_c \times n_c}$$

Forward through cluster graph

$$H_c^{l+1} = GNN_l(A_c, H_c^l) \in \mathbb{R}^{n_c \times d_{l+1}}$$

Unpooling the cluster embedding to restore the original graph

$$\tilde{H}^{l+1} = S^l H_c^{l+1} \in \mathbb{R}^{n \times d_{l+1}}$$

Combine representation

$$H^{l+1} = concate(\tilde{H}^{l+1}, H^l)$$

### Link prediction

 $v_{pair} = concate(v_{hypo}, v_{hyper}, v_{feas})$  $p_{(hypo, hyper)} = sigmoid(V_C^T W)$ 



## Results

|                         | Science    |       |       | Science   |       |       | Science          |          |       | Science   |       |       | Environment |       |       |
|-------------------------|------------|-------|-------|-----------|-------|-------|------------------|----------|-------|-----------|-------|-------|-------------|-------|-------|
|                         | (Combined) |       |       | (Eurovoc) |       |       | (WordNet)        |          |       | (Average) |       |       | (Eurovoc)   |       |       |
| Model                   | $P_e$      | $R_e$ | $F_e$ | $P_e$     | $R_e$ | $F_e$ | $P_e$            | $R_e$    | $F_e$ | $P_e$     | $R_e$ | $F_e$ | $P_e$       | $R_e$ | $F_e$ |
| Baseline                | 0.63       | 0.29  | 0.39  | 0.62      | 0.21  | 0.31  | 0.69             | 0.27     | 0.38  | 0.65      | 0.26  | 0.36  | 0.50        | 0.21  | 0.30  |
| JUNLP                   | 0.14       | 0.31  | 0.19  | 0.13      | 0.36  | 0.19  | 0.21             | 0.31     | 0.25  | 0.16      | 0.33  | 0.21  | 0.13        | 0.23  | 0.17  |
| USAAR                   | 0.38       | 0.26  | 0.31  | 0.63      | 0.15  | 0.25  | 0.82             | 0.19     | 0.31  | 0.61      | 0.20  | 0.29  | 0.81        | 0.15  | 0.25  |
| TAXI                    | 0.39       | 0.35  | 0.37  | 0.30      | 0.33  | 0.31  | 0.37             | 0.38     | 0.38  | 0.35      | 0.35  | 0.35  | 0.34        | 0.27  | 0.30  |
| $TaxoRL^A$              | -          | e—e   | -     | _         | _     | -     | 33 <del></del> 3 | _        | _     | 0.57      | 0.33  | 0.42  | 0.38        | 0.24  | 0.29  |
| $TaxoRL^{B}$            | _          | _     | _     | _         |       |       | _                | _        | _     | 0.38      | 0.38  | 0.38  | 0.32        | 0.32  | 0.32  |
| Graph2Taxo <sup>1</sup> | 0.91       | 0.31  | 0.46  | 0.78      | 0.26  | 0.39  | 0.82             | 0.32     | 0.46  | 0.84      | 0.30  | 0.44  | 0.89        | 0.24  | 0.37  |
| Graph2Taxo <sup>2</sup> | 0.90       | 0.33  | 0.48  | 0.79      | 0.33  | 0.46  | 0.77             | 0.32     | 0.46  | 0.82      | 0.33  | 0.47  | 0.67        | 0.28  | 0.39  |
|                         |            |       |       |           |       |       |                  | <u> </u> |       |           |       |       | <u> </u>    |       | 74    |