

درس المتتاليات العددية

تذكير لعموميات حول المتتاليات العددية و المتتاليات الحسابية و الهندسية

i. متتالية مكبورة _ مصغورة _ محدودة : (تذكير)

.01 تعریف:

الصفحة

 $\mathbf{u}_{\mathbf{n}}$ متتالية عددية. \mathbf{M} و $\mathbf{u}_{\mathbf{n}}$ متتالية عددية.

- $(\ \forall n \geq n_0; u_n < M\)$. $\forall n \geq n_0; u_n \leq M$ يكافئ $M \geq n_0; u_n \leq M$. (أو $(u_n)_{n \geq n_0}$
- $(\forall n \ge n_0; m < u_n)$ (أو $m < u_n$) . $\forall n \ge n_0; m \le u_n$ يكافئ m يكافئ $m < u_n$) مصغورة ب
 - محدودة يكافئ إن u_n مكبورة ومحدودة $(u_n)_{n\geq n}$

 $w_n : 10$ بين أن: $w_n = \frac{n+3}{n+4}$ بين أن: $w_n = \frac{n+3}{n+4}$ بين أن: $w_n = \frac{n+3}{n+4}$ بين أن: $w_n = \frac{n+3}{n+4}$

ii. رتابة متتالية:

01. تعریف:

u_n)_{n∈ I} متتالية عددية.

- . $\forall n,m \in I; n < m \Rightarrow u_n \leq u_m$ يكافئ u_n (1
 - $\forall n,m \in I; n < m \Rightarrow u_n \leq u_m$ يكافئ I يكافئ u_n (2
 - $\forall n,m \in I; u_n = u_m$ یکافئ u_n (3) متتالیة ثابتة علی ا

<u>.02</u>خاصية:

متتالية عددية. $(u_n)_{n\in I}$

- $\mathbf{u}_{n} \leq \mathbf{u}_{n+1}$ یکافئ: $\mathbf{u}_{n} \leq \mathbf{u}_{n+1}$. $\forall n \in I; \mathbf{u}_{n} \leq \mathbf{u}_{n+1}$
- $\forall n \in I; u_n \geq u_{n+1}$ یکافئ: $u_n = u_n$
 - \forall n ∈ I; $\mathbf{u}_{n+1} = \mathbf{u}_n$ یکافئ: \mathbf{u}_n = \mathbf{u}_n

: مثال .

. w_n فاخذ $w_{n+1} = 1 + w_n$ و $w_1 = 1$ فرس رتابة $w_1 = 1$

iii. المتتالية الحسابية:

<u>01.</u> تعریف :

متتالية عددية . $(u_n)_{n\geq n_0}$

 $\mathbf{u}_{\mathbf{n}_0}:\mathbf{u}_{\mathbf{n}_0}:\mathbf{u}_{\mathbf{n}_0}=\mathbf{r}$ نقول إن $\mathbf{u}_{\mathbf{n}_0}$ إن $\mathbf{u}_{\mathbf{n}_0}=\mathbf{u}_{\mathbf{n}_0}:\mathbf{u}_{\mathbf{n}_0}=\mathbf{r}$ نقول إن $\mathbf{u}_{\mathbf{n}_0}$ يعني إن $\mathbf{u}_{\mathbf{n}_0}=\mathbf{v}$.

. بين أن u_n مثال: نعتبر المتتالية العددية الآتية $u_n=2n+3; n\geq 0$. بين أن $u_n=2n+3; n\geq 0$

iv. صيغة الحد العام لمتتالية حسابية:

01. خاصية:

. $\forall n \geq n_0: u_n = u_{n_0} + (n-n_0)r:$ لدينا u_{n_0} . لدينا وحدها الأول r وحدها الأول و $u_n = u_{n_0} + (n-n_0)r$ متتالية عددية حسابية أساسها r

.02 خاصية:

 $(\ \mathbb{N}\$ ن p و n و n و n . $\forall n,p\geq n_0: u_n=u_p+(n-p)r$ وفقط إذا كان n و n و n و n و n و n درية عددية حسابية أساسها n إذا وفقط إذا كان n

درس المتتاليات العددية

- \mathbf{u}_{2007} مثال \mathbf{u}_{n} متالیة حسابیة أساسها $\mathbf{u}_{r}=3$ وحدها \mathbf{u}_{n} . أحسب \mathbf{u}_{n}
- . u_n و حده u_n و حده $u_{100} = -45$. $u_{100} = -45$ وحده $u_0 = 5$ وحده و u_0 بدلالة u_0
 - v. المجموع لحدود متتابعة لمتتالية حسابية:

.01 خاصية:

. لدينا $\mathbf{n}_{0} \leq \mathbf{p} < \mathbf{n} \cdot \mathbf{u}_{n_{0}}$ متتالية عددية حسابية أساسها \mathbf{r} وحدها الأول $\mathbf{n}_{0} \leq \mathbf{p} < \mathbf{n} \cdot \mathbf{u}_{0}$ لدينا

$$S_{n} = \sum_{i=p}^{i=n} u_{i} = u_{p} + u_{p+1} + u_{p+2} + \dots + u_{n} = \left[\frac{u_{n} + u_{p}}{2} \right] \times (n-p+1)$$

 $S_n = \frac{\text{(le premier terme)} + \text{(le dernier terme)}}{2} \times \text{(عدد الحدود)}$

2 ملاحظة:

من الحدود $S_n = u_0 + u_1 + u_2 + + u_n$

من الحدود $S_n = u_1 + u_2 + u_3 + \dots + u_n$

من الحدود $S_n = u_2 + u_3 + u_4 + + u_n$

vi. متتالية هندسية:

01. تعریف:

متتالية عدية . $(u_n)_{n\geq n_0}$

 $\forall n \geq n_0: u_{n+1} = q \times u_n$ يعني ان u_n يعني ان العدد الحقيقي الغير المنعدم q و حدها الأول u_{n_0} يعني ان u_n

vii. صيغة الحد العام لمتتالية هندسية:

. خاصية:

 $\forall n \geq n_0 : u_n = u_{n_0} \times q^{(n-n_0)}$: لدينا $u_{n_0} \geq u_n = u_{n_0} \times q^{(n-n_0)}$: الدينا $u_{n_0} \geq u_n = u_{n_0} \times q^{(n-n_0)}$

.02خاصية:

 $(\ \mathbb{N}\)$ متتالیة عددیة هندسیة أساسها q إذا وفقط إذا کان $u_n = u_p \times q^{n-p}$. $(a_n)_{n \geq n_0}$

. 103 تمرین

viii. المجموع لحدود متتابعة لمتتالية هندسية :

01. خاصية:

 $\mathbf{n}_0 \leq \mathbf{p} < \mathbf{n} \cdot \mathbf{u}_{\mathbf{n}_0}$ متتالية عددية هندسية أساسها \mathbf{q} وحدها الأول متتالية عددية

$$S = \sum_{i=p}^{i=n} u_i = u_p + u_{p+1} + u_{p+2} + \dots + u_n = \left\lceil \frac{q^{(n-p+1)} - 1}{q - 1} \right\rceil \times u_p \qquad : q \neq 1 \quad \text{then } (1)$$

$$S = \sum_{i=n}^{n-1} u_i = u_p + u_{p+1} + u_{p+2} + \dots + u_n = u_p + u_p + u_p + \dots + u_p = u_p (n-p+1) \qquad : \quad q = 1 \quad \text{$\stackrel{\cdot}{\sim}$} \quad (2)$$

درس المتتاليات العددية

ix. المعدل الحسابي - المعدل الهندسي: لثلاثة حدود متتابعة.

10. المعدل الحسابي.

. \mathbf{r} عدود متتابعة لمتتالية حسابية أساسها $\mathbf{u}_{i+1} = \mathbf{b}$ و $\mathbf{u}_{i+1} = \mathbf{b}$

. $2u_{i+1} = u_i + u_{i+2}$: ومنه $u_{i+2} = u_{i+1} + r$ و $u_i = u_{i+1} - r$: لدينا

خلاصة : a+b=2c وهي تسمى المعدل الحسابي .

المعدل الهندسي: إذا كانت u_n هندسية بالنفس الطريقة نحصل على: $a \times c = b^2$ تسمى المعدل الهندسي.

نهاية متتالية

A. نهایة منتهیة لمتتالیة

.01 نشاط:

 $u_n = \frac{1}{n} + 2$; $n \ge 1$ نعتبر المتتالية العددية المعرفة بما يلي: $n \ge 1$

. 2cm على المستقيم العددي نأخذ المجال المفتوح $2 - \frac{1}{4}, 2 + \frac{1}{4}$ $2 - \frac{1}{4}, 2 + \frac{1}{4}$ الذي مركزه $2 - \frac{1}{4}, 2 + \frac{1}{4}$ على المستقيم العددي نأخذ المجال المفتوح

أ _ مثل المجال على المستقيم العددي.

ب - أحسب بعض الحدود و مثلها على المستقيم العددي.

ج _ ماذا تلاحظ ؟

 $\mathbf{u}_{\mathbf{n}}$ تؤول إلى ∞ . ماذا يمكن أن نقول عن قيم \mathbf{n} ؟

02. مفردات و رموز:

 $u_n \in \left] 2 - \frac{1}{4}, 2 + \frac{1}{4} \right[$ فإن $p \ge p$ فإن $p \ge 1$ لدينا لكل p = 1 لدينا لكل p = 1 فإن $p \ge 1$

$$\exists p \in \mathbb{N} , \forall n \geq p , u_n \in \left| \int_{1}^{\infty} 2 - \frac{1}{4}, 2 + \frac{1}{4} \right| :$$
نعبر عن ذلك

- $-\infty$ نقول إن نهاية المتتالية u_n هي 2 عندما تؤول u_n إلى $+\infty$
 - $\lim_{n\to+\infty} \mathbf{u}_n = 2$ نکتب

03. تعریف:

لتكن $\left(u_{n}\right)_{n\geq n_{0}}$ متتالية عددية.

 $(u_n)_{n\geq n_0}$ نقول إن نهاية متتالية $(u_n)_{n\geq n_0}$ هي العدد الحقيقي ℓ إذا كان كل مجال مفتوح مركزه ℓ يحتوي على جميع حدود المتتالية $(u_n)_{n\geq n_0}$

. $\lim_{n\to\infty} \mathbf{u}_n = \ell$: ابتداء من رتبة معينة. نكتب

 $\lim_{n\to +\infty} u_n = \ell \Leftrightarrow \forall \epsilon > 0 \;, \exists p \in \mathbb{N} \;, \forall n \geq p \;, \; \left| u_n - \ell \right| < \epsilon \;$ أو أيضًا :

الأستاذ: بنموسى محمد

درس رقم

درس المتتاليات العددية

04. ملاحظة:

الصفحة

- إذا كان للمتتالية $\left(u_{n}\right)_{n\geq n_{0}}$ نهاية فهذه النهاية وحيدة .
- $\lim_{n\to+\infty}\frac{1}{\sqrt{n}}=0 \quad \text{if } \left(i\in\mathbb{N}^*\right); \quad \lim_{n\to+\infty}\frac{1}{n^i}=0 \quad \text{if } \lim_{n\to+\infty}\frac{1}{n^2}=0 \quad \text{if } \lim_{n\to+\infty}\frac{1}{n}=0$
 - $\lim_{n\to+\infty} \left(u_n \ell \right) = 0 \Leftrightarrow \lim_{n\to+\infty} u_n = \ell$
 - $(u_n = (-1)^n$ العكس غير صحيح مثال $\lim_{n \to +\infty} u_n = \ell \Rightarrow \lim_{n \to +\infty} |u_n| = |\ell|$ •

.05 مثال:

$$u_n = \frac{1}{n} + 3$$
; $n \ge 1$ لنعتبر المتتالية

$$\lim_{n\to+\infty}\mathbf{u}_{n}=3$$
: نبین أن

$$\lim_{n \to +\infty} (u_n - 3) = \lim_{n \to +\infty} \frac{1}{n} + 3 - 3 = \lim_{n \to +\infty} \frac{1}{n} = 0$$
 لاينا:

$$\lim_{n\to+\infty} \mathbf{u}_n = 3 : \mathbf{0}$$

<u>B</u> نهاية اللا منتهية لمتتالية:

01. تعریف:

لتكن $\left(u_{n}
ight)_{n\geq n_{0}}$ متتالية عددية.

نقول إن نهاية متتالية $\left(u_{n}\right)_{n\geq n_{0}}$ هي ∞ + إذا كان كل مجال على شكل $A,+\infty$ يحتوي على جميع حدود المتتالية $\left(u_{n}\right)_{n\geq n_{0}}$ ابتداء من رتبة معينة. نكتب $u_{n}=+\infty$. $\lim_{n\to +\infty}u_{n}=+\infty$

 $\lim_{n\to +\infty} u_n = +\infty \Leftrightarrow \forall A>0 \;, \exists p\in \mathbb{N} \;, \forall n\geq p \;, u_n>A:$ أو أيضًا

• نقول إن نهاية متتالية $u_n \Big|_{n \ge n_0} = -\infty$ إذا كان كل مجال على شكل ∞ , ∞ إيداء ∞ ابتداء ∞ المتتالية ∞ المتتالية

 $\lim_{n\to+\infty} \mathbf{u}_n = -\infty \Leftrightarrow \forall \mathbf{A} > 0, \exists \mathbf{p} \in \mathbb{N}, \forall \mathbf{n} \geq \mathbf{p}, \mathbf{u}_n < -\mathbf{A} :$ أو أيضًا

.02 ملاحظة:

- . $\lim_{n\to+\infty} ku_n = +\infty$ فإن k>0 و k>0 و k>0
- . $\lim_{n\to +\infty} ku_n = -\infty$ فإن $\lim_{n\to +\infty} u_n = +\infty$ و k<0

.03 مثال:

.
$$\lim_{n\to+\infty}\mathbf{u}_{n}=+\infty$$
: نبین أن $\mathbf{u}_{n}=\mathbf{n}^{3}$

. $u_n > A$ نبحث هل يوجد p من \mathbb{N} لكل p > 1 نبحث هل يوجد و من p > 1

 $\mathbf{n} > \sqrt[3]{A}$ ومنه $\mathbf{n} > \mathbf{A}$ ليكن $\mathbf{n} > \mathbf{A}$ حيث $\mathbf{u}_{\mathbf{n}} > \mathbf{A}$ اي $\mathbf{n} > \mathbf{A}$

درس المتتاليات العددية

وفي هذه الحالة:

نقول لكل a>0 يوجد $p=E\left(\sqrt[n]{A}\right)+1$ لكل $p=E\left(\sqrt[n]{A}\right)+1$ يعظينا a>0 يعظينا a>0 يكفي أن نأخذ

$$.p = E(\sqrt[n]{A}) + 1$$

 $\lim_{n\to\infty} \mathbf{u}_n = +\infty$: خلاصة

تقارب متتالية عددية

01. تعریف:

. لتكن $(u_n)_{n\geq n}$ متتالية عددية

- إذا كانت نهاية المتتالية الله منتهية نقول إن المتتالية متقاربة.
- إذا كانت نهاية المتتالية u_n غير منتهية أو u_n ليس لها نهاية نقول إن المتتالية u_n متباعدة.

.02 مثال:

- ادن $u_n = \frac{1}{n}$ ادینا: $u_n = \frac{1}{n}$
- الدينا : $\mathbf{u}_{\mathbf{n}} = \mathbf{u}_{\mathbf{n}}$ الدينا : $\mathbf{u}_{\mathbf{n}} = \mathbf{u}_{\mathbf{n}}$ الدينا : $\mathbf{u}_{\mathbf{n}} = \mathbf{n}^4$
 - $\mathbf{u}_{n} = (-1)^{n}$ ليس لها نهاية: $\mathbf{u}_{n} = (-1)^{n}$

العمليات على نهايات المتتاليات المتتاليات والترتيب

01. العمليات:

. لتكن $\left(\mathbf{u}_{n} \right)_{n \geq n_{0}}$ و $\left(\mathbf{u}_{n} \right)_{n \geq n_{0}}$ متتاليتين عدديتين

العمليات على المتتاليات هي نفس العمليات على الدوال العددية.

$$(\mathbf{u}_{\mathbf{n}})_{\mathbf{n} \geq \mathbf{n}_{0}} + (\mathbf{v}_{\mathbf{n}})_{\mathbf{n} \geq \mathbf{n}_{0}} = (\mathbf{u}_{\mathbf{n}} + \mathbf{v}_{\mathbf{n}})_{\mathbf{n} \geq \mathbf{n}_{0}}$$

العمليات على نهايات الدوال العددية هي نفس النهايات على الدوال.

$$\lim_{n \to +\infty} \mathbf{u}_n + \mathbf{v}_n = \ell + \ell' \quad \text{if } \quad \lim_{n \to +\infty} \mathbf{v}_n = \ell' \quad \text{if } \quad \mathbf{u}_n = \ell \quad \text{if } \quad \mathbf{u}_n = \ell$$

 $\lim_{n\to+\infty} \mathbf{u}_n + \mathbf{v}_n = +\infty \qquad \text{iim} \quad \mathbf{v}_n = +\infty \quad \text{iim} \quad \mathbf{u}_n = \ell \quad \text{iim} \quad$

02. الترتيب:

 $\exists p \in \mathbb{N} \ , \forall n \in \mathbb{N} \ , n \geq p \ , v_n \leq u_n \leq w_n$ لتكن $\left(v_n \right)_{n \geq n_0} \quad v_n \leq v_n$ و $\left(v_n \right)_{n \geq n_0} \quad v_n \leq v_n$ متتالیات عددیتین حیث $\left(v_n \right)_{n \geq n_0} \quad v_n \leq v_n$

- . $\ell > 0$ فإن $u_n > 0$ إذ كان
- ℓ فإن $\exists p \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $n \ge p$, $v_n \le u_n$ و $\lim_{n \to +\infty} v_n = \ell$ فإن $\lim_{n \to +\infty} u_n = \ell$ فإن $\exists p \in \mathbb{N}$, $\forall n \in \mathbb{N}$, $\exists p \in \mathbb{N}$, $\forall n \in \mathbb{N}$
 - $\lim_{n\to +\infty} u_n \ell = 0 \Leftrightarrow \lim_{n\to +\infty} u_n = \ell$

03. تطبيق:

درس المتتاليات العددية

الصفحة

$$u_n = \frac{1}{n} + 3; n \ge 1$$
 : larity is larity in [1]

$$\lim_{n\to+\infty} u_n = 3$$
 ومنه: $\lim_{n\to+\infty} 3 = 3$ ومنه: $\lim_{n\to+\infty} \frac{1}{n} = 0$ دينا

$$v_n = \left(\frac{1}{n} + 3\right)\sqrt{n}$$
 ; $n \ge 1$ احسب نهاية المتتالية التالية: 1 عام (2

$$\lim_{n\to+\infty} \left(\frac{1}{n}+3\right) \sqrt{n} = +\infty$$
 : ومنه $\lim_{n\to+\infty} \sqrt{n} = +\infty$ ومنه $\lim_{n\to+\infty} \left(\frac{1}{n}+3\right) = 3$ الدينا: 3

مصاديق التقارب

01. نشاط:

لتكن $(u_n)_{n\geq n_0}$ و $(v_n)_{n\geq n_0}$ و متاليات عدية حيث ابتداء من الرتبة $(v_n)_{n\geq n_0}$. لدينا ما يلي :

- $\lim_{n\to +\infty} v_n = \lim_{n\to +\infty} w_n = \ell$ و $v_n \le u_n \le w_n$ ماذا يمكننا أن نستنتج $v_n \le u_n \le w_n$
- $v_n \geq \alpha.u_n$ و $v_n = +\infty$ و ان نستنتج $v_n \geq \alpha.u_n$ و $v_n \geq \alpha.u_n$
- و مع $\mathbf{v}_{\mathrm{n}} \leq \mathbf{u}_{\mathrm{n}} = \mathbf{v}_{\mathrm{n}}$ ماذا يمكننا أن نستنتج ؟ $\mathbf{v}_{\mathrm{n}} \leq \mathbf{\alpha}.\mathbf{u}_{\mathrm{n}}$
- $\lim_{n\to\infty} u_n = 0$ و $|v_n-\ell| \leq \alpha.u_n$ و ا $|v_n-\ell| \leq \alpha.u_n$

02. مصاديق:

لتكن
$$(\mathbf{u}_n)_{n\geq n}$$
 و $(\mathbf{v}_n)_{n\geq n}$ و $(\mathbf{u}_n)_{n\geq n}$ متتاليات عددية .

إذا كان ابتداء من الرتبة p ، لكل n من $n \ge p$ حيث $p \ge n$ يتحقق ما يلي:

.
$$\lim_{n\to +\infty} \mathbf{u}_n = \ell$$
 : غان $\lim_{n\to +\infty} \mathbf{v}_n = \lim_{n\to +\infty} \mathbf{w}_n = \ell$ و $\mathbf{v}_n \leq \mathbf{u}_n \leq \mathbf{w}_n$

$$\lim_{n\to+\infty} v_n = +\infty$$
 فإن $\lim_{n\to+\infty} u_n = +\infty$ و $v_n \ge \alpha.u_n$

.
$$\lim_{n\to+\infty} v_n = -\infty$$
 فان $\lim_{n\to\infty} u_n = -\infty$ و $v_n \le \alpha.u_n$

$$\lim_{n\to\infty}v_n=\ell \text{ if }\lim_{n\to\infty}u_n=0 \text{ for }|v_n-\ell|\leq\alpha.u_n$$

 $\ell \in \mathbb{R}$ و $p \geq n_0$ و عدد صحيح طبيعي معلوم $p \geq n_0$ و $\alpha > 0$

03. أمثلة:

1: مثال للمصداق

$$v_n = \frac{(-1)^n}{n} - 5$$
; $n > 0$: it is it is it is $v_n = \frac{(-1)^n}{n} - 1$

$$\lim_{n\to+\infty} \mathbf{v}_n = -5$$
 نبین أن:

$$\frac{-1}{n} \le \frac{\left(-1\right)^n}{n} \le \frac{1}{n}$$
 الدينا: $1 \le \left(-1\right)^n \le 1$ الذنا: $1 \le \left(-1\right)^n$

$$\frac{-1}{n}$$
 - 5 \leq \frac{(-1)^n}{n} - 5 \leq \frac{1}{n} - 5 \rightarrow \frac{1}{n} - 5

درس المتتاليات العددية

الصفحة

$$\frac{-1}{n} - 5 \le v_n \le \frac{1}{n} - 5$$
 و بالتالي :

$$\lim_{n\to+\infty} \frac{-1}{n} - 5 = \lim_{n\to+\infty} \frac{1}{n} - 5 = -5$$
 و لدينا

 $\lim_{n\to+\infty} v_n = -5$: carb: each unit of the contraction of the contra

$$\lim_{n\to+\infty} \mathbf{v}_n = -5 : \text{خلاصة}$$

2. مثال للمصداق 2:

. $\lim_{n\to +\infty} u_n : u_n = 2n + \cos(n); n \ge 0$ أحسب: لنعتبر المتتالية العددية المعرفة ب

$$-1 \le \cos(n) \le 1 \Leftrightarrow 2n-1 \le 2n+\cos(n) \le 2n+1$$
 لدينا:

$$2n-1 \le u_n$$
 ومنه: $2n-1 \le 2n+\cos(n)$ أي

$$\lim_{n\to+\infty} \mathbf{u}_n = +\infty$$
 اذن: $2n-1 = +\infty$ ونعلم بأن: $2n-1 = +\infty$

$$\lim_{n\to+\infty} 2n + \cos(x) = +\infty$$
 خلاصة:

3 مثال للمصداق 4:

.
$$\lim_{n\to+\infty} v_n = 0$$
 : نبين أن $v_n = \frac{\cos n}{n}$; $n \ge 1$

$$\left|\mathbf{v}_{\mathbf{n}}-\mathbf{0}\right| = \left|\frac{\cos \mathbf{n}}{\mathbf{n}}\right| = \frac{\left|\cos \mathbf{n}\right|}{\mathbf{n}} \le \frac{1}{\mathbf{n}} \left(\left|\cos \mathbf{n}\right| \le 1\right)$$
 لاينا : (لأن

$$\lim_{n\to +\infty} v_n = 0$$
 ومنه: $\lim_{n\to +\infty} \frac{1}{n} = 0$ و بما أن : $\left|v_n - 0\right| \leq \frac{1}{n}$

$$\lim_{n\to+\infty}\frac{\cos n+5}{n^3}$$
 و $\lim_{n\to+\infty}\frac{\cos n}{n^2}$: تمرین : أحسب

.04 خاصية

- كل متتالية تزايدية و مكبورة هي متقاربة.
- كل متتالية تناقصية و مصغورة هي متقاربة.

.05 مثال

.
$$u_n = \frac{1}{n^3} + 7; n \ge 1$$
: لنعتبر المتتالية

1) نبين أن: u مصغورة:

 $u_n > 0$ وبالتاني $u_n > 0$ ومنه $u_n > 0$ ومنه $u_n > 0$ وبالتاني $u_n > 0$ وبالتاني الحينا: $u_n > 0$ في المعاورة ب

2) نبين أن: un تناقصية:

 $n+1 \ge n \Leftrightarrow (n+1)^3 \ge n^3$ لكل $n \ge 1$

$$\Leftrightarrow \frac{1}{(n+1)^3} \leq \frac{1}{n^3} \Leftrightarrow u_{n+1} \leq u_n$$

ومنه : u_n تناقصية. خلاصة: حسب ما سبق u_n مصغورة ب0 و تناقصية إذن هي متتالية متقاربة.

الصفحة

06. ملحوظة:

درس المتتاليات العددية

- كل متتالية تزايدية و سالبة (أي مكبورة ب0) هي متقاربة.
- كل متتالية تناقصية و موجبة (أي مصغورة ب 0) هي متقاربة.

متتاليات خاصة

 $a \in \mathbb{R}$ متتالية على شكل: $\mathbf{u}_n = \mathbf{a}^n$ مع \underline{A}

01. خاصية:

- . $\lim a^n = +\infty$: فإن a > 1
 - اذا كان a = 1 فإن: a = 1.
- اذا كان 1 > a 1 فإن: 1 المان 1 المان 1 المان 1 المان 1
- إذا كان $1 a \le a$ فإن a^n ليس لها نهاية.

02. أمثلة:

- a=3>1 لأن $\lim_{n\to\infty}3^n=+\infty$
- $-1 < a = \frac{1}{2} < 1$ لأن $\lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0$
 - $(-1)^n$ ليس لها نهاية.
 - $\lim_{n\to+\infty}\frac{2^n-8^n}{7^n}: نمرین: أحسب$
- $r \in \mathbb{Q}^*$ متتالية على شكل: $\mathbf{u}_n = \mathbf{n}^r$ معتالية على شكل.

01.خاصية:

- اذا كان r < 0 فإن r < 0 .
- . $\lim \mathbf{n}^{\mathbf{r}} = +\infty$: فإن $\mathbf{r} > \mathbf{0}$

02. تمرين تطبيقي:

- $(u_n = \sqrt[7]{n^3} = n^{\frac{3}{7}})$. $\lim_{n \to \infty} u_n : 0$ أحسب: $u_n = \sqrt[7]{n^3}; n \ge 1$. انعتبر المتتالية التالية $u_n = \sqrt[7]{n^3}; n \ge 1$
- $(u_n = \sqrt[7]{n^{-3}} = n^{-\frac{3}{7}})$. $\lim_{n \to \infty} u_n : 1$ أحسب $u_n = \sqrt[7]{n^{-3}}; n \ge 1$ انعتبر المتتالية التالية: $u_n = \sqrt[7]{n^{-3}}; n \ge 1$
 - $\mathbf{v}_{n} = \mathbf{f}(\mathbf{u}_{n})$ على شكل: $(\mathbf{v}_{n})_{n \geq n_{0}}$ متتالية $\underline{\mathbf{C}}$
 - $\int_{0}^{\infty} u_n = \frac{1}{n^3}$ و المتتالية $f(x) = \frac{2x-5}{7x+4}$: فشاط: نعتبر الدالة نعتبر الدالة .01
 - $v_n = f(u_n)$ المعرفة ب $v_n = f(u_n)$ المعرفة ب $v_n = f(u_n)$ المعرفة ب

الأستاذ: بنموسى محمد

درس رقم

درس المتتاليات العددية

الصفحة

$$\lim_{n\to +\infty} \mathbf{v}_n : \frac{1}{n\to +\infty} \mathbf{u}_n : \frac{1}{n\to +\infty} \mathbf{u}_n = \frac{1}{n}$$
 (2

: استنتج علاقة بين
$$v_n$$
 و t و t و الخاصية ا $u_n = \ell$ إذا كان $u_n = \ell$ الخاصية $u_n = \ell$

.02 خاصية:

$$v_n=f\left(u_n
ight)$$
 المعرفة ب $\left(v_n
ight)_{n\geq n_0}$ فإن المتالية $\left(v_n
ight)_{n\geq n_0}$ المعرفة ب $\left(u_n
ight)_{n\geq n_0}$ هي المعرفة ب $\left(u_n
ight)_{n\geq n_0}$ متقاربة و نهايتها تحقق ما يلي: $v_n=f\left(\ell
ight)$ متقاربة و نهايتها تحقق ما يلي: $v_n=f\left(\ell
ight)$.

.03 نمرین:

$$u_n = \frac{\cos n}{n}; n \ge 1$$
 و $f(x) = \frac{5x - 6}{x + 3}$

. $\lim_{n\to+\infty} \mathbf{u}_n$: أحسب (1

$$u_{n}$$
 و v_{n} بدلالة $v_{n} = \frac{5\cos n - 6n}{\cos n + 3n}; n \ge 1$ نعتبر (2

. $\lim_{n\to+\infty} v_n$ حدد النهاية التالية عدد (3

$$\mathbf{u}_{n+1} = \mathbf{f}(\mathbf{u}_n)$$
 على شكل: $(\mathbf{u}_n)_{n \geq n_0}$ متتالية $\underline{\mathbf{D}}$

خاصية: .01

$$\mathbf{u}_{n+1} = \mathbf{f}(\mathbf{u}_n)$$
: و $\mathbf{f}(\mathbf{u}_n)_{n \geq n_0}$ و $\mathbf{f}(\mathbf{I}) \subset \mathbf{I}$ و متصلة على مجال \mathbf{I} و $\mathbf{f}(\mathbf{u}_n)_{n \geq n_0}$

- $\mathbf{u}_{n_0} \in \mathbf{I}$) (حدها الأول من
- . ℓ متتالیة متقاربة و نهایتها u_n

$$(\ell = f(\ell)$$
فإن ℓ هو حل للمعادلة $f(x) = x$ فإن ℓ هو حل للمعادلة

تمرين:

لنعتبر المتتالية :
$$\mathbf{u}_{n} = \sqrt{6 + \mathbf{u}_{n}}$$
 و $\mathbf{u}_{n} = 0$. نعتبر أن \mathbf{u}_{n} متقاربة (\mathbf{u}_{n} تزايدية و مكبورة ب).

- $f(x) = \sqrt{6+x}$ حدد مجموعة اتصال الدالة
 - 2) أعط جدول تغيرات f على .D.
- $u_0 \in I$ و $f(I) \subset I$ تحقق بأن I = [0,3] و I = [0,3]
 - . lim u_n حدد (4

<u>.C</u> المتتاليات المتحادية:

.01 تعریف:

. لتكن
$$\left(\mathbf{u}_{n} \right)_{n \geq n_{0}}$$
 و $\left(\mathbf{u}_{n} \right)_{n \geq n_{0}}$ متتاليتين عدديتين

: نقول إن
$$(v_n)$$
 و (v_n) متحادیتان لنعني أن

- 1. إحداهما تزايدية و الأخرى تناقصية.
 - $\lim_{n\to+\infty} (v_n u_n) = 0 \quad .2$

الأستاذ: بنموسى محمد

الصفحة

درس رقم

درس المتتاليات العددية

- . تمرین تطبیقی : لتکن $u_n = -\frac{1}{n^2}$ و $u_n = \frac{1}{n}$ متتالیتین عددیتین . 02
 - . بين أن : (u_n) تناقصية ثم (v_n) تزايدية .
- . استنتج بأن المتتاليتان $\left(v_{n}\right)$ و $\left(u_{n}\right)$ متحاديتان . $\lim_{n\to+\infty}v_{n}-u_{n}$ متحاديتان . 2
 - .03 خاصية :
 - . لتكن $\left(\mathbf{u}_{n}\right)_{n\geq n_{0}}$ و $\left(\mathbf{u}_{n}\right)_{n\geq n_{0}}$ متتاليتين متحاديتين
 - . $\mathbf{u}_{n} \leq \mathbf{v}_{n}$ لدينا $\mathbf{n} \geq \mathbf{n}_{0}$ لدينا (\mathbf{v}_{n}) تناقصية فإن لكل (\mathbf{u}_{n}) تناقصية وذا كانت
 - .04 برهان:
 - بمأن المتتالية (u_n) تزايدية إذن المتتالية (u_n) تناقصية .
- . المتتالية $\left(w_{n}\right)$ المعرفة بما يلي : $w_{n}=v_{n}-u_{n}$. المتتالية $\left(w_{n}\right)$ لأنها مجموع متتاليتين تناقصيتين
- . $\mathbf{v}_{\mathbf{n}} \geq \mathbf{u}_{\mathbf{n}}$ و بالتالي $\mathbf{w}_{\mathbf{n}} = \mathbf{v}_{\mathbf{n}} \mathbf{u}_{\mathbf{n}} \geq \mathbf{0}$ أي $\mathbf{w}_{\mathbf{n}} \geq \mathbf{u}_{\mathbf{n}} + \mathbf{u}_{\mathbf{n}} = \mathbf{0}$ و بالتالي $\mathbf{w}_{\mathbf{n}} = \mathbf{0}$. $\mathbf{v}_{\mathbf{n}} \geq \mathbf{0}$ في جهة أخري $\mathbf{w}_{\mathbf{n}} = \mathbf{0}$ و بالتالي $\mathbf{w}_{\mathbf{n}} = \mathbf{0}$
 - . u_n ≤ v_n : خلاصة
 - .05 خاصية:
 - : لتكن $\left(u_{n}\right)_{n\geq n_{0}}$ و $\left(u_{n}\right)_{n\geq n_{0}}$ متتاليتين متحاديتين لدينا
 - و (v_n) متقاربتان.
 - $\lim_{n\to+\infty} \mathbf{u}_n = \lim_{n\to+\infty} \mathbf{v}_n = \ell \in \mathbb{R}$
 - .06 برهان:
- $\mathbf{u_n} < \ell < \mathbf{v_n}$ الرتابة قطعا $\mathbf{u_n} \leq \ell \leq \mathbf{v_n}$ فإن $\mathbf{u_n} \leq \ell \leq \mathbf{v_n}$ الرتابة قطعا $\mathbf{v_n} = \lim_{n \to +\infty} \mathbf{v_n} = \lim_{n \to +\infty} \mathbf{v_n} = \ell \in \mathbb{R}$ ملحوظة : إذا كانت : $(\mathbf{v_n})$ تزايدية و
 - حالة $1:(u_n)$ تزايدية و (v_n) تناقصية (نفس البرهان ل (u_n) تناقصية و (v_n) تزايدية).
 - $\forall n \in \mathbb{N} \ , n \geq n_0 \ v_n \leq v_{n_0} :$ تناقصية إذن $\left(v_n\right)$. $\forall n \in \mathbb{N} \ , n \geq n_0 \ u_{n_0} \leq u_n :$ تزايدية إذن $\left(u_n\right)$
 - . $\mathbf{n} \geq \mathbf{n}_0$ ومنه : $\mathbf{u}_{\mathbf{n}_0} \leq \mathbf{u}_{\mathbf{n}} \leq \mathbf{v}_{\mathbf{n}} \leq \mathbf{v}_{\mathbf{n}_0}$ و فنك لكل
 - . $\lim_{n\to +\infty} \mathbf{u}_n = \ell$: نضع نضع و مكبورة ب $\mathbf{v}_{\mathbf{n}_0}$ إذن و المتتالية $\left(\mathbf{u}_n\right)$ تزايدية و مكبورة ب $\left(\mathbf{u}_n\right)$ إذن و المتتالية
 - . $\lim_{n\to +\infty}v_n=\ell'$: نافصية و مصغورة ب u_n إذن u_n اذن u_n متقاربة . نضع و $v_n=\ell'$
 - . $\lim_{n\to +\infty} \mathbf{v}_{\mathbf{n}} \mathbf{u}_{\mathbf{n}} = \mathbf{0} \Leftrightarrow \ell' \ell = \mathbf{0} \Leftrightarrow \ell' = \ell$: بمأن بمأن $\left(\mathbf{v}_{\mathbf{n}}\right)_{\mathbf{n} \geq \mathbf{n}_0} \mathbf{0} \left(\mathbf{u}_{\mathbf{n}}\right)_{\mathbf{n} \geq \mathbf{n}_0} \mathbf{0}$ بمأن بمثان يتنين متحاديتين إذن بالمتابي متحاديتين إذن بالمتابي متحاديتين إذن بالمتابي متحاديتين إذن بالمتابي با
 - $\ell' = \ell$: خلاصة