

QCut, Quantum circuit-knitting on FiQCI

Joonas Nivala, Junior Application Specialist

Circuit Knitting - Basics

What and why?

- Split a large circuit into multiple smaller pieces
- Simulate large QPUs on smaller ones
- "Increase" number of available qubits
- Parallel Quantum Computing

How?

Gate cut

Wire cut

- Quasi probability distribution (QPD) simulation
 - Sample operations from a distribution

Steps:

- Generate experiment circuits
 a. sample qpd
- 2. Execute circuits
- 3. Post-process to obtain expectation values

$$Id(\bullet) = \sum_{i=1}^{8} c_i Tr[O_i(\bullet)] \rho_i$$

O_i	$ ho_i$	c_i
$O_1 = I$	$ ho_1= 0 angle\langle 0 $	$c_1=+1/2$
	$ ho_2 = 1 angle \langle 1 $	$c_2=+1/2$
	$ ho_3= + angle\langle+ $	$c_3=+1/2$
	$ ho_4 = - angle \langle - $	$c_4=-1/2$
	$ ho_5= +i angle\langle+i $	$c_5=+1/2$
	$ ho_6= -i angle\langle -i $	$c_6=-1/2$
	$ ho_7 = 0 angle \langle 0 $	$c_7=+1/2$
	$ ho_8 = 1 angle \langle 1 $	$c_8=-1/2$

Э

Wire cut - step 1

Generate experiment circuits:

- Single cut:
 - Each line in QPD gives a circuit pair
 - o 8 pairs so 16 total circuits
- Multiple cuts
 - Generate all QPD combinations of length n
 - o 8 groups of k so $k \cdot 8^n$ total circuits

O_i	$ ho_i$	c_i
$O_1 = I$	$ ho_1= 0 angle\langle 0 $	$c_1=+1/2$
$O_2 = I$	$ ho_2= 1 angle\langle 1 $	$c_2=+1/2$
$O_3 = X$	$ ho_3= + angle\langle+ $	$c_3=+1/2$
$O_4 = X$	$ ho_4 = - angle \langle - $	$c_4=-1/2$
$O_5 = Y$	$ ho_5= {+}i angle\langle{+}i $	$c_5=+1/2$
	$ ho_6= -i angle\langle-i $	$c_6=-1/2$
$O_7 = Z$	$ ho_7= 0 angle\langle 0 $	$c_7=+1/2$
$O_8 = Z$	$ ho_8= 1 angle\langle 1 $	$c_8=-1/2$

Wire cut - step 1 - example

O_i	$ ho_i$	c_i
$O_1 = I$	$ ho_1= 0 angle\langle 0 $	$c_1=+1/2$
$O_2 = I$	$ ho_2= 1 angle\langle 1 $	$c_2=+1/2$
$O_3 = X$	$ ho_3= + angle\langle+ $	$c_3=+1/2$
$O_4 = X$	$ ho_4 = - angle \langle - $	$c_4=-1/2$
	$ ho_5= {+}i angle\langle{+}i $	$c_5=+1/2$
$O_6 = Y$	$ ho_6= -i angle\langle-i $	$c_6=-1/2$
	$ ho_7= 0 angle\langle 0 $	$c_7=+1/2$
$O_8 = Z$	$ ho_8= 1 angle\langle 1 $	$c_8=-1/2$

Wire cut - step 1 - example

O_i	$ ho_i$	c_i
$O_1 = I$	$ ho_1= 0 angle\langle 0 $	$c_1=+1/2$
$O_2 = I$	$ ho_2= 1 angle\langle 1 $	$c_2=+1/2$
$O_3 = X$	$ ho_3= + angle\langle+ $	$c_3=+1/2$
$O_4 = X$	$ ho_4= - angle\langle- $	$c_4=-1/2$
$O_5 = Y$	$ ho_5= {+}i angle\langle{+}i $	$c_5=+1/2$
$O_6 = Y$	$ ho_6= -i angle\langle-i $	$c_6=-1/2$
$O_7 = Z$	$ ho_7= 0 angle\langle 0 $	$c_7=+1/2$
$O_8 = Z$	$ ho_8= 1 angle\langle 1 $	$c_8=-1/2$

Wire cut - step 2

Execute all circuits

- Independent so order doesn't matter
- Sufficient samples needed:

$$\circ \quad \gamma^{2n} \cdot rac{1}{\epsilon^2}$$
 , where $\gamma = \sum_i |c_i|$

- γ^{2n} is called the overhead
- for wire cuts $\gamma = 4$

O_i	$ ho_i$	c_i
$O_1 = I$	$ ho_1= 0 angle\langle 0 $	$c_1=+1/2$
	$ ho_2= 1 angle\langle 1 $	$c_2=+1/2$
	$ ho_3= + angle\langle+ $	$c_3=+1/2$
$O_4 = X$	$ ho_4= - angle\langle- $	$c_4=-1/2$
$O_5 = Y$	$ ho_5= {+}i angle\langle{+}i $	$c_5=+1/2$
$O_6 = Y$	$ ho_6= -i angle\langle-i $	$c_6=-1/2$
$O_7 = Z$	$ ho_7= 0 angle\langle 0 $	$c_7=+1/2$
$O_8 = Z$	$ ho_8= 1 angle\langle 1 $	$c_8=-1/2$

Wire cut - step 3

- Expectation values can be reconstructed with post-processing
 - o apply $f:\{0,1\}^N \to [-1,1]^N$ for each result
 - o apply $sgn(c_i)sf(\boldsymbol{y})$
 - o take mean of results

O_i	$ ho_i$	c_i
$O_1 = I$	$ ho_1= 0 angle\langle 0 $	$c_1=+1/2$
$O_2 = I$	$ ho_2= 1 angle\langle 1 $	$c_2=+1/2$
$O_3 = X$	$ ho_3= + angle\langle+ $	$c_3=+1/2$
$O_4 = X$	$ ho_4= - angle\langle- $	$c_4=-1/2$
$O_5 = Y$	$ ho_5= {+}i angle\langle{+}i $	$c_5=+1/2$
	$ ho_6= -i angle\langle -i $	$c_6=-1/2$
$O_7 = Z$	$ ho_7= 0 angle\langle 0 $	$c_7=+1/2$
$O_8 = Z$	$ ho_8= 1 angle\langle 1 $	$c_8=-1/2$

Wire cut - drawbacks

Number of circuits:

- Grows as: $k \cdot 8^n$
 - o k = pieces circuit is cut into
 - o n = number of cuts

Number of samples

- Grows as: $\gamma^{2n} \cdot \frac{1}{\epsilon^2}$
 - \circ $\gamma = gamma-factor$
 - o n = number of cuts
 - \circ ϵ = desired error in approximation

Only returns expectation values

Wire cut - drawbacks - solutions

Number of circuits:

- Grows as: $k \cdot 8^n$
 - k = pieces circuit is cut into
 - \circ n = number of cuts

Only few cuts possible

 Can be combated by using multiple QPUs

Number of samples

- Grows as: $\gamma^{2n} \cdot \frac{1}{\epsilon^2}$
 - \circ γ = gamma-factor
 - o n = number of cuts
 - \circ ϵ = desired error in approximation

Only returns expectation values

- Need enough samples so that distribution of results visible
- Still useful for many applications

QCut

QCut

- Python package for wire cutting
- No reset gates
- No mid-circuit measurements
 - Runs on FiQCI

pip install QCut

QCut - overview

The user wants to run a circuit that doesn't fit on the backends they have available. User then creates a circuit with cut operations, passes it to QCut with the desired observables and receives expectation values for the observables.

QCut decomposes the cut circuit into a group of circuits and passes them all to a Quantum backend and receives results for the circuits. QCut the applies post-processing to reconstruct expectation values for the original circuit.

Quantum backend receives a group of circuits, executes them, and returns the results.

QCut - workflow example

QCut - Helmi

QCut - Helmi

QCut - Applications

QCut - Applications

- Algorithms that return expectation values
 - Optimization problems
 - Variational algorithms
- Problems where circuit can be cut with only a few cuts
 - QAOA is a good and easy example
 - Quantum dynamics simulations

QCut - Applications - QAOA

QCut - QAOA

More Circuit Knitting

Gate cuts

Gate cut

- Works the same as wire cutting
- QPD depends on the gate being cut
- For CX-family gates $\gamma=3$
- For SWAP $\gamma=7$
- Smaller circuit overhead
- Needs mid-circuit measurements

$egin{aligned} ext{Operation} \ &I\otimes I \ &A_1\otimes A_2 \ &M_{A_1}\otimes e^{\pm i\pi A_2/4} \ &e^{\pm i\pi A_1/4}\otimes M_{A_2} \end{aligned}$

Classical Communication

Classical communication

- 1. Local operations (LO)
 - a. circuits completely independent
 - b. wire and gate cuts
- 2. LO and one-way communication
 - a. communication can be implemented via
 - b. classical processing between circuit pairs
 - c. wire cuts
- 3. LO and two-way communication
 - a. real time communication between circuits
 - b. gate cuts

One-way communication

- Wire cuts via teleportation
- Multiple simultaneous cuts cheaper than multiple individual ones
- $\gamma = (2^{k+1} 1)^{1/k}$
 - o k is the number of simultaneous cuts
- For a single cut transforms wire cut into cutting the CNOT gate

One-way communication

Two-way communication

- Gate cuts with teleportation through Choi state
- Multiple simultaneous cuts cheaper than multiple individual ones

$$\gamma_{LOCC}(\mathcal{U}) = \left(2\left(\sum_{i} \alpha_{i}\right)^{2k} - 1\right)^{1/k}$$

- for CNOT $\gamma = (2^{k+1} 1)^{1/k}$
 - o k is the number of simultaneous cuts

Two-way communication

Two-way communication

Quantum Communication

Quantum communication

- Greatly simplifies wire cuts
- No QPD sampling required
- Only overhead from transferring a quantum state

Optimal cut locations

Finding optimal cuts

- Minimize overhead from cuts
- Circuit to a graph
 - o for each 2-qubit gate 2 vertices
 - o edges are possible wire and gate cuts
 - o edges weighed by their overhead
- Finding cuts can be thought of as partitioning the graph

Parallel quantum computing

Parallel quantum computing

Combine small circuits into larger ones and distribute these on the large QPUs

Distribute circuits onto multiple QPUs

A few large QPUs

Many smaller QPUs

Joonas Nivala

linkedin: @JooNiv

email: joonas.nivala@csc.fi

facebook.com/CSCfi

twitter.com/CSCfi

linkedin.com/company/csc---it-center-for-science

github.com/CSCfi