

Hate Speech Detection Final Report

Faris Chaudhry 09/06/23

Contents

Problem Statement

Assumptions

Data Cleaning and Pre-processing

EDA and Featurization

Models

Business Understanding

- Hate Speech Detection is a task of sentiment classification.
- Censor hate speech posts.
 - These aren't in line with our policy.
 - Defined as discriminatory messages based on identity.
- Earn user's trust as safe and accessible platform.
- Raise advertiser confidence in brand image and platform.
 - Increase ad revenue.

Dataset and Assumptions

- The data is derived from real tweets.
- The training data is labelled correctly.
- The training and test data are from the same domain.
- The amount of hate speech compared to non-hate speech reflects the proportion on the platform (see below)..
- Tweets are below the limit of 200 characters and are formatted in the same way.

Total number of observations	16130
Total number of files	1
Total number of features	2
Base format of the file	.csv
Size of the data	1.56 MB
train.tweets.csv Total number of observations	29530
	20530
Total number of files	
1 otal hambel of mes	1
Total number of features	1 3
	1 3 .csv

test tweets.csv

Dataset split into training and testing data.

Data Pre-processing

Column Validation

- Standardise Column Names
 - Lowercase
 - Replace spaces with underscores
- Remove duplicate tweets
- Remove null tweets
- Remove unlabelled training data
- Remove null and duplicate indexes

Up sampling

- Make number of samples labelled '0' and '1' same.
- Reduces bias towards randomly guessing '0'.
- Lowers false negatives.

```
label
1 27517
0 27517
Name: count, dtype: int64
```

```
test_df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 17197 entries, 31963 to 49159
Data columns (total 1 columns):
    # Column Non-Null Count Dtype
-------
0 tweet 17197 non-null object
dtypes: object(1)
memory usage: 268.7+ KB
```

Data Cleaning

Data Cleaning (remove extra noise)

- Make all tweet words lowercase
- Remove punctuation
- Remove stop words (common words that add no information e.g., 'the', 'and', 'a', 'l')

Remove common and rare words and symbols.

- Common words show up too often.
 - Add extra dimensionality.
 - Don't contain any information used for classification
- Rare words don't have great enough sample size.
 - Overfitting to model
 - Add extra dimensionality
 - Around 200 tokens which only show up once in dataset.

```
@user 38466
& 4117
âE | 2381
- 2044
like 2020
Name: count, dtype: int64
```

Optional Data Cleaning

Spelling Correction

- Reduces lexicon of words which must be identified.
- Words may be corrected to the wrong word.
- Slang and language changed too quickly.

Suffix and Prefix Removal (or)

Lemmatization

- Reduces words to their root form.
- Reduces lexicon of words which must be identified.

Tokenization

- Tweets can be analysed by which their contained words.
- Loss: repetition of words and phrases is not considered.

Vectorisation

- Each words gets its own vector.
- A tweet is identified by adding together the vectors of its words.
- Loss: adds extra noise and unnecessary dimensionality.
- Loss: doesn't work if word is not found in model.

Extra Training Features

What factors are indicators of hate speech?

- Word count and avg. length:
 - some speech patterns are indicative of anger.
- Hashtags:
 - hashtags might be associated with hate speech.
- Exclamation marks:
 - can be an indicator of rage.
- Question marks:
 - people often use rhetorical questions to show anger.
- Uppercase usage:
 - can be an indicator of anger.
- Sentiment:
 - there might be a link between use of negative words and hate speech.

	tweet	label	sentiment
id			
24643	mad @user interracial couple tweet, go fuck yo		-0.5125
22452	@user well there's surprise wonder much bi		0.2000
22720	iâ□□ve id checked police zero times 8 months		0.0000
21965	hope guy say come trump gets speak mind ŏ□□		0.0000
31961	@user #sikh #temple vandalised #calgary, #wso		0.0000
31957	fishing tomorrow @user carnt wait first time 2	0	0.2500
31958	ate @user isz youuu?öDDDöDDDöDDDöDDDöDDDöDDDöD	0	0.0000
31959	see nina turner airwaves trying wrap mantle ge	0	0.4000
31960	listening sad songs monday morning otw work sad	0	-0.5000
31962	thank @user follow	0	0.0000

label	tweet	word_count	avg_word	hashtags	exclamation_marks	question_marks	upper
1	mad @user interracial couple tweet, go fuck yo	17	6.438				0
1	@user well there's surprise wonder much bi	14	5.000				0
1	iâ□□ve id checked police zero times 8 months	25	4.042				0
1	hope guy say come trump gets speak mind ŏ□□	24	4.500				0
1	@user #sikh #temple vandalised #calgary, #wso	13	5.500				0
0	fishing tomorrow @user carnt wait first time 2	13	4.455				0
0	ate @user isz youuu?ð\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		12.600				0
0	see nina turner airwaves trying wrap mantle ge	25	4.652				0
0	listening sad songs monday morning otw work sad	15	3.769				0
0	thank @user follow	8	4.167	0	0	0	0

Extra Training Features

Textcloud of Common Words

Non-Hate Comments

Hate Comments

Models Foreword

We must choose whether we wish to minimizes false negatives (stricter model) or false positives more (more lenient model).

- Users don't want their content to be flagged when it's not hate speech.
- Advertisers don't want hate speech at all; if we miss
 it then this erodes their confidence in us.
- Users can flag missed hate speech and it can be manually reviewed

This must be decided by stakeholders, so we primarily use F1-score, precision, and recall.

```
def scorer(y_validate, y_pred):
    print("Number of mislabeled points out of a total %d points : %d"
    % (X_validate.shape[0], (y_validate != y_pred).sum()))

    print("Number of correctly labelled points out of a total %d points : %d"
    % (X_validate.shape[0], (y_validate == y_pred).sum()))

    print("Number of false positives out of a total %d points : %d"
    % (X_validate.shape[0], ((y_validate != y_pred) & (y_pred == 1)).sum()))

    print("Number of false negatives out of a total %d points : %d"
    % (X_validate.shape[0], ((y_validate != y_pred) & (y_pred == 0)).sum()))

    tp = ((y_validate == y_pred) & (y_pred == 1)).sum()
    fp = ((y_validate != y_pred) & (y_pred == 1)).sum()
    fn = ((y_validate != y_pred) & (y_pred == 0)).sum()

    prec = tp / (tp + fp)
    recall = tp / (tp + fn)
```

K-Nearest Neighbor (KNN)

Hyperparameters

- n_neighbours=1: any higher n was reducing the F-1 score.
- weights='distance': can be uniform or distance. Using distance makes weights inversely proportional to the distance.
- leaf_size=30: default
- p=1: uses l1 norm (max) for distance rather than Euclidian distance.

Model can't be graphed since it uses 7 features plus the TF-IDF transformer.

K Nearest Neighbors

Decision Tree

- Best model by every metric.
- Especially high recall.
 - Low number of false negatives.
 - Stricter model
- No max depth specified so the tree is quite complex.
- gini was the best criterion.
 - log_loss and entropy were also tried.

Logistic Regression

- Bad model overall.
- Could have benefitted from better hyper tuning of parameters.
 - Greater regularization.
 - Change in intercept bias.
- Balanced class weights originally were used because the minority class wasn't up sampled.
 - After up sampling, this makes very little difference.
- Random sampling for all models can cause a bit of imbalance between the two classes (negligible if randomly selected).

Gaussian Naïve Bayes

- Bad model overall.
- TF-IDF transformation couldn't be used because it outputs a sparse matrix and GNB needs a dense one.
 - Could be fixed if pipeline not used.
- Could be improved using CountVector transformation if data preprocessing style is changed.

$$P(x_i \mid y) = rac{1}{\sqrt{2\pi\sigma_y^2}} \exp\Biggl(-rac{(x_i - \mu_y)^2}{2\sigma_y^2}\Biggr)$$

Stochastic Gradient Descent (SGD)

- Bad model overall.
- Could be improved using CountVector transformation if data preprocessing style is changed.
- An accelerated gradient descent might be beneficial.
- Changing the loss function using might be beneficial.

Stochastic Gradient Descent

XGB Classifier

- Worked moderately well
- Ensemble classifier
 - Would likely benefit from more features for training.
- A list of commonly used words in hate speech could be used.
 - List would have to be updated regularly since language changes quickly on social media.
 - Could introduce political bias.

Results

Decision tree performed the best in every category. It was exceptional at recall (i.e., minimizing false negatives).

Why black box models are suitable:

- Don't want political views to affect what is viewed as hate speech (greater censorship).
- Better than individuals reviewing hate speech since model is consistent.
- Bias can exist from chosen data and how it is labelled, but not after the model is trained.
- However, model will have to be retrained to keep up with changing language.

model	f1	acc	precision	recall
tree	0.964387	0.962297	0.932150	0.998933
knn	0.952529	0.950032	0.925684	0.980978
xgb	0.867733	0.853457	0.805327	0.940622
gnb	0.679524	0.618061	0.594822	0.792356
sgd	0.672734	0.617789	0.598064	0.768711
regr	0.657482	0.627328	0.619902	0.699911

Thank You

