CS/ECE/ISYE524: Introduction to Optimization – Linear Optimization Models

Jeff Linderoth

Department of Industrial and Systems Engineering University of Wisconsin-Madison

February 18, 2024

The Top Brass example revisited

```
\begin{array}{ll} \mbox{maximize} & 12f+9s \\ \mbox{subject to:} & 4f+2s \leq 4800, \quad f+s \leq 1750 \\ & 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500 \end{array}
```

Suppose the maximum profit is p^* . How can we bound p^* ?

- Finding a *lower* bound is easy... pick any feasible point!
 - $\{f=0, s=0\}$ is feasible. So $p^* \ge 0$ (we can do better...)
 - $\{f = 500, s = 1000\}$ is feasible. So $p^* \ge 15000$.
 - $\{f = 1000, s = 400\}$ is feasible. So $p^* \ge 15600$.
- Each feasible point of the LP yields a lower bound for p^* .
- Finding the largest lower bound = solving the LP!

```
\begin{array}{ll} \underset{f,s}{\text{maximize}} & 12f+9s \\ \text{subject to:} & 4f+2s \leq 4800, \quad f+s \leq 1750 \\ & 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500 \end{array}
```

Suppose the maximum profit is p^* . How can we bound p^* ?

- Finding an *upper* bound is harder... (use the constraints!)
 - $12f + 9s \le 12 \cdot 1000 + 9 \cdot 1500 = 25500$. So $p^* \le 25500$.
 - $\begin{aligned} \bullet \ 12f + 9s & \leq f + (4f + 2s) + 7(f + s) \\ & \leq 1000 + 4800 + 7 \cdot 1750 = 18050. \ \text{So} \ \textbf{\textit{p}}^{\star} \leq \textbf{18050}. \end{aligned}$
- Combining the constraints in different ways yields different upper bounds on the optimal profit p^* .

$$\begin{array}{ll} \mbox{maximize} & 12f+9s \\ \mbox{subject to:} & 4f+2s \leq 4800, \quad f+s \leq 1750 \\ & 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500 \end{array}$$

Suppose the maximum profit is p^* . How can we bound p^* ?

What is the **best** upper bound we can find by combining constraints in this manner?

$$\begin{array}{ll} \mbox{maximize} & 12f+9s \\ \mbox{subject to:} & 4f+2s \leq 4800, \quad f+s \leq 1750 \\ & 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500 \end{array}$$

• Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$ be the multipliers. If we can choose them such that for *any* feasible f and s, we have:

$$12f + 9s \le \lambda_1(4f + 2s) + \lambda_2(f + s) + \lambda_3 f + \lambda_4 s \tag{1}$$

Then, using the constraints, we will have the following upper bound on the optimal profit:

$$12f + 9s \le 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4$$

$$\begin{array}{ll} \underset{f,s}{\text{maximize}} & 12f+9s \\ \text{subject to:} & 4f+2s \leq 4800, \quad f+s \leq 1750 \\ & 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500 \end{array}$$

• Let $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$ be the multipliers. If we can choose them such that for *any* feasible f and s, we have:

$$12f + 9s \le \lambda_1(4f + 2s) + \lambda_2(f + s) + \lambda_3 f + \lambda_4 s \tag{1}$$

Rearranging (1), we get:

$$0 \le (4\lambda_1 + \lambda_2 + \lambda_3 - 12)f + (2\lambda_1 + \lambda_2 + \lambda_4 - 9)s$$

We can ensure this always holds by choosing $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ to make the bracketed terms nonnegative.

$$\begin{array}{ll} \mbox{maximize} & 12f+9s \\ \mbox{subject to:} & 4f+2s \leq 4800, \quad f+s \leq 1750 \\ & 0 \leq f \leq 1000, \quad 0 \leq s \leq 1500 \end{array}$$

• **Recap**: If we choose $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$ such that:

$$4\lambda_1 + \lambda_2 + \lambda_3 \ge 12$$
 and $2\lambda_1 + \lambda_2 + \lambda_4 \ge 9$

Then we have a *upper* bound on the optimal profit:

$$p^* \le 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4$$

Finding the best (smallest) upper bound is... an LP!

The dual of Top Brass

To find the best upper bound, solve the dual problem:

$$\label{eq:local_equation} \begin{split} & \underset{\lambda_1,\lambda_2,\lambda_3,\lambda_4}{\text{minimize}} & & 4800\lambda_1 + 1750\lambda_2 + 1000\lambda_3 + 1500\lambda_4 \\ & \text{subject to:} & & 4\lambda_1 + \lambda_2 + \lambda_3 \geq 12 \\ & & & 2\lambda_1 + \lambda_2 + \lambda_4 \geq 9 \\ & & & \lambda_1,\lambda_2,\lambda_3,\lambda_4 \geq 0 \end{split}$$

The dual of Top Brass

Primal problem:

$$\begin{array}{ll} \underset{f,s}{\text{maximize}} & 12f + 9s \\ \text{subject to:} & 4f + 2s \leq 4800 \\ & f + s \leq 1750 \\ & f \leq 1000 \\ & s \leq 1500 \\ & f, s \geq 0 \end{array}$$

Solution is p^* .

Dual problem:

$$\begin{array}{ll} \underset{\lambda_1,\ldots,\lambda_4}{\text{minimize}} & 4800\lambda_1 + 1750\lambda_2 \\ & + 1000\lambda_3 + 1500\lambda_4 \\ \\ \text{subject to:} & 4\lambda_1 + \lambda_2 + \lambda_3 \geq 12 \\ & 2\lambda_1 + \lambda_2 + \lambda_4 \geq 9 \\ & \lambda_1,\lambda_2,\lambda_3,\lambda_4 \geq 0 \end{array}$$

Solution is d^* .

- Primal is a maximization, dual is a minimization.
- There is a dual variable for each primal constraint.
- There is a dual constraint for each primal variable.
- (any feasible primal point) $\leq p^* \leq d^* \leq$ (any feasible dual point)

The dual of Top Brass

Primal problem:

$$\max_{f,s} \qquad \begin{bmatrix} 12 \\ 9 \end{bmatrix}^\mathsf{T} \begin{bmatrix} f \\ s \end{bmatrix}$$
 s.t.
$$\begin{bmatrix} 4 & 2 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f \\ s \end{bmatrix} \leq \begin{bmatrix} 4800 \\ 1750 \\ 1000 \\ 1500 \end{bmatrix}$$

$$f,s \geq 0$$

Dual problem:

$$\min_{\lambda_1, \dots, \lambda_4} \qquad \begin{bmatrix} 4800 \\ 1750 \\ 1000 \\ 1500 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix}$$

$$\mathsf{s.t.} \qquad \begin{bmatrix} 4 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} \ge \begin{bmatrix} 12 \\ 9 \end{bmatrix}$$

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \ge 0$$

Using matrix notation...

Code: Top Brass dual.ipynb

Danger!

Warning

JuMP's definition of duality is **independent o**f the objective sense. That is, the sign of feasible duals associated with a constraint depends on the direction of the constraint and not whether the problem is maximization or minimization. **This is a different convention from linear programming duality in some common textbooks.** If you have a linear program, and you want the textbook definition, you probably want to use shadow_price and reduced_cost instead.

Weak Duality

Primal problem (P)

Dual problem (D)

$$\begin{array}{ll} \underset{\lambda}{\text{minimize}} & b^{\mathsf{T}} \lambda \\ \text{subject to:} & A^{\mathsf{T}} \lambda \geq c \\ & \lambda \geq 0 \end{array}$$

If x and λ are feasible points of (P) and (D) respectively:

$$c^{\mathsf{T}} x \le p^{\star} \le d^{\star} \le b^{\mathsf{T}} \lambda$$

Weak Duality: The value of every feasible dual solution provides an (upper) bound on the value of every feasible primal solution.

Weak Duality

Primal problem (P)

$$\begin{array}{ll} \underset{x}{\text{maximize}} & c^{\mathsf{T}}\!x \\ \text{subject to:} & Ax \leq b \\ & x \geq 0 \end{array}$$

Dual problem (D)

$$\begin{array}{ll} \underset{\lambda}{\text{minimize}} & b^{\mathsf{T}} \lambda \\ \text{subject to:} & A^{\mathsf{T}} \lambda \geq c \\ & \lambda \geq 0 \end{array}$$

If x and λ are feasible points of (P) and (D) respectively:

$$c^\mathsf{T} x \le p^\star \le d^\star \le b^\mathsf{T} \lambda$$

Strong Duality: if p^* and d^* exist and are finite, then $p^* = d^*$. This is a powerful and amazing fact.

General LP duality

Primal problem (P)

- optimal p^* is attained
- **2** unbounded: $p^* = +\infty$
- **3** infeasible: $p^* = -\infty$

Dual problem (D)

minimize
$$b^{\mathsf{T}}\lambda$$
 subject to: $A^{\mathsf{T}}\lambda \geq c$ $\lambda > 0$

- optimal d^* is attained
- **2** unbounded: $d^* = -\infty$
- **1** infeasible: $d^* = +\infty$

Which combinations are possible? Remember: $p^{\star} \leq d^{\star}$.

General LP duality

Primal problem (P)

Dual problem (D)

```
\begin{array}{ll} \underset{\lambda}{\text{minimize}} & b^{\mathsf{T}} \lambda \\ \text{subject to:} & A^{\mathsf{T}} \lambda \geq c \\ & \lambda \geq 0 \end{array}
```

There are **exactly four** possibilities:

- **1** (P) and (D) are both feasible and bounded, and $p^* = d^*$.
- $p^{\star} = +\infty$ (unbounded primal) and $d^{\star} = +\infty$ (infeasible dual).
- **3** $p^{\star} = -\infty$ (infeasible primal) and $d^{\star} = -\infty$ (unbounded dual).
- $p^{\star} = -\infty$ (infeasible primal) and $d^{\star} = +\infty$ (infeasible dual).

More properties of the dual

To find the dual of an LP that is **not** in standard form:

- convert the LP to standard form
- write the dual
- make simplifications

Example: What is the dual of the dual? the primal!

More duals

Standard form:

Free form:

$$\begin{array}{llll} \max_{x} & c^{\mathsf{T}} x \\ \mathrm{s.t.} & A x \leq b \\ & x \mathrm{\ free} \end{array} \qquad \begin{array}{lll} \min_{\lambda} & b^{\mathsf{T}} \lambda \\ \mathrm{s.t.} & \lambda \geq 0 \\ & A^{\mathsf{T}} \lambda = c \end{array}$$

Mixed constraints:

$$\begin{array}{llll} \max_{x} & c^{\mathsf{T}}x \\ \text{s.t.} & Ax \leq b \\ & Fx = g \end{array} \qquad \begin{array}{lll} \min_{\lambda,\mu} & b^{\mathsf{T}}\lambda + g^{\mathsf{T}}\mu \\ \text{s.t.} & \lambda \geq 0 \\ & \mu \text{ free} \\ & A^{\mathsf{T}}\lambda + F^{\mathsf{T}}\mu = c \end{array}$$

More duals

Equivalences between primal and dual problems

Minimization	Maximization
Nonnegative variable \geq	Inequality constraint \leq
Nonpositive variable \leq	Inequality constraint \geq
Free variable	${\sf Equality}{\sf constraint} =$
Inequality constraint \geq	Nonnegative variable \geq
Inequality constraint \leq	Nonpositive variable \leq
Equality constraint =	Free Variable

Simple example

Why should we care about the dual?

1 It can sometimes make a problem easier to solve

$$\begin{array}{lll} \max_{x,y,z} & 3x+y+2z \\ \text{s.t.} & x+2y+z \leq 2 \\ & x,y,z \geq 0 \end{array} \qquad \begin{array}{lll} \min_{\lambda} & 2\lambda \\ \text{s.t.} & \lambda \geq 3 \\ & 2\lambda \geq 1 \\ & \lambda \geq 2 \\ & \lambda \geq 0 \end{array}$$

- Dual is much easier in this case!
- Many solvers take advantage of duality.
- ② Duality is related to the idea of sensitivity: how much do each of your constraints affect the optimal cost?

Sensitivity

Primal problem:

$$\begin{array}{ll} \mbox{maximize} & 12f + 9s \\ \mbox{subject to:} & 4f + 2s \leq \mbox{4800} \\ & f + s \leq 1750 \\ & f \leq 1000 \\ & s \leq 1500 \\ & f, s \geq 0 \end{array}$$

Solution is p^* .

Dual problem:

$$\begin{array}{ll} \underset{\lambda_1,\ldots,\lambda_4}{\text{minimize}} & 4800\lambda_1 + 1750\lambda_2 \\ & + 1000\lambda_3 + 1500\lambda_4 \\ \\ \text{subject to:} & 4\lambda_1 + \lambda_2 + \lambda_3 \geq 12 \\ & 2\lambda_1 + \lambda_2 + \lambda_4 \geq 9 \\ & \lambda_1,\lambda_2,\lambda_3,\lambda_4 \geq 0 \end{array}$$

Solution is d^* .

If Millco offers to sell me more wood at a price of \$1 per board foot, should I accept the offer?

Sensitivity

Primal problem:

$$\begin{array}{ll} \underset{f,s}{\text{maximize}} & 12f + 9s \\ \text{subject to:} & 4f + 2s \leq 4800 \\ & f + s \leq 1750 \\ & f \leq 1000 \\ & s \leq 1500 \\ & f, s \geq 0 \end{array}$$

Solution is p^* .

Dual problem:

$$\begin{array}{ll} \underset{\lambda_1,\ldots,\lambda_4}{\text{minimize}} & 4800\lambda_1 + 1750\lambda_2 \\ & + 1000\lambda_3 + 1500\lambda_4 \\ \\ \text{subject to:} & 4\lambda_1 + \lambda_2 + \lambda_3 \geq 12 \\ & 2\lambda_1 + \lambda_2 + \lambda_4 \geq 9 \\ & \lambda_1,\lambda_2,\lambda_3,\lambda_4 \geq 0 \end{array}$$

Solution is d^{\star} .

- changes in primal constraints are changes in the dual cost.
- a small change to the feasible set of the primal problem can change the optimal f and s, but $\lambda_1, \ldots, \lambda_4$ will not change!
- if we increase 4800 by 1, then $p^* = d^*$ increases by λ_1 .

Sensitivity of Top Brass

$$\begin{array}{ll} \max \limits_{f,s} & 12f + 9s \\ \text{s.t.} & 4f + 2s \leq 5200 \\ & f + s \leq 1750 \\ & 0 \leq f \leq 1000 \\ & 0 < s < 1500 \end{array}$$

What happens if we add 400 wood?
Profit goes up by \$600! shadow price is \$1.50

Units

 In Top Brass, the primal variables f and s are the number of football and soccer trophies. The total profit is:

$$\begin{split} \text{(profit in \$)} &= \Big(12 \ \tfrac{\$}{\text{football trophy}}\Big) (f \ \text{football trophies}) \\ &\quad + \Big(9 \ \tfrac{\$}{\text{soccer trophy}}\Big) (s \ \text{soccer trophies}) \end{split}$$

 The dual variables also have units. To find them, look at the cost function for the dual problem:

$$\begin{split} \text{(profit in \$)} &= (4800 \text{ board feet of wood}) \bigg(\lambda_1 \, \tfrac{\$}{\text{board feet of wood}} \bigg) \\ &+ (1750 \text{ plaques}) \bigg(\lambda_2 \, \tfrac{\$}{\text{plaque}} \bigg) + \cdots \end{split}$$

 λ_i is the price that item i is worth to us.

Sensitivity in general

Primal problem (P)

Dual problem (D)

Suppose we add a small e to the constraint vector b.

- The optimal x^* (and therefore p^*) may change, since we are changing the feasible set of (P). Call new values \hat{x}^* and \hat{p}^* .
- As long as e is small enough, the optimal λ will not change, since the feasible set of (D) is the same.
- Before: $p^* = b^T \lambda^*$. After: $\hat{p}^* = b^T \lambda^* + e^T \lambda^*$
- Therefore: $(\hat{p}^{\star} p^{\star}) = \mathbf{e}^{\mathsf{T}} \lambda^{\star}$. Letting $\mathbf{e} \to 0$, $\nabla_b(p^{\star}) = \lambda^{\star}$.

Sensitivity of Top Brass

$$\max_{f,s} \quad \frac{12f + 9s}{s.t.} \quad 4f + 2s \le 4800$$

$$f + s \le 1750$$

$$0 \le f \le 1000$$

$$0 < s < 1500$$

Constraints that are loose at optimality have corresponding dual variables that are zero; those items aren't worth anything.

Complementary slackness

- At the optimal point, some inequality constraints become tight. Ex: wood and plaque constraints in Top Brass.
- Some inequality constraints may remain loose, even at optimality. Ex: brass football/soccer ball constraints. These constraints have slack

Either a primal constraint is tight **or** its dual variable is zero.

The same thing happens when we solve the dual problem. Some dual constraints may have slack and others may not.

Either a dual constraint is tight **or** its primal variable is zero.

These properties are called *complementary slackness*.

Proof of complementary slackness

- Primal: $\max_{x} c^{\mathsf{T}} x$ s.t. Ax < b, x > 0
- **Dual**: $\min_{\lambda} b^{\mathsf{T}} \lambda$ s.t. $A^{\mathsf{T}} \lambda > c, \ \lambda > 0$

Suppose (x, λ) is feasible for the primal and the dual.

- Because Ax < b and $\lambda > 0$, we have: $\lambda^T Ax < b^T \lambda$.
- Because $c \leq A^{\mathsf{T}}\lambda$ and $x \geq 0$, we have: $c^{\mathsf{T}}x \leq \lambda^{\mathsf{T}}Ax$.

Combining both inequalities: $c^{\mathsf{T}}x \leq \lambda^{\mathsf{T}}Ax \leq b^{\mathsf{T}}\lambda$.

By strong duality, $c^{\mathsf{T}}x^{\star} = \lambda^{\star\mathsf{T}}Ax^{\star} = b^{\mathsf{T}}\lambda^{\star}$

Proof of complementary slackness

$$c^{\mathsf{T}} x^{\star} = \lambda^{\star \mathsf{T}} A x^{\star} = b^{\mathsf{T}} \lambda^{\star}$$

 $u_i v_i = 0$ means that: $u_i = 0$, or $v_i = 0$, or both.

The first equation says: $x^{\star T}(A^T \lambda^{\star} - c) = 0$. But $x^* > 0$ and $A^T \lambda^* > c$, therefore:

$$\sum_{i=1}^{n} x_i^{\star} (A^{\mathsf{T}} \lambda^{\star} - c)_i = 0 \quad \Longrightarrow \quad x_i^{\star} (A^{\mathsf{T}} \lambda^{\star} - c)_i = 0 \quad \forall i$$

Similarly, the second equation says: $\lambda^{\star T} (Ax^{\star} - b) = 0$. But $\lambda^{\star} > 0$ and $Ax^{\star} < b$, therefore:

$$\sum_{j=1}^{m} \lambda_{j}^{\star} (Ax^{\star} - b)_{j} = 0 \quad \Longrightarrow \quad \lambda_{j}^{\star} (Ax^{\star} - b)_{j} = 0 \quad \forall j$$

Another simple example

Primal problem:

minimize
$$x_1 + x_2$$
 subject to: $2x_1 + x_2 \ge 5$ $x_1 + 4x_2 \ge 6$ $x_1 \ge 1$

Dual problem:

$$\begin{array}{ll} \mbox{maximize} & 5\lambda_1+6\lambda_2+\lambda_3 \\ \mbox{subject to:} & 2\lambda_1+\lambda_2+\lambda_3=1 \\ & \lambda_1+4\lambda_2=1 \\ & \lambda_1,\lambda_2,\lambda_3\geq 0 \end{array}$$

Question: Is the feasible point $(x_1, x_2) = (1, 3)$ optimal?

- Second primal constraint is slack, therefore $\lambda_2 = 0$.
- Solving dual equations gives $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1$
- The only dual solution satisfying complementary slackness is not feasible: This does not satisfy $\lambda_i > 0$

(1,3) is **not optimal** for the primal.

Another simple example

Primal problem:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & x_1 + x_2 \\ \text{subject to:} & 2x_1 + x_2 \geq 5 \\ & x_1 + 4x_2 \geq 6 \\ & x_1 \geq 1 \end{array}$$

Dual problem:

$$\begin{array}{ll} \underset{\lambda}{\text{maximize}} & 5\lambda_1+6\lambda_2+\lambda_3\\ \text{subject to:} & 2\lambda_1+\lambda_2+\lambda_3=1\\ & \lambda_1+4\lambda_2=1\\ & \lambda_1,\lambda_2,\lambda_3\geq 0 \end{array}$$

Another question: Is $(x_1, x_2) = (2, 1)$ optimal?

- Third primal constraint is slack, therefore $\lambda_3 = 0$.
- Costs should match, so $5\lambda_1 + 6\lambda_2 = 3$.
- Solving dual constraints gives: $\lambda_1 = \frac{3}{7}$, $\lambda_2 = \frac{1}{7}$, $\lambda_3 = 0$, which is dual feasible!

(2,1) is **optimal** for the primal. (Objective values are =!)