

Macchine non completamente specificate

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

- Sono macchine in cui per alcune configurazioni degli ingressi e dello stato presente non sono specificati gli stati prossimi e/o le configurazioni d'uscita
- La riduzione del numero degli stati in macchine non completamente specificata è ricondotta alla individuazione di una macchina minima che copre (compatibile con) quella data
- Il metodo di riduzione è simile a quello per macchine completamente specificate ma si basa sulla proprietà di compatibilità tra stati, invece che su quella di indistinguibilità.

Macchine non completamente specificate

Data una macchina non completamente specificata:

- una sequenza di ingresso si dice applicabile a partire da uno stato s; se:
 - la funzione stato prossimo δ è specificata per ogni simbolo d'ingresso della sequenza, tranne al più l'ultimo
- Due stati s_i e s_i di una macchina M si dicono compatibili se
 - partendo da s_i e da s_i
 - usando ogni possibile sequenza di ingresso applicabile I_a
 - si ottengono le stesse sequenze d'uscita ovunque queste siano specificate
- La compatibilità tra s_i e s_j si indica con: s_i v s_j

Compatibilità

- La compatibilità è una relazione meno forte di quella di indistinguibilità
- Non vale la proprietà transitiva cioè se $s_i v s_j$ e $s_i v s_k$ può non essere $s_i v s_k$. Quindi la compatibilità non è una relazione di equivalenza
- Ad esempio, $s_i v s_j e s_i v s_k \text{ ma } s_i \not \times s_k$:

s, - sequenza di uscita: s, - sequenza di uscita:

 s_k - sequenza di uscita:

valori d'uscita divers

Riduzione del numero di stati: compatibilità

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

La regola di Paull - Unger è stata estesa:

- Due stati sono compatibili se e solo se, per ogni simbolo di ingresso ia valgono le seguenti relazioni:
 - $\lambda(s_i, i_a) = \lambda(s_i, i_a) e$
 - i valori di uscita sono identici se ambedue specificati
 - se uno o entrambi non sono specificati l'uguaglianza si ritiene soddisfatta
 - $\delta(s_i, i_a) \vee \delta(s_j, i_a)$
 - gli stati prossimi sono compatibili se ambedue specificati
 - se uno o entrambi non sono specificati la compatibilità si ritiene soddisfatta

Analisi di coppie di stati - equivalenza

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONI

- Applicando la regola di Paull Unger agli stati di una macchina, si possono ottenere tre casi
 - 1. $S_i \nearrow S_i$
 - Se i simboli d'uscita sono diversi e/o
 - Se gli stati prossimi sono già stati verificati come distinguibili
 - 2. $S_i \sim S_i$
 - Se i simboli di uscita sono uguali e
 - Se gli stati prossimi sono già stati verificati come indistinguibili
 - 3. $s_i \sim s_i$ se $s_k \sim s_h$ (vincolo)
 - Se i simboli di uscita sono uguali e
 - Se gli stati prossimi non sono ancora stati verificati come indistinguibili

Analisi di coppie di stati - compatibilità

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

- Applicando la regola di Paull Unger agli stati di una macchina, si possono ottenere tre casi
 - 1. $S_i y' S_i$
 - Se i simboli d'uscita sono diversi e/o
 - Se gli stati prossimi sono già stati verificati come non compatibili
 - $S_i V S_i$
 - Se i simboli di uscita sono uguali e
 - Se gli stati prossimi sono già stati verificati come compatibili
 - 3. Insieme di coppie di stati che devono essere compatibili affinché la coppia in oggetto sia compatibile (compatibilità condizionate)

Tabella delle implicazioni

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

- Le relazioni di compatibilità si identificano con la Tabella delle Implicazioni
- L'analisi della tabella consente di propagare le <u>incompatibilità</u>, ma non di risolvere i vincoli di compatibilità condizionata.
- Non si può dire che "se non si riesce a dire che sono distinguibili è perché non lo sono ..."
- Al termine del procedimento avremo:
 - 1. Non compatibilità
 - 2. Compatibilità
 - 3. Insieme di vincoli su coppie di stati

Tabella delle implicazioni

- Poiché la relazione di compatibilità non è transitiva, non si può concludere che tutte le compatibilità sono soddisfatte.
- I vincoli vanno mantenuti per la costruzione delle classi di compatibilità
- Le classi di compatibilità si costruiscono esaminando il grafo delle compatibilità, che riporta le compatibilità condizionate e quelle incondizionate

Pag. 5

Esempio - obiettivo

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

- Cosa significa trovare un insieme di classi di compatibilità?
 - Gruppi di stati tali per cui non fa differenza essere nell'uno o nell'altro (in base a ciò che è osservabile e definito)
- Obiettivo?
 - Trovare una macchina con meno di 5 gruppi di stati

Pag. 6

Esempio: tabella degli stati ridotti

 Lo scopo è riuscire a trovare una macchina da sintetizzare con un numero di stati compatibili inferiore

• $\alpha = \{a,b,c\}$ È un caso che le classi

• $\beta = \{d,e\}$ siano disgiunte

	0	1
a	e/0	a/0
b	d/0	b/0
С	e/-	c/-
d	a/1	a/1
е	a/-	b/-

Classi di compatibilità

DIDARTIMENTO DI EL ETTRONICA E INCORMAZIONE

- Classe di compatibilità:
 - Insieme di stati compatibili fra di loro a coppie
 - Sul grafo di compatibilità una classe di compatibilità è rappresentata da un sottografo completo
 - le classi di compatibilità non generano una partizione tra gli stati (non sono disgiunte): uno stato può appartenere a più di una classe
- Classe di compatibilità prima:
 - Classe di compatibilità per la quale non esiste alcuna altra classe di compatibilità che la ricopre e che abbia un insieme di vincoli in essa incluso, o al limite coincidente
- Classe di massima compatibilità:
 - Classe di compatibilità non contenuta in alcuna altra classe
 - Una classe di massima compatibilità è individuata sul grafo da un sottografo completo non contenuto in nessun altro sottografo

Classi di compatibilità (massima e non)

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONI

- Classi di compatibilità:
 - a, b, c, d, e, ab, ac, ae, bc, cd, ce, de, abc, ace, cde
- Classi di massima compatibilità:
 - abc, ace, cde

7

 $\{d\}: \varphi$ $\{e\}: \varphi$

Classi di compatibilità: vincoli

{a,b,c}: {d,e}
{a,c,e}: {a,b} + {b,c} + {a,e}: {a,b} + {b,c}
{c,d,e}: {a,b} + {a,c} + {a,e} + {b,c}
{a,b}: {d,e}
{a,c}: ф
{a,e}: {a,b}
{b,c}: {d,e}
{c,d}: {a,c} + {a,e}
{c,d}: {a,c} + {a,e}
{c,e}: {a,e} + {b,c}
{d,e}: {a,b}
{d,e}: {a,b}
{c}: {a,b}
{c,c}: {a,e} + {b,c}
{d,e}: {a,b}
{d,e}: {a

Classi di compatibilità prima

- Classi non contenute in classi di maggior dimensioni con vincoli non superiori
 - Non esistono classi più grandi che implicano la soluzione di un numero di vincoli inferiori (sarebbero senz'altro più convenienti...)
- Si lavora su queste classi, invece che sulle sole classi di compatibilità massima o su tutte le classi

Pag. 10

Classi di compatibilità prima {a,b,c}: {d,e} {a,c,e}: {a,b,c} {c,d,e}: {a,e} {a,e}: {a,b} {c,d}: {a,e} {c,e}: {a,e} {b,c} {d,e}: {a,e} {c,e}: {a,e}

Copertura della macchina

DIPARTIMENTO DI ELETTRONICA E INFORMAZION

- Data una macchina M e il suo insieme di classi di compatibilità, la macchina M' il cui insieme degli stati è costituito da un insieme chiuso delle classi di compatibilità di M (che include tutti gli stati di M) copre M
- Per costruzione, il comportamento di M' è compatibile con quello di M e cioè,
 - Partendo da un qualsiasi stato di M, ne esiste uno in M' tale che
 - Per ogni sequenza di ingresso applicabile a entrambi, le sequenze di uscita sono identiche ogni volta che l'uscita di M è specificata
- Il problema della minimizzazione del numero di stati di una macchina non completamente specificata equivale quindi a:
 - Trovare il più piccolo insieme chiuso di classi di compatibilità che coprono tutti gli stati della macchina

Copertura della macchina: classi massime

DIPARTIMENTO DI ELETTRONICA E INFORMAZION

- L'insieme di tutte le classi di massima compatibilità è chiuso e copre l'insieme S degli stati
- Associando un nuovo stato ad una classe di massima compatibilità si ottiene una nuova macchina con un numero di stati:
 - Possibilmente minore di quello della macchina di partenza
 - Non necessariamente minimo
- Il numero di classi di massima compatibilità è il limite superiore al numero degli stati ridotto
- In genere, la macchina minima non è unica. Gli algoritmi esaustivi per identificare la macchina minima partono tutti dall'insieme delle classi di compatibilità massime

Classi di massima compatibilità: ricerca

DIPARTIMENTO DI ELETTRONICA E INFORMAZIO

- La definizione delle classi di massima compatibilità può avvenire individuando direttamente sul grafo tutti i più grandi sottografi completi
- Esistono diversi algoritmi specifici per l'individuazione di tutte le classi di massima compatibilità che utilizzano la tabella delle implicazioni considerando tutte e sole le incompatibilità
- Costruzione della funzione per il test di compatibilità

Costruzione, per colonne o per righe, dell'albero dei compatibili massimi

Albero dei compatibili massimi

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONI

Premesse:

- La radice dell'albero è costituita da tutti gli stati della macchina (ordine presente nella tabella delle implicazioni)
- Ogni nodo è costituito da un elenco di stati possibilmente compatibili
- Ogni stato della macchina genera un livello nell'albero
- I nodi di livello k sono costituiti da un elenco di stati per i quali la compatibilità è già stata verificata per tutti gli stati in elenco corrispondenti ai livelli precedenti
- Se un nodo è costituito da stati tutti già analizzati, tranne al più l'ultimo, allora l'analisi relativa a quel nodo è terminata e il nodo è una foglia dell'albero
- Se un nodo è costituito da un insieme di stati già compresi in un altro nodo dello stesso livello o di un nodo foglia, il nodo può essere eliminato

Albero dei compatibili massimi

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

- Costruzione dell'albero:
 - Dalla radice vengono costruiti 2 nuovi nodi, relativi all'esame del primo stato (a sinistra: ordine lessicografico)
 - Il nodo a sinistra è costituito da tutti gli stati della radice tranne lo stato corrente
 - Il nodo a destra contiene lo stato in esame e tutti i successivi ad esso compatibili
 - Terminata la generazione dei nodi di un livello, si esamina lo stato successivo dell'elenco, costruendo quindi un nuovo livello dell'albero
 - Ad ogni livello aggiunto nell'albero si esamina uno stato e si costruiscono due sotto-alberi per ogni nodo già presente, sempre secondo le modalità sinistra-destra
 - Il procedimento termina quando si sono esaminati tutti gli stati, tranne l'ultimo dell'elenco di partenza
 - Le foglie dell'albero rappresentano i compatibili massimi

M

Classi di massima compatibilità: da grafo

- Classi di massima compatibilità:
 - {a,b,c}:{(d,e)}
 - {a,c,e}:{(a,b);(b,c)}
 - {c,d,e}: {(a,b);(a,e);(a,c);(b,c)}

- La mancanza di disgiunzione tra le classi di massima compatibilità non consente di definire metodi esatti per la minimizzazione
 - Si utilizza un'euristica
- Ricerca di un insieme chiuso di classi di compatibilità che coprono la macchina a stati non completamente specificata
 - L'algoritmo greedy proposto consente di trovare una copertura della macchina a stati tramite un insieme chiuso di classi di compatibilità di cardinalità non superiore al numero di classi di massima compatibilità

Ricerca copertura chiusa

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

Funzione di costo:

- Benefici:
 - Numero di stati coperti dalla classe di compatibilità (+)
 - Numero di vincoli risolti dalla scelta della classe di compatibilità (+)
- Costi:

Partendo dalla lista delle classi di compatibilità prime, si itera il seguente processo:

- Si calcola il valore della funzione di costo per ogni classe di copertura
- Si sceglie una tra le classi a valore maggiore (non con tutti i contributi nulli)
- Si "eliminano" i vincoli risolti dipendenti dalla scelta fatta, eliminando sia quelli che non sono più tali perché "coperti" dalla classe scelta, sia quelli coperti dai vincoli della classe scelta
- Si "eliminano" le classi completamente coperte sia dalla classe scelta, sia dai vincoli della classe scelta perché non interessanti per successive scelte

Il processo termina quando tutti gli stati sono coperti e tutti i vincoli sono soddisfatti

Pag. 17

Pag. 18

Pag. 19