Comparing the Hebbian Rule and Predictive Coding Results

Jan 10, 2025 Arash Khajooei

Explanation of the Architecture for PC Layer

The **Predictive Coding (PC) Layer** is designed to model neural activity by minimizing a predictive error.

1. Core Components:

- Latent Variable (x): Represents the hidden state of the layer.
- \circ **Prediction** (μ): Represents the input prediction from a higher or lower layer.
- \circ $\,$ Error Calculation $(\mu-x)^2$: Measures how far off the latent variable is from the prediction.

2. Functionality:

- \circ **Energy Minimization:** The layer computes an energy value based on the error, which drives the latent variable x to adapt and reduce the discrepancy with μ .
- **Training Mode:** During training, the layer updates the latent variable *x* iteratively using the energy function.

3. Structure in Code:

- Forward Pass: Computes the energy and updates the latent variable x.
- o **Backward Pass:** Allows gradients to flow for updating other parts of the network.

Hebbian Mode in Code

When operating in **Hebbian mode**, the layer performs weight updates based on **Hebbian learning principles**. Here's a simplified explanation:

→ What Hebbian Learning Does:

- "Neurons that fire together, wire together."
- ◆ The layer strengthens the connections between input (x) and output (y) neurons based on their correlation.

→ Code Mechanism:

♦ Weight Update Rule:

- $\Delta W_{ij} = \text{lr_hebb} \cdot (\text{post}_j \cdot \text{pre}_i)$ where:
 - \circ (W_{ij}) : Weight between input i and output j.
 - o $(post_j)$: Output neuron activation.
 - \circ (pre_i): Input neuron activation.

- o (lr_hebb): Hebbian learning rate.
- Regularization is added to prevent weights from growing excessively or becoming unstable.

→ Hebbian Code Process:

- ◆ The layer records the input (pre_syn) and output (post_syn) activations.
- ◆ After the forward pass, it updates weights using the correlation of these activations.
- Regularization clips weights or applies decay for stability.

Explanation of Components in the Diagram

- 1. Input Layer (X_1, X_2, X_3) :
 - These represent the raw input signals or features entering the PC network.
 - \circ Each input (X_i) corresponds to a specific neuron or feature in the layer.
- 2. Hidden Layer ($\hat{x}_1, \hat{x}_2, \hat{x}_3$):
 - \circ These are **latent states** (\hat{x}_i) in the PC layer.
 - Each latent state is optimized iteratively to minimize the **energy** (prediction error) between the predicted signal (μ_i) and the latent state (\hat{x}_i) .
- 3. Output Layer (y_1, y_2, y_3) :
 - Represents the final outputs of the layer, which are passed to subsequent layers or used for comparison with a target signal.
 - \circ y_i is computed based on the latent states (\hat{x}_i) after error minimization.

4. Predictions (μ_1, μ_2, μ_3):

- These are the predicted signals, generated based on the outputs of higher or lower layers.
- \circ The PC layer minimizes the error between μ_i (predicted) and \hat{x}_i (latent state).

5. Feedback and Error Minimization:

- **Dashed Arrows** ($\mu \to \hat{x}$): Represent the flow of predictions (μ_i) into the latent states (\hat{x}_i).
- o **Solid Arrows** ($X \to \mu$ and $\hat{x} \to y$): Represent the forward pass, where raw input signals (X_i) or updated latent states are passed along to generate predictions or outputs.

Analysis of Each Architecture Result on Noisy MNIST:

1. Speed of Convergence:

→ PC-Only:

- ◆ This architecture converges quickly to a high accuracy and has the fastest convergence, particularly for lower noise levels (e.g., 0% and 20% noise). By epoch 5, substantial performance improvements have already been made, especially under low-noise conditions.
- ◆ **Strength**: Faster convergence compared to others in low-noise scenarios.

→ Hebb-Only:

- ◆ This architecture converges more slowly than PC-Only but shows steady improvements over time, especially in higher noise levels. It achieves competitive performance compared to PC-only architecture.
- ♦ Weakness: Slower initial learning, but stable progression.

→ Hybrid:

◆ The hybrid model shows a good speed to reach acceptable accuracy however in high noise percentages like 40% and 50% it collapses maybe some consideration is needed which I should take in my implementation.

2. Accuracy Across Noise Levels:

- → Low Noise (0-20%):
 - ◆ **PC-Only** performs the best in low-noise settings. It achieves slightly higher accuracy than other architectures, especially in the 0% and 20% noise scenarios.
 - ♦ **Hybrid** also performs well but doesn't outperform PC-Only in these conditions.
 - ◆ **Hebb-Only** lags in accuracy under low noise.
- → Medium Noise (30-40%):
 - ◆ Hybrid architecture starts to dominate as the noise level increases. Its combination of Hebbian updates and predictive coding enables it to maintain high accuracy where PC-Only and Hebb-Only begin to degrade.
 - ◆ **PC-Only** performs reasonably but shows a noticeable drop compared to Hybrid.
 - ◆ **Hebb-Only** starts closing the gap with PC-Only but still lags.
- → High Noise (50%):
 - ♦ Hybrid architecture collapsed under high noise conditions but in other scenarios, it performed well.
 - ◆ **Hebb-Only** performs better than PC-Only at high noise levels, likely due to its stability and local learning mechanisms.

Summary:

- Best Accuracy at Low Noise: PC-Only, with slightly better performance for 0-20% noise.
- Best Accuracy at High Noise: Hebb-Only, demonstrating robustness and adaptability.
- **Hebb-Only** is a slower learner but is a solid choice for handling high-noise scenarios with steady performance improvements over time.