XGBoost

Outline

- 1. Review Ensemble Learning
- 2. Review Decision Tree
- 3. Review Bagging
- 4. Review Random Forest
- 5. Review Boosting
- 6. Review Gradient Boosting
- 7. Review XGBoost Basics
- 8. **Problem 1-2**
- 9. Problem 3-4

Review Ensemble Learning

Review Ensemble Learning

Introduction

Decision **Trees**

A graphical representation of possible solutions to a decision based on certain conditions

Random **Forest**

Bagging-based algorithm where only a subset of features are selected at random to build a forest or collection of decision trees

Gradient Boosting **XGBoost**

Gradient Boosting employs gradient descent algorithm to minimize errors in sequential models

Review Decision Tree

Elements of a decision tree

- Root Node: The initial node at the beginning of a decision tree, where the entire population or dataset starts dividing based on various features or conditions.
- **Decision Nodes**: Nodes resulting from the splitting of root nodes are known as decision nodes. These nodes represent intermediate decisions or conditions within the tree.
- **Leaf Nodes**: Nodes where further splitting is not possible, often indicating the final classification or outcome. Leaf nodes are also referred to as terminal nodes.
- Pruning: The process of removing or cutting down specific nodes in a decision tree to prevent overfitting and simplify the model.
- Branch / Sub-Tree: A subsection of the entire decision tree is referred to as a branch or sub-tree. It represents a specific path of decisions and outcomes within the tree.
- Parent and Child Node: In a decision tree, a node that is divided into sub-nodes is known as a parent node, and the sub-nodes emerging from it are referred to as child nodes. The parent node represents a decision or condition, while the child nodes represent the potential outcomes or further decisions based on that condition

Review Decision Tree

Entropy is an information theory metric that measures the impurity or uncertainty in a group of observations (dataset)

Very impure

Less Impure

Minimum Impurity

Sum of Square Error (SSR) = 0

IG(Y,X) = E(Y) - E(Y|X)

$$Gain = E_{parent} - E_{children}$$

Này là gì vậy? Nhìn rối quá

Review Decision Tree

It was developed by statistician and sociologist Corrado Gini.

Consider a dataset D that contains samples from k classes. The probability of samples belonging to class i at a given node can be denoted as p_i . Then the Gini Impurity of D is defined as:

$$Gini(D) = 1 - \sum_{i=1}^k p_i^2$$

	Count		Probability		Gini Impurity
	n_1	n_2	p_1	p_2	$1-p_1^2-p_2^2$
Node A	0	10	0	1	$1 - 0^2 - 1^2 = 0$
Node B	3	7	0.3	0.7	$1 - 0.3^2 - 0.7^2 = 0.42$
Node C	5	5	0.5	0.5	$1 - 0.5^2 - 0.5^2 = 0.5$

Review Bagging

Review Random Forest

Review Random Forest

Model 1,2,...,N are individual models (eg. decision tree)

Boosting is an ensemble modelling, technique that attempts to build a strong classifier from the number of weak classifiers

w Boosting

Review Boosting

- Stump are not equally weighted in the final decision.
- Stump that create more error will have less contribution in the final decision

Review Boosting

$$H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

$$D_i^{t+1} = D_i^t \cdot \begin{cases} e^{\alpha_t}, & \text{if misclassified,} \\ e^{-\alpha_t}, & \text{if correctly classified.} \end{cases}$$

- T: total iterations
- h_t: weak learner
- α; learning rate

Review Gradient Boosting

Advantages	Disadvantages
High Predictive Accuracy	Computational Intensity
Feature Importance	Hyperparameter Tuning
Ensemble Learning	Black-Box Model

Gradient descent + boosting

Review Gradient Boosting

Advantages	Disadvantages	
High Predictive Accuracy	Computational Intensity	
Feature Importance	Hyperparameter Tuning	
Ensemble Learning	Black-Box Model	

residual(true, predicted) = residual(y, h(x)) = y - h(x)

$$f_{\text{loss}}(y, x) = \frac{1}{2}(y - h(x))^2$$

$$\operatorname{gradient}(\operatorname{true},\operatorname{predicted}) = \frac{\partial f_{\operatorname{loss}}}{\partial h}(y,h(x)) = -(y-h(x))$$

Adaboost	Gradient Boost
An additive model where shortcomings of previous models are identified by high-weight data points.	An additive model where shortcomings of previous models are identified by the gradient.
The trees are usually grown as decision stumps.	The trees are grown to a greater depth usually ranging from 8 to 32 terminal nodes.
Each classifier has different weights assigned to the final prediction based on its performance.	All classifiers are weighed equally and their predictive capacity is restricted with learning rate to increase accuracy.
It gives weights to both classifiers and observations thus capturing maximum variance within data.	It builds trees on previous classifier's residuals thus capturing variance in data.

Review Gradient Boosting

Compare GD vs GB (loss)

residual(true, predicted) = residual(y, h(x)) = y - h(x)

$$f_{loss}(y, x) = \frac{1}{2}(y - h(x))^2$$

$$\mathrm{gradient}(\mathrm{true},\,\mathrm{predicted}) = \frac{\partial f_{\mathrm{loss}}}{\partial h}(y,h(x)) = -(y-h(x))$$

Review Gradient Boosting

Compare GD vs GB (training)

Review Gradient Boosting

First and Second derivative

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_{t} + \alpha_{t} \cdot \left(-f'(\boldsymbol{w}_{t}) \right)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha_t \cdot \left(-\frac{f'(\mathbf{w}_t)}{f''(\mathbf{w}_t)} \right)$$

XGBoost:

Taking the best parts of AdaBoost and random forests and adding additional features:

- Sequential tree growing
- Minimizing loss function using gradient descent
- · Parallel processing to increase speed
- Regularization parameter

Why XGBoost algorithm is so good

Parallelization

- Utilize parallel processing, use multiple CPUs to execute the model
- A series of tree cannot build in parallization but build each tree can be parallelized

Regularization

- L1: lasso regularization, select features (force weights toward 0)
- L2: ridge regularization, smooth features (force small weights over param.)
- To avoid too complicated tree

Efficient tree pruning

- max depth to control tree grow
- prune the tree backwards and remove splits beyond which there is no positive gain.

$$\alpha^*R(x)^2 + \gamma^*T + L(f(x), data)$$

- α : Control degree of regularization
- R(x): Regularization function
- γ : Control degree of regularization based on number of leaf nodes
- T: number of leaf nodes

Some of the important parameters that are used in XGBoost are as follows:

- n_estimators/ntrees: This specifies the number of trees to build. The default value is 50.
- max_depth: This specifies the maximum tree depth. The default value is 6.
 Higher values will make the model more complex and may lead to overfitting.
 Setting this value to 0 specifies no limit.
- min_rows: This specifies the minimum number of observations for a leaf. The
 default value is 1.
- learn_rate: This specifies the learning rate by which to shrink the feature weights. Shrinking feature weights after each boosting step makes the boosting process more conservative and prevents overfitting. The range is 0.0 to 1.0. The default value is 0.3.
- sample_rate: This specifies the row sampling ratio of the training instance (the *x axis*). For example, setting this value to 0.5 tells XGBoost to randomly collect half of the data instances to grow trees. The default value is 1 and the range is 0.0 to 1.0. Higher values may improve training accuracy.
- col_sample_rate: This specifies the column sampling rate (the *y axis*) for each split in each level. The default value is 1.0 and the range is from 0 to 1.0. Higher values may improve training accuracy.

Additive tree model

Greedy Algorithm

Number of Tree

Regression

Step1: Khởi tạo giá trị f0 dự đoán của model bằng cách lấy trung bình của Y

Step2: Tính toán Similarity Score của root

- Similarity Score = $\frac{(SumofResiduals)^2}{Number ofResiduals + \lambda}$
- SumofResiduals là tổng của các giá trị trong Y f0
- Numberof Residuals là số lượng sample

Step3: Có nhiều cách chọn điều kiện root, cơ bản nhất là lấy trung bình của 2 sample liên tiếp nhau. Sau đó tính Similarity Score cho các node trong nhánh trái và nhánh phải

Step4: Tính Gain cho từng điều kiện của root đã chọn ở trên và chọn ra Gain có giá trị lớn nhất

• Gain = Left Similarity Score + Right Similarity Score - Root Similarity Score

Step5 Tuỳ vào điều kiện độ sâu của tree mà ta sẽ thựch hiện chia nhánh bằng cách lặp lại Step2 đến Step4. Sau đó ta đi tìm output cho root theo điều kiện có gain lớn nhất:

- Output = $\frac{SumofResiduals}{Number ofResiduals}$
- SumofResiduals là tổng của các giá trị trong Y f0
- Number of Residuals là số lượng sample

Step6: Dùng công thức sau f0+lr*Output để dự đoán kết quả cho toàn bộ training sample (thay thế cho f0) và tiếp tục thực hiện step 2 đến step 5 cho đến khi thoả mãn điều kiện dừng

Classification

Step1: Khởi tạo giá trị f0 dự đoán của model thông thường là 0.5 (xác suất của dự đoán)

Step2: Tính toán Similarity Score của root

• Similarity Score =
$$\frac{(SumofResiduals)^2}{\sum [PreviousProbability*(1 - PreviousProbability)] + \lambda}$$

- Sumof Residuals là tổng của các giá trị trong Y (ở dạng xác suất) f0
- Previous Probability là xác suất của model trước dự đoán ví dụ ở đây là 0.5

Step3: Có nhiều cách chọn điều kiện root, cơ bản nhất là lấy trung bình của 2 sample liền kề. Sau đó tính Similarity Score cho các node trong nhánh trái và nhánh phải

Step4: Tính Gain cho từng điều kiện của root đã chọn ở trên và chọn ra Gain có giá trị lớn nhất

• Gain = Left Similarity Score + Right Similarity Score - Root Similarity Score

Step5 Tuỳ vào điều kiện độ sâu của tree mà ta sẽ thựch hiện chia nhánh bằng cách lặp lại Step2 đến Step4. Sau đó ta đi tìm output cho root theo điều kiện có gain lớn nhấ

$$\bullet \ \text{Output} = \frac{SumofResiduals}{\sum [PreviousProbability*(1-PreviousProbability)]}$$

- SumofResiduals là tổng của các giá trị trong Y (ở dạng xác suất) f0
- Previous Probability là xác suất của model trước dự đoán ví dụ ở đây là 0.5

Step6: Dùng công thức bên dưới để dự đoán kết quả (Probability) cho toàn bộ training sample (thay thế cho f0) và tiếp tục thực hiện step 2 đến step 5 cho đến khi thoả mãn điều kiện dừng

- Cần chọn nhánh phù hợp theo giá trị của X.
- Khi chọn được nhánh phù hợp ta tính Log prediction theo công thức

$$-\ LogPrediction = log(\frac{PreviousProbability}{1 - PreviousProbability}) + lr*Output$$

- log là Natural logarithm
- Xác suát dự đoán của các sample được tính theo công thức

$$- Probability = \frac{e^{log(LogPrediction)}}{1 + e^{log(LogPrediction)}}$$

Problem 1-2

Problem 1: Regression

x	Y
23	50
24	70
26	80
27	85

Hình 1: X là input, Y là target

Build tree với điều kiện sau $\lambda = 0$, depth = 1, lr = 0.3

Step1: Khởi tạo giá trị f0 dự đoán của model bằng cách lấy trung bình của Y

Step2: Tính toán Similarity Score của root

- Similarity Score = $\frac{(SumofResiduals)^2}{NumberofResiduals + \lambda}$
- Sumof Residuals là tổng của các giá trị trong Y f0
- Number of Residuals là số lượng sample

Step3: Chọn root theo từng yêu cầu sau và tính Similarity Score cho các node trong nhánh trái và nhánh phải

- i. X < 23.5
- ii. X < 25
- iii. X < 26.5

Step4: Tính Gain cho từng case i, ii, iii ở trên và chọn ra Gain có giá trị lớn nhất

• Gain = Left Similarity Score + Right Similarity Score - Root Similarity Score

Step5 Sua khi chọn được model cho gain có giá trị lớn nhất ta tính giá Ouput cho từng node trong nhánh trái và phải theo công thức sau:

- Output = $\frac{SumofResiduals}{Number ofResiduals}$
- Sumof Residuals là tổng của các giá trị trong Y f0
- Number of Residuals là số lượng sample

Step6: Bây giờ ta sẽ thực hiện dụ đoán kết quả khi x = 25 theo công thức bên dưới

- Cần chọn nhánh phù hợp theo giá trị của X.
- Khi chọn được nhánh phù hợp ta lấy giá trị Ouput của nhánh và thực hiện dự đoán theo công thức f0 + lr * Output

Regularization

Step0: lambda=0, depth=1, Ir=0.3

Step1: Initialize model with a constant value

- f0 = mean(Y) = (50+70+80+85)/4 = 71.25

Step2: Compute Similarity Score

Similarity Score =
$$\frac{\text{Sum of Residuals, Squared}}{\text{Number of Residuals } + \lambda}$$

$$SC = (-21.25 + -1.25 + 8.75 + 13.75)^2/(4) = 0$$

X	Y	y-f0
23	50	-21.25
24	70	-1.25
26	80	8.75
27	85	13.75

.

Regularization

Step0: lambda=0, depth=1, lr=0.3

Step1: Initialize model with a constant value

- f0 = mean(Y) = (50+70+80+85)/4 = 71.25

Step2: Compute Similarity Score

Similarity Score =
$$\frac{\text{Sum of Residuals, Squared}}{\text{Number of Residuals } + \lambda}$$

 $SC = (-21.25 + -1.25 + 8.75 + 13.75)^2/(4) = 0$

Step3: Take average of x0 and x1

$$-(23+24)/2=23.5$$

-

X	Υ	y-f0
23	50	-21.25
24	70	-1.25
26	80	8.75
27	85	13.75

Regularization

Step0: lambda=0, depth=1, lr=0.3

Step1: Initialize model with a constant value

- f0 = mean(Y) = (50+70+80+85)/4 = 71.25

Step2: Compute Similarity Score

Similarity Score =
$$\frac{\text{Sum of Residuals, Squared}}{\text{Number of Residuals } + \lambda}$$

 $SC = (-21.25 + -1.25 + 8.75 + 13.75)^2/(4) = 0$

Step3: Take average of x0 and x1

$$-(24+26)/2=25$$

-

X	Y	y-f0
23	50	-21.25
24	70	-1.25
26	80	8.75
27	85	13.75

Regularization

Step0: lambda=0, depth=1

Step1: Initialize model with a constant value

- f0 = mean(Y) = (50+70+80+85)/4 = 71.25

Step2: Compute Similarity Score

$$SC = \frac{\sum (output-predicted)^2}{m+\lambda}$$

$$SC = (-21.25 + -1.25 + 8.75 + 13.75)^2/(4) = 0$$

Step3: Take average of x0 and x1

$$-(26+27)/2 = 26.5$$

X	Y	y-f0
23	50	-21.25
24	70	-1.25
26	80	8.75
27	85	13.75

.

Regularization

Step4: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

The Best Gain = 602.0833 Select X < 23.5

Gain = 253.125 + 253.125 - 0 = 506.25

Gain = 451.5625 + 150.5208 - 0 = 602.0833

Regularization

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

The Best Gain = 602.0833 Select X < 23.5

X	Υ
23	50
24	70
25	?
26	80
27	85

Regularization

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

The Best Gain = 602.0833 Select X < 23.5

X	Y
23	50
24	70
25	?
26	80
27	85

Regularization

SC = 0

X < 23.5

Step 5: Calculate the Gain. Gain = Left SC + Right SC - Root SC

The Best Gain = 602.0833 Select X < 23.5

Lr = 0.3

71.25 -1.25, 8.75, -21.25 13.75 O = -21.25f0 = mean(Y) = (50+70+80+85)/4 = 71.25O = 7.0833

X	Y
23	50
24	70
25	73.375
26	80
27	85

Regularization

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

The Best Gain = 602.0833 Select X < 23.5

X < 23.5

SC = 0

$$f0 = mean(Y) = (50+70+80+85)/4 = 71.25$$

Lr = 0.3

X	Y	y-f0	yhat	y-yhat
23	50	-21.25	64.875	-14.875
24	70	-1.25	73.375	-3.375
26	80	8.75	73.375	6.625
27	85	13.75	73.375	11.625

Problem 2: Classification

X	Y
23	False
24	False
26	True
27	True

Hình 2: X là input, Y là target

Build tree với điều kiện sau $\lambda=0$, depth = 1, lr = 0.3. Ta sẽ biến đổi giá trị của các sample trong Y thành xác suất, tương ứng False là 0 và True là 1

Step1: Khởi tạo giá trị f0 dự đoán của model là một hằng số 0.5 (xác suất của dự đoán)

Step2: Tính toán Similarity Score của root

- Similarity Score = $\frac{(SumofResiduals)^2}{\sum [PreviousProbability*(1-PreviousProbability)] + \lambda}$
- Sumof Residuals là tổng của các giá trị trong Y (ở dạng xác suất) f0
- Previous Probability là xác suất của model trước dự đoán ví dụ ở đây là 0.5

Step3: Chọn root theo từng yêu cầu sau và tính Similarity Score cho các node trong nhánh trái và nhánh phải

- i. X < 23.5
- ii. X < 25
- iii. X < 26.5

Step4: Tính Gain cho từng case i, ii, iii ở trên và chọn ra Gain có giá trị lớn nhất

• Gain = Left Similarity Score + Right Similarity Score - Root Similarity Score

Step5 Sua khi chọn được model cho gain có giá trị lớn nhất ta tính giá Ouput cho từng node trong nhánh trái và phải theo công thức sau:

- $\bullet \ \text{Output} = \frac{SumofResiduals}{\sum [PreviousProbability*(1-PreviousProbability)]}$
- Sumof Residuals là tổng của các giá trị trong Y (ở dạng xác suất) f0
- \bullet Previous Probability là xác suất của model trước dự đoán ví dụ ở đây là 0.5

Step6: Bây giờ ta sẽ thực hiện dụ đoán kết quả khi x = 25 theo công thức bên dưới

- Cần chọn nhánh phù hợp theo giá trị của X.
- Khi chọn được nhánh phù hợp ta tính Log prediction theo công thức

$$-\ LogPrediction = log(\frac{PreviousProbability}{1-PreviousProbability}) + lr*Output$$

- log là Natural logarithm
- \bullet Xác suất dự đoán của x=25 được tính theo công thức

$$- Probability = \frac{e^{log(LogPrediction)}}{1 + e^{log(LogPrediction)}}$$

Step0: lambda=0, depth=1, lr=0.3

Step1: Initialize model with a constant probability

- f0 = 0.5

Step2: Compute Similarity Score

$$(\sum \text{Residual}_i)^2$$

$$\sum [\text{Previous Probability}_i \times (1 - \text{Previous Probability}_i)] + \lambda$$

 $SC = (-0.5 + -0.5 + 0.5 + 0.5)^2/(denominator) = 0$

X	Y	Y-cat	y-f0
23	False	0	-0.5
24	False	0	-0.5
26	True	1	0.5
27	True	1	0.5

Step0: lambda=0, depth=1, lr=0.3

Step1: Initialize model with a constant probability

- f0 = 0.5

Step2: Compute Similarity Score

$$(\sum \operatorname{Residual}_i)^2$$
 $\sum [\operatorname{Previous Probability}_i \times (1 - \operatorname{Previous Probability}_i)] + \lambda$

 $SC = (-0.5 + -0.5 + 0.5 + 0.5)^2/(denominator) = 0$

Step3: Take average of x0 and x1

$$-(23+24)/2=23.5$$

X	Y	Y-cat	y-f0
23	False	0	-0.5
24	False	0	-0.5
26	True	1	0.5
27	True	1	0.5

Step0: lambda=0, depth=1, lr=0.3

Step1: Initialize model with a constant probability

- f0 = 0.5

Step2: Compute Similarity Score

$$(\sum \mathsf{Residual}_i)^2$$
 $\sum [\mathsf{Previous\ Probability}_i imes (1 - \mathsf{Previous\ Probability}_i)] + \lambda$

 $SC = (-0.5 + -0.5 + 0.5 + 0.5)^2/(denominator) = 0$

Step3: Take average of x0 and x1

$$-(24+26)/2=25$$

X	Y	Y-cat	y-f0
23	False	0	-0.5
24	False	0	-0.5
26	True	1	0.5
27	True	1	0.5

Step0: lambda=0, depth=1, lr=0.3

Step1: Initialize model with a constant probability

- f0 = 0.5

Step2: Compute Similarity Score

$$(\sum \operatorname{Residual}_i)^2$$
 $\sum [\operatorname{Previous\ Probability}_i \times (1 - \operatorname{Previous\ Probability}_i)] + \lambda$

 $SC = (-0.5 + -0.5 + 0.5 + 0.5)^2/(denominator) = 0$

Step3: Take average of x0 and x1

$$-(26+27)/2 = 26.5$$

X	Y	Ү-р	y-f0
23	False	0	-0.5
24	False	0	-0.5
26	True	1	0.5
27	True	1	0.5

Step4: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

Gain =
$$2.0 + 2.0 - 0 = 4$$

Gain =
$$1.0 + 0.33 - 0 = 1.33$$

Problem 1-2

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

The Best Gain = 4 Select X < 25

 $\frac{\left(\sum \mathsf{Residual}_i\right)}{\sum \left[\mathsf{Previous\ Probability}_i \times (1\ -\ \mathsf{Previous\ Probability}_i)\right] + \lambda}$

X	Ү-р
23	0
24	0
25.8	?
26	1
27	1

Problem 1-2

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

X	Ү-р
23	0
24	0
25.8	?
26	1
27	1

Problem 1-2

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

$$\frac{p}{1-p} = \text{odds}$$

$$\log(\frac{p}{1-p}) = \log(\text{odds})$$

X	Ү-р
23	0
24	0
25.8	?
26	1
27	1

Problem 1-2

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

$$\frac{p}{1-p}$$
 = odds

$$\log(\frac{p}{1-p}) = \log(\text{odds})$$

X	Ү-р
23	0
24	0
25.8	?
26	1
27	1

Log prediction =
$$0 + 0.3 * (2.0)$$

= 0.6

Problem 1-2

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

The Best Gain = 4 Select X < 25

0 + LR ,

$$\frac{p}{1-p}$$
 = odds

$$\log(\frac{p}{1-p}) = \log(\text{odds})$$

X	Y
23	0
24	0
25.8	0.6457
26	1
27	1

Log prediction =
$$0 + 0.3 * (2.0)$$

= 0.6

Probability =
$$\frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}}$$

Probability =
$$e^{(0.6)} / (1+e^{(0.6)}) = 0.6457$$

Problem 1-2

Step 5: Calculate the Gain.

Gain = Left SC + Right SC - Root SC

The Best Gain = 4 Select X < 25

0 + LR ,

$$\log(\frac{p}{1-p}) = \log(\text{odds})$$

X	Ү-р	y-f0	yhat	y-yhat
23	0	-0.5	0.3543	-0.3543
24	0	-0.5	0.3543	-0.3543
26	1	0.5	0.6457	0.3543
27	1	0.5	0.6457	0.3543

Problem 3-4

Problem 3: Regression

Hình 3: Forest fire prediction

- **Task**: Dự đoán diện tích rừng bị cháy (area)

- **Samples**: 510

- Features: 13, input 12, target: 1

									20000000000000000000000000000000000000			200 (200 3 100)	×2500000000
	Х	Υ	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	7	5	mar	fri	4.468204	26.2	94.3	1.808289	8.2	51	6.7	False	0.000000
1	7	4	oct	tue	4.517431	35.4	669.1	2.041220	18.0	33	0.9	False	0.000000
2	7	4	oct	sat	4.517431	43.7	686.9	2.041220	14.6	33	1.3	False	0.000000
3	8	6	mar	fri	4.529368	33.3	77.5	2.302585	8.3	97	4.0	True	0.000000
4	8	6	mar	sun	4.503137	51.3	102.2	2.360854	11.4	99	1.8	False	0.000000
505	4	3	aug	sun	4.414010	56.7	665.6	1.064711	27.8	32	2.7	False	2.006871
506	2	4	aug	sun	4.414010	56.7	665.6	1.064711	21.9	71	5.8	False	4.012592
507	7	4	aug	sun	4.414010	56.7	665.6	1.064711	21.2	70	6.7	False	2.498152
508	1	4	aug	sat	4.558079	146.0	614.7	2.509599	25.6	42	4.0	False	0.000000
509	6	3	nov	tue	4.388257	3.0	106.7	0.741937	11.8	31	4.5	False	0.000000

Problem 3: Regression

Problem 3: Regression

- ['month', 'day', 'rain']
- Number of categories in month: 12
- Number of categories in day: 7
- Number of categories in rain: 2

3	X	Υ	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area
0	7	5	mar	fri	4.468204	26.2	94.3	1.808289	8.2	51	6.7	False	0.000000
1	7	4	oct	tue	4.517431	35.4	669.1	2.041220	18.0	33	0.9	False	0.000000
2	7	4	oct	sat	4.517431	43.7	686.9	2.041220	14.6	33	1.3	False	0.000000
3	8	6	mar	fri	4.529368	33.3	77.5	2.302585	8.3	97	4.0	True	0.000000
4	8	6	mar	sun	4.503137	51.3	102.2	2.360854	11.4	99	1.8	False	0.000000

505	4	3	aug	sun	4.414010	56.7	665.6	1.064711	27.8	32	2.7	False	2.006871
506	2	4	aug	sun	4.414010	56.7	665.6	1.064711	21.9	71	5.8	False	4.012592
507	7	4	aug	sun	4.414010	56.7	665.6	1.064711	21.2	70	6.7	False	2.498152
508	1	4	aug	sat	4.558079	146.0	614.7	2.509599	25.6	42	4.0	False	0.000000
509	6	3	nov	tue	4.388257	3.0	106.7	0.741937	11.8	31	4.5	False	0.000000

ā	X	Υ	FFMC	DMC	DC	ISI	temp	RH	wind	area	month	day	rain
0	7	5	4.468204	26.2	94.3	1.808289	8.2	51	6.7	0.000000	7.0	0.0	0.0
1	7	4	4.517431	35.4	669.1	2.041220	18.0	33	0.9	0.000000	10.0	5.0	0.0
2	7	4	4.517431	43.7	686.9	2.041220	14.6	33	1.3	0.000000	10.0	2.0	0.0
3	8	6	4.529368	33.3	77.5	2.302585	8.3	97	4.0	0.000000	7.0	0.0	1.0
4	8	6	4.503137	51.3	102.2	2.360854	11.4	99	1.8	0.000000	7.0	3.0	0.0
											22.7		
505	4	3	4.414010	56.7	665.6	1.064711	27.8	32	2.7	2.006871	1.0	3.0	0.0
506	2	4	4.414010	56.7	665.6	1.064711	21.9	71	5.8	4.012592	1.0	3.0	0.0
507	7	4	4.414010	56.7	665.6	1.064711	21.2	70	6.7	2.498152	1.0	3.0	0.0
508	1	4	4.558079	146.0	614.7	2.509599	25.6	42	4.0	0.000000	1.0	2.0	0.0
509	6	3	4.388257	3.0	106.7	0.741937	11.8	31	4.5	0.000000	9.0	5.0	0.0

Problem 3: Regression

- Task: Dự đoán diện tích rừng bị cháy (area)

- **Samples**: 510

- Features: 13, input 12, target: 1

Number of training samples: 357

Number of val samples: 153

Problem 3-4

Problem 3: Regression

- Build Model: XGBoost

- Evaluation: MAE, MSE

Evaluation results on test set:

Mean Absolute Error: 1.0922937068201708 Mean Squared Error: 1.8814015748734487

XGBRegressor

XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.01, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=3, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=102, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...)

XGBoost Regression

Problem 4: Classification

10	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proline	Target
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0	

173	13.71	5.65	2.45	20.5	95.0	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740.0	
174	13.40	3.91	2.48	23.0	102.0	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750.0	
175	13.27	4.28	2.26	20.0	120.0	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835.0	
176	13.17	2.59	2.37	20.0	120.0	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840.0	
177	14.13	4.10	2.74	24.5	96.0	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560.0	
178 rd	ws × 14 c	olumns												

- Task: Phân loại chất lượng rượu vang (Target)

- **Samples**: 178

- Features: 14, input 13, target: 1

Problem 4: Classification

Problem 4: Classification

- Không có Categorical feature

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proline	Target
o	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0	0
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0	0
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0	0
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0	0
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0	0
173	13.71	5.65	2.45	20.5	95.0	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740.0	2
174	13.40	3.91	2.48	23.0	102.0	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750.0	2
175	13.27	4.28	2.26	20.0	120.0	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835.0	2
176	13.17	2.59	2.37	20.0	120.0	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840.0	2
177	14.13	4.10	2.74	24.5	96.0	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560.0	2

Problem 4: Classification

- Task: Phân loại chất lượng rượu vang (Target)
- **Samples**: 178
- Features: 14, input 13, target: 1

Number of training samples: 124

Number of val samples: 54

Problem 3-4

Problem 4: Classification

- Build Model: XGBoost

- Evaluation: Accuracy

Train ACC: 1.0

Test ACC: 0.9814814814814815

XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, objective='multi:softprob', predictor=None, ...)

XGBoost Classification

