Time Series Analysis

Basics of Time Series Analysis

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Overview

About This Lesson

Course Road Map

Pre-requisite:
Basic Statistical
Modeling &
Inference

Basic Time Series Modeling

- Trend
- Seasonality
- Serial Dependence
- Prediction

Multivariate Analysis

- Correlation between & within time series
- Multivariate AR model (VAR)

Course Road Map: Pre-requisite

Pre-requisite:
Basic Statistical
Modeling &
Inference

- Distribution of a Random Variable
- Statistical Estimation
- Statistical Inference
- Regression Analysis

Model Estimation in Time Series Analysis

Approaches:

- 1. Method of Moments (MOM)
 - Durbin-Levinson Algorithm (Linear Prediction)
 - Yule-Walker Algorithm (AR model estimation)
 - Innovation Algorithm (Linear Prediction & ARMA model estimation)
- 2. Maximum Likelihood Estimation
 - Most common approach in time series model estimation
 - ARMA, GARCH, VAR

Why important?

Statistical properties and statistical inference of the estimated model are different depending on the estimation approach.

Statistical Inference in Time Series Analysis

Approaches:

- Confidence & Prediction Intervals
 - Evaluate statistical significance of model coefficients
 - Provide prediction bands for time series forecasts

2. Hypothesis Testing

- Evaluate statistical significance of model coefficients
- Evaluate whether data follows a prescribed distribution (e.g. normal)
- Evaluate model goodness of fit

Why important?

Statistical inference is used in model interpretation and evaluation.

Regression Analysis in Time Series Analysis

General Regression model:

```
<u>Data</u>: \{y_1, (x_{1,1}, ..., x_{1,p})\}, ..., \{y_n, (x_{n,1}, ..., x_{n,p})\}

<u>Model</u>: Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \cdots + \beta_p x_{i,p} + \varepsilon_i, i = 1, ..., n
```

Time Series Regression models:

<u>Data</u>: $\{y_1, t_1\}, ..., \{y_n, t_n\}$

Model:

- Basic model decomposition: $Y_t = m_t + s_t + X_t$
- ARMA, GARCH, VAR

Why important?

Regression modeling is at the basis of all models discussed in this course.

Course Road Map: Basic Concepts

Basic Time Series Modeling

- Trend
- Seasonality
- Serial Dependence
- Prediction

- <u>Time Series Definitions</u>
- Basic Decomposition: Trend & Seasonality analysis
- Stationarity: The basic concept for all time series models
- Prediction: Best Linear Predictor

Basics of Time Series Analysis

What will this module cover?

- 1. Basic time series modeling
 - Definition of a time series
 - Simple decomposition of a time series into trend & seasonality
 - Approaches for estimating trend and seasonality
- 2. Fundamental time series concepts
 - Stationarity
 - Linear Process
 - Prediction

Why important?

The concepts introduced in this module are at the basis of all time series models introduced in this course.

Data Examples using R Statistical Software

Data Examples

- Average monthly temperature records starting in 1879 until 2016
- Emergency Department Volume
- Bitcoin Price

2. R Statistical Software

- Visual analytics
- Evaluating properties and characteristics of a time series
- Fitting linear regression models for seasonality
- Fitting parametric and non-parametric trends

Why important?

Fundamentals of time series modeling are best understood by illustrating them using data examples.

Summary

