Breast Cancer Diagnosis

Wenhan Bao | Tianchuan Gao | Jialiang Hua | Qihang Wu | Paula Wu

3/28/2022

Background

- Breast cancer: most common invasive cancer in women around the world
- Early accurate diagnosis can greatly improve prognosis
- Logistic model and logistic-LASSO model
- Estimation
 - Newton-Raphson algorithm
 - Pathwise coordinate-wise optimization algorithm

1.4M diagnosed

1.4 million women globally are diagnosed with breast cancer each year⁴

1.7M new cases

By 2020, there will be over 1.7 million new cases of breast cancer annually

500,000 deaths

Globally, breast cancer causes more than 500,000 deaths each year⁵

10.5% of cancers

Breast cancer comprises 10.5% of all new cancers worldwide⁴

EDA

Feature

Newton-Raphson Algorithm

The logistic model can be defined as:
$$log(\frac{\pi_i}{1-\pi_i}) = \mathbf{X}\beta$$
 $\pi_i = \frac{e^{\mathbf{X}\beta}}{1+e^{\mathbf{X}\beta}}$

$$\text{The likelihood function}: \ L(\beta) = \prod_{i=0}^n (\frac{e^{\mathbf{X}\beta}}{1+e^{\mathbf{X}\beta}})^{y_i} (\frac{1}{1+e^{\mathbf{X}\beta}})^{1-y_i} \qquad \qquad \text{Log likelihood function: } l(\beta) = \sum_{i=0}^n (y_i * X\beta - log(1+e^{X\beta}))^{1-y_i}$$

Log likelihood function:
$$l(eta) = \sum_{i=0}^n (y_i * Xeta - log(1 + e^{Xeta}))$$

Gradient:
$$\nabla l(\beta) = \begin{pmatrix} \sum_{i=1}^n (y_i - \pi_i) \\ \sum_{i=1}^n x_{i1} \times (y_i - \pi_i) \\ \vdots \\ \sum_{i=1}^n x_{in} \times (y_i - \pi_i) \end{pmatrix}$$

Hessian Matrix:
$$\begin{aligned} \nabla^2 f\left(\beta\right) &= -\sum_{i=1}^n \left(\begin{array}{c} 1 \\ x_i \end{array}\right) \left(\begin{array}{cc} 1 & x_i \end{array}\right) \pi_i \left(1-\pi_i\right) \\ &= -\left(\begin{array}{cc} \sum \pi_i \left(1-\pi_i\right) & \sum x_i \pi_i \left(1-\pi_i\right) \\ \sum x_i \pi_i \left(1-\pi_i\right) & \sum x_i^2 \pi_i \left(1-\pi_i\right) \end{array}\right) \end{aligned}$$

With these parameters, we can apply the Newton-Raphson algorithm to calculate a set of beta using this equation:

$$oldsymbol{eta_{i+1}} = oldsymbol{eta_i} - \left[
abla^2 l\left(oldsymbol{eta_i}
ight)
ight]^{-1}
abla l\left(oldsymbol{eta_i}
ight)$$

Step-halving and re-direction modification: Ensure the likelihood is increasing and the ascent direction at $oldsymbol{eta}_i$

Newton-Raphson Result

Test for the first 10 features.

Compare to glm results, outcomes are very close.

Also test for all 30 features, result is not ideal due to computation burden when calculating the inverse of the Hessian matrix.

	Coefficients
Intercept	0.487
Radius Mean	-7.221
Texture Mean	1.654
Perimeter Mean	-1.737
Area Mean	14.005
Smoothness Mean	1.075
Compactness Mean	-0.077
Concavity Mean	0.675
Concave Point Mean	2.593
Symmetry Mean	0.446
Fractal Dimension Mean	-0.482

(Intercept) 0.48701675 compactness_mean -0.07723455

radius_mean -7.22185053 concavity_mean 0.67512313

texture_mean 1.65475615 concave_points_mean 2.59287426 perimeter_mean -1.73763027 symmetry_mean fractal_dimension_mean 0.44625631

1.07495329

area_mean

14.00484560

-0.48248420

Coordinatewise descent (CD) Lasso

- **High-dimensional covariates**; Standardize
- Soft threshold function: $S\!\left(\hat{eta},\gamma
 ight) = \mathrm{sign}\!\left(\hat{eta}\right)\!\left(\left|\hat{eta}\right| \gamma
 ight)$
- CD algorithm: update β_i repeatedly for j = 1, ..., p, 1, ..., p
- For different weights w_i : $ilde{eta_j}(\gamma) = rac{S\left(\sum_i^n w_i x_{i,j} \left(Z_i ilde{Z}_i^{(-j)}
 ight), \gamma
 ight)}{\sum_{i}^n w_i x_{i,i}^2}$
- Working weights $w_i > 0$: $\tilde{\pi}_i (1 \tilde{\pi}_i)$
- Working response Z_i : $X_i \tilde{\beta} + \frac{y_i \tilde{\pi}_i}{\pi_i (1 \pi_i)}$

Taylor expansion around current estimates:

$$l(eta) = -rac{1}{2n}\sum_{i=1}^n w_i(Z_i-X_ieta)^2$$

Object Function:
$$\min_{(eta)} L(eta, \lambda) = \left\{ -l(eta) + \lambda \sum_{j=0}^p |eta_j|
ight\}$$

```
sf <- function(beta, lambda) {</pre>
  beta <- ifelse(lambda < abs(beta),</pre>
                  ifelse(beta > 0, beta - lambda, beta + lambda), 0)
  return(beta)
cd_lasso <- function(dat, y, betavec, lambda, maxier = 2000, tol = 1e-10) {</pre>
  x \leftarrow dat # n * (p + 1) matrix, standardized
  obifun <- 0
  prev objfun <- -Inf # ensure iterations</pre>
  res <- c(0, objfun, betavec)
  while (i < maxier && abs(objfun - prev objfun) > tol) {
    i < -i + 1
    prev objfun <- objfun
    for (j in 1:length(betavec)) {
      u <- x %*% betavec
      pi \leftarrow exp(u) / (1 + exp(u))
      w <- pi * (1 - pi)
      w \leftarrow ifelse(w < 1e-5, 1e-5, w)
      z <- x %*% betavec + (y - pi) / w
      z_dej <- x[, -j] %*% betavec[-j]</pre>
      betavec[i] <-
        sf(sum(w * x[, j] * (z - z_dej)), lambda) / (sum(w * x[, j]^2))
    obifun <-
      sum(w * (z - x %* betavec)^2) / (2 * dim(x)[1]) + lambda * sum(abs(betavec))
    if (is.na(objfun)) {break}
    res <- rbind(res, c(i, objfun, betavec))
```

LASSO - Pathwise Coordinate-wise optimization

- 1. Select a λ max for all the estimate $\beta = 0$
- 2. Compute the solution with a sequence of descending λ from maximum
- 3. Initialize coordinate descent algorithms by the calculated estimate β from previous λ
- 4. Find the optimal solution by comparing the objective function:

$$\min_{(eta)} L(eta, \lambda) = \left\{ -l(eta) + \lambda \sum_{j=0}^p |eta_j|
ight\}$$

```
> max(t(bc_scale2_x) %*% bc_scale2_y)
[1] 218.1238
```

```
pathwise_cd_lasso <- function(dat, y, betavec, lambda) {</pre>
  sort(lambda, decreasing = TRUE)
  pathwise_res <- NA
  for (j in 1:length(lambda)) {
    cd_results <- cd_lasso(dat, y, betavec, lambda[j])</pre>
    # warm start
    min_objfun_ind <- which.min(cd_results[-1, 2]) + 1</pre>
    betavec <- cd_results[min_objfun_ind, -c(1, 2)]
    objfun <- cd_results[min_objfun_ind, 2]
    pathwise_res <- rbind(pathwise_res,</pre>
                           c(j, lambda = lambda[j], obj = objfun,
                              beta = betavec))
  return(pathwise_res[-1, ])
```

LASSO - Pathwise Coordinate-wise optimization

Solution for each coefficients β
 under different descending λ

Roughly, λ we select is 0.135
 but need further
 cross-validation

Cross Validation - Overview

Cross Validation - Steps

- 1. Select 30 equally spaced λ from range $e^{(4,-3)}$
 - a. Upper bound: arbitrary, a λ value that is large but not large enough to force all β 's become 0.
- 2. For each λ , run the 5-fold CV. For each fold:
 - a. Run Coordinate-wise Lasso on training sets
 - b. Extract current "best" beta (i.e. the last row) from the results
 - c. Make prediction and calculate AUC, RSS against validation sets
- 3. Calculate mean and std-dev of AUC and mean RSS for each λ

Results & Discussion - Optimal vs. Full Models

- Optimal λ : the λ that maximize the mean AUC
 - o ~ 2.3681
- Test against testing data:
 - Optimal Model: λ optimal = 2.3681
 - Full Model: $\lambda = 0$
- Compare the predicted outcome vs. actual outcome → calculate AUC
- Full model: AUC = 1
- Optimal model: AUC = 0.9989

Limitations

- Our Newton-Raphson method still use the inverse of Hessian matrix, which is not accurate when p is large
 - Try alternatives that replace Hessian matrix

- During the cross-validation process, we select a wide range of lambda with only sparse data points.
 - Try a denser model with narrower range for more precise predict of λ

Questions?

Reference

[1] Data: breast_cancer.csv

[2] CV illustration:

https://towardsdatascience.com/cross-validation-k-fold-vs-monte-carlo-e54df2fc179b

Thank you!