EXERCICE: Etude d'une lunette de Galilée:

 \nearrow Q1. Un système afocal est tel que le foyer image de la 1^{ère} lentille soit confondu avec le foyer objet de la 2^{nde} . Alors $\overline{F'_1} = \overline{F_2}$; Soit $\overline{F'_1}\overline{F_2} = 0$.

D'après la relation de Chasles, on a : $\overline{O_1O_2} = \overline{O_1F'_1} + \overline{F'_1F_2} + \overline{F_2O_2}$.

Or $\overline{O_1F'_1} = f'_1 = \frac{1}{v_1}$ et $\overline{F_2O_2} = \overline{O_2F'_2} = f'_2 = \frac{1}{v_2}$.

Il vient donc : $\overline{O_1O_2} = \frac{1}{v_1} + \frac{1}{v_2}$ AN : ATTENTION : La lentille (L_2) est divergente, donc $V_2 = -50 \ \delta$.

Or
$$\overline{O_1 F'_1} = f'_1 = \frac{1}{v_1}$$
 et $\overline{F_2 O_2} = \overline{O_2 F'_2} = f'_2 = \frac{1}{v_2}$.

$$\overline{O_1O_2} = \frac{1}{1.33} + \frac{1}{-50}$$
; On obtient : $\overline{O_1O_2} \approx 0.73 \text{ m} \approx 73 \text{ cm}$.

Q2. On cherche la position de l'image de O_1 à travers la lentille (L_2) .

Relation de Descartes à
$$(L_2)$$
: $\frac{1}{O_2O_1'} - \frac{1}{O_2O_1} = \frac{1}{f_2'} = V_2$

Relation de Descartes à
$$(L_2)$$
: $\frac{1}{\overline{O_2O_1'}} - \frac{1}{\overline{O_2O_1}} = \frac{1}{f_2'} = V_2$

Soit $\frac{1}{\overline{O_2O_1'}} = \frac{1}{\overline{O_2O_1}} + V_2 = \frac{1+V_2\overline{O_2O_1}}{\overline{O_2O_1}}$; Ainsi $\overline{\boldsymbol{\cdot}} \cdot \overline{\boldsymbol{\cdot}} \cdot \overline{\boldsymbol{\cdot}}$

Ici, il vient :
$$\frac{D_1'}{D_1} = \left| \frac{\overline{O_2 O_1'}}{\overline{O_2 O_1}} \right|$$
; Soit : $\boxed{D_1' = D_1 \left| \frac{\overline{O_2 O_1'}}{\overline{O_2 O_1}} \right|}$. $\boxed{\underline{AN}} : D_1' = 10 \frac{1.95}{73}$; On obtient : $\underline{D_1'} \approx 0.27 \text{ cm} \approx 2.7 \text{ mm.}$

AN:
$$D_1' = 10^{\frac{1,95}{73}}$$
; On obtient : $\underline{D_1' \approx 0,27 \text{ cm} \approx 2,7 \text{ mm}}$.

Q3.a. Sur le schéma : $f'_1 = 75 \text{ cm}$; $f'_2 = -2 \text{ cm}$; $\overline{O_1O_2} = 73 \text{ cm}$.

Donc le foyer image de (L_1) confondu avec le foyer objet de (L_2) est à droite de (L_2) ; Cohérent puisque (L_2) est divergente.

On notera A_1B_1 l'image intermédiaire à travers (L_1) et A'B' l'image définitive.

Il est judicieux de tracer le rayon initial passant par O_1 (avec un angle α) qui n'est pas dévié et son parallèle passant par F_1 qui émerge de (L_1) en étant parallèle à l'axe optique. Et comme il est parallèle à l'axe optique avant (L_2) , il sort du système optique en passant par F'_2 (son prolongement).

Par construction de la lunette (objet à l'infini), l'image intermédiaire A_1B_1 se trouve dans le plan focal image de (L_1) et donc aussi dans le plan focal objet de (L_2) . On a donc $A_1 = F'_1 = F_2$; Ces 3 points sont confondus.

Et toujours par construction, l'image définitive est à l'infini, donc les rayons émergent parallèles entre eux (avec un angle α').

 \sqrt{S} Q3.b. On cherche l'expression de $G = \frac{\alpha'}{\alpha}$.

Dans l'approximation de Gauss, les angles sont petits, ainsi :

tan(
$$\alpha$$
) $\approx \alpha = \frac{\overline{A_1B_1}}{\overline{O_1Fr_1}} = \frac{\overline{A_1B_1}}{fr_1} = V_1 \times \overline{A_1B_1}$ ($\alpha < 0$ et $\overline{A_1B_1} < 0$)
Et tan(α ') $\approx \alpha' = \frac{\overline{A_1B_1}}{\overline{Fr_2O_2}} = \frac{\overline{A_1B_1}}{\overline{O_2Fr_2}} = -\frac{\overline{A_1B_1}}{fr_2} = -V_2 \times \overline{A_1B_1}$ ($\alpha' < 0$)

Et
$$tan(\alpha') \approx \alpha' = \frac{\overline{A_1 B_1}}{\overline{F_{12} O_2}} = \frac{\overline{A_1 B_1}}{-\overline{O_2 F_{12}}} = -\frac{\overline{A_1 B_1}}{f_{12}} = -V_2 \times \overline{A_1 B_1}$$
 $(\alpha' < 0)$

D'où
$$G = \frac{\alpha'}{\alpha} = -\frac{f'_1}{f'_2} = -\frac{V_2}{V_1};$$

D'où
$$G = \frac{\alpha'}{\alpha} = -\frac{f'_1}{f'_2} = -\frac{V_2}{V_1}$$
; AN: $G = -\frac{-50}{1.33}$; On obtient: $G \approx 37.6$.

Q4. Question plus difficile!!

 $AB \qquad \bigcirc Ocu \qquad Ocu \qquad A''B''$ Soit $\overline{A_2B_2}$ l'image de \overline{AB} à travers l'objectif et $\overline{A''B''}$ l'image de $\overline{A_2B_2}$ à travers l'oculaire.

On nous précise que l'œil est à 1,5 cm derrière (L_2) et qu'il voit une image située à $d_m = 25$ cm.

Alors
$$\overline{Q_2A''} = 1, 5 - 25 = -23, 5 \text{ cm.}$$

<u>Méthode</u>: En appliquant la relation de Descartes à (L_2) , on va obtenir $\overline{O_2A_2}$.

Puis on va utiliser une relation de Chasles pour obtenir $\overline{O_1A_2}$ et enfin une relation de Descartes à (L_1) pour obtenir $\overline{O_1A}$ que l'on cherche.

Relation de Descartes à
$$(L_2)$$
: $\frac{1}{\overline{O_2 A_1''}} - \frac{1}{\overline{O_2 A_2}} = V_2$.

Soit
$$\frac{1}{\overline{O_2A_2}} = \frac{1}{\overline{O_2A^*}} - V_2 = \frac{1-V_2}{\overline{O_2A^*}} \frac{\overline{O_2A^*}}{\overline{O_2A^*}}$$
 et $\boxed{O_2A_2} = \frac{\overline{O_2A^*}}{1-V_2} \frac{\overline{O_2A^*}}{\overline{O_2A^*}}$.

AN: $\overline{O_2A_2} = \frac{-0.235}{1-(-50)\times(-0.235)}$. On obtient: $\overline{O_2A_2} \approx +0.0219 \text{ m} \approx 2.19 \text{ cm}$.

Relation de Chasles: $\boxed{O_1A_2} = \overline{O_1O_2} + \overline{O_2A_2}$.

AN: $\overline{O_1A_2} = 73 + 2.19$; On obtient: $\overline{O_1A_2} \approx 75.19 \text{ cm}$.

Relation de Descartes à (L_1) : $\frac{1}{\overline{O_1A_2}} - \frac{1}{\overline{O_1A}} = \frac{1}{f'_1} = V_1$

Soit: $\frac{1}{\overline{O_1A}} = \frac{1}{\overline{O_1A_2}} - V_1 = \frac{1-V_1}{\overline{O_1A_2}} \frac{\overline{O_1A_2}}{\overline{O_1A_2}}$ et $\boxed{O_1A} = \frac{\overline{O_1A_2}}{1-V_1\overline{O_1A_2}}$.

AN: $\overline{O_1A} = \frac{0.7519}{1-1.333\times0.7519}$; On obtient: $\overline{O_1A} \approx -329 \text{ m}$.

$$+ \text{ Relation de Chasles : } \overline{\overline{O_1 A_2}} = \overline{O_1 O_2} + \overline{O_2 A_2}$$

AN:
$$O_1A_2 = 73 + 2,19$$
; On obtient: $O_1A_2 \approx 75,19$ cm.

♣ Relation de Descartes à
$$(L_1)$$
: $\frac{1}{\overline{O_1 A_2}} - \frac{1}{\overline{O_1 A}} = \frac{1}{f'_1} = V_1$

Soit:
$$\frac{1}{\overline{O_1 A}} = \frac{1}{\overline{O_1 A_2}} - V_1 = \frac{1 - V_1 \overline{O_1 A_2}}{\overline{O_1 A_2}} \text{ et } \boxed{\overline{O_1 A} = \frac{\overline{O_1 A_2}}{1 - V_1 \overline{O_1 A_2}}}.$$

$$\underline{AN} : \overline{O_1 A} = \frac{0.7519}{1 - 1.333 \times 0.7519}; \text{ On obtient } : \overline{O_1 A} \approx -329 \text{ m.}$$

M Q5. L'œil peut donc voir tous les <u>objets situés entre l'infini et 300 m devant l'objectif</u> de la lunette.

PROBLEME 1 : Filtre linéaire d'ordre 1 et pH-métrie :

 $(\approx 64 \text{ pts})$

Q1. Il faut utiliser un filtre passe-bas de fréquence de coupure f_c faible devant 4 kHz afin de conserver la composante continue et supprimer le signal sinusoïdal de fréquence 4 kHz.

On choisira, par exemple, $f_C \approx \frac{4000}{10} \approx 400 \text{ Hz}$.

Q2. Schéma électrique équivalent en BF:

Schéma électrique équivalent en HF:

En BF: Les résistances R et 3R sont en série:

Pont diviseur de tension: $\underline{H} = \frac{s}{\underline{e}} = \frac{3R}{3R+R} = \frac{3}{4} = cste$; $\underline{G_{dR}} \rightarrow 20 \log \left(\frac{3}{4}\right) \approx -2.5 \text{ dB} = cste$.

 $\underline{\text{En HF}}: \underline{H} = \underline{\underline{s}} \approx 0 \text{ et } \underline{G_{dB}} \rightarrow -\infty.$

Conclusion: C'est un filtre passe-bas

On a alors :
$$\underline{Z_{eq}} = \underline{\frac{Z_R Z_C}{Z_R + Z_C}} = \frac{3R \times \frac{1}{jC\omega}}{3R + \frac{1}{jC\omega}}$$
; Soit $\underline{Z_{eq}} = \frac{3R}{1 + j3RC\omega}$.

Ainsi, Z_{eq} est en série avec R: Pont diviseur de tension:

$$\underline{H}(j\omega) = \frac{\underline{s}}{\underline{e}} = \frac{Z_{eq}}{Z_{eq}+R} = \frac{\frac{3R}{1+j3RC\omega}}{R+\frac{3R}{1+j3RC\omega}} = \frac{3R}{R+j3R^2C\omega+3R} = \frac{3}{4+j3RC\omega}$$
Soit:
$$\underline{H}(j\omega) = \frac{3}{4+j3RC\omega} = \frac{3}{4\left(1+j\frac{3RC\omega}{4}\right)} = \frac{3/4}{1+j\frac{3RC\omega}{4}}$$
De la forme:
$$\underline{H}(jx) = \frac{H_0}{1+jx} \text{ avec } x = \frac{\omega}{\omega_0} \text{ si } H_0 = \frac{3}{4} \text{ et } \omega_0 = \frac{4}{3RC}.$$

Soit:
$$\underline{\underline{H}}(j\omega) = \frac{3}{4+j3RC\omega} = \frac{3}{4\left(1+j\frac{3RC\omega}{4}\right)} = \frac{3/4}{1+j\frac{3RC\omega}{4}}$$

 H_0 est la fonction de transfert statique et ω_0 la pulsation propre

C'est un <u>filtre passe bas du 1^{er} ordre</u>

$$G(x) = \left| \underline{H}(jx) \right| = \frac{H_0}{\sqrt{1+x^2}}.$$

Q4. Par définition, $G(x) = |\underline{H}(jx)| = \frac{H_0}{\sqrt{1+x^2}}$.

Et $\varphi(x) = \arg\left(\underline{H}(jx)\right) = \arg(num) - \arg(den) = 0 - \arctan(x)$; Ainsi : $\varphi(x) = -$

Q5. La pulsation de coupure ω_C est définie par $G(\omega_C) = \frac{G_{max}}{\sqrt{2}}$.

Or
$$G(x) = \frac{H_0}{\sqrt{1+x^2}}$$
; Ainsi G est max pour $x = 0$ et $G_{max} = H_0 = \frac{3}{4}$

Or $G(x) = \frac{H_0}{\sqrt{1+x^2}}$; Ainsi G est max pour x = 0 et $G_{max} = H_0 = \frac{3}{4}$ Ainsi, $G(x_C) = \frac{H_0}{\sqrt{2}} = \frac{H_0}{\sqrt{1+x_C^2}}$; Il vient donc : $x_C = 1 = \frac{\omega_C}{\omega_0}$; Soit : $\omega_C = \omega_0 = \frac{4}{3RC}$ et $f_C = \frac{\omega_C}{2\pi} = \frac{2}{3\pi RC}$.

 $\underline{AN}: f_C = \frac{2}{3\pi \times 5, 3.10^3 \times 1, 0.10^{-7}}$. On obtient: $\underline{f_C} \approx 400 \text{ Hz.}$

On a bien f_C dix fois plus faible que la fréquence du signal parasite que l'on veut éliminer, ce qui parait tout à fait satisfaisant.

 $\underline{\text{Q6. Etude asymptotique}} \text{ de } \underline{H}(jx) = \frac{H_0}{1+ix}$

En BF: Si $\omega \ll \omega_0$ ou si $x \ll 1$: $\underline{H} \sim H_0 = \frac{3}{4}$ Donc $G_{dB} \rightarrow 20 \log(H_0) = 20 \log\left(\frac{3}{4}\right) \approx -2.5 \ dB$; Asymptote horizontale en BF. Et $\underline{\varphi} \rightarrow \underline{0}$.

<u>En HF</u>: Si $\omega \gg \omega_0$ ou $x \gg 1$: $\underline{H} \sim \frac{H_0}{ix} \sim -j \frac{H_0}{x}$

Donc $G_{dB} \rightarrow 20 \log (H_0) - 20 \log(x)$:

<u>Intersection des asymptotes</u> en A tel que :

$$20 \log (H_0) - 20 \log(x_A) = 20 \log (H_0)$$

Soit
$$log(x_A) = 0$$

et pour
$$G_{dB}(A) = 20 \log (H_0) \approx -2,5 \text{ dB}.$$

Ainsi les coordonnées du point d'intersection des asymptotes :
$$A(0; -2, 5)$$
.

Ce filtre présente un caractère pseudo-intégrateur en haute fréquences, car il présente un asymptote oblique de **pente -20 dB/ décade**.

Donc

$$G_{dB}(1) = 20 \log(H_0) - 20 \log(\sqrt{2}) = -2.5 - 3.$$
Ainsi : $G_{dB}(\log(x) = 0) = -5.5$ et Et
$$\varphi(\log(x) = 0) = -\frac{\pi}{4}$$

Ainsi :
$$G_{dB}(log(x) = 0) = -5, 5$$
 et Et

$$\varphi(\log(x) = 0) = -\frac{\pi}{4}$$

D'où le diagramme de Bode réel ajouté sur le diagramme asymptotique. +1 +1

Q8. - En ce qui concerne la composante continue :

On se place en basses fréquences :
$$\underline{H} \sim H_0 = \frac{S_0}{U_0} = \frac{3}{4}$$
; Ainsi : $S_0 = \frac{3}{4}U_0$.

- A la fréquence de 4 kHz :
$$f = 10 f_C$$
, Soit : $x = \frac{\omega}{\omega_0} = \frac{\omega}{\omega_C} = 10$ et $\log(x) = 1$.

- A la fréquence de 4 kHz :
$$f = 10 f_C$$
, Soit : $x = \frac{\omega}{\omega_0} = \frac{\omega}{\omega_C} = 10$ et $\log(x) = 1.$

A cette fréquence, $G_{dB}(1) = -22,5$ dB = $20 \log(G)$; D'où $\log(G) = -\frac{22,5}{20}$ et $G = \frac{S_m}{E_m} = 10^{-1,03}$

D'où
$$S_m \approx 0,09 E_m \approx \frac{E_m}{10}$$
. L'amplitude du signal parasite est atténuée d'un facteur 10.

Et
$$\varphi_s = \Phi(x) + \varphi \otimes \Phi(x)$$
 est le déphasage lié au filtre. Or en $\log(x) = 1$, $\Phi \approx -1.5$ rad. Alors $\varphi_s \approx \varphi_e - 1.5$ rad.

Conclusion:
$$s(t) = \frac{3}{4}U_0 + \frac{E_m}{10}\cos(\omega t + \varphi_e - 1, 5)$$

D'où l'allure ci-dessous :

On a bien attenué le signel preasite.

PROBLEME 2 : Production de vagues dans une piscine :

(D'après ENSTIM)

I – Etude de l'équilibre :

 \bigcirc Q1. Expression de la poussée d'Archimède : $\overline{\vec{\pi} = ho_{eau}\,V\,\vec{g} = ho_{eau}Vg\,\overrightarrow{u_z}}$

12 Q2. Référentiel terrestre R supposé galiléen

Base de projection cartésienne. L'axe Oz est orienté vers le bas.

Système : La masse M. ...

Bilan des actions mécaniques extérieures :

Le poids : $\overrightarrow{P} = M\overrightarrow{g} = +Mg\overrightarrow{u_z}$

La poussée d'Archimède : $\vec{\pi} = -\rho_{eau} V g \vec{u}_z$.

La force de Hooke dirigée vers le haut : $\vec{T} = -k (l - l_0) \vec{u_z} = -k (z - l_0) \vec{u_z}$

Projetons sur l'axe (0z): $Mg - \rho_{eau}Vg - k(z_{eq} - l_0) = 0$

Ou encore, avec $z_{eq} = h$, il vient : $k (h - l_0) = Mg - \rho_{eau}Vg$

Il faut supprimer $M = \rho \bigvee_{k} D$ 'où : $h - l_0 = \frac{\rho - \rho_{eau}}{k} \bigvee_{k} Vg$; Ou encore : $h = l_0 + \frac{\nabla g}{k} (\rho - \rho_{eau})$.

II – Mouvement sans frottement:

Q3. Equation différentielle du mouvement : $2^{\text{ème}}$ loi de Newton : $\sum \overrightarrow{F_{ext}} = M\vec{a}$ avec $\vec{a} = \ddot{z} \overrightarrow{u_z}$

En projetant sur l'axe (Oz), il vient : $Mg - \rho_{eau}Vg - k$ $(z - l_0) = M\ddot{z}_0$

Ou encore : $M\ddot{z} + kz = Mg - \rho_{eau}Vg + kl_0 - kh + kh$

= 0 (d'après Q2)

En simplifiant, il vient : $M\ddot{z} + kz = kh$ et sous forme canonique, on obtient : $\ddot{z} + \frac{k}{M}z = \frac{k}{M}h$.

On pose alors $\omega_0 = \sqrt{\frac{k}{M}}$ la pulsation propre, il vient : $\ddot{z} + \omega_0^2 z = \omega_0^2 h$

La <u>pulsation propre</u> de cet oscillateur ne dépend <u>que de ses caractéristiques intrinsèques k et M.</u> Par contre, c'est la **position d'équilibre** *h* (autour de laquelle la masse oscille) qui **dépend la poussée** d'Archimède.

III – Mouvement avec frottements visqueux exercés par l'eau :

Q4. On refait une $2^{\text{ème}}$ loi de newton, en ajoutant le force de frottement visqueux : $\overrightarrow{F_v} = -\alpha \frac{d l}{dt} = -\alpha \dot{z} \overrightarrow{u_z}$

Il vient : $Mg - \rho_{eau}Vg - k(z - l_0) - \alpha \dot{z} = M\ddot{z}$

Soit: $M\ddot{z} + \alpha \dot{z} + kz = Mg - \rho_{eau}Vg + kl_0 - kh + kh$

= 0 (d'après Q2) En simplifiant et en mettant sous forme canonique, il vient : $\ddot{z} + \frac{\alpha}{M} \dot{z} + \omega_0^2 z = \omega_0^2 h$ Par identification avec $\ddot{z} + \lambda \dot{z} + \omega_0^2 z = \omega_0^2 h$, il vient : $\lambda = \frac{\alpha}{M}$

M Q5. Il faut résoudre l'équation précédente, dans le cas d'un amortissement faible, donc lorsque α reste petit. Solution homogène :

Equation caractéristique : $s^2 + \lambda s + \omega_0^2 = 0$ Discriminant : $\Delta = \lambda^2 - 4 \omega_0^2 = 0$ O si amortissement faible ; Donc régime pseudo-périodique.

Solutions de l'équation caractéristique : $s_{1,2} = -\frac{\lambda}{2} \pm i \frac{\sqrt{-\Delta}}{2} = -\frac{\lambda}{2} \pm i \frac{\sqrt{4 \omega_0^2 - \lambda^2}}{2} = -\frac{\lambda}{2} \pm i \Omega$

Les solutions de l'équation homogène s'écrivent alors : $z_h(t) = e^{-\frac{\lambda}{2}t} [A\cos(\Omega t) + B\sin(\Omega t)]$

Solution particulière constante : $\mathbf{z}_{p} = \mathbf{h}$. Solution générale :

 $z(t) = h + e^{-\frac{\lambda}{2}t} \left[A\cos(\Omega t) + B\sin(\Omega t) \right].$

On ne cherche pas A et B d'après l'énoncé.

Allure de la courbe :

A
$$t = 0, \mathbf{z}(0) = \mathbf{h_1} > h$$

et $\dot{\mathbf{z}}(\mathbf{0}) = \mathbf{0}$, donc tangente horizontale en 0.

De plus, $\lim \mathbf{z}(\mathbf{t}) = \mathbf{h} < h_1$.

Et entre temps, oscillations amorties avec décroissance exponentielle de l'amplitude.

IV – Cas du régime sinusoïdal forcé :

donc
$$l \equiv z - z_A$$
 et $\frac{dl}{dt} = \dot{z} - \dot{z_A}$

Ce qui modifie la force de Hooke :
$$\vec{T} = -k \ (l - l_0) \overrightarrow{u_z} = -k \ (z - z_A - l_0) \overrightarrow{u_z}$$
. Et la force de frottement fluide : $\overrightarrow{F_v} = -\alpha \ \frac{dl}{dt} \ \overrightarrow{u_z} = -\alpha (\ \dot{z} - \dot{z_A}) \ \overrightarrow{u_z}$

The loi de Newton devient donc:
$$Mg - \rho_{equ}Vg - k(z - z_4 - l_0) - \alpha(\dot{z} - \dot{z}_4) = M\ddot{z}$$

La
$$2^{\text{ème}}$$
 loi de Newton devient donc : $Mg - \rho_{eau}Vg - k(z - z_A - l_0) - \alpha(\dot{z} - \dot{z}_A) = M\ddot{z}$ Qui se simplifie en : $M\ddot{z} + \alpha(\dot{z} - \dot{z}_A) + k(z - z_A) = Mg - \rho_{eau}Vg + kl_0 - kh + kh$

$$= 0 \quad \text{(d'après Q2)}$$

Ou encore :
$$M\ddot{z} + \alpha(\dot{z} - \dot{z}_A) + k(z - h - z_A) = 0.$$

On pose :
$$Z(t) = z(t) - h$$
; Soit $\dot{Z} = \dot{z}$ et $\ddot{Z} = \ddot{z}$

L'équation différentielle devient :
$$M \ddot{Z} + \alpha \dot{Z} + kZ(t) = \alpha \dot{z}_A + k z_A(t)$$

On pose:
$$Z(t) = z(t) - h$$
; Soit $Z = \dot{z}$ et $Z = \ddot{z}$
L'équation différentielle devient : $M\ddot{Z} + \alpha \dot{Z} + kZ(t) = \alpha \dot{z}_A + k z_A(t)$.

Sour forme canonique, il vient : $\ddot{Z} + \frac{\alpha}{M} \dot{Z} + \frac{k}{M} Z = \frac{\alpha}{M} \dot{z}_A + \frac{k}{M} z_A(t)$.

Par identification avec
$$\ddot{Z} + \lambda \dot{Z} + \omega_0^2 Z = F(t)$$
, il vient : $F(t) = \frac{\alpha}{M} \dot{z_A} + \frac{k}{M} z_A(t)$.

On nous donne
$$F(t) = \omega^2 z_{Am} \cos(\omega t)$$
. Alors $\underline{F} = \omega^2 z_{Am} e^{i\omega t}$

On introduit
$$\underline{Z_{com}}(i\omega) = \underline{Z}(i\omega) e^{i\omega t}$$
 la grandeur complexe associée à $Z(t)$

et
$$\underline{Z}(i\omega)$$
 l'amplitude complexe telle que $\underline{Z}(i\omega) = Z(\omega) e^{i\omega t}$

On reprend l'équation différentielle précédente, en la passant en complexes :

$$\underline{Z_{com}}^{...} + \lambda \underline{Z_{com}}^{...} + \omega_0^2 \underline{Z_{com}} = \underline{F} ; \text{Soit} : -\omega^2 \underline{Z_{com}} + i\omega \lambda \underline{Z_{com}} + \omega_0^2 \underline{Z_{com}} = \underline{F}$$

Avec
$$\tau = \frac{M}{\alpha} = \frac{1}{\lambda}$$
, il vient : $Z_{com} \left(\omega_0^2 - \omega^2 + i \frac{\omega}{\tau} \right) = \underline{F} = \omega^2 z_{Am} e^{i\omega t}$.

D'où :
$$\underline{Z_{com}} = \frac{\omega^2 z_{Am} e^{i\omega t}}{(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau})} = \underline{Z}(i\omega) = \frac{\omega^2 z_{Am}}{(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau})} = \frac{z_{Am}}{(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau})};$$

D'où :
$$\underline{Z_{com}} = \frac{\omega^2 z_{Am} e^{i\omega t}}{\left(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau}\right)}$$
 et $\underline{Z}(i\omega) = \frac{\omega^2 z_{Am}}{\left(\omega_0^2 - \omega^2 + i\frac{\omega}{\tau}\right)} = \frac{z_{Am}}{\frac{\omega_0^2}{\omega^2} - 1 + i\frac{1}{\omega\tau}}$; Ainsi, avec la pulsation réduite $x = \frac{\omega}{\omega_0}$: $\underline{Z}(ix) = \frac{z_{Am}}{\frac{1}{x^2} - 1 + i\frac{1}{x\omega_0 \tau}}$ Enfin $\underline{Z}(x) = |\underline{Z}(ix)| = \frac{z_{Am}}{\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x\omega_0 \tau)^2}}}$

Enfin
$$Z(x) = \left| \underline{Z}(ix) \right| = \frac{z_{Am}}{\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}}}$$

Q8. On veut
$$Z(x) > Z_{Am}$$
, soit $\frac{Z(x)}{Z_{Am}} > 1$; ou encore : $\frac{1}{\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}}} > 1$; Soit : $\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}} < 1$

On a donc:
$$(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2} < 1$$
; On développe: $\frac{1}{x^4} - \frac{2}{x^2} + 1 + \frac{1}{x^2 \omega_0^2 \tau^2} - 1 < 0$

Ou encore :
$$\frac{1}{x^4} - \frac{2}{x^2} + \frac{1}{x^2 \omega_0^2 \tau^2} < 0$$
.

Multiplions par
$$x^4$$
, il vient : $1 - 2x^2 + \frac{x^2}{\omega_0^2 \tau^2} < 0$; Soit $x^2 \left(-\frac{1}{\omega_0^2 \tau^2} + 2 \right) > 1$.

Ou encore
$$x > \frac{1}{\sqrt{2 - \frac{1}{\omega_0^2 \tau^2}}}$$
;

Or
$$\omega = x \omega_0$$
;

Or
$$\omega = x \omega_0$$
;
Il faut donc que
$$\omega > \frac{\omega_0}{\sqrt{2 - \frac{1}{\omega_0^2 \tau^2}}} = \frac{\omega_0 \omega_0 \tau}{\sqrt{2 \omega_0^2 \tau^2 - 1}} = \frac{\omega_0^2 \tau}{\sqrt{2 \omega_0^2 \tau^2 - 1}} = \omega_{lim}$$

On remarque que
$$\omega_{lim}$$
 n'existe que si $2 \omega_0^2 \tau^2 - 1 > 0$; Donc que si $\omega_0^2 \tau^2 > \frac{1}{2}$.

On remarque que
$$\omega_{lim}$$
 n'existe que si $2 \omega_0^2 \tau^2 - 1 > 0$; Donc que si $\omega_0^2 \tau^2 > \frac{1}{2}$.

Or $\tau = \frac{M}{\alpha}$ et $\omega_0^2 = \frac{k}{M}$; Ainsi ω_{lim} n'existe que si $\frac{k}{M} \frac{M^2}{\alpha^2} > \frac{1}{2}$; Donc pour $M > \frac{\alpha^2}{2k}$.

Cette condition revient à avoir un facteur de qualité suffisamment grand pour que la condition de résonance soit monestée.

soit respectée.

Q9. On a vu que
$$Z(x) = |\underline{Z}(ix)| = \frac{z_{Am}}{\sqrt{(\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}}}$$

Q9. On a vu que $Z(x) = |\underline{Z}(ix)| = \frac{z_{Am}}{\sqrt{(\frac{1}{x^2}-1)^2 + \frac{1}{(x \omega_0 \tau)^2}}}$. Le numérateur est constant, ainsi Z est maximum si $(\frac{1}{x^2}-1)^2 + \frac{1}{(x \omega_0 \tau)^2}$ est minimum.

Posons
$$f(x) = (\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}$$
.

Alors
$$\frac{df(x)}{dx} = 0$$
 ssi $2(\frac{1}{x^2} - 1)(\frac{-2}{x^3}) - \frac{2}{\omega_0^2 \tau^2 x^3} = 0$; Soit $(\frac{-2}{x^3}) \left[2(\frac{1}{x^2} - 1) + \frac{1}{\omega_0^2 \tau^2} \right] = 0$

Posons
$$f(x) = (\frac{1}{x^2} - 1)^2 + \frac{1}{(x \omega_0 \tau)^2}$$
.

Alors $\frac{df(x)}{dx} = 0$ ssi $2(\frac{1}{x^2} - 1)(\frac{-2}{x^3}) - \frac{2}{\omega_0^2 \tau^2 x^3} = 0$; Soit $(\frac{-2}{x^3})\left[2(\frac{1}{x^2} - 1) + \frac{1}{\omega_0^2 \tau^2}\right] = 0$

Il vient : $2(\frac{1}{x_r^2} - 1) + \frac{1}{\omega_0^2 \tau^2} = 0$; D'où : $\frac{1}{x_r^2} - 1 = -\frac{1}{2\omega_0^2 \tau^2}$; ou $\frac{1}{x_r^2} = 1 - \frac{1}{2\omega_0^2 \tau^2} = \frac{2\omega_0^2 \tau^2 - 1}{2\omega_0^2 \tau^2}$

Enfin : $x_r = \sqrt{\frac{2\omega_0^2 \tau^2}{2\omega_0^2 \tau^2 - 1}} = \frac{1}{\sqrt{1 - \frac{1}{2\omega_0^2 \tau^2}}} = \frac{\omega_0 \tau \sqrt{2}}{\sqrt{2\omega_0^2 \tau^2 - 1}}$.

Et $\omega_r = \omega_0 x_r = \frac{\omega_0^2 \tau \sqrt{2}}{\sqrt{2\omega_0^2 \tau^2 - 1}} = \frac{\omega_0}{\sqrt{1 - \frac{1}{2\omega_0^2 \tau^2}}}$: Pulsation de résonance.

Enfin:
$$x_r = \sqrt{\frac{2 \omega_0^2 \tau^2}{2 \omega_0^2 \tau^2 - 1}} = \frac{1}{\sqrt{1 - \frac{1}{2 \omega_0^2 \tau^2}}} = \frac{\omega_0 \tau \sqrt{2}}{\sqrt{2 \omega_0^2 \tau^2 - 1}}.$$

Et
$$\omega_r = \omega_0 x_r = \frac{\omega_0^2 \tau \sqrt{2}}{\sqrt{2 \omega_0^2 \tau^2 - 1}} = \frac{\omega_0}{\sqrt{1 - \frac{1}{2 \omega_0^2 \tau^2}}}$$
: Pulsation

Et le phénomène est appelé <u>phénomène de résonance.</u>

PROBLEME 3 : Autour de l'aluminium : (D'après CCP TSI)

I - Propriétés de l'atome d'aluminium :

- Q1. Le <u>numéro atomique</u> d'un élément est le <u>nombre de protons</u> du noyau atomique (et nombre d'électrons de l'atome neutre).
 - ¥ Z = 13 : Soit 2+8+3 : Dans la classification périodique, il sera donc situé sur la 3ème période et 1er élément du groupe p, soit dans le groupe 13. Il a donc 3 électrons de valence ($3s^2 3\overline{p^1}$).

Son schéma de Lewis est : | Al • [4]

L'ion le plus probable a la configuration du gaz rare le plus proche, celle où toutes les couches sont occupées. Il aura donc tendance à perdre ses 3 électrons de valence et donner <u>l'ion Al^{3+} </u>.

II – L'aluminium comme source d'énergie :

Q2. A l'anode, il se produit une oxydation du réducteur, d'où le sens de la réaction :

 $Al_{(s)} + 3 HO^{-}_{(aq)} = Al (OH)_{3(s)} + 3 e^{-}$

A la cathode, il se produit une réduction de l'oxydant :

 $O_{2(g)} + 2 H_2 O_{(l)} + 4 e^- = 4 HO_{(aq)}$ $(\times 3)$

Pour obtenir l'équation bilan, il faut équilibrer le nombre d'électrons échangés, on obtient donc :

 $|4 Al_{(s)} + 3 O_{2(g)} + 6 H_2 O_{(l)} = 4 Al (OH)_{3(s)} |$ Tout est équilibré.

- Q3. $K^{\circ} = \frac{(P^{\circ})^3}{(P(O_2)_{eq}^3)} = \frac{1}{(P(O_2))_{eq}^3}$
 - $\frac{1}{\sqrt{2}}$ équation redox : $Al(OH)_{3(s)} + 3e^{-} = Al_{(s)} + 3HO_{(ag)}^{-}$

Relation de Nernst : $E_a = E^{\circ}_a + \frac{0.06}{3} \log \frac{1}{[HO^{-}]^3}$;

4 ½ équation redox : $O_{2(g)} + 2 H_2 O_{(l)} + 4 e^- = 4 HO^-_{(aq)}$ Relation de Nernst : $E_c = E^{\circ}_c + \frac{0.06}{4} \log \frac{P(O_2)}{[HO^-]^4}$;

- ♣ A l'équilibre, les potentiels redox sont égaux, soit : $E_{a\ eq} = E_{c\ eq}$;
- $\stackrel{\bullet}{+} \text{ D'où}: E^{\circ}_{a} + \frac{0,06}{3} \log \frac{1}{[HO^{-}]_{eq}^{3}} = E^{\circ}_{c} + \frac{0,06}{4} \log \frac{P(O_{2})_{eq}}{[HO^{-}]_{eq}^{4}};$

■ Multiplions par 12: $12 E^{\circ}_{a} + 0.06 \log \frac{1}{[HO^{-}]^{12}_{eq}} = 12 E^{\circ}_{c} + 0.06 \log \frac{(P(O_{2}))^{3}_{eq}}{[HO^{-}]^{12}_{eq}}$; Soit: $0.06 \log K^{\circ} = 12(E^{\circ}_{c} - E^{\circ}_{a})$; Soit: $K^{\circ} = 10^{\frac{12(E^{\circ}_{c} - E^{\circ}_{a})}{0.06}}$; $AN : K^{\circ} = 10^{\frac{538}{538}} > 10^{3}$: Réaction totale.

Tableau d'avancement :

	$4 Al_{(s)} +$	3 O _{2(g)} +	$6 H_2 O_{(l)} =$	4 Al (OH) _{3 (s)}
EI	$n(Al)_{init} = 0.93$	excès	excès	
EF	$0,93-4\xi_{max}$	excès	excès	4 ξ _{max}

La réaction étant totale, on a disparition du réactif limitant :

Soit : $0.93 - 4 \xi_{max} = 0$; Soit : $\xi_{max} = \frac{0.93}{4}$; $\xi_{max} = 0.23$ mol.

 $\sqrt{2}$ Q5. On sait que : $Q = I \Delta t$; Donc : Durée de fonctionnement : $\Delta t = \frac{Q}{I}$

 $\underline{AN}: \Delta t = \frac{2,1.10^5}{6.5}$; On obtient $\underline{\Delta t} \approx 3,2.10^4 \text{ s} \approx 9\text{h}$.

Pourcentage d'aluminium consommé :

✓ Quantité d'électricité ayant circulé : $Q = n_e - F = 3 \times n_{Al\ consomm\acute{e}} \times F$; Soit $n_{Al,consomm\acute{e}} = \frac{Q}{2F}$

 $\underline{\text{AN}}: n_{Al\ consomm\acute{e}} \frac{2,1.10^5}{3\times96500}; \text{ Soit } \underline{n_{Al\ consomm\acute{e}}} = 0,73 \text{ mol}.$

 $\sqrt{n_{Al \, restant}} = \frac{0.93 - 0.73 = 0.20 \, \text{mol}^{3}}{0.93}$ Soit en pourcentage : p = $\frac{0.20}{0.93} \times 100$;

D'où le pourcentage d'aluminium non consommé : p = 21,5%

III - Présence d'aluminium (III) dans un vaccin :

Q6. Diagramme potentiel-pH de l'élément aluminium :

degré d'oxydation de Al degré d'oxydation de Al espèce espèce $Al(OH)_{3(s)}$ $Al_{(s)}$ + III + III + III $Al(OH)_4$

♣ De bas en haut du diagramme, les espèces sont placées par ordre croissant de nombre d'oxydation

D'autre part, l'espèce la plus acide $(Al^{3+}_{(aq)})^{(1)}$ est majoritaire à bas pH et l'espèce la plus basique $(Al (OH)_4 (aq))$ est majoritaire à haut pH. D'où les identifications ci-contre. Remarque: on aurait aussi pu faire un diagramme primitif.

 $\sqrt{}$ Q7. Couple $Al^{3+}_{(aq)}/Al_{(s)}$:

 $4 \frac{1}{2}$ équation redox : $Al^{3+}_{(aq)} + 3e^{-} = Al_{(s)}$

Relation de Nernst:

 $E(Al^{3+}_{(aa)}/Al_{(s)}) = E^{\circ}_{1} + 0.02 \log([Al^{3+}]);$

Sur la frontière entre Al^{3+} et $Al_{(s)}$, le solide est présent à l'état

de trace et $[Al^{3+}] = C_T$. Soit $E_{1 Front} = E_1^{\circ} + 0.02 \log(C_T)^{(4)}$

On donne $E_{1\,Front} = -1,72 \text{ V. Donc } \underbrace{E_{1}^{\circ} = E_{1\,Front} - 0,02 \log(C_{T})}_{\text{Local Property of the property of th$

 \underline{AN} : $E^{\circ}_{1} = -1.72 + 0.02 \times 3$; $\underline{E^{\circ}_{1}} = -1.66 \text{ V}$ waleur déjà donnée dans le sujet).

On a la relation : $pH = pKa + \log(\frac{[HCO_3^-]}{[H_2CO_3]})$; $AN : pH = 6.2 + \log(\frac{0.027}{0.0014})$; On obtient : $pH \approx 7.5$.

 \bot A un tel pH, d'après le diagramme E - pH, $Al(OH)_{3(s)}$ est l'espèce majoritaire de Al (III).

Titrage de l'aluminium (III) :

Titrage 1 : Titrage d'une solution d'acide chlorhydrique { H₃O + (aq) ; Cl - (aq) }.

 $\mathcal{U}_{\mathbf{q}}$ **Q9.** Réaction du dosage acide fort / base forte : $\mathbf{H}_{\mathbf{3}}\mathbf{O}^{+}$

 $(aq) + HO^{-}(aq) = 2 H_2O_{(I)}$

AN : $K = 10^{14}$; Réaction totale.

Q10. On utilise la méthode des tangentes : On trace une 1^{ère} droite tangente à la courbure après l'équivalence (droite 1).

On trace une 2^{nde} droite tangente à la courbure avant l'équivalence et parallèle à la droite 1 (droite 2).

A l'aide d'une équerre, on trace une droite perpendiculaire aux deux autres (droite 3). On tracer ensuite une droite parallèle et à égale distance des droites 1 et 2 (droite 4).

Le point d'intersection avec la courbe du pH donne le volume équivalent.

On lit $V_{\rho} = 10.0 \text{ mL}$.

🖊 A l'équivalence : les <u>réactifs sont versés dans les proportions stœchiométriques</u>.

Donc: $n(H_3O^+)_0 = n(HO^-)_{eq}$; Soit: $C_1V_0 = CV_e$; Ainsi: $C_1 = \frac{CV_e}{V_o}$;

<u>AN</u>: $C_1 = \frac{0.1 \times 10}{20}$; On obtient: $C_1 = 5.0.10^{-2}$ mol.L⁻¹.

// Q11. L'indicateur coloré doit avoir une zone de virage comprenant le pH à l'équivalence (7 ici). Le BBT convient donc ; on observera le passage du jaune (milieu acide avant l'équivalence) au bleu (milieu basique lorsque l'ion hydroxyde est en excès).

Titrage 2: Titrage d'une solution acidifiée d'ions Al 3+(aq).

- 1^{ère} réaction : $H_3O^+_{(aq)} + HO^-_{(aq)} = 2 H_2O_{(l)}$; 1^{ere} réaction : $|H_3O^+|_{(aq)} + HO^-|_{(aq)} = 2|H_2O_{(l)}|^{2}$; $|V_{e1}| = 10 \text{ mL}$; $|V_{e2}| = 25 \text{ mL}$. / O12.
 - Le premier saut de pH correspond au volume déterminé à la question 10, lors du titrage des 20 mL d'acide chlorhydrique { $H_3O^+_{(aq)}$; $Cl^-_{(aq)}$ } ;

Ou bien 1ère réaction entre l'acide le plus fort et la base la plus forte, soit HCl.

Q13. Volume ayant réagi avec $Al^{3+}_{(aq)}: V_{A1} = V_{e2} - V_{e1}$, $AN: V_{A1} = 15 \text{ mL}$. Attention aux coefficients stæchiométriques de la 2ème réaction :

Pour ce volume, on a $n(Al^{3+})_0^{2} = \frac{n(HO^-)_{eq}}{3}$; Soit : $C_2V_0 = \frac{CV_{A1}}{3}$; Ainsi : $C_2 = \frac{CV_{A1}}{3V_0}$;

 \underline{AN} : $C_2 = \frac{0.1 \times 15}{3 \times 20}$; On obtient : $\underline{C_2} = 2.5.10^{-2}$ mol.L⁻¹.

 \perp Et la masse ayant servi : $m = n(Al^{3+}) \times M(AlCl_3, 6H_2O)$.

Soit: $m = C_2V_0 \times M(AlCl_3, 6H_2O)$

avec $M(AlCl_3, 6H_2O) = 27 + 3 \times 35,5 + 6 \times 18$; Soit $M(AlCl_3, 6H_2O) = 241,5$ g.mol⁻¹.

AN: $m = 2.5 \cdot 10^{-2} \times 20 \cdot 10^{-3} \times 241.5$; On obtient: $m \approx 121 \text{ mg}$

Exploitation du point anguleux :

Q14. Attention au sens de la réaction : Sens de la dissolution du précipité :
$$Al(OH)_{3(s)} = Al^{3+}_{(aq)} + 3HO^{-}_{(aq)}$$
 ; $K = Ks$.

- Q15. En D, pH = 3.9, Soit $[HO^-] = \frac{K_e}{10^{-pH(D)}}$, $AN : [HO^-] = \frac{10^{-14}}{10^{-3.9}}$ On obtient : $[HO^-] = 7, 9. 10^{-11} \text{ mol.L}^{-1}$.
- **Q16.** Au point D, les ions Al^{3+} n'ont pas encore réagi.

Donc en solution, on a : $[Al^{3+}] = \frac{c_2 v_0}{v_0 + v_0}$

AN: $[Al^{3+}] = \frac{2,5.10^{-2} \times 20}{20+10}$; On obtient: $[Al^{3+}] \approx 1,7.10^{-2}$ mol.L⁻¹. Let par definition, $Ks = [Al^{3+}][HO^{-}]^{3}$

AN: $Ks = 1.7. \, 10^{-2} \times (7.9. \, 10^{-11})^3$; On obtient: $Ks \approx 8.4. \, 10^{-33}$ (pKs ≈ 32.1)