

Logistic Regression
Graded Quiz • 30 min

⊅ la&iongratulations!•You	passedstic	Regression
	- Logistic	116616331011

Logistic Regression Model Grade received 80% To pass 80% or higher

Multiclass Classification

Review

Logistic Regression

Submit your assignment

Due Oct 3, 11:59 PM PDT **Attempts** 3 every 8 hours

Your computer's timezone does not seem to match your Course a account item zone setting of America/Los_Angeles.
Change your Coursera timezone setting

Try again

Latest Submission Grade 80%

Quiz: Logistic Regression

Quiz: Logistic Regression 5 questions

Receive grade

1. Solving the Broblem of have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x) = 0.7$. This means (check all that apply):

Overfitting

To Pass 80% or higher

Your grade 80%

View Feedback 1/1 point We keep your highest score

Review

⊘ Correct

🖒 Like 🖓 Dislike

Report an issue

2. Suppose you have the following training set, and fit a logistic regression classifier $h_{ heta}(x)=g(heta_0+ heta_1x_1+ heta_2x_2).$

1 / 1 point

Which of the following are true? Check all that apply.

⊘ Correct

For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)}\right) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

0 / 1 point

igotimes Incorrect

4. Which of the following statements are true? Check all that apply.

1/1 point

⊘ Correct

5. Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = -6, \theta_1 = 0, \theta_2 = 1$. Which of the following figures represents the decision boundary found by your classifier?

1/1 point

⊘ Correct