

```
▼ Исходные данные
```

safety = 1.3Коэф. запаса:

Степень двухконтурности: m2 = 6

РТ: Воздух compressor = "КНД"

Число Maxa: M = 0

Геометрическая высота работы (м): $H_{\bullet} = 0$

 $G_{\text{N}} = 35.65 + 213.93$ if compressor = "B\pi" = 35.65 Массовый расход (кг/с):

35.65 if compressor = "КНД" 34.81 if compressor = "КВД"

Полная температура на входе в К (К):

 $T^*_{K1} = | 418.2 \text{ if compressor} = "КВД" = 288.2 |$ 288.2 otherwise

Полное давление на входе в К (Па):

 $P*_{K1} = \begin{bmatrix} 316.2 \cdot 10^3 & \text{if compressor} = "КВД" = 101.3 \cdot 10^3 \\ 101325 & \text{if compressor} \end{bmatrix}$

101325 otherwise

Степень повышения давления КВД:

 $\pi^*_{K} = \begin{bmatrix} 1.6 & \text{if compressor} = "B\pi" \end{bmatrix} = 2.000$

 $\frac{3.2}{1.6}$ if compressor = "КНД"

9 if compressor = "КВД"

Ожидаемый адиабатический КПД ОК:

$$\eta_{K}^{*} = \begin{vmatrix} 0.86 & \text{if compressor} = "Вл" & = 87.00 \cdot \% \\ 0.87 & \text{if compressor} = "КНД" \\ 0.88 & \text{if compressor} = "КВД" \end{vmatrix}$$

Частота вращения ротора (с-1):

$$\omega = \begin{bmatrix} 1570.8 & \text{if compressor} = \text{"КВД"} \end{bmatrix} = 555.0$$

Относ. диаметр корня 1ой ступени [14, с.7]:

$$\overline{d}_1 = \begin{vmatrix} 0.40 & \text{if compressor} = "Вл" \\ 0.75 & \text{if compressor} = "КНД" \\ 0.65 & \text{if compressor} = "КВД" \end{vmatrix}$$

 $0.3 \le \overline{d}_1 \le 0.6 = 0$

Частота вращения ротора (об/мин):
$$n = \frac{60 \cdot \omega}{2 \cdot \pi} = 5300$$

Закон профилирования проточной части (ЗППЧ):

Относ. параметры по относительным ступеням:

$$\begin{pmatrix} z_{\sim} \\ R_{L \sim cp} \\ K_{\sim H} \\ \eta^*_{\sim} \\ \overline{c}_{\sim a1} \\ \overline{H}_{\sim T} \end{pmatrix} = \begin{pmatrix} (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)^{T} \\ (0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5)^{T} \\ (0.99 \ 0.98 \ 0.97 \ 0.96 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95)^{T} \\ (0.88 \ 0.89 \ 0.905 \ 0.91 \ 0.91 \ 0.905 \ 0.89 \ 0.88)^{T} \\ (0.435 \ 0.425 \ 0.415 \ 0.405 \ 0.395 \ 0.385 \ 0.375 \ 0.365)^{T} \\ (0.25 \ 0.29 \ 0.32 \ 0.33 \ 0.35 \ 0.32 \ 0.29 \ 0.27)^{T}$$

Тип компрессора			1	Номер ступс	ени и $\overline{L}_{CT.i}$	1		
тип компрессора	I	II	III	IV	Z_{CP}	z - 2	z - 1	Z
Дозвуковой	0,18-0,20	0,24-0,25	0,24-0,25	0,29-0,30	0,30-0,32	0,28-0,29	0,27-0,28	0,26-0,27
Трансзвуковой	0,19-0,22	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С одной св/зв ступенью	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 2-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 3-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,25-0,26

[16, c. 60]

[18, c. 24]

Уточнение параметров:

$$\overline{c}_{\sim a1} = \overline{c}_{\sim a1} -$$
 0.100 if compressor = "Вл" 0.141 if compressor = "КНД" 0.203 if compressor = "КВД"

увеличение несущественно увеличивает π

$$\eta^*_{\sim} = \eta^*_{\sim} + \begin{vmatrix} -0.020 & \text{if compressor} = "Вл" \\ -0.028 & \text{if compressor} = "КНД" \\ -0.017 & \text{if compressor} = "КВД" \end{vmatrix}$$

понижение существенно увеличивает
$$\pi$$

$$\overline{H}_{T} = \overline{H}_{T} + \begin{cases} 0.0145 & \text{if compressor} = "Вл" \\ 0.0164 & \text{if compressor} = "КНД" \\ 0.0173 & \text{if compressor} = "КВД" \end{cases}$$
 [16, c. 234]

увеличение несущественно увеличивает π

увеличение существенно увеличивает
$$\pi$$

$$\operatorname{stack}\left(R_{L\sim cp}^{T},K_{\sim H}^{T},\eta^*_{}^{T},\overline{c}_{\sim a1}^{T},\overline{H}_{\sim T}^{T}\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 & 0.600 \\ 2 & 0.990 & 0.980 & 0.970 & 0.960 & 0.950 & 0.950 & 0.950 \\ 3 & 0.852 & 0.862 & 0.877 & 0.882 & 0.882 & 0.877 & 0.862 & 0.852 \\ 4 & 0.294 & 0.284 & 0.274 & 0.264 & 0.254 & 0.244 & 0.234 & 0.224 \\ 5 & 0.266 & 0.306 & 0.336 & 0.346 & 0.366 & 0.336 & 0.306 & 0.286 \end{bmatrix}$$

$$0.18 \le \overline{H} \sim_{T}^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$$
 $\overline{H} \sim_{T}^{T} \le 0.35 = (1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)$

$$\overline{H}_{Tcp} = \frac{\sum_{i=1}^{rows(z_{\sim})} \overline{H}_{\sim T_{i}}}{rows(z_{\sim})} = 0.3189$$

 $0.25 \le \overline{H}_{Ten} \le 0.32 = 1$

▼ Распределение основных параметров ОК по ступеням

Кинематическая степень реактивности:
$$R_{L\sim cp}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp} \right), \frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp}, i \right)$$
 Коэф. уменьшения теор. напора:
$$K_{\sim H}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H} \right), \frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H}, i \right)$$
 Изоэнтропический КПД:
$$\prod_{m=0}^{\infty} (i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim}, i \right)$$
 Коэф. расхода:
$$\overline{c}_{max}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1}, i \right)$$
 Коэф. напора:
$$\overline{H}_{\sim T}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T}, i \right)$$

$$\begin{bmatrix} R_{L,cp} \\ K_{,H} \\ \eta^* \\ \vdots \\ \overline{c}_{a,1} \\ \overline{H}_{,T} \end{bmatrix} = \begin{bmatrix} R_{L,cp}(Z,i) = \left\lfloor \frac{1}{rows(z_{,-})} \right\rfloor & \text{if } i < 1 \\ R_{L,cp}(1) & \text{if } i > Z \\ R_{L,cp}(\frac{i}{Z}) & \text{otherwise} \end{bmatrix}$$

$$K_{,H}(Z,i) = \begin{bmatrix} K_{,\sim}H\left(\frac{1}{rows(z_{,-})}\right) & \text{if } i < 1 \\ K_{,\sim}H(1) & \text{if } i > Z \\ K_{,\sim}H\left(\frac{i}{Z}\right) & \text{otherwise} \end{bmatrix}$$

$$\eta^*_{,,(Z,i)} = \begin{bmatrix} \eta^*_{,,(Z,i)} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \eta^*_{,,(Z,i)} & \frac{i}{Z} & \text{otherwise} \end{bmatrix}$$

$$\overline{c}_{,a_1}(Z,i) = \begin{bmatrix} \overline{c}_{,a_1} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \overline{c}_{,a_1}(1) & \text{if } i > Z \\ \overline{c}_{,a_1}(1) & \text{if } i > Z \end{bmatrix}$$

$$\overline{c}_{,a_1}(Z,i) = \begin{bmatrix} \overline{c}_{,a_1} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \overline{c}_{,a_1}(1) & \text{if } i > Z \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1} & \frac{1}{rows(z_{,-})} & \text{if } i < 1 \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1} & \frac{1}{rows(z_{,-})} & \overline{d}_{,a_1}(Z,i) \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1} & \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \\ \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1}(Z,i) \end{bmatrix}$$

$$\overline{d}_{,a_1}(Z,i) = \begin{bmatrix} \overline{d}_{,a_1}(Z,i) & \overline{d}_{,a_1$$

$$\begin{pmatrix} Z_{temp} \\ i_{temp} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} R_{L.cp}(Z_{temp}, i_{temp}) \\ K_{.H}(Z_{temp}, i_{temp}) \\ \eta^*.(Z_{temp}, i_{temp}) \\ \overline{c}_{.a1}(Z_{temp}, i_{temp}) \\ \overline{H}_{.T}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.600 \\ 0.950 \\ 0.852 \\ 0.224 \\ 0.286 \end{pmatrix}$$

Показатель адиаьаты перед К []: $k_{K1} = k_{ad} \left(Cp_{BO3dyx} \left(P^*_{K1}, T^*_{K1} \right), R_B \right) = 1.401$

Полное давление после К [Па]: $P_{K3}^* = \pi_K \cdot P_{K1}^* = 203 \cdot 10^3$

Количество итераций []: $iteration_3 = 1$

Полная температура после K[K]: $T*_{K3} = 360.9$

Показатель адиаьаты после К []: $k_{K3} = 1.398$

Полная плотность перед и после К [кг/м³]: $\begin{pmatrix} \rho^*_{K1} \\ \rho^*_{K3} \end{pmatrix} = \frac{1}{R_B} \cdot \begin{pmatrix} \frac{P^*_{K1}}{T^*_{K1}} \\ \frac{P^*_{K3}}{T^*_{K3}} \end{pmatrix} = \begin{pmatrix} 1.224 \\ 1.955 \end{pmatrix}$

Критические скорости перед и после К [м/с]: $\begin{pmatrix} a^*_{\text{с.вых}} \\ a^*_{\text{с.вых}} \end{pmatrix} = \begin{pmatrix} a_{\text{кp}} (k_{\text{K}1}, R_{\text{B}}, T^*_{\text{K}1}) \\ a_{\text{кp}} (k_{\text{K}3}, R_{\text{B}}, T^*_{\text{K}3}) \end{pmatrix} = \begin{pmatrix} 310.8 \\ 347.6 \end{pmatrix}$

Ср. показатель адиабаты K []: $k_{cp} = k_{ad} \left(Cp_{BO3dyx.cp} \left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3} \right), R_B \right) = 1.4$

Теоретический напор [Дж/кг]: $H_{TK} = \frac{Cp_{\text{воздух.cp}}\left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3}\right) \cdot T^*_{K1} \cdot \left(\frac{\frac{k_{cp}-1}{k_{cp}}}{\pi^*_{K}} - 1\right)}{\eta^*_{K}} = 72.9 \cdot 10^3$

```
iteration<sub>u</sub>
    <sup>u</sup>1пер
Z_{recomend}
                            = | iteration<sub>u</sub> = 0
       c_{BX}
                                     \rho_{K1} = \rho^*_{K1}
                                      while 0 < 1
       \rho_{K1}
                                           iteration_u = iteration_u + 1
                                            | trace(concat("iteration.u = ", num2str(iteration_u))) |
                                          u_{1 \text{mep}} = \sqrt[3]{\frac{\pi \cdot G \cdot n^2}{900 \cdot \overline{c}_{.a1}(1,0) \cdot \rho_{K1} \cdot \left[1 - \left(\overline{d}_1\right)^2\right]}}
                                         Z_{recomend} = max \left( round \left( \frac{H_{TK}}{\overline{H}_{Tcp} \cdot u_{1 \pi ep}} \right), 1 \right)
                                           c_{\text{BX}} = \overline{c}_{.a1}(Z_{\text{recomend}}, 0) \cdot u_{1 \pi ep}
                                          \lambda_{\rm BX} = \frac{c_{\rm BX}}{a_{\rm c.BX}^*}

ho'_{K1} = 
ho*_{K1} \cdot \Gamma \mathcal{I} \Phi \left( "
ho", \lambda_{BX}, k_{K1} \right)
                                          \left| \text{ if } \left| \text{eps} \left( \text{"rel"} , \rho'_{K1}, \rho_{K1} \right) \right| \leq \text{epsilon} \right|

\rho_{K1} = \rho'_{K1}

                                           \rho_{K1} = \rho'_{K1}
                                         iterationu
                                            <sup>u</sup>1пер
                                        Z_{recomend} \\
                                               c_{BX}
                                               \lambda_{BX}
                                               \rho_{K1}
```

Количество итераций []: iteration $_{11} = 2$

Окружная скорость на перифкрии перед K [м/c]: $u_{1\pi ep} = 283.8$

Рекомендуемое количество ступеней []: $Z_{recomend} = 3$

Абс. скорость перед К [м/с]: $c_{BX} = 83.4$

Приведенная скорость перед К []: $\lambda_{\rm BX} = 0.2685$

Плотность перед К [кг/м^3]: $\rho_{K1} = 1.188$

Кольцевая площадь перед К [м²]:
$$F_{BX} = \frac{G \cdot \sqrt{R_B \cdot T^*_{K1}}}{m_q(k_{K1}) \cdot P^*_{K1} \cdot \Gamma \not\square \Phi \left(\text{"G"} , \lambda_{BX}, k_{K1} \right)} = 0.3596$$

$$D'_{nep1} = \frac{2 \cdot u_{1nep}}{u} = 1022.8 \cdot 10^{-3}$$

Диамтеры перед К [м]: $D'_{cp1} = \overline{r}_{cp} (\overline{d}_1) \cdot D'_{nep1} = 904 \cdot 10^{-3}$

$$D'_{\text{kop1}} = \overline{d}_{1} \cdot D'_{\text{nep1}} = 767.1 \cdot 10^{-3}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} .. 2 \cdot \pi$$

Рекомендуемое количество ступеней []:

Количество ступеней []:
$$Z = \begin{bmatrix} 1 & \text{if compressor} = "Вл" \end{bmatrix} = 3$$

▲ Нулевые приближения

```
BHA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" & = 0 \\ 0 & \text{otherwise} \end{bmatrix}
```

▼ Расчет ВНА

```
\alpha_{1BHA}
                   \alpha_{3BHA}
 \sigma_{\mathrm{BHA}}
                    \sigma_{
m BHA}
                 d<sub>3BHA</sub>
d<sub>1BHA</sub>
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
\rho^*_{1BHA} \rho^*_{3BHA}
k<sub>1BHA</sub> k<sub>3BHA</sub>
<sup>а</sup>кр1ВНА <sup>а</sup>кр3ВНА
                                             for r \in av(N_r)
c<sub>a1BHA</sub> c<sub>a3BHA</sub>
                                                 \alpha_{1BHA_r} = 90^{\circ}
c<sub>u1BHA</sub> c<sub>u3BHA</sub>
                                                  \overline{d}_{1BHA} = \overline{d}_{1}
ca1BHA ca3BHA
                                                  \overline{d}_{3BHA} = \overline{d}_{1BHA}
cu1BHA cu3BHA
                                                   T^*_{1BHA_r} = T^*_{K1}
 c<sub>1BHA</sub>
                   c<sub>3BHA</sub>
                                                  T^*_{3BHA_r} = T^*_{1BHA_r}
λ<sub>c1BHA</sub>
                 λ<sub>c3BHA</sub>
F<sub>1BHA</sub>
                   F<sub>3BHA</sub>
                                                  P_{1BHA_r} = P_{K1}
                    \epsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                  k_{1BHA_r} = k_{ad}(Cp_{BO3dyx}(P^*_{1BHA_r}, T^*_{1BHA_r}), R_B)
                                                  a_{\text{Kp1BHA}_r} = a_{\text{Kp}}(k_{1BHA_r}, R_B, T^*_{1BHA_r})
                                                  \overline{c}_{a1BHA_r} = \overline{c}_{.a1}(Z,0)
                                                  \overline{c}_{u1BHA_r} = \overline{r}_{cp}(\overline{d}_{1BHA}) \cdot (1 - R_{L.cp}(Z, 0)) - \frac{\overline{H}_{.T}(Z, 0)}{2 \cdot \overline{r}_{cp}(\overline{d}_{1BHA})} \text{ if BHA} = 1
                                                    c_{a1BHA_r} = c_{a1BHA_r} \cdot u_{1\pi ep}
```

$$\begin{split} &\sigma_{BHA}=1.0000\\ &submatrix\Big(\epsilon_{BHA}\,,av\Big(N_r\Big)\,,av\Big(N_r\Big)\,,1\,,1\Big)=(0.00\,)\cdot deg\\ &submatrix\Big(\alpha_{1BHA}\,,av\Big(N_r\Big)\,,av\Big(N_r\Big)\,,1\,,1\Big)=(90.00\,)\cdot deg\\ &submatrix\Big(\alpha_{3BHA}\,,av\Big(N_r\Big)\,,av\Big(N_r\Big)\,,1\,,1\Big)=(90.00\,)\cdot deg\\ &\overline{d}_{1BHA}\\ &\overline{d}_{3BHA}\Big)=\begin{pmatrix}0.7500\\0.7500\end{pmatrix} &\begin{pmatrix}F_{1BHA}\\F_{3BHA}\end{pmatrix}=\begin{pmatrix}0.3596\\0.3596\end{pmatrix} \end{split}$$

$$\begin{split} c_{u1BHA_r} &= \frac{c_{u1BHA_r}}{\tan(\alpha_{u1BHA_r})} \\ c_{1BHA_r} &= \frac{c_{u1BHA_r}}{\sin(\alpha_{u1BHA_r})} \\ \lambda_{c1BHA_r} &= \frac{c_{1BHA_r}}{a_{up1BHA_r}} \\ \\ \sigma_{BHA} &= \begin{bmatrix} 1 + \max(0.03, 0.06) \cdot \Gamma \Box \Phi \left({}^{u}P^{u}, \lambda_{c1BHA_r}, k_{1BHA_r} \right) \cdot \frac{k_{1BHA_r}}{k_{1BHA_r}} \cdot \left(\lambda_{c1BHA_r} \right)^{2} \end{bmatrix}^{-1} & \text{if } BHA = 1 \\ 1 & \text{otherwise} \\ P^{u}_{3BHA_r} &= P^{u}_{1BHA_r} \cdot \sigma_{BHA} \\ \rho^{u}_{3BHA_r} &= \frac{P^{u}_{3BHA_r}}{R_{u} \cdot \Gamma^{u}_{3BHA_r}} \\ k_{3BHA_r} &= \frac{R_{u} \cdot \Gamma^{u}_{3BHA_r}}{R_{u} \cdot \Gamma^{u}_{3BHA_r}} \cdot \Gamma^{u}_{3BHA_r} \cdot \Gamma^{u}_{3BHA_r} \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u1BHA_r} & \text{otherwise} \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u1BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA = 1 \\ \hline c_{u3BHA_r} &= \frac{1}{c_{u1}(Z, 1)} & \text{if } BHA_r &= \frac{1}{c_{u1}$$

$$\begin{split} & \text{submatrix} \Big(T^*_{1BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (288.2) \\ & \text{submatrix} \Big(T^*_{3BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (288.2) \\ & \text{submatrix} \Big(P^*_{1BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (101.3) \cdot 10^3 \\ & \text{submatrix} \Big(P^*_{3BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (101.3) \cdot 10^3 \\ & \text{submatrix} \Big(\rho^*_{1BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (1.224) \\ & \text{submatrix} \Big(\rho^*_{3BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (1.224) \\ & \text{submatrix} \Big(k_{1BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (1.401) \\ & \text{submatrix} \Big(k_{3BHA}, \text{av} \Big(N_r \big), \text{av} \Big(N_r \big), 1, 1 \Big) = (1.401) \end{split}$$

$$\begin{split} & \text{submatrix} \Big(a_{Kp1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (310.8) \\ & \text{submatrix} \Big(a_{Kp3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (310.8) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.294) \\ & \text{submatrix} \Big(\overline{c}_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.294) \\ & \text{submatrix} \Big(\overline{c}_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.000) \\ & \text{submatrix} \Big(\overline{c}_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.000) \\ & \text{submatrix} \Big(c_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (83.4) \\ & \text{submatrix} \Big(c_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.0) \\ & \text{submatrix} \Big(c_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.0) \\ & \text{submatrix} \Big(c_{1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (83.4) \\ & \text{submatrix} \Big(c_{3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (83.4) \\ & \text{submatrix} \Big(\lambda_{c1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.268) \\ & \text{submatrix} \Big(\lambda_{c3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.268) \\ & \text{submatrix} \Big(\lambda_{c3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.268) \\ \end{aligned}$$

▲ Расчет ВНА:

$$\begin{cases} R_L & \pi^* \\ K_H & \eta^* \\ C_P & k \\ \overline{H}_T & H_T \\ L^* & J_{\mathcal{H}} \\ T^* & J_{\mathcal{H}} \\ P^* & P \\ \rho^* & \rho \\ a^*c_- & a_{3B} \\ \lambda_c & \lambda_c \\ \overline{J}_{\mathcal{H}} & \overline{J}_{\mathcal{H}} \\ \overline{J}$$

$$\begin{split} D_{s((1,1),N_r} &= \frac{2 \cdot u_{s((1,1),N_r)}}{\omega} \\ D_{s((1,1),1} &= \sqrt{\left(D_{s((1,1),N_r)}\right)^2 - \frac{4 \cdot F_{s((1,1)}}{\pi}}{\pi}} \\ D_{s((1,1),r)} &= \overline{t_{op}} \left(\frac{D_{s((1,1),N_r)}}{D_{s((1,1),N_r)}} \cdot D_{s((1,1),N_r)} \right) \\ D_{s((1,1),r)} &= \overline{t_{op}} \left(\frac{D_{s((1,1),1}}{D_{s((1,1),N_r)}} \cdot D_{s((1,1),N_r)} \right) \\ \overline{d}_{s((1,1)} &= \frac{D_{s((1,1),1}}{D_{s((1,1),N_r)}} \\ &= \frac{H_{T_i}}{H_{s(1,1)}} \cdot \left(\frac{H_{T_i}}{H_{s(1,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(2,1)}} \cdot \frac{H_{T_i,r}}{H_{s(1,1),r}} \cdot \frac{H_{T_i,r}}{H_{s(1,1),r}} \cdot \frac{L^*_{i}}{H_{s(1,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,1),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(2,1),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2),r}} \cdot \frac{H_{s(i,2),r}}{H_{s(i,2$$

```
if \left| \text{eps}\left(\text{"rel"}, k_{\text{st}(i,2),r}, k'_2\right) \right| < \text{epsilon}
          k_{st(i,2),r} = k'_2
      k_{st(i,2),r} = k'_2
a_{c_{st(i,2),r}}^* = a_{kp}(k_{st(i,2),r}, R_B, T_{st(i,2),r})
T^*_{st(i,3),r} = T^*_{st(i,2),r}
P^*_{st(i,3),r} = P^*_{st(i,2),r}
Cp_{st(i,3),r} = Cp_{BO3JJYX}(P^*_{st(i,3),r}, T^*_{st(i,3),r})
k_{st(i,3),r} = k_{aJ}(Cp_{st(i,3),r},R_{B})
a_{c_{st(i,3),r}}^* = a_{kp}(k_{st(i,3),r}, R_B, T_{st(i,3),r}^*)
\overline{c}_{a_{st(i,3),r}} = \overline{c}_{.a1}(Z,i+1)
iteration_3 = 0
                    =\frac{F_{st(i,1)}\cdot m_{q}\left(k_{st(i,1),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,1),r}},k_{st(i,1),r}\right)\cdot \sin\left(\alpha_{st(i,1),r}\right)\cdot P^{*}_{st(i,1),r}\cdot \sqrt{T^{*}_{st(i,3),r}}}{m_{q}\left(k_{st(i,3),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,3),r}},k_{st(i,3),r}\right)\cdot \sin\left(\alpha_{st(i,3),r}\right)\cdot P^{*}_{st(i,3),r}\sqrt{T^{*}_{st(i,1),r}}}
 while 0 < 1
      iteration_3 = iteration_3 + 1
       trace(concat(" iteration.3 = ", num2str(iteration_3))))
       if (3\Pi\Pi H_i \neq "пер") \land (3\Pi\Pi H_i \neq "кор") \land (3\Pi\Pi H_i \neq "ср")
           D_{st(i,3),N_r} = D_{st(i,1),N_r} \cdot str2num(3\Pi\Pi \Psi_i)
D_{st(i,3),1} = \sqrt{(D_{st(i,3),N_r})^2 - \frac{4F_{st(i,3)}}{\pi}}
```

$$\begin{vmatrix} D_{st(i,3),N_T} &= D_{st(i,1),N_T} \\ D_{st(i,3),1} &= \sqrt{\left(D_{st(i,3),N_T}\right)^2 - \frac{4F_{st(i,3)}}{\pi}} \\ & \text{if } 3\Pi\Pi Q_i &= \text{"kop"} \\ & D_{st(i,3),N_T} &= \sqrt{\left(D_{st(i,1),1}\right)^2 + \frac{4F_{st(i,3)}}{\pi}} \\ & \text{if } 3\Pi\Pi Q_i &= \text{"kop"} \\ & D_{st(i,3),N_T} &= \sqrt{\left(D_{st(i,1),1}\right)^2 + \frac{4F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),N_T} &= \sqrt{\left(D_{st(i,1),1}\right)^2 + \frac{2F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),N_T} &= \sqrt{\left(D_{st(i,1),1}\right)^2 - \frac{2F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),T} &= \frac{D_{st(i,3),1}}{D_{st(i,3),N_T}} \\ & D_{st(i,3),r} &= \overline{c_{pp}}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_T} \\ & \overline{c_{u_{st(i,3),r}}} &= \overline{c_{pp}}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_T} \\ & \overline{c_{u_{st(i,3),r}}} &= \overline{c_{pp}}(\overline{d}_{st(i,3),r}) \cdot \int_{\overline{c_{u_{st(i,3),r}}}} \int_{\overline{c_{u_{st(i,3),r}}}} \int_{\overline{c_{u_{st(i,3),r}}}} \int_{\overline{c_{u_{st(i,3),r}}}} b \cdot 0 \\ & u_{st(i,3),r} &= u_{st(i,1),N_T} \\ & \overline{c_{u_{st(i,3),r}}} &= \overline{c_{u_{st(i,3),r}}} \\ & u_{st(i,3),r} &= \overline{c_{u_{st(i,3),r}}} \\ & c_{u_{st(i,3),r}} &= \frac{\overline{c_{u_{st(i,3),r}}}} {c_{u_{st(i,3),r}}} \\ & c_{u_{st(i,3),r}} &= \frac{\overline{c_{u_{st(i,3),r}}}} {c_{u_{st(i,3),r}}} \\ & c_{u_{st(i,3),r}} &= \overline{c_{u_{st(i,3),r}}} \\ & c_{u_{st(i,3),r}} &$$

```
\overline{c}_{a_{st(i,2),r}} = mean(\overline{c}_{a_{st(i,1),r}}, \overline{c}_{a_{st(i,3),r}})
 iteration_2 = 0
 F_{st(i,2)} = mean(F_{st(i,1)}, F_{st(i,3)})
  while 0 < 1
       iteration_2 = iteration_2 + 1
       trace(concat(" iteration.2 = ", num2str(iteration_2))))
       if (3\Pi\Pi\Pi_i \neq "пер") \land (3\Pi\Pi\Pi_i \neq "кор") \land (3\Pi\Pi\Pi_i \neq "ср")
           D_{st(i,2),N_r} = mean(D_{st(i,1),N_r},D_{st(i,3),N_r})
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
           D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if 3ППЧ<sub>i</sub> = "пер"
           D_{st(i,2),N_r} = D_{st(i,1),N_r}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if ЗППЧ<sub>i</sub> = "кор"
            D_{st(i,2),1} = D_{st(i,1),1}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),N_r} = \frac{D_{st(i,2),1}}{\overline{d}_{st(i,2)}}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
       if 3\Pi\Pi\Pi_i = "cp"
            D_{st(i,2),r} = D_{st(i,1),r}
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
           D_{st(i,2),N_r} = \frac{D_{st(i,2),r}}{\overline{r_{cp}(\overline{d}_{st(i,2)})}}
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
```

$$\begin{vmatrix} \overline{c}_{u_{st(i,2),r} = \frac{1}{r_{cp}(\overline{d}|st(i,2))} \left(\sum_{D_{st(i,2),r_r}}^{\infty} \overline{c}_{u_{st(i,2),r_r}} \right) \\ \overline{c}_{u_{st(i,2),r} = triangle} \left(\overline{c}_{a_{st(i,2),r_r}} \overline{c}_{u_{st(i,2),r_r}} \right) \\ \overline{c}_{u_{st(i,2),r}} = \overline{c}_{u_{st(i,1),r_r}} \\ \overline{c}_{u_{st(i,2),r_r}} = \overline{c}_{u_{st(i,1),r_r}} \\ \overline{c}_{u_{st(i,2),r_r}} = \overline{c}_{u_{st(i,2),r_r}} \\ \overline{c}_{u_{st(i,2),r_r}} - \overline{c}_{u_{st(i,2),r_r}} \\ \overline{c$$

```
 \begin{vmatrix} | \mathbf{N}^{I}\mathbf{c}_{st(i,a),r} | = \overline{a_{3B_{st(i,a),r}}} \\ \mathbf{h}_{st(i,a)} | = 0.5 \cdot \left( \mathbf{D}_{st(i,a),N_r} - \mathbf{D}_{st(i,a),1} \right) \\ \mathbf{for} \ \ radius \in 1...N_r \\ \mathbf{u}_{st(i,a),radius} | = \omega \cdot \frac{\mathbf{D}_{st(i,a),radius}}{2} \\ \begin{pmatrix} \varepsilon_{rotor_{i,av(N_r)}} \\ \varepsilon_{stator_{i,av(N_r)}} \end{pmatrix} = \begin{pmatrix} \beta_{st(i,2),av(N_r)} - \beta_{st(i,1),av(N_r)} \\ \alpha_{st(i,3),av(N_r)} - \alpha_{st(i,2),av(N_r)} \end{pmatrix}  for i \in 1...Z for a \in 1...3 for r \in 1...N_r \mathbf{R}_{st(i,a),r} = 0.5 \cdot \mathbf{D}_{st(i,a),r} \\ \mathbf{R}_{st(i,a),r} = 0.5 \cdot \mathbf{D}_{st(i,a),r} \\ \begin{pmatrix} \mathbf{R}_L \ \mathbf{K}_H \ \mathbf{Cp} \ \overline{\mathbf{H}}_T \ \mathbf{L}^* \ \mathbf{T}^* \ \mathbf{P}^* \ \mathbf{\rho}^* \ \mathbf{a}^*_c \ \lambda_c \ \mathbf{F} \ \mathbf{D} \ \overline{\mathbf{d}} \ \overline{\mathbf{c}}_a \ \mathbf{c}_a \ \mathbf{u} \ \mathbf{c} \ \mathbf{M}_c \ \alpha \ \varepsilon_{rotor} \\ \pi^* \ \eta^* \ \mathbf{k} \ \mathbf{H}_T \ \mathbf{L} \ \mathbf{T} \ \mathbf{P} \ \mathbf{\rho} \ \mathbf{a}_{3B} \ \lambda_c \ \mathbf{F} \ \mathbf{R} \ \mathbf{h} \ \overline{\mathbf{c}}_u \ \mathbf{c}_u \ \mathbf{w}_u \ \mathbf{w} \ \mathbf{M}_w \ \boldsymbol{\beta} \ \varepsilon_{stator} \end{pmatrix}^T
```

$$\begin{pmatrix} H_{T} \\ R_{L} \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1...Z \\ \\ H_{T.}(r) = \text{interp} \end{vmatrix} \text{pspline} \begin{bmatrix} 1 \\ \text{av}(N_{r}) \\ N_{r} \end{vmatrix}, \begin{pmatrix} H_{T_{i,av}(N_{r})} - \frac{\Delta H_{T}(\overline{d}_{st(i,2)})}{2} \\ H_{T_{i,av}(N_{r})} - \frac{\Delta H_{T}(\overline{d}_{st(i$$

$$CA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 0 \\ 0 & \text{otherwise} \end{bmatrix}$$

▼ Расчет СА

```
α<sub>1CA</sub>
              \alpha_{3CA}
\sigma_{CA}
               \sigma_{CA}
              d<sub>3CA</sub>
T^*_{1CA} T^*_{3CA}
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
                                   for r \in av(N_r)
\overline{c}_{a1CA} \overline{c}_{a3CA}
                                         \alpha_{1CA_r} = \alpha_{st(Z,3),r}
\frac{1}{c}u1CA \frac{1}{c}u3CA
ca1CA ca3CA
                                                           \alpha_{1CA_r} otherwise
cu1CA cu3CA
                                          \overline{d}_{1CA} = \overline{d}_{st(Z,3)}
              c<sub>3CA</sub>
c<sub>1CA</sub>
                                          \overline{d}_{3CA} = \overline{d}_{1CA}
               \lambda_{3CA}
\lambda_{1CA}
                                          T^*_{1CA_r} = T^*_{st(Z,3),r}
              F<sub>3CA</sub>
F<sub>1CA</sub>
                                          T^*_{3CA_r} = T^*_{1CA_r}
 \varepsilon_{\mathrm{CA}}
               \epsilon_{	ext{CA}}
                                          P^*_{1CA_r} = P^*_{st(Z,3),r}
                                           iterarion_{CA} = 0
                                          \sigma_{\text{CA}} = 1
                                           while 0 < 1
                                              iterarion_{CA} = iterarion_{CA} + 1
                                               trace(concat("iterarion.CA = ", num2str(iterarion_{CA})))
                                               P^*_{3CA_r} = P^*_{1CA_r} \cdot \sigma_{CA}
```

$$\begin{split} &\sigma_{CA} = 1.0000 \\ &\operatorname{submatrix} \left(\epsilon_{CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (0.00) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{1CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (51.49) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{3CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (51.49) \cdot \operatorname{deg} \\ &\left(\overline{d}_{1CA} \right) = \begin{pmatrix} 0.6953 \\ 0.6953 \end{pmatrix} & \begin{pmatrix} F_{1CA} \\ F_{3CA} \end{pmatrix} = \begin{pmatrix} 0.3310 \\ 0.3310 \end{pmatrix} \end{split}$$

$$\begin{vmatrix} \rho^*_{3CA_r} \end{vmatrix} = \frac{1}{R_B} \begin{vmatrix} \frac{P_{3CA_r}}{T^*_{3CA_r}} \\ \frac{k_{1CA_r}}{k_{3CA_r}} \end{vmatrix} = \begin{pmatrix} \frac{k_{a,q}(C_{Pao_{3},qy_q}(P^*_{1CA_r}, T^*_{1CA_r}), R_B)}{k_{a,q}(C_{Pao_{3},qy_q}(P^*_{3CA_r}, T^*_{3CA_r}), R_B)} \end{pmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{1CA_r}, R_B, T^*_{1CA_r})}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp$$

$$\begin{split} & \text{submatrix} \left(T^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (361.5) \\ & \text{submatrix} \left(T^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (361.5) \\ & \text{submatrix} \left(P^*_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (202.7) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (202.7) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (1.952) \\ & \text{submatrix} \left(\rho^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (1.952) \\ & \text{submatrix} \left(\rho^*_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (1.398) \\ & \text{submatrix} \left(k_{1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (1.398) \\ & \text{submatrix} \left(k_{3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (347.9) \\ & \text{submatrix} \left(\overline{c}_{a1CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.224) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.224) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.178) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (56.1) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (56.1) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (44.7) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (44.7) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (71.8) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (71.8) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (71.8) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.206) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.206) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.206) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.206) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 1 \right) = (0.206) \\ \\ & \text{submatrix}$$

```
1 otherwise
         break if (|eps("rel", \sigma'_{CA}, \sigma_{CA})| < epsilon) \land (iterarion_{CA} = 0)
         | \text{iterarion}_{CA} = -1 \text{ if } (| \text{eps}(\text{"rel"}, \sigma'_{CA}, \sigma_{CA}) | < \text{epsilon}) 
        \sigma_{CA} = \sigma'_{CA}
                                                                          F_{st(Z,3)}
     (F<sub>1CA</sub>)
                                                                     G \cdot \sqrt{R_B \cdot T^*_{3CA_r}}
    (F_{3CA})
                         \left( \overline{m_{q}(k_{3CA_{r}}) \cdot P^{*}_{3CA_{r}} \cdot \Gamma \Pi \Phi("G", \lambda_{3CA_{r}}, k_{3CA_{r}}) \cdot \sin(\alpha_{3CA_{r}})} \right)
    \varepsilon_{\text{CA}_{r}} = \alpha_{3\text{CA}_{r}} - \alpha_{1\text{CA}_{r}}
 \alpha_{1CA} \alpha_{3CA}
 \sigma_{\text{CA}}
                \sigma_{\mathrm{CA}}
 \overline{d}_{1CA} \overline{d}_{3CA}
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
\frac{1}{c_{a1CA}} \frac{1}{c_{a3CA}}
\frac{1}{c_{u1CA}} = \frac{1}{c_{u3CA}}
ca1CA ca3CA
cu1CA cu3CA
 c<sub>1CA</sub> c<sub>3CA</sub>
 \lambda_{1CA} \lambda_{3CA}
 F<sub>1CA</sub> F<sub>3CA</sub>
  \varepsilon_{\mathrm{CA}} \varepsilon_{\mathrm{CA}}
```


▼ Результаты поступенчатого расчета по ср. ЛТ

Относ. погрешность расчета по массовому расходу (кг/с):

$\overline{\Delta}G =$	for $i \in 1Z$
	for a ∈ 13
	$\overline{\Delta}G_{st(i,a)} = \left eps\left("rel", G, \rho_{st(i,a),av(N_r)} \cdot c_{a_{st(i,a),av(N_r)}} \cdot F_{st(i,a)} \right) \right $
	$ar{\Delta}{ m G}$

$\overline{\Delta}G^{T} = \Box$		1	2		3	4	5	(5	7	8	9		10	11	12		13	14	15	1	16	17	18	19	.%
1		0.00	0.0	0	0.01	0.00	0.0	0 0	0.00	0.00																
$\overline{\Delta}G^{T} < 19$	⁄o =		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19					

Количество ступеней ОК: Z = 3

Дискритизация сечений: ii = 1..2Z + 1

Дискритизация ступеней: i = 1..Z

_																
${oldsymbol{\pi^*}^{\mathrm{T}}} = $		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	1.300	1.297	1.187												

[16, c 114]	$\pi^{*^{T}} \leq 1.9 =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L / J		1	1	1	1												

Полученная степень повышения полного давления []:

Степень повышения давления в ЛА: $\pi^*_{\text{ЛА}} = \frac{\text{$^{\text{F}}$}_{3\text{CA}_{av}(N_r)}}{\text{$^{\text{F}}$}_{1\text{BHA}_{av}(N_r)}} = 2.00$

 $\pi^*_{\Lambda A} \geq \pi^*_{K} = 1$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$H_{\mathbf{T}}^{T} =$	1	26.51	29.08	21.26													$\cdot 10^3$
11	2	26.51	29.08	21.26													
	3	26.51	29.08	21.26													

Действительная работа К (Дж/кг):
$$L_{K} = \sum_{i=1}^{Z} \ L_{i} = 73.6 \cdot 10^{3}$$

Адиабат ная работа К [Дж/кг]:
$$L^*_K = \sum_{i=1}^Z L^*_i = 64.1 \cdot 10^3$$

Адиабатная КПД К []:
$$n_{KV}^* = \frac{L^*K}{L_K} = 87.02 \cdot \%$$

Мощность K (Вт):
$$N_{K} = G \cdot L_{K} = 2.62 \cdot 10^{6}$$

$\overline{\mathbf{H}}_{\mathbf{T}}^{\mathbf{T}} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0.33	0.36	0.29												

submatrix $(Cp, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1 1 1002.	2 5 1004.1	3 1004.1	4 1006.4 1	5	6 1008.5	7 1008.5	8	9	10	1	1	12	13	14	15	16	17	18	19
submatrix $(k, 1, 2Z + 1, av(N_r), av(N_r))^T$	1 1.401	2 3 1.401 1	3 4 .401 1.399	5 1.399	6 1.398	7 1.398	8	9	10	11	12	13	14	15	16	17	18	19	20	21
submatrix $(T^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1 1 288.2	2 313.9	3 4 313.9 341	5 4 341.4	6 361.5	7 361.5	8	9	10	11	12	13	14	15	16	17	18	19	20	21
submatrix $(T, 1, 2Z + 1, av(N_r), av(N_r))^T =$	1 284.7	2 305.4 3	3 4 310.5 326.2	5 338.3	6 349	7 359	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$submatrix \Big(P^*, 1, 2Z + 1, av(N_r), av(N_r)\Big)^T$	= 1 1 101.3	2 131.7	3 4 131.7 170.	5 8 170.8	6 202.7	7 202.7	8	9	10	11	12	13	14	15	16	17	18	10 ³		
submatrix $(P, 1, 2Z + 1, av(N_r), av(N_r))^T$ =	1 97.1	2 : 119.6 1	3 4 26.7 145.5	5 165.3	6 179.1	7 197.7	8	9	10	11	12	13	14	15	16	17	18	·10 ³		
$\operatorname{submatrix}\left(\rho^{*}, 1, 2Z + 1, \operatorname{av}\left(N_{r}\right), \operatorname{av}\left(N_{r}\right)\right)^{T}$	= 1 1 1.224	2 1.461	3 4 1.461 1.74	5 2 1.742	6 1.952	7 1.952	8	9	10	11	12	13	14	15	16	17	18	19		
submatrix $(\rho, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1 1 1.188	2 3 1.364 1	3 4 .421 1.553	5 1.702	6 1.787	7 1.918	8	9	10	11	12	13	14	15	16	17	18	19	_	

$$k_{\text{AZ}} = k_{\text{AZ}} \left(\text{Cp}_{\text{BO3ZJYX.cp}} \left(P^*_{\text{st}(1,1),\text{av}\left(N_r\right)}, P^*_{\text{st}(Z,3),\text{av}\left(N_r\right)}, T^*_{\text{st}(1,1),\text{av}\left(N_r\right)}, T^*_{\text{st}(Z,3),\text{av}\left(N_r\right)}, T^*_{\text{st}(Z,3),\text{av}\left(N_r\right)} \right), R_B \right) = 1.400$$

$F^{T} = $		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	1	0.3596	0.3382	0.3526	0.3476	0.3433	0.3404	0.331														

$\overline{\mathbf{d}}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	1	0.7498	0.7527	0.7555	0.7474	0.7393	0.7175	0.6953																

 $\overline{d}_{st(Z,3)} = 0.6953$ $\overline{d}_{st(Z,3)} \le 0.9 = 1$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$D^{T} =$	1	766.9	769.8	772.7	749.2	725.9	676.3	628.1															1.10^{-3}
2	2	903.9	905.2	906.4	884.8	863.4	820.3	777.9															
	3	1022.8	1022.8	1022.8	1002.3	981.8	942.6	903.3															

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
$R^{T} =$	1	383.4	384.9	386.3	374.6	363.0	338.2	314.0																			$\cdot 10^{-3}$
11	2	452.0	452.6	453.2	442.4	431.7	410.2	389.0																			10
	3	511.4	511.4	511.4	501.1	490.9	471.3	451.6																			

$h^{T} = \Box$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	1.10^{-3}
1	127.9	126.5	125.0	126.6	128.0	133.1	137.6																			

$submatrix \left(a*_{c}, 1, 2Z+1, av \left(N_{r}\right), av \left(N_{r}\right)\right)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17 18 19 20 21													
1 510.0 521.5 521.5 530.2 530.2 517.5 517.5														
$submatrix \left(a_{3B}, 1, 2Z+1, av \Big(N_r \Big), av \Big(N_r \Big) \right)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17 18 19 20 21													
$submatrix \left(c,1,2Z+1,av\left(N_{r}\right),av\left(N_{r}\right)\right)^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ \hline 1 & 83.4 & 130.8 & 83.0 & 175.2 & 79.8 & 158.8 & 71.8 & & & & & & & & & & & & & & & & & & &$	17 18 19 20 21													
$submatrix \Big(w, 1, 2Z, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17 18 19 20 21													
	22 23 24 25													
2 250.8 251.2 251.5 245.5 239.6 227.6 215.9														
3 283.8 283.8 283.8 278.1 272.5 261.6 250.7														
$c_{a_{st(Z,3),av(N_r)}} = 56.15$ $c_{a_{st(Z,3),av(N_r)}} \le 130 = 1$ Для КС														
	19 20 21													
1 83.4 77.3 71.1 66.0 61.0 58.6 56.1														
$submatrix \left(c_u, 1, 2Z+1, av \Big(N_r \Big), av \Big(N_r \Big) \right)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17 18 19 20 21													
1 0 105.6 42.8 162.3 51.5 147.6 44.7														
$submatrix \Big(w_u, 1, 2Z+1, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17 18 19 20 21													
1 250.8 145.6 208.7 83.3 188.1 80.1 171.2														
$\Delta c_{a_{i,av(N_r)}} = \left(c_{a_{st(i,2),av(N_r)}} - c_{a_{st(i,1),av(N_r)}}\right)$														
$\text{submatrix} \Big(\Delta c_a, 1, Z, \text{av} \Big(N_r \Big), \text{av} \Big(N_r \Big) \Big)^T = \boxed{ \begin{array}{c cccccccccccccccccccccccccccccccccc$														

submatrix $(\alpha, 1, 2\cdot Z + 1, av(N_r), av(N_r))^T$	= 1	1	2 36.21	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
_		90.00	36.21	58.97	22.13	49.86	21.65	51.49															_
submatrix $(\beta, 1, 2\cdot Z + 1, av(N_r), av(N_r))^T$	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.°
(-) (-))	1	18.4	27.96	18.82	38.41	17.97	36.19	18.16															J
		1	2	2	4	Е	6	7	0	0	10	11	12	12	14	1 [16	17	10	10	20	21	
submatrix $\left(\varepsilon_{\text{rotor}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T$	1	9.56	19.59	18.22	4	5	6	/	0	9	10	11	12	13	14	15	16	1/	18	19	20	21	.0
	1	5.50	15.55	10.22																			
submatrix $(s = 1.7 \text{ av}(N) \text{ av}(N))^T$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
submatrix $\left(\varepsilon_{\text{stator}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T$	1	22.76	27.72	29.84																			

Вывод результатов поступенчатого расчета по ср. ЛТ ОК в ЕХСЕL:

▼ Расчет параметров потока по высоте Л

Относ. диамет р корня при увеличении которого меняется з-н профилирования Л с промежуточного на Ц = const:

с R = const на промежуточный:

[16, c.94-99]

$$\begin{pmatrix} \overline{d}_{m2II} \\ \overline{d}_{R2m} \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix}$$

$$m_i = \begin{bmatrix} 0.73 & \text{if compressor} = "B\pi" \\ m_i & \text{otherwise} \end{bmatrix}$$

$m^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12
	1	1.000	1.000	1.000									

```
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
ρ*<sub>1BHA</sub> ρ*<sub>3BHA</sub>
Cp<sub>1BHA</sub> Cp<sub>3BHA</sub>
k<sub>1BHA</sub> k<sub>3BHA</sub>
a*c1BHA a*c3BHA
                                                   for i \in 1
cu1BHA cu3BHA
                                                      for r \in 1..N_r
<sup>c</sup>a1BHA <sup>c</sup>a3BHA
                                                                                            \left(T^*_{1BHA_{av(N_r)}}\right)
                                                              \left(T^*_{1BHA_r}\right)
\alpha_{1BHA} \alpha_{3BHA}
                                                              T^*_{3BHA_r}
                                                                                              T^*_{3BHA_{av(N_r)}}
 c<sub>1BHA</sub>
                    c<sub>3BHA</sub>
\lambda_{c1BHA} \lambda_{c3BHA}
                                                             (P^*1BHA_r)
                                                                                             \left(P^*_{1BHA_{av(N_r)}}\right)
                       \varepsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                              P*3BHA<sub>r</sub>
                                                                                             P^*_{3BHA_{av(N_r)}}
                                                                                              \left( \rho^*_{1BHA_{av(N_r)}} \right)
                                                              (\rho^*_{1BHA_r})
                                                              ρ*<sub>3BHA</sub><sub>r</sub>
                                                                                            \left( \rho^*_{3BHA_{av(N_r)}} \right)
                                                                                              \left( Cp_{\text{воздух}} \left( P^*_{1BHA_r}, T^*_{1BHA_r} \right) \right)
                                                              \left( Cp_{1BHA_{r}} \right)
                                                              Cp<sub>3BHA</sub><sub>r</sub>
                                                                                             \left( \operatorname{Cp}_{\text{воздух}} \left( \operatorname{P*}_{3\text{BHA}_r}, \operatorname{T*}_{3\text{BHA}_r} \right) \right)
                                                              (k<sub>1BHA</sub>
                                                                                          \left(k_{ad}\left(Cp_{1BHA_{r}},R_{B}\right)\right)
                                                                                          \left( k_{aд} \left( Cp_{3BHA_r}, R_B \right) \right)
                                                              k<sub>3</sub>BHA<sub>r</sub>
                                                                                                  \frac{2 \cdot k_{1BHA_{r}}}{k_{1BHA_{r}} + 1} \cdot R_{B} \cdot T^{*}_{1BHA_{r}}
                                                             (a*c1BHA<sub>r</sub>)
                                                             a*c3BHA<sub>r</sub>
                                                            A = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,1),av(N_r)}\right)^{m_i + 1}
                                                           B = \frac{H_{T_{i,av(N_r)}}}{2 \cdot \omega}
                                                                                                                          c_{u1BHA_{av(N_r)}}
```



```
P*
                       P
   Cp
                       k
  a*c
                      a_{3B}
     c_{u}
                       c_{a}
                                       = \int for i \in 1...Z
                       β
     \alpha
                                                         for a \in 1...3
     c
                       \mathbf{W}
                                                              for r \in 1..N_r
    \lambda_{\rm c}
                      w_{u}
                                                                 T^*_{st(i,a),r} = T^*_{st(i,a),av(N_r)}
 M_{W}
                     M_{c}
                                                                  P^*_{st(i,a),r} = P^*_{st(i,a),av(N_r)}
                      \mathbf{R}_{\mathbf{L}}
  R_{L}
                                                                  \rho^*_{st(i,a),r} = \rho^*_{st(i,a),av(N_r)}
<sup>ε</sup>rotor <sup>ε</sup>stator ,
                                                                   Cp_{st(i,a),r} = Cp_{BO3ДYX}(P*_{st(i,a),r}, T*_{st(i,a),r})
                                                                    k_{st(i,a),r} = k_{a \perp} (Cp_{st(i,a),r}, R_B)
                                                                   a_{c_{st(i,a),r}}^{*} = \sqrt{\frac{2 \cdot k_{st(i,a),r}}{k_{st(i,a),r} + 1} \cdot R_{B} \cdot T_{st(i,a),r}^{*}}
                                                                    if \Delta H_{Tmax} = 0
                                                                           A_{st(i,a)} = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,a),av(N_r)}\right)^{m_i+1} 
                                                                                                                         0 if (a = 1) \land (i = 1) \land (BHA = 0)
                                                                                                                         \frac{\left|\frac{A_{st(i,a)}}{\left(R_{st(i,a),r}\right)^{m_i}} - \frac{B_{st(i,a)}}{\left(R_{st(i,a),r}\right)}\right| \text{ otherwise}
                                                                             c_{a_{st(i,a),r}} = c_{a3BHA_r} \text{ if } (a = 1) \land (i = 1) \land (BHA = 1)
                                                                                                              \sqrt{ \left( c_{a_{st(i,a)},av(N_r)} \right)^2 - 2 \cdot \left( A_{st(i,a)} \right)^2 \cdot \left[ \left( R_{st(i,a),r} \right)^2 - \left( R_{st(i,a),av(N_r)} \right)^2 \right] + 4 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2  if m_i = -1  \sqrt{ \left( c_{a_{st(i,a),av(N_r)}} \right)^2 - 2 \cdot \left( A_{st(i,a)} \right)^2 \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),r}} \right) - 2 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \left( \frac{1}{R_{st(i,a),av(N_r)}} - \frac{1}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2  if m_i = 0
```

$$\begin{cases} A_{3(1,a)} \cdot R_{3(1,a)} \cdot$$

$$\begin{split} c_{st(1,a),r} &= \operatorname{unangre} \left({^{\text{C}}a}_{st(i,a),r}, {^{\text{C}}u}_{st(i,a),r} \right) \\ c_{st(i,a),r} &= \frac{c_{st(i,a),r}}{\sin(\alpha_{st(i,a),r})} \\ \lambda_{c_{st(i,a),r}} &= \frac{c_{st(i,a),r}}{a^{*}c_{st(i,a),r}} \\ \begin{pmatrix} T_{st(i,a),r} \\ P_{st(i,a),r} \end{pmatrix} &= \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} &= \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} &= \sqrt{k_{st(i,a),r}} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} &= \sqrt{k_{st(i,a),r}} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}s_{t(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}v_{st(i,a),r} \end{pmatrix} \\ \begin{pmatrix} P^{*}v_{st(i,a),r} \\ P^{*}v_{st(i,a$$

```
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
Cp<sub>1CA</sub> Cp<sub>3CA</sub>
k<sub>1CA</sub> k<sub>3CA</sub>
a*c1CA a*c3CA
                                              for i \in Z
cu1CA cu3CA
                                                   for r \in 1...N_r
calCA ca3CA
                                                          \left(T^*_{1CA_r}\right)
                                                                                             T*_{st(i,3),r}
\alpha_{1CA} \alpha_{3CA}
                                                                                           T^*_{3CA_{av(N_r)}}
                                                            T*3CA<sub>r</sub>
 c<sub>1CA</sub> c<sub>3CA</sub>
                                                            (P^*_{1CA_r})
                                                                                            P*_{st(i,3),r}
 \lambda_{c1CA} \lambda_{c3CA}
                                                                                          P^*_{3CA_{av\left(N_r\right)}} \bigg)
                                                            P*3CA<sub>r</sub>
 \epsilon_{\mathrm{CA}} \epsilon_{\mathrm{CA}}
                                                            (\rho^*_{1CA_r})
                                                                                           \rho^*_{st(i,3),r}
                                                                                          \left[ \rho^*_{3CA_{av(N_r)}} \right]
                                                            \rho^*_{3CA_r}
                                                                                          \left(\operatorname{Cp}_{\operatorname{BO3}\operatorname{JYX}}\left(\operatorname{P*}_{\operatorname{1CA}_{\operatorname{r}}},\operatorname{T*}_{\operatorname{1CA}_{\operatorname{r}}}\right)\right)
                                                            \left( C_{p_{1}CA_{r}} \right)
                                                             Cp<sub>3CA</sub>
                                                                                          \left( Cp_{BO3ДУX} \left( P^*_{3CA_r}, T^*_{3CA_r} \right) \right)
                                                            \binom{k_{1CA_r}}{}
                                                                                      \left(k_{ad}\left(Cp_{1CA_{r}},R_{B}\right)\right)
                                                                                  = \left( k_{a,d} \left( C_{p_3 CA_r}, R_B \right) \right)
                                                            \left[\begin{array}{c} k_{3}CA_{r} \end{array}\right]
                                                            (a*c1CA<sub>r</sub>)
                                                            \left(a^* c3CA_r\right)
                                                           A = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,3),av(N_r)}\right)^{m_i + 1}
                                                         B = \frac{H_{T_{i,av}(N_r)}}{2 \cdot \omega}
                                                                                                            c_{u_{st(i,3),r}}
                                                            \begin{pmatrix} c_{u1CA_r} \end{pmatrix}
```

$$\begin{pmatrix} c_{alCA_{1}} \\ c_{alCA_{2}} \\ c_{a3CA_{n}} \\ c$$

$$T^*_{1BHA} = \begin{pmatrix} 288.2 \\ 288.2 \\ 288.2 \end{pmatrix}$$
 $T^*_{3BHA} = \begin{pmatrix} 288.2 \\ 288.2 \\ 288.2 \end{pmatrix}$

$$P*_{1BHA} = \begin{pmatrix} 101.3 \\ 101.3 \\ 101.3 \end{pmatrix} \cdot 10^{3} \qquad P*_{3BHA} = \begin{pmatrix} 101.3 \\ 101.3 \\ 101.3 \end{pmatrix} \cdot 10^{3}$$

(288.2)

$$\rho^*_{1BHA} = \begin{pmatrix} 1.224 \\ 1.224 \\ 1.224 \end{pmatrix} \qquad \qquad \rho^*_{3BHA} = \begin{pmatrix} 1.224 \\ 1.224 \\ 1.224 \end{pmatrix}$$

$$Cp_{1BHA} = \begin{pmatrix} 1002.6 \\ 1002.6 \\ 1002.6 \end{pmatrix} \qquad Cp_{3BHA} = \begin{pmatrix} 1002.6 \\ 1002.6 \\ 1002.6 \end{pmatrix}$$

$$k_{1BHA} = \begin{pmatrix} 1.401 \\ 1.401 \\ 1.401 \end{pmatrix}$$
 $k_{3BHA} = \begin{pmatrix} 1.401 \\ 1.401 \\ 1.401 \end{pmatrix}$

$$a^*_{c1BHA} = \begin{pmatrix} 310.78 \\ 310.78 \\ 310.78 \end{pmatrix}$$

$$a*_{c3BHA} = \begin{pmatrix} 310.78\\310.78\\310.78 \end{pmatrix}$$

$$c_{1BHA} = \begin{pmatrix} 83.4 \\ 83.4 \\ 83.4 \end{pmatrix} \qquad c_{3BHA} = \begin{pmatrix} 83.4 \\ 83.4 \\ 83.4 \end{pmatrix}$$

$$c_{u1BHA} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \qquad c_{u3BHA} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$$

$$c_{a1BHA} = \begin{pmatrix} 83.4 \\ 83.4 \\ 83.4 \end{pmatrix} \qquad c_{a3BHA} = \begin{pmatrix} 83.4 \\ 83.4 \\ 83.4 \end{pmatrix}$$

$$\alpha_{1BHA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix}$$
 $\circ \qquad \qquad \alpha_{3BHA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix}$
 $\circ \qquad \qquad \qquad \circ$

$$\varepsilon_{\text{BHA}} = \begin{pmatrix} 0.00\\ 0.00\\ 0.00 \end{pmatrix} \cdot ^{\circ}$$

$$\lambda_{c1BHA} = \begin{pmatrix} 0.268 \\ 0.268 \\ 0.268 \end{pmatrix}$$
 $\lambda_{c3BHA} = \begin{pmatrix} 0.268 \\ 0.268 \\ 0.268 \end{pmatrix}$

T^*	1	1 288.2	2 313.9	3 313.9	4 341.4	5 341.4	6 361.5	7 361.5	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1*	2	288.2	313.9	313.9	341.4	341.4	361.5	361.5																		
	3	288.2	313.9	313.9	341.4	341.4	361.5	361.5								<u> </u>										
_Т	1	1 284.7	303.3	3 310.2	4 321.6	5 337.7	6 345.4	7 358.9	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$T^{T} =$	2	284.7	305.4	310.5	326.5	338.3	349.8	359.3																		
	3	284.7	306.6	310.7	329.3	338.6	352.1	359.4																		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21				
P^{*T}		101.3	131.7	131.7	170.8		+																$\cdot 10^3$			
	3	101.3 101.3	131.7 131.7	131.7 131.7	170.8 170.8			202.7																		
		1 202.0							l				<u> </u>	I	1	· · · · · · · · · · · · · · · · · · ·										
т	4	1 07.1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	3			
$P^{T} =$	2	97.1 97.1	116.7 119.6	126.2 126.7	138.5 146.0	164.3 165.3	172.7 180.5	197.6 198.3															$\cdot 10^3$			
	3	97.1	121.2	127.0	150.4	165.8	184.7	198.6																		
		1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21				
ρ^*^T	_ 1	1.224	1.461	1.461	1.742						10	11	12	13	11	15	10	17	10	13	20	21				
Ρ	2	1.224	1.461	1.461	1.742		<u> </u>																			
	3	1.224	1.461	1.461	1.742	1.742	1.952	1.952																		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21				
$\rho^{T} =$	1	-	1.340	1.417	1.499	1.695	1.742	1.917																		
	3	1.188 1.188	1.364 1.377	1.421 1.423	1.557 1.591	1.702 1.705	1.797 1.827	1.922 1.925																		
												1											1		_	
Т	1	1 1003	1004	3 1004	1006	5 1006		7 8 1009	3 9	9 10	0 11	12	13	14	15	16	17	18	19	20	21 2	2 2	3 24	25		
Cp^{T}	$=$ $\frac{1}{2}$	1003	1004	1004	1006			1009																		
	3	1003	1004	1004	1006	1006	1009	1009																		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$k^{T} =$	1	1.401		1.401	1.399	1.399	1.398	1.398								-	-							-		
	2	1.401	1.401	1.401	1.399	1.399	1.398	1.398																		
	3	1.401	1.401	1.401	1.399	1.399	1.398	1.398																		

		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a*c	₌ 1 3	10.8 324	.3 324.		+	+	347.9																		
C	2 3	10.8 324																							
	3 3	10.8 324	.3 324.	338.2	338.2	347.9	347.9																		
									1			_										_			
т		L 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a _{3B} ¹ =		38.5 349		+	368.4	372.4	379.6																		
		38.5 350			368.7	374.7	379.8																		
	3 3	38.5 351	.1 353.	363.7	368.8	376.0	379.9																		
Γ				4	- 1		7	_	0 1	10		40	40	44	45	16	47	10	10	20	24	22	22	24	25
т	1 02	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mathbf{c}^{\mathrm{T}} = \mathbf{c}^{\mathrm{T}}$	1 83	+	87.1	199.8	86.4	180.1	72.6 67.3																		
ŀ	2 83 3 83		83.0 80.6	173.3 156.4	79.8 76.0	153.9 137.8	64.6																		
l	3 63	121.2	80.0	150.4	70.0	137.0	04.0																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$\mathbf{w}^{\mathrm{T}} =$	1 228			68.8	152.9	61.1	140.1	0	<u> </u>	10	11	12	13	11	13	10	17	10	13	20	21	22	23	21	23
w =	2 264			107.9	197.8	103.5	187.4																		
	3 29!			151.5	235.3	148.8	225.8																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$u^T =$	1 212	.8 213.6	214.4	207.9	201.4	187.7	174.3																		
u –	2 250		251.5	245.5	239.6	227.6	215.9																		
	3 283	.8 283.8	283.8	278.1	272.5	261.6	250.7																		
•	•	•					•		•		•					•	•	•	•	•	•	1		•	
	1	2	3	4 5	6	7	8	9	10	11 1	12 13	3 14	15	16	17	18	19 20	21	22	23	24	25			
$c_a^T =$	1 83	.4 77.3	71.1	66.0 61.	0 58.6	56.1																			
a	2 83			61.		_																			
	3 83	4 77.3	71.1	66.0 61.	0 58.6	56.1																			
																1									
т	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$c_{u}^{1} =$		0.0 124.	_	+ +	61.2	170.3	46.0																		
		0.0 105.		160.2	51.5	142.3	37.1																		
	3	0.0 93.	37.9	141.7	45.3	124.7	32.0																		
		1	2	1	г		7	0	_	10	11	12	12	1.4	15	1.0	17	10	10	20	21	22	122	24	1
Т	1 2	. 2	3 E 164 1	4	5	17.4	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
$\mathbf{w_u}^{1} =$	_	12.8 89 50.8 145	_	_		17.4 85.3	128.3 178.8																		
		33.8 190		-	227.2	136.8	.																		
	J 2	130	273.3	130.4	221.2	130.0	210./								1									1	

$$\begin{array}{c|c} \Delta c_a = & \text{for } i \in 1..Z \\ & \text{for } a \in 2..3 \\ & \text{for } r \in 1..N_r \\ & \Delta c_{a_{st(i,a),r}} = c_{a_{st(i,a),r}} - c_{a_{st(i,a-1),r}} \\ & \Delta c_a \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\Delta c_{-}^{T} =$	1	0.00	-6.15	-6.15	-5.13	-4.98	-2.44	-2.44														
$\Delta c_a =$	2	0.00	-6.15	-6.15	-5.13	-4.98	-2.44	-2.44														
	3	0.00	-6.15	-6.15	-5.13	-4.98	-2.44	-2.44														

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
[16, c. 81]	$\Delta c_0^T \ge -25 =$	1	1	1	1	1	1	1	1																		
[10, 5, 61]	—•a – 25	2	1	1	1	1	1	1	1																		
		3	1	1	1	1	1	1	1																		

		1	2	3	4	5	6	7	8	9	10	11	12
$R_{\tau}^{T} =$	1	0.7089	0.4346	0.4050									
'`L	2	0.7897	0.5916	0.5853									
	3	0.8354	0.6803	0.6817									

		1	2	3	4	5	6	7	8	9	10	11	12
$R_T^T > 0 =$	1	1	1	1									
TL = 0	2	1	1	1									
	3	1	1	1									

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
$\alpha^{T} =$	1	90.00	31.91	54.79	19.29	44.91	18.98	50.69																			. c
	2	90.00	36.21	58.97	22.39	49.86	22.38	56.54																			
	3	90.00	39.60	61.94	24.97	53.44	25.16	60.35																			ĺ
			•																	•			•	•			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21					
$\beta^{T} =$	1	21.41	40.81	23.42	73.68	23.52	73.49	23.63															.0				
۲	2	18.40	27.96	18.82	37.73	17.97	34.47	17.44																			
	3	16.38	22.10	16.14	25.82	15.04	23.18	14.40																			

12

13

15

10

11

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\beta^{T} \leq 91.^{\circ} =$	1	1	1	1	1	1	1	1														
P = 31	2	1	1	1	1	1	1	1														
	3	1	1	1	1	1	1	1														

19.40

50.26

49.97 16.50 β.2 > 91 => поменять з-н профилирования

	3	5.71	9.69	8.14													i
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
ε =	1	19.79	36.30	31.71													.0
$\varepsilon_{ m stator} =$	2	19.83	37.67	34.16													
	3	19.57	38.17	35.19													

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\lambda_{c}^{T} =$	1	0.2685	0.4508	0.2685	0.5908	0.2556	0.5177	0.2086																
T _C	2	0.2685	0.4034	0.2560	0.5125	0.2361	0.4423	0.1935																
	3	0.2685	0.3739	0.2486	0.4624	0.2247	0.3961	0.1857																
				1 2	2 3	4 5	6 7	7 8	9 10	11 1	12 13	14 15	16 17	18	19									
[16, c. 87	7]	$\lambda_{c}^{T} \leq$	0.85 = 1	. 1	1 1	1 1	. 1	1																
_			0.63 = 2	1	1 1	1 1	. 1	1																
			3	1	1 1	1 1	. 1	1																
		. 1	- 1	_		_	_	_	_		1													
т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_c^1 =$	1	0.2465	0.4187	0.2465	0.5558	0.2347	0.4837	0.1912			ı	1										1	l	<i>i</i>
•																								<u>'</u>
	2	0.2465	0.3733	0.2349	0.4784	0.2166	0.4107	0.1772																
	3	0.2465 0.2465	0.3733 0.3453	0.2349 0.2281	0.4784 0.4299	0.2166 0.2060		0.1772																
	3						0.4107	0.1772																
	3						0.4107	0.1772	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_{W}^{T} =$	1		0.3453	0.2281	0.4299	0.2060	0.4107 0.3666	0.1772 0.1701	-	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23

0.8740 0.5852

0.7242

0.4166

0.3959

0.6379

0.5944

$$T^*_{1CA} = \begin{pmatrix} 361.5 \\ 361.5 \\ 361.5 \end{pmatrix} \qquad T^*_{3CA} = \begin{pmatrix} 361.5 \\ 361.5 \\ 361.5 \end{pmatrix} \qquad a^*_{c1CA} = \begin{pmatrix} 347.9 \\ 347.9 \\ 347.9 \end{pmatrix} \qquad a^*_{c3CA} = \begin{pmatrix} 347.9 \\ 347.9 \\ 347.9 \end{pmatrix} \qquad \alpha_{1CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 56.54 \\ 60.35 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 50.54 \\ 50.10 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 50.54 \\ 50.10 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 50.54 \\ 50.10 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 50.49 \\ 50.10 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 50.49 \\ 50.10 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 50.49 \\ 50.10 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 50.49 \\ 50.10 \end{pmatrix} \cdot \qquad \alpha_{3CA} = \begin{pmatrix} 50.69 \\ 50.10 \\ 50.10 \end{pmatrix} \cdot \qquad \alpha_$$

Вывод результатов расчета параметров потока по высоте Л

Рассматриваемая ступень:
$$j=1$$
 $j=1$ $j=$

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_{c}(v,i,j,r) &= \left| \begin{array}{l} \tan \left(\alpha_{st(i,j)\,,r}\right) \cdot v \ \ \mathrm{if} \ \left(\tan \left(\alpha_{st(i,j)\,,r}\right) \geq 0 \wedge - \left| c_{st(i,j)\,,r} \cdot \cos \left(\alpha_{st(i,j)\,,r}\right) \right| \leq v \leq 0 \right) \\ & \tan \left(\alpha_{st(i,j)\,,r}\right) \cdot v \ \ \mathrm{if} \ \left(\tan \left(\alpha_{st(i,j)\,,r}\right) < 0 \wedge 0 \leq v \leq \left| c_{st(i,j)\,,r} \cdot \cos \left(\alpha_{st(i,j)\,,r}\right) \right| \right) \\ \Delta_{W}(v,i,j,r) &= \left| -\tan \left(\beta_{st(i,j)\,,r}\right) \cdot v \ \ \mathrm{if} \ \left(-\tan \left(\beta_{st(i,j)\,,r}\right) \geq 0 \right) \wedge \left(- \left| w_{st(i,j)\,,r} \cdot \cos \left(\beta_{st(i,j)\,,r}\right) \right| \leq v \leq 0 \right) \wedge (j \neq 3) \\ & -\tan \left(\beta_{st(i,j)\,,r}\right) \cdot v \ \ \mathrm{if} \ \left(-\tan \left(\beta_{st(i,j)\,,r}\right) < 0 \right) \wedge \left(0 \leq v \leq \left| w_{st(i,j)\,,r} \cdot \cos \left(\beta_{st(i,j)\,,r}\right) \right| \right) \wedge (j \neq 3) \\ \Delta_{U}(v,i,j,r) &= \left| -c_{a_{st(i,j)\,,r}} \quad \mathrm{if} \ \left(-c_{st(i,j)\,,r} \cdot \cos \left(\alpha_{st(i,j)\,,r}\right) \leq v \leq w_{st(i,j)\,,r} \cdot \cos \left(\beta_{st(i,j)\,,r}\right) \right) \wedge (j \neq 3) \\ & \text{NaN otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2}\right) \cdot 10^2 = 300$$

Дискретизация скорости: $v = -v_{lim}, -v_{lim} + \frac{v_{lim}}{3000} ... v_{lim}$

 $r = av(N_r)$

▲ Построение треугольников скоростей в 3х сечениях

$$\begin{pmatrix} F_1 & F_{II} \\ D2 & R2 \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \end{cases} \\ \begin{cases} \rho_{\cdot}(z) &= \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(\rho_{\cdot} \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, z \Big) \\ c_{a.}(z) &= \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{st}(i,a), \text{st}(i,a), 1, N_r \Big)^T, \text{submatrix} \Big(c_a, \text{st}(i,a), \text{$$

Кольцевые площади (м^2):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$\operatorname{stack}\left(F_{\mathbf{I}}^{T}, F_{\mathbf{II}}^{T}, F^{T}\right) =$	1	0.0514	0.0509	0.0504	0.0497	0.0490	0.0484	0.0473												
$\operatorname{stack}(F_{\mathrm{I}}, F_{\mathrm{II}}, F) =$	2	0.3083	0.3053	0.3023	0.2985	0.2942	0.2902	0.2837												
	3	0.3596	0.3382	0.3526	0.3476	0.3433	0.3404	0.3310												

Радиус и диаметр двухконтурности (м):

. (TT)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19]
$\operatorname{stack}(R2^{1}, D2^{1}) = \boxed{1}$	404.2	405.4	406.6	395.2	383.9	360.2	337.1													10
2	808.4	810.8	813.1	790.3	767.7	720.4	674.3													

$$\begin{pmatrix} \pi^* \Pi \\ \pi^* I \end{pmatrix} = \begin{cases} \text{for i = 1..Z} \\ \text{for a = 1} \end{cases} \\ \begin{pmatrix} C_{D}(z) = \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(C_{D}, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), 1, N_f$$

(T, T, T)		1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{stack}(\pi^*_{I}, \pi^*_{II}) =$	1	1.300	1.297	1.187									
, ,	2	1.300	1.297	1.187									

$$\prod_{i=1}^{Z} \pi^*_{\text{II}_i} = 2.000$$

Относ. толщины ЛРК и СА:

$$\overline{c}_{rotor.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{cases} 12 + \begin{vmatrix} 4 & \text{if compressor} = "B\pi" \\ -4 & \text{if compressor} = "KHД" \\ -0.8 & \text{otherwise} \end{cases} \\ 3 + \begin{vmatrix} 1.65 & \text{if compressor} = "B\pi" \\ 0 & \text{if compressor} = "KHД" \\ 0.62 & \text{otherwise} \end{cases} \\ 0 + \begin{vmatrix} 1 & \text{if compressor} = "B\pi" \\ 0 & \text{if compressor} = "KHД" \\ 0.62 & \text{otherwise} \end{cases} \\ 0 + \begin{vmatrix} 1 & \text{if compressor} = "B\pi" \\ -0.8 & \text{otherwise} \\ 3 + \begin{vmatrix} 1.65 & \text{if compressor} = "B\pi" \\ 0 & \text{if compressor} = "KHД" \\ 0.62 & \text{otherwise} \\ 2 \end{pmatrix}$$

$$\overline{c}_{stator.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}, (r)$$

$$r = ORIGIN, ORIGIN + \frac{N_r - ORIGIN}{N_{dis}} .. N_r$$

$$\overline{c}_{BHA} = \begin{vmatrix} for & r \in 1..N_r \\ \overline{c}_{BHA} & \overline{c}_{stator.}(r) \end{vmatrix}$$

$$\overline{c}_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 3.00 \\ \hline 2 & 6.00 \\ \hline 3 & 9.00 \\ \hline \end{array}.\%$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{cases}
for i \in 1..Z \\
for r \in 1..N_r
\end{cases}$$

$$\begin{bmatrix}
\overline{c}_{stator}_{i,r} \\
\overline{c}_{rotor}_{i,r}
\end{bmatrix} = \begin{bmatrix}
\overline{c}_{stator.}(r) \\
\overline{c}_{rotor.}(r)
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\overline{c}_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3.00 & 3.00 & 3.00 \\ 2 & 6.00 & 6.00 & 6.00 \\ 3 & 9.00 & 9.00 & 9.00 \end{bmatrix} .9\%$$

$$E_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 8.00 & 8.00 & 8.00 \\ 2 & 3.00 & 3.00 & 3.00 \\ 3 & 2.00 & 2.00 & 2.00 \end{vmatrix} .\%$$

$$\overline{c}_{CA} =$$
 for $r \in 1..N_r$

$$\overline{c}_{CA_r} = \overline{c}_{stator.}(r)$$

$$\overline{c}_{CA}$$

$$\bar{c}_{CA} = \begin{bmatrix}
 & 1 \\
1 & 3.00 \\
2 & 6.00 \\
3 & 9.00
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{r}_{_inlet}_{CA} \\
\overline{r}_{_outlet}_{CA}
\end{bmatrix} = \begin{bmatrix}
for \ r \in 1..N_r & if \ CA = 1 \\
\hline
\begin{bmatrix}
\overline{r}_{_inlet}_{CA}_r \\
\overline{r}_{_outlet}_{CA}_r
\end{bmatrix} = \begin{bmatrix}
0.2 \\
0.1
\end{bmatrix} \cdot \overline{c}_{stator.}(r)$$

$$\begin{bmatrix}
\overline{r}_{_inlet}_{CA} \\
\overline{r}_{_outlet}_{CA}
\end{bmatrix}$$

$$\overline{r}_{inlet} = 0.000 \cdot \%$$

$$\frac{T}{r_{inlet_{stator}}} = \begin{vmatrix}
 & 1 & 2 & 3 \\
 & 1 & 0.300 & 0.300 & 0.300 \\
 & 2 & 0.600 & 0.600 & 0.600 \\
 & 3 & 0.900 & 0.900 & 0.900
\end{vmatrix}$$
.%

$$\frac{1}{r_{outlet_{stator}}} = \begin{vmatrix}
 & 1 & 2 & 3 \\
 & 1 & 0.150 & 0.150 & 0.150 \\
 & 2 & 0.300 & 0.300 & 0.300 \\
 & 3 & 0.450 & 0.450 & 0.450
\end{vmatrix} \cdot \%$$

$$\overline{r}$$
outlet{BHA} = 0.000·%

$$\bar{r}_{inlet} = 0.000 \cdot \%$$

$$\frac{T}{r_{inlet}} = \begin{bmatrix}
 & 1 & 2 & 3 \\
 & 1 & 0.800 & 0.800 & 0.800 \\
 & 2 & 0.300 & 0.300 & 0.300 \\
 & 3 & 0.200 & 0.200 & 0.200
\end{bmatrix}$$
.%

$$\overline{r}_{outlet_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 0.400 & 0.400 & 0.400 \\ 2 & 0.150 & 0.150 & 0.150 \\ 3 & 0.100 & 0.100 & 0.100 \end{bmatrix} .\%$$

$$\overline{r}$$
outlet{CA} = 0.000·%

Относ. удлинение ЛРК и НА:

[16, c. 244]

$$\overline{h}_{rotor}(Z,i) = \begin{vmatrix} \overline{h}_{\sim rotor} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim rotor}(1) & \text{if } i > Z \end{vmatrix} \begin{vmatrix} \overline{h}_{\sim stator} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim rotor} \left(\frac{i}{Z} \right) & \text{otherwise} \end{vmatrix}$$

$$\overline{\underline{h}}_{\sim}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor, i \right)$$

$$\overline{\underline{h}}_{\text{constator}}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator}, i \right)$$

Для компрессора газогенератора

$$\frac{h_{PK}}{S_{PK}}$$
=2,5...4,5 – для первой дозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
 =2,0...3,5 – для первой околозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,7...3,0 – для первой сверхзвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,0...2,5 – для последней ступени.

[16, c. 83-84]

▼ Расчет длин хорд по высоте Л

$$\begin{array}{l} \operatorname{chord}_{rotor} \cdot \operatorname{chord}_{xator} \big) = & \begin{array}{l} \operatorname{for} \; i = 1...Z \\ \\ \operatorname{chord}_{xator}_{i, av(N_r)} \\ \operatorname{chord}_{stator}_{i, av(N_r)} \\ \end{array} \\ \begin{array}{l} \operatorname{chord}_{stator}_{i, av(N_r)} \\ \end{array} \\ \operatorname{sail} \; = & \begin{array}{l} \frac{\operatorname{meam} \left(h_{si(i,1)}, h_{si(i,2)} \right)}{h_{rotor}(Z, i)} \\ \\ \operatorname{sail} \; = & \begin{array}{l} \frac{\operatorname{R}_{si(i,2)}, n_r - \operatorname{Resi}(i,2), 1}{R_{si(i,2), av(N_r)} - \operatorname{Resi}(i,2), 1} \\ \\ \operatorname{for} \; \; r = 1...N_r \\ \end{array} \\ \begin{array}{l} \operatorname{bp}_{rotor} \; = & \begin{array}{l} \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \end{array} \\ \operatorname{sail} \; = & \begin{array}{l} \frac{\operatorname{chord}_{rotor}_{i, av(N_r)} - \operatorname{Resi}(i,2), 1}{R_{si(i,2), av(N_r)} - \operatorname{Resi}(i,2), 1} \\ \\ \operatorname{bp}_{rotor} \; = & \begin{array}{l} \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \end{array} \\ \operatorname{sail} \; = & \begin{array}{l} \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \end{array} \\ \operatorname{sail} \; = & \begin{array}{l} \operatorname{chord}_{stator} - 1 + \operatorname{sail} \\ \\ \operatorname{chord}_{stator} - 1 + \operatorname{sail} \end{array} \\ \\ \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \operatorname{bh}_{rotor} \\ \operatorname{bh}_{rotor} \\ \operatorname{bh}_{rotor} \\ \end{array} \\ \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \operatorname{bh}_{rotor} \\ \operatorname{chord}_{rotor}_{i, av(N_r)} \\ \operatorname{chord}_{stator} \\ \operatorname{chord}_{stator} \\ \operatorname{chord}_{stator}_{i, av(N_r)} \\ \operatorname{chord}_{stator}_{i, av(N_r)} \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, r} = & \operatorname{chord}_{rotor} (\operatorname{Resi(i, 2), r}) \\ \operatorname{chord}_{rotor}_{i, rotor} = & \operatorname{chord}_{rotor} (\operatorname{chord}_{rotor} (\operatorname{$$

$$\begin{split} & \mathsf{chord}_{CA} = & & \mathsf{for} \ i \in Z \\ & & \mathsf{chord}_{CA_{av}(N_r)} = \frac{h_{st(i,3)}}{h_{stator}(Z,Z+1)} \\ & \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av}(N_r) - R_{st(1,1),1}} \\ & \mathsf{for} \ r \in 1..N_r \\ & & \mathsf{b}_{CA\kappa op} = \frac{\mathsf{chord}_{CA_{av}(N_r)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ & \mathsf{b}_{CA\pi cp} = b_{CA\kappa op} \cdot \mathsf{sail}_{stator} \\ & & \mathsf{b}_{CA}(z) = \mathsf{interp} \left[\mathsf{cspline} \left[\begin{pmatrix} R_{st(i,1),av}(N_r) \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \\ \mathsf{b}_{CAnep} \end{pmatrix} \right], \begin{pmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \\ \mathsf{chord}_{CA} \end{pmatrix}, \\ & \mathsf{chord}_{CA} = \mathsf{b}_{CA}(R_{st(i,1),r}) \\ & \mathsf{chord}_{CA} \end{pmatrix}$$

▼ Определение количества Л РК и Ни

$$\begin{array}{c} \left(\frac{\varepsilon}{B}HA(b^*)=1}{Z_{BHA}} \\ r_{-inlet}BHA \\ r_{-inlet}BHA \\ \bar{r}_{BHA} \\$$


```
\varepsilon_{\text{HA}(b/t)=1}
\varepsilon_{PK(b/t)=1}
   Z<sub>rotor</sub>
                         Z<sub>stator</sub>
r_inletrotor
                    r_inlet<sub>stator</sub>
r_outlet<sub>rotor</sub> r_outlet<sub>stator</sub>
     trotor
                          tstator
                          i<sub>stator</sub>
     <sup>1</sup>rotor
   m<sub>rotor</sub>
                         m<sub>stator</sub>
    \theta_{rotor}
                          \theta_{\text{stator}}
                         \boldsymbol{\delta}_{stator}
    \delta_{rotor}
                                             = \int for i \in 1...Z
                                                        for r \in av(N_r)
                          \chi_{\text{stator}}
    \chi_{rotor}
   v_{\text{rotor}}
                         v_{
m stator}
 R_{\text{СЛ.rotor}}
                       R<sub>CЛ.stator</sub>
                         K_{stator}
    K<sub>rotor</sub>
   \mathbf{D}_{\text{rotor}}
                         D<sub>stator</sub>
    \zeta_{\rm rotor}
                          \zeta_{\rm stator}
                     quality<sub>stator</sub>
qualityrotor
   \eta_{stage}
                          \eta_{stage}
                                                                                        chord_{rotor_{i,\underline{r}}}
                                                                                          b/t<sub>PK</sub>i,r
                                                               tstator<sub>i,r</sub>
```

$$\begin{cases} r_{:} \text{inlet}_{\text{Stator}_{i,r}} & r_{:} \text{outlet}_{\text{Stator}_{i,r}} \\ r_{:} \text{inlet}_{\text{Totor}_{i,r}} & r_{:} \text{outlet}_{\text{Stator}_{i,r}} \end{cases} = \begin{cases} \frac{r_{:} \text{inlet}_{\text{Stator}_{i,r}} \cdot \text{chord}_{\text{Stator}_{i,r}}}{r_{:} \text{inlet}_{\text{Totor}_{i,r}}} & r_{:} \text{outlet}_{\text{Stator}_{i,r}} \end{cases} \\ \begin{cases} \frac{r_{:} \text{inlet}_{\text{Totor}_{i,r}}}{r_{:} \text{tstator}_{i,r}} \end{cases} = \pi \begin{cases} \frac{\text{mean}(D_{\text{St}(i,1),r},D_{\text{St}(i,2),r})}{r_{:} \text{Totor}_{i,r}} \\ \frac{r_{:} \text{ond}}{r_{:} \text{stator}} \end{cases} \\ \frac{r_{:} \text{inlet}_{\text{Totor}_{i,r}}}{r_{:} \text{tstator}_{i,r}} \end{cases} = 2.5 \end{cases} \\ \begin{cases} \frac{\text{chord}_{\text{Totor}_{i,r}}}{r_{:} \text{totor}_{i,r}} - 1} \\ \frac{\text{chord}_{\text{Stator}_{i,r}}}{r_{:} \text{tstator}_{i,r}} \end{cases} \\ = 0.23 \cdot \left(2 \cdot \frac{r_{i,r}}{r_{:}}\right)^2 + 0.18 - \frac{0.002}{\text{deg}} \cdot \left(\frac{\theta_{\text{St}(i,2),r}}{\theta_{\text{St}(i,3),r}}\right) \end{cases} \\ \\ \begin{pmatrix} \theta_{\text{Totor}_{i,r}} \\ \theta_{\text{Stator}_{i,r}} \end{pmatrix} = \begin{cases} \frac{\varepsilon_{\text{Totor}_{i,r}} - 1}{r_{\text{Totor}_{i,r}}} \\ 1 - m_{\text{Totor}_{i,r}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ 1 - m_{\text{Stator}_{i,r}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ 1 - m_{\text{Stator}_{i,r}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ \frac{\varepsilon_{\text{Stator}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ \frac{\delta_{\text{Stator}_{i,r}}}{r_{\text{Stator}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{\kappa_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}}} \\ \frac{\kappa_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Chord}_{\text{Totor}_{i,r}}} \\ \frac{\kappa_{\text{Totor}_{i,r}}}{r_{\text{Stator}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{\kappa_{\text{Totor}_{i,r}}}{r_{\text{Stator}_{i,r}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} \\ \frac{r_{\text{Totor}_{i,r}}}{r_{\text{Totor}_{i,r}}} & \frac{r_{$$

$$\begin{pmatrix} R_{CJI.rotor_{1,\,r}} \\ R_{CJI.stator_{1,\,r}} \end{pmatrix} = \frac{1}{2} \cdot \begin{vmatrix} \frac{1}{\sin(0.5 \cdot 9 \operatorname{rotor_{1,\,r}})} \\ \frac{1}{\sin(0.5 \cdot 9 \operatorname{stator_{1,\,r}})} \\ \frac{1}{\sin(0.5 \cdot 9 \operatorname{stator_{1,\,r}})} \\ \frac{1}{\sin(0.5 \cdot 9 \operatorname{stator_{1,\,r}})} \end{vmatrix} = \begin{pmatrix} \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{1}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}} \\ \frac{e_{a_{St(1,\,2),\,r}}}{e_{a_{St(1,\,2),\,r}}}} \\ \frac{$$

	η _{stag}	$e_{i,r} = 1$	quality _{roto}	$c_{ast(i,1),r}$ $c_{ast(i,1),r}$ $u_{st(i,1),r}$	$r + R_{L_{i}}$	– + <u>——</u> qual r	lity _{stator}	$ \frac{c_{a_{st(i,i)}}}{c_{st(i,i)}} $	$\frac{(2), r}{(2), r} + ($	$\left(1 - R_{L_{i}}\right)$	(r)							
	$\int \varepsilon_{PK(b/t)=1}$	Z _{rotor}	r_inletrotor	r_outletrotor	t _{rotor}	i _{rotor}	m _{rotor}	θ_{rotor}	δ_{rotor}	χ_{rotor}	$v_{ m rotor}$	R _{CЛ.rotor}	K _{rotor}	D _{rotor}	$\zeta_{ m rotor}$	qualityrotor	η_{stage}	Γ
	$\left \varepsilon_{\text{HA}(b/t)=1} \right $	Z _{stator}	r_inlet _{stator}	r_outlet _{stator}	t _{stator}	i _{stator}	m _{stator}	θ_{stator}	δ_{stator}	χ_{stator}	$v_{ m stator}$	R _{CЛ.stator}	K _{stator}	D _{stator}	$\zeta_{ ext{stator}}$	quality _{stator}	η_{stage}	

```
\epsilonCA(b/t)=1
    Z_{CA}
r_inlet<sub>CA</sub>
r_{
m CA}
     t_{CA}
     iCA
    m_{CA}
                                   if CA = 1
    \theta_{\text{CA}}
                                            for r \in av(N_r)
    \delta_{\text{CA}}
                                                    \left| \varepsilon_{CA(b/t)=1_r} = \varepsilon_{(b/t)=1} \left( \alpha_{3CA_r} \right) \right|
    \chi_{\text{CA}}
    v_{\mathrm{CA}}
RСЛ.СА
    K_{CA}
    D_{CA}
                                                   Z_{CA} = \left[ \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right) \text{ if } \text{mod} \left( \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right), 2 \right) = 0 \right]
                                                           round \left(\frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}}\right) + 1 otherwise
                                                    \left| \left( r_{-} \text{inlet}_{CA_r} \quad r_{-} \text{outlet}_{CA_r} \right) \right| = \text{chord}_{CA_r} \cdot \left( \overline{r_{-}} \text{inlet}_{CA_r} \quad \overline{r_{-}} \text{outlet}_{CA_r} \right)
                                                   m_{\text{CA}_{r}} = 0.23 \cdot (2 \cdot \overline{x}_{f})^{2} + 0.18 - \frac{0.002}{\text{deg}} \cdot (\alpha_{3\text{CA}_{r}})^{2}
```

$$\begin{split} \delta_{\text{CA}_r} &= \text{m}_{\text{CA}_r} \cdot \theta_{\text{CA}_r} \cdot \sqrt{\frac{^{\text{i}_{\text{CA}_r}}}{\text{chord}_{\text{CA}_r}}} \\ \chi_{\text{CA}_r} &= \theta_{\text{CA}_r} \cdot \frac{1 + 2 \cdot \left(1 - 2 \cdot \overline{x}_f\right)}{2} \\ v_{\text{CA}_r} &= \chi_{\text{CA}_r} + \alpha_{1\text{CA}_r} + i_{\text{CA}_r} \\ R_{\text{CJI.CA}_r} &= \frac{\text{chord}_{\text{CA}_r}}{2 \cdot \sin\left(0.5 \cdot \theta_{\text{CA}_r}\right)} \\ K_{\text{CA}_r} &= \frac{^{\text{c}_{\text{a3CA}_r}}}{^{\text{c}_{\text{a1CA}_r}}} \\ D_{\text{CA}_r} &= \left(1 - K_{\text{CA}_r} \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{\sin\left(\alpha_{3\text{CA}_r}\right)}\right) + \left(\frac{1}{\tan\left(\alpha_{1\text{CA}_r}\right)} - K_{\text{CA}_r} \cdot \frac{1}{\tan\left(\alpha_{3\text{CA}_r}\right)}\right) \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{^{\text{c}_{\text{chord}_{\text{CA}_r}}}} \\ \left(\varepsilon_{\text{CA}(b/t)=1} \mid Z_{\text{CA}_r} \mid r_{\text{inlet}_{\text{CA}_r}} \mid r_{\text{outlet}_{\text{CA}_r}} \mid t_{\text{CA}_r} \mid t_{\text{CA}$$

$$chord_{BHA} = 0.00 \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
chord $T = $	1	62.10	66.35	74.88													.10
chord _{rotor} =	2	72.07	77.02	87.03													
	3	80.73	86.26	97.34													

Длина хорды Л (м):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
chord $T =$	1	35.22	44.78	64.29													$\cdot 10^{-3}$
chord _{stator} =	2	38.99	49.58	71.24													10
	3	42.27	53.74	77.15													

$$chord_{CA} = 0.00 \cdot 10^{-3}$$

Радисы входных и выходных кромок профилей Π (мм):

$$r_{inlet_{BHA}} = 0.00 \cdot 10^{-3}$$
 $r_{outlet_{BHA}} = 0.00 \cdot 10^{-3}$

$$r_inlet_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 0.11 & 0.13 & 0.19 \\ 2 & 0.23 & 0.30 & 0.43 \\ \hline 3 & 0.38 & 0.48 & 0.69 \end{bmatrix} \cdot 10^{-3}$$

$$r_{inlet}_{CA} = 0.00 \cdot 10^{-3}$$
 $r_{outlet}_{CA} = 0.00 \cdot 10^{-3}$

$$r_outlet_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 0.25 & 0.27 & 0.30 \\ 2 & 0.11 & 0.12 & 0.13 \\ \hline 3 & 0.08 & 0.09 & 0.10 \end{bmatrix} \cdot 10^{-3}$$

$$r_outlet_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 0.05 & 0.07 & 0.10 \\ 2 & 0.12 & 0.15 & 0.21 \\ 3 & 0.19 & 0.24 & 0.35 \end{bmatrix} \cdot 10^{-3}$$

$$\varepsilon_{\text{BHA(b/t)}=1_{\text{av}(N_r)}} = \bullet^{\circ}$$

Угол поворота потока:

$$\varepsilon_{\text{CA(b/t)}=1_{av(N_r)}} = \bullet \cdot \circ$$

$$\frac{\text{chord}_{BHA}}{t_{BHA}} = \blacksquare$$

(chord	Т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(chord _{rotor})	=	1	-296.234	-398.209	-987.065												
(t _{rotor})		2	729.114	978.250	2415.163												
,		3	4.441	6.615	19.774												

Густота решетки:

$$\left(\frac{\text{chord}_{\text{stator}}}{t_{\text{stator}}} \right)^{\text{T}} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 42.848 & 56.310 & 96.221 \\ 2 & -570.660 & -751.566 & -1297.432 \\ 3 & 22.076 & 29.244 & 51.852 \end{vmatrix}$$

$$\frac{\text{chord}_{CA}}{t_{CA}} = \blacksquare$$

$$Z_{BHA} = 0$$

 $Z_{CA} = 0$

Количество Л:

Значения округляются до целого в большую сторону так, чтобы при разъемном корпус е количество ЛНА было четным, а количества ЛРК и НА были взаимно простыми

$$t_{BHA} = 0.00 \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$t \cdot T =$	1	39.57	16.04	19.49													$\cdot 10^{-3}$
rotor –	2	46.58	18.88	23.41													
	3	52.67	21.35	26.75													

Шаг решетки (м):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$t \cdot T =$	1	31.88	2.85	13.48													$\cdot 10^{-3}$
tstator –	2	37.44	3.38	16.52													
	3	42.28	3.84	19.08													

$$t_{CA} = 0.00 \cdot 10^{-3}$$

$$i_{BHA} = 0.000 \cdot ^{\circ}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
i T	1	1.423	7.839	7.103													.0
rotor –	2	1.368	7.697	6.796													
	3	1.332	7.601	6.597													

Угол атаки:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
i =	1	-2.238	34.232	6.923													.0
stator =	2	-2.396	31.650	5.784													
	3	-2.501	30.000	5.111													

$$i_{\text{CA}} = 0.000 \cdot ^{\circ}$$

 $m_{BHA} = 0.0000$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T} =	1	0.3284	0.2626	0.2630												
m _{rotor} =	2	0.3541	0.3345	0.3411												
	3	0.3658	0.3584	0.3636												

Коэф. формы ср. линии профиля по Ховеллу:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathbf{m} \cdot \mathbf{m} = \mathbf{m}$	1	0.3004	0.3202	0.3086												
m _{stator} =	2	0.2921	0.3103	0.2969												
	3	0.2861	0.3031	0.2893												

 $m_{CA} = 0.0000$

$$\theta_{\mathrm{BHA}} = 0.00 \cdot ^{\circ}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
θ = T	1	24.37	48.71	49.51													.0
orotor –	2	11.45	13.44	11.79													
	3	6.22	2.54	1.91													

Угол изгиба ср. линии профиля:

																	_
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$\theta_{-4} = T =$	1	30.84	2.25	28.87													۰. [
ostator –	2	31.14	6.56	33.11													
	3	30.92	8.89	35.13													

$$\theta_{\rm CA} = 0.00 \cdot ^{\circ}$$

$$\delta_{\rm BHA}=0.000\cdot^{\circ}$$

		1	2	3	
$\delta_{\cdots} = T$	1	6.388	6.291	6.644	.0
o _{rotor} =	2	3.260	2.226	2.085	
	3	1.837	0.453	0.365	

Угол отставания:

$$\delta_{stator}^{T} = \begin{array}{|c|c|c|c|c|c|}\hline 1 & 2 & 3 \\ \hline 1 & 8.813 & 0.182 & 4.079 \\ \hline 2 & 8.913 & 0.531 & 4.733 \\ \hline 3 & 8.848 & 0.720 & 5.054 \\\hline \end{array} . \circ$$

$$\delta_{\mathrm{CA}} = 0.000 \cdot ^{\circ}$$

$$v_{
m BHA} = 0.00 \cdot ^{\circ}$$

$$v_{\text{rotor}}^{\text{T}} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 35.02 & 55.62 & 55.38 \\ 2 & 25.49 & 33.24 & 30.66 \\ 3 & 20.82 & 25.01 & 22.59 \end{vmatrix} . \circ$$

Угол установки Л:

$$v_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 45.09 & 54.65 & 40.34 \\ 2 & 49.39 & 57.32 & 44.72 \\ 3 & 52.56 & 59.42 & 47.84 \end{bmatrix}.$$

$$v_{\rm CA} = 0.00 \cdot ^{\circ}$$

$$R_{\text{СЛ.BHA}} = 0.00 \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R_{CH} , $T =$	1	147.12	80.44	89.40													$\cdot 10^{-3}$
R _{CЛ.rotor} =	2	361.24	329.11	423.80													10
	3	744.39	1946.18	2916.47													

Радиус дуги ср. линии (м):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$R_{CH} \cdot \cdot T =$	1	66.24	1140.87	128.96													$\cdot 10^{-3}$
R _C Л.stator =	2	72.63	433.59	125.02													10
	3	79.28	346.65	127.80													

$$R_{\text{CJI.CA}} = 0.00 \cdot 10^{-3}$$

$$K_{\text{BHA}} = 0.0000$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$K_{\cdots} = \begin{bmatrix} T \\ T \end{bmatrix}$	1	0.9263	0.9279	0.9600												
rotor –	2	0.9263	0.9279	0.9600												
	3	0.9263	0.9279	0.9600												

Фактор диффузорности решетки:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
V Т_	1	0.9204	0.9246	0.9583												
K _{stator} –	2	0.9204	0.9246	0.9583												
	3	0.9204	0.9246	0.9583												

$$K_{CA} = 0.0000$$

 $D_{\rm BHA}=0.0000$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D \cdot T =$	1	0.6545	0.7136	0.7050												
rotor –	2	0.5050	0.5794	0.5465												
	3	0.4084	0.4609	0.4201												

Диффузорность решетки:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D \cdot \cdot T =$	1	0.6333	0.5876	0.6695												
D _{stator} –	2	0.5958	0.5607	0.6419												
	3	0.5640	0.5361	0.6144												

 $D_{CA} = 0.0000$

$D_{BHA} \le 0.6 = 1$

		1	2	3	
$D_{rotor} \stackrel{T}{\leq} 0.6 =$	1	0	0	0	
$D_{rotor} \leq 0.6 =$	2	1	1	1	
	3	1	1	1	

[18, c. 71]

		1	2	3	
$D_{stator} \stackrel{T}{\leq} 0.6 =$	1	0	1	0	
$D_{stator} \leq 0.6 =$	2	1	1	0	
	3	1	1	0	

 $D_{CA} \le 0.6 = 1$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T =	1	0.1620	0.3544	0.3202												
Srotor _	2	0.1311	0.3460	0.3032												
	3	0.1143	0.3142	0.2703												

Коэф. потерь полного давления:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$C_{-4-4} = T$	1	0.0848	1.1879	0.4375												
Stator –	2	0.0668	0.9313	0.3339												
	3	0.0557	0.7748	0.2733												

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$quality_{rotor}^{T} =$	1	7.999	3.499	4.017												
rotor	2	8.953	3.138	3.907												
	3	9.010	2.930	3.853												

Качество профилей решеток РК и НА:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
quality $T =$	1	12.351	-0.332	2.606												
quality _{stator} =	2	14.371	0.159	3.601												
	3	16.133	0.528	4.416												

7 11 12 13 14 15 4 КПД элементарной ступени: $\eta_{stage}^{T} = \frac{1}{2}$ -10.14 52.18 78.40 .% 17.95 56.46 75.27 27.22 55.08

Результаты расчета количества Л и параметров решеток РК и НА

EXCEL_{AIRFOIL.subsonic} = ...\A40.xlsx

 $X/B_{subsonic} = submatrix(EXCEL_{AIRFOIL.subsonic}, 2, rows(EXCEL_{AIRFOIL.subsonic}), ORIGIN + 0, ORIGIN + 0)$

 $Y/B_{subsonic} = submatrix (EXCEL_{AIRFOIL.subsonic}, 2, rows (EXCEL_{AIRFOIL.subsonic}), ORIGIN + 1, ORIGIN + 1)$

Предел использования дозвукового профиля: $M_{lim} = 0.95$

EXCEL_{AIRFOIL}.supersonic = ...\Емин сверхзв

 $X/B_{supersonic} = submatrix(EXCEL_{AIRFOIL.supersonic}, 2, rows(EXCEL_{AIRFOIL.supersonic}), ORIGIN + 0, ORIGIN + 0)$

Y/B_{supersonic} = submatrix(EXCEL_{AIRFOIL.supersonic}, 2, rows(EXCEL_{AIRFOIL.supersonic}), ORIGIN + 1, ORIGIN + 1)

 $augment \left(X/B_{subsonic}, Y/B_{subsonic} \right)^{T} = \boxed{\frac{1}{2}}$ 5 8 10 11 12 13 14 15 16 17 18 19 20 0.000 0.010 0.015 0.025 0.050 0.075 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.500 0.600 0.700 0.800 0.900 0.950 1.000 0.114 0.143 0.185 0.255 0.309 0.352 0.416 0.455 0.479 0.493 0.494 0.500 0.486 0.444 0.378 0.285 0.172 0.100 0.000

15 $augment(X/B_{supersonic}, Y/B_{supersonic})^{T} =$ 0.050 0.000 0.100 0.200 0.150 0.300 0.400 0.500 0.600 0.700 0.800 0.850 0.900 0.950 1.000 0.045 0.132 0.208 0.282 0.342 0.430 0.482 0.500 0.482 0.430 0.342 0.282 0.208 0.132 0.045


```
\begin{aligned} \text{AIRFOIL}_{\text{subsonic}}(x, \text{line}, \overline{c}, \theta) &= & \text{if } 0 \leq x \leq 1 \\ & \text{interp}\big(\text{cspline}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) + Y/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}},
```

$$\begin{aligned} \text{AIRFOIL}_{\text{supersonic}}(\textbf{x}, \text{line}, \overline{\textbf{c}}, \theta) &= & \text{if } 0 \leq \textbf{x} \leq 1 \\ & \text{interp}\big(\text{cspline}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{$$

$$x = 0,0.005..1$$
 $\dot{j} = 1$

▶ Определение относительных геометрических характеристик сечений Л

▶ Определение абсолютных геометрических характеристик сечений Л

▼ Результат расчета абсолютных геометрических характеристик сечений Л

		1	2	3	
$1_{upper_{stator}}^{T} =$	1	35.57	45.89	65.57	$\cdot 10^{-3}$
_spp stator	2	39.65	51.37	73.50	10
	3	43.33	56.32	80.52	

$$1_lower_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 35.31 & 45.28 & 64.80 \\ 2 & 39.07 & 50.00 & 71.71 \\ 3 & 42.43 & 54.12 & 77.61 \end{bmatrix} \cdot 10^{-3}$$

$$area_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 27.22 & 44.00 & 90.69 \\ 2 & 66.72 & 107.87 & 222.74 \\ 3 & 117.60 & 190.07 & 391.78 \end{bmatrix} \cdot 10^{-6}$$

$$x0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 15.91 & 20.22 & 29.04 \\ 2 & 17.61 & 22.39 & 32.18 \\ 3 & 19.09 & 24.27 & 34.84 \end{bmatrix} \cdot 10^{-3}$$

$$y0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 1.16 & 2.74 & 3.42 \\ 2 & 1.29 & 3.15 & 4.09 \\ 3 & 1.38 & 3.46 & 4.57 \end{bmatrix} \cdot 10^{-3}$$

$$1_upper_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 63.46 & 70.54 & 79.57 \\ 2 & 72.37 & 77.73 & 87.70 \\ 3 & 80.87 & 86.51 & 97.57 \end{bmatrix} \cdot 10^{-3}$$

$$1_lower_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 62.29 & 67.36 & 76.00 \\ 2 & 72.11 & 77.18 & 87.15 \\ 3 & 80.75 & 86.30 & 97.37 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	
area , T =	1	225.65	257.58	328.05							$\cdot 10^{-6}$
area _{rotor} =	2	113.97	130.15	166.18							10
	3	95.34	108.83	138.60							

$$Sx_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 454.0 & 1464.2 & 2091.6 \\ 2 & 130.7 & 316.4 & 398.0 \\ 3 & 73.2 & 151.4 & 182.9 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 6328.8 & 7718.7 & 11093.6 \\ 2 & 3709.6 & 4527.2 & 6531.4 \\ 3 & 3476.1 & 4239.5 & 6093.1 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 28.05 & 29.97 & 33.82 \\ 2 & 32.55 & 34.78 & 39.30 \\ 3 & 36.46 & 38.96 & 43.96 \end{bmatrix} \cdot 10^{-3}$$

$$y0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 2.01 & 5.68 & 6.38 \\ 2 & 1.15 & 2.43 & 2.39 \\ 3 & 0.77 & 1.39 & 1.32 \end{bmatrix} \cdot 10^{-3}$$

$$Jx_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 42 & 367 & 1188 \\ 2 & 145 & 1233 & 4347 \\ 3 & 350 & 2767 & 10133 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy_{stator}^{T} = \begin{array}{|c|c|c|c|c|c|}\hline 1 & 2 & 3 \\ \hline 1 & 524 & 2533 & 9375 \\ \hline 2 & 1578 & 7908 & 30503 \\ \hline 3 & 3225 & 16590 & 64856 \\ \hline \end{array} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 5.51 & 37.05 & 124.93 \\ 2 & 33.25 & 162.37 & 613.04 \\ 3 & 125.74 & 491.68 & 1947.68 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 20.05 & 96.26 & 357.11 \\ 2 & 60.38 & 300.31 & 1160.56 \\ 3 & 123.40 & 628.77 & 2462.20 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_major_{stator}^{\quad T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 0.60 & 1.10 & 0.96 \\ 2 & 0.60 & 1.15 & 1.04 \\ 3 & 0.60 & 1.17 & 1.08 \\ \end{bmatrix} . \circ$$

		1	2	3	
$Jx_{rotor}^{T} =$	1	1343	9558	15325	$\cdot 10^{-12}$
rotor	2	197	888	1117	10
	3	77	251	297	

		1	2	3	4	5	6	7	8	9	
Jv = T = I	1	227101	295924	479972							$\cdot 10^{-12}$
yrotor –	2	154477	201466	328422							10
	3	162150	211290	342699							

		1	2	3	4	5	6	7	8	9	
Jxy , $T =$	1	13241	45588	73495							$\cdot 10^{-12}$
Jxy _{rotor} =	2	4425	11445	16265							10
	3	2774	6135	8363							

		1	2	3	4	5	6	7	8	9	
$Jx0_{rotor}^{T} =$	1	429.29	1235.81	1989.52							$\cdot 10^{-12}$
rotor	2	47.35	118.62	163.61							
	3	20.72	40.70	56.02							

		1	2	3	4	5	6	7	8	9	
$Jv0_{matan} = $	1	49597	64627	104822							$\cdot 10^{-12}$
orotor –	2	33732	43993	71715							10
	3	35408	46138	74833							

		1	2	3	4	5	6	7	8	9	
$Jxy0_{rotor}^{T} =$	1	506.75	1713.59	2763.18							10^{-1}
rotor	2	169.70	438.07	622.93							
	3	106.43	235.26	320.79							

$$Jp_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1930 & 5064 & 21485 \\ 2 & 5814 & 15271 & 65037 \\ 3 & 12100 & 31770 & 134844 \end{vmatrix} \cdot 10^{-12}$$

$$stiffness_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 \\ 1 & 7.39 & 19.31 & 82.06 \\ 2 & 88.84 & 232.19 & 990.06 \\ 3 & 413.97 & 1081.34 & 4594.52 \end{bmatrix} \cdot 10^{-12}$$

		1	2	3	4	5	6	7	8	9	
Ju =	1	424.07	1189.52	1915.33							$\cdot 10^{-12}$
Ju _{rotor} =	2	46.49	114.24	158.18							
	3	20.40	39.50	54.65							

		1	2	3	4	5	6	7	8	9	
$Jv \cdot T =$	1	49602	64674	104896							$\cdot 10^{-12}$
rotor –	2	33733	43997	71721							10
	3	35408	46139	74834							

$$Juv_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 \\ 1 & -0.00 & 0.00 & 0.00 \\ 2 & 0.00 & 0.00 & 0.00 \\ 3 & 0.00 & 0.00 & 0.00 \end{vmatrix} \cdot 10^{-12}$$

		1	2	3	4	5	6	7	8	9	
$J_{n} = T$	1	50026	65863	106811							10^{-12}
Jp _{rotor} =	2	33779	44111	71879							10
	3	35428	46179	74889							

$$Wp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1466.4 & 1788.5 & 2570.5 & & & & & & \\ 2 & 854.3 & 1042.7 & 1504.3 & & & & & & & \\ 3 & 800.1 & 975.9 & 1402.5 & & & & & & & & \\ \end{bmatrix} \cdot 10^{-9}$$

		1	2	3	4	5	6	7	8	9	
$stiffness_{rotor}^{T} =$	1	1354.80	1765.38	2863.34							.1(
rotor	2	129.60	169.02	275.53] -
	3	60.46	78.78	127.78							

		1	2	3	4	5	6	7	8	9			1	2	3	4	5	6	7	8	9	
$CPx_{stator}^{T} = \boxed{ \frac{1}{2} }$	12.328	15.673	22.502							10^{-3} CPx _{rotor} $T = $	1	21.736	23.223	26.207							1.10^{-3}	
	2	13.648	17.353	24.936							2 2 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	25.225	26.956	30.459							10
	3	14.794	18.807	27.002								3	28.256	30.189	34.069							
$CPy_{stator}^{T} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$		1	2	3	4	5	6	7	8	9			1	2	3	4	5	6	7	8	9	
	1	0.0000	0.0000	0.0000							$\cdot 10^{-3}$ CPy _{rotor} $\stackrel{T}{=}$	1	0.0000	0.0000	0.0000							$\cdot 10^{-3}$
	2	0.0000	0.0000	0.0000							rotor	2	0.0000	0.0000	0.0000							
	3	0.0000	0.0000	0.0000								3	0.0000	0.0000	0.0000							

Результат расчета абсолютных геометрических характеристик сечений Л

Вывод результатов расчета геометрических хар-к сечений Л

Абс. координаты профиля:

$$\begin{split} & \text{Airfoil(type}, \textbf{x}, \text{line}, \textbf{i}, \textbf{r}) = & \text{if type} = \text{"BHA"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_{r}}, \varepsilon_{\text{BHA}_{r}}\right) & \text{if } \textbf{M}_{\textbf{c}}_{\text{st}(1,1),r} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_{r}}, \varepsilon_{\text{BHA}_{r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"rotor"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{1,r}}, \varepsilon_{\text{rotor}_{1,r}}\right) & \text{if } \textbf{M}_{\textbf{w}_{\text{st}(1,1),r}} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{1,r}}, \varepsilon_{\text{rotor}_{1,r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"stator"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{stator}_{1,r}}, \varepsilon_{\text{stator}_{1,r}}\right) & \text{if } \textbf{M}_{\textbf{c}}_{\text{st}(1,2),r} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{stator}_{1,r}}\right) & \text{otherwise} \\ & \text{if type} = \text{"CA"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{if } \textbf{M}_{\textbf{c}}_{\text{st}(Z,3),r} < \textbf{M}_{\text{lim}} \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_{r}}, \varepsilon_{\text{CA}_{r}}\right) & \text{otherwise} \\ \end{cases} \end{aligned}$$

Рассматриваемая ступень:

$$j_w = \begin{bmatrix} j = 1 \\ j = \end{bmatrix}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Построение профилей Л РК и НА

$$\begin{aligned} \text{AXLEO(type}, x, i, r) &= & \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}}\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type} = \text{"rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}}\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = \text{"stator"} \\ & \text{NaN otherwise} \end{aligned}$$

$$\begin{aligned} \text{AXLE90(type}, \textbf{x}, \textbf{i}, \textbf{r}) &= \left| \frac{y0_{rotor_{\hat{i}, r}}}{\text{chord}_{rotor_{\hat{i}, r}}} + \tan\left(\alpha_{\text{major}_{rotor_{\hat{i}, r}}} + \frac{\pi}{2}\right) \cdot \left(\textbf{x} - \frac{\textbf{x}0_{rotor_{\hat{i}, r}}}{\text{chord}_{rotor_{\hat{i}, r}}}\right) \text{ if (type = "rotor")} \land \left|\alpha_{\text{major}_{rotor_{\hat{i}, r}}} \right| \ge 1 \cdot \circ \\ &\frac{y0_{stator_{\hat{i}, r}}}{\text{chord}_{stator_{\hat{i}, r}}} + \tan\left(\alpha_{\text{major}_{stator_{\hat{i}, r}}} + \frac{\pi}{2}\right) \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{\hat{i}, r}}}{\text{chord}_{stator_{\hat{i}, r}}}\right) \text{ if (type = "stator")} \land \left|\alpha_{\text{major}_{stator_{\hat{i}, r}}} \right| \ge 1 \cdot \circ \\ &\frac{\textbf{NaN otherwise}}{\textbf{NaN otherwise}} \end{aligned}$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 90 \cdot 10^{-3}$$

 $r = av(N_r)$

$r = av(N_r)$

■ Построение профилей Л РК и НА

Рассматриваемая ступень:
$$j_{w} = \begin{cases} j = 1 \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

$$b_{\text{lime}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j}, N_{r}}, \text{chord}_{\text{stator}_{j}, N_{r}}\right) \cdot 10^{2}\right)}{10^{2}} = 90 \cdot 10^{-3}$$

▼ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

r = 1

 $r = av(N_r)$

■ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

▼ Радиальные и осевые зазоры и длина К

Радиальный зазор (м) [с.64 казаджан]:

 $\overline{\Delta}$ r = 0.0025

 $0.0015 \le \overline{\Delta}r \le 0.0035 = 1$

$$\Delta_{\mathbf{r}_{i}} = \overline{\Delta}\mathbf{r} \cdot \mathbf{D}_{\mathrm{st}(i,2), \mathbf{N}_{\mathbf{r}}}$$

Относительный осевой зазор () [16, с. 245]:

 $\overline{\Delta}a = 0.17$

 $0.1 \le \overline{\Delta}a \le 0.2 = 1$

Осевой зазор (м): $\Delta a_i = \overline{\Delta} a \cdot \text{chord}_{rotor_{i,av}(N_r)}$

Односторонний осевой зазор (м):

$$\frac{\Delta a^{T}}{2} = \frac{1}{1} \frac{2}{6.13} \frac{3}{6.55} \cdot 7.40 \cdot 10^{-3}$$

Длина ОК (м):

$$\begin{aligned} \text{Length} &= \begin{bmatrix} \Delta a_1 + \left| \text{chord}_{BHA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{BHA_{av\left(N_r\right)}}\right) & \text{if } BHA = 1 & \dots \\ 0 & \text{otherwise} \\ + \sum_{i \, = \, 1}^{Z} \left(\text{chord}_{rotor_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{rotor_{i}, \, av\left(N_r\right)}\right) \right) + 2 \cdot \sum_{i \, = \, 1}^{Z} \Delta a_i + \sum_{i \, = \, 1}^{Z} \left(\text{chord}_{stator_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{stator_{i}, \, av\left(N_r\right)}\right) \right) \\ + \left| \begin{array}{c} \text{chord}_{CA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{CA_{av\left(N_r\right)}}\right) & \text{if } CA = 1 & + \Delta a_Z \\ 0 & \text{otherwise} \\ \end{bmatrix} \end{aligned} \end{aligned} \right.$$

▼ Проточная часть

$$\begin{pmatrix} x_{\Pi H} \\ y_{\Pi H nep} \\ y_{\Pi H cp} \\ y_{\Pi H nep} \\ y_{\Pi H nep} \\ y_{\Pi I nep} \end{pmatrix} = \begin{vmatrix} c = 1 \\ x_{\Pi H_c} = \begin{vmatrix} c \operatorname{chord}_{BHA_{av(N_r)}} \cdot \sin(\upsilon_{BHA_{av(N_r)}}) & \text{if } BHA = 1 \\ 0 & \operatorname{otherwise} \\ y_{\Pi I nep_c} = R_{st(c,1),N_r} \\ y_{\Pi I nep_c} = R_{st(c,1),av(N_r)} \\ y_{\Pi H cop_c} = R_{st(c,1),av(N_r)} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,2),N_r} \\ R_{st(i,2),av(N_r)} \\ R_{st(i,2),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ c = c + 1 \\ x_{\Pi H_c} = x_{\Pi H_{c-1}} + 0.5 \cdot \Delta a_i + \operatorname{chord}_{stator_{i,av(N_r)}} \cdot \sin(\upsilon_{stator_{i,av(N_r)}}) + 0.5 \cdot \Delta a_i \\ \begin{pmatrix} y_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),N_r} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} y_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ y_{\Pi H cop_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ v_{\Pi H nep_c} \\ v_{\Pi H nep_c} \\ \end{pmatrix} = \begin{pmatrix} R_{st(i,3),av(N_r)} \\ R_{st(i,3),av(N_r)} \\ \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ \end{pmatrix} \\ \begin{pmatrix} v_{\Pi H nep_c} \\ v_{\Pi H nep_c}$$

```
\begin{aligned} y_{\Pi \Pi nep}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi nep} \Big), x_{\Pi \Pi}, y_{\Pi \Pi nep}, l \Big) \\ y_{\Pi \Pi cp}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi cp} \Big), x_{\Pi \Pi}, y_{\Pi \Pi cp}, l \Big) \\ y_{\Pi \Pi kop}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi \Pi kop} \Big), x_{\Pi \Pi}, y_{\Pi \Pi kop}, l \Big) \\ y_{\Pi nep}(l) &= interp \Big( cspline \Big( x_{\Pi \Pi}, y_{\Pi nep} \Big), x_{\Pi \Pi}, y_{\Pi nep}, l \Big) \end{aligned}
```


▲ Проточная часть

$$j = 1$$
 = 1 $j = 1$ = 1 $j = 1$ Taкой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{\text{dis}}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{\text{rotor}} = 1 ... Z_{\text{rotor}_{j}}$$

$$\mathbf{i}_{\text{stator}} = 1 ... Z_{\text{stator}_{j}}$$

$$\Pi_{\text{HA}}(r,j) = \begin{cases}
\frac{2 \cdot \pi}{Z_{\text{stator}_{j}}} & \text{if } D_{\text{st}(j,2),1} < r < D_{\text{st}(j,2),N_{r}} \\
NaN & \text{otherwise}
\end{cases}$$

▼ Выбор материала Л

Запас по температуре (К): ΔT

 $\Delta T_{safety} = 50$

Выбранный материал Л:

$$\begin{split} \text{material_blade}_i &= & \text{"\mathbb{K}C-6$K"} \quad \text{if } 1123 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} \\ & \text{"$BT41"} \quad \text{if } 873 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} < 1123 \\ & \text{"$BT25"} \quad \text{if } 753 \leq T^*_{st(i,2),\,av\left(N_r\right)} + \Delta T_{safety} < 873 \\ & \text{"$BT9"} \quad \text{otherwise} \end{split}$$

Плотность материала Л (кг/м^3):

$$\rho_blade_i = \begin{bmatrix} 8393 & if material_blade_i = "KC-6K" \\ 7900 & if material_blade_i = "BT41" \\ 4500 & if material_blade_i = "BT25" \\ 4570 & if material_blade_i = "BT23" \\ 4510 & if material_blade_i = "BT9" \\ 4430 & if material_blade_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$$

Предел длительной прочности ЛРК (Па):

 $material_blade^T$

olade ^T =		1	2	3	4	5	6	7	8	9
	1	"BT6"	"BT6"	"BT6"						

 $\rho_{\text{blade}}^{\text{T}} = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}$

$$\sigma_{\text{blade_long}}^{\text{T}} = \begin{bmatrix} T \\ T \end{bmatrix}$$

material_blade
$$_{i}$$
 = "BT23" if compressor = "В π " "BT6" if compressor = "КНД" material_blade $_{i}$ otherwise

Коэф. формы: $\frac{k_n}{k_n} = 6.8$

Модуль Юнга Ірода материала Л (Па): $E_{blade} = 210 \cdot 10^{9}$

Коэф. Пуассона материала Π (): μ steel = 0.3

```
\nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \nu 0_{\text{изг.rotor}}
                                                                                 \nu 0_{y_{\Gamma \Pi}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \nu_{\rm VII.rotor}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for r \in av(N_r)
(\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    for mode \in 1..6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M5}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}} \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}\,, \rho\_\text{blade
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \nu 0_{\text{yrn.stator}_{i,\,mode}} = \nu 0_{\text{yrn}} \Big( \text{mode}\,, 0\,, \text{mean} \Big( h_{st(i,\,2)}\,, h_{st(i,\,3)} \Big) \,, \\ \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade}) \,, \rho\_\text{blade}_i\,, \\ \text{stiffness}_{stator}_{i,\,r}\,, \\ \text{Jp}_{stator}_{i,\,r} \,, \\ \text{Jp}_{st
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \nu 0_{\text{yr.i.rotor}_{i, \, mode}} = \nu 0_{\text{yr.ii}} \left( \text{mode} \,, 0 \,, \text{mean} \left( h_{\text{st(i,1)}} \,, h_{\text{st(i,2)}} \right) \,, \\ \text{Jung}(2 \,, \mu\_\text{steel} \,, E\_\text{blade}) \,, \rho\_\text{blade}_{i} \,, \\ \text{stiffness}_{\text{rotor}_{i,r}} \,, \\ \text{Jp}_{\text{rotor}_{i,r}} \,, \\ \text{Jp}_{
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \nu 0_{y_{\Gamma JI}.stator\_bondage_{\hat{1},\,mode}} = \nu 0_{y_{\Gamma JI}} \Big( mode, 1, mean \Big( h_{st(\hat{1},\,2)}, h_{st(\hat{1},\,3)} \Big), \\ Jung(2, \mu\_steel, E\_blade), \rho\_blade_{\hat{1},\,stiffness}_{stator_{\hat{1},\,r}}, \\ Jp_{stator_{\hat{1},\,r}}, Jp_{stator
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           \nu 0_{\text{yrst.rotor\_bondage}_{i, \, mode}} = \nu 0_{\text{yrst}} \left( \text{mode}, 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ν0<sub>VГЛ.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \nu_{\rm V\Gamma J. stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

 $\operatorname{stack}\left(\nu 0_{\text{угл.stator}}, \nu 0_{\text{угл.rotor}}\right)^{T} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	170	286	343	152	228	221												
, T	2	1067	1795	2148	953	1429	1382												
$\operatorname{stack}(\nu 0_{\text{M3}\Gamma,\text{stator}}, \nu 0_{\text{M3}\Gamma,\text{rotor}})^{\top} =$	3	2989	5026	6015	2669	4003	3871												
	4	5861	9855	11796	5233	7849	7591												
	5	9685	16285	19492	8648	12970	12544												
	6	14465	24321	29110	12915	19370	18734												

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	2099	2069	1946	1040	1051	1013												
, /	2	4197	4137	3892	2079	2101	2025												
stack $(ν_{yrπ.stator_bondage}, ν_{yrπ.rotor_bondage})^{T} =$	3	6296	6206	5838	3119	3152	3038												
	4	8394	8274	7784	4158	4202	4050												
	5	10493	10343	9730	5198	5253	5063												
	6	12591	12411	11676	6237	6303	6075												

№ Вывод результатов расчета собственных частот колебаний Л-

Pасчетный узел: type = "compressor"

Объем бандажной полки (M^3): $V_{\delta\Pi} = 0$

Радиус положения ЦМ бандажной полки (м): $R_{6\Pi} = 0$

▼ Расчет Л на прочность

```
\begin{aligned} & \text{area0}_{rotor}(i,z) = \text{area}_{rotor_{i},N_{r}} \cdot \begin{bmatrix} e^{\left( \overrightarrow{\sigma 0}_{rotor.max}(i,z) \cdot \int_{Z} & z \, dz \right)} & \text{if } z \leq R0_{rotor}(i,z) \\ & 1 \quad \text{otherwise} \\ & \text{N0}_{rotor}(i,z) = \rho\_\text{blade}_{i} \cdot \omega^{2} \cdot \begin{bmatrix} \int_{Z}^{mean\left(R_{st(i,1),N_{r}},R_{st(i,2),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{bmatrix} & \text{if type} = \text{"compressor"} \\ & \left( \int_{Z}^{mean\left(R_{st(i,2),N_{r}},R_{st(i,3),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) & \text{if type} = \text{"turbine"} \end{aligned} \right) \end{aligned}
                \sigma_{0_{rotor}(i,z)} = \frac{N0_{rotor}(i,z)}{area0_{rotor}(i,z)}
                     area_{rotor.}(i,z) = interp\Big(pspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                     area_{stator.}(i,z) = interp \left( pspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T, submatrix \left( area_{stato
          \begin{aligned} N_{rotor}(i,z) &= \rho\_{blade}_{i} \cdot \omega^{2} \cdot \\ & \int_{z}^{mean \left(R_{st(i,1),N_{r}}, R_{st(i,2),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{aligned} \quad \text{if type = "compressor"} \\ & \left(\int_{z}^{mean \left(R_{st(i,2),N_{r}}, R_{st(i,3),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) \quad \text{if type = "turbine"} \end{aligned}
                \sigma_{z_{rotor}(i,z)} = \frac{N_{rotor}(i,z)}{area_{rotor}(i,z)}
                      \rho_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(
                     \rho_{2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2
                     \rho_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3
                     P_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                     P_2(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i
                     P_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(
                     c_{a1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                     c_{a2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),
                     c_{a3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),
                     c_{u1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(s_{u},st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st
```

```
c_{u2}(i,z) = interp\Big(lspline\Big(submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1\Big),submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,
         c_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i
         w_{u1}(i,z) = interp \Big( lspline \Big( submatrix \Big( R \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \,, submatrix \Big( w_u \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \Big), submatrix \Big( R \,, st(i,1) \,, st(i
         w_{u2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(
         w_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(w_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(w_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i
        qx_{rotor}(i,z) = -\frac{2\pi z}{Z_{rotor_i}} \cdot \begin{bmatrix} \left[ \left( P_2(i,z) - P_1(i,z) \right) + \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{a2}(i,z) - c_{a1}(i,z) \right) \right] & \text{if type = "compressor"} \\ \left[ \left( P_3(i,z) - P_2(i,z) \right) + \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{a3}(i,z) - c_{a2}(i,z) \right) \right] & \text{if type = "turbine"} \end{aligned}
   \begin{vmatrix} q y_{rotor}(i,z) &= \frac{2\pi\,z}{Z_{rotor_i}} \cdot \\ \begin{bmatrix} \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left(w_{u2}(i,z) - w_{u1}(i,z)\right) \end{bmatrix} & \text{if type = "compressor"} \\ \left[ \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left(w_{u3}(i,z) - w_{u2}(i,z)\right) \right] & \text{if type = "turbine"} \\ \end{vmatrix} 
    | \text{qy}_{\text{stator}}(i,z) = -\frac{2\pi z}{Z_{\text{stator}_i}} \cdot \left[ \begin{bmatrix} \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{u3}(i,z) - c_{u2}(i,z) \right) \end{bmatrix} \text{ if type = "compressor"} \\ \left[ \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{u2}(i,z) - c_{u1}(i,z) \right) \right] \text{ if type = "turbine"} 
qy_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                           mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                         \bigcap \mathsf{lmean} \big( \mathsf{R}_{\mathsf{st}(i,1),1}, \mathsf{R}_{\mathsf{st}(i,2),1} \big) \text{ if type="turbine"} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             qy_{stator}(i,z1)\cdot(z1-z)dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       qx_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                             mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                                        \max(R_{st(i,1),1},R_{st(i,2),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        qx_{stator}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \left( \begin{array}{c} \operatorname{mean} \left( {{R_{st(i,1),N_r}},{R_{st(i,2),N_r}}} \right) & \text{if type="compressor"} \\ \operatorname{mean} \left( {{R_{st(i,2),N_r}},{R_{st(i,3),N_r}}} \right) & \text{if type="turbine"} \end{array} \right)
```

```
q_{rotor}(1, z) uz
shift_x_{rotor}(i, z) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   N<sub>rotor</sub>(i,z)
                                                                                                                                                          mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                                            mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        mean \left(R_{st(i,1),N_r}, R_{st(i,2),N_r}\right) if type="compressor"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           (qy_{rotor}(i,z)\cdot z) dz
shift_y_{rotor}(i, z) = z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  N_{rotor}(i,z) \cdot z^2
                                                                                                                                                                     mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                                                         mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
 x0_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(R,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,
 x0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T,submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big)
y0_{\text{rotor.}}(i,z) = \text{interp}\Big(\text{lspline}\Big(\text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T, \text{submatrix}\Big(y0_{\text{rotor.}}i,i,1,N_r\Big)^T\Big), \text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T, \text{submatrix}\Big(y0_{\text{rotor.}}i,i,1,N_r\Big)^T, \text{submatrix}\Big(R,\text{st}(i,2),\text{st}(i,2),1,N_r\Big)^T, 
y0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
\alpha_{major_{rotor.}(i,z)} = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right)
\alpha_{\text{major}_{\text{stator.}}(i,z)} = \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big) \Big)
Ju_{rotor.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T, submatrix \left( Ju
Ju_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Ju_
Jv_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T, su
Jv_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Jv_
CPx_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big)
CPx_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{stator},i,i,1,N_r\Big)^T
CPy_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big)
 CPy_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
 CPx_{rotor.axis}(i,z) = axis_{X} \Big( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \Big)
 CPx_{stator.axis}(i,z) = axis_{x} \left( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{stator.}(i,z), \alpha_{
 CPy_{rotor.axis}(i,z) = axis_{y} \left( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \right)
CPy_{stator.axis}(i,z) = axis_{v} \Big( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{major_{stator.}}(i,z), 1 \Big)
```

```
Wp_{rotor.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Wp_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Wp_{rotor}, i, i, 1, N_r \right)^T, submatrix \left( R, st(i,2), st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( R, st(i,2),
  Wp_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \left(qx_{rotor}(i,z1) \cdot CPy_{rotor.axis}(i,z1) - qy_{rotor}(i,z1) \cdot CPx_{rotor.axis}(i,z1)\right) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \left(qx_{stator}(i,z1)\cdot CPy_{stator.axis}(i,z1) - qy_{stator}(i,z1)\cdot CPx_{stator.axis}(i,z1)\right) dz1
  \varphi_{\text{uv}_{\text{rotor}}(i,z)} = \text{interp} \left[ \text{lspline} \left[ \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( \frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T \right] \right], \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( \frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T, \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{st}(i,2), \text
 \left| \phi_{\_} u v_{stator}(i,z) \right| = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, sub
  Mu_{rotor}(i,z) = axis_{x}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
  Mu_{stator}(i,z) = axis_{x}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
  Mv_{rotor}(i,z) = axis_{y}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
   Mv_{stator}(i,z) = axis_{v}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
```

10.01	10.01
P_1	ρ_1
P ₂	ρ_2
P ₃	ρ_3
c _{a1}	c_{u1}
c _{a2}	c_{u2}
c _{a3}	c_{u3}
qx _{rotor}	qx _{stator}
qy _{rotor}	qy _{stator}
Mx _{rotor}	Mx _{stator}
My _{rotor}	My _{stator}
shift_x _{rotor}	shift_y _{rotor}
x0 _{rotor} .	x0 _{stator} .
y0 _{rotor} .	y0 _{stator} .
α _major _{rotor} .	α _major _{stator} .
Ju _{rotor} .	Ju _{stator} .
Jv _{rotor} .	Jv _{stator} .
CPx _{rotor} .	CPx _{stator} .
CPy _{rotor} .	CPy _{stator} .
CPx _{rotor.axis}	CPx _{stator.axis}
CPy _{rotor.axis}	CPy _{stator.axis}
Wp _{rotor} .	Wp _{stator} .
Mτ _{rotor}	$M\tau_{stator}$
τ _{rotor}	$\tau_{ m stator}$
φ_uv _{rotor}	$\phi_{-}^{uv}_{stator}$
Mu _{rotor}	Mu _{stator}
Mv _{rotor}	Mv _{stator}
$\varphi_{\text{neutral}_{\text{rotor}}}$	φ_neutral _{stator}

$$\text{neutral_line(type, x, i, r)} = \begin{vmatrix} y0_{rotor_{i, r}} \\ \frac{y0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}} + \tan\left(\left(\alpha_{major_{rotor_{i, r}}} + \phi_{neutral_{rotor}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{rotor_{i, r}}}{\text{chord}_{rotor_{i, r}}}\right) \text{ if type} = "rotor"$$

$$\frac{y0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}} + \tan\left(\left(\alpha_{major_{stator_{i, r}}} + \phi_{neutral_{stator}}(i, R_{st(i, 2), r})\right)\right) \cdot \left(x - \frac{x0_{stator_{i, r}}}{\text{chord}_{stator_{i, r}}}\right) \text{ if type} = "stator"$$

$$\frac{y0_{rotor_{i, r}}}{\text{chord}_{stator_{i, r}}} + \frac{-1}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{major_{stator_{i, r}}})} = \frac{y0_{rotor_{i, r}}}{(x_{ma$$

$$\begin{aligned} & \text{epure(type,x,i,r)} = \boxed{\frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_\text{major}_{rotor_{i,r}} + \varphi_\text{neutral}_{rotor}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) \text{ if type = "rotor"} \\ & \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_\text{major}_{stator_{i,r}} + \varphi_\text{neutral}_{stator}\left(i,R_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) \text{ if type = "stator"} \end{aligned}$$

Наиболее удаленные точки от НЛ (мм):

		1	2	3	4	5	6	7	8	9
$\mathbf{u} \cdot \mathbf{u} \cdot \mathbf{T} =$	1	-1.888	-10.435	-8.761						
u_u _{rotor} =	2	-0.829	-0.813	-0.818						
	3	-0.658	-0.124	-0.126						

 $\cdot 10^{-3}$

		1	2	3	4	5	6	7	8	9
$\mathbf{v} \cdot 1 \mathbf{T} = 1$	1	-2.853	-12.645	-11.080						
'-rotor -	2	-1.407	-2.843	-2.453						
	3	-44.269	-1.572	-1.317						

 $\cdot 10^{-3}$

		1	2	3	4	5	6	7	8	9	
$u_u_{stator}^T =$	1	-0.048	-0.031	0.314							10^{-3}
-"stator	2	-0.436	-0.014	-0.026							
	3	-0.464	-0.412	-0.430							

		1	2	3	4	5	6	7	8	9	
\mathbf{v} \mathbf{u} \mathbf{T} =	1	0.872	1.159	1.080							10^{-3}
'-"stator -	2	1.549	1.891	1.824							
	3	2.307	2.694	2.631							

		1	2	3	4	5	6	7	8	9
$u_1 1 \dots T_{m-1} =$	1	19.302	19.261	19.278						
u_l _{stator} =	2	21.367	21.311	21.331						
	3	-14.041	23.088	23.114						

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} & \sigma_{-n}rotor \\ \sigma_{-Dstator}$$

$$\begin{pmatrix} \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} &$$

$$\sigma_{protor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & -35.55 & -2.18 & -1.74 & & & & & & \\ 2 & -44.51 & -7.98 & -7.67 & & & & & & \\ 3 & 0.00 & -0.14 & -0.39 & & & & & & & \end{bmatrix} \cdot 10^{6}$$

		1	2	3
$\sigma p_{rotor}^T \leq 70.10^6 =$	1	1	1	1
$\sigma_{protor} \leq 70.10^{\circ} =$	2	1	1	1
	3	1	1	1

		1	2	3	4	5	6	7	8	9	
$\sigma n_{\cdots} = T$	1	38.12	5.84	4.72							$\cdot 10^6$
$\sigma_{-n_{rotor}} =$	2	45.98	13.70	11.84							
	3	0.00	0.19	0.46							

		1	2	3	
$\sigma_{\text{rotor}}^{\text{T}} \le 70 \cdot 10^6 =$	1	1	1	1	
-rotor - / o ro	2	1	1	1	
	3	1	1	1	

		1	2	3	4	5	6	7	8	9	
$\sigma p_{\text{states}} = $	1	0.02	0.04	0.25							·10 ⁶
-Pstator -	2	38.44	2.31	4.02							10
	3	51.60	3.35	5.20							

		1	2	3	
$\sigma p_{\text{stator}} \leq 70.10^6 =$	1	1	1	1	
$\sigma_{\text{pstator}} \leq 70.10^{\circ} =$	2	1	1	1	
	3	1	1	1	

		1	2	3	4	5	6	7	8	9	
$\sigma n_{-+-+-} =$	1	-0.03	-0.09	-0.53							$\cdot 10^6$
$\sigma_{n_{stator}} =$	2	-38.36	-3.85	-6.05							
	3	-41.88	-4.48	-6.22							

		1	2	3	
$\sigma n_{\text{stater}} \leq 70 \cdot 10^6 =$	1	1	1	1	
$\sigma_{\text{nstator}} \leq /0.10 =$	2	1	1	1	
	3	1	1	1	

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1 ... Z \\ \text{for } r \in 1 ... N_r \\ \\ \sigma_{rotor_{i,r}} = \sqrt{\left(\sigma_{-}z_{rotor}(i, R_{st(i,2),r}) + \max\left(\sigma_{-}p_{rotor_{i,r}}, \sigma_{-}n_{rotor_{i,r}}\right)\right)^2 + \tau_{rotor}(i, R_{st(i,2),r})^2} \\ \\ \sigma_{stator_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{-}p_{stator_{i,r}}, \sigma_{-}n_{stator_{i,r}}\right)\right)^2 + \tau_{stator}(i, R_{st(i,2),r})^2} \\ \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator.}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor.}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator.}, i, i, 1, N_r$$

 $\cdot 10^6$

		1	2	3	4	5	6	7	8	9
$\sigma_{\cdots} = T$	1	82.45	50.69	49.65						
orotor –	2	79.36	49.31	49.03						
	3	0.00	3.74	6.95						

		1	2	3	4	5	6	7	8	9
σ_{-4}	1	0.02	0.04	0.26						
$\sigma_{\rm stator} =$	2	38.44	2.31	4.02						
	3	51.60	3.35	5.20						

 $\cdot 10^6$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix} = \begin{vmatrix} for \ i \in 1...Z \\ for \ r \in 1...N_r \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{rotor} \\ \vdots, r \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{rotor}} & \text{if } \sigma_{rotor} \\ \infty & \text{otherwise} \end{vmatrix}$$

$$safety_{stator} \\ \vdots, r \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{stator}} & \text{if } \sigma_{stator} \\ \vdots, r \end{vmatrix} \neq 0$$

$$otherwise$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

$$otherwise$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

		1	2	3	4	5	6	
safety _{rotor} $\stackrel{T}{=}$	1	2.55	4.14	4.23				
saicty rotor –	2	2.65	4.26	4.28				
	3	000000000000000000000000000000000000000	56.22	30.22				

		1	2	3
$safety_{rotor}^{T} \ge safety =$	1	1	1	1
rotor = saresy	2	1	1	1
	3	1	1	1

		1	2	3	4	5
$safety_{stator}^{T} =$	1	11543.03	4999.05	814.47		
stator	2	5.46	91.01	52.18		
	3	4.07	62.74	40.4		

		1	2	3
$safety_{stator}^{T} \ge safety =$	1	1	1	1
stator – surety	2	1	1	1
	3	1	1	1

Рассматриваемая ступень:

$$j_w = \begin{vmatrix} j = 1 & \text{if type} = \text{"compressor"} \\ Z & \text{if type} = \text{"turbine"} \end{vmatrix}$$
 $j = \begin{vmatrix} \text{"Такой ступени не существует!"} & \text{if } (j < 1) \lor (j > Z) \\ j & \text{otherwise} \end{vmatrix}$

$$\mathbf{b_{iinn}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 90 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 383.4 & 452.0 & 511.4 \\ 2 & 384.9 & 452.6 & 511.4 \\ 3 & 386.3 & 453.2 & 511.4 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = \min(Rj), \min(Rj) + \frac{\max(Rj) - \min(Rj)}{100} ... \max(Rj)$$

$$z_{rotor} = \begin{bmatrix} mean(Rj_{1,1},Rj_{2,1}), mean(Rj_{1,1},Rj_{2,1}) + \frac{mean(Rj_{1,N_r},Rj_{2,N_r}) - mean(Rj_{1,1},Rj_{2,1})}{100} ... mean(Rj_{1,N_r},Rj_{2,N_r}) & \text{if type = "compressor"} \\ mean(Rj_{2,1},Rj_{3,1}), mean(Rj_{2,1},Rj_{3,1}) + \frac{mean(Rj_{2,N_r},Rj_{3,N_r}) - mean(Rj_{2,1},Rj_{3,1})}{100} ... mean(Rj_{2,N_r},Rj_{3,N_r}) & \text{if type = "turbine"} \\ \end{bmatrix}$$

▼ Результаты расчета на прочность Л

$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "rotor" \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.89 & 3.09 \\ 2 & 33.99 & -2.85 \\ 3 & -0.05 & 0.87 \\ 4 & 19.30 & -1.37 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -36 & 0 \\ 38 & -0 \end{pmatrix} \cdot 10^{6}$$

Эквивалентные напряжения (Па):

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 0 \\ 82 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 2.547

$$\begin{pmatrix} v_-p \\ v_-l \\ v_-l$$

$$\begin{pmatrix} \text{blade} \\ \text{max} \\ \text{c} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.83 & 1.42 \\ 2 & 39.51 & -1.41 \\ 3 & -0.44 & 1.55 \\ 4 & 21.37 & -1.53 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j,r}} & \sigma_{-}p_{stator_{j,r}} \\ \sigma_{-}n_{rotor_{j,r}} & \sigma_{-}n_{stator_{j,r}} \end{pmatrix} = \begin{pmatrix} -45 & 38 \\ 46 & -38 \end{pmatrix} \cdot 10^{6}$$

Эквивалентные напряжения (Па):

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 38 \\ 79 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 5.462 \\ 2 \\ 2.646 \end{bmatrix}$$

$$\begin{pmatrix} \text{blade} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.83 & 1.42 \\ 2 & 39.51 & -1.41 \\ 3 & -0.44 & 1.55 \\ 4 & 21.37 & -1.53 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j,r}} & \sigma_{-}p_{stator_{j,r}} \\ \sigma_{-}n_{rotor_{j,r}} & \sigma_{-}n_{stator_{j,r}} \end{pmatrix} = \begin{pmatrix} -45 & 38 \\ 46 & -38 \end{pmatrix} \cdot 10^{6}$$

Эквивалентные напряжения (Па):

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 38 \\ 79 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 5.462 \\ 2 \\ 2.646 \end{bmatrix}$$

$$\begin{pmatrix} \text{blade} \\ \text{max} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 3 \end{pmatrix}$$

 $u_l stator_{j,r} v_l stator_{j,r}$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.66 & 36.46 \\ 2 & -0.90 & -44.27 \\ 3 & -0.46 & 2.31 \\ 4 & 14.04 & 1.00 \\ \end{pmatrix}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} 0 & 52 \\ 0 & -42 \end{pmatrix} \cdot 10^{6}$$

Эквивалентные напряжения (Па):

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 52 \\ 0 \end{pmatrix} \cdot 10^{6}$$

-0.46

-14.04

2.31

$$\begin{pmatrix} v_{-}v_{\text{rotor}_{j,r}} \\ v_{-}l_{\text{rotor}_{j,r}} \end{pmatrix} \text{ if blade = "rotor"} = \begin{bmatrix} \frac{1}{1 & 2.307} \\ 2 & -1.896 \end{bmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.896 \end{pmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{0} \\ v_{0} \\ 2 & -1.89$$

 Вывод результатов расчета Л на прочность

▼ Выбор материала Д

Запас по температуре (K): $\Delta T_{\text{safety}} = 0$

Выбранный материал Д: material_disk $_i$ = "BT23" if compressor = "Вл" "ВТ6" if compressor = "КНД" "ВТ9" if compressor = "КВД"

Плотность материала Д (кг/м^3):

Предел длительной прочности Д (Па):

 $\begin{array}{lll} \rho_{disk_i} = & 8266 & if \; material_{disk_i} = "BK175" \\ 8320 & if \; material_{disk_i} = "3\Pi742" \\ 8393 & if \; material_{disk_i} = "KC-6K" \\ 7900 & if \; material_{disk_i} = "BT41" \\ 4500 & if \; material_{disk_i} = "BT25" \\ 4570 & if \; material_{disk_i} = "BT23" \\ 4510 & if \; material_{disk_i} = "BT9" \\ 4430 & if \; material_{disk_i} = "BT6" \\ NaN & otherwise \\ \end{array}$

 $\sigma_{disk_long_i} = 10^6 \cdot \begin{bmatrix} 620 \text{ if material_disk}_i = "B\%175" \\ 680 \text{ if material_disk}_i = "ЭП742" \\ 125 \text{ if material_disk}_i = "ЖС-6К" \\ 123 \text{ if material_disk}_i = "BT41" \\ 150 \text{ if material_disk}_i = "BT25" \\ 230 \text{ if material_disk}_i = "BT23" \\ 200 \text{ if material_disk}_i = "BT9" \\ 210 \text{ if material_disk}_i = "BT6" \\ NaN \text{ otherwise} \\ \end{bmatrix}$

$$\sigma_{\text{disk_long}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 210 & 210 & 210 \end{bmatrix} \cdot 10^{6}$$

Рассматриваемая ступень:
$$j = 1$$

$$j_w = \begin{vmatrix} j = 1 \\ j = \end{vmatrix}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{pmatrix} \frac{\rho_{-} \text{disk}_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-} z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \left[\left(R_{st(i,2),ORIGIN}\right)^{2} - z^{2} \right] \\ \text{if } z \leq R_{st(i,2),ORIGIN} \end{pmatrix}$$

$$z = 0, \frac{R_{st(j,2), ORIGIN}}{N_{dis}} .. R_{st(j,2), ORIGIN}$$

Мах разница теор. напора ступени и реактивности от периферии к корню по высоте Л (Дж/кг) [16, с.118-119]:

$$\Delta H_{Tmax} = 0.10^{3}$$
$$\Delta R_{Lmax} = 0.0$$

$$\Delta H_{T}(\overline{d}) = -\Delta H_{Tmax} \cdot \overline{d} + \Delta H_{Tmax}$$

$$\Delta R_{L}(\overline{d}) = -\Delta R_{Lmax} \cdot \overline{d} + \Delta R_{Lmax}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 83.44 \\ 146.22 \\ 87.07 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 90.00 \\ 31.91 \\ 54.79 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{stator}_{j,r}} = 19.79^{\circ}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 83.44 \\ 77.29 \\ 71.14 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 212.81 \\ 213.62 \\ 214.42 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 228.58 \\ 118.25 \\ 178.97 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 21.41 \\ 40.81 \\ 23.42 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{rotor}_{j,r}} = 19.4^{\circ}$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 83.44 \\ 130.83 \\ 83.02 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 90 \\ 36.21 \\ 58.97 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{stator}_{j,r}} = 19.83^{\circ}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 83.44 \\ 77.29 \\ 71.14 \end{pmatrix}$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 250.84 \\ 251.18 \\ 251.52 \end{pmatrix}$$

$$\begin{pmatrix} w_{st(j,1),r} \\ w_{st(j,2),r} \\ w_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 264.35 \\ 164.86 \\ 220.52 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 18.4 \\ 27.96 \\ 18.82 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{rotor}_{j,r}} = 9.56 \cdot \circ$$

$$\begin{pmatrix} c_{st(j,1),r} \\ c_{st(j,2),r} \\ c_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 83.44 \\ 121.25 \\ 80.62 \end{pmatrix}$$

$$\begin{pmatrix} c_{a_{st(j,1),r}} \\ c_{a_{st(j,2),r}} \\ c_{a_{st(j,3),r}} \end{pmatrix} = \begin{pmatrix} 83.44 \\ 77.29 \\ 71.14 \end{pmatrix}$$

$$\begin{pmatrix} W_{st(j,1),r} \\ W_{st(j,2),r} \\ W_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 295.83 \\ 205.48 \\ 255.98 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_{st(j,1),r} \\ \alpha_{st(j,2),r} \\ \alpha_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 90 \\ 39.6 \\ 61.94 \end{pmatrix}.$$

$$\begin{pmatrix} u_{st(j,1),r} \\ u_{st(j,2),r} \\ u_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 283.81 \\ 283.81 \\ 283.81 \end{pmatrix}$$

$$\begin{pmatrix} \beta_{st(j,1),r} \\ \beta_{st(j,2),r} \\ \beta_{st(j,3),r} \end{pmatrix} = \begin{pmatrix} 16.38 \\ 22.1 \\ 16.14 \end{pmatrix} \cdot \circ$$

$$\varepsilon_{\text{stator}_{j,r}} = 19.57^{\circ}$$

$$\varepsilon_{\text{rotor}_{j,r}} = 5.71^{\circ}$$

7	8	9