PSAS Nosecone Separation Ring

Miles Atherly, Ben Butler, Andrew Eads, Jason Hamilton, Brian Happ, Alin Resiga

Adviser: David Turcic

Why This Project is Awesome

- One of only two entirely electromechanical NSR devices in existence (to our knowledge)
- This will be the only electro-mechanical NSR device in use by an amatuer rocket club
- Significant challenges in both design and manufacturing
- Used many facets of engineering to complete the project

Overview

Project Details

Prototyping

Design Challenges

Manufacturing

Design Process

Conclusions

Nosecone Separation

- Deploys parachute
- Previous NSR used cyanoacrylate as an adhesive and gunpowder as the actuator
 - Very difficult to test for reliability
- Failure destroys rocket

Inspiration

Marmon Clamp

LightbandTM

Design Challenges

- Entire device must fit inside 6" diameter ring
- Needs to be fast and be robust
- Torque / power requirements
- Isolation of components to avoid axial loading of motor

Final Solid Model

Analysis Based Design

- Used mathematical modeling, FEA, and real world testing on components under high stress loads
- Used statics, dynamics, vibrations, machine design and CAD software to assist in the design of moving parts and support structure

V-Band Optimization

Castiglianos analysis for beam deflection on flex band:

$$M = F \cdot R \cdot \cos(\theta)$$

$$F_{\theta} = F \cdot \cos(\theta)$$

$$F_r = F \cdot \sin(\theta)$$

$$\frac{dF_{\theta}}{dF} = \cos(\theta)$$

$$\frac{dF_r}{dF} = \sin(\theta)$$

$$\frac{dM}{dE} = R \cdot \cos(\theta)$$

$$\frac{dM \cdot F_{\theta}}{dF} = 2 \cdot F \cdot R \cdot \cos^2(\theta)$$

$$U_1 = \begin{bmatrix} \frac{M^2}{2 \cdot A \cdot e \cdot E} d\theta & U_2 = \end{bmatrix} = \frac{F_{\theta}^2 \cdot R_{curve}}{2 \cdot A \cdot E}$$

$$U_3 = \left[\begin{array}{cc} \frac{M \cdot F_{\theta}}{A \cdot E} d\theta & \qquad U_4 = \left[\begin{array}{cc} \frac{C_c \cdot F_r^2 \cdot R_{curve}}{2 \cdot A \cdot G_{al}} d\theta \end{array} \right. \right.$$

because R/h >10, eccentricity does not apply. U1 is then estimated as:
$$U_1 = \begin{bmatrix} \frac{M^2 \cdot R_{curv}}{2 \cdot E \cdot I_{y.cham}} \end{bmatrix}$$

Assumptions:

Material is aluminum T-6061:

$$R_{\text{curve}} = \frac{5.21}{2} \text{in} = 2.605 \cdot \text{in}$$
 $A_{\text{beam}} = 2.15 \text{in} \cdot 19 \text{in} = 3.677 \times 10^{-5} \text{ m}^2$

$$e_c = R - r_e$$

eccentricity term (not used, see above)

Disp := 0.4346in

$$I_{y,channel} = \frac{1}{3} \left[2 \cdot s_{channel} \cdot b_{channel} \cdot b_{channel}$$

Ichannel = 0.37in

d_{channel} := 2-y_{channel} = 0.511-in

$$g_{channel} := \frac{h_{channel} - l_{channel}}{2(b_{channel} - t_{channel})} = 0.25$$

$$I_{y,channel} := \frac{1}{3} \cdot \left[2 \cdot s_{channel} \cdot b_{channel} \cdot b_{channel} \cdot t_{channel} \cdot t_{channel} \cdot t_{channel} \cdot t_{channel} \cdot t_{channel} \cdot \left(b_{channel} \cdot t_{channel} \cdot t_{ch$$

$$U_{tot} = U_1 + U_2 + U_3 + U_4$$

$$U_{tot} = U_1 + U_2 + U_3 + U_4$$
 from castiglianos: Disp = $\frac{\delta U_{tot}}{\delta F}$

$$Disp = \left[- \frac{M \cdot R_{curve}}{2 \cdot E \cdot I_{y,channel}} \left(\frac{dM}{dF} \right) d\theta + \int_{-}^{}^{}^{} \frac{F_{\theta} \cdot R}{A \cdot E} \left(\frac{dF_{\theta}}{dF} \right) d\theta + \int_{-}^{}^{}^{} \frac{1}{A \cdot E} \cdot \left(\frac{d \left(M \cdot F_{\theta} \right)}{dF} \right) d\theta + \int_{-}^{}^{}^{} \frac{C_{c} \cdot F_{r} \cdot R}{A \cdot G} \cdot \left(\frac{d \cdot F_{r}}{dF} \right) d\theta \right] d\theta + \int_{-}^{}^{}^{} \frac{1}{A \cdot E} \cdot \left(\frac{d \cdot F_{\theta}}{dF} \right) d\theta + \int_{-}^{}^{}^{} \frac{C_{c} \cdot F_{r} \cdot R}{A \cdot G} \cdot \left(\frac{d \cdot F_{\theta}}{dF} \right) d\theta$$

$$Disp = \frac{F \cdot R^3}{2 \cdot E \cdot I_y.channel} \cdot \int_{25.37}^{180} \cos^2(\theta) \ d\theta + \frac{F \cdot R}{A \cdot E} \cdot \int_{25.37}^{180} \cos^2(\theta) \ d\theta + \frac{2 \cdot F \cdot R}{A \cdot E} \cdot \int_{25.37}^{180} \cos^2(\theta) \ d\theta + \frac{F \cdot R}{A \cdot G} \cdot \int_{25.37}^{180} \sin^2(\theta) \ d\theta$$

Solving integral term:
$$\int_{25.37}^{180} \cos^2(\theta) \, d\theta = 77.4405 \qquad \int_{25.37}^{180} \sin^2(\theta) \, d\theta = 77.1895$$

$$Disp = 77.4405 \cdot \left(\frac{F \cdot R^3}{2 \cdot E \cdot I_{y.channel}} + \frac{F \cdot R}{A \cdot E} + \frac{2 \cdot F \cdot R}{A \cdot E} \right) + 77.1895 \cdot \left(\frac{F \cdot R}{A \cdot G} \right)$$

factor out F from all terms, solve for F with known displacement

$$Disp = F \cdot \left[77.4405 \cdot \left(\frac{R^3}{2 \cdot E \cdot I_{V, channel}} + \frac{R}{A \cdot E} + \frac{2 \cdot R}{A \cdot E} \right) + 77.1895 \cdot \left(\frac{R}{A \cdot G} \right) \right]$$

$$F_{1} := \frac{Disp}{\left[77.4405 \cdot \left(\frac{R_{curve}}{2 \cdot E \cdot I_{y,channel}} + \frac{R_{curve}}{A_{beam} \cdot E} + \frac{2 \cdot R_{curve}}{A_{beam} \cdot E}\right) + 77.1895 \cdot \left(\frac{C_{c} \cdot R_{curve}}{A_{beam} \cdot G_{al}}\right)\right]} = 34.908 \cdot N$$

Model	Stress (psi)		Force Predicted (lbf)		
Mathematical (Original)	NA		18.2		
Mathematical (Optimized)	NA		15.68		
Experimental		37520	20.6		
FEA (Original)		36980	20.6		
FEA (optimized)		22866	16		

Design of Dynamic Action

- Model using rigid body kinematics
- End point (A) is equal to distance traveled by (B) plus rotation about part center

Linear Motion Constraint

- Linear motion obtained using Guide rail and Power screw
- Guide rail assembly eliminates most friction and has 300 lbf dynamic load capacity
- Used needle thrust bearings to prevent transmission of axial load to motor

Power Requirements

 $F_{band} = 0:10$

$$\theta_{arm} = 25.37^{\circ}:75^{\circ}$$

$$F_{arm} = \frac{F_{band}}{\sin(\theta_{arm})}$$

$$F_{sled} = \frac{F_{arm}}{\cos(\theta_{arm})}$$

Power screw linear force translation:

Governing equation:

$$T_{R} = \frac{F_{axial} \cdot d_{m}}{2} \cdot \left[\frac{\left(P + \pi \cdot f_{thr} \cdot d_{m} \cdot sec(\alpha)\right)}{\left[\pi \cdot \left(d_{m} - f_{thr}\right) \cdot P \cdot sec(\alpha)\right]} \right] + \frac{F_{axial} \cdot f_{c} \cdot d_{c}}{2}$$

Axial force is taken as F1 from castiglianos beam deflection analysis multiplied by the cosine of the angle the force is being applied at (0 force is translated to the threads when the relative motion arms are perpendicular to the power screw, worst case scenario is that both arms are at 45 degree angle to the sled):

$$F_{axia1} := 2.68.5731bf \cdot sin(45deg) = 96.977.1bf$$

Power screw properties:

Assuming a 3/8x16 ball thread powerscrew for linear torque transmission:

$$dm = d - \frac{P}{2}$$
 $P := \frac{1}{16}in$ $\alpha := 30deg$

$$d_{\mathbf{m}} := \frac{1}{4}i\mathbf{n} - \frac{\mathbf{P}}{2} = 0.219 \cdot i\mathbf{n}$$

 $f_{thr} := 0.2$ conservative assumption for unlubricated threads

Assume no collar is present (power screw interfaces directly with drive-nut attached to sled:

$$T_{R} := \frac{F_{axia1} \cdot d_{m}}{2} \cdot \left[\frac{\left(P + \pi \cdot f_{thr} \cdot d_{m} \cdot \sec(\alpha)\right)}{\left(\left(\pi \cdot d_{m} - f_{thr} \cdot P \cdot \sec(\alpha)\right)\right)} \right] = 3.487 \cdot lbf \cdot in$$

Motor Selection

	А	В	С	D	Е	F	G	Н	I
1	Requirements:								
2			mNm	lbf in					
3		T (ideal)	565	5				1.97	
4		T (min)	249	2.2					
5									
6		RPM (min)	2000						
7		RPM (ideal)	5000+						
8									
9	Comparison:								
10									
11	Vendor	Part#	Dia (mm)	Length (mm)	length (in)	Voltage (V)	Power (W)	Stall Torque (mN*m)	no load speed
12	Maxon	226785	29	44.7	1.788	12	22	299	9350
13	Maxon	448595	30	68	2.72	12	15	342	2870
14	Micromo	3257G012CR	32	57	2.28	12		547	5400
15	Micromo	2657W012CR	26	57	2.28	12		286	6400
16	Micromo	2657W012CXR	26	57	2.28	12		3.7	5800
17	Pittman	14205 (DC054B-{	52	113	4.524248	12	58	1485	2990
18	Pittman	9237 (DC040B-6)	40	85		12	34	461	5210
19	Pittman	9236 (DC040B-5)	40	78	3.101848	12	26	387	4730
20	Pittman	14201 (DC054B-1	52	75	3.000248	12	24	431	4140
21	AndyMark	9015	25	57	2.27584	12	180	428	16000
22	BanBots	RS-550	39	57	2.27584	12	180	498	19300

stall torque = 498 mNm

speed = 19300 RPM (no load)

dimensions fit nominal for direct drive

total cost: \$7.00 (does not include shipping and handling)

Electrical System (Prototype)

- Motor controlled by PWM via Arduino equipped with 30A H Bridge
- Push button operation (for display)
- Limit switches used as fore and aft stops
- Proprietary control board which interfaces with flight computer will be developed for use in LV3 vehicle

How to Incorporate it All?

Design Notes

- All parts designed with ½" or ¼" tooling in mind (where allowable) for manufacturing
- Linear actuator parts must hold tight tolerancing to eliminate unwanted play.
 This was achieved by sizing and cutting the parts to each other
- Custom couplers and pins were manufactured due to space constraints

Prototyping: Coupling Rings

V-Band

Carriage

Arms

Journal

Baseplate

Machining

V-Band

- Used 2-axis CNC to mill OD
- Turned 20deg clamping surface with custom tool
- Cut ID and relief cut with 2-axis

Large and Small Rings

- Used Mastercam to define tool paths and write G code.
- Machined using 3-axis Haas mill
- Started with solid aluminum stock

Challenges:

- 20 deg chamfer to interface with v-band
- 1/8" fillet
- Flipped part over several times

Baseplate

- Machined on 3-axis Haas from 1/2" plate
- Significant challenges in fixturing
- 1/8" and .110" channels

Fatigue

- PDS Requirement: Mechanical failure of less than 1%.
- 24 kpsi is maximum stress on the system.
- Fatigue analysis shows V-band could be actuated 44,000 times.

Conclusions

- Mechanical components are rocket ready
- Design can withstand a 250 lbf tensile load required by PDS
- Actuates in ~63 milliseconds
- Needs more robust electrical system

Questions?

