Linear Regression Contd.

Gradient descent approach

Training set of housing prices (Portland):

	Size	Price
0	2104	399900
1	1600	329900
2	2400	369000
3	1416	232000
4	3000	539900

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i 's: Parameters

How to choose θ_i 's?

Hypothesis: $h_y(x) = \theta_0 + \theta_1 x$ Parameters: θ_0, θ_1

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_q(x^{(i)}) - y^{(p)})^2$$

Goal: $\min_{\theta_1 \beta_1} J(\theta_0, \theta_1)$

Hypothesis: $h_y(x) = \theta_1 x$ Parameters: θ_1

Cost function : $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_v(x^{(i)}) - y^{(j)} \right)^2$ Goal : $\min_{\theta_1} J(\theta_1)$

Have some function $J(\theta_0, \theta_1)$ Want $\min_{\theta_1} J(\theta_0, \theta_1)$ - Start with some θ_0, θ_1 - Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum.

Gradient Descent Algorithm repeat until convergence {

$$\theta_{j}s = \theta_{j} - \frac{\partial}{I}J(\theta_{0}, \theta_{1})$$

(simultaneous update j = 0 and j = 1)

Two Variable Model

Gradient Descent Algorithm repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J\left(\theta_0, \theta_1\right)$ (for j = 0 and j = 1) 1

Linear Regression Model

$$h_0(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{h=1}^{m} (h_0(x^{(i)}) - y^{(i)})^2$$

Or θ_0^{old}