UNIVERSIDAD CENTROAMERICANA "JOSÉ SIMEÓN CAÑAS"

Facultad de Ingeniería y Arquitectura Departamento de Electrónica e Informática

Técnicas de simulación en computadoras - Ciclo 01/2024

Tarea: Segunda tarea práctica grupal

Docente:

Jorge Alfredo López Sorto

Integrantes:

Orellana Vividor, Gerardo André	00053520
Rodríguez Rodríguez, David Neftalí	00218621
Zacatales López, César Adonay	00223021
Alas Moscoso, Noé Bladimir	00262020

Sección: 01

Antiguo Cuscatlán, lunes 10 de junio de 2024

Grupo 10

Pertagono de lado 20

1) Localización: Mallado, tabla de conectividades y tabla de coordenadas de nodos.

Tabla de coordenadas de nodos

Nodo	do × Y	
1	-23,28	-13.66
2	-19.36	-13.66
3	-24.49	-9.93
4	_18. 34	-9.21
5	_15.44	-13.66
6	-25.71	-6.21
7	-21.41	-5.29
8	-13.09	- 8.81
9	_11.52	-13.66
10	-26.92	-2.48
11	-16.2	-3.89

Nodo	×	Y
12	_19.97	-2.04
13	_10.31	-9.94
14	-23.75	-0.18
15	_11.66	-4.34
16	_16.80	0.27
17	-9.10	-6.21
78	-20.58	2.13
19	-11.06	-0.18
20	-14.23	2.13
2 1	-7.89	-2.48
22	-17.40	4.43

Tabla de conectividades.

Elevento	1	2	3
1	22	18	16
2	6	3	7
3	5	٦	16 7 8
4	21	19	15
2 3 4 5 6	21	19 6	7
6	1	2	3 8 9
	13	17	8
8	13	8	9
4	20	22	16 19
10	20	2 2 1 6 1 4 4	79
11	18	14	12 7 14
12	3	4	7
13	10	6	14
14	2	Ŋ	4
15	17	21	15
13 14 15 16	17 16 16	15 18 12	8
17	16	18	12
18	16	12	11
19	15 12	19	11 7
20	12	14	
21	4	5	8
22	4 16	19 14 5 8 11	11
23 24 25 26	16	11	19
24	2	4	3
25	11	12	7
	15	11	8
21	7	4	11

$$\begin{array}{c}
(0,1) \\
\hline
3 \\
N_1 = 1 - \epsilon - \eta \\
N_2 = \epsilon \\
N_3 = \eta
\end{array}$$

$$NP = \begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

$$A = N_1(0,0) = 7 - 0 - 0 = 1$$

$$A = N_1(0,0) = 7 - 0 - 0 = 1$$

$$A = N_1(0,0) = 7 - 0 - 0 = 1$$

$$N_2(0,0) = 0$$

$$N_3(0,0) = 0$$

$$N_3(1,0) = 0$$

$$N_3(0,1) = 0$$

$$N_3(0,1) = 0$$

$$N_3(0,1) = 1$$

$$\begin{split} & N_{1A} P_1 + N_{2A} P_2 + N_{3A} P_3 - (1) P_1 + (2) P_2 + (2) P_3 = P_1 \\ & N_{1B} P_1 + N_{2B} P_2^+ N_{3B} P_3^- - (2) P_1^+ + (1) P_2 + (2) P_3^- = P_2 \\ & N_{1C} P_1 + N_{2C} P_2^+ N_{3C} P_3^- - (2) P_1^- + (2) P_2^- + (1) P_3^- = P_3 \end{split}$$

2) Interpolación.

$$- \eta^3 \nabla (\epsilon^2 \nabla P) \approx \eta + \epsilon^3$$

$$\mathcal{R} = \eta + \epsilon^2 + \eta^3 \nabla (\epsilon^2 \nabla N^2)$$

5) Método de Galerkin

$$\left(\int_{A}^{1} (\eta + \epsilon^{3} + \eta^{3} \nabla (\epsilon^{2} \nabla N) \partial A P = 0 \right)$$

$$\left(\int_{A}^{1} (\eta^{3} \nabla (\epsilon^{2} \nabla N) \partial A P = 0 \right)$$

$$-\left(\int_{A}^{1} (\eta^{3} \nabla (\epsilon^{2} \nabla N) \partial A P = 0 \right)$$

$$-\left(\int_{A}^{1} (\eta^{3} \nabla (\epsilon^{2} \nabla N) \partial A P = 0 \right)$$

$$-\left(\int_{A}^{1} (\eta^{3} \nabla (\epsilon^{2} \nabla N) \partial A P = 0 \right)$$

$$-\int_{A} N^{\dagger} (\eta^{3} \nabla (\epsilon^{2} \nabla N) dA P) = \int_{A} N^{\dagger} \eta dA + \int_{A} N^{\dagger} \epsilon^{3}$$

$$-\int_{A} \Delta do \quad \text{Jerecho}$$

Resolución de A
$$\int_{A}^{N^{\dagger}} \eta \, dA \longrightarrow \int_{a}^{\infty} \int_{a}^{\infty} \left[1 - \epsilon - \eta \right] \eta \, d\epsilon \, d\eta$$

Integral interna
$$\begin{bmatrix}
1 - \epsilon - n \\
\epsilon \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\eta
\end{bmatrix}$$

Integral interna
$$\begin{bmatrix}
1 - \epsilon - n \\
\epsilon \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\epsilon \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
1 - \epsilon - n \\
\epsilon \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
-n \\
\epsilon \\
\eta
\end{bmatrix}$$

$$\begin{bmatrix}
-n \\
\epsilon \\
\xi
\end{bmatrix}$$

$$\begin{bmatrix}
-n \\
\xi
\end{bmatrix}$$

Integral interna
$$\begin{pmatrix}
-\eta & \eta & -\varepsilon & \eta & -\eta^{2} \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{bmatrix}
\varepsilon & (\eta - \eta^{2}) & \varepsilon^{2} & -\eta \\
0 & 0 & 0
\end{bmatrix}$$

Integral interna
$$\begin{pmatrix}
-1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{pmatrix}$$

 $\begin{bmatrix}
\frac{1-\eta}{\eta} \begin{bmatrix} \eta - \epsilon \eta - \eta^{2} \\ \epsilon \eta \\ \eta^{2} \end{bmatrix} d\epsilon = \begin{bmatrix}
\frac{\epsilon}{\xi} (\eta - \eta^{2}) - \frac{\epsilon^{2} - \eta}{2} \\ \frac{\epsilon^{2}}{2} \end{bmatrix} = \begin{bmatrix}
\frac{\eta (\eta - \eta)^{2}}{2} \\ \frac{(\eta - 1)^{2}}{2} \end{bmatrix}$

$$\int_{0}^{1} \left[\frac{\eta (\eta - \eta)^{2}}{2} \right] d\eta = \begin{bmatrix} \frac{\eta^{2} (3 \eta^{2} - 8 \eta + 6)}{2 4} \\ \frac{(\eta - \eta)^{3}}{6} \\ -\eta^{2} (\eta - \eta) \end{bmatrix} = \begin{bmatrix} \frac{1}{24} \\ \frac{(\eta - \eta)^{3}}{6} \\ -\frac{\eta^{3} (3 \eta - 4)}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{24} \\ \frac{1}{6} \\ \frac{1}{12} \end{bmatrix}$$

$$\int_{0}^{2} \left[-\eta^{2}(\eta-1)\right] \left[-\frac{\eta^{3}(3\eta-4)}{12}\right]$$
Resolvation de B
$$\left[\Lambda^{\dagger} \epsilon^{3} + \Lambda^{2} - \left(\frac{\eta^{2}}{\eta^{2}}\right)\right]$$

Resolvation de B
$$\begin{cases}
N^{+} \epsilon^{3} dA = \begin{cases}
7 & 1 - \epsilon - \eta \\ \epsilon & \eta
\end{cases}$$

$$\begin{cases}
N^{+} \epsilon^{3} dA = \begin{cases}
7 & 1 - \epsilon - \eta \\ \epsilon & \eta
\end{cases}$$

Integral Interna
$$\int_{0}^{1-\eta} \begin{bmatrix} e^{3} - e^{4} - e^{3} \eta \\ e^{3} \eta \end{bmatrix} de = \begin{bmatrix} \frac{-e^{5}}{5} - \frac{e^{4}(\eta - 1)}{4} \end{bmatrix} \begin{bmatrix} 1-\eta & -(\eta - 1)^{5} \\ \frac{-(\eta - 1)^{5}}{5} \end{bmatrix} = \frac{-(\eta - 1)^{5}}{20}$$

$$\frac{e^{3} \eta}{6} = \frac{e^{3} \eta}{6} = \frac{e^{4} \eta}{4} = \frac{e^{4}$$

Integral externa
$$\left(1 \left[\frac{-(n-1)^5}{20} \right]
\right)$$

$$\begin{bmatrix}
-\frac{(\eta - 1)^{3}}{20} \\
-\frac{(\eta - 1)^{5}}{5} \\
-\frac{(\eta - 1)^{6}}{30}
\end{bmatrix} = \begin{bmatrix}
-\frac{(\eta - 1)^{6}}{30} \\
-\frac{(\eta - 1)^{6}}{30} \\
-\frac{\eta^{2} (5 \eta^{4} - 24 \eta^{3} + 45 \eta^{2} - 40 \eta + 15)}{120}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{120} \\
-\frac{1}{120}
\end{bmatrix}$$

$$b = J \left(\frac{1}{24} \right) + \left(\frac{1}{120} \right) = J \left(\frac{3}{40} \right)$$

$$\left(\frac{1}{12} \right) \left(\frac{1}{120} \right) = J \left(\frac{3}{40} \right)$$

$$\left(\frac{1}{12} \right) \left(\frac{1}{120} \right) = J \left(\frac{3}{40} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = J \left(\frac{3}{40} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{1}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{3}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{3}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{3}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{3}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{1}{120} \right) \left(\frac{3}{120} \right) = J \left(\frac{3}{120} \right)$$

$$\left(\frac{3}{120$$

$$\left(-\int N^{1} \nabla \eta^{3} \epsilon^{2} (\nabla N) dA\right) P \qquad \qquad U = N^{\dagger} \qquad V = \nabla \eta^{3} \epsilon^{2} \nabla N$$

$$dU = \nabla N^{\dagger} \qquad dv = \eta^{3} \epsilon^{2} \nabla N$$

 $\nabla N = \begin{bmatrix} \delta \\ \delta \epsilon \\ \delta \end{bmatrix} \begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix}$

Continuación en siguiente Pagina.

Resolución de integral de k

 $\sqrt{N-J^{-1}} \left| \frac{\delta}{\delta \epsilon} \right| \left[1 - \epsilon - \eta + \eta \right]$

VNT y3E2 VN dA

$$-\left(N^{\dagger}\nabla\eta^{3}\epsilon^{2}\nabla N\right)+\int_{A}\nabla N^{\dagger}\eta^{3}\epsilon^{2}\nabla N\,dA$$

$$\frac{1}{30}$$

$$= J^{-1} \begin{bmatrix} \frac{\delta}{\delta \epsilon} \\ \frac{\delta}{\delta \eta} \end{bmatrix} \begin{bmatrix} 1 - \epsilon - \eta \end{bmatrix} \begin{bmatrix} \frac{\delta}{\delta \epsilon} \\ \frac{\delta}{\delta \eta} \end{bmatrix} \epsilon \begin{bmatrix} \frac{\delta}{\delta \epsilon} \\ \frac{\delta}{\delta \eta} \end{bmatrix} \eta = \begin{bmatrix} \frac{\delta}{\delta \epsilon} (1 - \epsilon - \eta) & \frac{\delta}{\delta \epsilon} (\epsilon) & \frac{\delta}{\delta \epsilon} (\eta) \\ \frac{\delta}{\delta \eta} (1 - \epsilon - \eta) & \frac{\delta}{\delta \eta} (\epsilon) & \frac{\delta}{\delta \eta} (\eta) \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\nabla N = J^{-1} B$$

$$J^{-2} = \frac{1}{|\Im|} \begin{bmatrix} J & -b \\ -c & a \end{bmatrix} = \frac{1}{|\Im|} \begin{bmatrix} (\frac{1}{2} - \frac{1}{2} + \frac{1}{2}) (\frac{1}{2} - \frac{1}{2} + \frac{1}{2} +$$

$$\nabla N = \overline{J}^{-1}B$$

$$\overline{J}^{-2} = \frac{1}{|\Im|} \begin{bmatrix} J & -b \\ -c & \alpha \end{bmatrix} = \frac{1}{|\Im|} \begin{bmatrix} (Y_2 - Y_1)(Y_1 - Y_2) \\ (X_1 - X_3) & (X_2 - X_4) \end{bmatrix} = \frac{1}{3}A$$

$$\nabla N = \frac{1}{3}AB$$

$$\nabla N^{\dagger} = \left(\frac{1}{3}AB\right)^{\dagger} = \frac{1}{3}B^{\dagger}A^{\dagger}$$

$$= \int_{A} \eta^{3} \varepsilon^{2} dA = \int_{O} \int_{O} \eta^{3} \varepsilon^{3} d\varepsilon d\eta = \frac{1}{420}$$

$$K = \frac{1}{4203^{2}} B^{\dagger} A^{\dagger} A B P$$

$$\frac{1}{4203^{2}} B^{\dagger} A^{\dagger} A B P = \int_{O} \frac{1}{20} \frac{3}{40} \frac{1}{120}$$