Определение 1. Пусть F — упорядоченное поле. Для любого натурального числа $n \in \mathbb{N}$ рассмотрим элемент $\overline{n} = \overbrace{1+1+\ldots+1} \in F$. Для любого целого числа $m \in \mathbb{Z}$ рассмотрим элемент \overline{m} , если $m \in \mathbb{N}$, элемент 0, если m = 0, и элемент $-(\overline{-m})$, если $-m \in \mathbb{N}$ (то есть противоположный элемент для натурального $\overline{-m}$. Для любого рационального числа $q = \underline{m} \in \mathbb{Q}$ рассмотрим эле-

элемент для натурального $\overline{-m}$. Для любого рационального числа $q=\frac{m}{n}\in\mathbb{Q}$ рассмотрим элемент $\overline{q}=\frac{\overline{m}}{\overline{n}}\in F$. Таким образом множества \mathbb{N} , \mathbb{Z} , \mathbb{Q} естественным образом вложены в F. В дальнейшем, говоря о натуральных/целых/рациональных числах как об элементах поля F, мы не будем писать черту над ними.

Аксиома 1. ($A\kappa cuoma\ Apxume \partial a$) Для любого $a\in\mathbb{F}$ найдется такое натуральное $n\in F$, что n>a.

Аксиома 2. (Принцип вложенных отрезков) Пусть дана последовательность вложенных отрезков $[a_1,b_1]\supset [a_2,b_2]\supset\dots$ Тогда пересечение $\bigcap_{n=1}^{\infty}[a_n,b_n]$ не пусто.

Определение 2. Упорядоченное поле F, называется *полным*, если в нём выполнена аксиома Архимеда и принцип вложенных отрезков.

Определение 3. Полное линейно упорядоченное поле называется *полем действительных чисел*. Обозначение: \mathbb{R} . Множество $\mathbb{R} \setminus \mathbb{Q}$ называется множеством *иррациональных чисел*.

Задача 1. Докажите, что $\lim_{n\to\infty} \frac{1}{n} = 0$.

Задача 2°. Докажите, что между любыми двумя различными числами из $\mathbb R$ найдётся бесконечно много рациональных чисел.

Задача 3. Докажите, что пересечение последовательности вложенных отрезков $([a_n,b_n])$ состоит из одной точки тогда и только тогда, когда $\lim_{n\to\infty}(b_n-a_n)=0$.

Задача 4. Приведите пример упорядоченного поля, в котором не выполняется

а) аксиома Архимеда; б) принцип вложенных отрезков.

Задача 5*. Выполняется ли принцип вложенных отрезков в поле $\mathbb{R}(x)$ рациональных функций с вещественными коэффициентами?

Задача 6. а) Докажите, что не существует такого $q \in \mathbb{Q}$, что $q^2 = 2$.

б) Рассмотрим последовательность вложенных отрезков $([2/b_n, b_n])$, где $b_1 = 2$ и $b_n = \frac{1}{2} \left(b_{n-1} + \frac{2}{b_{n-1}} \right)$ при n > 1. Докажите, что они в $\mathbb R$ имеют единственную общую точку. Какую?

в)° Докажите, что множество иррациональных чисел непусто.

Задача 7. Докажите, что между любыми двумя различными числами из $\mathbb R$ найдётся бесконечно много иррациональных чисел.

Задача 8°. (*Аксиома о разделяющем числе*) Пусть A и B — два непустых подмножества поля \mathbb{R} , такие что для всех $a \in A$ и $b \in B$ справедливо неравенство $a \leqslant b$. Докажите, что существует такое число $c \in \mathbb{R}$, что при всех $a \in A$ и $b \in B$ выполнено $a \leqslant c \leqslant b$.

2	3	4 a	4 6	5	6 a	6 6	6 B	7	8

Листок №17 Страница 2

Определение 4. Говорят, что подмножество M упорядоченного поля F ограничено сверху, если существует такой элемент C, что для всех $x \in M$ выполняется неравенство $x \leqslant C$. Число C в этом случае называется верхней гранью множества M.

Формально: $\exists C \in F \quad \forall x \in M : \quad x \leqslant C$.

Аналогично определяется ограниченность снизу и нижняя грань множества.

Задача 9. Верно ли, что множество положительных чисел P ограничено сверху? А снизу?

Определение 5. Говорят, что подмножество M упорядоченного поля F ограничено, если оно ограничено сверху и снизу одновременно.

Определение 6. Модулем (абсолютной величиной) элемента a упорядоченного поля F называется элемент $|a|=\left\{ \begin{array}{ll} a, & \text{если} & a\geqslant 0 \\ -a, & \text{если} & a<0. \end{array} \right.$

Определение 7. Элемент C упорядоченного поля F называется *точной верхней гранью* множества M, если выполняются следующие два условия:

- 1) $\forall x \in M : x \leqslant C$;
- $2) \quad \forall C_1 < C \quad \exists x \in M : \quad x > C_1.$

Условие 2) иногда записывают в следующей форме: 2') $\forall \varepsilon > 0 \quad \exists x \in M: \quad x > C - \varepsilon$. Обозначение: $C = \sup M$ (читается: $\mathit{cynpéмym}$).

Определение 8. Элемент C упорядоченного поля F называется *точной верхней гранью* множества M, если C есть наименьшая из всех верхних граней множества M.

Задача 10. Докажите эквивалентность определений 7 и 8.

Определение 9. Аналогично определяется точная нижняя грань множества.

Обозначение: $\inf M$ (читается: $u + \phi u + \psi$).

Задача 11. Может ли у множества быть более одной точной верхней (нижней) грани?

Задача 12. Найдите точные нижнюю и верхнюю грани множества M, если:

a)
$$M = \{\frac{1}{a} \mid a > 2\}$$
; 6) $M = \{a + b \mid -5 < a \leqslant 3, |b| < 1\}$; B) $M = \{ab \mid -5 < a \leqslant 3, |b| < 1\}$.

Задача 13°. (*аксиома о точной верхней грани*) Докажите, что всякое непустое ограниченное сверху подмножество поля $\mathbb R$ имеет в $\mathbb R$ точную верхнюю грань.

Задача 14°. Пусть множества $A, B \subset \mathbb{R}$ ограничены и непусты. Докажите, что:

a)
$$\sup\{a+b \mid a \in A, b \in B\} = \sup A + \sup B;$$
 6) $\sup(A \cup B) = \max(\sup A, \sup B).$

Задача 15°. Докажите, что в упорядоченном поле F полнота эквивалентна

- а) аксиоме о разделяющем числе;
- б) аксиоме о точной верхней грани.

Задача 16*. Докажите, что поле действительных чисел континуально.

Задача 17*. Докажите, что поле действительных чисел не более, чем единственно.

Задача 18*. а) Докажите, что $\{a \in \mathbb{R} \mid a \geqslant 0\} = \{b^2 \mid b \in \mathbb{R}\}.$

б) Докажите, что поле \mathbb{R} нельзя упорядочить двумя разными способами.

9	10	11	12 a	12 б	12 B	13	14 a	14 б	15 a	15 6	16	17	18 a	18 6

Листок №17 Страница 3

```
<?xml version='1.0'?>
listok number = '17' description='Поле действительных чисел' type='1' date='11.2013'>
 cproblem group='1' type='0'>1</problem>
 cproblem group='2' type='3'>2</problem>
 cproblem group='3' type='0'>3</problem>
 cproblem group='4' type='0'>4a</problem>
 problem group='4' type='0'>46</problem>
 cproblem group='5' type='1'>5</problem>
 cproblem group='6' type='0'>6a</problem>
 problem group='6' type='0'>66</problem>
 cproblem group='6' type='3'>6B</problem>
 cproblem group='7' type='0'>7</problem>
 cproblem group='8' type='3'>8</problem>
 cproblem group='9' type='0'>9</problem>
 cproblem group='10' type='0'>10</problem>
 cproblem group='11' type='0'>11</problem>
 cproblem group='12' type='0'>12a</problem>
 problem group='12' type='0'>126</problem>
 cproblem group='12' type='0'>12b</problem>
 cproblem group='13' type='3'>13</problem>
 cproblem group='14' type='3'>14a</problem>
 problem group='14' type='3'>146</problem>
 cproblem group='15' type='3'>15a</problem>
 problem group='15' type='3'>156</problem>
 cproblem group='16' type='1'>16</problem>
 cproblem group='17' type='1'>17</problem>
 cproblem group='18' type='1'>18a</problem>
 problem group='18' type='1'>186</problem>
</listok>
```