Control Engineering I - 21/22

Bachelor's Degree in Industrial Technologies Engineering. Group 39

Lecture 0. Intro & Physical systems

Theory – Group 39 (Classroom 2.3.D04/Tuesday 9:00-11:00h) Exercises - Group 39 (Classroom 2.3.D04/Friday 9:00-11:00h)

Theory: Prof. David Martín Gómez dmgomez@ing.uc3m.es

Exercises: Prof. Irene Pérez Encinar ipencina@ing.uc3m.es

	Monday	Tuesday	Wednesday	Thursday	Friday			
	February					<u>Theory</u>	<u>Exercises</u>	
Week 1	31	1	2	3	4			
		T1			P1	0 Intro. /1 Mathematical tools theory	P1-Physical systems	
Week 2	7	8	9	10	11			
		T2			P2	2 System Modeling	P2-Laplace transforms	
Week 3	14	15	16	17	18			
		Т3			P3	3 Introduction to time domain analysis	P3-Linearization & Transfer function	
Week 4	21	22	23	24	25			
		T4			P4	4 First and second order systems	P4-Block Diagrams	
	March							
Week 5	28	1	2	3	4			
		T5			P5	5 Error Calculation	P5-Stability analysis	
	_	•	2	10	11		P5-Time domain analysis	
Week 6	7	8	9	10	11	(5.11	D(0) 1 1 1	
		T6			P6	6 Root locus, inverse root locus	P6-Steady-state errors exercises	Homework 1
14/ 1 7	1.4	4.5	1/	47	10	and frontier of the roots	P6-Root locus exercises	
Week 7	14	15	16	17	18	E		
W1- 0	21	EP1	PR-1	2.4	PR-1	First midterm	Laboratory Class 1	
Week 8	21	22	23	24	25	7.0	D7 D+1	
	00	T7	20	0.1	P7	7 Controllers	P7 Root locus exercises / Inverse root locus exercises	
	28	29	30	31	1	O And Hele frances del De de	DO Funciona of controllers	
	Anril	Т8			P8	8 Análisis frecuencial - Bode	P8 Exercises of controllers	
Week 9	April	5	6	7	8			
Week 10	4	T9	PR-2	1	PR-2	9 Frequency Domain analysis - Nyquist	Laboratory Class 2	
	11	12	13	14	15	9 Frequency Domain analysis - hyquist	Laboratory Class 2	
Week 10	11	12	13	14	13			
Week 11	18	19	20	21	22			
	10	T10	20	21	P9	10 Nyquist / Frequency Domain Controller Design	P9 Rode Exercises	Homework 2
Week 12	25	26	27	28	29	To Hydrist? Frequency Bonnain Controller Besign	1 7 Bode Exercises	TIOITICWOTK 2
	20	P10	PR-3	20	PR-3	P10 Nyquist Exercises I	Laboratory Class 3	
	May				1110	The Hydraidt Exercises i	Laboratory Glass 6	
Week 13	2	3	4	5	6			
		EP2			P11	Second Midterm	P11 Nyquist Exercises II	
Week 14	9	10	11	12	13		71	
		P12			P13	P12 Exams from previous years	P13 Exams from previous years	

Evaluation

Continuous evaluation:

• First and second midterms: 15% + 15%

• Final Exam: 50%

Minimum grade 4/10

• Labs: 10%

• Exercises: 10%

Recommended Bibliography and software

Norman S. Nise, "Control Systems Engineering", Seventh Edition, Ed. Wiley

https://www.wiley.com/en-us/Control+Systems+Engineering%2C+7th+Edition-p-9781118800638

Ogata, K., "Modern Control Engineering", 5th Edition, Ed. Prentice-Hall

https://www.pearson.com/us/higher-education/program/Ogata-Modern-Control-Engineering-5th-Edition/PGM100186.html

Software Matlab: Control System Toolbox

https://www.youtube.com/watch?v=NfSPmBwD71g&t=306s

Matlab Online

https://www.mathworks.com/products/matlab-online.html

Lecture 1

Mathematical modeling of physical systems

System model

- Model: Represents or substitutes a system or physical reality in some aspects
- Mathematical model of a system: set of equations that represents the dynamics of a system with reasonable precision
- The dynamics of a system is often described using differential linear equations.
 - Example.

$$3\frac{d^2x}{dt^2} + \frac{dx}{dt}\frac{dy}{dt} + 2 = 0$$

Variables are continuous time signals.

Concept of Model of a System

$$q_{e}(t) - q_{s}(t) = A \frac{dh(t)}{dt}$$
$$q_{s}(t) = k\sqrt{h(t)}$$

$$u_{e}(t) = \frac{1}{C} \int i(t)dt + u_{s}(t) + L \frac{di(t)}{dt}$$
$$u_{s}(t) = R \cdot i(t)$$

Modeling of Mechanical Systems

mass

$$F(t) = M \frac{d^2}{dt^2} x(t)$$

spring

$$F(t) = K \cdot x(t)$$

damper

$$F(t) = B\frac{d}{dt}x(t)$$

$$T(t) = I \frac{d^2}{dt^2} \theta(t)$$

$$T(t) = K \cdot \theta(t)$$

$$\frac{\partial}{\partial t}$$

$$T(t) = B \frac{d}{dt} \theta(t)$$

Mechanical systems modeling

Linear movement

$$M\ddot{x}(t) = f(t) - B\dot{x}(t) - Kx(t)$$

Mechanical systems modeling

Rotational movement

$$J\ddot{\theta}(t) = P(t) - B\dot{\theta}(t) - K\theta(t)$$

Mechanical systems modeling

Multiple gears

$$\frac{N_1}{N_2} = \frac{r_1}{r_2}$$

$$r_1\theta_1(t) = r_2\theta_2(t)$$

$$P_1(t)\theta_1(t) = P_2(t)\theta_2(t)$$

$$\frac{\theta_2(t)}{\theta_1(t)} = \frac{N_1}{N_2} = \frac{P_1(t)}{P_2(t)}$$

Electrical systems modeling

$$\left. egin{aligned} u_e(t) &= Ri(t) + Lrac{di}{dt} + u_s(t) \ u_s(t) &= rac{1}{C} \int_0^t i(au) d au \end{aligned}
ight. egin{aligned} \Longrightarrow u_e(t) &= RC\dot{u}_s(t) + LC\ddot{u}_s(t) + u_s(t) \end{aligned}$$

Electro-mechanical systems modeling

$$\begin{cases} u(t) = Ri(t) + L\frac{di}{dt} + u_m(t) \\ u_m(t) = K_b w(t) \\ P_m(t) = K_p i(t) \\ J\dot{w}(t) = P_m(t) - Bw(t) \end{cases}$$

Modeling of Hydraulic Systems

Obtain the equations of the following electrical system.

Obtain the equations of the following hydraulic system.

Obtain the equations of the following mechanical translational system.

Obtain the equations of the following rotational system.

