

Forest FireFighter F³ 3rd sprint review

Zilly team members:

Axel JORGE Corentin TATGER Liao ZHANG Youssef AMARI Ruiqi HU Amelie MAIER

TABLE OF CONTENTS

PLANNED/REALIZED STORIES

02 DEMONSTRATIONS

03 NEXT SPRINT?

Epics and User stories

Peanuts

Tasks needing one teammate for 1 session to be completed

Simple

Tasks needing one teammate for 1 or more session

Medium

Task needing a subgroup for 1 or more session

Hard

Tasks needing a subgroup for an entire sprint

Very Hard

Task needing a subgroup and several up to 2 sprints

01

PLANNED AND REALIZED STORIES

Direction and movement

Path between 2 GPS points

-Amelie Maier -Ruigi Hu

Computer vision

Fire detection Routine

-Corentin Tatger -Axel Jorge

Website and communication

Displaying Fire position on site

-Youssef Amari -Liao Zhang

Coding procedure and standards

Coding standards

- Standard 1: Naming convention:
 - -CamelCase for variables
 - -snake_case for functions and methods
- Standard 2: Length of methods:
 Functions should not exceed 20 instructions
- Standard 3: Avoid using floating point value in comparative blocks when possible

Config management

Failure tree example

1 DIRECTION AND MOVEMENT

Stories

- User Story 1: Direction and movement between two GPS location with real time management
- Test: The car goes autonomously to a GPS location given and stop at it with a 50 cm accuracy

02 DIRECTION AND MOVEMENT

Movement routine :

- Receive the GPS coordinates (latitude and longitude) of the location we want to join
- Receive the GPS coordinates of the car
- 3. Compare the two locations calculating the distance and the angle between the two
- 4. Calculate the angle command to align in the correct trajectory and the speed command

DIRECTION AND MOVEMENT

Test description

02

DIRECTION AND MOVEMENT

Next improvements

OBJECTIVES

- Test the direction management
- Movement between several GPS locations
- Receive the GPS locations path send by a user

COMPUTER VISION

Stories

- User Story 1: The car should analyze the right amount of pictures when arriving at a location
- Test: Program a routine, start the car and check the predictions. Car should have a 90% success rate overall

COMPUTER VISION

- The car takes and analyzes the right number of photos
- The predictions have expected success rates

COMPUTER VISION

Next improvements

OBJECTIVES

- Develop the complete routine with movement
- Communication with the website
 - Send the date of the picture
- Machine learning improvement
 - Test of spécifical images
 - Optimize the processing speed with Jetson Nano

WEBSITE AND COMMUNICATION

Stories

- User Story 1: Sending the processed GPS data to card Nucleo for the use of motor control and creation of 2 topics on Cloud (MQTT).
- Test: The GPS information processed should be sent to the Nucleo card every 5 seconds. It can be verified on the software of observation of the Nucleo card.

WEBSITE AND COMMUNICATION

WEBSITE AND COMMUNICATION

O2 WEBSITE AND COMMUNICATION

Description of tests + remind acceptation quantitative threshold

- The current GPS coordinates sent to the motor control card with a period at least of **5 s**
- The car stops at the destination point within an error of **1 m**
- The time of initialisation of the GNSS (Global Navigation Satellite System) module is less than **5 mins**
- The GPS accuracy should be less than **50 cm**

O3 NEXT SPRINT?

EPIC (DIRECTION AND MOVEMENT / COMPUTER VISION / WEBSITE AND COMMUNICATION)

- User Story 1: When turned on, the car should start its full work routine
- Test: The car should go to the next gps location, check for fire outbreaks and update the website if needed. All without any exterior help.

EPIC (WEBSITE AND COMMUNICATION)

- User Story 2: The website should automatically alert the user of a fire, display a photo and its position on a map
- Test: Website should update in **5** s max if a fire is detected + the fire well marked on the map + fire image should arrived on the website less than **50** s after its detection.

O3 Scrum master's role:

Retrospective

04 CONCLUSION

Thank you for your attention