LSML #7

Распараллеливание нейросетей

Как ускорять применение нейросети

- Если предсказываем для 1 примера:
 - Используют быстрый GPU (+ TensorRT) https://venturebeat.com/2018/03/27/nvidia-speeds-up-deep-learning-inference-processing/
 - Сжимают сети (teacher networks) https://arxiv.org/pdf/1412.6550.pdf
 - Квантуют веса сетей (быстрые INT8 операции) https://www.tensorflow.org/performance/quantization https://www.theregister.co.uk/2016/09/13/nvidia p4 p40 gpu ai/
 - Придумывают архитектуры для мобильных (MobileNet) https://arxiv.org/pdf/1704.04861.pdf

•

- Если предсказываем для кучи примеров:
 - Embarrassingly parallel (предсказания делаются независимо)

Будем параллелить обучение

- Есть два подхода:
 - Data-parallel (по данным)
 - Model-parallel (по весам)

Data-parallel

- Рассылаем копию модели на каждый GPU
- Применяем независимо к разным кусочкам батча
- Вклады в градиент отправляем **координатору** на CPU (или GPU), суммируем и заново рассылаем всем GPU

Data-parallel

- Все упирается в размер батча, сойдется ли с большим?
- Если модель большая, то долгие пересылки

Размер батча

• Кто-то говорит, что нужно брать маленький:

Размер батча

- Маленький плох для распараллеливания:
 - Не полностью утилизируется GPU
 - Маленькое количество воркеров

Data-parallel

- Все упирается в размер батча, сойдется ли с большим?
- Если модель большая, то долгие пересылки

Усложним координатор: Parameter Server (PS)

На примере линейной регрессии:

- Воркеры читают свою часть данных и считают градиенты g
- 2. Воркеры отсылают (**push to PS**) градиенты **g** на сервер параметров
- 3. Сервер параметров обновляет свои веса **w** на базе сообщений от воркеров
- 4. Воркеры просят у сервера параметров (pull from PS) обновленные веса w

Parameter Server (PS)

- PS может состоять из многих машин (шардирование параметров)
- Можно варьировать консистентность параметров, что позволяет делать вычисления асинхронно

Уменьшим overhead от пересылок

• **Асинхронный SGD**: не будем ждать, пока прилетит вклад в градиент от всех машин, сделаем шаг с тем, что есть (возможно только локальный вклад)

Асинхронный SGD от Google (DistBelief)

Запускают асинхронное обучение после 1 эпохи, видимо иначе ничего не сходится из-за запаздываний градиентов на ранних стадиях обучения

Divide coordinates into B blocks. Set the order $b(1), \ldots, b(T)$ and the maximal delay τ

Figure 1: D2P, Distributed Delayed Proximal Gradient Methods. Both clients and the parameter server span several machines. All data sending and receiving are non-blocking.

- Линейная регрессия
- На итерации t обновляем веса в блоке b(t)
- Хотим на каждом воркере отставать не больше, чем на au блоков
- Асинхронно посылаем апдейты весов

Divide coordinates into B blocks. Set the order $b(1), \ldots, b(T)$ and the maximal delay τ

Figure 1: D2P, Distributed Delayed Proximal Gradient Methods. Both clients and the parameter server span several machines. All data sending and receiving are non-blocking.

К какому-то моменту первую итерацию завершили 1, 2 и 4 воркеры

Divide coordinates into B blocks. Set the order $b(1), \ldots, b(T)$ and the maximal delay τ

Figure 1: D2P, Distributed Delayed Proximal Gradient Methods. Both clients and the parameter server span several machines. All data sending and receiving are non-blocking.

Divide coordinates into B blocks. Set the order $b(1), \ldots, b(T)$ and the maximal delay τ

Figure 1: D2P, Distributed Delayed Proximal Gradient Methods. Both clients and the parameter server span several machines. All data sending and receiving are non-blocking.

- В au раз меньше синхронизаций
- Замедление сходимости компенсируется ускорением одного шага

Как только посчитается на предыдущем шаге, сразу продолжаем

- Data-parallel (режем batch)
- Все пересылки peer-to-peer
- Вот тут нет блокировок (эффективно утилизирует сеть и GPU):

• По сути мы обмениваемся каждым блоком (независимо) по кругу (видимо поэтому так и назвали):

• Очень классно скейлится:

Model-parallel (мало кому нужен)

• Режем веса на партиции (можем их обновлять асинхронно)

Model-parallel в DistBelief

Для сверточных сетей ОК

Побили в свое время state-of-the-art на большом ImageNet

Model-parallel

- Сложнее реализовывать (нужны выходы нейронов от соседа)
- Не всегда нужно, как правило модель не очень большая

Ссылки

- Статья o Parameter Server https://www.cs.cmu.edu/~muli/file/parameter-server-osdi14.pdf
- Еще про PS http://opt.kyb.tuebingen.mpg.de/papers/opt2013 submission 1.pdf