CMPT 295 Assignment 5 Solutions (2%)

1. [7 marks] Floating-Point Integers

Just to show the significance, the percentage of the code that applies to each part is included.

- (a) [1 mark] There are $106 \cdot 2^{23}$ positive integers (including +0), and an equal number of negative integers. (41.4% of all floating point)
- (b) $[1 \text{ mark}] 2^{24} 1 (= 16777215).$
- (c) $[1 \text{ mark}] 2^{128} 2^{104}$, and $2^{128} 2^{105}$.
- (d) [1 mark] The consecutive integers fall in the range $[-2^{24}, 2^{24}]$ and there are $2^{25} + 1$ (= 33554433) of them. (0.78% of all floating point)
- (e) $[1 \text{ mark}] \ 2^{32} = 1.000\ 0000\ 0000\ 0000\ 0000\ 0000 \times 2^{32}$. The nearest neighbours would therefore be $1.000\ 0000\ 0000\ 0000\ 0000\ 0001 \times 2^{32} = 2^{32} + 2^{9}$ and $1.111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111$
- (f) [2 marks] There are 10×2^{23} positive integers (again including +0) that are less than 2^{32} . (2.0% of all floating point, 4.7% of S)

2. [2 marks] Floating-Point Addition

• These are $+1.001~0011~1000~0000~0000~0000_2 \times 2^8$ and $-1.010~1000~0000~0000~0000~0000_2 \times 2^5$. To subtract their magnitudes, the latter must be shifted right by 3 places, because the difference in the exponents is 3.

Thus we have a positive number (sign bit = 0), with a normalized significand of 1.111 1101 and a normalized exponent of 2^7 . This encodes as 0x437d0000.

• These are $+1.001\ 1001\ 1001\ 1001\ 1001\ 1010_2 \times 2^{-1}$ and $1.100\ 1100\ 1100\ 1100\ 1100\ 1101_2 \times 2^{-2}$. Again, alignment must occur before adding: this time it is shifted by one place.

The resulting significand is too long, so it must be truncated and rounded. Since the 25th significant digit is 0, the result is rounded down. The result is $10_2 \times 2^{-1} = 1 \times 2^0$, or 0x3f800000.