Shivaji University , Kolhapur Question Bank For Mar 2022 (Summer) Examination

Subject Code :81548 Subject Name : Database Engineering (PCC - CS603)

	Question	Option 1	Option 2	Option 3	Option 4
1	Which of the following is a	Set	Natural join	Assignment	None of the
	fundamental operation in relational	intersection	3	C	mentioned
	algebra?				
2	The DBMS acts as an interface	Database	Data and the	The user and	Database
	between what two components of	application	database	the database	application
	an enterprise-class database	and the		application	and SQL
	system?	database			
3	The result which operation contains	Join	Cartesian	Intersection	Set difference
	all pairs of tuples from the two		product		
	relations, regardless of whether their				
	attribute values match.				
4	Consider the Following Database	Π_{name} ($\sigma_{(percent)}$	σ _{name, percent}	$\sigma_{\text{name, percent}}$ (Π	$\Pi_{\text{name, percent}}$ (σ
	Schema	<= 60) (student))	$(\Pi_{\text{(percent < 60)}})$	(percent <= 60)	(percent <= 60)
	Collage DB:		(student))	(student))	(student))
	Student (RNo, Class,				
	Dept_id, Prn, name, city,				
	mobile, percent)				
	Department (Dept_id,				
	name, strength)				
	Staff (Staff_id, Dept_id,				
	Staff_name, subject, class)				
	Find the correct relational algebra				
	query to answer the following				
	queries				
	Find the names and percentage of				
	students who have less than or equal				
	to 60%	C V	Candidate	Duim and Van	Familian Van
5	Which of the following is a attribute	Super Key		Primary Key	Foreign Key
	or set of attributes which is primary		Key		
	means of uniquely identifying a entity in a relation.				
6	Consider the following DB relation	1NF	2NF	3NF	BCNF
U	and the FD's on it	11/1.	2111	31 11	DCM
	R (A, B, C, D)				
	$A, B \rightarrow C, D$				
	A, B → C, D A, C → B, D				
	B, C → A,D				
	2, 2 - 11,12				
	Based on above assumptions predict				
	the highest normal form of the given				
	Relation				
7	and rules in set of	Reflexivity,	Self-	Reflexivity,	Decompositio
′	Armstrong's Axioms are called as	Decompositio	determinatio	Self-	n,
	Trivial	n	n,	determination	Augmentation
			Augmentatio		- 100110111011
			n		
8	Consider the Following ERD	course(course	course(cours	course(course	course(course
		_id, title,	e_id, title,	<u>id</u> , title,	_id, title,
		credits),	credits),	credits),	credits),
	i e e e e e e e e e e e e e e e e e e e	1	i .		ı

	course section sec_id semester year	section(sec_id, semester, year)	section(cour se id, sec_id, semester, year)	section(course id, sec id, semester, year)	section(cours e id, sec id, semester, year)
	Which of the following is the correct reduction of the given ERD (Primary key is underlined)			sec_course(<u>co</u> urse_id, sec_id)	sec_course(co urse_id, sec_id, semester, year)
9	property of decomposition is mostly preserved while a relation is decomposed to BCNF, while the property may not always be preserved.	Dependency Preservation, Lossy decomposition	Lossy decompositi on, Dependency Preservation	Dependency Preservation, Lossless decomposition	Lossless decompositio n, Dependency Preservation,
10	Which functional dependency types is/are not present in the following dependencies?	Full functional dependency	Partial functional dependency	Transitive functional dependency	Both B and C
	Empno -> EName, Salary, Deptno, DName DeptNo -> DName				
	Deptivo -> Divanie				
	EmpNo -> DName				
11	Which one of the following statements about normal forms is FALSE?	BCNF is stricter than 3 NF	Lossless, dependency -preserving decompositi on into 3 NF is always possible	Loss less, dependency – preserving decomposition into BCNF is always possible	Any relation with two attributes is BCNF
12	Given the relations R1 (A, B, C) with 10 tuples and R2 (X, Y, Z) with 5 tuples, how many tuples will be produced by following SQL Query? Select * from R1 natural join R2	0	5	10	50
13	Select emp_name from department where dept_name like 'Science';	%	-	&	!
1.4	Which one of the following has to be added into the blank to select the dept_name which has Science as its ending string?		G: 1		D.d. O.
14	Aggregate functions are functions that take a as input and return a single value.	Collection of values	Single value	Aggregate value	Both a & b
15	All aggregate functions except ignore null values in their input collection.	Count(attribut e)	Count(*)	Avg()	Sum()

16	A view is which of the	A virtual table	A virtual	A base table	A base table
	following?	that can be	table that	that can be	that cannot be
	3	accessed via	cannot be	accessed via	accessed via
		SQL commands	accessed via	SQL commands	SQL commands
		commands	SQL commands	commands	commands
17	The file organization which allows	Heap file	Sequential	Clustering file	Hash file
1 /	us to read records that would satisfy	organization	file	organization	organization
	the join condition by using one		organization		C
	block read is				
18	A unit of storage that can store one	Buckets	Disk pages	Blocks	Nodes
	or more records in a hash file				
19	organization is denoted as In ordered indices the file containing	Clustered	Structured	Unstructured	Nonclustered
1)	the records is sequentially ordered, a	index	index	index	index
	is an index whose	1110011	1110011	11140.1	11100.1
	search key also defines the				
	sequential order of the file.				
20	A data dictionary is created when a	Instance	Segment	Database	Dictionary
21	created. The file organization that provides	Ordered file	Unordered	Hashed file	B-tree
<u> </u>	very fast access to any arbitrary	Ordered file	file	Hashed Hit	D-ucc
	record of a file is				
22	In multiple granularity of locks SIX	IX	IS	S	SIX
	lock is compatible with				
23	If a transaction T has obtained an	read Q	write Q	read and write	write Q but
24	exclusive lock on item Q, then T can Which one is true statement:	With finer	Locking	Q Locking	not read Q An exclusive
24	which one is true statement.	degree of	prevents non	cannot take	lock on data
		granularity of	– serializable	place at field	item X is
		locking a high	schedules	level	granted even
		degree of			if a shared
		concurrency is			lock is already
25	Which of the following concurrency	possible Two – phase	Graph-based	Time-stamp	held on X None of these
23	control schemes is not based on the	locking	locking	based locking	None of these
	serializability property?		8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
26	Which of the following ensures the	Transaction	Application	Concurrency	Recovery
	atomicity of the transaction?	management	Programmer	control	management
		component of		component of	component of
27	A transaction is in state	DBMS active	partially	DBMS committed	DBMS none of the
21	after the final statement has been	active	committed	Committed	above
	executed executed				· · · · · · · ·
28	Which of the following protocols	Two-phase	Time-stamp	Graph based	Both (a) and
	ensures conflict serializability and	locking	ordering	protocol	(b) above
20	safety from deadlocks?	protocol	protocol	T 1	G. 1.1 G.
29	Which of the following are introduced to reduce the overheads	Indices	Checkpoints	Locks	Stable Storage
	caused by the log-based recovery?				
30	Before a block of data in main	Read-write	Read-ahead	Write-ahead	None of the
	memory can be output to the	logging	logging	logging	mentioned
	database, all log records pertaining		_		
	to data in that block must have been				
21	output to stable storage. This is	made 411	mada 41 1	umdo 41 1	umdo 41 1
31	Consider a scenario in log where we have <start t2="">, <start t1=""> and</start></start>	redo t1, undo t2	redo t1, redo t2	undo t1, redo t2	undo t1, undo t2
	<pre><commit t2=""> log records. What</commit></pre>	12	12	12	12
	would be recovery procedure if				
		1		1	

					,
	immediate database modification				
	scheme is used for updating the database.				
				1 1	
32	In shadow paging, which of the page	current page	shadow page	both	none
	tables contains the modifications	table	table		
	done by the active transaction				
33	Which of the following recovery	Immediate	Deferred	Shadow	All have equal
	schemes is likely to have the highest	Database	Database	Paging	commit
	commit overhead	Modification	Modification		overhead.
		with Redo and	with Redo		
		Undo			
34	What is he following assumption is	Failure	Stable	Permanent	Fail stop
	called:	Recovery	Storage	Storage	assumtion
	"non-volatile storage contents are				
	assumed to not be corrupted by				
	system crash"				
35	The connective tests for set	Or, in	Not in, in	In, not in	In, or
	membership, where the set is a			·	·
	collection of values produced by a				
	select clause. The connective				
	tests for the absence of set				
	membership.				
36	In the normal form, a	1NF	2NF	3NF	BCNF
	composite attribute is converted to				
	individual attributes.				
37	A schedule is in a state if	Deadlock	Starved	Isolated	None of the
	there exists a set of transactions in				mentioned
	which every transaction is waiting				
	for another transaction in the set.				

Note: Each MCQ carries 2 marks.

Chapter 1:

- 1. What is data model? Explain 2 data models in brief.
- 2. Define and Differentiate between Super Key, Candidate Key and Primary Key. Give appropriate example
- 3. Consider a two-dimensional array of n*m size that is to be used in your favorite programming language. Using the array as an example demonstrate the difference between: (a) the three levels of data abstraction and (b) schema and instance.
- 4. List the basic operators of Relational Algebra. Explain any 3 operators with respective syntax and example.
- 5. List different types of users in Database environment. Explain the role played by each of the listed users.
- 6. List and explain different types of attributes with appropriate examples for each.
- 7. List and Explain the Drawbacks of using file systems to store data
- 8. List the types of database languages. Explain each type with appropriate example.
- 9. Define Database. List and explain the applications of Database.
- 10. Explain the ER Model in details.

Chapter 2

1. Consider the following schema and set of functional dependencies:

Class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_no, capacity, time_slot_id)

```
F={ course_id -> title, dept_name, credits, building, room_no -> capacity course_id, sec_id, semester, year -> building, room_no, time_slot_id }
```

Assume the above relation is in 1NF. Check the current highest normal form of the given relation. Decompose the schema to BCNF.

- 2. Design an ER diagram for keeping track of exploits of your favorite sports Team. You should store the matches played, the scores in each match, the players in each match and individual player statistics for reach match. Summary statistics should be modeled as derived attributes.
- 3. Reduce the below ERD to relational schema.

4. Consider the relation R with attributes:

The set of FD's for given relation is:

Given the relation is in 1NF, normalize the schema till BCNF.

- 5. List and explain the desired properties of decomposition.
- 6. List and explain the Extended Features of ER model.
- 7. Design an ER diagram for keeping track of exploits of your favorite sports Team. You should store the matches played, the scores in each match, the players in each match and individual player statistics for reach match. Summary statistics should be modeled as derived attributes.
- 8. Consider the following DB Schema and respective FD's for each relation in schema,

Client (clientNo, cName)
fd1: clientNo → cName

PropertyOwner (propertyNo, pAddress, rent, ownerNo, oName)

fd1: propertyNo → pAddress, rent, ownerNo, oName

fd2: ownerNo → oName

Rental (clientNo, propertyNo, rentStart, rentFinish)

fd1: clientNo, propertyNo → rentStart, rentFinish fd2: clientNo, rentStart → propertyNo, rentFinish fd3: propertyNo, rentStart → clientNo, rentFinish

Predict the highest normal form of the given schema. Normalize the above schema till BCNF.

- 9. Compare BCNF & 3NF
- 10. Explain the rules for reduction of following notation in ERD, with appropriate examples
 - a. Weak Entity set
 - b. Multivalued attribute in Strong Entity set
 - c. Many to One relationship set.

Chapter 3

1. Assume the Relations given below.

Student(Enrno, name, courseId, emailId, cellno)

Course(courseId, course_nm, duration)

Write SQL statements for following:

- a. Find out list of students who have enrolled in "computer" course.
- b. List name of all courses with their duration.
- c. List name of all students start with "a".
- d. List email Id and cell no of all mechanical engineering students.
- 2. Write the basic structure of SQL Queries. Explain working of each keyword in the structure.
- 3. How are the following integrity constraints implemented in SQL:
 - a. Domain constraint
 - b. Referential integrity.

Explain the above with appropriate syntax and example.

- 4. List and explain aggregate functions of SQL with appropriate examples.
- 5. List and explain the different DML statements in SQL

- 6. Explain the following SQL constructs with examples: (1) order by, (2) group by, (3) having, (4) as, (5) in
- 7. Consider the following Database design

Customer (cid, custname, custstreet, custcity)

Account (accno, branchname, balance)

Loan (loanno, branchname, amount)

Borrower (cid, loanno)

Branch (branchname, branchcity, asset)

Depositor (cid, accno)

Solve the following queries in SQL

- a. Display the name of customers who have both account and loan at the bank.
- b. Update amount of loan to 10000 where loan number is "L-101".
- c. Change the column name custcity to ccity.
- d. Find all customers who an account but no loan at bank.
- 8. The following relations keep track of Library Management system.

Book info(bookid, bname, bauthor, price, edition, publication, pur date,)

Student(lib_car_num, stud_name, class, branch, roll_no)

lssue_table(issue_date, sub_date, bookid, lib_car_num, due)

Write the following SQL queries:

- a. Find the details of the books issued to the library card number 1.
- b. Give all the information about student and the book issued with ascending order of library card number
- c. Find the author, edition, price of book.
- d. Find the names of the students with dues on the book issue.
- 9. List and explain the types of Join in SQL.
- 10. Why is the Domain Constraint called as elementary Database constraint?

Chapter 4

- 1. Construct a B+ tree with n=3 for given set of key values 52, 40, 55, 12, 34, 56, 55, 90, 87, 50, 70
- 2. Define the terms Primary Index and Secondary Index. Differentiate between them on basis of the Evaluation Criteria for indices

- 3. When does a collision occur in hashing? Illustrate various collision resolution techniques.
- 4. Explain how Variable Length records are Represented in file.
- 5. List and explain in brief the ways of Organization of Records in Files.
- 6. Define the terms Dense Index and Sparse Index. Differentiate between them on basis of the Evaluation Criteria for indices
- 7. Illustrate Multiple Key Access with appropriate example.
- 8. Elaborate Deficiencies of Static Hashing and probable solutions to those deficiencies.
- 9. Consider the following B+ tree instance

Perform the following operations on the above tree

- a. Delete Crick
- b. Insert Ben in tree after step a
- c. Insert Anil in tree after step b
- 10. List and explain the Index Evaluation Metrics

Chapter 5

- 1. Illustrate testing of Conflict Serializability with appropriate example.
- 2. Write the rules for Thomas Write Rule. Elaborate how Thomas' Write Rule allows greater potential concurrency as compared to Timestamp based protocol.
- 3. List and explain the variants of Two Phase Lock Protocol
- 4. Explain with appropriate example the following terms
 - a. Recoverable Schedules
 - b. Cascadeless Schedules
- 5. What is transaction? Explain its ACID properties of transaction
- 6. Draw and explain the Transaction State Diagram
- 7. List and elaborate the Pitfalls of Lock-Based Protocols

8. Consider the Partial Schedule as given below with transaction having timestamps 1,2,3,4 respectively.

T1	T2	Т3	T4
		Read (A)	
	Read (B)		
		Write (A)	
Write (A)			
	Write (B)		
			Read (A)
		Read(B)	
		Write (B)	
			Read (B)

Predict the state of transactions after every operation, by applying the timestamp-based protocol.

9. List and elaborate the Intention Lock Modes in Multiple Granularity? Draw the Compatibility Matrix with Intention Lock Modes

10.

T_{3}	T_4
lock-x (B)	
read (B)	
B := B - 50	
write (B)	
	lock-s(A)
	read (A)
	lock-s(B)
lock-x(A)	

Consider the above partial schedule. Check if the schedule is following the rules of 2PL. Also predict the state of execution of the given schedule.

11.

T_{1}	T_2
read (A)	read (A)
write (A)	write (A)
read (<i>B</i>)	read (<i>B</i>)
write (<i>B</i>)	write (<i>B</i>)

Given the above schedule, check if it is conflict serializable. If yes show serial schedule to which the above schedule is conflict equilevent, if no state why?

Chapter 6

Elaborate the Recovery actions given the log as it appears at three instances of time

- 2. Elaborate the Deferred Database Modification schemes. Also mention the recovery mechanism.
- 3. Explain the purpose of Checkpoint mechanism. Explain the steps for performing a checkpoint.
- 4. State and explain various classes of failure in database system.
- 5. Explain Shadow paging in detail.
- 6. List and elaborate the Drawbacks of Shadow Paging.
- 7. Elaborate the Immediate Database Modification with its Recovery mechanism.
- 8. Elaborate with appropriate diagram the process through which the transactions read data residing in permanent storage.
- 9. Compare Deferred Database Modification and Immediate Database Modification
- 10. Explain log-based recovery technique.