Machine Learning: Course Project

Jeremy Peters February 5, 2018

Executive Summary

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. In a study, Six young health participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in five different fashions: exactly according to the specification (Class A), throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class C), lowering the dumbbell only halfway (Class D) and throwing the hips to the front (Class E). Only Class A corresponds to correct performance. The objective of this project is to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants to build a machine learning algorithm to predict the manner/class type in which an exerise was completed. More information about the study and data set can be found in the section on the Weight Lifting Exercise Dataset at the following URL: http://groupware.les.inf.puc-rio.br/har.

Exploratory Data Analysis

- The training data for this project was download from the following URL: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
- The test data for this project was download from the following URL: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
- Load the required r packages: caret, gbm and randomForest
- Read the Training and Testing CSV files in table format, specify types of missing values (NA, empty strings and div0), and create data frames
- Display the internal structure of an R object and generate summary statistics of the training dataset
- The Training dataset contains 160 variables and 19,622 records
- The Testing dataset contains 160 variables and 20 records

Loading required package: survival

• classe is the outcome factor variable with 5 levels: Class A, Class B, Class C, Class D, and Class E

```
# Load the required r packages
library(caret)

## Loading required package: lattice
## Loading required package: ggplot2
library(randomForest)

## randomForest 4.6-12

## Type rfNews() to see new features/changes/bug fixes.

##
## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':
##
## margin
library(gbm)
```

```
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
##
       cluster
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.3
dfTrain <- read.csv("pml-training.csv", header = TRUE, na.strings=c("NA","#DIV/0!",""))
dfTest <- read.csv("pml-testing.csv", header = TRUE, na.strings=c("NA","#DIV/0!",""))
# Get variable names
names(dfTrain)
     [1] "X"
##
                                     "user name"
##
     [3] "raw_timestamp_part_1"
                                     "raw_timestamp_part_2"
##
     [5] "cvtd_timestamp"
                                     "new_window"
##
                                     "roll_belt"
     [7] "num_window"
                                     "yaw_belt"
     [9] "pitch_belt"
    [11] "total_accel_belt"
                                     "kurtosis_roll_belt"
##
##
   [13] "kurtosis_picth_belt"
                                     "kurtosis_yaw_belt"
##
  [15] "skewness_roll_belt"
                                     "skewness_roll_belt.1"
   [17] "skewness_yaw_belt"
                                     "max_roll_belt"
                                     "max_yaw_belt"
## [19] "max_picth_belt"
## [21] "min_roll_belt"
                                     "min_pitch_belt"
                                     "amplitude_roll_belt"
## [23] "min yaw belt"
## [25] "amplitude_pitch_belt"
                                     "amplitude_yaw_belt"
##
   [27] "var total accel belt"
                                     "avg roll belt"
## [29] "stddev_roll_belt"
                                     "var_roll_belt"
## [31] "avg_pitch_belt"
                                     "stddev_pitch_belt"
                                     "avg_yaw_belt"
## [33] "var_pitch_belt"
## [35] "stddev_yaw_belt"
                                     "var_yaw_belt"
## [37] "gyros_belt_x"
                                     "gyros_belt_y"
## [39] "gyros_belt_z"
                                     "accel_belt_x"
                                     "accel_belt_z"
## [41] "accel_belt_y"
##
   [43] "magnet_belt_x"
                                     "magnet_belt_y"
                                     "roll_arm"
##
  [45] "magnet_belt_z"
  [47] "pitch_arm"
                                     "yaw_arm"
   [49] "total_accel_arm"
                                     "var_accel_arm"
##
## [51] "avg_roll_arm"
                                     "stddev_roll_arm"
## [53] "var_roll_arm"
                                     "avg_pitch_arm"
## [55] "stddev_pitch_arm"
                                     "var_pitch_arm"
## [57] "avg yaw arm"
                                     "stddev yaw arm"
## [59] "var_yaw_arm"
                                     "gyros_arm_x"
## [61] "gyros_arm_y"
                                     "gyros arm z"
                                     "accel_arm_y"
## [63] "accel_arm_x"
   [65] "accel arm z"
                                     "magnet_arm_x"
## [67] "magnet_arm_y"
                                     "magnet_arm_z"
## [69] "kurtosis_roll_arm"
                                     "kurtosis_picth_arm"
## [71] "kurtosis_yaw_arm"
                                     "skewness_roll_arm"
## [73] "skewness_pitch_arm"
                                     "skewness_yaw_arm"
## [75] "max_roll_arm"
                                     "max_picth_arm"
```

```
[77] "max_yaw_arm"
                                     "min_roll_arm"
##
  [79] "min_pitch_arm"
                                     "min_yaw_arm"
  [81] "amplitude_roll_arm"
                                     "amplitude_pitch_arm"
                                     "roll_dumbbell"
## [83] "amplitude_yaw_arm"
##
   [85] "pitch_dumbbell"
                                     "yaw_dumbbell"
  [87] "kurtosis_roll_dumbbell"
##
                                     "kurtosis_picth_dumbbell"
## [89] "kurtosis_yaw_dumbbell"
                                     "skewness_roll_dumbbell"
## [91] "skewness_pitch_dumbbell"
                                     "skewness_yaw_dumbbell"
## [93] "max_roll_dumbbell"
                                     "max_picth_dumbbell"
## [95] "max_yaw_dumbbell"
                                     "min_roll_dumbbell"
## [97] "min_pitch_dumbbell"
                                     "min_yaw_dumbbell"
## [99] "amplitude_roll_dumbbell"
                                     "amplitude_pitch_dumbbell"
## [101] "amplitude_yaw_dumbbell"
                                     "total_accel_dumbbell"
                                     "avg_roll_dumbbell"
## [103] "var_accel_dumbbell"
## [105] "stddev_roll_dumbbell"
                                     "var_roll_dumbbell"
## [107] "avg_pitch_dumbbell"
                                     "stddev_pitch_dumbbell"
## [109] "var_pitch_dumbbell"
                                     "avg_yaw_dumbbell"
## [111] "stddev_yaw_dumbbell"
                                     "var_yaw_dumbbell"
## [113] "gyros_dumbbell_x"
                                     "gyros_dumbbell_y"
## [115] "gyros_dumbbell_z"
                                     "accel_dumbbell_x"
## [117] "accel_dumbbell_y"
                                     "accel_dumbbell_z"
## [119] "magnet_dumbbell_x"
                                     "magnet_dumbbell_y"
## [121] "magnet_dumbbell_z"
                                     "roll_forearm"
## [123] "pitch_forearm"
                                     "yaw forearm"
## [125] "kurtosis_roll_forearm"
                                     "kurtosis_picth_forearm"
## [127] "kurtosis_yaw_forearm"
                                     "skewness_roll_forearm"
## [129] "skewness_pitch_forearm"
                                     "skewness_yaw_forearm"
## [131] "max_roll_forearm"
                                     "max_picth_forearm"
## [133] "max_yaw_forearm"
                                     "min_roll_forearm"
## [135] "min_pitch_forearm"
                                     "min_yaw_forearm"
## [137] "amplitude_roll_forearm"
                                     "amplitude_pitch_forearm"
## [139] "amplitude_yaw_forearm"
                                     "total_accel_forearm"
## [141] "var_accel_forearm"
                                     "avg_roll_forearm"
## [143] "stddev_roll_forearm"
                                     "var_roll_forearm"
## [145] "avg_pitch_forearm"
                                     "stddev_pitch_forearm"
## [147] "var_pitch_forearm"
                                     "avg_yaw_forearm"
## [149] "stddev_yaw_forearm"
                                     "var_yaw_forearm"
## [151] "gyros_forearm_x"
                                     "gyros_forearm_y"
## [153] "gyros_forearm_z"
                                     "accel_forearm_x"
## [155] "accel_forearm_y"
                                     "accel_forearm_z"
## [157] "magnet_forearm_x"
                                     "magnet forearm y"
## [159] "magnet_forearm_z"
                                     "classe"
str(dfTrain)
## 'data.frame':
                    19622 obs. of 160 variables:
##
   $ X
                               : int 1 2 3 4 5 6 7 8 9 10 ...
## $ user name
                              : Factor w/ 6 levels "adelmo", "carlitos", ...: 2 2 2 2 2 2 2 2 2 2 ...
                              : int 1323084231 1323084231 1323084231 1323084232 1323084232 1323084232
## $ raw_timestamp_part_1
   $ raw_timestamp_part_2
                                     788290 808298 820366 120339 196328 304277 368296 440390 484323 484
                               : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 ...
## $ cvtd_timestamp
## $ new_window
                              : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
##
                                     11 11 11 12 12 12 12 12 12 12 ...
   $ num_window
                               : int
##
   $ roll_belt
                                     1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
   $ pitch_belt
                               : num 8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
```

```
## $ yaw belt
                          : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
## $ total accel belt
                          : int 3 3 3 3 3 3 3 3 3 ...
## $ kurtosis roll belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_picth_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ kurtosis_yaw_belt
                          : logi NA NA NA NA NA NA ...
## $ skewness_roll_belt
                          : num NA NA NA NA NA NA NA NA NA ...
                          : num NA NA NA NA NA NA NA NA NA ...
## $ skewness roll belt.1
## $ skewness_yaw_belt
                          : logi NA NA NA NA NA NA ...
##
   $ max roll belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ max_picth_belt
                          : int
                                NA NA NA NA NA NA NA NA NA ...
## $ max_yaw_belt
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ min_roll_belt
                                NA NA NA NA NA NA NA NA NA ...
                          : num
## $ min_pitch_belt
                          : int
                                NA NA NA NA NA NA NA NA NA . . .
## $ min_yaw_belt
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ amplitude_roll_belt
                                NA NA NA NA NA NA NA NA NA ...
                          : num
##
   $ amplitude_pitch_belt
                          : int
                                NA NA NA NA NA NA NA NA NA ...
## $ amplitude_yaw_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ var total accel belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ avg_roll_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ stddev roll belt
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ var_roll_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_belt
                                NA NA NA NA NA NA NA NA NA ...
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ var pitch belt
                          : num
## $ avg_yaw_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_belt
                          : num NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_belt
                                NA NA NA NA NA NA NA NA NA ...
                          : num
                          : num
## $ gyros_belt_x
                                ## $ gyros_belt_y
                                0 0 0 0 0.02 0 0 0 0 0 ...
                          : num
## $ gyros_belt_z
                          : num
                                 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
## $ accel_belt_x
                          : int
                                 -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
## $ accel_belt_y
                          : int
                                4 4 5 3 2 4 3 4 2 4 ...
## $ accel_belt_z
                          : int
                                22 22 23 21 24 21 21 21 24 22 ...
## $ magnet_belt_x
                                -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
                          : int
## $ magnet belt v
                          : int
                                599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z
                                -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
                          : int
## $ roll arm
                          : num
                                ## $ pitch_arm
                          : num
                                22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
## $ yaw_arm
                                 : num
## $ total_accel_arm
                          : int 34 34 34 34 34 34 34 34 34 ...
## $ var_accel_arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ avg roll arm
                          : num NA NA NA NA NA NA NA NA NA ...
                          : num NA NA NA NA NA NA NA NA NA ...
## $ stddev roll arm
## $ var_roll_arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ avg_pitch_arm
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ stddev_pitch_arm
                                NA NA NA NA NA NA NA NA NA ...
                          : num
## $ var_pitch_arm
                          : num
                                NA NA NA NA NA NA NA NA NA . . .
## $ avg_yaw_arm
                          : num
                                NA NA NA NA NA NA NA NA NA ...
## $ stddev_yaw_arm
                          : num NA NA NA NA NA NA NA NA NA ...
## $ var_yaw_arm
                                NA NA NA NA NA NA NA NA NA ...
                          : num
## $ gyros_arm_x
                                : num
## $ gyros arm y
                          : num 0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
## $ gyros_arm_z
                          : num -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
## $ accel_arm_x
                          : int -288 -290 -289 -289 -289 -289 -289 -289 -288 ...
```

```
$ accel_arm_y
                                     109 110 110 111 111 111 111 111 109 110 ...
##
                              : int
##
   $ accel_arm_z
                                     -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
                              : int
   $ magnet arm x
                                     -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##
                              : int
##
                                     337 337 344 344 337 342 336 338 341 334 ...
   $ magnet_arm_y
                              : int
##
   $ magnet_arm_z
                              : int
                                     516 513 513 512 506 513 509 510 518 516 ...
##
   $ kurtosis roll arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
   $ kurtosis picth arm
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
                                     NA NA NA NA NA NA NA NA NA ...
##
    $ kurtosis_yaw_arm
                              : num
##
    $ skewness roll arm
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ skewness_pitch_arm
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ skewness_yaw_arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
                                     NA NA NA NA NA NA NA NA NA ...
    $ max_roll_arm
                              : num
##
                                     NA NA NA NA NA NA NA NA NA ...
   $ max_picth_arm
                              : num
##
   $ max_yaw_arm
                              : int
                                     NA NA NA NA NA NA NA NA NA ...
##
                                     NA NA NA NA NA NA NA NA NA ...
   $ min_roll_arm
                              : num
##
    $ min_pitch_arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
   $ min_yaw_arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : int
##
   $ amplitude roll arm
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ amplitude_pitch_arm
                              : num
##
   $ amplitude yaw arm
                              : int
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ roll_dumbbell
                                     13.1 13.1 12.9 13.4 13.4 ...
                              : num
   $ pitch dumbbell
                                     -70.5 -70.6 -70.3 -70.4 -70.4 ...
##
                              : num
                                     -84.9 -84.7 -85.1 -84.9 -84.9 ...
##
   $ yaw_dumbbell
                              : num
##
   $ kurtosis roll dumbbell
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
   $ kurtosis_picth_dumbbell : num
##
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ kurtosis_yaw_dumbbell
                              : logi
                                     NA NA NA NA NA ...
##
   $ skewness_roll_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
   $ skewness_pitch_dumbbell : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ skewness_yaw_dumbbell
                              : logi
                                     NA NA NA NA NA ...
##
   $ max_roll_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
##
    $ max_picth_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ max_yaw_dumbbell
                              : num
                                     NA NA NA NA NA NA NA NA NA ...
##
   $ min_roll_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
   $ min_pitch_dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
##
                              : num
   $ min yaw dumbbell
                                     NA NA NA NA NA NA NA NA NA ...
                              : num
   $ amplitude_roll_dumbbell : num    NA ...
##
     [list output truncated]
dim(dfTest)
## [1] 20 160
#summary(dfTrain)
summary(dfTrain$classe)
##
      Α
           В
                C
                     D
                          Ε
## 5580 3797 3422 3216 3607
```

Data Processing: Cleaning and Preparation

- Remove the first seven descriptive variables/fields (X/Id, user_name,raw_timestamp_part_1, raw_timestamp_part_2, cvtd_timestamp, new_window, num_window) from both data sets that will not help predict the manner in which an exercise was completed.
- Remove the variables/fields from the data set that contain missing values
- Remove Near Zero Variance Variables

- The resulting Training and Testing datasets both have 53 variables/fields the last of which is the classe variable/field
- Cross-validation is performed by splitting the cleaned training data set into a training data set (75%) that will be used for prediction and a testing/validation data set (25%) that will be used to determine out-of-sample errors

```
dfTrain <- dfTrain[, -c(1:7)]

dfTest <- dfTest[, -c(1:7)]

dfTrain <- dfTrain[, colSums(is.na(dfTrain)) == 0]

dfTest <- dfTest[, colSums(is.na(dfTest)) == 0]

#Remove any Near Zero Variance Variables

nzVar <- nearZeroVar(dfTrain, saveMetrics = TRUE)

nzVar</pre>
```

```
##
                         freqRatio percentUnique zeroVar
## roll_belt
                          1.101904
                                        6.7781062
                                                    FALSE FALSE
## pitch_belt
                          1.036082
                                       9.3772296
                                                    FALSE FALSE
## yaw_belt
                          1.058480
                                       9.9734991
                                                    FALSE FALSE
## total_accel_belt
                          1.063160
                                       0.1477933
                                                    FALSE FALSE
## gyros_belt_x
                                                    FALSE FALSE
                          1.058651
                                       0.7134849
## gyros belt y
                          1.144000
                                       0.3516461
                                                    FALSE FALSE
## gyros_belt_z
                          1.066214
                                       0.8612782
                                                    FALSE FALSE
## accel belt x
                          1.055412
                                       0.8357966
                                                    FALSE FALSE
## accel_belt_y
                          1.113725
                                       0.7287738
                                                    FALSE FALSE
## accel_belt_z
                          1.078767
                                       1.5237998
                                                    FALSE FALSE
                                                    FALSE FALSE
## magnet belt x
                          1.090141
                                       1.6664968
## magnet belt y
                          1.099688
                                       1.5187035
                                                    FALSE FALSE
## magnet belt z
                          1.006369
                                       2.3290184
                                                    FALSE FALSE
## roll_arm
                         52.338462
                                      13.5256345
                                                    FALSE FALSE
## pitch_arm
                         87.256410
                                      15.7323412
                                                    FALSE FALSE
## yaw_arm
                         33.029126
                                      14.6570176
                                                    FALSE FALSE
## total_accel_arm
                          1.024526
                                       0.3363572
                                                    FALSE FALSE
## gyros_arm_x
                          1.015504
                                       3.2769341
                                                    FALSE FALSE
## gyros_arm_y
                          1.454369
                                       1.9162165
                                                    FALSE FALSE
## gyros_arm_z
                                                    FALSE FALSE
                          1.110687
                                        1.2638875
## accel_arm_x
                          1.017341
                                       3.9598410
                                                    FALSE FALSE
## accel_arm_y
                          1.140187
                                       2.7367241
                                                    FALSE FALSE
## accel arm z
                          1.128000
                                       4.0362858
                                                    FALSE FALSE
## magnet_arm_x
                          1.000000
                                       6.8239731
                                                    FALSE FALSE
## magnet arm y
                          1.056818
                                       4.4439914
                                                    FALSE FALSE
## magnet_arm_z
                          1.036364
                                       6.4468454
                                                    FALSE FALSE
## roll dumbbell
                          1.022388
                                      84.2065029
                                                    FALSE FALSE
## pitch_dumbbell
                          2.277372
                                      81.7449801
                                                    FALSE FALSE
## yaw dumbbell
                          1.132231
                                      83.4828254
                                                    FALSE FALSE
## total accel dumbbell
                          1.072634
                                       0.2191418
                                                    FALSE FALSE
## gyros_dumbbell_x
                          1.003268
                                       1.2282132
                                                    FALSE FALSE
## gyros_dumbbell_y
                          1.264957
                                        1.4167771
                                                    FALSE FALSE
## gyros_dumbbell_z
                          1.060100
                                       1.0498420
                                                    FALSE FALSE
## accel_dumbbell_x
                          1.018018
                                        2.1659362
                                                    FALSE FALSE
## accel_dumbbell_y
                                       2.3748853
                                                    FALSE FALSE
                          1.053061
## accel_dumbbell_z
                          1.133333
                                        2.0894914
                                                    FALSE FALSE
## magnet_dumbbell_x
                          1.098266
                                       5.7486495
                                                    FALSE FALSE
```

```
## magnet_dumbbell_y
                          1.197740
                                        4.3012945
                                                     FALSE FALSE
## magnet_dumbbell_z
                          1.020833
                                        3.4451126
                                                     FALSE FALSE
                         11.589286
                                                     FALSE FALSE
## roll forearm
                                       11.0895933
## pitch_forearm
                         65.983051
                                       14.8557741
                                                     FALSE FALSE
## yaw forearm
                         15.322835
                                       10.1467740
                                                     FALSE FALSE
## total accel forearm
                          1.128928
                                        0.3567424
                                                     FALSE FALSE
## gyros forearm x
                                                     FALSE FALSE
                          1.059273
                                        1.5187035
## gyros_forearm_y
                          1.036554
                                        3.7763735
                                                     FALSE FALSE
## gyros_forearm_z
                          1.122917
                                        1.5645704
                                                     FALSE FALSE
## accel_forearm_x
                          1.126437
                                        4.0464784
                                                     FALSE FALSE
## accel_forearm_y
                          1.059406
                                        5.1116094
                                                     FALSE FALSE
## accel_forearm_z
                                                     FALSE FALSE
                          1.006250
                                        2.9558659
## magnet_forearm_x
                          1.012346
                                        7.7667924
                                                     FALSE FALSE
## magnet_forearm_y
                          1.246914
                                        9.5403119
                                                     FALSE FALSE
## magnet_forearm_z
                                        8.5771073
                                                     FALSE FALSE
                          1.000000
## classe
                          1.469581
                                        0.0254816
                                                     FALSE FALSE
dfTrain <- dfTrain[, !nzVar$nzv]</pre>
dfTest <- dfTest[, !nzVar$nzv]</pre>
dim(dfTrain)
## [1] 19622
dfInTrain <- createDataPartition(dfTrain$classe, p = 0.75, list = FALSE)</pre>
dfPredict <- dfTrain[dfInTrain, ]</pre>
dfValidate <- dfTrain[-dfInTrain, ]</pre>
```

Model Fitting

- Random Forest and Stochastic Gradient Boosting Predictive models are fitted to predict the manner/class type in which an exerise was completed because they are usually the top performing algorithms. see Appendix for Stochastic Gradient Boosting model fitting
- set.seed for pseudo-random number generation in order to ensure reproducible results
- Prediction evaluation will maximimize accuracy and minimize out-of sample error
- Random Forest algorithm was selected because it is one of the most accurate learning algorithms available and determines the features that are important for classification for many datasets. It works well with a large number of variables where the interactions between variables are unknown. It provides estimates of what variables are important in the classification and handles correlated covariates & outliers.
- 10-fold cross validation (cv) resampling method is applied to the Random Forest algorithm by default
- The results are predicted using the validation data set
- The results are compared using a confusionMatrix: a cross-tabulation of observed and predicted classes with associated statistics.
- The accuracy/overall agreement rate and Kappa are computed
- The importance of Top 20 Variables are calculated and plotted

```
set.seed(25)

#fitControl <- trainControl(method='cv', number = 10)
#modFitRf<- train(classe ~ ., data = dfPredict, method = "rf", trControl = fitControl)
modFitRf<- train(classe ~ ., data = dfPredict, method = "rf")
modFitRf
## Random Forest
##</pre>
```

```
## 14718 samples
##
      52 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 14718, 14718, 14718, 14718, 14718, 14718, ...
## Resampling results across tuning parameters:
##
##
     mtry
           Accuracy
                      Kappa
##
     2
           0.9901659 0.9875556
##
     27
           0.9895229 0.9867418
##
     52
           0.9780252 0.9721936
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
predictRf <- predict(modFitRf, dfValidate)</pre>
confusionMatrix(dfValidate$classe, predictRf)
## Confusion Matrix and Statistics
##
##
             Reference
                 Α
                      В
                           C
                                      Ε
## Prediction
                                D
##
            A 1393
                      2
                           0
                                0
                                      0
            В
                                      0
##
                11
                    938
                           0
                                0
##
            С
                 0
                      8 845
                                2
                                      0
##
            D
                 0
                      0
                          16
                             788
                                      0
##
            F.
                 0
                      0
                           1
                                 0
                                   900
##
## Overall Statistics
##
##
                  Accuracy: 0.9918
##
                    95% CI: (0.9889, 0.9942)
##
       No Information Rate: 0.2863
##
       P-Value [Acc > NIR] : < 2.2e-16
##
                     Kappa: 0.9897
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                        Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                          0.9922
                                   0.9895
                                             0.9803
                                                      0.9975
                                                                1.0000
## Specificity
                          0.9994
                                   0.9972
                                             0.9975
                                                      0.9961
                                                                0.9998
## Pos Pred Value
                                            0.9883
                                                      0.9801
                                                                0.9989
                          0.9986 0.9884
## Neg Pred Value
                          0.9969 0.9975
                                             0.9958
                                                      0.9995
                                                                1.0000
## Prevalence
                                                                0.1835
                          0.2863 0.1933
                                             0.1758
                                                      0.1611
## Detection Rate
                          0.2841
                                   0.1913
                                             0.1723
                                                      0.1607
                                                                0.1835
## Detection Prevalence
                          0.2845
                                   0.1935
                                             0.1743
                                                      0.1639
                                                                0.1837
## Balanced Accuracy
                          0.9958
                                   0.9933
                                             0.9889
                                                      0.9968
                                                                0.9999
accuracy1 <- postResample(predictRf, dfValidate$classe)</pre>
accuracy1
```

```
## Accuracy Kappa
## 0.9918434 0.9896801

#Calculate the variable importance
modFitRfvarImp <- varImp(modFitRf)
plot(modFitRfvarImp, main = "Importance of Top 20 Variables", top = 20)</pre>
```

Importance of Top 20 Variables

Conclusions & Test Data Set Prediction

- The Random Forest algorithm performed very well and gave the best result with an accuracy of 0.994 where accuracy is the proportion of correctly classified observations in the cross-validation test data set. The expected out-of-sample error rate is estimated at 0.006 (1 accuracy) to represent the the expected misclassified observations in the test data set.
- Therefore, the Random Forest predictive model is applied to the 20 test cases available in the originial test data set (not cross-validation test data set). We can expected that few of the test samples will be misclassified based on the accuracy shown on the cross-validation data set.
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
- BABAAEDBAABCBAEEABBB

```
predictRf <- predict(modFitRf, dfTest)
predictRf</pre>
```

[1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E

Appendix

##

3

1.3495

- Stochastic Gradient Boosting Predictive models is fitted to predict the manner/class type in which an exerise was completed
- The results are predicted using the validation data set
- The results are compared using a confusionMatrix: a cross-tabulation of observed and predicted classes with associated statistics.
- The accuracy/overall agreement rate and Kappa are computed

modFitGbm<- train(classe ~ ., data = dfPredict, method = "gbm")</pre> ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 0.1000 0.1311 nan 2 ## 0.0871 1.5215 0.1000 nan 3 ## 1.4617 0.1000 0.0699 nan 4 ## 1.4166 0.1000 0.0553 nan ## 5 1.3789 nan 0.1000 0.0519 ## 6 1.3449 nan 0.1000 0.0395 7 ## 0.1000 0.0406 1.3189 nan 8 ## 1.2936 0.1000 0.0344 nan ## 9 0.0308 1.2721 0.1000 nan ## 10 1.2527 0.1000 0.0325 nan 20 ## 1.0947 0.1000 0.0166 nan ## 40 0.9234 0.1000 0.0105 nan ## 60 0.8151 0.1000 0.0072 nan ## 80 0.7349 0.1000 0.0039 nan ## 100 0.6711 0.1000 0.0037 nan ## 0.0027 120 0.6182 nan 0.1000 ## 140 0.1000 0.0023 0.5741 nan 150 0.1000 ## 0.5550 0.0023 nan ## Iter ## TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 0.1000 0.1886 nan 2 ## 1.4879 nan 0.1000 0.1333 ## 3 1.4023 nan 0.1000 0.1034 ## 4 0.1000 0.0878 1.3363 nan 5 ## 1.2803 nan 0.1000 0.0705 ## 6 1.2349 0.1000 0.0635 nan 7 ## 1.1947 0.1000 0.0670 nan ## 8 1.1533 0.1000 0.0533 nan ## 9 1.1193 0.1000 0.0474 nan ## 10 0.1000 1.0890 0.0490 nan ## 20 0.8804 nan 0.1000 0.0186 ## 40 0.0097 0.6678 0.1000 nan ## 60 0.0066 0.5435 nan 0.1000 ## 80 0.4544 0.1000 0.0052 nan ## 100 0.3883 0.1000 0.0046 nan ## 120 0.3382 nan 0.1000 0.0037 ## 140 0.2982 0.1000 0.0015 nan ## 150 0.2807 0.1000 0.0023 nan ## ## Iter TrainDeviance ValidDeviance StepSize Improve ## 1 1.6094 0.1000 0.2452 nan ## 2 1.4551 nan 0.1000 0.1681

nan

0.1000

0.1284

##	4	1.2700	nan	0.1000	0.1011
##	5	1.2061	nan	0.1000	0.0829
##	6	1.1532	nan	0.1000	0.0885
##	7	1.0990	nan	0.1000	0.0670
##	8	1.0567	nan	0.1000	0.0715
##	9	1.0121	nan	0.1000	0.0605
##	10	0.9740	nan	0.1000	0.0520
##	20	0.7350	nan	0.1000	0.0206
##	40	0.5166	nan	0.1000	0.0150
##	60	0.3901	nan	0.1000	0.0063
##	80	0.3126	nan	0.1000	0.0059
##	100	0.2554	nan	0.1000	0.0027
##	120	0.2148	nan	0.1000	0.0024
##	140	0.1804	nan	0.1000	0.0012
##	150	0.1661	nan	0.1000	0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1314
##	2	1.5218	nan	0.1000	0.0897
##	3	1.4620	nan	0.1000	0.0693
##	4	1.4170	nan	0.1000	0.0550
##	5	1.3813	nan	0.1000	0.0460
##	6	1.3510	nan	0.1000	0.0454
##	7	1.3224	nan	0.1000	0.0421
##	8	1.2956	nan	0.1000	0.0337
##	9	1.2731	nan	0.1000	0.0337
##	10	1.2499	nan	0.1000	0.0295
##	20	1.0948	nan	0.1000	0.0169
##	40	0.9228	nan	0.1000	0.0100
##	60	0.8147	nan	0.1000	0.0066
##	80	0.7341	nan	0.1000	0.0044
##	100	0.6732	nan	0.1000	0.0043
##	120	0.6220	nan	0.1000	0.0037
##	140	0.5782	nan	0.1000	0.0036
##	150	0.5596	nan	0.1000	0.0025
##	100	0.0050	nan	0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1867
##	2	1.4886	nan	0.1000	0.1303
##	3	1.4043	nan	0.1000	0.0996
##	4	1.3386	nan	0.1000	0.0903
##	5	1.2819	nan	0.1000	0.0770
##	6	1.2322		0.1000	0.0691
##	7	1.1885	nan	0.1000	0.0545
##	8	1.1523	nan	0.1000	0.0546
##	9	1.1169	nan	0.1000	0.0300
##	10	1.0870	nan	0.1000	0.0474
			nan		
##	20	0.8834	nan	0.1000	0.0253
##	40	0.6713	nan	0.1000	0.0135
##	60	0.5427	nan	0.1000	0.0056
##	80	0.4538	nan	0.1000	0.0047
##	100	0.3888	nan	0.1000	0.0040
##	120	0.3381	nan	0.1000	0.0036
##	140	0.2928	nan	0.1000	0.0021

## ##	150	0.2774	nan	0.1000	0.0019
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2239
##	2	1.4645	nan	0.1000	0.1739
##	3	1.3566	nan	0.1000	0.1208
##	4	1.2790	nan	0.1000	0.1075
##	5	1.2122	nan	0.1000	0.0851
##	6	1.1573	nan	0.1000	0.0798
##	7	1.1068	nan	0.1000	0.0696
##	8	1.0635	nan	0.1000	0.0603
##	9	1.0255	nan	0.1000	0.0663
##	10	0.9850	nan	0.1000	0.0580
##	20	0.7478	nan	0.1000	0.0239
##	40	0.5238	nan	0.1000	0.0156
##	60	0.3945	nan	0.1000	0.0080
##	80	0.3170	nan	0.1000	0.0042
##	100	0.2589	nan	0.1000	0.0032
##	120	0.2156	nan	0.1000	0.0022
##	140	0.1844	nan	0.1000	0.0023
##	150	0.1693	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1303
##	2	1.5233	nan	0.1000	0.0903
##	3	1.4634	nan	0.1000	0.0696
##	4	1.4193	nan	0.1000	0.0545
##	5	1.3837	nan	0.1000	0.0466
##	6	1.3532	nan	0.1000	0.0451
##	7	1.3241	nan	0.1000	0.0359
##	8	1.3004	nan	0.1000	0.0361
##	9	1.2778	nan	0.1000	0.0341
##	10	1.2568	nan	0.1000	0.0302
##	20	1.1015	nan	0.1000	0.0189
##	40	0.9303	nan	0.1000	0.0093
##	60	0.8225	nan	0.1000	0.0071
##	80	0.7425	nan	0.1000	0.0044
##	100	0.6803	nan	0.1000	0.0042
##	120	0.6289	nan	0.1000	0.0037
##	140	0.5852	nan	0.1000	0.0022
##	150	0.5669	nan	0.1000	0.0022
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1876
##	2	1.4865	nan	0.1000	0.1305
##	3 4	1.4046 1.3376	nan	0.1000	0.1060
##	5		nan	0.1000	0.0871
##	6	1.2823	nan	0.1000	0.0721
## ##	7	1.2367 1.1973	nan	0.1000 0.1000	0.0618 0.0640
##	8	1.1973	nan	0.1000	0.0538
##	9	1.1237	nan	0.1000	0.0538
##	10	1.0926	nan	0.1000	0.0493
##	20	0.8966	nan	0.1000	0.0436
##	20	0.0300	nan	0.1000	0.0209

##	40	0.6763	nan	0.1000	0.0120
##	60	0.5520	nan	0.1000	0.0080
##	80	0.4659	nan	0.1000	0.0067
##	100	0.3982	nan	0.1000	0.0040
##	120	0.3467		0.1000	0.0045
			nan		
##	140	0.3049	nan	0.1000	0.0017
##	150	0.2885	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2300
##	2	1.4595	nan	0.1000	0.1601
##	3	1.3587	nan	0.1000	0.1357
##	4	1.2744	nan	0.1000	0.1063
##	5	1.2080	nan	0.1000	0.0812
##	6	1.1551		0.1000	0.0012
			nan		
##	7	1.1064	nan	0.1000	0.0728
##	8	1.0598	nan	0.1000	0.0574
##	9	1.0231	nan	0.1000	0.0561
##	10	0.9880	nan	0.1000	0.0613
##	20	0.7527	nan	0.1000	0.0227
##	40	0.5281	nan	0.1000	0.0151
##	60	0.4028	nan	0.1000	0.0074
##	80	0.3187	nan	0.1000	0.0038
##	100	0.2619	nan	0.1000	0.0031
##	120	0.2162	nan	0.1000	0.0019
##	140	0.1849	nan	0.1000	0.0034
##	150	0.1716	nan	0.1000	0.0014
		0.1.1			
##					
##	Ttor	TrainDeviance	ValidDeviance		
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	1.6094	nan	StepSize 0.1000	Improve 0.1302
## ## ##	1 2	1.6094 1.5239	nan nan	StepSize 0.1000 0.1000	Improve 0.1302 0.0870
## ## ## ##	1 2 3	1.6094 1.5239 1.4659	nan	StepSize 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717
## ## ## ##	1 2 3 4	1.6094 1.5239 1.4659 1.4199	nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549
## ## ## ##	1 2 3 4 5	1.6094 1.5239 1.4659 1.4199 1.3846	nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549 0.0525
## ## ## ##	1 2 3 4 5 6	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513	nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377
## ## ## ## ##	1 2 3 4 5	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513	nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429
## ## ## ## ##	1 2 3 4 5 6	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999	nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355
## ## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513	nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999	nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999	nan nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549	nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0035
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176 0.5749	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0035 0.0028
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0035
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176 0.5749 0.5557	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0035 0.0028 0.0025
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176 0.5749 0.5557 TrainDeviance	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0035 0.0025 Improve
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176 0.5749 0.5557 TrainDeviance 1.6094	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0035 0.0025 Improve 0.1939
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176 0.5749 0.5557 TrainDeviance 1.6094 1.4841	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0025 Improve 0.1939 0.1315
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176 0.5749 0.5557 TrainDeviance 1.6094 1.4841 1.3995	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0025 Improve 0.1939 0.1315 0.1017
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5239 1.4659 1.4199 1.3846 1.3513 1.3265 1.2999 1.2764 1.2549 1.0972 0.9239 0.8132 0.7339 0.6705 0.6176 0.5749 0.5557 TrainDeviance 1.6094 1.4841	nan	StepSize	Improve 0.1302 0.0870 0.0717 0.0549 0.0525 0.0377 0.0429 0.0355 0.0340 0.0373 0.0185 0.0107 0.0078 0.0047 0.0035 0.0025 Improve 0.1939 0.1315

##	6	1.2331	nan	0.1000	0.0704
##	7	1.1880	nan	0.1000	0.0508
##	8	1.1540	nan	0.1000	0.0572
##	9	1.1188	nan	0.1000	0.0460
##	10	1.0895	nan	0.1000	0.0469
##	20	0.8888	nan	0.1000	0.0229
##	40	0.6680	nan	0.1000	0.0104
##	60	0.5424	nan	0.1000	0.0079
##	80	0.4504	nan	0.1000	0.0050
##	100	0.3871	nan	0.1000	0.0055
##	120	0.3367	nan	0.1000	0.0033
##	140	0.2977	nan	0.1000	0.0031
##	150	0.2785	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2360
##	2	1.4585	nan	0.1000	0.1690
##	3	1.3520	nan	0.1000	0.1258
##	4	1.2723	nan	0.1000	0.1079
##	5	1.2043	nan	0.1000	0.0966
##	6	1.1452	nan	0.1000	0.0733
##	7	1.0990	nan	0.1000	0.0703
##	8	1.0552		0.1000	0.0703
##	9	1.0332	nan	0.1000	0.0570
##	10	0.9856	nan	0.1000	0.0536
##	20		nan		0.0330
	40	0.7512	nan	0.1000	
##	60	0.5233	nan	0.1000	0.0128 0.0054
##		0.4004	nan	0.1000	
##	80	0.3200	nan	0.1000	0.0037
##	100	0.2593	nan	0.1000	0.0044
##	120	0.2131	nan	0.1000	0.0021
##	140	0.1804	nan	0.1000	0.0022
##	150	0.1667	nan	0.1000	0.0020
##	т.	m · ъ ·	17 1 · 1D ·	a. a:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1324
##	2	1.5214	nan	0.1000	0.0924
##	3	1.4605	nan	0.1000	0.0674
##	4	1.4156	nan	0.1000	0.0542
##	5	1.3798	nan	0.1000	0.0464
##	6	1.3493	nan	0.1000	0.0443
##	7	1.3206	nan	0.1000	0.0358
##	8	1.2974	nan	0.1000	0.0380
##	9	1.2728	nan	0.1000	0.0304
##	10	1.2531	nan	0.1000	0.0314
##	20	1.0970	nan	0.1000	0.0179
##	40	0.9226	nan	0.1000	0.0076
##	60	0.8146	nan	0.1000	0.0059
##	80	0.7337	nan	0.1000	0.0043
##	100	0.6726	nan	0.1000	0.0045
##	120	0.6212	nan	0.1000	0.0032
##	140	0.5769	nan	0.1000	0.0033
##	150	0.5594	nan	0.1000	0.0025
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1947
##	2	1.4846	nan	0.1000	0.1279
##	3	1.4012	nan	0.1000	0.1092
##	4	1.3322	nan	0.1000	0.0866
##	5	1.2783	nan	0.1000	0.0757
##	6	1.2296	nan	0.1000	0.0664
##	7	1.1880	nan	0.1000	0.0591
##	8	1.1512	nan	0.1000	0.0566
##	9	1.1152	nan	0.1000	0.0449
##	10	1.0862	nan	0.1000	0.0358
##	20	0.8848	nan	0.1000	0.0273
##	40	0.6664	nan	0.1000	0.0105
##	60	0.5410	nan	0.1000	0.0073
##	80	0.4532	nan	0.1000	0.0073
##	100	0.3882	nan	0.1000	0.0014
##	120	0.3364	nan	0.1000	0.0048
##	140	0.2954		0.1000	0.0033
##	150	0.2773	nan nan	0.1000	0.0033
##	100	0.2115	nan	0.1000	0.0025
##	Iter	TrainDeviance	ValidDeviance	StepSize	Tmprovo
##	1	1.6094		0.1000	Improve 0.2407
##	2	1.4551	nan	0.1000	0.1571
##	3	1.3545	nan	0.1000	0.1371
##	4	1.2739	nan	0.1000	0.1267
##	5	1.2077	nan		0.1002
##	6	1.1492	nan	0.1000 0.1000	0.0929
##	7	1.0980	nan	0.1000	0.0730
##	8	1.0572	nan	0.1000	0.0042
	9		nan		0.0703
##	10	1.0133	nan	0.1000	0.0574
##	20	0.9772	nan	0.1000	0.0622
##		0.7373	nan	0.1000	
##	40	0.5086	nan	0.1000	0.0111
##	60	0.3850	nan	0.1000	0.0082
##	80	0.3026	nan	0.1000	0.0034 0.0043
##	100	0.2517	nan	0.1000	
##	120	0.2082	nan	0.1000	0.0035
##	140	0.1758	nan	0.1000	0.0014
## ##	150	0.1626	nan	0.1000	0.0015
##	Iter	TrainDeviance	ValidDeviance	C+ an Cina	Tmnmarra
##	1	1.6094		StepSize 0.1000	Improve 0.1285
##	2	1.5213	nan	0.1000	0.1283
##	3	1.4625	nan	0.1000	0.0694
##	4	1.4166	nan	0.1000	0.0526
##	5	1.3811	nan	0.1000	0.0526
##	6	1.3482	nan		
##	7		nan	0.1000 0.1000	0.0427
		1.3199	nan		0.0340
##	8 9	1.2974	nan	0.1000	0.0357
##		1.2745	nan	0.1000	0.0305
##	10	1.2551	nan	0.1000	0.0365
## ##	20 40	1.0993	nan	0.1000	0.0167
		0.9248	nan	0.1000	0.0091
##	60	0.8188	nan	0.1000	0.0054

##	80	0.7409	nan	0.1000	0.0040
##	100	0.6758	nan	0.1000	0.0035
##	120	0.6235	nan	0.1000	0.0033
##	140	0.5823	nan	0.1000	0.0028
##	150	0.5611	nan	0.1000	0.0024
##	100	0.0011	nan	0.1000	0.0021
##	T+0m	TwoinDorrionae	ValidDarriance	CtonCino	Tmmmorro
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1858
##	2	1.4871	nan	0.1000	0.1332
##	3	1.4014	nan	0.1000	0.0978
##	4	1.3374	nan	0.1000	0.0847
##	5	1.2815	nan	0.1000	0.0689
##	6	1.2371	nan	0.1000	0.0647
##	7	1.1955	nan	0.1000	0.0583
##	8	1.1587	nan	0.1000	0.0512
##	9	1.1262	nan	0.1000	0.0495
##	10	1.0961	nan	0.1000	0.0462
##	20	0.8863	nan	0.1000	0.0247
##	40	0.6718	nan	0.1000	0.0112
##	60	0.5476	nan	0.1000	0.0062
##	80	0.4570	nan	0.1000	0.0082
##	100	0.3925	nan	0.1000	0.0034
##	120	0.3419	nan	0.1000	0.0031
##	140	0.3009	nan	0.1000	0.0032
##	150	0.2819	nan	0.1000	0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2327
##	2	1.4602	nan	0.1000	0.1580
##	3	1.3580	nan	0.1000	0.1284
##	4	1.2776	nan	0.1000	0.0988
##	5	1.2141	nan	0.1000	0.0869
##	6	1.1583	nan	0.1000	0.0741
##	7	1.1112	nan	0.1000	0.0747
##	8	1.0655	nan	0.1000	0.0700
##	9	1.0233	nan	0.1000	0.0551
##	10	0.9878	nan	0.1000	0.0500
##	20	0.7487	nan	0.1000	0.0279
##	40	0.5246		0.1000	0.0130
			nan		
##	60	0.3965	nan	0.1000	0.0091
##	80	0.3173	nan	0.1000	0.0036
##	100	0.2590	nan	0.1000	0.0036
##	120	0.2154	nan	0.1000	0.0033
##	140	0.1830	nan	0.1000	0.0020
##	150	0.1691	nan	0.1000	0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1255
##	2	1.5237	nan	0.1000	0.0865
##	3	1.4656	nan	0.1000	0.0662
##	4	1.4215	nan	0.1000	0.0515
##	5	1.3876	nan	0.1000	0.0508
##	6	1.3551	nan	0.1000	0.0388
##	7	1.3300	nan	0.1000	0.0366
#	'	1.0000	nan	3.1000	3.0000

##	8	1.3064	nan	0.1000	0.0368
##	9	1.2828	nan	0.1000	0.0336
##	10	1.2607	nan	0.1000	0.0269
##	20	1.1096	nan	0.1000	0.0172
##	40	0.9385	nan	0.1000	0.0079
##	60	0.8287	nan	0.1000	0.0063
##	80	0.7496	nan	0.1000	0.0049
##	100	0.6854	nan	0.1000	0.0044
##	120	0.6329	nan	0.1000	0.0023
##	140	0.5892	nan	0.1000	0.0024
##	150	0.5691	nan	0.1000	0.0039
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1888
##	2	1.4880	nan	0.1000	0.1260
##	3	1.4057	nan	0.1000	0.1056
##	4	1.3382	nan	0.1000	0.0812
##	5	1.2853	nan	0.1000	0.0753
##	6	1.2384	nan	0.1000	0.0636
##	7	1.1969	nan	0.1000	0.0530
##	8	1.1631	nan	0.1000	0.0494
##	9	1.1315	nan	0.1000	0.0523
##	10	1.0990	nan	0.1000	0.0416
##	20	0.9017	nan	0.1000	0.0199
##	40	0.6844	nan	0.1000	0.0133
##	60	0.5541	nan	0.1000	0.0047
##	80	0.4643	nan	0.1000	0.0060
##	100	0.3988	nan	0.1000	0.0045
##	120	0.3457	nan	0.1000	0.0041
##	140	0.3021	nan	0.1000	0.0023
##	150	0.2836	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2397
##	2	1.4581	nan	0.1000	0.1602
##	3	1.3582	nan	0.1000	0.1244
##	4	1.2804	nan	0.1000	0.1155
##	5	1.2085	nan	0.1000	0.0885
##	6	1.1527	nan	0.1000	0.0734
##	7	1.1061	nan	0.1000	0.0644
##	8	1.0648	nan	0.1000	0.0614
##	9	1.0260	nan	0.1000	0.0534
##	10	0.9920	nan	0.1000	0.0509
##	20	0.7548	nan	0.1000	0.0244
##	40	0.5245	nan	0.1000	0.0112
##	60	0.4035	nan	0.1000	0.0108
##	80	0.3168	nan	0.1000	0.0034
##	100	0.2572	nan	0.1000	0.0027
##	120	0.2136	nan	0.1000	0.0027
##	140	0.1834	nan	0.1000	0.0025
##	150	0.1693	nan	0.1000	0.0015
##	100	0.1000	nan	0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1313
σ π	1	1.0034	nan	3.1000	0.1010

##	2	1.5208	nan	0.1000	0.0889
##	3	1.4612	nan	0.1000	0.0688
##	4	1.4166	nan	0.1000	0.0535
##	5	1.3808	nan	0.1000	0.0519
##	6	1.3476	nan	0.1000	0.0390
##	7	1.3217	nan	0.1000	0.0404
##	8	1.2961	nan	0.1000	0.0326
##	9	1.2745	nan	0.1000	0.0360
##	10	1.2515	nan	0.1000	0.0321
##	20	1.0953	nan	0.1000	0.0178
##	40	0.9203	nan	0.1000	0.0104
##	60	0.8131	nan	0.1000	0.0070
##	80	0.7309	nan	0.1000	0.0043
##	100	0.6691	nan	0.1000	0.0042
##	120	0.6146	nan	0.1000	0.0038
##	140	0.5706	nan	0.1000	0.0026
##	150	0.5518	nan	0.1000	0.0035
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1927
##	2	1.4849	nan	0.1000	0.1311
##	3	1.4005	nan	0.1000	0.1050
##	4	1.3332	nan	0.1000	0.0834
##	5	1.2794	nan	0.1000	0.0712
##	6	1.2339	nan	0.1000	0.0642
##	7	1.1930	nan	0.1000	0.0608
##	8	1.1539	nan	0.1000	0.0612
##	9	1.1167	nan	0.1000	0.0512
##	10	1.0855	nan	0.1000	0.0462
##	20	0.8794	nan	0.1000	0.0197
##	40	0.6710	nan	0.1000	0.0114
##	60	0.5415	nan	0.1000	0.0065
##	80	0.4540	nan	0.1000	0.0059
##	100	0.3891	nan	0.1000	0.0041
##	120	0.3361	nan	0.1000	0.0038
##	140	0.2952	nan	0.1000	0.0016
##	150	0.2757	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2324
##	2	1.4599	nan	0.1000	0.1591
##	3	1.3590	nan	0.1000	0.1232
##	4	1.2817	nan	0.1000	0.1097
##	5	1.2126	nan	0.1000	0.0962
##	6	1.1523	nan	0.1000	0.0800
##	7	1.1023	nan	0.1000	0.0689
##	8	1.0589	nan	0.1000	0.0646
##	9	1.0177	nan	0.1000	0.0539
##	10	0.9837	nan	0.1000	0.0472
##	20	0.7429	nan	0.1000	0.0297
##	40	0.5120	nan	0.1000	0.0117
##	60	0.3871	nan	0.1000	0.0067
##	80	0.3109	nan	0.1000	0.0041
##	100	0.2524	nan	0.1000	0.0039

##	120	0.2083	nan	0.1000	0.0015
##	140	0.1778	nan	0.1000	0.0008
##	150	0.1641	nan	0.1000	0.0014
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1293
##	2	1.5232	nan	0.1000	0.0874
##	3	1.4642	nan	0.1000	0.0680
##	4	1.4195	nan	0.1000	0.0552
##	5	1.3840	nan	0.1000	0.0441
##	6	1.3547	nan	0.1000	0.0449
##	7	1.3261	nan	0.1000	0.0419
##	8	1.3000	nan	0.1000	0.0332
##	9	1.2785	nan	0.1000	0.0292
##	10	1.2596	nan	0.1000	0.0349
##	20	1.0989	nan	0.1000	0.0169
##	40	0.9261	nan	0.1000	0.0095
##	60	0.8160	nan	0.1000	0.0066
##	80	0.7386	nan	0.1000	0.0060
##	100	0.6752	nan	0.1000	0.0049
##	120	0.6257	nan	0.1000	0.0029
##	140	0.5819	nan	0.1000	0.0016
##	150	0.5627	nan	0.1000	0.0028
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1858
##	2	1.4884	nan	0.1000	0.1261
##	3	1.4049	nan	0.1000	0.1065
##	4	1.3379	nan	0.1000	0.0860
##	5	1.2829	nan	0.1000	0.0682
##	6	1.2383	nan	0.1000	0.0691
##	7	1.1942	nan	0.1000	0.0567
##	8	1.1586	nan	0.1000	0.0587
##	9	1.1220	nan	0.1000	0.0471
##	10	1.0927	nan	0.1000	0.0478
##	20	0.8876	nan	0.1000	0.0236
##	40	0.6784	nan	0.1000	0.0138
##	60	0.5532	nan	0.1000	0.0062
##	80	0.4629	nan	0.1000	0.0046
##	100	0.3955	nan	0.1000	0.0046
##	120	0.3408	nan	0.1000	0.0032
##	140	0.2973	nan	0.1000	0.0033
##	150	0.2795	nan	0.1000	0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2321
##	2	1.4607	nan	0.1000	0.1640
##	3	1.3581	nan	0.1000	0.1295
##	4	1.2776	nan	0.1000	0.1134
##	5	1.2067	nan	0.1000	0.0889
##	6	1.1502	nan	0.1000	0.0761
##	7	1.1015	nan	0.1000	0.0634
##	8	1.0611	nan	0.1000	0.0684
##	9	1.0194	nan	0.1000	0.0663

##	10	0.9788	nan	0.1000	0.0449
##	20	0.7529	nan	0.1000	0.0308
##	40	0.5192	nan	0.1000	0.0136
##	60	0.3946	nan	0.1000	0.0087
##	80	0.3153	nan	0.1000	0.0035
##	100	0.2588	nan	0.1000	0.0051
##	120	0.2147	nan	0.1000	0.0019
##	140	0.1829	nan	0.1000	0.0026
##	150	0.1699	nan	0.1000	0.0014
##	100	0.1000	11411	0.1000	0.0011
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1364
##	2	1.5204	nan	0.1000	0.0879
##	3	1.4614	nan	0.1000	0.0704
##	4	1.4155	nan	0.1000	0.0544
##	5	1.3792	nan	0.1000	0.0454
##	6	1.3486		0.1000	0.0450
##	7	1.3196	nan	0.1000	0.0406
##	8	1.2945	nan nan	0.1000	0.0400
##	9	1.2713		0.1000	0.0369
##	10	1.2528	nan	0.1000	0.0200
	20	1.2526	nan	0.1000	0.0342
##			nan		
##	40	0.9210	nan	0.1000	0.0080
##	60	0.8143	nan	0.1000	0.0063
##	80	0.7343	nan	0.1000	0.0053
##	100	0.6704	nan	0.1000	0.0034
##	120	0.6198	nan	0.1000	0.0039
##	140	0.5785	nan	0.1000	0.0024
	4-0				
##	150	0.5577	nan	0.1000	0.0021
##		0.5577	nan	0.1000	0.0020
## ##	Iter	0.5577 TrainDeviance		0.1000 StepSize	0.0020 Improve
## ## ##	Iter 1	0.5577 TrainDeviance 1.6094	nan	0.1000 StepSize 0.1000	0.0020 Improve 0.1824
## ## ## ##	Iter	0.5577 TrainDeviance 1.6094 1.4887	nan ValidDeviance	0.1000 StepSize 0.1000 0.1000	0.0020 Improve 0.1824 0.1324
## ## ## ##	Iter	0.5577 TrainDeviance 1.6094 1.4887 1.4033	nan ValidDeviance nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018
## ## ## ## ##	Iter 1 2 3 4	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833
## ## ## ## ##	Iter 1 2 3 4 5	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740
## ## ## ## ##	Iter	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654
## ## ## ## ##	Iter	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559
## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342	nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654
## ## ## ## ## ##	Iter	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569	Nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252	Nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503
## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1552 1.0924 0.8833 0.6747	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158
## ## ## ## ## ## ## ## ## ## ## ## ##	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426 0.4572	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055 0.0059
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426 0.4572 0.3898	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055 0.0059 0.0038
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426 0.4572 0.3898 0.3400	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055 0.0059 0.0038 0.0025
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426 0.4572 0.3898 0.3400 0.2988	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055 0.0059 0.0038 0.0025 0.0029
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426 0.4572 0.3898 0.3400 0.2988	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055 0.0059 0.0038 0.0025 0.0029
######################################	1ter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426 0.4572 0.3898 0.3400 0.2988 0.2800	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055 0.0059 0.0038 0.0025 0.0029 0.0022
##########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426 0.4572 0.3898 0.3400 0.2988 0.2800 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055 0.0059 0.0038 0.0025 0.0029 0.0022 Improve
#########################	Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.5577 TrainDeviance 1.6094 1.4887 1.4033 1.3356 1.2810 1.2342 1.1926 1.1569 1.1252 1.0924 0.8833 0.6747 0.5426 0.4572 0.3898 0.3400 0.2988 0.2800 TrainDeviance 1.6094	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0020 Improve 0.1824 0.1324 0.1018 0.0833 0.0740 0.0654 0.0559 0.0490 0.0526 0.0503 0.0213 0.0158 0.0055 0.0059 0.0038 0.0025 0.0029 0.0022 Improve 0.2393

##	4	1.2760	nan	0.1000	0.1106
##	5	1.2063	nan	0.1000	0.0858
##	6	1.1523	nan	0.1000	0.0792
##	7	1.1023	nan	0.1000	0.0637
##	8	1.0616	nan	0.1000	0.0642
##	9	1.0204	nan	0.1000	0.0538
##	10	0.9863	nan	0.1000	0.0536
##	20	0.7490	nan	0.1000	0.0237
##	40	0.5219	nan	0.1000	0.0111
##	60	0.3945	nan	0.1000	0.0069
##	80	0.3121	nan	0.1000	0.0046
##	100	0.2564	nan	0.1000	0.0032
##	120	0.2137	nan	0.1000	0.0020
##	140	0.1811	nan	0.1000	0.0013
##	150	0.1680	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1314
##	2	1.5205	nan	0.1000	0.0889
##	3	1.4615	nan	0.1000	0.0687
##	4	1.4167	nan	0.1000	0.0547
##	5	1.3809	nan	0.1000	0.0453
##	6	1.3509	nan	0.1000	0.0449
##	7	1.3224	nan	0.1000	0.0398
##	8	1.2965	nan	0.1000	0.0349
##	9	1.2744	nan	0.1000	0.0343
##	10	1.2512	nan	0.1000	0.0296
##	20	1.0933	nan	0.1000	0.0209
##	40	0.9207	nan	0.1000	0.0081
##	60	0.8143	nan	0.1000	0.0062
##	80	0.7353	nan	0.1000	0.0046
##	100	0.6704	nan	0.1000	0.0040
##	120	0.6177	nan	0.1000	0.0038
##	140	0.5751	nan	0.1000	0.0019
##	150	0.5546	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1933
##	2	1.4851	nan	0.1000	0.1380
##	3	1.3984	nan	0.1000	0.1020
##	4	1.3317	nan	0.1000	0.0868
##	5	1.2768	nan	0.1000	0.0728
##	6	1.2307	nan	0.1000	0.0701
##	7	1.1867	nan	0.1000	0.0570
##	8	1.1506	nan	0.1000	0.0481
##	9	1.1187	nan	0.1000	0.0512
##	10	1.0869	nan	0.1000	0.0439
##	20	0.8888	nan	0.1000	0.0230
##	40	0.6741	nan	0.1000	0.0124
##	60	0.5466	nan	0.1000	0.0077
##	80	0.4576	nan	0.1000	0.0044
##	100	0.3920	nan	0.1000	0.0062
##	120	0.3390	nan	0.1000	0.0031
##	140	0.2999	nan	0.1000	0.0022

## ##	150	0.2809	nan	0.1000	0.0032
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2398
##	2	1.4551	nan	0.1000	0.1643
##	3	1.3511	nan	0.1000	0.1264
##	4	1.2709	nan	0.1000	0.1064
##	5	1.2036	nan	0.1000	0.0964
##	6	1.1427	nan	0.1000	0.0686
##	7	1.0969	nan	0.1000	0.0698
##	8	1.0524	nan	0.1000	0.0667
##	9	1.0114	nan	0.1000	0.0633
##	10	0.9729	nan	0.1000	0.0428
##	20	0.7408	nan	0.1000	0.0270
##	40	0.5263	nan	0.1000	0.0126
##	60	0.3978	nan	0.1000	0.0071
##	80	0.3159	nan	0.1000	0.0048
##	100	0.2597	nan	0.1000	0.0032
##	120	0.2186	nan	0.1000	0.0028
##	140	0.1838	nan	0.1000	0.0013
##	150	0.1706	nan	0.1000	0.0013
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1236
##	2	1.5235	nan	0.1000	0.0858
##	3	1.4656	nan	0.1000	0.0666
##	4	1.4218	nan	0.1000	0.0537
##	5	1.3859	nan	0.1000	0.0488
##	6 7	1.3539	nan	0.1000 0.1000	0.0384
##	8	1.3282 1.3040	nan	0.1000	0.0387 0.0358
##	9	1.2819	nan nan	0.1000	0.0338
##	10	1.2607	nan	0.1000	0.0341
##	20	1.1059	nan	0.1000	0.0303
##	40	0.9280	nan	0.1000	0.0202
##	60	0.8213	nan	0.1000	0.0063
##	80	0.7416	nan	0.1000	0.0060
##	100	0.6788	nan	0.1000	0.0032
##	120	0.6299	nan	0.1000	0.0032
##	140	0.5836	nan	0.1000	0.0024
##	150	0.5642	nan	0.1000	0.0024
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1858
##	2	1.4879	nan	0.1000	0.1269
##	3	1.4037	nan	0.1000	0.0986
##	4	1.3395	nan	0.1000	0.0840
##	5	1.2846	nan	0.1000	0.0675
##	6	1.2410	nan	0.1000	0.0697
##	7	1.1971	nan	0.1000	0.0570
##	8	1.1609	nan	0.1000	0.0500
##	9	1.1281	nan	0.1000	0.0566
##	10	1.0934	nan	0.1000	0.0412
##	20	0.8876	nan	0.1000	0.0242

##	40	0.6683	nan	0.1000	0.0107
##	60	0.5452	nan	0.1000	0.0060
##	80	0.4584	nan	0.1000	0.0052
##	100	0.3920		0.1000	0.0035
			nan		
##	120	0.3386	nan	0.1000	0.0032
##	140	0.2969	nan	0.1000	0.0029
##	150	0.2768	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2333
##	2	1.4619		0.1000	0.1682
			nan		
##	3	1.3569	nan	0.1000	0.1185
##	4	1.2808	nan	0.1000	0.1083
##	5	1.2117	nan	0.1000	0.0869
##	6	1.1575	nan	0.1000	0.0776
##	7	1.1085	nan	0.1000	0.0738
##	8	1.0633	nan	0.1000	0.0758
##	9	1.0162	nan	0.1000	0.0518
##	10	0.9838		0.1000	0.0541
			nan		
##	20	0.7562	nan	0.1000	0.0273
##	40	0.5250	nan	0.1000	0.0111
##	60	0.4004	nan	0.1000	0.0059
##	80	0.3189	nan	0.1000	0.0048
##	100	0.2620	nan	0.1000	0.0046
##	120	0.2160	nan	0.1000	0.0024
##	140	0.1815	nan	0.1000	0.0022
##	150	0.1682	nan	0.1000	0.0022
##	100	0.1002			
шш			11011	0.1000	0.0020
##	_				
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1				
##		TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	TrainDeviance 1.6094	ValidDeviance nan	StepSize 0.1000	Improve 0.1294
## ## ##	1 2	TrainDeviance 1.6094 1.5216 1.4632	ValidDeviance nan nan nan	StepSize 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685
## ## ## ##	1 2 3 4	TrainDeviance 1.6094 1.5216 1.4632 1.4177	ValidDeviance nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525
## ## ## ## ##	1 2 3 4 5	TrainDeviance 1.6094 1.5216 1.4632 1.4177 1.3828	ValidDeviance nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520
## ## ## ## ##	1 2 3 4 5	TrainDeviance 1.6094 1.5216 1.4632 1.4177 1.3828 1.3503	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450
## ## ## ## ## ##	1 2 3 4 5 6 7	TrainDeviance 1.6094 1.5216 1.4632 1.4177 1.3828 1.3503 1.3218	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356
## ## ## ## ## ##	1 2 3 4 5 6 7 8	TrainDeviance 1.6094 1.5216 1.4632 1.4177 1.3828 1.3503 1.3218 1.2985	ValidDeviance nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335
## ## ## ## ## ##	1 2 3 4 5 6 7 8	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317
## ## ## ## ## ##	1 2 3 4 5 6 7 8	TrainDeviance 1.6094 1.5216 1.4632 1.4177 1.3828 1.3503 1.3218 1.2985	ValidDeviance nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0062
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0033 0.0024
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0063 0.0033 0.0024 0.0031
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0033 0.0024
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0063 0.0033 0.0024 0.0031
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize 0.1000	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0063 0.0033 0.0024 0.0031
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0062 0.0033 0.0024 0.0031 0.0035
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0062 0.0033 Improve 0.1892
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0062 0.0033 Improve 0.1892 0.1319
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0335 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0033 0.0024 0.0031 0.0035 Improve 0.1892 0.1319 0.1020
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	TrainDeviance	ValidDeviance nan nan nan nan nan nan nan nan nan na	StepSize	Improve 0.1294 0.0878 0.0685 0.0525 0.0520 0.0450 0.0356 0.0317 0.0369 0.0188 0.0103 0.0062 0.0062 0.0062 0.0033 Improve 0.1892 0.1319

##	6	1.2339	nan	0.1000	0.0629
##	7	1.1934	nan	0.1000	0.0523
##	8	1.1596	nan	0.1000	0.0591
##	9	1.1234	nan	0.1000	0.0493
##	10	1.0919	nan	0.1000	0.0394
##	20	0.8860	nan	0.1000	0.0240
##	40	0.6689	nan	0.1000	0.0125
##	60	0.5452	nan	0.1000	0.0085
##	80	0.4577	nan	0.1000	0.0063
##	100	0.3916	nan	0.1000	0.0040
##	120	0.3365	nan	0.1000	0.0032
##	140	0.2973	nan	0.1000	0.0019
##	150	0.2798	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	${\tt Improve}$
##	1	1.6094	nan	0.1000	0.2370
##	2	1.4558	nan	0.1000	0.1632
##	3	1.3519	nan	0.1000	0.1273
##	4	1.2710	nan	0.1000	0.0974
##	5	1.2079	nan	0.1000	0.0827
##	6	1.1552	nan	0.1000	0.0918
##	7	1.0981	nan	0.1000	0.0800
##	8	1.0493	nan	0.1000	0.0544
##	9	1.0146	nan	0.1000	0.0631
##	10	0.9756	nan	0.1000	0.0539
##	20	0.7389	nan	0.1000	0.0233
##	40	0.5215	nan	0.1000	0.0143
##	60	0.3996	nan	0.1000	0.0063
##	80	0.3175	nan	0.1000	0.0047
##	100	0.2583	nan	0.1000	0.0021
##	120	0.2179	nan	0.1000	0.0032
##	140	0.1843	nan	0.1000	0.0028
##	150	0.1698	nan	0.1000	0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1283
##	2	1.5201	nan	0.1000	0.0913
##	3	1.4602	nan	0.1000	0.0703
##	4	1.4143	nan	0.1000	0.0558
##	5	1.3786	nan	0.1000	0.0504
##	6	1.3456	nan	0.1000	0.0372
##	7	1.3205	nan	0.1000	0.0397
##	8	1.2954	nan	0.1000	0.0372
##	9	1.2725	nan	0.1000	0.0296
##	10	1.2526	nan	0.1000	0.0307
##	20	1.0975	nan	0.1000	0.0171
##	40	0.9279	nan	0.1000	0.0089
##	60	0.8196	nan	0.1000	0.0055
##	80	0.7433	nan	0.1000	0.0060
##	100	0.6779	nan	0.1000	0.0032
##	120	0.6290	nan	0.1000	0.0036
##	140	0.5841	nan	0.1000	0.0024
##	150	0.5636	nan	0.1000	0.0031
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1900
##	2	1.4855	nan	0.1000	0.1312
##	3	1.3996	nan	0.1000	0.1071
##	4	1.3319	nan	0.1000	0.0849
##	5	1.2776	nan	0.1000	0.0646
##	6	1.2347	nan	0.1000	0.0608
##	7	1.1947	nan	0.1000	0.0686
##	8	1.1512	nan	0.1000	0.0555
##	9	1.1174	nan	0.1000	0.0438
##	10	1.0887	nan	0.1000	0.0462
##	20	0.8896	nan	0.1000	0.0230
##	40	0.6749	nan	0.1000	0.0144
##	60	0.5529	nan	0.1000	0.0056
##	80	0.4684	nan	0.1000	0.0060
##	100	0.4004	nan	0.1000	0.0036
##	120	0.3485	nan	0.1000	0.0034
##	140	0.3073		0.1000	0.0034
##	150	0.2879	nan nan	0.1000	0.0023
##	100	0.2013	nan	0.1000	0.0010
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094		0.1000	0.2398
##	2	1.4559	nan	0.1000	0.1638
##	3	1.3527	nan	0.1000	0.1036
##	4	1.2743	nan	0.1000	0.1223
##	5		nan		0.1113
##	6	1.2057 1.1528	nan	0.1000 0.1000	0.0031
##	7	1.1028	nan	0.1000	0.0696
##	8	1.0583	nan	0.1000	0.0690
	9	1.0383	nan		
##	10		nan	0.1000	0.0615
##	20	0.9749	nan	0.1000	0.0417 0.0232
##		0.7500	nan	0.1000	
##	40	0.5321	nan	0.1000	0.0128
##	60	0.4040	nan	0.1000	0.0090
##	80	0.3234	nan	0.1000	0.0045
##	100	0.2635	nan	0.1000	0.0030
##	120	0.2204	nan	0.1000	0.0031
##	140	0.1875	nan	0.1000	0.0017
## ##	150	0.1736	nan	0.1000	0.0015
##	Iter	TrainDeviance	ValidDeviance	C+onCiro	Tmnmarra
##	1	1.6094		StepSize 0.1000	Improve 0.1350
##	2	1.5193	nan	0.1000	0.1330
##	3	1.4590	nan	0.1000	0.0690
##	4	1.4147	nan	0.1000	0.0573
##	5	1.3771	nan	0.1000	0.0373
##	6	1.3483	nan	0.1000	0.0433
##	7	1.3189	nan	0.1000	0.0391
##	8		nan		
		1.2934	nan	0.1000	0.0373
##	9	1.2705	nan	0.1000	0.0328
##	10	1.2505	nan	0.1000	0.0271
##	20 40	1.0939	nan	0.1000	0.0198
##		0.9215	nan	0.1000	0.0096
##	60	0.8109	nan	0.1000	0.0064

##	80	0.7335	nan	0.1000	0.0056
##	100	0.6701	nan	0.1000	0.0050
##	120	0.6184	nan	0.1000	0.0031
##	140	0.5755	nan	0.1000	0.0020
##	150	0.5574	nan	0.1000	0.0032
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	${\tt Improve}$
##	1	1.6094	nan	0.1000	0.1904
##	2	1.4866	nan	0.1000	0.1323
##	3	1.4000	nan	0.1000	0.1075
##	4	1.3324	nan	0.1000	0.0871
##	5	1.2766	nan	0.1000	0.0672
##	6	1.2325	nan	0.1000	0.0673
##	7	1.1885	nan	0.1000	0.0655
##	8	1.1489	nan	0.1000	0.0580
##	9	1.1132	nan	0.1000	0.0490
##	10	1.0831	nan	0.1000	0.0388
##	20	0.8796	nan	0.1000	0.0219
##	40	0.6633	nan	0.1000	0.0102
##	60	0.5423	nan	0.1000	0.0089
##	80	0.4518	nan	0.1000	0.0075
##	100	0.3857	nan	0.1000	0.0058
##	120	0.3353	nan	0.1000	0.0027
##	140	0.2938	nan	0.1000	0.0011
##	150	0.2752	nan	0.1000	0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2345
##	2	1.4589	nan	0.1000	0.1645
##	3	1.3553	nan	0.1000	0.1333
##	4	1.2728	nan	0.1000	0.1077
##	5	1.2067	nan	0.1000	0.0824
##	6	1.1539	nan	0.1000	0.0825
##	7	1.1020	nan	0.1000	0.0640
##	8	1.0609	nan	0.1000	0.0737
##	9	1.0165	nan	0.1000	0.0642
##	10	0.9770	nan	0.1000	0.0515
##	20	0.7442	nan	0.1000	0.0243
##	40	0.5137	nan	0.1000	0.0141
##	60	0.3948	nan	0.1000	0.0073
##	80	0.3119	nan	0.1000	0.0052
##	100	0.2528	nan	0.1000	0.0029
##	120	0.2131	nan	0.1000	0.0037
##	140	0.1798	nan	0.1000	0.0016
##	150	0.1661	nan	0.1000	0.0017
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1292
##	2	1.5231	nan	0.1000	0.0883
##	3	1.4647	nan	0.1000	0.0668
##	4	1.4209	nan	0.1000	0.0512
##	5	1.3860	nan	0.1000	0.0480
##	6	1.3547	nan	0.1000	0.0460
##	7	1.3253	nan	0.1000	0.0393

##	8	1.3003	nan	0.1000	0.0353
##	9	1.2775	nan	0.1000	0.0344
##	10	1.2563	nan	0.1000	0.0310
##	20	1.1003	nan	0.1000	0.0186
##	40	0.9311	nan	0.1000	0.0096
##	60	0.8210	nan	0.1000	0.0065
##	80	0.7384	nan	0.1000	0.0043
##	100	0.6746	nan	0.1000	0.0034
##	120	0.6231	nan	0.1000	0.0030
##	140	0.5799	nan	0.1000	0.0023
##	150	0.5605	nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1865
##	2	1.4888	nan	0.1000	0.1315
##	3	1.4042	nan	0.1000	0.1017
##	4	1.3393	nan	0.1000	0.0872
##	5	1.2835	nan	0.1000	0.0708
##	6	1.2378	nan	0.1000	0.0719
##	7	1.1937	nan	0.1000	0.0550
##	8	1.1593	nan	0.1000	0.0560
##	9	1.1242	nan	0.1000	0.0449
##	10	1.0962	nan	0.1000	0.0472
##	20	0.8837	nan	0.1000	0.0212
##	40	0.6731	nan	0.1000	0.0119
##	60	0.5451	nan	0.1000	0.0047
##	80	0.4548	nan	0.1000	0.0052
##	100	0.3913	nan	0.1000	0.0043
##	120	0.3368	nan	0.1000	0.0032
##	140	0.2943	nan	0.1000	0.0017
##	150	0.2778	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2332
##	2	1.4584	nan	0.1000	0.1656
##	3	1.3560	nan	0.1000	0.1240
##	4	1.2774	nan	0.1000	0.1014
##	5	1.2123	nan	0.1000	0.0980
##	6	1.1523	nan	0.1000	0.0714
##	7	1.1063	nan	0.1000	0.0691
##	8	1.0637	nan	0.1000	0.0665
##	9	1.0210	nan	0.1000	0.0470
##	10	0.9903	nan	0.1000	0.0536
##	20	0.7506	nan	0.1000	0.0280
##	40	0.5199	nan	0.1000	0.0105
##	60	0.3932	nan	0.1000	0.0058
##	80	0.3122	nan	0.1000	0.0043
##	100	0.2584	nan	0.1000	0.0043
##	120	0.2146	nan	0.1000	0.0026
##	140	0.1825	nan	0.1000	0.0016
##	150	0.1703	nan	0.1000	0.0010
##	100	0.1100	nan	0.1000	0.0010
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1306
σ π	1	1.0004	nan	3.1000	0.1000

##	2	1.5233	nan	0.1000	0.0908
##	3	1.4644	nan	0.1000	0.0674
##	4	1.4191	nan	0.1000	0.0542
##	5	1.3840	nan	0.1000	0.0447
##	6	1.3542	nan	0.1000	0.0455
##	7	1.3256	nan	0.1000	0.0381
##	8	1.3009	nan	0.1000	0.0378
##	9	1.2772	nan	0.1000	0.0328
##	10	1.2569	nan	0.1000	0.0290
##	20	1.1005	nan	0.1000	0.0200
##	40	0.9274	nan	0.1000	0.0083
##	60	0.8185	nan	0.1000	0.0075
##	80	0.7387	nan	0.1000	0.0048
##	100	0.6739	nan	0.1000	0.0032
##	120	0.6211	nan	0.1000	0.0021
##	140	0.5784	nan	0.1000	0.0023
##	150	0.5588	nan	0.1000	0.0023
##	100	0.0000	nan	0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1836
##	2	1.4887	nan	0.1000	0.1347
##	3	1.4024	nan	0.1000	0.1040
##	4	1.3361	nan	0.1000	0.0855
##	5	1.2815	nan	0.1000	0.0727
##	6	1.2353	nan	0.1000	0.0738
##	7	1.1903	nan	0.1000	0.0555
##	8	1.1551	nan	0.1000	0.0567
##	9	1.1196	nan	0.1000	0.0429
##	10	1.0919	nan	0.1000	0.0424
##	20	0.8884	nan	0.1000	0.0250
##	40	0.6752	nan	0.1000	0.0148
##	60	0.5523	nan	0.1000	0.0140
##	80	0.4605	nan	0.1000	0.0038
##	100	0.3985	nan	0.1000	0.0030
##	120	0.3469		0.1000	0.0042
##	140	0.3046	nan	0.1000	0.0040
##	150	0.2848	nan	0.1000	0.0032
##	130	0.2040	nan	0.1000	0.0024
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094		0.1000	0.2318
##	2	1.4630	nan	0.1000	0.2316
	3		nan	0.1000	
##		1.3559 1.2742	nan		0.1304
##	4		nan	0.1000	0.1108
##	5	1.2049	nan	0.1000	0.0818
##	6	1.1526	nan	0.1000	0.0710
##	7	1.1078	nan	0.1000	0.0635
##	8	1.0669	nan	0.1000	0.0714
##	9	1.0216	nan	0.1000	0.0532
##	10	0.9878	nan	0.1000	0.0539
##	20	0.7509	nan	0.1000	0.0302
##	40	0.5189	nan	0.1000	0.0128
##	60	0.3942	nan	0.1000	0.0074
##	80	0.3168	nan	0.1000	0.0039
##	100	0.2594	nan	0.1000	0.0030

##	120	0.2167	nan	0.1000	0.0017
##	140	0.1856	nan	0.1000	0.0015
##	150	0.1719	nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1241
##	2	1.5247	nan	0.1000	0.0856
##	3	1.4683	nan	0.1000	0.0690
##	4	1.4233	nan	0.1000	0.0524
##	5	1.3886	nan	0.1000	0.0465
##	6	1.3589	nan	0.1000	0.0462
##	7	1.3299	nan	0.1000	0.0381
##	8	1.3054	nan	0.1000	0.0347
##	9	1.2827	nan	0.1000	0.0306
##	10	1.2631	nan	0.1000	0.0311
##	20	1.1029	nan	0.1000	0.0181
##	40	0.9278	nan	0.1000	0.0105
##	60	0.8199	nan	0.1000	0.0063
##	80	0.7397	nan	0.1000	0.0045
##	100	0.6785	nan	0.1000	0.0048
##	120	0.6246	nan	0.1000	0.0033
##	140	0.5808	nan	0.1000	0.0024
##	150	0.5616	nan	0.1000	0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1855
##	2	1.4890	nan	0.1000	0.1328
##	3	1.4043	nan	0.1000	0.0995
##	4	1.3394	nan	0.1000	0.0852
##	5	1.2849	nan	0.1000	0.0719
##	6	1.2385	nan	0.1000	0.0695
##	7	1.1935	nan	0.1000	0.0650
##	8	1.1539	nan	0.1000	0.0487
##	9	1.1231	nan	0.1000	0.0490
##	10	1.0923	nan	0.1000	0.0485
##	20	0.8845	nan	0.1000	0.0225
##	40	0.6698	nan	0.1000	0.0098
##	60	0.5502	nan	0.1000	0.0083
##	80	0.4586	nan	0.1000	0.0058
##	100	0.3929	nan	0.1000	0.0044
##	120	0.3438	nan	0.1000	0.0032
##	140	0.3024	nan	0.1000	0.0021
##	150	0.2832	nan	0.1000	0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2304
##	2	1.4596	nan	0.1000	0.1592
##	3	1.3587	nan	0.1000	0.1222
##	4	1.2812	nan	0.1000	0.1092
##	5	1.2130	nan	0.1000	0.0890
##	6	1.1572	nan	0.1000	0.0820
##	7	1.1062	nan	0.1000	0.0667
##	8	1.0640	nan	0.1000	0.0608
##	9	1.0266	nan	0.1000	0.0598

##	10	0.9897	nan	0.1000	0.0553
##	20	0.7501	nan	0.1000	0.0218
##	40	0.5221	nan	0.1000	0.0092
##	60	0.3962	nan	0.1000	0.0073
##	80	0.3185	nan	0.1000	0.0053
##	100	0.2595	nan	0.1000	0.0028
##	120	0.2158	nan	0.1000	0.0026
##	140	0.1829	nan	0.1000	0.0022
##	150	0.1684	nan	0.1000	0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1303
##	2	1.5222	nan	0.1000	0.0903
##	3	1.4621	nan	0.1000	0.0651
##	4	1.4179	nan	0.1000	0.0555
##	5	1.3811	nan	0.1000	0.0454
##	6	1.3511	nan	0.1000	0.0425
##	7	1.3240	nan	0.1000	0.0366
##	8	1.2997	nan	0.1000	0.0386
##	9	1.2758	nan	0.1000	0.0311
##	10	1.2545	nan	0.1000	0.0310
##	20	1.0992	nan	0.1000	0.0203
##	40	0.9251	nan	0.1000	0.0085
##	60	0.8166	nan	0.1000	0.0075
##	80	0.7355	nan	0.1000	0.0052
##	100	0.6718	nan	0.1000	0.0034
##	120	0.6212	nan	0.1000	0.0032
##	140	0.5764	nan	0.1000	0.0027
## ##	140 150	0.5764 0.5572	nan nan	0.1000 0.1000	0.0027 0.0032
		0.5572			
##		0.5572 TrainDeviance		0.1000 StepSize	0.0032 Improve
## ##	150 Iter 1	0.5572	nan	0.1000	0.0032
## ## ##	150 Iter 1 2	0.5572 TrainDeviance	nan ValidDeviance	0.1000 StepSize 0.1000 0.1000	0.0032 Improve 0.1862 0.1341
## ## ## ##	150 Iter 1	0.5572 TrainDeviance 1.6094	nan ValidDeviance nan	0.1000 StepSize 0.1000	0.0032 Improve 0.1862
## ## ## ##	150 Iter 1 2 3 4	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786
## ## ## ## ##	150 Iter 1 2 3 4 5	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744
## ## ## ## ## ##	150 Iter 1 2 3 4 5 6	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552	Nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511
## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221	nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881	Nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227
## ## ## ## ## ## ## ## ## ## ## ## ##	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536 0.3917	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049 0.0046
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536 0.3917 0.3423	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049 0.0046 0.0028
######################################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536 0.3917 0.3423 0.3002	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049 0.0046 0.0028 0.0026
##########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536 0.3917 0.3423	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049 0.0046 0.0028
########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536 0.3917 0.3423 0.3002 0.2817	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049 0.0046 0.0028 0.0026
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536 0.3917 0.3423 0.3002 0.2817 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049 0.0046 0.0028 0.0027 Improve
########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536 0.3917 0.3423 0.3002 0.2817 TrainDeviance 1.6094	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049 0.0046 0.0028 0.0026 0.0027 Improve 0.2308
#########################	150 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	0.5572 TrainDeviance 1.6094 1.4890 1.4018 1.3330 1.2809 1.2337 1.1937 1.1552 1.1221 1.0881 0.8860 0.6695 0.5410 0.4536 0.3917 0.3423 0.3002 0.2817 TrainDeviance	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000	0.0032 Improve 0.1862 0.1341 0.1079 0.0786 0.0744 0.0624 0.0630 0.0511 0.0549 0.0501 0.0227 0.0109 0.0067 0.0049 0.0046 0.0028 0.0027 Improve

##	4	1.2702	nan	0.1000	0.0965
##	5	1.2077	nan	0.1000	0.0867
##	6	1.1525	nan	0.1000	0.0860
##	7	1.0986	nan	0.1000	0.0679
##	8	1.0554	nan	0.1000	0.0592
##	9	1.0181	nan	0.1000	0.0627
##	10	0.9798	nan	0.1000	0.0593
##	20	0.7409	nan	0.1000	0.0229
##	40	0.5099	nan	0.1000	0.0101
##	60	0.3921	nan	0.1000	0.0101
##	80	0.3146	nan	0.1000	0.0054
##	100	0.2590	nan	0.1000	0.0035
##	120	0.2152	nan	0.1000	0.0029
##	140	0.1822	nan	0.1000	0.0007
##	150	0.1685	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1353
##	2	1.5213	nan	0.1000	0.0912
##	3	1.4607	nan	0.1000	0.0717
##	4	1.4146	nan	0.1000	0.0564
##	5	1.3780	nan	0.1000	0.0450
##	6	1.3479	nan	0.1000	0.0470
##	7	1.3193	nan	0.1000	0.0423
##	8	1.2933	nan	0.1000	0.0356
##	9	1.2702	nan	0.1000	0.0354
##	10	1.2465	nan	0.1000	0.0317
##	20	1.0897	nan	0.1000	0.0174
##	40	0.9181	nan	0.1000	0.0086
##	60	0.8121	nan	0.1000	0.0078
##	80	0.7325	nan	0.1000	0.0040
##	100	0.6691	nan	0.1000	0.0041
##	120	0.6207	nan	0.1000	0.0026
##	140	0.5753	nan	0.1000	0.0024
##	150	0.5557	nan	0.1000	0.0032
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1904
##	2	1.4848	nan	0.1000	0.1321
##	3	1.4007	nan	0.1000	0.1052
##	4	1.3340	nan	0.1000	0.0818
##	5	1.2811	nan	0.1000	0.0711
##	6	1.2351	nan	0.1000	0.0622
##	7	1.1946	nan	0.1000	0.0633
##	8	1.1551	nan	0.1000	0.0578
##	9	1.1183	nan	0.1000	0.0535
##	10	1.0850	nan	0.1000	0.0429
##	20	0.8811	nan	0.1000	0.0220
##	40	0.6713	nan	0.1000	0.0096
##	60	0.5430	nan	0.1000	0.0073
##	80	0.4549	nan	0.1000	0.0054
##	100	0.3886	nan	0.1000	0.0043
##	120	0.3378	nan	0.1000	0.0022
##	140	0.2959	nan	0.1000	0.0027

## ##	150	0.2776	nan	0.1000	0.0020
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2358
##	2	1.4562	nan	0.1000	0.1613
##	3	1.3528	nan	0.1000	0.1234
##	4	1.2747	nan	0.1000	0.1076
##	5	1.2062	nan	0.1000	0.0879
##	6	1.1508	nan	0.1000	0.0761
##	7	1.1032	nan	0.1000	0.0783
##	8	1.0563	nan	0.1000	0.0573
##	9	1.0200	nan	0.1000	0.0555
##	10	0.9852	nan	0.1000	0.0639
##	20	0.7356	nan	0.1000	0.0238
##	40	0.5177	nan	0.1000	0.0114
##	60	0.3906	nan	0.1000	0.0080
##	80	0.3125	nan	0.1000	0.0044
##	100	0.2545	nan	0.1000	0.0037
##	120	0.2111	nan	0.1000	0.0026
##	140	0.1792	nan	0.1000	0.0014
##	150	0.1659	nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1293
##	2	1.5236	nan	0.1000	0.0908
##	3	1.4640	nan	0.1000	0.0652
##	4	1.4197	nan	0.1000	0.0587
##	5	1.3828	nan	0.1000	0.0493
##	6	1.3502	nan	0.1000	0.0405
##	7	1.3235	nan	0.1000	0.0388
##	8	1.2983	nan	0.1000	0.0375
##	9	1.2751	nan	0.1000	0.0318
##	10	1.2551	nan	0.1000	0.0343
##	20	1.0982	nan	0.1000	0.0198
##	40	0.9238	nan	0.1000	0.0093
##	60	0.8176	nan	0.1000	0.0061
##	80	0.7366	nan	0.1000	0.0050
##	100	0.6715	nan	0.1000	0.0044
##	120	0.6206	nan	0.1000	0.0026
##	140	0.5773	nan	0.1000	0.0026
##	150	0.5583	nan	0.1000	0.0023
##	T	T : D:	W-1:4D	a+ a:	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1 2	1.6094	nan	0.1000	0.1900
## ##	3	1.4870 1.4028	nan	0.1000 0.1000	0.1295 0.1076
##	4	1.3353	nan	0.1000	0.1076
			nan		
## ##	5 6	1.2810 1.2330	nan	0.1000 0.1000	0.0749 0.0658
##	7	1.1914	nan	0.1000	0.0620
##	8	1.1514	nan	0.1000	0.0546
##	9	1.1180	nan	0.1000	0.0546
##	10	1.1180	nan	0.1000	0.0431
##	20	0.8800	nan	0.1000	0.0432
##	20	0.0000	nan	0.1000	0.0199

##	40	0.6751	nan	0.1000	0.0151
##	60	0.5417	nan	0.1000	0.0101
##	80	0.4553		0.1000	0.0061
##	100	0.3903	nan	0.1000	0.0052
			nan		
##	120	0.3379	nan	0.1000	0.0038
##	140	0.2969	nan	0.1000	0.0027
##	150	0.2772	nan	0.1000	0.0031
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2395
##	2	1.4601	nan	0.1000	0.1615
##	3	1.3559	nan	0.1000	0.1280
##	4	1.2741	nan	0.1000	0.1054
##	5	1.2075	nan	0.1000	0.0899
##	6	1.1497	nan	0.1000	0.0737
##	7	1.1035	nan	0.1000	0.0724
##	8	1.0576	nan	0.1000	0.0646
##	9	1.0176	nan	0.1000	0.0586
##	10	0.9806	nan	0.1000	0.0562
##	20	0.7439	nan	0.1000	0.0253
##	40	0.5171	nan	0.1000	0.0116
##	60	0.3949	nan	0.1000	0.0069
##	80	0.3132	nan	0.1000	0.0049
##	100	0.2564	nan	0.1000	0.0027
##	120	0.2127	nan	0.1000	0.0022
##	140	0.1802	nan	0.1000	0.0012
##	150	0.1674	nan	0.1000	0.0019
##					
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	1	1.6094	ValidDeviance nan	StepSize 0.1000	Improve 0.1306
##	1 2	1.6094 1.5229		StepSize 0.1000 0.1000	Improve 0.1306 0.0909
## ##	1	1.6094	nan	StepSize 0.1000	Improve 0.1306
## ## ##	1 2	1.6094 1.5229	nan nan	StepSize 0.1000 0.1000	Improve 0.1306 0.0909
## ## ## ##	1 2 3	1.6094 1.5229 1.4637	nan nan nan	StepSize 0.1000 0.1000 0.1000	Improve 0.1306 0.0909 0.0663
## ## ## ##	1 2 3 4 5 6	1.6094 1.5229 1.4637 1.4192	nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000	Improve 0.1306 0.0909 0.0663 0.0564
## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.5229 1.4637 1.4192 1.3826	nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1306 0.0909 0.0663 0.0564 0.0517
## ## ## ## ##	1 2 3 4 5 6	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492	nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392
## ## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239	nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412
## ## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983	nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983	nan nan nan nan nan nan nan nan nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578	nan	StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732 0.6211	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041 0.0025
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732 0.6211	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041 0.0025 0.0027
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732 0.6211	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041 0.0025 0.0027
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732 0.6211 0.5756 0.5571	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041 0.0025 0.0027 0.0025
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732 0.6211 0.5756 0.5571 TrainDeviance	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041 0.0025 0.0027 0.0025
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732 0.6211 0.5756 0.5571 TrainDeviance 1.6094	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041 0.0025 0.0027 0.0025 Improve 0.1983
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732 0.6211 0.5756 0.5571 TrainDeviance 1.6094 1.4839	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041 0.0025 0.0027 0.0025 Improve 0.1983 0.1289
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.6094 1.5229 1.4637 1.4192 1.3826 1.3492 1.3239 1.2983 1.2762 1.2578 1.1005 0.9287 0.8212 0.7391 0.6732 0.6211 0.5756 0.5571 TrainDeviance 1.6094 1.4839 1.3999	nan	StepSize	Improve 0.1306 0.0909 0.0663 0.0564 0.0517 0.0392 0.0412 0.0348 0.0287 0.0332 0.0173 0.0084 0.0099 0.0050 0.0041 0.0025 0.0027 0.0025 Improve 0.1983 0.1289 0.1060

##	6	1.2359	nan	0.1000	0.0607
##	7	1.1972	nan	0.1000	0.0607
##	8	1.1584	nan	0.1000	0.0602
##	9	1.1216	nan	0.1000	0.0496
##	10	1.0907	nan	0.1000	0.0412
##	20	0.8861	nan	0.1000	0.0214
##	40	0.6705	nan	0.1000	0.0131
##	60	0.5385	nan	0.1000	0.0085
##	80	0.4485	nan	0.1000	0.0038
##	100	0.3851	nan	0.1000	0.0044
##	120	0.3345	nan	0.1000	0.0041
##	140	0.2922	nan	0.1000	0.0018
##	150	0.2742	nan	0.1000	0.0036
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2350
##	2	1.4601	nan	0.1000	0.1702
##	3	1.3538	nan	0.1000	0.1206
##	4	1.2777	nan	0.1000	0.1034
##	5	1.2118	nan	0.1000	0.0972
##	6	1.1524	nan	0.1000	0.0748
##	7	1.1054	nan	0.1000	0.0820
##	8	1.0539	nan	0.1000	0.0586
##	9	1.0333	nan	0.1000	0.0643
##	10	0.9779		0.1000	0.0043
##	20	0.7508	nan	0.1000	0.0470
##	40	0.7308	nan	0.1000	0.0270
##	60	0.3238	nan	0.1000	0.0094
	80		nan		0.0050
##	100	0.3134	nan	0.1000	0.0030
##		0.2573	nan	0.1000	
##	120	0.2146	nan	0.1000	0.0025
##	140	0.1808	nan	0.1000	0.0028
##	150	0.1659	nan	0.1000	0.0017
##	T	T	V-1:4D	Q+ Q÷	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1309
##	2	1.5218	nan	0.1000	0.0908
##	3	1.4619	nan	0.1000	0.0682
##	4	1.4172	nan	0.1000	0.0517
##	5	1.3830	nan	0.1000	0.0532
##	6	1.3491	nan	0.1000	0.0402
##	7	1.3229	nan	0.1000	0.0389
##	8	1.2988	nan	0.1000	0.0384
##	9	1.2747	nan	0.1000	0.0329
##	10	1.2531	nan	0.1000	0.0270
##	20	1.1006	nan	0.1000	0.0129
##	40	0.9291	nan	0.1000	0.0128
##	60	0.8183	nan	0.1000	0.0071
##	80	0.7361	nan	0.1000	0.0051
##	100	0.6720	nan	0.1000	0.0030
##	120	0.6208	nan	0.1000	0.0029
##	140	0.5798	nan	0.1000	0.0034
##	150	0.5602	nan	0.1000	0.0023
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1917
##	2	1.4860		0.1000	0.1317
##	3		nan		0.1343
##	4	1.3977 1.3287	nan	0.1000	0.1080
			nan	0.1000	
##	5	1.2771	nan	0.1000	0.0714
##	6	1.2316	nan	0.1000	0.0713
##	7	1.1868	nan	0.1000	0.0564
##	8	1.1513	nan	0.1000	0.0526
##	9	1.1176	nan	0.1000	0.0453
##	10	1.0900	nan	0.1000	0.0430
##	20	0.8826	nan	0.1000	0.0216
##	40	0.6728	nan	0.1000	0.0122
##	60	0.5520	nan	0.1000	0.0093
##	80	0.4620	nan	0.1000	0.0078
##	100	0.3932	nan	0.1000	0.0043
##	120	0.3427	nan	0.1000	0.0023
##	140	0.2994	nan	0.1000	0.0020
##	150	0.2801	nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2368
##	2	1.4578	nan	0.1000	0.1602
##	3	1.3553	nan	0.1000	0.1281
##	4	1.2748	nan	0.1000	0.1021
##	5	1.2110	nan	0.1000	0.0955
##	6	1.1522	nan	0.1000	0.0677
##	7	1.1088	nan	0.1000	0.0757
##	8	1.0630	nan	0.1000	0.0707
##	9	1.0183	nan	0.1000	0.0570
##	10	0.9819	nan	0.1000	0.0558
##	20	0.7449	nan	0.1000	0.0287
##	40	0.5174	nan	0.1000	0.0109
##	60	0.3947	nan	0.1000	0.0057
##	80	0.3139	nan	0.1000	0.0058
##	100	0.2570	nan	0.1000	0.0046
##	120	0.2140	nan	0.1000	0.0024
##	140	0.1819	nan	0.1000	0.0014
##	150	0.1690	nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1337
##	2	1.5186	nan	0.1000	0.0902
##	3	1.4596	nan	0.1000	0.0705
##	4	1.4132	nan	0.1000	0.0535
##	5	1.3781	nan	0.1000	0.0477
##	6	1.3468	nan	0.1000	0.0458
##	7	1.3177	nan	0.1000	0.0399
##	8	1.2925	nan	0.1000	0.0374
##	9	1.2686	nan	0.1000	0.0319
##	10	1.2482	nan	0.1000	0.0319
##	20	1.0904	nan	0.1000	0.0169
##	40	0.9172	nan	0.1000	0.0092
##	60	0.8108	nan	0.1000	0.0061

##	80	0.7311	nan	0.1000	0.0043
##	100	0.6684	nan	0.1000	0.0036
##	120	0.6179	nan	0.1000	0.0021
##	140	0.5761	nan	0.1000	0.0025
##	150	0.5553		0.1000	0.0022
	130	0.0000	nan	0.1000	0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.1932
##	2	1.4854	nan	0.1000	0.1331
##	3	1.4000	nan	0.1000	0.1067
##	4	1.3318	nan	0.1000	0.0858
##	5	1.2769	nan	0.1000	0.0773
##	6	1.2282	nan	0.1000	0.0628
##	7				0.0613
		1.1887	nan	0.1000	
##	8	1.1514	nan	0.1000	0.0564
##	9	1.1155	nan	0.1000	0.0456
##	10	1.0856	nan	0.1000	0.0432
##	20	0.8851	nan	0.1000	0.0247
##	40	0.6699	nan	0.1000	0.0111
##	60	0.5406	nan	0.1000	0.0081
##	80	0.4537	nan	0.1000	0.0057
##	100	0.3868	nan	0.1000	0.0043
##	120	0.3358		0.1000	0.0015
			nan		
##	140	0.2953	nan	0.1000	0.0015
##	150	0.2781	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	nan	0.1000	0.2386
##	2	1.4573	nan	0.1000	0.1709
##	3	1.3487	nan	0.1000	0.1306
##	4	1.2667	nan	0.1000	0.1060
##	5	1.1999	nan	0.1000	0.0874
##	6	1.1457	nan	0.1000	0.0805
##	7	1.0952	nan	0.1000	0.0702
##	8	1.0516	nan	0.1000	0.0697
##	9	1.0099	nan	0.1000	0.0528
##	10	0.9766		0.1000	0.0020
			nan		
##	20	0.7377	nan	0.1000	0.0253
##	40	0.5168	nan	0.1000	0.0106
##	60	0.3947	nan	0.1000	0.0074
##	80	0.3146	nan	0.1000	0.0045
##	100	0.2565	nan	0.1000	0.0051
##	120	0.2126	nan	0.1000	0.0018
##	140	0.1807	nan	0.1000	0.0021
##	150	0.1659	nan	0.1000	0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1286
##	2	1.5232	nan	0.1000	0.0873
##	3	1.4652		0.1000	0.0673
			nan		
##	4	1.4200	nan	0.1000	0.0549
##	5	1.3839	nan	0.1000	0.0496
##	6	1.3513	nan	0.1000	0.0447
##	7	1.3230	nan	0.1000	0.0358

##	8	1.2993	nan	0.1000	0.0358
##	9	1.2766	nan	0.1000	0.0302
##	10	1.2562	nan	0.1000	0.0272
##	20	1.0994	nan	0.1000	0.0148
##	40	0.9272	nan	0.1000	0.0091
##	60	0.8195	nan	0.1000	0.0073
##	80	0.7415	nan	0.1000	0.0057
##	100	0.6784	nan	0.1000	0.0040
##	120	0.6250	nan	0.1000	0.0044
##	140	0.5808	nan	0.1000	0.0026
##	150	0.5610	nan	0.1000	0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1906
##	2	1.4856	nan	0.1000	0.1258
##	3	1.4025	nan	0.1000	0.1073
##	4	1.3334	nan	0.1000	0.0833
##	5	1.2792	nan	0.1000	0.0638
##	6	1.2365	nan	0.1000	0.0709
##	7	1.1920	nan	0.1000	0.0575
##	8	1.1560	nan	0.1000	0.0558
##	9	1.1208	nan	0.1000	0.0457
##	10	1.0920	nan	0.1000	0.0465
##	20	0.8869	nan	0.1000	0.0237
##	40	0.6736	nan	0.1000	0.0101
##	60	0.5458	nan	0.1000	0.0070
##	80	0.4573	nan	0.1000	0.0038
##	100	0.3937	nan	0.1000	0.0034
##	120	0.3402	nan	0.1000	0.0028
##	140	0.2998	nan	0.1000	0.0020
##	150	0.2820	nan	0.1000	0.0036
##	100	0.2020	nan	0.1000	0.0000
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2282
##	2	1.4632		0.1000	0.1704
##	3	1.3572	nan	0.1000	0.1754
##	4	1.2773	nan	0.1000	0.1094
##	5	1.2091	nan	0.1000	0.1094
##	6	1.1527	nan nan	0.1000	0.0033
##	7	1.1019		0.1000	0.0790
##	8	1.0625	nan	0.1000	0.0022
##	9	1.0160	nan	0.1000	0.0623
##	10	0.9785	nan	0.1000	0.0506
##	20	0.7435	nan		0.0300
		0.7433	nan	0.1000	
##	40		nan	0.1000	0.0123
##	60	0.3920	nan	0.1000	0.0069
##	80	0.3118	nan	0.1000	0.0069
##	100	0.2539	nan	0.1000	0.0040
##	120	0.2104	nan	0.1000	0.0019
##	140	0.1783	nan	0.1000	0.0011
##	150	0.1658	nan	0.1000	0.0015
##	T	T	V-1:1D :	Q+ Q :	т
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2310

```
##
        2
                  1.4598
                                                0.1000
                                                           0.1657
                                       nan
##
        3
                                                0.1000
                  1.3564
                                                           0.1216
                                       nan
                                                0.1000
                                                           0.1000
##
        4
                  1.2781
                                       nan
        5
##
                  1.2151
                                                0.1000
                                                           0.0943
                                       nan
##
        6
                  1.1561
                                       nan
                                                0.1000
                                                           0.0746
##
        7
                  1.1079
                                                0.1000
                                                           0.0778
                                       nan
##
        8
                  1.0602
                                       nan
                                                0.1000
                                                           0.0629
        9
##
                  1.0200
                                       nan
                                                0.1000
                                                           0.0545
##
       10
                  0.9861
                                                0.1000
                                                           0.0453
                                       nan
##
       20
                  0.7511
                                       nan
                                                0.1000
                                                           0.0283
##
       40
                  0.5288
                                                0.1000
                                                           0.0126
                                       nan
##
       60
                  0.4010
                                       nan
                                                0.1000
                                                           0.0088
##
       80
                  0.3237
                                                0.1000
                                                           0.0060
                                       nan
##
                  0.2657
      100
                                       nan
                                                0.1000
                                                           0.0025
##
      120
                                                0.1000
                  0.2249
                                                           0.0020
                                       nan
##
      140
                  0.1919
                                                0.1000
                                                           0.0020
                                       nan
##
      150
                                                0.1000
                  0.1775
                                                           0.0012
                                       nan
```

predictGbm <- predict(modFitGbm, dfValidate)
confusionMatrix(dfValidate\$classe, predictGbm)</pre>

Confusion Matrix and Statistics

accuracy2

```
##
##
             Reference
## Prediction
                 Α
                       В
                            C
                                  D
                                       Ε
            A 1372
                                  2
##
                      14
                            6
                                       1
##
            В
                 42
                     884
                           20
                                  1
                                       2
##
            С
                  0
                      35
                          808
                                 11
                                       1
##
            D
                  1
                       1
                           27
                                772
                                       3
##
            Ε
                  2
                       4
                           10
                                  5
                                     880
##
## Overall Statistics
##
##
                   Accuracy : 0.9617
##
                     95% CI: (0.9559, 0.9669)
##
       No Information Rate: 0.2889
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.9515
   Mcnemar's Test P-Value: 1.678e-05
##
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.9682
                                     0.9424
                                               0.9277
                                                        0.9760
                                                                  0.9921
                                               0.9883
                                                        0.9922
                                                                  0.9948
## Specificity
                           0.9934
                                     0.9836
## Pos Pred Value
                           0.9835
                                     0.9315
                                               0.9450
                                                        0.9602
                                                                  0.9767
## Neg Pred Value
                                               0.9844
                                                        0.9954
                           0.9872
                                     0.9863
                                                                  0.9983
## Prevalence
                           0.2889
                                     0.1913
                                               0.1776
                                                        0.1613
                                                                  0.1809
## Detection Rate
                           0.2798
                                               0.1648
                                                        0.1574
                                                                  0.1794
                                     0.1803
## Detection Prevalence
                           0.2845
                                     0.1935
                                               0.1743
                                                        0.1639
                                                                  0.1837
## Balanced Accuracy
                           0.9808
                                     0.9630
                                               0.9580
                                                        0.9841
                                                                  0.9934
accuracy2 <- postResample(predictGbm, dfValidate$classe)</pre>
```

Accuracy Kappa ## 0.9616639 0.9514826