SOLVED NUMERICAL: HARDNESS OF WATER

Calculation of equivalents of calcium carbonate

Dissolved Salt/Ion	Molar Mass	Chemical Equivalent	Multiplication factor for converting in to equivalents of
			CaCO ₃
Ca(HCO ₃) ₂	162	81	100/162
Mg(HCO ₃) ₂	146	73	100/146
CaSO ₄	136	68	100/136
CaCl ₂	111	55.5	100/111
MgSO ₄	120	60	100/120
$MgCl_2$	95	47.5	100/95
CaCO ₃	100	50	100/100
MgCO ₃	84	42	100/84
CO_2	44	22	100/44
Ca(NO ₃) ₂	164	82	100/164
$Mg(NO_3)_2$	148	74	100/148
HCO ₃ -	61	61	100/122
OH-	17	17	100/34
CO_3^{2-}	60	30	100/60
NaAlO ₂	82	82	100/164
$Al_2(SO_4)_3$	342	57	100/114
FeSO ₄ .7H ₂ 0	278	139	100/278
H ⁺	1	1	100/2
HC1	36.5	1	100/73

 $Mg(HCO_3)_2$ $Mg(HCO_3)_2+2Ca(OH)_2\rightarrow 2CaCO_3+Mg(OH)_2+2H_2O$ =2L

(Temp.Mg)

 $HCO_3^ 2HCO_3^- + Ca(OH)2 \rightarrow CaCO_3 + H_2O + CO_3^{2-} = \mathbf{L-S}$

(e.g., NaHCO₃)

 $NaAlO_2$ $NaAlO_2+2H_2O\rightarrow Al (OH)_3 +NaOH = -L$

Note: Substance like NaCl, KCl, Na₂SO₄, SiO₂, Fe₂O₃ etc.do not impart any hardness and therefore, these do not consume any lime or soda. These should not be taken in to consideration for calculating the lime and soda requirements.

Lime requirement for softening

 $=74/100 \ [Temp.Ca^{2+} + 2xTemp.Mg^{2+} + Perm. \ (Mg^{2+} + Fe^{2+} + Al^{3+}) + CO_2 + H^+ \ (HCl \ or \ H_2SO_4) \\ + HCO_3^- - NaAlO_2 \ : All \ in \ terms \ of \ CaCO_3 \ eq.]$

Soda requirement for softening

=106/100[Perm. ($Ca^{2+} + Mg^{2+} + Al^{3+} + Fe^{2+}$) x H+ (HCl or H₂SO⁴) –HCO₃-: All in terms of CaCO₃ eq.]

Q.1 How many grams of FeSO₄ dissolved per litre gives 210.5 ppm of hardness?

Solution: FeSO₄ = $CaCO_3$

56+16+64=136 gm=152 gm = 100 gm

 \therefore 100 ppm of hardness = 152 ppm of FeSO₄

 $210.5 \text{ ppm of hardness} = 152x210.5/100=319.96 \text{ ppm of FeSO}_4$

=319.96 mg/L or 0.31996 gm /L of FeSO₄

Q.2.Calculate the temporary and permanent hardness of a sample of water containing:

 $Mg (HCO_3)_2 = 7.3 mg/L$, $Ca (HCO_3)_2 = 16.2 mg/L$, $MgCl_2 = 9.5 mg/L$, $CaSO_4 = 13.6 mg/L$

(Atomic weight of Mg and Ca are 24 and 40 respectively.)

Solution: Conversion in to CaCO₃ equivalents:

Constituents	Multiplication factor CaCO ₃ equivalents	
Mg $(HCO_3)_2 = 7.3 \text{mg/L}$	100/146	$7.3 \times 100/146 = 5 \text{mg/L}$
Ca (HCO ₃) ₂ =16.2 mg/L	100/162	16.2X100/162=10 mg/L
$MgCl_2 = 9.5mg/L$	100/95	9.5X100/95=10 mg/L
$CaSO_4 = 13.6 \text{ mg/L}$	100/136	13.6X100/136=10 mg/L

Temporary hardness, due to Mg (HCO₃)₂ and Ca (HCO₃)₂

= (5+10) mg/L = 15 mg/L or 15 ppm

Permanent hardness due to MgCl₂ and CaSO₄

= (10+10 mg/L=20 mg/L or 20 ppm

Q.3. Calculate the temporary and total hardness of a sample of water containing:

Mg (HCO₃)₂= 73mg/L, Ca (HCO₃)₂=162 mg/L, MgCl₂= 95mg/L, CaSO₄= 136 mg/L

(Atomic weight of Mg and Ca are 24 and 40 respectively.)

Solution: Conversion in to CaCO₃ equivalents:

Constituents	Multiplication factor	CaCO ₃ equivalent

$Mg (HCO_3)_2 = 73mg/L$	100/146	73x100/146= 50mg/L
Ca (HCO ₃) ₂ =162 mg/L	100/162	162X100/162=100 mg/L
MgCl ₂ = 95mg/L	100/95	95X100/95=100 mg/L
$CaSO_4 = 136 \text{ mg/ L}$	100/136	136X100/136=100 mg/L

Temporary hardness, due to Mg (HCO₃)₂ and Ca (HCO₃)₂

= (50+100) mg/L = 150 mg/L or 150 ppm

Total hardness = Temporary + permanent

= (150) mg/L + (200) mg/L = 350 mg/L or 350 ppm

Q.4.Calculate the quantity of lime and soda required for softening 50,000 litres of water containing following salts per litre: Ca (HCO₃)₂=8.1 mg/L, Mg (HCO₃)₂= 7.5mg/L, CaSO₄= 13.6 mg/L, MgSO₄= 12.0 mg/L, MgCl₂= 2.0 mg/L and NaCl=4.7 mg/L.

Solution: Conversion in to CaCO3 equivalents:

Constituents	Multiplication factor	CaCO ₃ equivalent	
Ca (HCO ₃) ₂ =8.1 mg/L	100/162	8.1X100/162=5.0 mg/L	
$Mg (HCO_3)_2 = 7.5 mg/L$	100/146	7.5X100/146=5.14 mg/L	
$CaSO_4 = 13.6 \text{ mg/L}$	100/136	13.6X100/136=5.0 mg/L	
$MgSO_4 = 12.0 \text{ mg/L}$	100/120	12.0X100/120=10.0 mg/L	
$MgCl_2=2.0 mg/L$	100/95	2.0X100/95=2.11 mg/L	

Lime requirement for 50,000 L water:

- =74/100[Ca(HCO₃)₂+2xMg (HCO₃)₂+ MgSO₄+ MgCl₂ as CaCO₃ equivalent]x vol. of water
- =74/100[5.0+2x5.14+10.0+2.11] mg/Lx50,000 L
- =74/100[27.39 mg/L]x50,000L=10,13,430 mg
- =10,13,430 mgx 10-6 kg=1.0134 kg

Soda requirement for 50,000 L water:

- =106/100[CaSO₄+ MgSO₄+ MgCl₂ as CaCO₃ equivalent]x vol. of water
- =106/100[5.0+10.0+2.11] mg/L x50,000 L
- =106/100[17.11mg/L]x50,000 L=9,06830 mg
- = 9,06830 mg x 10-6 kg = 0.9068 kg

Q.5. A water sample on analysis gave the following data:

Calculate the quantities of lime (90% pure) and soda (94% pure) required to softened one million litres of water sample.

Solution: Conversion in to CaCO₃ equivalents:

Constituents	Multiplication factor	CaCO ₃ equivalent
$Ca^{2+} = 30 \text{ mg/L}$	100/40	30x100/40=75.0 mg/L
$Mg^{2+} = 24 \text{ mg/L}$	100/24	24x100/24=100.0 mg/L
$CO_2 = 24 \text{mg/L}$	100/44	24x100/44=54.5 mg/L
HCl=50 mg/L	100/73	50x100/73=68.5 mg/L

Lime requirement:

- =74/100[Mg²⁺+CO₂ +HCl as CaCO₃ eq.] x Vol.of water x (100% purity)
- $=74/100[(100+54.5+68.5) \text{ mg/L}] \times 106 \text{Lx} (100/90)$
- =74/100[223mg/L]x 106 Lx(100/90)=(74x223x106)/90 mg
- =1.834x108 mg = 1.834x102kg = 183.4 kg

Soda requirement:

- =106/100[Ca²⁺+Mg²⁺+ HCl as CaCO₃ eq.]x Vol.of water x(100% purity)
- =106/100[(75+100+68.5) mg/L] x106 Lx (100/94)
- =106/100[243.5mg/L]x 106 Lx (100/94)=(106x243.5x106)/94 mg
- =2.946x108mg=2.946x102kg=294.6 kg

Q.6. A water sample on analysis gave the following data:

 $Ca^{2+} = 30 \text{ mg/L}, Mg^{2+} = 18 \text{mg/L}, K^{+} = 19.5 \text{ mg/L}, CO_{2} = 11 \text{mg/L}, HCO_{3}^{-} = 122 \text{ mg/L}, C1^{-} = 35.5 \text{ mg/L}, SO_{4}^{2-} = 48 \text{mg/L}$

- (i) Calculate the total hardness and alkalinity of water sample
- (ii) Calculate lime-soda required for softening one litre of this sample of hard water

Solution: Conversion in to CaCO₃ equivalents:

Constituents	Multiplication factor	CaCO ₃ equivalent	
$Ca^{2+}=30 \text{ mg/L}$	100/40	30x100/40=75 mg /L	
$Mg^{2+}=18mg/L$	100/24	18x 100/24=75 mg /L	
CO ₂ =11mg/L	100/44	11x 100/44=25 mg/L	
$HCO_{3}^{-} = 122 \text{ mg/L}$	100/122	$122x\ 100/122 = 100\ mg\ /L$	
_		_	

(i) Total hardness= (75+75) mg/L=150 mg/L or 150 ppm

Alkalinity present = $(HCO_3^- - CO_2) = (100-25) \text{ mg/L} = 75 \text{ mg/L} \text{ or } 75 \text{ ppm}$

(ii) Lime requirement = $74 / 100 [Mg^{2+} + CO_2 + HCO_3]$ as CaCO₃ eq.]

$$= 74/100[75+25+100] \text{ mg/L} = 148 \text{ mg/L}$$

Soda requirement =
$$106/100[Ca^{2+} + Mg^{2+} - HCO_3^-]$$
 as $CaCO_3$ eq.]
= $106/100[75+75-100]$ mg/L= 53 mg/L

Q.7. 100 ml of water sample has a hardness equivalent to 12.5 ml of 0.08N MgSO₄. What is its hardness in ppm?

Solution: 100 ml of water sample=12.5 ml of 0.08N MgSO₄

=12.5X0.08ml of 1N MgSO₄

= 1ml of 1N MgSO₄=1 ml of 1N CaCO₃ eq.

 $= 0.001 L of 1N CaCO_3 eq.$

=0.001x50 g CaCO₃ eq.

=0.05 g CaCO₃ eq. (or 50 mg CaCO₃)

Therefore, 1000 ml (or /L) of water sample=50 mg CaCO₃ eq.x1000 ml/100 ml

 $=500 \text{ mg CaCO}_3 \text{ eq.}$

Hence, the hardness of water sample is 500 mg CaCO₃ eq. Per litre or 500 ppm.

Q.8. 100 ml of a sample of hard water neutralizes exactly 12 ml of 0.12 N HCl using methyl orange as indicator. What kind of hardness is present? express the same in terms of CaCO₃ equivalent.

Solution: Hardness is temporary, since methyl orange does not give the value for permanent hardness.

```
100 ml of sample = 12 ml of 0.12 N HCl
= 12x0.12 ml of 1N HCl
=1.44 ml of 1 N HCl or 1N CaCO<sub>3</sub> eq.
=1.44x10-3 L x 50 g CaCO<sub>3</sub> eq. L-1
= 0.072 g CaCO<sub>3</sub> eq. or 72 mg CaCO<sub>3</sub> eq.
```

Hence,1000 ml (or 1 L) of water =72 mg CaCO3 eq. x 1000 ml /100 ml=720 mg CaCO3 eq.

Temporary hardness of water is 720 ppm

Q.9. 0.5 g of CaCO₃ was dissolved in HCl and the solution made upto 500 ml with distilled water. 50 ml of the solution required 48 ml of EDTA solution for titration. 50 ml of hard water sample required 15 ml of EDTA and after boiling and filtering required 10 ml of EDTA solution. Calculate the hardness.

Solution: 500 ml of SHW =0.5 g or 500mg CaCO₃ eq.

Hence, 1 ml SHW = 1mg CaCO_3

Now 48 ml of EDTA = $50 \text{ ml SHW} = 50 \text{ mg CaCO}_3 \text{ eq.}$

Therefore, 1 ml of EDTA = 50/48 mg CaCO₃ eq.

(i) Calculation of the total hardness of water:

50 ml hard water =15 ml EDTA = 15x (50/48) mg CaCO₃ eq.

= 15.625 mg CaCO₃ eq.

Hence, 1000 ml of hard water = $15.625 \times 1000/50 \text{ mg CaCO}_3 \text{ eq}$.

 $= 312.5 \text{ mg/L CaCO}_3 \text{ eq.}$

Therefore, total hardness =312.5 mg/L or 312.5 ppm

(ii) Calculation of non-carbonate hardness:

50 ml boiled hard water = 10 ml EDTA

 $= 10 \text{ x } (50/48) \text{ mg CaCO}_3 \text{ eq.}$

 $= 10.417 \text{ mg CaCO}_3 \text{ eq.}$

Hence, 1000 ml boiled hard water = $10.417 \times 1000 / 50 \text{ mg CaCO}_3 \text{ eq.}$

 $= 208.3 \text{ mg CaCO}_3 \text{ eq.}$

Therefore, non-carbonate hardness = 208.3 mg/L or 208.3 ppm

Hence, carbonate hardness = (312.5-208.3) = 104.2 ppm

Q.10. A water sample contains the following impurities: $Ca^{2+}=20$ ppm, $Mg^{2+}=18$ ppm, $HCO_3=183$ ppm and $SO_4=24$ ppm. Calculate the amount of lime and soda needed for softening.

(Atomic weight of Mg and Ca are 24 and 40 respectively.)

Solution: Conversion in to CaCO₃ equivalents:

Constituents	Multiplication factor	CaCO ₃ equivalent	
Ca2+ = 20 ppm	100/40	20x100/40=50 ppm	
Mg2+=18 ppm	100/24	18x100/24=75 ppm	
HCO3- =183ppm	100/122	183x100/122=150 ppm	

Lime requirement:

=74/100[perm. Mg²⁺ +HCO₃ as CaCO₃ equivalent]

=74/100[75+150] ppm=166.5 ppm or mg/L

Soda requirement:

=106/100[perm. Ca²⁺ + Mg²⁺-HCO₃⁻ as CaCO₃ equivalent]

=106/100[50+75-150] ppm=Negative or Nil