Professeur: Rachid BELEMOU

: Oued Eddahab

COURS

L'ordre dans IR

Niveau: TCT - BIOF

Année : 2017-2018

I) Les intervalles de ℝ

1) Définitions

a) Représentation graphique de R

L'ensemble des nombres réels est habituellement représenté sous la forme d'une droite graduée : à chaque point de la droite est associé un unique nombre réel appelé abscisse de ce point

Exemple:

Lycée

Les abscisses des points A, B , C , D , E et F sont respectivement : $x_A = 0$; $x_B = 1$; $x_C = 4$; $x_D = -2$; $x_E = 2,46$ et $x_F = -\sqrt{3}$

b) Les intervalles de ${\mathbb R}$

Un intervalle de \mathbb{R} est représenté par un segment, une demi-droite ou par la droite toute entière. Chaque intervalle est associé à une inégalité ou un encadrement concernant les abscisses des points de la droite appartenant à ce segment ou cette demi-droite.

2) Tableau récapitulatif des neufs intervalles de R

Soit A et B deux points de la droite d'abscisses respectives a et b (a < b) et soit M un point de la droite d'abscisse x

On obtient donc Les neuf types d'intervalles sont dans le tableau ci-dessous: :

Remarques:

- On dit qu'un intervalle est **fermé** si ses extrémités lui appartiennent.
 Par exemple : [6; 12] ou [-2; +∞ [sont des intervalles fermés.
- On dit qu'un intervalle est ouvert si ses extrémités ne lui appartiennent pas Par exemple :] -4 ; 7 [ou] - ∞ ; 3 [sont des intervalles ouverts.
- L'ensemble Rest aussi un intervalle, il peut se noter] -∞; +∞[
- L'ensemble ne contenant **aucun réel est aussi un intervalle**, c'est **l'intervalle** vide, il se note Ø
- Le symbole ∞ se lit infini.

М	Nombres <i>x</i>	Représentation graphique	Notation intervalle
M ∈ [AB]	$a \le x \le b$	A O I B a O 1 b Intervalle fermé borné	[a;b]
M ∈]AB [a < x < b	A O I B A O I B A O I] a ; b [
M ∈ [AB [$a \leq x < b$	A O B B B B B B B B B	[a;b[
M ∈]AB]	$a < x \le b$	A O I B a O 1 b Intervalle semi-ouvert à gauche, borné] a ; b]
M ∈ [AB)	$x \ge a$	A O I B I b Intervalle fermé infini	[a;+∞[
M ∈]AB)	x > a	A O I B] a; +∞[
M ∈ [BA)	$x \leq b$	A O I B a O 1 b Intervalle fermé infini]- \omega ; b]
M ∈]BA)	<i>x</i> < <i>b</i>	A O I B a O 1 b Intervalle ouvert infini] - ∞ ; b [
M ∈ (d)	$x \in R$	O 1 (d)]-∞;+∞[

II) Intersections et réunions d'intervalles

1) Intersections

<u>Définition</u>:

Soit E et F deux ensembles quelconques. On appelle intersection de E et F, et on note $E \cap F$, l'ensemble des éléments qui sont communs à E et F.

En d'autres termes, x est un élément de $E \cap F$ si et seulement si x est un élément de E et x est un élément de F.

Remarques : $E \cap F = F \cap E$.

 $E \cap \emptyset = \emptyset$.

 $E \cap \mathbb{R} = E$.

Si I et J sont des intervalles fermés bornés, alors leur intersection est également un intervalle fermé borné.

Si I et J sont des intervalles ouverts bornés, alors leur intersection est également un intervalle ouvert borné.

Définition:

Soit E et F deux ensembles quelconques. On appelle réunion de E et F, et on note $E \cup F$, l'ensemble des éléments qui sont soit dans E, soit dans F.

En d'autres termes, x est un élément de $E \cup F$ si et seulement si x est un élément de $E \cup F$ si et seulement si x est un élément de F.

Remarques : $E \cup F = F \cup E$.

 $E \cup \emptyset = E$. $E \cup \mathbb{R} = \mathbb{R}$.

Si *I* et *J* sont des intervalles fermés bornés, alors leur réunion n'est pas systématiquement un intervalle. Par contre, la réunion de deux intervalles fermés bornés est fermée et bornée.

Exercice d'application : (5,9 - série)

III. Ordre et comparaison

Comparer deux nombres réels a et b, c'est chercher à savoir quel est le plus grand (ou s'ils sont égaux).

Dire que a < b équivaut à dire que a - b < 0.

Ainsi, comparer a et b revient à étudier le signe de a - b.

exemples : Soient a et b deux nombres réels, comparer $a^2 + b^2$ et $(a + b)^2$.

a) Ordre et addition

Propriété : Si a < b, alors a + c < b + c et a - c < b - c

Autrement dit, ajouter (ou soustraire) un même nombre à chaque membre d'une inégalité ne change pas le sens de l'inégalité.

Propriété : Si a < b et c < d, alors a + c < b + d.

En effet, si a < b, alors a + c < b + c.

De plus, si c < d, alors b + c < b + d. On en déduit a + c < b + d.

b) Ordre et multiplication

Propriété : Si a < b et c > 0, alors ac < bc et a/c < b/c

Si a < b et c < 0, alors ac > bc et a/c > b/c

Autrement dit, multiplier (ou diviser) chaque membre d'une inégalité,

- par un même nombre strictement positif, ne change pas le sens de l'inégalité. - par un même nombre strictement négatif, change le sens de l'inégalité.

Propriété : Si a, b, c et d sont des réels positifs tels que a < b et c < d, alors ac < bd.

En effet, si a < b, alors ac < bc car c > 0.

De plus, si c < d, alors bc < bd car d > 0. On en déduit : ac < bd.

Exercice d'application : (1,2 - série)

c) **Encadrement**

Soient a, b et x trois nombres réels. On dit que a et b encadrent x lorsque $a \le x \le b$.

Exercice : x est un réel tel que -1 < x < 2. On pose B = -2x - 3.

Trouver un encadrement de B.

III. Inégalités sur les carrés, les racines carrées, les inverses

a) Passage au carré, à la racine carrée

Propriété : a et b étant deux nombres positifs distincts, a < b équivaut à $a^2 < b^2$.

démonstration : On sait que $a^2 - b^2 = (a - b)(a + b)$. Comme a et b sont positifs, a + b est aussi positif et on en déduit que a - b et a^2 et b^2 sont de même signe. D'où

- si a < b, alors a b < 0 donc $a^2 b^2 < 0$ et $a^2 < b^2$.
- si $a^2 < b^2$, alors $a^2 b^2 < 0$ donc a b < 0 et a < b.

Autrement dit, deux nombres positifs sont rangés dans le même ordre que leurs carrés.

Conséquence : deux nombres positifs et leurs racines carrées sont rangés dans le même ordre.

Donc: $\sqrt{a} < \sqrt{b}$ équivaut à a < b.

Exercice d'application : (15 - série)

b) Passage à l'inverse

Propriété : a et b étant deux nombres strictement positifs, a < b équivaut à 1/b < 1/a

Démonstration :

Autrement dit, deux nombres strictement positifs sont rangés dans l'ordre contraire de leur inverse.

Exercice : x est un réel tel que 2 < x < 5. Donner un encadrement de A = x + 1/x

IV. Comparaison de a, a^2 et a^3 lorsque a > 0

Propriété : a est un réel strictement positif.

1. Si a > 1, alors $a^3 > a^2 > a$; 2. si a < 1, alors a < a < a < a.

Démonstration : De l'hypothèse a > 1, on déduit d'une part que $a^2 > a$ (on multiplie les deux membres par a > 0) et d'autre part que $a^3 > a^2$ (on multiplie par $a^2 > 0$). Donc $a^3 > a^2 > a$. De la même façon, lorsque 0 < a < 1, on démontre que $a^3 < a^2 < a$.

Remarque : pour a = 0 et a = 1, $a = a^2 = {}^3a$

Exercice : x est un réel tel que 3 < x < 4. On pose A = 4 - x. Comparer les nombres A. A^2 et A^3 .

IV. Valeur absolue

a) Distance entre deux réels

Définition : La distance entre deux réels x et y est la différence entre le plus grand et le plus petit. Cette distance est notée |x-y| ou encore |y-x|.

|x-y| se lit « valeur absolue de x moins y ».

• |-2-3| est la distance entre les réels -2 et 3. Cette distance est égale à 3 - (-2) = 5.

Interprétation graphique de |x-y|

Sur une droite graduée d'origine O, notons M le point d'abscisse x et N le point

d'abscisse y.

|x-y| est la distance entre les points M et N, c'est à dire MN.

Application : Soient A, B et M trois points distincts d'une droite graduée. On note a, b et x les abscisses respectives des points A, B et M.

L'égalité |x-a| = |x-b| se traduit par MA = MB, avec A, B et M alignés : cela signifie que M est le milieu du segment [AB].

Exercice : Trouver tous les nombres x tels que |x+1| = 3.

A et M sont les points d'abscisses respectives -1 et x sur une droite graduée :

$$AM = |x - (-1)| = |x + 1|$$

Trouver tous les nombres x tels que |x+1| = 3 revient donc à trouver les abscisses des points M de la droite graduée tels que AM = 3. Les nombres cherchés sont donc : 2 et -4.

b) Valeur absolue d'un réel

Lorsque y = 0, |x-y| = |x|. Le nombre réel |x| est alors la distance entre x et 0.

Donc: $\begin{vmatrix} x & \text{lorsque } x \ge 0 \\ |x| & = \\ -x & \text{lorsque } x < 0$

Exemples: |5| = 5 car 5 est un nombre positif. |-3| = 3 car -3 est un nombre négatif. Si x est un nombre réel, $|x^2| = x^2 \operatorname{car} x^2 \ge 0$.

Propriétés:

- 1. Dire que |x| = 0 équivaut à dire que x = 0.
- 2. |-x| = |x|.
- 3. Dire que |x| = |y| équivaut à dire que x = y ou x = -y.

Exercice d'application : (8 (1) - série)

c) L'inégalité $|x-a| \le r$ (a et r fixés, r > 0)

Propriété : a est un réel, r est un réel strictement positif. Dire que $|x-a| \le r$ équivaut à dire que x appartient à l'intervalle [a-r; a+r]. **Démonstration :** $|x-a| \le r$ signifie que la distance de x à a est inférieure ou égale à r, c'est à dire que x appartient à l'ensemble représenté en rouge sur la figure ci-contre.

Donc $|x-a| \le r$ équivaut à dire que x appartient à [a-r; a+r] donc équivaut à dire que $a-r \le x \le a+r$.

Exercice d'application : (8 (2) - série)

VII. Encadrement d'un nombre.

1-Définition:

Soit x un nombre donné. Réaliser un encadrement de x, c'est trouver deux nombres a et b tels que $a \le x \le b$. Le nombre b-a est l'amplitude de cet encadrement.

Exemples:

Donner un encadrement de $\sqrt{3}$ d'amplitude 1, de π d'amplitude 0,1.

2-Encadrement d'une somme, d'un produit.

Règle 1: Si $a \le b$ et $c \le d$ alors $a + c \le b + d$

Règle 2: Si $0 \le a \le b$ et $0 \le c \le d$ alors $0 \le ac \le bd$.

VI. Valeur approchée d'un nombre.

Définition 1:

Soit a et x deux nombres et $\mathcal E$ un nombre strictement positif. On dit que a est une valeur approchée (ou approximation) du nombre x à $\mathcal E$ près (ou à la précision $\mathcal E$) lorsque $|x-a| \leq \mathcal E$

Définition 2:

Soit a et x deux nombres et ε un nombre strictement positif. On dit que a est une valeur approchée (ou approximation) du nombre x à ε près (ou à la précision ε), par défaut, lorsque $a \le \dot{x} \le a + \varepsilon$. a est une valeur approchée de x à ε près, par excès, lorsque a- ε $\le x \le a$.

Exercice d'application : (11,12,16,17- série)