TD3: Réduction de dimension par ACP et PLS

M2 MMA - Université de Paris

2020-2021

Exercice 1 : Interprétation des graphiques de l'ACP

Importation des données

Pour cet exercice, nous travaillerons sur les données body_full.csv qui contiennent des informations concernant le corps de n=507 personnes.

```
body <- read.table("body_full.csv",header=TRUE, sep=";",dec=",")
dim(body)</pre>
```

```
## [1] 507 25
```

Installer le package FactoMineR, charger la librairie correspondante puis passer aux questions.

Questions

- 1. Tracer les boxplots permettant d'indiquer la distribution des variables du jeu de données. Indiquer si les données doivent être normalisées.
- 2. Utiliser la fonction PCA() du package FactoMineR pour effectuer une ACP sur les données. Remarque : il ne faut pas oublier de retirer la variable qualitative sous peine de ne pas réussir à lancer la fonction PCA().
- 3. Interpréter le premier graphique (groupe d'individus). Pour une meilleure visualisation, on pourra représenter les individus de façon différenciée suivant leur genre.
- 4. Interpréter le second graphique (groupe de variables) pour donner un sens aux deux composantes principales.

Exercice 2 : Problème de normalisation

Chargement des données

Pour cet exercice, nous travaillerons sur les données athle_records.csv, qui portent sur les performances de 26 pays à 9 épreuves d'athlétisme.

```
athlete <- read.csv("athle_records.csv",sep = "\t",header=TRUE,dec=",")
rownames(athlete) <- athlete$X
athlete <- athlete[,-1]
rownames(athlete)[3] <- "Bresil"
rownames(athlete)[14] <- "Jamaique"
rownames(athlete)[18] <- "NouvelleZelande"</pre>
```

```
rownames(athlete)[23] <- "Suede"
dim(athlete)</pre>
```

[1] 26 9

Questions

- 1. Tracer les boxplots permettant d'indiquer la distribution des variables du jeu de données.
- 2. Utiliser la fonction prcomp() pour effectuer une ACP sur le jeu de données. Identifier les contributions des différentes variables pour chacune des composantes principales.
- 3. Utiliser la fonction biplot() pour représenter le diagramme des individus et variables de l'ACP. Confirmer les résultats observés à la question précédente.
- 4. Tracer la part de variance expliquée par chacune des composantes à l'aide de la fonction plot().
- 5. Le phénomène observé aux questions précédentes est dû au fait que les données ne sont pas normées. Reprendre ces questions après avoir log-transformé les données.
- 6. Tracer les composantes principales 2 et 3 pour étudier les différences entre les groupes.
- 7. Utiliser le package FactoMineR pour effectuer l'ACP sur le jeu de données. Que peut-on constater?

Exercice 3 : Application à un jeu de données biologiques

Importation des données

Pour cet exercice, on reprend le jeu de données Prostate déjà utilisé sur lors des TPs précédents.

load("Prostate.Rdata")

Questions

- 1. Tracer les boxplots donnant la distribution des variables du jeu de données puis normaliser les données à l'aide de la fonction scale().
- 2. Utiliser le package FactoMineR pour effectuer une ACP sur le jeu de données.
- 3. Déterminer le nombre de composantes principales à retenir à l'aide de l'affichage des valeurs propres et leurs cumulées.
- 4. Reprendre les graphiques de l'ACP pour identifier des caractéristiques caractérisant ces composantes.
- 5. Utiliser le package factoextra et la fonction fviz_contrib() pour afficher la contribution des individus puis des variables sur chaque composante.

Exercice 4 : ACP-PLS sur un jeu de données génomique

Chargement des données

Pour cet exercice, on considère le jeu de données Colon du package plsgenomics. Télécharger le package, charger la librairie et le jeu de données correspondant.

```
install.packages("plsgenomics")
library(plsgenomics)
data(Colon)
```

Ce jeu de données contient des données d'expression de p=2000 gènes (matrice \mathtt{X}) pour un ensemble de n=62 tissus, parmi lesquels 40 sont tumoraux (2 dans la variable \mathtt{Y}) et 22 sont normaux (1 dans la variable \mathtt{Y}). Le but de ce TD est de construire des règles pour déterminer à l'aide de l'expression génomique le type de tissu de provenance.

Questions

- 1. Créer un jeu d'apprentissage et un jeu test en gardant chaque échantillon dans le jeu d'apprentissage avec probabilité $\frac{2}{3}$. Ecrire ensuite un modèle logistique pour expliquer le tissu d'origine en fonction des expressions de tous les gènes.
- 2. Procéder à une ACP en utilisant la fonction pcr() du package pls. Combien faut-il utiliser de composantes pour expliquer 75% de la variance du nuage?
- 3. Récupérer la matrice de réduction de dimension à partir de l'élément loadings du résultat de la fonction pcr() puis récupérer le jeu de données de dimension réduite.
- 4. A l'aide de la fonction glm(), utiliser une régression logistique pour apprendre une classification dans ce nouveau jeu de données réduit. Prédire alors le type de tissue d'origine et commenter.
- 5. Reprendre les questions précédentes en utilisant une PLS cette fois plutôt qu'une ACP. Indiquer l'avantage de cette méthode.