	T.C. SAKARYA ÜNİVERSİTESİ FİZİK-1 LABORATUVARI DENEY RAPORU
ÖĞRENCİNİN	Adı-Soyadı : Numarası : imza: Bölümü :
Deney No	5
Deneyin Adı	DÖNME HAREKETİ
Deneyin Amacı	
Deneyin Teorisi	
	\mathbf{M} = \mathbf{m} =

1) Deney kâğıdını çıkarınız ve m kütlesinin izlerini inceleyiniz, m kütlesinin hareketinin çeşidi nedir?

2) Hareketin yönünü pozitif y yönü alarak izlerin konumunu belirleyiniz. Sonra her izin konumunu ve m kütlesinin o konuma ulaşma zamanını aşağıdaki tabloya kaydediniz. (10 P)

Tablo 1. f=10 Hz

Nokta numarası	y (cm)	t (sn)	$t^2(sn^2)$

3) Tablodaki verileri kullanarak konumun zamanın karesine karşı grafiğini çiziniz. Bu grafiğin eğimini kullanarak hareketin çizgisel ivmesini hesaplayınız. (10 P)

4)	Diskin yarıçapını (R) ölçünüz. Hava masasının yatayla yaptığı açı ϕ 'yi bulduktan sonra açısal ivmeyi (α)
	$\alpha = \frac{2m(g\sin\phi - a)}{MR}$ denklemini kullanarak hesaplayınız. Açısal ivmeyi birde " $a = R\alpha$ " denklemini kullanarak
	tekrar hesaplayınız ve bulduğunuz değerleri karşılaştırınız. (10 P)

5) Denklemden
$$T = m(g \sin \phi - a) = \frac{MR\alpha}{2}$$
 ipteki gerilme kuvvetini hesaplayınız. (10 P)

- 6) M kütleli diskin eylemsizlik momentini hem $\tau = RT = I\alpha$ denklemini hem de $I = \frac{MR^2}{2}$ denklemini kullanarak iki yoldan hesaplayınız. Sonra bu iki değeri karşılaştırınız.
- 7) M kütlesinin son andaki açısal hızını ; $w = \alpha t_{son} = \frac{2m(g \sin \phi a)t_{son}}{MR}$ formülünden yararlanarak m kütlesinin son andaki çizgisel hızını "v = Rw" ise ilişkisinden yararlanarak bulunuz.

8) $-mgd\sin\phi + \frac{1}{2}mv^2 + \frac{1}{2}Iw^2 = 0$ Eşitliğini kullanarak toplam enerjinin korunduğunu gösteriniz.(d=y_{son} olarak alınız)