[숙제11] N-그램 언어 모형

언어와 컴퓨터 2018년 11월 23일 금요일 13시까지

- 보고서 파일 hw11_00000.pdf를 제출하라.
- 보고서에는 계산 과정·결과 및 간단한 설명이 있으면 된다. 계산 과정에서는 파이썬 대화형 모드 인터 프리터를 계산기처럼 사용하면 된다.

1 N-그램 언어 모형

1.0 데이터

훈련 코퍼스의 단어 수는 N=1410000000, 유니그램·바이그램·트라이그램의 빈도는 아래와 같다고 하자.

유니그램	빈도	바이그램	빈도	트라이그램	빈도
"하늘은" "파랗고" "단풍잎은" "빨갛고" "은행잎은" "노랗고"	3520000 392000 34600 339000 24300 359000	"하늘은 파랗고" "파랗고 단풍잎은" "단풍잎은 빨갛고" "빨갛고 은행잎은" "은행잎은 노랗고"	56100 23 160 85 198	"하늘은 파랗고 단풍잎은" "파랗고 단풍잎은 빨갛고" "단풍잎은 빨갛고 은행잎은" "빨갛고 은행잎은 노랗고"	34 0 3 85

실험 집합은 $W = w_1 w_2 w_3 w_4 w_5 w_6 =$ "하늘은 파랗고 단풍잎은 빨갛고 은행잎은 노랗고"이다.

1.1 모형별 확률 계산 (3점)

확률 P(W)을 유니그램·바이그램·트라이그램 모형으로 각각 추정하라.

주의사항

- 1. N-그램 모형에서는 문장 앞에 문장 시작 표시 $\{s\}$ 를 $\{N-1\}$ 개 넣는다.
- 2. 이 문제에서는 문장 시작 바이그램과 트라이그램의 확률이 아래와 같다고 가정하라.
 - $P("하늘은"|\langle s \rangle) = P("하늘은"|\langle s \rangle \langle s \rangle) = P("하늘은")$
 - P("파랗고"|<s>"하늘은") = <math>P("파랗고"|"하늘은")

1.2 모형별 복잡도 평가 (3점)

유니그램·바이그램·트라이그램 모형에서 복잡도 PP(W)를 각각 계산하고 그 결과를 비교하라.

1.3 보간법 (4점)

트라이그램 모형에서 확률의 추정치 $\hat{P}(w_n|w_{n-2}w_{n-1})$ 를 아래와 같이 새로 정의하자.

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n), \quad w = 1, 2, 3, \dots, 6$$

이렇게 정의된 $\hat{P}(w_n|w_{n-2}w_{n-1})$ 를 사용한 새로운 모형에서 $W=w_1w_2w_3\cdots w_6$ 의 확률과 복잡도를 구하려고 한다. $(\lambda_1,\lambda_2,\lambda_3)=(0.5,0.3,0.2)$ 일 때와 $(\lambda_1,\lambda_2,\lambda_3)=(0.7,0.2,0.1)$ 일 때의 P(W)와 PP(W)를 각각계산하라.

1.4 기타 (+2점)

계산 과정에서 함수를 정의하거나 NumPy를 사용하면 가산점을 받을 수 있다.