Модель сложных сетей с придирчивостью

Zarvanskiy Igor, Snarskii NTUU KPI and IPRI (Dated: May 01, 2014)

Бла-бла-бла

I. Введение

Значительное количество реальных сложных сетей являются безмасштабными сетями, такими, степени которых распределяются по степенному закону. К таким сетям относятся WWW-сети, сети метаболизма, сети питания (food webs), социальные сети и многие другие [4].

В настоящее время свойства таких безмасштабных сетей достаточно подробно изучено, установлены их сетевые характеристики (средняя степень узла, минимальный средний путь, коэффициент кластеризации и т.д.) [?]. Необходимо заметить, что сложные сети построенные согласно предположенным сценариям [1] являются идеализацией реальных сетей, характеристики которых могут иногда значительно отличаться от идеальных [?]. Тем не менее степенная зависимость степени узлов реальных сложных сетей встречается достаточно часто и особенно для тех сетей, которые образованы (возможно само организованными) развивающимся по времени процессом [].

Одним из таких процессов, который начал изучаться задолго до появления понятия сложная сеть, был процесс распределения между людьми «богатства» (под которым можно понимать деньги, вложения, недвижимость...). В [7] Парето был установлен т. н. Закон Парето — степенное распределение богатства — когда, число людей ν , влдеющих μ - долей богатсва является степенной функцией $\nu \sim \mu^{\gamma}$, при $\gamma = ...$ получается так, что 20% людей владеют 80% богаства, что часто называется законом 80/20.

В работе [2] был найден сценарий образования сложной сети, т. н. сценарий Барабаши-Альберт, со степенным законом распределения степенней узлов, основанном на двух принципиально важных положениях:

- 1. Сеть является растущей, начиная с некоторого затравочного числа узлов m_0 , на каждом временном шаге появляется некоторое число новых узлов с n связями.
- 2. Вероятность подсоединение связей от нового узла к уже существующим прямо пропорциональна по степени.

Коротко говоря модель Барабаши-Альберт — это растущая сеть с предпочтительным подсоединением.

В дальнейшем появилось много модификаций алгоритма Барабаши-Альберт, в [1] их перечислено около 20-ти. Все они приводят к безмасштабным сетям с различным значением показателя степени распределения узлов по их степеням. На первый взгляд представляется, что растущая сеть с различным типом предпочтительного соединения обязательно вырастет в безмасштабную сеть.

В настоящей работе показано, что возможна такая, незначительная на первый взгляд, модификация закона предпочтительного соединения, при которой степенное распределение модели Барабаши-Альберт принципиально нарушается. В функции распределении при этом появляется провал, означающий отсутствие узлов сети для некоторого диапазона значений степени. Как показали подробные исследования, введенный параметр r, определяющий модификацию закона предпочтительного подсоединения, имеет пороговое значение r_c , так что при $r < r_c$ сеть остается безмаштабной сетью, а при $r \ge r_c$ появляется провал. Величина провала степенным образом зависит от близости параметра r к своему пороговому значению, что позволяет говорить об аналогии с фазовым переходом второго рода.

Модификация закона подсоединения также была нами опробована на детерминированных иерархичных безмасштабных сетях, т. н. детерманированых (u,v)-flowers [3]. При этом также наблюдалось нарушение степенной функции распределения аналогично фазовым законам второго рода.

Статья построена следующим образом. Вначале рассматривается модель подсоединения с т. н. придирчивостью, связь и отличие от модели Барабаши-Альберт. Далее рассматривается модель (u,v)-flowers, приводятся результаты численного моделирования и исследования различных характеристик растущих (u,v)-flowers при подсоединении с придирчивостью. И в этом случае численное моделирование приводит к явлениям аналогичным фазовым переходам второго рода.

II. Модель Барабаши-Альберта с придирчиостью

А. Алгоритм Барабаши-Альберта

Рассмотрим растущую сеть. В стандартном варианте модели Барабаши-Альберт [2] на первом шаге по времени существует m_0 узлов связанных между собой. На каждом следующем шаге возникает m новых узлов с q связями. p_i - вероятность подсоединения(создание связи между узлами) нового узла к уже существующему узлу i пропорциональна по степени (числу связей узла i) - k_i :

$$p_i = \frac{k_i}{\sum_j k_j},\tag{1}$$

тде суммирование происходит по всем "старым" узлам.

Такой алгоритм, при большом числе шагов по времени приводит к степенной функции распределения степе-53 ней P(k):

$$P(k) \sim k^{-\gamma},\tag{2}$$

 $_{55}$ с показателем $\gamma = 3$ [2].

50

58

67

70

71

72

B[1] приведено много модификаций правила предпочтительного подсоединения, которые приводят к различым значениям показателя γ . Однако сама степенная зависимость (2) остается.

В. Модификация алгоритма Барабаши-Альберта

3десь мы предлагаем обобщение модели, основанной на правиле предпочтительного соединения, введеного Барабаши-Альберт. Новое правило предпочтительности будем для краткости называть подсоединением с "придирчивостью" (exceptive). Согласно этой модели вводится новый параметр exceptive - r, принимающей значения в диапазоне (0,1). В том случае, когда выбор подсоединения новой связи выпал на узел i со степенью k_i , подсоединение происходит с вероятностью p_i , но только в том случае, когда выполняется условие:

$$p_i = \frac{k_i}{\sum_j k_j}, \quad k_i \ge r\langle k \rangle, \tag{3}$$

65 где $\langle k \rangle$ – среднее значение степени узлов в сети на момент присоединения, $\langle k \rangle = \sum_j k_j/N$.

Введения дополнительного условия (3) в процесе роста сети отсекает часть узлов (делает их невалидными), то есть к ним в данный момент не может присоединиться новая связь. Необходимо заметить, что если в данный момент времени некий узел не удовлетворяет условию (3), это еще не значит, что в следующие моменты времени к нему не смогут присоединиться новые узлы. Валидность или невалидность узла меняется со временем, так как с течением времени изменяется значение $\langle k \rangle$.

С. Функция распределения степеней узлов

При значение параметра придирчивости r=0 предлагаемая модель переходит в стандартную модель Барабапи-Альберт. Удивительным является наличие порогового значения параметра придирчивости r_c . При значении параметра придирчивости меньше некоторого порогового r_c , тоесть при $r < r_c$ функция распределения степеней узлов P(k) остается степенной, а сама сеть, тем самым, безмасштабной сетью. При значениях параметра придирчивости больше порогового значения $r \ge r_c$ сеть меняет свою структуру, а именно в сети исчезают узлы со «средним» количеством связей, что мы можем увидеть на рис. 1(a).

Определим пороговое значение параметра придирчивости. Для этого рассчитаем пороговое значение для сети в 100 узлов, а дальше с шагом в 100 узлов будем увеличивать размер сети до 2000 узлов, при этом будем усреднять значения по 10 экспериментам. Для сети в 100 узлов $r_c=0.62$, далее происходит насыщение r_c . Для сети в 1100 узлов r_c полностью насыщается и мы получаем $r_c=0.51$. В последующих расчетах мы будем использовать $r_c=0.51$.

Рис. 1. (а) Ранжированое распределение сети при r=0.6. По горизонтальной оси отложено порядковый номер узла, по вертикальной оси отложена степень узла. (b) Величина разрыва при увеличении r от r_c до $r_c+0.01$ с шагом 0.001. По горизонтальной оси отложено $\frac{r-r_c}{r_c}$, по вертикальной оси отложено значение величины разрыва.

Введем новую характеристику сети - величину разрыва η рис. 1(a), расстояние между узлами, ближайшими к разрыву(разница значений степени узла до разрыва и после разрыва). Величина разрыва, указывает по вертикальной оси те значения степеней узлов, которые отсутствуют.

Как следует из численного моделирования, поведение параметра η аналогично поведению параметра порядка η в теории фазовых переходов второго рода [5]. Как известно, параметр порядка η , например намагниченность, при приближении температуры к критическому значению T_c уменьшается степенным образом $\eta \sim (r-r_c)^{\beta}$, где β – критический индекс. При проведении численного эксперимента были выбраны следующие начальные параметры: количество узлов N=5000, начальное количеств узлов $m_0=20$, количество связей у каждого нового узла m=3.

. На рис. 1(b) показана полученная зависимость $\eta = A \cdot (r - r_c)^{\beta}$, где $\beta \sim 1.3$

в О. Коэфициент кластеризации, ассортативность, минимальное среднее расстояние, величина разрыва

Появление разрыва η в распределении степеней узлов P(k) свидетельствует о значительном изменении структуры сети, что не может не сказаться на её характеристиках. Ниже рассмотрено поведение C - коэффициента кластеризации, A - ассортативности и l - минимального среднего расстояния, как функции коэффициента придирчивости r, при $r \geq r_c$. Как показал численный эксперимент для сети с N=5000 узлов, коэфициент кластеризации C, ассортативность A, минимальное среднее расстояние l при $r < r_c$ от r не зависит и равна $C_0 \approx 0.01, l_0 \approx 3.98, A_0 \approx -0.096$, что, как и должно быть, совпадает с расчетами приведенными в [1, 6].

При увеличении r от r_c до $r_c+0.01$ с шагом 0.001 коэффициент кластеризации увеличивается от 0.04 до 0.14, ассортативность уменьшается от -0.3 до -0.6, среднее минимальное расстояние уменьшается от 3.5 до 2.9(согласно рис. 2(a)). Для нормализации зависимости возьмем отношение параметра к его значению при $r < r_c$, а также приведем зависимости к возрастающим функциям: $A = \frac{A}{A_0}$, $C = \frac{C}{C_0}$, $l = -\frac{l}{l_0}$.

При $r \geq r_c$ такая зависимость появляется, и она оказывается степенной, а именно $C \sim (r-r_c)^{\alpha}$, $A \sim (r-r_c)^{\gamma}$, 105 $l \sim (r-r_c)^{\sigma}$, где $\alpha \approx 0.46155027$, $\gamma \approx 0.26025569$, $\sigma \approx 0.11761072$

110

111

113

114

116

117

Рис. 2. По горизонтальной оси отложено значение параметра придирчивости, по вертикальной оси отложено значение соответсвующей характеристики. (a) Изменение кластеризации, ассортативности, минимального среднего пути при r = [0, 45; 0, 56] с шагом 0.01. (b) Изменение кластеризации, ассортативности, минимального среднего пути при r = [0, 5; 0, 56] с шагом 0.001. В двойном логарифмическом масштабе.

Е. Матрица смежности для сети с придирчивостью

Рассмотрим матрицу смежности A_{ij} для сети с придирчивостью. Для удобства нумерации узлов в матрице смежности будем вести в порядке спадания количества связей. То есть $k_i = \sum_i A_{ij}$ не возрастает с увеличением i.

Рис. 3. Матрица смежности для сети с N=5000 узлов: (a) при r=0.0 (b) при r=0.6

Изменение структуры сети при $r \geq r_c$ отражается и на виде матрицы смежности. Для сети с N=5000 были построены две матрицы смежности: для $r < r_c$ - рис. 3(a) и для $r > r_c$ - рис. 3(b). Для удобвства элементы матрицы смежности $A_{ij}=1$ отображены в виде черной точки. Обе матрицы были ранжированы, тоесть узлы сети пронумерованы в порядке спадания количества связей k_i . Из рис. 3(b) можно заметить, что в матрице смежности при $r > r_c$ в правом нижнем углу появляется значительная квадратная область, заполненная 0, тоесть теми парами узлов, которые не связаны друг с другом. Эта область, как показывает исленный эксперимент, прямопропорционально зависит от величины r.

Таким образом такие характеристики сети, как коэффициент кластеризации, ассортативность, среднее минимальное расстояние ведут себя аналогично "параметру порядка" η .

III. Иерархические сети (U,V)-FLOWERS с придирчиостью

119

120

121

122

123

125

126

127

128

130

Кроме случайных безмасштабных сетей, построенных по альгоритму Барабши-Альберта(и их обобщений), известен класс простых детерменированных сетей, которые также являются безмасштабными сетями [9] - Fractal and Transfractal Recursive Scale-Free Networks. В частности это так называемые (u,v)-flowers, puc. 4.

Ниже мы обощим модель Fractal and Transfractal Recursive Scale-Free сетей, введя фактор "придирчивости" r и случайность в закон роста сети. Как оказывается в этом случае поведение характеристик сети аналогично фазовому переходу.

A. Алгоритм (u,v)-flowers

Детерминированные растущие SF-сети, называемые (u,v)-flowers и (u,v)-trees были предложены и исследованы в [3, 8, 9].

Рис. 4. Схема построения (1,2)-flowers на шагах t=0,1,2. Утолщенные (красные online) - узлы появивщиеся на данном шаге, не утолщенные (синие online) - узлы, которые появились на предыдущих шагах.

Нумерация узлов вообще говоря может быть любой, однако, в рассматриваемом примере можно занумеровать узлы таким образом (рис. 4), что матрица смежности A_{ij} станет наиболее простой. Под простой A_{ij} мы, в данном случае, понимаем такую ее структуру, что наибольшее число наибольших квадратных областей $N \times N$ в нем остаются пустыми.

Рис. 5. Матрицы смежости для 3-го шага (1,2)-flower: (a) матрица смежности сети с выбранной нами нумерацией (b) схематическое представление

На рис. 5 - $N \times N$ матрица смежности, где черным обозначены элементы матрицы с $A_{ij}=1$. На первом шаге матрица смежности \hat{A} состоит из 3×3 элементов(верхний левый угол, шаг t=0 на рис. 4). На втором шаге к ней добавляются новые элементы, и матрица состоит из 6×6 элементов(шаг t=1 на рис. 4). На третьем шаге шаге добавляются новые элементы, и матрица состоит из 15×15 элементов(шаг t=2 на рис. 4). Как видно из рис. 5 правый нижний квадрат первого шага свободный от связей и состоит из одного элемента. На втором шаге добавляется правый нижний квадрат, состоящий из 3×3 элементов, а на третьем из 9×9 элементов. На рис. 5 белым обозначены места матрицы смежности, где $A_{ij}=0$.

При выбранной нами нумерации появляются дополнительные к построению матрицы смежности в работе [3] области K_1 , K_2 , в которых также $A_{i,j} = 0$.

На каждом шаге t имеется N_t узлов и L_t связей [8]

133

135

136

138

141

142

143

147

149

150

151

155

156

$$N_t = (u+v) \cdot N_{t-1} - (u+v), \quad L_t = (u+v)^t$$
(4)

Т.е. на каждом шаге t появляется $N_t - N_{t-1}$ узлов и $L_t - L_{t-1}$ связей. Например, рис. 4, на шаге t=1 появляется 3 узла и 6 связей.

Сделаем замену (u + v) = w и раскроем рекурентные формулы 4 [8]:

$$N_t = \frac{w-2}{w-1} \cdot w^t + \frac{w}{w-1}, \quad L_t = w^t$$
 (5)

На каждом шаге t есть Ω_t клеток, которые могут быть заполнены – рис. 5. Их число равно:

$$\Omega_{t} = (N_{t} - N_{t-1}) \cdot N_{t} - N_{t-2}^{2} = \frac{w^{3} - w^{2} - 1}{w^{4}} N_{t}^{2} + \frac{w^{3} - 2w^{2} - 2w - 2}{w^{3}} N_{t} - \frac{2w^{2} + 2w + 1}{w^{2}} =
= \frac{w^{2t+4} - 5w^{2t+3} + 8w^{2t+2} - 5w^{2t+1} + 4w^{2t} + w^{t+5} - 3w^{t+4} + 4w^{t+2} - w^{5}}{w^{3} \cdot (w - 1)^{2}}$$
(6)

Вероятность заполнения ячейки матрицы равна:

$$W_t = \frac{L_t - L_{t-1}}{\Omega_t} = \frac{w^{t+5} - 3w^{t+4} + 3w^{t+3} - w^{t+2}}{w^{2t+4} - 5w^{2t+3} + 8w^{2t+2} - 5w^{2t+1} + 4w^{2t} + w^{t+5} - 3w^{t+4} + 4w^{t+2} - w^5}$$
(7)

Так с каждым шагом вероятность падает и матрица смежности становится все более разряженной. В [3] было показано, что (u,v)-flowers являются безмасштабными сетями. Для изображенного на рис. 4 (1,2)-flower распределение узлов по степеням имеет вид $P(k) \sim k^{-(1+\frac{\ln 3}{\ln 2})}$. В общем случаи для (u,v)-flowers [8]

$$P(k) \sim k^{-\alpha}, \quad \alpha = 1 + \frac{\ln(u+v)}{\ln 2}$$
 (8)

В. Модификация алгоритма (u,v)-flowers

Рассмотрим теперь ситуацию, когда при построении (u,v)-flower не все связи реализуются. При чем вероятность нереализованности связи тем больше, чем меньше степени узлов она соединяет.

Рис. 6. Схема матрицы смежости для 3-го шага (1,2)-flower.

Комрьютерное моделирование проводилось путем заполнения в матрице смежности областей $\Omega_1,\Omega_2...$ с соотетсвующим им количеством связей L_t . Таким образом "придирчивость" в матрице смежности отображается правыми нижними углами областей Ω . При r>0 в правых нижних углах областей Ω появляются пустые области. В нашем моделировании мы использовали пустые области E_t 5. Тогда вероятность заполнения ячейки матрицы:

$$W_t = \frac{L_t - L_{t-1}}{\Omega_t - E_t} \tag{9}$$

$$E_t = (r \cdot N_{t-1}) \times (r \cdot (N_t - N_{t-1})) \tag{10}$$

С. Функция распределения степеней узлов

При значение параметра придирчивости r=0 предлагаемая модель принимает вид стандартной (u,v)-flowers. Как и в случае с моделью Барабаши-Альберта, в модели (u,v)-flowers присутствует пороговое значения параметра придирчивости r_c . При значении параметра придирчивости меньше некоторого порогового $r < r_c$ функция распределения степеней узлов P(k) остается степенной, а сама сеть, тем самым, безмасштабной сетью. При значениях параметра придирчивости больше порогового значения $r \ge r_c$ сеть меняет свою структуру.

Определим пороговое значение параметра придирчивости. Для этого рассчитаем пороговое значение для (u,v)-flowers с 1 по 14 поколение, при этом будем усреднять значения по 50 экспериментам. Как и в модели Барабаши-Альберт с придирчивостью происходит насыщение порогового значения. Для 9 поколения r_c полностью насыщается и мы получаем $r_c=0.6$. Необходимо отметить, что при r>=0.6 происходит изменение структуры и характеристик сети, однако видимый разрыв появляеться при r>=0.8, что мы можем увидеть на рис. 7(b)

181

182

183

184

185

186

187

189

190

192

193

Рис. 7. (a) Ранжированое распределение сети при r = 0.6. По горизонтальной оси отложено порядковый номер узла, по вертикальной оси отложена степень узла. (b) Ранжированое распределение сети при r=0.8. По горизонтальной оси отложено порядковый номер узла, по вертикальной оси отложена степень узла. (c) Величина разрыва при увеличении rот r_c до $r_c+0.2$ с шагом 0.01. По горизонтальной оси отложено $\frac{r-r_c}{r_c}$, по вертикальной оси отложено значение величины разрыва.

Как следует из численного моделирования, поведение параметра η аналогично поведению параметра порядка 178 в теории фазовых переходов второго рода [5]. Параметр порядка η при приближении к критическому значению уменьшается степенным образом $\eta \sim (r-r_c)^{\beta}$, где β – критический индекс. При проведении численного эксперимента были выбраны следующие начальные параметры: (1,2)-flowers седьмого поколения, тоесть количество узлов N = 1095.

На рис. 7(c) показана полученная зависимость $\eta = A \cdot (r - r_c)^{\beta}$, где $\beta \sim$

Коэфициент кластеризации, ассортативность, минимальное среднее расстояние, величина разрыва

Ниже рассмотрено поведение C - коэффициента кластеризации, A - ассортативности и l - минимального среднего расстояния, как функции коэффициента придирчивости r, при $r \geq r_c$. Как показал численный эксперимент для сети (1,2)-flowers седьмого поколения с N=1095 узлов, коэфициент кластеризации C, ассортативность A, минимальное среднее расстояние l при $r < r_c$ от r не зависит и равна $C_0 \approx 0.02, l_0 \approx 4.05, A_0 \approx -0.18,$ что, как и должно быть, совпадает с расчетами приведенными в [8, 9].

При увеличении r от r_c до $r_c + 0.1$ с шагом 0.01 коэффициент кластеризации увеличивается от 0.02 до 0.04, ассортативность уменьшается от -0.18 до -0.39, среднее минимальное расстояние уменьшается от 4.0 до 3.65(согласно рис. 8(a)). Для нормализации зависимости возьмем отношение параметра к его значению при $r < r_c$, а также приведем зависимости к возрастающим функциям: $A = \frac{A}{A_0}, C = \frac{C}{C_0}, l = -\frac{l}{l_0}$. При $r \ge r_c$ такая зависимость появляется, и она оказывается степенной, а именно $C \sim (r-r_c)^{\alpha}, A \sim (r-r_c)^{\gamma},$

194 $\sim (r - r_c)^{\sigma}$, где $\alpha \approx 0.11379367$, $\gamma \approx 0.43169254$, $\sigma \approx 0.01796628$

Рис. 8. По горизонтальной оси отложено значение параметра придирчивости, по вертикальной оси отложено значение соответсвующей характеристики. (a) Изменение кластеризации, ассортативности, минимального среднего пути при r=[0,4;0,72] с шагом 0.01. (b) Изменение кластеризации, ассортативности, минимального среднего пути при r=[0,59;0,7]с шагом 0.001. В двойном логарифмическом масштабе.

Заключение

197

198

204

207

208

210

211

212

213

214

215

216

217

Литература

- [1] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 74:47–97, 2002.
- A.-L. Barabási, R. Albert, and H. Jeong. Mean-field theory for scale-free random networks. *Physica A*, 272:173–187, 1999. 199
- [3] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Pseudofractal scale-free web. *Physical Review E*, 65, 2002. 200
- S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks. Advances in Physics, 51:1079–1187, 2002. 201
- L. D. Landau. On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, page 19–32, 1937. 202
- M. E. J. Newman. Assortative mixing in networks. *Physical Review Letter*, 89, 2002. 203
 - Vilfredo Pareto. Manual of political economy. Augustus M Kelley Pubs, 1969.
- Hernan D. Rozenfeld and Daniel ben Avraham. Percolation in hierarchical scale-free nets. Physical Review E, 75, 2007. 205
- [9] Hernan D. Rozenfeld, Shlomo Havlin, and Daniel ben Avraham. Fractal and transfractal recursive scale-free nets. New 206 Journal of Physics, 9:175, 2007.

Доработки

Заключение

Обычно заключение отвечает на три вопроса: Что за проблема решалась в статье? Какие результаты были получены в статье? Ну и что!? Для ответа на эти вопросы, в особенности на последний, хорошо поиграть в игру Ну и что?!. То есть представьте, что вы беседуете с редактором журнала, и он вас спрашивает: ну и что в статье интересного-то?"или почему я должен обратить на это внимание?.

> в. Введение

Введение это вторая по трудности часть после заключения. Введение обычно даёт формулировку целей исследования и достаточный обзор существующей литературы. Но это легко сказать, а что писать-то? Ну, например, автор этих строк пользуется следующей болванкой: Почему это исследование вообще проводилось? Какая литература уже существует по этому вопросу? Здесь можно провести обзор и показать ту брешь, которую вы хотите заткнуть своей статьёй. Какова конкретная цель исследований? Это теоретическое обоснование чего-то, или экспериментальная работа, или численные симуляции. В чём новизна работы?

221 С. Аннотация

Аннотация (abstract) это короткое описание цели работы, результатов и что в работе сообщается. В целом, аннотация пишется обычно из надёрганных предложений из Введения и Заключения. Обычно аннотации короткие и должны быть не длиннее, скажем, 250 слов (у журналов и конференций по этому поводу свои правила).