Uitwerking van extra opgave bij volledigheid van predikatenlogica

Bewijs dat een verzameling formules $\{\phi_1, \ldots, \phi_n\}$ een model heeft ("consistent" of "satisfiable" is), precies dan als het niet mogelijk is er \bot uit af te leiden. Dus:

$$\{\phi_1, \dots, \phi_n\}$$
 consistent \Leftrightarrow $\{\phi_1, \dots, \phi_n\} \not\vdash \bot$

Bewijs. \Rightarrow : Laat \mathcal{M} een model zijn voor $\{\phi_1, \ldots, \phi_n\}$. We weten dat $\mathcal{M} \not\models \bot$ (\bot is in geen enkel model waar) en dus dat $\{\phi_1, \ldots, \phi_n\} \not\models \bot$ (\mathcal{M} is een tegenmodel).

Hier uit volgt dat $\{\phi_1, \dots, \phi_n\} \not\vdash \bot$ (correctheidsstelling).

 \Leftarrow : (Bewijs uit het ongerijmde.) Stel er is geen \mathcal{M} met $\mathcal{M} \models \{\phi_1, \dots, \phi_n\}$. Dan $\{\phi_1, \dots, \phi_n\} \models \bot$ (een tegenmodel zou $\{\phi_1, \dots, \phi_n\}$ waar moeten maken) en dus $\{\phi_1, \dots, \phi_n\} \vdash \bot$ (volledigheidsstelling). Tegenspraak.

We concluderen dat $\{\phi_1, \ldots, \phi_n\}$ wel een model heeft.