

Turing-Recognizable and Turing-Decidable Languages Chapter 4: Turing machines

Prof. Riddhi Atulkumar Mehta Assistant Professor Department of Computer Science and Engineering

Parul® University

Content

1.	Recursively Enumerable languages	1
2.	Recursive Language (REC)	2
3.	Recognizable vs Decidable	3
4.	Closure Properties: Turing-Decidable	
	Languages	4
5.	Closure Properties: Turing-Recognizable	
	Languages	. 5

Recursively Enumerable languages

- If any Turing Machine can be designed to accept all string of the given language, then the language is called recursively enumerable language.
- Recursively enumerable languages are the formal languages that can be decide-able, (fully or partially).
- According to the Chomsky hierarchy of formal languages, we can see the recursively enumerable languages as type 0 languages.
- An RE language can be accepted or recognized by Turing machine which means it will
 enter into final state for the strings of language and may or may not enter into
 rejecting state for the strings which are not part of the language.
- It means TM can loop forever for the strings which are not a part of the language. RE languages are also called as Turing recognizable languages.

Recursive Language (REC)

- A recursive language (subset of RE) can be decided by Turing machine which means it
 will enter into final state for the strings of language and rejecting state for the strings
 which are not part of the language.
- e.g.; L= {aⁿbⁿcⁿ|n>=1} is recursive because we can construct a turing machine which will move to final state if the string is of the form aⁿbⁿcⁿ else move to non-final state.
- So the TM will always halt in this case. REC languages are also called as Turing decidable languages.

Parul® University

Recognizable vs Decidable

Feature	Turing-Recognizable (RE)	Turing-Decidable (Recursive)
Halts on all inputs?	No	Yes
Accepts members?	Yes	Yes
Rejects non-members?	Not guaranteed	Yes
Example	Halting problem (RE)	Palindromes (Decidable)

Closure Properties: Turing-Decidable Languages

Closed under:

- Union
- Intersection
- Complement
- Concatenation
- Kleene star

Closure Properties: Turing-Recognizable Languages

Closed under:

- Union
- Intersection
- Concatenation
- Kleene star
 - X Not closed under: Complement

https://paruluniversity.ac.in/

