ФПМИ, 3 курс, 9а группа Крагель Алина Олеговна ИСО

Исаченко Александр Николаевич Лабораторная работа №5

1. Алгоритм Флойда применяется для решения задачи о нахождении для каждой пары вершин графа кратчайший путь. Ограничений на длины дуг не накладывается. Алгоритм обнаруживает контур отрицательной длины в графе.

По окончанию применения алгоритма если k+1=n и $d_{ii}^{k+1}\geq 0$, $i=\overline{1,n}$, то матрица D_n даёт кратчайшие расстояния между парами вершин. Для условия задания 1 строим матрицы D^{k+1} , T^{k+1} по матрицам D^k , T^k :

$$D^{0} = \begin{pmatrix} 0 & -15 & 10 & 4 & 5 \\ 20 & 0 & 7 & 1 & \infty \\ 8 & \infty & 0 & -10 & -3 \\ \infty & 4 & \infty & 0 & 6 \\ \infty & \infty & 14 & 4 & 0 \end{pmatrix}, T^{0} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 &$$

Таким образом, после проведения 5 итераций алгоритма Флойда, получили матрицу D^5 с неотрицательными диагональными элементами, что дает нам право назвать матрицу D^5 корректной матрицей кратчайших расстояний между вершинами данного условием графа.

2. Алгоритм Форда-Фалкерсона для нахождения максимального потока начинает свою работу с произвольного начального потока в сети. Например, нулевого потока. Алгоритм на каждой итерации состоит из двух этапов: расстановка меток и увеличение потока. Изменение потоков на величину по дугам повторяется до тех пор, пока не будет достигнута вершина s. Стираем у вершин все метки и возвращаемся к этапу 1 с новым увеличенным потоком.

$\mathcal{N}_{\underline{0}}$	S	x_1	x_2	χ_3	t	v
1.	(-,∞)	$(S^+, 4)$	$(S^+, 4)$	$(S^+, 4)$	$(x_1^+, 3)$	0 + 3
2.	(-,∞)	$(S^+, 1)$	$(S^+, 4)$	$(S^+, 4)$	$(x_2^+, 1)$	3 + 1
3.	(-,∞)	$(S^+, 1)$	$(S^+, 3)$	$(S^+, 4)$	$(x_3^+, 2)$	4 + 2
4.	(-,∞)	$(S^+, 1)$	$(S^+, 3)$	$(S^+, 2)$		6

Таким образом из таблицы решений:

- максимальный поток $v_{max} = 6$;
- минимальный срез $S = \{s, x_1, x_2, x_3\}, \bar{S} = \{t\}.$
- 3. Алгоритм Гомори-Ху является более эффективным, ибо в нем задача о максимальном потоке решается n-1 раз, нежели при решении данной задачи алгоритмом Форда-Фалкерсона. Идея алгоритма Гомори-Ху состоит в итеративном построении максимального остовного дерева G'' = (v, E''). Если требуется определить величину максимального потока между двумя произвольными узлами, надо в дереве найти путь, соединяющий эти два узла, и выбрать в этом пути дугу с минимальным весом. Вес этой дуги равен величине максимального потока между рассматриваемыми узлами.

Итверация 1. Возьмём $s = x_7$, $t = x_6$. Минимальный разрез, отделяющий x_7 от x_6 , есть $\{\{x_3, x_7\}, \{x_1, x_2, x_4, x_5, x_6, x_8\}\}$. Его пропускная способность равна $v(x_7, x_6) = 16$. По минимальному разрезу получим, что дерево на первой итерации состоит из двух множеств вершин: $\{x_3, x_7\}, \{x_1, x_2, x_4, x_5, x_6, x_8\}$ и единственного ребра с весом равным 16.

Итверация 2. $s = x_8$, $t = x_5$. Минимальный разрез, отделяющий x_8 от x_5 , есть $\{\{x_8\}, \{\{x_3, x_7\}, \{x_1, x_2, x_4, x_5, x_6, \}\}\}$. Его пропускная способность равна $v(x_8, x_5) = 9$. По минимальному разрезу получим, что дерево на второй итерации состоит из трех множеств вершин: $\{x_3, x_7\}, \{x_1, x_2, x_4, x_5, x_6\}, \{x_8\}$ и добавленного ребра с весом равным 9.

Итерация 3. $s=x_4$, $t=x_5$. Минимальный разрез, отделяющий x_4 от x_5 , есть $\{\{x_4\}, \{x_1, x_2, x_5, x_6, \{x_8\}, \{x_3, x_7\}\}\}$. Его пропускная способность равна 6. дерево на второй итерации состоит из трех множеств вершин: $\{x_3, x_7\}$,

 $\{x_1, x_2, x_4, x_5, x_6\}, \{x_8\}, \{x_4\}$ и добавленного ребра с весом равным 6.

Итерация 4. $s=x_1$, $t=x_2$. Минимальный разрез: $\{x_1\}, \{x_2, x_5, x_6, \{x_4\}, \{x_8\}, \{x_3, x_7\}\}\}$, пропускная способность равна 4. Добавим новую вершину и дугу.

Итерация 5. $s=x_5$, $t=x_2$. Минимальный разрез: $\{\{x_5\}, \{x_2, x_6, \{x_1\}, \{x_4\}, \{x_8\}, \{x_3, x_7\}\}\}$, пропускная способность равна 9.

*Итерация 6. s=x*₂, *t=x*₆. Минимальный разрез: $\{\{x_2\}, \{x_6, \{x_1\}, \{x_4\}, \{x_5\}, \{x_8\}, \{x_3, x_7\}\}\}$, пропускная способность равна 10.

Итерация 7. Исходный граф:

 $s=x_3$, $t=x_7$. Минимальный разрез $\{\{x_3\}, \{\{x_1, x_2, x_4, x_5, x_6, x_8\}, x_7\}\}$. Новая вершина $\{x_3\}$, ребро веса 13 от изменённой вершины $\{x_7\}$:

