Санкт-Петербургский политехнический университет Петра Великого Институт физики, нанотехнологий и телекоммуникаций Высшая инженерно-физическая школа

Молекулярное моделирование

Отчет по лабораторной работе №2, вариант 16

Работу

выполнил:

В. Х. Салманов

Группа:

3430302/60201

Преподаватель:

И. М. Соколов

 ${
m Cankt-}\Pi{
m erep}{
m fypr}$ 2020

Содержание

1.	Описание работы	3
2.	Постановка задачи	4
3.	Теоретическая информация 3.1. Теория функционала плотности	5
4.	Результаты	6
5.	Контроль результатов	9

1. Описание работы

Подготовить исходные данные с помощью программы Avogadro. Провести оптимизация геометрии (Energy Optimization) с помощью программы GAMESS. Проанализировать результаты.

Расчитываемая молекула: этиленгликоль $C_2H_4-(OH)_2$

Рисунок 1.1. Изопропанол. Цветами обозначены атомы: голубой - водород, фиолетовый - углерод, красный - кислород.

2. Постановка задачи

Предварительно оптимизировать молекулярную структуру с помощью программы Avogadro, затем провести геометрическую оптимизацию с помощью программы GAMESS методом DFT. Проанализировать следующие показатели:

- номер слейтеровской орбитали, локализованной на атоме кислорода, которая вносит существенный вклад в НОМО;
- определить заселенность по Малликену атомов кислорода и максимальную межатомную заселенность;
- привести исходное значение полной энергии (в а.е.) до начала процесса оптимизации и полную энергию, полученную после завершения процесса оптимизации геометрии. Для полной энергии, полученной по окончанию оптимизации, привести вклады электронной энергии и энергии кулоновского отталкивания ядер.
- сопоставить геометрии (длины связей) до и после оптимизации, визуализировать результат.

3. Теоретическая информация

3.1. Теория функционала плотности

ТФП связывает свойства молекулярных систем с электронной плотностью основного состояния и опирается на теорему Хоэнберга—Кона, которая утверждает, что энергия системы есть функционал электронной плотности, а точная электронная плотность основного состояния обеспечивает минимум энергии:

$$E[\rho] = -\frac{1}{2} \sum_{i} \nabla^{2} \psi_{i}(\vec{r}) + \int V(\vec{r}) \rho(\vec{r}) + \frac{1}{2} \int \int \frac{\rho(\vec{r}) \rho(\vec{r}')}{|\vec{r} - \vec{r'}|} d\vec{r} d\vec{r'} + E_{xc}[\rho]$$

Различные методы $T\Phi\Pi$ отличаются друг от друга выбором обменнокорреляционного функционала. Один из наиболее популярных методов является гибридный метод B3LYP, в котором смешаны различные другие методы $T\Phi\Pi$.

 $^{^1}$ Для исследования возбужденных состояний можно использовать TD DFT или TD HF

4. Результаты

Определить номер HOMO, которая содержит существенный вклад AO, локализованной на атоме кислорода.

Номер НОМО 17. Наиболее существенный вклад вносит $2p_z$ -орбиталь (-0.537052), центрированная на атоме О2 (раздел EIGENVECTORS).

Анализ заселенностей атомов О1 и О2

Рисунок 4.1. Номера атомов в молекуле этиленгликоль. Цветами обозначены атомы: голубой - водород, фиолетовый - углерод, красный - кислород.

Полная заселенность по Малликену для атомов O1 и O2 составялет 8.6.Так как заряд ядра атома кислорода составялет +8, то в данном соединении кислород является электроотрицательным. Максимальная межатомная заселенность образована между атомами C3-H6 - 0.745322 (разделы TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS и MULLIKEN ATOMIC OVERLAP POPULATIONS).

Сопоставление полной энергии

Была проведена оптимизация геометрии методом B3LYP в базисе 6-31G.

	До оптимизация	После оптимизации	
Кинетическая энергия	229.082	228.911	
электронов	223.002		
Электрон-электронное	214.520	213.127	
взаимодействие	214.020	210.121	
Электрон-ядерное	-807.080	-803.973	
взаимодействие	-007.000		
Ядер-ядерное	133.435	131.889	
взаимодействие			
Полная энергия	-230.042	-230.045	

Изменение полной энергии составило менее 1%, что является несущественным. Это значит, что Avogadro хорошо проводит оптимизацию.

Сопоставление длин связей

Была проведена оптимизация геометрии методом B3LYP в базисе 6-31G.

Рисунок 4.2. Геометрия молекулы до оптимизации

Рисунок 4.3. Геометрия молекулы после оптимизации

Таблица 4.2 Длины связей в молекуле до и после оптимизации

Связь	Длина связи		Относительная
	До оптимизации	После оптимизации	разница, %
О1-Н9	0.974	0.980	0.62
O1-C3	1.429	1.467	2.66
С3-Н5	1.094	1.098	0.37
С3-Н6	1.094	1.092	-0.18
C3-C4	1.524	1.523	-0.07
C4-H8	1.094	1.104	0.91
C4-H7	1.093	1.094	0.09
C4-O2	1.426	1.448	1.54
O2-H10	0.978	0.983	0.51

Как видно из таблицы, наиболее существенно изменилась связь О1-С3.

5. Контроль результатов

Процесс оптимизации геометрии в расчете действительно завершен (в выходном файле содержится: "EQUILIBRIUM GEOMETRY LOCATED"). В результате расчета получена геометрия с более низкой полной энергией, чем после предварительной оптимизации в Avogadro.

Приложенные файлы:

- Ethylene_glycol.inp исходные данные GAMESS для расчета методом DFT (B3LYP) в базисе 6-31G;
- Ethylene_glycol.log результат расчета методом DFT (B3LYP) в базисе 6-31G;