ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za pojačalo na slici zadano je: $U_{DD} = 12$ V, $R_g = 0.5$ kΩ, $R_1 = 4$ MΩ, $R_2 = 1$ MΩ, $R_D = 2$ kΩ i $R_T = 8$ kΩ. Parametri n-kanalnog MOSFET-a su: K = 5 mA/V², $U_{GSO} = 0.6$ V i $\lambda = 0.005$ V⁻¹.

- a) Izračunaj iznos otpornika R_S za koji se postiže statička radna točka sa slike. U kojem području rada radi tranzistor? Pri proračunu statičke radne točke zanemariti porast struje odvoda u području zasićenja (**2 boda**).
- b) Izračunati strminu i dinamički otpor u radnoj točki, te nacrtati nadomjesnu shemu za dinamičku analizu (2 boda).
- c) Izvesti izraz i izračunati naponska pojačanja $A_V = u_{iz}/u_{ul}$ i $A_{Vg} = u_{iz}/u_g$ (3 boda).
- d) Izvesti i izračunati izlazni otpor R_{iz} (1 bod).

ZADATAK 2. Za pojačalo na slici zadano je: $U_{DD} = -15$ V, $R_g = 500$ Ω, $R_1 = 3$ MΩ, $R_2 = 2$ MΩ, $R_S = 2$ kΩ i $R_T = 5$ kΩ. Parametri osiromašenog p-kanalnog MOSFET-a su: $\mu_p = 150$ cm²/Vs, $C_{ox} = 1$ μ F/cm², W/L = 20, $U_{GSO} = 1$ V i $\lambda = -0.0055$ V⁻¹.

- a) Izračunaj strujni koeficijent K (1 bod).
- b) Izračunaj statičku radnu točku tranzistora $(I_{DQ}, U_{GSQ}, U_{DSQ})$. Pri proračunu statičke radne točke zanemari porast struje odvoda u području zasićenja (**2 boda**).
- c) Izračunaj strminu MOSFET-a i izlazni dinamički otpor u radnoj točki (1 bod).
- d) Nacrtaj nadomjesnu shemu za dinamičku analizu, te izvedi izraz i izračunaj naponsko pojačanje $A_V = u_{iz}/u_{ul}$ (2 boda).
- e) Izvedi i izračunaj ulazni otpor R_{ul} i izlazni otpor R_{iz} (2 boda).

ZADATAK 3. Sklop za mjerenje karakteristika tranzistora prikazan je na slici. Struja izmjerena ampermetrom iznosi 3,5 mA, a napon izmjeren kanalom 2 osciloskopa iznosi -0,8 V. Poznat je napon napajanja $U_0 = 5$ V, te otpori $R_1 = 1$ k Ω i $R_2 = 47$ k Ω . Koriste se idealni mjerni instrumenti.

- a) Odrediti napon izmjeren kanalom 1 osciloskopa (1 bod).
- b) Odrediti struje tranzistora (I_E , I_B i I_C) (1.5 bodova).
- c) Odrediti faktor strujnog pojačanja u spoju zajedničke baze (1 bod).
- d) Odrediti faktor strujnog pojačanja u spoju zajedničkog emitera (1 bod).
- e) Odrediti područje rada tranzistora, te napone U_{BE} i U_{BC} (1,5 bodova).

ZADATAK 4. Za pojačalo na slici zadani su sljedeći podaci : $R_I = 10 \text{ k}\Omega$, $R_2 = 3.3 \text{ k}\Omega$, $R_E = 180 \Omega$, $R_C = 500 \Omega$, $R_T = 500 \Omega$, $R_S = 50 \Omega$, $R_S = 50 \Omega$, $R_S = 50 \Omega$. Parametri $R_S = 12 \text{ m}$ ranzistora su $R_S = 12 \text{ m}$ Naponski ekvivalent temperature $R_S = 12 \text{ m}$ Zanemarite porast struje kolektora s naponom $R_S = 12 \text{ m}$ Naponski ekvivalent temperature $R_S = 12 \text{ m}$ Zanemarite porast struje kolektora s naponom $R_S = 12 \text{ m}$ Naponski ekvivalent temperature $R_S = 12 \text{ m}$ Naponski

- a) Odredite struju I_{CQ} i napon U_{CEQ} tranzistora u statičkoj radnoj točki (**2 boda**).
- b) Nacrtajte nadomjesnu shemu pojačala za dinamičku analizu. Izračunajte dinamičke parametre tranzistora (r_{be} i g_m) (2 boda).
- c) Izvedite izraze i izračunajte naponsko pojačanje $A_V = u_{iz}/u_{ul}$ i ulazni otpor R_{ul} pojačala (2 boda).
- d) Odredite signal na izlazu pojačala, ako je signal na generatoru: $u_g = 10 \cdot \sin(2\pi \cdot 10^4 \cdot t) \text{ mV } (2 \text{ boda}).$

PITANJA

1. Statička radna točka pojačala na slici postavljena je u područje zasićenja. Je li naponsko pojačanje A_V ovog sklopa pozitivno ili negativno? Ako otpornik R_T smanjimo na 50% inicijalne vrijednosti, što se događa s naponskim pojačanjem uz pretpostavku da je $r_d \gg R_T$, R_D ? Vrijedi (2 boda):

- a) $A_V > 0$, A_V raste
- b) $A_V > 0$, A_V ostaje isto
- c) $A_V > 0$, A_V pada
- d) $A_V < 0$, A_V raste
- e) $A_V < 0$, A_V pada.

- 2. Za sklop prikazan na slici vrijedi tvrdnja (2 boda):
 - a) radna točka nije stabilizirana, $|A_V| < 1$, $R_{ul} >> R_{iz}$
 - b) radna točka nije stabilizirana, $|A_V| < 1$, $R_{ul} << R_{iz}$
 - c) radna točka je stabilizirana, $|A_V| < 1$, $R_{ul} >> R_{iz}$
 - d) radna točka nije stabilizirana, $|A_V| > 1$, $R_{ul} \ll R_{iz}$
 - e) radna točka je stabilizirana, $|A_V| < 1$, $R_{ul} << R_{iz}$.

3. Koju logičku funkciju ostvaruje CMOS sklop na slici (**2 boda**)?

a)
$$Y = \overline{(A+BD)(C+E)}$$

- b) Y = A(B+D) + CE
- c) niti jedan od odgovora
- d) $Y = \overline{A(B+D) + CE}$
- e) Y = (A + BD)(C + E)

- **4.** Za npn bipolarni tranzistor u spoju zajedničkog emitera poznato je da vrijedi : $U_{BE} > 0$, $U_{CE} > 0$, $U_{BE} > U_{CE}$. Stoga, možemo zaključiti kako tranzistor radi (**2 boda**):
 - a) u normalnom aktivnom području
 - b) u inverznom aktivnom području
 - c) u području zasićenja
 - d) u području zapiranja
 - e) ne može se zaključiti u kojem području radi.

5. Povećamo li vrijednost otpornika R_E u sklopu na slici, za apsolutnu vrijednost naponskog pojačanja $|A_V|$ i kolektorsku struju u statičkoj radnoj točki (I_{CQ}) vrijedi (**2 boda**):

- a) I_{CQ} pada i $|A_V|$ raste
- b) I_{CQ} pada i $|A_V|$ pada
- c) I_{CQ} raste i $|A_V|$ raste
- d) I_{CQ} raste i $|A_V|$ pada
- e) I_{CQ} pada i $|A_V|$ se ne mijenja.

6. Za tipične vrijednosti iznosa naponskog pojačanje $A_V = u_{iz} / u_{ul}$, strujnog pojačanja $A_I = i_{iz} / i_{ul}$, te izlaznog otpora R_{iz} pojačala sa slike vrijedi (**2 boda**):

- a) $|A_V| < 1$, $|A_I| >> 1$, R_{iz} je mali
- b) $|A_V| > 1$, $|A_I| >> 1$, R_{iz} je velik
- c) $|A_V| < 1$, $|A_I| < 1$, R_{iz} je mali
- d) $|A_V| > 1$, $|A_I| < 1$, R_{iz} je velik
- e) $|A_V| < 1$, $|A_I| >> 1$, R_{iz} je velik.

7. Odrediti minimalnu vrijednost faktora β koji će osigurati rad tranzistora T_1 u zasićenju. Zadano je $U_{CC} = 5$ V, $U_{CEzas} = 0.2$ V, $U_{BEzas} = 0.8$ V, $R_B = 80$ k Ω , $R_C = 2$ k Ω . Odrediti napon logičke 1 na izlazu tranzistora T_1 Vrijedi (2 boda):

- a) $\beta_{\min} = 72, U_1 = 5 \text{ V}$
- b) $\beta_{\min} = 65$, $U_1 = 4.15$ V
- c) $\beta_{\min} = 47$, $U_1 = 4.90$ V
- d) $\beta_{\min} = 36$, $U_1 = 5$ V
- e) $\beta_{\min} = 94$, $U_1 = 4.90$ V.

ELEKTRONIKA 1

Završni ispit - 25. 1. 2021.

Rješenja

ZADACI

1.

a) $R_S = 444 \Omega$

zasićenje

b) $g_m = 4.7 \text{ mA/V}$ $r_d = 98.8 \text{ k}\Omega$

c)
$$A_V = \frac{u_{iz}}{u_{ul}} = -\mu \cdot \frac{R_D || R_T}{r_D + R_D || R_T + (1 + \mu) R_S} = -2,41$$

$$A_{Vg} = \frac{u_{iz}}{u_g} = \frac{u_{iz}}{u_{ul}} \cdot \frac{u_{ul}}{u_g} = A_V \cdot \frac{u_{ul}}{u_g} = A_V \cdot \frac{R_G}{R_G + R_g} = -2,41$$

d)
$$R_{iz} = \frac{u}{i} = R_D ||(r_d + (1 + \mu)R_S)| = 1987 \Omega$$

2.

- a) $K = -3 \text{ mA/V}^2$
- b) $U_{GSQ} = -0.37 \text{ V}, I_{DQ} = -2.82 \text{ mA}, U_{DSQ} = -9.37 \text{ V}$
- c) $g_m = 4.32 \text{ mA/V}, r_d = 64.6 \text{ k}\Omega$

d)
$$A_V = \frac{u_{iz}}{u_{ul}} = \frac{g_m R_S ||R_T|| r_d}{1 + g_m R_S ||R_T|| r_d} = -0.86$$

e)
$$R_{ul} = R_G = 1.2 \text{ M}\Omega, R_{iz} = \frac{1}{g_m} ||R_S|| r_d = 207 \Omega$$

3.

a)
$$U_{O1} = -1,5 \text{ V}$$

b)
$$I_E = -3.5 \text{ mA}, I_B = 17 \mu\text{A}, I_C = 3.483 \text{ mA}$$

c)
$$\alpha = 0.99514$$

d)
$$\beta = 205$$

e)
$$U_{BE} = 0.7 \text{ V}, U_{BC} = -0.8 \text{ V}, \text{NAP}$$

4.

a)
$$I_{CQ} = 11,78 \text{ mA}$$
, $U_{CEQ} = 3,99 \text{ V}$

b)
$$r_{be}=424{,}45~\Omega~,~g_m=471{,}2~\mathrm{mA/V}$$

c)
$$A_V = -g_m R_C ||R_T = -117.8 \; , R_{ul} = R_{BB} || r_{be} = 362.4 \; \Omega \label{eq:average}$$

d)
$$u_{iz} = A_{Vg} \cdot 10 \cdot \sin(2\pi \cdot 10^4 \text{ t}) \text{ mV} = -1.04 \cdot \sin(2\pi \cdot 10^4 \text{ t}) \text{ V}$$

PITANJA

- grupa A
 - C C 1.
 - 2.
 - A 3.
 - 4.
 - 5. В
 - 6. A
 - C 7.