Visualization and Big Data in Official Statistics

Martijn Tennekes

In cooperation with Piet Daas, Marco Puts, May Offermans, Alex Priem, Edwin de Jonge

From a Official Statistics point of view

Three types of data:

 Survey data = data collected by SN with questionnaires

 Admin data = administrative (register) data collected by third parties such as the Tax Office

3. Big data = machine generated data of events

Big Data case studies

Big data = machine generated data of events

Source	Statistics
Social media	Sentiment (as indicator for business cycle)
Mobile phone metadata	Daytime population, tourism statistics
Road sensors	Traffic index statistics

At the end of this talk:

Visualization methods for Big Data

Big data approach

Case study 1: Social media

- 3 billion messages as of 2009 gathered from Facebook,
 Twitter, LinkedIn, Google+ by a Dutch intermediate
 company Coosto.
- Sentiment per message determined by classifying words as negative or positive.
- Could be used as indicator for the business cycle. Could it be fit to the consumer confidence, the leading business cycle indicator?

Sentiment in social media

Platform specific sentiment

Platform specific results

Table 1. Social media messages properties for various platforms and their correlation with consumer confidence

Number of social media messages ¹	Number of messages as percentage of total (%)	Correlation coefficient of monthly sentiment index and consumer confidence $(r)^2$
3,153,002,327	100	0.75
334,854,088	10.6	0.81*
2,526,481,479	80.1	0.68
45,182,025	1.4	0.50
56,027,686	1.8	0.37
48,600,987	1.5	0.25
644,039	0.02	-0.04
565,811	0.02	-0.23
5,661,274	0.2	-0.37
134,98,938	4.3	-0.45
	media messages ¹ 3,153,002,327 334,854,088 2,526,481,479 45,182,025 56,027,686 48,600,987 644,039 565,811 5,661,274	media messages ¹ percentage of total (%) 3,153,002,327 100 334,854,088 10.6 2,526,481,479 80.1 45,182,025 1.4 56,027,686 1.8 48,600,987 1.5 644,039 0.02 565,811 0.02 5,661,274 0.2

¹period covered June 2010 untill November 2013

²confirmed by visual inspecting scatterplots and additional checks (see text)

^{*}cointegrated

Case study 2: mobile phone metadata

- Pilot study with Vodafone, a provider with market share of 1/3 in the Netherlands.
- Aggregated data is queried by intermediate company
 Mezuro and delivered to SN. Privacy is guaranteed!
- Applications: daytime population, tourism statistics,
 economic activity, mobility studies, etcetera.

Mobile phone population

Subpopulations model

Mobile phone metadata

Event Datail Records (EDR) contain metadata on mobile phone events (i.e. call, SMS or data transfer).

Aggregated table: number of unique devices X time period X current region X residential region.

Hour

Weighting method

Example: suppose there are only 3 regions in the

	Residence			
		Amsterdam	Boskoop	Castricum
region at Bos	Amsterdam	199,000	1,000	4,000
	Boskoop	500	3,500	0
	Castricum	500	500	16,000

Weighting method (2)

Example: suppose there are only 3 regions in the

	Residence			
		Amsterdam	Boskoop	Castricum
Current region at time t	Amsterdam	199,000	1,000	4,000
	Boskoop	500	3,500	0
	Castricum	500	500	16,000
	MPRD total	800,000	15,000	30,000

Weighting method (3)

Example: suppose there are only 3 regions in the

	Residence			
		Amsterdam	Boskoop	Castricum
Current region at time t	Amsterdam	796,000	3,000	6,000
	Boskoop	2000	10,500	0
	Castricum	2000	1,500	24,000
	MPRD total	800,000	15,000	30,000

Weighting method (4)

Example: suppose there are only 3 regions in the

	Residence				
		Amsterdam	Boskoop	Castricum	DTP total
Current region at time t	Amsterdam	796,000	3,000	6,000	805,000
	Boskoop	2000	10,500	0	12,500
	Castricum	2000	1,500	24,000	27,500
	MPRD total	800,000	15,000	30,000	

Daytime population results

Day time population - Region profile

K-means clustering

Work = daytime vs. night-time during working weeks

Weekend = weekends activity

Holiday = May holiday activity

Case study 3: Road sensors

Road sensors data

- Each minute (24/7) the number of passing vehicles is counted in around 20.000 'loops' in the Netherlands (100 million records a day)

 Nice data source for transport and traffic statistics (and more)

Road sensors on main roads

Road sensors on main roads (2)

Road sensors on main roads (3)

Road sensors on main roads (4)

Raw data: Total number of vehicles a day

Correct for missing data: macro level

Sliding window of 5 min. Impute missing data.

Total = ~ 295 million detected vehicles

Total = ~ 330 million (+ 12%) detected vehicles

Data by type of vehicle

Long vehicles (> 12.2 meter)

All Dutch vehicles in September

Selectivity of big data

- Big Data sources may be selective when
 - Only part of the population contributes to the data set (e.g. mobile phone owners)
 - The measurement mechanism is selective (e.g. traffic loops placement on Dutch highways is not random)
- Many Big Data sources contain events
 - How to associate events with units?
 - Number of events per unit may vary.
- Correcting for selectivity
 - Background characteristics or *features* are needed (linking with registers; profiling)
 - Use predictive modeling / machine learning to produce population estimates

Visualization of Big Data

- Large volume:
 - Data binning or aggregation
- High velocity:
 - Animations
 - Dashboard / small multiples
- Large variety:
 - Interactive interface
 - Advanced visualization methods

Tableplot: Dutch (Virtual) Census

Treemap: Structural Business Statistics

Heatmap: Income statistics

References

Topic	Links
Social Media	Daas, P.J.H., Puts, M.J.H. (2014) Sociale Media Sentiment and Consumer Confidence. Paper for the Workshop on using Big Data for Forecasting and Statistics, Frankfurt, Germany. http://www.ecb.europa.eu/events/pdf/conferences/140407/Daas_Puts_Sociale_media_cons_conf_Stat_Neth.pdf?409d61b733fc259971ee5beec7cedc61
Mobile phone metadata	Paper in progress
Road sensors	Paper in progress
Big Data for Official Statistics	Buelenes, B. et al. (2014) Selectivity of Big Data http://www.cbs.nl/nl-NL/menu/methoden/onderzoek-methoden/discussionpapers/archief/2014/2014-selectivity-of-big-data-pub.htm
Visualization	Tennekes, M., Jonge, E. de, Daas, P.J.H. (2013) Visualizing and Inspecting Large Datasets with Tableplots, Journal of Data Science 11 (1), 43-58. http://www.jds-online.com/file_download/379/JDS-1108.pdf Tennekes, M., Jonge, E. de, Daas, P.J.H. (2012) Innovative visual tools for data editing. Paper presented at the United Nations Economic Commission for Europe (UNECE) Work Session on Statistical Data Editing, 2012, Oslo, Norway. http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2012/30_Netherlands.pdf
R packages by Statistics Netherlands (all on CRAN)	Visualization: tabplot, tabplotd3, treemap, geo (in development only) Data editing: editrules, deducorrect, rspa Large data processing: ffbase, LaF Other: extremevalues, stringdist, whisker

