LECTURE 9

Visualization

Visualizing distributions and KDEs

Data Science, Spring 2024 @ Knowledge Stream

Sana Jabbar

Visualization of Distribution

Lecture 9, Spring 2024

- Regex
 - Regex review and regex functions
- Visualization
 - Goals of visualization
 - Visualizing distributions
 - Kernel density estimation

Visualizations in BS (and in Data Science, so far)

You worked with many types of visualizations throughout.

Line plot

Scatter plot

Histogram

What did these achieve?

- Provide a high-level overview of a complex dataset.
- Communicated trends to viewers.

Histograms

A histogram:

- Collects datapoints with similar values into a shared "bin".
- Scales the bins such that the area of each bin is equal to the percentage of datapoints it contains.

The first bin has a width of \$16410 height of 4.77×10^{-5}

This means that it contains $16410 \times (4.77 \times 10^{-5}) = 78.3\%$ of all datapoints in the dataset.

Answer

There are 1174 observations in total.

- Width of bin [110, 115): 5
- Height of bar [110, 115): 0.02
- Proportion in bin = 5 * 0.02 = 0.1
- Number in bin = 0.1 * 1174 = 117.4

Histograms in Code

In Matplotlib: plt.hist(x_values, density=True)

In Seaborn: sns.histplot(data=df, x="x_column", stat="density")

Matplotlib

Seaborn

Overlaid Histograms

To compare a quantitative variable's distribution across qualitative categories, overlay histograms on top of one another.

The **hue** parameter of Seaborn plotting functions sets the column that should be used to determine color.

```
sns.histplot(data=wb, hue="Hemisphere",
x="Gross national income...")
```

Always include a legend when color is used to encode information!

Interpreting Histograms

The **skew** of a histogram describes the direction in which its "tail" extends.

- A distribution with a long right tail is skewed right.
- A distribution with a long left tail is skewed left.

A histogram with no clear skew is called symmetric.

Interpreting Histograms

The **mode(s)** of a histogram are the peak values in the distribution.

- A distribution with one clear peak is called unimodal.
- Two peaks: bimodal.
- More peaks: multimodal.

Kernel Density Estimation

Lecture 09, Spring 2024

- Regex
 - Regex review and regex functions
- Visualization
 - Goals of visualization
 - Visualizing distributions
 - Kernel density estimation

Kernel Density Estimation: Intuition

Often, we want to identify *general* trends across a distribution, rather than focus on detail. Smoothing a distribution helps generalize the structure of the data and eliminate noise.

A KDE curve

Idea: approximate the probability distribution that generated the data.

- Assign an "error range" to each data point in the dataset – if we were to sample the data again, we might get a different value.
- Sum up the error ranges of all data points.
- Scale the resulting distribution to integrate to 1.

Kernel Density Estimation: Process

Idea: Approximate the probability distribution that generated the data.

- Place a kernel at each data point.
- Normalize kernels so that total area = 1.
- Sum all kernels together.

A **kernel** is a function that tries to capture the randomness of our sampled data.

Step 1 - Place a Kernel at Each Data Point

Consider a fake dataset with just five collected datapoints.

- Place a Gaussian kernel with bandwidth of alpha = 1.
- We will precisely define both the Gaussian kernel and bandwidth in a few slides.

Each line represents a datapoint in the dataset (e.g. one country's HIV rate).

Place a kernel on top of each datapoint.

Step 2 - Normalize Kernels

In Step 3, We will be summing each of these kernels to produce a probability distribution.

- We want the result to be a valid probability distribution that has area 1.
- We have 5 different kernels, each with an area 1.
- So, we normalize by multiplying each kernel by 1/5.

Each kernel has area 1.

Each normalized kernel has density 1/5.

Step 3 - Sum the Normalized Kernels

At each point in the distribution, add up the values of all kernels. This gives us a smooth curve with area 1 – an approximation of a probability distribution!

Sum these five normalized curves together.

The final KDE curve.

Result

A summary of the distribution using KDE.

Each line represents a datapoint in the dataset (e.g. one country's HIV rate).

The density at each point corresponds to the KDE calculated based on kernels placed on all data points 16

Summary of KDE

$$f_{lpha}(x) = rac{1}{n} \sum_{i=1}^{n} K_{lpha}(x, x_i)$$

A general "KDE formula" function is given above.

 $K_{\alpha}(x, x_i)$ is the **kernel** function centered on the observation i.

- Each kernel individually has area 1.
- K represents our kernel function of choice. We'll talk about the math of these functions soon.

Summary of KDE

$$f_{lpha}(x) = rac{1}{n} \sum_{i=1}^{n} K_{lpha}(x, x_i)$$

A general "KDE formula" function is given above.

- $K_{\alpha}(x, x_i)$ is the **kernel** centered on the observation *i*.
 - o Each kernel individually has area 1.
 - o x represents any number on the number line. It is the input to our function.
- - \circ We multiply by 1/n to normalize the kernels so that the total area of the KDE is still 1.
- Each x_i (x_1 , x_2 , ..., x_n) represents an observed data point. We sum the kernels for each datapoint to create the final KDE curve.

 α is the **bandwidth** or **smoothing parameter**.

Kernels

A **kernel** (for our purposes) is a valid density function, meaning:

- It must be non-negative for all inputs.
- It must integrate to 1(area under curve = 1).

The most common kernel is the **Gaussian kernel**.

- Gaussian = Normal distribution = bell curve.
- Here, x represents any input, and xi represents the ith observed value (datapoint).
- Each kernel is **centered** on our observed values (and so its distribution mean is xi).
- α is the bandwidth parameter. It controls the smoothness of our KDE. Here, it is also the standard deviation of the Gaussian.

$$K_{\alpha}(x,x_i) = \frac{1}{\sqrt{2\pi\alpha^2}} e^{-\frac{(x-x_i)^2}{2\alpha^2}}$$

Memorizing this formula is less important than knowing the shape and how the bandwidth parameter α smoothes the KDE.

Effect of Bandwidth on KDEs

50

10

Bandwidth is analogous to the width of each bin in a histogram.

- As α increases, the KDE becomes more smooth.
- Large α KDE is simpler to understand, but gets rid of potentially important distributional information (e.g. multimodality).

Other Kernels: Boxcar

As an example of another kernel, consider the **boxcar kernel**.

- It assigns uniform density to points within a "window" of the observation, and 0 elsewhere.
- Resembles a histogram... sort of.

$$K_{\alpha}(x, x_i) = \begin{cases} \frac{1}{\alpha}, & |x - x_i| \le \frac{\alpha}{2} \\ 0, & \text{else} \end{cases}$$

 Not of any practical use in this course, presented as a simple theoretical alternative.

A boxcar kernel centered on $x_i = 4$ with $\alpha = 2$.

LECTURE 9

Visualization

Content credit: <u>Acknowledgments</u>