Microprocessors

By: Yehia M. Abu Eita

Outlines

- What is a microprocessor?
- Microprocessor internal components
- CPU registers
- Instruction cycle
- Pipelining

What is a microprocessor?

- A microprocessor is an Integrated Circuit unit in a computer system that performs logical, arithmetic and controlling operations.
- It is called also **C**entral **P**rocessing **U**nit.
- The CPU is the brain of any microcontroller.
- It executes all the instructions provided by a program.

Microprocessor internal components

Arithmetic and logic unit (ALU):

It is responsible for all arithmetic and logical operations.

Registers:

Are used to facilitate CPU operations.

Control Unit:

It is responsible for controlling all CPU operations.

Interconnections:

- Data bus: data carrying wires.
- Address bus: address carrying wires.
- Control bus: read/write control signals carrying wires.

CPU registers

- Registers are the fastest types of memories.
- It is used to facilitate CPU operations.
- General Purpose Registers:
 - These are used for internal storage: at least 8 and as many as 32 and numbered as R1,...., Rn
- Special Purpose Registers:
 - **Status Register**: It contains information about the state of the processor.
 - **Program Counter**: It contains the memory address of the next instruction to be fetched.
 - Accumulator: This is the most frequently used register used to store data taken from memory.
 - **Instruction Register**: It holds the instruction which is just about to be executed.
 - Memory Address Register and Memory Data Register: These facilitates memory R/W operations.

Instruction cycle

Fetch:

- PC points to the instruction to be executed
- Get instruction Opcode from memory and store it into IR

Decode:

Know what operation will be done

Execute:

The ALU to execute the instruction

Pipelining

- If we supposed that fetch, decode, and execute take 1 clock cycle each, then to perform 3 instructions we need 9 clock cycles.
- Pipelining is a process of arrangement of hardware elements of the CPU such that its overall performance is increased.

1	Fetch	Decode □	Execute		
2		Fetch	⇒ Decode —	Execute	
3			Fetch	Decode □	⇒ Execute
	Clock 1	Clock 2	Clock 3	Clock 4	Clock 5

Pipelining

- Pipelining hazards:
 - Structural hazards: It is a resource conflict situation when more than one instruction tries to access
 the same resource in the same cycle.
 - Data hazards: Instruction depends on result of prior instruction still in the pipeline
 - Control hazards: Caused by delay between the fetching of instructions and decisions about changes in control flow (branches and jumps).
- Solution to these hazards is by adding delays.

Summary

- You have learned what is a microprocessor
- You have learned CPU components
- You have learned the instruction cycle
- You have learned what is pipelining and its hazards.