1 ParisDFS

เอ เป็นบุคคลที่ใฝ่ฝันอยากจะไปเที่ยวประเทศปารีส เนื่องจากเอ ยังไม่มีเงินไปเที่ยวประเทศนั้นแต่เอก็อยาก ศึกษาเส้นทางก่อนว่าถ้าได้ไปเที่ยวจะไปเที่ยวอย่างไรให้ครบทุกที่โดยที่ใช้เวลาคุ้มค่าที่สุด

ข้อมูลนำเข้า

บรรทัดที่ 0 จำนวนจุดแวะเที่ยว N จุด และเส้นทางเชื่อม Edge เส้น

บรรทัดที่ 1 ถึง N+1 เส้นทางที่เชื่อมถึงกันระหว่างจุดเที่ยวแต่ละจุด

บรรทัดที่ N+2 จุดเริ่มต้น

ข้อมูลส่งออก

เส้นทางที่เอ จะต้องเดินทางไป

Input	Output
4 6	2 0 1 3
0 1	
0 2	
1 2	
2 0	
2 3	
3 3	
2	
5 6	2 0 1 3 4
0 4	
1 3	
2 1	
3 0	
3 2	
4 3	
3	
5 5	1 0 2 3 4
0 1	
1 0	
2 0	
2 3	
3 4	
2	

2. BFShouse กำหนดให้มีการเยี่ยมบ้านแต่ละบ้านของโรงเรียนแห่งหนึ่ง โดยแต่ละบ้านมีเส้นทางเชื่อมถึงกัน จงหาวิธีการเยี่ยมบ้านในรูปแบบ Breadth-first search (BFS)

กำหนดให้ จำนวนบ้านทั้งหมดมี n บ้าน และจำนวนเส้นทางทั้งหมดที่เชื่อมถึงกันมีทั้งหมด m เส้นทาง

ข้อมูลนำเข้า

บรรทัดที่ 1 input n และ m แทนจำนวนบ้านและจำนวนเส้นทาง บรรทัดที่ 2-m แทนบ้านแต่ละบ้านที่เชื่อมถึงกัน บรรทัดที่ m+1 โหนดเริ่มต้นที่ทำการเยี่ยม

ข้อมูลส่งออก

บ้านที่จะถูกเยี่ยมตามลำดับ โดยวิธี BFS

ข้อมูลนำเข้า	ข้อมูลส่งออก
5 4	0 1 4 2 3
0 1	
0 4	
1 2	
1 3	
0	
5 4	1 2 3 4 5
1 2	
1 3	
2 4	
2 5	
1	
5 5	0 1 2 3 4
0 1	
0 2	
0 3	
1 2	
2 4	
0	

3. ShortestPath

จงเขียนโปรแกรมหาระยะทางที่สั้นที่สุดจากจุด s ไปจุด d ตัวอย่างเช่น กราฟ G เป็นกราฟแบบมีทิศทาง ดังรูป

กำหนดคู่ลำดับ (s, d) คือ จุดเริ่มต้น (s) และ จุดสิ้นสุด (d) จากรูปกำหนดให้ (s, d) = (3, 2) จะมีระยะทางที่สั้น ที่สุดคือ คือ 3 โดย 3->1->2

ข้อมูลนำเข้า

บรรทัดที่ 1 V E ค่า V และ E โดย V คือ จำนวน node ทั้งหมด E คือ จำนวน edgeทั้งหมด

0 <= V < 100 , 1 <= E <= 1,000

บรรทัดที่ 2 จนถึง E+1 ค่าความสัมพันธ์ระหว่าง node i กับ node j

บรรทัดที่ E+2 คู่ลำดับ (s, d)

ข้อมูลส่งออก

ผลลัพธ์ระยะทางที่สั้นที่สุดจากจุดเริ่มต้น (s) ไปยังจุดสิ้นสุด (d) ถ้าไม่มีเส้นทางไปให้ใส่ระยะทางเท่ากับ 999

Input	output
4 6	3
0 1 8	
0 3 1	
1 2 1	
3 2 9	
2 0 4	
3 1 2	
3 2	

4. Train

รถไฟ ณ เมืองๆหนึ่งมีสถานีเชื่อมต่อกันมากมาย หากต้องการเที่ยวชมเมือง โดยการไปให้ครบทุก สถานี ซึ่งจากสถานีไปยังอีกสถานีมีค่าใช่จ่ายต่างกัน จงหาวิธีไปยังทุกสถานีโดยมีค่าใช้จ่ายน้อยที่สุด

ข้อมูลนำเข้า

บรรทัดที่ 1 input n แทนจำนวนสถานีทั้งหมด

บรรทัดที่ 2 input array n ตัว แทนค่าใช้จ่าย ของสถานีแรกไปยัง สถานีที่ n (สถานีที่ไม่เชื่อมถึงกันจะมี ค่าใช้จ่ายเป็น 0)

บรรทัดที่ 3-n+1 input array n ตัว แทนค่าใช้จ่าย ของสถานีถัดไป ไปยัง สถานีที่ n

ข้อมูลส่งออก

เส้นทางที่สั้นที่สุด ในการไปครบทุกสถานี และค่าใช้จ่าย

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	0 1 9
0 9 75 0 0	1 3 19
9 0 95 19 42	3 4 31
75 95 0 51 66	3 2 51
0 19 51 0 31	
0 42 66 31 0	
5	0 1 2
02060	1 2 3
20385	1 4 5
0 3 0 0 7	0 3 6
68009	
05790	

5. ExpressWay

นาย ก. ต้องการเดินทางไปยังเมืองแห่งหนึ่งโดยเขาศึกษาเส้นทางไว้อย่างดีแล้วว่าต้องขึ้นทางด่วนที่ ไหนบ้าง แต่บังเอิญว่ามีเส้นทางด่วนแห่งหนึ่งเชื่อมต่อกันเป็นวงวน เลยทำให้นาย ก. สับสน ว่าทางด่วนเส้น ไหน เชื่อมต่อกับเส้นทางไหน เป็นเส้นทางที่เขาต้องใช้หรือไม่ จงเขียนโปรแกรมช่วยหาเส้นทางด่วนว่าเชื่อมต่อ กันหรือไม่เพื่อช่วยนาย ก.

INPUT	OUTPUT
4	Yes
1 2	
1 3	
2 3	
3 4	
5	No
1 2	
1 3	
2 3	
3 4	
3 6	
6	No
1 2	
2 5	
2 3	
3 4	
3 5	
5 1	

6. Transitive closure

จงเขียนโปรแกรมหาความสัมพันธ์ของ Vertex ในกราฟด้วยวิธี Transitive closure โดยที่ให้ กราฟ แสดงในรูปของ adjacency matrix โดยบอกว่า กราฟขนาด [V] [V] และให้กราฟ [i] [j] คือ 1 หาก จุดยอด i วิ่งไปถึงจุดยอด j หรือ i = j คือ 0 และแสดง Not Found หากไม่พบหรือกราฟไม่เชื่อมต่อ กัน

INPUT	OUTPUT
1 1 0 1	1 1 1 1
0 1 1 0	
0 0 1 1	0 1 1 1
0 0 0 1	0 0 1 1
	0 0 0 1
1 0 0 1	Not Found
0 0 1 1	
1 1 1 1	
0000	
1 1 1 1	1 1 1 1
0 0 1 1	0 0 1 1
0 0 1 1	0 0 1 1
0 0 0 1	0 0 0 1