Cryptography

Techniques and Paradigms in this Course

- Divide-and-conquer, greed, dynamic programming, the power of randomness

 Problems that are easy for a computer
- Computability Problems that are **impossible** for a computer
- NP-completeness and approximation algorithms
- Cryptography Problems that are "probably hard" for a computer

Using "probably hard" problems for our benefit (hiding secrets)

The "probably hard" problems for cryptography are likely **not** NP-hard problems...we'll see why in a bit

First "cryptography": Egyptian tomb from from 20th century BCE debatably had a substitution cipher

First mathematical theory of cryptography: Claude Shannon (1945)

Cryptography's Core Goals

Build "cryptosystems" to achieve:

- Confidentiality: ensuring that only intended recipients can read data. (today + next time)
- 2) Integrity: ensuring that data has not been undetectably altered. (last time)
- 3) Authenticity: ensuring that data came from a particular entity. (next time)

WARNING!

The crypto we are about to show you in insecure in many ways. Do not use!
Take EECS 388/475/575 for more info.

Communication on the internet is "public"

Data may be intercepted en route to its destination.

Question: Can we prevent an eavesdropper from learning the messages we send?

Model: Alice, Bob, and Eve

Two parties **Alice** and **Bob** communicate over a public channel, and there is an eavesdropper **Eve** that sees all the data they send.

Ideally: Eve can't decode Alice and Bob's messages, even knowing their protocol.

e.g. "ig-pay atin-lay" is easily decoded if you know the protocol.

And I eat popcorn while watching the drama unfold

Two Types of Security

This one is better, but often unattainable

- Information-Theoretic (unconditional): Eve cannot learn anything about their messages, even using unbounded computation.
- Computational (conditional): In order to learn anything about the messages, Eve would have to solve a (conjectured) computationally hard problem.

First we'll see a scheme for achieving information-theoretic security but with some other drawbacks...

One-Time Pad Encryption

- Beforehand, Alice and Bob agree on a uniformly random secret key k = k1, k2, k3,
- Alice encrypts her message m (of the same length as the key)
 by adding it to the secret key k.
 - o **ciphertext c:** Ci = mi + ki (mod 26)
- Bob decrypts by subtracting: $m_i = c_i k_i \pmod{26}$

Μ

K

W

Z

U

R

One-Time Pad Encryption

Ok great! Now that we have a shared secret key, here are my messages

secret key k

k ₁	k ₂	k ₃		
V	N	0	Α	Р

	Н	E	L	L	0
+	V	N	0	А	Р
	С	R	Z	L	В

	C	E	L	L	0
+	V	N	0	Α	Р
	Q	R	Z	L	В

There's a reason it's called "onetime"

One-Time Pad Encryption

In general, using the same key twice allows Eve to figure out the difference between the messages, which violates security.

I know a

$$c = m + k \pmod{26}$$
 $c' = m' + k \pmod{26}$

$$c - c' \pmod{26} = m - m' \pmod{26}$$

lot!

The Caesar Cipher

An extreme example of using the same key multiple times

Using the same length-1 key k for every character

Add k to each letter of the message:

ciphertext c: $C_i = m_i + k \pmod{26}$

Observation: Caesar cipher preserves relative frequencies of letters.

Conclusion: Caesar cipher is easily breakable by "frequency analysis"

e.g., E and T are most common in English text.

Relative Frequencies of Letters in the English Language

One-Time Pad Pros and Cons

- Pro: Information-Theoretic Security: Eve "learns nothing" about the message, without knowing the secret key.
- Con 1: It's insecure to use the same key twice.
- Con 2: Alice and Bob must privately agree on the secret key beforehand.

It turns out these cons are necessary: To achieve information-theoretic security, you need to share in advance a random secret at least as large as the message.

So let's aim for **computational security** instead. Today we will address **Con 2**.

Can Alice and Bob efficiently establish a secret over a public channel?

It seems impossible... but it's actually possible!

Can Alice and Bob efficiently establish a secret over a public channel?

Today: Diffie-Hellman Public Key Exchange (1976)

But first, a thought experiment:

A Tale of Two Towers

- The Emperor of the North Tower wants to send a gift to the Emperor of the Central Tower.
- The Emperors never leave their towers.
- Messengers can travel back and forth (multiple times), but they steal the gift if the box is unlocked. (They don't steal anything else.)
- Each Emperor has a lock and a key to their lock, but if the box has one Emperor's lock, the other Emperor cannot open it.
- Question: Can the gift be sent securely?

Central Tower

"Hard Problems" for Cryptography

Computational security: In order to break security, Eve would have to solve a (conjectured) computationally hard problem.

We would like to use an NP-complete problem as our hard problem, but there's an issue:

We need our hard problem to be hard for random inputs, not just worst-case input.

We don't have any conjectured hard-on-average NP-complete problems!

BUT we do have conjectured hard-on-average number theory problems!

*Researchers think these number theory problems are in a complexity class called NP-intermediate: In NP, but not in P nor NP-complete

Number Theory Review

- * Two integers a and b are **equivalent modulo** an integer $n \ge 2$, denoted $a \equiv b \pmod{n}$, if they have the same remainder when divided by n.
- * Fact: In modular addition/multiplication, we can replace a number with another equivalent one:

$$37 + 42 \equiv 1 + 0 \equiv 1 \pmod{3}$$

 $1024 \cdot 152 \equiv 4 \cdot 2 \equiv 3 \pmod{5}$

* Fast modular exponentiation:

Repeatedly square the base and halve the exponent: $3^{10} \equiv 3^{2} \equiv 4^{5} \equiv 4 \cdot 4^{4} \equiv 4 \cdot 16^{2} \equiv 4 \cdot 1^{2} \equiv 4 \pmod{5}$ $\alpha \pmod{5} : \text{ brite force : b mitighteness (exponential)}$ $\pi \text{ for $4:} \bigcirc (\log b) \text{ multiplications}$

A "Hard Problem": Discrete Log

- * Let p be a prime and let $\mathbb{Z}_p^* = \{1, ..., p-1\}$.
- * An integer g is a **generator** of \mathbb{Z}_p^* if, for every $x \in \mathbb{Z}_p^*$, there exists $i \in \mathbb{N}$ such that $g^i \equiv x \pmod{p}$.
- * **Example:** 3 is a generator of \mathbb{Z}_{7}^{*} , but 2 isn't.
- * Fact: \mathbb{Z}_p^* has a generator for all prime p.

Discrete Log Conjecture: Given prime p, generator g of \mathbb{Z}_p^* , and $x \in \mathbb{Z}_p^*$, there is no efficient algorithm for finding $i \in \mathbb{N}$ such that $g^i \equiv x \pmod{p}$. randomly Probably an NP-Intermediate problem. chosen

*It's known that if discrete log is hard for worst-case input, it's hard for random input

Now back to this:

Can Alice and Bob efficiently establish a secret over a public channel?

It seems impossible... but it's actually possible!

Diffie-Hellman Key Exchange

System parameters: a huge prime p and a generator g of \mathbb{Z}_p^*

 $b \in \mathbb{Z}_p^*$ and compute $y = (g^b \bmod p)$

I pick a random

Claim: Now Alice and Bob share the secret $k = (g^{ab} \mod p)$ Why can Alice and Bob both compute k?

Diffie-Hellman Key Exchange

Secret information is in **bold red**, public information is in blue

- * Toy Example: Alice and Bob use published modulus p=23 and generator g=5 of \mathbb{Z}_p^* .
 - * Alice chooses secret random a = 4, sends Bob $x = g^a \mod p = 5^4 \mod 23 = 4$.
 - * Bob chooses secret random b = 3, sends Alice $y = g^b \mod p = 5^3 \mod 23 = 10$.
 - * Alice computes $k = y^a \mod p = 10^4 \mod 23 = 18$
 - * Bob computes $k = x^b \mod p = 4^3 \mod 23 = 18$
 - * Alice and Bob now share a secret key!: 18

Diffie-Hellman Security

Why can't Eve figure out k?

Well... because we assume that.

DH Assumption: There is no *efficient* algorithm that given g, p, $(g^a \bmod p)$, and $(g^b \bmod p)$ finds $(g^{ab} \bmod p)$.

what Eve knows

k

Best known attack: Solve the **discrete log** problem to compute a from g^a mod p (or compute b from g^b mod p).

Discrete Log Conjecture: Given prime p, generator g of \mathbb{Z}_p^* , and $x \in \mathbb{Z}_p^*$, there is no efficient algorithm for finding $i \in \mathbb{N}$ such that $g^i \equiv x \pmod{p}$. randomly Probably an NP-Intermediate problem. chosen

What can Alice and Bob do once they have a shared secret k?

Use k as a one-time pad!

Cryptography and Quantum Computers

Quantum computers can solve discrete log in polynomial time! [Shor, 1994]

We don't have large-scale quantum computers (yet).

"Post-quantum" cryptography is an active area of research! (Chris Peikert's bonus lecture)

Computing Modular Multiplicative Inverse in Polynomial Time

Input: Integers m, n > 0 with gcd(n, m)=1

Output: Mult. inverse of n (mod m) i.e. integer z so that $n \cdot z \equiv 1 \pmod{m}$

Algorithm:

- 1. Run ExtendedEuclid(n, m) to find (a, b) such that 1 = an+bm.
- 2. Return a.

Correctness: $1 \equiv an+bm \pmod{m}$, so $1 \equiv a \cdot n \pmod{m}$.

This will be useful next time when we do RSA encryption

ExtendedEuclid (from HW 2):

Input: Integers $x \ge y \ge 0$, not both 0

Output: Triple (g,a,b) of integers where

$$g = gcd(x,y) = ax+by$$
.