7/ 18

IN THE SPECIFICATION:

Please insert the following paragraph on Page 8, line 28, as follows:

-- From a mathematical standpoint, there are infinite numbers of functions (f(x,y) that can approximately map the two spaces 12 and 14, as shown in the literature. This invention proposes a simple function that follows the predictions, as set forth herein.--

Please insert the following paragraph on Page 9, line 1 (below the graph), as follows:

--Graphically presented is as follows consider two points in the panel before pressing $M(x_1,y_1)$ and $N(x_2,y_2)$, after pressing the two points move to new locations $M'(x'_1,y'_1)$ and $N'(x'_2,y_{22})$.

Note that after pressing, the angle (MOH) = $\arctan(y_1/x_1)$ changes to new value $\arctan(y'_1/x'_1)$.

The line MN translates, scales (stretches or compresses), and rotates an angle α to a new location M'N'. Note that in this example, the line MN is stretched due to the increasing in length.--

Please revise the following paragraph beginning on Page 10, line 6, to read as follows:

5-17-06 Py

--It is possible then to easily determine the coefficients A_x , A_y , B_x , B_y , C_x , C_y , D_x and D_y as follows. Using the same origin, for i=1, 2, 3 and 4, let (x_i, y_i) and (x'_i, y'_i) be the coordinates of four known points before pressing and after pressing, respectively. Writing equations (3) and (4) for x- and y- directions, wherein:--

8/ 18

Please insert the following paragraph on Page 10, line 20, as follows:

--Solve the above eight independent equations for eight unknowns A_x, A_y, B_x, B_y, C_z, C_y, D_z and D_y.

Then substitute them to equations (3) and (4).--

Please revise the following paragraph beginning on Page 14, line 6, to read as follows:

--Computing the angle between the line P'Q' and R'S'. Equation of the line passing P'Q' is $y=-2.2702(10)^{-7} x + 9.9955$, and equation of the line passing R'S' is $y=1.2432(10)^{-3} x + 322.78$. Take two vectors: $\{1, -2.2702(a0)-7\}^T$ points along P'Q' and $\{1, -1.2432(10)-3\}^T$ points along R'S'. Then the angle between these two vectors is 0.001243 radians.--