(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年8 月15 日 (15.08.2002)

PCT

(10) 国際公開番号 WO 02/062770 A1

(51) 国際特許分類7: **C07D 261/10**, 261/12, 413/12, 498/04, 513/04, 413/14, 417/12, 261/20, 487/04, A01N 43/80

(21) 国際出願番号:

PCT/JP02/01015

(22) 国際出願日:

2002年2月7日(07.02.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願2001-031784 2001年2月8日(08.02.2001) JF

(71) 出願人 (米国を除く全ての指定国について): クミアイ化学工業株式会社 (KUMIAI CHEMICAL INDUSTRY CO., LTD.) [JP/JP]; 〒110-0008 東京都台東区池之端1丁目4番26号 Tokyo (JP). イハラケミカル工業株式会社 (IHARA CHEMICAL INDUSTRY CO., LTD.) [JP/JP]; 〒110-0008 東京都台東区池之端1丁目4番26号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 中谷 昌央 (NAKATANI, Masao) [JP/JP]; 〒437-1213 静岡県磐田郡福田町塩新田408番地の1 株式会社ケイ・アイ研究所内 Shizuoka (JP). 久語 良太郎 (KUGO, Ryotaro) [JP/JP]; 〒590-0531 大阪府泉南市岡田5丁目27番23号 Osaka (JP). 宮崎雅弘 (MMIYAZAKI, Masahiro) [JP/JP]; 〒437-1213 静岡県磐田郡福田町塩新田408番地の1 株式会社ケイ・アイ研究所内 Shizuoka (JP). 角康一郎 (KAKU, Koichiro) [JP/JP]; 〒437-1207 静岡県磐田郡

福田町蛭池 2 7 6 番地の 1 Shizuoka (JP). 藤波 周 (FUJINAMI, Makoto) [JP/JP]; 〒439-0031 静岡県 小笠郡 菊川町加茂 1 8 0 9 番地 Shizuoka (JP). 上野 良平 (UENO, Ryohei) [JP/JP]; 〒439-0031 静岡県 小笠郡 菊川町加茂 1 8 0 9 番地 Shizuoka (JP). 髙橋智 (TAKAHASHI, Satoru) [JP/JP]; 〒420-0046 静岡県 静岡市吉野町 5 番地の 1 8 Shizuoka (JP).

- (74) 代理人: 小林 雅人 (KOBAYASHI,Masato); 〒162-0825 東京都 新宿区 神楽坂 4 丁目 3 番地 煉瓦塔ビル 5 階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特 許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

- (54) Title: ISOXAZOLINE DERIVATIVE AND HERBICIDE COMPRISING THE SAME AS ACTIVE INGREDIENT
- (54) 発明の名称: イソオキサゾリン誘導体及びこれを有効成分とする除草剤

(57) Abstract: An isoxazoline derivative which is represented by the general formula: [I] wherein R¹ and R² represent an alkyl group and may be the same or different, R³, R⁴, R⁵ and R⁶ represent a hydrogen atom, Y represents an aromatic heterocyclic group or aromatic condensed heterocyclic group which has a heteroatom selected from among a nitrogen atom, an oxygen atom and a sulfur atom, has five or six members, and may be substituted, and n represents an integer of 0 to 2. The isoxazoline derivative exhibits excellent herbicidal effect and selectivity between a crop and a weed.

(57) 要約:

本発明は、優れた除草効果と作物・雑草間の選択性を有するイソオキサゾリン誘導体を提供することを課題とする。

本発明のイソオキサゾリン誘導体は、一般式

$$\begin{array}{c|c}
R^{2} & R^{3} \\
R^{1} & R^{4} & R^{6} \\
\hline
S(O)_{\overline{n}} & C & Y
\end{array}$$

[式中、

R¹及びR²は、同一又は異なって、アルキル基を示し、

R3, R4, R5, R6は、水素原子を示し、

Yは窒素原子、酸素原子及び硫黄原子より選択される任意のヘテロ原子を有する 5~6員の置換されていてもよい芳香族ヘテロ環基又は芳香族ヘテロ縮合環基を 示し、

nは0~2の整数を示す。]

で表される。

明細書

イソオキサゾリン誘導体及びこれを有効成分とする除草剤

5 技術分野

本発明は新規なイソオキサゾリン誘導体及びそれを有効成分として含有する除 草剤に関するものである。

背景技術

10 イソオキサゾリン誘導体が除草活性を有することは、例えば、特開平8-22558 号公報、特開平9-328477号公報及び特開平9-328483号公報等に報告されている。 しかしながら、以下に詳述する本発明化合物はこれらの文献に記載されていない。 有用作物に対して使用される除草剤は、土壌又は茎葉に施用し、低薬量で十分な 除草効果を示し、しかも作物・雑草間に高い選択性を発揮する薬剤であることが望 まれる。これらの点で、当該公報に記載の化合物は必ずしも満足すべきものとは言 い難い。

発明の開示

本発明者らはこの様な状況に鑑み、各種化合物の除草効果と作物・雑草間の選択 20 性を検討した結果、新規なイソオキサゾリン誘導体が、優れた除草効果と作物・雑 草間の選択性を有することを見いだし、本発明を完成するに至った。

即ち、本発明は

(1) 一般式 [I] を有するイソオキサゾリン誘導体又はその薬理上許容される塩:

式中、

5

10

15

20

R¹及びR²は、同一又は異なって、水素原子、C1~C10アルキル基、C3~C8 シクロアルキル基又はC3~C8シクロアルキルC1~C3アルキル基を示すか、或い はR¹とR²とが一緒になって、これらの結合した炭素原子と共に形成したC3~C7 のスピロ環を示し、

 R^3 及び R^4 は、同一又は異なって、水素原子、 $C1\sim C10$ アルキル基又は $C3\sim C8$ シクロアルキル基を示すか、或いは R^3 と R^4 とが一緒になって、これらの結合した炭素原子と共に形成した $C3\sim C7$ のスピロ環を示し、更に R^1 、 R^2 、 R^3 及び R^4 はこれらの結合した炭素原子と共に $5\sim 8$ 員環を形成することもでき、

R⁵及びR⁶は、同一又は相異なって、水素原子又はC1~C10アルキル基を示し、 Yは窒素原子、酸素原子及び硫黄原子より選択される1以上の任意のヘテロ原子 を有する5~6員の芳香族ヘテロ環基又は芳香族ヘテロ縮合環基を示し、これらの ヘテロ環基は置換基群 α より選択される、0~6個の同一又は相異なる基で置換さ れていてもよく、又、隣接したアルキル基同士、アルコキシ基同士、アルキル基と アルコキシ基、アルキル基とアルキルチオ基、アルキル基とアルキルスルホニル基、 アルキル基とモノアルキルアミノ基又はアルキル基とジアルキルアミノ基が2個 結合して1~4個のハロゲン原子で置換されてもよい5~8員環を形成されてい てもよく、又、これらのヘテロ環基のヘテロ原子が窒素原子の時は酸化されてNー オキシドになってもよく、

nは0~2の整数を示す。

「置換基群α」

水酸基、チオール基、ハロゲン原子、C1~C10アルキル基、置換基群βより選 択される任意の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル 基、C3~C8シクロアルキル基、C1~C10アルコキシ基、置換基群ッより選択さ れる任意の基でモノ置換されたC1~C10アルコキシ基、C1~C4ハロアルコキシ 5 基、C3~C8シクロアルキルオキシ基、C3~C8シクロアルキルC1~C3アルキル オキシ基、C1~C10アルキルチオ基、置換基群γより選択される任意の基でモノ 置換されたC1~C10アルキルチオ基、C1~C4ハロアルキルチオ基、C2~C6ア ルケニル基、C2~C6アルケニルオキシ基、C2~C6アルキニル基、C2~C6アル キニルオキシ基、C1~C10アルキルスルフィニル基、置換基群γより選択される 10 任意の基でモノ置換されたC1~C10アルキルスルフィニル基、C1~C10アルキル スルホニル基、置換基群γより選択される任意の基でモノ置換されたC1~C10ア ルキルスルホニル基、C1~C4ハロアルキルスルフィニル基、置換基群ッより選択 される任意の基でモノ置換されたC1~C10アルキルスルホニルオキシ基、C1~C 4ハロアルキルスルホニル基、C1~C10アルキルスルホニルオキシ基、C1~C4 15 ハロアルキルスルホニルオキシ基、置換されていてもよいフェニル基、置換されて いてもよいフェノキシ基、置換されていてもよいフェニルチオ基、置換されていて もよい芳香族へテロ環基、置換されていてもよい芳香族へテロ環オキシ基、置換さ れていてもよい芳香族ヘテロ環チオ基、置換されていてもよいフェニルスルフィニ ル基、置換されていてもよいフェニルスルホニル基、置換されていてもよい芳香族 20 ヘテロ環スルホニル基、置換されていてもよいフェニルスルホニルオキシ基、アシ ル基、C1~C4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボ ニル基、置換されていてもよいベンゾイル基、カルボキシル基、C1~C10アルコ キシカルボニル基、置換されていてもよいベンジルオキシカルボニル基、置換され ていてもよいフェノキシカルボニル基、シアノ基、カルバモイル基(該基の窒素原 25

10

15

20

25

子は同一又は異なって、C1~C10アルキル基又は置換されていてもよいフェニル 基で置換されていてもよい。)、C1~C6アシルオキシ基、C1~C4ハロアルキル カルボニルオキシ基、置換されていてもよいベンジルカルボニルオキシ基、置換されていてもよいベンジイルオキシ基、二トロ基、アミノ基(該基の窒素原子は同一又は異なって、C1~C10アルキル基、置換されていてもよいフェニル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルルホニル基、置換されていてもよいベンジルスルホニル基、C1~C4ハロアルキルスルホニル基、置換されていてもよいベンジルスルホニル基又は置換されていてもよいフェニルスルホニル基で置換されていてもよ

「置換基群 β」

い。)

水酸基、C3~C8シクロアルキル基(該基はハロゲン原子又はアルキル基で置換されてもよい)、C1~C10アルコキシ基、C1~C10アルキルチオ基、C1~C10アルコキシカルボニル基、C2~C6ハロアルケニル基、アミノ基(該基の窒素原子は同一又は異なって、C1~C10アルキル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル基で置換されていてもよい)、カルバモイル基(該基の窒素原子は同一又は異なって、C1~C10アルキル基で置換されていてもよい)、C1~C6アシル基、C1~C4ハロアルキルカルボニル基で置換されていてもよい)、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルコキシイミノ基、シアノ基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基

「置換基群 y 」

C1~C10アルコキシカルボニル基、置換されていてもよいフェニル基、置換されていてもよい芳香族へテロ環基、シアノ基、カルバモイル基(該基の窒素原子は同一又は異なって、C1~C10アルキル基で置換されていてもよい。)

(2)0~6個の同一又は相異なる基で置換されていてもよいヘテロ環上の置換基 群 α が、水酸基、ハロゲン原子、 $C1\sim C10$ アルキル基、置換基群 β より選択され る任意の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル基、C3 ~C8シクロアルキル基、C1~C10アルコキシ基、置換基群ッより選択される任意 の基でモノ置換されたC1~C10アルコキシ基、C1~C4ハロアルコキシ基、C3 5 ~C8シクロアルキルオキシ基、C3~C8シクロアルキルC1~C3アルキルオキシ 基、C1~C10アルキルチオ基、置換基群γより選択される任意の基でモノ置換さ れたC1~C10アルキルチオ基、C1~C4ハロアルキルチオ基、C2~C6アルケニ ル基、C2~C6アルケニルオキシ基、C2~C6アルキニル基、C2~C6アルキニル オキシ基、C1~C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル基、 10 置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、置換され ていてもよいフェニルチオ基、置換されていてもよい芳香族へテロ環基、置換され ていてもよい芳香族ヘテロ環オキシ基、置換されていてもよい芳香族ヘテロ環チオ 基、置換されていてもよいフェニルスルホニル基、置換されていてもよい芳香族へ テロ環スルホニル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、置 15 換されていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、 カルボキシル基、C1~C10アルコキシカルボニル基、シアノ基、カルバモイル基 (該基の窒素原子は同一又は異なって、C1~C10アルキル基又は置換されていて もよいフェニル基で置換されていてもよい。)、ニトロ基、アミノ基(該基の窒素 原子は同一又は異なって、C1~C10アルキル基、置換されていてもよいフェニル 20 基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、置換されていてもよ いベンジルカルボニル基、置換されていてもよいベンゾイル基、C1~C10アルキ ルスルホニル基、C1~C4ハロアルキルスルホニル基、置換されていてもよいベン ジルスルホニル基又は置換されていてもよいフェニルスルホニル基で置換されて いてもよい。) であるか、或いは隣接したアルキル基同士、アルコキシ基同士、ア 25

ルキル基とアルコキシ基、アルキル基とアルキルチオ基、アルキル基とアルキルスルホニル基、アルキル基とモノアルキルアミノ基又はアルキル基とジアルキルアミノ基が2個結合して1~4個のハロゲン原子で置換されてもよい5~8員環を形成されていてもよい(1)に記載のイソオキサゾリン誘導体。

- 5 (3)0~6個の同一又は相異なる基で置換されていてもよいへテロ環上の置換基群αが、ハロゲン原子、C1~C10アルキル基、C1~C4ハロアルキル基、C1~C10アルコキシと1~C3アルキル基、C3~C8シクロアルキル基(該基はハロゲン原子又はアルキル基で置換されてもよい)、C1~C10アルコキシ基、C1~C4ハロアルコキシ基、C3~C8シクロアルキルC1~C3アルキルオキシ基、置換されていてもよいフェノキシ基、C1~C10アルキルチオ基、C1~C10アルキルスルホニル基、アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルコキシカルボニル基、シアノ基又はカルバモイル基(該基の窒素原子は同一又は異なってC1~C10アルキル基で置換されていてもよい)である(2)に記載のイソオキサゾリン誘導体。
- 15 (4) R¹及びR²が、同一又は異なってメチル基もしくはエチル基、R³、R⁴、R⁵
 及びR⁶が水素原子である(1)、(2)又は(3)のいずれかに記載のイソオキサゾリン誘導体。
 - (5) Yが、窒素原子、酸素原子及び硫黄原子より選択される任意のヘテロ原子を有する5員環又は6員環の芳香族ヘテロ環基である(1)、(2)、(3)又は(4)のいずれかに記載のイソオキサゾリン誘導体。
 - (6) Yが、チエニル基、ピラゾリル基、イソキサゾリル基、イソチアゾリル基、 ピリジル基又はピリミジニル基である(5) に記載のイソオキサゾリン誘導体。
- (7) Yが、チオフェン-3-イル基、ピラゾール-4-イル基、ピラゾール-5-イル基、イソオキサゾール-4-イル基、イソチアゾール-4-イル基、ピリジン-3-イル基又はピリミジン-5-イル基である(6)に記載のイソオキサゾリ

ン誘導体。

- (8) Yが、チオフェンー 3 ーイル基で、置換基群 α がチオフェン環の 2 及び 4 位に置換した (7) に記載のイソオキサゾリン誘導体。
- (9) Yが、ピラゾールー4ーイル基で、置換基群αがピラゾール環の3及び5位 に、更に1位に水素原子、 $C1\sim C10$ アルキル基、置換基群 β より選択される任意 5 の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル基、C3~C8 シクロアルキル基、C2~C6アルケニル基、C2~C6アルキニル基、C1~C10ア ルキルスルフィニル基、C1~C10アルキルスルホニル基、置換基群γより選択さ れる任意の基でモノ置換されたC1~C10アルキルスルホニル基、C1~C4ハロア ルキルスルホニル基、置換されていてもよいフェニル基、置換されていてもよい芳 10 香族へテロ環基、置換されていてもよいフェニルスルホニル基、置換されていても よい芳香族へテロ環スルホニル基、アシル基、C1~C4ハロアルキルカルボニル基、 置換されていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、 C1~C10アルコキシカルボニル基、置換されていてもよいベンジルオキシカルボ ニル基、置換されていてもよいフェノキシカルボニル基、カルバモイル基(該基の 15 窒素原子は同一又は異なって、C1~C10アルキル基又は置換されていてもよいフ エニル基で置換されていてもよい)、アミノ基(該基の窒素原子は同一又は異なっ て、C1~C10アルキル基、置換されていてもよいフェニル基、アシル基、C1~C 4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換 されていてもよいベンゾイル基、C1~C10アルキルスルホニル基、C1~C4ハロ 20 アルキルスルホニル基、置換されていてもよいベンジルスルホニル基又は置換され ていてもよいフェニルスルホニル基で置換されていてもよい)が置換した(7)に 記載のイソオキサゾリン誘導体。
- (10) Yが、ピラゾールー5ーイル基で、置換基群 α がピラゾール環の4位に、 25 更に1位に水素原子、 $C1\sim C10$ アルキル基、置換基群 β より選択される任意の基

でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル基、C3~C8シク ロアルキル基、C2~C6アルケニル基、C2~C6アルキニル基、C1~C10アルキ ルスルフィニル基、C1~C10アルキルスルホニル基、置換基群ッより選択される 任意の基でモノ置換されたC1~C10アルキルスルホニル基、C1~C4ハロアルキ ルスルホニル基、置換されていてもよいフェニル基、置換されていてもよい芳香族 5 ヘテロ環基、置換されていてもよいフェニルスルホニル基、置換されていてもよい 芳香族へテロ環スルホニル基、アシル基、C1~C4ハロアルキルカルボニル基、置 換されていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、 C1~C10アルコキシカルボニル基、置換されていてもよいベンジルオキシカルボ ニル基、置換されていてもよいフェノキシカルボニル基、カルバモイル基(該基の 10 窒素原子は同一又は異なって、C1~C10アルキル基又は置換されていてもよいフ エニル基で置換されていてもよい)、アミノ基(該基の窒素原子は同一又は異なっ て、C1~C10アルキル基、置換されていてもよいフェニル基、アシル基、C1~C 4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換 されていてもよいベンゾイル基、C1~C10アルキルスルホニル基、C1~C4ハロ 15 アルキルスルホニル基、置換されていてもよいベンジルスルホニル基又は置換され ていてもよいフェニルスルホニル基で置換されていてもよい)が必ず置換した(7) に記載のイソオキサゾリン誘導体。

- (11) Yが、イソオキサゾールー4ーイル基で、置換基群αがイソオキサゾール20 環の3位及び5位に置換した(7)記載のイソオキサゾリン誘導体。
 - (12) Yが、イソチアゾールー4ーイル基で、置換基群 α がイソチアゾール環の 3位及び5位に置換した (7) 記載のイソオキサゾリン誘導体。
 - (13) Yが、ピリジン-3-イル基で、置換基群 α がピリジン環の 2位及び 4位に置換した (7) 記載のイソオキサゾリン誘導体。
- 25 (14) Υが、ピリミジン-5-イル基で、置換基群αがピリミジン環の4位及び

6位に置換した(7)記載のイソオキサゾリン誘導体。

- (15) n が 2 である (1) ~ (14) のいずれかに記載のイソオキサゾリン誘導体。
- (16) nが1である(1)~(14)のいずれかに記載のイソオキサゾリン誘導5 体。
 - (17) n が 0 である (1) \sim (14) のいずれかに記載のイソオキサゾリン誘導体。
 - (18) (1) ~ (17) のいずれかに記載のイソオキサゾリン誘導体又は薬理上 許容される塩を有効成分として含有する除草剤。
- 10 尚、本明細書において、用いられる用語の定義を以下に示す。

C1~C10等の表記は、この場合ではこれに続く置換基の炭素数が、1~10で あることを示している。

ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。

C1~C10アルキル基とは、特に限定しない限り、炭素数が1~10の直鎖又は 分岐鎖状のアルキル基を示し、例えばメチル基、エチル基、n-プロピル基、イソ プロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n ーペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、イソヘキシル 基、3,3-ジメチルブチル基、ヘプチル基、又はオクチル基等を挙げることがで きる。

20 C3~C8シクロアルキル基とは、炭素数が3~8のシクロアルキル基を示し、例 えばシクロプロピル基、シクロブチル基、シクロペンチル基、又はシクロヘキシル 基等を挙げることができる。

C3~C8シクロアルキルC1~C3アルキル基(該基はハロゲン原子又はアルキル 基で置換されてもよい)とは、特に限定しない限り、同一又は異なって、ハロゲン 原子1~4又はC1~C3アルキル基で置換されてもよいC3~C8シクロアルキル

基により置換されたC1~C3アルキル基を示し、例えばシクロプロピルメチル基、1ーシクロプロピルエチル基、2ーシクロプロピルエチル基、1ーシクロプロピルプロピルプロピルプロピルプロピル基、3ーシクロプロピルプロピル基、シクロブチルメチル基、シクロペンチルメチル基、シクロペンチルメチル基、シクロペンチルメチル基、シクロペンチルメチル基、シクロペンチルメチル基、2ーフルオロシクロプロピルメチル基、2・2ージフルオロシクロプロピルメチル基、2・2・ジフルオロシクロプロピルメチル基、2・メチルシクロプロピルメチル基、2・2ージメチルシクロプロピルメチル基、又は2ーメチルシクロプロピルエチル基等を挙げることができる。

C3~C8シクロアルキルC1~C3アルキル基とは、炭素数が3~8のシクロアル キル基により置換された炭素数1~3のアルキル基を示し、例えばシクロプロピルメチル基、1-シクロプロピルエチル基、2-シクロプロピルエチル基、1-シクロプロピルプロピル基、2-シクロプロピルプロピル基、3-シクロプロピルプロピルプロピルプロピル基、5クロブチルメチル基、シクロペンチルメチル基、又はシクロヘキシルメチル基等を挙げることができる。

15 C1~C4ハロアルキル基とは、特に限定しない限り、同一又は異なって、ハロゲン原子1~9で置換されている炭素数が1~4の直鎖又は分岐鎖のアルキル基を示し、例えばフルオロメチル基、クロロメチル基、ブロモメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2-ジフルオロエチル基、2,2,2ートリフルオロエチル基、又はペンタフルオロエチル基等を挙げることができる。

20 C2~C6アルケニル基とは、炭素数が2~6の直鎖又は分岐鎖のアルケニル基を示し、例えばエテニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、又は2-ペンテニル基等を挙げることができる。

C2~C6アルキニル基とは、炭素数が2~6の直鎖又は分岐鎖のアルキニル基を 25 示し、例えばエチニル基、2-プロピニル基、1-メチル-2-プロピニル基、2

10

20

ーブチニル基、3ーブチニル基、又は2ーメチルー3ーブチニル基等を挙げることができる。

C2~C6ハロアルケニル基とは、特に限定しない限り、同一又は異なって、ハロゲン原子1~4で置換されている炭素数が2~6の直鎖又は分岐鎖のアルケニル基を示し、例えば3-クロロー2ープロペニル基、又は2-クロロー2ープロペニル基等を挙げることができる。

C1~C10アルコキシ基とは、アルキル部分が上記の意味である(アルキル) - O-基を示し、例えばメトキシ基、エトキシ基、nープロポキシ基、イソプロポキシ基、tertーブトキシ基、nーブトキシ基、secーブトキシ基、又はイソブトキシ基等を挙げることができる。

C1~C4ハロアルコキシ基とは、ハロアルキル部分が上記の意味である(ハロアルキル)-O-基を示し、例えばジフルオロメトキシ基、トリフルオロメトキシ基、2,2-ジフルオロエトキシ基、又は2,2,2-トリフルオロエトキシ基等を挙げることができる。

15 C3~C8シクロアルキルオキシ基とは、シクロアルキル部分が上記の意味である (シクロアルキル) -O-基を示し、例えばシクロプロピルオキシ基、シクロブチ ルオキシ基、シクロペンチルオキシ基、又はシクロヘキシルオキシ基等を挙げるこ とができる。

C3~C8シクロアルキルC1~C3アルキルオキシ基とは、シクロアルキルアルキル部分が上記の意味である(シクロアルキルアルキル) -O-基を示し、例えばシクロプロピルメトキシ基、1-シクロプロピルエトキシ基、2-シクロプロピルエトキシ基、1-シクロプロピルプロポキシ基、3-シクロプロピルプロポキシ基、シクロブチルメトキシ基、シクロプロピルプロポキシ基、シクロブチルメトキシ基、シクロペンチルメトキシ基、又はシクロヘキシルメトキシ基等を挙げることができる。

25 C2~C6アルケニルオキシ基及びC2~C6アルキニルオキシ基とは、アルケニル

又はアルキニル部分が上記の意味である(アルケニル)-O-基、(アルキニル) -O-基を示し、例えば2-プロペニルオキシ基、又は2-プロピニルオキシ基等 を挙げることができる。

C1~C10アルコキシイミノ基とは、アルコキシ部分が上記の意味である(アル 5 コキシ)-N=基を示し、例えばメトキシイミノ基又はエトキシイミノ基等を挙げ ることができる。

C1~C10アルキルチオ基、C1~C10アルキルスルフィニル基及びC1~C10アルキルスルホニル基とは、アルキル部分が上記の意味である(アルキル)-S-基、(アルキル)-SO-基、(アルキル)-SO₂-基を示し、例えばメチルチオ基、10 エチルチオ基、n-プロピルチオ基、イソプロピルチオ基、メチルスルフィニル基、メチルスルホニル基、エチルスルホニル基、n-プロピルスルホニル基、又はイソプロピルスルホニル基等を挙げることができる。

C1~C10アルキルスルホニルオキシ基とは、アルキルスルホニル部分が上記の意味である(アルキルスルホニル) -O-基を示し、例えばメチルスルホニルオキシ基又はエチルスルホニルオキシ基等を挙げることができる。

C1~C10アルコキシカルボニル基とは、アルコキシ部分が上記の意味である(アルコキシ) - CO-基を示し、例えばメトキシカルボニル基、エトキシカルボニル基、 n-プロポキシカルボニル基、 又はイソプロポキシカルボニル基等を挙げることができる。

20 C1~C6アシル基とは、炭素数 1~6の直鎖又は分岐鎖状の脂肪族アシル基を示し、例えばホルミル基、アセチル基、プロピオニル基、イソプロピオニル基、ブチリル基、又はピバロイル基等を挙げることができる。

C1~C10アシルオキシ基とは、アシル部分が上記の意味である(アシル)-O
 -基、を示し、例えばアセトキシ基、プロピオニルオキシ基、イソプロピオニルオ
 25 キシ基、又はピバロイルオキシ基等を挙げることができる。

10

 $C1\sim C4$ ハロアルキルカルボニル基、 $C1\sim C4$ ハロアルキルチオ基及び $C1\sim C4$ ハロアルキルスルホニル基とは、ハロアルキル部分が上記の意味である(ハロアルキル)-CO-基、(ハロアルキル)-S-基、(ハロアルキル) $-SO_2-$ 基を示し、例えばクロロアセチル基、トリフルオロアセチル基、ペンタフルオロプロピオニル基、ジフルオロメチルチオ基、トリフルオロメチルチオ基、クロロメチルスルホニル基、ジフルオロメチルスルホニル基、又はトリフルオロメチルスルホニル基等を挙げることができる。

C1~C4ハロアルキルカルボニルオキシ基及びC1~C4ハロアルキルスルホニルオキシ基とは、ハロアルキルカルボニル部分及びハロアルキルスルホニル部分が上記の意味である(ハロアルキルカルボニル)-O-基、(ハロアルキルスルホニル)-O-基を示し、例えばクロロアセチルオキシ基、トリフルオロアセチルオキシ基、クロロメチルスルホニルオキシ基、又はトリフルオロメチルスルホニルオキシ基等を挙げることができる。

10

15

10アルキルチオ基、C1~C10アルキルスルホニル基、アシル基、C1~C10アルコキシカルボニル基、シアノ基、カルバモイル基(該基の窒素原子は同一又は異なって、C1~C10アルキル基で置換されていてもよい)、ニトロ基、又はアミノ基(該基の窒素原子は同一又は異なって、C1~C10アルキル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルキルスルホニル基、又はC1~C4ハロアルキルカルボニル基で置換されていてもよい)等で置換されていてもよいことを示す。

窒素原子、酸素原子及び硫黄原子から任意に選択される1以上のヘテロ原子を有する5員から6員の芳香族ヘテロ環基とは、例えばヘテロ原子を1から3個有するフリル基、チエニル基、ピロリル基、ピラゾリル基、イソキサゾリル基、イソチアゾリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、トリアブリル基、オキサジアゾリル基又はチアジアゾリル基を挙げることができる。

芳香族へテロ縮合環基とは、窒素原子、酸素原子及び硫黄原子から任意に選択されるヘテロ原子を1~3個有する基を示し、例えばベンゾフリル基、ベンゾチエニル基、インドリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、ベンゾイソキサゾリル基、ベンゾイソチアゾリル基、インダゾリル基、キノリル基、インキノリル基、フサラジニル基、キノキサリニル基、キナゾリニル基、シンノリニル基又はベンゾトリアゾリル基を挙げることができる。

20 (置換されていてもよい) 芳香族へテロ環基、(置換されていてもよい) 芳香族 ヘテロ環オキシ基、(置換されていてもよい) 芳香族ヘテロ環チオ基又は(置換されていてもよい) 芳香族ヘテロ環スルホニル基の芳香族ヘテロ環とは、窒素原子、 酸素原子及び硫黄原子から任意に選択されるヘテロ原子を1~3個有する5~6 員の基を示し、例えばフリル基、チエニル基、ピロリル基、ピラゾリル基、イソキ サゾリル基、イソチアゾリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、

ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、トリアゾリル基、オキサジアゾリル基又はチアジアゾリル基を挙げることができる。 薬理上許容される塩とは、一般式 [I] を有する化合物において、水酸基、カルボキシル基又はアミノ基等がその構造中に存在する場合に、これらと金属もしくは 有機塩基との塩又は鉱酸もしくは有機酸との塩であり、金属としてはナトリウム又はカリウム等のアルカリ金属或いはマグネシウム又はカルシウム等のアルカリ土 類金属を挙げることができ、有機塩基としてはトリエチルアミン又はジイソプロピルアミン等を挙げることができ、鉱酸としては塩酸又は硫酸等を挙げることができ、有機酸としては酢酸、メタンスルホン酸又はpートルエンスルホン酸等を挙げることができる。

上記した一般式 [I] の中で好ましくは、 R^1 及び R^2 が、同一又は異なってメチル基又はエチル基であり、

R³、R⁴、R⁵及びR⁶が水素原子であり、 n が2であり、

- 15 Yがチオフェン-3ーイル基(ここで該基の2位及び4位は、ハロゲン原子、アルキル基、ハロアルキル基、アルコキシアルキル基、シクロアルキル基、アルコキシ基、ハロアルコキシ基、アシル基、ハロアルキルカルボニル基、アルコキシカルボニル基、シアノ基又はカルバモイル基(該基の窒素原子は同一又は異なってアルキル基で置換されていてもよい)が置換する。)、
- 20 ピラゾールー4ーイル基(ここで該基の3位及び5位は、ハロゲン原子、アルキル 基、ハロアルキル基、アルコキシアルキル基、シクロアルキル基、アルコキシ基、 ハロアルコキシ基、シクロアルキルアルキルオキシ基、置換されていてもよいフェ ノキシ基、アルキルチオ基、アルキルスルホニル基、アシル基、ハロアルキルカル ボニル基、アルコキシカルボニル基、シアノ基又はカルバモイル基(該基の窒素原 25 子は同一又は異なってアルキル基で置換されていてもよい)が、更に1位に水素原

10

15

25

子、アルキル基、置換基群 β より選択される任意の基でモノ置換されたアルキル基、ハロアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アルキルスルホニル基、置換基群 γ より選択される任意の基でモノ置換されたアルキルスルホニル基、のロアルキルスルホニル基、置換されていてもよいフェニル基、置換されていてもよい方香族へテロ環基、置換されていてもよいフェニルスルホニル基、置換されていてもよい方香族へテロ環スルホニル基、アシル基、ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジイル基、アルコキシカルボニル基、置換されていてもよいベンジルオキシカルボニル基、置換されていてもよいフェノキシカルボニル基又はカルバモイル基(該基の窒素原子は同一又は異なって、アルキル基又は置換されていてもよいフェニル基で置換されていてもよい)が置換する。)、

ピラゾールー5ーイル基(ここで該基の4位はハロゲン原子、アルキル基、ハロアルキル基、ハロアルキル基、アルコキシアルキル基、ハロアルコキシ基、アシル基、ハロアルキルカルボニル基、アルコキシカルボニル基、シアノ基又はカルバモイル基(該基の窒素原子は同一又は異なってアルキル基で置換されていてもよい)が、更に1位は水素原子、アルキル基、置換基群βより選択される任意の基でモノ置換されたアルキル基、ハロアルキル基、シクロアルキル基又は置換されていてもよいフェニル基が置換する。)、

イソオキサゾールー4ーイル基(該基の3位及び5位は、ハロゲン原子、アルキル 20 基、ハロアルキル基、アルコキシアルキル基、シクロアルキル基、アルコキシ基、 ハロアルコキシ基、アルキルチオ基、アルキルスルホニル基、アシル基、ハロアル キルカルボニル基、アルコキシカルボニル基、シアノ基又はカルバモイル基(該基 の窒素原子は同一又は異なってアルキル基で置換されていてもよい)が置換する。)、 イソチアゾールー4ーイル基(該基の3位及び5位は、ハロゲン原子、アルキル基、

ハロアルキル基、アルコキシアルキル基、シクロアルキル基、アルコキシ基、ハロ

アルコキシ基、置換されていてもよいフェノキシ基、アルキルチオ基、アルキルスルホニル基、アシル基、ハロアルキルカルボニル基、アルコキシカルボニル基、シアノ基、カルバモイル基(該基の窒素原子は同一又は異なってアルキル基で置換されていてもよい)が置換する。)、

5 ピリジン-3-イル基(該基の2位及び4位は、ハロゲン原子、アルキル基、ハロアルキル基、アルコキシアルキル基、シクロアルキル基、アルコキシ基、ハロアルコキシ基、アルキルチオ基、アルキルスルホニル基、アシル基、ハロアルキルカルボニル基、アルコキシカルボニル基、シアノ基又はカルバモイル基(該基の窒素原子は同一又は異なってアルキル基で置換されていてもよい)が置換する。)、或い

10 は、

15

ピリミジン-5-イル基(該基の4位および6位は、ハロゲン原子、アルキル基、ハロアルキル基、アルコキシアルキル基、シクロアルキル基、アルコキシ基、ハロアルコキシ基、アルキルチオ基、アルキルスルホニル基、アシル基、ハロアルキルカルボニル基、アルコキシカルボニル基、シアノ基又はカルバモイル基(該基の窒素原子は同一又は異なってアルキル基で置換されていてもよい)が置換する。)である。

発明を実施するための最良の形態

次に、一般式 [I] を有する本発明化合物の代表的な化合物例を表 1 ~表 1 0 に 20 記載する。しかしながら、本発明化合物はこれらに限定されるものではない。

本明細書における表中の次の表記は下記の通りそれぞれ該当する基を表す。

Me : メチル基 Et : エチル基、

Pr : nープロピル基 Pr-i : イソプロピル基

Pr-c:シクロプロピル基 Bu : n-ブチル基

25 Bu-i:iso-ブチル基 Bu-s :sec-ブチル基

Bu-t:tert-ブチル基 Bu-c :シクロブチル基

Pen:n-ペンチル基 Pen-c:シクロペンチル基

Hex : n-ヘキシル基 Hex-c:シクロヘキシル基

Ph : フェニル基

5 又, 例えば (4-C1) Phの表記は4-クロロフェニル基、3-Hexは3-ヘキシル基を表す。

尚、本発明化合物は置換基として水酸基を含む場合、ケトーエノール互変異性体 を有する化合物があるが、何れの異性体もその混合物も本発明化合物に含まれる。

表1

1	-(CH ₂) ₃ -	Н	н	12	Н	Н	s	Cı	CI	CI
1	-(CH ₂) ₄ -	H	H	2		H	S	Cl	Cl	Cl
1	·(CH ₂) ₅ -	H	H	2	H	H	S	Cl	CI	CI
H	-(CH		H	2	H	H	S	Cl	Cl	Cl
H	-(CH		H	2	H	H	S	Cl	Cl	Cl
H	-(CH		H	2	H	H	S	Cl	Cl	Cl
H	-(CH		H	2	H	H	S	Cl	Cl	Cl
Me	Me	H	H	1	H	H	S	Me	H	H
Me	Me	·H	H	1	н	H	s	Cl	Me	H
Me	Me	H	Н	1	H	H	s	H	H	Me
Me	Me	H	Н	1	H	H	s	Cl	н	H
Me	Me	H	H	1	H	H	s	H	H	Cl
Me	Me	H	H	1	H	H	s	Cl	Cl	Cl
Me	Me	H	H	1	H	H	s	OMe	H	H
Me	Me	H	H	1	H	H	s	OEt	H	H
Me	Me	H	H	1	H	H	S	OCHF ₂	H	H
Me	Me	H	H	1	H	H	S	OCH ₂ Ph	H	H
Me	Me	H	H	1	H	H	0	H	H	H
Me	Me	H	H	1	H	H	0	H	H	C(=O)OMe
Me	Me	H	H	1	H	H	NMe	Me	H	Me
Me	Me	H	H	1	H	H	NMe	Me	C(=O)OMe	CH ₂ C(=O)OMe
Me	Me	H	H	1	H	H	NMe		C(=O)OEt	CH ₂ C(=O)OEt
Me	Me	H	H	1	H	H	NMe	1	Me	Me
Me	Me	\mathbf{H}	H	1	H	H	NPh	OMe	H	H
Me	Me	H	H	1	H	H	NPh	OEt	H	H
Me	Ме	H	H	1	H	H	NPh	OCHF ₂	H	H
H	H	H	H	1	H	H	S	OCHF ₂	H	H
Me	H	H	H	1	H	H	S	OCHF ₂	H	H
Me	H	Ме	H	1	H	H	S	OCHF ₂	H	H
Me	Me	H	H	1	Me	H	S	OCHF ₂	H	H
Me	Me	H	H	1	Et	H	S	OCHF ₂	H	H
Me	Me	H	H	1	Pr-i	H	S	OCHF ₂	H	H
Me	Me	H	H	1	Me	Ме	S	OCHF ₂	H	H
Me	Et	H	H	1	H	H	S	OCHF ₂	H	H
Et	Et	H	H	1	H	H	S	OCHF ₂	H	H
Me	Pr-i	H	H	1	H	H	S	OCHF ₂	H	H
Me	Pr	H	H	1	H	H	S	OCHF ₂	H	H
Me	Pr-c	H	H	1	H	H	S	OCHF ₂	H	H
Me	CH ₂ Pr-c	H	H	1	H	H	S		H	H
	$(CH_2)_2$ -	H	H	1	H	H	S	Cl	Cl	Cl
	$(CH_2)_3$ -	H	H	1	H	H	S	Cl	Cl	Cl
-($(CH_2)_4$ -	$H \mid$	H	1	H	H	S	Cl	C1	C1

	-(CH ₂) ₅ -	н	Н	1	Н	H	s	Cl	[C1	Cl
H	-(CH	2)3-	H	1	H	H	s	Cl	Cl	Cı
H	-(CH	2)4-	H	1	H	H	s	Cl	Cl	CI
H	-(CH	2)5-	H	1	H	H	s	Cl	Cl	Cl
H	-(CH:	2)6-	H	1	H	H	s	CI	CI	Cl
Me	Me	H	Н	0	H	H	s	Me	H	H
Me	Me	H	H	0	H	H	s	Cl	Me	H
Me	Me	H	H	0	H	H	s	H	H	Me
Me	Me	H	H	0	H	H	s	C1	H	H
Me	Me	H	H	0	H	H	s	H	H	Cl
Me	Me	H	H	0	H	H	s	Cl	Cl	Cl
Me	Me	H	H	0	H	H	S	OMe	H	H
Me	Me	н	Н	0	H	H	s	OEt	H	H
Me	Me	H	Н	0	H	H	S	OCHF ₂	H	H
Me	Me	Н	Н	0	H	H	S	OCH ₂ Ph	H	H
Me	Me	H	н	0	H	H	0	H	н	H
Me	Me	H	Н	0	H	H	0	H	н	C(=O)OMe
Me	Me	Н	Н	0	Н	H	NMe	Me	H	Me
Me	Me	н	Н	0	H	H	NMe	Me	C(=O)OMe	CH ₂ C(=O)OMe
Me	Me	н	н	0	H	H	NMe	Me	C(=O)OEt	CH ₂ C(=O)OEt
Me	Me	H	H	0	H	H	NMe	Me	Me	Me
Me	Me	н	Н	0	H	H	NPh	OMe	H	H
Me	Me	\mathbf{H}	н	0	H	H	NPh	OEt	H	H
Me	Me	H	·H	0	н	H	NPh	OCHF ₂	H	H
H	H	н	н	0	H	H	s	OCHF ₂	H	H
Me	H	H	H	0	н	H	S	OCHF ₂	H	H
Me	Н	Me	H	0	H	H	S	OCHF2	H	H
Me	Me	H	H	0	Me	н	s	OCHF ₂	H	H
Me	Me ·	H	н	0	Et	H	s	OCHF ₂	H	H
Me	Me	H	H	0	Pr-i	Н	S	$OCHF_2$	H	H
Me	Me	H	H	0	Me	Me	S	$OCHF_2$	н	H
Me	Et	Н	H	0	H	H	S	$OCHF_2$	н	H
Et	Et	H	\mathbf{H}	0	H	H	S	$OCHF_2$	н	H
Me	Pr-i	H	H	0	H	H	S	$OCHF_2$	H	H
Me	Pr	H	H	0	H	H	S	$OCHF_2$	H	H
Me	Pr-c	H	H	0	H	H	S	$OCHF_2$	H	H
Me	CH ₂ Pr-c	H	H	0	H	H	S	OCHF_2	H	H
	(CH ₂) ₂ -	H	H	0	H	H	S	Cl	Cl	Cl
	-(CH ₂) ₃ - H		H	0	H	H	S	Cl	Cl	Cl
	-(CH ₂) ₄ - H		H	0	H	H	S	Cl	Cl	Cl
-(-(CH ₂) ₅ - H		H	0	H	H	S	Cl	Cl	Cl
H -(CH ₂) ₃ -		3-	H	0	H	H	S	Cl	Cl	C1

	H	-(CH ₂)4-	H	0	H	H	s	CI	CI	$ \mathbf{c} $	1
	H	-(CH ₂) ₅ -	H	0	\mathbf{H}	н	s	Cl	Cl	Cl	
	Н	-(CH ₂) ₆ -	H	0	H	H	s	Cl	Cl	Cl	
	Me	Et	\mathbf{H}	H	2	\mathbf{H}	H	S	H	\mathbf{H}	$ \mathbf{H} $	
ķ	Me	Et	H	H	2	H	H	0	H	H	H	
	Me	Et	H	н	2	\mathbf{H}	H	NH	H	H	H	

表 2

								,			
Me	Me	H	H	2	H	H	S	CF_3		OPr-i	H
Me	Me	H	H	2	H	H	S	CF ₃		OPr-i	H
Me	Me	H	H	2	H	H	S	$\mathbf{CF_3}$		OCHF2	H
Me	Me	H	H	2	H	H	s	Cl		Me	H
Me	Me	H	H	2	H	H		CI		Me	Me
Me	Me	H	H		H	H		C1		C(=O)OMe	CI
Me	Me	H	H	2	H	H	S	Cl		CN	Cl.
Me	Me	H	H	2	H	H	S	Cl		C(=O)NHMe	C1
Me	Me	H	H	2	H	H	S	C1		$C(=O)N(Me)_2$	Cl
Me	Me	H	H	2	H	H	S	Cl		C(=O)Me	Cl
Me	Me	H	H	2	H	H	S	Cl		C(=O)Et	C1
Me	Me	H	H	2	H	H	S	Cl		C(=0)Pr-i	
Me	Me	H	H	2	H	H	S	Cl		C(=O)Pr	C1
Me	Me	H	H	2	H	H	S	Cl		C(=O)CF ₃	CI
Me	Me	H	H	2	H	H	S	Cl		C(=NOMe)Me	Cl
Me	Me	H	H	2	H	H	0	H		H	H
Me	Me	H	H	2	H	H	0	Me		H	Cl
H Me	H	H	H	2 2	H	H	S	Cl		C1	C1
Me	H	Ме	H	2	H	H	s s	Cl Cl		Cl Cl	C1 C1
Me	Me	H	H	2	Me	H	S	Cl		Ci	Cl
Me	Me	H	H	2	Et	H	s	Cl		Cl	Ci
Me	Me	H	H	2	Pri		ŝ	Cl		Ci	Ci
Me	Me	H	H	2	Me		l .	Cl		Cl	CI
Me	Et	H	H	2	H	H	S	Cl		Cl	Cl
Et	Et	H	H	2	H	H	s	C1		Cl	CI
Me	Pr-i	H	H	2	H	H	S	Cl		Cl	Cl
Me	Pr	H	H	2	H	H	S	Cl		Cl	Cl
Me	Pr-c	H	H	2	H	H	S	Cl		Cl	CI
Me	CH ₂ Pr-	H	H	2	H	H	S	Cl	i	Cl	Cl
-(0	CH ₂) ₂ -	H	$ \mathbf{H} $	2	H	н	S	Cl		Cl	Cl
-((CH ₂) ₃ -	H	$ \mathbf{H} $	2	H	н	s	Cl		Cl	Cl
-((CH ₂) ₄ -	н	н	2	н	Н	s	Cl		Cl	Cl
-((CH ₂) ₅ -	H	H	2	H	H	S.	Cl		Cl	Cl
H	-(CH ₂) ₃ -	H	2	н	H	s	Cl	•	Cl	Cı
H	-(CH ₂)4-	H	2	H	\mathbf{H}	S	Cl	,	Cl	Cl
H	-(CH ₂) ₅ -	н	2	H	н	S	Cl		Cl	Cl
Н	-(CH ₂) ₆ -	H	2	н	H	S	Cl		Cl	C1
Me	Me	H	H	1	н	H	S	н		H	H
Me	Me	H	H	1	H	H	S	H		OMe	H
Me	Me	H	H	1	H	H	S	Cl		H	Cl
Me	Me	H	H	1	H	H		Cl		Cl	Cl
Me	Me	H	H	1	H	H	S	C1		Me	H

	5									
Me	Me	H	H	1	H	H	S	NHMe	Me	H
Me	Me	H	H	1	H	H	S	$N(Me)_2$	Me	H
Me	Me	H	H	1	H	H	S	NHC(=O)Me	Me	Н
Me	Me	H	H	1	H	H	S	NHC(=O)Ph	Me	H
Me	Me	H	H	1	H	H	S	NHSO ₂ Me	Me	H
Me	Me	H	H	1	H	H	s	NHSO ₂ Ph	Me	H
Me	Me	H	H	1	H	H	s	Me	Me	Me
Me	Me	H	H	1	H	H	S	Me	C(=O)OMe	Me
Me	Me	H	$ \mathbf{H} $	1	H	H	S	Me	C(=O)OEt	Me
Me	Me	H	H	1	H	H	S	Me	C(=O)OPh	Me
Me	Me	H	H	1	H	H	S	Me	CN	Me
Me	Me	H	H	1	H	H	S S	Me Me	C(=O)NHMe C(=O)Me	Me Me
Me Me	Me Me	H	H	1 1	H	H	S	Me	C(=O)Me C(=O)Et	Me
Me	Me	H	H	1	H	H	s	Me	C(=0)Pr-i	Me
Me	Me	H	H	1	H.		S	Me	C(=O)Pr	Me
Me	Me	H	H	1	H	H	S	Me	C(=O)CF ₃	Me
Me	Me	H	H	1	H	H	s	Me	C(=NOMe)Me	Me
Me	Me	H	H	1	H	H	S	Ph	C(=O)Me	Me
Me	Me	H	H	1	H		S	Ph	C(=NOMe)Me	Me
Me	Me	H	Н	1	H		S	CF ₃	ОМе	н
Me	Me	H	н	1	H	Н	s	CF_3	OEt	H
Me	Me	H	H	1	H	H	s	CF ₃	OPr-i	H
Me	Me	H	H	1	H	H	S	CF_3	OPr-i	H
Me	Me	H	H	1	H		S	CF ₃	OCHF ₂	H
Me	Me	н	Н	1	н		S	Cl	Me	H
	Me	H	H	1	H	H	S	Cl	Me	Me
		н	H	1	H			Cl	C(=O)OMe	Cl
Me	Me	H	H	1	H	\mathbf{H}	S	Cl	CN	C1
Me	Me	H	H	1	H	H	S	Cl	C(=O)NHMe	Cl
Me	Me	H	H	1	H	H	S	Cl	C(=O)N(Me) ₂	C1
Me	Me	H	H	1	H	H		Cl	C(=O)Me	Cl
Me	Me					H	S		C(=O)Et	
		1				H	S			
			ı		1 1					1
				i	1 1		i .	ł .		i i
Me		1		1						
								I		
					t I					
					, ,					
Me Me Me Me Me Me Me	Me Me Me Me	H H H	ннн н ннн н н н н н н н н н н	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H H H	нин н н н н н н н н н н н н н		CI C	C(=O)OMe CN C(=O)NHMe C(=O)N(Me) ₂	C1 C1 C1 C1

1 30	1 30	1	1	i.	12.5	la e	la	la	las	las
Me	Me	H	H			Me		Cl	Cl	C1
Me Et	Et Et	H	H	1 1	H	H	s s	Cl Cl	C1 C1	C1 C1
Me	Pr-i	H	H	1	H	H	s	Cl	Ci	C1
Me	Pr	H	H	1	H	H		Ci	Cl	Cl
Me	Pr-c	H	H	1	H	H		Cl	Cl	CI
1	CH ₂ Pr-	i i		1	1	}	1)	1
Me	С	H	H	1	H	H	S	Cl	Cl	Cl
-(0	CH ₂) ₂ -	H	H	1	H	H	S	Cl	Cl	Cl
-((CH ₂) ₃ -	H	H	1	H	H	S	Cl	Cl	Cl
-((CH ₂) ₄ -	H	H	1	H	H	S	Cl	Cl	Cl
-((CH ₂) ₅ -	H	H	1	H	H	S	Cl	Cl	C1
H	-(CH ₂)3-	H	1	H	н	S	Cl	Cl	Cl
н	-(CH ₂)4-	H	1	H	H	S	Cl	Cl	Cl
H	-(CH ₂) ₅ -	Н	1	H	H	S	Cl	Cl	Cl
H	-(CH ₂) ₆ -	\mathbf{H}	1	H	H	s	Cı	Cl	Cl
Me	Me	H	Н	0	H	H	s	Н	H	H
Me	Me	н	H	0	H	H	s	H	OMe	H
Me	Me	H	H	0	H		S	Cl	H	C1
Me	Me	H	H	0	H		S	C1	Cl ·	Cl
Me	Me	H	H	0	H	H	S	Cl	Me	H
Me	Me	H	H	0	H	H	S	NHMe	Me	H
Me	Me	\mathbf{H}	H	0	\mathbf{H}	H	S	N(Me) ₂	Me	H
Me	Me	H	H	0	H	H	S		Me	H
Me	Me	H	H	0	H	H	S	NHC(=O)Ph	Me	H
Me	Me	H	\mathbf{H}	0	H	H	S	NHSO ₂ Me	Me	H
Me	Me	H	H	0	H		S	NHSO ₂ Ph	Me	H
Me	Me	H	H	0	H	H	S	Me	Me	Me
Me	Me	H	H	0	H		S	Me	C(=O)OMe	Me
Me	Me	H	H	0	H	H	S	Me	C(=O)OEt	Me
Me	Me	H	H	0	H		S	Me	C(=O)OPh	Me
Me	Me	H	H	0	H		S	Me	CN	Me
Me	Me	H	H	0	H	H		Me	C(=O)NHMe	Me .
Me	Me	H	H	0	H	H		Me Me	C(=O)Me C(=O)Et	Me Me
Me	Me	H	н	0	H	H		Me	C(=0)Et C(=0)Pr-i	Me
Me Me	Me Me	Н	H	0	Н	H		Me	C(=O)Pr	Me
Me	Me	H	H	0	H	H		Me	C(=O)CF ₃	Me
Me	Me	H	H	0	H		S	Me	C(=NOMe)Me	Me
Me	Me	H	H	0	H	H		Ph	C(=O)Me	Me
Me	Me		H	0	H	H		Ph	C(=NOMe)Me	Me
Me	Me	H	H	0	н		S	$\mathbf{CF_3}$	OMe	н
Me	Me	н	H	0	н		S	$\mathbf{CF_3}$	OEt	н
Me	Me	H	H	0	н	н		CF ₃	OPr-i	н

1	1	1			,		ı	1	1	1
Me	Me	H	H	0	H	H	S	CF ₃	OPr-i	H
Me	Me	H	H	0	H	H	S	CF_3	$OCHF_2$	H
Me	Me	H	H	0	H	H	S	Cl	Me	H
Me	Me	H	H	0	H	H	S	Cl	Me	Me
Me	Me	H	$ \mathbf{H} $	0	H	H	S	Cl	C(≃O)OMe	Cl
Me	Me	H	$ \mathbf{H} $	0	H		S	Cl	CN	[Cl
Me	Me	H	H	0	H		S	Cl	C(=O)NHMe	C1
Me	Me	H	H	0	H	H	S	Cl	$C(=O)N(Me)_2$	Cl
Me	Me	H	H	0	H	H	S	Cl	C(=O)Me	Cl
Me	Me	H	H	0	H	H	S	Cl	C(=O)Et	Cl
Me	Me	H	H	0	H	H	S	Cl	C(=O)Pr-i	Cl
Me	Me	H	H	0	H	H	S	C1	C(=O)Pr	C1
Me	Me	H	\mathbf{H}	0	H	H	S	C1	C(=O)CF ₃	Cl
Me	Me	H	H	0	H	H	S	Cl	C(=NOMe)Me	Cl
Me	Me	H	$ \mathbf{H} $	0	H	H	0	H	H	H
Me	Me	H	$ \mathbf{H} $	0	H	H	О	Me	H	Cl
H	H	H	\mathbf{H}	0	H	H	S	C1	C1	Cl
Me	H	H	H	0	H	H	S	C1	Cl	Cl
Me	H	Me	$ \mathbf{H} $	0	H	H	S	C1	Cl	Cl
Me	Me	H	H	0	Me		S	C1	Cl	Cl
Me	Me	H	H	0	Et	H	S	C1	Cl	Cl
Me	Me	H	H	0	Pri	H	S	Cl	Cl	Cl
Me	Me	H	H	0	Me			Cl Cl	C1 C1	Cl Cl
Me Et	Et Et	H	H	0	HH	H	S S	CI	Cl	Ci
Me	Pr-i	H	H	0	H		S	Ci	Ci	Cl
Me	Pr	H	H	0	$\left \begin{array}{c} H \\ H \end{array} \right $	H	S	Ci	Ci	Ci
Me	Pr-c	H	H	0	H)	s	Ci	ci	Ci
	CH ₂ Pr-						ļ		1	1
Me	c	H	H	0	H	H	s	C1	C1	C1
-((CH ₂) ₂ -	н	H	0	н	H	s	Cı	C1	C1
	CH ₂) ₃ -	Н	H	0	н		s	CI	CI	Cl
í	CH ₂) ₄ -	H	H	0	H		S	Cl	Cl	Cl
1	-(CH ₂) ₅ -		H		H	i	ŀ	Cl	Cl	Cl
	H -(CH ₂) ₃ -		H	0	H	H		Cl	Cl	Cl
H	-(CH ₂		H	0	H	H		Cl	CI	Ci
H	-(CH ₂		H	0	H	H		Cl	Cl	Cl
H	-(CH ₂		H	0	H	H	1	Cl	Cl	Cl
	-(CFI2	/6"	11	U		7.7	N		101	VI

表3

						R ¹ .	\mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^6	$\begin{array}{c} R^{29} \\ R^{6} \\ S(O) \xrightarrow{R} \\ R^{5} \\ R^{30} \end{array}$	В
\mathbb{R}^1	\mathbb{R}^2	R ³	R4	n	\mathbb{R}^5	R ⁶	R ²⁹	R ²⁸	R30
Me	Me	н	H	2	н	н	Cl	H	Cl
Me	Me	H	Н	2	н	н	OCHF2	н	Cl
Me	Me	н	Н	2	H	Н	OCHF ₂	н	OCHF ₂
Me	Me	н	H	2	н	н	Me	н	Cl
Me	Me	H	H	2	н	н	Ме	н	OCHF2
Ме	Me	H	Н	2	н	H	CHF ₂	н	C1
Me	Me	Н	H	2	Н	н	CHF ₂	н	OCHF ₂
Me	Ме	H	H	2	Н	H	CF ₃	н	F
Me	Me	H	H	2	H	H	CF ₃	н	CI
Me	Me	H	Н	2	H	н	CF ₃	н	ОМе
Ме	Me	H	н	2	Ħ	H	CF ₃	н	OEt
Me	Me	H	H	2	H	H	CF3	Н	OCHF2
Me	Me	H	Н	2	H	H	CF3	н	CN .
Me	Ме	H	н	2	H	H	CF ₃	н	Ме
Me	Me	H	н	2	H	H	H	Me	Cl
Me	Me	H	н	2	н	H	Me	Ме	Ме
Me	Me	H	н	2	н	H	Me	Ме	F
Me	Ме	H	н	2	H	H	F	Ме	Me
Ме	Me	H	н	2	н	H	Me	Me	CI
Me	Me	H	H	2	H	H	Cl	Ме	Me
Ме	Me	H	H	2	H	н	Me	Ме	OMe
Ме	Me	H	н	2	н	H	ОМе	Me	Me
Ме	Me	H	н	2	н	н	Me	Ме	OCHF ₂
Me	Me	Ħ	H	2	H	н	OCHF ₂	Me	Me
Ме	Me	H	H	2	H	H	Me	Ме	CN
Me	Me	H	H	2	H	H	CN	Me	Me
Me	Me	Ħ	H	2	H	H	Et	Me	F
Me	Me	H	H	2	н	H	F	Me	Et
Me	Me	H	H	2	H	H	Et	Me	Cl

Me	Me	н	н	2	н	н	CI	Me	Et
Me	Me	Н	н	2	н	н	Et	Me	ОМе
Me	Me	н	Н	2	н	H	OMe	Me	Et
Me	Me	H	н	2	н	H	Et	Me	OCHF ₂
Me	Me	H	Н	2	н	H	OCHF2	Me	Et
Me	Me	H	H	2	н	H	Et	Me	CN
Me	Me	н	H	2	Н	H	CN	Me	Et
Me	Me	H	H	2	н	Н	Pr-i	Me	F
Me	Me	H	н	2	H	H	F	Me	Pr-i
Me	Me	H	H	2	н	H	Pr-i	Me	Cl
Me	Me	н	Н	2	н	н	Cı	Me	Pr-i
Me	Me	Н	н	2	H	Н	Pr-i	Me	ОМе
Me	Me	н	н	2	Н	H	OMe	Me	Pr-i
Me	Me	H	н	2	н	Н	Pr-i	Me ·	OCHF ₂
Me	Me	H	H	2	Н	н	OCHF2	Mė	Pr-i
Me	Me	H	H	2	н	H	Pr-i	Me	CN
Me	Me	н	H	2	Н	H	CN	Me	Pr-i
Me	Me	н	Н	2	H	H	Bu-t	Me	F
Ме	Me	н	Н	2	H	н	\mathbf{F}	Ме	Bu-t
Me	Me	н	H	2	H	H	Bu-t	Me	CI
Me	Me	н	H	2	H	H	Cl	Me	Bu-t
Ме	Me	H	H	2	H	H	Bu-t	Ме	ОМе
Me	Me	н	H	2	H	H	OMe	Me	Bu-t
Me	Me	Н	H	2	H	H	Bu-t	Me	OCHF ₂
Me	Me	н	Ħ	2	H	H	OCHF2	Me	Bu-t
Me	Me	H	H	2	H	H	Bu-t	Me	CN
Me	Me	H	H	2	H	H	CN	Me	Bu-t
Me	Me	H	H	2	H	н	CH ₂ OMe	Me	F
Me	Me	H	H	2	H	H	F	Me	CH ₂ OMe
Ме	Me	H	H	2	H	н	CH ₂ OMe	Me	C1
Me	Me	H	H	2	H	H	Cl	Me	CH ₂ OMe
Me	Me	H	H	2	H	Н	CH ₂ OMe	Me	ОМе
Me	Me	H	H	2	H	H	OMe	Me	CH ₂ OMe
Ме	Me	H	H	2	H	H	CH ₂ OMe	Me	OCHF ₂
Me	Me	H	H	2	H	- 1	OCHF ₂	Me	CH ₂ OMe
Ме	Me	н	H	2	H	H	CH ₂ OMe	Me	CN
Me	1		H		H		CN	Me	CH₂OMe
Me	Me	H	H	2	H	H	Cl	Me	CI

Me	Me	н	н	2	н	н	CHF2	Me .	Cı
Me	Me	H	H	2	H	H	Cl	Me	CHF ₂
Me	Me	H	н	2	H	н	OCHF ₂	Me	н
Me	Me	H	н	2	H	н	OCHF2	Me	F
Me	Me	H	H	2	H	Н	F	Me	OCHF2
Me	Me	н	н	2	н	н	OCHF2	Me	C1
Me	Me	H	н	2	н	H	Cl	Me	OCHF2
Me	Me	н	н	2	н	н	OCHF ₂	Me	ОМе
Me	Me	н	н	2	н	Н	OMe	Me	OCHF2
Me	Me	н	н	2	н	н	OCHF2	Me	OCHF2
Me	Me	H	н	2	н	н	OCHF2	Me	CN
Me	Me	H	Н	2	H	Н	CN	Me	OCHF2
Me	Me	H	н	2	н	Н	CF3	Me	н
Me	Me	Н	Н	2	н	н	CF ₃	Me	C1
Me	Me	н	н	2	н	Н	Cı	Me	CF ₃
Me	Me	Н	H	2	н	н	CF3	Me	Br
Me	Ме	H	н	2	н	н	Br	Me	CF ₃
Me	Me	H	н	2	н	н	CF3	Me	I
Me	Ме	H	H	2	н	н	1	Me	CF3
Me	Ме	H	н	2	н	Н	CF ₃	Me	F
Me	Me	H	н	2	н	н	F	Me	CF3
Me	Ме	H	н	2	н	н	CF3	Me	ОН
Me	Me	H	H	2	H	H	он	Me	CF ₃
Me	Me	H	н	2	H	H	CF3	Me	OMe
Ме	Ме	H	H	2	H	H	OMe	Me	CF₃
Me	Ме	H	H	2	H	H	CF3	Me	OEt
Me	Me	H	H	2	H	H	OEt	Me	CF ₃
Me	Me	H	H	2	H	H	CF ₃	Me	OPr-i
Me	Me	H	н	2	H	H	CF ₃	Me	OPr
Me	Me	н	H	2	H	н	CF3	Me	OBu-t
Me	Ме	H	H	2	H	H	CF ₃	Me	OBu-s
Me	Ме	H	H	2	H	H	CF ₃	Me	OBu-i
Ме	Ме	H	H	2	H	H	CF ₃	Me	OBu
Ме	Ме	н	н	2	H	H	\mathbb{CF}_3	Me	O(2-Pen)
Me	Me	H	H	2	н	н	CF ₃	Ме	O(3-Pen)
Me	Me	H	H	2	н	H	CF ₃	Ме	OPen-n
Me	Me	H	H	2	H	H	CF ₃	Me	O(2·Hex)
Me	Me	н	H	2	H	H	CF ₃	Me	O(3·Hex)

Me Me Me H H Z H H CF3 Me OPHSTE Me Me H H Z H H CF3 Me OPHSTE Me Me H H Z H H CF3 Me OPHSTE Me Me H H Z H H CF3 Me OCH4PTC Me Me H H Z H H CF3 Me OCH4PTC Me Me H H Z H H CF3 Me OCH4PTC Me Me H H Z H H CF3 Me OCH4PTC Me Me H H Z H H CF3 Me OCH4PTC Me Me H H Z H H CF3 Me OCH4PTC Me Me H H Z H H CF3 Me OCH4CH=CH2 Me Me H H Z H H CF3 Me OCH4CH=CH3 Me Me H H Z H H CF3 Me OCH4CH=CH4 Me Me H H Z H H CF3 Me OCH4CHF2 Me Me H H Z H H CF3 Me OCH4CHF2 Me Me H H Z H H CF3 Me OCH4CHF2 Me Me H H Z H H CF3 Me OCH4CHF2 Me Me H H Z H H CF3 Me OCH4CCF3 Me Me H H Z H H CF3 Me OCH4CCF3 Me Me H H Z H H CF3 Me OCH4CCF3 Me Me H H Z H H CF3 Me OCH4CCOODEL Me Me H H Z H H CF3 Me OCH4CCOODEL Me Me H H Z H H CF3 Me OCH4CCOODEL Me Me H H Z H H CF3 Me OCH4CCOODEL Me Me H H Z H H CF3 Me OCH4CCOODEL Me Me H H Z H H CF3 Me OCH4CCOODEL Me Me H H Z H H CF3 Me OCH4CCOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOODEL Me Me H H Z H H CF3 Me OCH4CPOO										
Me Me H H L CF3 Me OHex-c Me Me H H L H H CF3 Me OCH2PT-C Me Me H H 2 H H CF3 Me OCH2Pen-c Me Me H H 2 H H CF3 Me OCH2Pen-c Me Me H H 2 H H CF3 Me OCH2C=CH Me Me H H 2 H H CF3 Me OCH2cH=CH2 Me Me H H 2 H H CF3 Me OCH2cH=CH2 Me Me H H 2 H H CF3 Me OCH2cH=CH2 Me Me H H H CF3 Me OCH3cH=CH2 Me Me H H CF3 Me	Me	Me	н	Н	2	н	н	CF ₃	Me	OHex-n
Me Me H H L CFs Me OCH2PTC Me Me H H L H CFs Me OCH2Purc Me Me H H L H H CFs Me OCH2Perc Me Me H H 2 H H CFs Me OCH2Perc Me Me H 2 H H CFs Me OCH2CH=CH2 Me Me H 1 2 H H CFs Me OCH2CH=CH2 Me Me H 1 2 H H CFs Me OCH4CH=CH2 Me Me H 1 2 H H CFs Me OCH4CF=CH2 Me Me H 1 2 H H CFs Me OCH4CF=CH2 Me Me H 1 1 H <td>Me</td> <td>Me</td> <td>н</td> <td>н</td> <td>2</td> <td>н</td> <td>Н</td> <td>CF3</td> <td>Me</td> <td>OPen-c</td>	Me	Me	н	н	2	н	Н	CF3	Me	OPen-c
Me Me H 2 H H CF3 Me OCH2Pen·c Me Me H H 2 H H CF3 Me OCH2Pen·c Me Me H H 2 H H CF3 Me OCH2Pen·c Me Me H H 2 H H CF3 Me OCH2C=CH2 Me Me H 1 2 H H CF3 Me OCH2C=CH2 Me Me H 1 2 H H CF3 Me OCH2C=CH2 Me Me H 1 2 H H OCH3 Me OCH3CH2 Me Me H 1 2 H H OCH3 Me OCH3CH5 Me Me H 1 2 H H OCF3 Me OCH3CCH3 Me H 1	Me	Me	н	н	2	н	н	CF ₃	Me	OHex-c
Me Me H H 2 H H CF3 Me OCH2Pen·c Me Me H H 2 H H CF3 Me OCH2CH=CH2 Me Me H H 2 H H CF3 Me OCH2CHC=CH2 Me Me H H 2 H H CF3 Me OCH2CHC=CH2 Me Me H H 2 H H CF3 Me OCH2CHF2 Me H H 2 H H OCH2CH2 Me OCH2CF3 Me H H 2 H H OCH2CF3 Me OCH2CF3 Me Me H H 2 H H OCH2CF3 Me OCH2CN0 Me Me H H D H CF3 Me OCH2CN0 Me Me H H <	Me	Me	H	н	2	H	H	CF3	Me	OCH ₂ Pr-c
Me Me H H 2 H H CF3 Me OCH2CH=CH2 Me Me H H 2 H H CF3 Me OCH2CH=CH2 Me Me H H 2 H H CF3 Me OCH2CECH Me Me H H 2 H H CF3 Me OCH2CF2 Me Me H H 2 H H CF3 Me OCH2CF3 Me H H 2 H H CF3 Me OCH2CF3 Me H H 2 H H CF3 Me OCH2CF3 Me H H 2 H H CF3 Me OCH2CF3 Me H H 2 H H CF3 Me OCH2CCODEt Me Me H H 2 H	Me	Me	H	H	2	н	н	CF ₃	Me	OCH ₂ Bu-c
Me Me H H 2 H H CF3 Me OCH2C=CH Me Me H H 2 H H CF3 Me OCH2C=CH Me Me H H H H H H CF3 Me OCH2C=CH Me Me H H 2 H H CF3 Me OCH2CF2 Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H CF3 Me OCH2CG=O)OEt Me Me H H 2 H H CF3 Me OCH2CG=O)OEt Me	Me	Me	н	н	2	н	н	CF ₃	Me	OCH ₂ Pen-c
Me Me H H 2 H H CF3 Me OCH2C≡CH Me Me H H 2 H H CF3 Me OCH2C≡CH2 Me Me H H 2 H H CF3 Me OCH2CH2 Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H OCH2CF3 Me OCH2CF3 Me Me H H 2 H H OCH2CF3 Me OCH2CN Me Me H H 2 H H CF3 Me OCH2CF0ODEt Me Me H H 2 H H CF3 Me OCH2C(=O)OEt Me Me H H 2 H H CF3 Me OCH2cC(=O)OH2 Me <	Me	Me	H	н	2	Н	н	CF3	Me	OCH ₂ Hex-c
Me Me H H 2 H H CF3 Me OCHF2 Me Me H H 2 H H CF3 Me OCH2CHF2 Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H CF3 Me OCH2CF0 Me Me H H 2 H H CF3 Me OCH2CF0 OCH2CF0 OCH2CF0 OCH2CF0 OCH2CF0 Me OCH2CF0 OCH2CF0 OCH3CF0 Me OCH3CF0	Me	Me	H	н	2	н	н	CF3	Me	OCH ₂ CH=CH ₂
Me Me H H 2 H H CCF3 Me CCF3 Me Me H H 2 H H CF3 Me CCF3 Me Me H H 2 H H CCF3 Me CCF3 Me Me H H 2 H CCH2CF3 Me CCF3 Me Me H H 2 H CCH2CF3 Me CCF3 Me Me H H 2 H CCF3 Me OCH2CF0 Me Me H H 2 H CF3 Me OCH2CF0OEt Me Me H H 2 H CF3 Me OCH4CC=O)OEt Me Me H H 2 H CF3 Me OCH4CC=O)OEt Me Me H H CF3 Me OCH4CC=O)OH2	Me	Me	H	н	2	н	н	CF ₃	Me	OCH ₂ C≡CH
Me Me H H 2 H H CF3 Me OCH2CHF2 Me Me H H 2 H H OCH2CHF2 Me OCH2CF3 Me Me H H 2 H CF3 Me OCH2CF3 Me Me H H 2 H CF3 Me OCH2CN Me Me H H 2 H GCF3 Me OCH2C(=O)OEt Me Me H H 2 H GCF3 Me OCH4C(=O)OEt Me Me H H 2 H GCF3 Me OCH4C(=O)OEt Me Me H H 2 H GCF3 Me OCH4C(=O)OEt Me Me H H 2 H GCF3 Me OCH4C(=O)OH4 Me Me H H CF3 Me OCH4c(=O)OH4	Me	Me	H	н	2	н	н	CF ₃	Me	OCHF2
Me Me H H 2 H H OCH2CHF2 Me CF3 Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H OCH2CF3 Me OCH2CN Me Me H H 2 H H CF3 Me OCH2C(=0)OEt Me Me H H 2 H H CF3 Me OCH4C(=0)OEt Me Me H H 2 H H CF3 Me OCH4C(=0)OH4 Me Me H H 2 H H CF3 Me OCH2C(=O)NH4 Me Me H H 2 H H CF3 Me OCH2C(=O)NIMe Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)P Me <td>Me</td> <td>Me</td> <td>H'</td> <td>н</td> <td>2</td> <td>н</td> <td>Н</td> <td>OCHF2</td> <td>Me</td> <td>CF₃</td>	Me	Me	H'	н	2	н	Н	OCHF2	Me	CF ₃
Me Me H H 2 H H CF3 Me OCH2CF3 Me Me H H 2 H H OCH2CF3 Me OCH2CR Me Me H H 2 H H CF3 Me OCH2C(=O)OEt Me Me H H 2 H H CF3 Me OCH2C(=O)OEt Me Me H H 2 H H CF3 Me OCH2C(=O)NH2 Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2	Me	Ме	H	н	2	н	н	CF ₃	Me	OCH2CHF2
Me Me H H 2 H H OCH2CF3 Me OCH2CN Me Me H H H H CF3 Me OCH2C(=O)OEt Me Me H H H H CF3 Me OCH2C(=O)OEt Me Me H H 2 H H CF3 Me OCH2C(=O)OH2 Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H H CF3 Me OC2-CI)Ph Me Me	Me	Me	H	н	2	H	н	OCH ₂ CHF ₂	Me	CF ₃
Me Me H H 2 H H CF3 Me OCH2CN Me Me H H 2 H H CF3 Me OCH2C(=O)OEt Me Me H H 2 H H CF3 Me OCH2C(=O)NH2 Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me Me OCH2C(=O)NIMe OCH2C(=O)NIMe OCH2C(=O)NIMe OCH2C(=O)NIMe Me Me OCH2C(=O)NIMe OCH2C(=O)NIMe OCH2C(=O)NIMe Me H H H CF3 Me OCH2C(=O)NIMe Me H H H CF3 Me OCH2C(=O)NIMe Me H H H CF3 Me OCPH2C(=O)NIMe Me H H H CF3 Me OC2-CIPh Me H H H CF3 Me OC2-F)P	Ме	Me	H	н	2	н	н	CF ₃	Me	OCH ₂ CF ₃
Me Me H H 2 H H CF3 Me OCH2C(=O)OEt Me Me H H 2 H H CF3 Me OCH2C(=O)NH2 Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me H H 2 H H CF3 Me OCH2C(=O)NMe Me H H 2 H CF3 Me OCPh2Ph Me Me H H H CF3 Me O(2-F)Ph Me Me H H H CF3 Me O(2-OMe)Ph </td <td>Me</td> <td>Me</td> <td>H</td> <td>н</td> <td>2</td> <td>H</td> <td>H</td> <td>OCH₂CF₃</td> <td>Me</td> <td>CF₃</td>	Me	Me	H	н	2	H	H	OCH ₂ CF ₃	Me	CF ₃
Me Me H H 2 H H CF3 Me OCH(Me)C(=O)OEt Me Me H H 2 H H CF3 Me OCH2C(=O)NH2 Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H CF3 Me OC2-CD)Ph Me Me H H CF3 Me Me OC2-OMe)Ph Me Me H H </td <td>Me</td> <td>Me</td> <td>H</td> <td>н</td> <td>2</td> <td>н</td> <td>н</td> <td>CF₃</td> <td>Me</td> <td>OCH2CN</td>	Me	Me	H	н	2	н	н	CF ₃	Me	OCH2CN
Me H H 2 H H CF3 Me OCH2C(=O)NH2 Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H H CF3 Me OCH2Ph Me Me H H 2 H H CF3 Me OPh Me Me H H 2 H H CF3 Me O(2-CI)Ph Me Me H H 2 H H CF3 Me O(2-TP)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me <td< td=""><td>Me</td><td>Me</td><td>H</td><td>н</td><td>2</td><td>н</td><td>Н</td><td>CF₃</td><td>Me</td><td>OCH2C(=O)OEt</td></td<>	Me	Me	H	н	2	н	Н	CF ₃	Me	OCH2C(=O)OEt
Me Me H H 2 H H CF3 Me OCH2C(=O)NHMe Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H H CF3 Me OCH2Ph Me Me H H 2 H H CF3 Me OC2-CI)Ph Me Me H H 2 H H CF3 Me OC2-CI)Ph Me Me H H 2 H H CF3 Me OC2-Me)Ph Me Me H H 2 H H CF3 Me OC2-Me)Ph Me Me H H 2 H H CF3 Me OC2-OMe)Ph Me Me H H 2 H H CF3 Me OC2-CNO2Ph Me	Me	Ме	H	н	2	H	н	CF ₃	Me	OCH(Me)C(=O)OEt
Me Me H H 2 H H CF3 Me OCH2C(=O)N(Me)2 Me Me H H 2 H H CF3 Me OCH2Ph Me Me H H 2 H H CF3 Me O(2-CI)Ph Me Me H H 2 H H CF3 Me O(2-CI)Ph Me Me H H 2 H H CF3 Me O(2-T)Ph Me Me H H H CF3 Me O(2-Me)Ph Me Me H H H CF3 Me O(2-OMe)Ph Me Me H H H CF3 Me O(2-CNO2)Ph Me Me H H H CF3 Me O(2-CO)OMe)Ph Me Me H H H CF3 Me O(3-CI)Ph <	Me	Me	H	н	2	H	H	CF ₃	Me	OCH2C(=O)NH2
Me Me H H 2 H H CF3 Me OCH2Ph Me Me H H 2 H H CF3 Me OCH2Ph Me Me H H 2 H H CF3 Me OC2-Cl)Ph Me Me H H 2 H H CF3 Me OC2-F)Ph Me Me H H 2 H H CF3 Me OC2-Me)Ph Me Me H H 2 H H CF3 Me OC2-OMe)Ph Me Me H H 2 H H CF3 Me OC2-CNO2)Ph Me Me H H 2 H H CF3 Me OC2-CNO2)Ph Me Me H H 2 H H CF3 Me OC3-CNO2)Ph Me Me <td>Ме</td> <td>Ме</td> <td>H</td> <td>н</td> <td>2</td> <td>н</td> <td>н</td> <td>CF₃</td> <td>Me ·</td> <td>OCH2C(=O)NHMe</td>	Ме	Ме	H	н	2	н	н	CF ₃	Me ·	OCH2C(=O)NHMe
Me Me H H 2 H H CF3 Me OPh Me Me H H 2 H H CF3 Me O(2-CI)Ph Me Me H H 2 H H CF3 Me O(2-F)Ph Me Me H H 2 H H CF3 Me O(2-Me)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-CNo2)Ph Me Me H H 2 H H CF3 Me O(2-CNO2)Ph Me Me H H 2 H H CF3 Me O(3-CD)Ph Me Me H H H H H CF3 Me O(3-Me)Ph Me Me H H H H H CF3 Me O(3-OMe)Ph	Ме	Me	H	H	2	н	H	CF ₃	Ме	OCH ₂ C(=O)N(Me) ₂
Me Me H H 2 H H CF3 Me O(2-Cl)Ph Me Me H H 2 H H CF3 Me O(2-Br)Ph Me Me H H 2 H H CF3 Me O(2-Me)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-CN)Ph Me Me H H 2 H H CF3 Me O(3-Cl)Ph Me Me H H H H CF3 Me O(3-Br)Ph Me Me H H H H H CF3 Me O(3-Me)Ph Me Me H H H H H CF3 Me O(3-OMe)Ph Me	Me	Me	H	н	2	н	H	CF ₃	Me	OCH2Ph
Me Me H H 2 H H CF3 Me O(2-Br)Ph Me Me H H 2 H H CF3 Me O(2-F)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-C(=O)OMe)Ph Me Me H H H H CF3 Me O(3-CI)Ph Me Me H H H H CF3 Me O(3-F)Ph Me Me H H H H CF3 Me O(3-OMe)Ph Me Me H H H H CF3 Me O(3-OMe)Ph Me Me H H	Ме	Me	H	н	2	H	H	CF ₃	Me	OPh
Me Me H H 2 H H CF3 Me O(2-F)Ph Me Me H H 2 H H CF3 Me O(2-Me)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-CN)Ph Me Me H H 2 H H CF3 Me O(2-CC)O)OMe)Ph Me Me H H H H CF3 Me O(3-CI)Ph Me Me H H H H CF3 Me O(3-Br)Ph Me Me H H H H CF3 Me O(3-Me)Ph Me Me H H H H H CF3 Me O(3-OMe)Ph Me Me H H H H H CF3 Me O(3-OMe)Ph Me Me H<	Ме	Me	H	H	2	H	H	CF ₃	Me	O(2-C1)Ph
Me Me H H 2 H H CF3 Me O(2-Me)Ph Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-CN)Ph Me Me H H 2 H H CF3 Me O(2-CC)OMe)Ph Me Me H H 2 H H CF3 Me O(3-CI)Ph Me Me H H 2 H H CF3 Me O(3-Br)Ph Me Me H H 2 H H CF3 Me O(3-Me)Ph Me Me H H 2 H H CF3 Me O(3-OMe)Ph Me Me H H 2 H H CF3 Me O(3-OMe)Ph Me Me H H H H H H H H H H	Me	Me	H	н	2	H	H	CF ₃	Ме	O(2·Br)Ph
Me Me H H 2 H H CF3 Me O(2-OMe)Ph Me Me H H 2 H H CF3 Me O(2-CN)Ph Me Me H H 2 H H CF3 Me O(2-CC)OMe)Ph Me Me H 1 2 H H CF3 Me O(3-CI)Ph Me Me H H 2 H H CF3 Me O(3-Br)Ph Me Me H H 2 H H CF3 Me O(3-F)Ph Me Me H H 2 H H CF3 Me O(3-Me)Ph Me Me H H H H CF3 Me O(3-OMe)Ph Me Me H H H H CF3 Me O(3-OMe)Ph Me Me H H H H CF3 Me O(3-OMe)Ph	Ме	Me	H	H	2	H	H	CF ₃	Me	O(2-F)Ph
Me Me H H 2 H H CF3 Me O(2-NO2)Ph Me Me H H 2 H H CF3 Me O(2-CN)Ph Me Me H H 2 H H CF3 Me O(3-Cl)Ph Me Me H H 2 H H CF3 Me O(3-Br)Ph Me Me H H 2 H H CF3 Me O(3-F)Ph Me Me H H 2 H H CF3 Me O(3-Me)Ph Me Me H H H H CF3 Me O(3-OMe)Ph Me Me H H H H CF3 Me O(3-NO2)Ph	Me	Me	H	н	2	H	H	CF ₃	Me	O(2-Me)Ph
Me Me H H 2 H H CF3 Me O(2-CN)Ph Me Me H H 2 H H CF3 Me O(2-C(=O)OMe)Ph Me Me H H 2 H H CF3 Me O(3-Cl)Ph Me Me H H 2 H H CF3 Me O(3-Br)Ph Me Me H H 2 H H CF3 Me O(3-Me)Ph Me Me H H H H CF3 Me O(3-OMe)Ph Me Me H H H H CF3 Me O(3-NO2)Ph	Ме	Me	H	н	2	H	H	CF ₃	Me	O(2-OMe)Ph
Me Me H H 2 H H CF3 Me O(2-C(=O)OMe)Ph Me Me H H 2 H H CF3 Me O(3-CI)Ph Me Me H H 2 H H CF3 Me O(3-Br)Ph Me Me H H 2 H H CF3 Me O(3-F)Ph Me Me H H 2 H H CF3 Me O(3-OMe)Ph Me Me H H H H CF3 Me O(3-NO2)Ph	Ме	Me	H	H	2	H	H	CF ₃	Ме	O(2-NO ₂)Ph
Me Me H H 2 H H CF3 Me O(3-Cl)Ph Me Me H H 2 H H CF3 Me O(3-Br)Ph Me Me H H 2 H H CF3 Me O(3-F)Ph Me Me H H 2 H H CF3 Me O(3-Me)Ph Me Me H H 2 H H CF3 Me O(3-OMe)Ph Me Me H H CF3 Me O(3-NO2)Ph	Ме	Me	H	H	2	H	H	CF ₃	Me	O(2-CN)Ph
Me Me H H 2 H H CF3 Me O(3-Br)Ph Me Me H H 2 H H CF3 Me O(3-F)Ph Me Me H H 2 H H CF3 Me O(3-Me)Ph Me Me H H 2 H H CF3 Me O(3-OMe)Ph Me Me H H CF3 Me O(3-NO2)Ph	Ме	Me	H	H	2	H	H	CF ₃	Me	O(2-C(=O)OMe)Ph
Me Me H H 2 H H CF3 Me O(3-F)Ph Me Me H H 2 H H CF3 Me O(3-Me)Ph Me Me H H 2 H H CF3 Me O(3-OMe)Ph Me Me H H CF3 Me O(3-NO2)Ph	Me	Me	H	Н	2	H	H	CF ₃	Me	O(3-Cl)Ph
Me Me H H 2 H H CF3 Me O(3-Me)Ph Me Me H H 2 H H CF3 Me O(3-OMe)Ph Me Me H H 2 H H CF3 Me O(3-NO ₂)Ph	Ме	Me	H	н	2	H	H	CF ₃	Ме	O(3-Br)Ph
Me Me H H 2 H H CF3 Me O(3-OMe)Ph Me Me H 2 H H CF3 Me O(3-NO ₂)Ph	Ме	Me	н	H	2	н	н	CF ₃	Me	O(3-F)Ph
Me Me H H 2 H H CF3 Me O(3-NO ₂)Ph	Ме	Me	H	н	2	H	H	CF ₃	Me	O(3·Me)Ph
	Ме	Me	H	H	2	H	H	CF ₃	Me	O(3-OMe)Ph
Me Me H H 2 H H CF ₃ Me O(3-CN)Ph	Me	Me	н	н	2	H	H	CF ₃		
	Me	Me	H	H	2	H	H	CF ₃	Me	O(3-CN)Ph

Me	I e	H	Н	2	H	H	CF ₃	Me	O(3-C(=O)OMe)Ph
Me M	I e	H	H	2	H	H	CF ₃	Me	O(4-Cl)Ph
Me M	1 e	H	H	2	H	H	CF ₃	Me	O(4-Br)Ph
Me M	I e	H	H	2	H	H	CF ₃	Me	O(4-F)Ph
Me M	I e	Н	н	2	H	H	CF3	Me	O(4-Me)Ph
Me M	ſе	Н	н	2	H	Н	CF3	Me	O(4-OMe)Ph
Me M	ſе	H	H	2	H	H	CF3	Me	O(4-NO ₂)Ph
Me M	ſе	н	H	2	н	H	CF ₃	Me	O(4-CN)Ph
Me M	I e	н	H	2	H	H	CF ₃	Me	O(4-C(=O)OMe)Ph
MeM	Ге	н	н	2	H	H	CF3	Me	OC(=O)Me
Me M	I e	Н	н	2	н	H	CF ₃	Me	OC(=O)Et
Me M	[e	Н	н	2	н	H	CF3	Ме	OC(=O)CH ₂ Ph
Me M	[e	н	н	2	н	н	CF ₃	Me	OC(=O)CF ₃
Me M	[e	H	н	2	н	н	CF ₈	Me	OC(=O)Ph
Me M	[e	H	н	2	H	н	CF ₃	Me	OSO ₂ Me
Me M	[e	H	H	2	H	н	CF3	Ме	OSO ₂ Et
Me M	[e	H	н	2	H	H	CF3	Ме	OSO ₂ CH ₂ Ph
Me M	[e	H	H	2	н	н	CF3	Me	OSO ₂ CF ₃
Me M	[e	H	н	2	H	н	CF3	Me	OSO ₂ Ph
Me M	[e	H	н	2	H	н	CF ₃	Me	SMe
Me M	[e	H	H	2	H	н	CF3	Me	SOMe
Me M	[e	H	н	2	н	н	CF3	Me	SO₂Me
Me M	[e	H	н	2	H	н	CF3	Me	SEt
Me M	[e	H	H	2	H	H	CF3	Me	SOEt .
Me M	ie [H	н	2	H	н	CF3	Me	SO₂Et
Me M	e i	H	н	2	H	н	CF3	Me	SPr
Me M	ie i	H	н	2	н	H	CF3	Me	SOPr
Me M	e l	H	н	2	H	н	CF3	Me	SO ₂ Pr
Me M	e l	H	H	2	H	H	CF3	Me	SPr-i
Me M	ie (H	н	2	H	H	CF ₃	Me	SOPri
MeM	e l	H	н	2	н	Н	CF3	Me	SO ₂ Pr-i
Me M	e	H	н	2	H	Н	CF3	Me	SBu-t
Me M	e	н	H	2	H	H	CF3	Me	SOBu-t
Me M	e	H	H	2	н	н	CF3	Me	SO ₂ Bu-t
Me M	e	H	н	2	H	H	CF3	Me	SCHF ₂
Me M	e	H	H	2	н	н	CF3	Ме	SOCHF ₂
Me M	e	H	H	2	H	H	CF ₃	Ме	SO ₂ CHF ₂
Me M	e	H	н	2	н	н	CF3	Ме	SCF3

							•		
Me	Me	н	H	2	н	н	CF ₃	Me	SOCF ₃
Me	Me	H	H	2	H	H	CF ₃	Me	SO ₂ CF ₃
Me	Me	Н	H	2	H	H	CF ₃	Me	SPh
Me	Me	H	H	2	H	Н	CF ₃	Me	SOh
Me	Me	н	H	2	н	н	CF ₃	Ме	SO ₂ Ph
Me	Me	Н	H	2	H	H	CF ₃	Ме	SCH ₂ Ph
Me	Me	н	H	2	H	H	CF ₃	Me	SOCH ₂ Ph
Me	Me	н	н	2	н	H	CF3	Me	SO ₂ CH ₂ Ph
Me	Me	н	н	2	н	н	CF ₃	Me	SCH ₂ C(=O)OEt
Me	Me	Н	н	2	н	н	CF ₃	Me	SOCH ₂ C(=O)OEt
Me	Me	H	н	2	н	H	CF ₃	Me	SO ₂ CH ₂ C(=O)OEt
Me	Me	Н	н	2	H	H	CF ₃	Me	SCH(Me)C(=O)OEt
Me	Me	H	н	2	н	н	CF ₃	Me	SOCH(Me)C(=O)OEt
Me	Me	H	н	2	н	Ĥ	CF3	Me	SO ₂ CH(Me)C(=O)OEt
Me	Me	H	н	2	н	H	CF ₃	Me	SCH ₂ C(=O)NH ₂
Me	Me	H	H	2	н	н	CF ₃	Me	SOCH ₂ C(=O)NH ₂
Me	Me	H	н	2	H	н	CF3	Me	SO ₂ CH ₂ C(=O)NH ₂
Me	Me	H	н	2	н	н	CF3	Me	SCH ₂ C(=O)NHMe
Me	Me	н	н	2	H	н	CF3	Ме	SOCH ₂ C(=O)NHMe
Me	Me	H	н	2	H	н	CF3	Ме	SO ₂ CH ₂ C(=0)NHMe
Me	Me	н	н	2	H	H	CF ₃	Me	SCH ₂ C(=O)N(Me) ₂
Me	Me	H	н	2	н	н	CF ₃	Me	SOCH ₂ C(=O)N(Me) ₂
Me	Me	H	H	2	H	н	CF3	Me	SO ₂ CH ₂ C(=0)N(Me) ₂
Me	Me	H	н	2	H	H	CF ₃	Ме	NH ₂
Me	Ме	H	н	2	H	H	CF ₃	Ме	NHMe
Me	Me	H	н	2	H	H	CF ₃	Me	N(Me) ₂
Me	Me	H	н	2	H	H	CF ₃	Ме	NHC(=O)Me
Me	Me	H	н	2	H	H	CF ₃	Me	N(Me)C(=O)Me
Me	Me	н	н	2	H	н	CF3	Ме	NHSO2Me
Me	Ме	H	н	2	H	H	CF ₃	Me	N(Me)SO₂Me
Me	Ме	H	н	2	H	H	CF ₃	Me	NHSO ₂ CHF ₂
Me	Me	н	н	2	н	н	CF3	Me	N(Me)SO ₂ CHF ₂
Me	Мe	н	H	2	н	H	CF ₃	Me	NHSO2CF3
Me	Me	H	H	2	н	H	CF ₃	Me	N(Me)SO ₂ CF ₃
Ме	Me	H	H	2	н	н	CF3	Me	NHPh
Me	Me	н	н	2	H	H	CF ₃	Me	N(Me)Ph
Me	Me	н	H	2	H	H	CF3	Me	CN
Me	Me	н	H	2	H	H	CN	Me	CF ₃

Me Me Me H H 2										
Me Me H H 2 H H CF3 Me C(=O)OCH3Fh Me Me H H 2 H H CF3 Me C(=O)NFH Me Me H H 2 H H CF3 Me C(=O)NFH Me Me H H 2 H H CF3 Me C(=O)NFH Me Me H H 2 H H CF3 Me C(=O)NFM Me Me H H 2 H H CF3 Me C(=O)Me Me Me H H 2 H H CF3 Me C(=O)CF3 Me Me H H 2 H H CF3 Me C(=O)CF3 Me Me H H 2 H H CF3 Me C(=O)CF1Ph Me Me	Me	Me	н	н	2	н	н	CF ₃	Me	C(=O)OMe
Me Me H H 2 H H C(=0)OPh Me Me H H 2 H H C(=0)NHz Me Me H H 2 H H CF3 Me C(=0)NHme Me Me H H 2 H H CF3 Me C(=0)NHme Me Me H H 2 H H CF3 Me C(=0)NHme Me Me H H 2 H H CF3 Me C(=0)CFa Me Me H H 2 H H CF3 Me C(=0)CFa Me Me H H 2 H H CF3 Me C(=0)CFa Me Me H H 2 H H CF3 Me C(=0)CFa Me Me H H 2 H <	Me	Me	н	Н	2	н	н	CF ₃	Me	C(=O)OPr-i
Me Me H H 2 H H CF3 Me C(=O)NH2 Me Me H H 2 H H CF3 Me C(=O)NHMe Me Me H H 2 H H CF3 Me C(=O)NHMe Me Me H H 2 H H CF3 Me C(=O)CF3 Me Me H 2 H H CF3 Me C(=O)CF1a Me Me H 2 H H CF3 Me C(=O)CF1a Me Me H 1 2 H H CF3 Me C(=O)CF1a Me Me H 1 2 H H CF3 Me C(=O)CF1a Me Me H 1 2 H H CF3 Me CF3 MeMe H 2 H	Me	Me	н	H	2	H	н	CF ₃	Me	C(=O)OCH ₂ Ph
Me Me H H Z H H CG-O)NHMe Me Me H H Z H H CG-O) CG-O)N(Me) CG-O) Me Me H H Z H H CG-O) CG-O)CF3 Me Me H H Z H H CF3 Me CG-O)CF3 Me Me H H Z H H CF3 Me CG-O)Ph Me Me H H Z H H CF3 Me CG-O)Ph Me Me H H Z H H CF3 Me CF3	Me	Me	H	н	2	н	Н	CF ₃	Me	C(=O)OPh
Me Me H H 2 H H CF3 Me C(=O)N(Me)2 Me Me H H 2 H H CF3 Me C(=O)Me Me Me H H 2 H H CF3 Me C(=O)CF3 Me Me H H 2 H H CF3 Me C(=O)Ph Me Me H H 2 H H CF3 Me Me Me Me H H 2 H H CF3 Me Me Me CF3 Me CF3 Me Dr1 Me Dr1 Dr1 Dr1 Dr2	Me	Me	H	н	2	H	н	CF3	Me	C(=0)NH2
Me Me H H 2 H H CF3 Me C(=O)Me Me Me H H 2 H H CF3 Me C(=O)CF3 Me Me H H 2 H H CF3 Me C(=O)Ph Me Me H H 2 H H CF3 Me Me Me Me H H 2 H H CF3 Me Me Me Me H H 2 H H CF3 Me Et Me Me H H 2 H H CF3 Me Pri Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH3OMe CH3OMe CH3OMe CH3OMe CH3OMe <td>Me</td> <td>Me</td> <td>H</td> <td>н</td> <td>2</td> <td>H</td> <td>н</td> <td>CF₃</td> <td>Me</td> <td>C(=O)NHMe</td>	Me	Me	H	н	2	H	н	CF ₃	Me	C(=O)NHMe
Me Me H H 2 H H CF3 Me C(=O)CF3 Me Me H H 2 H H CF3 Me C(=O)CH2Ph Me Me H H 2 H H CF3 Me Me Me Me H H 2 H H CF3 Me Me Me Me H H 2 H H Me Me CF3 Me Me H H 2 H H CF3 Me Pr-i Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H	Me	Me	H	н	2	H	н	CF3	Me	C(=O)N(Me)2
Me Me H H 2 H H CF3 Me C(=O)CH2Ph Me Me H H 2 H H CF3 Me Me C(=O)Ph Me Me H H 2 H H CF3 Me Me Me Me H H 2 H H CF3 Me CF3 Me Me H H 2 H H CF3 Me Pr-i Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me	Me	Me	H	н	2	Н	н	CF3	Me	C(=O)Me
Me Me H H 2 H H CFs Me C(=O)Ph Me Me H H 2 H H CFs Me Me Me Me H H 2 H H Me Me CFs Me Me H H 2 H H CFs Me Pri Me Me H H 2 H H CFs Me Pri Me Me H H 2 H H CFs Me CH2OMe Me Me H H 2 H H CFs Me CH2OMe Me Me H H 2 H H CFs Me CHF2 Me Me H H 2 H H CFs Me CHF2 Me Me H H	Me	Me	H	н	2	Н	н	CF ₃	Me	C(=O)CF ₃
Me Me H H 2 H H CF3 Me Me CF3 Mo Me H H 2 H H Me Me Et Mo Me H H 2 H H CF3 Me Pri Me Me H H 2 H H CF3 Me Pri Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CH CHF2 Me Me	Me	Me	H	н	2	H	н	CF3	Me	C(=O)CH ₂ Ph
Me Me H H 2 H H Me Me CF3 Me Me H H 2 H H CF3 Me Pri Me Me H H 2 H H CF3 Me Pri Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H CF3 Me CHF2 Me Me H H CF3 Me CHF2 Me H H 2 H H CN Me CI	Me	Me	H	H	2	н	н	CF3	Me	C(=O)Ph
Me Me H H 2 H H CF3 Me Pri Me Me H H 2 H H CF3 Me Pri Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H CF3 Me CHF2 Me Me H H CF3 Me CI Me H H 2 H H CN Me CI	Me	Me	H	н	2	Н	Н	CF ₃	Me	Ме
Me Me H H 2 H H CF3 Me Pri Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe CH2 Me Me H H 2 H H CCN Me CT Me CT Me CN Me	Me	Me	H	H	2	н	н	Ме	Me	CF ₃
Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF3 Me Me H H 2 H H CF3 Me CI Me Me H H 2 H H CN Me Me CN Me H H	Me	Me	H	H	2	н	н	CF ₃	Me	Et
Me Me H H 2 H H CF3 Me CH2OMe Me Me H H 2 H H CF3 Me CF3 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CH Me Me H H 2 H H CF3 Me CI Me Me H H 2 H H CN Me CN Me CN Me CN Me CN Me Me CN Me CN Me Me CI Me Me	Me	Me	H	H	2	Н	Н	CF ₃	Me	Pr-i
Me Me H H 2 H H CF3 Me CF3 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CR Ph Me Me H H 2 H H CR CR Me Me H H 2 H H CN Me CR Me Me H H 2 H H CN Me CN Me Me H H CN Me Me CN Me CN Me Me H H H COOMe Me F Me COOMe Me CI Me COOMe Me CI Me	Me	Ме	Н	н	2	н	H	CF3	Me	Pr
Me Me H H 2 H H CF3 Me CHF2 Me Me H H 2 H H CF3 Me Ph Me Me H H 2 H H CF2CF3 Me CI Me Me H H 2 H H CN Me Me Me H H 2 H H CN Me CI Me Me H H 2 H H CN Me CN Me CN Me CN Me CN Me Me CN Me CN Me CN Me CN Me Me Me CN Me Me CN Me Me CN Me Me COOMe Me CI Me Me CI Me Me CI Me Me Me	Me	Me	H	н	2	Н	н	CF ₃	Me	CH2OMe
Me Me H H 2 H H CF3 Me Ph Me Me H H 2 H H CF2CF3 Me CI Me Me H H 2 H H CN Me F Me Me H H 2 H H CN Me CI Me Me H H 2 H H CN Me CN Me CN Me Me COOMe Me CI Me Me CI Me Me CI Me Me Me CI Me <td>Me</td> <td>Me</td> <td>H</td> <td>H</td> <td>2</td> <td>H</td> <td>н</td> <td>CF₃</td> <td>Me</td> <td>CF₃</td>	Me	Me	H	H	2	H	н	CF ₃	Me	CF ₃
Me Me H H 2 H H CF2CF3 Me CI Me Me H H 2 H H CN Me F Me Me H H 2 H H CN Me CI Me Me H H 2 H H CN Me CN Me Me H H 2 H H COOMe Me CN Me Me H H 2 H H COOMe Me F Me Me H H 2 H H COOMe Me CI Me Me H H 2 H H CI Me COOMe Me Me H H 2 H H CI Me SO2Me Me Me H H 2<	Me	Me	H	н	2	н	H	CF ₃	Me	CHF ₂
Me Me H H 2 H H CN Me F Me Me H H 2 H H F Me CN Me Me H H 2 H H CN Me CN Me Me H H 2 H H CON Me CN Me Me H H 2 H H CON Me CN Me Me H H 2 H H COOMe Me CN Me COOMe Me COOMe Me CI Me Me COOMe Me CI Me Me COOMe Me CI Me Me Me CI Me Me Me CI Me Me<	Me	Ме	H	H	2	н	H	CF ₃	Me	Ph
Me Me H H 2 H H F Me CN Me Me H H 2 H H CN Me CN Me Me H H 2 H H CN Me CN Me Me Me H H 2 H H COOMe F Me COOMe F Me Me COOMe Me COOMe Me CI Me Me Me COOMe Me CI Me Me Me CI Me Me CI Me Me Me CI Me	Me	Me	H	н	2	H	H	CF ₂ CF ₃	Me	Cl
Me Me H H 2 H H CN Me CN Me Me H H 2 H H CN Me CN Me Me H H 2 H H CO Me F Me Me H H 2 H H F Me COOMe Me Me H H 2 H H COOMe Me Cl Me Me H H 2 H H COOMe Me Cl Me Me H H 2 H H Cl Me Cl Me Me H H 2 H H Ph Me Me Me Me H H 2 H H Ph Me Me Cl Me Me H H	Me	Me	H	H	2	H	Н	CN	Me	F
Me Me H H 2 H H CN Me Me H H 2 H H CN Me Me Me H H 2 H H COOMe F Me Me H H 2 H H F Me COOMe Me Me H H 2 H H COOMe COOMe COOMe Me Me H H 2 H H COOMe Me COOMe Me CI Me COOMe Me CI Me Me Me Me CI Me Me Me CI Me Me Me CI Me Me Me Me Me CI Me Me CI	Me	Ме	H	н	2	H	Н	F	Me	CN
Me Me H H 2 H H CN Me CN Me Me H H 2 H H COOMe Me F Me Me H H 2 H H F Me COOMe Me Me H H 2 H H COOMe COOMe Me Me H H 2 H H COOMe COOMe Me Me H H 2 H H COOMe Me CI Me Me Me Me CI Me Me Me Me Me Me Me CI Me Me Me Me Me CI Me Me Me Me Me Me Me CI Me Me Me Me Me Me <td< td=""><td>Me</td><td>Me</td><td>H</td><td>H</td><td>2</td><td>H</td><td>H</td><td>CN</td><td>Me</td><td>C1 .</td></td<>	Me	Me	H	H	2	H	H	CN	Me	C1 .
Me H H 2 H H COOMe F Me Me H H 2 H H F Me COOMe Me Me H H 2 H H COOMe COOMe Me Me H H 2 H H COOMe COOMe Me Me H H 2 H H SO2Me Me Me Me H H 2 H H Ph Me Me Me Me H H 2 H H Ph Me OEt Me Me H H 2 H H Ph Me Ph	Me	Me	H	н	2	н	н	Cl	Me	CN
Me Me H H 2 H H F Me COOMe Me Me H H 2 H H COOMe COOMe Me Me H H 2 H H COOMe COOMe Me Me H H 2 H H SO2Me Me CI Me Me H H 2 H H Ph Me Me Me Me H H 2 H H Ph Me OEt Me Me H H 2 H H Ph Me Ph	Me	Me	H	н	2	H	н	CN	Me	CN
Me H H 2 H H COOMe Me COOMe Me Me H H 2 H H Cl Me Cl Me Me H H 2 H H Cl Me SO ₂ Me Me Me H H 2 H H Ph Me Me Me Me H H 2 H H Ph Me CF ₃ Me Me H H 2 H H Ph Me Ph	Me	Me	H	н	2	H	H	СООМе	Me	F
Me Me H H 2 H H Cl Me Cl Me Me H H 2 H H SO ₂ Me Me Me Me H H 2 H H Ph Me Me Me Me H H 2 H H Ph Me Cl Me Me H H 2 H H Ph Me CF ₃ Me Me H H 2 H H Ph Me Ph	Me	Me	H	H	2	H	H	F	Me	COOMe
Me H H 2 H H SO2Me Me Cl Me Me H H 2 H H Cl Me Me Me Me H H 2 H H Ph Me Me Me Me H H 2 H H Ph Me OEt Me Me H H 2 H H Ph Me Ph	Me	Me	H	н	2	Н	H	COOMe	Me	C1
Me Me H H 2 H H Cl Me Cl Me Me Me Me OEt Me Me Me Me H H 2 H H Ph Me OEt CF3 Ph Me Me H H 2 H H Ph Me Ph Ph	Me	Me	H	н	2	H	H	Cl	Ме	COOMe
Me Me H H 2 H H Ph Me Me Me Me H H 2 H H Ph Me Cl Me Me H H 2 H H Ph Me CF3 Me Me H H 2 H H Ph Me Ph	Me	Me	H	H	2	H	H	SO_2Me	Ме	CI
Me H H 2 H H Ph Me Cl Me Me H H 2 H H Ph Me OEt Me Me H H 2 H H Ph Me Ph Me Me H H 2 H H Ph Me Ph	Me	Me	н	н	2	H	H	Cl	Me	SO ₂ Me
Me Me H H 2 H H Ph Me OEt Me Me H H 2 H H Ph Me CF3 Me Me H H 2 H H Ph	Me	Me	H	Н	2	H	Ħ	Ph	Ме	Me
Me Me H H 2 H H Ph Me CF3 Me Me H H 2 H H Ph Me Ph	Me	Me	H	H	2	H	H	Ph	Me	Cı
Me Me H H 2 H H Ph Me Ph	Me	Me	н	H	2	н	н	Ph	Me	OEt
	Me	Me	H	H	2	H	H	Ph	Ме	CF ₃
	Me	Me	H	н	2	н	н	Ph	Ме	Ph
Me Me	Me	Me	н	H	2	H	н	Me	Et	OCHF2

Me Me H H 2 H H OCHF2 Et Me Me Me H H 2 H H Me Et CN Me Me H H 2 H H CN Et Me Me Me H H 2 H H Pr-i Et OCHF2	
Me Me H H 2 H H CN Et Me	
MalMa H H 2 H H Pri Et OCHE	
Me Me H H 2 H H OCHF2 Et Pr-i	
Me Me H H 2 H H Pr-i Et CN	
Me Me H H 2 H H CN Et Pr-i	
Me Me H H 2 H H Cl Et Cl	
Me Me H H 2 H H OCHF2 Et C1	
Me Me H H 2 H H Cl Et OCHF2	J
Me Me H H 2 H H OCHF2 Et OCHF2	
Me Me H H 2 H H CF3 Et F	
Me Me H H 2 H H F Et CF3	
Me Me H H 2 H H CF3 Et C1	ı
Me Me H H 2 H H Cl Et CF3	
Me Me H H 2 H H CF3 Et OMe	
Me Me H H 2 H H OMe Et CF3	
Me Me H H 2 H H CF3 Et OEt	
Me Me H H 2 H H OEt Et CF3	-
Me Me H H 2 H H CF3 Et OCHF2	
Me Me H H 2 H H OCHF2 Et CF3	
Me Me H H 2 H H CF3 Et CN	- {
Me Me H H 2 H H CN Et CF3	- 1
Me Me H H 2 H H CF3 Et Me	
Me Me H H 2 H H Me Et CF3	
Me Me H H 2 H H Me Pr-i OCHF2	
Me Me H H 2 H H OCHF ₂ Pr-i Me	Ì
Me Me H H 2 H H Me Pri CN	- }
Me Me H H 2 H H CN Pr-i Me	
Me Me H H 2 H H Pri Pri OCHF2	- [
Me Me H H 2 H H OCHF2 Pr-i Pr-i	
Me Me H H 2 H H Pri Pri CN	- [
Me Me H H 2 H H CN Pri Pri	-
Me Me H H 2 H H Cl Pr-i Cl	
Me Me H H 2 H H OCHF ₂ Pri Cl	-
Me Me H H 2 H H Cl Pr-i OCHF2	1
Me Me H H 2 H H OCHF2 Pr-i OCHF2	
Me Me H H 2 H H CF3 Pr-i F	

Me	Me	н	н	2	н	н	F	Pr-i	CF ₃
Me	Me	н	н	2	н	н	CF ₃	Pr-i	Cl
Me	Me	н	н	2	н	н	Cl	Pr-i	CF ₃
Me	Me	н	Н	2	н	H	CF ₃	Pr-i	OMe
Me	Me	н	н	2	н	H	OMe	Pr-i	CF ₃
Me	Me	н	н	2	н	H	CF ₃	Pr-i	OEt
Me	Me	н	н	2	н	H	OEt	Pr-i	CF ₃
Me	Me	Н	н	2	н	н	CF ₃	Pr-i	OCHF2
Me	Me	н	н	2	н	H	OCHF2	Pr-i	CF ₃
Me	Me	н	н	2	н	н	CF3	Pr-i	CN
Me	Me	H	Н	2	н	Н	CN	Pr-i	CF ₃
Me	Me	н	Н	2	н	H	CF ₃	Pr-i	Me
Me	Me	н	н	2	н	н	Me	Pr-i	CF ₃
Me	Me	Ħ	H	2	н	н	Me	Pr	OCHF2
Me	Me	H	н	2	н	н	OCHF2	Pr	Me
Me	Me	H	н	2	н	н	Ме	Pr	CN
Me	Me	H	н	2	н	н	CN	Pr	Me
Me	Me	H	н	2	H	н	Pr-i	Pr	OCHF2
Me	Me	Н	н	2	H	н	OCHF2	Pr	Pr-i
Me	Me	H	H	2	H	н	Pri	Pr	CN
Me	Me	H	Н	2	н	н	CN	Pr	Pr-i
Me	Me	H	н	2	н	н	Cl	Pr	Cı
Me	Me	H	H	2	H	H	OCHF2	Pr	Cl
Me	Me	H	H	2	H	H	Cı	Pr	OCHF2
Me	Me	H	H	2	H	н	OCHF ₂	Pr	OCHF2
Me	Me	H	H	2	H	H	CF_3	Pr	F
Me	Me	H	H	2	H	H	F	Pr	CF_3
Me		H	H		H		CF ₃	Pr	Cl
Me		H	H	2	H	H	Cl	Pr	CF ₃
Me	i 1	H	H	2	H		CF ₃	Pr	OMe
Me		H	H	2	H	H	OMe	Pr	CF_3
Me	1	H	H	2	H		CF ₃	Pr	OEt
Me		H	H	2	H		OEt	Pr	CF ₃
Me	1	H	H	2	H		CF ₃	Pr	OCHF2
Me		H	H	2	H		OCHF ₂	Pr	CF ₃
Me	1	H	H	2	H		CF ₃	Pr	CN
Me		H	H	2	H		CN	Pr	CF ₃
Me	Me	H	H	2	H	H	CF ₃	Pr	Me

1			ı	ı	ı	1	1	1	1
	Me	H	1	2	H		Me	Pr	CF ₃
Me	Me	H	H	2	H	H	Me	Bu-t	F
Me	Me	H	H	2	H	H	Me	Bu-t	Cl
Me	Me	H	H	2	H	H	Me	Bu-t	OCHF ₂
Me	Me	H	H	2	Н	H	Me	Bu-t	CN
Me	Me	H	H	2	н	Н	CI	Bu-t	Cl
Me	Me	H	H	2	н	Н	OCHF ₂	Bu-t	Cl
Me	Me	H	H	2	H	H	OCHF2	Bu-t	OCHF ₂
Me	Me	H	H	2	H	н	CF3	Bu-t	H
Me	Me	H	H	2	H	н	CF ₃	Bu-t	F
Me	Me	н	H	2	н	н	CF ₃	Bu-t	Cl
Me	Me	H	H	2	H	Н	Cl	Bu-t	CF ₃
Me	Me	н	н	2	н	н	CF3	Bu-t	OMe
Me	Me	H	H	2	H	н	ОМе	Bu-t	CF ₃
Me	Me	H	н	2	H	н	CF3	Bu-t	OEt
Me	Me	H	н	2	н	н	OEt	Bu-t	CF ₃
Me	Me	н	н	2	H	H	CF3	Bu-t	OCHF2
Me	Ме	H	н	2	H	H	CF3	Bu-t	CN
Me	Me	Н	н	2	Н	H	CF3	Bu-t	Me
Me	Me	H	H	2	H	H	Me	Bu-t	CF ₃
Me	Me	Н	н	2	H	H	CF3	Bu·s	C1
Me	Me	н	н	2	H	H	Cl	Bu-s	CF ₃
Me	Me	н	H	2	H	н	CF3	Bu-i	C1
Me	Me	H	н	2	H	H	Cl	Bu-i	CF ₃
Me	Me	H	н	2	н	н	CF3	Bu	C1
Me	Ме	н	н	2	н	н	Cl	Bu	CF ₃
Me	Me	н	н	2	H	H	CF3	1-Methylbutyl	C1
Me	Me	H	н	2	н	H	Cl	1-Methylbutyl	CF ₃
Me	Me	н	н	2	н	H	CF ₃	1-Ethylpropyl	Cl
Me	Me	H	н	2	н	н	C1	i-Ethylpropyl	CF ₃
Me	Me	H	н	2	н	H	CF3	1-Pentyl	C1
Me	Me	н	н	2	н	H	Cl	1-Pentyl	CF ₃
Me	Me	н	н	2	н	H	CF ₃	1-Methylpentyl	Cl
Me	Me	H	н	2	н	н	Cl	1-Methylpentyl	CF ₃
Me	Me	н	H	2	н	н	CF3	2-Ethylbutyl	C1
Me	Me	H	н	2	н	н	Cl	2-Ethylbutyl	CF ₃
Me	Ме	н	н	2	н	н	CF ₃	3,3-Dimethylbutyl	C1
Me	Me	н	н	2	H	н	Cl	3,3-Dimethylbutyl	CF ₃

, ,		1	1				•	1	1
Me	Me	H	H	2	Н	H	CF ₃	1-Hexyl	C1
Me	Me	н	H	2	н	Н	CI	1-Hexyl	CF ₃
Me	Me	H	H	2	H	н	CF ₃	1-Heptyl	CI
Me	Me	H	H	2	H	н	CI	1·Heptyl	CF ₃
Me	Me	H	H	2	H	н	CF3	1-Octyl	C1
Me	Me	н	H	2	H	н	Cı	1-Octyl	CF ₃
Me	Me	н	н	2	H	H	CF ₃	CH ₂ Ph	C1
Me	Me	H	H	2	H	H	Cl	CH ₂ Ph	CF ₃
Me	Me	H	H	2	Н	Н	CF ₃	Pr-c	F
Me	Ме	н	H	2	H	H	CF ₃	Pr-c	C1
Me	Me	н	H	2	H	Н	CF ₃	Pr-c	ОМе
Me	Me	H	H	2	н	H	CF ₃	Pr-c	OCHF2
Me	Мe	H	н	2	н	H	CF3	Pr-c	CN
Me	Me	H	Н	2	Н	H	CF3	Pen·c	C1
Me I	Мe	H	н	2	H	H	Cı	Pen-c	CF ₃
Me I	Ме	н	H	2	H	H	CF3	Hex-c	CI
Me I	Ме	H	H	2	н	н	Cl	Hex-c	CF ₃
Me	Ме	H	Н	2	н	H	Me	CH ₂ Pr-c	OCHF2
Me	Ме	H	H	2	н	H	OCHF2	CH ₂ Pr-c	Me
Me	Ме	H	Н	2	н	H	Cl	CH ₂ Pr·c	Cl
Me	Me	н	н	2	н	H	OCHF2	CH ₂ Pr-c	Cl
Me	Ме	H	H	2	н	H	Cl	CH ₂ Pr-c	OCHF2
Me	Me	Н	н	2	н	H	OCHF2	CH ₂ Pr-c	OCHF2
Me	Мe	H	H	2	Н	H	CF ₃	CH ₂ Pr-c	F
Me	Ме	H	H	2	H	H	F	CH ₂ Pr-c	CF ₃
Me	М́е	H	H	2	H	H	CF ₃	CH ₂ Pr-c	Cl
Me	Ме	H	H	2	н	H	Cl	CH ₂ Pr-c	CF₃
Me	Мe	H	H	2	H	H	CF ₃	CH ₂ Pr-c	ОН
Me	Me	H	H	2	Н	H	CF ₃	CH ₂ Pr-c	OMe
Me I	Ме	H	H	2	н	H	OMe	CH ₂ Pr-c	CF ₃
Me	Мe	H	H	2	н	H	CF ₃	CH ₂ Pr-c	OEt
Me I	Мe	н	н	2	н	H	OEt	CH ₂ Pr-c	CF ₃
Me	Ме	H	н	2	н	H	CF ₃	CH ₂ Pr-c	OPr-i
Me 1	Me	н	н	2	н	H	CF ₃	CH ₂ Pr-c	OPr
Me	Me	н	н	2	н	н	CF ₃	CH₂Pr·c	OBu-t
Me	Me	н	н	2	н	H	CF ₃	CH ₂ Pr-c	OCH ₂ Pr-c
Me 1	VIe	H	H	2	н	H	CF ₃	CH₂Pr-c	OCH ₂ Bu-c
Me	VIe	н	н	2	н	н	CF ₃	CH ₂ Pr-c	OPen·c

Me	Me	H	Н	2	н	н	CF3	CH ₂ Pr·c	OCHF ₂
Me	Me	H	Н	2	н	Н	OCHF2	CH ₂ Pr-c	CF ₃
Me	Me	H	н	2	н	H	CF ₃	CH ₂ Pr·c	CN
Me	Me	H	Н	2	н	н	CN	CH ₂ Pr-c	CF ₃
Me	Me	H	Н	2	н	H	CF3	CH ₂ Pr-c	Ме
Me	Me	H	н	2	н	Н	Me	CH ₂ Pr-c	CF ₃
Me	Me	H	н	2	н	н	CF ₃	1-cyclopropylethyl	C1
Me	Me	H	н	2	н	Н	Cl	1-cyclopropylethyl	CF ₃
Me	Me	Н	н	2	н	н	CF ₃	CH ₂ (2-Methylcyclopropyl)	C1
Me	Me	H	Н	2	н	H	Cl	CH ₂ (2-Methylcyclopropyl)	CF ₃
Me	Me	н	н	2	н	н	CF ₃	CH ₂ (2,2-Dimethylcyclopropyl)	Cl
Me	Ме	н	H	2	н	н	Cl	CH ₂ (2,2-Dimethylcyclopropyl)	CF3
Me	Me	H	н	2	н	H	CF3	CH2(2-Chlorocyclopropyl)	CI
Me	Me	H	н	2	Н	Н	Cı	CH2(2-Chlorocyclopropyl)	CF₃
Me	Me	Н	н	2	н	н	CF ₃	CH ₂ (2,2-Dichlorocyclopropyl)	Cl
Me	Ме	H	н	2	н	H	CI	CH ₂ (2,2-Dichlorocyclopropyl)	CF₃
Me	Me	H	н	2	H	Н	CF ₃	CH2(2-Fluorocyclopropyl)	C1
Me	Me	H	Н	2	н	H	Cl	CH ₂ (2·Fluorocyclopropyl)	CF_3
Me	Me	H	н	2	H	H	$\mathbf{CF_3}$	CH ₂ (2,2-Difluorocycloprop	C1
Me	Me	H	н	2	н	н	Cl	CH ₂ (2,2-Difluorocyclopropyl)	CF ₃
Me	Me	H	н	2	H	H	CF ₃	CH2Bu-c	C1
Me	Me	H	н	2	н	H	Cl	CH ₂ Bu-c	$ ext{CF}_3$
Me	Me	H	н	2	H	Н	CF3	CH ₂ Pen-c	Cl
Me	Me	H	н	2	H	H	Cl	CH ₂ Pen·c	CF3
Me	Me	H	H	2	H	H	CF ₃	СН2Нех-с	Cl
Me	Ме	H	H	2	H	H	Cl	CH ₂ Hex-c	CF3
Me	Me	H	H	2	H	H	CF3	CH ₂ CH ₂ Pr-c	Cl
Me	Me	H	H	2	H	H	Cl	CH ₂ CH ₂ Pr-c	CF3
Me	Me	H	H	2	H	H	CF3	CH ₂ CH=CH ₂	Cl
Me	Ме	H	н	2	H	H	Cl	CH ₂ CH=CH ₂	\mathbf{CF}_3
Me	Me	H	н	2	Н	H	CF ₃	CH₂CH=CHCl	Cl
Me	Ме	H	н	2	н	н	Cı	CH2CH=CHCl	CF ₃
Me	Ме	H	н	2	H	н	Me .	CH₂C≡CH	OCHF ₂
Me	Ме	H	н	2	H	H	OCHF2	CH ₂ C≡CH	Me
Me	Me	H	H	2	H	н	Cl	CH ₂ CCH	Cl
Me	Me	H	н	2	H	H	OCHF2	CH₂C≡CH	Cl

Me Me	н	н	2	н	н	Cl	CH ₂ C≡CH	OCHF2
Me Me	н	H	2	н	н	OCHF ₂	CH ₂ C≡CH	OCHF ₂
Me Me	н	н	2	н	н	CF3	CH ₂ C≡CH	F
Me Me	н	н	2	н	н	F	CH ₂ C≡CH	CF_3
Me Me	н	н	2	Н	н	CF ₃	CH ₂ C≡CH	C1
Me Me	Н	н	2	н	н	Cl	CH ₂ C≡CH	CF ₃
Me Me	н	н	2	Н	н	CF ₃	CH₂C≡CH	ОМе
Me Me	н	н	2	H	н	OMe	CH ₂ C≡CH	CF ₃
Me Me	н	н	2	H	н	CF ₃	CH ₂ C≡CH	OEt
Me Me	Н	н	2	H	н	OEt	CH ₂ C≡CH	CF ₃
Me Me	н	Н	2	H	Н	CF ₃	CH ₂ C≡CH	OCHF2
Ме Ме	Н	н	2	H	H	OCHF2	CH ₂ C≡CH	CF ₃
Ме Ме	н	H	2	H	H	CF ₃	CH ₂ C≡CH	CN
Ме Ме	H	н	2	H	н	CN	CH ₂ C≡CH	CF ₃
Ме Ме	H	H	2	H	H	CF ₃	CH ₂ C≡CH	Ме
Ме Ме	Н	н	2	H	H	Me	CH ₂ C≡CH	CF ₃
Ме Ме	н	н	2	H	H	CF_3	CHMeC≡CH	C1
Ме Ме	н	н	2	H	H	Cl	CHMeC≅CH	CF ₃
Ме Ме	H	н	2	н	H	CF3	CH ₂ C≡CMe	C1
Me Me	н	н	2	H	H	Cl	CH ₂ C≡CMe	CF₃
Ме Ме	н	н	2	H	H	Ме	CHF ₂	F
Me Me	н	н	2	H	H	F	CHF ₂	Me
Ме Ме	H	н	2	H	H	Me	CHF ₂	Cl
Ме Ме	н	H	2	H	H	Cı	CHF ₂	Ме
Ме Ме	н	H	2	н	H	Me	CHF ₂	OMe ,
Ме Ме	H	н	2	H	H	ОМе	CHF ₂	Ме
Ме Ме	H	н	2	H	H	Me	CHF ₂	OCHF2
Ме Ме	H	H	2	H	H	OCHF ₂	CHF ₂	Me
Ме Ме	H	H	2	н	H	Me	CHF ₂	CN
Me Me	H	H	2	H	H	CN	CHF ₂	Me
Me Me	H	н	2	H	H	Me	CHF ₂	Me
Me Me	H	H	2	H	H	Et	CHF ₂	Cl
Me Me	H	H	2	H	H	Cl	CHF ₂	Et
Me Me	H	H	2	H	H	Et	CHF ₂	Et
Ме Ме	H	H	2	H	H	P r- i	CHF ₂	Cl
Me Me	Н	H	2	H	H	CI	CHF ₂	Pr-i
Me Me	H	H	- 1	H		Cl	CHF ₂	Cl
Me Me	H	H	2	H	H	OCHF ₂	CHF ₂	Cl

Me	Me	н	н	2	Н	н	Cı	CHF ₂	OCHF2
Me	Me	н	н	.2	н	H	OCHF ₂	CHF ₂	OCHF2
Me	Me	н	н	2	H	н	CF ₃	CHF ₂	Cl
Ме	Me	H	н	2	н	H	Cl	CHF ₂	CF ₃
Ме	Me	H	н	2	н	H	CF3	CHF ₂	F
Me	Ме	н	н	2	Н	н	F	CHF ₂	CF ₃
Me	Me	н	н	2	Н	Н	CF3	CHF ₂	ОМе
Me	Me	н	н	2	н	н	OMe	CHF2	CF ₃
Me	Me	н	н	2	н	н	CF ₃	CHF ₂	OEt
Ме	Me	н	н	2	H	Н	OEt	CHF ₂	CF ₃
Me	Me	н	н	2	н	Н	CF3	CHF ₂	OCHF2
Me	Me	н	н	2	Н	H	OCHF2	CHF ₂	CF ₃
Ме	Me	H	н	2	н	Н	CF ₃	CHF ₂	CN
Me	Me	H	н	2	н	н	CN	CHF ₂	CF ₃
Me	Me	H	н	2	н	H	CF3	CHF2	Me
Ме	Me	H	н	2	н	Н	Me	CHF ₂	CF ₃
Me	Me	н	н	2	H	H	CF3	CH ₂ CHF ₂	Cı
Ме	Me	H	н	2	н	н	Cı	CH ₂ CHF ₂	CF ₃
Me	Me	н	н	2	н	H	CF ₃	CH ₂ CF ₃	C1
Ме	Me	H	н	2	н	H	Cl	CH ₂ CF ₃	CF ₃
Ме	Me	H	н	2	H	H	CF ₃	CH ₂ OH	Cl
Ме	Me	H	н	2	н	H	Cl	СН₂ОН	CF ₃
Me	Me	H	н	2	н	H	Me	CH ₂ OMe	OCHF2
Ме	Me	H	н	2	H	H	OCHF2	CH ₂ OMe	Ме
Ме	Me	н	н	2	н	H	Cl	CH ₂ OMe	C1
Ме	Me	H	н	2	н	H	OCHF2	CH ₂ OMe	C1
Ме	Me	H	H	2	н	H	Cl	CH ₂ OMe	OCHF ₂
Me	Me	Н	H	2	Н	H	OCHF ₂	CH ₂ OMe	OCHF2
Me	Me	H	H	2	H	H	CF ₃	CH ₂ OMe	F
Me		H	н	2	H	н	F	CH₂OMe	CF₃
Me	Me	H	н	2	H	Н	CF ₃	CH ₂ OMe	Cl
Me	Ме	H	H	2	H	H	Cl	CH ₂ OMe	CF ₃
Me	Me	H	H	2	H	H	CF ₃	CH₂OMe	OMe
Me	Ме	H	H	2	H	H	OMe	CH₂OMe	CF₃
Me	Me	H	H	2	H	H	CF ₃	CH ₂ OMe	OEt
Me	Me	H	H	2	H	н	OEt	CH ₂ OMe	CF ₃
Me	Me	H	H	2	н	н	CF ₃	CH₂OMe	OCHF2
Me	Me	H	H	2	H	H	OCHF ₂	CH ₂ OMe	CF ₃

1	Me	Me	н	н	2	н	н	CF ₃	CH ₂ OMe	CN
	Me	Me	н	н	2	Н	н	CN	CH ₂ OMe	CF ₃
	Me	Me	H	Н	2	н	н	CF ₃	CH ₂ OMe	Ме
1	Me	Me	н	H	2	Н	н	Me	CH ₂ OMe	CF ₃
ļ	Me	Me	Н	H	2	H	Н	CF ₃	CH₂OEt	Cl
١	Me	Me	Н	Н	2	н	н	Cl	CH2OEt	CF ₃
1	Me	Me	н	H	2	н	Н	CF ₃	CH ₂ CH ₂ OH	Cl
	Ме	Me	Н	H	2	н	н	C1	CH ₂ CH ₂ OH	CF ₃
	Me	Me	H	H	2	н	н	CF ₃	CH ₂ CH ₂ OMe	Cl
l	Me	Me	H	H	2	Н	H	C1	CH ₂ CH ₂ OMe	CF ₃
	Me	Me	H	н	2	H	H	CF ₃	CH ₂ CH ₂ OEt	Cı
	Ме	Me	H	H	2	H	H	Cl	CH ₂ CH ₂ OEt	CF ₃
1	Ме	Me	H	н	2	н	H	CF ₃	CH2NHMe	Cl
	Ме	Me	H	н	2	H	H	Cl	CH2NHMe	CF ₃
	Me	Me	H	H	2	H	H	CF ₃	CH ₂ N(Me) ₂	C1
ĺ	Me	Me	H	H	2	н	H	Cı	CH2N(Me)2	CF ₃
	Me	Ме	H	H	2	H	H	CF3	CH2N(Me)C(=O)Me	C1
ľ	Ме	Ме	H	н	2	H	H	Cı	CH2N(Me)C(=O)Me	CF ₃
	Me	Me	H	H	2	H	H	CF3	CH2N(Me)C(=O)CF3	C1
1	Me	Me	H	H	2	н	H	Cl	CH2N(Me)C(=O)CF ₃	CF ₃
	Ме	Me	H	н	2	H	H	CF ₃	CH2N(Me)SO2Me	Cl
1	Ме	Me	H	H	2	н	H	Cl	CH ₂ N(Me)SO ₂ Me	CF ₃
	Ме	Me	H	H	2	H	H	CF3	CH ₂ N(Me)SO ₂ CHF ₂	C1
	Me	Ме	Н	H	2	H	H	Cl	CH ₂ N(Me)SO ₂ CHF ₂	CF ₃
ľ	Ме	Me	H	H	2	H	H	CF3	CH ₂ N(Me)SO ₂ CF ₃	CI
ŀ	Me	Me	H	Н	2	H	H	C1	CH ₂ N(Me)SO ₂ CF ₃	CF ₃
ŀ	Мe	Me	H	H	2	н	H	CF3	CH ₂ SMe	Cl
ŀ	Ме	Me	H	H	2	H	H	Cl	CH ₂ SMe	CF ₃
ŀ	Мe	Me	H	H	2	H	H	CF3	CH ₂ SO ₂ Me	Cl
ŀ	Me	Me	H	H	2	H	H	Cl	CH ₂ SO ₂ Me	CF ₃
ľ	Мe	Me	H	H	2	H	H	CF ₃	CH ₂ CH ₂ SMe	Cl
	Ме	Me	H	H	2	H	H	Cl	CH₂CH₂SMe	CF ₃
	Ме	Me	H	H	2	H	H	CF3	CH ₂ CH ₂ SO ₂ Me	Cl
	Мe	Ме	н	H	2	H	H	Cl	CH ₂ CH ₂ SO ₂ Me	CF₃
	Me	Me	H	н	2	H	H	CF₃	CH ₂ CN	Cl
ļ	Мe	Me	H	H	2	H	H	Cl	CH₂CN	$ ext{CF}_3$
1	Me	Me	H	H	2	H	H	CF ₃	CH ₂ C(=O)OMe	Cl
1	Me	Me	H	H	2	H	H	Cl	CH₂C(=O)OMe	CF_3

,	,		,	,			1	1	1
Me	Me	H	Н	2	H	H	CF ₃	CH ₂ C(=O)OEt	Cl
Me	Me	H	H	2	H	H	Cl	CH ₂ C(=O)OEt	CF ₃
Me	Me	H	H	2	H	H	CF ₃	CH(Me)C(=O)OMe	Cı
	Me	H	Н	2	Н	H	Cl	CH(Me)C(=O)OMe	CF ₃
Me	Me	H	H	2	H	H	CF ₃	C(Me) ₂ C(=O)OMe	CI
Ме	Me	H	H	2	H	H	Cl	C(Me) ₂ C(=O)OMe	CF ₃
Me	Me	н	Н	2	Н	H	CF3	CH ₂ C(=O)NH ₂	C1
Me	Me	H	H	2	H	H	CI	CH ₂ C(=O)NH ₂	CF ₃
Ме	Me	н	н	2	H	н	CF ₃	CH ₂ C(=O)NHMe	CI
Me	Me	H	Н	2	H	H	C1	CH ₂ C(=O)NHMe	CF ₃
Me	Me	Н	Н	2	Н	Н	CF ₃	CH ₂ C(=O)N(Me) ₂	C1
Me	Me	н	H	2	H	H	Cı	CH ₂ C(=O)N(Me) ₂	CF ₃
Me	Me	н	Н	2	H	н	CF ₃	CH ₂ C(=O)Me	C1
Me	Me	н	н	2	H	н	Cı	CH ₂ C(=O)Me	CF ₃
Me	Me	H	Н	2	H	н	CF3	CH ₂ C(=NOMe)Me	C1
Me	Me	н	Н	2	H	н	Cı	CH ₂ C(=NOMe)Me	CF ₃
Me	Me	н	H	2	H	H	CF ₃	CH ₂ C(=O)CF ₃	Cl
Me	Me	н	Н	2	H	H	CI	CH ₂ C(=O)CF ₃	CF ₃
Me	Ме	н	н	2	H	H	CF3	CH ₂ CH ₂ C(=O)Me	[C1
Me	Me	н	н	2	H	H	Cl	CH ₂ CH ₂ C(=O)Me	CF ₃
Me	Me	н	H	2	H	H	Ме	Ph	Me
Me	Me	H	H	2	н	H	Me	Ph	F ·
Me	Me	н	H	2	H	H	Me	Ph	Cl
Me	Me	н	н	2	н	H	Me	Ph	OCHF2
Me	Me	н	H	2	H	H	Me	Ph	CN
Me	Ме	H	H	2	Ħ	H	Et	Ph	F
Me	Me	H	H	2	н	H	Et	Ph	Cl
Me	Me	H	H	2	н	H	Et	Ph	OCHF ₂
Me	Me	H	H	2	H	H	Et	Ph	CN
Ме	Me	H	н	2	Н	н	Pr	Ph	F
Me	Me	H	H	2	H	Н	Pr	Ph	Cl
Me	Me	H	H	2	н	H	Pr	Ph	OCHF2
Me	Me,	H	н	2	H	H	Pr	Ph	CN
Ме	Ме	H	H	2	н	н	Pr-i	Ph	F
Me	Me	H	н	2	н	н	P r -i	Ph	Cl
Ме	Me	н	н	2	H	H	Pr-i	Ph	OCHF2
Me	Me	н	H	2	H	H	Pr-i	Ph	CN
Me	Ме	н	H	2	н	H	Bu-t	Ph	Cı

	_								
Me	Me	H	н	2	H	н	CH ₂ OMe	Ph	Ci
Me	Me	H	H	2	H	H	Cl	Ph	Cl
Me	Me	H	Н	2	H	Н	OCHF2	Ph	Cl
Me	Me	Н	н	2	Н	H	OCHF2	Ph	OCHF ₂
Me	Me	H	н	2	н	H	CHF2	Ph	Cl
Me	Me	н	Н	2	H	H	CF ₃	Ph	H
Me	Me	H	Н	2	н	н	CF3	Ph	Me
Me	Me	н	H	2	н	н	Ме	Ph	CF ₃
Me	Ме	н	H	2	H	н	CF ₃	Ph	Et .
Me	Me	H	H	2	н	Н	CF ₃	Ph	Pr-i
Me	Me	Н	Н	2	н	H	CF3	Ph	CHF ₂
Me	Me	Н	н	2	H	H	CF3	Ph	CF ₃
Me	Ме	н	Н	2	н	н	CF3	Ph .	F
Me	Me	н	н	2	н	н	CF3	Ph	C1
Me	Me	н	н	2	H	н	Cl	Ph	CF ₃
Me	Me	H	н	2	н	H	CF3	Ph	он
Ме	Ме	Н	н	2	H	H	он	Ph	CF ₃
Me	Me	н	н	2	Н	H	CF ₃	Ph	OMe
Ме	Me	H	Н	2	H	H	OMe	Ph	CF ₃
Me	Me	H	н	2	H	H	CF3	Ph	OEt
Me	Me	Н	н	2	H	H	OEt	Ph	CF ₃
Me	Me	H	H	2	н	H	CF ₃	Ph	OPr-i
Ме	Me	H	H	2	H	H	CF3	Ph	OPr
Me	Me	н	H	2	н	H	CF3	Ph	OBu-t
Me	Me	H	H	2	H	H	CF ₃	Ph	OCH ₂ Pr-c
Ме	Me	H	H	2	H	H	CF ₃	Ph	OCH ₂ CH=CH ₂
Me		H	H	2	H		CF ₃	Ph	OCH ₂ C≡CH
Me		H	H	2	H		CF ₃	Ph	OCHF ₂
Ме		H	H	2	H		OCHF ₂	Ph	CF ₃
Me			H	- 1	H	ł	CF ₃	Ph	OCH ₂ CHF ₂
Me		ı	H	2	H		CF ₃	Ph	OCH ₂ CF ₃
Me		.	H	2	H	1	CF ₃	Ph	OCH ₂ C(=O)OMe
Ме			H	2	H)	CF ₃	Ph	OCH(Me)C(=O)OMe
Me			H	2	H	1	CF ₃	Ph	OC(Me) ₂ C(=O)OMe
Ме		- 1	H	2	н	- 1	CF ₃	Ph	OC(=O)Me
Ме			н	2	H		CF ₃	Ph	OC(=O)Et
Me			H		H		CF ₃	Ph	OC(=O)CH ₂ Ph
Me	Me	H	H	2	H	H	CF ₃	Ph	OC(=O)CF ₃

	,						1	
Me Me	H	H	2	H	H	CF ₃	Ph	OC(=O)Ph
Me Me	Н	H	2	H	H	CF ₃	Ph	OSO ₂ Me
Me Me	H	H	2	H	H	CF ₃	Ph	OSO ₂ Et
Me Me	H	н	2	H	H	CF ₃	Ph	OSO ₂ CH ₂ Ph
Me Me	H	н	2	H	H	CF ₃	Ph	OSO ₂ CF ₃
Me Me	H	H	2	Н	H	CF ₃	Ph	OSO ₂ Ph
Me Me	H	н	2	H	H	CF ₃	Ph	SMe
Me Me	H	H	2	H	H	CF ₃	Ph	SOMe
Me Me	H	н	2	Н	H	CF ₃	Ph	SO ₂ Me
Me Me	H	H	2	Н	H	CF ₃	Ph	SEt
Me Me	H	Н	2	H	Н	CF ₃	Ph	SOEt
Me Me	H	н	2	H	H	CF ₃	Ph	SO ₂ Et
Me Me	н	н	2	H	H	CF ₃	Ph	SPr-i
Me Me	H	н	2	H	н	CF ₃	Ph	SOPr-i
Me Me	H	H	2	H	H	CF3	Ph	SO ₂ Pr-i
Me Me	H	н	2	H	H	CF ₃	Ph	SPr
Me Me	H	H	2	H	H	CF ₃	Ph	SOPr
Me Me	H	н	2	H	H	CF3	Ph	SO ₂ Pr
Me Me	н	н	2	H	H	CF3	Ph	SBu-t
Me Me	H	н	2	H	H	CF3	Ph	SOBu-t
Me Me	H	н	2	H	H	CF3	Ph	SO ₂ Bu-t
Me Me	H	н	2	H	H	CF ₃	Ph	SCHF ₂
Me Me	н	н	2	H	H	CF3	Ph	SOCHF ₂
Me Me	H	н	2	H	H	CF ₃	Ph	SO ₂ CHF ₂
Me Me	H	н	2	H	H	CF ₃	Ph	NH2
Me Me	H	н	2	H	H	CF ₃	Ph	NHMe
Me Me	H	н	2	H	H	CF ₃	Ph	N(Me) ₂
Me Me	H	н	2	Н	H	CF ₃	Ph	NHC(=O)Me
Me Me	H	н	2	H	H	CF ₃	Ph	N(Me)C(=O)Me
Me Me	H	н	2	H	H	CF ₃	Ph	NHSO2Me
Me Me	H	н	2	H	H	CF ₃	Ph	N(Me)SO ₂ Me
Me Me	н	н	2	H	H	CF ₃	Ph	NHSO ₂ CF ₃
Ме Ме	н	н	2	H	H	CF ₃	Ph	N(Me)SO ₂ CF ₃
Me Me	н	н	2	H	н	CF ₃	Ph	NHPh
Me Me	H	н	2	H	H	CF ₃	Ph	N(Me)Ph
Me Me	H	H	2	H	H	CF ₃	Ph	CN
Me Me	н	H	2	H	H	CF ₃	Ph	C(=O)Me
Me Me	н	H	2	H	н	CF3	Ph	C(=0)OMe

Me	Me	н	H	2	н	Н	CF ₃	Ph	C(=O)NH ₂
Me	Me	H	Н	2	Н	н	CF ₃	Ph	C(=O)NHMe
Me	Me	H	н	2	н	H	CF ₃	Ph	C(=O)N(Me) ₂
Me	Me	н	H	2	н	H	CF ₃	Ph	Imidazol-1-yl
Me	Me	н	н	2	н	H	CF ₃	Ph	Pyrazol·1-yl
Me	Me	H	H	2	н	н	CF ₃	Ph	1,2,4-Triazol-1-yl
Me	Me	H	н	2	н	н	CF ₃	Ph	1,2,4-Triazol·4-yl
Me	Me	H	н	2	H	н	CF ₃	Ph	Tetrazol-1-yl
Me	Me	H	H	2	н	н	CF ₃	Ph	Tetrazol-5-yl
Me	Me	н	н	2	н	н	CF3	Ph	(4,6-Dimethoxypyrimidin-2-yl
Me	Me	Н	н	2	Н	н	CF ₃	Ph	(4,6-Dimethoxypyrimidin-2-yl)sulfonyl
Me	Me	н	Н	2	н	н	CF ₂ CF ₃	Ph	CI
Me	Me	H	н	2	н	н	CF ₃	(2-Cl)Ph	CI
Me	Me	H	H	2	H	н	CF ₃	(2-F)Ph	CI
Me	Me	H	н	2	н	н	CF ₃	(2-OMe)Ph	Cl
Me	Me	Н	H	2	н	H	CF ₃	(2-Me)Ph	CI
Me	Me	H	H	2	H	H	CF3	(2-NO ₂)Ph	CI
Me	Me	H	н	2	H	H	CF ₃	(2-CN)Ph	C1
Me	Me	H	H	2	H	H	CF ₃	(2-C(=O)Me)Ph	C1
Me	Me	H	н	2	H	H	CF ₃	(2-C(=O)OMe)Ph	CI
Me	Me	H	н	2	H	H	CF ₃	(2-C(=O)OEt)Ph	CI
Me	Me	H	н	2	H	H	CF ₃	(2-C(=0)OPr-i)Ph	Cl
Me	Me	H	н	2	н	H	CF3	(2-C(=O)NH ₂)Ph	C1
Me	Me	H	н	2	н	H	CF3	(2-C(=O)NHMe)Ph	C1
Me	Me	H	н	2	H	H	CF3	(2-C(=O)NMe ₂)Ph	Cl
Me	Me	H	н	2	H	H	CF3	(3-C1)Ph	C1
Me	Me	H	H	2	H	H	CF ₃	(3-F)Ph	Cl
Me	Me	H	н	2	H	H	CF3	(3-OMe)Ph	C1
Me	Me	H	н	2	H	H	CF ₃	(3-Me)Ph	Cl
Me	Ме	H	н	2	H	H	CF3	(3·NO ₂)Ph	Cl
Me	Me	H	н	2	H	H	CF ₃	(3-CN)Ph	CI
Me	Me	H	H	2	H	H	CF ₃	(3-C(=O)Me)Ph	Cl
Me	Me	H	н	2	H	H	CF ₃	(3-C(=O)OMe)Ph	Cl
Me	Ме	\mathbf{H}	H	2	H	H	CF ₃	(3-C(=O)OEt)Ph	Cl
Me	Me	H	H	2	H	H	CF ₃	(3-C(=0)OPr-i)Ph	C1
Me	Ме	H	Н	2	H	H	CF ₃	(3-C(=0)NH ₂)Ph	C1
Me	Me	H	н	2	H	н	CF ₃	(3-C(=O)NHMe)Ph	C1

	Me	Me	н	н	2	Н	н	CF ₃	(3·C(=O)NMe ₂)Ph	Cı
	Me	Me	Н	н	2	н	H	CF3	(4-Cl)Ph	Cı
	Me	Me	Н	н	2	н	н	CF ₃	(4-F)Ph	Cı
	Me	Me	H	н	2	Н	Н	CF ₃	(4-OMe)Ph	Cl
	Me	Me	Н	н	2	н	н	CF ₃	(4-Me)Ph	Cl
	Me	Me	H	н	2	н	н	CF ₃	(4-NO ₂)Ph	Cl
	Me	Me	H	Н	2	H	н	CF ₃	(4-CN)Ph	Cl
	Me	Me	H	Н	2	H	н	CF ₃	(4-C(=O)Me)Ph	Cl
	Me	Me	H	н	2	н	н	CF ₃	(4-C(=O)OMe)Ph	Cı
	Me	Me	H	H	2	н	н	CF ₃	(4-C(=O)OEt)Ph	Cl
	Me	Me	H	Н	2	H	Н	CF_3	(4-C(=0)OPr-i)Ph	Cl
	Ме	Me	H	H	2	н	Н	CF_3	(4-C(=0)NH ₂)Ph	Cı
	Me	Me	H	н	2	н	Н	CF ₃	(4-C(=0)NHMe)Ph	C1
	Ме	Me	H	H	2	н	H	CF ₃	(4-C(=0)NMe ₂)Ph	Cl
	Me	Me	H	н	2	н	H	CF ₃	Pyrmidin-2-yl	C1
	Ме		H	н	2	H	H	CF ₃	4,6-Dimethoxypyrmidin-2-yl	Cl
	Me	Ме	H	Н	2	H	Η	CF ₃	Thiophen-2-yl	Cl
	Ме	Me	H	н	2	H	H	CF ₃	Furan-2-yl	C1
	Me	Me	H	H	2	H	H	CF ₃	SO ₂ Me	CI
	Ме	Me	H	H	2	H	H	CF3	SO ₂ Et	C1
	Me	Me	H	H	2	H	H	CF ₃	SO ₂ Pr·i	C1
	Ме	Ме	H	H	2	н	H	CF3	SO ₂ CH ₂ Ph	Cl
	Ме	Me	H	Н	2	H	H	CF ₃	SO ₂ CHF ₂	CI
	Ме	Me	H	н	2	H	H	CF ₃	SO ₂ CF ₃	C1
	Ме	Me	H	H	2	H	H	CF ₃	SO₂Ph	C1
	Ме	Me	H	H	2	H	H	CF ₃	C(=O)Me	C1
	Ме	Me	H	H	2	H	H	CF ₃	C(=O)Et	C1
	Ме	Me	H	H	2	H	H	CF ₃	C(=O)Pr-i	C1
	Ме	Me	H	H	2	H	H	CF ₃	C(=O)Bu-t	C1
	Ме	Me	H	H	2	H	H	CF ₃	C(=O)Ph	C1
	Ме	Me	H	Н	2	H	H	CF ₃	C(=O)CH ₂ Ph	C1
	Ме	Me	H	H	2	H	H	CF ₃	C(=O)CH ₂ Cl	C1
	Me	Me	H	H	2	H	H	CF ₃	C(=O)CHCl ₂	C1
-	Me	Me	н	н	2	H	H	CF ₃	C(=O)CF ₃	Cl
	Ме	Ме	H	H	2	H	H	CF ₃	C(=O)OMe	Cl
	Ме	Me	H	H	2	H	H	CF ₃		Cl
	Ме	Me	H	H	2	н	H	CF ₃		Cl
	Ме	Me	H	н	2	H	H	CF ₃	C(=O)NHMe	Cl

Me Me H H 2 H H CF3 C(=O)N(Me)2 C	,	ı	1	,	,	,	,	ī	L	ı
Me Me H H 2 H H CF2 NH2 CI Me Me H H 2 H H CI -(CH2)2O· Me Me H H 2 H H CI -(CH2)2O· Me Me H H 2 H H CI -(CH2)2O· Me Me H H 2 H H CI -(CH2)2O· Me Me H H 2 H H CI -(CH2)2O· Me Me H H 2 H H CI -(CH2)2O· Me Me H H H CI H CI Me Me H H H CF3 Me -(CH2)2O· Me Me H H H CF3 Me -(CH2)2O· Me Me H <t< td=""><td>Me</td><td>Me</td><td>H</td><td>H</td><td>2</td><td>H</td><td>H</td><td>CF₃</td><td>C(=O)N(Me)₂</td><td>CI</td></t<>	Me	Me	H	H	2	H	H	CF ₃	C(=O)N(Me) ₂	CI
Me Me H H 2 H H C1 -(CH ₂) ₂ O-(CH ₂) ₂ O-(CH ₂) ₃ O-(CH ₂) ₃ O-(CH ₂) ₃ SO-(CH ₂) ₃ SO	Me	Me	H	H	2	H	H	CF ₃	C(=O)NHPh	CI
Me Me H H 2 H H Cl -(CH ₂) ₈ Co-(CH ₂)	Me	Me	Н	H	2	H	H	CF₃	NH ₂	Cl
Me Me H H Z H H Cl -(CH2)sS(CH2)sS(CH2)sS(CH2)sSO	Me	Me	H	н	2	н	н	Cl	-(0	(H ₂) ₂ O-
Me Me H H 2 H H CI -(CH2)aSO2* Me Me H H 2 H H CF3 -(CH2)aCO* Me Me H H 2 H H CF3 -(CH2)aCO* Me Me H H 2 H H CF3 -(CH2)aCO* Me Me H H 2 H H CF3 -(CH2)aCO* Me Me H H 2 H H CF3 -(CH2)aCO* Me Me H H C H H CF3 Me -(CH2)aCO* Me Me H H C H H CG -(CH2)aCO* -(CH2)a	Me	Me	н	H	2	н	H	C1	-(C	CH ₂) ₃ O-
Me Me H H 2 H H CF3	Me	Me	H	н	2	H	H	Cl	-(0	CH ₂) ₃ S-
Me Me H H 2 H H CF3 (CH2)3CO-(CH2)3SC-(CH2)3SC-(CH2)3SC-(CH2)3SC-(CH2)3SC-(CH2)3SC-(CH2)3SC-(CH2)3SC-(CH2)3-	Me	Me	н	н	2	н	н	Cl	-(CI	H_2) $_3$ SO $_2$ ·
Me Me H H 2 H CF3	Me	Me	H	н	2	Ηo	Н	CF3	-(C	$(H_2)_2O$
Me Me H H 2 H H CF3	Me	Me	н	н	2	н	н	CF3	-(C	² H ₂)₃O•
Me Me H H 2 H H OME -(CH ₂) ₄ - Me Me H H 2 H H OCHF ₂ -(CH ₂) ₄ - H H H H C H H CCH ₂) ₄ - Me H H H CF ₃ Me CI Me H H 2 H H CF ₃ Me CI Me Me H H CF ₃ Me CI Me Pr-i H H CF ₃ Me CI Me Pr-i H H CF ₃ Me CI Me Pr-c H H CF ₃ Me <td>Me</td> <td>Me</td> <td>н</td> <td>н</td> <td>2</td> <td>Н</td> <td>Н</td> <td>CF3</td> <td>-(c</td> <td>CH2)3S-</td>	Me	Me	н	н	2	Н	Н	CF3	-(c	CH2)3S-
Me	Me	Me	н	н	2	н	H	CF ₃	-(CI	H ₂) ₃ SO ₂ -
H H H H H 2 H H CF3 Me C1 Me H H H H 2 H H CF3 Me C1 Me Me Me Me H 2 H H CF3 Me C1 Me Me Me H H 2 Et H CF3 Me C1 Me Me Me H H 2 Et H CF3 Me C1 Me Me H H 2 Pri H CF3 Me C1 Me Me H H 2 H H CF3 Me C1 Me Me H H 2 H CF3 Me C1 Me Me H H 2 H CF3 Me C1 Me Me H H CF3 Me C1 Me Et H H 2 H CF3 Me C1 Me Pri H H 2 H CF3 Me C1 Me Pr H H 2 H CF3 Me C1 M	Me	Me	н	н	2	н	н	OMe	-((CH ₂) ₄ -
Me H H H H 2 H H CF3 Me CI Me Me Me Me H 2 H H CF3 Me CI Me Me Me H H 2 Me H CF3 Me CI Me Me H H H 2 Me H CF3 Me CI Me Me H H 2 Pri H CF3 Me CI Me Me H H 2 H CF3 Me CI Me Me H H 2 H CF3 Me CI Me Me H H 2 H CF3 Me CI Me Et H H 2 H CF3 Me CI Me Pri H H 2 H CF3 Me CI Me Pr H H 2 H CF3 Me CI Me C1 Me	Me	Me	н	н	2	н	н	OCHF2	-((CH ₂) ₄ ·
Me Me Me Me H 2 H H CF3 Me C1 Me Me Me H H 2 H H CF3 Me C1 Me Me H H 2 Et H CF3 Me C1 Me Me H H 2 Et H CF3 Me C1 Me Me H H 2 Pri H CF3 Me C1 Me Me H H 2 H CF3 Me C1 Me Me H H 2 H CF3 Me C1 Me Me H H 2 H CF3 Me C1 Me Et H H 2 H H CF3 Me C1 Et Et H H 2 H H CF3 Me C1 Me Pri H H 2 H H CF3 Me C1 Me Pr H H 2 H H CF3 Me C1 Me Pr C H H 2 H H CF3 Me C1 Me Me C1 Me C	H	н	н	н	2	н	н	CF ₃	Me	C1
Me Me H 2 H H CF3 Me CI Me Me H H 2 Me H CF3 Me CI Me Me H 2 Pri H CF3 Me CI Me Me H 2 Me Me CI Me H H 2 H CF3 Me CI Me Et H H 2 H CF3 Me CI Me Pri H 2 H CF3 Me CI Me Pro H 2 H CF3 Me CI Me Pro H 2 H CF3 Me CI Me CH2Pro H H CF3 Me CI Me CH2Pro H H CF3 Me CI CH293* H<	Me	н	н	н	2	H	н	CF ₃	Me	Cl
Me H H 2 Me H CF3 Me CI Me Me H H 2 Et H CF3 Me CI Me Me H H 2 Pr-i H CF3 Me CI Me Et H H 2 H H CF3 Me CI Me Et H H 2 H H CF3 Me CI Me Pr-i H H 2 H H CF3 Me CI Me Pr-i H H 2 H H CF3 Me CI Me Pr-c H H 2 H H CF3 Me CI Me CH2Pr-c H H 2 H H CF3 Me CI -(CH2)2- H H 2 H H CF3 Me CI -(CH2)3- H 2 H H <td>Me</td> <td>н</td> <td>Me</td> <td>н</td> <td>2</td> <td>н</td> <td>н</td> <td>CF₃</td> <td>Me</td> <td>C1</td>	Me	н	Me	н	2	н	н	CF ₃	Me	C1
Me Me H H 2 Et H CF3 Me CI Me Me H H 2 Pr-i H CF3 Me CI Me Me H H 2 H H CF3 Me CI Me Et H H 2 H H CF3 Me CI Me Pr-i H H CF3 Me CI Me CH2Pr-c H H CF3 Me CI Me CH2Pr-c H H CF3 Me CI -(CH2)3-1 H H CH H CF3 Me CI -(CH2)4-1	Me	Me	Me	н	2	н	н	CF3	Me	C1
Me Me H H 2 Pri H CF3 Me CI Me Me H H 2 Me Me CI Me Et H H 2 H H CF3 Me CI Me Pri H H 2 H H CF3 Me CI Me Pri H H 2 H H CF3 Me CI Me Pri H H 2 H H CF3 Me CI Me Pri H H CF3 Me CI Me CH2Pri H H CF3 Me CI -(CH2)2: H H CH H CF3 Me CI -(CH2)3: H H H CH H CF3 Me CI H -(CH2)3: H <	Me	Me	н	н	2	Me	н	CF ₃	Me	C1
Me H H 2 Me Me CF3 Me Cl Me Et H H 2 H H CF3 Me Cl Me Pr-i H H 2 H H CF3 Me Cl Me Pr-c H H 2 H H CF3 Me Cl Me CH2Pr-c H H 2 H H CF3 Me Cl Me CH2Pr-c H H 2 H H CF3 Me Cl -(CH2)2 H H 2 H H CF3 Me Cl -(CH2)3 H H C H CF3 Me Cl -(CH2)4 H 2 H H CF3 Me Cl H -(CH2)3 H 2 H H CF3 Me Cl <td>Me</td> <td>Me</td> <td>н</td> <td>н</td> <td>2</td> <td>Et</td> <td>Н</td> <td>CF3</td> <td>Me</td> <td>Cl</td>	Me	Me	н	н	2	Et	Н	CF3	Me	Cl
Me Et H H 2 H H CF3 Me Cl Me Pr-i H H 2 H H CF3 Me Cl Me Pr-i H H 2 H H CF3 Me Cl Me Pr-c H H 2 H H CF3 Me Cl Me CH2Pr-c H H 2 H H CF3 Me Cl -(CH2)2- H H 2 H H CF3 Me Cl -(CH2)3- H H 2 H H CF3 Me Cl -(CH2)4- H H 2 H H CF3 Me Cl H -(CH2)3- H 2 H H CF3 Me Cl H -(CH2)5- H 2 H H CF3 Me Cl H -(CH2)6- H 2 H H CF3 </td <td>Me</td> <td>Me</td> <td>H</td> <td>н</td> <td>2</td> <td>Pri</td> <td>н</td> <td>CF₃</td> <td>Me</td> <td>C1</td>	Me	Me	H	н	2	Pri	н	CF ₃	Me	C1
Et Et H H H 2 H CF3 Me Cl Me Pri H H 2 H H CF3 Me Cl Me Pr H H 2 H H CF3 Me Cl Me Prc H H 2 H H CF3 Me Cl Me CH2Prc H H 2 H H CF3 Me Cl -(CH2)2- H H 2 H H CF3 Me Cl -(CH2)3- H H 2 H H CF3 Me Cl -(CH2)4- H H 2 H H CF3 Me Cl -(CH2)5- H H 2 H H CF3 Me Cl H -(CH2)4- H 2 H H CF3 Me Cl H -(CH2)4- H 2 H H CF3 Me Cl H -(CH2)4- H 2 H H CF3 Me Cl H -(CH2)4- H 2 H H CF3 Me Cl H -(CH2)5- H 2 H H CF3 Me Cl H -(CH2)6- H 2 H H CF3 Me Cl Me Cl H -(CH2)6- H 2 H H CF3 Me Cl Me Cl H -(CH2)6- H 2 H H CF3 Me Cl Me Cl H -(CH2)6- H 2 H H CF3 Me Cl Me Cl H -(CH2)6- H 2 H H CF3 Me Cl	Me	Me	H	н	2	Me	Me	CF3	Me	Cl
Me Pr-i H H 2 H H CF3 Me CI Me Pr-c H H 2 H H CF3 Me CI Me CH2Pr-c H H 2 H H CF3 Me CI -(CH2)2- H H 2 H H CF3 Me CI -(CH2)3- H H 2 H H CF3 Me CI -(CH2)4- H H CF3 Me CI H -(CH2)3- H 2 H H CF3 Me CI H -(CH2)4- H 2 H H CF3 Me CI H -(CH2)5- H 2 H H CF3 Me CI H -(CH2)6- H 2 H H CF3 Me CI Me H H H H H CF3 Me CI H <	Me	Et	H	н	2	н	н	CF3	Me	Cl
Me Pr H H 2 H H CF3 Me CI Me Pr-c H H 2 H H CF3 Me CI -(CH2)2- H H 2 H H CF3 Me CI -(CH2)3- H H 2 H H CF3 Me CI -(CH2)4- H H 2 H H CF3 Me CI H -(CH2)5- H 2 H H CF3 Me CI H -(CH2)4- H 2 H H CF3 Me CI H -(CH2)5- H 2 H H CF3 Me CI H -(CH2)6- H 2 H H CF3 Me CI Me H H H H H H CF3 Me CI H -(CH2)6- H 2 H H CF3 Me CI	Et	Et	H	н	2	H	н	CF ₃	Me	Cl
Me Pr-c H H 2 H H CF3 Me Cl Me CH2Pr-c H H 2 H H CF3 Me Cl -(CH2)2- H H 2 H H CF3 Me Cl -(CH2)3- H H 2 H H CF3 Me Cl -(CH2)5- H H 2 H H CF3 Me Cl H -(CH2)4- H 2 H H CF3 Me Cl H -(CH2)5- H 2 H H CF3 Me Cl H -(CH2)6- H 2 H H CF3 Me Cl Me H H H H H H H H Cl	Me	Pr-i	H	н	2	н	н	CF3	Ме	Cl
Me CH ₂ Pr-c H H 2 H H CF ₃ Me Cl -(CH ₂) ₂ · H H 2 H H CF ₃ Me Cl -(CH ₂) ₃ · H H 2 H H CF ₃ Me Cl -(CH ₂) ₅ · H H 2 H H CF ₃ Me Cl H -(CH ₂) ₃ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₄ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₆ · H 2 H H CF ₃ Me Cl Me H H H H H H Cl H	Me	Pr	H	н	2	н	н	CF3	Ме	C1 ,
-(CH ₂) ₂ · H H 2 H H CF ₃ Me Cl -(CH ₂) ₃ · H H 2 H H CF ₃ Me Cl -(CH ₂) ₄ · H H 2 H H CF ₃ Me Cl -(CH ₂) ₅ · H H 2 H H CF ₃ Me Cl H -(CH ₂) ₃ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₄ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ · H 2 H H CF ₃ Me Cl Me Me H H CF ₃ Me Cl	Me	Pr-c	н	н	2	н	н	CF3	Me	Cl
-(CH ₂) ₃ · H H 2 H H CF ₃ Me Cl -(CH ₂) ₄ · H H 2 H H CF ₃ Me Cl -(CH ₂) ₅ · H H 2 H H CF ₃ Me Cl H -(CH ₂) ₄ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ · H 2 H H CF ₃ Me Cl H -(CH ₂) ₆ · H 2 H H CF ₃ Me Cl Me H H H H CF ₃ Me Cl H -(CH ₂) ₆ · H 2 H H CF ₃ Me Cl Me H H H H H H H Cl H	Me	CH ₂ Pr-c	H	н	2	н	н	CF ₃	Me	Cl
-(CH ₂) ₄ - H H 2 H CF ₃ Me Cl -(CH ₂) ₅ - H H 2 H CF ₃ Me Cl H -(CH ₂) ₃ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₄ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ - H 2 H H CF ₃ Me Cl Me Me H H CF ₃ Me Cl	-((CH ₂) ₂ -	Н	н	2	H	н	CF3	Me	Cl
-(CH ₂) ₅ - H H 2 H H CF ₃ Me Cl H -(CH ₂) ₃ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₄ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₆ - H 2 H H CF ₃ Me Cl Me H H H H H Cl H Cl	-((CH2)3-	Н	н	2	н	Н	CF ₃	Me	Cl
H -(CH ₂) ₃ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₄ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₆ - H 2 H H CF ₃ Me Cl Me Me H H I H CI H Cl	-((CH ₂) ₄ -	H	н	2	н	H	CF ₃	Ме	CI
H -(CH ₂) ₄ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₅ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₆ - H 2 H H CF ₃ Me Cl Me Me H H I H Cl H Cl	-((CH ₂) ₅ -	н	н	2	н	н	CF3	Me	Cl
H -(CH ₂) ₅ - H 2 H H CF ₃ Me Cl H -(CH ₂) ₆ - H 2 H H CF ₃ Me Cl Me Me H H 1 H Cl H Cl	H	-(CH	2)3-	н	2	н	н	CF ₃	Ме	Cl
H -(CH ₂) ₆ - H 2 H H CF ₃ Me Cl Me Me H H 1 H Cl H Cl	H	·(CH	2)4-	H	2	H	н	CF3	Ме	Cl
H -(CH ₂) ₆ - H 2 H H CF ₃ Me Cl Me Me H H 1 H Cl H Cl	H	-(CH	2)5-	н	2	H	н	CF3	Ме	Cl
	H	-(CH	2)6-	н	2	н	н	CF3	Ме	Cl
Me Me H H 1 H OCHF2 H C1	Me	Me	Н	н	1	н	н	Cl	н	Cl
	Me	Me	н	н	1	H	н	OCHF ₂	H	Cl

Me	Me	н	н	1	н	н	OCHF ₂	H	OCHF2
Me	Me	Н	н	1	H	н	CHF_2	H	CI
Me	Me	H	н	1	н	Н	CF ₃	H	F
Me	Me	Н	н	1	H	н	CF ₃	H	CI
Me	Me	Н	н	1	H	н	CF3	н	OMe
Me	Me	н	н	1	н	н	CF₃	H	OEt
Me	Me	H	н	1	H	н	CF ₃	H	OCHF2
Me	Me	H	н	1	н	н	CF3	H	CN
Me	Me	н	н	1	H	н	CF ₃	H	Me
Me	Me	H	Н	1	н	н	н	Me	C1
Me	Me	н	н	1	н	н	Me	Ме	Me
Me	Me	н	Н	1	н	н	Me	Me	C1
Me	Me	н	н	1	H	н	Cl	Me	Me
Me	Me	н	H	1	н	Н	Et	Me	C1
Me	Me	H	Н	1	н	н	Cl	Me	Et
Me	Me	H	Н	1	Н	н	Pr-i	Me	CI
Me	Me	H	н	1	H	н	Cl	Me	Pr-i
Me	Ме	H	H	1	н	н	Bu-t	Me	C1
Me	Me	H	H	1	H	н	Cı	Me	Bu-t
Me	Me	Н	H	1	H	H	Cı	Me	C1
Me	Me	H	н	1	H	н	CHF ₂	Me	C1
Me	Me	H	н	1	H	H	Cl	Me	CHF ₂
Me	Me	H	Н	1	H	H	OCHF ₂	Me	H
Me	Me	H	н	1	H	H	OCHF2	Me	C1
Me	Me	H	н	1	H	H	Cl	Me	OCHF2
Me	Me	H	H	1	H	H	OCHF ₂	Ме	OCHF2
Me		H	H	1	H	H	CF3	Me	H
Me		н	H	1	H		CF ₃	Me	Cı
Me		H	H	1	H		Cl	Me	CF ₃
Me		H	H	1	H		CF ₃	Me ·	F
Me		H	Н	1	H	H	F	Me	CF ₃
Me	ŧ	H	H	1	H	H	CF ₃	Ме	ОН
Ме		Н	H	1	H	H	OH	Ме	CF ₃
Me		H	H	1	H	H	CF ₃	Me	OMe
Ме		H	H	1	н	H	OMe	Me	CF ₃
Me		H	H	1	H		CF ₃	Me	OEt
Me		H	H	1	H		OEt	Ме	CF ₃
Me	Me	H	H	1	H	H	CF ₃	Ме	OPr-i

Me	Me	Н	Н	1	н	н	CF ₃	Me	OPr
Me	Me	н	Н	1	H	H	CF ₃	Me	OBu-t
Me	Me	H	H	1	H	H	CF ₃	Me	OBu-s
Me	Me	H	H	1	H	H	CF ₃	Me	OBu-i
Me	Me	H	H	1	H	H	CF ₃	Me	OBu
Me	Me	H	H	1	H	Н	CF ₃	Me	O(2-Pen)
Me	Me	H	H	1	H	H	CF ₃	Me	O(3-Pen)
Me	Me	H	H	1	H	H	CF ₃	Me	OPen-n
Me	Me	H	н	1	H	H	CF ₃	Me	O(2-Hex)
Me	Me	H	H	1	H	H	CF ₃	Me	O(3-Hex)
Me	Me	H	H	1	н	Н	CF ₃	Me	OHex-n
Me	Me	H	H	1	H	H	CF ₃	Me	OPen-c
Me	Ме	Н	H	1	H	H	CF ₃	Me	OHex-c
Me	Me	н	H	1	H	H	CF ₃	Me	OCH ₂ Pr-c
Me	Me	H	H	1	H	H	CF ₃	Me	OCH ₂ Bu-c
Me	Me	H	H	1	H	H	CF ₃	Me	OCH ₂ Pen-c
Me	Me	H	Н	1	н	H	CF ₃	Me	OCH ₂ Hex-c
Me	Me .	н	Н	1	H	H	CF ₃	Me	OCH2CH=CH2
Me	Me	Н	H	1	H	H	CF3	Me	OCH ₂ C≡CH
Ме	Me	H	H	1	H	H	CF3	Ме	OCHF2
Me	Me	H	H	1	Н	Н	OCHF ₂	Me .	CF ₃
Ме	Me	н	H	1	H	H	CF ₃	Me	OCH ₂ CHF ₂
Ме	Me	H	Н	1	н	H	OCH ₂ CHF	Me	CF_3
Ме	Me	H	Н	1	н	H	CF3	Ме	OCH ₂ CF ₃
Ме	Me	H	н	1	Н	H	OCH ₂ CF ₃	Ме	CF ₃
Me	Me	H	H	1	Н	H	CF ₃	Me	OCH ₂ CN
Ме		H	Н	1	H	H	CF ₃	Ме	OCH ₂ C(=O)OEt
Ме	Me	H	Н	1	Н	H	CF ₃	Me	OCH(Me)C(=O)OEt
Ме		Н	H	1	Н	H	CF ₃	Me	OCH ₂ C(=O)NH ₂
Ме	Me	H	н	1	H	H	CF ₃	Ме	OCH ₂ C(=O)NHMe
Ме		H	H	1	H	H	CF3	Me	$OCH_2C(=O)N(Me)_2$
Ме	1	H	H	1	H	H	CF3	Me	OCH ₂ Ph
Me		H	H	1	H	H	CF ₃	Me	OPh
Me		H	H	1	н	H	CF ₃	Me	O(2-C1)Ph
Me	Me .	H	H	1	н	H	CF ₃	Me	O(2-Br)Ph
Me		H	H	1	H	н	CF3		O(2-F)Ph
Me	Me	H	H	1	H	H	CF ₃	Me	O(2-Me)Ph

Me Me H H I H H CF3 Me O(2-OMe)Ph Me Me H H I H H CF3 Me O(2-NO ₂)Ph Me Me H H I H H CF3 Me O(2-CN)Ph Me Me H H I H H CF3 Me O(2-CO)DMe)Ph Me Me H H I H H CF3 Me O(3-C)DPh Me Me H H I H H CF3 Me O(3-D)Ph Me Me H H I H H CF3 Me O(3-D)Ph Me Me H H I H H CF3 Me O(3-Me)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-Me)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3											
Me Me H H I H H CF3 Me O(2-CN)Ph Me Me H H I H H CF3 Me O(3-C)Ph Me Me H H I H H CF3 Me O(3-C)Ph Me Me H H I H H CF3 Me O(3-C)Ph Me Me H H I H H CF3 Me O(3-B)Ph Me Me H H I H H CF3 Me O(3-B)Ph Me Me H H I H H CF3 Me O(3-Me)Ph Me Me H H I H H CF3 Me O(3-Me)Ph Me Me H H I H H CF3 Me O(3-C)Ph Me Me Me H H I H H CF3 Me O(3-CN)Ph Me Me Me H H I H H CF3 Me O(3-C)Ph Me Me Me H H I H H CF4 Me O(3-C)Ph Me Me Me H H I H H CF5 Me O(4-C)Ph Me Me Me H H I H H CF5 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-Me)Ph Me Me M H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me OSO ₂ Ph Me Me H H I H H CF3 Me OSO ₂ Ph Me Me Me H H I H H CF3 Me OSO	1	Ме	Me	H	н	1	H	н	CF ₃	Me	O(2-OMe)Ph
Me Me H H I H H CF3 Me O(2-C(=O)OMe)Ph O(3-CD)Ph Me Me Me H H I H H CF3 Me O(3-DP)Ph O(3-DP)Ph Me Me Me H H I H H CF3 Me O(3-DP)Ph Me Me Me H H I H H CF3 Me O(3-Me)Ph Me Me H H I H H CF3 Me O(3-Me)Ph Me Me Me H H I H H CF3 Me O(3-Me)Ph Me Me Me H H I H H CF3 Me O(3-Me)Ph Me Me Me H H I H H CF3 Me O(3-C(=O)OMe)Ph Me Me Me H H I H H CF3 Me O(3-CO)Ph Me Me Me H H I H H CF3 Me O(3-C(=O)OMe)Ph Me Me Me H H I H H CF3 Me O(3-C(=O)OMe)Ph Me Me Me H H I H H CF3 Me O(4-DP)Ph Me Me Me H H I H H CF3 Me O(4-DP)Ph Me Me Me H H I H H CF3 Me O(4-Me)Ph Me Me Me H H I H H CF3 Me O(4-Me)Ph Me Me Me H H I H H CF3 Me O(4-Me)Ph Me Me Me H H I H H CF3 Me O(4-Me)Ph Me Me Me H H I H H CF3 Me O(4-CD)Ph Me Me Me H H I H H CF3 Me OSO2Me Me Me Me H H I H H CF3 Me OSO2Me Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H I H H CF3 Me OSO2Ph Me Me Me H H	I	И́е	Me	H	H	1	н	Н	CF ₃	Me	O(2·NO ₂)Ph
Me Me H H I H H CF3 Me O(3-CI)Ph Me Me H H I H H CF3 Me O(3-Br)Ph Me Me H H I H H CF3 Me O(3-F)Ph Me Me H H I H H CF3 Me O(3-Me)Ph Me Me H H I H H CF3 Me O(3-Me)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-C(-O)OMe)Ph Me Me H H I H H CF3 Me O(3-C(-O)OMe)Ph Me Me Me H H I H H CF3 Me O(3-C(-O)OMe)Ph Me Me Me H H I H H CF3 Me O(4-Br)Ph Me Me H H I H H CF3 Me O(4-Me)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me OC(-O)Me Me Me H H I H H CF3 Me OC(-O)Me Me Me H H I H H CF3 Me OC(-O)Et Me Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OSO2Me Me Me H H I H H CF3 Me OSO2CH2Ph Me Me H H I H H CF3 Me OSO2CPh Me Me Me H H I H H CF3 Me OSO2CPh	I	Иe	Me	H	H	1	н	Н	CF ₃	Me	O(2-CN)Ph
Me Me H H H H CF3 Me O(3-Br)Ph Me Me H	N	Иe	Me	H	H	1	H	Н	CF ₃	Me	O(2-C(=O)OMe)Ph
Me Me H H I H H CF3 Me O(3-F)Ph Me Me H H I H H CF3 Me O(3-Me)Ph Me Me H H I H H CF3 Me O(3-Me)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-OMe)Ph Me Me H H I H H CF3 Me O(3-C)Ph Me Me H H I H H CF3 Me O(3-C)Ph Me Me H H I H H CF3 Me O(4-C)Ph Me Me H H I H H CF3 Me O(4-F)Ph Me Me H H I H H CF3 Me O(4-F)Ph Me Me H H I H H CF3 Me O(4-Me)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me OC(-O)Me Me Me H H I H H CF3 Me OC(-O)Me Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OC(-O)Et Me Me H H I H H CF3 Me OSO2ET Me Me Me H H I H H CF3 Me OSO2ET Me Me Me H H I H H CF3 Me OSO2CF3 Me Me Me H H I H H CF3 Me OSO2F5 Me Me Me H H I H H CF3 Me SO2Me Me Me H H I H H CF3 Me SO2Me Me Me H H I H H CF3 Me SO2Me Me Me H H I H H CF3 Me SO2ET Me Me Me H H I H H CF3 Me SO2ET Me Me Me H H I H H CF3 Me SO2ET Me Me Me H H I H H CF3 Me SO2ET Me Me Me H H I H H CF3 Me SO2ET	I	И́е	Me	H	H	1	H	H	CF ₃	Me	O(3-Cl)Ph
Me Me H H I H H CF3 Me O(3·Me)Ph Me Me H H I H H CF3 Me O(3·Oc)Ph Me Me H H I H H CF3 Me O(3·Oc)Ph Me Me H H I H H CF3 Me O(3·Cc)O)Ome)Ph Me Me H H I H <td>N</td> <td>И́е</td> <td>Me</td> <td>H</td> <td>H</td> <td>1</td> <td>H</td> <td>H</td> <td>CF₃</td> <td>Me</td> <td>O(3·Br)Ph</td>	N	И́е	Me	H	H	1	H	H	CF ₃	Me	O(3·Br)Ph
Me Me H	1/	Лe	Me	H	Н	1	H	H	CF ₃	Me	O(3·F)Ph
Me Me H H I H H CF3 Me O(3·CN)Ph Me Me H H I H H CF3 Me O(3·C(=O)OMe)Ph Me Me H H I H H CF3 Me O(4·CD)Ph Me Me H H I H H CF3 Me O(4·CD)Ph Me Me H H I H H CF3 Me O(4·FP)Ph Me Me H H I H H CF3 Me O(4·Me)Ph Me Me H H I H H CF3 Me O(4·OOP)Ph Me Me H H I H H CF3 Me O(4·OOP)Ph Me Me H H I H H CF3 Me O(4·OOP)Ph Me	N	Лe	Me	H	н	1	н	Н	CF ₃	Me	O(3-Me)Ph
Me Me H I H H CF3 Me O(3-C(=O)OMe)Ph Me Me H I H H CF3 Me O(4-CI)Ph Me Me H I H H CF3 Me O(4-CI)Ph Me Me H I H H CF3 Me O(4-CF)Ph Me Me H I H CF3 Me O(4-Me)Ph Me Me H I H CF3 Me O(4-OMe)Ph Me Me H I H CF3 Me O(4-OMe)Ph Me Me H I H CF3 Me O(4-OMe)Ph Me Me H I H CF3 Me O(4-CO)Ph Me Me H H H CF3 Me OC(=O)Me Me Me H H H CF	V	Лe	Me	н	н	1	н	H	CF3	Me	O(3-OMe)Ph
Me Me H H H H CF3 Me O(3-C(=O)OMe)Ph Me Me H H H H H CF3 Me O(4-C)Ph Me Me H H H H H CF3 Me O(4-GP)Ph Me Me H H H H CF3 Me O(4-GP)Ph Me Me H H H CF3 Me O(4-OMe)Ph Me Me H H H CF3 Me OC(=O)OMe Me Me H	N	Лe	Me	н	н	1	H	H	CF ₃	Me	O(3·NO ₂)Ph
Me Me H	V	Л́е	Me	н	н	1	H	H	CF ₃	Me	O(3-CN)Ph
Me Me H H H H CF3 Me O(4-Br)Ph Me Me H	N	Л́е	Me	н	н	1	Н	H	CF ₃	Me	O(3-C(=O)OMe)Ph
Me Me H H I H H CF3 Me O(4-F)Ph Me Me H H I H H CF3 Me O(4-Me)Ph Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H I I H H CF3 Me O(4-CN)Ph Me Me H I I H H CF3 Me O(4-CN)Ph Me Me H I I H H CF3 Me OC4-CN)Ph Me Me H I H H CF3 Me OC(=O)Me Me Me H I H H CF3 Me OC(=O)CH2Ph Me Me H H I H H CF3 Me OC(=O)CF3 Me Me H H </td <td>V</td> <td>Лe</td> <td>Me</td> <td>H</td> <td>н</td> <td>1</td> <td>н</td> <td>H</td> <td>CF₃</td> <td>Me</td> <td>O(4-Cl)Ph</td>	V	Лe	Me	H	н	1	н	H	CF ₃	Me	O(4-Cl)Ph
Me Me H	V	Лe	Me	н	н	1	н	н	CF ₃	Me	O(4-Br)Ph
Me Me H H I H H CF3 Me O(4-OMe)Ph Me Me H H I H H CF3 Me O(4-CN)Ph Me Me H H I H H CF3 Me O(4-CC)O)OMe)Ph Me Me H H I H H CC-O)OMe OC(-O)Me Me Me H H I H H CC-O)Me OC(-O)Me Me Me H H I H CC-O)Me OC(-O)Et Me Me H H I H CC3 Me OC(-O)Et Me Me H H I H CC3 Me OC(-O)CH2Ph Me Me H H I H CC3 Me OC(-O)CF3 Me Me H H I H CF3 Me <td>N</td> <td>Л́е</td> <td>Me</td> <td>H</td> <td>н</td> <td>1</td> <td>Н</td> <td>H</td> <td>CF3</td> <td>Me</td> <td>O(4-F)Ph</td>	N	Л́е	Me	H	н	1	Н	H	CF3	Me	O(4-F)Ph
Me Me H H H H CF3 Me O(4·NO2)Ph Me Me H	N	Лe	Me	H	н	1	н	н	CF ₃	Me	O(4·Me)Ph
Me Me H H I H H CF3 Me O(4-C(-O)OMe)Ph Me Me H H I H H CF3 Me OC(-O)Me OC(-O)Me Me Me H H I H H CF3 Me OC(-O)Me OC(-O)Me Me Me H H I H H CF3 Me OC(-O)Et OC(-O)Et OC(-O)Et OC(-O)CF3 Me OC(-O)CF3 OC(-O)CF3 OC(-O)CF3 OC(-O)CF3 OC(-O)CF3 Me OC(-O)CF3 OC(-O)CF	V	Лe	Me	H	н	1	H	н	CF ₃	Me	O(4-OMe)Ph
Me Me H H H H CG3 Me OG4-C(=O)OMe)Ph OG(=O)Me OG(=O)Me OG(=O)Me OG(=O)Me OG(=O)Me OG(=O)Me OG(=O)Me OG(=O)Et OG(=O)Et OG(=O)Et OG(=O)Et OG(=O)CH2Ph OG(=O)CH2Ph OG(=O)CF3 OG(=	N	Лe	Me	H	н	1	н	н	CF ₃	Me	O(4-NO ₂)Ph
Me Me H H I H H CF3 Me OC(=O)Me OC(=O)Et OC(=O)Et OC(=O)Et OC(=O)Et OC(=O)Et OC(=O)Et OC(=O)Et OC(=O)CH2Ph OC(=O)CH2Ph OC(=O)CH2Ph OC(=O)CF3 OC(=O)CF3 <td>N</td> <td>ſſе</td> <td>Me</td> <td>H</td> <td>н</td> <td>1</td> <td>H</td> <td>н</td> <td>CF3</td> <td>Me</td> <td>O(4-CN)Ph</td>	N	ſſе	Me	H	н	1	H	н	CF3	Me	O(4-CN)Ph
Me Me H H 1 H H CF3 Me OC(=O)Et Me Me H	M	Лe	Me	H	Н	1	H	Н	CF ₃	Me	O(4-C(=O)OMe)Ph
Me Me H	V	ſГе	Me	H	H	1	H	H	CF₃	Me	OC(=O)Me
Me Me H	M	Л́е	Me	H	н	1	н	н	CF3	Me	OC(=O)Et
Me Me H H I H H CF3 Me OC(=O)Ph Me Me H H I H H CF3 Me OSO2Me Me Me H H I H H CF3 Me OSO2CH2Ph Me Me H H I H H CF3 Me OSO2CF3 Me Me H H I H H CF3 Me OSO2Ph Me Me H H I H H CF3 Me SO2Me Me Me H H I H H CF3 Me SO2Me Me Me H H I H H CF3 Me SO2Et Me Me H H H H H H H H H H H H	M	/Ie	Me	H	н	1	H	H	CF ₃	Me	OC(=O)CH ₂ Ph
Me Me H	M	ſГе	Me	H	H	1	H	H	CF3	Me	OC(=O)CF ₃
Me Me H H I H H CF3 Me OSO2Et OSO2CH2Ph Me Me H H I H H CF3 Me OSO2CF3 Me Me H H I H H CF3 Me OSO2Ph Me Me H H I H H CF3 Me SMe Me Me H <td>M</td> <td>Іе</td> <td>Me</td> <td>H</td> <td>н</td> <td>1</td> <td>н</td> <td>H</td> <td>CF3</td> <td>Me</td> <td>OC(=O)Ph</td>	M	І е	Me	H	н	1	н	H	CF3	Me	OC(=O)Ph
Me Me H H 1 H H CF3 Me OSO2CH2Ph Me Me H	M	1e	Me	H	Н	1	H	H	CF ₃	Me	OSO ₂ Me
Me Me H	M	1e	Me	H	н	1	H	H	CF ₃	Ме	OSO ₂ Et
Me Me H	M	ſе	Me	H	н	1	H	H	CF3	Me	OSO ₂ CH ₂ Ph
Me Me H	M	1e	Me	H	Н	1	H	H	CF₃	Me	OSO ₂ CF ₃
Me Me H	M	Ге	Me	H	H	1	H	H	CF ₃	Me	OSO₂Ph
Me Me H H 1 H H CF3 Me SEt Me Me H H 1 H H CF3 Me SO2Et Me Me H H H H CF3 Me SPr Me Me H H H H H CF3 Me SO2Pr Me Me H H H H H H H H CF3 Me SPr-i	M	ſе	Me	H	н	1	H	H	CF3	Ме	SMe
Me Me H H 1 H H CF3 Me SO2Et Me Me H H 1 H H CF3 Me SPr Me Me H H H H H H CF3 Me SO2Pr Me Me H	M	Ге	Me	H	Н	1	H	H	CF ₃	Ме	SO ₂ Me
Me Me H H H H CF3 Me SPr Me Me H H H H CF3 Me SO2Pr Me Me H H H H H H CF3 Me SPr-i	M	Ге	Me	H	H	1	н	н	CF ₃	Ме	SEt
Me Me H H I H H CF3 Me SO2Pr Me Me H H I H H CF3 Me SPr-i	M	1e	Me	H	н	1	H	н	CF3	Me	SO₂Et
Me Me H H 1 H CF3 Me SPr-i	M	ſе	Me	H	н	1	H	н	CF ₃	Me	SPr
	M	ſе	Me	H	H	1	H	H	CF ₃	Me	SO ₂ Pr
Me Me H H I H CF3 Me SO2Pr-i	M	Ie	Me	H	H	1	H	н	CF ₃	Me	SPr-i
	M	ſe	Me	H	H	1	н	H	CF3	Ме	SO ₂ Pr-i

		ı	,		,	1	1	Less	1
Me	Me	Н	H	1	Н	H	CF ₃	Me	SBu-t
Me	Me	H	H	1	H	H	CF ₃	Me	SO ₂ Bu-t
Me	Me	H	H	1	H	H	CF ₃	Me	SCHF ₂
Me	Me	H	H	1	H	H	CF ₃	Me	SO ₂ CHF ₂
Me	Me	н	H	1	H	H	CF ₃	Me	SCF₃
Me	Me	Н	H	1	H	H	CF ₃	Me	SO ₂ CF ₃
Me	Me	н	Н	1	H	H	CF3	Me	SPh
Me	Me	н	н	1	H	H	CF ₃	Me	SO₂Ph
Me	Me	Н	н	1	н	H	CF ₃	Me	SCH ₂ Ph
Me	Me	H	н	1	н	H	CF3	Me	SO ₂ CH ₂ Ph
Me	Me	H	н	1	Н	н	CF3	Me	SCH ₂ C(=O)OEt
Me	Me	н	н	1	н	н	CF3	Me	SO ₂ CH ₂ C(=O)OEt
Me	Me	H	H	1	н	Н	CF3	Me	SCH(Me)C(=O)OEt
Me	Me	н	H.	1	н	H	CF3	Me	SO ₂ CH(Me)C(=O)OEt
Me	Me	H	н	1	H	H	CF ₃	Me	SCH ₂ C(=O)NH ₂
Me	Me	H	н	1	H	H	CF3	Me	SO ₂ CH ₂ C(=O)NH ₂
Me	Me	н	н	1	н	Н	CF ₃	Me	SCH ₂ C(=O)NHMe
Me	Me	H	н	1	н	H	CF ₃	Me	SO ₂ CH ₂ C(=0)NHMe
Me	Me	Н	н	1	н	Н	CF3	Me	SCH ₂ C(=O)N(Me) ₂
Ме	Me	H	н	1	н	н	CF ₃	Me	SO ₂ CH ₂ C(=O)N(Me) ₂
Me	Me	H	н	1	H	Н	CF3	Me	NH2
Ме	Me	H	н	1	н	Н	CF ₃	Me	NHMe
Me	Me	Н	н	1	H	H	CF ₃	Me	N(Me) ₂
Ме	Me	Н	н	1	н	H	CF ₃	Ме	NHC(=0)Me
Me	Me	н	H	1	H	Н	CF ₃	Ме	N(Me)C(=O)Me
Me	Me	н	н	1	H	H	CF ₃	Ме	NHSO2Me
Me	Me	н	H	1	H	H	CF ₃	Ме	N(Me)SO ₂ Me
Ме	Me	H	н	1	н	H	CF ₃	Ме	NHSO ₂ CHF ₂
Me	Me	H	н	1	н	H	CF₃	Ме	N(Me)SO ₂ CHF ₂
Me	Me	н	H	1	н	H	CF ₃	Ме	NHSO ₂ CF ₃
Ме	Me	Н	н	1	н	H	CF ₃	Ме	N(Me)SO ₂ CF ₃
Me	Me	н	н	1	H	H	CF ₃	Me	NHPh
Me	Me	H	H	1	H	H	CF_3	Me	N(Me)Ph
Me	Me	н	н	1	н	н	CF ₃	Me	CN
Ме	Ме	H	н	1	н	н	CN	Me	CF₃
Me	Me	H	H	1	H	н	CF ₃	Me	C(=O)OMe
Me	Me	н	H	1	H	H	CF ₃	Me	C(=O)OCH ₂ Ph
Me	Me	н	н	1	н	н	CF ₃	Me	C(=O)OPh

Me Me	н	н	1	н	н	CF ₃	Me	C(=O)NH ₂
Me Me	н	н	1	н	н	CF ₃	Me	C(=O)NHMe
Me Me	H	H	1	н	н	CF ₃	Me	C(=O)N(Me) ₂
Me Me	H	н	1	H	н	CF ₃	Me	C(=O)Me
Me Me	H	н	1	н	H	CF3	Me	C(=O)CF ₃
Me Me	н	Н	1	н	н	CF ₃	Ме	C(=O)CH ₂ Ph
Me Me	H	H	1	H	н	CF3	Me	C(=0)Ph
Me Me	н	н	1	Н	H	CF ₃	Me	Me
Me Me	H	н	1	н	н	Me	Me	CF ₃
Me Me	н	н	1	н	н	CF ₃	Me	Et
Me Me	н	н	1	н	н	CF ₃	Me	P r i
Me Me	н	н	1	н	н	CF3	Me	Pr
Me Me	н	н	1	н	н	CF ₃	Me	CH2OMe
Me Me	H	н	1	н	н	CF ₃	Me	CF ₃
Me Me	н	н	1	н	Н	CF ₃	Me	CHF ₂
Ме Ме	н	н	1	н	н	CF ₃	Me	Ph
Me Me	н	н	1	н	н	CF ₂ CF ₃	Me	Cl
Me Me	н	н	1	н	н	Ph	Me	Me
Me Me	H	H	1	н	н	Ph	Me	Cl
Me Me	H	H	1	н	н	Ph	Me	OEt
Me Me	н	н	1	H	н	Ph	Me	CF ₃
Me Me	н	н	1	н	н	Ph	Me	Ph
Me Me	н	н	1	н	H	Cı	Et	C1
Me Me	н	н	1	H	H	OCHF ₂	Et	C1
Me Me	н	H	1	H	H	Cı	Et	OCHF ₂
Me Me	H	H	1	H	H	OCHF ₂	Et	OCHF2
Me Me	H	H	1	H	H	CF ₃	Et	F
Me Me	H	H		H		F	Et	CF ₃
Me Me	H	H	i	Н		CF ₃	Et	C1
Me Me	H	H	1	H		Cl	Et	CF_3
Me Me	H	H	[[H		CF ₃	Et	ОМе
Me Me	H	H	1	H	H	ОМе	Et	CF ₃
Me Me	H	Н	1	Н	H	CF ₃	Et	OEt
Me Me	Н	H	1	H		OEt	Et	CF ₃
Me Me	H	H	1	H		CF ₃	Et .	OCHF ₂
Me Me	H	H	1	H		OCHF ₂	Et	CF ₃
Me Me	H	H	1	H		CF ₃	Et	CN .
Me Me	Н	H	1	H	H	CN	Et	CF ₃

Me	Me	н	н	1	н	н	CF3	Et	Me
Me	Me	н	н	1	н	н	Me	Et	CF ₃
Me	Me	H	н	1	н	н	Cı	Pr-i	CI
Me	Me	H	н	1	н	н	OCHF ₂	Pr-i	CI
Me	Me	H	н	1	H	н	CI	Pr-i	OCHF ₂
Me	Me	H	н	1	H	Н	OCHF2	Pr-i	OCHF ₂
Me	Me	H	н	1	н	Н	CF3	Pr-i	F
Me	Me	н	н	1	H	н	F	Pr-i	CF ₃
Me	Me	H	н	1	н	Н	CF ₃	Pr-i	C1
Me	Me	H	н	1	н	Н	C1	Pr-i	CF3
Me	Me	H	н	1	н	H	CF ₃	Pr-i	ОМе
Me	Me	H	н	1	н	Н	ОМе	Pr-i	CF ₃
Me	Me	H	н	1	н	н	CF ₃	Pr-i	OEt
Me	Me	н	н	1	н	H	OEt	Pr-i	CF ₃
Me	Me	H	н	1	н	н	CF ₃	Pr-i	OCHF ₂
Me	Me	H	н	1	н	н	OCHF2	Pr-i	CF ₃
Me	Me	H	н	1	н	н	CF ₃	Pr-i	CN
Me	Me	H	н	1	н	Н	CN	Pr-i	CF ₃
Me	Me	H	н	1	н	H	CF3	Pr-i	Ме
Me	Me	H	н	1	н	н	Me	Pr-i	CF ₃
Me	Me	н	н	1	н	H	Cı	Pr	Cl
Me	Me	H	н	1	н	н	OCHF2	Pr	C1
Me	Me	H	н	1	H	H	Cı	Pr	OCHF2
Me	Me	H	H	1	H	H	OCHF2	Pr	OCHF ₂
Me	Me	H	н	1	H	Н	CF3	Pr	F
Me	Me	H	н	1	H	H	F	Pr	CF ₃
Me	Me	H	н	1	H	H	CF3	Pr	C1
Me	Ме	H	н	1	H	H	Cl	Pr	CF ₃
Me	Me	H	н	1	H	H	CF3	Pr	OMe
Me	Me	H	H	1	H	H	ОМе	Pr .	CF ₃
Me	Me	H	Н	1	H	H	CF3	Pr	OEt
Me	Me	H	H	1	H	H	OEt	Pr	CF3
Me	Ме	H	н	1	H	H	CF ₃	Pr	OCHF2
Me	Me	H	H	1	н	H	OCHF2	Pr	CF3
Me	Me	H	н	1	H	H	CF3	Pr	CN
Me	Me	H	н	1	H	H	CN	Pr	CF ₃
Me	Me	H	н	1	H	H	CF ₃	Pr	Ме
Me	Me	н	н	1	H	H	Me	Pr	CF ₃

,		1					1	1	
1	Me	H	H	1	H	H	CI	Bu-t	Cl
1	Me	H	H		H	H	OCHF ₂	Bu-t	Cl
1	Me	H	H	1	H	H	OCHF ₂	Bu-t	OCHF ₂
1	Me	H	H	1	H	H	CF ₃	Bu-t	H
Me	Me	H	H	1	H	H	CF ₃	Bu-t	F
Me	Me	H	H	1	H	H	CF3	Bu-t	Cl
Me	Me	Н	H	1	H	Н	C1	Bu-t	CF ₃
Me	Me	H	H	1	Н	H	CF ₃	Bu-t	OMe
Me	Me	H	H	1	H	H	OMe	Bu-t	CF ₃
Me	Me	H	H	1	Н	н	CF3	Bu-t	OEt
Me	Me	H	Н	1	H	H	OEt	Bu-t	CF ₃
Me	Me	н	H	1	H	н	CF ₃	Bu·t	OCHF ₂
Me	Me	н	н	1	H	н	CF ₃	Bu-t	CN
Me	Me	·H	н	1	H	н	CF ₃	Bu-t	Me
Me	Ме	н	н	1	H	H	Me	Bu-t	CF ₃
Me	Me	н	н	1	H	н	CF3	Bu-s	CI
Me	Me	Н	н	1	H	Н	Cı	Bu-s	CF ₃
Me	Me	H	н	1	H	H	CF ₃	Bu-i	C1
Me	Me	Н	н	1	Н	H	Cl	Bu-i	CF ₃
Ме	Me	H	н	1	H	H	CF3	Bu	C1
Ме	Me	H	н	1	H	H	Cl	Bu	CF ₃
Me	Me	H	н	1	H	H	CF3	1-Methylbutyl	C1
Ме	Me	H	н	1	H	H	Cl	1-Methylbutyl	CF ₃
Me	Me	H	н	1	H	H	CF3	1-Ethylpropyl	C1
Ме	Me	H	H	1	H	H	Cl	1-Ethylpropyl	CF ₃
Ме	Me	H	H	1	н	H	CF3	1-Pentyl	C1
Ме	Me	H	н	1	H	H	Cl	1-Pentyl	CF ₃
Ме	Me	H	H	1	н	H	CF3	1-Methylpentyl	C1
Ме	Ме	H	н	1	н	H	Cl	1-Methylpentyl	CF ₃
Ме	Me	H	н	1	H	H	CF ₃	2-Ethylbutyl	Cl
Ме	Me	H	н	1	н	H	Cl	2-Ethylbutyl	CF ₃
Ме	Me	H	н	1	H	H	CF ₃	3,3-Dimethylbutyl	Cl
Ме	Me	H	H	1	H	H	Cl	3,3-Dimethylbutyl	CF ₃
Ме	Me	н	н	1	н	н	CF3	1-Hexyl	Cl
Ме	Me	н	н	1	н	н	Cl	1-Hexyl	CF₃
Ме	Me	н	н	1	H	н	CF ₃	1-Heptyl	Cı
Ме	Me	H	н	1	н	н	Cl	1-Heptyl	CF ₃
Ме	Ме	H	н	1	н	H	CF ₃	1-Octyl	CI

Me	Me	Н	H	1	H	H	Cl	1-Octyl	CF ₃
Me	Me	H	H	1	H	H	CF ₃	CH ₂ Ph	Cl
Me	Me	н	H	1	H	Н	Cl	CH ₂ Ph	CF ₃
Me	Me	н	н	1	H	Н	CF ₃	Pr-c	Cl
Me	Me	Н	H	1	Н	н	CF ₃	Pen c	CI
Me	Me	Н	H	1	Н	н	Cl	Pen-c	CF ₃
Me	Me	H	н	1	H	н	CF3	Hex-c	Cl
Me	Me	H	н	1	н	н	Cl	Hex-c	CF ₃
Me	Me	н	н	1	н	н	Cl	CH ₂ Pr-c	Cl
Me	Me	H	H	1	H	н	OCHF ₂	CH ₂ Pr-c	Cl
Me	Me	H	H	1	H	н	Cı	CH ₂ Pr·c	OCHF ₂
Me	Me	H	H	1	H	H	OCHF ₂	CH ₂ Pr-c	OCHF2
Me	Me	H	н	1	H	H	CF ₃	CH ₂ Pr-c	F
Me	Me	H	н	1	н	H	F	CH ₂ Pr-c	CF ₃
Me	Me	H	н	1	н	Н	CF3	CH ₂ Pr-c	CI
Me	Me	H	н	1	H	H	Cl	CH ₂ Pr-c	CF ₃
Me	Me	H	н	1	н	H	CF3	CH ₂ Pr-c	CN
Me	Me	H	н	1	н	H	CF3	CH₂Pr-c	ОН
Me	Me	H	н	1	H	H	CF3	CH ₂ Pr-c	ОМе
Me	Me	H	н	1	H	H	ОМе	CH ₂ Pr-c	CF ₃
Me	Me	H	н	1	н	H	$\mathbf{CF_3}$	CH ₂ Pr-c	OEt
Me	Me	H	н	1	H	H	OEt	CH ₂ Pr-c	CF ₃
Me	Me	H	н	1	H	H	CF3	CH ₂ Pr-c	OPr-i
Me	Me	H	н	1	н	H	CF ₃	CH ₂ Pr-c	OPr
Me	Me	H	н	1	н	H	CF3	CH ₂ Pr-c	OBu-t
Me	Me	H	н	1	н	Н	CF₃	CH ₂ Pr-c	OCH ₂ Pr-c
Me	Me	H	н	1	H	H	CF₃	CH ₂ Pr-c	OCH ₂ Bu-c
Ме	Me	H	н	1	н	H	CF ₃	CH ₂ Pr-c	OPen-c
Me	Me	H	н	1	H	н	$\mathbf{CF_3}$	CH ₂ Pr-c	OCHF2
Me	Me	H	H	1	H	н	OCHF2	CH ₂ Pr-c	CF ₃
Me	Me	H	H	1	н	H	CF3	CH ₂ Pr-c	CN
Me	Me	H	H	1	н	H	CN	CH ₂ Pr-c	CF ₃
Me	Me	H	н	1	H	H	CF ₃	CH ₂ Pr-c	Me
Me	Me	H	н	1	H	H	Me	CH ₂ Pr-c	$\mathbf{CF_3}$
Me	Me	н	н	1	н	н	CF ₃	1-cyclopropylethyl	Cı
Me	Me	H	Н	1	н	н	Cl	1-cyclopropylethyl	CF ₃
Me	Me	н	н	1	н	Н	CF ₃	CH ₂ (2·Methyl·cyclopropyl)	CI

1	1	1	1	ı	1	ı	1	CH2(2-Methyl-cyclopropyl	1
Me	Me	H	H	1	H	H	Cl)	CF ₃
Me	Me	н	Н	1	н	н	CF ₃	CH ₂ (2,2-Dimethyl-cyclopr lopyl)	CI
Me	Me	Н	н	1	н	н	Cı	CH ₂ (2,2-Dimethyl-cyclopropyl)	CF ₃
Me	Me	н	н	1	H	Н	CF ₃	CH2(2-Chloro-cyclopropyl)	Cl
Me	Me	н	н	1	н	н	Cı	CH2(2·Chloro·cyclopropyl)	CF ₃
Me	Me	Н	н	1	н	н	CF3	CH ₂ (2,2-Dichloro-cyclopropyl)	Cı
Me	Me	H	н	1	н	н	Cl	CH ₂ (2,2-Dichloro-cyclopropyl)	CF ₃
Me	Me	H	н	1	H	н	CF ₃	CH2(2·Fluoro·cyclopropyl)	C1
Me	Me	н	н	1	н	н	Cı	CH2(2-Fluoro-cyclopropyl)	CF ₃
Me	Me	н	н	1	н	н	CF3	CH2(2,2-Diffuoro-cyclopro	Cı
Me	Me	н	н	1	н	н	Cl	pyl) CH2(2,2-Difluoro-cyclopro pyl)	CF3
Me	Me	H	н	1	н	н	CF3	CH ₂ Bu·c	CI
Me	Me	H	н	1	H	H	Cl	CH2Bu-c	\mathbb{CF}_3
Me	Ме	H	н	1	н	н	CF3	CH ₂ Pen-c	Cl
Me	Me	H	н	1	H	н	Cl	CH ₂ Pen-c	CF3
Me	Me	H	н	1	н	H	CF ₃	CH ₂ Hex-c	Cl
Me	Me	H	н	1	н	н	Cl	CH ₂ Hex-c	CF3
Me	Me	H	н	1	н	н	CF ₃	CH ₂ CH ₂ Pr-c	CI
Me	Me	Н	н	1	н	Н	Cl	CH2CH2Pr-c	CF3
Me	Me	H	н	1	н	н	CF ₃	CH ₂ CH=CH ₂	Cl
Me	Me	Н	н	1	н	H	Cl	CH ₂ CH=CH ₂	CF ₃
Me	Me	H	н	1	н	н	CF ₃	CH2CH=CHCl	Cl
Me	Me	H	н	1	н	н	Cl	CH2CH=CHCl	CF_3
Ме	Ме	H	н	1	н	н	Cl	CH ₂ C≡CH	C1
Me	Ме	H	н	1	н	H	OCHF2	CH ₂ C≡CH	Cl
Me	Me	H	н	1	н	H	Cl	CH ₂ C≡CH	OCHF ₂
Me	Ме	H	H	1	н	H	OCHF2	CH ₂ C≡CH	OCHF ₂
Me	Me	н	н	1	H	н	CF3	CH ₂ C≡CH	F
Me	Me	Н	н	1	H	н	F	CH ₂ C≡CH	CF ₃
Me	Me	H	H	1	H	н	CF ₃	CH ₂ C≡CH	Cl
Me	Me	H	н	1	H	H	Cl	CH ₂ C≡CH	CF ₃
Me	Ме	н	н	1	H	н	CF ₃	CH ₂ C≡CH	OMe
Me	Me	н	н	1	н	н	ОМе	CH ₂ C≡CH	CF ₃
Me	Me	н	н	1	н	н	CF ₃	CH ₂ C≡CH	OEt
Me	Me	H	н	1	H	н	OEt	CH ₂ C≡CH	CF ₃
Me	Me	н	н	1	н	н	CF3	CH ₂ C≡CH	OCHF ₂

Me Me H H 1 H H OCHF2 CH2C=CH CF3 Me Me Me H H 1 H H CF5 CH2C=CH CN Me Me Me H H 1 H H CN CH2C=CH CF2 Me Me Me H H 1 H H CN CH2C=CH CF3 Me Me Me H H 1 H H CF5 CH2C=CH CF5 Me Me H H 1 H H CH2C=CH CF3 Me Me H H 1 H H CH3 CH2C=CH CF3 Me Me H H 1 H H CH3 CH2C=CMe CH3 Me Me H H 1 H H CH3 CH3C=CMe CH3 Me Me H H 1 H H CH3 CH3C=CMe CH3 Me Me H H 1 H H CH3 CH3C=CMe CH3 Me Me H H 1 H H CH3 CH3C=CMe CH3 Me Me H H 1 H H CH4 CH42=CMa CH3 Me Me H H 1 H H CH42 CH42=CMa CH3 Me Me H H 1 H H CH42 CH42=CMa CH3 Me Me H H 1 H H CH42 CH42=CMa CH3 Me Me H H 1 H H CH42 CH42=CMa CH3 Me Me H H 1 H H CH42 CH42=CMa CH3 Me Me H H 1 H H CH42 CH42=CMa CH3 Me Me H H 1 H H CH42 CH42=CMa CH42=CMa Me Me H H 1 H H CF3 CHF2 CH42=CMa Me Me H H 1 H H CF3 CH52 CF3 Me Me H H 1 H H CF3 CH52 CF3 Me Me H H 1 H H CF3 CH52 CH52 Me Me H H 1 H H CF3 CH52 CH52 Me Me H H 1 H H CF3 CH52 CH53 Me Me H H 1 H H CH53 CH52 CH53 Me Me H H 1 H H CH53 CH52 CH53 Me Me H H 1 H H CH53 CH52 CH53 Me Me H H 1 H H CH3 CH42F2 C1 Me Me H H 1 H H CH3 CH42F2 C1 Me Me H H 1 H H CH3 CH42F2 C1 Me Me H H 1 H H CH3 CH42F3 C1 Me Me H H 1 H H CH3 CH42F3 C1 Me Me H H 1 H H CH3 CH42F3 C1 Me Me H H 1 H H C1 CH42G4 C1 Me Me H H 1 H H C1 CH42G4 C1 Me Me H H H H H C1 CH42										
Me Me H H I H H I H H I H H CF3 CHaC≡CH Me Me Me H H I H H CF3 CHaC≡CH CF3 Me Me H H I H H CF3 CHMeC≡CH CI Me Me H H I H H CCI CHMeC≡CH CI Me Me H H I H H CI CHMeC≡CH CTs Me Me H H I H H CI CHMeC≡CMe CTs Me Me H	м	e Me	н	н	1	н	н	OCHF2	$CH_2C \equiv CH$	CF ₃
Me Me H H I H H H H H H H H H Me CH2C≡CH CF3 Me Me H H I H H CF3 CHMC□CH CF3 Me Me H H I H H CCI CHMC□CH CF3 Me Me H H I H CCI CHMC□CH CCT3 Me Me H H I H CCI CHMC□CECH CCF3 Me Me H H I H CCI CHMC□CECH CCT3 Me Me H H I H CCI CCHMC□CECH CCT3 Me Me H H I H CCI CCHMC□CECH CCT3 Me Me H H I H CCI CCHF2 CCI Me	M	e Me	н	н	1	н	н	CF ₃	CH ₂ C≡CH	CN
Me Me H H I H	M	e Me	н	н	1	H	н	CN	CH ₂ C≡CH	CF ₃
Me Me H H H H CF3 CHMeC=CH CI Me Me H	М	e Me	н	н	1	н	Н	CF ₃	CH ₂ C≡CH	Me
Me Me H H I H H CH CH CCF3 CH2C≡CMe CGI Me Me H H I H H CG3 CH2C≡CMe CG3 Me Me H H I H H CI CH2C≡CMe CG3 Me Me H H I H H CI CHF2 CCI Me Me H H I H H CI CHF2 CCI Me Me H I H H CCHF2 CCHF2 CCCHF2 Me Me H I H H CCF3 CCHF2 CCF3 Me Me H I H H CCF3 CCHF2 CCF3 Me Me H H I H H CCF3 CCHF2 CCF3 Me Me H	М	еМе	H	н	1	H	н	Me	CH ₂ C≡CH	CF ₃
Me Me H H I H	М	e Me	H	н	1	Н	н	CF₃	CHMeC≡CH	Cl
Me Me H H I H H CH CH CH2C≡CMe CCF3 Me Me H H I H H CH CHF2 CI Me Me H H I H H CCHF2 CCHF2 CCHF2 Me Me H H I H H CCHF2 CCHF2 CCHF2 Me Me H H I H H CCHF2 CCHF2 CCHF2 Me Me H H I H CCF3 CCF3 CCF3 Me Me H I H H CF5 CCHF2 CF3 CCF3 Me Me H I H H H H H H H F CHF2 CF3 CCF3 Me Me H H I H H DCF3 C	M	е Ме	н	н	1	H	н	Cı	CHMeC≡CH	CF ₃
Me Me H H I H H CI CHF2 CI Me Me H H I H H COCHF2 CCHF2 CCF3 CCHF2 CCF3 CCHF2 CCF3	М	е Ме	H	н	1	н	н	CF ₃	$CH_2C \equiv CMe$	CI
Me Me H H 1 H H OCHF2 CHF2 CCI Me Me H H 1 H H CHF2 OCHF2 Me Me H H 1 H H CHF2 OCHF2 Me Me H H 1 H H CHF2 CT3 Me Me H H 1 H H CHF2 CF3 Me Me H H 1 H H CHF2 CF3 Me Me H H 1 H F CHF2 CF3 Me Me H H 1 H H CF3 CHF2 CF3 Me Me H H 1 H H CF3 CHF2 CF3 Me Me H H 1 H H CF3 CHF2 CF3	M	e Me	H	н	1	н	н	Cl	CH ₂ C≡CMe	CF ₃
Me Me H H I H H Cl CHF2 OCHF2 Me Me H H I H H Cl CHF2 OCHF2 Me Me H H I H H CG3 CHF2 CI Me Me H H I H H CI CHF2 CF3 Me Me H H I H H CI CHF2 CF3 Me Me H H I H F CHF2 CF3 Me Me H H I H F CHF2 CF3 Me Me H H I H GF3 CHF2 OCHF2 CF3 Me Me H H I H CF3 CHF2 CF3 Me Me H H I H CF3	М	еМе	н	н	1	н	н	Cı	CHF ₂	CI
Me Me H H I H H CHF2 CHF2 CCHF2 Me Me H H I H H CGF3 CHF2 CI Me Me H H I H H CHF2 CF3 Me Me H H I H H CF3 CHF2 CF3 Me Me H H I H F CHF2 CF3 Me Me H H I H CHF2 CF3 Me Me H H I H CHF3 CHF2 CF3 Me Me H H I H CHG3 CHF2 CF3 Me Me H H I H CF3 CHF2 CF3 Me Me H H I H CHG3 CHF2 CF3	М	е Ме	н	н	1	Н	н	OCHF2	CHF ₂	CI
Me Me H H 1 H H CF3 CHF2 CI Me Me H H 1 H H C1 CHF2 CF3 Me Me H H 1 H H F CHF2 CF3 Me Me H H 1 H H CF3 CHF2 CF3 Me Me H H 1 H H CMF2 CF3 Me Me H H 1 H H CHF2 CF3 Me Me H H 1 H H CHF2 CF3 Me Me H H 1 H H CHF2 CF3 Me Me H H 1 H H CHF2 CF3 Me Me H H 1 H H CHF2 CF3	M	е Ме	н	н	1	H	Н	Cı	CHF ₂	OCHF2
Me Me H H I H H CHF2 CF3 Me Me H H I H H CF3 CHF2 F Me Me H H I H H F CHF2 CF3 Me Me H H I H H CHF2 OMe Me Me H H I H H OMe CHF2 OMe Me Me H H I H H OMe CHF2 OEt OEt Me Me H H I H H OCHF2 CF3 OCHF2 OCHF2 <td>M</td> <td>еМе</td> <td>н</td> <td>н</td> <td>1</td> <td>H</td> <td>Н</td> <td>OCHF2</td> <td>CHF₂</td> <td>OCHF2</td>	M	еМе	н	н	1	H	Н	OCHF2	CHF ₂	OCHF2
Me Me H	M	еМе	H	H	1	H	Н	CF ₃	CHF ₂	C1
Me Me H H I H	M	еМе	н	н	1	н	H	Cl	CHF ₂	CF ₃
Me Me H H I H	M	ме	н	н	1	H	н	CF3	$ m CHF_2$	F
Me Me H H 1 H H OMe CHF2 CF3 Me Me H H 1 H H CHF2 OEt Me Me H H 1 H H OCHF2 CF3 Me Me H H 1 H H CHF2 CCF3 Me Me H H 1 H H CF3 CHF2 CCF3 Me Me H H 1 H H CF3 CHF2 CCN Me Me H H 1 H H CN CHF2 CF3 Me Me H H H H H H H H H H H H Me CHF2 CF3 Me Me Me H H H H H H H H	M	ме	н	H	1	H	н	F	CHF ₂	CF ₃
Me Me H H I H H CHF2 OEt Me Me H H I H H CHF2 CF3 Me Me H H I H H CF3 CHF2 OCHF2 Me Me H H I H H CF3 CHF2 CN Me Me H H I H H CF3 CHF2 CN Me Me H H I H H CN CHF2 CF3 Me Me H H I H Me CHF2 CF3 Me Me H H I H Me CHF2 CI Me Me H H I H H CI CHF2 CI Me Me H H I H CI CHF2	M	еМе	н	н	1	H	H	CF ₃	CHF ₂	ОМе
Me Me H H I H	M	e Me	н	H	1	н	H	ОМе	CHF ₂	CF ₃
Me H H I H H CHF2 OCHF2 Me H H I H	M	e Me	н	н	1	H	H	CF ₃	CHF ₂	OEt
Me H H I H H OCHF2 CHF2 CF3 Me Me H H I H H CF3 CHF2 CN Me Me H H I H H CHF2 CF3 Me Me H H I H H Me CHF2 CF3 Me Me H H I H Me CHF2 CI Me Me H H I H H CI CHF2 CI Me Me H H I H H CI CHF2 CI Me Me H H I H H CI CHF2 Et Me Me H H I H H CI CH2CHF2 CI Me Me H H I H H	M	e Me	н	н	1	H	H	OEt	CHF ₂	CF ₃
Me Me H H 1 H H CF3 CHF2 CN Me Me H H 1 H H CN CHF2 CF3 Me Me H H 1 H H CHF2 Me Me Me H H 1 H Me CHF2 CI Me Me H H 1 H H CHF2 Me Me Me H H 1 H H CHF2 CI Me Me H H H H CH CHF2 CI Me Me H H H CH CHF2 Et Me Me H H H CH CH CH CHF2 CF3 Me Me H H H H CH CH CH CH CH	M	Me	н	н	1	н	H	CF3	CHF ₂	OCHF2
Me Me H H I H	M	Me	н	н	1	H	H	OCHF2	CHF ₂	CF ₃
Me Me H H 1 H H CF3 CHF2 Me Me Me H H 1 H H Me CHF2 CF3 Me Me H H 1 H H Me CHF2 CI Me Me H H 1 H H CHF2 CI Me Me H H 1 H H CHF2 CI Me Me H H 1 H H CF3 CH2CHF2 CI Me Me H H 1 H H CF3 CH2CHF2 CF3 Me Me H H 1 H H CF3 CH2CF3 CI Me Me H H 1 H H CH2CF3 CF3 Me Me H H H H H H CH2CH CH2CH CI Me Me H H H	M	e Me	н	н	1	н	H	CF3	CHF ₂	CN
Me H H 1 H H Me CHF2 CF3 Me Me H H 1 H H Me CHF2 CI Me Me H H 1 H H CHF2 Me Me Me H H 1 H H CHF2 CI Me Me H H 1 H H CHF2 CT Me Me H H 1 H H CF3 CH2CHF2 CT Me Me H H 1 H H CF3 CH2CF3 CT Me Me H H 1 H H CF3 CH2CF3 CF3 Me Me H H H H H H H CH2CF3 CH2CF3 CF3 Me Me H H H H H H H H H H H H H H	Me	e Me	H	н	1	н	H	CN	CHF ₂	CF ₃
Me Me H H 1 H H Me CHF2 Cl Me Me H H 1 H H CHF2 Me Me Me H H 1 H H Et CHF2 Et Me Me H H 1 H H CF3 CH2CHF2 CI Me Me H H 1 H H CH2CHF2 CF3 Me Me H H 1 H H CF3 CH2CF3 CI Me Me H H 1 H H CH2CF3 CF3 Me Me H H 1 H H CF3 CH2OH CI Me Me H H 1 H H CH2OH CF3	Me	Me	н	н	1	н	H	CF3	CHF ₂	Ме
Me Me H H I H H CHF2 Me Me Me H H I H H Et CHF2 CI Me Me H H I H H CI CH2CHF2 CI Me Me H H I H H CH2CHF2 CF3 Me Me H H I H H CF3 CH2CF3 CI Me Me H H I H H CH2CF3 CF3 Me Me H H I H H CF3 CH2CH Me Me H H I H H CF3 CH2CH CI Me Me H H I H H CI CH2CH CF3 CF3	Me	Me	н	н	1	H	H	Me	CHF ₂	CF ₃
Me Me H H H H Et CHF2 Cl Me Me H H H H H H CH2 Et Me Me H H H H CH2 CH2 CH2 Me Me H H H H CH2 CH2 CH3 Me Me H H H H CH2 CH2 CH3 Me Me H H H H CH CH2 CH3 CH3 Me Me H H H H CH CH2 CH3 CH3 Me Me H H H H CH CH2 CH2 CH3	Me	Me	н	н	1	H	H	Ме	CHF ₂	CI
Me Me H H I H H CH CHF2 Et Me Me H H I H H CF3 CH2CHF2 CI Me Me H H I H H CH2CFF2 CF3 Me Me H H I H H CF3 CH2CF3 CI Me Me H H I H H CF3 CH2CF3 CF3 Me Me H H I H H CF3 CH2CH CI Me Me H H I H H CF3 CH2CH CF3	Me	Me	н	н	1	H	H	Cl	CHF ₂	Me
Me Me H H I H H CF3 CH2CHF2 CI Me Me H H I H H CH2CHF2 CF3 Me Me H H I H H CF3 CH2CF3 CI Me Me H H I H H CH2CF3 CF3 Me Me H H I H H CF3 CH2OH CI Me Me H H I H H CI CH2OH CF3	Me	Me	н	H	1	H	H	Et	CHF ₂	Cl
Me Me H H 1 H H Cl CH2CHF2 CF3 Me Me H H 1 H H CF3 CH2CF3 Cl Me Me H H 1 H H Cl CH2CF3 CF3 Me Me H H 1 H H CF3 CH2OH Cl Me Me H H I H H CI CF3	Me	Me	H	н	1	H	H	Cl	CHF ₂	Et
Me Me H H I H	Μe	Me	н	н	1	н	H	CF3	CH2CHF2	Cl
Me Me H H 1 H	Μŧ	Me	н	н	1	н	H	Cl	CH2CHF2	CF₃
Me Me H H 1 H CF3 CH2OH Cl Me Me H H 1 H CF3 CH2OH CF3	Μe	Me	H	н	1	н	н	CF ₃	CH ₂ CF ₃	Cl
Me Me H H I H C CH2OH CF3	Μe	Me	н	н	1	н	н	Cl	CH ₂ CF ₃	CF ₃
	Μe	Me	H	н	1	H	H	CF ₃	CH ₂ OH	cı
Me Me H H 1 H Cl CH2OMe Cl	Μє	Me	н	H	1	н	н	Cj.	CH ₂ OH	CF ₃
	Μe	Me	н	H	1	H	н	Cl	CH₂OMe	Cı

Me	Me	Н	н	1	H	H	OCHF2	CH ₂ OMe	cı
Me	Me	н	Н	1	H	H	Cı	CH ₂ OMe	OCHF2
Me	Me	н	H	1	H	H	OCHF ₂	CH ₂ OMe	OCHF ₂
Me	Me	H	H	1	H	H	CF ₃	CH ₂ OMe	F
Me	Me	Н	H	1	H	H	F	CH ₂ OMe	CF ₃
Me	Me	H	H	1	H	H	CF3	CH ₂ OMe	Cl
Me	Me	н	H	1	н	H	Cı	CH ₂ OMe	CF ₃
Me	Me	Н	H	1	н	н	CF ₃	CH ₂ OMe	ОМе
Me	Ме	H	н	1	Н	H	OMe	CH ₂ OMe	CF ₃
Me	Me	H	H	1	H	H	CF ₃	CH ₂ OMe	OEt
Me	Me	Н	H	1	н	н	OEt	CH ₂ OMe	CF ₃
Me	Ме	H	H	1	Н	н	CF ₃	CH ₂ OMe	OCHF2
Me	Me	Н	H	1	Н	Н	OCHF2	CH ₂ OMe	CF ₃
Ме	Me	н	Н	1	H	н	CF ₃	CH ₂ OMe	CN
Ме	Ме	н	Н	1	H	Н	CN	CH ₂ OMe	CF ₃
Me	Me	Н	н	1	H	H	CF_3	CH ₂ OMe	Me
Me	Me	н	н	1	н	н	Me	CH ₂ OMe	CF ₃
Me	Me	н	н	1	H	H	CF ₃	CH ₂ OEt	C1
Me	Ме	н	H	1	Н	H	Cl	CH ₂ OEt	CF ₃
Ме	Me	H	H	1	н	H	CF3	CH ₂ CH ₂ OH	C1
Me	Me	Н	H	1	Н	H	Cl	CH ₂ CH ₂ OH	CF ₃
Me	Ме	H	н	1	H	H	CF3	CH ₂ CH ₂ OMe	C1
Me	Me	H	Н	1	H	H	Cl	CH ₂ CH ₂ OMe	CF₃
Me	Me	H	н	1	Н	H	CF3	CH ₂ CH ₂ OEt	CI
Me	Me	H	н	1	н	H	Cl	CH ₂ CH ₂ OEt	CF ₃
Me	Me	H	Н	1	н	Н	CF3	CH ₂ NHMe	CI
Me	Me	H	н	1	н	H	Cl	CH2NHMe	CF ₃
Ме	Me	H	н	1	н	н	CF ₃	CH ₂ N(Me) ₂	Cl
Me	Me	H	н	1	н	H	Cl	CH ₂ N(Me) ₂	CF ₃
Me	Me	H	н	1	H	H	$\mathbf{CF_3}$	CH2N(Me)C(=O)Me	Cl
Me	Me	H	H	1	H	н	Cl	CH2N(Me)C(=O)Me	CF₃
Me	Me	H	H	1	н	н	CF ₃	CH2N(Me)C(=O)CF3	Cl
Me	Me	H	H	1	H	Н	Cl	CH2N(Me)C(=O)CF3	CF ₃
Ме	Me	н	н	1	н	н	CF3	CH ₂ N(Me)SO ₂ Me	Cı
Ме	Ме	H	н	1	H	н	Cl	CH2N(Me)SO2Me	CF ₃
Me	Me	H	н	1	H	н	CF ₃	CH2N(Me)SO2CHF2	Cl
Me	Me	H	н	1	H	H	Cl	CH2N(Me)SO2CHF2	CF ₃
Me	Me	H	н	1	н	н	CF ₃	CH ₂ N(Me)SO ₂ CF ₃	Cl

1	1	ı	1	ı	,	,	ı	1	1
	Me	Н	H	1	H	H	Cl	CH ₂ N(Me)SO ₂ CF ₃	CF ₃
	Me	Н	H	1	H	H	CF ₃	CH ₂ SMe	CI
	Me	H	H	1	H	H	Cl	CH ₂ SMe	CF ₃
Me	Me	H	H	1	H	H	CF ₃	CH ₂ SO ₂ Me	CI
Me	Me	H	H	1	H	H	Cl	$ m CH_2SO_2Me$	CF ₃
Me	Me	H	Н	1	Н	H	CF ₃	CH ₂ CH ₂ SMe	Cl
Me	Me	H	н	1	н	H	Cl	CH ₂ CH ₂ SMe	CF ₃
Me	Me	H	H	1	H	H	CF ₃	CH ₂ CH ₂ SO ₂ Me	C1
Me	Me	H	н	1	H	Н	CI	CH ₂ CH ₂ SO ₂ Me	CF ₃
Me	Ме	H	H	1	H	Н	CF ₃	CH2CN	C1
Me	Me	H	H	1	н	н	C1	CH ₂ CN	CF ₃
Me	Me	H	н	1	Н	н	CF ₃	CH ₂ C(=O)OMe	CI
Me	Ме	H	н	1	н	н	Cl	CH ₂ C(=O)OMe	CF ₃
Me	Me	H	н	1	H	н	CF ₃	CH ₂ C(=O)OEt	C1
Me	Ме	H	н	1	H	Н	Cl	CH ₂ C(=O)OEt	CF ₃
Me	Me	H	н	1	н	н	CF ₃	CH(Me)C(=O)OMe	C1
Me	Me	H	н	1	H	н	Cl	CH(Me)C(=O)OMe	CF ₃
Me	Me	H	н	1	н	н	CF ₃	C(Me) ₂ C(=O)OMe	Cl
Me	Me	H	н	1	н	Н	Cı	C(Me) ₂ C(=O)OMe	CF ₃
Me	Me	H	н	1	н	н	CF ₃	CH ₂ C(=O)NH ₂	Cl
Me	Me	H	н	1	н	Н	C1	CH ₂ C(=O)NH ₂	CF3
Me	Me	H	н	1	H	н	CF3	CH ₂ C(=O)NHMe	Cl
Me	Me	H	н	1	H	н	Cl	CH ₂ C(=O)NHMe	CF ₃
Me	Me	H	н	1	H	н	CF ₃	CH ₂ C(=O)N(Me) ₂	Cl
Me	Ме	H	н	1	H	H	Cı	CH ₂ C(=O)N(Me) ₂	CF ₃
Me	Me	H	н	1	н	н	CF3	CH ₂ C(=O)Me	Cı
Me	Me	H	н	1	H	Н	Cı	CH ₂ C(=O)Me	CF ₃
Me	Me	H	н	1	H	н	CF3	CH ₂ C(=NOMe)Me	C1
Me	Me	Н	н	1	H	H	Cl	CH ₂ C(=NOMe)Me	CF₃
Me	Me	H	н	1	H	н	CF3	CH ₂ C(=O)CF ₃	Cl
Ме	Me	H	н	1	H	H	Cl	CH ₂ C(=O)CF ₃	CF_3
Me	Me	H	н	1	H	H	CF3	CH ₂ CH ₂ C(=O)Me	Cl
Me	Me	н	н	1	H	Н	CI	CH ₂ CH ₂ C(=O)Me	CF ₃
Me	Me	н	н	1	н	H	Me	Ph	Me
Me	Ме	H	н	1	H	н	Me	Ph	Cl
Me	Ме	н	н	1	H	H	Et	Ph	C1
Me	Me	н	н	1	H	н	Pr	Ph	Cl
Me	Me	H	н	1	H	н	Pr-i	Ph	CI

Me Me	I	E	Н	1	н	н	Bu-t	Ph	CI	
Me Me	1	F	н	1	H.	н	CH ₂ OMe	Ph	CI	
Me Me	I	1	н	1	н	н	Cl	Ph	CI	
Me Me	1	1	H	1	н	Н	OCHF2	Ph	Cl	
Me Me	F	I	H	1	н	н	OCHF ₂	Ph	OCHF2	
Me Me	I	Ŧ	н	1	н	н	CHF2	Ph	Cl	
Me Me	I	F	H	1	н	н	CF3	Ph	H	
Me Me	1	E	н	1	н	н	CF3	Ph	Me	
Me Me	I	I	H	1	Н	н	Me	Ph	CF ₃	
Me Me] I	Ŧ	н	1	H	н	CF3	Ph	Et	
Me Me	I	I	H	1	H	H	CF3	Ph	Pr-i	
Me Me	F	1	н	1	н	н	CF ₃	Ph	CHF2	
Me Me	I	I	H	1	H	Н	CF3	Ph	CF ₃	
Me Me	F	F	н	1	H	н	CF ₃	Ph	F	
Me Me	F	Ŧ	н	1	H	н	CF3	Ph	Cl	
Me Me	I	Ŧ	н	1	H	н	Cı	Ph	CF ₃	
Me Me	F	I	н	1	Н	н	CF3	Ph	ОН	
Me Me	I	I	H	1	н	н	он	Ph	CF ₃	
Me Me	F	I	H	1	H	н	CF ₃	Ph	OMe	
Me Me	F	I	H	1	H	H	ОМе	Ph	CF ₃	
Me Me	F	I	H	1	H	н	CF ₃	Ph	OEt	
Me Me	F	I	н	1	H	H	OEt	Ph	CF ₃	
Me Me	I	I	H	1	H	H	CF ₃	Ph	OPr-i	
Me Me	E	I	н	1	H	H	CF ₃	Ph	OPr	
Me Me	E	1	H	1	H	H	CF3	Ph	OBu-t	
Me Me	E	I	н	1	н	H	CF ₃	Ph	OCH ₂ Pr-c	
Me Me	E	1	H	1	H	H	CF3	Ph	OCH ₂ CH=CH ₂	
Me Me	E	•	- 1	1			CF ₃	Ph	OCH ₂ C≡CH	
Me Me	I E	- 1	H	ı	H		CF ₃	Ph	OCHF ₂	
Me Me	E	- 1	H	1	H		OCHF ₂	Ph	CF ₃	
Me Me	H	I	H	1	H	H	CF ₃	Ph	OCH ₂ CHF ₂	
Me Me	F	l	H	1	H		CF ₃	Ph	OCH ₂ CF ₃	
Me Me	I	I	H	1	H	H	CF ₃	Ph	OCH ₂ C(=O)OMe	
Me Me	I	I	H	1	н	H	CF ₃	Ph	OCH(Me)C(=O)OMe	
Me Me	E	I	H	1	H	H	$\mathbf{CF_3}$	Ph	OC(Me) ₂ C(=0)OMe	
Me Me	E	- 1	H	1	H	H	CF ₃	Ph	OC(=O)Me	
Me Me	E	I	H	1	H	H	CF ₃	Ph	OC(=O)Et	
Me Me	H	1	H	1	H	H	CF ₃	Ph	OC(=O)CH ₂ Ph	

			_				_		
Me	Me	н	H	1	н	н	CF3	Ph	OC(=O)CF ₃
Me	Me	н	Н	1	н	н	CF ₃	Ph	OC(=O)Ph
Me	Me	Н	н	1	H	н	CF ₃	Ph	OSO₂Me
Me	Me	н	н	1	Н	Н	CF ₃	Ph	OSO₂Et
Me	Me	H	Н	1	Н	н	CF ₃	Ph	OSO ₂ CH ₂ Ph
Me	Me	H	H	1	H	Н	CF ₃	Ph	OSO ₂ CF ₃
Me	Me	H	Н	1	н	Н	CF₃	Ph	OSO ₂ Ph
Me	Me	H	Н	1	Н	н	CF ₃	Ph	SMe
Me	Me	H	H	1	н	Н	CF ₃	Ph	SO ₂ Me
Me	Ме	H	н	1	н	н	CF3	Ph	SEt
Me	Me	H	н	1	H	н	CF3	Ph	SO₂Et
Me	Me	H	н	1	H	Н	CF ₃	Ph	SPr-i
Me	Me	H	Н	1	Н	н	CF ₃	Ph	SO₂Pr-i
Me	Me	H	H	1	н	Н	CF ₃	Ph	SPr
Me	Ме	H	Н	1	н	Н	CF3	Ph	SO₂Pr
Me	Me	H	H	1	н	н	CF3	Ph	SBu-t
Me	Me	H	н	1	н	Н	CF3	Ph	SO ₂ Bu·t
Me	Me	H	н	1	н	H	CF3	Ph	SCHF2
Me	Me	H	н	1	H	H	CF3	Ph	SO ₂ CHF ₂
Me	Me	H	н	1	H	н	CF3	Ph	NH2
Me	Me	н	H	1	н	н	CF3	Ph	NHMe
Me	Me	H	н	1	н	н	CF3	Ph	N(Me)2
Me	Me	н	н	1	H	н	CF3	Ph	NHC(=O)Me
Me	Me	н	н	1	н	H	CF₃	Ph	N(Me)C(=O)Me
Me	Me	H	н	1	H	H	CF3	Ph	NHSO ₂ Me
Me	Me	H	н	1	н	H	CF ₃	Ph	N(Me)SO ₂ Me
Me	Me	H	н	1	н	н	CF3	Ph	NHSO ₂ CF ₃
Me	Me	н	H	1	н	H	CF ₃	Ph	N(Me)SO ₂ CF ₃
Me	Me	H	н	1	н	H	CF ₃	Ph	NHPh
Me	Me	H	н	1	н	н	CF3	Ph	N(Me)Ph
Me	Ме	H	н	1	Н	H	СFз	Ph	CN
Me	Me	н	н	1	н	H	CF ₃	Ph	C(=O)Me
Me	Me	H	н	1	н	H	CF ₃	Ph	C(=O)OMe
Me	Ме	н	н	1	н	H	CF3	Ph	C(=O)NH2
Me	Me	н	н	1	н	H	CF3	Ph	C(=O)NHMe
Me	Me	H	н	1	н	H	CF3	Ph	C(=O)N(Me) ₂
	Me	н	Н	1	н	н	CF ₃	Ph	Imidazol-1-yl
	Me	н	н	1	н		CF3	Ph	Pyrazol-1-yl
				1					

Me	Ме	н	н	1	н	н	CF ₃	Ph	1,2,4-Triazol-1-yl
Me	Ме	Н	H	1	н	Н	CF ₃	Ph	1,2,4-Triazol-4-yl
Me	Me	H	н	1	н	н	CF3	Ph	Tetrazol-1-yl
Me	Me	H	H	1	H	н	CF ₃	Ph	Tetrazol-5-yl
Me	Me	н	н	1	н	н	CF3	Ph	(4,6-Dimethoxypyrimidin-2-yl)
Me	Ме	H	Н	1	н	н	CF ₃	Ph	(4,6-Dimethoxypyrimidin-2-yl)sulfonyl
Me	Me	H	н	1	н	н	CF ₂ CF ₃	Ph	C1
Me	Me	H	н	1	н	Н	CF ₃	(2-Cl)Ph	CI
Me	Me	H	н	1	н	н	CF ₃	(2-F)Ph	Cl
Me	Me	H	н	1	H	H	CF3	(2-OMe)Ph	Cl
Me	Me	H	н	1	H	H	CF ₃	(2·Me)Ph	CI
Me	Me	H	н	1	н	н	CF3	(2-NO ₂)Ph	Cl
Me	Me	H	н	1	н	Н	CF3	(2-CN)Ph	C1
Me	Me	H	н	1	н	н	CF3	(2-C(=O)Me)Ph	C1
Me	Me	H	н	1	H	H	CF ₃	(2-C(=0)OMe)Ph	Cı
Me	Me	H	н	1	н	H	CF3	(2-C(=O)OEt)Ph	Cı
Me	Me	H	н	1	H	н	CF ₃	(2-C(=0)OPr-i)Ph	C1
Me	Me	H	н	1	H	H	CF3	(2-C(=O)NH ₂)Ph	C1
Me	Ме	H	н	1	н	H	CF3	(2-C(=O)NHMe)Ph	C1
Me	Me	H	н	1	H	H	CF3	(2-C(=0)NMe ₂)Ph	C1
Me	Me	H	н	1	H	H	CF3	(3-C1)Ph	C1
Me	Me	H	н	1	H	н	CF ₃	(3-F)Ph	C1
Me	Me	H	н	1	H	H	CF3	(3-OMe)Ph	C1
Me	Me	H	н	1	H	H	CF ₃	(3-Me)Ph	CI .
Me	Me	H	H	1	н	H	CF ₃	(3-NO ₂)Ph	CI
Me	Me	H	н	1	H	H	CF3	(3-CN)Ph	C1
Me	Me	H	H	1	H	H	CF ₃	(3-C(=O)Me)Ph	CI
Me	Ме	H	H	1	H	H	CF3	(3-C(=O)OMe)Ph	C1
Me	Me	H	н	1	H	H	CF ₃	(3-C(=O)OEt)Ph	C1
Me	Me	H	н	1	н	H	CF ₃	(3-C(=O)OPr-i)Ph	Cl
Me	Me	H	H	1	H	H	CF ₃	(3-C(=O)NH ₂)Ph	Cl
Me	Ме	H	H	1	H	H	CF3	(3-C(=O)NHMe)Ph	Cı
Me	Me	H	н	1	H	H	CF ₃	(3-C(=O)NMe ₂)Ph	CI
Me	Me	H	н	1	н	H	CF ₃	(4-C1)Ph	C1
Me	Ме	H	H	1	н	H	CF ₃	(4-F)Ph	CI
Me	Me	H	H	1	H	H	CF3	(4-OMe)Ph	Cı
Me	Me	H	H	1	H	H	CF ₃	(4-Me)Ph	Cl

$ _{\mathbf{Me}}$	Me	н	н	1	н	н	CF ₃	(4-NO ₂)Ph	cı
	Me	н	H	ı	н	н	CF ₃	(4-CN)Ph	cı
J	Me	н	H	1	н	н	CF ₃	(4-C(=O)Me)Ph	Cı
	Me	н	н	1	н	н	CF ₃	(4-C(=O)OMe)Ph	Cl
- 1	Me	Н	Н	1	н	н	CF ₃	(4-C(=O)OEt)Ph	Cl
	Me	н	н	1	н	н	CF ₃	(4-C(=O)OPr-i)Ph	CI
1	Me	н	Н	1	H	н	CF ₃	(4-C(=O)NH ₂)Ph	C1
1	Me	н	н	1	н	н	CF ₃	(4-C(=O)NHMe)Ph	C1
1	Me	н	Н	1	н	н	CF ₃	(4-C(=O)NMe ₂)Ph	Cı
Me	Me	H	н	1	н	Н	CF ₃	Pyrmidin-2-yl	Cl
	Me	H	Н	1	н	Н	CF ₃	4,6-Dimethoxypyrmidin-2-yl	C1
Me	Me	H	н	1	Н	н	CF3	Thiophen-2-yl	CI
Me	Me	H	н	1	н	н	CF3	Furan-2-yl	C1
Me	Me	H	н	1	н	H	CF3	SO ₂ Me	Cı
Me	Me	Н	H	1	н	н	CF3	SO ₂ Et	Cı
Me	Me	H	H	1	н	H	CF ₃	SO ₂ Pr-i	Cı
Me	Me	H	н	1	н	Н	CF ₃	SO ₂ CH ₂ Ph	Cl
Me	Me	H	н	1	н	н	CF ₃	SO ₂ CHF ₂	Cl
Me	Me	H	н	1	н	н	CF ₃	SO ₂ CF ₃	CI
Me	Me	Н	н	1	н	Н	CF3	SO ₂ Ph	Cl
Me	Me	H	н	1	н	H	CF3	C(=O)Me	Cl
Me	Me	н	н	1	н	H	CF3	C(=O)Et	Cl
Me	Me	H	н	1	н	H	CF3	C(=O)Pr-i	Cl
Me	Me	H	н	1	н	н	CF3	C(=O)Bu·t	Cl
Me	Me	н	н	1	н	H	CF₃	C(=O)Ph	Cl
Me	Me	н	н	1	H	H	CF3	C(=O)CH ₂ Ph	Cl
Me	Me	н	н	1	H	H	CF3	C(=O)CH ₂ Cl	Cl
Me	Me	H	H	1	н	H	CF ₃	C(=O)CHCl ₂	CI
Me	Me	H	н	1	н	H	CF₃	C(=O)CF ₃	C1
Me	Ме	H	H	1	н	H	CF3	C(=O)OMe	Cl
Me	Ме	H	H	1	н	H	CF3	C(=O)OPh	Cl
Me	Ме	H	н	1	н	H	CF3	C(=O)OCH ₂ Ph	Cı
Me	Me	н	н	1	н	н	CF ₃	C(=O)NHMe	Cl
Me	Me	H	н	1	н	H	CF3	C(=O)N(Me) ₂	Cl
Me	Me	H	н	1	н	н	CF3	C(=O)NHPh	CI
Me	Me	H	н	1	H	н	CF3	NH ₂	Cl
Me	Ме	H	н	1	Н	H	Cl	-(C	H ₂) ₂ O-
Me	Ме	н	н	1	н	H	Cl	-(C	H ₂) ₃ O-

12.5	la c	1	1	١.	l	1	la	1	GTT \ G
1	Me	H	1	ĺ	H	H	Cl		CH ₂)₃S-
	Me	H	1	1	H	H	Cl		H ₂) ₃ SO ₂ -
	Me	H	H	l	H	H	CF3	1	CH ₂) ₂ O-
1	Me	H	H	1	H	H	CF ₃		CH ₂) ₃ O-
1	Me	H	H	1	H	H	CF ₃	1	CH ₂) ₃ S-
J	Me	H	H	1	H	H	CF ₃	1	H ₂) ₃ SO ₂ -
	Me	H	H	1	H	H	OMe	ì	(CH ₂) ₄ -
1	Me	H	H	1.	H	H	OCHF ₂	<u> </u>	(CH ₂) ₄ -
H	H	H	H	1	H	H	CF ₃	Me	Cl
Me	H	H	H	1	н	H	CF ₃	Me	Cl
Me	H	Me	H	1	H	н	CF3	Me	C1
Me	Me	Me	H	1	Н	H	CF ₃	Me	CI
Me	Me	н	H	1	Me	н	CF3	Me	Cl
Me	Me	H	н	1	Et	н	$\mathbf{CF_3}$	Me	Cl
Me	Me	H	H	1	Pr-i	H	CF ₃	Me	Cl
Me	Me	н	H	1	Me	Me	CF3	Me	C1
Me	Et	н	н	1	н	H	CF3	Me	Cl
Et	Et	н	н	1	н	H	CF3	Me	CI
Me	Pr·i	н	н	1	н	H	CF3	Me	C1
Me	Pr	н	H	1	н	H	CF ₃	Me	Cl
Me	Pr·c	H	H	1	н	H	CF3	Me	Cl
Me	CH ₂ Pr-c	н	H	1	н	H	CF3	Me	C1
-((CH ₂) ₂ -	н	н	1	н	H	CF3	Me	Cl
-((CH ₂) ₃ -	н	H	1	н	н	CF ₃	Me	Cl
-((CH ₂) ₄ .	н	н	1	н	н	CF ₃	Ме	Cl
-((CH ₂) ₅ -	H	н	1	н	H	CF ₃	Me	Cı
H	·(CH	2)3-	н	1	н	н	CF ₃	Me	Cl
H	-(CH	2)4·	н	1	н	н	CF ₃	Me	Cl
H	·(CH	2)5-	н	1	н	H	CF ₃	Me	Cl
H	-(CH		н	1	н	н	CF_3	Me	Cl
Me	Me		Η	0	н	н	Cl	н	Cl
Me	i i	1	H	0	н		OCHF ₂	H	Cl
Me	1	1 1	H	0	н		OCHF ₂	H	OCHF2
Me		1	H	0	н		CHF ₂	H	Cl
Me			H	0	H	1	CF ₃	H	F
Me			H	0	н		CF ₃	H	C1
Me			H	0	H		CF ₃	H	ОМе
1-,-0			}	~	~^	**	~ · ·	l 	1

Me	Me	H	Н	0	н	н	CF ₃	н	OEt
Me	Me	Н	н	0	н	н	CF3	н	OCHF2
Me	Me	Н	н	0	н	Н	CF ₃	H	CN
Me	Me	н	н	0	н	н	CF ₃	Ħ	Me
Ме	Me	Н	н	0	н	н	н	Me	Cl
Me	Me	н	н	0	н	н	Me	Me	Me
Me	Ме	н	н	0	н	Н	Me	Me	Cl .
Me	Me	Н	н	0	н	Н	Cı	Me	Me
Me	Me	H	н	0	н	н	Et	Me	Cl
Me	Me	н	H	0	н	H	Cı	Me	Et
Me	Me	н	H	0	Н	H	Pr-i	Me	C1
Me	Me	H	H	0	н	H	Cı	Me	Pr-i
Ме	Me	н	н	0	н	H	Bu·t	Me	CI
Me	Me	н	н	0	н	H	Cl	Me	Bu-t
Ме	Me	н	н	0	H	H	Cl	Me	CI
Ме	Me	н	Н	0	н	H	CHF2	Me	Cl
Ме	Me	н	H	0	Н	H	Cl	Me	CHF2
Me	Me	н	н	0	H	H	OCHF2	Me	н
Me	Me	H	н	0	н	H	OCHF2	Me	Cı
Me	Me	н	H	0	н	H	Cl	Me	OCHF2
Ме	Me	н	н	0	н	H	$OCHF_2$	Me	OCHF2
Me	Me	H	н	0	н	H	CF ₃	Ме	н
Me	Me	н	н	0	н	н	CF ₃	Me	CI
Ме	Me	н	н	0	H	н	Cl	Me	CF ₃
Me	Me	н	н	0	H	н	$\mathbf{CF_3}$	Ме	F
Ме	Me	н	н	0	н	H	F	Me	CF ₃
Ме	Me	н	н	0	н	н	$\mathbf{CF_3}$	Me	ОН
Ме	Me	н	н	0	Н	H	OH	Me	CF ₃
Me	Me	н	H	0	H	H	$\mathbf{CF_3}$	Me	OMe
Me	Me	H	н	0	н	H	OMe	Me	CF ₃
Me	Me	н	н	0	н	н	$\mathbf{CF_3}$	Me	OEt
Me	Me	н	H	0	H	н	OEt	Ме	CF ₃
Me	Me	н	н	0	H	н	CF ₃	Me	OPr-i
Me	Me	н	н	0	н	н	$\mathbf{CF_3}$	Me	OPr
Ме	Me	H	н	0	н	н	$\mathbf{CF_3}$	Me	OBu-t
Me	Me	H	н	0	н	н	CF ₃	Me	OBu-s
Me	Me	H	н	0	H	н	CF ₃	Me	OBu-i
Ме	Me	н	н	0	н	н	CF ₃	Me	OBu

M	Me		Н	н	0	н	н	CF ₃	Me	O(2-Pen)
Me	Me		H	н	0	н	н	CF ₃	Me	O(3-Pen)
Me	Me		H	н	0	Н	н	CF ₃	Me	OPen·n
Me	Me	1	H	H	0	H	H	CF ₃	Me	O(2·Hex)
Me	Ме	1	H	н	0	н	н	CF ₃	Me	O(3-Hex)
Me	Me]	ET	н	0	н	н	CF ₃	Me	OHex-n
Me	Me]	H	H	0	н	Н	CF ₃	Me	OPen-c
Me	Me]	H	H	0	Н	н	CF ₃	Me	OHex-c
Me	Me]	H	H	0	н	Н	CF ₃	Me	OCH ₂ Pr-c
Me	Me	1	H	H	0	Н	H	CF ₃	Me	OCH ₂ Bu-c
Me	Me	1	H	H	0	Н	Н	CF ₃	Me	OCH ₂ Pen-c
Me	Me	1	I	H	0	н	н	CF ₃	Me	OCH ₂ Hex-c
Me	Me	1	E	H	0	Н	н	CF ₃	Me	OCH2CH=CH2
Me	Me	1	I	H	0	H	н	CF ₃	Me	OCH2C*CH
Me	Me	I	I	H	0	H	н	CF ₃	Ме	OCHF2
Μe	Me	1	E	H	0	H	н	OCHF2	Me	CF ₃
Me	Me	I	Ŧ	н	0	H	н	CF ₃	Ме	OCH2CHF2
Me	Me	I	I	н	0	н	н	OCH ₂ CHF	Me	CF ₃
Me	Me] 1	1	H	0	H	H	CF ₃	Ме	OCH ₂ CF ₃
Me	Me	I	I	н	0	н	H	OCH ₂ CF ₃	Me	CF ₃
Me	Me	I	I	H	0	H	H	CF ₃	Me	OCH ₂ CN
Me	Me	I	F	H	0	Н	Н	CF ₃	Ме	OCH ₂ C(=O)OEt
Me	Me	F	Ŧ	н	0	H	H	CF ₃	Ме	OCH(Me)C(=O)OEt
Me	Me	I	I	н	0	Н	H	CF ₃	Ме	OCH ₂ C(=O)NH ₂
Me	Me	F	I	н	0	H	Н	CF ₃	Me	OCH ₂ C(=O)NHMe
Me	Me	F	I	н	0	H	H	CF ₃	Me	OCH ₂ C(=O)N(Me) ₂
Me	Me	F	I	н	0	H	Н	CF ₃	Me	OCH ₂ Ph
Me	Me	I	I	н	0	н	н	CF ₃	Me	OPh
Me	Me	F	I	H	0	н	H	CF ₃	Me	O(2-C1)Ph
Me	Me	F	I	н	0	H	н	CF ₃	Me	O(2-Br)Ph
Me	Me	F	1	H	0	н	H	CF ₃	Me	O(2-F)Ph
Me	Me	F	I	H	0	Н	H	CF ₃	Me	O(2-Me)Ph
Me	Me	I	I	H	0	H	н	CF ₃	Me	O(2-OMe)Ph
Me	Me	F	I	н	0	н	н	CF ₃	Me	O(2-NO ₂)Ph
Me	Me	H	1	н	0	н	н	CF ₃	Me	O(2-CN)Ph
Me	Me	F	1	н	0	н	н	CF3	Me	O(2-C(=O)OMe)Ph
Me	Me	F	1	H	0	н	H	CF ₃	Me	O(3-C1)Ph

			ı			•	1	T .	1
Me	Me	H	H	0	H	H	CF ₃	Me	O(3-Br)Ph
Me	Me	Н	Н	0	H	H	CF ₃	Me	O(3-F)Ph
Me	Me	Н	H	0	H	H	CF ₃	Me	O(3-Me)Ph
Me	Me	H	H	0	H	H	CF ₃	Me	O(3-OMe)Ph
Me	Me	Н	н	0	H	Н	CF ₃	Me	O(3-NO ₂)Ph
Me	Me	Н	н	0	н	H	CF ₃	Me	O(3-CN)Ph
Me	Me	H	H	0	н	н	CF ₃	Me	O(3-C(=O)OMe)Ph
Me	Me	н	н	0	н	Н	CF ₃	Me	O(4-Cl)Ph
Me	Me	н	H	0	н	н	CF ₃	Me	O(4-Br)Ph
Me	Me	н	н	0	Н	н	CF ₃	Ме	O(4-F)Ph
Me	Ме	н	н	0	н	н	CF3	Me	O(4-Me)Ph
Me	Me	н	Н	0	H	н	CF ₃	Ме	O(4-OMe)Ph
Me	Me	н	H	0	н	Н	CF3	Me	O(4-NO ₂)Ph
Me	Ме	н	Н	0	H	н	CF ₃	Me	O(4-CN)Ph
Ме	Ме	Н	H	0	H	Н	CF ₃	Ме	O(4-C(=O)OMe)Ph
Me	Me	н	H	0	H	н	CF ₃	Me	OC(=O)Me
Me	Me	н	H	0	H	Н	CF3	Me	OC(=O)Et
Me	Me	H	H	0	н	н	CF ₃	Me	OC(=O)CH ₂ Ph
Me	Me	H	H	0	H	H	CF₃	Ме	OC(=O)CF ₃
Me	Me	н	H	0	Ĥ	H	CF ₃	Me	OC(=O)Ph
Me	Me	н	н	0	н	H	CF ₃	Me	OSO ₂ Me
Me	Me	H	H	0	H	H	CF ₃	Me	OSO ₂ Et
Me	Me	H	H	0	н	H	CF ₃	Me	OSO ₂ CH ₂ Ph
Me	Me	H	н	0	H	н	CF3	Me	OSO ₂ CF ₃
Me	Me	н	Н	0	Н	H	CF ₃	Me	OSO ₂ Ph
Me	Me	н	н	0	н	H	CF ₃	Me	SMe
Me	Me	н	н	0	н	H	CF ₃	Me	SO₂Me
Ме	Me	н	н	0	н	H	CF ₃	Me	SEt
Me	Me	н	н	0	н	H	CF ₃	Me	SO ₂ Et
Me	Me	н	н	0	н	H	CF ₃	Me	SPr
Me	Me	H	H	0	н	H	CF ₃	Me	SO ₂ Pr
Me	Me	н	н	0	H	H	CF ₃	Me	SPr-i
Ме	Ме	н	H	0	н	H	CF3	Me	SO ₂ Pr-i
Me	Ме	н	н	0	н	н	CF3	Me	SBu-t
Me	Me	н	н	0	н	H	CF ₃	Me	SO ₂ Bu-t
Ме	Me	H	H	0	н	H	CF ₃	Me	SCHF ₂
Me	Me	н	н	0	н	н	CF ₃	Me	SO ₂ CHF ₂
Me	Me	н	H	0	н	н	CF ₃	Me	SCF3
		•		'					

				,					1
Μe	Me	H	Н	0	H	H	CF ₃	Ме	SO ₂ CF ₃
Me	Me	H	H	0	H	H	CF3	Ме	SPh
Me	Me	Н	H	0	н	H	CF3	Me	SO ₂ Ph
Me	Me	H	H	0	Н	H	CF3	Ме	SCH ₂ Ph
Me	Me	H	Н	0	Н	H	CF ₃	Me	SO ₂ CH ₂ Ph
Me	Me	H	H	0	H	H	CF ₃	Me	SCH ₂ C(=O)OEt
Me	Me	H	H	0	H	H	CF ₃	Me	SO ₂ CH ₂ C(=O)OEt
Me	Me	H	н	0	н	H	CF ₃	Me	SCH(Me)C(=O)OEt
Me	Me	н	Н	0	н	H	CF ₃	Me	SO ₂ CH(Me)C(=O)OEt
Me	Me	Н	Н	0	H	н	CF ₃	Me	SCH ₂ C(=O)NH ₂
Me	Me	H	Н	0	Н	н	CF ₃	Me	SO ₂ CH ₂ C(=O)NH ₂
Me	Ме	Н	Н	0	н	H	CF3	Me	SCH2C(=O)NHMe
Me	Me	Н	н	0	Н	н	CF ₃	Me	SO ₂ CH ₂ C(=O)NHMe
Me	Me	н	н	0	H	H	CF_3	Me	SCH ₂ C(=O)N(Me) ₂
Me	Me	H	H	0	H	H	CF_3	Me	SO ₂ CH ₂ C(=O)N(Me) ₂
Me	Me	н	H	0	H	н	CF_3	Ме	NH ₂
Me	Me	н	H	0	H	H	CF_3	Me	NHMe
Me	Me	н	H	0	н	H	CF ₃	Me	N(Me) ₂
Me	Me	н	Н	0	H	H	$\mathbf{CF_3}$	Me	NHC(=O)Me
Me	Me	н	H	0	H	H	CF ₃	Me	N(Me)C(=O)Me
Me	Me	н	н	0	H	Н	CF3	Me	NHSO₂Me
Me	Me	н	H	0	H	H	CF ₃	Ме	N(Me)SO ₂ Me
Me	Me	н	H	0	H	H	CF ₃	Ме	NHSO ₂ CHF ₂
Me	Me	н	H	0	H	H	CF3	Me	N(Me)SO ₂ CHF ₂
Me	Me	н	H	0	н	H	CF ₃	Ме	NHSO ₂ CF ₃
Me	Me	н	H	0	н	H	CF ₃	Me	N(Me)SO ₂ CF ₃
Me	Me	н	H	0	H	H	$\mathbf{CF_3}$	Ме	NHPh
Me	Ме	н	Н	0	H	H	CF_3	Me	N(Me)Ph
Me	Me	H	H	0	H	H	CF ₃	Ме	CN ·
Me	Me	н	H	0	H	H	CN	Me	CF ₃
Me	Ме	н	H	0	H	H	$\mathbf{CF_3}$	Me	C(=O)OMe
Me	Me	H	H	0	н	H	CF ₃	Me	C(=O)OCH ₂ Ph
Me	Ме	н	H	0	H	H	CF ₃	Ме	C(=O)OPh
Me	Me	H	H	0	н	H	CF ₃	Me	C(=O)NH ₂
Me	Ме	H	н	0	н	н	CF ₃	Me	C(=O)NHMe
Me	Me	H	H	0	н	н	CF_3	Me	C(=O)N(Me) ₂
Me	Ме	H	H	0	н	H	CF ₃	Me	C(=O)Me
Me	Me	H	H	0	н	H	CF ₃	Ме	C(=O)CF ₃

Me Me										
Me Me H H CF3 Me Me Me CF3 Me Me Me CF3 Me Me CF3 Me Me Me DF1 Me DF1 Me DF1 Me Me Me Me Me Me DF1 Me Me Me	Me	1e	н	н	0	н	н	CF ₃	Me	C(=O)CH ₂ Ph
Me Me H H U Me Me CF3 Me Et Me Me H H O H H CF3 Me Pri Me Me H H O H H CF3 Me Pri Me Me H H O H H CF3 Me CH2OMe Me Me H H O H H CF3 Me CH2OMe Me Me H H O H H CF3 Me CH2OMe Me Me H H O H H CF3 Me CH2OMe Me Me H H O H H CF3 Me CH2OMe Me Me H H O H H D Me CH2OMe Me Me Me H<	Me	ſe	н	H	0	Н	н	CF ₃	Me	C(=O)Ph
Me Me H H CF3 Me Et Me Me H H CF3 Me Pri Me Me H H O H H CF3 Me Pri Me Me H H O H H CF3 Me CH2OMe Me Me H H O H H CF3 Me CH2OMe Me H H 0 H H CF3 Me CH2OMe Me H H 0 H H CF3 Me CH2OMe Me Me H H CF3 Me CH2OMe CH2OME<	Me M	1e	Н	H	0	Н	H	CF ₃	Me	Ме
Me Me H H CF3 Me Pri Me Me H H CF3 Me Pr Me Me H H CF3 Me CH2OMe Me Me H H O H H CF3 Me Me Me H H O H H CF3 Me CHF2 Me Me H H O H H CF3 Me CHF2 Me Me H H O H H CF3 Me CHF2 Me Me H H O H H CF3 Me CHF2 Me Me H H O H H Ph Me H H H H H H H	Me M	l e	н	H	0	Н	н	Me	Me	CF ₃
Me Me H H CF3 Me Pr Me Me H H CF3 Me CH2OMe Me Me H H CF3 Me CH2OMe Me Me H H CF3 Me CH2 Me Me H H CF3 Me CH72 Me Me H H O H H CF3 Me Me Me H H O H H CP4 Me CP4 Me Me H H O H H Ph Me CP6 Me Me H H O H H Ph Me CP6 Me Me H H O H H Ph Me CP6 CP6 Me Me H H O H H CP6	Me	1e	н	н	0	H	н	CF3	Me ·	Et
Me Mc H H 0 H H CF3 Me CCF3 Me Me H H 0 H H CF3 Me CCF3 Me Me H H 0 H H CF3 Me CHF2 Me Me H H 0 H H CF3 Me CHF2 Me Me H H 0 H H CF3 Me CH Me Me H H 0 H H Ph Me Me <td>Me M</td> <td>ſe</td> <td>H</td> <td>H</td> <td>0</td> <td>Н</td> <td>н</td> <td>CF₃</td> <td>Me</td> <td>Pr-i</td>	Me M	ſe	H	H	0	Н	н	CF ₃	Me	Pr-i
Me Me H H 0 H H CF3 Me CCF3 Me Me H H 0 H H CF3 Me CHF2 Me Me H H 0 H H CF3 Me CHF2 Me Me H H 0 H H CF3 Me CH Me Me H H 0 H H Ph Me Me Me Me H H 0 H H Ph Me CI Me Me H H 0 H H Ph Me OET3 Me Me H H 0 H H DO CHF2 Et DO CHF2 DO CHF2	Me	ſe	н	H	0	Н	н	CF3	Me	\mathbf{Pr}
Me Me H H 0 H H CF3 Me CHF2 Me Me H H 0 H H CF3 Me CI Me Me H H 0 H H Ph Me CI Me Me H H 0 H H Ph Me	Me M	1e	н	н	0	Н	н	CF ₃	Me	CH ₂ OMe
Me Me H H 0 H H CF3 Me Ph Me Me H H 0 H H CF2CF3 Me CI Me Me H H 0 H H Ph Me Me Me H H 0 H H Ph Me Me Me H H 0 H H Ph Me CI Me Me H H 0 H H Ph Me CI Me Me H H 0 H H Ph Me Ph Me Me H H 0 H H OCHF2 Et CI Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H	Me M	ſe	н	н	0	H	н	CF ₃	Me	CF ₃
Me Me H H O H H CF2CF3 Me CI Me Me H H O H H Ph Me H H O H H Ph Me CI Me Me Me H H O H H Ph Me CF3 Me Me Ph Me CC1 Me Me H H O H H Ph Me CF3 Me Me Ph Me CC1 Me Me H H O H H CC1 Et CC1 Me Me Me H H O H H CC1 Et CC1 Me Me H H O H H CC1 Me Me H H O H	Me	ſe	н	H	0	Н	н	CF₃	Me	CHF ₂
Me H H H H Ph Me	Me M	ſe	H	н	0	Н	Ή	CF ₃	Me	Ph
Me H H O H H Ph Me CI Me Me H H O H H Ph Me OEt Me Me H H O H H Ph Me CF3 Me Me H H O H H Ph Me Ph Me Me H H O H H CI Et CI Me Me H H O H H OCHF2 Et CI Me Me H H O H H CF3 Et CHF2 Me Me H H O H H F Et CF3 Me Me H H O H H CF3 Et OMe Me Me H H O H	Me M	ſe	H	H	0	н	Н	CF ₂ CF ₃	Me	Cı
Me Me H H Ph Me OEt Me Me H H Ph Me CF3 Me Me H H 0 H Ph Me Me Me H H 0 H H CI Et CI Me Me H H O H H CI Et CI Me Me H H O H H CI Et OCHF2 Me Me H H O H H CCHF2 Et OCHF2 Me Me H H O H H CF3 Et CTG3 Me Me H H O H H CF3 Et OMe Me Me H H O H H CF3 Et OCHF2 Me	Me M	ſe	н	H	0	н	н	Ph	Me	Ме
Me Me H H Ph Me CF3 Me Me H H Ph Me Ph Me Me H H 0 H H Ph Me Me H H 0 H H CI Me Me H H 0 H H CI Et OCHF2 Me Me H H 0 H H CCHF2 Et OCHF2 Me Me H H 0 H H CCF3 Et CCF3 Me Me H H 0 H H CF3 Et CCF3 Me Me H H 0 H H CF3 Et OMe Me Me H H 0 H H OCHF2 Et CCF3 Me Me H	Me M	ſе	н	н	0	H	н	Ph	Me	C1
Me Me H H Ph Me Ph Me Me H H O H H Cl Et Cl Me Me H H O H H OCHF2 Et Cl Me Me H H O H H OCHF2 Et OCHF2 Me Me H H O H H CCHF2 Et OCHF2 Me Me H H O H H CF3 Et CF3 Me Me H H O H H CF3 Et CF3 Me Me H H O H H CF3 Et OOH Me Me H H O H H OCHF2 Et CF3 Me Me H H O H H	Me M	Ie	н	н	0	H	H	Ph	Me	OEt
Me Me H H Cl Et Cl Me Me H H OCHF2 Et Cl Me Me H H OCHF2 Et OCHF2 Me Me H H OCHF2 Et OCHF2 Me Me H H O H H CF3 Et CF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O	Me M	ſe	н	H	0	н	H	Ph	Me	CF ₃
Me Me H H O CHF2 Et Cl Me Me H H O H H Cl Et OCHF2 Me Me H H O H H CCHF2 Et CCHF2 Me Me H H O H H CF3 Et CF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 <td>Me M</td> <td>ſе</td> <td>н</td> <td>н</td> <td>0</td> <td>н</td> <td>H</td> <td>Ph</td> <td>Me</td> <td>Ph .</td>	Me M	ſе	н	н	0	н	H	Ph	Me	Ph .
Me Me H H 0 H H Cl Et OCHF2 Me Me H H 0 H H OCHF2 Et OCHF2 Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H CF3 Et CCF3 Me Me H H 0 H H CF3 Et OMe Me Me H H 0 H H CF3 Et OMe Me Me H H 0 H H CF3 Et OEt Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H CF3 Et CN Me Me H H	Me M	Ie	н	H	0	H	H	Cı	Et	C1
Me H H O H H OCHF2 Et OCHF2 Me Me H H O H H CF3 Et CF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et OMe Me Me H H O H H CF3 Et OMe Me Me H H O H H OMe Et CF3 Me Me H H O H H OEt Et CF3 Me Me H H O H H OCHF2 Et CF3 Me Me H H O H H CN Et CF3 Me Me H H O	Me M	Г е	H	H	0	н	H	OCHF2	Et	Cl
Me H H O H H CF3 Et F Me Me H H O H H F Et CF3 Me Me H H O H H CF3 Et CF3 Me Me H H O H H CF3 Et OMe Me Me H H O H H CF3 Et OEt Me Me H H O H H CF3 Et OCHF2 Me Me H H O H H CF3 Et CF3 Me Me H H O H H CF3 Et CN Me Me H H O H H CF3 Et Me Me Me H H O H	Me M	[e	H	H	0	н	H	Cl	Et)
Me Me H H H F Et CF3 Me Me H H O H H CF3 Et CCF3 Me Me H H O H H CF3 Et OMe Me Me H H O H H OMe Et OCF3 Me Me H H O H H OCF3 Et OCHF2 Me Me H H O H H OCHF2 Et CF3 Me Me H H O H H CF3 Et CN Me Me H H O H H CF3 Et Me Me Me H H O H H CF3 Et Me Me Me H H O H <td< td=""><td></td><td></td><td>H</td><td>H</td><td>0</td><td>Н</td><td>H</td><td></td><td>Et</td><td>1</td></td<>			H	H	0	Н	H		Et	1
Me Me H H 0 H H CF3 Et CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 Et CCF3 Me Me H H 0 H H CCF3 Et CCF3 Me Me H H 0 H H CCF3 Et CCF3 Me Me H H 0 H H CCF3 Et CCF3 Me Me H H 0 H H CCI Pr-i CCI Me Me H H 0 H H <td>Me M</td> <td>ſе</td> <td>H</td> <td>H</td> <td>0</td> <td>H</td> <td>H</td> <td>CF₃</td> <td>Et</td> <td></td>	Me M	ſе	H	H	0	H	H	CF ₃	Et	
Me Me H H 0 H H CF3 Me Me H H 0 H H CF3 Et OMe Me Me H H 0 H H CF3 OEt Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H CF3 Et CN Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H CI Pr-i CI Me Me H H 0 H H CI Pr-i CI	Me M	ľe	H	н	0	Н	H	F	Et	CF ₃
Me Me H H 0 H H CF3 Et OMe Me Me H H 0 H H OMe Et CF3 Me Me H H 0 H H OEt Et CF3 Me Me H H 0 H H OCHF2 Et CF3 Me Me H H 0 H H CF3 Et CN Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H CI Pr-i CI Me Me H H 0 H H CI Pr-i CI	Me M	Ie	H	H	0	H	H	CF ₃	Et	
Me Me H H 0 H H OMe Et CF3 Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H CF3 Et CCHF2 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCI Pr-i CCI Me Me H H 0 H H CCI Pr-i CCI	Me M	[e	н	н	0	H	H	Cl	Et	
Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H CF3 Et OCHF2 Me Me H H 0 H H OCHF2 CF3 Me Me H H 0 H H CF3 Et CN Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H CI Pr-i CI Me Me H H 0 H H OCHF2 Pr-i CI	Me M	[e	H	H	0	H	H	$\mathbf{CF_3}$	Et	OMe
Me Me H H 0 H H OEt Et CF3 Me Me H H 0 H H CF3 Et CCF3 Me Me H H 0 H H CF3 Et CN Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H Cl Pr-i Cl Me Me H H 0 H H OCHF2 Pr-i Cl	Me M	Ге	H	н	0	H	H	ОМе	Et	
Me Me H H 0 H H CF3 Et OCHF2 Me Me H H 0 H H OCHF2 CF3 Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H Cl Pr-i Cl Me Me H H 0 H H OCHF2 Pr-i Cl			- 1	н	0	H	H	CF ₃	[
Me Me H H 0 H H OCHF2 Et CF3 Me Me H H 0 H H CF3 Et CF3 Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H Cl Pr-i Cl Me Me H H 0 H H OCHF2 Pr-i Cl	1 1	- 1	- 1	- 1	- 1	H	H		l '	
Me Me H H 0 H H CF3 Et CN Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H Cl Pr-i Cl Me Me H H 0 H H OCHF2 Pr-i Cl	Me M	[e	H	H	0	H	H	CF ₃	Et	OCHF2
Me Me H H 0 H H CN Et CF3 Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H Cl Pr-i Cl Me Me H H 0 H H OCHF2 Pr-i Cl	Me M	[e	H	H	0	Н	H	OCHF ₂	Et .	
Me Me H H 0 H H CF3 Et Me Me Me H H 0 H H Me Et CF3 Me Me H H 0 H H Cl Pr-i Cl Me Me H H 0 H H OCHF2 Pr-i Cl	Me M	[e	H	H	0	H	H	CF ₃	Et	
Me Me H H O H H Me Et CF3 Me Me H H O H H Cl Pr-i Cl Me Me H H O H H OCHF2 Pr-i Cl	Me M	[e	H	H	0	н	H	CN	Et	
Me Me H H 0 H H Cl Pr-i Cl Me Me H H 0 H H OCHF2 Pr-i Cl	1 1		H	H	0	H	H	CF ₃	Et	
Me Me H H O H H OCHF2 Pr-i	Me M	[e	H	H	0	н	H	Me	Et	CF ₃
	Me M	[e	H	H	0	н	н	Cl	Pr-i	1
Me Me H H O H H Cl Pr-i OCHF2	1	1		- 1						
	Me M	le	H	H	0	H	H	Cl	Pr-i	OCHF ₂

						_	_		Q
Me	Me	н	н	0	Н	н	OCHF2	Pri	OCHF2
Me	Me	н	н	0	н	Н	CF3	Pr-i	F
Me	Me	н	н	0	н	н	F	Pr-i	CF ₃
Me	Me	н	н	0	н	н	CF ₃	Pr-i	Cl
Me	Me	н	н	0	н	н	Cı	Pr-i	CF ₃
Me	Me	H	н	0	н	Н	CF3	Pr-i	OMe
Me	Me	н	Н	0	н	H	OMe	Pr-i	CF ₃
Me	Me	н	H	0	н	н	CF ₃	Pr-i	OEt
Me	Me	н	H	0	н	н	OEt	Pr-i	CF ₃
Me	Me	н	H	0	н	н	CF ₃	Pr-i	OCHF2
Me	Me	н	H	0	H	н	OCHF2	Pr-i	CF ₃
Me	Me	н	H	0	н	н	CF3	Pr-i	CN
Me	Me	н	н	0	н	н	CN	Pr-i	CF ₃
Me	Me	н	H	0	H	н	CF ₃	Pr;i	Me ·
Me	Me	н	H	0	н	н	Me	Pr-i	CF ₃
Me	Me	н	H	0	н	Н	Cı	Pr	Cl
Me	Me	н	H	0	H	н	OCHF2	Pr	Cl
Me	Me	н	H	0	H	H	Cl	Pr	OCHF2
Me	Me	н	H	0	H	Н	OCHF ₂	Pr	OCHF ₂
Me	Me	H	H	0	H	H	CF ₃	Pr	F
Me	Ме	H	H	0	н	H	F	Pr	CF ₃
Me	Me	н	H	0	н	H	CF3	Pr	CI
Me		H	H	0	H		Cl	Pr	CF ₃
Me		H	H	0	H	H	CF ₃	Pr	OMe
Me		H	H	0	H	H	ОМе	Pr	CF ₃
Me	Ме	H	H	0	Н	H	CF ₃	Pr	OEt
Ме		H	H	0	H	H	OEt	Pr	CF ₃
Me	Me	H	H	0	H	Н	CF ₃	Pr	OCHF ₂
Me	Me	H	H	0	H	H	OCHF2	Pr	CF ₃
Ме	Me	H	H	0	H	H	CF ₃	Pr	CN
Me	Me	H	H	0	н	H	CN	Pr	CF ₃
Me	Me	H	H	0	н	H	CF ₃	Pr	Me
Me	Me	н	H	0	H	H	Ме	Pr	$ m CF_3$
Me		H	H	0	н		CI	Bu-t	Cl
Me		H	H	0	H		OCHF ₂	Bu-t	Cl
Me		H	H	0	н		OCHF ₂	Bu-t	OCHF2
Me	Me	H	H	0	H	H	CF3	Bu-t	H
Me	Me	н	H	0	H	H	CF3	Bu-t	F

be by the last to last the last	1
Me Me H H O H H CF3 Bu-t Cl	
Me Me H H O H H Cl Bu-t CF3	İ
Me Me H H O H H CF3 Bu-t OMe	
Me Me H H O H H OMe Bu-t CF3	
Me Me H H O H H CF3 Bu-t OEt	
Me Me H H O H H OEt But CF3	
Me Me H H O H H CF3 Bu-t OCHF2	
Me Me H H O H H CF3 Bu-t CN	
Me Me H H O H H CF3 Bu-t Me	
Me Me H H O H H Me Bu-t CF3	- }
Me Me H H O H H CF3 Bu-s Cl	
Me Me H H O H H Cl Bu-s CF3	
Me Me H H O H H CF3 Bu-i Cl	
Me Me H H O H H Cl Bu-i CF3	
Me Me H H O H H CF3 Bu Cl	
Me Me H H O H H Cl Bu CF3	- 1
Me Me H H O H H CF3 1-Methylbutyl Cl	
Me Me H H O H H Cl 1-Methylbutyl CF3	
Me Me H H O H H CF3 1-Ethylpropyl Cl	
Me Me H H O H H Cl 1-Ethylpropyl CF3	
Me Me H H O H H CF3 1-Pentyl Cl	
Me Me H H O H H Cl 1-Pentyl CF3	
Me Me H H O H H CF3 1-Methylpentyl Cl	
Me Me H H O H H Cl 1-Methylpentyl CF3	
Me Me H H O H H CF3 2-Ethylbutyl Cl	
Me Me H H O H H Cl 2-Ethylbutyl CF3	
Me Me H H O H H CF3 3,3-Dimethylbutyl Cl	
Me Me H H O H Cl 3,3-Dimethylbutyl CF3	
Me Me H H O H H CF3 1-Hexyl Cl	
Me Me H H O H H Cl 1-Hexyl CF3	1
Me Me H H O H H CF3 1-Heptyl Cl	
Me Me H H O H H Cl 1-Heptyl CF3	
Me Me H H O H H CF3 1-Octyl Cl	
Me Me H H O H H Cl 1-Octyl CF3	
Me Me H H O H H CF3 CH2Ph Cl	
Me Me H H O H H Cl CH2Ph CF3	
Me Me H H O H H CF3 Pr-c Cl	
Me Me H H O H H CF3 Pen-c Cl	1

							<u> </u>		
Me	Me	H	н	0	н	H	Cl	Pen-c	CF ₃
Me	Me	н	н	0	н	H	CF ₃	Hex-c	C1
Me	Me	H	н	0	H	H	CI	Hex-c	CF ₃
Me	Me	н	н	0	Н	H	Cl	CH ₂ Pr-c	Cl
Me	Me	н	н	0	Н	H	OCHF ₂	CH ₂ Pr-c	C1
Me	Me	H	Н	0	H	H	Cl	CH ₂ Pr·c	OCHF ₂
Me	Me	H	н	0	H	Н	OCHF ₂	CH ₂ Pr-c	OCHF ₂
Me	Me	н	н	0	н	H	CF ₃	CH ₂ Pr-c	F
Me	Me	H	н	0	н	н	F	CH ₂ Pr-c	CF₃
Me	Me	н	H	0	н	Н	CF ₃	CH ₂ Pr-c	Cl
Me	Me	н	н	0	н	н	Cl	CH ₂ Pr-c	CF ₃
Me	Me	н	н	0	H	н	CF ₃	CH ₂ Pr-c	CN
Me	Me	н	Н	0	н	Н	CF3	CH ₂ Pr-c	он
Me	Me	н	H	0	н	н	CF ₃	CH ₂ Pr-c	ОМе
Me	Me	н	н	0	н	H	ОМе	CH ₂ Pr-c	CF ₃
Me	Me	н	н	0	н	H	CF ₃	CH ₂ Pr-c	OEt
Me	Me	н	н	0	н	н	OEt	CH ₂ Pr-c	CF ₃
Me	Me	н	H	0	н	H	CF3	CH ₂ Pr-c	OPr-i
Me	Me	н	H	Ó	H	H	CF3	CH ₂ Pr-c	OPr
Me	Me	н	н	0	н	н	CF ₃	CH ₂ Pr-c	OBu-t
Me	Me	н	H	0	н	H	CF₃	CH ₂ Pr-c	OCH ₂ Pr-c
Me	Me	н	н	0	н	H	CF3	CH ₂ Pr-c	OCH ₂ Bu-c
Me	Me	н	H	0	н	H	CF3	CH ₂ Pr-c	OPen-c
Me	Me	H	н	0	H	H	CF3	CH ₂ Pr-c	OCHF2
Me	Me	н	H	0	н	н	OCHF2	CH ₂ Pr-c	CF ₃
Me	Me	H	н	0	н	H	CF ₃	CH ₂ Pr-c	CN
Me	Me	H	н	0	H	Н	CN	CH ₂ Pr-c	CF₃
Me	Me	н	н	0	н	н	CF ₃	CH ₂ Pr-c	Me
Me	Me	H	H	0	н	H	Me	CH ₂ Pr-c	CF ₃
Me	Me	н	н	0	н	H	CF3	1-cyclopropylethyl	Cl
Me	Me	H	н	0	H	н	Cl	1-cyclopropylethyl	CF_3
Me	Ме	н	н	0	н	н	CF3	CH ₂ (2·Methyl-cyclopropyl	Cı
Me	Me	н	н	0	н	H	Cl	CH ₂ (2-Methyl-cyclopropyl	CF ₃
Me	Me	Ħ	н	0	н	н	CF ₃	CH ₂ (2,2-Dimethyl-cyclopropyl)	Cl
Me	Me	H	н	0	н	H	Cl	CH ₂ (2,2-Dimethyl-cyclopropyl)	CF3
Me	Me	н	н	0	н	н	CF ₃	CH ₂ (2-Chloro-cyclopropyl)	Cl
Me	Me	H	н	0	н	н	Cl	CH2(2-Chloro-cyclopropyl)	CF ₃

Me		ı	}		ı	ı	ı	L	CTT-(0 9-Dialiana	1
Me Me H H O H H CF2 CH2(2-Fluoro-cyclopropy) CF3	Me	Me	H	H	0	H	H	CF ₃	pyl)	Cl
Me Me H H CI CH2(2:2-Diffuoro-cyclopropy) CCF2 Me Me H H CI CH2(2:2-Diffuoro-cyclopropy) CCI Me Me H H CI CH2(2:2-Diffuoro-cyclopropy) CCF3 Me Me H H CI CH2(2:2-Diffuoro-cyclopropy) CCF3 Me Me H H CI CH2Burc CI Me Me H H CI CH2Pen·c CI Me Me H H CI CH2Pen·c CI Me Me H H CI CH2Pen·c CF3 Me Me H H CI CH2Pen·c CF3 Me Me H H CI CH2Pen·c CT5 Me Me H H CI CH2Pen·c CT5 Me Me H H CI CH2Pen·c CI <td>Me</td> <td>Me</td> <td>н</td> <td>н</td> <td>0</td> <td>н</td> <td>н</td> <td>C1</td> <td></td> <td>CF₃</td>	Me	Me	н	н	0	н	н	C1		CF ₃
Me Me H H O H H CF3 CHs(2,2-Diffuoro-cyclopropyl) CF3 Me Me H H O H H CCF3 CHsDurc CCI Me Me H H O H H CCF3 CHsDurc CCF3 Me Me H H O H H CCF3 CHsDurc CCF3 Me Me H H O H H CCF3 CHsDurc CCF3 Me Me H H O H H CF3 CHsDurc CCF3 Me Me H H O H H CF3 CHsDurc CCF3 Me Me H H O H H CF3 CHsDurc CCF3 Me Me H H O H H CF3 CHsDurc CCI M	Me	Me	H	H	0	н	Н	CF ₃	CH2(2-Fluoro-cyclopropyl)	Cl
Me Me H H O H H Cl CH ₂ Cl ₂ -Diffuoro-cyclopro CF ₃	Me	Me	H	H	0	н	н	CI		CF ₃
Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2Burc CF3 Me Me H H O H H CF3 CH2CH2Prc CF3 Me Me H H O H H CF3 CH2CH2Prc CF3 Me Me H H O H H CF3 CH2CH2Prc CF3 Me Me H H O H H CF3 CH2CH2CH2 CF3 Me Me H H O H H CF3 CH2CH2CH2 CF3 Me Me H H O H H CF3 CH2CH2CH2 CF3 Me Me H H O H H CF3 CH2CH2CH2 CF3 Me Me H H O H H CF3 CH2CH2CH2 CF3 Me Me H H O H H CF4 CH2CH2CH2 CF4 Me Me H H O H H CF4 CH2CH2CH2 CF4 Me Me H H O H H CF5 CH2CH2CH4 CF4 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4 CF5 Me Me H H O H H CF5 CH2CH2CH4	Me	Me	н	н	0	н	н	CF3		Ci
Me Me H H 0 H H CI CH₂Bu·c CF₃ Me Me H H 0 H H CF₃ CH₂Pen·c CI Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H 0 H H CF₃ CH₂Pen·c CI Me Me H H 0 H H CI CH₂Pen·c CI Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H D H H CI CH₂Pen·c CF₃ Me Me H H D H H CI CH₂Pen·c CF₃ Me Me	Me	Me	н	н	0	н	н	Cı		CF ₃
Me	Me	Me	H	H	0	H	H	CF ₃	CH ₂ Bu-c	Cl
Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H 0 H H CF₃ CH₂Pen·c CI Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H 0 H H CI CH₂Pen·c CF₃ Me Me H H O H CI CH₂Pen·c CF₃ Me Me H H O H CI CH₂Pen·c CF₃ Me Me H H	Me	Me	H	н	0	Н	н	Cl	CH ₂ Bu-c	CF ₃
Me Me H H 0 H H CFs CH2Hex·c CCI Me Me H H 0 H H CI CH2CH2Pr-c CI Me Me H H 0 H H CI CH2CH2Pr-c CF3 Me Me H H 0 H H CI CH2CH2Pr-c CF3 Me Me H H 0 H H CI CH2CH2CH2 CI Me Me H H 0 H H CI CH2CH2CH2 CI Me Me H H 0 H H CI CH2CH2CH2 CI Me Me H H 0 H H CI CH2CH2CH2 CT3 Me Me H H 0 H H CI CH2CH2CHCCH2 CT6 Me Me	Me	Me	н	н	0	н	Н	CF ₃	CH ₂ Pen-c	C1
Me Me H H CI CH2Hex·c CF3 Me Me H H 0 H H CF3 CH2CH2Pr-c CI Me Me H H 0 H H CG CH2CH2Pr-c CF3 Me Me H H 0 H H CG CH2CH2Pr-c CF3 Me Me H H 0 H H CG CH2CH2CH2 CI Me Me H H 0 H H CH2CH2CH2 CF3 Me Me H H 0 H H CH2CH2CH2CH2 CCI Me Me H H 0 H H CH2CH2CH2CH CCI Me Me H H 0 H H CCI CH2CECH CCI Me Me H H 0 H H C	Me	Me	H	H	0	н	H	Cı	CH ₂ Pen-c	CF_3
Me Me H H CF3 CH2CH2PTC CI Me Me H H CG CH2CH2PTC CF3 Me Me H H GC CH2CH2PTC CF3 Me Me H H GC CH2CH2CH2CH2 CC Me Me H H GC CH2CH2CH2CH2 CC Me Me H H GC CH2CH2CH2CHC CC Me Me H H GC CH2CECH CF3 Me Me H	Me	Me	H	H	0	н	н	CF3	CH ₂ Hex-c	Cı
Me Me H H O H H CI CH2CH2Prc CF3 Me Me H H O H H CF3 CH2CH=CH2 CF3 Me Me H H O H H CI CH2CH=CHCI CI Me Me H H O H H CI CH2C=CHCI CI Me Me H H O H H CI CH2C=CH CI Me Me H H O H H CI CH2C=CH CI Me Me H H O H H CI CH2C=CH CI Me Me H H O H H CF3 CH2C=CH CF3 Me Me H H O H H CF3 CH2C=CH CF3 Me Me	Me	Me	Н	H	0	H	Н	Cı	CH ₂ Hex·c	CF3
Me Me H H CF3 CH2CH=CH2 CI Me Me H H 0 H H CI CH2CH=CH2 CF3 Me Me H H 0 H H CI CH2CH=CHCI CI Me Me H H 0 H H CI CH2CH=CHCI CF3 Me Me H H 0 H H CI CH2CH=CHCI CI Me Me H H 0 H H CI CH2CH=CHCI CI Me Me H H 0 H H CI CH2CH=CHCI CI Me Me H H 0 H H CI CH2CH=CH CI Me Me H H 0 H H CF3 CH2CH=CH CF3 Me Me H H 0 H H CI CH2CH=CH CF3 Me Me H	Me	Me	н	H	0	н	н	CF3	CH2CH2Pr-c	Cl
Me Me H H H CH2CH=CH2 CF3 Me Me H H O H H CF3 CH2CH=CHC1 CCI Me Me H H O H H CI CH2CH=CHC1 CF3 Me Me H H O H H CI CH2C=CH CI Me Me H H O H H CI CH2C=CH CI Me Me H H O H H CI CH2C=CH CCH52 Me Me H H O H H CCH2C=CH CCH52 Me Me H H O H H CF3 CH2C=CH CF3 Me Me H H O H H CF3 CH2C=CH CF3 Me Me H H O H H CF3 CH2C=CH CF3 Me Me H H <td< td=""><td>Me</td><td>Me</td><td>H</td><td>н</td><td>0</td><td>н</td><td>H</td><td>Cl</td><td>CH₂CH₂Pr-c</td><td>CF3</td></td<>	Me	Me	H	н	0	н	H	Cl	CH ₂ CH ₂ Pr-c	CF3
Me Me H H 0 H H CF3 CH2CH=CHCl CI Me Me H H 0 H H CI CH2CH=CHCl CF3 Me Me H H 0 H H CI CH2C=CH CI Me Me H H 0 H H CI CH2C=CH CCHF2 Me Me H H 0 H H CCH2C=CH CCHF2 Me Me H H 0 H H CF3 CH2C=CH CCH5 Me Me H H 0 H H CF3 CH2C=CH CF3 Me Me H H 0 H H CF3 CH2C=CH CF3 Me Me H H 0 H H CF3 CH2C=CH CF3 Me Me H H 0 H H CF3 CH2C=CH CF3 Me <t< td=""><td>Me</td><td>Me</td><td>н</td><td>H</td><td>0</td><td>н</td><td>H</td><td>CF₃</td><td>CH₂CH=CH₂</td><td>C1</td></t<>	Me	Me	н	H	0	н	H	CF ₃	CH ₂ CH=CH ₂	C1
Me Me H H 0 H H Cl CH2CH=CHCl CF3 Me Me H H 0 H H Cl CH2C=CH Cl Me Me H H 0 H H Cl1 CH2C=CH COCHF2 Me Me H H 0 H H CCH2C=CH OCHF2 Me Me H H 0 H H CF3 CH2C=CH OCHF2 Me Me H H 0 H H CF3 CH2C=CH CF3 Me Me H H 0 H H CF3 CH2C=CH CF3 Me Me H H 0 H H CF3 CH2C=CH CF3 Me Me H H 0 H H CF3 CH2C=CH CF3 Me Me H H 0 H H CF3 CH2C=CH CF3 Me <	Me	Me	н	н	0	н	H	Cl	CH ₂ CH=CH ₂	CF₃
Me Me H H O H H CI CH2C≡CH CI Me Me H H O H H OCHF2 CH2C≡CH CCH2C≡CH CCHF2 Me Me H H O H H CCH2C≡CH CCHF2 CCHF2 Me Me H H O H H CF3 CCH2C≡CH CF3 CCH2C≡CH CCF3 Me Me H H O H H CCH2C≡CH CCF3 CCH2C≡CH CCF3 Me Me H H O H H CCH2C≡CH CCF3 CCF3 CCH2C≡CH CCF3 CCF3 CCH2C≡CH CCF3 CCF3 CCH2C≡CH CCF3 CCF3 CCH2C≡CH CCF3 CCH2C≡CH CCF3 C	Me	Me	н	н	0	н	H	CF ₃	CH2CH=CHCl	Cl
Me Me H H 0 H H OCHF2 CH2C≡CH CCH2C≡CH OCHF2 Me Me H H 0 H H CH2C≡CH OCHF2 Me Me H H 0 H H CF3 CH2C≡CH F Me Me H H 0 H H F CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CN <t< td=""><td>Me</td><td>Me</td><td>н</td><td>н</td><td>0</td><td>н</td><td>н</td><td>Cl</td><td>CH₂CH=CHCl</td><td>CF₃</td></t<>	Me	Me	н	н	0	н	н	Cl	CH₂CH=CHCl	CF₃
Me Me H H Cl CH2C≡CH OCHF2 Me Me H H OCHF2 CH2C≡CH OCHF2 Me Me H H O H H CF3 CH2C≡CH F Me Me H H O H H F CH2C≡CH CF3 Me Me H H O H H CH2C≡CH CF3 Me Me H H O H H CF3 CH2C≡CH OMe Me Me H H O H H CF3 CH2C≡CH OEt Me Me H H O H H CF3 CH2C≡CH OEt Me Me H H O H H CF3 CH2C≡CH CF3 Me Me H H O H H CF3 CH2C≡CH CF3 Me Me H H O H H CF3	Me	Me	н	H	0	н	H	Cl	CH₂C≡CH	Cl
Me Me H H 0 H H OCHF2 CH2C≡CH OCHF2 Me Me H H 0 H H CF3 CH2C≡CH F Me Me H H 0 H H F CH2C≡CH CF3 Me Me H H 0 H H CH2C≡CH CF3 Me Me H H 0 H H CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CCF3 CCH2C≡CH CF3 Me Me H H 0 H H CCF3 CCH2C≡CH CCF3 Me Me H H 0 H H CCF3 CCH2C≡CH CCF3 Me Me <t< td=""><td>Me</td><td>Me</td><td>н</td><td>H</td><td>0</td><td>н</td><td>Н</td><td>OCHF2</td><td>CH₂C≡CH</td><td>C1</td></t<>	Me	Me	н	H	0	н	Н	OCHF2	CH ₂ C≡CH	C1
Me Me H H 0 H H CF3 CH2C≡CH F Me Me H H 0 H H F CH2C≡CH CCF3 Me Me H H 0 H H CF3 CH2C≡CH CCF3 Me Me H H 0 H H CCF3 CH2C≡CH CCF3 Me Me H H 0 H H CCF3 CH2C≡CH CCF3 Me Me H H 0 H H CCF3 CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 CCF3 Me Me H H 0 H H CCF3 CCF2C≡CH CCF3 Me<	Me	Me	н	H	0	н	H	Cl	CH ₂ C≡CH	OCHF2
Me Me H H H F CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CCI Me Me H H 0 H H CCI CH2C≡CH CF3 Me Me H H 0 H H CM2C≡CH CF3 Me Me H H 0 H H CCF3 CH2C≡CH CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3	Me	Ме	H	H	0	H	H	OCHF2	CH₂C≡CH	OCHF2
Me Me H H 0 H H CF3 CH2C≡CH CCF3 Me Me H H 0 H H CH2C≡CH CCF3 Me Me H H 0 H H CH2C≡CH CCF3 Me Me H H 0 H H CF3 CH2C≡CH CCF3 Me Me H H 0 H H CF3 CH2C≡CH CCF3 Me Me H H 0 H H CCF3 CCH2C≡CH CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H Me CCF3 CCF3	Me	Ме	н	H	0	н	н	CF ₃	CH ₂ C≡CH	F
Me Me H H 0 H H CH2C≡CH CF3 Me Me H H 0 H H CH2C≡CH OMe Me Me H H 0 H H OMe CH2C≡CH OEt Me Me H H 0 H H OEt CH2C≡CH OCHF2 Me Me H H 0 H H OCHF2 CH2C≡CH OCHF2 Me Me H H 0 H H CH2C≡CH CN Me Me H H 0 H H CN CH2C≡CH CF3 Me Me H H 0 H H CH2C≡CH Me Me Me H H 0 H H CH2C≡CH CF3	Ме	Me	н	н	0	H	H	F	CH ₂ C≡CH	CF ₃
Me Me H H 0 H H CF3 CH2C≡CH OMe Me Me H H 0 H H OMe CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH CN Me Me H H 0 H H CN CH2C≡CH CF3 Me Me H H 0 H H CF3 CH2C≡CH Me Me Me H H 0 H H CF3 CH2C≡CH CF3	Me	Me	н	н	0	н	H	CF ₃	CH ₂ C≡CH	Cl
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Me	Me	н	н	0	н	н	Cl	CH ₂ C≡CH	CF₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Me	Me	н	H	0	н	н	CF3	CH ₂ C≡CH	OMe
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me	Me	н	H	0	н	H	ОМе	CH ₂ C≡CH	CF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me	Me	н	н	0	н	н	CF ₃	CH ₂ C≡CH	OEt
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me	Me	н	н	0	н	н	OEt	CH ₂ C≡CH	CF₃
	Me	Me	н	н	0	н	H	CF ₃	CH ₂ C≡CH	OCHF2
	Me	Me	н	н	0	н	н	OCHF2	CH ₂ C≡CH	CF ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me	Me	н	н	0	H	н	CF ₃	CH ₂ C≡CH	CN
	Me	Me	н	H	0	H	н	CN	CH ₂ C≡CH	CF ₃
	Me	Me	H	H	0	H	н	CF ₃	CH ₂ C≡CH	Me
	Me	Me	H	н	0	H	н	Me	CH ₂ C≡CH	CF ₃
	1 1		н	H	0	н	H	CF ₃	CH ₂ C≡CH	Cl

Me Me H H U H H CI CH2C=CH CF3 CH2C=CMe C1 Me Me H H 0 H H CI CH2C=CMe CF3 Me Me H H 0 H H CI CH2C=CMe CCF3 Me Me H H 0 H H CI CH2C=CMe CCF3 Me Me H H 0 H H CI CH2C=CMe CCF3 Me Me H H 0 H H CIT CH72 CH72 CCH72 CCH72 CCH72 CCH72 CCH72 CCH72 CCF3 CCH72 CCF3 CCH72 CCF3 CCH72 CCF3 CCH72 CCF3 CCH72 CCF3 CCF3 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
Me Me H H Cl CHeC=CMe CF3 Me Me H H Cl CHF2 Cl Me Me H H 0 H H CCHF2 CHF2 Cl Me Me H H 0 H H CCHF2 CHF2 CCHF2 Me Me H H 0 H H CCHF2 CHF2 CCHF2 Me Me H H 0 H H CGF3 CHF2 CI Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 <td>M</td> <td>Me</td> <td>H</td> <td>H</td> <td>0</td> <td>н</td> <td>н</td> <td>Cı</td> <td>CH₂C≡CH</td> <td>CF₃</td>	M	Me	H	H	0	н	н	Cı	CH ₂ C≡CH	CF ₃
Me H H H C1 CHF2 C1 Me Me H H O H H C1F2 C1 Me Me H H O H H C1 CHF2 OCHF2 Me Me H H O H H CCHF2 OCHF2 Me Me H H O H H CCHF2 OCHF2 Me Me H H O H H CGF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 <td< td=""><td>Me</td><td>Me</td><td>H</td><td>H</td><td>0</td><td>н</td><td>H</td><td>CF₃</td><td>CH₂C≡CMe</td><td>Cl</td></td<>	Me	Me	H	H	0	н	H	CF ₃	CH ₂ C≡CMe	Cl
Me Me H	Me	Me	н	н	0	н	н	Cl	CH ₂ C≡CMe	CF ₃
Me Me H H U H H CHF2 OCHF2 Me Me H H O H H OCHF2 CHF2 OCHF2 Me Me H H O H H CP3 CHF2 CT Me Me H H O H H CP3 CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H <td< td=""><td>Me</td><td>Me</td><td>H</td><td>H</td><td>0</td><td>Н</td><td>Н</td><td>Cı</td><td>CHF₂</td><td> cı</td></td<>	Me	Me	H	H	0	Н	Н	Cı	CHF ₂	cı
Me Me H H O H H OCHF2 CHF2 OCHF2 Me Me H H H CF3 CHF2 CI Me Me H H O H H CI CHF2 CF3 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H H CF3 CHF2 OMe Me Me H H O H H CF3 CHF2 OMe Me H H O H H CF3 CHF2 OEt Me Me H H O H H CF3 CHF2 OCHF2 Me Me H H O H H CF3 CHF2 CF3 Me Me H H O H <th< td=""><td>Me</td><td>Me</td><td>н</td><td>Н</td><td>0</td><td>н</td><td>H</td><td>OCHF₂</td><td>CHF₂</td><td>Cl .</td></th<>	Me	Me	н	Н	0	н	H	OCHF ₂	CHF ₂	Cl .
Me Me H H 0 H H CF3 CHF2 CI Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 F Me Me H H 0 H H F CHF2 CF3 Me Me H H 0 H H CF3 CHF2 OMe Me Me H H 0 H H CF3 CHF2 OEt Me Me H H 0 H H CF3 CHF2 OCH52 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF4 CH52 CF3 Me Me H H <td>Me</td> <td>Me</td> <td>н</td> <td>Н</td> <td>0</td> <td>н</td> <td>H</td> <td>Cı</td> <td>CHF₂</td> <td>OCHF₂</td>	Me	Me	н	Н	0	н	H	Cı	CHF ₂	OCHF ₂
Me Me H H 0 H H CF3 CHF2 F Me Me H H 0 H H CF3 CHF2 F Me Me H H 0 H H F CHF2 CF3 Me Me H H 0 H H CF3 CHF2 OMe Me Me H H 0 H H CF3 CHF2 OEt Me Me H H 0 H H CF3 CHF2 OEt Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CN Me Me H H	Me	Ме	H	Н	0	н	H	OCHF2	CHF ₂	OCHF2
Me Me H H 0 H H CF3 CHF2 F Me Me H H 0 H H F CHF2 CF3 Me Me H H 0 H H CF3 CHF2 OMe Me Me H H 0 H H CF3 CHF2 OEt Me Me H H 0 H H CF3 CHF2 OEt Me Me H H 0 H H CF3 CHF2 OCHF2 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CN Me Me H H 0 H H CF3 CHF2 CR Me Me H H	Μe	Me	H	H	0	Н	н	CF ₃	CHF ₂	CI
Me Me H H 0 H H F CHF2 CF3 Me Me H H 0 H H CF3 CHF2 OMe Me Me H H 0 H H CHF2 CF3 Me Me H H 0 H H CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CN Me Me H H 0 H H CN CHF2 CN Me Me H H 0 H H Me CHF2 CF3 Me Me H H 0 H	Μe	Me	н	н	0	Н	H	Cl	CHF ₂	CF ₃
Mo Me H H 0 H H CF3 CHF2 OMe Me Me H H 0 H H OMe CHF2 CF3 Me Me H H 0 H H CF3 CHF2 OEt Me Me H H 0 H H CF3 CHF2 OF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CN CHF2 CF3 Me Me H H 0 H H CR9 CHF2 CF3 Me Me H H 0 H M CHF2 CF3 Me Me H H 0 <td>Me</td> <td>Me</td> <td>н</td> <td>н</td> <td>0</td> <td>Н</td> <td>H</td> <td>CF3</td> <td>CHF₂</td> <td>F</td>	Me	Me	н	н	0	Н	H	CF3	CHF ₂	F
Me Me H H 0 H H OMe CHF2 CF3 Me Me H H 0 H H CF3 CHF2 OCEt Me Me H H 0 H H OEt CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CCF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CN CHF2 CF3 Me Me H H 0 H H CN CHF2 CF3 Me Me H H 0 H H Me CHF2 CF3 Me Me H H 0 H H CH CH CH CH CH CH CH CH <td>Me</td> <td>Me</td> <td>н</td> <td>н</td> <td>0</td> <td>н</td> <td>H</td> <td>F</td> <td>CHF₂</td> <td>CF₃</td>	Me	Me	н	н	0	н	H	F	CHF ₂	CF ₃
Me Me H H 0 H H CF3 CHF2 OEt Me Me H H 0 H H OCHF2 CF3 Me Me H H 0 H H CF3 CHF2 OCHF2 Me Me H H 0 H H CF3 CHF2 CN Me Me H H 0 H H CF3 CHF2 CN Me Me H H 0 H H CCF3 CCF3 Me Me H H 0 H H CHF2 CF3 Me Me H H 0 H H CHF2 CI Me Me H H 0 H H CHF2 CI Me Me H H 0 H H CHF2 CI	Me	Me	н	н	0	н	н	CF ₃	CHF ₂	ОМе
Me Me H H 0 H H OEt CHF2 CF3 Me Me H H 0 H H CF3 CHF2 OCHF2 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 Me Me Me H H 0 H H CF3 CHF2 Me Me Me H H 0 H H Me CHF2 CT3 Me Me H H 0 H H CH CH CHF2 CH Me Me H H 0 H H CH CH CH CH CH CH CH	Me	Me	н	н	0	н	н	OMe	CHF ₂	CF ₃
Me Me H H H CF3 CHF2 OCHF2 Me Me H H 0 H H OCHF2 CHF2 CF3 Me Me H H 0 H H CF3 CHF2 CN Me Me H H 0 H H CN CHF2 CF3 Me Me H H 0 H H CHF2 Me Me Me H H 0 H H Me CHF2 CI Me Me H H 0 H H CHF2 Me Me Me H H 0 H H CHF2 Me Me Me H H 0 H H CH	Me	Me	н	н	0	н	н	CF ₃	CHF ₂	OEt
Me Me H	Me	Me	н	н	0	H	н	OEt	CHF ₂	CF ₃
Me Me H H CF3 CHF2 CN Me Me H H 0 H H CCF3 Me Me Me H H 0 H H CF3 CHF2 Me Me Me H H 0 H H Me CHF2 CI Me Me H H 0 H H CH CHF2 Me Me Me H H 0 H H CL CHF2 Me Me Me H H 0 H H CL CHF2 Et Me Me H H 0 H H CL CHF2 Et Me Me H H 0 H H CL CH2CHF2 CL Me Me H H 0 H H CL	Me	Me .	н	н	0	н	H	CF ₃	CHF ₂	OCHF2
Me Me H H CN CHF2 CF3 Me Me H H O H H CF3 CHF2 Me Me Me H H O H H Me CHF2 CI Me Me H H O H H CHF2 Me Me Me H H O H H CH CHF2 CI Me Me H H O H H CH CH<	Me	Me	н	н	0	H	H	OCHF2	CHF ₂	CF ₃
Me Me H H CF3 CHF2 Me Me Me H H H Me CHF2 CF3 Me Me H H 0 H H Me CHF2 Cl Me Me H H 0 H H CH2 Me Me Me H H 0 H H CH2 CI Me Me H H 0 H H CH2 CI Me Me H H 0 H H CI CH2 CH2 CI Me Me H H 0 H H CI CH2 CH3	Me	Mę	н	н	0	H	H	CF ₃	CHF ₂	CN
Me H	Me	Me	н	н	0	H	H	CN	CHF ₂	CF ₃
Me H H H H Me CHF2 Cl Me Me H H 0 H H CHF2 Me Me Me H H 0 H H Et CHF2 Cl Me Me H H 0 H H CHF2 Et Me Me H H 0 H H CH2CHF2 CI Me Me H H 0 H H CH2CHF2 CI Me Me H H 0 H H CH2CHF2 CF3 Me Me H H 0 H H CH2CF3 CF3 CH2CF3 CF3 Me Me H H 0 H H CH2CF3 CH2CF3 CF3 Me Me H H 0 H H CH2CF3 CH2CF3	Me	Me	н	н	0	н	H	CF ₃	CHF ₂	Me
Me H H 0 H H Cl CHF2 Me Me Me H H H Et CHF2 Cl Me Me H H 0 H H CHF2 Et Me Me H H 0 H H CH2CHF2 Cl Me Me H H 0 H H CH2CHF2 CI Me Me H H 0 H H CH2CHF2 CI Me Me H H 0 H H CH2CHF2 CF3 Me Me H H 0 H H CH2CHF3 CF3 CF3 Me Me H H 0 H H CH2CHF3 CH2CHF2 CF3 Me Me H H 0 H H CH CH2CHF2 CH2CHEA CH2CH	Me	Me	н	н	0	н	H	Me	CHF ₂	CF ₃
Me H H H H H H H Et Cl Me Me H H 0 H H Cl CH2CHF2 Cl Me Me H H 0 H H CH2CHF2 Cl Me Me H H 0 H H CH2CHF2 CF3 Me Me H H 0 H H CH2CHF2 CF3 Me Me H H 0 H H CH2CF3 Cl Me Me H H 0 H H CH2CF3 CF3 Me Me H H 0 H H CH2CH2 CH2CH2 CI Me Me H H 0 H H CH CH2CH2 CH2CME CI Me Me H H 0 H H <	Me	Me	н	н	0	н	H	Me	CHF ₂	C1
Me H H H H CHF2 Et Me Me H H O H H CF3 CH2CHF2 CI Me Me H H 0 H H CH2CHF2 CF3 Me Me H H 0 H H CH2CF3 CI Me Me H H 0 H H CH2CF3 CF3 Me Me H H 0 H H CH2CF3 CF3 Me Me H H 0 H H CH2CH CF3 Me Me H H 0 H H CH2COME CI Me Me H H 0 H H CH2COME CCH2COME CCH2COME Me Me H H 0 H H CCH2COME CF3 Me M	Me	Me	H	н	0	н	н	Cl	CHF ₂	Me
Me Me H H 0 H H CF3 CH2CHF2 CI Me Me H H 0 H H Cl CH2CHF2 CF3 Me Me H H 0 H H CF3 CH2CF3 CI Me Me H H 0 H H CI CH2CF3 CF3 Me Me H H 0 H H CI CH2CH CI Me Me H H 0 H H CI CH2CH CF3 Me Me H H 0 H H CI CH2CME CI Me Me H H 0 H H CI CH2CME CCH2CME CCH2CME Me Me H H 0 H H CCH2CME CCH2CME CCH2CME Me	Me	Me	н	н	0	H	н	Et	CHF ₂	Cı
Me H H 0 H H CH2CHF2 CF3 Me Me H H 0 H H CH2CF3 Cl Me Me H H 0 H H CH2CF3 CF3 Me Me H H 0 H H CH2OH Cl Me Me H H 0 H H CH2OH CF3 Me Me H H 0 H H CH2OH CF3 Me Me H H 0 H H CH2OMe Cl Me Me H H 0 H H OCHF2 CH2OMe OCHF2 Me H H 0 H H CF3 CH2OMe F Me H H H H H F CH2OMe CF3	Me	Me	н	н	0	н	Н	Cl	CHF ₂	Et
Me H H 0 H H CF3 CH2CF3 Cl Me Me H H 0 H H CH2CF3 CF3 Me Me H H 0 H H CF3 CH2OH Cl Me Me H H 0 H H CH2OH CF3 Me Me H H 0 H H CH2OMe Cl Me Me H H 0 H H CH2OMe CH2OMe CH2OME Me Me H H 0 H H CH2OMe CH2OMe CH2OME Me Me H H H H H H H F Me Me H H H H H H H H H H H H H H H H H <td>Me</td> <td>Me</td> <td>н</td> <td>н</td> <td>0</td> <td>н</td> <td>H</td> <td>CF3</td> <td>CH₂CHF₂</td> <td>Cl</td>	Me	Me	н	н	0	н	H	CF3	CH ₂ CHF ₂	Cl
Me Me H H O H H CH2CF3 CF3 Me Me H H O H H CF3 CH2OH CI Me Me H H O H H CH2OH CF3 Me Me H H O H H CH2OMe CI Me Me H H O H H CH2OMe CCH2OMe CCHF2 Me Me H H O H H CCH2OMe CCH2OMe CCHF2 Me Me H H O H H CF3 CH2OMe CF3	Me	Me	н	н	0	н	H	C1	CH2CHF2	CF ₃
Me H H O H H CH2OH Cl Me H H O H H CH2OH CF3 Me Me H H O H H CH2OMe Cl Me Me H H O H H OCHF2 CH2OMe CCH2OMe OCHF2 Me Me H H O H H OCHF2 CH2OMe OCHF2 Me Me H H O H H CF3 CH2OMe F Me Me H H O H H F CH2OMe CF3	Me	Me	н	н	0	н	H	CF ₃	CH ₂ CF ₃	Cl
Me Me H H 0 H H Cl CH2OH CF3 Me Me H H 0 H H Cl CH2OMe Cl Me Me H H 0 H H OCHF2 CH2OMe OCHF2 Me Me H H 0 H H OCHF2 CH2OMe OCHF2 Me Me H H 0 H H CF3 CH2OMe F Me Me H H 0 H H F CH2OMe CF3	Me	Me	н	н	0	н	H	Cl	CH ₂ CF ₃	CF ₃
Me Me H H 0 H H Cl CH2OMe Cl Me Me H H 0 H H OCHF2 CH2OMe Cl Me Me H H 0 H H Cl1 CH2OMe OCHF2 Me Me H H 0 H H OCHF2 CH2OMe OCHF2 Me Me H H 0 H H CF3 CH2OMe F Me Me H H 0 H H F CH2OMe CF3	Me	Me	н	н	0	H	H	CF ₃	CH ₂ OH	Cl
Me H H 0 H H OCHF2 CH2OMe Cl Me Me H H 0 H H Cl CH2OMe OCHF2 Me Me H H 0 H H OCHF2 CH2OMe OCHF2 Me Me H H 0 H H CF3 CH2OMe F Me Me H H 0 H H F CH2OMe CF3	Me	Me	н	н	0	н	H	Cl	CH ₂ OH	CF ₃
Me Me H H 0 H H Cl CH2OMe OCHF2 Me Me H H 0 H H OCHF2 CH2OMe OCHF2 Me Me H H 0 H H CF3 CH2OMe F Me Me H H 0 H H F CH2OMe CF3	Me	Me	н	н	0	н	н	Cl	CH ₂ OMe	CI
Me Me H H 0 H H OCHF2 CH2OMe OCHF2 Me Me H H 0 H H CF3 CH2OMe F Me Me H H 0 H H F CH2OMe CF3	Me	Me	н	н	0	H	H	OCHF2	CH₂OMe	Cl
Me Me H H 0 H H CF3 CH2OMe F Me Me H H 0 H H F CH2OMe CF3	Me	Me	H	н	0	н	H	Cl	CH ₂ OMe	OCHF ₂
Me Me H H O H H F CH ₂ OMe CF ₃	Me	Me	H	H	0	H	н	OCHF ₂	CH ₂ OMe	OCHF ₂
	Me	Me	н	H	0	н	н	CF ₃	CH ₂ OMe	F
Me Me H H 0 H CF3 CH2OMe C1	Me	Me	н	H	0	H	н	F	CH₂OMe	CF ₃
	Me	Me	н	H	0	H	H	CF ₃	CH ₂ OMe	Cl

Me Me H H O H H Cl CH2OMe CF3 Me Me H H O H H CF3 CH2OMe OMe	
126 126 127 127 127 127 127 127 127 127 127 127	
Me Me H H O H H OMe CH2OMe CF3	
Me Me H H O H H CF3 CH2OMe OEt	
Me Me H H O H H OEt CH2OMe CF3	
Me Me H H O H H CF3 CH2OMe OCHF2	
Me Me H H O H H OCHF ₂ CH ₂ OMe CF ₃	
Me Me H H O H H CF3 CH2OMe CN	
Me Me H H O H H CN CH ₂ OMe CF ₃	
Me Me H H O H H CF3 CH2OMe Me	
Me Me H H O H H Me CH2OMe CF3	
Me Me H H O H H CF3 CH2OEt Cl	
Me Me H H O H H Cl CH2OEt CF3	i
Me Me H H O H H CF3 CH2CH2OH Cl	
Me Me H H O H H Cl CH2CH2OH CF3	
Me Me H H O H H CF3 CH2CH2OMe Cl	
Me Me H H O H H Cl CH2CH2OMe CF3	i
Me Me H H O H H CF3 CH2CH2OEt Cl	
Me Me H H O H H Cl CH2CH2OEt CF3	
Me Me H H O H H CF3 CH2NHMe C1	
Me Me H H O H H Cl CH2NHMe CF3	l
Me Me H H O H H CF ₃ CH ₂ N(Me) ₂ Cl	l
Me Me H H O H H Cl CH2N(Me)2 CF3	1
Me Me H H O H H CF3 CH2N(Me)C(=O)Me Cl	
Me Me H H O H H Cl CH2N(Me)C(=O)Me CF3	
Me Me H H O H H CF3 CH2N(Me)C(=O)CF3 Cl	
Me Me H H O H H Cl CH2N(Me)C(=O)CF ₃ CF ₃	
Me Me H H O H H CF3 CH2N(Me)SO2Me Cl	
Me Me H H O H H Cl CH2N(Me)SO ₂ Me CF ₃	
Me Me H H O H H CF3 CH2N(Me)SO ₂ CHF ₂ Cl	}
Me Me H H O H H Cl CH2N(Me)SO ₂ CHF ₂ CF ₃	
Me Me H H O H H CF3 CH2N(Me)SO ₂ CF3 C1	
Me Me H H O H H Cl CH2N(Me)SO ₂ CF ₃ CF ₃	
Me Me H H O H H CF3 CH2SMe Cl	
Me Me H H O H H Cl CH2SMe CF3	1
Me Me H H O H H CF3 CH2SO2Me C1	
Me Me H H O H H Cl CH2SO2Me CF3	
Me Me H H O H H CF3 CH2CH2SMe CI	

,									
Me	Me	н	н	0	н	н	Cl	CH ₂ CH ₂ SMe	CF ₃
Me	Me	H	н	Q	Н	н	CF ₃	CH ₂ CH ₂ SO ₂ Me	CI
Me	Me	H	H	0	н	н	Cı	CH ₂ CH ₂ SO ₂ Me	CF ₃
Me	Me	H	H	0	Н	н	CF ₃	CH₂CN	Cl
Me	Ме	Н	Н	0	H	Н	Cl	CH ₂ CN	CF ₃
Me	Me	н	H	0	н	н	CF ₃	CH ₂ C(=O)OMe	Cl
Me	Me	н	H	0	Н	H	C1	CH ₂ C(=O)OMe	CF_3
Me	Me	н	Н	0	н	Н	CF ₃	CH ₂ C(=O)OEt	Cl
Me	Me	н	Н	0	н	н	CI	CH ₂ C(=O)OEt	CF ₃
Me	Me	н	H	0	H	н	CF ₃	CH(Me)C(=O)OMe	CI .
Me	Me	н	Н	0	H	Н	Cl	CH(Me)C(=O)OMe	CF ₃
Me	Me	н	H	0	H	H	CF ₃	C(Me) ₂ C(=O)OMe	CI
Me	Me	н	H	0	H	H	Cl	C(Me) ₂ C(=O)OMe	CF ₃
Me	Me	н	H	0	H	H	CF ₃	CH ₂ C(=O)NH ₂	CI
Me	Me	н	H	0	H	H	Cl	CH ₂ C(=O)NH ₂	CF ₃
Me	Me	н	H	0	H	н	CF_3	CH ₂ C(=O)NHMe	Cl
Me	Me	н	H	0	H	н	Cl	CH ₂ C(=O)NHMe	CF ₃
Me	Me	н	H	0	Н	H	CF3	CH ₂ C(=O)N(Me) ₂	CI
Me	Me	н	H	0	H	H	Cl	CH ₂ C(=O)N(Me) ₂	CF ₃
Me	Me	н	H	0	H	H	CF ₃	CH ₂ C(=O)Me	Cl
Me	Me	н	Н	0	H	H	Cl	CH ₂ C(=O)Me	CF ₃
Me	Me	н	н	0	H	H	CF ₃	CH ₂ C(=NOMe)Me	C1
Me	Me	н	H	0	Н	H	Cl	CH ₂ C(=NOMe)Me	CF ₃
Me	Me	н	Н	0	H	H	CF ₃	CH ₂ C(=O)CF ₃	C1
Me	Me	н	н	0	H	H	Cl	CH ₂ C(=O)CF ₃	CF ₃
Me	Me	н	н	0	Н	H	CF_3	CH ₂ CH ₂ C(=O)Me	C1
Me	Me	н	H	0	н	H	Cl	CH ₂ CH ₂ C(=O)Me	CF ₃
Me	Me	н	н	0	н	H	Me	Ph	Ме
Me	Me	н	H	0	н	H	Me	Ph	C1
Me	Me	н	н	0	н	H	Et	Ph	C1
Me	Ме	н	H	0	н	H.	Pr	Ph	C1
Ме	Me	н	н	0	H	H	Pr-i	Ph	Cl
Me	Me	н	н	0	н	H	Bu-t	Ph .	Cl
Me	Мe	H	н	0	н	н	CH₂OMe	Ph	Cl
Ме	Me	H	H	0	н	H	Cl	Ph	Cl
Me	Me	H	H	0	н	н	OCHF2	Ph	Cl
Me	Me	H	H	0	H	Н	OCHF ₂	Ph	OCHF2
Ме	Me	H	H	0	н	H	CHF ₂	Ph	cı

Me Me H H 0 H H CF3 Ph H Me Me H H 0 H H CF3 Ph Me Me Me H H 0 H H Me Ph CF3	
Me Me H H O H H Me Ph CF3	
Me Me H H O H H CF3 Ph Et	
Me Me H H O H H CF3 Ph Pr-i	
Me Me H H O H H CF3 Ph CHF2	
Me Me H H O H H CF3 Ph CF3	
Me Me H H O H H CF3 Ph F	
Me Me H H O H H CF3 Ph C1	1
Me Me H H O H H Cl Ph CF3	1
Me Me H H O H H CF3 Ph OH	
Me Me H H O H H OH Ph CF3	1
Me Me H H O H H CF3 Ph OMe	
Me Me H H O H H OMe Ph CF3	1
Me Me H H O H H CF3 Ph OEt	Ì
Me Me H H O H H OEt Ph CF3	
Me Me H H O H H CF3 Ph OPr-i	
Me Me H H O H H CF3 Ph OPr	
Me Me H H O H H CF3 Ph OBu-t	1
Me Me H H O H H CF3 Ph OCH2Pr-c	1
Me Me H H O H H CF3 Ph OCH2CH=CH2	ĺ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Me Me H H O H H CF3 Ph OCHF2	
Me Me H H O H H OCHF ₂ Ph CF ₃	1
Me Me H H O H H CF3 Ph OCH2CHF2	
Me Me H H O H H CF3 Ph OCH2CF3	
Me Me H H O H H CF3 Ph OCH2C(=O)OMe	
Me Me H H O H H CF3 Ph OCH(Me)C(=O)OMe	
Me Me H H O H H CF3 Ph OC(Me) ₂ C(=O)OMe	
Me Me H H O H H CF3 Ph OC(=O)Me	
Me Me H H O H H CF3 Ph OC(=O)Et	
Me Me H H O H H CF ₃ Ph OC(=O)CH ₂ Ph	
Me Me H H O H H CF3 Ph OC(=O)CF3	
Me Me	
Me Me H H O H H CF3 Ph OSO ₂ Me	
Me Me H H O H H CF3 Ph OSO ₂ Et	
Me Me H H O H H CF3 Ph OSO ₂ CH ₂ Ph	1
Me Me H H O H H CF3 Ph OSO ₂ CF ₃	-

Me	Me		н	н	0	н	н	CF ₃	Ph	OSO ₂ Ph
Me	Me		н	н	0	н	H	CF ₃	Ph	SMe
Me	Me		H	H	0	н	H	CF ₃	Ph	SO ₂ Me
Me	Me		H	н	0	н	н	CF3	Ph	SEt
Me	Me		Н	н	0	Н	н	CF3	Ph	SO ₂ Et
Me	Me		H	Н	0	н	Н	$\mathbf{CF_3}$	Ph	SPr-i
Me	Me		H	H	0	н	Н	CF ₃	Ph	SO ₂ Pr-i
Me	Me		H	Н	0	н	н	CF ₃	Ph	SPr
Me	Me		H	Н	0	Н	н	CF ₃	Ph	SO ₂ Pr
Me	Me		H	H	0	н	н	CF3	Ph	SBu-t
Me	Me		H	H	0	Н	H	CF ₃	Ph	SO₂Bu-t
Me	Me		H	H	0	H	Н	CF ₃	Ph	SCHF ₂
Me	Me		H	Н	0	H	н	CF3	Ph	SO ₂ CHF ₂
Me	Me		н	H	0	H	н	CF3	Ph	NH ₂
Me	Me		н	Н	0	H	н	CF ₃	Ph	NHMe
Me	Me		н	н	0	Н	н	CF ₃	Ph	N(Me) ₂
Me	Me	1	н	н	0	н	н	CF3	Ph	NHC(=O)Me
Me	Me		н	н	0	н	н	CF3	Ph	N(Me)C(=O)Me
Me	Me		H	Н	0	H	н	CF3	Ph	NHSO2Me
Me	Me		н	H	0	н	н	CF ₃	Ph	N(Me)SO ₂ Me
Me	Me	١	н	H	0	н	н	CF ₃	\mathbf{Ph}	NHSO2CF3
Me	Me		н	н	0	H	н	CF ₃	Ph	N(Me)SO ₂ CF ₃
Me	Me	ı	н	н	0	Н	H	CF ₃	Ph	NHPh
Me	Me		н	н	0	H	H	CF ₃	\mathbf{Ph}	N(Me)Ph
Me	Me		н	H	0	H	H	CF ₃	Ph	CN
Me	Me		н	н	0	H	H	CF ₃	Ph	C(=O)Me
Me	Me		н	Н	0	н	H	CF ₃	Ph	C(=O)OMe
Me	Me		н	н	0	н	H	CF ₃	Ph	C(=O)NH2
Me	Me		н	н	0	н	H	CF ₃	Ph	C(=O)NHMe
Me	Me		н	H	0	н	н	CF3	Ph	C(=O)N(Me) ₂
Me	Me		н	н	0	н	Н	CF3	Ph	Imidazol-1-yl
Me	Me		н	н	0	H	H	CF3	Ph	Pyrazol-1-yl
Me	Me		н	н	0	н	H	$\mathbf{CF_3}$	Ph	1,2,4-Triazol-1-yl
Me	Ме		н	н	0	н	H	CF3	Ph	1,2,4-Triazol-4-yl
Me	Me		н	н	0	н	н	CF ₃	Ph	Tetrazol-1-yl
Me	Ме		н	н	0	н	н	CF ₃	Ph	Tetrazol-5-yl
Me		-	н	н	0	н	н	CF ₃	Ph	(4,6-Dimethoxypyrimidin-2-yl

Me	Me	н	н	0	н	н	CF ₃	Ph	(4,6-Dimethoxypyrimidin-2-yl)
Me	Me	Н	н	0	н	н	CF ₂ CF ₃	Ph	CI
Me	Me	н	н	0	н	н	CF ₃	(2-Cl)Ph	Cl
Me	Me	н	н	0	н	н	CF ₃	(2·F)Ph	Cl
Me	Me	н	н	0	н	н	CF ₃	(2-OMe)Ph	Cl
Me	Me	Н	н	0	н	н	CF ₃	(2-Me)Ph	Cı
Me	Me	н	H	0	Н	н	CF ₃	(2-NO ₂)Ph	Cl
Me	Me	н	н	0	Н	н	CF ₃	(2-CN)Ph	Cl
Me	Me	н	н	0	н	н	CF3	(2-C(=O)Me)Ph	Cı
Me	Me	н	н	0	Н	н	CF ₃	(2-C(=O)OMe)Ph	Cl
Me	Me	н	Н	0	H	н	CF3	(2-C(=O)OEt)Ph	Cl
Me	Me	н	н	0	H	н	CF3	(2-C(=O)OPr-i)Ph	CI
Me	Me	н	H	0	Н	н	CF ₃	(2-C(=O)NH ₂)Ph	Cı
Me	Me	н	Н	0	н	Н	CF3	(2·C(=O)NHMe)Ph	Cl
Me	Me	н	H	0	H	H	CF3	(2-C(=O)NMe ₂)Ph	Cl
Me	Me	н	H	0	H	H	$\mathbf{CF_3}$	(3-Cl)Ph	Cl
Me	Me	н	H	0	H	H	CF₃	(3-F)Ph	Cl
Me	Me	н	H	0	H	H	CF3	(3-OMe)Ph	Cl
Me	Me	н	H	0	H	H	CF ₃	(3-Me)Ph	Cl
Me	Me	н	н	0	H	н	CF3	(3-NO ₂)Ph	Cl
Me	Me	н	H	0	H	H	CF ₃	(3-CN)Ph	C1
Me	Me	н	H	0	H	H	CF ₃	(3-C(=0)Me)Ph	Cl
Ме	Me	H	H	0	H	H	CF ₃	(3-C(=O)OMe)Ph	Cl
Me	Me	н	H	0	H	H	CF3	(3-C(=O)OEt)Ph	Cl
Me	Me	н	H	0	H	H	$\mathbf{CF_3}$	(3-C(=O)OPr-i)Ph	Cl
Me	Me	H	H	0	H	H	CF ₃	(3-C(=O)NH ₂)Ph	Cl
Me	Me	н	H	0	H	Н	CF3	(3-C(=O)NHMe)Ph	Cl
Ме	Ме	н	Н	0	н	н	CF3	(3-C(=O)NMe ₂)Ph	Cl
Me	Me	H	н	0	H	H	CF ₃	(4·Cl)Ph	Cl
Me	Me	н	H	0	H	H	CF ₃	(4·F)Ph	Cl
Me	Ме	H	H	0	H	H	CF3	(4-OMe)Ph	Cl
Me	Ме	H	H	0	H	н	CF3	(4·Me)Ph	CI
Me	Me	н	H	0	н	H	CF3	(4-NO ₂)Ph	Cl
Me	Ме	H	H	0	H	H	CF ₃	(4-CN)Ph	C1
Me	Ме	H	н	0	н	H	CF3	(4-C(=O)Me)Ph	C1
Me	Me	H	H	0	H	H	CF3	(4-C(=O)OMe)Ph	Cl
Me	Me	H	H	0	H	H	CF ₃	(4-C(=O)OEt)Ph	Cl

Me	Me	Н	н	0	H	н	CF ₃	(4-C(=O)OPr-i)Ph	Cl
Me	Me	н	н	0	Н	H	CF3	(4-C(=O)NH2)Ph	Cl
Me	Me	н	н	0	H	Н	CF3	(4-C(=O)NHMe)Ph	C1
Me	Me	н	н	0	H	н	CF ₃	(4-C(=O)NMe ₂)Ph	Cl
Me	Ме	н	н	0	н	H	CF3	Pyrmidin-2-yl	C1 .
Me	Mie	H	H	0	н	н	CF ₃	4,6-Dimethoxypyrmidin-2-yl	Cl
Me	Me	н	H	0	н	H	CF ₃	Thiophen-2-yl	CI
Me	Me	н	H	0	н	H	CF ₃	Furan-2-yl	Cl
Me	Me	H	H	0	H	Н	CF3	SO ₂ Me	Cl
Me	Me	н	H	0	Н	н	CF ₃	SO ₂ Et	C1
Me	Me	н	н	0	н	н	CF ₃	SO ₂ Pr-i	C1
Me	Me	н	H	0	H	H	CF ₃	SO ₂ CH ₂ Ph	Cı
Me	Me	н	Н	0	H	н	CF ₃	SO ₂ CHF ₂	Cl
Me	Me	н	H	0	H	н	CF3	SO ₂ CF ₃	C1
Me	Me	н	н	0	H	Н	CF3	SO ₂ Ph	Cl
Me	Me	н	н	0	H	н	CF3	C(=O)Me	Cl
Me	Me	н	Н	0	H	Н	CF3	C(=O)Et	C1
Me	Me	н	H	0	н	н	CF ₃	C(=O)Pr-i	C1
Me	Me	н	H	0	H	H	CF3	C(=O)Bu-t	CI
Me	Me	н	н	0	H	H	CF ₃	C(=O)Ph	C1
Me	Me	н	н	0	H	H	CF3	C(=O)CH ₂ Ph	C1
Me	Me	н	H	0	н	Н	CF3	C(=O)CH2Cl	Cl
Me	Me	н	н	0	Н	Н	CF3	C(=O)CHCl ₂	CI
Me	Me	н	H	0	н	н	CF3	C(=O)CF ₃	Cl
Me	Me	н	н	0	н	H	CF3	C(=O)OMe	C1
Me	Me	н	H	0	н	н	CF3	C(=O)OPh	Cl
Me	Me	н	н	0	н	н	CF3	C(=O)OCH ₂ Ph	Cl
Me	Me	н	H	0	н	н	CF3	C(=O)NHMe	Cl
Me	Me	н	н	0	Н	н	CF ₃	C(=O)N(Me) ₂	CI
Me	Me	н	н	0	н	н	CF3	C(=O)NHPh .	C1
Me	Ме	н	н	0	н	н	CF ₃	NH2	Cı
Me	Me	н	н	0	н	H	Cl	-(C	H ₂) ₂ O-
Me		н	н	0	н		Cl		H ₂) ₃ O-
Me		н	н	0	н		Cl	i e	H ₂) ₃ S-
Me		H	н	0	н		Cl	l	I ₂) ₃ SO ₂ -
Me		H	н	0	н		CF ₃		H ₂) ₂ O-
Me		H	н	0	н		CF ₃		H ₂) ₃ O-
Me		H	н	0	н		CF ₃		H ₂) ₃ S-
1				7				۱	 -

i	1		1				I -	1	
Me	Me	H	Н	0	H	H	CF3	-(C)	H ₂) ₃ SO ₂ -
Me	Me	Н	H	0	H	H	OMe	-(CH ₂) ₄ -
Me	Me	н	H	0	H	H	OCHF ₂	-(CH ₂) ₄ -
H	н	н	H	0	н	н	CF ₃	Me	Cl
Me	н	н	н	0	н	H	CF ₃	Me	Cl
Me	н	Me	Н	0	н	н	CF ₃	Me	Cı
Me	Me	Me	H	0	H	н	CF ₃	Me	CI
Me	Me	н	H	0	Me	н	CF ₃	Ме	Cl
Me	Me	н	н	0	Et	Н	CF3	Me	CI
Me	Me	н	H	0	Pr-i	H	CF ₃	Me	Cl
Me	Me	н	н	0	Ме	Me	CF3	Me	CI
Me	Et	н	н	0	н	Н	CF ₃	Me	Cı
Et	Et	н	н	0	н	н	CF3	Ме	Cı
Me	Pr-i	н	H	0	н	H	CF3	Ме	Cı
Me	Pr	H	H	0	H	H	CF ₃	Me	Cl
Me	Pr-c	н	н	0	н	H	CF ₃	Me	C1
Me	CH ₂ Pr-c	н	н	0	н	H	CF3	Me	Cl
-(CH ₂) ₂ -	н	H	0	н	Н	CF3	Ме	C1
-(CH2)3·	н	н	0	н	H	CF3	Me	Cl
-(CH ₂) ₄ .	н	н	0	н	н	CF3	Me	Cl
-(CH ₂) ₅ .	н	н	0	н	H	CF3	Me	Cl
H	-(CH ₂))3-	н	0	н	н	CF3	Me	Cl
Н	-(CH ₂))4-	H	0	Н	н	CF3	Me	CI
H	-(CH ₂))5-	н	0	Н	н	CF3	Ме	Cl
н	-(CH ₂))6-	H	0	н	н	CF3	Me	Cl
Me	Et	H	н	2	н	н	H	н	н

表 4

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
R^1	R^2	R ³	R ⁴	n	R ⁵	R ⁶	,	$\frac{R^{32}}{Z^3}$	R31	R ³²				
Me	Me	H	H	2	H	H	0		Me	F				
Me	Me	H	H	2	H	H	o		Me	Cı				
Me	Me	Н	H	2	H	H	o		Me	OMe				
Me	Me	н	Н	2	Н	Н	0		Me	OEt				
Me	Me	н	н	2	H	н	О		Me	OPr-i				
Me	Me	н	н	2	H	н	О		Me	OPh				
Me	Me	н	н	2	н	н	o		Me	OCHF ₂				
Me	Me	н	Н	2	H	н	О		Me	Me				
Me	Me	H	Н	2	H	H	0		Me	CF_3				
Me	Me	н	Н	2	Н	H	О		Me	CN				
Me	Me	н	Н	2	Н	H	О		OCHF ₂	F				
Me	Me	H	Н	2	H	H	0		OCHF ₂	Cl				
Me	Me	H	Н	2	Н	H	О		$OCHF_2$	Me				
Me	Me	н	H	2	н	H	О		OCHF ₂	CF_3				
Me	Me	Н	Н	2	н	H	О		OCHF ₂	CN				
Me	Me	Н	H	2	H	H	0		CF ₃	F				
Me	Me	н	H	2	H	H	О		CF ₃	Cl				
Me	Me	н	H	2	· H	\mathbf{H}	О		CF ₃	OMe				
Me	Me	Н	H	2	H	H	О		CF ₃	OEt				
Me	Me	н	H	2	H	\mathbf{H}	0		CF ₃	OPr-i				
Me	Me	H	H	2	H	H	0		CF ₃	OPh				
Me	Me	н	H	2	н	H	0		CF ₃	OCHF ₂				
Me	Me	н	H	2	H	H	0		CF ₃	SMe				
Me	Me	H	H	2	H	H	0		CF_3	SOMe				
Me	Me	H		2	H	H	0		CF ₃	SO ₂ Me				
Me	Me	H	H	2	H	H	0		CF ₃	SEt				
Me	Me	н	H	2	н	\mathbf{H}	0		CF ₃	SOEt				
Me	Me	H	H	2	H	H	О		CF ₃	SO ₂ Et				
Me	Me	H	H	2	H	H	0		CF ₃	SPr-i				
Me	Me	H		2	H	H	0		CF ₃	SOPr-i				
Me	Me	H		2	H	H	0		CF ₃	SO ₂ Pr-i				
Me	Me	H		2	H	H	0		CF ₃	SPh				
Me	Me	H	H	2	н	H	0		CF ₃	SOPh				

1	م د	1	1	٦	۱	1	اما	l	l
Me	Me	H	H	2	ì	H	0	CF ₃	SO ₂ Ph
Me	Me	H	H	2	H	H	0	CF ₃	SCHF ₂
Me	Me	H	H	2	H	H	0	CF ₃	SOCHF ₂
Me	Me	H	H	2	H	H	0	CF ₃	SO ₂ CHF ₂
Me	Me	H	H	2	H	H	0	CF ₃	SCF ₃
Me	Me	H	H	2	H	H	0	CF ₃	SOCF ₃
Ме	Me	H	H	2	H	H	0	CF ₃	SO ₂ CF ₃
Me	Me	H	H	2	H	H	0	CF ₃	NH ₂
Me	Me	H	H	2	H	H	0	CF ₃	NHC(=O)Me
Me	Me	H	H	2	H	H	0	CF ₃	NHC(=O)Ph
Me	Me	H	H	2	H	H	0	CF ₃	NHC(=O)CH ₂ Ph
Me	Me	H	H	2	H	H	O	CF_3	NHC(=O)CF ₃
Me	Me	H	H	2	H	H	О	CF ₃	NHSO ₂ Me
Me	Me	H	H	2	Н	Н	О	CF ₃	NHSO ₂ Ph
Me	Me	H	H	2	Н	H	О	CF ₃	NHSO ₂ CHF ₂
Me	Me	H	H	2	H	H	0	CF_3	NHSO ₂ CF ₃
Me	Me	H	H	2	H	н	О	CF ₃	NHMe
Me	Me	H	Н	2	H	Н	0	CF ₃	NHPh
Me	Me	H	Н	2	H	H	О	CF ₃	N(Me)C(=O)Me
Me	Me	H	н	2	H	H	О	CF_3	N(Me)C(=O)Ph
Me	Me	H	н	2	H	H	О	CF_3	N(Me)C(=O)CH ₂ Ph
Me	Me	H	Н	2	H	H	0	CF_3	N(Me)C(=O)CF ₃
Me	Me	H	H	2	\mathbf{H}	H	О	CF_3	N(Me)SO ₂ Me
Me	Me	H	H	2	\mathbf{H}	H	0	CF_3	N(Me)SO ₂ Ph
Me	Me	H	H	2	· H	Н	0	CF_3	N(Me)SO ₂ CHF ₂
Me	· Me	H	H	2	H	н	О	CF_3	N(Me)SO ₂ CF ₃
Me	Me	H	H	2	\mathbf{H}	H	0	CF_3	N(Me) ₂
Me	Me	H	H	2	H	H	0	CF_3	N(Me)Ph
Me	Ме	H	H	2	H	H	0	CF ₃	Me
Me	Me	H	H	2	H	H	0	CF ₃	CF ₃
Me	Me	Н	H	2	H	н	О	CF ₃	CN
Me	Me	Н	H	2	H	н	О	Ph	Me
H	H	H	H	2	H	H	0	$\mathbf{CF_3}$	Me
Me	H	H	H	2	H	H	0	CF3	Me
Me	H	Me	H	2	H	H	0	CF3	Me
Me	Me	Me	H	2	H	H	О	CF3	Me
Me	Me	H	H	2	Me	H	0	CF3	Me
Me	Me	H	H	2	Et	H	0	CF ₃	Me
Me	Me	H	H	2	Pr-i	H	0	CF ₃	Me [·]
Me	Me	н	H	2	Me	Me	О	CF3	Me
Me	Et	H	H	2	H	H	0	CF3	Me
Et	Et	H	H	2	H	H	0	CF3	Me
Me	Pr-i	H	H	2	H	H	0	CF ₃	Me

Me	l Pr	Н	н	12	н	Н	lo	CF_3	Me
Me	Pr-c	Н	H	2	н	Н	0	$\mathbf{CF_3}$	Me
Me	CH ₂ Pr-c	Н	н	2	н	H	О	CF ₃	Me
-(CH ₂) ₂ -	Н	H	2	н	н	О	CF ₃	Me
-(CH ₂) ₃ -	H	H	2	н	н	О	CF_3	Me
-(CH ₂) ₄ -	H	н	2	н	н	o	CF ₃	Me
-(CH ₂) ₅ -	Н	H	2	н	н	Ю	CF_3	Me
H	-(CH ₂))3-	н	2	н	Н	О	CF ₃	Me
н	-(CH ₂)) ₄ -	н	2	н	H	О	CF ₃	Me
H	-(CH ₂)		H	2	H	н	0	CF ₃	Me
Н	-(CH ₂)		н	2	H	н	lo	CF3	Me
Me	Me	Н	н	2	Н	Н	s	Me	\mathbf{F}
Me	Me	н	Н	2	Н	н	s	Me	Cl
Me	Me	н	н	2	H	Н	s	Me	OMe
Me	Me	н	н	2	Н	н	s	Me	OEt
Me	Me	н	н	2	H	Н	s	Me	OPr-i
Me	Me	н	н	2	H	н	s	Me	OPh
Me	Me	н	H	2	H	Н	S	Me .	OCHF ₂
Me	Me	н	н	2	H	Н	S	OCHF ₂	\mathbf{F}
Me	Me	н	н	2	H	Н	s	OCHF ₂	Cl
Me	Me	н	н	2	H	н	s	$OCHF_2$	Me
Me	Me	H	H	2	H	H	s	OCHF ₂	CF ₃
Me	Me	н	н	2	H	н	s	OCHF ₂	CN
Me	Me	H	H	2	H	н	s	CF ₃	F
Me	Me	H	H	2	H	н	s	CF ₃	Cl
Me	Me	H	H	2	H	н	s	CF3	OMe
Me	Me	Н	H	2	H	H	S	CF ₃	OEt
Me	Me	H	H	2	H	H	S	CF ₃	OPh
Me	Me	H	H	2	H	Н	S	CF3	OCHF ₂
Me	Me	H	H	2	H	H	s	CF_3	SMe
Me	Me	H	H	2	H	н	s	$\mathbf{CF_3}$	SOMe
Me	Me	H	Н	2	H	H	S	CF_3	SO ₂ Me
Me	Me	H	H	2	H	H	S	$\mathbf{CF_3}$	SEt
Me	Me	н	H	2	H	H	s	CF_3	SOEt
Me	Me	H	H	2	H	H	S	CF_3	SO ₂ Et
Me	Me	H	H	2	Н	Н	S	CF_3	SPr-i
Me	Me	H	H	2	H	H	S	CF_3	SOPr-i
Me	Me	H	H	2	H	H	S	CF ₃	SO ₂ Pr-i
Me	Me	H	H	2	H	H	S	CF_3	SPh
Me	Me	H	H	2	Н	H	S	CF ₃	SOPh
Me	Me	H	H	2	H	H	S	CF ₃	SO ₂ Ph
Me	Me	H	H	2	н	H	S	CF ₃	SCHF ₂

Me	Me	Н	н	2	н	н	s	$ _{\mathrm{CF}_3}$	SOCHF2
Me	Me	H	н	2	H	н	S	CF ₃	SO ₂ CHF ₂
Me	Me	Н	Н	2		н	s	CF ₃	SCF ₃
Me	Me	H	Н	2	Н	Н	s	CF ₃	SOCF ₃
Me	Me	H	H	2	н	н	s	CF ₃	SO ₂ CF ₃
Me	Me	н	Н	2	н	н	s	CF ₃	NH ₂
Me	Me	Н	н	2	Н	н	s	CF_3	NHC(=O)Me
Me	Me	H	H	2	H	н	s	CF_3	NHC(=O)Ph
Me	Me	н	H	2	Н	н	s	CF ₃	NHC(=0)CH ₂ Ph
Me	Me	H	H	2	Н	н	S	CF ₃	NHC(=O)CF ₃
Me	Me	H	H	2	Н	H	S	CF ₃	NHSO ₂ Me
Me	Me	H	H	2	н	H	s	CF ₃	NHSO ₂ Ph
Me	Me	Н	н	2	н	н	s	CF ₃	NHSO ₂ CHF ₂
Me	Me	H	H	2	Н	Н	s	CF ₃	NHSO ₂ CF ₃
Me	Me	H	H	2	H	H	S	CF ₃	NHMe
Me	Me	H	H	2	H	H	S	$\mathbf{CF_3}$	NHPh
Me	Me	H	H	2	H	H	S	CF ₃	N(Me)C(=O)Me
Me	Me	H	H	2	H	H	S	CF ₃	N(Me)C(=O)Ph
Me	Me	H	H	2	H	н	S	CF ₃	N(Me)C(=O)CH ₂ Ph
Me	Me	H	H	2	H	Н	S	CF ₃	N(Me)C(=O)CF ₃
Me	Me	H	Н	2	H	H	S	CF_3	N(Me)SO ₂ Me
Me	Me	H	H	2	H	н	s	CF_3	N(Me)SO ₂ Ph
Me	Me	H	H	2	H	H	S	CF_3	N(Me)SO ₂ CHF ₂
Me	Me	H	H	2	H	н	S	CF ₃	N(Me)SO ₂ CF ₃
Me	Me	H	H	2	H	Н	S	CF ₃	N(Me) ₂
Me	Me	H	H	2	H	H	S	CF ₃	N(Me)Ph
Me	Me	H	H	2	H	H	S	CF ₃	Me
Me	Me	H	H	2	H	H	S	CF ₃	CN
H	H	H	H	2	H	H	S	CF ₃	C1
Me	H	H	H	2	H	H	S	CF ₃	Cl
Me	H	Me	H	2	H	H	S	CF ₃	C1
Me	Me	Ме	H	2	Н	H	S	CF3	C1
Me	Me	H	H	2	Me	H	S	CF ₃	C1
Me	Me	H	H	2	Et	H	S	CF ₃	Cl
Me	Me	H	H	2	Pr-i	H	S	CF ₃	Cl
Me	Me	H	H	$\frac{2}{2}$	Me	Me	S	CF3	C1
Me	Et	H	H	2	H	H	S	CF ₃	C1
Et	Et	H	H	$\begin{vmatrix} 2 \\ 0 \end{vmatrix}$	H	H	S	CF ₃	Cl
Me	Pr-i	H	Н	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	H	H	S	CF₃	Cl
Me Me	Pr.	H	H	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	H	H	S	CF ₃	Cl
Me	Pr-c	H	H	2	H	H	S	CF ₃	C1
Me	CH ₂ Pr-c	H	H	2	H	н	s	CF_3	Cl

-(CH ₂) ₂ -	Н	Н	12	н	н	s	$ _{\mathrm{CF}_3}$	Cı
,	CH ₂) ₃ -	Н	Н	2	н	н	s	CF ₃	Cl
1	CH ₂) ₄ -	Н	Н	2	Н	Н	s	CF ₃	Cl
1	CH ₂) ₅ -	H	H	2	Н	н	s	CF ₃	Cl
H	-(CH ₂	┸——	Н	2	Н	н	s	$\mathbf{CF_3}$	Cl
Н	-(CH ₂		Н	2	H	Н	s	CF ₃	Cl
H	-(CH ₂		H	2	H	н	S	CF ₃	CI
H	-(CH ₂		Н	2	H	н	s	$_{\mathrm{CF}_{3}}^{\mathrm{CF}_{3}}$	C1
Me	Me	Н	H	1	H	Н	0	Me	F
Me	Me	H	H		H	H	0	Me	CI
Me	Me	H	H	1	H	Н	o	Me	OMe
Me	Me	H	Н	1	H	н	o	Me	OEt
Me	Me	H	Н	1	H	Н	o	Me	OPr-i
Me	Me	Н	Н	1	H	н	o	Me	OPh
Me	Me	H	н	1	H	н	0	Me	OCHF ₂
Me	Me	Н	Н	1	н	н	О	Me	Me
Me	Me	н	н	1	H	н	О	Me	CF_3
Me	Me	Н	н	1	· H	H	О	Me	CN
Me	Me	H	H	1	H	н	0	OCHF ₂	F
Me	Me	H	Н	1	H	H	0	OCHF ₂	C1
Me	Me	Н	Н	1	H	H	0	OCHF ₂	Me
Me	Me	Н	H	1	H	H	0	OCHF ₂	CF_3
Me	Me	H	H	1	H	H	О	OCHF ₂	CN
Me	Me	H	H	1	Н	H	О	CF3	F
Me	Me	H	H	1	H	H	0	CF ₃	Cl
Me	Me	Н	H	1	H	H	0	CF ₃	OMe ⁻
Me	Me	H	H	1	H	H	0	CF ₃	OEt
Me	Me	H	H	1	H	H	0	CF ₃	OPr-i
Me	Me	H	H	1	H	H	0	CF ₃	OPh
Me	Me	H	H	1 1	H	H	0	CF ₃	OCHF ₂
Me Me	Me Me	H H	H H	1	H H	H H	0	$\mathrm{CF_3}$	SMe SO ₂ Me
Me	Me	H	H	1	H	H	0	CF ₃	SEt
Me	Me	H	H	1	H	H	0	CF ₃	SO ₂ Et
Me	Me	H	H	1	H	H	0	CF ₃	SPr-i
Me	Me	Н	Н	1	н	Н	o	CF3	SO ₂ Pri
Me	Me	Н	Н	1	н	H	o	CF ₃	SPh
Me	Me	H	Н	$\begin{vmatrix} \hat{1} \\ 1 \end{vmatrix}$	н	Н	o	CF ₃	SO ₂ Ph
Me	Me	н	Н	1	Н	H	o	CF ₃	SCHF ₂
Me	Me	H	H	1	н	H	o	CF ₃	SO ₂ CHF ₂
Me	Me	H		1	н	H	0	CF ₃	SCF ₃
Me	Me	н	н	1	н	H	0	CF ₃	SO ₂ CF ₃

	Me	Me	H	H	1	H	Н	0	l	CF_3	NH ₂
	Me	Me	H	H	1	Н	Н	0	1	CF_3	NHC(=O)Me
- [Me	Me	H	H	1	H	H	0		$\mathbf{CF_3}$	NHC(=0)Ph
	Me	Me	H	H	1	Н	Н	0		$\mathbf{CF_3}$	NHC(=0)CH ₂ Ph
	Me	Me	H	H	1	H	Н	0	ŀ	$\mathbf{CF_3}$	NHC(=O)CF3
ı	Me	Me	H	H	1	н	н	О] '	$\mathbf{CF_3}$	NHSO₂Me
	Me	Me	H	H	1	H	Н	Ю	ŀ	$\mathbf{CF_3}$	NHSO ₂ Ph
	Me	Me	H	Н	1	H	H	О	ļ	$\mathbf{CF_3}$	NHSO ₂ CHF ₂
ı	Me	Me	H	H	1	H	Н	О	[1	$\mathbf{CF_3}$	NHSO ₂ CF ₃
	Me	Me	н	H	1	H	Н	0		$\mathbf{CF_3}$	NHMe
ł	Me	Me	H	H	1	H	н	0	- 10	$\mathbf{CF_3}$	NHPh
	Me	Me	H	H	1	H	H	0	Į.	$\mathbf{CF_3}$	N(Me)C(=O)Me
	Me	Me	H	H	1	Н	Н	0]($\mathbf{CF_3}$	N(Me)C(=O)Ph
	Me	Me	H	H	1	н	H	0]($\mathbf{CF_3}$	N(Me)C(=O)CH ₂ Ph
	Me	Me	H	H	1	H	H	0	10	$\mathbf{CF_3}$	N(Me)C(=O)CF ₃
	Me	Me	H	н	1	H	H	О	Į.	$\mathbf{CF_3}$	N(Me)SO ₂ Me
	Me	Me	H	H	1	H	н	0	į.	$\mathbf{CF_3}$	N(Me)SO ₂ Ph
	Me	Me	Н	н	1	н	H	0	į.	CF_3	N(Me)SO ₂ CHF ₂
	Me	Me	H	H	1	H	H	0		CF3	N(Me)SO ₂ CF ₃
	Me	Me	H	H	1	H	Н	0	į.	CF3	N(Me) ₂
	Me	Me	H	H	1	H	н	0		CF3	N(Me)Ph
	Me	Me	H	н	1	H	Н	0		СFз	Me
	Me	Me	H	н	1	H	H	0		$\mathbb{C}\mathbf{F_3}$	CF ₃
	Me	Me	Н	H	1	H	н	O		CF3	CN
	Me	Me	H	H	1	H	н	0	I	Ph	Me
	H	H	H	H	1	H	H	Ю	[0	CF3	Me
1	Me	H	H	H	1	H	н	О	C	$\mathbb{C}\mathbf{F_3}$	Me
	Me	H	Me	H	1	H	н	0	1	CF3	Me
	Me	Me	Me	H	1	H	н	0	1	CF3	Me
	Me	Me	H	H	1.	Me	H	О		CF3	Me
	Me	Me	H	H	1	Et	H	О		CF3	Me
	Me	Me	Н	H	1	Pr-i	H	О		CF3	Me
,	Me	Me	Н	H	1	Me	Me	О		CF3	Me
	Me	Et	H	H	1	H	H	. O		CF ₃	Me
	Et	Et	H	H	1	H	H	0		CF ₃	Me
	Me	Pr-i	H	H	1	H	H	О	I .	CF_3	Me
•	Me	Pr	H	H	1	H	H	О		CF ₃	Me
1	Me	Pr-c	H	H	1	H	H	О	l l	CF_3	Me
	Me	CH ₂ Pr-c	H	H	1	н	H	О		CF3	Me
	-((CH ₂) ₂ -	H	H	1	H	H	О	ļc	CF3	Me
		CH ₂) ₃ -	н	H	1	н	H	0	C	CF8	Me
	-((CH ₂) ₄ -	H	H	1	H	H	0		CF3	Me

1	-(CH ₂) ₅ -	Н	н	1	н	Н	Ю	$ _{\mathrm{CF}_3}$	Me	1
H	-(CH	2)3-	Н	1	н	Н	О	CF ₃	Me	
Н	-(CH	2)4-	H	1	н	Н	0	CF3	Me	1
H	-(CH:		н	1	н	н	О	CF ₃	Me	1
H	-(CH		Н	1	H	Н	О	CF ₃	Me	
Me	Me	Н	Н	1	İ	н	s	Me	F	-
Me	Me	н	н	1	H	н	s	Me	Cl	1
Me	Me	н	Н	1	Н	H	s	Me	OMe	
Me	Me	Н	Н	1	Н	н	s	Me	OEt	1
Me	Me	H	H	1	H	н	s	Me	OPr-i	
Me	Me	H	H	1	H	н	s	Me	OPh	Ì
Me	Me	H	н	1	H	H	s	Me	OCHF ₂	
Me	Me	H	H	1	H	н	s	OCHF ₂	F	
Me	Me	H	н	1	H	н	s	OCHF2	Cl	
Me	Me	H	Н	1	H	н	s	OCHF2	Me	
Me	Me	H	H	1	H	H	s	OCHF ₂	CF ₃	
Me	Me	H	H	1	H	н	S	OCHF ₂	CN	
Me	Me	H	H	1	H	н	S	CF ₃	\mathbf{F}	
Me	Me	H	H	1	H	н	S	CF ₃	Cl	1
Me	Me	H	H	1	H	H	s	CF_3	ОМе	
Me	Me	H	Н	1	H	H	S	CF_3	OEt	
Me	Me	H	H	1	H	H	S	CF ₃	OPh	1
Me	Me	H	H	1	H	H	S	CF ₃	OCHF ₂	1
Me	Me	H	H	1	H	H	S	CF ₃	SMe	1
Me	Me	H	H	1	H	H	S	CF_3	SO ₂ Me	
Me	Me	H	H	1	H	H	S	CF ₃	SEt	
Me	Me	H	H	1	H	H	S	CF ₃	SO₂Et	
Me	Me	H	H	1	H	H	S	CF ₃	SPr-i	
Me	Me	H	H	1	H	H	S	CF ₃	SO ₂ Pr-i	
Me Me	Me Me	H	H	1	H H	H H	S	$\mathrm{CF_3}$	SPh SO₂Ph	1
Me	Me Me	H	H	1	H	H	S	CF ₃	SCHF ₂	l
Me	Me	H	H	1	H	H	S	CF ₃	SO ₂ CHF ₂	
Me	Me	H	H	1	н	H	s	CF ₃	SCF ₃	
Me	Me	H	H	1	H	H	s	CF ₃	SO ₂ CF ₃	
Me	Me .	H	H	1	H	н	S	CF ₃	NH ₂	
Me	Me	H	Н	1	н	Н	S	CF ₃	NHC(=O)Me	
Me	Me	H	H	1	н	н	s	CF ₃	NHC(=O)Ph	
Me	Me	H	H	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	н	H	S	CF ₃	NHC(=0)CH ₂ Ph	
Me	Me	H	H	1	H	Н	S	CF ₃	NHC(=O)CF ₃	
Me	Me	Н	H	1	н	H	S	CF ₃	NHSO ₂ Me	
Me	Me	н		1	н	H	S	CF ₃	NHSO ₂ Ph	

Me	Me	H	H	1	H	H	s	CF ₃	NHSO ₂ CHF ₂	1
Me	Me	H	H	1	H	н	s	CF ₃	NHSO ₂ CF ₃	١
Me	Me	H	H	1	Н	H	S	CF ₃	NHMe	
Me	Me	H	H	1	H	H	S	CF_3	NHPh	l
Me	Me	H	H	1	H	H	s	CF ₃	N(Me)C(=O)Me	١
Me	Me	H	H	1	H	H	S	CF_3	N(Me)C(=O)Ph	ı
Me.	Me	H	H	1	H	H	S	CF_3	N(Me)C(=O)CH ₂ Ph	I
Me	Me	H	H	1	н	н	s	CF ₃	N(Me)C(=O)CF ₃	l
Me	Me	H	H	1	H	H	S	CF ₃	N(Me)SO ₂ Me	l
Me	Me	Н	H	1	H	H	S	$\mathbf{CF_3}$	N(Me)SO ₂ Ph	l
Me	Me	H	H	1	H	H	S	$\mathbf{CF_3}$	N(Me)SO ₂ CHF ₂	ļ
. Me	Me	H	H	1	H	H	S	$\mathbf{CF_3}$	N(Me)SO ₂ CF ₃	l
Me	Me	H	H	1	H	Н	S	CF ₃	$N(Me)_2$	
Me	Me	H	H	1	H	н	s	$\mathbf{CF_3}$	N(Me)Ph	l
Me	Me	H	H	1	H	H	S	$\mathbf{CF_3}$	Me	
Me	Me	H	H	1	H	Н	S	CF ₃	CN	l
H	H	H	H	1	H	H	s	CF_3	Cl	
Me	H	H	H	1	H	H	s	CF ₃	Cl	ı
Me	H	Me	H	1	H	H	S	CF ₃	Cl	
Me	Me	Me	H	1	H	H	S	$ m CF_3$	Cl	
Me	Me	Н	H	1	Me	H	s	CF_3	Cl	
Me	Me	н	H	1	Et	H	s	CF ₃	C1	
Me	Me	н	H	1	Pr-i	H	s	CF₃	C1	
Me	Me	Н	H	1	Me	Me	s	CF ₃	CI	İ
Me	Et	Н	H	1	H	H	S	CF ₃	CI	
Et	Et	H	H	1	H	H	s	CF ₃	Cl	
Me	Pr-i	Н	H	1	H	H	S	CF_3	Cl	
Me	Pr	H	H	1	H	H	S	CF ₃	Cl	
Me	Pro	H	H	1	H	H	S	CF ₃	Cl	ı
Me	CH ₂ Pr-c	H	H	1	H	H	s	$\mathbf{CF_3}$	Cl	ı
l .	CH ₂) ₂ -	H	H	1	H	H	S	CF ₃	CI	
1	CH ₂) ₃ -	H	H	1	H	H	S	CF ₃	C1	
-(CH ₂) ₄ -	Н	H	1	H	H	S	CF_3	C1	
(CH ₂) ₅ -	H	H	1	H	H	s	$\mathbf{CF_3}$	Cl	
H	-(CH ₂)	3"	H	1	H	H	S	CF ₃	Cl	
н	-(CH ₂)	4-	Н	1	н	H	s	CF3	CI	
н	-(CH2)	5-	Н	1	н	H	s	CF ₃	Cl	
H	-(CH ₂)		н	1	Н	Н	s	CF_3	Cl	
Me	Me	H	Н	0	H	H	0	Me	F	
Me	Me	н	H	0	H	H	0	Me	Cl	
	1							1	1	
				- 1						
Me Me	Me · Me	H H	H	0	H H	H H	0	Me Me	OMe OEt	

Me	Me	Ιн	Н	10	Н] н	lo	Me	OPr-i
Me	Me	H	Н	0	Н	H	0	Me	OPh
Me	Me	H	H	0	H	н	0	Me	OCHF ₂
Me	Me	H	H	0	н	H	o	Me	Me
Me	Me	H	H	0	н	н	o	Me	CF ₃
Me	Me	H	Н	0	H	H	o	Me	CN
Me	Me	H	H	0	н	н	o	OCHF ₂	F
Me	Me	H	H	0	H	н	o	OCHF ₂	Cl
Me	Me	H	Н	0	н	н	o	OCHF ₂	Me
Me	Me	H	H	0	Н	H	o	OCHF ₂	CF ₃
Me	Me	Н	H		H	H	0	OCHF ₂	CN
Me	Me	Н	Н	0	H	H	o	CF ₃	F
Me	Me	H	Н	0	H	Н	0	CF_3	Cı
Me	Me	Н	Н	0	H	Н	o	$\mathbf{CF_3}$	OMe
Me	Me	Н	Н	0	H	Н	0	CF ₃	OEt
Me	Me	Н	Н	o	H	н	o	$\mathbf{CF_3}$	OPr-i
Me	Me	Н	н	$ _{0} $	H	н	О	CF_3	OPh
Me	Me	Н	н	0	H	н	lo	CF_3	$OCHF_2$
Me	Me	Н	н	0	H	н	О	CF ₃	SMe
Me	Me	Н	н	o	H	н	0	CF_3	SO ₂ Me
Me	Me	Н	н	o	H	н	0	$\mathbf{CF_3}$	SEt
Me	Me	H	н	o	H	н	О	CF ₃	$\mathrm{SO}_2\mathrm{Et}$
Me	Me	H	H	0	H	H	0	CF ₃	SPr-i
Me	Me	Н	н	0	H	H	0	CF_3	SO ₂ Pr-i
Me	Me	Н	H	0	H	H	О	CF_3	SPh
Me	Me	Н	H	0	H	H	0	CF_3	SO ₂ Ph
Me	Me	H	H	0	H	H	О	$\mathbf{CF_3}$	SCHF ₂
Me	Me	Н	H	0	H	H	О	CF ₃	SO ₂ CHF ₂
Me	Me	H	H	0	H	H	О	CF ₃	SCF ₃
Me	Me	H	H	0	H	H	О	CF ₃	SO ₂ CF ₃
Me	Me	H	H	0	H	H	О	CF ₃	NH ₂
Me	Me	H	H	0	H	H	О	CF ₃	NHC(=O)Me
Me	Me	H	H	0	H	H	О	CF ₃	NHC(=O)Ph
Me	Me	H	H	0	H	H	Ю	CF ₃	NHC(=O)CH ₂ Ph
Me	Me	H	H	0	H	H	О	CF_3	NHC(=O)CF ₃
Me	Me	H	H	0	H	H	О	CF_3	NHSO₂Me
Me	Me	H	H	0	H	H	Ю	CF_3	NHSO ₂ Ph
Me	Me	H	H	0	H	H	О	CF_3	NHSO ₂ CHF ₂
Me	Me	H	H	0	H	H	О	CF_3	NHSO₂CF3
Me	Me	H	H	0	H	H	0	CF_3	NHMe
Me	Me	H	H	0	H	H	0	$\mathbf{CF_3}$	NHPh
Me	Me	H	H	0	H	H	0	CF_3	N(Me)C(=O)Me
Me	Me	H	H	0	н	H	0	CF ₃	N(Me)C(=O)Ph

l w.	1 20-	н	1 7.7	٦٨	l 17	1 77	lo	lan	N/A(-)((O)(II-Db
Me	Me	H	H	0	H	H	0	CF ₃	N(Me)C(=O)CH ₂ Ph
Me Me	Me	H	H	0	H H	H	0	$\mathrm{CF_3}$	N(Me)C(=O)CF3
Me	Me Me	H	H	0	H	н	0	CF3	N(Me)SO ₂ Me N(Me)SO ₂ Ph
Me	Me	H	H	0	H	H	o	CF ₃	N(Me)SO ₂ CHF ₂
Me	Me	H	H	0	H	H	0	CF ₃	N(Me)SO ₂ CF ₃
Me	Me	H	H	0	H	Н	0	CF ₃	N(Me) ₂
Me	Me	H	H	0	H	н	o	CF ₃	N(Me)Ph
Me	Me	H	H	0	н	н	0	CF ₃	Me
Me	Me	H	H	0	н	H	o	CF ₃	CF ₃
Me	Me	H	Н	0	Н	Н	0	CF ₃	CN
Me	Me	Н	Н	0	H	н	o	Ph	Me
Н	Н	н	H	0	H	н	o	$\mathbf{CF_{3}}$	Me
Me	Н	н	Н	0	H	Н	0	CF_3	Me
Me	Н	Me	н	0	H	н	0	CF_3	Me
Me	Me	Me	н	0	H	H	0	CF ₃	Me
Me	Me	н	н	0	Me	н	0	CF_3	Me
Me	Me	Н	Н	0	Et	н	0	CF ₃	Me
Me	Me	н	Н	0	Pr-i	н	0	CF ₃	Me
Me	Me	Н	Н	0	Me	Me	0	CF ₃	Me
Me	Et	H	H	0	H	H	О	CF ₃	Me
Et	Et	H	H	0	H	H	О	$ m CF_3$	Me
Me	Pr-i	H	H	0	H	H	0	CF ₃	Me
Me	Pr	H	H	0	H	H	О	CF ₃	Me
Me	Pr-c	H	H	0	H	H	О	CF ₃	Me
Me	CH ₂ Pr-c	H	H		H	H	0	CF ₃	Me
-($\mathrm{CH_2})_2$ -	H	H	0	H	H	О	CF ₃	Me
-(CH ₂) ₃ -	H	H	0	H	H	О	CF ₃	Me
-(0	CH ₂) ₄ -	н	H	0	H	H	О	CF ₃	Me
-(CH ₂) ₅ -	H	H	0	H	H	О	CF ₃	Me
H	-(CH ₂)	3-	H	0	H	H	О	CF ₃	Me
H	-(CH ₂)	4-	H	0	H	H	О	CF ₃	Me
H	-(CH ₂)	5-	H	0	H	H	О	CF ₃	Me
H	-(CH ₂)	6-	H	0	H	H	О	CF ₃	Me
Me	Me	H	H	0	Н	Н	s	Me	F
Me	Me	н	H	0	H	H	s	Me	Cl
Me	Me	H	H	0	H	H	s	Me	OMe
Me	Me	н	H	0	H	H	s	Me	OEt
Me	Me	н	H	0	н	H	s	Me	OPr-i
Me	Me	H	H	0	H	H	s	Me	OPh
Me	Me	H	H	0	H	H	s	Me	OCHF ₂
Me	Me	н	H	0	H	H	s	OCHF ₂	F

Me	Me	H	Н	lo	н	Н	s	OCHF ₂	lcı
Me	Me	H	H	0	Н	H	s	OCHF2	Me
Me	Me	Н	Н	0	н	H	s	$OCHF_2$	CF_3
Me	Me	Н	Н	0	H	н	s	OCHF ₂	CN
Me	Me	H	H	0	н	н	s	$_{\mathrm{CF}_3}$	F
Me	Me	Н	Н	0	Н	н	s	$_{ m CF_3}$	Cl
Me	Me	H	Н	0	н	Н	s	CF₃	OMe
Me	Me	Н	H	0	Н	Н	s	CF ₃	OEt
Me	Me	H	H	0	Н	н	s	CF ₃	OPh
Me	Me	H	H	0	н	H	s	CF ₃	OCHF ₂
Me	Me	H	H	0	H	Н	s	CF3	SMe
Me	Me	H	H	0	H	Н	s	CF ₃	SO ₂ Me
Me	Me	H	H	0	H	н	s	CF ₃	SEt
Me	Me	H	Н	0	H	Н	s	CF3	SO ₂ Et
Me	Me	H	H	0	H	н	s	$\mathbf{CF_3}$	SPr-i
Me	Me	H	H	0	H	H	s	CF ₃	SO ₂ Pr-i
Me	Me	H	H	0	H	H	s	$\mathbf{CF_3}$	SPh
Me	Me	H	H	0	H	H	s	CF ₃	SO ₂ Ph
Me	Me	H	H	0	H	H	s	CF_3	SCHF ₂
Me	Me	H	H	0	H	H	s	CF ₃	SO ₂ CHF ₂
Me	Me	H	Н	0	H	H	S	CF ₃	SCF ₃
Me	Me	H	Н	0	H	H	s	CF3	SO ₂ CF ₃
Me	Me	H	H	0	H	H	S	CF ₃	NH ₂
Me	Me	H	Н	0	H	H	S	CF ₃	NHC(=O)Me
Me	Me	H	H	0	H	H	S	CF₃	NHC(=O)Ph
Me	Me	H	н	0	Н	H	s	CF ₃	NHC(=O)CH ₂ Ph
Me	Me	H	H		H	H	S	CF ₃	NHC(=O)CF ₃
Me	Me	H	H	0	Н	H	s	$ horall \mathbf{CF_3}$	NHSO ₂ Me
Me	Me	H	H	0	H	H	S	$\mathbf{CF_3}$	NHSO ₂ Ph
Me	Me	H	H	0	Н	H	S	$\mathbf{CF_3}$	NHSO ₂ CHF ₂
Me	Me	H	H	0	H	H	S	CF_3	NHSO ₂ CF ₃
Me	Me	H	H	0	H	H	S	CF ₃	NHMe
Me	Me	H	H		H	H	S	CF ₃	NHPh
Me	Me	H	H	0	H	H	S	$\mathbf{CF_3}$	N(Me)C(=O)Me
Me	Me	H	H	0	H	H	S	CF ₃	N(Me)C(=O)Ph
Me	Me	H	H	0	H	H	S	CF ₃	N(Me)C(=O)CH ₂ Ph
Me	Me	H	H	0	H	H	S	CF_3	N(Me)C(=O)CF ₃
Me	Me	H	H	0	H	H	S	CF ₃	N(Me)SO ₂ Me
Me	Me	H	H	0	H	H	S	CF ₃	N(Me)SO ₂ Ph
Me	Me	H	H	0	H	H	S	CF ₃	N(Me)SO ₂ CHF ₂
Me	Me	H	H	0	H	H	S	CF ₃	N(Me)SO ₂ CF ₃
Me	Me	H	H	0	H	H	S	CF ₃	N(Me) ₂
Me	Me	H	H	0	H	H	s	$ CF_3 $	N(Me)Ph

Me	Me	Н	Н	0	н	Н	s	CF ₃	Me
Me	Me	н	н	0	н	н	S	CF ₃	CN
H	H	н	H	0	H	H	S	CF ₃	Cl
Me	Н	H	Н	0	H	H	S	CF ₃	Cl
Me	H	Me	н	0	Н	H	s	CF ₃	Cl
Me	Me	Me	н	0	H	H	S	CF ₃	Cl
Me	Me	H	Н	0	Me	H	S	CF ₃	Cl
Me	Me	H	H	0	Et	H	S	CF ₃	Cl
Me	Me	H	H	0	Pr-i	H	s	CF ₃	Cl
Me	Me	Н	Н	0	Me	Me	S	CF ₃	Cl
Me	Et	H	H	0	H	H	S	CF_3	Cl
Et	Et	Н	H	0	H	H	S	$\mathbf{CF_3}$	Cl
Me	Pr-i	H	H	0	H	H	s	CF ₃	CI
Me	Pr	н	H	0	H	Н	S	CF ₃	Cl
Me	Pr-c	H	H	0	H	H	S	CF3	Cl
Me	CH ₂ Pr-c	H	H	0	H	H	S	CF ₃	C1
-((CH ₂) ₂ -	H	H	0	H	H	S	CF ₃	Cl
-((CH ₂) ₃ -	н	H	0	H	H	S	CF ₃	Cl
-((CH ₂) ₄ -	н	H	0	H	н	s	CF ₃	Cı
	(CH ₂) ₅ -	н	Н	0	H	H	s	CF ₃	Cl
H	-(CH ₂)	3-	Н	0	H	H	s	CF ₃	Cl
H	-(CH ₂).	4-	H	0	H	H	s	CF ₃	Cl
H	-(CH ₂)	5-	Н	0	H	H	s	CF ₃	Cl
H	-(CH ₂)	6-	Н	0	H	H	s	CF ₃	Cl

表 5

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
R1	R ²	R ³	R4	n	R ⁵	R ⁶	Z4	R ³³	R ³⁴					
Me	Me	Н	Н	2	H	H	NMe	Cl	H					
Me	Me	H	H	2	H	H	NMe	C1	Me					
Me	Me	H	H	2	H	H	NMe	Cl	Et					
Ме	Me	H	H	2	H	H	NMe	Cl	CF ₃					
Ме	Me	H	H	2	Н	H	NMe	CF_3	Н					
Me	Me	H	H	2	H	H	NMe	CF ₃	Me					
Me	Me	H	H	2	H	н	NMe	OCHF ₂	H					
Me	Me	н	H	2	H	н	NMe	OCHF ₂	Me					
Me	Me	H	H	2	H	H	NMe	C(=O)Me	H					
Me	Me	H	H	2	H	H	NMe	C(=O)Me	Me					
Me	Me	H	H	2	H	H	NMe		CH ₂) ₃ -					
Me	Me	H	Н	2	H	H	NMe		CH ₂) ₄ -					
Ме	Me	H	H	. 2	H	H	NEt	Cl	Me					
Me	Me	H	H	2	H	H	NEt	CF_3	H					
Me	Me	H	H	2	H	H	NEt	CF_3	Me					
Me	Me	H	H	2	H	H	NEt	OCHF ₂	H					
Me	Me	H	H	2	H	H	NEt	OCHF ₂	Ме					
Me	Me	н	H	2	H	H	NEt	-(C	CH ₂) ₃ -					
Ме	Me	н	н	2	H	H	NEt	-(c	CH ₂) ₄ -					
Me	Me	H	н	2	н	H	NPr-i	Cl	Ме					
Ме	Me	н	H	2	H	H	NPr-i	CF ₃	H					
Ме	Me	н	н	2	н	H	NPr-i	CF ₃	Me					
Me	Me	н	Н	2	н	H	NPr-i	OCHF2	н					
Me	Me	н	Н	2	Н	H	NPr-i	OCHF2	Ме					
Me	Me	Н	H	2	н	Н	NPr-i	-(C	$H_2)_3$ -					
Me	Me	н	H	2	н	H	NPr-i		H ₂) ₄ -					
Me	Me	н	н	2	н	Н	NPr	Cl	Me					
Ме	Me	н	н	2	н	H	NPr	CF ₃	н					
Ме	Me	Н	н	2	н	H	NPr	CF ₃	Me					
Me	Ме	н	н	2	н	н	NPr	OCHF ₂	н					
Me	Me	н	н	2	н		NPr	OCHF ₂	Me					

,	,				,	,			
Me	Me	H	Н	2	H	H	NPr	-(CH ₂) ₃ -
Me	Me	H	H	2	H	Н	NPr	-(0	CH ₂) ₄ -
Me	Me	H	H	2	H	H	NBu-t	Cl	Me
Me	Me	H	H	2	H	H	NBu-t	CF ₃	H
Me	Me	H	H	2	H	H	NBu-t	CF ₃	Me
Me	Me	H	н	2	H	H	NBu-t	OCHF2	н
Me	Me	H	Н	2	н	H	NBu-t	OCHF ₂	Me
Me	Me	H	н	2	H	Н	NBu-t	-((CH ₂) ₃ -
Me	Me	H	н	2	Н	H	NBu-t	-((CH ₂) ₄ -
Me	Me	н	н	2	Н	Н	NCH ₂ Ph	Cl	Me
Me	Me	н	H	2	н	н	NCH ₂ Ph	CF ₃	Н
Me	Me	Н	н	2	Н	H	NCH ₂ Ph	OCHF ₂	н
Me	Me	н	н	2	Н	H	NCH ₂ OMe	Cl	Me
Me	Me	H	H	2	Н	н	NCH ₂ OMe	CF ₃	Н
Me	Me	H	H	2	н	н	NCH ₂ OMe	OCHF2	Н
Me	Me	H	Н	2	Н	H	NCH ₂ C≡CH	Cl	Ме
Me	Me	н	H	2	н	н	NCH ₂ C≡CH	CF ₃	н
Me	Me	н	H	2	Н	н	NCH ₂ C≡CH	OCHF2	н
Me	Me	н	н	2	н	н	NCH ₂ CH=CH ₂	Cı	Me
Ме	Me	н	H	2	н	н	NCH ₂ CH=CH ₂	CF ₃	H
Me	Me	H	H	2	н	Н	NCH ₂ CH=CH ₂	OCHF2	н
Ме	Me	н	H	2	н	н	NCHF2	Cl	Me
Ме	Me	н	H	2	н	н	NCHF2	CF ₃	н
Me	Me	H	H	2	н	н	NCHF ₂	CF ₃	Ме
Me	Me	н	H	2	H	н	NCHF2	OCHF ₂	н
Me	Me	H	H	2	н	н	NCHF2	OCHF2	Me
Me	Me	H	H	2	H	H	NCHF2	C(=O)Me	H
Me	Me	H	н	2	н	н	NCHF2	C(=O)Me	Ме
Me	Me	н	н	2	н	н	NCHF2	-(C	H ₂) ₃ -
Me	Me	н	н	2	н	н	NCHF ₂	1	H ₂) ₄ -
Me	Me	н	H	2	Н	Н	NPh	OMe	Me
Ме	Me	H	H	2	H	H	NPh	OEt	Ме
Ме	Me	H	H	2	H	H	NPh	OCHF ₂	Me
Me	Me	H	H	2	H	H	NPh	OCH ₂ CF ₃	Me
Me	Me	H	H	2	н	H	NPh	CF ₃	н
Me	Me	H	H	2	H	H	NPh	OCH ₂ CH=CH ₂	Me
Me	Me	H	H	2	H		NPh		Me
Me	Me	H	H	2	H		NPh	Cl	Me
Me	Me	H	H	2	H	H	N(2-Cl)Ph	Cl	Me

Me	Me	H	Н	2	н	Н	N(2-F)Ph	Cl	Me
Me	Me	H	H	2	Н	H	N(2-OMe)Ph	Cl	Me
Me	Me	H	H	2	H	H	N(2-Me)Ph	Ci	Me
Me	Me	H	H	2	Н	Н	N(3-Cl)Ph	Cl	Me
Me	Me	H	H	2	H	H	N(3-F)Ph	Cl	Me
Me	Me	H	H	2	H	H	N(3-OMe)Ph	Cl	Me
Me	Me	H	H	2	H	H	N(3-Me)Ph	Cl	Me
Me	Me	H	H	2	H	H	N(4-Cl)Ph	Cl	Me
Me	Me	H	H	2	H	H	N(4-F)Ph	Cl	Me
Me	Me Me	H	H H	2	H	H	N(4-OMe)Ph N(4-Me)Ph	Cl Cl	Me Me
Me Me	Me	H	H	2 2	H	H	N(4-Me)Ph N(Thiophen-2-yl)		Me
Me	Me	Н	Н	2	Н	H	N(Thiophen-2-yl)		H
Me	Me	Н	н	2	н	H	N(Thiophen-2-yl)		н
Me	Me	Н	Н	2	н	н	NC(=O)Me	Cl	Me
Me	Me	H	H	2	н	н	NC(=O)Me	CF ₃	н
Me	Me	н	Н	2	н	н	NC(=O)Me	OCHF ₂	н
Me	Me	Н	H	2	н	H	NC(=O)CF3	Cl	Me
Me	Me	H	H	2	н	н	NC(=O)CF3	CF ₃	H
Me	Me	н	Н	2	н	н	NC(=O)CF ₃	OCHF ₂	Н
Me	Me	Н	H	2	H	Н	NC(=O)CH ₂ Ph	Cl	Me
Me	Ме	Н	H	2	H	н	NC(=O)CH ₂ Ph	CF ₃	Н
Me	Me	н	H	2	Н	H	NC(=O)CH ₂ Ph	OCHF ₂	H
Me	Me	H	H	2	H	H	NC(=O)Ph	Cl	Me ·
Me	Me	H	H	2	н	н	NC(=O)Ph	CF ₈	H
Me	Me	н	H	2	H	Н	NC(=O)Ph	OCHF ₂	H
Me	Me	Н	H	2	н	H	NC(=0)OMe	C1	Me
Me	Me	н	H	2	H	H	NC(=0)OMe	CF_3	H
Me	Me	н	H	2	н	H	NC(=0)OMe	OCHF2	н
Me	Me	Н	H	2	H	H	NC(=0)OCH ₂ Ph	Cl	Me
Ме	Me	H	н	2	н	H	NC(=O)OCH ₂ Ph	CF ₃	н
Me	Me	н	H	2	H	H	NC(=O)OCH ₂ Ph	OCHF ₂	H
Me	Me	Н	H	2	H	H	NC(=O)OPh	C1	Me
Me	Me	Н	H	2	н	H	NC(=0)OPh	CF ₃	H
Me	Me	H	H	2	н	\mathbf{H}	NC(=0)OPh	$OCHF_2$	H
Me	Me	Н	H	2	н	H	NC(=0)NHMe	Cl	Me
Ме	Me	H	H	2	н		NC(=0)NHMe	CF ₃	H
Me	Me	н	н	2	н	H	NC(=0)NHMe	OCHF ₂	H
Me	Me	H	H	2	H	H	$NC(=O)N(Me)_2$	Cl	Me
Me	Me	H	H	2	H		$NC(=O)N(Me)_2$	CF ₃	H
Me	Me	H	H	2	H		$NC(=O)N(Me)_2$	OCHF ₂	H
H	H	H	H	2	H		NPh	Cl	Me
Me	H	H	H	2	H	H	NPh	C1	Me

Me	н	Me	Н	2	Н	Н	NPh	Jc1	Me
Me	Me	H	H	2	Me	H	NPh	Ci	Me
Me	Me	H	Н	2	Et	H	NPh	CI	Me
Me	Me	H	н	2	Pr-i	Н	NPh	Cl	Me
Me	Me	Н	н	2	Me	Me	NPh	Cl	Me
Me	Et	H	H	2	H	H	NPh	Cl	Me
Et	Et	H	H	2	H	H	NPh	Cl	Me
Me	Pr-i	H	H	2	H	H	NPh	Cl	Me
Me	Pr	H	H	2	H	H	NPh	Cl Cl	Me
Me Me	Pr-c CH ₂ Pr-c	Н	н	2 2	H	H	NPh NPh	Cl	Me Me
		Į i	[1	1	(
1	(CH ₂) ₂ -	H	H	2	H	H	NPh	Cl	Me
1	(CH ₂) ₃ -	H	H	2	H	H	NPh	Cl	Me
ł	CH ₂) ₄ -	H	H	2	Н	H	NPh	Cl	Me
-(CH ₂) ₅ -	H	H	2	H	H	NPh	Cl	Me
H	-(CH ₂)		H	2	H	H	NPh	Cl	Me
H	-(CH ₂)	4-	H	2	Н	H	NPh	CI	Me
H	-(CH ₂)	5-	H	2	Н	H	NPh	Cı	Me
H	-(CH ₂)	6-	H	2	H	H	NPh	Cl	Me
Me	Me	H	H	2	H	H	0	H	Me
Me	Me	H	H	2	H	H	0	Cl	Me
Me	Me	H	H	2	H	H	S	H	Me
Me Me	Me Me	H	H H	2	H H	H H	S NMe	Cl Cl	Me H
Me	Me	н	Н	1 1	H	H	NMe	Cl	Me
Me	Me	H	H	i	H	H	NMe	Ci	Et
Me	Me	H	Н	1	Н	H	NMe	CI	CF ₃
Me	Me	н	н	1	н	H	NMe	CF ₃	Н
Me	Me	н	н	1	н	\mathbf{H}	NMe	CF ₃	Me
Me	Me	н	Н	1	н	H	NMe	OCHF2	н
Me	Me	н	Н	1	н	H	NMe	OCHF2	Me
Me	Me	н	Н	1	н	H	NMe	C(=O)Me	н
Me	Me	H	н	1	н		NMe	C(=O)Me	Me
Me	Me	H	Н	1	H	H	NMe	-(0	CH ₂) ₃ -
Me	Me	н	H	1	н	H	NMe	-(c	CH ₂) ₄ -
Me	Me	Н	H	1	н	H	NEt	Cl	Мe
Me	Me	H	H	1	Н	H	NEt	CF ₃	H
Me	Me	н	H	1	н	H	NEt	CF ₃	VI e
Ме	Me	H	H	1	H	H	NEt	OCHF ₂	H
Me	Me	н	H	1	н	H	NEt	OCHF ₂	Ме
Me	Me	н	н	1	н	H	NEt	-(C	CH ₂) ₃ -
Me	Me	H	н	1	н	H	NEt	-(C	CH ₂) ₄ -

Me Me H H I H H NPri CF3 H Me Me H H I H H NPri CF3 Me Me Me H H I H H NPri OCHF2 H Me Me H H I H H NPri OCHF2 Me Me Me H H I H H NPri CCH2)3* CCH2)3* Me Me H H I H H NPr CF3 H Me Me H H I H H NPr CF3 Me Me Me H H I H H NPr CF3 Me Me Me H H I H H NPr CCF3 Me Me Me H H </th <th></th> <th>_</th> <th>. 4</th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>		_	. 4	2					_	
Me	Me	Me	H	H	1	1	H	NPr-i	Cl	Me
Me	Me	Me	H	H	1	H	H	NPr-i	CF ₃	H
Me Me H H I H H NPri OCHF2 Me Me Me H H I H H NPri -(CH2)3(CH2)4- Me Me H H I H H NPri CCH2)4(CH2)3(CH2)4- Me Me H H I H H NPri CCT3 H Me Me H H I H H NPr CCT3 H Me Me H H I H H NPr CCT3 Me Me Me H H I H NPr OCHF2 H Me Me H H I H NPr -(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3(CH2)3-(CH2	Me	Me	H	Н	1	H	H	NPr-i	CF ₃	Me
Me Me H H I H H NPri -(CH₂)₃⁻ Me Me H H I H H NPri -(CH₂)₃⁻ Me Me H H I H H NPr CG Me Me Me H H I H H NPr CGT₃ Me Me Me H H I H H NPr CGT₃ Me Me Me H H I H NPr CGTs₃ Me Me Me H H I H NPr -(CH₂)₃⁻ Me Me Me H H I H NPr -(CH₂)₃⁻ Me Me Me H H I H NBu⁺t CG Me Me Me H H I H NBu⁺t CGT₃ H	Me	Me	H	Н	1	H	H	NPr-i	OCHF2	H
Me Me H H I H H NPri -(Cf2)4- Me Me H H I H H NPr CI Me Me Me H H I H H NPr CF3 H Me Me H H I H H NPr CF3 H Me Me H H I H H NPr CCF3 Me Me Me H H I H NPr OCHF2 H Me Me H H I H NPr OCHF2 Me Me Me H H I H NPr -(CH2)3- CCH32- Me Me Me H H I H NBu-t CF3 H Me Me Me Me Me Me Me Me	Me	Me	H	Н	1	H	H	NPr-i	OCHF2	Me
Me Me H H H H H H NPr CI Me Me Me H H 1 H H NPr CF3 H Me Me H H 1 H H NPr CF3 H Me Me H H 1 H H NPr CCF3 Me Me Me H H 1 H H NPr OCHF2 H Me Me H H 1 H H NPr OCHF2 Me Me Me H H H H H NPr -(CH2)3** -(CH2)4** Me Me H H H H H NBu*t CF3 Me Me Me H H H H H NBu*t OCHF2 H Me Me	Me	Me	н	Н	1	H	н	NPr-i		·(CH ₂) ₃ -
Me Me H H H H H H NPr CF3 H Me Me H H H H H NPr CF3 Me Me Me H H H H H NPr OCHF2 H Me Me H H H H H NPr OCHF2 H Me Me H H H H H NPr -(CH2)3- -(CH2)4- Me Me H H H H NPr -(CH2)4- -(CH2)2- Me -(CH2)2- -(CH2)2- Me -(CH2)2- -(CH2)	Me	Me	Н	Н	1	H	н	NPr-i		$-(\mathrm{CH_2})_4$ -
Me Me H H I H H H NPr CF3 Me Me Me H H I H H NPr OCHF2 H Me Me H H I H H NPr OCHF2 Me Me Me H H I H H NPr -(CH2)3(CH2)3(CH2)4- Me Me H H I H H NPr -(CH2)4(CH2)3(CH2)4 Me Me H H I H NBu-t CG3 Me Me Me H H I H NBu-t OCHF2 H Me Me H H I H NBu-t OCHF2 H Me Me H H I H NBu-t OCHF2 Me Me Me H H I H N	Me	Me	H	H	1	H	H	NPr	Cl	Me
Me Me H H I H H H NPr OCHF2 H Me Me H H I H H NPr OCHF2 Me Me Me H H I H H NPr -(CH2)a² Me Me H H I H H NPr -(CH2)a² Me Me H H I H H NPr -(CH2)a² Me Me H H I H NBu² CF3 H Me Me H H I H NBu² CF3 Me Me Me H H I H NBu² CCH2² H Me Me H H I H NBu² -(CH2)a² Me Me Me H H I H NBu² NBu² NBu² <td>Me</td> <td>Me</td> <td>H</td> <td>H</td> <td>1</td> <td>H</td> <td>Н</td> <td>NPr</td> <td>CF₃</td> <td>H</td>	Me	Me	H	H	1	H	Н	NPr	CF ₃	H
Me Me H H 1 H H NPr OCHF2 Me Me Me H H 1 H H NPr -(CH₂)₃⁻ Me Me H H 1 H H NPr -(CH₂)₃⁻ Me Me H H 1 H H NBu-t CI Me Me Me H H 1 H H NBu-t CF₃ H Me Me H H 1 H H NBu-t CF₃ Me Me Me H H 1 H H NBu-t OCHF₂ H Me Me H H 1 H H NBu-t OCHF₂ Me Me Me H H 1 H H NBu-t OCHF₂ H Me Me H H 1	Me	Me	H	H	1	H	Н	NPr ·	CF ₃	Me
Me Me H H 1 H H NPr -(CH₂)₃- Me Me H H 1 H H NPr -(CH₂)₃- Me Me H H 1 H H NBu-t CI Me Me Me H H 1 H H NBu-t CF₃ Me Me Me H H 1 H NBu-t CF₃ Me Me Me H H 1 H NBu-t OCHF₂ H Me Me H H 1 H NBu-t OCHF₂ Me Me Me H H 1 H NBu-t OCHF₂ Me Me Me H H H NBu-t OCHF₂ H Me Me H H H NCH₂ NCH₂ NCH₂ NCH₂ NCH₂	Me	Me	H	H	1	Н	Н	NPr	OCHF ₂	H
Me Me H H 1 H H NPr -(CH ₂) ₄ - Me Me H H 1 H H NBu-t Cl Me Me Me H H 1 H H NBu-t CF ₃ Me Me Me H H 1 H H NBu-t CF ₃ Me Me Me H H 1 H H NBu-t OCHF ₂ H Me Me H H 1 H NBu-t OCHF ₂ He Me Me H H 1 H NBu-t OCHF ₂ Me Me Me H H H NBu-t OCHF ₂ Me Me Me H H H NBu-t OCHF ₂ Me Me Me H H H NCH ₂ Ph OCHF ₂ H Me Me H	Me	Me	H	H	1	H	Н	NPr	OCHF ₂	Me
Me Me H H 1 H H NBu-t CI Me Me Me H H 1 H H NBu-t CF3 H Me Me H H 1 H H NBu-t CF3 Me Me Me H H 1 H H NBu-t OCHF2 H Me Me H H 1 H H NBu-t OCHF2 Me Me Me H H 1 H H NBu-t OCHF2 Me Me Me H H 1 H NBu-t OCHF2 Me Me Me H H H H NBu-t OCHF2 Me Me Me H H H H NCH2 NCH2 NCH2 NCH2 NCH2 NCH2 NCH2 NCH2 NCH2	Me	Me	H	H	1	Н	н	NPr		·(CH ₂) ₃ -
Me Me H H 1 H H NBu-t CF3 H Me Me H <t< td=""><td>Me</td><td>Me</td><td>н</td><td>H</td><td>1</td><td>Н</td><td>н</td><td>NPr</td><td></td><td>·(CH₂)₄-</td></t<>	Me	Me	н	H	1	Н	н	NPr		·(CH ₂) ₄ -
Me Me H H I H H NBu-t CF3 Me Me Me H H I H H NBu-t OCHF2 H Me Me H H I H H NBu-t OCHF2 He Me Me H H I H H NBu-t OCHF2 Me Me Me H H I H NBu-t -(CH2)3 -(CH2)4 Me Me H H I H NBu-t -(CH2)4 Me Me H H I H NBu-t -(CH2)3 Me Me H H I H NCH2Ph CI Me Me Me H H I H NCH2Ph CF3 H Me Me H H I H NCH2OME CF3 H </td <td>Me</td> <td>Me</td> <td>н</td> <td>H</td> <td>1</td> <td>Н</td> <td>Н</td> <td>NBu-t</td> <td>Cl</td> <td>Me</td>	Me	Me	н	H	1	Н	Н	NBu-t	Cl	Me
Me Me H H H H NBu-t OCHF2 H Me Me H H H H H NBu-t OCHF2 Me Me Me H H 1 H H NBu-t -(CH2)3- Me Me H H 1 H NBu-t -(CH2)4- Me Me H H 1 H NBu-t -(CH2)3- Me Me H H 1 H NBu-t -(CH2)4- Me Me H H 1 H NBu-t -(CH2)3- Me Me H H 1 H NCH2Ph CI Me Me Me H H 1 H NCH2Ph CF3 H Me Me H H 1 H NCH2OMe CF3 H Me Me H H	Me	Me	H	H	1	Н	H	NBu-t	CF ₃	H
Me Me H H 1 H H NBu-t OCHF2 Me Me Me H H 1 H H NBu-t -(CH2)3(CH2)4- Me Me H H 1 H H NBu-t -(CH2)4- Me Me H H 1 H H NBu-t -(CH2)3(CH2)4- Me Me H H 1 H H NBu-t -(CH2)4(CH2)4- Me Me H H 1 H H NCH2Ph CCI Me Me Me H H 1 H NCH2Ph CCF3 H Me Me H H 1 H NCH2OMe CF3 H Me Me H H 1 H NCH2OMe OCHF2 H Me Me H H H NCH2C=CH CH CI	Me	Me	н	H	1	H	н	NBu-t	CF ₃	Me
Me Me H H 1 H H NBu-t -(CH₂)₃⁻ Me Me H H 1 H H NBu-t -(CH₂)₃⁻ Me Me H H 1 H H NBu-t -(CH₂)₃⁻ Me Me H H 1 H H NCH₂Ph Cl Me Me Me H H 1 H H NCH₂Ph OCHF₂ H Me Me H H 1 H H NCH₂Ph OCHF₂ H Me Me H H 1 H NCH₂OMe Cl Me Me Me H H 1 H NCH₂OMe OCHF₂ H Me Me H H 1 H NCH₂OMe OCHF₂ H Me Me H H 1 H NCH₂OMe Cl	Me	Me	H	H	1	Н	н	NBu-t	OCHF2	H
Me Me H	Me	Me	H	H	1	Н	н	NBu-t	OCHF ₂	Me
Me Me H H 1 H H NCH2Ph CI Me Me Me H H 1 H H NCH2Ph CF3 H Me Me H H 1 H H NCH2Ph OCHF2 H Me Me H H 1 H H NCH2OMe CF3 H Me Me H H 1 H H NCH2OMe OCHF2 H Me Me H H 1 H H NCH2OMe OCHF2 H Me Me H H 1 H NCH2OMe OCHF2 H Me Me H H 1 H NCH2OMe OCHF2 H Me Me H H 1 H NCH2OMe OCHF2 H Me Me H H H NCH2OMe OCHF2 CF3 H Me Me H H H	Me	Me	н	H] 1	Н	н	NBu-t	-	(CH ₂) ₃ -
Me Me H H 1 H H NCH2Ph CF3 H Me Me H H 1 H H NCH2Ph OCHF2 H Me Me H H 1 H H NCH2OMe CI Me Me Me H H 1 H H NCH2OMe OCHF2 H Me Me H H 1 H H NCH2OMe OCHF2 H Me Me H H 1 H NCH2OMe OCHF2 H Me Me H H H NCH2OMe OCHF2 CI Me	Me	Me	н	H	1	н	н	NBu-t	-	(CH ₂) ₄ -
Me Me H	Me	· Me	н	H	1	Н	н	NCH ₂ Ph	Cl	Me
Me Me H H 1 H H NCH2OMe Cl Me Me Me H H 1 H H NCH2OMe CF3 H Me Me H H 1 H H NCH2OMe OCHF2 H Me Me H H 1 H H NCH2C≡CH Cl Me Me Me H H 1 H H NCH2C≡CH OCHF2 H Me Me H H 1 H H NCH2CH=CH2 Cl Me Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H H H NCH2CH=CH2 OCHF2 H Me Me H H H H NCH2CH=CH2 OCHF2 H Me Me	Me	Me	н	H	1	Н	H	NCH ₂ Ph	CF ₃	н
Me Me H	Me	Me	н	H	1	Н	H	NCH ₂ Ph	OCHF ₂	Н
Me Me H H H H H H H H H H MCH2OMe OCHF2 H Me Me H H 1 H H NCH2C≡CH Cl Me Me Me H H 1 H H NCH2C≡CH OCHF2 H Me Me H H 1 H H NCH2CH=CH2 Cl Me Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H H H NCH2CH=CH2 OCHF2 H Me Me H H H H NCH52 Cl Me Me Me H H H H H NCH52 CF3 H Me Me H H H H H NCH52 CF3	Me	Me	н	H	1	н	Н	NCH ₂ OMe	Cı	Me
Me Me H H 1 H H NCH2C≡CH Cl Me Me Me H H 1 H H NCH2C≡CH CF3 H Me Me H H 1 H H NCH2C≡CH OCHF2 H Me Me H H 1 H H NCH2CH=CH2 Cl Me Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H 1 H H NCH52 Cl Me Me Me H H H H NCH52 CF3 H Me Me H H H H H H NCH52 CF3 Me	Me	Me	н	H	1	Н	H	NCH ₂ OMe	CF ₃	н
Me Me H H 1 H H NCH2C≡CH CF3 H Me Me H H 1 H H NCH2C≡CH OCHF2 H Me Me H H 1 H H NCH2CH=CH2 Cl Me Me Me H H 1 H H NCH2CH=CH2 CF3 H Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H H H NCHF2 CI Me Me Me H H H H NCHF2 CF3 H Me Me H H H H H NCHF2 CF3 Me	Me	Me	н	H	1	н	H	NCH ₂ OMe	$OCHF_2$	н
Me Me H H 1 H H NCH2C≡CH OCHF2 H Me Me H H 1 H H NCH2CH=CH2 Cl Me Me Me H H 1 H H NCH2CH=CH2 CF3 H Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H 1 H H NCHF2 Cl Me Me Me H H 1 H H NCHF2 CF3 H Me Me H H H H NCHF2 CF3 Me	Me	Me	н	H	1	н	Н	NCH ₂ C≡CH	Cı	Me
Me Me H H H H H NCH2CH=CH2 Cl Me Me Me H H 1 H H NCH2CH=CH2 CF3 H Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H I H H NCHF2 CI Me Me Me H H I H H NCHF2 CF3 H Me Me H H H H H NCHF2 CF3 Me	Me	Me	н	H	1	н	H	NCH ₂ C≡CH	CF ₃	н
Me Me H H 1 H H NCH2CH=CH2 CF3 H Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H 1 H H NCHF2 Cl Me Me Me H H H H NCHF2 CF3 H Me Me H H H H NCHF2 CF3 Me	Me	Me	H	H	1	Н	H	NCH ₂ C≡CH	OCHF2	н
Me Me H H 1 H H NCH2CH=CH2 OCHF2 H Me Me H H I H H NCHF2 Cl Me Me Me H H I H H NCHF2 CF3 H Me Me H H H H H NCHF2 CF3 Me	Me	Me	H	H	1	н	H	NCH ₂ CH=CH ₂	Cl	Me
Me Me H H I H H NCHF2 Cl Me Me Me H H H H H NCHF2 CF3 H Me Me H H H H NCHF2 CF3 Me	Me	Me	н	H	1	н	н	NCH ₂ CH=CH ₂	CF ₃	H
Me Me H H 1 H H NCHF2 CF3 H Me Me H H H H H Me	Me	Me	н	н	1	н	Н	NCH ₂ CH=CH ₂	OCHF ₂	н
Me Me H H 1 H NCHF2 CF3 Me	Me	Me	н	H	1	н	H	NCHF2	Cl	Me
	Me	Me	н	н	1	н	H	NCHF2	CF3	н
Me Me H H 1 H NCHF2 OCHF2 H	Me	Me	н	н	1	н	H	NCHF ₂	CF ₃	Me
	Me	Me	н	н	1	н	Н	NCHF2	OCHF2	н
Me Me H H 1 H NCHF2 OCHF2 Me	Me	Me	н	н	1	н	H	NCHF2	OCHF2	Me

Me	Me	H	н	1	H	н	NCHF ₂	C(=O)Me	н
Me	Me	Н	H	1	Н	н	NCHF2	C(=O)Me	Me
Me	Me	н	н	1	H	н	NCHF2		(CH ₂) ₃ -
Me	Me	н	н	1	н	н	NCHF2	$-({ m CH_2})_4$ -	
Me	Me	H	н	1	Н	Н	NPh	OMe	Me
Me	Me	H	Н	1	H	H	NPh	OEt	Me
Me	Me	н	н	1	н	Н	NPh	OCHF2	Me
Me	Me	H	н	1	н	н	NPh	OCH ₂ CF ₃	Me
Me	Me	н	H	1	н	н	NPh	CF ₃	н
Me	Me	Н	Н	1	н	H	NPh	OCH ₂ CH=CH	Me
Me	Ме	$ _{\mathbf{H}} $	н	1	н	н	NPh	och ₂ c≡ch	Me
Me	Me	н	Н	1	Н	н	NPh	Cl	Me
Me	Me	н	H	1	Н	Н	N(2-Cl)Ph	Cl	Me
Me	Me	Н	H	1	H	H	N(2-F)Ph	Cl	Me
Me	Me	H	H	1	H	Н	N(2-OMe)Ph	Cl	Me
Me	Me	H	H	1	Н	H	N(2-Me)Ph	Cl	Me
Me	Me	Н	H	1	Н	H	N(3-Cl)Ph	Cl	Me
Me	Me	н	\mathbf{H}	1	Н	Н	N(3-F)Ph	Cl	Me
Me	Me	н	H	1	Н	Н	N(3-OMe)Ph	Cl	Me
Me	Me	н	H	1	H	H	N(3-Me)Ph	Cl	Me
Me	Me	н	H	1	Н	Н	N(4-Cl)Ph	Cl	Me
Me	Me	н	H	1	Н	Н	N(4-F)Ph	Cl	Me
Me	Me	H	H	1	H	H	N(4-OMe)Ph	Cl	Me
Me	Me	H	H	1	H	Н	N(4-Me)Ph	Cl	Me
Me	Me	H	H	1	H	Н	N(Thiophen-2-yl)	Cl	Me
Me	Me	н	H	1	н	н	N(Thiophen-2-yl)	CF ₃	H
Me	Me	н	H	1	Н	н	N(Thiophen-2-yl)	OCHF2	H
Me	Me	H	H	1	H	H	NC(=O)Me	Cl	Me
Me	Me	H	H	1	Н	н	NC(=O)Me	CF ₃	H
Me	Me	н	H	1	н	Н	NC(=O)Me	OCHF ₂	н
Me	Me	н	H	1	н	Н	NC(=O)CF ₃	Cl	Me
Me	Ме	н	H	1	H	H	NC(=O)CF ₃	CF ₃	H
Ме	Me	H	H	1	H	н	NC(=O)CF ₃	$OCHF_2$	H
Me	Me	н	H	1	H	H	NC(=O)CH ₂ Ph	Cl	Me
Me	Me	H	H	1	Н	H	NC(=O)CH ₂ Ph	CF_3	H
Me	Me	H	H	1	H	H	NC(=O)CH ₂ Ph	OCHF2	H
Me	Me	н	H	1	Н	H	NC(=O)Ph	Cl	Me
Me	Me	н	Н	1	н	н	NC(=O)Ph	CF₃	H
Me	Me	H	Н	1	н	Н	NC(=O)Ph	$OCHF_2$	H
Me	Me	н	H	1	H	Н	NC(=O)OMe		Me
Me	Me	H	H	1	н	i	NC(=O)OMe		Н
Me	Me	н	н	1	н		NC(=O)OMe		н
. 1				1					

Me	Me	H	н	1	H	Н	NC(=O)OCH ₂ Ph	Cl	Me	
Me	Me	H	H	1	H	Н	NC(=O)OCH ₂ Ph	CF ₃	н	
Me	Me	Н	Н	1	Н	Н	NC(=O)OCH ₂ Ph	OCHF ₂	н	
Me	Me	H	H	1	H	н	NC(=O)OPh	Cl	Me	
Me	Me	H	H	1	H	H	NC(=O)OPh	CF3	H	
Me	Me	Н	H	1	Н	H	NC(=O)OPh	OCHF2	н	
Me	Me	H	H	1	Н	н	NC(=O)NHMe	Cl	Me	
Me	Me	H	H	1	Н	н	NC(=0)NHMe	CF ₃	H	
Me	Me	н	H	1	H	н	NC(=O)NHMe	OCHF ₂	н	
Me	Me	Н	Н	1	Н	Н	$NC(=O)N(Me)_2$	Cl	Me	
Me	Me	Н	н	1	Н	н	NC(=0)N(Me) ₂	CF ₃	н	
Me	Me	Н	н	1	Н	н	$NC(=O)N(Me)_2$	OCHF ₂	H	
H	H	H	H	1	H	н	NPh	Cl	Me	
Me	H	H	H	1	H	Н	NPh	Cl	Me	
Me	Н	Me	H	1	H	H	NPh	Cl	Me	
Me	Me	H	H	1	Me	H	NPh	Cl	Me	ı
Me	Me	H	H	1	Et	H	NPh	Cl	Me	
Me Me	Me Me	H	H	1	Pr-i	H	NPh NPh	Cl	Me	
Me	Et	H	H	1 1	Me H	Me H	NPh	Cl Cl	Me Me	-
Et	Et	H	H	1	H	H	NPh	C1	Me	-
Me	Pr-i	H	H	1	H	H	NPh	Cl	Me	
Me	Pr	H	H	l î	H	H	NPh	Cl	Me	ł
Me	Pr-c	H	H	1	H	Н	NPh	Cl	Me	-
Me	CH ₂ Pr-c	Н	н	1	н	H	NPh	Cl	Me	1
-((CH ₂) ₂ -	Н	н	1	н	н	NPh	Cl	Me	-
-((CH ₂) ₃ -	Н	н	1	н	H	NPh	Cl ·	Me	Ì
-((CH ₂) ₄ -	H	H	1	H	H	NPh	Cl	Me	ļ
-(CH ₂) ₅ -	H	Н	1	н	H	NPh	Cl	Me	1
Н	-(CH ₂)	3-	H	1	н	H	NPh	Cl	Me	
H	-(CH ₂)	4-	н	1	H	H	NPh	Cl	Me	Į
H	-(CH ₂)	5-	H	1	н	H	NPh	Cl	Me	
H	-(CH ₂)	6-	H	1	н	H	NPh	Cl	Me	
Me	Me	H	H	1	H	H	0	H	Me	-
Me	Me	H	H	1	H	H	О	Cl	Me	1
Me	Me	H	H	1	·H	H	S	Н	Me	
Me	Me	H	H	1	H	H	S	Cl	Me	
Me	Me	H	H	0	H	H	NMe	Cl	H	
Me Me	Me Me	H H	H	0 0	H	H H	NMe NMe	Cl Cl	Me Et	1
Me	Me	н	Н		Н	Н	NMe	Cl		
Me	Me	н	н	0	Н	н	NMe	CF ₃	CF ₃	
1 1									1	
Me	Me	H	H	0	H	H	NMe	CF ₃	Me	1

1	1	1	1	1	1	1	l	4	ı
Me	Me	H	H	0	H	H	NMe	OCHF ₂	Н
Me	Me	H	H	0	H	H	NMe	OCHF ₂	Me
Me Me	Me Me	H	H	0	H	H	NMe NMe	C(=O)Me	H
Me	Me	H	H	0	H	H	NMe	C(=O)Me	-(CH ₂) ₃ -
Me	Me	Н	н	0	H	H	NMe		-(CH ₂) ₄ -
Me	Me	H	H	0	H	H	NEt	Cl	Me
Me	Me	H	H	0	H	H	NEt	CF ₃	H
Me	Me	H	н	0	н	Н	NEt	CF ₃	Me
Me	Me	H	H	0	H	H	NEt	OCHF2	H
Me	Me	H	H	i	H	н	1	1	ł.
l l				0		1	NEt	OCHF ₂	Me
Me	Me	H	H	0	H	H	NEt		-(CH ₂) ₃ -
Me	Me	H	H	0	H	H	NEt	ļ	-(CH ₂) ₄ -
Me	Me	H	H	0	H	H	NPr-i	Cl	Me
Me	Me	H	H	0	H	H	NPr-i	CF ₃	H
Me	Me	H	H	0	H	H	NPr-i	$\mathbf{CF_3}$	Me
Me	Me	H	H	0	H	H	NPr-i	OCHF ₂	H
Me	Me	H	H	0	Н	H	NPr-i	OCHF ₂	Me
Me	Me	H	H	0	H	H	NPr-i	ļ	-(CH ₂) ₃ -
Me	Me	H	H	0	H	Н	NPr-i		-(CH ₂) ₄ -
Me	Me	H	H	0	Н	Н	NPr	Cl	Me
Me	Me	H	H	0	H	H	NPr	CF ₃	H
Me	Me	H	H	0	H	H	NPr	CF_3	Me
Me	Me	H	H	0	Н	Н	NPr	OCHF2	H
Me	Me	H	H	0	H	H	NPr	OCHF ₂	Me
Me	Me	H	H	0	H	H	NPr		-(CH ₂) ₃ -
Me	Me	H	H	0	H	H	NPr		-(CH ₂) ₄ -
Me	Me	н	H	0	H	H	NBu-t	Cl	Me
Me	Me	н	H	0	H	H	NBu-t	$\mathbf{CF_3}$	H
Me	Me	H	H	0	H	H	NBu-t	CF ₃	Me
Me	Me	н	Н	0	Н	H	NBu-t	OCHF ₂	н .
Me	Me	н	H	0	н	H	NBu-t	OCHF2	Me
Me	Me	н	н	0	н	H	NBu-t		-(CH ₂) ₃ -
Me	Me	н	н	0	н	H	NBu-t		-(CH ₂) ₄ -
Me	Me	н	н	0	н	Н	NCH ₂ Ph	Cl	Me
Me	Me	H	н	0	н	Н	NCH ₂ Ph	CF ₃	н
Ме	Me	H	H	0	н	Н	NCH ₂ Ph	OCHF ₂	н
Me	Me	H	H	0	Н		NCH ₂ OMe	Cl	Me
Me	Me	H	H	0	H		NCH ₂ OMe	CF ₃	H
ME	TATE	**	11	١	1.1	ŦŢ	14OTISOIME	lor a	1

					.0.				
Me	Me	H	H	0	H	Н	NCH ₂ OMe	OCHF ₂	Н
Me	Me	H	H	0	H	Н	NCH ₂ C≡CH	Cl	Me
Me	Me	H	H	0	Н	Н	NCH ₂ C≡CH	$_{\mathrm{CF_3}}$	H
Me	Me	Н	H	0	Н	Н	NCH ₂ C≡CH	OCHF2	н
Me	Me	н	Н	0	Н	н	NCH ₂ CH=CH ₂	Cl	Me
Me	Me	н	Н	0	Н	H	NCH ₂ CH=CH ₂	CF ₃	Н
Me	Me	Н	Н	0	н	н	NCH ₂ CH=CH ₂	OCHF ₂	H
Me	Me	Н	Н	0	Н	Н	NCHF ₂	Cl	Me
Me	Me	H	H	0	H	H	NCHF ₂	CF ₃	H
Me	Me	H	Н	0	Н	H	NCHF ₂	CF ₃	Me
		}	1	ł	1		1		
Me	Me	H	H	0	H	H	NCHF2	OCHF ₂	H
Me	Me	H	H	0	H	H	NCHF ₂	OCHF ₂	Me
Me	Me	H	H	0	H	Н	NCHF ₂	C(=O)Me	H
Me	Me	H	H	0	H	Н	NCHF ₂	C(=O)Me	Me
Me	Me	H	H	0	H	H	NCHF ₂	-((CH ₂) ₃ -
Me	Me	н	H	0	Н	H	NCHF ₂	-((CH ₂) ₄ -
Me	Me	H	H	0	Н	Н	NPh	OMe	Me
Me	Me	H	H	0	H	H	NPh	OEt	Me
Me	Me	Η	H	0	H	H	NPh	OCHF ₂	Me
Me	Me	H	H	0	H	H	NPh	OCH ₂ CF ₃	Me
Me	Me	H	H	0	H	н	NPh	CF ₃	H · ·
Me	Me	н	H	0	Н	н	NPh	OCH ₂ CH=CH	Me
Me	Me	н	H	0	H	н	NPh	OCH ₂ C≡CH	Me
Me	Me	H	H	0	H	н	NPh	Cl	Me
Me	Me	H	H	0	H	H	N(2-Cl)Ph	Cl	Me
Me	Me	H	H	0	H	H	N(2-F)Ph	Cl	Me
Me	Me	H	H	0	H	H	N(2-OMe)Ph	Cl	Me
Me	Me	H	Ĥ	0	H	H	N(2-Me)Ph	Cl	Me
Me [Me	H	H	0	H	H	N(3-Cl)Ph	Cl	Me
Me	Me	H	H	0	H		N(3-F)Ph		Me
Me	Me	H	H	0	H	H	N(3-OMe)Ph		Me
Me	Me	H	H	0	H	H	N(3-Me)Ph		Me
Me	Me	H	H	0	H	H	N(4-Cl)Ph		Me
Me	Me	H	H	0	H	H	N(4-F)Ph	Cl	Me
Me	Me	H	H	0	H	H	N(4-OMe)Ph	CI	Me
Me	Me	H	H	0	H	H	N(4-Me)Ph		Me
Me	Me	H	H	0	H	H	N(Thiophen-2-yl)		Me
Me	Me	H	H	0	H		N(Thiophen-2-yl)		H
Me	Me	H	H	0	H	H	N(Thiophen-2-yl)		H
Ме	Me	H	H	0	H		NC(=O)Me		Me
Me	Me	H	H	0	H	H	NC(=O)Me	CF_3	H

Me	Me	H	Н	0	Н	Н	NC(=O)Me	OCHF2	Н
Me	Me	н	Н	0	Н	Н	NC(=O)CF3	Cı	Me
Me	Me	н	Н	0	н	н	NC(=O)CF ₃	CF ₃	Н
Me	Me	Н	н	0	Н	н	NC(=O)CF ₈	1	H
1		н		0	н	H	Λ		Me
1			l	o	1		1		Н
		1	ļ	Į.	1	1	1	1	H
		1						i	Me
	1	1		i	1	1	\$	1	Н
1	Į.		1						H
1		1		l .					Me
		i .	1	i			j		H
			1		İ	1	l .		H
i	1		Α			1			Me
	Į.		1			1	1	i	
1		1		Δ.	i			i	H
i								1	H
				l	į .	l .		I .	Me
				ĺ	i		1	l .	H
					Į.				H
		1		0					Me
Me	Me		H	0	l	H		CF ₃	H
Me	Me	H	H	0	H	H	NC(=O)NHMe	OCHF ₂	н
Ме	Me	Н	H	0	Н	Н	NC(=O)N(Me) ₂	C1	Me
Me	Me	н	H	0	н	н	NC(=O)N(Me) ₂	CF ₃	н
Me	Me	H	H	0	н	Н	$NC(=O)N(Me)_2$	OCHF2	H
H	H	H	H	0	H	H	NPh	Cl	Me
				0					Me
									Me
									Me Me
									Me
						ŧ			Me
Me	Et	н	н	0	Н	Н	NPh	Cl	Me
Et	Et	н	H	0	H	н	NPh	Cl	Me
Me	Pr•i	H	H	0	H	H	NPh	Cl	Me
				0		I .			Me
									Me
								l	Me
	1	ı					1		Me
		H	H	0	н	H	1	Cl	Me
-(CH ₂) ₄ -	H	H	0	H	H	NPh	Cl	Me
	Me Me Me Me Me Me Me Me Me Me Me Me Me M	Me Me Me Me Me Me Me Me Me Me Me Me Me M	Me H Me <t< td=""><td>Me H H Me H H H H H Me H H Me H H Me H H H H</td><td>Me Me H H O Me Me H H O</td><td>Me Me H H 0 H Me Me H H 0 H <t< td=""><td>Me Me H H 0 H H Me Me H H 0 H H Me Me H H 0 H <td< td=""><td>Me Me H H O H H NC(=0)CF3 Me Me H H O H H NC(=0)CF2Ph Me Me H H O H H NC(=0)CH2Ph Me Me H H O H H NC(=0)Ph Me Me H H O H H NC(=0)Ph Me Me H H O H H NC(=0)OMe Me Me H H O H H NC(=0)OMe Me Me H H O H H NC(=0)OCH2Ph Me Me</td><td>Me Me H H O H H NC(=O)CF₃ CF₃ Me Me H H O H H NC(=O)CF₃ CF₃ Me Me H H O H H NC(=O)CF₃ OCHF₂ Me Me H H O H H NC(=O)CH₂Ph CI Me Me H H O H H NC(=O)CH₂Ph CG Me Me H H O H H NC(=O)CH₂Ph CCT₃ Me Me H H O H H NC(=O)OPh CF₃ Me Me H H O H H NC(=O)OMe CF₃ Me Me H H O H H NC(=O)OMe CCF₃ Me Me H H O H H NC(=O)OMe CCF₃</td></td<></td></t<></td></t<>	Me H H H H H Me H H Me H H Me H H H H	Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O Me Me H H O	Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H Me Me H H 0 H <t< td=""><td>Me Me H H 0 H H Me Me H H 0 H H Me Me H H 0 H <td< td=""><td>Me Me H H O H H NC(=0)CF3 Me Me H H O H H NC(=0)CF2Ph Me Me H H O H H NC(=0)CH2Ph Me Me H H O H H NC(=0)Ph Me Me H H O H H NC(=0)Ph Me Me H H O H H NC(=0)OMe Me Me H H O H H NC(=0)OMe Me Me H H O H H NC(=0)OCH2Ph Me Me</td><td>Me Me H H O H H NC(=O)CF₃ CF₃ Me Me H H O H H NC(=O)CF₃ CF₃ Me Me H H O H H NC(=O)CF₃ OCHF₂ Me Me H H O H H NC(=O)CH₂Ph CI Me Me H H O H H NC(=O)CH₂Ph CG Me Me H H O H H NC(=O)CH₂Ph CCT₃ Me Me H H O H H NC(=O)OPh CF₃ Me Me H H O H H NC(=O)OMe CF₃ Me Me H H O H H NC(=O)OMe CCF₃ Me Me H H O H H NC(=O)OMe CCF₃</td></td<></td></t<>	Me Me H H 0 H H Me Me H H 0 H H Me Me H H 0 H <td< td=""><td>Me Me H H O H H NC(=0)CF3 Me Me H H O H H NC(=0)CF2Ph Me Me H H O H H NC(=0)CH2Ph Me Me H H O H H NC(=0)Ph Me Me H H O H H NC(=0)Ph Me Me H H O H H NC(=0)OMe Me Me H H O H H NC(=0)OMe Me Me H H O H H NC(=0)OCH2Ph Me Me</td><td>Me Me H H O H H NC(=O)CF₃ CF₃ Me Me H H O H H NC(=O)CF₃ CF₃ Me Me H H O H H NC(=O)CF₃ OCHF₂ Me Me H H O H H NC(=O)CH₂Ph CI Me Me H H O H H NC(=O)CH₂Ph CG Me Me H H O H H NC(=O)CH₂Ph CCT₃ Me Me H H O H H NC(=O)OPh CF₃ Me Me H H O H H NC(=O)OMe CF₃ Me Me H H O H H NC(=O)OMe CCF₃ Me Me H H O H H NC(=O)OMe CCF₃</td></td<>	Me Me H H O H H NC(=0)CF3 Me Me H H O H H NC(=0)CF3 Me Me H H O H H NC(=0)CF3 Me Me H H O H H NC(=0)CF3 Me Me H H O H H NC(=0)CF2Ph Me Me H H O H H NC(=0)CH2Ph Me Me H H O H H NC(=0)Ph Me Me H H O H H NC(=0)Ph Me Me H H O H H NC(=0)OMe Me Me H H O H H NC(=0)OMe Me Me H H O H H NC(=0)OCH2Ph Me Me	Me Me H H O H H NC(=O)CF₃ CF₃ Me Me H H O H H NC(=O)CF₃ CF₃ Me Me H H O H H NC(=O)CF₃ OCHF₂ Me Me H H O H H NC(=O)CH₂Ph CI Me Me H H O H H NC(=O)CH₂Ph CG Me Me H H O H H NC(=O)CH₂Ph CCT₃ Me Me H H O H H NC(=O)OPh CF₃ Me Me H H O H H NC(=O)OMe CF₃ Me Me H H O H H NC(=O)OMe CCF₃ Me Me H H O H H NC(=O)OMe CCF₃

	(CH ₂) ₅ -	Н	H	0	н	н	NPh	Cl	Me
Н	-(CH ₂)3-	H	0	Н	н	NPh	Cl	Me
н	-(CH ₂)4-	H	0	H	Н	NPh	Cl	Me
Н	-(CH ₂) ₅ -	H.	0	Н	н	NPh	Cl	Me
н	-(CH ₂)6-	H	0	H	н	NPh	Cl	Me
Me	Me	H	H	0	H	H	0	H	Me
Me	Me	H	H	0	Н	H	0	Cl	Me
Me	Me	H	H	0	H	H	S	H	Me
Me	Me	H	H	0	H	H	S	Cl	Me
Me	Et	H	H	2	H	H	NH	H	H

表 6

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
R ¹	R ²	R ³	R ⁴	n	R ⁵	R ⁶	Z ⁵	R ³⁵	R ³⁶						
Me	Me	H	H	2	Н	Н	NMe	H	OMe						
Me	Me	H	Н	2	Н	Н	NMe	H	OEt						
Me	Me	H	H	2	H	Н	NMe	H	OCHF ₂						
Me	Me	H	Н	2	H	1	NMe	H	OCH ₂ CF ₃						
Me	Me	H	Н	2	Н		NMe		(CH ₂) ₃₋						
Me															
Me															
Me															
Me	Me	Н	Н	2	Н	н	NPr-i	-(CH ₂) ₃₋						
Me	Me	н	Н	2	Н	Н	NPr-i	(CH ₂) ₄ -						
Me	Me	н	н	2	н	Н	NCHF ₂	-(CH ₂) ₃ .						
Me	Me	н	н	2	н	Н	NCHF ₂	(CH ₂) ₄ -						
Me	Me	н	н	2	Н	н	N(CH ₂) ₃ (D-	Н						
Me	Me	Н	Н	2	Н	Н	N(CH ₂) ₄ (D-	н						
Me	Me	Н	н	2	Н	Н	N(CH ₂) ₄	; -	н						
Me	Me	н	н	2	н	Н	N(CH ₂) ₅		н						
Me	Me	н	н	2	Н	Н	NPh	Н	OMe						
Me	Me	н	н	2	Н	Н	NPh	н	OEt						
Me	Me	Н	н	2	Н	H	NPh	н	OCHF ₂						
Me	Me	Н	н	2	н	Н	NPh	н	OCH₂CF₃						
Me	Me	н	н	2	H	H	o	Me	н						
Me	Me	Н	н	2	Н	Н	s	Ме	н						

Н	Н	н	Н	2	Н	H	NPh		н	ОМе
Me	н	H	H	2	Н	Н	NPh		н	OEt
Me	Н	Me	Н	2	Н	ĺ	NPh		н	OMe
Me	Me	Н	Н	2	Me		NPh		Н	OEt
Me	Me	Н	Н	2	Et	Н	NPh		н	OMe
Me	Me	н	н	2	Pr-i	Н	NPh		Н	OEt
Me	Me	Н	H	2	Me	Me	NPh		н	OMe -
Me	Et	Н	Н	2	Н	Н	NPh		H	OEt
Et	Et	Н	н	2	H	Н	NPh		н	ОМе
Me	Pr-i	H	Н	2	H	H	NPh		H	OEt
Me	Pr	Н	H	2	Н		NPh		H	OMe
Me	Pr-c	Н	Н	2	H		NPh		H	OEt
Me	CH ₂ Pr-c	H	Н	2	Н	Н	NPh		H	ОМе
-(0	CH ₂) ₂ -	Н	H	2	Н	Н	NPh		н	OEt
-(0	CH ₂) ₃ -	H	н	2	Н	Н	NPh		н	ОМе
-(0	CH ₂) ₄ -	Н	Н	2	Н	Н	NPh		н	OEt
-(0	CH ₂) ₅ -	Н	H	2	Н	Н	NPh		Н	ОМе
H	-(CH ₂)	3-	Н	2	H	Н	NPh		н	OEt
H	-(CH ₂)	4-	Н	2	Н	H	NPh		н	OMe
н	-(CH ₂)	5-	н	2	н	Н	NPh		н	OMe
н	-(CH ₂)	6-	Н	2	н	Н	NPh		н	OEt
Me	Me	H	H	1	н	H	NMe		Н	OMe
Me	Me	H	H	1	Н		NMe		н	OEt
Me	Me	н	H	1	н		NMe		Н	OCHF ₂
Me	Me	H	H	1	H		NMe		H	OCH ₂ CF ₃
Me	Мe	H	H	1	н	H	NMe		-((CH ₂) ₃ .
Me	Me	H	H	1	н	Н	NMe		-((CH ₂) ₄ -
Me	Me	н	н	1	H	Н	NEt	:	-((CH ₂) ₃ .
Me	Me	H	Н	1	H	Н	NEt		-(CH ₂) ₄ -
Me	Me	H	н	1	н	H	NPr-i		-((CH ₂) ₃ .
Me	Me	н	Н	1	н	Н	NPr-i		-((CH ₂) ₄ -
Me	Me	H	н	1	Н	Н	NCHF ₂			(CH ₂) ₃ .
Me	Me	H	H	1	H	Н	NCHF ₂			CH ₂) ₄ -
Me	Me	H	н	1	Н	Н		N(CH ₂)₃C)_	H
Me	Me	н	Н	1	н	H		N(CH ₂) ₄ C) <u>. </u>	H
Me	Me	H	Н	1	Н	Н		N(CH ₂) ₄ -		H
Me	Me	Н	H	1	H	Н		N(CH ₂) ₅ -		H
Me	Me	н	Н	1	H		NPh		Н	OMe
Me	Me	H	H	1	H	ı	NPh	1	Н	OEt
Ме	Me	H	H	1	H	Н	NPh		Н	OCHF ₂
Ме	Me	H	H	1	H	H	NPh	[Н	OCH ₂ CF ₃

ا مد	1	1 -	1		i	1	ام		ls -	l	
Me	Me	H	H		H	H	0		Me	H	
Me	Me	H	H	1	H		S		Me	H	
H Me	H	H	H	1	H		NPh NPh		H H	OMe	
Me	н	Me	Н	1	H	1	NPh		H	OEt OMe	
Me	Me	H	Н	1	Me	1	NPh		H	OEt	
Me	Me	Н	H	1	Et	1	NPh		н	OMe	
Me	Me	Н	H	1	Pr-i		NPh		H	OEt	
Me	Me	Н	Н	1	Me	i	NPh		Н	ОМе	
Me	Et	Н	Н	1	н	!	NPh		Н	OEt	
Et	Et	н	н	1	H	Н	NPh		Н	ОМе	
Me	Pr-i	Н	Н	1	н	H	NPh		Н	OEt	
Me	Pr	H	Н	1	Н	н	NPh		Н	OMe	
Me	Pr-c	Н	Н	1	Н	Н	NPh		Н	OEt	
Me	CH ₂ Pr-c	н	Н	1	Н	H	NPh		н	ОМе	
-(CH ₂) ₂ -		Н	Н	1	Н	Н	NPh		Н	OEt	
-(CH ₂) ₃ - H		H	Н	1	Н	Н	NPh		Н	ОМе	
-(CH ₂) ₄ - H		Н	н	1	Н	Н	NPh		Н	OEt	
-(CH ₂) ₅ -		Н	н	1	Н	Н	NPh		H	OMe	
Н	H -(CH ₂) ₃ -		Н	1	н	Н	NPh		H	OEt .	
H	H -(CH ₂) ₄ -		Н	1	н	Н	NPh		Н	ОМе	
Н	H -(CH ₂) ₅ -		Н	1	Н	Н	NPh		н	ОМе	
Н	H -(CH ₂) ₆ -		н	1	H	Ή	NPh		Н	OEt	
Ме	Me	Н	н	0	н	Н	NMe		Н	OMe	
Me	Me	H	н	0	Н	- 1	NMe		H	OEt	
Me	Me	H	Н	0	H		NMe		н	OCHF ₂	
Me	Me	H	H	0	H		NMe		H	OCH ₂ CF ₃	
Me	Me	H	H	0	Н	H	NMe			-(CH ₂) ₃₋	
Me	Me	H	H	0	н	H	NMe		-(CH ₂) ₄ -		
Me	Me	H	Н	0	н	Н	NEt		-(CH ₂) ₃ .		
Me	Me	H	Н	0	н	н	NEt		-(CH ₂) ₄ -		
Me	Me	H	Н	0	Н	н	NPr-i			-(CH ₂) ₃₋	
Me	Me	Н	H	0	H	H	NPr-i			-(CH ₂) ₄ -	
Me	Me	H	H	0	H	н	NCHF ₂			-(CH ₂) ₃₋	
Me	Me	Н	Н	0	н	Н	NCHF ₂			-(CH ₂) ₄ -	
Me	Me	H	H	0	н	н		$N(CH_2)_3C$)-	Н	
Me	Me	н	н	0	H	H	N(CH ₂) ₄ O-				
Me	Me	H	H	0	Н	H	N(CH ₂) ₄ -		1		
Me	Me	H	H	0	H	H	N(CH ₂) ₅ -				
Me	Me	H	H	0	H		NPh		H	OMe	
Me	Me	H	H	0	H	H	NPh	ļ	Н	OEt	

							•		
Me	Me	H	Н	0	Н	H	NPh	Н	OCHF ₂
Me	Me	Н	Н	0	Н	Н	NPh	н	OCH₂CF₃
Me	Me	H	Н	0	Н	н	0	Me	H
Me	Me	Н	Н	0	Н	Н	S	Ме	Н
H	H	H	H	0	Н	Н	NPh	H	ОМе
Me	H	Н	Н	0	H	н	NPh	H	OEt
Me	H	Me	H	0	H	Н	NPh	H	ОМе
Me	Me	H	H	0	Me		NPh	H	OEt
Me	Me	H	Н	0	Et	Н	NPh	H	OMe
Me	Me	H	Н	0	Pr-i		NPh	H	OEt
Me	Me	H	Н	0	Me		NPh	H	ОМе
Me	Et	H	Н	0	Н	1	NPh	H	OEt
Et	Et	Н	Н	0	Н	1	NPh	H	ОМе
Me	Pr-i	Н	Н	0	Н	H	NPh	H	OEt
Me	Pr	Н	Н	0	Н	H	NPh	H	ОМе
Me	Pr-c	н	Н	0	H	H	NPh	H	OEt
Me	CH₂Pr-c	н	Н	0	Н	Н	NPh	H	OMe
-(0	CH ₂) ₂ -	Н	H	0	Н	Н	NPh	н	OEt
-(0	CH ₂) ₃ -	H	Н	0	Н	Н	NPh	н	OMe
-(0	CH ₂) ₄ -	H	н	0	н	Н	NPh	н	OEt
-(0	CH ₂) ₅ -	н	Н	0	н	H	NPh	н	ОМе
Н	-(CH ₂)	3-	н	0	н	Н	NPh	н	OEt
Н	-(CH ₂)	4-	н	0	н	H	NPh	н	ОМе
н	-(CH ₂)	5-	н	0	н	Н	NPh	н	ОМе
н	-(CH ₂)	6"	н	0	н	Н	NPh	н	OEt
Me	Et	H	н	2	н	Н	o	н	Н
Me	·Et	н	Н	2	н	н	S	н	н
Me	Et	н	Н	2	Н	Н	NH	Н	Н

108

表 7

Me Me H H 2 H H CI CF3 H H - Me Me H H 2 H H CN CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OMe Me H H - Me Me H H 2 H H H - Me Ne	D ² D ³ D ⁴											
R1]	R ¹ —	\mathbb{R}^3 \mathbb{R}^3	$S(O)_{\overline{n}}C$ R^{5} N	—R ⁴⁰			
Me Me H H 2 H	R1	R2	R3	R4	Tn	R5	R6	·····		R 39	R40	1
Me Me H H 2 H	\vdash			+	 	+	+	 	+			
Me Me H H 2 H H OMe Ph H H	1 1					1	1				1	N-ovide
Me Me H H 2 H H OMe Me H H			1							1		- Oxide
Me Me H H 2 H H CI Me H H							,			,	,	-
Me Me H H 2 H H H H H H H H Noiside Me Me H H 2 H H H H Noiside Me Me H H 2 H H CI CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H M OMe CF3 H H - Me Me H H 2 H H M OMe OMe H H		Me	H		2	H	H		Me	H	H	-
Me Me H H 2 H H H CF3 H H N-oxide Me Me H H 2 H H CI CF3 H H - Me Me H H 2 H H CN CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H M - - - Me H H - - - - H H -	Me	\mathbf{Me}	H	H	2	H	H	ì	Me	H	H	-
Me Me H H 2 H H CI CF3 H H - Me Me H H 2 H H CN CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OMe Me H H - Me Me H H 2 H H CH OMe CH H H N- Ne Ne H	Me	Me	H	H	2	H	H	H	CF_3	H	H	-
Me Me H H 2 H H CN CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H Me Me H H - Me Me H H 2 H H H - <td>Me</td> <td>${f Me}$</td> <td>H</td> <td>H</td> <td>2</td> <td>H</td> <td>H</td> <td>H</td> <td>CF_3</td> <td>H</td> <td>н</td> <td>N-oxide</td>	Me	${f Me}$	H	H	2	H	H	H	CF_3	H	н	N-oxide
Me Me H H 2 H H OMe CF3 H H - Me Me H H 2 H H OEt CF3 H H - Me Me H H 2 H H Me Me H H Noxide Me Me H H 2 H H Ph H H H - Me Me H H 2 H H Cl (4-Cl)Ph H H - Me Me H H 2 H H Cl (4-Cl)Ph H H - Me Me H H 2 H H Cl (CH2)3 H - Me Me H H 2 H H Me (CH2)4 H - Me Me <td>Me</td> <td>Me</td> <td>H</td> <td>H</td> <td>2</td> <td>H</td> <td>H</td> <td>Cl</td> <td>CF_3</td> <td>H</td> <td>H</td> <td>- [</td>	Me	Me	H	H	2	H	H	Cl	CF_3	H	H	- [
Me Me H H 2 H H OEt CF3 H H	Me	Me	H	H	2	H	Н	CN	$ ext{CF}_3$	H	H	-
Me Me H H 2 H H Me Me H H N-oxide Me Me H H 2 H H H Ph H H N-oxide Me Me H H 2 H H Cl (4-Cl)Ph H Me - Me Me H H 2 H H Cl (4-Cl)Ph H H - Me Me H H 2 H H Cl (4-Cl)Ph H H - Me Me H H 2 H H Cl (CH2)3 H - Me Me H H 2 H H Me (CH2)3 H - Me Me H H 2 H H H - H - - H - <t< td=""><td>Me</td><td>Me</td><td>H</td><td>H</td><td>2</td><td>н</td><td>H</td><td>OMe</td><td>CF_3</td><td>H</td><td>H</td><td>-</td></t<>	Me	Me	H	H	2	н	H	OMe	CF_3	H	H	-
Me Me H H 2 H H Ph H H H C Me Me H H 2 H H Cl (4-Cl)Ph H Me - Me Me H H 2 H H Cl (4-Cl)Ph H H - Me Me H H 2 H H OMe Cl H H - Me Me H H 2 H H Cl (CH2)₃ H - Me Me H H 2 H H Me (CH2)₃ H - Me Me H H 2 H H Me (CH2)₃ - H - Me Me H H 2 H H Me H (CH2)₃ - - H H CH2)	Me	Me	H	H	2	н	Н	OEt ·	CF_3	H	н	-
Me Me H H 2 H H Cl (4-Cl)Ph H Me Me Me H H 2 H H Cl (4-Cl)Ph H H - Me Me H H 2 H H OMe Cl H H - Me Me H H 2 H H Me Cl (CH2)3 H - Me Me H H 2 H H Me (CH2)4 H - Me Me H H 2 H H H - Me H - - Me H - - Me H - - Me H - - Me - - - - - - - - - - - - - - - <	Me	Me	H	H	2	H	H	${f Me}$	Me	\mathbf{H}	н	N-oxide
Me Me H H 2 H H Cl (4-Cl)Ph H H - Me Me H H 2 H H H - Cl H H - Me Me H H 2 H H H -												-
Me Me H H 2 H H OMe Cl H H - Me Me H H 2 H H H -<												-
Me Me H H 2 H H Cl (CH2)3 H - Me Me H H 2 H H Me (CH2)3 H - Me Me H H 2 H H Cl (CH2)4 H - Me Me H H 2 H H Me (CH2)4 H - Me Me H H 2 H H Me H (CH2)3 - - Me Me H H 2 H H H - - H - <td></td> <td></td> <td>1</td> <td>1 1</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1	1 1		•						
Me Me H H 2 H H H H H C C C H -				1)				1	
Me Me H H 2 H H H H H -	1 I		į.			ł						
Me Me H H 2 H H Me			1	1 1		1			1			
Me Me H H 2 H H Cl H (CH ₂) ₃ - Me Me H H 2 H H Me H (CH ₂) ₃ - Me Me H H 2 H H Cl H (CH ₂) ₄ - Me Me H H 2 H H H - H H - H H H H H H H - H H - - H H - - - H H -	1 1		I .	1 1							1	-
Me Me H H 2 H H Me H (CH ₂) ₃ - Me Me H H 2 H H H (CH ₂) ₄ - Me Me H H 2 H H H CF ₃ H H - H H H H H H H - H H - Me H H H H H H H - H H - Me Me Me H 2 H H H H - - H H - - H H - - H H - - H H - - - - - - - - - - - - - - - - - - -	1 1								<u> </u>			-
Me Me H H 2 H H Cl H $(CH_2)_4$ - Me Me H H 2 H H Me H $(CH_2)_4$ - H H H 2 H H H CF3 H H - Me H H 2 H H H H - - H H - Me Me Me H 2 H H H H - H H - Me Me Me H 2 H H H H - <th< td=""><td>1</td><td></td><td></td><td>1 1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>•</td></th<>	1			1 1		1						•
Me Me H H 2 H H Me H (CH ₂) ₄ - H H H L H H H - Me H H H H H H - Me H Me H 2 H H H H - Me Me H 2 H H H H - Me Me H 2 H H H H -	1 1		1			1						-
H H H H H H H H H -						t l					- 1	-
Me H H H 2 H H H H H -				1					ł			-
Me H Me H 2 H H H H -									1			-
Me Me Me H 2 H H H CF3 H H -			1	}		H				1		-
						1		1	i	- 1		-
Mel Me H H 2 Me H H H H				!		H	- 1	ŀ	1			-
	Ме	Me	Н	H	2	Ме	H	Н	CF ₃	H	H	-
Me Me H H 2 Et H H CF3 H H -	Me	Me	H	H	2	Et	H	H	$\mathbf{CF_3}$	H	H	- }

Me	Me	н	Н	2	lo. :	1	1 77	l cr	1	1	1
l l			1	1	Pr-i	ł	H	CF ₃	H	H	_
Me	Me	H	H			Me	H	CF ₃	H	H	-
Me	Et	H	H	2	H	H	H	CF ₃	H	H	-
Et	Et	H	H	2	H	H	H	CF_3	H	H	-
Me	Pr-i	H	H	2	H	H	H	CF_3	H	H	-
Me	\mathbf{Pr}	H	H	2	H	H	H	CF_3	H	$ \mathbf{H} $	-
Me	Pr-c	H	H	2	H	H	H	$\mathbf{CF_3}$	H	H	-
Ме	CH ₂ Pr- c	н	н	2	н	н	H	CF ₃	H	H	-
-1	$(\mathrm{CH_2})_2$ -	H	H	2	H	H	\mathbf{H}	CF_3	H	H	-
-($(\mathrm{CH_2})_3$ -	H	H	2	н	H	\mathbf{H}	CF ₃	H	H	-
-($(\mathrm{CH_2})_4$ -	H	H	2	н	н	${f H}$	CF_3	H	H	-
-($(CH_2)_5$ -	Н	H	2	н	Н	H	CF ₃	H	H	-
H	-(CH ₂)3-	H	2	н	н	${f H}$	CF ₃	н	H	-
н	-(CH ₂)4-	H	2	н	н	${f H}$	CF ₃	н	H	-
H	-(CH ₂) ₅ -	Н	2	н	н	H	CF ₃	Н	H	-
H	-(CH ₂) ₆ -	\mathbf{H}	2	н	H	H	CF ₃	н	H	-
Me	Me	H	H	1,	н	H	${f H}$	H	H	H	-
Me	Me	H	H	1	н	H	H	H	н	н	N-oxide
Me	Me	H	H	1	H	H	Cl	Ph	H	H	-
Me Me	Me Me	H	H	1 1	$egin{array}{c} \mathbf{H} \\ \mathbf{H} \end{array}$	H	OMe Cl	Ph	H	H	-
Me	Me	H	H	1	H	H	OMe	Me Me	H	H	
Me	Me	H	H	1	H	H	H	$\mathbf{CF_3}$	H	H	-
Me	Me	Н	н	1	н	$_{\rm H}$	Cl	CF ₃	H	H	_
Me	Me	H	н	1	н	H	CN	CF ₃	Н	H	_
Me	Me	H	н	1	H	H	ОМе	CF ₃	H	H	
Me	Me	Н	H	1	H	H	OEt	CF ₃	Н	H	_
Me	Me	H	H	1	H	H	Me	Me	H	H	N-oxide
Me	Me	H	H	1	H	H	Ph	Ph	H	H	-
Me	Me	H	H	1	H	H	Cl	(4-Cl)Ph		Me	- }
Me	Me	H	H	1	H	H	Cl	(4-Cl)Ph	H	H	-
Me Me	Me	H	H	1	H	H	OMe	Cl	H	H	-
1 1	Me	H	H	1	H	H	Cl	$(CH_2)_3$		H	<u> </u>
Me	Me	H	H	1	H	H	Me	$(CH_2)_3$	ſ	H	-
Me	Me	H	H	1	H	H	Cl	(CH ₂) ₄		H	•
Me	Me	H	H	1	H	H	Me	(CH ₂) ₄		H	-
Me	Me	H	H	1	H	H	Cl	H	(CF	1	-
Me	Me	H	H	1	H	H	Me	H	(CF	í	-
Me	Me	H	H	1	H	H	Cl	H	(CE	I ₂) ₄	-

Me	Me	н	$ _{\mathbf{H}}$	1	Н	н	Me	Н	l (c	$\mathrm{H}_2)_4$	1 -
н	н	H	н	1	H	H	H	CF ₃	H	H	→
Me		H	Н	1	H	H	H	CF ₃	H	H	1
Me	ſ	Me	$ _{\mathbf{H}}$	1	н	H	H	CF ₃	H	H	-
Me	Me	Me	н	1	н	H	H	CF ₃	H	Н	-
Me	Me	H	н	1	Me	Н	н	CF_3	H	H	_
Me	Me	H	н	1	Et	Н	H	CF_3	H	H	-
Me	Me	н	H	1	Pr-i	Н	н	CF ₃	H	H	-
Me	Me	H	н	1	Me	Me	\mathbf{H}	CF3	H	H	- 1
Me	Et	н	Н	1	Н	н	H	CF ₃	H	H	-
Et	Et	н	Н	1	H	Н	H	CF ₃	H	H	-
Me	Pr-i	\mathbf{H}	H	1	H	н	H	CF ₃	H	H	-
Me	Pr	H	H	1	н	н	H	CF ₃	H	H	-
Me	Pr-c	н	\mathbf{H}	1	н	Н	H	CF ₃	H	н	-
Me	CH ₂ Pr-	н	Н	1	н	н	н	CF ₃	н	н	-
	-(CH ₂) ₂ - H				H	н	H	CF ₃	н	Н	-
	-(CH2)3- H		н	1	н	Н	${f H}$	CF ₃	Н	H	-
	$-(CH_2)_4$ - H		$H_2)_4$ - $HHH1H$		н	H	CF ₃	H	H	-	
($({ m CH_2})_5$ -	H	\mathbf{H}	1	H	H	\mathbf{H}	CF ₃	H	Н	-
H	-(CH ₂)3-	н	1	н	H	\mathbf{H}	CF3	H	H	-
H	-(CH ₂)4-	H	1	H	H	H	CF ₃	Н	Н	-
H	-(CH ₂)5-	H	1	н	H	H	CF_3	H	Н	-
H	-(CH ₂)) ₆ -	H	1	H	H	H	CF ₃	H	H	-
Me	Me	н	H	0	H	H	, H	H	н	H	-
Me	Me	H	H	0	H	H	H	H	H	H	N-oxide
Me	Me	H	H	0	H	H	Cl	Ph	H	H	-
Me Me	Me Me	H	H	0	H H	H	OMe Cl	Ph Me	H	H	_
Me	Me	H	H	0	H	H	OMe	Me	H	H	
Me	Me	H	H	0	H	H	H	CF ₃	H	H	.
Me	Me	н	н	0	H	H	Cl	CF ₃	н	H	.
Me	Me	H	H	0	н	\mathbf{H}	CN	CF3	Н	Н	-
Me	Me	н	H	0	н	H	OMe	CF ₃	H	H	-
Me	Me	H	H	0	H	H	OEt	CF3	н	H	-
Me	Me	\mathbf{H}	H	0	\mathbf{H}	H	Me	Me	н	H	N-oxide
Me	Me	,	H	0	H	H	Ph	Ph	H	Η	-
Me	Me		H	0	H	H	Cl	(4-Cl)Ph	H	Ме	-
Me	Me		H	0	H	H	Cl	(4-Cl)Ph	H	H	-
Me	Me	H	H	0	H	H	OMe	Cl	H	H	- 1

Me	Me	H	H	0	H	H	CI	(CH ₂)3	\mathbf{H}	
Me	Me	H	H	0	H	H	Me	(CH ₂)3	H	-
Me	Me	H	H	0	H	H	Cl	(CH ₂)4	H	-
Me	Me	H	H	0	H	H	Me	(CH ₂)4	H	-
Me	Me	H	H	0	H	H	Cl	H	(C	$H_2)_3$	-
Me	Me	H	H	0	H	H	Me	H	(C:	$H_2)_3$	-
Me	Me	H	H	0	H	H	C1	H	(C:	$H_2)_4$	-
Me	Me	H	H	0	H	H	Me	H	(C.	$H_2)_4$	_
Me	Me	Н	H	0	н	н	(2-Chloropyridin-3- yl)methylthio	Н	H	н	<u>:</u>
H	н	H	H	0	H	H	H	CF_3	H	H	-
Me	н	H	H	0	H	H	Н	CF ₃	H	H	-
Me	Me	Me	Н	0	H	H	H	$\mathbf{CF_3}$	H	H	-
Me	н	Me	H	0	H	H	H	CF_3	H	H	-
Me	Me	Н	H	0	Me	H	H	CF_3	н	н	-
Me	Me	H	H	0	Et	Н	H	CF ₃	H	н	-
Me	1		H	0	Pr-i	н	Ħ	CF_3	H	н	-
Me	Me	H	H	0	Me	Ме	H	CF_3	H	H	-
Me	Et	H	H	0	н	H	H	CF_3	H	H	-
Et	Et	н	H	0	H	Н	Ĥ	CF_3	H	н	-
Me	Pr-i	н	H	0	H	H	H	CF_3	H	н	-
Me	\mathbf{Pr}	н	H	0	н	н	${f H}$	$\mathbf{CF_3}$	H	H	-
Me	Pr-c	H	H	0	н	H	H	CF_3	H	H	-
Ме	CH ₂ Pr- c	н	н	0	н	н	н	$\mathbf{CF_3}$	Н	н	-
-($(CH_2)_2$ -	H	H	0	н	H	H	CF_3	H	н	-
-($(\mathrm{CH_2})_3$ -	H	H	0	H	H	H	$\mathbf{CF_3}$	H	н	-
-(-(CH ₂) ₄ - H		H	0	н	H	H	$\mathbf{CF_3}$	H	H	-
-(-(CH ₂) ₅ - H		H	0	H	H	H	$\mathbf{CF_3}$	H	H	-
H			H	0	H	H	H	CF_3	н	н	-
H	-(CH ₂) ₄ -	н	0	H	H	H	$\mathbf{CF_3}$	H	H	-
H	-(CH ₂)) ₅ -	H	0	H	H	н	$\mathbf{CF_3}$	H	H	-
H	-(CH ₂) ₆ -	H	0	H	H	н	$\mathbf{CF_3}$	н	H	- ·
Ме	Et	H	H	2	H	H	H	H	H	H	

112

表8

			$R^1 = \frac{R^2}{O}$	R ³ H	₹ ⁴ `S(O) ₇	ъ ⁵	R ⁴³ N N R ⁴²	-R ⁴¹	
R^1	\mathbb{R}^2	\mathbb{R}^3	R4	n	R ⁵	R6	\mathbb{R}^{41}	R^{42}	R43
Me	Me	H	H	2	H	H	H	Cl	Cl
Me	Me	H	H	2	H	H	H	OH	Cl
Me	Me	H	H	2	H	H	H	OMe	Cl
Me	\mathbf{Me}	H	H	2	H	H	H	OEt	Cl
Me	Me	H	H	2	Ή	H	\mathbf{H}	OPr-i	Cl
Me	\mathbf{Me}	H	H	2	H	H	H	OPr	Cl
Me	${f Me}$	H	H	2	H	H	${f H}$	OBu-t	Cl
Me	Me	H	H	2	H	H	\mathbf{H}	OCH ₂ Pr-c	Cl
Me	${f Me}$	H	H	2	H	H	\mathbf{H}	OCH ₂ Bu-c	Cl
Me	Me	H	H	2	H	H	\mathbf{H}	OCH ₂ Pen·c	Cl
Me	Me	H	H	2	H	H	\mathbf{H}	OCH ₂ Hex·c	Cl
Me	Me	H	H	2	H	H	\mathbf{H}	OPen-c	Cl
Me	\mathbf{Me}	H	H	2	H	H	\mathbf{H}	OHex-c	Cl
Me	Me	H	H	2	H	H	\mathbf{H}	OCH_2Ph	Cl
Me	${f Me}$	H	\mathbf{H}	2	Η	H	\mathbf{H}	OPh	CI
Me	\mathbf{Me}	H	H	2	H	H	\mathbf{H}	$OCHF_2$	Cl
Me	\mathbf{Me}	H	H	2	H	H	\mathbf{H}	SH	Cl
Me	\mathbf{Me}	H	H	2	H	$\mid \mathbf{H} \mid$	\mathbf{H}	SMe	Cl
Me	Me	H	H	2	H	H	\mathbf{H}	$\mathrm{SO}_{2}\mathrm{Me}$	Cl
Me	${f Me}$	H	H	2	H	H	\mathbf{H}	SEt	Cl
Me	${f Me}$	H	H	2	H	$\mid \mathbf{H} \mid$	\mathbf{H}	$ m SO_2Et$	Cl
Me	${f Me}$	H	H	2	H	H	\mathbf{H}	SPr-i	Cl
Me	\mathbf{Me}	H	H	2	H	H	\mathbf{H}	SO ₂ Pr-i	Cl
Me	\mathbf{Me}	H	H	2	H	H	\mathbf{H}	SPh	Cl
Me	\mathbf{Me}	H	H	2	H	H	\mathbf{H}	$\mathrm{SO_2Ph}$	Cl
Me	${f Me}$	H	H	2	H	$ \mathbf{H} $	H	$SCHF_2$	Cl
Me	Me	H	H	2	H	H	\mathbf{H}	SO_2CHF_2	Cl
Me	${f Me}$	H	H	2	H	H	H	$\mathrm{NH_2}$	Cl
Me	$\mathbf{M}\mathbf{e}$	H	H	2	H	H	H	NHMe	Cl
Me	Me	H	H	2	Η	H	H	${ m NMe_2}$	Cl
Me	Me	H	H	2	H	\mathbf{H}	H	NHEt	Cl
Me	Me	H	H	2	H	H	H	$\mathbf{NEt_2}$	Cl
Me	Me	H	H	2	H	H	H	NHPh	Cl
Me	Me	H	H	2	H	H	H	N(Me)Ph	Cl
Me	Me	H	H	2	H	H	H	CN	Cl

Me	Me	Н	Н	2	Н	Н	н	F	Me
Me	Me	H	H	2	H	H	H	Cl	Me
Me	Me	H	H	2	H	H	H	OH	Me
Me	Me	H	H	2	H	H	H	OMe	Me
Me	Me	H	H	2	H	H	H	OEt	Me
Me	Me	H	H	2	H	H	H	OPr-i	Me
Me	Me	H	H	2	H	H	H	OPr	Me
Me	Me	H	H	2	H	H	H	OBu-t	Me
Me	Me	H	H	2	H	H	H	OCH ₂ Pr-c	Me
Me	Me	H	H	2	H	H	H	OCH ₂ Bu-c	Me
Me	Me	H	H	2	H	H	H	OCH ₂ Pen-c	Me
Me	Me	H	H	2	H	H	H	OCH ₂ Hex-c	Me
Me	Me	H	H	2	H	H	H	OPen-c	Me
Me	Me	H	H	2	H	H	H	OHex-c	Me
Me	Me	H	Н	2	H	H	H	OCH ₂ Ph	Me
Me	Me	H	H	2	H	H	H	OPh	Me
Me	Me	H	H	2	H	H	H	$OCHF_2$	Me
Me	Me	H	H	2	H	H	H	SH	Me
Me	Me	H	H	2	H	H	H	SMe	Me
Me	Me	H	H	2	Н	H	H	$\mathrm{SO_2Me}$	Me
Me	${f Me}$	H	H	2	Н	H	\mathbf{H}	\mathbf{SEt}	Me
Me	${ m Me}$	H	H	2	H	H	H	$\mathrm{SO}_2\mathrm{Et}$	Me
Me	Me	H	H	2	H	H	\mathbf{H}	SPr-i	Me
Me	Me	H	H	2	H	H	\mathbf{H}	$\mathrm{SO_2Pr} ext{-}\mathrm{i}$	Me
Me	Me	H	H	2	H	H	\mathbf{H}	${f SPh}$	Me
Me	Me	H	H	2	\mathbf{H}	H	\mathbf{H}	SO_2Ph	Me
Me	${f Me}$	H	H	2	H	$\mid \mathbf{H} \mid$	H	$SCHF_2$	Me
Me	Me	H	H	2	H	H	H	SO_2CHF_2	Me
Me	\mathbf{Me}	H	H	2	H	$\mid \mathbf{H} \mid$	H	$\mathrm{NH_2}$	Me
Me	Me	H	H	2	H	H	\mathbf{H}	NHMe	Me
Me	${f Me}$	H	H	2	H	H	H	NMe_2	Me
Me	${f Me}$	$\mid \mathbf{H} \mid$	H	2	H	H	H	NHEt	Me
Me	Me	H	\mathbf{H}	2	H	H	H	NEt_2	Me
Me	${f Me}$	H	H	2	H	H	H	NHPh	Me
Me	\mathbf{Me}	H	H	2	H	H	H	N(Me)Ph	Me
Me	Me	H	H	2	H	$\mid \mathbf{H} \mid$	\mathbf{H}	CN	Me
Me	Me	H	\mathbf{H}	2	\mathbf{H}	H	\mathbf{H}	\mathbf{F}	Pr-i
Me	\mathbf{Me}	H	H	2	H	$\mid \mathbf{H} \mid$	H	Cl	Pr-i
Me	\mathbf{Me}	H	H	2	H	H	H	OH	Pr-i
Me	$\mathbf{M}\mathbf{e}$	H	H	2	H	H	H	OMe	Pr-i
Me	Me	H	H	2	\mathbf{H}	H	H	OEt	Pr-i
Me	Me	H	H	2	H	H	H	OPr-i	Pr-i
Me	Me	H	H	2	H	H	H	OPr	Pr·i
Me	Me	H	H	2	H	H	H	OBu-t	Pr-i

13/10	1 3/1-	1 77) T.T	اه	1 77	1 77	l 77	L OCIL P	l n. :
Me	Me	H	H	2	H	H	H	OCH ₂ Pr-c	Pr-i
Me	Me	H	H	2	H	H	H	OCH ₂ Bu-c	Pri
Me	Me	H	H	2	H	H	H	OCH ₂ Pen-c	Pr-i
Me	Me	H	H	2	H	H	H	OCH ₂ Hex-c	Pr-i
Me	Me	H	H	2	H	H	H	OPen-c	Pr-i
Me	Me	H	H	2	H	H	H	OHex-c	Pr-i
Me	Me	H	H	2	H	H	H	OCH ₂ Ph	Pr-i
Me	Me	H	H	2	H	H	H	OPh	Pr-i
Me	Me	H	H	2	H	H	H	$OCHF_2$	Pr-i
Me	Me	H	H	2	H	H	H	SH	Pri
Me	Me	H	H	2	H	H	H	SMe	Pr-i
Me	Me	H	H	2	H	H	H	SO_2Me	Pr-i
Me	Me	H	H	2	H	H	H	SEt	Pr-i
Me	Me	H	H	2	H	H	H	$\mathrm{SO}_2\mathrm{Et}$	Pr-i
Me	Me	H	H	2	H	H	H	SPr-i	Pr-i
Me	Me	H	H	2	H	H	H	SO ₂ Pr-i	Pr-i
Me	Me	H	H	2	H	H	H	SPh	Pr-i
Me	Me	H	H	2	H	H	H	$\mathrm{SO}_2\mathrm{Ph}$	Pr•i
Me	Me	H	H	2	H	H	H	$SCHF_2$	Pr-i
Me	Me	H	H	2	H	H	H	SO ₂ CHF ₂	Pr·i
Me	Me	H	H	2	H	H	H	$ m NH_2$	Pr•i
Me	Me	H	H	2	H	H	H	NHMe	Pr-i
Me	Me	H	H	2	H	H	H	NMe_2	Pr-i
Me	Me	H	H	2	H	H	H	NHEt	Pr-i
Me	Me	H	H	2	H	H	H	NEt_2	Pr-i
Me	Me	H	\mathbf{H}	2	H	H	H	NHPh	Pr-i
Me	Me	H	\mathbf{H}	2	H	H	\mathbf{H}	N(Me)Ph	Pr-i
Me	Me	H	H	2	H	H	H	CN	Pr-i
Me	Me	H	\mathbf{H}	2	H	H	H	F	Pr-c
Me	Me	H	\mathbf{H}	2	H	H	\mathbf{H}	Cl	Pr-c
Me	Me	H	\mathbf{H}	2	H	H	\mathbf{H}	OH	Pr·c
Me	Me	H	H	2	H	H	\mathbf{H}	OMe	Pr-c
Me	Me	$\mid \mathbf{H} \mid$	H	2	H	H	\mathbf{H}	OEt	Pr·c
Me	\mathbf{Me}	H	\mathbf{H}	2	H	H	\mathbf{H}	OPr-i	Pr-c
Me	${f Me}$	H	\mathbf{H}	2	H	H	\mathbf{H}	OPr	Pr·c
Me	Me	H	\mathbf{H}	2	H	H	\mathbf{H}	OBu•t	Pr·c
Me	Me	H	H	. 2	H	H	\mathbf{H}	OCH ₂ Pr-c	Pr-c
Me	Me	H	\mathbf{H}	2	H	H	H	OCH ₂ Bu-c	Pr-c
Me	Me	H	H	2	H	\mid H \mid	\mathbf{H}	OCH ₂ Pen-c	Pr-c
Me	${f Me}$	H	H	2	H	\mathbf{H}	\mathbf{H}	OCH ₂ Hex·c	Pr-c
Me	${f Me}$	H	H	2	H	H	H	OPen-c	Pr-c
Me	Me	H	Н	2	H	H	H	OHex-c	Pr-c
Me	Me	H	H	2	H	н	H	OCH ₂ Ph	Pr-c
Me	Me	H	H	2	H	H	H	OPh	Pr-c

Me	Me	H	н	2	Н	H	н	OCHF ₂	Pr-c
Me	Me	H	H	2	HH	Н	H	SH	Pr·c
Me	Me	H	H	2	H	H	H	SMe	Pr·c
Me	Me	H	H	2	H	H	H	SO ₂ Me	Pr·c
Me	Me	H	H	2	H	H	H	SEt	Pr·c
Me	Me	H	H	2	H	H	H	SO ₂ Et	Pr-c
Me	Me	H	H	2	H	H	H	SPr-i	Pr-c
Me	Me	H	H	2	H	H	H	SO ₂ Pr-i	Pr-c
Me	Me	H	H	2	H	H	H	SPh	Pr-c
Me	Me	H	H	2	H	H	H	SO ₂ Ph	Pr-c
Me	Me	H	H	2	H	H	H	SCHF ₂	Pr-c
Me	Me	H	H	2	H	H	H	SO ₂ CHF ₂	Pr·c
Me	Me	H	H	2	H	H	H	NH ₂	Pr·c
Me	Me	H	H	2	H	H	H	NHMe	Pr-c
Me	Me	H	H	2	H	H	H	NMe ₂	Pr-c
Me	Me	H	H	2	H	H	H	NHEt	Pr-c
Me	Me	H	Н	2	H	Н	H	NEt_2	Pr-c
Me	Me	H	н	2	H	H	H	NHPh	Pr-c
Me	Me	H	H	2	H	H	\mathbf{H}	N(Me)Ph	Pr-c
Me	Me	H	H	2	H	H	\mathbf{H}	CN	Pr-c
Me	Me	H	H	2	H	H	H	F	CHF_2
Me	Me	H	H	2	H	H	\mathbf{H}	Cl	CHF_2
Me	Me	H	\mathbf{H}	2	H	H	H	OH	CHF_2
Me	Me	H	H	2	H	H	H	OMe	CHF ₂
Me	Me	H	H	2	H	H	\mathbf{H}	OEt	CHF_2
Me	Me	H	H	2	H	H	H	OPr-i	CHF_2
Me	Me	H	H	2	H	H	\mathbf{H}	OPr	CHF_2
Me	Me	H	H	2	H	H	\mathbf{H}	OBu-t	CHF ₂
Me	Me	H	H	2	H	H	\mathbf{H}	OCH ₂ Pr-c	CHF_2
Me	Me	H	H	2	H	H	\mathbf{H}	OCH ₂ Bu ⁻ c	CHF_2
Me	Me	H	H	2	H	H	\mathbf{H}	OCH ₂ Pen·c	CHF_2
Me	Me	H	H	2	H	\mid H \mid	\mathbf{H}	OCH ₂ Hex-c	CHF ₂
Me	Me	H	H	2	H	H	\mathbf{H}	OPen-c	CHF ₂
Me	Me	H	H	2	H	$\mid \mathbf{H} \mid$	\mathbf{H}	OHex-c	CHF ₂
Me	${f Me}$	H	H	2	H	H	\mathbf{H}	$\mathrm{OCH_2Ph}$	CHF_2
Me	${f Me}$	H	H	2	H	\mid H \mid	\mathbf{H}	OPh	CHF_2
Me	${f Me}$	$\mid \mathbf{H} \mid$	H	2	H	$\mid H \mid$	H	$OCHF_2$	$\mathrm{CHF_2}$
Me	\mathbf{Me}	H	H	2	H	H	H	SH	CHF_2
Me	Me	H	H	2	H	H	H	SMe	CHF ₂
Me	Me	H	H	2	H	H	\mathbf{H}	$ m SO_2Me$	CHF_2
Me	Me	H	H	2	H	H	H	SEt	CHF ₂
Me	Me	H	H	2	H	H	H	SO ₂ Et	CHF ₂
Me	Me	H	H	2	H	H	H	SPr-i	CHF ₂
Me	Me	H	H	2	H	$ \mathbf{H} $	H	SO ₂ Pr-i	CHF ₂

1	1	1		1 -	1	1	1	1	
Me	Me	H	H	2	H	H	H	SPh	CHF ₂
Me	Me	H	H	2	H	H	H	SO_2Ph	CHF ₂
Me	Me	H	H	2	H	H	H	SCHF ₂	CHF ₂
Me	Me	H	H	2	H	H	H	SO_2CHF_2	CHF ₂
Me	Me	H	H	2	H	H	H	NH_2	CHF_2
Me	Me	H	H	2	H	H	H	NHMe	CHF ₂
Me	Me	H	H	2	H	H	H	NMe_2	CHF_2
Me	Me	H	H	2	H	H	H	NHEt	CHF_2
Me	Me	H	H	2	H	H	H	NEt_2	CHF_2
Me	Me	H	H	2	H	H	H	NHPh	CHF_2
Me	Me	H	H	2	H	H	H	N(Me)Ph	CHF_2
Me	Me	H	H	2	H	H	H	CN	CHF_2
Me	Me	H	H	2	H	H	H	F	CF_3
Me	Me	H	H	2	H	H	\mathbf{H}	Cl	CF_3
Me	Me	H	H	2	H	H	\mathbf{H}	OH	CF_3
Me	Me	H	H	2	H	H	H	OMe	CF_3
Me	Me	H	H	2	H	H	H	OEt	CF_3
Me	Me	H	Н	2	H	H	H	OPr-i	CF_3
Me	Me	H	H	2	H	H	H	OPr	CF_3
Me	Me	H	H	2	H	H	\mathbf{H}	OBu-t	CF_3
Me	Me	H	\mathbf{H}	2	H	H	\mathbf{H}	$OCH_2Pr\cdot c$	$\mathbf{CF_3}$
Me	Me	H	\mathbf{H}	2	H	H	H	OCH ₂ Bu-c	$\mathbf{CF_3}$
Me	Me	H	H	2	Η	H	\mathbf{H}	OCH ₂ Pen-c	CF_3
Me	Me	H	H	2	H	H	\mathbf{H}	OCH ₂ Hex·c	CF_3
Me	Me	H	Н	2	H	H	\mathbf{H}	OPen-c	CF_3
Me	Me	H	H	2	H	H	\mathbf{H}	OHex-c	$\mathrm{CF_3}$
Me	Me	H	\mathbf{H}	2	H	H	\mathbf{H}	OCH_2Ph	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	\mathbf{H}	OPh	CF_3
Me	Me	H	H	2	H	H	\mathbf{H}	$OCHF_2$	CF_3
Me	Me	H	Н	2	H	H	\mathbf{H}	SH	CF ₃
Me	Me	H	H	2	H	H	\mathbf{H}	SMe	CF_3
Me	Me	H	\mathbf{H}	2	H	$\mid \mathbf{H} \mid$	\mathbf{H}	SO_2Me	CF_3
Me	Me	H	Н	2	H	H	H	SEt	CF_3
Me	Me	H	H	2	H	H	H	$\mathrm{SO}_2\mathrm{Et}$	CF_3
Me	Me	H	H	2	H	\mathbf{H}	H	SPr-i	CF_3
Me	Me	H	H	2	Η	H	H	$\mathrm{SO_2Pr} ext{-}\mathrm{i}$	CF_3
Me	Me	H	H	2	H	H	H	${\tt SPh}$	CF_3
Me	Me	H	н	2	H	H	H	SO_2Ph	CF_3
Me	Me	H	н	2	H	$_{\rm H}$	H	SCHF ₂	CF_3
Me	Me	H	H	2	H	Н	H	SO_2CHF_2	$\mathrm{CF_3}$
Me	Me	H	H	2	H	H	H	NH ₂	CF ₃
Me	Me	H	Н	2	H	H	H	NHMe	CF_3
Me	Me	H	H	2	H	H	H	NMe ₂	CF ₃
Me	Me	H	H	2	H	H	H	NHEt	CF ₃

Me	Me	Н	н	2	н	ΙН	н	NEt ₂	CF ₃
Me	Me	H	H	2	H	H	H	NHPh	CF ₃
Me	Me	H	H	2	H	H	H	N(Me)Ph	CF ₃
Me	Me	H	H	2	H	H	H	CN	CF ₃
Me	Me	H	H	$\bar{2}$	H	H	H	F	OMe
Me	Me	H	H	2	H	H	H	OH	OMe
Me	Me	H	Н	2	H	Н	H	OMe	OMe
Me	Me	H	H	2	H	H	H	OEt	OMe
Me	Me	H	Н	2	H	Н	H	OPr-i	OMe
Me	Me	H	H	2	H	H	H	OPr	OMe
Me	Me	H	H	2	H	H	H	OBu-t	OMe
Me	Me	H	H	2	H	H	H	OCH ₂ Pr-c	OMe
Me	Me	H	Н	2	H	H	H	OCH ₂ Bu·c	OMe
Me	${f Me}$	H	H	2	Н	H	\mathbf{H}	OCH ₂ Pen-c	OMe
Me	Me	H	H	2	H	Н	\mathbf{H}	OCH ₂ Hex-c	OMe
Me	Me	H	H	2	H	H	\mathbf{H}	OPen-c	OMe
Me	Me	H	H	2	H	H	\mathbf{H}	OHex-c	OMe
Me	${f Me}$	H	H	2	H	H	H	OCH_2Ph	OMe
Me	Me	H	H	2	H	H	H	OPh	OMe
Me	${f Me}$	H	H	2	H	H	H	$OCHF_2$	OMe
Me	Me	H	H	2	H	H	H	SH	OMe
Me	Me	H	H	2	H	H	\mathbf{H}	SMe	OMe
Me	${f Me}$	H	H	2	H	$\mid H \mid$	H	SO_2Me	OMe
Me	${f Me}$	H	H	2	Η	H	\mathbf{H}	SEt	OMe
Me	Me	H	H	2	H	H	\mathbf{H}	$\mathrm{SO_2Et}$	OMe
Me	$\mathbf{M}\mathbf{e}$	H	H	2	H	H	H	SPr-i	OMe
Me	$\mathbf{M}\mathbf{e}$	H	H	2	H	H	H	SO ₂ Pr·i	OMe
Me	${f Me}$	H	H	2	H	H	\mathbf{H}	SPh	OMe
Me	${f Me}$	H	H	2	H	H	H	SO_2Ph	OMe
Me	\mathbf{Me}	H	H	2	H	H	H	SCHF ₂	OMe
Me	Me	H	H	2	H	H	H	SO ₂ CHF ₂	OMe
Me	Me	H	H	2	H	H	H	NH ₂	OMe
Me	Me	H	H	2	H	H	H	NHMe	OMe
Me	Me	H	H	2	H	H	H	NMe ₂	OMe
Me	Me	H	H	2	H	H	H	NHEt	OMe
Me	Me	H	H	2	H	H	H	NEt_2	OMe
Me	Me	H	H	2	H	H	H	NHPh	OMe
Me	Me	H	H	2	H	H	H	N(Me)Ph	OMe
Me	Me	H	H	2	H	H	H	CN	OMe
Me	Me	H	H	2	H	H	H	F	OPh
Me	Me	H	H	2	H	H	H	OM	OPh
Me	Me	H	H	2	H	H	H	OMe	OPh
Me	Me	H	H	2	H	H	H	OEt	OPh
Me	Me	H	H	2	H	H	H	OPr-i	OPh

	Me	Me	H	H	2	Н	H	H	OPr	OPh	1
	Me	Me	H	H	2	Н	H	H	OBu-t	OPh	l
	Me	Me	H	H	2	Н	H	H	OCH ₂ Pr-c	OPh	ĺ
	Me	Me	H	H	2	H	H	H	OCH ₂ Bu-c	OPh	١
	Me	Me	H	H	2	Н	H	H	OCH ₂ Pen·c	OPh	l
	Me	Me	H	H	2	H	H	H	OCH ₂ Hex·c	OPh	ļ
	Me	Me	H	H	2	H	H	H	OPen-c	OPh	l
	Me	Me	Н	Н	2	H	H	H	OHex-c	OPh	1
	Me	Me	H	H	2	H	H	H	OCH ₂ Ph	OPh	l
	Me	Me	H	H	2	H	H	н	OPh	OPh	l
	Me	Me	H	H	2	H	H	Н	$OCHF_2$	OPh	l
	Me	Me	H	Н	2	H	H	H	SH	OPh	l
	Me	Me	H	Н	2	H	H	H	SMe	OPh	
	Me	Me	H	H	2	H	H	H	SO ₂ Me	OPh	l
	Me	Me	H	H	2	H	H	H	SEt	OPh	l
	Me	Me	H	H	2	H	H	H	$\mathrm{SO}_2\mathrm{Et}$	OPh	l
	Me	Me	H	н	2	H	H	H	SPr-i	OPh	l
	Me	Me	H	H	2	H	H	\mathbf{H}	SO ₂ Pr-i	OPh	l
	Me	Me	H	H	2	H	H	H	SPh	OPh	l
	Me	Me	H	Η	2	H	H	H	SO_2Ph	OPh	١
	Me	${f Me}$	H	H	2	H	H	H	$SCHF_2$	OPh	١
	Me	Me	H	H	2	H	H	\mathbf{H}	SO_2CHF_2	OPh	
	Me	Me	H	H	2	H	H	H	NH_2	OPh	l
	Me	Me	H	H	2	H	H	\mathbf{H}	NHMe	OPh	l
	Me	Me	H	H	2	H	H	H	NMe ₂	OPh	
	Me	Me	Η	H	2	H	H	H	NHEt	OPh	l
	Me	Me	H	H	2	Н	H	H	NEt_2	OPh	l
Ì	Me	Me	H	H	2	H	H	H	NHPh	OPh	l
	Me	Me	H	H	2	H	H	H	N(Me)Ph	OPh	
I	Me	Me	H	H	2	Η	H	H	CN	OPh	
	Me	Me	H	H	2	H	H	H	\mathbf{F}	OCHF ₂	ĺ
	Me	Me	H	H	2	H	H	\mathbf{H}	OH	OCHF ₂	
	Me	Me	H	H	2	H	H	H	OMe	$OCHF_2$	
	Me	Me	H	H	2	H	H	\mathbf{H}	OEt	OCHF ₂	
	Me	Me	H	H	2	H	H	H	OPr-i	OCHF ₂	
	Me	Me	H	H	2	H	H	H	OPr	OCHF ₂	
I	Me	\mathbf{Me}	H	H	2	H	H	H	OBu-t	OCHF ₂	
ı	Me	Me	H	H	2	H	H	H	OCH ₂ Pr-c	OCHF ₂	
	Me	Me	H	H	2	H	H	H	OCH ₂ Bu-c	OCHF ₂	
1	Me	Me	H	H	2	H	H	H	OCH ₂ Pen·c	OCHF ₂	
Ì	Me	Me	H	H	2	H	H	H	OCH ₂ Hex-c	OCHF ₂	
I	Me	Me	H	H	2	H	H	H	OPen-c	OCHF ₂	
-	Me	Me	H	H	2	H	H	H	OHex-c	OCHF ₂	
١	Me	Me	H	H	2	H	H	H	OCH ₂ Ph	$ OCHF_2 $	į

Me	Me	H	\mathbf{H}	2	H	H	\mathbf{H}	OPh	$OCHF_2$	
Me	Me	H	H	2	\mathbf{H}	H	H	$OCHF_2$	$ OCHF_2 $	
Me	Me	H	H	2	\mathbf{H}	H	\mathbf{H}	SH	OCHF ₂	i
Me	Me	H	H	2	H	H	\mathbf{H}	\mathbf{SMe}	$ OCHF_2 $	
Me	${f Me}$	H	H	2	H	H	\mathbf{H}	$\mathrm{SO}_{2}\mathrm{Me}$	$ OCHF_2 $	
Me	${f Me}$	H	H	2	\mathbf{H}	$\mid H \mid$	\mathbf{H}	\mathbf{SEt}	$ OCHF_2 $	V
Me	${f Me}$	H	H	2	H	$\mid \mathbf{H} \mid$	\mathbf{H}	$\mathrm{SO}_2\mathrm{Et}$	$ \operatorname{OCHF}_2 $	
Me	${f Me}$	H	H	2	H	H	\mathbf{H}	SPr-i	$ OCHF_2 $	
Me	Me	H	H	2	\mathbf{H}	H	H	$\mathrm{SO_2Pr} ext{-}\mathrm{i}$	OCHF ₂	ľ
Me	${f Me}$	H	H	2	H	H	\mathbf{H}	SPh	$ OCHF_2 $	
Me	Me	H	H	2	H	H	\mathbf{H}	$\mathrm{SO}_2\mathrm{Ph}$	$ OCHF_2 $	
Me	Me	H	H	2	H	$\mid \mathbf{H} \mid$	\mathbf{H}	$SCHF_2$	$ OCHF_2 $	
Me	${f Me}$	H	H	2	H	H	H	SO_2CHF_2	$ OCHF_2 $	
Me	Me	H	H	2	H	H	\mathbf{H}	$ m NH_2$	$OCHF_2$	
Me	Me	H	H	2	H	H	H	NHMe	$OCHF_2$	
Me	Me	H	H	2	H	H	H	NMe_2	$ OCHF_2 $	İ
Me	Me	H	H	2	H	H	\mathbf{H}	NHEt	OCHF ₂	
Me	Me	H	H	2	H	H	\mathbf{H}	NEt_2	OCHF ₂	
Me	Me	H	H	2	H	H	\mathbf{H}	NHPh	$ OCHF_2 $	
Me	Me	H	H	2	H	H	\mathbf{H}	N(Me)Ph	OCHF ₂	
Me	Me	H	H	2	H	H	\mathbf{H}	CN	$OCHF_2$	
Me	Me	H	H	2	H	H	${f Me}$	\mathbf{F}	CF_3	
Me	Me	H	H	2	H	$\mid H \mid$	Me	Cl	$\mathbf{CF_3}$	
Me	Me	H	H	2	H	$\mid H \mid$	Me	OH	CF_3	
Me	Me	H	H	2	H	H	Me	OMe	CF_3	
Me	Me	H	\mathbf{H}	2	H	H	Me	OEt	CF_3	
Me	Me	H	H	2	H	H	Me	OPr-i	CF_3	
Me	Me	H	H	2	H	H	Me	OPr	CF_3	ĺ
Me	Me	H	H	2	H	H	Me	OBu-t	CF ₃	
Me	Me	H	H	2	H	H	Me	OCH ₂ Pr-c	CF ₃	
Me	Me	H	H	2	Η	H	Me	OCH ₂ Bu-c	CF_3	
Me	Me	H	H	2	H	H	Me	OCH ₂ Pen·c	CF ₃	
Me	Me	H	H	2	H	H	Me	OCH ₂ Hex-c	CF ₃	
Me	Me	H	H	2	H	H	Me	OPen-c	CF_3	
Me	Me	H	H	2	H	H	Me	OHex-c	CF ₃	l
Me	Me	H	H	2	H	H	Me	OCH ₂ Ph	CF_3	
Me	Me	H	H	2	H	H	Me	OPh	CF ₃	
Me	Me	H	H	2	H	H	Me	OCHF ₂	CF ₃	İ
Me	Me	H	H	2	H	H	Me	SH	CF ₃	
Me	Me	H	H	2	H	H	Me	SMe	CF ₃	
Me	Me	H	H	2	H	H	Me	SO ₂ Me	CF_3	l
Me	Me	H	H	2	H	H	Me	SEt	CF ₃	l
Me	Me	H	H	2	H	H	Me	SO ₂ Et	CF_3	
Me	Me	H	H	2	H	H	Me	SPr-i	CF_3	ĺ

Me	Me	н	н	2	\mathbf{H}^{-1}	H	Me	SO ₂ Pr-i	CF_3
Me	Me	H	H	$\frac{2}{2}$	H	H	Me	SPh	CF_3
Me	Me	H	H	$\frac{2}{2}$	H	\mathbf{H}	Me	$\mathrm{SO_2Ph}$	CF_3
Me	Me	H	H	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	H	H	Me	SCHF_2	$\mathrm{CF_3}$
Me	Me	H	H	2	H	H	Me	SO_2CHF_2	CF_3
Me	Me	H	H	$\frac{1}{2}$	H	H	Me	NH_2	CF_3
Me	Me	H	H	2	H	H	Me	NHMe	CF_3
Me	Me	H	H	$\overline{2}$	H	H	Me	$\mathrm{NMe_2}$	CF_3
Me	Me	H	H	2	H	н	Me	NHEt	CF_3
Me	Me	H	H	2	H	H	Me	NEt_2	CF_3
Me	Me	H	H	2	H	H	Me	NHPh	CF_3
Me	Me	H	H	$\overline{2}$	H	\mathbf{H}	Me	N(Me)Ph	CF_3
Me	Me	H	H	2	H	Н	Me	CN	CF_3
Me	Me	H	H	2	H	H	OMe	F	CF_3
Me	Me	H	H	2	H	Н	OMe	Cl	CF_3
Me	Me	Н	H	2	H	H	OMe	OH	$\mathbf{CF_3}$
Me	Me	Н	H	2	H	H	OMe	OMe	CF_3
Me	Me	H	H	2	H	H	OMe	OEt	CF_3
Me	Me	H	H	2	H	H	OMe	OPr·i	$\mathbf{CF_3}$
Me	Me	H	H	2	\mathbf{H}	H	OMe	OPr	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	OMe	OBu-t	CF_3
Me	⋅ M e	H	H	2	H	H	OMe	OCH ₂ Pr-c	CF_3
Me	Me	H	H	2	H	H	OMe	OCH ₂ Bu·c	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	OMe	OCH ₂ Pen-c	CF_3
Me	Me	H	\mathbf{H}	2	H	H	OMe	OCH ₂ Hex·c	CF_3
Me	Me	H	Η	2	H	H	OMe	OPen-c	CF_3
Me	Me	H	H	2	H	H	OMe	OHex-c	CF ₃
Me	Me	H	H	2	H	H	OMe	OCH_2Ph	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	OMe	OPh	CF_3
Me	Me	H	H	2	H	H	OMe	$OCHF_2$	CF ₃
Me	Me	H	H	2	H	H	OMe	SH	CF ₃
Me	Me	H	Η	2	\mathbf{H}	H	OMe	SMe	CF ₃
Me	Me	H	H	2	H	H	OMe	SO_2Me	CF ₃
Me	Me	H	\mathbf{H}	2	\mathbf{H}	H	OMe	SEt	CF ₃
Me	Me	H	H	2	\mid H	H	OMe	SO_2Et	CF ₃
Me	Me	H	H	2	H	H	OMe	SPr-i	$\mathrm{CF_3}$
Me	Me	H	H	2	H	H	OMe	SO ₂ Pr-i	CF ₃
Me	Me	H	H	2	H	H	OMe	SPh	CF ₃
Me	Me	H	H	2	H	H	OMe	SO ₂ Ph	CF ₃
Me	Me	H	H	2	H	H	OMe	SCHF ₂	CF ₃
Me	Me	H	H	2	H	H	OMe	SO ₂ CHF ₂	CF ₃
Me	Me	H	H	2	H	H	OMe	NH ₂	CF ₃
Me	Me	H	H	2	H	H	OMe	NHMe	CF ₃
Me	Me	H	H	2	H	H	OMe	NMe ₂	CF ₃

Me	Me	н	н	2	Н	Н	OMe	NHEt	CF_3
Me	Me	H	H	2	H	H	OMe	NEt_2	$ ext{CF}_3$
Me	Me	H	H	2	H	H	OMe	NHPh	CF_3
Me	Me	H	H	2	H	H	OMe	N(Me)Ph	$\mathrm{CF_3}$
Me	Me	H	H	2	H	H	OMe	CN	CF_3
Me	Me	H	H	2	H	H	SMe	\mathbf{F}	CF_3
Me	Me	H	H	2	H	H	SMe	Cl	CF_3
Me	Me	H	H	$\frac{1}{2}$	H	H	SMe	ОН	CF_3
Me	Me	H	H	2	H	H	SMe	OMe	CF_3
Me	Me	H	H	2	H	H	SMe	\mathbf{OEt}	CF_3
Me	Me	H	H	2	H	H	SMe	OPr-i	CF_3
Me	Me	H	H	$\frac{1}{2}$	H	H	SMe	OPr	CF_3
Me	Me	H	H	2	H	H	SMe	$\mathrm{OBu} ext{-}\mathrm{t}$	CF_3
Me	Me	H	H	2	H	H	SMe	OCH ₂ Pr-c	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	SMe	OCH ₂ Bu-c	CF_3
Me	Me	H	H	2	H	H	SMe	OCH ₂ Pen-c	CF_3
Me	Me	H	H	2	H	H	SMe	OCH ₂ Hex-c	$\mathrm{CF_3}$
Me	Me	H	H	2	H	Н	SMe	OPen-c	$\mathrm{CF_3}$
Me	Me	H	H	2	H	Н	SMe	OHex-c	CF_3
Me	Me	H	H	2	H	Н	SMe	$\mathrm{OCH_2Ph}$	CF_3
Me	Me	H	H	2	H	Н	SMe	OPh	$\mathrm{CF_3}$
Me	Me	H	H	2	H	H	SMe	OCHF_2	$\mathrm{CF_3}$
Me	Me	H	H	2	H	H	SMe	SH	$\mathrm{CF_3}$
Me	Me	H	Н	2	H	H	SMe	\mathbf{SMe}	CF_3
Me	Me	H	H	2	H	H	SMe	$\mathrm{SO}_2\mathrm{Me}$	CF_3
Me	${f Me}$	H	H	2	H	H	SMe	SEt	CF_3
Me	Me	H	H	2	H	H	SMe	$ m SO_2Et$	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	SMe	SPr-i	CF_3
Me	Me	H	H	2	H	H	SMe	SO_2Pr -i	CF_3
Me	Me	H	H	2	H	H	SMe	SPh	CF_3
Me	Me	H	H	2	H	H	SMe	$\mathrm{SO}_2\mathrm{Ph}$	CF_3
Me	Me	H	H	2	H	H	SMe	$SCHF_2$	CF_3
Me	${f Me}$	H	H	2	H	H	SMe	SO_2CHF_2	CF_3
Me	Me	H	H	2	H	H	SMe	NH_2	CF_3
Me	Me	H	H	2	H	H	SMe	NHMe	CF_3
Me	Me	H	H	2	H	H	SMe	NMe_2	CF_3
Me	Me	H	H	2	H	H	SMe	NHEt	CF_3
Me	Me	H	H	2	H	H	SMe	NEt_2	CF_3
Me	Me	H	H	2	H	H	SMe	NHPh	CF_3
Me	Me	H	Н	2	H	H	SMe	N(Me)Ph	CF_3
Me	Me	H	H	2	H	H	SMe	CN	CF_3
Me	Me	H	H	2	H	H	SO ₂ Me	F	CF_3
Me	Me	H	H	2	H	H	SO ₂ Me	Cl	CF_3
Me	Me	H	H	2	H	H	SO ₂ Me	OH	CF ₃

Me	Me	H	н	2	\mathbf{H}	н	SO ₂ Me	OMe	CF_3
Me	Me	H	H	2	H	H	SO_2Me	OEt	CF_3
Me	Me	H	H	2	H	H	SO_2Me	OPr-i	CF_3
Me	Me	H	H	2	H	H	SO_2Me	\mathbf{OPr}	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	SO_2Me	OBu-t	CF_3
Me	Me	H	H	2	H	H	SO_2Me	$\mathrm{OCH_2Pr} ext{-c}$	CF_3
Me	Me	H	H	2	H	Н	SO_2Me	OCH ₂ Bu-c	CF_3
Me	Me	H	H	2	H	Н	SO_2Me	OCH ₂ Pen-c	CF_3
Me	Me	H	Н	2	H	Н	SO ₂ Me	OCH ₂ Hex·c	CF_3
Me	Me	H	Н	2	H	H	SO ₂ Me	OPen-c	CF_3
Me	Me	Н	Н	2	H	Н	SO_2Me	OHex-c	$\mathbf{CF_3}$
Me	Me	H	H	2	H	Н	SO_2Me	OCH_2Ph	$\mathbf{CF_3}$
Me	${f Me}$	H	H	2	H	Η	SO_2Me	OPh	CF_3
Me	Me	Н	H	2	H	H	SO_2Me	$OCHF_2$	CF_3
Me	${f Me}$	H	H	2	H	H	SO_2Me	SH	CF_3
Me	${f Me}$	H	Н	2	H	H	SO_2Me	\mathbf{SMe}	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	SO_2Me	${ m SO_2Me}$	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	SO_2Me	SEt	CF_3
Me	Me	H	H	2	H	H	SO_2Me	$ m SO_2Et$	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	SO_2Me	SPr-i	CF_3
Me	Me	H	H	2	H	H	SO_2Me	$\mathrm{SO_2Pr}$ -i	CF_3
Me	Me	H	\mathbf{H}	2	H	H	SO_2Me	SPh	CF_3
Me	Me	H	H	2	H	H	$ \mathrm{SO_2Me} $	$\mathrm{SO_2Ph}$	CF_3
Me	Me	H	H	2	H	H	$ SO_2Me $	$SCHF_2$	$\mathrm{CF_3}$
Me	Me	H	H	2	H	H	$ SO_2Me $	SO_2CHF_2	CF_3
Me	Me	H	H	2	H	H	SO_2Me	$\cdot \mathrm{NH_2}$	$\mathrm{CF_3}$
Me	Me	H	H	2	H	H	SO_2Me	NHMe	$\mathbf{CF_3}$
Me	Me	H	H	2	H	H	SO_2Me	NMe_2	$\mathbf{CF_3}$
Me	Me	H	H	2	H	\mathbf{H}	SO_2Me	NHEt	CF ₃
Me	Me	H	H	2	H	H	SO_2Me	NEt_2	CF ₃
Me	Me	H	H	2	H	H	SO_2Me	NHPh	$ ext{CF}_3$
Me	Me	H	H	2	H	H	SO_2Me	N(Me)Ph	CF_3
Me	Me	H	H	2	H	H	SO ₂ Me	CN	$ ext{CF}_3$
Me	Me	H	H	2	H	H	NH ₂	F	CF ₃
Me	Me	H	H	2	H	H	NH ₂	Cl	CF ₃
Me	Me	H	H	2	H	H	NH ₂	ОН	CF ₃
Me	Me	H	H	2	H	H	NH_2	OMe	CF_3
Me	Me	H	H	2	H	H	NH ₂	OEt	CF ₃
Me	Me	H	H	2	H	H	NH ₂	OPr-i	CF ₃
Me	Me	H	H	2	H	H	NH ₂	OPr	CF ₃
Me	Me	H	H	2	H	H	NH ₂	OBu-t	CF_3
Me	Me	H	H	2	H	H	NH ₂	OCH ₂ Pr·c	CF ₃
Me	Me	H	H	2	H	H	NH ₂	OCH ₂ Bu-c	CF ₃
Me	Me	H	H	2	H	H	NH ₂	OCH ₂ Pen-c	CF ₃

ì,	l	70.07	1 TT	н	2	Н	$ \mathbf{H} $	NH_2	OCH2Hex-c	CF ₃	
1	Ме	Me	H H	Н	2	H	H	$\frac{NH_2}{NH_2}$	OPen-c	CF_3	
	Me	Me	i i	Н	2	H	H	NH_2	OHex-c	$\mathbf{CF_3}$	
1	Me	Me	H	Н	2	Н	H	NH ₂	OCH ₂ Ph	CF_3	
	Ме	Me	H H	Н	2	H	H	NH_2	OPh	CF_3	
ı	Ме	Me	$\mid \stackrel{\Pi}{H} \mid$	Н	2	H	H	NH_2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CF ₃	
	Me	Me	H	H	2	H	$ \stackrel{\dots}{_{\mathbf{H}}} $	NH_2	SH	CF_3	
	Ме	Me	H	H	2	H	\mathbf{H}	NH_2	SMe	CF_3	
	Me	Me	H	H	2	H	H	NH_2	SO_2Me	CF_3	
	Me	$egin{array}{c} \mathbf{Me} \end{array}$	H	H	2	H	H	NH_2	SEt	CF_3	
	Me	Me	H	H	2	H	$_{ m H}^{ m H}$	NH ₂	SO ₂ Et	CF_3	
1	Me Me	Me	H	H	2	H	H	NH ₂	SPr-i	CF_3	
١.	Me	Me	H	H	2	H	H	NH ₂	SO_2Pr^-i	CF_3	
	Me	Me	H	H	2	H	\mathbf{H}	NH_2	SPh	CF_3	
	Me	Me	H	H	2	H	$ \stackrel{\dots}{_{\mathbf{H}}} $	NH ₂	SO_2Ph	CF_3	
	Me	Me	H	H	2	H	$ \stackrel{\dots}{\mathbf{H}} $	NH_2	SCHF ₂	CF_3	
1	Me	Me	H	H	2	H	H	NH ₂	SO ₂ CHF ₂	CF_3	
4	Me	Me	H	H	2	H	H	NH_2	NH ₂	CF_3	
	Me	Me	H	H	2	H	H	NH_2	NHMe	CF_3	
- 1	Me	Me	H	H	2	H	H	NH_2	NMe_2	CF_3	
	Me	Me	H	H	2	H	$\mid_{\mathbf{H}}\mid$	NH_2	NHEt	CF_3	
ι	Me	Me	H	H	2	H	H	NH_2	NEt ₂	$\mathrm{CF_3}$!
	Me	Me	H	H	2	H	\mid H \mid	NH_2	NHPh	$\mathrm{CF_3}$	
	Me	Me	Н	H	2	H	H	$\mathrm{NH_2}$	N(Me)Ph	CF_3	
- 1	Me	Me	H	\mathbf{H}	2	H	H	NH_2	CN	CF_3	
	Н	\mathbf{H}	H	H	2	Η	H	\mathbf{H}	OMe	CF_3	ĺ
	H	\mathbf{H}	H	H	2	H	H	\mathbf{H}	OEt	CF_3	
	Me	H	H	H	2	H	H	\mathbf{H}	OMe	CF_3	ļ
	Me	H	H	H	2	H	H	\mathbf{H}	OEt	$\mathrm{CF_3}$	i
	Me	H	Me	H	2	H	H	\mathbf{H}	OMe	$\mathbf{CF_3}$	
	Me	H	Me	H	2	Η	H	\mathbf{H}	OEt	CF_3	
	Me	Me	H	H	2	Me	$\mid \mathbf{H} \mid$	H	OMe	CF ₃	
	Me	${f Me}$	H	H	2	Me	$\mid H \mid$	H	OEt	CF ₃	ĺ
	Me	Me	H	H	2	Et	H	H	OMe	CF_3	
	Me	Me	H	H	2	Et	$\mid \mathbf{H} \mid$	H	OEt	CF_3	
ı	Me	Me	H	H	2	Pr-i	H	H	H	CF_3	ĺ
ı	Me	Me	H	H	2	Pr-i	$\mid \mathbf{H} \mid$	H	OMe	CF_3	
	Me	Me	H	H	2	Pr-i	H	H	OEt	CF_3	l
1	Me	Me	H	H	2	Me	Me	H .	OMe	CF ₃	
	Me	Me	H	H	2	Me	Me	H	OEt	$ ext{CF}_3$	
	Me	Et	H	H	2	H	H	H	OMe	CF ₃	
	Me	Et	H	H	2	H	H	H	OEt	CF_3	
	Et	Et	H	H	2	H	H	H	OMe	CF ₃	
	Et	Et	H	H	2	H	H	H	OEt	$\mathbf{CF_3}$	

									,
Me	Pr-i	H	\mathbf{H}	2	H	H	H	ОМе	$\mathbf{CF_3}$
Me	Pr-i	H	\mathbf{H}	2	H	H	H	OEt	CF_3
Me	\mathbf{Pr}	H	\mathbf{H}	2	H	H	H	OMe	$\mathbf{CF_3}$
Me	\mathbf{Pr}	H	H	2	H	H	\mathbf{H}	OEt	CF ₃
Me	Pr-c	Н	H	2	H	H	H	OMe	$\mathbf{CF_3}$
Me	Pr-c	H	H	2	H	H	H	\mathbf{OEt}	CF_3
Me	CH ₂ Pr·c	н	\mathbf{H}	2	H	H	H	OMe	CF_3
Me	CH ₂ Pr-c	Н	H	2	H	H	\mathbf{H}	\mathbf{OEt}	CF_3
	$(CH_2)_2$ -	Н	H	2	H	H	\mathbf{H}	OMe	$\mathbf{CF_3}$
	$(\mathrm{CH_2})_2$ -	Н	H	2	H	H	\mathbf{H}	\mathbf{OEt}	CF_3
	$(\mathrm{CH_2})_3$ -	н	\mathbf{H}	2	H	H	\mathbf{H}	OMe	CF_3
1	$(\mathrm{CH_2})_3$ -	H	H	2	H	H	H	OEt	CF_3
1	$(\mathrm{CH_2})_4$ -	H	H	2	H	H	\mathbf{H}	\mathbf{OMe}	CF_3
	$(CH_2)_4$	H	H	2	H	H	H	OEt	CF ₃
	$(CH_2)_5$	H	H	2	H	\mid H \mid	H	OMe	CF_3
	$(CH_2)_5$	H	H	2	H	H	H	OEt	CF_3
H	-(CH		H	2	H	H	\mathbf{H}	OMe	CF_3
H	-(CH	-: -	H	2	H	$_{\rm H}$	H	OEt	CF_3
H	-(CH		H	2	H	H	H	OMe	CF_3
H	-(CH		H	2	H	H	H	\mathbf{OEt}	$\mathrm{CF_3}$
H	-(CH		Н	2	H	H	\mathbf{H}	OMe	CF_3
H	-(CH		H	2	H	H	\mathbf{H}	OEt	CF_3
H	-(CH		H	2	Н	H	\mathbf{H}	OMe	CF_3
H	-(CH	2)6-	H	2	Н	H	\mathbf{H}	OEt	CF_3
Me	Me	H	H	1	Н	H	\mathbf{H}	Cl	Cl
Me	Me	H	H	1	H	H	\mathbf{H}	OH	Cl
Me	1	H	H	1	Н	H	\mathbf{H}	OMe	Cl
Me	Me	H	H	1	H	H	\mathbf{H}	OEt	Cl
Me		H	H	1	H	H	\mathbf{H}	OPr-i	Cl
Me	,	H	Н	1	H	H	\mathbf{H}	\mathbf{OPr}	Cl
Me	1	H	H	1	H	H	H	OBu-t	Cl
Me	i	H	н	1	H	H	H	OCH ₂ Pr-c	Cl
Me		H	H	1	H	H	\mathbf{H}	OCH ₂ Bu-c	Cl
Me		H	Н	1	H	H	\mathbf{H}	OCH ₂ Pen-c	Cl
Me	Me	H	H	1	H	H	H	OCH ₂ Hex·c	Cl
Me	,	H	H	1	H	H	\mathbf{H}	OPen-c	Cl
Me		H	H	1	H	H	\mathbf{H}	OHex-c	Cl
Me		H	H	1	H	H	H	$\mathrm{OCH_2Ph}$	Cl
Me		H	Н	1	H	H	H	OPh	Cl
Me	l l	H	H	1	Н	H	H	$OCHF_2$	Cl
Me		H	H	1	H	H	H	SH	Cl
Me		H	H	1	H	H	H	SMe	Cl
Me	1	H	H	1	H	H	H	SO_2Me	Cl
Me		H	H	1	H	H	H	SEt	Cl

l	Me	Me	н	н	1	Н	H	н	SO ₂ Et	C1
l	Me	Me	H	H	1	H	H	H	SPr-i	Cl
l	Me	Me	H	H	1	H	H	H	SO_2Pr-i	Cl
l	Me	Me	H	H	1	H	H	H	SPh	Cl
l	Me	Me	H	H	1	H	H	H	SO_2Ph	Cl
١	Me	Me	H	H	1	H	H	H	SCHF ₂	Cl
l	Me	Me	H	H	1	H	H	H	SO_2CHF_2	Cl
١	Me	Me	H	H	1	H	H	H	NH_2	Cl
۱	Me	Me	H	H	1	H	H	H	NHMe	Cl
l	Me	Me	H	H	1	H	H	H	NMe ₂	Cl
١	Me	Me	H	H	1	H	H	H	NHEt	Cl
l	Me	Me	H	H	1	H	H	$\hat{\mathbf{H}}$	NEt_2	Cl
۱	Me	Me	H	H	1	H	H	H	NHPh	Cl
l	Me	Me	H	H	1	H	H	H	N(Me)Ph	Cl
١	Me	Me	H	H	1	H	H	H	CN	Cl
١	Me	Me	H	H	1	H	H	H	${f F}$	Me
١	Me	Me	H	H	1	H	H	H	Cl	Me
١	Me	Me	H	H	1	H	H	H	OH	Me
١	Me	Me	H	H	1	H	H	H	\mathbf{OMe}	Me
۱	Me	Me	H	H	1	H	H	H	\mathbf{OEt}	Me
ļ	Me	Me	H	H	1	H	H	H	OPr-i	Me
l	Me	Me	H	H	1	H	H	H	\mathbf{OPr}	Me
۱	Me	Me	H	H	1	H	H	H	$\mathbf{OBu-t}$	Me
l	Me	Me	н	H	1	H	H	H	OCH_2Pr-c	Me
I	Me	Me	H	H	1	H	H	H	OCH ₂ Bu-c	Me
ļ	Me	Me	Н	H	1	H	H	H	OCH ₂ Pen·c	Me
Į	Me	${ m Me}$	H	H	1	H	H	H	OCH ₂ Hex-c	Me
١	Me	Me	H	H	1	H	H	H	OPen-c	Me
١	Me	Me	H	H	1	H	H	H	OHex-c	Me
١	Me	Me	H	H	1	H	H	H	OCH_2Ph	Me
١	Me	Me	H	H	1	H	H	H	OPh	Me
I	Me	Me	H	H	1	H	H	H	$OCHF_2$	Me
	Me	Me	H	H	1	H	H	H	SH	Me
ı	Me	Me	H	H	1	H	H	H	SMe	Me
1	Me	Me	H	H	1	H	H	H	SO ₂ Me	Me
١	Me	Me	H	H	1	H	H	H	SEt	Me
	Me	Me	H	H	1	H	H	H	SO_2Et	Me
	Me	Me	H	H	1	H	H	H	SPr·i	Me
	Me	Me	H	H	1	H	H	H	SO ₂ Pr-i	Me
	Me	Me	H	H	1	H	H	H	SPh	Me
	Me	Me	H	H	1	H	H	H	SO ₂ Ph	Me
-	Me	Me	H	H	1	H	H	H	SCHF ₂	Me Me
-	Me	Me	H	H	1	H	H	H	SO_2CHF_2	Me
	Me	Me	H	H	1	H	H	H	$ m NH_2$	Me

1 3 5	3 7 5	1 77 1	77		77	H	Н	NHMe	Me
Me	Me	H	H	1	H	Н	H	NMe ₂	Me Me
Me	Me	H	H	1		1 1	H		Me
Me	Me	H	H	1	H	H	H	$ m NHEt$ $ m NEt_2$	Me
Me	Me	H	H	1	H	Н	H	NHPh	Me
Me	Me	H	H	1	H	Н	H	NAPA N(Me)Ph	Me
Me	Me	H	H	1	H	H	H	CN	Me
Me	Me	H	H	1	Н	Н	H	F	Pr-i
Me	Me	H	H	1	Н	H	H	Cl	Pr-i
Me	Me	H	H	1	Н	H	H	OH	Pr-i
Me	Me	H	H	1		H	H	OMe	Pr-i
Me	Me	H	H	1	H H	H	H	OMe	Pr-i
Me	Me	H	H	$egin{array}{c} 1 \\ 1 \end{array}$	Н	H	H	OPr-i	Pr-i
Me	Me	H	H			Н	H	OPr	Pr-i
Me	Me	H	H	1	H	, ,	H	OBu-t	Pr-i
Me	Me	H	H	1	H	H		OCH ₂ Pr-c	Pr-i
Me	Me	H	H	1	H	H	H		Pr-i
Me	Me	H	H	1	H	H	H	OCH-Pope	Pr-i
Me	Me	H	H	1	H	H	H	OCH ₂ Pen-c OCH ₂ Hex-c	Pr-i
Me	Me	H	H	1	H	H	H	OPen-c	Pr-i
Me	Me	H	H	1	H	H	H	OHex-c	Pr-i
Me	Me	H	H	1	H	H	H	OHex-c OCH ₂ Ph	Pr-i
Me	Me	H	H	1	H	H H	H H	OPh	Pr-i
Me	Me	H	H	1	H	1 1	H	OCHF ₂	Pr-i
Me	Me	H	H	1	H	H	H	SH	Pr-i
Me	Me	H	H	1	H	H	H	SMe	Pr-i
Me	Me	H	H	1	H	Н	H	SO_2Me	Pr-i
Me	Me	H	H	1	H H	H	H	SEt	Pr-i
Me	Me	H	H	1	Н	H	H	SO ₂ Et	Pr-i
Me	Me	H	H	1 1	Н	H	H	SPr-i	Pr-i
Me	Me	H	H		Н	H	H	SO ₂ Pr·i	Pr-i
Me	Me	H	H	1 1	H	H	H	SPh	Pr-i
Me	Me	H	H	1	H	H	H	SO_2Ph	Pr-i
Me	Me	H	H	1	H	H	H	SCHF ₂	Pr-i
Me	Me	H	Н	1	H	H	H	SO ₂ CHF ₂	Pr-i
Me	Me	H	H	1	H	H	H	NH ₂	Pr·i
Me	Me	H	H	1	H	H	H	NHMe	Pr-i
Me	Me	H	H	1	H	H	H	NMe ₂	Pr-i
Me	Me	H	H	1	H	H	H	NHEt	Pr·i
Me	Me Me	H	H	1	H	H	H	NEt ₂	Pr-i
Me	4.47	H	H	1	H	H	H	NHPh	Pr-i
Me	Me	H	Н	1	H	H	H	N(Me)Ph	Pr-i
Me	Me	H	Н	1	H	H	H	CN	Pr-i
Me	Me	1		1	H	Н	H	F	Pr-c
Me	Me	H	H	1	LI	III	1 11	I E	110

		. 1		. 1		1 1	1		.
Me	Me	H	H	1	H	H	H	Cl	Pr-c
Me	Me	H	H	1	H	H	H	OH	Pr·c
Me	Me	H	H	1	H	H	H	OMe	Pr-c
Me	\mathbf{Me}	H	H	1	H	H	H	OEt	Pr-c
Me	${f Me}$	H	H	1	H	H	H	OPr-i	Pr·c
Me	Me	H	H	1	H	H	H	OPr	Pr·c
Me	Me	H	H	1	H	H	H	OBu-t	Pr·c
Me	Me	H	H	1	H	H	H	OCH ₂ Pr-c	Pr·c
Me	Me	H	H	1	H	H	H	OCH ₂ Bu ⁻ c	Pr·c
Me	Me	H	H	1	H	H	H	OCH ₂ Pen-c	Pr·c
Me	Me	H	H	1	H	H	H	OCH ₂ Hex-c	Pr·c
Me	Me	H	H	1	H	H	H	OPen-c	Pr·c
Me	Me	H	H	1	H	$\mid \mathbf{H} \mid$	H	OHex-c	Pr·c
Me	Me	H	H	. 1	H	H	H	OCH_2Ph	Pr·c
Me	Me	H	\mathbf{H}	1	H	H	H	OPh	Pr·c
Me	Me	H	H	1	H	$\mid \mathbf{H} \mid$	H	$OCHF_2$	Pr-c
Me	Me	H	H	1	H	H	H	SH	Pr-c
Me	Me	H	H	1	H	H	H	SMe	Pr-c
Me	Me	H	H	1	H	$\mid \mathbf{H} \mid$	\mathbf{H}	$\mathrm{SO}_{2}\mathrm{Me}$	Pr-c
Me	Me	H	H	1	H	H	\mathbf{H}	SEt	Pr·c
Me	Me	H	H	1	H	H	H	$\mathrm{SO}_2\mathrm{Et}$	Pr·c
Me	Me	H	H	1	H	H	\mathbf{H}	SPr-i	Pr·c
Me	Me	H	H	1	H	H	H	$\mathrm{SO_2Pr} ext{-}\mathrm{i}$	Pr·c
Me	Me	H	H	1	H	H	H	SPh	Pr·c
Me	Me	Η	H	1	H	H	\mathbf{H}	SO_2Ph	Pr-c
Me	Me	H	H	1	H	H	\mathbf{H}	$SCHF_2$	Pr·c
Me	Me	H	H	1	H	H	\mathbf{H}	SO_2CHF_2	Pr·c
Me	Me	H	H	1	H	H	\mathbf{H}	$ m NH_2$	Pr·c
Me	Me	H	H	1	H	H	\mathbf{H}	NHMe	Pr-c
Me	Me	H	H	1	H	H	H	NMe_2	Pr-c
Me	Me	H	H	1	H	H	\mathbf{H}	NHEt	Pr-c
Me	Me	H	H	1	H	H	H	NEt_2	Pr·c
Me	Me	H	H	1	H	$ \mathbf{H} $	H	NHPh	Pr·c
Me	Me	H	H	1	H	$ \mathbf{H} $	H	N(Me)Ph	Pr-c
Me	Me	H	H	1	H	H	H	CN	Pr-c
Me	Me	H	H	1	H	H	H	F	CHF ₂
Me	Me	H	H	1	H	H	H	Cl	CHF_2
Me	Me	H	H	1	H	H	H	OH	CHF ₂
Me	Me	H	H	1	H	H	H	OMe	CHF ₂
Me	Me	H	H	1	H	H	H	OEt	CHF ₂
Me	Me	H	H	1	H	H	H	OPr-i	CHF ₂
Me	Me	H	H	1	H	H	H	OPr	CHF ₂
Me	Me	H	H	1	H	H	H	OBu-t	CHF ₂
Me	Me	H	H	1	H	H	H	OCH ₂ Pr-c	CHF ₂

1 7/6	Me	H	н	1	H	H	Н	OCH ₂ Bu-c	CHF ₂
Me Me	Me	H	H	$\begin{array}{c c} 1 \end{array}$	H	$_{ m H}$	H	OCH ₂ Pen·c	CHF ₂
Me	Me	H	H	1	H	H	H	OCH ₂ Hex-c	CHF_2
Me	Me	H	H	1	H	H	H	OPen-c	CHF_2
Me	Me	H	H	1	H	H	H	OHex-c	CHF_2
Me	Me	H	H	$\hat{1}$	H	H	H	OCH_2Ph	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	OPh	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	$OCHF_2$	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	SH	CHF_2
Me	Me	H	H	1	H	$ \mathbf{H} $	\mathbf{H}	SMe	CHF ₂
Me	Me	H	H	1	H	H	\mathbf{H}	SO_2Me	CHF_2
Me	Me	H	H	1	H	$ \mathbf{H} $	\mathbf{H}	SEt	CHF ₂
Me	Me	н	H	1	H	H	\mathbf{H}	$\mathrm{SO_2Et}$	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	SPr-i	CHF ₂
Me	Me	H	H	1	H	H	\mathbf{H}	SO ₂ Pr-i	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	SPh	CHF_2
Me	Me	H	H	1	\mathbf{H}	H	\mathbf{H}	SO_2Ph	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	$SCHF_2$	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	SO_2CHF_2	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	$ m NH_2$	CHF_2
Me	Me	H	H	1	H	H	\mathbf{H}	NHMe	CHF_2
Me	Me	H	H	1	H	$\mid \mathbf{H} \mid$	\mathbf{H}	NMe ₂	CHF ₂
Me	Me	H	H	1	H	H	\mathbf{H}	NHEt	CHF ₂
Me	Me	H	H	1	H	H	H	NEt ₂	CHF ₂
Me	Me	H	H	1	H	H	\mathbf{H}	NHPh	CHF_2
Me	Me	H	H	1	H	H	H	N(Me)Ph	CHF ₂
Me	Me	H	H	1	H	H	H	CN	CHF ₂
Me	Me	H	H	1	H	H	H	F	CF ₃
Me	Me	H	H	1	H	H	H	Cl	CF_3
Me	Me	H	H	1	H	H	H	OH	CF ₃
Me	Me	H	H	1	H	H	H	OMe	CF ₃
Me	Me	H	H	1	H	H	H	OEt	CF ₃
Me	Me	H	H	1	H	H	H	OPr-i	CF ₃
Me	Me	H	H	1	H	H	H	OPr	CF ₃
Me	Me	H	H	1	H	H	H	OBu-t	CF ₃
Me	Me	H	H	1	H	H	H	OCH ₂ Pr-c	CF ₃
Me	Me	H	H	1	H	H	H	OCH ₂ Bu-c	CF ₃
Me	Me	H	H	1	H	H	H	OCH-Horre	CF₃
Me	Me	H	H	1	H	H	H	OCH ₂ Hex·c	${ m CF_3} \ { m CF_3}$
Me	Me	H	H	1	H	H	H	OPen-c OHex-c	CF ₃
Me	Me	H	H	1	H	H	H	OCH ₂ Ph	CF ₃
Me	Me	H	H	1	H	H	H	OPh	CF ₃
Me	Me	H	H	1	H	H	H H	OCHF ₂	CF ₃
Me	Me	H	H	1	H	H	п	1 COLLES	l Ora

Me	Me	Н	н	1	Н	H	Н	SH	CF ₃
Me	Me	H	H	1	H	H	\mathbf{H}	SMe	CF_3
Me	Me	H	H	1	H	H	\mathbf{H}	SO_2Me	$\mathbf{CF_3}$
Me	Me	H	H	1	H	H	\mathbf{H}	SEt	CF_3
Me	Me	H	H	1	H	H	H	$\mathrm{SO}_2\mathrm{Et}$	CF_3
Me	Me	H	H	1	H	H	\mathbf{H}	SPr-i	CF_3
Me	Me	H	H	1	H	H	\mathbf{H}	SO ₂ Pr-i	CF_3
Me	Me	H	H	1	H	H	\mathbf{H}	SPh	CF_3
Me	Me	$\mid H \mid$	H	1	\mathbf{H}	H	H	SO_2Ph	$\mathbf{CF_3}$
Me	Me	H	H	1	\mathbf{H}	H	\mathbf{H}	SCHF ₂	CF_3
Me	Me	H	H	1	H	H	H	SO ₂ CHF ₂	CF_3
Me	Me	H	H	1	H	H	\mathbf{H}	NH_2	CF ₃
Me	Me	H	Н	1	H	H	H	NHMe	CF ₃
Me	Me	H	H	1	H	H	H	NMe_2	CF_3
Me	Me	H	H	1	H	$\mid \mathbf{H} \mid$	H	NHEt	CF_3
Me	Me	H	H	1	H	H	H	NEt ₂	CF_3
Me	Me	H	H	1	H	H	H	NHPh	$\mathbf{CF_3}$
Me	Me	H	H	1	H	H	\mathbf{H}	N(Me)Ph	CF_3
Me	Me	H	H	1	H	H	H	CN	CF_3
Me	Me	H	H	1	H	\mid H \mid	\mathbf{H}	F	OMe
Me	Me	H	H	1	H	H	H	OH	OMe
Me	Me	H	H	1	H	H	H	OMe	OMe
Me	Me	H	H	1	H	$\mid \mathbf{H} \mid$	H	OEt	OMe
Me	Me	H	H	1	H	H	\mathbf{H}	OPr-i	OMe
Me	Me	H	H	1	H	H	H	OPr	OMe
Me	Me	H	H	1	H	H	H	OBu-t	OMe
Me	Me	H	H	1	H	H	H	OCH ₂ Pr-c	OMe
Me	Me	H	H	1	Η	H	H	OCH ₂ Bu-c	OMe
Me	Me	H	H	1	H	H	H	OCH ₂ Pen-c	OMe
Me	Me	H	H	1	H	H	H	OCH ₂ Hex-c	OMe
Me	Me	H	H	1	H	H	H	OPen-c	OMe
Me	Me	$\mid \mathbf{H} \mid$	H	1	H	H	H	OHex-c	OMe
Me	Me	H	H	1	H	H	H	OCH ₂ Ph	OMe
Me	Me	H	H	1	H	H	H	OPh	OMe
Me	Me	H	H	1	H	H	H	OCHF ₂	OMe
Me	Me	H	H	1	H	H	H	SH	OMe
Me	Me	H	H	1	H	H	H	SMe	OMe
Me	Me	H	H	1	H	H	H	SO ₂ Me	OMe
Me	Me	H	H	1	H	H	H	SEt	OMe
Me	Me	H	H	1	H	H	H	SO ₂ Et	OMe
Me	Me	H	H	1	H	H	H	SPr-i	OMe
Me	Me	H	H	1	H	H	H	SO ₂ Pr-i	OMe
Me	Me	H	H	1	H	H	H	SPh	OMe
Me	Me	H	H	1	H	H	H	SO ₂ Ph	OMe

	1	1	1	1	I		i 1	~- 1	garra 1	074
١	Me	Me	H	H	1	H	H	H	$SCHF_2$	OMe
1	Me	Me	H	H	1	H	H	H	SO ₂ CHF ₂	OMe
l	Me	Me	H	H	1	H	H	H	NH_2	OMe
١	Me	Me	H	H	1	H	H	H	NHMe	OMe
ĺ	Me	Me	H	H	1	H	H	H	NMe ₂	OMe
	Me	Me	H	H	1	\mathbf{H}	H	H	NHEt	OMe
1	Me	Me	$H \mid$	H	1	H	H	H	NEt_2	OMe
1	Me	Me	H	H	1	H	H	H	NHPh	OMe
١	Me	Me	H	\mathbf{H}	1	\mathbf{H}	H	H	N(Me)Ph	OMe
	Me	Me	H	\mathbf{H}	1	\mathbf{H}	H	\mathbf{H}	CN	OMe
	Me	Me	H	\mathbf{H}	1	H	H	H	F	OPh
1	Me	Me	H	\mathbf{H}	1	\mathbf{H}	H	H	OH	OPh
1	Me	Me	H	\mathbf{H}	1	H	H	H	OMe	OPh
1	Me	Me	H	\mathbf{H}	1	H	H	H	OEt	OPh
١	Me	Me	H	\mathbf{H}	1	\mathbf{H}	H	H.	OPr-i	OPh
۱	Me	Me	H	\mathbf{H}	1	H	H	H	OPr	OPh
1	Me	Me	H	H	1	H	H	H	OBu-t	OPh
1	Me	Me	H	H	1	H	H	H	OCH ₂ Pr-c	OPh
-	Me	Me	H	H	1 1	H	H	H	OCH ₂ Bu-c	OPh
Į	Me	Me	H	\mathbf{H}	1	H	H	H	OCH ₂ Pen-c	OPh
1	Me	Me	H	H	1	H	H	\mathbf{H}	OCH ₂ Hex-c	OPh
ĺ	Me	Me	H	H	1	H	H	H	OPen-c	OPh
j	Me	Me	H	\mathbf{H}	1	H	H	H	OHex-c	OPh
	Me	Me	н	H	1	H	H	H	$\mathrm{OCH_2Ph}$	OPh
ı	Me	Me	н	H	1	H	H	\mathbf{H}	OPh	OPh
	Me	Me	Н	Н	1	H	H	H	$OCHF_2$	OPh
	Me	Me	н	\mathbf{H}	1	H	H	\mathbf{H}	SH	OPh
1	Me	Me	H	H	1	H	H	H	SMe	OPh
	Me	Me	Н	H	1	H	H	H	$\mathrm{SO}_2\mathrm{Me}$	OPh
i	Me	Me	Н	H	1	H	H	H	SEt	OPh
1	Me	Me	Н	H	1	H	H	H	$\mathrm{SO}_2\mathrm{Et}$	OPh
	Me	Me	н	H	1	H	H	H	SPr-i	OPh
	Me	Me	н	H	1	H	\mathbf{H}	H	SO ₂ Pr-i	OPh
	Me	Me	H	H	1	H	H	H	SPh .	OPh
i	Me	Me	H	H	1	Н	H	H	$\mathrm{SO}_2\mathrm{Ph}$	OPh
	Me	Me	H	H	1	Н	H	H	$SCHF_2$	OPh
	Me	Me	H	H	1	H	H	H	SO_2CHF_2	OPh
ĺ	Me	Me	H	H	1	H	H	· H	NH_2	OPh
	Me	Me	H	H	1	H	H	H	NHMe	OPh
	Me	Me	H	H	1	H	H	H	NMe_2	OPh
	Me	Me	H	H	i	H	H	H	NHEt	OPh
	Me	Me	H	H	1	H	H	H	NEt_2	OPh
	Me	Me	H	H	1	H	H	H	NHPh	OPh
	Me	Me	H	H	1	H	H	H	N(Me)Ph	OPh
	TATE	TATE	TT	1 11	1 -	1	1			

Me	Me	н	н	1	\mathbf{H}^{-1}	H	Н	CN	OPh
Me	Me	H	H	1	H	н	\mathbf{H}	${f F}$	$OCHF_2$
Me	Me	H	H	1	H	H	\mathbf{H}	OH	OCHF ₂
Me	Me	H	H	1	H	Н	H	OMe	$OCHF_2$
Me	Me	H	H	1	H	H	\mathbf{H}	\mathbf{OEt}	$OCHF_2$
Me	Me	H	H	1	H	H	\mathbf{H}	OPr-i	OCHF ₂
Me	Me	H	\mathbf{H}	1	H	$_{\rm H}$	H	OPr	OCHF ₂
Me	Me	H	H	1	\mathbf{H}	\mathbf{H}	H	$\mathrm{OBu} ext{-}\mathrm{t}$	OCHF ₂
Me	Me	H	H	1	H	H	H	OCH_2Pr -c	OCHF ₂
Me	Me	H	H	1	H	H	\mathbf{H}	OCH ₂ Bu-c	$ OCHF_2 $
Me	Me	H	н	1	H	H	\mathbf{H}	OCH ₂ Pen-c	OCHF ₂
Me	Me	H	H	1	H	H	H	OCH ₂ Hex-c	OCHF ₂
Me	Me	H	Н	1	H	H	\mathbf{H}	OPen-c	OCHF ₂
Me	Me	H	\mathbf{H}	1	H	H	H	OHex-c	OCHF ₂
Me	Me	н	H	1	H	H	\mathbf{H}	$\mathrm{OCH_2Ph}$	$ OCHF_2 $
Me	Me	H	H	1	H	H	\mathbf{H}	OPh	$ OCHF_2 $
Me	Me	H	H	1	H	H	H	$OCHF_2$	$ OCHF_2 $
Me	Me	н	H	1	H	$\mid \mathbf{H} \mid$	H	SH	OCHF ₂
Me	Me	H	\mathbf{H}	1	H	H	\mathbf{H}	SMe	$ OCHF_2 $
Me	Me	H	H	1	H	H	\mathbf{H}	$\mathrm{SO}_{2}\mathrm{Me}$	$ OCHF_2 $
Me	Me	H	\mathbf{H}	1	H	H	\mathbf{H}	${f SEt}$	OCHF ₂
Me	Me	H	H	1	H	H	\mathbf{H}	$\mathrm{SO}_2\mathrm{Et}$	OCHF ₂
Me	Me	H	\mathbf{H}	1	H	H	\mathbf{H}	SPr-i	$ OCHF_2 $
Me	Me	H	\mathbf{H}	1	H	H	\mathbf{H}	SO ₂ Pr-i	OCHF ₂
Me	Me	H	H	1	H	H	H	SPh	OCHF ₂
Me	Me	H	H	1	H	H	\mathbf{H}	SO_2Ph	OCHF ₂
Me	Me	Η	H	1	H	H	H	$SCHF_2$	OCHF ₂
Me	Me	H	H	1	H	H	H	SO ₂ CHF ₂	OCHF ₂
Me	Me	H	H	1	H	H	H	NH_2	OCHF ₂
Me	Me	H	H	1	H	H	H	NHMe	OCHF ₂
Me	Me	H	H	1	H	H	H	NMe ₂	OCHF ₂
Me	Me	H	H	1	H	H	H	NHEt	OCHF ₂
Me	Me	H	H	1	H	H	H	NEt ₂	OCHF ₂
Me	Me	H	H	1	H	H	H	NHPh	OCHF ₂
Me	Me	H	H	1	H	H	H	N(Me)Ph	OCHF ₂
Me	Me	H	H	1	H	H	H	CN	OCHF ₂
Me	Me	H	H	1	H	H	Me	F	$\mathrm{CF_3}$
Me	Me	H	H	1	H	H	Me	Cl	CF ₃
Me	Me	H	H	1	H	H	Me	OH	CF ₃
Me	Me	H	H	1	H	H	Me	OMe	CF ₃
Me	Me	H	H	1	H	H	Me	OEt	CF ₃
Me	Me	H	H	1	H	H	Me	OPr-i	CF ₃
Me	Me	H	H	1	H	H	Me	OPr	CF ₃
Me	Me	H	H	1	H	H	Me	OBu-t	CF ₃

١	Me	Me	\mathbf{H}	H	1	H	H	${f Me}$	OCH ₂ Pr-c	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	Me	OCH ₂ Bu-c	CF_3
1	Me	Me	H	H	1	\mathbf{H}	H	Me	OCH ₂ Pen-c	CF_3
١	Me	Me	H	H	1	\mathbf{H}	H	Me	OCH ₂ Hex-c	CF_3
1	Me	Me	H	H	1	\mathbf{H}	$ \mathbf{H} $	Me	OPen·c	CF_3
1	Me	Me	H	H	1	H	H	Me	OHex-c	$\mathbf{CF_3}$
	Me	Me	H	H	1	H	H	Me	OCH_2Ph	CF_3
1	Me	Me	H	H	1	H	H	${f Me}$	OPh	$\mathrm{CF_3}$
	Me	Me	H	H	1	H	H	Me	$OCHF_2$	$\mathrm{CF_3}$
1	Me	Me	H	H	1	H	H	${f Me}$	SH	CF_3
l	Me	Me	H	H	1	H	H	Me	SMe	CF ₃
l	Me	Me	H	H	1	H	H	Me	SO_2Me	CF_3
1	Me	Me	H	\mathbf{H}	1	H	H	Me	SEt	CF_3
	Me	Me	H	H	1	H	H	Me	$\mathrm{SO}_2\mathrm{Et}$	$\mathrm{CF_3}$
	Me	Me	H	H	1	H	H	Me	SPr-i	$\mathrm{CF_3}$
١	Me	Me	H	\mathbf{H}	1	H	H	${ m Me}$	SO_2Pr-i	CF_3
١	Me	${f Me}$	H	H	1	H	H	Me	SPh	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	Me	$\mathrm{SO_2Ph}$	$\mathbf{CF_3}$
	Me	Me	H	H	1	H	H	Me	$SCHF_2$	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	Me	SO_2CHF_2	$\mathbf{CF_3}$
l	Me	Me	H	H	1	H	H	Me	$ m NH_2$	CF_3
1	Me	Me	H	H	1	H	H	Me	NHMe	CF ₃
1	Me	Me	H	H	1	H	H	Me	NMe ₂	CF ₃
l	Me	Me	H	H	1	H	H	Me	NHEt	CF ₃
ļ	Me	Me	H	H	1	H	H	Me	NEt_2	CF_3
	Me	Me	H	H	1	H	H	Me	NHPh	$ ext{CF}_3$
	Me	Me	H	H	1 1	H	H	Me	N(Me)Ph	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	Me	CN	CF ₃
	Me	Me	H	H	1	H	H	OMe	F	CF ₃
I	Me	Me	H	H	1	H	H	OMe	Cl	CF ₃
l	Me	Me	H	H	1	H	H	OMe	OH	CF_3
	Me	Me	H	H	1	H	H	OMe	OMe	CF_3
	Me	Me	H	H	1	H	H	OMe	OEt	$ ext{CF}_3$
l	\mathbf{Me}	Me	H	H	1	H	H	OMe	OPr-i	$ ext{CF}_3$
	Me	Me	H	H	1	H	H	OMe	OPr	CF ₃
١	Me	Me	H	H	1	H	H	OMe	OBu-t	$ ext{CF}_3$
1	$\mathbf{M}\mathbf{e}$	Me	H	H	1	H	H	OMe	OCH ₂ Pr-c	CF_3
	Me	Me	H	H	1	H	H	OMe	OCH ₂ Bu·c	CF_3
ı	Me	Me	H	H	1	H	H	OMe	OCH ₂ Pen·c	CF_3
1	Me	Me	H	H	1	H	H	OMe	OCH ₂ Hex-c	$\mathrm{CF_3}$
1	Me	Me	H	H	1	H	H	OMe	OPen-c	CF ₃
	Me	Me	H	H	1	H	H	OMe	OHex-c	CF ₃
Ì	Me	Me	H	H	1	H	H	OMe	OCH ₂ Ph	CF ₃
	Me	Me	H	H	1	H	H	OMe	OPh	CF ₃

Me	Me	н	н	1 }	Н	н	OMe	OCHF ₂	CF ₃
Me	Me	H	H	1	H	H	OMe	SH	CF_3
Me	Me	H	H	1	H	$_{ m H}$	OMe	SMe	CF_3
Me	Me	H	H	1	H	H	OMe	SO_2Me	CF_3
Me	Me	H	H	1	Ĥ	H	OMe	SEt	$\overline{\mathrm{CF_3}}$
Me	Me	H	H	1	H	H	OMe	$\mathrm{SO}_2\mathrm{Et}$	$\mathbf{CF_3}$
Me	Me	H	H	1	H	H	OMe	SPr·i	CF_3
Me	Me	H	H	1	H	H	OMe	SO ₂ Pr-i	CF_3
Me	Me	H	H	1	H	H	OMe	SPh	CF_3
Me	Me	H	H	1	H	Н	OMe	$\mathrm{SO}_2\mathrm{Ph}$	CF ₃
Me	Me	H	H	1	H	H	OMe	$SCHF_2$	CF_3
Me	Me	H	H	1	H	H	OMe	SO_2CHF_2	CF_3
Me	Me	H	H	1	H	H	OMe	$\mathrm{NH_2}$	CF_3
Me	Me	H	H	1	H	H	OMe	NHMe	CF_3
Me	Me	H	H	1	H	Н	OMe	NMe_2	CF_3
Me	Me	H	H	1	H	H	OMe	NHEt	CF_3
Me	Me	H	H	1	H	H	OMe	${ m NEt_2}$	CF_3
Me	Me	H	H	1	H	H	OMe	NHPh	CF_3
Me	Me	Н	Н	1	H	H	OMe	N(Me)Ph	CF_3
Me	Me	H	Н	1	\mathbf{H}	H	OMe	CN	CF_3
Me	Me	H	H	1	H	H	SMe	${f F}$	CF_3
Me	Me	H	Н	1	H	H	SMe	Cl	CF_3
Me	Me	Н	H	1	H	H	SMe	OH	CF_3
Me	Me	Н	Ĥ	1	H	H	SMe	OMe	CF_3
Me	Me	н	H	1	H	H	SMe	OEt	$\mathrm{CF_3}$
Me	Me	H	H	1	H	H	SMe	OPr-i	$\mathrm{CF_3}$
Me	Me	Н	H	1	H	H	SMe	OPr	CF_3
Me	Me	H	H	1	H	H	SMe	OBu-t	CF_3
Me	Me	H	H	1	H	H	SMe	OCH_2Pr -c	CF_3
Me	Me	H	H	1	H	H	SMe	OCH ₂ Bu·c	$\mathbf{CF_3}$
Me	Me	H	H	1	H	H	SMe	OCH ₂ Pen·c	CF ₃
Me	Me	H	H	1	H	H	SMe	OCH ₂ Hex·c	CF_3
Me	Me	H	H	1	H	H	SMe	OPen-c	CF_3
Me	Me	H	H	1	H	H	SMe	OHex-c	CF_3
Me	Me	H	H	1	H	H	SMe	OCH_2Ph	CF_3
Me	Me	H	H	1	H	H	SMe	OPh	CF_3
Me	Me	H	H	1	H	H	SMe	OCHF ₂	CF_3
Me	Me	H	H	1	H	H	SMe	SH	CF_3
Me	Me	H	H	1	H	H	SMe	SMe	CF ₃
Me	Me	H	H	1	H	H	SMe	SO_2Me	CF_3
Me	Me	H	H	1	H	H	SMe	. SEt	CF ₃
Me	Me	H	H	1	H	H	SMe	SO ₂ Et	CF ₃
Me	Me	H	H	1	H	H	SMe	SPr-i	CF ₃
Me	Me	H	H	1	H	H	SMe	SO ₂ Pr-i	CF ₃

1	Mal	Me	н	н	1	H	H	SMe	SPh	CF ₃
١	Me Me	Me	H	H	1	H	H	SMe	SO_2Ph	$\mathrm{CF_3}$
1	Me	Me	H	H	1	H	H	SMe	$SCHF_2$	CF_3
١	Me	Me	H	H	1	H	H	SMe	SO_2CHF_2	CF_3
1	Me	Me	H	H	1	H	H	SMe	NH ₂	CF_3
1	Me	Me	H	H	1	H	H	SMe	NHMe	CF_3
-	Me	Me	H	H	1	H	H	SMe	NMe_2	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	SMe	NHEt	CF_3
l	Me	Me	H	H	1	H	H	SMe	NEt_2	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	SMe	NHPh	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	SMe	N(Me)Ph	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	SMe	CN	CF_3
ļ	Me	Me	H	H	1	H	H	SO ₂ Me	F	CF_3
١	Me	Me	H	H	1	H	H	SO_2Me	Ċ1	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	SO_2Me	OH	CF_3
	Me	Me	H	H	1	H	Н	SO_2Me	OMe	$\mathbf{CF_3}$
	Me	Me	H	H	1	H	H	SO_2Me	OEt	CF_3
	Me	Me	H	H	1	H	H	SO_2Me	OPr-i	CF_3
١	Me	Me	H	H	1	H	H	SO_2Me	OPr	CF_3
	Me	Me	H	H	1	H	H	SO_2Me	OBu-t	$\mathrm{CF_3}$
	Me	Me	H	H	1	H	H	SO_2Me	$\mathrm{OCH_2Pr}$ -c	$\mathrm{CF_3}$
	Me	Me	H	H	1	H	H	SO_2Me	OCH ₂ Bu-c	CF_3
1	Me	Me	H	H	1	H	H	SO_2Me	OCH ₂ Pen-c	CF_3
l	Me	Me	H	H	1	H	H	SO_2Me	OCH ₂ Hex-c	$\mathbf{CF_3}$
	Me	Me	H	H	1	H	H	SO ₂ Me	OPen-c	$\mathbf{CF_3}$
	Me	Me	H	H	1	H	H	SO_2Me	OHex-c	$\mathbf{CF_3}$
1	Me	Me	H	H	1	H	H	SO_2Me	$\mathrm{OCH}_2\mathrm{Ph}$	CF_3
	Me	Me	Н	H	1	H	H	SO ₂ Me	\mathbf{OPh}	CF_3
1	Me	Me	Н	H	1	H	H	SO ₂ Me	$OCHF_2$	CF ₃
ļ	Me	Me	Н	H	1	H	H	SO ₂ Me	${ m SH}$	$\mathbf{CF_3}$
Į	Me	Me	H	H	1	H	H	SO ₂ Me	\mathbf{SMe}	CF_3
1	Me	Me	H	H	1	H	H	SO_2Me	${ m SO_2Me}$	$\mathrm{CF_3}$
	Me	Me	H	H	1	H	H	SO_2Me	\mathbf{SEt}	$\mathbf{CF_3}$
	Me	Me	H	\mathbf{H}	1	H	H	SO ₂ Me	$ m SO_2Et$	CF_3
	Me	Me	H	H	1	H	H	SO_2Me	SPr-i	CF_3
1	Me	Me	H	\mathbf{H}	1	H	H	SO_2Me	$\mathrm{SO_2Pr}\text{-}\mathrm{i}$	$\mathbf{CF_3}$
	Me	Me	H	H	1	H	H	SO_2Me	${ t SPh}$	CF_3
I	\mathbf{Me}	Me	H	H	1	H	H	SO_2Me	$\mathrm{SO_2Ph}$	CF ₃
	${f Me}$	Me	H	Н	1	H	H	SO ₂ Me	$SCHF_2$	CF ₃
	\mathbf{Me}	Me	H	H	1	H	H	SO ₂ Me	$\mathrm{SO_2CHF_2}$	CF ₃
	Me	Me	$\mid \mathbf{H} \mid$	H	1	H	H	SO_2Me	$\mathrm{NH_2}$	CF ₃
	Me	Me	H	Н	1	H	H	SO ₂ Me	NHMe	CF_3
	Me	Me	H	H	1	Н	H	SO ₂ Me	NMe_2	CF ₃
	Me	Me	H	Н	1	H	H	SO ₂ Me	NHEt	CF ₃

					•		_			
M	e	${f Me}$	H	H	1	\mathbf{H}	H	$ SO_2Me $	${ m NEt_2}$	CF_3
M	e	${f Me}$	H	H	1	H	H	SO_2Me	NHPh	CF_3
M	e	${f Me}$	H	H	1	H	H	SO ₂ Me	N(Me)Ph	CF_3
M	e	${f Me}$	H	H	1	H	H	SO_2Me	CN	$\mathbf{CF_3}$
M	e	${f Me}$	H	H	1	H	H	$ m NH_2$	${f F}$	CF_3
M	e	${f Me}$	H	H	1	H	H	NH_2	Cl	CF_3
M	e	${f Me}$	H	H	1	H	H	NH ₂	OH	CF_3
M	e	${f Me}$	H	H	1	H	H	NH_2	OMe	$\mathbf{CF_3}$
M	e	${f Me}$	H	H	1	H	H	NH ₂	OEt	$\mathbf{CF_3}$
M	e	${f Me}$	H	H	1	H	H	NH_2	OPr-i	$\mathbf{CF_3}$
M	e	${f Me}$	H	H	1	H	H	NH ₂	OPr	CF_3
M	e	$\mathbf{M}\mathbf{e}$	H	H	1	H	H	NH ₂	OBu-t	$\mathbf{CF_3}$
M	e	${f Me}$	H	H	1	H	H	NH ₂	OCH ₂ Pr-c	CF_3
M	e	${f Me}$	H	H	1	H	H	NH ₂	OCH ₂ Bu-c	$\mathbf{CF_3}$
M	e	${f Me}$	H	H	1	H	H	NH ₂	OCH ₂ Pen-c	$\mathbf{CF_3}$
M	e	${f Me}$	H	H	1	H	H	NH ₂	OCH ₂ Hex·c	CF_3
M	e	${f Me}$	H	H	1	H	H	NH ₂	OPen-c	$\mathbf{CF_3}$
M	e l	${f Me}$	H	H	1	H	H	NH ₂	OHex-c	CF ₃
M	e	Me	H	H	1	H	H	NH_2	OCH_2Ph	CF_3
M	e	Me	H	H	1	H	H	NH ₂	OPh	CF_3
M	e	${f Me}$	H	H	1	H	H	NH ₂	$OCHF_2$	CF ₃
M	e	Me	H	H	1	H	H	NH_2	SH	$\mathrm{CF_3}$
M	e	Me	H	H	1	H	H	NH ₂	SMe	$ ext{CF}_3$
M	e.	Me	H	H	1	H	H	NH_2	SO_2Me	CF_3
M	e.	Me	H	H	1	H	H	NH ₂	SEt	$_{\rm CF_3}$
M		${\bf Me}$	H	H	1	H	H	NH ₂	SO ₂ Et	CF_3
M		Me	H	H	1	H	H	NH ₂	SPr-i	CF_3
M		Me	H	H	1	H	H	NH_2	SO ₂ Pr-i	$ ext{CF}_3$
M		Me	H	H	1	H	H	NH_2	SPh	$ ext{CF}_3$
M		Me	H	H	1	H	H	NH ₂	SO_2Ph	CF ₃
M		Me	H	H	1	H	H	NH_2	SCHF ₂	$ ext{CF}_3$
M		Me	H	H	1	H	H	NH ₂	SO_2CHF_2	$ ext{CF}_3$
M		Me	H	H	1	H	H	NH ₂	NH ₂	CF_3
M		Me	H	H	1	H	H	NH ₂	NHMe	$ ext{CF}_3$
M		Me	H	H	1	H	H	NH ₂	NMe ₂	CF ₃
M		Me	H	H	1	H	H	NH ₂	NHEt	$\mathrm{CF_3}$
M		Me	H	H	1	H	H	NH ₂	NEt ₂	$ ext{CF}_3$
M		Me	H	H	1	H	H	NH ₂	NHPh	CF ₃
M		Me	H	H	1	H	H	NH ₂	N(Me)Ph	$ ext{CF}_3$
M		Me	H	H	1	H	H	NH ₂	CN	$ ext{CF}_3$
E		H	H	H	1	H	H	H	OMe	CF ₃
I		H	H	H	1	H	H	H	OEt	CF ₃
M		H	H	H	1	H	H	H	OMe	CF_3
M	e	H	H	H	1	H	H	H	OEt	CF ₃

			i	1		an 1
Me H Me H	1	H	H	H	OMe	$ ext{CF}_3$
Me H Me H	1	H	H	H	OEt	CF ₃
Me Me H H	1	Me	H	H	OMe	CF_3
Me Me H H	1	Me	H	H	OEt	CF_3
Me Me H H	1	Et	H	H	OMe	CF_3
Me Me H H	1	Et	$\mid \mathbf{H} \mid$	H	OEt	CF ₃
Me Me H H	1	Pr·i	$\mid \mathbf{H} \mid$	H	H	$\mathbf{CF_3}$
Me Me H H	1	Pr-i	$\mid H \mid$	H	OMe	CF_3
Me Me H H	1	Pr-i	$\mid \mathbf{H} \mid$	\mathbf{H}	\mathbf{OEt}	$\mathrm{CF_3}$
Me Me H H	1	Me	Me	H	\mathbf{OMe}	CF_3
Me Me H H	1	Me	Me	H	\mathbf{OEt}	CF_3
Me Et H H	1	H	H	\mathbf{H}	OMe	CF_3
Me Et H H	1	H	$\mid \mathbf{H} \mid$	\mathbf{H}	\mathbf{OEt}	$\mathbf{CF_3}$
Et Et H H	1	H	H	H	OMe	CF_3
Et Et H H	1	H	H	H	\mathbf{OEt}	CF_3
Me Pr-i H H	1	H	H	H	OMe	CF_3
Me Pri H H	1	H	H	H	\mathbf{OEt}	CF_3
Me Pr H H	1	H	H	H	\mathbf{OMe}	CF_3
Me Pr H H	1	H	H	H	\mathbf{OEt}	CF_3
Me Pr-c H H	1	Н	H	H	OMe	CF_3
Me Pr-c H H	1	н	H	H	\mathbf{OEt}	$\mathbf{CF_3}$
CH _o Pr-	-	H	н	H	OMe	CF3
Me Char H H	1	п		11	Olvie	Ors
Me CH ₂ Pr H H	1	н	H	н	OEt	CF ₃
С		l				
-(CH ₂) ₂ - H H	1	H	H	H	OMe	CF ₃
-(CH2)2- H H	1	H	H	H	OEt	CF ₃
-(CH ₂) ₃ - H H	1	H	$\mid \mathbf{H} \mid$	H	OMe	CF_3
-(CH ₂) ₃ - H H	1	H	H	\mathbf{H}	OEt	CF ₃
-(CH ₂) ₄ - H H	1	H	H	\mathbf{H}	OMe	CF ₃
-(CH ₂) ₄ - H H	1	H	H	H	OEt	CF ₃
-(CH ₂) ₅ - H H	1	H	H	H	OMe	CF ₃
-(CH ₂) ₅ - H H	1	H	H	H	OEt	CF ₃
H -(CH ₂) ₃ - H	1	H	H	H	OMe	$\mathrm{CF_3}$
H (CH ₂) ₃ - H	1	H	H	H	\mathbf{OEt}	CF_3
H -(CH ₂) ₄ - H	1	H	H	H	\mathbf{OMe}	CF ₃
H -(CH ₂) ₄ - H	1	H	H	H	\mathbf{OEt}	$\mathrm{CF_3}$
H -(CH ₂) ₅ - H	1	H	H	\mathbf{H}	OMe	CF ₃
H -(CH ₂) ₅ - H	1	H	H	H	\mathbf{OEt}	CF ₃
H -(CH ₂) ₆ - H	1	H	H	H	OMe	CF ₃
H -(CH ₂) ₆ - H	1	H	H	H	OEt	CF ₃
Me Me H H	0	H	H	H	Cl	Cl
Me Me H H	0	H	H	H	OH	Cl
Me Me H H	0	H	H		OMe	Cl

Me	Me	H	н	0	Н	н	н	OEt	Cl
Me	Me	H	H	o l	H	H	H	OPr-i	Cl
Me	Me	H	H	0	H	H	H	OPr	Cl
Me	Me	H	H	0	H	H	H	OBu-t	Cl
Me	Me	H	H	0	H	H	H	OCH ₂ Pr-c	Cl
Me	Me	H	H	0	H	H	·H	OCH ₂ Bu-c	Cl
Me	Me	H	H	0	H	H	H	OCH ₂ Pen-c	Cl
Me	Me	H	H	0	H	H	H	OCH ₂ Hex-c	Cl
Me	Me	H	H	0	H	H	\mathbf{H}	OPen-c	Cl
Me	Me	H	H	0	H	H	\mathbf{H}	OHex-c	Cl
Me	Me	H	H	0	H	H	\mathbf{H}	$\rm OCH_2Ph$	Cl
Me	Me	H	H	0	H	Н	\mathbf{H}	OPh	Cl
Me	Me	H	H	0	H	H	H	$OCHF_2$	Cl
Me	Me	Н	H	0	H	H	H	SH	Cl
Me	Me	Н	H	0	H	H	H	SMe	Cl
Me	Me	Н	H	0	H	H	H	${ m SO_2Me}$	Cl
Me	Me	Н	H	0	H	Н	H	SEt	Cl
Me	Me	н	H	0	H	H	\mathbf{H}	$ m SO_2Et$	Cl
Me	Me	Н	H	0	H	H	H	SPr-i	Cl
Me	Me	H	H	0	H	H	H	SO ₂ Pr-i	Cl
Me	Me	H	H	0	H	H	H	SPh	Cl
Me	Me	H	H	0	H	H	\mathbf{H}	SO_2Ph	Cl
Me	Me	H	H	0	H	H	H	$SCHF_2$	Cl
Me	Me	H	H	0	H	H	\mathbf{H}	SO_2CHF_2	C1
Me	Me	H	H	0	H	H	H	NH_2	Cl
Me	Me	H	\mathbf{H}	0	H	H	H	NHMe	Cl
Me	Me	H	H	0	H	H	H	NMe_2	Cl
Me	Me	H	H	0	H	H	H	NHEt	Cl
Me	Me	H	H	0	H	H	H	NEt ₂	Cl
Me	Me	H	H	0	H	H	H	NHPh	Cl
Me	Me	H	H	0	H	H	H	N(Me)Ph	Cl
Me	Me	H	H	0	H	H	H	CN	Cl
Me	Me	H	H	0	H	H	H	F	Me
Me	Me	H	H	0	H	H	H	Cl	Me
Me	Me	H	H	0	H	H	H	OH	Me
Me	Me	H	H	0	H	H	H	OMe	Me
Me	Me	H	H	0	H	H	H	OEt	Me
Me	Me	H	H	0	H	H	H	OPr-i	Me
Me	Me	H	H	0	H	H	H	OPr	Me
Me	Me	H	H	0	H	H	H	OBu-t	Me
Me	Me	H	H	0	H	H	H	OCH ₂ Pr-c	Me
Me	Me	H	H	0	H	H	H	OCH ₂ Bu ⁻ c	Me
Me	Me	H	H	0	H	H	H	OCH ₂ Pen-c	Me
Me	Me	H	H	0	H	H	H	OCH ₂ Hex-c	Me

		1				1	1		I
Me	Me	H	H	0	H	H	$\overline{\mathbf{H}}$	OPen-c	Me
Me	Me	H	H	0	H	H	H	OHex-c	Me
Me	Me	H	H	0	H	H	H	OCH_2Ph	Me
Me	Me	H	H	0	H	H	H	OPh	Me
Me	Me	H	H	0	H	H	H	OCHF ₂	Me
Me	Me	H	H	0	H	H	H	SH	Me
Me	${f Me}$	H	H	0	H	H	H	SMe	Me
Me	Me	H	H	0	H	H	H	$\mathrm{SO_2Me}$	Me
Me	Me	H	H	0	H	H	H	SEt	Me
Me	Me	H	H	0	H	H	H	SO ₂ Et	Me
Me	${f Me}$	H	H	0	H	H	H	SPr-i	Me
Me	Me	H	H	0	H	H	H	SO ₂ Pr-i	Me
Me	Me	H	H	0	H	$\mid H \mid$	\mathbf{H}	SPh	Me
Me	Me	H	\mathbf{H}	0	H	H	H	$\mathrm{SO_2Ph}$	Me
Me	Me	H	H	0	H	H	H	$SCHF_2$	Me
Me	${f Me}$	H	H	0	H	H	\mathbf{H}	SO_2CHF_2	Me
Me	Me	H	\mathbf{H}	0	H	$\mid H \mid$	\mathbf{H}	NH_2	Me
Me	Me	H	H	0	H	H	H	NHMe	Me
Me	Me	H	\mathbf{H}	0	H	H	\mathbf{H}	NMe ₂	Me
Me	Me	H	H	0	H	H	H	NHEt	Me
Me	Me	H	H	0	H	H	H	NEt_2	Me
Me	Me	H	\mathbf{H}	0	H	H	\mathbf{H}	NHPh	Me
Me	Me	H	H	0	H	H	H	N(Me)Ph	Me
Me	Me	H	\mathbf{H}	0	H	H	H	CN	Me
Me	Me	H	H	0	Η	H	H	F	Pr-i
Me	Me	H	H	0	H	H	H	Cl	Pr-i
Me	Me	H	H	0	H	H	H	OH	Pr-i
Me	Me	H	H	0	H	H	\mathbf{H}	OMe	Pr-i
Me	Me	H	H	0	H	H	H	OEt	Pr-i
Me	Me	H	H	0	H	H	H	OPr-i	Pr-i
Me	Me	H	H	0	H	H	H	OPr	Pr-i
Me	Me	H	H	0	H	H	H	OBu-t	Pr-i
Me	Me	H	H	0	H	H	H	OCH_2Pr -c	Pr-i
Me	Me	H	H	0	H	$\mid \mathbf{H} \mid$	H	OCH ₂ Bu-c	Pr-i
Me	Me	H	H	0	H	H	H	OCH ₂ Pen-c	Pr-i
Me	Me	H	\mathbf{H}	0	H	H	H	OCH ₂ Hex-c	Pr-i
Me	Me	H	H	0	H	H	H	OPen-c	Pr-i
Me	Me	H	H	0	H	H	H	OHex-c	Pr-i
Me	Me	H	H	0	H	\mathbf{H}	H	OCH ₂ Ph	Pr-i
Me	Me	H	H	0	H	H	H	OPh	Pr-i
Me	Me	H	H	0	H	H	H	$OCHF_2$	Pr-i
Me	Me	H	Н	0	H	H	H	SH	Pr-i
Me	Me	H	H	0	H	H	H	SMe	Pr-i
Me	Me	H	H	0	H	H	H	SO_2Me	Pri

Me	Me	н	н	0	H	H	н	SEt	Pr·i
Me	Me	H	H	0	H	н	\mathbf{H}	$\mathrm{SO}_2\mathrm{Et}$	Pr·i
Me	Me	H	H	0	H	H	\mathbf{H}	$\mathbf{SPr}\cdot\mathbf{i}$	Pr·i
Me	Me	H	H	o	\mathbf{H}	$ \mathbf{H} $	\mathbf{H}	SO ₂ Pr·i	Pri
Me	Me	H	H	0	H	H	\mathbf{H}	SPh	Pr·i
Me	Me	H	H	0	H	$ \mathbf{H} $	\mathbf{H}	SO_2Ph	Pr-i
Me	Me	н	\mathbf{H}	0	H	$ \mathbf{H} $	\mathbf{H}	$SCHF_2$	Pr-i
Me	Me	H	H	0	H	H	\mathbf{H}	SO_2CHF_2	Pr-i
Me	Me	н	H	0	H	H	\mathbf{H}	$\mathrm{NH_2}$	Pr-i
Me	Me	н	H	0	H	H	\mathbf{H}	NHMe	Pr-i
Me	Me	н	H	0	H	H	\mathbf{H}	NMe ₂	Pr·i
Me	Me	Н	Η	0	H	H	H	NHEt	Pr-i
Me	Me	H	H	0	H	H	\mathbf{H}	NEt_2	Pr·i
Me	Me	H	H	0	H	H	\mathbf{H}	NHPh	Pr·i
Me	Me	H	Н	0	H	H	H	N(Me)Ph	Pr·i
Me	Me	н	H	0	H	H	H	CN	Pr·i
Me	Me	н	H	0	H	H	H	F	Pr·c
Me	Me	H	H	0	H	H	\mathbf{H}	Cl	Pr-c
Me	Me	H	H	0	H	H	\mathbf{H}	OH	Pr·c
Me	Me	H	H	0	H	H	\mathbf{H}	OMe	Pr·c
Me	Me	H	H	0	H	H	\mathbf{H}	OEt	Pr·c
Me	Me	H	H	0	H	H	H	OPr∙i	Pr-c
Me	Me	H	H	0	H	H	H	OPr	Pr-c
Me	Me	H	H	0	H	H	\mathbf{H}	OBu-t	Pr-c
Me	Me	H	H	0	H	H	H	OCH ₂ Pr-c	Pr-c
Me	Me	H	H	0	H	H	H	OCH ₂ Bu-c	Pr-c
Me	Me	H	H	0	H	H	H	OCH ₂ Pen·c	Pr·c
Me	Me	H	H	0	H	H	H	OCH ₂ Hex-c	Pr-c
Me	Me	H	H	0	H	H	H	OPen-c	Pr-c
Me	Me	H	Н	0	H	H	H	OHex-c	Pr-c
Me	Me	H	H	0	H	H	H	OCH_2Ph	$\mathbf{Pr}\cdot\mathbf{c}$
Me	Me	H	H	0	H	H	H	OPh	Pr·c
Me	Me	H	H	0	H	H	H	OCHF ₂	Pr-c
Me	Me	H	H	0	H	H	H	SH	Pr-c
Me	Me	H	H	0	H	H	H	SMe	Pr-c
Me	Me	H	H	0	H	H	H	SO_2Me	Pr-c
Me	Me	H	H	0	H	H	H	SEt	Pr-c
Me	Me	H	H	.0	H	H	H	$\mathrm{SO_2Et}$	Pr-c
Me	Me	H	H	0	H	H	H	SPr-i	Pr-c
Me	Me	H	H	0	H	H	H	SO ₂ Pr-i	Pr-c
Me	Me	H	H	0	H	H	H	SPh	Pr-c
Me	Me	H	H	0	H	H	H	$\mathrm{SO_2Ph}$	Pr-c
Me	Me	H	H	0	H	H	H	SCHF ₂	Pr-c
Me	Me	H	Н	0	H	H	H	SO ₂ CHF ₂	Pr-c

1	3.5	1 1	77	ا م ا	TT	1 77 1	TT	l NTTT	Dona
Me	Me	H	H	0	H	H	H	$ m NH_2$ $ m NHMe$	Pr·c Pr·c
Me	Me	H	H	0	H		H H	NAMe ₂	Pr-c
Me	Me	H	H	0	H	H	H	NHEt	Pr-c
Me	Me	H	H	0	H	H	H	NEt ₂	Pr·c
Me	Me	H	H	0	H H	H	H	NHPh	Pr·c
Me	Me	H	H	0	H	Н	· H	N(Me)Ph	Pr-c
Me	Me	H	H	0	H	Н	H	CN	Pr-c
Me	Me	H	H	0	H	Н	H	F	CHF_2
Me	Me	H	H	0	H	H	H	Cl	CHF_2
Me	Me	H	H H	0	H	H	H	OH	CHF ₂
Me	Me	H	H	0	H	H	H	OMe	CHF ₂
Me	Me	H	H	0	H	H	H	OEt	CHF ₂
Me	Me	H	H	0	H	H	H	OPr-i	CHF ₂
Me	Me	H	H	0	H	H	- H	OPr	CHF ₂
Me	Me	Н	H	0	H	H	H	OBu-t	CHF_2
Me	Me Me	H	H	0	Н	H	$^{ m H}$	OCH ₂ Pr-c	CHF ₂
Me	Me	H	H	0	H	H	H	OCH ₂ Bu-c	CHF ₂
Me Me	Me	H	H	0	H	H	H	OCH ₂ Pen-c	CHF ₂
Me	Me Me	H	H	0	H	H	H	OCH ₂ Hex-c	CHF_2
Me	Me	H	H	0	H	H	H	OPen-c	CHF_2
Me	Me	H	H	0	H	H	H	OHex-c	CHF ₂
Me	Me	H	H	o	H	H	H	OCH_2Ph	CHF ₂
Me	Me	H	H	0	H	H	H	OPh	CHF_2
Me	Me	H	H	o	H	H	H	$OCHF_2$	CHF_2
Me	Me	H	H	o	·H	H	H	SH	CHF_2
Me	Me	H	H	o	H	H	H	SMe	CHF_2
Me	Me	H	H	0	H	H	H	SO_2Me	CHF_2
Me	Me	H	H	0	H	H	H	SEt	CHF_2
Me	Me	H	H	o	H	H	H	SO_2Et	CHF_2
Me	Me	H	H	0	H	H	H	SPr-i	CHF_2
Me	Me	H	H	0	H	H	H	SO ₂ Pr-i	CHF_2
Me	Me	H	H	0	H	H	H	${f SPh}$	CHF_2
Me	Me	H	H	0	H	H	H	SO_2Ph	CHF_2
Me	Me	H	Н	0	H	H	H	$SCHF_2$	CHF_2
Me	Me	H	H	0	Н	H	H	SO_2CHF_2	CHF_2
Me	Me	H	H	0	H	H	H	$\mathrm{NH_2}$	CHF_2
Me	Me	H	н	0	H	H	H	NHMe	CHF ₂
Me	Me	H	Н	0	Н	H	H	NMe_2	CHF ₂
Me	Me	H	Н	0	H	H	H	NHEt	$ m CHF_2$
Me	Me	H	Н	0	H	H	H	$\mathrm{NEt_2}$	CHF_2
Me	Me	Н	Н	0	H	H	H	NHPh	CHF_2
Me	Me	H	Н	0	H	H	H	N(Me)Ph	CHF ₂
Me	Me	H	H	0	H	H	H	CN	CHF ₂

Me	Me	н	н	o	н	H	н	F	CF ₃
Me	Me	H	H	0	H	H	H	Cl	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	H	ОН	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	H	OMe	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	$\overline{\mathbf{H}}$	OEt	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	H	OPr-i	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	H	OPr	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	H	OBu-t	CF_3
Me	Me	H	H	0	H	н	H	OCH ₂ Pr·c	$\mathrm{CF_3}$
Me	Me	\mid H \mid	Н	0	H	H	\mathbf{H}	OCH ₂ Bu·c	CF_3
Me	Me	H	Н	0	H	H	\mathbf{H}	OCH ₂ Pen·c	$\mathbf{CF_3}$
Me	Me	Н	H	0	H	H	\mathbf{H}	OCH ₂ Hex·c	$\mathbf{CF_3}$
Me	Me	H	\mathbf{H}	0	H	H	H	OPen-c	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	\mathbf{H}	OHex-c	CF_3
Me	Me	Н	H	0	H	H	H	OCH_2Ph	CF_3
Me	Me	H	H	0	H	H	H	OPh	CF_3
Me	${f Me}$	H	H	0	H	H	\mathbf{H}	OCHF ₂	$^{\circ}$ CF ₃
Me	Me	H	H	0	H	H	H	SH	CF_3
Me	Me	H	H	0	H	H	\mathbf{H}	SMe	$\mathrm{CF_3}$
Me	${f Me}$	H	H	0	H	$\mid \mathbf{H} \mid$	\mathbf{H}	SO_2Me	CF_3
Me	Me	H	H	0	H	H	H	SEt	CF_3
Me	Me	H	H	0	H	H	\mathbf{H}	$\mathrm{SO_2Et}$	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	\mathbf{H}	SPr-i	CF_3
Me	Me	H	H	0	H	H	H	SO ₂ Pr-i	CF_3
Me	Me	H	H	0	H	H	H	SPh	CF ₃
Me	Me	H	H	0	H	$\mid \mathbf{H} \mid$	\mathbf{H}	SO_2Ph	CF ₃
Me	Me	H	H	0	H	$\mid \mathbf{H} \mid$	H	$SCHF_2$	CF ₃
Me	Me	H	H	0	H	$\mid \mathbf{H} \mid$	H	SO_2CHF_2	CF ₃
Me	Me	H	H	0	H	H	H	NH_2	CF ₃
Me	Me	H	H	0	H	H	H	NHMe	CF ₃
Me	Me	H	H	0	H	H	H	NMe ₂	CF ₃
Me	Me	H	H	0	H	H	H	NHEt	CF ₃
Me	Me	H	H	0	H	H	H	NEt ₂	CF ₃
Me	Me	H	H	0	H	H	H	NHPh	CF_3
Me	Me	H	H	0	H	H	H	N(Me)Ph	CF ₃
Me	Me	H	H	0	H	H	H	CN	CF ₃
Me	Me	H	H	0	H	H	H	F	OMe
Me	Me	H	H	0	H	H	H	OH	OMe
Me	Me	H	H	0	H	H	H	OMe	OMe
Me	Me	H	H	0	H	H	H	OEt	OMe
Me	Me	H	H	0	H	H	H	OPr-i	OMe
Me	Me	H	H	0	H	H	H	OPr	OMe
Me	Me	H	H	0	H	H	H	OBu-t	OMe
Me	Me	H	H	0	H	H	H	OCH ₂ Pr-c	OMe

Me	Me	н	н	0	н	H	н	OCH ₂ Bu-c	OMe
Me	Me	H	H	0	H	H	H	OCH ₂ Pen-c	OMe
Me	Me	H	H	0	H	$_{ m H}$	H	OCH ₂ Hex-c	OMe
Me	Me	H	H	0	H	H	H	OPen-c	OMe
Me	Me	H	H	0	H	H	\mathbf{H}	OHex-c	OMe
Me	Me	H	H	0	H	H	H	OCH_2Ph	OMe
Me	Me	H	H	0	H	H	$\overline{\mathbf{H}}$	OPh	OMe
Me	Me	H	H	0	H	H	H	$OCHF_2$	OMe
Me	Me	H	H	0	H	Н	H	SH	OMe
Me	Me	H	H	0	·H	н	H	SMe	OMe
Me	Me	H	H	0	Н	Н	H	SO_2Me	OMe
Me	Me	H	H	0	H	н	H	SEt	OMe
Me	Me	H	H	0	H	Н	H	$\mathrm{SO_2Et}$	OMe
Me	Me	H	H	0	H	H	\mathbf{H}	SPr-i	OMe
Me	Me	H	H	0	H	H	H	SO ₂ Pr-i	OMe
Me	Me	H	H	0	H	Н	H	SPh	OMe
Me	Me	H	H	0	H	H	H	$\mathrm{SO_2Ph}$	OMe
Me	Me	H	H	0	H	Н	\mathbf{H}	$SCHF_2$	OMe
Me	Me	H	H	0	H	Н	\mathbf{H}	SO_2CHF_2	OMe
Me	Me	H	H	0	H	H	H	$\mathrm{NH_2}$	OMe
Me	Me	H	H	0	H	H	H	NHMe	OMe
Me	Me	\mid H \mid	H	0	H	H	\mathbf{H}	NMe_2	OMe
Me	Me	H	H	0	H	H	H	NHEt	OMe
Me	Me	H	H	0	H	H	\mathbf{H}	NEt ₂	OMe
Me	Me	H	H	0	Н	H	\mathbf{H}	NHPh	OMe
Me	Me	H	H	0	H	H	\mathbf{H}	N(Me)Ph	OMe
Me	Me	H	H	0	H	H	H	CN	OMe
Me	Me	H	H	0	H	H	H	F	OPh
Me	Me	H	H	0	H	H	Η .	OH	OPh
Me	Me	H	H	0	H	H	H	OMe	\mathbf{OPh}
Me	Me	H	H	0	H	H	\mathbf{H}	OEt	OPh
Me	Me	H	H	0	H	H	H	OPr-i	OPh
Me	Me	H	H	0	H	H	H	OPr	OPh
Me	Me	H	H	0	H	H	H	OBu-t	OPh
Me	Me	H	H	0	H	H	H	OCH_2Pr-c	OPh
Me	Me	H	H	0	H	H	H	OCH ₂ Bu-c	OPh
Me	Me	H	H	0	H	H	H	OCH ₂ Pen-c	OPh
Me	Me	H	H	0	H	H	H	OCH ₂ Hex-c	OPh
Me	Me	H	H	0	H	H	H	OPen-c	OPh
Me	Me	H	H	0	H	H	H	OHex-c	OPh
Me	Me	H	H	0	H	H	H	OCH_2Ph	OPh
Me	Me	H	H	0	H	H	H	OPh	OPh
Me	Me	H	H	0	H	H	H	OCHF ₂	OPh
Me	Me	H	H	0	H	H	H	SH	OPh

Me l	Me	н	н	0	Н	H	\mathbf{H}	SMe	OPh
Me	Me	H	H	0	Н	н	H	SO_2Me	OPh
Me	Me	H	H	0	H	Н	H	SEt	OPh
Me	Me	H	H	0	H	н	H	$\mathrm{SO}_2\mathrm{Et}$	OPh
Me	Me	H	H	0	H	н	\mathbf{H}	SPr-i	OPh
Me	Me	H	H	0	H	Н	H	SO ₂ Pr-i	OPh
Me	Me	H	H	0	H	Н	\mathbf{H}	SPh	OPh
Me	Me	н	Н	0	H	н	H	SO ₂ Ph	OPh
Me	Me	Н	H	0	H	H	\mathbf{H}	$SCHF_2$	OPh
Me	Me	н	H	0	H	Н	H	SO_2CHF_2	OPh
Me	Me	Н	H	0	H	H	H	$\mathrm{NH_2}$	OPh
Me	Me	н	H	0	H	H	H	NHMe	OPh
Me	Me	Н	H	0	H	H	H	NMe ₂	OPh
Me	Me	н	H	0	H	H	\mathbf{H}	NHEt	OPh
Me	Me	H	H	0	H	Н	H	NEt_2	OPh
Me	Me	Н	H	0	H	H	H	NHPh	OPh
Me	Me	H	H	0	H	н	\mathbf{H}	N(Me)Ph	OPh
Me	Me	H	H	0	H	Н	H	CN	OPh
Me	Me	H	\mathbf{H}	0	H	H	H	F	OCHF ₂
Me	Me	H	H	0	H	H	H	OH	OCHF ₂
Me	Me	H	\mathbf{H}	0	H	H	H	OMe	$ OCHF_2 $
Me	Me	H	\mathbf{H}	0	H	H	H	OEt	OCHF ₂
Me	Me	H	H	0	H	H	H	OPr-i	OCHF ₂
Me	Me	H	H	0	H	H	H	OPr	OCHF ₂
Me	Me	H	H	0	H	H	\mathbf{H}	OBu-t	OCHF ₂
Me	Me	H	H	0	H	H	H	OCH_2Pr -c	OCHF ₂
Me	Me	H	H	0	H	H	H	OCH ₂ Bu-c	OCHF ₂
Me	Me	H	H	0	H	H	H	OCH ₂ Pen·c	OCHF ₂
Me	Me	H	H	0	H	H	H	OCH ₂ Hex-c	$ OCHF_2 $
Me	Me	H	H	0	H	H	H	OPen-c	OCHF ₂
Me	Me	H	H	0	H	H	H	OHex-c	OCHF ₂
Me	Me	H	H	0	H	H	H	OCH ₂ Ph	OCHF ₂
Me	Me	H	\mathbf{H}	0	H	H	H	OPh	OCHF ₂
Me	Me	H	H	0	H	H	H	$OCHF_2$	OCHF ₂
Me	Me	H	H	0	H	H	H	SH	$ OCHF_2 $
Me	Me	H	H	0	H	H	H	SMe	$ OCHF_2 $
Me	Me	H	H	0	H	H	H	SO_2Me	$ OCHF_2 $
Me	Me	H	H	0	H	H	H	SEt	OCHF ₂
Me	Me	H	\mathbf{H}	0	H	H	H	SO_2Et	OCHF ₂
Me	Me	H	H	0	H	H	H	SPr-i	OCHF ₂
Me	Me	H	H	0	H	H	H	SO ₂ Pr-i	OCHF ₂
Me	Me	H	H	0	H	H	H	SPh	OCHF ₂
Me	Me	H	H	0	H	H	H	SO_2Ph	OCHF ₂
Me	Me	H	H	0	H	H	H	SCHF ₂	OCHF ₂

Me	Me	н	н	0 1	н	н	н	$\mathrm{SO_2CHF_2}$	OCHF ₂
Me	Me	H	H	0	H	н	H	$\mathrm{NH_2}$	$OCHF_2$
Me	Me	H	H	0	H	H	H	NHMe	OCHF ₂
Me	Me	H	H	0	H	H	H	NMe_2	$OCHF_2$
Me	Me	H	H	0	H	H	\mathbf{H}	NHEt	$OCHF_2$
Me	Me	H	H	0	H	H	H	$\operatorname{NEt_2}$	$OCHF_2$
Me	Me	Н	H	0	H	H	H	NHPh	$OCHF_2$
Me	Me	Н	H	0	H	H	\mathbf{H}	N(Me)Ph	$OCHF_2$
Me	Me	Н	H	0	H	H	H	CN	OCHF ₂
Me	Me	н	H	0	H	H	${ m Me}$	\mathbf{F}	CF_3
Me	Me	\mathbf{H}	H	0	H	H	Me	Cl	CF_3
Me	Me	H	\mathbf{H}	0	H	H	Me	OH	CF_3
Me	Me	H	H	0	H	H	Me	OMe	CF_3
Me	Me	H	H	0	H	H	${f Me}$	\mathbf{OEt}	CF_3
Me	Me	H	\mathbf{H}	0	H	H	Me	OPr-i	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	Me	\mathbf{OPr}	CF_3
Me	Me	H	H	0	H	H	Me	$\mathbf{OBu} ext{-}\mathbf{t}$	CF ₃
Me	Me	H	H	0	H	H	Me	OCH_2Pr-c	CF_3
Me	Me	H	H	0	H	H	Me	OCH ₂ Bu ⁻ c	CF_3
Me	Me	H	H	0	H	H	Me	OCH ₂ Pen-c	CF_3
Me	Me	H	\mathbf{H}	0	H	H	Me	OCH ₂ Hex-c	CF_3
Me	Me	$\mid \mathbf{H} \mid$	H	0	H	H	Me	$\mathbf{OPen}\text{-}\mathbf{c}$	CF_3
Me	Me	H	H	0	H	H	Me	OHex-c	CF ₃
Me	Me	H	H	0	H	H	Me	OCH_2Ph	CF_3
Me	Me	H	H	0	H	H	Me	\mathbf{OPh}	CF ₃
Me	Me	H	H	0	H	H	Me	$OCHF_2$	CF ₃
Me	Me	H	H	0	H	H	Me	SH	CF ₃
Me	Me	H	H	0	H	H	Me	SMe	CF ₃
Me	Me	H	H	0	H	H	Me	SO_2Me	CF ₃
Me	Me	H	H	0	H	H	Me	SEt	CF ₃
Me	Me	H	H	0	H	H	Me	SO ₂ Et	CF ₃
Me	Me	H	H	0	H	H	Me	SPr-i	CF ₃
Me	Me	H	H	0	H	H	Me	SO ₂ Pr-i	CF ₃
Me	Me	H	H	0	H	H	Me	SPh	CF ₃
Me	Me	H	H	0	H	H	Me	SO ₂ Ph	CF ₃
Me	Me	H	H	0	H	H	Me	SCHF ₂	CF ₃
Me	Me	H	H	0	H	H	Me	SO_2CHF_2	CF ₃
Me	Me	H	H	0	H	H	Me	NH_2	CF ₃
Me	Me	H	H	0	H	H	Me	NHMe	CF ₃
Me	Me	H	H	0	H	H	Me	NMe ₂	CF ₃
Me	Me	H	H	0	H	H	Me	NHEt	CF ₃
Me	Me	H	H	0	H	H	Me	NEt ₂	CF ₃
Me	Me	H	H	0	H	H	Me	NHPh	CF ₃
Me	Me	H	H	0	H	H	Me	N(Me)Ph	CF ₃

ı	Me	Me	H	н	0	Н	н	Me	CN	CF ₃
	Me	Me	H	H	0	H	H	OMe	F	CF_3
	Me	Me	H	Н	0	H	H	OMe	Ĉl	CF_3
	Me	Me	H	H	0	H	H	OMe	ОН	CF_3
	Me	Me	H	H	0	H	H	OMe	OMe	CF_3
1	Me	Me	H	H	0	H	H	OMe	OEt	CF_3
	Me	Me	H	H	0	H	H	OMe	OPr-i	CF_3
	Me	Me	H	H	0	H	Н	OMe	OPr	CF_3
l	Me	Me	H	H	0	H	Н	OMe	OBu-t	$\mathbf{CF_3}$
	Me	Me	H	H	0	H	H	OMe	OCH ₂ Pr-c	CF_3
	Me	Me	H	H	0	H	H	OMe	OCH ₂ Bu-c	CF_3
l	Me	Me	Н	H	0	H	H	OMe	OCH ₂ Pen-c	CF_3
	Me	Me	Н	Н	0	H	H	OMe	OCH ₂ Hex·c	$\mathbf{CF_3}$
	Me	Me	Н	H	0	H	H	OMe	OPen-c	CF_3
	Me	Me	H	H	0	H	H	OMe	OHex-c	$\mathbf{CF_3}$
	Me	Me	н	H	0	\mathbf{H}	H	OMe	OCH_2Ph	CF_3
1	Me	\mathbf{Me}	H	H	0	H	H	OMe	OPh	CF_3
	Me	Me	H	Η	0	\mathbf{H}	H	OMe	$OCHF_2$	CF_3
	Me	$\mathbf{M}\mathbf{e}$	Η.	H	0	\mathbf{H}	H	OMe	SH	CF_3
	Me	${f Me}$	H	H	0	H	H	OMe	SMe	CF_3
	Me	Me	H	H	0	H	H	OMe	$\mathrm{SO}_{2}\mathrm{Me}$	CF_3
	Me	${f Me}$	Н	Η	0	H	H	ome	SEt	CF_3
١	Me	Me	H	Η	0	H	H	\mathbf{OMe}	$\mathrm{SO}_2\mathrm{Et}$	CF_3
	Me	Me	H	H	0	H	H	OMe	SPr-i	CF ₃
1	Me	Me	H	H	0	H	H	OMe	SO ₂ Pr-i	CF_3
l	Me	Me	H	H	0	H	H	OMe	SPh	CF_3
	Me	Me	H	H	0	H	H	\mathbf{OMe}	$\mathrm{SO}_2\mathrm{Ph}$	CF_3
	Me	Me	H	H	0	H	H	OMe	SCHF ₂	CF ₃
	Me	Me	H	H	0	H	H	OMe	SO_2CHF_2	CF ₃
	Me	Me	H	H	0	H	H	OMe	$ m NH_2$	CF ₃
	Me	Me	H	H	0	H	H	OMe	NHMe	CF ₃
	Me	Me	H	H	0	H	H	OMe	NMe ₂	CF ₃
	Me	Me	H	H	0	H	H	OMe	NHEt	CF_3
	Me	Me	H	H	0	H	H	OMe	NEt ₂	CF_3
	Me	Me	H	H	0	H	H	OMe	NHPh	CF_3
	Me	Me	H	H	0	H	H	OMe	N(Me)Ph	CF_3
l	Me	Me	H	H	0	H	H	OMe	CN	CF ₃
	Me	Me	H	H	0	H	H	SMe	F	CF ₃
	Me	Me	H	H	0	H	H	SMe	Cl	CF ₃
	Me	Me	H	H	0	H	H	SMe	OH	CF ₃
	Me	Me	H	H	0	H	H	SMe	OMe	CF ₃
	Me	Me	H	H	0	H	H	SMe	OEt	CF ₃
	Me	Me	H	H	0	H	H	SMe	OPr-i	CF ₃
1	Me	Me	H	H	0	H	H	SMe	OPr	CF ₃

Me	Me	H	н	0	н	Н	SMe	OBu•t	CF ₃
Me	Me	H	H	0	H	H	SMe	OCH_2Pr-c	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	SMe	OCH ₂ Bu-c	CF_3
Me	Me	H	H	0	H	H	SMe	OCH ₂ Pen-c	CF_3
Me	Me	H	H	0	H	H	SMe	OCH ₂ Hex-c	CF_3
Me	Me	H	H	0	H	H	SMe	OPen-c	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	SMe	OHex-c	$\mathrm{CF_3}$
Me	Me	H	H	0	H	Н	SMe ⁻	OCH_2Ph	CF_3
Me	Me	H	H	0	H	Н	SMe	OPh	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	SMe	$OCHF_2$	CF_3
Me	Me	H	H	0	H	H	SMe	\mathbf{SH}	$\mathbf{CF_3}$
Me	Me	H	H	0	H	Н	SMe	${f SMe}$	CF_3
Me	Me	Н	H	0	H	Н	SMe	SO_2Me	CF_3
Me	Me	н	Н	0	H	H	SMe	SEt	CF_3
Me	Me	н	H	0	H	Н	SMe	$\mathrm{SO}_2\mathrm{Et}$	CF_3
Me	Me	H	H	0	H	H	SMe	SPr-i	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	SMe	SO ₂ Pr-i	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	SMe	SPh	CF_3
Me	Me	H	Η	0	H	H	SMe	$\mathrm{SO_2Ph}$	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	SMe	$SCHF_2$	CF_3
Me	Me	H	H	0	H	H	SMe	SO_2CHF_2	CF_3
Me	Me	H	H.	0	H	H	SMe	$\mathrm{NH_2}$	CF_3
Me	Me	H	H	0	H	H	SMe	NHMe	CF_3
Me	Me	H	H	0	H	H	SMe	NMe_2	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	SMe	NHEt	CF_3
Me	Me	H	H	0	H	H	SMe	NEt_2	$\mathrm{CF_3}$
Me	Me	H	H	0	H	H	SMe	NHPh	$\mathbf{CF_3}$
Me	Me	H	Η	0	H	H	SMe	N(Me)Ph	CF_3
Me	Me	H	H	0	H	H	SMe	CN	CF_3
Me	Me	H	H	0	H	H	SO_2Me	F	CF ₃
Me	Me	H	H	0	Η	H	SO ₂ Me	Cl	CF ₃
Me	Me	H	H	0	H	H	SO_2Me	OH	CF ₃
Me	Me	H	Η	0	H	H	SO_2Me	OMe	CF_3
Me	Me	H	H	0	H	H	SO_2Me	OEt	CF ₃
Me	Me	H	H	0	H	H	SO_2Me	OPr-i	CF_3
Me	Me	H	H	0	H	H	SO_2Me	OPr	CF ₃
Me	Me	H	H	0	H	H	SO_2Me	OBu-t	CF ₃
Me	Me	H	H	0	H	H	SO_2Me	OCH ₂ Pr-c	CF ₃
Me	Me	H	H	0	H	H	SO_2Me	OCH ₂ Bu-c	CF ₃
Me	Me	H	H	0	H	H	SO ₂ Me		CF ₃
Me	Me	H	H	0	H	H	SO_2Me	OCH ₂ Hex·c	CF ₃
Me	Me	H	H	0	H	H	SO_2Me	OPen-c	CF ₃
Me	Me	H	H	0	H	H	SO ₂ Me		CF ₃
Me	Me	H	H	0	H	H	$ SO_2Me $	OCH_2Ph	CF ₃

Me	Me	н	Н	0	н	Н	$ SO_2Me $	OPh	CF_3
Me	Me	H	H	0	H	Н	SO ₂ Me	$OCHF_2$	CF_3
Me	Me	H	H	0	H	H	SO ₂ Me	SH	CF_3
Me	Me	H	H	0	Н	H	SO_2Me	SMe	CF_3
Me	Me	H	H	0	H	H	SO_2Me	SO_2Me	CF_3
Me	Me	H	H	0	H	H	SO_2Me	\mathbf{SEt}	CF_3
Me	Me	H	H	0	H	H	SO ₂ Me	$ m SO_2Et$	CF_3
Me	Me	Н	H	0	H	H	SO ₂ Me	SPr-i	CF_3
Me	Me	H	H	0	H	H	SO_2Me	$\mathrm{SO_2Pr} ext{-}\mathrm{i}$	CF_3
Me	Me	Н	H	0	H	H	SO_2Me	${ t SPh}$	CF_3
Me	Me	Н	Η	0	H	H	SO_2Me	$\mathrm{SO}_2\mathrm{Ph}$	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	SO ₂ Me	$SCHF_2$	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	SO_2Me	SO_2CHF_2	$\mathbf{CF_3}$
Me	Me	Н	H	0	H	H	SO_2Me	NH_2	CF_3
Me	Me	H	H	0	H	H	SO_2Me	NHMe	CF_3
Me	Me	H	H	0	H	H	SO ₂ Me	NMe_2	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	SO_2Me	\mathbf{NHEt}	CF_3
Me	Me	H	H	0	H	H	SO ₂ Me	$\mathbf{NEt_2}$	CF_3
.Me	Me	H	H	0	H	H	SO_2Me	NHPh	CF_3
Me	${f Me}$	H	H	0	H	H	SO_2Me	N(Me)Ph	CF_3
Me	Me	H	Η	0	H	H	SO_2Me	CN	CF_3
Me	Me	H	H	0	H	H	NH ₂	${f F}$	CF_3
Me	Me	H	H	0	H	H	NH_2	Cl	CF_3
Me	Me	H	H	0	H	H	NH_2	OH	CF_3
Me	Me	H	\mathbf{H}	0	H	H	NH_2	\mathbf{OMe}	CF_3
Me	Me	H	H	0	H	H	NH ₂	\mathbf{OEt}	CF_3
Me	Me	H	H	0	H	H	NH_2	OPr-i	CF_3
Me	Me	H	\mathbf{H}	0	H	H	NH ₂	\mathbf{OPr}	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	NH ₂	OBu•t	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	NH ₂	OCH_2Pr -c	CF_3
Me	Me	H	H	0	H	H	NH ₂	OCH ₂ Bu-c	CF_3
Me	Me	H	H	0	H	H	NH ₂	OCH ₂ Pen-c	CF_3
Me	Me	H	H	0	H	H	NH ₂	OCH ₂ Hex·c	CF_3
Me	Me	H	H	0	H	H	NH_2	OPen-c	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	NH_2	OHex-c	CF_3
Me	Me	H	H	0	H	H	NH ₂	OCH_2Ph	CF_3
Me	Me	H	H	0	H	H	NH ₂	OPh	CF_3
Me	Me	H	H	0	H	H	NH ₂	$OCHF_2$	CF_3
Me	Me	H	H	. 0	H	H	NH ₂	SH	CF ₃
Me	Me	H	H	0	H	H	NH ₂	\mathbf{SMe}	CF_3
Me	Me	H	H	0	H	H	NH ₂	SO_2Me	CF_3
Me	Me	H	H	0	H	H	NH ₂	SEt	CF_3
Me	Me	H	H	0	H	H	NH ₂	SO_2Et	CF ₃
Me	Me	H	H	0	H	H	NH ₂	SPr-i	CF_3

1 30	1 3.7.	TT		1 0	Н	H	$\mathrm{NH_2}$	SO ₂ Pr-i	CF_3
Me	Me	H	H H	0	H	H	NH_2	SPh	CF_3
Me	Me Me	H	H	0	H	H	NH_2	SO_2Ph	$\mathbf{CF_3}$
Me Me	Me	H	H	0	H	H	NH_2	SCHF ₂	CF_3
	Me	H	H	0	H	H	NH_2	SO ₂ CHF ₂	CF_3
Me Me	Me	H	H	0	H	H	NH ₂	NH ₂	CF_3
Me	Me	H	H	0	H	H	NH_2	NHMe	CF_3
Me	Me	H	H	0	H	H	NH_2	NMe ₂	$\mathbf{CF_3}$
Me	Me	H	H	0	H	H	NH ₂	NHEt	CF_3
Me	Me	H	H	0	H	H	NH_2	NEt ₂	CF_3
Me	Me	H	H	0	H	H	NH_2	NHPh	CF_3
Me	Me	H	H	0	H	H	NH ₂	N(Me)Ph	CF_3
Me	Me	H	H	0	H	H	NH_2	CN	CF ₃
H	H	H	H	0	H	H	H	OMe	CF ₃
H	H	H	H	0	H	H	H	OEt	CF_3
Me	H	H	H	0	H	H	H	OMe	CF_3
Me	H	H	H	0	H	H	H	OEt	CF_3
Me	H	Me	H	0	H	H	H	OMe	CF_3
Me	H	Me	H	0	H	H	H	OEt	CF_3
Me	Me	H	H	o	Me	H	H	OMe	CF_3
Me	Me	H	H	o	Me	H	H	OEt	CF_3
Me	Me	H	H	o	Et	H	H	OMe	CF_3
Me	Me	H	H	o	Et	H	H	OEt	CF_3
Me	Me	H	H	o	Pr-i	H	H	H	CF_3
Me	Me	H	H	0	Pr-i	H	H	OMe	CF_3
Me	Me	H	H	0	Pr-i	$ \hat{H} $	H	OEt	CF_3
Me	Me	H	H	o	Me	Me	H	OMe	CF_3
Me	Me	H	H	ő	Me	Me	H	OEt	$\mathbf{CF_3}$
Me	Et	H	H	ŏ	H	H	H	OMe	$\mathbf{CF_3}$
Me	Et	H	H	o	H	H	H	OEt	$\mathbf{CF_3}$
Et	Et	H	H	o	H	H	H	OMe	CF_3
Et	Et	H	H	0	H	H	H	\mathbf{OEt}	CF_3
Me	Pr-i	H	H	0	H	H	\mathbf{H}	\mathbf{OMe}	CF_3
Me	Pr-i	H	H	0	H	Н	H	OEt	CF_3
Me	\mathbf{Pr}	H	H	0	H	H	H	\mathbf{OMe}	CF_3
Me	Pr	Н	H	0	Н	H	Н	\mathbf{OEt}	CF_3
Me	Pr-c	H	H	0	H	H	H	\mathbf{OMe}	CF_3
Me	Pr-c	H	H	o	H	H	H	OEt	CF_3
Me	CH ₂ Pr-	н	Н	0	Н	H	H	OMe	CF_3
Me	CH ₂ Pr-	н	Н	0	H	н	Н	OEt	CF_3
L	C	Н]	j	j		•	
	-(CH ₂) ₂ -		H	0	H	H	H	OMe	CF ₃
} -(C	$-(CH_2)_2-$		H	0	H	H	H	OEt	CF_3

-(C	$({ m H}_2)_3$ -	H	Н	0	Н	H	H	OMe	CF_3
	$(H_2)_3$ -	H	H	0	H	H	\mathbf{H}	\mathbf{OEt}	CF_3
-(C	$(H_2)_4$	H	H	0	H	H	\mathbf{H}	OMe	CF_3
-(C	$(H_2)_4$	H	H	0	\mathbf{H}	H	H	\mathbf{OEt}	$\mathrm{CF_3}$
-(C	$({ m H}_2)_5$ -	H	H	0	H	H	\mathbf{H}	OMe	CF_3
-(C	$(H_2)_5$	H	H	0	H	H	\mathbf{H}	\mathbf{OEt}	CF_3
H	·(CH	2)3-	H	0	H	H	H	OMe	CF_3
H	-(CH	2)3-	H	0	H	H	H	\mathbf{OEt}	CF_3
H	-(CH	2)4-	H	0	H	H	H	OMe	CF_3
H	-(CH	₂) ₄ -	H	0	H	H	\mathbf{H}	\mathbf{OEt}	CF_3
H	-(CH	2)5-	H	0	H	H	H	OMe	$\mathbf{CF_3}$
H	-(CH	₂) ₅ -	H	0	Н	H	\mathbf{H}	· OEt	$\mathbf{CF_3}$
H	-(CH	2)6-	H	0	H	H	H	\mathbf{OMe}	CF_3
H	-(CH	-(CH ₂) ₆ -		0	H	H	H	OEt	$ m CF_3$

表 9

						$R^1 \frac{R^2}{C}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	R^4	n	\mathbb{R}^5	R^6	Y1
Me	Me	H	H	2	H	H	Pyridin-2-yl
Me	Me .)	\mathbf{H}	2	H		Pyridin-2-yl 1-oxide
Me	Me	L	H	2	H		Pyridin-4-yl
Me	Me		H	2	H	l .	Pyridin-4-yl 1-oxide
Me	Me	H	H	2	H	ı	1,2,4-Oxadiazol-3-yl
Me	Me	4	H	2	H	3	3-Phenyl-1,2,4-oxadiazol-5-yl
Me	Me	H	H	2	H		3-Benzyl-1,2,4-oxadiazol-5-yl
Me	\mathbf{Me}	H	H	2	\mathbf{H}	H	2-Chlorothiazol-4-yl
Me	Me	H	H	2	H	H	5-Trifluoromethyl-1,3,4-thiadiazol-2-yl
Me	Me	H	H	2	H	1	1,4-Dimethylimidazol-5-yl
Me	Me	H	H	2	H	H	1-Phenyl-4-methoxycarbonyl-1,2,3-triazol-5-yl
Me	Me	H	H	2	H	H	1-Diflluoromethyl-1,2,4-triazol-3-yl
Me	\mathbf{Me}	H	H	2	H	H	1-Diflluoromethyl-1,2,4-triazol-5-yl
Me	Me	H	H	2	\mathbf{H}	H	4-Diflluoromethyl-1,2,4-triazol-3-yl
Me	Me	H	H	2	H	,	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	H	2	H	H	4,6-Diethoxypyrimidin-2-yl
Me	Me	H	H	2	H	H	4,6-Dimethylpyrimidin-2-yl
Me	Me	H	H	2	H	H	4-Chloro-6-methylpyrimidin-2-yl
Me	Me	H	H	2	H		4-Methoxy-6-methylpyrimidin-2-yl
Me	Me	H	H	2	H	H	4-Difluoromethoxy-6-methylpyrimidin-2-yl

						_	
Me	Me	H	\mathbf{H}	2	H	H	4-Phenoxy-6-methylpyrimidin-2-yl
Me	,	н	H	2	H	H	4-Chloro-6-trifluoromethylpyrimidin-2-yl
Me	Me	H	H	2	H	H	4-Methoxy-6-trifluoromethylpyrimidin-2-yl
Me	Me	H	H	2	H	H	4-Difluoromethoxy-6-trifluoromethylpyrimidin-2-yl
Me	Me	H	\mathbf{H}	2	H	н	4-Phenoxy-6-trifluoromethylpyrimidin-2-yl
H	H	H	H	2	H	н	4,6-Dimethoxypyrimidin-2-yl
Me	H	H	H	2	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	H	Me	H	2	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	Н	H	2	Me	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	H	2	Et	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	\mathbf{H}	2	Pr-i	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	H	2	Me	Me	4,6-Dimethoxypyrimidin-2-yl
Me	Et	H	H	2	H	H	4,6-Dimethoxypyrimidin-2-yl
Et	Et	H	\mathbf{H}	2	H	н	4,6-Dimethoxypyrimidin-2-yl
Me	Pr-i	H	H	2	H	Η	4,6-Dimethoxypyrimidin-2-yl
Me	Pr	H	H	2	\mathbf{H}	H	4,6-Dimethoxypyrimidin-2-yl
Me	Pr-c	H	H	2	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	CH ₂ Pr	н	H	2	н	Н	4,6-Dimethoxypyrimidin-2-yl
ivie	c	L		4	11	1.1	4,0 Dimethoxypyrinidii 2 yi
-	$(CH_2)_2$ -	H	\mathbf{H}	2	H	H	4,6-Dimethoxypyrimidin-2-yl
	$(CH_2)_3$ -	H	H	2	H	H	4,6-Dimethoxypyrimidin-2-yl
.	$(CH_2)_4$ -	H	H	. 2	H	H	4,6-Dimethoxypyrimidin-2-yl
<u>_</u>	(CH ₂) ₅ -	H	H	2	H	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH	2)3-	\mathbf{H}	2	\mathbf{H}	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂	2)4-	H	2	H	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂	2)5-	\mathbf{H}	2	H	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂	96-	H	2	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	\mathbf{H}	1	H	H	Pyridin-2-yl
Me	Me	H	H	1	H	H	Pyridin-2-yl 1-oxide
Me	Me	H	H	1	H	H	Pyridin-4-yl
Me	Me	H	H	1	Н	H	Pyridin-4-yl 1-oxide
Me	Me	H	H	1	H	H	1,2,4-Oxadiazol-3-yl
Me	Me	H	H	1	н	H	3-Phenyl-1,2,4-oxadiazol-5-yl
Me	Me	H	H	1	H	H	3-Benzyl-1,2,4-oxadiazol-5-yl
Me	Me	H	H	1	H	H	2-Chlorothiazol-4-yl
Me	Me	H	\mathbf{H}	1	H	H	5-Trifluoromethyl-1,3,4-thiadiazol-2-yl
Me	Me	H	H	1	H	H	1,4-Dimethylimidazol-5-yl
Me	Me	H	H	1	H	H	1-Phenyl-4-methoxycarbonyl-1,2,3-triazol-5-yl
Me	1	H	H	1	H	H	1-Diflluoromethyl-1,2,4-triazol-3-yl
Me		H	H	1	H	H	1-Diflluoromethyl-1,2,4-triazol-5-yl
Me	1		H	1	H	Н	4-Diflluoromethyl-1,2,4-triazol-3-yl
Me			H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
Me			H	1	н	н	4,6-Diethoxypyrimidin-2-yl
Me		1	H	1	H	H	4,6-Dimethylpyrimidin-2-yl
	I MIG	177	17.7	T .	7.7	7.7	4-Chloro-6-methylpyrimidin-2-yl

Me	Me		\mathbf{H}	1	H	H	4-Methoxy-6-methylpyrimidin-2-yl
Me	Me	H	$ \mathbf{H} $	1	H	H	4-Difluoromethoxy-6-methylpyrimidin-2-yl
Me	Me	H	H	1	H	H	4-Phenoxy-6-methylpyrimidin-2-yl
Me	Me	H	H	1	\mathbf{H}	H	4-Chloro-6-trifluoromethylpyrimidin-2-yl
Me	Me	H	H	1	H	H	4-Methoxy-6-trifluoromethylpyrimidin-2-yl
Me	Me	H	\mathbf{H}	1	H	H	4-Difluoromethoxy-6-trifluoromethylpyrimidin-2-yl
Me	Me	H	H	1	H	H	4-Phenoxy-6-trifluoromethylpyrimidin-2-yl
H	H	H	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	H	H	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	H	Me	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	H	1	Me	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	H	1	Et	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	H	1	Pr-i	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	H	1	Me	Me	4,6-Dimethoxypyrimidin-2-yl
Me	$\mathbf{E}t$	H	H	1	H	Н	4,6-Dimethoxypyrimidin-2-yl
Et	Et	H	\mathbf{H}	1	н	H	4,6-Dimethoxypyrimidin-2-yl
Me	Pr-i	H	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	\mathbf{Pr}	H	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	Pr-c	H	\mathbf{H}	1	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	$ m _{c}^{CH_{2}Pr}$	н	н	1	н	H	4,6-Dimethoxypyrimidin-2-yl
-($(CH_2)_2$ -	H	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
-($(\mathrm{CH_2})_3$ -	H	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
-((CH ₂) ₄ -	H	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
-((CH ₂) ₅ -	H	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂)3-	H	1	н	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂)4-	H	1	\mathbf{H}	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂) ₅ -	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂) ₆ -	H	1	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	H	H	0	H	H	Pyridin-2-yl
Me	Me	H	\mathbf{H}	0	H	H	Pyridin-2-yl 1-oxide
Me	Me	H	H	0	H	H	Pyridin-4-yl
Me	Me	H	H	0	н	H	Pyridin-4-yl 1-oxide
Me	Me	H	\mathbf{H}	0	H	H	1,2,4-Oxadiazol-3-yl
Me	Me	H	H	0	Н	H	3-Phenyl-1,2,4-oxadiazol-5-yl
Me	Me	H	H	0	H	H	3-Benzyl-1,2,4-oxadiazol-5-yl
Me	Me	Н	H	0	H	H	2-Chlorothiazol-4-yl
Me	Me	H	H	0	H	H	5-Trifluoromethyl-1,3,4-thiadiazol-2-yl
Me	Me	H	H	0	H	H	1,4-Dimethylimidazol-5-yl
Me	Me	H	H	0	H.	Н	1-Phenyl-4-methoxycarbonyl-1,2,3-triazol-5-yl
Me	Me		H	0	H	H	1-Diflluoromethyl-1,2,4-triazol-3-yl
Me	Me		H	0	Н	н	1-Diflluoromethyl-1,2,4-triazol-5-yl
Me	Me	1	H	0	H	H	4-Diflluoromethyl-1,2,4-triazol-3-yl
Me	Me		H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	i e	H		0	H	H	4,6-Diethoxypyrimidin-2-yl

							_
Me	Me	H	\mathbf{H}	0	H	H	4,6-Dimethylpyrimidin-2-yl
Me	Me	H	H	0	н	H	4-Chloro-6-methylpyrimidin-2-yl
Me	Me	H	H	0	H	H	4-Methoxy-6-methylpyrimidin-2-yl
Me	Me	H	H	0	H	H	4-Difluoromethoxy-6-methylpyrimidin-2-yl
Me	Me	H	H	0	H	H	4-Phenoxy-6-methylpyrimidin-2-yl
Me	Me	H	H	0	H	H	4-Chloro-6-trifluoromethylpyrimidin-2-yl
Me	Me	н	H	0	H	H	4-Methoxy-6-trifluoromethylpyrimidin-2-yl
Me	Me	н	H	0	н	H	4-Difluoromethoxy-6-trifluoromethylpyrimidin-2-yl
Me	Me	н	\mathbf{H}	0	H	H	4-Phenoxy-6-trifluoromethylpyrimidin-2-yl
H	\mathbf{H}	Н	H	0	Н	H	4,6-Dimethoxypyrimidin-2-yl
Me	H	н	H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	H	Me	H	0	н	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	н	\mathbf{H}	0	Me	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	н	H	0	Et	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	Н	\mathbf{H}	0	Pr-i	H	4,6-Dimethoxypyrimidin-2-yl
Me	Me	Н	\mathbf{H}	0	Me	Me	4,6-Dimethoxypyrimidin-2-yl
Me	Et	н	\mathbf{H}	0	H	H	4,6-Dimethoxypyrimidin-2-yl
Et	\mathbf{Et}	н	H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	Pr-i	н	\mathbf{H}	0	Н	H	4,6-Dimethoxypyrimidin-2-yl
Me	Pr	н	\mathbf{H}	0	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	Pr-c	н	H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	CH ₂ Pr-	н	\mathbf{H}	0	\mathbf{H}	н	4,6-Dimethoxypyrimidin-2-yl
	С	11	П	0	п	11	
-($(\mathrm{CH_2})_2$ -	H	\mathbf{H}	0	H	H	4,6-Dimethoxypyrimidin-2-yl
-($(\mathrm{CH_2})_3$ -	H	\mathbf{H}	0	H	H	4,6-Dimethoxypyrimidin-2-yl
-($(CH_2)_4$ -	H	H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
-((CH ₂) ₅ -	H	H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂) ₃ -	H	0	\mathbf{H}	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂)4-	H	0	\mathbf{H}	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂)5-	H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
H	-(CH ₂)6-	H	0	H	H	4,6-Dimethoxypyrimidin-2-yl
Me	Et	H	H	2	H	H	Pirrol-1-yl
Me	Et	H	\mathbf{H}	2	H	H	Oxazol-2-yl
Me	Et	Н	H	2	H	H	Thiazol-2-yl
Me	\mathbf{Et}	Н	H	2	H	H	Thiazol-4-yl
Me	Et	H	H	2	H	H	1,2,3-Thiadiazol-4-yl
Me	Et	H	\mathbf{H}	2	H	H	1,2,3-Thiadiazol-5-yl
Me	Et	H	\mathbf{H}	2	H	H	1,2,4-Thiadiazol-3-yl
Me	Et	H	H	2	H	H	1,2,4-Thiadiazol-5-yl
Me	Et	H	H	. 2	H	H	1,3,4-Thiadiazol-2-yl
Me	Et	H	H	2	H	H	1,3,4-Thiadiazol-5-yl
Me	Et	H	H	2	H		Pyridin-2-yl
Me	Et	H	H	2	H	H	Pyridin-3-yl
Me	Et	H	H	2	H	H	Pyridin-4-yl
Me	Et	H	H	2	H	H	1H-Imidazol-2-yl

Me	\mathbf{Et}	H	H	2	H	H	1H-Imidazol-4-yl
Me	\mathbf{Et}	H	H	2	H	H	1H-Imidazol-5-yl
Me	\mathbf{Et}	H	H	2	H	H	1H-1,3,4-Triazol-2-yl
Me	Et	Н	H	2	H	H	1H-1,3,4-Triazol-5-yl

表10

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
	\mathbb{R}^2 \mathbb{R}^3										
	$R^1 \longrightarrow C^{R^*}$										
	$O_{X} \longrightarrow O_{X} \longrightarrow O_{X} \longrightarrow O_{X}$										
	$N = S(O)_{n} - C - Y$										
R^{1}	R^1 R^2 R^3 R^4 n R^5 R						Y ¹				
Me	Me	H	H	n 2	H	1/	Benzimidazol-2-yl				
Me	Me	H	H	2	H	H	Benzothiophen-2-yl				
Me	Me	H	H	2	H	H	3-Chlorobenzothiophen-2-yl				
Me	Me	H	H	2	H	ī	Benzotriazol-1-yl				
Me	Me	H	H	2	H	H	1-Methylindazol-4-yl				
Me	Me	Ĥ	H	2	H	Н	Benzothiazol-2-yl				
.Me	Me	H	Н	2	Н	Н	Benzothiophen-3-yl				
Me	Me	H	H	2	Н	Н	5-Chlorobenzothiophen-3-yl				
Me	Me	Н	Н	2	Н	H	Benzoxazol-2-yl				
Me	Me	Н	H	2	Н	Н	3-Methylbenzothiophen-2-yl				
Me	Me	Н	Н	2	Н	H	3-Bromobenzothiophen-2-yl				
Me	Me	Н	H	2	H	H	Benzofuran-2-yl				
Me	Me	Н	H	2	H	H	2-Methylbenzofuran-7-yl				
Me	Me	Н	Н	2	H	H	3-Bromobenzofuran-2-yl				
Me	Me	Н	Н	2	Н	H	Benzothiophen-7-yl				
Me	Me	H	H	2	H	H	1-Methylindazol-7-yl				
Me	Me	H	H	2	H	H	1-Difluoromethylindazol-7-yl				
Me	Me	Н	H	2	H	H	3-Methylbenzofuran-2-yl				
Me	Me	H	H	2	Н	H	3-Chloro-1-methylindol-2-yl				
Me	Me	Η	H	1	H	H	Benzimidazol-2-yl				
Me	Me	H	H	1	H	H	Benzothiophen-2-yl				
Me	Me	H	H	1	H	H	3-Chlorobenzothiophen-2-yl				
Me	Me	H	H	1	H	H	Benzotriazol-1-yl				
Me	Me	H	H	1	H	H	1-Methylindazol-4-yl				
Me	Me	H	Н	1	H	H	Benzothiazol-2-yl				
Me	Me	H	H	1	H	H	Benzothiophen-3-yl				
Me	Me	H	H	1	H	H	5-Chlorobenzothiophen-3-yl				
Me	Me	H	H	1	H	H	Benzoxazol-2-yl				
Me	Me	H	H	1	H	H	3-Methylbenzothiophen-2-yl				
Me	Me	H	H	1	Н	H	3-Bromobenzothiophen-2-yl				

Me Me H H 1 H H Benzofuran-2-yl Me Me H H 1 H H 3-Bromobenzofuran-2-yl Me Me H H 1 H H 3-Bromobenzofuran-2-yl Me Me H H 1 H H 1-Methylindazol-7-yl Me Me H H 1 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiazol-1-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H						_		
Me Me H H 1 H H 3-Bromobenzofuran-2-yl Me Me H H 1 H H Benzothiophen-7-yl Me Me H H 1 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Chloro-1-methylindol-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H </td <td>Me</td> <td>Me</td> <td>H</td> <td>H</td> <td>1</td> <td></td> <td></td> <td>•</td>	Me	Me	H	H	1			•
Me Me H H 1 H	Me	Me	Н	H	1	1	1	1
Me Me H H 1 H H 1-Methylindazol-7-yl Me Me H H 1 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiazol-1-yl Me Me H H 0 H H Benzothiazol-1-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H 3-Bromobenzothiophen-3-yl Me Me H H 0 H	Me	Me	Н	•	1	T .	•	1
Me Me H H 1 H H 3-Methylbenzofuran-2-yl Me Me H H H H H B-nzoinidazol-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H<	Me	Me	H	H	1			*
Me Me H H 1 H H 3-Chloro-1-methylindol-2-yl Me Me H H 0 H H Benzimidazol-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H <td>Me</td> <td>Me</td> <td>Н</td> <td>H</td> <td>1</td> <td>1</td> <td>1</td> <td></td>	Me	Me	Н	H	1	1	1	
Me Me H H 0 H H Benzimidazol-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H 3-Methylbenzothiophen-3-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 2-Methylbenzofuran-7-yl Me Me H H 0 H	Me	Me	Н	H	1	Н	1	•
Mc Me H H O H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H H Benzothiazol-1-yl Me Me H H 0 H H H-Methylindazol-4-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H 3-Methylbenzothiophen-3-yl Me Me H H 0 H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H Benzothiophen-2-yl Me Me H H 0 H	Me	Me	H	H	1		t .	· · · · · · · · · · · · · · · · · · ·
Me Me H H 0 H H 3-Chlorobenzothiophen-2-yl Me Me H H 0 H H Benzotriazol-1-yl Me Me H H 0 H H 1-Methylindazol-4-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0	Me	Me	Н	H	0	t	1	•
Me Me H H 0 H H Benzotriazol-1-yl Me Me H H 0 H H 1-Methylindazol-4-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H 3-Methylbenzothiophen-3-yl Me Me H H 0 H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0	Me	Me	Н	H	0		1	-
Me Me H H 0 H H 1-Methylindazol-4-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H Benzoxazol-2-yl Me Me H H 0 H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H <td>Me</td> <td>Me</td> <td>Н</td> <td>H</td> <td>0</td> <td>Н</td> <td>H</td> <td>3-Chlorobenzothiophen-2-yl</td>	Me	Me	Н	H	0	Н	H	3-Chlorobenzothiophen-2-yl
Me Me H H 0 H H Benzothiazol-2-yl Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H 5-Chlorobenzothiophen-3-yl Me Me H H 0 H H Benzoxazol-2-yl Me Me H H 0 H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H Benzostriophen-2-yl Me Me H H 0 H H Benzostriophen-7-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H 3-Bromobenzofuran-7-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 <th< td=""><td>Me</td><td>Me</td><td>Н</td><td>H</td><td>0</td><td>Н</td><td>H</td><td>Benzotriazol-1-yl</td></th<>	Me	Me	Н	H	0	Н	H	Benzotriazol-1-yl
Me Me H H 0 H H Benzothiophen-3-yl Me Me H H 0 H H 5-Chlorobenzothiophen-3-yl Me Me H H 0 H H Benzoxazol-2-yl Me Me H H 0 H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0 H H 2-Methylbenzofuran-2-yl Me Me H H 0 H H Benzothiophen-7-yl Me Me H H 0 H H Benzothiophen-7-yl Me Me H H 0 H H Benzothiophen-7-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0	Me	Me	Н	H	0	Н	H	1-Methylindazol-4-yl
Me Me H H 0 H H 5-Chlorobenzothiophen-3-yl Me Me H H 0 H H Benzoxazol-2-yl Me Me H H 0 H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H 2-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H 2-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H <th< td=""><td>Me</td><td>Me</td><td>Н</td><td>H</td><td>0</td><td>H</td><td>H</td><td>Benzothiazol-2-yl</td></th<>	Me	Me	Н	H	0	H	H	Benzothiazol-2-yl
Me Me H H H H H H H H H H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H 3-Chloro-1-methylindo	Me	Me	Н	H	0	Н	H	Benzothiophen-3-yl
Me Me H H O H H 3-Methylbenzothiophen-2-yl Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0 H H 2-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Et H H <	Me	Me	Н	H	0	H	H	5-Chlorobenzothiophen-3-yl
Me Me H H 0 H H 3-Bromobenzothiophen-2-yl Me Me H H 0 H H Benzofuran-2-yl Me Me H H 0 H H 2-Methylbenzofuran-7-yl Me Me H H 0 H H 3-Bromobenzofuran-7-yl Me Me H H 0 H H 3-Bromobenzofuran-7-yl Me Me H H 0 H H 3-Bromobenzofuran-7-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H 3-Methylbenzoxazol-2-yl Me Et H H 2 <td>Me</td> <td>Me</td> <td>Н</td> <td>H</td> <td>0</td> <td>Н</td> <td>H</td> <td>Benzoxazol-2-yl</td>	Me	Me	Н	H	0	Н	H	Benzoxazol-2-yl
Me Me H H 0 H H Benzofuran-2-yl Me Me H H 0 H H 2-Methylbenzofuran-7-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H Benzothiophen-7-yl Me Me H H 0 H H 1-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H 4-Chlorobenzoxazol-2-yl Me Et H H 2	Me	Me	Н	H	. 0	Н	H	3-Methylbenzothiophen-2-yl
Me Me H H 0 H H 2-Methylbenzofuran-7-yl Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H 4-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H	Me	Me	H	H	0	Н	Н	3-Bromobenzothiophen-2-yl
Me Me H H 0 H H 3-Bromobenzofuran-2-yl Me Me H H 0 H H Benzothiophen-7-yl Me Me H H 0 H H 1-Methylindazol-7-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H 3-Methylbenzoxazol-2-yl Me Et H H 2 H 4-Chlorobenzoxazol-2-yl Me Et H H 2 H 4-Fluorobenzoxazol-2-yl Me Et H 2 H 4-Fluorobenzoxazol-2-yl Me Et H 2 H 4-Methylbenzoxazol-2-yl M	Me	Me	Н	H	0	Н	H	Benzofuran-2-yl
Me Me H H H Benzothiophen-7-yl Me Me H H 0 H H 1-Methylindazol-7-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Be H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H 3-Chloro-1-methylindazol-2-yl Me Et H H 2 H H 4-Chlorobenzorazol-2-yl Me Et H H 2 H H 4-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H	Me	Me	H	H	0	Н	H	2-Methylbenzofuran-7-yl
Me Me H H 0 H H 1-Methylindazol-7-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Me H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H 3-Chloro-1-methylindal-2-yl Me Et H H 2 H H 3-Chloro-1-methylindal-2-yl Me Et H H 2 H H Chlorobenzoxazol-2-yl Me Et H H 2 H H C-Chlorobenzoxazol-2-yl Me Et H H 2 H H 4-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H	Me	Me	Н	H	0	H	H	3-Bromobenzofuran-2-yl
Me Me H H H 0 H H 3-Methylbenzofuran-2-yl Me Et H H 2 H H Benzoxazol-2-yl Me Et H H 2 H H 5-Chlorobenzoxazol-2-yl Me Et H H 2 H H 5-Chlorobenzoxazol-2-yl Me Et H H 2 H H 6-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 4-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl	Me	Me	Н	H	0	H	H	Benzothiophen-7-yl
Me H H H 2 H H Benzoxazol-2-yl Me Et H H 2 H H S-Chloro-1-methylindol-2-yl Me Et H H H 2 H H 5-Chlorobenzoxazol-2-yl Me Et H H H 2 H H 6-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 4-Methylbenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl	Me	Me	Н	H	0	Н	H	1-Methylindazol-7-yl
Me Et H H 2 H H 2-chlorobenzoxazol-2-yl Me Et H H 2 H H 5-chlorobenzoxazol-2-yl Me Et H H 2 H H 5-chlorobenzoxazol-2-yl Me Et H H 2 H H 6-chlorobenzoxazol-2-yl Me Et H H 2 H H 7-chlorobenzoxazol-2-yl Me Et H H 2 H H 7-chlorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 4-Methylbenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl	Me	Me	Н	H	0	н	Ή	3-Methylbenzofuran-2-yl
Me Et H H 2 H H 5-Chlorobenzoxazol-2-yl Me Et H H 2 H H 5-Chlorobenzoxazol-2-yl Me Et H H 2 H H 6-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl	Me	Me	Н	H	0	Н	Н	3-Chloro-1-methylindol-2-yl
Me Et H H 2 H H 5-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 4-Fluorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl	Me	Et	Н	H	2	Н	H	Benzoxazol-2-yl
Me Et H H 2 H H 6-Chlorobenzoxazol-2-yl Me Et H H 2 H H 7-Chlorobenzoxazol-2-yl Me Et H H 2 H H 4-Fluorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl	Me	Et	Н	H	2	H	H	4-Chlorobenzoxazol-2-yl
Me Et H H 2 H H 5-Chlorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 4-Methylbenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl	Me	Et	Н	H	2	Н	Н	5-Chlorobenzoxazol-2-yl
Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 4-Methylbenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl	Me	Et	Н	H	2	H	H	6-Chlorobenzoxazol-2-yl
Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 4-Methylbenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl		Et	H	H	2	H	Н	7-Chlorobenzoxazol-2-yl
Me Et H H 2 H H 5-Fluorobenzoxazol-2-yl Me Et H H 2 H H 6-Fluorobenzoxazol-2-yl Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 4-Methylbenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl		Et	Н	H		H	Н	4-Fluorobenzoxazol-2-yl
Me Et H H 2 H H 7-Fluorobenzoxazol-2-yl Me Et H H 2 H H 4-Methylbenzoxazol-2-yl Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H Benzothiazol-2-yl Me Et H H 2 H H Benzothiazol-2-yl	Me	Et	Н	H	2	H	H	5-Fluorobenzoxazol-2-yl
Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl	Me	Et	Н	H	2	Н	H	6-Fluorobenzoxazol-2-yl
Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 8-methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl	Me	Et	H	H	-2	H	Н	7-Fluorobenzoxazol-2-yl-
Me Et H H 2 H H 5-Methylbenzoxazol-2-yl Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H Benzothiazol-2-yl Me Et H H 2 H H 4-Chlorobenzothiazol-2-yl	ì	Et	Н	H	2	Н	Н	4-Methylbenzoxazol-2-yl
Me Et H H 2 H H 6-Methylbenzoxazol-2-yl Me Et H H 2 H H 7-Methylbenzoxazol-2-yl Me Et H H 2 H H 4-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H Benzothiazol-2-yl Me Et H H 2 H H 4-Chlorobenzothiazol-2-yl	1		Н	H	2	Н	Н	5-Methylbenzoxazol-2-yl
MeEtHH2HH7-Methylbenzoxazol-2-ylMeEtHH2HH4-Methoxybenzoxazol-2-ylMeEtHH2HH5-Methoxybenzoxazol-2-ylMeEtHH2HH6-Methoxybenzoxazol-2-ylMeEtHH2HH7-Methoxybenzoxazol-2-ylMeEtHH2HHBenzothiazol-2-ylMeEtHH2HH4-Chlorobenzothiazol-2-yl		9					t	,
Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 5-Methoxybenzoxazol-2-yl Me Et H H 2 H H 6-Methoxybenzoxazol-2-yl Me Et H H 2 H H 7-Methoxybenzoxazol-2-yl Me Et H H 2 H H Benzothiazol-2-yl Me Et H H 2 H H 4-Chlorobenzothiazol-2-yl	Į.				•		Н	1
MeEtHH2HH5-Methoxybenzoxazol-2-ylMeEtHH2HH6-Methoxybenzoxazol-2-ylMeEtHH2HH7-Methoxybenzoxazol-2-ylMeEtHH2HHBenzothiazol-2-ylMeEtHH2HH4-Chlorobenzothiazol-2-yl	1						I	· · · · · · · · · · · · · · · · · · ·
MeEtHH2HH6-Methoxybenzoxazol-2-ylMeEtHH2HH7-Methoxybenzoxazol-2-ylMeEtHH2HHBenzothiazol-2-ylMeEtHH2HH4-Chlorobenzothiazol-2-yl								
MeEtHH2HH7-Methoxybenzoxazol-2-ylMeEtHH2HHBenzothiazol-2-ylMeEtHH2HH4-Chlorobenzothiazol-2-yl		L				ł		
Me Et H H 2 H H Benzothiazol-2-yl Me Et H H 2 H H 4-Chlorobenzothiazol-2-yl				1	1	\$	1	
Me Et H H 2 H H 4-Chlorobenzothiazol-2-yl	1						B .	•
								· ·
I IVIE EL H H Z TI H D-UNIOTODENZOUNAZOI-Z-VI	Me	Et	H	H	2	H	H	5-Chlorobenzothiazol-2-yl

	Me	Et	H	Н	2	Н	Н	6-Chlorobenzothiazol-2-yl
	Me	Et	Н	H	2	Н	Н	7-Chlorobenzothiazol-2-yl
	Me	Et	Н	H	2	Н	H	4-Fluorobenzothiazol-2-yl
	Me	Et	Н	H	2	Н	Н	5-Fluorobenzothiazol-2-yl
	Me	Et	Н	H	2	H	H	6-Fluorobenzothiazol-2-yl
	Me	Et	Н	H	2	·H	Н	7-Fluorobenzothiazol-2-yl
	Me	Et	Н	H	2	H	H	4-Methylbenzothiazol-2-yl
	Me	Et	H	H	2	Н	H	5-Methylbenzothiazol-2-yl
	Me	Et	Н	H	2	Н	Н	6-Methylbenzothiazol-2-yl
	Me	Et	Н	H	2	Н	Н	7-Methylbenzothiazol-2-yl
	Me	Et	Н	H	2	Н	H	4-Methoxybenzothiazol-2-yl
	Me	Et	Н	H	2	Н	H	5-Methoxybenzothiazol-2-yl
	Me	Et	Н	H	2	H	Н	6-Methoxybenzothiazol-2-yl
	Me	Et	Н	H	2	Н	Н	7-Methoxybenzothiazol-2-yl
	Me	Et	Н	H	2	Н	Н	Qnolin-2-yl
	Me	Et	Н	H	2	Н	Н	Qinolin-6-yl
ļ	Me	Et	Н	H	2	Н	H	Quinoxalin-2-yl
	Me	Et	Н	H	2	Н	H	Benzofuran-2-yl
	Me	Et	Н	Н	2	Н	Н	3-Chlorobenzofuran-2-yl
	Me	Et	Н	Н	2	H	Н	4-Chlorobenzofuran-2-yl
	Me	Et	Н	H	2	Н	Н	5-Chlorobenzofuran-2-yl
	Me	Et	Н	H	2	H	Н	6-Chlorobenzofuran-2-yl
	Me	Et	Н	H	2	H	H	7-Chlorobenzofuran-2-yl
	Me	Et	Н	H	2	H	Н	3-Methylbenzofuran-2-yl
	Me	Et	Н	H	2	Н	H	4-Methylbenzofuran-2-yl
	Me	Et	Н	H	2	H	H	5-Methylbenzofuran-2-yl
	Me	Et	H	H	2	H	Н	6-Methylbenzofuran-2-yl
	Me	Et	Н	H	2	H	Н	7-Methylbenzofuran-2-yl
	Me	Et	H	H	2	H	H	3-Methoxybenzofuran-2-yl
	Me	Et	H	H	2	H	H	4-Methoxybenzofuran-2-yl
Ì	Me	Et	Н	Н	2	Н	H	5-Methoxybenzofuran-2-yl
	Me	Et	Н	H	2	H	Н	6-Methoxybenzofuran-2-yl
	Me	Et	H	H	2	H	Н	7-Methoxybenzofuran-2-yl

一般式 [I] を有する本発明化合物は、以下に示す製造法に従って製造することができるが、これらの方法に限定されるものではない。

<製造法1> 工程1~工程5

(式中、R¹、R²、R³、R⁴、R⁵、R⁶及びYは前記と同じ意味を表し、X¹はハロゲン原子を表し、R¹はC1~C4アルキル基、置換されていてもよいフェニル基又は置換されていてもよいベンジル基を表し、Lはハロゲン原子、C1~C4アルキルスルホニル基、置換されていてもよいフェニルスルホニル基又は置換されていてもよいベンジルスルホニル基等の脱離基を表し、Xは1以上の整数を表す。)

以下、上記製造方法を各工程毎に詳説する。

(工程1)

5

10 一般式 [5] で表されるスルフィド誘導体は、一般式 [1] で表される化合物と、

一般式[2]で示される水硫化ナトリウム水和物とを、溶媒中又は溶媒の非存在下で(好ましくは適当な溶媒中)、塩基の存在下反応させることにより一般式[3]で表されるメルカプタンの塩を反応系内で製造した後、メルカプタンの塩[3]を単離することなく一般式[4]で表されるハロゲン誘導体とを反応させること(場合によってはラジカル発生剤[例えばロンガリット(商品名): CH₂(OH) SO₂ Na・2H₂O等]を添加することができる)によって製造することができる。

5

. 15

20

25

反応温度は、いずれの反応も0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは10 \mathbb{C} \sim 100 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが0.5 時間 \sim 24 時間である。

10 反応に供される試剤の量は、一般式[1]で表される化合物1当量に対して、一般式[2]で表される化合物又は一般式[4]で表される化合物は1~3当量、塩基を使用する場合は、塩基0.5~3当量である。

溶媒としては、例えばジオキサン、テトラヒドロフラン(THF)等のエーテル類、ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類、N,Nージメチルアセトアミド、N,Nージメチルホルムアミド又はNーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド又はスルホラン等の硫黄化合物、ベンゼン、トルエン又はキシレン等の芳香族炭化水素類、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール又はtertーブタノール等のアルコール類、アセトン又は2ーブタノン等のケトン類、アセトニトリル等のニトリル類、水或いはこれらの混合物が挙げられる。

塩基としては、例えば水素化ナトリウム等の金属水素化物、ナトリウムアミド又はリチウムジイソプロピルアミド等のアルカリ金属アミド類、ピリジン、トリエチルアミン又は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基類、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム又は水酸化マグネシウム等のアルカリ土類金属水酸化物、炭酸ナトリウム又は

炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム又は炭酸水素カリウム 等のアルカリ金属重炭酸塩或いはナトリウムメトキシド又はカリウムtertーブト キシド等の金属アルコラートが挙げられる。

(工程2)

10

5 一般式[6]で表されるスルホキシド誘導体は、一般式[5]で表されるスルフィド誘導体と酸化剤とを、適当な溶媒中で反応させることにより製造することができる。

反応温度は、0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは 0 \mathbb{C} 0 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが 1 時間 \mathbb{C} \mathbb{C} 7 \mathbb{C} 時間である。

反応に供される試剤の量は、一般式[5]で表される化合物1当量に対して酸化剤1~3当量である。

溶媒としては、例えばジクロロメタン、クロロホルム、ジクロロエタン、四塩化 炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類、ジオキサ 15 ン、テトラヒドロフラン (THF)、ジメトキシエタン又はジエチルエーテル等の エーテル類、N, Nージメチルアセトアミド、N, Nージメチルホルムアミド又はN ーメチルー2ーピロリジノン等のアミド類、メタノール、エタノール、プロパノー ル、イソプロパノール、ブタノール又はtertーブタノール等のアルコール類、アセ トン又は2ーブタノン等のケトン類、アセトニトリル等のニトリル類、酢酸、水或 20 いはこれらの混合物が挙げられる。

酸化剤としては、例えば、m-クロロ過安息香酸、過ギ酸又は過酢酸等の有機過酸化物、過酸化水素、過マンガン酸カリウム又は過ヨウ素酸ナトリウム等の無機過酸化物が挙げられる。

(工程3)

25 一般式[7]で表されるスルホン誘導体は、一般式[6]で表されるスルホキシ

ド誘導体と酸化剤とを、適当な溶媒中で反応させることにより製造することができる。

反応温度は、0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは 0 \mathbb{C} 0 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが 1 時間である。

反応に供される試剤の量は一般式[6]で表される化合物1当量に対して酸化剤は1~3当量である。

溶媒及び酸化剤としては、工程2と同様なものが挙げられる。

(工程4)

5

15

10 一般式[7]で表されるスルホン誘導体は、適当な溶媒中、一般式[5]で表されるスルフィド誘導体と好適な量の酸化剤により、一般式[6]で表されるスルホキシド誘導体を単離することなく製造することもできる。

反応温度は、0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは 0 \mathbb{C} 0 \mathbb{C} 0 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが 1 時間 \mathbb{C} \mathbb{C} 7 \mathbb{C} 時間である。

反応に供される試剤の量は、一般式[5]で表される化合物1当量に対して酸化剤1~3当量である。

溶媒及び酸化剤としては、工程2と同様なものが挙げられる。

(工程5)

20 一般式[5]で示されるスルフィド誘導体は、一般式[8]で表される化合物と、 一般式[9]で示されるメルカプタン誘導体とを、溶媒中又は溶媒の非存在下で(好 ましくは適当な溶媒中)、塩基の存在下で反応させることにより製造することもで きる。

反応温度は、0 \mathbb{C} から反応系における還流温度までの任意の温度、好ましくは1 0 \mathbb{C} 0 \mathbb{C} 0 \mathbb{C} の温度範囲であり、反応時間は、化合物により異なるが0.5 時間

~24時間である。

反応に供される試剤の量は、一般式[8]で表される化合物1当量に対して、一 般式[9]で表される化合物1~3当量、塩基0.5~3当量である。

溶媒としては、例えばジエチルエーテル、ジメトキシエタン、ジオキサン又はテ トラヒドロフラン(THF)等のエーテル類、ジクロロメタン、クロロホルム、四 5 塩化炭素、ジクロロエタン、クロロベンゼン又はジクロロベンゼン等のハロゲン化 炭化水素類、N, N-ジメチルアセトアミド、N, N-ジメチルホルムアミド又はN ーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド又はスルホラン 等の硫黄化合物、ベンゼン、トルエン又はキシレン等の芳香族炭化水素類、メタノ ール、エタノール、プロパノール、イソプロパノール、ブタノール又はtertーブタ 10 ノール等のアルコール類、アセトン又は2-ブタノン等のケトン類、アセトニトリ ル等のニトリル類、水或いはこれらの混合物が挙げられる。

塩基としては、例えば水素化ナトリウム等の金属水素化物、ナトリウムアミド又 はリチウムジイソプロピルアミド等のアルカリ金属アミド、ピリジン、トリエチル アミン又は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基、 水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウ ム又は水酸化マグネシウム等のアルカリ土類金属水酸化物、炭酸ナトリウム又は炭 酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム又は炭酸水素カリウム等 のアルカリ金属重炭酸塩或いはナトリウムメトキシド又はカリウムtertーブトキ 20 シド等の金属アルコラートが挙げられる。

一般式[8]で示される化合物のうちLがハロゲン原子で表される化合物[12] は、工程6で示される方法により製造することができ、必要に応じ[12]と[1 3]を分離精製して化合物[12]を得る。

(工程6)

15

(式中、X¹、R¹、R²、R³及びR⁴は前記と同じ意味を表す。)

5

15

一般式 [12] 及び [13] で表されるイソオキサゾリン化合物は、一般式 [1 0] で表されるオレフィン誘導体と、一般式[11] で示されるオキシム誘導体と を、溶媒中又は溶媒の非存在下で(好ましくは適当な溶媒中)、塩基の存在下で反 応させることにより製造することができる。但し、R³, R⁴の両者が水素原子の場 合には一般式「12]で表されるイソオキサゾリン化合物が優先的に得られる。

反応温度は、0℃から反応系における還流温度までの任意の温度、好ましくは1 0℃~80℃の温度範囲であり、反応時間は、化合物により異なるが0.5時間~ 10 2週間である。

反応に供される試剤の量は一般式 [11]で表される化合物1当量に対して、一 般式「10]で表される化合物は1~3当量である。

溶媒としては、例えばエチレングリコールジメチルエーテル、エチレングリコー ルジエチルエーテル、ジエチルエーテル、ジオキサン又はテトラヒドロフラン等の エーテル類、ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン 等のハロゲン化炭化水素類、ベンゼン、トルエン又はキシレン等の芳香族炭化水素 類、酢酸エチル又は酢酸ブチル等の酢酸エステル類、水或いはこれらの混合物等が 挙げられる。

塩基としては、例えば水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水 20 酸化物、水酸化カルシウム又は水酸化マグネシウム等のアルカリ土類金属水酸化物、

炭酸ナトリウム又は炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム又は炭酸水素カリウム等のアルカリ金属重炭酸塩、酢酸ナトリウム又は酢酸カリウム等のアルカリ金属酢酸塩、フッ化ナトリウム又はフッ化カリウム等のアルカリ金属のフッ素化塩或いはピリジン、トリエチルアミン又は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基等が挙げられる。

尚、上記製造方法で用いる製造中間体である一般式[10]で表される化合物は、 市販のものを用いるか、又は、ウィッティヒ(Wittig)反応等の公知の反応により 製造することができる。又、一般式[11]で示される化合物は、例えば、Liebigs Annalen der Chemie, 985 (1989) に記載の方法に準じて製造することができる。

10 一般式[1]で表される化合物は、前記に示した一般式[12]で表される化合物から以下の方法により製造することができる。

(式中、X¹、R¹、R²、R³、R⁴及びR⁷は前記と同じ意味を表す。)

15 一般式[15]で表される化合物は前記記載の工程5、一般式[16]で表される化合物は前記記載の工程2、一般式[1]で表される化合物は化合物[15]か

ら前記記載の工程4又は化合物[16]から工程3で示した方法に準じ製造することができる。

溶媒、塩基及び酸化剤としては、工程2、工程3、工程4又は工程5で記載した ものと同じものが挙げられる。

5 一般式[4]で表される化合物中のR⁶が水素原子のものである、一般式[21]で表される化合物は、以下の方法により製造することができる。

(式中、R⁵、X¹及びYは前記と同じ意味を表し、R⁸はアルキル基を表す。)(工程11)

10 一般式 [20] で表される化合物は、化合物 [17]、 [18] 又は [19] と 還元剤とを溶媒中で反応することにより製造することができる。

この反応は通常、反応温度−60~150℃で10分~24時間反応させる。

反応に供される試剤の量は、化合物 [17]、[18] 又は [19] 1当量に対して、還元剤 0.5~2当量が望ましいが、反応の状況に応じて任意に変化させることができる。

還元剤としては、[17]から[20]の製造では、例えば水素化ジイソブチルアルミニウム等の金属水素化物、或いは水素化ホウ素ナトリウム又は水素化リチウムアルミニウム等の金属水素錯化合物が、[18]又は[19]から[20]の製造では、例えば水素化ジイソブチルアルミニウム等の金属水素化物、水素化ホウ素

ナトリウム又は水素化リチウムアルミニウム等の金属水素錯化合物、或いはジボランが挙げられる。

溶媒としては、例えばジエチルエーテル、テトラヒドロフラン又はジオキサン等のエーテル類、ベンゼン又はトルエン等の芳香族炭化水素類、メタノール又はエタノール等のアルコール類が挙げられる。

(工程12)

5

一般式[21]で表される化合物は、化合物[20]とハロゲン化剤とを溶媒中で反応させることにより、製造することができる。

この反応は通常、反応温度−50~100℃で10分~24時間行う。

10 反応に供される試剤の量は、化合物 [20] 1 当量に対して、ハロゲン化剤 1 ~ 3 当量が望ましいが、反応の状況に応じて任意に変化させることができる。

ハロゲン化剤としては、例えば塩化水素、臭化水素、三塩化リン、三臭化リン又は塩化チオニル等が挙げられる。

溶媒としては、例えばジクロロエタン又は四塩化炭素等のハロゲン化炭化水素類、 15 酢酸等の酸類或いはテトラヒドロフラン等のエーテル類が挙げられる。

一般式 [4] で表される化合物は、以下の方法により製造することができる。

(式中、R⁵、R⁶、X¹及びYは前記と同じ意味を表す。)

20 一般式 [4] で表される化合物は、化合物 [22] とハロゲン化剤とを溶媒中、 触媒の存在下又は非存在下で反応させることにより製造することができる。

この反応は通常、反応温度 $30\sim150$ \mathbb{C} で $10分\sim24$ 時間反応させる。 反応に供される試剤の量は、化合物 [22] 1 当量に対して、ハロゲン化剤 $1\sim$ 10 当量が望ましいが、反応の状況に応じて任意に変化させることができる。触媒はの量は $0.01\sim0.5$ 当量である。

ハロゲン化剤としては、例えば臭素又は塩素等のハロゲン、Nーブロモコハク酸イミド等のNーハロコハク酸イミド、或いは過臭化ピリジニウム等のピリジン塩等が挙げられる。

溶媒としては、例えばジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類、N, Nージメチルアセトアミド、N, Nージメチルホルムアミド又はNーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド又はスルホラン等の硫黄化合物、ギ酸、又は酢酸等のカルボン酸類が挙げられる。

触媒としては、例えば過酸化ベンゾイル、 α , α ーアゾビスイソブチロニトリル 又はこれらの混合物が挙げられる。

一般式 [4] で表される化合物中のR⁵及びR⁶が水素原子のものである、一般式 [24] で表される化合物は、以下の方法により製造することができる。

15

20

5

10

(式中、X¹及びYは前記と同じ意味を表す。)

一般式「24]で表される化合物は、Org. Synth., III, 557 (1955)又は

J. Am. Chem. Soc., 72, 2216 (1950) に記載の方法に準じて、化合物 [23]とハロゲン 化水素とホルムアルデヒド又はパラホルムアルデヒドとを溶媒中、ルイス酸存在下 もしくは非存在下で反応させるか、或いはJ. Am. Chem. Soc., 97, 6155 (1975) に記載の 方法に準じて、化合物 [23]とハロゲノメチルエーテルとを溶媒中、ルイス酸存在下、反応させる方法により製造することができる。

この反応は通常、反応温度−40~150℃で10分~24時間行う。

20

反応に供される試剤の量は、化合物 [23] 1当量に対して、ハロゲン化水素、ホルムアルデヒド、パラホルムアルデヒド、ルイス酸又はハロゲノメチルエーテル。1~2当量が望ましいが、反応の状況に応じて任意に変化させることができる。

ルイス酸としては、例えば四塩化チタン、塩化亜鉛、塩化アルミニウム又は臭化 5 亜鉛等が挙げられる。

ハロゲン化水素としては、塩化水素、臭化水素又はヨウ化水素が挙げられる。 溶媒としては、例えばジクロロエタン、四塩化炭素又はクロロホルム等のハロゲン化炭化水素類、ヘキサン又はヘプタン等の脂肪族炭化水素類、ジオキサン又はテトラヒドロフラン等のエーテル類、酢酸等のカルボン酸類、二硫化炭素或いはそれらの混合物が挙げられる。

一般式 [19] で表される化合物中のR⁵が水素原子のものである、一般式 [2 5] で表される化合物は、以下の方法により製造することができる。

15 (式中、Yは前記と同じ意味を表す。)

一般式 [25] で表される化合物は、0rg. Synth., IV, 831 (1963) に記載のビルスマイヤー (Vilsmeier) 法に準じて、化合物 [23] とN, Nージメチルホルムアミドとを塩化ホスホリル、ホスゲン又は塩化チオニル存在下、溶媒中又は溶媒の非存在下で反応させるか、或いはChem. Ber., 93, 88 (1960) に記載の方法に準じて、化合物 [23] とジハロゲノメチルエーテルとを溶媒中、ルイス酸存在下、反応させた後、加水分解させる方法により製造することができる。

この反応は通常、反応温度 $-40\sim150$ \mathbb{C} で $10分\sim24$ 時間行う。 反応に供される試剤の量は、化合物 [23]1 当量に対して、塩化ホスホリル、

ホスゲン、塩化チオニル、N, Nージメチルホルムアミド、ルイス酸又はジハロゲ ノメチルエーテル1~2当量が望ましいが、反応の状況に応じて任意に変化させる ことができる。

ルイス酸としては、例えば四塩化チタン、四塩化スズ、塩化亜鉛、塩化アルミニ 5 ウム又は臭化亜鉛等が挙げられる。

溶媒としては、例えばジクロロエタン、四塩化炭素又はクロロホルム等のハロゲン化炭化水素類、ヘキサン又はヘプタン等の脂肪族炭化水素類、ジオキサン又はテトラヒドロフラン等のエーテル類、酢酸等のカルボン酸類、N,Nージメチルホルムアミド等のアミド類、二硫化炭素或いはそれらの混合物が挙げられる。

10 一般式 [17]、 [18]、 [19] 及び [20] で表される化合物は、以下の 方法により製造することができる。

(式中、 R^5 , R^8 及びYは前記と同じ意味を表し、 X^2 は塩素原子、臭素原子又はヨウ素原子を表す。)

一般式[17]、[18]、[19]又は[20]で表される化合物は、J. Org. Chem., 65, 4618(2000)に記載方法に準じて、化合物[26]とマグネシウム試薬とを溶媒中又は溶媒の非存在下、反応させて化合物[27]を得た後、求電子試薬と反応させるか、或いはSynth. Commun., 24(2), 253(1994)に記載方法に準じて、化合物[26]とnーブチルリチウムとを溶媒中で反応させて化合物[28]を得

た後、求電子試薬と反応させる方法により製造することができる。

この反応は通常、反応温度-100~150℃で10分~24時間行う。

反応に供される試剤の量は、化合物 [26] 1当量に対して、マグネシウム試薬 又はリチウム試薬 $1\sim5$ 当量、求電子試薬 $1\sim5$ 当量が望ましいが、反応の状況に 応じて任意に変化させることができる。

マグネシウム試薬としては、例えば金属マグネシウム、臭化イソプロピルマグネシウム又はジイソプロピルマグネシウム等が挙げられる。

リチウム試薬としては、例えばnーブチルリチウム、secーブチルリチウム又は tertーブチルリチウム等が挙げられる。

10 求電子試薬としては、例えばギ酸エチル、シアノギ酸エチル又は酢酸エチル等の エステル類、アセチルクロリド又はクロロギ酸メチル等の酸ハライド類、N,N-ジメチルホルムアミド等のアミド類、パラホルムアルデヒド等のアルデヒド類、或 いは二酸化炭素が挙げられる。

溶媒としては、例えばジクロロエタン、四塩化炭素又はクロロホルム等のハロゲ 15 ン化炭化水素類、ヘキサン又はペンタン等の脂肪族炭化水素類、ジオキサン又はテ トラヒドロフラン等のエーテル類、或いはそれらの混合物が挙げられる。

一般式[4]、[17]、[18]、[19]、[20]、[22]、[23]、 [26]、[32]又は[34]で表される化合物中、一般式[31]で表される 化合物は、以下の方法により製造することができる。

20

5

(式中、Yは前記と同じ意味を表し、R⁹はアルキル基、ハロアルキル基、シクロアルキル基、シクロアルキルアルキル基、アルコキシカルボニルアルキル基、置換

されていてもよいベンジル基、置換されていてもよいヘテロ環アルキル基、アルケニル基、アルキニル基、アルキルスルホニル基、ハロアルキルスルホニル基、置換されていてもよい方番族ヘテロ環基、置換されていてもよいフェニルスルホニル基、アシル基、ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル 基又は置換されていてもよいベンゾイル基を表し、L¹はハロゲン原子、C1〜C4アルキルスルホナート基、C1〜C4アルキルスルホニル基、置換されていてもよいベンジルスルホニル基、置換されていてもよいフェニルスルホナート基又は置換されていてもよいベンジルスルホナート基等の脱離基を表す。但し、Rºがハロアルキル基の場合は、L¹はハロアルキル化して残ったハロゲン原子より反応性の高い 脱離基を表す。例えばCHF2基の場合は塩素原子又は臭素原子を表し、CH2CF3基の場合は塩素原子、臭素原子、pートルエンスルホニルオキシ基又はメチルスルホニルオキシ基等を表す。)

一般式[31]で表される化合物は、化合物[29]と化合物[30]とを溶媒中、塩基存在下で反応させることにより製造することができる。

15 この反応は通常、反応温度0~120℃で10分~24時間行う。

塩基としては、例えば炭酸ナトリウム又は炭酸カリウム等のアルカリ金属炭酸塩、水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物、水素化カリウム又は水素化ナトリウム等アルカリ金属水素化物、ナトリウムエトキシド又はナトリウムメトキシド等のアルカリ金属アルコラート、或いは1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基が挙げられる。

溶媒としては例えばジクロロメタン又はクロロホルム等のハロゲン化炭化水素 類、ジエチルエーテル又はテトラヒドロフラン等のエーテル類、ベンゼン又はトル 25 エン等の芳香族炭化水素類、ヘキサン又はヘプタン等の脂肪族炭化水素類、アセト ン又はメチルイソブチルケトン等のケトン類、酢酸エチル又は酢酸メチル等のエステル類、Nーメチルピロリドン又はN, Nージメチルホルムアミド等のアミド類、ジメチルスルホキシド又はスルホラン等の硫黄化合物、アセトニトリル等のニトリル類、或いはそれらの混合物が挙げられる。

一般式[4]、[17]、[18]、[19]、[20]、[22]、[23]、[26]、[29]又は[31]で表される化合物中、一般式[34]で表される化合物は、以下の方法により製造することができる。

(式中、L¹は前記と同じ意味を表し、R¹ºはアルキル基、前記と同じ意味の置換基 10 群βより選択される任意の基でモノ置換されたアルキル基、ハロアルキル基、シク ロアルキル基、アルケニル基、アルキニル基、アルキルスルフィニル基、アルキル スルホニル基、前記と同じ意味の置換基群γより選択される任意の基でモノ置換さ れたアルキルスルホニル基、ハロアルキルスルホニル基、置換されていてもよいフ エニル基、置換されていてもよい芳香族へテロ環基、置換されていてもよいフェニ 15 ルスルホニル基、置換されていてもよい芳香族へテロ環スルホニル基、アシル基、 ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換さ れていてもよいベンゾイル基、アルコキシカルボニル基、置換されていてもよいベ ンジルオキシカルボニル基、置換されていてもよいフェノキシカルボニル基、カル バモイル基 (該基の窒素原子は同一又は異なって、アルキル基又は置換されていて 20 もよいフェニル基で置換されていてもよい)を表す。この場合、ピラゾール環の炭 素原子は、前記と同じ意味の置換基群 α より選択される、 $1\sim2$ 個の同一又は相異 なる基で置換されていてもよい。)

一般式[34]で表される化合物は、化合物[32]と化合物[33]とを溶媒中、塩基存在下で反応させることにより製造することができる。

この反応は通常、反応温度 $0 \sim 120$ \mathbb{C} で $10分 \sim 24$ 時間反応行う。反応に供される試剤の量は、化合物 [32] 1 当量に対して化合物 [33] は $1 \sim 20$ 当量、塩基は $1 \sim 3$ 当量である。

塩基及び溶媒としては、例えば一般式[29]から一般式[31]の製造と同様なものが挙げられる。

Yにトリフルオロメチル基を導入する方法として、J. Chem. Soc. Perkin Trans. 1, 8, 2293-2299 (1990)、J. Fluorine Chem., 50(3), 411-426 (1990)、

5

25

- J. Chem. Soc. Chem. Commun., 18, 1389-1391 (1993), J. Chem. Soc. Chem. Commun., 1, 53-54 (1992), Chem. Lett., 1719-1720 (1981), Chem. Pharm. Bull., 38(9), 2446-2458 (1990), J. Chem. Soc. Perkin Trans. 1, 921-926 (1988), Heterocycles, 37(2), 775-782 (1994), Tetrahedron Lett., 30(16), 2133-2136 (1989), J. Chem. Soc. Perkin Trans. 1, 2755-2761 (1980), Heterocycles, 22(1), 117-124 (1984),
- Eur. J. Med. Chem. Chim. Ther., 24, 249-258 (1989), Acta Chem. Scand. Ser. B, 38(6), 505-508 (1984), J. Fluorine Chem., 21, 495-514 (1982), J. Chem. Soc. Chem. Commun., 10, 638-639 (1988), J. Fluorine Chem., 67(1), 5-6 (1994), J. Heterocycl. Chem., 31(6), 1413-1416 (1994), Chem. Heterocycl. Compd., 30(5), 576-578 (1994), J. Fluorine Chem., 78(2), 177-182 (1996), J. Heterocycl. Chem.,
- 20 34(2), 551-556 (1997)、Tetrahedron, 55(52),15067-15070 (1999)、Synthesis, 11,932-933 (1980)に記載の方法又は準じた方法等が挙げられる

又、一般式 [4]、 [17]、 [18]、 [19]、 [20]、 [21]、 [22]、 [23]、 [24]、 [25]、 [26]、 [29] 及び [31] は、 Yがフリル基の場合はMethoden der Organischen Chemie, E6a, 16-185 (1994)、 Yがチェニル基の場合はMethoden der Organischen Chemie, E6a, 186-555(1994)、

Yがピロリル基の場合はMethoden der Organischen Chemie, E6 a , 556-798(1994)、 Yがピラゾリル基の場合はMethoden der Organischen Chemie, E8b,399ー 763(1994)、特開平2000-219679号公報、Yがイソキサゾリル基の場合はMethoden der Organischen Chemie, E8a, 45-225(1993)、Yがイソチアゾリル基の場合は Methoden der Organischen Chemie, E8a, 668-798(1993)、Yがオキサゾリル基の場 5 合はMethoden der Organischen Chemie, E8a, 891-1019(1993)、Yがチアゾリル基 の場合はMethoden der Organischen Chemie, E8b,1-398(1994)、Yがイミダゾリ ル基の場合はMethoden der Organischen Chemie, E8 c,1-215(1994)、Yがピリジ ル基の場合はMethoden der Organischen Chemie, E7a, 286-686 (1992)、Yがピリ ダジニル基の場合はMethoden der Organischen Chemie, E9a, 557ー682(1997)、Yが 10 ピリミジニル基の場合はMethoden der Organischen Chemie, E9 b / 1, 1 ー 249(1998)、Yがピラジニル基の場合はMethoden der Organischen Chemie, E9 b/ 1,250-372(1998)、Yがトリアジニル基の場合はMethoden der Organischen Chemie,E9c,530-796(1998)、Yがトリアゾリル基の場合はMethoden der Organischen Chemie, E8d, 305-405、479-598 (1994)、Yがオキサジアゾリル基の 15 場合はMethoden der Organischen Chemie, E8c, 397-818(1994)、Yがチアジアゾリ ル基の場合はMethoden der Organischen Chemie, E8d, 59-304(1994)、Yがベンゾ フリル基の場合はMethoden der Organischen Chemie, E6b1, 33-216 (1994)、国際 特許出願公開公報WO-1997/29105号、Yがベンゾチエニル基の場合はMethoden der Organischen Chemie E6b1,217-322 (1994)、Yがインドリル基の場合はMethoden 20 der Organischen Chemie, E6b1, 546-848 (1994), Methoden der Organischen Chemie, E6b2, 849-1336 (1994)、国際特許出願公開公報WO-1997/42188-A1号、Yが ベンゾオキサゾリル基の場合はMethoden der Organischen Chemie, E8a, 1020-1194 (1993)、Yがベンゾチアゾリル基の場合はMethoden der Organischen Chemie, E8b,865-1062 (1994)、Yがベンゾイミダゾリル基の場合はMethoden der Or-25

10

15

ganischen Chemie, E8c, 216-391(1994)、 Yがベンゾイソキサゾリル基の場合は Methoden der Organischen Chemie, E8a, 226-348 (1993)、 Yがベンゾイソチア ゾリル基の場合はMethoden der Organischen Chemie, E8a, 799-852 (1993)、 Yがインダゾリル基の場合はMethoden der Organischen Chemie, E8b, 764-864(1994)、 Yがキノリル基の場合はMethoden der Organischen Chemie, E7a, 290-570(1991)、 Yがインキノリル基の場合はMethoden der Organischen Chemie, E7a, 571-758(1991)、 Yがフサラジニル基の場合はMethoden der Organischen Chemie, E9a, 744-789(1997)、 Yがキノキサリニル基の場合はMethoden der Organischen Chemie, E9b/2, 93-265 (1998)、 Yがキナゾリニル基の場合はMethoden der Organischen Chemie, E9b/2, 1-192 (1998)、 Yがシンノリニル基の場合は Methoden der Organischen Chemie, E9a, 683-743(1997)、 又、 Yがベンゾトリアゾリル基の場合はMethoden der Organischen Chemie, E9a, 683-743(1997)、 又、 Yがベンゾトリアゾリル基の場合はMethoden der Organischen Chemie, E8d, 406-478(1994) 記載の方法又はそれらに準じた方法等で製造することができる。

<製造法2>

(式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 及び R^6 は前記と同じ意味を表す。この場合、ピラゾール環の炭素原子は、前記と同じ意味の置換基群 α より選択される、 $1\sim 2$ 個の同一又は相異なる基で置換されていてもよい。)

20 一般式[36]で表される本発明化合物は、製造法1により製造することができる本発明化合物[35]と酸とを溶媒中で反応させることにより、製造することができる。

この反応は通常、反応温度0~120℃で10分~24時間行う。

反応に供される試剤の量は、化合物 [35] 1 当量に対して、酸 $1\sim1$ 0 当量が望ましいが、反応の状況に応じて任意に変化させることができる。

酸としては、例えば塩酸、臭化水素酸、トリフルオロ酢酸等が挙げられる。

溶媒としては、例えばジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類、N,Nージメチルアセトアミド、N,Nージメチルホルムアミド又はNーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド又はスルホラン等の硫黄化合物、ギ酸又は酢酸等のカルボン酸類或いは水が挙げられる。

10 <製造法3>

5

15

$$R^{1}$$
 R^{2} R^{3} R^{4} R^{6} R^{5} N R^{10} N R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

(式中、n、 L^1 、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 及び R^{10} は前記と同じ意味を表す。 この場合、ピラゾール環の炭素原子は、前記と同じ意味の置換基群 α より選択される、 $1\sim2$ 個の同一又は相異なる基で置換されていてもよい。)

一般式[37]で表される本発明化合物は、本発明化合物[36]と一般式[3 3]で表される化合物とを溶媒中、塩基存在下に反応させることにより製造することができる。

反応に供される試剤の量は、一般式 [36] で表される化合物 1 当量に対して、 20 一般式 [33] で表される化合物は $1\sim3$ 当量であり、塩基は、 $1\sim3$ 当量である。 溶媒としては、例えばジオキサン又はテトラヒドロフラン(THF)等のエーテ

ル類、ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハ

ロゲン化炭化水素類、N, N-ジメチルアセトアミド、N, N-ジメチルホルムアミド又はN-メチルー2-ピロリジノン等のアミド類、ジメチルスルホキシド又はスルホラン等の硫黄化合物、ベンゼン、トルエン又はキシレン等の芳香族炭化水素類、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール又はtertーブタノール等のアルコール類、アセトン又は2-ブタノン等のケトン類、アセトニトリル等のニトリル類、水或いはこれらの混合物が挙げられる。

塩基としては、例えば水素化ナトリウム等の金属水素化物、ナトリウムアミド又はリチウムジイソプロピルアミド等のアルカリ金属アミド類、ピリジン、トリエチルアミン又は1,8ージアザビシクロ[5.4.0]ー7ーウンデセン等の有機塩基類、水酸化ナトリウム又は水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム又は水酸化マグネシウム等のアルカリ土類金属水酸化物、炭酸ナトリウム又は炭酸カリウム等のアルカリ金属炭酸塩類、炭酸水素ナトリウム又は炭酸水素カリウム等のアルカリ金属炭酸塩類、炭酸水素ナトリウム又は炭酸水素カリウム等のアルカリ金属重炭酸塩、或いはナトリウムメトキシド又はカリウムtertーブトキシド等の金属アルコラート等が挙げられる。

15 <製造法4>

5

10

10

15

$$R^{12}$$
-OH [39] 塩基 R^{1}

(式中、R¹、R²、R³、R⁴、R⁵及びR⁶は前記と同じ意味を表し、R¹¹は水素又は前記と同じ意味の置換基群αを表し、X³は塩素原子、フッ素原子、アルキルスルホニル基又は置換されていてもよいベンジルスルホニル基を表し、R¹²はアルキル基、ハロアルキル基、シクロアルキル基、シクロアルキルアルキル基、アルケニル基、アルキニル基、置換されていてもよいフェニル基、置換されていてもよい芳香族へテロ環基、アルコキシカルボニルアルキル基、置換されていてもよいヘテロ環アルキル基、又は置換されていてもよいベンジル基を表し、R¹³はアルキル基、ハロアルキル基、置換されていてもよいベンジル基を表し、R¹³なアルコキシカルボニルアルキル基又は置換されていてもよいベンジル基を表し、R¹⁴及びR¹⁵な同一又は異なって、水素原子、アルキル基、置換されていてもよいベンジル基と表し、R¹⁴及びR¹⁵な同一又は異なって、水素原子、アルキル基、置換されていてもよいベンジルカルボニル基、アシル基、ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルスルホニル基又

は置換されていてもよいフェニルスルホニル基を表し、Z は酸素原子、イオウ原子、 $N=CR^{11a}$ 、 $CR^{11a}=N$ 、 $CR^{11a}=CR^{11b}$ 又は $N-R^{16}$ を表し、 R^{16} は水素原子又は前記と同じ意味の R^{10} を表し、 R^{11a} 、 R^{11b} は R^{11} と同じ意味を表す。)

一般式[40]、一般式[42]又は一般式[44]で表される本発明化合物は、 5 一般式[38]で表される本発明化合物とそれぞれ化合物[39]、化合物[41] 又は化合物[43]とを無溶媒又は溶媒中、必要に応じ塩基存在下に反応させることにより製造することができる。

この反応は通常、反応温度20~200℃、好ましくは30~180℃で10分~48時間、必要に応じ加圧下で行う。

10 反応に供される試剤の量は、化合物 [38] 1当量に対して、化合物 [39]、化合物 [41] 又は化合物 [43] は1~20当量である。必要に応じて使用される塩基としては、例えば水酸化カリウム又は水酸化ナトリウム等のアルカリ金属水酸化物、水素化カリウム又は水素化ナトリウム等アルカリ金属水素化物、ナトリウムエトキシド又はナトリウムメトキシド等のアルカリ金属アルコラート、1,8-15 ジアザビシクロ [5.4.0] -7-ウンデセン等の有機塩基が挙げられる。

溶媒としては例えばクロロホルム等のハロゲン化炭化水素類、ジエチルエーテル 又はテトラヒドロフラン等のエーテル類、ベンゼン又はトルエン等の芳香族炭化水 素類、ヘキサン又はヘプタン等の脂肪族炭化水素類、アセトン又はメチルイソブチ ルケトン等のケトン類、酢酸エチル等のエステル類、Nーメチルピロリドン又はN,

20 Nージメチルホルムアミド等のアミド類、ジメチルスルホキシド又はスルホラン等 の硫黄化合物、アセトニトリル或いはそれらの混合物が挙げられる。

<製造法5>

(式中、R¹、R²、R³、R⁴、R⁵、R⁶、R⁸、R¹¹及びZは前記と同じ意味を表す。) 一般式[46]で表される本発明化合物は、本発明化合物[45]と酸とを溶媒 中で反応させることにより、製造することができる。

この反応は通常、反応温度0~120℃で10分~24時間行う。

反応に供される試剤の量は、化合物 [45] 1 当量に対して、酸1~10 当量が 望ましいが、反応の状況に応じて任意に変化させることができる。

酸及び溶媒としては、製造法2と同様なものが挙げられる。

10 <製造法6>

5

$$R^{2}$$
 R^{3} R^{4} R^{6} R^{9} - L^{1} R^{2} R^{3} R^{4} R^{6} R^{0} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{2} R^{3} R^{4} R^{6} R^{6} R^{1} R^{2} R^{3} R^{4} R^{6} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5}

(式中、Y、R¹、R²、R³、R⁴、R⁵、R⁶、R⁶及びL¹は前記と同じ意味を表す。 この場合、Yは前記と同じ意味の置換基群 α より選択される、 $1\sim5$ 個までの同一 又は相異なる基で置換されていてもよい。) 15

一般式「48]で表される本発明化合物は、本発明化合物「47]と化合物[3 0]とを溶媒中、塩基存在下に反応させることにより、製造することができる。 この反応は通常、反応温度0~150℃で10分~24時間行う。

反応に供される試剤の量は、化合物 [47] 1当量に対して、酸1~1.2当量が望ましいが、反応の状況に応じて任意に変化させることができる。

塩基及び溶媒としては、製造法3と同様なものが挙げられる。

<製造法7>

5

10

$$R^{2}$$
 R^{3} R^{4} R^{6} R^{1} R^{5} R^{2} R^{3} R^{4} R^{6} R^{1} R^{5} R^{5} R^{5} R^{6} R^{1} R^{5} R^{5} R^{5} R^{5}

(式中、Y、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 及び R^6 は前記と同じ意味を表し、 R^{17} はアルキル基、置換されていてもよいベンジル基又は置換されていてもよいフェニル基を表す。この場合、Yは前記と同じ意味の置換基群 α より選択される、 $1\sim5$ 個までの同一又は相異なる基で置換されていてもよい。)

一般式[50]で表される本発明化合物は、本発明化合物[49]を水又は水と混合した溶媒中、塩基存在下又は非存在下に加水分解させることにより、製造することができる。

この反応は通常、反応温度0~100℃で10分~24時間行う。

15 反応に供される試剤の量は、化合物 [49] 1当量に対して、塩基を使用する場合 1~2当量が望ましいが、反応の状況に応じて任意に変化させることができる。 塩基としては、例えば炭酸カリウム、水素化ナトリウム又は水酸化ナトリウム等の無機塩基、1,8-ジアザビシクロ [5.4.0] -7-ウンデセン等の有機塩基が挙げられる。

20 水と混合する溶媒としては、例えばメタノール又はエタノール等のアルコール類、 テトラヒドロフラン等のエーテル類、アセトン又はメチルイソブチルケトン等のケトン類、N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド又は スルホラン等の硫黄化合物、アセトニトリル或いはそれらの混合物が挙げられる。 <製造法8>

$$R^2$$
 R^3 R^4 R^6 R^6 R^5 R^5 R^5 R^5 R^5 R^6 R^8

5 (式中、Y、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 及び R^8 は前記と同じ意味を表し、 R^{18} は アルキル基を表す。この場合、Yは前記と同じ意味の置換基群 α より選択される、 $1\sim5$ 個までの同一又は相異なる基で置換されていてもよい。)

一般式 [53] で表される本発明化合物は、本発明化合物 [51] と化合物 [52] とを溶媒中、塩基存在下に反応させることにより、製造することができる。

10 この反応は通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、化合物 [51] 1当量に対して、化合物 [52] の 塩酸塩又は硫酸塩 $1\sim5$ 当量、塩基 $1\sim1$ 0 当量が望ましいが、反応の状況に応じ て任意に変化させることができる。

塩基としては、例えば炭酸カリウム又は炭酸ナトリウム等の金属炭酸塩類、酢酸 カリウム又は酢酸ナトリウム等の金属酢酸塩類、トリエチルアミン、ジメチルアミン又は1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機塩基が挙げられる。

溶媒としては、例えばメタノール、エタノール等のアルコール類、テトラヒドロフラン等のエーテル類、N, Nージメチルホルムアミド等のアミド類、水或いはそれらの混合物が挙げられる。

<製造法9>

20

10

(式中、Y、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 及び R^6 は前記と同じ意味を表し、 R^{19} 及び R^{20} は、各々、水素原子又はアルキル基を表す。この場合、Yは前記と同じ意味の置換基群 α より選択される、 $1\sim 5$ 個までの同一又は相異なる基で置換されていてもよい。)

一般式[57]で表される本発明化合物は、本発明化合物[50]と塩化チオニル[54]とを溶媒中又は無溶媒中で反応させて化合物[55]を製造した後、化合物[55]と化合物[56]とを溶媒中又は無溶媒中で反応させることにより、製造することができる。

[50]から[55]の反応は、通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、化合物 [50] 1 当量に対して、塩化チオニル [54] $1\sim100$ 当量が望ましいが、反応の状況に応じて任意に変化させることがで 15 きる。

溶媒としては例えばジクロロメタン又はクロロホルム等のハロゲン化炭化水素 類、ジエチルエーテル又はテトラヒドロフラン等のエーテル類、ベンゼン又はトル エン等の芳香族炭化水素類が挙げられる。

[55]から[57]の反応は、通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、化合物 [55] 1当量に対して、化合物 [56] は 1~100当量が望ましいが、反応の状況に応じて任意に変化させることができる。 溶媒としては例えば [50] から [55] の反応と同様なものが挙げられる。 <製造法10>

10 (式中、Z、R¹、R²、R³、R⁴、R⁵、R⁰、Rⁿ及びX³は前記と同じ意味を表す。)
 一般式[59]で表される本発明化合物は、本発明化合物[38]と化合物[5
 8]とを溶媒中で反応させることにより、製造することができる。

この反応は通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、化合物[38]1当量に対して、化合物[58]は 15 1~2当量が望ましいが、反応の状況に応じて任意に変化させることができる。

溶媒としては、例えばジオキサン又はテトラヒドロフラン(THF)等のエーテル類、ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類、N,Nージメチルアセトアミド、N,Nージメチルホルムアミド又はNーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド又はスルホラン等の硫黄化合物、アセトン又は2ーブタノン等のケトン類、アセトニトリル等のニトリル類、水或いはこれらの混合物が挙げられる。

<製造法11>

20

.20

$$R^{2}$$
 R^{3} R^{4} R^{6} R^{6} R^{21} R^{2

(式中、Y、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 及び R^6 は前記と同じ意味を表し、 R^2 はアルキル基、ハロアルキル基、シクロアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アルコキシカルボニルアルキル基、置換されていてもよいヘテロアルキル基、又は置換されていてもよいベンジル基を表す。この場合、Yは前記と同じ意味の置換基群 α より選択される、 $1\sim5$ 個までの同一又は相異なる基で置換されていてもよい。)

一般式[61]で表される本発明化合物は、本発明化合物[47]と化合物[6 10 0]とをアゾ化合物とトリフェニルホスフィンの存在下、溶媒中で反応させる公知 の方法(Synthesis, 1-28(1981)) に準じて製造することができる。

この反応は通常、反応温度0~100℃で10分~24時間行う。

反応に供される試剤の量は、化合物 [47] 1 当量に対して、化合物 [60] 1 ~1.5 当量、アゾ化合物 1~1.5 当量、トリフェニルホスフィン1~1.5 当量 が望ましいが、反応の状況に応じて任意に変化させることができる。

溶媒としては、例えばジオキサン又はテトラヒドロフラン(THF)等のエーテル類、ジクロロエタン、四塩化炭素、クロロベンゼン又はジクロロベンゼン等のハロゲン化炭化水素類、N,Nージメチルアセトアミド、N,Nージメチルホルムアミド又はNーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド又はスルホラン等の硫黄化合物、ベンゼン、トルエン又はキシレン等の芳香族炭化水素類、アセトニトリル或いはこれらの混合物等が挙げられる。

アゾ化合物としては、例えばアゾジカルボン酸ジエチル又はアゾジカルボン酸ジ

イソプロピル等が挙げられる。

<製造法12>

(式中、X³、n、R¹、R²、R³、R⁴、R⁵、R⁶及びZは前記と同じ意味を表し、m 5 は1~4の整数を表す。この場合、ピラゾール環の3位の炭素原子は、前記と同じ 意味の置換基群αより選択される基で置換されていてもよい。)

一般式 [63] で表される本発明化合物は、本発明化合物 [62] を塩基存在下 溶媒中で反応させることにより、製造することができる。

10 この反応は通常、反応温度0~120℃で10分~24時間行う。

反応に供される試剤の量は、一般式 [62]で表される化合物1当量に対して、 塩基1~3当量が望ましいが、反応の状況に応じて任意に変化させることができる。 塩基及び溶媒としては、製造法3と同様なものが挙げられる。

尚、製造法2及び製造法4~11記載のスルフィド化合物は、製造法1記載の方 15 法で酸化することによりスルホキシド体及びスルホン化合物を製造することがで きる。更に、製造法2及び製造法4~11に記載されたスルフィド化合物の置換基 YがC1~C10アルキルチオ基、置換基群γより選択される任意の基でモノ置換さ れたC1~C10アルキルチオ基又はC1~C4ハロアルキルチオ基で置換されている 場合、製造法1記載の方法に準じて、前記スルフィド化合物に対して等量から過剰 20 等量の酸化剤を加えることにより、置換基Y上の置換基 (C1~C10アルキルチオ 基、置換基群γより選択される任意の基でモノ置換された C1~ C10アルキルチオ 基又はC1~C4ハロアルキルチオ基)も同時に酸化され、これらの置換基のスルホ キシド体及びスルホン化合物を製造することができる。

次に、実施例をあげて本発明化合物の製造法、製剤法及び用途を具体的に説明する。尚、本発明化合物の製造中間体の製造法も併せて記載する。

<実施例1>

3-(5-クロロ-1-フェニル-3-トリフルオロメチル-1H-ピラゾール
 5 -4-イルメチルチオ) -5,5-ジメチル-2-イソオキサゾリン(本発明化合物番号3-0001)の製造

5,5ージメチル-3ーメチルスルホニルー2ーイソオキサゾリン2.3g(13.1ミリモル)のN,Nージメチルホルムアミド20ml溶液に、水硫化ナトリウム水和物2.1g(純度70%、26.2ミリモル)を加え2時間攪拌した。その後、無水10 炭酸カリウム1.8g(13.1ミリモル)、ロンガリット2.0g(13.1ミリモル)及び4ーブロモメチルー5ークロロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾール3.6g(10.5ミリモル)を加え、更に室温で15時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、白色結晶(融点89~90℃)の3ー(5ークロロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5,5ージメチルー2ーイソオキサゾリン2.7g(収率65.5%)を得た。

 1 H-NMR (CDC1₃/TMS, δ (ppm)) : 7.55-7.50(5H, m), 4.33(2H, s), 2.83(2H, s),

20 1.45 (6H, s)

<実施例2>

25 3-(5-クロロ-1-フェニル-3-トリフルオロメチル-1H-ピラゾール

-4- (1) - (1)

10 ¹H-NMR (CDCl₃/TMS, δ (ppm)): 7.60-7.51 (5H, m), 4.73 (2H, s), 3.14 (2H, s), 1.53 (6H, s)

<実施例3>

3-(5-クロロ-1-メチル-3-フェニル-1H-ピラゾール-4-イルメ チルスルフィニル)-5,5-ジメチル-2-イソオキサゾリン(本発明化合物番 15 号3-0003)の製造

3ー(5ークロロー1ーメチルー3ーフェニルー1Hーピラゾールー4ーイルメチルチオ) -5,5ージメチルー2ーイソオキサゾリン0.85g(2.53ミリモル)のクロロホルム30ml溶液に、氷冷下、mークロロ過安息香酸0.87g(純度70%、3.54ミリモル)を加え、室温で1時間攪拌した。反応終了後、反応溶20 液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、透明アメ状物質の3ー(5ークロロー1ーメチルー3ーフェニルー1Hーピラゾールー4ーイルメチルス25 ルフィニル) -5,5ージメチルー2ーイソオキサゾリン0.48g(収率53.

WO 02/062770

187

9%)を得た。

10

15

25

 1 H-NMR (CDC1 $_{3}$ /TMS, δ (ppm)): 7.63-7.60 (2H, m), 7.48-7.37 (3H, m), 4.29 (2H, q), 3.91 (3H, s), 3.12 (1H, d), 2.79 (1H, d), 1.41 (3H, s), 1.35 (3H, s) < 実施例 4 >

5 5,5ージメチルー3ー(5ーフルオロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー 2ーイソオキサゾリン (本発明化合物番号3-0021) の製造

5,5ージメチルー3ーメチルスルホニルー2ーイソオキサゾリン (本発明化合物番号2-1) 18.7g(105.7ミリモル)のN,Nージメチルホルムアミド300m1溶液に、水硫化ナトリウム水和物9.3g(純度70%、116.3ミリモル)を加え2時間攪拌した。反応系を氷冷し、4ーブロモメチルー5ーフルオロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾール30.3g(93.8ミリモル)のN,Nージメチルホルムアミド200m1溶液を加え、更に0℃で30分間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、黄色油状物質の5,5ージメチルー3ー(5ーフルオロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー2ーイソオキサゾリン13.11g(収率37.4%)を得た。

20 (1 H-NMR値 (CDC1 $_{3}$ /TMS δ (ppm)) : 7.65-7.39(5H, m), 4.24(2H, s), 2.81(2H, s), 1.43(6H, s)

<実施例5>

5,5-ジメチル-3-(5-エチルチオ-1-フェニル-3-トリフルオロメ チル-1H-ピラゾール-4-イルメチルチオ)-2-イソオキサゾリン(本発明 化合物番号3-0022)の製造 エタンチオール0.25g(4.0ミリモル)のN,Nージメチルホルムアミド10ml溶液に、水酸化ナトリウム0.2g(4.0ミリモル)、水1mlを加え、室温で30分間攪拌した。5,5ージメチルー3ー(5ーフルオロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー2ーイソオキ サゾリン0.5g(1.4ミリモル)のN,Nージメチルホルムアミド5ml溶液を加え、更に1時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、5,5ージメチルー3ー(5ーエチルチオー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー2ーイソオ キサゾリン0.6g(収率100%)を得た。

(1 H-NMR値 (CDC1 $_{3}$ /TMS δ (ppm)) : 7.62-7.47(5H, m), 4.44(2H, s), 2.83(2H, s), 2.50(2H, q), 1.45(6H, s), 1.02(3H, t)

<実施例6>

5,5-ジメチル-3-(5-エチルスルホニル-1-フェニル-3-トリフル 15 オロメチル-1H-ピラゾール-4-イルメチルスルホニル)-2-イソオキサゾ リン(本発明化合物番号3-0004)の製造

5,5ージメチルー3ー(5ーエチルチオー1ーフェニルー3ートリフルオロメ チルー1Hーピラゾールー4ーイルメチルチオ) ー2ーイソオキサゾリン0.6g (1.3ミリモル)のクロロホルム10m1溶液に、氷冷下、mークロロ過安息香酸 20 1.7g(純度70%、6.7ミリモル)を加え、室温で16時間攪拌した。反応終了 後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素 ナトリウム水溶液、炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水 硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、析出した結晶をヘキサンで洗 浄し、淡黄色結晶(融点158~160℃)の5,5ージメチルー3ー(5ーエチル 25 スルホニルー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ー

<実施例7>

5 5,5ージメチルー3ー(5ージメチルアミノー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー2ーイソオキサゾリン(本発明化合物番号3-0023)の製造

5,5ージメチルー3ー(5ーフルオロー1ーフェニルー3ートリフルオロメ チルー1 Hーピラゾールー4ーイルメチルチオ) - 2ーイソオキサゾリン0.5g
10 (1.3ミリモル)のN,Nージメチルホルムアミド10ml溶液に、ジメチルアミン40%水溶液0.8g(6.7ミリモル)を加え、封管で100℃で9時間攪拌した。ジメチルアミン40%水溶液3.0g(26.6ミリモル)を加え、更に9時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、5,5ージメチルー3ー(5ージメチルアミノー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)-2ーイソオキサゾリン0.4g(収率80.6%)を得た。

($^1\text{H-NMR値}$ (CDCl $_3/\text{TMS}$ δ (ppm)) : 7.58-7.38(5H, m), 4.35(2H, s), 2.82(2H, s), 2.77(6H, s), 1.45(6H, s)

<実施例8>

20

5,5-ジメチル-3-(5-ジメチルアミノ-1-フェニル-3-トリフルオロメチル-1H-ピラゾール-4-イルメチルスルホニル)-2-イソオキサゾリン(本発明化合物番号3-0005)の製造

10

15

<実施例9>

3-(1-t-ブチル-5-クロロ-3-トリフルオロメチル-1H-ピラゾール-4-イルメチルチオ)-5,5-ジメチル-2-イソオキサゾリン(本発明化合物番号3-0006)の製造

5,5ージメチルー3ーメチルスルホニルー2ーイソオキサゾリン24.1g(136.0ミリモル)のN,Nージメチルホルムアミド200ml溶液に、水硫化ナトリウム21.8g(純度70%、272.5ミリモル)を加え1時間攪拌した。その後、無水炭酸カリウム18.8g(136.2ミリモル),ロンガリット21.0g(136.2ミリモル)を加え、更に2時間攪拌後、4ーブロモメチルー1ーtertーブチルー5ークロロー3ートリフルオロメチルー1Hーピラゾール40g(125ミリモル)を氷冷下加えた。その後、室温で2時間攪拌し、反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、淡桃色結

晶(融点 $79.0\sim81.0^{\circ}$)の3-(1-tert-ブチル-5-クロロ-3-トリフルオロメチルー1H-ピラゾールー4ーイルメチルチオ)-5,5-ジメチルー2ーイソオキサゾリン23.0 g (収率57.1%)を得た。

(1 H-NMR値(CDCl $_{3}$ /TMS δ (ppm)): 4. 24(2H, s), 2. 80(2H, s), 1. 71(9H, s), 1. 43(6H, s)

<実施例10>

- 3-(1-t-ブチル-5-クロロ-3-トリフルオロメチル-1H-ピラゾール-4-イルメチルチオ)-5,5-ジメチル-2-イソオキサゾリン19.8g
 (53.4ミリモル)を25%臭化水素-酢酸溶液170m1に加え、40~50℃で,2時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。
 15 減圧下溶媒を留去し、淡黄色結晶(融点120.0~122.0℃)の3-(5-クロロ-3-トリフルオロメチル-1H-ピラゾール-4-イルメチルチオ)-5,5-ジメチル-2-イソオキサゾリン12.0g(収率60.6%)を得た。

 (¹H-NMR値(CDCl₃/TMS δ(ppm)): 4.26(2H, s),2.81(2H, s),1.44(6H, s)
 <実施例11>
- 3-(5-クロロー1-ジフルオロメチルー3-トリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5,5-ジメチルー2ーイソオキサゾリン(本発明化合物番号3-0008)及び3-(3-クロロー1-ジフルオロメチルー5-トリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5,5-ジメチルー2ーイソオキサゾリン(本発明化合物番号3-0009)の製造
- 25 3-(5-クロロー3-トリフルオロメチルー1H-ピラゾールー4ーイルメチ

<実施例12>

20

25

2%)を得た。

3-(5-クロロー1-ジフルオロメチルー3-トリフルオロメチルー1Hーピラゾールー4-イルメチルスルホニル)-5,5-ジメチルー2-イソオキサゾリン (本発明化合物番号3-0010)の製造

10

('H-NMR値 (CDC1₃/TMS δ (ppm)): 7.26(1H, t), 4.68(2H, s), 3.11(2H, s), 1.53(6H, s)

<実施例13>

15 3-(3-クロロー1-ジフルオロメチルー5-トリフルオロメチルー1Hーピラゾールー4-イルメチルスルホニル)-5,5-ジメチルー2-イソオキサゾリン (本発明化合物番号3-0011)の製造

3-(3-クロロー1-ジフルオロメチルー5-トリフルオロメチルー1Hーピラゾールー4-イルメチルチオ)-5,5-ジメチルー2-イソオキサゾリン0.5
20 4g(1.5ミリモル)のクロロホルム20ml溶液に、氷冷下、mークロロ過安息香酸1.1g(純度70%,6.4ミリモル)を加え1時間攪拌した。その後、更に室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶25 媒を留去し、得られた固体をn-ヘキサンで洗浄し,白色粉末(融点136.0~1

37.0 ℃) の 3-(3-0 ロロー 1-ジフルオロメチル-5 ートリフルオロメチル -1 H -ピラゾール-4 -4 ルメチルスルホニル) -5, 5-ジメチル-2 -4 -4 -7 -9 (収率 -9. -7%) を得た。

('H-NMR値 (CDC1₃/TMS δ (ppm)): 7.23(1H, t), 4.71(2H, s), 3.11(2H, s), 1.53(6H, s)

<実施例14>

5

5,5-ジメチル-3-(3-メトキシ-1-メチル-5-トリフルオロメチル -1H-ピラゾール-4-イルメチルチオ)-2-イソオキサゾリン (本発明化合物番号3-0024)の製造

10 5,5ージメチルー3ーエチルスルホニルー2ーイソオキサゾリン3.3g(17.3ミリモル)のN,Nージメチルホルムアミド10m1溶液に、水硫化ナトリウム水和物3.1g(純度70%、22.0ミリモル)を加え2時間攪拌した。その後、無水炭酸カリウム3.1g(22.0ミリモル)、ロンガリット2.7g(17.5ミリモル)及び4ークロロメチルー3ーメトキシー1ーメチルー5ートリフルオロメチルー15 1Hーピラゾール4.0g(17.5ミリモル)を加え、更に室温で2時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、5,5ージメチルー3ー(3ーメトキシー1ーメチルー5ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー2ーイソオキサゾリン2.8g(収率52.0%)を得た。

<実施例15>

25

5,5-ジメチルー3-(3-ヒドロキシー<math>1-メチルー5-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ)-2-イソオキサゾリン(本発明化合物番号<math>3-0025)の製造

25%臭化水素酸酢酸溶液 20m1に 5, 5-iジメチルー 3-(3-i) トキシー 1-iメチルー 5-iリフルオロメチルー 1 Hーピラゾールー 4 ーイルメチルチオ) -2ーイソオキサゾリン 3. $3g(10.6 \le y)$ モル)を加え、50%で 3 時間攪拌した。反応終了後、反応溶液減圧下溶媒を留去し、得られた残渣を水中に注いだ。 析出した結晶を濾取し水洗後乾燥し、目的とする 5, 5-iジメチルー 3-(3-i) ドロキシー 1-i メチルー 1 ー 2 ー 1 ー

<実施例16>

5,5-ジメチル-3-(3-エトキシ-1-メチル-5-トリフルオロメチル
 10 -1H-ピラゾール-4-イルメチルチオ)-2-イソオキサゾリン(本発明化合物番号3-0026)の製造

5,5-ジメチルー3-(3-ヒドロキシー1-メチルー5-トリフルオロメチ

ルー1Hーピラゾールー4ーイルメチルチオ) -2ーイソオキサゾリン0.30g (1.0ミリモル)のN,Nージメチルホルムアミド10ml溶液に無水炭酸カリウム0.20g(1.3ミリモル)及びヨウ化エチル0.20g(1.5ミリモル)を加え、50℃で3時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、目的とする5,5ージメチルー3ー(3ーエトキシー1ーメチルー5ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ) -2ーイ20 ソオキサゾリン0.30g(収率92.0%)を得た。

<実施例17>

5,5-ジメチルー3ー(3-エトキシー1ーメチルー5ートリフルオロメチルー1Hーピラゾールー4ーイルメチルスルホニル)ー2ーイソオキサゾリン(本発明化合物番号3-0012)の製造

25 5,5-ジメチル-3-(3-エトキシ-1-メチル-5-トリフルオロメチル

-1 Hーピラゾールー4ーイルメチルチオ) -2 ーイソオキサゾリン0.30g (0.92 ミリモル)のクロロホルム10 m 1 溶液に、氷冷下、m ークロロ過安息香酸 0.68 g (純度70%、2.76 ミリモル)を加え、室温で5時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、析出した結晶をヘキサンで洗浄し、白色結晶(融点124~125 °C)の5,5 ージメチルー3 ー(3 ーエトキシー1 ーメチルー5 ートリフルオロメチルー1 Hーピラゾールー4 ーイルメチルスルホニル) -2 ーイソオキサゾリン0.24 g (収率73.0%) を得た。

10 (1 H-NMR値 (CDCl₃/TMS δ (ppm)) : 4.50(2H, s), 4.27(2H, q), 3.86(3H, s), 3.04(2H, s), 1.49(6H, s), 1.39(3H, t)

<実施例18>

5

15

5,5-ジメチル-3-(5-フルオロ-1-メチル-3-トリフルオロメチル-1H-ピラゾール-4-イルメチルチオ)-2-イソオキサゾリン (本発明化合物番号3-0027) の製造

5, 5 - ジメチルー3 - メチルスルホニルー2 - イソオキサゾリン21.3 g(1)

20.3ミリモル)のN, Nージメチルホルムアミド200m1溶液に、水硫化ナトリウム19.3g(純度70%、344.6ミリモル)を加え1時間攪拌した。その後、無水炭酸カリウム16.7g(121.0ミリモル),ロンガリット18.6g(120.20 7ミリモル)を加え、更に2時間攪拌後、4ーブロモメチルー5ーフルオロー1ーメチルー3ートリフルオロメチルー1Hーピラゾール31.4g(120.3ミリモル)を氷冷下加えた。その後、室温で2時間攪拌し、反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、黄色油状物の5,5ージメチルー3ー(5ーフルオロー1ーメチルー3ートリフルオロメチルー1Hーピラ

ゾールー4ーイルメチルチオ) -2ーイソオキサゾリン29.0g(収率90.3%)を得た。

(1 H-NMR値 (CDCl $_{3}$ /TMS δ (ppm)): 4.24(2H, s), 3.90(3H, s), 2.78(2H, s), 1.42(6H, s)

5 < 実施例 19>

5,5-ジメチルー3-(5-メトキシー1-メチルー3-トリフルオロメチル-1H-ピラゾールー4-イルメチルチオ)-2-イソオキサゾリン (本発明化合物番号3-0028) の製造

5,5ージメチルー3ー(5ーフルオロー1ーメチルー3ートリフルオロメチル
10 ー1Hーピラゾールー4ーイルメチルチオ)ー2ーイソオキサゾリン0.5g(1.6ミリモル)のメタノール20ml溶液に、ナトリウムメトキシド0.77g(4.0ミリモル,28%メタノール溶液)を加え、還流下、4時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、黄色油 状物の5,5ージメチルー3ー(5ーメトキシー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー2ーイソオキサゾリン0.5g(収率96.7%)を得た。

(1 H-NMR値 (CDC1 $_{3}$ /TMS δ (ppm)) :4.26(2H, s), 4.07(3H, s), 3.72(3H, s), 2.80(2H, s), 1.43(6H, s)

20 < 実施例 2 0 >

5,5-ジメチルー3-(5-メトキシー1-メチルー3-トリフルオロメチル-1H-ピラゾールー4-イルメチルスルホニル)2-イソオキサゾリン(本発明化合物番号3-0013)の製造

5, 5-ジメチル-3-(5-メトキシ-1-メチル-3-トリフルオロメチル 25 -1 H-ピラゾール-4-イルメチルチオ) <math>-2-イソオキサゾリン0.5g(1.

15

20

25

10 (1 H-NMR値 (CDCl $_3$ /TMS δ (ppm)) : 4.60(2H, s), 4.11(3H, s), 3.79(3H, s), 3.10(2H, s), 1.51(6H, s)

<実施例21>

2-クロロフェノール0.44g(3.4ミリモル)のN,Nージメチルホルムアミド30ml溶液に、水素化ナトリウム0.2g(8.3ミリモル,純度60%)を氷冷下で加え、1時間攪拌した後、更に5,5ージメチルー3ー(5ーフルオロー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー2ーイソオキサゾリン0.7g(2.2ミリモル)を加え、120~130℃で5時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、黄色油状物の3ー(5~(2-クロロフェノキシ)ー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメチルチオ)ー5、

WO 02/062770

199

5-ジメチルー2-イソオキサゾリン0.63g(収率66.7%)を得た。 <実施例22>

3-(5-(2-クロロフェノキシ)-1-メチル-3-トリフルオロメチル-1 H-ビラゾールー4-イルメチルスルホニル)-5,5-ジメチルー2-イソオキ サゾリン(本発明化合物番号3-0014)の製造

3-(5-(2-クロロフェノキシ)-1-メチル-3-トリフルオロメチル-1 H-ピラゾール-4-イルメチルチオ)-5,5-ジメチル-2-イソオキサゾリ ン0.63g(1.5ミリモル)のクロロホルム20ml溶液に、氷冷下、mークロロ 過安息香酸 1.0g(純度 70%, 5.8ミリモル)を加え 1 時間攪拌した。その後、

10 更に室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎクロロホルム で抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム 水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧 下溶媒を留去し、得られた固体を n ーヘキサンで洗浄し, 白色粉末(融点 6 7.0~ 7 0. 0 °C) の 3 − (5 − (2 − クロロフェノキシ) − 1 − メチルー 3 − トリフルオロ メチルー1Hーピラゾールー4ーイルメチルスルホニル)-5,5ージメチルー2 15

ーイソオキサゾリン 0.31g(収率 45.7%)を得た。

(¹H-NMR値 (CDC1,/TMS δ (ppm)): 7.50-6.91(4H, m), 4.45(2H, s), 3.71(3H, s), 3.03(2H, s), 1.47(6H, s)

< 実施例23>

5

25

3-(5-シクロペンチルオキシー1-メチルー3-トリフルオロメチルー1H 20 ーピラゾールー4ーイルメチルチオ)-5,5-ジメチルー2ーイソオキサゾリン (本発明化合物番号3-0030)の製造

トリフェニルホスフィン0.43g(1.6ミリモル)のベンゼン10ml溶液に シクロペンタノール $0.14g(1.6 \xi)$ モル), $5, 5- \xi$ メチル $-3- (5- \xi)$ ロキシー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーイルメ

チルチオ) -2-イソオキサゾリン0.5g(1.6ミリモル),及びアゾジカルボン酸ジエチルエステル 0.7g(40%トルエン溶液,1.6ミリモル)を加え、室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、無色透明油状物の3-(5-シクロペンチルオキシー1-メチルー3-トリフルオロメチルー1H-ピラゾールー4-イルメチルチオ)-5,5-ジメチルー2-イソオキサゾリン0.52g(収率85.2%)を得た。

10 < 実施例 2 4 >

5

3-(5-シクロペンチルオキシ-1-メチル-3-トリフルオロメチル-1H -ピラゾール-4-イルメチルスルホニル)-5,5-ジメチル-2-イソオキサ ブリン(本発明化合物番号3-0015)の製造

3-(5-シクロペンチルオキシ-1-メチル-3-トリフルオロメチル-1H
-ピラゾール-4-イルメチルチオ)-5,5-ジメチル-2-イソオキサゾリン
0.52g(1.4ミリモル)のクロロホルム20m1溶液に、氷冷下、m-クロロ過
安息香酸0.85g(純度70%,4.9ミリモル)を加え1時間攪拌した。その後、
更に室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎクロロホルム
で抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム
れ溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧
下溶媒を留去し、得られた固体をn-ヘキサンで洗浄し、白色粉末(融点113.0~114.0℃)の3-(5-シクロペンチルオキシ-1-メチル-3-トリフル
オロメチル-1H-ピラゾール-4-イルメチルスルホニル)-5,5-ジメチル
-2-イソオキサゾリン0.2g(収率35.5%)を得た。

25 ('H-NMR値 (CDC1,/TMS δ (ppm)): 5.03(1H, br), 4.60(2H, s), 3.73(3H, s), 3.05(2H,

WO 02/062770

201

s), 1.88-1.70(8H, m), 1.50(6H, s)

<実施例25>

5

15

s)

3-(5-シアノー1-メチルー3-トリフルオロメチルー1H-ピラゾールー 4-イルメチルチオ)-5,5-ジメチル-2-イソオキサゾリン(本発明化合物番 号3-0031)の製造

5.5-ジメチルー3ー(5-フルオロー1-メチルー3ートリフルオロメチル -1 H - ピラゾール -4 - イルメチルチオ) -2 - イソオキサゾリン 0.5 g (1.56ミリモル)のN, Nージメチルホルムアミド3.0m1溶液にシアン化ナトリウム 0.2 g (4.0 ミリモル)を加え、40℃で1時間攪拌した。反応終了確認後、反応 溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄 10 後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、黄色油状物の3-(5 ーシアノー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4ーイル メチルチオ(1) $(^{1}H-NMR値(CDC1_{3}/TMS \delta(ppm)): 4.30(2H, s), 4.08(3H, s), 2.81(2H, s), 1.43(6H, s)$

<実施例26>

3-(5-シアノー1-メチルー3-トリフルオロメチルー1H-ピラゾールー・ 4-イルメチルスルホニル)-5,5-ジメチル-2-イソオキサゾリン(本発明化 合物番号3-0016)の製造

3-(5-シアノ-1-メチル-3-トリフルオロメチル-1H-ピラゾールー 20 4ーイルメチルチオ)ー5,5ージメチルー2ーイソオキサゾリン0.9g(粗化合 物)のクロロホルム50ml溶液に、氷冷下、mークロロ過安息香酸2.1g(純度 70%, 12.2ミリモル) を加え1時間攪拌した。その後、更に室温で12時間 攪拌した。反応終了確認後、反応溶液を水に注ぎクロロホルムで抽出した。得られ た有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液、水及び食塩 25

水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、得られた固体をn-ヘキサンで洗浄し、白色粉末(融点 $105.0\sim108.0$)の3-(5-シアノ-1-メチル-3-トリフルオロメチル-1 H-ピラゾール-4-イルメチルスルホニル)-5、5-ジメチル-2-イソオキサゾリン0.43 g (収率76.4%)を得た。

(1 H-NMR値(CDCl₃/TMS δ (ppm)):4.73(2H, s), 4.16(3H, s), 3.14(2H, s), 1.53(6H, s)

< 実施例 2 7 >

5

3-(3,5-ジクロロ-1-エチル-1H-ピラゾール-4-イルメチルチオ)
 10 -5,5-ジメチル-2-イソオキサゾリン(本発明化合物番号3-0032)の
 製造

5,5ージメチルー3ーエチルスルホニルー2ーイソオキサゾリン0.7g(3.7ミリモル)のN,Nージメチルホルムアミド30m1溶液に、水硫化ナトリウム0.6g(純度70%、10.7ミリモル)を加え1時間攪拌した。その後、無水炭酸カリウム0.51g(3.7ミリモル),ロンガリット0.56g(3.6ミリモル)を加え、更に2時間攪拌後、4ーブロモメチルー3,5ージクロロー1ーエチルー1Hーピラゾール0.9g(3.5ミリモル)を氷冷下加えた。その後、室温で2時間攪拌し、反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、20 残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、無色透明油状物の3ー(3,5ージクロロー1ーエチルー1Hーピラゾールー4ーイルメチルチオ)ー5,5ージメチルー2ーイソオキサゾリン0.8g(収率70.8%)を得た。

(1 H-NMR値(CDCl₃/TMS δ (ppm)): 4.14(2H, s), 4.14(2H, q), 2.81(2H, s), 1.43(6H, 25 s), 1.42(3H, t)

WO 02/062770 PCT/JP02/01015

203

<実施例28>

3-(3,5-ジクロロ-1-エチル-1H-ピラゾール-4-イルメチルスル ホニル)-5,5-ジメチル-2-イソオキサゾリン (本発明化合物番号<math>3-0017) の製造

- 3 ー(3,5 ージクロロー1ーエチルー1 Hーピラゾールー4ーイルメチルチオ) ー5,5 ージメチルー2ーイソオキサゾリン0.8g(2.6ミリモル)のクロロホルム20m1溶液に、氷冷下、mークロロ過安息香酸2.0g(純度70%,11.6ミリモル)を加え1時間攪拌した。その後、更に室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎクロロホルムで抽出した。得られた有機層を亜硫10酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、得られた固体をnーヘキサンで洗浄し,白色粉末(融点105.0~107.0℃)の3ー(3,5ージクロロー1ーエチルー1Hーピラゾールー4ーイルメチルスルホニル)ー5,5ージメチルー2ーイソオキサゾリン0.41g(収率46.6%)を得た。
- 15 (1 H-NMR値 (CDCl₃/TMS δ (ppm)): 4.48(2H, s), 4.19(2H, q), 3.05(2H, s), 1.51(6H, s), 1.45(3H, t)

<実施例29>

20

5,5-ジメチルー3-エチルスルホニルー2-イソオキサゾリン1.9g(10.0ミリモル)のN,Nージメチルホルムアミド<math>30m1溶液に、水硫化ナトリウム水和物1.2g(純度70%、15.0ミリモル)を加え2時間攪拌した。その後、無水炭酸カリウム2.1g(15.0ミリモル)、ロンガリット2.3g(15.0ミリモル)

25 及び4-ブロモメチル-5-クロロ-3-ジフルオロメチル-1-メチル-1H

WO 02/062770

204

ーピラゾール 2.6 g(10.0 ミリモル)を加え、更に室温で 15 時間攪拌した。 反 応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水 で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシ リカゲルカラムクロマトグラフィー(展開溶媒: ヘキサンー酢酸エチル混合溶媒)

で精製し、無色粘稠性液体(n,20=1.5183)の3-(5-クロロ-3-ジフル 5 オロメチルー1ーメチルー1Hーピラゾールー4ーイルメチルチオ)-5,5-ジ メチルー2ーイソオキサゾリン2.1g(収率68.0%)を得た。

 $(^{1}H-NMR値(CDC1_{1}/TMS)\delta(ppm)):6.70(1H, t, J=54.2Hz), 4.24(2H, s),$

3.86(3H, s), 2.80(2H, s), 1.42(6H, s)

10 <実施例30>

> 3-(5-クロロー3-ジフルオロメチルー1-メチルー1Hーピラゾールー4 ーイルメチルスルホニル)ー5,5ージメチルー2ーイソオキサゾリン(本発明化 合物番号3-0018)の製造

3-(5-クロロー3-ジフルオロメチルー1-メチルー1Hーピラゾールー4 -イルメチルチオ) - 5, 5 -ジメチル- 2 -イソオキサゾリン 1.8 g (5.8 15 リモル)のクロロホルム15ml溶液に、氷冷下、m-クロロ過安息香酸3.6g(純 度70%、14.5ミリモル)を加え、室温で22時間攪拌した。反応終了後、反応 溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウ ム水溶液、炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグ ネシウムで乾燥した。減圧下溶媒を留去し、析出した結晶をヘキサンで洗浄し、白 20 色結晶(融点78~79°C)の3-(5-クロロ-3-ジフルオロメチル-1-メ チルー1H-ピラゾールー4ーイルメチルスルホニル) -5,5-ジメチルー2-イソオキサゾリン1.7g(収率85.9%)を得た。

(1 H-NMR値 (CDC1,/TMS δ (ppm)) 6.80(1H, t, J=54.8Hz), 4.60(2H, s), 3.91(3H, s), 25 3. 08 (2H, s), 1. 51 (6H, s)

< 実施例31>

5,5-ジメチルー3ー(5-メチルー3-トリフルオロメチルイソキサゾール -4-イルメチルチオ)-2-イソオキサゾリン(本発明化合物番号4-000 3)の製造

- 5 5,5ージメチルー3ーメチルスルホニルー2ーイソオキサゾリン0.4g(2.3ミリモル)のN,Nージメチルホルムアミド10m1溶液に、水硫化ナトリウム水和物0.4g(純度70%、4.6ミリモル)を加え2時間攪拌した。その後、炭酸カリウム0.3g(2.3ミリモル)、ロンガリット0.4g(2.3ミリモル)及び4ーブロモメチルー5ーメチルー3ートリフルオロメチルイソキサゾール0.5g(1.
- 10 8ミリモル)を加え、更に室温で14時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、5,5ージメチルー3ー(5ーメチルー3ートリフルオロメチルイソキサゾールー4ーイルメチルチオ)ー2ーイソオキサゾリン0.4g(収率70.0%)を得た。

(1 H-NMR値 (CDC1 $_{3}$ /TMS δ (ppm)) : 4.11(2H, s), 2.77(2H, s), 2.54(3H, s), 1.42(6H, s)

<実施例32>

25

5,5-ジメチルー3ー(5-メチルー3ートリフルオロメチルイソキサゾール
 20 -4-イルメチルスルホニル)-2-イソオキサゾリン(本発明化合物番号4-001)の製造

5,5ージメチルー3ー(5ーメチルー3ートリフルオロメチルイソキサゾールー4ーイルメチルチオ)ー2ーイソオキサゾリン0.4g(1.3ミリモル)のクロロホルム10m1溶液に、氷冷下、mークロロ過安息香酸0.8g(純度70%、3.2ミリモル)を加え、室温で4時間攪拌した。反応終了後、反応溶液を水中に注ぎ

クロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、析出した結晶をヘキサンで洗浄し、白色結晶(融点 $135\sim136\%$)の5,5-ジメチル-3-(5-メチル-3-トリフルオロメチルイソキサゾール-4-イルメチルスルホニル)-2-イソオキサゾリン0.4g(収率 95.0%)を得た。

('H-NMR値 (CDCl₃/TMS δ (ppm)) : 4.54(2H, s), 3.11(2H, s), 2.61(3H, s), 1.52(6H, s)

< 実施例33>

[(5-0)10 ージメチルー2ーイソオキサゾリン(本発明化合物番号4-0004)の製造 5, 5 - ジメチルー3 - メチルスルホニルー2 - イソオキサゾリン0.89 g(5.00ミリモル)のN, N-ジメチルホルムアミド10ml溶液に、室温で水硫化ナト リウム 0.8 2 g (純度 7 0 %, 1 0.0 0 ミリモル) を加え 2 時間攪拌した。その後 反応溶液中に無水炭酸カリウム 0.70g(5.00ミリモル)、ロンガリット 0.7 15 8g(5.00ミリモル)及び5ークロロー4ークロロメチルー3ーメチルイソチア ゾール 0.9 1 g (5.00 ミリモル)を加え、更に室温で一夜攪拌した。反応終了確 認後、水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗 浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカ 20 ゲルカラムクロマトグラフィーで精製し、[(5-クロロー3-メチルーイソチアゾ 8 g (収率:定量的)を得た。

<実施例34>

[(5-クロロ-3-メチルーイソチアゾール-4-イル)-メチルスルホニル]25 -5,5-ジメチル-2-イソオキサゾリン(本発明化合物番号4-0002)の

WO 02/062770 PCT

207

製造

5

10

20

25

[(5ークロロー3ーメチルーイソチアゾールー4ーイル)ーメチルチオ]ー5,5 ージメチルー2ーイソオキサゾリン1.38g(5.00ミリモル)のクロロホルム 20ml溶液に、mークロロ過安息香酸2.96g(純度70%,12.00ミリモ ル)を氷冷下で加え、1時間攪拌し、更に室温で一夜攪拌した。反応終了後、反応 溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウ ム水溶液、炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグ ネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラ フィーで精製し、淡黄色粉末(融点113~114℃)の[(5ークロロー3ーメチ ルーイソチアゾールー4ーイル)ーメチルスルホニル]ー5,5ージメチルー2ーイ ソオキサゾリン0.65g(収率47.0%)を得た。

(1 H-NMR値(CDCl₃/TMS δ (ppm)) 8.89(1H,s), 4.67(2H,s), 3.05(2H,s), 2.59(3H,s), 1.51(6H,s)

<実施例35>

5,5-ジメチル-3-[2,5-ジメチルー4-(1-メトキシイミノエチル)ー
 チオフェン-3-イルメチルチオ]-2-イソオキサゾリン(本発明化合物番号2-0002)の製造

3-(4-アセチル-2,5-ジメチルチオフェン-3-イルメチルチオ)-5,5-ジメチル-2-イソオキサゾリン1.0g(3.4ミリモル)のエタノール50ml溶液にO-メチルヒドロキシルアミン塩酸塩0.57g(6.8ミリモル)と酢酸ナトリウム0.56g(6.8ミリモル)を加え、還流下,5時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン-酢酸エチル混合溶媒)で精製し、黄色油状物の5,5-ジメチル-3-[2,5-ジメチル-4-(1-

メトキシイミノエチル)ーチオフェンー3ーイルメチルチオ]ー2ーイソオキサゾ リン0.4g(36.4%)を得た。

 $(^{1}H-NMR値(CDC1_{3}/TMS) \delta(ppm)): 4.21(2H, s), 3.95(3H, s), 2.76(2H, s), 2.38(3H, s)$ s), 2. 34 (3H, s), 2. 13 (3H, s), 1. 42 (6H, s)

5 <実施例36>

> 5.5 - ジメチル - 3 - [2.5 - ジメチル - 4 - (1 - メトキシイミノエチル) - [2.5 - ジメチル - 4 - (1 - メトキシイミノエチル) - [3.5 - ジメチル - 4 - (1 - メトキシイミノエチル)]チオフェンー3ーイルメチルスルホニル]-2-イソオキサゾリン(本発明化合物 番号2-0001)の製造

5.5-ジメチル-3-[2,5-ジメチル-4-(1-メトキシイミノエチル)-チオフェンー3ーイルメチルチオ]ー2ーイソオキサゾリン0.4g(1.2ミリモ 10 ル) のクロロホルム 3 0 m 1 溶液に、m ークロロ過安息香酸 0.6 1 g (純度 7 0 %, 3.5ミリモル)を氷冷下で加え1時間攪拌し、更に室温で12時間攪拌した。反 応終了確認後、反応溶液を水に注ぎクロロホルムで抽出した。得られた有機層を亜 硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄 した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲ 15 ルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、 白色結晶(融点95.0~96.0 \mathbb{C})の5,5ージメチルー3ー[2,5ージメチルー 4-(1-メトキシイミノエチル)-チオフェン-3-イルメチルスルホニル]-2 -イソオキサゾリンO.35g(80%)を得た。

20 ('H-NMR値 (CDC1,/TMS δ (ppm)): 4.79(2H, s), 3.95(3H, s), 2.93(2H, s), 2.42(3H, s), 2, 37 (3H, s), 2, 17 (3H, s), 1, 47 (6H, s)

<実施例37>

- 5,5-ジメチル-3-(4-トリフルオロメチルーピリジン-3-イルメチル チオ)ー2ーイソオキサゾリン(本発明化合物番号7-0003)の製造
- 25 5, 5-ジメチル-3-エチルスルホニル-2-イソオキサゾリン0.3g(1.

6ミリモル)のN, Nージメチルホルムアミド20m1溶液に、水硫化ナトリウム0.26g(純度70%、4.6ミリモル)を加え1時間攪拌した。その後、無水炭酸カリウム0.22g(1.6ミリモル),ロンガリット0.25g(1.6ミリモル)を加え、更に2時間攪拌後、3ーブロモメチルー4ートリフルオロメチルーピリジン0.3 g(1.3ミリモル)を氷冷下加えた。その後、室温で2時間攪拌し、反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、黄色油状物の5,5ージメチルー3ー(4ートリフルオロメチルーピリジンー3ーイルメチルチオ)ー2ーイソオキサゾリン 0.45g(収率98.9%)を得た。(¹H-NMR値(CDC1₃/TMS δ(ppm)):8.98(1H,s),8.70(1H,d),7.51(1H,d),4.47(2H,s),2.79(2H,s),1.43(6H,s)

<実施例38>

5,5ージメチルー3ー(4ートリフルオロメチルーピリジンー3ーイルメチル 15 スルホニル)ー2ーイソオキサゾリン(本発明化合物番号7-0001) および 5,5ージメチルー3ー(4ートリフルオロメチルーピリジンーNーオキシドー3 ーイルメチルスルホニル)ー2ーイソオキサゾリン(本発明化合物番号7-000 2)の製造

5,5-ジメチルー3-(4-トリフルオロメチルーピリジンー3-イルメチル
20 チオ)-2-イソオキサゾリン 0.45g(1.6ミリモル)のクロロホルム20
m1溶液に、氷冷下、m-クロロ過安息香酸0.77g(純度70%,4.5ミリモル)を加え1時間攪拌した。その後、更に室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムク

ロマトグラフィー(展開溶媒: へキサンー酢酸エチル混合溶媒)で精製し、淡黄色結晶(融点 $7.0 \sim 8.0.0 \circ 0.0$

10 s), 3.09(2H, s), 1.52(6H, s)

5,5-ジメチル-3-(4-トリフルオロメチルーピリジン-N-オキシド-3-イルメチルスルホニル)-2-イソオキサゾリン

(1 H-NMR値(CDCl $_{3}$ /TMS δ (ppm)): 8.50(1H, s), 8.25(1H, d), 7.59(1H, d), 4.81(2H, s), 3.12(2H, s), 1.53(6H, s)

15 < 実施例39>

5

5,5-ジメチルー[(4-メトキシー6-トリフルオロメチルピリミジン-5-イル)-メチルチオ]-2-イソオキサゾリン(本発明化合物番号8-0002)の 製造

5,5-ジメチル-3-メチルスルホニル-2-イソオキサゾリン0.35g(2.20 00ミリモル)のジメチルホルムアミド10m1溶液に、室温で水硫化ナトリウム 0.32g(純度70%,4.00ミリモル)を加え2時間攪拌した。その後反応溶液中に無水炭酸カリウム0.28g(2.00ミリモル)、ロンガリット0.31g(2.00ミリモル)及び5-クロロメチル-4-メトキシ-6-トリフルオロメチルピリミジン0.45g(2.00ミリモル)を加え、更に室温で2時間攪拌した。反応終 7確認後、水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順

次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、5,5ージメチルー[(4ーメトキシー6ートリフルオロメチルピリミジンー5ーイル)ーメチルチオ]ー2ーイソオキサゾリン0.55g(収率85.9%)を得た。

5 (¹H-NMR値 (CDCl₃/TMS δ (ppm)): 8.81(1H,s), 4.44(2H,d), 4.12(3H, s), 2.81(2H,s), 1.45(6H,s)

<実施例40>

5,5-ジメチルー[(4-メトキシー6-トリフルオロメチルピリミジン-5-イル)-メチルスルホニル]-2-イソオキサゾリン(本発明化合物番号8-000

5.5ージメチルー「(4ーメトキシー6ートリフルオロメチルピリミジンー5

10 1)の製造

ーイル)ーメチルチオ]ー2ーイソオキサゾリン0.55g(1.71ミリモル)のクロロホルム20m1溶液に、氷冷下でmークロロ過安息香酸1.05g(純度70%,4.28ミリモル)を加え1時間攪拌し、更に室温で4時間攪拌した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、白色羽毛状結晶(融点175~176℃)の5,5ージメチルー[(4-メトキシー6-トリフルオロメチルピリミジン-5-イル)ーメチルスルホニル]-2-イソオキサゾリン0.45g(収率75.0%)を得た。

('H-NMR値 (CDCl₃/TMS δ (ppm)) : 8.89(1H, s), 5.00(2H, d), 4.11(3H, s), 3.11(2H, s), 1.53(6H, s)

<実施例41>

3-(5,5-ジメチル-2-イソオキサゾリン-3-イルチオメチル)-2-ト 25 リフルオロメチル-6,7ジヒドロ-5H-ピラゾロ[5,1-b][1,3]オキサジ ン(本発明化合物番号3-0033)の製造

水素化ナトリウム 0. 1 1 g (2.8 ミリモル)のN, Nージメチルホルムアミド1 5 m 1 懸濁液に 3 ー [5 ー クロロー1 ー (3 ー ヒドロキシプロピル)ー3ートリフルオロメチルー1 Hーピラゾールー4ーイルーメチルチオ]ー5,5ージメチルー2 ーイソオキサゾール 0.8 2 g (2.3 ミリモル)のN, Nージメチルホルムアミド5 m 1 溶液を室温で滴下した。滴下終了後、反応溶液を室温で30分攪拌し、その後100℃に加熱し1時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。有機層をクエン酸水溶液、食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、3 ー (5,5ージメチルー2ーイソオキサゾリンー3ーイルチオメチル)ー2ートリフルオロメチルー6,7ジヒドロー5 Hーピラゾロ[5,1ーb][1,3]オキサジン 0.77 g (収率100%)を得た。

(¹H-NMR値 (CDCl₃/TMS δ (ppm)) : 4.37(2H, t), 4.19(2H, t), 4.15(2H, s), 2.80(2H, s), 2.31(2H, m), 1.42(6H, s)

<実施例42>

20

25

3-(5,5-ジメチル-2-イソオキサゾリン-3-イルスルホニルメチル)-2-トリフルオロメチル-6,7-ジヒドロ-5H-ピラゾロ[5,1-b][1,3]オキサジン(本発明化合物番号3-0019)の製造

3-(6,7-ジヒドロ-3-トリフルオロメチル-5H-ピラゾロ[5,1-b][1,3]オキサジン-4-イルーメチルチオ)-5,5-ジメチル-2-イソオキサゾリン0.77g(2.3ミリモル)のクロロホルム溶液20mlに、氷冷下、mークロロ過安息香酸1.25g(純度70%,5.1ミリモル)を加え1時間攪拌した。その後、更に室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製

し、白色粉末 (融点151.0-152.0°C) の3-(5,5-i)メチル-2-iイソオキサゾリン-3-iイルスルホニルメチル-2-iトリフルオロメチル-6,7-iジヒドロ-5 H-ピラゾロ[5,1-b][1,3]オキサジン0.36 g (収率43%)を得た。

- 5 (1 H-NMR値 (CDCl $_{3}$ /TMS δ (ppm)) :4.47(2H,s), 4.40(2H,t), 4.23(2H,t),
 - 3.09(2H, s), 2.34(2H, m), 1.50(6H, s)

次に、一般式[I]を有する本発明化合物の代表的な化合物例の物性例を表11 ~表20に記載する。尚、化合物番号は上記実施例に記載したものに対応する。

214

表11

R^{1} R^{2} R^{3} R^{4} R^{6} R^{22} R^{23} R^{23} R^{24}												
化合物番号	\mathbb{R}^1	R ²	R³	R ⁴	n	R⁵	R ⁶	Z_1	R ²²	R ²³	R ²⁴	融点(°C) 又は 屈折率 (np ²⁰)
1-0001	Me	Me	Н	H	2	Н	H	S	Me	Н	Н	66-68
1-0002	Me	Me	H	H	2	H	Н	S	Cl	Me	н	87-88
1-0003	Me	Me	H	Н	2	Н	Н	S	Н	H	Ме	95-97
1-0004	Me	Me	Н	H	2	Н	Н	S	Cl	H	н	70-72
1-0005	Me	Me	Н	Н	2	H	Н	S	Н	H	Cl	118-119
1-0006	Me	Me	Н	H	2	Н	Н	0	Н	H	Н	測定不可
1-0007	Me	Me	Н	H	2	H	H	0	Н	Н	C(=O)OMe	124-125

表12

表13

3-0030	Me	Me	Н	н	0	Н	Н	CF ₃	Ме	OPen-c	
3-0031	Me	Ме	н	Н	0	Н	н	CF ₃	Me	CN	
3-0032	Me	Me	Н	Н	0	Н	Н	CI	Et	CI	
3-0033	Me	Me	Н	Н	0	Н	Н	CF ₃	-(CH ₂) ₃ O	-	
3-0034	Me	Me	н	Н	2	Н	Н	CF ₃	Н	Cl	138-140
3-0035	Me	Me	H	Н	2	н	Н	н	Ме	CI	105-106
3-0036	Me	Me	н	Н	2	Н	н	Me	Ме	Me	148-150
3-0037	Me	Me	Н	н	2	Н	Н	Me	Ме	CI	99-101
3-0038	Me	Me	н	Н	2	н	Н	CI	Ме	Cı	143-145
3-0039	Me	Me	Н	Н	2	н	Н	CF ₃	Ме	CI	115-116
3-0040	Me	Me	Н	Н	2	Н	н	Cl	Ме	CF ₃	120-122
3-0041	Me	Me	Н	Н	2	Н	н	CF ₃	Ме	F	79-82
3-0042	Me	Me	н	Н	2	Н	н	CF ₃	Ме	ОН	90-92
3-0043	Me	Me	н	н	2	Н	н	OMe	Ме	CF₃	125-126
3-0044	Me	Me	Н	Н	2	Н	н	CF ₃	Ме	OEt	92-94
3-0045	Me	Me	Н	Н	2	Н	Н	CF ₃	Ме	OPr-i	69-71
3-0046	Me	Me	н	Н	2	Н	Н	CF ₃	Ме	OPr	82-83
3-0047	Me	Me	н	н	2	Н	Н	CF ₃	Ме	OBu-t	86-89
3-0048	Me	Me	Н	н	2	н	Н	CF ₃	Ме	OBu	61-62
3-0049	Me	Me	Н	Н	2	Н	Н	CF₃	Ме	ОНех-с	124-125
3-0050	Me	Me	Н	Н	2	н	Н	CF ₃	Ме	OCH₂Pr-c	93-94
3-0051	Me	Me	Н	Н	2	Н	Н	CF₃	Ме	OCH₂Pen-c	112-113
3-0052	Me	Ме	H	Н	2	Н	Н	CF₃	Ме	OCH₂Hex-c	56-59
3-0053	Me	Me	H	Н	2	Н	Н	CF ₃	Ме	осн₂с≡сн	92-93
3-0054	Me	Me	H	H	2	Н	H	CF ₃	Ме	OCHF ₂	129-130
3-0055	Me	Me	Н	H	2	Н	н	OCHF ₂	Ме	CF ₃	測定不可
3-0056	Me	Me	Н	Н	2	Н	H	CF₃	Ме	OCH ₂ CHF ₂	89-91
3-0057	Me	Me	Н	H	2	H	Н	CF ₃	Me .	OCH₂CF₃	93-95
3-0058	Me	Ме	н	Н	2	Н	H	CF ₃	Me	OCH₂CN	1.4872
3-0059	Me	Me	Н	Н	2	Н	Н	CF ₃	Ме	OCH₂Ph	79-81
3-0060	Me	Me	Н	Н	2	Н	Н	CF₃	Me	OPh	122-123
3-0061	Me	Me	H	H	2	Н	H	CF ₃	Me	O(3-Cl)Ph	測定不可
3-0062	Me	Me	H	H	2	H	Н	CF ₃	Me	O(3-OMe)Ph	1.5059
3-0063	Me	Me	H	H	2	н	Н	CF ₃	Me	O(4-Cl)Ph	68-69
3-0064	Me	Me	H	H	2	н	Н	CF ₃	Ме	O(4-Me)Ph	132-133
3-0065	Me	Me	H	H	2	н	Н	CF ₃	Me	O(4-OMe)Ph	115-117
3-0066	Me	Me	н	H	2	н	Н	CF ₃	Me	OC(=O)Me	130-131
3-0067	Me	Me	H	н	2	н	Н	CF ₃	Me	SO₂Me	168-169

12 0000	1	1.	1	1	10	1	1	los	be	lan.	1
3-0068	ł	Me		l	2		i	CF ₃	Me	SEt	100-102
3-0069	Me		1	H	1	1	H	1	Me	SO ₂ Et	107-108
3-0070	Me	Me	H	H	2	H	H	1	Me	SO₂Ph	166-168
3-0071	Me	1	1	H	2	H	H	1	Me	Ме	105-107
3-0072	Me	Me	l	H	2	Н	H		Me	Cl	127-129
3-0073	Me	Me	H	H	2	H	H	1	Et	CI	111-112
3-0074	Me	Me	H	H	2	Н	H		Et	CF₃	112-114
3-0075	Me	Me	H	H	2	H	H	CF ₃	Pr-i	Cl	157-158
3-0076	Me	Me	H	H	2	H	Н	CI	Pr-i	CF ₃	135-136
3-0077	Me	Me	H	Н	2	H	H	CF ₃	Pr	CI	89-90
3-0078	Me	Me	Н	Н	2	Н	H	Cl	Pr	CF ₃	111-113
3-0079	Me	Me	Н	Н	2	Н	Н	CF ₃	Bu-t	Н	101-103
3-0080	Me	Me	Н	Н	2	Н	Н	CF ₃	Bu-t	Cl	118-119
3-0081	Me	Me	Н	Н	2	Н	н	CF ₃	Bu-s	C1	110-112
3-0082	Me	Ме	Н	н	2	Н	н	CI	Bu-s	CF ₃	110-111
3-0083	Me	Ме	Н	Н	2	Н	Н	CF ₃	Bu-i	CI	96-98
3-0084	Me	Ме	н	H	2	Н	Н	CI	Bu-i	CF ₃	140-141
3-0085	Me	Me	н	н	2	Н	н	CF ₃	Bu	Cl	89-90
3-0086	Me	Me	н	H.	2	Н	Н	Cl	Bu	CF ₃	108-110
3-0087	Me	Me	Н	Н	2	Н	Н	CF ₃	CH₂Ph	Cl	132-133
3-0088	Me	Me	н	н	2	н	Н	CI	CH₂Ph	CF ₃	118-120
3-0089	Me	Me	Н	Н	2	Н	Н	CF ₃	Pen-c	CI	130-131
3-0090	Me	Me	н	н	2	Н	н	CI	Pen-c	CF₃	147-148
3-0091	Ме	Me	Н	н	2	Н	н	CF ₃	Нех-с	Cl	151-152
3-0092	Me	Me	Н	H	2	н	н	CF ₃	CH₂Pr-c	CI	93-95
3-0093	Me	Me	Н	Н	2	Н	Н	CI	CH₂Pr-c	CF ₃	129-130
3-0094	Me	Me	н	Н	2	Н	н	CF ₃	1-cyclopropylethyl	Cı	87-89
3-0095	Me	Me	Н	Н	2	н	Н	Cl	1-cyclopropylethyl	CF ₃	121-123
3-0096	Me	Me	Н	Н	2	Н	Н	CF ₃	CH ₂ (2-Methylcyclopropyl)	CI	102-103
3-0097	Me	Me	н	Н	2	н	Н	CI	CH ₂ (2-Methylcyclopropyl)	CF ₃	118-119
3-0098	Me	Me	н	н	2	н	H	CF ₃	CH ₂ Bu-c	CI	94-96
3-0099	Me	Me	н	Н	2	н	Н	Cl	CH₂Bu-c	CF ₃	141-142
3-0100	Me	Me	Н	Н	2	Н	H	CF₃	CH ₂ Pen-c	CI	127-129
3-0101	Me	Me	н	Н	2	н	Н	Cl	CH₂Pen-c	CF ₃	146-149
3-0102	Me	Me	н	н	2	н	н	CF ₃	CH₂Hex-c	Cl	152-154
3-0103	Me	Me	н	н	2	н	н	CI	CH₂Hex-c	CF ₃	115-117
3-0104	Me	Me	н	н	2	н	н	CF ₃	CH ₂ CH=CH ₂	CI	78-80
3-0105	Me	Me	н	н	2	н	Н	CI	CH ₂ CH=CH ₂	CF ₃	105-106

3-0106	Me	Me	Н	Н	2	Н	н	CF ₃	CH ₂ C≡CH	CI	73-74
3-0107	Me	Me	Н	Н	2	Н	Н	CI	CH₂C≡CH	CF₃	108-109
3-0108	Me	Me	н	H	2	Н	н	CF ₃	СНМеС≡СН	CI	95-96
3-0109	Me	Me	н	Н	2	н	н	CI	CHMeC≡CH	CF ₃	116-118
3-0110	Me	Me	н	Н	2	Н	н	CF ₃	CH ₂ C≡CMe	CI	114-115
3-0111	Me	Me	H	н	2	н	н	Cl	CH ₂ C≡CMe	CF ₃	115-116
3-0112	Me	Me	н	Н	2	н	н	CF₃	CHF ₂	ОМе	72-74
3-0113	Me	Me	Н	Н	2	Н	Н	ОМе	CHF ₂	CF ₃	108-109
3-0114	Me	Me	н	Н	2	н	Н	CF ₃	CH ₂ CHF ₂	CI	99-100
3-0115	Me	Ме	н	н	2	н	н	Cl	CH ₂ CHF ₂	CF ₃	107-109
3-0116	Me	Me	н	Н	2	Н	н	CF ₃	CH ₂ CF ₃	Cl	135-136
3-0117	Me	Me	Н	Н	2	Н	Н	Cl	CH ₂ CF ₃	CF ₃	112-115
3-0118	Me	Me	н	Н	2	Н	н	CF₃	CH ₂ OMe	Cl	87-89
3-0119	Me	Me	H.	Н	2	н	Н	Cı	CH ₂ OMe	CF ₃	125-128
3-0120	Me	Ме	н	н	2	н	н	CF ₃	CH₂OEt	Cl	97-98
3-0121	Me	Me	Н	н	2	н	Н	Cl	CH₂OEt	CF ₃	128-129
3-0122	Me	Me	Н	н	2	н	Н	CF ₃	CH₂CH₂OH	Cl	79-81
3-0123	Me	Me	H	Н	2	H	Н	CI	CH₂CH₂OH	CF ₃	93-94
3-0124	Me	Me	Н	Н	2	H	н	CF ₃	CH₂CH₂OMe	Cl	102-104
3-0125	Me	Me	Н	Н	2	н	Н	Cl	CH₂CH₂OMe	CF ₃	118-119
3-0126	Me	Me	Н	H	2	Н	Н	CF ₃	CH₂CH₂OEt	CI	56-59
3-0127	Me	Ме	Н	Н	2	н	Н	Cl	CH₂CH₂OEt	CF₃	118-119
3-0128	Ме	Me	Н	Н	2	Н	Н	CF₃	CH₂SMe	CI	103-105
3-0129	Me	Me	Н	H	2	Н	Н	Cl	CH₂SMe	CF₃	128-129
3-0130	Me	Me	Н	Н	2	H	H	CF₃	CH₂SO₂Me	CI	157-159
3-0131	Me	Me	H	Н	2	H	H	Cl	CH ₂ SO ₂ Me	CF ₃	165-166
3-0132	Me	Me	Н	Н	2	Н	Н	CF ₃	CH ₂ CH ₂ SO ₂ Me	Cl	155-157
3-0133	Me	Ме	H	Н	2	H	Н	Cl	CH ₂ CH ₂ SO ₂ Me	CF₃	166-168
3-0134	Me	Me	H	H	2	H	Н	CF₃	CH₂CN	CI	128-129
3-0135	Ме	Me	Н	Н	2	Н	H	Cl	CH₂CN	CF ₃	117-118
3-0136	Me	Me	Н	H	2	Н	H	CF ₃	CH ₂ C(=O)OEt	CI	127-129
3-0137	Me	Me	Н	Н	2	Н	Н	Cl	CH ₂ C(=O)OEt	CF ₃	143-145
3-0138	Me	Me	H	Н	2	Н	н	CF ₃	CH ₂ C(=O)NH ₂	Cl	173-174
3-0139	Me	Me	Н	Н	2	Н	Н	Cl	CH ₂ C(=O)NH ₂	CF₃	182-183
3-0140	Me	Me	н	Н	2	н	Н	CF ₃	$CH_2C(=O)N(Me)_2$	Cl	142-143
3-0141	Me	Me	H	Н	2	н	Н	Cl	CH ₂ C(=O)N(Me) ₂	CF ₃	181-182
3-0142	Me	Ме	н	н	2	н	Н	CF ₃	CH ₂ C(=O)Me	Cl	148-149
3-0143	Me	Me	H	H	2	H	Н	Cl	CH ₂ C(=O)Me	CF ₃	163-164

3-0144	Me	Me	H	Н	2	Н	Н	CF ₃	CH ₂ CH ₂ C(=O)Me	CI	89-91
3-0145	Me	Me	Н	Н	2	Н	Н	Me	Ph	Me	140-141
3-0146	Me	Me	Н	Н	2	Н	н	Me	Ph	Cl	124-125
3-0147	Me	Me	Н	н	2	Н	Н	Et	Ph	Cl	112-113
3-0148	Me	Me	Н	Н	2	Н	Н	Pr	Ph	Cl	122-123
3-0149	Me	Me	Н	Н	2	Н	Н	Pr-i	Ph	Cl	116-117
3-0150	Me	Me	Н	н	2	Н	H	Bu-t	Ph	CI	100-102
3-0151	Me	Me	H	H	2	Н	Н	CF ₃	Ph	Н	111-112
3-0152	Me	Me	н	Н	2	н	Н	CF ₃	Ph	Me	129-132
3-0153	Me	Me	н	н	2	Н	н	CF ₃	Ph	CF ₃	112-113
3-0154	Me	Me	н	н	2	Н	Н	CF ₃	Ph	F	90-91
3-0155	Me	Me	н	Н	2	Н	Н	CF ₃	Ph	OMe	104-106
3-0156	Me	Me	Н	н	2	Н	н	CF ₃	Ph	OEt	129-131
3-0157	Me	Me	Н	Н	2	Н	н	CF ₃	Ph	OPr-i	86-88
3-0158	Me	Me	Н	н	2	Н	Н	CF ₃	Ph	OPr	117-118
3-0159	Me	Me	Н	Н	2	н	н	CF ₃	Ph	OBu-t	105-108
3-0160	Me	Me	Н	Н	2	Н	Н	CF ₃	Ph	OCHF ₂	90-92
3-0161	Me	Me	н	н	2	н	н	CF ₃	Ph	SO₂Me	167-168
3-0162	Me	Me	Н	Н	2	н	Н	CF ₃	Ph	CN	113-115
3-0163	Me	Me	н	Н	2	н	н	CF ₃	(2-Cl)Ph	Cl	153-154
3-0164	Ме	Me	Н	Н	2	Н	Н	CF ₃	(3-CI)Ph	Cl	106-107
3-0165	Me	Me	н	Н	2	н	Н	CF ₃	(4-Cl)Ph	Cı	142-143
3-0166	Ме	Me	H	Н	2	Н	Н	CF ₃	(4-F)Ph	Cı	135-138
3-0167	Me	Me	Н	н	2	Н	Н	CF₃	(4-OMe)Ph	Cl	136-138
3-0168	Me	Me	H	Н	2	Н	Н	CF ₃	(4-Me)Ph	Cl	129-130
3-0169	Me	Me	Н	Н	2	Н	Н	CF₃	(4-NO ₂)Ph	Cl	145-147
3-0170	Me	Me	Н	Н	2	Н	Н	CF ₃	(4-CN)Ph	CI	91-93
3-0171	Me	Me	Н	н	2	Н	Н	CF₃	(4-C(=O)Me)Ph	Cl	133-135
3-0172	Me	Me	Н	Н	2	H	Н	CF₃	(4-C(=O)OMe)Ph	Cl	121-124
3-0173	Me	Me	Н	Н	2	н	н	CF₃	Pyrmidin-2-yl	Cl	148-150
3-0174	Me	Me	н	н	2	н	н	CF₃	4,6-Dimethoxypyrmidin- 2-yl	Cl	117-118
3-0175	Me	Me	Н	Н	2	Н	Н	CF ₃	SO₂Me	CI	146-148
3-0176	Me	Me	Н	H	2	н	H	CF₃	SO₂Ph	CI	145-148
3-0177	Ме	Me	н	Н	2	Н	н	CF ₃	C(=O)Me	CI '	130-131
3-0178	Ме	Ме	Н	Н	2	н	H	CF ₃	C(=O)Ph	Cl	114-117
3-0179	Me	Me	Н	Н	2	Н	Н	CF ₃	C(=O)OMe	Cl	104-106
3-0180	Me	Et	н	H	2	н	Н	CF ₃	Ме	CI	108-110

3-0181	Me	Me	н	Н	0	н	Н	CHF ₂	Ме	CI	1.5183
3-0182	Me	Me	Н	н	0	Н	Н	Ph	Ме	CI	76-77
3-0183	Me	Me	H	H	0	Н	Н	CF ₃	Bu-t	ОМе	1.4831
3-0184	Me	Me	Н	Н	0	Н	Н	CF ₃	CH ₂ C(=O)NH ₂	Cl	179-180
3-0185	Me	Me	Н	н	0	Н	H	Me	Ph	CI	58-60

表14

表15

表16

表17

224

表18

表19

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
化合物番号	\mathbb{R}^1	R ²	R ³	R ⁴	n	R ⁵	R ⁶	Y^1	融点(℃)又は 屈折率(np ²⁰)				
9-0001	Me	Me	Н	Н	2	H	H	Pyridin-2-yl	116-118				
9-0002	Me	Me	H	Н	2	Н	H	Pyridin-2-yl 1-oxide	140-143				
9-0003	Me	Me	Н	H	2	Н	H	Pyridin-4-yl	133-136				
9-0004	Me	Me	Н	Н	2	Н	H	Pyridin-4-yl 1-oxide	110-113				
9-0005	Me	Me	H	Н	2	H	H	1,2,4-Oxadiazol-3-yl	測定不可				
9-0006	Me	Me	Н	Н	2	Н	H	3-Phenyl-1,2,4-oxadiazol-5-yl	153-154				
9-0007	Me	Me	Н	Н	2	H	H	3-Benzyl-1,2,4-oxadiazol-5-yl	108-109				
9-0008	Me	Me	Н	Н	2	Н	Н	2-Chlorothiazol-4-yl	110-112				
9-0009	Me	Me	H	Н	2	Н	H	1,4-Dimethylimidazol-5-yl	163-164				
9-0010	Me	Me	H	Н	1	Н	H	Pyridin-2-yl	81-82				
9-0011	Me	Me	Н	Н	1	H	Н	Pyridin-4-yl	94-96				
9-0012	Me	Me	Н	Н	1	H	H	1,4-Dimethylimidazol-5-yl	138-140				
9-0013	Me	Me	H	Н	0	Н	H	1,4-Dimethylimidazol-5-yl	1.5427				

WO 02/062770 PCT/JP02/01015

226

表20

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
化合物番号	R¹	R ²	R ³	R⁴	n	R ⁵	R ⁶	Y¹	融点(℃)又は 屈折率(np ²⁰)			
10-0001	Me	Me	Н	Н	2	Н	Н	Benzimidazol-2-yl	171-174			
10-0002	Me	Me	Н	Н	2	Н	H	Benzothiophen-2-yl	181-183			
10-0003	Me	Me	H	H	2	Н	H	3-Chlorobenzothiophen-2-yl	109-112			
10-0004	Me	Me	Н	H	2	H	H	Benzotriazol-1-yl	206-207			
10-0005	Me	Me	Н	H	2	Н	H	1-Methylindazol-4-yl	128-130			
10-0006	Me	Me	Н	H	2	Н	H	Benzothiazol-2-yl	142-143			
10-0007	Me	Me	Н	H	2	Н	H	Benzothiophen-3-yl	188-191			
10-0008	Me	Me	H	Н	2	H	H	5-Chlorobenzothiophen-3-yl	129-130			
10-0009	Me	Me	Н	Н	2	Н	H	Benzoxazol-2-yl	127-129			
10-0010	Me	Me	Н	H	2	Н	H	3-Methylbenzothiophen-2-yl	161-163			
10-0011	Me	Me	H	Н	2	Н	H	3-Bromobenzothiophen-2-yl	118-119			
10-0012	Me	Me	H	Н	2	H	H	Benzofuran-2-yl	123-124			
10-0013	Me	Me	н	Н	2	H	Н	2-Methylbenzofuran-7-yl	135-137			
10-0014	Me	Me	H	Н	2	H	Н	3-Bromobenzofuran-2-yl	107-108			
10-0015	Me	Me	H	Н	2	H	Н	Benzothiophen-7-yl	95-97			
10-0016	Me	Me	Н	Н	2	H	Н	1-Methylindazol-7-yl	89-90			
10-0017	Me	Me	H	H	2	H	Н	3-Methylbenzofuran-2-yl	111-112			
10-0018	Me	Me	H	H	2	H	Н	3-Chloro-1-methylindol-2-yl	162-165			

(中間体の製造例)

<参考例1>

3-クロロー5,5-ジメチルー2-イソオキサゾリンの製造 5

グリオキシル酸アルドオキシム182.7g(2.05モル)の1,2-ジメトキ シエタン21溶液に、65~70℃でN-クロロこはく酸イミド534.0g(4. 0モル)を徐々に加えた後、1時間加熱還流した。氷冷下、炭酸水素カリウム14 WO 02/062770 PCT/JP02/01015

227

40.0g(14.4モル)及び水10mlを加えた後、2-メチルプロペン360. 0g(6.4モル)を反応溶液に加え、室温で24時間攪拌した。反応溶液を水中 に注ぎジイソプロピルエーテルで抽出した。得られた有機層を水及び食塩水で順次 洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、黄色粘調性 液体の3-クロロー5,5-ジメチルー2-イソオキサゾリン107.7g(収率4 0.0%)を得た。

(1 H-NMR値(CDC1₃/TMS δ (ppm)) :2.93(2H, s)、1.47(6H, s)

<参考例2>

5

3-クロロー5-エチルー5-メチルー2-イソオキサゾリンの製造

- 10 グリオキシル酸アルドオキシム20.6g(231.7ミリモル)の1,2ージメ トキシエタン 5 0 0 m 1 溶液に、6 0 ℃でN ークロロこはく酸イミド 6 1.9 g (4 63.4ミリモル)を徐々に加えた。加え終わった後、10分間加熱還流した。次 に、氷冷下、2-メチル-1-ブテン50ml(463.4ミリモル)、炭酸水素 カリウム98.9g(1622ミリモル)及び水10mlを加え12時間攪拌した。
- 反応溶液を水中に注ぎ n ーヘキサンで抽出した。得られた有機層を水及び食塩水で 15 順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、淡黄色 粘調性液体の3ークロロー5ーエチルー5ーメチルー2ーイソオキサゾリン13. 9g(収率40.6%)を得た。

(1 H-NMR値 (CDCl₃/TMS δ (ppm)):2.91(2H, ABq, J=17.0, $\Delta \nu$ =46.1Hz), 1.73(2H, q)、 20 1. 42 (3H, s) 0. 96 (3H, t)

<参考例3>

3-ベンジルチオー5,5-ジメチルー2-イソオキサゾリンの製造ベンジルメルカプタン2.8g(22.5ミリモル)のN,N-ジメチルホルムア ミド50m1溶液に、窒素気流下、無水炭酸カリウム3.2g(23.2ミリモル) 25 及び3-クロロー5、5ージメチルー2ーイソオキサゾリン3.0g(22.5ミリ

モル)を加え 100 ℃で 2 時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸 エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、黄色油状物質(屈折率 $n_p^{20}=1.5521$)の 3-ベンジルチオー 5 5-ジメチルー 2-イソオキサゾリン 3.1 g (収率 62.0%)を得た。 (1 H-NMR値(CDCl $_3$ /TMS δ (ppm)): 7.24-7.39(5H, m)、4.26(2H, s)、2.77(2H, s)、1.40(6H, s)

<参考例4>

5

3-(2,6-ジフルオロベンジルスルフィニル)-5-エチル-5-メチルー10 2-イソオキサゾリンの製造

3-(2,6-ジフルオロベンジルチオ)-5-エチルー5-メチルー2ーイソオキサゾリン4.1g(15.0ミリモル)のクロロホルム50ml溶液に、氷冷下、m-クロロ過安息香酸4.6g(純度70%、18.8ミリモル)を加え1時間攪拌した。その後、更に室温で12時間攪拌した。反応終了後、反応溶液を水中に15 注ぎクロロホルムで抽出した。得られた有機層を亜硫酸水素ナトリウム水溶液、炭酸カリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、白色粉末(融点30℃以下)の3ー(2,6-ジフルオロベンジルスルフィニル)-5-エチルー5-メチルー2ーイソオキサゾリン1.5g(収率34.8%)を得た。

(1 H-NMR値(CDC1 $_{3}$ /TMS δ (ppm)):7.39-7.28(1H, m)、7.03-6.94(2H, m)、4.38(2H, s)、3.04(1H, ABq, J=17.2, $\Delta \nu$ =85.7Hz)+3.12(1H, s)、1.75(2H, m)、

1. 44(3H, s)+1.41(3H, s), 0. 97(3H, m)

<参考例5>

3-(2,6-i)フルオロベンジルスルホニル) -5-xチルー5-xチルー 2

10

ーイソオキサゾリンの製造

(1 H—NMR値(CDC1 $_{3}$ /TMS δ (ppm)):7.36-7.46(1H, m)、6.98-7.04(2H, m)、4.73(2H, s)、3.04(2H, ABq, J=17.2, Δ ν =51.1Hz)、1.77(2H, q)、1.46(3H, s)、0.97(3H, t) <参考例 6 >

5,5ージメチルー3ーメチルスルホニルー2ーイソオキサゾリンの製造 3ークロロー5,5ージメチルー2ーイソオキサゾリン143.0g(1.07モル)のN,Nージメチルホルムアミド500ml溶液に、氷冷下、メチルメルカプタンナトリウム水溶液1.0kg(含量15%、2.14モル)を滴下し、その後室温で12時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。
 20 得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、5,5ージメチルー3ーメチルチオー2ーイソオキサゾリンを115.0g(収率74.1%)得た。この残渣(741.2ミリモル)をクロロホルム11に溶解し、氷冷下、mークロロ過安息香酸392.0g(純度70%、1.59モル)を加え1時間攪拌した。その後、更に室温で12時間攪拌した。反応終了後、
 5 析出したmークロロ安息香酸を濾別し、濾液を亜硫酸水素ナトリウム水溶液、水、

炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をジイソプロピルエーテルで洗浄し、白色粉末(融点82~84°C)の5,5-ジメチル-3-メチルスルホニル-2-イソオキサゾリン77.6g(収率59.1%)を得た。

- 5 (¹H-NMR値 (CDC1₃/TMS δ (ppm)):3.26(3H, s)、3.12(2H, s)、1.51(6H, s) <参考例7>
 - 5,5-ジメチルー3-エチルチオー2-イソオキサゾリンの製造
 - $3-\rho$ ロロー 5, $5-\tilde{y}$ メチルー 2-dソオキサゾリンを含有した反応溶液に、エチルメルカプタン 5 6 0.0 g (9.0 モル)および水酸化ナトリウム 3 6 0.0 g (9.0 モル)の水溶液 1 5 0 0 m 1 を加えた。その後、6 0 ~ 7 0 $\mathbb C$ で 1 6 時間攪拌した。反応終了確認後、反応溶液を水に注ぎ酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、濃赤色油状の 5, $5-\tilde{y}$ メチルー 3-xチルチオー 2-d ソオキサゾリンの粗化合物 2 7 0.0 g 得た。
- 15 <参考例8>

10

20

- 5,5-ジメチルー3-エチルスルホニルー2-イソオキサゾリンの製造
- 5,5-ジメチルー3-エチルチオー2-イソオキサゾリンの粗油状物270.
- 0g(1.7モル)をクロロホルム1.01に溶解し、氷冷下、mークロロ過安息香酸1050g(純度70%, 6.1モル)を加え1時間攪拌し、その後、更に室温で12時間攪拌した。反応終了確認後、析出したmークロロ安息香酸を濾別し、濾液を亜硫酸水素ナトリウム水溶液、炭酸水素ナトリウム水溶液、水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をnーヘキサンで洗浄し、白色粉末の5,5ージメチルー3ーエチルスルホニルー2ーイソオキサゾリン133.6g(収率65.4%)を得た。
- 25 <参考例9>

1-フェニル-3-トリフルオロメチル-1H-ピラゾール-5-オールの製造

トリフルオロアセト酢酸エチルエステル34.1g(184.9ミリモル)のエタノール500ml溶液にフェニルヒドラジン20g(184.9ミリモル)及び濃塩酸4mlを加えた後、1時間加熱還流した。反応終了後、減圧下溶媒を大部分留去し、残渣に水を加えて結晶を析出させた。ろ過し、得られた結晶をろ液が中性になるまで水で洗浄した後、乾燥して、黄土色結晶の1-フェニル-3-トリフルオロメチル-1H-ピラゾール-5-オール37.1g(収率87.9%)を得た。

(¹H-NMR値 (CDCl₃/TMS δ (ppm)): 7.68-7.41(5H, m), 5.86(1H, s), 3.71(1H, s)
<参考例10>

5 ークロロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4 ーカルボアルデヒドの製造

N, Nージメチルホルムアミド7.7g(105.2ミリモル)に、氷冷下、オキシ塩化リン33.6g(219.1ミリモル)を加えた。次に、室温で1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー5ーオール20g(87.7ミリモル)を加えた後、1時間加熱還流した。反応終了後、氷冷下、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を炭酸水素ナトリウム水溶液及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、白色結晶の5ークロロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒド19.1g(収率79.1%)を得た。

(1 H-NMR値 (CDCl₃/TMS δ (ppm)) : 10.06(1H, s), 7.57(5H, s)

<参考例11>

5

10

15

20

(5-クロロー1-フェニルー3ートリフルオロメチルー1Hーピラゾールー425 ーイル)ーメタノールの製造

<参考例13>

5

10 (¹H-NMR値 (CDCl₃/TMS δ (ppm)): 7.54-7.51(5H, m), 4.71(2H, d), 1.79(1H, b) <参考例12>

4 ーブロモメチルー5 ークロロー1 ーフェニルー3 ートリフルオロメチルー1 Hーピラゾールの製造

(5-クロロー1-フェニルー3-トリフルオロメチルー1H-ピラゾールー4 15 ーイル)ーメタノール3.0g(10.9ミリモル)のジエチルエーテル60m1溶液 を-10℃に冷却し、三臭化リン1.0g(3.8ミリモル)を加え、更に室温で1時 間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた 有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留 去し、白色結晶の4ーブロモメチルー5ークロロー1-フェニルー3ートリフルオ 20 ロメチルー1H-ピラゾール3.6g(収率95.8%)を得た。

(1 H-NMR値(CDC1₃/TMS δ (ppm)): 7.58-7.48(5H, m), 4.48(2H, s)

5 ーフルオロー 1 ーフェニルー 3 ートリフルオロメチルー 1 Hーピラゾールー 4 ーカルボアルデヒドの製造

25 5-クロロー1-フェニルー3-トリフルオロメチルー1H-ピラゾールー4

ーカルボアルデヒド33.0g(120.1ミリモル)のジメチルスルホキシド500m1溶液に、ふっ化カリウム10.5g(180.2ミリモル)を加え、100℃で2時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン一酢酸エチル混合溶媒)で精製し、5ーフルオロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒド26.5g(収率85.0%)を得た。

(1 H-NMR値(CDC1₃/TMS δ (ppm)) : 9.96(1H, s), 7.68-7.51(5H, m)

10 <参考例14>

5

(5-フルオロー1-フェニルー3-トリフルオロメチルー1H-ピラゾールー4-イル)-メタノールの製造

水素化ホウ素ナトリウム1.6g(41.0ミリモル)のメタノール300m1溶液に、氷冷下、5ーフルオロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒド26.5g(102.5ミリモル)のメタノール200m1溶液を加え、0℃で30分間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、(5ーフルオロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾールー4ーイル)ーメタノール28.5g(収率100%)を得た。

(¹H-NMR値(CDCl₃/TMS δ(ppm)): 7.65-7.41(5H, m), 4.68(2H, d), 1.73(1H, t)
<参考例15>

4 ーブロモメチルー5 ーフルオロー1 ーフェニルー3 ートリフルオロメチルー 1 H ー ピラゾールの製造

25 (5-フルオロー1-フェニルー3-トリフルオロメチルー1H-ピラゾールー

4-(1)-メタノール27.5 g(105.7 ミリモル)のジエチルエーテル300 m l 溶液を0 \mathbb{C} に冷却し、三臭化りん10.0 g(37.0 ミリモル)を加え、更に室温で2時間攪拌した。反応終了後、反応溶液を水中に注ぎジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。

5 減圧下溶媒を留去し、4ーブロモメチルー5ーフルオロー1ーフェニルー3ートリフルオロメチルー1Hーピラゾール30.3g(収率88.8%)を得た。

(1 H-NMR値(CDC1₃/TMS δ (ppm)) : 7.66-7.42 (5H, m), 4.44 (2H, s)

<参考例16>

1 - tert-ブチル-3-トリフルオロメチル-1H-ピラゾール-5-オール10 の製造

トリフルオロアセト酢酸エチルエステル552.3g(3.0モル)のエタノール1500ml溶液にtertーブチルヒドラジン塩酸塩373.8g(3.0モル)及び濃塩酸50mlを加えた後、2日間加熱還流した。反応終了後、減圧下溶媒を大部分留去し、残渣を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をnーヘキサンで洗浄し、白色粉末の1-tertーブチル-3-トリフルオロメチル-1H-ピラゾール-5-オール369.0g(収率59.1%)を得た。

<参考例17>

15

25

1 - tert - ブチルー 5 - クロロー 3 - トリフルオロメチルー 1 H - ピラゾール20 - 4 - カルボアルデヒドの製造

N, N-ジメチルホルムアミド87.7g(1.2モル)に、氷冷下、オキシ塩化リン462.0g(3.0モル)を加えた。次に、室温で1-tert-ブチル-3-トリフルオロメチル-1H-ピラゾール-5-オール208.2g(1.0モル)を加えた後、10時間加熱還流した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を水、5%水酸化ナトリウム水溶液及び水で順次洗浄した

後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: ヘキサンー酢酸エチル混合溶媒)で精製し、白色結晶の1ーtertーブチルー5ークロロー3ートリフルオロメチルー1Hーピラゾールー4ーカルボアルデヒド131.5g(収率21.7%)を得た。

5 ('H-NMR値 (CDCl₃/TMS δ (ppm)) : 9.97(1H, d), 1.76(9H, s)

<参考例18>

25

(1-tert-ブチルー5-クロロー3-トリフルオロメチルー1H-ピラゾール -4-イル)-メタノールの製造

1 ーtertーブチルー5 ークロロー3ートリフルオロメチルー1 Hーピラゾール
10 ー4ーカルボアルデヒド39.9g(156.9ミリモル)のメタノール300m1
溶液を0℃に冷却し、水素化ホウ素ナトリウム6.5g(172.6ミリモル)を徐々に加え、更に室温で3時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、(1 ーtertーブチルー5ークロロー3ートリフルオロメチルー1 Hーピラゾールー4ーイル)ーメタノール37.7g(収率93.6%)を得た。

(¹H-NMR値 (CDCl₃/TMS δ (ppm)): 4.60(2H, d), 1.72(9H, s), 1.58(1H, t)
<参考例19>

4 ーブロモメチルー1 - tertーブチルー5 - クロロー3 - トリフルオロメチル20 - 1 H - ピラゾールの製造

(1-tert-ブチル-5-クロロ-3-トリフルオロメチル-1H-ピラゾール-4-イル)-メタノール9.2g(35.7ミリモル)のジエチルエーテル100m 1溶液を-10℃に冷却し、三臭化リン11.6g(42.9ミリモル)を加え、更に室温で一夜攪拌した。反応終了後、反応溶液を氷水中に注ぎジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。 減圧下溶媒を留去し、4ーブロモメチルー1ーtertーブチルー5ークロロー3ート リフルオロメチル-1H-ピラゾール10.0g(収率87.3%)を得た。

<参考例20>

5

15

(1-tert-ブチル-5-クロロ-3-トリフルオロメチル-1H-ピラゾール -4-イル)ーメタンチオールの製造

水硫化ナトリウム水和物 2 1.8 g (純度 7 0 %、 2 7 2.2 ミリモル)のN, N — ジメチルホルムアミド300ml溶液に4ーブロモメチルー1-tert-ブチルー 5-クロロー3-トリフルオロメチルー1H-ピラゾール43.5g(136.1ミ リモル)を加え、更に室温で一夜攪拌した。反応終了後、反応溶液を氷水中に注ぎ ジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マ 10 グネシウムで乾燥した。減圧下溶媒を留去し、(1-tertーブチルー5ークロロー 3-トリフルオロメチル-1H-ピラゾール-4-イル)ーメタンチオール32. 3g(収率87.0%)を得た。

 $(^{1}H-NMR値 (CDC1_{3}/TMS \delta (ppm)) : 3.65(2H, d), 1.90(1H, t), 1.70(9H, s)$ <参考例21>

1-tert-ブチルー5-メトキシー3-トリフルオロメチルー1H-ピラゾー ルの製造

1-tert-ブチル-3-トリフルオロメチル-1H-ピラゾール-5-オール 18.8g(90.3ミリモル)のN, N-ジメチルホルムアミド100m1溶液に、 20 室温で無水炭酸カリウム15.0g(108.4ミリモル)及びヨウ化メチル19. 3g(135.5ミリモル)を加え、更に15時間攪拌した。反応終了後、反応溶 液を水中に注ぎジエチルエーテルで抽出した。得られた有機層を水及び食塩水で順 次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、1ーtert ーブチルー5ーメトキシー3ートリフルオロメチルー1Hーピラゾール20.0g 25 (収率99.8%)を得た。

WO 02/062770

237

<参考例22>

1-tert-ブチルー4-クロロメチルー5-メトキシー3-トリフルオロメチ ルー1 Hーピラゾールの製造

1-tert-ブチル-5-メトキシ-3-トリフルオロメチル-1H-ピラゾー ル20.0g(90.1ミリモル)の酢酸90m1溶液に、パラホルムアルデヒド5. 5 4 g (ホルムアルデヒド換算180.2ミリモル)及び濃塩酸20m1を加え60℃ で30分間加熱攪拌した。反応終了後、反応溶液を水中に注ぎジイソプロピルエー テルで抽出した。得られた有機層を水で洗浄した後、無水硫酸マグネシウムで乾燥 した。減圧下溶媒を留去し、1 - tert-ブチル-4-クロロメチル-5-メトキシ -3-トリフルオロメチル-1H-ピラゾール21.7g(収率89.0%)を得た。 10 <参考例23>

3-メトキシ-1-メチル-5-トリフルオロメチル-1H-ピラゾールの製 造

3-ヒドロキシ-1-メチル-5-トリフルオロメチル-1H-ピラゾール1 0.0g(60.2ミリモル)のN, N-ジメチルホルムアミド50m1溶液に、室 15 温で無水炭酸カリウム10.0g(72.3ミリモル)及びヨウ化メチル12.8g (90.3ミリモル)を加え、更に15時間攪拌した。反応終了後、反応溶液を水 中に注ぎジエチルエーテルで抽出した。得られた有機層を水及び食塩水で順次洗浄 した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、3ーメトキシー 20 1-メチル-5-トリフルオロメチル-1H-ピラゾール9.8g(収率90. 7%)を得た。

<参考例24>

4-クロロメチルー3-メトキシー1-メチルー5-トリフルオロメチルー1 Hーピラゾールの製造

25 3-メトキシー1-メチルー5-トリフルオロメチルー1H-ピラゾール1.0

0 g (5.6 ミリモル)の酢酸 2 5 m 1 溶液に、パラホルムアルデヒド 0.4 5 g (ホ ルムアルデヒド換算15.0ミリモル)及び濃塩酸5m1を加え80℃で2時間加 熱攪拌した。反応終了後、反応溶液を水中に注ぎ炭酸カリウムを用いて中和した後、 酢酸エチルで抽出した。得られた有機層を水洗浄した後、無水硫酸マグネシウムで 乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展 開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し4ークロロメチルー3ーメトキ シー1ーメチルー5ートリフルオロメチルー1Hーピラゾール0.83g(収率6 5.0%)を得た。

<参考例25>

5

15

10 5-フルオロー1-メチルー3ートリフルオロメチルー1H-ピラゾールー4 ーカルボアルデヒドの製造

5-クロロ-1-メチル-3-トリフルオロメチル-1H-ピラゾール-4-カルボアルデヒド60.4g(282.7ミリモル)のジメチルスルホキシド700 m1溶液に、ふっ化カリウム42.0g(711.9ミリモル)を加え、120~14 0℃で5時間攪拌した。反応終了確認後、反応溶液を水に注ぎ酢酸エチルで抽出し た。得られた有機層を水および食塩水で洗浄した後、無水硫酸マグネシウムで乾燥 した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶 媒:ヘキサンー酢酸エチル混合溶媒)で精製し、5-フルオロー1-メチルー3-トリフルオロメチルー1H-ピラゾールー4-36.8g(収率66.0%)を得た。

20 <参考例26>

> (5-フルオロー1ーメチルー3ートリフルオロメチルー1Hーピラゾールー4 ーイル)ーメタノールの製造

水素化ホウ素ナトリウム 3.9g(102.6ミリモル) のメタノール 500m1 に容液、氷冷下、5ーフルオロー1ーメチルー3ートリフルオロメチルー1Hーピ 25 ラゾールー4ーカルボアルデヒド36.8g(187.6ミリモル)のメタノール2

00m1溶液を加えた。0℃で30分間攪拌した。反応終了確認後、反応溶液を2 に注ぎ酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、(5ーフルオロー1ーメラルー3ートリフルオロメチルー1Hーピラゾールー4ーイル)ーメタノール35.

5 4g(収率95.4%)を得た。

<参考例27>

4-ブロモメチルー5-フルオロー1-メチルー3-トリフルオロメチルー1 H-ピラゾールの製造

5-フルオロー1-メチルー3-トリフルオロメチルー1Hーピラゾールー4

10 -メタノール35.4g(178.7ミリモル)のジエチルエーテル500m1溶液を一30℃に冷却し、三臭化りん54.0g(199.5ミリモル)を加えた。室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎジエチルエーテルで抽出した。得られた有機層を水及び食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、4ーブロモメチルー5ーフルオロー1-メチルー3-トリフルオロメチルー1Hーピラゾール31.4g(収率80.8%)を得た。

<参考例28>

(エトキシカルボニル)マロンジアルデヒドの製造

水素化ナトリウム12.6g(純度60%、525.0ミリモル)をジエチルエーテルで数回デカントした後、ジエチルエーテル500m1溶液とした。そして、窒 素気流下、0~10℃で、ギ酸エチル194g(2.6モル)および3,3ージエトキシープロピオン酸エチルエステル50g(262.0ミリモル)を加えた。その後、室温で15時間攪拌し、反応終了確認後、反応溶液を水に注ぎ、ジエチルエーテルで洗浄した。得られた水層を塩酸でpH1とした後、ジクロロメタンで抽出した。更に、得られた有機層を食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧 25 下溶媒を留去し、濃赤色油状の(エトキシカルボニル)マロンジアルデヒドの細化合 物37.6g(収率100%)を得た。

(1 H-NMR値(CDC1 $_{3}$ /TMS δ (ppm)): 9.09(2H, s), 5.26(1H,s), 4.27(2H, q),

1. 28 (3H, t)

<参考例29>

5 1 Hーピラゾールー4ーカルボン酸エチルエステルの製造

(エトキシカルボニル)マロンジアルデヒド27.6g(192ミリモル)のエタノール150ml溶液に氷冷下、ヒドラジン6.2g(193ミリモル)を加え、室温で17時間攪拌した。その後、減圧下エタノールを留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタンー酢酸エチル混合溶媒)で精製し

10 黄色結晶の1H-ピラゾール-4-カルボン酸エチルエステル19.4g(72.4%)を得た

('H-NMR値 (CDC1₃/TMS δ (ppm)) : 8.08(2H, s), 5.30(1H, s), 4.31(2H, q),

1.36(3H, t)

<参考例30>

15 1ーエチルー1 Hーピラゾールー4ーカルボン酸エチルエステルの製造 1 Hーピラゾールー4ーカルボン酸エチルエステル1.5 g(10.7ミリモル)のN, Nージメチルホルムアミド50ml溶液に無水炭酸カリウム3.7 g(26.8ミリモル), ヨウ化エチル4.2 g(26.6ミリモル)を加え、室温で20時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた20 有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、黄色油状物の1ーエチルー1 Hーピラゾールー4ーカルボン酸エチルエステル1.6 g(収率88.9%)を得た。

(1 H-NMR値(CDC1₃/TMS δ (ppm)) : 7.90(2H, s), 4.28(2H, q), 4.18(2H, q),

25 1.51(3H, t), 1.35(3H, t)

PCT/JP02/01015 WO 02/062770

241

<参考例31>

3,5-ジクロロ-1-エチル-1H-ピラゾール-4-カルボン酸エチルエステルの製造

1-xチルー1H-yラゾールー4-yルボン酸エチルエステル1.6g(9.55 ミリモル), N-クロロこはく酸イミド 5.1g(38.3ミリモル)をガラス封管に 入れ、160℃で6時間反応させた。反応終了後、室温まで冷却し、反応物を四塩 化炭素およびクロロホルムで洗浄、減圧ろ過した。得られたろ液(有機層)を水およ び食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣 をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶 10 媒)で精製し、黄色油状物の3,5ージクロロー1ーエチルー1Hーピラゾールー4 ーカルボン酸エチルエステル1.0g(収率44.2%)を得た。

 1 H-NMR値(CDC1₃/TMS δ (ppm)): 4. 36(2H, q), 4. 21(2H,

q), 1. 44 (3H, t), 1. 38 (3H, t)

<参考例32>

(3,5-ジクロロー1-エチルー1H-ピラゾールー4-イル)メタノールの製 15 造

水素化リチウムアルミニウム 0.16 g(4.2ミリモル)のテトラヒドロフラン 70m1溶液を-50℃に冷却し、3,5-ジクロロ-1-エチル-1H-ピラゾ ールー4ーカルボン酸エチルエステル1.0g(4.2ミリモル)のテトラヒドロフ 20 ラン30m1溶液をゆっくり滴下し、更に−50℃で3時間攪拌した。反応終了確 認後、酢酸エチルを加えて、しばらく攪拌した後、更に水を加え、しばらく攪拌し た。減圧ろ過し、ろ液を酢酸エチルで抽出した。得られた有機層を水および食塩水 で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、茶色油状物の (3,5-ジクロロー1ーエチルー1Hーピラゾールー4ーイル)メタノール0.8 25 2 g (収率100%)を得た。

('H-NMR値 (CDCl₃/TMS δ (ppm)): 4.52(2H, s), 4.16(2H, q), 1.43(3H, t) <参考例 3 3 >

4-ブロモメチルー3, 5-ジクロロー1-エチルー1 H-ピラゾールの製造 (3,5-ジクロロー1-エチルー1 H-ピラゾールー4-イル)メタノール0.

5 82g(4.2ミリモル)のジエチルエーテル50m1溶液を-30℃に冷却し、三臭化リン1.3g(4.8ミリモル)を加え、更に室温で12時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、黄色油状物の4-ブロモメチル-3,5-ジクロロ-1-エチル-1H-ピラゾール0.

10 9 g (収率 8 1.8%)を得た。

(¹H-NMR値(CDCl₃/TMS δ (ppm)): 4.33(2H, s), 4.13(2H, q), 1.43(3H, t) <参考例34>

3 - ジフルオロメチル-1-メチル-1H-ピラゾール-5-オールの製造 ジフルオロアセト酢酸エチルエステル30.0g(180.6ミリモル)のエタノ

15 ール200ml溶液にメチルヒドラジン8.3g(180.6ミリモル)及び濃塩酸 5mlを加えた後、2日間加熱還流した。反応終了後、減圧下溶媒を大部分留去した。残渣を水中に注ぎクエン酸でpH4とした後、酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: ヘキ サンー酢酸エチル混合溶媒)で精製し、3ージフルオロメチルー1ーメチルー1Hーピラゾールー5ーオール8.9g(収率33.3%)を得た。

<参考例35>

5 ー クロロー 3 ー ジフルオロメチルー 1 ーメチルー 1 H ー ピラゾールー 4 ー カルボアルデヒドの製造

25 N, N-ジメチルホルムアミド 7.9 g (108.0 ミリモル)に、氷冷下、オキシ

塩化リン41.6g(270.1ミリモル)を加えた。次に、室温で3-ジフルオロメチルー1ーメチルー1Hーピラゾールー5ーオール8.0g(54.0ミリモル)を加えた後、4時間加熱還流した。反応終了後、反応溶液を水中に注ぎクロロホルムで抽出した。得られた有機層を水、5%水酸化ナトリウム水溶液及び水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: $^{+}$ サンー酢酸エチル混合溶媒)で精製し、白色結晶の5ークロロー3ージフルオロメチルー1ーメチルー1Hーピラゾールー4ーカルボアルデヒド7.7g(収率73.3%)を得た。($^{+}$ H-NMR値(CDC1 $_{3}$ /TMS δ (ppm)):9.96(1H, s), 6.90(1H, t, J=53.6Hz), 3.93(3H, s)

10 <参考例36>

5

(5-クロロー3-ジフルオロメチルー1-メチルー1H-ピラゾールー4-イル)-メタノールの製造

5-クロロー3-ジフルオロメチルー1ーメチルー1Hーピラゾールー4ーカルボアルデヒド7.2g(37.0ミリモル)のメタノール100m1溶液を0℃に 15 冷却し、水素化ホウ素ナトリウム2.1g(55.5ミリモル)を徐々に加え、更に室温で3時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。 得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、(5-クロロー3-ジフルオロメチルー1ーメチルー1Hーピラゾールー4-イル)ーメタノール3.8g(収率52.1%)を得た。

20 (1 H-NMR値(CDCl₃/TMS δ (ppm)):6.70(1H, t, J=40.8Hz), 4.63(2H, s), 3.86(3H, s), 1.79(1H, br)

<参考例37>

4ープロモメチルー5ークロロー3ージフルオロメチルー1ーメチルー1Hー ピラゾールの製造

25 (5-クロロー3-ジフルオロメチルー1-メチルー1H-ピラゾールー4-イ

WO 02/062770 PCT/JP02/01015

244

ル)ーメタノール2.0g(10.0ミリモル)のジエチルエーテル50m1溶液を一 10℃に冷却し、三臭化リン1.0g(3.5ミリモル)を加え、更に室温で一夜攪拌 した。反応終了後、反応溶液を氷水中に注ぎジエチルエーテルで抽出した。得られ た有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を 留去し、4-ブロモメチルー5-クロロー3-ジフルオロメチルー1-メチルー1 H-ピラゾール2.6g(収率100.0%)を得た。

<参考例38>

5

トリフルオロアセトアルデヒドオキシムエーテレートの製造

トリフルオロアセトアルデヒドへミエチルアセタール50.0g(347.0ミリ 10 モル)のメタノール80m1溶液に、ヒドロキシルアミン塩酸塩24.1g (34 7.0ミリモル)、水160m1を加え、氷冷下、50%水酸化ナトリウム水溶液 80.0g(1.7モル)を滴下した。滴下終了後室温で6時間攪拌した。反応終了 後、10%塩酸を加えてpH6とし、ジエチルエーテルで抽出した。減圧下溶媒を 留去し、残渣を蒸留し、トリフルオロアセトアルデヒドオキシムエーテレート24. 15 7g(収率38.0%)を得た。

<参考例39>

トリフルオロアセトヒドロキシモイルブロミドエーテレートの製造

トリフルオロアセトアルデヒドオキシムエーテレート24.7g(131.7ミリ モル)のN, N-ジメチルホルムアミド50ml溶液に、氷冷下、N-ブロモこは 20 く酸イミド38.8g(218.0ミリモル)のN,Nージメチルホルムアミド12 5m1溶液を加え、室温で3時間攪拌した。反応終了後、反応溶液を水中に注ぎジ エチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグ ネシウムで乾燥した。減圧下溶媒を留去し、残渣を蒸留し、褐色油状物質のトリフ ルオロアセトヒドロキシモイルブロミドエーテレート33.3g (収率95.0%) 25を得た。

(1 H-NMR値(CDCl₃/TMS δ (ppm)) : 9.30(1H, s)

<参考例40>

4-エトキシカルボニル-5-メチル-3-トリフルオロメチルイソキサゾールの製造

- 5 アセト酢酸エチル 6.7 g (51.3ミリモル)のメタノール 80 m 1 溶液に、ナトリウムメトキシド 2.8 g (51.3ミリモル)を加え、氷冷下、トリフルオロアセトヒドロキシモイルブロミドエーテレート 5.0 g (18.8ミリモル)のメタノール 20 m 1 溶液を加えた。室温で 3 時間攪拌した。反応終了後、減圧下溶媒を留去し、水を加え、クロロホルムで抽出した。得られた有機層を食塩水で洗浄した後、
- 10 無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: ヘキサンー酢酸エチル混合溶媒)で精製し、無色油状物質の4-エトキシカルボニル-5-メチル-3-トリフルオロメチルイソキサゾール2.9g(収率69.0%)を得た。

('H-NMR値 (CDCl₃/TMS δ (ppm)): 4.36(2H, q), 2.77(3H, s), 1.37(3H, t)
<参考例41>

(5-メチル-3-トリフルオロメチルイソキサゾール-4-イル)-メタノールの製造

(1 H-NMR値(CDCl $_3$ /TMS δ (ppm)): 4.60(2H, d), 2.54(3H, s), 1.66(1H, br) <参考例 4.2 >

4 ーブロモメチルー 5 ーメチルー 3 ートリフルオロメチルイソキサゾールの製造

5 (5-メチルー3ートリフルオロメチルイソキサゾールー4ーイル)ーメタノール0.45g(2.5ミリモル)のジエチルエーテル10ml溶液を0℃に冷却し、三臭化りん0.2g(8.9ミリモル)を加えた。室温で1時間攪拌した。反応終了後、反応溶液を水中に注ぎジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、4ーブロモメ チルー5ーメチルー3ートリフルオロメチルイソキサゾール0.5g(収率74.0%)を得た。

('H-NMR値 (CDCl₃/TMS δ (ppm)) : 4.31(2H, d), 2.51(3H, s) <参考例43>

(5-クロロー3ーメチルーイソチアゾールー4ーイル)ーメタノールの製造 水素化リチウムアルミニウム 0.42g(11.0ミリモル)のテTHF10m1 溶液に、-30℃で5ークロロー3ーメチルーイソチアゾールー4ーカルボン酸エチルエステル2.06g(10.0ミリモル)のTHF10m1溶液を滴下し、更に同温度で1時間攪拌した。反応終了確認後、反応溶液に酢酸エチルを加えた後、水中にあけ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、20 無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、(5ークロロー3ーメチルーイソチアゾールー4ーイル)ーメタノール1.50g(収率91.5%)を得た。

<参考例44>

4-クロロメチルー5-クロロー3-メチルイソチアゾールの製造

 $(5 - \rho p - 3 - \lambda f - \lambda$

(9.15ミリモル)のクロロホルム10ml溶液に、室温で塩化チオニル3.26g (27.44ミリモル)を加え3時間攪拌した。反応終了確認後、減圧下溶媒を留去し、4ークロロメチルー5ークロロー3ーメチルイソチアゾール1.67g(収率 定量的)を得た。

5 <参考例45>

4-トリフルオロメチルニコチン酸メチルエステルの製造

4ートリフルオロメチルニコチン酸 4.6 g(24.1ミリモル)のN, Nージメチルホルムアミド70m1溶液に、無水炭酸カリウム6.7 g(48.6ミリモル), ヨウ化メチル6.9 g(48.6ミリモル)を加え、室温で12時間攪拌した。反応終10 了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、黄色油状物の4ートリフルオロメチルニコチン酸 メチルエステル2.77 g(収率56.1%)を得た。

15 (1 H-NMR値 (CDCl₃/TMS δ (ppm)) : 9.11(1H, s), 8.92(1H, d), 7.6 4(1H, d), 3.99(3H, s)

<参考例46>

(4-トリフルオロメチルピリジン-3-イル)ーメタノールの製造

水素化リチウムアルミニウム 0.3 7 g (9.7 ミリモル)のTHF 100 m 1 溶 液を -50℃に冷却し、4ートリフルオロメチルニコチン酸メチルエステル 2.0 g (9.8 ミリモル)のTHF 30 m 1 溶液をゆっくり滴下し、更に -50℃で3時間攪拌した。反応終了確認後、酢酸エチルを加えて、しばらく攪拌した後、更に水を加え、再度しばらく攪拌した。反応混合物を減圧ろ過し、ろ液を酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶

媒: ヘキサンー酢酸エチル混合溶媒) で精製し、黄色油状物の(4ートリフルオロメ チルピリジン-3-イル)メタノール0.6g(収率35.3%)を得た。

(1 H-NMR値(CDCl₃/TMS δ (ppm)): 9.00(1H, s), 8.73(1H, d), 7.51(1H, d), 4.95(2H, s)

5 <参考例47>

3-ブロモメチルー4-トリフルオロメチルピリジンの製造

(4ートリフルオロメチルピリジン-3ーイル)メタノール0.6g (3.4ミリモル)のジエチルエーテル50ml溶液を-30℃に冷却し、三臭化リン1.4g (5.2ミリモル)を加え、更に室温で12時間攪拌した。反応終了確認後、反応溶10 液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、黄色油状物の3ーブロモメチルー4ートリフルオロメチルピリジン0.61g(収率75.3%)を得た。 ('H-NMR値 (CDC1₃/TMS δ (ppm)): 8.88(1H,s), 8.73(1H,d), 7.54(1H,d), 4.63(2H,s)

15 <参考例48>

5ーブロモー4ーヒドロキシー6ートリフルオロメチルピリミジンの製造 4ーヒドロキシー6ートリフルオロメチルピリミジン49.2g(300.0ミリ モル)の酢酸600ml溶液に、室温で無水酢酸ナトリウム77.5g(945.0ミリモル)を加えた。更に45℃で反応溶液中に臭素50.3g(315ミリモル)を 20 徐々に加え、同温度で3時間攪拌した。反応終了確認後、減圧下溶媒を留去した。 残渣を水にあけ、酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗 浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をnーへ キサンで洗浄し5ーブロモー4ーヒドロキシー6ートリフルオロメチルピリミジン38.9g(収率53.4%)を得た。

25 <参考例49>

5-ブロモー4-クロロー6-トリフルオロメチルピリミジンの製造

5ーブロモー4ーヒドロキシー6ートリフルオロメチルピリミジン24.3g (100.0ミリモル)をオキシ塩化リン18.5g(120.0ミリモル)に懸濁させ、100℃で2時間攪拌した。反応終了確認後、反応溶液を徐々に水にあけクロロホルムで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、5ーブロモー4ークロロー6ートリフルオロメチルピリミジン21.5g (収率82.4%)を得た。

<参考例50>

5ーブロモー4ーメトキシー6ートリフルオロメチルピリミジンの製造
 5ーブロモー4ークロロー6ートリフルオロメチルピリミジン21.5g(82.2ミリモル)のメタノール100ml溶液に、室温でナトリウムメトキシド16.7ml(28%メタノール溶液 86.4ミリモル)を加え攪拌した。反応終了確認後、減圧下溶媒を留去した。残渣を水にあけ、クロロホルムで抽出した。得られた15 有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をnーヘキサンで洗浄し、5ーブロモー4ーメトキシー6ートリフルオロメチルピリミジン19.2g(収率91.0%)を得た。

<参考例51>

5-ブロモー4-エトキシー6ートリフルオロメチルピリミジンの製造

5ープロモー4ークロロー6ートリフルオロメチルピリミジン3.00g(11.48ミリモル)のエタノール50m1溶液に、室温でナトリウムエトキシド0.94g(13.77ミリモル)を加え攪拌した。反応終了確認後、減圧下溶媒を留去した。残渣を水にあけ、クロロホルムで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し5ープロモー4ーエトキシー6ートリ

フルオロメチルピリミジン2.44g(収率82.9%)を得た。

()

<参考例52>

4-メトキシー6-トリフルオロメチルピリミジン-5-カルボアルデヒドの 製造

5 ーブロモー4ーメトキシー6ートリフルオロメチルピリミジン10.3g(40.0ミリモル)のテトラヒドロフラン100ml溶液に、-65~-60℃でnーブチルリチウム30.0ml(1.6mol/1 n-ヘキサン溶液48.0ミリモル)を徐々に加えた後、30分間攪拌した。更に同温度で、ギ酸エチル3.6g(48.0ミリモル)を加えた後、同温度で3時間攪拌した。反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、4ーメトキシー6ートリフルオロメチルピリミジンー5ーカルボアルデヒド1.3g(収率15.8%)を得た。

(1 H-NMR値(CDCl $_3$ /TMS δ (ppm)): 10.41(1H, q), 8.98(1H, s), 4.18(3H, s)

15 <参考例53>

4-エトキシー6-トリフルオロメチルピリミジン-5-カルボアルデヒドの 製造

5ーブロモー4ーエトキシー6ートリフルオロメチルピリミジン5.76g(21.3ミリモル)のTHF250ml溶液を一78℃に冷却し、nーブチルリチム2022.6ml(1.6mol/l nーヘキサン溶液 36.1ミリモル)を滴下し、40分間攪拌した。ギ酸メチル2.7g(45.1ミリモル)を加え、更に1.5時間攪拌した。反応終了後、塩化アンモニウム水溶液を加え、ジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へ25キサンー酢酸エチル混合溶媒)で精製し、4ーエトキシー6ートリフルオロメチル

ピリミジン-5-カルボアルデヒド3.82g(収率81.6%)を得た。

($^1\text{H-NMR値}$ (CDC1 $_3$ /TMS δ (ppm) : 10.41(1H, s), 8.95(1H, s), 4.63(2H, q), 1.48(3H, t)

<参考例54>

5 (4ーメトキシー6ートリフルオロメチルピリミジンー5ーイル)ーメタノールの製造

4ーメトキシー6ートリフルオロメチルピリミジンー5ーカルボアルデヒド1. 3g(6.3ミリモル)のメタノール30ml溶液に、室温で水素化ホウ素ナトリウム0.24g(6.3ミリモル)を徐々に加え3時間攪拌した。反応終了確認後、水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、(4ーメトキシー6ートリフルオロメチルピリミジンー5ーイル)ーメタノール0.42g(収率32.1%)を得た。

(1 H-NMR値(CDC1₃/TMS δ (ppm)): 8.93(1H, s), 4.81(2H, s), 4.13(3H, s),

15 2. 26 (1H, br)

10

<参考例55>

(4-エトキシー6-トリフルオロメチルピリミジン-5-イル) -メタノール の製造

水素化ホウ素ナトリウム1.7g(45.7ミリモル)のメタノール50m1溶液20 に、氷冷下、4-エトキシー6ートリフルオロメチルピリミジンー5ーカルボアルデヒド3.82g(17.2ミリモル)のメタノール50m1溶液を加え、更に0℃で1時間攪拌した。反応終了後、反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、(4-エトキシー6ートリフルオロメチルピリミジンー5ーイル)ー25 メタノール3.77g(収率97.8%)を得た。

(1 H~NMR値(CDCl $_{3}$ /TMS δ (ppm)):8.80(1H, s), 4.81(2H, s), 4.59(2H, q), 2.28(1H, b), 1.48(3H, t)

<参考例56>

5-クロロメチルー4-メトキシー6ートリフルオロメチルピリミジンの製造 (4-メトキシー6ートリフルオロメチルピリミジンー5-イル)ーメタノール 0.42g(2.02ミリモル)のクロロホルム10ml溶液に、室温で塩化チオニル 1.19g(10.1ミリモル)を加え3時間攪拌した。反応終了確認後、減圧下溶媒を留去し、5-クロロメチルー4-メトキシー6ートリフルオロメチルピリミジン 0.45g(収率:定量的)を得た。

10 <参考例57>

5

15

25

5ーブロモメチルー4ーエトキシー6ートリフルオロメチルピリミジンの製造 (4ーエトキシー6ートリフルオロメチルピリミジンー5ーイル)ーメタノール 3.77g(17.0ミリモル)のジエチルエーテル50ml溶液を0℃に冷却し、三臭化りん2.0g(7.2ミリモル)を加えた。室温で1時間攪拌した。生じた塩をメタノールで溶解し、更に1時間攪拌した。反応溶液を水中に注ぎジエチルエーテルで抽出した。得られた有機層を食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、5ーブロモメチルー4ーエトキシー6ートリフルオロメチルピリミジンの粗化合物を得た。

(1 H-NMR値(CDCl₃/TMS δ (ppm)): 8.79(1H, s), 4.61(2H, q), 4.55(2H, s),

20 1.49(3H, t)

<参考例58>

(2-クロロー4-メチルピリジン-3-イル)メタノールの製造

水素化リチウムアルミニウム 0.4 g(1 0.0 ミリモル)のテトラヒドロフラン 30 m l 懸濁液に、-65~-60℃でメチル 2-クロロ-4-メチルニコチン 酸1.9 g(1 0.0 ミリモル)のTHF 5.0 m l 溶液を徐々に加えた後、30分間 攪拌した。更に20℃で、1時間攪拌した。反応溶液を水中に注ぎ酢酸エチルで抽出した。得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し、(2-クロロ-4-メチルピリジン-3-イル)メタノール0.6g(収率38.2%)を得た。

(1 H-NMR値 (CDC1 $_{3}$ /TMS δ (ppm)) : 8.19(1H, d), 7.08(1H, d), 4.85(2H,

s),2.49(3H,s) <参考例59>

5

20

3-アセチルー4-クロロメチルー2,5-ジクロロチオフェンの製造

3 - アセチルー2,5 - ジクロロチオフェン5.0 g(32.4 ミリモル)のクロロメチルメチルエーテル26 m1(323.0 ミリモル)溶液に、氷冷下10℃での四塩化チタン(2 m o 1/1 ジクロロメタン溶液)33 m1(66.0 ミリモル)を滴下した。その後室温で2時間攪拌した。反応終了後、反応溶液を氷水中に注ぎクロロホルムで抽出した。得られた有機層を重曹及び水、食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=9/1)で精製し、黄色結晶の3-アセチルー4-クロロメチルー2,5-ジクロロチオフェン2.6 g(収率39.7%)を得た。

(1 H-NMR値(CDC1 $_{3}$ /TMS δ (ppm)): 4.70 (2H, s), 2.56 (3H,s), 2.54 (3H,s) 2.39(3H, s)

<参考例60>

- 3ープロモー2ープロモメチルベンゾフランの製造
- 3-ブロモ-2-メチルベンゾフラン2.8g(13.3ミリモル)のモノクロロベンゼン30ml溶液に、N-ブロモコハク酸イミド2.7g(15.3ミリモル)及びアゾビスイソブチロニトリル0.4g(2.7ミリモル)を加えた後、80℃で30

分間攪拌した。原料消失を確認した後、反応溶液を室温にまで冷却した。不溶物を 濾別し、濾液を減圧下溶媒を留去した。残渣を水中に注ぎ酢酸エチルで抽出した。 得られた有機層を水及び食塩水で順次洗浄した後、無水硫酸マグネシウムで乾燥し た。減圧下溶媒を留去し、3 - ブロモー 2 - ブロモメチルベンゾフラン 3.0 g (収 率 7 9.0%) を得た。

<参考例61>

5

25

1 - ジフルオロメチル- 1 H - ピラゾール- 4 - カルボン酸エチルエステルの 製造

1Hーピラゾールー4ーカルボン酸エチルエステル3.0g(21.4ミリモル)

0N,Nージメチルホルムアミド100m1溶液に、無水炭酸カリウム6.0g(43.5ミリモル)を加え、クロロジフルオロメタンを反応溶液に吹き込み、130~140℃で3時間攪拌した。反応終了確認後、反応溶液を水に注ぎ、酢酸エチルで抽出した。得られた有機層を水および食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(展開75 溶媒:ヘキサンー酢酸エチル混合溶媒)で精製し、無色透明油状物の1ージフルオロメチルー1Hーピラゾールー4ーカルボン酸エチルエステル1.67g(収率41.0%)を得た。

(1 H-NMR値(CDC1 $_{3}$ /TMS δ (ppm)): 8. 32(1H, s), 8. 04(1H, s), 7. 20(1H, t), 4. 32(2H, q), 1. 37(3H, t)

20 本発明の除草剤は、一般式 [I] で示されるイソオキサゾリン誘導体及これを有効成分としてなる。

本発明化合物を除草剤として使用するには本発明化合物それ自体で用いてもよいが、製剤化に一般的に用いられる担体、界面活性剤、分散剤又は補助剤等を配合して、粉剤、水和剤、乳剤、フロアブル剤、微粒剤又は粒剤等に製剤して使用することもできる。

20

製剤化に際して用いられる担体としては、例えばタルク、ベントナイト、クレー、カオリン、珪藻土、ホワイトカーボン、バーミキュライト、炭酸カルシウム、消石灰、珪砂、硫安、尿素等の固体担体、イソプロピルアルコール、キシレン、シクロヘキサン、メチルナフタレン等の液体担体等があげられる。

5 界面活性剤及び分散剤としては、例えばアルキルベンゼンスルホン酸金属塩、ジナフチルメタンジスルホン酸金属塩、アルコール硫酸エステル塩、アルキルアリールスルホン酸塩、リグニンスルホン酸塩、ポリオキシエチレングリコールエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタンモノアルキレート等があげられる。補助剤としては、例えばカルボキシメチルセルロース、ポリエチレングリコール、アラビアゴム等があげられる。使用に際しては適当な濃度に希釈して散布するか又は直接施用する。

本発明の除草剤は茎葉散布、土壌施用又は水面施用等により使用することができる。有効成分の配合割合については必要に応じて適宜選ばれるが、粉剤又は粒剤とする場合は0.01~10%(重量)、好ましくは0.05~5%(重量)の範囲から適宜選ぶのがよい。乳剤及び水和剤とする場合は1~50%(重量)、好ましくは5~30%(重量)の範囲から適宜選ぶのがよい。又、フロアブル剤とする場合は1~40%(重量)、好ましくは5~30%(重量)の範囲から適宜選ぶのがよい。又、フロアブル剤とする場合は1~40%(重量)、好ましくは5~30%(重量)の範囲から適宜選ぶのがよい。

本発明の除草剤の施用量は使用される化合物の種類、対象雑草、発生傾向、環境条件ならびに使用する剤型等によってかわるが、粉剤及び粒剤のようにそのまま使用する場合は、有効成分として $1 \sim 0$ クタール当り1 g ~ 5 0 k g、好ましくは1 0 g ~ 1 0 k g の範囲から適宜選ぶのがよい。又、乳剤、水和剤及びフロアブル剤とする場合のように液状で使用する場合は、 $0.1 \sim 5$ 0, 0 0 0 p p m の範囲から適宜選ぶのがよい。

25 又、本発明の化合物は必要に応じて殺虫剤、殺菌剤、他の除草剤、植物生長調節

WO 02/062770 PCT/J

256

剤、肥料等と混用してもよい。

次に代表的な製剤例をあげて製剤方法を具体的に説明する。化合物、添加剤の種類及び配合比率は、これのみに限定されることなく広い範囲で変更可能である。以下の説明において「部」は重量部を意味する。

5 〈製剤例1〉 水和剤

化合物(3-0006)の10部にポリオキシエチレンオクチルフェニルエーテルの0.5部、βーナフタレンスルホン酸ホルマリン縮合物ナトリウム塩の0.5 部、珪藻土の20部、クレーの69部を混合粉砕し、水和剤を得た。

〈製剤例 2 〉 フロアブル剤

10 粗粉砕した化合物(3-0006)20部を水69部に分散させ、ポリオキシエチレンスチレン化フェニルエーテル硫酸塩4部、エチレングリコール7部を加えるとともにシリコーンAF-118N(旭化成工業株式会社製)を製剤に対し200pm加え、高速攪拌機にて30分間混合した後、湿式粉砕機にて粉砕しフロアブル剤を得た。

15 〈製剤例3〉 乳剤

化合物(3-0006)の30部にキシレンとイソホロンの等量混合物60部、 界面活性剤ポリオキシエチレンソルビタンアルキレート、ポリオキシエチレンアル キルアリールポリマー及びアルキルアリールスルホネートの混合物の10部を加 え、これらをよくかきまぜることによって乳剤を得た。

20 〈製剤例4〉 粒剤

25

化合物(3-0006)の10部、タルクとベントナイトを1:3の割合で混合した増量剤の80部、ホワイトカーボンの5部、界面活性剤ポリオキシエチレンソルビタンアルキレート、ポリオキシエチレンアルキルアリールポリマー及びアルキルアリールスルホネートの混合物の5部に水10部を加え、よく練ってペースト状としたものを直径0.7mmのふるい穴から押し出して乾燥した後に0.5~1m

mの長さに切断し、粒剤を得た。

次に試験例をあげて本発明化合物の奏する効果を説明する。

〈試験例1〉 水田土壌処理による除草効果試験

100 c m²プラスチックポットに水田土壌を充填し、代掻後、タイヌビエ、コナギの種子を播種し、水深3 c m に湛水した。翌日、製剤例1に準じて調製した水和剤を水で希釈し、水面滴下した。施用量は、有効成分を、1へクタール当り100gとした。その後、温室内で育成し、処理後21日目に表21の基準に従って除草効果を調査した。結果を表22に示す。

10

表21

指数	指数 除草効果(生育抑制程度)及び薬害
5	90%以上の抑制の除草効果、薬害
4	70%以上90%未満の除草効果、薬害
3	50%以上70%未満の除草効果、薬害
2	30%以上50%未満の除草効果、薬害
1	10%以上30%未満の除草効果、薬害
0	0%以上10%未満の除草効果、薬害

表22

化合物番号	薬量(g a.i. /ha)	タイヌヒ'エ	コナキ
1.0001	1000	5	5
1-0002	1000	5	5
1-0003	1000	5	5
1-0004	1000	5	5
1-0005	1000	5	5
2-0001	1000	5	5
2-0003	1000	5	5
2-0004	1000	5	5
2-0005	1000	5	5
2-0006	1000	5	5
2-0008	1000	5	5

2-0011	1000	5	5
2-0012	1000	5	5
3-0002	1000	5	5
3-0004	1000	5	5
3-0009	1000	5	5
3-0013	1000	5	5
3-0014	1000	5	5
3-0015	1000	5	5
3-0016	1000	5	5
3-0034	1000	5	5
3-0035	1000	5	5
3-0037	1000	5	5
3-0038	1000	5	5
3-0039	1000	5	5
3-0040	1000	5	5
3-0041	1000	5	5
3-0044	1000	5	5
3-0047	1000	5	5
3-0049	1000	5	5
3-0051	1000	5	5
3-0054	1000	5	5
3-0059	1000	5	5
3-0060	1000	5	5
3-0061	1000	5	5
3-0070	1000	5	5
3-0072	1000	5	5
3-0073	1000	5	5
3-0074	1000	5	5
3-0081	1000	5	5
3-0082	1000	5	5
3-0083	1000	5	5
3-0084	1000	5	5
3-0085	1000	5	5
3-0086	1000	5	5
3-0087	1000	5	5
3-0088	1000	5	5
3-0089	1000	5	5
3-0090	1000	5	5
3-0091	1000	5	5

WO 02/062770

PCT/JP02/01015

3-0100	1000	5	5
3-0101	1000	5	5
3-0102	1000	5	5
3-0103	1000	5	5
3-0114	1000	5	5
3-0115	1000	5	5
3.0117	1000	5	5
3.0118	1000	5	5
3.0119	1000	5	5
3-0120	1000	5	5
3-0121	1000	5	5
3-0124	1000	5	5
3-0125	1000	5	5
3-0126	1000	5	5
3-0127	1000	5	5
3-0128	1000	5	5
3-0129	1000	5	5
3-0130	1000	5	5
3-0131	1000	5	5
3.0134	1000	5	5
3-0135	1000	5	5
3-0137	1000	5	5
3-0139	1000	5	5
3.0144	1000	5	5
3-0153	1000	5	5
3-0156	1000	5	5
3-0160	1000	5	5
3-0173	1000	5	5
3-0174	1000	5	5
3-0176	1000	5	5
3-0177	1000	5	5
3-0178	1000	5	5
3-0180	1000	5	5
4-0001	1000	5	5
4-0002	1000	5	5
4-0005	1000	5	5
4-0007	1000	5	5
4-0008	1000	5	5
5-0001	1000	5	5

5-0002	1000	5	5
5-0003	1000	5	5
5-0005	1000	5	5
5-0006	1000	5	5
5-0007	1000	5	5
6-0003	1000	5	5
6-0004	1000	5	5
7-0004	1000	5	5
7-0006	1000	5	5
7-0008	1000	5	5
7-0009	1000	5	5
8-0001	1000	5	5 .
8-0012	1000	5	5
9-0001	1000	5	5
9-0003	1000	5	5
9-0005	1000	5	5
9-0006	1000	5	5
9-0008	1000	5	5
10-0002	1000	5	4
10-0003	1000	5	5
10-0004	1000	5	5
10-0005	1000	5	5
10-0006	1000	5	5
10-0008	1000	5	5
10-0009	1000	5	5
10-0011	1000	5	5
10-0012	1000	5	5
10-0013	1000	5	5
10-0014	1000	5	5
10-0015	1000	5	5
10-0016	1000	5	5
10-0017	1000	5	5
10-0018	1000	5	5

〈試験例2〉 畑地土壌処理による除草効果試験

 80 cm^2 プラスチックポットに畑土壌を充填し、イヌビエ、エノコログサの種子を播種して覆土した。製剤例1に準じて調製した水和剤を水で希釈し、1へクタ

WO 02/062770 PCT/JP02/01015

261

ール当り有効成分が1000gになる様に、1へクタール当り10001を小型噴霧器で土壌表面に均一に散布した。その後、温室内で育成し、処理21日目に表21の基準に従って、除草効果を調査した。結果を表23に示す。

5

表23

// · A #/- *** F	THE E / . / . /	1 /=:+	1
化合物番号	薬量(g a.i. /ha)		エノコロク・サ
1-0001	1000	5	5
1-0002	1000	5	5
1-0003	1000	5	5
1-0004	1000	5	5
1-0005	1000	5	5
1-0006	1000	5	4
2-0001	1000	5	5
2-0003	1000	5	5
2-0004	1000	5	5
2-0005	1000	5	5
2-0006	1000	5	4
2-0007	1000	4	4
2-0008	1000	5	5
2-0011	1000	5	4
2-0012	1000	5	5
3-0002	1000	5	5
3-0004	1000	5	5
3-0006	1000	4	4
3-0008	1000	5	5
3-0009	1000	5	5
3-0012	1000	5	5
3-0013	1000	5	5
3-0015	1000	5	5
3-0016	1000	5	5
3-0017	1000	5	5
3-0018	1000	5	5
3-0019	1000	5	5
3-0020	1000	5	5
3-0034	1000	5	5
3-0035	1000	5	5
3-0036	1000	5	5
3-0037	1000	5	5
3-0038	1000	5	5
3-0039	1000	5	5
3-0040	1000	5	5
3-0041	1000	5	5
3-0043	1000	5	5
	ı	,	

			-
3-0044	1000	5	5
3-0047	1000	5	5
3-0048	1000	5	5
3-0049	1000	5	5
3-0050	1000	5	5
3-0053	1000	5	5
3-0054	1000	5	. 5
3-0054	1000	5	5
3-0056	1000	5	5
3-0059	1000	5	5
3-0060	1000	5	5
3-0063	1000	5	5
3-0070	1000	4	4
3-0072	1000	5	5
3-0073	1000	5	5
3-0074	1000	5	5
3-0081	1000	5	5
3-0082	1000	5	5
3-0083	1000	5	5
3-0084	1000	5	5
3-0085	1000	5	5
3-0086	1000	5	5
3-0087	1000	5	5
3-0088	1000	5	4
3-0091	1000	5	5
3-0114	1000	5	5
3-0115	1000	5	5
3-0117	1000	5	5
3-0118	1000	5	5
3-0119	1000	5	5
3-0120	1000	5	5
3-0121	1000	5	5
3-0124	1000	5	5
3-0125	1000	5	5
3-0126	1000	5	5
3-0127	1000	5	5
3-0128	1000	5	5
3-0129	1000	5	5
3-0130	1000	5	.5

ı	0.0101	1000	1 -	
	3-0131	1000	5	5
	3-0134	1000	5	5
l	3-0135	1000	5	5
	3-0136	1000	5	5
	3-0137	1000	5	5
	3-0138	1000	4	5
	3-0139	1000	5	5
	3-0142	1000	5	5
	3-0143	1000	5	5
	3-0144	1000	5	5
	3-0153	1000	5	5
l	3-0156	1000	5	5
	3-0173	1000	5	5
	3-0174	1000	5	5
	3-0180	1000	5	5
	4-0001	1000	5	5
	4-0001	1000	4	3
	4-0002	1000	5	5
	4-0005	1000	5	5
	4-0006	1000	5	5
	4-0007	1000	5	5
	4-0008	1000	5	5
	5-0001	1000	- 5	5
	5-0002	1000	5	5
	5-0003	1000	5	5
	5-0005	1000	5	4
	5-0006	1000	5	5
	5-0007	1000	5	5
	6-0001	1000	5	5
	6-0003	1000	5	5
	6-0004	1000	5	5
	7-0002	1000	5	5
	7-0004	1000	5	4
	7-0006	1000	5	5
	7-0007	1000	5	4
	7-0008	1000	5	5
	7-0009	1000	5	5
	8-0001	1000	5	5
	8-0004	1000	5	5

WO 02/062770 PCT/JP02/01015

265

8-0005	1000	5	4
8-0007	1000	5	5
9-0001	1000	5	5
9-0005	1000	5	4
9-0006	1000	5	4
9-0007	1000	4	4
9-0008	1000	5	5
10-0003	1000	5	5
10-0004	1000	. 5	5
10-0005	1000	5	5
10-0006	1000 .	5	4
10-0009	1000	5	5
10-0012	1000	5	4
10-0013	1000	5	5
10-0014	1000	5	5
10-0015	1000	5	5
10-0016	1000	5	4
10-0017	1000	5	5
10-0018	1000	5	5

〈試験例3〉 畑地茎葉処理による除草効果試験

80 c m²プラスチックポットに砂を充填し、イヌビエ、エノコログサの種子を 播種し、温室内で2週間育成後、製剤例1に準じて調製した水和剤を水に希釈し、 1~クタール当り有効成分が1000gになる様に、1~クタール当り10001 を小型噴霧器で植物体の上方から全体に茎葉散布処理した。その後、温室内で育成 し、処理14日目に表21の基準に従って、除草効果を調査した。結果を表24に 示す。

5

表24

化合物番号	薬量(g a.i./ha)	イヌヒ'エ	エノコロク・サ
1-0001	1000	5	4
1-0004	1000	5	4
2-0001	1000	5	4
2-0003	1000	5	4
2-0004	1000	5	4
2-0008	1000	5	5
2.0011	1000	5	4
3-0008	1000	4	4
3-0010	1000	5	4
3-0011	1000	5	4
3-0013	1000	5	5
. 3-0015	1000	5	4
3-0035	1000	4	4
3-0036	1000	4	4
3-0037	1000	5	4
3-0038	1000	5	5
3-0039	1000	5	5
3.0044	1000	5	4
3-0049	1000	4	4
3-0073	1000	5	4
3-0074	1000	5	4
3-0076	1000	· 5	4
3-0077	1000	5	4
3-0081	1000	4	4
3-0082	1000	4	4
3-0083	1000	4	4
3-0084	1000	4	4
3-0085	1000	4	4
3-0086	1000	4	4
3-0092	1000	4	4
3-0104	1000	5	4
3-0105	1000	5	4
3-0106	1000	5	4
3-0107	1000	5	5
3-0115	1000	5	4
3-0118	1000	5	4
3-0119	1000	5	4

1	i		
3-0120	1000	5	5
3-0144	1000	5	5
4-0002	1000	5	4
4-0005	1000	5	4
5-0001	1000	5	4
5-0002	1000	5	5
5-0003	1000	5	4
5-0007	1000	5	5
6-0004	1000	5	4
7-0008	1000	5	5
7-0009	1000	4	4
8-0001	1000	5	4
9-0001	1000	4	4
9-0005	1000	4	4
9-0008	1000	4	4

産業上の利用可能性

一般式[I]で表される本発明の化合物は、畑地において問題となる種々の雑草、 例えばオオイヌタデ (Polygonum lapathifolium L. subsp. nodosum (Pers.) Kitam.) 、アオビユ (Amaranthus viridis L.)、シロザ (Chenopodium album L.)、 5 ハコベ (Stellaria media (L.) Villars)、イチビ (Abutilon theophrasti Medik.)、 アメリカキンゴジカ(Sida spinosa)、アメリカツノクサネム(Sesbaria exaltata)、 アサガオ (Ipomoea spp.)、オナモミ (Xanthium strumarium L.) 等の広葉雑草を はじめ、ハマスゲ (Cyperus rotundus L.)、キハマスゲ (Cyperus esculentus)、 ヒメクグ (Kyllinga brevifolia Rottb. subsp. leiolepis(Fraxch. et Savat.) T. 10 Koyama)、カヤツリグサ (Cyperus microiria Steud.)、コゴメガヤツリ (Cyperus iria L.) 等の多年生および1年生カヤツリグサ科雑草、ヒエ(Echinochloa crusgalli (L.) Beauv. var. crus-galli)、メヒシバ (Digitaria ciliaris (Retz.) Koeler)、エノコログサ (Setaria viridis (L.) Beauv.)、スズメノカタビラ (Poa annua L.) 、ジョンソングラス(Sorghum halepense(L.) Pers.) 、ノスズメノテ 15

WO 02/062770 PCT/JP02/01015

268

ッポウ (Alopecurus myosuroides Huds) 、野生エンバク (Aveua fatua L.)等のイネ科雑草の発芽前から生育期の広い範囲にわたって優れた除草効果を発揮する。また、水田に発生するタイヌビエ (Echinochloaoryzicola Vasing.) 、タマガヤツリ (Cyperus difformis L.) 、コナギ (Monochoria vaginalis (Burm. f.) Presl. var. plantaginea (Roxb.) Solms-Laub.) 、アゼナ (Lindernia procumbens) 等の一年生雑草及びウリカワ (Sagittaria trifolia L.) 、オモダカ (Sagittaria pygmaea Miq.)、ミズガヤツリ (Cyperus serotinus Rottb.)、クログワイ (Eleocharis kuroguwai Ohwi) 、ホタルイ (Scirpus juncoides Roxb. subsp. hotarui (Ohwi) T. Koyama) 、ヘラオモダカ (Alisma canaliculatum) 等の多年生雑草を防除すること もできる。

一方、本発明の除草剤は作物に対する安全性も高く、中でもイネ、コムギ、オオムギ、トウモロコシ、グレインソルガム、ダイズ、ワタ、テンサイ等に対して高い安全性を示す。

請求の範囲

一般式 [I] を有するイソオキサゾリン誘導体又はその薬理上許容される塩:

5 式中、

15

R¹及びR²は、同一又は異なって、水素原子、C1~C10アルキル基、C3~C8 シクロアルキル基又はC3~C8シクロアルキルC1~C3アルキル基を示すか、或い はR¹とR²とが一緒になって、これらの結合した炭素原子と共に形成したC3~C7 のスピロ環を示し、

R³及びR⁴は、同一又は異なって、水素原子、C1~C10アルキル基又はC3~C8 10 シクロアルキル基を示すか、或いはR³とR⁴とが一緒になって、これらの結合した 炭素原子と共に形成したC3~C7のスピロ環を示し、更にR1、R2、R3及びR4は これらの結合した炭素原子と共に5~8員環を形成することもでき、

R⁵及びR⁶は、同一又は相異なって、水素原子又はC1~C10アルキル基を示し、 Yは窒素原子、酸素原子及び硫黄原子より選択される1以上の任意のヘテロ原子 を有する5~6員の芳香族へテロ環基又は芳香族へテロ縮合環基を示し、これらの ヘテロ環基は置換基群 α より選択される、0~6 個の同一又は相異なる基で置換さ れていてもよく、又、隣接したアルキル基同士、アルコキシ基同士、アルキル基と アルコキシ基、アルキル基とアルキルチオ基、アルキル基とアルキルスルホニル基、 アルキル基とモノアルキルアミノ基又はアルキル基とジアルキルアミノ基が2個 20. 結合して1~4個のハロゲン原子で置換されてもよい5~8員環を形成されてい てもよく、又、これらのヘテロ環基のヘテロ原子が窒素原子の時は酸化されてN-

WO 02/062770 PCT/JP02/01015

270

オキシドになってもよく、

nは0~2の整数を示す。

「置換基群α」

5

10

15

20

25

水酸基、チオール基、ハロゲン原子、 $C1\sim C10$ アルキル基、置換基群 β より選 択される任意の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル 基、C3~C8シクロアルキル基、C1~C10アルコキシ基、置換基群γより選択さ れる任意の基でモノ置換されたC1~C10アルコキシ基、C1~C4ハロアルコキシ 基、C3~C8シクロアルキルオキシ基、C3~C8シクロアルキルC1~C3アルキル オキシ基、C1~C10アルキルチオ基、置換基群γより選択される任意の基でモノ 置換されたC1~C10アルキルチオ基、C1~C4ハロアルキルチオ基、C2~C6ア ルケニル基、C2~C6アルケニルオキシ基、C2~C6アルキニル基、C2~C6アル キニルオキシ基、C1~C10アルキルスルフィニル基、置換基群 y より選択される 任意の基でモノ置換されたC1~C10アルキルスルフィニル基、C1~C10アルキル スルホニル基、置換基群γより選択される任意の基でモノ置換されたC1~C10ア ルキルスルホニル基、C1~C4ハロアルキルスルフィニル基、置換基群ッより選択 される任意の基でモノ置換されたC1~C10アルキルスルホニルオキシ基、C1~C 4ハロアルキルスルホニル基、C1~C10アルキルスルホニルオキシ基、C1~C4 ハロアルキルスルホニルオキシ基、置換されていてもよいフェニル基、置換されて いてもよいフェノキシ基、置換されていてもよいフェニルチオ基、置換されていて もよい芳香族へテロ環基、置換されていてもよい芳香族へテロ環オキシ基、置換さ れていてもよい芳香族へテロ環チオ基、置換されていてもよいフェニルスルフィニ ル基、置換されていてもよいフェニルスルホニル基、置換されていてもよい芳香族 ヘテロ環スルホニル基、置換されていてもよいフェニルスルホニルオキシ基、アシ ル基、C1~C4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボ ニル基、置換されていてもよいベンゾイル基、カルボキシル基、C1~C10アルコ

キシカルボニル基、置換されていてもよいベンジルオキシカルボニル基、置換されていてもよいフェノキシカルボニル基、シアノ基、カルバモイル基(該基の窒素原子は同一又は異なって、C1~C10アルキル基又は置換されていてもよいフェニル基で置換されていてもよい。)、C1~C6アシルオキシ基、C1~C4ハロアルキルカルボニルオキシ基、置換されていてもよいベンジルカルボニルオキシ基、置換されていてもよいベンジルカルボニルオキシ基、置換されていてもよいベンジイルオキシ基、二トロ基、アミノ基(該基の窒素原子は同一又は異なって、C1~C10アルキル基、置換されていてもよいフェニル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルカルボニル基、置換されていてもよいベンジルスルホニル基、C1~C4ハロアルキルスルホニル基、置換されていてもよいベンジルスルホニル基又は置換されていてもよいフェニルスルホニル基で置換されていてもよい、)

「置換基群β」

5

10

15

20

水酸基、C3~C8シクロアルキル基(該基はハロゲン原子又はアルキル基で置換されてもよい)、C1~C10アルコキシ基、C1~C10アルキルチオ基、C1~C10アルコキシカルボニル基、C2~C6ハロアルケニル基、アミノ基(該基の窒素原子は同一又は異なって、C1~C10アルキル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル基で置換されていてもよい)、カルバモイル基(該基の窒素原子は同一又は異なって、C1~C10アルキル基で置換されていてもよい)、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルキルカルボニル基、C1~C10アルコキシイミノ基、シアノ基、置換されていてもよいフェニル基、置換されていてもよいフェニル基、置換されていてもよいフェニル基、置換されていてもよいフェニル基、置換されていてもよいフェノキシ基

「置換基群γ」

25 C1~C10アルコキシカルボニル基、置換されていてもよいフェニル基、置換さ

10

15

20

25

れていてもよい芳香族へテロ環基、シアノ基、カルバモイル基(該基の窒素原子は同一又は異なって、C1~C10アルキル基で置換されていてもよい。)

2. 0~6個の同一又は相異なる基で置換されていてもよいヘテロ環上の置換基 群 α が、水酸基、ハロゲン原子、 $C1\sim C10$ アルキル基、置換基群 β より選択され る任意の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル基、C3 ~C8シクロアルキル基、C1~C10アルコキシ基、置換基群ッより選択される任意 の基でモノ置換されたC1~C10アルコキシ基、C1~C4ハロアルコキシ基、C3 ~C8シクロアルキルオキシ基、C3~C8シクロアルキルC1~C3アルキルオキシ 基、C1~C10アルキルチオ基、置換基群γより選択される任意の基でモノ置換さ れたC1~C10アルキルチオ基、C1~C4ハロアルキルチオ基、C2~C6アルケニ ル基、C2~C6アルケニルオキシ基、C2~C6アルキニル基、C2~C6アルキニル オキシ基、C1~C10アルキルスルホニル基、C1~C4ハロアルキルスルホニル基、 置換されていてもよいフェニル基、置換されていてもよいフェノキシ基、置換され ていてもよいフェニルチオ基、置換されていてもよい芳香族へテロ環基、置換され ていてもよい芳香族へテロ環オキシ基、置換されていてもよい芳香族へテロ環チオ 基、置換されていてもよいフェニルスルホニル基、置換されていてもよい芳香族へ テロ環スルホニル基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、置 換されていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、 カルボキシル基、C1~C10アルコキシカルボニル基、シアノ基、カルバモイル基 (該基の窒素原子は同一又は異なって、C1~C10アルキル基又は置換されていて もよいフェニル基で置換されていてもよい。)、ニトロ基、アミノ基(該基の窒素 原子は同一又は異なって、C1~C10アルキル基、置換されていてもよいフェニル 基、C1~C6アシル基、C1~C4ハロアルキルカルボニル基、置換されていてもよ いベンジルカルボニル基、置換されていてもよいベンゾイル基、C1~C10アルキ ルスルホニル基、C1~C4ハロアルキルスルホニル基、置換されていてもよいベン

ジルスルホニル基又は置換されていてもよいフェニルスルホニル基で置換されていてもよい。)であるか、或いは、隣接したアルキル基同士、アルコキシ基同士、アルキル基とアルコキシ基、アルキル基とアルキルチオ基、アルキル基とアルキルスルホニル基、アルキル基とモノアルキルアミノ基又はアルキル基とジアルキルアミノ基が2個結合して1~4個のハロゲン原子で置換されてもよい5~8員環を形成されていてもよい請求項1に記載のイソオキサブリン誘導体。

- 3. 0~6個の同一又は相異なる基で置換されていてもよいへテロ環上の置換基群αが、ハロゲン原子、C1~C10アルキル基、C1~C4ハロアルキル基、C1~C 10アルコキシC1~C3アルキル基、C3~C8シクロアルキル基(該基はハロゲン原 7又はアルキル基で置換されてもよい)、C1~C10アルコキシ基、C1~C4ハロアルコキシ基、C3~C8シクロアルキルC1~C3アルキルオキシ基、置換されていてもよいフェノキシ基、C1~C10アルキルチオ基、C1~C10アルキルスルホニル基、アシル基、C1~C4ハロアルキルカルボニル基、C1~C10アルコキシカルボニル基、シアノ基又はカルバモイル基(該基の窒素原子は同一又は異なってC1~C10アルキル基で置換されていてもよい)である請求項2に記載のイソオキサブリン誘導体。
 - 4. R^1 及び R^2 が、同一又は異なってメチル基もしくはエチル基、 R^3 、 R^4 、 R^5 及び R^6 が水素原子である請求項1、2又は3のいずれかに記載のイソオキサゾリン誘導体。
- 20 5. Yが、窒素原子、酸素原子及び硫黄原子より選択される任意のヘテロ原子を 有する5員環又は6員環の芳香族ヘテロ環基である請求項1、2、3又は4のいず れかに記載のイソオキサゾリン誘導体。
 - 6. Yが、チエニル基、ピラゾリル基、イソキサゾリル基、イソチアゾリル基、 ピリジル基又はピリミジニル基である請求項5に記載のイソオキサゾリン誘導体。
- 25 7. Yが、チオフェン-3-イル基、ピラゾール-4-イル基、ピラゾール-5

10

15

20

ーイル基、イソオキサゾールー4ーイル基、イソチアゾールー4ーイル基、ピリジンー3ーイル基又はピリミジンー5ーイル基である請求項6に記載のイソオキサブリン誘導体。

- 8. Υが、チオフェンー3ーイル基で、置換基群 α がチオフェン環の2及び4位 に置換した請求項7に記載のイソオキサゾリン誘導体。
- 9. Yが、ピラゾールー4ーイル基で、置換基群αがピラゾール環の3及び5位 に、更に1位に水素原子、C1~C10アルキル基、置換基群 B より選択される任意 の基でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル基、C3~C8 シクロアルキル基、C2~C6アルケニル基、C2~C6アルキニル基、C1~C10ア ルキルスルフィニル基、C1~C10アルキルスルホニル基、置換基群γより選択さ れる任意の基でモノ置換されたC1~C10アルキルスルホニル基、C1~C4ハロア ルキルスルホニル基、置換されていてもよいフェニル基、置換されていてもよい芳 香族へテロ環基、置換されていてもよいフェニルスルホニル基、置換されていても よい芳香族へテロ環スルホニル基、アシル基、C1~C4ハロアルキルカルボニル基、 置換されていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、 C1~C10アルコキシカルボニル基、置換されていてもよいベンジルオキシカルボ ニル基、置換されていてもよいフェノキシカルボニル基、カルバモイル基(該基の 窒素原子は同一又は異なって、C1~C10アルキル基又は置換されていてもよいフ ェニル基で置換されていてもよい)、アミノ基(該基の窒素原子は同一又は異なっ て、C1~C10アルキル基、置換されていてもよいフェニル基、アシル基、C1~C 4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換 されていてもよいベンゾイル基、C1~C10アルキルスルホニル基、C1~C4ハロ アルキルスルホニル基、置換されていてもよいベンジルスルホニル基又は置換され ていてもよいフェニルスルホニル基で置換されていてもよい)が置換した請求項7
- 25 に記載のイソオキサゾリン誘導体

- Υが、ピラゾールー5ーイル基で、置換基群αがピラゾール環の4位に、 更に1位に水素原子、C1~C10アルキル基、置換基群 B より選択される任意の基 でモノ置換されたC1~C10アルキル基、C1~C4ハロアルキル基、C3~C8シク ロアルキル基、C2~C6アルケニル基、C2~C6アルキニル基、C1~C10アルキ ルスルフィニル基、C1~C10アルキルスルホニル基、置換基群ッより選択される 5 任意の基でモノ置換されたC1~C10アルキルスルホニル基、C1~C4ハロアルキ ルスルホニル基、置換されていてもよいフェニル基、置換されていてもよい芳香族 ヘテロ環基、置換されていてもよいフェニルスルホニル基、置換されていてもよい 芳香族へテロ環スルホニル基、アシル基、C1~C4ハロアルキルカルボニル基、置 換されていてもよいベンジルカルボニル基、置換されていてもよいベンゾイル基、 10 C1~C10アルコキシカルボニル基、置換されていてもよいベンジルオキシカルボ ニル基、置換されていてもよいフェノキシカルボニル基、カルバモイル基(該基の 窒素原子は同一又は異なって、C1~C10アルキル基又は置換されていてもよいフ エニル基で置換されていてもよい)、アミノ基(該基の窒素原子は同一又は異なっ て、C1~C10アルキル基、置換されていてもよいフェニル基、アシル基、C1~C 15 4ハロアルキルカルボニル基、置換されていてもよいベンジルカルボニル基、置換 されていてもよいベンゾイル基、C1~C10アルキルスルホニル基、C1~C4ハロ アルキルスルホニル基、置換されていてもよいベンジルスルホニル基又は置換され ていてもよいフェニルスルホニル基で置換されていてもよい)が置換した請求項7 20 に記載のイソオキサゾリン誘導体。
 - 11. Υが、イソオキサゾールー4ーイル基で、置換基群αがイソオキサゾール 環の3位及び5位に置換した請求項7に記載のイソオキサゾリン誘導体。
 - 12. Yが、イソチアゾールー4ーイル基で、置換基群 α がイソチアゾール環の 3位及び5位に置換した請求項7に記載のイソオキサゾリン誘導体。
- 25 13. Υが、ピリジン-3-イル基で、置換基群αがピリジン環の2位及び4位

に置換した請求項7に記載のイソオキサゾリン誘導体。

- 14. Yが、ピリミジンー5ーイル基で、置換基群 α がピリミジン環の 4 位及び 6 位に置換した請求項 7 に記載のイソオキサゾリン誘導体。
- 15. nが2である請求項1~14のいずれかに記載のイソオキサゾリン誘導体。
- 5 16. nが1である請求項1~14のいずれかに記載のイソオキサゾリン誘導体。
 - 17. nが0である請求項1~14のいずれかに記載のイソオキサゾリン誘導体。
 - 18. 請求項1~17のいずれかに記載のイソオキサゾリン誘導体又は薬理上許容される塩を有効成分として含有する除草剤。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/01015

TA CTASS	STEECATION OF SUBJECT MATTER			
Int.	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D261/10, 261/12, 413/12, 498/04, 513/04, 413/14, 417/12,			
261/	261/20, 487/04, A01N43/80 According to International Patent Classification (IPC) or to both national classification and IPC			
	o International Patent Classification (IPC) or to both not S SEARCHED	ational classification and IPC		
	ocumentation searched (classification system followed	by classification symbols)		
Int. 261/	C1 ⁷ C07D261/10, 261/12, 413/12 20, 487/04, A01N43/80	2, 498/04, 513/04, 413/1		
Documenta	ion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched	
Koka	uyo Shinan Koho 1992-1996 i Jitsuyo Shinan Koho 1971-2002	Toroku Jitsuyo Shinan Koh	no 1994–2002	
	ata base consulted during the international search (nam	ne of data base and, where practicable, sea	arch terms used)	
CAS	(STN) , REGISTRY (STN)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
Y ·	JP 9-328483 A (Sankyo Co., I		1-8,11,13	
A	22 December, 1997 (22.12.97), Claims	,	15-18 9,10,12,14	
Α.	(Family: none)		3,10,12,21	
			1 2 5 0 11 12	
Y	WO 00/50410 A1 (Nippon Soda 31 August, 2000 (31.08.00),	Co.),	1-3,5-8,11,13 15-18	
	Full text		10 20	
	& AU 200026912 A & JP	2000-297080 A		
Y	WO 99/23094 Al (Nippon Soda	Co.),	1-8,11,13,	
	14 May, 1999 (14.05.99),		15-18	
	Full text & EP 1031537 A1 & BR	9814832 A		
	& AU 9896505 A & US	6147031 A		
	& CN 1278259 A & JP	11-240872 A		
	•			
Furth	er documents are listed in the continuation of Box C.	See patent family annex.		
* Special	categories of cited documents:	"T" later document published after the int	ernational filing date or	
"A" docum	ent defiming the general state of the art which is not	priority date and not in conflict with t understand the principle or theory und	the application but cited to	
"E" earlier	red to be of particular relevance document but published on or after the international filing	"X" document of particular relevance; the	claimed invention cannot be	
date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone				
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such				
means combination being obvious to a person skilled in the art				
"P" document published prior to the international filing date but later "%" document member of the same patent family than the priority date claimed				
Date of the actual completion of the international search O9 April, 2002 (09.04.02) Date of mailing of the international search report 23 April, 2002 (23.04.02)				
09 A	pril, 2002 (09.04.02)	25 APITI, 2002 (25)	.04.02)	
Name and m	nailing address of the ISA/	Authorized officer		
	nese Patent Office	Pratition and on the state of t		
Facsimile No. Telephone No.				

国際調査報告

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl⁷ C07D261/10, 261/12, 413/12, 498/04, 513/04, 413/14, 417/12, 261/20, 487/04, A01N43/80

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ C07D261/10, 261/12, 413/12, 498/04, 513/04, 413/14, 417/12, 261/20, 487/04, A01N43/80

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1992-1996年

日本国公開実用新案公報

1971-2002年

日本国実用新案登録公報

1996-2002年

日本国登録実用新案公報

1994-2002年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS (STN), REGISTRY (STN)

C. 関連すると認められる文献

<u>し・</u>	J C pGの りょくの 大阪	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 '	関連する 請求の範囲の番号
Y	JP 9-328483 A (三共株式会社)	1-8
•	1997. 12. 22, 【特許請求の範囲】 (ファミリーなし)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
A·		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
•		

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

09.04.02

国際調査報告の発送日

23.04.02

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 荒木 英則

4C 3127

電話番号 03-3581-1101 内線 3450