Arrows and Computation

Ross Paterson
City University, London

Example: describing synchronous circuits

Problem: describe clocked hardware circuits

The ideal:

The plan

- **→** use a combinator library
- → or rather, several libraries with a common interface (Haskell classes + axioms)
- → much of this interface can be shared with other applications ("arrows" / Freyd-categories as notions of computation)
- **→** additional language support is helpful
- **→** result: an embedded domain-specific language
- >> this is just one example

Circuits

wires through which values of a given type pass.

communication is synchronous:

$$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

components (computations) have input and output wires:

Building circuits

The Arrow class (Hughes, 1997, 2000)

class Arrow a where

pure ::
$$(b \rightarrow c) \rightarrow a b c$$

$$(\gg)$$
 :: $a b c \rightarrow a c d \rightarrow a b d$

first :: a b c
$$\rightarrow$$
 a (b, d) (c, d)

Arrow axioms

pure id
$$\gg f = f$$
 $f \gg \text{pure id} = f$
 $f \gg \text{pure id} = f$
 $f \gg g \gg h = f \gg (g \gg h)$
 $f \gg g \gg h = f \gg g \gg h$

pure $(g \cdot f) = \text{pure } f \gg \text{pure } g$

Axioms of first

 $(\times)::(a \rightarrow a') \rightarrow (b \rightarrow b') \rightarrow (a,b) \rightarrow (a',b')$

 $(f \times g) (a, b) = (f a, g b)$

Elimination and associativity

for the function

assoc ::
$$((a,b),c) \rightarrow (a,(b,c))$$

assoc $((a,b),c) = (a,(b,c))$

Freyd-categories (Power & Robinson, 1977)

Categories \mathcal{V} (values) and \mathcal{C} (computations) with the same objects and $\mathcal{V} \times \mathcal{V} \xrightarrow{pure \times \mathcal{V}} \mathcal{C} \times \mathcal{V}$

strict transformation of actions

General case: premonoidal categories.

Derived combinators

second :: Arrow
$$a \Rightarrow a \ b \ c \rightarrow a \ (d,b) \ (d,c)$$

second $f = pure \ swap \gg first \ f \gg pure \ swap$
where $swap^{\sim}(x,y) = (y,x)$

 $idA :: Arrow a \Rightarrow a b b$ idA = pure id

Examples of arrow types

ordinary functions $b \rightarrow c$ Kleisli arrows $b \to M c$, for any monad M dual Kleisli arrows $W b \rightarrow c$, for any comonad Wstate/behaviour transformers $(S \to a) \to (S \to b)$, for any set S stream transformers Stream $b \rightarrow Stream c$ $F(b \rightarrow c)$, for suitable functors F static arrows $\nu x. (b \rightarrow (c, x))$ automata $\nu x. ((x \rightarrow b) \rightarrow c)$ (KLP, FICS'2001) hyperfunctions etc

Recursion: A feedback operator

Many (but not all) arrows have an operator

class Arrow a \Rightarrow ArrowLoop a where loop :: a (b, d) (c, d) \rightarrow a b c

Generalizes traces (Joyal, Street and Verity, 1996) and recursive monads (Erkök and Launchbury, 2000).

Example: a resettable counter

class ArrowLoop $a \Rightarrow$ ArrowCircuit a where $delay :: b \rightarrow a b b$

counter :: ArrowCircuit $a \Rightarrow a$ Bool Int counter = loop (pure cond \gg pure dup \gg second (pure $(+1) \gg$ delay 0)) where cond (reset, next) = if reset then 0 else next dup x = (x, x)

Resettable counter in arrow notation


```
counter :: ArrowCircuit a \Rightarrow a Bool Int
counter = proc reset \rightarrow do

rec output \leftarrow idA \rightarrow if reset then 0 else next

next \leftarrow delay 0 \rightarrow output +1

idA \rightarrow output
```

New syntax: arrow expressions

```
\begin{array}{rcl} exp & = & \dots \\ & | & \mathbf{proc} \ pat \rightarrow \mathbf{do} \ \{ \ stmt; \dots; stmt; exp \prec exp \ \} \\ stmt & = \ exp \prec exp \\ & | \ pat \leftarrow exp \prec exp \\ & | \ \mathbf{rec} \ \{ \ stmt; \dots; stmt \ \} \end{array}
```

with semantics by translation into Haskell. (implemented using a preprocessor)

Arrow application

proc
$$p \rightarrow do \{ f \prec e \} \triangleq pure (\lambda p \rightarrow e) \gg f$$

(variables of p not free in f — relaxed for Kliesli arrows)

A special case:

proc
$$p \rightarrow \text{do idA} \rightarrow e = \text{pure} (\lambda p \rightarrow e)$$

Sequencing and binding

$$\begin{array}{c} \mathbf{proc}\; p \to \mathbf{do}\; \{\; p' \leftarrow f \multimap e; B\; \} \triangleq \mathbf{pure}\; (\lambda\; p \to (e,p)) \ggg \\ \qquad \qquad \qquad \qquad \qquad \mathbf{first}\; f \ggg \\ \qquad \qquad \qquad \qquad \mathbf{proc}\; (p',p) \to \mathbf{do}\; \{\; B\; \} \end{array}$$

A special case:

$$\operatorname{proc} p \to \operatorname{do} \{ f \prec a; B \} \triangleq \operatorname{proc} p \to \operatorname{do} \{ _ \leftarrow f \prec a; B \}$$

An example translation

```
proc \chi \rightarrow do
= pure (\lambda x \rightarrow (x, x)) \gg \text{first f} \gg
     \operatorname{proc}(y, x) \to \operatorname{do}
= pure (\lambda x \rightarrow (x, x)) \gg \text{first f} \gg
    pure (\lambda(y, x) \rightarrow (x, (y, x))) \gg \text{first } q \gg
     \operatorname{proc}(z,(y,x)) \to \operatorname{do}
= pure (\lambda x \rightarrow (x, x)) \gg \text{first f} \gg
    pure (\lambda(y, x) \rightarrow (x, (y, x))) \gg \text{first } q \gg
    pure (\lambda(z,(y,x)) \rightarrow y + z)
= (simplify)
    pure dup \gg first f \gg second g \gg pure (\lambda(y,z) \rightarrow y + z)
```

Recursive definitions

Translation of

$$\mathbf{proc}\; p \to \mathbf{do}\; \{\; \mathbf{rec}\; \{\; A\; \}; B\}$$

uses loop:

Interpretations: Stream processors

```
data Stream b = Cons b (Stream b)
zipStream :: (Stream a, Stream b) \rightarrow Stream (a, b)
zipStream^{-1} :: Stream (a, b) \rightarrow (Stream a, Stream b)
newtype StreamProc b c = SP (Stream b \rightarrow Stream c)
instance Arrow StreamProc where
      pure f = SP (fmap f)
      SP f \gg SP q = SP (q \cdot f)
      first (SP f) = SP (zipStream \cdot (f \times id) \cdot zipStream^{-1})
instance ArrowLoop StreamProc where
      loop (SP f) = SP (loop (zipStream^{-1} \cdot f \cdot zipStream))
instance ArrowCircuit StreamProc where
      delay b = SP (Cons b)
```

Interpretations: Simple automata

newtype Auto b
$$c = A$$
 (b \rightarrow (c, Auto b c))

instance Arrow Auto where

pure $f = A$ ($\lambda b \rightarrow (f \ b, pure \ f)$)

A $f \gg A$ $g = A$ ($\lambda b \rightarrow let \ (c, f') = f \ b$

(d, g') = g c

in (d, $f' \gg g'$))

first (A f) = A ($\lambda (b, d) \rightarrow let \ (c, f') = f \ b$

in ((c, d), first f'))

instance ArrowLoop Auto where

$$loop (A f) = A (\lambda b \rightarrow let ((c, d), f') = f (b, d)$$
$$in (c, loop f'))$$

instance $ArrowCircuit\ Auto\ where$ $delay\ b=A\ (\lambda b'\to (b,delay\ b'))$

More interpretations: Arrow transformers

It \sim is an arrow, so are the following:

```
\begin{array}{lll} b \rightsquigarrow \text{Either ex c} & \text{exceptions} \\ b \rightsquigarrow (M,c) & \text{writer (M a monoid, e.g. String)} \\ (s,b) \rightsquigarrow c & \text{reader} \\ (s,b) \rightsquigarrow (s,c) & \text{state transformer} \\ (s \rightarrow b) \rightsquigarrow (s \rightarrow c) & \text{map transformer} \\ \text{Stream } b \rightsquigarrow \text{Stream c} & \text{stream transformers} \\ F(b \rightsquigarrow c) & \text{static properties (appropriate F)} \\ \nu \, x. \, (b \rightsquigarrow (c,x)) & \text{simple automata} \end{array}
```

(sometimes with restrictions on \rightsquigarrow)

Netlists

- $[(1, \mathbf{Const}\ 0),$
 - (2, Const 1),
 - (3, Cond 0 1 5),
 - (4, Plus 3 2),
 - $(5, \mathsf{Delay}\ 0\ 4)]$

Abstracting the value types

```
class ArrowLoop a \Rightarrow ArrowBoolCircuit a b where
      true :: a () b
      false :: a () b
class ArrowLoop a \Rightarrow ArrowIntCircuit a i where
      delay :: Int \rightarrow a i i
      plus :: a (i, i) i
      constant :: Int \rightarrow a () i
class (ArrowBoolCircuit a b, ArrowIntCircuit a i) ⇒
                ArrowCircuit a b i where
      cond :: a(b, i, i) i
```

The counter again


```
counter :: ArrowCircuit a b i \Rightarrow a b i

counter = proc reset \rightarrow do

zero \leftarrow constant 0 \prec ()

one \leftarrow constant 1 \prec ()

rec output \leftarrow cond \prec (reset, zero, next)

incr \leftarrow plus \prec (output, one)

next \leftarrow delay 0 \prec incr

idA \prec output
```

A netlist interpretation

type NetList = [(Label, Node)]

 $\textbf{data} \ \mathsf{NLArrow} \ b \ c = \mathsf{NL} \ ((\mathsf{Label}, b) \to (\mathsf{Label}, (\mathsf{NetList}, c)))$

instance Arrow Circuit NLArrow Label Label

Recall that

counter :: ArrowCircuit a b $i \Rightarrow a$ b i

so pass Labels through the wires.

Conclusion

- → Arrows are a useful generalization of monads
- Arrow notation makes arrows more convenient, yielding embedded domain-specific languages:
 - ⇒ synchronous circuits (dataflow)
 - ⇒ Functional Reactive Programming (Elliott, Hudak)
 - ⇒ data-parallel algorithms
 - ⇒ self-optimizing parsers (Swierstra)
- → For more details, see http://www.haskell.org/arrows/