

AD-A056 013

GEORGE WASHINGTON UNI' WASHINGTON D C PROGRAM IN LOG--ETC F/G 15/5
SASPRO-SPARE AND SERVER PROVISIONING PROGRAM.(U)

APR 78 D GROSS

SERIAL-T-371

N00014-75-C-0729

NL

UNCLASSIFIED

| OF |
AD
A056013

END
DATE
FILED
8 -78
DDC

AD No. —————
DDC FILE COPY

AD A 056013

LEVEL -H
R2 -

THE
GEORGE
WASHINGTON
UNIVERSITY

STUDENTS FACULTY STUDY R
ESEARCH DEVELOPMENT FUT
URE CAREER CREATIVITY CC
MMUNITY LEADERSHIP TECH
NOLOGY FRONTIERS DESIGN
ENGINEERING APPRENTICESHIP
GEORGE WASHINGTON UNIVERSITY

INSTITUTE FOR MANAGEMENT
SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING
AND APPLIED SCIENCE

78 (7 06 017

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED

AD No. 1
DDC FILE COPY

AD A056013

SASPRO—SPARE AND SERVER PROVISIONING PROGRAM

by

(10) Donald Gross

(12) 12
(9) Scientific rept.

(14) Serial-T-371

26 April 1978

(11) 26 Apr 78

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

(15) Program in Logistics
Contract N00014-75-C-0729
Project NR 347 020
Office of Naval Research

This document has been approved for public
sale and release; its distribution is unlimited.

405337

78 07 06 017

LB

NONE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER T-371	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) SASPRO-SPARE AND SERVER PROVISIONING PROGRAM		5. TYPE OF REPORT & PERIOD COVERED SCIENTIFIC
7. AUTHOR(s) DONALD GROSS		6. PERFORMING ORG. REPORT NUMBER N00014-75-C-0729
9. PERFORMING ORGANIZATION NAME AND ADDRESS THE GEORGE WASHINGTON UNIVERSITY PROGRAM IN LOGISTICS WASHINGTON, D. C. 20037		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS OFFICE OF NAVAL RESEARCH CODE 430D ARLINGTON, VIRGINIA 22217		12. REPORT DATE 26 April 1978
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 23
		15. SECURITY CLASS. (of this report) NONE
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) DISTRIBUTION OF THIS REPORT IS UNLIMITED.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) SPARES PROVISIONING INVENTORY FINITE SOURCE QUEUES MACHINE REPAIR PROBLEM		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) SASPRO is a versatile FORTRAN package designed to determine the level of spares inventory and number of repair channels necessary to provide a guaranteed service level at minimum cost for a population of stochastically failing, but completely repairable, items. The problem environment is first discussed, the program options are explained, and sample runs are provided.		

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering
Program in Logistics

Abstract
of
Serial T-371
26 April 1978

SASPRO--SPARE AND SERVER PROVISIONING PROGRAM

by

Donald Gross

SASPRO is a versatile FORTRAN package designed to determine the level of spares inventory and number of repair channels necessary to provide a guaranteed service level at minimum cost for a population of stochastically failing, but completely repairable, items. The problem environment is first discussed, the program options are explained, and sample runs are provided.

ACCESSION for		
NTIS	White Section <input checked="" type="checkbox"/>	Buff Section <input type="checkbox"/>
DDC	UNANNOUNCED <input type="checkbox"/>	
JUSTIFICATION		
BY		
DISTRIBUTION/AVAILABILITY CODES		
Dist.	AVAIL	SPECIAL
A		

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering
Program in Logistics

SASPRO--SPARE AND SERVER PROVISIONING PROGRAM

by

Donald Gross

1. Introduction

SASPRO, an acronym standing for Spare and Server Provisioning, is a versatile FORTRAN package that gives provisioning levels of spares inventory and repair capacity required to support a population of randomly failing items which, upon failure, are (1) dispatched to the repair facility, and (2) replaced by a spare if one is available. This paper describes in detail the problem environment, the program options, the input required to run the program, and the output provided by the program. Sample runs are also shown for each of the program options.

2. Problem Environment

A population of items containing certain key parts (for example, a fleet of aircraft, a fleet of ships, a group of machines) randomly fails and requires repair. Spare parts are also needed so that upon failure, the spare can be utilized to replace the failed part and the item put back into service. It is desired to determine how many spares and how many repair channels are required to support the system at a desired service level while minimizing costs.

The system is shown schematically in Figure 1. We consider only a single part-type at a time, which has its own spares pool and dedicated repair channels. For example, for a fleet of gas turbine propelled ships, the gas turbine engine has two components--a gas generator and a power turbine. Each must have dedicated repair channels and its own spares pool. Thus SASPRO would treat each component in turn, being utilized to provision first for a population of gas generators and then for a population of power turbines.

When a unit in the operating population fails, a spare is requested at the same time the unit is dispatched for repair. If a spare is not available, the request is backlogged and units coming out of repair are used in removing the backlog. When there is no backlog of requests for spares, units coming out of repair go into the spares inventory. Repair times as well as failure times are treated as random variables and with the proper assumptions (to be mentioned below), this stochastic process can be readily modeled as a finite source queueing system, often referred to as "the machine repair problem with spares," which, in addition, also fits a two-stage cyclic queueing model. Thus SASPRO uses a standard queueing model for the stochastic process [see GROSS, KAHN, and MARSH (1977)].

The assumptions required for using SASPRO are that times to failure and repair times are exponentially distributed random variables. These assumptions allow the employment of the standard finite source queueing theory to determine probabilities of various numbers of units in repair at any given time. From this, system service levels (number of units operating, availability of spares, etc.) can readily be computed.

Figure 1. Problem environment.

In order to achieve a specified service level, certain combinations of spares and servers (repair channels) are required. Using costs associated with purchasing and holding spares, and costs associated with building and operating repair channels, SASPRO, through a heuristic optimization routine, finds the "best" combination of spares and servers that meets the service level constraint. [See Gross, *et al.* (1977) for specific details.]

3. Modes of Operation

The program has two modes of operation, dynamic and static. The former is advised for initial year provisioning when population sizes, failure rates, and repair times may be changing significantly. Population size changes may occur because units are put into operation gradually, thus building up to a full strength population over a period of several years. For example, it was anticipated to build a fleet of 256 gas turbine powered ships, starting in the first year with ten ships and building up to full strength over a ten-year period. Because of new technology, engines on ships introduced in the later years were expected to have smaller failure rates (be more reliable) while due to learning, repair times were also expected to be smaller in the later years.

In designing support systems for which it is necessary to determine the number and location of depots the static mode is useful [see GROSS and PINKUS (1978)]. In this situation the population is at full strength, technological advances and learning are complete, and conditions are very close to static. Running times and input requirements are greatly reduced when operating in the static mode.

The dynamic mode allows for changing population sizes, failure rates, and repair times, as well as for changing costs on a year by year basis. A set of input information is required for each year in the planning horizon. An item repaired and placed back into spares inventory (or operation) in year i is assumed to have the same failure rate as a new item introduced in year i .

All costs are turned into an equivalent beginning of year payment and then discounted according to where the year is in the planning horizon

so that at any year i the program gives the present worth of the cumulative sum of the discounted costs up to and including year i . The final value for the last year is then the present worth of the sum of discounted costs over the entire planning horizon.

The costs that are considered in SASPRO are purchase costs, salvage values, and annual operating costs associated with spares and repair channels; unit transportation and repair costs; and component improvement investment costs. Purchase costs and salvage values are in dollars per spare or repair channel, and salvage values are not realizable until the end of the planning horizon, even though spares or repair channels are retired prior to that. Operating costs of each channel and holding costs for spares are in dollars per year per spare or repair channel and any spare or channel purchased in year i is assumed to incur annual costs until the end of the planning horizon, even if retired earlier. Transportation and repair costs are in dollars per unit per repaired item and component improvement program (CIP) costs are in dollars per year.

The assumptions that salvage values are not received until the end of the planning horizon and that operating or holding costs are not reduced when spares or repair channels are retired early are necessitated by the heuristic optimization algorithm employed. Further, if a spare or repair channel is retired during the planning horizon and is required again a few years later, it must be repurchased. Again, this assumption is required because of the heuristic optimization algorithm.

In the static mode no such problems arise since spares and channels are not added or retired. Costs for this mode of operation are converted to expected equivalent end-of-year payments over the planning horizon.

4. Service Level Constraint Options

There are two options available for specifying service performance. The first, referred to as *spares availability*, sets a limit on the percentage of requests for spares that are met from on-shelf spares inventory (also called fill rate); that is,

$$\frac{\text{Number of Requests for Spares per Year Honored Immediately}}{\text{Number of Requests for Spares per Year}} \geq A, \quad (1)$$

where A is specified by the user and $0 < A < 1$.

The second criterion for service performance, called "fleet" availability, sets a level for the percentage of time a certain portion of the population desired to be in operation is actually operating; that is,

$$\Pr\{\geq \beta M \text{ units are up}\} \geq A. \quad (2)$$

Both β and A are specified by the user when $0 < \beta \leq 1$, and M is the population (fleet) size excluding spares.

Suppose, for example, we wish to have 100 machines in operation ($M=100$). When a machine fails, a spare machine is "plugged in" if one is available. We might specify that a service level constraint be (1) the percentage of requests for spare machines filled immediately from on-hand spares is at least 90% (option 1: $A=.9$), or (2) at least 95% of the machines are operating 85% of the time (option 2: $\beta=.95$, $A=.85$).

5. Input Data

Table I shows the data that are required as input for SASPRO.

Most input parameters are self-explanatory but a few require further comment. The A shown in Equations (1) and (2) is AVL, while BETA is the β shown in Equation (2).

The initial values C_0 and Y_0 must be read in for number of servers and spares, respectively. In the dynamic mode, after the first year the program uses the previous year's values for C_0 and Y_0 as initial values, even though C_0 and Y_0 must be specified on the card set for every year in the planning horizon. The closer the initial values are to the final values (determined by SASPRO), the fewer iterations of the heuristic optimization algorithm are required. However, one may use $C_0 = Y_0 = 1$ if so desired.

TABLE I
INPUT REQUIREMENTS

Variable Name	Description	Symbol on Printout
AVL	Desired Availability	AVL
BETA	Desired Percent of Population Up	BETA
C	Initial Value--Number of Repair Channels	CO
CIC	Carrying Cost per Spare (\$/yr/spare)	CIC
CIPC	Component Improvement Cost (\$/yr)	CIPC
CPSER	Repair Channel (Server) Purchase Cost (\$/channel)	CPSER
CPSP	Spare Purchase Cost (\$/spare)	CPSP
H	Operating Hours per Year per Item (hrs)	H
KEYWD	Mode Option Indicator $\begin{cases} =1: \text{Dynamic} \\ \neq 1: \text{Static} \end{cases}$	KEYWD
KZ	Service Criterion Option Indicator $\begin{cases} \#1: \text{Spare Avl} \\ \#1: \text{Fleet Avl} \end{cases}$	KZ
NYEARS	Planning Horizon Length (yrs)	YEARS
OCSPSER	Operating Cost of a Channel (\$/yr/channel)	OCPSER
R	Yearly Interest Rate	RATE
RM	Population Size	M
RMTBR	Mean Time Between Removals (hrs)	MTBR
ST	Average Turn Around Time (days)	1/MU
SVSER	Salvage Value of a Channel (\$/channel)	SVSER
SVSP	Salvage Value of a Spare (\$/spare)	SVSP
URC	Unit Repair Cost (\$/unit)	URC
UTC	Unit Transportation Cost (\$/unit)	UTC
Y	Initial Value--Number of Spares	YO

A set of cost inputs (CIC, CIPC, CPSER, CPSP, OCSPSER, SVSER, SVSP, URC, UTC) is required for each year in the horizon in the dynamic mode. This allows one to account for inflation and technological innovations. The Component Improvement Program Cost (CIPC) is the annual expenditure required to achieve a given MTBR schedule (the MTBR which must

be inputted for each year in the horizon) for the dynamic mode of operation, or to maintain the MTBR achieved when operating in the static mode.

The MTBR value is the actual mean time to failure of each unit when operating continuously. If items do not operate continuously but are required for, say, only H hours per year on the average, the mean failure rate actually used in the queueing model portion of SASPRO is lowered accordingly. If items do operate around the clock, $H = 365 \times 24 = 8760$. If, for example, a population of items has an MTBR of 1000 hours but is called upon to operate, on the average, only half the time ($H = 4380$ hours), the effective MTBR used in the program is raised to 2000 hours (failure rate cut in half). The user specifies H and MTBR and SASPRO automatically makes the adjustment. The reader is referred to BARZILY, GROSS, and KAHN (1977) for a discussion of the adequacy of this procedure to account for noncontinuous operation. The above reference also discusses the SASPRO assumptions, when operating in the dynamic mode, that (1) the population attains instantaneous steady-state each year at average values, and (2) the population consists of nonidentical units (with respect to mean failure and repair time), which are treated as identical by weighted averaging.

The parameters KEYWD and KZ are the option flags. Setting KEYWD=1 puts SASPRO in the dynamic mode; otherwise it operates in the static mode. Designating KZ=1 sets the service level on fleet availability; otherwise the service level constraint is on spares availability. A β must be specified when KZ=1 .

Table II and Figure 2 give the card layout required for the input information. There are eight cards needed for the static mode and six plus two cards for each year in the planning horizon required for dynamic mode operation. The input requirements for static mode operation are similar to those required for a one-year planning horizon dynamic run. However, the output cost values given in the static mode are the expected end of year payments adjusted over an NYEAR life, while the costs of a single year dynamic mode run are the present worth of expenditures for that year.

TABLE II
CARD LAYOUT FOR INPUT

Card Number	Input Data Parameter(s)	Format	Columns
1	Title (any desired by user)	--	1-80
2	NYEARS	I2	1-2
3	R	F8.5	1-8
4 ^a	AVL, BETA	F8.5, F8.5	1-8, 9-16
5 ^b	KZ	I2	1-2
6 ^c	KEYWD	I2	1-2
7 8 }	See Figure 2: One set required for each year in dynamic planning horizon; one set only for static mode.		

^aFor Spares Avail Option, BETA may be set at any value.

^b $KZ = \begin{cases} 0 & \rightarrow \text{Spares Availability} \\ 1 & \rightarrow \text{Fleet Availability} \end{cases}$

^c $KEYWD = \begin{cases} 0 & \rightarrow \text{Static Mode} \\ 1 & \rightarrow \text{Dynamic Mode} \end{cases}$

6. Output from SASPRO

SASPRO gives the heuristic optimum combination of spares and repair channels needed to meet the service level constraint and also provides the costs associated with this solution. For the static operation mode there is a single line of output with the total costs shown being the expected equivalent annual expenditure over the NYEAR system life. For the dynamic mode of operation there is a line of output for each year, the cost outputted being the expected present worth of the cumulative sum of discounted costs up to and including that year. Also given as output are the heuristic optimum combinations of servers and spares; the average system failure rate, which in the static mode is the same as the

M	Y0	C0	MTBR	1/MU	H	CIPC	CPSER	CPSP	URC	UTC
1	89	1617	2425	3233	4041	5051	5859	6364	7071	7576
	F8.0			F8.0	F8.0	F10.0	F8.0	F5.0	F7.0	F5.0

SVPSP	SVPSP	OCPSER	CIC
1	56	1213	1718
F5.0	F7.0	F5.0	F5.0

Figure 2. Format for card set 6,7.

inputted failure rate calculated from the MTBR and H values read in, and in the dynamic mode is a weighted average of the units in the population which were introduced and repaired in various years at different values;¹ the average number of units repaired; and the actual availability achieved (always \geq AVL). Another output quantity shown is ASTAR, the percentage of time the population is called upon to operate ($ASTAR = H/8760$); this serves as a check on the H value put in. The output quantities with definitions are shown in Table III.

TABLE III
OUTPUT QUANTITIES

Name	Description
YR	Actual year represented
M	Population size year i (from input)
FR	Failure rate of a unit purchased or repaired in year i (failures/day = $\frac{1}{MTBR} \cdot \frac{H}{8760} \cdot 24$)
FRBAR	Average failure rate of a typical unit (failures/day = weighted average of various units purchased or repaired in all years up to and including i)
ASTAR	Average percent of time population is called upon to operate (H/8760)
C	Heuristic optimum number of repair channels required in year i
Y	Heuristic optimum number of spares required in year i
RBAR	Average number of units repaired in year i
COST	Costs expended in year i dynamic mode or equivalent yearly average expenditure in static mode
PRES WORTH	Present worth of sum of discounted costs up to and including year i, dynamic mode; same as COST for static mode

¹See Gross, Kahn, and Marsh (1977).

7. Sample Runs

We illustrate the model by showing sample runs for each mode (dynamic and static) for each service level option (spares availability and fleet availability). The first run is a dynamic, fleet availability, 20-year planning horizon case. Following this, a similar dynamic run is performed for spares availability. Next a static, 20-year system life spares availability situation is considered. Finally, a static, 20-year system life fleet availability case is run.

A listing of the input cards for these runs is given in Figure 3. For the four cases, there are a total of 108 data input cards ($2[6 + 2 \times 20] + 2[8]$) .

The associated output for the cases is given in Figure 4.

8. Intermediate Output and the Heuristic Optimization Algorithm

Also provided as output are intermediate values of Y and C which "step up" from Y_0 and C_0 showing the operation of the algorithm at each iteration. Briefly, the algorithm works as follows.

First, a C_1 and C_2 are computed, where C_1 is a function of the purchase cost, operating cost, and salvage value of a repair channel and C_2 is a function of the purchase cost, carrying cost, and salvage value of a spare. In the dynamic mode, the functions for C_1 and C_2 , year i , are

$$C_1 = CPSER + OCSPER \left[\frac{(1+R)^{K-i+1} - 1}{R(1+R)^{K-i+1}} \right] - SVSER \left[\frac{1}{(1+R)^{K-i+1}} \right], \quad (3)$$

$$C_2 = CPSP + CIC \left[\frac{(1+R)^{K-i+1} - 1}{R(1+R)^{K-i+1}} \right] - SVSP \left[\frac{1}{(1+R)^{K-i+1}} \right],$$

where K is the total number of periods in the dynamic planning horizon, i the current year, R the interest rate, and the costs are as defined

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

T-371

SAMPLE RUN 1
C₆
U-10
U-95 0.4

32° 205.35
SAMPLE HUN 2
20
U.10
0.90 1.00

SAMPLE RUN 3
20
0.10
0.40 1.0

32⁵⁶ 285.35 11⁰. 150⁸⁰ 4000. 55. 2037.14 0. 90. 1026.8 44. 0.

SAMPLE RUN 4
20
0.10
0.40 0.95

0 32²⁵⁶ 205.35 10. 136.12. 4000. 55. 2037.14 0. 90. 1026.8 44. 0.

Figure 3. Input card listing for sample runs.

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDG

SAMPLE RUN 1

DYNAMIC MODEL: FLEET AVAIL OPTION

INPUT DATA	M	AVL	DETA	YU	CU	MTDH	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	10.	.950	.95	1.	1.	5500.	05.000	1680.	90.	49.	0.	0.	32.	123.	10.	82.
OUTPUT DATA	FH	FWAH	ASTAR	3	Y	WHAH	5.	CUST	4642.01	PH=MURTH	4642.01					
75 10 0.00147160	0.00147160	0.214400	0.214400													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	28.	.950	.95	4.	4.	5500.	02.500	1948.	90.	49.	0.	0.	32.	142.	10.	95.
OUTPUT DATA	YU	FNGAH	ASTAH	5	Y	WHAH	15.3	CUST	282.96	PH=MURTH	721.71					
76 28 0.00150573	0.00150573	0.222300	0.222300													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	50.	.950	.95	13.	5.	4550.	00.000	2122.	90.	615.	36.	0.	32.	163.	10.	109.
OUTPUT DATA	FH	FWAH	ASTAR	6	Y	WHAH	20.3	CUST	4425.27	PH=MURTH	10870.31					
77 50 0.00136767	0.00136767	0.242192	0.242192													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	62.	.950	.95	13.	7.	5510.	57.500	1989.	90.	601.	40.	0.	32.	176.	10.	117.
OUTPUT DATA	FH	FNGAH	ASTAH	10	Y	WHAH	36.8	CUST	1665.32	PH=MURTH	12121.49					
78 62 0.00049101	0.00124474	0.227100	0.227100													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	121.	.950	.95	12.	7.	5500.	55.000	1989.	90.	951.	42.	0.	32.	190.	11.	127.
OUTPUT DATA	FH	FWAH	ASTAR	10	Y	WHAH	44.0	CUST	1710.51	PH=MURTH	13229.79					
78 121 0.00062569	0.00103254	0.223624	0.223624													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	158.	.950	.95	11.	8.	7500.	55.000	1989.	90.	1027.	44.	0.	32.	205.	10.	137.
OUTPUT DATA	FH	FWAH	ASTAR	14	Y	WHAH	51.0	CUST	2611.42	PH=MURTH	14948.84					
78 158 0.00071831	0.00090031	0.224471	0.224471													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	162.	.950	.95	11.	8.	4550.	55.000	1976.	90.	1027.	44.	0.	32.	205.	10.	137.
OUTPUT DATA	FH	FNGAH	ASTAH	15	Y	WHAH	52.9	CUST	2114.15	PH=MURTH	16142.22					
78 162 0.00063699	0.00090031	0.225602	0.225602													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	208.	.950	.95	11.	8.	4500.	55.000	2002.	90.	1027.	44.	0.	32.	205.	10.	137.
OUTPUT DATA	FH	FWAH	ASTAR	15	Y	WHAH	55.2	CUST	2207.41	PH=MURTH	17275.23					
78 208 0.00060941	0.00074314	0.225227	0.225227													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	229.	.950	.95	11.	8.	4500.	55.000	2028.	90.	1027.	44.	0.	32.	205.	10.	137.
OUTPUT DATA	FH	FWAH	ASTAR	15	Y	WHAH	57.0	CUST	2278.12	PH=MURTH	18337.99					
78 229 0.00060725	0.00089982	0.231467	0.231467													
INPUT DATA	M	AVL	DETA	YU	CU	MTHW	1/MU	CPSEN	CPSP	UMC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC
785 .110	251.	.950	.95	11.	8.	4500.	55.000	2040.	90.	1027.	44.	0.	32.	205.	10.	137.
OUTPUT DATA	FH	FNGAH	ASTAH	15	Y	WHAH	58.1	CUST	2404.39	PH=MURTH	19353.66					
78 251 0.00062296	0.00074315	0.233612	0.233612													

Figure 4. Sample run output.

~~THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC~~

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

SAMPLE RUN 2											
DYNAMIC MODELS SPANNES AVAIL UPTIME											
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	05.000	1860.	CPSEH
T20	.100	10.	.000	FRBHM	0.00147106	ASTAR		MINH	05.000	6140.	UHC
OUTPUT DATA	TH	M	FR	0.00147106	0.01406	0.21406				6140.	49.
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	02.500	1948.	RBAR
T20	.100	28.	.900	1.00	0.	4.	3500.	02.500	90.	700.	5.
OUTPUT DATA	TH	M	FR	0.00152655	0.015573	0.223330				4642.01	4642.01
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	01/MIN	CPSEH	
T20	.100	50.	.900	1.00	5.	4250.	60.000	2122.	815.	UHC	
OUTPUT DATA	TH	M	FR	0.00136767	0.0143073	0.242162				0.	0.0
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	01/MIN	CPSEH	
T20	.100	82.	.900	1.00	13.	7.	5500.	57.500	1989.	800.	CIPC
OUTPUT DATA	TH	M	FR	0.00094101	0.01244600	0.227106				0.	0.0
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	1.000	RBAR	
T20	.100	121.	.900	1.00	12.	0500.	55.000	1955.	95.	5.	
OUTPUT DATA	TH	M	FR	0.00082669	0.01013109	0.23624				5254.03	17474.08
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	1.000	CPSEH	
T20	.100	158.	.900	1.00	11.	8.	7500.	55.000	1966.	90.	CIPC
OUTPUT DATA	TH	M	FR	0.00071631	0.0008898	0.224471				0.	0.0
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	0500.	RBAR	
T20	.100	162.	.900	1.00	11.	8.	6500.	55.000	1976.	90.	5.
OUTPUT DATA	TH	M	FR	0.00063699	0.0001301	0.225002				4500.19	23151.11
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	0500.	CPSEH	
T20	.100	208.	.900	1.00	11.	8.	9000.	55.000	2002.	90.	CIPC
OUTPUT DATA	TH	M	FR	0.00060941	0.0007196	0.226527				0.	0.0
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	0500.	CPSEH	
T20	.100	229.	.900	1.00	11.	8.	9000.	55.000	2020.	90.	CIPC
OUTPUT DATA	TH	M	FR	0.00061725	0.0006791	0.231407				4224.40	20553.21
INPUT DATA	THS	MATE	M	AVL	BETA	YU	CU	MINH	0500.	CPSEH	
T20	.100	251.	.900	1.00	11.	8.	9000.	55.000	2046.	90.	CIPC
OUTPUT DATA	TH	M	FR	0.00062296	0.00062662	0.233012				0.	0.0

Figure 4.—continued

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDG

Figure 4.—*continued*

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

SAMPLE RUN 3

STATIC MODELS SPARES AVAIL OPTION

INPUT DATA	M	AVL	BETA	YU	CU	MTBR	1/MU	CPSM	UNC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC	
THS DATA	.100	256.	.900	1.00	11.	8.	9000.	55.000	2037.	90.	1027.	44.	0.	0.0	137.	
OUTPUT DATA	TH	256.	0.00062015	FK	F8JAH	0.00062015	0.232556	C	13	14	WBAK	57.9	6301.81	C0SI	PK=WUHTM 6361.81	203.
TH	256.	0.00062015	FK	F8JAH	0.00062015	0.232556	C	13	14	WBAK	57.9	6301.81	C0SI	PK=WUHTM 6361.81	203.	

SAMPLE RUN 4

STATIC MODELS FLEET AVAIL OPTION

INPUT DATA	M	AVL	BETA	YU	CU	MTBR	1/MU	CPSM	UNC	CIPC	UTC	SVPSEH	SVPSP	UCPSEH	CIC	
THS DATA	.100	256.	.900	0.95	11.	8.	9000.	55.000	2037.	90.	1027.	44.	0.	0.0	137.	
OUTPUT DATA	TH	256.	0.00062015	FK	F8JAH	0.00062015	0.232556	C	12	1	WBAK	56.1	2904.50	C0SI	PK=WUHTM 2904.50	203.
TH	256.	0.00062015	FK	F8JAH	0.00062015	0.232556	C	12	1	WBAK	56.1	2904.50	C0SI	PK=WUHTM 2904.50	203.	

Figure 4.—continued

in Table I. The first bracket term brings the annual costs, OCSPER and CIC, to a beginning of year i equivalent cost, while the second bracket term brings the salvage value to a beginning of year i equivalent term; that is, the bracket terms are the present worth factors for a series payment and end of horizon payment, respectively. Note it is assumed that if a spare or repair channel is purchased in year i , the annual costs are incurred through the end of the planning horizon and salvage cannot be obtained until the end of the horizon, even if removal occurs sooner.

The algorithm forms a ratio (call Δ) of C_1/C_2 or C_2/C_1 , depending on the relative magnitudes in such a way that the ratio is ≥ 1 . Then given a pair of values C, Y (to start year i , C_{i-1} and Y_{i-1} are used) the availability is computed. If it is below the desired level and if $\Delta = C_1/C_2$, then for an equal dollar expenditure Δ repair channels or one spare can be added. Availability is calculated for both cases (adding Δ repair channels or one spare) and the case yielding the higher availability becomes the new C, Y pair. The algorithm repeats until the desired availability is met. Upon exceeding the desired availability, a backoff procedure is utilized. If feasibility was reached by adding Δ channels, the algorithm first attempts to remove a spare and then channels are removed one at a time to see if a cheaper solution exists near the boundary. If feasibility was reached by adding a spare, again one-at-a-time removal of channels is tried. Had $\Delta = C_2/C_1$, the words channel and spare would be reversed in describing the algorithm.

When the initial values of C and Y for year i exceed the availability desired, the algorithm immediately goes into a backoff mode, trying to remove spares and channels one at a time, starting with the more expensive (larger C_i value) first.

The algorithm uses only C_1 and C_2 . The other costs are used in calculating the total year i expenditures even though they are not used in the algorithm. The costs URC, UTC, and CIPC are assumed year end expenditures and are multiplied by $1/(1+R)$ to bring them back to

a year beginning cost. The URC and UTC costs are multiplied by \bar{R} and then added to $C_1 \times (\text{number of new channels added}) + C_2 \times (\text{number of new spares added}) + \text{CIPC}$ to yield the total beginning of year cost for year i (call T_c) which is outputted. Letting $\alpha = 1/(1+R)$, the discounting factor, the final cost figure given in the output for year i is the present worth of the cumulative sum of equivalent beginning of year costs, up to and including year i ; namely, $\sum_{j=1}^i \alpha^{j-1} T_j$.

In the static mode the algorithm works in the same way, except the functions C_1 and C_2 are changed to reflect all costs as average expenditures per year. Thus, the purchase costs and salvage values are multiplied by sinking fund and capital recovery factors, namely,

$$C_1 = \text{CPSER} \left[\frac{\bar{R}(1+R)^K}{(1+R)^K - 1} \right] + \text{OCSPER} - \text{SVSER} \left[\frac{\bar{R}}{(1+R)^K - 1} \right] \quad (4)$$

$$C_2 = \text{CPSP} \left[\frac{\bar{R}(1+R)^K}{(1+R)^K - 1} \right] + \text{CIC} - \text{SVSP} \left[\frac{\bar{R}}{(1+R)^K - 1} \right].$$

In this mode total equivalent expenditures per year are calculated simply by adding $(\text{URC} + \text{UTC})\bar{R}$ and CIPC to $C_1 \times (C) + C_2 \times (Y)$. This is then the value which shows as both COST and PRES WORTH on the output, the PRES WORTH column being meaningless in the static mode.

A sample of intermediate output is shown in Figure 5 for the first year of sample run 1. Shown are the failure rate for year i (RLAM), average population failure rate for year i (AMTBR), average turn around (repair) time (ST), availability for the particular combination of C and Y , average queue size at repair depot (LQ), and average number of units in repair (L).

9. Acknowledgments

The computer programming was originally performed by H. D. Kahn and modified by F. Ghobt and M. Y. Wong. Their excellent assistance was invaluable in yielding the SASPRO package.

M#	10.0	C#	1.0	Y#	1.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.38615D 00	LQ= 0.1610D 01	U1 L= 2.4129
M#	10.0	C#	8.0	Y#	1.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.76002D 00	LQ= 0.1538D-07	U1 L= 0.9266
M#	10.0	C#	1.0	Y#	2.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.49112D 00	LQ= 0.2000D 01	U1 L= 2.8293
M#	10.0	C#	15.0	Y#	1.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.76002D 00	LQ= 0.0 U	U1 L= 0.9266
M#	10.0	C#	8.0	Y#	2.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.92963D 00	LQ= 0.5208D-07	U1 L= 0.9484
M#	10.0	C#	15.0	Y#	2.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.92963D 00	LQ= 0.0	U1 L= 0.9484
M#	10.0	C#	8.0	Y#	3.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.98395D 00	LQ= 0.1332D-06	U1 L= 0.9549
M#	10.0	C#	7.0	Y#	3.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.98395D 00	LQ= 0.2655D-05	U1 L= 0.9549
M#	10.0	C#	6.0	Y#	3.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.98394D 00	LQ= 0.4001D-04	U1 L= 0.9549
M#	10.0	C#	5.0	Y#	3.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.98387D 00	LQ= 0.4669D-03	U1 L= 0.9553
M#	10.0	C#	4.0	Y#	3.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.98305D 00	LQ= 0.4328D-02	U1 L= 0.9590
M#	10.0	C#	3.0	Y#	3.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.97552D 00	LQ= 0.3331D-01	U1 L= 0.9868
M#	10.0	C#	2.0	Y#	3.0	RLAM=0.147186D-02	AMTB#=0.0014719	ST= 65.000	AVAIL=0.93769D 00	LQ= 0.2403D 00	U1 L= 1.1875

Figure 5. Intermediate output--sample run 1--first year.

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

REFERENCES

BARZILY, Z., D. GROSS, and H. D. KAHN (1977). Some practical considerations in the application of finite source queueing models. Technical Paper Serial T-360, Program in Logistics, The George Washington University.

GROSS, D., H. D. KAHN, and J. D. MARSH (1977). Queueing models for spares provisioning. *Naval Res. Logist. Quart.* 24 521-536.
~~

GROSS, D. and C. E. PINKUS (1978). Designing a support system for repairable items. Technical Paper Serial T-367, Program in Logistics, The George Washington University.

THE GEORGE WASHINGTON UNIVERSITY
Program in Logistics
Distribution List for Technical Papers

The George Washington University
Office of Sponsored Research
Library
Vice President H. F. Bright
Dean Harold Liebowitz
Mr. J. Frank Doubleday

ONR
Chief of Naval Research
(Codes 200, 430D, 1021P)
Resident Representative

OPNAV
OP-40
DCNO, Logistics
Navy Dept Library
OP-911
OP-964

Naval Aviation Integrated Log Support

NAVCOSACT

Naval Cmd Sys Sup Activity Tech Library

Naval Electronics Lab Library

Naval Facilities Eng Cmd Tech Library

Naval Ordnance Station
Louisville, Ky.
Indian Head, Md.

Naval Ordnance Sys Cmd Library

Naval Research Branch Office
Boston
Chicago
New York
Pasadena
San Francisco

Naval Research Lab
Tech Info Div
Library, Code 2029 (ONRL)

Naval Ship Engng Center
Philadelphia, Pa.
Hyattsville, Md.

Naval Ship Res & Dev Center

Naval Sea Systems Command
Tech Library
Code 073

Naval Supply Systems Command
Library
Capt W. T. Nash

Naval War College Library
Newport

BUPERS Tech Library

FMSO

Integrated Sea Lift Study

USN Ammo Depot Earle

USN Postgrad School Monterey
Library
Dr. Jack R. Borsting
Prof C. R. Jones

US Marine Corps
Commandant
Deputy Chief of Staff, R&D

Marine Corps School Quantico
Landing Force Dev Ctr
Logistics Officer

Armed Forces Industrial College

Armed Forces Staff College

Army War College Library
Carlisle Barracks

Army Cmd & Gen Staff College

US Army HQ
LTC George L. Slyman
Army Trans Mat Command

Army Logistics Mgmt Center
Fort Lee

Commanding Officer, USALDSRA
New Cumberland Army Depot

US Army Inventory Res Ofc
Philadelphia

HQ, US Air Force
AFADS 3

Griffiss Air Force Base
Reliability Analysis Center

Maxwell Air Force Base Library

Wright-Patterson Air Force Base
HQ, AF Log Command
Research Sch Log

Defense Documentation Center

National Academy of Science
Maritime Transportation Res Board Library

National Bureau of Standards
Dr E. W. Cannon
Dr Joan Rosenblatt

National Science Foundation

National Security Agency

WSEG

British Navy Staff

Logistics, OR Analysis Establishment
National Defense Hdqtrs, Ottawa

American Power Jet Co
George Chernowitz

ARCON Corp

General Dynamics, Pomona

General Research Corp
Dr Hugh Cole
Library

Planning Research Corp
Los Angeles

Rand Corporation
Library

Carnegie-Mellon University
Dean H. A. Simon
Prof G. Thompson

Case Western Reserve University
Prof B. V. Dean
Prof John R. Isbell
Prof M. Mesarovic
Prof S. Zacks

Cornell University
Prof R. E. Bechhofer
Prof R. W. Conway
Prof J. Kiefer
Prof Andrew Schultz, Jr.

Cowles Foundation for Research
Library
Prof Herbert Scarf
Prof Martin Shubik

Florida State University
Prof R. A. Bradley

Harvard University
Prof K. J. Arrow
Prof W. G. Cochran
Prof Arthur Schleifer, Jr.

New York University
Prof O. Morgenstern

Princeton University
Prof A. W. Tucker
Prof J. W. Tukey
Prof Geoffrey S. Watson

Purdue University	Prof J. F. Hannan
Prof S. S. Gupta	Michigan State University
Prof H. Rubin	Prof H. O. Hartley
Prof Andrew Whinston	Texas A & M Foundation
Stanford	Mr Gerald F. Hein
Prof T. W. Anderson	NASA, Lewis Research Center
Prof G. B. Dantzig	Prof W. M. Hirsch
Prof F. S. Hillier	Courant Institute
Prof D. L. Iglehart	Dr Alan J. Hoffman
Prof Samuel Karlin	IBM, Yorktown Heights
Prof G. J. Lieberman	Dr Rudolf Husser
Prof Herbert Solomon	University of Bern, Switzerland
Prof A. F. Veinott, Jr.	Prof J. H. K. Kao
University of California, Berkeley	Polytech Institute of New York
Prof R. E. Barlow	Prof W. Kruskal
Prof D. Gale	University of Chicago
Prof Rosedith Sitgreaves	Prof C. E. Lemke
Prof L. M. Tichinsky	Rensselaer Polytech Institute
University of California, Los Angeles	Prof Loynes
Prof J. R. Jackson	University of Sheffield, England
Prof Jacob Marschak	Prof Steven Nahmias
Prof R. R. O'Neill	University of Pittsburgh
Numerical Analysis Res Librarian	Prof D. B. Owen
University of North Carolina	Southern Methodist University
Prof W. L. Smith	Prof E. Parzen
Prof M. R. Leadbetter	State University New York, Buffalo
University of Pennsylvania	Prof H. O. Posten
Prof Russell Ackoff	University of Connecticut
Prof Thomas L. Saaty	Prof R. Remage, Jr.
University of Texas	University of Delaware
Prof A. Charnes	Dr Fred Rigby
Yale University	Texas Tech College
Prof F. J. Anscombe	Mr David Rosenblatt
Prof I. R. Savage	Washington, D.C.
Prof M. J. Sobel	Prof M. Rosenblatt
Dept of Admin Sciences	University of California, San Diego
Prof Z. W. Birnbaum	Prof Alan J. Rowe
University of Washington	University of Southern California
Prof B. H. Bissinger	Prof A. H. Rubenstein
The Pennsylvania State University	Northwestern University
Prof Seth Bonder	Dr M. E. Salveson
University of Michigan	West Los Angeles
Prof G. E. P. Box	Prof Edward A. Silver
University of Wisconsin	University of Waterloo, Canada
Dr. Jerome Bracken	Prof R. M. Thrall
Institute for Defense Analyses	Rice University
Prof H. Chernoff	Dr S. Vajda
MIT	University of Sussex, England
Prof Arthur Cohen	Prof T. M. Whitin
Rutgers – The State University	Wesleyan University
Mr Wallace M. Cohen	Prof Jacob Wolfowitz
US General Accounting Office	University of Illinois
Prof C. Derman	Mr Marshall K. Wood
Columbia University	National Planning Association
Prof Paul S. Dwyer	Prof Max A. Woodbury
Mackinaw City, Michigan	Duke University
Prof Saul I. Gass	
University of Maryland	
Dr Donald P. Gaver	
Carmel, California	
Dr Murray A. Geisler	
Logistics Mgmt Institute	

THE GEORGE WASHINGTON UNIVERSITY

BENEATH THIS PLAQUE
IS BURIED
A VAULT FOR THE FUTURE
IN THE YEAR 2056

THE STORY OF ENGINEERING IN THIS YEAR OF THE PLACING OF THE VAULT AND
ENGINEERING HOPES FOR THE TOMORROWS AS WRITTEN IN THE RECORDS OF THE
FOLLOWING GOVERNMENTAL AND PROFESSIONAL ENGINEERING ORGANIZATIONS AND
THOSE OF THIS GEORGE WASHINGTON UNIVERSITY.

BOARD OF COMMISSIONERS DISTRICT OF COLUMBIA
UNITED STATES ATOMIC ENERGY COMMISSION
DEPARTMENT OF THE ARMY UNITED STATES OF AMERICA
DEPARTMENT OF THE NAVY UNITED STATES OF AMERICA
DEPARTMENT OF THE AIR FORCE UNITED STATES OF AMERICA
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
NATIONAL BUREAU OF STANDARDS U.S. DEPARTMENT OF COMMERCE
AMERICAN SOCIETY OF CIVIL ENGINEERS
AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
THE SOCIETY OF AMERICAN MILITARY ENGINEERS
AMERICAN INSTITUTE OF MINING & METALLURGICAL ENGINEERS
DISTRICT OF COLUMBIA SOCIETY OF PROFESSIONAL ENGINEERS INC
THE INSTITUTE OF RADIO ENGINEERS INC.
THE CHEMICAL ENGINEERS CLUB OF WASHINGTON
WASHINGTON SOCIETY OF ENGINEERS
FAULKNER KINGSBURY & STENHOUSE - ARCHITECTS
CHARLES H. TOMPKINS COMPANY - BUILDERS
SOCIETY OF WOMEN ENGINEERS
NATIONAL ACADEMY OF SCIENCES NATIONAL RESEARCH COUNCIL

THE PURPOSE OF THIS VAULT IS INSPIRED BY AND IS DEDICATED TO
CHARLES HOOK TOMPKINS, DOCTOR OF ENGINEERING
BECAUSE OF HIS ENGINEERING CONTRIBUTIONS TO THIS UNIVERSITY, TO HIS
COMMUNITY, TO HIS NATION, AND TO OTHER NATIONS.

BY THE GEORGE WASHINGTON UNIVERSITY

ROBERT V. FLEMING
CHAIRMAN OF THE BOARD OF TRUSTEES

CLOYD H. MARVIN
PRESIDENT

JUNE THIRTY-NINTH
1955

To cope with the expanding technology, our society must
be assured of a continuing supply of rigorously trained
and educated engineers. The School of Engineering and
Applied Science is completely committed to this ob-
jective.