機器學習在股票型態辨識之應用

指導教授: 中山財管所 王昭文 教授

簡報製作:中山財管所 蘇彥庭 研究助理

演講摘要

在證券投資之技術分析領域中,大致可分為指標、K棒及型態3類分析方法,如何從中找出有用的技術分析方法,提升交易策略的報酬率,一直是投資人常在思考的問題,機器學習提供另一種解決方法。本演講以上海及深圳A股市場為例,介紹如何運用機器學習模型,強化技術分析交易策略的報酬率與勝率。透過深度學習模型中的多層感知器 (Multi Layer Perceptron,簡稱MLP),將股價向上突破20日均價進場,股價小於關鍵K棒則出場之交易策略,以進場日的技術指標及型態做為特徵,每筆樣本報酬率的漲跌進行模型訓練,藉以預測未來的股價漲跌。實證結果發現,透過機器學習模型,確實可以有效地提升原有交易策略的績效。

技術分析之關鍵K棒交易策略

• 回測標的:中國上證及深證A股2015年平均市值前300名之股票

- 回測期間: 2005年01月至2017年12月

• 進場條件: 當日收盤價向上突破20日移動平均線

• 出場條件: 跌破關鍵K棒出場價格

• 交易成本: 買入干分之3、賣出干分之4

移動平均線介紹

- 移動平均線用以反映目前投資人的股價持有成本
- n日簡單移動平均線(Simple Moving Average, SMA)計算方法:

$$SMA_n = \frac{P_t + P_{t-1} + \dots + P_{t-n+1}}{n}$$
, t 為現在時間點

第t天	T-6	T-5	T-4	T-3	T-2	T-1	Т
收盤價格	10	11	12	15	14	12	9
5日移動平均線	-	-	-	-	(10+11+12 +15+14)/5 =12.4	(11+12+15 +14+12)/5 =12.8	(12+15+14 +12+9)/5= 12.4

常見的移動平均策略

黄金交叉

短天期移動平均線向上突破長天期移動平均線 股價走多頭的機率高

死亡交叉

短天期移動平均線向下跌破長天期移動平均線 股價走空頭的機率高

短天期移動平均線

黃金/死亡交叉範例

上證指數

K棒

• K棒是由開盤價、最高價、最低價及收盤價所組成,用以描繪買方和賣方交戰的過程

關鍵K棒出場

- 關鍵K棒:長紅K棒和長黑K棒
- 以進場價格跌5%的價位做為目標出場價格
- 進場後逐日判斷當日是否為關鍵K棒,若為關鍵為關鍵K棒,則計算出場價格
 - 若為紅K棒,出場價格為當日開盤價向下5%
 - 若為黑K棒,出場價格為當日收盤價向下5%
- 若關鍵K棒的出場價格比目標出場價格來得高,則做為新的目標出場價格
- 關鍵K棒出場即為移動停利(損)的概念

技術分析之關鍵K棒交易策略示例

技術分析之關鍵K棒交易策略示例

技術分析之關鍵K棒交易策略示例

技術分析之關鍵K棒交易策略

• 回測標的:中國上證及深證A股2015年平均市值前300名之股票

- 回測期間: 2005年01月至2017年12月

• 進場條件: 當日收盤價向上突破20日移動平均線

• 出場條件: 跌破關鍵K棒出場價格

• 交易成本: 買入干分之3、賣出干分之4

• 策略績效:

平均報酬率	勝率	交易筆數	平均持有日數	年化報酬率	報酬率標準差	最大報酬率	最小報酬率
3.55%	37.52%	40,027筆	41.14日	31.52%	23.68%	1106.46%	-25.36%

以機器學習強化策略

利用股票型態特徵及日周月的技術分析指標,以深度學習模型預測上證及深證A股指數的進場時機點,提升原有策略的績效指標。

- 訓練期(Train): 2005年01月至2015年12月, 共21,444筆交易。

• 預測期(Test): 2016年01月至2017年12月, 共7,394筆交易。

• 預測目標: 各筆交易的報酬率漲跌兩分類。 $Y_i = \begin{cases} 0, Return_i \leq 0 \\ 1, Return_i > 0 \end{cases}$

	平均報酬率	勝率	交易筆數	平均持有日數	年化報酬率	報酬率標準差	最大報酬率	最小報酬率
全部樣本	3.55%	37.52%	40,027筆	41.14日	31.52%	23.68%	1106.46%	-25.36%
訓練期樣本	3.29%	35.91%	21,444筆	37.21日	32.25%	21.19%	478.53%	-15.08%
預測期樣本	1.40%	39.90%	7,394筆	57.39日	8.88%	12.37%	116.44%	-25.36%

註:此處訓練期樣本數與預測期樣本數相加未等於全部樣本,是因為刪除特徵缺值影響

感知器介紹

- 感知器模型:
- $a = b + w_1 X_1 + w_2 X_2$
- Y = h(a)
- h(x)為激勵函數(Active Function)
- X₁和 X₂為特徵(Features)
- w₁和 w₂ 為特徴權重
- Y 為預測目標
- 透過權重的調整, 讓模型可以學到某個函數, 並且區分資料分類

感知器訓練過程

- 兩分類預測問題
- 感知器模型: $Y = sign[w_1X_1 + w_2X_2 w_0]$
- 感知器模型訓練步驟:
- 1. 初始化: 權重w_i
- 2. 激勵: 輸入第一筆樣本(x₁, x₂)得到輸出值 Y
- 3. 權重修改: 依據實際的 Y_d 值與感知器輸出的 Y 值之間的差異進行調整
 - 3-1 計算誤差: e = Y_d − Y
 - 3-2 計算調整量: Δw_i = α · x_i · e
 - 3-3 調整權重: w_i = w_i + ∆w_i

• 4. 重複2-3步驟,依序輸入樣本進行權重修改,直到模型能夠完全正確分類或者達到迭代次數上限

圖片來源: https://github.com/micahprice/perceptron-GIF

資料參考來源: http://programmermagazine.github.io/201404/htm/focus2.html

激勵函數介紹

- 激勵函數:將輸入訊號的總和轉換成輸出訊號的函數。
- 不同的激勵函數有各自的輸出,進而對整個模型造成影響。

激勵函數	圖形	函式	輸出值域
Binary Step		$h(x) = \begin{cases} 0, for \ x < 0 \\ 1, for \ x > 0 \end{cases}$	{0, 1}
Linear		h(x) = x	$(-\infty,\infty)$
Sigmoid		$h(x) = \frac{1}{1 + e^{-x}}$	(0, 1)
Tanh		$h(x) = \frac{2}{1 + e^{-2x}} - 1$	(-1,1)
ReLU		$h(x) = \begin{cases} 0, for \ x < 0 \\ x, for \ x > 0 \end{cases}$	[0,∞)

激勵函數圖形引用至維基百科: https://en.wikipedia.org/wiki/Activation_function

激勵函數範例

多層感知器

- 多層感知器(Multi Layer Perceptron)包含輸入層、 輸出層以及至少1個隱藏層。
- 透過多層的設定,使模型能 夠學習非線性函數。
- 互動網站:

http://playground.tensorflow.org/

模型訓練方式

- 反向傳播法 (Backward-Propagation)
- 讓訓練樣本通過模型得到初步預測 結果,並計算預測與實際結果的誤 差。再將誤差往回傳遞到模型中, 調整模型內各節點的權重。不斷重 複上步驟,持續調整模型,直到預 測誤差達到收斂條件或訓練次數達 到使用者設定上限。

梯度優化演算法

圖片來源:http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

機器學習特徵

- 學習特徵共有型態及技術分析指標兩個面向, 共計有63個特徵
- 型態特徵
 - 進場點價格與頂底之間的關係
 - 頂底之間的斜率關係
 - 頂底之間的時間長度關係
- 技術分析指標特徵
 - 日、周及月頻布林通道指標
 - ■日、周及月頻KD指標
 - 日、周及月頻MACD指標
 - 日、周及月頻均線與進場點價格之間的關係
 - 日、周及月頻均量與進場點成交量之間的關係

多層感知器模型設定

- 程式執行環境: R語言中使用Keras套件 https://keras.rstudio.com/
- 使用多層感知器模型(Multi Layer Perceptron)
- 對訓練期和預測期特徵值進行標準化,將值域縮放至[0,1]區間
- 誤差函數:分類交叉熵損失(Categorical Cross-Entropy)
- 梯度優化演算法: adam(Adaptive Moment Estimation)
- 訓練次數: 2000次
- Batch-size: 全部訓練期樣本
- 驗證期(validation)切割比率設定為10%

預測分類結果

• 預測整理準確率: 51.74%

預測漲實際漲準確率: 41.21%

混淆矩陣(Confusion Matrix)

		實際				
		跌分類	漲分類			
預 測	跌分類	2,378	1,502			
	漲分類	2,066	1,448			

- 在財務投資領域中, 重視預測漲分類準確率, 因為預測漲才會實際拿錢去投資
- 以各樣本預測漲的機率,透過門檻值設定來決定是否實際投資

預測品質

預測績效分析

	平均報酬率	勝率	交易筆數	平均持有日數	年化報酬率	報酬率標準差	最大報酬率	最小報酬率
預測期 全部樣本	1.40%	39.90%	7,394筆	57.39日	8.88%	12.37%	116.44%	-25.36%
模型預測樣本 門檻值=0.5	2.08%	41.21%	3,514筆	62.22日	12.40%	12.77%	116.44%	-14.38%
模型預測樣本門檻值=0.6	2.16%	41.81%	2,260筆	62.44日	12.62%	12.65%	116.44%	-14.38%
模型預測樣本 門檻值=0.7	2.31%	43.15%	1,284筆	63.48日	13.28%	12.71%	116.44%	-14.38%
模型預測樣本門檻值=0.8	2.83%	44.93%	523筆	63.99日	16.16%	13.87%	116.44%	-10.83%
模型預測樣本 門檻值=0.9	3.35%	44.76%	105筆	62.78日	19.45%	14.03%	53.92%	-10.83%

預測績效分析

結語

- 在整個AI投資策略的研發中,時常遇到的困難是我們應該要如何從手中的資訊,找 到獲利的關鍵因素。在財務領域之AI程式交易開發過程中,由於價格走勢並非如圖 形辨識或手寫辨識有固定或相似的型態重覆發生,故目前仍需要仰賴人類過去的交 易經驗和主觀想法,先行開發一個雛型策略,再應用機器學習方法強化原來的交易 策略。
- 在本次演講中,我們首先呈現一個基本的交易策略,並透過機器學習模型的協助,來提升交易策略的績效。在2016年至2017年之間,平均報酬率由1.40%提升至2.83%,勝率由39.90%提升至44.93%。此結果證明機器學習領域確實能應用於財務投資交易策略領域中。