

Program Correctness

Block 7

Jorge A. Pérez (based on slides by Arnold Meijster)

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

- Problem: Deduce correct programs for counting certain elements of a given matrix (which represents a 2D function)
- ▶ Given an $n \times m$ matrix, the general case requires an iterative program that performs $n \times m$ comparisons.

- ► Problem: Deduce correct programs for counting certain elements of a given matrix (which represents a 2D function)
- ▶ Given an $n \times m$ matrix, the general case requires an iterative program that performs $n \times m$ comparisons. For instance, counting occurrences of 4:

,	000011011000 01 11									
2	7	4	13	3						
6	2	1	19	4						
11	8	0	17	5						
4	7	9	10	4						

- ▶ Problem: Deduce correct programs for counting certain elements of a given matrix (which represents a 2D function)
- ▶ Given an $n \times m$ matrix, the general case requires an iterative program that performs $n \times m$ comparisons. For instance, counting occurrences of 4:

2	7	4	13	3
6	2	1	19	4
11	8	0	17	5
4	7	9	10	4

► When the entries in the matrix are ordered (thanks to monotonicity assumptions), we need many less comparisons

- ► Problem: Deduce correct programs for counting certain elements of a given matrix (which represents a 2D function)
- ▶ Given an $n \times m$ matrix, the general case requires an iterative program that performs $n \times m$ comparisons.
- ► When the entries in the matrix are ordered (thanks to monotonicity assumptions), we need many less comparisons:

	, ,			,
0	2	4	7	10
1	2	4	8	11
2	3	5	9	13
4	4	6	17	19

- ► Problem: Deduce correct programs for counting certain elements of a given matrix (which represents a 2D function)
- ▶ Given an $n \times m$ matrix, the general case requires an iterative program that performs $n \times m$ comparisons.
- When the entries in the matrix are ordered (thanks to monotonicity assumptions), we need many less comparisons.
- A shrinking rectangle delineates the portion of the matrix to be analyzed. It is reduced iteratively, following a contour line.

- ► Problem: Deduce correct programs for counting certain elements of a given matrix (which represents a 2D function)
- ▶ Given an $n \times m$ matrix, the general case requires an iterative program that performs $n \times m$ comparisons.
- ▶ When the entries in the matrix are ordered (thanks to monotonicity assumptions), we need many less comparisons.
- ► A shrinking rectangle delineates the portion of the matrix to be analyzed. It is reduced iteratively, following a contour line.
- We use recurrences to characterize a function F(x, y), which defines (i) the rectangle's area and (ii) the entries to be counted.

- ► Problem: Deduce correct programs for counting certain elements of a given matrix (which represents a 2D function)
- ▶ Given an $n \times m$ matrix, the general case requires an iterative program that performs $n \times m$ comparisons.
- When the entries in the matrix are ordered (thanks to monotonicity assumptions), we need many less comparisons.
- ► A shrinking rectangle delineates the portion of the matrix to be analyzed. It is reduced iteratively, following a contour line.
- We use recurrences to characterize a function F(x, y), which defines (i) the rectangle's area and (ii) the entries to be counted.
- Clearly, different monotonicity assumptions entail:
 - different contour lines
 - different ways of approaching the recurrences
 different valid ways of reducing the rectangle)

Monotonic functions

Let $f:V\to\mathbb{R}$ be a function, where $V\subset\mathbb{Z}$ is a segment (interval).

We say f is

- ▶ ascending (\leq / \leq) : if $\forall i, j \in V : (i \leq j \Rightarrow f(i) \leq f(j))$
- ▶ descending (\leq / \geq): if $\forall i, j \in V : (i \leq j \Rightarrow f(i) \geq f(j))$

Monotonic functions

Let $f:V\to\mathbb{R}$ be a function, where $V\subset\mathbb{Z}$ is a segment (interval).

We say f is

- ▶ ascending (\leq / \leq) : if $\forall i, j \in V : (i \leq j \Rightarrow f(i) \leq f(j))$
- ▶ increasing (</<): if $\forall i, j \in V : (i < j \Rightarrow f(i) < f(j))$
- ▶ descending (\leq / \geq): if $\forall i, j \in V : (i \leq j \Rightarrow f(i) \geq f(j))$
- ▶ decreasing (</>): if $\forall i, j \in V : (i < j \Rightarrow f(i) > f(j))$

Monotonic functions

Let $f: V \to \mathbb{R}$ be a function, where $V \subset \mathbb{Z}$ is a segment (interval).

We say f is

- ▶ ascending (\leq / \leq): if $\forall i, j \in V : (i \leq j \Rightarrow f(i) \leq f(j))$
- ▶ increasing (</<): if $\forall i, j \in V : (i < j \Rightarrow f(i) < f(j))$
- ▶ descending (\leq / \geq): if $\forall i, j \in V : (i \leq j \Rightarrow f(i) \geq f(j))$
- ▶ decreasing (< />): if $\forall i, j \in V : (i < j \Rightarrow f(i) > f(j))$

f is called monotonic if it has one of the above properties.

Outline

Two-Dimensional Counting

The Problem

Two Ascending Arguments

The Contour Line

The Invariant

The Recurrence

The Roadmap

The Shrinking Area Method

Exercise 9.9: Two Ascending Arguments

Two Ascending Arguments

The Roadmap

Exercise 9.4: Decreasing & Ascending

Decreasing & Ascending

The Roadman

Two-Dimensional (2D) Counting

- ▶ Let $h : [0..m) \times [0..n) \rightarrow \mathbb{N}$ be a two-dimensional function.
- ▶ One can think of h as a landscape, where h(x, y) denotes the height or altitude at point (x, y).
- ightharpoonup Problem: Counting the number of points whose altitude stands below a value w.

Two-Dimensional (2D) Counting

- ▶ Let $h:[0..m) \times [0..n) \to \mathbb{N}$ be a two-dimensional function.
- ▶ One can think of h as a landscape, where h(x, y) denotes the height or altitude at point (x, y).
- ▶ Problem: Counting the number of points whose altitude stands below a value *w*.
- For the following grid and w = 20, we wish to establish z = 70.

1	16	25	22	0	1	17	20	19	29
9	22	7	1	5	16	13	3	14	24
12	6	13	16	14	20	9	14	11	6
16	0	2	13	8	2	16	14	3	16
25	16	20	27	7	3	5	27	24	22
23	23	2	29	14	26	26	14	8	19
25	19	9	18	29	20	27	15	8	18
27	20	27	12	21	1	14	12	6	26
16	7	8	12	3	16	15	15	18	0
13	2	11	29	9	23	15	24	7	12

Two dimensional (2D) counting

- ▶ Let $h:[0..m) \times [0..n) \to \mathbb{N}$ be a two-dimensional function.
- ▶ One can think of h as a landscape, where h(x, y) denotes the altitude at location (x, y).
- We address the problem of counting the number of grid points whose altitude stands below a value w.

Consider the following pre-regular specification:

```
\begin{array}{lll} \textbf{const} \ m, \ n, \ w: \ \mathbb{N}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z=\#\{(i,j) \ | \ i,j: \ 0 \leq i < m \ \land \ 0 \leq j < n \ \land \ h(i,j) < w\} \ \} \\ T; \\ \{Q: \ Z=z\} \end{array}
```

Two-Dimensional (2D) Counting

Exercise 9.1 asks you to confirm that the command below satisfies the specification. (Recall that ord(b) = (b?1:0).)

```
const m, n, w : \mathbb{N};
var x, y, z : \mathbb{Z};
  \{P: Z = \#\{(i,j) \mid i,j: 0 \le i \le m \land 0 \le j \le n \land h(i,j) \le w\}\}
x := 0:
y := 0:
z := 0;
while y < n do
  if x < m then
     z := z + \operatorname{ord}(h(x, y) < w);
     x := x + 1;
   else
     x := 0:
     y := y + 1;
  end:
end:
  \{Q: Z=z\}
```

Notice: We need $n \times m$ inspections of h.

Let $h:[0..m)\times[0..n)\to\mathbb{N}$ be a two-dimensional function, but now ascending (\leq/\leq) in both its arguments:

Let $h:[0..m)\times[0..n)\to\mathbb{N}$ be a two-dimensional function, but now ascending (\leq/\leq) in both its arguments:

$$x_0 \leq x_1 \Rightarrow h(x_0, y) \leq h(x_1, y)$$

 $y_0 \leq y_1 \Rightarrow h(x, y_0) \leq h(x, y_1)$

► Think of *h* as the slope of a landscape whose altitude increases (or stays stable) if one moves to the east or north (or northeast).

Let $h:[0..m)\times[0..n)\to\mathbb{N}$ be a two-dimensional function, but now ascending (\leq/\leq) in both its arguments:

$$egin{aligned} x_0 & \leq x_1 \Rightarrow h(x_0,y) \leq h(x_1,y) \ y_0 & \leq y_1 \Rightarrow h(x,y_0) \leq h(x,y_1) \end{aligned}$$

- ► Think of *h* as the slope of a landscape whose altitude increases (or stays stable) if one moves to the east or north (or northeast).
- Example, from low height to high height:

7	13	14	25	25	27	29	29	32	33
6	11	12	23	24	25	27	29	32	32
6	9	12	22	22	23	27	29	30	30
6	9	10	20	20	23	25	25	27	28
6	9	10	18	20	21	21	23	25	25
6	7	10	16	16	19	21	22	23	23
5	5	8	14	15	17	19	21	21	23
5	5	6	12	12	15	16	17	18	19
5	5	6	10	12	14	15	16	17	19
3	5	6	8	9	9	9	10	11	13

(0,0)

Consider the specification:

```
\begin{array}{ll} \textbf{const} \ m, \ n, \ w: \ \mathbb{N}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z=\#\{(i,j)\in [0..m)\times [0..n) \mid h(i,j) < w\}\} \\ T; \\ \{Q: \ Z=z\} \end{array}
```


Consider the specification:

```
\begin{array}{l} \textbf{const} \ m, \ n, \ w: \ \mathbb{N}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z=\#\{(i,j)\in [0..m)\times [0..n) \mid h(i,j) < w\}\} \\ T; \\ \{Q: \ Z=z\} \end{array}
```

In the previous grid, with w = 20 we want to find z = 59 (in **bold**):

7	13	14	25	25	27	29	29	32	33
6	11	12	23	24	25	27	29	32	32
6	9	12	22	22	23	27	29	30	30
6	9	10	20	20	23	25	25	27	28
6	9	10	18	20	21	21	23	25	25
6	7	10	16	16	19	21	22	23	23
5	5	8	14	15	17	19	21	21	23
5	5	6	12	12	15	16	17	18	19
5	5	6	10	12	14	15	16	17	19
3	5	6	8	9	9	9	10	11	13

The value of Z depends on the contour line induced by w.

The contour line separates the grid points with altitude < w from those with altitude > w. It may contain values > w.

Example:

7	13	14	25	25	27	29	29	32	33
6	11	12	23	24	25	27	29	32	32
6	9	12	22	22	23	27	29	30	30
6	9	10	20	20	23	25	25	27	28
6	9	10	18	20	21	21	23	25	25
6	7	10	16	16	19	21	22	23	23
5	5	8	14	15	17	19	21	21	23
5	5	6	12	12	15	16	17	18	19
5	5	6	10	12	14	15	16	17	19
3	5	6	8	9	9	9	10	11	13

(0,0)

Notice: z = 59 =

The value of Z depends on the contour line induced by w.

The contour line separates the grid points with altitude < w from those with altitude > w. It may contain values > w.

Example:

7	13	14	25	25	27	29	29	32	33
6	11	12	23	24	25	27	29	32	32
6	9	12	22	22	23	27	29	30	30
6	9	10	20	20	23	25	25	27	28
6	9	10	18	20	21	21	23	25	25
6	7	10	16	16	19	21	22	23	23
5	5	8	14	15	17	19	21	21	23
5	5	6	12	12	15	16	17	18	19
5	5	6	10	12	14	15	16	17	19
3	5	6	8	9	9	9	10	11	13

(0,0)

Notice: z = 59 = 10 + 10 + 10 + 6 + 5 + 5 + 4 + 3 + 3 + 3.

We derive a repetitive command that uses the contour line to guide the search, and maintains the invariant:

$$J:\ Z=z+F(x,y)$$

where

- z denotes already counted points
- ► F(x, y) denotes the points **still to be counted**, enclosed by the shrinking rectangle determined by point (x, y)

Intuitively:

At the beginning: Z = F(0, n) and z = 0.

Intuitively:

At the beginning: Z = F(0, n) and z = 0.

Follow the contour line

to reduce the rectangle: increase x / decrease y.

Intuitively:

- At the beginning: Z = F(0, n) and z = 0.
- ► Follow the contour line to reduce the rectangle: increase x / decrease y.
- At the end: Z = z and F(m, 0) = 0.

Intuitively:

- At the beginning: Z = F(0, n) and z = 0.
- Follow the contour line to reduce the rectangle: increase x / decrease y.
- At the end: Z = z and F(m, 0) = 0.

We define:

$$F(x,y) = \#\{(i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w\}$$

Maintaining Z = z + F(x, y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

At the beginning: Z = F(0, n).

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z=z+F(x,y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

► Follow the contour line to reduce the rectangle

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z=z+F(x,y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

► Follow the contour line to reduce the rectangle - increase *x*

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z = z + F(x, y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

► Follow the contour line to reduce the rectangle - increase *x*

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z=z+F(x,y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

 Follow the contour line to reduce the rectangle
 decrease y

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z = z + F(x, y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

 Follow the contour line to reduce the rectangle
 decrease y

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z=z+F(x,y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

► Follow the contour line to reduce the rectangle

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z=z+F(x,y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

► Follow the contour line to reduce the rectangle

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z=z+F(x,y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

► Follow the contour line to reduce the rectangle

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Maintaining Z = z + F(x, y), Intuitively

The rectangle's definition:

$$F(x, y) = \#\{(i, j) \mid i, j : x \le i < m \land 0 \le j < y \land h(i, j) < w\}$$

Intuitively:

At the end: F(m, 0) = 0 and Z = z.

14	25	25	27	29	29	32	33
12	23	24	25	27	29	32	32
12	22	22	23	27	29	30	30
10	20	20	23	25	25	27	28
10	18	20	21	21	23	25	25
10	16	16	19	21	22	23	23
8	14	15	17	19	21	21	23
6	12	12	15	16	17	18	19
6	10	12	14	15	16	17	19
6	8	9	9	9	10	11	13

Recurrence for F(x, y)

We characterize the rectangle F(x, y) with a recurrence relation. Side conditions relevant for counting:

- $ightharpoonup x < m \quad (and <math>m \le x)$
- ▶ y > 0 (and $y \le 0$)
- ► h(x, y 1) < w (and $h(x, y 1) \ge w$)

Because $\#\emptyset = 0$, we have the base case:

$$m < x \lor y < 0 \Rightarrow F(x, y) = 0$$


```
F(x,y) \\ = \{ \text{ definition } F \} \\ \# \{(i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \} \\ & \# \{ (i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = & \{ \text{ assume } x < m; \text{ so } x \leq i < m \equiv (x+1 \leq i < m \ \lor \ i = x) \ \} \end{array}
```



```
F(x,y) = \{ \text{ definition } F \}
\#\{(i,j) \mid i,j : x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \}
= \{ \text{ assume } x < m; \text{ so } x \leq i < m \equiv (x+1 \leq i < m \ \lor \ i = x) \}
\#\{(i,j) \mid i,j : x+1 \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \}
+
\#\{(x,j) \mid j : \ 0 < j < y \ \land \ h(x,j) < w \}
```



```
F(x,y) = \{ \text{ definition } F \}
\#\{(i,j) \mid i,j : x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \}
= \{ \textbf{assume } x < m; \text{ so } x \leq i < m \equiv (x+1 \leq i < m \ \lor \ i = x) \}
\#\{(i,j) \mid i,j : x+1 \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \}
+
\#\{(x,j) \mid j : \ 0 \leq j < y \ \land \ h(x,j) < w \}
= \{ \text{ definition } F \}
F(x+1,y) + \#\{(x,j) \mid j : \ 0 \leq j < y \ \land \ h(x,j) < w \}
```



```
F(x,y) = \{ \text{ definition } F \} \\ \#\{(i,j) \mid i,j : x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = \{ \text{ assume } x < m; \text{ so } x \leq i < m \equiv (x+1 \leq i < m \ \lor \ i = x) \ \} \\ \#\{(i,j) \mid i,j : x+1 \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ + \\ \#\{(x,j) \mid j : \ 0 \leq j < y \ \land \ h(x,j) < w \} \\ = \{ \text{ definition } F \} \\ F(x+1,y) + \#\{(x,j) \mid j : \ 0 \leq j < y \ \land \ h(x,j) < w \} \\ = \{ \text{ assume } y > 0; \ h(x,j) \text{ is ascending in } j \text{ so } h(x,y-1) \text{ is } \}
```



```
F(x,y) = \{ \text{ definition } F \}
\#\{(i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \}
= \{ \text{ assume } x < m; \text{ so } x \leq i < m \equiv (x+1 \leq i < m \ \lor \ i = x) \}
\#\{(i,j) \mid i,j: \ x+1 \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \}
+
\#\{(x,j) \mid j: \ 0 \leq j < y \ \land \ h(x,j) < w \}
= \{ \text{ definition } F \}
F(x+1,y) + \#\{(x,j) \mid j: \ 0 \leq j < y \ \land \ h(x,j) < w \}
= \{ \text{ assume } y > 0; \ h(x,j) \text{ is ascending in } j \text{ so } h(x,y-1) \text{ is maximal};
```



```
F(x,y)
= \{ definition F \}
  \#\{(i,j) \mid i,j: x < i < m \land 0 < j < y \land h(i,j) < w\}
= \{ assume \ x < m; so \ x < i < m \equiv (x+1 < i < m \lor i = x) \}
  \#\{(i,j) \mid i,j: x+1 \le i < m \land 0 \le j < y \land h(i,j) < w\}
  \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= \{ definition F \}
  F(x+1,y) + \#\{(x,j) \mid j: 0 \le j < y \land h(x,j) < w\}
= { assume y > 0; h(x, j) is ascending in j so h(x, y - 1) is maximal;
      assume h(x, y-1) < w,
```



```
F(x,y)
= \{ definition F \}
  \#\{(i,j) \mid i,j: x < i < m \land 0 < j < y \land h(i,j) < w\}
= \{ \text{ assume } x < m; \text{ so } x \le i < m \equiv (x+1 \le i < m \ \lor \ i = x) \}
  \#\{(i,j) \mid i,j: x+1 \le i < m \land 0 \le j < y \land h(i,j) < w\}
  \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= \{ definition F \}
  F(x+1,y) + \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= { assume y > 0; h(x, j) is ascending in j so h(x, y - 1) is maximal;
      assume h(x, y - 1) < w, then h(x, j) < w for all j < y - 1 }
```



```
F(x,y)
= \{ definition F \}
  \#\{(i,j) \mid i,j: x < i < m \land 0 < j < y \land h(i,j) < w\}
= \{ assume \ x < m; so \ x < i < m \equiv (x+1 < i < m \lor i = x) \}
  \#\{(i,j) \mid i,j: x+1 \le i < m \land 0 \le j < y \land h(i,j) < w\}
  \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= \{ definition F \}
  F(x+1,y) + \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= { assume y > 0; h(x, j) is ascending in j so h(x, y - 1) is maximal;
      assume h(x, y - 1) < w, then h(x, j) < w for all j < y - 1
  F(x+1,y) + \#\{(x,j) \mid j: 0 \le j < y\}
```



```
F(x,y)
= \{ definition F \}
  \#\{(i,j) \mid i,j: x < i < m \land 0 < j < y \land h(i,j) < w\}
= \{ \text{ assume } x < m; \text{ so } x \le i < m \equiv (x+1 \le i < m \ \lor \ i = x) \}
  \#\{(i,j) \mid i,j: x+1 \le i < m \land 0 \le j < y \land h(i,j) < w\}
  \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= \{ definition F \}
  F(x+1,y) + \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= { assume y > 0; h(x, j) is ascending in j so h(x, y - 1) is maximal;
      assume h(x, y - 1) < w, then h(x, j) < w for all j < y - 1
  F(x+1,y) + \#\{(x,j) \mid j: 0 \le j < y\}
= { size of half-open interval [0, y) is y - 0 = y}
  F(x+1,y) + y
```


One way to reduce the rectangle is to increment x. Hence, we examine a column, exploiting that h is ascending in y:

```
F(x, y)
= \{ definition F \}
  \#\{(i,j) \mid i,j: x < i < m \land 0 < j < y \land h(i,j) < w\}
= \{ assume \ x < m; so \ x < i < m \equiv (x+1 < i < m \lor i = x) \}
  \#\{(i,j) \mid i,j: x+1 \le i < m \land 0 \le j < y \land h(i,j) < w\}
  \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= \{ definition F \}
  F(x+1,y) + \#\{(x,j) \mid j: 0 < j < y \land h(x,j) < w\}
= { assume y > 0; h(x, j) is ascending in j so h(x, y - 1) is maximal;
      assume h(x, y - 1) < w, then h(x, j) < w for all j < y - 1 }
  F(x+1,y) + \#\{(x,j) \mid j: 0 < j < y\}
= { size of half-open interval [0, y) is y - 0 = y}
  F(x + 1, y) + y
```

Conclusion:

$$x < m \land y > 0 \land h(x,y-1) < w \Rightarrow F(x,y) = F(x+1,y) + y$$


```
 \begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \ \} \\ \# \{ (i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \} \\ \# \{ (i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = \{ \text{ assume } y > 0 \text{: then } 0 \leq j < y \equiv (0 \leq j < y - 1 \ \lor \ j = y - 1) \ \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \} \\ \# \{ (i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = \{ \text{ assume } y > 0 \text{: then } 0 \leq j < y \equiv (0 \leq j < y - 1 \ \lor \ j = y - 1) \ \} \\ \# \{ (i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y - 1 \ \land \ h(i,j) < w \} \ + \\ \# \{ (i,y-1) \mid i: \ x \leq i < m \ \land \ h(i,y-1) < w \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \} \\ \# \{ (i,j) \mid i,j : x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = \{ \text{ assume } y > 0 \text{: then } 0 \leq j < y \equiv (0 \leq j < y - 1 \ \lor \ j = y - 1) \ \} \\ \# \{ (i,j) \mid i,j : x \leq i < m \ \land \ 0 \leq j < y - 1 \ \land \ h(i,j) < w \} \ + \\ \# \{ (i,y-1) \mid i : x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ \text{ definition } F \} \\ F(x,y-1) + \# \{ (i,y-1) \mid i : x \leq i < m \ \land \ h(i,y-1) < w \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \} \\ \#\{(i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = \{ \text{ assume } y > 0 \text{: then } 0 \leq j < y \equiv (0 \leq j < y - 1 \ \lor \ j = y - 1) \ \} \\ \#\{(i,j) \mid i,j: \ x \leq i < m \ \land \ 0 \leq j < y - 1 \ \land \ h(i,j) < w \} \ + \\ \#\{(i,y-1) \mid i: \ x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ \text{ definition } F \} \\ F(x,y-1) + \#\{(i,y-1) \mid i: \ x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ h(i,y-1) \text{ is ascending in } i \text{ so } h(x,y-1) \text{ is} \\ \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid i,j : \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = \{ \text{ assume } y > 0 : \text{ then } 0 \leq j < y \equiv (0 \leq j < y - 1 \ \lor \ j = y - 1) \ \} \\ \# \{ (i,j) \mid i,j : \ x \leq i < m \ \land \ 0 \leq j < y - 1 \ \land \ h(i,j) < w \} \ + \\ \# \{ (i,y-1) \mid i : \ x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ \text{ definition } F \} \\ F(x,y-1) + \# \{ (i,y-1) \mid i : \ x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ \ h(i,y-1) \text{ is ascending in } i \text{ so } h(x,y-1) \text{ is } \underset{\text{minimal}}{\text{minimal}}; \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid i,j : \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = \{ \text{ assume } y > 0 : \text{ then } 0 \leq j < y \equiv (0 \leq j < y - 1 \ \lor \ j = y - 1) \ \} \\ \# \{ (i,j) \mid i,j : \ x \leq i < m \ \land \ 0 \leq j < y - 1 \ \land \ h(i,j) < w \} \ + \\ \# \{ (i,y-1) \mid i : \ x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ \text{ definition } F \, \} \\ F(x,y-1) + \# \{ (i,y-1) \mid i : \ x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ h(i,y-1) \text{ is ascending in } i \text{ so } h(x,y-1) \text{ is } \underset{}{\text{minimal}}; \\ \text{assume } h(x,y-1) > w : \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid i,j \colon x \leq i < m \, \land \, 0 \leq j < y \, \land \, h(i,j) < w \} \\ = \{ \text{ assume } y > 0 \colon \text{then } 0 \leq j < y \equiv (0 \leq j < y - 1 \, \lor \, j = y - 1) \, \} \\ \# \{ (i,j) \mid i,j \colon x \leq i < m \, \land \, 0 \leq j < y - 1 \, \land \, h(i,j) < w \} \, + \\ \# \{ (i,y-1) \mid i \colon x \leq i < m \, \land \, h(i,y-1) < w \} \\ = \{ \text{ definition } F \, \} \\ F(x,y-1) + \# \{ (i,y-1) \mid i \colon x \leq i < m \, \land \, h(i,y-1) < w \} \\ = \{ h(i,y-1) \text{ is ascending in } i \text{ so } h(x,y-1) \text{ is } \underset{\text{minimal;}}{\text{minimal;}} \\ \text{assume } h(x,y-1) \geq w \colon \text{then } h(i,y-1) \geq w \text{ for all } x \leq i < m \, \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \, \} \\ \#\{(i,j) \mid i,j : \ x \leq i < m \ \land \ 0 \leq j < y \ \land \ h(i,j) < w \} \\ = \{ \text{ assume } y > 0 : \text{ then } 0 \leq j < y \equiv (0 \leq j < y - 1 \ \lor \ j = y - 1) \, \} \\ \#\{(i,j) \mid i,j : \ x \leq i < m \ \land \ 0 \leq j < y - 1 \ \land \ h(i,j) < w \} \ + \\ \#\{(i,y-1) \mid i : \ x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ \text{ definition } F \, \} \\ F(x,y-1) + \#\{(i,y-1) \mid i : \ x \leq i < m \ \land \ h(i,y-1) < w \} \\ = \{ h(i,y-1) \text{ is ascending in } i \text{ so } h(x,y-1) \text{ is minimal;} \\ \text{assume } h(x,y-1) \geq w \text{: then } h(i,y-1) \geq w \text{ for all } x \leq i < m \, \} \\ F(x,y-1) + \#\{(i,y-1) \mid i : \ x \leq i < m \ \land \ \text{false} \} \end{array}
```



```
F(x, y)
= \{ definition F \}
 \#\{(i,j) \mid i,j: x \leq i < m \land 0 \leq j < y \land h(i,j) < w\}
= { assume y > 0: then 0 < j < y \equiv (0 < j < y - 1 \lor j = y - 1) }
 \#\{(i,j) \mid i,j: x < i < m \land 0 < j < y-1 \land h(i,j) < w\} + 
 \#\{(i, y - 1) \mid i : x < i < m \land h(i, y - 1) < w\}
= \{ definition F \}
 F(x, y-1) + \#\{(i, y-1) \mid i: x \leq i < m \land h(i, y-1) < w\}
= { h(i, y - 1) is ascending in i so h(x, y - 1) is minimal;
    assume h(x, y - 1) > w: then h(i, y - 1) > w for all x < i < m
 F(x, y - 1) + \#\{(i, y - 1) \mid i : x < i < m \land false\}
= \{ \#\emptyset = 0 \}
 F(x, y - 1)
```


We now investigate what happens if we decrement y. Hence, we examine a row, exploiting that h is ascending in x:

```
F(x, y)
= { definition F }
 \#\{(i,j) \mid i,j: x \leq i < m \land 0 \leq j < y \land h(i,j) < w\}
= { assume y > 0: then 0 < j < y \equiv (0 < j < y - 1 \lor j = y - 1) }
 \#\{(i,j) \mid i,j: x \leq i < m \land 0 \leq j < y-1 \land h(i,j) < w\} + \}
 \#\{(i, y - 1) \mid i : x < i < m \land h(i, y - 1) < w\}
= \{ definition F \}
 F(x, y-1) + \#\{(i, y-1) \mid i: x \leq i < m \land h(i, y-1) < w\}
= { h(i, y - 1) is ascending in i so h(x, y - 1) is minimal;
    assume h(x, y - 1) > w: then h(i, y - 1) > w for all x < i < m
 F(x, y-1) + \#\{(i, y-1) \mid i : x \le i < m \land false\}
= \{ \#\emptyset = 0 \}
 F(x, y - 1)
```

Conclusion: $y > 0 \land h(x, y - 1) > w \Rightarrow F(x, y) = F(x, y - 1)$

Recurrence for F(x, y)

We conclude that

$$F(x,y) = \#\{(i,j) \mid i,j: \ x \leq i < m \land 0 \leq j < y \land h(i,j) < w\}$$

satisfies the following recursive equations:

$$egin{aligned} m \leq x ee y \leq 0 & \Rightarrow & F(x,y) = 0 \ x < m \wedge y > 0 \wedge h(x,y-1) < w & \Rightarrow & F(x,y) = y + F(x+1,y) \ y > 0 \wedge h(x,y-1) \geq w & \Rightarrow & F(x,y) = F(x,y-1) \end{aligned}$$

We now rewrite the original specification to obtain:

```
 \begin{aligned} & \textbf{const} \ m, \ n, \ w: \ \mathbb{N}; \\ & \textbf{var} \ z: \ \mathbb{Z}; \\ & \left\{P: \ Z = F(0,n)\right\} \\ & T; \\ & \left\{Q: \ Z = z\right\} \end{aligned}
```


We now rewrite the original specification to obtain:

```
 \begin{aligned} & \textbf{const} \ m, \ n, \ w: \ \mathbb{N}; \\ & \textbf{var} \ z: \ \mathbb{Z}; \\ & \left\{P: \ Z = F(0,n)\right\} \\ & T; \\ & \left\{Q: \ Z = z\right\} \end{aligned}
```

0 We decide that we need a **while**-program: we will try to reduce te size of the remaining rectangle by incrementing x or decrementing y iteratively.

We now rewrite the original specification to obtain:

```
 \begin{aligned} & \textbf{const} \ m, \ n, \ w : \ \mathbb{N}; \\ & \textbf{var} \ z : \ \mathbb{Z}; \\ & \{P : \ Z = F(0,n)\} \\ & T; \\ & \{Q : \ Z = z\} \end{aligned}
```

- 0 We decide that we need a **while**-program: we will try to reduce te size of the remaining rectangle by incrementing x or decrementing y iteratively.
- 1 We introduce the variables $x, y : \mathbb{Z}$ and the invariant and guard

$$J: Z = z + F(x, y)$$
$$B: x < m \land y > 0$$

We now rewrite the original specification to obtain:

```
 \begin{aligned} & \mathbf{const} \ m, \ n, \ w : \ \mathbb{N}; \\ & \mathbf{var} \ z : \ \mathbb{Z}; \\ & \left\{P : \ Z = F(0,n)\right\} \\ & T; \\ & \left\{Q : \ Z = z\right\} \end{aligned}
```

- 0 We decide that we need a **while**-program: we will try to reduce te size of the remaining rectangle by incrementing x or decrementing y iteratively.
- 1 We introduce the variables $x, y : \mathbb{Z}$ and the invariant and guard

$$J: Z = z + F(x, y)$$

 $B: x < m \land y > 0$

```
\begin{array}{l} J \wedge \neg B \\ \equiv \quad \{ \text{ definition } J \text{ and } B \, \} \\ Z = z + F(x,y) \wedge \neg (x < m \wedge y > 0) \\ \equiv \quad \{ \text{ Logic; De Morgan } \} \\ Z = z + F(x,y) \wedge (m \leq x \vee y \leq 0) \\ \Rightarrow \quad \{ \text{ base case recurrence: } F(x,y) = 0 \, \} \\ Q : Z = z \end{array}
```


2 Initialization: We start with (x, y) in the North-West corner:

2 Initialization: We start with (x, y) in the North-West corner:

```
\{P:\ Z=F(0,n)\}
(*\ calculus\ *)
\{Z=0+F(0,n)\}
z:=0;\ x:=0;\ y:=n;
\{J:\ Z=z+F(x,y)\}
```


2 Initialization: We start with (x, y) in the North-West corner:

```
\{P:\ Z=F(0,n)\}
("calculus")
\{Z=0+F(0,n)\}
z:=0;\ x:=0;\ y:=n;
\{J:\ Z=z+F(x,y)\}
```


3 Variant function: We shrink the rectangle in the South-Eastern direction, i.e. we increment x and decrement y.

2 Initialization: We start with (x, y) in the North-West corner:

```
\{P: \ Z = F(0,n)\}
(* \ calculus \ *)
\{Z = 0 + F(0,n)\}
z := 0; \ x := 0; \ y := n;
\{J: \ Z = z + F(x,y)\}
```


3 Variant function: We shrink the rectangle in the South-Eastern direction, i.e. we increment x and decrement y.

We choose $vf = y + m - x \in \mathbb{Z}$.

The guard is $x < m \land y > 0$, so clearly $J \land B \Rightarrow vf \geq 0$.

$${Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V}$$

$$\{Z=z+F(x,y) \ \land \ x < m \ \land \ y>0 \ \land \ y+m-x=V\}$$
 if $h(x,y-1) < w$ then

else

$$\{J \wedge vf < V\}$$

$$\{Z=z+F(x,y) \ \land \ x < m \ \land \ y>0 \ \land \ y+m-x=V\}$$
 if $h(x,y-1) < w$ then

$$z := ?$$

$$x := x + 1;$$

else

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$


```
 \{Z = z + F(x,y) \land \ x < m \ \land \ y > 0 \ \land \ y + m - x = V\}  if h(x,y-1) < w then  \{h(x,y-1) < w \ \land \ Z = z + F(x,y) \ \land \ x < m \ \land \ y > 0 \ \land \ y + m - x = V\}
```

$$x := x + 1$$
:

z := ?

else

$$\{h(x, y - 1) \ge w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}$$

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$

$$x := x + 1$$
:

else

$$\{h(x, y - 1) \ge w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}$$

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$


```
\{Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
if h(x, y-1) < w then
    \{h(x, y-1) < w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x,y): case x < m \land y > 0 \land h(x,y-1) < w*)
    {Z = z + y + F(x + 1, y) \land y + m - x = V}
  z := z + y;
    {Z = z + F(x + 1, y) \land y + m - x = V}
  x := x + 1:
```

else

$$\{h(x, y - 1) \ge w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}$$

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$

else

$$\{h(x, y - 1) \ge w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}$$

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$


```
\{Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
if h(x, y-1) < w then
    \{h(x, y-1) < w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x,y): case x < m \land y > 0 \land h(x,y-1) < w*)
    {Z = z + y + F(x + 1, y) \land y + m - x = V}
  z := z + y;
    {Z = z + F(x + 1, y) \land y + m - x = V}
     (* calculus; prepare x := x + 1 *)
    \{Z = z + F(x+1, y) \land y + m - (x+1) < V\}
  x := x + 1:
    \{Z = z + F(x, y) \land y + m - x < V\}
else
    \{h(x,y-1) \geq w \land Z = z + F(x,y) \land x < m \land y > 0 \land y + m - x = V\}
```

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$

 $\{J \wedge vf < V\}$


```
{Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V}
if h(x, y-1) < w then
    \{h(x, y-1) < w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x,y): case x < m \land y > 0 \land h(x,y-1) < w*)
    {Z = z + y + F(x + 1, y) \land y + m - x = V}
  z := z + y;
    {Z = z + F(x + 1, y) \land y + m - x = V}
     (* calculus; prepare x := x + 1 *)
    \{Z = z + F(x+1, y) \land y + m - (x+1) < V\}
  x := x + 1:
    \{Z = z + F(x, y) \land y + m - x < V\}
else
    \{h(x, y-1) > w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x,y): case y>0 \land h(x,y-1)>w*)
    \{Z = z + F(x, y - 1) \land y + m - x = V\}
  y := y - 1;
end
```



```
{Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V}
if h(x, y-1) < w then
    \{h(x, y-1) < w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x,y): case x < m \land y > 0 \land h(x,y-1) < w*)
    {Z = z + y + F(x + 1, y) \land y + m - x = V}
  z := z + u:
    {Z = z + F(x + 1, y) \land y + m - x = V}
     (* calculus; prepare x := x + 1 *)
    \{Z = z + F(x+1, y) \land y + m - (x+1) < V\}
  x := x + 1:
    \{Z = z + F(x, y) \land y + m - x < V\}
else
    \{h(x, y-1) > w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x,y): case y>0 \land h(x,y-1)>w*)
    \{Z = z + F(x, y - 1) \land y + m - x = V\}
      (* calculus: prepare y := y - 1 *)
    \{Z = z + F(x, y - 1) \land y - 1 + m - x < V\}
   y := y - 1;
```

end $\{J \wedge vf < V\}$


```
{Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V}
if h(x, y-1) < w then
    \{h(x, y-1) < w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x,y): case x < m \land y > 0 \land h(x,y-1) < w*)
    {Z = z + y + F(x + 1, y) \land y + m - x = V}
  z := z + y;
    \{Z = z + F(x+1, y) \land y + m - x = V\}
      (* calculus; prepare x := x + 1 *)
    \{Z = z + F(x+1, y) \land y + m - (x+1) < V\}
  x := x + 1:
    \{Z = z + F(x, y) \land y + m - x < V\}
else
    \{h(x, y-1) > w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x, y): case y > 0 \land h(x, y - 1) > w*)
    \{Z = z + F(x, y - 1) \land y + m - x = V\}
      (* calculus: prepare y := y - 1*)
    \{Z = z + F(x, y - 1) \land y - 1 + m - x < V\}
   y := y - 1;
    {Z = z + F(x, y) \land y + m - x < V}
end
  \{J \wedge vf < V\}
```



```
{Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V}
if h(x, y-1) < w then
    \{h(x, y-1) < w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
       (* logic; recurrence for F(x,y): case x < m \land y > 0 \land h(x,y-1) < w*)
    {Z = z + y + F(x + 1, y) \land y + m - x = V}
  z := z + y;
    \{Z = z + F(x+1, y) \land y + m - x = V\}
      (* calculus; prepare x := x + 1 *)
    \{Z = z + F(x+1, y) \land y + m - (x+1) < V\}
  x := x + 1:
    \{Z = z + F(x, y) \land y + m - x < V\}
else
    \{h(x, y-1) > w \land Z = z + F(x, y) \land x < m \land y > 0 \land y + m - x = V\}
      (* logic; recurrence for F(x, y): case y > 0 \land h(x, y - 1) > w*)
    \{Z = z + F(x, y - 1) \land y + m - x = V\}
      (* calculus; prepare y := y - 1 *)
    \{Z = z + F(x, y - 1) \land y - 1 + m - x < V\}
   y := y - 1;
    \{Z = z + F(x, y) \land y + m - x < V\}
end (* collect branches; definitions J and vf *)
  \{J \wedge vf < V\}
```

2D counting: Conclusion


```
const m, n, w : \mathbb{N};
var x, y, z : \mathbb{Z};
  \{P: Z = \#\{(i,j) \in [0..m) \times [0..n) \mid h(i,j) < w\} \}
z := 0;
x := 0:
u := n:
  \{J: \ Z = z + F(x,y)\}
   (*vf:y+m-x*)
while x < m \land y > 0 do
  if h(x, y - 1) < w then
    z := y + z;
    x := x + 1;
   else
    y := y - 1;
  end:
end:
  \{Q: z = Z\}
```

2D counting: Conclusion


```
const m, n, w : \mathbb{N};
var x, y, z : \mathbb{Z};
  \{P: Z = \#\{(i,j) \in [0..m) \times [0..n) \mid h(i,j) < w\} \}
z := 0;
x := 0:
u := n:
  \{J: \ Z = z + F(x,y)\}
   (*vf:y+m-x*)
while x < m \land y > 0 do
  if h(x, y - 1) < w then
    z := y + z;
    x := x + 1;
   else
     y := y - 1;
  end:
end:
  \{Q: z = Z\}
```

Note: Initially, vf = m + n, so the time complexity is O(m + n), more efficient than the $O(m \cdot n)$ algorithm.

Outline

Two-Dimensional Counting

The Problem

Two Ascending Arguments

The Contour Line

The Invarian

The Recurrence

The Roadmap

The Shrinking Area Method

Exercise 9.9: Two Ascending Arguments

Two Ascending Arguments

The Roadmap

Exercise 9.4: Decreasing & Ascending

Decreasing & Ascending

The Roadmap

The Shrinking Area Method

- For counting, we use the invariant J: Z = z + F(x, y). (A variation is needed for, e.g., minimization problems).
- ▶ Given a function h(x, y), the method depends on the monotonicty properties of h with respect to x and y.
- ▶ In turn, such properties define the contour line and its slope.
- ▶ The area F(x, y) (and the way it is iteratively reduced) depends on this slope (and on the spec of the command).
- A recurrence relation for F(x, y) must be determined. The side conditions of the recurrence capture the area we want to cover; they usually guide the conditionals in the command.
- The spec for counting may include a constraint on points (i, j). Such a constraint determines a section of the area; it typically appears as the guard of the loop.

We now explore variations of the method.

Different Functions and Contour Line

Our previous example, a function with two ascending parameters.

The slope of the contour line: \searrow

Example, with w = 20:

7	13	14	25	25	27	29	29	32	33
6	11	12	23	24	25	27	29	32	32
6	9	12	22	22	23	27	29	30	30
6	9	10	20	20	23	25	25	27	28
6	9	10	18	20	21	21	23	25	25
6	7	10	16	16	19	21	22	23	23
5	5	8	14	15	17	19	21	21	23
5	5	6	12	12	15	16	17	18	19
5	5	6	10	12	14	15	16	17	19
3	5	6	8	9	9	9	10	11	13

(0,0)

Different Functions & Contour Line (1/2)

Suppose a function $h: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ that is descending on x and ascending on y:

$$egin{aligned} x_0 & \leq x_1 \Rightarrow h(x_0,y) \geq h(x_1,y) \ y_0 & \leq y_1 \Rightarrow h(x,y_0) \leq h(x,y_1) \end{aligned}$$

In this case, the slope is not \searrow but \nearrow .

Example, with w = 7:

20	19	16	15	14	12	10
18	17	12	11	10	9	8
15	12	10	9	8	7	4
13	12	8	8	7	6	3
11	10	8	7	6	5	2
10	9	8	7	5	3	1

(0,0)

Different Functions & Contour Line (2/2)

Now suppose a function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ that is increasing in x and descending in y:

$$egin{aligned} x_0 < x_1 & \Rightarrow g(x_0, y) < g(x_1, y) \ y_0 < y_1 & \Rightarrow g(x, y_0) > g(x, y_1) \end{aligned}$$

In this case, the slope is
$$\nearrow$$
.

Example, with w = 13:

5	6	7	8	9	10	11
7	8	9	10	11	13	16
8	9	10	11	13	15	19
9	10	11	12	16	17	19
10	11	12	13	16	19	20
10	13	14	15	17	20	26

(0,0)

Outline

Two-Dimensional Counting

The Problem

Two Ascending Arguments

The Contour Line

The Invarian

The Recurrence

The Roadmap

The Shrinking Area Method

Exercise 9.9: Two Ascending Arguments
Two Ascending Arguments
The Roadmap

Exercise 9.4: Decreasing & Ascending Decreasing & Ascending The Roadmap

Let $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a two-dimensional function that is ascending (\leq / \leq) in both x and y:

$$x_0 \leq x_1 \Rightarrow h(x_0, y) \leq h(x_1, y)$$

 $y_0 \leq y_1 \Rightarrow h(x, y_0) \leq h(x, y_1)$

Let $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a two-dimensional function that is ascending (\leq / \leq) in both x and y:

$$x_0 \leq x_1 \Rightarrow h(x_0, y) \leq h(x_1, y)$$

 $y_0 \leq y_1 \Rightarrow h(x, y_0) \leq h(x, y_1)$

We want to find a command T that satisfies the specification:

```
\begin{array}{l} \textbf{const} \ m, \ n: \ \mathbb{N}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z = \#\{i \mid 0 \leq i < m \ \land \ (\exists j: 0 \leq j < n \ \land \ h(i,j) = 0)\} \ \} \\ T; \\ \{Q: \ Z = z\} \end{array}
```



```
\begin{array}{l} \textbf{const} \ m, \ n: \ \mathbb{N}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z = \#\{i \mid 0 \leq i < m \ \land \ (\exists j: 0 \leq j < n \ \land \ h(i,j) = 0)\} \ \} \\ T; \\ \{Q: \ Z = z\} \end{array}
```

Example:

-8	-2	-1	10	10	12	14	14	17	18
-9	-4	-3	8	9	10	12	14	17	17
-9	-6	-3	7	7	8	12	14	15	15
-9	-6	-5	5	5	8	10	10	12	13
-9	-6	-5	3	5	6	6	8	10	10
-9	-8	-5	1	0	4	6	7	8	8
-10	-10	-7	-1	0	0	4	6	6	8
-10	-10	-9	-3	-3	0	1	2	3	4
-10	-10	-9	-5	-3	0	0	1	2	4
-12	-10	-9	-7	-6	-6	-6	-5	-4	-2

$$\#\{i \mid 0 \le i < m \land (\exists j : 0 \le j < n \land h(i,j) = 0)\} =$$


```
\begin{array}{l} \textbf{const} \ m, \ n: \ \mathbb{N}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z = \#\{i \mid 0 \leq i < m \ \land \ (\exists j: 0 \leq j < n \ \land \ h(i,j) = 0)\} \ \} \\ T; \\ \{Q: \ Z = z\} \end{array}
```

Example:

-8	-2	-1	10	10	12	14	14	17	18
-9	-4	-3	8	9	10	12	14	17	17
-9	-6	-3	7	7	8	12	14	15	15
-9	-6	-5	5	5	8	10	10	12	13
-9	-6	-5	3	5	6	6	8	10	10
-9	-8	-5	1	0	4	6	7	8	8
-10	-10	-7	-1	0	0	4	6	6	8
-10	-10	-9	-3	-3	0	1	2	3	4
-10	-10	-9	-5	-3	0	0	1	2	4
-12	-10	-9	-7	-6	-6	-6	-5	-4	-2

$$\#\{i \mid 0 \le i < m \land (\exists j : 0 \le j < n \land h(i,j) = 0)\} = 3$$

We stick to J: Z = z + F(x, y), and solve the problem by following the contour line. We now move from SE to NW.

Intuitively:

► At the beginning:

$$Z=F(m,0).$$

We stick to J: Z = z + F(x, y), and solve the problem by following the contour line. We now move from SE to NW.

Intuitively:

- At the beginning: Z = F(m, 0).
- ▶ In the middle, reduce the rectangle: decrease x / increase y.

We stick to J: Z = z + F(x, y), and solve the problem by following the contour line. We now move from SE to NW.

Intuitively:

- At the beginning: Z = F(m, 0).
- ► In the middle, reduce the rectangle: decrease x / increase y.
- At the end: Z = z and F(0, n) = 0.

We stick to J: Z = z + F(x, y), and solve the problem by following the contour line. We now move from SE to NW.

Intuitively:

- At the beginning: Z = F(m, 0).
- ▶ In the middle, reduce the rectangle: decrease x / increase y.
- At the end: Z = z and F(0, n) = 0.

We define:

$$F(x,y) = \#\{i \mid 0 \le i < x \land (\exists j : y \le j < n \land h(i,j) = 0)\}$$

Comparison

Section 9.2:

From F(0, n) to F(m, 0) by incrementing x / decrementing y.

Exercise 9.9:

From F(m,0) to F(0,n) by decrementing x / incrementing y.

We try to find a recurrence relation for

$$F(x,y) = \#\{i \mid 0 \le i < x \land (\exists j : y \le j < n \land h(i,j) = 0)\}$$

We try to find a recurrence relation for

$$F(x,y) = \#\{i \mid 0 \le i < x \land (\exists j : y \le j < n \land h(i,j) = 0)\}$$

Relevant side conditions:

- $\rightarrow x > 0 \text{ (and } x \leq 0)$
- $ightharpoonup y < n \ (and \ n \le y)$
- ▶ $h(x-1, y) \ge 0$ (and h(x-1, y) < 0)

We try to find a recurrence relation for

$$F(x,y) = \#\{i \mid 0 \le i < x \land (\exists j : y \le j < n \land h(i,j) = 0)\}$$

Relevant side conditions:

- $\rightarrow x > 0 \text{ (and } x < 0)$
- $ightharpoonup y < n \ (and \ n \le y)$
- $h(x-1,y) \ge 0$ (and h(x-1,y) < 0)

We start with the base case. It is easy to see that (since $\#\emptyset = 0$):

$$x \leq 0 \lor n \leq y \Rightarrow F(x,y) = 0$$

We reduce the rectangle by decrementing \boldsymbol{x} or incrementing \boldsymbol{y} .

We reduce the rectangle by decrementing x or incrementing y. First we investigate what happens if we decrement x.

We reduce the rectangle by decrementing x or incrementing y. First we investigate what happens if we decrement x.

$$\begin{array}{l} F(x,y) \\ = & \{ \text{ definition } F \} \\ \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \end{array}$$

We reduce the rectangle by decrementing x or incrementing y. First we investigate what happens if we decrement x.

```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \} \end{array}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \\ & \# \{ i \mid 0 \leq i < x - 1 \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ & + \end{array}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \ \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \ \} \\ & \# \{ i \mid 0 \leq i < x - 1 \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ & + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \end{array}
```



```
\begin{array}{l} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \\ & \# \{ i \mid 0 \leq i < x - 1 \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ & + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ \text{ definition } F \, \} \\ & F(x - 1, y) + \text{ ord}((\exists j : y < j < n \wedge h(x - 1,j) = 0)) \end{array}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \\ & \# \{ i \mid 0 \leq i < x - 1 \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ & + \text{ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ \text{ definition } F \, \} \\ & F(x - 1, y) + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ h(x - 1, j) \text{ is ascending in } j \text{ so } h(x - 1, y) \text{ is} \\ \end{array}
```



```
\begin{array}{l} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \\ \# \{ i \mid 0 \leq i < x - 1 \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ \text{ definition } F \, \} \\ F(x - 1, y) + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ h(x - 1, j) \text{ is ascending in } j \text{ so } h(x - 1, y) \text{ is } \frac{\text{minimal}}{\text{minimal}}; \\ & \text{assume } h(x - 1, y) \geq 0, \end{array}
```



```
\begin{array}{l} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \\ \# \{ i \mid 0 \leq i < x - 1 \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ \text{ definition } F \, \} \\ F(x - 1, y) + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ h(x - 1, j) \text{ is ascending in } j \text{ so } h(x - 1, y) \text{ is } \frac{\text{minimal}}{\text{minimal}}; \\ & \text{ assume } h(x - 1, y) \geq 0, \text{ so } h(x - 1, j) \geq 0 \text{ for all } y \leq j < n; \end{array}
```



```
\begin{array}{l} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \\ \# \{ i \mid 0 \leq i < x - 1 \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ \text{ definition } F \, \} \\ F(x - 1, y) + \text{ ord}((\exists j : y \leq j < n \wedge h(x - 1,j) = 0)) \\ = & \{ h(x - 1, j) \text{ is ascending in } j \text{ so } h(x - 1, y) \text{ is minimal;} \\ & \text{ assume } h(x - 1, y) \geq 0, \text{ so } h(x - 1, j) \geq 0 \text{ for all } y \leq j < n; \\ \text{ so} \end{array}
```



```
F(x,y)
= \{ definition F \}
  \#\{i \mid 0 < i < x \land (\exists j : y < j < n \land h(i, j) = 0)\}\
= \{ assume \ x > 0; so \ 0 < i < x \equiv (0 < i < x - 1 \lor i = x - 1) \}
  \#\{i \mid 0 < i < x - 1 \land (\exists j : y < j < n \land h(i, j) = 0)\}\
  + \operatorname{ord}((\exists i : u < i < n \land h(x-1, i) = 0))
= \{ definition F \}
  F(x-1, y) + \operatorname{ord}((\exists j : y < j < n \land h(x-1, j) = 0))
= { h(x-1, j) is ascending in j so h(x-1, y) is minimal;
       assume h(x-1, y) > 0, so h(x-1, j) > 0 for all y < j < n;
       so (\exists j : y < j < n \land h(x-1,j) = 0) \equiv
```



```
F(x,y)
= \{ definition F \}
  \#\{i \mid 0 < i < x \land (\exists j : y < j < n \land h(i, j) = 0)\}\
= \{ assume \ x > 0 : so \ 0 < i < x \equiv (0 < i < x - 1 \lor i = x - 1) \}
  \#\{i \mid 0 < i < x - 1 \land (\exists j : y < j < n \land h(i, j) = 0)\}\
  + \operatorname{ord}((\exists i : u < i < n \land h(x-1, i) = 0))
= \{ definition F \}
  F(x-1, y) + \operatorname{ord}((\exists j : y < j < n \land h(x-1, j) = 0))
= { h(x-1, j) is ascending in j so h(x-1, y) is minimal;
       assume h(x-1, y) > 0, so h(x-1, j) > 0 for all y < j < n;
       so (\exists j : y < j < n \land h(x-1,j) = 0) \equiv (h(x-1,y) = 0) }
  F(x-1, y) + \operatorname{ord}(h(x-1, y) = 0)
```


We reduce the rectangle by decrementing x or incrementing y. First we investigate what happens if we decrement x.

```
F(x,y)
= \{ definition F \}
  \#\{i \mid 0 < i < x \land (\exists j : y < j < n \land h(i, j) = 0)\}\
= \{ assume \ x > 0; so \ 0 < i < x \equiv (0 < i < x - 1 \lor i = x - 1) \}
  \#\{i \mid 0 < i < x - 1 \land (\exists j : y < j < n \land h(i, j) = 0)\}\
  + \operatorname{ord}((\exists i : u < i < n \land h(x-1, i) = 0))
= \{ definition F \}
  F(x-1, y) + \operatorname{ord}((\exists j : y < j < n \land h(x-1, j) = 0))
= { h(x-1, j) is ascending in j so h(x-1, y) is minimal;
       assume h(x-1, y) > 0, so h(x-1, j) > 0 for all y < j < n;
       so (\exists j : y < j < n \land h(x-1,j) = 0) \equiv (h(x-1,y) = 0) }
  F(x-1, y) + \operatorname{ord}(h(x-1, y) = 0)
```

This derivation proves:

$$x>0 \land h(x-1,y)\geq 0 \Rightarrow F(x,y)=F(x-1,y)+\mathsf{ord}(h(x-1,y)=0)$$


```
F(x,y) = \{ \text{ definition } F \} \\ \#\{i \mid 0 \leq i < x \land (\exists j: y \leq j < n \land h(i,j) = 0) \}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \} \\ \# \{ i \mid 0 \leq i < x \wedge (\exists j: y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \vee j = y) \ \} \end{array}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \vee j = y) \} \\ & \# \{ i \mid 0 \leq i < x \wedge (h(i,y) = 0 \vee (\exists j : y+1 \leq j < n \wedge h(i,j) = 0)) \} \end{array}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \vee j = y) \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (h(i,y) = 0 \vee (\exists j : y+1 \leq j < n \wedge h(i,j) = 0)) \} \\ = & \{ \text{ assume } x > 0; \end{array}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \vee j = y) \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (h(i,y) = 0 \vee (\exists j : y+1 \leq j < n \wedge h(i,j) = 0)) \} \\ = & \{ \text{ assume } x > 0; \, h(i,y) \text{ is ascending in } i \text{ so} \end{array}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \vee j = y) \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (h(i,y) = 0 \vee (\exists j : y+1 \leq j < n \wedge h(i,j) = 0)) \} \\ = & \{ \text{ assume } x > 0; \, h(i,y) \text{ is ascending in } i \text{ so } h(x-1,y) \text{ is } \underset{\text{assume}}{\text{maximal}}; \\ & \text{ assume} \end{array}
```



```
F(x,y) = \{ \text{ definition } F \} \\ \# \{ i \mid 0 \leq i < x \land (\exists j : y \leq j < n \land h(i,j) = 0) \} \\ = \{ \text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \lor j = y) \} \\ \# \{ i \mid 0 \leq i < x \land (h(i,y) = 0 \lor (\exists j : y+1 \leq j < n \land h(i,j) = 0)) \} \\ = \{ \text{ assume } x > 0; h(i,y) \text{ is ascending in } i \text{ so } h(x-1,y) \text{ is } \underset{\text{assume }}{\text{maximal}}; \\ \text{assume } h(x-1,y) < 0, \text{ so} \}
```



```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \vee j = y) \, \} \\ & \# \{ i \mid 0 \leq i < x \wedge (h(i,y) = 0 \vee (\exists j : y+1 \leq j < n \wedge h(i,j) = 0)) \} \\ = & \{ \text{ assume } x > 0; h(i,y) \text{ is ascending in } i \text{ so } h(x-1,y) \text{ is } \underset{}{\text{maximal}}; \\ & \text{ assume } h(x-1,y) < 0, \text{ so } h(i,y) < 0 \text{ for all } 0 \leq i < x \, \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ \# \{ i \mid 0 \leq i < x \wedge (\exists j : y \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \vee j = y) \, \} \\ \# \{ i \mid 0 \leq i < x \wedge (h(i,y) = 0 \vee (\exists j : y+1 \leq j < n \wedge h(i,j) = 0)) \} \\ = & \{ \text{ assume } x > 0; h(i,y) \text{ is ascending in } i \text{ so } h(x-1,y) \text{ is } \underset{\text{assume }}{\text{maximal}}; \\ \text{ assume } h(x-1,y) < 0, \text{ so } h(i,y) < 0 \text{ for all } 0 \leq i < x \, \} \\ \# \{ i \mid 0 \leq i < x \wedge (\exists j : y+1 \leq j < n \wedge h(i,j) = 0) \} \\ = & \{ \text{ definition } F \, \} \\ F(x,y+1) \end{array}
```


Next we investigate what happens if we increment y:

```
\begin{split} &F(x,y)\\ &= \{\text{ definition } F \}\\ &\#\{i \mid 0 \leq i < x \land (\exists j : y \leq j < n \land h(i,j) = 0)\}\\ &= \{\text{ assume } y < n; \text{ so } y \leq j < n \equiv (y+1 \leq j < n \lor j = y) \}\\ &\#\{i \mid 0 \leq i < x \land (h(i,y) = 0 \lor (\exists j : y+1 \leq j < n \land h(i,j) = 0))\}\\ &= \{\text{ assume } x > 0; h(i,y) \text{ is ascending in } i \text{ so } h(x-1,y) \text{ is maximal};\\ &\text{ assume } h(x-1,y) < 0, \text{ so } h(i,y) < 0 \text{ for all } 0 \leq i < x \}\\ &\#\{i \mid 0 \leq i < x \land (\exists j : y+1 \leq j < n \land h(i,j) = 0)\}\\ &= \{\text{ definition } F \}\\ &F(x,y+1) \end{split}
```

This derivation proves:

$$x > 0 \land y < n \land h(x-1,y) < 0 \Rightarrow F(x,y) = F(x,y+1)$$

Given

$$F(x,y) = \#\{i \mid 0 \le i < x \land (\exists j : y \le j < n \land h(i,j) = 0)\}$$

we obtained the following recursive equations:

$$egin{array}{lll} x \leq 0 ee n \leq y & \Rightarrow & F(x,y) = 0 \ x > 0 \wedge h(x-1,y) \geq 0 & \Rightarrow & F(x,y) = b + F(x-1,y) \ x > 0 \wedge y < n \wedge h(x-1,y) < 0 & \Rightarrow & F(x,y) = F(x,y+1) \end{array}$$

where b = ord(h(x - 1, y) = 0).


```
\mathbf{const}\ m,\ n:\ \mathbb{N}; \mathbf{var}\ z:\ \mathbb{Z}; \{P:\ Z=F(
```



```
\begin{array}{l} \textbf{const} \ m, \ n : \ \mathbb{N}; \\ \textbf{var} \ z : \ \mathbb{Z}; \\ \{P : \ Z = F(m,0)\} \\ T; \\ \{Q : \ Z = z\} \end{array}
```

0 We need a **while**-program to iteratively reduce the rectangle by decrementing x or incrementing y.


```
\begin{array}{l} \textbf{const} \ m, \ n: \ \mathbb{N}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z = F(m,0)\} \\ T; \\ \{Q: \ Z = z\} \end{array}
```

- 0 We need a **while**-program to iteratively reduce the rectangle by decrementing x or incrementing y.
- 1 We introduce the variables $x, y : \mathbb{Z}$ and the invariant and guard

$$egin{aligned} J: \ Z &= z + F(x,y) \ B: \ x > 0 \wedge y < n \end{aligned}$$


```
 \begin{aligned} & \textbf{const} \ m, \ n : \ \mathbb{N}; \\ & \textbf{var} \ z : \ \mathbb{Z}; \\ & \left\{P : \ Z = F(m,0)\right\} \\ & T; \\ & \left\{Q : \ Z = z\right\} \end{aligned}
```

- 0 We need a **while**-program to iteratively reduce the rectangle by decrementing x or incrementing y.
- 1 We introduce the variables $x, y : \mathbb{Z}$ and the invariant and guard

$$J: Z = z + F(x, y)$$

 $B: x > 0 \land y < n$

$$\begin{array}{l} J \wedge \neg B \\ \equiv \quad \{ \text{ definition } J \text{ and } B \ \} \\ Z = z + F(x,y) \wedge \neg (x > 0 \wedge y < n) \end{array}$$


```
 \begin{aligned} & \textbf{const} \ m, \ n : \ \mathbb{N}; \\ & \textbf{var} \ z : \ \mathbb{Z}; \\ & \left\{P : \ Z = F(m,0)\right\} \\ & T; \\ & \left\{Q : \ Z = z\right\} \end{aligned}
```

- 0 We need a **while**-program to iteratively reduce the rectangle by decrementing x or incrementing y.
- 1 We introduce the variables $x, y : \mathbb{Z}$ and the invariant and guard

$$egin{aligned} J: & Z = z + F(x,y) \ B: & x > 0 \land y < n \end{aligned}$$

```
 \begin{array}{l} J \wedge \neg B \\ \equiv \quad \{ \text{ definition } J \text{ and } B \, \} \\ Z = z + F(x,y) \wedge \neg (x>0 \wedge y < n) \\ \equiv \quad \{ \text{ Logic; De Morgan } \} \\ Z = z + F(x,y) \wedge (x \leq 0 \vee y \geq n) \end{array}
```



```
 \begin{aligned} & \textbf{const} \ m, \ n: \ \mathbb{N}; \\ & \textbf{var} \ z: \ \mathbb{Z}; \\ & \left\{P: \ Z = F(m,0)\right\} \\ & T; \\ & \left\{Q: \ Z = z\right\} \end{aligned}
```

- 0 We need a **while**-program to iteratively reduce the rectangle by decrementing x or incrementing y.
- 1 We introduce the variables $x, y : \mathbb{Z}$ and the invariant and guard

$$egin{aligned} J: & Z = z + F(x,y) \ B: & x > 0 \land y < n \end{aligned}$$

```
\begin{array}{l} J \wedge \neg B \\ \equiv \quad \{ \text{ definition } J \text{ and } B \, \} \\ Z = z + F(x,y) \wedge \neg (x>0 \wedge y < n) \\ \equiv \quad \{ \text{ Logic; De Morgan } \} \\ Z = z + F(x,y) \wedge (x \leq 0 \vee y \geq n) \\ \Rightarrow \quad \{ \text{ base case recurrence; } F(x,y) = 0 \, \} \\ Q : Z = z \end{array}
```


2 Initialization: Remember that we start with (x, y) in the South-East corner of the grid.

```
\{P: Z = F(m,0)\}
(* calculus *)
\{Z = 0 + F(m,0)\}
z := 0; x := m; y := 0;
\{J: Z = z + F(x,y)\}
```


2 Initialization: Remember that we start with (x, y) in the South-East corner of the grid.

```
\{P:\ Z=F(m,0)\}
(*\ calculus\ *)
\{Z=0+F(m,0)\}
z:=0;\ x:=m;\ y:=0;
\{J:\ Z=z+F(x,y)\}
```

3 Variant function:

We shrink the rectangle in North-Western direction, i.e. we decrement x and increment y.

2 Initialization: Remember that we start with (x, y) in the South-East corner of the grid.

```
\{P: Z = F(m,0)\}
(* calculus *)
\{Z = 0 + F(m,0)\}
z := 0; x := m; y := 0;
\{J: Z = z + F(x,y)\}
```

3 Variant function:

We shrink the rectangle in North-Western direction, i.e. we decrement x and increment y.

We choose $vf = x + n - y \in \mathbb{Z}$.

2 Initialization: Remember that we start with (x, y) in the South-East corner of the grid.

```
\{P: \ Z = F(m,0)\}
(* \ calculus \ *)
\{Z = 0 + F(m,0)\}
z := 0; \ x := m; \ y := 0;
\{J: \ Z = z + F(x,y)\}
```

3 Variant function:

We shrink the rectangle in North-Western direction, i.e. we decrement x and increment y.

We choose $vf = x + n - y \in \mathbb{Z}$.

The guard is $x > 0 \land y < n$, so clearly $J \land B \Rightarrow vf \geq 0$.

$$\{Z = z + F(x, y) \land x > 0 \land y < n \land x + n - y = V\}$$

$$\{Z = z + F(x, y) \land x > 0 \land y < n \land x + n - y = V\}$$
 if $h(x - 1, y) > 0$ then

$$z := z + \operatorname{ord}(h(x - 1, y) = 0);$$

$$x := x - 1;$$

else

$$y := y + 1;$$

end

$$\{J \wedge vf < V\}$$

$$\{Z=z+F(x,y)\land x>0\land y< n\land x+n-y=V\}$$
 if $h(x-1,y)\geq 0$ then $\{h(x-1,y)\geq 0\land Z=z+F(x,y)\land x>0\land y< n\land x+n-y=V\}$

$$z := z + \operatorname{ord}(h(x - 1, y) = 0);$$

$$x:=x-1;$$

else

$$y := y + 1;$$

end

$$\{J \wedge vf < V\}$$


```
 \begin{cases} Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V \rbrace \\ \textbf{if } h(x-1,y) \geq 0 \textbf{ then} \\ \{h(x-1,y) \geq 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V \rbrace \\ \text{ (* logic; recurrence for } F(x,y) \text{; case } x > 0 \land h(x-1,y) \geq 0 \text{ *)} \\ \{Z = z + \operatorname{ord}(h(x-1,y) = 0) + F(x-1,y) \land x + n - y = V \rbrace \\ z := z + \operatorname{ord}(h(x-1,y) = 0); \end{cases}
```

```
x := x - 1;
```

else

$$y := y + 1;$$

end

$$\{J \wedge vf < V\}$$


```
 \left\{ Z = z + F(x,y) \wedge x > 0 \wedge y < n \wedge x + n - y = V \right\}  if h(x-1,y) \geq 0 then  \left\{ h(x-1,y) \geq 0 \wedge Z = z + F(x,y) \wedge x > 0 \wedge y < n \wedge x + n - y = V \right\}  (* logic; recurrence for F(x,y); case x > 0 \wedge h(x-1,y) \geq 0 *)  \left\{ Z = z + \operatorname{ord}(h(x-1,y) = 0) + F(x-1,y) \wedge x + n - y = V \right\}  z := z + \operatorname{ord}(h(x-1,y) = 0);  \left\{ Z = z + F(x-1,y) \wedge x + n - y = V \right\}  x := x-1;
```

else

$$y := y + 1;$$

$$\{J \wedge vf < V\}$$


```
 \begin{cases} Z = z + F(x,y) \wedge x > 0 \wedge y < n \wedge x + n - y = V \rbrace \\ \textbf{if } h(x-1,y) \geq 0 \textbf{ then} \\ \{h(x-1,y) \geq 0 \wedge Z = z + F(x,y) \wedge x > 0 \wedge y < n \wedge x + n - y = V \rbrace \\ \text{ (* logic; recurrence for } F(x,y) \textbf{; } case \ x > 0 \wedge h(x-1,y) \geq 0 \ *) \\ \{Z = z + \operatorname{ord}(h(x-1,y) = 0) + F(x-1,y) \wedge x + n - y = V \rbrace \\ z := z + \operatorname{ord}(h(x-1,y) = 0) \textbf{;} \\ \{Z = z + F(x-1,y) \wedge x + n - y = V \rbrace \\ \text{ (* calculus; prepare } x := x-1 \ *) \\ \{Z = z + F(x-1,y) \wedge x - 1 + n - y < V \rbrace \\ x := x-1 \textbf{;} \end{cases}
```

else

$$y := y + 1;$$

$$\{J \wedge vf < V\}$$


```
\{Z = z + F(x, y) \land x > 0 \land y < n \land x + n - y = V\}
if h(x-1,y) > 0 then
     \{h(x-1,y) \ge 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
      (* logic: recurrence for F(x, y): case x > 0 \land h(x - 1, y) > 0 *)
     \{Z = z + \operatorname{ord}(h(x-1, y) = 0) + F(x-1, y) \land x + n - y = V\}
  z := z + \operatorname{ord}(h(x-1, y) = 0):
     \{Z = z + F(x-1, y) \land x + n - y = V\}
      (* calculus; prepare x := x - 1 *)
     \{Z = z + F(x-1, y) \land x - 1 + n - y < V\}
  x := x - 1:
     \{Z = z + F(x, y) \land x + n - y < V\}
else
```

$$y := y + 1$$
:

$$\{J \wedge vf < V\}$$


```
\{Z = z + F(x, y) \land x > 0 \land y < n \land x + n - y = V\}
if h(x-1,y) > 0 then
     \{h(x-1,y) \ge 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
      (* logic: recurrence for F(x, y): case x > 0 \land h(x - 1, y) > 0*)
     \{Z = z + \operatorname{ord}(h(x-1, y) = 0) + F(x-1, y) \land x + n - y = V\}
  z := z + \operatorname{ord}(h(x-1, y) = 0);
     \{Z = z + F(x-1, y) \land x + n - y = V\}
      (* calculus; prepare x := x - 1 *)
     \{Z = z + F(x-1, y) \land x - 1 + n - y < V\}
  x := x - 1:
     \{Z = z + F(x, y) \land x + n - y < V\}
else
     \{h(x-1,y) < 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
```

$$y := y + 1;$$

$$\{J \wedge vf < V\}$$


```
\{Z = z + F(x, y) \land x > 0 \land y < n \land x + n - y = V\}
if h(x-1,y) > 0 then
     \{h(x-1,y) \ge 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
      (* logic; recurrence for F(x, y); case x > 0 \land h(x - 1, y) > 0*)
     \{Z = z + \operatorname{ord}(h(x-1, y) = 0) + F(x-1, y) \land x + n - y = V\}
  z := z + \operatorname{ord}(h(x-1, y) = 0);
     \{Z = z + F(x-1, y) \land x + n - y = V\}
      (* calculus; prepare x := x - 1 *)
     \{Z = z + F(x-1, y) \land x - 1 + n - y < V\}
  x := x - 1:
     \{Z = z + F(x, y) \land x + n - y < V\}
else
     \{h(x-1,y) < 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
      (* logic; recurrence for F(x, y); case x > 0 \land y < n \land h(x - 1, y) < 0*)
     {Z = z + F(x, y + 1) \land x + n - y = V}
```

$$y:=y+1;$$

$$\{J \wedge vf < V\}$$


```
\{Z = z + F(x, y) \land x > 0 \land y < n \land x + n - y = V\}
if h(x-1,y) > 0 then
     \{h(x-1,y) \ge 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
      (* logic; recurrence for F(x, y); case x > 0 \land h(x - 1, y) > 0*)
     \{Z = z + \operatorname{ord}(h(x-1, y) = 0) + F(x-1, y) \land x + n - y = V\}
  z := z + \operatorname{ord}(h(x-1, y) = 0);
     \{Z = z + F(x-1, y) \land x + n - y = V\}
      (* calculus; prepare x := x - 1 *)
     \{Z = z + F(x-1, y) \land x - 1 + n - y < V\}
  x := x - 1:
    \{Z = z + F(x, y) \land x + n - y < V\}
else
     \{h(x-1,y) < 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y < n \land h(x - 1, y) < 0*)
     {Z = z + F(x, y + 1) \land x + n - y = V}
       (* calculus: prepare y := y + 1 *)
     \{Z = z + F(x, y + 1) \land x + n - (y + 1) < V\}
  y := y + 1;
```

end $\{J \wedge vf < V\}$

 $\{J \wedge vf < V\}$


```
\{Z = z + F(x, y) \land x > 0 \land y < n \land x + n - y = V\}
if h(x-1,y) > 0 then
     \{h(x-1,y) \ge 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
      (* logic; recurrence for F(x, y); case x > 0 \land h(x - 1, y) > 0*)
     \{Z = z + \operatorname{ord}(h(x-1, y) = 0) + F(x-1, y) \land x + n - y = V\}
  z := z + \operatorname{ord}(h(x-1, y) = 0);
     \{Z = z + F(x-1, y) \land x + n - y = V\}
      (* calculus; prepare x := x - 1 *)
     \{Z = z + F(x-1, y) \land x - 1 + n - y < V\}
  x := x - 1:
    \{Z = z + F(x, y) \land x + n - y < V\}
else
     \{h(x-1,y) < 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y < n \land h(x - 1, y) < 0*)
     {Z = z + F(x, y + 1) \land x + n - y = V}
       (* calculus: prepare y := y + 1 *)
     \{Z = z + F(x, y + 1) \land x + n - (y + 1) < V\}
  y := y + 1;
     \{Z = z + F(x, y) \land x + n - y < V\}
end
```



```
\{Z = z + F(x, y) \land x > 0 \land y < n \land x + n - y = V\}
if h(x-1,y) > 0 then
     \{h(x-1,y) \ge 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
      (* logic; recurrence for F(x, y); case x > 0 \land h(x - 1, y) > 0*)
     \{Z = z + \operatorname{ord}(h(x-1, y) = 0) + F(x-1, y) \land x + n - y = V\}
  z := z + \operatorname{ord}(h(x-1, y) = 0);
     \{Z = z + F(x-1, y) \land x + n - y = V\}
      (* calculus; prepare x := x - 1 *)
     \{Z = z + F(x-1, y) \land x - 1 + n - y < V\}
  x := x - 1:
    \{Z = z + F(x, y) \land x + n - y < V\}
else
     \{h(x-1,y) < 0 \land Z = z + F(x,y) \land x > 0 \land y < n \land x + n - y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y < n \land h(x - 1, y) < 0*)
     {Z = z + F(x, y + 1) \land x + n - y = V}
       (* calculus: prepare y := y + 1 *)
     \{Z = z + F(x, y + 1) \land x + n - (y + 1) < V\}
  y := y + 1;
     \{Z = z + F(x, y) \land x + n - y < V\}
end (* collect branches; definitions J and vf *)
  \{J \wedge vf < V\}
```



```
const m, n : \mathbb{N}:
var x, y, z : \mathbb{Z};
  \{P: Z = \#\{i \mid 0 \le i < m \land (\exists j: 0 \le j < n \land h(i,j) = 0)\}\}
z := 0;
x := m:
y := 0:
  \{J: Z = z + \#\{i \mid 0 \le i \le x \land (\exists j: y \le j \le n \land h(i, j) = 0)\} \}
    (* vf : x + n - v *)
while x > 0 \land y < n do
  if h(x-1,y) > 0 then
     z := z + \operatorname{ord}(h(x-1, y) = 0);
     x := x - 1:
   else
     y := y + 1;
  end:
end:
   \{Q: z = Z\}
```



```
const m, n : \mathbb{N}:
var x, y, z \in \mathbb{Z};
  \{P: Z = \#\{i \mid 0 \le i < m \land (\exists j: 0 \le j < n \land h(i,j) = 0)\}\}
z := 0;
x := m:
y := 0:
  \{J: Z = z + \#\{i \mid 0 \le i \le x \land (\exists j: y \le j \le n \land h(i, j) = 0)\} \}
    (* vf : x + n - v *)
while x > 0 \land y < n do
  if h(x-1,y) > 0 then
     z := z + \operatorname{ord}(h(x-1, y) = 0);
     x := x - 1:
   else
     y := y + 1;
  end:
end:
   \{Q: z = Z\}
```

Note: As before, the algorithm has time complexity O(m + n).

Outline

Two-Dimensional Counting

The Problem

Two Ascending Arguments

The Contour Line

The Invarian

The Recurrence

The Roadmap

The Shrinking Area Method

Exercise 9.9: Two Ascending Arguments

Two Ascending Arguments

The Roadmap

Exercise 9.4: Decreasing & Ascending

Decreasing & Ascending

The Roadmap

Let $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a two-dimensional function, now decreasing in x and ascending in y:

$$x_0 < x_1 \Rightarrow h(x_0, y) > h(x_1, y)$$

 $y_0 < y_1 \Rightarrow h(x, y_0) < h(x, y_1)$

Let $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a two-dimensional function, now decreasing in x and ascending in y:

$$egin{aligned} x_0 < x_1 &\Rightarrow h(x_0,y) > h(x_1,y) \ y_0 &\leq y_1 &\Rightarrow h(x,y_0) \leq h(x,y1) \end{aligned}$$

We want to find a command T that satisfies the specification:

```
\begin{array}{l} \textbf{const} \ m, \ n: \ \mathbb{N}; \ w: \ \mathbb{Z}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z = \#\{(i,j) \in [0..m) \times [0..n) \mid h(i,j) = w\}\} \\ T; \\ \{Q: \ Z = z\} \end{array}
```



```
\begin{array}{l} \textbf{const} \ m, \ n: \ \mathbb{N}; \ w: \ \mathbb{Z}; \\ \textbf{var} \ z: \ \mathbb{Z}; \\ \{P: \ Z=\#\{(i,j)\in [0..m)\times [0..n) \mid h(i,j)=w\}\} \\ T; \\ \{Q: \ Z=z\} \end{array}
```

Example, with w = 10:

29	28	26	25	22	21	20	18	14	10
27	26	25	23	21	20	18	16	13	8
27	23	22	21	19	18	17	14	12	8
27	22	21	20	18	16	15	14	12	7
25	22	21	18	16	15	14	13	10	7
23	21	19	18	15	14	13	10	9	7
21	19	17	16	15	13	12	10	7	5
18	15	14	13	12	11	10	8	5	4
16	15	14	12	11	10	9	7	5	2
14	12	10	9	8	7	6	5	3	2

We keep J: Z = z + F(x, y).

At the beginning: Z = F(m, n).

We define:

$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \ \land \ 0 \le j < y \ \land \ h(i,j) = w\}$$

We keep J: Z = z + F(x, y).

- At the beginning: Z = F(m, n).
- ► In the middle, reduce the rectangle: decrease x / decrease y.

We define:

$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

We find a recurrence for F(x, y). Because $\#\emptyset = 0$, the base case is:

$$x \leq 0 \lor y \leq 0 \Rightarrow F(x, y) = 0$$

We keep J: Z = z + F(x, y).

- At the beginning: Z = F(m, n).
- ► In the middle, reduce the rectangle: decrease x / decrease y.
- At the end: Z = z and F(0, 0) = 0.

We define:

$$F(x, y) = \#\{(i, j) \mid 0 < i < x \land 0 < j < y \land h(i, j) = w\}$$

We find a recurrence for F(x, y). Because $\#\emptyset = 0$, the base case is:

$$x \leq 0 \lor y \leq 0 \Rightarrow F(x, y) = 0$$

$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
 F(x, y) = \{ \text{ definition } F \} 
 \# \{(i, j) \mid 0 \le i < x \land 0 \le j < y \land h(i, j) = w \}
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \end{array}
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
\begin{array}{l} F(x,y) \\ = & \{ \text{ definition } F \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \} \\ \# \{ (i,j) \mid i,j : 0 \leq i < x - 1 \wedge 0 \leq j < y \wedge h(i,j) = w \} + \\ \# \{ (x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \end{array}
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \} \\ \# \{ (i,j) \mid i,j: 0 \leq i < x - 1 \wedge 0 \leq j < y \wedge h(i,j) = w \} + \\ \# \{ (x-1,j) \mid j: 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \text{ definition } F \} \\ F(x-1,y) + \# \{ (x-1,j) \mid j: 0 < j < y \wedge h(x-1,j) = w \} \end{array}
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \} \\ \# \{ (i,j) \mid i,j : 0 \leq i < x - 1 \wedge 0 \leq j < y \wedge h(i,j) = w \} + \\ \# \{ (x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \text{ definition } F \} \\ F(x-1,y) + \# \{ (x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \text{ assume } y > 0; \end{array}
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \\ \# \{ (i,j) \mid i,j : 0 \leq i < x - 1 \wedge 0 \leq j < y \wedge h(i,j) = w \} + \\ \# \{ (x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \text{ definition } F \, \} \\ F(x-1,y) + \# \{ (x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \text{ assume } y > 0; h(x-1,j) \text{ is ascending in } j, \text{ so } h(x-1,y-1) \text{ is } \end{cases}
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
\begin{array}{ll} F(x,y) \\ = & \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = & \{ \text{ assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \, \} \\ \# \{ (i,j) \mid i,j : 0 \leq i < x - 1 \wedge 0 \leq j < y \wedge h(i,j) = w \} + \\ \# \{ (x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \text{ definition } F \, \} \\ F(x-1,y) + \# \{ (x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \text{ assume } y > 0; h(x-1,j) \text{ is ascending in } j, \text{ so } h(x-1,y-1) \text{ is maximal}; \end{array}
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
\begin{array}{l} F(x,y) \\ = & \{ \text{ definition } F \} \\ \# \{(i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = & \{ \textbf{assume } x > 0; \text{ so } 0 \leq i < x \equiv (0 \leq i < x - 1 \vee i = x - 1) \} \\ \# \{(i,j) \mid i,j : 0 \leq i < x - 1 \wedge 0 \leq j < y \wedge h(i,j) = w \} + \\ \# \{(x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \text{ definition } F \} \\ F(x-1,y) + \# \{(x-1,j) \mid j : 0 \leq j < y \wedge h(x-1,j) = w \} \\ = & \{ \textbf{assume } y > 0; h(x-1,j) \text{ is ascending in } j, \text{ so } h(x-1,y-1) \text{ is maximal}; \\ & \textbf{assume } h(x-1,y-1) < w, \text{ so } h(x-1,j) < w \text{ for all } j \leq y-1 \} \end{array}
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

```
F(x,y)
= \{ definition F \}
  \#\{(i,j) \mid 0 < i < x \land 0 < j < y \land h(i,j) = w\}
= \{ assume \ x > 0; so \ 0 < i < x \equiv (0 < i < x - 1 \lor i = x - 1) \}
  \#\{(i, j) \mid i, j : 0 < i < x - 1 \land 0 < j < y \land h(i, j) = w\} +
  \#\{(x-1,j) \mid j: 0 < j < y \land h(x-1,j) = w\}
= \{ definition F \}
  F(x-1, y) + \#\{(x-1, j) \mid j: 0 < j < y \land h(x-1, j) = w\}
= { assume y > 0; h(x - 1, j) is ascending in j, so h(x - 1, y - 1) is maximal;
      assume h(x-1, y-1) < w, so h(x-1, j) < w for all j < y-1
  F(x-1,y)+0
= { calculus }
  F(x-1, y)
```


$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

We can reduce the rectangle by decrementing x or decrementing y. We first investigate a decrement to x:

```
F(x,y)
= \{ definition F \}
  \#\{(i,j) \mid 0 < i < x \land 0 < j < y \land h(i,j) = w\}
= \{ assume \ x > 0; so \ 0 < i < x \equiv (0 < i < x - 1 \lor i = x - 1) \}
  \#\{(i, j) \mid i, j : 0 < i < x - 1 \land 0 < j < y \land h(i, j) = w\} +
  \#\{(x-1,j) \mid j: 0 < j < y \land h(x-1,j) = w\}
= \{ definition F \}
  F(x-1, y) + \#\{(x-1, j) \mid j: 0 < j < y \land h(x-1, j) = w\}
= { assume y > 0; h(x - 1, j) is ascending in j, so h(x - 1, y - 1) is maximal;
      assume h(x-1, y-1) < w, so h(x-1, j) < w for all j < y-1
  F(x-1,y)+0
= { calculus }
  F(x-1, y)
```

This derivation proves:

$$x > 0 \land y > 0 \land h(x-1, y-1) < w \Rightarrow F(x, y) = F(x-1, y)$$


```
\label{eq:force_force} \begin{split} F(x,y) \\ = & \{ \text{ definition } F \} \\ \# & \{ (i,j) \mid 0 \leq i < x \land 0 \leq j < y \land h(i,j) = w \} \end{split}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \ \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = \{ \text{ assume } y > 0; \text{so } 0 \leq j < y \equiv (0 \leq j < y - 1 \vee j = y - 1) \ \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = \{ \text{ assume } y > 0; \text{ so } 0 \leq j < y \equiv (0 \leq j < y - 1 \vee j = y - 1) \, \} \\ \# \{ (i,j) \mid i,j \colon 0 \leq i < x \wedge 0 \leq j < y - 1 \wedge h(i,j) = w \} + \\ \# \{ (i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = \{ \text{ assume } y > 0; \text{so } 0 \leq j < y \equiv (0 \leq j < y - 1 \vee j = y - 1) \, \} \\ \# \{ (i,j) \mid i,j \colon 0 \leq i < x \wedge 0 \leq j < y - 1 \wedge h(i,j) = w \} + \\ \# \{ (i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ definition } F \, \} \\ F(x,y-1) + \# \{ (i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = \{ \text{ assume } y > 0; \text{ so } 0 \leq j < y \equiv (0 \leq j < y - 1 \vee j = y - 1) \, \} \\ \# \{ (i,j) \mid i,j \colon 0 \leq i < x \wedge 0 \leq j < y - 1 \wedge h(i,j) = w \} + \\ \# \{ (i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ definition } F \} \\ F(x,y-1) + \# \{ (i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ assume } x > 0; h(i,y-1) \text{ is decreasing in } i \text{ so } h(x-1,y-1) \text{ is } \end{cases}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \, \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = \{ \text{ assume } y > 0; \text{ so } 0 \leq j < y \equiv (0 \leq j < y - 1 \vee j = y - 1) \, \} \\ \# \{ (i,j) \mid i,j \colon 0 \leq i < x \wedge 0 \leq j < y - 1 \wedge h(i,j) = w \} + \\ \# \{ (i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ definition } F \, \} \\ F(x,y-1) + \# \{ (i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ assume } x > 0; h(i,y-1) \text{ is decreasing in } i \text{ so } h(x-1,y-1) \text{ is minimal;} \end{array}
```



```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \} \\ \# \{(i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = \{ \text{ assume } y > 0; \text{ so } 0 \leq j < y \equiv (0 \leq j < y - 1 \vee j = y - 1) \, \} \\ \# \{(i,j) \mid i,j \colon 0 \leq i < x \wedge 0 \leq j < y - 1 \wedge h(i,j) = w \} + \\ \# \{(i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ definition } F \, \} \\ F(x,y-1) + \# \{(i,y-1) \mid i \colon 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ assume } x > 0; h(i,y-1) \text{ is decreasing in } i \text{ so } h(x-1,y-1) \text{ is } \text{minimal;} \\ \text{assume } h(x-1,y-1) \geq w, \text{ so } h(i,y-1) > w \text{ for all } 0 \leq i < x - 1 \, \} \end{array}
```


Next, we investigate what happens if we decrement y.

```
\begin{array}{l} F(x,y) \\ = \{ \text{ definition } F \} \\ \# \{ (i,j) \mid 0 \leq i < x \wedge 0 \leq j < y \wedge h(i,j) = w \} \\ = \{ \text{ assume } y > 0; \text{ so } 0 \leq j < y \equiv (0 \leq j < y - 1 \vee j = y - 1) \, \} \\ \# \{ (i,j) \mid i,j : 0 \leq i < x \wedge 0 \leq j < y - 1 \wedge h(i,j) = w \} + \\ \# \{ (i,y-1) \mid i : 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ definition } F \, \} \\ F(x,y-1) + \# \{ (i,y-1) \mid i : 0 \leq i < x \wedge h(i,y-1) = w \} \\ = \{ \text{ assume } x > 0; h(i,y-1) \text{ is decreasing in } i \text{ so } h(x-1,y-1) \text{ is minimal;} \\ \text{ assume } h(x-1,y-1) \geq w, \text{ so } h(i,y-1) > w \text{ for all } 0 \leq i < x - 1 \, \} \\ F(x,y-1) + \operatorname{ord}(h(x-1,y-1) = w) \end{array}
```


Next, we investigate what happens if we decrement y.

```
F(x,y)
= { definition F }
 \#\{(i,j) \mid 0 < i < x \land 0 < j < y \land h(i,j) = w\}
= \{ assume \ y > 0; so \ 0 < j < y \equiv (0 < j < y - 1 \lor j = y - 1) \}
 \#\{(i,j) \mid i,j: 0 < i < x \land 0 < j < y - 1 \land h(i,j) = w\} +
 \#\{(i, y-1) \mid i: 0 < i < x \land h(i, y-1) = w\}
= \{ definition F \}
 F(x, y - 1) + \#\{(i, y - 1) \mid i : 0 \le i \le x \land h(i, y - 1) = w\}
= { assume x > 0; h(i, y - 1) is decreasing in i so h(x - 1, y - 1) is minimal;
    assume h(x-1, y-1) > w, so h(i, y-1) > w for all 0 < i < x-1
 F(x, y-1) + \operatorname{ord}(h(x-1, y-1) = w)
```

This derivation proves:

$$x>0 \ \land \ y>0 \ \land \ h(x-1,y-1)\geq w \Rightarrow \ F(x,y)=F(x,y-1)+\mathsf{ord}(h(x-1,y-1)=w)$$

Given

$$F(x,y) = \#\{(i,j) \mid 0 \le i < x \land 0 \le j < y \land h(i,j) = w\}$$

we obtained the following recursive equations:

where b = ord(h(x - 1, y - 1) = w).

We now rewrite the original specification to obtain:

```
 \begin{aligned} & \textbf{const} \ m, \ n : \ \mathbb{N}; \ w : \ \mathbb{Z}; \\ & \textbf{var} \ z : \ \mathbb{Z}; \\ & \left\{P : \ Z = F(m,n)\right\} \\ & T; \\ & \left\{Q : \ Z = z\right\} \end{aligned}
```

0 We need a **while**-program to iteratively reduce the size of the remaining rectangle, by decrementing x or y.

We now rewrite the original specification to obtain:

```
 \begin{aligned} & \textbf{const} \ m, \ n : \ \mathbb{N}; \ w : \ \mathbb{Z}; \\ & \textbf{var} \ z : \ \mathbb{Z}; \\ & \left\{P : \ Z = F(m,n)\right\} \\ & T; \\ & \left\{Q : \ Z = z\right\} \end{aligned}
```

- 0 We need a **while**-program to iteratively reduce the size of the remaining rectangle, by decrementing x or y.
- 1 We introduce the variables $x, y : \mathbb{Z}$, the invariant, and guard:

$$J:Z=z+F(x,y)$$
 $B:x>0 \land y>0$

We now rewrite the original specification to obtain:

```
 \begin{aligned} & \textbf{const} \ m, \ n : \ \mathbb{N}; \ w : \ \mathbb{Z}; \\ & \textbf{var} \ z : \ \mathbb{Z}; \\ & \left\{P : \ Z = F(m,n)\right\} \\ & T; \\ & \left\{Q : \ Z = z\right\} \end{aligned}
```

- 0 We need a **while**-program to iteratively reduce the size of the remaining rectangle, by decrementing x or y.
- 1 We introduce the variables $x, y : \mathbb{Z}$, the invariant, and guard:

$$J:Z=z+F(x,y) \ B:x>0 \land y>0$$

```
\begin{array}{l} J \wedge \neg B \\ \equiv \quad \{ \text{ definition } J \text{ and } B \, \} \\ Z = z + F(x,y) \wedge \neg (x>0 \wedge y>0) \\ \equiv \quad \{ \text{ Logic; De Morgan } \} \\ Z = z + F(x,y) \wedge (x \leq 0 \vee y \leq 0) \\ \Rightarrow \quad \{ \text{ base case recurrence: } F(x,y) = 0 \, \} \\ Q : Z = z \end{array}
```


2 Initialization: Recall that we start with (x, y) in the North-East corner of the grid:

```
\{P: Z = F(m, n)\}
(* calculus *)
\{Z = 0 + F(m, n)\}
z := 0; x := m; y := n;
\{J: Z = z + F(x, y)\}
```


2 Initialization: Recall that we start with (x, y) in the North-East corner of the grid:

```
egin{aligned} \{P:\ Z = F(m,n)\} \ & 	ext{(* calculus *)} \ \{Z = 0 + F(m,n)\} \ z := 0; \ x := m; \ y := n; \ \{J:\ Z = z + F(x,y)\} \end{aligned}
```

3 Variant function:

We shrink the rectangle in the South-Western direction: we decrement x and decrement y.

2 Initialization: Recall that we start with (x, y) in the North-East corner of the grid:

```
\{P:\ Z=F(m,n)\}
(*\ calculus\ *)
\{Z=0+F(m,n)\}
z:=0;\ x:=m;\ y:=n;
\{J:\ Z=z+F(x,y)\}
```

3 Variant function:

We shrink the rectangle in the South-Western direction: we decrement x and decrement y.

We choose $vf = x + y \in \mathbb{Z}$.

2 Initialization: Recall that we start with (x, y) in the North-East corner of the grid:

```
\{P:\ Z=F(m,n)\}
(*\ calculus\ *)
\{Z=0+F(m,n)\}
z:=0;\ x:=m;\ y:=n;
\{J:\ Z=z+F(x,y)\}
```

3 Variant function:

We shrink the rectangle in the South-Western direction: we decrement x and decrement y.

We choose $vf = x + y \in \mathbb{Z}$.

The guard is $x > 0 \land y > 0$, so clearly $J \land B \Rightarrow vf \geq 0$.

$${Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V}$$

$$\{Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}$$
 if $h(x - 1, y - 1) < w$ then

$$x := x - 1;$$

else

$$z := z + \operatorname{ord}(h(x - 1, y - 1) = w);$$

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$

$$\begin{array}{l} \{Z=z+F(x,y) \wedge x > 0 \wedge y > 0 \wedge x + y = V\} \\ \text{if } h(x-1,y-1) < w \text{ then} \\ \{h(x-1,y-1) < w \wedge Z = z + F(x,y) \wedge x > 0 \wedge y > 0 \wedge x + y = V\} \end{array}$$

$$x := x - 1;$$

else

$$z := z + \operatorname{ord}(h(x - 1, y - 1) = w);$$

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$

else

$$z:=z+\operatorname{ord}(h(x-1,y-1)=w);$$

$$y := y - 1;$$

x := x - 1;

$$\{J \wedge vf < V\}$$

else

```
z:=z+\operatorname{ord}(h(x-1,y-1)=w); y:=y-1;
```

$$\{J \wedge vf < V\}$$

$$z := z + \operatorname{ord}(h(x - 1, y - 1) = w);$$

$$y := y - 1;$$

$$\{J \wedge vf < V\}$$

 $\{J \wedge vf < V\}$


```
{Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V}
if h(x-1, y-1) < w then
    \{h(x-1, y-1) < w \land Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic: recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) < w*)
    {Z = z + F(x - 1, y) \land x + y = V}
      (* calculus; prepare x := x - 1 *)
    {Z = z + F(x - 1, y) \land x - 1 + y < V}
  x := x - 1:
    \{Z = z + F(x, y) \land x + y < V\}
else
    \{h(x-1,y-1) \ge w \land Z = z + F(x,y) \land x > 0 \land y > 0 \land x + y = V\}
  z := z + \operatorname{ord}(h(x-1, y-1) = w);
  y := y - 1;
end
```



```
{Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V}
if h(x-1, y-1) < w then
    \{h(x-1, y-1) < w \land Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic: recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) < w*)
    {Z = z + F(x - 1, y) \land x + y = V}
      (* calculus; prepare x := x - 1 *)
    {Z = z + F(x - 1, y) \land x - 1 + y < V}
  x := x - 1:
    \{Z = z + F(x, y) \land x + y < V\}
else
     \{h(x-1, y-1) > w \land Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) > w*)
    {Z = z + \operatorname{ord}(h(x-1, y-1) = w) + F(x, y-1) \land x + y = V}
  z := z + \operatorname{ord}(h(x-1, y-1) = w);
  y := y - 1;
```

•

$$\{J \wedge vf < V\}$$

 $\{J \wedge vf < V\}$


```
{Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V}
if h(x-1, y-1) < w then
    \{h(x-1, y-1) < w \land Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic: recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) < w*)
    {Z = z + F(x - 1, y) \land x + y = V}
      (* calculus; prepare x := x - 1 *)
     \{Z = z + F(x - 1, y) \land x - 1 + y < V\}
  x := x - 1:
    \{Z = z + F(x, y) \land x + y < V\}
else
     \{h(x-1, y-1) > w \land Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) > w*)
    \{Z = z + \operatorname{ord}(h(x-1, y-1) = w) + F(x, y-1) \land x + y = V\}
  z := z + \operatorname{ord}(h(x-1, y-1) = w);
    {Z = z + F(x, y - 1) \land x + y = V}
  y := y - 1:
end
```



```
{Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V}
if h(x-1, y-1) < w then
    \{h(x-1,y-1) < w \land Z = z + F(x,y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) < w*)
    {Z = z + F(x - 1, y) \land x + y = V}
       (* calculus; prepare x := x - 1 *)
    \{Z = z + F(x - 1, y) \land x - 1 + y < V\}
  x := x - 1:
    \{Z = z + F(x, y) \land x + y < V\}
else
    \{h(x-1, y-1) > w \land Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) > w*)
    {Z = z + \operatorname{ord}(h(x-1, y-1) = w) + F(x, y-1) \land x + y = V}
  z := z + \operatorname{ord}(h(x-1, y-1) = w);
    {Z = z + F(x, y - 1) \land x + y = V}
       (* calculus; prepare y := y - 1 *)
    {Z = z + F(x, y - 1) \land x + y - 1 < V}
  y := y - 1;
```

 $\{J \wedge vf < V\}$


```
{Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V}
if h(x-1, y-1) < w then
    \{h(x-1,y-1) < w \land Z = z + F(x,y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic: recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) < w*)
    {Z = z + F(x - 1, y) \land x + y = V}
       (* calculus: prepare x := x - 1 *)
     \{Z = z + F(x - 1, y) \land x - 1 + y < V\}
  x := x - 1:
    \{Z = z + F(x, y) \land x + y < V\}
else
     \{h(x-1, y-1) > w \land Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) > w*)
    {Z = z + \operatorname{ord}(h(x-1, y-1) = w) + F(x, y-1) \land x + y = V}
  z := z + \operatorname{ord}(h(x-1, y-1) = w);
     {Z = z + F(x, y - 1) \land x + y = V}
       (* calculus; prepare y := y - 1 *)
     {Z = z + F(x, y - 1) \land x + y - 1 < V}
  y := y - 1;
    \{Z = z + F(x, y) \land x + y < V\}
end
  \{J \wedge vf < V\}
```



```
{Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V}
if h(x-1, y-1) < w then
    \{h(x-1,y-1) < w \land Z = z + F(x,y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic: recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) < w*)
    {Z = z + F(x - 1, y) \land x + y = V}
       (* calculus: prepare x := x - 1 *)
    \{Z = z + F(x - 1, y) \land x - 1 + y < V\}
  x := x - 1:
    \{Z = z + F(x, y) \land x + y < V\}
else
    \{h(x-1, y-1) > w \land Z = z + F(x, y) \land x > 0 \land y > 0 \land x + y = V\}
       (* logic; recurrence for F(x, y); case x > 0 \land y > 0 \land h(x - 1, y - 1) > w*)
    {Z = z + \operatorname{ord}(h(x-1, y-1) = w) + F(x, y-1) \land x + y = V}
  z := z + \operatorname{ord}(h(x-1, y-1) = w);
    {Z = z + F(x, y - 1) \land x + y = V}
       (* calculus; prepare y := y - 1 *)
    {Z = z + F(x, y - 1) \land x + y - 1 < V}
  y := y - 1;
    \{Z = z + F(x, y) \land x + y < V\}
end (* collect branches; definitions J and vf *)
  \{J \wedge vf < V\}
```



```
const m, n, w : \mathbb{N};
var x, y, z : \mathbb{Z};
  \{P: Z = \#\{(i,j) \in [0..m) \times [0..n) \mid h(i,j) = w\} \}
z := 0;
x := m:
u := n:
  \{J: Z = z + \#\{(i,j) \in [0..x) \times [0..y) \mid h(i,j) = w\} \}
   (* vf : x + v *)
while x > 0 \land y > 0 do
  if h(x-1, y-1) < w then
     x := x - 1:
   else
     z := y + \operatorname{ord}(h(x-1, y-1) = w);
     y := y - 1;
  end:
end:
  \{Q: z = Z\}
```



```
const m, n, w : \mathbb{N};
var x, y, z : \mathbb{Z};
  \{P: Z = \#\{(i,j) \in [0..m) \times [0..n) \mid h(i,j) = w\} \}
z := 0;
x := m;
u := n:
  \{J: Z = z + \#\{(i,j) \in [0..x) \times [0..y) \mid h(i,j) = w\} \}
   (* vf : x + v *)
while x > 0 \land y > 0 do
  if h(x-1, y-1) < w then
     x := x - 1:
   else
     z := y + \operatorname{ord}(h(x-1, y-1) = w);
     y := y - 1;
  end:
end:
  \{Q: z = Z\}
```

Note: Because vf = m + n the algorithm has time complexity O(m + n), much more efficient than a $O(m \cdot n)$ algorithm.

The End