Generalization Bounds and Stability

Lorenzo Rosasco Tomaso Poggio

9.520 Class 15

About this class

Goal To recall the notion of generalization bounds and show how they can be derived from a stability argument.

Plan

- Generalization Bounds
- Stability
- Generalization Bounds Using Stability

Learning Algorithms

A learning algorithm A is a map

$$S \mapsto f_S$$

where
$$S = (x_1, y_1)...(x_n, y_n)$$
.

We assume that:

- A is deterministic,
- A does not depend on the ordering of the points in the training set.

How can we measure quality of f_S ?

Error Risks

Recall that we've defined the expected risk:

$$I[f_{\mathcal{S}}] = \mathbb{E}_{(x,y)}\left[V(f_{\mathcal{S}}(x),y)\right] = \int V(f_{\mathcal{S}}(x),y)d\mu(x,y)$$

and the empirical risk:

$$I_{S}[f_{S}] = \frac{1}{n} \sum_{i=1}^{n} V(f_{S}(x_{i}), y_{i}).$$

Note: we will denote the loss function as V(f, z) or as V(f(x), y), where z = (x, y). For example:

$$\mathbb{E}_{z}\left[V(f,z)\right] = \mathbb{E}_{(x,y)}\left[V(f_{S}(x),y)\right]$$

Generalization Bounds

Goal

Choose A so that $I[f_S]$ is small $\Longrightarrow I[f_S]$ depends on the unknown probability distribution.

Approach

We can measure $I_S[f_S]$. A **generalization bound** is a (probabilistic) bound on the defect (generalization error)

$$D[f_S] = I[f_S] - I_S[f_S]$$

If we can bound the defect and we can observe that $I_S[f_S]$ is small, then $I[f_S]$ is likely to be small.

Properties of Generalization Bounds

A probabilistic bound takes the form

$$\mathbb{P}(I[f_{S}] - I_{S}[f_{S}] \ge \epsilon) \le \delta$$

or equivalenty with confidence 1 $-\delta$

$$I[f_{\mathcal{S}}] - I_{\mathcal{S}}[f_{\mathcal{S}}] \le \epsilon$$

Properties of Generalization Bounds (cont.)

Complexity

A historical approach to generalization bounds is based on controlling the complexity of the hypothesis space (covering numbers, VC-dimension, Rademacher complexities)

Necessary and Sufficient Conditions for Learning

ERM

Empirical Risk Minimization Uniform Glivenko Cantelli

Generalization Bounds By Stability

Stability

As we saw in class 2, the basic idea of stability is that a good algorithm should not change its solution much if we modify the training set slightly.

Necessary and Sufficient Conditions for Learning (cont.)

Regularization, Stability and Generalization

We explain this approach to generalization bounds, and show how to apply it to Tikhonov Reguarization in the next class.

Note that we will consider a stronger notion of stability, than the one discussed in class 2. Tikhonov regularization satisfies this stronger notion of stability.

Uniform Stability

notation: S training set, $S^{i,z}$ training set obtained replacing the *i*-th example in S with a new point z = (x, y).

Definition

We say that an algorithm $\mathcal A$ has **uniform stability** β (is β -stable) if

$$\forall (S,z) \in \mathcal{Z}^{n+1}, \ \forall i, \ \sup_{z' \in Z} |V(f_S,z') - V(f_{S^{i,z}},z')| \leq \beta.$$

Uniform Stability (cont.)

- Uniform stability is a strong requirement: a solution has to change very little even when a very unlikely ("bad") training set is drawn.
- the coefficient β is a function of n, and should perhaps be written β_n .

Stability and Concentration Inequalities

Given that an algorithm A has stability β , how can we get bounds on its performance?

→ Concentration Inequalities, in particular, McDiarmid's Inequality.

Concentration Inequalities show how a variable is concentrated around its mean.

McDiarmid's Inequality

Let V_1, \ldots, V_n be random variables. If a function F mapping V_1, \ldots, V_n to \mathbb{R} satisfies

$$\sup_{v_1,\dots,v_n,v_i'} |F(v_1,\dots,v_n) - F(v_1,\dots,v_{i-1},v_i',v_{i+1},\dots,v_n)| \le c_i,$$

then the following statement holds:

$$\mathbb{P}\left(|F(v_1,\ldots,v_n)-\mathbb{E}(F(v_1,\ldots,v_n))|>\epsilon\right)\leq 2\exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

McDiarmid's Inequality

Let V_1, \ldots, V_n be random variables. If a function F mapping V_1, \ldots, V_n to \mathbb{R} satisfies

$$\sup_{v_1,\dots,v_n,v_i'} |F(v_1,\dots,v_n) - F(v_1,\dots,v_{i-1},v_i',v_{i+1},\dots,v_n)| \le c_i,$$

then the following statement holds:

$$\mathbb{P}\left(|F(v_1,\ldots,v_n)-\mathbb{E}(F(v_1,\ldots,v_n))|>\epsilon\right)\leq 2\exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^n c_i^2}\right).$$

Example: Hoeffding's Inequality

Suppose each $v_i \in [a, b]$, and we define $F(v_1, \ldots, v_n) = \frac{1}{n} \sum_{i=1}^n v_i$, the average of the v_i . Then, $c_i = \frac{1}{n}(b-a)$. Applying McDiarmid's Inequality, we have that

$$\begin{split} \mathbb{P}\left(|F(\mathbf{v}) - \mathbb{E}(F(\mathbf{v}))| > \epsilon\right) &\leq 2 \exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^n c_i^2}\right) \\ &= 2 \exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^n (\frac{1}{n}(b-a))^2}\right) \\ &= 2 \exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right). \end{split}$$

Generalization Bounds via McDiarmid's Inequality

We will use β -stability to apply McDiarmid's inequality to the defect $D[f_S] = I[f_S] - I_S[f_S]$.

2 steps

- bound the expectation of the defect
- 2 bound how much the defect can change when we replace an example

Bounding The Expectation of The Defect

Note that $\mathbb{E}_{\mathcal{S}} = \mathbb{E}_{(z_1,...,z_n)}$.

$$\mathbb{E}_{S}D[f_{S}] = \mathbb{E}_{S}[I_{S}[f_{S}] - I[f_{S}]]$$

$$= \mathbb{E}_{(S,z)}\left[\frac{1}{n}\sum_{i=1}^{n}V(f_{S},z_{i}) - V(f_{S},z)\right]$$

$$= \mathbb{E}_{(S,z)}\left[\frac{1}{n}\sum_{i=1}^{n}V(f_{S^{i,z}},z) - V(f_{S},z)\right]$$

$$\leq \beta$$

The second equality follows by the "symmetry" of the expectation: the expected value of a training set on a training point doesn't change when we "rename" the points.

Bounding The Deviation of The Defect

Assume that there exists an upper bound M on the loss.

$$|D[f_{S}] - D[f_{S^{i,z}}]| = |I_{S}[f_{S}] - I[f_{S}] - I_{S^{i,z}}[f_{S^{i,z}}] + I[f_{S^{i,z}}]|$$

$$\leq |I[f_{S}] - I[f_{S^{i,z}}]| + |I_{S}[f_{S}] - I_{S^{i,z}}[f_{S^{i,z}}]|$$

$$\leq \beta + \frac{1}{n}|V(f_{S}, z_{i}) - V(f_{S^{i,z}}, z)|$$

$$+ \frac{1}{n}\sum_{j\neq i}|V(f_{S}, z_{j}) - V(f_{S^{i,z}}, z_{j})|$$

$$\leq \beta + \frac{M}{n} + \beta$$

$$= 2\beta + \frac{M}{n}$$

Applying McDiarmid's Inequality

By McDiarmid's Inequality, for any ϵ ,

$$\begin{split} & \mathbb{P}\left(|D[f_{S}] - \mathbb{E}D[f_{S}]| > \epsilon\right) & \leq & 2\exp\left(-\frac{2\epsilon^{2}}{\sum_{i=1}^{n}(2(\beta + \frac{M}{n}))^{2}}\right) = \\ & = 2\exp\left(-\frac{\epsilon^{2}}{2n(\beta + \frac{M}{n})^{2}}\right) & = & 2\exp\left(-\frac{n\epsilon^{2}}{2(n\beta + M)^{2}}\right) \end{split}$$

A Different Form Of The Bound

Let

$$\delta \equiv 2 \exp\left(-rac{n\epsilon^2}{2(n\beta+M)^2}
ight).$$

Solving for ϵ in terms of δ , we find that

$$\epsilon = (n\beta + M)\sqrt{\frac{2\ln(2/\delta)}{n}}.$$

We can say that with confidence $1 - \delta$,

$$D[f_S] \leq \mathbb{E}D[f_S] + (n\beta + M)\sqrt{\frac{2\ln(2/\delta)}{n}}$$

But $\mathbb{E}D[f_S] \leq \beta$

A Different Form Of The Bound

Let

$$\delta \equiv 2 \exp\left(-rac{n\epsilon^2}{2(neta+M)^2}
ight).$$

Solving for ϵ in terms of δ , we find that

$$\epsilon = (n\beta + M)\sqrt{\frac{2\ln(2/\delta)}{n}}.$$

We can say that with confidence $1 - \delta$,

$$D[f_S] \leq \mathbb{E}D[f_S] + (n\beta + M)\sqrt{\frac{2\ln(2/\delta)}{n}}$$

But $\mathbb{E}D[f_S] \leq \beta$

A Different Form Of The Bound (cont.)

Finally, recalling the definition, of the defect we have with confidence $1 - \delta$,

$$I[f_{\mathcal{S}}] \leq I_{\mathcal{S}}[f_{\mathcal{S}}] + \beta + (n\beta + M)\sqrt{\frac{2\ln(2/\delta)}{n}}.$$

Convergence

Note that if $\beta = \frac{k}{n}$ for some k, we can restate our bounds as

$$P\left(|I[f_S] - I_S[f_S]| \ge \frac{k}{n} + \epsilon\right) \le 2 \exp\left(-\frac{n\epsilon^2}{2(k+M)^2}\right),$$

and with probability $1 - \delta$,

$$I[f_{\mathcal{S}}] \leq I_{\mathcal{S}}[f_{\mathcal{S}}] + \frac{k}{n} + (2k+M)\sqrt{\frac{2\ln(2/\delta)}{n}}.$$

Fast Convergence

For the uniform stability approach we've described, $\beta=\frac{k}{n}$ (for some constant k) is "good enough". Obviously, the best possible stability would be $\beta=0$ — the function can't change at all when you change the training set. An algorithm that always picks the same function, regardless of its training set, is maximally stable and has $\beta=0$. Using $\beta=0$ in the last bound, with probability $1-\delta$,

$$I[f_{\mathcal{S}}] \leq I_{\mathcal{S}}[f_{\mathcal{S}}] + M\sqrt{\frac{2\ln(2/\delta)}{n}}.$$

The convergence is still $O\left(\frac{1}{\sqrt{n}}\right)$. So once $\beta = O(\frac{1}{n})$, further increases in stability don't change the rate of convergence.

Summary

We define a notion of stability (β - stability) for learning algorithms and show that generalization bound can be obtained using concentration inequalities (McDiarmid's inequality). Uniform stability of $O\left(\frac{1}{n}\right)$ seems to be a strong requirement. Next time, we will show that Tikhonov regularization possesses this property.