

Stride

We look at a parameter that defines how we move our Conv Filter

Stride Our Step Size

 Stride defines how many steps we take when sliding our Convolution Window across the input image

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

+

0	1	0
1	0	-1
0	1	0

2	1	

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	-1

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	T	0
1	0	-1
0	1	0

=

2	1	-1
-1		

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	T	0
1	0	-1
0	1	0

2	1	-1
-1	1	

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	-1
-1	1	3

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

=

2	1	-1
-1	1	3
2		

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

2	1	-1
-1	1	3
2	1	

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	T	0
1	0	-1
0	1	0

2	1	-1
-1	1	3
2	1	1

What about a Stride of 2?

We start off in the same position

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	7
0	1	0

=

Now we jump two spots to the left

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	-1
0	1	0

=

2	-1

Now we go down, but by also 2 spots

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

*

0	1	0
1	0	7
0	1	0

=

2	-1
2	

Now we jump two spots to the left

1	0	1	0	1
1	0	0	1	1
0	1	~	0	0
1	0	0	1	0
0	0	1	1	0

L

0	1	0
1	0	7
0	1	0

=

2	-1
2	1

Stride Observations

- A larger Stride produced a smaller Feature Map output
- Larger Stride has less overlap
- We can use stride to control the size of the Feature Map output

Calculating Output Size

Using Stride and Padding

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

Input Image 5 x 5

*

0	1	0
1	0	-1
0	1	0

Filter or Kernel 3 x 3

Stride = 2 Padding = 0

$$(n \times n) * (f \times f) = (\frac{n + 2p - f}{s} + 1) \times (\frac{n + 2p - f}{s} + 1) = (\frac{5 + (2 \times 0) - 3}{2} + 1) \times (\frac{5 + (2 \times 0) - 3}{2} + 1) = 2 \times 2$$

Calculating Output Size

Using Stride and Padding

1	0	1	0	1
1	0	0	1	1
0	1	1	0	0
1	0	0	1	0
0	0	1	1	0

Input Image 5 x 5

*

0	1	0
1	0	-1
0	1	0

Filter or Kernel 3 x 3

Stride = 1 Padding = 0

$$(n \times n) * (f \times f) = (\frac{n + 2p - f}{s} + 1) \times (\frac{n + 2p - f}{s} + 1) = (\frac{5 + (2 \times 0) - 3}{1} + 1) \times (\frac{5 + (2 \times 0) - 3}{1} + 1) = 3 \times 3$$

Calculating Output Size

When using Stride & Padding

0	0	0	0	0	0	0
0	1	0	1	0	1	0
0	1	0	0	1	1	0
0	0	1	1	0	0	0
0	1	0	0	1	0	0
0	0	0	1	1	0	0
0	0	0	0	0	0	0

Input Image 7 x 7

*

0	1	0
1	0	-1
0	1	0

Filter or Kernel 3 x 3

 2
 -1
 1
 1
 0

 2
 1
 0
 1
 2

 1
 -1
 1
 0
 1

 0
 1
 2
 1
 1

 2
 0
 1
 0
 2

$$(n \times n) * (f \times f) = (\frac{n + 2p - f}{s} + 1) \times (\frac{n + 2p - f}{s} + 1) = (\frac{5 + (2 \times 1) - 3}{1} + 1) \times (\frac{5 + (2 \times 1) - 3}{1} + 1) = 5 \times 5$$

Next...

Activation Layer ReLU

