Groupe 42

Bouet Walker)

TP n°5: Théorie anétique des Gaz parfait

1. Pression de l'air en fonction de l'altitude masse des billes: 5,078 g

Formule barométrique: n(3) = no. exp (-mos)

La courle verifie la formule car on a une droité sur une échelle semi-logarythmique, elle verifie bien l'ordre de grandeux

6n trouve: 6(3) = 162 exp (-0,052 3) La pente est donc de -0,052 mm = -52 m

n(3) = no exp (- mg3) = 162 exp (-0,052 3) 6n identifie

-. 11x10, 9, 8 1/3 _ 52 m = 11 mg = 11x10 kg /

RT - 11x10 x 9,81 m/3 = 2,075 VJ

2. Fuite d'un gaz parfait (4,75/6)

Gn house: M(t) = 4,74 esch (-0,0107 t)

M(t)=No esch (-us t)

Mo ever (-US t) = 4,74 eve (-0,0107t) (-) $\frac{-105}{60}$ t = -0,0107 t $V = 40 \times 59 \times 22 = 51920 \text{ mm}^{3}$ $S = \Pi \pi^{2} = \Pi \cdot (2.5) \cdot 49,63 \text{ mm}^{2}$ 1,25/4,5 $U = (-)0,0107 \times 6 \times 51920 = 169 \text{ mm/s}$ 19,63 V = 6,169 m/s6n sait que : $P = \frac{1}{3}$ m n $u^2 = \frac{1}{3}$ M m $u^2 = \frac{1}{3}$ M : u^2 V $P_{1} = \frac{1 \times 5 \times 10^{-3} \times (0,169)^{2}}{3 \times 51926 \times 10^{-9}} = 0,91 \text{ bar} P_{2}$ $P_{2} = 1 \times 0.058 \times 10^{-3} \times (0,169)^{2} = 0,01 \text{ bar} P_{2}$ 51920×10^{-9} En remarque que moins il y a de bille dans la chambre moins la pression est grande. Ce qui est cohérent avec la réalité! Puisque moins il y a de molécule d'air dans une chambre, moins la pression est grande, et plus il y a de molécule plus la pression est grando En effet P = E, la Force est celle des molécule d'air (ou ici des billes) qui cogne un coté. E qui explique poenquoi quand il y a qu'are dizaine de bille la presion est très faible

4,75/7 3- Distribution des viterses maxwelliennes up est la citesse correspondant à la distribution des itesses le ples élevée ici c'est ve=0,54 m.s' Dup = ±0,05 m.s'V plus de détails VP = V = VP VM - VT $(=) T = \frac{(0.54)^{2} \times 11 \times 10^{-6}}{2 \times 1.38 \cdot 10^{-23}} = 1.16 \times 10^{17} \text{ K}$ On remarque que la temperature est beaucaip trop élevée! Donc ce resultat est abonent, l'est pour être de aux mesures imprécises mais aussi à couse de la houteur des colonnes puisqui on a pos pris on compte la baille de la - D Le système d'un gez de billes est très différent d'un système d'un gez su nos lourses on voir que nos valeus enginonigles sont assez prochos des valeus Héoriques. kg vs mpez = 10 kg el = 0,26 m.s. luterse moyenne) DU = : 0, 05 m. 5' formule? formule? 0,25/1

Altitude, z,mm

100 54,8 24,35 17,95 11,3 5,25 3,15 1,75 15 25 35 35 45 55 65 75 85

Frequence d'impulsion, s-1 Exponentielle (Frequence d'impulsion,s-1)

Frequence en s-1

Feuille1

masse des billes sorties,g masse des billes restant dans la chambre, g 60 120 180 300 420 temps,s

2,77 1,27 0,64 0,16 0,058

2,3 1,5 0,63 0,48 0,102

Masse-logarithmique en fonction du temps en seconde

 $f(x) = 4\sqrt{374325609} \exp(-0.0107831419 \times)$

10

Exponentielle (Colonne B) Colonne B

Page 1

450

350 400

300

250

200

150

100

20

0

0,01

0,1

шаѕѕе еп дгатте

temps en seconde

3	
2	io.
3	

	ď
	Ě
	ā
5	ш
-	
5	

	_
	e,
	Ξ
_	E
0	ш.
1	
2	

oution théorique	0,2428526656	0,6664080361	1,1178378415	1,4374482016	1,5372672947	1,4212127467	1,1604917374	0,8480253706	0,5593876535	0,3350840367	0,1830654876	0,0915099049	0,0419572915	0,0176791146	0,0068563592	0,0024504518	0,0008079071	0,0002459278	6,91662580201408E-005	1,79839031843845E-005	4,32515121085212E-006	9,62587048034635E-007	1,98320824701063E-007	3,783843848678E-008
Densité de probabilité distribution théorique	0,1006663537	0,8506306886	0,9814969484	1,3086625978	1,3086625978	1,0469300783	1,2432294679	0,6543312989	0,4580319092	0,3925987793	0,1962993897	0,1308662598	0,1308662598	0,1962993897	0,1308662598	0,1308662598	0,1308662598	0,1308662598	0	0	0	0	0,1308662598	0
	0,1342406178	0,2375026316	0,3407646453	0,444026659	0,5472886727	0,6505506865	0,7538127002	0,8570747139	0,9603367276	1,0635987414	1,1668607551	1,2701227688	1,3733847825	1,4766467962	1,57990881	1,6831708237	1,7864328374	1,8896948511	1,9929568649	2,0962188786	2,1994808923	2,302742906	2,4060049198	2,5092669335
crément de vitesse, rVitesse v, m/s	0,1342406178	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137	0,1032620137
hoizontale sincré	13	23	33	43	53	63	73	83	63	103	113	123	133	143	153	163	173	183	193	203	213	223	233	243
collonne, mm Distance	2	13	. 15	20	20	16	19	10	7	9	က	2	2	က	2	2	2	2	0	0	0	0	2	0
$\stackrel{ }{\sim}$ N0 cellule Hauteur collonne, mm Distance hoizontale sin	1	2	ო	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Page 2