# ECE329 Project #2 Report

Ruiqi Li, 3180111638

January 8, 2021

# 1 Problem 1

(20 pts) Please derive the analytical solution of v(z,t) and i(v,t) assuming  $v_s(t) = V_0 sin(\omega t)$  so that you do not need to worry about the transient effects. Please show your derivation.

Since  $\beta l = \beta d = \beta \frac{\lambda}{4} = \beta \frac{2\pi}{4\beta} = \frac{\pi}{2}$ , we have.

$$\Gamma_L = \frac{Z_L - Z_c}{Z_L + Z_c} = \frac{25 - 50}{25 + 50} = -\frac{1}{3} \tag{1}$$

Also, for  $Z_{\rm in}$  we compute it from the formula

$$Z_{\rm in} = Z(-d) = Z_C \frac{Z_L + jZ_C \tan \beta d}{Z_C + jZ_L \tan \beta d} = \frac{Z_C^2}{Z_L} = 100\Omega$$
 (2)

Then, using KVL we have:

$$V(-d) = V_s \frac{Z_{\rm in}}{Z_{\rm in} + R_s} = \frac{1}{2} V_s = -j \frac{1}{2} V_0$$
(3)

Substitute this value into  $\tilde{V}(z) = \tilde{V}^+(e^{-j\beta z} + \Gamma_0 e^{j\beta z})$ , we have that  $\tilde{V}^+ = -\frac{3}{8}$ . Similarly we can get the expression for current. Finally:

$$\begin{split} \tilde{V}(z) &= -\frac{3}{8}e^{-j\beta z} + \frac{1}{8}e^{j\beta z} \\ \tilde{I}(z) &= -\frac{3}{400}e^{-j\beta z} - \frac{1}{400}e^{j\beta z} \end{split}$$

or,

$$v(z,t) = -\frac{3}{8}\cos(\omega t - \beta z) + \frac{1}{8}\cos(\omega t + \beta z)$$
$$i(z,t) = -\frac{3}{400}\cos(\omega t - \beta z) - \frac{1}{400}\cos(\omega t + \beta z)$$

# 2 Problem 2

Please find the load voltage  $v_L(t) = v(z=0,t)$ , for  $0 \le t \le 10T$  using the FDTD method given  $v_S(t) = V_0 sin(\omega t) u(t)$ .

#### 2.1 (i)

To normalize the results, assume that  $T=10\mathrm{s}$  and  $\lambda=4\mathrm{m}$ . Also, to help simplify the parameters, let  $\Delta z_0=\frac{1}{20}\lambda$  and  $\Delta t_0=\frac{\Delta z}{v_p}$ . Here are the results of the simulations:

For  $\Delta z = 2 * \Delta z_0$  and  $\Delta t = 2 * \Delta t_0$ :



Figure 1: Plot for  $\Delta z = 2 * \Delta z_0$  and  $\Delta t = 2 * \Delta t_0$ 

For  $\Delta z = \Delta z_0$  and  $\Delta t = \Delta t_0$ :



Figure 2: Plot for  $\Delta z = \Delta z_0$  and  $\Delta t = \Delta t_0$ 

For  $\Delta z = \frac{1}{2}\Delta z_0$  and  $\Delta t = \Delta t_0$ :



Figure 3: Plot for  $\Delta z = \frac{1}{2} \Delta z_0$  and  $\Delta t = \Delta t_0$ 

For  $\Delta z = \Delta z_0$  and  $\Delta t = \frac{1}{2} \Delta t_0$ :



Figure 4: Plot for  $\Delta z = \Delta z_0$  and  $\Delta t = \frac{1}{2}\Delta t_0$ 

For  $\Delta z = \frac{1}{2}\Delta z_0$  and  $\Delta t = \frac{1}{2}\Delta t_0$ :



Figure 5: Plot for  $\Delta z = \frac{1}{2}\Delta z_0$  and  $\Delta t = \frac{1}{2}\Delta t_0$ 

For  $\Delta z = \frac{1}{5}\Delta z_0$  and  $\Delta t = \frac{1}{5}\Delta t_0$ :



Figure 6: Plot for  $\Delta z = \frac{1}{5}\Delta z_0$  and  $\Delta t = \frac{1}{5}\Delta t_0$ 

From above we can see that as  $\Delta z$  and  $\Delta t$  decrease, the accuracy and stability both increase. Also, it seems that  $\Delta t$  is more significant then  $\Delta z$  when concerning stability. Considering accuracy, stability and efficiency, we choose  $\Delta z = \frac{1}{2}\Delta z_0$  and  $\Delta t = \frac{1}{2}\Delta t_0$ . The comparison between the numerical results and the analytical results are shown below:



Figure 7: Comparison between Numerical and Analytical Results using  $\Delta z = \frac{1}{2}\Delta z_0$  and  $\Delta t = \frac{1}{2}\Delta t_0$ 

It's obvious that they converge well after only about 1.5 cycles.

# 2.2 (ii)

The comparison result is shown as Figure 7. The numerical solution converges well.

# 2.3 (iii)

If d = 0, then  $V_L(t) = V_s \frac{R_L}{R_L + R_s} = \frac{1}{5} \sin(\omega t) u(t)$ , and  $I_L(t) = \frac{V_L}{R_L} = \frac{1}{125} \sin(\omega t) u(t)$ .



Figure 8: Comparison between the Results with the Lumped Circuit Theory Results using  $\Delta z = \frac{1}{2}\Delta z_0$  and  $\Delta t = \frac{1}{2}\Delta t_0$ 

It shows that not only the amplitude is decreases from the lumped circuit theory results to the numerical results, the phase is also shifted.

# 3 Problem 3

All the results are shown below:



Figure 9: Comparison between Numerical and Analytical with  $t = \frac{T}{8}$ 



Figure 10: Comparison between Numerical and Analytical with  $t=\frac{T}{4}$ 



Figure 11: Comparison between Numerical and Analytical with  $t = \frac{3T}{8}$ 



Figure 12: Comparison between Numerical and Analytical with  $t=\frac{T}{2}$ 



Figure 13: Comparison between Numerical and Analytical with t=T



Figure 14: Comparison between Numerical and Analytical with t=10T

As shown above, it takes some time for the simulation to be stable. About 1 period is enough.