Liczby p-adyczne

13 kwietnia 2016

Spis treści

1	Nie	euporządkowane
	1.1	Normy
	1.2	Twierdzenie Ostrowskiego
	1.3	Uzupełnianie
	1.4	Lemat Hensela
	1.5	Analiza

Rozdział 1

Nieuporządkowane

1.1 Normy

Definicja 1.1.1. Norma na ciele K to funkcja $|\cdot|: K \to \mathbb{R}_+$ spełniająca trzy warunki:

- 1. |x| = 0, wtedy i tylko wtedy gdy x = 0
- 2. $|xy| = |x| |y| dla wszystkich x, y \in K$
- 3. $|x+y| \le |x| + |y|$ dla wszystkich $x, y \in K$

Mówimy, że norma jest niearchimedesowa, jeżeli zachodzi dodatkowo

4.
$$|x+y| \leq \max(|x|,|y|)$$
 dla wszystkich $x,y \in K$,

w przeciwnym razie mamy do czynienia z normą archimedesową.

Definicja 1.1.2. Waluacja p-adyczna (dla ustalonej liczby pierwszej $p \in \mathbb{Z}$) to funkcja $v_p \colon \mathbb{Z} \setminus \{0\} \to \mathbb{R}$ określona w następujący sposób: $v_p(n)$ to jedyna dodatnia liczba całkowita, dla której zachodzi równość $n = p^{v_p(n)}n'$, przy czym p nie dzieli n'. Przedłuża się ją do całego ciała \mathbb{Q} wzorem

$$v_p\left(\frac{a}{b}\right) = v_p(a) - v_p(b),$$

 $z \ umowa$, $\dot{z}e \ v_p(0) = +\infty$.

Tak określona funkcja jest dobrze określona.

Dowód. Jeśli a/b = c/d, to ad = bc. Rozkład na czynniki pierwsze w \mathbb{Z} jest jednoznaczny, zatem najwyższa potęga p dzieląca ad to suma najwyższych potęg dzielących a i d, $v_p(ad) = v_p(a) + v_p(d)$. Podobnie pokazuje się, że $v_p(bc) = v_p(b) + v_p(c)$. Skoro $v_p(ad) = v_p(bc)$, to $v_p(a) + v_p(d) = v_p(b) + v_p(c)$ i po przeporządkowaniu $v_p(a) - v_p(b) = v_p(c) - v_p(d)$.

Lemat 1.1.3. Dla wszystkich $x, y \in \mathbb{Q}$ mamy

- 1. $v_p(xy) = v_p(x) + v_p(y)$
- 2. $v_p(x+y) \ge \min(v_p(x), v_p(y))$.

Dowód. Załóżmy najpierw, że x, y są całkowite, a przy tym $x = p^n x', y = p^m y'$ (gdzie $p \nmid x'y'$). Bez straty ogólności $n \leq m$, wtedy $xy = p^{n+m}x'y'$ (co pokazuje 1.) i $x + y = p^n(x' + p^{m-n}y')$, więc $v_p(x+y) \geq n = v_p(x)$ (2.).

Jeżeli x=q/r i y=s/t, to $v_p(xy)=v_p(qs/rt)=v_p(qs)-v_p(rt)=v_p(q)+v_p(s)-v_p(r)-v_p(t)=v_p(q/r)+v_p(s/t)=v_p(x)+v_p(y)$. Dowód drugiej części:

$$v_p(x+y) = v_p(\frac{qt+sr}{rt}) = v_p(qt+sr) - v_p(rt) \le \min(v_p(qt), v_p(sr)) - v_p(rt)$$

$$= \min(v_p(qt) - v_p(rt), v_p(sr) - v_p(rt)) = \min(v_p(qt/rt), v_p(sr/rt))$$

$$= \min(v_p(x), v_p(y)).$$

Definicja 1.1.4. Dla dowolnej liczby wymiernej $x \neq 0$ określamy jej normę p-adyczną przez wzór $|x|_p = p^{-v_p(x)}$. Dodatkowo $|0|_p = 0$.

Fakt 1.1.5. Tak określona norma jest niearchimedesowa.

Wynika to z dopiero co udowodnionego lematu.

Fakt 1.1.6. Norma na ciele K jest niearchimedesowa, wtedy i tylko wtedy $gdy |a| \leq 1$ dla wszystkich $a \in \mathbb{Z}$ (po włożeniu w(K)).

Dowód. Implikacja w jedną stronę jest oczywista: $\|\pm 1\| = 1$ pociąga $\|n\pm 1\| \le \max\{\|n\|, 1\}$ i indukcja kończy dowód. Udowodnimy teraz wynikanie w lewo. Ponieważ $\|x+y\| \le \max\{\|x\|, \|y\|\}$ jest oczywista dla y=0, wystarczy dowieść $\|t+1\| \le \max\{\|t\|, 1\}$ $(t\in K)$. Dla $m\in \mathbb{N}$:

$$||z+1||^m = \left\| \sum_{j=0}^m {m \choose j} z^j \right\| \le \sum_{j=0}^m \left\| {m \choose j} z^j \right\| \le \sum_{j=0}^m ||z||^j$$
$$\le (m+1) \max\{1, ||z||^m\}$$

Przechodzimy z m do ∞ po spierwiastkowaniu.

Fakt 1.1.7. W ciele z niearchimedesową normą " $x,y \in K$, $|x| \neq |y|$ " pociąga " $|x+y| = \max(|x|,|y|)$ ".

Dowód. ||x|| > ||y|| pociąga $||x + y|| \le ||x|| = \max\{||x||, ||y||\}$. Ale x = x + y - y, więc $||x|| \le \max\{||x + y||, ||y||\}$. Nierówność zachodzi tylko wtedy, gdy $\max\{||x + y||, ||y||\} = ||x + y||$. To daje $||x|| \le ||x + y||$. □

Fakt 1.1.8. W niearchimedesowym ciele K każdy punkt kuli (otwartej, domkniętej) jest jej środkiem. Jeśli r > 0, to kula jest otwarnięta. Dwie kule (domknięte, otwarte) są rozłączne lub zawarte jedna w drugiej.

Dowód. Jeśli $b \in B(a, r)$, to ||b - a|| < r. Biorąc dowolny x, że |x - a| < r, dostajemy |x - b| < r (niearchimedesowo), zatem $B(a, r) \subset B(b, r)$. Podobnie w drugą stronę.

Każda otwarta kula jest otwartym zbiorem. Weźmy x z brzegu B(a,r), do tego $s \le r$. Wtedy pewien y jest w $B(a,r) \cap B(x,s)$ (przekrój jest niepusty). To oznacza, że |y-a| < r oraz $|y-x| < s \le r$, więc $|x-s| \le r$ i $x \in B(a,r)$.

Weźmy nierozłączne B(a,r), B(b,s), że $r \leq s$. Wtedy pewien c leży w obydwu kulach. Ale B(a,r) = B(c,r) zawiera się w B(c,s) = B(b,s).

1.2 Twierdzenie Ostrowskiego

Definicja 1.2.1. Dwie normy na ciele są równoważne, jeżeli metryki od nich generują tę samą topologię

Lemat 1.2.2. Normy $\|\cdot\|_i$ (dla $i \in \{1,2\}$) na K są równoważne wtedy i tylko wtedy, gdy $\|x\|_1 < 1 \Leftrightarrow \|x\|_2 < 1$ wtedy i tylko wtedy, gdy dla pewnej $\alpha > 0$ i każdego x zachodzi $\|x\|_1 = \|x\|_2^{\alpha}$.

Dowód. Pokażemy trzy implikacje.

- $(1\implies 2)$ Równoważne normy zadają te same ciągi zbieżne, $\lim_n x^n=0$ jest równoważne $\|x\|<1.$
- $(2 \implies 3)$ Wybierzmy $x_0 \in K$ różne od 0, że $|x_0|_1 < 1$. Warunek nr 2 mówi, że $|x_0|_2$ też jest mniejsze od jeden, czyli możemy wybrać $\alpha > 0$ takie, żeby $|x_0|_1 = |x_0|_2^{\alpha}$.

Wybierzmy jeszcze jeden $x \in K \setminus \{0\}$. Jeśli $|x|_1 = |x_0|_1$, to $|x|_2 = |x_1|_2$ (gdyby tak nie było, to normy ilorazów byłyby zepsute). Podobnie dla $|x|_1 = 1$.

Bez straty ogólności zakładamy, że $1 > |x|_1 \neq |x_0|_1$. Znów istnieje $\beta > 0$, że $|x|_1 = |x|_2^{\beta}$, ale czy $\alpha = \beta$? Niech n, m będą naturalne. Wtedy $|x|_1^n < |x_0|_1^m \iff |x|_2^n < |x_0|_2^m$. Wzięcie logarytmów daje (po drobnych przekształceniach)

$$\frac{n}{m} < \frac{\log|x_0|_1}{\log|x|_1} \iff \frac{n}{m} < \frac{\log|x_0|_2}{\log|x|_2}.$$

Oznacza to, że ułamki po prawych stronach są równe. Po podłożeniu $|x_0|_1 = |x_0|_2^{\alpha}$ okaże się, że rzeczywiście $\alpha = \beta$.

$$(3 \implies 1) \|x - a\|_1 < r \text{ wtedy i tylko wtedy, gdy } \|x - a\|_2 < r^{1/\alpha}.$$

Twierdzenie 1.2.3 (Ostrowski, 1916). Na \mathbb{Q} wartość bezwzględna musi być równoważna z jedną z wartości bezwzględnych $\|\cdot\|_p$, gdzie p jest l. pierwszą lub $p=\infty$ (lub dyskretną).

Dowód. Niech $|\cdot|$ będzie nietrywialną normą na \mathbb{Q} . Pierwszy przypadek: archimedesowa (odpowiada jej $|\cdot|_{\infty}$). Weźmy więc najmniejsze dodatnie całkowite n_0 , że $|n_0| > 1$. Wtedy $|n_0| = n_0^{\alpha}$ dla pewnej $\alpha > 0$. Wystarczy uzasadnić, dlaczego $|x| = |x|_{\infty}^{\alpha}$ dla każdej $x \in \mathbb{Q}$, a właściwie tylko dla $x \in \mathbb{Z}_{>0}$ (bo norma jest multiplikatywna). Dowolną liczbę n można zapisać w systemie o podstawie n_0 : $n = a_0 + a_1 n_0 + \cdots + a_k n_0^k$, gdzie $a_k \neq 0$ i $0 \leq a_i \leq n_0 - 1$.

$$|n| = \left| \sum_{i=0}^{k} a_i n_0^i \right| \le \sum_{i=0}^{k} |a_i| n_0^{i\alpha} \le n_0^{k\alpha} \sum_{i=0}^{k} n_0^{-i\alpha} \le n_0^{k\alpha} \sum_{i=0}^{\infty} n_0^{-i\alpha} = n_0^{k\alpha} \frac{n_0^{\alpha}}{n_0^{\alpha} - 1} = C n_0^{\alpha} \frac{n_0^{\alpha}}{n_0^{\alpha} - 1} = C n_0$$

Pokazaliśmy $|n| \leq C n_0^{k\alpha} \leq C n^{\alpha}$ dla każdego n, a więc w szczególności dla liczb postaci n^N (bowiem C nie zależy od n): $|n| \leq C^{1/n} n^{\alpha}$. Przejdźmy z N do nieskończoności, dostajemy $C^{1/n} \to 1$ i $|n| \leq n^{\alpha}$. Teraz trzeba pokazać nierówność w drugą stronę. Skorzystamy jeszcze raz z rozwinięcia. Skoro $n_0^{k+1} > n \geq n_0^k$, to zachodzi

$$n_0^{(k+1)\alpha} = |n_0^{k+1}| = |n+n_0^{k+1}-n| \leq |n| + |n_0^{k+1}-n|,$$

a stąd wnioskujemy, że

$$|n| \ge n_0^{(k+1)\alpha} - |n_0^{k+1} - n| \ge n_0^{(k+1)\alpha} - (n_0^{k+1} - n)^{\alpha}.$$

Skorzystaliśmy tutaj z nierówności udowodnionej wyżej. Wiemy, że $n \geq n_0^k$, więc prawdą jest, że

$$|n| \ge n_0^{(k+1)\alpha} - (n_0^{k+1} - n_0^k)^{\alpha} = n_0^{(k+1)\alpha} \left[1 - (1 - \frac{1}{n_0})^{\alpha}\right] = C' n_0^{(k+1)\alpha} > C' n^{\alpha}.$$

Od n nie zależy $C' = 1 - (1 - 1/n_0)^{\alpha}$, jest dodatnia i przez analogię do poprzedniej sytuacji możemy pokazać $|n| \geq n^{\alpha}$. Wnioskujemy stąd, że $|n| = n^{\alpha}$ i $|\cdot|$ jest równoważna ze zwykłą wartością bezwzględną.

Załóżmy, że $|\cdot|$ jest niearchimedesowa. Wtedy $||n|| \le 1$ dla całkowitych n. Ponieważ $|\cdot|$ jest nietrywialna, musi istnieć najmniejsza l. całkowita n_0 , że $||n_0|| < 1$. Zacznijmy od tego, że n_0 musi być l. pierwszą: gdyby zachodziło $n_0 = a \cdot b$ dla $1 < a, b < n_0$, to |a| = |b| = 1 i $|n_0| < 1$ (z minimalności n_0) prowadziłoby do sprzeczności. Chcemy pokazać, że $|\cdot|$ jest równoważna z normą p-adyczną, gdzie $p := n_0$. W następnym kroku uzasadnimy, że jeżeli $n \in \mathbb{Z}$ nie jest podzielna przez p, to |n| = 1. Dzieląc n przez p z resztą dostajemy n = rp + s dla 0 < s < p. Z minimalności p wynika |s| = 1, zaś z $|r| \le 1$ ($|\cdot|$ jest niearchimedesowa) i |p| < 1: |rp| < 1. "Wszystkie trójkąty są równoramienne", więc |n| = 1. Wystarczy więc tylko zauważyć, że dla $n \in \mathbb{Z}$ zapisanej jako $n = p^v n'$ z $p \nmid n'$ zachodzi $|n| = |p|^v |n'| = |p|^v = c^{-v}$, gdzie $c = |p|^{-1} > 1$, co kończy dowód. \square

Fakt 1.2.4 ("adelic product"). *Jeżeli* $x \in \mathbb{Q}^{\times}$, to $\prod_{p \leq \infty} |x|_p = 1$.

1.3 Uzupełnianie

Lemat 1.3.1. Ciało \mathbb{Q} z nietrywialną normą nie jest zupełne.

Dowód. Dzięki twierdzeniu Ostrowskiego wystarczy sprawdzić p-adyczne normy. Niech $p \neq 2$ będzie pierwsza, zaś $a \in \mathbb{Z}$ taka, że nie jest kwadratem, nie dzieli się przez p i równanie $x^2 = a$ ma rozwiązanie w $\mathbb{Z}/p\mathbb{Z}$. Konstruujemy ciąg Cauchy'ego bez granicy: x_0 jest dowolnym rozwiązaniem równania, x_n ma być równe x_{n-1} modulo p^n oraz $x_n^2 = a$ (modulo p^{n+1}). Jest Cauchy'ego ($|x_{n+1} - x_n| = |\lambda p^{n+1}| \leq p^{-n+1} \to 0$) i nie ma granicy (kandydatem na nią jest pierwiastek z a, gdyż prosty rachunek pokazuje $|x_n^2 - a| = |\mu p^{n+1}| \leq p^{-n+1} \to 0$). Gdy p = 2, to zastępujemy pierwiastek sześciennym. □

Zbiór ciągów Cauchy'ego oznaczmy przez C. Można na nim zadać strukturę pierścienia (przemienego i z jedynką) przez punktowe dodawanie oraz mnożenie. Wprowadzamy ideał N, do którego należą ciągi zbieżne do zera.

Lemat 1.3.2. Zbiór N jest idealem maksymalnym C.

Dowód. Ustalmy ciąg $(x_n) \in C \setminus N$ oraz ideał $I = \langle (x_n), N \rangle$. Od pewnego miejsca x_n nie jest zerem, zatem $y_n = 1/x_n$ od tego miejsca i $y_n = 0$ ma sens. Ciąg y_n jest Cauchy'ego:

$$|y_{n+1} - y_n| = \frac{|x_{n+1} - x_n|}{|x_n x_{n+1}|} \le \frac{|x_{n+1} - x_n|}{c^2} \to 0.$$

Ale $(1) - (x_n)(y_n) \in N$, to kończy dowód (I = C).

Definicja 1.3.3. Ciało liczb p-adycznych to $\mathbb{Q}_p := C/N$.

Lemat 1.3.4. Ciąg $|x_n|_p$ jest stacjonarny, $gdy(x_n) \in C \setminus N$.

Dowód. Można znaleźć takie liczby c, N_1 , że $n \ge N_1$ pociąga $|x_n| \ge c > 0$. Z drugiej strony istnieje taka N_2 , że $n, m \ge N_2$ pociąga $|x_n - x_m| < c$. Połóżmy więc $N = \max\{N_1, N_2\}$. Wtedy $n, m \ge N$ pociąga $|x_n - x_m| < \max\{|x_n|, |x_m|\}$, a to oznacza, że $|x_n| = |x_m|$.

Dzięki temu następująca definicja nie jest bez sensu:

Definicja 1.3.5. $Gdy(x_n) \in C$ reprezentuje $\lambda \in \mathbb{Q}_p$, przyjmujemy $|\lambda|_p := \lim_{n \to \infty} |x_n|_p$.

Lemat 1.3.6. Obraz $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ po włożeniu jest gęsty.

Dowód. Chcemy pokazać, że każda otwarta kula wokół $\lambda \in \mathbb{Q}_p$ kroi się z obrazem \mathbb{Q} , czyli zawiera "stały ciąg". Ustalmy kulę $B(\lambda,\varepsilon)$, ciąg Cauchy'ego (x_n) dla λ i $\varepsilon' < \varepsilon$. Dzięki temu, że ciąg jest Cauchy'ego, możemy znaleźć dla niego indeks N, że $n,m \geq N$ pociąga $|x_n-x_m|<\varepsilon'$. Rozpatrzmy stały ciąg (y) dla $y=x_N$. Wtedy $|\lambda-(y)|<\varepsilon$, gdyż $\lambda-(y)$ odpowiada ciąg (x_n-y) . Ale $|x_n-x_N|<\varepsilon'$ i w granicy

$$\lim_{n \to \infty} |x_n - y| \le \varepsilon' < \varepsilon.$$

Fakt 1.3.7. Ciało \mathbb{Q}_p jest zupełne.

Dowód. Dowód w czterech krokach:

- 1. Niech λ_k będzie ciągiem Cauchy'ego elementów \mathbb{Q}_p .
- 2. Skoro obraz \mathbb{Q} w \mathbb{Q}_p jest gęsty, to można znaleźć liczby wymierne l_k , że $\lim_{n\to\infty} |\lambda_n (l_n)| = 0$: granica w \mathbb{Q}_p !
- 3. Wybrane wcześniej liczby wymierne l_n same tworzą ciąg Cauchy'ego w \mathbb{Q} ; dążą do λ w \mathbb{Q}_p .

4. Zachodzi
$$\lim_{n\to\infty} \lambda_n = \lambda$$
.

1.4 Lemat Hensela

Twierdzenie 1.4.1 (lemat Hensela). Niech \mathfrak{K} będzie ciałem zupelnym względem wartości bezwzględnej $|\cdot|$ i niech $f(X) \in \mathfrak{O}[X]$. Załóżmy, że $a_0 \in \mathfrak{O}$ spełnia nierówność $|f(a_0)| < |f'(a_0)|^2$, gdzie f'(X) jest (formalną) pochodną. Wtedy istnieje $a \in \mathfrak{O}$, taki że f(a) = 0.

Dowód. Niech wielomiany $f_i(X)$ (dla $j=1,2,\ldots$) będą zdefiniowane przez tożsamość

$$f(X + Y) = f(X) + \sum_{j>1} f_j(X)Y^j$$

dla niezależnych niewiadomych X, Y. Wtedy $f_1(X) = f'(X)$. Ponieważ $|f(a_0)| < |f'(a_0)|^2$, istnieje $b_0 \in \mathfrak{O}$, takie że $f(a_0) + b_0 f_1(a_0) = 0$. Istotnie,

$$|b_0| = \left| \frac{-f(a_0)}{f_1(a_0)} \right| = \frac{|f(a_0)|}{|f_1(a_0)|} < \frac{|f'(a_0)|^2}{|f'(a_0)|} = |f'(a_0)| \le 1.$$

Zgodnie z definicją wielomianów f_i zachodzi relacja

$$|f(a_0 + b_0)| \le \max_{j \ge 2} |f_j(a_0)b_0^j|.$$

Jako że $f_i(X) \in \mathfrak{O}[X]$ i $a_0 \in \mathfrak{O}$, mamy $|f_i(a_0)| \leq 1$. Oznacza to, że

$$|f(a_0 + b_0)| \le |b_0^2| = \frac{|f(a_0)|^2}{|f'(a_0)|^2} < |f(a_0)|,$$

skorzystaliśmy tu ponownie z nierówności $|f(a_0)| < |f'(a_0)|^2$. Podobnie pokazuje się, że

$$|f_1(a_0+b_0)-f_1(a_0)| \le |b_0| < |f_1(a_0)|,$$

a przez to

$$|f_1(a_0 + b_0)| = |f_1(a_0)|.$$

Kładziemy teraz $a_1 = a_0 + b_0$ i powtarzamy proces. Otrzymujemy w ten sposób ciąg $a_n = a_{n-1} + b_{n-1}$. Dla każdego n prawdziwa jest równość $|f_1(a_n)| = |f_1(a_0)|$, jednocześnie

$$|f(a_{n+1})| \le \frac{|f(a_n)|^2}{|f_1(a_n)|^2} = \frac{|f(a_n)|^2}{|f_1(a_0)|^2}$$

To uzasadnia zbieżność $f(a_n)$ do zera. Co więcej,

$$|a_{n+1} - a_n| = |b_n| = \frac{|f(a_n)|}{|f_1(a_n)|} = \frac{|f(a_n)|}{|f_1(a_0)|} \to 0.$$

Ciąg $\{a_n\}$ jest fundamentalny, z zupełności ciała $\mathfrak K$ wynika istnienie jego granicy oraz f(a)=0. \square

1.5 Analiza

Fakt 1.5.1. Ciąg (x_n) o wyrazach w \mathbb{Q}_p jest Cauchy'ego, wtedy i tylko wtedy gdy zachodzi $\lim_{n\to\infty} |x_{n+1}-x_n|=0$.

Dowód. Jeśli m=n+r>n, to $|x_m-x_n|$ można oszacować z góry, $|\sum_{k=1}^r x_{n+k}-x_{n+k-1}| \le \max_{1\le k\le r} |x_{n+k}-x_{n+k-1}|$, bo wartość bezwzględna jest niearchimedesowa.

Fakt 1.5.2. Dla $a_n \in \mathbb{Q}_p$, szereg $\sum_{n \geq 0} a_n$ jest zbieżny wtedy i tylko wtedy, gdy zachodzi $\lim_{n \to \infty} a_n = 0$. Pociąga to prawdziwość oszacowania $|\sum_{n \geq 0} a_n| \leq \max_n |a_n|$.

Dowód. Jedna implikacja jest oczywista. Szereg zbiega, gdy ciąg sum częściowych zbiega. Ale wyraz a_n to różnica między n-tą i (n-1)-szą sumą częściową – jeśli zbiega do zera, to z faktu wyżej wynika, że ciąg sum częściowych jest Cauchy'ego, zatem zbieżny. Nierówność rozszerza niearchimedesowskość.

Aby zająć się podwójnymi sumami, potrzebujemy czegoś więcej niż tylko zbieżność do zera.

Definicja 1.5.3. Jeśli dla każdej dodatniej liczby ε istnieje całkowita N niezależna od j, że $i \geq N$ pociąga $|b_{ij}| < \varepsilon$, to $\lim_{i \to \infty} b_{ij} = 0$ jednostajnie względem j.

Lemat 1.5.4. Załóżmy, że $b_{ij} \in \mathbb{Q}_p$, zaś dla każdego i zachodzi $\lim_{j\to\infty} b_{ij} = 0$ i (jednostajnie względem j) $\lim_{i\to\infty} b_{ij} = 0$. Dla każdego ε istnieje N_{ε} (zależna tylko od ε), że $\max\{i,j\} \geq N$ pociąga $|b_{ij}| < \varepsilon$.

Dowód. Ustalmy ε . Warunek I mówi, że dla każdego i istnieje $N_1(i)$, dla którego $j \geq N_1(i)$ pociąga $|b_{ij}| < \varepsilon$. Warunek II zapewnia istnienie takiego N_0 , że $|b_{ij}| < \varepsilon$, o ile $i \geq N_0$. Teraz określmy $N_\varepsilon = \max(N_0, N_1(0), N_1(1), \dots, N_1(N_0 - 1))$.

Takie N jest dobrym wyborem: gdy $\max\{i,j\} \geq N$, to albo $i \geq N_0$ i wiemy, że $|b_{ij}| < \varepsilon$ niezależnie od i; albo $i < N_0$, zaś $j \geq N$. Wtedy $0 \leq i \leq N_0 - 1$ i j musi być większe od stosownego N_1 , co znowu daje żądaną nierówność.

Fakt 1.5.5. Przy założeniach z lematu 1.5.4 poniższe szeregi zbiegają, i to do tej samej liczby: $\sum_{i\geq 0} \sum_{j\geq 0} b_{ij}$, $\sum_{j\geq 0} \sum_{i\geq 0} b_{ij}$.

Dowód. Lemat mówi, że każdemu $\varepsilon > 0$ odpowiada liczba N, dla której "max $\{i,j\} \geq N$ pociąga $|b_{ij}| < \varepsilon$ ". Skoro ciąg b_{ij} zbiega do zera po ustaleniu jednego z indeksów, to oba szeregi: $\sum_{j\geq 0} b_{ij}$ i $\sum_{i\geq 0} b_{ij}$ są zbieżne.

Dla $i \ge N$ zachodzi $|\sum_{j\ge 0} b_{ij}| \le \max_j |b_{ij}| < \varepsilon$ na mocy faktu 1.5.2, podobna nierówność prawdziwa jest dla $j \ge N$. Wnioskujemy stąd, że podwójne szeregi zbiegają, gdyż

$$\lim_{i \to \infty} \sum_{j \ge 0} b_{ij} = \lim_{j \to \infty} \sum_{i \ge 0} b_{ij} = 0.$$

Pozostało nam uzasadnić, że sumy są sobie równe.

Pozostańmy przy N, ε wybranych wcześniej. Oznacza to, że $|b_{ij}| < \varepsilon$, gdy $i \ge N$ lub $j \ge N$. Zauważmy, że

$$\left| \sum_{i,j>0} b_{ij} - \sum_{i,j< N} b_{ij} \right| = \left| \sum_{i< N} \sum_{j>N} b_{ij} + \sum_{i>N} \sum_{j>0} b_{ij} \right|.$$

Jeśli więc $j \geq N+1$, to $|b_{ij}| < \varepsilon$ dla każdego i, zatem pierwszy składnik pod wartością bezwzględną można (ultrametrycznie) oszacować z góry przez ε ; podobnie szacuje się drugi składnik. Oczywiście zamiana i, j miejscami nic nie psuje, więc możemy je przestawić i wywnioskować stąd równość sum

Fakt 1.5.6. Jeśli g(x) zbiega, f(g(x)) zbiega i dla każdego n jest $|b_n x^n| \le |g(x)|$, to h(x) też zbiega, do f(g(x)).

$$f(X) = \sum_{n>0} a_n X^n \bullet g(X) = \sum_{n>0} b_n X^n$$

Dowód. Podamy dowód za książką Hassego. Niech

$$g(X)^m = \sum_{n \ge m} d_{m,n} X^n,$$

przy czym $d_{m,n} = \sum_{*} \prod_{k=1}^{m} b_{i_k}$, zaś suma $i_1 + \ldots + i_m$ to n (o ile $n \geq m$) i $d_{m,n} = 0$ (w przeciwnym przypadku). Pozwala to na napisanie h(X) = f(g(X)) jawnie:

$$h(X) = a_0 + \sum_{n \ge 1} \sum_{m \le n} a_m d_{m,n} X^n.$$

Skoro g(x) jest zbieżny, z faktu ?? wnioskujemy, że formalny szereg $g(X)^m$ zbiega dla X = x do $g(x)^m$. Dla każdego n mamy $|d_{m,n}x^n| \leq |g(x)^m|$. Jest to oczywiste dla n < m. Jeżeli $n \geq m$, to nierówność ultrametryczna daje dla $i_1 + \ldots + i_m = n$ (dzięki $|b_{ij}x^{ij}| \leq |g(x)^m|$):

$$|d_{m,n}x^n| \le \max_{n,i} \prod_{k \le m} |b_{i_k}x^{i_k}| \le \prod_{k \le m} |g(x)| = |g(x)^m|.$$

Wiemy już, że g(x), $g(x)^m$ oraz f(g(x)) zbiegają. Zapiszmy w takim razie

$$f(g(x)) = a_0 + \sum_{m \ge 1} a_m g(x)^m$$

= $a_0 + \sum_{m \ge 1} \sum_{n \ge m} a_m d_{m,n} x^n$,

a z drugiej strony

$$h(x) = a_0 + \sum_{n \ge 1} \sum_{m \ge 1} a_m d_{m,n} x^n.$$

Aby uzasadnić poprawność zamiany kolejności sumowania powołamy się na fakt 1.5.5 i oszacujemy $a_m d_{m,n} x^n$.

Wiemy przede wszystkim, że $|a_m d_{m,n} x^n| \leq |a_m g(x)^m|$: prawa strona nie zależy od n. Ustalmy $\varepsilon > 0$. Możemy wybrać indeks N, taki że $m \geq N$ pociąga $|a_m g(x)^m| < \varepsilon$. To pokazuje, że $a_m d_{m,n} x^n \to_m 0$ jednostajnie względem n.

Z drugiej strony, dla każdego m szereg $g(x)^m$ jest zbieżny, zatem jego wyraz ogólny zbiega do zera: $a_m d_{m,n} x^n \to 0$.

Przykład 1.5.7. Niech $g(X)=2X^2-2X$ i h(X)=f(g(X)), gdzie $f(X)=\sum_{k\geq 0}\frac{1}{k!}X^k.$ Można pokazać, że f zbiega dokładnie na $4\mathbb{Z}_2$, zaś g wszędzie (gdyż jest wielomianem). Mamy oczywiście f(g(1))=1. Niech $h(X)=\sum_n a_nX^n.$ Jeżeli $n\geq 2,$ to $v_2(a_n)$ wynosi co najmniej 1+n/4, czyli h zbiega na \mathbb{Z}_2 . Niestety, $h(1)\equiv 3\pmod 4$ i $h(1)\neq f(g(1)).$

Twierdzenie 1.5.8 (Strassman, 1928). Niech ciąg $a_n \in \mathbb{Q}_p$ dąży do zera i nie będzie stale równy zero. Wtedy $f(X) = \sum_{n \geq 0} a_n X^n$ zbiega w \mathbb{Z}_p . Określmy liczbę N warunkami $|a_N| = \max_n |a_n|$ i $|a_n| < |a_N|$ dla n > N. Funkcja $f : \mathbb{Z}_p \to \mathbb{Q}_p$, $x \mapsto f(x)$, ma co najwyżej N zer.

Dowód. Indukcja względem N. Jeżeli N=0, to $|a_0|>|a_n|$ dla $n\geq 1$, z tego chcemy wywnioskować, że nie ma zer w \mathbb{Z}_p Rzeczywiście, gdyby f(x)=0, to

$$|a_0| = |f(x) - a_0| \le \max_{n \ge 1} |a_n x^n| \le \max_{n \ge 1} |a_n| < |a_0|$$

prowadzi do sprzeczności. Krok indukcyjny. Jeżeli znaleźliśmy już N i $f(\alpha) = 0$ dla $\alpha \in \mathbb{Z}_p$, możemy wybrać dowolne $x \in \mathbb{Z}_p$. Wtedy

$$f(x) = f(x) - f(\alpha) = (x - \alpha) \sum_{n \ge 1} \sum_{j \le n} a_n x^j \alpha^{n-1-j}$$

Lemat 1.5.5 pozwala na przegrupowanie:

$$f(x) = (x - \alpha) \sum_{j>0} b_j x^j \bullet b_j = \sum_{k>0} a_{j+1+k} \alpha^k$$

Widać, że $b_j \to 0$, nawet $|b_j| \le \max_{k \ge 0} |a_{j+k+1}| \le |a_N|$ dla każdego j, zatem $|b_{N-1}| = |a_N + a_{N+1}\alpha + \ldots| = |a_N|$ i wreszcie dla $j \ge N$ zachodzi

$$|b_j| \le \max_{k>0} |a_{j+k+1}| \le \max_{j>N+1} |a_j| < |a_N|.$$

Liczba z twierdzenia dla $f(X)/(X-\alpha)$ to N-1, koniec.

Definicja 1.5.9. Logarytm: $\log_p(1+x) = \sum_{n\geq 1} (-1)^{n+1} \frac{x^n}{n}$.

Logarytm zbiega "gorzej" niż log: $\mathbb{R}_+ \to \mathbb{R}$. Policzymy jego promień zbieżności. Zauważmy, że $|1/n| = p^{v_p(n)}$, więc $\rho = 1$. Ale |1/n| nie dąży do zera, więc zbieżność jest dla |x| < 1.

Lemat 1.5.10. Mamy $\lim_{n\to\infty} p^{v_p(n)/n} = 1$, wife $\rho = 1$.

Dowód. Jest jasne, że $\frac{1}{n}v_p(n) \leq \frac{1}{n}\log_p n \to 0.$

To wystarcza do zdefiniowania p-adycznego logarytmu. Niechże $\mathcal{B} = \mathcal{B}(1,1) = 1 + p\mathbb{Z}_p$ (= $\{x \in \mathbb{Z}_p : |x-1| < 1\}$). By funkcja $\log_p : \mathcal{B} \to \mathbb{Q}_p$ zasługiwała na bycie logarytmem, musi mieć jego własności. Tak rzeczywiście jest.

$$\log_p(x) = f(x-1) = \sum_{n>1} (-1)^{n+1} \frac{(x-1)^n}{n}$$

Fakt 1.5.11. Dla $a, b \in 1 + p\mathbb{Z}_p$ jest $\log_p(ab) = \log_p(a) + \log_p(b)$.

Dowód. Przyjmijmy $f(x) = \log_p(1+x)$ dla $x \in \mathbb{Z}_p$. Z naszą wiedzą o pochodnych szeregów potęgowych piszemy

$$f'(x) = \sum_{n>0} (-1)^n x^n = \frac{1}{1+x}.$$

Ustalmy $y \in p\mathbb{Z}_p$ i określmy g(x) = f(y + (1+y)x). Jest to szereg potęgowy zbieżny dla |x| < 1. Reguła łańcucha pozwala policzyć pochodną:

$$g'(x) = (1+y)f'(y+(1+y)x) = \frac{(1+y)}{1+y+(1+y)x}$$
$$= \frac{1}{1+x} = f'(x) \Rightarrow g(x) = f(x) + C.$$

Widać, że g(0) = f(y), zatem g(x) = f(x) + f(y), wystarczy przetłumaczyć to na język logarytmów.

Fakt 1.5.12. Jeżeli p > 2, to \log_p ma dokładnie jedno miejsce zerowe, x = 1. Jeżeli p = 2, to $x = \pm 1$.

Dowód. Twierdzenie Strassmana dla $\log(1+pX)$.

W \mathbb{R} szereg $\exp(X) = \sum_{n=0}^{\infty} X^n/n!$ zbiega wszędzie, bo 1/n! bardzo szybko maleje: ale nie w \mathbb{Q}_p . Trzeba więc określić tempo wzrostu tych współczynników.

Lemat 1.5.13. Jeśli p jest pierwsza, to $v_p(n!) < n : (p-1)$, więc $|n!|_p > p^{-n:(p-1)}$.

Dowód. Nierówność jest prawdziwa, bo $\lfloor x \rfloor \leq x$, czyli:

$$v_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor \le \sum_{i=1}^{\infty} \frac{n}{p^i} = \frac{n}{p-1}.$$

Lemat 1.5.14. Szereg $\sum_{n=0}^{\infty} \frac{X^n}{n!}$, eksponensa, zbiega wtedy i tylko wtedy gdy $|x| < p^{-1/(p-1)}$.

Dowód. Zachodzi $|a_n|=|1/n!|=p^{v_p(n!)}< p^{n/(p-1)}$ dzięki wcześniejszemu oszacowaniu, a zatem $\rho\geq p^{-1/(p-1)}.$ Szereg z pewnością jest zbieżny dla $|x|< p^{-1/(p-1)}.$ Z drugiej stony, gdy $|x|=p^{-1/(p-1)},$ zaś $n=p^m,$ to $v_p(n!)=(n-1)/(p-1).$ Skoro $v_p(x)=1/(p-1),$ to poniższe wyrażenie nie zależy od m,czyli $x^n/n!$ nie dąży do zera (a sam szereg nie jest zbieżny). Znajomość obszaru zbieżności kończy dowód lematu.

$$v_p\left(\frac{x^n}{n!}\right) = \frac{p^m}{p-1} - \frac{p^m - 1}{p-1} = \frac{1}{p-1}.$$

Definicja 1.5.15. Eksponensa $\exp_p: \mathcal{B} \to \mathbb{Q}_p$ jest określona na $p\mathbb{Z}_p$ (dla $p \neq 2$) lub $4\mathbb{Z}_2$ przez podany wcześniej szereg.

Fakt 1.5.16. Jeżeli $x, y, x + y \in \mathcal{B}(0, p^{-1/(p+1)})$, to $\exp(x + y)$ jest równe $\exp x \exp y$.

Dowód. Dowód to po prostu formalna manipulacja szeregów.

$$L = \exp_p(x+y) = \sum_{n\geq 0} \frac{(x+y)^n}{n!} =$$

$$= \sum_{n\geq 0} \sum_{k\leq n} \frac{1}{n!} \frac{n!}{k!(n-k)!} x^{n-k} y^k$$

$$= \sum_{n\geq 0} \sum_{k\leq n} \frac{x^{n-k}}{(n-k)!} \frac{y^k}{k!} = \sum_{m\geq 0} \frac{x^m}{m!} \cdot \sum_{k\geq 0} \frac{y^k}{k!}$$

$$= \exp_p(x) \exp_p(y) = R$$

Fakt 1.5.17. Zalóżmy, że jest $|x| < p^{-1/(p-1)}$ $(x \in \mathbb{Z}_p)$. Zachodzi wtedy $\log_p(\exp_p x) = x$ oraz $\exp_p(\log_p(1+x)) = 1+x$.

 $Dow \acute{o}d.$ Bez straty ogólności $x\neq 0.$ Wstawiamy $\exp_p(x)-1$ do $\log(1+X).$ Wiemy od początku, że $|x^n/n!|<|x|^np^{n/(p-1)}.$ Skoro $|x|< p^{-1/(p-1)},$ to $|\exp_p(x)-1|<1.$ Można lepiej: dla $n\geq 2$ $[v_p(x)>1/(p-1)]$ jest $v_p(x^{n-1}/n!)$ równe:

$$(n-1)v_p(x) - v_p(n!) > \frac{n-1}{p-1} - \frac{n-s}{p-1} > 0,$$

gdzie s to suma cyfr n w rozwinięciu p-adycznym. Wynika stąd, że $|x^{n-1}/n!| < 1$ i $|x^n/n!| < |x|$; dla $n \ge 2$:

$$p^{-1/(p-1)} > |\exp_p(x) - 1| = |x| > |x^n/n!|.$$

Korzystamy z lematu 1.5.6 dla $\log_p \circ \exp_p$. Teraz złożenie w drugą stronę: $\log_p(1+x)$ podstawiamy do $\exp(X)$. Załóżmy więc, że $v_p(x) > 1/(p-1)$. Jeśli n > 1, to

$$L = v_p \left(\frac{(-x)^n}{-n} \right) - v_p(x) = (n-1)v_p(x) - v_p(n)$$
$$> \frac{n-1}{p-1} - v_p(n) = (n-1) \left[\frac{1}{p-1} - \frac{v_p(n)}{n-1} \right]$$

Chcemy, by ostatni nawias był nieujemny. Niech $n = p^v n'$ z $n' \nmid p$. Wtedy

$$\frac{v_p(n)}{n-1} = \frac{v}{p^v n' - 1} \le \frac{v}{p^v - 1}$$
$$= \frac{1}{p-1} \cdot \frac{v}{p^{v-1} + \dots + p+1} \le \frac{1}{p-1}.$$

A zatem $|(-1)^{n+1}x^n/n| < |x|$ i używamy faktu 1.5.2: $|\log_p(x)| = |x| < p^{-1/(p-1)}$ daje żądaną równość.

Ostrożność była potrzebna: dla p=2, x=-2 "wszystko" zbiega, ale $\exp(\log_p(1+x))=\exp(0)=1\neq -1.$

Zajmiemy się szeregami dwumianowymi. W $\mathbb R$ funkcję $(1+X)^\alpha$ można rozwinąć w szereg potęgowy zbieżny dla |x|<1:

$$(1+X)^{\alpha} = \mathfrak{B}(\alpha, X) = \sum_{n=0}^{\infty} {\alpha \choose n} X^n.$$

Szereg ten jest kandydatem na p-adyczny wariant funkcji potęgowej, ciekawszy dla $\alpha \in \mathbb{Z}_p$ niż dla $\alpha \in \mathbb{Q}_p$. Ustalmy α . Co możemy powiedzieć o współczynnikach szeregu \mathfrak{B} ?

Fakt 1.5.18. Jeśli $\alpha \in \mathbb{Z}_p$ i $n \geq 0$, to $(\alpha \ nad \ n) \in \mathbb{Z}_p$. Jeżeli do tego |x| < 1, to szereg $\mathfrak{B}(\alpha, x)$ jest zbieżny.

 $Dow \acute{o}d$. Dla każdego n rozpatrzmy wielomian

$$P_n(X) = \frac{X(X-1) \cdot \ldots \cdot (X-n+1)}{n!} \in \mathbb{Q}[X].$$

Wielomiany określają ciągłe funkcje $\mathbb{Q}_p \to \mathbb{Q}_p$. Wiemy, że dla $\alpha \in \mathbb{Z}_+$ mamy $P_n(\alpha) \in \mathbb{Z}$. Obraz \mathbb{Z}_+ przez P_n zawiera się w \mathbb{Z} , zaś wzięcie domknięć zachowa zawieranie.

Innymi słowy, ciągła P_n przerzuca \mathbb{Z}_+ w \mathbb{Z} . Oznacza to, że domknięcie (\mathbb{Z}_p) przechodzi na domknięcie (\mathbb{Z}_p), co było do pokazania. Druga część jest oczywista.

Z równości formalnych szeregów potęgowych wynika, że dla $\alpha=a/b\in\mathbb{Z}_{(p)}$ i |x|<1 prawdziwa jest poniższa równość:

$$\left(\mathfrak{B}\left(\frac{a}{b},x\right)\right)^b = (1+x)^a.$$

Zatem definicja $(1+x)^{a/b} := \mathfrak{B}(a/b,x)$ ma sens.

Chciałoby się przyjąć dla dowolnej $\alpha \in \mathbb{Z}_p$ oraz $x \in p\mathbb{Z}_p$, że $(1+x)^{\alpha} = \mathfrak{B}(\alpha, x)$. Problem w tym, że p-adyczna funkcja $\mathfrak{B}(a/b, x)$ nie zachowuje się jak jej rzeczywisty odpowiednik, nawet gdy x jest wymierny i 1 + x jest b-tą potęgą w \mathbb{Q} .

Przykład 1.5.19 (Koblitz). Jeśli p = 7, $\alpha = 1/2$, x = 7/9, to $w \mathbb{R}$ pierwiastek z + x jest równy 4/3, ale $w \mathbb{Q}_7$ nie: |x| = 1/7, wiec dla $n \ge 1$ jest

$$\left| \binom{1/2}{n} x^n \right| \le |x|^n = 7^{-n} < 1.$$

To pociąga $(1+x)^{1/2} = 1 + \sum_{n=1}^{\infty} (1/2 \text{ nad } n) x^n \in 1 + 7\mathbb{Z}_7 \text{ oraz } |(1+x)^{1/2} - 1| < 1$. Ale |4/3 - 1| = 1, więc pierwiastkiem jest -4/3.

Ten sam szereg o wymiernych wyrazach może zbiegać w \mathbb{R} i \mathbb{Q}_p , ale mieć różne granice (nawet, jeśli obie są wymierne), ponieważ topologie są znacząco różne. Wartość $\mathfrak{B}(\alpha, x)$ nie zależy od wyboru ciała, gdy $x \in \mathbb{Q}$ oraz $\alpha \in \mathbb{Z}$.

Fakt 1.5.20. Niech 1+x będzie kwadratem $\frac{a}{b}$, gdzie a,b>0 są względnie pierwsze, zaś S to zbiór tych pierwszych liczb, dla których szereg $\mathfrak{B}(1/2,x)$ zbiega w \mathbb{Q}_p .

- 1. Jeśli p jest nieparzystą pierwszą, to $p \in S$, wtedy i tylko wtedy gdy p dzieli a + b (wtedy $\mathfrak{B}(1/2, x) = -a/b$) lub a b (wtedy a/b).
- 2. Dalej, $2 \in S$, wtedy i tylko wtedy gdy $2 \nmid ab$; granicą w \mathbb{Q}_2 jest a/b (gdy $4 \mid a-b$) lub -a/b (jeśli $4 \mid a+b$).
- 3. Wreszcie $\infty \in S$ wtedy i tylko wtedy, gdy $0 < a/b < \sqrt{2}$, suma w \mathbb{R} będzie zawsze równa a/b.

- 4. Zbiór S jest zawsze niepusty. Dla $x \in \{8, 16/9, 3, 5/4\}$ ma dokładnie jeden element.
- 5. Dla innych x zawsze znajdą się dwie $p, q \in S$, że suma w \mathbb{Q}_p jest różna od tej w \mathbb{Q}_p .

Dowód. Szczególny przypadek twierdzenia Bombieriego.