中国地质大学(武汉)课程考核结课考试试卷

	课程名称:《高等数学 42》	学年学期:	2015-2016 学年	F第二学期	
	考试时长: 120 分钟		卷面总分: 100·		
	考试方式: 闭卷考试☑ 开				
	辅助工具: 可用□ 工具名称		· 	不可用☑	
 — ,	 填空题(每小题 4 分,总 12 分,*	 \$答案按题号:	 写在答题纸上,	 不写解题过程)	
1.	微分方程 $ \begin{cases} (x + \sqrt{x^2 + y^2}) dx + y dy \\ y _{x=0} = 1 \end{cases}$	y = 0 的特解	为		
2.	设数量场 $u = \cos\left(x^2 + y^2 + z^2\right)$,	则其梯度场的	的散度 div(grac	$ u _{(1,1,1)} = \underline{\hspace{1cm}}$	- (
3.	设 $f(x) = x^2, 0 \le x < \pi$,,而 $S(x)$	$(b) = \sum_{n=1}^{\infty} b_n \sin n$	$nx, -\infty < x < \infty$	其中	
	$b_n = \frac{2}{\pi} \int_0^x f(x) \sin nx dx, (n = 1, 2, 3)$,3,···),则 <i>S</i> (-	-2) 等于	. ()	
=,	选择题(每小题 4 分, 总 12 分. 每	小题给出四种	选择,有且仅有	了一个是正确的,将 1	各你认
	为正确的代号按题号写在答题纸」	E)			
1.	二元函数 $z = f(x,y)$ 的全微分为	dz = (2-x)c	dx - 3ydy.		
	则函数 z 在点(2,0)处			()
	(A) 偏导存在但不一定连续	(B) 取得	尋极大值		
	(C) 取得极小值	(D) 不同	可能取得极值		
2.	下列结论那一个是正确的			()
	$(A) \sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{5}{4}}} $ 发散;	$(B) \sum_{n=1}^{\infty}$	$\frac{(-1)^n x^n}{n^2 + x^2} \not\equiv x \in \mathbb{R}$	[0,1]上一致收敛;	
	(<i>C</i>) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{2n+1}\right)^{-n}$ 条件收	(Δ) (D) $\sum_{n=2}^{\infty}$	$ \ln\left(1-\frac{1}{n^2}\right). $		

3. 微分方程 $y'' + 4y = \cos 2x$ 的特解形式是

()

(A) $A\cos 2x$

(B) $A\cos 2x + B\sin 2x$

(C) $A \sin 2x$

- (D) $x(A\cos 2x + B\sin 2x)$
- 三、(8分) 设函数 u = f(x, y, z) 由方程 $u^2 + z^2 + y^2 x = 0$ 所确定, 其中 $z = xy^2 y$, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial^2}{\partial x}$.

四、(8 分) 在 xoy 平面上椭圆周 $x^2 + 4y^2 = 4$ 上求一点,使其到 xoy 平面上直线 2x + 3y - 6 = 0 的最短.

五、(8 分) 求曲面 $z-e^x+2xy=3$ 在点 P(1,2,0) 处的切平面方程与法线方程.

六、 $(8\, \mathcal{G})$ 设有半径为 R 的非均匀球体,其球心位于坐标原点。密度为 $\rho=\sqrt{x^2+y^2+z^2}$,求该对 z 轴的转动惯量 I .

七、(8 分) 计算 $I = \iint_{\Sigma} (x^4z + x) dy dz - 2x^3yz dz dx - x^3z^2 dx dy$, 其中 Σ 是曲面 $z = 3 - x^2 -$ 于 $2 \le z \le 3$ 部分,取上侧.

八、(8 分) 计算 $\int_L (2x-y^2) dx + (x^2+2y) dy$, 其中 $L \neq y = |2-x|$ 上从 x=0 到 x=4 的一段.

九、(10 分)设函数 f(x) 具有二阶连续导数,且 $f(0) = \frac{5}{3}$, f'(0) = 2,使曲线

 $\int -yf(x)dx + \left[f'(x) - \frac{1}{2}\sin 2x\right]dy$ 与路径无关,求函数 f(x).

十、 $(6 \, \mathcal{G})$ 求幂级数 $\sum_{n=1}^{\infty} \frac{x^n}{n3^n}$ 的收敛域及和函数.

十一、(6分)将函数 $f(x) = \frac{1}{x^2 + 5x + 4}$ 展开成为 x - 1 的幂级数,并求此级数的收敛域.

十二、 $(6\,\%)$ 设 f(x) 在点 x=0 的某一邻域内具有二阶连续导数,且 $\lim_{x\to 0}\frac{f(x)}{x}=0$,证明 级数 $\sum_{n=1}^{\infty}f\left(\frac{1}{n}\right)$ 绝对收敛.

中国地质大学(武汉)高等数学 A2

2016年 春 试题答案

一、填空题(每小题 4 分, 总 12 分。将答案按题号写在答题纸上,不写解题过程)

1.
$$y^2 + 2x - 1 = 0$$
 $\vec{x} = \frac{1}{2} (1 - y^2)$

 2_{3} $-12\cos 3 - 6\sin 3$

解:
$$gradu = -2\sin(x^2 + y^2 + z^2) - \cos(x^2 + y^2 + z^2) \cdot 4x^2 - 2\sin(x^2 + y^2 + z^2)$$

 $-\cos(x^2 + y^2 + z^2) \cdot 4y^2 - 2\sin(x^2 + y^2 + z^2) - \cos(x^2 + y^2 + z^2) \cdot 4z^2\Big|_{(1,1,1)}$
 $= -2\sin 3 - 4\cos 3 - 2\sin 3 - 4\cos - 2\sin 3 - 4\cos 3$
 $= -6\sin 3 - 12\cos 3$

3, -4

解: S(x) 可按正弦展开, $\therefore S(x)$ 是 $T=2\pi$ 的奇函数, S(-2)=-4

- 二、选择题(每小题 4 分,总 12 分。每小题给出四种选择,有且仅有一个是正确的,将你认为正确的代号按题号写在答题纸上)
- 1, B;

$$\mathbf{A} = \frac{\partial z}{\partial x} = 2 - x, \frac{\partial z}{\partial y} = -3y, \frac{\partial z}{\partial x}\Big|_{(2,0)} = 0, \frac{\partial z}{\partial y}\Big|_{(2,0)} = 0$$

$$A = \frac{\partial^2 z}{\partial x^2} = -1, B = \frac{\partial^2 z}{\partial x \partial y} = 0, C = \frac{\partial^2 z}{\partial y^2} = -3$$

 $AC - B^2 = 3 > 0, \, \text{AA} < 0$

则Z在(2,0)处取极大值,选B

2, B;

解:
$$\sum_{n=1}^{n} \frac{(-1)^n x^n}{n^2 + x^2}$$
 为交错级数, 当 $x \in (0,1)$ 时, $\frac{x^n}{n^2 + x^2} > \frac{x^{n+1}}{(n+1)^2 + x^2}$,

且
$$\lim_{n\to\infty}\frac{x^n}{n^2+x^2}=0$$
,收敛

3、*D*.

解:
$$y''+4y=\cos 2x$$
, $r^2+4=0$, $r^2=-4$, $r=\pm 2i$

$$Y(x) = (C_1 \cos 2x + C_2 \sin 2x)$$

$$y^* = x(A\cos 2x + B\sin 2x)$$
, 选 D

三、(8分)、解:在方程两端对
$$x$$
 求偏导数得 $2u\frac{\partial u}{\partial x} + 2z\frac{\partial z}{\partial x} - 1 = 0$ (2分)

而
$$\frac{\partial z}{\partial x} = y^2$$
, 代入得: $\frac{\partial u}{\partial x} = \frac{1 - 2zy^2}{2u}$ (2 分)

因此:
$$\frac{\partial^2 u}{\partial x^2} = \frac{2u(-2y^2 \cdot y^2) - (1 - 2zy^2) \cdot 2\frac{\partial u}{\partial x}}{4u^2}$$
 (2 分)

将
$$\frac{\partial u}{\partial x} = \frac{1 - 2zy^2}{2u}$$
 代入化简得: $\frac{\partial^2 u}{\partial x^2} = -\frac{4u^2y^4 + (1 - 2zy^2)^2}{4u^3}$ 或

$$\frac{\partial^2 u}{\partial x^2} = -\frac{4y^4(u^2 + z^2) - 4zy^2 + 1}{4u^3} \tag{2 \%}$$

四、(8 分)、 \mathbf{m} : 设P(x,y) 为椭圆上任意一点,

则
$$P(x,y)$$
 到平面 $2x+3y-6=0$ 的距离为 $d=\frac{|2x+3y-6|}{\sqrt{13}}$ (2 分)

求d的最小值点即求 d^2 的最小值。

作
$$F(x, y, \lambda) = \frac{1}{13} (2x + 3y - 6)^2 + \lambda (x^2 + 4y^2 - 4)$$
 (2分)

(注:目标函数写成 $F(x,y,\lambda) = (2x+3y-6)^2 + \lambda(x^2+4y^2-4)$ 也可以,

以下计算过程稍有改变,但是结果不变!)

由 Lagrange 乘数法,有 $\frac{\partial F}{\partial x} = 0$, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial \lambda} = 0$

$$\mathbb{E} \begin{cases}
\frac{4}{13}(2x+3y-6)+2\lambda x = 0 \\
\frac{6}{13}(2x+3y-6)+8\lambda y = 0 \\
x^2+4y^2-4=0
\end{cases} \tag{2 \%}$$

解之得2个驻点坐标分别为:

$$x_1 = \frac{8}{5}, y_1 = \frac{3}{5}$$
 以及 $x_2 = -\frac{8}{5}, y_2 = -\frac{3}{5}$

于是 $d \Big|_{(x_1,y_1)} = \frac{1}{\sqrt{13}}, d \Big|_{(x_2,y_2)} = \frac{11}{\sqrt{13}}$,由问题的实际意义知最矩距离是存在的。

因此
$$\left(\frac{8}{5}, \frac{3}{5}\right)$$
即为所求点。 (2 分)

五、(8分)、解: 令 $F = z - e^x + 2xy - 3$ (2分)

则有
$$F_x'(P) = 2y|_P = 4$$
, $F_y'(P) = 2x|_P = 2$, $F_z'(P) = (1 - e^x)|_P = 0$. (2分)

故切平面方程为
$$4(x-1)+2(y-2)+0\cdot(z-0)=0$$
即 $2x+y-4=0$ (2分)

法线方程
$$\frac{x-1}{4} = \frac{y-2}{2} = \frac{z-0}{0}$$
 即 $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-0}{0}$ (2 分)

六、(8分)、解:根据转动惯量计算公式:

$$I = \iiint_{\Omega} (x^2 + y^2) \sqrt{x^2 + y^2 + z^2} dV.$$
 (2 \(\frac{1}{2}\))

Ω 为球体 $x^2 + y^2 + z^2 \le R$,用球坐标计算 I 可得

$$I = \int_0^{2\pi} d\theta \int_0^{\pi} \sin^3 \varphi d\varphi \int_0^R r^3 dr \tag{4 \%}$$

$$=\frac{4}{9}\pi R^6\tag{2\ }$$

七、(8分)、解:作辅助面,以下曲面取下侧,

$$\Sigma_1: z = 2, \quad (x, y) \in D_{xy}: x^2 + y^2 \le 1(2\xi)$$
 (2 \(\frac{\psi}{2}\))

由 Gauss 公式可得:

$$I = \iint_{\Sigma \to \Sigma_1} -\iint_{\Sigma_2} = \iiint_{\Omega} dx dy dz - (-1) \iint_{D_0} 4(-x^3) dx dy$$
 (2 \(\frac{1}{2}\))

$$= \int_0^{2\pi} d\theta \int_0^1 \rho d\rho \int_2^{3-\rho^2} dz - \int_0^{2\pi} \cos^3\theta d\theta \int_0^1 \rho^4 d\rho$$
 (2 \(\frac{\psi}{2}\))

$$=\frac{\pi}{2}-0$$

$$=\frac{\pi}{2} \tag{2 }$$

八、(8分)解:

方法一:函数
$$y = |2-x| = \begin{cases} 2-x, 0 \le x \le 2 \\ x-2, 2 < x \le 4 \end{cases}$$
, $L = L_1 + L_2$, 的方程是

$$y = 2 - x, 0 \le x \le 2, dy = -dx$$
 (2 $\%$)

$$L_2$$
的方程是 $y = x - 2, 2 \le x \le 4, dy = dx$ (2分)

于是
$$\int_{L} (2x-y^2) dx + (x^2+2y) dy$$

$$= \int_0^2 \left[2x - (2-x)^2 \right] x + \int_1^2 \left[x^2 + 2(2-x) \right] - 1 dx$$

$$+ \int_{2}^{4} \left[2x - (x - 2)^{2} \right] dx + \int_{2}^{4} \left[x^{2} + 2(x - 2) \right] dx \tag{2 }$$

$$=\frac{80}{3}\tag{2}$$

方法二: (利用格林公式求解)

添加辅助曲线 L_1 : $y = 2, x : 4 \rightarrow 0$ (2 分)

$$\mathbb{Q} \int_{L} (2x - y^{2}) dx + (x^{2} + 2y) dy
= \oint_{L+L_{1}} (2x - y^{2}) dx + (x^{2} + 2y) dy - \int_{L_{1}} (2x - y^{2}) dx + (x^{2} + 2y) dy
= \iint_{D} 2(x + y) dx dy - \int_{L_{1}} (2x - y^{2}) dx + (x^{2} + 2y) dy
= \int_{0}^{2} dy \int_{2-y}^{2+y} 2(x + y) dx - \int_{4}^{0} (2x - 4)$$

$$= \frac{80}{3} - 0$$

$$= \frac{80}{3}$$

九、(10 分)解:记P = -yf(x), $Q = f'(x) - \frac{1}{2}\sin 2x$, 由条件可如 $P_y = Q_x$

即
$$-f(x) = f''(x) - \cos 2x$$
, 于是得到微分方程 $f''(x) + f(x) = \cos 2x$. (2分)

特征方程 $\lambda^2 + 1 = 0$, 特征根为 $\lambda_{1,2} = \pm i$, 对应的齐次方程的通解为

$$f(x) = C_1 \cos x + C_2 \sin x \tag{2 \%}$$

由于0±2i不是特征根,故非齐次方程的特解取为

$$f^*(x) = a\cos 2x + b\sin 2x, \tag{2 \%}$$

代入原方程可得 $a = -\frac{1}{3}, b = 0$, 特解为 $f^*(x) = -\frac{1}{3}\cos 2x$

因此,原方程的通解为
$$f(x) = C_1 \cos x + C_2 \sin x - \frac{1}{3} \cos 2x$$
 (2 分)

将 $f(0) = \frac{5}{3}$, f'(0) = 2 代入通解,可得 $C_1 = 2$, $C_2 = 2$, 故所求函数为

$$f(x) = 2\cos x + 2\sin x - \frac{1}{3}\cos 2x$$
 (2 $\%$)

十、(6分)解:
$$\lim_{n\to\infty} \left| \frac{n3^n}{(n+1)3^{n+1}} \right| = \frac{1}{3}$$
,故该级数收敛半径为 3 (1分)

收敛区间为
$$(-3,3)$$
,又 $\sum_{n=1}^{\infty}\frac{1}{n}$ 发散, $\sum_{n=1}^{\infty}\frac{(-1)^n}{n}$ 收敛,

故
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n3^n}$$
 的收敛域为[-3,3) (1 分)

当
$$x \in [-3,3]$$
时, $S'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{3^n} = x^{-1} \sum_{n=1}^{\infty} \left(\frac{x}{3}\right)^n = x^{-1} \frac{x}{3-x} = \frac{1}{3-x}$ (2分)

故
$$s(x) = \int \frac{1}{3-x} dx = -\ln|3-x| + C$$
 (1分)

由
$$s(0) = 0$$
 有 $C = \ln 3$,故 $s(x) = \int \frac{1}{3-x} dx = \ln \frac{3}{3-x}$, $x \in [-3,3)$ (1分)

+-、 (6 分) 解:
$$f(x) = \frac{1}{3} \left(\frac{1}{x+1} - \frac{1}{x+4} \right) = \frac{1}{3} \left(\frac{1}{(x-1)+2} - \frac{1}{(x-1)+5} \right)$$
 (1 分)

$$\frac{1}{\sqrt{1+x^2-1}} = \frac{1}{(x-1)+2} = \frac{1}{2} \cdot \frac{1}{1+\frac{x-1}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x-1}{2}\right)^n, \left|\frac{x-1}{2}\right| < 1.$$
 (2 $\frac{1}{2}$)

同理有
$$\frac{1}{x+4} = \frac{1}{(x-1)+5} = \frac{1}{5} \frac{1}{1-\left(-\frac{x-1}{5}\right)} = \frac{1}{5} \sum_{n=0}^{\infty} \left(-\frac{x-1}{5}\right)^n, \left|\frac{x-1}{5}\right| < 1.$$
 (2 分)

于是函数 f(x) 在 x=1 处的幂级数展式为

$$f(x) = \frac{1}{3} \left[\frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-1}{2} \right)^n - \frac{1}{5} \sum_{n=0}^{\infty} (-1)^n \left(\frac{x-1}{5} \right)^n \right]$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{3} \frac{5^{n+1} - 2^{n+1}}{10^{n+1}} (x-1)^n, |x-1| < 2$$

或 =
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3} \left(\frac{1}{2^{n+1}} - \frac{1}{5^{n+1}} \right) (x-1)^n, |x-1| < 2$$
 (1分)

十二、(6分)证明:由
$$\lim_{x\to 0} \frac{f(x)}{x} = 0$$
知 $f(0) = 0$, $f'(0) = 0$. (1分)

f(x) 在点 x = 0 的某邻域内的一阶 *Taylor* 展开式为:

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(\theta x)x^2 = \frac{1}{2}f''(\theta x)x^2 \quad (0 < \theta < 1)$$

再由题设, $f^{"}(x)$ 在属于该邻域内(包含原点的一小区间 $[-\delta,\delta]$ 上连续,故由闭区间

上连续函数性质,必存在
$$M > 0$$
,使 $\left| f''(x) \right| \le M$,于是 $\left| f(x) \right| \le \frac{M}{2} x^2$. (1分)

因为
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
收敛,所以级数 $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 绝对收敛 (1分)