Método de Diferencias Finitas para ecuaciones hiperbólicas

Julio A. Medina
Universidad de San Carlos
Escuela de Ciencias Físicas y Matemáticas
Maestría en Física
julioantonio.medina@gmail.com

1. Ecuaciones diferenciales parciales hiperbólicas

La ecuación diferencial parcial hiperbólica o ecuación de onda viene dada por

$$\frac{\partial^2 u}{\partial t^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < l, \quad t > 0.$$
 (1)

sujeta a las condiciones

$$u(0,t) = u(l,t) = 0, \text{ para} t > 0,$$
 (2)

$$u(x,0) = f(x), y \frac{\partial u}{\partial t}(x,0) = g(x), \text{ para } 0 \le x \le l,$$
 (3)

donde α es una constante que depende de las condiciones físicas del problema. La ecuación de onda es ubicua en toda la física.

1.1. Método de Diferencias Finitas para la ecuación de onda(hiperbólica)

De manera similar a los métodos utilizados para resolver las ecuaciones parabólicas y elípticas se selecciona un entero m>0 para definir puntos de retículo en el eje x usando h=l/m. También se hace una selección para el tamaño del paso temporal k>0. Los puntos del retículo (x_i,t_j) están definidos por

$$x = ih \quad y \quad t_i = jk \tag{4}$$

para cada $i=0,1,2,\ldots,m$ y $j=0,1,2,\ldots$

Para cada punto interior del retículo, i.e. puntos que no se encuentran en las fronteras del retículo se tiene que la ecuación de onda 1 se convierte en

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_j) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i, t_j) = 0 \tag{5}$$

El método de diferencias finitas se obtiene al encontrar la aproximación para la segunda derivada parcial utilizando el cociente de diferencias centradas (ver [1]). Estas aproximaciones vienen dadas por

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_j) = \frac{u(x_i, t_{j+1}) - 2u(x_i, t_j) + u(x_i, t_{j-1})}{k^2} - \frac{k^2}{12} \frac{\partial^4 u}{\partial t^4}(x_i, \mu_j)$$
(6)

donde $\mu_j \in (t_{j-1}, t_{j+1})$ y

$$\frac{\partial^2 u}{\partial x^2}(x_i, t_j) = \frac{u(x_{i+1}, t_j) - 2u(x_i, t_j) + u(x_{i-1}, t_j)}{h^2} - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i, t_j)$$
(7)

donde $\xi_i \in (x_{j-1}, x_{j+1})$. Sustituyendo 6 y 7 en 5 se obtiene

$$\frac{u(x_{i}, t_{j+1}) - 2u(x_{i}, t_{j}) + u(x_{i}, t_{j-1})}{k^{2}} - \alpha^{2} \frac{u(x_{i+1}, t_{j}) - 2u(x_{i}, t_{j}) + u(x_{i-1}, t_{j})}{h^{2}}$$

$$= \frac{1}{12} \left[k^{2} \frac{\partial^{4} u}{\partial t^{4}}(x_{i}, \mu_{j}) - \alpha^{2} h^{2} \frac{\partial^{4} u}{\partial x^{4}}(\xi_{i}, t_{j}) \right]$$
(8)

Despreciando el término de error que involucra a la 4ta. derivada en el tiempo y la posición se obtiene la ecuación de diferencias

$$\frac{w_{i,j+1} - 2w_{i,j} + w_{i,j-1}}{k^2} - \alpha^2 \frac{w_{i+1,j} - 2w_{i,j} + w_{i-1,j}}{h^2} = 0$$
 (9)

Definiendo $\lambda = \frac{\alpha k}{h}$ se puede reescribir 9 de la siguiente manera

$$w_{i,j+1} - w_{i,j} + w_{i,j-1} - \lambda^2 w_{i+1,j} + 2\lambda^2 w_{i,j} - \lambda^2 w_{i-1,j} = 0$$
 (10)

resolviendo para $w_{i,j+1}$, la aproximación más adelantada en el tiempo, para obtener

$$w_{i,j+1} = 2(1 - \lambda^2)w_{i,j} + \lambda^2(w_{i+1,j} + w_{i-1,j}) - w_{i,j-1}.$$
 (11)

Esta ecuación es valida para cada $i=1,2,\dots,m-1$ y $j=1,2,\dots$ Las condiciones de frontera dan

$$w_{0,j} = w_{m,j} = 0$$
, para cada $j = 1, 2, 3, \dots$, (12)

y las condiciones iniciales implican que

$$w_{i,0} = f(x), paracadai = 1, 2, \dots, m-1$$
 (13)

Esto se puede expresar convenientemente en forma matricial, resultando en

$$\begin{bmatrix} w_{1,j+1} \\ w_{2,j+1} \\ \vdots \\ w_{m-1,j+1} \end{bmatrix} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & \dots & 0 \\ \lambda^2 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \lambda^2 \\ 0 & \dots & 0 & \lambda^2 & 2(1-\lambda^2) \end{bmatrix} \begin{bmatrix} w_{1,j} \\ w_{2,j} \\ w_{3,j} \\ \vdots \\ w_{m-1,j} \end{bmatrix} - \begin{bmatrix} w_{1,j-1} \\ w_{2,j-1} \\ w_{3,j-1} \\ \vdots \\ w_{m-1,j-1} \end{bmatrix}$$

$$(14)$$

Las ecuaciones 9 y 11 implican que el (j+1) ésimo paso temporal requiere conocimiento de los pasos temporales j y (j-1). Esto produce un problema inicial ya que los valores para j=0 están dados por la condición 12, pero los valores para j=1 necesarios para encontrar $w_{i,2}$ deben de ser hallados de la condición inicial para la velocidad, o de la primera derivada temporal

$$\frac{\partial u}{\partial t}(x,0) = g(x), \quad 0 \le x \le l. \tag{15}$$

Un acercamiento es reemplazar $\frac{\partial u}{\partial t}$ por una aproximación de una diferencia adelantada,

$$\frac{\partial u}{\partial t}(x_i, 0) = \frac{u(x_i, t_1) - u(x_i, 0)}{k} - \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \tilde{\mu}_i)$$
(16)

para algún $\tilde{\mu}_i \in (0, t_1)$. Resolviendo para $u(x_i, t_1)$ se obtiene

$$u(x_i, t_1) = u(x_i, 0) + k \frac{\partial u}{\partial t}(x_i, 0) + \frac{k^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \tilde{\mu}_i)$$

$$= u(x_i, 0) + kg(x_i) + \frac{k^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \tilde{\mu}_i)$$
(17)

Omitiendo el error de truncación se obtiene la aproximación

$$w_{i,1} = w_{i,0} + kg(x_i), \text{ para cada} i = 1, 2, \dots, m-1.$$
 (18)

Sin embargo está aproximación tiene error de truncación O(k) mientras que el error en la ecuación 11 es del orden $O(k^2)$

1.2. Mejorando la aproximación inicial

Referencias

- [1] Richard L. Burden, J. Douglas Faires *Numerical Analysis*, (Ninth Edition). Brooks/Cole, Cengage Learning. 978-0-538-73351-9
- [2] Julio Medina. Método de Diferencias Finitas para ecuaciones elípticas. https://github.com/Julio-Medina/Finite_Difference_Method
- [3] Richard S. Varga. *Matrix Iterative Analysis*. Second Edition. Springer. DOI 10.1007/978-3-642-05156-2