N91-14213

Infrared Spectroscopy of the Dwarf Starburst Galaxy Henize 2-10

P.R. Blanco Astronomy Department, University of Edinburgh.
P.J. Puxley Institute of Astronomy, University of Hawaii.

We present $1\cdot2-2\cdot2$ μ m spectra of the nucleus of Henize 2-10, taken at UKIRT with CGS 2. This galaxy displays strong line emission from interstellar H⁺ ($1\cdot282 \& 2\cdot166 \mu$ m) and [Fe⁺] ($1\cdot256 \& 1\cdot644 \mu$ m), in common with other star-forming galaxy nuclei. However the 1-0 S(1) line of molecular hydrogen at $2\cdot122 \mu$ m is not detected – the upper limit of $0\cdot15$ (3σ) for the value of the flux ratio $1_{1-0S(1)}/1_{Br\gamma}$ is much lower than the typical values of $0\cdot4-0\cdot9$ measured in a sample of 28 non-interacting starburst galaxies.

From the Pa β /Br γ line ratio we derive a total extinction of $A_{\nu} \sim 4$ mag, greater than previous estimates based on the optical line spectrum (cf. Johansson 1987; $A_{\nu} \sim 1$ mag).

The de-reddened H⁺ and [Fe⁺] line fluxes are used to estimate the total ionising luminosity and the average supernova rate in the central 150 pc of He 2-10. By comparison of these estimates with existing IRAS and radio continuum data we are able to set limits on the range of stellar masses present in this unevolved (<10⁷ yr)old) starburst nucleus.

Possible reasons for the low H₂/H⁺ line ratios observed in young starburst systems (He 2-10, NGC 7714, IIZw40; eg. Moorwood & Oliva 1988) are briefly discussed.

