Solución Parcial 1 – Señales y Sistemas 2024-I – Juan Jerónimo Castaño Rivera

Punto a:

(a)
$$d(x_1, x_1) = P \times 1 - x_2 = \lim_{T \to \infty} \frac{1}{T} \left\{ |x_1(t)| + x_2(t)|^2 \right\} t$$
 $x_1(t) \cdot A \in \mathcal{I}^{\text{opt}} \quad x_2(t) \cdot B \in \mathcal{I}^{\text{opt}} t$
 $|x_1(t) - x_2(t)|^2 = |x_1(t)|^2 - 2 \times x_1(t) \times x_2(t) + |x_2(t)|^2$
 $|x_1(t) - x_2(t)|^2 = |x_1(t)|^2 dt - \frac{2}{T} \left\{ x_1(t) \times x_2(t) + \frac{1}{T} \left\{ |x_1(t)|^2 dt \right\} \right\}$
 $|x_1(t)|^2 = \lim_{T \to \infty} \left[\frac{1}{T} \left\{ |x_1(t)|^2 dt - \frac{2}{T} \left\{ |x_1(t)| \times x_2(t) + \frac{1}{T} \left\{ |x_1(t)|^2 dt \right\} \right\} \right]$
 $|x_1(t)|^2 = |x_1(t)|^2 + |x_2(t)|^2 + |x_2(t)|^$

Por lo tanto
$$e^{652\pi} = 0$$

$$\begin{cases} \chi_1(\xi) \chi_2(\xi) \ni \xi = \frac{AB}{6jW_0} \begin{bmatrix} 1 - 1 \end{bmatrix} = 0 \\ \delta(\chi_1, \chi_2) = \lim_{T \to \infty} \left[\frac{A^2T}{T} - \frac{2}{T}, 0 + \frac{B^2T}{T} \right] \\ \delta(\chi_1, \chi_2) = \lim_{T \to \infty} \left[A^2 + B^2 \right] = A^2 + B^2 \end{cases}$$

Punto b:

```
b) F_{s: s \times H_2}

x(t): 3\cos(1000 \pi t) + 5 \sin(1000 \pi t) + 10 \cos(11000 \pi t)

w_1: 1000 \pi

T_1: \frac{2\pi}{w_1} = \frac{\pi}{500}

w_2: 1000 \pi

T_2: \frac{2\pi}{w_1} = \frac{\pi}{1000}

W_3: 11000 \pi

T_3: \frac{2\pi}{w_3} = \frac{\pi}{1000}

T_4: \frac{\pi}{1000} = \frac{\pi}{1000}

T_5: \frac{\pi}{1000} = \frac{\pi}{1000}

T_
```

```
Por Nyguist
         Fs 2 2 Fnax
      FMax = 5500 Hz
    Por lo tanto
          Fo 2 11000 HZ =) No cumple
Para la discretización tents i Ts= 1
x[t=nTs]=3cos[1000xn]+ Ssen[2000xn]+10cos[11000xn]
Fs]
x[n] = 3 cos [1000 xn] + 5 sen [2000 xn] + 10 cos [1000 xn]
       = 3 cos [ 12n] + Ssen [ 27n] + 10 cos [ 11 xn]
 1-1-12 CZR 12- 25 CZR 13- 111 > ZX > Copia
 \hat{\Lambda}_3 = M\pi = 2\pi = \frac{\pi}{5}
    Por lo tanto
 x [n] - 3 cos [ JEn] + Ssen [ ZT n] + 10 cos [ JEn]
        = 13 cos [ tin] + Ssen [ 2tin]
```

Punto c:

W1= 1/3	L	1 -	1													
3			4													
$\frac{\omega_1}{\overline{w}_2} = \frac{4}{3} ($	$\in \mathbb{Q}$	Es	(uas	siper	iód	ica		Hal	lai	no	3	el	P	eri	od	0
T1 = ZJZ =	6TL		Tz =	Zn Wz	(3)	8,	7		7	1=	1 6 n		Fz	=	1 350	
T= k61								40								
MCN	1 (6,8)	- 24	2002			To							13			
Por lo	tanto	T	= 74 71													
Para discreti						45										
		Fs 3	3T							5						