PROJECT OVERVIEW

- In this project, we will analyze life expectancy data by performing data wrangling & exploratory data analysis (EDA).
- Pandas is a powerful open source data analysis tools in python.
- Exploratory Data Analysis (EDA) is a process of analyzing data to gain valuable insights such as statistical summary & visualizations.

"Data scientists spend ~80% of their time performing data wrangling & EDA"

TASK #2. IMPORT DATASET AND PERFORM BASIC STATISTICAL DATA ANALYSIS

In [3]: # you can view the first couple of rows using .head()
 df.head(6)

Out[3]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ
0	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	19.1
1	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	18.6
2	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	18.1
3	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	17.6
4	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	17.2
5	2010	Developing	58.8	279.0	74	0.01	79.679367	66.0	1989	16.7

6 rows × 21 columns

Out[6]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	
293	4 2003	Developing	44.5	715.0	26	4.06	0.0	7.0	998	-:
293	5 2002	Developing	44.8	73.0	25	4.43	0.0	73.0	304	:
293	6 2001	Developing	45.3	686.0	25	1.72	0.0	76.0	529	:
293	7 2000	Developing	46.0	665.0	24	1.68	0.0	79.0	1483	:

4

In [7]: # Calculate the average values for employee_df dataframe round(df.mean())

Out[7]:	Year	2008.0
	Life expectancy	69.0
	Adult Mortality	165.0
	infant deaths	30.0
	Alcohol	5.0
	percentage expenditure	738.0
	Hepatitis B	81.0
	Measles	2420.0
	BMI	38.0
	under-five deaths	42.0
	Polio	83.0
	Total expenditure	6.0
	Diphtheria	82.0
	HIV/AIDS	2.0
	GDP	7483.0
	Population	12753375.0
	thinness 1-19 years	5.0
	thinness 5-9 years	5.0
	Income composition of resources	1.0
	Schooling	12.0
	dtype: float64	

In [8]: # 21 features in total df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Year	2938 non-null	int64
1	Status	2938 non-null	object
2	Life expectancy	2928 non-null	float64
3	Adult Mortality	2928 non-null	float64
4	infant deaths	2938 non-null	int64
5	Alcohol	2744 non-null	float64
6	percentage expenditure	2938 non-null	float64
7	Hepatitis B	2385 non-null	float64
8	Measles	2938 non-null	int64
9	BMI	2904 non-null	float64
10	under-five deaths	2938 non-null	int64
11	Polio	2919 non-null	float64
12	Total expenditure	2712 non-null	float64
13	Diphtheria	2919 non-null	float64
14	HIV/AIDS	2938 non-null	float64
15	GDP	2490 non-null	float64
16	Population	2286 non-null	float64
17	thinness 1-19 years	2904 non-null	float64
18	thinness 5-9 years	2904 non-null	float64
19	Income composition of resources	2771 non-null	float64
20	Schooling	2775 non-null	float64

dtypes: float64(16), int64(4), object(1)

memory usage: 482.1+ KB

Out[9]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385.0000
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295	80.9404
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858	25.0700
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000	1.0000
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343	77.0000
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906	92.0000
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144	97.0000
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610	99.0000

PRACTICE OPPORTUNITY #1 [OPTIONAL]:

- Calculate the mean, maximum and minimum GDP considered in this study using a different strategy
- What does GDP mean? what is the relationship between GDP and life expectancy? [External Research is Required]

In []:	

TASK #3. DEALING WITH MISSING DATA

In [13]: df

Out[13]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	
0	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	_
1	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	
2	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	
3	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	
4	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	
•••					•••	•••			•••	
2933	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	;
2934	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	;
2935	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	;
2936	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	:
2937	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	;
2938 rows × 21 columns										

Out[14]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BN
0	False	False	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	False	False	Fals
3	False	False	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	False	False	False	Fals
2933	False	False	False	False	False	False	False	False	False	Fals
2934	False	False	False	False	False	False	False	False	False	Fals
2935	False	False	False	False	False	False	False	False	False	Fals
2936	False	False	False	False	False	False	False	False	False	Fals
2937	False	False	False	False	False	False	False	False	False	Fals

2938 rows × 21 columns

Out[15]:		0
	Status Life expectancy	0 10
	Adult Mortality	10
	infant deaths	0
	Alcohol	194
	percentage expenditure	0
	Hepatitis B	553
	Measles	0
	BMI	34
	under-five deaths	0
	Polio	19
	Total expenditure	226
	Diphtheria	19
	HIV/AIDS	0
	GDP	448
	Population	652
	thinness 1-19 years	34
	thinness 5-9 years	34
	Income composition of resources	167
	Schooling dtype: int64	163

```
In [16]: # check if there are any Null values
import seaborn as sns
sns.heatmap(df.isnull(), yticklabels = False, cbar = False, cmap="Blues")
```

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x22585c7a390>

Out[17]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	
0	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	_
1	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	
2	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	
3	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	
4	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	
2933	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	:
2934	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	:
2935	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	:
2936	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	:
2937	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	:

1649 rows × 21 columns

```
In [17]: # Let's check if we still have any missing values
          df.isnull().sum()
Out[17]: Year
                                              0
         Status
                                              0
                                              0
         Life expectancy
         Adult Mortality
                                              0
         infant deaths
                                              0
         Alcohol
                                              0
         percentage expenditure
                                              0
         Hepatitis B
                                              0
         Measles
                                              0
          BMI
                                              0
         under-five deaths
                                              0
         Polio
                                              0
         Total expenditure
                                              0
         Diphtheria
                                              0
          HIV/AIDS
                                              0
         GDP
                                              0
         Population
                                              0
          thinness 1-19 years
                                              0
          thinness 5-9 years
                                              0
         Income composition of resources
                                              0
         Schooling
                                              0
         dtype: int64
In [19]: | # check if there are any Null values
          sns.heatmap(df.isnull(), yticklabels = False, cbar = False, cmap="Blues")
Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x22587f5ba90>
```

Diphtheria -Alcohol . under-five deaths btal expenditure. Population -Adult Mortality percentage expenditure Hepatitis B HIV/AIDS thinness 1-19 years thinness 5-9 years infant deaths BM Income composition of resources Life expectancy Measles

```
In [20]: # Let's explore threshold based method to deal with missing values
# Let's read the raw data again using Pandas as follows
df = pd.read_csv('Life_Expectancy_Data.csv')
df.head()
```

Out[20]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BMI
0	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	19.1
1	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	18.6
2	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	18.1
3	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	17.6
4	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	17.2

5 rows × 21 columns

In [11]: # You can drop NaN rows based on a threshold
Drop any row that has at least 3 NON-NaNs within it:
df.dropna(axis=0, thresh=18, inplace=True)

In [12]: # Let's check if we still have any missing values
 df.isnull().sum()

Out[12]: Year 0 Status 0 Life expectancy 3 Adult Mortality 3 infant deaths 0 Alcohol 149 percentage expenditure 0 Hepatitis B 488 Measles 0 BMI 10 under-five deaths 0 7 Polio Total expenditure 154 Diphtheria 7 HIV/AIDS 0 **GDP** 260 Population 467 thinness 1-19 years 10 thinness 5-9 years 10 Income composition of resources 1 Schooling 0 dtype: int64

Out[19]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	
0	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	_
1	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	
2	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	
3	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	
4	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	
					•••	•••			•••	
2725	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	:
2726	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	;
2727	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	;
2728	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	;
2729	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	;
2730 ו	rows ×	21 columns	3							

Out[18]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	
0	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	_
1	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	
2	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	
3	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	
4	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	
•••										
2725	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	:
2726	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	:
2727	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	:
2728	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	:
2729	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	:

2730 rows × 21 columns

In [5]: # Let's explore an alternative (smarter) method to deal with missing values
 # Let's read the raw data again using Pandas as follows
 df = pd.read_csv('Life_Expectancy_Data.csv')
 df.head()

Out[5]:

Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BMI
2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	19.1
2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	18.6
2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	18.1
2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	17.6
2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	17.2
	2015 2014 2013 2012	2015 Developing 2014 Developing 2013 Developing 2012 Developing	2015 Developing 65.0 2014 Developing 59.9 2013 Developing 59.9 2012 Developing 59.5	Year Status expectancy Mortality 2015 Developing 65.0 263.0 2014 Developing 59.9 271.0 2013 Developing 59.9 268.0 2012 Developing 59.5 272.0	Year Status expectancy Mortality deaths 2015 Developing 65.0 263.0 62 2014 Developing 59.9 271.0 64 2013 Developing 59.9 268.0 66 2012 Developing 59.5 272.0 69	Year Status expectancy Mortality deaths Alcohol 2015 Developing 65.0 263.0 62 0.01 2014 Developing 59.9 271.0 64 0.01 2013 Developing 59.9 268.0 66 0.01 2012 Developing 59.5 272.0 69 0.01	Year Status expectancy Mortality deaths Alcohol expenditure 2015 Developing 65.0 263.0 62 0.01 71.279624 2014 Developing 59.9 271.0 64 0.01 73.523582 2013 Developing 59.9 268.0 66 0.01 73.219243 2012 Developing 59.5 272.0 69 0.01 78.184215	Year Status expectancy Mortality deaths Alcohol expenditure B 2015 Developing 65.0 263.0 62 0.01 71.279624 65.0 2014 Developing 59.9 271.0 64 0.01 73.523582 62.0 2013 Developing 59.9 268.0 66 0.01 73.219243 64.0 2012 Developing 59.5 272.0 69 0.01 78.184215 67.0	Year Status expectancy Mortality deaths Alcohol expenditure Expenditure B Measles 2015 Developing 65.0 263.0 62 0.01 71.279624 65.0 1154 2014 Developing 59.9 271.0 64 0.01 73.523582 62.0 492 2013 Developing 59.9 268.0 66 0.01 73.219243 64.0 430 2012 Developing 59.5 272.0 69 0.01 78.184215 67.0 2787

5 rows × 21 columns

```
In [26]: # Calculate the average monthly income
         df['GDP'].mean()
Out[26]: 7483.158469138481
In [27]: # You can use Fillna to fill a given column with a certain value
         df['GDP'].fillna(df['GDP'].mean(), inplace = True)
In [28]: # Let's check if we still have any missing values
         df.isnull().sum()
Out[28]: Year
                                               0
                                               0
         Status
         Life expectancy
                                              10
         Adult Mortality
                                              10
         infant deaths
                                               0
         Alcohol
                                             194
         percentage expenditure
                                               0
         Hepatitis B
                                             553
         Measles
                                               0
          BMI
                                              34
         under-five deaths
                                               0
         Polio
                                              19
         Total expenditure
                                             226
         Diphtheria
                                              19
          HIV/AIDS
                                               0
         GDP
                                               0
         Population
                                             652
          thinness 1-19 years
                                              34
          thinness 5-9 years
                                              34
         Income composition of resources
                                             167
         Schooling
                                             163
         dtype: int64
```

```
In [13]: # bfill/ffill
         df.fillna(method='ffill', inplace=True)
         # Let's check if we still have any missing values
         df.isnull().sum()
Out[13]: Year
                                             0
         Status
                                             0
         Life expectancy
                                             0
         Adult Mortality
                                             0
         infant deaths
                                             0
         Alcohol
                                             0
         percentage expenditure
                                             0
         Hepatitis B
                                             0
         Measles
                                             0
          BMI
                                             0
         under-five deaths
                                             0
         Polio
                                             0
         Total expenditure
                                             0
                                             0
         Diphtheria
          HIV/AIDS
                                             0
         GDP
                                             0
         Population
                                             0
          thinness 1-19 years
                                             0
          thinness 5-9 years
                                             0
         Income composition of resources
                                             0
         Schooling
                                             0
         dtype: int64
In [14]: # Let's explore interolation method to deal with missing values
         # Let's read the raw data again using Pandas as follows
```

df = pd.read_csv('Life_Expectancy_Data.csv')

```
In [16]: #fill using interolation
         df.interpolate(method ='linear', limit_direction ='forward', inplace=True)
         # Let's check if we still have any missing values
         df.isnull().sum()
Out[16]: Year
                                             0
         Status
                                             0
                                             0
         Life expectancy
         Adult Mortality
                                             0
         infant deaths
                                             0
         Alcohol
                                             0
         percentage expenditure
                                             0
         Hepatitis B
                                             0
         Measles
                                             0
          BMI
                                             0
         under-five deaths
                                             0
         Polio
                                             0
         Total expenditure
                                             0
         Diphtheria
                                             0
          HIV/AIDS
                                             0
         GDP
                                             0
         Population
                                             0
          thinness 1-19 years
                                             0
          thinness 5-9 years
                                             0
         Income composition of resources
                                             0
         Schooling
                                             0
         dtype: int64
```

methods: {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline', 'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}

Linear interpolation is a method of estimating values between two known values in a series of data. In the context of filling missing values in a pandas DataFrame, linear interpolation estimates the missing values by computing a straight line between the two nearest known values. The method assumes that the change in the dependent variable (the missing value) is constant with respect to the independent variable (time or index). The missing value is then estimated as a weighted average of the two nearest known values, where the weight is proportional to the distance between the missing value and the known values.

```
In [8]: #droping duplicates
df.drop_duplicates()
```

Out[8]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	
0	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	_
1	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	
2	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	
3	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	
4	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	
						•••				
2933	2004	Developing	44.3	723.0	27	4.36	0.000000	68.0	31	:
2934	2003	Developing	44.5	715.0	26	4.06	0.000000	7.0	998	:
2935	2002	Developing	44.8	73.0	25	4.43	0.000000	73.0	304	:
2936	2001	Developing	45.3	686.0	25	1.72	0.000000	76.0	529	:
2937	2000	Developing	46.0	665.0	24	1.68	0.000000	79.0	1483	:
2938 rows × 21 columns										
4									•	•

PRACTICE OPPORTUNITY #2 [OPTIONAL]:

- Calculate the median total expenditure
- · Use the calculated median values to fill out missing data in the total expenditure column
- · Confirm that the process is successful

In []:	
In []:	

TASK #4: DATA-TYPE CONVERSION AND ONE-HOT ENCODING

ONE-HOT ENCODING

- Can we simply replace colors with integer values?
- The machine learning model will assume that:

ONE-HOT ENCODING

- One hot encoding works by converting values such as "color" into columns with 1's and 0's in them.
- Since data science models deal with numbers, we perform one hot encoding to convert from categorical data into numerical.

COLOR		RED	YELLOW	GREEN
RED		1	0	0
RED	N _e	1	0	0
YELLOW		0	1	0
GREEN	***	0	0	1
YELLOW		0	1	0

```
In [62]:
          # Let's load a file with datatype errors
          columns=['education', 'age', 'capital-gain', 'race', 'capital-loss',
                    'hours-per-week', 'gender', 'classification']
          df = pd.read_csv('census.csv',names=columns, header=None)
In [32]:
          df.head()
Out[32]:
             education age capital-gain
                                        race capital-loss hours-per-week gender classification
                                 2174 White
                                                     0
                                                                                   <=50K
          0 Bachelors
                        39
                                                                  40
                                                                        Male
           1 Bachelors
                        50
                                    ? White
                                                     0
                                                                  13
                                                                        Male
                                                                                   <=50K
          2
               HS-grad
                        38
                                    ? White
                                                     0
                                                                  40
                                                                        Male
                                                                                   <=50K
          3
                  11th
                        53
                                    ? Black
                                                     0
                                                                  40
                                                                        Male
                                                                                   <=50K
                                                                  40 Female
                                                                                   <=50K
           4 Bachelors
                        28
                                    0 Black
                                                     0
          # Lets Look at the data types
In [28]:
          df.dtypes
Out[28]: education
                             object
          age
                              int64
                             object
          capital-gain
          race
                             object
          capital-loss
                              int64
          hours-per-week
                              int64
                             object
          sex
          classification
                             object
          dtype: object
```

If your data types don't look the way you expected them, explicitly convert them to the desired type using the .to_datetime(), .to_numeric() etc.

```
df['capital-gain'] = pd.to_numeric(df['capital-gain'],errors='coerce')
In [63]:
In [30]:
         # Let's Look at the updated data type
         df.dtypes
Out[30]: education
                             object
                              int64
         age
         capital-gain
                            float64
         race
                             object
         capital-loss
                              int64
         hours-per-week
                              int64
                             object
         classification
                             object
         dtype: object
```

Take note how to_numeric properly converts to decimal or integer depending on the data it finds. The errors='coerce' parameter instructs Pandas to enter a NaN at any field where the conversion fails.

errors{'ignore', 'raise', 'coerce'}, default 'raise'

If 'raise', then invalid parsing will raise an exception.

If 'coerce', then invalid parsing will be set as NaN.

If 'ignore', then invalid parsing will return the input.

Categorical nominal encoding

```
df.gender = df.gender.astype('category').cat.codes
In [64]:
In [34]:
          df.head()
Out[34]:
              education age capital-gain
                                          race capital-loss hours-per-week gender classification
           0 Bachelors
                         39
                                   2174 White
                                                        0
                                                                      40
                                                                               1
                                                                                       <=50K
           1 Bachelors
                         50
                                      ? White
                                                        0
                                                                      13
                                                                              1
                                                                                       <=50K
           2
               HS-grad
                                      ? White
                                                                      40
                                                                                       <=50K
                         38
           3
                   11th
                         53
                                      ? Black
                                                        0
                                                                      40
                                                                              1
                                                                                       <=50K
                                                                                       <=50K
             Bachelors
                         28
                                      0 Black
                                                        0
                                                                      40
                                                                              0
In [65]: #Label Encoding
           df.classification = df.classification.astype('category').cat.codes
           df.head()
Out[65]:
              education age capital-gain
                                          race capital-loss hours-per-week gender classification
           0 Bachelors
                         39
                                 2174.0 White
                                                        0
                                                                      40
                                                                                           0
                                                                              1
           1 Bachelors
                                   NaN White
                                                        0
                                                                                           0
                         50
                                                                      13
                                                                              1
           2
               HS-grad
                         38
                                   NaN White
                                                        0
                                                                      40
                                                                              1
                                                                                           0
           3
                   11th
                         53
                                   NaN Black
                                                                      40
                                                                                           0
```

Categorical Ordinal Encoding

4 Bachelors

28

0

40

0

0.0 Black

```
In [67]:
          df.education.astype(Dtype).cat.codes
In [68]:
          df.head()
Out[68]:
              education
                        age
                            capital-gain
                                         race
                                               capital-loss hours-per-week gender classification
           0
                                        White
                                                                                           0
                    10
                         39
                                 2174.0
                                                       0
                                                                     40
                                                                              1
           1
                    10
                         50
                                   NaN
                                        White
                                                       0
                                                                     13
                                                                              1
                                                                                           0
           2
                     9
                         38
                                   NaN White
                                                       0
                                                                     40
                                                                              1
                                                                                           0
           3
                     7
                         53
                                   NaN
                                        Black
                                                                     40
                                                                              1
                                                                                           0
                    10
                         28
                                    0.0 Black
                                                                     40
                                                                              0
                                                                                           0
```

One Hot Encoding

```
df = pd.get_dummies(df,columns=['race'])
In [47]:
In [48]:
           df.head()
Out[48]:
                                                                               race_Amer- race_Asian-
                                                 hours-
                                capital- capital-
                education age
                                                                                    Indian-
                                                                                                   Pac- race
                                                   per-
                                                         gender classification
                                           loss
                                   gain
                                                                                   Eskimo
                                                  week
                                                                                               Islander
               Bachelors
                            39
                                 2174.0
                                              0
                                                     40
                                                              1
                                                                             0
                                                                                         0
                                                                                                      0
               Bachelors
                            50
                                              0
                                                     13
                                                              1
                                                                            0
                                                                                         0
                                                                                                      0
                                   NaN
            2
                                                                             0
                 HS-grad
                            38
                                   NaN
                                                     40
                                                                                         0
                                                                                                      0
            3
                                                                             0
                                                                                         0
                     11th
                            53
                                   NaN
                                              0
                                                     40
                                                              1
                                                                                                      0
                                                                                                      0
                            28
                                              0
                                                                             0
                                                                                         0
               Bachelors
                                    0.0
                                                     40
                                                              0
                                                                                                           Þ
```

TASK #5: Data Integration

```
In [3]: uber1 = pd.read_csv('uber1.csv')
    uber2 = pd.read_csv('uber2.csv')
    uber3 = pd.read_csv('uber3.csv')
```