

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023 I Year, 2ndSemester 23MA204-PROBABILITY AND STATISTICS (Regulation 2023) QUESTION BANK

Q.No	Part A- Questions	CO's	Bloom 's Level
1.	A bag contains 3 red, 6 white and 7 black balls, Find out the probability that two balls drawn are red and white?	CO1	K2
2.	Derive the moment generating function of the distribution given by $f(x) = \gamma e^{-\gamma x}, x > 0.$	CO1	K2
3.	For a binomial distribution, mean is 2 and variance is 4/3. Find out the first term of the distribution	CO1	K2
4.	State any two properties of probability mass function	CO1	K1
5.	Let X be a random variable with $E(X)=1$, $E[X(X-1)]=4$. Find $Var(X)$, $Var(3-2X)$.	CO1	K3
6.	If the r.v has the $\operatorname{mgf} M_x(t) = \frac{2}{2-t}$, determine the variance of X.	CO1	К3
7.	If the probability that a target is destroyed on any one shot is 0.5, calculate the probability that it would be destroyed on 6th attemp	CO2	K2
8.	A continuous random variable X has the density function $f(x) = 3x^2, 0 \le x \le 1$, find α such that $P(X \le \alpha) = P(X > \alpha)$.	CO1	K2
9.	One percent of jobs arriving at a computer system need to wait until weekends for scheduling, owing to core-size limitations. Calculate the probability that among a sample of 200 jobs there are no jobs that have to wait until weekends.	CO1	K2
10.	The number of monthly breakdown of a computer is a r.vhaving a Poisson distribution with mean equal to 1.8. calculatethe probability that this computer will function for a month with only one breakdown.	CO2	K2
11.	If X is a Uniformly distributed r.v with mean 1 and variance $\frac{4}{3}$, Determine P(X<0)	CO2	K2
12.	The time required to repair a machine is exponentially distributed with parameter $\lambda = \frac{1}{2}$. Calculate the conditional probability that a repair takes at 11h given that its direction	CO2	K2

	exceeds 8h?		
	If <i>X</i> and <i>Y</i> are independent binomial variates following $B\left(5,\frac{1}{2}\right)$	CO2	K2
13.	and $B\left(7,\frac{1}{2}\right)$ respectively. Determine $P[X+Y=3]$.		
14.	If a r.v 'X' is uniformly distributed over (-3,3), then compute $P(X-2 < 2)$.	CO2	K2
	If a random variable X takes values 1, 2, 3, 4 such that $2P(X=1) =$	CO2	K2
15.	3P(X=2) = P(X=3) = 5P(X=4). Determine the probability		
	distribution of X		
	BAYES THEOREM		
	Four boxes A,B,C,D contain fuses.The boxes contain	CO1	K3
	5000,3000,2000 and 1000 fuses respectively. The percentage of fuses in boxes which are defective are 3%,2%,1% and 0.5%		
1	respectively. One fuse is selected at random from one of the		
	boxes.It is found to be defective fuse.Find the probability that it		
	has come from box D. The members of a consulting firm rent cars from rental	CO1	K3
	agencies. A,B and C as 60%,30% and 10% respectively, If 9%,20%	COI	K3
	and 6% of cars from A,B and C agencies need tune up		
2	(a) If a rental car delivered to the firm does not need tune up what is the probability that it came from B agency		
	(b) If a rental car delivered to the firm need tune up what is		
	the probability that came from B agency.		
	There are 3 boxes containing respectively, 1 white 2 red, 3 black balls; 2 white, 3 red and 1 black balls;	CO1	K3
3	3 white, 1 red and 2 black balls. A box is chosen at random and		
	from it two balls are drawn at random. The two balls are 1 red		
	and 1 white. What is the probability that they came from second box?		
	RANDOM VARIABLE/MEAN/VARIANCE		
	If the discrete random variable X represents the maximum of	CO1	K3
4	the two numbers shown up when two dice are thrown. Find the probability of x		
	The number of telephone calls received at an office has the probability function as given below	CO1	K3
	No of 0 1 2 3 4 5 6		
5	calls		
	(x) 0.05 0.20 0.25 0.20 0.15 0.10 0.05		
	(i) Verify that it is probability function		
	(ii) Verify that there will be three or more calls		
	(iii) Find the probability that there will an odd number of		

		ca	ılls.										
	A disc	rete I	RV has	the p	robabi	lity fu	ınctior	<u> </u>			_		
	X	0	1	2	3	4	5	6	7	8			
6	$\begin{array}{ c c }\hline P(x)\\\hline (i)\end{array}$	a Fi	3a .nd the	5a value	7a	9a	11	13a	15a	17a			
Ü	(ii) (iii) (iii	P((x<3), P nd the	(0 <x<< th=""><th>3), P(x</th><th>,</th><th>tion of</th><th>x</th><th></th><th></th><th></th><th></th><th></th></x<<>	3), P(x	,	tion of	x					
	i) ii)	Fi P(D:	$= \frac{x}{15'}$ and P(x=\frac{1}{2} < x) istribut and E(X)	=1 or > < < 5/2 ion fu	x=2) 2 / x>1 nction	of x						CO1	K3
	X $P(X)$: 0 : 0	variable 1 2 <i>K</i> 2 <i>K</i>	3 <i>X</i> 2 <i>K</i>	4 3 <i>K</i>	$ \begin{array}{ccc} 5 \\ K^2 & 2 \end{array} $	$\begin{array}{ccc} 6 & \\ 2K^2 & 7. \end{array}$	$7 K^2 + K$	-			CO1	K3
7	Find Determine $P(1.5 \cdot P[X \le Y])$	(iii)											
8	A ra	andon	n var $x^{x}; x \ge 0$ x < 0	iable 2	X has	dens			on g	iven	by	CO1	K3
9	$\begin{cases} x, \\ 2-x \\ 0, \end{cases}$	0 < x, 1 < x	of the contract of the contra					_			(x) =	CO1	K3
10	f(x) =		uous $x, x \ge 0$. ce find		the rtl		er mor	nent (o.d.f the	CO1	K3
11			ution f $+x)e^{-x}$,							_	-	CO1	К3
		S	ΓAND	ARD I	DISTR	IBUT	IONS-	DISC	RETE				
12	Derive	e the	MGF , l	Mean	varian	ce of I	Binomi	al dist	ributio	on		CO2	K3
13	Derive	e the N	MGF , N	Mean v	variano	ce of P	oisson	distri	bution	1		CO2	K3
14	Derive	e the N	MGF , N	Mean v	variano	ce of C	Geomet	ric di	stribut	tion		CO2	K3
15	State	and	prove	the	mem	oryles	s pro	perty	of C	Geome	etric	CO2	K3

	distribution		
	Out of 800 families with 4 children each, how many families	CO2	K3
	would be expected to have (i)2 boys and 2 girls (ii) at least 1 boy		
16	(iii) at most		
	2 girls and (iv) Children of both the genders. Assume equal		
	probabilities for boys and girls.		
17	6 dice are thrown 729 times how many times would you expect	CO2	K3
17	to have at least 3 dice should show a five or six.		
	If the probability that a target is destroyed in any one shot is 0.6.	CO2	K3
18	What is the probability that it should be destroyed on the 5 th		
	attempt		
19	A die is thrown until 6 appears what is the probability that it	CO2	K3
19	must be thrown more than 4 times.		
	The probability that a razor blade manufactured by a firm is	CO2	K3
	defective is 1/500. Blades are supplied in packets of 5 each. In a		
20	lot of 10,000 packets, how many packets would (i) be free		
20	defective blades? (ii) contains exactly one defective blade?(e-		
	0.01=0.99) Let X be the number of defective blades in a packet of		
	5 blades. Then, X is B (n = 5, p = $1/500$)		
	The number of accidents in a year attributed to taxi drivers in a	CO2	K3
21	locality follows Poisson distribution with an average 2. Out of		
21	500 taxi drivers of that area, what is the number of drivers with		
	at least 3 accidents in a year?		
	The probability that a razor blade manufactured by a firm is	CO2	K3
	defective is 1/500. Blades are supplied in packets of 5 each. In a		
	lot of 10,000 packets, how many packets would (i) be free		
22	defective blades? (ii) contains exactly one defective blade?(e-		
	0.01=0.99) Let X be the number of defective blades in a packet of		
	5 blades. Then, X is B (n = 5, p = $1/500$)		
	STANDARD DISTRIBUTIONS-CONTINUOUS		
23	Find the mean, variance and mgf of Exponential distribution and	CO2	K3
		1	

	also prove the memoryless property.		
24	Find the mean, variance and mgf of Uniform Distribution	CO2	K3
25	Find the mean, variance and mgf of Normal Distribution	CO2	K3
	Trains arrive at a station at 15 minutes interval starting at 4 a.m.	CO2	K3
	If passengers arrive at a station at a time that is uniformly		
26	distributed between 9.00 a.m. and 9.30 a.m., find the probability		
	that he has to wait for the train for (i) less than 6 minutes (ii)		
	more than 10 minutes.		
	The length of the shower in a tropical island in a rainy season	CO2	K3
27	has an exponential distribution with parameter 2, time being		
21	measured in minutes. What is the probability that it will last for		
	at least one more minute?		
28	The Amount of time that a surveillance camera will run without having to be reset is a random variable having the exponential distribution with θ =50 days. Find the probabilities that a camera will:	CO2	К3
	a. Have to be reset in less than 20 days		
	b. Will not have to be reset in at least 60 days		
29		CO2	K3
30		CO2	K3

	UNIT 5			
		Mark	CO'	Bloom
Q.No	Part A- Questions	s	s	's
				Level
	A garment was sampled on 10 consecutive hours of production.	2	6	K2
1.	The number of defects found per garment is given below:			
	Defects:5,1,7,0,2,3,4,0,3,2.Compute upper and lower control			
	limits for monitoring number of defects.(Apr/May 2019)			
2.	When do we use X and R charts?	2	6	K1
3.	Define Tolerance limits	2	6	K1

4.	Define control chart	2	6	K1
5.	Define Statistical quality control:	2	6	K1
6.	What are attributes?	2	6	K2
7.	What are the types of control charts?	2	6	K2
8.	What are the control charts for variables: The control charts for variables:	2	6	K2
9.	Name any two advantages of control charts?	2	6	K2
10.	What is the procedure for drawing X-R charts:	2	6	K1
11.	What are the control limits for mean?	2	6	K1
12.	What are the tools used in statistical quality control?	2	6	K2
13.	Define p-chart.	2	6	K1
14.	Define C-chart.	2	6	K1
15.	The total number of defects in 20 pieces of cloth is 220. What are UCL and LCL?	2	6	K2

Q. No						Int	roduc	tion -	SQC					
1.	Write a	a shor	t note	e on S	tatisti	cal Qı	uality	Cont	rol				CO6	К3
2.	Write	rite a short note on control charts												К3
					X AN	DRO	CHAR	RT						
	The for	f size s	5 . Co	nstru ent on	ct the the n	contr ature	ol cha	rt for	the m	nean a	nd	5	CO6	K4
3	Sam ple no	1	2	3	4	5	6	7	8	9	10			
	Mea	12.8	13.1	13.5	12.9	13.2	14.1	12.1	15.5	13.9	14.2			

	n \bar{x}													
	Ran	2.1	3.1	3.9	2.1	1.9	3.0	2.5	2.8	2.5	2.0	1		
	ge R													
	The fo	llowir	ıg are	the s	ample	e mea	ns an	d ran	ges fo	r 10 s	ample	:S		
	each o		_		_				_		_		001	
	range												CO6	K4
	Sam	1	2	3	4	5	6	7	8	9	10			
	ple													
	no													
4	Mea	37.3	49.8	51.5	59.2	54.7	34.7	51.4	61.4	70.7	75.3			
1	$n \bar{x}$													
		9.5	12.8	10	9.1	7.8	5.8	14.5	2.8	3.7	8.0			
	Ran	7.5	12.0	10	7.1	7.0	5.0	14.5	2.0	5.7	0.0			
	ge R													
	The tal													
	sample	1SS	CO6	K4										
	the nat													
	Sample													
_	2	50	-	26 48	24 51		34 43							
5	3	32	-	28	26		22							
	4	52		55	56		44							
	5 6	36		16 36	21 35		26 31							
	7	21	-	22	18		21							
	8	29	-	21	23		22							
	9 10	26	-	46 22	22		14 44							
								· for	0 0000	-1-a	of oin	- <i>(</i> -		
	The fo		0	0			0			-				
	each in		-				-				e cont	101	CO6	K4
	limits	using	mear	ı cnar	t. GIV	en 101	n = 6	$, A_2 =$	- U.483),				
6	0.00			1	2		2	4		_	-			
		nple		1	2		3	4		5	6			
	M	ean	3	300	342	3	351	319	3	26	333			
	Ra	nge		25	37		20	28		30	22			
	The fo	llowir	ng da	ta giv	es rea	dings	of 10	samp	oles of	size	6 each	in		
	the pro	oducti	on of	a cer	tain p	roduo	ct. Dra	aw co	ntrol	chart	for me	ean	CO6	K4
	and ra				_									141
7							-	7	0	0	10			
	Samp				3 4			7	8	9	10			
	Mea	100			05 58						753			
	Rang	ge 9	5 1	28 10	00 9	1 68	65	148	28	37	80			
	CONTROL CHART FOR ATTRIBUTES													
8.	In a co	mpan	y ma	nufac	turing	z cricl	set ha	ll, the	guali	ty co	ntrolle	r		
٥.		Y 411	, 1110			5			7	-5, 201				

	-	nspects the balls and classifies them as defective or non- lefective on the basis of certain defects. The company manage												
									-			0		
	wants to ma			-					_			e		
	than 5 perce	ent of	f the	outp	ut is	defec	tive.	Sugg	gest a	suit	able			
	control char	t for	this	purp	ose. l	If the	com	pany	can	work	witl	n a		
	sample of si	ze 50	00, ca	lcula	te th	e cen	tre li	ne an	ıd coı	ntrol	limit	s for		
	this chart.													
	A factory manufacturing small bolts. To check the quality of the bolts, the manufacturer selected 20 samples of same size 100													
	bolts, the m	anuf	actuı	er se	lecte	d 20 s	samp	les o	f sam	ıe siz	e 100)	CO6	K4
	from the manufacturing process time to time. He/she visually													
	inspected each selected bolt for certain defects. After the													
	inspection, he/she obtained the following data:													
9.	Sample Number	1	2	3	4	5	6	7	8	9	10			
	Proportion Defective	0.10	0.04	0.08	0.15	0.08	0	0.01	0.05	0.05	0.08			
	Sample Number	11	12	13	14	15	16	17	18	19	20			
	Proportion Defective	0.10	0	0.06	0.05	0.03	0.20	0.05	0.07	0.01	0.08			
	The following data are found during the inspection of the first													
	15 samples of size 100 each from a lot of two-wheelers												CO6	T//
	manufactured by an automobile company. Draw the chart for fraction defective (p) and comment on the state of control. If the												CO6	K4
	process is o		,_ ,											
	1 1 ! !													
10	control poir	-	asse	3111111	5 4331	griad	ic ca	uses.	ioi ai	iy oc	11-01-			
	Sample .	ii.				70.70	9	-	- 1	111				
	Number 1	2	3	4 5	6	7 8	9	10	11 12	13	14 1	.5		
	Number of 3	4	6	2 12	5	3 6	3	5	4 15	5	2	3		
	Defectives		Ü	2 12		,			1.3		_			
	List the diff	erent	type	es of o	contr	ol ch	arts f	or at	tribu	tes.				
11			<i>J</i> 1										CO6	К3
													200	N 3
	A daily sam	-						_				•		
	order to mo	nitor	the	manı	ıfactı	uring	proc	cess c	of the	shirt	ts. Ea	ch	CO6	K4
12	shirt was in	spect	ted a	nd cl	assifi	ed as	s defe	ective	or n	on-d	efect	ive.		
12	If a total of 2	22 de	fecti	ve sh	irts v	vere :	found	d in 1	.5 da	ys, w	hat			
	should be th	ne up	per	and l	ower	cont	rol li	mits	of the	e pro	porti	on		
	of defective	shirt	ts?											
	A mobile m	anuf	actu	rer in	spect	s 30	mobi	les at	t the	end o	of the	day		
13	of production				_							•	CO6	K4
	_													M
	1	ocedure is continued up to 12 days and 2, 1, 3, 0, 2, 1, 0, 5, 2								, -,	1			

	0	O	oas stores. spection is s			ective tyres ollowing		
	Number of Sample	Number of Tyres Inspected	Number of Defective Tyres	Number of Sample	Number of Tyres Inspected	Number of Defective Tyres		
	1	650	70	11	670	71		
	2	510	74	12	660	75		
14	3	600	58	13	600	77		
LŦ	4	590	61	14	550	78		
	5	630	65	15	540	64		
	6	650	115	16	610	90		
	7	700	82	17	670	96		
	8	740	55	18	660	110		
	9	580	80	19	650	78		
	10	600 — —	P-90)P	20	590	60		
	the proce To monit control e production are inspe	ess. for the man ngineer rar on line, eac ected for cer	ufacturing ndomly sele	process of the proces	of laptops, ptops from of 20 days number o	the . The laptop f defective	CO6	K 4
15	Construc	t NP chart	and state w	vhether tl	ne process	is in control		

	Day	Numl Lap Inspe	tops		Defe	ber of ective otops	E'9 TY	Ť	Number Lapto Inspect	ps	Numb Defect	ctive			
	1	5	0			4	1	1	50		6	i			
	2	5	0	4		8	1	2	50		1				
	3		0	4		6	—	3	50	_	5		_		
	4		0	4	1	10		4	50		3		4		
	5								4						
	6	_	0	+		3	—	6	50	-	3		4		
	7		0	N	n	4	_	7	50	-+	7	_			
	8		0	4		7	_	8	50 50	\dashv	2		2		
	10		0	E	DEC	4	_	9	50	+	4				
	10	,	U			.4		.0	30		4				
	Constr	uct a	cor	itro]	l char	t for o	defec	tives	for th	ne foll	owin	g dat	a		
	Samp no	ole 1	l	2	3	4	5	6	7	8	9	10		CO6	K4
16	No. Inspe			65	85	70	80	80	70	95	90	<i>7</i> 5			
	No. o	of.	-												
	defec	eti 9	9	7	3	2	9	5	3	9	6	7			
	A cont	rol ch	art	is to	o be f	orme	d for	a pro	cess	in wh	ich la	ptop	S		
	are pro							_						COC	T/ 4
17					_				_	-			ta	CO6	K4
17												•			
	are rec						re ioi	una 11	n 30 I	aptop	os. Ot	otain i	ine		
	control	limit	s to	or th	ne cha	art.									
	A plar	ıt pro	du	ces _]	paper	for r	iewsp	orint a	and r	olls o	f pap	er are	9		
10	inspect	ed fo	r de	efec	ts. Th	ie res	ult of	insp	ectio	n of 2	0 roll	s of			
18	papers	are g	ive	n di	raw t	he co	ntrol	chart	for t	he giv	ven				
	data.19	_								_					
10	A plan	t proc	duc r de	es p	aper ts. Th	for no	ewsp ult of	rint a	nd ro	olls of n of 2	pape 0 roll	s of		CO6	K4
19	papers 9,10,8,1	_								he giv	ven d	ata:			
	The number of scratch marks on a particular piece of furniture is recorded. The data for 20 samples are given below: Draw the appropriate control chart and write the comments													CO6	K4
20		he sta	ate	of tl	he pro	ocess	whe	n:							
	per pie	ce.													

	per piece.													
	Sample Number	1	2	3	4	5	6	7	8	9	10			
	Scratch Mark	96	3	14	7	2	5	12	4	7	3			
	Sample Number	11	12	13	14	15	16	17	18	19	20			
	Scratch Mark	2	7	6	8	4	10	5	4	13	9			
	As part of an overall quality improvement programme, a textile													
	manufacturer decides to monitor the number of defects four each inspected bolt (large bundle) of cloth. The data from 20										CO6	K4		
	inspections are recorded in the table given below:													
21	Cloth	1	2	3	4	5	6	7	8	9	10			
	Number of Defects	10	19	5	9	2	8	7	13	3	2			
	Bolt of Cloth	11	12	13	14	15	16	17	18	19	20			
	Number of Defects	22	4	6	9	7	2	5	12	4	2			
22	Write the applications of C chart.												CO6	K4
	TOLERANCE LIMITS - ACCEPTANCE SAMPLING.													
23	Explain Sampling plan concepts												CO6	К3
24	Explain the advantages and Limitations of sampling plan concepts												CO6	К3
25	Write a short note on tolerance limits.												CO6	К3