Detecção e Reconhecimento Facial em Dispositivos Móveis para Auxílio à Deficientes Visuais

Alan Zanoni Peixinho Everton Fernandes da Silva

Orientador: Prof. Aparecido Nilceu Marana

Coorientador: André Marcelo Farina

Motivação

 Aproximadamente 3,5% da população possui deficiência visual severa

Dificultando o reconhecimento de pessoas

Limitando sua integração natural

Objetivo

 Desenvolver uma aplicação Android de reconhecimento dos indivíduos ao redor

Permitindo reconhecimento sem interação

Biometria

Diversos tipos de Biometria disponíveis:

- Impressão digital;
- Retina;
- Geometria das mãos;
- Assinatura;
- Face.

Biometria Facial

- Técnica mais utilizada;
- Maior aceitabilidade com relação as demais técnicas;
- Coleta a distância, sem interação com o indivíduo;
- Dividida em duas etapas:
 - Detecção Facial
 - Extração de Características

Biometria Facial

Ainda apresenta algumas dificuldades.

Detecção Facial

- Detecção de Zonas da Pele
 - Procura pelas regiões da pele

- Viola Jones
 - Procura contrastes
 comuns da face

Extração de Características

- Modelo da Forma Ativa
 - Extrai informações de forma da face

 Extrai informações de contraste da face

- Análise dos Componentes Principais
 - Utiliza um espaço ótimo de representação das faces

Sistema Proposto

Android Eye

Cadastro de Faces

Cadastro automático de faces

Auxiliando o deficiente visual

Baseado nos contatos do próprio dispositivo

Interface com o usuário

 Interface não-visual de comunicação com o usuário

Texto para voz: biblioteca Android

- Voz para texto: PocketSphinx
 - Utiliza um dicionário limitado de palavras

Aplicação

Experimentos

Utiliza 6 imagens de 75 diferentes indivíduos

Totalizando 450 imagens.

Base Mobio

- Capturadas com dispositivos móveis
- Em diferentes datas e locais.

Detecção de Faces

Técnicas: Zona da Pele e Viola Jones

	Zona da Pele		Viola Jones			
Resolução	FAR(%)	FRR(%)	Tempo(s)	FAR(%)	FRR(%)	Tempo(s)
640x320	1,55	10,0	2,3789± 0,2728	3,11	16,0	5,5353± 0,3438
480x360	0,44	9,33	1,2109± 0,0870	1,11	12,88	3,7918± 0,3007
320x240	0,66	9,11	0,5175± 0,0345	0,44	14,22	1,3745± 0,1048
160x120	0,0	9,11	0,1036± 0,0177	0,22	15,77	0,2667± 0,0357

Reconhecimento de Faces

• Técnicas: ASM, LBP e PCA

Descritor	Rank-1	Rank-2	Rank-3
ASM – 1D 68 pontos	9,33%	15,56%	18,67%
ASM – 2D 76 pontos	9,89%	15,11%	20,00%
LBP	22,22%	26,22%	28,89%
LBP – 4 janelas	36,44%	44,00%	49,33%
LBP – 8 janelas	46,22%	54,67%	61,33%
PCA - 90%	34,22%	56,44%	69,78%
PCA - 95%	37,33%	56,00%	68,00%

Reconhecimento de Faces

• Técnicas: ASM, LBP e PCA

10.1.79			
Descritor	Tempo Extração (s)	Tempo Classificação (s)	Número de Características
ASM – 1D 68 pontos	3,696235 ± 0,588743	4,640711 ± 0,670772	136
ASM – 2D 76 pontos	23,581487 ± 3,222665	24,704176 ± 3,426079	152
LBP	0,3866s ± 0,0649	2,1116s ± 0,1139	256
LBP – 4 janelas	0,411418s ± 0,076385	7,073862s ± 0,121046	1024
LBP – 8 janelas	0,485178 ± 0,149978	14,018960 ± 0,512327	2048
PCA - 90%			38
PCA - 95%			68

Teste de Usabilidade

• 3 indivíduos simulando a deficiência visual.

	Ruim	Razoável	Bom
Eficácia	0	0	3
Eficiência	0	0	3
Satisfação	0	1	2

Teste da Aplicação

• Treinamento: 10 indivíduos

• Teste: 3 indivíduos

Cadastro	Rank-1	Rank-2	Rank-3
Manual	30,0% ± 26,46	50,0% ± 20,0	66,67% ± 11,55
Automático	40,0% ± 30,0	56,67% ± 32,15	70,00% ± 36,06

Teste da Aplicação

• Distância de reconhecimento

Distância	Rank-1	Rank-2	Rank-3	Falso Negativo
1m	40,0%	70,0%	80,0%	0,0%
2m	30,0%	70,0%	80,0%	10,0%
3m	40,0%	60,0%	60,0%	40,0%

Conclusão

Referências

JONES, M.; REHG, J. Statistical color models with application to skin detection. In: IEEE. Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. [S.I.], 1999. v. 1.

VIOLA, P.; JONES, M. Robust real-time object detection. International Journal of Computer Vision, v. 57, n. 2, p. 137–154, 2001.

TURK, M.; PENTLAND, A. Face recognition using eigenfaces. In: IEEE. Computer Vision and Pattern Recognition, 1991. Proceedings CVPR'91., IEEE Computer Society Conference on. [S.I.], 1991. p. 586-591.

AHONEN, T.; HADID, A.; PIETIKAINEN, M. Face description with local binary patterns: Application to face recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, IEEE, v. 28, n. 12, p. 2037–2041, 2006.

COOTES, T.; TAYLOR, C. et al. Statistical models of appearance for computer vision. Imaging Science and Biomedical Engineering, University of Manchester, Manchester M, v. 13, 2001.