DATATHON FME

AED CHALLENGE FIND THE PERFECT TEAM

Adriana Aguiló Amal Dokkar Jordina Gavaldà Alèxia Escudero

PARÀMETRES QUE HEM TINGUT EN COMPTE

id name email age year_of_study shirt size university dietary_restrictions programming_skills experience_level hackathons done interests

preferred_role objective interest_in_challenges preferred_languages friend_registration preferred_team_size availability introduction technical_project future excitement fun_fact

Multipliers:

OBJECTIVE

Hem definit un diccionari amb paraules clau que hem tret d'alguns textos i hem comptat el nombre de cops que apareixien en la resta.

D'aquesta manera ens ha quedat un vector amb tantes coordenades com categories a classificar. La proximitat entre dos objectius és el producte escalar entre els dos vectors.

PROGRAMMING SKILLS

Hem processat la llista de programming skills per tal que sigui un vector de enters amb un nombre describint la skill a cada posició.

Dues persones són més compatibles quant majors skills tingui el màxim element a element dels seus dos vectors

NO HI HA UNA ÚNICA SOLUCIÓ VÀLIDA!

Fem una mitjana pondera amb uns multiplicadors definits per l'usuari.

JSUARI 1: SONÈIXER GENT

++ interesos similars

+ amb amics

- + curs similar
- habilitats de programació
- -- rol desitjat

USUARI 2: COMPETITIVITAT

++ habilitats de programació

- + rol desitjat
- + disponibilitat
- cursos similars
- -- amb amics

K-MEANS CONSTRAINED

- No té en compte el tamany d'equip preferent
- No considera la transitivitat de les preferències
- k Means clustering algorithm adaptat
- Limitem 3-4 persones per cluster
- Repositori de la llibreria:
 https://github.com/joshlk/
 k-means-constrained

BEAM SEARCH

- Té en compte les preferències de tamany d'equip
- Considera una fusió de les característiques quan les persones s'uneixen a un equip
- Aproximació greedy al clustering ideal escollint cada cop les W millors opcions

K-MEANS CONSTRAINED

BEAM SEARCH

Team sze = 3

Provem de juntar les *B* parelles més properes

Ens quedem amb les *M* millor opcions

$$G1 = (V1, E1)$$

Gm = (Vm, Em)

I repetim!

e3484b47-0c0a-41d7-9750-a21adb889205

a00428a2-14a2-4fb1-838a-22394778ec88 662230f0-a069-402e-8270-5e7bce63718c 57fffc51-bccs-4c25-afbe-155255e4all/9 50ac00ab-42d5-40ae-a7da-ad69a687b7cb

1984f7983-70c7-49e9-afe5-7b6fdf59db5b d1c120a3-498a-4a25-89287#823431#0ed-4204-9ef3-31b2dc51615d

81072249-9652-477e-9efU-208csace28e8 824f4877-d31a-4egf-a7de-5u77392fg1aea7-5eDe-4fao-5919-cdddd1c11d14

2647ff5e-eb6b-4kf6**ce57 0 08cc543 (passentility 035e**f3**co**\$-9c71-520a23c808a0

55ef7 po8-be39-4572-912d-67 mp360aae4 93cce408-4699 **53-bc4d-bc5dd6281e3c

8d317b45-ad3e-42c3-996a-fc566a0d6068

1. DEFINIR ELS
MULTIPLICADORS
(usuari a través de la
interfície de streamlit)

3. CALCULAR ELS GRUPS
QUE MINIMITZIN EL PES
TOTAL
(i renderitzar-ho)

NOTA: Abans s'ha preprocessat el JSON, canviant cursos a nombres, skills a vectors, etc.

2. CREAR EL GRAF AMB
PESOS (segons els criteris
que hem explicat)

"D'ACORD, PERÒ EL JSON TÉ 924 ENTRADES, I NOMÉS ENS HEU MOSTRAT EXEMPLES PETITS..."

Ho hem fet amb totes les dades. En un notebook.

Que ha estat bastaaaaant temps executant-se però a qui li importa ahahah

GRÀCIES PER LA VOSTRA ATENCIÓ