תרגיל בית 7 ־ אלגברה לינארית 1א' לאודיסיאה סייבר

- $\lambda \neq 2$ אם ורק אם ורק הפיכה $A + \lambda I$ כי הוכיחו (A + 2I) ש־0 ש־1 אם ורק אם A
- בהיא שאם $p\left(A\right)$ כ מטריצה הפיכה. הוכיחו שקיים $p\in\mathbb{F}_{n^2-1}\left[x\right]$ כך שי $p\in\mathbb{F}_{n^2-1}\left[x\right]$ היא שאם $A\in M_n\left(\mathbb{F}\right)$ מטריצה הפיכה. הוכיחו שקיים $p\left(A\right)=\sum_{i=0}^m a_i A^i$ אז $p\left(A\right)=\sum_{i=0}^m a_i A^i$ אז $p\left(A\right)=\sum_{i=0}^m a_i A^i$

 $.p\left(A
ight)=A^{-1}$ המקיימת $p\in\mathbb{F}_{n-1}\left[x
ight]$ הערה בלינארית 2 נוכיח שלמעשה קיימת

- . הפיכות. I-A מטריצה כך שקיים $m\in\mathbb{N}$ כך ש־ $m\in\mathbb{N}$ הוכיחו ש־A+A וגם A
- באות: את הטענות הבאות: BC הפיכה ו־AB הפיכה נניח ש־AB. נניח ש־AB הפיכה ו-AB
 - לא הפיכה AC + BC
 - הפיכה A+B
 - A=I+ABיהיו (\mathbb{F}) איז $A,B\in M_n$ (\mathbb{F}) יהיו
 - Aהפיכה הוכיחו כי
 - הוכיחו כי A,B מתחלפות =
 - מטריעה סימטרית אז גם A מטריצה סימטרית B מטריצה הוכיחו \Rightarrow
 - $A=I+B+B^2$ אם ורק אם $B^3=0$ הוכיחו כי
 - $M_{2}\left(\mathbb{Z}_{3}\right)$ כתבו את כל המטריצות האלמנטריות - $oldsymbol{\cdot}$

.7

P עבורה מטריצה אביכה עבורה

$$\begin{pmatrix} 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} = P \begin{pmatrix} 1 & 2 & 0 & 1 \\ 3 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

עבורה Q מצאו מטריצה הפיכה \pm

$$\begin{pmatrix} 1 & 3 & -1 \\ 2 & 3 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} Q$$