Руководство пользователя Системы мониторинга работы ABP

Объекты мониторинга: Автоматический ввод резерва

Содержание

Блок-схема	3
Контроллер	4
SMS уведомления	5
База данных	6
Таблицы базы данных	8
Поставщик SMS шлюза	10
ATS Monitoring	11
Создание отчетов	12

Блок-схема

Контроллер НМІ

Контроллер Segnetics Pixel 25-хх-хх установлен в Вводно-распределительном устройстве (см. однолинейную схему ВРУ) и собирает данные о работе генератора, автоматического ввода резерва, поддерживает оптимальный уровень нагрузки, подключенной к генератору. Связь с Modbus TCP сервером осуществляется посредством modbus TCP/IP.

На первом экране контроллера отображаются четыре строки:

Наименование строки	Принимаемые значения	Описание
Питание сеть	Да/Нет	Значение «Да» отображается в случае наличия питания от электросети. Значение «Нет» отображается в случае отсутствия питания от электросети.
Генератор:	Успешный старт	Значение «Успешный старт» отображается в случае успешного старта генератора. В любом ином случае значение не отображается.
Сбой старта	Да/Нет	Значение «Да» отображается при наличии сбоя старта генератора. Значение «Нет» отображается при отсутствии сбоя старта генератора.
Сбой работы	Да/Нет	Значение «Да» отображается при неисправности генератора в режиме трансляции питания от электросети. Значение «Нет» отображается в случае работоспособности генератора в режиме трансляции питания от электросети.

На втором экране контроллера отображаются три строки:

Наименование строки	Принимаемые значения	Единица измерения	Описание
Нагрузка теку- щая	0-40	Ампер	Значение отображает уровень нагрузки, подключенной к генератору в настоящий момент времени.
Нагрузка ми- нимальная	0-30	Ампер	Поле для ввода значения минимальной нагрузки. Контроллер будет поддерживать установленный уровень нагрузки, путем включения дополнительной нагрузки. Например: если «Нагрузка текущая» < «Нагрузка минимальная» включится дополнительная нагрузка.
Гистерезис	0-1000	Секунды	Поле для ввода значения задержки включения/выключения дополнительной нагрузки.

Точки сбора данных

Контроллер автоматического ввода резерва

Контроллер Segnetics Pixel 25-хх-хх установлен в Вводно-распределительном устройстве (см. однолинейную схему ВРУ) и собирает данные о работе генератора, автоматического ввода резерва, поддерживает оптимальный уровень нагрузки, подключенной к генератору. Связь с ОРС сервером осуществляется посредством modbus TCP/IP.

Карта переменных modbus (см. файл «ats control.map»):

Имя	Тип	Фиксация	Адрес	Комментарий
mains_power_sup ply	bool	да	00002	True – наличие питания от электросети. False – отсутствие питания от электросети.
start_generator	bool	да	00003	True – успешный старт генератора. False – сбой старта генератора.
generator_faulty	bool	да	00005	True – сбой работы генератора в режиме трансляции питания от электросети. False – исправная работа генератора в режиме трансляции питания от электросети.
generator_work	bool	да	00006	True – на входе генератора есть напряжение. False – на выходе генератора напряжение отсутствует.
load	int	да	00004	Уровень нагрузки, подключенной к генератору в амперах от 0A до 40A.

Контроллер зимнего сада

Контроллер Segnetics Trim5 установлен в шкафу управления (см. однолинейную схему ШУ8) и собирает данные о работе фитоосвещения, автополива растений, показания температуры, влажности, уровня освещенности внутри помещения, и уровня освещенности на улице. Связь с OPC сервером осуществляется посредством modbus TCP/IP.

Карта перменных modbus (см. файл «winter garden.map»):

Имя	Тип	Фиксация	Адрес	Комментарий
phyto_lighting_1	int	да	00007	1 – шинопровод освещение №1 включен. 0 – шинопровод освещения №1 выключен.
phyto_lighting_2	int	да	80000	1 – шинопровод освещение №2 включен. 0 – шинопровод освещения №2 выключен.
phyto_lighting_3	int	да	00009	1 – шинопровод освещение №3 включен. 0 – шинопровод освещения №3 выключен.
phyto_lighting_4	int	да	00010	1 – шинопровод освещение №4 включен. 0 – шинопровод освещения №4 выключен.
fan	int	да	00011	1 – вытяжной вентилятор включен.

				0 – вытяжной вентилятор выключен.
automatic_watering_1	int	да	00012	1 – автополив №1 включен. 0 – автополив №1 выключен.
automatic_watering_2	int	да	00013	1 – автополив №1 включен. 0 – автополив №1 выключен.
automatic_watering_3	int	да	00014	1 – автополив №1 включен. 0 – автополив №1 выключен.
temperature_indoor	int	да	00015	Температура в помещении в °С.
humidity_indoor	int	да	00016	Относительная влажность в помещении в %.
illumination_indoor	int	да	00017	Уровень освещенности в помещении в люксах.
illumination_outdoor	int	да	00018	Уровень освещенности на улице в люксах.
connection	int	да	00019	1 – связь ПЛК с ОРС сервером есть. 0 – связь ПЛК с ОРС сервером отсутствует.

SMS уведомления

Мониторинг работоспособности генератора:

При неисправности генератора, на ваш номер приходит следующее SMS сообщение: Авария! Генератор неисправен! Срочно произведите сервисные работы!

При восстановлении работоспособности генератора, на ваш номер приходит следующее SMS сообщение:

Работоспособность генератора в режиме трансляции питания от электросети восстановлена. Генератор исправен. Генератор работает.

Мониторинг работы автоматического ввода резерва:

При сбое питания от городской электросети и успешном старте генератора на ваш номер приходит следующее SMS сообщение:

Сбой питания от электросети. Успешный старт генератора.

При сбое питания от городской электросети и сбое старта генератора на ваш номер приходит следующее SMS сообщение:

Сбой питания от электросети. Сбой старта генератора.

При восстановлении питания от городской электросети и исправной работе генератора, на ваш номер приходит следующее SMS сообщение:

Питание от электросети восстановлено. Генератор исправен. Генератор работает.

При восстановлении питания от городской электросети и неисправности генератора, на ваш номер приходит следующее SMS сообщение:

Питание от электросети восстановлено. Генератор неисправен. Генератор не работает.

База данных

В качестве базы данных используется СУБД PostgreSQL, записывающая данные из контроллеров посредством Modbus TCP сервера, входящего в состав приложения ATS Monitoring, и, данные работы приложения, работы генератора, автоматического ввода резерва, отправки уведомлений.

Установка и настройка PostgreSQL:

- Скачайте и установите СУБД PostgreSQL.
- Создайте базу данных.
- Настройте параметры доступа к базе данных.
- Настройте кодировку UTF8.
- Настройте использование кириллицы.
- Создайте следующие таблицы:

```
CREATE TABLE avr_control_insert (
  mains power supply int NOT NULL,
  start_generator int NOT NULL,
  generator_faulty int NOT NULL,
  generator_work int NOT NULL,
  connection int NOT NULL.
  mark timestamptz default current timestamp
);
CREATE TABLE журнал_работы_приложения (
  событие text NOT NULL,
  время_и_дата timestamp default current_timestamp
);
CREATE TABLE нагрузка_на_генератор (
  нагрузка int NOT NULL,
  время и дата timestamp default current timestamp
);
CREATE TABLE события_авр (
  событие text NOT NULL,
  время_и_дата timestamp default current_timestamp
);
CREATE TABLE зимний_сад (
  фитоосвещение 1 int NOT NULL,
  фитоосвещение_2 int NOT NULL,
  фитоосвещение_3 int NOT NULL,
  фитоосвещение 4 int NOT NULL,
  вентилятор int NOT NULL,
  автополив 1 int NOT NULL,
  автополив_2 int NOT NULL,
  автополив 3 int NOT NULL,
  температура int NOT NULL,
```

влажность int NOT NULL, освещенность_в_помещении int NOT NULL, освещенность_на_улице int NOT NULL, время_и_дата timestamp default current_timestamp);

Таблицы базы данных

Таблица «avr_control_insert»

Служит для своевременной передачи данных из контроллера в приложение ATS Monitoring.

mains_power _supply	start_gener- ator	generator_faulty	generator_work	connec- tion	mark
1	0	0	1	1	2021-10-04
					17:10:41.3967
					86

- mains_power_supply наличие питания от электросети (0 нет, 1 есть)
- start_generator старт генератора (0 сбой старта генератора, 1 успешный старт генератора)
- generator_faulty сбой работы генератора в режиме трансляции питания от электросети (0 — генератор исправен, 1 — генератор не исправен)
- generator_work работа генератора (0 питание на выходе генератора отсутствует, 1 питание на выходе генератора присутствует)
- connection налчие связи с контроллером (0 нет связи, 1 связь есть)
- mark временная метка записи переменных (дата и время)

Таблица «журнал_работы_приложения»

Служит для ведения журнала приложения мониторинга работы генератора, автоматического ввода резерва, отправки уведомлений - ATS Monitoring.

событие	время_и_дата
Ошибка! Связь ОРС сервера с ПЛК отсут- ствует!	2021-10-04 17:10:41.396786

Производится запись следующих событий:

- Авария! Генератор неисправен! Срочно произведите сервисные работы!
- Генератор в режиме трансляции питания от электросети работает исправно.
- Работоспособность генератора в режиме трансляции питания от электросети восстановлена.
- Отправлено SMS сообщение: /Авария! Генератор неисправен! Срочно произведите сервисные работы!/ на номер +79хх-ххх-хх
- Отправлено SMS сообщение: /Работоспособность генератора в режиме трансляции питания от электросети восстановлена./ на номер +79xx-xxx-xx
- Server error! Ошибка! SMS уведомление не было отправлено!
- Http request status error! Ошибка! SMS уведомление не было отправлено!
- Ошибка! Доступ к интернету отсутствует! Http запрос не был выполнен! SMS уведомление не было отправлено!
- Ошибка! Связь ОРС сервера с ПЛК отсутствует!
- Ошибка! Связь СУБД PostgreSQL с OPC сервером отсутствует!

- Произошел сбой питания от электросети! Ожидание (90 секунд) подтверждения отсутствия питания от электросети.
- Питание от электросети есть.
- Подтверждение отсутствия питания от электросети.
- Успешный старт генератора.
- Сбой старта генератора!
- Питание от электросети восстановлено.
- Генератор исправен. Генератор работает.
- Генератор неисправен. Генератор не работает.
- Питание от электросети еще не было восстановлено, после отключения.
- Отправлено SMS сообщение: /Сбой питания от электросети. Успешный старт генератора./ на номер +79xx-xxx-xx
- Отправлено SMS сообщение: /Сбой питания от электросети. Сбой старта генератора./ на номер +79xx-xxx-xx
- Отправлено SMS сообщение: /Питание от электросети восстановлено. Генератор исправен. Генератор работает./ на номер +79xx-xxx-xx
- Отправлено SMS сообщение: /Питание от электросети восстановлено. Генератор неисправен. Генератор не работает./ на номер +79xx-xxx-xx

Таблица «события_авр»

Служит для записи событий работы автоматического ввода резерва.

событие	время_и_дата
Сбой питания от электросети. Успешный	2021-10-04 17:10:41.396786
старт генератора.	

- событие одно из событий работы приложения
- время_и_дата временная метка записи события

Производится запись следующих событий:

- Авария! Генератор неисправен! Срочно произведите сервисные работы!
- Работоспособность генератора восстановлена. Генератор исправен. Генератор работает.
- Генератор в режиме трансляции питания от электросети работает исправно.
- Питание от электросети есть.
- Сбой питания от электросети. Успешный старт генератора.
- Сбой питания от электросети. Сбой старта генератора.
- Питание от электросети восстановлено. Генератор исправен. Генератор работает.
- Питание от электросети восстановлено. Генератор неисправен. Генератор не работает.
- Авария! Генератор неисправен! Срочно произведите сервисные работы!
- Работоспособность генератора восстановлена. Генератор исправен. Генератор работает
- Генератор в режиме трансляции питания от электросети работает исправно.

Таблица «зимний_сад»

фитоосве- щение_1	фитоосве- щение_2	_	_	вентиля- тор	автополи в_1	атополив _2	автополи в_3
1	0	1	0	0	1	0	1

температура	влажность	освещенность_в _помещении	освещенность_н а_улице	время_и_дата
20	40	1000	8000	2021-10-04 17:10:41.396786

Производится запись следующих данных:

- фитоосвещение_1 состояние шинопровода освещения №1 (0 выключено, 1 включено; при таком формате данных при создании отчета в Orange Data Mining есть возможность построить график, для таблицы отчета можно определить переменные, как перечисление: ВЫКЛ, ВКЛ)
- фитоосвещение_2 состояние шинопровода освещения №1 (0 выключено, 1 включено; при таком формате данных при создании отчета в Orange Data Mining есть возможность построить график, для таблицы отчета можно определить переменные, как перечисление: ВЫКЛ, ВКЛ)
- фитоосвещение_3 состояние шинопровода освещения №1 (0 выключено, 1 включено; при таком формате данных при создании отчета в Orange Data Mining есть возможность построить график, для таблицы отчета можно определить переменные, как перечисление: ВЫКЛ, ВКЛ)
- фитоосвещение_4 состояние шинопровода освещения №1 (0 выключено, 1 включено; при таком формате данных при создании отчета в Orange Data Mining есть возможность построить график, для таблицы отчета можно определить переменные, как перечисление: ВЫКЛ, ВКЛ)
- вентилятор состояние шинопровода освещения №1 (0 выключено, 1 включено; при таком формате данных при создании отчета в Orange Data Mining есть возможность построить график, для таблицы отчета можно определить переменные, как перечисление: ВЫКЛ, ВКЛ)
- автополив_1 состояние шинопровода освещения $N ext{0} = 0$ при таком формате данных при создании отчета в Orange Data Mining есть возможность построить график, для таблицы отчета можно определить переменные, как перечисление: ВЫКЛ, ВКЛ)
- автополив_2 состояние шинопровода освещения №1 (0 выключено, 1 включено; при таком формате данных при создании отчета в Orange Data Mining есть возможность построить график, для таблицы отчета можно определить переменные, как перечисление: ВЫКЛ, ВКЛ)
- автополив_3 состояние шинопровода освещения N = 1 (0 выключено, 1 включено; при таком формате данных при создании отчета в Orange Data Mining есть возможность построить график, для таблицы отчета можно определить переменные, как перечисление: ВЫКЛ, ВКЛ)
- температура температура в помещении в °C
- влажность относительная влажность воздуха в помещении в %
- освещенность_в_помещении уровень освещенность в помещении в люксах
- освещенность_на_улице уровень освещенности на улице в люксах
- время_и_дата временная метка записи события

Таблица «нагрузка_на_генератор»

Служит для записи уровня нагрузки, подключенной к генератору.

нагрузка	время_и_дата
Уровень нагрузки, подключенной к генерато-	2021-10-04 17:10:41.396786
ру в амперах.	

- событие одно из событий работы приложения
- время_и_дата временная метка записи события

Поставщик SMS шлюза

Настройка SMS шлюза:

- Создайте учетную запись на сайте поставщика услуг ClickSend.
- Пополните баланс.
- Hастройте API для SMS.

Настройка API для SMS:

Используйте в приложении ATS Monitoring http get запросы:

https://api-mapper.clicksend.com/http/v2/send.php? method=http&username=xxxx&key=xxxx&to=xxxx,yyyy,zzzz&message=xxxx

Параметр	Обязательность	Описание
username	да	Ваше имя пользователя АРІ.
key	да	Вы можете найти это в своей учетной записи в разделе «Учетные данные API» в верхней части экрана.
to	да	Мобильный номер получателя в международном формате (с начальным + и кодом страны). Разделите несколько получателей запятой (,), если применимо. Максимум 1000 получателей.
message	да	Сообщение для отправки. Максимум 960 символов.
senderid	нет	Пользовательский идентификатор отправителя (от имени / номера).
schedule	нет	Позволяет запланировать доставку сообщений. Должен быть в формате unix.
country	нет	Автоматически преобразует предоставленный вами местный номер для добавления кода страны.

Например:

```
let resp = reqwest::blocking::get(
   "https://api-mapper.clicksend.com/http/v2/send.php?method=http&
   username=development-service@yandex.ru&key=1E82A334-89D8-985C-526B-
712DB70A713D&
   to=+79139402913&message=Сбой+питания+от+электросети.
+Успешный+старт+генератора.").unwrap();
```

ATS Monitoring

Прикладное приложение ATS Monitoring предназначено для мониторинга работы систем ACУ зимнего сада и автоматического ввода резерва, отправки SMS уведомлений. Так же в приложении реализован Modbus TCP сервер, функция записи значений переменных и событий в СУБД PostgreSQL.

Приложение ATS Monitoring написано на языке программирования Rust. Исходные файлы доступны на github.

Установка

• Установите Rust для Linux или macOS:

```
$ curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | sh
```

- Для Windows посетите эту страницу.
- Установите приложение:

\$ cargo install ats-monitoring

Установка и настройка при необходимости корректировать http get запросы и строки конфигурации подключения к PostgreSQL

• Установите Rust для Linux или macOS:

```
$ curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | sh
```

- Для Windows посетите эту страницу.
- Клонируйте репозиторий.
- Отредактируйте http get запросы:

let resp = reqwest::blocking::get("https://api-mapper.clicksend.com/http/
v2/send.php?method=http&username=development-service@yandex.ru&key=1E82A33489D8-985C-526B-712DB70A713D&to=+79139402913&message=Сбой+питания+от+электросети.+Успешный+старт+генератора.").unwrap();

• Отредактируйте строки конфигурации подключения к PostgreSQL:

```
let mut client =
    Client::connect("postgresql://postgres:postgres@localhost/postgres",
NoTls)?;
```

- Скомпилируйте локальные пакеты и все их зависимости: \$ cargo build --release
- Для генерации документации на приложение в html формате, введите команду: \$ cargo doc

Создание отчетов

Для анализа и визуализации данных используйте Orange Data Mining.

Установка и настройка

- Скачайте и установите Orange Data Mining.
- Настройте чтение данных из БД.
- Установите дополнительный виджет для анализа данных «Time Series» (Options \rightarrow Adds-ons).

Отчет в формате «Таблица данных»

- Создайте новый проект в Orange Data Mining.
- Добавьте виджет Data \rightarrow SQL. В настройках виджета снимите галочку Auto-discover categorical variables.
- Добавьте виджет Time Series → As Timeseries.
- Добавьте виджет Data → Select Columns.
- Добавьте виджет Data → Select Rows.
- Добавьте виджет Data → Data Table.
- Добавьте виджет Data → Save Data.
- Отсортируйте данные и сохраните отчет в удобном для вас формате.

Отчет в формате «График»

- Создайте новый проект в Orange Data Mining.
- Добавьте виджет Data → SQL.
- В настройках виджета SQL снимите галочку Auto-discover categorical variables.
- Добавьте виджет Time Series As Timeseries.
- Добавьте виджет Data → Select Columns.
- Добавьте виджет Data → Select Rows.
- Добавьте виджет Data → Live Chart.
- Отсортируйте данные и сохраните отчет в удобном для вас формате.