DSC40B: Theoretical Foundations of Data Science II

Lecture 17: Kruskal's algorithm for MST, and clustering

Instructor: Yusu Wang

Previously

- Given a weighted undirected graph
 - Prim's algorithm to compute the minimum spanning tree (MST) in $\Theta((V+E) \lg V)$ time
 - It is a greedy algorithm

- ► Today:
 - Yet another greedy algorithm to compute MST, called Kruskal's algorithm
 - Relation to hierarchical clustering

Kruskal's Algorithm for MST

Recall the general greedy idea:

- ▶ Input:
 - ▶ a weighted undirected graph G = (V, E), with $\omega: E \to R$
- Output:
 - ▶ the set of edges in a MST *T* of *G*
- ▶ A MST T is V-1 number of edges that connect all nodes, with no cycle.
- \blacktriangleright Intuitively, we will choose "safe" edges greedily to incrementally build T
 - > such that any time, the edges we choose will form a part of some MST

Last time: Prim's algorithm

Starting from any node, it starts to grow a partial tree, by repeatedly choosing the minimum-weight edge to reach an unvisited node, till it connects all graph nodes

▶ Today: Kruskal's algorithm

- We will choose the ``safe'' edges in a different order, and still grow the tree edge by edge
 - However, during the intermediate stages, what we have may not be a partial tree, could be disconnected.

Example

- What is a "safe" edge to add first?
- What will be the next a "safe" edge to add?

Strategy

- We will add edges gradually in a greedy manner using smallest weights, while maintaining what we have so far does not have any cycle
 - add edges to tree in ascending order by weight
 - but if an edge creates a cycle, do not add it, and move on to next edge
- ▶ How do we check whether adding a new edge e = (u, v) creates a cycle or not?
 - \triangleright check whether nodes u, v are already connected.

Kruskal's algorithm (Pseudocode)

```
def kruskal(graph, weights):
   mst = UndirectedGraph()
    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)
    for (u, v) in sorted_edges:
        # if u and v are not already connected
        if ...:
            mst.add_edge(u, v)
            # (optional) if mst is now a spanning tree, break
            if len(mst.edges) == len(graph.nodes) - 1:
                break
    return mst
```

Example

Kruskal's algorithm (Pseudocode)

```
def kruskal(graph, weights):
   mst = UndirectedGraph()
    # sort edges in ascending order by weight
    sorted_edges = sorted(graph.edges, key=weights)
    for (u, v) in sorted_edges:
        # if u and v are not already connected
        if ...:
            mst.add_edge(u, v)
            # (optional) if mst is now a spanning tree, break
            if len(mst.edges) == len(graph.nodes) - 1:
                break
    return mst
```

Checking for connectivity

- Each iteration: need to check if u and v are already connected in current $T=(V,E_{mst})$
- We can do a BFS/DFS on each iteration
 - $\Theta(V + E_{mst}) = \Theta(V)$ each time
 - Expensive!
- Again, remember:
 - If you're computing something once, use a fast algorithm
 - If you're computing it repeatedly, consider a data structure!

Disjoint Set Forests

- ▶ Represent a collection of disjoint sets over a set of elements
 - **** \{\{1,5,6\},\{2,3\},\{0\},\{4\}\}
- ▶ Two operations:
 - .union(x, y): Union the sets containing x and y
 - .in_same_set(x, y): return True/False if x and y are in the same set
 - Typically, this is implemented by an operation find(x), which returns the representative of the set containing x.
- In the literature, this is also commonly referred to as the union-find data structure to maintain dynamic disjoint sets

Example

```
>>> # create a DSF with {{0}, {1}, {2}, {3}, {4}, {5}}
>>> dsf = DisjointSetForest([0, 1, 2, 3, 4, 5])
>>> dsf.union(0, 3)
>>> dsf.union(1, 4)
>>> dsf.union(3, 1)
>>> dsf.union(2, 5)
>>> # dsf now represents {{0, 1, 3, 4}, {2, 5}}
>>> dsf.in_same_set(0, 3)
True
>> >> dsf.in_same_set(0, 2)
False
```


Disjoint Set Forests

Each operation takes $\Theta(\alpha(n))$ time, where n is the number of objects in the collection

- $ightharpoonup \alpha(n)$: inverse Ackermann function
 - lt grows very very slowly.
 - $\qquad \alpha(n) = o(\lg n)$
 - While asymptotically, it grows faster than a constant function, effectively in practice, for any number n we can imagine, $\alpha(n)$ is essentially a constant.

Disjoint Set Forest

Can be used to keep track of connected components (CCs) of a dynamic graph

- Nodes of CCs are disjoint sets
 - Add an edge (u, v): .union(u, v)
 - \triangleright Check if u and v are connected: .in_same_set(u, v)
- \blacktriangleright To check if u and v are already connected:
 - ▶ BFS/DFS: $\Theta(V)$ each time
 - Disjoin set forest: $\Theta(\alpha(V))$ each time (essentially like constant in practice, but not asymptotically!)

Kruskal's Algorithm

```
def kruskal(graph, weights):
    mst = UndirectedGraph()
    # place each node in its own disjoint set
    components = DisjointSetForest(graph.nodes)
    # sort edges in ascending order by weight
    sorted edges = sorted(graph.edges, key=weights)
    for (u, v) in sorted_edges:
        if not components.in_same_set(u, v):
            mst.add edge(u, v)
            components.union(u, v)
            # (optional) if mst is now a spanning tree, break
            if len(mst.edges) == len(graph.nodes) - 1:
                break
    return mst
```

Time complexity of Kruskal's algorithm

- Assume graph is connected. Then $E = \Omega(V)$
- ▶ Kruskal's algorithm takes $\Theta(E \lg E) = \Theta(E \lg V)time$
 - Dominated by sorting the edges
- Note: if graph is disconnected, then Kruskal's algorithm produces a minimum spanning forest.

Kruskal's vs. Prim's

▶ Time complexity:

- Prim's:
 - ▶ Binary heap: $\Theta(V \lg V + E \lg V)$ (= $\Theta(E \lg V)$ if graph is connected)
 - Fibonacci heap: $\Theta(V \lg V + E)$
- Kruskal's:
 - $\Theta(V + E \lg V) (= \Theta(E \lg V) \text{ if graph is connected})$
- If graph is dense (e.g, $E = \Theta(V^2)$), then Prim's with Fibonacci heap "wins" in asymptotic time complexity
- In practice, Fibonacci heaps are hard to implement with high overhead.
 - ▶ Kruskal's may be faster for smaller dense graphs

MSTs and (hierarchical) clustering

Clustering problem

- Identify the groups in data
- We frame clustering as a loss minimization problem
 - Input: n data points in R^d
 - Goal: assign each data point a color (red or blue, which is class labels) so that the distance between the closest pair of red and blue points is maximized

Clustering problem

- Identify the groups in data
- We frame clustering as a loss minimization problem
 - Input: n data points in R^d
 - Goal: assign each data point a color (red or blue, which is class labels) so that the distance between the closest pair of red and blue points is maximized

Recall the brute-force solution

- Try all possible assignments
 - \blacktriangleright there are 2^n possible assignments! (n is the number of input points)
 - highly not efficient!
- Instead, we will convert it to a graph problem

Distance graph

- Given n data points $V = \{ p_1, p_2, ..., p_n \}$
 - reate a complete undirected graph G=(V,E) such that for any $p_i \neq p_j$, there is an edge $(p_i,p_j) \in E$
 - the weight of an edge (p_i, p_j) is $\omega(p_i, p_j) = dist(p_i, p_j)$
- \blacktriangleright We call this resulting weighted graph the distance graph spanned by V

Clustering

- Given n data points $V = \{p_1, p_2, ..., p_n\}$
- Create distance graph G
- \blacktriangleright Run either Prim's or Kruskal's Algorithm to compute MST of G, T:

- Delete largest edge in MST, and we obtain two components => clusters!
- In general, if we remove largest k-1 edges in MST
 - \blacktriangleright then we obtain k clusters (components)

- Alternatively, we can perform Kruskal's algorithm, adding edges in ascending order by weights without forming cycles, and stop till we have a target k number of components (clusters)
 - That is, we terminate early in the Kruskal's algorithm
- Time complexity
 - $\Theta(E \lg V) = \Theta(V^2 \lg V)$ as $E = \Theta(V^2)$ in this case
- ▶ This is called the single-linkage clustering algorithm
 - One of the most well-known clustering algorithm.
 - It is popular, although it suffers from the so-called chaining-effect in practice.
 - Variants of it, e.g., average-linkage clustering algorithm and complete-linkage clustering algorithm, are popular as a simple clustering algorithm.

Example of chaining effect

Hierarchical clustering, and single linkage clustering algorithm (Optional)

Clustering

Clustering

Hierarchical Clustering Tree (HCT)

- Each internal tree node indicates a cluster, containing all leaves in subtree
- Ancestor/descendent indicates containment relation
- Height at each tree node corresponds to certain cost of the corresponding cluster (e.g, tightness of cluster)

- One of the family of agglomerative clustering methods
- ▶ Input: A discrete n-point metric (P, d_P)
- \blacktriangleright Output: A hierarchical clustering tree T, with points in P being leaves
- Starting with each data point as a single cluster
- Keep merging clusters based on nearest distance between points from their members

- Starting with each data point as a single cluster
- Keep merging clusters based on nearest distance between points from their members

- Starting with each data point as a single cluster
- Keep merging clusters based on nearest distance between points from their members

- Starting with each data point as a single cluster
- Keep merging clusters based on nearest distance between points from their members

- Starting with each data point as a single cluster
- Keep merging clusters based on nearest distance between points from their members

One Example: Single Linkage Clustering

- Starting with each data point as a single cluster
- Keep merging clusters based on nearest distance between points from their members

Summary

- MST for weighted undirected graphs
 - Prim's algorithm
 - Kruskal's algorithm
 - ▶ Both $\Theta((V + E) \lg V)$ (which is $\Theta(E \lg V)$ for connected graphs)
 - Kruskal's algorithm can be used to produce single linkage clustering

FIN

