Учебно-исследовательская работа М1

"ИССЛЕДОВАНИЕ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ НА МАРКОВСКИХ МОДЕЛЯХ"

1. Цель работы	1
2. Содержание работы	
3. Этапы работы	
4. Порядок выполнения работы	
5. Описание программы MARK	
6. Содержание отчета	
7. Варианты заданий	
8. Рекомендуемые формы таблиц	
9. Литература	

1. Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

2. Содержание работы

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности.

В процессе исследований для расчета характеристик функционирования СМО используется программа MARK.

3. Этапы работы

- 3.1. Разработка марковских моделей исследуемых систем.
- 3.2. Освоение программы по расчету марковских моделей.
- 3.3. Проведение расчетов по разработанным моделям и обработка результатов.
- 3.4. Анализ полученных результатов.
- 3.5. Выбор наилучшего варианта организации системы из двух вариантов в соответствии с заданным критерием эффективности.

4. Порядок выполнения работы

- 4.1. Получить задание на работу.
- 4.2. Построить графы переходов для заданных СИСТЕМЫ_1 и СИСТЕМЫ_2.
- 4.3. С использованием программы MARK рассчитать характеристики марковского процесса для СИСТЕМЫ 1 и СИСТЕМЫ 2.
 - 4.4. Проанализировать характеристики функционирования системы.
- 4.5. Выбрать и обосновать наилучший способ организации системы в соответствии с заданным критерием эффективности.

5. Описание программы MARK

Программа MARK предназначена для расчета характеристик марковских процессов с непрерывным временем по заданным значениям интенсивностей переходов и матрице интенсивностей переходов.

VHP M1 11.10.04 1 (us 6)

профессор Т.И.Алиев

Результатами расчетов являются:

- стационарные вероятности состояний марковского процесса;
- значения характеристик марковской модели, вычисленные на основе стационарных вероятностей по заданным формулам.

Предусмотрена возможность варьирования значений интенсивностей переходов и вывод результатов варьирования в виде таблиц или графика зависимостей характеристик марковской модели от варьируемых параметров.

Результаты расчетов могут быть выведены на экран или на печать.

6. Содержание отчета

- 6.1. Постановка задачи и исходные данные.
- 6.2. Описание исследуемой системы.
- 6.3. Перечень состояний марковского процесса для исследуемой системы.
- 6.4. Результаты работы:
- размеченный граф переходов марковского процесса;
- матрица интенсивностей переходов;
- значения стационарных вероятностей, сведенные в таблицу (форма 1);
- формулы, используемые для расчета характеристик системы и значения характеристик системы, сведенные в таблицы (форма 2);
- результаты (графики и *выводы*) сравнительного анализа характеристик функционирования исследуемых систем;
- обоснование выбора наилучшего варианта организации системы в соответствии с заданным критерием эффективности.

VUP M1 11.10.04 2 (us 6)

7. Варианты заданий

Номер варианта задается в виде двойки N1/N2, где N1 - номер варианта из табл.1, N2 - номер варианта из табл.2.

Таблица 1 Параметры структурной и функциональной организации исследуемых систем

Вариант	СИСТЕМА_1		СИСТЕМА_2		Критерий
	П	EH	П	EH	эффект.
1	2	4/0	3	1/0/0	(a)
2	2	3/0	3	2/0/0	(б)
3	2	2/0	3	1/1/0	(B)
4	2	1/0	3	1/0/1	(r)
5	2	6	2	3/2	(д)
6	2	4/1	1	5	(a)
7	2	3/1	2	2/1	(б)
8	2	2/1	2	1/3	(B)
9	2	1/1	3	0/1/1	(r)
10	2	5	1	1/4	(д)
11	2	2/2	1	4	(a)
12	2	7	3	2/0/0	(б)
13	3	3/0/0	3	3	(B)
14	3	2/0/0	2	2/0	(r)
15	3	5	3	1/0/1	(д)
16	3	1/1/0	2	1/1	(a)
17	3	1/0/0	2	2/1	(б)
18	3	0/0/1	2	0/3	(B)
19	3	0/0/2	2	1/1	(r)
20	3	0/0/3	2	0/3	(д)
21	2	0/4	3	0/0/1	(a)
22	2	0/3	3	1/0/0	(б)
23	2	0/2	3	0/0/2	(B)
24	2	0/1	3	0/1/1	(r)
25	2	6	1	4/1	(д)
26	2	1/4	2	5	(a)
27	2	1/3	3	1/0/0	(б)
28	2	1/2	1	0/3	(B)
29	2	1/1	3	1/1/0	(r)
30	2	5	3	0/1/1	(д)
31	2	2/2	2	6	(a)
32	2	7	2	3/1	(б)
33	3	1/0/1	2	2/0	(B)
34	3	2/0/0	2	6	(r)
35	3	0/3/0	2	0/2	(д)
36	3	0/2/0	2	1/1	(a)
37	3	5	2	2/2	(б)
38	3	0/1/1	2	1/1	(B)
39	3	0/1/0	2	0/3	(r)
40	3	4	3	2/0/0	(д)

Обозначения в табл.1:

VHP M1 11.10.04 3 (us 6)

П - число обслуживающих Приборов;

ЕН - Емкости Накопителей: Х/У/Z (

Х - перед первым прибором,

Ү - перед вторым прибором,

Z - перед третьим прибором);

Указания: 1) емкость накопителя, представленная одним числом, означает общий накопитель перед всеми приборами, т.е. СМО является *многоканальной*;

- 2) критерий эффективности выбирается в соответствии с вариантом из следующего множества:
 - а) максимальная производительность системы;
 - б) минимальные потери заявок;
 - в) максимальная загрузка системы;
 - г) минимальное время пребывания в системе заявок;
 - д) минимальная суммарная длина очередей заявок.

Таблица 2

Параметры нагрузки (в секундах)

Номер вариант	Интенс. потока	Ср.длит. обслуж.	Вероятности занятия прибора		
a	λ	b	П1	П2	П3
	(1/c)	(c)			
1	0,1	25	1/3	1/3	1/3
2	0,2 0,3	20	0,4	0,5	0,1
3	0,3	20	0,25	0,25	0,5
4	0,4	15	0,2	0,3	0,5
5	0,5	10	0,5	0,4	0,1
6	0,6	5	0,1	0,2	0,7
7	0,7	5	0,2	0,4	0,2
8	0,8	5	0,3	0,5	0,2
9	0,9	4	0,5	0,3	0,2
10	1,0	2	0,6	0,3	0,1
11	0,1	40	1/3	1/3	1/3
12	0,2	25	0,4	0,5	0,1
13	0,3	25	0,25	0,25	0,5
14	0,4	20	0,2	0,3	0,5
15	0,5	10	0,5	0,4	0,1
16	0,6	10	0,1	0,2	0,7
17	0,7	8	0,2 0,3 0,5	0,4 0,5	0,2
18	0,8	4	0,3	0,5	0,2 0,2
19	0,9	2	0,5	0,3	0,2
20	1,0	4	0,6	0,3	0,1

Указание к табл.2:

Вероятности занятия прибора определяются следующим образом:

- в случае трехканальной СМО выбираются из табл.2 (см. вероятности занятия приборов П1, П2 и П3);
- в случае двухканальной СМО вероятность занятия прибора П1 выбирается из табл.2, а вероятность занятия прибора П2 принимается равной сумме вероятностей занятия приборов П2 и П3;
- в случае одноканальной СМО вероятность занятия прибора П принимается равной 1.

VUP M1 11.10.04 4 (us 6)

8. Рекомендуемые формы таблиц

Форма 1

Стационарные вероятности состояний

Номер	СИСТЕМА_1		СИСТ	EMA_2
состояния	Обозн.	Вер-ть	Обозн.	Вер-ть
1				
2				
•••				
20				

Указание к форме 1:

В столбце "Обозн." указываются обозначения всех состояний марковского процесса, принятые в соответствии с выбранной кодировкой.

Форма 2

Характеристики СИСТЕМЫ Расчетная формула СИСТ.1 Хар-ка Прибор СИСТ.2 П1 П2 Нагрузка П3 Сумм. $\Pi 1$ Загрузка П2 П3 Сумм. П1 Длина П2 очереди П3 Сумм. П1 Число П2 заявок П3 Сумм. $\Pi 1$ Время П2 ожидания П3 Сумм. П1 П2 Время пребывания П3 Сумм. П1 Вер-ть П2 потери П3 Сумм. Произво-П1 дитель-ность П2 П3 Сумм.

VHP M1 11.10.04 5 (u3 6)

Указание: расчет всех характеристик обслуживания заявок, там, где возможно, должен проводиться через вероятности состояний марковского процесса без использования фундаментальных зависимостей (формул Литтла и т.п.); последние могут и должны использоваться для проверки полученных результатов.

9. Литература

- 1. Алиев Т.И. Конспект лекций по дисциплине "Моделирование".
- 2. Алиев Т.И. Математические методы теории вычислительных систем/ Учебное пособие.- Л.: ЛИТМО, 1979. Раздел 3 и 4.
- 3. Алиев Т.И., Довгий П.С. Сборник задач по курсам "Теория вычислительных систем" и "Системы обработки данных". Л.: ЛИТМО, 1985. Раздел 2.
 - 4. Венцель Е.С. Исследование операций. М.: Сов. радио, 1972. Разделы 4 и 5.

VHP M1 11.10.04 6 (us 6)