Interrogation 4 Séries Entières

NOM	Prénom	Classe

Durée 45 minutes

Pas de document, ni calculatrice, ni téléphone portable

Inscrire les réponses sur la feuille d'énoncé, sans râture ni surcharge (utiliser un brouillon!)

1/ Donner le rayon de convergence des 5 séries entières et la somme des 2 premières

$\left[z^{n}\right]_{n\in\mathbb{N}}$	$\left[\frac{z^n}{n!}\right]_{n\in\mathbb{N}}$	$\left[\frac{z^n}{n(n+1)}\right]_{n\in\mathbb{N}^*}$	$\left[\frac{z^n}{n}\right]_{n\in\mathbb{N}^*}$	$\left[n^n z^n\right]_{n\in\mathbb{N}^*}$
R = 1	$R = \infty$	R=1	R = 1	R = 0
$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$	$\sum_{n=0}^{\infty} \frac{z^n}{n!} = \exp(z)$			

2/ Soit f une fonction développable en série entière : $f(x) = \sum_{n=0}^{\infty} a_n x^n$ avec un rayon de convergence R.

Entourer la (ou les) réponse(s) correcte(s)

 $\int_{0}^{x} f(t)dt$ a comme développement en série entière :

$$\sum_{n=1}^{\infty} \frac{a_n x^{n+1}}{n+1}$$

$$\sum_{n=1}^{\infty} \frac{a_{n+1} x^n}{n}$$

$$\sum_{n=1}^{\infty} \frac{a_n x^n}{n}$$

$$\sum_{n=1}^{\infty} \frac{a_n x^{n+1}}{n}$$

autre chose
$$\sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1}$$

f'a comme développement en série entière :

$$\sum_{n=1}^{\infty} n \, a_n x^{n-1}$$

$$\sum_{n=1}^{\infty} (n-1)a_{n-1}x^n$$

$$\sum_{n=1}^{\infty} (n-1)a_{n-1}x^n \qquad \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$

autre chose

3/ Développement en série entière au voisinage de 0 et rayon de convergence:

	Développement en série entière	rayon de convergence
$\frac{1}{1-x^2}$	$\sum_{n=0}^{\infty} x^{2n}$	1
Arctan x	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$	1
cos x	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$	∞
$(1+x)^{\alpha}$	$1+\alpha x+\sum_{n=2}^{\infty}\frac{\alpha(\alpha-1)(\alpha-n+1)x^{n}}{n!}$	1
$\ln(1-x)$	$-\sum_{n=1}^{\infty} \frac{x^n}{n} = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$	1

4/ Soit *R* le rayon de convergence de la série $\left[a_n z^n\right]$

Si la série $[(-1)^n a_n]$ converge, que peut-on dire de R ?	<i>R</i> ≥1
Si la série $[a_n]$ diverge, que peut-on dire de R ?	<i>R</i> ≤ 1
Si la série $[2^n a_n]$ converge et la série $[3^n a_n]$ diverge, que peut-on dire de R ?	$2 \leqslant R \leqslant 3$
Si $\forall x \in \mathbb{R}$, $ x < 2 \Rightarrow$ la série $[a_n x^n]$ converge, que peut-on dire de R ?	$R\geqslant 2$
Si $\forall x \in \mathbb{R}, x \leq 2 \Rightarrow$ la série $[a_n x^n]$ converge, que peut-on dire de R ?	<i>R</i> ≥ 2

Soit *R* le rayon de convergence de la série $\left[a_n z^n\right]_{n\in\mathbb{N}}$.

Quel est le rayon de convergence R_I de la série $\left[a_n z^{2n}\right]$?	$R_1 = \sqrt{R}$
Quel est le rayon de convergence R_2 de la série $\left[(-1)^n a_n z^n \right]$?	$R_2 = R$
Quel est le rayon de convergence R_3 de la série $\begin{bmatrix} n & a_n & z^n \end{bmatrix}$?	$R_3 = R$
Quel est le rayon de convergence R_4 de la série $\left[3^n a_n z^n\right]$?	$R_4 = \frac{R}{3}$

6/ Développement en série entière et rayon de convergence de $f(x) = \frac{1}{4x^2 + 9} = \frac{1}{9} \frac{1}{\left(\frac{2x}{3}\right)^2 + 1}$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \left(RdC = 1 \right) \text{ donc (homothétie de rapport -1) } \frac{1}{1+x} = \sum_{n=0}^{\infty} \left(-1 \right)^n x^n \left(RdC = 1 \right)$$

Par substitution
$$x \to x^2$$
 (puissance) $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} \left(RdC = \sqrt{1} = 1 \right)$

Par homothétie de rapport
$$\frac{2}{3}$$
, $\frac{1}{1+\left(\frac{2x}{3}\right)^2} = \sum_{n=0}^{\infty} \left(-1\right)^n \left(\frac{2x}{3}\right)^{2n} = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n 2^{2n}}{3^{2n}} x^{2n} \left(RdC = \frac{3}{2}\right)$

Par linéarité, on obtient
$$f(x) = \frac{1}{4x^2 + 9} = \frac{1}{9} \frac{1}{\left(\frac{2x}{3}\right)^2 + 1} = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n 2^{2n}}{3^{2n+2}} x^{2n} \left(RdC = \frac{3}{2}\right)$$

La fonction *f* et les 16 premières sommes partielles de son développement en série entière sur l'intervalle

$$-\frac{3}{2}$$
, $+\frac{3}{2}$