TABLE OF CONTENTS

S.NO	CONTENTS	PAGE NO.
1.	Use the PageRank approach to find influential Twitter users.	1
	PageRank graph is constructed from web pages with hyperlinks. Pages are nodes, and hyperlinks are edges. For this problem, use the graph of Twitter users and their mentions of other Twitter users. Users are nodes, mention of another users are edges. Over this Twitter-User graph, apply the PageRank approach to rank the users. The main idea is that a user who is mentioned by other users is more influential. Calculate the PageRank for a selection of four users based on the following four tweets: user: Tim, tweet: "@Tom Howdy!"	
	user: Mike, tweet: "Welcome @Tom and @Anne!"	
	user: Tom, tweet: "Hi @Mike and @Anne!"	
	user: Anne, tweet: "Howdy!"	
	There are four short tweets generated by four users. The @mentions between users form a directed graph with four nodes and five edges. E.g., the "Tim" node has a directed edge to the "Tom" node.	
	Compute manually the first 3 iterations of the PageRank iterations over this 4 node graph.	

TWITTER MESSAGES:

 TWITTER MESSAGES:
user: Tim, Tweet: "@ Tom Howdy"
user: Mike, tweet: "Welcome @ Ton
user: Tom, tweet: "Hi @ nike and @ Anne!" @ Anne!"
user: Anne, tweet: "Howdy!"
A twitter user graph is constructed from
the above buitter messages.
 TWITTER USER GRAPH:
Each user is a rode. There exists an
denotes as points to another user
 denotes as points to another user
in the twitter message.
Twitter Graph G = (V, E)
where,
V = Vertices of the graph, which are the users E = Edge in the graph, an edge exists if an user mentions @ another user.
E = Edge in the graph, an edge exists is
an uses mentions @ another uses

ha	n the above graph, the node "ANNE" it is no outgoing edges. Hence it is idead end and the surfer now
nee	de to make a random jump
	Hence we use the method xation' which in turn uses the
1 Ta	xation' which in turn uses th
"Te	eport" value "in the page rank
ca	culation.
Po a	Rank Vector Estimate = BMV + (1-B)
100	V
ىيى	nere, B = Transport Telepoet Value
	M = Transition Matrix
	V = Previous Initial Page Rank
	e = Vector of all 11's.
	N = Number of nodes in the gr

	ANNE	MIKE	TIM	TON
M = ANNE	b	1/2	D	1
MIKE	Ď	0	.0	1
T ø m	_D	-0-	0	0
76 M	0		1	0
There exists a hence the valuatility matrix. edges from which interpreparately to Anne from when the property to the property	ne "I There Mike : ets it	exists to Tone host the	claced 2 0 and core is	in Uter Anne

Ite	rations using rage Rank over the Twitter user Graph.
	TTERATION 1:
	v' = BMV + (1-B) e
wh	$V = \frac{1}{4}$, $e = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $N = 4$
Tel	eportation value is given as 0.1 $\beta = 0.1$ $\beta = 0.9$
	V'= 0.9 0 0.5 0 0.5 0.25 1
/Su	0 0 0 0 0.25
	0.25
-	= 0.9 0 + 0. 125 + 0 + 0. 125 \ 0 - 025]
	0+0+0+0-125 + 0-025
	0+0+0+0 0.025
	[0+0.125+0.25+0]

	0.25		0.025	
v'=0.9				
	0.125		0.025	
· ·	0	t	0.025	
2.27.1	0.375		0 . 025	
	1		L	
Jelegialinhe				
V =	0.225		0.025	
	0.1125	+	0.025	
	0	D I	0.025	
	0.3375	, ,	0.025	
	0.25	7		
Ve	0 - 1379		- >> End of	
	0.025	-	Iteration	
	0.3625	1		

Second Iteration. v'= BMV + (1-B)e/N	
where e = 1 N=4 V'=	0.25
~= N=4	0. 025
B = 0.9	10.3625
[1-p=0·1]	_
V'-0.9 0 0.5 0 0.5 0.25	
0 0 0 0.5 0.1315	+
0 0 0 0 0.025	,
0 0.5 1 0 0.3625	
0.1 0.25	
0.25	
0.25	
[0.23]	
V= 0.9 0+(0.5)(0.1375)+0+(0.5)(0.36.25)
0+0+0+0.5(0.	3625) +
0 + 0 + 0 + 0	0.025
0 + (0.5)(0.1375)+ 1(0.025)	0.025
	0.025

	SECURE OF STREET	. 7	(0.025]	
	v1 = 0.9 0.2	5	0.025	
	0.18	125 +	0.025	
	0		0.025	
	0.09	375	0.025	-251
	. 60.	25 7		
	0.19		End of 9te	ration
	0.0	25	2	
	0.10	937		
	THIRD ITERATIO	N:		
	V1 =	BMV + (1-	B) e/N	
	C0-25 7	[:]		
		2 = 1	,	B= D.9
	0.025		[[-	3=0.1
				- 7
V' - 0	90 0.5 0 0.5	0.25	0.2	25
	0 0 0.5	0.18812	+ 0.1 0.2	5
	0000	0.025	0.3	25
	00.510	0.10937	0.2	5
			115/15/15/15/15	

ν' = 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0+0.5(0.18812)+1(0.025)+0 0.025
V =	0.9 0.05468 + 0.025
ν,	0.11906 [0.025] = [0.158866] = [0.07421] = End of Iteration
	0.07421 $\Rightarrow 200$ $3/1$. 0.085 $3/1$.
Hence,	at the end of 3rd glaration
	$V' = \begin{bmatrix} 0.15886 & \Rightarrow \text{ANNE} \\ 0.0742 & \Rightarrow \text{MIKE} \\ 0.025 & \Rightarrow \text{TIM} \\ \text{VARIOUS} \end{bmatrix}$
	0.1321 > TOM) USERS

	ANNE is sound to have it
	Maximum Bank and she is
	the most Influential Person.
24	Tus a li
-10	Higher the rank of the user, more the influence on them.
	the influence on them.
	Δ.σ.σ.
	Ans: Rank Order of Users
	,
	(b) ANNE → 0.158
	Q. Tom → 0.132
	(3.) MIKE -> 0.074
	(3-) MIKE -> 0.074
	(4) TIM -> 0.025