Lecture 1

Missed

Lecture 2

Missed

Lecture 3 - 4/9/24

Question: How can we construct submanifolds?

If M, N are manifolds, $F \in C^{\infty}(M, N)$ and $c \in N$. When is $F^{-1}(c)$ a submanifold of M?

Definition 0.1. Let $S = F^{-1}(c)$. Say that c is a <u>regular value</u> of F if for all $p \in S$, the derivative $DF|_p : T_pM \to T_pN$ is surjective.

Proposition 1. If c is a regular value, then S is an embedded submanifold of M of dimension $\dim(M) - \dim(N)$.

Proof.

Example 0.1. S^n is a manifold. Consider $F: \mathbb{R}^m \to \mathbb{R}$ given by $(x_1, \dots, x_n) \mapsto \sum_i x_i^2$. Observe that $F^{-1}(1) = S^n$, and that

$$DF|_p = 2(x_0, x_1, \dots, x_n) \neq 0$$

when $p \in S^n$. Hence S^n is a manifold.

Example 0.2. The orthogonal group O(n) is a manifold. We have $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$. Consider the set

$$N \stackrel{\text{def}}{=} \{ A \in M_n(\mathbb{R}) \mid A^T = A \}$$

of symmetric $n \times n$ matrices. This is a manifold because it is a linear subspace of $M_n(\mathbb{R})$.

Define $F: M_n(\mathbb{R}) \to N$ by $A \mapsto AA^T$.

Then $F^{-1}(I_n) = O_n$. Show that F is regular.

Vector fields

The tangent bundle

Question: If we have a vector field $p \mapsto v_p \in T_pM$, what does it mean to say that this is smooth?

Direct approach:

Turn $TM \stackrel{\text{def}}{=} \coprod_p T_p M$ into a manifold. Then there is a natural map $\pi: TM \to M$ given by sending $v_p \to p$ and this map is smooth.

Definition 0.2. A vector field on some $U \subseteq M$ is a smooth map $X : U \to TM$ such that for all $p \in U$, we have $X(p) \in T_pX$, i.e. $\pi \circ X = \mathrm{Id}$.

Write $\Gamma(TU)$ for the set of vector fields on U. This is an \mathbb{R} -vector space and a $C^{\infty}(M)$ -module.

Note: Bisi uses the notation Vect(U), so the notation may vary here.

In fact this is a sheaf of $C^{\infty}(M)$ -modules.

Let (x_1, \ldots, x_n) be local coordinates in a chart U of M. Then for any $p \in U$ and $v_p \in T_pM$, there are $\alpha_1, \ldots, \alpha_n$ such that

$$v_p = \sum_{i=1}^n \alpha_i \frac{\partial}{\partial x_i}|_p$$

This gives a bijection $\pi^{-1}(U) \to \phi(U) \times \mathbb{R}^n$ by $v_p \mapsto (x_1(p), \dots, x_n(p), \alpha_1, \dots, \alpha_n)$, yielding charts that make TM into a manifold of dimension 2n called the tangent bundle of M. Then:

- (i) The projection map $\pi: TM \to M$ is smooth
- (ii) Suppose that (U, ϕ) is a chart on M and $X \in \Gamma(TU)$. Write X_p for $X(p) \in T_pM$.

Then we may write:

$$X_p = \sum_{i=1}^n \alpha_i(p) \frac{\partial}{\partial x_i}|_p$$

Then X is smooth if and only if all α_i are smooth.

- (iii) If $F \in C^{\infty}(M, N)$, then $DF : TM \to TN$, $v_p \mapsto DF_p(v_p)$ is smooth.
- (iv) If $F \in C^{\infty}(M, N)$ and $X \in \Gamma(TU)$, then in general DF(X) is not a vector field on N because e.g F need not be injective. This motivates the following definition:

Definition 0.3. Let M, N be manifolds and $X \in \Gamma(TM), Y \in \Gamma(TN), F \in C^{\infty}(M, N)$. Say that X, Y are <u>F-related</u> if the diagram commutes:

$$TM \xrightarrow{DF} TN$$

$$X \uparrow \qquad \qquad Y \uparrow$$

$$M \xrightarrow{F} N$$

Question: What does $\Gamma(TU)$ look like?

Definition 0.4. Let $Der(C^{\infty}(M))$ be the set of all maps $\mathfrak{X}: C^{\infty}(N) \to C^{\infty}(M)$ that satisfy $\mathfrak{X}(fg) = f\mathfrak{X}(g) + g\mathfrak{X}(f)$. This is a $C^{\infty}(M)$ -module. We identify it with $\Gamma(TM)$ as follows.

Given $X \in \Gamma(TM)$, define \mathfrak{X} by $\mathfrak{X}(f)(p) = X_p(f)$. Given $\mathfrak{X} \in Der(C^{\infty}(M))$, define X by $X_p(f) = \mathfrak{X}(f)(p)$.

Product of the vector fields in one sense corresponds to composition of derivations in the other sense.

Definition 0.5. If $X, Y \in \Gamma(TM)$, the <u>Lie Bracket</u> $[X, Y] \in \Gamma(TM)$ is the vector field corresponding to the derivation XY - YX. Then [-, -] is bilinear, antisymmetric, and satisfies the Jacobi identity. So $\Gamma(TM)$ is a Lie algebra.

Flows

Suppose that $X \in \Gamma(TM)$. An <u>integral curve of X</u> is a smooth curve $\gamma : I \to M$ such that $\dot{\gamma}(t) = X_{\gamma(t)}$. These will exist by ode stuff.

Lecture 4 - 4/11/24

Lie Derivatives

Let X be a complete vector field (meaning any flow can be extended to all of \mathbb{R}), and let Θ be its flows. If $g \in (M)$, the

$$\mathscr{L}_X(g) = \frac{d}{dt}(\Theta_t^*g)|_{t=0}$$

Then $L_X(g)(p) = X(g(p))$. If $Y \in \Gamma(TM)$, then

$$\mathscr{L}_X(Y) = \frac{d}{dt}\Theta_t^*(Y)|_{t=0}$$

Lemma 1. $\mathcal{L}_X(Y) = [X, Y]$

Proof. Suppose that $g \in C^{\infty}(M)$, and first observe that

$$\Theta_t^*(Y)(g \circ \Theta_t) = Y(g) \circ \Theta_t$$

Now consider

$$\frac{\Theta_t^*(Y)(g) - Y(g)}{t} = \frac{\Theta_t^*(Y)(g) - \Theta_t^*(Y)(g \circ \Theta_t)}{t} + \frac{Y(g) \circ \Theta_t - Y(g)}{t} = \alpha_t + \beta_t,$$

say.

We have

$$\lim_{t\to 0} \beta_t = \mathcal{L}_X(Y(g)) = X(Y(g))$$

Also

$$\lim_{t \to 0} \alpha_t = \lim_{t \to 0} \Theta_t^*(Y) \left(\frac{g - g \circ \Theta_t}{t} \right)$$
$$= Y(-\mathcal{L}_X(g))$$
$$= -YX(g)$$

Corollary 0.1. Suppose that $X, Y \in \Gamma(TM)$ (with X, Y complete, and $f \in C^{\infty}(M)$. Then

(i)

$$\mathcal{L}_X(fY) = \mathcal{L}_X(f)Y + f\mathcal{L}_X(Y)$$

= $X(f)Y + f\mathcal{L}_X(Y)$

(ii)
$$\mathscr{L}_X(Y) = -\mathscr{L}_Y(X)$$

(iii)
$$\mathscr{L}_X[Y,Z] = [\mathscr{L}_XY,Z] + [Y,\mathscr{L}_XZ]$$

Lie Groups:(At last...)

Definition 0.6. A Lie Group is a manifold G with a group sstructure such that the multiplication map $\overline{m:G\times G}\to G$ and the inverse map $i:G\to G$ are smooth. If $g\in G$, write $L_g:G\to G$ for the diffeomorphism $L_g(h)=gh$.

Definition 0.7. We say that $X \in \Gamma(TG)$ is left-invariant if

$$DL_g|_h(X_h) = X_{gh}$$

for all $g, h \in G$.

Notation: Denote by $Vect^{L}(G)$ the set of left-invariant vector fields on G. Using that fact that for all diffeomorphisms F, we have

$$F^*[X,Y] = [F^*X,F^*Y]$$

One checks that $Vect^{L}(G)$ is a Lie subalgebra of $\Gamma(TG)$.

- A left-invariant vector field gives a tangent vector at the identity.
- Conversely, given a tangent vector at the identity, we obtain via translations a map $M \to TM$ which is a left-invariant vector field.

Lemma 2. Given $\xi \in T_eG$, define

$$X_{\xi}|_g = DL_g|_e(\xi) \in T_g(G)$$

 $X_{\xi} \in Vect^{L}(G)$, and the maps $\xi \to X_{\xi}$ is an isomorphism of vector spaces.

Proof. The inverse map is given by $X \mapsto X|_e$. Left-invariance:

$$DL_h|_g(X_\xi|_h) = DL_hL_g(DL_g|_e(\xi))$$

= $X_\xi|_{hg}$

Smoothness:

Suppose that $f \in C^{\infty}(U)$ where U is open and contains e. Let $\gamma: (-\varepsilon, \varepsilon) \to U$ be a smooth curve with $\dot{\gamma}(0) = \xi$. Then

$$X_{\xi}f|_{g} = DL_{g}(\xi)(f)$$

$$= \xi(f \circ L_{g})$$

$$= \frac{d}{dt}(f \circ L_{g} \circ \gamma)|_{t=0}$$

Note that the map $(t,g) \mapsto f \circ L_g \circ \gamma(t)$ is smooth, it follows that X_{ξ} is smooth.

Definition 0.8. Let G be a Lie group. The Lie algebra \mathfrak{g} of G is the Lie algebra T_eG whose Lie bracket is that induces by that of the isomorphism with $\mathsf{Vect}^L(G)$. So

$$[\xi,\eta] = [X_{\xi}, X_{\eta}]$$

Example 0.3. If G is abelian, the Lie bracket vanishes.

Example 0.4. For any vector space V and $v \in V$, we have $T_vV \cong V$. So the Lie algebra of V is V with trivial Lie bracket since the group is abelian.

Example 0.5. Note $G = GL_n(\mathbb{R})$ is an open subgroup of $M_n(\mathbb{R})$ and so is a manifold. We have

$$\mathfrak{gl}_n(\mathbb{R}) = T_e(GL_n(\mathbb{R}))$$

$$= T_e(M_n(\mathbb{R}))$$

$$= M_n(\mathbb{R})$$

If $A, B \in GL_n(\mathbb{R})$, then $L_A(B) = AB$, $L_A(B+H) = AB + BH$, and so $DL_A|_B(H) = AH$

By e.g. computing its terms in local coordinates, it follows if $\xi, \eta \in \mathfrak{gl}_n(\mathbb{R})$, then under the identification of $\mathfrak{gl}_n(\mathbb{R})$ with $M_n(\mathbb{R})$, we have

$$[\xi, \eta] = \xi \eta - \eta \xi$$

Proposition 2. Let G be a Lie group and suppose that $\xi \in \mathfrak{g}$. Then the integral curve γ for X_{ξ} through e exists for all time and $\gamma : \mathbb{R} \to G$ is a Lie group homomorphism.

Proof. Let $\gamma: I \to G$ be a maximal integral curve of X_{ξ} , and suppose that $(-\varepsilon, \varepsilon)$ subset eq I. Fix t_0 with $|t_0| < \varepsilon$, and consider $g_0 = \gamma(t_0)$.

Now set

$$\tilde{\gamma}(t) = L_{g_0}(\gamma(t))$$

for $|t| < \varepsilon$.

Claim. $\tilde{\gamma}$ is an integral curve of X_{ξ} with $\tilde{\gamma}(0) = g_0$.

Proof. To see this, observe that

$$\dot{\tilde{\gamma}}(0) = \frac{d}{dt} L_{g_0}(\gamma(t))$$

$$= DL_{g_0} \dot{\gamma}(t)$$

$$= DL_{g_0} X_{\xi}|_{\gamma(t)}$$

$$= X_{\xi}|_{g_0 \gamma(t)}$$

$$= X_{\xi}|_{\gamma(t)}$$

By patching these together, we see that $(t_0 - \varepsilon, t_0 + \varepsilon) \subseteq I$. Since we have a fixed ε that works for all t_0 , it follows that $I = \mathbb{R}$.

Example 0.6. Let $G = GL_n(\mathbb{R})$. If $\xi \in \mathfrak{gl}_n$, then set

$$e^{\xi} = \sum_{k \ge 0} \frac{\zeta^k}{k!}$$

Set $F(t) = e^{\xi t}$. Then this is in $GL_n(\mathbb{R})$, F(0) = I, and $F'(t) = L_{F(t)}\xi$. So F(t) is an integral curve through I.

Definition 0.9. The exponential map of a Lie group G is

$$\exp: \mathfrak{g} \to G$$
$$\xi \mapsto \gamma_{\xi}(1)$$

Where γ_{ξ} is the integral curve of X_{ξ} through $e \in G$.

Proposition 3.

- (i) exp is a smooth map
- (ii) If $F(t) = \exp(t\xi)$, then $F: \mathbb{R} \to G$ is a Lie group homomorphism, and

$$DF|_{0}\left(\frac{d}{dt}\right) = \xi$$

- (iii) The derivative $D \exp : T_e \mathfrak{g} \cong \mathfrak{g} \to T_e G = \mathfrak{g}$ is the identity map.
- (iv) exp is a local diffeomorphism around $0 \in \mathfrak{g}$, so there exists an open $U \subseteq G$ containing 0 such that exp : $U \to \exp(U)$ is a diffeomorphism.
- (v) exp is natural, i.e. if $f: G \to H$ is a Lie group homomorphism, then the following diagram commutes:

$$\mathfrak{g} \xrightarrow{\exp} G \\
DF|_e \downarrow \qquad \qquad \downarrow f \\
\mathfrak{h} \xrightarrow{\exp} H$$

Proof. Exercise

Definition 0.10. A Lie Subgroup of G is a subgroup H with a smooth structure making H an immersed submanifold of G via the inclusion $i: H \to G$.

So if H is a subgroup then $\mathfrak{h} \subseteq \mathfrak{g}$ is a Lie subalgebra.

If H is a closed subgroup of G, then G/H (with the quotient topology) is a differentiable manifold, and the quotient map is a submersion.

Theorem 0.2. If $\mathfrak{h} \subseteq \mathfrak{g}$ is a subalgebra, then there exists a unique connected Lie subgroup H of G such that $T_eH = \mathfrak{h}$

Theorem 0.3. If \mathfrak{g} is a finite dimensional Lie algebra, then there exists a unique simply connected Lie group whose Lie algebra is \mathfrak{g} .

Theorem 0.4. Let G, H be Lie groups with G simply connected. Then every Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{h}$ lifts to a Lie group homomorphism $G \to H$.

Proof.

Tori

Lecture 5, 4/16/24

A torus T^n is just

$$\mathbb{R}^n/\mathbb{Z}^n \cong (\mathbb{R}/\mathbb{Z})^n \cong (S^1)^n$$

General Fact:

If G is any connected topological group, then G is generated by any open neighborhood of the identity.

WLOG: Let $U = U^{-1}$ be an open neighborhood of the identity (if $U \neq U^{-1}$, take $U \cap U^{-1}$).

Then

$$\bigcup_{m=1}^{\infty} U^m$$

is an open subgroup of G, and so has open (and disjoint) cosets. This must be all of G since G is connected.

Consequences

- (a) A homomorphism between connected Lie groups is determined by its corresponding homomorphism on Lie algebras (For the exponential map is a local homeomorphism and is natural).
- (b) The map $\exp : \mathfrak{g} \to G$ is a homomorphism if and only if G is abelian.

For the exponential is a bijection is a neighborhood of the identity, which contains a set of generators of G. So, since \mathfrak{g} is commutative, if exp is a homomorphism, then G is abelian.

Conversely, observe that multiplication $G \times G \to G$ induces $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ given by $(x,y) \mapsto x+y$. So if exp is a homeomorphism, then it follows via naturality of exp that G is abelian.

(c) If G is a connected, abelian Lie group, then $\exp : \mathfrak{g} \to G$ is surjective.

Lemma 3. A discrete subgroup B of a finite dimensional vector space V is generated by linearly independent vectors v_1, \ldots, v_k .

Proof. The proof is by induction on n, which is the dimension of B.

If n = 1, then V is generated by its smallest positive element, or B = 0.

If n > 1, choose a Euclidean metric on V and then choose an element v_1 of smallest nonzero norm. Let $V = \mathbb{R} \cdot v_1 \oplus W$ be an orthogonal splitting, and consider the projection $p: B \to W$.

Claim. p(B) contains no nonzero element of norm less than $\frac{|v_1|}{2}$

Proof. For if $0 < p(v) < \frac{|v_1|}{2}$, where $v \in V$ is such an element, then for some $m \in \mathbb{Z}$, the projection of $v + mv_1$ has norm at most $\frac{|v_1|}{2}$. Then $v + mv_1 \in B$, but

$$0 < |v + mv_1| \frac{|v_1|}{2}$$

which contradicts the choice of v_1 .

So p(B) is discrete, and so by induction is generated in W by linearly independent vectors $v_2, \ldots, v_k, k \leq n$.

Thus we have an exact sequence

$$0 \longrightarrow \langle v_1 \rangle \longrightarrow B \stackrel{p}{\longrightarrow} \langle v_2, \dots, v_k \rangle \longrightarrow 0$$

Theorem 0.5. Let G be a connected, abelian Lie group. Then $G \cong T^n \times \mathbb{R}^s$, where $T = \mathbb{R}/\mathbb{Z}$.

Proof. The exponential map

$$\exp:\mathfrak{g}\to G$$

is a local bijection near the origin, so the kernel K is discrete. So K is generated by linearly independent vectors $X_1, \ldots, X_k \in \mathfrak{g}$. Complete this collection to a basis X_1, \ldots, X_n of \mathfrak{g} .

This determines an isomorphism from $\mathfrak{g} \cong \mathbb{R}^n$ with

$$K \cong \mathbb{Z}^{\ell} \times \{0\} \subseteq \mathbb{R}^k \times \mathbb{R}^{n-k} = \mathbb{R}^n$$

So

$$\mathfrak{g}/K \cong \mathbb{R}^n/(\mathbb{Z}^k \times \{0\}) = T^k \times \mathbb{R}^{n-k}$$

The homomorphism

$$T^k \times \mathbb{R}^{n-k} \cong \mathfrak{g}/K \to G$$

is a bijective local diffeomorphism, and so is an isomorphism of Lie groups.

Corollary 0.6. A compact, abelian Lie group is isomorphic to a product of a Torus and a finite group.

Proof. The connected component of the identity is a (possibly trivial) torus and so there is an exact sequence

$$0 \longrightarrow T \stackrel{\iota}{\longrightarrow} G \stackrel{p}{\longrightarrow} B \longrightarrow 0$$

As T is open in G, and G is compact, it follows that G is finite. The exact sequence splits because T is divisible, and this implies the result.

Now lets look at characters.

If G is a compact abelian Lie group, then

$$G \cong S^1 \times \cdots \times S^1 \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$$

and we are interested in homomorphisms $G \to S^1$.

Theorem 0.7. The irreducible complex representations of S^1 are given by the characters $z \to z^n$, $n \in \mathbb{Z}$.

The irreducible complex characters of $T^n \cong \mathbb{R}^n/\mathbb{Z}^n$ are all of the form

$$\theta: [x] \mapsto \exp(2\pi i\alpha(x))$$

for $x \in \mathbb{R}^n$, and $\alpha(x) = \langle \alpha, x \rangle = \sum_i a_i x_i$, with $a = (a_1, \dots, a_n) \in \mathbb{Z}^n$.

Proof. Suppose that θ is a character of T^n . Then we have a commutative diagram:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow Lie(T^n) = \mathbb{R}^n \longrightarrow T^n \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\alpha} \qquad \qquad \downarrow^{\theta}$$

$$0 \longrightarrow \mathbb{Z} \longrightarrow Lie(S) = \mathbb{R} \xrightarrow{\exp} S^1 \longrightarrow 1$$

The point is that α is a linear functional on \mathbb{R}^n and takes integer values on \mathbb{Z}^n .

Corollary 0.8. The real, non-trivial, irreducible representations of T^n are two dimensional, and are given by

$$[x_1, \dots, x_n] \mapsto \begin{pmatrix} \cos(2\pi)\langle a, x \rangle & \sin(2\pi)\langle a, x \rangle \\ -\sin(2\pi)\langle a, x \rangle & \cos(2\pi)\langle a, x \rangle \end{pmatrix}$$

Where the notation is as in the theorem. We have that a and -a give equivalent representations.

Proof. If V is a real representation of T^n , then consider $V_{\mathbb{C}} \stackrel{\text{def}}{=} V \otimes_{\mathbb{R}} \mathbb{C}$.

If χ is a non-trivial irreducible complex representation occurring in $V_{\mathbb{C}}$, then $\overline{\chi}$ must be another.

Observe if w, \overline{w} are corresponding eigenvectors, the vectors $v_+ = w + \overline{w}, v_- = i(w - \overline{w})$ are real and linearly independent, and form a basis for an invariant subspace of V of dimension 2.

Now suppose that T^n is a torus in a Lie group G, and consider the adjoint action of T^n on the Lie algebra \mathfrak{g} of G.

Proposition 4. Under this adjoint action, the T^n -module \mathfrak{g} decomposes as:

$$\mathfrak{g} = V_0 \oplus \bigoplus_{i=1}^r V_{\theta_i}$$

where T^n acts trivially in V_0 and the V_{θ_i} are irreducible T^n -modules. The torus T^n is maximal iff $Lie(T^n) = V_0$.

Proof. The first part is obvious. Observe that plainly $Lie(T^n) \subseteq V_0$. If T^n is not maximal, then $T^n \subseteq T^m$ and

$$Lie(T^n) \subseteq Lie(T^m) \subseteq W_0 \subseteq V_0$$

Whence the part of \mathfrak{g} on which T^n acts trivially. Since $Lie(T^n) \neq Lie(T^m)$, it follows that $Lie(T^n) \neq V_0$.

Conversely, suppose that $Lie(T^n) \neq V_0$. Then there is some vector $x \in V_0 \setminus Lie(T^n)$. Then the one-parameter subgroup $H = \{\exp(tX) \mid t \in \mathbb{R}\}$ is invariant under conjugation by T^n .

Hence the closure of $H \cdot T^n$ is a compact connected abelian Lie group, and so is a Torus and contains T^n .

Corollary 0.9. $\dim(G) - \dim(T)$ is even.

Proof.

Definition 0.11. An element $t \in T^n$ is called a generator if $\{t^n \mid n \in \mathbb{Z}\}$ is dense in T^n .

Theorem 0.10 (Kronecker). A vector $v \in \mathbb{R}^n$ represents a generator of T^n if and only if 1, and the components v_1, \ldots, v_n of T are linearly independent over \mathbb{Q} . (So the set of generators is dense in T^n).

Lecture 6 - 4/18/24

Tori (cont)

Proof. Observe that the exact sequence

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{R}^n \longrightarrow T^n \longrightarrow 0$$

identifies $\mathbb{R}^n = Lie(\mathbb{R}^n) = Lie(T^n)$ and identifies the projection $\mathbb{R}^n \to T^n$ with the exponential map. So a homomorphism $f: T^n \to S^1$ induces the following diagrams:

$$0 \longrightarrow \mathbb{Z}^n \longrightarrow \mathbb{R}^n \longrightarrow T^n \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^{Df|_n} \qquad \downarrow^f$$

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{R} \longrightarrow S^1 \longrightarrow 0$$

whence

$$(Df|_0)(v_1,\ldots,v_n) = \sum_i \alpha_i v_i$$

with $\alpha_i \in \mathbb{Z}$.

Now observe that the following are equivalent:

- (i) $1, v_1, \ldots, v_n$ are linearly dependent over \mathbb{Q} .
- (ii) $\sum_{i} q_i v_i \in \mathbb{Q}$ for some $(q_1, \dots, q_n) \neq 0 \in \mathbb{Q}^n$
- (iii) $\sum_{i} \alpha_{i} v_{i} \in \mathbb{Z}$ for some $0 \neq (\alpha_{1}, \dots, \alpha_{n}) \in \mathbb{Z}^{n}$
- (iv) $v \pmod{\mathbb{Z}}^n$ is in the kernel of some non-trivial homomorphism $f: T^n \to S^1$
- (v) $v \pmod{\mathbb{Z}}^n$ is not a generator.

Definition 0.12. A subgroup T of G is a <u>maximal torus</u> if T is a torus and is not properly contained in any other subtorus of G.

So a maximal torus is the same thing as a maximal connected compact abelian subgroup of G.

Definition 0.13. Let T be a maximal torus in G and let N = N(T) be the normalizer of T in G.

The groups W = N(T)/T is called the <u>Weyl group</u> of G (we'll see later this is independent of the choice of T).

The normalizer N(T) acts on T via conjugation:

$$N \times T \to T; (m,t) \mapsto mtm^{-1}$$

and this induces an action of W on T:

$$W \times T \to T$$
: $(nT, t) \mapsto ntn^{-1}$

Theorem 0.11. The group W is finite.

Proof. Let N° be the connected component of the identity of N. We show that $N^{\circ} = T$. Then, as N is compact, the group $W = N/N^{\circ}$ is compact, and discrete, and so is finite.

View the action of N on T as a continuous map

$$\psi: N \to \operatorname{Aut}(T) \cong \operatorname{GL}_n(\mathbb{Z}); n \mapsto \operatorname{Ad}_n|_{Lie(T)}$$

The image $\psi(N^{\circ})$ in $GL_n(\mathbb{Z})$ is connected and so $\psi(N^{\circ}) = I$, because $GL_n(\mathbb{Z})$ is discrete. Hence N° acts trivially on T.

So if $\alpha : \mathbb{R} \to N^{\circ}$ is a one-parameter subgroup, then $\alpha(\mathbb{R}) \cdot T$ is a connected, abelian group containing T. So $\alpha(\mathbb{R}) \cdot T = T$, and therefore $\alpha(\mathbb{R}) \subseteq T$.

Since the groups $\alpha(\mathbb{R})$ cover an open neighborhood of the identity of N° , they generate N° , and so $N^{\circ} = T$.

Theorem 0.12. Any two maximal torii in a compact, connected, Lie group are conjugate, and every element of G is contained in a maximal torus.

Proof. Main Idea: Look for fixed points of the diffeomorphism

$$L_q: G/T \to G/T; xT \mapsto gxT, g \in G$$

Lemma 4. A coset xT is a fixed point of L_g if and only if $g \in x^{-1}Tx$

Proof. We have gxT = xT iff $x^{-1}gxT = T$, and this happens if and only if $x^{-1}gx \in T$.

Lemma 5. Suppose that $t \in T$ is a generator. Then xT is a fixed point of L_t if and only if $x \in N(T)$. The number of fixed points of L_t is finite.

Proof. The coset xT is a fixed point of L_t if and only iff $x^{-1}tx \in T$ if and only if $x^{-1}Tx = T$ because t is a topological generator of T.

So the fixed points of L_t are the elements of the Weyl group W and are finite in number.

Here are some facts from algebraic topology about fixed points:

Suppose that M is a compact manifold of dimension n, and let $f: M \to M$ be a diffeomorphism. There is a <u>Lefschetz number</u> L(f) attached to f with the following properties:

- (a) If $f: M \to M$ is homotopic to f, then $L(f_1) = L(f)$
- (b) If $L(f) \neq 0$, then f has at least one fixed point.
- (c) If f has only isolated fixed points, p_i , say, then one can attach an index k_i to p_i , such that $L(f) = (-1)^n \sum_i k_i$.
- (d) If p is an isolated fixed point of f, and if 1 is not an eigenvalue of

$$Df|_p:T_pM\to T_pM$$

then the index of p is equal to the sign of $\det(I - Df|_p)$

Remark: Note that since G is connected, any two left -translation maps L_g and L_h are homotopic and so have the same Lefschetz number.

Lemma 6. Suppose that $n \in N(T)$ and $t \in G$ is a generator. Then

$$\det(I - DL_t|_0) = \det(I - DL_t|_n)$$

Proof. Since $n \in N(T)$, we have Tn = nT, and so for any $x \in G$, we have xTn = xnT.

So the right-translation action

$$R_n: G/T \to G/T; xT \mapsto xTn = xnT$$

is well-defined, and R_n commutes with any left translation L_g . So the following diagram commutes:

$$T_e(G/T) \xrightarrow{DR_n|_t} T_n(G/T)$$

$$\downarrow^{DL_t|_e} \qquad \downarrow^{DL_t|_n}$$

$$T_e(G/T) \xrightarrow{DR_n|_e} T_n(G/T)$$

So $DL_t|_e$ and $DL_t|_n$ are conjugate maps, whence

$$\det(I - DL_t|_e) = \det(I - DL_t|_n)$$

Lecture 7, 4/23/24

We continue the proof. We want to show that $L_g: G/T \to G/T$ has a fixed point. This will be done if we show that L_g has nonzero Lefschetz number.

We look at L_t for t a generator of T. Then L_t has fixed points corresponding to elements of N(T)/T = W. We must show that L_t has nonzero Lefschetz number. We must compute the index:

$$\det(I - DL_t|_n) = \det(I - DL_t|_e)$$

Now recall that we have the following decomposition of Lie(G) as a direct sum of T-modules (with respect to adjoint action). We have

$$Lie(G) = Lie(T) \oplus \left(\bigoplus V_{\theta_i}\right)$$

where the action of any $t \in T$ on V_{θ_i} is given by the matrix

$$\begin{pmatrix} \cos 2\pi\theta_i(t) & \sin 2\pi\theta_i(t) \\ -\sin 2\pi\theta_i(t) & \cos 2\pi\theta_i(t) \end{pmatrix}$$

Where θ_i are non-trivial linear functionals on Lie(T) taking integer values on the integral lattice of T.

Lemma 7. For any element $t \in T$, we have

$$\det(I - DL_t|_e) = \prod_i (2 - 2\cos 2\pi\theta_i(t))$$

So if t is a generator of T, then

$$\det(I - DL_t|_e) > 0$$

Proof. As $txT = txt^{-1}T$, we see that the left translation map

$$L_t: G/T \to G/T$$

lifts to the conjugation map

$$ad_t: G \to G$$

Since $D(\mathrm{ad}_t)|_e = \mathrm{Ad}_t$, we have the following diagram of T-equivariant maps.

$$0 \longrightarrow Lie(T) \longrightarrow Lie(G) \longrightarrow T_e(G/T) \longrightarrow 0$$

$$\downarrow^{\mathrm{Ad}_t} \qquad \downarrow^{\mathrm{Ad}_t} \qquad \downarrow^{DL_t|_e}$$

$$0 \longrightarrow Lie(T) \longrightarrow Lie(G) \longrightarrow T_e(G/T) \longrightarrow 0$$

We deduce from this that $T_e(G/T) = \bigoplus_i V_{\theta_i}$

On each component V_{θ_i} , the action of $I - \mathrm{Ad}_t$ is given by the matrix

$$\begin{pmatrix} 1 - \cos 2\pi \theta_i(t) & \sin \pi \theta_i(t) \\ -\sin \pi \theta_i(t) & 1 - \cos \pi \theta_i(t) \end{pmatrix}$$

whose determinant is $2 - 2\cos \pi \theta_i(t) \ge 0$. If this is an equality, then $\theta_i(t)$ is an integer, whence the same is true of $\theta_i(t^n) = n\theta_i(t)$ for all $n \in \mathbb{Z}$. This is impossible if t is a generator because θ_i is nontrivial.

Hence the Leftschetz number of L_t is non-zero.

We have shown the following:

Theorem 0.13. If G is a compact, connected Lie group, and suppose that T is a maximal torus in G, and that $g \in G$. Then g is contained in a conjugate of T.

Proof. The map $L_q: G/T \to G/T$ has a fixed point.

Corollary 0.14. Any two maximal tori in a compact, connected Lie group are conjugate.

Proof. Suppose that T, T' are maximal tori and $t \in T$ is a generator. Then $x^{-1}tx \in T'$ for some $x \in G$, and conjugation by x maps the closure of $\langle t \rangle$ (i.e. T) into the closure of $\langle x^{-1}Tx \rangle$, i.e. T'.

The exponential map of a compact, connected Lie group is surjective.

Proof. Every element of G is contained in a maximal torus, and the exponential map of a torus is surjective.

Definition 0.14. The dimension of a maximal torus of G is called the <u>rank of G</u>. Recall that the <u>centralizer</u> Z(H) of a subgroup H of G is the subgroup

$$Z(H) = \{ g \in G \mid gh = hg \forall h \in H \}$$

Theorem 0.15. Let G be a compact, connected Lie group, and T a maximal torus of G. Then

- (i) Z(T) = T, so T is a maximal abelian subgroup of G
- (ii) If S is a connected abelian subgroup of G, then Z(S) is equal to the union of the maximal tori of G that contain S
- (iii) Z(G) is the intersection of all the maximal tori.

Proof.

(ii) The closure \overline{S} of S is compact, abelian and connected and so is a torus; furthermore, $Z(S) = Z(\overline{S})$. We may assume that S is a torus.

Now suppose that $x \in Z(S)$, and let $B = \overline{\langle x, S \rangle}$. Then B is compact and abelian, so the connected component containing the identity B° , is equal to another torus. Therefore B/B° is a finite cyclic group, generated by xB° . Hence

$$B \simeq B^{\circ} \times \text{(finite cyclic thing)}$$

and so B is the closure of a cyclic subgroup $\langle g \rangle$ of G. But g lies in some maximal torus T, therefore so does $S \cup \{x\}$, as required.

- (i) Take S = T as in (ii).
- (iii) If $x \in Z(G)$, then plainly x lies in every maximal torus of G. Conversely, if x lies in every maximal torus of G, then x commutes with every element of G, because every element of G lies in a maximal torus.

Corollary 0.16. The Weyl group W acts faithfully on the maximal torus T, i.e. the map

$$W \to \operatorname{Aut}(T)$$

is injective.

Lemma 8. Two elements of the maximal torus T are conjugate in G if and only if they lie in the same orbit under the action of the Weyl group W.

Proof. Suppose that $x, y \in T$, $g \in G$ with $gxg^{-1} = y$. Then conjugation by g induces a map:

$$c(g): Z(x) \to Z(g); z \mapsto g^{-1}zg$$

and since $T \subseteq Z(x)$, we have $g^{-1}Tg \subseteq Z(G)$.

Hence T, $g^{-1}Tg$ are both maximal tori, contained in the connected component of the identity $Z(y)^{\circ}$ of Z(y).

Thus for some $h \in Z(y)^{\circ}$, we have $(hg)^{-1}T(hg) = T$, and so (hg)T is an element of W such that wx = y.

The upshot of this is that the inclusion $T \to G$ induces a bijection between the orbits of W on T and the conjugacy classes of G.

Proposition 5. There is a dense open subset U of T such that if $t \in U$, then |W| elements wtw^{-1} ($w \in W$) are all distinct.

Proof. For any $w \in W$, set

$$U_w = \{t \in T; t \neq wtw^{-1}\}\$$

Then U_w is open (because it has closed complement).

If t is a generator of T, and $w \neq 1$, then $t \in U_w$ (otherwise if $n \in N(T)$ is a representative of w, then $n \in Z(t) = Z(T)$, and so $n \in T$, which contradicts $w \neq 1$). Now Kronecker's Theorem implies that

$$U := \bigcap_{w \in U_w} U_w$$

is dense in T.

It follows from this that the map $\phi: G/T \times T \to G; (xT,t) \mapsto xtx^{-1}$ is a |W|-fold cover over a dense open set.

If f is any function in G, and dg, dt are normalized Haar measures on G and T, respectively, we have

$$\int_{G} f(g) dg = \frac{1}{|W|} \int_{G/T \times T} f(\phi(xT, t)) \cdot J(\phi(xT, t)) dx \times dt$$

where $J(\phi(xT,t))$ is the Jacobian of ϕ .

Lecture 8, 4/30/24

Proposition 6. If f is a class function on G and dg, dt are normalized Haar measures on G and T so that both have volume 1, then

$$\int_{G} f(g) \, dg = \frac{1}{|W|} \int_{T} f(t) \det([\mathrm{Ad}_{t^{-1}} - I]|_{Lie(G/T)}) \, dt$$

This is the Weyl integration formula

Proof. We have to compute the Jacobian $J\phi$ of ϕ . We do this by using a clever choice of charts on G/T and T.

Recall that we have a decomposition

$$Lie(G) = Lie(T) \oplus Lie(G/T)$$

(with respect to the adjoint action of T on Lie(G)).

Choose volume elements on Lie(G) and Lie(T) so that the Jacobians of the exponential maps are equal to 1.

Now parametrize a neighborhood of each $xT \in G/T$ by a chart based in a neighborhood of the origin in Lie(G/T). This is given by

$$Lie(G/T) \ni x \mapsto xe^x T$$

Parametrise a neighborhood of each $t \in T$ by a chart based on a neighborhood of the origin in Lie(T). This is given by:

$$Lie(T) \ni y \mapsto te^y$$

So a corresponding chart near $(xT,t) \in (G/T) \times T$ is given by

$$Lie(G/T) \times T \ni (x,y) \mapsto (xe^xT, te^y) \in G/T \times T$$

With respect to these coordinates, the map ϕ is given by

$$(x,y) \mapsto xe^x te^y e^{-x} x^{-1}$$

Now translation on the left is given by $t^{-1}x^{-1}$ and on the right by t. So we are reduced to computing the determinant at (eT, e) of a map which sends (eT, e) to e. We are reduced to computing the Jacobian of the map

$$(x,y) \mapsto t^{-1}e^x t e^y e^{-x}$$
$$= e^{\operatorname{Ad}_{t^{-1}}(x)} e^y e^{-x}$$

Identify the tangent space at the origin of the real vector space $Lie(G/T) \times Lie(T)$ with itself.

Then the differential of the above map becomes

$$X + Y \mapsto (\operatorname{Ad}_{t^{-1}} - I)X + Y$$

The Jacobian is the determinant of the differential and so

$$J\phi = \det([\mathrm{Ad}_{t^{-1}} - I]|_{Lie(G/T)})$$

Now recall that

$$\int_{G} f(g) dg = \frac{1}{|W|} \int_{G/T \times T} f(\phi(xT, t)) J(\phi(xT, t)) dx \times dt$$

Since f is a class function, we have

$$f(\phi(xT,t))J(\phi(xT,t)) = f(t)\det([Ad_{t^{-1}}-I]|_{Lie(G/T)})$$

is independent of x.

The result follows.

Example 0.7. Suppose that G = U(n) and T is the diagonal torus. Set

$$t = \begin{pmatrix} t_1 & 0 \\ & \ddots & \\ 0 & t_n \end{pmatrix} \in T$$

Then if f is a class function in G, then

$$\int_G f(g) dg = \frac{1}{n!} \int_T f(diag(t_i)) \prod_{i < j} |t_i - t_j|^2 dt$$

To show this (given that the Weyl group of U(n) is S_n), we need to check that

$$\det([\mathrm{Ad}_{t^{-1}} - I]|_{Lie(G/T)}) = \prod_{i < j} |t_i - t_j|^2$$

Recall that $\mathfrak{u}(n)_{\mathbb{C}} = \mathfrak{gl}(n,\mathbb{C}) = M_n(\mathbb{C})$

 $Lie(G/T)_{\mathbb{C}}$ is spanned by the *T*-eigenspaces in $\mathfrak{u}(n)_{\mathbb{C}}$ corresponding to the non-trivial characters of *T*, and those are in turn spanned by the elementary matrices E_{ij} with $1 \leq i, j \leq n$ and i < j.

Compute that the eigenvalues of t on E_{ij} is $t_i t_j^{-1}$. This (after some computation) gives what we want.

Root Systems (redux)

Suppose that V is a real Euclidean space with inner product \langle , \rangle . Recall that for $\alpha \in V, \alpha \neq 0$, we have the reflection S_{α} in the hyperplane orthogonal to α given by

$$S_{\alpha}(x) = x - 2 \frac{\langle x, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

So $S_{\alpha}(\alpha) = -\alpha$, and $S_{\alpha}(\beta) = \beta$ for all β with $\langle \beta, \alpha \rangle = 0$.

A finite set $R \subseteq V$ of nonzero vectors is a root system if:

- 1. For $\alpha \in R$, $S_{\alpha}(R) = R$
- **2.** If $\alpha, \beta \in R$, then $2\frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$
- **3.** If $\alpha, \lambda \alpha \in R$, $\lambda \in \mathbb{R}$, then $\lambda = \pm 1$

In practice, one is given a lattice Λ that spans V, and then $R \subseteq V$ sit inside Λ . Suppose that G is a compact, connected Lie group, and that T is a maximal torus of G, of dimension r, say (so r is the <u>rank</u> of G). We'll have

$$\Lambda = X^*(T) \simeq \mathbb{Z}^r$$

(the weight lattice and $V = R \otimes \Lambda$. How does this work?

If we identify $Lie(\mathbb{C}^{\times})$ with \mathbb{C} , then $Lie(S^1)$ is identified with $i\mathbb{R}$.

Set $\mathfrak{g} = Lie(G), \mathfrak{t} = Lie(T)$

So a character $\lambda: T \to S^1$ of the torus gives

$$D\lambda|_{e^{i\pi}} \stackrel{\text{def}}{=} d\lambda : t \to i\mathbb{R}$$

$$d\lambda(H) = \frac{d}{dt}\lambda(e^{tH})|_{t=0}, H \in \mathfrak{t}$$

This induces

$$X^*(T) \to Hom(\mathfrak{t}, i\mathbb{R}) \simeq Hom(i\mathfrak{t}, \mathbb{R})$$

If $\pi: G \to GL(V_1)$ is a complex representation, then $\pi|_T$ decomposes into a sum of one-dimensional characters of T. These are called the weights of π .

A <u>root</u> of G with respect to T is a non-zero weight of the adjoint representation.

Proposition 7. Any maximal abelian subgroup \mathfrak{h} of \mathfrak{g} is the Lie algebra of a conjugate of T.

Proof. Since \mathfrak{h} is abelian, the exponential map on \mathfrak{h} is a homomorphism, and so $\exp(\mathfrak{h})$ is a connected commutative group. It's closure H is a Lie subgroup of G, which is closed, connected, and abelian, thus is a torus. So H is contained in a maximal torus H_1 , say, of G. We have $\mathfrak{h} \subseteq Lie(H_1)$, and by maximality these must be equal, and $H = H_1$. So by Cartan's theorem, H is conjugate to T.