TDT4258 Energy Efficient Computer Design Exercise 2

Lundal, Per Thomas perthol@stud.ntnu.no

Normann, Kristian krinorm@stud.ntnu.no

Selvik, Andreas Løve andrels@stud.ntnu.no

 $March\ 9,\ 2013$

Abstract

Contents

Ι	Introduction	4
II	Description and methodology 2.1 Tools	5 5
III	Results and tests	6
IV	Evaluation of assignment	7
\mathbf{V}	Conclusion	8
Aŗ	ppendix	10
\mathbf{A}	Tests	10

I Introduction

II Description and methodology

2.1 Tools

- GitHub for handling version control
- Vim as main code-editor
- Google Docs for report collaboration
- LATEX for report markup
- JTAGICE mkII for connecting the computer to the board
- \bullet avr
32gdbproxy for connecting to JTAGICE mkII
- avr32-gdb for connecting to the board, allowing us to debug the code

III Results and tests

IV Evaluation of assignment

V Conclusion

References

- [1] Computer Architecture and Design Group, Lab Assignments in TDT4258 Energy Efficient Computer Systems. Department of Computer and Information Science, NTNU, 2013, http://www.idi.ntnu.no/emner/tdt4258/_media/kompendium.pdf.
- [2] Atmel. AVR32 Architecture Document, 2011, http://www.idi.ntnu.no/emner/tdt4258/_media/doc32000.pdf.
- [3] Atmel. AT32AP7000 Preliminary, 2009, http://www.idi.ntnu.no/emner/tdt4258/_media/doc32003.pdf.
- [4] http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&p=750034

A Tests

Test 1: Starting the machine Action: Turn on the STK1000

Preconditions: Uploaded program on microcontroller and power cable is connected

Wanted outcome: LED0 should light up and 'Under pressure' should play.

Test 2: Switch song

Action: Press button SW X

Preconditions: LED Y lit and the music corresponding to SW Y should be playing.

Wanted outcome: LED Y turns off and LED X turns on. Music corresponding to SW

Y turns off and music corresponding to SW X turns on.

Test 3: Wrap right
Action: Press button 0

Preconditions: LED 0 lit and all others unlit.

Wanted outcome: After the button press, LED 0 should turn off and LED 7 should

turn on.

Test 4: Wrap left
Action: Press button 2

Preconditions: LED 7 lit and all others unlit.

Wanted outcome: After the button press, LED 7 should turn off and LED 0 should

turn on.

Test 5: No action

Action: Do nothing

Preconditions: Precisely one LED lit

Wanted outcome: The same LED should remain lit for the entire period of inaction,

and no other LEDs should light up.

Test 6: Quick click

Action: Press button 2 fast 5 times
Preconditions: LED 0 lit and all others unlit.
Wanted outcome: LED 5 lit and all others unlit.

Comments: This test was made to make sure the debouncing code doesn't in-

terfere with normal speed-clicking