COSTA: Co-occurrence statistics for zero-shot classification

Thomas Mensink – University of Amsterdam

Parts & Attributes Workshop – ECCV 2014 September 12th

Parts & Attributes

Parts & Attributes

- Semantic representation of images
 - Properties of class / context of class
 - Each attribute relevant for a few classes

- Interesting for
 - Zero-shot prediction
 - Few-shot prediction
 - Recounting of visual content

Parts & Attributes: Disadvantages

- Unnatural distinction between
 - Attributes to be detected
 - Classes of interest
- Binary map from classes to attributes
- Inherently multi-class zero-shot prediction

CAN'T WE DO ZERO-SHOT PREDICTION IN MULTI-LABELED DATASETS?

Multi-label zero-shot classification

- I'm looking for a label, which I have not seen before. However, this picture contains also:
 - Indoor
 - Living room
 - Table

— ...

We can classify based on context

COSTA: Intuition

COSTA: Intuition (2)

COSTA: Design

Existing classifiers

Co-occurences from **Multi-Labeled** Images

Zero-shot Recognition

COSTA: Classifier

- Goal: Estimate classifier $\hat{m{w}}_l$ for unseen label
- Assumption: k trained classifiers $oldsymbol{w}_k \in \mathbb{R}^{d imes 1}$

Zero-shot classifier:

$$\hat{oldsymbol{w}}_l = \sum_k oldsymbol{w}_k \, s_{lk}$$

• Where s_{lk} is based on co-occurrence stats

Co-Occurrence Statistics

How to set a weight s, based on counts c

Normalized

$$s_{ij}^{\mathsf{n}} = \frac{c_{ij}}{c_i}$$

Binarized

$$s_{ij}^{\mathbf{b}} = \llbracket c_{ij} \ge t \rrbracket$$

Burstiness corrected

$$s_{ij}^{\mathrm{s}} = \sqrt{c_{ij}}$$

Dice coefficient

$$s_{ij}^{\mathsf{d}} = \frac{c_{ij}}{c_i + c_j}$$

Co-Occurrence Statistics (2)

Co-occurrences can be obtained from:

- Ground-truth data (proof-of-concept)
- Web search engines
- Flickr Tags
- Microsoft COCO

Example: Beach Holiday

Concept	Normalized Co-Oc Weight
Sea	0.1810
Water	0.0992
Summer	0.0548
LandscapeNature	0.0435
SunsetSunrise	0.0383
Sports	0.0367
Travel	0.0347
Ship	0.0346
Sunny	0.0319
Big Group	0.0282

Example: Beach Holidays

Sea

Water

Summer

Landscape Nature

Sunset Sunrise

Beach Holidays

TWO EXTENSIONS

Defining a concept by what it is not

- Knowing what is not related to a visual concept is informative for its visual scope
- Related: used in image retrieval [Jegou&Chum ECCV 12]
- Example: a car is never* together with a table
- Solution: positive and negative co-occurrences:

$$\hat{m{w}}_l = \sum_k m{w}_k \; s_{lk}^{ ext{++}} - m{w}_k \; s_{lk}^{ ext{+-}} - m{w}_k \; s_{lk}^{ ext{-+}} + m{w}_k \; s_{lk}^{ ext{--}}$$

^{*}Ok. Never say never, but it is very unlikely

Regression to improve COSTA

Our problem is estimating a classifier:

$$\hat{oldsymbol{w}}_l = \sum_k oldsymbol{w}_k \, s_{lk}$$

• Objective: the estimated classifier should be as close as possible to the learned classifier if we would have visual labels.

Regression to improve COSTA (2)

• Idea: learn a weight a_k per classifier

$$\hat{\boldsymbol{w}}_l = \sum_k a_k \; \boldsymbol{w}_k \; s_{lk}$$

- Note: Weights are independent of novel class
- Solve: Regression objective

$$L_{\text{reg}} = \sum_{i} \|\boldsymbol{w}_{i} - \sum_{k} a_{k} \boldsymbol{w}_{k} s_{ik}\|_{2}^{2}$$

Train: Using a leave-one-out setting over train classes

EXPERIMENTS

Experimental setup

- Hierarchical SUN dataset [Choi et al. CVPR'10]
 - 107 Labels
 - 4367 train 4317 test images
 - 5.34 labels per image
- Fisher Vectors (3096 dim)
- SVMs with 2 fold cross-validation

- In paper also experiments on:
 - ImageCLEF'10 and CUB-Attributes

Multi-label Zero-Shot Classification

All methods are evaluated on a subset of 25% of the labels.

	H-SUN			
Setting	SUB	L10	ZS75	ZS 50
Nr. Train labels	107	106	81	54
Baselines				
Supervised SVM	21.5		_	_
Attributes, following [1]	_	12.8	13.0	12.3
COSTA				
Co-oc Dice	_	14.5	14.5	12.9
P&N Dice		13.7	13.8	10.8
Reg P&N Dice		17.0	16.4	15.0

AP per Concept

PnA 2014

Co-occurrences from the Web

Setting		SUB	L1O	ZS75	ZS50
	Label Annotations				
NOS-H	SUB	21.5	_	_	_
	Label Co-oc	_	17.0	16.4	15.0
	Internet search				
	Web hit counts	_	9.9	9.8	9.8
	Image hit counts	-	12.7	9.1	9.3
	Flickr hit counts	-	15.1	13.4	10.1

Ok. But?

How about DeepNets?

- Related works: DeViSe and CONSe
 - Very similar to COSTA, few differences
 - Predict 1000 ImageNet Classes
 - Measure relatedness by Word2Vec

 Preliminary result: co-occurrences capture visual semantics better than Word2Vec

Failure mode(s)?

- Fine-grained classification:
 - Co-occurrences are not sufficient to distinguish:

Italian Sparrow

Great Sparrow

Failure mode(s)?

Fine-grained classification:

Attributes make sense on segmented objects

Z. Li, E. Gavves, T. Mensink, and C.G.M. Snoek, ECCV 2014

Conclusion: COSTA

- First method designed for multi-label zero-shot
- Many visual concepts can be described as an open set of concept-to-concept relations
- Describe latent image semantics with co-occurrences
- Exploit natural bias in natural images

COSTA: Co-occurrence statistics for zero-shot classification

T. Mensink, E. Gavves, and C.G.M. Snoek, CVPR 2014