

Statistical Thinking (ETC2420/ETC5242)

Associate Professor Catherine Forbes

Week 3: Randomisation and simulation for testing proportions

Learning Goals for Week 3

- Explain terms relevant to statistical hypothesis testing and inference problems
- Demonstrate the sampling distribution of a statistic
- Construct a randomisation test for independence of two binary variables
- Build parametric tests for one and two proportions using the Central Limit Theorem
- Reiterate the framework for frequentist inference

Assigned reading for Week 3:

Chapter 2 and Sections 3.1 and 3.2 in ISRS

Randomization case study: gender discrimination

Do males and females have the same chance of being promoted?

- Population proportion of **males** promoted: p_M
- Population proportion of **females** promoted: p_F
- Test Null hypothesis H_0 : $p_M = p_F$
 - (Gender has no effect on promotion decision)
- Against Alternative hypothesis H_1 : $p_M > p_F$
 - Gender has an effect on promotion decision, with a man more likely to be promoted than a woman
- A controlled experiment: all other attributes of job applicants identical
- Outcomes:

		decision		
		promoted	not promoted	Total
gender	male	21	3	24
	female	14	10	24
	Total	35	13	48

Table 2.1: Summary results for the gender discrimination study.

Statistical test: Are two population proportions equal?

- Use the sample proportions as **point estimates** of the "true" p_M and p_F
 - ▶ **observed** $\hat{p}_{M} = \frac{\text{# males promoted}}{\text{# males considered for promotion}}$
 - ▶ **observed** $\hat{p}_F = \frac{\text{# females promoted}}{\text{# females considered for promotion}}$
- Do **observed** values satisfy $\hat{p}_M > \hat{p}_F$?
 - Equivalently, is $x_{obs} =$ **observed** $\hat{p}_M \hat{p}_F > 0$?
- We take x_{obs} is our **point estimate** for $p_M p_F$
- **Could** $x_{obs} > 0$ be due to "chance"?
- YES. Even when $p_M = p_F$ we can get $x_{obs} > 0$

Hypothesis test

- Restating the hypotheses of interest:
 - ▶ H_0 : $p_M p_F = 0$ (Null hypothesis)
 - ▶ H_1 : $p_M p_F > 0$ (Alternative hypothesis)
- Need the decision rule to decide whether to reject H₀
- We want to reject H_0 when x_{obs} is far from zero
 - ▶ zero is the value of the parameter (here $p_M p_F$) under H_0
- ⇒ Choose the decision rule:
 - Reject H_0 when $x_{obs} \ge x^{crit}$
 - ▶ Otherwise: Do not Reject H₀
- Here x^{crit} is the **critical value**
 - how is it set?

The Significance level

Critical value determined by desired to control Type I error

			Decision
		Do not reject H ₀	Reject H ₀
Truth	H ₀ true	no error	Type I Error
	H_1 true	Type II Error	no error

Table 1: Decision errors from an hypothesis test

- lacksquare Fix $\Pr(\mathsf{Type}\ \mathsf{I}\ \mathsf{error}) = lpha$, the **significance level**
 - choose α to be 'small' (e.g. $\alpha = 0.05$)
- Given *alpha*, find x^{crit} to solve:

 - 'Probability' for point estimate $(\hat{p}_M \hat{p}_F)$ not yet observed (under H_0)

P-values

- "If H_0 is true and we repeated the experiment, what's the chance we would observed a value of $\hat{p}_M \hat{p}_F$ that is 'as or more extreme' than we already have observed with our data?"
- The "chance" is a probability known as a **p-value**

$$p$$
-value = $\Pr(\hat{p}_M - \hat{p}_F \ge x_{obs} \mid H_0 \text{ is true})$

- ▶ A one-sided test: 'as or more extreme' implies $\geq x_{obs}$ values
- 'Probability' for a (hypothetical) repeated experiment (under H₀)
- lacksquare \Rightarrow p-value approach yields same conclusion if use the same lpha
- ⇒ decision rule for p-value approach
 - ▶ If p-value $< \alpha$: Reject H_0
 - Otherwise: Do not reject H₀

Two approximate tests

Probability evaluations typically not feasible \Rightarrow Use an approximate test

- 1 A randomisation test: Use variability in observed data
 - NEW: A modern computational approach
- 2 A test based on the Central Limit Theorem (CLT)
 - OLD: This should be review

Our focus:

- Explain rationale for each test (i.e. in relatively non-technical terms)
- Describe the relative strengths and weaknesses of each test
- Execute the tests using R
- Interpret the results and draw a conclusion
- Report so that all steps are reproducible

CLT test for equality of two population proportions

Let $X = \hat{p}_M - \hat{p}_F$ denote the unobserved (random variable)

- Either before the data is collected
- Or from a hypothetical repeated experiment

Under the CLT:

$$X \stackrel{approx}{\sim} N\left(\mu_X, \ \sigma_X^2\right)$$

- $\mu_X = p_M p_F$ is the **mean** of X
- σ_X^2 is (an appropriate) **variance** of X
- $\Rightarrow \sigma_X = \sqrt{\sigma_X^2}$ is the standard error (SE)
 - ▶ but must be estimated since it will depend upon p_M and p_F
- See Section 3.2.1 in ISRS
 - for required assumptions and additional formulae
 - test for a given (single) proportion
 - confidence intervals

Normal test for proportions in R

Use prop.test() in R for test of equal proportions

- One-sided test $H_0: p_1 p_2 = 0$
 - vs. $H_1: p_1 p_2 > 0$ (upper-tailed)
 - ▶ vs. $H_1: p_1 p_2 < 0$ (lower-tailed)
- Two-sided test $H_0: p_1 p_2 = 0$ vs. $H_1: p_1 p_2 \neq 0$

Use prop.test() in R for test of given proportions

- One-sided test $H_0: p = p_0$ (single proportion)
 - ightharpoonup vs. $H_1: p > p_0$ (upper-tailed)
 - ightharpoonup vs. $H_1: p < p_0$ (lower-tailed)
- Two-sided test $H_0: p = p_0$ vs. $H_1: p \neq p_0$

Use prop.test() in R to produce confidence intervals

- Difference: $p_1 p_2$
- Single proportion: p

Randomisation test of equal proportions

Idea: Use the variability in the data to approximate the p-value

- Shuffle = Randomly permute resumes (gender) assigned to supervisor (promotion outcome)
 - ▶ to simulate X under H₀
 - by breaking association (if present) between gender and promotion outcome

Approximate p-value

- Randomly permute for r = 1, 2, ...R, each time calculating an $x_{obs}^{[r]}$
 - → approximate the sampling distribution of X
 - under hypothetical repeated experiments
- Use simulated hypothetical sampling distribution: $\{x_{obs}^{[r]}, \text{ for } r = 1, 2, ..., R\}$
- To estimate the p-value:

$$ilde{ t p} ext{-value} = rac{\left(ext{number of } x_{obs}^{[r]} \geq x_{obs}
ight)}{R}$$

- ▶ the proportion of the *R* permuted samples where $x_{obs}^{[r]} \ge x_{obs}$
- Use p̄-value
 - to find the conclusion of the test
 - to interpret the outcome
 - then report so that all steps are reproducible

Randomisation test for Gender discrimination study

Figure 2.3: A stacked dot plot of differences from 100 simulations produced under the null hypothesis, H_0 , where <code>gender_simulated</code> and <code>decision</code> are independent. Two of the 100 simulations had a difference of at least 29.2%, the difference observed in the study, and are shown as solid dots.

Frequentist testing

- Under a frequentist approach
 - inferential procedures are developed and evaluated
 - ▶ in terms of their performance under hypothetical repeated sampling
 - with 'true' parameters fix and unknown
- ⇒ Frequentists treat data as random and parameters as fixed
- We have considered a Randomisation test and the CLT-based test
 - for equality of two proportions
 - both developed from the same frequentist testing framework
- Each test approximate probabilities
 - about a test statistic ($X = \hat{p}_M \hat{p}_F$)
 - under its sampling distribution
 - when $H_0: p_M = p_F$ is true

Review materials and the Week 3 Lab

Textbook and videos are for review and practice

Week 3 Lab:

- Build the randomisation test for the Gender discrimination case study data
- Conduct CLT-based tests for
 - single proportion
 - difference between two proportions
- in R
 - more plots
 - do some (light) wrangling
 - write functions
 - sample
 - iterate using a for-loop
- ... more