Линейная алгерба 1 из 6

Спектральная теорема для оператора общего вида

Определение. Операторный полином $p \in \mathcal{P}_{\infty}[K]$ называется аннулирующим полиномом линейного оператора φ , если $p(\varphi)=0$

 Π римечание. Множество аннулирующих полиномов операторов φ — ядро гомоморфизма S_{φ} по определению.

Теорема 1. Аннулирующий полином существует.

Доказательство. $\dim \mathcal{P}[\varphi]=n^2\Rightarrow \exists n^2$ ЛНЗ элементов. Эти элементы : $\varphi,\varphi^2\ldots\varphi^{n^2}$. Тогда $\{\mathcal{I},\varphi,\varphi^2\ldots\varphi^{n^2}\}$ — ЛЗ

$$\Rightarrow \exists p[\varphi] = \sum_{i=0}^{n^2} \alpha_i \varphi^i = 0 \Rightarrow \exists$$

] J_{arphi} — множество аннулирующих полиномов оператора arphi

Лемма 1. $J_{\varphi} - u \partial e a \pi \ \sigma \ P_{\infty}[K]$

Доказательство. $]p \in J_{\varphi} \Rightarrow p(\varphi) = 0$

 $]q \in P_{\infty}[K]$

$$\sphericalangle p(\lambda)q(\lambda) \xrightarrow{S_{\varphi}} p(\varphi)q(\varphi) = 0 \Rightarrow p(\lambda)q(\lambda)$$
 — аннулирующий $\Rightarrow p(\lambda)q(\lambda) \in J_{\varphi}$

Определение. Минимальным аннулирующим полиномом оператора φ называется мнимальнй полином J_{φ}

Примечание. Обозначение минимального полинома: $p_{\varphi}(\lambda) \leftrightarrow p_{\varphi}(\varphi) = 0$

Пример. $]\varphi:X o X$ — оператор с простым спектром

 $]\chi_{arphi}(\lambda)-$ характеристический полином $arphi\Rightarrow\chi_{arphi}(\lambda)=p_{arphi}(\lambda)$

Доказательство.

$$\varphi = \sum_{i=1}^{n} \lambda_i \mathcal{P}_i \Rightarrow \chi_{\varphi}(\varphi) = \sum_{i=1}^{n} \chi_{\varphi}(\lambda_i) \mathcal{P}_i = 0$$

Предположим обратное: $]p_{\varphi}(\lambda)$ — минимальный полином, такой что $\deg p_{\varphi} < \deg \chi_{\varphi}$ $]\chi_{\varphi}(\lambda) = (\lambda - \lambda_k)p_{\varphi}(\lambda)$

$$\sphericalangle p_{\varphi}(\varphi) = \sum_{i=1}^n p_{\varphi}(\lambda_i) \mathcal{P}_i = p(\lambda_k) \mathcal{P}_k \Rightarrow p_{\varphi}(\varphi) \neq 0 \Rightarrow$$
 противоречие

M3137y2019 Лекция 8

Линейная алгерба 2 из 6

Лемма 2. $|p(\varphi) = q(\varphi) \Leftrightarrow [p(\lambda) - q(\lambda)] | p_{\varphi}(\lambda)$

Доказательство.
$$\langle p(\lambda) - q(\lambda) = 0 \Rightarrow p(\lambda) - q(\lambda) \in J_{\varphi}$$

Лемма 3. $p(\lambda) = q(\lambda)p_{\varphi}(\lambda) + r(\lambda) \Rightarrow p(\varphi) = r(\varphi)$

Теорема 2. $\triangleleft p_{\varphi} = p_1 \dots p_k, p_1 \dots p_k$ — взаимно простые

$$\Rightarrow \dot{+} \sum_{j=1}^{k} \operatorname{Ker} p_{j}(\varphi) = X$$

Доказательство.

$$\operatorname{Ker} p_{\varphi}(\varphi) = \dot{+} \sum_{j=1}^k \operatorname{Ker} p_j(\varphi)$$

$$\operatorname{Ker} p_{\varphi}(\varphi) = \operatorname{Ker} 0 = X$$

Теорема 3. О ядре и образе.

$$p_{\varphi}(\lambda) = p_1(\lambda)p_2(\lambda) \Rightarrow \operatorname{Ker} p_1(\varphi) = \operatorname{Im} p_2(\varphi)$$

Доказательство. Покажем, что:

- 1. Im $p_2(\varphi) \subset \operatorname{Ker} p_1(\varphi)$
- 2. dim Im $p_2(\varphi) = \dim \operatorname{Ker} p_1(\varphi)$
- 1. Im $p_2(\varphi) \subset \text{Ker } p_1(\varphi)$ $]y \in \text{Im } p_2(\varphi) \Rightarrow \exists x \in X : y = p_2(\varphi)x$ $\triangleleft p_1(\varphi)y = p_1(\varphi)p_2(\varphi)x = p_{\varphi}(\varphi) = 0$
- 2. Ker $p_{\varphi}(\varphi) = \text{Ker } p_1(\varphi) \dot{+} \text{Ker } p_2(\varphi) \Rightarrow$

$$\dim X = \dim \operatorname{Ker} \, p_1(\varphi) + \dim \operatorname{Ker} \, p_2(\varphi)$$

$$\dim X = \dim \operatorname{Ker} \, p_2(\varphi) + \dim \operatorname{Im} \, p_2(\varphi)$$

 $\dim \operatorname{Ker} p_1(\varphi) = \dim \operatorname{Im} p_2(\varphi)$

Теорема 4. $]p_{\varphi}(\lambda) = \prod\limits_{i=1}^k p_i(\lambda)$ — минимальный аннулирующий полином $\varphi,\,p_1\dots p_k$ — взаимно простые делители

 \Rightarrow

М3137у2019 Лекция 8

Линейная алгерба 3 из 6

1.
$$\sum_{j=1}^{k} p'_{j}(\varphi)q_{j}(\varphi) = \mathcal{I}, \quad p'_{j} = \frac{p_{\varphi}}{p_{j}}$$

2.
$$p'_{j}(\varphi)q_{j}(\varphi) = \mathcal{P}_{L_{j}}$$
 $L_{j} = \operatorname{Ker} p_{j}(\varphi)$

Доказательство. $\triangleleft p_{\varphi}(\lambda) = p_1(\lambda)p_2(\lambda)\dots p_k(\lambda) \quad \exists q_1\dots q_k:$

$$\sum_{j=1}^{k} p'_{j}(\lambda)q_{j}(\lambda) = 1 \xrightarrow{S_{\varphi}} \sum_{j=1}^{n} p'_{j}(\varphi)q_{j}(\varphi) = \mathcal{I}$$

$$]p_1(\lambda) = p_i(\lambda), p_2(\lambda) = p_i'(\lambda) \Rightarrow \operatorname{Im} p_1(\varphi) = \operatorname{Ker} p_2(\varphi)$$

$$\triangleleft \mathcal{P}_{L_1} x = p_i'(\varphi) q(\varphi) \in \operatorname{Ker} p_i(\varphi)$$
, т.к.

$$p_i(\varphi)[p_i'(\varphi)q_i(\varphi)x] = p_i(\varphi)p_i'(\varphi)q_i(\varphi)x = p_\varphi(\varphi)q_i(\varphi)x = 0$$

Осталось доказать, что $\mathcal{P}_{L_i}\mathcal{P}_{L_i}=\delta_i^j\mathcal{P}_{L_i}$

$$\begin{aligned} [i \neq j \Rightarrow \mathcal{P}_{L_i} \mathcal{P}_{L_j} &= p_i'(\varphi) q_i(\varphi) p_j'(\varphi) q_j(\varphi) = \frac{p_{\varphi}(\varphi)}{p_i(\varphi) p_j(\varphi)} q_i(\varphi) q_j(\varphi) p_{\varphi}(\varphi) = 0 \\ [i = j \Rightarrow \mathcal{P}_{L_i}(x) &= \mathcal{P}_{L_i} (\mathcal{I} \cdot x) = \mathcal{P}_{L_i} \left(\sum_{j=1}^n \mathcal{P}_{L_j} \right) x = \mathcal{P}_{L_i} \mathcal{P}_{L_i} x \quad \forall x \\ \Rightarrow \mathcal{P}_{L_i} \mathcal{P}_{L_i} &= \mathcal{P}_{L_i} \end{aligned}$$

Ультраинвариантные подпространства

 $\sphericalangle \varphi: X \to X, \dim X = n$

 $L\subset X$ — инвариантное подпространство φ , если $\varphi(L)\subset L$

Определение. Инвариантное подпространство называется ультраинвариантным подпространством, если существует его дополнение L', такое что:

Определение. Оператор $\varphi_L:L\to L$, такой что:

$$\varphi_L x = \varphi x \quad \forall x \in L$$

называется сужением оператора φ на L.

Если L — ультраинвариантное подпространство, то φ_L называется компонетной φ в L

M3137y2019 Лекция 8

Линейная алгерба 4 из 6

Пемма 4. Дополнение L' ультраинвариантного подпространства L является ультраинвариантным подпространством.

Пемма 5. $X = L \dot{+} L' \quad L, L' - y$ льтраинвариантное подпространства \Rightarrow

$$\varphi = \varphi_L \mathcal{P}_L^{\parallel L'} + \varphi_{L'} \mathcal{P}_{L'}^{\parallel L}$$

Доказательство.

$$X = L \dot{+} L' \Rightarrow \forall x! = x_1 + x_2 = \mathcal{P}_L^{\parallel L'} x + \mathcal{P}_{L'}^{\parallel L} x$$
$$\varphi x = \varphi \mathcal{P}_L^{\parallel L'} x + \varphi \mathcal{P}_{L'}^{\parallel L} x \quad \forall x \quad \Rightarrow$$
$$\Rightarrow \varphi = \varphi_L \mathcal{P}_L^{\parallel L'} + \varphi_{L'} \mathcal{P}_{L'}^{\parallel L} \quad (*)$$

Примечание. Запись (*) эквивалентна записи

$$\varphi = \varphi_L \dot{+} \varphi_{L'}$$

Определение. Инвариантное подпространство называется минимальным, если оно не содержит внутри себя нетривиальных инвариантных подпространств меньшей размерности.

Пемма 6.] $\varphi:X o X$ — линейный оператор \Rightarrow $\mathit{Ker}\,p(\varphi)$ — инвариантное подпространство φ

Доказательство. $x \in \operatorname{Ker} p(\varphi) \Rightarrow p(\varphi)x = 0$

$$\triangleleft \varphi : p(\varphi)(\varphi x) = \varphi p(\varphi) x = 0$$

Пемма 7. $]p_{\varphi}(\lambda)=p_1(\lambda)p_2(\lambda)$ — минимальный полином $\varphi\Rightarrow Ker\,p_i(\varphi)$ — нетривиальное инвариантное подпространство φ

Доказательство.

$$]p_1(\lambda): \operatorname{Ker} p_1(\varphi) = X, \deg p_1(\lambda) < \deg p_{\varphi}(\lambda) \Rightarrow p_1(\varphi) \stackrel{def}{=} 0 \Rightarrow p_1(\lambda) \in J_{\varphi}, \deg p_1(\lambda) \subset \deg p_{\varphi}(\lambda)$$

Это противоречит определению минимального полинома p_{φ} . Аналогично для p_2 .

$$|p_1(\lambda)|$$
: Ker $p_1(\varphi) = 0 \Rightarrow x = \text{Ker } p_1(\varphi) + \text{Ker } p_2(\varphi)$ $\dim p_1(\varphi) = 0 \Rightarrow \text{Ker } p_2(\varphi) = x$

Это чему-то противоречит.

Итого
$$p_i(\varphi) \neq 0$$
 и $p_i(\varphi) \neq X \Rightarrow \text{Ker } p_i(\varphi)$ — нетривиальное подпространство.

M3137y2019 Лекция 8

Линейная алгерба 5 из 6

Примечание. Кег $p_1(\varphi)$ — ИП, Кег $p_2(\varphi)$ — ИП, Кег $p_1(\varphi)$ \dotplus Кег $p_2(\varphi) \Rightarrow p_1, p_2$ — ультраинвариантные подпространства

Теорема 5. Обобщение.

 $p_{arphi}(\lambda) = p_1(\lambda) \dots p_k(\lambda)$ — взаимно простые

$$X = \dot{+} \sum_{j=1}^{k} \operatorname{Ker} p_{j}(\varphi) = \dot{+} \sum_{j=1}^{n} L_{j}$$

, где $L_j = \operatorname{Ker} p_j(\varphi)$ — ультраинвариантные подпространства.

Доказательство. Тривиально.

 $\mathcal{P}_j=\mathcal{P}_{L_j}=p_j'(\varphi)q_j$ — проектора на ультраинвариантное подпространство L_j (ультрапроектор)

 $\sphericalangle \varphi_j = \varphi/L_j: L_j \to L_J$ — компонента φ в ультраинвариантном подпространстве L_j

$$\varphi = \dot{+} \sum_{j=1}^{k} \varphi_j = \sum_{j=1}^{k} \varphi_j \mathcal{P}_j$$

Пемма 8.] $p_{\varphi}=p_1\dots p_k$ — минимальный аннулирующий полином φ $\Rightarrow p_j(\lambda)$ — минимальный аннулирующий полином φ_j

Доказательство. $\varphi_i: L_i \to L_i, L_i = \operatorname{Ker} p_i(\varphi)$

$$]x \in \operatorname{Ker} p_j(\varphi) \quad p_j(\varphi)x = 0 \ \, \forall x \in L_j \Rightarrow p_j \in I_{\varphi_j}$$

 $] ilde{p}_j(\lambda) -$ минимальный полином I_{arphi_j}

$$p_j(\lambda) = q_j(\lambda)\tilde{p}_j(\lambda)$$

Теорема 6. Спектральная теорема.

$$p_{\varphi}(\lambda) = \prod_{j=1}^{k} (\lambda - \lambda_j)^{m_j} = p_1(\lambda) \dots p_k(\lambda) \quad p_j(\lambda) = (\lambda - \lambda_j)^{m_j}, \lambda \neq \lambda_{i \neq j}$$

 $\Rightarrow L_j = \mathrm{Ker}\ p_j(\varphi) = \mathrm{Ker}\ (\varphi - \lambda_j \mathcal{I})^{m_j}$ — ультраинвариантное подпространство

$$\Rightarrow X = \dot{+} \sum_{j=1}^{n} \operatorname{Ker} (\varphi - \lambda_{j} \mathcal{I})^{m_{j}} = \dot{+} \sum_{j=1}^{k} L_{j}$$

М3137у2019 Лекция 8

Линейная алгерба 6 из 6

$$\varphi = \dot{+} \sum_{j=1}^{k} \varphi_j \quad \varphi_j = \varphi|_{L_j}$$

Определение. Нильпотентным оператором порядка m называется минимальный оператор au, такой что:

$$\tau^m = 0 \quad \forall k < m \ \tau^k \neq 0$$

Примечание. $(\varphi_j - \lambda_j \mathcal{I}) = \tau_j$ — нильпотентный оператор порядка m_j

$$arphi = \sum\limits_{j=1}^K (\lambda_j \mathcal{I} + au_j) \mathcal{P}_j$$
 — спектральная теорема (другая формулировка).

Определение. • λ_j — элементарная порция спектра

- \mathcal{P}_j спектральный ультрапроектор на L_j
- L_j спектральное ультраинвариантное (корневое) подпространство
- φ_j спектральная компонента оператора φ в инвариантном подпространстве L_j

М3137у2019 Лекция 8