

STD36P4LLF6

P-channel 40 V, 0.0175 Ω typ.,36 A, STripFET™ F6 Power MOSFET in a DPAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	Ртот
STD36P4LLF6	40 V	0.0205 Ω	36 A	60 W

- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

• Switching applications

Description

This device is a P-channel Power MOSFET developed using the STripFETTM F6 technology, with a new trench gate structure. The resulting Power MOSFET exhibits very low $R_{DS(on)}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packaging	
STD36P4LLF6	36P4LLF6	DPAK	Tape and reel	

Contents STD36P4LLF6

Contents

1	Electric	eal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	DPAK (TO-252) type A2 package information	10
	4.2	Packing information	13
5	Revisio	n history	15

STD36P4LLF6 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	40	V
V_{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25 °C	36	А
I _D	Drain current (continuous) at T _C = 100 °C	26	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	144	А
P _{TOT}	Total dissipation at T _c = 25 °C	60	W
T _{stg}	Storage temperature	-55 to 175	°C
T _j	Maximum junction temperature	175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	2.5	°C/W

 $^{^{(1)}}$ Pulse width limited by safe operating area.

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	40			V
	Zara gota valtaga Drain	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage Drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 40 \text{ V},$ $T_{C} = 125 \text{ °C}$			10	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1		2.5	V
Static drain-source on-		$V_{GS} = 10 \text{ V}, I_D = 18 \text{ A}$		0.0175	0.0205	
R _{DS(on)}	resistance	$V_{GS} = 4.5 \text{ V}, I_{D} = 18 \text{ A}$		0.024	0.029	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2850	-	pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$	-	270	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	180	-	pF
Qg	Total gate charge	$V_{DD} = 20 \text{ V}, I_D = 36 \text{ A},$	-	22	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 4.5 V (see <i>Figure 14</i> :	-	9.4	-	nC
Q_{gd}	Gate-drain charge	"Gate charge test circuit")	-	7.3	-	nC
R_{G}	Gate input resistance	I _D = 0 A, gate DC bias = 0 V, f = 1 MHz, magnitude of alternative signal = 20 mV	-	1.4	-	Ω

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, I_D = 18 \text{ A}$	-	43	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Switching	-	47	-	ns
t _{d(off)}	Turn-off-delay time	times test circuit for	-	148	-	ns
t _f	Fall time	resistive load")	-	19	-	ns

Table 7: Source drain diode

rable 7. Godi Go di alli di God						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 18 \text{ A}$	1		1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 36 A,	ı	26		ns
Qrr	Reverse recovery charge	di/dt = 100 A/μs, V _{DD} = 32 V, T _i = 150 °C	-	21		nC
I _{RRM}	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	1.7		А

Notes:

 $^{^{(1)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 4: Output characteristics

(A)

150

V_{GS} = 10, 9, 8 V

120

V_{GS} = 6 V

V_{GS} = 5 V

0

2

4

6

V_{GS} = 3V

0

2

4

6

8

V_{DS}(V)

Figure 5: Transfer characteristics

(A)

150

V_{DS} = 9 V

120

90

60

30

0

2

4

6

8

V_{GS} (V)

Figure 6: Normalized gate threshold voltage vs temperature

V_{GS(ff)} (norm.)

1.10

1.00

0.80

0.70

0.60

-75

-25

25

75

125

T_j (°C)

Figure 8: Static drain-source on-resistance

R_{DS(on)}
(mΩ)

19

18

17

V_{GS} = 10 V

16

15

0 5 10 15 20 25 30 35 I_D (A)

Figure 9: Normalized on-resistance vs. temperature

R_{DS(00)} GIFG230220151002ALS

1.6

1.4

1.2

1.0

0.8

0.6

0.4

-75

-25

25

75

125

T_j (C)

Figure 10: Gate charge vs gate-source voltage

Vos.

GIPG100320151458ALS

(V)

12

10

Vod = 20 V

1b = 36 A

8

6

4

2

0

0

10

20

30

40

50

Qg (nC)

Test circuits STD36P4LLF6

3 Test circuits

Figure 13: Switching times test circuit for resistive load

Figure 14: Gate charge test circuit

Figure 14: Gate charge test circuit

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of $\mathsf{ECOPACK}^{\otimes}$ packages, depending on their level of environmental compliance. $\mathsf{ECOPACK}^{\otimes}$ specifications, grade definitions and product status are available at: www.st.com. $\mathsf{ECOPACK}^{\otimes}$ is an ST trademark.

Package information

4.1 DPAK (TO-252) type A2 package information

Figure 16: DPAK (TO-252) type A2 package outline

Table 8: DPAK (TO-252) type A2 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Package information STD36P4LLF6

FP_0068772_R19

4.2 Packing information

Figure 18: Tape for DPAK (TO-252)

Full radius

40mm min. access hole at slot location

Tape slot

G measured

at hub

AM06038v1

Figure 19: Reel for DPAK (TO-252)

Table 9: DPAK (TO-252) tape and reel mechanical data

in core for tape start

2.5mm min.width

	Tape	(,,		Reel	
Dim	n	nm	Dim	ı	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Bas	se qty.	2500
P1	7.9	8.1	Bulk qty.		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

STD36P4LLF6 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
10-Dec-2013	1	First revision.
24-Mar-2015	2	Text edits throughout document On cover page, updated title, applications, description and features table Updated Table 4: Static Updated Table 5: Dynamic Updated Table 6: Switching times Updated Table 7: Source-drain diode Added Section 2.1: Electrical characteristics (curves) Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STD36P4LLF6