

- Expected Profit of Gambler for Bet on Spread
 - Assume P(Win)=P(Loss)=0.5
 - Expected Profit for Bettor

$$E[Profit] = (\$10)(0.5) - (\$11)(0.5) = -\$0.50$$

Percent of Bets Needed to Win to Break Even

$$E[Profit] = (\$10)(p) - (\$11)(1-p) = 0 \longrightarrow p = 0.524$$

- We Need to Win 52.4% of the Bets on Spread to be Even
- Power Ratings
 - Bookmakers Use Ratings to Set Point Spreads
 - Example: Panthers +1 and Browns -12

$$E[Spread] = 1 - (-12) = 13$$

This Can Be Adjusted for Home Edges

Spreads from Power Rankings Are Usually "Fair"

Example of Power Ratings from 2006

Team	Rating	Rank
1 Arizona Cardinals	-6.7842786	29
2 Atlanta Falcons	-3.408071	21
3 Baltimore Ravens	8.3506952	4
4 Buffalo Bills	2.4201424	12
5 Carolina Panthers	-3.059493	20
6 Chicago Bears	8.6780273	3
7 Cincinnati Bengals	3.7895627	7
8 Cleveland Browns	-6.2649554	28

Not Last

Why Not Use Team Rank for Rating?

- Ideal Team Ratings
 - Average Team Represented by 0
 - Expressed in Units of Points
 - Example: Expect Panthers to be 5 Points Better Than Average Team Would Mean Their Rating is +5
- Methodology in 6 Steps
 - Step 1: Randomly Attempt to Give Trial Ratings for Each Team and Randomly Establish the Home Edge
 - Step 2: Get Actual Game Data
 - Step 3: Determine Actual Margin of Victory

 $Margin = Home\ Points\ - Away\ Points$

- Methodology in 6 Steps
 - Step 4: Predict Margin From Ratings

 $E[Margin] = Home\ Edge + Home\ Rating\ - Away\ Rating$

Step 5: Compute Errors from Prediction

Error = Margin - E[Margin]

								SSE 38306.43
Game #	Home	Away	Home	Away	Margin	Prediction	Error	Squared error
1	25	17	28	17	11	3.0440188	7.96	63.29764
2	19	4	19	17	2	9.4576993	-7.5	55.61728
3	21	14	21	26	-5	-6.359264	1.36	1.847599
4	5	2	6	20	-14	1.3013943	-15	234.1327
5	15	9	24	17	7	5.3687521	1.63	2.66097
6	8	20	14	19	-5	-8.089332	3.09	9.543973
7	30	3	0	27	-27	-15.63891	-11	129.0744
8	11	29	6	9	-3	-2.59188	-0.4	0.166562
9	31	22	16	23	-7	-1.831027	-5.2	26.71828
10	12	6	0	16	-26	-11.9336	-14	197.8635
11	26	10	18	10	8	-4.135732	12.1	147.276
12	16	7	10	23	-13	-2.357456	-11	113.2638

Minimize This

- Methodology in 6 Steps
 - Step 6: Find Optimal Team Ratings to Minimize SSE
 - EXCEL Solver
 - optim() Function in R
- Alternative: Use Basic Regression

$$X = \begin{bmatrix} 1 & -1 & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & -1 \end{bmatrix}$$
Home
$$Edge$$
Home
$$Away$$

- Strength of Schedule
 - Average the Ability of All Opponents
 - Example from 2006

Team	Mean strength	Rank
1 Arizona Cardinals	-2.09677832	29
2 Atlanta Falcons	-1.15809019	25
3 Baltimore Ravens	-0.47256958	20
4 Buffalo Bills	3.107639211	2
5 Carolina Panthers	-0.87202078	21
6 Chicago Bears	-2.63199544	30
7 Cincinnati Bengals	1.164556765	8
8 Cleveland Browns	1.110025495	9

- Using Mean Absolute Error
 - Games With Unusual Spreads Are Outliers
 - Median Minimizes Mean Absolute Error
 - Power Ratings Less Impacted by Outliers

- Offensive/Defensive Ratings
 - Related to the Over/Under
 - Offensive Rating = Ability to Score Points
 - Positive = Scores More Points Than Average
 - Negative = Scores Less Points Than Average
 - Defensive Rating = Ability to Stop Scoring
 - Positive = Gives Up More Points Than Average
 - Negative = Gives Up Fewer Points Than Average

- Offensive/Defensive Ratings
 - Predicted Points Scored by Home Team

 Average + 0.5(Home Edge) + Home Off. Rating + Away Def. Rating
 - Predicted Points Scored by Away Team $Average 0.5(Home\ Edge) + Away\ Off.\ Rating + Home\ Def.\ Rating$
 - Divided Up Home Edge Equally
 - Average = Average Number of Total Points
 - Can Be Used to Create Overall Rating Team's Off. Rating — Team's Def. Rating
 - Use These to Predict Team Points
 - Add Expected Home Points and Expected Away Points to Estimate Over/Under

- Ranking Based on Wins and Losses
 - Controversy in College Football
 - Choosing Top Teams for College Football Playoffs
 - Overall Record
 - Strength of Conference
 - Strength of Out-of-Conference Schedule
 - Head-to-Head Competition
 - Comparative Outcomes of Common Opponents
 - Conference Championships

FINAL INSPIRATION

When I bet on horses,
I never lose. Why?
I bet on all the horses.

-Tom Haverford