```
In [1]:
```

```
#1. Импортируйте библиотеки pandas и numpy.
import numpy as np
import pandas as pd
```

In [2]:

```
#Загрузите "Boston House Prices dataset" из встроенных наборов данных библиотеки sklearn.

from sklearn.datasets import load_boston
boston = load_boston()
boston.keys()
```

Out[2]:

```
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
```

In [3]:

```
#Создайте датафреймы X и у из этих данных.
data = boston["data"]
data.shape
```

Out[3]:

(506, 13)

In [4]:

```
feature_names = boston["feature_names"]
feature_names
```

Out[4]:

In [5]:

```
target = boston["target"]
target[:10]
```

Out[5]:

```
array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9])
```

In [6]:

```
X = pd.DataFrame(data, columns=feature_names)
X.head()
```

Out[6]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	•
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	ţ
4													•

In [7]:

X.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 13 columns):
CRIM
           506 non-null float64
ZN
           506 non-null float64
           506 non-null float64
INDUS
CHAS
           506 non-null float64
           506 non-null float64
NOX
RM
           506 non-null float64
           506 non-null float64
AGE
DIS
           506 non-null float64
           506 non-null float64
RAD
           506 non-null float64
TAX
PTRATIO
           506 non-null float64
           506 non-null float64
           506 non-null float64
LSTAT
dtypes: float64(13)
memory usage: 51.5 KB
```

In [8]:

```
y = pd.DataFrame(target, columns=["price"])
y.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 1 columns):
price 506 non-null float64
dtypes: float64(1)
```

dtypes: float64(1)
memory usage: 4.0 KB

In [9]:

```
#Разбейте эти датафреймы на тренировочные (X_train, y_train) и тестовые (X_test, y_test) #с помощью функции train_test_split так, чтобы размер тестовой выборки составлял 30% от #всех данных, при этом аргумент random_state должен быть равен 42.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

In [10]:

```
#Создайте модель линейной регрессии под названием lr с помощью класса
#LinearRegression из модуля sklearn.linear_model.
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
```

In [11]:

#Обучите модель на тренировочных данных (используйте все признаки) и сделайте предсказание $lr.fit(X_train, y_train)$

Out[11]:

In [12]:

```
y_pred = lr.predict(X_test)
y_pred.shape
```

Out[12]:

(152, 1)

In [13]:

```
check_test = pd.DataFrame({
    "y_test": y_test["price"],
    "y_pred": y_pred.flatten(),
})
check_test.head(10)
```

Out[13]:

	y_test	y_pred
233	48.3	36.046222
235	24.0	25.669899
305	28.4	31.023508
78	21.2	21.111576
322	20.4	23.090008
499	17.5	19.053526
398	5.0	6.572040
87	22.2	26.167542
301	22.0	29.112336
232	41.7	36.925940

In [14]:

```
#Вычислите R2 полученных предказаний с помощью r2_score из модуля sklearn.metrics.

check_test["error"] = check_test["y_pred"] - check_test["y_test"]

check_test.head()
```

Out[14]:

	y_test	y_pred	error
233	48.3	36.046222	-12.253778
235	24.0	25.669899	1.669899
305	28.4	31.023508	2.623508
78	21.2	21.111576	-0.088424
322	20.4	23.090008	2.690008

In [15]:

```
from sklearn.metrics import r2_score
r2_score_1=r2_score(check_test["y_pred"], check_test["y_test"])
r2_score_1
```

Out[15]:

0.6606552063780124

In [16]:

#2. Создайте модель под названием model с помощью RandomForestRegressor из модуля sklearn.e #Сделайте агрумент n_estimators равным 1000, max_depth должен быть равен 12 и random_state from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=1000, max_depth=12, random_state=42)

In [17]:

#Обучите модель на тренировочных данных аналогично тому, как вы обучали модель LinearRegres #но при этом в метод fit вместо датафрейма y_train поставьте y_train.values[:, 0], чтобы по #из датафрейма одномерный массив Numpy, так как для класса RandomForestRegressor в данном м #для аргумента у предпочтительно применение массивов вместо датафрейма. model.fit(X_train, y_train.values[:, 0])

Out[17]:

In [18]:

```
#Сделайте предсказание на тестовых данных и посчитайте R2.
y_pred = model.predict(X_test)
y_pred.shape
```

Out[18]:

(152,)

```
In [19]:
```

```
check_test = pd.DataFrame({
    "y_test": y_test["price"],
    "y_pred": y_pred.flatten(),
})
check_test.head(10)
```

Out[19]:

	y_test	y_pred
233	48.3	44.402100
235	24.0	22.933879
305	28.4	26.063353
78	21.2	20.603344
322	20.4	21.485415
499	17.5	19.129334
398	5.0	6.873510
87	22.2	21.860189
301	22.0	24.913114
232	41.7	44.547800

In [20]:

```
r2_score_2=r2_score(check_test["y_pred"], check_test["y_test"])
r2_score_2
```

Out[20]:

0.8663837866131361

In [21]:

```
#Сравните с результатом из предыдущего задания.
#Напишите в комментариях к коду, какая модель в данном случае работает лучше.
r2_score_1<r2_score_2
```

Out[21]:

True

In [22]:

#Вывод: мдель RandomForestRegressor работает лучше, чем модель LinearRegression

In [23]:

```
#3. Вызовите документацию для класса RandomForestRegressor, ?RandomForestRegressor
```

```
In [24]:
```

```
#найдите информацию об атрибуте feature_importances.
#feature_importances_ : array of shape = [n_features]
# The feature importances (the higher, the more important the feature).
```

In [25]:

```
#С помощью этого атрибута найдите сумму всех показателей важности, print(model.feature_importances_)
```

```
[0.05536014 0.00145701 0.00485976 0.00134209 0.02539987 0.25424547 0.01744122 0.06553827 0.00423607 0.0081908 0.01881172 0.0140924 0.52902519]
```

In [26]:

```
model.feature_importances_.sum()
```

Out[26]:

1.000000000000000004

In [27]:

```
#установите, какие два признака показывают наибольшую важность.
max_value_idx1=model.feature_importances_.argmax()
max_value_idx1
```

Out[27]:

12

In [28]:

```
max_value_idx2=0
max_value=model.feature_importances_[max_value_idx2]
for i in range(model.n_features_):
    if max_value<model.feature_importances_[i] and i!=max_value_idx1:
        max_value=model.feature_importances_[i]
        max_value_idx2=i
print(max_value_idx2)</pre>
```

5

In [29]:

#4. В этом задании мы будем работать с датасетом, с которым мы уже знакомы по домашнему заданию библиотеке Matplotlib, это датасет Credit Card Fraud Detection. Для этого датасета мы ба трешать задачу классификации — определять, какие из транзакциции по кредитной карте являют в тошенническими. Данный датасет несбалансирован (так как случаи мошенничества относительно так что применение метрики асситасу не принесет пользы и не поможет выбрать лучшую модель. #вычислять AUC, то есть площадь под кривой ROC. Импортируйте из соответствующих модулей так дамастирован (так как случаи мошентичества относительно транстаний применение метрики асситасу не принесет пользы и не поможет выбрать лучшую модель. Так дамастирован принесет пользы и не поможет выбрать лучшую модель. Так дамастирован под кривой ROC. Импортируйте из соответствующих модулей транстаний принест по применение пользы и не поможет выбрать под кривой ROC. Импортируйте из соответствующих модулей транстаний принест по принесет пользы и не поможет выбрать по принесет по при

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
```

In [30]:

```
#Загрузите датасет creditcard.csv и создайте датафрейм df.
df = pd.read_csv('creditcard.csv')
df.head()
```

Out[30]:

	Time	V1	V2	V3	V4	V5	V6	V 7	V8	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	

5 rows × 31 columns

In [31]:

#С помощью метода value_counts с аргументом normalize=True убедитесь в том, что выборка нес df["Class"].value_counts(normalize=True)

Out[31]:

0 0.9982731 0.001727

Name: Class, dtype: float64

In [32]:

```
#Используя метод info, проверьте, все ли столбцы содержат числовые данные df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
Time
          284807 non-null float64
٧1
          284807 non-null float64
V2
          284807 non-null float64
V3
          284807 non-null float64
۷4
          284807 non-null float64
V5
          284807 non-null float64
          284807 non-null float64
۷6
          284807 non-null float64
٧7
V8
          284807 non-null float64
V9
          284807 non-null float64
V10
          284807 non-null float64
V11
          284807 non-null float64
          284807 non-null float64
V12
V13
          284807 non-null float64
          284807 non-null float64
V14
V15
          284807 non-null float64
V16
          284807 non-null float64
          284807 non-null float64
V17
V18
          284807 non-null float64
V19
          284807 non-null float64
V20
          284807 non-null float64
V21
          284807 non-null float64
V22
          284807 non-null float64
          284807 non-null float64
V23
V24
          284807 non-null float64
          284807 non-null float64
V25
V26
          284807 non-null float64
          284807 non-null float64
V27
          284807 non-null float64
V28
          284807 non-null float64
Amount
          284807 non-null int64
Class
dtypes: float64(30), int64(1)
memory usage: 67.4 MB
```

In [33]:

```
#и нет ли в них пропусков
df.isnull().astype(np.int).sum().astype(np.int)
```

Out[33]:

In [34]:

dtype: int32

#Примените следующую настройку, чтобы можно было просматривать все столбцы датафрейма: #pd.options.display.max_columns = 100. pd.options.display.max_columns = 100

In [35]:

```
#Просмотрите первые 10 строк датафрейма df. df.head(10)
```

Out[35]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533
5	2.0	-0.425966	0.960523	1.141109	-0.168252	0.420987	-0.029728	0.476201	0.260314
6	4.0	1.229658	0.141004	0.045371	1.202613	0.191881	0.272708	-0.005159	0.081213
7	7.0	-0.644269	1.417964	1.074380	-0.492199	0.948934	0.428118	1.120631	-3.807864
8	7.0	-0.894286	0.286157	-0.113192	-0.271526	2.669599	3.721818	0.370145	0.851084
9	9.0	-0.338262	1.119593	1.044367	-0.222187	0.499361	-0.246761	0.651583	0.069539
4									•

In [36]:

```
#Создайте датафрейм X из датафрейма df, исключив столбец Class.
X = df.drop("Class", axis=1)
X.head()
```

Out[36]:

	Time	V1	V2	V3	V4	V5	V6	V 7	V8	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	•
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	
4)	

In [37]:

```
#Создайте объект Series под названием у из столбца Class.
y = df["Class"]
y.head()
```

Out[37]:

4

Name: Class, dtype: int64

In [38]:

```
#Разбейте X и у на тренировочный и тестовый наборы данных при помощи функции train_test_spl #используя аргументы: test_size=0.3, random_state=100, stratify=y.
#У вас должны получиться объекты X_train, X_test, y_train и y_test.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=100,
```

In [39]:

```
#Просмотрите информацию о их форме.
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

Out[39]:

```
((199364, 30), (85443, 30), (199364,), (85443,))
```

In [40]:

```
#Для поиска по сетке параметров задайте такие параметры:

#parameters = [{'n_estimators': [10, 15],

#'max_features': np.arange(3, 5),

#'max_depth': np.arange(4, 7)}]

parameters = [{'n_estimators': [10, 15],

'max_features': np.arange(3, 5),

'max_depth': np.arange(4, 7)}]
```

In [41]:

```
#Coэдaйme мoдeль GridSearchCV со следующими аргументами:
#estimator=RandomForestClassifier(random_state=100),
#param_grid=parameters,
#scoring='roc_auc',
#cv=3.
clf = GridSearchCV(
    estimator=RandomForestClassifier(random_state=100),
    param_grid=parameters,
    scoring='roc_auc',
    cv=3,
)
```

```
In [42]:
```

```
#Обучите модель на тренировочном наборе данных (может занять несколько минут).
clf.fit(X_train, y_train)
Out[42]:
GridSearchCV(cv=3, error_score='raise-deprecating',
       estimator=RandomForestClassifier(bootstrap=True, class_weight=None, c
riterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=None,
            oob_score=False, random_state=100, verbose=0, warm_start=False),
       fit_params=None, iid='warn', n_jobs=None,
       param grid=[{'n estimators': [10, 15], 'max features': array([3, 4]),
'max_depth': array([4, 5, 6])}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring='roc_auc', verbose=0)
In [43]:
#Просмотрите параметры лучшей модели с помощью атрибута best_params_.
clf.best_params_
Out[43]:
{'max_depth': 6, 'max_features': 3, 'n_estimators': 15}
In [44]:
#Предскажите вероятности классов с помощью полученнной модели и метода predict_proba.
y_pred_proba = clf.predict_proba(X_test)
print(y_pred_proba[:10])
[[9.99070828e-01 9.29171738e-04]
 [9.99704794e-01 2.95206364e-04]
 [9.99717846e-01 2.82154033e-04]
 [9.99717846e-01 2.82154033e-04]]
In [45]:
#Из полученного результата (массив Numpy) выберите столбец с индексом 1 (вероятность класса
#и запишите в массив y_pred_proba.
y_pred_proba = y_pred_proba[:, 1]
print(y pred proba[:5])
[0.00092917 0.00029521 0.00028215 0.00028215 0.00028215]
In [46]:
#Из модуля sklearn.metrics импортируйте метрику roc_auc_score.
```

from sklearn.metrics import roc auc score

```
In [47]:
```

```
#Вычислите AUC на тестовых данных и сравните с результатом, 
#полученным на тренировочных данных, используя в качестве аргументов 
#массивы y_test и y_pred_proba. 
roc_auc_score(y_test, y_pred_proba)
```

Out[47]:

0.9462664156037156

####Дополнительные задания:

In [48]:

```
#Загрузите датасет Wine из встроенных датасетов sklearn.datasets с помощью функции Load_win #Полученный датасет не является датафреймом. Это структура данных, имеющая ключи аналогично from sklearn.datasets import load_wine data = load_wine() data.keys()
```

Out[48]:

```
dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names'])
```

In [49]:

```
#Просмотрите тип данных этой структуры данных type(data)
```

Out[49]:

sklearn.utils.Bunch

In [50]:

```
#и создайте список data_keys, содержащий ее ключи.
data_keys=data["feature_names"]
data_keys
```

Out[50]:

```
['alcohol',
  'malic_acid',
  'ash',
  'alcalinity_of_ash',
  'magnesium',
  'total_phenols',
  'flavanoids',
  'nonflavanoid_phenols',
  'proanthocyanins',
  'color_intensity',
  'hue',
  'od280/od315_of_diluted_wines',
  'proline']
```

In [51]:

```
#Просмотрите данные
data.data
```

Out[51]:

```
array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00, 1.065e+03], [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00, 1.050e+03], [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00, 1.185e+03], ..., [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00, 8.350e+02], [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00, 8.400e+02], [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00, 5.600e+02]])
```

In [52]:

```
data.data.shape
```

Out[52]:

(178, 13)

In [53]:

```
#описание и названия признаков в датасете. Описание нужно вывести в виде привычного, аккура #оформленного текста, без обозначений переноса строки, но с самими переносами и т. д. for line in data.DESCR.split('\n'): print(line)
```

.. _wine_dataset:

Wine recognition dataset

Data Set Characteristics:

:Number of Instances: 178 (50 in each of three classes)

:Number of Attributes: 13 numeric, predictive attributes and the class

:Attribute Information:

- Alcohol
- Malic acid
- Ash
- Alcalinity of ash
- Magnesium
- Total phenols
- Flavanoids
- Nonflavanoid phenols
- Proanthocyanins
- Color intensity
- Hue
- OD280/OD315 of diluted wines
- Proline

- class:

- class_0
- class_1
- class_2

:Summary Statistics:

	====	=====	======	=====
	Min	Max	Mean	SD
	====	=====	======	=====
Alcohol:	11.0	14.8	13.0	0.8
Malic Acid:	0.74	5.80	2.34	1.12
Ash:	1.36	3.23	2.36	0.27
Alcalinity of Ash:	10.6	30.0	19.5	3.3
Magnesium:	70.0	162.0	99.7	14.3
Total Phenols:	0.98	3.88	2.29	0.63
Flavanoids:	0.34	5.08	2.03	1.00
Nonflavanoid Phenols:	0.13	0.66	0.36	0.12
Proanthocyanins:	0.41	3.58	1.59	0.57
Colour Intensity:	1.3	13.0	5.1	2.3
Hue:	0.48	1.71	0.96	0.23
OD280/OD315 of diluted wines:	1.27	4.00	2.61	0.71
Proline:	278	1680	746	315
	====	=====	======	=====

:Missing Attribute Values: None

:Class Distribution: class_0 (59), class_1 (71), class_2 (48)

:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

:Date: July, 1988

This is a copy of UCI ML Wine recognition datasets. https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data (https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data)

The data is the results of a chemical analysis of wines grown in the same region in Italy by three different cultivators. There are thirteen different measurements taken for different constituents found in the three types of wine.

Original Owners:

Forina, M. et al, PARVUS -An Extendible Package for Data Exploration, Classification and Correlation. Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.

Citation:

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

.. topic:: References

(1) S. Aeberhard, D. Coomans and O. de Vel, Comparison of Classifiers in High Dimensional Settings, Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. (Also submitted to Technometrics).

The data was used with many others for comparing various classifiers. The classes are separable, though only RDA has achieved 100% correct classification.

(RDA: 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data))

(All results using the leave-one-out technique)

(2) S. Aeberhard, D. Coomans and O. de Vel,
"THE CLASSIFICATION PERFORMANCE OF RDA"

Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of
Mathematics and Statistics, James Cook University of North Queensland.
(Also submitted to Journal of Chemometrics).

```
In [54]:
```

```
print(data["DESCR"])
```

.. _wine_dataset:

Wine recognition dataset

Data Set Characteristics:

:Number of Instances: 178 (50 in each of three classes)

:Number of Attributes: 13 numeric, predictive attributes and the class

:Attribute Information:

- Alcohol
- Malic acid
- Ash
- Alcalinity of ash
- Magnesium
- Total phenols
- Flavanoids
- Nonflavanoid phenols
- Proanthocyanins
- Color intensity
- Hue
- OD280/OD315 of diluted wines
- Proline

- class:

- class_0
- class_1
- class_2

:Summary Statistics:

	====	=====	======	=====
	Min	Max	Mean	SD
	====	=====	======	=====
Alcohol:	11.0	14.8	13.0	0.8
Malic Acid:	0.74	5.80	2.34	1.12
Ash:	1.36	3.23	2.36	0.27
Alcalinity of Ash:	10.6	30.0	19.5	3.3
Magnesium:	70.0	162.0	99.7	14.3
Total Phenols:	0.98	3.88	2.29	0.63
Flavanoids:	0.34	5.08	2.03	1.00
Nonflavanoid Phenols:	0.13	0.66	0.36	0.12
Proanthocyanins:	0.41	3.58	1.59	0.57
Colour Intensity:	1.3	13.0	5.1	2.3
Hue:	0.48	1.71	0.96	0.23
OD280/OD315 of diluted wines:	1.27	4.00	2.61	0.71
Proline:	278	1680	746	315
=======================================	====	=====	======	=====

:Missing Attribute Values: None

:Class Distribution: class_0 (59), class_1 (71), class_2 (48)

:Creator: R.A. Fisher

:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

:Date: July, 1988

This is a copy of UCI ML Wine recognition datasets.

https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data (ht

```
tps://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data)
```

The data is the results of a chemical analysis of wines grown in the same region in Italy by three different cultivators. There are thirteen different measurements taken for different constituents found in the three types of wine.

Original Owners:

Forina, M. et al, PARVUS -

An Extendible Package for Data Exploration, Classification and Correlation. Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.

Citation:

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

.. topic:: References

(1) S. Aeberhard, D. Coomans and O. de Vel, Comparison of Classifiers in High Dimensional Settings, Tech. Rep. no. 92-02, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland. (Also submitted to Technometrics).

The data was used with many others for comparing various classifiers. The classes are separable, though only RDA has achieved 100% correct classification.

(RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed data))

(All results using the leave-one-out technique)

(2) S. Aeberhard, D. Coomans and O. de Vel,
"THE CLASSIFICATION PERFORMANCE OF RDA"
Tech. Rep. no. 92-01, (1992), Dept. of Computer Science and Dept. of
Mathematics and Statistics, James Cook University of North Queensland.
(Also submitted to Journal of Chemometrics).

In [55]:

```
#Сколько классов содержит целевая переменная датасета?
np.unique(data["target"]).shape
```

Out[55]:

(3,)

In [56]:

```
#Выведите названия классов.
data["target_names"]
```

Out[56]:

```
array(['class_0', 'class_1', 'class_2'], dtype='<U7')</pre>
```

In [57]:

```
#На основе данных датасета (они содержатся в двумерном массиве Numpy)
#и названий признаков создайте датафрейм под названием X.
X = pd.DataFrame(data.data, columns=feature_names)
X.head()
```

Out[57]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0

In [58]:

#Выясните размер датафрейма X и установите, имеются ли в нем пропущенные значения. X.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 13 columns):
           178 non-null float64
CRIM
ΖN
           178 non-null float64
           178 non-null float64
INDUS
CHAS
           178 non-null float64
           178 non-null float64
NOX
RM
           178 non-null float64
           178 non-null float64
AGE
           178 non-null float64
DIS
RAD
           178 non-null float64
           178 non-null float64
TAX
           178 non-null float64
PTRATIO
           178 non-null float64
LSTAT
           178 non-null float64
dtypes: float64(13)
```

In [59]:

memory usage: 18.2 KB

X.shape

Out[59]:

(178, 13)

```
In [60]:
```

```
X.isnull().astype("int").sum()
Out[60]:
CRIM
           0
ZN
           0
INDUS
           0
CHAS
           0
NOX
           0
RM
           0
           0
AGE
DIS
           0
RAD
           0
TAX
           0
PTRATIO
           0
R
           0
LSTAT
           0
dtype: int64
In [61]:
#Добавьте в датафрейм поле с классами вин в виде чисел, имеющих тип данных питру.int64. Наз
X["target"]=data["target"].astype(np.int64)
X.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):
CRIM
           178 non-null float64
           178 non-null float64
ZN
           178 non-null float64
INDUS
           178 non-null float64
CHAS
           178 non-null float64
NOX
RM
           178 non-null float64
           178 non-null float64
AGE
DIS
           178 non-null float64
           178 non-null float64
RAD
           178 non-null float64
TAX
           178 non-null float64
PTRATIO
           178 non-null float64
В
LSTAT
           178 non-null float64
           178 non-null int64
target
dtypes: float64(13), int64(1)
memory usage: 19.5 KB
```

In [62]:

X.head()

Out[62]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	tarç
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0	
4														•

In [63]:

#Постройте матрицу корреляций для всех полей X. Дайте полученному датафрейму название $X_corr=X.corr()$

X_corr

Out[63]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS
CRIM	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.155929
ZN	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977
INDUS	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230
CHAS	-0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.361922
NOX	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.256294
RM	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935
AGE	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900
DIS	-0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000
RAD	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.365845
TAX	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.139057
PTRATIO	-0.071747	-0.561296	-0.074667	-0.273955	0.055398	0.433681	0.543479	-0.262640
В	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.503270
LSTAT	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	-0.311385
target	-0.328222	0.437776	-0.049643	0.517859	-0.209179	-0.719163	-0.847498	0.489109
4								•

In [64]:

#Создайте список high_corr из признаков, корреляция которых с полем target по абсолютному #значению превышает 0.5 (причем, само поле target не должно входить в этот список). high_corr=X_corr["target"] high_corr=high_corr[np.abs(high_corr)>0.5].drop("target", axis=0) high_corr=list(high_corr.index) high_corr

Out[64]:

['CHAS', 'RM', 'AGE', 'PTRATIO', 'B', 'LSTAT']

In [65]:

#Удалите из датафрейма Х поле с целевой переменной. X=X.drop("target", axis=1) X.head()

Out[65]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0

In [66]:

#Для всех признаков, названия которых содержатся в списке high_corr, вычислите квадрат их #значений и добавьте в датафрейм Х соответствующие поля с суффиксом '_2', добавленного к #первоначальному названию признака. Итоговый датафрейм должен содержать все поля, которые, #были в нем изначально, а также поля с признаками из списка high_corr, возведенными в квадр for i in high_corr:

 $X[i+"_2"]=X[i]**2$

X.head()

Out[66]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	СН
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0	2،
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0	1:
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0	34
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0	28
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0	44
4														•

In [67]:

#Выведите описание полей датафрейма X с помощью метода describe. X.describe()

Out[67]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	17
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	
4								•

In []: