

Augmented Reality

Lecture 5 - Introduction to Unity3D

Manuela Chessa – manuela.chessa@unige.it Fabio Solari – fabio.solari@unige.it Description of an Augmented Reality System Virtual Real Environment Elements Computer graphics for at Some of the computer graphics for a computer graphic specific specif Methods for computing world **AUGMENTED REALITY** VISUALIZATION DEVICE

Introduction to Unity3D

-https://unity.com/

-Unity3D is free for Personal use, you can download it here:

https://store.unity.com/#plans-individual

-The documentation of Unity3D is quite complete, and you can access it from:

https://docs.unity3d.com/Manual/index.html?_ga=2.198809647.1675259443.1679475753-2044810871.1677599519&_gac=1.48692564.1678706197.Cj0KCQjwk7ugBhDIARIsAGuvgPaGn8 5GmbFhl1jUIHtzn0X2OZ-qh3gwE4YzF0ADLOrfMlW9DvSfoH0aAtG4EALw_wcB

-The learning resources are here:

https://learn.unity.com/

- The programming language for Unity 3D is C# (we will consider it in the next lecture)
- -You can find the class documentation for Unity3D here:
- https://docs.unity3d.com/ScriptReference/
- On the left, follow *UnityEngine -> classes*
- -The Unity3D scripting system and the Unity architecture are explained here:
 - https://docs.unity3d.com/Manual/ScriptingSection.html

Feature	Universal Render Pipeline (URP)	High Definition Render Pipeline (HDRP)	Built-In Render Pipeline
Target uses	Projects that need rendering scalability across all platforms, especially tile-based deferred rendering (TBDR) platforms, and untethered VR platforms. Projects that need to extend and customize the rendering pipeline. 2D and 3D projects.	Projects that need photorealism and high-fidelity rendering on high-end platforms 3D projects	Projects that need rendering scalability across all platforms. 2D and 3D projects.
Platform support	Supports all Unity-supported platforms Focuses on efficiency on tile-based deferred rendering (TBDR) platforms, and untethered VR platforms	Supports desktop, Xbox and PlayStation platforms Focuses on efficiently using advanced GPU hardware capabilities such as async compute shaders, and ray tracing if the hardware supports it.	Supports all Unity-supported platforms
Source code access	Public access to the URP source code on GitHub . You can also create a	Public access to the HDRP source code on GitHub . You can also create	Mostly C++ Private access by <u>purchasing</u> source code access ☑

Examples

- -Camera
- -Light
- -3D objects
- Material
- Prefabs
- -Rigid body
- -Transform
- Hierarchy