Number of printed page: 02 Er. No. 2.2.1. B30 8

Academic Year: 2022-23

Jaypee University of Engineering & Technology, Guna T-2 (Odd Semester 2022)

18B11MA511- Probability Theory and Random Processes

Maximum duration: 1 Hour & 30 Minutes

Maximum Marks: 25

Notes:

- 1. This question paper has 5 (five) questions.
- 2. Write relevant answers only.
- 3. Do not write anything on question paper (Except your Er. no.)
- 4. Standard Normal Distribution Table is attached with paper.

CO no. per course description CO₃

The joint probability function of two discrete random variables X and Y is given by f(x, y) = c(2x + y), where x and y can assume all integers such that $0 \le x \le 2$, $0 \le y \le 3$ and f(x, y) = 0 otherwise. Find following:

Value of the constant c.

All marginal probability distributions

 $P(X \ge 1, Y \le 2)$

CO₃ [05]

Marks

Find following:

The marginal density functions of x ad y.

Conditional probability density functions of x ad y.

Suppose the probability is 0.67 that the favorite in a horse race will finish in money (first, second, or third place). In the next 5 races, what is the probability that the favorite finishes in the money:

(i) Between 2 and 4 times, inclusive

(ii) Find the probability distribution of random variable X, the numbers of times the favorite finishes in money in the next 5 races.

A survey found that the traffic flowing through an intersection with an average of 3 cars per minute. Assume the traffic flow can be modeled as a Poisson distribution. Find following:

(1) Probability of no cars pass through the intersection within 1 minute

(ii) Probability of 3 or more cars pass through the intersection within 1 minute

CO6

[02]

CO₄

The weight of a electronic component is normally distributed with a mean of 6 ounces and standard deviation of 0.25 ounces: Find following: (i) What must the standard deviation of weights be in order for company to state that 99% of its electronic components weight are less than 6.5 ounces (mean = 6 ounces). ii) If standard deviation stays at 0.25 ounces, What must the mean weights be in order for company to state that 99.9 % of its electronic components are less than 6.5 ounces. Find the mean and variance of exponential distribution of random variable X with CO₁ parameter λ. A lot consists of 10 good articles, 4 with minor defects and 2 with major defects. CO₁ [03] Two articles are chosen from the lot at random (without replacement). Find the probability of following: (1) At least one is good, (ii) At most one is good, (iii) Neither has major defects, A box contains 4 bad and 6 good tubes. Two are drawn out from the box at a time. [02] CO₁ One of them is tested and found to be good. What is the probability that the other one is also good?

CO6

[03]

Standard Normal Cumulative Probability Table

Cumulative probabilities for POSITIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
								0.7457	0.7400	0.7004
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.85 08	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	/			2 2270	0.0000	0.0004	0.0400	0.0440	0.9429	0.9441
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418		0.9545
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9633
1.7	0.9554	0.9564	0.9573	0.9582	0.95 91 0.96 71	0.9599	0.9608	0.9616	0.9625	0.9706
1.8	0.9641	0.9649	0.9656	0.9664		0.9678	0.9686	0.9693	0.9699	0.9767
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9707
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
					0.0045					0.0050
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952 0.9964
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981 0.9986
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.1	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.2	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.3	0.9995	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.4	0.9997	0.5557	0,3331	0,0001		0.3337	0.9991	0.0001		

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.02						
-3.4	0.0003	0.0003	0.0003	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.3	0.0005	0.0005	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.2	0.0007	0.0003	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.1	0.0007	0.0007	0.0009	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.0	0.0010	0.0009	0.0009	0.0009	8000.0	8000.0	8000.0	8000.0	0.0007	0.0007
-5.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017						
-2.8	0.0026	0.0016	0.0018		0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.7	0.0035	0.0023	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.6	0.0047	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.5	0.0062	0.0043	0.0044	0:0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.0	0.0002	0.0000	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0070					
-2.3	0.0107	0.0104	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.2	0.0139	0.0136	0.0102		0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.1	0.0179	0.0174	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.0	0.0228	0.0222	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
•	0.0220	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0000	0.0050	0.00==			
-1.8	0.0359	0.0351	0.0274	0.0206	0. 0262 0. 0329	0.0256	0.0250	0.0244	0.0239	0.0233
-1.7	0.0446	0.0436	0.0427	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0401	0.0392	0.0384	0.0375	0.0367
-1.5	0.0668	0.0655	0.0643	0.0630	0.0503	0.0495 0.0606	0.0485	0.0475	0.0465	0.0455
			0.00.0	0.0000	0.0010	0.0000	0.0594	0.0582	0.0571	0.0559
-1.4	8080.0	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0004
-1.3	0.0968	0.0951	0.0934	0.0918	0.0743	0.0785	0.0869	0.0708	0.0838	0.0681
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.0033	0.1003	0.0823 0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1073	0.1251	0.1230	0.1020	0.1190	0.0965
-1.0	0.1587	0.1562	0.1539	0.1515	0.1271	0.1251	0.1230	0.1210	0.1401	0.1170
				31.1010	0.1492	0.1405	0.1770	0.1425	0.1401	0.1373
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.1735	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2811	0.2912	0.2877	0.2843	0.2810	0.2776
					0,2940	0,20,12		0.20.0	0.20.0	0.2.70
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4052	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4443	0.4801	0.4761	0.4721	0.4681	0.4641
		W. Cinn	0.4		0.4640					

Dalaset Do bhi use Kanny D Mai worker atter Live. **And**