# Math for CS 2015/2019 solutions to "In-Class Problems Week 14, Wed. (Session 35)"

https://github.com/spamegg1

November 22, 2022

## Contents

| 1 | roblem 1  | L |
|---|-----------|---|
|   | .1 (a)    | 1 |
|   | .2 $(b)$  | 2 |
|   | .3 (c)    | 2 |
|   | .4 (d)    | 2 |
|   | .5 (e)    | 2 |
|   | .6 (f)    |   |
|   | .7 (g)    | 3 |
| 2 | Problem 2 | 3 |
| 3 | Problem 3 | 3 |
|   | .1 (a)    | 3 |

# 1 Problem 1

## 1.1 (a)



Figure 1

Find a stationary distribution for the random walk graph in Figure 1.

Proof.

## 1.2 (b)

Explain why a long random walk starting at node x in Figure 1 will not converge to a stationary distribution. Characterize which starting distributions will converge to the stationary one.

Proof.

#### 1.3 (c)



Find a stationary distribution for the random walk graph in this figure.

Proof.

#### 1.4 (d)

If you start at node w above and take a (long) random walk, does the distribution over nodes ever get close to the stationary distribution? You needn't prove anything here, just write out a few steps and see what's happening.

Proof.

#### 1.5 (e)



Explain why the random walk graph in this figure has an uncountable number of stationary distributions.

Proof.

### 1.6 (f)

If you start at node b in the last figure and take a long random walk, the probability you are at node d will be close to what fraction? Explain.

Proof.

# 1.7 (g)

Give an example of a random walk graph that is not strongly connected but has a unique stationary distribution. Hint: There is a trivial example.

Proof.

#### 2 Problem 2

Prove that for finite random walk graphs, the uniform distribution is stationary if and only the probabilities of the edges coming into each vertex always sum to 1, namely

$$\sum_{u \in \text{into}(v)} p(u, v) = 1$$

where into(w) ::=  $\{v \mid \langle v \to w \rangle \text{ is an edge}\}.$ 

Proof.

#### 3 Problem 3

A Google-graph is a random-walk graph such that every edge leaving any given vertex has the same probability. That is, the probability of each edge  $\langle v \to w \rangle$  is 1= outdeg.v/.

A digraph is symmetric if, whenever  $\langle v \to w \rangle$  is an edge, so is  $\langle w \to v \rangle$ . Given any finite, symmetric Google-graph, let d(v) := outdeg(v)/e where e is the total number of edges in the graph.

## $3.1 \quad (a)$

If d was used for webpage ranking, how could you hack this to give your page a high rank? ...and explain informally why this wouldn't work for "real" page rank using digraphs?

Proof.

#### 3.2 (b)

Show that d is a stationary distribution.

Proof.