TD Électromagnétisme

Dipôle électrostatique

1 Moment dipolaire de l'eau

Le moment dipolaire de la molécule d'eau vaut 1,86 D. Calculez la charge -2δ portée par l'oxygène, sachant que l'angle \widehat{HOH} est de 104,5° et la longueur de la liaison H – O est de 96 pm.

2 Dipôle dans le champ d'un condensateur plan

Un condensateur plan est constitué de deux plans uniformément chargés, l'un de charge surfacique $-\sigma < 0$ et d'abscisse x = -a < 0, l'autre de charge σ et d'abscisse a sur un axe Ox perpendiculaire aux plans.

Rappelons que le champ électrique entre les armatures d'un condensateur plan est uniforme et donné par :

$$\vec{E} = -\frac{\sigma}{\varepsilon_0} \, \vec{e}_x \tag{1}$$

Un dipôle électrostatique \vec{p} est placé sur l'axe Ox en x=0. L'angle qu'il fait avec \vec{e}_x est noté α (figure 1).

FIG. 1: Dipôle dans le champ d'un condensateur plan.

- 1. Déterminez son énergie potentielle E_p pour α quelconque, en fonction de $p = \parallel \vec{p} \parallel, \sigma, \alpha$ et ε_0 .
- 2. Discutez les positions d'équilibre de ce dipôle.
- 3. Modélisons ce dipôle comme constitué de deux charges ponctuelles, N de charge -q < 0 placée en x = -b et P de charge q > 0 placée en x = b. Elles sont de même masse m.
 - (a) Pourquoi le dipôle ne quitte-il pas sa position?
 - (b) Étudiez les petites oscillations du dipôle autour de sa position d'équilibre stable. Vous poserez $\beta = \alpha \alpha_{\text{éq}}$, où $\alpha_{\text{éq}}$ est la valeur de α à l'équilibre stable. Donnez la période de ses oscillations.
- 4. Le dipôle est maintenant supposé au repos sur sa position d'équilibre stable. Rappelons que le potentiel rayonné en un point M par un dipôle \vec{p} placé en O est :

$$V_d(M) = \frac{\vec{p}.\vec{r}}{4\pi\varepsilon_0 r^3}$$
 avec $\vec{r} = \overrightarrow{OM}$ et $r = ||\vec{r}||$ (2)

- (a) Déterminez le potentiel $V_c(M)$ rayonné par les armatures en un point M d'abscisse $x \in]-a, a[$. Le potentiel de l'armature positive sera noté U et celui de l'armature négative choisi nul.
- (b) Déduisez-en le potentiel total V(M) en fonction de θ , angle repérant M défini précédemment.
- (c) Après avoir factorisé la partie angulaire dans le potentiel, montrez qu'il existe deux équipotentielles particulières V = U/2 que vous caractériserez.
- (d) Tracez l'allure de quelques lignes de champ.

3 Champ inconnu

Un champ électrostatique \vec{E} est invariant par rotation autour d'un axe Oz. Sa divergence est nulle, sauf au voisinage de O où elle peut tendre vers l'infini.

- 1. Écrivez l'équation différentielle gouvernant le potentiel scalaire V.
- 2. Résolution de l'équation. Le laplacien en sphérique s'écrit :

$$\Delta V = \frac{1}{r} \frac{\partial^2 (rV)}{\partial r^2} + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin(\theta)^2} \frac{\partial^2 V}{\partial \varphi^2}$$
 (3)

La résolution va être faite par séparation, en cherchant une solution de la forme $V(r,\theta) = f(r)g(\theta)$.

- (a) Déterminez les équations différentielles vérifiées par f et g.
- (b) Vérifiez que $g(\theta) = \cos(\theta)$ est solution et cherchez f sous la forme $f(r) = Ar^{\alpha}$.
- (c) Déduisez-en le champ électrostatique associé. Que remarquez-vous?

4 Modèle de solvatation d'un ion

On peut modéliser la molécule d'eau comme un dipôle électrostatique de moment $p=6,2.10^{-30}\,\mathrm{C}\,\mathrm{m}$.

Soit quatre molécules d'eau situées aux sommets G_1 à G_4 d'un tétraèdre régulier (figure 2). La distance séparant le centre du tétraèdre d'un sommet est $d = CG_i = 0,3$ nm. On impose que l'axe des dipôles est colinéaire à $\overrightarrow{CG_i}$ mais pas forcément de même sens. Pour un couple quelconque de points, $\widehat{G_iCG_k} = \beta = 109^\circ 28'$.

FIG. 2: Modèle de solvatation d'un ion.

- 1. Établissez l'expression de l'énergie d'interaction de deux dipôles en fonction de p, d et β . Mettez en évidence trois cas possibles.
- 2. Déduisez-en l'énergie potentielle d'interaction de ces quatre molécules d'eau en fonction de d, p et β pour les cinq arrangements des quatre dipôles respectant les conditions imposées. Indication : l'énergie potentielle étant associée à une interaction, il faut faire attention à ne pas compter plusieurs fois la même interaction! Ainsi, les forces $\vec{F}_{l \to k}$ et $\vec{F}_{k \to i}$ correspondent à une seule et même interaction (voir principe des actions réciproques).
- 3. Un cation de charge $e = 1,6.10^{-19}$ C est placé en C, ce qui modélise sa solvatation. Exprimez de nouveau les énergies potentielles d'interaction correspondant aux cinq arrangements précédents. Applications numériques en eV.
- 4. Quel est l'arrangement le plus stable des quatre molécules autour de l'ion?
- 5. Que pensez-vous de ce modèle, sachant que l'énergie de solvatation d'un ion de cette taille est d'environ -240 kJ mol⁻¹?