exercícios de álgebra linear

2016

maria irene falcão :: maria joana soares

Conteúdo

1	Matrizes	1
2	Sistemas de equações lineares	7
3	Determinantes	13
4	Espaços vetoriais	19
5	Transformações lineares	27
6	Valores e vetores próprios	31
	Soluções	35
	Resolução dos exercícios selecionados	45
	Provas de avaliação	57
	Bibliografia	97

Estes textos contêm uma seleção de exercícios para apoio às aulas de Álgebra Linear para cursos de Engenharia e Ciências, bem como as resoluções de alguns exercícios (assinalados com *). Apresentam-se também algumas provas de avaliação para esses cursos e as respetivas resoluções.

Notação

```
\mathbb{R}^{m \times n}
                        conjunto das matrizes reais de ordem m \times n
                        entrada (i, j) da matriz A
a_{ij}
A = (a_{ij})_{m \times n}
                        matriz de ordem m \times n cuja entrada (i, j) é a_{ij}
A^T
                        matriz identidade de ordem n
                        transposta de A
A^{-1}
                        inversa de A
\bar{A}
                        conjugada de A
A^*
                        transconjugada de A
\mathop{\rm car} A
                        característica de A
A\mathbf{x} = \mathbf{b}
                        forma matricial de um sistema de equações
A\mathbf{x} = \mathbf{0}
                        forma matricial de um sistema homogéneo
(A|b) ou [A|b]
                        matriz ampliada do sistema A\mathbf{x} = \mathbf{b}
\det A ou |A|
                        determinante de A
                        complemento algébrico da entrada (i, j) da matriz A
A_{ij}
\operatorname{\mathsf{adj}} A
                        adjunta de A
                        espaço dos polinómios de grau \leq n
\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle
                        espaço gerado por \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n
(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)
                        base de um espaço vetorial
\dim V
                        dimensão do espaço vetorial {\cal V}
\mathcal{L}(A)
                        espaço das linhas da matriz A
\mathcal{C}(A)
                        espaço das colunas da matriz A
\mathcal{N}(A)
                        núcleo ou espaço nulo da matriz A
\operatorname{Im} f
                        imagem da aplicação linear f
Nuc f
                        núcleo da aplicação linear f
p_A(\lambda)
                        polinómio característico da matriz A
V_{\lambda}
                        subespaço próprio associado ao valor próprio \lambda
```

Exercícios para as aulas

Exercício 1.1 Dê exemplo de uma matriz

- a) quadrada de ordem 4
- b) retangular de ordem 4×3
- c) retangular de ordem 2×5

- d) linha de ordem 1×4
- e) coluna de ordem 2×1
- f) diagonal de ordem 5

- g) triangular inferior de ordem 4 h) triangular superior de ordem 3

Exercício 1.2 Em cada caso, escreva por extenso a matriz quadrada de ordem 4 cujos elementos são:

a)
$$a_{ij} = \begin{cases} 1, \text{ se } i = j \\ 0, \text{ se } i \neq j \end{cases}$$

a)
$$a_{ij}=\left\{ egin{array}{ll} 1, \ \mbox{se} \ i=j \ 0, \ \mbox{se} \ i
eq j \end{array}
ight.$$
 b) $b_{ij}=\left\{ egin{array}{ll} 1, \ \mbox{se} \ i\geq j \ 0, \mbox{caso contrário} \end{array}
ight.$

c)
$$c_{ij} = \begin{cases} 1, \text{ se } i = j \\ -1, \text{ se } |i - j| = 1 \end{cases}$$
 d) $d_{ij} = (-1)^{i+j}(i+j)$. 0, caso contrário

d)
$$d_{ij} = (-1)^{i+j}(i+j)$$

Exercício 1.3 Sejam A, B, C, D e E matrizes de ordens 2×3 , 3×4 , 3×5 , 2×5 e 3×3 , respetivamente. Indique quais das seguintes expressões estão bem definidas e, em caso afirmativo, indique a ordem da matriz resultante.

a)
$$A + B$$
 b) BA c) AB d) C^2 e) $AC + D$ f) AEB

Exercício 1.4 Calcule os produtos

a)
$$\begin{pmatrix} 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$$

$$b) \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & 2 \end{array}\right) \left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)$$

a)
$$\begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$$
 $\begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$ b) $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$

$$d) \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 3 & 1 \\ -1 & 2 \\ 5 & 1 \end{array}\right)$$

$$e) \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} 3 & 1 & 0 \\ -1 & 2 & 0 \\ 5 & 1 & 0 \end{array}\right)$$

$$d) \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ -1 & 2 \\ 5 & 1 \end{pmatrix} \quad e) \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ -1 & 2 & 0 \\ 5 & 1 & 0 \end{pmatrix} \quad f) \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & -3 \\ -1 & 2 & 1 \\ 5 & 1 & -5 \end{pmatrix}$$

$$g) \left(\begin{array}{ccc} 2 & 1 & 0 \end{array}\right) \left(\begin{array}{ccc} 3 & 1 \\ -1 & 2 \\ 5 & 1 \end{array}\right) \qquad h) \left(\begin{array}{ccc} 2 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{ccc} 3 \\ -1 \end{array}\right) \qquad \qquad i) \left(\begin{array}{ccc} 2 \\ 1 \\ 1 \end{array}\right) \left(\begin{array}{ccc} 3 & 1 \end{array}\right)$$

$$h) \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} 3 \\ -1 \end{array} \right)$$

$$i) \left(\begin{array}{c} 2\\1\\1 \end{array}\right) \left(\begin{array}{cc} 3&1\end{array}\right)$$

Exercício 1.5 Sejam A e B as matrizes

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \qquad \text{e} \qquad B = \begin{pmatrix} -3 & 0 & 2 \\ 1 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix}.$$

1

- a) Determine a primeira linha da matriz AB.
- b) Determine a segunda coluna da matriz BA.
- c) Determine a terceira linha da matriz A^2 .

Exercício 1.6 Determine todas as matrizes B que comutam com a matriz $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.

Exercício 1.7 Seja
$$A=\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$
 . Mostre que, para $n\geq 3$, $A^n=\mathbf{0}_3$.

Exercício 1.8 Considere as matrizes

$$A = \begin{pmatrix} -2 & 3 \\ 2 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 6 \\ 2 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} -4 & -3 \\ 0 & -4 \end{pmatrix}.$$

Verifique que $AB = \mathbf{0}$ e AC = AD. Comente os resultados obtidos.

Exercício 1.9 Obtenha uma expressão para $(A+B)^3$, com A e B matrizes quadradas de ordem n. Simplifique a expressão anterior, no caso de A e B serem matrizes comutáveis.

Exercício 1.10 Verifique se existem valores de α e β tais que:

$$\begin{pmatrix} 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 1 & -2 & \alpha \\ 1 & -2 & \alpha & \beta \end{pmatrix}.$$

Exercício 1.11 Verifique que

$$8\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{array}\right)^{-1} = \left(\begin{array}{ccc} -3 & 4 & 1 \\ 4 & -8 & 4 \\ 1 & 4 & -3 \end{array}\right).$$

Exercício 1.12^* Sejam A e B matrizes invertíveis.

- a) Mostre que $A^{-1} + B^{-1} = A^{-1}(A+B)B^{-1}$.
- b) Verifique também que, se A+B é invertível, então $A^{-1}+B^{-1}$ é invertível sendo

$$(A^{-1} + B^{-1})^{-1} = B(A+B)^{-1}A = A(A+B)^{-1}B.$$

Exercício 1.13 Considere as matrizes

$$A = \begin{pmatrix} 3 & 1 & 4 \\ -2 & 0 & 1 \\ 1 & 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 1 & 1 \\ 2 & -4 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1+i & 1 & i \\ 2i & 1 & 1 \\ i & -i & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 1+i & 1 & 2i \\ 1 & 1 & -1 \\ -2i & 0 & 1 \end{pmatrix}.$$

Determine:

a)
$$(2A)^T - 3B^T$$
 b) AB c) BA d) A^TB^T e) $(AB)^T$

f)
$$C^*$$
 g) \overline{iD} h) $(iD)^*$ i) $\overline{\overline{D}+C}$ j) $(\overline{C}D)^*$

Exercício 1.14 Identifique quais das seguintes matrizes são simétricas, antissimétricas, hermíticas ou antihermíticas.

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1+i \\ 1-i & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \qquad D = \begin{pmatrix} i & 1 \\ -1 & -i \end{pmatrix},$$

$$E = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \end{array} \right) \quad F = \left(\begin{array}{ccc} 2 & 1 & 0 \\ -1 & 1 & 2 \\ 0 & -2 & 1 \end{array} \right), \quad G = \left(\begin{array}{ccc} 0 & 1 & i \\ 1 & 0 & -2 \\ -i & -2 & 1 \end{array} \right), \quad H = \left(\begin{array}{ccc} 0 & 1-i & 2 \\ -1+i & 0 & -2i \\ -2 & 2i & 0 \end{array} \right) \quad .$$

Exercício 1.15 Seja A uma matriz quadrada de ordem n. Mostre que:

- a)* $A + A^T$ é uma matriz simétrica.
- b) $A A^T$ é uma matriz antissimétrica.
- c) AA^T e A^TA são matrizes simétricas.

Exercício 1.16 Sejam A e B matrizes hermíticas de ordem n. Mostre que:

- a) A+B é uma matriz hermítica.
- b) AB é uma matriz hermítica sse AB = BA
- c) se A é invertível, A^{-1} é hermítica.
- d) $A A^*$, iA e -iA são anti-hermíticas.
- e) AB + BA é hermítica e AB BA é anti-hermítica.

Exercício 1.17 Uma matriz A de ordem n diz-se ortogonal se $AA^T = A^TA = I_n$ e diz-se anti-ortogonal se $AA^T = A^TA = -I_n$. Mostre que:

- a)* se A e B são matrizes ortogonais, então AB e BA também são matrizes ortogonais.
- b) se A e B são matrizes anti-ortogonais, então AB e BA são matrizes ortogonais.

Exercício 1.18* Seja A uma matriz de ordem $n \times n$, com todos os elementos iguais a 1.

- a) Verifique que $A^2 = nA$.
- b) Mostre que, se n > 1, então $(I_n A)^{-1} = I_n \frac{1}{n-1}A$.

Exercício 1.19 Uma matriz quadrada A diz-se idempotente, se $A^2 = A$.

- a) Mostre que a matriz $A = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$ é idempotente.
- b) Seja

$$M = \begin{pmatrix} 1 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 1 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1 & 1/3 & 1/3 & 1/3 \\ \hline 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \end{pmatrix}.$$

Calcule M^2 e M^3 , usando o fracionamento indicado para M. A que será igual a matriz M^{300} ?

Exercício 1.20 As seguintes matrizes são matrizes em escada? Em caso afirmativo, indique a respetiva característica.

$$a) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix} \quad b) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad c) \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad d) \begin{pmatrix} 1 & 4 & 6 \\ 0 & 0 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$

$$e) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{pmatrix} \quad f) \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \quad g) \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 & 4 \\ 0 & 0 & 1 & 3 & 6 \end{pmatrix} \quad h) \begin{pmatrix} 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Exercício 1.21 Reduza as seguintes matrizes à forma em escada.

$$a) \begin{pmatrix} 1 & -1 & 1 \\ 0 & 3 & -3 \\ 1 & 1 & 0 \end{pmatrix} \qquad b) \begin{pmatrix} 0 & 5 & 1 & -8 \\ 0 & 3 & -3 & 6 \\ 4 & -8 & 12 & 0 \end{pmatrix} \qquad c) \begin{pmatrix} 2 & 1 & 1 & 1 \\ 4 & 2 & 3 & 4 \\ -6 & -3 & -1 & 1 \\ 2 & 1 & 2 & 3 \end{pmatrix}$$

$$d) \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix} \qquad e) \begin{pmatrix} 1 & 2 & 1 & 3 & 3 \\ 2 & 4 & 0 & 4 & 4 \\ 1 & 2 & 3 & 5 & 5 \\ 2 & 4 & 0 & 4 & 4 \end{pmatrix} \qquad f) \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ 0 & 0 & 2 & 4 & 0 \\ 2 & -2 & -1 & 2 & 1 \\ -1 & 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Exercício 1.22 Discuta, em função do parâmetro α , a característica de

$$A_{lpha}=\left(egin{array}{ccc} 1 & 1 & lpha \ 0 & lpha & lpha \ lpha & -2 & 0 \end{array}
ight), \quad {\sf com} \,\, lpha\in\mathbb{R}.$$

Exercício 1.23 Determine valores de α e β de forma que

$$\operatorname{car}\left(\begin{array}{ccc} 1 & -\alpha & 0 \\ 0 & -1 & \beta \\ 1 & 0 & -\beta \end{array}\right) < 3.$$

Exercício 1.24 Considere novamente as matrizes apresentadas no Exercício 1.20. Identifique quais as matrizes que têm a forma em escada reduzida.

Exercício 1.25 Reduza as matrizes obtidas no Exercício 1.21 à forma em escada reduzida.

Exercício 1.26* Mostre que duas matrizes da mesma ordem são equivalentes por linhas se e só se podem converter-se na mesma forma em escada reduzida.

Exercício 1.27 Verifique se as matrizes

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad \mathbf{e} \qquad B = \begin{pmatrix} 2 & 2 & 1 \\ -2 & -2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

são equivalentes por linhas.

Exercícios suplementares

Exercício 1.28 Mostre que, se A e B são matrizes invertíveis tais que $(AB)^T = A^TB^T$, então

$$(AB)^{-1} = A^{-1}B^{-1}.$$

Exercício 1.29 Seja A uma matriz simétrica de ordem n. Mostre que:

- a) se A é invertível, A^{-1} é simétrica.
- b) B^TAB é uma matriz simétrica, qualquer que seja a matriz B de ordem n.
- c) se B é uma matriz simétrica, então:
 - i) A + B é uma matriz simétrica.
 - ii) AB é uma matriz simétrica sse AB = BA

Exercício 1.30 Seja A uma matriz de ordem n. Mostre que:

- a) $A + A^*$ é uma matriz hermítica.
- b) $A A^*$ é uma matriz anti-hermítica.
- c) AA^* e A^*A são matrizes hermíticas.

Exercício 1.31 Indique, justificando, quais das seguintes afirmações são verdadeiras e quais são falsas.

a) A matriz quadrada $A = (a_{ij})$, definida por

$$a_{ij} = \left\{ egin{array}{ll} i-j & , ext{se } i \geq j \\ 0 & , ext{se } i < j \end{array}
ight.$$

é uma matriz triangular inferior.

b) A matriz

$$A = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{array}\right),$$

é uma matriz ortogonal.

- c) Toda a matriz não nula da forma $\left(egin{array}{cc} a & b \\ b & a \end{array} \right)$ é invertível.
- d) Seja $\mathbf{u}=\begin{pmatrix} \sqrt{2} \\ 1 \\ \sqrt{2} \end{pmatrix}$. A matriz $A=I_3-\mathbf{u}\mathbf{u}^T$ é uma matriz simétrica.
- e) A única matriz simultaneamente simétrica e antissimétrica é a matriz nula.
- f) Toda a matriz simétrica é hermítica.
- g) A inversa de uma matriz triangular superior invertível é uma matriz triangular inferior.

Exercício 1.32 Seja A uma matriz de ordem $m \times n$ e sejam $\mathbf{e}_1, \dots, \mathbf{e}_n$ as diversas colunas da matriz identidade de ordem n (consideradas como matrizes de ordem $n \times 1$). A que é igual o produto $A\mathbf{e}_j$ ($j=1,2,\dots,n$)?

Exercício 1.33 Sejam $A, B \in \mathbb{R}^{m \times n}$. Prove que:

- a) se $A\mathbf{x} = B\mathbf{x}$ para todo a matriz $\mathbf{x} \in \mathbb{R}^{n \times 1}$, então A = B;
- b) se $A\mathbf{x} = \mathbf{0}$ para todo a matriz $\mathbf{x} \in \mathbb{R}^{n \times 1}$, então A é a matriz nula.

Sugestão: Use o resultado do exercício anterior.

Exercício 1.34 Discuta, em função do parâmetro real α , a característica da seguinte matriz

$$A_{\alpha} = \begin{pmatrix} 1 & \alpha & \alpha^2 & \alpha^3 \\ \alpha & \alpha^2 & \alpha^3 & 1 \\ \alpha^2 & \alpha^3 & 1 & \alpha \\ \alpha^3 & 1 & \alpha & \alpha^2 \end{pmatrix}.$$

Exercício 1.35 Indique, se possível, duas matrizes 2×3 , que:

- a) tenham a mesma característica, mas não sejam equivalentes por linhas;
- b) tenham a mesma característica e com pivôs nas mesmas colunas, mas não sejam equivalentes por linhas.

Exercício 1.36 Considere uma matriz $A=(a_{ij})_{m\times n}$ e uma matriz $B=(b_{ij})_{m\times (n+1)}$ tal que

$$a_{ij} = b_{ij}, i = 1, \dots, m, j = 1 \dots, n.$$

- a) Se A tiver a forma em escada, podemos concluir que B também tem essa forma? Justifique.
- b) Se B tiver a forma em escada, podemos concluir que A também tem essa forma? Justifique.

2. Sistemas de equações lineares

Exercícios para as aulas

Exercício 2.1 Considere o sistema de equações lineares Ax = b, onde

$$A = \left(egin{array}{cccc} 1 & -1 & 1 & 1 \ 2 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 \end{array}
ight) \quad {
m e} \quad {
m {f b}} = \left(egin{array}{c} 1 \ 3 \ 1 \end{array}
ight).$$

Sem resolver o sistema, mostre que:

- a) (1,1,1,0) é solução do sistema;
- b) (1,-1,1,1) não é solução do sistema.

Exercício 2.2 Considere novamente a matriz A da questão anterior. Justifique que existe um sistema de equações lineares $A^T \mathbf{x} = \mathbf{b}$ tal que (1, 2, 3) é solução desse sistema. Indique as equações de um sistema nessas condições.

Exercício 2.3 Cada uma das seguintes matrizes ampliadas é uma matriz em escada. Para cada uma delas, indique se o sistema de equações lineares correspondente é ou não possível e, em caso afirmativo, determine as suas soluções.

$$a) \left(\begin{array}{cc|cc} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{array}\right) \qquad b) \left(\begin{array}{cc|cc} 1 & 3 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right) \qquad c) \left(\begin{array}{cc|cc} 1 & -2 & 4 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$d) \left(\begin{array}{ccc|c} 1 & -2 & 2 & -2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & 2 \end{array}\right) \quad e) \left(\begin{array}{ccc|c} 1 & 3 & 2 & -2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{array}\right) \quad f) \left(\begin{array}{ccc|c} 1 & -1 & 3 & 8 \\ 0 & 1 & 2 & 7 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Exercício 2.4 Resolva (na forma matricial), os seguintes sistemas, quando possíveis, usando o método de eliminação de Gauss.

a)
$$\begin{cases} 2x_1 - 3x_2 = 5 \\ -4x_1 + 6x_2 = 8 \\ 3x_1 - 2x_2 = 0 \end{cases}$$
 b)
$$\begin{cases} x_1 + x_2 = 0 \\ 2x_1 + 3x_2 = 0 \\ 3x_1 - 2x_2 = 0 \end{cases}$$
 c)
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 1 \\ x_1 + x_2 + x_3 = 3 \\ 3x_1 + 4x_2 + 2x_3 = 4 \end{cases}$$

$$d) \left\{ \begin{array}{l} x_1 - x_2 + 2x_3 = 4 \\ 2x_1 + 3x_2 - x_3 = 1 \\ 7x_1 + 3x_2 + 4x_3 = 7 \end{array} \right. \quad e) \left\{ \begin{array}{l} -x_1 + 2x_2 - x_3 = 2 \\ -2x_1 + 2x_2 + x_3 = 4 \\ 3x_1 + 2x_2 + 2x_3 = 5 \\ -3x_1 + 8x_2 + 5x_3 = 17 \end{array} \right. \quad f) \left\{ \begin{array}{l} x_1 - 3x_2 + x_3 = 1 \\ 2x_1 + x_2 - x_3 = 2 \\ x_1 + 4x_2 - 2x_3 = 1 \\ 5x_1 - 8x_2 + 2x_3 = 5 \end{array} \right. \right.$$

Exercício 2.5 Indique um exemplo de, ou justifique porque não existe, um sistema que seja:

- a) possível, com mais equações que incógnitas;
- b) possível e determinado, com menos equações que incógnitas;

- c) impossível, com tantas equações como incógnitas;
- d) possível e determinado, com tantas equações como incógnitas;
- e) possível e determinado, com um número de equações diferente do número de incógnitas;
- f) impossível, com menos equações que incógnitas;
- g) possível indeterminado, com grau de indeterminação 2.

Exercício 2.6 Considere um sistema cuja matriz ampliada tem a forma $\begin{pmatrix} 1 & 2 & 1 & 1 \\ -1 & 4 & 3 & 2 \\ 2 & -2 & a & 3 \end{pmatrix}$. Determine os valores de a para os quais o sistema tem uma única solução.

Exercício 2.7 Considere um sistema cuja matriz ampliada tem a forma

$$\left(\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
2 & 5 & 3 & 0 \\
-1 & 1 & \beta & 0
\end{array}\right)$$

- a) Diga, justificando, se o sistema pode ser impossível.
- b) Indique os valores de β para os quais o sistema tem uma infinidade de soluções.

Exercício 2.8 Considere os seguintes sistemas de equações nas incógnitas x, y e z. Classifique-os, em função dos valores dos parâmetros reais α e β , quanto à existência e unicidade de solução.

a)
$$\begin{cases} x - y + 2z = 1 \\ -x + 3y - 2z = \beta - 2 \\ 2x - y + (2 + \alpha)z = 2 \end{cases}$$

b)
$$\begin{cases} x - y + z = -3 \\ -x + 4y - z = 3\alpha \\ \beta x + z = 3 \end{cases}$$

c)
$$\begin{cases} x - y + z = -1 \\ 2x + z = 2 \\ x - y + \alpha z = \beta \end{cases}$$

Exercício 2.9 Discuta os seguintes sistemas de equações lineares nas incógnitas x, y e z, em função dos respetivos parâmetros e resolva-os nos casos em que são possíveis.

a)
$$\begin{cases} x + 2y - z = 2 \\ 2x + 6y + 3z = 4, \\ 3x + 8y + (a^2 - 2)z = a + 8 \end{cases} a \in \mathbb{R}$$

b)
$$\begin{cases} x - y + 2z = b \\ 2x + az = 2, \\ x + y + z - 1 = 0 \end{cases} a, b \in \mathbb{R}$$

c)
$$\begin{cases} x + y + z = 0 \\ kx + 2ky - kz = 1, \\ (t+1)x + y - (t+1)z = 0 \end{cases} k, \ t \in \mathbb{R}$$

Exercício 2.10* Considere um sistema homogéneo $A\mathbf{x} = \mathbf{0}$, onde A é uma matriz de ordem $m \times n$ e sejam $\mathbf{u} \in \mathbf{v}$ matrizes de ordem $n \times 1$.

- a) Mostre que, se \mathbf{u} e \mathbf{v} são soluções do sistema, então $\mathbf{u} + \mathbf{v}$ também é solução do sistema.
- b) Mostre que, se \mathbf{u} é solução do sistema, então, para todo o escalar α , $\alpha \mathbf{u}$ também é solução do sistema.
- c) Use o resultado da alínea anterior para concluir que: Se um sistema homogéneo tem uma solução não nula, então tem uma infinidade de soluções.

Exercício 2.11* Sejam A e \mathbf{b} matrizes de ordem $n \times n$ e $n \times 1$, respetivamente. Mostre que A é invertível se e só se o sistema $A\mathbf{x} = \mathbf{b}$ é possível e determinado.

Exercício 2.12* Sejam A e X matrizes de ordem n tais que $AX = I_n$. Mostre que A é invertível e $X = A^{-1}$.

Exercício 2.13 Determine, caso exista, a inversa de cada uma das seguintes matrizes.

a)
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2 & 2 \\ 2 & -1 & 1 \\ 1 & 3 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & \frac{7}{2} \end{pmatrix}$ d) $\begin{pmatrix} 2 & 3 & 4 & 5 \\ 3 & 3 & 4 & 5 \\ 4 & 4 & 4 & 5 \\ 5 & 5 & 5 & 5 \end{pmatrix}$

Exercício 2.14* Seja A uma matriz de ordem $m \times n$ e considere a matriz B de ordem $(m+n) \times (m+n)$, definida por

$$B = \left(\begin{array}{cc} I_n & \mathbf{0}_{n \times m} \\ A & I_m \end{array}\right),\,$$

onde $0_{n\times m}$ designa a matriz nula de ordem $n\times m$. Determine a inversa de B.

Exercício 2.15 Determine a inversa da matriz

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
83 & -47 & 1 & 0 & 0 \\
-55 & 94 & 0 & 1 & 0 \\
62 & -71 & 0 & 0 & 1
\end{pmatrix}.$$

Exercício 2.16* Considere o seguinte sistema de equações nas incógnitas x_1, \ldots, x_n .

$$\begin{cases} (n-1)x_1 = x_2 + x_3 + \dots + x_n \\ (n-1)x_2 = x_1 + x_3 + \dots + x_n \\ \vdots \\ (n-1)x_n = x_1 + x_2 + \dots + x_{n-1} \end{cases}$$

Justifique que o sistema é possível indeterminado e que, qualquer que seja $\alpha \in \mathbb{R}$, o n-uplo (α, \dots, α) é solução do sistema.

Exercícios suplementares

Exercício 2.17 Apresente, casa exista, um exemplo de:

- a) matrizes A, \mathbf{b} e \mathbf{c} tais que o sistema $A\mathbf{x} = \mathbf{b}$ é possível determinado e $A\mathbf{x} = \mathbf{c}$ é possível indeterminado;
- b) matrizes A, b e c tais que o sistema $A\mathbf{x} = \mathbf{b}$ é possível determinado e $A\mathbf{x} = \mathbf{c}$ é impossível;
- c) matrizes A, b e c tais que o sistema $A\mathbf{x} = \mathbf{b}$ é possível indeterminado e $A\mathbf{x} = \mathbf{c}$ é impossível;
- d) matrizes A e \mathbf{b} tais que o sistema $A\mathbf{x} = \mathbf{b}$ é possível determinado e $A\mathbf{x} = \mathbf{0}$ é possível indeterminado;
- e) matrizes A e \mathbf{b} tais que o sistema $A\mathbf{x} = \mathbf{b}$ é possível determinado e $A\mathbf{x} = \mathbf{0}$ é impossível;
- f) matrizes A e \mathbf{b} tais que o sistema $A\mathbf{x} = \mathbf{b}$ é possível indeterminado e $A\mathbf{x} = \mathbf{0}$ é possível determinado;
- g) matrizes A e \mathbf{b} tais que o sistema $A\mathbf{x} = \mathbf{b}$ é possível indeterminado com grau de indeterminação $\mathbf{c} = \mathbf{c}$ e $\mathbf{c} = \mathbf{c}$ e possível indeterminado com grau de indeterminação $\mathbf{c} = \mathbf{c}$

Exercício 2.18 Discuta, em função dos parâmetros reais a e b, os seguintes sistemas de equações lineares, nas incógnitas x,y,z,t .

a)
$$\begin{cases} ax + y - z + at = 0 \\ (a+1)y + z + t = 1 \\ -x + y + (a+1)t = b \end{cases}$$
 b)
$$\begin{cases} 2x + y + t = 2 \\ 3x + 3y + az + 5t = 3 \\ 3x - 3z - 2t = b \end{cases}$$
 c)
$$\begin{cases} x + ay + bz - t = a \\ x - bz - 2t = a \\ 2x + ay + bz - 4t = 3a \\ x + 2ay + 2t = 0 \end{cases}$$

Exercício 2.19 Considere um sistema $A\mathbf{x} = \mathbf{b}$, com A uma matriz $m \times n$ e \mathbf{b} uma matriz $m \times 1$ e sejam \mathbf{u} e \mathbf{v} matrizes de ordem $n \times 1$.

- a) Mostre que, se ${\bf u}$ e ${\bf v}$ são soluções do sistema, então ${\bf u}-{\bf v}$ é solução do sistema homogéneo associado, $A{\bf x}={\bf 0}$.
- b) Mostre que, se ${\bf u}$ é solução do sistema e ${\bf v}$ é solução do sistema homogéneo associado $A{\bf x}={\bf 0}$, então ${\bf u}+{\bf v}$ é solução do sistema.
- c) Prove que: Um sistema possível ou tem apenas uma solução ou tem uma infinidade delas.

Exercício 2.20 Considere as matrizes
$$A_{\alpha}=\begin{pmatrix} -1 & -1 & \alpha \\ -2 & 0 & 1 \\ -3 & 3 & -3 \end{pmatrix}, \ \alpha\in\mathbb{R}.$$

- a) Indique para que valores de α o sistema $A_{\alpha}\mathbf{x} = (1\ 1\ -2)^T$ é possível.
- b) Resolva o sistema homogéneo $A_1 \mathbf{x} = \mathbf{0}$.
- c) Use o resultado obtido em b) para justificar que A_1 é invertível e calcule A_1^{-1} .

Exercício 2.21 Considere o sistema

$$\left\{ \begin{array}{l} 3x-y+2z=\beta \\ 2x+2y+\alpha z=2 \\ x+y+z=-1 \end{array} \right. ,$$

nas incógnitas x, y, z.

- a) Discuta este sistema, em função dos parâmetros α e β , e resolva-o nos casos em que for possível.
- b) Seja A a matriz dos coeficientes do sistema que se obtém fazendo $\alpha=1$. Justifique que A é invertível e calcule A^{-1} .

Exercício 2.22 Considere a matriz de ordem n, $A = (a_{ij})$, definida por:

$$a_{ij} = \left\{ \begin{array}{ll} 1+x, & \text{se } i=j \\ 1, & \text{se } i \neq j \end{array} \right.$$

Determine os valores de \boldsymbol{x} para os quais a matriz \boldsymbol{A} é invertível.

3. Determinantes

Exercícios para as aulas

Exercício 3.1 Calcule o determinante das seguintes matrizes:

$$a) \left(\begin{array}{ccc} 1 & 2 \\ 3 & 2 \end{array}\right) \quad b) \left(\begin{array}{ccc} 1 & i \\ i & -1 \end{array}\right) \quad c) \left(\begin{array}{ccc} 0 & 3 & 1 \\ 3 & 2 & 4 \\ 1 & 1 & 2 \end{array}\right) \quad d) \left(\begin{array}{ccc} 1 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 4 & 1 \end{array}\right) \quad e) \left(\begin{array}{cccc} 3 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 2 & 4 & 8 & 0 \\ 1 & 2 & 1 & 1 \end{array}\right)$$

Exercício 3.2 Calcule, de duas formas diferentes, o determinante de cada uma das seguintes matrizes.

$$a) \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix} \quad b) \begin{pmatrix} 1 & -3 & 0 & 0 \\ 5 & -2 & 2 & 1 \\ -2 & 4 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad c) \begin{pmatrix} 1 & 0 & 1 & 1 \\ -1 & 1 & 2 & -1 \\ 1 & 0 & 2 & 0 \\ 2 & 3 & -2 & 4 \end{pmatrix}$$

Exercício 3.3 Sendo

$$A = \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right)$$

e sabendo que det A=2, calcule:

a)
$$\det(3A)$$
 b) $\begin{vmatrix} -a & -b & -c \\ 2g & 2h & 2i \\ 3d & 3e & 3f \end{vmatrix}$ c) $\begin{vmatrix} i & h & g \\ f & e & d \\ c & b & a \end{vmatrix}$ d) $\begin{vmatrix} a & b & c \\ a-d & b-e & c-f \\ g & h & i \end{vmatrix}$

Exercício 3.4 Calcule o determinante de cada uma das seguintes matrizes, usando o método de eliminação de Gauss.

a)
$$\begin{pmatrix} 1 & 3 & 2 \\ -2 & -4 & 0 \\ 3 & 0 & -9 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 4 & -1 \\ 1 & 0 & 2 & 4 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 0 & 2 & 1 & 1 \\ 0 & 1 & -1 & 3 & 0 \\ 0 & -1 & 0 & 2 & 0 \\ 1 & 2 & 0 & 6 & -3 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$.

Exercício 3.5 Para cada $k \in \mathbb{R}$, considere a matriz

$$A_k = \left(\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 2 & -1 & -1 & k \\ 0 & k & -k & k \\ -1 & 1 & 1 & 2 \end{array}\right).$$

Determine os valores de k para os quais se tem det $A_k = 2$.

Exercício 3.6 Seja

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

13

Determine os valores de λ para os quais se tem $\det(A - \lambda I_3) = 0$.

Exercício 3.7 Mostre que

$$\begin{vmatrix} 1+a & b & c \\ a & 1+b & c \\ a & b & 1+c \end{vmatrix} = 1+a+b+c.$$

Sugestão: Adicione à coluna 1 as colunas 2 e 3.

Exercício 3.8 Mostre que
$$\begin{vmatrix} a^2 & a & 1 \\ b^2 & b & 1 \\ c^2 & c & 1 \end{vmatrix} = (b-a)(c-a)(b-c).$$

Observação: Este determinante é chamado de determinante de Vandermonde.

Exercício 3.9 Deduza as seguintes expressões:

$$a)^* \begin{vmatrix} 1 & x_1 & x_2 \\ 1 & y_1 & x_2 \\ 1 & y_1 & y_2 \end{vmatrix} = (y_1 - x_1)(y_2 - x_2)$$

$$b) \begin{vmatrix} 1 & x_1 & x_2 & x_3 \\ 1 & y_1 & x_2 & x_3 \\ 1 & y_1 & y_2 & x_3 \\ 1 & y_1 & y_2 & y_3 \end{vmatrix} = (y_1 - x_1)(y_2 - x_2)(y_3 - x_3)$$

Exercício 3.10* Resolva a seguinte equação nas variáveis $x_1, x_2, \ldots, x_{n-1}$

$$\det \begin{pmatrix} x_1 & a & a & \dots & a & a \\ a & x_2 & a & \dots & a & a \\ a & a & x_3 & \dots & a & a \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ a & a & a & \dots & x_{n-1} & a \\ a & a & a & \dots & a & a \end{pmatrix} = 0,$$

supondo $a \neq 0$.

Exercício 3.11 Use o método da adjunta para calcular a inversa das seguintes matrizes.

a)
$$A = \begin{pmatrix} 3 & 4 \\ 2 & -1 \end{pmatrix}$$
.

b)
$$B = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
.

Observação: Recorde que a inversa de uma matriz simétrica invertível é também simétrica.

c)
$$C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

Observação: Tenha em conta que a inversa de uma matriz triangular superior invertível é também triangular superior.

$$d) \quad D = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}.$$

Exercício 3.12 Prove que, se $ad-bc \neq 0$, então a matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ é invertível e calcule a sua inversa.

Exercício 3.13 Para cada $\alpha \in \mathbb{R}$, considere a matriz $A_{\alpha} = \begin{pmatrix} 2 & -1 & \alpha \\ 1 & -1 & 1 \\ \alpha & -1 & 2 \end{pmatrix}$.

- a) Determine os valores de α para os quais car $A_{\alpha}=$ 3.
- b) Calcule det A_0 .
- c) Justifique que a matriz A_{-1} é invertível e calcule a primeira coluna da sua inversa, usando determinantes.

Exercício 3.14 Para cada $t \in \mathbb{R}$, considere a matriz

$$A_t = \left(egin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 2+t & 1 & 1 & 1 \ 1 & 1 & 2+t & 1 & 1 \ 1 & 1 & 1 & 2+t & 1 \ 1 & 1 & 1 & 1 & 2+t \end{array}
ight).$$

- a) Calcule o determinante de A_t .
- b) Diga para que valores do parâmetro real t a matriz A_t é invertível.
- c) Faça t=0 e determine A_0^{-1} , usando o método da matriz adjunta.

Exercício 3.15 Use a regra de Cramer para resolver os sistemas:

a)
$$\begin{cases} 2x_1 - x_2 = 6 \\ 4x_1 + 5x_2 = 2 \end{cases}$$

b)
$$\begin{cases} 3x_1 + x_2 - x_3 = 1 \\ -x_1 - x_2 + 4x_3 = 7 \\ 2x_1 + x_2 - 5x_3 = -8 \end{cases}$$

c)
$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ 2x_1 + x_2 = 1 \\ x_1 - x_3 = 1 \end{cases}$$

Exercício 3.16 Considere as matrizes:

$$A = \begin{pmatrix} & 1 & -1 & 2 \\ & 1 & -1 & -1 \\ & -3 & 4 & 1 \end{pmatrix} \qquad \text{e} \qquad B = \begin{pmatrix} & \cos\theta & -\sin\theta & 0 \\ & -\sin\theta & -\cos\theta & 0 \\ & 0 & 0 & 1 \end{pmatrix}.$$

- a) Calcule o determinante de A e de B, usando o Teorema de Laplace.
- b) Determine as matrizes $\operatorname{adj} A$ e $\operatorname{adj} B$.
- c) Calcule a inversa de cada uma das matrizes, usando os resultados das alíneas anteriores.
- d) Use a regra de Cramer para resolver o sistema $A\mathbf{x} = (1 \ 0 \ 1)^T$.

Exercício 3.17 Seja A uma matriz de ordem n cuja soma dos elementos de cada linha é igual a zero. Justifique que det A=0.

Observação: Note que, se x for uma matriz coluna com n componentes todas iguais a 1, então Ax = 0.

Exercício 3.18* Seja A uma matriz quadrada de ordem n $(n \ge 2)$.

a) Sendo A_{ij} o complemento algébrico do elemento a_{ij} , mostre que:

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = \begin{cases} \det A, & \text{se } i = k, \\ 0, & \text{se } i \neq k, \end{cases}$$

Conclua, então, que A adj $A = \det A I_n$.

b) Use a alínea anterior para estabelecer o resultado seguinte (enunciado nas aulas teóricas): Se A for invertível, tem-se

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A.$$

c) Mostre que, se A não for invertível, então

$$A \operatorname{\mathsf{adj}} A = \mathbf{0}_{n \times n}.$$

Exercício 3.19 Seja A uma matriz de ordem n ($n \ge 2$), invertível. Mostre que:

- a) $|\operatorname{adj} A| = |A|^{n-1}$.
- b) A matriz adj A também é invertível e $(adj A)^{-1} = adj(A^{-1})$.

Exercício 3.20 Calcule o determinante da seguinte matriz de ordem n, n > 1:

$$A = \left(\begin{array}{cccc} a & b & \dots & b & b \\ b & a & \dots & b & b \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b & b & \dots & a & b \\ b & b & \dots & b & a \end{array}\right).$$

Exercício 3.21* Diga, justificando, se as seguintes afirmações são verdadeiras ou são falsas.

- a) $\det((A+B)^2) = (\det(A+B))^2$;
- b) $\det((A+B)^2) = \det(A^2 + 2AB + B^2);$
- c) se A é uma matriz ortogonal então det A=1;
- d) se A e B são matrizes reais de ordem 3 tais que det $A=\frac{1}{2}$ e det B=-2, então

$$\det(A^{-1}B^2) + \det(2A^TB) = 6;$$

e) se A é uma matriz de ordem $n \times n$, com todos os elementos iguais a 1, então $\det(A - nI_n) = 0$.

F

Exercícios suplementares

Nos exercícios 3.22 e 3.23, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F).

Exercício 3.22 Considere as matrizes

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 3 & -3 & 1 \\ -3 & 5 & -2 \\ 1 & -2 & 1 \end{pmatrix}.$$

a)
$$A = B^{-1}$$
.

b)
$$\det A = 1$$
.

c) O sistema
$$B\mathbf{x}=\mathbf{0}$$
 tem solução única.

Exercício 3.23 Considere a matriz

a)
$$A^2 = 4I_4$$
.

b)
$$\det A = 16$$
.

c)
$$\operatorname{adj} A = 4A$$
.

Exercício 3.24* Indique, justificando, se as seguintes afirmações são verdadeiras ou são falsas.

- a) Se $A^T = -A^2$ e A é não singular, então det A = -1.
- b) Se $A=(a_{ij})\in\mathbb{R}^{n imes n}$ $(n\geq 2)$ é uma matriz tal que

$$a_{ij} = \left\{ \begin{array}{l} \alpha, & \text{se } j = 1 \\ 1, & \text{se } j > 1 \text{ e } j \neq i \\ j, & \text{se } j > 1 \text{ e } j = i \end{array} \right.,$$

então $\det A = \alpha(n-1)!$.

c) Se A é uma matriz de ordem 6 tal que det A=-1, então $\det(\operatorname{adj} A)=-1$.

Exercício 3.25 Sejam

$$A_lpha = \left(egin{array}{ccc} 1 & 1 & 0 \ 1 & 0 & 0 \ 1 & 2 & lpha \end{array}
ight), \; lpha \in \mathbb{R}\setminus\{0\} \quad \mathbf{e} \quad \mathbf{b} = \left(egin{array}{c} 1 \ -1 \ 1 \end{array}
ight).$$

- a) Justifique que a matriz A_{α} é invertível e calcule A_{α}^{-1} , usando determinantes.
- b) Conclua que o sistema $A_{\alpha}\mathbf{x} = \mathbf{b}$ é um sistema de Cramer e obtenha a sua solução, <u>usando a regra de Cramer</u>.

Exercício 3.26*

- a) Seja A quadrada de ordem n, com $n \geq 2$. Mostre que se A é uma matriz simétrica, então adj A também é simétrica.
- b) Considere as matrizes

$$A_{lpha} = \left(egin{array}{cccc} 1 & lpha & -1 & 0 \ lpha & 1 & 0 & 0 \ -1 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 \end{array}
ight), \; lpha \in \mathbb{R} \quad {f e} \quad {f b} = \left(egin{array}{c} 0 \ 0 \ 1 \ 0 \end{array}
ight).$$

Justifique que a matriz A_{α} é invertível e calcule A_{α}^{-1} , usando determinantes. Use A_{α}^{-1} para calcular a solução do sistema $A_{\alpha}\mathbf{x}=\mathbf{b}$.

4. Espaços vetoriais

Exercícios para as aulas

Exercício 4.1 Verifique que o conjunto $\mathcal{P}_n(x)$ dos polinómios na variável x de grau menor ou igual a n com coeficientes reais, algebrizado por meio da adição de polinómios e da multiplicação de um polinómio por um número real, é um espaço vetorial real.

Exercício 4.2 Considere o conjunto C([a,b]) das funções reais de variável real contínuas em [a,b]. Se $f,g \in C([a,b])$ considere definida a soma f+g por

$$(f+g)(x) = f(x) + g(x), \qquad x \in [a,b].$$

Se $\alpha \in \mathbb{R}$ e $f \in C([a,b])$ considere αf definida por

$$(\alpha f)(x) = \alpha f(x), \qquad x \in [a, b].$$

Prove que C([a,b]) é um espaço vetorial real para as operações acima definidas.

Exercício 4.3 Mostre que se U é um subespaço vetorial de um espaço vetorial V então $\mathbf{0}_V \in U$.

Exercício 4.4 Verifique se os seguintes conjuntos são subespaços vetoriais do espaço vetorial V indicado.

- a) $V = \mathbb{R}^2$, $S = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = x_2\}$.
- b) $V = \mathbb{R}^2$, $T = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0\}$.
- c) $V = \mathbb{R}^3$, $U = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = 0\}$.

Exercício 4.5 Prove que o conjunto formado pelas matrizes reais simétricas de ordem n é um subespaço vetorial de $\mathbb{R}^{n \times n}$.

Exercício 4.6 Seja $A \in \mathbb{R}^{m \times n}$ e $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{b} \neq \mathbf{0}$. Mostre que:

- a) O conjunto das soluções do sistema homogéneo $A\mathbf{x}=\mathbf{0}$ é um subespaço de \mathbb{R}^n . (Recorde o Exercício 2.10.)
- b) O conjunto das soluções do sistema $A\mathbf{x} = \mathbf{b}$ não é um subespaço de \mathbb{R}^n .

Exercício 4.7 Indique, sem efetuar quaisquer cálculos, quais dos seguintes conjuntos são subespaços do espaço V indicado.

- a) $V = \mathbb{R}^3$, $U_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$;
- b) $V = \mathbb{R}^3$, $U_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1\}$;
- c) $V = \mathbb{R}^4$, $U_3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 \in x_3 = x_4\}$;
- d) $V = \mathbb{R}^4$, $U_4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 + x_3 \in x_4 = 5\}$.

Exercício 4.8 Identifique o subespaço de \mathbb{R}^3 gerado pelos vetores:

- a) $\mathbf{u}_1 = (1,0,0) \in \mathbf{u}_2 = (0,1,1)$.
- b) $\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, -1, -3) \in \mathbf{v}_3 = (0, 1, 1).$
- c) $\mathbf{w}_1 = (1, 1, 1), \mathbf{w}_2 = (2, 1, 1) \in \mathbf{w}_3 = (0, 1, 3)$

Exercício 4.9 Identifique o seguinte subespaço de $\mathbb{R}^{2\times 2}$:

$$S = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle.$$

Exercício 4.10 Sejam $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ vetores de um espaço vetorial V e $\alpha \in \mathbb{R}$, $\alpha \neq 0$. Prove que:

- a)* $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = \langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$.
- b) $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = \langle \mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$.

Exercício 4.11 Considere os vetores de \mathbb{R}^2 , $\mathbf{v}_1 = (1,0)$ e $\mathbf{v}_2 = (1,1)$.

- a) Escreva $\mathbf{v}=(3,-1)$ como combinação linear de \mathbf{v}_1 e \mathbf{v}_2 .
- b) Mostre que v_1 e v_2 são linearmente independentes.
- c) Verifique que qualquer vetor $\mathbf{x}=(a,b)\in\mathbb{R}^2$ pode ser escrito como combinação linear de \mathbf{v}_1 e \mathbf{v}_2 .

Exercício 4.12 Verifique se são linearmente independentes os vetores de \mathbb{R}^3 apresentados em seguida. No caso de serem linearmente dependentes escreva um deles como combinação linear dos restantes.

- a) (1,0,0),(0,1,0),(1,-1,1).
- b) (1,0,1),(0,1,0),(1,-1,1).

Exercício 4.13 Sejam $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ vetores de um espaço vetorial V e $\alpha \in \mathbb{R}$, $\alpha \neq 0$. Mostre que, se $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são vetores linearmente independentes (dependentes), então:

- a)* $\alpha \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ também são linearmente independentes (dependentes);
- b) $\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2, \dots, \mathbf{v}_n$ também são linearmente independentes (dependentes).

Exercício 4.14 Determine uma base e a dimensão dos subespaços apresentados nos Exercícios 4.4 e 4.7.

Exercício 4.15 Determine uma base e a dimensão dos seguintes subespaços de \mathbb{R}^4 :

- a) $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 = x_3 + x_4\};$
- b) $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 = x_3\}.$

Exercício 4.16 Apresente uma base e indique a dimensão dos subespaços de $\mathbb{R}^{2\times 2}$ formado pelas matrizes:

- a) Simétricas de ordem 2.
- b) Triangulares superiores de ordem 2.
- c) Diagonais de ordem 2.

Exercício 4.17^* Seja V um espaço vetorial de dimensão n. Mostre que:

- a) Se $V=\langle \mathbf{v}_1,\dots,\mathbf{v}_n \rangle$, então $(\mathbf{v}_1,\dots,\mathbf{v}_n)$ é uma base de V.
- b) Se $\mathbf{v}_1, \dots, \mathbf{v}_n$ são vetores de V linearmente independentes, então $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ é uma base de V.

Exercício 4.18* Seja V um espaço vetorial e $(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ uma sua base. Mostre que qualquer vetor $\mathbf{v}\in V$ se escreve, de forma única, como combinação linear dos vetores $\mathbf{v}_1,\ldots,\mathbf{v}_n$.

Observação: Os coeficientes da combinação linear são chamados as *coordenadas* do vetor em relação a essa base.

Exercício 4.19 a) Determine as coordenadas do vetor $\mathbf{x}=(1,-4,2)$ em relação à base canónica de \mathbb{R}^3 .

- b) Sejam $\mathbf{u}_1 = (1,0,0)$, $\mathbf{u}_2 = (1,-1,0)$, e $\mathbf{u}_3 = (1,0,-1)$. Mostre que $(\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3)$ é uma base de \mathbb{R}^3 . Determine as coordenadas de vetor \mathbf{x} , dado na alínea anterior, relativamente a esta base.
- Exercício 4.20 a) No espaço $\mathcal{P}_2(x)$, determine as coordenadas, na base $(1, x, x^2)$, de

$$p(x) = 1 - 4x + 2x^2.$$

b) Considere os polinómios definidos por

$$p_1(x) = 1$$
, $p_2(x) = 1 - x$, $p_3(x) = 1 - x^2$,

Mostre que (p_1, p_2, p_3) é uma base de $\mathcal{P}_2(x)$. Determine as coordenadas do polinómio p, dado na alínea anterior, relativamente a esta base.

- Exercício 4.21 a) Mostre que os vetores $\mathbf{u}_1=(1,0)$, $\mathbf{u}_2=(1,1)$ e $\mathbf{u}_3=(0,-1)$ constituem um sistema de geradores de \mathbb{R}^2 .
 - b) Retire vetores, entre os dados, para obter uma base de \mathbb{R}^2 .
- Exercício 4.22 Determine os valores de k para os quais ((1,0,2),(-1,2,-3),(-1,4,k)) é uma base de \mathbb{R}^3 .
- Exercício 4.23 Determine uma base do subespaço de \mathbb{R}^3 , $U = \langle (1,0,1), (2,2,4), (0,0,1), (1,2,3) \rangle$.

Exercício 4.24 Seja $U = \{(3a + b, 2a - b, a + 2b) : a, b \in \mathbb{R}\}.$

- a) Verifique que U é um subespaço vetorial de \mathbb{R}^3 .
- b) Determine uma base de U.
- c) Determine α de modo que o vetor $(2,3,\alpha)$ pertença a U.

Exercício 4.25 Seja $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + z = 0\}.$

- a) Verifique que S é um subespaço vetorial de \mathbb{R}^3 .
- b) Determine uma base de S.
- c) Determine $\alpha \in \mathbb{R}$ de modo que $S = \langle (1, 0, -1), (-1, 1, \alpha) \rangle$.

Exercício 4.26 Determine a dimensão e indique uma base para o espaço das colunas e para o espaço das linhas de cada uma das seguintes matrizes.

a)
$$A = \begin{pmatrix} 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

c)
$$C = \begin{pmatrix} -1 & 3 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ -1 & 3 & 0 & 2 \end{pmatrix}$$
 d) $D = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ e) $E = \begin{pmatrix} 3 & 0 & -6 & 0 \\ 1 & 0 & -2 & 0 \end{pmatrix}$

- Exercício 4.27 Determine a dimensão e indique uma base para o núcleo de cada uma das matrizes do exercício anterior.
- Exercício 4.28* Construa uma matriz cujo espaço nulo seja gerado pelo vetor (2,0,1).
- Exercício 4.29* Existe alguma matriz A tal que $(1,1,1) \in \mathcal{L}(A)$ e $(1,0,0) \in \mathcal{N}(A)$?

Exercício 4.30 Considere a matriz
$$A = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ 0 & 0 & 2 & 4 & 0 \\ 2 & -2 & -1 & 2 & 1 \\ -1 & 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 .

- a) Calcule a nulidade e a característica de A.
- b) Determine bases para o espaço das colunas de A e para o espaço nulo de A.
- c) Indique uma solução do sistema de equações lineares $A\mathbf{x} = \mathbf{b}$, onde $\mathbf{b} = (1\ 0\ 2\ -1\ 0)^T$. (Note que \mathbf{b} é a primeira coluna de A.)

Exercícios suplementares

Nas questões **4.31** a **4.39**, indique, a(s) alínea(s) correta(s).

Exercício 4.31 Os seguintes subconjuntos de \mathbb{R}^4 são subespaços vetoriais de \mathbb{R}^4 .

- a) $A_1 = \{(x, y, z, w) \in \mathbb{R}^4 : x y = 2\}.$
- b) $A_2 = \{(x, y, z, w) \in \mathbb{R}^4 : z = x + 2y \in w = x 3y\}.$
- c) $A_3 = \{(x, y, z, w) \in \mathbb{R}^4 : x = 0 \text{ e } y = -w\}.$
- d) $A_4 = \{(x, y, z, w) \in \mathbb{R}^4 : x = y = 0\}.$
- e) $A_5 = \{(x, y, z, w) \in \mathbb{R}^4 : x = 1, y = 0, x + w = 1\}.$
- f) $A_6 = \{(x, y, z, w) \in \mathbb{R}^4 : x > 0 \text{ e } y < 0\}.$

Exercício 4.32 Os seguintes subconjuntos de $\mathbb{R}^{n\times n}$ são subespaços vetoriais de $\mathbb{R}^{n\times n}$.

- a) O conjunto de todas as matrizes invertíveis de ordem n.
- b) O conjunto de todas as matrizes diagonais de ordem n.
- c) O conjunto de todas as matrizes triangulares superiores de ordem n.
- d) O conjunto de todas as matrizes singulares de ordem n.

Exercício 4.33 Os seguintes vetores geram \mathbb{R}^3 .

- a) (1,-1,2), (0,1,1).
- b) (1,2,-1), (6,3,0), (4,1,1), (-1,1,1).
- c) (2,2,3), (-1,-2,1), (0,1,0).
- (1,1,-1), (1,0,3), (-1,-2,5).

Exercício 4.34 Os seguintes polinómios geram $\mathcal{P}_2(x)$.

- a) $x^2 + 1$, $x^2 + x$, x + 1.
- b) $x^2 + 1$, $x^2 + x$.
- c) $x^2 + 2$, $2x^2 x + 1$, x + 2, $x^2 + x + 4$.
- d) $x^2 3x + 2$, $x^2 1$.

Exercício 4.35 Os seguintes vetores de \mathbb{R}^3 são linearmente dependentes.

- a) (1,2,-1), (3,2,5).
- b) (4,2,1), (2,6,-5), (1,-2,3).
- c) (1,1,0), (0,2,3), (1,2,3), (3,6,6).
- *d*) (1, 2, 3), (1, 1, 1), (1, 0, 1).

Exercício 4.36 Os seguintes vetores de $\mathcal{P}_2(x)$ são linearmente dependentes.

- a) $x^2 + 1$, x 2, x + 3.
- b) $2x^2 + 1$, $x^2 + 3$, x.
- c) 3x + 1, $3x^2 + 1$, $2x^2 + x + 1$.
- d) $x^2 4$, $5x^2 5x 6$, $3x^2 5x + 2$, 2x 1.

Exercício 4.37 Os seguintes vetores de $\mathbb{R}^{2\times 2}$ são linearmente dependentes.

a)
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 6 \\ 4 & 6 \end{pmatrix}$.

b)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}$.

c)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}$, $\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$.

Exercício 4.38 Os seguintes vetores de \mathbb{R}^3 formam uma base de \mathbb{R}^3 .

a)
$$(1,2,0)$$
, $(0,1,-1)$.

b)
$$(1,1,-1)$$
, $(2,3,4)$, $(1,-2,3)$, $(2,1,1)$.

c)
$$(1,1,0)$$
, $(0,2,3)$, $(-2,0,3)$.

d)
$$(3,2,2)$$
, $(-1,2,1)$, $(0,1,0)$.

Exercício 4.39 Os seguintes vetores de $\mathcal{P}_2(x)$ formam uma base de $\mathcal{P}_2(x)$.

a)
$$-x^2 + x + 2$$
, $2x^2 + 2x + 3$, $4x^2 - 1$.

b)
$$2x^2 + 1$$
, $x^2 + 3$.

c)
$$x^2 + 1$$
, $3x^2 + 1$, $2x^2 + x + 1$, $3x^2 - 5x + 2$.

d)
$$3x^2 + 2x + 1$$
, $x^2 + x + 1$, $x^2 + 1$.

Nas questões 4.40 a 4.46, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F).

Exercício 4.40 Seja V um espaço vetorial real.

a) Se
$$(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$$
 é uma base de V , então $(3\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$ também é uma base de V .

b) Se
$$V = \langle \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \rangle$$
, então dim $V = n$.

\sim	
/ \	/ \
()	()

c) Se
$$(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$$
 é uma base de V , então o vetor nulo não pode escrever-se como combinação linear dos vetores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

$$\circ$$

d) Se dim
$$V=n$$
 e $\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n$ são vetores de V linearmente independentes, então $(\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n)$ é uma base de V .

Exercício 4.41 Seja V um espaço vetorial real de dimensão n.

a) Se
$$V = \langle \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \rangle$$
, então $(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$ é uma base de V .

$$\circ$$

b) Se
$$(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n)$$
 é uma base de V , então $(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_1 + \mathbf{v}_n)$ também é uma base de V .

c) Quaisquer
$$n-1$$
 vetores de V são linearmente independentes.

d) O conjunto
$$T=\{\alpha \mathbf{v_1}+\beta \mathbf{v_2}:\alpha,\beta\in\mathbb{R},\mathbf{v_1},\mathbf{v_2}\in V\}$$
 é um subespaço vetorial de V .

$$\circ$$

Exercício 4.42 Seja $S = \langle (1,0,1), (1,2,1), (3,4,3) \rangle$. Então:

a)
$$S=\mathbb{R}^3$$
.

b)
$$S = \{(x, y, z) \in \mathbb{R}^3 : x = z\}.$$

 \bigcirc

c)
$$(2,3,4) \in S$$
.

d) os vetores
$$(-2, 4, -2)$$
 e $(-2, 0, -2)$ constituem uma base de S .

 \bigcirc

Exercício 4.43 Seja $T = \langle (1,1,0,0), (1,0,-1,0), (1,1,1,1) \rangle$. Então:

$$\circ$$

F

a)
$$T=\mathbb{R}^3$$
.

b)
$$T = \{(a, b, c, d) \in \mathbb{R}^4 : a = b - c + d\}.$$

c)
$$(0,0,0,0) \in T$$
.

$$\circ$$

d)
$$((1,1,0,0),(1,0,-1,0),(0,0,1,1))$$
 é uma base de T .

 \bigcirc

Exercício 4.44 Seja A uma matriz de ordem 4×5 .

a) As colunas de A são linearmente dependentes.

b) O sistema $A\mathbf{x} = \mathbf{0}$ tem solução única.

d) A dimensão do núcleo de A é 2.

c) car $A \leq 4$.

)	\bigcirc
	\bigcirc

Exercício 4.45 Seja $S = \{(\alpha + \beta, \alpha - \beta, 2\alpha) : \alpha, \beta \in \mathbb{R}\}.$

a) $S = \{(x, y, x) \in \mathbb{R}^3 : x + y - z = 0\}.$

b) $(1,1,1) \in S$.

c) $S = \langle (1, -1, 0), (1, 1, 2), (1, 0, 1) \rangle$.

\subset
_

d) S é um subespaço vetorial de \mathbb{R}^3 de dimensão 2.

\bigcirc

Exercício 4.46 Considere as matrizes

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 5 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

a) B pode obter-se por operações elementares sobre as linhas de A.

	\sim
()	('
()	()
\sim	\sim

b) ((1,1,2,0),(1,2,3,1),(1,4,5,5)) é uma base do espaço das colunas de A.

7
ノ

c) ((1,1,1,1),(1,2,3,4),(2,3,4,5)) é uma base do espaço das linhas de A.

\bigcirc	

d) $(-1,1,-1,1) \in \mathcal{N}(A)$.

5. Transformações lineares

Exercícios para as aulas

Exercício 5.1 Verifique quais das seguintes aplicações são lineares.

- a) $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por f(x, y, z) = (x, y, 0);
- b) $g: \mathbb{R}^2 \to \mathbb{R}^2$ definida por g(x,y) = (x+1,y+2);
- c) $h: \mathbb{R}^3 \to \mathbb{R}^2$ definida por h(x, y, z) = (x + y, z);
- d) $p: \mathbb{R}^3 \to \mathbb{R}^2$ definida por p(x, y, z) = (xy, z);
- e) $d: \mathcal{P}_3(x) \longrightarrow \mathcal{P}_3(x)$ f) $t: \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{n \times m}$ $p(x) \mapsto p''(x)$ $A \mapsto A^T$

Exercício 5.2 Para cada uma das aplicações lineares do exercício anterior, determine o núcleo e indique a sua dimensão.

Exercício 5.3 * Seja $f:\mathbb{R}^3 o \mathbb{R}^2$ uma aplicação, tal que

$$f(x, y, z) = (x + k, z + k), k$$
 constante real.

- a) Indique para que valores de k essa aplicação é linear.
- b) Para o valor de k encontrado na alínea anterior, determine Nuc f e uma sua base.

Exercício 5.4 Seja $f: \mathbb{R}^3 \to \mathbb{R}^4$ a aplicação linear definida por

$$f(x,y,z) = (x+2y-z, y+2z, 2x+5y, x+3y+z).$$

- a) Determine a representação matricial de f.
- b) Calcule, de duas formas distintas, f(1,2,3).
- c) Determine Nuc f e uma sua base.
- d) Indique uma base para ${\rm Im}\ f.$

Exercício 5.5 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear cuja representação matricial é $\mathcal{M}_T = \begin{pmatrix} 2 & -1 & 1 \\ 2 & 1 & 3 \\ 3 & 0 & 3 \end{pmatrix}$.

- a) Determine a expressão de $T(x_1, x_2, x_3)$, com $(x_1, x_2, x_3) \in \mathbb{R}^3$
- b) Diga, justificando, se o vector $(5,7,9) \in \operatorname{Im} T$. Determine uma base para $\operatorname{Nuc} T$.
- c) Indique uma base para ${\rm Im}\,T.$

Exercício 5.6 Para cada uma das aplicações lineares seguintes, determine o núcleo e a sua dimensão e diga se a aplicação é injetiva. Indique ainda a dimensão do espaço imagem e diga se a aplicação é sobrejetiva.

- a) $f: \mathbb{R}^3 \to \mathbb{R}^3$, definida por f(x, y, z) = (x, x y, x + z).
- b) g a aplicação linear cuja representação matricial é $\mathcal{M}_g=\left(egin{array}{ccc}1&2&3\\2&3&2\\0&0&1\\1&3&2\end{array}\right).$

c) $h: \mathbb{R}^4 \to \mathbb{R}^3$, definida por

$$h(1,0,0,0) = (1,-1,2)$$

 $h(0,1,0,0) = (-2,5,3)$
 $h(0,0,1,0) = (-7,16,7)$
 $h(0,0,0,1) = (-3,6,1)$.

Exercício 5.7 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear representada pela matriz $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}$.

- a) Determine T(1,2,4).
- b) Verifique se T é bijetiva.
- c) Determine uma base para $\operatorname{Im} T$.
- d) Determine uma base para $\operatorname{Nuc} T$.
- e) Determine $\{\mathbf{u} \in \mathbb{R}^3 : T(\mathbf{u}) = (4, -3, 8)\}.$

Exercício 5.8*

- a) Justifique que ((1,1),(-1,1)) é uma base de \mathbb{R}^2 e determine as coordenadas dos vetores $e_1=(1,0)$ e $e_2=(0,1)$ nessa base.
- b) Seja $T:\mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear tal que

$$T(1,1) = (1,2,1), T(-1,1) = (-1,0,3).$$

- (i) Construa a representação matricial de T.
- (ii) Determine T(x,y), com $(x,y) \in \mathbb{R}^2$.
- (iii) Diga, justificando, se T é injetiva e/ou sobrejetiva.

Exercício 5.9 Seja Φ_k a aplicação linear cuja representação matricial é

$$A_k = \begin{pmatrix} -1 & k-2 & 1 \\ 2 & 8 & k \\ k+1 & 2k & -k-1 \end{pmatrix}, \quad k \in \mathbb{R}.$$

- a) Determine os valores de k para os quais a aplicação Φ_k é injetiva.
- b) Determine Nuc Φ_{-2} e diga qual a sua dimensão.
- c) Determine uma base para Im Φ_1 .

Exercício 5.10 Diga porque não existe ou apresente um exemplo de uma transformação linear nas condições indicadas.

- a) $f: \mathbb{R}^6 \to \mathbb{R}^2$ cujo núcleo tenha dimensão 2.
- b) $g: \mathbb{R}^3 \to \mathbb{R}^3$ tal que dim Nuc g=2.
- c) $h: \mathbb{R}^2 \to \mathbb{R}^2$ tal que h(3,3)=(1,2) e h(5,5)=(2,1).
- d) $t: \mathbb{R}^3 \to \mathbb{R}^2$ tal que $\operatorname{\mathsf{Nuc}} t = \langle (1,1,1), (1,1,0) \rangle$ e $(1,3) \in \operatorname{\mathsf{Im}} t$.

Exercícios suplementares

Exercício 5.11 Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear tal que

$$f(1,0,0) = (1,1,2), \quad f(0,1,0) = (-1,2,0), \quad f(0,0,1) = (-1,5,2).$$

- a) Determine f(-1, -2, 1).
- b) Determine $\{\mathbf{u} \in \mathbb{R}^3 : f(\mathbf{u}) = (0,3,3)\}.$
- c) Diga, justificando, se f é injetiva e/ou sobrejetiva.

Exercício 5.12 Seja $T_{\alpha,\beta}:\mathbb{R}^3 \to \mathbb{R}^3$ a aplicação linear cuja representação matricial é

$$\mathcal{M}_{lpha,eta}=\left(egin{array}{ccc} 1 & -lpha & 0 \ 0 & -1 & eta \ 1 & 0 & -eta \end{array}
ight), \; lpha, \; eta\in\mathbb{R}.$$

- a) Calcule α e β de modo que $(1,1,1) \in \operatorname{Im} T_{\alpha,\beta}$.
- b) Indique, justificando, para que valores de α e β a aplicação linear é bijetiva.
- c) Calcule $T_{2,2}(1,-1,1)$.
- d) Calcule uma base do núcleo de $T_{1,1}$.

Exercício 5.13 Considere a aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = (x + y + z, -x + 2z, x + 2y + 4z)$$

- a) Indique, justificando, se a aplicação f é injetiva.
- b) Verifique se $(1,1,1) \in \text{Im } f$.

Nas questões seguintes, indique, a(s) alínea(s) correta(s).

Exercício 5.14 Considere, para cada $k \in \mathbb{R}$, a aplicação linear $\phi_k : \mathbb{R}^3 \to \mathbb{R}^3$ associada à matriz

$$A_k = \left(\begin{array}{ccc} k & 2k-1 & 1\\ 0 & k-2 & 1\\ 0 & 0 & 2k \end{array}\right).$$

$$\left(\begin{array}{ccc} 0 & 0 & 2k \end{array}\right)$$

a)
$$\dim(\operatorname{Im} \phi_2) = 2$$
.

b)
$$\phi_1(1,2,3) = (6,1,6)$$
.

c) A aplicação
$$\phi_3$$
 não é injetiva.

d) Se
$$\phi_k$$
 é sobrejetiva, então $k \neq 0$.

E and the Edge Cate of m4 at m3 and a discover Add a material of the	V	F
Exercício 5.15 Seja $f: \mathbb{R}^4 o \mathbb{R}^3$ uma aplicação linear e \mathcal{M}_f a matriz de f .		
a) \mathcal{M}_f é uma matriz $3 imes 4$.	\bigcirc	\bigcirc
b) f não pode ser injetiva.	\bigcirc	\bigcirc
c) f não pode ser sobrejetiva.	\bigcirc	\bigcirc
d) Se dim Nuc $f = 2$ então dim $\mathcal{C}(M_f) = 2$	\cap	\bigcirc

6. Valores e vetores próprios

Exercícios para as aulas

Exercício 6.1 Verifique quais dos seguintes vetores são vetores próprios da matriz

$$\begin{pmatrix} -5 & 2 & 0 \\ -12 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

a)
$$(0,0,2)$$
 b) $(1,3,0)$ c) $(0,0,0)$ d) $(1,1,3)$.

Exercício 6.2 Verifique quais dos seguintes valores são valores próprios da matriz

$$\begin{pmatrix} 4 & 0 & 2 \\ 1 & 1 & 3 \\ 0 & 0 & -2 \end{pmatrix}.$$

a) 2 b)
$$-2$$
 c) 4 d) 1 e) 0

Exercício 6.3 Escreva a equação característica e calcule os valores próprios das matrizes:

a)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ c) $C = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

d)
$$D = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 e) $E = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}$ f) $F = \begin{pmatrix} 3 & 0 & -1 & 0 \\ 0 & 3 & 0 & -1 \\ -1 & 0 & 3 & 0 \\ 0 & -1 & 0 & 3 \end{pmatrix}$.

Exercício 6.4 Sabendo que $\lambda = 1$ é um valor próprio da seguinte matriz

$$A = \begin{pmatrix} 5 & -7 & 7 \\ 4 & -3 & 4 \\ 4 & -1 & 2 \end{pmatrix},$$

determine os restantes valores próprios de A.

Exercício 6.5 Considere a matriz

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}.$$

- a) Substitua a terceira linha pela sua soma com a segunda multiplicada por -2 transformando-a numa matriz triangular superior U.
- b) Calcule os valores próprios de A e de U e verifique que as matrizes **não** têm o mesmo conjunto de valores próprios.

Exercício 6.6 Determine vetores próprios associados a cada um dos valores próprios **reais** das matrizes apresentadas no Exercício 6.3.

31

Exercício 6.7 Considere a matriz

$$A = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 0 \end{pmatrix}.$$

- a) Calcule os valores próprios de A indicando a sua multiplicidade algébrica.
- b) Calcule o subespaço próprio associado a cada um dos valores próprios de A, indicando a multiplicidade geométrica de cada valor próprio.

Exercício 6.8 Seja λ um valor próprio de uma matriz A e seja $\mathbf x$ um vetor próprio associado a λ . Mostre que

- a)* $\alpha\lambda$ é um valor próprio da matriz αA , sendo x um vetor próprio associado a esse valor próprio;
- b) λp é um valor próprio da matriz A pI, sendo x um vetor próprio associado a esse valor próprio;
- c) $\lambda^k (k \in \mathbb{N})$ é um valor próprio da matriz A^k , sendo \mathbf{x} um vetor próprio associado a esse valor próprio.

Exercício 6.9 Seja A uma matriz de ordem 3 com valores próprios -1, 1 e 2. Indique os valores próprios de uma matriz B relacionada com A do seguinte modo:

- a) B = 4A.
- b) B = -A.
- c) $B = A + 3I_3$.
- d) $B = A^{-1}$.
- e) $B = A^T$.
- f) $B = A^3$.

Exercício 6.10 Considere a matriz

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & 0 & 0 & 1 \end{array}\right)$$

- a) Determine os valores próprios de A.
- b) Determine o subespaços próprio associado a cada um dos valores próprios de A.
- c) Indique, justificando, se a matriz A é diagonalizável.
- d) Indique uma matriz B, de ordem 4, que tenha os mesmos valores próprios que a matriz A.

Exercício 6.11 Considere novamente as matrizes apresentadas no Exercício 6.3. Indique, para cada matriz, as multiplicidades algébrica e geométrica de cada valor próprio real. Diga, justificando, se as matrizes são diagonalizáveis.

F

Exercício 6.12^* Recorde que uma matriz A se diz idempotente se $A^2=A$ (ver Exercício 1.19). Mostre que, se λ é um valor próprio de uma matriz idempotente, então $\lambda=0$ ou $\lambda=1$. Dê um exemplo de uma matriz idempotente que tenha 0 e 1 como valores próprios.

Exercício 6.13* Seja A uma matriz que tem $\mathbf{u}=(1,2,1,3)$ como vetor próprio associado ao valor próprio 2 e $\mathbf{v}=(-1,2,2,1)$ como vetor próprio associado ao valor próprio -3. Calcule $A^2\mathbf{w}$, onde $\mathbf{w}=(3,2,0,5)^\mathsf{T}$.

Exercícios suplementares

Nas questões 6.14 a 6.16, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F).

Exercício 6.14 Seja A uma matriz de ordem 4, com valores próprios -2, -1, 1 e 2 e seja B = -2A. V

a)
$$\det A = 4$$
.

b) Os valores próprios da matriz
$$B$$
 são $-4, -2, 2$ e 4.

c) As matrizes
$$A$$
 e B são semelhantes.

d) O sistema
$$(A - 2I_4)\mathbf{x} = 0$$
 é possível e determinado.

Exercício 6.15 Considere a matriz

$$A = \left(\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array}\right).$$

a)	(0,0,0) é um vetor próprio associado ao valor próprio 0 .	\bigcirc	\bigcirc

b)
$$(2,2,2)$$
 é um vetor próprio associado ao valor próprio 1.

c)
$$(-1,-1,-1)$$
 é um vetor próprio associado ao valor próprio 0 .

d)
$$(1,0,-1)$$
 é um vetor próprio associado ao valor próprio 0.

Exercício 6.16 Seja A uma matriz de ordem 3, com valores próprios 0, 1 e 2.

a)
$$A$$
 é uma matriz invertível.

b) O sistema
$$A\mathbf{x}=0$$
 é possível e determinado.

c) Os valores próprios da matriz
$$2A-I_3$$
 são $1,3$ e 5 .

d) Existe uma base de
$$\mathbb{R}^3$$
 formada por vetores próprios de A .

Exercício 6.17 Sejam A e B matrizes quadradas de ordem n tais que A é semelhante a B.

a) Mostre que A^2 é semelhante a B^2 .

b) Mostre que A^n é semelhante a B^n , para todo o $n \in \mathbb{N}$. Sugestão: Use indução sobre n.

Soluções

Matrizes

Exercício 1.1 a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & -1 \\ 2 & 2 & 3 & 1 \\ 2 & 5 & -3 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 2 & 3 \\ 2 & 5 & -3 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}$ e) $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ g) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 4 & 1 & 3 & 0 \\ 2 & 1 & 3 & 2 \end{pmatrix}$ h) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & 5 \end{pmatrix}$

Exercício 1.2

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 2 & -3 & 4 & -5 \\ -3 & 4 & -5 & 6 \\ 4 & -5 & 6 & -7 \\ -5 & 6 & -7 & 8 \end{pmatrix}.$$

Exercício 1.3 a) Não definido b) Não definido c) 2×4 d) Não definido e) 2×5 f) 2×4

Exercício 1.4

$$\left(\begin{array}{c}5\\12\end{array}\right),\left(\begin{array}{c}5\\12\\8\end{array}\right),\left(\begin{array}{c}5&4\\12&5\\8&2\end{array}\right),\left(\begin{array}{ccc}5&4&0\\12&5&0\\8&2&0\end{array}\right),\left(\begin{array}{ccc}5&4&-5\\12&5&-12\\8&2&-8\end{array}\right),\left(\begin{array}{ccc}5&4\right),\left(\begin{array}{c}5\\2\\3\end{array}\right),\left(\begin{array}{ccc}6&2\\3&1\\3&1\end{array}\right)$$

Exercício 1.6
$$\begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

Exercício 1.9
$$(A+B)^3 = A^3 + ABA + BA^2 + B^2A + A^2B + AB^2 + BAB + B^3$$
.

Se A e B comutam, então

$$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3.$$

Exercício 1.10 $\alpha = 1, \beta = 0.$

$$\begin{pmatrix} 3 & 5 & -4 \\ 2 & -3 & 16 \\ 2 & -1 & 1 \end{pmatrix}, \begin{pmatrix} 8 & -15 & 11 \\ 0 & -4 & -3 \\ -1 & -6 & 6 \end{pmatrix}, \begin{pmatrix} 5 & 5 & 8 \\ -10 & -1 & -9 \\ 15 & 4 & 6 \end{pmatrix}, \begin{pmatrix} 5 & -10 & 15 \\ 5 & -1 & 4 \\ 8 & -9 & 6 \end{pmatrix}, \begin{pmatrix} 8 & 0 & -1 \\ -15 & -4 & -6 \\ 11 & -3 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 1-i & -2i & -i \\ 1 & 1 & i \\ -i & 1 & 0 \end{pmatrix}, \begin{pmatrix} -1-i & -i & -2 \\ -i & -i & i \\ 2 & 0 & -i \end{pmatrix}, \begin{pmatrix} -1-i & -i & 2 \\ -i & -i & 0 \\ -2 & i & -i \end{pmatrix}, \begin{pmatrix} 2 & 2 & i \\ 1-2i & 2 & 0 \\ -3i & i & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 3+4i & 1 \\ 2+i & 1+2i & 0 \\ 1-i & 4 & 2+i \end{pmatrix}.$$

Exercício 1.14 Simétrica: $C \in E$;

Antissimétrica: H; Hermítica: B, E e G; Anti-hermítica: C e D.

Exercício 1.19 b)

$$M^2 = \begin{pmatrix} 1 & 0 & 0 & 2/3 & 2/3 & 2/3 \\ 0 & 1 & 0 & 2/3 & 2/3 & 2/3 \\ 0 & 0 & 1 & 2/3 & 2/3 & 2/3 \\ \hline 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \end{pmatrix}, \qquad M^3 = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \end{pmatrix},$$

$$M^{300} = \begin{pmatrix} 1 & 0 & 0 & 100 & 100 & 100 \\ 0 & 1 & 0 & 100 & 100 & 100 \\ 0 & 0 & 1 & 100 & 100 & 100 \\ \hline 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 0 & 1/3 & 1/3 & 1/3 \end{pmatrix}.$$

Exercício 1.20 a) 3 b) Não c) 2 d) Não e) 2 f) 1 g) 3 h) 2.

Exercício 1.21 (solução não única)

$$a) \begin{pmatrix} 1 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & 1 \end{pmatrix} \qquad b) \begin{pmatrix} 4 & -8 & 12 & 0 \\ 0 & 3 & -3 & 6 \\ 0 & 0 & 6 & -18 \end{pmatrix} \qquad c) \begin{pmatrix} 2 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Exercício 1.22 car $A_0 = \operatorname{car} A_2 = \operatorname{car} A_{-1} = 2$, car $A_\alpha = 3$, nos outros casos.

Exercício 1.23 $\beta = 0$ ou $\alpha = 1$.

Exercício 1.24 c), f), g).

Exercício 1.25

Exercício 1.27 As matrizes não são equivalentes por linhas, uma vez que

$$A \xrightarrow{\text{linhas}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{e} \qquad B \xrightarrow{\text{linhas}} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercício 1.31 V V F V V F F.

Exercício 1.32 Ae_j é uma matriz coluna formada pela coluna j da matriz A.

Exercício 1.34 Se $\alpha = \pm 1$, car A = 1. Se $\alpha \neq \pm 1$, car A = 4.

Exercício 1.35 a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 e $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ e $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Exercício 1.36 a) Não; b) Sim.

Sistemas

Exercício 2.3 a) Sem solução; b) (4,-1); c) $(-11+2\alpha,\alpha,3),\alpha\in\mathbb{R}$; d) (4,5,2); e) Sem solução; f) (5,3,2).

Exercício 2.4 a) Impossível; b) (0,0); c) $(8-2\alpha,-5+\alpha,\alpha),\alpha\in\mathbb{R}$; d) Impossível; e) (0,3/2,1); f) $(1+2\alpha,3\alpha,7\alpha),\alpha\in\mathbb{R}$.

Exercício 2.6 $a \neq -2$. Exercício 7. a) Não. Trata-se de um sistema homogéneo. b) $\beta = 2$.

Exercício 2.8 (SI → sistema impossível; SPD → sistema possível e determinado; SPI → sistema possível e indeterminado)

a)
$$\alpha = 2$$
 e $\beta = 1$, SPI; $\alpha = 2$ e $\beta \neq 1$, SI; $\alpha \neq 2$, SPD. b) $\beta = 1$ e $\alpha = 7$, SPI; $\beta = 1$ e $\alpha \neq 7$, SI; $\beta \neq 1$, SPD. c) $\alpha = 1$ e $\beta = -1$, SPI; $\alpha = 1$ e $\beta \neq -1$, SI; $\alpha \neq 1$, SPD.

Exercício 2.9 a)
$$a=2$$
, **SI**; $a=-2$, **SPI**. Solução: $x=2+6\alpha,\ y=-\frac{5}{2}\alpha,\ z=\alpha,\ \alpha\in\mathbb{R};$ $a\neq 2$ e $a\neq -2$, **SPD**. Solução: $x=\frac{2a+2}{a-2},\ y=\frac{-5}{2a-4},\ z=\frac{1}{a-2}.$

b)
$$a=3$$
 e $b\neq 1$, **SI**; $a=3$ e $b=1$, **SPI**. Solução: $x=1-3\alpha,\ y=\alpha,\ z=2\alpha,\ \alpha\in\mathbb{R};$ $a\neq 3$, **SPD**. Solução: $x=\frac{-ab-a+6}{6-2a},\ y=\frac{(2-a)(1-b)}{6-2a},\ z=\frac{b-1}{3-a}.$

c)
$$k=0$$
 ou $t=-1/2$, **SI**; $k\neq 0$ e $t\neq -1/2$,**SPD**. Solução: $x=\frac{-2-t}{2k(1+2t)},\ y=\frac{1+t}{k(1+2t)},\ z=\frac{-t}{2k(1+2t)}.$

Exercício 2.13 a)
$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
; b) $\begin{pmatrix} -\frac{5}{3} & \frac{2}{3} & \frac{4}{3} \\ -1 & 0 & 1 \\ \frac{7}{3} & -\frac{1}{3} & -\frac{5}{3} \end{pmatrix}$; c) Não invertível; d) $\begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -\frac{4}{5} \end{pmatrix}$.

Exercício 2.14
$$B^{-1}=\left(\begin{array}{cc}I_n&\mathbf{0}\\-A&I_m\end{array}\right).$$

Exercício 2.15
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -83 & 47 & 1 & 0 & 0 \\ 55 & -94 & 0 & 1 & 0 \\ -62 & 71 & 0 & 0 & 1 \end{pmatrix} .$$

Exercício 2.18

- a) $a \neq -1$, **SPI** (grau de indet. 1); a = -1 e b = 1, **SPI** (grau de indet. 2); a = -1 e $b \neq 1$, **SI**.
- b) $a \neq 3$, SPI (grau de indet. 1); a = 3 e b = 3, SPI (grau de indet. 2); a = 3 e $b \neq 3$, SI.
- c) $a \neq 0$ e $b \neq 0$, SPD; $a \neq 0$ e b = 0, SI; a = 0 e $b \neq 0$, SPI (grau de indet. 1); a = 0 e b = 0, SPI (grau de indet. 2).

Exercício 2.20 a)
$$\alpha \neq 2$$
; b) $x = 0$; c) $\begin{pmatrix} -\frac{1}{2} & 0 & -\frac{1}{6} \\ -\frac{3}{2} & 1 & -\frac{1}{6} \\ -1 & 1 & -\frac{1}{3} \end{pmatrix}$.

Exercício 2.21 a)
$$\alpha = 2$$
, SI; $\alpha \neq 2$, SPD.

Solução:
$$x=\frac{\alpha\beta-\alpha-2\beta-10}{4(\alpha-2)},\ y=\frac{2(1+\beta)-\alpha(3+\beta)}{4(\alpha-2)},\ z=\frac{4}{\alpha-2}.$$

b) A matriz é invertível, porque para
$$\alpha=1$$
, car $A=3$. $A^{-1}=\left(\begin{array}{cccc} \frac{1}{4} & \frac{3}{4} & -\frac{5}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & -1 & 2 \end{array} \right)$

Exercício 2.22 $x \neq 0$ e $x \neq -n$, onde n é a ordem da matriz.

Determinantes

Exercício 3.1 a)
$$-4$$
; b) 0; c) -5 ; d) -15 ; e) 48.

Exercício 3.2 a) 2; b) 4; c)
$$-11$$
.

Exercício 3.3 a) 54; b) 12; c) 2; d)
$$-2$$
.

Exercício 3.5
$$k = -2$$
 ou $k = 1$.

Exercício 3.6
$$\lambda \in \{\frac{3-\sqrt{5}}{2}, 1, \frac{3+\sqrt{5}}{2}\}.$$

Exercício 3.10
$$x_1 = a$$
 ou $x_2 = a$ ou \cdots ou $x_{n-1} = a$.

Exercício 3.12
$$\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Exercício 3.13 a) $\alpha \neq 0$ e $\alpha \neq 2$. b) Como car $A_0 = 2 < 3$, então A_0 não é invertível, logo det $A_0 = 0$.

$$c) \left(\begin{array}{c} -\frac{1}{3} \\ -1 \\ -\frac{2}{3} \end{array} \right)$$

Exercício 3.14 a)
$$(1+t)^4$$
; b) $t \neq -1$; c) $A^{-1} = \begin{pmatrix} 5 & -1 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{pmatrix}$.

Exercício 3.15 a)
$$x_1 = \frac{16}{7}$$
, $x_2 = -\frac{10}{7}$; b) $x_1 = 1$, $x_2 = 0$, $x_3 = 2$; c) $x_1 = 1$, $x_2 = -1$, $x_3 = 0$.

Exercício 3.16 a)
$$\det A = 3$$
; $\det B = -1$.

$$\begin{array}{lll} b) \ \mathrm{adj} \ A = \left(\begin{array}{ccc} 3 & 9 & 3 \\ 2 & 7 & 3 \\ 1 & -1 & 0 \end{array} \right); & \mathrm{adj} \ B = \left(\begin{array}{ccc} -\cos\theta & \sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & -1 \end{array} \right). \\ c) \ A^{-1} = \left(\begin{array}{ccc} 1 & 3 & 1 \\ \frac{2}{3} & \frac{7}{3} & 1 \\ \frac{1}{3} & -\frac{1}{3} & 0 \end{array} \right); & B^{-1} = \left(\begin{array}{ccc} \cos\theta & -\sin\theta & 0 \\ -\sin\theta & -\cos\theta & 0 \\ 0 & 0 & 1 \end{array} \right). \ d) \ \mathbf{x} = \left(\begin{array}{c} 2 \\ 5/3 \\ 1/3 \end{array} \right). \end{array}$$

Exercício 3.20 $(a + (n-1)b)(a-b)^{n-1}$.

Exercício 3.21 a) V; b) F; c) F; d) F; e) V.

Exercício 3.22 V V V Exercício 3.23 V V V Exercício 3.24 a) F; b) V; c) V.

Exercício 3.25

a)
$$A_{\alpha}$$
 é invertível, porque $\det A_{\alpha}=-\alpha \neq 0$. $A_{\alpha}^{-1}=\left(egin{array}{ccc} 0 & 1 & 0 \\ 1 & -1 & 0 \\ -rac{2}{\alpha} & rac{1}{\alpha} & rac{1}{\alpha} \end{array}
ight)$.

b) O sistema é de Cramer, porque tem solução única, pois det $A_{\alpha} \neq 0$. A solução é $\mathbf{x} = \begin{pmatrix} -1 \\ 2 \\ -\frac{2}{\alpha} \end{pmatrix}$.

Exercício 3.26 b)
$$\mathbf{x} = \begin{pmatrix} -1 \\ \alpha \\ -1 + \alpha^2 \\ 1 - \alpha^2 \end{pmatrix}$$
.

Espaços vetoriais

Exercício 4.4 a) Sim b) Não c) Sim

Exercício 4.7 a) e c)

Exercício 4.8 a) $\{(a,b,c) \in \mathbb{R}^3 : b = c\}$. b) $\{(a,b,c) \in \mathbb{R}^3 : c = b - a\}$. c) \mathbb{R}^3 .

Exercício 4.9 $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a,b,c \in \mathbb{R} \right\}$, ou seja, o conjunto das matrizes de ordem 2 triangulares superiores.

Exercício 4.11 $\mathbf{v} = 4\mathbf{v}_1 - \mathbf{v}_2$.

Exercício 4.12 a) Sim b) Não; (1,-1,1) = (1,0,1) - (0,1,0).

Exercício 4.14

[4.4] a) dim S = 1; base de S : ((1,1)).

```
[4.4] c) dim T = 2; base de T : ((1,0,0),(0,1,0)).
        [4.7] a) dim U_1 = 2; base de U_1: ((-1,1,0),(-1,0,1)).
        [4.7] c) dim U_3 = 2; base de U_3: ((1,1,0,0),(0,0,1,1)).
Exercício 4.15 a) dim U = 3; base de U : ((-1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)).
          b) dim W = 2; base de W : ((1,1,1,0),(0,0,0,1)).
Exercício 4.16 a) dim 3; base: \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}.
          b) dim 3, base: \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. c) dim 2, base: \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.
Exercício 4.19 a) (1, -4, 2) b) (-1, 4, -2). Exercício 4.20 a) (1, -4, 2) b) (-1, 4, -2).
Exercício 4.21 b) ((1,0),(1,1)). Exercício 4.22 k \neq -4.
Exercício 4.23 ((1,0,1),(0,1,1),(0,0,1))
Exercício 4.24 b) ((3,2,1),(1,-1,2)) c) \alpha = -1. Exercício 4.25 b) ((-2,1,0),(-1,0,1))
        c) \alpha = -1.
Exercício 4.26
        \dim \mathcal{L}(A) = \dim \mathcal{C}(A) = 2,
                                                 base \mathcal{L}(A): ((0,2,1,1),(0,0,3,1)), base \mathcal{C}(A): ((2,0,0,0),(1,3,0,0))
        \dim \mathcal{L}(B) = \dim \mathcal{C}(B) = 3,
                            base \mathcal{L}(B): ((1,0,0),(0,1,0),(0,0,1)), base \mathcal{C}(B): ((1,0,0,0),(0,1,0,0),(0,0,1,0))
        \dim \mathcal{L}(C) = \dim \mathcal{C}(C) = 2,
                                                base \mathcal{L}(C): ((-1,3,0,2),(0,2,2,0)), base \mathcal{C}(C): ((-1,0,-1),(3,2,3))
        \dim \mathcal{L}(D) = \dim \mathcal{C}(D) = 3,
                            base \mathcal{L}(D): ((0,1,0,0),(0,0,1,0),(0,0,0,1)), base \mathcal{C}(D): ((1,0,0),(0,1,0),(0,0,1))
        \dim \mathcal{L}(E) = \dim \mathcal{C}(E) = 1,
                                                                                  base \mathcal{L}(E): ((3,0,-6,0)), base \mathcal{C}(E): ((3,1))
Exercício 4.27 dim \mathcal{N}(A) = 2, base \mathcal{N}(A) : ((0, -1, -1, 3), (1, 0, 0, 0))
        \dim \mathcal{N}(B) = 0, base \mathcal{N}(B) : \emptyset
        \dim \mathcal{N}(C) = 2, base \mathcal{N}(C) : ((2,0,0,1),(-3,-1,1,0))
        \dim \mathcal{N}(D) = 1, base \mathcal{N}(D) : ((1,0,0,0))
```

 $\dim \mathcal{N}(E) = 3$, base $\mathcal{N}(E)$: ((0,0,0,1),(2,0,1,0),(0,1,0,0))

Exercício 4.28
$$\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 Exercício 4.29 Não.

Exercício 4.30 a) 2 e 3 b) Base de $\mathcal{C}(A)$: ((1,0,2,-1,0),(0,2,-1,2,0),(1,0,1,1,0)) Base de $\mathcal{N}(A)$: ((1,1,0,0,0),(-2,0,-2,1,0)) c) Uma solução é: $x_1=1,x_2=x_3=x_4=x_5=0$. Nota: O conjunto das soluções é $\{(1+\alpha-2\beta,\alpha,-2\beta,\beta,0):\alpha,\beta\in\mathbb{R}\}$.

Exercício 4.31 FVVVFF Exercício 4.32 FVVF Exercício 4.33 FVVF

Exercício 4.34 V F V F Exercício 4.35 F F V F Exercício 4.36 F F V V Exercício 4.37 V F V

Exercício 4.38 FFFV Exercício 4.39 VFFV Exercício 4.40 VFFV Exercício 4.41 VVFV

Exercício 4.42 FVFV Exercício 4.43 FVVV Exercício 4.44 VFVF Exercício 4.45 VFVV

Exercício 4.46 VVFF

Transformações lineares

Exercício 5.1 f, h, d e t são aplicações lineares.

Exercício 5.2 Nuc $f=\langle (0,0,1)\rangle$, dim Nuc f=1; Nuc $h=\langle (-1,1,0)\rangle$, dim Nuc h=1; Nuc $d=\langle 1,x\rangle$, dim Nuc d=2; Nuc $t=\{\mathbf{0}_{m\times n}\}$; dim Nuc t=0.

Exercício 5.3 a) k = 0; b) Nuc $T = \langle (0, 1, 0) \rangle$, Base de Nuc T: ((0, 1, 0)).

Exercício 5.4 a)

$$\mathcal{M}_f = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 2 & 5 & 0 \\ 1 & 3 & 1 \end{pmatrix}$$

- b) f(1,2,3) = (2,8,12,10).
- c) Nuc f = ((5, -2, 1)); Base de Nuc f : ((5, -2, 1)).
- d) Base de Im f: ((1,0,2,1),(2,1,5,3)).

Exercício 5.5 a) $T(x_1, x_2, x_3) = (2x_1 - x_2 + x_3, 2x_1 + x_2 + 3x_3, 3x_1 + 3x_3).$

b) Sim. c) Base de Nuc T: ((-1,-1,1)). d) Base de Im T: ((2,2,3),(-1,1,0)).

Exercício 5.6

	Nuc	dim Nuc	dim Im	injetiva	sobrejetiva
\overline{f}	$\{(0,0,0)\}$	0	3	S	\overline{S}
g	$\{(0,0,0)\}$	0	3	S	N
h	$\langle (1, -3, 1, 0), (1, -1, 0, 1) \rangle$	2	2	N	N

Exercício 5.7 a) T(1,2,4) = (5,10,10).

- b) T não é bijetiva.
- c) Base de Im T: ((1,0,2),(0,1,0)).
- d) Base de Nuc T: ((-1, -2, 1)).
- e) $\{(4-\alpha, -3-2\alpha, \alpha) : \alpha \in \mathbb{R}\}.$

Exercício 5.8 a) $e_1 = \frac{1}{2}(1,1) - \frac{1}{2}(-1,1), e_2 = \frac{1}{2}(1,1) + \frac{1}{2}(-1,1).$

b) (i)
$$\mathcal{M}_T = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 2 \end{pmatrix}$$
 .

(ii) T(x,y) = (x, x+y, -x+2y). (iii) É injetiva; não é sobrejetiva.

Exercício 5.9 a) $k \neq -2$ e $k \neq 1$.

- b) Nuc $\Phi_{-2} = \langle (-4, 1, 0), (1, 0, 1) \rangle$; dim Nuc $\Phi_{-2} = 2$.
- c) Base de Im Φ_1 : ((-1,2,2),(-1,8,2)).

Exercício 5.10 a) Não existe.

- b) Por exemplo, g definida por: g(1,0,0) = (0,0,0), g(0,1,0) = (0,0,0), g(0,0,1) = (1,2,3).
- c) Não existe.
- d) Por exemplo, t definida por: t(1,1,1) = (0,0), t(1,1,0) = (0,0), t(1,0,0) = (1,3).

Exercício 5.11 a) f(-1, -2, 1) = (0, 0, 0). b) \emptyset . c) Não é injetiva nem sobrejetiva.

Exercício 5.12 a) $(\alpha \neq 1 \text{ e } \beta \neq 0)$ ou $\alpha = 0$. b) $\alpha \neq 1 \text{ e } \beta \neq 0$. c) $T_{2,2}(1,-1,1) = (3,3,-1)$.

d) Base de Nuc T: ((1,1,1)).

Exercício 5.13 a) Não. b) Não.

Exercício 5.14 VVFV Exercício 5.15 VVFV

Valores e vetores próprios

Exercício 6.1 a), b)

Exercício 6.2 b), c), d)

Exercício 6.3

1	Matriz	A	B	C	D	E	F
	$p(\lambda)$	$(-1+\lambda)(1+\lambda)$	$1 + \lambda^2$	$-(-2 + \lambda)^3$	$-(-3+\lambda)^2(-1+\lambda)$	$-(-4+\lambda)(-3+\lambda)(-1+\lambda)$	$(-4+\lambda)^2(-2+\lambda)^2$
	v.p.	-1, 1	i, -i	2	1, 3	1, 3, 4	2, 4

Exercício 6.4 5 e -2.

Exercício 6.5

Matriz	A	U		
v.p.	2, 3	1, 2, 6		

Exercício 6.6

Matriz	A	C	D	E	F
					(0,-1,0,1)
$\overrightarrow{v.p.}$	(-1,1)	(1,0,0)	(0,1,0)	(-1,0,1)	(-1,0,1,0)
	(1, 1)		(-1,0,1)	(1, 2, 1)	(0,1,0,1)
					(1,0,1,0)

Exercício 6.7

a) v.p.: -3 e 3, com m.a. 1 e 2, respetivamente.

b) $V_{-3} = \langle (-1,0,1) \rangle$ e $V_3 = \langle (1,0,1), (0,1,0) \rangle$.

Exercício 6.9 a) -4, 4, 8 b) -2, -1, 1 c) 2, 4, 5 d) -1, 1/2, 1 e) -1, 1, 2 f) -1, 1, 8.

Exercício 6.10

a) v.p.: 0,1 e 2, com m.a. 1,2 e 1, respetivamente.

b) $V_0 = \langle (-1, -2, 3, 1) \rangle$, $V_1 = \langle (0, 0, 1, 0) \rangle$ e $V_2 = \langle (1, 0, -1, 1) \rangle$.

c) A matriz não é diagonalizável, porque não há 4 vetores próprios linearmente independentes.

d) Por exemplo, $B = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Exercício 6.11 A matriz C não é diagonalizável.

Exercício 6.13 A^2 **w** = (17, -2, -10, 15).

Exercício 6.14 V V F F Exercício 6.15 F F V F Exercício 6.16 F F F V

Resolução dos exercícios selecionados

Matrizes

Exercício 1.12 a)

$$A^{-1}(A+B)B^{-1} \underset{\textcircled{0}}{=} (A^{-1}A+A^{-1}B)B^{-1} \underset{\textcircled{0}}{=} (I+A^{-1}B)B^{-1} \underset{\textcircled{0}}{=} IB^{-1}+A^{-1}BB^{-1}$$
$$\underset{\textcircled{0}}{=} IB^{-1}+A^{-1}I \underset{\textcircled{0}}{=} B^{-1}+A^{-1} \underset{\textcircled{0}}{=} A^{-1}+B^{-1}.$$

Justificações:

- ① distributividade da multiplicação de matrizes em relação à adição
- 2 definição de inversa de uma matriz
- 3 propriedade da matriz identidade
- ④ comutatividade da adição de matrizes
- b) Temos,

$$(A^{-1} + B^{-1})(B(A+B)^{-1}A) \stackrel{=}{=} (A^{-1}(A+B)B^{-1})(B(A+B)^{-1}A)$$

$$\stackrel{=}{=} A^{-1}(A+B)(B^{-1}B)(A+B)^{-1}A$$

$$\stackrel{=}{=} A^{-1}(A+B)I(A+B)^{-1}A$$

$$\stackrel{=}{=} A^{-1}(A+B)(A+B)^{-1}A$$

$$\stackrel{=}{=} A^{-1}IA \stackrel{=}{=} A^{-1}A \stackrel{=}{=} I$$

e

$$(B(A+B)^{-1}A)(A^{-1}+B^{-1}) \stackrel{=}{\underset{\bigcirc}{\oplus}} (B(A+B)^{-1}A)(A^{-1}(A+B)B^{-1})$$

$$\stackrel{=}{\underset{\bigcirc}{\oplus}} B(A+B)^{-1}(AA^{-1})(A+B)B^{-1}$$

$$\stackrel{=}{\underset{\bigcirc}{\oplus}} B(A+B)^{-1}I(A+B)B^{-1}$$

$$\stackrel{=}{\underset{\bigcirc}{\oplus}} B(A+B)^{-1}(A+B)B^{-1}$$

$$\stackrel{=}{\underset{\bigcirc}{\oplus}} BIB^{-1} \stackrel{=}{\underset{\bigcirc}{\oplus}} BB^{-1} \stackrel{=}{\underset{\bigcirc}{\oplus}} I,$$

o que prova que $A^{-1} + B^{-1}$ é invertível, sendo $(A^{-1} + B^{-1})^{-1} = B(A + B)^{-1}A$.

Justificações:

- ① resultado da alínea anterior
- ② associatividade da multiplicação de matrizes
- 3 definição de inversa de uma matriz
- propriedade da matriz identidade

Falta apenas mostrar que a inversa da matriz $A^{-1}+B^{-1}$ também pode ser dada por $A(A+B)^{-1}B$. Usando a comutatividade da adição de matrizes e o resultado anterior (com os papéis de A e B trocados), vem, de imediato

$$(A^{-1} + B^{-1})^{-1} = (B^{-1} + A^{-1})^{-1} = A(B + A)^{-1}B = A(A + B)^{-1}B.$$

Exercício 1.15 a) Temos

$$(A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T,$$

o que mostra que a matriz $\boldsymbol{A} + \boldsymbol{A}^T$ é simétrica.

Justificações:

- ① propriedade da transposição de matrizes
- 2 comutatividade da adição de matrizes

Exercício 1.17 a) Como

$$(AB)(AB)^T = (AB)(B^TA^T) = A(BB^T)A^T = AI_nA^T = AA^T = I_n$$

е

$$(AB)^T(AB) = (B^TA^T)(AB) = B^T(A^TA)BT = B^TI_nB = B^TB = I_n$$

concluímos que AB é ortogonal.

Justificações:

- ① propriedade da transposição de matrizes
- 2 associatividade da multiplicação de matrizes
- propriedade da matriz identidade

Exercício 1.18 a) Seja $B = A^2 = (b_{ij})$. Usando a definição de produto de matrizes, temos, para $i = 1, \ldots, n$ e $i = 1, \ldots, n$:

$$b_{ij} = a_{i1}a_{1j} + a_{i2}a_{2j} + \dots + a_{in}a_{nj} = \underbrace{1 \times 1 + 1 \times 1 + \dots + 1 \times 1}_{n \text{ parcelas}} = n = n \times 1,$$

o que mostra que a matriz $A^2 = nA$.

Nota: A partir de agora, as justificações das diversas passagens das demonstrações apresentadas ficam ao cuidado dos alunos.

b) Como

$$(I_n - A)(I_n - \frac{1}{n-1}A) = I_n - A - \frac{1}{n-1}A + \frac{1}{n-1}A^2$$

$$= I_n - A - \frac{1}{n-1}A + \frac{n}{n-1}A$$

$$= I_n - A + (\frac{n}{n-1} - \frac{1}{n-1})A = I_n - A + A = I_n$$

e

$$(I_n - \frac{1}{n-1}A)(I_n - A) = I_n - A - \frac{1}{n-1}A + \frac{1}{n-1}A^2$$

$$= I_n - A - \frac{1}{n-1}A + \frac{1}{n-1}nA$$

$$= I_n - A + (\frac{n}{n-1} - \frac{1}{n-1})A = I_n - A + A = I_n,$$

concluímos que $(I_n - A)^{-1} = I_n - \frac{1}{n-1}A$.

Exercício 1.26 Na resolução deste exercício, usamos o facto de sabermos que a forma em escada reduzida equivalente por linhas a uma dada matriz A é única, ou seja, se $A \xrightarrow{linhas} A'$ e $A \xrightarrow{linhas} A''$ com A', A'' matrizes na forma em escada reduzida, então A' = A''.

Seja A_R a matriz em escada reduzida equivalente por linhas a A e B_R a matriz em escada reduzida equivalente por linhas a B. Vamos começar por mostrar que, se A é equivalente por linhas a B, então $A_R = B_R$. Temos

$$\left. \begin{array}{c} A \xrightarrow{linhas} B \\ B \xrightarrow{linhas} B_R \end{array} \right\} \Rightarrow A \xrightarrow{linhas} B_R.$$

Como $A \xrightarrow{linhas} A_R$, concluímos que $A_R = B_R$.

Suponhamos agora que $A \xrightarrow[linhas]{linhas} C$ e $B \xrightarrow[linhas]{linhas} C$, com C na forma em escada reduzida, e mostremos que $A \xrightarrow[linhas]{linhas} B$. Temos

$$B \xrightarrow[linhas]{} C \Longrightarrow C \xrightarrow[linhas]{} B$$

e também

$$\left. \begin{array}{c} A \xrightarrow{linhas} C \\ C \xrightarrow{linhas} B \end{array} \right\} \Rightarrow A \xrightarrow{linhas} B.$$

Sistemas

Exercício 2.10 a) Se \mathbf{u} e \mathbf{v} são soluções do sistema, então temos $A\mathbf{u}=\mathbf{0}$ e $A\mathbf{v}=\mathbf{0}$. Mas, então, vem

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

o que mostra que $\mathbf{u} + \mathbf{v}$ é solução do sistema.

b) Se \mathbf{u} é solução do sistema, tem-se $A\mathbf{u} = \mathbf{0}$. Então

$$A(\alpha \mathbf{u}) = \alpha(A\mathbf{u}) = \alpha \mathbf{0} = \mathbf{0}.$$

Logo, $\alpha \mathbf{u}$ é solução do sistema.

- c) Se o sistema tem uma solução não nula, então, multiplicando essa solução por qualquer $\alpha \in \mathbb{R}$ obtemos uma nova solução; existem assim infinitas soluções.
- Exercício 2.11 A invertível se e só se car A=n o que equivale a afirmar que o sistema é possível e determinado. Além disso, neste caso, a solução do sistema é $\mathbf{x}=A^{-1}\mathbf{b}$; com efeito, $A(A^{-1}\mathbf{b})=(AA^{-1})\mathbf{b}=I_n\mathbf{b}=\mathbf{b}$.
- Exercício 2.12 Vamos primeiramente mostrar que a condição $AX = I_n$ garante que car X = n, o que, como sabemos, equivale a afirmar que X é invertível. Suponhamos que car X < n e vejamos que isto leva a uma contradição. Se car X < n, o sistema homogéneo cuja matriz simples é X será indeterminado, isto é, existirá $\mathbf{u} \in \mathbb{R}^{n \times 1}$, $\mathbf{u} \neq \mathbf{0}$ tal que $X\mathbf{u} = \mathbf{0}$. Mas, então, ter-se-á

$$\mathbf{u} = I_n \mathbf{u} = (AX)\mathbf{u} = A(X\mathbf{u}) = A\mathbf{0} = \mathbf{0}$$

o que contradiz o facto de ser $\mathbf{u} \neq \mathbf{0}$.

Uma vez que existe X^{-1} , tem-se

$$AX = I_n \Rightarrow (AX)X^{-1} = I_nX^{-1} \Rightarrow A(XX^{-1}) = X^{-1} \Rightarrow AI_n = X^{-1} \Rightarrow A = X^{-1}$$

Mas

$$A = X^{-1} \Rightarrow XA = XX^{-1} = I_n$$

Como $AX=I_n$ e $XA=I_n$, concluímos que A é invertível e que $X=A^{-1}$.

Exercício 2.14 A matriz $X=\left(egin{array}{cc} C & D \\ E & F \end{array} \right)$ será a inversa de A se e só se $BX=I_{m+n}$ ou seja se e só se

$$\left(\begin{array}{cc} I_n & \mathbf{0}_{n\times m} \\ A & I_m \end{array}\right) \left(\begin{array}{cc} C & D \\ E & F \end{array}\right) = \left(\begin{array}{cc} I_n & \mathbf{0}_{n\times m} \\ \mathbf{0}_{m\times n} & I_m \end{array}\right).$$

Mas

$$\left(\begin{array}{cc} I_n & \mathbf{0}_{n\times m} \\ A & I_m \end{array}\right) \left(\begin{array}{cc} C & D \\ E & F \end{array}\right) = \left(\begin{array}{cc} C & D \\ AC + E & AD + F \end{array}\right).$$

Assim, temos que $X=\left(egin{array}{cc} C & D \\ E & F \end{array} \right)$ será a inversa de A se e só se se e só se

$$\begin{cases} C = I_n \\ D = \mathbf{0}_{n \times m} \\ AC + E = \mathbf{0}_{m \times n} \\ AD + F = I_m \end{cases} \iff \begin{cases} C = I_n \\ D = \mathbf{0}_{n \times m} \\ E = -A \\ F = I_m \end{cases}$$

Logo, a inversa de B é a matriz

$$\left(\begin{array}{cc} I_n & \mathbf{0}_{n \times m} \\ -A & I_m \end{array}\right).$$

Exercício 2.16 O sistema pode ser reescrito como

$$\begin{cases} (n-1)x_1 - x_2 - x_3 - \dots - x_n = 0 \\ -x_1 + (n-1)x_2 - x_3 - \dots - x_n = 0 \\ \vdots \\ -x_1 - x_2 + \dots - x_{n_1} + (n-1)x_n = 0 \end{cases}$$

o que mostra que é um sistema homogéneo, logo sempre possível. Se considerarmos a matriz simples deste sistema e somarmos as linhas $1, \ldots, n-1$ à linha n vemos que se obtém

$$\begin{pmatrix} (n-1) & -1 & \dots & -1 & -1 \\ -1 & (n-1) & \dots & -1 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \dots & (n-1) & -1 \\ -1 & -1 & \dots & -1 & (n-1) \end{pmatrix} \rightarrow \begin{pmatrix} (n-1) & -1 & \dots & -1 & -1 \\ -1 & (n-1) & \dots & -1 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \dots & (n-1) & -1 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$

o que mostra que a característica da matriz do sistema é inferior a n, logo, o sistema é indeterminado.

Para ver que qualquer n-uplo da forma $(\alpha, \alpha, \dots, \alpha)$ é uma solução do sistema basta multiplicar a matriz

do sistema pela matriz coluna
$$\begin{pmatrix} \alpha \\ \alpha \\ \vdots \\ \alpha \end{pmatrix}$$
:

$$\begin{pmatrix} (n-1) & -1 & \dots & -1 & -1 \\ -1 & (n-1) & \dots & -1 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \dots & (n-1) & -1 \\ -1 & -1 & \dots & -1 & (n-1) \end{pmatrix} \begin{pmatrix} \alpha \\ \alpha \\ \vdots \\ \alpha \\ \alpha \end{pmatrix} = \begin{pmatrix} (n-1)\alpha - \alpha - \dots - \alpha \\ -\alpha + (n-1)\alpha - \alpha - \dots - \alpha \\ \vdots \\ -\alpha - \alpha - \dots + (n-1)\alpha - \alpha \\ -\alpha - \alpha - \dots - \alpha + (n-1)\alpha \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}.$$

Determinantes

Exercício 3.9 a)

$$\begin{vmatrix} 1 & x_1 & x_2 \\ 1 & y_1 & x_2 \\ 1 & y_1 & y_2 \end{vmatrix} = \begin{vmatrix} 1 & x_1 & x_2 \\ 0 & y_1 - x_1 & 0 \\ 0 & 0 & y_2 - x_2 \end{vmatrix} = (y_1 - x_1)(y_2 - x_2)$$

Exercício 3.10 Temos

$$\begin{vmatrix} x_1 & a & a & \dots & a & a \\ a & x_2 & a & \dots & a & a \\ a & a & x_3 & \dots & a & a \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ a & a & a & \dots & x_{n-1} & a \\ a & a & a & \dots & a & a \end{vmatrix} = \begin{vmatrix} x_1 - a & 0 & 0 & \dots & 0 & 0 \\ 0 & x_2 - a & 0 & \dots & 0 & 0 \\ 0 & 0 & x_3 - a & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x_{n-1} - a & 0 \\ a & a & a & \dots & a & a \end{vmatrix}$$

$$= a(x_1-a)(x_2-a)\dots(x_{n-1}-a)$$

Justificações:

- ① Subtraindo às linhas $1, 2, \ldots, n-1$, a linha n
- 2 determinante de uma matriz triangular

Então, sendo $a \neq 0$, tem-se

$$\det \begin{pmatrix} x_1 & a & a & \dots & a & a \\ a & x_2 & a & \dots & a & a \\ a & a & x_3 & \dots & a & a \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ a & a & a & \dots & x_{n-1} & a \\ a & a & a & \dots & a & a \end{pmatrix} = 0 \iff a(x_1 - a)(x_2 - a)\dots(x_{n-1} - a) = 0$$

$$\iff x_1 = a \lor x_2 = a \lor \dots \lor x_{n-1} = a.$$

Exercício 3.18 a) Para i=k, trata-se simplesmente da aplicação do Teorema de Laplace ao longo da linha i da matriz A, isto é, como sabemos

$$a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = (-1)^{i+1}a_{i1}M_{i1} + (-1)^{i+2}a_{i2}M_{i2} + \dots + (-1)^{i+n}a_{in}M_{in} = \det A.$$

Se $i \neq k$, novamente pelo Teorema de Laplace, a expressão dada é igual ao determinante da matriz que se obtém da matriz A substituindo a sua linha k pela linha i; como esta matriz tem duas linhas iguais, este determinante é nulo. Então, tem-se

$$A \operatorname{adj} A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} A_{11} & \dots & A_{k1} & \dots A_{n1} \\ A_{12} & \dots & A_{k2} & \dots A_{n2} \\ \vdots & & \vdots & \vdots \\ A_{1n} & \dots & A_{kn} & \dots A_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} \det A & 0 & \dots & 0 \\ 0 & \det A & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \det A \end{pmatrix} = \det AI_n.$$

b) Se A for invertivel, temos det $A \neq 0$, e, do resultado anterior segue-se que

$$A\frac{1}{\det A}\operatorname{adj} A=I_n,$$

o que mostra que $A^{-1} = \frac{1}{\det A} \operatorname{adj} A$.

c) Se A for não invertível, ter-se-á det A=0. Como A adj $A=\det AI_n$, vem

$$A \operatorname{\mathsf{adj}} A = \mathsf{O} I_n = \mathbf{O}_{n \times n}.$$

Exercício 3.21 a) Verdadeira, porque det $M^2 = \det(MM) = \det M \det M = (\det M)^2$.

- b) Falsa; um contra-exemplo é dado pelas matrizes $A=\begin{pmatrix}1&2\\2&1\end{pmatrix}$ e $B=\begin{pmatrix}1&0\\0&0\end{pmatrix}$. (Note-se que A e B não comutam, pelo que $(A+B)^2=A^2+AB+BA+B^2\neq A^2+2AB+B^2$.)
- c) Falsa; se A é uma matriz ortogonal então $AA^T=I$, logo $\det(AA^T)=1$, isto é, $\det A \det(A^T)=1$, ou seja $(\det A)^2=1$ (pois $\det A=\det(A^T)$). Conclui-se então que $(\det A)^2=1$, donde $\det A=\pm 1$. Um exemplo de uma matriz ortogonal cujo determinante é igual a -1 é a matriz $A=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

d) Falsa;
$$\det(A^{-1}B^2) + \det(2A^TB) = \det(A^{-1})\det(B^2) + \det(2A^T)\det B$$

= $\frac{1}{\det A}(\det B)^2 + 2^3\det(A^T)\det B = \frac{1}{\det A}(\det B)^2 + 8\det(A)\det B = 0.$

e) Verdadeira.

$$\det(A-nI_n) = \begin{vmatrix} 1-n & 1 & 1 & \dots & 1 & 1 \\ 1 & 1-n & 1 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 1-n & 1 \\ 1 & 1 & 1 & \dots & 1-n & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 1-n & 1 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 1-n & 1 \\ 1 & 1 & 1 & \dots & 1-n & 1 \end{vmatrix} = 0.$$

Exercício 3.24

a) Falsa. Se $A^T = -A^2$, então

$$\det(A^T) = \det(-A^2) \Leftrightarrow \det A = (-1)^n (\det A)^2 \Leftrightarrow \det A = 0 \text{ ou } \det A = (-1)^n.$$

Logo, se A é não singular, det $A=\pm 1$, dependendo da ordem n de A ser par ou impar.

b) Verdadeira.

$$= \alpha \begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & n-2 & 0 \\ 0 & 0 & 0 & \dots & 0 & n-1 \end{vmatrix}$$

$$= \alpha \times 1 \times 1 \times \cdots \times (n-2) \times (n-1) = \alpha(n-1)!$$

c) Verdadeira, porque $\det(\operatorname{adj} A) = (\det A)^{n-1} = (-1)^5 = -1$ (ver Exercício 3.19).

Exercício 3.26

a) Como A é simétrica, então $A = A^T$. Logo,

$$\operatorname{adj} A = (\det A)A^{-1} = (\det A)(A^T)^{-1} = (\det A)(A^{-1})^T = (\det A)A^{-1})^T = (\operatorname{adj} A)^T,$$

o que mostra que a matriz adj A também é simétrica.

b) $\det A_{\alpha} = -1 \neq 0$, logo a matriz é invertível.

$$A_{\alpha}^{-1} = \begin{pmatrix} 0 & 0 & -1 & 1\\ 0 & 1 & \alpha & -\alpha\\ -1 & \alpha & -1 + \alpha^2 & 1 - \alpha^2\\ 1 & -\alpha & 1 - \alpha^2 & \alpha^2 \end{pmatrix}.$$

A solução pode ser obtida calculando $A_{\alpha}^{-1}\mathbf{b}$. Como $\mathbf{b}=\mathbf{e}_3$, a solução é terceira coluna da matriz A_{α}^{-1} ou seja, é

$$\mathbf{x} = \begin{pmatrix} -1 \\ \alpha \\ -1 + \alpha^2 \\ 1 - \alpha^2 \end{pmatrix}.$$

Espaços vetoriais

Exercício 4.10 a) Comecemos por mostrar que $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle \subseteq \langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$.

Seja \mathbf{v} um elemento arbitrário de $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$ e mostremos que ele pertence também a $\langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$. Por definição de espaço gerado por um conjunto de vetores, dizer que $\mathbf{v} \in \langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$ significa dizer que \mathbf{v} é uma combinação linear dos vetores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, ou seja, que existem escalares $\alpha_1, \alpha_2, \dots, \alpha_n$ tais que $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$. Mas, como $\alpha \neq 0$, tem-se

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

$$= \alpha_1 (\frac{1}{\alpha} \alpha) \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

$$= (\alpha_1 \frac{1}{\alpha}) \alpha \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n,$$

o que mostra que \mathbf{v} é uma combinação linear dos vetores $\alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, ou seja, pertence a $\langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$, como queríamos mostrar.

Mostremos agora que $\langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle \subseteq \langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$, ou seja, mostremos que todo o elemento de $\langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$ pertence a $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$.

Seja \mathbf{u} um elemento qualquer de $\langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$. Isto significa que \mathbf{u} é um vetor da forma $\mathbf{u} = \beta_1(\alpha \mathbf{v}_1) + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n$, com $\beta_1, \beta_2, \dots, \beta_n \in \mathbb{R}$. Temos, então

$$\mathbf{u} = \beta_1(\alpha \mathbf{v}_1) + \beta_2 \mathbf{v} - 2 + \dots + \beta_n \mathbf{v}_n$$

= $(\beta_1 \alpha) \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n$,

o que significa que $\mathbf{u} \in \langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$.

Como $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle \subseteq \langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$ e $\langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle \subseteq \langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$, concluímos que $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = \langle \alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle$.

Exercício 4.13 a) Vamos demonstrar apenas a afirmação relativa à independência linear.

Temos

$$\alpha_{1}(\alpha \mathbf{v}_{1}) + \alpha_{2} \mathbf{v}_{2} + \dots + \alpha_{n} \mathbf{v}_{n} = \mathbf{0} \underset{@}{\Rightarrow} (\alpha_{1} \alpha) \mathbf{v}_{1} + \alpha_{2} \mathbf{v}_{2} + \dots + \alpha_{n} \mathbf{v}_{n} = \mathbf{0}$$

$$\underset{@}{\Rightarrow} \alpha_{1} \alpha = 0 \land \alpha_{2} = 0 \land \dots \land \alpha_{n} = 0$$

$$\underset{@}{\Rightarrow} \alpha_{1} = 0 \land \alpha_{2} = 0 \land \dots \land \alpha_{n} = 0,$$

o que mostra que os vetores $\alpha \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ são linearmente independentes, tal como queríamos provar.

Justificações:

- ① Uma das propriedades que define um espaço vetorial.
- ${f 2}$ Por hipótese, os vetores ${f v}_1,{f v}_2,\ldots,{f v}_n$ são linearmente independentes.
- $\alpha \neq 0.$

Exercício 4.17 a) Uma vez que $\mathbf{v}_1, \dots, \mathbf{v}_n$ são, por hipótese, geradores de V, para mostrar que formam uma base de V apenas teremos de mostrar que são vetores linearmente independentes.

Comecemos por estabelecer o resultado para o caso em que n=1. Sendo $V=\langle \mathbf{v_1} \rangle$ e dim V=1, é imediato concluir que $\mathbf{v_1} \neq 0$ (pois caso contrário, seria $V=\{0\}$ e ter-se-ia, dim V=0), ou seja, que $\mathbf{v_1}$ é linearmente independente.

Consideremos agora o caso em que n>1 e mostremos que $\mathbf{v}_1,\ldots,\mathbf{v}_n$ não podem ser linearmente dependentes. Suponhamos que $\mathbf{v}_1,\ldots,\mathbf{v}_n$ são linearmente dependentes. Isto significa que um deles é combinação linear dos restantes; suponhamos, por exemplo, que \mathbf{v}_n é combinação linear de $\mathbf{v}_1,\ldots,\mathbf{v}_{n-1}$ (a demonstração nos outros casos seria análoga). Isso implica que

$$V = \langle \mathbf{v}_1 \dots, \mathbf{v}_{n-1}, \mathbf{v}_n \rangle = \langle \mathbf{v}_1, \dots, \mathbf{v}_{n-1} \rangle.$$

Mas, uma vez que dim V=n, tal será impossível, já que, como sabemos, um espaço de dimensão n não pode ser gerado por um conjunto de vetores com menos de n elementos.

- b) Neste caso, uma vez que, por hipótese, $\mathbf{v}_1, \dots, \mathbf{v}_n$ são linearmente independentes, para mostrar que formam uma base de V, apenas teremos de mostrar que geram V. Se $\mathbf{v}_1, \dots, \mathbf{v}_n$ não gerassem V, existiria um vetor $\mathbf{v} \in V$ que não seria combinação linear dos vetores $\mathbf{v}_1, \dots, \mathbf{v}_n$. Mas, nesse caso, como sabemos, os n+1 vetores $\mathbf{v}_1, \dots, \mathbf{v}_n, \mathbf{v}$ seriam vetores linearmente independentes; como dim V=n, tal é impossível (num espaço de dimensão n, qualquer conjunto com mais do que n vetores é formado por vetores linearmente dependentes).
- Exercício 4.18 Sendo $(\mathbf{v}_1,\ldots,\mathbf{v}_n)$ uma base de $V,\,\mathbf{v}_1,\ldots,\mathbf{v}_n$ geram V, portanto qualquer vetor $\mathbf{v}\in V$ se escreve como combinação linear desses vetores. O que teremos apenas de demonstrar é a unicidade dessa combinação linear. Suponhamos, então, que $\mathbf{v}=\alpha_1\mathbf{v}_1+\cdots+\alpha_n\mathbf{v}_n$ e $\mathbf{v}=\beta_1\mathbf{v}_1+\cdots+\beta_n\mathbf{v}_n$ para certos escalares $\alpha_i,\beta_i;i=1,\ldots,n$. Pretendemos mostrar que $\alpha_i=\beta_i;i=1,\ldots,n$. Mas, temos (justifique as passagens!)

$$\mathbf{v} = \alpha_{1}\mathbf{v}_{1} + \dots + \alpha_{n}\mathbf{v}_{n}$$

$$\mathbf{v} = \beta_{1}\mathbf{v}_{1} + \dots + \beta_{n}\mathbf{v}_{n}$$

$$\Rightarrow (\alpha_{1} - \beta_{1})\mathbf{v}_{1} + \dots + (\alpha_{n} - \beta_{n})\mathbf{v}_{n} = \mathbf{0}$$

$$\Rightarrow \alpha_{1} - \beta_{1} = \mathbf{0} \wedge \dots \wedge \alpha_{n} - \beta_{n} = \mathbf{0}$$

$$\Rightarrow \alpha_{1} = \beta_{1} \wedge \dots \wedge \alpha_{n} = \beta_{n},$$

tal como queríamos mostrar.

Exercício 4.28

$$\langle (2,0,1) \rangle = \{ (2\alpha,0,\alpha) : \alpha \in \mathbb{R} \} = \{ (x,y,z) : x = 2\alpha, y = 0, z = \alpha, \alpha \in \mathbb{R} \}.$$

Mas,

$$\begin{cases} x = 2\alpha \\ y = 0 \\ z = \alpha \end{cases} \Leftrightarrow \begin{cases} x - 2\alpha = 0 \\ y = 0 \\ z - \alpha = 0 \end{cases}$$

Assim, é fácil de ver que, uma possível matriz A que tenha como espaço nulo o conjunto indicado será a matriz

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Exercício 4.29 Se $(1,0,0) \in \mathcal{N}(A)$, teremos que $A \underbrace{\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}_{0} = \mathbf{0}$, onde $\mathbf{0}$ representa o vetor nulo (com tantas

entradas quantas as linhas de A). Isso significa que a primeira coluna de A é nula, pelo que todas as linhas de A terão a primeira componente nula. Mas, tal implica que (1,1,1) não poderá pertencer ao espaço das linhas de A. Logo, não existe nenhuma matriz satisfazendo as duas condições indicadas.

Transformações lineares

Exercício 5.3 a) Para f ser linear, teremos de ter f(0,0,0)=(0,0), ou seja, terá de ser (k,k)=(0,0), o que significa que terá de ser k=0. Vemos, assim, que é **necessário** que k=0, para que f seja linear. Vejamos agora que, sendo k=0, temos que f é linear. Para k=0, a aplicação f é definida por f(x,y,z)=(x,z). Temos, então, para quaisquer $(x,y,z),(x,y',z')\in\mathbb{R}^3$:

$$f((x,y,z) + (x',y',z')) = f(x+x',y+y',z+z') = (x+x',z+z')$$
$$= (x,z) + (x',z') = f(x,y,z) + f(x',y',z').$$

Temos também, para qualquer $(x, y, z) \in \mathbb{R}^3$ e qualquer $\alpha \in \mathbb{R}$:

$$f(\alpha(x,y,z)) = f(\alpha x, \alpha y, \alpha z) = (\alpha x, \alpha z) = \alpha(x,z) = \alpha f(x,y,z).$$

Logo, para $k=\mathbf{0}$ a aplicação é, de facto, linear.

b)

Tem-se

Nuc
$$f = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = (0, 0)\}$$

= $\{(x, y, z) \in \mathbb{R}^3 : (x, z) = (0, 0)\}$
= $\{(0, y, 0) : y \in \mathbb{R}\}.$

Então, temos que Nuc $f = \langle (0,1,0) \rangle$, sendo ((0,1,0)) uma sua base.

Exercício 5.8 a) Sejam $\mathbf{u}_1=(1,1)$ e $\mathbf{u}_2=(-1,1)$. Como nenhum dos vetores é um múltiplo do outro, os vetores são linearmente independentes. Como são dois vetores linearmente independentes em \mathbb{R}^2 , formam uma base desse espaço. Temos

$$(1,0) = \alpha_1(1,1) + \alpha_2(-1,1) \iff (1,0) = (\alpha_1 - \alpha_2, \alpha_1 + \alpha_2)$$

$$\iff \begin{cases} \alpha_1 - \alpha_2 = 1 \\ \alpha_1 + \alpha_2 = 0 \end{cases}$$

$$\iff \alpha_1 = \frac{1}{2} \wedge \alpha_2 = -\frac{1}{2}$$

e

$$(0,1) = \beta_1(1,1) + \beta_2(-1,1) \iff (0,1) = (\beta_1 - \beta_2, \beta_1 + \beta_2)$$

$$\iff \begin{cases} \beta_1 - \beta_2 = 0 \\ \beta_1 + \beta_2 = 1 \end{cases}$$

$$\iff \beta_1 = \frac{1}{2} \wedge \beta_2 = \frac{1}{2}.$$

Logo, as coordenadas de e_1 na base $(\mathbf{u_1}, \mathbf{u_2})$ são $(\frac{1}{2}, -\frac{1}{2})$ e as coordenadas de e_2 nessa mesma base são $(\frac{1}{2}, \frac{1}{2})$.

b) (i)

$$T(1,0) = T\left(\frac{1}{2}(1,1) - \frac{1}{2}(-1,1)\right)$$

$$= \frac{1}{2}T(1,1) - \frac{1}{2}T(-1,1)$$

$$= \frac{1}{2}(1,2,1) - \frac{1}{2}(-1,0,3)$$

$$= (1,1,-1)$$

е

$$T(0,1) = T\left(\frac{1}{2}(1,1) + \frac{1}{2}(-1,1)\right)$$

$$= \frac{1}{2}T(1,1) + \frac{1}{2}T(-1,1)$$

$$= \frac{1}{2}(1,2,1) + \frac{1}{2}(-1,0,3)$$

$$= (0,1,2)$$

Portanto,

$$\mathcal{M}_T = egin{pmatrix} 1 & 0 \ 1 & 1 \ -1 & 2 \end{pmatrix}.$$

(ii) Como

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ x+y \\ -x+2y \end{pmatrix}$$

temos que

$$T(x,y) = (x, x + y, -x + 2y).$$

(iii) T não é sobrejetiva, uma vez que a dimensão do espaço de partida é inferior à dimensão do espaço de chegada. Por outro lado, convertendo \mathcal{M}_T na forma em escada, tem-se

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Assim, temos que car $\mathcal{M}_T=2$, pelo que dim Nuc $T=2-\operatorname{car}\mathcal{M}_T=2-2=0$. Como dim Nuc T=0, T é injetiva.

Valores e vetores próprios

Exercício 6.8 a) Temos

$$(\alpha A) \mathbf{x} = \alpha (A\mathbf{x}) = \alpha (\lambda \mathbf{x}) = (\alpha \lambda) \mathbf{x},$$

o que mostra que o vetor \mathbf{x} é um vetor próprio da matriz αA associado ao valor próprio $\alpha \lambda$.

Exercício 6.12 Seja λ uma valor próprio de A. Isto significa que, existe um vetor $\mathbf{x} \neq \mathbf{0}$ tal que $A\mathbf{x} = \lambda \mathbf{x}$. Mas,

$$A\mathbf{x} = \lambda \mathbf{x} \Rightarrow A(A\mathbf{x}) = A(\lambda \mathbf{x})$$

$$\Rightarrow A^2 \mathbf{x} = \lambda(A\mathbf{x})$$

$$\Rightarrow A\mathbf{x} = \lambda(\lambda \mathbf{x})$$

$$\Rightarrow \lambda \mathbf{x} = \lambda^2 \mathbf{x}$$

$$\Rightarrow (\lambda - \lambda^2) \mathbf{x} = \mathbf{0}$$

$$\Rightarrow (\lambda - \lambda^2) = \mathbf{0}$$

$$\Rightarrow \lambda = \mathbf{0} \lor \lambda = \mathbf{1}.$$

A matriz $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ é idempotente e os seus valores próprios são 0 e 1.

Exercício 6.13 Se a matriz A tem $\mathbf{u}=(1,2,1,3)$ como vetor próprio associado ao valor próprio 2 e $\mathbf{v}=(-1,2,2,1)$ como vetor próprio associado ao valor próprio -3, então a matriz A^2 tem \mathbf{u} como vetor próprio associado ao valor próprio 4 e \mathbf{v} como vetor próprio associado ao valor próprio 9. Por outro lado, é fácil de verificar que o vetor $\mathbf{w}=(3,2,0,5)$ é uma combinação linear dos vetores \mathbf{u} e \mathbf{v} ; mais precisamente, tem-se

$$\mathbf{w} = (3, 2, 0, 5) = 2(1, 2, 1, 3) - (-1, 2, 2, 1) = 2\mathbf{u} - \mathbf{v}.$$

Então, vem

$$A^{2}\mathbf{w} = A^{2}(2\mathbf{u} - \mathbf{v}) = 2 A^{2}\mathbf{u} - A^{2}\mathbf{v}$$

$$= 2(4\mathbf{u}) - 9\mathbf{v} = 8\mathbf{u} - 9\mathbf{v}$$

$$= 8(1, 2, 1, 3) - 9(-1, 2, 2, 1) = (17, -2, -10, 15).$$

Provas de avaliação

1º Teste [MIEINF 2015/2016]

Nas questões 1 a 3, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

Questão 1 Considere a matriz

$$A = \left(\begin{array}{rrr} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{array}\right).$$

V F

a)
$$car A = 1$$
.

b)
$$A^2 = \mathbf{0}_{3\times 3}$$
.

$$c)$$
 A é uma matriz invertível.

d)
$$A$$
 é equivalente por linhas à matriz $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

0 0

Questão 2 Considere as matrizes

$$A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 5 & 4 & 3 \\ 1 & 2 & 1 & 0 \\ 2 & 4 & 3 & 4 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} -6 & -2 & 5 & 3 \\ 5 & 1 & -3 & -2 \\ -4 & 0 & 2 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix}.$$

/ F

a)
$$A = B^{-1}$$
.

b)
$$\det B = 1$$
.

c)
$$A$$
 é equivalente por linhas a I_4 .

d) O sistema
$$B\mathbf{x} = \mathbf{0}$$
 tem apenas a solução nula.

0 0

Questão 3 Considere a matriz

$$A_k = \left(\begin{array}{ccc} -1 & 2 & 5 \\ 2 & -4 & k-7 \\ 1 & -1 & k-2 \end{array} \right),$$

 $\text{com } k \in \mathbb{R}.$

a) Se
$$k \neq -3$$
, então $car(A_k) = 3$.

b)
$$\det A_0 > 0$$
.

c) O complemento algébrico do elemento na posição
$$(1,2)$$
 da matriz A_0 é -3 .

d) O elemento na linha 2, coluna 1 da matriz
$$A_0^{-1}$$
 é igual a $-\frac{1}{3}$.

$$\mathcal{O}$$

Questão 4 Para cada uma das alíneas seguintes, diga, justificando, se a afirmação é verdadeira ou falsa.

- a) Se A é uma matriz 4×4 tal que $\det(A^3) = -\frac{1}{8}$, então $\det(2A^T) + \det(A^{-1}) = -3$.
- b) Um sistema com menos equações do que incógnitas é possível e indeterminado.
- c) Se A é uma matriz de ordem 4 tal que $(A + I_4)^2 = \mathbf{0}_{4\times 4}$, então A é invertível.
- d) Se A e B são matrizes de ordem 5 tais que $A\mathbf{x} \neq B\mathbf{x}$, para toda a matriz não nula $\mathbf{x} \in \mathbb{R}^{5\times 1}$, então $\operatorname{car}(A-B)=5$.

Questão 5 Considere, para $lpha,eta\in\mathbb{R}$, a matriz $M_{lpha,eta}=\left(egin{array}{cccc}1&1&1&3\\-1&0&2&-2eta\\1&-1&lpha&eta\end{array}
ight).$

- a) Escreva o sistema, nas incógnitas x, y e z, cuja matriz ampliada é $M_{\alpha,\beta}$.
- b) Discuta esse sistema, em função dos parâmetros α e β .
- c) Indique a solução do sistema para $\alpha = \beta = 0$.
- d) Justifique que a matriz

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 1 & -1 & 1 \end{array}\right)$$

é invertível e calcule A^{-1} .

Questão 6 Seja A uma matriz quadrada de ordem n e sejam B e C matrizes de ordens $n \times m$ e $m \times n$, respetivamente, com m < n.

- a) Justifique que o sistema homogéneo $C\mathbf{x} = \mathbf{0}$ é indeterminado.
- b) Mostre que se $A=B\,C$, então A não é invertível.
- c) Diga, justificando, se existem matrizes X e Y de ordens 3×2 e 2×3 , respetivamente, tais que $XY = I_3$.

1º Teste [MIEINF 2015/2016] :: resolução

Questão 1

a)
$$\begin{pmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 5 & -3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow car(A) = 1$$
. A afirmação é **verdadeira**.

b)
$$A^2 = \begin{pmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{pmatrix} \begin{pmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{0}_{3\times3}$$
. A afirmação é **verdadeira**.

c) Como car(A) < 3, A não é invertível. A afirmação é **falsa**.

$$d) \quad \left(\begin{array}{ccc} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 5 & -3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & -3/5 & 2/5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

A matriz com forma em escada reduzida equivalente por linhas a A é a matriz

$$A' = \left(\begin{array}{ccc} 1 & -3/5 & 2/5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Por sua vez, a matriz $A''=\begin{pmatrix}1&0&0\\0&0&0\\0&0&0\end{pmatrix}$ já está na forma em escada reduzida. Com $A'\neq A''$, A não é equivalente por linhas à matriz A''. A afirmação é **falsa**.

Questão 2 a) Como

$$AB = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 5 & 4 & 3 \\ 1 & 2 & 1 & 0 \\ 2 & 4 & 3 & 4 \end{pmatrix} \begin{pmatrix} -6 & -2 & 5 & 3 \\ 5 & 1 & -3 & -2 \\ -4 & 0 & 2 & 1 \\ 1 & 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I_4$$

concluímos que $A=B^{-1}$ (e $B=A^{-1}$). A afirmação é **verdadeira**.

b)

$$|B| = \begin{vmatrix} -6 & -2 & 5 & 3 \\ 5 & 1 & -3 & -2 \\ -4 & 0 & 2 & 1 \\ 1 & 0 & -1 & 0 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & -1 & 0 \\ 5 & 1 & -3 & -2 \\ -4 & 0 & 2 & 1 \\ -6 & -2 & 5 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & -2 & 1 \\ 0 & -2 & -1 & 3 \end{vmatrix}$$
$$= -(-1)^{1+1} \times 1 \times \begin{vmatrix} 1 & 2 & -2 \\ 0 & -2 & 1 \\ -2 & -1 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -2 \\ 0 & -2 & 1 \\ 0 & 3 & -1 \end{vmatrix}$$
$$= -(-1)^{1+1} \times 1 \times \begin{vmatrix} -2 & 1 \\ 3 & -1 \end{vmatrix} = -(2-3) = 1$$

ou

$$|A| = \begin{vmatrix} 1 & 2 & 1 & 1 \\ 2 & 5 & 4 & 3 \\ 1 & 2 & 1 & 0 \\ 2 & 4 & 3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 \end{vmatrix} = - (1 \times 1 \times 1 \times (-1)) = 1.$$

Logo $\det B = \frac{1}{\det A} = 1$. A afirmação é **verdadeira**.

- c) Como A é uma matriz de ordem 4, invertível, então A é equivalente por linhas a I_4 . A afirmação é **verdadeira**.
- d) Como B é invertível, o sistema $B\mathbf{x} = \mathbf{0}$ é determinado, ou seja, tem apenas a solução nula. A afirmação é **verdadeira**.

Logo, se $k \neq -3$, temos $k+3 \neq 0$ e car $A_k = 3$. A afirmação é **verdadeira**.

b) Atendendo às operações que fizemos para converter A_k na forma triangular (que incluiu uma troca de linhas) e considerando k=0, tem-se

$$|A_0| = - \begin{vmatrix} -1 & 2 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{vmatrix} = -(-3) = 3 > 0.$$

A afirmação é verdadeira.

- c) $(A_0)_{12} = (-1)^{1+2} \det M_{12} = (-1) \times \begin{vmatrix} 2 & -7 \\ 1 & -2 \end{vmatrix} = -(-4+7) = -3$. A afirmação é **verdadeira**.
- d) O elemento na linha 2, coluna 1 da matriz A_0^{-1} é igual a $\frac{1}{\det A_0}(A_0)_{12}=\frac{1}{3}\times(-3)=-1\neq-\frac{1}{3}$. A afirmação é **falsa**.

Questão 4 a)
$$\det(A^3) = -\frac{1}{8} \Rightarrow (\det A)^3 = -\frac{1}{8} \Rightarrow \det A = -\frac{1}{2}$$
. Então
$$\det(2A^T) + \det(A^{-1}) = 2^4 \det(A^T) + \det(A^{-1}) = 16 \det A + \frac{1}{\det A} = -8 - 2 = -10 \neq -3.$$

A afirmação é falsa.

b) A afirmação é falsa, pois o sistema pode ser impossível. Por exemplo, o sistema

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 + x_2 + x_3 = 2 \end{cases}$$

tem menos equações do que incógnitas e é impossível.

c)

$$(A + I_4)^2 = \mathbf{0}_{4 \times 4} \iff (A + I_4)(A + I_4) = \mathbf{0}_{4 \times 4}$$

$$\iff A^2 + A + A + I_4 = \mathbf{0}_{4 \times 4}$$

$$\iff A^2 + 2A + I_4 = \mathbf{0}_{4 \times 4}$$

$$\iff -A^2 - 2A = I_4 \iff A(-A - 2I_4) = I_4$$

Logo, A é invertível e $A^{-1}=(-A-2I_4)=-(A+2I_4)$. A afirmação é, portanto, **verdadeira**. 1

d) Se A e B são matrizes de ordem 5 tais que $A\mathbf{x} \neq B\mathbf{x}$, para toda a matriz não nula $\mathbf{x} \in \mathbb{R}^{5\times 1}$, temos que $(A-B)\mathbf{x} \neq \mathbf{0}$ para para toda a matriz não nula $\mathbf{x} \in \mathbb{R}^{5\times 1}$; isto significa que, o sistema homogéneo cuja matriz é A-B tem apenas a solução nula, isto é, é determinado; como A-B é uma matriz de ordem 5, terá de ser car(A-B)=5. Logo, a afirmação é **verdadeira**.²

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 \end{pmatrix}$$

¹De $(A + I_4)^2 = \mathbf{0}_{4 \times 4}$ não podemos concluir que terá de ser $(A + I_4) = \mathbf{0}_{4 \times 4}$. Na questão l-1. b) é dado um exemplo de uma matriz não nula cujo quadrado é a matriz nula!

 $^{^2}$ Raciocínio falacioso: argumentar que a condição dada implica que $A \neq B$ (o que é verdade), pelo que A-B não teria nenhuma linha nula (o que não é necessariamente verdade, pois duas matrizes diferentes podem ter algumas linhas iguais...) e que, portanto, car(A-B) teria de ser igual a 5; por exemplo, a seguinte matriz não tem nenhuma linha nula e a sua característica é igual a 1.

Questão 5 a)

$$\left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 3 \\ -1 & 0 & 2 & -2\beta \\ 1 & -1 & \alpha & \beta \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & -2\beta + 3 \\ 0 & -2 & \alpha - 1 & \beta - 3 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & -2\beta + 3 \\ 0 & 0 & \alpha + 5 & -3\beta + 3 \end{array}\right)$$

- Para $\alpha = -5$ e $\beta \neq 1$, tem-se car $A = 2 < \text{car}(A|b) = 3 \longrightarrow \text{SI}$
- Para $\alpha = -5$ e $\beta = 1$, tem-se car $A = 2 = \text{car}(A|b) = 2 < n = 3 \longrightarrow \text{SPI}$ (grau de indeterminação igual a 1)
- Para $\alpha \neq -5$, tem-se car $A = car(A|b) = n = 3 \longrightarrow SPD$
- b) Para $\alpha = \beta = 0$, tem-se a seguinte matriz em escada equivalente ao sistema dado:

$$\left(\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 1 & 3 & 3 \\
0 & 0 & 5 & 3
\end{array}\right)$$

Resolvendo o sistema correspondente a esta matriz ampliada por substituição inversa, obtém-se $x=\frac{6}{5},\ y=\frac{6}{5}$ e $z=\frac{3}{5}$.

c) A matriz A é a matriz simples do sistema para o caso $\alpha=1$; como vimos, essa matriz tem característica 3, igual à sua ordem, pelo que é invertível. Calculando a inversa (pelo método de Gauss-Jordan ou pelo método da matriz adjunta), obtém-se

$$A^{-1} = \left(\begin{array}{ccc} 1/3 & -1/3 & 1/3 \\ 1/2 & 0 & -1/2 \\ 1/6 & 1/3 & 1/6 \end{array}\right).$$

- Questão 6 a) Como $\operatorname{car}(C) \leq \min\{m,n\} = m < n$, tem-se que a característica de C é inferior ao número de incógnitas, pelo que o sistema $C\mathbf{x} = \mathbf{0}$ é possível (pois trata-se de um sistema homogéneo) e indeterminado.
 - b) Pela alínea anterior, sabemos que existe $\mathbf{u} \in \mathbb{R}^{n \times 1}, \mathbf{u} \neq \mathbf{0}$ tal que $C\mathbf{u} = \mathbf{0}$. Mas, então, vem

$$A\mathbf{u} = (BC)\mathbf{u} = B(C\mathbf{u}) = B\mathbf{0} = \mathbf{0}.$$

Tem-se, assim, que o sistema homogéno $A\mathbf{x} = \mathbf{0}$ é indeterminado, o que significa que $\operatorname{car}(A) < n$, ou seja, que A não é invertível.

c) De acordo com o resultado da alínea anterior, se X tem ordem 3×2 e Y tem ordem 2×3 , o seu produto XY não pode ser uma matriz invertível; como a matriz I_3 é invertível, conclui-se que não podem existir matrizes X e Y satisfazendo as condições indicadas.

1º Teste [MIECOM 2013/2014]

o produto de duas matrizes retangulares (neste caso de ordens
$$2 \times 3$$
 e 3×2) é a identidade: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

 $^{^3}$ Raciocínio falacioso: não existem matrizes X e Y nas condições indicadas porque, para que o produto XY seja I_3 , X e Y têm de ser invertíveis, o que não é possível por as matrizes não serem quadradas (logo, não terem inversa); no exemplo seguinte

Questão 1 Indique, justificando, se as seguintes afirmações são verdadeiras ou falsas.

- a) Seja A uma matriz de ordem 3×1 com todos os elementos iguais a 1 e I_3 a matriz identidade de ordem 3. A matriz $B = AA^T I_3$ tem diagonal nula.
- b) Sejam A e B matrizes simétricas da mesma ordem. A matriz AB+BA também é uma matriz simétrica.
- c) Se A é uma matriz de ordem 5×2 , então car $A \leq 2$.
- d) Se A é uma matriz de ordem 2×5 então o sistema Ax = 0 tem grau de indeterminação 3.
- e) Se $A = (a_{ij})$ é a matriz de ordem 3 tal que $a_{ij} = \min\{i, j\}$, então det A = 6.
- f) Se A e B são matrizes de ordem 4 tal que $\det(-A^TB^2) = 4$ e $\det(B^{-1}) = \frac{1}{2}$, então $\det A = -1$.

Questão 2 Considere o sistema

$$\begin{cases} 3x - y + 2z = \beta \\ 2x + 2y + \alpha z = 2 \\ x + y + z = -1 \end{cases}$$

nas incógnitas x, y, z.

- a) Escreva o sistema na forma matricial.
- b) Classifique o sistema, em função dos parâmetros α e β .
- c) Resolva o sistema que se obtém fazendo $\alpha=0$ e $\beta=1$.
- d) Seja A a matriz dos coeficientes do sistema que se obtém fazendo $\alpha=1$. Justifique que A é invertível e calcule A^{-1} , usando o método de Gauss-Jordan.

Questão 3 Seja A_n a matriz real de ordem $n \times n$, n > 1,

$$A_n = \begin{bmatrix} a_1 & 1 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & 1 & \cdots & 1 & 1 \\ a_1 & a_2 & a_3 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & 1 \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{bmatrix}.$$

- a) Determine uma matriz em forma de escada, equivalente, por linhas, à matriz A_n .
- b) Determine os valores de a_1, a_2 e a_3 para os quais a matriz A_3 é invertível e calcule, nestes casos, a última linha de A_3^{-1} , <u>usando determinantes</u>.
- c) Indique, justificando, se o seguinte sistema, nas incógnitas x, y e z, é um sistema de Cramer e, em caso afirmativo, apresente a sua solução.

$$\begin{cases}
-x + y + z = 1 \\
-x + 2y + z = 2 \\
-x + 2y + 3z = 3
\end{cases}$$

1º Teste [MIECOM 2013/2014] :: resolução

Questão 1

a) Verdadeira. Se
$$A=\left(\begin{array}{c}1\\1\\1\end{array}\right)$$
, então $B=\left(\begin{array}{ccc}0&1&1\\1&0&1\\1&1&0\end{array}\right)$.

- b) Verdadeira. Se A e B são matrizes simétricas, então $A = A^T$ e $B = B^T$. Como $(AB + BA)^T = (AB)^T + (BA)^T = B^TA^T + A^TB^T = BA + AB = AB + BA$, conclui-se que AB + BA também é uma matriz simétrica.
- c) Verdadeira. A característica de uma matriz de ordem $m \times n$ é sempre menor ou igual a m e a n.
- d) Falsa. O grau de indeterminação de um sistema cuja matriz dos coeficientes é de ordem $m \times n$ é n car(A). Como car $A \leq 2$, o grau de indeterminação do sistema é ≥ 3 . (pode ser 3, 4 ou 5).
- e) Falsa. $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{vmatrix} = 1.$
- f) Falsa. Se $det(B^{-1}) = \frac{1}{2}$, então det B = 2. Se $det(-A^T B^2) = 4$, então $(-1)^4 det(A^T) det(B^2) = 4$, ou seja $det A(det B)^2 = 4$, o que implica que det A = 1.

Questão 2

a)
$$\mathcal{M}_{lpha,eta}=\left(egin{array}{cccc}3&-1&2η\2&2&lpha&2\1&1&1&-1\end{array}
ight)$$

b)
$$\mathcal{M}_{\alpha,\beta} \longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & 1 & -1 \\ 0 & -4 & -1 & \beta+3 \\ 0 & 0 & \alpha-2 & 4 \end{array} \right)$$

Se $\alpha=2$, o sistema é impossível; se $\alpha\neq 2$, o sistema é possível e determinado.

c)
$$\begin{cases} x + y + z = -1 \\ -4y - z = 4 \\ -2z = 4 \end{cases} \iff \begin{cases} x = \frac{3}{2} \\ y = -\frac{1}{2} \\ z = -2 \end{cases}$$

d)
$$\det A = \left| \begin{array}{cccc} 3 & -1 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{array} \right| = 4 \neq 0$$
. Logo a matriz A é invertível. $A^{-1} = \left(\begin{array}{cccc} \frac{1}{4} & \frac{3}{4} & -\frac{5}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & -1 & 2 \end{array} \right)$.

Questão 3

a) Substituindo cada linha L_i por L_i-L_{i-1} ; $i=n,n-1,\dots 2$, obtém-se

$$\begin{bmatrix} a_1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & a_2 - 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_3 - 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} - 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & a_n - 1 \end{bmatrix}.$$

F

b)
$$\det A_3 = \left| \begin{array}{ccc} a_1 & 1 & 1 \\ 0 & a_2 - 1 & 0 \\ 0 & 0 & a_3 - 1 \end{array} \right| = a_1(a_2 - 1)(a_3 - 1)$$
. A matriz é invertível se $a_1 \neq 0$ e $a_2 \neq 1$ e

 $a_3 \neq 1$. Para obter a última linha de A_3^{-1} , basta calcular os elementos da última coluna da matriz adjunta de A_3 (e dividir por det A_3). Como $M_{13}=0$; $M_{23}=-a_1(a_2-1)$; $M_{3,3}=a_1(a_2-1)$, a última linha é:

$$0 - \frac{1}{a_3 - 1} \frac{1}{a_3 - 1}.$$

c) Como
$$\begin{vmatrix} -1 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 2 & 3 \end{vmatrix} = 2 \neq 0$$
, o sistema é de Cramer.

Solução:

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 3 \end{vmatrix} = -1; \qquad \begin{vmatrix} -1 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 3 & 3 \end{vmatrix} = -2; \qquad \begin{vmatrix} -1 & 1 & 1 \\ -1 & 2 & 2 \\ -1 & 2 & 3 \end{vmatrix} = -1.$$
$$x = -\frac{1}{2}; \qquad y = 1; \qquad z = \frac{1}{2}.$$

1º Teste [MIEBIO 2012/2013]

Nas questões 1 a 3, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

Questão 1 Considere as matrizes

$$A = \begin{pmatrix} 3 & 9 & 3 \\ -1 & 1 & 2 \\ 0 & 1 & 4 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

a)
$$\det A = 11$$
.

b)
$$A \in B$$
 comutam, i.e. $AB = BA$.

c)
$$det(AB) = - det A$$
.

d)
$$B$$
 é invertível.

Questão 2 Considere a matriz

$$A = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 3 & -1 & 3 & 1 \\ -2 & 2 & -2 & 1 \\ -2 & -2 & 4 & -4 \end{pmatrix}.$$

a)
$$\operatorname{car} A = 3$$
.

b)
$$\det A \neq 0$$
.

c) A matriz
$$A^2$$
 é invertível.

F

d) O vetor
$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
 é a única solução do sistema $A\mathbf{x} = \mathbf{b}$, onde $\mathbf{b} = \begin{pmatrix} 3\\6\\-1\\-4 \end{pmatrix}$.

Questão 3 Considere as matrizes

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{ e } \quad B = \begin{pmatrix} a+2c & b+2d \\ c & d \end{pmatrix},$$

com a, b, c, d números reais tais que ad - bc = 1.

a)
$$\det A = 1$$
.

b)
$$\operatorname{car} A = \operatorname{car} B$$
.

c) A matriz
$$B$$
 é invertível e $\det(B^{-1}) = \frac{1}{2}$.

d)
$$A$$
 é equivalente por linhas à matriz I_2 .

Questão 4 Considere, para
$$\alpha \in \mathbb{R}$$
, a matriz $A_{\alpha} = \begin{pmatrix} 1 & 3 & 1 \\ 1 & \alpha+1 & \alpha-1 \\ 2 & 8-\alpha & 3 \end{pmatrix}$ e o vetor $\mathbf{b}_{\alpha} = \begin{pmatrix} -1 \\ 2\alpha-5 \\ 2-\alpha \end{pmatrix}$.

- a) Discuta, em função do valor do parâmetro α , o sistema $A_{\alpha}\mathbf{x} = \mathbf{b}_{\alpha}$.
- b) Resolva o sistema $A_2\mathbf{x} = \mathbf{b}_2$.
- c) Justifique que a matriz A_3 é invertível e calcule a $1^{\underline{a}}$ coluna da sua inversa.

Questão 5 Considere as seguintes matrizes

$$A = \begin{pmatrix} 2 & 3 & 6 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix} \quad \text{e} \quad B = \begin{pmatrix} 1 & 4 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 2 & 4 & -3 & 2 \end{pmatrix}.$$

- a) Calcule $\det A$ e $\det B$.
- b) Considere o sistema $A\mathbf{x} = \mathbf{b}$, onde $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \end{pmatrix}^T$ e $\mathbf{b} = \begin{pmatrix} 2 & 2 & 3 & -6 \end{pmatrix}^T$. Determine o valor da incógnita x_3 , usando a regra de Cramer.

Questão 6 Uma matriz A, quadrada de ordem n, diz-se ortogonal se e só se verificar

$$AA^T = I_n$$
.

- a) Prove que o produto de duas matrizes ortogonais (da mesma ordem) é uma matriz ortogonal.
- b) Seja A uma matriz ortogonal. Indique para que valores $\alpha \in \mathbb{R}$ se tem αA ortogonal.

Questão 7 Seja A uma matriz quadrada de ordem n com todos os elementos iguais a 1.

a) Verifique que $A^2 = nA$.

b) Mostre que, se n>2, então a matriz $B=A-I_n$ é invertível, sendo

$$B^{-1} = \frac{1}{n-1}A - I_n.$$

c) Use o resultado da alínea anterior para calcular a inversa da matriz

$$C = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

1º Teste [MIEBIO 2012/2013] :: resolução

Questão 1

- a) Como os elementos da primeira linha de A são todos múltiplos de 3, então det A é um múltiplo de 3, pelo que não pode ser igual a 11; a afirmação é **falsa**.
- b) AB obtém-se a A trocando as colunas 1 e 2 e BA obtém-se de A trocando as linhas 1 e 2, ou seja $AB = \begin{pmatrix} 9 & 3 & 3 \\ 1 & -1 & 2 \\ 1 & 0 & 4 \end{pmatrix}$ e $BA = \begin{pmatrix} -1 & 1 & 2 \\ 3 & 9 & 3 \\ 0 & 1 & 4 \end{pmatrix}$, donde, temos $AB \neq BA$; a afirmação é **falsa**.
- c) A matriz B obtém-se da matriz identidade I_3 trocando duas linhas; logo, $\det B = -\det I_3 = -1$; como $\det(AB) = \det A \det B$, temos $\det(AB) = \det A \times (-1) = -\det A$; a afirmação é **verdadeira**.
- d) Como det $B=-1\neq 0$, a matriz B é invertível; a afirmação é **verdadeira**.

Questão 2 a)

$$A \to \begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & -4 & 6 & -5 \\ 0 & 4 & -4 & 5 \\ 0 & 0 & 2 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & -4 & 6 & -5 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & -4 & 6 & -5 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Temos car A=3; a afirmação é **verdadeira**.

- b) Como car A=3<4 (sendo 4 a ordem da matriz), concluímos que A não é invertível e que det A=0; a afirmação é **falsa**.
- c) Como $\det A=0$, tem-se $\det(A^2)=\det A\det A=0$, logo A^2 não é invertível; a afirmação é **falsa**.
- d) Embora o vetor $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ seja solução do sistema $A\mathbf{x}=\mathbf{b}$, ele não pode ser a única solução, uma vez que, sendo $\mathrm{car}(A) < 4$, o sistema não pode ser determinado, ou seja, não pode ter uma única solução; a afirmação é **falsa**.

Questão 3

- a) Temos det A=ad-bc=1; a afirmação é **verdadeira**.
- b) Como B se obtém de A por uma operação elementar sobre as linhas, car $B = \operatorname{car} A$; a afirmação é **verdadeira**.
- c) Como B se obtém de A por uma operação elementar de tipo O3, tem-se det $B=\det A=1$; logo B é invertível. Mas, $\det(B^{-1})=\frac{1}{\det B}=1\neq\frac{1}{2}$, pelo que a afirmação é **falsa**.
- d) Como det $A \neq 0$, concluímos que car A = 2; sendo A uma matriz de ordem 2, a condição car A = 2 garante que que a forma em escada reduzida de A é I_2 ; logo, a afirmação é **verdadeira**.

Questão 4

a) Temos

$$\begin{pmatrix}
1 & 3 & 1 & -1 \\
1 & \alpha + 1 & \alpha - 1 & 2\alpha - 5 \\
2 & 8 - \alpha & 3 & 2 - \alpha
\end{pmatrix}
\xrightarrow[L_2 \leftarrow L_3 - 2L_1]{L_2 \leftarrow L_2 - L_1 \atop L_3 \leftarrow L_3 - 2L_1}
\begin{pmatrix}
1 & 3 & 1 & -1 \\
0 & \alpha - 2 & \alpha - 2 & 2\alpha - 4 \\
0 & 2 - \alpha & 1 & 4 - \alpha
\end{pmatrix}$$

$$\xrightarrow[L_3 \leftarrow L_3 + L_2]{L_3 \leftarrow L_3 + L_2}
\begin{pmatrix}
1 & 3 & 1 & -1 \\
0 & \alpha - 2 & \alpha - 2 & 2\alpha - 2 \\
0 & 0 & \alpha - 1 & \alpha
\end{pmatrix}.$$

Então:

- Para $\alpha \neq 2$ e $\alpha \neq 1$, temos car $A_{\alpha} = \text{car}(A_{\alpha}|\mathbf{b}_{\alpha}) = 3 = \text{número de incógnitas, pelo que o sistema é possível e determinado.}$
- Para $\alpha = 1$, obtemos a matriz

$$\left(\begin{array}{ccc|ccc}
1 & 3 & 1 & -1 \\
0 & -1 & -1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right)$$

Logo, temos car $A_1 = 2 < car(A_1|\mathbf{b}_1) = 3$, pelo que o sistema é impossível.

• Para $\alpha = 2$, temos a matriz

$$\left(\begin{array}{ccc|c} 1 & 3 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 3 & 1 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Logo, nesse caso, temos car $A_2=2={\rm car}(A_2|b_2)$, pelo que o sistema é possível; como car $A_2=2<3$, e uma vez que temos 3 incógnitas, o sistema é (simplesmente) indeterminado.

b) Quando $\alpha=2$, temos, como vimos na alínea anterior, um sistema equivalente ao sistema cuja matriz ampliada é

$$\left(\begin{array}{ccc|c} 1 & 3 & 1 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

ou seja, ao sistema

$$\begin{cases} x_1 + 3x_2 + x_3 = 1 \\ x_3 = 2 \end{cases}$$

Trata-se, como vimos, de um sistema indeterminado; vamos considerar para incógnitas principais x_1 e x_3 e para incóginta livre x_2 . Tem-se, assim

$$\begin{cases} x_1 + 3x_2 + x_3 = -1 \\ x_3 = 2 \\ x_2 = \alpha \end{cases},$$

de onde se obtém $x_1=-3-3\alpha$, $x_2=\alpha$, $x_3=2$, com α um valor arbitrário em $\mathbb R$. Então, o conjunto de soluções desse sistema é

$$S = \{(-3 - 3\alpha, \alpha, 2) : \alpha \in \mathbb{R}\}.$$

c) Vimos, na alínea a), que car $A_{\alpha}=3$, para $\alpha\neq 1,2$. Logo, car $A_3=3$, o que garante que A_3 é invertível. A 1ª coluna de A_3^{-1} pode encontrar-se resolvendo o sistema $A_3\mathbf{x}=\mathbf{e}_1$, onde \mathbf{e}_1 designa a primeira coluna da matriz identidade (de ordem 3, neste caso), isto é, o sistema cuja matriz ampliada é:

$$\left(\begin{array}{ccc|c}
1 & 3 & 1 & 1 \\
1 & 4 & 2 & 0 \\
2 & 5 & 3 & 0
\end{array}\right)$$

Convertendo essa matriz na forma em escada, vem

$$\left(\begin{array}{cc|cc|c} 1 & 3 & 1 & 1 \\ 1 & 4 & 2 & 0 \\ 2 & 5 & 3 & 0 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 3 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & -1 & 1 & -2 \end{array}\right) \rightarrow \left(\begin{array}{cc|cc|c} 1 & 3 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 2 & -3 \end{array}\right).$$

A última matriz corresponde ao sistema

$$\begin{cases} x_1 + 3x_2 + x_3 = 1 \\ x_2 + x_3 = -1 \\ 2x_3 = -3 \end{cases}$$

Resolvendo este sistema por substituição inversa, obtém-se $x_3=-\frac{3}{2},\ x_2-\frac{3}{2}=-1\iff x_2=\frac{1}{2}$ e $x_1+\frac{3}{2}-\frac{3}{2}=1\iff x_1=1$. Logo, a primeira coluna de A_3^{-1} é: $\begin{pmatrix} 1\\\frac{1}{2}\\-\frac{3}{2} \end{pmatrix}$.

Questão 5 a) Como A é uma matriz triangular, o seu determinante é o produto dos elementos da sua diagonal principal, logo, tem-se

$$\det A = 2 \times (-1) \times (-2) \times 3 = 12$$

$$\det B = \begin{vmatrix} 1 & 4 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 2 & 4 & -3 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 4 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & -8 & 1 & 3 \\ 0 & -4 & -3 & 2 \end{vmatrix} = 1 \times (-1)^2 \times \begin{vmatrix} 2 & 1 & 0 \\ -8 & 1 & 3 \\ -4 & -3 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ -8 & 1 & 3 \\ -4 & -3 & 2 \end{vmatrix}$$

Mas,

$$\begin{vmatrix} 2 & 1 & 0 \\ -8 & 1 & 3 \\ -4 & -3 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ 0 & 5 & 3 \\ 0 & -1 & 2 \end{vmatrix} = 2 \times (-1)^2 \times \begin{vmatrix} 5 & 3 \\ -1 & 2 \end{vmatrix} = 2(5 \times 2 - 3 \times (-1)) = 26$$

 $Logo^4$, det B = 26.

⁴No cálculo de det *B*, usámos operações elementares do tipo O3 e o Teorema de Laplace. Haveria, naturalmente, outras formas de calcular o determinante

b) Usando a regra de Cramer, sabemos que $x_3=\frac{\det B_3}{\det A}$ onde B_3 é a matriz que se obtém de A, substituindo a coluna 3 pela coluna dos termos independentes, i.e.

$$B_3 = \begin{pmatrix} 2 & 3 & 2 & -1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -6 & 3 \end{pmatrix}.$$

Tem-se

$$\det B_3 = \begin{vmatrix} 2 & 3 & 2 & -1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -6 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 3 & 2 & -1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 5 \end{vmatrix} = 2 \times (-1) \times 3 \times 5 = -30.$$

Então,

$$x_3 = \frac{-30}{12} = -\frac{5}{2}.$$

Questão 6 a) Ver Questão 1.17.

b) Seja A uma matriz ortogonal de ordem n, i.e. seja A tal que $AA^T = I_n$. Então, temos

$$\alpha A$$
 ortogonal $\iff (\alpha A)^T(\alpha A) = I_n \iff (\alpha A^T)(\alpha A) = I_n$
 $\iff \alpha^2(A^TA) = I_n \iff \alpha^2 I_n = I_n$
 $\iff \alpha^2 = 1 \iff \alpha = 1 \text{ ou } \alpha = -1.$

Logo a matriz αA será ortogonal se e só se for $\alpha = 1$ ou $\alpha = -1$.

Questão 7 a) b) Ver Questão 1.18.

c) Temos que

onde A é a matriz quadrada de ordem 4 com todos os elementos iguais a 1. Então, usando a alínea anterior, sabemos que

1° Teste [MIEMEC 2011/2012]

Nas questões 1 a 4, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

Questão 1 Considere a matriz $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

 \bigcirc

F

a) A é uma matriz em forma de escada reduzida.

- c) $A \in G_3 \times 3$. c) $A \in G_3 \times 3$. $C = G_$

d) $\operatorname{adj} A = \mathbf{0}_{3\times 3}$.

Questão 2 Considere as matrizes

$$A = \left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array} \right) \quad \text{e} \quad B = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array} \right).$$

F

a) $A = B^{-1}$.

 \bigcirc

b) car A = 3.

 \bigcirc

c) A é equivalente por linhas a I_3 .

d) A matriz $B^TB - I_3$ é uma matriz simétrica.

Questão 3 Considere as matrizes

$$A = \left(\begin{array}{ccc} a & b & a \\ c & d & c \\ 0 & 0 & 1 \end{array} \right) \quad \text{e} \quad B = \left(\begin{array}{ccc} a & b & a \\ a+2c & b+2d & a+2c \\ -a & -b & 1-a \end{array} \right),$$

com a, b, c, d números reais tais que ad - bc = 1.

F

a) $\det A = 1$.

 \bigcirc

b) $\det B = 2$.

 \bigcirc

c) car A = car B.

 \bigcirc

d) O sistema $B\mathbf{x} = 0$ tem uma infinidade de soluções.

Questão 4

F

 \bigcirc

- a) Se A é uma matriz 5×5 tal que $\det(A^3) = 8$, então $2 \det(A^{-1}) + \det(2A^TA) = 9$. \bigcirc
- b) Se A é uma matriz de ordem $m \times n$ tal que car A = m, então m < n. \bigcirc \bigcirc
- c) Um sistema com menos equações que incógnitas é sempre possível. \bigcirc \bigcirc
- d) Um sistema homogéneo com menos equações que incógnitas é sempre possível e indeterminado.

Questão 5 Considere, para $\alpha, \beta \in \mathbb{R}$, a matriz

$$M_{lpha,eta} = \left(egin{array}{cccc} 1 & -1 & 1 & 1 \ 1 & -2 & lpha+1 & eta-1 \ 3 & -4 & 2lpha+4 & 2eta-1 \end{array}
ight).$$

- a) Defina característica de uma matriz e indique, sem efetuar cálculos, quais os valores possíveis de car $M_{\alpha,\beta}$.
- b) Escreva o sistema, nas incógnitas x, y e z, cuja matriz ampliada é $M_{\alpha,\beta}$. Discuta esse sistema, em função dos parâmetros α e β .
- c) Justifique que a matriz

$$A = \left(\begin{array}{rrr} 1 & -1 & 1 \\ 1 & -2 & 1 \\ 3 & -4 & 4 \end{array}\right)$$

é invertível e calcule A^{-1} , usando o Método de Gauss-Jordan.

Questão 6 Mostre que

$$\begin{vmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} & a_n \\ -x & x & 0 & \dots & 0 & 0 \\ 0 & -x & x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & 0 \\ 0 & 0 & 0 & \dots & -x & x \end{vmatrix} = x^n \sum_{i=0}^n a_i.$$

1º Teste [MIEMEC 2011/2012] :: resolução

Questão 1 V F F F Questão 2 V V V V Questão 3 V V V F Questão 4 F V F V

Questão 5

- a) A característica de uma matriz A é o número de linhas não nulas que uma matriz em forma de escada, equivalente por linhas a A, tem. Como a matriz dada tem 3 linhas, sendo que a primeira é não nula, conclui-se que $1 \le \operatorname{car} M_{\alpha,\beta} \le 3$. Analisando com mais cuidado poderia ainda concluir-se que $2 \le \operatorname{car} M_{\alpha,\beta} \le 3$.
- b) O sistema que tem como matriz ampliada $M_{\alpha,\beta}$ é

$$\begin{cases} x - y + z = 1 \\ x - 2y + (\alpha + 1)z = \beta - 1 \\ 3x - 4y + (2\alpha + 4)z = 2\beta - 1 \end{cases}$$

Método de eliminação de Gauss:

$$\begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & -2 & \alpha + 1 & \beta - 1 \\ 3 & -4 & 2\alpha + 4 & 2\beta - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & -1 & \alpha & \beta - 2 \\ 0 & -1 & 2\alpha + 1 & 2\beta - 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 1 \\ 0 & -1 & \alpha & \beta - 2 \\ 0 & 0 & \alpha + 1 & \beta - 2 \end{pmatrix}$$

Denotando por ${\cal A}_{\alpha}$ a matriz simples do sistema, conclui-se que:

 $\alpha = -1$ e $\beta \neq 2$ Sistema impossível, porque car $A_{-1} = 2$ e car $M_{-1,\beta} = 3$.

 $\boxed{\alpha=-1\ {\rm e}\ \beta=2}$ Sistema possível e indeterminado, porque car $A_{-1}=2={\rm car}\ M_{-1,2}<3$, (g.i.: 1)

Solução:
$$x = 1 - 2t, y = -t, z = t, t \in \mathbb{R}$$
.

lpha
eq -1 Sistema possível e determinado, porque car $A_{lpha} = \operatorname{car} M_{lpha,eta} = 3$.

Solução:
$$x = \frac{5 + \alpha - 2\beta}{1 + \alpha}$$
, $y = \frac{2 - \beta}{1 + \alpha}$, $z = \frac{\beta - 2}{1 + \alpha}$.

c) Como $A = A_0$, pela alínea anterior, podemos concluir que car A = 3, logo A é invertível.

Cálculo de A^{-1} pelo Método de Gauss-Jordan

$$\left(\begin{array}{ccc|ccc|c} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 & 1 & 0 \\ 3 & -4 & 4 & 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc|ccc|c} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & -3 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{cccc|ccc|c} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -2 & -1 & 1 \end{array}\right)$$

$$\rightarrow \left(\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 4 & 0 & -1 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -2 & -1 & 1 \end{array}\right) \qquad A^{-1} = \left(\begin{array}{ccc|c} 4 & 0 & -1 \\ 1 & -1 & 0 \\ -2 & -1 & 1 \end{array}\right)$$

Questão 6 Mostre que

$$\begin{vmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} & a_n \\ -x & x & 0 & \dots & 0 & 0 \\ 0 & -x & x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & 0 \\ 0 & 0 & 0 & \dots & -x & x \end{vmatrix} = x^n \sum_{i=0}^n a_i.$$

Denotemos por ${\cal D}_{n+1}$ a seguinte matriz de ordem n+1,

$$D_{n+1} = \begin{pmatrix} a_0 & a_1 & a_2 & \dots & a_{n-1} & a_n \\ -x & x & 0 & \dots & 0 & 0 \\ 0 & -x & x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & 0 \\ 0 & 0 & 0 & \dots & -x & x \end{pmatrix}.$$

Recordando que o determinante de uma matriz não se altera se uma coluna for substituída pela soma dessa coluna com uma (ou mais) colunas, obtém-se, substituindo cada coluna C_j pela soma $C_j + C_{j+1} +$

 \bigcirc

$$\cdots + C_{n+1}; j = 1, \dots, n+1,$$

$$\det D_{n+1} = \begin{vmatrix} \sum_{i=0}^{n} a_i & \sum_{i=1}^{n} a_i & \sum_{i=2}^{n} a_i & \dots & \sum_{i=n-1}^{n} a_i & a_n \\ 0 & x & 0 & \dots & 0 & 0 \\ 0 & 0 & x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & 0 \\ 0 & 0 & 0 & \dots & 0 & x \end{vmatrix} = x^n \sum_{i=0}^{n} a_i,$$

uma vez que se trata do determinante de uma matriz triangular superior.

Resolução alternativa

Substituindo a primeira coluna de D_{n+1} pela soma de todas as colunas, obtém-se

$$\det D_{n+1} = \begin{vmatrix} \sum_{i=0}^{n} a_i & a_1 & a_2 & \dots & a_{n-1} & a_n \\ 0 & x & 0 & \dots & 0 & 0 \\ 0 & -x & x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & 0 \\ 0 & 0 & 0 & \dots & -x & x \end{vmatrix}.$$

Aplicando agora o Teorema de Laplace à primeira coluna, resulta

$$\det D_{n+1} = \sum_{i=0}^{n} a_i \begin{vmatrix} x & 0 & \dots & 0 & 0 \\ -x & x & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & x & 0 \\ 0 & 0 & \dots & -x & x \end{vmatrix} = \sum_{i=0}^{n} a_i x^n.$$

2° Teste [MIEINF 2015/2016]

a) As colunas de A são linearmente dependentes.

Nas questões 1 a 3, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

Questão 1 Sejam \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 três vetores distintos de um espaço vetorial real V e seja $U = \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \rangle.$ a) $\dim U = 3$. \Box b) $U = \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 \rangle.$ \Box c) Seja $\mathbf{u} \in U$. Então existem sempre $\alpha_1, \ \alpha_2, \ \alpha_3 \in \mathbb{R}$ tais que $\mathbf{u} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3$. \Box

d) $\mathbf{0} \in U$.

Questão 2 Seja A uma matriz real de ordem 3×4 associada a uma transformação linear \mathcal{T} . V

b) Im \mathcal{T} é um subespaço de \mathbb{R}^4 .

- c) ${\cal T}$ não pode ser sobrejetiva.
- d) ${\cal T}$ não pode ser injetiva.

Questão 3 Seja A uma matriz cujo polinómio característico é $p_A(\lambda)=(\lambda-1)(\lambda^2-4)$.

- a) Os valores próprios de A^T+2I são 0, 3 e 4.
- b) O sistema $(A 4I)\mathbf{x} = \mathbf{0}$ é possível e determinado.
- c) A é diagonalizável.
- d) $\det A = 4$.

Questão 4 Para cada uma das alíneas seguintes, diga, justificando, se a afirmação é verdadeira ou falsa.

- a) A transformação $T: \mathbb{R}^2 \mapsto \mathbb{R}^2$ definida por T(x,y) = (x+y,x-2xy) é uma transformação linear.
- b) Se A é uma matriz real de ordem n, então $S = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = 2\mathbf{x} \}$ é um subespaço vetorial de \mathbb{R}^n .
- c) As coordenadas de $p(t)=6-5t+2t^2\in\mathcal{P}_2$ na base $(1,-1+t,1-2t+t^2)$ de \mathcal{P}_2 são (3,-1,2).
- d) Se $A=\left(\begin{array}{cccc} 1 & 2 & 1 & 0 & -1 \\ 2 & 4 & 1 & -1 & -4 \\ 5 & 10 & 3 & -2 & 4 \end{array}\right),$ então $\mathcal{C}(A)=\{(x,y,z)\in\mathbb{R}^3:x+2y-z=0\}.$

Questão 5 Considere os vetores $\mathbf{u}_1 = (1, 2, 3, -1)$, $\mathbf{u}_2 = (-1, 1, 0, 1)$, $\mathbf{u}_3 = (2, 1, 0, -1)$ e $\mathbf{u}_4 = (-1, -2, -6, 2)$.

- a) Verifique se os vetores $\mathbf{u}_1,\ \mathbf{u}_2,\ \mathbf{u}_3$ e \mathbf{u}_4 são linearmente independentes.
- b) Determine o subespaço $\mathcal S$ de $\mathbb R^4$ gerado pelos quatro vetores. Qual é a dimensão de $\mathcal S$?
- c) Determine α de modo que o vetor $(1,-1,0,\alpha)$ pertença a $\mathcal{S}.$

Questão 6 Considere a matriz $A=\left(\begin{array}{ccc}4&-1&2\\12&-3&6\\-4&1&-2\end{array}\right).$

- a) Mostre que 0 é valor próprio duplo da matriz A.
- b) Determine o subespaço próprio associado ao valor próprio 0. Qual é a multiplicidade geométrica deste valor próprio?
- c) Diga, justificando, se a matriz A é semelhante à matriz $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- d) Seja $f:\mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear associada à matriz A. Determine: i. f(1,-1,0); ii. Nuc f e diga se f é sobrejetiva.

Questão 7 Seja A uma matriz real de ordem n tal que $A^2=I_n$. Seja $\mathbf{u}\in\mathbb{R}^n$ um vetor não nulo que não é vetor próprio de A.

a) Mostre que $\mathbf{u} + A\mathbf{u}$ e $\mathbf{u} - A\mathbf{u}$ são vetores próprios de A e indique os correspondentes valores próprios.

b) Justifique que os vetores $\mathbf{u} + A\mathbf{u}$ e $\mathbf{u} - A\mathbf{u}$ são linearmente independentes.

2º Teste [MIEINF 2015/2016] :: resolução

Questão 1 F V V V Questão 2 V F F V Questão 3 V V V F

Questão 4 a) A afirmação é falsa; tem-se, por exemplo,

$$T(1,0) = (1,1)$$

 $T(0,1) = (1,0)$ $\Rightarrow T(1,0) + T(0,1) = (2,1)$

e

$$T(1,1) = (2,-1) \neq T(1,0) + T(0,1),$$

o que mostra que T não é linear.

b) A afirmação é **verdadeira**; se $\lambda=2$ é um valor próprio de A, então \mathcal{S} é o subespaço próprio associado a λ (que sabemos ser um subespaço de \mathbb{R}^n); se $\lambda=2$ não é valor próprio de A, então $\mathcal{S}=\{0\}$ (subespaço nulo \mathbb{R}^n).

Também poderíamos dizer que

$$S = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = 2\mathbf{x} \} = \{ \mathbf{x} \in \mathbb{R}^n : (A - 2I)\mathbf{x} = \mathbf{0} \},$$

pelo que \mathcal{S} é o conjunto das soluções do sistema homogéneo $(A-2I)\mathbf{x}=\mathbf{0}$ com A-2I uma matriz de ordem n, pelo que \mathcal{S} é um subespaço de \mathbb{R}^n .

c) A afirmação é verdadeira; com efeito, tem-se

$$3 \times 1 - 1 \times (-1 + t) + 2 \times (1 - 2t + t^2) = (3 + 1 + 2) + (-1 - 4)t + 2t^2 = 6 - 5t + 2t^2$$

d) Seja $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0\}$. Pretende-se verificar se C(A) = S. Convertendo A na forma escada, tem-se

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 & -1 \\ 2 & 4 & 1 & -1 & -4 \\ 5 & 10 & 3 & -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 & -1 \\ 0 & 0 & -1 & -1 & -2 \\ 0 & 0 & -2 & -2 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 & -1 \\ 0 & 0 & -1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 13 \end{pmatrix}$$

Assim, temos car A=3, logo dim $\mathcal{C}(A)=3$ e, como $\mathcal{C}(A)\subseteq\mathbb{R}^3$, concluímos que $\mathcal{C}(A)=\mathbb{R}^3$. Como \mathcal{S} está estritamente contido em \mathbb{R}^3 (dim $\mathcal{S}\leq 2$), a afirmação é **falsa**. 5

Questão 5 a) Convertendo a matriz cujas linhas são esses vetores na forma em escada, tem-se

$$\begin{pmatrix} 1 & 2 & 3 & -1 \\ -1 & 1 & 0 & 1 \\ 2 & 1 & 0 & -1 \\ -1 & -2 & -6 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & -1 \\ 0 & 3 & 3 & 0 \\ 0 & -3 & -6 & 1 \\ 0 & 0 & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & -1 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & -3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & -1 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Como a característica dessa matriz é 3 (inferior ao número de vetores) concluímos que os vetores não são linearmente independentes.

⁵Neste caso, como $(-1, -4, 4) \notin \mathcal{S}$ (e $(-1, -4, 4) \in \mathcal{C}(A)$), conclui-se que $\mathcal{C}(A)$ não está contido em \mathcal{S} , o que permite concluir de imediato que a afirmação é falsa. Chama-se a atenção para o facto de que, se todos as colunas estivessem em \mathcal{S} , apenas estaria provado que $\mathcal{C}(A) \subset \mathcal{S}$. Faltaria ainda verificar se $\mathcal{S} \subset \mathcal{C}(A)$ (i.e. se $x \in \mathcal{S}$ então $x \in \mathcal{C}(A)$).

b) Pela alínea anterior, sabemos que ((1,2,3,-1),(0,3,3,0),(0,0,-3,1)) é uma base de \mathcal{S} , pelo que dim $\mathcal{S}=3$.

Para identificar o subespaço $\mathcal{S} = \langle (1,2,3,-1), (0,3,3,0), (0,0,-3,1) \rangle$, vejamos qual a condição que os vetores $(x,y,z,w) \in \mathbb{R}^4$ devem satisfazer para estarem em \mathcal{S} , ou seja, para serem combinação linear dos vetores (1,2,3,-1), (0,3,3,0) e (0,0,-3,1). Como

$$\begin{pmatrix} 1 & 0 & 0 & x \\ 2 & 3 & 0 & y \\ 3 & 3 & -3 & z \\ -1 & 0 & 1 & w \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 3 & 0 & y - 2x \\ 0 & 0 & 1 & w + x \\ 0 & 0 & 0 & 2x - y + z + 3w \end{pmatrix},$$

concluímos que $S = \{(x, y, z, w) \in \mathbb{R}^4 : 2x - y + z + 3w = 0\}.$

c)
$$(1,-1,0,\alpha) \in \mathcal{S} \iff 2 \times 1 - (-1) + 0 + 3\alpha = 0 \iff 3\alpha = -3 \iff \alpha = -1.$$

Questão 6

a) Calculemos o polinómio característico de A:

$$p_{A}(\lambda) = \begin{vmatrix} 4 - \lambda & -1 & 2 \\ 12 & -3 - \lambda & 6 \\ -4 & 1 & -2 - \lambda \end{vmatrix} = \begin{vmatrix} -\lambda & 0 & -\lambda \\ 12 & -3 - \lambda & 6 \\ -4 & 1 & -1 - 2\lambda \end{vmatrix} = -\lambda \begin{vmatrix} 1 & 0 & 1 \\ 12 & -3 - \lambda & 6 \\ -4 & 1 & -2 - \lambda \end{vmatrix}$$
$$= -\lambda \begin{vmatrix} 1 & 0 & 0 \\ 12 & -3 - \lambda & -6 \\ -4 & 1 & 2 - \lambda \end{vmatrix} = -\lambda \times (-1)^{1+2} \times 1 \times \begin{vmatrix} -3 - \lambda & -6 \\ 1 & 2 - \lambda \end{vmatrix}$$
$$= -\lambda ((-3 - \lambda)(2 - \lambda) + 6) = -\lambda(\lambda^{2} + \lambda) = -\lambda^{2}(\lambda + 1).$$

Como $\lambda = 0$ é um zero duplo de $p_A(\lambda)$, concluímos que $\lambda = 0$ é um valor próprio duplo (i.e. com multiplicidade algébrica igual a 2) de A.

b) $V_0 = {\mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = \mathbf{0}}$. Temos

$$\left(\begin{array}{ccc|c} 4 & -1 & 2 & 0 \\ 12 & -3 & 6 & 0 \\ -4 & 1 & -2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 4 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right),$$

pelo que

$$V_0 = \{(\alpha, 4\alpha + 2\beta, \beta) : \alpha, \beta \in \mathbb{R}\} = \langle (1, 4, 0), (0, 2, 1) \rangle$$

Como ((1,4,0),(0,2,1)) é uma base de V_0 , dim $V_0=2$ e a multiplicidade geométrica do valor próprio $\lambda=0$ é igual a 2.

c) A matriz A tem valores próprios⁶ $\lambda_1=\lambda_2=0$ e $\lambda_3=-1$. Como o valor próprio duplo tem multiplicidade geométrica igual a 2, vai ser possível encontrar três vetores próprios linearmente

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \mathsf{e} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

têm os mesmos valores próprios (valor próprio duplo, igual a 1) e não são semelhantes, uma vez que A não é diagonalizável (pois a multiplicidade geométrica do valor próprio 1 é apenas igual a 1), logo, não pode ser semelhante a B.

 $^{^6}$ Raciocínio errado: A é semelhante à matriz dada porque ambas têm os mesmos valores próprios (com as mesmas multiplicidades algébricas). De facto, a igualdade dos valores próprios de duas matrizes é uma condição necessária, mas não suficiente, para a semelhança dessas matrizes; por exemplo, as matrizes

independentes (dois deles associados ao valor próprio 0 e um terceiro associado ao valor próprio -1), pelo que a matriz é diagonalizável; assim, A é semelhante a uma matriz diagonal com os valores próprios dispostos na diagonal, isto é, é semelhante à matriz $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

d) i.
$$\begin{pmatrix} 4 & -1 & 2 \\ 12 & -3 & 6 \\ -4 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 15 \\ -5 \end{pmatrix}$$
. Assim, $f(1, -1, 0) = (5, 15, -5)$.

ii. Nuc
$$f = {\mathbf{x} \in \mathbb{R}^3 : f(\mathbf{x}) = \mathbf{0}} = {\mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = \mathbf{0}}$$

= $V_0 = {(\alpha, 4\alpha + 2\beta, \beta) : \alpha, \beta \in \mathbb{R}} = {(1, 4, 0), (0, 2, 1)}.$

Como Nuc $f \neq \{0\}$, a aplicação f não é injetiva. Como $f : \mathbb{R}^3 \to \mathbb{R}^3$, f também não é sobrejetiva, pois uma aplicação linear de \mathbb{R}^n em \mathbb{R}^n é sobrejetiva se e só se for injetiva.

Questão 7

a) Comecemos por mostrar que os vetores ${f u}+A{f u}$ e ${f u}-A{f u}$ são ambos não nulos. Com efeito,

$$\mathbf{u} + A\mathbf{u} = \mathbf{0} \Rightarrow A\mathbf{u} = -\mathbf{u} \Longrightarrow_{(\mathbf{u} \neq \mathbf{0})} \mathbf{u}$$
 é vetor próprio de A asociado ao valor próprio -1

(contra a hipótese); de modo análogo,

$$\mathbf{u}-A\mathbf{u}=\mathbf{0}\Rightarrow A\mathbf{u}=\mathbf{u}\underset{(\mathbf{u}\neq\mathbf{0})}{\Longrightarrow}\mathbf{u}$$
 é vetor próprio de A associado ao valor próprio 1

(contra a hipótese). Por outro lado, temos

$$A(\mathbf{u} + A\mathbf{u}) = A\mathbf{u} + A^2\mathbf{u} = A\mathbf{u} + I_n\mathbf{u} = A\mathbf{u} + \mathbf{u} = \mathbf{u} + A\mathbf{u} = \mathbf{1}(\mathbf{u} + A\mathbf{u}).$$

Como $\mathbf{u} + A\mathbf{u} \neq \mathbf{0}$, a igualdade anterior significa que $\mathbf{u} + A\mathbf{u}$ é vetor próprio de A associado ao valor próprio 1. Temos também

$$A(\mathbf{u} - A\mathbf{u}) = A\mathbf{u} - A^2\mathbf{u} = A\mathbf{u} - I_n\mathbf{u} = A\mathbf{u} - \mathbf{u} = -\mathbf{u} + A\mathbf{u} = -1(\mathbf{u} - A\mathbf{u}),$$

o que, atendendo a que $\mathbf{u} - A\mathbf{u} \neq \mathbf{0}$, significa que $\mathbf{u} - A\mathbf{u}$ é vetor próprio de A associado ao valor próprio -1.

b) Basta notar que os vetores em causa são dois vetores próprios associados a valores próprios distintos.

2º Teste [MIECOM 2013/2014]

Questão 1 Apresente um exemplo de, ou justifique porque não existe(m):

- a) vetores \mathbf{v}_1 e \mathbf{v}_2 de \mathbb{R}^3 , linearmente independentes, tais que $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2 \rangle$;
- b) uma matriz cujo núcleo contém o vetor (1,2,3);
- c) uma aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^2$ injetiva;

- d) uma aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^2$ tal que f(1,0,3) = (1,1) e f(-2,0,-6) = (-2,-1);
- e) uma matriz A tal que (1,2) é um vetor próprio de A associado ao valor próprio 1 e (2,4) é um vetor próprio de A associado ao valor próprio 2.

Questão 2 Considere os vetores de \mathbb{R}^4 , $\mathbf{u} = (1, 0, -1, 0)$, $\mathbf{v} = (0, 0, 0, 1)$ e $\mathbf{w} = (-1, 1, -1, 0)$ e o subespaço vetorial $S = \{(x, y, z, t) \in \mathbb{R}^4 : x + 2y + z = 0\}$.

- a) Mostre que $\mathcal{B} = (\mathbf{u}, \mathbf{v}, \mathbf{w})$ é uma base de S.
- b) Determine as coordenadas de (1, -1, 1, 2) na base \mathcal{B} .
- c) Indique uma base de \mathbb{R}^4 que inclua os vetores \mathbf{u} , \mathbf{v} e \mathbf{w} .

Questão 3 Seja $f: \mathbb{R}^5 \to \mathbb{R}^3$ uma aplicação linear cuja representação matricial é:

$$\mathcal{M} = \left(\begin{array}{cccc} 0 & 1 & -2 & 2 & 0 \\ -1 & 3 & 0 & 1 & 6 \\ -2 & 5 & 2 & 0 & 12 \end{array} \right).$$

- a) Determine f(1, -1, 2, 0, 1).
- b) Determine, caso exista, $\mathbf{u} \in \mathbb{R}^5$ tal que $f(\mathbf{u}) = (1, -1, 1)$.
- c) Indique, justificando, se a aplicação f é injetiva e/ou sobrejetiva.
- d) Determine uma base para $\mathcal{L}(\mathcal{M})$ e Im f.

Questão 4 Considere a matriz

$$A = \left(\begin{array}{rrr} 3 & -1 & 0 \\ -1 & 3 & 0 \\ -1 & 1 & 4 \end{array}\right).$$

- a) Mostre que os valores próprios de A são 2 e 4.
- b) Indique os valores próprios da matriz $(A-3I)^4$.
- c) Determine a multiplicidade geométrica do maior valor próprio de A.
- d) Indique, justificando, uma matriz B de ordem 3, não semelhante a A, mas com os mesmos valores próprios de A.

2º Teste [MIECOM 2013/2014] :: resolução

Questão 1

- a) Como $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2 \rangle$, para quaisquer \mathbf{v}_1 e \mathbf{v}_2 (não necessariamente linearmente independentes), basta escolher dois vetores de \mathbb{R}^3 , linearmente independentes, por exemplo (1,0,0) e (0,1,0).
- b) $\mathbf{u} = (1, 2, 3) \in \mathcal{N}(A) \Leftrightarrow A\mathbf{u} = \mathbf{0}$. Por exemplo, $A = (-2 \ 1 \ 0)$.
- c) Não existem aplicações injetivas de $\mathbb{R}^n \to \mathbb{R}^m$, com m < n.

- d) Se f é uma aplicação linear, então, f(-2,0,-6) = f(-2(1,0,3)) = -2f(1,0,3) = -2(1,1) = (-2,2). Logo não existe tal aplicação.
- e) Vetores próprios associados a valores próprios distintos são necessariamente linearmente independentes. Como (1,2) e (2,4) não são linearmente independentes, não existe uma matriz A nestas condições.

Questão 2

- a) $\mathcal{B} = (\mathbf{u}, \mathbf{v}, \mathbf{w})$ é uma base de S sse
 - 1. $S = \langle \mathbf{u}, \mathbf{v}, \mathbf{w} \rangle$. $\langle \mathbf{u}, \mathbf{v}, \mathbf{w} \rangle = \{ (x, y, z, t) \in \mathbb{R}^4 : (x, y, z, t) = \alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w}, \alpha, \beta, \gamma \in \mathbb{R} \}$

$$(x,y,z,t) = (\alpha - \gamma, \gamma, -\alpha - \gamma, \beta) \longrightarrow \begin{pmatrix} 1 & 0 & -1 & x \\ 0 & 0 & 1 & y \\ -1 & 0 & -1 & z \\ 0 & 1 & 0 & t \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & x+y \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & y \\ 0 & 0 & 0 & x+z+2y \end{pmatrix}$$

O sistema anterior é possível sse x + z + 2y = 0, i.e. sse $(x, y, z, t) \in S$.

u, v, w são linearmente independentes
 Analisando as 3 primeiras colunas da matriz anterior, facilmente se conclui que os vetores
 u, v, w são linearmente independentes.

Logo os três vetores constituem uma base de S.

- b) $(1,-1,1,2) = \alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w}$. Analisando a resposta à questão anterior, conclui-se, de imediato que, $\alpha = 0, \beta = 2, \gamma = -1$. As coordenadas são, por isso, (0,2,-1).
- c) Se \mathbf{r} é um vetor tal que $\mathbf{r} \notin S$, então $(\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{r})$ são necessariamente linearmente independentes. Basta, por isso, escolher um qualquer vetor que não pertença a S, para ter uma base. Por exemplo, $(\mathbf{u}, \mathbf{v}, \mathbf{w}, (0, 1, 0, 0))$ é uma base de \mathbb{R}^4 .

Questão 3

a)
$$\begin{pmatrix} 0 & 1 & -2 & 2 & 0 \\ -1 & 3 & 0 & 1 & 6 \\ -2 & 5 & 2 & 0 & 12 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -5 \\ 2 \\ 9 \end{pmatrix}$$
. Logo $f(1, -1, 2, 0, 1) = (-5, 2, 9)$

$$b) \quad \left(\begin{array}{ccc|ccc|c} 0 & 1 & -2 & 2 & 0 & 1 \\ -1 & 3 & 0 & 1 & 6 & -1 \\ -2 & 5 & 2 & 0 & 12 & 1 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|ccc|c} -1 & 3 & 0 & 1 & 6 & -1 \\ 0 & 1 & -2 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{array}\right).$$

O sistema anterior é impossível, logo não existe u nestas condições.

- c) A aplicação não é sobrejetiva, porque $(1,-1,1) \notin \operatorname{Im} f$ ou porque car $\mathcal{M}=2<3$. Também não é injetiva, porque $\dim(\operatorname{Nuc} f)=n-\dim(\operatorname{Im} f)=5-2=3\neq 0$.
- d) base $\mathcal{L}(\mathcal{M}) = ((-1, -3, 0, -1, -6), (0, 1, -2, 2, 0));$ base Im f = ((0, -1, -2), (1, 3, 5)).

Questão 4

a)
$$\begin{vmatrix} 3-\lambda & -1 & 0 \\ -1 & 3-\lambda & 0 \\ -1 & 1 & 4-\lambda \end{vmatrix} = 0 \Leftrightarrow (4-\lambda)\left((3-\lambda)^2-1\right) = 0 \Leftrightarrow \lambda = 2 \lor \lambda = 4.$$

Os valores próprios são 2 (mult. alg. 1) e 4 (mult. alg. 2).

c) Determinação do subespaço próprio associado ao valor próprio $\lambda=4$:

$$\begin{pmatrix} 3-4 & -1 & 0 \\ -1 & 3-4 & 0 \\ -1 & 1 & 4-4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

 $V_4 = \{(0,0,z) : z \in \mathbb{R}\} = \langle (0,0,1) \rangle$. Como dim $V_4 = 1$, a multiplicidade geométrica do v.p. 4 é 1.

d) Note-se que a matriz A não é diagonalizável, porque não existe uma base formada por vetores próprios, já que a multiplicidade geométrica do valor próprio $\lambda=4$ (que é igual a 1) é inferior à sua multiplicidade algébrica (que é igual a 2). A matriz A, não é, por isso, semelhante à matriz

$$B = \left(\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{array}\right),$$

mas esta matriz tem exatamente os mesmos valores próprios que a matriz A.

2º Teste [MIEBIO 2012/2013]

Questão 1 a) Considere, no espaço vetorial \mathbb{R}^n ($n \in \mathbb{N}$), k vetores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$. Defina subespaço gerado por $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, $\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \rangle$.

b) Considere os seguintes subespaços do espaço vetorial \mathbb{R}^4 :

$$U = \langle (1,2,2,3), (2,5,4,8), (-1,-1,-2,-1), (0,2,0,4) \rangle$$

e

$$V = \{(x, y, z, w) \in \mathbb{R}^4 : 2x - y = 0 \text{ e } 3z - 2w = 0\}.$$

- (i) Determine uma base e indique qual a dimensão de cada um dos subespaços U e V.
- (ii) Mostre que $(1,2,2,3) \in V$, mas $U \not\subseteq V$.

Questão 2 a) Seja $T: \mathbb{R}^n \to \mathbb{R}^m$ $(m, n \in \mathbb{N})$ uma transformação linear. Defina núcleo de T, NucT, e mostre que NucT é um subespaço vetorial de \mathbb{R}^n .

b) Considere a aplicação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T(x, y, z) = (-x + 3y + 2z, -2x + 8y + 10z, x - 5y - 8z), \quad \forall (x, y, z) \in \mathbb{R}^3.$$

- (i) Determine a matriz da aplicação T.
- (ii) Seja $\mathbf{v}=(-2,-2,0)$. Diga, justificando, se $\mathbf{v}\in\operatorname{Im} T$ e, em caso afirmativo, determine o conjunto de vetores $\mathbf{x}\in\mathbb{R}^3$ tais que $T(\mathbf{x})=\mathbf{v}$.
- (iii) Indique uma base para $\operatorname{Nuc} T$ e diga, justificando, se T é injetiva.

Questão 3 Considere a matriz

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & -1 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 2 \end{pmatrix}.$$

- a) Determine os valores próprios de A e os respetivos subespaços próprios.
- b) Indique a multiplicidade algébrica e a multiplicidade geométrica de cada um dos valores próprios de A.
- c) Diga, justificando, se A é diagonalizável.
- d) Sem efetuar quaisquer cálculos adicionais, diga, justificando, se A é invertível.

Questão 4 Sejam A uma matriz (real) quadrada de ordem n tal que $A^2 = I_n$ e $\mathbf{u} \in \mathbb{R}^n$ um vetor não nulo que não é vetor próprio de A.

- a) Mostre que, se λ é um valor próprio de A, então $\lambda \in \{-1,1\}$.
- b) Mostre que os vetores $\mathbf{v} = \mathbf{u} + A\mathbf{u}$ e $\mathbf{w} = \mathbf{u} A\mathbf{u}$ são vetores próprios de A e diga a que valores próprios estão associados.
- c) Justifique que os vetores v e w considerados na alínea anterior são vetores linearmente independentes.

2º Teste [MIEBIO 2012/2013] :: resolução

Questão 1 a) Ver textos de apoio.

b) (i) Seja A a matriz cujas colunas são os vetores geradores de U. Uma base de U poderá ser encontrada determinando quais as colunas principais de A. Reduzindo A à forma em escada, vem:

$$A = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 2 & 5 & -1 & 2 \\ 2 & 4 & -2 & 0 \\ 3 & 8 & -1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Os vetores correspondentes às duas colunas principais da matriz A formam uma base do subespaço U, i.e.

$$B = ((1, 2, 2, 3), (2, 5, 4, 8))$$

é uma base e U. Logo, a dimensão de U (igual ao número de vetores de qualquer sua base) é igual a 2. V é o conjunto das soluções do seguinte sistema

$$\begin{cases} 2x - y = 0 \\ 3z - 2w = 0 \end{cases},$$

a que corresponde a seguinte matriz simples $\begin{pmatrix} 2 & -1 & 0 & 0 \\ 0 & 0 & 3 & -2 \end{pmatrix}$. Resolvendo esse sistema, obtém-se

$$\begin{cases} x = \frac{1}{2}\alpha, \\ y = \alpha, \\ z = \frac{2}{3}\beta, \\ w = \beta, \quad \alpha, \beta \in \mathbb{R}. \end{cases}$$

Assim, tem-se

$$V = \left\{ \left(\frac{1}{2} \alpha, \alpha, \frac{2}{3} \beta, \beta \right) : \alpha, \beta \in \mathbb{R} \right\} = \left\{ \alpha \left(\frac{1}{2}, 1, 0, 0 \right) + \beta \left(0, 0, \frac{2}{3}, 1 \right) : \alpha, \beta \in \mathbb{R} \right\}$$
$$= \left\langle \left(\frac{1}{2}, 1, 0, 0 \right), (0, 0, \frac{2}{3}, 1) \right\rangle.$$

Os vetores $(\frac{1}{2}, 1, 0, 0)$ e $(0, 0, \frac{2}{3}, 1)$ são geradores de V e também linearmente independentes (já que nenhum deles é múltiplo do outro), pelo que constituem uma base de V. A dimensão de V é, portanto, igual a 2.

(ii) O vetor (1,2,2,3) pertence a V, uma vez que as suas coordenadas satisfazem as equações que definem V:

$$2 \times 1 - 2 = 0$$
 e $3 \times 2 - 2 \times 3 = 0$.

No entanto, o vetor (2,5,4,8), que pertence a U (já que é um dos geradores de U) não pertence a V, uma vez que $3\times 2-5=6-5=1\neq 0$. Como existe uma vetor que pertence a U e não pertence a V, tem-se $U\not\subseteq V$.

Questão 2 a) Ver textos de apoio.

b) (i) Temos

$$T(\mathbf{e}_1) = T(1,0,0) = (-1,-2,1)$$

 $T(\mathbf{e}_2) = T(0,1,0) = (3,8,-5)$
 $T(\mathbf{e}_3) = T(0,0,1) = (2,10,-8).$

Então

$$\mathcal{M}_T = egin{pmatrix} -1 & 3 & 2 \ -2 & 8 & 10 \ 1 & -5 & -8 \end{pmatrix}.$$

(ii) Uma vez que

$$\mathbf{v} \in \operatorname{Im} T \iff \exists \mathbf{x} \in \mathbb{R}^3 : \mathcal{M}_T \mathbf{x} = \mathbf{v},$$

para saber se $\mathbf{v} \in \operatorname{Im} T$ teremos de verificar se o sistema $\mathcal{M}_T \mathbf{x} = \mathbf{v}$ tem ou não solução; caso esse sistema seja possível, o conjunto de todas as suas soluções será precisamente o conjunto pretendido. Consideremos então o sistema de matriz ampliada

$$\left(\begin{array}{ccc|c}
-1 & 3 & 2 & -2 \\
-2 & 8 & 10 & -2 \\
1 & -5 & -8 & 0
\end{array}\right).$$

Convertendo a matriz anterior na forma em escada, obtém-se

$$\left(\begin{array}{ccc|c} -1 & 3 & 2 & -2 \\ 0 & 2 & 6 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Vemos, então, que o correspondente sistema é possível – o que significa que $\mathbf{v} \in \operatorname{Im} T$ – e indeterminado (o que significa que existe uma infinidade de vetores em \mathbb{R}^3 cuja imagem por T é o vetor \mathbf{v} .) Resolvendo o sistema da forma habitual, encontramos o seguinte conjunto de soluções:

$$S = \{(-7\alpha + 5, -3\alpha + 1, \alpha) : \alpha \in \mathbb{R}\}\$$

Temos então

$$\{\mathbf{x} \in \mathbb{R}^3 : T(\mathbf{x}) = \mathbf{v}\} = \{(-7\alpha + 5, -3\alpha + 1, \alpha) : \alpha \in \mathbb{R}\}.$$

(iii) Como

$$\mathbf{x} \in \mathsf{Nuc}\,T \iff T(\mathbf{x}) = \mathbf{0} \iff \mathcal{M}_T\mathbf{x} = \mathbf{0},$$

temos que Nuc $T = \mathcal{N}(\mathcal{M}_T)$. Resolvamos, então, o sistema homogéneo $\mathcal{M}_T \mathbf{x} = \mathbf{0}$. Tendo em conta os cálculos já efetuados na alínea anterior, vemos que as soluções desse sistema são obtidas resolvendo o sistema homogéneo de matriz simples

$$\left(\begin{array}{rrr} -1 & 3 & 2 \\ 0 & 2 & 6 \\ 0 & 0 & 0 \end{array}\right).$$

Resolvendo esse sistema, vemos que

Nuc
$$T = \{(-7\alpha, -3\alpha, \alpha) : \alpha \in \mathbb{R}\}$$

Assim,

Nuc
$$T = \{\alpha(-7, -3, 1) : \alpha \in \mathbb{R}\} = \langle (-7, -3, -1) \rangle$$
.

O vetor $\mathbf{u}=(-7,-3,1)$ forma uma base de NucT, sendo a dimensão de NucT igual a 1. Como Nuc $T \neq \{(0,0,0)\}$, concluímos que T não é injetiva.

Questão 3 a)

$$p_A(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 0 & 0 & 0 \\ 0 & 2 - \lambda & -1 & 2 \\ 0 & 0 & 2 - \lambda & 1 \\ 0 & 0 & 4 & 2 - \lambda \end{vmatrix}$$
$$= (2 - \lambda) \begin{vmatrix} 2 - \lambda & -1 & 2 \\ 0 & 2 - \lambda & 1 \\ 0 & 4 & 2 - \lambda \end{vmatrix} = (2 - \lambda)(2 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 4 & 2 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)^2 \left[(2 - \lambda)^2 - 4 \right] = (2 - \lambda)^2 (\lambda^2 - 4\lambda) = (2 - \lambda)^2 \lambda(\lambda - 4).$$

Então,

$$p_A(\lambda) = 0 \iff (2 - \lambda)^2 \lambda(\lambda - 4) = 0 \iff \lambda = 2 \lor \lambda = 0 \lor \lambda = 4.$$

Assim, A tem 3 valores próprios: $\lambda_1=2, \lambda_2=0, \lambda_3=4$.

Temos

$$A - \lambda_1 I = A - 2I = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 \end{pmatrix}.$$

Convertendo a matriz na forma em escada, vem

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Resolvendo o sistema homogéneo correspondente, obtém-se

$$V_2 = \{(\alpha, \beta, 0, 0) : \alpha, \beta \in \mathbb{R}\}.$$

Seguindo um procedimento análogo para os outros dois valores próprios, obtém-se:

$$V_0 = \left\{ \left(0, -\frac{5}{4}\alpha, -\frac{1}{2}, \alpha\right) : \alpha \in \mathbb{R} \right\}$$

е

$$V_4 = \left\{ (0, \frac{3}{4}\alpha, \frac{1}{2}\alpha, \alpha) : \alpha \in \mathbb{R} \right\}$$

b) **Nota**: Denotaremos por m.a.(λ) e m.g.(λ), respetivamente a multiplicidade algébrica e a multiplicidade geométrica do valor próprio λ .

Como o valor próprio $\lambda_1=2$ é uma raiz dupla da equação caraterística e $\lambda_2=0$ e $\lambda_3=4$ são raízes simples, temos m.a. $(\lambda_1)=2$ e m.a. $(\lambda_2)=$ m.a. $(\lambda_3)=1$.

Sendo λ_2 e λ_3 valores próprios simples, tem-se, como sabemos

$$m.g.(\lambda_2) = m.g.(\lambda_3) = 1.$$

Quanto ao valor próprio duplo, λ_1 , tem-se

$$\text{m.g.}(\lambda_1) = \dim(V_{\lambda_1}) = 4 - \operatorname{car}(A - \lambda_1 I) = 4 - 2 = 2.$$

(A característica da matriz $A - \lambda_1 I$ vê-se, de imediato, da forma em escada a que reduzimos essa matriz, na alínea anterior).

c) Como

$$m.g.(\lambda_1) + m.g.(\lambda_2) + m.g.(\lambda_3) = 2 + 1 + 1 = 4$$

e A é uma matriz de ordem 4, podemos concluir que A é diagonalizável.

d) Como um dos valores próprios de A é $\lambda_2 = 0$, a matriz A não é invertível.

Questão 4 Confronte com Questão 7 do 2º teste de MIEINF.

- a) Seja λ um valor próprio de A. Então, com sabemos (visto nas aulas) λ^2 é um valor próprio da matriz A^2 . Mas, como $A^2 = I_n$, tem-se que λ^2 é um valor próprio de I_n . Como a matriz I_n é triangular, os seus valores próprios são os elementos que formam a sua diagonal principal, ou seja, são todos iguais a 1. Então, temos $\lambda^2 = 1$ e o resultado segue-se, de imediato.
- b) Comecemos por mostrar que os vetores v e w são não nulos. Temos

$$\mathbf{v} = \mathbf{0} \iff \mathbf{u} + A\mathbf{u} = \mathbf{0} \iff A\mathbf{u} = -\mathbf{u}.$$

o que, por hipótese não é possível, uma vez que ${\bf u}$ não é um vetor próprio de A. A demosnstração de que ${\bf w} \neq {\bf 0}$ é totalmente análoga.

Vejamos agora que \mathbf{v} é um vetor próprio de A. Temos

$$A\mathbf{v} = A(\mathbf{u} + A\mathbf{u}) = A\mathbf{u} + A^2\mathbf{u}$$

= $A\mathbf{u} + I_n\mathbf{u} = A\mathbf{u} + \mathbf{u}$
= $\mathbf{u} + A\mathbf{u} = \mathbf{v}$,

o que, uma vez que $\mathbf{v} \neq \mathbf{0}$, mostra que \mathbf{v} é um vetor próprio de A associado ao valor próprio 1. De modo análogo, temos

$$A\mathbf{w} = A(\mathbf{u} - A\mathbf{u}) = A\mathbf{u} - A^2\mathbf{u}$$
$$= A\mathbf{u} - I_n\mathbf{u} = A\mathbf{u} - \mathbf{u}$$
$$= -(\mathbf{u} - A\mathbf{u}) = -\mathbf{w},$$

de onde se conclui (tendo em conta que $\mathbf{w} \neq \mathbf{0}$) que \mathbf{w} é um vetor próprio de A associado ao valor próprio -1.

c) Os vetores v e w são vetores linearmente independentes, porque são vetores próprios associados a valores próprios distintos.

2º Teste [MIEMEC 2011/2012]

Nas questões 1 a 3, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

Questão 1 Seja
$$S = \langle (1,0,-1), (-2,1,0), (1,1,-3) \rangle$$
.

a)
$$S=\mathbb{R}^3$$
.

$$\circ$$

b)
$$\dim S = 2$$
.

$$\circ$$

c)
$$((1,0,-1),(1,1,-3))$$
 é uma base de S .

d)
$$(1,1,5) \in S$$
.

Questão 2 Considere a matriz

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array}\right).$$

a) Existe um vetor não nulo \mathbf{u} tal que $A\mathbf{u}=3\mathbf{u}$.

$$\circ$$

b) (1, -2, 1) é um vetor próprio de A.

c) Os valores próprios de $A^2 - 3I$ são 1, 6 e -3.

d) A matriz A é diagonalizável.

Questão 3 Considere as matrizes

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 2 \\ 1 & -2 & 3 \end{pmatrix} \qquad e \qquad B = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

a) -1 é valor próprio de A.

b) $A \in B$ são semelhantes.

c)
$$\mathcal{L}(A) = \langle (1, -1, 1), (0, -1, 2) \rangle$$
.

d)
$$C(A) = \langle (1,0,0), (-1,-1,0) \rangle$$
.

$$\circ$$

Questão 4 Considere os vetores $\mathbf{u}_1 = (0,0,1,1), \ \mathbf{u}_2 = (0,1,1,1), \ \mathbf{u}_3 = (1,1,1,2), \ \mathbf{u}_4 = (-1,0,1,0).$

- a) Verifique, pela definição, se os vetores u_1 , u_2 , u_3 e u_4 são linearmente independentes.
- b) Identifique o subespaço S de \mathbb{R}^4 gerado pelos quatro vetores. Qual é a dimensão de S?
- c) Determine λ de modo que o vetor $(1, -1, 0, \lambda)$ pertença a S.

Questão 5 Considere, para cada $k \in \mathbb{R}$, a aplicação linear $f: \mathbb{R}^3 \to \mathbb{R}^3$, cuja matriz canónica é

$$A = \left(\begin{array}{ccc} 3 & 1 & k \\ 0 & 2 & 0 \\ k & 1 & 3 \end{array}\right).$$

- a) Calcule f(1, 1, 1).
- b) Determine k de forma que f seja bijetiva. Justifique.
- c) Faça k=3 e determine uma base para o núcleo de f e uma base para $\mathcal{C}(A)$.
- d) Verifique que a matriz A que se obtém quando k=0 tem um valor próprio duplo. Determine a sua multiplicidade geométrica.

Questão 6 Seja A uma matriz real de ordem n tal que $A + A^T = \alpha I_n$, para algum $\alpha \in \mathbb{R}$.

Mostre que, se $\mathbf x$ é um vetor próprio de A associado ao valor próprio λ , então $\mathbf x$ é um vetor próprio de A^T associado ao valor próprio $\alpha - \lambda$.

2º Teste [MIEMEC 2011/2012] :: resolução

Questão 1 FVVF Questão 2 VVFV Questão 3 FFVF

Questão 4

a) Os vetores \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 e \mathbf{u}_4 são linearmente independentes se

$$\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3 + \alpha_4 \mathbf{u}_4 = 0 \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0.$$

Mas

$$\alpha_1(0,0,1,1) + \alpha_2(0,1,1,1) + \alpha_3(1,1,1,2) + \alpha_4(-1,0,1,0) = (0,0,0,0)$$

é equivalente ao sistema

$$\begin{cases} \alpha_3 - \alpha_4 = 0 \\ \alpha_2 + \alpha_3 = 0 \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0 \\ \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \end{cases} \quad \text{cuja matriz dos coeficientes \'e} \qquad A = \begin{pmatrix} 0 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix}.$$

Este sistema homogéneo tem apenas a solução nula sse car A=4. Usando o método de eliminação de Gauss, facilmente se conclui que

$$A \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix} \longrightarrow B = \begin{pmatrix} \boxed{1} & 1 & 1 & 1 \\ 0 & \boxed{1} & 1 & 0 \\ 0 & 0 & \boxed{1} & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

i.e. car A = 3. Logo, os vetores são linearmente dependentes.

b) Já sabemos, da alínea anterior, que $S = \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4 \rangle = \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \rangle$, porque as primeiras 3 colunas de A (correspondentes às colunas de B que contêm pivôs) são exatamente \mathbf{u}_1 , \mathbf{u}_2 e \mathbf{u}_3 . Além disso, a dimensão deste subespaço é 3, porque car A = 3.

Processo 1:

O vetor $\mathbf{u} = (x, y, z, t) \in \langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \rangle$ sse existirem escalares $\alpha_1, \alpha_2, \alpha_3$ tais que $\mathbf{u} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \alpha_3 \mathbf{u}_3$, o que equivale a dizer que o seguinte sistema tem que ser possível.

$$\begin{cases} \alpha_3 = x \\ \alpha_2 + \alpha_3 = y \\ \alpha_1 + \alpha_2 + \alpha_3 = z \\ \alpha_1 + \alpha_2 + 2\alpha_3 = t \end{cases}$$

Como

$$\begin{pmatrix} 0 & 0 & 1 & | & x \\ 0 & 1 & 1 & | & y \\ 1 & 1 & 1 & | & z \\ 1 & 1 & 2 & | & t \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & | & z \\ 0 & 1 & 1 & | & y \\ 0 & 0 & 1 & | & x \\ 0 & 0 & 1 & | & -z+t \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & | & z \\ 0 & 1 & 1 & | & y \\ 0 & 0 & 1 & | & x \\ 0 & 0 & 0 & | & -x-z+t \end{pmatrix},$$

o sistema é possível sse -x-z+t=0, donde se conclui que

$$S = \{(x, y, z, t) \in \mathbb{R}^4 : x = t - z\}.$$

Processo 2:

O vetor $\mathbf{u}=(x,y,z,t)\in\langle\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\rangle$ sse $\langle\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}\rangle=\langle\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\rangle$, ou seja, se e só se a característica da(s) seguinte(s) matriz(es) for 3.

$$\begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ x & y & z & t \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -x - z + t \end{pmatrix}.$$

Consequentemente x = t - z.

c) Processo 1: (usando a alínea anterior)

$$(1, -1, 0, \lambda) \in S$$
 sse $1 = \lambda - 0$, i.e. $\lambda = 1$.

Processo 2: (não usando a alínea anterior)

$$(1, -1, 0, \lambda) \in S$$
 sse

$$\operatorname{car}\begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & -1 & 0 & \lambda \end{pmatrix} = 3 \Longleftrightarrow \operatorname{car}\begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & \lambda \end{pmatrix} = 3 \Longleftrightarrow \lambda = 1.$$

Questão 5

a) Processo 1:

$$\begin{pmatrix} 3 & 1 & k \\ 0 & 2 & 0 \\ k & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4+k \\ 2 \\ k+4 \end{pmatrix} \Longrightarrow f(1,1,1) = (4+k,2,4+k).$$

Processo 2:

$$(1,1,1) = (1,0,0) + (0,1,0) + (0,0,1) \Longrightarrow f(1,1,1) = f(1,0,0) + f(0,1,0) + f(0,0,1)$$

= $(3,0,k) + (1,2,1) + (k,0,3)$
= $(4+k,2,k+4)$.

b) Como $f: \mathbb{R}^3 \to \mathbb{R}^3$, se f for injetiva também será sobrejetiva e vice-versa. Como f é sobrejetiva sse car A=3, basta usar o método de eliminação de Gauss, para concluir que

$$\operatorname{car} A = 3 \Longleftrightarrow \operatorname{car} \begin{pmatrix} 3 & 1 & k \\ 0 & 1 & 0 \\ 0 & 0 & -k^2 + 9 \end{pmatrix} = 3 \Longleftrightarrow k \neq -3 \land k \neq 3.$$

c) Usando a alínea anterior podemos concluir que, para k=3, car A=2, pelo que sabemos já que

$$\dim \operatorname{Nuc} f = 3 - 2 = 1$$
 e $\dim \mathcal{C}(A) = 2$.

Como

Nuc $f = \{(x, y, z) \in \mathbb{R}^3 : f(x, y, z) = (0, 0, 0)\} = \{(x, y, z) \in \mathbb{R}^3 : x = -z, y = 0\} = \langle (-1, 0, 1) \rangle$, uma base para Nuc f pode ser ((-1, 0, 1)). Além disso,

$$\begin{pmatrix} 3 & 1 & 3 \\ 0 & 2 & 0 \\ 3 & 1 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} \boxed{3} & 1 & 3 \\ 0 & \boxed{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Logo,

$$C(A) = \langle (3,0,3), (1,2,1) \rangle$$

e uma base para C(A) pode ser ((3,0,3),(1,2,1)).

d) Aplicando o Teorema de Laplace à segunda linha da matriz $A - \lambda I$, obtém-se

$$p_A(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} 3 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 0 \\ 0 & 1 & 3 - \lambda \end{pmatrix} = (3 - \lambda)^2 (2 - \lambda).$$

Logo, 3 é um valor próprio duplo de A. Para determinar a multiplicidade geométrica deste valor próprio, calculemos o subespaço próprio associado a 3, i.e. $V_3 = \{\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 : (A - 3I)\mathbf{x} = \mathbf{0}\}$. Como

$$A - 3I = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow (A - 3I)\mathbf{x} = 0 \Longleftrightarrow x_2 = 0.$$

Logo, $V_3 = \{(x_1, 0, x_3) \in \mathbb{R}^3\} = \langle (1, 0, 0), (0, 0, 1) \rangle$, donde se conclui que dim $S_3 = 2$ e a multiplicidade geométrica do valor próprio 3 é igual a 2 (igual à sua multiplicidade algébrica).

Questão 6 Se ${\bf x}$ é um vetor próprio de A associado ao valor próprio λ , então ${\bf x}\neq {\bf 0}$ e $A{\bf x}=\lambda {\bf x}$. De $A+A^T=\alpha I_n$, obtém-se

$$(A + A^T)\mathbf{x} = (\alpha I_n)\mathbf{x} \Leftrightarrow A\mathbf{x} + A^T\mathbf{x} = \alpha\mathbf{x} \Leftrightarrow \lambda\mathbf{x} + A^T\mathbf{x} = \alpha\mathbf{x} \Leftrightarrow A^T\mathbf{x} = \alpha\mathbf{x} - \lambda\mathbf{x} \Leftrightarrow A^T\mathbf{x} = (\alpha - \lambda)\mathbf{x}.$$

Logo, \mathbf{x} é um vetor próprio de A^T associado ao valor próprio $\alpha - \lambda$.

Exame [MIEINF 2015/2016]

Nas questões 1 a 4, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

Questão 1 Considere as matrizes

$$A = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 6 & 9 \\ 3 & 9 & 18 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 1 & -1 & 1/3 \\ -1 & 5/3 & -2/3 \\ 1/3 & -2/3 & 1/3 \end{pmatrix}$$

a) $A = B^{-1}$.

b) car(A) = 2.

c) $\det A = 27$.

d) $\det B = -\frac{1}{9}$.

Questão 2 Considere o seguinte sistema de equações lineares nas incógnitas $x, y \in z$:

$$\begin{cases}
-x+3y-2z=\alpha-2 \\
x-y+2z=2 \\
2x-y+(2+\beta)z=2
\end{cases}, \quad \alpha,\beta \in \mathbb{R}.$$

a) Se $\beta=2$ e $\alpha=-4$, o sistema é possível e determinado e (0,-2,0) é a sua solução.

b) Se $\beta = -2$, o sistema é possível e determinado qualquer que seja o valor de α .

c) Se $\beta \neq 2$ e $\alpha = -4$, o sistema é impossível.

d) O sistema nunca é duplamente indeterminado.

Questão 3 Sejam $\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3$ três vetores <u>linearmente</u> independentes do espaço vetorial \mathbb{R}^4 .

a) $\dim\langle \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_1 + \mathbf{u}_2 \rangle = 4$.

b) Os vetores $\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3$ geram um subespaço de \mathbb{R}^4 de dimensão 3.

c) O vetor nulo não pode escrever-se como combinação linear de $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

d) Qualquer vetor de \mathbb{R}^4 é combinação linear de $\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3$.

Questão 4 Considere a matriz $A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 0 \\ 3 & 4 & 0 \end{pmatrix}$.

V F

F

F

a) Os valores próprios de A são -1, 1, 3.

b)
$$\det(A + 3I_3) = 0$$
.

c) O subespaço próprio associado ao maior valor próprio é $\langle (2,0,2) \rangle$.

$$d)$$
 A é diagonalizável.

 \bigcirc

Questão 5 Considere, no espaço vetorial \mathbb{R}^4 , os seguintes subespaços:

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : x + y - z = 0\}$$
 e $V = \langle (1, 0, 1, 2), (0, 1, 1, 0), (3, -3, 0, 6) \rangle$.

- a) Determine uma base do subespaço U.
- b) Diga, justificando, se U = V.
- c) Determine $k \in \mathbb{R}$ tal que $(1,2,3,k) \in V$.

Questão 6 Considere, para cada $k \in \mathbb{R}$, a matriz $A_k = \left(\begin{array}{ccc} 3 & 0 & k \\ 1 & 2 & 1 \\ k & 0 & 3 \end{array} \right)$.

- a) Determine, em função do valor de k, $car(A_k)$.
- b) Justifique que A_0 é uma matriz invertível e calcule a terceira coluna de A_0^{-1} .
- c) Seja A_k a matriz de uma aplicação linear ϕ_k .
 - i. Determine $\phi_k(x, y, z)$.
 - ii. Indique os valores de k para os quais a aplicação ϕ_k é injetiva.
 - iii. Determine Nuc ϕ_3 e diga qual a sua dimensão.

Questão 7 Seja A uma matriz quadrada de ordem n, anti-simétrica.

- a) Mostre que, se n for impar, então det A=0.
- b) Mostre, através de um exemplo, que, se n for par, então não se tem necessariamente det A=0.

Exame [MIEINF 2015/2016] :: resolução

Questão 1 V F V F Questão 2 F V F V Questão 3 F V F F Questão 4 V F V V

Questão 5

a) Temos

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : x + y - z = 0\}$$

$$= \{(x, y, z, w) \in \mathbb{R}^4 : z = x + y\}$$

$$= \{(x, y, x + y, w) : x, y, w \in \mathbb{R}\}$$

$$= \{x(1, 0, 1, 0) + y(0, 1, 1, 0) + w(0, 0, 0, 1) : x, y, w \in \mathbb{R}\}$$

$$= \langle (1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 0, 1) \rangle,$$

o que mostra que os vetores $\mathbf{u}_1=(1,0,1,0), \mathbf{u}_2=(0,1,1,0)$ e $\mathbf{u}_3=(0,0,0,1)$ geram U. Por outro lado, a matriz com esses vetores dispostos em linha

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

é uma matriz (em escada) cuja característica é igual a 3. Isso significa que os vetores $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ são linearmente independentes. Assim, podemos afirmar que ((1,0,1,0),(0,1,1,0),(0,0,0,1)) é uma base de U.

b) Como

$$\begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 3 & -3 & 0 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & -3 & -3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

temos que ((1,0,1,2),(0,1,1,0)) é uma base de V, pelo que dim V=2; o resultado da alínea anterior diz-nos que dim U=3, pelo que $U\neq V$.

c) Mostrámos, na alínea anterior, que $V = \langle (1,0,1,2), (0,1,1,0) \rangle$. Seja A a matriz cujas colunas são os vetores (1,0,1,2) e (0,1,1,0) e seja $\mathbf{u} = (1,2,3,k)^T$. Temos que

$$\mathbf{u} \in V \iff \mathbf{u} \in \mathcal{C}(\mathcal{A}) \iff$$
 o sistema $A\mathbf{x} = \mathbf{u}$ tem solução \iff $\operatorname{car}(A) = \operatorname{car}(A|\mathbf{u}).$

Mas,

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 3 \\ 2 & 0 & k \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & k-2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & k-2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & k-2 \\ 0 & 0 & 0 \end{pmatrix}$$

Assim, podemos concluir que

$$(1, 2, 3, k) \in V \iff k - 2 = 0 \iff k = 2.$$

Outra forma de resolver esta questão:

Temos

$$\mathbf{v} = (1, 2, 3, k) \in V \iff \mathsf{car}(A) = \mathsf{car}\left(\frac{A}{\mathbf{v}}\right),$$

onde $A=\begin{pmatrix}1&0&1&2\\0&1&1&0\end{pmatrix}$. Tem-se

$$\left(\begin{array}{c} A \\ \hline \mathbf{v} \end{array}\right) = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 3 & k \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 2 & k - 2 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & k - 2 \end{pmatrix}$$

Assim, $\mathbf{v} = (1, 2, 3, k) \in V \iff k - 2 = 0 \iff k = 2$

Questão 6 a) Convertamos A_k na forma em escada:

$$A_k = \left(\begin{array}{ccc} 3 & 0 & k \\ 1 & 2 & 1 \\ k & 0 & 3 \end{array}\right) \to \left(\begin{array}{ccc} 3 & 0 & k \\ 0 & 0 & 1 - \frac{k}{3} \\ 0 & 0 & 3 - \frac{k^2}{3} \end{array}\right).$$

Temos

$$3 - \frac{k^2}{3} = 0 \iff 9 - k^2 = 0 \iff k = -3 \text{ ou } k = 3.$$

Assim:

Para $k \neq -3$ e $k \neq 3$, tem-se car $A_k = 3$; para k = 3 ou k = -3, tem-se car $A_k = 2$.

b) Como vimos na alínea anterior, tem-se car $A_0=3$; sendo A_0 uma matriz quadrada com característica igual à ordem, podemos concluir que A_0 é invertível. A terceira coluna de A_0^{-1} pode obter-se resolvendo o sistema $A_0\mathbf{x}=\mathbf{e}_3$ onde $\mathbf{e}_3=(0,0,1)^T$. Tem-se

$$\left(\begin{array}{ccc|c} 3 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 3 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{array}\right)$$

A última matriz acima é a matriz ampliada do seguinte sistema

$$\begin{cases} 3x_1 = 0 \\ 2x_2 + x_3 = 0 \\ 3x_3 = 1 \end{cases}$$

Resolvendo este sistema por substituição inversa, obtém-se

$$x_1 = 0, \ x_2 = -1/6, \ x_3 = 1/3.$$

Logo, a terceira coluna de A_0^{-1} é: $\begin{pmatrix} 0 \\ -1/6 \\ 1/3 \end{pmatrix}$.

c) i. Como

$$\begin{pmatrix} 3 & 0 & k \\ 1 & 2 & 1 \\ k & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x + kz \\ x + 2y + z \\ kx + 3z \end{pmatrix},$$

tem-se $\phi_k(x, y, z) = (3x + kz, x + 2y + z, kx + 3z).$

ii. Temos que

$$\phi_k$$
 injetiva \iff dim $Nuc(\phi_k) = 0 \iff$ car $A_k = 3$.

Usando os resultados da alínea a), concluímos que ϕ_k é injetiva se e só se $k \neq -3$ e $k \neq 3$.

iii. Temos que

Nuc
$$\phi_3 = \{ \mathbf{x} \in \mathbb{R}^3 : \phi_3(\mathbf{x}) = \mathbf{0} \} = \{ \mathbf{x} \in \mathbb{R}^3 : A_3 \mathbf{x} = \mathbf{0} \}.$$

Temos, então, de encontrar as soluções do sistema homogéneo $A_3\mathbf{x}=\mathbf{0}$. Na alínea a) já convertemos A_k na forma em escada; fazendo k=3, tem-se a matriz

$$\left(\begin{array}{ccc} 1 & 2 & 1 \\ 0 & -6 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Calculando as soluções do sistema homogéneo correspondente, vem

$$x_3 = \alpha, x_2 = 0, x_1 = -\alpha, \alpha \in \mathbb{R}.$$

Assim, tem-se

Nuc
$$\phi_3 = \{(-\alpha, 0, \alpha) : \alpha \in \mathbb{R}\} = \langle (-1, 0, 1) \rangle$$
,

de onde se conclui de imediato que dim Nuc $\phi_3 = 1$.

Questão 7 a) Tem-se

$$\begin{array}{l} A \text{ anti-sim\'etrica} & \Leftrightarrow A = -A^T \\ & \Rightarrow \det A = \det(-A^T) \\ & \Rightarrow \det A = (-1)^n \det A^T \\ & \Rightarrow \det A = (-1)^n \det A \\ & \Rightarrow \det A \stackrel{=}{}_{\substack{(n \text{ impar})}} - \det A \\ & \Rightarrow 2 \det A = 0 \\ & \Rightarrow \det A = 0. \end{array}$$

b) Por exemplo, a matriz

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

é uma matriz anti-simétrica e tem-se det A=1.

Exame [OCV 2011/2012]

Nas questões 1 a 5, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

Questão 1 Considere as matrizes

$$A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 0 & -2 \\ 2 & -2 & 2 \end{pmatrix} \quad \text{e} \quad B = \begin{pmatrix} 1/8 & 1/4 & 1/8 \\ 1/4 & 0 & -1/4 \\ 1/8 & -1/4 & 1/8 \end{pmatrix}.$$

$$V \quad \text{F}$$

$$a) \quad \det A = -32.$$

$$b) \quad A = B^{-1}.$$

$$c) \quad \det B = -3/8.$$

Questão 2 Considere o seguinte sistema de equações lineares

d) $\mathbf{x} = (1,0,3)$ é um vetor próprio de A.

$$\begin{cases} x-y+2z=1\\ -x+3y-2z=\alpha-2\\ 2x-y+(2+\beta)z=2 \end{cases}, \quad \alpha,\beta\in\mathbb{R}.$$
 V

a)	O sistema é possível e determinado para $\beta \neq 2$.	\bigcirc	\bigcirc
b)	O sistema é possível e indeterminado para $eta=2$ e $lpha=1$ e		
	(4,1,-1) é uma das suas soluções.	\bigcirc	\bigcirc

c) O sistema é possível e indeterminado para $\beta=2$ e $\alpha=1$ e (-6,0,3) é uma das soluções do sistema homogéneo associado.

d) O sistema é impossível para
$$\beta=-2$$
 e $\alpha=2$.

Questão 3 Seja A uma matriz quadrada de ordem 3, tal que det A=5.

V

b) O espaço das linhas de A tem dimensão 3.

$$\circ$$

F

c) 0 é um dos valores próprios de A.

d) $\det(\frac{1}{5}\operatorname{adj} A) = \frac{1}{5}$.

a) $det(2A^T) = 10$.

Questão 4 Seja $U = \langle (1, 1, -1, 1), (2, 1, 3, 0), (4, 3, 1, 2), (3, 1, 7, -1) \rangle$.

a) B = ((1, 1, -1, 1), (2, 1, 3, 0)) é uma base de U.

b) $U = \langle (1,1,-1,1), (2,1,3,0), (-1,1,-9,3) \rangle$.

c) $\dim U = 3$. d) $(4,1,11,k) \in U$ se e só se k = -2.

$\overline{}$	\bigcirc

Questão 5 Considere a aplicação linear $T: \mathbb{R}^3 \to \mathbb{R}^4$ definida por

 $T(x, y, z) = (x - y + 3z, 2x + 2y + 2z, -x + y - 3z, 3x + 4y + 2z), \quad \forall (x, y, z) \in \mathbb{R}^3.$

V F

a) dim Im T=2.

\bigcirc	\bigcirc

b) Nuc $T = \langle (-2, 1, 1) \rangle$.

\bigcirc	
\cup	

c) T é uma aplicação sobrejetiva.

\bigcirc	\bigcirc
\circ	\sim

d) $(-3,2,3,5) \in \text{Im } T$.

Questão 6 Considere a matriz

$$A = \begin{pmatrix} -1 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}.$$

- a) Determine os valores próprios de A.
- b) Determine o subespaço próprio associado ao menor valor próprio de A e indique uma sua base.
- c) Justifique que A é uma matriz invertível e determine a segunda coluna da matriz A^{-1} .

Questão 7 Sejam $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ vetores linearmente independentes de um espaço vetorial V. Prove que:

- a) Sendo $\beta \neq 0$, os vetores $\beta \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, são linearmente independentes.
- b) Os vetores $\mathbf{v}_1+\mathbf{v}_2,\mathbf{v}_2,\ldots,\mathbf{v}_n$ são linearmente independentes.

Exame [Exame [OCV 2011/2012]] :: resolução

Questão 1 VVFF Questão 2 VFVF Questão 3 FVFV

Questão 4 VVFV Questão 5 VVFV

Questão 6 a)

$$p(\lambda) = \det \begin{pmatrix} -1 - \lambda & -1 & 0 \\ -1 & -\lambda & -1 \\ 0 & -1 & -1 - \lambda \end{pmatrix}$$

$$= (-1 - \lambda)(-\lambda)(-1 - \lambda) - \left[(-1 - \lambda) + (-1 - \lambda) \right]$$

$$= (-1 - \lambda)(-\lambda)(-1 - \lambda) - 2(-1 - \lambda)$$

$$= (-1 - \lambda)\left[(-\lambda)(-1 - \lambda) - 2 \right]$$

$$= (-1 - \lambda)(\lambda^2 + \lambda - 2)$$

Então

$$p(\lambda) = 0 \iff -1 - \lambda = 0 \lor \lambda^2 + \lambda - 2 = 0 \iff \lambda = -1 \lor \lambda = -2 \lor \lambda = 1$$

Assim, os valores próprios de A são $\lambda_1=-2,\ \lambda_2=-1$ e $\lambda_3=1.$

b) O menor v.p. de A é $\lambda_1=-2$. Temos, então, de procurar o conjunto solução do sistema homogéneo cuja matriz é

$$A + 2I = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

Tem-se

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

A matriz condensada corresponde ao sistema

$$\begin{cases} x - y = 0 \\ y - z = 0 \end{cases}$$

Fazendo $z=\alpha$ e substituindo nas equações anteriores obtém-se $x=\alpha,y=\alpha$. Assim,

$$V_{-2} = \{(\alpha, \alpha, \alpha) : \alpha \in \mathbb{R}\} = \langle (1, 1, 1) \rangle.$$

Como o vetor (1,1,1) é não nulo (logo linearmente independente), concluímos que esse vetor constitui uma base de V_{-2} .

c) A é invertível porque não tem zero como valor próprio. A segunda coluna da inversa de A é a solução do sistema $A\mathbf{x}=\mathbf{e}_2$, onde $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$. Resolvendo esse sistema, obtém-se que essa coluna é: $\begin{pmatrix}-1/2\\1/2\\-1/2\end{pmatrix}$.

Questão 7 a) Ver Questão 4.13 a).

b) Tem-se

$$\begin{split} \alpha_1(\mathbf{v}_1+\mathbf{v}_2) + \alpha_2\mathbf{v}_2 + \dots + \alpha_n\mathbf{v}_n &= \mathbf{0} \Rightarrow \alpha_1\mathbf{v}_1 + (\alpha_1+\alpha_2)\mathbf{v}_2 + \dots + \alpha_n\mathbf{v}_n &= \mathbf{0} \\ &\Rightarrow \alpha_1 = 0, \alpha_1+\alpha_2 = 0, \dots \alpha_n = 0 \quad \text{(porque } \mathbf{v}_1, \dots, \mathbf{v}_n \text{ são I. i.)} \\ &\Rightarrow \alpha_1 = 0, \alpha_2 = 0, \dots, \alpha_n = 0 \quad \text{(porque } \alpha_1 \neq 0\text{)} \end{split}$$

Logo, os vetores $\mathbf{v}_1+\mathbf{v}_2,\mathbf{v}_2,\ldots,\mathbf{v}_n$, são linearmente independentes.

Bibliografia

- 1. Álgebra Linear, Isabel Cabral, Cecília Perdigão, Carlos Saiago. Escolar Editora (2009).
- 2. Notas de Álgebra Linear, M. Joana Soares, http://repositorium.sdum.uminho.pt
- 3. Introdução à Álgebra Linear, M. Raquel Valença, coleção de textos do Departamento de Matemática, n^{o} 1 .