FINM 36702 1 Portfolio Credit Risk: Modeling and Estimation TA Session 2

April 2, 2023 Lisheng Su

lisheng@uchicago.edu

The views expressed are the author's and do not necessarily represent the views of the management of the Federal Reserve Bank of Chicago or the Federal Reserve System.

Part I. Homework 1 Review

Q1. Implicitly Inverting a Function

- Given PDs and PDJ, solve ρ_{ij} from $PDJ_{ij} = \int_{-\infty}^{\Phi^{-1}[PD_i]} \int_{-\infty}^{\Phi^{-1}[PD_j]} \phi[Z_i, Z_j, \rho_{ij}] dZ_j dZ_i \rightarrow \rho_{ij}$
 - FIRST OF ALL: Is this function invertible?
 - Explicitly invertible (rearrange the formula) vs. implicitly invertible (arg $\min_{\rho_{ij} \in [0,1]} f \coloneqq \|PDJ_{ij}(\rho_{ij}) 0.06\|$)?

•
$$PDJ_{ij} = \int_{-\infty}^{\Phi^{-1}[PD_i]} \int_{-\infty}^{\Phi^{-1}[PD_j]} \phi[Z_i, Z_j, \rho_{ij}] dZ_j dZ_i, \rightarrow \rho_{12}$$

• A "special case: when
$$PD_2 = 0.2$$
, $PD_3 = 0.3$, and $PDJ_{23} = PD_2 * PD_3 = 0.06$, $\rightarrow \rho_{23} = 0$

•
$$DCorr_{[D_i,D_j]} = \frac{PDJ_{ij} - PD_i \cdot PD_j}{\sqrt{PD_i(1 - PD_i)PD_j(1 - PD_j)}}$$

Q1 Technical notes: Numerically invert the double integral to solve for ρ_{ij} from a given value of PDJ_{ij}

- Step 1, implement the double integral
 - Option 1: Do it the "hard way".
 - Part 1. Code the joint normal formula as a function into a software tool, such as Python, Matlab, R, or Mathematica, etc.

$$\begin{split} f(z_1,z_2) &= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho_{12}^2}} e^{-\frac{1}{2\left(1-\rho_{12}^2\right)}\left[\left(\frac{z_1-\mu_1}{\sigma_1}\right)^2 - 2\rho_{12}\left(\frac{z_1-\mu_1}{\sigma_1}\right)\left(\frac{z_2-\mu_2}{\sigma_2}\right) + \left(\frac{z_2-\mu_2}{\sigma_2}\right)^2\right]} \\ &= \frac{1}{2\pi\sqrt{1-\rho_{12}^2}} e^{-\frac{1}{2\left(1-\rho_{12}^2\right)}\left[z_1^2 - 2\rho_{12}z_1z_2 + z_2^2\right]}, \text{ because Z}_1, \text{Z}_2 \sim \textit{N}[0,1] \end{split}$$

- Part 2. Integrate f using a built-in numerical integration function in your software tool.
- Option 2: Or do it the "easier way". Define the double integral using the built-in multivariate normal CDF in your software tool, e.g., MULTIVARIATE_NORMAL.CDF in Python.
- Step 2, numerically invert the double integral to solve for ρ , e.g., what value of ρ_{12} gives you $PDJ_{12} = 0.06$?
 - Option 1: Engineer your own numerical solver, e.g., loop through different ρ_{12} values in its domain [0, 1] but stop at the value when reaching the "tolerance".
 - Option 2: Utilize the built-in root finding routines in your software tool, e.g., FSOLVE in Python. Note when a software tool offers one-sided numerical algorithm, e.g., only arg max but no arg min, you can use the fact that arg min = arg max.

Q1. Equivalent Measures of Correlation

• Knowing one quantity of ρ , PDJ and DCorr means knowing the other two

Firm i & Firm j	Firm1 & Firm2	Firm1 & Firm3	Firm2 & Firm3	
$ ho_{i,i}$	0.60	0.43	0	
DCorr[D _i , D _i]	0.33	0.22	0	

Q2. Joint Probabilities of Default

• Given that each PD = 0.10 and ρ_{ii} 's =

$\begin{pmatrix} 1 & .4 & .5 \\ .4 & 1 & .6 \end{pmatrix} \rightarrow$	PD_1	PD_2	PD_3	$ ho_{1,2}$	$ ho_{1,3}$	$ ho_{2,3}$
$\begin{pmatrix} .4 & 1 & .6 \\ .5 & .6 & 1 \end{pmatrix} \rightarrow$	0.1	0.1	0.1	0.4	0.5	0.6

To find the three values of *PDJ*, plug *PD*s and
$$\rho_{ij}$$
 into:
$$PDJ_{ij} = \int_{-\infty}^{\Phi^{-1}[PD_i]} \int_{-\infty}^{\Phi^{-1}[PD_j]} \phi[Z_i, Z_j, \rho_{ij}] dZ_j dZ_i = \begin{bmatrix} PDJ_{12} = 0.027 \\ PDJ_{13} = 0.032 \\ PDJ_{23} = 0.039 \end{bmatrix}$$

State the range of possible values for the probability that all three firms default. 2.

$$PDJ_{123} \in [0, \min\{PDJ_{12} = 0.027, PDJ_{13} = 0.032, PDJ_{23} = 0.039\} = PDJ_{12} = 0.027]$$

3. State the probability that all three default under the Gauss copula.

$$PDJ_{123} = \int_{-\infty}^{\Phi^{-1}[0.1]} \int_{-\infty}^{\Phi^{-1}[0.1]} \int_{-\infty}^{\Phi^{-1}[0.1]} \phi_3 \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & .4 & .5 \\ .4 & 1 & .6 \\ .5 & .6 & 1 \end{pmatrix} dZ_1 dZ_2 dZ_3 = \mathbf{0.016}$$

Q3. The Rating Transition Grid

- Rating, a firm's credit worthiness, is modeled as a function of the latent variable $Z \sim N[0, 1]$. For example,
 - Transition $Pr[rating = D] = P[D_1 = 1] = \int_{-\infty}^{\Phi^{-1}[0.1]} \phi[z_1] dz_1 = 10\%$
 - Transition $Pr[rating = B] = \int_{\Phi^{-1}[0.1]}^{\Phi^{-1}[0.5]} \phi[z_1] dz_1 = 40\%$, and $Transition Pr[rating = A] = \int_{\Phi^{-1}[0.5]}^{+\infty} \phi[z_1] dz_1 = 50\%$

Q3. Applying the Intuitions

Given Correlation and Transition probabilities:							
ρ = .40	ρ = .40 A B D						
Α	0.5	0.4	0.1				
В	0.3	0.5	0.2				

 $PDJ_{AB}[D_1 = 1, D_2 = 1] = \int_{-\infty}^{\Phi^{-1}[.2]} \int_{-\infty}^{\Phi^{-1}[.1]} \phi[Z_A, Z_B, 0.4] dZ_A dZ_B$

- {AA, AB, AD, BA, BB, BD, DA, DB, DD}
- Probabilities of the joint events: $\sum_{1}^{9}(\cdot) = 1$

Q4. Determining the Copula Assumption

Part 1: Assume Gauss copula and find the correlation matrix

r	Firm1	Firm2	Firm3	Firm4	eig(r)
Firm1	1	0.31	0.24	0.18	0.61
Firm2	0.31	1	0.10	0.044	0.87
Firm3	0.24	0.10	1	-0.036	1.04
Firm4	0.18	0.044	-0.036	1	1.48

- Part 2: Are the defaults of the four firms connected by a Gauss copula
 - Yes, the connection between the defaults of the four firms is consistent with a Gauss copula as the PDJs are all invertible to solve for ρ 's and the resulting correlation matrix is legitimate- being positive definite.

ALSO CORRECT:

 Yes, a Gauss copula. However, it is also possible that the defaults are somehow connected by a non-Gauss copula.

Part II. Perspectives and Hints for Homework 2

Simulating Defaults: 2-Firm Case

- From the procedure described on L2.S5, "The standard portfolio simulation":
 - The meaning of integral: $PDJ_{12} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \phi[Z_1, Z_2, \rho_{12}] dZ_2 dZ_1$, $\rho_{12} = 0.1$:

- Technical hints on simulating two correlated random variables:
 - Option 1 (the hard way): Simulate using the given correlation matrix in Cholesky deposition, e.g., cholesky(A) produces upper triangular R, s.t. $A = R^{T*}R$. Let Z be the matrix of five IID standard normal variables, then $Z_{-} = Z^{*}R$ will have correlation A
 - Question: what condition must the correlation matrix A satisfy?
 - Option 2 (the easy way): Simulated with the built-in functions of your software tool, e.g., the MULTIVARIATE_NORMAL method in Python

Asymptotic Answers to L2.S7

Simulation with 4-firm portfolio

Firm	PDi	Correlation Matrix $ ho_{{\it i},{\it j}}$				Simulated Z _i	$\Phi^{\text{-1}}[PD_i]$	D _i
1	0.1	1	0.1	0.2	0.3	-1.3559	-1.2816	1
2	0.2	0.1	1	0.4	0.5	-0.6171	-0.8416	0
3	0.3	0.2	0.4	1	0.6	-0.4817	-0.5244	0
4	0.4	0.3	0.5	0.6	1	-0.0562	-0.2533	0
		Nu	Number of defaults in this simulation run =					

- The expected number of defaults (1,000,000 simulations): 1.0009
- The standard deviation of the number of defaults: 1.0774
- The standard deviation assuming all pairwise correlations = zero: 0.8379

Q1. Asymptotic Approach

firm	1	2	3	4	5
pd	0.5	0.4	0.3	0.2	0.1

Pairwise Correlation Matrix, part a

$ ho_{i,j}$	Firm1	Firm2	Firm3	Firm4	Firm5
Firm1	1	0.05	0.10	0.15	0.20
Firm2	0.05	1	0.25	0.30	0.35
Firm3	0.10	0.25	1	0.40	0.45
Firm4	0.15	0.30	0.40	1	0.50
Firm5	0.20	0.35	0.45	0.50	1

Pairwise Correlation Matrix, part b

$ ho_{i,j}$	Firm1	Firm2	Firm3	Firm4	Firm5
Firm1	1	0.00	0.00	0.00	0.00
Firm2	0.00	1	0.00	0.00	0.00
Firm3	0.00	0.00	1	0.00	0.00
Firm4	0.00	0.00	0.00	1	0.00
Firm5	0.00	0.00	0.00	0.00	1

Simulate 10,000 times

 Part a: What is the standard deviation of the number of defaults?

 Part b: What would be the standard deviation of the number of defaults if all off-diagonal correlations were set equal to zero instead of the values shown?

Q2. Build Intuitions by Plotting

$ ho_{i,j}$	Firm1	Firm2	Firm3	Firm4	Firm5
Firm1	1	ρ	ρ	ρ	ρ
Firm2	ρ	1	ρ	ρ	ρ
Firm3	ρ	ρ	1	ρ	ρ
Firm4	ρ	ρ	ρ	1	ρ
Firm5	ρ	ρ	ρ	ρ	1

• Plot the standard deviation of the number of defaults in the portfolio as a function of ρ

• For each value of ρ , simulate 1,000 times

 Plotting is very useful in building models

Q3. Simulate or Compute Portfolio Losses

Portfolio	Loan Loan 1 Loan 2 Loan 3 Loan 4 Loan 5	Firm 1 Firm 2 Firm 3 Firm 4 Firm 5	PD 0.1 0.2 0.3 0.4 0.5	ELGD 0.1 0.2 0.3 0.4 0.5	\$700 \$600 \$500 \$400 \$300
	Loan 6	Firm 4	0.4	0.6	\$200
	<u>Loan 7</u> Total	<u>Firm 5</u>	<u>0.5</u>	<u>0.7</u>	<u>\$100</u> \$2800
$ ho_{ij}$	Firm 1	Firm 2	Firm 3	Firm 4	Firm 5
Firm 1	1	0.15	0.2	0.25	0.3
Firm 2	0.15	1	0.25	0.3	0.35
Firm 3	0.2	0.25	1	0.35	0.4
Firm 4	0.25	0.3	0.35	1	0.45
Firm 5	0.3	0.35	0.4	0.45	1

- State the four quantities below:
 - Prob[$D_4 = 1$ and $D_5 = 1$]? (What is PDJ for these two firms?)
 - Prob[$D_4 = 1$ and $D_5 = 1$ | $D_3 = 1$]? (That is, what is the probability that both Firm 4 and Firm 5 default, given that Firm 3 defaults?)
 - What is the portfolio expected loss rate as a fraction of the \$2800 exposure?
 - What is the correlation between D_3 and D_4 ?
- Hint: Each quantity can be either simulated or computed analytically

Q4. Suppose that $PD_X=0.1$, $PD_Y=0.2$, and the latent variables responsible for default obey the 36702 distribution: $f_{X,Y}[x, y] = (1 + 3 x - y) / 2$. What are the values of PDJ, DCorr, and ρ ?

- To solve for ρ , follow the similar strategy in HW1.Q1
 - HW1.Q1: Numerically invert the function $PDJ_{ij}=\int_{-\infty}^{\Phi^{-1}[PD_i]}\int_{-\infty}^{\Phi^{-1}[PD_j]}\phi\big[Z_i,Z_j,rac{
 ho_{ij}}{
 ho_{ij}}\big]\,dZ_j\,dZ_i orac{
 ho_{ij}}{
 ho_{ij}}$
 - HW2.Q4.Step1: Compute PDJ_{xy}; Step2: $PDJ_{xy} = \int_{-\infty}^{\Phi^{-1}[PD_y]} \int_{-\infty}^{\Phi^{-1}[PD_x]} \phi[Z_x, Z_y, \rho_{xy}] dZ_x dZ_x \rightarrow \rho_{xy}$
- It is acceptable to use a combination of different computing languages / software tools in the homework
 - For example, some questions in Python and some in Mathematica
 - Below is a simulation example in Mathematica for Q1:

```
In[1]:= (*Define the correlation matrix A*)

A = {{1, 0.5, 0.3, 0.2, 0.1}, {0.5, 1, 0.4, 0.3, 0.2}, {0.3, 0.4, 1, 0.5, 0.3}, {0.2, 0.3, 0.5, 1, 0.4}, {0.1, 0.2, 0.3, 0.4, 1}};

(*Create a MultinormalDistribution object with the mean vector mu={0,0,0,0,0}*)

dist = MultinormalDistribution[{0, 0, 0, 0, 0}, A];

(*Generate 10,000 random samples from the distribution*)

samples = RandomVariate[dist, 1]

Out[3]= {{0.484656, 0.831133, -1.17957, -0.709066, -1.84841}}
```