Proceeding from:
$$\frac{d^2u}{dt} + 12 \frac{du}{dt} + 4 \frac{u^2u}{dt} = 0$$

or $\frac{d}{dt} \left(\frac{du}{dt} + 4 \frac{u}{dt} \right) + 4 \frac{du}{dt} + 4 \frac{u}{dt} = 0$

Let $\frac{du}{dt} + 4 \frac{u}{dt} = 0$

Then $\frac{df}{dt} + 4 \frac{u}{dt} = 0$
 $\frac{du}{dt} + 4 \frac{u}{dt} = 0$
 $\frac{du}{dt} + 4 \frac{u}{dt} = 0$

So we get from $\frac{du}{dt} + 4 \frac{u}{dt} = 0$
 $\frac{du}{dt} + 4 \frac{u}{dt} = 0$

This can be written as

 $\frac{du}{dt} + 4 \frac{u}{dt} = 0$

Integrating both sides

 $\frac{du}{dt} = 0$
 $\frac{du}{dt} + 4 \frac{u}{dt} = 0$
 $\frac{du}{dt} + 4$

Scanned with CamScanner