Fonctions exponentielles, cours, classe de terminale STMG

1 Définition et propriétés algébriques

Définition:

On considère un réel a strictement positif et (a^n) la suite géométrique de raison a et de premier terme $a^0=1$. En reliant les points représentant cette suite dans un repère « régulièrement », on obtient, pour les abscisses $x\geq 0$, la courbe représentative d'une nouvelle fonction que l'on peut définir sur $\mathbb R$ en tenant compte de $a^{-n}=\frac{1}{a^n}$.

On appelle fonction exponentielle de base a cette fonction.

Elle est définie sur $]-\infty;+\infty[.$

Á tout réel x, elle associe le nombre noté qui se lit «».

Exemples:

- $2^{0,5} \approx \dots$
- $0,5^{0,5} \approx$
- $2^{1,5} \approx \dots$
- $0,5^{1,5} \approx$

Propriétés :

Soit a > 0 et x et y deux réels. On a :

- $a^{-x} = \dots$
- $\bullet \ a_x^a a^y = \dots ;$
- $\bullet \ \frac{a^x}{a^y} = \dots ;$
- Pour tout entier relatif n, $(a^x)^n = \dots$;
- Pour tout réel b > 0, $(ab)^x = \dots$;

Exemples:

- $3^6 \times 3^5 = \dots$
- $2^x 3^x = ...$
- $3^5 \times 2^5 = \dots$
- $\frac{5^9}{5^6} =$
- $(2x)^3 = \dots$

2 Variations

Propriété:

Sur tout intervalle I, la fonction $x \mapsto a^x$ est :

- strictement sur $]-\infty;+\infty[$ si a>1;
- strictement sur $] \infty; +\infty[$ si 0 < a < 1;
- constante si a = 1.

Exemples [Savoir reconnaître les variations d'une fonction exponentielle] :

$$x \mapsto 0, 5^x$$
 est strictement sur $]-\infty; +\infty[$ et $x \mapsto 2^x$ est strictement sur $]-\infty; +\infty[$.

Propriété:

Soit a un réel strictement positif et k un réel non nul.

${\bf Exemples} \ [{\bf Savoir} \ {\bf reconnaître} \ {\bf les} \ {\bf variations} \ {\bf d'une} \ {\bf fonction} \ {\bf exponentielle}]:$

```
x \mapsto 3 \times 0, 5^x est strictement ...... sur ]-\infty; +\infty[ et x \mapsto -0, 2 \times 2^x est strictement ..... sur ]-\infty; +\infty[.
```


3 Application aux évolutions successives

3.1 Taux global

Propriété et définition :

	Le coefficient multiplicateur global est :	
	ou	
	Le $taux \ d'\'evolution \ global \ est$:	
	ou	
Exemp	oles :	
-	La population d'une ville augmente de $2,3\%$ en un an puis diminue de 4% les deu	v années
	uivantes.	x annecs
i.	urvanios.	
•	··	
•		
Ι	Le coefficient multiplicateur global est	
S	oit un taux global d'évolution de	
S	oit une baisse de (remarque : ce n'est pas la somme des taux successifs : $2,3$	3-4-4 =
-	-5, 7).	
• 5	Si la population de la ville était de 16000 habitants en 2010 et de 18000 habitants en 20)12, alors
	e taux global d'évolution entre ces deux années est	

Si une quantité subit n évolutions successives (augmentations ou diminutions) de taux t_1, t_2, \ldots, t_n à partir d'une valeur initiale y_0 , alors la quantité finale y_n est :

soit d'augmentation.

3.2 Application au calcul de taux moyens

Propriété:

Soient a un nombre réel strictement positif et n un entier naturel. L'équation $x^n = a$ admet une unique solution dans $[0; +\infty[$, le nombre appelé racine n-ième du nombre a.

$x^3=64$ si et seulement si $x=\dots$ c 'est à dire $x=\dots$ Propriété et définition : On considère une quantité qui subit n évolutions successives de taux t_1, t_2, \dots, t_n , et donc de taux global $t=(1+t_1)(1+t_2)\dots(1+t_n)-1$. On appelle alors coefficient multiplicateur moyen le nombre donné par :	Exemple:
Propriété et définition : On considère une quantité qui subit n évolutions successives de taux t ₁ , t ₂ ,, t _n , et donc de taux global t = (1 + t ₁)(1 + t ₂) (1 + t _n) - 1. On appelle alors coefficient multiplicateur moyen le nombre donné par :	•
On considère une quantité qui subit n évolutions successives de taux t_1, t_2, \ldots, t_n , et donc de taux global $t = (1+t_1)(1+t_2)\ldots(1+t_n)-1$. On appelle alors coefficient multiplicateur moyen le nombre donné par :	c'est à dire $x = \dots$
et donc de taux global $t = (1+t_1)(1+t_2)\dots(1+t_n)-1$. On appelle alors coefficient multiplicateur moyen le nombre donné par :	Propriété et définition :
On appelle <i>taux moyen</i> le taux qui lui est associé, c'est à dire le nombre donné par :	et donc de taux global $t = (1 + t_1)(1 + t_2) \dots (1 + t_n) - 1$.
On appelle <i>taux moyen</i> le taux qui lui est associé, c'est à dire le nombre donné par :	
On appelle <i>taux moyen</i> le taux qui lui est associé, c'est à dire le nombre donné par :	ou
ou C'est le taux d'évolution, qui, s'il avait été identique à chacune des n évolutions, aurait donné la même valeur finale que les différents taux t₁, t₂, etc. successivement appliqués. Exemples: • Un prix initial de 100 € subit une augmentation de 2 % puis une baisse de 30 %. En outre, 0,8450 − 1 = −0,1550 soit 15,5 % de baisse annuelle en moyenne. • Un produit a vu son prix multiplié par 1,6 en 4 ans. Soit t le taux moyen de l'augmentation.	
ou	On appelle $taux\ moyen$ le taux qui lui est associé, c'est à dire le nombre donné par :
 C'est le taux d'évolution, qui, s'il avait été identique à chacune des n évolutions, aurait donné la même valeur finale que les différents taux t₁, t₂, etc. successivement appliqués. Exemples : Un prix initial de 100 € subit une augmentation de 2 % puis une baisse de 30 %. En outre, 0,8450 - 1 = -0,1550 soit 15,5 % de baisse annuelle en moyenne. Un produit a vu son prix multiplié par 1,6 en 4 ans. Soit t le taux moyen de l'augmentation. 	
 C'est le taux d'évolution, qui, s'il avait été identique à chacune des n évolutions, aurait donné la même valeur finale que les différents taux t₁, t₂, etc. successivement appliqués. Exemples : Un prix initial de 100 € subit une augmentation de 2 % puis une baisse de 30 %. En outre, 0,8450 - 1 = -0,1550 soit 15,5 % de baisse annuelle en moyenne. Un produit a vu son prix multiplié par 1,6 en 4 ans. Soit t le taux moyen de l'augmentation. 	ou
 aurait donné la même valeur finale que les différents taux t₁, t₂, etc. successivement appliqués. Exemples: Un prix initial de 100 € subit une augmentation de 2 % puis une baisse de 30 %. En outre, 0,8450 - 1 = -0,1550 soit 15,5 % de baisse annuelle en moyenne. Un produit a vu son prix multiplié par 1,6 en 4 ans. Soit t le taux moyen de l'augmentation. 	
 • Un prix initial de 100 € subit une augmentation de 2 % puis une baisse de 30 %. En outre, 0,8450 - 1 = -0,1550 soit 15,5 % de baisse annuelle en moyenne. • Un produit a vu son prix multiplié par 1,6 en 4 ans. Soit t le taux moyen de l'augmentation. 	aurait donné la même valeur finale que les différents taux t_1 , t_2 , etc. successivement
En outre, $0,8450-1=-0,1550$ soit $15,5$ % de baisse annuelle en moyenne. • Un produit a vu son prix multiplié par $1,6$ en 4 ans. Soit t le taux moyen de l'augmentation.	Exemples:
En outre, $0,8450-1=-0,1550$ soit $15,5$ % de baisse annuelle en moyenne. • Un produit a vu son prix multiplié par $1,6$ en 4 ans. Soit t le taux moyen de l'augmentation.	
\bullet Un produit a vu son prix multiplié par 1,6 en 4 ans. Soit t le taux moyen de l'augmentation.	
	· · · · · · · · · · · · · · · · · · ·
On a	
donc	
donc	

c'est à dire d'augmentation par an en moyenne.