

Using Overfitting to Evaluate Models

By Soe Wunna (19651)

Instructor: Dr. Chang, Henry

1. Introduction

In this presentation, we will discuss about using overfitting to evaluate Linear Regression Model and Non-Linear Regression Model for Machine Learning.

2. Linear Regression & Non-Linear Regression

Linear Regression is the supervised Machine Learning model in which the model finds the best fit linear line between the independent and dependent variable i.e it finds the linear relationship between the dependent and independent variable.

Non-Linear Regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations.

3. Overfitting Issue

Non-linear regression has more serious overfitting issue. Linear regression is less prone to overfitting than non-linear regression because it has a simpler model structure.

We are going to figure out which model is the best to choose for test phase.

	Training Pha	se		Validation Pha	ase		Test Phase
Real Data			Real Data			Real Data	
Set 1	Model 1:	Model 2: Non-	Set 2	Model 1:	Model 2: Non-	Set 3	The better model (Model 1 or Model 2) selected
50% of the	Linear	Linear	25% of the	Linear	Linear	25% of the	from the Validation Phase based on the analysis
collcted	Regression	Regression	collcted	Regression	Regression	collcted	of <u>overfitting</u> will be used to calculate ŷ
data			data			data	370

- After calculating a1, b1, a2, b2 in Training Phase, the values are not changed with the new Real Data Sets in Validation Phase and Test Phase.
- \blacksquare Only \hat{y} values are changed with the new Real Data Sets.

x	y	$\hat{y}=a1+b1*x$	$\hat{y}=a2+b2*x^2$	X	y	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	X	$\hat{y}=a1 + b1 * x$ or $\hat{y}=a2 + b2 * x^2$
1	1.8			1.5	1.7			1.4	
2	2.4			2.9	2.7			2.5	
3.3	2.3			3.7	2.5			3.6	
4.3	3.8			4.7	2.8			4.5	
5.3	5.3			5.1	5.5			5.4	
1.4	1.5			X	X	X	X	X	X
2.5	2.2			X	X	X	X	X	X
2.8	3.8			X	X	X	X	X	X
4.1	4.0			X	X	X	X	X	X
5.1	5.4			X	X	X	X	X	X

4. Training Phase

First and foremost, the values for X^2 , Y^2 , X^4 , X^4 , X^4 , Y^4 ,

Then we will calculate Slope(b) and Intercept(a) values for both Model 1 (Linear Regression) and Model 2 (Non-Linear Regression).

X and Y values are from Real **Data Set 1**, 50% of the collected data.

		T	raining Phas	e			
		22	24.00				
	X	Y	X^2	Y^2	XY	XXY	P*P
	1	1.8	1	3.24	1.8	1.8	1
	2	2.4	4	5.76	4.8	9.6	16
	3.3	2.3	10.89	5.29	7.59	25.047	118.5921
	4.3	3.8	18.49	14.44	16.34	70.262	341.8801
	5.3	5.3	28.09	28.09	28.09	148.877	789.0481
	1.4	1.5	1.96	2.25	2.1	2.94	3.8416
	2.5	2.2	6.25	4.84	5.5	13.75	39.0625
	2.8	3.8	7.84	14.44	10.64	29.792	61.4656
	4.1	4	16.81	16	16.4	67.24	282.5761
	5.1	5.4	26.01	29.16	27.54	140.454	676.5201
Sum	31.8	32.5	121.34	123.51	120.8	509.762	2329.9862

	Training Pha	se		Validation Ph	ase		Test Phase	
Real Data			Real Data			Real Data		
Set 1	Model 1:	Model 2: Non-	Set 2	Model 1:	Model 2: Non-	Set 3	The better model (Model 1 or Model 2) selected	
50% of the	Linear	Linear	25% of the	Linear	Linear	25% of the	from the Validation Phase based on the analysis	
collcted	Regression	Regression	collcted	Regression	Regression	collcted	of overfitting will be used to calculate ŷ	
data			data			data		

- After calculating a1, b1, a2, b2 in Training Phase, the values are not changed with the new Real Data Sets in Validation Phase and Test Phase.
- \bullet Only \hat{y} values are changed with the new Real Data Sets.

x	y	$\hat{y}=a1 + b1 * x$	$\hat{y}=a2 + b2 * x^2$	x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	$\hat{y}=a1 + b1 * x$ or $\hat{y}=a2 + b2 * x^2$
1	1.8			1.5	1.7			1.4	
2	2.4			2.9	2.7			2.5	
3.3	2.3			3.7	2.5			3.6	
4.3	3.8			4.7	2.8			4.5	
5.3	5.3			5.1	5.5			5.4	
1.4	1.5			X	X	X	X	X	X
2.5	2.2			X	X	X	X	X	X
2.8	3.8			X	X	X	X	X	X
4.1	4.0			X	X	X	X	X	X
5.1	5.4			X	X	X	X	X	X

Slope(b1) Intercept(a1)	0.8631777 0.505095				
Slope(b) = $(N\Sigma X)$	Υ - (ΣΧ)(ΣΥ)) /	$(N\Sigma X^2 - (\Sigma X)^2)$	*	The value of N is 1	0 for Training Phase.
Slope(b2)	0.1345624				
Intercept(a2)	1.617249				
Slone(h) = (NSP	V (5D)(5V)) /	(NSD2 (SD)2)			
		(1421 - (21))		$\hat{y}=a1+b1*x$	$\hat{y}=a2 + b2 * x^2$
Where $\underline{P} = X * X$				1.36826	1.751809
				2.23143	2.155489
				3.353551	3.0826074
Ry using the	values calcu	lated above w	e can	4.216721	4.1052634
by using the	values calcu	iaicu above, w	c can	5.079891	5.3970394
-	values for	both Model 1	and	1.713528	1.8809866
Model 2.				2.663015	2.458249
				2.921966	2.6721994
				4.044087	3.8792026
				4.907257	5.1171546
	Intercept(a1) Slope(b) = $(N\Sigma X)$ Intercept(a) = (ΣX) Slope(b2) Intercept(a2) Slope(b) = $(N\Sigma P)$ Intercept(a) = (ΣX) Where $P = X \times X$ By using the	Intercept(a1) 0.505095 Slope(b) = $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / N$ Intercept(a) = $(\Sigma Y - b(\Sigma X)) / N$ Slope(b2) 0.1345624 Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / N$ Intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$ Where $P = X \times X$ By using the values calculate \hat{y} values for	Intercept(a1) 0.505095 Slope(b) = $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$ Intercept(a) = $(\Sigma Y - b(\Sigma X)) / N$ Slope(b2) 0.1345624 Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P^2 - (\Sigma P)^2)$ Intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$ Where $P = X \times X$ Sy using the values calculated above, we calculate \hat{y} values for both Model 1	Intercept(a1) 0.505095 Slope(b) = $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$ Intercept(a) = $(\Sigma Y - b(\Sigma X)) / N$ Slope(b2) 0.1345624 Intercept(a2) 1.617249 Slope(b) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P^2 - (\Sigma P)^2)$ Intercept(a) = $(\Sigma Y - b(\Sigma P)) / N$ Where $P = X \times X$ By using the values calculated above, we can calculate \hat{y} values for both Model 1 and	*The value of N is 1 Slope(b) = $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X^2 - (\Sigma X)^2)$ Intercept(a) = $(\Sigma Y - b(\Sigma X)) / N$ Slope(b2)

5. Validation Phase

Values for X^2, Y^2, X*Y, X*X*Y, P*P and summation of each are calculated to be used in the equations.

Then we will calculate Slope(b) and Intercept(a) values for both Model 1 (Linear Regression) and Model 2 (Non-Linear Regression).

X and Y values are from Real Data Set 2, 25% of the collected data.

		Vali	idation Ph	ase			
	X	Y	X^2	Y^2	XY	XXY	P*P
	1.5	1.7	2.25	2.89	2.55	3.825	5.0625
	2.9	2.7	8.41	7.29	7.83	22.707	70.7281
	3.7	2.5	13.69	6.25	9.25	34.225	187.416
	4.7	2.8	22.09	7.84	13.16	61.852	487.968
	5.1	5.5	26.01	30.25	28.05	143.055	676.52
			0	0	0	0	0
			0	0	0	0	0
			0	0	0	0	0
			0	0	0	0	0
			0	0	0	0	0
Sum	17.9	15.2	72.45	54.52	60.84	265.664	1427.69

	Training Pha	se	Validation Phase			Test Phase		
Real Data			Real Data			Real Data		
Set 1	Model 1:	Model 2: Non-	Set 2	Model 1:	Model 2: Non-	Set 3	The better model (Model 1 or Model 2) selected	
50% of the	Linear	Linear	25% of the	Linear	Linear	25% of the	from the Validation Phase based on the analysis	
collcted	Regression	Regression	collcted	Regression	Regression	collcted	of overfitting will be used to calculate ŷ	
data			data			data		

- After calculating a1, b1, a2, b2 in Training Phase, the values are not changed with the new Real Data Sets in Validation Phase and Test Phase.
- \bullet Only \hat{y} values are changed with the new Real Data Sets.

x	y	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	у	ŷ=a1 + b1 * x	$\hat{y}=a2 + b2 * x^2$	x	$\hat{y}=a1 + b1 * x$ or $\hat{y}=a2 + b2 * x^2$
1	1.8			1.5	1.7			1.4	
2	2.4			2.9	2.7			2.5	
3.3	2.3			3.7	2.5			3.6	
4.3	3.8			4.7	2.8			4.5	
5.3	5.3			5.1	5.5			5.4	
1.4	1.5			X	X	X	X	X	X
2.5	2.2			X	X	X	X	X	X
2.8	3.8			X	X	X	X	X	X
4.1	4.0			X	X	X	X	X	X
5.1	5.4			X	X	X	X	X	X

	Slope(b1)	0.83229				
	Intercept(a1)	0.0302				
Equations for Linear Regression	Slope(b) = $(N\Sigma X)$		$N\Sigma X^2 - (\Sigma X)^2$		* The value of N is :	for Validation Phase.
Slope(b1) = $(N\Sigma XY - (\Sigma X)(\Sigma Y)) / (N\Sigma X2 - (\Sigma X)2)$	Intercept(a) = (Σ	Y - b(ΣX)) / N				
Intercept(a1) = $(\Sigma Y - b(\Sigma X)) / N$	Slope(b2)	0.17229				
	Intercept(a2)	0.54511				
Equations for Non-Linear Equation	Slope(b) = $(N\Sigma P)$	Υ - (ΣΡ)(ΣΥ)) / (Ι	$N\Sigma P^2 - (\Sigma P)^2$			
Slope(b2) = $(N\Sigma PY - (\Sigma P)(\Sigma Y)) / (N\Sigma P2 - (\Sigma P)2)$	Intercept(a) = (Σ) Where P = X * X	Y - b(Σ <u>P</u>)) / N				
Intercept(a2) = $(\Sigma Y - b(\Sigma P)) / N$						
Where $P = X * X$					$\hat{y}=a1+b1*x$	$\hat{\mathbf{y}} = \mathbf{a2} + \mathbf{b2} * \mathbf{x}^2$
WHELE I - A A					1.799845	1.920009
	By using the v	alues calculat	ted above, v	we can	3.008283	2.7488986
	calculate ŷ v	values for bo	oth Model	1 and	3.698819	3.4593754
	Model 2.				4.561989	4.5896794
					4.907257	5.1171546

5. Test Phase

X values are from Real **Data Set 3**, 25% of the collected data.

Before initiating the test phase, we need to calculate mean squared error (MSE) for both **Model 1** and **Model 2** by using the following equation.

MSE =	$\sum (y_i - \hat{y}_i)^2$
MSE -	\overline{n}

Then we want decide which Model to choose by using the following equation.

max(Training_Set_MSE, Validation_Set_MSE) / min(Training_Set_MSE, Validation_Set_MSE)

y - ŷ Model 2
0.002322372
0.059785629
0.612474343
0.093185743
0.009416645
0.145150789
0.066692546
1.271934193
0.014592012
0.08000152
2.355555794
0.235555579

Validation Set

Training Set

- ŷ Model 1	y - ŷ Model 2			
0.009969024	0.04840396			
0.095038408	0.002391073			
1.437166995	0.920401158			
3.104605236	3.202952355			
0.351344264	0.1465706			
4.998123927	4.320719146			

max(Training_Set_MSE, Validation_Set_MSE) / min(Training_Set_MSE, Validation_Set_MSE)

5. Test Phase

According to the calculation, **Model 1** is the better model. So, we will use the values of b and a from **Model 1**.

Slope(b1) = 0.8631777

Intercept(a1) = 0.505095

M	od	el	

Training_Set_MSE = 0.28225

Validation_Set_MSE = 0.99962

0.99962/0.28225 = **3.54**

Model 2

Training_Set_MSE = 0.23555

Validation Set MSE = 0.86414

0.86414/0.23555 = 3.668

1.4 1.71354378 2.5 2.66303925 3.6 3.61253472

Test Phase

Model 1

 $\hat{v}=a1+b1*x$

4.5 4.38939465

5.4 5.16625458

Final Result

x	y	ŷ=a1 + b1 * x	$\hat{y}=a2+b2*$ x^2	x	у	ŷ=a1 + b1 *	$\hat{y}=a2+b2*$ x^2	x	ŷ=a1 + b1 *
1	1.8	1.36826	1.751809	1.5	1.7	1.799845	1.920009	1.4	1.71354378
2	2.4	2.23143	2.155489	2.9	2.7	3.008283	2.7488986	2.5	2.66303925
3.3	2.3	3.353551	3.0826074	3.7	2.5	3.698819	3.4593754	3.6	3.61253472
4.3	3.8	4.216721	4.1052634	4.7	2.8	4.561989	4.5896794	4.5	4.38939465
5.3	5.3	5.079891	5.3970394	5.1	5.5	4.907257	5.1171546	5.4	5.16625458
1.4	1.5	1.713528	1.8809866	X	X	X	X	X	X
2.5	2.2	2.663015	2.458249	X	X	X	X	X	X
2.8	3.8	2.921966	2.6721994	X	X	X	X	X	X
4.1	4	4.044087	3.8792026	X	X	X	X	X	X
5.1	5.4	4.907257	5.1171546	X	X	X	X	X	X

6. Machine Learning Model Selection

Model selection is the process of selecting one final machine learning model from among a collection of candidate machine learning models for a training dataset. Model selection is a process that can be applied both across different types of models (e.g. logistic regression, SVM, KNN, etc.)

7. Conclusion

Conclusion Machine learning is a powerful tool for making predictions from data. However, it is important to remember that machine learning is only as good as the data that is used to train the algorithms.

8. References

- 1. https://hc.labnet.sfbu.edu/~henry/sfbu/course/data_science/algorithm/slide/linear_regression_example.html#lf
- 2. https://elitedatascience.com/overfitting-in-machine-learning
- 3. https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-a lgorithms/
- 4. https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
- 5. https://www.javatpoint.com/overfitting-and-underfitting-in-machine-learning