Praxis Final Exam

11/27/2020

- 1) Let $\sigma \in S_n$ be a cycle of length n, and $\tau \in S_n$ one of length n-1. Determine $C_{S_n}(\sigma)$ and $C_{S_n}(\tau)$.
- 2) Let $n \geq 3$ be a natural number.
 - (i) Show that a cycle of length n-1 is in A_n if and only if n is even.
 - (ii) Assume that n is even and let

$$\alpha_n = (1, 2, 3, \dots, n-1)$$
 and $\beta_n = (1, 2, 3, \dots, n-2, n)$.

These are cycles of length n-1 and so in A_n by (i). Show that α_n and β_n are not conjugate in A_n , and that the disjoint union

$$\operatorname{Conj}_{A_n}(\alpha_n) \cup \operatorname{Conj}_{A_n}(\beta_n)$$

coincides with the set of all cycles of length n-1 in S_n .

- 3) Determine all groups G with $|\operatorname{Aut}(G)| = 1$.
- 4) Let G be a finite group and K, L subgroups which are conjugate to each other. Let further P be a Sylow subgroup of G for some prime divisor of |G|. Show that if $yKy^{-1} = K$ and $yLy^{-1} = L$ for all $y \in P$ then there exists $u \in N_G(P)$, such that $uKu^{-1} = L$.
- 5) Show that groups of order 12 or 196 are not simple.
- 6) (i) Let q < p be two prime numbers, such that q does not divide p-1. Show that a group of order $p \cdot q$ is cyclic.
 - (ii) Show that $[G:Z(G)] \neq 15$ for all finite groups G.

ALL ANSWERS HAVE TO BE JUSTIFIED.