Problem set #3

Release 0.1

Brian Granger, John Hunter and Fernando Pérez.

February 09, 2010

Contents

1	Rec	ursion relations and Bessel functions	
	1.1	Hints	i

1 Recursion relations and Bessel functions

Illustrates: Special functions library, array manipulations to check recursion relation.

In this exercise, you will verify a few simple relations involving the Bessel functions of the first kind. The important relations to keep in mind are the asymptotic form of $J_n(x)$ for $x \gg n^2$:

$$J_n(x) \approx \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{n\pi}{2} - \frac{\pi}{4}\right),$$

the asymptotic form of $J_n(x)$ for $x \ll \sqrt{n}$

$$J_n(x) \approx \frac{1}{\Gamma(n+1)} \left(\frac{x}{2}\right)^n,$$

and the recursion relation

$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x). \tag{1}$$

The scipy.special module contains functions j0(), j1() and jn() to compute Bessel functions of order 0, 1 and arbitrary n, as well as many other useful special function-related routines.

For this problem, build three separate figures showing:

1. $J_0(x)$, $J_1(x)$ and $J_5(x)$ for x in the interval [0,35], as well as their asymptotic forms. Use thicker dashed lines for the asymptotic forms, and only plot them in their region of validity.

- 2. A similar plot, for $J_4(x)$, $J_5(x)$ and $J_6(x)$ for x in the interval [0,3] (be careful to use the proper asymptotic form).
- 3. The error in the recursion relation (1) for J_5 over the same interval. These errors should be displayed using a logarithmic vertical axis.

Try to get your figures to look reasonably close to those below.

Figure 1: A few Bessel functions and their asymptotic forms valid for $x \gg n^2$.

1.1 Hints

- Passing a label keyword to plot() calls lets you label each plot, these plots are then used by plt.legend() which puts legend boxes.
- plt.legend() takes a loc parameter for location.
- look at plt.semilogy() for the logarithmic error plots.

Figure 2: A few Bessel functions and their asymptotic forms valid for $x \ll \sqrt{n}$.

Figure 3: Numerical error in manually implementing the Bessel recursion for J_5 vs scipy's implementation.