Data Science Practice

STATS 369 Coursebook: Week 2

Lecture 4

STATS369 2/37

Plan for this week

- [L04] Data Visualisation with {ggplot2}
 - Motivation
 - {ggplot2} package
 - Aesthetic attributes
 - Geometric objects
 - Facets
- [L05] Examples
- [L06] General Comments
 - Which (common) plot to use?
 - What to pay attention to?
 - Further comments

STATS369 3 / 37

Motivation

Why graphs are important?

- *First impression* matters -- it is visually stimulating.
- Efficiency in exploring the data -- Always visualise your data sets before creating any models!
- *Effective communication* -- 'A picture is worth a thousand words'.
- Sometimes, summary statistics are just not enough -- see examples here.

STATS369 5 / 37

Why graphs are important?

- *First impression* matters -- it is visually stimulating.
- Efficiency in exploring the data -- Always visualise your data sets before creating any models!
- *Effective communication* -- 'A picture is worth a thousand words'.
- Sometimes, summary statistics are just not enough -- see examples here.

STATS369 6 / 37

ggplot

The name ggplot comes from the book *The Grammar of Graphics* by Leland Wilkinson (2005) (ref: ISBN 978-0-387-98774-3). A grammar of graphics is a <u>framework</u> that allows a <u>structured</u> and <u>layered</u> approach to construct graphics.

Componentst of a graph

STATS369 7 / 37

Data Visualisation with {ggplot2}

The {ggplot2} package

An R visualisation package developed by Hadley Wickham (2007) that adapts and implements the concept of *ggplot*.

'... the grammar tells that a statistical graphics is a mapping from **data** to **aesthetic attributes** (colour, shape, size) of **geometric objects** (points, lines, bars). The only plot may also contain **statistical transformations** of the data and is drawn on a specific **coordinate system**. **Faceting** can be used to generate the same plot for different subsets of the dataset. It is the combination of these independent components that make up a graphic.' -- Hadley Wickham, *qqplot2*

Check out the 'R Graph Gallery' here.

STATS369 9 / 37

Aesthetic attributes

What attributes will be mapped onto the x-axis and y-axis?

STATS369 10 / 37

Scatter plot

Now we can actually add some points

```
airquality %>%
  ggplot(aes(x = Solar.R, y = Ozone)) +
  geom_point()
```


STATS369 11 / 37

Colours

How about adding the colour to points based on another (factor) variable.

STATS369 12 / 37

Geometric objects

We have seen points, what else?

```
airquality %>%
  ggplot(aes(x = Solar.R, y = Ozone)) +
  geom_point() +
  geom_smooth()
```


STATS369 13 / 37

Geometric objects

```
airquality %>%
  ggplot(aes(x = Solar.R, y = Ozone)) +
  geom_hex()
```


STATS369 14/37

Geometric objects

STATS369 15 / 37

Facets

Dividing data sets into sub groups and plot separately for each group. It is useful when when the relationship is beyond 2D -- you can explore relationship between two variables conditioned on other variable(s). There are two common types of faceting in R, facet_grid and facet_wrap.

```
airquality %>%
  ggplot(aes(x = Solar.R, y = Ozone)) +
  geom_point() +
  facet_wrap(~Month, nrow = 2)
```


STATS369 16 / 37

Incorporating data processing

STATS369 17 / 37

Lecture 5

STATS369 18 / 37

Plan for this week

[L04] Data Visualisation with {ggplot2} 🍁

- Motivation
- {ggplot2} package
 - Aesthetic attributes
 - Geometric objects Facets

[L05] Examples

• Example: The vehicle registration open data

[L06] General Comments

- Which (common) plot to use?
- What to pay attention to?
- Further comments

STATS369 19 / 37

The NZ Vehicle Registration Data

Car registration open data

NZ vehicle registration open data provides a snapshot of the currently registered fleets in NZ. The 2019 dataset has 206,099 rows with 34 columns.

```
cars.df <- read_csv("datasets/VehicleYear-2019.csv")
# glimpse(cars.df)
dim(cars.df) # dimension of the data frame
head(names(cars.df), 20) # some column names of the cars.df</pre>
```

```
## [1] 206099
                  34
    [1] "ALTERNATIVE MOTIVE POWER"
##
                                       "BASIC COLOUR"
                                       "CC RATING"
##
    [3] "BODY TYPE"
##
    [5] "CHASSIS7"
                                       "CLASS"
##
    [7] "ENGINE NUMBER"
                                       "FIRST NZ REGISTRATION YEAR"
    [9] "FIRST NZ REGISTRATION MONTH" "GROSS VEHICLE MASS"
##
                                       "IMPORT STATUS"
  [11] "HEIGHT"
       "INDUSTRY_CLASS"
                                       "INDUSTRY MODEL CODE"
## [15] "MAKE"
                                       "MODEL"
## [17] "MOTIVE POWER"
                                       "MVMA MODEL CODE"
## [19] "NUMBER OF AXLES"
                                       "NUMBER OF SEATS"
```

STATS369 21 / 37

Distribution of car weight

```
cars.df %>%
  ggplot(aes(x = GROSS_VEHICLE_MASS)) +
  geom_histogram()
```


STATS369 22 / 37

Filter zero weight cars

STATS369 23 / 37

Better scatter plot

STATS369 24 / 37

Try hex(bin) plot

STATS369 25 / 37

Further exploration

STATS369 26 / 37

Add 'jitter'

STATS369 27 / 37

Scales, labels and theme

If you are making plots for others, it is a good idea to make them clear and readable.

STATS369 28 / 37

Get the scale and coordinate right, and a different theme

```
p +
    scale_y_continuous(
        limits = c(0,3500),
        breaks = seq(0,3500,by=500)) +
    coord_cartesian(xlim = c(0, 500)) +
    theme_minimal()
```


class: centre, middle

Plan for this week

- [L04] Data Visualisation with {ggplot2} 🝁
 - Motivation
 - {ggplot2} package
 - Aesthetic attributes
 - Geometric objects
 - Facets
- [L05] Examples 👍
 - Example 1: internet traffic forecast
 - Example 2: vehicle registration open data
- [L06] General Comments
 - Which (common) plot to use?
 - What to pay attention to?
 - Further comments
 - Writing 'alt' text

Which (common) plot to use?

Single Variable (univariate)

Туре	(Common) Plot to use	Features to Pay Attention to
Quantitative (e.g. a variable of measurement)	dot plot/stript chart, histogram, density plot, box plot	shape, peaks, center, variability, outliers.
Qualitative (e.g. count of a grouping variable)	bar plot, pie chart, table of counts	majority/minority group, gaps in group counts.

STATS369 31 / 37

Which (common) plot to use?

Two Variables (bivariate)

Туре	(Common) Plot to use	Features to Pay Attention to
Quantitative vs. Qualitative	side-by-side histogram/density/box plot	compare shapes, centers, variability; outliers from individual group.
Quantitative vs. Quantitative	scatter plot, line plot	shapes, peaks, center, variability, outliers, correlation, grouping of observations, seasonal variation (for time series).
Qualitative vs. Qualitative	faceted bar plot, 2-way table of counts, pie chart (?)	compare group counts, distributions and gaps.

NB: Plotting for 2+ variables can often be achieved by 'reducing' it to some variations of bi-variate plots.

STATS369 32 / 37

General Plotting Advice

- Use colors, shapes etc, but keep things **balanced**.
- Keep the focus -- produce a plot with clear message in mind.
- Be aware of scales, labels and Hierarchy.
- Leave some white space.

• ...

STATS369 33 / 37

General Plotting Advice

• Avoid pie charts (?!)

"Avoid pie-charts. Especially 3d pie-charts. Especially 3d pie-charts with exploding wedges. I promise all my students an instant fail if I ever see anything so appalling." - Rob J Hyndman, from "Twenty rules for good graphics"

• Sometimes, it would be helpful to produce multiple (types of) plots for the same data to reveal the real pattern.

For example...

STATS369 34 / 37

...For example, what can you see from the boxplot below?

But if we look at the density plot...

STATS369 36 / 37

Charts and accessibility

While charts are very much a visual medium, we can improve accessibility of our charts by including 'alternative text', often known as 'alt text'.

Cesal., A. (2020). *Writing Alt Text for Data Visualization*. Nightingale https://nightingaledvs.com/writing-alt-text-for-data-visualization/

STATS369 37 / 37