US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication

Kind Code

August 21, 2025

Inventor(s)

August 21, 2025

LEE; Sangmyung

REFRIGERATOR

Abstract

A method to control a refrigerator includes changing a transparent display assembly to be in a first or transparent state allowing an inner space of the refrigerator to be visible through the transparent assembly, a second or opaque state so as to conceal the inner space, and a third or a display state to display information on a display of the transparent assembly. The transparent display assembly includes a front panel, a rear panel, an outer spacer configured to maintain a first distance between the front panel and the rear panel, a display provided on a rear surface of the front panel, a light guide plate spaced apart from the display, and a first spacer configured to support the light guide plate and to maintain a second distance between the display and the light guide plate.

Inventors: LEE; Sangmyung (Seoul, KR)

Applicant: LG ELECTRONICS INC. (Seoul, KR)

Family ID: 1000008586914

Appl. No.: 19/186385

Filed: April 22, 2025

Foreign Application Priority Data

KR 10-2016-0169005 Dec. 12, 2016

Related U.S. Application Data

parent US continuation 18585897 20240223 parent-grant-document US 12320582 child US 19186385

parent US continuation 18123649 20230320 parent-grant-document US 11940210 child US 18585897

parent US continuation 17530929 20211119 parent-grant-document US 11668520 child US 18123649

parent US continuation 17162953 20210129 parent-grant-document US 11209209 child US

17530929

parent US continuation 15838664 20171212 parent-grant-document US 10436504 child US 16547826

parent US division 16547826 20190822 parent-grant-document US 10941982 child US 17162953

Publication Classification

Int. Cl.: F25D29/00 (20060101); F25D23/02 (20060101); F25D27/00 (20060101); G06F3/044 (20060101); G09G3/20 (20060101)

U.S. Cl.:

CPC **F25D29/005** (20130101); **F25D23/02** (20130101); **F25D23/028** (20130101); **F25D27/005** (20130101); **G06F3/044** (20130101); **G09G3/2096** (20130101); F25D2400/361 (20130101); F25D2400/40 (20130101); G09G2310/08 (20130101)

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application is a Continuation application of U.S. application Ser. No. 18/585,897, filed Feb. 23, 2024, which is a Continuation Application of U.S. application Ser. No. 18/123,649, filed Mar. 20, 2023, now U.S. Pat. No. 11,940,210, which is a Continuation application of U.S. application Ser. No. 17/530,929, filed Nov. 19, 2021, now U.S. Pat. No. 11,668,520, which is a Continuation application of U.S. application Ser. No. 17/162,953, filed Jan. 29, 2021, now U.S. Pat. No. 11,209,209, which is a Divisional application of U.S. application Ser. No. 16/547,826, filed Aug. 22, 2019, now U.S. Pat. No. 10,941,982, which is a Continuation application of U.S. application Ser. No. 15/838,664, filed Dec. 12, 2017, now U.S. Pat. No. 10,436,504, which claims priority under 35 U.S.C. 119 and 35 U.S.C. 365 to Korean Patent Application No. 10-2016-0169005, filed Dec. 12, 2016, which are hereby incorporated by reference.

BACKGROUND

[0002] The present disclosure relates to a refrigerator.

[0003] In general, refrigerators are home appliances for storing foods at a low temperature in a storage space that is covered by a door. For this, refrigerators cool the inside of the storage space by using cool air generated by being heat-exchanged with a refrigerant circulated through a refrigeration cycle to store foods in an optimum state.

[0004] In recent years, refrigerators tend to increase in size more and more, and multi-functions are applied to refrigerators as dietary life changes and high-quality is pursued, and accordingly, refrigerators of various structures for user convenience and efficient use of an internal space are being brought to the market.

[0005] A storage space of such a refrigerator may be opened and closed by a door. Also, refrigerators may be classified into various types according to an arranged configuration of the storage space and a structure of the door for opening and closing the storage space.

[0006] Generally, the refrigerator has a limitation that foods stored therein are not confirmed unless the door is not opened. That is, the door has to be opened to confirm that a desired food is stored in the refrigerator or in a separate storage space provided in the door. In addition, if the stored position of the food is not known precisely, an opened time of the door may increase, or the number of times for opening the door increases. In this case, there is a limitation that unnecessary leakage of cool air occurs.

[0007] In recent years, to solve such a limitation, a refrigerator has been developed while allows a portion of a door thereof to be transparent or allows the inside thereof to be seen from the outside. SUMMARY

[0008] Embodiments provide a refrigerator in which at least a portion of a refrigerator door is selectively transparent by user's manipulation to allow the user to see the inside of the refrigerator even though the refrigerator door is closed, and simultaneously, to selectively output a screen. [0009] Embodiments also provide a refrigerator in which a see-through part constituting a portion of a door is capable of being transparent or opaque or outputting a screen according to selective turn-on/off of a door light or a display light.

[0010] Embodiments also provide a refrigerator in which a PCB and a cable connected to the PCB are disposed in a door, which is capable of seeing through the inside of the refrigerator by a transparent display assembly, without being exposed through the transparent display.

[0011] Embodiments also provide a refrigerator which is capable of improving insulation performance of a transparent display assembly through which the inside of a door is seen.

[0012] Embodiments also provide a refrigerator that is capable of preventing power consumption from increasing by a loss of cool air through a door.

[0013] Embodiments also provide a refrigerator which is capable of satisfying insulation performance while maintaining a thickness of a door of which at least a portion is transparent. [0014] Embodiments also provide a structure of a door into which a gas for insulation is capable of being injected and which includes a transparent display assembly.

[0015] In one embodiment, a refrigerator includes: a cabinet defining a storage space; a door opening and closing the cabinet; and a transparent display assembly which covers an opening of the door and through which an inner space of the refrigerator is seen, wherein the transparent display assembly includes: a front panel defining at least a portion of a front surface of the door; a rear panel defining at least a portion of a rear surface of the door; an outer spacer maintaining a distance between the front panel and the rear panel and disposed along circumferences of the front panel and the rear panel to define a sealed space therein; a display disposed on a rear surface of the front panel in the sealed space; a light guide plate spaced apart from the display to brighten up the display; and a first spacer supporting the light guide plate in the sealed space and maintaining a distance between the display and the light guide plate, wherein an inert gas is injected between the front panel and the light guide plate through an injection hole of the outer spacer to provide an insulation layer.

[0016] A source board passing between the front panel and the first spacer to extend to the outside of the first spacer may be disposed on one end of the display.

[0017] The source board may be disposed in a space between the first spacer and the outer spacer.

[0018] The source board may be disposed perpendicular to the front panel.

[0019] A display cable connecting the source board to a T-CON board disposed outside the transparent display assembly may pass between the outer spacer and the front panel.

[0020] A touch sensor for user's touch manipulation of the front panel may be disposed on the rear surface of the front panel, and the touch sensor may be connected to a PCB disposed outside the transparent display assembly by a touch cable.

[0021] A display light emitting light to an end of the light guide plate may be disposed on inner upper ends facing each other of the outer spacer, and a display light cable connected to a PCB disposed outside the transparent display assembly may pass between the outer spacer and the rear panel.

[0022] The cable may have a flexible film shape.

[0023] The first spacer may support both left and right ends of the light guide plate, and a light guide plate support part protruding to support upper and lower ends of the light guide plate may be disposed on the outer spacer.

[0024] A sealant may be applied to an outer surface of the outer spacer, and the injection hole may

be covered by the sealant.

[0025] The inner space of the outer spacer may communicate with a space between the front panel and the light guide plate.

[0026] A second spacer disposed along a circumference of the light guide plate and coming into contact with the rear panel to define a closed space between the light guide plate and the rear panel may be provided, and an injection hole may be further provided in the second spacer to allow the inert gas injected through the outer spacer to be introduced and thereby to provide a second insulation layer between the light guide plate and the rear panel.

[0027] The injection defined in the outer spacer and the injection hole defined in the second spacer may be provided on the same extension line.

[0028] The refrigerator may further include: an insulation panel disposed between the light guide plate and the rear panel; a third spacer disposed along a circumference of the insulation panel and coming into contact with the light guide plate to define a closed space between the light guide plate and the insulation panel; and a fourth spacer disposed along the circumference of the insulation panel and coming into contact with the rear panel to define a closed space between the insulation panel and the rear panel.

[0029] The inert gas may be injected into the closed spaces defined by the third spacer and the fourth spacer to provide a third insulation layer and a fourth insulation layer, respectively.

[0030] The transparent display assembly may include: a module in which the display, the first spacer, and the outer spacer are mounted on the front panel; and a module in which the fourth spacer, the insulation panel, the third spacer, and the light guide plate are mounted on the rear panel to provide the third insulation layer and the fourth insulation layer, wherein the module of the font panel and the module of the rear panel may be coupled to each other.

[0031] An injection hole may be further defined in each of the third spacer and the fourth spacer, and the inert gas injected through the outer spacer may be introduced to provide a third insulation layer between the light guide plate and the insulation panel and a fourth insulation layer between the insulation panel and the rear panel.

[0032] Each of the third spacer and the fourth spacer may include: a hollow tube member having both opened ends to define upper/lower and left/right ends thereof; a corner connection member connecting both ends of the tube member, which are adjacent to cross each other, wherein a connection member injection hole communicating the sealed space of the outer spacer and the closed spaces of the third and fourth spacers so that the inert gas is introduced may be further defined in the corner member.

[0033] A second spacer disposed along a circumference of the light guide plate and coming into contact with the rear panel to define a closed space between the light guide plate and the rear panel may be provided, wherein the second spacer may include: a hollow tube member having both opened end to define upper/lower and left/right ends thereof; and a corner connection member connecting both ends of the tube member, which are adjacent to cross each other, wherein a connection member injection hole communicating the sealed space of the outer spacer and the closed space of the second spacer so that the inert gas is introduced may be further defined in the corner member.

[0034] A moisture absorbent may be filled in the tube member, and a plurality of punched holes communicating with the closed space may be defined in an inner surface of the second spacer. [0035] The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0036] FIG. **1** is a front view of a refrigerator according to a first embodiment.
- [0037] FIG. **2** is a perspective view of the refrigerator.
- [0038] FIG. **3** is a perspective view of the refrigerator with a sub door opened.
- [0039] FIG. **4** is a perspective view of the refrigerator with a main door opened.
- [0040] FIG. **5** is a perspective view of the sub door when viewed from a front side.
- [0041] FIG. **6** is a perspective view of the sub door when viewed from a rear side.
- [0042] FIG. **7** is an exploded perspective view of the sub door.
- [0043] FIG. **8** is a perspective view of a transparent display assembly according to the first embodiment.
- [0044] FIG. **9** is an exploded perspective view of the transparent display assembly.
- [0045] FIG. **10** is a cross-sectional view taken along line **10-10**′ of FIG. **8**.
- [0046] FIG. **11** is a partial perspective view illustrating a state in which a PCB is disposed on an upper portion of the transparent display assembly.
- [0047] FIG. **12** is a partial perspective view illustrating a structure in which a display cable is disposed on the transparent display assembly.
- [0048] FIG. **13** is a partial perspective view illustrating a structure in which a display light is disposed on the transparent display assembly.
- [0049] FIG. **14** is a partial cutaway perspective view of the transparent display assembly.
- [0050] FIG. **15** is a cross-sectional view taken along line **15-15**′ of FIG. **8**.
- [0051] FIG. **16** is a cross-sectional view taken along line **16-16**′ of FIG. **8**.
- [0052] FIG. **17** is a rear view illustrating a state in which a rear panel of the transparent display assembly is removed.
- [0053] FIG. **18** is a view illustrating a state in which a gas is injected into the transparent display assembly.
- [0054] FIG. **19** is a transverse cross-sectional view of the main door and the sub door.
- [0055] FIG. **20** is a longitudinal cross-sectional view of the main door and the sub door.
- [0056] FIG. **21** is a view illustrating a state in which the inside of the refrigerator is seen through the transparent display assembly.
- [0057] FIG. **22** is a view illustrating a state in which a screen is outputted through the transparent display assembly.
- [0058] FIG. **23** is an exploded perspective view of a transparent display assembly according to a second embodiment.
- [0059] FIG. **24** is a transverse partial cutaway perspective view of the transparent display assembly.
- [0060] FIG. **25** is a longitudinal partial cutaway perspective view of the transparent display assembly.
- [0061] FIGS. **26**A and **26**B are views illustrating a process of forming an insulation layer of the transparent display assembly.
- [0062] FIG. **27** is a view illustrating a process of forming an insulation layer of a transparent display assembly according to a third embodiment.
- [0063] FIG. **28** is a perspective view of a door according to a fourth embodiment.
- [0064] FIG. 29 is a cross-sectional view taken along line 29-29' of FIG. 28.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0065] Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, that alternate embodiments included in other retrogressive inventions or falling within the spirit and scope of the present disclosure will fully convey the concept of the invention to those skilled in the art.

[0066] FIG. **1** is a front view of a refrigerator according to a first embodiment. Also, FIG. **2** is a perspective view of the refrigerator.

[0067] Referring to FIGS. **1** and **2**, a refrigerator **1** according to a first embodiment includes a cabinet **10** defining a storage space and a door that opens or closes the storage space. Here, an outer appearance of the refrigerator **1** may be defined by the cabinet **10** and the door.

[0068] The inside of the cabinet **10** is partitioned into upper and lower portions by a barrier (see FIG. **11**). A refrigerating compartment **12** may be defined in the upper portion of the cabinet **10**, and a freezing compartment **13** may be defined in the lower portion of the cabinet **10**.

[0069] Also, a control unit **14** for controlling an overall operation of the refrigerator **1** may be disposed on a top surface of the cabinet **10**. The control unit **14** may be configured to control a cooling operation of the refrigerator as well as electric components for selective see-through and screen output of a see-through part **21**.

[0070] The door may include a refrigerating compartment door and a freezing compartment door **30**. The refrigerating compartment door **20** may be opened and closed by rotating an opened front surface of the refrigerating compartment **12**, and the freezing compartment door **30** may be switched by rotating an opened front surface of the freezing compartment **13**.

[0071] Also, the refrigerating compartment door **20** may be provided in a pair of left and right doors. Thus, the refrigerating compartment **12** is covered by the pair of doors. The freezing compartment door **30** may be provided in a pair of left and right doors. Thus, the freezing compartment **13** may be opened and closed by the pair of doors. Alternatively, the freezing compartment door **30** may be withdrawable in a draw type as necessary and provided as one or more doors.

[0072] Although a refrigerator in which, a French type door in which a pair of doors rotate to open and close one space is applied to a bottom freezer type refrigerator in which the freezing compartment **13** is provided at a lower portion, is described as an example in this embodiment, the present disclosure may be applied to all types of refrigerators including door without being limited to shapes of the refrigerators.

[0073] Also, recessed handle grooves **201** and **301** may be provided in a lower end of the refrigerating compartment door **20** and an upper end of the freezing compartment door **30**. A user may insert a his/her hand into the handle groove **201** or **301** to open and close the refrigerating compartment door **20** or the freezing compartment door **30**.

[0074] At least one door may be provided so that the inside of the refrigerator is seen through the door. A see-through part **21** that is an area, through which the storage space in the rear surface of the door and/or the inside of the refrigerator are seen, may be provided in the refrigerating compartment door **20**. The see-through part **21** may constitute at least a portion of a front surface of the refrigerating compartment door **20**. The see-through part **21** may be selectively transparent or opaque according to user's manipulation. Thus, foods accommodated in the refrigerator may be accurately identified through the see-through part **21**.

[0075] Also, although the structure in which the see-through part **21** is provided in the refrigerating compartment door **20** is described as an example in this embodiment, the see-through part **21** may be provided in different types of refrigerator doors such as the freezing compartment door **30** according to a structure and configuration of the refrigerator.

[0076] FIG. **3** is a perspective view of the refrigerator with a sub door opened. Also, FIG. **4** is a perspective view of the refrigerator with a main door opened.

[0077] As illustrated in FIGS. **3** and **4**, the refrigerating compartment door **20**, which is disposed at the right side (when viewed in FIG. **3**), of the pair of refrigerating compartment doors **20** may be doubly opened and closed. In detail, the refrigerating compartment door **20**, which is disposed at the right side, may include a main door **40** that opening and closing the refrigerating compartment **12** and a sub door **50** rotatably disposed on the main door **40** to open and close an opening defined in the main door **40**.

[0078] The main door **40** may have the same size as that of the refrigerating compartment door **20**, which is disposed at the left side (when viewed in FIG. **1**), of the pair of refrigerating compartment doors **20**. The main door **40** may be rotatably mounted on the cabinet **10** by an upper hinge **401** and a lower hinge **402** to open at least a portion of the refrigerating compartment door **20**.

[0079] Also, an opening **41** that is opened with a predetermined size is defined in the main door **40**. A door basket **431** may be mounted on the rear surface of the main door **40** as well as the inside of the opening **41**. Here, the opening **41** may have a size that occupies most of the front surface of the main door **40** except for a portion of a circumference of the main door **40**.

[0080] Also, a main gasket **45** may be disposed on a circumference of the rear surface of the main door **40** to prevent cool air within an internal space of the cabinet **10** from leaking when the main door **40** is opened.

[0081] The sub door **50** may be rotatably mounted on the front surface of the main door **40** to open and close the opening **41**. Thus, the sub door **50** may be opened to expose the opening **41**. [0082] The sub door **50** may have the same size as the main door **40** to cover the entire front surface of the main door **40**. Also, when the sub door **50** is closed, the main door **40** and the sub door **50** may be coupled to each other to provide the same size and configuration as those of the left refrigerating compartment door **20**. Also, a sub gasket **503** may be disposed on the rear surface of the sub door **50** to seal a gap between the main door **40** and the sub door **50**.

[0083] A transparent display assembly **60** that selectively sees the inside and outputs a screen may be disposed at a center of the sub door **50**. Thus, even though the sub door **50** is closed, the inside of the opening **41** may be selectively seen, and also an image inside the opening **41** may be outputted. The see-through part **21** may be a portion of the sub door **50**, through which the inside of the refrigerator **1** is seen. However, the see-through part **21** may not necessarily match the entirety of the transparent display assembly **60**.

[0084] The transparent display assembly **60** may be configured to be selectively transparent or opaque according to user's manipulation. Thus, only when the user desires, the transparent display assembly **60** may be transparent so that the inside of the refrigerator **1** is visualized, otherwise, be maintained in the opaque state. Also, the transparent display assembly **60** may output a screen in the transparent or opaque state.

[0085] A sub upper hinge **501** and a sub lower hinge **502** may be respectively provided on upper and lower ends of the sub door **50** so that the sub door **50** is rotatably mounted on the front surface of the main door **40**. Also, an opening device **59** may be provided on the sub door **50**. A locking unit **42** may be provided on the main door **40** to correspond to the opening device **59**. Thus, the sub door **50** may be maintained in the closed state by the coupling between the opening device **59** and the locking unit **42**. When the coupling between the opening device **59** and the locking unit **42** is released by manipulation of the opening device **59**, the sub door **50** may be opened with respect to the main door **40**.

[0086] Also, a damping device **504** (see FIG. **6**) may be provided on a lower end of the sub door **50**. The damping device **504** may be disposed on edges of the lower end and lateral end of the sub door **50**, which are adjacent to the sub lower hinge **502**, so that an impact is damped when the sub door **50** having a relatively heavy weight by the transparent display assembly **60** is closed. [0087] An accommodation case **43** may be provided in the rear surface of the main door **40**. A plurality of door baskets **431** may be disposed on the accommodation case **43**, and a case door **432** may be provided on the accommodation case **43**.

[0088] FIG. **5** is a perspective view of the sub door when viewed from a front side. FIG. **6** is a perspective view of the sub door when viewed from a rear side. Also, FIG. **7** is an exploded perspective view of the sub door.

[0089] As illustrated in the drawings, the sub door **50** may include an outer plate **51** defining an outer appearance of the sub door **50**, a door liner **56** mounted to be spaced apart from the outer plate **51**, the transparent display assembly **60** mounted on an opening of the outer plate **51** and the

door liner **56**, and upper and lower cap **54** and **55** defining the top and bottom surfaces of the sub door **50**. The above-described constituents may be coupled to define the whole outer appearance of the sub door **50**.

[0090] The outer plate **51** may constitute an outer appearance of the front surface of the sub door **50** and a portion of a circumferential surface of the sub door **50** and be made of a stainless steel material. The outer plate **51** may constitute a portion of the outer appearance of the sub door **50** as well as the front surface of the sub door **50**. Also, the outer plate **51** may be made of the same material of the front surface of each of the refrigerating compartment door **20** and the freezing compartment door **30**. Various surface treatments such as coating or film attachment so as to realize anti-fingerprint coating, hair lines, colors, or patterns may be performed on the front surface of the outer plate **51**.

[0091] The outer plate **51** may include a front part **512** defining the outer appearance of the front surface and a side part **513** defining an outer appearance of the side surface that is exposed to the outside. Also, a plate opening **511** may be defined at a center of the front part **512**. Here, the plate opening **511** may be covered by the transparent display assembly **60**. Also, since the inside of the refrigerator **1** is seen through the transparent display assembly **60** covering the plate opening **511**, the inside of the plate opening **511** is called the see-through part **21**.

[0092] The front part **512** may have a curvature that gradually decreases outward from a central side of the refrigerator **1** as a whole. The front part **512** may be rounded to correspond to the front surface of the refrigerating compartment door **20**, which is adjacent to the front part **512**. Thus, the outer appearance of the front surface of the refrigerator **1** may be three-dimensionally viewed as a whole.

[0093] Also, an opening bent part **514** that is bent backward may be disposed on a circumferential surface of the plate opening **511**. The opening bent part **514** may be disposed along a circumference of the plate opening **511** and extend by a predetermined length so as to be inserted into and fixed to an inner frame **52** that will be described below. Thus, the plate opening **511** may be defined by the opening bent part **514**.

[0094] The side part **513** that is bent backward may be disposed on each of both ends of the front part **512**. The side part **513** may define an outer appearance of the side surface of the sub door **50**. Also, an end of the side part **513** may also be bent inward to be coupled to the door liner **56**. [0095] Upper and lower ends of the outer plate **51** may also be bent to be coupled to the upper cap **54** and the lower cap **55**. Thus, the outer plate **51** may define the outer appearance of the sub door **50** by being coupled to the door liner **56** and the upper and lower cap **54** and **55**.

[0096] The door liner **56** defines the rear surface of the sub door **50** and has a door liner opening **561** in the area on which the transparent display assembly **60** is disposed. Also, a sub gasket **503** for sealing a gap between the sub door **50** and the main door **40** may be mounted on the rear surface of the door liner **56**.

[0097] Also, a door light **57** may be provided on each of both sides of the door liner opening **561**. The door light **57** may illuminate the rear surface of the sub door **50** and a rear side of the transparent display assembly **60**.

[0098] Thus, the door light **57** may illuminate an inner space of the accommodation case **43**, and simultaneously, serve as an auxiliary backlight function of the transparent display assembly **60** to more clearly output a screen of the transparent display assembly **60**. When the door light **57** is turned on, the inside of the accommodation case **43** may be brightened up, and thus, the inside of the refrigerator **1** may be more brightened up than the outside of the refrigerator **1** so that the inside of the refrigerator **1** may be visualized through the transparent display assembly **60**.

[0099] The door light **57** may be disposed on both sides of the transparent display assembly **60** in directions facing each other. The mounted position of the door light **57** may variously vary as long as the door light **57** has sufficient brightness at the rear side of the sub door.

[0100] Also, the opening device **59** may be mounted on the door liner **56**. The opening device **59**

may include a manipulation member **591** exposed to the lower end of the sub door **50**, a rod **592** extending from the manipulation member **591**, and a locking member **593** protruding from the rear surface of the door liner **56**. The user may manipulate the manipulation member **591** to allow the rod **592** to move the locking member **593** so that the sub door **50** is selectively restricted by the main door **40** and also to manipulate the opening and closing of the sub door **50**.

[0101] The upper cap **54** may define a top surface of the sub door **50** and be coupled to upper ends of the outer plate **51** and the door liner **56**. Also, a sub upper hinge mounting part **541** may be disposed on one end of the upper cap **54**, and a hinge hole **541***a* into which a hinge shaft of the upper hinge **401** is inserted may be defined in the sub upper hinge mounting part **541**. A structure of the upper cap **54** will be described below in more detail.

[0102] The lower cap **55** may define a bottom surface of the sub door **50** and be coupled to lower ends of the outer plate **51** and the door liner **56**.

[0103] The transparent display assembly **60** may be disposed between the outer plate **51** and the door liner **56**. Also, the transparent display assembly **60** may be configured to cover the plate opening **511** and the door liner opening **561**. Also, the transparent display assembly **60** may be selectively manipulated to one state of transparent, translucent, opaque, and screen output states by the user.

[0104] Thus, the user may selectively see through the inner space of the sub door **50** through the transparent display assembly **60** and see the screen outputted through the transparent display assembly **60**.

[0105] The inner frame **52** for supporting the transparent display assembly **60** is mounted on a circumference of the plate opening **511** of the outer plate **51**. The transparent display assembly **60** may be fixed and mounted on the outer plate **51** by the inner frame **52**. Particularly, a front surface of the outer plate **51** and the front surface of the transparent display assembly **60** may be disposed on the same extension line so that the front surface of the sub door **50** has a sense of unity. [0106] A frame opening **521** is defined at a center of the inner frame **52**. The frame opening **521** has a size somewhat less than that of the plate opening **511** and has a structure in which the transparent display assembly **60** is seated thereon. Also, the frame opening **521** may have a size less than that of the front panel **61** and greater than that of the rear panel **65**. Thus, when the transparent display assembly **60** is mounted, the rear panel **65** may successively pass through the plate opening **511** and the frame opening **521** and then be seated on the door liner **56**. The front and rear panels **61** and **65** may alternatively be referred to as first and second panels.

[0107] Also, the inner frame **52** may have a coupling structure with the outer plate **51**. Here, the outer plate **51** and an end of the transparent display assembly **60** may be mounted on the inner frame **52** in a state in which the outer plate **51** and the end of the transparent display assembly **60** are closely attached to each other.

[0108] Thus, in the transparent display assembly **60** is mounted, the inner frame **52** may support a rear surface of the plate opening **511** of the outer plate **51** and a rear surface of the circumference of the transparent display assembly **60** at the same time. Also, in the state in which the transparent display assembly **60** is mounted, the front surface of the outer plate **51** and the front surface of the transparent display assembly **60** may be disposed on the same plane without being stepped with respect to each other.

[0109] FIG. **8** is a perspective view of the transparent display assembly according to the first embodiment. Also, FIG. **9** is an exploded perspective view of the transparent display assembly. Also, FIG. **10** is a cross-sectional view taken along line **10-10**′ of FIG. **8**.

[0110] As illustrated in the drawings, the transparent display assembly **60** may have a size that is enough to cover the plate opening **511** and the linear opening **561** inside the sub door **50**. Also, the see-through part **21** may be provided in the transparent display assembly **60** so that the inner space of the refrigerator is selectively seen, and a screen is outputted.

[0111] In more detail with respect to the transparent display assembly **60**, the transparent display

- assembly **60** may have an outer appearance that is defined by the front panel **61** and the rear panel **65**, which define the front and rear surfaces of the transparent display assembly **60**, and the outer spacer **67** connecting the front panel **61** to the rear panel **65**.
- [0112] Also, a display **62** and a light guide plate **64** may be disposed between the front panel **61** and the rear panel **65**. In addition, a first spacer or first inner spacer **63** for supporting the display **62** and the light guide plate **64** may be further provided, and a display light **68** for emitting light to the light guide plate **64** may be provided.
- [0113] In more detail, the front panel **61** may be made of a transparent glass material that defines an outer appearance of the front surface of the transparent display assembly **60**. The front panel **61** may be made of a different material through which the inside of the front panel **61** is seen, and a touch input is enabled.
- [0114] In detail, the front panel **61** may be made of a material such as transparent blue glass so that the inside thereof is seen, and the touch sensor **612** may be attached to the front panel **61** to input manipulation for driving the display **62**. Thus, the user may touch-manipulate the surface of the front panel **61**, and the touch sensor **612** may recognize the touch manipulation to generate a signal for the operation of the display **62** or the refrigerator **1**.
- [0115] Accordingly, the front panel **61** may perform a function for inputting an operation of the display **62** or the refrigerator in addition to the see-through function. An insulation coating layer **652** that will be described below is not provided on the surface of the front panel **61** so that an accurate touch input of the touch sensor **612** that operates in an electrostatic capacity manner is performed.
- [0116] The front panel **61** may have a size greater than that of the plate opening **511** and be supported by the inner frame **52**. That is, when the transparent display assembly **60** is assembled and mounted from the rear side, a circumferential portion of the front panel **61** may be supported by the rear surface of the inner frame **52**.
- [0117] In detail, a front protrusion **613** that further protrudes outward than the rear panel may be disposed on the front panel **61**. The front protrusion **613** may have a length greater than that of the rear panel **65** in all directions. Also, the front panel **61** defining the front surface of the transparent display assembly **60** may further extend outward from the plate opening **511** and then be stably fixed and mounted on the inner frame **52** due to characteristics of the transparent display assembly **60** mounted on at the rear side of the outer plate **51**.
- [0118] Thus, when the transparent display assembly **60** is mounted, each of the extending ends of the front panel **61**, i.e., the front protrusion **613** may be supported by the inner frame **52**, and thus, the transparent display assembly **60** may be stably maintained in the mounted state without being separated.
- [0119] A bezel **611** may be disposed on a circumference of the rear surface of the front panel **61**. The bezel **611** may be printed with a black color and have a predetermined width so that the outer spacer **67** and the first spacer **63** are covered without being exposed to the outside.
- [0120] A touch sensor **612** may be disposed on an inner area of the bezel **611**. The touch sensor **612** may be formed on the rear surface of the front panel **61** in a printing manner and be configured to detect user's touch manipulation of the front panel **61**. Alternatively, the touch sensor **612** may be formed in various manners such as a film adhesion manner, rather than the printing manner, so that the user touches the front panel **61** to perform the touch input.
- [0121] A touch cable **601** connected to the touch sensor **612** may be disposed on the upper end of the front panel **61**. The touch cable **601** may be provided as a flexible film type cable such as a flexible flat cable (FFC) or a flexible print cable or flexible print circuit board (FPC). A printed circuit may be printed on the touch cable **601** to constitute at least a portion of a touch PCB **603**. Also, the touch cable **601** may be connected to the touch PCB **603** that will be described below. [0122] The display **62** may be disposed on the rear surface of the front panel **61**. The display **62** may be provided as an LCD module for outputting a screen. Also, the display **62** may be

transparent so that the user sees the inside through the display **62** when the screen is not outputted. [0123] A source board **621** may be disposed on one end of both left and right sides of the display **62**. The source board **621** may be configured to output a screen through the display **62** and provided as one assembly with the display **62**. Also, a portion of the source board **621** may include the flexible film type cable structure and extend upward along a side surface of the transparent display assembly **60** in the bent state.

[0124] Also, the source board **621** may have a width less than a thickness of the transparent display assembly **60** and be bent while the transparent display assembly **60** is assembled. Here, a position at which the source board **621** is disposed may be defined between the inside of the outer spacer **67** and the first spacer **63** and come into contact with an inner surface of the outer spacer **67** in the bent state.

[0125] Also, the source board **621** may be connected to a display cable **605**. The display cable **605** may be connected to a T-CON board **623** at an upper portion of the sub door **50**.

[0126] In detail, when the source board **621** is disposed on the rear surface of the display **62**, the source board **621** may be exposed to the outside through the see-through part **21** due to the characteristics of the display **62** that is transparent. Also, when the source board **621** has a structure that protrudes laterally, the sub door **50** may increase in size.

[0127] Thus, the source board **621** may be disposed on an end of a circumferential side of the display **62** and bent to come into contact with the inner surface of the outer spacer **67** inside the outer spacer **67**. Also, the source board **621** may have a size corresponding to that of the outer spacer **67** without getting out of a region of the outer spacer **67** in a state of being closely attached to the outer spacer **67**.

[0128] The source board **621** may be constituted by two upper and lower boards **621** and respectively connected to the pair of display cables **605**. The display cable **605** may have a flexible and flat structure like the touch cable **601** and also have a structure that is freely bendable. [0129] The display cable **605** may extend along the circumferential surface of the transparent display assembly **60** and pass through a sealant **691** defining the side surface of the transparent display assembly **60** to extend to the outside of the transparent display assembly **60**. [0130] Also, the display cable **605** may be bent to extend along the circumferential surface of the transparent display assembly **60**, i.e., be bent so that an end thereof extends upward from the transparent display assembly **60**. Thus, the display cable **605** may be coupled to the T-CON board **602** at the upper side of the sub door **50**.

[0131] Both ends of the display **62** may be supported by the first spacer **63**. The first spacer **63** may have a rod or stick shape extending from an upper end to the lower end of the display **62** and be provided in a pair on both left and right sides to support both left and right ends of the display **62**. The first spacer **63** may be made of an aluminum material and maintain a preset distance between the display **62** and the light guide plate **64**.

[0132] The light guide plate **64** may be disposed at a rear side of the display, supported by the pair of first spacers **63** disposed at both left and right sides, and disposed to be spaced a predetermined distance from the display **62**. There is a difference in depth feeling of the screen outputted from the display **62** according to the position of the light guide plate **64**.

[0133] Thus, the light guide plate **64** may be disposed further forward than an intermediate point between the front panel **61** and the rear panel **65** so that the screen outputted by the display **62** is felt closer to the front panel **61**. As a result, a height of the first spacer **63** may be determined. [0134] The light guide plate **64** may diffuse or scatter light emitted from the display light **68** and be made of various materials. For example, the light guide plate **64** may be made of a polymer material or formed by forming a pattern or attaching a film on a surface thereof. The light guide plate **64** may illuminate the display **62** from the rear side of the display **62** when the display light **68** is turned on. For this, the light guide plate **64** may have a plate shape having a size equal to or somewhat greater than that of the display **62**. The display light **68** may be disposed at a position

corresponding to each of upper and lower ends of the light guide plate **64**.

[0135] The rear panel **65** may be disposed at a rear side of the light guide plate **64**. The rear panel **65** may define the rear surface of the transparent display assembly **60** and have a size greater than that of the light guide plate and less than that of the front panel **61**. Also, the rear panel **65** may have a size greater than that of the linear opening **561** to cover the linear opening **561**. [0136] A circumference of the rear panel **65** may further protrude outward from the outer spacer **67** to provide a rear panel protrusion **651**. The rear panel protrusion **651** may be seated on the door liner **56** when the transparent display assembly **60** is mounted and provide a space in which a foaming solution is filled when the insulation material **531** is molded in the sub door **50**. [0137] The insulation coating layer **652** for the thermal insulation may be disposed on the surface of the glass layer **651** to thermally insulate the rear panel **65**. The insulation coating layer **652** may transmit visible light to allow user to see the inside of the refrigerator and reflect the radiant heat irradiated to the rear panel **65** to block heat transfer.

[0138] The insulation coating layer **652** may be disposed on the front surface of the rear panel **65**, i.e., a surface facing the light guide plate **64**. The insulation coating layer **652** may be manufactured through metal oxide coating or attachment of a film made of tin oxide (SnO.sub.2) by using a chemical vapor deposition (CVD) process using tin oxide (SnO.sub.2). The insulation coating layer **652** may be disposed on at least one surface of the rear panel **65**, and if necessary, disposed on both side surfaces of the rear panel **65**.

[0139] As described above, since the insulation coating layer **652** is disposed on the rear panel **54**, the rear panel **65** may prevent cool air within the refrigerator **1** from being transferred to the outside through the transparent display assembly **60**, thereby more effectively insulating the inside of the refrigerator **1** from the outside of the refrigerator **1**.

[0140] Also, the same panel as the rear panel **65** may be further disposed between the light guide plate **64** and the rear panel **65**, and thus, a multilayered insulation coating layer **652** may be provided. As described above, when the plurality of insulation coating layers **652** are provided, the thermal insulation performance may be more improved. Although the plurality of panels equal to the rear panel disposed on the insulation coating layer are provided to improve the thermal insulation performance, the adequate number of panels may be provided within limits capable of maintaining the total thickness of the sub door **50**.

[0141] The insulation coating layer **652** may not be provided on the light guide plate **64** and the front panel **61** except for the rear panel **65**. When the insulation coating layer **652** is disposed on the light guide plate **64**, the insulation coating layer **652** may affect illumination of uniform light to the display **62**. When the insulation coating layer **652** is disposed on the front panel **61**, malfunction of the touch sensor **612** may occur.

[0142] Particularly, the touch sensor **612** for detecting the touch manipulation of the user in the electrostatic capacity manner may be attached to the front panel **61**. Thus, when the metal oxide made of tin oxide (SnO.sub.2) is disposed on the front panel **61**, the touch sensor **612** may not accurately detect a variation in electrostatic capacity, and thus, the malfunction in touch manipulation may occur.

[0143] Thus, the insulation coating layer **652** may not be disposed on the front panel **61**, but disposed on only the rear panel **65** except for the front panel **61** and the light guide plate **64** to black heat transfer through the transparent display assembly **60**.

[0144] A second spacer or second inner spacer **66** may be disposed between the rear panel **65** and the light guide plate **64**. The second spacer **66** may have a rectangular frame shape disposed along a circumference of the light guide plate **64** and adhere to the light guide plate **64** and the rear panel **65**. [0145] Although the spacers **63**, **66**, and **67** have structures different from each other in this embodiment, the spacers **63**, **66**, and **67** may maintain a distance between the adjacent panels **61** and **65** and the light guide plate **64** and have various shapes such as a shape in which the moisture

absorbent is accommodated into a shape such as a rod.

[0146] The distance between the front panel **61** and the light guide plate **64** may be maintained in fixed distance so as to output the screen of the display **62**. Also, the distance between the light guide plate **64** and the rear panel **65** may be determined according to a thickness of the sub door **50** or the total thickness of the transparent display assembly **60**. That is, the second spacer **66** may be adjusted in thickness to determine the total thickness of the transparent display assembly **60** so as to be mounted to match a specification of the sub door **50**.

[0147] The second spacer **66** may be made of an aluminum material, and a moisture absorbent **661** may be filled into the second spacer **66**. Also, a plurality of punched holes **662** may be defined in an inner surface of the second spacer **66**. Thus, moisture in the space between the rear panel **65** and the light guide plate **64** may be absorbed by the moisture absorbent **661** so that the space is maintained in dry condition. Thus, an occurrence of dew condensation or blurring of the inside due to moisture may be prevented.

[0148] The second spacer **66** may adhere to the light guide plate **64** and the rear panel **65** by using an adhesion member (or seal) **663**. Thus, a sealed close space may be provided between the light guide plate **64** and the rear panel **65**. Also, an argon gas may be filled between the light guide plate **64** and the rear panel **65**, which are sealed by the second spacer **66**, to provide a first insulation layer **691**.

[0149] The argon gas is a mono-atomic inert gas having a weight greater than that of air, and thus, convection does not likely occur. Thus, when the argon gas is filled into the first insulation layer **691**, the heat transfer due to the convection may not occur between the light guide plate **64** and the rear panel **65**, and thus, the overall thermal insulation performance of the transparent display assembly **60** may be improved. In addition, an inert gas having the thermal insulation performance except for the argon gas may be filled into the first insulation layer **691**.

[0150] The rear panel **65** may come into contact with the door light **57**. Thus, a distance between the display **62** and the door light **57** may be determined according to the position of the rear panel **65**. The door light **57** may serve as an auxiliary backlight of the display **62** in the turn-on state. [0151] In detail, a distance between the display **62** and the door light **58** may range from about 5 cm to about 15 cm. When the distance between the display **62** and the door light **57** is less than about 5 cm, a shade may occur. When the distance between the display **62** and the door light **57** exceeds about 5 cm, the door light may not serve as the backlight. Thus, to maintain the distance between the display **62** and the door light **57**, the rear panel **65** may also be maintained to be spaced a predetermined distance from the display **62**, and thus, the width of the second spacer **66** may be determined.

[0152] A gap between the light guide plate **64** and the rear panel **65** may be sealed by the second spacer **66**. Thus, a space between the second spacer **66** and the light guide plate **64** may become to a vacuum state, or an insulative gas such as argon may be injected for the thermal insulation to more improve the thermal insulation performance.

[0153] In the state in which the rear panel **65** adheres to the second spacer **66**, an outer end of the rear panel **65** may further extend outward from the second spacer **66**. Also, the outer spacer **67** may be mounted on the rear panel **65** so that the rear panel **65** and the front panel **61** are fixed to each other.

[0154] The outer spacer **67** may connect the rear surface of the front panel **61** to the front surface of the rear panel **65** and also define the circumferential surface of the transparent display assembly **60**. Also, a space in which the display light **68** is mounted may be provided in an inner surface of the outer spacer **67**.

[0155] The outer spacer **67** may have a rectangular frame shape. Also, the outer spacer **67** may have a size in which the light guide plate **64** and the first and second spacers **63** and **66** are accommodated.

[0156] The first spacer **63** disposed inside the outer spacer **67** may have upper and lower ends,

which come into contact with the outer spacer **67**, but may not be completely sealed due to the simple contact structure thereof. Thus, a space between the front panel **61** and the rear panel **65**, which is spaced by the first spacer **63**, may not have a sealed structure.

[0157] However, the outer spacer **67** may be disposed between the front panel **61** and the rear panel **65** to seal the space between the front panel **61** and the rear panel **65**. Although the first spacer **63** does not seal the space between the front panel **61** and the light guide plate **64** inside the outer spacer **67**, the space between the front panel **64** and the rear panel **65** inside the outer spacer **67** in addition to the space between the front panel **61** and the light guide plate **64**, in which the first spacer **63** is accommodated therebetween, may be sealed by the outer spacer **67**. Thus, the argon gas may be filled into the space between the front panel **61** and the light guide plate **64**, and a second insulation layer may be provided to more improve the thermal insulation performance of the transparent display assembly **60**.

[0158] In detail, the outer spacer **67** may define a circumference of an outer portion of the transparent display assembly **60** and also have a connection structure that is capable of allowing the front panel **61** to be maintained at a certain distance.

[0159] The space between the front panel **61** and the rear panel **65**, i.e., the inner space of the outer spacer may be completely sealed by the coupling of the outer spacer **67**. Also, the inside of the outer spacer **67** may be more sealed by the sealant **691** applied to the circumference of the outer spacer **67**.

[0160] The display **62** and the light guide plate **64** may be spaced apart from each other in a front and rear direction within the inside of the space that is sealed by the outer spacer **67**. The first and second spacers **63** and **66** for maintaining the distance of the light guide plate **64** may be also provided in the inner space of the outer spacer **67**.

[0161] An additional insulation panel may be further provided in the outer spacer **67**, or a multilayered glass structure may be provided in the outer spacer **67**. All of the above-described constituents may be provided in the space defined by the outer spacer **67**.

[0162] That is, the overall outer appearance of the transparent display assembly **60** may be defined by the front panel **61**, the rear panel **65**, and the outer spacer **67**, and all of the remaining constituents may be provided in the outer spacer **67**. Thus, the sealing may be performed only between the outer spacer **67**, the front panel **61**, and the rear panel **65** to completely seal the multilayered panel structure.

[0163] Particularly, even though a plate-shaped structure such as the light guide plate **64** is further provided in the outer spacer **67**, when only the outer spacer **67** adheres to the front panel **61** and the rear panel **65**, the sealed structure of the transparent display assembly **60** may be achieved. The sealed structure may maintain a minimal sealing point even in the multilayered structure due to the plurality of panel including the light guide plate **64**.

[0164] Thus, introduction of external air into the transparent display assembly **60** or the dew condensation in the transparent display assembly **60** due to introduction of moisture may be minimized. Also, when the inside of the outer spacer **67** becomes in a vacuum state, or a gas for the thermal insulation is injected, the insulation layer may be provided in the whole multilayered structure within the transparent display assembly **60** to more improve the thermal insulation performance.

[0165] The transparent display assembly **60** may be disposed in the sub door **50** so that the inside of the refrigerator is seen, and the screen is outputted, and also, the thermal insulation structure may be achieved in the multilayered panel structure at the minimum sealing point to secure the thermal insulation performance.

[0166] Also, the display light **68** may be mounted on each of the upper and lower ends of the outer spacer **67**. The light guide plate **64** may be disposed between the display lights **68** disposed on the upper and lower ends of the outer spacer **67**.

[0167] Thus, light emitted through the display light 68 may be directed to an end of the light guide

- plate **64** and then travel along the light guide plate **64** so that the entire surface of the light guide plate **64** emits light.
- [0168] The display lights **68** disposed on the inner upper and lower ends of the transparent display assembly **60** may be connected to a display light cable **606**. The display light cable **606** may have a flexible and flat shape like the touch cable **601** and the display cable **605**.
- [0169] The display light cable **606** may be connected to the display light **68** that is mounted inside the outer spacer **67** to extend to the outside of the transparent display assembly **60** through the sealant **691**.
- [0170] Also, the display light cable **606** may extend along the circumference of the transparent display **62** so that the display light cable **606** is not exposed through the transparent display **62**. Also, the display light cable **606** may extend upward in a state of being closely attached to the rear surface of the rear panel **65**. As occasion demands, the display light cable **606** may be bent in the state of adhering to the rear surface of the rear panel **65** and then may be connected to a docking PCB **604** disposed on the upper portion of the sub door **50**.
- [0171] Here, since the display light cable **606** extends in the state of being closely attached to the circumference of the rear panel **65**, when the sub door **50** is viewed from the outside, the display light cable **606** may be covered by the bezel **611** and thus may not be exposed through the transparent display assembly **60**.
- [0172] The sealant **691** may be applied to the circumference of the outer spacer **67**. The sealant **691** may be applied to form the circumferential surface of the transparent display assembly **60**. That is, the sealant **691** may completely seal a circumferential surface between the front panel **61** and the rear panel **65**.
- [0173] The sealant **691** may seal the transparent display assembly **60** to prevent air from being introduced into the transparent display assembly **60** and be made of a polysulfide (that is called a thiokol) material. As occasion demands, the sealant **691** may be made of a different sealant material such as silicon or urethane so that the sealant **691** comes into direct contact with the foaming solution that is injected to mold the insulation material **531**.
- [0174] The sealant **691** may maintain the coupling of the outer spacer **67**, the front panel **61**, and the rear panel **65** and completely seal the connected portions of the components to prevent water or moisture from being introduced. Also, the sealant **691** may be a portion, which comes into directly contact with the foaming solution when the insulation material **531** is molded, and protect the circumference of the transparent display assembly **60**.
- [0175] Also, the sealant **691** may allow cables **601**, **605**, and **606** connected to the touch sensor **612**, the display panel **62**, and the display light **68** within the transparent display assembly **60** to be accessible therethrough. The sealant **691** may cover outer surfaces of the cables **601**, **605**, and **606** to prevent water or moisture from being introduced through spaces through which the cables **601**, **605**, and **606** are accessible when the cables **601**, **605**, and **606** extend through the circumferential surface of the transparent display assembly **60**.
- [0176] Thus, the inside of the outer spacer **67** may be completely sealed by the sealant **670**, and the argon gas for the thermal insulation injected into the outer spacer **67** may be prevented from leaking.
- [0177] FIG. **11** is a partial perspective view illustrating a state in which the PCB is disposed on the upper portion of the transparent display assembly. Also, FIG. **12** is a partial perspective view illustrating a structure in which the display cable is disposed on the transparent display assembly. FIG. **13** is a partial perspective view illustrating a structure in which the display light is disposed on the transparent display assembly.
- [0178] As illustrated in the drawings, a plurality of PCBs **602**, **603**, and **604** for driving the transparent display assembly **60** may be disposed on an upper side of the sub door **50**, i.e., a space between an upper end of the transparent display assembly **60** and the upper cap.
- [0179] The PCBs mounted on the PCB mounting part 545 may include the T-CON board 602, the

touch PCB **603**, and the docking PCB **604**. The T-CON board **602** may include a display cable **605** for driving the display **62**. The touch PCB **603** may process a touch input signal of the touch sensor **612** and include a touch cable **601** connected to the touch sensor **612**. The docking PCB **604** may connect the touch PCB **603** and/or the T-CON board **602**, and the control unit **14** on the cabinet **10** to the wire type connection cable **607**.

[0180] The cables **601**, **605**, and **606** connecting the plurality of cables **602**, **603**, and **604** to each other may be provided as the flexible film type FFC or FPC. Thus, the touch cable **601**, the display cable **605**, and the display light cable **606** may occupy a large space within the sub door **50** and be disposed to be closely attached to each other along the outside of the transparent display assembly **60**. Also, the connection structure with the PCBs **602**, **603**, and **604** may also be simply provided and may not be exposed to the outside through the see-through part **21**. In addition, when the insulation material **531** is foamed to be molded in the sub door **50**, the PCBs **602**, **603**, and **604** may not interfere with the insulation material **531**.

[0181] In more detail, as illustrated in FIG. **11**, the touch cable **601** may extend upward from an upper end of the touch sensor **612** and be connected to the touch PCB **603** disposed at an upper side thereof. The touch cable **601** may have a flat shape, and the extending end of the touch cable **601** may be bent to be connected to the touch PCB **603**.

[0182] The display cable **605** may be connected to the source board **621** to extend upward. Then, the display cable **605** may extend along the circumference of the side surface of the transparent display assembly **60** and then be connected to the T-CON board **602**.

[0183] The display cable **605** may be connected to the source board **621** inside the transparent display assembly **60**. As illustrated in FIG. **12**, the display cable **605** may be guided to the outside of the outer spacer **67** through the space between the rear panel **65** and the outer spacer **67**. [0184] In detail, a cable connection part **605***a* is provided on the display cable **605**. The cable connection part **605***a* may be introduced into the transparent display assembly **60** through the space defined by the rear panel **65** and the end of the outer spacer **67** and then be connected to the source board **621** in the inner space of the transparent display **62**.

[0185] A double-sided tape or an adhesion member (or seal) **671** such as an adhesive, which adheres to the rear panel **65**, may be disposed on an end of the outer spacer **67**. The cable connection part **605***a* may pass through the adhesion member **671** and be guided to the outside of the outer spacer **67**.

[0186] Also, a sealant **670** may be applied to an outer surface of the outer spacer **67** to cover a circumference of the cable connection part **605***a*, thereby preventing the argon gas from leaking to the outside through the cable connection part **605***a* and preventing moisture from being introduced. [0187] Also, the display cable **605** may be bent at the outside of the outer spacer **67** to extend upward along the circumference of the outer spacer **67** coated with the sealant **670** and then be connected to the T-CON board **602**.

[0188] The display light cable **606** may be connected to the display light **68** disposed on each of the upper and lower portions of the transparent display assembly **60** to extend upward along the outer circumference of the transparent display assembly **60** and then be connected to the docking PCB **604**.

[0189] In detail, as illustrated in FIG. **12**, the display light cable **606** may be introduced into the transparent display assembly **60** through the space between the rear panel **65** and the outer spacer **67** and then be connected to the display light **68** disposed inside the outer spacer **67**.

[0190] The display light cable **606** may pass through the adhesion member **671** for allowing the outer spacer **67** and the rear panel **65** to adhere to each other and then be exposed to the outside. Then, the display light cable **606** may be bent to face the docking PCB **604** and extend along a circumference of the rear panel **65**.

[0191] The docking PCB **604** may be connected to an end of the door light cable **609** that extends from the door light **57**. The door light **57** may be provided as a separate part with respect to the

transparent display assembly **60** and mounted on the door liner **56**.

[0192] The docking PCB **604** may be connected to at least one of the touch PCB **603** and the T-CON board **602** and also be connected to the control unit **14** via the sub door **50** by the wire type connection cable **607**.

[0193] Thus, the plurality of flat cables **601**, **605**, and **606** may be connected to the docking PCB **604**, and the less number of connection cables **607** connected to the docking PCB **604** may be guided to the outside of the sub door **50** and then be connected to the control unit **14**. Thus, the control unit **14** and the electric components of the transparent display assembly **60** may communicate with each other by the connection cable **607** and the cables **601**, **605**, and **606** to transmit information for operation.

[0194] The transparent display assembly **60** has an insulation structure to prevent heat transfer between the inside of the refrigerator and the outside from occurring. Hereinafter, this structure will be described in more detail with reference to the accompanying drawings.

[0195] FIG. **14** is a partial cutaway perspective view of the transparent display assembly. Also, FIG. **15** is a cross-sectional view taken along line **15-15**′ of FIG. **8**. Also, FIG. **16** is a cross-sectional view taken along line **16-16**′ of FIG. **8**.

[0196] As illustrated in the drawings, the transparent display assembly **60** includes a first insulation layer **691** sealed between the rear panel **65** and the light guide plate **64** by the second spacer **66** and a second insulation layer **692** between the rear panel **65** and the front panel **61** by the outer spacer **67**.

[0197] In detail, the outer spacer **67** may be disposed on the rear surface of the front panel **61**, which has the largest area, and the display **62**, the first spacer **63**, the light guide plate **64**, and the second spacer **66** may be sequentially disposed inside the outer spacer **67**. Also, the rear panel **65** may adhere to the rear surface of the outer spacer **67** to define an outer appearance of the transparent display assembly **60**.

[0198] The touch sensor **612** is disposed on the rear surface of the front panel **61**, and the display **62** is disposed on a rear surface of the touch sensor **612**. The display **62** may be disposed in an inner region of the outer spacer **67**, and the light guide plate **64** may be disposed at a position that is spaced a predetermined distance from the display **62** by the first spacer **63**.

[0199] The first spacer **63** may be disposed on each of both left and right sides of the display **62** to adhere the rear surface of the front panel **61** by the adhesion member **632**. Also, both ends of the light guide plate **64** may be supported by a support pad **631** (or seals) disposed on the rear surface of the first spacer **63**. Also, the upper and lower ends of the light guide plate **64**, which are not supported by the first spacer **63**, may be supported by a light guide plate support part (or light guide plate support extension) **675** extending from the outer spacer **67**. In addition, the support pad **631** may adhere to the light guide plate support part **675** to support the upper and lower ends of the light guide plate **64**. That is, the first spacer **63** and the light guide plate support part **675** may be disposed at the same height to support both left and right ends and upper and lower ends of the front surface of the light guide plate **64**.

[0200] Here, since the light guide plate **64** may be contracted by heat due to the operation of the display light **68**, the end of the circumference of the light guide plate **64** may not be completely fixed, and ends of the first spacer **63** and the light guide plate support part **675** may be disposed adjacent to each other without being fixed and coupled to each other. Due to this structure, the first spacer **63** may not be completely sealed, and air or a gas may flow between the inside and the outside of the first spacer **63**.

[0201] Also, in a state in which the light guide plate **64** is supported by the first spacer **63** and the light guide plate support part **675**, the display light **68** may be disposed at positions corresponding to the upper and lower ends of the light guide plate **64**. The display light **68** may be configured so that a plurality of light emitting devices (e.g., light emitting diodes or LEDs) **682** are disposed on the substrate **681**. Here, the LEDs **682** may be continuously disposed along the end of the light

guide plate **64**.

[0202] Here, the outer spacer **67** may include a display light mounting part (or display light mounting wall) **674** so that the LEDs **682** are disposed on the end of the light guide plate **64**. A substrate accommodation part (or substrate accommodation region) **676** into which the substrate **681** is inserted may be recessed to be defined in a portion at which the display light mounting part **674** and the light guide plate support part **675** are connected to each other. Thus, the LEDs **682** may emit light to the end of the light guide plate **64** at a position corresponding to the end of the light guide plate **64**.

[0203] The first spacer **63**, the second spacer **66**, and the light guide plate **64** may be spaced apart from the inner surface of the outer spacer **67** to define a space therebetween. Thus, the source board **621** may be disposed inside the outer spacer **67**. That is, the source board **621** may be disposed in a space defined by the inside the outer spacer **67** and the first spacer **63** and also be disposed to extend in a direction perpendicularly crossing the front panel **61**.

[0204] An end of the source board **621** may extend up to a position adjacent to the rear surface of the front panel **61**, and one side of the source board **621** may be connected to the display **62** through a space between the front panel **61** and the first spacer **63**.

[0205] Here, a space may be defined between the front panel **61** and the first spacer **63**. In detail, a wire constituting a portion of the source board **621**, which passes between the first spacer **63** and the front panel **61**, may exist. Due to the uneven structure of the wire, the first spacer **63** and the front panel **61** may not be completely attached to each other, and thus, a gap may be generated therebetween. That is, a sealed space may not be provided in the space between the front panel **61** and the light guide plate **64**, which is defined by the first spacer **63**.

[0206] Also, the source board **621** disposed between the outer spacer **67** and the first spacer **63** may be connected to the display cable **605**. The source board **621** may be connected to the T-CON board **602** by the display cable **605**.

[0207] A second spacer **66** may be disposed on the rear surface of the light guide plate **64**. The second spacer **66** may have both ends that are opened and have a hollow polygonal tube shape in section. Also, the second spacer **66** may be provided as tube members **661** that define upper/lower and left/right sides thereof. A corner connection member **662** defining an edge of the second spacer **66** may be coupled to an opened end of each of the tube members **661**. The ends of the tube members **661** may be connected to cross each other by the corner connection member **662**, thereby providing the second spacer **66**.

[0208] The second spacer **66** may have one end that adheres to the rear panel **65** by the adhesion member **663**. Also, the second spacer may have the other end that comes into contact with the light guide plate **64** by the support pad **631**. Since electronic components are not disposed between the light guide plate **64** and the rear panel **65**, the cables **605** and **606** are not accessed between the light guide plate **64** and the rear panel **65**, and thus, a completely sealed space may be provided between the light guide plate **64** and the rear panel **65**.

[0209] Thus, a first insulation layer **691** may be disposed in an inner region of the second spacer **66**. An argon gas may be filled into the first insulation layer to prevent heat from being transferred to the outside.

[0210] The argon gas to be injected into the first insulation layer **691** may be injected through an injection hole **664** defined in the second spacer **66** in the state in which the rear panel **65** and the light guide plate **64** adhere to the second spacer **66**. After the argon gas is injected, the rest components of the transparent display assembly **60** may be coupled to the second spacer **66** in the state in which the light guide plate **64** is seated on the second spacer **66**.

[0211] Although a sealed space is not provided in the inner region of the first spacer **63**, the inner space defined by the outer spacer **67** may be sealed. That is, a space between the front panel **61** and the rear panel **65**, which adhere to the outer spacer **67**, may be sealed to provide the second insulation layer **692**, and the inner region of the first spacer **63** may also be provided in the second

insulation layer 692.

[0212] Thus, when the argon gas is injected into the second insulation layer **692**, the argon gas may be injected up to the inside of the first spacer **63** to which the flow of the gas and air is enabled. As a result, the second insulation layer **692** into which the argon gas is injected may be defined in the whole space including the space between the front panel **61** and the light guide plate **64**. Thus, the transparent display assembly **60** may be more improved in thermal insulation.

[0213] The first insulation layer **691** and the second insulation layer **692** may communicate with each other. In this case, when the argon gas is injected into the outer spacer **67**, the argon gas may be injected into all of the first and second insulation layers **691** and **692**.

[0214] FIG. **17** is a rear view illustrating a state in which the rear panel of the transparent display assembly is removed. Also, FIG. **18** is a view illustrating a state in which a gas is injected into the transparent display assembly.

[0215] As A illustrated in the drawings, the transparent display assembly **60** may be disposed on the front and rear surfaces by the front panel **61** and the rear panel and have a circumferential surface defined by the outer spacer **67**. Also, the display **62**, the light guide plate **64**, the first spacer **63**, and the second spacer **66** may be disposed inside the outer spacer **67**.

[0216] Also, to assemble the transparent display assembly **60**, the touch sensor **612** and the display **62** may be sequentially disposed on the front panel **61**, and the outer spacer **67** and the first spacer **63** may adhere to the front panel **61** by using the adhesion member **632**. The display **62** may be fixed by the first spacer **63**, and the light guide plate **64** may be seated on the rear surface of the first spacer **63** and the outer spacer **67**. In this state, the second spacer **66** may support the rear surface of the light guide plate **64**, and finally, the rear panel **65** may adhere to the second spacer **66** and the outer spacer **67** by using the adhesion members **663** and **671**.

[0217] The touch cable **601** connected to an upper end of the touch sensor **612** extends upward. Also, the display cable **605** connected to the source board **621** may be guided to the outside through the gap between the outer spacer **67** and the rear panel **65**. Also, the display light cable **606** connected to the display light **68** may also be guided to the outside through the gap between the outer spacer **67** and the rear panel **65**. Here, each of the touch cable **601**, the display cable **605**, and the display light cable **606** may have a flat film shape and thus be easily guided to the outside through the gap between the rear panel **65** and the outer spacer **67**.

[0218] Also, in the state in which the transparent display assembly **60** is assembled, the argon gas may be injected through injection holes **664** and **676**, which are defined in a right upper end (when viewed in FIG. **17**) of the outer spacer **67** and the second spacer **66**. Also, when the gas is injected, air in the first and second insulation layers **691** and **692** may be discharged through discharge holes **665** and **677**, which are defined in a left lower end (when viewed in FIG. **17**) of the outer spacer **67** and the second spacer **66**. Thus, the first and second insulation layers **691** and **692** may be completely filled. Also, to improve efficiency in injection of the gas, the injection holes **664** and **676** and the discharge holes **665** and **677** may be provided in plurality.

[0219] The argon gas may be injected to provide the insulation space in all of the first and second injection layers **691** and **692**. In detail, the argon gas injected into the transparent display assembly **60** through the injection hole **664** may be filled into the space between the front panel **61** and the light guide plate **64** through the edge of the first spacer **63**, i.e., the end of the first spacer **63** and the light guide plate support part **675** inside the outer spacer **67**.

[0220] The argon gas may be filled into the whole inner space of the outer spacer **67**. Here, the argon gas may also be injected into the second spacer **66** through the injection hole **664** defined in the second spacer **66**. Thus, the argon gas may be filled up to the light guide plate **64** and the rear panel **65**. As a result, the argon gas may be filled into all of the first and second insulation layers **691** and **692**. Thus, the transparent display assembly **60** may be improved in whole insulation effect.

[0221] After the argon gas is injected into the transparent display assembly **60**, the sealant **670** is

applied to the circumference of the outer spacer **67**. The sealant **670** may cover the injection hole **676** defined in the transparent display assembly **60** and also cover the portions through which the touch cable **601**, the display cable **605**, and the display light cable **606**, which are guided to the outside through the circumference of the transparent display assembly **60**, pass. Thus, the leakage of the gas into the transparent display assembly **60** and the introduction of the water and moisture into the transparent display assembly **60** may be prevented.

[0222] Hereinafter, turn-on/off states of the display light and the door light will be described in more detail with reference to the accompanying drawings.

[0223] FIG. **19** is a transverse cross-sectional view of the main door and the sub door. Also, FIG. **20** is a longitudinal cross-sectional view of the main door and the sub door. Also, FIG. **21** is a view illustrating a state in which the inside of the refrigerator is seen through the transparent display assembly. Also, FIG. **22** is a view illustrating a state in which a screen is outputted through the transparent display assembly.

[0224] As illustrated in the drawings, in a state in which a locking member **593** of the opening device **59** is inserted into a latch hole **421**, the sub door **50** may be maintained in a closes state. In this state, the door light **57** may be maintained in a turn-off state. An opened or closed state of the sub door **50** may be detected through a door switch that is separately provided.

[0225] In the turn-off state of the door light **57**, as illustrated in FIG. **1**, the rear space of the sub door **50** may be dark, and thus, the inside of the refrigerator **1** may not be seen through the seethrough part **21**. Thus, in the closed state of the sub door **50**, if separate manipulation is not performed, the door light **57** may be maintained in the turn-off state, and the inside of the refrigerator **1** may not be seen through the see-through part **21**.

[0226] In this state, the user may manipulate the front panel **61** to turn on the door light **57**. When the door light **57** is turned on, light emitted from a lighting module may be emitted to positions of both rear left and right sides of the rear panel **65**, which face each other.

[0227] The door light **57** may extend from the upper end to the lower end of the rear panel **65**. That is, the light emitted by the door light **57** may illuminate the entire rear region of the rear panel **65** from both the left and right sides of the rear panel **65**.

[0228] Here, when the display light **68** is in the turn-on state together with the door light **57**, light may be emitted upward and downward by the display light **68**, and thus the light may be emitted from left and right sides by the door light **57**. As a result, the light may be emitted to the seethrough part **21** in all directions to maximally brighten up an area of the see-through part **21**. [0229] The door light **57** may emit light in directions facing each other in a state of being close to the rear panel **65**. The light emitted by the door light **57** may brighten up an inner case of the accommodation case **43** and also brighten up the front region over the rear panel **65**. Thus, as illustrated in FIG. **20**, the door light **57** may serve as a lighting for brightening up the inner space of the refrigerator **1**, which is seen through the see-through part **21** and also serve as an auxiliary backlight for allow the display **62** to be more clearly displayed.

[0230] That is, in a state in which a screen is being outputted through the display **62**, the inner space of the refrigerator **1**, i.e., the rear space of the sub door **50** may be selectively seen through the see-through part **21**. To allow the rear space of the sub door **50** to be seen through the see-through part **21**, the door light **57** may be turned on.

[0231] A turn on/off combination of the display light **68** and the door light **57** may be variously realized according to a degree of seeing of the inside of the accommodation case **43** through the see-through part **21**.

[0232] Also, when the user manipulates the front panel **61** disposed on the front surface of the refrigerator **1**, the display light **68** may be turned on to turn on the display **62**. Thus, the transparent display assembly **60** may output a screen as illustrated in FIG. **23**. Here, the manipulation of the front panel **61** may be inputted as one of a specific position, the touch number, or a pattern. As occasion demands, a separate physical button or sensor may be used to detect the user's

manipulation.

[0233] A screen for displaying a state of the refrigerator **1** and manipulating may be outputted on the display **62**. Here, various screens for information with respect to accommodated foods may be outputted by using Internet, image output external input devices, or the like.

[0234] In detail, the display light **69** disposed on each of the upper and lower ends of the light guide plate **64** may be turned on together with the display **62** by the user's manipulation. The light guide plate **64** may irregularly reflect and diffuse light of the display light **68** by the turn-on of the display light **68** to emit light having generally uniform brightness to the front display **62**.

[0235] Also, light may be emitted to the display **62** from the rear side of the display **62** by the light guide plate **64**, and simultaneously, a screen based on inputted image information may be outputted on the display **62**. Thus, the user may confirm the clearly outputted screen through the see-through part **21**.

[0236] In addition to the foregoing embodiment, a refrigerator according to various embodiments may be exemplified.

[0237] According to a second embodiment, an insulation panel is further provided between a light guide plate and a rear panel, and a fourth insulation layer and a third insulation layer are respectively provided at a rear side and a front side of the insulation panel. Thus, the second embodiment is the same as the foregoing embodiment except for an insulation panel within a transparent display assembly and the third and fourth spacers for mounting the insulation panel. Also, in the current embodiment, the same constituent as those of the abovementioned embodiments will be denoted by the same reference numeral, and its detailed description will be omitted.

[0238] FIG. **23** is an exploded perspective view of the transparent display assembly according to the second embodiment.

[0239] As illustrated in the drawings, a transparent display assembly **60** according to a second embodiment may have an outer appearance defined by a front panel **61**, and a touch sensor **612** is disposed on a rear surface of the front panel **61**. A touch cable **601** may extend upward on an upper end of the touch sensor **612**.

[0240] Also, a display **62** is disposed on a rear surface of the touch sensor **612**, and a first spacer **63** is disposed on each of both left and right sides of the display **62**. The first spacer **63** may support both ends of a light guide plate **64**, and the light guide plate **64** and the display **62** may be maintained to be spaced a predetermined distance from each other.

[0241] A source board **621** laterally protrudes from one end of the display **62** to pass between the first spacer **63** and the front panel **61** and protrude outward. The source board **621** may be bent between the first spacer **63** and the outer spacer **67** and disposed perpendicular to the front panel **61** and then connected to a display cable **605**.

[0242] The outer spacer **67** is disposed outside the first spacer **63**. Also, the outer spacer **67** may support upper and lower ends of the light guide plate **64**. Also, a display light **68** mounted on each of upper and lower ends of and inner surface of the outer spacer **67** may emit light to upper and lower ends of the light guide plate **64**. A display light cable **606** is connected to the display light **68**. [0243] A third spacer **71** having a rectangular frame shape is disposed on a rear surface of the light guide plate **64**. An insulation panel **72** may be fixed to be maintained at a predetermined distance with respect to the light guide plate **64** by the spacer **71**. In detail, the third spacer **71** may have the same structure as the second spacer **66** according to the foregoing embodiment except for a thickness of the third spacer **71**. That is, since an insulation panel **72** has to be added while maintaining the total thickness of the transparent display assembly **60**, the third spacer **71** may have a thickness less than that of the second spacer **66**.

[0244] Also, the insulation panel **72** may have the same structure as the rear panel **65** to provide a glass layer **721** and an insulation coating layer **722**. Thus, the transparent display assembly **60** according to the second embodiment may be improved in thermal insulation performance. A glass

layer **651** and an insulation coating layer **652** may be further disposed on the rear panel to more improve the thermal insulation performance.

[0245] A fourth spacer **73** may be disposed on a rear surface of the insulation panel **72**. The rear panel **65** may adhere to a rear surface of the fourth spacer **73** to maintain a preset distance between the insulation panel **72** and the rear panel **65**. The fourth spacer **73** may be adequately designed according to a thickness of the third spacer **71**. That is, the fourth spacer **73** may have a thickness at which the rear panel **65** adheres to the fourth spacer **73** and the rear surface of the outer spacer **67** when the rear panel **65** is mounted.

[0246] The rear panel **65** may adhere to the outer spacer **67** and then be fixed while being maintained at a predetermined distance with respect to the front panel **61**. Also, the display **62**, the first spacer **63**, the light guide plate **64**, the third spacer **71**, the insulation panel **72**, and the fourth spacer **73** may be successively disposed in an inner region of the outer spacer **67** between the front panel **61** and the rear panel **65**.

[0247] Also, a third insulation layer **693** may be provided by the third spacer **71** between the light guide plate **64** and the insulation panel **72**. Also, a fourth insulation layer **694** may be provided by the insulation panel **72** and the fourth spacer **73**.

[0248] Also, the second insulation layer **692** may be provided in the outer spacer **67** to substantially insulate the entire area of the transparent display assembly **60**, thereby significantly improving the thermal insulation performance of the transparent display assembly **60**. If the thermal insulation performance of the transparent display assembly **60** is satisfied, one of the third and fourth insulation layers **693** and **694** may be omitted.

[0249] FIG. **24** is a transverse partial cutaway perspective view of the transparent display assembly. Also, FIG. **25** is a longitudinal partial cutaway perspective view of the transparent display assembly.

[0250] As illustrated in the drawings, the transparent display assembly **60** includes a third insulation layer **693** sealed between the light guide plate **64** and the insulation panel **72** by the third spacer **71** and a fourth insulation layer **694** sealed between the insulation panel **72** and the rear panel **65** by the fourth spacer **73**. Also, the second insulation layer **692** may be provided between the rear panel **65** and the front panel **61** by the outer spacer **67**.

[0251] In detail, the outer spacer **67** may be disposed on the rear surface of the front panel **61**, which has the largest area, and the display **62**, the first spacer **63**, the light guide plate **64**, the third spacer **66**, the insulation panel **72**, and the fourth spacer **73** may be sequentially disposed inside the outer spacer **67**. Also, the rear panel **65** may adhere to the rear surface of the outer spacer **67** to define an outer appearance of the transparent display assembly **60**.

[0252] The touch sensor **612** is disposed on the rear surface of the front panel **61**, and the display **62** is disposed on a rear surface of the touch sensor **612**. The light guide plate **64** may be disposed at a position that is spaced a predetermined distance from the display **62** by the first spacer **63** and the outer spacer **67**.

[0253] Here, since the light guide plate **64** may be contracted by heat due to the operation of the display light **68**, the end of the circumference of the light guide plate **64** may not be completely fixed, and ends of the first spacer **63** and the light guide plate support part **675** may be disposed adjacent to each other without being fixed and coupled to each other. Due to this structure, the first spacer **63** may not be completely sealed, and air or a gas may flow between the inside and the outside of the first spacer **63**.

[0254] The display light **68** may be disposed on the outer spacer **67**, which corresponds to the upper and lower ends of the light guide plate **64**. Also, the LED **682** mounted on the substrate **681** of the display light **68** may emit light to the end of the light guide plate **64** at a position corresponding to the end of the light guide plate **64**.

[0255] The first spacer **63**, the light guide plate **64**, the third spacer **71**, the insulation panel **72**, and the fourth spacer **73** may be spaced apart from an inner surface of the outer spacer **67** to define a

space therebetween. Also, the source board **621** may be disposed inside the outer spacer **67**. Since the source board **621** is disposed, a sealed space may not be provided in the space between the front panel **61** and the light guide plate **64**, which is defined by the first spacer **63**.

[0256] The third spacer **71** may be disposed on the rear surface of the light guide plate **64**, and the insulation panel **72** may adhere to the third spacer by using the adhesion member **711** to provide the third insulation layer **693**. Also, the fourth spacer **73** may be disposed on the rear surface of the insulation panel **72**, and the fourth spacer **73** and the outer spacer **67** may adhere to the rear panel **65** by using the adhesion members **731** and **671** to provide the fourth insulation layer **694** that is in a sealed state.

[0257] Also, the outer spacer **67**, the front panel **61**, and the rear panel **65** may adhere to each other to provide the second insulation layer **692**, which is in a sealed state, in the inside of the outer spacer **67** including the space between the front panel **61** and the light guide plate **64**. [0258] Hereinafter, a process of assembling the transparent display assembly having the above-described structure and a process of forming the insulation layer will be described with reference to the accompanying drawings.

[0259] FIGS. **26**A and **26**B are views illustrating a process of forming the insulation layer of the transparent display assembly.

[0260] To assemble the transparent display assembly **60**, the touch sensor **612** is formed on the front panel **61**, and the display **62**, the first spacer **63**, and the outer spacer **67** are mounted on the front panel **61**.

[0261] Also, the fourth spacer **73** may be mounted on the rear panel **65**, and the insulation panel **72** may be attached to the fourth spacer **73** to form the fourth insulation layer **694** that is in a sealed state. Also, the third spacer **71** is mounted on the insulation panel **72**, and the light guide plate **64** is seated on the third spacer **71** to form the third insulation layer **693** that is in a sealed state. [0262] As illustrated in FIG. **26**A, the front panel **61** on which the display **62**, the first spacer **63**, and the outer spacer **67** are mounted may be separated from the rear panel **65** on which the fourth spacer **73**, the insulation panel **72**, the third spacer **71**, and the light guide plate **64** are mounted. [0263] In this state, the argon gas is injected into the third insulation layer **693** and the fourth insulation layer **694**, which are maintained in the seated state. In the third insulation layer **693** and the fourth insulation layer **694** are in the sealed state, the gas may be injected into the third spacer **71** and the fourth spacer **73** through injection holes defined in one side of the third and fourth spacers **71** and **73** and be discharged through discharge holes defined in the other side of the third and fourth spacers **71** and **73**.

[0264] When the argon gas is completely injected, the injection hole and the discharge hole may be covered by the sealant or other covering constituents to prevent the argon gas from leaking. Alternatively, the third insulation layer **693** and the fourth insulation layer **694** may be configured so that the argon gas is injected, and the air is discharged through the injection hole and the discharge hole defined between the adhesion members **731** except for the third spacer **71** and the fourth spacer **73**. That is, the gas may be injected into the third and fourth insulation layers **693** and **694** through various methods.

[0265] The transparent display assembly **60** that is in the module state may be coupled to the front panel **61** in the state in which the gas is injected into the third insulation layer **693** and the fourth insulation layer **694** as illustrated in FIG. **26**A and then become the state of FIG. **26**B. That is, constituents of the front panel **61** and the rear panel **65**, which are partially assembled and produced at different positions, may be coupled to each other to form the transparent display assembly **60**. [0266] Here, the light guide plate **64** may be seated on and supported by the first spacer **63**, and an end of the outer spacer **67** may adhere to the rear panel **65** by the adhesion member **671**. The transparent display assembly **60** may be completely assembled as a whole due to the above-described structure.

[0267] Also, in the transparent display assembly **60** is completely assembled, the argon gas may be

injected through the injection hole **676** of the outer spacer **67**. Here, the air of the second insulation layer **692** may be discharged to the outside through a discharge hole (not shown). That is, the argon gas may be filled between the front panel **61** and the light guide plate **64** to form the second insulation layer **692** that is sealed by the outer spacer **67**.

[0268] In addition to the foregoing embodiment, a refrigerator according to various embodiments may be exemplified.

[0269] A refrigerator according to a third embodiment may have a structure in which injection holes are defined in an outer spacer and a corner connection member constituting the spacer to fill a gas for thermal insulation within a transparent display assembly. Thus, the third embodiment is the same as the foregoing embodiments except for constituents of the spacer. Also, in the current embodiment, the same constituent as those of the abovementioned embodiments will be denoted by the same reference numeral, and its detailed description will be omitted. In the current embodiment, constituents (not shown) are the same as those of the abovementioned embodiments will be denoted by the same reference numeral, and their detailed description will be omitted. [0270] FIG. 27 is a view illustrating a process of forming an insulation layer of a transparent display assembly according to a third embodiment.

[0271] As illustrated in the drawings, a transparent display assembly **60** according to the third embodiment may have an outer appearance defined by a front panel **61**, and a touch sensor **612** and a display **62** are mounted on a rear surface of the front panel **61**. Also, a light guide plate may be supported by a first spacer **63**. Also, an outer spacer **67** may be mounted outside the first spacer **63**. [0272] A third spacer **71** may be disposed on a rear surface of the light guide plate **64**, and an insulation panel **72** may be disposed on a rear surface of the third spacer **71**. Also, a fourth spacer **73** is disposed on a rear surface of the insulation panel **72**, and the rear panel **65** adheres to the fourth spacer **73** and the outer spacer **67** to define a rear surface of the transparent display assembly **60**.

[0273] Although the third and fourth spacers **71** and **73** and the insulation panel **72** are disposed at a rear side of the light guide plate **64** in this embodiment, the second spacer **66** instead of the third spacer **71** and the fourth spacer **73** may be disposed at the rear side of the light guide plate **64** like the first embodiment.

[0274] Also, in the transparent display assembly **60**, all of a display **62**, the first spacer **63**, the light guide plate **64**, the third spacer **71**, an insulation panel **72**, and the fourth spacer may be disposed in an inner region of the outer spacer **67**, and the inner region of the outer spacer **67** between the front panel **61** and the rear panel **65** may be completely sealed.

[0275] The fourth spacer **73** may include four tube members **731** defining upper/lower and left/right sides and a corner member **732** connecting the adjacent tube members to each other. Also, a moisture absorbent **661** may be filled into the tube members **731**. Thus, the moisture absorbent **661** may absorb moisture through a punched hole opened to the inside of the fourth insulation layer **694** to always dry the fourth insulation layer **694**.

[0276] The corner connection member **732** may be injection-molded with a structure that is capable of being easily inserted into and fixed to the tube members **731** and made of a plastic material. A connection member injection hole **732***a* may be defined in an edge of the corner connection member **732**. The connection member injection hole **732***a* may pass through the outside of the fourth spacer **73** to the inside of the fourth spacer **73** to communicate with the fourth insulation layer **694**.

[0277] Also, an injection hole **679** is penetrated through one side of an outer portion of the outer spacer **67**. The injection hole **679** may be defined in one side so that the injection hole **679** does not interfere with a source board **621** or a display light **68** and also be defined adjacent to the connection member injection hole **732***a*.

[0278] Thus, when a gas for thermal insulation is injected through the injection hole **679** in a state in which the transparent display assembly **60** is assembled, the gas may be filled into a second

insulation layer **692** inside the outer spacer **67**, and also, the gas may be injected into a fourth insulation layer **694** through the connection member injection hole **732***a*.

[0279] Although not shown, a discharge hole (not shown) may be further defined in one side of the outer spacer **67** and the fourth spacer **73** in a direction opposite to the injection hole **679** and the connection member injection hole **732***a*. Thus, since air is discharged through the discharge hole, the gas may be more smoothly injected.

[0280] Also, although not shown, the third spacer **71** may have the same structure as the fourth spacer **73**. Thus, the gas introduced through the injection hole **679** may be injected through the connection member injection hole **732***a* of the third spacer **71** and then filled into the third insulation layer **693**.

[0281] In the state in which the gas is completely injected into the transparent display assembly **60**, a sealant **670** may be applied to a circumference of the outer spacer **67** to cover the injection hole **679** and the discharge hole, thereby preventing the gas within the transparent display assembly **60** from leaking.

[0282] In addition to the foregoing embodiment, a refrigerator according to various embodiments may be exemplified.

[0283] A refrigerator according to a fourth embodiment may have a structure in which an entire front surface of a door is defined by a front surface of a transparent display assembly.

[0284] Also, a portion of constituents according to the fourth embodiment is the same as those according to the foregoing embodiments. Thus, the same part will be designated by the same reference numeral, and detailed descriptions thereof will be omitted.

[0285] FIG. **28** is a perspective view of a door according to a fourth embodiment. Also, FIG. **29** is a cross-sectional view taken along line **29-29**′ of FIG. **28**.

[0286] As illustrated in the drawings, a door **80** according to this embodiment may have an outer appearance of the entire front surface and a portion of a rear surface, which are defined by a transparent display assembly **60** and also have an outer appearance of a circumference and a portion of the rear surface, which are defined by a door liner **81**. Thus, the transparent display assembly **60** may be fixedly mounted on the door liner **81**.

[0287] In detail, the transparent display assembly **60** may have the same structure as that according to the first embodiment. That is, the transparent display assembly **60** may include a front panel **61**, a rear panel **65**, a light guide plate **64**, a display panel **62**, a touch sensor **612**, a first spacer **63**, a second spacer **66**, and an outer spacer **67**.

[0288] Also, injection holes **676** and **664** may be defined in the outer spacer **67** and the second spacer **66**, respectively. A gas for thermal insulation may be injected through an injection hole **679**. The gas is injected through the injection hole **676** from the outside of the outer spacer **67**. The gas introduced into the outer spacer **67** is injected into the second insulation layer **692** between the front panel **61** and the light guide plate **64**. Here, an inner space of the outer spacer **67** may be sealed and communicate between the light guide plate **64**, which is supported by the first spacer **63**, and the front panel **61** so that the gas for the thermal insulation is introduced.

[0289] Also, the gas introduced into the outer spacer **67** may be introduced into the second insulation layer **692** between the light guide plate **64** and the rear panel **65** through the injection hole **664** of the second spacer **66**, which is disposed inside the outer spacer **67**.

[0290] Thus, the gas for the thermal insulation may be filled into a hinge **85** and the second insulation layer within the transparent display assembly **60** to satisfy the thermal insulation performance of the transparent display assembly **60**.

[0291] Although not shown, a discharge hole (not shown) may be defined in each of the outer spacer **67** and the second spacer **66** like the first embodiment. Thus, when the gas is injected into the first insulation layer **691** and the second insulation layer **692**, air may be discharged so that the injection of the gas is more effectively performed.

[0292] Also, an insulation coating layer 652 may be further provided on the rear panel 65 to more

improve the thermal insulation of the transparent display assembly **60** by using the insulation coating layer **652**.

[0293] Also, the front panel **61** may define the entire front surface of the door **80**, and the circumference of the front panel **61** may further protrude from the outer spacer **67** and the rear panel **65**. An opaque bezel may be printed on a front protrusion **613** to prevent the other constituent coming into contact with the front protrusion **613** from being exposed through the front surface. [0294] A door liner **81** defining a circumferential surface and a rear surface of the door **80** may be disposed on a rear surface of the front protrusion **613**. The door liner **81** may include a front part (or front wall) **811** adhering to the circumference of the front panel **61**, a side part (or side wall) **812** defining a circumference of a side surface of the door **80**, a rear part (or rear wall) **813** defining a circumference of the rear surface of the door **80**, and a linear protrusion **814** on which the door light **57** is mounted. The front part **811**, the side part **812**, the rear part **813**, and the linear protrusion **814** may be molded into one constituent as a whole, and as necessary, may be provided in the form in which at least two constituents are coupled to each other.

[0295] The front part **811** may come into contact with the circumference of the rear surface of the front panel **61** and be coupled by an adhesion member such as a double-sided tape or an adhesive. The side part **812** extends backward from an outer end of the front part **811** to extend up to the rear part **813**, thereby defining a substantial outer appearance of the door **80**, which is exposed to the outside. Also, a thickness of the door **80** may be determined according to a width of the side part **812**. Thus, the side part **812** may extend to protrude to a rear side of the rear surface of the transparent display assembly **60** to provide a space in which the transparent display assembly **60** is mounted.

[0296] The rear part **813** extends from an end of the side part **812** to define the rear surface of the door **80**. The rear part **813** may extend by a predetermined length, and the extending end may support an outer end of the rear panel **65**. An adhesion member such as a double-sided tape or an adhesive may be disposed on the rear part **813** to adhere to the transparent display assembly **60**. [0297] Thus, the transparent display assembly **60** may have a structure in which the front panel **61** is supported by the front part **811**, and the rear panel **65** is supported by the rear part **813** and then fixed to the door **80**. That is, the transparent display assembly **60** may have a structure in which the front panel **61** and the rear panel **65** are inserted through the opened front surface of the door liner **81** and supported by the door liner **81** and then fixedly mounted.

[0298] A gasket **73** may be fixedly mounted on the rear surface **813**. When the door **80** is closed, the gasket **73** may seal the circumference of the rear surface of the door **80** to prevent cool air within the refrigerator from leaking.

[0299] The rear part **813** may have a stepped one side to come into contact with an outer end of the rear panel **65** and thereby to guide the rear panel **65** so that the rear panel is mounted at an accurate position, and simultaneously, to prevent a foaming solution injected into the door liner **81** from leaking.

[0300] The transparent display assembly **60** may be fixedly mounted on the door liner **81**, and the circumferential surface of the transparent display assembly **60** may seal a space defined by the front part **811**, the side part **812**, and the rear part **813**. Particularly, the inside of the transparent display assembly **60** may be completely sealed by the sealant **691** applied to the outside of the transparent display assembly **60**. Thus, the foaming solution may be injected into the door liner without leaking to the outside to provide an insulation material **82**. Also, the insulation material **82** may come into direct contact with the circumference of the transparent display assembly **60** to more fix the transparent display assembly **60**.

[0301] The linear protrusion **814** may extend backward from the end of the rear part **813** and be bent inward to define a space, in which the door light **57** is mounted, in each of both sides of the rear surface of the door **80**. The door light **57** may illuminate light in directions facing each other to brighten up the rear side of the transparent display assembly **60**.

[0302] An upper hinge **84** and a lower hinge **85** may be disposed on upper and lower ends of the circumferential surface of the door **80** so that the door **80** is rotatably mounted on a cabinet of the refrigerator. Also, although not shown, a handle for rotational manipulation of the door **80** may be further disposed on one side of the door **80**.

[0303] The following effects may be expected in the refrigerator according to the proposed embodiments.

[0304] In the refrigerator according to the embodiments, the see-through part that sees the accommodation space may be provided in the door. The see-through part may include the transparent display and be selectively transparent or opaque according to the turn-on/off of the door light and the display light. Thus, the user may confirm the accommodation space through the see-through part by the user's manipulation without opening the door to improve the user's convenience and reduce the power consumption.

[0305] Also, in the see-through part, the display may operate according to the user's manipulation to display various screens and thereby to provide various pieces of information for the user's convenience and allow the user to input the manipulation thereof, thereby improving the user's convenience.

[0306] Also, the cables connected to the electric components of the transparent display assembly may have the flexible structure as the flat type cable. Thus, the cables may easily access between the transparent display assembly having the structure in which the plurality of panels are laminated, and the sealed state may be maintained.

[0307] Also, the cables may be bent and thus closely attached to the circumference of the transparent display assembly. Thus, the door may have the compact structure, and the interface with the insulation material may be minimized.

[0308] Also, the PCB for controlling the electric components of the transparent display assembly may be disposed at the upper, lower, or left/right sides of the transparent display assembly. In addition, since the cables connected to the PCB are also disposed along the circumference of the transparent display assembly, the PCB or the cables may not be exposed to the outside through the transparent display assembly. That is, the inside of the refrigerator may be seen through the transparent display assembly that is capable of outputting the screen. Here, the interference with the PCB or the cables may be prevented.

[0309] Also, the cables connected to the electric components of the transparent display assembly may be accessible through the circumferential surface of the transparent display. Particularly, in case of the source board, the cables may pass between the first spacer and the front panel, and thus, the sealing at the portion through which the cables pass may be impossible. Also, although the first spacer having the portion on which the display light is disposed and the portion supporting the light guide plate has a structure in which the light guide plate is not sealed, the outer spacer may be disposed outside the first spacer to seal the gap between the front panel and the rear panel. In addition, the injection hole for injecting the gas into the outer spacer may be provided to inject the gas for the insulation into the outer spacer to form the insulation layer between the front panel to which the display is attached and the light guide plate.

[0310] Also, at least one or more panels may be further provided at the rear side of the light guide plate, and the distance between the light guide plate and the panel may be maintained. Also, the injection hole may be provided in the spacer to inject the insulation gas introduced through the injection hole of the outer spacer into the spaces between the plurality of panels through the spacer, thereby significantly improving the insulation performance of the transparent display assembly. [0311] Also, the sealant may be applied to the circumference of the outer spacer to completely seal the injection hole on the outer spacer and the portion of the outer spacer, through which the plurality of film-type cables guided to the outside through the circumferential surface pass. Thus, the gas for the insulation in the transparent display assembly may be prevented from leaking, and the insulation performance may be maintained.

[0312] Also, when the insulation gas is injected through the outer spacer, the spacer provided in the outer spacer may be constituted by the plurality of tube members and the corner connection member connecting the tube members to each other and made of the plastic material. Also, the connection member injection hole may be defined in the corner connection member so that the gas is introduced into the insulation layer. Thus, the structure for injecting the gas may be simply realized without processing the tube members.

[0313] Also, the plurality of insulation layers in which the insulation gas is filled may be provided in the transparent display assembly to improve the insulation performance of the transparent display assembly.

[0314] Also, in the rear panel or the rear panel and the insulation panel of the transparent panels constituting the transparent display assembly except for the front panel, to which the touch sensor for the touch operation is attached, and the light guide plate, the insulation coating layer formed by applying the metal oxide to the surface of the glass layer may be provided to block and reflect the radiant heat, thereby more improving the insulation performance of the transparent display assembly.

[0315] Also, the insulation coating layer may not be provided to the front panel, to which the touch sensor is attached, to secure the touch recognition performance. In addition, the insulation layer in which the gas is filled may be provided inside the transparent display assembly to secure the insulation performance.

[0316] Also, the transparent display assembly may have the sealed space therein by the outer spacer connecting the front panel to the rear panel. Also, the display and the light guide plate may be accommodated in the inner space of the outer spacer to provide the multilayered panel structure. [0317] As described above, in the multilayered panel structure, the multilayered inner space may be sealed by the sealing structure due to the outer spacer may be naturally realized. In addition, although the multilayered panel structure is further provided in the inner space of the outer spacer, the entire sealing of the transparent display assembly may be achieved by only the sealing of the outer spacer to improve the thermal insulation performance and the assemblability. [0318] Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims

1. A refrigerator comprising: a cabinet having a storage space; a light configured to illuminate the storage space; a main door configured to open and close the storage space and having an opening; and a sub-door configured to open and close the opening of the main door, the sub-door including: a panel assembly provided at a front surface of the sub-door; an outer plate provided at a side surface of the sub-door; a door liner provided at a rear surface of the sub-door and having a door liner opening; an upper cap deco provided at an upper surface of the sub-door; a lower cap deco provided at a lower surface of the sub-door; a first space defined by the door liner, the panel assembly, the outer plate, the upper cap deco and the lower cap deco; and an insulation material provided in the first space, wherein the panel assembly includes: a front panel provided at the front surface of the sub-door; a rear panel provided at the door liner opening of the door liner, the front and rear panels including a glass material; an outer spacer provided between the front panel and the rear panel; a second space defined by the outer spacer, the front panel and the rear panel; and a

sealant provided at an outer surface of the outer spacer, wherein an inert gas is injected into the second space through an injection hole of the outer spacer, the injection hole being covered by the sealant.

- **2**. The refrigerator of claim 1, wherein the outer spacer comprises an inner surface that faces the second space, and wherein the injection hole is formed to pass through the outer surface and the inner surface of the outer spacer.
- **3.** The refrigerator of claim 1, wherein the insulation material surrounds upper, lower, and side surfaces of the outer spacer, and wherein the sealant is disposed between the insulation material and outer spacer.
- **4.** The refrigerator of claim 1, wherein the outer spacer comprises a discharge hole through which air in the second space is discharged when the inert gas is injected into the second space.
- **5**. The refrigerator of claim 1, wherein the panel assembly comprises: a display provided within the second space; a light guide plate spaced rearward from the display; an additional spacer provided between the light guide plate and the rear panel; and an insulation layer defined by the light guide plate, the rear panel and the additional spacer.
- **6.** The refrigerator of claim 5, wherein the additional spacer comprises an additional injection hole through which the inert gas is injected into the insulation layer.
- 7. The refrigerator of claim 1, wherein the inert gas comprises an argon gas.
- **8.** The refrigerator of claim 1, further comprising: a manipulation member positioned at a recessed handle groove provided at the lower cap deco; a rod connected to the manipulation member and disposed within the first space; and a locking member connected to the rod and protruding from the rear surface of the sub-door to be positioned in a latch hole of the main door when the sub-door closes the opening of the main door, the locking member being configured to move when a user manipulates the manipulation member.
- **9.** The refrigerator of claim 1, wherein the front panel comprises: a front protrusion extending away from the outer spacer and the rear panel; and a bezel provided on the protrusion of the front panel to cover at least a portion of the first space, the bezel being printed on a rear surface of the front protrusion with a black color.
- **10**. The refrigerator of claim 1, wherein the front panel comprises a front protrusion extending away from the outer spacer, and wherein the sealant is provided between the front protrusion and a portion of the rear panel extension region that extends away from the outer spacer.
- **11**. The refrigerator of claim 1, the front panel comprises a front protrusion extending away from the outer spacer and the rear panel, and wherein a size of the front panel along a vertical direction is greater than a size of the rear panel along the vertical direction by a size of the front protrusion along the vertical direction.
- **12**. The refrigerator of claim 1, further comprising a damping device disposed on an edge of the sub-door, the damping device being configured to dampen an impact between the sub-door and the main door when the sub-door is closed.
- **13**. The refrigerator of claim 1, wherein the sub-door comprises a see-through region provided at least a portion of the front surface of the sub-door, and the storage space being visible through the see-through region.
- **14.** The refrigerator of claim 13, wherein the panel assembly is configured to have a plurality of states that comprises: a transparent state in which the light is turned on to allow the storage space to be visible through the see-through region, and an opaque state in which the light is turned off to make the storage space not visible through the see-through region.
- **15**. The refrigerator of claim 13, wherein the glass material includes a transparent blue glass material that allows the storage space to be visible through the see-through region.
- **16**. The refrigerator of claim 1, wherein the front panel defines an outer appearance of an entirety of the front surface of the sub-door.
- 17. The refrigerator of claim 1, further comprising a moisture absorbent provided in the outer

spacer to absorb moisture in the second space.

- **18**. The refrigerator of claim 1, wherein the main door comprises a first door to open and close a first portion of the storage space and a second door to open and close a second portion of the storage space, and wherein the sub-door is provided at one of the first door or the second door.
- **19**. The refrigerator of claim 1, wherein the storage space comprises a refrigerating compartment at an upper portion of the cabinet and a freezing compartment at a lower portion of the cabinet, wherein the main door is configured to open and close at least a portion of the refrigerating compartment, and wherein the refrigerator further comprises a freezing compartment door configured to open and close at least a portion of the freezing compartment.
- **20**. The refrigerator of claim 19, wherein the freezing compartment door comprises a recessed handle groove formed at an upper surface of the freezing compartment door such that a user manipulates the recessed handle groove to open and close the freezing compartment door.