Study Notes

Yangyang Li yangyang.li@northwestern.edu

Update on August 15, 2023

					1.5.1 Variables Elimination	16 16 16 16 16
o	nt	ent	ts		1.7 Hidden Markov Model	16
					II Algorithm and Data Structure	17
A	crony	ms		7	2 Algorithm 2.1 Graph	19 19
Pı	reface		res of this template	9 9	III Programming	21
	0.1	0.1.1	res of this template	9		
		0.1.2	ToC (Table of Content)	9	3 C++	23
		0.1.3	header and footer	9	4 Rust	25
		0.1.4	bib	10		
		0.1.5	preface, index, quote (epigraph) and appendix	10	IV Research	27
					5 Paper Reading	29
I	Mad	chine 1	Learning	11	Appendices	31
1	Prol	bability	y	13	Appendix A Formulas	31
	1.1		num Likelihood Estimation	13	A.1 Gaussian distribution	31
	1.2		num A Posteriori Estimation	13		01
	1.3		ian Distribution	14	Bibliography	33
	1.4 1.5		ian Network bility Graph	16 16	Alphabetical Index	35
	1.5	1100a	omity Orapii	10	Aiphavencai muex	33

CONTENTS

List of Figures

1.1	a simple Bayesian network.	16
1.2	elief propagation.	16

List of Theorems

A.1 Theorem (Central limit theorem) . . . 31

List of Definitions

A.1 Definition (Gaussian distribution) . . 31

LIST OF DEFINITIONS LIST OF DEFINITIONS

Acronyms

MAP Maximum A Posteriori Estimation 13
 MLE Maximum Likelihood Estimation 13, 14
 PDF Probability Density Function 14

Acronyms

Preface

Contents		
0.1	Features of this template	 9

0.1 Features of this template

TeX, stylized within the system as LTEX, is a typesetting system which was designed and written by Donald Knuth and first released in 1978. TeX is a popular means of typesetting complex mathematical formulae; it has been noted as one of the most sophisticated digital typographical systems.

- Wikipedia

0.1.1 crossref

different styles of clickable definitions and theorems

• nameref: Gaussian distribution

• autoref: Definition A.1, ??

• cref: Definition A.1,

• hyperref: Gaussian,

0.1.2 ToC (Table of Content)

- mini toc of sections at the beginning of each chapter
- list of theorems, definitions, figures
- · the chapter titles are bi-directional linked

0.1.3 header and footer

fancyhdr

- right header: section name and link to the beginning of the section
- left header: chapter title and link to the beginning of the chapter
- footer: page number linked to ToC of the whole document

0.1.4 bib

- titles of reference is linked to the publisher webpage e.g., [Kit+02]
- backref (go to the page where the reference is cited) e.g., [Chi09]
- customized video entry in reference like in [Bab16]

0.1.5 preface, index, quote (epigraph) and appendix

index page at the end of this document...

Part I Machine Learning

Chapter 1

Probability

Contents

 13
 13
 14
 16
 16
 16
 16

1.1 Maximum Likelihood Estimation

$$X = (x_1, x_2, \dots, x_N)^{\mathsf{T}}, x_i = (x_{i1}, x_{i2}, \dots, x_{ip})^{\mathsf{T}}$$
 (1.1)

in which N is the number of samples, p is the number of features. The data is sampled from a distribution $p(\mathbf{x} \mid \theta)$, where θ is the parameter of the distribution.

For N i.i.d. samples, the likelihood function is $p(\boldsymbol{X} \mid \theta) = \prod_{i=1}^{N} p(\boldsymbol{x}_i \mid \theta))$

In order to get θ , we use Maximum Likelihood Estimation (MLE) to maximize the likelihood function.

$$\theta_{\text{MLE}} = \underset{\theta}{\operatorname{argmax}} \log p(\boldsymbol{X} \mid \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(\boldsymbol{x}_i \mid \theta)$$
 (1.2)

1.2 Maximum A Posteriori Estimation

In Bayes' theorem, the θ is not a constant value, but $\theta \sim p(\theta)$. Hence,

$$p(\theta \mid \mathbf{X}) = \frac{p(\mathbf{X} \mid \theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X} \mid \theta)p(\theta)}{\int_{\theta} p(\mathbf{X} \mid \theta)p(\theta)d\theta}$$
(1.3)

In order to get θ , we use Maximum A Posteriori Estimation (MAP) to maximize the posterior function.

$$\theta_{\text{MAP}} = \underset{\theta}{\operatorname{argmax}} p(\theta \mid \boldsymbol{X}) = \underset{\theta}{\operatorname{argmax}} \frac{p(\boldsymbol{X} \mid \theta)p(\theta)}{p(\boldsymbol{X})}$$
(1.4)

After θ is estimated, then calculating $\frac{p(X \mid \theta) \cdot p(\theta)}{\int p(X \mid \theta) p(\theta) d\theta}$ to get the posterior distribution. We can use the posterior distribution to predict the probability of a new sample x.

$$p(x_{\text{new}} \mid \boldsymbol{X}) = \int_{\boldsymbol{\theta}} p(x_{\text{new}} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta} \mid \boldsymbol{X}) d\boldsymbol{\theta}$$
 (1.5)

1.3 Gaussian Distribution

Gaussian distribution is also called normal distribution.

$$\theta = (\mu, \sigma^2), \quad \mu = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
 (1.6)

For MLE,

$$\theta = (\mu, \Sigma) = (\mu, \sigma^2), \quad \theta_{\text{MLE}} = \underset{\theta}{\operatorname{argmax}} \log p(\boldsymbol{X} \mid \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(\boldsymbol{x}_i \mid \theta)$$
 (1.7)

Generally, the Probability Density Function (PDF) of a Gaussian distribution is:

$$p(x \mid \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \mu)^{\mathrm{T}} \Sigma^{-1} (\boldsymbol{x} - \mu)\right)$$
(1.8)

in which μ is the mean vector, Σ is the covariance matrix, det is the determinant of matrix. det is the product of all eigenvalues of a matrix.

Hence,

$$\log p(\boldsymbol{X} \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(x_i \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$
(1.9)

Let's only consider 1 dimension case for brevity, then

$$\log p(\boldsymbol{X} \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log p(x_i \mid \boldsymbol{\theta}) = \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$$
(1.10)

Let's get the optimal value for μ ,

$$\mu_{\text{MLE}} = \underset{\mu}{\operatorname{argmax}} \log p(\boldsymbol{X} \mid \boldsymbol{\theta}) = \underset{\mu}{\operatorname{argmin}} \sum_{i=1}^{N} \frac{1}{2} (x_i - \mu)^2$$
(1.11)

So,

$$\frac{\partial \log p(\boldsymbol{X} \mid \boldsymbol{\theta})}{\partial \mu} = \sum_{i=1}^{N} (\mu - x_i) = 0 \to \mu_{\text{MLE}} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1.12}$$

Let's get the optimal value for σ^2 ,

$$\begin{split} \sigma_{\text{MLE}} &= \operatorname*{argmax} \log p(\boldsymbol{X} \mid \boldsymbol{\theta}) \\ &= \operatorname*{argmax} \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2} \right) \\ &= \operatorname*{argmax} \sum_{i=1}^{N} \left[-\log \sqrt{2\pi\sigma^2} - \frac{(x-\mu)^2}{2\sigma^2} \right] \\ &= \operatorname*{argmin} \sum_{i=1}^{N} \left[\log \sigma + \frac{(x-\mu)^2}{2\sigma^2} \right] \end{split}$$

Hence,

$$\frac{\partial}{\partial \sigma} \sum_{i=1}^{N} \left[\log \sigma + \frac{(x_i - \mu)^2}{2\sigma^2} \right] = 0 \to \sigma_{\text{MLE}}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
(1.13)

 $\mathbb{E}_D\left[\mu_{\texttt{MLE}}\right]$ is unbaised.

$$\mathbb{E}_{D}\left[\mu_{\text{MLE}}\right] = \mathbb{E}_{D}\left[\frac{1}{N}\sum_{i=1}^{N}x_{i}\right] = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}_{D}\left[x_{i}\right] = \frac{1}{N}\sum_{i=1}^{N}\mu = \mu \tag{1.14}$$

However, $\mathbb{E}_D\left[\sigma_{\mathtt{MLE}}^2\right]$ is biased.

$$\mathbb{E}_D\left[\sigma_{\texttt{MLE}}^2\right] = \mathbb{E}_D\left[\frac{1}{N}\sum_{i=1}^N \left(x_i - \mu_{\texttt{MLE}}\right)^2\right] \tag{1.15}$$

$$= \mathbb{E}_D \left[\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{\text{MLE}})^2 \right]$$
 (1.16)

$$= \mathbb{E}_D \left[\frac{1}{N} \sum_{i=1}^{N} \left(x_i^2 - 2x_i \mu_{\text{MLE}} + \mu_{\text{MLE}}^2 \right) \right] = \mathbb{E}_D \left[\sum_{i=1}^{N} x_i^2 - 2\frac{1}{N} \sum_{i=1}^{N} x_i \mu_{\text{MLE}} + \mu_{\text{MLE}}^2 \right]$$
(1.17)

$$= \mathbb{E}_D \left[\frac{1}{N} \sum_{i=1}^{N} \left(x_i^2 - \mu^2 \right) + \mu^2 - \mu_{\text{MLE}}^2 \right]$$
 (1.18)

$$= \sigma^2 - \mathbb{E}_D \left[\mu_{\text{MLE}}^2 - \mu^2 \right] \tag{1.19}$$

$$= \sigma^2 - \left(\mathbb{E}_D \left[\mu_{\text{MLE}}^2 \right] - \mathbb{E}_D \left[\mu_{\text{MLE}}^2 \right] \right) \tag{1.20}$$

$$= \sigma^2 - \operatorname{Var}\left[\mu_{\text{MLE}}\right] = \sigma^2 - \operatorname{Var}\left[\frac{1}{N}\sum_{i=1}^N x_i\right] \tag{1.21}$$

$$= \sigma^2 - \frac{1}{N^2} \sum_{i=1}^{N} \text{Var}[x_i] = \frac{N-1}{N} \sigma^2$$
 (1.22)

(1.23)

Figure 1.1: A simple Bayesian network.

Figure 1.2: Belief propagation.

1.4 Bayesian Network

1.5 Probability Graph

this section is not finished yet. Need to be reviewed p54

1.5.1 Variables Elimination

1.5.2 Belief propagation

Belief propagation is mainly used for tree data structure, and equals Section 1.5.1 with caching.

1.5.3 Max-product Algorithm

1.5.4 Factor Graph

1.6 Expectation Maximum

$$\Theta^{(t+1)} = \operatorname*{argmax}_{\Theta} \int_{Z} \log P(x,z\mid\theta) \cdot P(z\mid x,\Theta^{(t)}) \; dz$$

continue on p60

1.7 Hidden Markov Model

Part II Algorithm and Data Structure

Chapter 2

Algorithm

Contents				
2.1	Graph	19		

2.1 Graph

Part III Programming

Chapter 3 C++

Chapter 3 C++

Chapter 4

Rust

Chapter 4 Rust

Part IV Research

Chapter 5

Paper Reading

Chapter 5 Paper Reading

Appendix A

Formulas

A.1 Gaussian distribution

Definition A.1 (Gaussian distribution). Gaussian distribution

Theorem A.1 (Central limit theorem).

Bibliography

- [Bab16] László Babai. "Graph Isomorphism in Quasipolynomial Time". Jan. 19, 2016. arXiv: 1512.03547 [cs, math] (cit. on p. 10). Online video
- [Chi09] Andrew M. Childs. *Universal Computation by Quantum Walk*. Physical Review Letters 102.18 (May 4, 2009), p. 180501. arXiv: 0806.1972 (cit. on p. 10).
- [Kit+02] Alexei Yu Kitaev et al. *Classical and quantum computation*. 47. American Mathematical Soc., 2002 (cit. on p. 10).

BIBLIOGRAPHY BIBLIOGRAPHY

Alphabetical Index

G	I
Gaussian distribution 31	index