

Statistical Natural Language Processing

Lecture 7: Text Classification

Dr. MomtaziAmirkabir University of Technology

- Applications
- 2 Task
- Naïve Bayes Classification Smoothing Language Modeling
- 4 Evaluation

- Applications
- 2 Task
- Naïve Bayes Classification Smoothing Language Modeling
- 4 Evaluation

Email Foldering

News Classification

"The song was good."

"I hate the song." \bigcirc

- Applications
- 2 Task
- Naïve Bayes Classification Smoothing Language Modeling
- 4 Evaluation

- Input
 - □ A document *d*
 - $\ \square$ A fixed set of classes $C=c_1,c_2,...,c_n$

- Output
 - $\ \square$ A predicted class $\hat{c} \in C$

Variations

11

- Binary vs. Multiclass
- Flat vs. Hierarchical
- Hard vs. Soft (Multi-label)

Using a training set of m manually labeled documents

$$egin{array}{lll} d_1 &
ightarrow & c_1 \ d_2 &
ightarrow & c_2 \ & \ldots \ d_m &
ightarrow & c_m \end{array}$$

- Applying any kinds of classifiers
 - □ K Nearest Neighbor
 - Support Vector Machines
 - Naïve Bayes
 - Maximum Entropy
 - Logistic Regression
 - □ ...

Outline

13

- Applications
- 2 Task
- Naïve Bayes Classification Smoothing Language Modeling
- 4 Evaluation

■ Selecting the class with highest probability
 ⇒ Minimizing the number of items with wrong labels

$$\hat{c} = \operatorname{argmax}_{c_i} P(c_i | d)$$

$$\hat{c} = \operatorname{argmax}_{c_i} \frac{P(d|c_i) \cdot P(c_i)}{P(d)}$$

P(d) has no effect

$$\hat{c} = \operatorname{argmax}_{c_i} P(d|c_i) \cdot P(c_i)$$

$$\hat{c} = \operatorname{argmax}_{c_i} P(d|c_i) \cdot P(c_i)$$

$$P(c_i)$$

lacktriangle How much the class c_i is important disregarding the document?

$$P(c_i) = \frac{\#(c_i)}{N}$$

Likelihood Probability

$$P(d|c_i)$$

- How likely the document *d* is selected, if we know *c_i* is the correct class?
 - \Rightarrow How likely each of the words from document d will be selected if we know c_i is the correct class?

$$P(d|c_i) = \prod_{w \in d} P(w|c_i)$$

$$P(w|c_i) = \frac{\#(w,c_i)}{\sum_{w'} \#(w',c_i)}$$

Outline

18

- Applications
- 2 Task
- Naïve Bayes Classification Smoothing Language Modeling
- 4 Evaluation

$$P(d|c_i) = \prod_{w \in d} P(w|c_i)$$

$$P(w|c_i) = \frac{\#(w,c_i)}{\sum_{w'} \#(w',c_i)}$$

- Shortcomings
 - Words that are not available in the training data produce zero probability
 - Even one zero probability makes the whole result zero
- Solution
 - Using a smoothing method to avoid zero probability

$$P(d|c_i) = \prod_{w \in d} P(w|c_i)$$
 $P(w|c_i) = \frac{\#(w,c_i)}{\sum_{w'} \#(w',c_i)}$

Laplace (add-one) smoothing

$$P(w|c_i) = \frac{\#(w,c_i) + 1}{\sum_{w'} \#(w',c_i) + |V|}$$

$$P(d|c_i) = \prod_{w \in d} P(w|c_i)$$

$$P(w|c_i) = \frac{\#(w,c_i)}{\sum_{w'} \#(w',c_i)}$$

- Advanced smoothing methods
 - Bayesian smoothing with Dirichlet prior
 - Absolute discounting
 - Kneser-Ney smoothing

- Applications
- 2 Task
- Naïve Bayes Classification Smoothing Language Modeling
- 4 Evaluation

Naïve Bayes Classifier

$$P(d|c_i) = \prod_{w \in d} P(w|c_i)$$

- Using words of a document as a bag-of-word model
- Similar to the unigram model in language modeling

Naïve Bayes Classifier

$$P(d|c_i) = \prod_{w \in d} P(w|c_i)$$

- Shortcoming
 - Considering no dependencies between words
- Solution
 - Using higher order n-grams
 ⇒ it is not "naïve" any more!

Unigram

$$P(d|c_i) = \prod_{j=1}^n P(w_j|c_i)$$

$$P(w_j|c_i) = \frac{\#(w_j, c_i)}{\sum_{w'} \#(w', c_i)}$$

Bigram

$$P(d|c_i) = \prod_{j=1}^n P(w_j|w_{j-1}, c_i)$$

$$P(w_j|w_{j-1},c_i) = \frac{\#(w_{j-1}w_j,c_i)}{\#(w_{j-1},c_i)}$$

Trigram

$$P(d|c_i) = \prod_{i=1}^{n} P(w_i|w_{j-2}w_{j-1},c_i)$$

$$P(w_j|w_{j-2}w_{j-1},c_i) = \frac{\#(w_{j-2}w_{j-1}w_j,c_i)}{\#(w_{j-2}w_{j-1},c_i)}$$

- Applications
- 2 Task
- Naïve Bayes Classification Smoothing Language Modeling
- 4 Evaluation

Precision and Recall

Precision and Recall

Confusion matrix:

	real positive	real negative
labeled positive	tp	fp
labeled negative	fn	tn

- Precision:
 - Amount of labeled item that are correct

$$Precision = \frac{tp}{tp + fp}$$

- Recall:
 - Amount of correct item that are labeled

$$Recall = \frac{tp}{tp + fn}$$

- There is a strong anti-correlation between precision and recall
- Having a trade off between these two metrics
 - Achieving higher recall ends to lower precision
 - Achieving higher precision results lower recall

- Using *F*-measure to consider both metrics together
- F-measure is a weighted harmonic mean of precision and recall

$$F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- $\ \square \ \beta > 1$ gives higher priority to recall
- $\ \square \ \beta = 1$ gives the same priority to both precision and recall

$$F_1 = \frac{2PR}{P+R}$$

- Creating a separate confusion matrix for each label
 - Positive: the target label
 - Negative: the rest of labels
 - Calculating precision, recall, and f-measure for each label
 - Taking the average of values
 - Macro-averaging: giving equal weight to each class
 - Micro-averaging: considering the weight of classes

Macro- vs. Micro-averaging

label	tp	fp	fn	precision	recall
c_1	10	10	10	0.5	0.5
c_2	90	10	10	0.9	0.9
total	100	20	20		
macro-averaged				0.7	0.7
micro-averaged				0.83	0.83