#### 1. Klassendiagramme in Java umsetzen können.

Setzen Sie folgendes Klassendiagramm in zwei Java-Klassen um. Achten Sie dabei darauf, genau die im Diagramm verlangten Konstruktoren zu formulieren. In ihnen werden jeweils die Attributwerte auf die übergebenen Werte gesetzt. – Ein neues Raumschiff soll dabei standardmäßig und automatisch ein Crewmitglied namens "Floyd" mit Geschicklichkeit 12 haben.



## 2. Struktogramme lesen und in Java umsetzen können.

Ergänzen Sie bei der Klasse Raumschiff die Methode

void geschwindigkeitAendern(int
geschwindigkeitNeu)

nach folgendem Struktogramm:



# 3. Pseudocode lesen und in Java umsetzen können; Zählschleifen.

Setzen Sie folgenden Pseudocode in eine Java-Methode um. Achten Sie dabei auf die Einrückungen, sie geben an, wann eine Zählschleife oder Bedingung zu Ende ist. Die Methode testet für jede ganze Zahl >1, ob es eine kleinere Zahl (mindestens 2) gibt, durch die man sie restlos teilen kann. Wenn ja, handelt es sich bei der ursprünglichen Zahl um keine Primzahl; wenn keine

solche Zahl gefunden wird, dann schon.

```
boolean istPrimzahl(int a):

wenn a kleiner als 2 ist:

gib false zurück

zähle die Variable i von 2 bis einschließlich a-1 hinauf:

wenn a%i¹ gleich 0 ist:

gib false zurück

gib true zurück
```

## 4. Felder/Arrays

Ein eindimensionales Feld kann man sich so vorstellen:

| Index 0 | 1  | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
|---------|----|---|----|----|----|----|----|----|----|----|----|
| 12 -    | -1 | 0 | 88 | 77 | 66 | 55 | 44 | 33 | 22 | 0  | 0  |

Es hat die Länge 12, besteht also aus 12 gleich großen Zellen mit gleichartigem Inhalt. Jede Zelle ist durchnummeriert von 0 bis 11.

Ein Feld kann primitive Datentypen enthalten (int, boolean, double) oder Referenzen auf Objekte einer Klasse.

# Aufgabe:

- 1. Legen Sie in einer neuen Klasse ein Feld an, dass zahlen heißt und ganze Zahlen enthalten können soll.
- 2. Es soll Platz für 100 Elemente haben.
- 3. Füllen Sie die Zellen mit allen Zahlen von 1 bis 100.

<sup>1 %</sup> bedeutet modulo, wobei a modulo b der Rest bei der Divison von a durch b ist. So ist 9 modulo 4 also: 1 .