Week 4: Poisson models

Poisson glm

$$y_i \sim Poisson(\mu_i)$$

$$\log(\mu) = X\beta$$

Why not
$$\mu = X\beta$$
?

Offsets

Account for exposure \implies modeling a rate

$$\log(\mu_i) = X\beta + \log(\text{offset})$$

Offsets

What about the following examples?

- number of events over time interval
- number of events per attempted event
- number of events in an area (e.g., county)

Model checking

- 1. Prior sensitivity analysis
- 2. Sensicality of inference
- 3. Posterior predictive checks

Posterior predictive distribution

Distribution of predicted data, given the observations

$$[\tilde{y}\mid y]$$

Useful idea:

For a good model, predicted data resembles the real data

Posterior predictive check

Do model predictions match the data? **Steps:**

- 1. for each posterior draw:
 - ► simulate a response vector y_{rep}
 - calculate some test statistic $T(y^{rep})$
- **2.** compare observed T(y) to the distribution of $T(y^{rep})$

Posterior predictive check example

$$y = THTHTHTHTT$$

Sequence of H and T switches consistent with Bernoulli model?

The model

$$y = THTHTHTHTT$$

Likelihood:

$$[y_i \mid p] \sim Bernoulli(p)$$

Prior:

$$[p] \sim \textit{Beta}(100, 100)$$

Posterior:

$$[p \mid y] \sim Beta(104, 106)$$

The posterior distribution for P(heads)

Simulating data from the posterior

- 1. for each posterior draw:
 - \triangleright simulate a response vector y_{rep}

```
rbinom(n = 10, size = 1, prob = p_post[1])
## [1] 1 1 1 0 0 1 0 0 0 0
```

Simulating data from the posterior

- 1. for each posterior draw:
 - \triangleright simulate a response vector y_{rep}

```
# make a 2d array to store new coinflips
n_flips <- length(y)
n_iter <- length(p_post)
y_rep <- array(dim = c(n_iter, n_flips))

# simulate new coinflip sequences
for (i in 1:n_iter) {
   y_rep[i, ] <- rbinom(n_flips, 1, p_post[i])
}</pre>
```

Choosing a test statistic

$$y = THTHTHTHTT$$

```
y_rep[1:4, ]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 0 0 1 1 1 0 0

[2,] 1 1 0 0 1 1 1 1 0 0

[3,] 1 1 1 1 1 0 0 1 1 1

[4,] 0 0 1 1 1 1 1 0 1
```

Choosing a test statistic

Define T(y) = number of switches between heads and tails in y

```
y_rep[1:4, ]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 0 0 1 1 1 0 0

[2,] 1 1 0 0 1 1 1 1 0 0

[3,] 1 1 1 1 1 0 0 1 1 1

[4,] 0 0 1 1 1 1 1 0 1
```

Calculating the test statistic

Define a function to calculate T(y)

```
count_n_switches <- function(y) {</pre>
  n <- length(y)
  switches <- 0
  for (i in 2:n) {
    if (y[i - 1] != y[i]) {
      switches <- switches + 1
  return (switches)
```

Calculating the test statistic under the model

Compare observed T(y) to the distribution of $T(y^{rep})$

$$y = THTHTHTHTT$$

T_obs <- count_n_switches(y)

If you miss p-values...

Bayesian p-value: $[T(y_{rep}, \theta) \ge T(y, \theta)]$

[1] 0.0224

How extreme are the data relative to model predictions?

Graphical depiction: Bayesian p-value

Graphical depiction: Bayesian p-value

Posterior predictive checks

Model assessment tool

- data consistent with posterior predictive distribution?
- what features are captured by the model?
- variance, min, max, range, skewness, kurtosis, etc.

Bayesian vs. frequentist p-values

Bayesian

- uses good parameter values: $[\theta \mid y]$
- model criticism and expansion
- many possible test statistics

Frequentist

- uses null parameter values: $\beta = 0$
- hypothesis testing
- strict test statistic and rejection criteria

This week:

Gall wasp example:

- develop Poisson models
- conduct posterior predictive check

The data

```
d <- read.csv('cleaned_galls.csv')
head(d)</pre>
```

n_cynip	gall_locality	gall_size	gall_ID	
0	UCD Campus - Davis	20	10	1
0	604 E 8th St - Davis	40	100	2
0	Putah Creek, N. Fork - Davis	5	1000	3
0	Putah Creek, N. Fork - Davis	25	1002	4
0	Putah Creek, N. Fork - Davis	10	1005	5
0	Putah Creek, N. Fork - Davis	15	1006	6