ESTADÍSTICA MULTIVARIANTE

UGR, GRADO EN MATEMÁTICAS Curso Académico 2023-2024

José Miguel Angulo Ibáñez (jmangulo@ugr.es)

Departamento de Estadística e Investigación Operativa Universidad de Granada

▶ TEMA 1. Distribución Normal Multivariante

Aspectos generales sobre vectores aleatorios

- Sea $\mathbf{X} = (X_1, \dots, X_p)'$ un vector aleatorio
- Se define el vector de medias de X como

$$\mu_{\mathbf{X}} := E[\mathbf{X}] := \begin{pmatrix} E[X_1] \\ \vdots \\ E[X_p] \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_p \end{pmatrix}$$

(siempre que existan las esperanzas unidimensionales)

PROPIEDAD DE LINEALIDAD: Sea $\mathbf{Y} = (Y_1, \dots, Y_q)'$ definido como

$$\mathbf{Y} = B\mathbf{X} + \mathbf{b}$$
, con B matriz $q \times p$ (cte.)
 \mathbf{b} vector $q \times 1$ (cte.)

Entonces,

$$\mu_{\mathbf{Y}} = BE[\mathbf{X}] + \mathbf{b} = B\mu_{\mathbf{X}} + \mathbf{b}$$
 (\square Probar)

(El resultado se extiene convenientemente al caso de transformaciones lineales de matrices aleatorias) (☐ Probar)

Se define la matriz de covarianzas de X como

$$\Sigma_{\mathbf{X}} = \mathsf{Cov}(\mathbf{X}) := E[(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})'] = \begin{pmatrix} \sigma_{11} & \cdots & \sigma_{1p} \\ \vdots & \ddots & \vdots \\ \sigma_{p1} & \cdots & \sigma_{pp} \end{pmatrix},$$

con

$$\sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)] \qquad (= \sigma_{ji})$$

(siempre que existan las esperanzas unidimensionales).

En particular,

$$\sigma_{ii} = E[(X_i - \mu_i)^2] = Var(X_i)$$
 $(= \sigma_i^2, \text{ notación})$

- PROPIEDADES:
 - (1) $\Sigma_{\mathbf{X}}$ es simétrica
 - (2) Los elementos de la diagonal de $\Sigma_{\mathbf{X}}$ son no negativos
 - (3) La clase de matrices de covarianzas (dim. $p \times p$) coincide con la clase de matrices simétricas definidas no negativas (dim. $p \times p$) (\square)

En relación con la propiedad (3), para cualquier matriz de covarianzas, Σ , se distinguen los casos siguientes:

A. Σ definida positiva

(notación: $\Sigma > 0$)

En este caso, Σ es no singular, con $|\Sigma| > 0$, y $\exists \Sigma^{-1}$

'Normalización' y distancia de Mahalanobis

Dado un vector aleatorio p-dimensional $\mathbf{X} \sim (\boldsymbol{\mu}, \Sigma)$ con $\Sigma > 0$, para cualquier elección de una matriz C de dimensión $p \times p$ tal que $\Sigma = CC'$ se obtiene una 'normalización' (en origen y escala multidimensionales) del vector mediante la transformación

$$\mathbf{Z} = C^{-1}(\mathbf{X} - \boldsymbol{\mu})$$

En efecto, se tiene que $\mathbf{Z} \sim (\mathbf{0}_p, I_{p \times p})$

(□ Probar)

Se define la *distancia de Mahalanobis* de $\mathbf{X} \sim (\boldsymbol{\mu}, \Sigma) \pmod{\Sigma} > 0$ con respecto a su vector de medias $\boldsymbol{\mu}$ como

$$\Delta(\mathbf{X}, \boldsymbol{\mu}) := \left\{ (\mathbf{X} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{X} - \boldsymbol{\mu}) \right\}^{\frac{1}{2}}$$

Interpretación y observaciones:

- Se comprueba fácilmente que $\Delta(\mathbf{X}, \boldsymbol{\mu}) = \|\mathbf{Z}\|_p$, para cualquier normalización \mathbf{Z} de \mathbf{X} $(\|\cdot\|_p$ denota la norma euclídea en el espacio \mathbb{R}^p) (\square Probar)
- $\Delta(\mathbf{X}, \boldsymbol{\mu})$ es una variable aleatoria, cumpliéndose que

$$E[\Delta^2(\mathbf{X}, \boldsymbol{\mu})] = p$$
 (\square Probar)

La ecuación

$$\Delta(\mathbf{x}, \boldsymbol{\mu}) = k,$$

para $k \geq 0$ (cte.) y $\mathbf{x} \in \mathbb{R}^p$, define un hiperelipsoide en \mathbb{R}^p , de tal modo que los puntos transformados por normalización se corresponden con la esfera euclídea p-dimensional de radio k con centro en el origen $\mathbf{0}$ (\square Probar)

B. Σ semidefinida positiva

(notación: $\Sigma \geq 0$ indicará, en general, 'definida no negativa')

En este caso, Σ es singular, es decir, $|\Sigma|=0$ y $\#\Sigma^{-1}$

Por tanto, no se puede realizar una normalización en todo el espacio \mathbb{R}^p , ni definir la distancia de Mahalanobis de $\mathbf{X} \sim (\boldsymbol{\mu}, \boldsymbol{\Sigma})$ con respecto a su vector de medias $\boldsymbol{\mu}$ a nivel p-dimensional

Observaciones:

• Se tendrá que, siendo rango $(\Sigma) = r < p$, se puede escribir

$$\Sigma = CC'$$
, con C matriz $p \times r$ de rango r

• Como consecuencia: Con probabilidad 1, las componentes del vector aleatorio $\mathbf{X}=(X_1,\ldots,X_p)'$ cumplirán (al menos) una relación de dependencia lineal del tipo

$$\alpha' \mathbf{X} = k$$
, con $\alpha \neq \mathbf{0}$ (\square Probar)

(es decir, la variabilidad de \mathbf{X} se sitúa ($P_{\mathbf{X}}$ -c.s.) en un hiperplano afín en \mathbb{R}^p)

TRANSFORMACIONES LINEALES: Sean

$$\mathbf{X} \sim (\boldsymbol{\mu}_{\mathbf{X}}, \Sigma_{\mathbf{X}})$$
 vec.a. p -dimensional $\mathbf{Y} = B\mathbf{X} + \mathbf{b}$ vec.a. q -dimensional, con B matriz $q \times p$ (cte.) \mathbf{b} vector $q \times 1$ (cte.)

Entonces, se tiene que

$$\mathbf{Y} \sim (\boldsymbol{\mu}_{\mathbf{Y}}, \boldsymbol{\Sigma}_{\mathbf{Y}}) = (B\boldsymbol{\mu}_{\mathbf{X}} + \mathbf{b}, B\boldsymbol{\Sigma}_{\mathbf{X}}B')$$
 (\square Probar)

- ALGUNAS MEDIDAS GLOBALES DE VARIACIÓN:
 - $|\Sigma| = \prod_{j=1}^p \lambda_j$ (determinante)
 - $\operatorname{tr}(\Sigma) = \sum_{j=1}^p \sigma_j^2 = \sum_{j=1}^p \lambda_j$ (traza) $(\lambda_1, \dots, \lambda_p, \text{ autovalores de } \Sigma)$

Función característica

• [Recordatorio] Dado un vector aleatorio $\mathbf{X} = (X_1, \dots, X_p)'$, se define su *función característica* como

$$\begin{split} \phi_{\mathbf{X}}(\mathbf{t}) &= E\left[e^{i\mathbf{t}'\mathbf{X}}\right] \\ &= \int_{\Omega} e^{i\mathbf{t}'\mathbf{X}(\omega)} P(d\omega) = \int_{\mathbb{R}^p} e^{i\mathbf{t}'\mathbf{x}} P_{\mathbf{X}}(d\mathbf{x}), \end{split}$$

$$\forall \mathbf{t} = (t_1, \dots, t_p)' \in \mathbb{R}^p$$

• TEOREMA: Sea $\mathbf{X} = (X_1, \dots, X_p)'$ un vector aleatorio. Se tiene que la distribución (multivariante) de \mathbf{X} queda unívocamente determinada por el conjunto de todas las distribuciones (univariantes) de variables aleatorias de la forma

$$\alpha' \mathbf{X}, \quad \forall \alpha \in \mathbb{R}^p$$
 (\square Probar)

Momentos y cumulantes

Sea $\mathbf{X}=(X_1,\dots,X_p)'$ un vector aleatorio con función característica $\phi_{\mathbf{X}}(\mathbf{t}),\,\mathbf{t}\in\mathbb{R}^p$

MOMENTOS

Se define el *momento (no centrado) p*-dimensional de orden (r_1, \ldots, r_p) de ${\bf X}$ como

$$\mu_{r_1\dots r_p}^{1\dots p}=E\left[X_1^{r_1}\cdots X_p^{r_p}\right]$$

Los momentos pueden obtenerse a partir de la función característica, derivándose de su expansión de Taylor (respecto al origen):

$$\phi(\mathbf{t}) = E[e^{i\mathbf{t}'\mathbf{x}}] = E\left[\sum_{r=0}^{\infty} \frac{1}{r!} (i\mathbf{t}'\mathbf{X})^r\right]$$
$$= \sum_{r=0}^{\infty} \sum_{r_1 + \dots + r_p = r} \mu_{r_1 \dots r_p}^{1 \dots p} \frac{(it_1)^{r_1} \dots (it_p)^{r_p}}{r_1! \dots r_p!}$$

Momentos y cumulantes (cont.)

En particular, se tiene el siguiente resultado:

• TEOREMA: Si $E[|X_1^{m_1}|\cdots|X_p|^{m_p}]<\infty$, entonces la función característica de ${\bf X}$ es (m_1,\ldots,m_p) veces continuamente diferenciable, y

$$\frac{\partial^m}{\partial_{t_1}^{m_1}\cdots\partial_{t_p}^{m_p}}\phi(\mathbf{t})\bigg|_{\mathbf{t}=\mathbf{0}}=i^m E\left[X_1^{m_1}\cdots X_p^{m_p}\right]=i^m \mu_{m_1\dots m_p}^{1\dots p}$$

$$(m=m_1+\cdots+m_p)$$

Momentos y cumulantes

Sea $\mathbf{X}=(X_1,\ldots,X_p)'$ un vector aleatorio con función característica $\phi_{\mathbf{X}}(\mathbf{t}),\,\mathbf{t}\in\mathbb{R}^p.$ Consideremos la función

 $\log \phi(\mathbf{t})$

CUMULANTES

Se definen los *cumulantes* p-dimensionales de orden (r_1, \ldots, r_p) de \mathbf{X} como los coeficientes de la correspondiente expansión (respecto al origen),

$$\log \phi(\mathbf{t}) = \sum_{r=0}^{\infty} \sum_{r_1 + \dots + r_p = r} \kappa_{r_1 \dots r_p}^{1 \dots p} \frac{(it_1)^{r_1} \dots (it_p)^{r_p}}{r_1! \dots r_p!}$$

Cambio de variables

• TEOREMA: Sea $\mathbf{X} = (X_1, \dots, X_p)'$ un vector aleatorio con función de densidad $f_{\mathbf{X}}(\mathbf{x})$, $\mathbf{x} \in \mathbb{R}^p$, positiva sobre $S \subseteq \mathbb{R}^p$ y continua.

Sea $\mathbf{Y} = (Y_1, \dots, Y_p)'$ un vector aleatorio con

$$\mathbf{Y} = \mathbf{g}(\mathbf{X}) = (g_1(\mathbf{X}), \dots, g_p(\mathbf{X}))',$$

siendo la restricción

$$\mathbf{g} = (g_1, \dots, g_p)' : S \longrightarrow T \equiv \mathbf{g}(S) \subseteq \mathbb{R}^p$$

una aplicación biyectiva, y sea $\mathbf{g}^{-1} =: \mathbf{h} = (h_1, \dots, h_p)'$. Supongamos que existen las derivadas parciales

$$\frac{\partial h_i(\mathbf{y})}{\partial y_i}, \qquad (i,j=1,\ldots,p)$$

y son continuas sobre T.

Entonces, la función de densidad $f_{\mathbf{Y}}(\mathbf{y})$, $\mathbf{y} \in \mathbb{R}^p$, del vector aleatorio $\mathbf{Y} = \mathbf{g}(\mathbf{X})$ viene dada por

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{g}^{-1}(\mathbf{y})) \cdot \mathsf{abs}(J_{\mathbf{g}^{-1}}(\mathbf{y}))$$

siendo $J_{\mathbf{g}^{-1}}(\mathbf{y}) = \left[J_{\mathbf{g}}(\mathbf{g}^{-1}(\mathbf{y}))\right]^{-1}$ el determinante de la matriz jacobiana de la transformación \mathbf{g}^{-1}

Cambio de variables (cont.)

- CASO LINEAL: Sean
 - X vec.a. p-dimensional
 - Y vec.a. p-dimensional, definido por la transformación

$$\mathbf{Y} = \mathbf{g}(\mathbf{X}) := B\mathbf{X} + \mathbf{b}$$
, con
 B matriz $p \times p$ (cte.) no singular
 \mathbf{b} vector $p \times 1$ (cte.)

Entonces, en este caso, se tiene que

$$\mathbf{X} = B^{-1}(\mathbf{Y} - \mathbf{b})$$

$$J_{\mathbf{g}^{-1}}(\cdot) \equiv |B^{-1}| = |B|^{-1}$$

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(B^{-1}(\mathbf{y} - \mathbf{b})) \cdot \mathsf{abs}(|B|^{-1})$$