5. Matrix transformations

Multiplying a 2 \times 2 matrix by a 2 \times 2 matrix or by a 2 \times 1 matrix

Multiplication by a scalar

Scalar x matrix produces a matrix

$$k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$$

Matrix x vector produces a **vector**

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

Matrix x matrix produces a matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

The above looks more complicated than it is in reality - **rows** from the first matrix are "multiplied by" **rows** from the second vector.

Note that in general the order matters - matrix multiplication is **not** commutative: $AB \neq BA$

Identity matrix
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

When a matrix or vector is multiplied by the identity matrix, it does not change. e.g. AI = IA = A

5.3 Transformations of the unit square in the
$$x - y$$
 plane

Representation by a 2 \times 2 matrix

Transformations restricted to rotations of 90° , 180° or 270° about the origin, reflections in the lines x = 0, y = 0, y = x, y = -x and enlargements centred on the origin

Since $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$ this means the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is associated with a reflection in the line y = x, where a coordinate such as (3, -4) becomes (-4,3).

Similarly:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 is a reflection in the *x*-axis, where (x, y) becomes $(x, -y)$.

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 is a reflection in the *y*-axis, where (x, y) becomes $(-x, y)$.

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 is an enlargement from the origin where (x, y) becomes $(2x, 2y)$.

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \text{ is a rotation of angle } \theta \text{ about the origin.}$$

e.g. for a rotation of
$$90^\circ$$
 use $\begin{bmatrix} \cos 90^\circ & -\sin 90^\circ \\ \sin 90^\circ & \cos 90^\circ \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

To combine two or more transformations into a single composite transformation matrix, the **order is important**. Using the matrices above, if you want to **reflect in the y-axis** and then **rotate by 90 degrees:**

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$