Optimization for Computer Science Assignment 2

November 1, 2016

Submission: Upload your report as a pdf file (MatrNr.pdf) to the TU-Graz TeachCenter using the MyFiles extension (can also be your scanned-in hand written notes). **Deadline:** November 8, 2016 at 23:58h.

1 Convexity

Prove or disprove the convexity/concavity of the following functions. Describe all your steps in your report. Hint: A twice differentiable function is convex iff the Hessian matrix is positive semidefinite.

1.
$$f(x) = \frac{1}{2} (\log(x))^2$$
, dom $f = \{x \mid x > 0\}$

$$2. \ f(x) = x_1 x_2, \quad x \in \mathbb{R}^2$$

3.
$$f(x) = \frac{x_1^2}{x_2}$$
, $x \in \mathbb{R}^2$, $x_2 > 0$

2 Derivatives

Calculate analytically the first and second derivatives of the following functions. Describe all your steps in your report.

1.
$$f(x) = \frac{1}{2} ||Ax - b||^2$$
, $x \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$
Calculate the gradient $\nabla f(x)$ and the Hessian $\nabla^2 f(x)$ in two steps: First, for $m = n = 2$ and then in general matrix form.

$$2. \ f(\alpha) = \frac{1}{2} \|A(x+\alpha y) - b\|^2, \quad \alpha \in \mathbb{R}, \ x,y \in \mathbb{R}^m, \ b \in \mathbb{R}^n, \ A \in \mathbb{R}^{m \times n}$$

3.
$$f(x) = (\prod_{i=1}^{n} x_i)^{\frac{1}{n}}, \quad x \in \mathbb{R}_+^n$$

Hint: Start by explicitly writing down the cases for n = 2 and n = 3 and then generalize for arbitrary n. Consider diagonal and off-diagonal elements of the Hessian separately.

Bonus task: $f(x) = \|Dx\|_{2,1,1}^{\varepsilon}, \quad x \in \mathbb{R}^{M \times N}, \ D \in \mathbb{R}^{M \times N \times 2}$

D is a linear operator that approximates the spatial gradient of an image $x \in \mathbb{R}^{M \times N}$ by finite differences. The action of the linear operator is defined as $(Dx)_{i,j,1} = x_{i,j+1} - x_{i,j}$ and $(Dx)_{i,j,2} = x_{i+1,j} - x_{i,j}$. Finally, we apply the ε -smoothed 2, 1, 1-norm which, for a tensor $A \in \mathbb{R}^{M \times N \times K}$, is given by $\|A\|_{2,1,1}^{\varepsilon} = \sum_{n=1}^{N} \sum_{m=1}^{M} \sqrt{\sum_{k=1}^{K} A_{m,n,k}^2 + \varepsilon^2}$