Devoir à la maison n° 6

À rendre le 12 novembre

I. Un exercice

Soit $u \in \mathbb{C}$, considérons l'équation

$$z^2 + 3iz + u(i - u) = 2. \tag{E}$$

1) Déterminer les solutions de (\mathscr{E}) . On notera z_1 et z_2 ces solutions. On vérifiera la correction des calculs en simplifiant les quantités z_1z_2 et $z_1 + z_2$.

Attention : les questions suivantes sont largement indépendantes.

On note M_1 , M_2 et U les points d'affixes respectives z_1 , z_2 et u, considérés dans un plan muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 2) Déterminer le lieu des points U pour lesquels :
 - a) M_1 , M_2 et U sont alignés.
 - b) M_1 , M_2 et U forment un triangle rectangle en U.
- 3) Déterminer les valeurs de u pour lesquelles $z_1z_2=10i$.
- 4) a) Déterminer le lieu des points U pour lesquels z_1z_2 est réel. On trouvera la réunion de deux ensembles simples.
 - b) Discuter en fonction de la valeur de z_1z_2 l'appartenance de U à l'un ou l'autre des deux ensembles trouvés précédemment.
- 5) Déterminer le lieu des points U pour lesquels $z_1\bar{z_2}$ est imaginaire pur.

II. Expression intégrale de la longueur d'une courbe

Pour toute fonction $f:[a,b]\to\mathbb{R}$ de classe \mathscr{C}^1 , on note:

$$L(f) = \int_{a}^{b} \sqrt{1 + (f'(t))^{2}} \, dt ,$$

que l'on admet être une expression intégrale de la longueur de la courbe représentative de f.

- 1) Vérifier la formule donnant L(f) pour f définie sur [0,1] par f(t)=t.
- 2) Calculer L(f) pour f définie sur [0,1] par $f(t) = \operatorname{ch}(t)$.

- 3) Un exemple de calcul de longueur d'un arc de courbe.
 - a) Calculer L(f) pour f définie sur $\left[0; \frac{1}{\sqrt{2}}\right]$ par $f(t) = \sqrt{1-t^2}$.
 - b) Retrouver le résultat de la question précédente sans calcul, par des considérations géométriques.
- 4) a) Résoudre dans \mathbb{R} l'équation sh(x) = 2.
 - **b)** Si $x \in \mathbb{R}$, donner $\operatorname{ch}(2x)$ et $\operatorname{sh}(2x)$ en fonction de $\operatorname{ch}(x)$ et de $\operatorname{sh}(x)$ (formules de duplication hyperboliques).
 - c) Soit f définie sur [0,1] par $f(t)=t^2$. Calculer L(f), en s'inspirant de la question 2).

— FIN —