5 1		٤	=		age	35.0	55.5	35.0	35.0
color	por	no.	Breen	OI III	rating		~	5	10
bname		uger Eon	horo	TICTO	sname	yuppy 9	lubber 8	guppy 5	rusty 1
bid	101	103	105	3	<u>sid</u>	28	31	44	58
B1					25				
		10/10/96	11/12/96		age	45.0	55.5	35.0	
-	day	10/1	11/1		rating	7	8	10	
	bid	101	103		sname rating age	dustin	lubber	rusty	
,	0	22	28		sid 8	22	31	58	
	sid	. 4			S	C	C	TC)	
	N S				S1	2	<u></u>	ц	

Q1: $\pi_{sid,sname,age}\left(\sigma_{age>35}(S_1)\right)$

Q2: $\pi_{sname,rating}\left(\sigma_{S_1.sid>R_1.sid}(S_1\times R_1)\right)$

Q3: $\pi_{sid,bname} \left(\sigma_{bid} (R_1 \times B_1) \right)$

Q4: $S_2/\left(\pi_{sid,age}(S_2)/\pi_{sid}\left(\sigma_{bid=103}(R_1)\right)\right)$

Q5: $(S_2 \bowtie_* R_1) \cup (B_1 * \bowtie_* R_1)$

Q6: $\pi_{sname,rating,age,bname,color}\left(\left((S_1 \cup S_2) \bowtie_{sid} R_1\right) \bowtie_{bid} \sigma_{color=red}(B_1)\right)$

Q7: $\pi_{sid}(S_2) - \pi_{sid} \left(\pi_{sid} \left(\pi_{sid,sname}(S_2) \right) \times \pi_{sname} \left(\sigma_{rating>7}(S_1) \right) - \right.$

 $\pi_{sid,sname}(S_2)$

Q8: What's data model? What's data schema?

Q9: Students(sid: string, name: string, ID number: string, cid: string)

Courses(cid: string, cname:string)

Students. Q10: What are the relational operations on the relational data model? What are

List all super keys, candidate keys, primary keys, foreign keys of table

their differences and similarities?

Q11: Conver the query of Q1 to DRC formula and TRC formula.

Answer

Q1: $\pi_{sid,sname,age}\left(\sigma_{age>35}(S_1)\right)$

pis	sname	rating	age
22	dustin	7	45
31	lubber	∞	55.5
90	AJSH4	01	35

:	age	45	55.5
$\left(\sigma_{age>35}(S_1)\right)$	rating	+	op.
	sname	dustin	lubber
$\pi_{sid,sname,age}$	pis	22	31

age	45	55.5
sname	dustin	lubber
pis	22	31

Q2: $\pi_{sname,rating}\left(\sigma_{S_1.sid>R_1.sid}(S_1\times R_1)\right)$

$\sigma_{S_1.sid>R_1.sid}(S_1\times R_1):$

S_1 sid	sname	rating	age	R_1 sid	bid	day
22	dustin	t	45	55	101	10/10/96
55	dustin	+	45	58	103	11/12/96
31	lubber	∞	55.5	22	101	10/10/96
31	lubber	Φ	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
999	rusty	91	35.0	58	103	11/12/96

$\pi_{sname,rating}\left(\sigma_{S_1.sid>R_1.sid}(S_1\times R_1)\right):$

sname	rating
lubber	∞
rusty	10

Q3: $\pi_{sid,bname} \left(\sigma_{bid} (R_1 \times B_1) \right)$

	color	red	green
	bname c	tiger r	lion g
$\tau_{bid}(R_1 \times B_1) = R_1 \bowtie_{bid} B_1$:	day	10/10/96	11/12/96
$_1 \times B_1) = R$	bid	101	103
$\sigma_{bid}(R$	pis	22	58

 $\pi_{sid,bname} (\sigma_{bid} (R_1 \times B_1))$:

bname	tiger	lion
pis	22	58

Q4: $S_2/\left(\pi_{sid,age}(S_2)/\pi_{sid}\left(\sigma_{bid=103}(R_1)\right)\right)$ $\pi_{sid,age}(S_2)/\pi_{sid}(R_1)$:

age	35			
pis	58			
Age	35.0	31 55.0	35.0	35.0
sid	28	31	4	58

$S_2/\left(\pi_{sid,age}(S_2)/\pi_{sid}(B_1)\right)$:

rating	6	5	10
sname	yuppy	guppy	rusty
sid	28	44	58

Q5: $(S_2 \bowtie_* R_1) \cup (B_1 * \bowtie_* R_1)$ $S_2 \bowtie_* R_1$:

									color	llnu	null	red	green	blue
									bname	null	null	tiger	lion	hero
day	10/10/96	11/12/96		color	red	green	blue		day	10/10/96	11/12/96	10/10/96	11/12/96	llnu
piq	101	103							piq	101	103	101	103	105
age	llnu	35		bname	tiger	lion	hero		age	llnu	35	null	null	llnu
rating	llnu	10		day	10/10/96	11/12/96	llnu	$*\bowtie_* R_1$	rating	llnu	10	null	null	null
sname	llnu	rusty	R_1 :	bid	101	103	105	$(S_2 \bowtie_* R_1) \underline{\cup} (B_1 *\bowtie_* R_1)$:	sname	llnu	rusty	llnu	llnu	llnu
pis	22	58	$B_1 * \bowtie_* R_1$:	pis	22	58	llnu	(S ₂ ⋈ _*	pis	22	58	22	58	lluu

Q6: $\pi_{sname,rating,age,bname,color}\left(\left((S_1 \cup S_2) \bowtie_{sid} R_1\right) \bowtie_{bid} \sigma_{color=red}(B_1)\right)$

2	
JS	
∑₁ (
- 1	

age	45	55.5	35	35	35	35	
rating	7	∞	10	6	5	01	
sname	dustin	lubber	rusty	yuppy	guppy	rusty	
pis	22	31	58	28	44	58	

 $(S_1 \cup S_2) \bowtie_{sid} R_1$:

 sid
 sname
 rating
 age
 bid
 day

 22
 dustin
 7
 45
 101
 10/10

 $\pi_{sname,rating,age,bname,color}\left(\left((S_1 \cup S_2) \bowtie_{sid} R_1\right) \bowtie_{bid} \sigma_{color=red}(B_1)\right)\!;$

color	red
bname	tiger
day	96/01/01
bid	101
age	45
rating	7
sname	dustin
sid	7.7

sname	rating	age	bname	color
dustin	7	45	tiger	red

Q7:
$$\pi_{sid}(S_2) - \pi_{sid} \left(\pi_{sid} \left(\pi_{sid,sname}(S_2) \right) \times \pi_{sname} \left(\sigma_{rating>7}(S_1) \right) -$$

 $\pi_{sid,sname}(S_2)\Big)$

$$\pi_{sid}\left(\pi_{sid,sname}(S_2)\right) imes \pi_{sname}\left(\sigma_{rating>7}(S_1)\right)$$

	snam(lubber	rusty	lubber	rusty	lubber	rusty	lubber	rusty
	pis	28	28	31	31	44	4	58	58
((10)									
rsta (rsta,sname(22)) rsname (grating>/(21))									
name (sname	Lubber	sty						
8 (Su	1	2						
name (2.7									
(** Sta,ST									
rsia	sid	28	31	4	58				

$$\pi_{sid}\left(\pi_{sid}\left(\pi_{sid,sname}(S_{2})\right) imes \pi_{sname}\left(\sigma_{rating>7}(S_{1})\right) - \pi_{sid,sname}(S_{2})\right)$$

sid	28 lubber	28	31	31	4	4	58	58
ame	lubber	sty	sper.	sty	ber	sty	ber	## ## ## ## ## ## ## ## ## ## ## ## ##

$$\pi_{sid}(S_2) - \pi_{sid} \left(\pi_{sid} \left(\pi_{sid,sname}(S_2) \right) \times \pi_{sname} \left(\sigma_{rating>7}(S_1) \right) \right.$$

$$-\pi_{sid,sname}(S_2)$$

Null

$$\pi_{sid}(S_2) - \pi_{sid} \left(\pi_{sid} \left(\pi_{sid,sname}(S_2) \right) \times \pi_{sname} \left(\sigma_{rating > 7}(S_1) \right) \right)$$

$$-\pi_{sid,sname}(S_2)$$
 = $\pi_{sid,sname}(S_2)/\pi_{sname}\left(\sigma_{rating>7}(S_1)\right)$

Q8: What's data model? What's data schema?

Data model is a collection of concepts and definitions for describing data.

Data schema is a description of a particular collection of data, using a given data model.

Q9: Students(sid: string, name: string, ID number: string, cid: string)

Courses(cid: string, cname:string)

List all super keys, candidate keys, primary keys, foreign keys of table

Students.

super keys:

{sid}, {ID number},

(sid, name), {sid, ID number}, {sid, cid}, {ID number, name}, {ID number, cid},

(sid, name, ID number), {sid, name, cid}, {sid, ID number, cid}, {name, ID number,

cid}

{sid, name, ID number, cid}

candidate keys: {sid}, {ID number}

primary keys: {sid}

foreign keys: {cid}

Q10: What are the relational operations on the relational data model? What are

their differences and similarities?

Relational calculus vs Relational algebra

Differences: Relational Algebra needs to specify the order of operations; while relational calculus

only needs to indicate the logic condition the result must be fulfilled.

Similiarities: They are equivalent in terms of expression. SQL language can express any query that is expressible in relational algebra /calculus.

Q11: Conver the query of Q1 to DRC formula and TRC formula.

DRC formula: $\{ < sid, sname, age > | < sid, sname, age > \in S_1 \land age > 35 \}$

TRC formula: $\{t[\ sid, sname, age\]\ |\ t\in S_1 \land t.\ age> 35\}$