安徽大学 2018 — 2019 学年第 2 学期

《 离散数学(下) 》考试试卷(A卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	_	=	Ξ	四	五	六	七	总分
得 分								
阅卷人								

一、单项选择题 (每小题 2 分, 共 20 分)

得分

1、设 N_k 是前k个自然数的集合, $N_k = \{0,1,2\cdots,k-1\}$,定义模k加法 $+_k$ 如下:对每一

$$x, y \in N_k$$
,有 $x +_k y = \begin{cases} x + y, & x + y < k \\ x + y - k, & x + y \ge k \end{cases}$,则关于运算 $+_k$ 的幺元以及非 0 元素 x 的逆

元分别为(

- A. 0 1 x; B. 0 1 1 2 k; C. k 1 1 2 k; D. -k 1 1 k x k
- 2、在集合{0,1}上可定义(
-)个不同的二元运算。

- A. 2
- B. 4
- C. 8
- D. 16
- 3、设<A,+,·>是代数系统,其中+,·为普通的加法和乘法,则A=()时<A,+,·>是整环。

 - A. $\{x \mid x = 2n, n \in Z\}$: B. $\{x \mid x = 2n + 1, n \in Z\}$:

 - c. $\{x \mid x \ge 0, \exists x \in Z\}$; $\{x \mid x = a + b\sqrt[4]{5}, a, b \in R\}$
- 4、若<G,*>是一个13阶群,则运算"*"一定满足(
 - A. 交换律
- B. 消去律
- C. 等幂律

5、下面哈斯图中,是格的有(

- 6、在布尔代数 $\langle B, *, \oplus, ', 0, 1 \rangle$ 中任取两元素 a, b,下列命题与 a * b = a 一定等价的是(
- A. a < b; B. a' * b = 0; C. $a \oplus b' = 1$; D. a * b' = 0.

7、布尔代	数 < B,*	,⊕,',0,1	>上定义	义的 n 元	布尔表达	式所对 原	立的不同主	合取范式总	个数为(
A. 2^n	;		B. <i>B</i> ^{2ⁿ}	;	С	. I B I $^{ B ^n}$;		D. $ B ^n$.	
8、一棵无	。 向树T有	8 个顶	点,4度、	3度、2)	度的分枝	点各 1 ′	入,其余顶点	[均为树叶,	则T中有(
片树叶	- 。								
A. 3			B. 4		С	. 5		D. 6	
9、如下所	示各图,	其中存在	生哈密顿	回路的图	图有()			
		<u>.</u>	B.		C.		D.	>	
10、设D=	=< V, E	>为有向	圆, ∨₌	$=$ $\{a, b, c\}$, d, e, f	$E = {< a}$	a, b>, <b,< td=""><td>c>, <a, d<="" td=""><td>>, <d, e="">,<f, e="">}</f,></d,></td></a,></td></b,<>	c>, <a, d<="" td=""><td>>, <d, e="">,<f, e="">}</f,></d,></td></a,>	>, <d, e="">,<f, e="">}</f,></d,>
是()								
A. 强	连通图		B. 单向	连通图	С	.弱连通	图	D. 非连	通图
二、判断	题(对的	的打√,	错的抗	T×,每	事小题 2	分,共	10分)		ZH /\
1. 设 f 是	由群 <g< td=""><td>,☆>到郡</td><td>¥<<i>G</i>,*></td><td>的同态则</td><td>快射,则</td><td>$\ker(f)$</td><td>是 G 的子群</td><td>。()</td><td>[得分]</td></g<>	,☆>到郡	¥ < <i>G</i> ,*>	的同态则	快射,则	$\ker(f)$	是 G 的子群	。()	[得分]
2. 一个质	数阶的群	必定为征	盾环群。	()					
3. 在布尔	代数< <i>A</i>	, ∨, ∧, −	>中, b	$\wedge \dot{c} = 0$	当且仅当	$\bar{c} \leq b$.	()		
4. 设< <i>A</i> ,	∨,∧,−>	· 是布尔·	代数,若	f 是从 Æ	A ⁿ 到 A	的函数,	则f 是布尔	尔代数 。()
5. 哈密尔	顿图中每	一顶点的	的度数≥	$\frac{1}{2}n \ (n \ge$	≥3)。()			
三、填空	题(每/	小空 2 🤄	分,共 2	20分)					得分
1. 设集合	$S = \{\alpha,$	β, γ,	δ, ζ	S上的	运算*定	义为			14 >3
	*	α	β	γ	δ	5			
	α	α	β	γ	δ	5			
	β	β	δ	α	γ	δ			
	γ	γ	α	β	α	β			
	δ	δ	α	γ	δ	γ			
	5	5	δ	α	γ	5			
则代数系统	充 < S ,* >	中幺元	是	<u>,</u> β左;	逆元是_	,无	左逆元的元	表是	
2. 设 <g,*< td=""><td>'>是由テ</td><td>ī素<i>a</i>∈(</td><td>G 生成的</td><td>1循环群,</td><td>且 G :</td><td>= n ,则</td><td>G =</td><td></td><td></td></g,*<>	'>是由テ	ī素 <i>a</i> ∈(G 生成的	1循环群,	且 G :	= n ,则	G =		

3.	布 尔 代 数 $<$ $ ho$ ({ ϕ },{ ϕ },{ $\{\phi\}$,{ $\{\phi\}$ }}), \cup , \cap , $->$ 中, 原 子 为	, $\{\phi\}$ 的补元
	为。	

- 4. 已知 <{ 0a,b, ,例,*,> 上的布尔函数 $f(x_1,x_2,x_3)=a*x_1^{'}*x_2\oplus x_3*(x_1\oplus b)$,则 f(a,0)=_____。
- 5. 具有 5 个结点的有向完全图有______条边,无向完全二部图 $K_{8,9}$ 有_____条边。
- 6. 一棵树有 n_1 个结点的度为 1, n_2 个结点的度为 2,…, n_{k-1} 个结点的度为 k-1 ,结点最大的度为 k ,则度为 k 的结点有______。

四、解答题 (每小题 10 分, 共 30 分)

得分

1. 记 "开"为 1, "关"为 0, 反映电路规律的代数系统 $< \{0,1\},+,->$ 的加法运算和乘法运算,如下:

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

证明它是一个环。

2. 证明 $< A, \oplus, * >$ 是一个分配格,当且仅当对 $\forall a, b, c \in A$,有:

 $(a \oplus b) * c \le a \oplus (b * c)$

3. 求图 G (如下图所示)的支配数 $\gamma_0(G)$ 、点覆盖数 $\alpha_0(G)$ 、边覆盖数 $\alpha_1(G)$ 、独立数 $\beta_0(G)$ 、匹配数 $\beta_1(G)$ 、点连通度 $\kappa_0(G)$ 、边连通度 $\kappa_1(G)$ 、点色数 $\chi_0(G)$ 、边色数 $\chi_1(G)$,结果填入下表。并给出图 G 的邻接矩阵 A (结点与自身邻接,结点次序按字母顺序)。

$\gamma_0(G)$	$\alpha_0(G)$	$\alpha_1(G)$	$\beta_0(G)$	$\beta_1(G)$	$\kappa_0(G)$	$\kappa_1(G)$	$\chi_0(G)$	$\chi_1(G)$

五、证明题 (每小题 10 分, 共 20 分)

1. 设< G, *>是群,其运算表如下:

*	1	-1	i	<i>−i</i>	j	-j	k	-k
1	1	-1	i	<i>−i</i>	j	-j	k	-k $-k$
								k
	1							j
						k		
	1					1		
-j	-j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	<i>−i</i>	i	-1	1
-k	-k	k	-j	j	i	<i>−i</i>	1	-1

- (1) 证明< H, *>是正规子群,其中 $H = \{1, -1, j, -j\}$ 。
- (2) 写出关于H 的陪集划分。
- (3) 写出商群 $< G/H, \otimes >$ 。

2. 设 G 是阶数不小于 H 的简单图,则 H 或 H 中至少有一个是非平面图。

答案:

一、单项选择题 (每小题 2 分, 共 20 分)

1. B; 2. D; 3. D; 4. B; 5. C; 6. D; 7. B; 8. C; 9. C; 10. C.

五、证明题

1、(1) 易见< H,*>是< G,*>的子群,当a = 1, -1, j, -j时,aH = Ha = H;

当 a = i, -i 时, $aH = Ha = \{i, -i, k, -k\}$; 当 a = k, -k 时, $aH = Ha = \{i, -i, k, -k\}$,

因此 $\forall a \in G$, 有 aH = Ha , 故 $\langle H, * \rangle$ 是正规子群。 (4 分)

(2) 陪集划分为 $\{\{1,-1,j,-j\},\{i,-i,k,-k\}\}$ (2分)

(3) 商群 $\langle G/H, \otimes \rangle$ 为 $\langle \{\{1,-1,j,-j\}, \{i,-i,k,-k\}\}, \otimes \rangle$,其运算表为

\otimes	$\{1, -1, j, -j\}$	$\{i,-i,k,-k\}$
$\{1,-1,j,-j\}$	$\{1,-1,j,-j\}$	$\{i,-i,k,-k\}$
$\left\{i,-i,k,-k\right\}$	$\{i,-i,k,-k\}$	$\{1, -1, j, -j\}$

(4分)