STANISLAS Exercices

Équations différentielles linéaires Chapitre XV

PSI

2019-2020

I. Résolutions d'équations

Indications pour l'exercice 1. On résoudra l'équation sur $]-\infty,-1[$,]-1,0[,]0,1[et $]1,+\infty[$ puis on recollera les solutions en effectuant éventuellement des développements limités.

Indications pour l'exercice 2. Résoudre l'équation sur \mathbb{R}_+^* et \mathbb{R}_-^* puis recoller les solutions.

Pour l'équation homogène, chercher la solution sous la forme d'une fonction de trigonométrie hyperbolique.

Indications pour l'exercice 3.

- **1.** On obtient $\left\{t\mapsto \frac{\lambda}{1-t},\ \lambda\in\mathbb{R}\right\}$. Le théorème de Cauchy linéaire permet de caractériser l'ensemble des solutions.
- **2.** Le changement de variable permet d'obtenir $z: x \mapsto \frac{\lambda}{x}$. On obtient alors, sur]0,1[par exemple, un ensemble de solutions qui est de dimension 2. Il suffit alors de recoller les solutions.

Indications pour l'exercice 4.

- **1.** On obtient $a_{3n+1} = a_{3n} = 0$ et $a_{3n+2} = \frac{(-1)^n}{(2n)! \cdot (n+1)}$. Le rayon de convergence est infini.
- 2. Résoudre d'abord l'équation homogène. Utiliser ensuite la question précédente ou utiliser la méthode de la variation de la constante pour obtenir une solution particulière.

Indications pour l'exercice 5. Vérifier la régularité de la fonction f. Dériver ensuite (deux fois et avec prudence) cette équation.

Indications pour l'exercice 6. On dérive successivement la fonction f. cosh pour obtenir que $\lambda: t \mapsto 2\frac{\sinh(t)}{\cosh(t)}$.

On résout ensuite l'équation différentielle pour montrer que l'ensemble des solutions est Vect $\{f, \frac{1}{\cosh}\}$.

II. Coefficients constants

Indications pour l'exercice 7.

- 1. Penser au théorème spectral.
- 2. Le nombre important de 0 permet de calculer rapidement le polynôme caractéristique. On obtient $Sp(A) = \{-1, 1, 3\}$.
- 3. Les changements de base ne sont pas tous à calculer...

Indications pour l'exercice 8. Penser au théorème spectral pour la diagonalisabilité.

On peut éviter le calcul du polynôme caractéristique en étudiant le rang puis la trace.

Déterminer ensuite les sous-espaces propres.

L'ensemble des solutions s'obtient alors classiquement.

III. Comportement des solutions

Indications pour l'exercice 11.

- 1. Utiliser le théorème de Cauchy linéaire puis la méthode de la variation de la constante.
- **2.** On note y_{λ} une solution bornée.

Comme h est bornée, montrer que $u \mapsto h(u) e^{-au}$ est intégrable sur \mathbb{R}_+ . On obtient ainsi une condition nécessaire sur λ pour que y_{λ} soit bornée. Ne pas oublier ensuite la réciproque.

IV. Avec Python

Indications pour l'exercice 12.

- 1. Chercher une solution sous forme de fonction trigonométrique.
- 2. Utiliser la question précédente et une boucle pour effectuer les tracés.
- 3. a) Utiliser le signe de l'intégrande ainsi qu'un changement de variables pour la parité.

Calculer $F(n\pi/\omega)$ pour étudier les limites en $+\infty$.

- **b)** La dérivée de F est facile à obtenir. On en déduit les propriétés de régularité de F et de F^{-1} .
 - c) Utiliser scipy.integrate
- 4. Utiliser la formule des dérivées composées.