Laboratorio3

Cristian

2025-08-13

```
library(ggplot2)
library(GGally)
library(dplyr)
library(RColorBrewer)
library(gtools)
library(modeest)
library(psych)
```

Permutaciones

```
personas <- c("Ana", "Luis", "Marta", "Carlos")</pre>
formas_de_ordenar <- permutations(length(personas), length(personas),</pre>
personas)
cat("Formas posibles de ordenar las llaves mágicas:\n")
## Formas posibles de ordenar las llaves mágicas:
print(formas de ordenar)
##
                                     [,4]
         [,1]
                   [,2]
                            [,3]
    [1,] "Ana"
                   "Carlos" "Luis"
                                      "Marta"
##
    [2,] "Ana"
                   "Carlos" "Marta"
##
                                     "Luis"
    [3,] "Ana"
                   "Luis"
                            "Carlos" "Marta"
##
                   "Luis"
                            "Marta"
##
    [4,] "Ana"
                                      "Carlos"
   [5,] "Ana"
                   "Marta"
                            "Carlos" "Luis"
##
    [6,] "Ana"
                   "Marta"
                            "Luis"
                                     "Carlos"
##
   [7,] "Carlos" "Ana"
                            "Luis"
                                     "Marta"
##
    [8,] "Carlos"
                  "Ana"
                            "Marta"
                                     "Luis"
##
   [9,] "Carlos" "Luis"
                            "Ana"
                                     "Marta"
## [10,] "Carlos" "Luis"
                                     "Ana"
                            "Marta"
                                     "Luis"
## [11,] "Carlos" "Marta"
                            "Ana"
## [12,] "Carlos"
                   "Marta"
                            "Luis"
                                      "Ana"
## [13,] "Luis"
                   "Ana"
                            "Carlos"
                                     "Marta"
## [14,] "Luis"
                   "Ana"
                            "Marta"
                                     "Carlos"
## [15,] "Luis"
                                      "Marta"
                   "Carlos" "Ana"
## [16,] "Luis"
                   "Carlos" "Marta"
                                     "Ana"
## [17,] "Luis"
                            "Ana"
                   "Marta"
                                      "Carlos"
                            "Carlos" "Ana"
## [18,] "Luis"
                   "Marta"
## [19,] "Marta"
                            "Carlos"
                                     "Luis"
                   "Ana"
## [20,] "Marta"
                   "Ana"
                            "Luis"
                                     "Carlos"
                   "Carlos" "Ana"
                                     "Luis"
## [21,] "Marta"
                   "Carlos" "Luis"
                                      "Ana"
## [22,] "Marta"
```

```
## [23,] "Marta" "Luis" "Ana" "Carlos"
## [24,] "Marta" "Luis" "Carlos" "Ana"

total_permutaciones <- factorial(length(personas))
cat("Total de formas posibles:", total_permutaciones, "\n")
## Total de formas posibles: 24</pre>
```

Combinaciones

```
coleccion libros <- 1:10
grupos posibles <- combinations(length(coleccion libros), 3,
coleccion libros)
cat("Grupos distintos que puede formar Ana con 3 libros:\n")
## Grupos distintos que puede formar Ana con 3 libros:
print(grupos_posibles)
##
           [,1] [,2] [,3]
##
     [1,]
              1
                    2
                          3
##
     [2,]
              1
                    2
                          4
                    2
                          5
##
              1
     [3,]
##
              1
                    2
                         6
     [4,]
                    2
                         7
##
     [5,]
              1
##
                    2
                         8
     [6,]
              1
##
     [7,]
              1
                    2
                         9
                    2
##
     [8,]
              1
                        10
                    3
##
     [9,]
              1
                         4
                    3
                          5
##
    [10,]
              1
                    3
##
    [11,]
              1
                         6
                    3
                         7
              1
##
    [12,]
                    3
##
              1
                         8
    [13,]
##
    [14,]
              1
                    3
                         9
##
              1
                    3
                        10
    [15,]
##
              1
                    4
                         5
    [16,]
##
    [17,]
              1
                    4
                         6
                    4
                         7
##
    [18,]
              1
                    4
                         8
##
    [19,]
              1
##
                    4
                         9
    [20,]
              1
                    4
                        10
##
    [21,]
              1
                    5
##
              1
                         6
    [22,]
##
    [23,]
              1
                    5
                         7
                    5
##
                         8
    [24,]
              1
##
   [25,]
              1
                    5
                         9
                    5
                        10
##
    [26,]
              1
                    6
##
    [27,]
              1
                         7
              1
                    6
                         8
##
    [28,]
                    6
                         9
##
              1
   [29,]
```

```
##
     [30,]
                           10
                1
                      6
##
     [31,]
                1
                      7
                            8
                      7
                            9
##
    [32,]
                1
                      7
##
     [33,]
                1
                           10
##
                      8
                            9
     [34,]
                1
##
                1
                      8
                           10
     [35,]
##
                1
                      9
                           10
     [36,]
                2
                      3
                            4
##
     [37,]
##
     [38,]
                2
                      3
                            5
##
     [39,]
                2
                      3
                            6
##
     [40,]
                2
                      3
                            7
                2
                      3
                            8
##
    [41,]
                      3
                            9
                2
##
     [42,]
                2
                      3
##
                           10
     [43,]
##
     [44,]
                2
                      4
                            5
##
     [45,]
                2
                      4
                            6
                2
                      4
                            7
##
    [46,]
##
     [47,]
                2
                      4
                            8
                            9
                2
                      4
##
    [48,]
                2
                      4
##
     [49,]
                           10
                      5
##
                2
                            6
    [50,]
                2
                      5
                            7
##
     [51,]
##
                2
                      5
                            8
     [52,]
##
     [53,]
                2
                      5
                            9
##
     [54,]
                2
                      5
                           10
##
    [55,]
                2
                      6
                            7
                            8
##
     [56,]
                2
                      6
                            9
##
                2
                      6
     [57,]
##
                2
                      6
                           10
     [58,]
##
                2
                      7
                            8
    [59,]
                      7
                2
                            9
##
     [60,]
##
                2
                      7
                           10
     [61,]
                2
                      8
                            9
##
     [62,]
##
     [63,]
                2
                      8
                           10
                      9
##
                2
                           10
     [64,]
                3
                      4
                            5
##
     [65,]
                3
                            6
##
                      4
     [66,]
                            7
##
     [67,]
                3
                      4
##
                3
                      4
                            8
     [68,]
                            9
                3
                      4
##
     [69,]
##
     [70,]
                3
                      4
                           10
##
                3
                      5
                            6
     [71,]
##
     [72,]
                3
                      5
                            7
                      5
                            8
##
     [73,]
                3
                      5
                            9
##
                3
     [74,]
##
                3
                      5
                           10
     [75,]
##
                3
                            7
     [76,]
                      6
##
                3
                      6
                            8
     [77,]
     [78,]
                3
                      6
                            9
##
##
    [79,]
                3
                      6
                           10
```

```
8
##
    [80,]
              3
                    7
##
    [81,]
              3
                    7
                         9
                    7
              3
                        10
##
    [82,]
                         9
##
    [83,]
              3
                    8
              3
                    8
##
                        10
    [84,]
    [85,]
                    9
##
              3
                        10
              4
                    5
                         6
##
    [86,]
              4
                    5
                         7
##
    [87,]
##
    [88,]
              4
                    5
                         8
                    5
##
    [89,]
              4
                         9
                    5
##
    [90,]
              4
                        10
##
    [91,]
              4
                    6
                        7
                         8
##
    [92,]
              4
                    6
                         9
##
              4
                    6
    [93,]
##
    [94,]
              4
                    6
                        10
##
              4
                    7
                         8
    [95,]
              4
                    7
                         9
##
    [96,]
##
    [97,]
              4
                    7
                        10
##
   [98,]
              4
                    8
                         9
##
   [99,]
              4
                    8
                        10
              4
                    9
                        10
## [100,]
                         7
              5
                    6
## [101,]
              5
                         8
                    6
## [102,]
              5
                    6
                         9
## [103,]
## [104,]
              5
                    6
                        10
              5
                    7
                         8
## [105,]
              5
## [106,]
                    7
                         9
              5
                    7
                        10
## [107,]
              5
                    8
## [108,]
                         9
              5
                    8
## [109,]
                        10
              5
                    9
                        10
## [110,]
                    7
## [111,]
              6
                         8
                    7
                         9
              6
## [112,]
## [113,]
              6
                    7
                        10
              6
                    8
                         9
## [114,]
## [115,]
              6
                    8
                        10
                    9
## [116,]
              6
                        10
                    8
## [117,]
              7
                        9
              7
                    8
                        10
## [118,]
              7
                    9
                        10
## [119,]
## [120,]
              8
                    9
                        10
total_combinaciones <- nrow(grupos_posibles)</pre>
cat("Cantidad total de combinaciones posibles:", total_combinaciones,
"\n")
## Cantidad total de combinaciones posibles: 120
```

#Probabilidad Condicional

```
total_figuras <- 12
cantidad_reyes <- 4</pre>
prob rey dado figura <- cantidad reyes / total figuras</pre>
cat("Probabilidad de que Carlos saque un rey si sabe que es una figura:",
prob rey dado figura, "\n")
## Probabilidad de que Carlos saque un rey si sabe que es una figura:
0.3333333
#Teorema de Bayes
P_magico <- 0.3
P_normal <- 0.7
P brilla magico <- 0.8
P_brilla_normal <- 0.1
P_brilla <- (P_magico * P_brilla_magico) + (P_normal * P_brilla_normal)
P magico dado brilla <- (P magico * P brilla magico) / P brilla
cat("Probabilidad de que un árbol que brilla sea mágico:",
round(P_magico_dado_brilla * 100, 2), "%\n")
## Probabilidad de que un árbol que brilla sea mágico: 77.42 %
#Distribución Binomial 1
n_habitantes <- 5</pre>
prob tea <- 0.6
prob_exacto_3 <- dbinom(3, size = n_habitantes, prob = prob_tea)</pre>
cat("Probabilidad de que exactamente 3 personas prefieran el te:",
prob exacto 3, "\n")
```

Distribución Binomial 2

##Distribucion de Poisson

```
n_total <- 10
prob_tea_2 <- 0.7
prob_exacto_7 <- dbinom(7, size = n_total, prob = prob_tea_2)

cat("Probabilidad de que exactamente 7 personas prefieran el te:",
prob_exacto_7, "\n")

## Probabilidad de que exactamente 7 personas prefieran el te: 0.2668279</pre>
```

Probabilidad de que exactamente 3 personas prefieran el te: 0.3456

##En el Bosque de la Inferencia, los árboles mágicos brillan en promedio 3 veces por noche. ¿Cuál es la probabilidad de que un árbol brille exactamente 5 veces en una noche?

```
# Tasa promedio de eventos (brillos por noche)
lambda <- 3
# Eventos deseados
k <- 5

# Cálculo
prob_poisson <- dpois(k, lambda)

# Resultado
cat("La probabilidad de que un arbol brille 5 veces es:",
round(prob_poisson, 3), "\n")

## La probabilidad de que un arbol brille 5 veces es: 0.101</pre>
```

##Distribucion Normal

##Las alturas de los habitantes del Pueblo de los Datos siguen una distribución normal con media μ = 170 cm y desviación estándar σ = 10 cm. ¿Cuál es la probabilidad de que un habitante mida menos de 160 cm?

```
media <- 170
#Desviacion estandar
desviacion <- 10

#Altura menor a
altura_limite <- 160

# Cálculo
prob_normal <- pnorm(altura_limite, mean = media, sd = desviacion)

# Resultado
cat("La probabilidad de que un habitante tenga una altura menor a 160 cm es:", round(prob_normal, 3), "\n")

## La probabilidad de que un habitante tenga una altura menor a 160 cm es: 0.159</pre>
```

##Distribucion Exponencial

##El tiempo entre llegadas de visitantes al Bosque de la Inferencia sigue una distribución exponencial con una tasa de λ = 0.5 visitantes por minuto. ¿Cuál es la probabilidad de que el próximo visitante llegue en menos de 2 minutos?

```
# Tasa de λ
tasa <- 0.5
```

```
#Tiempo limite
tiempo_limite <- 2

# Cálculo
prob_exponencial <- pexp(tiempo_limite, rate = tasa)

# Resultado
cat("La probabilidad de que el proximo visitante llegue en menos de 2
minutos es:", round(prob_exponencial, 3), "\n")

## La probabilidad de que el proximo visitante llegue en menos de 2
minutos es: 0.632</pre>
```

##Distribución Uniforme

##En el Pueblo de los Datos, el tiempo que tarda un mensajero en entregar una carta sigue una distribución uniforme entre 10 y 30 minutos. ¿Cuál es la probabilidad de que el mensajero tarde menos de 20 minutos?

```
# Minimo
minimo <- 10

#Maximo
maximo <- 30

#Limite de tiempo
limite_superior <- 20

# Cálculo
prob_uniforme <- punif(limite_superior, min = minimo, max = maximo)

# Resultado
cat("La probabilidad de que el mensajero haga la entrega en menos de 20
minutos es:", round(prob_uniforme, 3), "\n")

## La probabilidad de que el mensajero haga la entrega en menos de 20
minutos es: 0.5</pre>
```

#Sección 2: Muestreo ###Muestreo aleatorio simple

```
set.seed(123)
poblacion <- 1:1000
muestra <- sample(poblacion, 100)

print(muestra)

## [1] 415 463 179 526 195 938 818 118 299 229 244 14 374 665 602 603 768 709
## [19] 91 953 348 649 355 840 26 519 426 979 766 211 932 590 593 555 871 373</pre>
```

```
## [37] 844 143 544 490 621 775 905 937 842 23 923 309 135 821 954 224 166 217
## [55] 290 581 72 588 575 141 722 865 859 153 294 277 999 41 431 90 316 223
## [73] 528 116 606 774 747 456 598 854 39 159 752 209 988 994 34 516 13 69
## [91] 895 755 409 308 278 89 537 291 424 880
```

###Explicacion

#1(POBLACION)Estos serian los 1000 habitantes #2(MUESTRA)Seria la seleccion aleatoria de 100 personas

###Muestreo Estratificado # Muestreo estratificado con dplyr

```
# Establecer semilla para reproducibilidad
set.seed(123)
# Definir cantidad por barrio
n_por_barrio <- 250
# Crear vector con nombres de barrios
barrios <- rep(c("Norte", "Sur", "Este", "Oeste"), each = n_por_barrio)</pre>
# Crear la población como data frame
poblacion <- data.frame(ID = 1:1000, Barrio = barrios)</pre>
# Cargar librería necesaria
library(dplyr)
# Realizar muestreo estratificado: 25 observaciones por barrio
muestra estratificada <- poblacion %>%
  group by(Barrio) %>%
  slice sample(n = 25)
# Mostrar La muestra
print(muestra_estratificada)
## # A tibble: 100 × 2
## # Groups: Barrio [4]
##
         ID Barrio
      <int> <chr>
##
## 1 659 Este
## 2
        707 Este
##
       679 Este
## 4
       514 Este
   5
       695 Este
##
## 6
       670 Este
## 7
        550 Este
## 8
        618 Este
```

```
## 9 543 Este
## 10 729 Este
## # i 90 more rows
```

###Explicación: #1Se crea una población con su barrio correspondiente. #2(group_by(Barrio)) agrupa por barrio #3(slice_sample(n = 25)) tomara 25 muestras aleatorias por grupo.

###Tamano de la muestra

```
#Fórmula para tamano de muestra para proporciones

# Parámetros para calcular tamaño de muestra
nivel_confianza <- 0.95
margen_error <- 0.05
p <- 0.5 # Proporción esperada (máxima varianza)

# Valor Z correspondiente al nivel de confianza
z <- qnorm(1 - (1 - nivel_confianza) / 2)

# Cálculo del tamaño de muestra necesario para una proporcion
n <- (z^2 * p * (1 - p)) / (margen_error^2)

# Mostrar resultado redondeado hacia arriba
cat("Tamano de muestra necesario:", ceiling(n), "\n")

## Tamano de muestra necesario: 385</pre>
```

###Explicacion #P Sera el valor esperado #Se usa la fórmula estándarpara estimar proporciones. #1.(qnorm()) da el valor Z para el nivel devconfianza. #2.(p = 0.5) maximiza el tamaño necesario (caso mas conservador). #3.(ceiling()) redondea al entero superior.

###Muestreo de conglomerados # Muestreo por conglomerados

```
# Crear población con 10 distritos (cada uno con 100 personas)
distritos <- rep(1:10, each = 100)
poblacion <- data.frame(ID = 1:1000, Distrito = distritos)

# Seleccionar 2 distritos al azar
distritos_seleccionados <- sample(1:10, 2)

# Filtrar la muestra: solo individuos de los distritos seleccionados
muestra_conglomerados <- subset(poblacion, Distrito %in%
distritos_seleccionados)

# Mostrar la muestra obtenida
print(muestra_conglomerados)</pre>
```

##		ID	
	201		
	202		
	203		
	204		
##	205	205	
##	206	206	
	207		
##	208	208	
##	209	209	
##	210	210	
##	211	211	
##	212	212	
##	213	213	
##	214		
	215		
	216		
	217		
	218		
	219		
	220		
	221		
	222		
	223		
	223		
	224		
	226		
	227		
	228		
	229		
	230		
	231		
	232		
	233		
	234		
	235		
	236		
	237		
	238		
	239		
	240		
	241		
	242		
	243		
	244		
	245		
	246		
	247		
	248		
##	249	249	

##	250	250	3
	251	251	3
	252	252	3
	253	253	3
	254	254	3
	255	255	3
	256	256	3
	257	257	3
	258	258	3
	259	259	3
	260	260	3
	261	261	3
	262	262	3
	263	263	3
	264	264	3
	265	265	3
			3
	266	266	
	267	267	3
	268	268	3
	269	269	3
	270	270	3
	271	271	3
	272	272	3
	273	273	3
	274	274	3
	275	275	3
	276	276	3
	277	277	3
	278	278	3
	279	279	3
	280	280	3
	281	281	3
	282	282	3
	283	283	3
	284	284	3
	285	285	3
	286	286	3
	287	287	3
	288	288	3
	289	289	3
	290	290	3
	291	291	3
	292	292	3
	293	293	3
	294	294	3
	295	295	3
	296	296	3
	297	297	3
	298	298	3
##	299	299	3

##	300	300	3
##	901	901	10
##	902	902	10
##	903	903	10
##	904	904	10
##	905	905	10
##	906	906	10
##	907	907	10
##	908	908	10
##	909	909	10
##	910	910	10
##	911	911	10
##	912	912	10
##	913	913	10
##	914	914	10
##	915	915	10
##	916	916	10
##	917	917	10
##	918	918	10
	919	919	10
##	920	920	10
##	921	921	10
##	922	922	10
##	923	923	10
##	924	924	10
##	925	925	10
##	926	926	10
##	927	927	10
	928	928	10
	929	929	10
	930	930	10
	931	931	10
	932	932	10
	933	933	10
	934	934	10
	935	935	10
	936	936	10
	937	937	10
	938	938	10
	939	939	10
	940	940	10
	941	941	10
	942	942	10
	943	943	10
	944	944	10
	945	945	10
	946	946	10
	947	947	10
	948	948	10
##	949	949	10

##	950	950	10
##	951	951	10
##	952	952	10
##	953	953	10
##	954	954	10
##	955	955	10
##	956	956	10
##	957	957	10
##	958	958	10
##	959	959	10
##	960	960	10
##	961	961	10
##	962	962	10
##	963	963	10
##	964	964	10
##	965	965	10
##	966	966	10
##	967	967	10
##	968	968	10
##	969	969	10
##	970	970	10
##	971	971	10
##	972	972	10
##	973	973	10
	974	974	10
	975	975	10
	976	976	10
	977	977	10
	978	978	10
	979	979	10
	980	980	10
	981	981	10
	982	982	10
	983	983	10
	984	984	10
	985	985	10
	986	986	10
	987	987	10
	988	988	10
	989	989	10
	990	990	10
	991	991	10
	992	992	10
	993	993	10
	994	994	10
	995	995	10
	996	996	10
	997	997	10
##	998	998	10

```
## 999 999 10
## 1000 1000 10
```

###Explicacion #1.Creamos la poblacion #2.Seleccionamos los distritosaleatoriamente #3>Tenemos que filtrar la muestra con la formulaasignada

```
###Muestreo sistematico
# Muestreo sistemático
set.seed(123)
# Crear población del 1 al 1000
poblacion <- 1:1000
# Establecer el intervalo de selección
intervalo <- 20
# Seleccionar aleatoriamente el punto de inicio entre 1 y 20
inicio <- sample(1:intervalo, 1)</pre>
# Generar las posiciones sistemáticas
posiciones <- seq(inicio, length.out = 50, by = intervalo)</pre>
# Obtener La muestra
muestra_sistematica <- poblacion[posiciones]</pre>
# Mostrar resultados
cat("Punto de inicio:", inicio, "\n")
## Punto de inicio: 15
print(muestra sistematica)
## [1] 15 35 55 75 95 115 135 155 175 195 215 235 255 275 295 315
335 355 375
## [20] 395 415 435 455 475 495 515 535 555 575 595 615 635 655 675 695
715 735 755
## [39] 775 795 815 835 855 875 895 915 935 955 975 995
Sección 3: Storytelling con Datos
##Sección 3: Storytelling con Datos
#Gráfico de Barras: Preferencias de Transporte
preferencias <- data.frame(</pre>
  Transporte = c("Auto", "Bicicleta", "Transporte Publico"),
  Porcentaje = c(40, 30, 30)
)
```

```
ggplot(preferencias, aes(x = Transporte, y = Porcentaje, fill =
Transporte)) +
   geom_bar(stat = "identity") +
   labs(title = "Preferencias de Transporte", y = "Porcentaje", x = "Medio
de Transporte") +
   theme_minimal()
```

Preferencias de Transporte

##Gráfico de Líneas: Rendimiento Estudiantil

```
datos_rendimiento <- data.frame(
   Ano = rep(c(2022, 2023), 3),
   Materia = rep(c("Matematicas", "Ciencias", "Historia"), each = 2),
   Rendimiento = c(70, 75, 65, 80, 60, 70)
)

ggplot(datos_rendimiento, aes(x = Ano, y = Rendimiento, group = Materia,
   color = Materia)) +
    geom_line(size = 1.2) +
    geom_point(size = 3) +
   labs(title = "Rendimiento Estudiantil por Materia", y = "Puntaje", x =
   "Ano") +
   theme_minimal()</pre>
```


Calor: Temperaturas Semanales

```
datos_temp <- data.frame(
   Dia = c("Lunes", "Martes", "Miercoles", "Jueves", "Viernes", "Sabado",
"Domingo"),
   Temperatura = c(25, 28, 30, 27, 26, 29, 31)
)

ggplot(datos_temp, aes(x = Dia, y = 1, fill = Temperatura)) +
   geom_tile(color = "white") +
   scale_fill_gradient(low = "lightblue", high = "red") +
   labs(title = "Temperatura Semanal en el Pueblo de los Datos", y = "", x
= "Dia") +
   theme_minimal() +
   theme(axis.text.y = element_blank(), axis.ticks.y = element_blank())</pre>
```

Temperatura Semanal en el Pueblo de los Datos

##Histograma: Distribución de Edades

```
edades <- c(42, 39, 46, 37, 48, 34, 50, 38, 45, 40, 43, 36, 47, 35, 49,
41, 38, 44, 40, 46,
            37, 42, 39, 48, 36, 45, 41, 43, 35, 47, 38, 44, 40, 46, 37,
42, 39, 48, 34, 50,
            38, 45, 40, 43, 36, 47, 35, 49, 41, 38, 44, 40, 46, 37, 42,
39, 48, 36, 45, 41,
            43, 35, 47, 38, 44, 40, 46, 37, 42, 39, 48, 34, 50, 38, 45,
40, 43, 36, 47, 35,
            49, 41, 38, 44, 40, 46, 37, 42, 39, 48, 36, 45, 41, 43, 35,
47, 38, 44, 40, 46,
            37, 42, 39, 48, 34, 50, 38, 45, 40, 43, 36, 47, 35, 49, 41,
38, 44, 40, 46, 37,
            42, 39, 48, 36, 45, 41, 43, 35, 47, 38, 44, 40, 46, 37, 42,
39, 48, 34, 50, 38,
            45, 40, 43, 36, 47, 35, 49, 41, 38, 44, 40, 46, 37, 42, 39,
48, 36, 45, 41, 43,
            35, 47, 38, 44, 40, 46, 37, 42, 39, 48, 34, 50, 38, 45, 40,
43, 36, 47, 35, 49,
            41, 38, 44, 40, 46, 37, 42, 39, 48, 36, 45, 41, 43, 35, 47,
38, 44, 40, 46, 37,
            42, 39, 48, 34, 50, 38, 45, 40, 43, 36, 47, 35, 49, 41, 38,
44, 40, 46, 37, 42,
            39, 48, 36, 45, 41, 43, 35, 47, 38, 44, 40, 46, 37, 42, 39,
48, 34, 50, 38, 45,
            40, 43, 36, 47, 35, 49, 41, 38, 44, 40, 46, 37, 42, 39, 48,
36, 45, 41, 43, 35,
```

```
47, 38, 44, 40, 46, 37, 42, 39, 48, 34, 50, 38, 45, 40, 43,
36, 47, 35, 49, 41,
            38, 44, 40, 46, 37, 42, 39, 48, 36, 45, 41, 43, 35, 47, 38,
44, 40, 46, 37, 42,
            39, 48, 34, 50, 38, 45, 40, 43, 36, 47, 35, 49, 41, 38, 44,
40, 46, 37, 42, 39,
            48, 36, 45, 41, 43, 35, 47, 38, 44, 40, 46, 37, 42, 39, 48,
34, 50, 38, 45, 40,
            43, 36, 47, 35, 49, 41, 38, 44, 40, 46, 37, 42, 39, 48, 36,
45, 41, 43, 35, 47,
            38, 44, 40, 46, 37, 42, 39, 48, 34, 50, 38, 45, 40, 43, 36,
47, 35, 49, 41, 38,
            44, 40, 46, 37, 42, 39, 48, 36, 45, 41, 43, 35, 47, 38, 44,
40, 46)
ggplot(data.frame(edades), aes(x = edades)) +
  geom_histogram(binwidth = 2, fill = "skyblue", color = "black") +
  labs(title = "Distribucion de Edades en el Pueblo de los Datos", x =
"Edad", y = "Frecuencia") +
theme_minimal()
```

Distribucion de Edades en el Pueblo de los Datos

. . .