Software Tutorial

Streamlining PWA Workflow and Regularization

Lawrence Ng Jefferson Lab

Regularization and PWA

Bin in mass describe only angular dependence "Mass independent fit"

$$lpha_m$$
 "Production coefficients" in mass bin

Intensity Distribution

 θ = Angular dependence

 ξ = (mass, ...) dependence

For a more detailed writeup see
GlueX Doc: 6826

Regularization and PWA

 $lpha_m$ Parameter vector (real/imaginary parts of amplitudes) Dimensionality ~ (2 x N $_{
m partial\ waves}$)

$$|P(lpha_m)|$$
 We wish to infer the probability distribution

 $X_{m{m}}$ Observed data samples

$$P(X_m | \alpha_m) = \prod_j P(x_{m,j} | \alpha_{m,j})$$
 Likelihood (product of probs) of observing data $\{j\}$

$$\hat{\alpha}_m = rg \min_{\alpha_m} \left[-\log P(X_m | \alpha_m) \right]$$
 likelihood (or minimizing the

Best guess by maximizing the negative log-likelihood)

If we believe some free parameters are small then we can apply pressure on the model -> Regularization

<u>Lasso Regularization</u> (L1 norm of the parameter vector) penalizing non-zero values

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \left[-\log P(X|\theta) + \lambda \sum_{i=1}^{D} |\theta_i| \right]$$

So far, these concepts live in the Frequentist framework for Statistics

Alternatively we can apply pressure by multiplying the likelihood by a prior distribution

Bayesian Framework

$$P(\theta|X) \propto P(X|\theta)P(\theta)$$

Posterior Distribution

Likelihood

Prior Distribution

Normalization constant is generally difficult to evaluate as it is a high dimensional integral

$$Z = P(X) = \int P(X|\theta)P(\theta)d\theta$$

Markov Chain Monte Carlo performs <u>monte carlo integration</u> to approximate expectation values, i.e. <u>marginalization</u>

$$P(\theta_i|X) = \int P(\theta|X) d\theta_{-i} = \frac{1}{Z} \int P(\theta|X) \prod_{j \neq i} d\theta_j \approx \operatorname{Histogram}\{\theta_i^{(s)}\}_{s=1}^S$$

Regularization and PWA

Bin in mass describe only angula dependence "Mass independent fit"

$$lpha_{m{m}}$$
 "Production coefficients" in mass bir

heta = Angular dependence

 ξ = (mass, t, ...) dependence

Alternatively we can describe mass dependence "Mass dependent fit"

Regularization | Mass Dependent Fits

$$P(\alpha) = P(\alpha_0,...,\alpha_m)$$
 "mass independent" fits across all mass bins Dimensionality ~ (M bins) x (2 x N partial waves) If isolated resonance than Breit-Wigner good description - needs only 2 parameters
$$\frac{1}{E-M_0-i\Gamma_0/2}$$

More parameters needed if modeling background and approaches (M bins) \times (2 \times N_{partial waves}) if using piecewise description

Regularization | Bayesian Mass Dependence

<u>Posterior distribution</u> of production coefficients across all mass bins

$$P(\alpha|X) \propto \prod_{j} P(x_{j}|\alpha)P(\alpha)$$

Physical Constraints

 Enforce smoothness by considering correlations between mass bins

Regularization | Information Field Theory

k(lpha,lpha') Kernel function - <u>correlation</u> between production coefficients in a pair of kinematic bins

Distill.pub: A Visual Exploration of Gaussian Processes

Regularization | Information Field Theory

If bin spacing is uniform (By <u>Wiener-Khinchin theorem</u>) it is sufficient to infer only the <u>power spectral density</u>

Example:

Power spectrum slope parameter

LogNormal(-6, 3)

Draw 8 samples

NIFTy Correlated Field Demo

Regularization | Information Field Theory

$$P(\alpha|X) \propto \prod_{j} P(x_{j}|\alpha)P(\alpha)$$

P(lpha) Smoothness enforced by the <u>prior distribution of power spectral density</u> for each partial wave

For a more detailed writeup see GlueX Doc: 6826

PyAmpTools

Tutorial Link

Motivation

- Partial wave analysis can be complicated (fitting, bookkeeping, result handling, ...)
- PyAmpTools sacrifices flexibility for ease of use and focuses on Python as the core language

Features:

- Scientific Python ecosystem is massive (achieve most of the benefits of low level languages without the hassle)
- Optimization uses gradients provided by <u>JAX automatic differentiation</u> (scales better than numerical diff.)
- Hooks into several optimization frameworks spanning MLE, MCMC, to Variational Inference
 - iminuit, scipy, numpyro, iftpwa Information Field Theory framework
- YAML file is used to configure the analysis for consistency and automation
- Fitting is generally done through the command line

YAML file contains all the knobs

```
defaults location: null
base directory: /w/halld-scshelf2101/lng/WORK/PyAmpTools9/demos/RESULTS # base directory for
data folder: ${base directory}/DATA SOURCES # folder for data sources that will be binned
n processes: 4 # global number of processes to generally use
polarizations:
  "000": 1.0 # polarization magnitude in each orientation
waveset: Sp0+ Sp0- Dp2+ Dp2- # underscore separated list of waves to use
phase reference: Sp0+ Sp0- # reference wave in each reflectivity sector
reaction: Beam Proton Pi0 Eta # amptools reaction scheme
daughters: # Daughter masses
  Pi0: 0.135
  Eta: 0.548
min mass: 1.04 # minimum mass to consider
max mass: 1.72 # maximum mass to consider
n mass bins: 17 # number of mass bins to use
min t: 0.0 # minimum t to consider
max t: 1.0 # maximum t to consider
n t bins: 1 # number of t bins to use
acceptance correct: true # whether to apply acceptance corrections
datareader: ROOTDataReader # data reader to use
coordinate system: cartesian # ['cartesian', 'polar'], dont use polar
bins_per_group: 1 # create group dirs grouping bins allowing nifty to handle finer bins
merge grouped trees: true # remerge the trees in each group
constrain_grouped_production: false # if not remerging, we can choose to constrain amplitude
real waves: "" # same form as waveset, define which waves are purely real
fixed waves: "" # same form as waveset, define which waves are fixed
add amp factor: "" # Add an amplitude factor to every amplitude. For example, OmegaDalitz 0.
append to decay: "" # append this string to the decay amplitude, i.e. 'omega3pi' can be appe
append_to_cfg: "" # append this string to the AmpTools configuration file
```

For <u>vector pseudoscalar</u> just change waves to another format: 1Sp1-1Sp1+

Also see <u>Here</u>

Lots more knobs not shown but defaults can be pulled and most work decently well (of course you need dataset, waveset, binning, ...)

Tutorial workflow

Since IFT model is a <u>Bayesian framework</u> we can draw samples from the prior and generate MC simulations to <u>rapidly iterate on Input/Output studies</u> and <u>compare optimization frameworks with this toolkit</u>

Draw prior sample and generate samples

pa run_priorSim <yaml_file>

Maximum Likelihood Estimation

pa run_mle <yaml_file>

Markov Chain Monte Carlo

pa run_mcmc <yaml_file>

NIFTy fit

pa run_ift <yaml_file>

ResultManager

Complex amplitudes + intensities all available as flat pandas dataframe

from pyamptools.utility.resultManager import ResultManager
yaml_file = "/w/halld-scshelf2101/lng/WORK/PyAmpTools9/OTHE
resultManager = ResultManager(yaml_file)
resultManager.attempt_load_all()

All results loaded as a <u>flat pandas dataframe</u> (intensities, complex amplitudes, moments, etc...)

Have time? Click this Tutorial Link