Turning Up the Heat: The Discouraging Effect of Competition in Contests

(Dawei Fang, Thomas Noe and Philipp Strack('20 JPE))

Presenter: Renjie Zhong 2020200977@ruc.edu.cn

Renmin University of China

November 2022

Motivation and Main Findings

- Incentives vs Discouragement is the key tradeoff when increasing competition in contest theory.
- Incentives: Increasing competition naturally increases contestants' incentives to exert high effort.
- (Indirect) Discouragement: Contestants' gains from exerting effort are reduced for beating their rivals harder.

Focus

- How to depict the competitiveness of the competition?
 - 1 the number of contestants
 - 2 the reward structure
 - We care about increasing prize inequality, increasing contest scale, and contestant entry.
- 2 How does the competitiveness of the competition affect contestants' efforts?

Main Findings

- Assumptions: homogeneous contestants and convex effort costs
- Under such assumptions, the discouragement always dominates the incentives.

That means increasing competition always reduces expected effort of individual contestants.

- Intuition
 - Increasing competition
 - ⇒ More spread-out distributions(extreme effort levels)
 - ⇒ Decreasing expected effort under convex costs
 - P.S. The negative effect of contestant entry is obvious and profound.

Applications

- Promotion("last-place elimination systems")
- Grading scheme in college("Pooling GPA")
- Matching Online Gamers
- Policy Implications: personnel policies that feature egalitarian pay systems and dismissal of worst-performing employees.

Related Literature: All-pay Auction

- Root: Barut and Kovenock (1998) Homo+Linear+No Info Asymmetric
 - \rightarrow Price structure and contest scale doesn't matter ($v_0 = 0$)
 - → Contestant entrty exerts negative effects
- Subsequent Research: modifying heterogeneity and info asymmetry
 Via (2010) NA Hamman LG L (2001) Classification
 - Xiao(2018), Moldovanu and Sela(2001), Olszewski and Siegel(2018)

Some Basic Facts in All-pay Auction: Setup

- $n \ge 1$: homogeneous risk-neutral contestants
- x_i : efforts
- $c(x_i): R_+ \to R_+$: effort cost which is differentiable, strictly increasing and convex
- $v = (v_1, v_2, ..., v_n) \in R_+^n$: an ordered vector of prizes where $0 = v_1 \le v_2 \le ... \le v_n$ and $v_1 < v_n$
- $F_{\nu}(x)$: distriution function
- $\pi_{v}(p) = \sum_{i=1}^{n} v_{i} \binom{n-1}{i-1} p^{i-1} (1-p)^{n-i}$: the expected reward 3.7

Some Basic Facts in All-pay Auction: Equilibrium

- a unique symmetric equilibrium in mixed strategies
- continuously randomize their efforts over $[0, c^{-1}(v_n)]$
- receive an expected payoff equal to 0
- **Theorem1**:indifference condition $\pi \circ F_{\nu}(x) c(x) = 0, x \in [0, c^{-1}(\nu_n)]$ $\rightarrow F_{\nu}(x) = (\pi^{-1} \circ c)(x)$
- **Corollary1**: If two prize vectors $w, v \in P^n$, satisfy that $w \ge v$, then $X^w \ge_{FSD} X^v$

Example: Setup

- Jill, a retail broker for a small investment bank who needs some assitants for cold call, whose effort cost is $c(x)=0.001x^2$
- Jill has received a 1,000 incentive fund from the bank earmarked for awards to high-performing assistants
- Initially, Jill design a one-winner contest, which $v_1 = (0, 0, 1000)$
- How to incentize them? Compare the contest policies later!

Formal Definition: Price Inequality and Contest Scale

- **Price Inequality**: $w, v \in P^n$ and $\sum_{i=1}^k w_i = \sum_{i=1}^k v_i$. Vector w is more unequal than v if w is more unequal than v in the Lorenz order.
 - that is $\sum_{i=1}^{k} w_i \leq \sum_{i=1}^{n} v_i$, for all $k = \{1, ..., n\}$
- Example: a two-winner contest in which the 1,000 prize is split equally between the two best-performing assistants. The prize vector is $v_2 = (0,500,500)$
- **Scaling**: Let s > 1 be an integer; $w \in P^{ns}$ is a scaling of $v \in P^n$ if $w_k = v_{\lfloor k/s \rfloor}$ for all $k \in \{1, ..., n\}$
- Example: Jill decides to scale up the size of the contest by \bigcirc 7 consolidating her contest with Jack's identical one-winner contest. The prize vector is $v_3 = (0,0,0,0,1000,1000)$

Theorem

- **1 Theorem2**: Suppose vector w is more unequal than v. For any concave, strictly increasing function, u, of individual contestant effort $E[u(X^v)] \leq E[u(X^w)]$
- **2 Theorem3**: Suppose vector w is a scaling of v. For any concave, strictly increasing function, u, of individual contestant effort $E[u(X^v)] \leq E[u(X^w)]$

Corollary and Intuition

- Corollary2/3: Increasing price inequality/Scaling induces decreasing expected individual effort and the expected total effort
- Intuition: contestants face a direct incentive to increase effort but all contestants increasing effort cannot be sustained in equilibrium
 - \Rightarrow requiring an increase in the payoff from intermediate effort levels and a decrease in the payoff from high effort levels
 - ⇒ increasing the likelihood contestants make extreme efforts(more spread-out distributions)
 - \Rightarrow cost convexity comes into play

Table

 ${\bf TABLE~1}$ Equilibrium Results in the Three Contests under Consideration

		Leads per assistant		Expected leads	
Contest	PRIZE VECTOR	Mean	Minimum	Maximum	FOR JILL
One winner	(0, 0, 1000)	500	0	1,000	1,500
Two winners	(0, 500, 500)	555	0	707	1,665
Consolidated	(0, 0, 0, 0, 1000, 1000)	463	0	1,000	1,389

Graphical Illustration: Price Inequality

Graphical Illustration: Price Inequality

Graphical Illustration: Scaling

Graphical Illustration: Scaling

Formal Model: Entry

- **Formal Definition**:Prize vector $w \in P^{n+1}$ is an entry transformation of of $v \in P^n$ if $w = (0, v_1, v_2, ..., v_n)$
- **Proposition 1**: Entry induces decreasing expected individual effort and $X^v \leq_{FSD} X^w$. With (strictly) convex effort-cost function, the expected total effort is (strictly) higher under w than under v
- Intuition:

Reducing the average reward reduces the cost of effort a contestant is willing to incur in expectation

Adding an entrant as having a new agent "share" a fixed total, increasing total productivity under convex effort costs

Extensions

- Contestant Heterogeneity
- Concave Effort Costs
- Risk-Averse Contestants
- Noisy Outcome

