

□ (+86) 18827460532 | ■ 12211832@mail.sustech.edu.cn | • wojiao-yc

Education Background

I am currently studying in the Department of Intelligent Medical Engineering at Southern University of Science and Technology, under the guidance of assistant professor Quanying Liu. My overall GPA is 3.78/4 and my major ranking is 14/42. In 2024, I participated in the summer school of the School of Computer Science at NUS and achieved an A grade.

Publication

Li, D., Oin, H., Wu, M., Cao, Y., Wei, C., & Liu, O (2024), RealMind: Zero-Shot EEG-Based Visual Decoding and Captioning Using Multi-Modal Models, arXiv preprint arXiv:2410.23754. **Submitted to ICASSP 2025**

Li, D., Wei, C., Li, S., Zou, J., Qin, H., & Liu, Q. (2024). Visual decoding and reconstruction via eeg embeddings with guided diffusion. arXiv preprint arXiv:2403.07721. Accepted at NeuralPS 2024

Research Experience _____

RealMind: Zero-Shot EEG-Based Visual Decoding and Captioning Using Multi-Modal **Models**

SUSTech NCClab

CO-AUTHOR

Jul. 2024 - Oct. 2024

- Introduction of RealMind: RealMind is a novel EEG-based visual decoding framework that addresses the limitations of fMRI by leveraging multi-modal models to interpret semantic information efficiently.
- · Improved Decoding Performance: By integrating semantic and geometric consistency learning, RealMind enhances feature alignment, achieving 58.42% Top-5 accuracy in a 200-way retrieval task and a 26.59% BLEU-1 score in a 200-way visual captioning task, marking the first successful zero-shot visual captioning using EEG data.
- Advantages of RealMind: RealMind offers a robust, adaptable, and cost-effective alternative to fMRI-based methods, providing scalable solutions for EEG-based visual decoding in practical applications.

Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion

SUSTech NCClab Jun 2024 - Jul 2024

AUTHOR

- EEG-based Visual Reconstruction Framework: This study presents a novel EEG-based visual reconstruction zero-shot framework for decoding human vision, overcoming the limitations of fMRI in brain-computer interfaces (BCIs).
- Two-stage EEG-to-Image Generation: The framework incorporates a tailored brain encoder (Adaptive Thinking Mapper, ATM) and a two-stage multi-pipe EEG-to-image generation strategy, where EEG embeddings are aligned with high-level clip embeddings and refined into image priors using a diffusion model, followed by further refinement in a pre-trained diffusion model.
- State-of-the-Art Performance: Demonstrated on MEG data, the framework achieves state-of-the-art performance in classification, retrieval, and reconstruction, offering portability, low cost, and high temporal resolution, making it suitable for a wide range of BCI applications.

Honors & Awards ___

INTERNATIONAL

2024	First Prize, ASC Student Supercomputer Challenge	Shanghai, China
2024	Finals, Indy Student Clusters Competition	Atlanta, U.S.A
2023	Second Place, APAC HPC-AI Competition	Sydney, Australia

DOMESTIC

2024	Second Prize, Guangdong Biomedical Engineering Competition	Shenzhen, China
2024	First Prize, Outstanding Student Scholarships	Shenzhen, China
2023	Second Prize, Outstanding Student Scholarships	Shenzhen, China

Presentation

China Biomedical Engineering Conference

Shenzhen, China

PRESENTER FOR < REALMIND: ZERO-SHOT EEG-BASED VISUAL DECODING AND CAPTIONING USING MULTI-MODAL>

• Briefly introduced the project background, implementation methods, and final results

2024