PH126 Logic I Lecture 9

Lecturer: s.butterfill@warwick.ac.uk

Truth table for →

Assuming that the rules of Fitch are such that it is impossible to prove an argument which is not logically valid, the truth-table for \rightarrow is fixed if we accept \rightarrow Elim and \rightarrow Intro.

How do the rules of proof for \rightarrow fix its truth table?

Α	В	$A \rightarrow B$
Т	Т	
Т	F	
F	T	
F	F	

'If' and '→' do not match

A → B Marnie will not miss her train

A → B If Marnie misses her train, she will arrive on time.

'If' and '→' do match

$- \frac{\neg A \lor B}{\text{If A, B}}$	America does not exist \vee Baudrillard is wrong If America exists, Baudrillard is wrong
lf A, B	If you love logic, things will fall into place Not both: you take logic and things don't fall into place

Multiple quantifiers: simple examples

"Something is above something" \(\frac{1}{3}\mathbf{x}\) \(\frac{1}{3}\mathbf{y}\) \(\frac{1}{3}\mathbf{x}\) \(\frac{1}{3}\mathbf{y}\) \(\frac{1}{3}\mathbf{x}\) \(\frac{1}{3}\mathbf{y}\) \(\frac{1}{3

"Everyone likes puffins" $\forall y \ \forall x \ (Puffin(x) \rightarrow Likes(y,x))$

Puffin(x): x is a puffin

b:Steve

Likes(x,y): x likes y

"Something makes someone want to die inside" $\exists x \exists y \text{ WantToDieInside}(x,y)$

WantToDieInside(x,y): x makes y want to die inside

1 ∃x ∃y Above(x,y)

"Something is above something"

The Soundness & Completeness Theorems

'A | B' means there is a proof of B using premises A

' B' means there is a proof of B using no premises

'A \models B' means B is a logical consequence of A

' ⊨ B' means B is a tautology

'A \models_T B' means B is a logical consequence of A just in virtue of the meanings of truth-functions (the textbook LPL calls this 'tautological consequence')

Soundness: If $A \models B$ then $A \models B$

I.e. if you can prove it in Fitch, it's valid

Completeness: If $\mathbf{A} \models_T \mathbf{B}$ then $\mathbf{A} \models \mathbf{B}$ I.e. if it's valid just in virtue of the meanings of

truth functions, you can prove it in Fitch

Proof Example using negation-Intro

Substitution of logical equivalents

Two sentences are *logically equivalent* when each is a logical consequence of the other.

If * and # are logically equivalent, then you take a complex formula and replace * with # without changing the truth table of the complex formula.

Example. Because \neg (R $\lor \neg$ P) is logically equivalent to \neg R \land P, it follows that:

 $P \lor \neg (Q \land \neg (R \lor \neg P))$ is logically equivalent to $P \lor \neg (Q \land (\neg R \land P))$

And because \neg ($Q \land (\neg R \land P)$) is logically equivalent to $\neg Q \lor (R \lor \neg P)$, it follows that $P \lor \neg (Q \land (\neg R \land P))$ is logically equivalent to $P \lor (\neg Q \lor (R \lor \neg P))$.

Example proof

Fubar rules

- Q1. What would be wrong with adding ∧Fubar to Fitch?
- Q2. What would be wrong with having Λ Fubar in any system of proof?

Tonk

*Intro	*Elim
P _i	P ₁ *P
P ₁ *P ₂	P _i

Exercises 05

For your sixth seminar
Not for fast groups

A. From the LPL textbook:

7.9 (truth functions)

6.17-20 (proof)

6.33, 6.40

DO NOT USE TAUT CON. EVER.

8.24–25 (proofs/counterexamples)

12.4-5, *12.6-7 (counterexamples)

B. For each of the following sentences of FOL, give a logically equivalent sentence of idiomatic English using the specified interpretation. Your English sentences should be as concise as possible.

Domain: people and actions

D(x) : x is desirable V(x) : x is virtuous

A(x): x is an action

H(x) : x is an actionH(x) : x is a person

P(x,y): x performed y

i. $\forall x [D(x) \rightarrow V(x)]$

ii. $\forall x [[A(x) \land D(x)] \rightarrow V(x)]]$

iii. $\exists x [A(x) \land \neg [D(x) \rightarrow V(x)]]$

*iv. $\exists x \forall y [[[H(x) \land A(y)] \land P(x,y)] \rightarrow V(y)]$

**v. $\neg \exists x [\exists y [H(x) \land P(x,y) \land A(y) \land \neg V(y)] \land \neg \exists z [P(x,z) \land A(z) \land V(z)]]$