A Probabilistic Model for Using Social Networks in Personalized Item Recommendation

Allison J.B. Chaney

Princeton University

Tina Eliassi-Rad

David M. Blei

Rutgers University

Columbia University

ajbc.io/spf

Personalized Item Recommendation

Anna Karenina

Winter's Tale

East of Eden

???

Matches our intuition

- Matches our intuition
- Introduces explainable serendipity

- Matches our intuition
- Introduces explainable serendipity
- Improves performance

- Matches our intuition
- Introduces explainable serendipity
- Improves performance
- Helps us learn about user behavior

observed ratings

Social Poisson Factorization

Social Poisson Factorization

User influence Item attributes r_{vi} User preferences

$$r_{ui} \mid r_{-u,i} \sim \text{Poisson} \left(\theta_u^{\top} \beta_i + \sum_{v \in N(u)} \tau_{uv} r_{vi} \right)$$

Posterior Inference:

How do we go from a generative model to finding the values of the variables that best fit our data?

Posterior Distribution

latent model parameters

easy to compute

model hyperparameters

Mean Field Variational Inference

Mean Field Variational Inference

Recommendation

$$\mathbf{E}[r_{ui}] = \mathbf{E}[\theta_u]^{\top} \mathbf{E}[\beta_i] + \sum_{v \in N(u)} \mathbf{E}[\tau_{uv}] r_{vi}$$

Data

source	# users	# items	% ratings	% edges
Ciao	7,000	98,000	0.038%	0.103%
Epinions	39,000	131,000	0.012%	0.011%
Flixster	132,000	42,000	0.122%	0.006%
Douban	129,000	57,000	0.221%	0.016%
Social Reader	122,000	6,000	0.065%	0.001%
Etsy	40,000	5,202,000	0.009%	0.300%

etsy.com and librec.net/datasets.html

Existing Methods for Including Social Networks

SoRec

Ma et al., SoRec: Social Recommendation Using Probabilistic Matrix Factorization, SIGIR 2008.

RSTE

Ma et al., Learning to Recommend with Social Trust Ensemble, SIGIR 2009.

SocialMF

Jamali and Ester, A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks, RecSys 2010.

TrustMF

Yang et al., Social Collaborative Filtering by Trust, IJCAI 2013.

TrustSVD

Guo et al., TrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item Ratings, AAAI 2015.

librec.net

Evaluation on held-out data

$$CRR(user) = \sum_{n=1}^{N} \frac{\mathbf{1}[rec_n \in \mathcal{H}]}{n} = \sum_{i \in \mathcal{H}} \frac{1}{rank(i)}$$

$$NCRR(user) = \frac{CRR(user)}{\text{ideal } CRR(user)}$$

Results

Summary

- SPF performs better than comparison models
- SPF is interpretable and has explainable serendipity
- SPF scales well to large data
- Source code available at ajbc.io/spf

Thank you!

Questions and suggestions welcome.

Thank you to Blei Lab colleagues and Guibing Guo (LibRec creator)

ajbc.io/spf