Assignment No.3

Tage No. 11

Nome - kwdharan Sumit Daftatrotg
Roll No - 200601
Class - TE4
Subject -

Problem Statement.

Implement Greedy Search Algorithm for any of the following application-

- 1 Selection Sort.
- 1 Minimum Spanning tree.
- 3 Single-Source shortest path problem.
- @ Job Scheduling Problem.
- 1 Prim's minimal spanning tree algorithm.
- @ Krushkals minimal spanning tree algorithm.
- 1 Diskstra's minimal Spanning tree agonthm.

Theory-

- +Introduction of Greedy Search Algorithm.
- · Follows local optimal choice of each stage with intend of finding global optimum.
- · feasible Solution.
- · Optimal solution.

Applications-

- 1) knapsack Algorithm
- 2) Job sequencing
- 3) Minimum Spanning tree.
- 4) Optimal merge patterns
- 5) Hultiman cooling
- 6) Oiikstras Algonithm

Page No.	12		
Date			

· feasible Solution -

satisfies all the constraints in an optimization problem.

· optimal solution -

optimal Solution is a feasible solution convere the objective function reaches its maximum value.

for example

The most profit in the least cost.

Advantages -

- 1) Greedy approach is easy to implement.
- 1 Typically have less time complexities.
- (3) Greedy augorithm can be used for optimization purposes or finding close to optimization in case of NP Hard problems.

Disadvantages -

Sometimes greedy augorithm fail to find the globally optimal solution because they do not consider all the data.

- * Introduction of Prims MST.
- · Prim's algorithm is a famous greedy augorithm.
- . It is used for finding the Minimum spanning tree of given graph.
- · To apply prims augorithm the given graph must be weighted connected & undirected.

Advantages -

Prime ousorithm runs faster in dense graphs.

Disadvantages-

- · List of edges have to be searched from beginning as new edge gets added.
- · 2F there are more than an edge having some weight than all possible spanning trees are required to be found for final minimum tree.

solve one numerical example using prims MST.

Problem -

construct the minimum spanning tree for the given graph using prims algorithm.

Solution -

Step-1

Step-2

Step.3 -

Step-4 -

Stet -5-

Step-6 -

Since out the vertices have been included in the met

Page No.	15	
Date		

Now	cost	of r	ninimu	ım	Spanning	g tree
=	Sum	of ar	edge	es	mai ant	
=	=10+	25 t	22 +1	2+	16+14	

- etino ee =

Concl	lusi	on	-
 _			-