Здесь будет титульный лист.

РЕФЕРАТ

Здесь будет реферат.

СОДЕРЖАНИЕ

Вв	едение	4
1	Теоретическая часть	5
	1.1 Формулы	5
2	Вторая глава	8
3	Третья глава	9
Сп	исок использованных источников	1(

введение

Здесь будет введение. [1]

1 Теоретическая часть

1.1 Формулы

Скорость при равноускоренном движении (1.1.1) ТООО

$$\vec{v}(t) = \vec{v_0} + \vec{a}t \tag{1.1.1}$$

где $\vec{v}(t)$ – вектор скорости тела в момент времени t;

 $\vec{v_0}$ – вектор начальной скорости тела;

 \vec{a} – вектор ускорения тела;

t — момент времени.

Причём вектор $\vec{v}(t)$ должен быть сонаправлен вектору $\vec{v_0}$, а вектор \vec{a} противонаправлен. Для того чтобы выяснить, при каких t сонаправленность векторов $\vec{v}(t)$ и $\vec{v_0}$ в уравнении (1.1.1) соблюдается, достаточно увидеть, что длина вектора $\vec{v_0}$ должна быть больше длине вектора $\vec{a}t$ и получить неравенство для t (1.1.2).

$$t < \frac{|\vec{v_0}|}{|\vec{a}|} \tag{1.1.2}$$

А для остальных $t, \vec{v}(t)$ следует принять нулю. Тогда получится система (1.1.3).

$$\vec{v}(t) = \begin{cases} \vec{v_0} + \vec{a}t, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
(1.1.3)

Проекции на ось абцисс (1.1.4) и ординат (1.1.5):

$$v_x(t) = \begin{cases} v_{0_x} + a_x t, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
 (1.1.4)

где $v_x(t)$ – проекция вектора скорости тела $\vec{v}(t)$ в момент времени t на ось X; v_{0_x} – проекция вектора начальной скорости тела $\vec{v_0}$ на ось X; a_x – проекция вектора ускорения тела \vec{a} на ось X.

$$v_{y}(t) = \begin{cases} v_{0y} + a_{y}t, & 0 \leqslant t < \frac{|\vec{v_{0}}|}{|\vec{a}|}, \\ 0, & t \geqslant \frac{|\vec{v_{0}}|}{|\vec{a}|}. \end{cases}$$
 (1.1.5)

где $v_y(t)$ – проекция вектора скорости тела $\vec{v}(t)$ в момент времени t на ось Y; v_{0y} – проекция вектора начальной скорости тела $\vec{v_0}$ на ось Y; a_y – проекция вектора ускорения тела \vec{a} на ось Y.

Теперь найдём формулу для траектории движения тела. Формуле, соответвующей (1.1.1), только для траектории, соответствует (1.1.6):

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}t + \frac{\vec{a}t^2}{2} \tag{1.1.6}$$

где $\vec{r}(t)$ – радиус-вектор положения тела в момент времени t; $\vec{r_0}$ – радиус-вектор начального положения тела.

Исходя из (1.1.3), уравнение для траектории с учётом того, что вектор скорости должен быть противонаправлен вектору ускорения, будет (1.1.7):

$$\vec{r}(t) = \begin{cases} \vec{r_0} + \vec{v_0}t + \frac{\vec{a}t^2}{2}, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ \vec{r_0}, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases}$$
(1.1.7)

Соответствующие проекции на оси абцисс (1.1.8) и ординат (1.1.9):

$$r_x(t) = \begin{cases} r_{0_x} + v_{0_x}t + \frac{a_xt^2}{2}, & 0 \leqslant t < \frac{|\vec{v_0}|}{|\vec{a}|}, \\ r_{0_x}, & t \geqslant \frac{|\vec{v_0}|}{|\vec{a}|}. \end{cases} \tag{1.1.8}$$

где $r_x(t)$ – проекция радиус-вектора положения тела $\vec{r}(t)$ в момент времени t на ось X;

 $r_{0_{\mathcal{X}}}$ – проекция радиус-вектора начального положения тела $\vec{v_0}$ на ось X.

$$r_{y}(t) = \begin{cases} r_{0y} + v_{0y}t + \frac{a_{y}t^{2}}{2}, & 0 \leqslant t < \frac{|\vec{v_{0}}|}{|\vec{a}|}, \\ r_{0y}, & t \geqslant \frac{|\vec{v_{0}}|}{|\vec{a}|}. \end{cases}$$
(1.1.9)

где $r_y(t)$ – проекция радиус-вектора положения тела $\vec{r}(t)$ в момент времени t на ось Y;

 $r_{0_{y}}$ – проекция радиус-вектора начального положения тела $\vec{v_{0}}$ на ось Y .

Формулы (1.1.8) и (1.1.9) являются ключевыми в этой работе.

2 Вторая глава

Здесь будет вторая глава

3 Третья глава

Здесь будет третья глава

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Здесь будет список использованных источников.