인공지능 학기말 프로젝트

<딥러닝 모델 학습>

1. 과제개요

- a. 본 파이널 프로젝트는 라이브러리의 도움을 받지 않고 딥러닝 모델을 구현 및 사용하여 딥러닝의 원리에 대한 이해를 높이는 것을 목적으로 합니다.
- b. 주어진 train data와 validation data를 사용해 네트워크를 학습시킨 후 평가를 하여 높은 정확도를 달성하는것을 목표로 합니다.
- c. 학생들은 주어진 프레임에 맞춰 모델을 만들고, 학습시킨 후 모델을 저장하여 보고서와 함께 제출합니다.

2. 데이터 설명

예시)	avg_rss12	var_rss12	avg_rss13	var_rss13	avg_rss23	var_rss23
bending	39.25	0.43	22.75	0.43	33.75	1.3
cycling	32	4.85	17.5	3.35	22.5	3.2
lying	29	0	9	0.71	8.5	0.5
sitting	42	0	19.2	0.98	15.5	2.06
standing	46.5	0.5	11.5	0.5	20.33	0.94
walking	35	3.67	16.5	3.77	14	1.63

b. 제공되는 데이터는 AReM 데이터 이며, 여섯가지 동작(bending, cycling, lying, sitting, standing, walking)을 수행했을때 센서의 값을 나타내며 input feature는 (avg_rss12, var_rss12, avg_rss13, var_rss13, avg_rss23, var_rss23) 각 동작에 대한 센서 데이터의 평균과 분산 값입니다. 위의 표는 각 동작에 대한 센서 값의 예시입니다.

- c. Source: Filippo Palumbo (a,b), Claudio Gallicchio (b), Rita Pucci (b) and Alessio Micheli (b) (a) Institute of Information Science and Technologies "Alessandro Faedoâ€, National Research Council, Pisa, Italy (b) Department of Computer Science, University of Pisa, Pisa, Italy
- d. 제공되는 데이터의 클래스 별 갯수 : {walking: 4291, standing: 4301, sitting: 4311, lying: 4342, cycling: 4408, bending: 3402}

3. 파일 및 구현 설명

아래의 코드는 "밑바닥부터 시작하는 딥러닝"

https://github.com/WegraLee/deep-learning-from-scratch 을 참고하였습니다. 과제 제출 시 model.py, params.pkl train.py 파일 3개만 리눅스 서버로 submit 합니다.

a. model.py

i. 네트워크를 만드는 파일입니다. 클래스와 함수들의 구현을 model.py에서 하게 됩니다. 환경 설정이 달라 작동이 안될 수 있으니 코드 작성 후 train.py와 test.py를 통해 작동 여부를 확인하세요.

b. train.py

- i. 작성된 모델을 불러와 초기화 시킨 후 train_data를 불러와 학습시키고 model.pkl를 저장하는 파일입니다. 학습 관련 기술들을 구현 가능합니다.
- ii. 사용방법 예시: python3 train.py --sf="params.pkl" --epochs=5 --minibatch size=100 --learning rate=0.02
 - 1. --sf: 파라미터를 저장할 파일의 이름입니다.
 - 2. --epochs : 에폭 수 입니다.
 - 3. --minibatch size=100: 미니배치 사이즈 입니다.
 - 4. --learning rate : 러닝 레이트 입니다.

c. test.py

- i. 모델과 가중치를 불러와 val_data에 대하여 평가하는 파일입니다. **수정 불가합니다.**
- ii. 사용방법 예시 : python3 test.py --sf="params.pkl"
 - 1. --sf: 파라미터를 저장한 파일의 이름입니다.

d. params.pkl

- i. 학습된 파라미터를 저장하는 파일입니다. 모델의 가중치를 피클로 저장하고, 불러옵니다.
- e. dataset.pkl
 - i. train data와 val data 입니다. 수정 불가합니다.
- f. AReM.py
 - i. data를 불러오는 파일입니다. 수정 불가합니다.

4. 제한 사항

- a. 사용할 수 있는 라이브러리는 넘파이, 피클 및 파이썬 기본 라이브러리만 사용이 가능합니다.
- b. 과제에서 파일 수정은 model.py와 train.py 만 가능합니다. 내부적으로 클래스와 함수를 만들어서 사용하는것은 무방합니다.

5. 주의 사항

- a. 어떠한 이유, 어떠한 형태로든 치팅은 금지됩니다. 적발될 경우 이유 불문 F입니다. 필요시 추가 면담이 있습니다.
- b. late는 받지 않고, 소스코드는 오로지 리눅스 서버를 통한 submit으로 받습니다.
- c. 학습을 서버에서 하지 않는 경우엔 환경설정이 달라 실행이 되지 않을 수 있으니 꼭 test.py를 통해서 동작하는지 확인하십시오. python3를 사용하시면 됩니다.
- d. 과제 제출 시 model.py, params.pkl train.py 파일 3개만 리눅스 서버로 submit 합니다.
- e. 제출 파일의 처음에 제출년도/과목명/과제명/학번/이름을 명시하십시오.
- f. 질의응답은 클레스넷 질문답변 게시판을 이용해주세요.
- g. 학과 리눅스 계정이 없는경우는 기자재실을 통해서 만들어달라고 하시면 됩니다.

6. 보고서

- a. 네트워크에 대한 간단한 그림을 그리십시오.(5점)
- b. 코드 스니펫과 네트워크 설명(설계 이유, 옵티마이저설계 등)이 필요합니다.(10점)
- c. 정확도 향상을 위한 기법 설명 및 그래프를 통한 부연설명이 필요합니다.(15점)

7. 채점 기준

- a. 동작 (10점)
 - i. test accuracy (30점)
 - ii. inference time (10점)
 - iii. 모델크기 (10점)
- b. 코드 가독성 (10점)
- c. 보고서 (30점)

8. 과제 제출 및 마감

- a. 마감: 6월 24일 23시(학교 서버시간 기준)
- b. 제출 방법:
 - i. submit ta jason final a or final b (1분반 : a, 2분반:b)
- c. 제출 파일: model.py, params.pkl train.py (지우기 명령어 : rm 파일명)