Übungsaufgabe 17

Berechnung der Fibonacci-Folge

Aufgabe: die Fibonacci-Folge soll sowohl mittels der bekannten Schleifen als auch durch eine Rekursion berechnet werden, so dass ein Funktionsaufruf fibonacci(n) den Wert der n-ten Fibonacci-Zahl zurückliefert. **Bsp:**

```
function fibonacci(/* Parameter */) {
    // Berechnung
}

echo fibonacci(25);
//=> 75025
```

Die Fibonacci-Folge

Die Fibonacci-Folge ist die unendliche Folge von natürlichen Zahlen, die (ursprünglich) mit zweimal der Zahl 1 beginnt oder (häufig, in moderner Schreibweise) zusätzlich mit einer führenden Zahl 0 versehen ist.[1] Im Anschluss ergibt jeweils die Summe zweier aufeinanderfolgender Zahlen die unmittelbar danach folgende Zahl:

Ganzzahl n	0	1	2	3	4	5	6	7	•••	n (n >= 3)
Berechnung	fix	fix	0 + 1	1 + 1	1 + 2	2 + 3	3 + 5	5 + 8		$f_{n-2} + f_{n-1}$
Fibonaccizahl f_n	0	1	1	2	3	5	8	13		∫n

Die darin enthaltenen Zahlen heißen **Fibonacci-Zahlen**. Benannt ist die Folge nach **Leonardo Fibonacci**, der damit im Jahr 1202 das Wachstum einer Kaninchenpopulation beschrieb. Die Folge war aber schon in der Antike sowohl den Griechen als auch den Indern bekannt.

Weitere Untersuchungen zeigten, dass die Fibonacci-Folge auch noch zahlreiche andere Wachstumsvorgänge der Pflanzen beschreibt. Es scheint, als sei sie eine Art Wachstumsmuster in der Natur.[3]

Die Fibonacci-Zahlen weisen einige bemerkenswerte mathematische Besonderheiten auf:

- Aufgrund der Beziehung zur vorherigen und zur folgenden Zahl scheint Wachstum in der Natur einem Additionsgesetz zu folgen.
- Die Fibonacci-Folge steht in einem unmittelbaren Zusammenhang zum Goldenen Schnitt. Je weiter man in der Folge fortschreitet, desto mehr nähert sich der Quotient aufeinanderfolgender Zahlen dem Goldenen Schnitt (1,618033...) an (beispielsweise 13:8 = 1,6250; 21:13 ≈ 1,6154; 34:21 ≈ 1,6190; 55:34 ≈ 1,6176; etc.).
- Diese Annäherung ist alternierend, d. h. die Quotienten sind abwechselnd kleiner und größer als der Goldene Schnitt. (wikipedia)

Definition der Fibonacci-Folge

Die Fibonacci-Folge f_1 , f_2 , f_3 , ... ist durch das rekursive Bildungsgesetz

$$f_n = f_{n-1} + f_{n-2}$$
 für $n \ge 3$

mit den Anfangswerten

$$f_1 = f_2 = 1$$

definiert. Das bedeutet in Worten:

Für die beiden ersten Zahlen wird der Wert eins vorgegeben. Jede weitere Zahl ist die Summe ihrer beiden Vorgänger in der Folge.

n	$f_{\mathbf{n}}$	n	$f_{\mathbf{n}}$	n	$f_{\mathbf{n}}$	n	f_{n}	n	$f_{\mathbf{n}}$
1	1	11	89	21	10946	31	1346269	41	165580141
2	1	12	144	22	17711	32	2178309	42	267914296
3	2	13	233	23	28657	33	3524578	43	433494437
4	3	14	377	24	46368	34	5702887	44	701408733
5	5	15	610	25	75025	35	9227465	45	1134903170
6	8	16	987	26	121393	36	14930352	46	1836311903
7	13	17	1597	27	196418	37	24157817	47	2971215073
8	21	18	2584	28	317811	38	39088169	48	4807526976
9	34	19	4181	29	514229	39	63245986	49	7778742049
10	55	20	6765	30	832040	40	102334155	50	12586269025

Tabelle: die ersten 50 Fibonacci-Zahlen

(wikipedia)

Aufgabe 1: Schreibe ein PHP-Programm zur Berechnung einer Fibonacci-Zahl der Fibonacci-Folge. Zum Testen lassen wir uns die Fibonacci-Zahl zur Zahl 16 berechnen (Ergebnis = 987).

Aufgabe 2: Verallgemeinere Dein Programm, in dem Du die Berechnung nun in einer Funktion ausführst. Dabei soll die zu berechnende Fibonacci-Zahl n als Argument beim Funktionsaufruf übergeben werden und die Funktion soll uns den berechneten Wert zurückgeben.

```
// z. B. Funktionsaufruf
fibonacci(16) // => 987
```

Aufgabe 3: Entwickele nun einen rekursiven Lösungsansatz zur Berechnung einer Fibonacci-Zahl der Fibonacci-Folge.

Aufgabe 4: Optimiere nun Deinen rekursiven Lösungsansatz.