

Review:

1.AC \rightarrow Avg. value of o/p V = 0

- → There has to be AC to DC conversion to provide input DC Features
- ⇒ Input is 12V DC
 O/P 230V, 50Hz AC

Induction Machine

→ For T_L = constant
Input power is ; Constant
and independent of speed
For wide variation in speed N_s has to be changed

$$\overline{I_M}$$
; $\overline{\frac{E_1}{2 \pi F L_M}}$; $\overline{\frac{V_s}{2 \pi F L_M}}$

What is the relationship between the magnitude of o/p voltage and frequency?:

$$I_M = \frac{\bar{E}_1}{2 \pi F L_M}$$

Generally R_s and x_{sl} are small Also at relatively high 'F' (25 - 50Hz)

$$|E_1|$$
; $|V_S|$ $\therefore \overline{I_M} = \frac{\overline{V_S}}{2 \pi F L_M}$

Case 1: V_s constant & \downarrow F to \downarrow N_s $|I_M| \uparrow \Rightarrow \Phi$ tends to \uparrow

All magnetic circuits operated at the knee point If magnetising AT \uparrow , core gets saturated.

 \Rightarrow I/p 'I' becomes peaky and core loss \uparrow

<u>Case 2</u>: Keeping V_s constant and \uparrow F to \uparrow N_s

$$\Rightarrow I_{M} = \frac{V_{S}}{2 \pi F L_{M}} \downarrow \Rightarrow \Phi \downarrow$$

Ns increases Nr increases

to increase the speed of the induction machine we can increase the frequency or weaken the field

$$\Rightarrow$$
 If $V_s = V_{rated}$ & F is \uparrow above F_{rated}

 N_s and \therefore N_r also \uparrow above rated.

$$\Rightarrow |\Phi| \downarrow$$

⇒ similar to field weakening mode of DC motor

$$[V_a \text{ constant & } I_F \downarrow]$$

- ⇒ Possible mode of operation
- \Rightarrow DC / AC converter should have the feature that $|V_s| = V_{rated}$

and 'F' should be able to \uparrow .

Case 3: In S.E. DC motor, $\Phi(I_F)$ was kept constant from 0 to N_{rated} .

⇒ Constant Φ operation

$$I_{M} \propto \Phi ; \frac{V}{2 \pi F L_{M}}$$

If $\frac{V}{F}$ is held constant, ' Φ ' remains constant.

At low 'F', $x_{SI} \rightarrow 0$, circuit is DC $V = E + I_S R$

- ⇒ DC AC converter should have another feature
- ⇒ Variable voltage & variable 'F' (VVVF)

Majority of DC-AC converters used in AC drives

High frequency induction heating, surface hardening

Types of Inverters:

If the input to the inverter is a voltage source

- \Rightarrow Battery or large 'C' [input 'Z' \rightarrow 0]
- \Rightarrow Voltage Source Inverter [V.S.I]
- ⇒ 'I' can reverse & not 'V'

- ⇒ If it's a current source
- ⇒ Current Source Inverter [C.S.I]
- \Rightarrow 'V' can reverse and not 'I'
- ⇒ Input L is very high

Circuit configuration of V.S.I:

Basic Block: $\frac{1}{2}$ Bridge

Since 'i' can reverse, switches should be able

to carry bi-directional I

⇒ Connect a diode in anti parallel

In VSI:

Switching signals for $S_1 \& S_2$ (same leg) are always

complimentary. (ideal condition)

S₁ **ON**:

For
$$\frac{T}{2}$$
 duration, $V_{AB} = \frac{V_{DC}}{2}$

load = R-L

$$i = \frac{V}{R} [1 - e^{-\frac{t}{T}}]$$

 S_1 OFF and S_2 ON:

$$V_{AB} = -\frac{V_{DC}}{2}$$

<u>|</u>

'i' will decay and become negative.

Observations:

Time for which S_1/S_2 is ON will determine the frequency of ' V_0 '.

$$\Rightarrow \text{ if } \frac{T}{2} = 10 \text{ msec, } F = 50 \text{ Hz}$$
$$= 100 \text{ msec, } F = 5 \text{ Hz}$$

At Steady State:

- P-Q: V applied to the load = +ve i_L is -ve [i flowing from B to A]
- \Rightarrow 'D₁' is carrying 'I'

- Q-R: 'V' and 'l' are +ve 'S₁' is carrying 'l'
- R-S: 'V' is -ve and 'i' is +ve
 - 'D₂' is carrying 'l'
- S-T: 'V' and 'I' are -ve
 - 'S₂' is carrying 'I'
- If load is not purely resistive, switch should have a diode across it.

Dead Time:

To avoid shoot through across DC Bus

$$\Rightarrow$$
 Input 'V' = V_{DC}

Output V =
$$\frac{V_{DC}}{2}$$

 \Rightarrow Has 3rd, 5th, 7th ... all odd harmonics.

THD ≈ 48 %

