# **FLIP00 Interim Inspection**

Cong Ma



(None)



### **Overview**

**Problem Definition** 

Related Work and Challenges

GOAM Algorithm

**Evaluation Results** 

Conclusion

### **Problem Definition**

Background

### **Related Work and Challenges**

Related Work - data collection Challenges (1)

### **GOAM Algorithm**

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects Identification

### **Evaluation Results**

Synthetic Dataset



Background

Related Work and Challenges

GOAM Algorithm

**Evaluation Results** 

Conclusion

# **Problem Definition**





## **Background**

**Problem Definition** 

Background

Related Work and Challenges

GOAM Algorithm

**Evaluation Results** 

Conclusion

Kobe Bryant marked his retirement from the NBA by scoring 60 points in his final game as a Los Angeles Laker on Wednesday, April 12, 2016. Drafted into the NBA at the age of 17, Kobe earned the sport's highest accolades throughout his long career.





#### Related Work and Challenges

Related Work - data collection

Challenges (1)

GOAM Algorithm

**Evaluation Results** 

Conclusion

# Related Work and Challenges





### **Related Work - data collection**

**Problem Definition** 

Related Work and Challenges

#### Related Work - data collection

Challenges (1)

GOAM Algorithm

**Evaluation Results** 

- Existing Methods Download from kaggle
- Existing Methods Configure the running environment and load the required packages





## Challenges (1)

**Problem Definition** 

Related Work and Challenges

Related Work - data collection

Challenges (1)

**GOAM Algorithm** 

**Evaluation Results** 

- How to represent the group features.
  - Can be affected by outlier values.
  - ◆ Can Not reflect the overall distribution of group features.





Related Work and Challenges

#### GOAM Algorithm

Step One - Group Feature Extraction
Step Two - Outlying Degree Scoring
Step Three - Outlying Aspects
Identification

**Evaluation Results** 

Conclusion

# **GOAM Algorithm**





## **Step One - Group Feature Extraction**

**Problem Definition** 

Related Work and Challenges

GOAM Algorithm

#### Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring Step Three - Outlying Aspects Identification

**Evaluation Results** 

Conclusion

Suppose  $f_1$ ,  $f_2$ ,  $f_3$  are three features of  $G_q$ .

$$f_1$$
:  $\{x_1, x_2, x_3, x_4, x_5, x_2, x_3, x_4, x_1, x_2\}$ 

$$f_2$$
: { $y_2, y_2, y_1, y_2, y_3, y_3, y_5, y_4, y_4, y_2$ }

$$f_3$$
: { $z_1, z_4, z_2, z_4, z_5, z_3, z_1, z_2, z_4, z_2$ }



Figure 1: Histogram of  $G_q$  on three features



## **Step Two - Outlying Degree Scoring**

**Problem Definition** 

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

#### Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects Identification

**Evaluation Results** 

- Calculate Earth Mover Distance
  - ◆ Represent one feature among different groups
  - ◆ Purpose: calculate the minimum mean distance



Figure 2: EMD of one feature



## **Step Two - Outlying Degree Scoring**

**Problem Definition** 

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

#### Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

**Evaluation Results** 

Conclusion

Calculate the outlying degree

$$OD(G_q) = \sum_{1}^{n} EDM(h_{q_s}, h_{k_s})$$

- $\bullet$  n  $\Leftrightarrow$  the number of contrast groups.
- $h_{k_s} \Leftrightarrow$  the histogram representation of  $G_k$  in the subspace s.



## **Step Three - Outlying Aspects Identification**

**Problem Definition** 

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

**Evaluation Results** 

- Identify group outlying aspects mining based on the value of outlying degree.
- The greater the outlying degree is, the more likely it is group outlying aspect.



### Illustration

**Problem Definition** 

Related Work and Challenges

GOAM Algorithm

Step One - Group Feature Extraction

Step Two - Outlying Degree Scoring

Step Three - Outlying Aspects
Identification

**Evaluation Results** 

Table 1: Original Dataset

| $G_1$ | $F_1$ | $F_2$ | $F_3$ | $F_4$ | $G_2$    | $F_1$ | $F_2$ | $F_3$ | $F_4$ |
|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|
|       | 10    | 8     | 9     | 8     |          | 7     | 7     | 6     | 6     |
|       | 9     | 9     | 7     | 9     |          | 8     | 9     | 9     | 8     |
|       | 8     | 10    | 8     | 8     |          | 6     | 7     | 8     | 9     |
|       | 8     | 8     | 6     | 7     |          | 7     | 7     | 7     | 8     |
|       | 9     | 9     | 9     | 8     |          | 8     | 6     | 6     | 7     |
| $G_3$ | $F_1$ | $F_2$ | $F_3$ | $F_4$ | $ig G_4$ | $F_1$ | $F_2$ | $F_3$ | $F_4$ |
|       | 8     | 10    | 8     | 8     |          | 9     | 8     | 8     | 8     |
|       | 9     | 9     | 7     | 9     |          | 7     | 7     | 7     | 9     |
|       | 10    | 9     | 10    | 7     |          | 8     | 6     | 6     | 8     |
|       | 9     | 10    | 8     | 6     |          | 9     | 8     | 8     | 7     |
|       | 9     | 9     | 7     | 9     |          | 8     | 7     | 9     | 8     |





Related Work and Challenges

GOAM Algorithm

#### **Evaluation Results**

Synthetic Dataset

Conclusion

# **Evaluation Results**





## **Synthetic Dataset**

**Problem Definition** 

Related Work and Challenges

GOAM Algorithm

**Evaluation Results** 

Synthetic Dataset

Conclusion

Synthetic Dataset and Ground Truth

Table 2: Synthetic Dataset and Ground Truth

| Query group | $\mathbf{F}_1$ | $\mathbf{F_2}$ | $F_3$ | $\mathbf{F}_4$ | $F_5$ | $F_6$ | $oldsymbol{F}_7$ | $F_8$ |
|-------------|----------------|----------------|-------|----------------|-------|-------|------------------|-------|
| $i_1$       | 10             | 8              | 9     | 7              | 7     | 6     | 6                | 8     |
| $i_2$       | 9              | 9              | 7     | 8              | 9     | 9     | 8                | 9     |
| $i_3$       | 8              | <b>10</b>      | 8     | 9              | 6     | 8     | 7                | 8     |
| $i_4$       | 8              | 8              | 6     | 7              | 8     | 8     | 6                | 7     |
| $i_5$       | 9              | 9              | 9     | 7              | 7     | 7     | 8                | 8     |
| $i_6$       | 8              | 10             | 8     | 8              | 6     | 6     | 8                | 7     |
| $i_7$       | 9              | 9              | 7     | 9              | 8     | 8     | 8                | 7     |
| $i_8$       | <b>10</b>      | 9              | 10    | 7              | 7     | 7     | 7                | 7     |
| $i_9$       | 9              | 10             | 8     | 8              | 7     | 6     | 7                | 7     |
| $i_{10}$    | 9              | 9              | 7     | 7              | 7     | 8     | 8                | 8     |



# **Synthetic Dataset Results**

**Problem Definition** 

Related Work and Challenges

GOAM Algorithm

**Evaluation Results** 

Synthetic Dataset

Table 3: The experiment result on synthetic dataset

| Method                    | Truth Outlying Aspects                      | Identified Aspects                          | Accuracy |
|---------------------------|---------------------------------------------|---------------------------------------------|----------|
| GOAM                      | $\{F_1\},\ \{F_2F_4\}$                      | $\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$ | 100%     |
| Arithmetic Mean based OAM | $\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$ | $\{m{F}_4\},\ \{m{F}_2\}$                   | 0%       |
| Median based OAM          | $\{{\pmb F}_1\},\ \{{\pmb F}_2{\pmb F}_4\}$ | $\{m{F}_2\},\ \{m{F}_4\}$                   | 0%       |





Related Work and Challenges

GOAM Algorithm

**Evaluation Results** 

Conclusion





### Conclusion

Problem Definition

Related Work and Challenges

GOAM Algorithm

Evaluation Results

- Formalize the problem of *Group Outlying Aspects Mining* by extending outlying aspects mining;
- Propose a novel method GOAM algorithm to solve the *Group Outlying Aspects Mining* problem;
- Utilize the pruning strategies to reduce time complexity.



# Thanks For Your Listening



Made by MC QingDao technological university