29. a.	Consider the following sentences:John like all kinds of food	12	5	2	2
	Apples are food				
	• Chicken is food				
	Anything anyone eats and isn't killed is food Bill outs mannets and is still alive.				
	 Bill eats peanuts and is still alive Sue eats everything Bill eats 				
	(i) Translate these sentences into formulae in predicate logic				
	(ii) Convert the above first order logic into clause form.				
	(OR)				
b.	·	12	4	2	2
30. a.	Design the architecture of the intelligent agent with an example.	12	6	3	3
	(OR)				
b.	Describe the trust and reputation in multi-agent systems.	12	2	3	3
31. a.	Illustrate Conceptual graphs and hierarchies in the domain with examples.	12	4	4	2
	(OR)				
b.	Discuss in detail about knowledge-based reasoning and agents.	12	4	4	2
32. a.	Construct a graph with six nodes and demonstrate the "Travelling salesman" problem.	12	5	5	4
	(OR)				
b.	Explain Ant colony optimization with an example.	12	3	5	4
	* * * *				

Page 4 of 4 30MA4-18AIC201J

Reg. No.				

B.Tech. DEGREE EXAMINATION, MAY 2023 Fourth Semester

18AIC201J - FOUNDATION OF ARTIFICIAL INTELLIGENCE (For the candidates admitted during the academic year 2018-2019 to 2021-2022)

(i)	Part - A should be answered in OMR			et shoul	d be	han	ded
(::)	over to hall invigilator at the end of 40 th						
(ii)	Part - B & Part - C should be answere	a in ans	wer booklet.				
Time: 3	hours			Max. N	Marl	ks: 1	00
	PART - A (20 × 1	= 20 N	Marks)	Marks	BL	СО	PO
	Answer ALL (Questio	ns				
1,	Identify the computer system which 1997.	beat G	ary Kasparov in a chess game in	1	1	1	1
	(A) Shakey	(B)	Deep Thought				
	(C) Deep Blue	(D)	STRIPS				
2.	The Turing test considers machine intelligence.	of the	following trait as evidence of	1	1	1	1
	(A) Acting humanly	(B)	Thinking humanly				
	(C) Acting rationally	(D)	Thinking rationally				
2	TTI - 1 - C-1 - 1 1		un v	1	1	1	4
3.	The other name of the informed sear			1	1	7	4
	(A) Simple search(C) Online search	. ,	Heuristic search				
	(C) Offittle search	(D)	Alpha search				
4.	A* algorithm is based on			1	1	1	3
	(A) Breadth-First Search	(B)	Depth-First Search				
	(C) Best-First Search	(D)	Hill climbing				
5	Translate the following statement in	to First	order logic	1	1	2	2
٥.	"For every 'A', if A is a philosopher						
	(A) ∀ A philosopher(A) scholar()						
	(C) philosopher(a) scholar(a)	` '	^ scholar(a) philosopher(a)				
		. ,	. , ,				
6.	Identify the possible sources of com-		_	1	1	2	2
	(A) 1	(B)					
	(C) 3	(D)	4				
7.	Forward chaining systems are chaining systems are	1-	, whereas backward	1	1	2	1
	(A) Goal-driven, goal-driven	(B)	Goal-driven, data-driven				
	(C) Data-driven, goal-driven	(D)	Data-driven, data-driven				

Page 1 of 4 30MA4-18AIC201J

8.	search equals minimax searc	h but	eliminates the branches that can't	1	1	2	2
	influence the final decision.						
	(A) Depth-first search	. ,	Breadth-first search				
	(C) Alpha-beta pruning	(D)	A* Search				
9.	Identify the compositions for Artifici	1	1	3	2		
	(A) Only Program		Only Architecture				
*/	(C) Only Sensors	(D)	Both Program and Architecture				
10.	In linguistic morphology,	is th	e process of reducing inflected	1	1	3	1
	words to their root form.						
	(A) Rooting	(B)	Stemming				
	(C) Text-Proofing	(D)	Fuzzy logic				
11.	An algorithm is complete if			1	1	3	3
	(A) It terminates with a solution	(B)	It starts with a solution				
	when one exists						
	(C) It does not terminate with a	(D)					
	solution		It has a loop				
12.	of the following is the bran	nch o	f AI.	1	1	3	3
			Cyber forensics				
	(C) Full stack developer	` '	Network design				
13	Choose the correct option.			1	1	4	2
10.	A) Knowledge base (KB) consists of a set of statements.						
	B) Inference is deriving a new senter						
			A is false, B is false				
			A is false, B is true				
14.	4. Consider Wumpus World classic problem and it is the best example of						2
	(A) (C) 1 1 1 C						
	(A) Single player Game						
	(C) Reasoning with Knowledge	(D)	Knowledge-based Game				
15.	6. Consider a machine can change its course of action based on the external						2
	environment on its own. Then the machine is called						
	_	` '	Intelligent agent				
	(C) Algorithm agent	(D)	Operating agent				
16.	graph is used to represen	it sem	antic network.	1	1	4	2
	(A) Undirected graph	(B)	Directed graph				
	(C) Directed Acyclic graph (DAG)	(D)	Directed complete graph				
17.	An auto-associative network is				1	5	3
	(A) a neural network that contains	(B)	a neural network that contains				
	no loops		feedback				
	(C) a neural network that has only	(D)					
	one loop		neural network with pre-				
			processing				

18.	uses the problem specific knowled	dge beyond the definition of the	1	1	5	2
	problem.					
		Depth-first search				
	(C) Breadth-first search (D) 1	Uninformed search				
19.	The main difference between human & mac	hine intelligence is	1	1	6	2
	(A) human perceive everything as (B) 1					
	a pattern while machines					
	perceive it merely as data (C) human have more IQ & (D) 1	numan have sense organs				
	intellect (b)	numan have sense organs				
20.	The Data structure used in the standard imp	lementation of Breadth First	1	1	6	2
	Search is					
		Queue				
	(C) Linked List (D)	Tree				
	$PART - B (5 \times 4 = 26)$	0 Marks)	Marks	BL	со	PO
	Answer ANY FIVE	•				
21.	List the importance of performing the Turis	4	1	1	1	
	of computers need to pass the total Turing to					
22.	Discuss the best-first search technique with	4	2	1	4	
						0
23.	. Illustrate the use of First order logic to represent knowledge.					2
24.	Represent the following sentence in predicar	4	3	3	2	
	(i) "All the children like sweets"(ii) "Everyone likes cricket, but few li	ikos hookay "				
	(ii) Everyone fixes cheket, but few ii	acs nockey.				
25.	Compare and contrast the negotiation and bargaining.				4	3
26.	Brief about formal logic and propositional logic.				5	2
27.	Write a note on the genetic algorithm.				6	4
				BL		
	$PART - C (5 \times 12 = 60 \text{ Marks})$ Answer ALL Questions					PO
			12	3		
28. a.	a. Describe how problem-solving agents are solving contingency problems differently from the ones solving exploratory issues.				1	1
	university from the ones solving exploration.	<i>y</i> 155 005 5.				
1	(OR)	0.11	12	4	1	1
D.	Explain the crypt arithmetic problem for the +BASE	following:	12	4	1	1
	BALL					
	Initial State: GAMES					
	No two letters have the same value. The sun	ns of the digits must be shown				
Page 3 of 4	in the problem.	_	20MAA 1	0.476	2011	