Sprint 1 & Sprint 2

November 7, 2022

1 TEAMID: PNT2022TMID44392

```
[1]: %matplotlib inline
[2]: #IMPORT REQUIRED LIBRARIES
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import warnings
     warnings.filterwarnings('ignore')
[3]: #import dataset and load in dataframe
     df=pd.read_csv('chronickidneydisease.csv')
     df.head()
[3]:
        id
             age
                    bp
                                 al
                                       su
                                              rbc
                            sg
                                                         рс
                                                                     рсс
            48.0
                  80.0
                        1.020
                                1.0
                                     0.0
                                              NaN
                                                             notpresent
                                                                          notpresent
                                                     normal
         1
             7.0
                  50.0
                        1.020
                                4.0
                                     0.0
                                              NaN
     1
                                                     normal
                                                             notpresent
                                                                          notpresent
                        1.010
     2
            62.0
                  80.0
                                2.0
                                     3.0
                                          normal
                                                             notpresent
                                                                          notpresent
                                                     normal
     3
         3
            48.0
                  70.0
                        1.005
                                4.0
                                     0.0
                                          normal
                                                                 present
                                                                          notpresent
                                                   abnormal
                 80.0
                        1.010
                                2.0
            51.0
                                     0.0
                                          normal
                                                             notpresent
                                                                          notpresent
                                                     normal
                  WC
                       rc
                            htn
                                  dm
                                       cad appet
                                                   ре
                                                       ane classification
           pcv
                7800 5.2
                            yes
     0
            44
                                            good
                                                        no
                                                                       ckd
                                 yes
                                       no
                                                   no
     1
            38
                6000
                      NaN
                                                                       ckd
                             no
                                           good
                                                   no
                                                        no
                                  no
                                       no
     2
            31
                7500
                      NaN
                                                                       ckd
                             no
                                 yes
                                       no
                                           poor
                                                   no
                                                       yes
     3
            32
                6700
                      3.9
                                                                       ckd
                            yes
                                           poor
                                  no
                                       no
                                                  yes
                                                       yes
            35
                7300
                      4.6
                             no
                                           good
                                                                       ckd
                                  no
                                                   no
                                                        no
     [5 rows x 26 columns]
[4]: #dataset adjustment
     df['classification']=df['classification'].replace(['ckd\t'],['notckd'])
[5]: df['classification'].value_counts()
```

[5]: ckd 248 notckd 152

Name: classification, dtype: int64

[6]: #checking the description and gathering the information about the dataset df.describe().T

[6]:		count	mean	std	min	25%	50%	75%	max
	id	400.0	199.500000	115.614301	0.000	99.75	199.50	299.25	399.000
	age	391.0	51.483376	17.169714	2.000	42.00	55.00	64.50	90.000
	bp	388.0	76.469072	13.683637	50.000	70.00	80.00	80.00	180.000
	sg	353.0	1.017408	0.005717	1.005	1.01	1.02	1.02	1.025
	al	354.0	1.016949	1.352679	0.000	0.00	0.00	2.00	5.000
	su	351.0	0.450142	1.099191	0.000	0.00	0.00	0.00	5.000
	bgr	356.0	148.036517	79.281714	22.000	99.00	121.00	163.00	490.000
	bu	381.0	57.425722	50.503006	1.500	27.00	42.00	66.00	391.000
	sc	383.0	3.072454	5.741126	0.400	0.90	1.30	2.80	76.000
	sod	313.0	137.528754	10.408752	4.500	135.00	138.00	142.00	163.000
	pot	312.0	4.627244	3.193904	2.500	3.80	4.40	4.90	47.000
	hemo	348.0	12.526437	2.912587	3.100	10.30	12.65	15.00	17.800

[7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	id	400 non-null	int64
1	age	391 non-null	float64
2	bp	388 non-null	float64
3	sg	353 non-null	float64
4	al	354 non-null	float64
5	su	351 non-null	float64
6	rbc	248 non-null	object
7	рс	335 non-null	object
8	рсс	396 non-null	object
9	ba	396 non-null	object
10	bgr	356 non-null	float64
11	bu	381 non-null	float64
12	SC	383 non-null	float64
13	sod	313 non-null	float64
14	pot	312 non-null	float64
15	hemo	348 non-null	float64
16	pcv	330 non-null	object
17	WC	295 non-null	object
18	rc	270 non-null	object

```
398 non-null
                                          object
     19 htn
     20
         dm
                          398 non-null
                                          object
     21
                          398 non-null
                                          object
         cad
     22
         appet
                          399 non-null
                                          object
                          399 non-null
     23
         ре
                                          object
     24
         ane
                          399 non-null
                                          object
     25 classification 400 non-null
                                          object
    dtypes: float64(11), int64(1), object(14)
    memory usage: 81.4+ KB
[8]: #counting for the null values
     df.isna().sum()
[8]: id
                         0
                         9
     age
                        12
     bp
                        47
     sg
     al
                        46
                        49
     su
                        152
     rbc
                        65
    рс
                         4
    рсс
                         4
    ba
                        44
    bgr
     bu
                        19
                        17
     sc
     sod
                        87
    pot
                        88
    hemo
                        52
                        70
    pcv
                       105
     WC
                       130
     rc
                         2
    htn
                          2
     dm
     cad
                          2
     appet
                         1
                         1
    ре
                          1
     ane
     classification
     dtype: int64
[9]: #replacing the null values with median and mode
     oc=[]#object data type columns
     ic=[]#int type columns
     for i in df.columns:
```

if(df[i].dtype=='object'):

```
oc.append(i)
          else:
              ic.append(i)
      print("ic\t",ic,"\noc\t",oc)
     ic
              ['id', 'age', 'bp', 'sg', 'al', 'su', 'bgr', 'bu', 'sc', 'sod', 'pot',
     'hemo']
              ['rbc', 'pc', 'pcc', 'ba', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad',
     ос
     'appet', 'pe', 'ane', 'classification']
[10]: #replacing the null with median
      for i in ic:
          if(df[i].isna().any()==True):
              df[i]=df[i].fillna(df[i].median())
          print("Attribute "+i+"\t",df[i].isna().sum())
     Attribute id
                      0
     Attribute age
                      0
     Attribute bp
     Attribute sg
     Attribute al
     Attribute su
     Attribute bgr
     Attribute bu
     Attribute sc
                      0
     Attribute sod
                      0
     Attribute pot
     Attribute hemo
[11]: #replacing the null with mode
      for i in oc:
          if(df[i].isna().any()==True):
              df[i]=df[i].fillna(df[i].mode()[0])
          #checking
          print("Attribute: "+i+"\t\t\t",df[i].isna().sum())
     Attribute: rbc
                                       0
     Attribute: pc
                                       0
     Attribute: pcc
                                       0
                                       0
     Attribute: ba
                                       0
     Attribute: pcv
     Attribute: wc
                                       0
     Attribute: rc
                                       0
     Attribute: htn
                                       0
     Attribute: dm
                                       0
                                       0
     Attribute: cad
     Attribute: appet
                                               0
```

```
0
     Attribute: pe
     Attribute: ane
                                      0
     Attribute: classification
                                                       0
[12]: df.isna().sum().sum()
[12]: 0
[13]: #encoding labels
      from sklearn.preprocessing import LabelEncoder
      le=LabelEncoder()#label encoder object
      for i in oc:
          df[i]=le.fit_transform(df[i])#label encoding all the object dtypes
      df.head(3)
         id
[13]:
              age
                     bp
                                     su rbc
                                              рс
                                                  рсс
                                                       ba
                                                              pcv
                                                                       rc htn \
                           sg
                                al
                                                                   WC
            48.0
                                               1
                                                    0
                                                                   72
                                                                       34
                   80.0 1.02
                              1.0
                                   0.0
                                           1
                                                        0
                                                               32
      1
              7.0
                   50.0 1.02 4.0
                                    0.0
                                           1
                                               1
                                                    0
                                                        0
                                                               26
                                                                   56
                                                                       34
                                                                              0
          2 62.0 80.0 1.01 2.0 3.0
                                                        0 ...
                                           1
                                               1
                                                               19
                                                                   70
                                                                       34
                                                                              0
         dm
             cad
                  appet
                        ре
                             ane classification
      0
          4
               1
                      0
                          0
                               0
               1
                      0
                          0
                               0
                                               0
      1
          3
      2
               1
                      1
                                               0
          4
                          0
                               1
      [3 rows x 26 columns]
[14]: plt.hist(df['age'])
[14]: (array([10., 11., 20., 39., 44., 71., 99., 75., 28., 3.]),
       array([ 2. , 10.8, 19.6, 28.4, 37.2, 46. , 54.8, 63.6, 72.4, 81.2, 90. ]),
       <BarContainer object of 10 artists>)
```



```
[15]: plt.hist(df['bp'],color="orange")
```



```
[16]: plt.scatter(df['age'],df['bp'],color="cyan")
```

[16]: <matplotlib.collections.PathCollection at 0x7fbe95433a00>


```
[17]: plt.scatter(df['age'],df['hemo'],color='red')
```

[17]: <matplotlib.collections.PathCollection at 0x7fbe95269810>


```
[18]: plt.scatter(df['id'],df['hemo'],color="yellow")
```

[18]: <matplotlib.collections.PathCollection at 0x7fbe9532a950>


```
[19]: sns.set(rc={'figure.figsize':(13,2)})
sns.pairplot(df)
```

[19]: <seaborn.axisgrid.PairGrid at 0x7fbe952ef2e0>


```
[20]: df.corr()
fig=plt.figure(figsize=(20,20))
sns.heatmap(data=df.corr(),annot=True)
```

[20]: <AxesSubplot: >


```
[21]: #seeing outliers
sns.boxplot(df['id'])
```

[21]: <AxesSubplot: xlabel='id'>


```
[22]: sns.boxplot(df['age'])
```

[22]: <AxesSubplot: xlabel='age'>


```
[23]: #replacing the outliers
median=df['age'].median()
print(median)
df['age']=df['age'].mask(df['age']<19,median)
sns.boxplot(df['age'])</pre>
```

[23]: <AxesSubplot: xlabel='age'>

55.0


```
[24]: sns.boxplot(df['bp'])
```

[24]: <AxesSubplot: xlabel='bp'>


```
[25]: #replacing outliers
median=df['bp'].median()
print(median)
df['bp']=df['bp'].mask(df['bp']<60,median)
df['bp']=df['bp'].mask(df['bp']>90,median)
sns.boxplot(df['bp'])
```

80.0

[25]: <AxesSubplot: xlabel='bp'>


```
[26]: sns.boxplot(df['sg'])
```

[26]: <AxesSubplot: xlabel='sg'>


```
[27]: #replacing outliers
median=df['sg'].median()
print(median)
```

```
df['sg']=df['sg'].mask(df['sg']<1.0100,median)
sns.boxplot(df['sg'])</pre>
```

1.02

[27]: <AxesSubplot: xlabel='sg'>

[28]: sns.boxplot(df['al'])

[28]: <AxesSubplot: xlabel='al'>

[29]: sns.boxplot(df['su'])

[29]: <AxesSubplot: xlabel='su'>

[30]: #replacing outliers
median=df['su'].median()
print(median)

```
df['su']=df['su'].mask(df['su']>0,median)
sns.boxplot(df['su'])
```

0.0

[30]: <AxesSubplot: xlabel='su'>


```
[31]: idv=df.iloc[:,:-1]#independent variables
      dv=df.iloc[:,-1]#dependent variables
      idv
```

[31]:		id	age	bp	sg	al	su	rbc	рс	рсс	ba		hemo	pcv	WC	_
[01].	0	0	48.0	_	1.020	1.0	0.0	1	1	0	0		15.4	32	72	
	1	1	55.0		1.020	4.0	0.0	1	1	0	0	•••	11.3	26	56	
	2	2	62.0		1.010	2.0	0.0	1	1	0	0		9.6	19	70	
	3	3	48.0	70.0	1.020	4.0	0.0	1	0	1	0		11.2	20	62	
	4	4	51.0	80.0	1.010	2.0	0.0	1	1	0	0		11.6	23	68	
		•••		•••					•••							
	395	395	55.0	80.0	1.020	0.0	0.0	1	1	0	0	•••	15.7	35	62	
	396	396	42.0		1.025	0.0	0.0	1	1	0	0	•••	16.5	42	72	
	397	397	55.0		1.020	0.0	0.0	1	1	0	0	•••	15.8	37	61	
	398	398	55.0		1.025	0.0	0.0	1	1	0	0	•••	14.2	39	67	
	399	399	58.0	80.0	1.025	0.0	0.0	1	1	0	0	•••	15.8	41	63	
		 .	htn	ماس مما	annat	~~										
	0	rc 34	1	dm cad 4 1		pe 0	ane 0									
	1	34	0	3 1		0	0									
	2	34	0	4 1		0	1									
	3	19	1	3 1		1	1									
	4	27	0	3 1	0	0	0									
				•••		••										
	395	30	0	3 1	0	0	0									
	396	44	0	3 1	0	0	0									
	397	36	0	3 1	0	0	0									
	398	41	0	3 1		0	0									
	399	43	0	3 1	0	0	0									

```
[400 rows x 25 columns]
```

```
[32]: #splitting datasets
      from sklearn.model_selection import train_test_split
      x_train,x_test,y_train,y_test=train_test_split(idv,dv,test_size=0.
       →2, shuffle=True)
[33]: x_train.shape
[33]: (320, 25)
[34]: #creating models
      from sklearn.linear_model import LogisticRegression
      model=LogisticRegression()
[35]: model.fit(x_train,y_train)
[35]: LogisticRegression()
[36]: #acccuracy
      pred=model.predict(x_test)
      pred
[36]: array([0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1,
             1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1,
             0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
             0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0])
[37]: #for checking......
      from sklearn.svm import SVC
      symmodel=SVC()
[38]: svmmodel.fit(x_train,y_train)
[38]: SVC()
[39]: #acccuracy
      svc_pred=model.predict(x_test)
      svc_pred
[39]: array([0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1,
             1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1,
             0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
             0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0])
[40]: from sklearn.metrics import accuracy_score,confusion_matrix
      accuracy_score(y_test,pred)
```

```
[40]: 0.9875
[41]: confusion_matrix(y_test,pred)
[41]: array([[46, 1],
             [ 0, 33]])
[42]: y_train.value_counts()
[42]: 0
           201
           119
     Name: classification, dtype: int64
[43]: #svm accuracy & confusion matrix
      accuracy_score(y_test,svc_pred)
[43]: 0.9875
[44]: confusion_matrix(y_test,svc_pred)
[44]: array([[46, 1],
             [ 0, 33]])
[45]: #creating model
      import pickle
[46]: pickle.dump(model,open('ckd model.pkl','wb'))
      print("model saved successfully")
     model saved successfully
 []:
[]:
```