Doing things with data frames

Doing things with data frames

Let's go back to our Australian athletes:

```
##
## -- Column specification
## cols(
##
     Sex = col character(),
##
     Sport = col_character(),
##
     RCC = col double(),
##
     WCC = col double(),
##
     Hc = col double(),
     Hg = col double(),
##
##
     Ferr = col double(),
##
     BMI = col double(),
     SSF = col double(),
##
     `%Bfat` = col_double(),
##
##
     LBM = col double(),
##
     Ht = col double()
```

Choosing a column

athletes %>% select(Sport)

Sport Netball Netball

Choosing several columns

athletes %>% select(Sport, Hg, BMI)

Sport	Hg	ВМІ
Netball	13.6	19.16
Netball	12.7	21.15
Netball	12.3	21.40
Netball	12.3	21.03
Netball	12.8	21.77
Netball	11.8	21.38
Netball	12.7	21.47
Netball	12.4	24.45
Netball	12.4	22.63
Netball	14.1	22.80
Netball	12.5	23.58
Netball	12.1	20.06
Netball	12.7	23.01
Doing thin	gs with data	frames

Choosing consecutive columns

athletes %>% select(Sex:WCC)

Sex	Sport	RCC	WCC				
female	Netball	4.56	13.30				
female	Netball	4.15	6.00				
female	Netball	4.16	7.60				
female	Netball	4.32	6.40				
female	Netball	4.06	5.80				
female	Netball	4.12	6.10				
female	Netball	4.17	5.00				
female	Netball	3.80	6.60				
female	Netball	3.96	5.50				
female	Netball	4.44	9.70				
female	Netball	4.27	10.60				
female	Netball	3.90	6.30				
female	Netball	4.02	9.10				
Determination of the date former							

Choosing all-but some columns

athletes %>% select(-(RCC:LBM))

Sex	Sport	Ht	Wt
female	Netball	176.8	59.90
female	Netball	172.6	63.00
female	Netball	176.0	66.30
female	Netball	169.9	60.70
female	Netball	183.0	72.90
female	Netball	178.2	67.90
female	Netball	177.3	67.50
female	Netball	174.1	74.10
female	Netball	173.6	68.20
female	Netball	173.7	68.80
female	Netball	178.7	75.30
female	Netball	183.3	67.40
female	Netball	174.4	70.00
	Doing things wit	h data frames	

Select-helpers

Other ways to select columns: those whose name:

- starts_with something
- ends_with something
- contains something
- matches a "regular expression"
- everything() select all the columns

Columns whose names begin with S

athletes %>% select(starts_with("S"))

Sex	Sport	SSF				
	Sport					
female	Netball	49.0				
female	Netball	110.2				
female	Netball	89.0				
female	Netball	98.3				
female	Netball	122.1				
female	Netball	90.4				
female	Netball	106.9				
female	Netball	156.6				
female	Netball	101.1				
female	Netball	126.4				
female	Netball	114.0				
female	Netball	70.0				
female	Netball	77.0				
Doing things with data frames						

Columns whose names end with C

either uppercase or lowercase:

```
athletes %>% select(ends_with("c"))
```

RCC	WCC	Нс
4.56	13.30	42.2
4.15	6.00	38.0
4.16	7.60	37.5
4.32	6.40	37.7
4.06	5.80	38.7
4.12	6.10	36.6
4.17	5.00	37.4
3.80	6.60	36.5
3.96	5.50	36.3
4.44	9.70	41.4
4.27	10.60	37.7
2 AA Doing th	ょっへ nings with data	⊃⊏ ∩ a frames

Case-sensitive

This works with any of the select-helpers:

```
athletes %>% select(ends_with("C", ignore.case=F))
```

RCC	WCC
4.56	13.30
4.15	6.00
4.16	7.60
4.32	6.40
4.06	5.80
4.12	6.10
4.17	5.00
3.80	6.60
3.96	5.50
4.44	9.70
4.27	10.60
oing things v	vith data frames

Column names containing letter R

athletes %>% select(contains("r"))

Sport	RCC	Ferr
Netball	4.56	20
Netball	4.15	59
Netball	4.16	22
Netball	4.32	30
Netball	4.06	78
Netball	4.12	21
Netball	4.17	109
Netball	3.80	102
Netball	3.96	71
Netball	4.44	64
Netball	4.27	68
Netball	3.90	78
Netball	4.02	107
		_

Exactly two characters, ending with T

In regular expression terms, this is ^.t\$:

- ^ means "start of text"
- means "exactly one character, but could be anything"
- \$ means "end of text".

athletes %>% select(matches("^.t\$"))

Ht	Wt
176.8	59.90
172.6	63.00
176.0	66.30
169.9	60.70
183.0	72.90
178.2	67.90
177.3	67.50
174.1	74.10
Doing things u	uith data frame

Choosing columns by property

- Use where as with summarizing several columns
- eg, to choose text columns:

athletes %>% select(where(is.character))

Sex	Sport
female	Netball
famala Doing things w	Na+hall vith data frame

Choosing rows by number

athletes %>% slice(16:25)

female

BBall

4.41

8.3

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Netball	4.25	10.7	39.5	13.2	127	24.47	156.6	26.50
female	Netball	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01
female	Netball	4.40	9.3	40.4	13.6	86	26.24	181.7	30.10
female	Netball	4.83	8.4	41.8	13.4	40	20.04	71.6	13.93
female	Netball	4.23	6.9	38.3	12.6	50	25.72	143.5	26.65

female Netball 4.03 8.5 37.7 13.0 51 23.35 103.6 19.61 female **BBall** 3.96 7.5 37.5 12.3 60 20.56 109.1 19.75

38.2

Doing things with data frames

12.7

68

20.67

102.8

21.30

Non-consecutive rows

```
athletes %>%
slice(10,13,17,42)
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Netball	4.44	9.7	41.4	14.1	64	22.80	126.4	24.97
female	Netball	4.02	9.1	37.7	12.7	107	23.01	77.0	18.14
female	Netball	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01
female	Row	4.37	8.1	41.8	14.3	53	23.47	98.0	21.79

A random sample of rows

athletes %>% slice_sample(n=8)

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
female	Row	4.37	8.1	41.8	14.3	53	23.47	98.0	21.79
female	Netball	4.52	5.1	38.8	13.1	58	18.26	80.1	17.22
male	Tennis	5.66	8.3	50.2	17.7	38	23.76	56.5	10.05
male	Row	5.40	6.8	49.5	17.3	183	26.07	44.7	8.61
male	Row	5.09	10.1	44.9	14.8	118	26.79	58.3	9.79
female	Netball	4.16	7.6	37.5	12.3	22	21.40	89.0	19.39
female	Netball	4.25	10.7	39.5	13.2	127	24.47	156.6	26.50
female	Netball	4.39	9.6	38.3	12.5	39	24.64	148.9	26.78

Rows for which something is true

```
athletes %>% filter(Sport == "Tennis")
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat	LBM
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86	56.58
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64	56.01
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07	46.52
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31	51.75
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07	42.15
female	Tennis	5.16	7.2	44.3	14.5	88	18.29	61.9	12.92	48.76
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45	41.93
male	Tennis	5.66	8.3	50.2	17.7	38	23.76	56.5	10.05	72.00
male	Tennis	5.03	6.4	42.7	14.3	122	22.01	47.6	8.51	68.00
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50	63.00
male	Tennis	5.38	6.3	46.0	15.7	32	21.07	34.9	6.26	72.00

More complicated selections

athletes %>% filter(Sport == "Tennis", RCC < 5)

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50

Another way to do "and"

```
athletes %>% filter(Sport == "Tennis") %>%
filter(RCC < 5)</pre>
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat
female	Tennis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86
female	Tennis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64
female	Tennis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07
female	Tennis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31
female	Tennis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07
female	Tennis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45
male	Tennis	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50

Either/Or

female

female

female

female

female

female

female

male

male

Tennis

Tennis

Tennis

Tennis

Tennis

Tennis

Tennis

Swim

Swim

4.00

4.40

4.38

4.08

4.98

5.16

4.66

5.13

5.09

athletes %>% filter(Sport == "Tennis" | RCC > 5)

4.2

4.0

7.9

6.6

6.4

7.2

6.4

7.1

4.7

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat
female	Row	5.02	6.4	44.8	15.2	48	19.76	91.0	19.20
female	T400m	5.31	9.5	47.1	15.9	29	21.35	57.9	11.07
female	Field	5.33	9.3	47.0	15.0	62	25.27	102.8	19.51
female	TSprnt	5.16	8.2	45.3	14.7	34	20.30	46.1	10.15

36.6

40.8

39.8

37.8

44.8

44.3

40.9

46.8

46.6

Doing things with data frames

12.0

13.9

13.5

12.1

14.8

14.5

13.9

15.9

15.9

57

73

88

182

80

88

109

34

55

25.36

22.12

21.25

20.53

17.06

18.29

18.37

22.46

23.68

109.0

98.1

80.6

68.3

47.6

61.9

38.2

44.5

33.7

20.86

19.64

17.07

15.31

11.07

12.92

8.45

8.47

6.16

20 / 43

Sorting into order

Sport

Netball

BBall

Sex

female

athletes %>% arrange(RCC)

female N	etball 3	3.80	6.60	36.5	12.4	102	24.45	156.6	26.57
female N	etball 3	3.90	6.30	35.9	12.1	78	20.06	70.0	15.01
female T	400m 3	3.90	6.00	38.9	13.5	16	19.37	48.4	10.48
female R	ow 3	3.91	7.30	37.6	12.9	43	22.27	125.9	25.16
female N	etball 3	3.95	6.60	38.4	12.8	33	19.87	68.9	15.59
female R	ow 3	3.95	3.30	36.9	12.5	40	24.54	74.9	16.38

Hc

Hg

12.4

Ferr

female 3.96 7.50 12.3 4.00 4.20 36.6 Tennis Netball 4.02 9.10 37.7 Netball 4.03 8.50 37.7

3.96

RCC

WCC

5.50

60 57

71

20.56

22.63

BMI

109.1

101.1

SSF

19.75 20.86 18.14

17.93

%Bfat

female 12.0 25.36 109.0 female 12.7 107 23.01 77.0 female 13.0 51 23.35 103.6 19.61

Doing things with data frames

36.3

37.5

female Netball 4.06 5.80 38.7 12.8 female Swim 4.07 5.90 39.5 13.3

78 21.77 25 20.42

122.1 23.11 54.6 11.4721 / 43

Breaking ties by another variable

3.95

3.96

3.96

4.00

4.02

4.03

4.06

4.07

3.30

7.50

5.50

4.20

9.10

8.50

5.80

5.90

athletes %>% arrange(RCC, BMI)

Row

BBall

Netball

Tennis

Netball

Netball

Netball

Swim

female

female

female

female

female

female

female

female

Sex	Sport	RCC	WCC	Hc	Hg	Ferr	BMI	SSF	%Bfat
female	Netball	3.80	6.60	36.5	12.4	102	24.45	156.6	26.57
female	T400m	3.90	6.00	38.9	13.5	16	19.37	48.4	10.48
female	Netball	3.90	6.30	35.9	12.1	78	20.06	70.0	15.01
female	Row	3.91	7.30	37.6	12.9	43	22.27	125.9	25.16
female	Netball	3.95	6.60	38.4	12.8	33	19.87	68.9	15.59

36.9

37.5

36.3

36.6

37.7

37.7

38.7

39.5

Doing things with data frames

12.5

12.3

12.4

12.0

12.7

13.0

12.8

13.3

40

60

71

57

107

51

78

25

24.54

20.56

22.63

25.36

23.01

23.35

21.77

20.42

74.9

109.1

101.1

109.0

103.6

122.1

54.6

77.0

16.38

19.75

17.93

20.86

18.14

19.61

23.11

11.47

22 / 43

Descending order

Field

Field

Field

WPolo

WPolo

Field

Field

male

female

female

male

male

male female

athletes %>% arrange(desc(BMI))

	•				O				
male	Field	5.48	6.20	48.2	16.3	94	34.42	82.7	13.91
male	Field	4.96	8.30	45.3	15.7	141	33.73	113.5	17.41
male	Field	5.48	4.60	49.4	18.0	132	32.52	55.7	8.51
female	Field	4.75	7.50	43.8	15.2	90	31.93	131.9	23.01
male	Field	5.01	8.90	46.0	15.9	212	30.18	112.5	19.94
male	Field	5.01	8.90	46.0	15.9	212	30.18	96.9	18.08

46.3

42.1

39.7

49.8

45.6

48.2

42.7

Doing things with data frames

Hg

15.4

14.7

14.3

17.2

16.0

16.7

15.3

Ferr

44

164

36

143

90

103

50

BMI

29.97

28.57

28.13

27.79

27.56

27.39

26.95

SSF

71.1

109.6

136.3

75.7

67.2

65.9

98.5

%Bfat

13.97

21.30

24.88

13.49

11.79

11.66

20.10

23 / 43

Sex **RCC** WCC Sport

5.09

4.58

4.51

5.34

4.90

5.11

4.81

Hc

8.90

5.80

9.00

6.20

7.60

9.60

6.80

"The top ones"

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:7) %>%
  select(Sport, Wt)
```

Sport	Wt
Field	123.2
BBall	113.7
Field	111.3
Field	108.2
Field	102.7
WPolo	101.0
BBall	100.2

Another way

```
athletes %>%
  slice_max(order_by = Wt, n=7) %>%
  select(Sport, Wt)
```

Sport	Wt
Field	123.2
BBall	113.7
Field	111.3
Field	108.2
Field	102.7
WPolo	101.0
BBall	100.2

Create new variables from old ones

```
athletes %>%
  mutate(wt_lb = Wt * 2.2) %>%
  select(Sport, Sex, Wt, wt_lb) %>%
  arrange(Wt)
```

Sport	Sex	Wt	wt_lb
Gym	female	37.80	83.16
Gym	female	43.80	96.36
Gym	female	45.10	99.22
Tennis	female	45.80	100.76
Tennis	female	47.40	104.28
Gym	female	47.80	105.16
T400m	female	49.20	108.24
Row	female	49.80	109.56
T400m	female	50.90	111.98
Netball	female	51.90	114.18
	Doing things wit	h data frames	

Turning the result into a number

Output is always data frame unless you explicitly turn it into something else, eg. the weight of the heaviest athlete, as a number:

```
athletes %>% arrange(desc(Wt)) %>% pluck("Wt", 1)
```

[1] 123.2

Or the 20 heaviest weights in descending order:

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:20) %>%
  pluck("Wt")
```

```
## [1] 123.20 113.70 111.30 108.20 102.70 101.00

## [7] 100.20 98.00 97.90 97.90 97.00 96.90

## [13] 96.30 94.80 94.80 94.70 94.70 94.60

## [19] 94.25 94.20
```

Another way to do the last one

```
athletes %>%
arrange(desc(Wt)) %>%
slice(1:20) %>%
pull("Wt")
```

```
## [1] 123.20 113.70 111.30 108.20 102.70 101.00

## [7] 100.20 98.00 97.90 97.90 97.00 96.90

## [13] 96.30 94.80 94.80 94.70 94.70 94.60

## [19] 94.25 94.20
```

pull grabs the column you name as a vector (of whatever it contains).

To find the mean height of the women athletes

Two ways:

```
athletes %>% group_by(Sex) %>% summarize(m = mean(Ht))
```

 Sex
 m

 female
 174.5940

 male
 185.5059

```
athletes %>%
  filter(Sex == "female") %>%
  summarize(m = mean(Ht))
```

m 174.594

Summary of data selection/arrangement "verbs"

Verb	Purpose
select	Choose columns
print	Display non-default # of rows/columns
slice	Choose rows by number
${\tt sample_n}$	Choose random rows
filter	Choose rows satisfying conditions
arrange	Sort in order by column(s)
mutate	Create new variables
group_by	Create groups to summarize by
summarize	Calculate summary statistics (by groups if defined)
pluck	Extract items from data frame
pull	Extract a single column from a data frame as a vector

Looking things up in another data frame

Recall the tuberculosis data set, tidied:

tb3

iso2	year	gender	age	freq
AD	1996	m	014	0
AD	1996	m	1524	0
AD	1996	m	2534	0
AD	1996	m	3544	4
AD	1996	m	4554	1
AD	1996	m	5564	0
AD	1996	m	65	0
AD	1996	f	014	0
AD	1996	f	1524	1
AD	1996	f	2534	1
AD	1996	f	3544	0
ΔD	1006	f things with dat	∆ 55∆	Λ

Actual country names

Found actual country names to go with those abbreviations, in spreadsheet:

```
my_url <-
   "http://www.utsc.utoronto.ca/~butler/c32/ISOCountryCodes081507.xlsx"</pre>
```

Note trick for reading in .xlsx from URL:

```
f <- tempfile()
download.file(my_url, f)
country_names <- read_excel(f)</pre>
```

- set up temporary file
- download spreadsheet to there
- read it from temporary file (which is "local")

The country names

country_names

Code	Code_UC	Country	
ad	AD	Andorra	
ae	AE	United Arab Emirates	
af	AF	Afghanistan	
ag	AG	Antigua and Barbuda	
ai	ΑI	Anguilla	
al	AL	Albania	
am	AM	Armenia	
an	AN	Netherlands Antilles	
ao	AO	Angola	
aq	AQ	Antarctica	
ar	AR	Argentina	
arpa	ARPA	Old style Arpanet	
as	AS	American Samoa	
		Doing things with data frames	33

Looking up country codes

Matching a variable in one data frame to one in another is called a **join** (database terminology):

tb3 %>% left_join(country_names, by = c("iso2" = "Code_UC"))

iso2	year	gender	age	freq	Code	Country	
AD	1996	m	014	0	ad	Andorra	
AD	1996	m	1524	0	ad	Andorra	
AD	1996	m	2534	0	ad	Andorra	
AD	1996	m	3544	4	ad	Andorra	
AD	1996	m	4554	1	ad	Andorra	
AD	1996	m	5564	0	ad	Andorra	
AD	1996	m	65	0	ad	Andorra	
AD	1996	f	014	0	ad	Andorra	
AD	1996	f	1524	1	ad	Andorra	
AD	1996	f	2534	1	ad	Andorra	
^ D	1006	٢	OF 4 4 Doing	things wit	I h data frames	A1 34	4 / 43

Total cases by country

```
options(dplyr.summarise.inform=FALSE)
```

```
tb3 %>%
  group_by(iso2) %>%
  summarize(cases = sum(freq)) %>%
  left_join(country_names, by = c("iso2" = "Code_UC")) %>%
  select(Country, cases)
```

Country	cases
Andorra	64
United Arab Emirates	487
Afghanistan	80005
Antigua and Barbuda	21
Anguilla	1
Albania	2467
Armenia	6757

or even sorted in order

```
tb3 %>%
  group_by(iso2) %>%
  summarize(cases = sum(freq)) %>%
  left_join(country_names, by = c("iso2" = "Code_UC")) %>%
  select(Country, cases) %>%
  arrange(desc(cases))
```

Country	cases
China	4065174
India	3966169
Indonesia	1129015
South Africa	900349
Bangladesh	758008
Vietnam	709695
NA	603095
Philippines	490040

Doing things with data frames

Comments

- This is probably not quite right because of:
 - the 1994-1995 thing
 - there is at least one country in tb3 that was not in country_names (the NA above). Which?

```
tb3 %>%
anti_join(country_names, by = c("iso2" = "Code_UC")) %>%
distinct(iso2)
```

CD ME NA PS RS TL

Doing things one row at a time

A data frame d:

×1	×2
10	13
11	8
3	4

Want largest value in each row.

Try number 1

d
$$\%$$
>% mutate(mx = max(x1, x2))

x1	x2	mx
10	13	13
11	8	13
3	4	13

• Fails because max finds the largest of *all* values in x1 and x2 (and repeats answer 3 times), rather than max of the two values in each row.

Try number 2

```
d %>% rowwise() %>%
mutate(mx = max(x1, x2))
```

x1	x2	mx
10	13	13
11	8	11
3	4	4

 Works because rowwise works one row at a time: "find max of all numbers in 1st row", then "all in 2nd" etc.

Calculations for groups

 Back to Australian athletes data: suppose we want the correlation between height and weight for athletes of each sport separately:

```
athletes %% group_by(Sport) %%
summarize(correl = cor(Ht, Wt))
```

Sport	correl
BBall	0.8795746
Field	0.4713572
Gym	0.6528610
Netball	0.3630237
Row	0.8729486
Swim	0.8600633
T400m	0.8281211
Tennis	0.8259479
TSprnt	0.8057847
WPolo	0.5947771

Another way

• Break the data set into groups first:

```
athletes %>% nest_by(Sport)
```

Spohatta

```
BBalmale, female, fema
        female, female, female, male, male, male, male, male, male, male,
        male . male . male . male . 3.96 . 4.41 . 4.14 . 4.11 . 4.45 . 4.1 . 4.31 . 4.42 .
       4.3 . 4.51 . 4.71 . 4.62 . 4.35 . 5.24 . 4.54 . 5.13 . 5 . 5.17 . 4.89 . 4.5 . 4.84 .
       4.13, 4.87, 4.82, 4.73, 7.5, 8.3, 5, 5.3, 6.8, 4.4, 5.3, 5.7, 8.9, 4.4,
       5.3, 7.3, 7.8, 7.2, 5.9, 5.8, 6.7, 8, 7.5, 9.2, 8.3, 8.9, 7.4, 6.4, 6.7,
       37.5, 38.2, 36.4, 37.3, 41.5, 37.4, 39.6, 39.9, 41.1, 41.6, 41.4, 43.8,
       41.4 , 46.6 , 44.4 , 46.1 , 45.3 , 47.9 , 41.6 , 40.7 , 46.3 , 40.3 , 43.5 , 44.3 ,
       42.8 , 12.3 , 12.7 , 11.6 , 12.6 , 14 , 12.5 , 12.8 , 13.2 , 13.5 , 12.7 , 14 , 14.7
        . 14.1 , 15.9 , 15.6 , 15.9 , 15.7 , 16.4 , 14.4 , 13.7 , 15.9 , 13.5 , 15 , 14.8 ,
        14.9, 60, 68, 21, 69, 29, 42, 73, 44, 41, 44, 38, 26, 30, 58, 97,
        110 , 72 , 36 , 53 , 72 , 39 , 61 , 49 , 35 , 8 , 20.56 , 20.67 , 21.86 , 21.88 ,
        18.96, 21.04, 21.69, 20.62, 22.64, 19.44, 25.75, 21.2, 22.03, 22.96,
```

Comments

- It looks as if all the other variables have disappeared, but they are all hiding in the column data.
- each thing in data is a dataframe (inside a dataframe!)
- when a column consists of things that are *not* single numbers, pieces of text, etc., it's called a **list-column** (see list in column header).