双序列比对

启发式算法

双序列比对的算法

- □ Dot Matrix,点阵法
- □动态规划算法:
 - Global: Needleman-Wunsch
 - Local: Smith-Waterman
- □启发式算法(基于Word or k-tuple): FASTA, BLAST

启发式算法Heuristic algorithms

- One of the major task of database mining is to search for homology of a query sequence against a large sequence database such as UniProt which involves millions of sequences. Although dynamic programming can provide accurate solution of alignment, it is too slow for large scale database searching.
- 当我们使用动态规划算法来搜索数据库时,由于数据库序列条目非常大,这时候直接使用动态规划算法,会非常慢。
- Some heuristic algorithms, FASTA and BLAST, are designed to provide approximate alignment but with significantly increased speed (~50 times faster).
- 一些启发式算法,例如FASTA,BLAST被提出。这些算法可以提供近似的 比对结果,但速度显著提高,约提高50倍。

K-tup算法原理

□对于两条序列A,B,若包含少量gap,则最优比对趋近对角线

K-tup算法原理 (2)

A 序列长度m

B

序列长度n

令k为一常数, 搜索限定区域 内的最优比对

时间复杂度: O(kn)

K-tup算法原理:缺点

A 序列长度m

B 序列长度n

FASTA和BLAST

- □ 启发式算法, heuristic algorithm
- □不能保证搜索到最优的比对
- □具有很好的灵敏度,略为降低特异性
- □大大缩短序列比对的时间
- □ k-tup算法:字符串匹配
- □应用:大的数据库搜索
- □时间复杂度: < O(n²)

FASTA

- □ *k-tup*: 蛋白质序列: 1~2 aa; DNA序列: 4~6 nt
- □以短序列构建索引,采用hash表存储方式
- □ 对于需要比较的两条序列,在hash表中查找所有完全匹配的片段; FASTA给每一个匹配给定一个tup值
- □ 产生10个最高分值片段,重新用PAM250打分;
- □ 将同一序列上的高分值区域连接在一起
- □ 采用Needleman-Wunsch或者Smith-Waterman算 法对该高分值区域重新打分

FASTA 算法

FASTA: 索引表构建

□以蛋白质序列为例

 \square k=1

氨基酸 tup分值

A 5

C 5

K 5

N 5

P 5

R 5

S 5

T 5

□ 给定两条蛋白质序列:

Protein1: NCSPTA

Protein2: ACSPRK

氨基酸	位置1	位置2		tup分值
A	6		1	5
C	2		2	5
K	_		6	0
N	1		_	0
P	4		4	5
R	_		5	0
S	3		3	5
T	5		_	0

□ 给定两条蛋日质序列:

Protein1: NCSPTA

Protein2: ACSPRK

两条序列匹配结果

Protein1: NCSPTA

Protein2: ACSPRK

FASTA

- 1. FASTP Lipman & Pearson, Science (1985) 227, 1435
- 2. FASTA
 Pearson & Lipman, PNAS (1988) 85, 2444.
- 3. Lookup table Dumas & Ninio, NAR (1982) 197.

FASTA

Four steps:

- 1. Identify common k-word (look-up table)
- 2. Score diagonals (PAM) to find 10 best diagonals
- 3. Join high scoring diagonals
- 4. Optimize alignment by DP

Find runs of identities

Apply "joining threshold" to eliminate segments that

Re-score using PAM matrix Keep top scoring segments.

Use dynamic programming to optimise the alignment in a

Dumas-Ninio look-up table

Original question:

For a sequences of length N, how to quickly find whether or not it contains repeated subsequences (length =k)?

Naïve methods: comparing every word with every other word of the sequence.

The time cost will increase with $O(N^2/2)$.

J P Dumas and J Ninio. Efficient algorithms for folding and comparing nucleic acid sequences. Nucleic Acids Res (1982) 10: 197-206.

Dumas-Ivinio look-up table (example of k=2)

Question:

Given a sequence "TCGGATTCGTACGGTACGGATC", how to quickly find the locations of all the most frequently appeared words (length=2)?

1, Label the sequences by numbers

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T C G G A T T C G T A C G G T A C G G A T C TC CG GG GA AT TT TC CG GT TA AC CG GG GT TA AC CG GG GA AT TC
```

2, Map the word sequence to numerical sequence

Dumas-Ninio look-up table (example of k=2)

Dumas-Ninio look-up table (example of k=2)

Dumas-Ivinio look-up table (example of k=2)

pos.	tod	e^2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
•	T	C	G	G	Α	T	T	С	G	T	Α	С	G	G	Τ	Α	С	G	G	Α	T	С
	TC	CG	GG	GA	AT	TT	TC	CG	GT	TA	AC	CG	GG	GT	TA	AC	CG	GG	GA	ΑT	TC	
	14	4	1	9	7	6	14	4	5	10	15	4	1	5	10	15	4	1	9	7	14	

Dumas-Ninio look-up table (example of k=2)

Dumas-Ivinio look-up table (example of k=2)

3, Construct T/M-matrix to record the location of all words in one scan

M(8)=2, indicates tat a dimer of rank 8 in the sequence occurred previously at position 2.

Dumas-Ninio look-up table (example of k=2)

```
pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

T C G G G A T T C G T A C G G T A C G G G A T C

TC CG GG GA AT TT TC CG GT TA AC CG GG GT TA AC CG GG GA AT TC

code 14 4 1 9 7 6 14 4 5 10 15 4 1 5 10 15 4 1 9 7 14
```

```
5
                                                     13
                                                                    16
                                       10
                                            11
                                                 12
                                                               15
                        AT
GC
    AG
         CG
              GT
                   TT
                             AA
                                  GA
                                       TA
                                            TG
                                                CA
                                                     CT
                                                                    CC
```

I-ma	trix																		
code	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
pos.	3			2		6	5		4					1					
				8	9					10				7	11				
	13			12	14					15					16				
	18			17			20		19					21					
pos.	18	0	0	17	14	6	20	0	19	15	0	0	0	21	16	0			

M-matrix																				
pos. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
pos.						1	2				8	3	9	10	11	12	13	4	5	7

Using lookup table, we can quickly trace back identity and location of words.

'GG' appears at positions: 18, 13,3

'TC' appears at positions: 21, 7,1 etc

Dumas-Ninio look-up table

When we make an alignment, we only need to trace a limited number paths to find the matched words, i.e. from T to M

Advantage: fast O(2N) vs. O(N2)

Defect: only identical residue pairs can be aligned

Altschul et al, Basic Local Alignment Search Tool. J Mol Biol (1990) 215, 403.

Two steps:

Step 1. Search for exact matches of a small fixed length W between the query and sequences in the database.

For example, given the sequences AGTTATT and GCTTAAG and a word length $\mathbf{W} = 3$, BLAST would identify the matching substring TTA that is common to both sequences. By default, $\mathbf{W} = 11$ for nucleic acids.

Step 2. Try to extend the match in both directions, starting at the seed.

The ungapped alignment process extends the initial seed match of length W in each direction in an attempt to boost the alignment score. Insertions and deletions are not considered during this stage.

The highest-scoring alignment will be returned.

- □ Word size: DNA, 11nt; 蛋白质,3aa
- □蛋白质序列数据库,构建由3aa组成的分值表,采用BLOSUM62矩阵打分
- □待查询序列,打断成3aa的片段,在上述数据库中的分值表中进行查询
- □保留高于域值的结果,并进行两端的延伸, HSP: high-scoring segment pair
- □ Nothing can be worse: 牺牲灵敏度,提高计算速度

BLAST:索引表构建

- □ formatdb命令,将fasta格式的序列文件 转换成blast能够识别的文件格式
- □构建索引表:

PQG

PQG 7+5+6=18

PEG 7+2+6=15

PWG 7-2+6=11

SQG -1+5+6=10

BLAST: 序列匹配

- □两条蛋白质序列
- ☐ Protein1: IVPQGRL
- ☐ Protein2: VAPEGKL
- ☐ Protein1: I V P Q G R L
- ☐ Protein2: VAPEGKL

<Word>

7 2 6

3 0

2 4

两边延伸

HSP分值: 3+0+15+2+4=24

Different type of BLAST programs:

- □ 早期的BLAST版本: 无空位罚分
- ☐ 新版本: Gap Penalties: Existence: 11, Extension: 1
 - Nucleotide-nucleotide BLAST (blastn)
 - Protein-protein BLAST (blastp)
 - Position-Specific Iterative BLAST (PSI-BLAST)
 - Pattern Hit Initiated BLAST (Phi-BLAST)

• • •

PSI-BLAST

Psi-BLAST: 迭代搜索

- □ 第一步,使用普通的blast算法进行搜索
- □ 第二步,将搜索得到的序列,包括输入的序列放在 一起,构建位点特异性的矩阵(Position Specific Matrix)
- □ 第三步,利用上面得到的矩阵谱(profile),再次在数据 库中进行搜索
- □ 重复2,3步,直到不再有新的序列出现
- □ 优点: 能够发现序列相似性非常低的同源序列
- □ 缺点: 常常得到假阳性的结果

Psi-BLAST: 迭代搜索 (2)

Psi-BLAST: 例

□ >NP_954673 ubiquitin-conjugating enzyme E2 Kua-**UEV** isoform 1 [Homo sapiens] MAGAEDWPGQQLELDEDEASCCRWGAQHAGAREL **AALYSPGKRLQEWCSVILCFSLIAHNLVHLLLLARWE** DTPLVILGVVAGALIADFLSGLVHWGADTWGSVELPI VGKAFIRPFREHHIDPTAITRHDFIETNGDNCLVTLLPL LNMAYKFRTHSPEALEQLYPWECFVFCLIIFGTFTNQI HKWSHTYFGLPRWVTLLQDWHVILPRKHHRIHHVSP HETYFCITTGVKVPRNFRLLEELEEGQKGVGDGTVS WGLEDDEDMTLTRWTGMIIGPPRTIYENRIYSLKIECG PKYPEAPPFVRFVTKINMNGVNSSNGVVDPRAISVLA **KWQNSYSIKVVLQELRRLMMSKENMKLPQPPEGQC YSN**

blastn	blastp	blastx	tblastn	tblastx			Standard Protein BLAS
	_						BLASTP programs search protein databases using a
	uery Sequenc ssion number(s),		ΓA sequence(s)	? Clear	Query subranç	ge 😯	
					From		
Or, upload Job Title	(±1±2)	文件 未选择任	何文件 for your BLAST se	arch ?			
Align tw	o or more sequen	ces 😯					
Choose	Search Set						
Databases		ndard database	es (nr etc.):	Experim	nental databases		experimental clustered nr database nore info see What is clustered nr?
Stand	lard						
Database	e No	n-redundant pr	rotein sequences	s (nr)	~ ?		
Organisr Optional	L En		ame or id-comp		suggested 20 top taxa will be sh	exclue	de Add organism
Exclude Optional	1	Models (XM/XF	P) Non-redun	idant RefSeq p	roteins (WP) U	ncultured/er	nvironmental sample sequences
Program Algorithm	Dela Dela Dela Dela Dela Dela Dela Dela	stp. (protoin-pro I-BLAST (Posit I-BLAST (Patte	tion-Specific Itera ern Hit Initiated E omein Enhance	ated BLAST)	ST) Accolerated BLAST	Т)	

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome

O O E ALE

Run PSI-Blast iteration 2

Hit list size 500

Distance tree of results NEW

Sequences with E-value BETTER than threshold

Related Structures

					Score	E
Seque	nces	producing s	ignificant	t alignments:	(Bits)	Value
NEW	V	pdb 2C2V C	Chain C,	Crystal Structure Of The Chip-Ubc13-Uev1a	305	2e-83 🗧
NEW	V	pdb 2A4D A	Chain A,	Structure Of The Human Ubiquitin-Conjugat	304	2e-83 🗧
NEW	V	pdb 2HLW A	Chain A,	Solution Structure Of The Human Ubiquitin	303	7e-83 🖺
NEW	V	pdb 1J74 A	Chain A,	Crystal Structure Of Mms2 >pdb 1J7D A Cha	282	1e-76 🖺
NEW	V	pdb 1ZGU A	Chain A,	Solution Structure Of The Human Mms2-Ubiquit	276	8e-75 🗧
NEW	V	pdb 2GMI B	Chain B,	Mms2UBC13~UBIQUITIN	150	4e-37 🖺
NEW	~	pdb 1JAT B	Chain B,	Mms2UBC13 UBIQUITIN CONJUGATING ENZYME COMPL	150	5e-37 🖺
NEW	V	pdb 2QOV A	Chain A,	Crystal Structure Of Ubiquitin Conjugatin	142	1e-34 🖺
NEW	V	pdb 2AWF A	Chain A,	Structure Of Human Ubiquitin-Conjugating Enz	51.6	3e-07 🖺
NEW	V	pdb 2PWQ A	Chain A,	Crystal Structure Of A Putative Ubiquitin	50.4	7e-07 🖺
NEW	V	pdb 2E2C A	Chain A,	E2-C, An Ubiquitin Conjugating Enzyme Req	49.3	2e-06
NEW	~	pdb 1Q34 A	Chain A,	Crystal StrBoomforphitTwo, 20021(E2USThzyme	48.9	2e-06 🗧
NEW	V	ndh12F4711	Chain N	Toxonlasma Gondii Ilhiquitin Conjugating F	48 5	3e-06 S

显著性计算

Significance of alignment in BLASI: E-value

For any alignment, we can have an alignment score (5). The score itself does not tell how significant it is.

Definition: The E-value of an alignment with score S is the <u>expected</u> <u>number</u> of alignments to be found with score S in two random sequences (of same lengths and letter compositions).

E-value =
$$Kmne^{-\lambda S}$$
 This eq is an approx. Exact solution is an open quiz

K and λ represent natural scales for the search space and the scoring system respectively. m and n are the sizes of the query and template sequences.

In general, the typical threshold for a good E-value from a BLAST search is 0.001 or lower. An alignment of low E-value means that that alignment is highly unique, and not due to error.

For a proof of the equation, see Karlin & Altschul, PNAS (1990), 87, 2264; PNAS (1993), 90, 5873.

Poisson distribution

If the <u>expected number</u> of an event to occur is λ , the probability that there are exactly k occurrences (k = 0, 1, 2, ...) is equal to $2k_{\rho} - \lambda$

$$p(X=k)=\frac{\lambda^k e^{-\lambda}}{k!}$$

Significance of alignment in BLAST: P-value

Definition: The P-value of an alignment with score S is the <u>likelihood</u> that two range sequences will have (at least one) alignments with score $\geq S$.

Relation between P-value and E-value

If E(S) is the expected number of alignment with score $\geq S$, the like of getting exactly k such (independent) alignments is

P-value =
$$\frac{E(S)^k e^{-E(S)}}{k!} \qquad \longleftarrow p(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

• Likelihood of getting 0 such alignment: $e^{-E(S)}$

• Likelihood of getting at least one such alignment: $1-e^{-E(S)}$

显著性计算

以蛋白质CDC28_YEAST为例在酵母中的序列比对结果,如何计算序列比对的显著性?

List of potentially matching sequences

Send selected se	equences to Clustal W (multiple alignment)	询内容 Select up to
☐ Include query	sequence	
Db AC	Description	Score E-value
_ sp P00546	CDC28_YEAST Cell division control protein 28 (EC 2.7.1	. 607 e-175
_ sp P17157	PHO85_YEAST Cyclin-dependent protein kinase PHO85 (EC	. 309 3e-85
🗌 sp Q03957	CTK1_YEAST CTD kinase subunit alpha (EC 2.7.11.23) (CT	. 212 5e-56
🗌 sp P23293	BUR1_YEAST Serine/threonine-protein kinase BUR1 (EC 2	. 211 9e-56
🗌 sp P06242	KIN28_YEAST Serine/threonine-protein kinase KIN28 (EC	. 196 5e-51
_ sp P16892	FUS3_YEAST Mitogen-activated protein kinase FUS3 (EC 2	. 182 8e-47
gp P32485	HOG1_YEAST Mitogen-activated protein kinase HOG1 (EC 2	. 180 3e-46
_ sp P39073	SSN3_YEAST Meiotic mRNA stability protein kinase SSN3	. 179 7e-46
g sp Q00772	SLT2_YEAST Mitogen-activated protein kinase SLT2/MPK1	. 163 3e-41
🗌 sp P14681	. KSS1_YEAST Mitogen-activated protein kinase KSS1 (EC 2	. 163 3e-41
g sp P41808	SMK1_YEAST Sporulation-specific mitogen-activated prot	. 155 6e-39
_ sp P38615	MDS1_YEAST Serine/threonine-protein kinase MDS1/RIM11	. 146 5e-36
gp P36005	KKQ1_YEAST Probable serine/threonine-protein kinase YK	. 145 8e-36
_ sp P50873	MRK1_YEAST Serine/threonine-protein kinase MRK1 (EC 2	. 132 7e-32
_ sp P21965	MCK1_YEAST Protein kinase MCK1 (EC 2.7.11.1) (Meiosis	. 127 2e-30
_ sp P19454	CSK22_YEAST Casein kinase II subunit alpha' (EC 2.7.11	. 124 2e-29
_ sp P15790	CSK21_YEAST Casein kinase II subunit alpha (EC 2.7.11	. 121 1e-28
sp <u>P32581</u>	IME2 YEAST Meiosis induction protein kinase IME2/SME1	. <u>11</u> 7 <u>2e-27</u>
sp P06782	SNF1_YEAST Carbon Bill al Mill Carpe strag protein kina	. 111 2e-25
	M8 AS romale rimeth promin promin name Y0.	

其中

- □ SNF1_YEAST的结果:
- ☐ Score: 111
- **☐** E-value: 2e-25

- □问题:
 - ✿如何计算Score?
 - ⇒如何计算E-value?该值是何意义?

求近似值

□ S: bit分值,有公式:

$$S = \frac{\lambda R - \ln(K)}{\ln(2)}$$

其中R, 是raw分值, 根据打分矩阵直接得到的分数

 $\square E(S) \approx Kmne^{-\lambda S} = mn2^{-S};$

丛此,上例

上例 (2)

```
Lambda
                                              R=277
                0.142
          0.323
                           0.434
ungapped
                                             \lambda = 0.267
       Gapped
      Lambda
                                              K=0.0410
      0.267 0.0410 0.140
                                              m = 208
       Matrix: BLOSUM62
       Gap Penalties: Existence: 11, Extension: n=2,657,097
       Number of Hits to DB: 2,033,710
       Number of Sequences: 2415840
       Number of extensions: 91335
       Number of successful extensions: 543
       Number of sequences better than 10.0: 100
       Number of HSP's better than 10.0 without gapping: 118
       Number of HSP's successfully gapped in prelim test: 7
       Number of HSP's that attempted gapping in prelim test: 217
       Number of HSP's gapped (non-prelim): 160
       length of query: 298
       length of database: 3,316,707
       effective HSP length: 90
      effective length of query: 208
       effective length of database: 2,657,097
       effective search space: 552676176
       effective search space used: 552676176
```

$$S = \frac{\lambda R - \ln(K)}{\ln(2)}$$

$$= \frac{0.267 * 277 - \ln(0.041)}{\ln(2)} = 111$$

$$E(S) = mn2^{-S} = 208 * 2657097 * 2^{-S}$$

= $2e - 25$

软件操作

Nucleotide BLAST三个program

https://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/BLAST/nucleotide blast.html

Nucleotide-Nucleotide BLAST (blastn)

Now that we have explored the program and database options, let's do a basic **blastn** search with the <u>Jurassic Park sequence</u> that you have copied/pasted into memory. If you haven't already copied the query sequence into memory, please do it now.

One more note before we do the search...

The nucleotide BLAST page provides a selection of three programs that vary in their sensitivity and speed: megablast (default), discontiguous megablast, and blastn.

For our sample search, use the traditional blastn program.

Footnote, for your future reference. Some of the differences between the algorithms are highlighted below.

Megablast	Retrieves highly similar sequences and is very fast. It efficiently find long alignments between very similar sequences — it is intended for comparing a query to closely related sequences and works best if the target percent identity is 95% or more. (word size* is 28 base pairs). learn more	
Discontiguous megablast	Retrieves more dissimilar sequences than megablast, but is more sensitive than blastn. It uses an initial seed that ignores some bases (allowing mismatches) and is intended for cross-species comparisons – the third base wobbling is taken into consideration by focusing on finding matches at the first and second codon positions while ignoring the mismatches in the third position. (word size* can be set only at 11 or 12 base pairs.) learn more	
Blastn	Retrieves somewhat similar sequences, so can find more distantly related sequences, but is slower than megablast and discontiguous megablast. (default word size* can range from 7 base pairs to 11 (default) base pairs) learn more	

^{*} Word Size is discussed later in the module in the slide on how did BLAST work. It is mentioned here only so this slide can serve as a

同源序列搜索

- □同源序列通常具有相似的生物学功能
- □ 同源关系的分析: 直系同源 or 旁系同源?
- **直系同源(Orthologs)**是指来自于不同物种的由垂直家系,也就是物种形成,进化而来的基因,并且 典型的保留与原始基因相同的功能。也就是说,随着进化分支,一个基因进入了不同的物种,并保留了原 有功能。这时,不同物种中的这个基因就属于直系同源。
- □ **旁系同源(Paralogs)**是指在同一物种中的来源于基因复制的基因,可能会进化出新的但与原功能相关的功能来。
- □ 直系同源序列的确定: 相互最佳匹配
- □ 旁系同源序列的确定: BLAST, 序列比对及数 据库搜索, 至少存在一个共有的功能结构域
- □ 整体分析/蛋白质家族分析:系统发育树的构建

例: Bub1

□ 芽殖酵母的Bub1:定位于动点,纺锤体检验点

获得FASTA序列

第1条,共1条 ^ × ×

酵母的同源序列: 旁系同源序列

BLAST+ form User manual

SIB BLAST+ Network Service Form

Mad3: 旁系同源序列

人类同源序列:直系同源序列

人类Bub1?

	W (multiple alignment)	10	▼ <mark>提交</mark>		
	ct up to de query sequence				
	Accession	Db	Description	Score	E-value
1	O43683-3 (BUB1_HUMAN)	5	Isoform 3 of Mitotic checkpoint serine/th	174	7e-44
2	O43683 (BUB1_HUMAN)	5	Mitotic checkpoint serine/threonine-protein	174	7e-44
3	O43683-2 (BUB1_HUMAN)		Isoform 2 of Mitotic checkpoint serine/th	88.6	2e-17
4	O60566 (BUB1B_HUMAN)	5	Mitotic checkpoint serine/threonine-protei	68.2	4e-11
<u> </u>	O60566-3 (BUB1B_HUMAN)	8	Isoform 3 of Mitotic checkpoint serine/t	59.3	2e-08
6	O60566-2 (BUB1B_HUMAN)	8	Isoform 2 of Mitotic checkpoint serine/t	57.8	6e-08
7	O95835 (LATS1_HUMAN)	-	Serine/threomitiesprotein_kimase LATS1 OS=H	53.9	1e-06

在酵母中做比对

BLAST+ form User manual

SIB BLAST+ Network Service Form

You can also use this tool programmatically... Enter a sequence BLAST programs available on ExPASy: ? Examples >sp|043683|BUB1_HUMAN Mitotic checkpoint serine/threonineblastp: protein query -> protein sequence database protein kinase BUB1 OS=Homo sapiens OX=9606 GN=BUB1 PE=1 blastn: nucleotide query -> nucleotide sequence database SV=1 tblastn: protein query -> nucleotide sequence database MDTPENVLQMLEAHMQSYKGNDPLGEWERYIQWVEENFPENKEYLITLLEHLMKEFLDKK KYHNDPRFISYCLKFAEYNSDLHQFFEFLYNHGIGTLSSPLYIAWAGHLEAQGELQHASA blastx: nucleotide query -> protein sequence database VLQRGIQNQAEPREFLQQQYRLFQTRLTETHLPAQARTSEPLHNVQVLNQMITSKSNPGN NMACISKNQGSELSGVISSACDKESNMERRVITISKSEYSVHSSLASKVDV<u>FQVVMYC</u>KE KLIRGESEFSFEELRAQKYNQRRKHEQWVNEDRHYMKRKEANAFEEQLLKQ HQVVETSHEDLPASQERSEVNPARMGPSVGSQQELRAPCLPVTYQQTPVNM VVPPLANAISAALVSPATSQSIAPPVPLKAQTVTDSMFAVASKDAGCVNKS Mammalia e.g. P00750, P05067-5, A4_HUMAN or acccgtggtcc Metazoa Primates Run BLAST Reset Rodentia Vertebrata Viridiplantae Arabidopsis thaliana Caenorhabditis elegans Choose a database Dictyostelium discoideum Drosophila melanogaster Escherichia coli Homo sapiens Protein databases: Mus musculus Plasmodium falciparum UniProt Knowledgebase (UniProtKB) ? Rattus norvegicus -

Best Hit!

INEXT CIASS

- Neighbor-joining method (for constructing phylogenetic tree) N. Saitou and M. Nei. The neighbor-joining Method: A new method for reconstructing hylogenetic tree. Mol Biol Evol. (1987) 4: 406-425.
- UPGMA: https://en.wikipedia.org/wiki/UPGMA
- PSI-BLAST (The most often-used algorithm for sequence-profile alignment)
 S. F. Altschul et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. (1997) 25, 3389-3402
- Hidden Markov Model (for multiple sequence alignment) Haussler, D., Krogh, A., Mian, I. S., & Sjölander, K. (1993). Protein modeling using hidden Markov models: Analysis of globins. In: Proceedings of the Hawaii International Conference on System Sciences volume 1 pp. 792-802.
- Sequence profile Gribskov, Mclanchlan, Eisenberg. Profile analysis: Detection of distantly related proteins. PNAS (1987) 84, 4355-58
- Henikoff weight Steven Henikoff and Jorja G. Henikoff, Position-based sequence weights, Journal of Molecular Biology. Volume 243, Issue 4, 4 November 1994, Pages 574-578

Next class

Profile-profile alignments:

Anna R. Panchenko. Finding weak similarities between proteins by sequence profile comparison. Nucleic Acids Research, 2003, Vol. 31, No. 2 683.

Edgar & Sjolander, A comparison of scoring functions for protein sequence profile alignment. Bioinformatics (2004) 20, 1301-8

G Wang, R. Dunbrack JR. Scoring profile-to-profile sequence alignments. Protein Sci. 13:1612-1626, 2004