Introduction to Uplift Modeling

Dr. Juan Orduz

PyConDE & PyData Berlin 2022

Motivation

How can we optimally select customers to be treated by marketing incentives?

We can not send and not send incentives to the same customers at the same time

What is Uplift Modeling?

From Gutierrez, P., & Gérardy, J. Y. (2017). "Causal Inference and Uplift Modelling: A Review of the Literature"

- Uplift modeling refers to the set of techniques used to model the incremental impact of an action or treatment on a customer outcome.
- Uplift modeling is therefore both a Causal Inference problem and a Machine Learning one.

Conditional Average Treatment Effect

- Let Y_i^1 denote person i's outcome when it receives the treatment and Y_i^0 when it does not receive the treatment.
- We are interested in understanding the causal effect $Y_i^1-Y_i^0$ and the conditional average treatment effect $CATE=E[Y_i^1|X_i]-E[Y_i^0|X_i]$, where X_i is a feature vector of the i-th person.
- However, we can not observe them!

Uplift

Let W_i is a binary variable indicating whether person i received the treatment, so that

$$Y_{i}^{obs} = Y_{i}^{1}W_{i} + (1-W_{i})Y_{i}^{0}$$

Unconfoundedness Assumption

If we **assume** that the treatment assignment W_i is independent of Y_i^1 and Y_i^0 conditional on X_i , then we can estimate the CATE from observational data by computing the empirical counterpart:

$$\mathbf{uplift} = \widehat{CATE} = E[Y_i|X_i, W_i = 1] - E[Y_i|X_i, W_i = 0]$$

Solo Model

Training

$$\left(\begin{array}{cccc} x_{11} & \cdots & x_{1k} & w_1 \\ \vdots & \ddots & \vdots & \vdots \\ x_{11} & \cdots & x_{nk} & w_n \end{array}\right) \xrightarrow{f} \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right)$$

$$X \bigoplus W$$

Uplift Prediction

$$\hat{f} \left(egin{array}{cccc} x_{11} & \cdots & x_{1k} & 1 \ dots & \ddots & dots & dots \ x_{11} & \cdots & x_{mk} & 1 \end{array}
ight) - \hat{f} \left(egin{array}{cccc} x_{11} & \cdots & x_{1k} & 0 \ dots & \ddots & dots & dots \ x_{11} & \cdots & x_{mk} & 0 \end{array}
ight)$$

Some python implementations

causalml

• scikit-uplift

References:

- Gutierrez, P., & Gérardy, J. Y. (2017). "Causal Inference and Uplift Modelling: A Review of the Literature"
- Karlsson, H. (2019) "Uplift Modeling: Identifying Optimal Treatment Group Allocation and Whom to Contact to Maximize Return on Investment"

Thank you!

More Info: juanitorduz.github.io/

