UNCLASSIFIED

AD NUMBER

AD-B155 291

NEW LIMITATION CHANGE

TO

Approved for Public Release; Distribution Unlimited.

FROM

B-3

AUTHORITY

Rept. Dilmtid per memo. dtd 28 Aug 95, signed by Col. Gary R. Gilbert, MCMR-RMI-S (20-1y). DCS/Info. Mgrnt, Ft. Detrick, MD.

THIS PAGE IS UNCLASSIFIED

20030411084

DEPARTMENT OF THE ARMY

U.S. ARMY MEDICAL RESEARCH AND MATERIEL COMMAND FORT DETRICK, MARYLAND 21702-5012

REPLY TO ATTENTION OF:

MCMR - RMI - S

(70-14) ERKAD BINA 445

28 Aug 95

MEMORANDUM FOR Administrator, Defense Technical Information Center, ATTN: DTIC-HDS/William Bush, Cameron Station, Building 5, Alexandria, VA 22304-6145

SUBJECT: Request Change in Distribution Statement

- 1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limited distribution statements on technical reports for Contract Number DAMD17-89-C-9062. Request the limited distribution statement for AD Numbers 1911/14/15, ADB155231, ADB164099, and ADB170085 be changed to "Approved for public release; distribution unlimited." Copies of these reports should be released to the National Technical Information Service.
- 2. Point of contact for this request is Ms. Judy Pawlus, DSN 343-7322.

GARY R. GILBERT

COL, MS

Deputy Chief of Staff for Information Management

200804: 184

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- · Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.

AD-B155 291

AD______

2

PREPARATION OF RADIOCHEMICAL-LABELED COMPOUNDS FOR THE US ARMY DRUG DEVELOPMENT PROGRAM

ANNUAL REPORT

JOHN A. KEPLER

APRIL 18, 1931

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21702-5012

Contract No. DAMD17-89-C-9062

Research Triangle Institute
P.O. Box 12194
Research Triangle Park, North Carolina 27709

Distribution authorized to U.S. Government agencies only: Proprietary Information, April 1991. Other requests for this document must be referred to Commander, U.S. Army Medical Research and Development Command, ATTN: SGKD-RMI-S, Fort Detrick, Frederick, Maryland 21702-5012.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

91-01951

91 6 12 030

Seconit Co	433 - CM C 4 (J	-405				-		-
			REPORT I	DOCUMENTATIO	N PAGE			Form Approved OM8 No. 0704-01	88
'a REPORT! Unclass	ECURITY CLAS	SIF CAT.	ON		TO RESTRICTIVE	MARKINGS			
24 SECURITY	CLASSIFICAT (ON AUT	-ORITY		1			.S. Governmen	i C
26 DEC:JASS	FICATION / DO	WNGPA	DING SCHEDU	ILE .	agencies o	nly; Proprie	etary I	information,	
4 PERFORM	NG ORGANIZA	T:ON RE	PORT NUMBE	(R(S)	5 MONITORING	ORGANIZATION R	EPORT NU	MBER(S)	~~~~
i .	PERFORMING Triangle			6b. OFFICE SYMBOL (If applicable)	78 NAME OF ME	ONITORING ORGA.	NIZATION		
<u> </u>					25 ADDOSS (6.	7:04	Ta dal		سسبيوت
ł	(Gry, State, at ice Box 1:		ode)		76 -ADDRESS (CI	ty, State, and ZIP ((ode)		
	Triangle		, NC 277	09-2194					
	FUNDING SPO			86 OFE OF SYMBOL (If applicable)	9. PROCUREMENT	T INSTRUMENT ID	NTIFICAT	ON NUMBER	Property .
	ATION U.S & Develo				DAMD17-89	-C-9062			
BC. ADDRESS	(City, State, an	d ZIP Co	de)			UNDING NUMBER			
Fort Det					PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT	NO.
	k, Maryla				62300A	63002D810	AE	DA31871	5
1	lude Security (•	1-Labeled Compo	ands for the	IIC Apper Des	a Dava	lanmant Proce	
12. PERSONA		. Mau.	LOCHEMICA	1-Labeled Compo	auds tor the	OS Atmy Die	R Deve	Tobment Links	4111
John A.				•		•			
13a. TYPE OF Annual Re			136. TIME CO	OVERED 3/90 TO 3/22/91	14. DATE OF REPO		Day) 15.	PAGE COUNT	
16. SUPPLEME		TION	PRON. 2/-	27.50 10 37.22.7.31	1991 Apri:	1 10		45	-
			,						
17.	COSATI	CODES		18 SUBJECT TERMS (C	ontinue on reverse	e if necessary and	identify b	y block number)	
FIELD	GROUP	\$U8	-GROUP	Antimalarial; (ĺ
07 06	03 01	 		Chemical warfar Reactivators; R		agents; Ch	olines	terase	- 1
		LEAGLZG	if necessary	and identify by block nu		~			
This	report su	mmari	zes work	carried out on	contract DAY	Ф17-89-С-90	62 dur:	ing the	
to prepar	ren 23, 1 re and ful	lly ch	o maren aracterí:	22, 1991. The p ze radiolabeled	ourpose of tr samples of c	ie work on t	his cou	ntract was e of current	:
interest	to the U.	S. Ar	my Medica	al Research and	Development	Command (US	AMRDC)	and to	!
				ith some commerc	ially prepar	red compound	s to i	nvestigators	
destruate	ed by the	COAIR	л С.						[
The p	rocedure	follo	wed for	reparing the co	mpounds invo	lved first	design:	ing a	
synthetic	: scheme a	ind th	en optim	izing the indivi en all of the re	dual reaction	ons in the s	ynthet:	ic scheme	- 1
was done	where a s	mall	auount of	the radiolabel	ed starting	material wa	zea, a s dilut	cracer run ed with	
•	. ,	,							
20 DISTRIBUT	ON, AVARIAGI	LITY OF	ARSTRACT		21 ABSTRACT SEC	HOITY CLASSIEICA	TION		
UNCLASS	F ED/UNLIMIT!	ED []	SAME AS RE	T DTC JSERS	Unclassif				
22a NAME OF					226 FELEPHONE (II	nclude Area Code)		CE SYMBOL RD-RMI-S	
2(417)	rances Bo	stian	-		301-663-7	325	300	77 - 17 (T) - 13	

19. ABSTRACT (continued)

nonlabeled starting material, and the reaction sequence performed from beginning to end on the exact scale that was planned for the master run. Any problems which were discovered in the tracer run were worked out, and then the tracer run was repeated, if necessary, or the master run was done.

The final products were analyzed for chemical and radiochemical purity, and specific activity. Procedures used for the analyses included TLC-radio-scan, autoradiography, HPLC, UV, and NMR and mass spectrometry where required. In addition to analyzing the compounds when they were first prepared, they were also analyzed prior to shipment to approved investigators.

The labeled compounds were stored at the Research Triangle Institute and sent to investigators upon request of the Project Monitor. An up-to-date list of compounds in inventory was provided to the Project Monitor each month.

During this report period a sample of β -[16-14C]arteether was prepared. Development work for preparing [2Hg]thiodiglycol, bis([14C]trifluoromethyl)disulfide, [16-14C]-artemisinin, and tritium and carbon-14 labeled WR-238605 was completed. The development work for preparing carbon-14 labeled WR-242511 was started.

		.:
Acce	ssion For	
	GRA&I	0/
DTIC	TAB normued :	
	iongroed Markton	
Ву		
	ibution/	
Avai	lability S	0ರೆ65
	Avail and/	or
Dist	Spucial	i
25	1	- 1
5		1
y 1	1	

Foreword

During the period March 23, 1990 to March 22, 1991, the Research Triangle Institute worked on a project entitled "Radiochemically-Labeled Compounds Synthesis Laboratory". Dr. Robert E. Engle of Walter Reed Army Institute of Research was the Contracting Officer's Technical Representatives.

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

The following conventions are used in this report in order to avoid confusion between nonlabeled and labeled compounds: (a) unless otherwise designated, a compound and the number associated with it represents a nonlabeled entity. (b) Numbers and names, including partial names of labeled compounds, will be preceded by an appropriate modifier in brackets, i.e. $[^{14}C]-\underline{10}$ or aldehyde $[^{14}C]-\underline{10}$, etc. Specifiers will be included when required for clarity, i.e. $[1,2-^{3}H]-\underline{10}$, $[2-^{3}H]-\underline{10}$, etc.

Table of Contents

	•	Page
1.0	Summary	- 1
2.0	Synthesis of Labeled Compounds	2
2.1	[1- 14 C]Perfluoroisobutylene ([14 C]- 4)	2
2.2	Bis([14 C]trifluoromethyl)disulfide ([14 C]- 15)	5
2.3	1,5-Dihydroxy-[1,1,2,2,4,4,5,5- ³ Hg]-3-thiapentane; [² Hg]thio-diglycol, ([² Hg]- <u>20</u>)	8
2.4	WR-255131: p-[16-14c]Arteether ([14c]-24)	9
2.5	WR-249309: [16- ¹⁴ C]Artemisinin ([¹⁴ C]- <u>22</u>)	12
2.6	WR-238605: 8-[(4-Amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl-5-[3-(trifluoromethyl)phenoxy]quinoline Succinate	14
	2.6.1 8-[(4-Amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl- 5-[3-(trifluoromethyl)phenoxy][4-14C]quinoline Succinate; [4-14C]WR-238605([14C]-41)	14
	2.6.2 8-[(4-Amino-1-methylbutyl)amino-2,6-dimethoxy-4-methyl-5-[5-(trifluoromethyl)[2- 3 H]phenoxy]quinoline Succinate; [3 H]WR-238605 ([3 H]- 4 1)	16
2.7	WR-242511: 8-[(4-amino-1-methylbutyl)amino]-5-hexoxy-6-methoxy- 4-methyl[¹⁴ C]quinoline (D,L) Tartrate, [¹⁴ C]WR-242511 ([¹⁴ C]- <u>55</u>)	19
3.0	Purification	22
4.0	Shipments	22
5.0	Inventory	. 22
6.0	References	23
	ndix	35.
	8-[15-14c]Arteether WP-255131	. 36

1.0 Summary

During this report period a sample of β -[16-14C]arteether was prepared. Development work for preparing [2Hg]thiodiglycol, bis([14C]trifluoromethyi)-disulfide, [16-14C]artemisinin, and tritium and carbon-14 labeled WR-238605 was completed. The development work for preparing carbon-14 labeled WR-242511 was started.

A total of eight shipments were made during this report period.

2.0 Synthesis of Labeled Compounds

2.1 [1-14c]Perflucroisobutylene ([14c]-4)

The scheme being investigated for the synthesis of $[1^{-14}C]$ perfluoro-isobutylene ($[1^4C]$ - $\frac{4}{2}$) is outlined in Chart 1. The scheme is based on the reported synthesis of $[1^3C]$ dichlorodifluoromethane¹ ($[1^3C]$ - $\frac{2}{2}$) and $\underline{\text{gem-di-fluoroolefins.}}^2$ Acetophenone ($\underline{5}$, Chart 2) is being used as a model compound because of the toxicity and volatility of $\underline{4}$. Earlier studies³ established that reaction of acetophenone and dibromodifluoromethane ($\underline{7}$, BFM) in the presence of hexamethylphosphoroustriamide (HMPT) gave 70-80% yield of olefin $\underline{6}$ at ambient temperature, but when BFM was replaced with dichlorodifluoromethane ($\underline{2}$, CFM) no $\underline{6}$ was formed unless the reaction was heated above 80°C. Evidence was presented³ that the differences in yield and reaction conditions when using CFM compared to BFM was not due to the lack of formation of complex $\underline{8}$, (Chart 3), but its subsequent conversion to ylide $\underline{10}$ by HMPT.

Heating the reaction mixture will cause technical difficulties with the radiosynthesis because of the low boiling points of hexafluoroacetone (33) (-26°C) and the product, PFIB ($\frac{4}{2}$) (6°C). Two strategies to overcome this problem were investigated. An attempt was made to prepare BFM by modification of the method used to prepare [13 C]- 2 . Reaction of carbon tetrabromide with antimony trifluoride and antimony tribromide 4 did not give any detectable BFM.

The second approach to overcome this problem was to find a catalyst that would convert salt 8 to ylide 10 at ambient temperature or below. Burton and Ishikawa et al.2.5 have reported that metals such as zinc, mercury and cadmium promoted the reaction of the BFM-triphenylphosphine complex (9) with aldehydes and ketones. We found that zinc also promoted the reaction of the CFM-HMPT complex (8) with 5. HMPT was allowed to react with CFM (2) in N,N-dimethylacetamide (DMAc) to form 8. Acetophenone was added after stirring for 2 h and

a) [(CH₃)₂N]₃P, triglyme

Chart 2

a) [(CH₃)₂N₃ P, triglyme

Chart 3

$$[(CH_3)_2N_{1}P: + CF_2X_2 - [(CH_3)_2N_{1}PCF_2X]X - \frac{(CH_3)_2N_{1}P:}{2. X - Cl}$$
2. X - Cl
3. X - Br
9. X - Br

[(CH₃)₂N]₃P-CF₂ + [(CH₃)₂N]₃P-X₂

zinc was added 0.5 h later. GC analysis of the reaction mixture after stirring overnight at room temperature showed a ratio of product 6 to acetophenone of 95:5.

With an acceptable method for the conversion of 2 to 6 in hand, the entire synthetic scheme for preparing [14C]-4 was tested with the anatophenone model. All of the operations were carried out on the vacuum manifor.

Antimony trifluoride and antimony pentachloride were combined and praced on the manifold. Carbon tetrachloride (5 mmol), which will be the source of the carbon-14 label, was transferred to the reaction flask and the mixture was allowed to stir at 40°C for 2 h. The yield of 2 was quantitative as measured by the volume of gas generated in the vacuum line, but the purity was unknown. The 2 was allowed to react with HMPT in DMAc. After 2 h, acetophenone and dry zinc dust were added to the reaction mixture. After stirring overnight, GLC analysis showed the mixture to be 69% product 6 and 26% acetophenone.

The results of this experiment indicate that this method should be useful for preparing $[^{14}C]_{-\frac{4}{3}}$, but we have not found a source for a standard sample of $\frac{4}{3}$ and we have no method for its purification. There are GLC methods reported for its analysis.

We suspect that [14 C]PFIB will rapidly polymerize because of its high reactivity coupled with the ionizing radiation associated with the radioactive label. Bayliff and Chambers⁷ have reported that PFIB forms salt 11 , with

[(CF₃)₃C] - Cs*

11

cesium fluoride. If PFIB can be regenerated from <u>11</u> the salt may be a suitable form for its storage and characterization. This cannot be determined however, unless a source of nonlabeled PFIB is found.

Work on this synthesis has been temporarily stopped at the request of USARMDC.

2.2 Bis([14c]trifluoromethyl)disulfide ([14c]-15)

Development work has continued on the synthesis of bis([14 C]trifluoromethyl)disulfide ([14 C]- 15). The proposed scheme for this synthesis is outlined in Chart 4 and is based on methods 8 , 9 used to prepare nonlabeled 15 . Earlier 3 we described modification of the reported 8 method for preparing sulfenyl chloride 13 which allowed its preparation on a small scale suitable for the radiosynthesis. Work this report period has focused on developing small scale synthesis procedures for preparing sulfenyl bromide 14 and the target compound, disulfide 15 , as well as analytical and purification methods for 14 and 15 .

Early in the course of developing the synthesis of labeled <u>15</u>, it became apparent that the lack of a good analytical method hampered progress. Three GC methods were investigated for analysis of <u>15</u>; (1) 10% OV-101 on Gas Chrom Q 100/120, (2) 10% OV-210 on Chromosorp W-HP 80/100, and (3) 10% DC-200 on Chromosorp W-HP 80/120. Two of these columns, the DC-200 and the OV-101 gave satisfactory separation of <u>13</u>, <u>14</u> and <u>15</u> when run with a temperature program of 20°C-190°C at 16°/min.

GC analysis of $\underline{14}$ prepared as described above showed that the preparation contained varying amounts (30-50%) of unknown impurities with shorter retention times than $\underline{14}$. When $\underline{14}$ was treated with fresh 48% hydrobromic acid, the amount of the impurities was greatly increased. Compounds $\underline{16}$ and $\underline{17}$ have been reported⁹, $\underline{10}$ as being formed during the preparation of $\underline{14}$, but were eliminated

BrCt ₂ CSBr	Br ₂ CICSBr	ChCSSCCH
16	17	18

- .a) Cb
- b) HBr
- c) KE

as possible candidate impurities along with disulfide 18, the photochemical decomposition product 13¹¹, because their boiling points are considerably higher than 14 and thus are unlikely to have retention times shorter than 14. The two major impurities were tentatively identified as chloroform and carbon tetrachloride on the basis of their GLC retention times. Attempts to purify 14 by distillation were not successful. An alternate procedure for preparing 14 was developed [HBr-HOAc (30%), -10°C, 2 h]. The crud reaction mixture must be washed with water and sodium bicarbonate solution prior to drying over phosphorous pentoxide, but even with these extra step, the yields of 14 are high (85-90%) and the purit, of the product is better than 90-95%.

With 14 prepared by the new method as starting material, the step to prepare 15 was studied using different solvents and means of addition of 14 to the reaction mixture. In our initial attempts to prepare 15 we used 18-crown-6 as reaction solvent because our early analytical methods appeared to show high yields of product. After developing a GLC method that resolves the product from the various impurities, it became apparent that the crown ether is not as good a solvent as tetramethylene sulfone (TMS) for this reaction. To date the best method for preparing 15 involves the dropwise addition of 14 over 45 min to a suspension of potassium fluoride in TMS at 165-170°C with a slow nitrogen sweep of volatile reaction products to traps cooled with liquid nitrogen. The reaction product was purified by trap (0°C) to trap (-77°C) distillation at 150 mm. GLC analysis of the headspace above the purified product shows about 80% purity while GLC analysis of a deuterochloroform solution of this material showed 96% purity. 13C NMR analysis of the solution shows primarily 15 with what appears to be a small amount of hydrocarbon impurity. There are no detectable contaminants which contain a C-F bond and there is no detectable carbon disulfide. Carbon disulfide was detected in

crude samples of $\underline{15}$. The yield of $\underline{15}$ was not determined but appears to be low.

Work has been stopped on this synthesis until further notice at the request of USARMDC.

2.3 1,5-Dihydroxy-[1,1,2,2,4,4,5,5- 3 Hg]-3-thiapentane; [2 Hg]thiodiglycol, ([2 Hg]-20)

The synthesis of [2 Hg]thiodiglycol ([2 Hg]- 20) was accomplished by using the scheme shown below. 12,13 Reaction of [2 H4]- 19 with sodium sulfide gave

a 98% yield of $[^2Hg]-20$ after distillation. GLC analysis of this product, however, indicated the presence of about 15% of an impurity with the same retention time as 1,4-thioxane (21). Chromatography of $[^2Hg]-20$ gave a sample

21

that was 98% pure by GLC analysis (peak area ratio), but with an unacceptable elemental analysis that was 0.8% low for carbon and 0.7% low for sulfur. The elemental analysis implied that the sample was wet. Vacuum distillation, however, failed to give a sample with an improved elemental analysis. GLC analysis of the distilled material showed it to be 96% pure. This compares to a commercial sample of 20 from Aldrich Chemical Co. which was 96.4% pure by GLC. The major impurity elutes as a broad peak somewhat earlier than 20 in both the commercial sample and the synthesized [2Hg]-20 sample. The impurity

was shown not to be othylene glycul by comparison of its GLC retention time with an authentic sample. The data on this sample is currently being evaluated by USARMDC to determine if it is sufficiently pure for its intended purpose. If the sample is not pure enough for use, further purification will be attempted.

2.4 WR-255131: $\beta \cdot [16-14C]$ Arteether ([14C]-24)

The master synthesis of β -[16-14C]arteether, ([14r]-24, Chart 5) was completed. Sodium borohydride reduction of [16-14C]artemisinin ([14C]-22) yielded 187 mg of [16-14C]dihydroartemis nin ([14C]-23) (99% radiochemical yield). [14C]-23 was treated with boron trifluoride etherate which gave a 182 mg mixture of α - and β -[16-14C]arteether, (81% radiochemical, 89% chemical yield).

An additional 42 mg of $[^{14}C]$ - $\underline{23}$ from inventory (lot # 5994-123) was treated with boron trifluoride etherate to yield a 38 mg mixture of α - and β - $[^{16}-^{14}C]$ arteether, (92% radiochemical, 82% chemical yield).

The two lots of the α - and β -[16-¹⁴C] arteether mixture were combined and purified by HPLC. The mixture was dissolved in ethanol and 5 mg injections were made onto a preparative column (Rainin Dynamax, C-18, 8 μ , 21.4 x 250 mm, 85% CH₃CN-H₂O, 9.9 mL/min). Each β -[16-¹⁴C] arteether fraction collected was checked for purity on an analytical system, (Altex Ultrasphere-ODS 5 μ , 4.6 x 250 mm, 60% CH₃CN-H₂O, 1.2 mL/min). Impure fractions were combined and repurified. A total of 103 mg (41% chemical yield), 2.17 mCi (51% radio-chemical yield) of β -[16-¹⁴C] arteether of 96% radiochemical purity was obtained.

A significant amount (20%) of α -[16-¹⁴C]arteether (25) is formed in the synthesis of β -[16-¹⁴C]arteether. Methods of isomerizing α -arteether to β -arteether (Chart 6) were investigated with the hope of obtaining more of the

[¹⁴C]-24

a) BF₃-OEt₂, EtOH

desired β -[16-14C] arteether. In a preliminary run, pure α -arteether was treated with boron trifluoride etherate in benzene-ethanol solution. After 42 h at room temperature HPLC analysis showed that a 1:1 mixture of α - and β -arteether was present along with several impurities. To determine the position of equilibrium, two experiments were run: 1) the β -isomer was treated with one equivalent of boron trifluoride etherate in an ethanol-benzene solution and 2) the α -isomer was treated with two equivalents of boron trifluoride etherate in an ethanol-benzene solution. These conditions duplicate those used in the formation of arteether from dihydroartemisinin.

The β -isomer slowly isomerized to a mixture of α - and β - isomers heavily favoring the β -isomer (94:6 after 48 h). The α -isomer slowly isomerized to the β -isomer giving a 1:1 mixture of isomers after 50 h. The reaction was monitored for a total of 140 h, and although the ratio of isomers remained relatively constant at 1:1 during this time, it appeared that the isomers were consumed to produce the major impurity, possibly dihydroartemisinin.

These results indicate that it is possible to isomerize α - to β -arteether but that it is not very efficient. No further work is planned in this area since the synthesis provided the amount of β -[16-14C] arteether that was requested.

2.5 WR-249309: [16-14C]Artemisinin ([14C]-22)

Studies of the preparation of [26-14C] artemisinin ([14C]- $\underline{22}$) according to the method of Avery¹⁴ have been started (Chart 7). Initial problems with the alkylation of the diamion of $\underline{26}$ were traced to incomplete drying of $\underline{26}$ and a low titer of n-butyl lithium. Correction of these problems lead to 94% yield of $\underline{27}$ from alkylation of $\underline{26}$. Ozonization of $\underline{27}$ followed by treatment with acid afforded artemisinin in 37% yield after purification.

The alkylation of $\underline{26}$ is carried out with 2.4 equivalents of methyl iodide. This is done to insure complete conversion of $\underline{26}$ to $\underline{27}$, because at

[¹⁴C]-22

present, we do not have a method for separating <u>26</u> and <u>27</u>. The results of a tracer run suggested that radiolabeled methyl iodide could be conserved by first treating the diamion with one equivalent of [14C]methyl iodide followed later by a second equivalent of nonlabeled methyl iodide. When this strategy was carried out on the master run an 80:20 (determined by 1H NMR) mixture of <u>26</u> and [14C]-<u>27</u> was obtained. We suspect that the lack of complete reaction was caused by impurities in the purchased [14C]methyl iodide since the specific activity of the product, <u>35</u> mCi/mmol, is close to the expected <u>32</u> mCi/mmol if the [14C]methyl iodide was contaminated with <u>20%</u> of its precursor [14C]methanol.

As stated earlier, we do not have a method for separating <u>26</u> and <u>27</u>, so an experiment was done to determine if a mixture of <u>26</u> and <u>27</u> could be converted to <u>27</u> without dialkylation. Accordingly, a 40:60 synthetic mixture of <u>26</u> and <u>27</u> was subjected to the alkylation conditions. The ¹H NMR spectrum of the isolated product was identical with that of <u>27</u> with no detectable <u>26</u> and no indication of dialkylation.

We plan to use this method to convert the 80:20 mixture of $[^{14}C]$ - $\underline{27}$ and $\underline{26}$ from the master run to give pure $[^{14}C]$ - $\underline{27}$. We expect the master run to be completed by the end of May, 1991.

- 2.6 WR-238605: 8-[(4-Amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl-5[3-(trifluoromethyl)phenoxy]quinoline Succinate
 - 2.6.1 8-[(4-Amino-1-methylbutyl)amino]-2,6-dimethoxy-4-methyl-5-[3-(trifluoromethyl)phenoxy][4-14C]quinoline Succinate; [4-14C]-WR-238605([14c]-41)

Work on a repeat synthesis of [4-14C]WR-238605 ([14C]-41) was begun this report period (Chart 8). A previous preparation of this material gave lower than expected yields of the N-oxide [14C]-35 from the reaction of [14C]-34

with m-chloroperbenzoic acid (MCPBA).³ Consequently, this reaction was reinvestigated before starting the repeat synthesis. A sample of MCPBA was purified to determine if its purity was relevant to the yield of <u>35</u> from <u>34</u>. Reaction of <u>34</u> with purified MCPBA gave a 71% of <u>35</u>. This yield approaches our best yield of the past (76%), but the product has a low melting point. Nevertheless, it appears that the purity of the MCPBA is important to the yield of 35.

We plan one additional test reaction with magnesium monoperoxyphthalate as oxidizing agent, which has been described as a good substitute for MCPBA. 15 The synthesis of $[^{14}C]WR-238605$ will be started as soon as this study is complete. The current plan is to prepare a large amount of fluoroquinoline $[^{14}C]-31$, and use it for the synthesis of both $[^{14}C]WR-238605$ and $[^{14}C]WR-238605$

2.6.2 8-[(4-Amino-1-methylbutyl)amino-2,6-dimethoxy-4-methyl-5-[5-(tri-fluoromethyl)[2-3H]phenoxy]quinoline Succinate; [3H]WR-238505

([3H]-41)

Development work for preparing $[^3H]$ WR-238605 has been completed (Chart 9, Scheme I). Initially, we attempted to prepare 2-bromo-5-trifluoromethylphenol as an intermediate by using a reported procedure 16 , but were able to obtain only inseparable mixtures of mono-, di-, and tribromo- compounds. Although, in theory, a mixture of halogenated phenols could be used, a monohalogenated intermediate is preferred for the radiosynthesis because it reduces the number of possible radiolabeled contaminates. Furthermore, based on steric considerations, we believed that a mono halogenated compound substituted as $\underline{45}$ offer advantages with selective catalytic reduction over those substituted as

$$\underbrace{\frac{46}{\text{and } 47}}_{\text{CF}_3} \text{ and } \underbrace{\frac{47}{\text{CF}_3}}_{\text{OH}} \text{ OH}$$

Scheme I

Scheme II

- a) NaOCl, NaI b) ³H₂, Pd/C

Edgar and Falling recently reporteu¹⁷ a new method for preparing fodaphenols whereby one can control the degree of iodination. Treatment of 3-(trifluoromethyl)phenol (42) with one equivalent of sodium iodide and sodium hypochlorite gave a product that was 99% pure by GLC analysis. The mass spectrum of the product showed that only one iodine had been incorporated into 42, and the ¹H NMR spectrum showed that the iodine was not at the 2-position (singlet at δ 7.26), but did not discriminate between 4- and 6-substitution, i.e. 43 and 48. The ¹³C NMR spectrum indicated that the product had structure 43. A singlet at 89.9 ppm was observed for the carbon bearing iodine. Two

42 Y=H,X=H 43 Y=I, X=H 48 Y=H, X=I

quartets at 118.9 and 112 (JCCCF = 4 Hz) were assigned to the 2- and 4-carbons on the basis of long range coupling with the flourine atoms. If the fodine atom had been at the 4-position i.e. $\underline{48}$, then the signal at 89.9 ppm would have been a quartet.

Catalytic reductive deuteration of 43 was carried out in 0.1 N sodium hydroxide with 10% Pd/C catalyst to give a quantitative yield of [2H]-44. The completion of the synthesis of [3H]WR-238605 can proceed from intermediate 43 by at least two methods. The tritium label can be introduced at the beginning of the scheme (Scheme I, Chart 9) or at the last step (Scheme II, Chart 9). Although we considered Scheme II unlikely to be successful because of the sensitivity of the 2-methoxy quinoline system, we felt it worthwhile to confirm this, since Scheme II has nine fewer steps with radioactive material than Scheme I. Accordingly, the free base of WR-238605 (50) was subjected to

the catalytic rediction conditions required for reductive tritiation. Considerable decomposition of $\underline{50}$ was observed under these conditions, thus Scheme I rather than Scheme II will be used to prepare [3 H]WR-238605.

The development work for preparing [3H]WR-238605 is essentially complete and delivery is scheduled for September, 1991.

2.7 WR-242511: 8-[(4-amino-1-methylbutyl)amino]-5-hexoxy-6-methoxy-4-methyl[14C]quinoline (D,L) Tartrate, [14C]WR-242511 ([14C]-55)

The scheme proposed for the synthesis of [14C]WR-242511 ([14C]-55) is outlined in Chart 10. The synthetic scheme differs from the published scheme 18 in that fluoroquinoline 31 replaces chloroquinoline 56 (Chart 11) as the intermediate for preparing '.xxxxyquinoline 51. This was done for several reasons: (a) we have experience in preparing [14C]-31; (b) [14C]-31 is required for the repeat synthesis of [14C]WR-238605 (see earlier), and economies can be made by preparing a large batch of [14C]-31 and using it for both syntheses; (c) the number of steps with radioactive material to intermediate 51 is reduced; and (d) it was anticipated that the fewer steps, plus the expectation that the flourine of 51 would be more susceptible to nucleophilic displacement than the chloride of 56, would lead to a better yield of 51.

Initial studies of the reaction of 31 with hexoxide gave low yields (35-55%) of product 51. It was determined that these low yields were due to a combination of elevated reaction temperature (~ 120°C), long reaction time, and a complicated workup procedure. This reaction gave an 87% yield of 51 when run at 80°C for 3.5 h and worked up by simply removing the solvent under vacuum and chromatographing the residue.

Conversion of 51 to aminoquinoline 52 was accomplished in 86% yield by reduction with iron fillings as reported 18 and in quantitative yield by catalytic hydrogenation with platinum oxide catalyst. The latter method will be used for the radiosynthesis, not only because of its superior yield, but

Chait: 11

- a) NaOH b) HCI c) KOH, Br(CH₂)₅CH₃

also because of the ease of workup. Reaction of $\underline{52}$ with 2-iodophthalimidopentane afforded 53 in 70% yield.

All of the steps up to compound $\underline{53}$ now give acceptable yields for the radiosynthesis leaving only the last two reactions to be studied. The tracer synthesis of [14 C]WR-242511 will be started as soon as these studies are complete.

3.0 Purification

All of the impure samples of [14 C]WR-238605 left over from various preparations and mother liquors were combined with the inventory samples LT-4167-59-1 and CT-6120-85-1 and purified by crystallization from ethanolether. The yield was 310 mg (8.3 mCi) of [14 C]WR-238605 with specific activity of 15.7 mCi/mmol (27 μ Ci/mg) and 96% radiochemical purity by HPLC-RAM19 and 97% radiochemical purity by radio-TLC.20

4.0 Shipments

A total of eight shipments were made to investigators as authorized by the Project Monitor during the period March 23, 1990 - March 22, 1991 (Table 1).

5.0 Inventory

A list of the compounds held in inventory March 22, 1991 by the Research Triangle Institute for the USARMDC is given in Table 2.

6.0 References

- Andrew, L.; Willner, H.; Prochaska, F. T. J. Fluorine Chem. 1979, 13, 273.
- 2. Burton, D. J. J. Fluorine Chem. 1983, 23, 339 and references therein.
- 3. Kepler, J. A., Annual Report, Contract DAMD17-89-C-9062, April, 1990.
- 4. Antimony tribromide was used as a substitute for antimony pentachloride because antimony pentabromide is not a stable entity.
- (a) Burton, D. J.; Kesling, H. S.; Naae, D. G. J. Fluorine Chem. 1981,
 18, 293. (b) Hayashi, S.-I.; Nakai, T.; Ishikawa, K.; Burton D. J.;
 Naae, D. G.; Kesling, H. S. Chem. Lett. 1979, 983.
- (a) Marhevka, J. S.; Johnson, G. D.; Hagan, D. F. Anal Chem. 1982, <u>54</u>, 2607.
 (b) Menichelli, R. P. Am. Ind. Hyg. Assoc. 1982, <u>43</u>, 286.
- .. Bayliff, A. E.; Chambers, R. D. J. Chem. Soc. Perk. Trans. I 1988, 201.
- 8. Zupancic, B. Synthesis 1975, 169.
- 9. Dear, A.; Gilbert, E. Synthesis 1972, 310.
- 10. Ospenson, S. N. U.S. Patent 2824136 (1958).
- 11. Prey, V.; Gutschik, E.; Berbalk, H. Monatsh. Chem. 1950, 91, 556.
- 12. Faber, E. M.; Miller, G. E. Organic Synthesis, Coll. Vol. II, 1943, 576.
- Ott, D. G.; Reifield, :M. J.; Whaley, T W. in "Synthesis and Applications of Isotopically Labelled Compounds, Proc. 2nd Int. Symposium, R. C. Muccino, Ed., Elsevier Science, Amsterdam, 1986, pg. 409.
- 14. Avery, M. A. Final Report on Contract DAMD17-88-C-8048, February 23, 1990.
- Brougham, P.; Cooper, M. S.; Cummerson, D. A.; Heaney, H.; Thompson, N. Synthesis 1987, 1015.
- 16. McBee, E. T.; Rapkin, E. J. Am. Chem. Soc. 1951, 73, 1325.
- 17. Edgar, K. J.; Falling, S. N. J. Org. Chem. 1990, <u>55</u>, 5287.

- 18. Chen, E. H.; Tanabe, K.; Sagglimo, A. J.; Nadiff, E. A. J. Med. Chem. 1987, 30, 1193.
- 19. J & W CN 5μ m 300 x 4.6 mm column; isocratic CH₃OH-CH₃CN-0.01 M NH₄COOH (adjusted to pH 3 with 88% aq HCOOH), 20:50:30; Flow 1 mL/min; Lim, P., Report 656 on Contract DAMD17-85-C-5141, May 9, 1989.
- · 20. Merck 5 x 20 Silica Gel 60 TLC plates; NH40H-CH30H (1:25).

Table 1

SHI PMENTS

March 23, 1990 to March 22, 1991

R No.	Name	Lot.	Amount	Date	Recipient
38605	8-[4-Amino-1-methylbutyl)amino]- 2,6-dimethoxy-4-methyl-5-[(3-tri- fluoromethyl)phenoxy][4-14G]- quinoline Succinate	CT-6120-43	53.2 mg	4/23/90	Cpt. Anthony Theoharldes WRAIR
55131	β-[16-14C]arteether	6376-28	2.17 mci	06/06/5	Cpt. Anthony Theonarides WRAIR
244	[quinoline-3-14C]Chloroquine Diphosphate	3612-15	0.2 mCi	10/22/90	Dr. Thomas Brewer WRAIR
026	6-Methoxy-9-(6-diethylaminohexylamino) lepidine-4-14C dihydro-chloride	CT-5385-99-1	0.127 mci	12/11/90	Dr. Alan Buckpitt
026	6-Methoxy-8-(6-diethylaminohexyl- amino)lepidine-4-14C dihydro- chloride	CT-5385-99-1	1.016 mci	3/12/91	Dr. Alan Buckpitt
38605	8-[(4-Amino-l-lmethylbutyl)amino]- 2,6-dimethoxy-4-methyl-5-[(3-tri- fluoromethyl)phenoxy][4-14G]- quinoline Succinate	CT-6619-85-1	1.048 EC.	3/12/91	Dr. Alan Buckpitt
975	[quinoline-2,4-14C]Primaquine Diphosphate	2176-067	0.01 mCi	3/10/91	Jingdong Zhu
38605	8-[(4-Amino-l-imethylbutyl)amino]- 2,6-dimethoxy-4-methyl-5-[(3-tri- fluoromethyl)phenoxy][4-14G]- quinoline Succinate	CT-6639-85-1	3.078 mCI	3/12/91	Dr. David Hawkins

Table 2

RESEARCH TRIANGLE INSTITUTE Inventory - Contract No. DAMD17-89-C-9062 April 1, 1991

Page 1 of 9

WR No.	Compound	Lot No.	Origin	Specific Activity	Amount Available
1065	2-[(3-Aminopropyl)amino][1,2-14C]- ethanethiol Dihydrochloride	5172-103 5662-81-B 5662-81-A 5662-161	RTI RTI RTI RTI	24.4 mCl/nunole 10.5 mCl/nunole 10.5 mCl/nunole	0.553 mCL 0.508 mCL 0.967 mCL
1544	{3-34jChloroquine	154-3b*	Monsanto	1.56 mC1/mg/	10.18 mC4
+1544	[quinoline-3-14C]Chloroquine Diphosphate	3612-15*	Amersham	2.62 mC1/mmole	0.2 mCf
2721	S-[2-(3-Aminopropylamino)[1,2-14C]ethyl]- phosphorothioic Acid	CT-5324-181 RTI	RTI	101 µCi/mg	1.616 mCi
2823	S-[2-(5-Aminopentylemino)[1,2-14C]ethyl]-phosphorothioic Acid	3612-95	RTT	33.3 /IC1/mg	0.83 mCi
2975	[methoxy-3H]Primaquine Diphosphate	3612-171 155b* 155c*	Monsanto Monsanto Monsanto	55.5 mCl/mnolef 0.18 mCl/mgf 0.13 mCl/mgf	6.61 mCi 0.639 mCi
2975	[1-aminopentyl-1-14C]Primaquine Diphosphate	4776# 4776# 4576# 4778#	Monsaito Monsanto Monsanto Monsanto	16.4 mCi/mmole 15.8 mCi/mmole 15.8 mCi/mmole	0.12 mCi 0.60 mCi 0.11 mCi
+2975	[quinoline-2,4-14G]Primaquine Diphosphate	2850-51-E 2176-067	New England Nuclear New England Nuclear	1.55 mCi/mmole 2.57 mCi/rmole	0.47 mC1 9.985 mC1
	[214C]Pyrimethamine Pamoate Hemihydrate	3612-3	RTI	1.50 mCi/mmole	0.24 mC1
+2978	[2-14C]Pyrimethamine	2572-194 3193-158	Amersham Amersham	14.7 mCi/nmole 54 mCi/nmole	0.75 mCi 25.5 mCi

WR No.	Compound	Lot No.	Origin	Specific	Amount	***************************************
		,	1			3
3090	2,4,7-Triamino-6-(2-methylphenyl)[7-14C]-pteridine	156*	Monsanto	1.88 mCi/mmole	3.02 mCi	a .
3091	N'-(4-Chlorophenyl-14C)-N ⁵ -isopropyl-diguanide Hydrochloride	321*	Monsanto	12 mCi/numole	2.42 mCi	Call Canada Carris
3689	S-[2-(3-Methylaminopropylamino)[1-14C]- athyl]phosphoruthioic Acid	CT-4928-	RTI	54.6 µC1/mg	2.69 mCi	
	•	CT-4928-	R71	46.1 µCi/mg	1.47 mC1	
		CT-5385-115 KTI	KTI	51.5 µC1/mg	10.77 mCA	
3863	1,4-Bis[2-(7-chloro-4-[3-14C]quinolyl)]- aminopropylpiperazine	158*	Monsanto	1.19 mCi/mmole	1.87 mCL	
4809	1-Methyl-4-[4-(7-chloro-4-[3-14C]quinolyl- amino)benzoyl]piperazine	159*	Monsanto	0.29 mCi/mmole	0.325 mC1	27
5473	4,6-Diamino-1-(4-chloro[14C]phenyl)-2,2- dimethyl-1,2-dihydro-s-triazine Hydrochloride	4648*	Monsanto	12.5 mCi/mmole	1.46 mci	e e e e e e e e e e
2677	[14G]Dypnoneguanylhydrazone Hydrochloride	160*	Monsanto	0.44 mCl/mmole	0.80 mC1	e e i i i i i i i i i i i i i i i i i i
5949	2,4-Diamino-5-(3,4,5-trimethoxybenzyl)-(2-14C)pyrimidine	161*	Monsanto	1.35 mCi/mmole	0.09 mc1	
6026	6-Methoxy-8-(6-diethylaminohexylamino)- [2,3-2H2]lepidine Dihydrochloride	CT-4928-79	RTI		517 mg	
6026	6-Methoxy-8-(6-diethylaminohexylamino)- lepidine-4-14C Dihydrochloride	CT-5385- 99-1	RTI	16.1 mCi/umole	3.69 mC1	T. L. T. Sandan Angel Sandan Marianan Angel Sandan
		CT-5385- 99-2	RTI	16.2 mCl/mmole	3.51 mcl	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
6241	[3-14C]Atropine Sulfate Monohydrate	4869-147-3	RTI	13 mCi/mmole	1.8 mCi	

Page 3 of 9

WR No.	Compound	Lot No.	Origin	Specific Activity	Amount Available
6570	[carbamate methyl-14C]Physostigmine	HM-5241-	RTI	55 mCi/mmole	1.0 mCi
•		MM-5241- 102-8	RTI	17.6 mCi/umole	1.0 mci
6570	[2-14C]Physostigmine	CT-5324-	KTI	28.6 mC1/mmol	10.4 mCi
6570	(*)-[1 methyl-2H3-2,2,3,3-2H4]- Physostigmine Salicylate	MH-5616- 131	RTI	N/A	211.0 mg
6570	[benzene ring-3H]Physostigmine	TRQ-4569	Amersham	16.1 Ci/mmole	
9792	4-Trifluoromethylphenyl-4'-fluorophenyl- [14C]ketonehydrazone Hydrochloride	164*	Monsanto	0.365 mCi/mmole	0.03 act
16411	2-[(Hydroxyimino)methyl]-1-([14C]methyl)-pyridinium Chloride	4-19-6764	ILY	1.9 mCi/mmole	3.66 mci
17206	1,4-Bis(trichloromethyl)[3H]benzene	165*	Monsanto		6
25979	1-Amidino-3-(4-nitro[3H]phenyl)ures Monohydrochloride	166*	Monsanto	N/A	23.93 mci
27799	6-{[3-(Diethylamino)[3-14C]propyljamino}-5,8-dimethoxyquinaldine \$\beta\$-Resorcylate	168*	Monsanto	0.41 mCi/mmole	0.03 mCi
30090	2-(3,4-Dichlorophenyl)-6,6-dichloro[2-14C]-quinolyl]-4-dibutylaminomethylcarbinolHydrochloride	169# 302-4m# 302-4b#	Monsanto Monsanto Monsanto	0.54 mCi/mmole 5.43 mCi/mmole 5.38 mCi/mmole	0.273 mC1 2.78 mC1
33063	<pre>a-(Di-n-heptylaminomethyl)-6-bromo-9- phenanthrene(14C)methanol Hydrochloride</pre>	277-3b-1* 277-3b-2* 277-3b-3*	Monsanto Monsanto Monsanto	0.015 mCi/mg 0.015 mCi/mg 0.01 mCi/mg	0.75 mC1 0.75 mC1 0.16 mC1 0.75 mC1

Page 4 of 9

WR No.	Compound	Lot No.	Origin	Specific Activity	Amount Available
38839	4,6-Diamino-1,2-dihydro-2,2-dimethyl-1-(3,4-dichlorobenzyloxy)-1,3-[2-14C]triazine Hydrochloride	173*	Monsanto	1.10 mCi/nmole	0.928 mC1
40070	2,4-Diamino-5-piperonyl[2-14C]pyrimidine	146*	Monsanto	10.6 mCi/mmole	5.85 mC1
46234	5-Chloro-2-hydroxy-N-(2-chloro-4-nitro-phenyl)[ring-U-14G]benzamide	5513-153-B 5513-166	RT.	18.0 mCi/nmole 9.04 mCi/nmole	2.52 mCi 0.828 mCi
46234	5-Chloro-2-hydroxy-N-(2-chloro-4-nitro- [U-13C6]phenyl)benzamide	5662-21	RTI	N/A	161 mg
49808	2-Hydroxy-3-(8-[3H]cyclohexyloctyl)-1,4- naphthoquinone	374a* 1/4b*	Monsanto Monsanto	38.2 mCl/numole! 38.2 mCl/numole!	2.15 mCi 5.47 mCi
61112	3,5-Dichloro-2,6-dimethyl-4[2,6-14C]-pyridinol	342*	Monsanto	4.7 µCi/mg	2.37 mCi
90172	[14C]Terephaloyldihydroxamic Acid	17.5+	Monsanco	2.50 mCi/mmole	4.35 mCL
77135	5-Nitrothiophene-2-[14C]carboxaldehyde Valethydrazone	176*	Monsanto	1.19 mCi/mmole	2.0 mC1
81844	1-(3,4-Dichlorophenyl)-[4-(1-ethyl-3-piperidino-3-amino)-6-methyl-2-[6.14c]-pyrimidinyl]-guanidine Dihydrochloride Monchydrate	177*	Monsanto	0.96 mCi/nmole	0.29 mci
98057	<pre>d-Dibutylaminoethyl-2,6-di(4-chlorophenyl)- 4-pyridino(3H)methanol Hydrochloride</pre>	178*	nonsanto	N/A	10.62 mCi
99210	4,6-Diamino-1,2-dihydro-2,2-dimethyl-1- [7-(2,4,5-trichlorophenoxy)-propyloxy]- s-[2-14C]triazine Hydrochloride	34684	Monsanto	9.53 mCi/umole	1.84 mCi.

Page 5 of

WR No.	Compound	Lot No.	Origin	Specific Activity	Amount Available
99662	2-(3-Dimethylaminopropylamino)-4-trichloro- methyl-6-(4-trichloromethylphenyl)-s-[2,4- l4C]triazine	180-34# 180-35#	Monsanto Monsanto	1.33 mCi/mmole 1.33 mCi/mmole	0.36 mCi 0.36 mCi
99682	3,4-Dichloro-4-trifluoromethylbenzophenone- $[1^4\mathbb{C}]$ carbonylguanylhydrazone Hydrochloride	181* 181-3**	Monsanto Monsanto	1.54 mCi/mmole 1.54 mCi/mmole	0.91 mCi 0.91 mCi
122455	a-(2-Piperidyl)-3,6-bis(trifluoromethyl)- 9-phenanthrene(³ H]methanol Hydrochloride	182* 183-3&*	Monsanto Monsanto	0.18 mCi/mg/ 77.7 mCi/mmole	1.50 mCi 3.02 mCi
122455	<pre>a-(2-Piperidyl)-3,6-biw(trifluoromethyl)- 9-phenanthrene(14C)methanol Hydrochloride</pre>	208-3	Monsanto	3.98 mCi/mmole	0.61 mC1
142490	Erythro-a-(2-piperidyl)-2,8-bis(trifluoro- methyl)-4-quinoline[14C]methanol Hydrochloride	167-3m* 411m* 411b* 2572-64 3793-133	Monsanto Monsanto Monsanto RTI	12.4 mCi/mmole 11.5 mCi/mmole 11.5 mCi/mmole 10.4 mCi/mmole 57.8 mCi/mmole	0.56 mci 2.36 mci 0.23 mci 0.923 mci 3.28 mci
142490	Erythro-a-(2-piperidyl)-2,8-bis(trifluoro-methyl)-4-quinoline[14C]methanol Methane-sulfonate	4338*	Monsanto	11.6 mCi/mmole	1.51 mci
143803	<pre>a-(Di-n-butylaminomethyl)-3,6-bis(trifluoro- methyl)-9-phenanthrene(14G)methanol Hydrochloride</pre>	207-2b*	Monsanto	4.34 mCi/numole	0.82 mC1
148946	<pre>a-(Di-n-butylaminomethyl)2,6-bis(4-tri- fluoromethylphenyl)4-pyridine[14C]- methanol Hydrochloride</pre>	256-2a* 256-2b*	Monsanto Monsanto	3.89 mCi/nmole 3.89 mCi/nmole	0.41 mCi 0.38 mCi
149024	1,18-Diamino-6,13-diaza-9,10-dithia- [7,8,11,12-14C]octadecane Tetrahydrochloride	3612-55	H H	13.5 mCi/mmole	2.3 mci

Page 6 of 9

WR No.	Compound	Lot No.	Origin	Specific Activity	Amount Available
151327	S-[3-(3-Methylaminopropylamino)[1-14C]- propyl]phosphorochiodc Acid	CT-5385	RTI	105 µc1/mg	7.56 mCi
		CT-5324-179 RTI	RII	110 µC1/mg	2.52 FC1
158122	2,4-Diamino-6-(2-napthylaulfonyl)[2-14c]-quinazoline	401-2a* 401-2b*	Monsanto Monsanto	26.7 mCi/nmole 26.7 mCi/nmole	0.24 mCi 1.15 mCi
159412	2,4-Dismino-6-[(3-trifluoromethylphenyl)-thio][2-14C]quinaxoline	289*	Monsanto	14.7 mCi/mmole	3.56 mCi
162878	2,4-Diamino-6[(3-trifluoromethylphenyl)- sulfonyl)[2-14C]quinazoline	298-1m* 298c*	Monsanto Monsanto	14.9 mCi/mmole N/A	1.83 mCi 1.27 mCi
165533	<pre>a-(2-Di-n-butylaminoethyl)-3,6-bis(tri- fluoromethyl)-9-phenanthrene(14C)methanol Hydrochloride</pre>	204-5*	Monsanto	4.94 mCi/mmole	1.77 mCi
165543	<pre>d-(Butylaminoethyl)-3,6-bis(trifluoro- methyl)-9-phenanthrene(14C]methanol Hydrochloride</pre>	242-2*	Monsanto	4.09 mCi/nmole	1.54 mCL
169626	4.6-Diacetamiuo-1,2-dihydro-2,2-dimethyl-1- [7-(2',4',5'-trichlorophenoxy)-propyloxy]- s-[2-14C]triazine	CT-3652- 93-1	RTI	16.3 mCi/mmole	8.16 mCi
171669	1,3-Dichloro-6-trifluoromethy1-9-[1-hydroxy-3-(N,N-di-n-butylamino)[1-14C]propyl]phenanthrene Hydrochloride	3193-135 3959-41	RII RII	14.9 mCi/mmole 14 mCi/mmole	0.03 mCi 0.86 mCi
172435	3-Di-n-butylamino-1-[2,6-bis(trifluoro- methylphenyl)-4-pyridyl][1-14C]propanol Hydrochloride	348b*	Monsanto	10.2 mCi/nmole	1.34 mCi

age 7 of

WR No.	Compound	Lot No.	Origin	Specific Activity	Amount
172435	3-Di-n-butylamino-1-[2,6-bis(trifluoro methylphenyl)-4-pyridyl][1-14C]propanol Methanesulfonato	2850-127	RTI	11.5 mCi/mmole	1.07 mCi
177602	Threo-a-(2-piperidy1)-2,8-bis(trifluoro-methy1)-4-quinoline[14C]methanol Hydro-chloride	469a 469-2a# 469-5a#	Monsanto Monsanto Monsanto	13.4 mCi/mmole 13.4 mCi/mmole 13.4 mCi/mnole	3.30 mCi 1.80 mCi
177602	Threo-a-(2-piperidyl)-2,8-bis(trifluoro- methyl)-4-quinoline(14C)methanol Methanesulfonate	# A A 4 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B	Monsanto Monsanto	11.9 mCi/mmole 11.9 mCi/mmole	0.95 mci 0.025 mci
178460	1,3-Dichloro-6-trifluoromethyl-9-[1-hydroxy-3-(N-n-butylamino)[1-14C]propyl]phenanthrene Hydrochloride	3793-91	RTI	16.0 mC1/mmole	1.17 mCi
180117	<pre>a-(2-Piperidy1)-2-trifluoromethy1-6-(4- trifluoromethylpheny1)-4-pyridine[146]- methanol Hydrochloride</pre>	365-20#	Monsanto	26 µC1/mg	2.16 mCi
. 180117	<pre>a-(2-Piperidy1)-2-trifluoromethy1-6-(4- trifluoromethy1pheny1)-4-pyridine[14G]- methanol Phosphate</pre>	443-28* 443-2b* 536c*	Monsanto Monsanto Monsanto	10.6 mCi/mmole 10.3 mCi/mmole 35 µCi/mg	3.87 mCi 2.81 mCi 2.59 mCi
180409	Threo-a-(2-piperidyl)-2-trifluoromethyl-6- (4-trifluoromethylphenyl)-4-pyridine-[14G]- methanol Phosphate	536&	Monsanto	19.8 mC1/mmole	4.02 mC1
184806	2.8-Bis(trifluoromethyl)-4-(1-hydroxy-3-N- t-butylamino[1-14C]propyl)quinoline Phosphate	385-2a 385-2b* 2850-25	Monsanto Monsanto RII	11.7 mC1/mmole 16.5 µC1/mg 11.2 mC1/mmole	0.57 mci 1.17 mci
194965	194965 4-[14C] <u>t</u> -Butyl-6- <u>t</u> -butylaminomethyl-2- (4-chlorophenyl)phenol Phosphate	3612-151	RTI	20.9 mCi/mmole	0.65 mCi

Page 8 of 9

WR NO.	Compound	Lot No.	Origin	Specific Activity	Amount Available
225448	8-(4-Amino-1-methylbutylamino)-6- methoxy-5-(3-trifluoromethylphenoxy)- [4-14C]quinoline Succinate	CT-2575- 191	RTI	12.5 mCi/mmole	16.45 mCi
226253	Erythro-a-(2-piperidyl)-2-trifluoromethyl. 6,8-dichloro-4-quinoline[14C]methunol Methanesulfonate	2572-114 2572-157	RTI RTI	33 mCi/mmole 10 mCi/mmole	6.54 mCi 8.52 mCi
228258	4'-Chloro-5-[(7-chloro-4-[4-14C]quinoly1)- amino]-3-[(1,1-dimethylethyl)amino]- methyl][1,1'-biphenyl]-2-ol Dihydrochloride	CT-3181- 17-1 CT-3181- 17-2	RTI	20.4 mC1/mmole 20.2 mC1/mmole	19.07 mCi 2.08 mCi
238605	<pre>B-[(4-Amino-1-methylbutyl)amino]-2,6- dimethoxy-4-f.ethyl-5-[(3-trifluoromethyl)- phenoxy][4-14C]quinoline Succinate</pre>	CT-6639- 85-1	RTI	15.7 mCi/mmole	7.05 mci
250165	[6-14C]Allopurinol Riboside	CT-3892-91	RII	7.85 mCi/mmole	0.48 mC1
250710	[N,N-dimethylamino-2H6]Pyridostigmine Bromidu	3959-195	RTI	;	86 4.
250710	[2-14C]Pyridostigmine Bromide	CT-4167- 127	RTI	18.0 mCi/mmole	20.10 mCi
250710	250710 [6-3H]Pyridostigmine Bromide	CT-4537-81	RTI	22.5 Ci/mmole!	250.04 mC1
250710	<pre>{carbamate methyl-14C}Pyridostignine Bromide</pre>	CT-5385-67	RTI	37.6 mCi/mmole	. 66.96 mC.k

Page 9 of 9

WR No.	Compound	Lot No.	Ori;In	Specific Activity	Autount
255131	255131 [ethyl- ² H ₅]\$-Arteether	5513-181-D RTI	RTI	. :	1.04 0
255131	255131 [16-14C]\$-Arteether	5994-83	RTI RTI	1.5 mCi/mmole 6.1 mCi/mmole	4 #C1

* Purity of these compounds have not been checked at RTI. Specific activity and amount available for shipment are those stated by the originating source and have not been confirmed at RTI.

+ WHO compounds.

Actual value of the specific activity will be less depending on length of storage due to the relatively short half life of 3H.

APPENDIX

Synthesis Report

WALTER REED ARMY INSTITUTE OF RESEARCH Contract No. DAHO17-89-C-9062

 β -[16-14C]Arteether, WR-255131

Lot No. 6376-28

June, 1990

Louise Fudala John A. Kepler

Research Triangle Institute
Post Office Box 12194
Research Triangle Park, North Carolina 27709

Synthetic Scheme

[16-¹⁴C]-3

Experimental

Analytical TLC were performed using E. Merck silica gel F-254 plates. Radioactive samples were counted on a Packard Tri-Carb 4000 liquid scintillation spectrometer using internal standard in Ultima Gold cocktail. Developed TLC plates were scanned on a Berthold model LB 283 linear analyzer system. HPLC was done using Waters Associates Model 6000A dual pump system with a Model U6K septumless injector and a Berthold Model LB503-HDS or β -RAM. Flow monitor 1B radioactivity monitors as the detector.

[16-14c]Dihydroginghaosu (2)2

A solution of $[16^{-14}C]$ qinghaosu in toluene (168 mg, 0.60 mmol, 4.31 mCi) was stripped to dryness in a 50 mL recovery flask. The residue was dissolved in methanol (9 mL) and cooled to 0°C via ice bath. Solium borohydride (180 mg, 4.89 mmol) was then added to the solution. The reaction was allowed to stir for 2 h at 0°C under Nz. Radio-TLC (SiOz:GOX hexanes-EtOAc) verified that the reaction was complete. The reaction mixture was quenched with 20% HOAc-MeOH (4 mL), and stripped to dryness yielding a white solid. This solid was extracted with EtOAc (2 x 15 mL), filtered, and the combined extracts were stripped, and dried under vacuum. A white solid was recovered (187 mg, 110% crude chemical yield, 4.25 mCi). This material was used in the next reaction.

	Chemicals and Sourc	<u>es</u>
[16- ¹⁴ C]Qinghaosu	SRI International	\$12524-16-2; 8939-13
Sodium Borohydride	Ventron	14121
Methanol	Fisher	A412-4
Ethyl Acetate	Fisher	E 145-4
Hexanes	Fisher	H 291-4
Acetic Acid	Fisher	A38-212

[16-14C]Arteether (3)3

[16-14C]Dihydroqinghaosu (187 mg, 0.66 mmol) was dissolved in benzene (9.4 mL) in a 50 mL recovery flask. Absolute EtOH (3.2 mL) was added to the solution followed by boron trifluoride etherate (81 μ L, 94.1 mg, 0.66 mmol). The reaction mixture was allowed to stir at room temperature for 24 h under No. Radio-TLC (SiO2:60% hexanes-EtOAc) verified the reaction was complete. The mixture was guenched with saturated NaOAc (4 mL), diluted with 20 mL of H₂O and extracted with EtOAc (2 x 20 mL). The EtOAc extracts were combined, dried with NaoSO4, filtered, and stripped to dryness. A gummy opaque solid (182 mg, 89% crude chemical yield) was recovered. A previously synthesized sample of [16-14c]dihydroginghaosu (lot #5994-123, WR-253997) was treated with BF3.0Et2 in a like manner to yield an additional 37.8 mg (0.73 mCi) of α,β [16-14C]arteether. These two lots were combined and purified by preparative HPLC (Rainin Dynamax C-18, 8 µ, 21.4 x 250 mm, 85% CH3CN-H2C, 9.9 mL/min, 224 nm) to remove $\alpha = [16-14c]$ arteether (tg = 11 min, 51 sec) and impurity (tg = 23 min, 20 sec). The crude product was dissolved in absolute EtOH, and aliquotes containing approximately 5 mg of material were injected on the column. The fractions containing β -[16-14C] arteether were collected (tp = 25 min, 19 sec), stripped, and analyzed by analytical HPLC (Altex Ultrasphere-ODS, 5 p, 4.6 x 250 mm, 60% CH₃CN-H₂O, 1.2 mL/min) using a radiodetector (cell: H130U3). Impure fractions containing significant amounts of β -[16-14C]arteether were combined and repurified. All of the fractions containing pure β -[16-14C] arteether were combined and stripped to give 103.3 mg (2.17 mCi, 51% radiochemical yield) of material with specific activity of 6.58 mCi/mmol. The entire lot (6376-28) was shipped to Dr. Theoharides.

Chemicals and Sources

Absolute Ethanol	Aaper	
Benzene	Burdick & Jackson	AR756
Boron Triflucride Etherate	Aldrich	00212 CT
Sodium Acetate	Fisher	S-210
Ethyl Acetate	Fisher	E145-4
Hexanes	Fisher	H291-4
Sodium Sulfate	Fisher	\$420-3
Acetonitrile	Burdick & Jackson	AX503

References

- 1. Radiomatic Oxi-test, ¹⁴CO, Cat. No. 9001070, Batch No.1 8901, April, 1989, referred to NBS standard 4222.
- 2. Lin, A. J.; Klayman, D. L.; Milhous, W. J. Med. Chem. 1987, 30, 2149-2150.
- 3. Lin, A. J.; Lee, M.; Klayman, D. L. J. Med. Chem. 1989, 30, 1249-1252.