Homework 3 David Yang

- 1. Suppose V_1 and V_2 are independent $\operatorname{Gamma}(1,\lambda)$ random variables that represent waiting times in a Poisson process with rate λ events per unit time. Let $X=V_1$ be the time of the first event and let $Y=V_1+V_2$ be the time of the second event.
 - a) Find the joint CDF for X and Y: $F_{xy}(x,y) = P(X \le x, Y \le y)$. Hint: Graph the positive quadrant of the plane with axes V_1 and V_2 , and mark the region where $V_1 \le x$ and $V_1 + V_2 \le y$. Integrate the joint pdf for V_1 and V_2 over this region to obtain the function $F_{xy}(x,y)$. Note that if there are restrictions on the arguments x and y that you do not specify, then you have failed to define the function.
 - b) Show how to get the marginal CDF F_x by taking the upper limit for y, and F_y by taking the upper limit for x. Differentiate each marginal CDF to get the marginal pdfs.
 - c) Show that taking partial derivatives of F_{xy} with respect to x and y yields the joint pdf:

$$\frac{\partial^2}{\partial x \partial y} F_{xy}(x, y) = \lambda^2 e^{-\lambda y} I(0 < x < y).$$

2. Suppose Z_1 and Z_2 have joint pdf

$$f_{12}(z_1, z_2) = \exp\left[-\log(\pi) - 2(z_1^2 + z_2^2 + \sqrt{3}z_1z_2)\right].$$

- a) Identify this as a bivariate Normal density by specifying the means μ_1 and μ_2 , standard deviations σ_1 and σ_2 , and the correlation ρ .
- b) Any joint pdf may be expressed as a marginal pdf multiplied by a conditional pdf. Show that $f_{12}(z_1,z_2)$ may be written as the product of a standard Normal density for Z_1 and a Normal density for $Z_2 \mid z_1$ that depends on z_1 . Give the conditional mean and variance for $Z_2 \mid z_1$ and show that they agree with the formulas $\mathbb{E}[Z_2 \mid z_1] = \beta_0 + \beta_1 z_1$ with $\beta_1 = \rho \frac{\sigma_2}{\sigma_1}$, $\beta_0 = \mu_2 \beta_1 \mu_1$, and $\operatorname{Var}[Z_2 \mid z_1] = (1 \rho^2)\sigma_2^2$.
- c) You can also show conditional results using representation. For $Z_o \sim N(0,1)$ independent of Z_2 , define $Z_1 = \rho Z_2 + \sqrt{1-\rho^2} Z_o$ to have correlation ρ with Z_2 . Show that conditioning on $Z_2 = z_2$ and treating this as constant in the representation of Z_1 results in a conditional distribution $Z_1 \mid z_2$ that mirrors that of $Z_2 \mid z_1$ from part (b).
- 3. Suppose X and Y have joint pdf $f_{xy}(x,y) = I(0 < x < 1, -x < y < x)$.
 - a) Explain how you can tell, without finding the marginal densities, that the conditional densities are Uniform. Write out the conditional densities $f_{x|y}(x\mid y)$ and $f_{y|x}(y\mid x)$.

- b) Explain how you can tell, without finding the marginal densities, that X and Y are not independent. Find the marginal pdf's $f_x(x)$ and $f_y(y)$ and verify that $f_{xy}(x,y) \neq f_x(x)f_y(y)$.
- c) Show that X and Y are uncorrelated.
- a) Suppose X_1 and X_2 are Bernoulli random variables with expectations p_1 and p_2 . Show that X_1 and X_2 are independent if and only if they are uncorrelated. This shows the Bernoulli distribution is special like the multivariate Normal distribution in that uncorrelated implies independence.
- b) Suppose $Y = X_1 + X_2$ with X_1 and X_2 independent. If you learn that Y and X_1 are Normal variables, prove that X_2 is also a Normal random variable.