Convert an NFA to DFA An Example Rabin-Scott subset construction Lounden, Exercise 2.14, page 92

Convert the NFA below into a DFA using the subset construction.

An example NFA. Lounden, Example 2.10, page 58.

Convert the NFA into a DFA using the subset construction. Each state of the DFA is a set of states of the NFA. The initial state of the DFA is the ϵ -closure of the initial state of the NFA.

$$\epsilon$$
-Close $\{0\} = \{0, 1, 3\} = S_0$

Determine the transition function of the DFA on all inputs $\sigma \in \Sigma$. Begin with the initial state S_0 , and determine the transition on input a.

$$\begin{array}{c} \epsilon\text{-CLOSE}\{0\} &= \{0,1,3\} = S_0 \\ \delta(S_0,a) &= \epsilon\text{-CLOSE}\{1,2\} \\ \delta(S_0,b) &= \end{array}$$

With the initial state $S_0 = \{0, 1, 3\}$, determine the transition on input a. The ϵ -closure of the set $\{1, 2\}$ is $\{1, 2, 3\}$. This is a new state in the DFA, call it S_1 .

$$\epsilon$$
-close $\{0\} = \{0, 1, 3\} = S_0$
 $\delta(S_0, a) = \epsilon$ -close $\{1, 2\} = \{1, 2, 3\} = S_1$
 $\delta(S_0, b) =$

With the initial state $S_0 = \{0, 1, 3\}$, determine the transition on input b.

$$\begin{array}{ll} \epsilon\text{-CLOSE}\{0\} &= \{0,1,3\} = S_0 \\ \delta(S_0,a) &= \epsilon\text{-CLOSE}\{1,2\} = \{1,2,3\} = S_1 \\ \delta(S_0,b) &= \epsilon\text{-CLOSE}\{3\} \end{array}$$

The ϵ -closure of the set $\{3\}$ is $\{1,3\}$. This is a new state in the DFA, call it S_2 .

$$\begin{array}{ccc} \epsilon\text{-Close}\{0\} &= \{0,1,3\} = S_0 \\ \delta(S_0,a) &= \epsilon\text{-Close}\{1,2\} = \{1,2,3\} = S_1 \\ \delta(S_0,b) &= \epsilon\text{-Close}\{3\} &= \{1,3\} = S_2 \end{array}$$

Determine the transition function of the DFA from state S_1 on inputs a and b. On a there is nowhere to go in the NFA, so we create a "sink" state for the DFA.

$$\delta(S_0, a) = \epsilon\text{-CLOSE}\{1, 2\} = \{1, 2, 3\} = S_1$$

 $\delta(S_0, b) = \epsilon\text{-CLOSE}\{3\} = \{1, 3\} = S_2$
 $\delta(S_1, a) = \epsilon\text{-CLOSE}\{\} = \emptyset = S_3$
 $\delta(S_1, b) =$

Determine the transition function of the DFA from state S_1 on inputs a and b. On b we happen to transition to an existing state S_2 .

$$\delta(S_0, a) = \epsilon \text{-CLOSE}\{1, 2\} = \{1, 2, 3\} = S_1$$

 $\delta(S_0, b) = \epsilon \text{-CLOSE}\{3\} = \{1, 3\} = S_2$
 $\delta(S_1, a) = \epsilon \text{-CLOSE}\{\} = \emptyset = S_3$
 $\delta(S_1, b) = \epsilon \text{-CLOSE}\{3\} = \{1, 3\} = S_2$

Determine the transition from state S_2 on inputs a and b.

$$\delta(S_0, a) = \epsilon\text{-CLOSE}\{1, 2\} = \{1, 2, 3\} = S_1$$
 $\delta(S_0, b) = \epsilon\text{-CLOSE}\{3\} = \{1, 3\} = S_2$
 $\delta(S_1, a) = \epsilon\text{-CLOSE}\{\} = \emptyset = S_3$
 $\delta(S_1, b) = \epsilon\text{-CLOSE}\{3\} = \{1, 3\} = S_2$
 $\delta(S_2, a) = \epsilon\text{-CLOSE}\{\} = \emptyset = S_3$
 $\delta(S_2, b) = \epsilon\text{-CLOSE}\{\} = \delta(S_2, b) = \epsilon\text{-CLOSE}\{\}$

Determine the transition from state S_2 on inputs a and b.

$$\begin{array}{lll} \delta(S_{0},a) = \epsilon\text{-CLOSE}\{1,2\} = \{1,2,3\} = S_{1} \\ \delta(S_{0},b) = \epsilon\text{-CLOSE}\{3\} = \{1,3\} = S_{2} \\ \delta(S_{1},a) = \epsilon\text{-CLOSE}\{\} = \emptyset = S_{3} \\ \delta(S_{1},b) = \epsilon\text{-CLOSE}\{3\} = \{1,3\} = S_{2} \\ \delta(S_{2},a) = \epsilon\text{-CLOSE}\{\} = \emptyset = S_{3} \\ \delta(S_{2},b) = \epsilon\text{-CLOSE}\{3\} = \{1,3\} = S_{2} \end{array}$$

Determining the transition from state S_2 on inputs a and b is easy; from the empty set of states there are no transitions in the NFA. In the DFA this is represented by a transition from the empty set back to itself.

All the edges of the DFA have been discovered.

Q	Σ	Q
$\overline{\{0,1,3\}}$	а	{1,2,3}
$\{0, 1, 3\}$	b	$\{1,3\}$
$\{1, 2, 3\}$	a	Ø
$\{1, 2, 3\}$	b	$\{1, 3\}$
$\{1, 3\}$	a	Ø
$\{1, 3\}$	b	$\{1, 3\}$
Ø	a	Ø
Ø	b	Ø

The final states of the DFA are determined from the final states of the NFA. State 3 was the only final state in the NFA. Any set of NFA states containing a final state is a final state in the DFA.

Q	Σ	Q
$\frac{1}{\{0,1,3\}}$	<u>а</u>	{1,2,3}
$\{0,1,3\}$		
$\{1, 2, 3\}$	a	Ø
$\{1, 2, 3\}$	b	$\{1, {\color{red}3}\}$
$\{1, 3\}$	a	Ø
{1, 3 }	b	$\{1, 3\}$
Ø	a	Ø
Ø	b	Ø

Convert an NFA to DFA (Solution)

Lounden, Exercise 2.14, page 92. Convert the NFA of Example 2.10 into a DFA using the subset construction. The resulting DFA is shown below on the right.

