

## ADVERSARIAL MACHINE LEARNING

## DEFENCE STRATEGIES

Adversarial Training

Distillation

- Regularisation (Dropout, Wright Decay etc., Label Smoothing)
- Ensemble

Virtual Adversarial Training

## DEFENSE: ADVERSARIAL TRAINING

Modified loss function:

$$\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha)J(\theta, x + \epsilon sign(\nabla_x J(\theta, x, y)))$$

Augment the adversarial examples into training dataset.

**Algorithm 1** Adversarial training of network N.

Size of the training minibatch is m. Number of adversarial images in the minibatch is k.

- 1: Randomly initialize network N
- 2: repeat
- Read minibatch  $B = \{X^1, \dots, X^m\}$  from training set
- 4: Generate k adversarial examples  $\{X_{adv}^1, \dots, X_{adv}^k\}$  from corresponding clean examples  $\{X^1, \dots, X^k\}$  using current state of the network N
- 5: Make new minibatch  $B' = \{X_{adv}^1, \dots, X_{adv}^k, X^{k+1}, \dots, X^m\}$
- 6: Do one training step of network N using minibatch B'
- 7: **until** training converged

## DEFENCE STRATEGIES

- Adversarial Training
- Distillation
- Regularisation (Dropout, Wright Decay etc., Label Smoothing)
- Ensemble
- Virtual Adversarial Training