S2 Appendix.

PLOS-submission-eps-converted-to.pdf

Ultradian endocrine model

The primary state variables are the glucose concentration G, the plasma insulin concentration I_p , and the interstitial insulin concentration I_i ; these three state variables are appended with a three stage filter (h_1, h_2, h_3) which reflects the response of the plasma insulin to glucose levels [1]. The resulting ordinary differential equations take the form [2]:

$$\frac{dI_p}{dt} = f_1(G) - E\left(\frac{I_p}{V_p} - \frac{I_i}{V_i}\right) - \frac{I_p}{t_p}$$
(1a)

$$\frac{dI_i}{dt} = E\left(\frac{I_p}{V_p} - \frac{I_i}{V_i}\right) - \frac{I_i}{t_i} \tag{1b}$$

$$\frac{dG}{dt} = f_4(h_3) + I_G(t) - f_2(G) - f_3(I_i)G$$
 (1c)

$$\frac{dh_1}{dt} = \frac{1}{t_d} (I_p - h_1) \tag{1d}$$

$$\frac{dh_2}{dt} = \frac{1}{t_d} (h_1 - h_2) \tag{1e}$$

$$\frac{dh_3}{dt} = \frac{1}{t_d} (h_2 - h_3) \tag{1f}$$

The major parameters include: (i) E, a rate constant for exchange of insulin between the plasma and remote compartments; (ii) I_G , the exogenous (externally driven) glucose delivery rate; (iii) t_p , the time constant for plasma insulin degradation; (iv) t_i , the time constant for the remote insulin degradation; (v) t_d , the delay time between plasma insulin and glucose production; (vi) V_p , the volume of insulin distribution in the plasma; (vii) V_i , the volume of the remote insulin compartment; (viii) V_g , the volume of the glucose space [3] . $f_1(G)$ represents the rate of insulin production; $f_2(G)$ represents insulin-independent glucose utilization; $f_3(I_i)G$ represents insulin-dependent glucose utilization; $f_4(h_3)$ represents delayed insulin-dependent glucose utilization;

$$f_1(G) = \frac{R_m}{1 + \exp(\frac{-G}{V_q c_1} + a_1)}$$
 (2)

$$f_2(G) = U_b(1 - \exp(\frac{-G}{C_2 V_a})) \tag{3}$$

$$f_3(I_i) = \frac{1}{C_3 V_a} \left(U_0 + \frac{U_m - U_0}{1 + (\kappa I_i)^{-\beta}} \right) \tag{4}$$

$$f_4(h_3) = \frac{R_g}{1 + \exp(\alpha(\frac{h_3}{C_5 V_p} - 1))}$$
 (5)

$$\kappa = \frac{1}{C_4} \left(\frac{1}{V_i} - \frac{1}{Et_i} \right) \tag{6}$$

The nutritional driver of the model $I_G(t)$ is defined over N discrete nutrition events [3], where k is the decay constant and event j occurs at time t_j with carbohydrate quantity m_j

$$I_G(t) = \sum_{j=1}^{N} \frac{m_j k}{60} \exp(k(t_j - t)) \text{ where } N = \#\{t_j < t\}$$
 (7)

PLOS 1/3

PLOS-submission-eps-converted-to.pdf

 ${\tt UltradianSteadyState.png}$

Fig 1. Simulation of post-prandial ultradian glucose oscillations returning to equilibrium. This simulation was performed for a 45 g carbohydrate meal, and employed the initial conditions and parameter values reported by Sturis *et al.* [1]

Table 1. Full list of parameters for the ultradian glucose-insulin model [2]. Note that IIGU and IDGU denote insulin-independent glucose utilization and insulin-dependent glucose utilization, respectively.

Ultradian model parameters		
Name	Nominal Value	Meaning
V_p	3 l	plasma volume
V_i	11 1	interstitial volume
V_g	10 1	glucose space
E	$0.2 \ \mathrm{l} \ \mathrm{min}^{-1}$	exchange rate for insulin between remote and plasma compartments
t_p	6 min	time constant for plasma insulin degradation (via kidney and liver filtering)
t_i	100 min	time constant for remote insulin degradation (via muscle and adipose tissue)
t_d	12 min	delay between plasma insulin and glucose production
k	$0.5~\mathrm{min}^{-1}$	rate of decayed appearance of ingested glucose
R_m	$209~\mathrm{mU~min^{-1}}$	linear constant affecting insulin secretion
a_1	6.6	exponential constant affecting insulin secretion
C_1	300 mg l^{-1}	exponential constant affecting insulin secretion
C_2	144 mg l^{-1}	exponential constant affecting IIGU
C_3	100 mg l^{-1}	linear constant affecting IDGU
C_4	80 mU l^{-1}	factor affecting IDG
C_5	$26 \; {\rm mU} \; {\rm l}^{-1}$	exponential constant affecting IDGU
U_b	$72~{\rm mg~min^{-1}}$	linear constant affecting IIGU
U_0	4 mg min^{-1}	linear constant affecting IDGU
U_m	$94~{\rm mg~min^{-1}}$	linear constant affecting IDGU
R_g	$180 \mathrm{\ mg\ min^{-1}}$	linear constant affecting IDGU

References

- 1. Sturis J, Polonsky KS, Mosekilde E, Cauter EV. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am J Physiol Endocrinol Metab. 1991;260:E801–E809.
- 2. Keener J, Sneyd J. Mathematical physiology II: Systems physiology. Springer; 2008.
- 3. Albers D, Elhadad N, Tabak E, Perotte A, Hripcsak G. Dynamical Phenotyping: Using Temporal Analysis of Clinically Collected Physiologic Data to Stratify Populations. PLoS One. 2014;6:e96443.