Student 3000 Criminal Data

coop711 2015년 3월 19일

Structure of Data

• W. S. Gosset 이 t-분포를 유도하느라고 모의실험에 활용한 자료는 다음과 같음.

crimtab

#	142.24	144.78	147.32	149.86	152.4	154.94	157.48	160.02	162.56	165.1
# 9.4		0	0	0	0	0	0	0	0	0
# 9.5	0	0	0	0	0	1	0	0	0	0
# 9.6	0	0	0	0	0	0	0	0	0	0
# 9.7	0	0	0	0	0	0	0	0	0	0
# 9.8	0	0	0	0	0	0	1	0	0	0
# 9.9	0	0	1	0	1	0	1	0	0	0
# 10	1	0	0	1	2	0	2	0	0	1
# 10.	1 0	0	0	1	3	1	0	1	1	0
# 10.	2 0	0	2	2	2	1	0	2	0	1
# 10.	3 0	1	1	3	2	2	3	5	0	0
# 10.	4 0	0	1	1	2	3	3	4	3	3
# 10.	5 0	0	0	1	3	7	6	4	3	1
# 10.	6 0	0	0	1	4	5	9	14	6	3
# 10.	7 0	0	1	2	4	9	14	16	15	7
# 10.	8 0	0	0	2	5	6	14	27	10	7
# 10.	9 0	0	0	0	2	6	14	24	27	14
# 11	0	0	0	2	6	12	15	31	37	27
# 11.	1 0	0	0	3	3	12	22	26	24	26
# 11.	2 0	0	0	3	2	7	21	30	38	29
# 11.	3 0	0	0	1	0	5	10	24	26	39
# 11.	4 0	0	0	0	3	4	9	29	56	58
# 11.	5 0	0	0	0	0	5	11	17	33	57
# 11.	6 0	0	0	0	2	1	4	13	37	39
# 11.	7 0	0	0	0	0	2	9	17	30	37
# 11.	8 0	0	0	0	1	0	2	11	15	35
# 11.	9 0	0	0	0	1	1	2	12	10	27
# 12	0	0	0	0	0	0	1	4	8	19
# 12.	1 0	0	0	0	0	0	0	2	4	13
# 12.		0	0	0	0	0	1	2	5	6
# 12.	3 0	0	0	0	0	0	0	0	4	8
# 12.	4 0	0	0	0	0	0	1	1	1	2
# 12.	5 0	0	0	0	0	0	0	1	0	1
# 12.	6 0	0	0	0	0	0	0	0	0	1
# 12.	7 0	0	0	0	0	0	0	0	0	1
# 12.	8 0	0	0	0	0	0	0	0	0	0
# 12.	9 0	0	0	0	0	0	0	0	0	0
# 13	0	0	0	0	0	0	0	0	0	0
# 13.	1 0	0	0	0	0	0	0	0	0	0

1											
	13.2	0	0	0	0	0	0	0	0	0	0
	13.3	0	0	0	0	0	0	0	0	0	0
	13.4	0	0	0	0	0	0	0	0	0	0
	13.5	0	0	0	0	0	0	0	0	0	0
##		167.64	170.18			177.8		182.88	185.42		190.5
	9.4	0	0	0	0	0	0	0	0	0	0
	9.5	0	0	0	0	0	0	0	0	0	0
	9.6	0	0	0	0	0	0	0	0	0	0
	9.7	0	0	0	0	0	0	0	0	0	0
	9.8	0	0	0	0	0	0	0	0	0	0
	9.9	0	0	0	0	0	0	0	0	0	0
##		0	0	0	0	0	0	0	0	0	0
	10.1	0	0	0	0	0	0	0	0	0	0
	10.2	0	0	0	0	0	0	0	0	0	0
	10.3	0	0	0	0	0	0	0	0	0	0
	10.4	0	0	0	0	0	0	0	0	0	0
	10.5	3	1	0	1	0	0	0	0	0	0
	10.6	1	0	0	1	0	0	0	0	0	0
	10.7	3	1	2	0	0	0	0	0	0	0
	10.8	1	2	1	0	0	0	0	0	0	0
	10.9	10	4	1	0	0	0	0	0	0	0
##		17	10 7	6	0	0	0	0	0	0	0
	11.1 11.2	24 27	20	4	1	0	0	0	0	0	0 0
	11.3	26	24	4 7	1 2	0	0	0	0	0	0
	11.4	26	22	10	11	0	0	0	0	0	0
	11.5	38	34	25	11	2	0	0	0	0	0
	11.6	48	38	27	12	2	2	0	1	0	0
	11.7	48	45	24	9	9	2	0	0	0	0
	11.8	41	34	29	10	5	1	0	0	0	0
	11.9	32	35	19	10	9	3	1	0	0	0
##		42	39	22	16	8	2	2	0	0	0
	12.1	22	28	15	27	10	4	1	0	0	0
	12.2	23	17	16	11	8	1	1	0	0	0
	12.3	10	13	20	23	6	5	0	0	0	0
	12.4	7	12	4	7	7	1	0	0	1	0
	12.5	3	12	11	8	6	8	0	2	0	0
	12.6	0	3	5	7	8	6	3	1	1	0
	12.7	1	7	5	5	8	2	2	0	0	0
	12.8	1	2	3	1	8	5	3	1	1	0
	12.9	0	1	2	2	0	1	1	0	0	0
##		3	0	1	0	1	0	2	1	0	0
	13.1	0	1	1	0	0	0	0	0	0	0
	13.2	1	1	0	1	0	3	0	0	0	0
	13.3	0	0	0	0	0	0	1	0	1	0
	13.4	0	0	0	0	0	0	0	0	0	0
##	13.5	0	0	0	0	0	0	0	1	0	0
##		193.04	195.58								
##	9.4	0	0								
##	9.5	0	0								
##	9.6	0	0								
##	9.7	0	0								
##	9.8	0	0								
##	9.9	0	0								

```
## 10
             0
                     0
## 10.1
             0
                     0
## 10.2
             0
                     0
## 10.3
             0
                     0
## 10.4
             0
                     0
## 10.5
             0
                     0
## 10.6
             0
                     0
## 10.7
             0
                     0
## 10.8
             0
                     0
## 10.9
             0
                     0
## 11
              0
                     0
## 11.1
             0
                     0
## 11.2
             0
                     1
## 11.3
             0
                     0
## 11.4
                     0
             0
## 11.5
             0
                     0
## 11.6
             0
                     0
## 11.7
                     0
             0
## 11.8
             0
                     0
## 11.9
             0
                     0
## 12
             0
                     0
## 12.1
                     0
             0
## 12.2
             0
                     0
## 12.3
             0
                     0
## 12.4
              0
                     0
## 12.5
             0
                     0
## 12.6
             0
                     0
## 12.7
             0
                     0
## 12.8
                     0
             0
## 12.9
             0
                     0
## 13
                     0
             0
## 13.1
             0
                     0
## 13.2
             0
                     0
## 13.3
             0
                     0
## 13.4
             0
                     0
## 13.5
              0
                     0
```

```
str(crimtab)
```

```
## 'table' int [1:42, 1:22] 0 0 0 0 0 0 1 0 0 0 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:42] "9.4" "9.5" "9.6" "9.7" ...
## ..$ : chr [1:22] "142.24" "144.78" "147.32" "149.86" ...
```

• 이 자료를 long format 으로 전환하는 과정은 다음과 같음. as.data.frame() 에서 stringsAsFactors=FALSE가 매우 중요한 역할을 하는 것임. 이 옵션을 설정하지 않을 경우 Factor로 잡히면 numeric으로 전환할 수 없게 됨. Factor는 본질적으로 음이 아닌 정수로 취급됨.

```
crimtab.2<-crimtab
crimtab.2.df<-as.data.frame(crimtab.2, stringsAsFactors = F)</pre>
crimtab.2.df$finger<-as.numeric(crimtab.2.df$Var1)</pre>
crimtab.2.df$height<-as.numeric(crimtab.2.df$Var2)</pre>
str(crimtab.2.df)
## 'data.frame':
                  924 obs. of 5 variables:
## $ Var1 : chr "9.4" "9.5" "9.6" "9.7" ...
## $ Var2 : chr "142.24" "142.24" "142.24" "142.24" ...
## $ Freq : int 0 0 0 0 0 1 0 0 0 ...
## $ finger: num 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 ...
## $ height: num 142 142 142 142 ...
crimtab.df<-crimtab.2.df[,3:5]</pre>
str(crimtab.df)
## 'data.frame':
                  924 obs. of 3 variables:
## $ Freq : int 0 0 0 0 0 1 0 0 0 ...
## $ finger: num 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 ...
## $ height: num 142 142 142 142 ...
crimtab.long<-apply(crimtab.df[,2:3],2, function(x)rep(x, crimtab.df[,1]))</pre>
str(crimtab.long)
##
   num [1:3000, 1:2] 10 10.3 9.9 10.2 10.2 10.3 10.4 10.7 10 10.1 ...
```

```
## num [1:3000, 1:2] 10 10.3 9.9 10.2 10.2 10.3 10.4 10.7 10 10.1 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:2] "finger" "height"
```

```
plot(finger~height, data=crimtab.long)
```



```
str(crimtab.long)
```

```
## num [1:3000, 1:2] 10 10.3 9.9 10.2 10.2 10.3 10.4 10.7 10 10.1 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:2] "finger" "height"
```

• 변수 각각의 히스토그램은?

```
par(mfrow=c(1,2))
hist(crimtab.long[,2], main="Histogram of Height", xlab="height(cm)")
hist(crimtab.long[,1], main="Histogram of Finger Length", xlab= "finger length(cm)")
```


Histogram of Finger Length

• 평균과 표준편차를 구하면 다음과 같음. 이를 모수로 하는 정규곡선을 덧씌워 볼 것.

```
apply(crimtab.long,2, mean)
```

```
## finger height
## 11.54737 166.30142
```

```
apply(crimtab.long,2, sd)
```

```
## finger height
## 0.5487137 6.4967015
```

• Quetelet의 가슴둘레 자료에서 살핀 바와 같이 이 자료를 그대로 ad.test 등에 적용하면 매우 작은 p-value 가 예상됨.

```
library(nortest)
ad.test(crimtab.long[,1])
```

```
##
## Anderson-Darling normality test
##
## data: crimtab.long[, 1]
## A = 4.7094, p-value = 1.153e-11
```

```
ad.test(crimtab.long[,2])
```

```
##
## Anderson-Darling normality test
##
## data: crimtab.long[, 2]
## A = 18.8368, p-value < 2.2e-16</pre>
```

• height의 경우 인치 단위로 측정한 자료를 센티 단위로 변환한 것임. 이 점에 유의하여 원 자료의 모습에 가깝게 noise 를 넣어 적용하면

```
r.noise<-runif(3000)-0.5
hist(r.noise, prob=T, xlim=c(-0.5,0.5), ylim=c(0,1.5))</pre>
```

Histogram of r.noise


```
ad.test(crimtab.long[,1]+r.noise*2.54)
```

```
##
## Anderson-Darling normality test
##
## data: crimtab.long[, 1] + r.noise * 2.54
## A = 0.2784, p-value = 0.6497
```

```
cvm.test(crimtab.long[,1]+r.noise*2.54)
```

```
##
##
        Cramer-von Mises normality test
##
## data: crimtab.long[, 1] + r.noise * 2.54
## W = 0.0368, p-value = 0.7409
lillie.test(crimtab.long[,1]+r.noise*2.54)
##
##
        Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: crimtab.long[, 1] + r.noise * 2.54
## D = 0.0117, p-value = 0.4046
ad.test(crimtab.long[,2]+r.noise/10)
##
##
        Anderson-Darling normality test
##
## data: crimtab.long[, 2] + r.noise/10
## A = 0.6739, p-value = 0.07839
##
##
        Cramer-von Mises normality test
##
## data: crimtab.long[, 2] + r.noise/10
## W = 0.1029, p-value = 0.1026
lillie.test(crimtab.long[,2]+r.noise/10)
##
##
        Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: crimtab.long[, 2] + r.noise/10
## D = 0.0143, p-value = 0.1461
```