Hw-4

Homework 4

Q1

Below we import the data, perform principle component analysis and train a basic liniear model with the first four components (highest variance explained).

```
# load the libraries
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
crime = read.table('../Hw-3/uscrime.txt', header = TRUE)
crime.pca <- prcomp(crime[1:15], scale. = TRUE)</pre>
summary(crime.pca)
## Importance of components%s:
                              PC1
                                     PC2
                                            PC3
                                                     PC4
                                                             PC5
                                                                     PC6
                           2.4534 1.6739 1.4160 1.07806 0.97893 0.74377
## Standard deviation
## Proportion of Variance 0.4013 0.1868 0.1337 0.07748 0.06389 0.03688
## Cumulative Proportion 0.4013 0.5880 0.7217 0.79920 0.86308 0.89996
##
                               PC7
                                       PC8
                                               PC9
                                                       PC10
                                                               PC11
## Standard deviation
                           0.56729 0.55444 0.48493 0.44708 0.41915 0.35804
## Proportion of Variance 0.02145 0.02049 0.01568 0.01333 0.01171 0.00855
## Cumulative Proportion 0.92142 0.94191 0.95759 0.97091 0.98263 0.99117
                              PC13
                                     PC14
                                             PC15
## Standard deviation
                           0.26333 0.2418 0.06793
## Proportion of Variance 0.00462 0.0039 0.00031
## Cumulative Proportion 0.99579 0.9997 1.00000
The first 4 elements explain 80% of the variance. Lets have a look at the breakdown graphically:
plot(crime.pca, type = "1")
```

crime.pca

biplot(crime.pca, scale = 0)

From the elbow graph we see the diminishing return each component contributes. From the biplot we see the rotation and level of importance.

```
sd <- crime.pca$sdev</pre>
loadings <- crime.pca$rotation</pre>
rownames(loadings) <- colnames(crime[1:15])</pre>
scores <- crime.pca$x</pre>
crime.train <- as.data.frame(crime.pca$x[,1:4], header = T)</pre>
crime.train$Y <- crime$Crime</pre>
model.pca <- lm(Y~., data=crime.train)</pre>
summary(model.pca)
##
## Call:
## lm(formula = Y ~ ., data = crime.train)
##
## Residuals:
##
       Min
                 1Q Median
                                   3Q
                                           Max
   -557.76 -210.91 -29.08
                                       810.35
                              197.26
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  905.09
                                49.07
                                       18.443
                                               < 2e-16 ***
## PC1
                                20.22
                                        3.225
                                                0.00244 **
                   65.22
## PC2
                  -70.08
                                29.63 -2.365
                                                0.02273 *
```

With an r² of 30.1% we explain less variance than last weeks homework. Below we can explore preprocessing the parameters in order to reverse engineer the model back into the original factors. I will use 10-fold cross validation in the training.

```
# calculate the pre-process parameters from the dataset
preprocessParams <- preProcess(crime[1:15], method=c("center", "scale", "pca"), pcaComp = 4)
# preprocessParams$rotation
# transform the dataset using the parameters
transformed <- predict(preprocessParams, crime[1:15])</pre>
# summarize the transformed dataset
# summary(transformed)
transformed$Y <- crime$Crime</pre>
control <- trainControl(method="repeatedcv", number=10, repeats=3)</pre>
metric <- "RMSE"</pre>
# lm
set.seed(7)
fit.lm <- train(Y~., data=transformed, method="lm", metric=metric, trControl=control)
final.model <- fit.lm$finalModel</pre>
model.inter<-as.data.frame(preprocessParams$rotation)</pre>
for (i in 1:4){
  model.inter[,i] <- model.inter[,i]*final.model$coefficients[i+1]</pre>
}
coefs <- data.frame(row.names = c(colnames(crime[1:15]), "intercept"))</pre>
for (i in 1:15){
  coefs[i,1] <- sum(model.inter[i,])</pre>
coefs[16,1]<-final.model$coefficients[1]</pre>
coefs
##
                      V1
## M
              -21.277963
## So
               10.223091
## Ed
               14.352610
```

```
## Po1
              63.456426
## Po2
              64.557974
## LF
             -14.005349
## M.F
             -24.437572
              39.830667
## Pop
## NW
              15.434545
## U1
             -27.222281
## U2
               1.425902
              38.607855
## Wealth
```

```
## Ineq -27.536348
## Prob 3.295707
## Time -6.612616
## intercept 905.085106
```

So this is our model translated back into the original elements in via "un-rotation"

$\mathbf{Q2}$

Below we build the models for the regression tree and the random forest:

```
library(caret)
library(rpart)
library(corrplot)
crime = read.table('../Hw-3/uscrime.txt', header = TRUE)
# Run algorithms using 10-fold cross validation
control <- trainControl(method="repeatedcv", number=10, repeats=3)</pre>
metric <- "RMSE"
set.seed(42)
grid <- expand.grid(.cp=c(0, 0.05, 0.1))
fit.cart <- train(Crime~., data=crime, method="rpart", metric=metric, tuneGrid=grid, preProc=c("center"
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info =
## trainInfo, : There were missing values in resampled performance measures.
# Random Forest
set.seed(42)
fit.rf <- train(Crime~., data=crime, method="rf", metric=metric, preProc=c("BoxCox"), trControl=control
## Loading required package: randomForest
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
# Compare algorithms
transform_results <- resamples(list(CART=fit.cart, RF=fit.rf))</pre>
summary(transform_results)
##
## Call:
## summary.resamples(object = transform_results)
## Models: CART, RF
## Number of resamples: 30
##
## RMSE
##
             Min. 1st Qu.
                           Median
                                        Mean 3rd Qu.
                                                           Max. NA's
```

```
## CART 143.56524 247.7585 342.3559 368.2294 467.7376 682.7395
                                                                    0
         75.71638 176.4595 260.3188 272.0210 346.3054 537.0275
## R.F
##
## Rsquared
##
                Min.
                       1st Qu.
                                  Median
                                               Mean
                                                      3rd Qu.
                                                                    Max. NA's
## CART 0.0001149384 0.1016129 0.3311003 0.3735410 0.6683652 0.9818932
        0.0008630734 0.4658528 0.7460322 0.6717879 0.9498149 0.9901082
dotplot(transform results)
```


The RF model had a slightly lower RMSE, They had very high R-sq values. Lets have a look at the look at each of these to understand the results:

```
par(mfrow = c(1,2), xpd = NA)
plot(fit.cart$finalModel, uniform=TRUE,
   main="Regression Tree for USCrime")
text(fit.cart$finalModel, use.n=TRUE, all=TRUE, cex=.8)
print(fit.rf$finalModel) # view results
##
## Call:
##
   randomForest(x = x, y = y, mtry = param$mtry)
##
                  Type of random forest: regression
##
                        Number of trees: 500
## No. of variables tried at each split: 8
##
##
             Mean of squared residuals: 88026.1
```

importance(fit.rf\$finalModel, type=2) # importance of each predictor

##		${\tt IncNodePurity}$
##	M	247503.28
##	So	18299.65
##	Ed	197872.76
##	Po1	1296476.21
##	Po2	1284771.18
##	LF	201132.67
##	M.F	244774.20
##	Pop	274764.11
##	NW	494086.68
##	U1	111766.71
##	U2	152780.11
##	${\tt Wealth}$	718980.85
##	Ineq	212007.22
##	Prob	912158.35
##	Time	157958.49

Regression Tree for USCrime

We can see that there were quite a lot of impurity in certain nodes. As with previous analysis we can probably prune down some of the fetures to get a higher performing model. From the tree structure, we can see that the decisions are Po1, Pop and NW.

Q3

We use logistic regression nodes in deep learning algorithms in combination with relus to do certain computer vision tasks. So looking at a sequence of pixels it might say this image is a possible case of fraud. Another example may be when considering which sites to drill for oil. Features may include: mineral sample levels, location of previous oil sites etc.

$\mathbf{Q4}$

Lets produce our logistic regression model

Just from looking at the distribution the model is doing a reasonable job of seperating the data with more

than 75% of the good credit ratings above 75% of the bad credit ratings.

Now we will have a look at the ROC and AUC measures:

```
library(ROCR)
```

```
## Loading required package: gplots
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
pr <- prediction(credit$prob, credit$gb)
prf <- performance(pr, measure = "tpr", x.measure = "fpr")
plot(prf)</pre>
```



```
auc <- performance(pr, measure = "auc")
auc <- auc@y.values[[1]]
auc</pre>
```

[1] 0.833781

this looks pretty good, we see a good climb in performance, and an auc of 83% certainly suggests this may be a useful model.

Finally, lets go about threshilding this. We will define a cost function and then just desend this from 50% through to where cost starts to increase:

```
thresh \leftarrow 0.5
cost <- Inf</pre>
repeat{
  fitted.results <- ifelse(credit$prob > thresh, "good", "bad")
  CM <- table(credit$gb, fitted.results)</pre>
  new_cost = 5*CM[1,2]+CM[2,1]
  if(new_cost < cost){</pre>
    cost <- new_cost</pre>
    thresh <- thresh +0.01
  }
  else{
    thresh <- thresh - 0.01
    break
  }
}
thresh
```

[1] 0.69

We produce a threshold of 69% (lol), lets have a look at what the model performance is (on the training data) at this threshold:

```
fitted.results <- ifelse(credit$prob > thresh, "good", "bad")
CM <- table(credit$gb, fitted.results)
thresh</pre>
```

```
## [1] 0.69
CM
## fitted.results
## bad good
## bad 231 69
## good 167 533
misClasificError <- mean(fitted.results != credit$gb)
print(paste('Accuracy',1-misClasificError))</pre>
```

[1] "Accuracy 0.764"

76.4% accuracy however this largely consists of good results classified as bad, rather than bad classified as good.

What a great time.