Overconvergence of étale (4,T)-modules and prismatic F-crystals Herg Du

Recall Scholze: Spa ZpITI (p.T)-adic x = V(4,T)

U. X = Spa ZphTA \ {x.S.

x → [0, ∞]

x → [log TCX]/ [log p(x)], x ~ x $\mathcal{K}: [\times] \longrightarrow [\circ, \infty]$

Fact K is conti.

{αε | x | x (x) > 1/2 (resj. ζ/2) } <u>0bs</u>

{x ∈ [x] | | | (x)| > 1 p(x) | + 0 (resp. 0 + | \tau (x)| = 1 p(x)) }.

Def Rid: = U Rintin integral Robba ring. x>0 ≥ alic open unit disc.

Setup Gp = Qp 2 Ogp , Ainf := Ainf (Oq) x := Spa (Aing) / Y(p [ph]), pb = (p, p/P, p'/r2, ...) & Ob. Ip = Ainf.

$$\widetilde{\chi}: |\widetilde{\chi}| \longrightarrow [0, \infty]$$

$$\chi \longmapsto \log |f|^{\frac{1}{2}}(\widetilde{\chi})| / \log |f|^{\frac{1}{2}}),$$

$$\widetilde{\chi} \leq \frac{1}{n} \triangleq \widetilde{\chi}^{int,n} := Ainf \langle \frac{f}{f} |f|^{n} \rangle [\frac{1}{f} |f|^{n}]$$

$$\downarrow \qquad \qquad \widetilde{\chi}^{int} := \bigcup \widetilde{\chi}^{int,n}.$$

Have 4 & Ainf, Roy=pr vo 4 & Rint.

This (x) is essentially leve to:

Len (Cherbonnier - Colmez)

$$\log |T(\bar{x})| - \frac{p}{p-1} \log |L_p^b|(\bar{x})| = 0 \quad \text{when } \tilde{\chi}(x) \text{ is close to } 0.$$

$$\log |\frac{T}{L_p^b|T^{\frac{1}{p-1}}}(\bar{x})|$$

Book Fact: log (p-[ph] (x) - log |[ph](x) = 0 when x(x) is close to 0.

Realizing Galois actions

Gop: = Gal (Op/Op) G Ainf ~ Rinh (n)
Gop Stubilizes each Rint. (n)

& The action factors through $Gap \to \Gamma \xrightarrow{\chi} \pi_{\tilde{p}}$ $Gal(\mathfrak{Q}_p(\S_{p^n})/\mathfrak{Q}_p)$

Def Modern (q,T) (resp. Modern (q, Gog)) consists of:

(g.up, u) <u>Epo</u>

· M finite free mod / Rint (resp. Rint)

· fu · 6*4 ~ 4

· p conti semilin action T(Gog) Go M commuting N/ PM.

Thm (Cherbonnier - Colmez)

Moderat (q, r) ~ Moderat (q, Gay).

Rmk (1) C-C used Tute-Sen method to prove this.

- (2) Berger-Colmez: Tate-Sen formulation find imperfect Robba ring by taking la vectors.
- (3) Kellaya-Liu: A different pf, using 0-map & defining imperfect period rings.
- (4) Gao-Loyeton, Gao-Liu, etc: similar result for (4,2)-mods
- (6) Andretta Brisnon:

such result for Ip-loc 245.

(assuming the base admits a chart).

F- Crystals

 $R = Ip. \quad R_{2p}^{2} := absolute \quad \frac{transversal}{transversal} \quad prism \quad \text{site}$ $(A, I) \quad \text{is} \quad p - \text{for sim} \quad \text{free}.$ $e.g. \quad (IpI_q = \frac{q^p-1}{q-1}), \quad \varphi(q) = q^p$ $- (Ainf, \quad \text{ker o}).$

Def
$$O_{\Delta}: (A, I) \longrightarrow A$$
 $I_{\Delta}: (A, I) \longrightarrow I$
 $O_{\Delta}: (A, I) \longrightarrow (\lim_{\varphi} A)_{(\varphi, T)}^{\wedge} =: A_{\varphi}ef$
 $O_{E, \Delta}: (A, I) \longrightarrow A_{\varphi}ef I_{I}^{-1}_{I}^{\wedge}$
 $O_{E, \Delta}: (A, I) \longrightarrow A_{\varphi}ef I_{I}^{-1}^{\wedge}$
 $O_{E, \Delta}: (A, I) \longrightarrow A_{\varphi}ef I_{I}^{-1}^{\wedge}$
 $O_{E, \Delta}: (A, I) \longrightarrow A_{\varphi}ef I_{I}^{\wedge}$
 $O_{E, \Delta}: (A, I) \longrightarrow A_{\varphi}ef$
 $O_{E, \Delta}: (A, I) \longrightarrow A_{\varphi}$

Def Vert (Ra, *) =1, x \(\int \) \(\omega_{\epsilon,\alpha}, \omega_

The (Du-Liu) Vect ($\mathbb{R}^{\circ}_{\alpha}$, $\mathbb{Q}^{\dagger}_{\varepsilon,\alpha}$) $\mathbb{Q}^{(\varepsilon)}_{\varepsilon,\alpha}$ $\mathbb{Q}^{(\varepsilon)}_{\varepsilon,\alpha}$

Pf Shetch Rargo: = Cat of quasi-regular Semifectuid rings.

To-flat Semi-perf'd

Vect (R'a, Ot.,a)^(p-1) = lim Vect (Sa, Ot.a)^(p-1)

(As, Us)

SERgrsp

Se Rigrap)
So almits a final obj (as, (di), $(M_{\Delta}, \gamma_{M_{\Delta}}) \triangleq (M_{\widetilde{\Delta}}, \gamma_{M_{\widetilde{\Delta}}}, \gamma_{M_{\widetilde{\Delta}}}, \gamma_{M_{\widetilde{\Delta}}}, \gamma_{M_{\widetilde{\Delta}}})$

Rmk The pf works for X (beally = Spf R).

R s.t. R admits a quasi-syntomic covering

by a perfectoid ring S

S.t. all local systems are trivial on Spf (5),

(R noeth "a" R regular lomain).