MESTRADOS INTEGRADOS EM ENGª MECÂNICA E EM ENGª E GESTÃO INDUSTRIAL | 2016-17

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 3h (20m de tolerância).

Prova de Reavaliação Global

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos quatro grupos utilizando folhas de capa distintas.

GRUPO I

1) [3,3] Sejam as aplicações lineares $T \in L(\mathbb{R}^3, \mathbb{R}^3)$, $S \in L(\mathbb{R}^2, \mathbb{R}^3)$ e $R \in L(\mathbb{R}^3, \mathbb{R}^2)$ dadas por

$$T(x, y, z) = (x - z, x + y - z, x + z), S(x, y) = (-x + y, x + 2y, 2x + y)$$

$$R(x, y, z) = (x - z, -x + y + z)$$

em relação às bases canónicas E_3 , para o espaço \mathbb{R}^3 , e E_2 , para o espaço \mathbb{R}^2 .

- **a)** Calcule o núcleo e o contradomínio de *S*. Para cada um desses subespaços, indique uma base e conclua em relação à sua dimensão.
- b) Mostre que duas das funções são injetivas e obtenha as suas funções inversas.
- 2) [2,0] Seja o plano $M = \{X \in \mathbb{R}^3 : X = P + s\vec{a} + t\vec{b}, s, t \in \mathbb{R}\}$. Mostre que todos os pontos $X \in \mathbb{R}^3$ que satisfazem a condição $(X P) \cdot \vec{a} \times \vec{b} = 0$ pertencem ao plano M.
- **3.** [3,6] Considere o plano M: x+2y+z=0 e a reta, r, com a equação vetorial $X(t)=P+t\vec{a}$, $t\in\mathbb{R}$, em que P=(3,1,1) e $\vec{a}=(1,1,0)$. Determine:
 - a) A distância da origem à reta r e a equação cartesiana do plano, M_1 , que contém a reta r e é perpendicular ao plano M.
 - **b**) A equação cartesiana de um plano, M_2 , perpendicular à reta r e que passa num ponto, Q, desta reta que dista $2\sqrt{6}$ unidades do plano M.

GRUPO II

4) [1,7] Sejam as transformações lineares definidas na pergunta 1) e a base $V = \{(0,1,0),(1,1,0),(1,0,1)\} \subset \mathbb{R}^3$. Calcule a matriz $m(SRT)_{V,V}$, representação matricial de SRT em relação à base V.

.....(continua no verso

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 3h (20m de tolerância).

Prova de Reavaliação Global

GRUPO III

5) [1,8] Calcule, indicando todas as operações efetuadas, o determinante da matriz real

$$\mathbf{A} = \begin{bmatrix} k & k^2 & 0 & -k^2 \\ 2 & 0 & 2 & -6 \\ 6 & 0 & 2 & 2 \\ 3 & -3 & 2k+4 & 0 \end{bmatrix}$$

GRUPO IV

- **6.** [4,5] Considere o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subset \mathbb{R}^3$, em que $\vec{a} = (1,2,3)$, $\vec{b} = (1,1,1)$, $\vec{c} = (1,3,-1)$ e $\vec{d} = (1,1,-1)$, e o subespaço $H = \{(x, y, z) \in \mathbb{R}^3 : x + y + 2z = 0\}$.
 - a) Determine o subespaço gerado pelo conjunto S, L(S). Indique uma base para o subespaço obtido que contenha apenas elementos de S e conclua em relação à sua dimensão.
 - b) Será o conjunto S linearmente dependente? Justifique.
 - c) Determine uma base ortogonal, W, para o espaço \mathbb{R}^3 que contenha o maior número possível de elementos de H.
- 7) [3,1] Seja a transformação linear $H: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$H = m(H) = \begin{bmatrix} a & 1 & -b \\ 1 & a & 1 \\ 0 & a-3 & 1-b \end{bmatrix}$$

em relação à base canónica, E, para o espaço \mathbb{R}^3 e o conjunto $V = \{\vec{v}_1, \vec{v}_2\}$, tal que $\vec{v}_1 = (1,1,-2)$ e $\vec{v}_2 = (1,1,0)$.

- a) Verifique, justificando, se H admite uma base de vetores próprios, U, para o espaço \mathbb{R}^3 que inclua os elementos de V. Em caso afirmativo, obtenha essa base.
- **b**) Calcule a matriz $Q = H_{U,U}^{-1}$ e indique uma matriz que lhe seja semelhante. Justifique devidamente a resposta, apresentando a relação de semelhança entre as duas matrizes.