# Transformação Genética em Fungos

Alan Silva

# Princípio básico da transformação genética

- Gene functional
  - Todo gene precisa de promotor e terminador
  - Genes (CDS): facilmente transferíveis
  - Promotores e terminadores: compatíveis com a espécie



# Princípio básico da transformação genética

- Compatibilidade Eucariótica
  - Genes podem expressar mas não ter função
  - Promotores e terminadores de espécies próximas ou conservados



https://www.adelaide.edu.au/mycology/fungal-descriptions-and-antifungal-susceptibility/hyphomycetes-conidial-moulds/aspergillus#aspergillus-nidulans-complex

- Deleção
  - Eliminar gene alvo, substituindo por gene marcador seletivo
  - O fenótipo mutante pode indicar a função do gene



## Fusão

- Incluir uma proteína repórter ou epítopo de anticorpo à sequência codificante de um gene
- Observar o momento da expressão, colocalização subcelular, identificar interações via anticorpo.



- Substituição de Promotor
  - Trocar o promotor original do gene por um constitutivo e/ou de expressão forte
  - Observar o efeito da expressão constitutiva do gene



## RNAi

- Utilizar 400-500 pb senso e antisenso do CDS de um gene para produção de RNAs de interferência
- Observar o efeito da redução na expressão do gene



- Background
  - Gene homólogo de S. cerevisiae encontrado no genoma de C. graminicola
  - Escolha por deleção
    - Eliminar o gene é a forma mais eficiente de entender sua função
    - Gene não é essencial em outras espécies
  - Metodologia
    - Montagem de cassetes: PCR Double-joint
    - Transformação via protoplastos



# Observações Importantes

Deleção vs Disrupção



Gene 2

Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2 G

Desenhar primers para montagem do cassete



0,5 - 1 kb 5'

**Gene Marcador** 

0,5 – 1 kb 3'

Amplificar o cassete usando primers Nested



- Clonar o cassete em *E. coli* 
  - Multiplicação e congelamento



- Passo a passo
  - 1. Baixar a sequência do gene alvo incluindo uma longa região flanqueadora (≥ 5000 pb 5' e 3')
    - Ter essa região já disponível facilita definir sítios de restrição para realizar o Southern blot posteriormente
  - 2. Desenhar primers amplificando 500-1000 pb UTR 5' e 3'
    - Fragmentos maiores tornam a hibridização mais específica
    - Desenhar primers o mais próximos do início e final do gene
    - Incluir caudas nos primers internos (5'-R e 3'-F)
  - 3. Amplificar um gene marcador seletivo de alguma fonte
    - O gene deve conter um promotor forte
    - Facilita se tiver um vetor contendo o gene
    - Adicionar caudas

- 4. Purificar independentemente as 3 reações
  - Kit de purificação de produtos de PCR garante menos resíduos
- 5. Calcular proporção molar de 1:3:1 entre os fragmentos
  - Multiplique a proporção de tamanho pela proporção 1:3:1
  - Ex. 700:1400:700 pb = 1:2:1 x 1:3:1 = 1:6:1
  - Use no máximo 1000 ng total na ligação. Ex: 100:600:100 ng
- 6. Misturar os 3 produtos no mix de PCR e realizar o ciclo
  - Usar enzima de alta eficiência e fidelidade (Phusion)
  - Maior tempo de anelamento pelos "primers longos" (2 min)
- 7. Correr um gel com produto da DJ-PCR
- 8. Realizar PCR Nested para multiplicar o cassete
- 9. Clonar em *E. coli* para multiplicar e guardar
- 10. Extrair o plasmídeo e amplificar 1-5 µg do cassete
- 11. Transformar protoplastos com esse fragmento linear



# Estudo de Caso: Fusão de um tagao gene alvo

- Background
  - Isolamento e detecção de proteínas:
    - por peso molecular ou precipitação com anticorpo
    - Necessita um anticorpo específico para a proteína
  - Tags de Epítopo
    - Pequenos peptídeos adicionados a uma proteína de interesse
    - Usados para marcar proteínas que não possuem anticorpo disponível
    - Por serem pequenos, não afetam a função da proteína principal
    - Altamente reconhecidos por anticorpos

| Principais Tags |           |           |          |                |  |  |  |  |  |
|-----------------|-----------|-----------|----------|----------------|--|--|--|--|--|
| FLAG            | НА        | Мус       | Poli His | V5             |  |  |  |  |  |
| DYKDDDDK        | YPYDVPDYA | EQKLISEED | НННННН   | GKPIPNPLLGLDST |  |  |  |  |  |

# Fusão da proteína Histona 3 com tag HA

Estratégia



- Encontrar fonte dos genes/fragmentos acima
  - Genoma do organismo: fonte para o gene alvo
  - Plasmídeos: fonte para o repórter/epítopo, promotor, terminador e gene marcador seletivo
- Buscar fontes que envolvam o mínimo de etapas

# Origem dos fragmentos

- Genoma do Colletotrichum graminicola
  - 500 a 1000 pb do final do gene sem stop códon com sítios de restrição
  - 500 a 1000 pb da região 3'-UTR com cauda no primer F
- Plasmídeo pSGP72
  - 3 cópias do tag HA com stop códon no final
  - Flanqueado por sítios de restrição in frame com o gene
- Plasmídeo pSRE47
  - TtrpC + PoliC + NAT1



# Plasmídeo pSGP72

Vetor Binário: bactéria e levedura



Putative polylinker sequence of pSGP72

> pSGP72

CTCGAGAGATCTCCACCGCGGTGGCGGCCGC
ATCTTTTACCCATACGATGTTCCTGACTATGCG
GGCTATCCCTATGACGTCCCGGACTATGCAGG
ATCCTATCCATATGACGTTCCAGATTACGCTGC
TTAGTCGACCCGGG

HA tags Notl Bglll Notl Stop Sall Small

# Fragmento 1: Gene com Tag

- Plasmídeo pSGP72
  - Possui 3HA + Stop com sítios
  - Amplificar 500-1000 pb do final do gene com Bg/II e Not I
  - Digerir ambos e clonar no plasmídeo



- Amplificar fragmento completo
  - Gene (sem stop) + 3HA + stop
  - Adicionar cauda no primer R



*Bgl*Ⅱ

Gene Alvo

Notl

# Fragmento 1: Gene com Tag

1100 pb + tails

## H3 sem stop + sítios

2 kb

1 kb

### Mix 8.8 água

4 μL Buffer HF (5X)

2 μL dNTPs (10 mM)

 $2 \mu L primer F (10 \mu M)$ 

 $2 \mu L primer R (10 \mu M)$ 

 $1 \mu L gDNA (50 ng/\mu L)$ 

 $0.2 \mu L$  Phusion  $(2U/\mu L)$ 

#### Reação

98 °C – 3 min

(98 °C − 30 s  $30x < 66 ^{\circ}C - 30 s$ 

72 °C – 30 s

Bg/III

Gene Alvo

72 °C – 5 min

## Digestão e clonagem



## Xhol Tag Alvo Bg/II

## PCR Gene com Tag





## Fragmento 2: Terminador + Marcador Seletivo

- Plasmídeo pSRE47
  - Possui eGFP + TtrpC + PoliC + NAT1
  - Amplificar TtrpC + PoliC + NAT1 com caudas





**Promotor** 

Gene Marcador

# Fragmento 3: Região 3'-UTR do gene alvo

- Gene alvo
  - 500-1000 pb da região 3'-UTR do gene
  - Amplificar com cauda no primer F



# Fragmentos 2 e 3

## TtrpC + PoliC + NAT1

#### Mix

8.8 água

4 μL Buffer HF (5X)

2 μL dNTPs (10 mM)

 $2 \mu L primer F (10 \mu M)$ 

 $2 \mu L$  primer R (10  $\mu M$ )

1  $\mu$ L plasmid (1 ng/ $\mu$ L)

 $0.2 \mu L$  Phusion  $(2U/\mu L)$ 

#### Reação

98 °C – 3 min

$$\begin{cases}
98 \text{ °C} - 30 \text{ s} \\
62 \text{ °C} - 30 \text{ s}
\end{cases}$$

72 °C – 30 s

72 °C – 5 min



#### 2070 pb + tails

## H3 – 3'-flank

#### Mix

8.8 água

4 μL Buffer HF (5X)

2 μL dNTPs (10 mM)

 $2 \mu L primer F (10 \mu M)$ 

 $2 \mu L primer R (10 \mu M)$ 

 $1 \mu L gDNA (50 ng/\mu L)$ 

 $0.2 \mu L$  Phusion  $(2U/\mu L)$ 

#### Reação

98 °C – 3 min

$$30x \begin{cases} 98 \text{ °C} - 30 \text{ s} \\ 62 \text{ °C} - 30 \text{ s} \\ 72 \text{ °C} - 30 \text{ s} \end{cases}$$

72 °C – 5 min



964 pb + tail

## Resumo

- Fragmento 1
  - ¤ 1kb final do gene sem stop amplificado com sítios de restrição
  - ¤ Ligado no plasmídeo pra acrescentar 3HA e stop
  - ¤ Ligação final amplificada por PCR com cauda no primer R
- Fragmento 2
  - ¤T+P+Gene Marcador amplificados de vetor com caudas
- Fragmento 3
  - ¤ 1kb UTR 3' do gene amplificado com cauda no primer 3F



# Double-Joint PCR, Nested and Cloning in pJET1.2

|             | Tamanho | Proporção | DJ | Final | Máx. 1000 ng | Concentração | Volume |
|-------------|---------|-----------|----|-------|--------------|--------------|--------|
| Fragmento 1 | 1230 pb | 1,25      | 1  | 1,25  | 125 ng       | 74 ng/μL     | 1,7 μL |
| Fragmento 2 | 2100 pb | 2,1       | 3  | 6,3   | 630 ng       | 81 ng/μL     | 7,8 μL |
| Fragmento 3 | 984 pb  | 1         | 1  | 1     | 100 ng       | 48 ng/μL     | 2,1 μL |

## Mix (50 $\mu$ L)

23,9 água

10 μL Buffer HF (5X)

4 μL dNTPs (10 mM)

1,7  $\mu$ L Frag. 1 (74 ng/ $\mu$ L)

7,8  $\mu$ L Frag. 2 (81 ng/ $\mu$ L)

 $2,1 \mu L Frag. 3 (48 ng/\mu L)$ 

 $0.5 \mu L$  Phusion ( $2U/\mu L$ )

#### Mix

8.8 água

4 μL Buffer HF (5X)

2 μL dNTPs (10 mM)

 $2 \mu L$  primer F (10  $\mu M$ )

 $2 \mu L primer R (10 \mu M)$ 

 $1 \mu L DJ (1 ng/\mu L)$ 

 $0.2 \mu L$  Phusion  $(2U/\mu L)$ 

#### Reação

98 °C – 5 min

 $30x \begin{cases} 98 \text{ °C} - 30 \text{ s} \\ 60 \text{ °C} - 2 \text{ min} \\ 72 \text{ °C} - 2 \text{ min} \end{cases}$ 

72 °C – 10 min

## Purificado

#### Reação

98 °C – 3 min

 $30x \begin{cases} 98 \text{ °C} - 30 \text{ s} \\ 62 \text{ °C} - 30 \text{ s} \\ 72 \text{ °C} - 2 \text{ min} \end{cases}$ 

72 °C – 5 min













## Resultado

- Coloração nuclear por anticorpo
  - ¤ Anticorpo primário Anti-HA, anticorpo secundário verde

Cg

**H3:3HA** 

- ¤ Microscopia de fluorescência
- Expectativa
  - ¤ Azul: DAPI (núcleo)
  - ¤ Verde: histona 3 + HA

