

WebMD 主编对话华裔生物学家张锋

文/时占祥(全球医生组织北京代表处)

Medseape

Feng Zhang, PhD

Medseape

Eric J. Topol, MD

一、前序:从中国内地来到美国内地 —对—对话

Topol 教授 我是 Eric Topol, WebMD (美国医疗健康服务网站) 主编。

今天邀请的主讲者,他在平凡工作中研发出了划时代颠覆性技术,被盛赞为我们时代最重要的生物学家。他是 Broad 研究院麦戈文脑研究所张锋教授。欢迎锋做客"一对一访谈"。

张锋教授 谢谢 Topol 教授,很高兴见到您。

Topol 教授 我知道"锋"的含义是矛尖,对吗?

张锋教授 是的,锋利的意思。

张锋教授 我只是做了点儿有意义的事情,我希望让所有人生活得更美好。

Topol 教授 你在如此短暂时间内完成了许多科研。你和你母亲来美国时只有 11 岁,对吗?

NTERVIEW|访谈

张博士 是的,我出生和成长在中国,11 岁来美国。我和我母亲居住在爱荷华州的得梅因(Des Moines),那里的人非常热情,那是一段非常愉快的成长经历。得梅因公立学校非常棒。老师们关心学生的教育,寻找各种机会,培养学生的兴趣。我想象不出还有哪个地方比梅因学校的教育更好了。

Topol 教授 那里是美国内地,是欠发达地区。你怎么会去了得梅因呢?

张博士 这是一个很有趣的经历。我母亲在迪比克大学做访问学者。她有机会参观 Dubuque 的一所学校。感觉那里的教育方式与中国非常不同。中国学校多是死记硬背学习,学生很少用自己的双手做东西,也没有机会。我母亲想让我来这里读书,她也决定留在美国继续工作,后来我就来到了爱荷华州的得梅因。

二、成长篇:对基因治疗早就兴趣有加,或命中注定 天赋+机遇

Topol 教授 明白了。那时候,你母亲会把你送到实验室楼下,然后她自己在车里等着你,你在实验室里做你的实验, 是吗?

张博士 是的。在得梅因卫理公会医院有家基因治疗实验室为中学生提供见习项目,可以报名作为志愿者参加。在 那里,我见到了我的第一位导师 John Levy 博士。他是一位分子生物学家,非常聪明。他也是一位好老师,每天下午, 他和我坐下来,拿出一张打印纸,讲解各种有趣的生物学知识。我每天下午 2:00 放学后,一直在他的实验室里做实验 直到晚上 7、8 点钟。有时候,做实验时间长短是没准儿,可能很久。我可怜的母亲只好在坐在车里等我。

Topol 教授 你读高中时就获得了英特尔奖,第三名。那时候,你就对研究艾滋病毒着迷,是吗?

张博士 这是我所实习的基因治疗实验室的研究课题。他们正在用病毒载体研究基因治疗癌症。他们采用一种载体 叫逆转录病毒。我曾和 Levy 博士用逆转录病毒作为模型,找出了 HIV 病毒如何将不同组件组合在一起。的确,那是一个非常有乐趣和难得的学习机会。

Topol 教授 后来你去哈佛读书了,完成了你的化学和物理学的双学士学位。然后你又去了斯坦福大学攻读并获得化学博士学位。也许有人并不清楚你在斯坦福大学读书时,你还在 Karl Deisseroth 领导的实验室里研究光遗传学。讲讲那段故事。

张博士 我从爱荷华来到哈佛大学读本科。在那里,我继续对病毒研究感兴趣。我在 Don Wiley 的实验室里边学习 边做研究,Wiley 教授是一位结构生物学家。另外,我还师从哈佛大学的庄小威教授(Xiaowei Zhuang,她曾是哈佛最年轻华裔教授)研究病毒感染领域。在那段时间里,我的一位好朋友患上精神病。在此之前,我对精神病没有任何概念和了解。和许多其他人的理解一样,我认为精神疾病就是一个人的内心不够强大。你必须有更强的意志力,才能战胜疾病。

在目睹好朋友患病过程后,我意识到精神疾病也是一种机体疾病,像癌症和糖尿病一样。只不过是大脑功能不正常了。由此,我开始对大脑研究感兴趣了。当我去了斯坦福大学,我有机会师从 Karl Deisseroth 教授(参见注释),他是一位生物工程神经学家和精神疾病临床医生。我们有一次对我一生影响极大的深度交流,他告诉我他所研发的新技术,能更容易地研究大脑功能。我真的很受启发,也开阔了眼界。后来,我加入了 Deisseroth 教授的团队,那时,他刚组建实验室并且开始研究光遗传学。

Topol 教授 现在,在生物医学界还有很多人并没有意识到 CRISPR 技术潜在作用或也没有关注过光遗传学领域。你能告诉我们关于这些领域意味着什么吗?

张博士 光遗传学技术是一种利用光刺激脑细胞的技术。脑细胞有许多不同种类,不同的脑细胞形成不同的脑电回路,控制我们的运动和思维功能等。如果想了解大脑疾病(比如精神病),我们就需要在大脑中找出不同电路的调控机制。光遗传学技术能让我们利用光刺激特定细胞群体,然后系统地绘制出大脑细胞彼此之间的连接和工作状态。

Topol 教授 这是一种特殊的研究工具,应用它,可以了解和 认知大脑功能,甚至人脑未来进化趋势。

三、奋斗篇——发明 CRISPR 技术 灵感 + 执着

Topol 教授 让我们来看看 CRISPR 技术。后来,你又回到波士顿的麻省理工学院,并在那里有了你自己的天地。这就是你开始探究 CRISPR 的故事,对吗?

张博士 对的。最初,光遗传学的挑战是如何将特定基因嵌入到所研究基因的特定位置上,如此,我们就可以控制并研究脑细胞的特定位置和功能了。正是这个研究思路,我把自己的研究领域关注在如何开发基因编辑技术。

最初,我尝试应用锌指核酸酶,即用锌指核酸酶来编辑和剪切基因,但结果并不理想而且有相当的挑战性。正是因为这些挑战,我必须考虑其他替代方法。我开始实验另外一个系统称为TALEs(转录激活效应因子),随着研究越来越深入,我更多关注TALEs如何结合DNA基因片段的前沿进展,期望从中获得一些启发。

2011年初,我建立了我自己的实验室。在继续开发 TALEs 系统过程中,当我给学生讲解和教授如何应用 TALEs 系统时,我意识到掌握并应用该基因编辑技术仍然是非常艰难和复杂的事情。我一直在想着如何改进基因编辑技术。

后来,我去参加一个小型研讨会。Michael Gilmore教授交流了他所做"肠球菌"系列细菌的研究课题。他从一个侧面,提出了肠球菌具有基因结构化的编辑剪辑功能,他们认为这一个很有意义研究领域和方向。当时人们才刚刚开始了解该领域。我几乎不清楚该领域,但我非常有兴趣他们提及到的核酸酶。

Topol 教授 这是引领你走下去的方向?

张博士 是的。我非常感兴趣核酸酶功能。那时,我还不知道什么是 CRISPR,我后来检索和阅读了该领域前沿进展。 当时,一位加拿大学者 Sylvain Moineau 发表了一篇论文描述如何应用 RNA 引导核酸内切酶,让我兴奋不已,我开始集中精力研发这个新领域和 CRISPR 系统。

四、未来篇——目标根治危及生命的遗传病 明确转化应用领域

Topol 教授 你在如此短时间内完成了非凡的工作,我们暂且不赘述你在开发 CRISPR 基因剪辑技术系统的细节和突破性创新,以及后来你拓展的各项研究。后来,你决定创建 Editas 医疗公司。给我们讲讲这些吧。

张博士 Editas 医疗是一家以基因编辑技术为核心的生物公司,是我和 Jennifer Doudna、Keith Joung、David Liu 共同创办的。公司的主旨就是将 CRISPR 基因编辑技术系统转化应用于临床疾病治疗。

我们知道有超过 5000 多种遗传基因病是由特定基因突变引起机体细胞改变的。如果我们能建立一个 CRISPR 基因编辑技术平台,系统地开发在基因水平上的治疗方法,治疗各种基因疾病,而这些疾病目前还没有其他办法治疗。这就是建立 Editas 医疗公司的最初设想。

Topol 教授 Editas 开发的治疗方法是否已经进入临床试验了?

张博士 我们计划是开发 CRISPR-Cpf1 和 CRISPR-Cas9 两个系统。然后,在临床上验证治疗那些危及生命的遗传性疾病,当然,主要是那些基因病,目前还没有任何有效治疗方法。

Topol 教授 你认为应当首选哪些遗传疾病开展临床试验?

张博士 公司已经公布了下一步设想和计划,主要是选择一种眼睛退化症,又称"Leber 先天性黑蒙症"。公司正在积极作准备工作,他们也在探讨和研究其他基因疾病的治疗性试验。

Topol 教授 据说可能会在明年左右开始进入临床试验,对吗?

张博士 事实上,所有人都在努力着。

Topol 教授 总之,这是非常令人兴奋的好事情。在医学界,许多人都听说过 CRISPR 基因编辑技术多么神奇和功能强大。你当之无愧是该领域的先驱。有可能治疗那些罕见疾病,特别是目前还没有任何治疗方法的疾病,这就是造福于人类,拯救患者于水火之中。

另外,关于应用 CRISPR 技术最大的争议还包括胚胎细胞的基因组编辑,包括卵子和精子的基因编辑,试图创造出最完美的人种。上个月,由美国国家科学院召开了一个医学伦理研讨会,也非常关注这一领域的争议和观点。似乎已经成为了全球的关注,但仍没有达成共识。你是否关注了,你怎么看这些问题?你的建议是什么?

张博士 的确,围绕着胚胎是否能做遗传基因编辑,有道德伦理的争论。我们称胚胎是"人类种系"。如果你希望修饰编辑基因,自然会传递和繁殖不同的后代。我们的共识是,目前的基因剪辑技术仍不够成熟和完善,还无法在胚胎阶段探讨治疗疾病,这一责任相当重大和严肃。

另外,在伦理问题上,我们还无法确定底线在哪里。因此,我们从探索治疗那些非常严重的遗传疾病开始。但是,即便如此,你如何定义疾病的严重性?就是这样的界限(线)也是模糊不清的。庆幸的是,有很多非常聪明的伦理和科学家们,他们在一起共同思考和规范这个问题。

Topol 教授 的确,此事让我回想起以前的经历,我算是一个怪癖另类的医生。当年,我们开始应用重组生物工程时,我参与了有关组织型纤溶酶原激活物和相关研究项目。我们现在所谈论的内容就好像戏剧一样,孕育着难以想象和置信潜在治疗方法和发展机遇。

我们为你在基因剪辑技术领域做出的卓越贡献而骄傲。全球那么多患者也都在期待之中。

你真的是一位名副其实的先锋。我们期待着你们研究成果能够转化成为临床治疗疾病的最佳方案,尤其是对那些经常被忽略的、罕见的孟德尔遗传基因疾病患者。再次衷心地祝贺你所取得的成就。

张博士 非常感谢你。

Topol 教授 很高兴和你交谈,谢谢。 科技

【注】

庄小威教授:华裔生物物理学家,美国国家科学院院士,哈佛大学化学与化学生物、物理学双聘教授,同时也是霍华德·休斯医学研究所的研究员,2015年当选中国科学院外籍院士。

Karl Deisseroth:可谓是科学界大牛之一。有许多重大技术发明都与 Deisseroth 有关,其中最突出的新技术名为 CLARITY。 科学家可以用此技术研究大脑中复杂的神经通路。他之所以开发该技术是因为想要认识和了解精神疾病的发病机制。

84 科技中国 2017.05