Zadanie 1. Przedsięwzięcie składa się z operacji A, B, C, D, E, F i G o następujących czasach trwania i relacjach poprzedzania:

Operacja	A	В	C	D	E	F	G
Czas trwania	5	2	8	3	4	11	7
Operacje poprzednie	G	_	G	B,G	C,D	A,B	_

- a) Określić minimalny czas trwania przedsięwzięcia T_{\min} oraz zapas całkowity i swobodny operacji B i D.
- b) Wyznaczyć terminy rozpoczęcia poszczególnych operacji zapewniające wykonanie całego przedsięwzięcia w czasie T_{\min} przy jednoczesnym spełnieniu następujących warunków:
 - operacja B rozpoczyna się w najpóźniejszym możliwym terminie,
 - wykorzystuje się połowę zapasu całkowitego operacji D, jaki pozostał po ustaleniu terminu operacji B,
 - po ustaleniu terminów rozpoczynania *B* i *D* każda z pozostałych operacji jest rozpoczynana w najwcześniejszym możliwym obecnie terminie.

Zadanie 2. Dane jest zadanie programowania całkowitoliczbowego:

min
$$x_0 = 3x_1 + x_2$$

 $4x_1 + 3x_2 \le 18$
 $4x_1 + x_2 \ge 6$
 $x_1 + x_2 \ge 2$
 $x_1, x_2 \ge 0$
 x_1, x_2 całkowite

- a) Zaznaczyć w wyraźny sposób wszystkie rozwiązania dopuszczalne powyższego zadania.
- b) Wyznaczyć rozwiązanie optymalne i wyliczyć odpowiadającą mu wartość funkcji celu.
- c) Narysować powłokę wypukłą dla powyższego zadania w przestrzeni zmiennych x_1, x_2 .

Zadanie 3. Przed procesorem oczekuje 5 zadań do wykonania. Czasy wykonywania zadań są następujące: p_1 =40, p_2 =20, p_3 =30, p_4 =10, p_5 =15. Zysk z wykonania poszczególnych zadań jest natomiast równy: z_1 =50, z_2 =30, z_3 =40, z_4 =60, z_5 =50. Procesor jest dostępny przez 50 jednostek czasu. Należy określić, które zadania powinno się wykonać w tym czasie na procesorze, aby osiągnąć maksymalny sumaryczny zysk (przyjmujemy, że zadanie przynosi zysk jeżeli jest ono w całości wykonane).

- a) Rozwiązać zadanie metodą programowania dynamicznego. Narysować graf przejść między stanami, określić optymalną trajektorię, **podać rozwiązanie zadania.**
- b) Sformułować model programowania liniowego (całkowitoliczbowego) dla powyższego zadania **Zapisać funkcję celu i wszystkie ograniczenia w sposób jawny.**

Zadanie 4. Na pewnym procesorze ma być przetworzonych 10 zadań. W danej chwili procesor może obsługiwać tylko jedno zadanie. Dla każdego zadania j znany jest czas jego wykonywania p_j oraz pożądany termin ukończenia d_j . Dla danych liczbowych podanych w poniższej tabeli należy określić kolejność wykonania zadań na procesorze, tak aby zminimalizować liczbę zadań opóźnionych.

	Zad. 1	Zad. 2	Zad. 3	Zad. 4	Zad 5.	Zad 6.	Zad. 7	Zad. 8	Zad. 9	Zad.10
p_i	5	11	10	1	9	7	4	9	10	8
d_{j}	7	30	40	10	20	25	14	55	45	34