

CS113 - ĐỒ HỌA MÁY TÍNH VÀ XỬ LÝ ẢNH

Clipping Polygons

Clipping Polygons

Clipping polygons:

Input: polygon

Output: original polygon, new polygon, or nothing

Why Is Clipping Hard?

What happens to a triangle during clipping?

Possible outcomes:

How many sides can a clipped triangle have?

How many sides?

Why Is Clipping Hard?

A really tough case:

Why Is Clipping Hard?

A really tough case:

concave polygon ⇒ multiple polygons

Bài toán

Nửa mặt phẳng trong/ngoài

Mỗi cạnh chia mặt phẳng ra làm hai phần gồm: nửa mặt phẳng trong và nửa mặt phẳng ngoài.

Nhận xét

Cửa sổ quan sát là giao của các nửa mặt phẳng trong của các cạnh.

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Dùng từng cạnh của cửa sổ lần lượt xén đa giác.
- Sau khi xén xong, ta được một đa giác đã được xén

- Input: list of polygon vertices in order
- Output: list of clipped polygon vertices consisting of old vertices (maybe) and new vertices (maybe)

Xén đa giác bằng cạnh trái

Input

Đa giác $IN = \{p_0, p_1, ..., p_{n-1}\}$

Output

Đa giác $\mathbf{OUT} = \mathbf{IN} \cap \mathbf{W}$

Thuật toán xén đa giác bằng cạnh trái

```
Bước 1
      OUT = \{\}
Bước 2
      Lặp
             p: p<sub>0</sub> ... p<sub>n-1</sub>
             s là đỉnh kề trước của p
                    th1 : p bên trong, s bên trong
                    th2 : p bên ngoài, s bên trong
                    th3 : p bên ngoài, s bên ngoài
                    th4 : p bên trong, s bên ngoài
```


Vấn đề với đa giác lõm

Vấn đề với đa giác lõm

Đặt bài toán

Input

Đa giác IN

Output

Tập hợp các đa giác {OUT_i}

Phân loại giao điểm

Giao điểm được chia làm 2 loại

- Loại α (ngoài trong)
- Loại β (trong ngoài)

Thuật toán Weiler-Atherton

- Bắt đầu từ bên ngoài
- Gặp giao điểm α thì khởi động đa giác OUT = {}
- Gặp giao điểm β thì kết thúc đa giác OUT

Minh họa

Minh họa

Point-to-Plane test

A very general test to determine if a point *p* is "inside" a plane *P*, defined by *q* and *n*:

1		\			0-
(p	-	a)	n	<	U:
V-		7/			

$$(p - q) \cdot n = 0$$
:

$$(p - q) \cdot n > 0$$
:

p outside P

Finding Line-Plane Intersections

Use parametric definition of edge:

$$E(t) = s + t(p - s)$$

If t = 0 then E(t) = s

If t = 1 then E(t) = p

Otherwise, $\boldsymbol{E}(t)$ is part way from \boldsymbol{s} to \boldsymbol{p}

Finding Line-Plane Intersections

Edge intersects plane P where E(t) is on P

q is a point on P

n is normal to **P**

$$(\mathbf{E}(t) - \mathbf{q}) \cdot \mathbf{n} = 0$$

$$(\mathbf{s} + t(\mathbf{p} - \mathbf{s}) - \mathbf{q}) \cdot \mathbf{n} = 0$$

$$t = [(q - s) \cdot n] / [(p - s) \cdot n]$$

The intersection point i = E(t) for this value of t

Line-Plane Intersections

Note that the length of *n* doesn't affect result:

$$t = [(q - s) \cdot n] / [(p - s) \cdot n]$$

Again, lots of opportunity for optimization

Tài liệu tham khảo

 Slide này được biên soạn được tham khảo từ một số tài liệu sau: