

#### Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

EEL7278 — Eletrônica Industrial Aula 06 — Retificador Trifásico de Onda Completa a Tiristor

Prof. Adriano Ruseler, M. Eng.

Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

7 de maio de 2015



#### Aula de hoje



Retificador trifásico de onda completa a tiristor

#### Nota:

Retificador trifásico de onda completa a tiristor também é denominado de ponte de Graetz a tiristor



Figura: Nomenclatura utilizada na Disciplina.



## Metodologia empregada para entender a estrutura



Aula 06 - Retificador Trifásico de ponte completa a Tiristor

#### Entender cada componente

Antes de entender a estrutura com um todo, é necessário verificar e se certificar de como cada componente se comporta.

#### Simplificações utilizadas

Ter em mente as simplificações adotadas e quais fenômenos serão considerados para a análise.

#### Cuidar da nomenclatura utilizada

Ser consistente na nomenclatura utilizada para descrever a estrutura.

#### Como colocar a estrutura em operação

Na disciplina o foco estará na implementação via simulador.

#### Característica estática do tiristor ideal





Figura: Característica estática do tiristor ideal

- (a): O tiristor se encontra reversamente polarizado;
- (b): O tiristor se encontra diretamente polarizado;
- (c): O tiristor está conduzindo;

## Nomenclatura utilizada na Disciplina



Utilizada no livro do Prof. Ivo

#### Nomenclatura

Antes de entender o funcionamento da estrutura é preciso estabelecer corretamente a nomenclatura utilizada.



Figura: Nomenclatura utilizada na Disciplina.



#### Nomenclatura utilizada no PSIM



#### O PSIM utiliza uma nomenclatura diferente

Caso seja utilizado o bloco contendo a ponte retificadora a tiristor, preste atenção na nomenclatura utilizada.



Figura: Nomenclatura utilizada no PSIM para a ponte de Graetz a tiristor.

#### Como comandar o Tiristor?



Exemplo prático.



Figura: Acionamento do tiristor

O sinal de gate do tiristor pode apenas ligá-lo, mas não desligá-lo.

Sincronismo: Transição entre reversamente polarizado para diretamente polarizado.

Ângulo de disparo: Ângulo de disparo  $\alpha$  do tiristor em graus (deg).

# Caso particular da ponte de Graetz a tiristor



Obtenção do sinal de sincronismo

#### Para ângulo de disparo igual a zero ( $\alpha = 0$ )

A ponte retificadora a diodo é uma caso particular da ponte retificadora a tiristor.



Figura: Caso particular da ponte de Graetz a tiristor com  $\alpha = 0$ .

#### Tensão senoidal de entrada do retificador



#### Sistema trifásico utilizado

Determinada a topologia retificadora, o próximo passo é saber o comportamento da fonte de entrada CA.

$$v_{an} = V_{ll,\text{rms}} \sqrt{\frac{2}{3}} \sin(\omega t) \tag{1}$$

$$v_{bn} = V_{ll,\text{rms}} \sqrt{\frac{2}{3}} \sin\left(\omega t - \frac{2\pi}{3}\right) \tag{2}$$

$$v_{cn} = V_{ll,\text{rms}} \sqrt{\frac{2}{3}} \sin\left(\omega t + \frac{2\pi}{3}\right) \tag{3}$$

#### Tensão senoidal de entrada do retificador



#### Tensões trifásicas aplicadas ao retificador





#### Tensão senoidal de linha na entrada do retificador



Tensões trifásicas de linha aplicadas ao retificador



Figura: Tensões de linha entrada do retificador trifásico a tiristor.



#### Polarização do tiristor T1



A inversão de fase se aplica ao tiristor T4

O primeiro braço esta conectada a fonte  $v_{an}$ , assim sendo devemos observar as tensões  $v_{ab}$  e  $v_{ac}$ .



Figura: Tensões  $v_{ab}$  e  $v_{ac}$ 



# Configurações possíveis para polarização do tiristor T1



Condição:  $v_{ac} \ge \text{demais tensões.}$ 

Condição:  $v_{ab} \ge \text{demais tensões.}$ 





Figura: Tiristores T1 e T6 estão diretamente Figura: Tiristores T1 e T5 estão diretamente polarizados.

Sem roda livre

## Polarização do tiristor T2



A inversão de fase se aplica ao tiristor T5

O segundo braço esta conectada a fonte  $v_{bn}$ , assim sendo devemos observar as tensões  $v_{ba}$  e  $v_{bc}$ 



Figura: Tensões  $v_{ba}$  e  $v_{bc}$ 



# Configurações possíveis para polarização do tiristor T2



Condição:  $v_{ba} \ge \text{demais tensões.}$ 

Sem roda livre



Condição:  $v_{bc} \ge$  demais tensões.



Figura: Tiristores T2 e T4 estão diretamente Figura: Tiristores T2 e T6 estão diretamente polarizados.

#### Polarização do tiristor T3



A inversão de fase se aplica ao tiristor T6

O terceiro braço esta conectada a fonte  $v_{cn}$ , assim sendo devemos observar as tensões  $v_{ca}$  e  $v_{cb}$ 



Figura: Tensões  $v_{ca}$  e  $v_{cb}$ 



# Configurações possíveis para polarização do tiristor T3



Condição:  $v_{ca} \ge \text{demais tensões.}$ 

Sem roda livre





Figura: Tiristores T3 e T4 estão diretamente Figura: Tiristores T3 e T5 estão diretamente polarizados.

# Operação com ângulo de disparo nulo ( $\alpha = 0$ )



Operação similar ao retificado trifásico a diodo



Figura: Caso particular com ângulo de disparo nulo.



# Operação com ângulo de disparo ( $\alpha = 30^{\circ}$ )



Corrente no tiristor T1, operação com carga resistiva



Figura: Caso particular com ângulo de disparo  $\alpha=30$  graus



# Operação com ângulo de disparo ( $\alpha = 60^{\circ}$ )



Corrente no tiristor T1, operação com carga resistiva



Figura: Caso particular com ângulo de disparo  $\alpha=60$  graus



# Operação com ângulo de disparo ( $\alpha = 90^{\circ}$ )



Corrente no tiristor T1, operação com carga resistiva



Figura: Caso particular com ângulo de disparo  $\alpha=90$  graus



# Regiões de operação com carga resistiva



Definida pelas condições de continuidade.

#### Condução contínua

Para  $0 \le \alpha \le \frac{\pi}{3}$  ou  $0 \le \alpha \le 60^o$  a condução é contínua.

#### Condução descontínua

Para  $\frac{\pi}{3} \le \alpha \le \frac{2\pi}{3}$  ou  $0 \le \alpha \le 120^o$  a condução é contínua.

## Operação com ângulo de disparo ( $\alpha = 90^{\circ}$ )



Corrente no tiristor T1, operação com carga resistiva indutiva



Figura: Caso particular com ângulo de disparo  $\alpha=90$  graus



# Regiões de operação com carga resistiva



Definida pela tensão média na carga.

# Operação como retificador

Para  $0 \le \alpha \le \frac{\pi}{2}$  ou  $0 \le \alpha \le 90^o$  a tensão média na carga é positiva.

#### Operação como inversor não autônomo

Para  $\frac{\pi}{2} \leq \alpha \leq \pi$  ou  $0 \leq \alpha \leq 180^o$  a tensão média na carga é negativa.

#### Dúvidas??



Retificador trifásico de onda completa a tiristor.

Qual tal simularmos a estrutura para verificar a validade do que foi apresentado?

O software utilizado será o PSIM, que pode ser encontrado no link: <a href="http://powersimtech.com/products/psim/">http://powersimtech.com/products/psim/></a>

#### Valores médios das tensões



Definida pelas condições de continuidade.

## Ângulo de disparo nulo $\alpha = 0$

Operando como retificador a diodo.

$$V_{Lmed} = 2,34 V_o \tag{4}$$

#### Condução contínua

Para  $0 \le \alpha \le \frac{\pi}{3}$  ou  $0 \le \alpha \le 60^{o}$  a condução é contínua.

$$V_{Lmed} = 2,34 V_o \cos \alpha \tag{5}$$



## Valores médios das tensões com carga resistiva

Definida pelas condições de continuidade.

## Condução descontínua com carga resistiva

$$V_{Lmed} = 2,34 V_o \left[ 1 + \cos \left( \frac{\pi}{3} + \alpha \right) \right]$$
 (6)



# Valores médios das tensões com carga resistiva indutiva Definida pelas condições de continuidade.

#### Condução descontínua com carga resistiva indutiva

$$V_{Lmed} = 2,34 V_o \cos \alpha \tag{7}$$

#### Referências I

I. Barbi, "Eletrônica de Potência". Edição do Autor, 6a Edição Florianópolis, 2006.

Pelly, B. R.. Thyristor Phase-controlled Converters and Cycloconverters - Ed. John Wiley & Sons, New York, 1971.

Semiconductors, On. "Thyristor Theory and Design Considerations." HBD855/D (2005): 11.

Mourant, R. R. "PSIM User's Manual." Micro Simulation, Boston, MA (1983).