UNIT X Novel coronavirus

Scales

- Which scale should we look at?
 - **Answer:** Both, but the log scale is more relevant
 - * <u>Answer</u>: Focus on what individual cases are doing
 - $\underline{\mathbf{Answer}} \boldsymbol{\cdot}$ A slowdown on the log scale would be progress

Population biology

- What quantities do we want to look at?
 - **Answer:** Speed of exponential growth r
 - <u>Answer</u>: Finite rate of increase λ
 - <u>Answer</u>: Lifetime reproduction

Instantaneous rate of growth r

- What are the components?
 - <u>Answer</u>: Birth rate
 - * Answer: Instantaneous rate of a case producing new cases
 - * Answer: [case/(case · time]
 - **Answer:** Death rate
 - * **Answer**: Virus-centered!
 - * **Answer:** Rate of death, recovery, or effective quarantine

- How do you think we estimate?
 - <u>Answer</u>: People are estimating r right now from the population-level increase in disease
 - * **Answer:** Then using that to estimate b
 - <u>Answer</u>: Models go both directions!

What's the difference?

Cumulative curves

- Make process look smoother by counting the same cases over and over
- Can make communication clearer ...
 - or lead to false confidence and over-simplification

Finite rate of growth λ

- Why do we want this?
 - **Answer:** to communicate with policy-makers or the public
 - Answer: maybe to make concrete predictions, though we could use r
- How do we calculate it?
 - Answer: Pick a time step (week? year?)
 - Answer: Use a formula $\lambda = \exp(r\Delta t)$

Example

- $r \approx 0.14/\text{day}$
- What is λ ?
 - At a time scale of a day?
 - At a time scale of a week?

Reproductive number \mathcal{R}

- What is it?
 - Answer: Expected number of new cases per case over the lifetime of a case
- Why do we want this?
 - Answer: An important measure of how hard the epidemic will be to stop
- How do we calculate it?
 - Answer: $\mathcal{R} = b/d$; if we can estimate those

Example

- $r \approx 0.14/\text{day}$
- What is our estimate of \mathcal{R} ?
 - When average length of infection $L = 5 \,\mathrm{day}$?
 - When average length of infection $L = 10 \,\mathrm{day}$?

Case fatality proportion

- If the disease spreads around the world, most of us will get it.
- How many will die?
 - This is a units question!
- What proportion of people with the disease are dying?
 - People are often not careful enough with the denominator of this proportion
 - People with (detected) severe disease; people with (detected) recognizable disease;
 people who develop antibodies

Population regulation

- What are some reasons the virus's reproductive number may go down as it spreads?
 - **Answer:** People react by changing behaviour
 - <u>Answer</u>: People die or become immune
 - Answer: Vaccination or treatment
- Are there any reasons it might go up?
 - **Answer:** Evolution
 - Answer: One way evolution sometimes increases \mathcal{R} is by decreasing the fatality proportion

Other key questions

- How is the disease transmitted?
 - Probably air droplets and contaminated surfaces
- Can it be transmitted before symptoms start?
 - Probably
- What is the likely age distribution of serious cases?
 - Probably mostly elderly people