

Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Work Sheet 3

Instructions for week 3 (May 4^{th} to May 8^{th}):

- Please answer the little questionnaire that we have posted in Ilias. It asks you for some feedback regarding the course material and how well you get along with it.
- Work through Sections 1.2 and 1.3 of the lecture notes.
- Answer the control questions 1) to 6), and solve Problems 1 to 4 of the exercises below.
- Please hand in your solutions to the exercises for correction until the morning of Monday, May 11th. For the procedure, please have a look at the general information in Ilias. The submission of solutions is voluntary.

Control questions to monitor your progress:

- 1) In Example 1.23 (ii) the union set of a sequence of random points is considered. Why is the additional assumption that the sequence has no accumulation points (almost surely) necessary to generate a random closed set?
- 2) Check that the set generated in Example 1.23 (iv) is indeed a random closed set, that is, verify that the mapping Z is measurable.
- 3) Let (E, \mathcal{O}_E) be a second countable, locally compact Hausdorff space. Let (Ω, \mathcal{A}) be a measurable space, and let $Z: \Omega \to \mathcal{F} = \mathcal{F}(E)$ be a random closed set in E. The selection theorem of Kuratowski and Ryll-Nardzewski states that there exists an $(\mathcal{A}, \mathcal{B}(E))$ -measurable selection of Z, that is, there exists a measurable map $\vartheta: \Omega \to E$ such that $\vartheta(\omega) \in Z(\omega)$ for each $\omega \in \Omega$.
 - Can you think of possible useful applications of this theorem?
- 4) See if you can construct some simple examples for both stationary and isotropic random closed sets.
- 5) Construct a random closed set Z with capacity functional given through $T_Z(C) = \mathbb{1}\{C \neq \emptyset\}$ for each $C \in \mathcal{C}$.
- 6) Can you prove the second assertion from Corollary 1.33, namely that a random closed set Z is isotropic if, and only if, its capacity functional T_Z is rotation invariant?

Exercises for week 3:

Problem 1 (On the Hausdorff metric - Part 2)

Let $(\mathbb{X}, \|\cdot\|)$ be a normed vector space (over \mathbb{R} or \mathbb{C}), and recall from Problem 4 on Work sheet 2 that the Hausdorff metric δ on $\mathcal{C}(\mathbb{X})\setminus\{\varnothing\}$ is defined as

$$\delta(\textit{\textbf{C}},\textit{\textbf{C}}') := \text{inf} \, \big\{ \epsilon \geqslant 0 \; : \; \textit{\textbf{C}} \subset \textit{\textbf{C}}'_{\oplus \epsilon}, \; \textit{\textbf{C}}' \subset \textit{\textbf{C}}_{\oplus \epsilon} \big\}, \qquad \textit{\textbf{C}},\textit{\textbf{C}}' \in \mathfrak{C}(\mathbb{X}) \setminus \{\varnothing\},$$

and that we put $\delta(\varnothing, C) = \delta(C, \varnothing) := \infty$, $C \in \mathcal{C}(\mathbb{X}) \setminus \{\varnothing\}$, as well as $\delta(\varnothing, \varnothing) := 0$. Note that if we denote by $B_{\mathbb{X}} = B(0, 1)$ the closed unit ball around the origin in \mathbb{X} , then

$$B_{\oplus \, \varepsilon} = B + \varepsilon B_{\mathbb{X}}, \qquad B \subset \mathbb{X}, \ \varepsilon \geqslant 0.$$

Let $C, C', D, D' \in \mathcal{C}(X) \setminus \{\emptyset\}$, and show that

- a) $\delta(\operatorname{conv}(C), \operatorname{conv}(D)) \leq \delta(C, D)$,
- b) $\delta(C+C',D+D') \leqslant \delta(C,D) + \delta(C',D')$, and
- c) $\delta(C \cup C', D \cup D') \leq \max \{\delta(C, D), \delta(C', D')\},\$

where conv(C) denotes the convex hull of C.

Problem 2 (Random closed sets)

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.

- a) Let $\xi:\Omega\to\mathbb{R}^d$ be a random vector. Show that $Z_1=\{\xi\}$ is a random closed set.
- b) Let ξ_1, ξ_2, \ldots be a sequence of random vectors (in \mathbb{R}^d) such that $\{\xi_k(\omega) : k \in \mathbb{N}\}$ has no accumulation point in \mathbb{R}^d (for each $\omega \in \Omega$). Show that $Z_2 := \{\xi_k : k \in \mathbb{N}\}$ is a random closed set.
- c) Let $R: \Omega \to (0, \infty)$ be a positive random variable and $\xi: \Omega \to \mathbb{R}^d$ a random vector.
 - (i) Show that the "random closed ball" Z_3 with center ξ and radius R, that is, the mapping $Z_3:\Omega\to\mathbb{F}^d$, $Z_3(\omega):=B(\xi(\omega),R(\omega))$, is a random closed set.
 - (ii) Show that $\mathbb{E}\left[\lambda^d(Z_3+K)\right]<\infty$ holds for every compact set $K\subset\mathbb{R}^d$ if, and only if, $\mathbb{E}[R^d]<\infty$.
- d) Find a random closed set Z_4 such that the set $G := \{x \in \mathbb{R}^d : \mathbb{P}(x \in Z_4) \neq 0\}$ is open.
- e) Let Z_5 be a stationary random closed set in \mathbb{R}^d with volume fraction $p_{Z_5} = \mathbb{E} \left[\lambda^d (Z_5 \cap [0,1]^d) \right]$. Let $B \in \mathcal{B}^d$, and show that

$$\mathbb{E}\left[\lambda^d(Z_5\cap B)\right] = \rho_{Z_5}\cdot\lambda^d(B) \qquad \text{and} \qquad \rho_{Z_5} = \mathbb{P}\big(t\in Z_5\big), \quad t\in\mathbb{R}^d.$$

Problem 3 (Properties of the capacity functional)

Let Z be a random closed set in \mathbb{R}^d , defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and denote by T_Z the capacity functional of Z. Prove the following assertions.

- a) $0 \leqslant T_Z \leqslant 1$ as well as $T_Z(\emptyset) = 0$, and
- b) for any sets $C, C_1, C_2, \ldots \in \mathbb{C}^d$ with $C_n \searrow C$ it holds that $T_Z(C_n) \to T_Z(C)$, as $n \to \infty$.

Problem 4 (Capacity functionals – Examples)

Compute the capacity functional of the following random sets \widetilde{Z} in \mathbb{R}^d which are assumed to be defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

- a) $\widetilde{Z} = F$, for some fixed closed set $F \in \mathcal{F}^d$,
- b) $\widetilde{Z} = \{\xi\}$, where ξ is a random element of \mathbb{R}^d .

Let Z, Z_1, Z_2, \ldots be independent and identically distributed random closed sets in \mathbb{R}^d , defined on $(\Omega, \mathcal{A}, \mathbb{P})$. Let N be an \mathbb{N}_0 -valued random variable which is independent of $(Z_n)_{n \in \mathbb{N}}$. Write $p_k := \mathbb{P}(N = k)$, $k \in \mathbb{N}_0$, and put $Z^* := \bigcup_{n=1}^N Z_n$. Denote by $G(s) := \sum_{k=0}^\infty p_k \cdot s^k$, for $s \in [0, 1]$, the generating function of N.

- c) Prove that Z^* is a random closed set with $T_{Z^*}(\cdot) = 1 G(1 T_Z(\cdot))$.
- d) Show that if $N \sim Po(\lambda)$ for some $\lambda > 0$, then $T_{Z^*}(\cdot) = 1 e^{-\lambda \cdot T_Z(\cdot)}$.

The solutions to these problems will be uploaded on May 11th. Feel free to ask your questions about the exercises in the optional MS-Teams discussion on May 7th (09:15 h).