

Probabilistic Tensor Train Decomposition

Jesper Løve Hinrich and Morten Mørup

Jesper Løve Hinrich

Morten Mørup

• Tucker

$$\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \ldots \times_N \mathbf{A}^{(N)}$$

• Tucker

$$\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \ldots \times_N \mathbf{A}^{(N)}$$

Candecomp/PARAFAC (CPD)

$$\mathcal{X} = \mathcal{I} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \ldots \times_N \mathbf{A}^{(N)}$$

Tucker

$$\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \ldots \times_N \mathbf{A}^{(N)}$$

Candecomp/PARAFAC (CPD)

$$\mathcal{X} = \mathcal{I} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \ldots \times_N \mathbf{A}^{(N)}$$

• Block-Term (BTD)

$$oldsymbol{\mathcal{X}} = \sum_{b=1}^{\#Blocks} oldsymbol{\mathcal{G}}_b imes_1 \mathbf{A}_b^{(1)} imes_2 \mathbf{A}_b^{(2)} imes_3 \ldots imes_N \mathbf{A}_b^{(N)}$$

Tucker

$$\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \ldots \times_N \mathbf{A}^{(N)}$$

Candecomp/PARAFAC (CPD)

$$\mathcal{X} = \mathcal{I} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \ldots \times_N \mathbf{A}^{(N)}$$

• Block-Term (BTD)

$$oldsymbol{\mathcal{X}} = \sum_{b=1}^{\#Blocks} oldsymbol{\mathcal{G}}_b imes_1 \mathbf{A}_b^{(1)} imes_2 \mathbf{A}_b^{(2)} imes_3 \ldots imes_N \mathbf{A}_b^{(N)}$$

• Tensor Train (TTD)

$${\cal X} = {f U}^{(1)} imes_{[2,1]} {\cal U}^{(2)} imes_{[3,1]} {\cal U}^{(3)} imes_{[4,1]} \cdots imes_{[N-1,1]} {\cal U}^{(N-1)} imes_{[N,1]} {f U}^{(N)}$$

Tucker

• Tucker
$$\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \dots \times_N \mathbf{A}^{(N)}$$

$$x_{i_1,i_2,\dots,i_N} = \sum_{d_1} \sum_{d_2} \dots \sum_{d_N} g_{d_1,d_2,\dots,d_N} a_{i_1,d_1}^{(1)} a_{i_2,d_2}^{(2)} \cdots a_{i_N,d_N}^{(N)}$$

Candecomp/PARAFAC (CPD)

$$\mathcal{X} = \mathcal{I} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \dots \times_N \mathbf{A}^{(N)}$$
$$x_{i_1, i_2, \dots, i_N} = \sum_{d} a_{i_1, d_1}^{(1)} a_{i_2, d_2}^{(2)} \cdots a_{i_N, d_N}^{(N)}$$

Tensor Train (TTD)

$$\mathcal{X} = \mathbf{U}^{(1)} \times_{[2,1]} \mathcal{U}^{(2)} \times_{[3,1]} \mathcal{U}^{(3)} \times_{[4,1]} \cdots \times_{[N-1,1]} \mathcal{U}^{(N-1)} \times_{[N,1]} \mathbf{U}^{(N)}$$

$$x_{i_1,i_2,...,i_N} = \sum_{d_0} \sum_{d_1} \dots \sum_{d_N} u_{d_0,i_1,d_1}^{(1)} u_{d_1,i_2,d_2}^{(2)} \cdots u_{d_{N-1},i_N,d_N}^{(N)}$$

Tucker

• Tucker
$$\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \dots \times_N \mathbf{A}^{(N)}$$

$$x_{i_1,i_2,\dots,i_N} = \sum_{d_1} \sum_{d_2} \dots \sum_{d_N} g_{d_1,d_2,\dots,d_N} a_{i_1,d_1}^{(1)} a_{i_2,d_2}^{(2)} \cdots a_{i_N,d_N}^{(N)}$$

Candecomp/PARAFAC (CPD)

$$\mathcal{X} = \mathcal{I} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \dots \times_N \mathbf{A}^{(N)}$$
$$x_{i_1, i_2, \dots, i_N} = \sum_{d} a_{i_1, d_1}^{(1)} a_{i_2, d_2}^{(2)} \cdots a_{i_N, d_N}^{(N)}$$

Tensor Train (TTD)

$$\mathcal{X} = \mathbf{U}^{(1)} \times_{[2,1]} \mathcal{U}^{(2)} \times_{[3,1]} \mathcal{U}^{(3)} \times_{[4,1]} \cdots \times_{[N-1,1]} \mathcal{U}^{(N-1)} \times_{[N,1]} \mathbf{U}^{(N)}$$

$$x_{i_1,i_2,...,i_N} = \sum_{d_0} \sum_{d_1} \dots \sum_{d_N} u_{d_0,i_1,d_1}^{(1)} u_{d_1,i_2,d_2}^{(2)} \cdots u_{d_{N-1},i_N,d_N}^{(N)}$$

• Tucker

• Tucker
$$\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \ldots \times_N \mathbf{A}^{(N)}$$

$$x_{i_1,i_2,\ldots,i_N} = \sum_{d_1} \sum_{d_2} \ldots \sum_{d_N} g_{d_1,d_2,\ldots,d_N} a_{i_1,d_1}^{(1)} a_{i_2,d_2}^{(2)} \cdots a_{i_N,d_N}^{(N)}$$

Candecomp/PARAFAC (CPD)

$$\mathcal{X} = \mathcal{I} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 \dots \times_N \mathbf{A}^{(N)}$$
$$x_{i_1, i_2, \dots, i_N} = \sum_d a_{i_1, d_1}^{(1)} a_{i_2, d_2}^{(2)} \cdots a_{i_N, d_N}^{(N)}$$

$$\mathcal{X} = \mathbf{U}^{(1)} \times_{[2,1]} \mathcal{U}^{(2)} \times_{[3,1]} \mathcal{U}^{(3)} \times_{[4,1]} \cdots \times_{[N-1,1]} \mathcal{U}^{(N-1)} \times_{[N,1]} \mathbf{U}^{(N)}$$

$$x_{i_1,i_2,...,i_N} = \sum_{d_0} \sum_{d_1} \dots \sum_{d_N} u_{d_0,i_1,d_1}^{(1)} u_{d_1,i_2,d_2}^{(2)} \cdots u_{d_{N-1},i_N,d_N}^{(N)}$$

How Many Parameters?

- Number modes, N
- For each mode:
 - Observations, I_n
 - Components, D_n

$$\begin{aligned} &\text{Tucker}: &&\sum_{n=1}^{N}D_{n}I_{n}+\prod_{n=1}^{N}D_{n}\\ &\text{CP}: &&D\sum_{n=1}^{N}I_{n}\\ &\text{BTD}: &&\sum_{b=1}^{\#Blocks}\left(\prod_{n=1}^{N}D_{n}^{b}+\sum_{n=1}^{N}D_{n}^{b}I_{n}\right), &&\sum_{b=1}^{\#Blocks}D_{n}^{b}=D_{n}\\ &\text{TensorTrain}: &&\sum_{n=1}^{N}D_{n-1}I_{n}D_{n}, &&D_{0}=D_{N}=1 \end{aligned}$$

How Many Parameters?

- Number modes, N
- For each mode:
 - Observations, I_n
 - Components, D_n

Tucker:
$$\sum_{n=1}^N D_n I_n + \prod_{n=1}^N D_n$$

$$\mathtt{CP}: \ D\sum_{n=1}^N I_n$$

BTD:
$$\sum_{b=1}^{\#Blocks} \left(\prod_{n=1}^{N} D_n^b + \sum_{n=1}^{N} D_n^b I_n \right), \quad \sum_{b=1}^{\#Blocks} D_n^b = D_n$$

$$\texttt{TensorTrain}: \quad \sum_{n=1}^N D_{n-1} I_n D_n, \quad D_0 = D_N = 1$$

Parameter Growth in I,D, and N

4 modes

Components (D)

6 modes

50

Components (D)

Tensor Trains are Asymmetric!

• Tensor train split into carts (factors)

• Permuting the factors results in a different TT decomposition

Tensor Trains are Asymmetric!

• Tensor train split into carts (factors)

• Permuting the factors results in a different TT decomposition

Not an issue in Tucker and CP

Determining the Tensor Train by

Maximum Likelihood Based (Oseledets [1])

- No way to validate model or mode order
- Doesn't remove noise
- Doesn't account for uncertainty

- Fast implementation (nested SVD)
- Lots of known theoretical properties
- Widely applied

^[1] Oseledets IV. Tensor-train decomposition. SIAM Journal on Scientific Computing. 2011 Sep 22;33(5):2295-317.

^[2] Hinrich JL., Mørup M. Probabilistic Tensor Train Decomposition. 27th European Signal Processing Conference (EUSIPCO) 2019.

Determining the Tensor Train by

Maximum Likelihood Based (Oseledets [1])

- No way to validate model or mode order
- Doesn't remove noise
- Doesn't account for uncertainty

- Fast implementation (nested SVD)
- Lots of known theoretical properties
- Widely applied

Bayesian Inference (Hinrich & Mørup [2])

- Validate model and mode order via logevidence
- Penalizes model complexity (simpler is better)
- Removes unstructured noise
- Uncertainty characterized though probability distributions
- Slower implementation (iterative)
- Theoretical properties less known (currently)

^[1] Oseledets IV. Tensor-train decomposition. SIAM Journal on Scientific Computing. 2011 Sep 22;33(5):2295-317.

^[2] Hinrich JL., Mørup M. Probabilistic Tensor Train Decomposition. 27th European Signal Processing Conference (EUSIPCO) 2019.

From ML to Bayes

Maximum Likelihood TT

$$\mathcal{X} = \mathbf{U}^{(1)} \times_{[2,1]} \mathcal{U}^{(2)} \times_{[3,1]} \mathcal{U}^{(3)} \times_{[4,1]} \cdots \times_{[N-1,1]} \mathcal{U}^{(N-1)} \times_{[N,1]} \mathbf{U}^{(N)}$$

- Found through nested SVDs
- Each unfolded train cart is orthogonal, i.e.

$$\mathbf{U}_{(1,2)}^{(n)^{\top}}\mathbf{U}_{(1,2)}^{(n)} = \mathbf{I}, \quad n = 1, 2, \dots, N$$

From ML to Bayes

Maximum Likelihood TT

$$\mathcal{X} = \mathbf{U}^{(1)} \times_{[2,1]} \mathcal{U}^{(2)} \times_{[3,1]} \mathcal{U}^{(3)} \times_{[4,1]} \cdots \times_{[N-1,1]} \mathcal{U}^{(N-1)} \times_{[N,1]} \mathbf{U}^{(N)}$$

- Found through nested SVDs
- Each unfolded train cart is orthogonal, i.e.

$$\mathbf{U}_{(1,2)}^{(n)^{\top}}\mathbf{U}_{(1,2)}^{(n)} = \mathbf{I}, \quad n = 1, 2, \dots, N$$

Probabilistic TT

$$oldsymbol{\mathcal{X}} pprox oldsymbol{\mathcal{M}} = oldsymbol{\mathcal{U}}^{(1)} imes_{[2,1]} oldsymbol{\mathcal{U}}^{(2)} imes_{[3,1]} oldsymbol{\mathcal{U}}^{(3)} imes_{[4,1]} \cdots \\ imes_{[M-1,1]} oldsymbol{\mathcal{U}}^{(M-1)} imes_{[M,1]} (\mathbf{S} \mathbf{V}^{ op})$$

ullet Note $oldsymbol{\mathcal{U}}^{(M)} \equiv \mathbf{S} \mathbf{V}^{ op}$ and $\mathbf{U}_{(1,2)}^{(m)^{ op}} \mathbf{U}_{(1,2)}^{(m)} = \mathbf{I}$.

From ML to Bayes

Maximum Likelihood TT

$$\mathcal{X} = \mathbf{U}^{(1)} \times_{[2,1]} \mathcal{U}^{(2)} \times_{[3,1]} \mathcal{U}^{(3)} \times_{[4,1]} \cdots \times_{[N-1,1]} \mathcal{U}^{(N-1)} \times_{[N,1]} \mathbf{U}^{(N)}$$

- Found through nested SVDs
- Each unfolded train cart is orthogonal, i.e.

$$\mathbf{U}_{(1,2)}^{(n)^{\top}} \mathbf{U}_{(1,2)}^{(n)} = \mathbf{I}, \quad n = 1, 2, \dots, N$$

Probabilistic TT

$$oldsymbol{\mathcal{X}} pprox oldsymbol{\mathcal{M}} = oldsymbol{\mathcal{U}}^{(1)} imes_{[2,1]} oldsymbol{\mathcal{U}}^{(2)} imes_{[3,1]} oldsymbol{\mathcal{U}}^{(3)} imes_{[4,1]} \cdots \\ imes_{[M-1,1]} oldsymbol{\mathcal{U}}^{(M-1)} imes_{[M,1]} (\mathbf{S} \mathbf{V}^{ op})$$

- ullet Note $oldsymbol{\mathcal{U}}^{(M)} \equiv \mathbf{S} \mathbf{V}^ op$ and $\mathbf{U}_{(1,2)}^{(m)^ op} \mathbf{U}_{(1,2)}^{(m)} = \mathbf{I}$.
- Found by inferring the generative model,

$$\tau \sim \mathcal{G}(\alpha_{\tau}, \beta_{\tau}), \quad \lambda \sim \mathcal{G}(\alpha_{\lambda}, \beta_{\lambda}),$$

$$s_{dd} \sim \mathcal{T} \mathcal{N}_{[0,\infty]} (0, \lambda^{-1}), \quad d = 1, \dots, D_{M-1}$$

$$\mathbf{V} \sim v \mathcal{M} \mathcal{F} (\mathbf{0}^{I_{M} \times D_{M-1}}),$$

$$\mathbf{U}_{(1,2)}^{(m)} \sim v \mathcal{M} \mathcal{F} (\mathbf{0}^{D_{m-1}I_{m} \times D_{m}}), m = 1, \dots, M-1$$

$$\mathcal{X} | \boldsymbol{\theta} \sim \mathcal{N}_{I_{1} \times I_{2} \times \dots \times I_{M}} (\mathcal{M}, \mathbf{I}_{I_{1}} \tau^{-1}, \mathbf{I}_{I_{2}}, \dots, \mathbf{I}_{I_{M}})$$

where
$$\boldsymbol{\theta} = \{\tau, \lambda, \mathbf{S}, \mathbf{V}, \boldsymbol{\mathcal{U}}^{(1)}, \boldsymbol{\mathcal{U}}^{(2)}, \dots, \boldsymbol{\mathcal{U}}^{(M-1)}\}$$

$$\alpha_{\tau} = \beta_{\tau} = \alpha_{\lambda} = \beta_{\lambda} = 10^{-6}$$

Probabilistic Tensor Train

$$\mathcal{X} pprox \mathcal{M} = \mathcal{U}^{(1)} imes_{[2,1]} \mathcal{U}^{(2)} imes_{[3,1]} \mathcal{U}^{(3)} imes_{[4,1]} \cdots \\ imes_{[M-1,1]} \mathcal{U}^{(M-1)} imes_{[M,1]} (\mathbf{S}\mathbf{V}^{\top})$$

- ullet Note $m{\mathcal{U}}^{(M)} \equiv \mathbf{S} \mathbf{V}^ op$ and $\mathbf{U}_{(1,2)}^{(m)^ op} \mathbf{U}_{(1,2)}^{(m)} = \mathbf{I}$.
- Generative model,

$$\tau \sim \mathcal{G}(\alpha_{\tau}, \beta_{\tau}), \quad \lambda \sim \mathcal{G}(\alpha_{\lambda}, \beta_{\lambda}),$$

$$s_{dd} \sim \mathcal{T} \mathcal{N}_{[0,\infty]} (0, \lambda^{-1}), \quad d = 1, \dots, D_{M-1}$$

$$\mathbf{V} \sim \nu \mathcal{M} \mathcal{F} (\mathbf{0}^{I_{M} \times D_{M-1}}),$$

$$\mathbf{U}_{(1,2)}^{(m)} \sim \nu \mathcal{M} \mathcal{F} (\mathbf{0}^{D_{m-1}I_{m} \times D_{m}}), m = 1, \dots, M-1$$

$$\mathcal{X} | \boldsymbol{\theta} \sim \mathcal{N}_{I_{1} \times I_{2} \times \dots \times I_{M}} (\mathcal{M}, \mathbf{I}_{I_{1}} \tau^{-1}, \mathbf{I}_{I_{2}}, \dots, \mathbf{I}_{I_{M}})$$

- Parameters: $\theta = \{\tau, \lambda, \mathbf{S}, \mathbf{V}, \mathcal{U}^{(1)}, \mathcal{U}^{(2)}, \dots, \mathcal{U}^{(M-1)}\}$
- Broad priors: $\alpha_{\tau} = \beta_{\tau} = \alpha_{\lambda} = \beta_{\lambda} = 10^{-6}$

von Miss-Fisher Matrix (vMF) distribution

Model Inference by Variational Bayesian optimization

• The exact posterior is typically intractable

$$P(\boldsymbol{\theta}|\mathbf{X}) = \frac{P(\mathbf{X}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\mathbf{X})}$$

- Approximation by Variational Bayesian (VB)
 - True distribution: $P(\theta|X)$
 - Variational distribution: $Q(\theta)$
- Minimize KL-divergence

$$\log P(\mathbf{X}) = \log \int P(\mathbf{X}|\theta)P(\theta)d\theta \ge \int \log[P(\mathbf{X}|\theta)P(\theta)]Q(\theta)d\theta - \int \log[Q(\theta)]Q(\theta)d\theta$$

Alternating optimization of the ELBO

$$\begin{split} \tilde{F}^{(m)} &= \langle \tau \rangle \left(\operatorname{contract} \left(\boldsymbol{\mathcal{X}}, \{ \left\langle \boldsymbol{\mathcal{U}}^{(n)} \right\rangle \}_{n \neq m} \right) \right)_{(1,2)} & \tilde{\alpha}_{\lambda} = \alpha_{\lambda} + 0.5 D_{M-1} \quad , \quad \tilde{\beta}_{\lambda} = \beta_{\lambda} + 0.5 \operatorname{trace} (\left\langle \mathbf{S} \mathbf{S}^{\top} \right\rangle), \\ Q(\mathbf{U}_{(1,2)}^{(m)}) \sim v \mathcal{M} \mathcal{F}(\tilde{F}^{(m)}) & Q(\lambda) \sim \mathcal{G}(\tilde{\alpha}_{\lambda}, \tilde{\beta}_{\lambda}) \end{split} \\ \tilde{F}^{(M)^{\top}} &= \langle \tau \rangle \left\langle \mathbf{S} \right\rangle \operatorname{contract} \left(\boldsymbol{\mathcal{X}}, \{ \left\langle \boldsymbol{\mathcal{U}}^{(n)} \right\rangle \}_{n \neq M} \right) \\ Q(\mathbf{V}) \sim v \mathcal{M} \mathcal{F}(\tilde{F}^{(M)}) & \tilde{\alpha}_{\tau} = \alpha_{\tau} + 0.5 \prod_{m=1}^{M} I_{m} \\ \tilde{\beta}_{\tau} &= \beta_{\tau} + 0.5 [\operatorname{trace} \left(\boldsymbol{\mathcal{X}} \times \boldsymbol{\mathcal{X}} \right) + \operatorname{trace} \left(\left\langle \mathbf{S} \mathbf{S}^{\top} \right\rangle \right) \\ &- 2 \operatorname{trace} \left(\operatorname{contract} \left(\boldsymbol{\mathcal{X}}, \{ \left\langle \boldsymbol{\mathcal{U}}^{(n)} \right\rangle \}_{n=1, \dots, M} \right) \right) \right] \\ Q(\tau) \sim \mathcal{G}\left(\tilde{\alpha}_{\tau}, \tilde{\beta}_{\tau} \right) \\ W^{D_{M-1} \times I_{M}} &= \operatorname{contract} \left(\boldsymbol{\mathcal{X}}, \{ \left\langle \boldsymbol{\mathcal{U}}^{(n)} \right\rangle \}_{n \neq M} \right) \\ \sigma_{s_{dd}}^{2} &= \left(\left\langle \tau \right\rangle + \left\langle \lambda \right\rangle \right)^{-1}, \quad \mu_{s_{dd}} = \sigma_{s_{dd}}^{2} \left\langle \mathbf{W}_{d} \right\rangle \left\langle \mathbf{v}_{d} \right\rangle \left\langle \tau \right\rangle \\ Q(\mathbf{s}_{dd}) \sim \mathcal{T} \mathcal{N}_{[0,\infty]} \left(\mu_{s_{dd}}, \sigma_{s_{dd}}^{2} \right) \end{split}$$

Tensor Train and the contract(X,U) operator

Contracting the data X with the train carts
 U, except the m'th cart.

$$m{\mathcal{X}}^{I_1 imes... imes I_M}$$
 $\{m{\mathcal{U}}_i\in\mathbb{R}^{D_{i-1} imes I_i imes D_i}\}_{i=1,...,M}$ $D_0=D_M=1$

$$oldsymbol{\mathcal{C}} = \operatorname{contract}\left(oldsymbol{\mathcal{X}}, \{oldsymbol{\mathcal{U}}_i\}_{i
eq m}
ight) \ oldsymbol{\mathcal{C}} \in \mathbb{R}^{D_{m-1} imes I_m imes D_m}$$

Tensor Train and the contract(X,U) operator

Contracting the data X with the train carts
 U, except the m'th cart.

$$\mathcal{X}^{I_1 \times ... \times I_M}$$
 $\{\mathcal{U}_i \in \mathbb{R}^{D_{i-1} \times I_i \times D_i}\}_{i=1,...,M}$ $D_0 = D_M = 1$

$$oldsymbol{\mathcal{C}} = ext{contract}\left(oldsymbol{\mathcal{X}}, \{oldsymbol{\mathcal{U}}_i\}_{i
eq m}
ight) \ oldsymbol{\mathcal{C}} \in \mathbb{R}^{D_{m-1} imes I_m imes D_m}$$

Tensor Train and the contract(X,U) operator

Contracting the data X with the train carts
 U, except the m'th cart.

$$m{\mathcal{X}}^{I_1 imes... imes I_M}$$
 $\{m{\mathcal{U}}_i\in\mathbb{R}^{D_{i-1} imes I_i imes D_i}\}_{i=1,...,M}$ $D_0=D_M=1$

$$oldsymbol{\mathcal{C}} = \operatorname{contract}\left(oldsymbol{\mathcal{X}}, \{oldsymbol{\mathcal{U}}_i\}_{i
eq m}
ight) \ oldsymbol{\mathcal{C}} \in \mathbb{R}^{D_{m-1} imes I_m imes D_m}$$

Simulated Experiment: PTTD

- Data generation (ground truth)
 - N=5 mode tensor
 - -I=(20, 19, 18, 17, 16)
 - -D=(1, 6, 5, 4, 3, 1)
 - True mode order (1, 2, 3, 4, 5)
- Two scenarios
 - Known D
 - Unknown D, but known max(D). $D_{est} = (1, D_{max}, D_{max}, D_{max}, D_{max}, 1)$

- For each scenario
 - Testing all 5!=120 mode order permutations
 - Varying signal-to-noise (SNR) ratio (-10 to 10 dB)
 - 10 Repeats

Simulated Experiment: PTTD

Fig. 1: Performance of PTTD when the model order is known (a) and unknown (b). Higher ELBO indicates a better model.

- Highest ELBO for the true mode order.
- High noise (low SNR) reduces identifiability.
- Permuting results in different performance.
- Special case for true (1,2,3,4,5) and reverse (5,4,3,2,1) mode order.

Simulated Experiment: TTD vs PTTD

Data simulated as before.
 (only mode order (1,2,3,4,5))

Models

– TTD ε (Oseledets)

$$\varepsilon = [10^{-4}, ..., 10^{-1}]$$

- PTTD and TTD(fixed)

D=6:(1,6,5,4,3,1)

D=12:(1,12,10,8,6,1)

• Recovery of noiseless data $RMSE(X_{truth} - X_{recon})$

Reconstruction error

(a)
$$\boldsymbol{\mathcal{X}}_{\text{truth}} - \boldsymbol{\mathcal{X}}_{\text{recon}}$$

Simulated Experiment: TTD vs PTTD

- TTD- ε is highly sensitive to noise!
- Sufficient TT-size is much smaller for PTTD than TTD- ε , i.e. $|G_{PTTD}| \ll |G_{TTD-\varepsilon}|$.
- Both PTTD and TTD(fixed) with high noise.

Amino Acid Dataset

- 3-mode flourescence spectroscopy data
 - 5 samples
 - 201 emission levels (250-450nm)
 - 51 excitation levels (250-300nm)
 - Total elements 51255
- Original mode order
 - (samples, emission, excitation)
 - -(1, 2, 3)
- Fit PTTD with $D = (1, D_1, D_2, 1)$
 - for all mode orders (3!=6 permutaions)
 - Varying $D_1 = [1,2,...,30]$ and $D_2 = [1,2,...,30]$

- Model with highest evidence lowerbound (ELBO)
 - Mode order (2,3,1)
 - (emission, excitation, samples)
- High compression in all modes

Mode Order	ELBO	D_{ELBO}	$ \mathcal{G}_{ELBO} $
(1,2,3)	0.774	(4,3)	806
(1,3,2)	0.882	(4,5)	1330
(2,1,3)	0.969	(7,4)	1671
(2,3,1)	1.000	(6,5)	1536
(3,1,2)	0.967	(10,4)	1434
(3,2,1)	0.804	(4,5)	1274

Max. ELBO for each mode order.

Comparing PTTD and the 3 component CPD

- CPD removes unstructured and structured (Rayleight scattering) noise.
- PTTD only removes unstructured noise.

• NB. TTD- ε describes the data using more parameters than data elements.

End of the Line

Conclusions

- Prob. Tensor Train
 - Quantify mode (N) and model (D) order.
 - Remove unstructured noise.
 - Incorperate model uncertainty.
 - High compression.
- Facilitates model comparison using the evidence lowerbound
 - Maximum Likelihood TT always give lower RMSE when increasing model complexity.
- Probabilistic TT code available at https://github.com/JesperLH/prob-tt

End of the Line

Conclusions

- Prob. Tensor Train
 - Quantify mode (N) and model (D) order.
 - Remove unstructured noise.
 - Incorperate model uncertainty.
 - High compression.
- Facilitates model comparison using the evidence lowerbound
 - Maximum Likelihood TT always give lower RMSE when increasing model complexity.
- Probabilistic TT code available at https://github.com/JesperLH/prob-tt

Future work and ideas

- Efficient contract(X,U)
- Input TTD(X) to PTTD
 - Allows evaluation of likely TTDs via PTTD
- Non-parametric
 - Automatically infer D
- Stochastic updates rules
- PTTD on PTTD operations (inspired by Oselets)

Contact

jehi@dtu.dk

http://people.compute.dtu.dk/jehi/