Computación Gráfica

1er Parcial 2011

30°

6

1–10) ¿Qué se entiende por "modelo de iluminación local"? ¿Cuales son sus limitaciones (qué cosas no se pueden hacer)? ¿Cuál usa OpenGL?

- 2–10) Explique los filtros de amplificación y reducción de texturas.
- 3-30) Suponga una escena como en la figura.

La luz puntual, no se atenúa con la distancia y tiene componentes:

Ambiente: {0.1,0.1,0.1}; Difusa: {0.8,0.8,0.8}; Especular: {1.0,1.0,1.0}

Hay además una componente de luz ambiente global {0.2,0.2,0.2}. El material de la superficie no produce emisión y está definido así:

Ambiente y Difuso: {0.8,0.4,0.2};

Especular: {1.0,1.0,1.0}; Factor de brillo (shininess) de 10.

Plantee las cuentas del modelo de Phong para calcular el color que percibe el observador en esa dirección, desde

el punto indicado. (Plantee \equiv no calcule $\cos(45)^3$, déjelo planteado)

¿Cómo programaría?:

- a) Manipulación de la ventana móvil.
- b) Vista de distinto modo dentro de la ventana móvil.
- c) Ocultamiento de líneas en modo jaula de alambres (wireframe). Mayor puntaje si reutiliza el z-buffer.

60°

5–20) Realice un análisis sobre la pertinencia o no de agregar, a los monitores de computadoras y visores para dispositivos móviles, un sub-píxel blanco, con las mismas características que los tres estándar ({R,G,B,W}, cada uno variando entre 0 y 100%). Entre otras cosas, considere su efecto sobre el gamut y el brillo/consumo.

Computación Gráfica

1er Parcial 2011

- 1–10) Explique los modelos de sombreado (shading models) flat (facetado), Gouraud y Phong. ¿Cómo se definen? ¿A que se aplican? ¿Cómo se ven? ¿Cuales están implementados en OpenGL?.
- 2–15) Algoritmo de z-buffer. Seudocódigo y análisis de sus limitaciones. Posibles soluciones o técnicas para evitar las limitaciones.
- 3–10) Describa los parámetros que puede fijar para una luz (puntual u omnidireccional y tipo spot o reflector) en OpenGL. (no es necesario recordar los nombres "oficiales" ni la sintaxis).
- 4–15) En el práctico de las franjas ¿se utiliza blending (mezcla) o alpha–test? ¿Por qué? Indique los criterios para usar uno u otro mecanismo.
- 5–30) Al rasterizar una circunferencia con espesor mayor que un píxel, si se rasterizan sucesivas circunferencias de un píxel y radio creciente de a una unidad se producen huecos entre los píxeles pintados. ¿Qué estrategia utilizaría en el algoritmo de Bresenham o punto medio para rasterizar correctamente circunferencias con espesor pequeño (no más de tres píxeles)? ¿Alguna idea para anchos bastante más grandes?
- 6–30) Hay una esfera unitaria en el origen del espacio del modelo, la luz es blanca y está ubicada en el infinito, en dirección al el eje x (viene desde la derecha) y el observador esta mirando al origen desde el infinito en dirección z. No hay luz ambiente global (es negra). La esfera es de color verde, el material tiene componentes: difusa (verde) ambiente (verde oscuro) y especular (blanca) con un exponente de brillo muy alto (pulida). Describa cómo se ve la esfera. ¿En algún lugar se ve blanco 100%? ¿Verde 100%?