求最大重复子亭

江苏金陵中学 林希德

题目

字符串W由大写字母组成,W中包含一 也连续出现两次的相同子串,称之为重复 子

串。重复子串的大小决定于循环节的长度

题目

字符串 W 由大写字母组成, W 中包含一些连续出现两次的相同子串,称之为重复子

串。重复子串的大小决定于循环节的长度 请你求出最大重复子串的循环节长度。

数据规模

$$n = |w| \le 100000$$

$$O(n^2)$$

$$O(nlg_2^n)$$

两个辅助算法

后缀树

O(n)

KMP模式匹配

O(n+m)

为方便表达,使用

W(u, v)

表示开始于位置 u 结束于位置 v 的 W 的子串

问题的转化

定义 S 是循环周期为 L 的最优子串, 仅当 S 满足:

- $1 \cdot S$ 中的字符以 L 为周期循环出现 $S_i = S_{i+L}$ ($u \le i \le v-L$)
- 2、 |S| >= 2 L, 即 S 至少包括两个完整循环节。
- 4、S不能向右扩展,

即 v=n 或者 W(u,v+1) 不满足条件1 含!

求出所有最优子串连同它们的周期

优子串包

算法基本框架

- 1、找到 S 的一个完整循环节
- 2、根据循环节将S分别向左、向右扩展 到不

能扩展为止

3、判断扩展以后的 S 是否长度 >= 2 L

如果是,则认为找到了一个循环周期为L的最优子串S。

一、字符串分解

将 W 分解成 $W = U_1 + U_2 + U_3 + ... + U_m$ 的形式, 其中 U_1 定义如下:

$$P = U_1 + U_2 + \dots + U_{i-1}$$

如果字母WQT从未在P中出现过,

那么 $U_i = Q_1$

否则 U = P中出现过的 Q 的最

只要字符串x

的开始位置

在P内,就

认为x在P

中出现过!

长前缀

ABAABABABB

Π1

• P

Q

ABABABAAB TI TI2

•••• P

Q

ABABABAABAAB

P

Q

ABAABABAABAAB U1 U2 U3 U4

字符串分解过程借助"后缀树"算法实现

二、寻找完整循环节

怎样利用字符串分解的特殊定义找到最优子 串 S 的一个完整循环节呢?

假设S的结束位置在固定片断Ui内

问题:

S的开始位置在何处呢?

S的循环节能有多长呢?

解决方法

分类讨论。

S的开始位置不能太迟

· S的开始位置也在 U; 内.

U_i在P中某处出现过 ô S在P中某处出现过 为避免重复工作,此情况不予考虑! 这里用到了字符串分解的定义

S的循环节不能太长

最末循环节包含 U;-1

红色和绿色线段标示了相同的子串 根据定义, $|U_{i-1}| >= 红色线段$ 矛盾,情况占不存在。

这里再次用到了字符串分解的定义

S的开始位置不能太平

 $c. | S 位于 U_{i-1} 之前的子串 | >= 循环周期 L$

红色和绿色线段标示了相同子串根据定义, $|U_{i-1}|$ >= 红色线段矛盾,情况 c 也不存在。

这里又一次用到了字符串分解的定义

重要结论 1

1. S 的开始位置早于 U_{i} 且最末循环节没有将 U_{i-1} 包含在内,故

$$L < |U_{i-1} + U_i|$$

2. $|S位于U_{i-1}之前的子串| < 循环周期 L,故 <math display="block"> |S| < 2|U_{i-1} + U_i|$

重要结论1

进一步分类

因为 $|S| >=U^21_L$ 实际就是S 的一个完整循环

三、循环节扩展和长度判定

- 1、尽量向右扩展
- 2、尽量向左扩展
- 3、如果扩展以后的|S| >= 2L,那么 S 是最优子串。

BBAABABABB KUU W

寻找循环周期为5的最优子串

BBAABABABBB

寻找循环周期为5的最优子串

BBAABABABB V > ABAABABB U >>

寻找循环周期为5的最优子串

寻找循环周期为5的最优子串

東位

寻找循环周期为5的最优子串

東位

寻找循环周期为5的最优子串

東位

寻找循环周期为5的最优子串

東位

寻找循环周期为5的最优子串

東位

长度判定:

$$|S| = 11 >= 2 * 5$$

S是合法最优子串

寻找循环周期为5的最优子串

完整循环节

结

東

位

辅助函数和重要结论2

因为!: Ls 函数定义+U(1, 第L) 約 看待论较后缀的字符串总是 U

Lp函数覆沟中,第一个成布模性较后缀的靠符中总 是Y在线性时间内求出所有Lp和Ds的函数值 所以,我们可以

所以:我们可以 然后:从 1 到 |Ui+Ui-1| 枚举循环节的长度 L,

并在枚举的同时判断是否 $|Ls_L + Lp_L| >= L$,

即可: 找出所有最优子串连同它们的周期。

算法基本框架回顾和完善

字符串分解 answer = 0For i = 2 to m do 令 $V = 长度为 |U_{...}| + 2*|U_{...}|$ 的 P 的后缀 $U=U_i$ 针对情况 1: S在 V 中的长度 >= LEnd 情况 1 针对情况2: S在 U中的长度 >= L 1、 求出函数 Ls 和函数 Lp 的值 2 • For L=1 to $|U_{i-1} + U_i|$ -1 do If $|Ls_{\tau}| + |Lp_{\tau}| >= L$ Then 用L更新 answer 的值 End 情况 2

End For 输出 answer

算法性能分析

程序步骤

算法名称

复杂度

常数因子

1、字符串分

后缀树算

较大

法

(n)

解2、辅助函

 $\sum_{i=1}^{n} \{2(|U_{i-1}| + |U_i|)\} = 4n$

KMP模式匹配

O (n)

< 20

3、枚举所有最优子串

 $Sum\{|U_{i-1}|+|U_i|\}=2n$

枚举

O (n)

< 10

总结

- 掌握基础算法
- 善于分化问题
- 融会贯通

