

Multiphase Simulation for Powder Chamber

Comparison of Different Software

Background Introduction

- Goals
 - avoid/decrease tests
 - intrinsic behaviors
 - prototype validation
 Physical systems
 fluidization system
 Methods & software
- - EE/EL

Background | Simulation

- Multiphase flow method
 - liquid dispersed phase
 - time cost
- DEM (discrete element method)
 - high computation load
- PIC (particles in the cluster)
 - variant of DEM

Background

Simulation software

- Cradle scFLOW
 - Multiphase flow method
 - DEM
 - Particle tracking
- MFiX
 - TFM
 - DEM
 - PIC
- COMSOL
 - TFM
 - Mixture model (simplified EE)

Geometry Solidworks

Simplified chamber model of Handy 3.0

Half of the model

COMSOL Euler-Euler model

- Hard to converge
 - not work
- Long time to simulate

COMSOL Mixture model

- Simplified EE model
 - liquids of similar density
- Powder inside chamber cleared too fast
 - near 2 s

COMSOL Pros & Cons

Pros:

- all-in-one software
- online resources
- popularity in academia,
- universality

Cons:

- less support
- quite expensive
- instability
- no middle monitor

MFiX

General modelling

- Open-sourced
 - unexpected bugs
 - free
 - regular updates
- Mesh
 - difficult to set
 - limits on pose
 - non-standard process
- Regions
 - defined at very beginning
 - non-customized

Particles-in-the-cells method

- Trade off statistical weight, number of particles within cluster and mesh size
- Lighter than DEM and TFM

Animations (0.1 s)

1.0e+00 O L 5.4e-01

MFiX PIC powder volume fraction monitor regions (position 1)

MFiX PIC powder volume fraction monitor regions (position 2)

Pros & Cons

Pros:

- Flexibility
- Free
- Dynamic community
- HPC connection

Cons:

- stabilization
- can not select data later
- unexpected bugs
- geometrical limits
- need help from others

Multiphase flow method (Euler-Euler) | Modelling

- easy to set up CFD tasks
 - robust solver
 - operation to geometry
 - symmetry
- easy to mesh
 - region specific resolution
 - neighbor element octree

Multiphase flow method (Euler-Euler) | Modelling

- build full model
 - with outer nozzles
 - with external env
 - set monitor slice
- build self-defined tables
 - inlet velocity
 - outlet pressure

Multiphase flow method (Euler-Euler) | Animations

File : chamber incomp 10000.fph Time : 0.100000 Fluid volume fraction of phase 2(Powder incomp)

Evolution of powder volume fraction (3D)

Evolution of powder volume fraction (2D)

Multiphase flow method (Euler-Euler) Results

Experimental transient curve for one paddle cycle

Same ratio of peak and stable mass flow rate for both experimental and simulation data

Simulated transient curve for part of one paddle cycle

Multiphase flow method (Euler-Euler) | Animations

Evolution of chamber total pressure (3D)

Evolution of chamber total pressure (2D)

Multiphase flow method (Euler-Euler) | Plots

Curve of inlet total pressure

Curve of outlet total pressure

Multiphase flow method (Euler-Euler) | Animations

Evolution of air velocity magnitude (3D)

Evolution of air velocity magnitude (2D)

Multiphase flow method (Euler-Euler) | Plots

Curve of outlet magnitude of velocity

Curve of inlet magnitude of velocity

Pros:

- stability for convergence
- separate but compact designs
- all of model data reserved
- flexible subscription

Cons:

- less online resources/examples to learn,
- liquid approximates solid

Criteria Software	Accuracy	Flexibility	Easy-to-use	Price	Stability	Speed
Cradle scFLOW	High	Middle	High	20K CHF/Y & rent	High	High
MFiX	Middle	High	Middle	Free	Middle	Slow
Comsol	N/A	Low	N/A	20K CHF/Y	Low	Middle

- General issues:
 - geometry details included
 - time cost
 - result analysis
- Work conditions:
 - COMSOL not work
 - MFiX too slow, unstable
 - Cradle captures interesting features

Summary Outlooks

- Model verification:
 - tune physical paras
 - memory
- Sensitivity analysis:
 - meshes with different resolutions
 - increased step interval
 - table density
- Codes development:
 - automatic post-processing
 - results analysis
- Software rent options:
 - cost balanced

