FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

Universitat Politècnica de Catalunya - BarcelonaTech

Apunts d'Àlgebra Lineal (Primer curs del Grau de Matemàtiques)

Àlex Batlle Casellas

$\mathbf{\acute{I}ndex}$

1	Matrius, determinants i sistemes lineals.	2
2	1	4 4 4 6
3	Aplicacions lineals	8
4	Diagonalització	9

1 Matrius, determinants i sistemes lineals.

Definició:

Una **matriu** és una col·lecció de $m \times n$ nombres (d'un cos \mathbb{K}) organitzats de manera rectangular. Denotarem a_{ij} com l'element a la fila i, columna j. Notació: $A = (a_{ij})$.

- $m = n \rightarrow \text{matriu quadrada}$.
- Vector columna: $\binom{a}{b}$.
- Vector fila: $(a \ b)$.
- La **matriu zero** és la matriu (de qualssevol dimensions) tots els elements de la qual són 0.
- Una matriu diagonal és una matriu quadrada tal que $a_{ij} = 0 \ \forall i \neq j$.
- La matriu identitat d'ordre n és una matriu diagonal $n \times n$, Id_n tal que $a_{ij} = 1 \ \forall i = j$.
- Una matriu triangular:
 - Superior: $a_{ij} = 0 \ \forall i > j$ (zeros per sota la diagonal).
 - Inferior: $a_{ij} = 0 \ \forall i < j \ (zeros per sobre la diagonal).$

El conjunt de matrius $m \times n$ sobre el cos \mathbb{K} és $\mathcal{M}_{m \times n}(\mathbb{K})$.

Definició:

La matriu transposada d' $A \in \mathcal{M}_{m \times n}$ és $A^t \in \mathcal{M}_{n \times m}$ tal que $a_{ij}^t = a_{ji}$.

- Una matriu simètrica és una matriu quadrada tal que $A^t = A$.
- Una matriu antisimètrica és una matriu quadrada tal que $A^t = -A$ (en particular, els elements de la diagonal són tots zero).

Definició:

Operacions amb matrius:

- Suma. $C := A + B \implies c_{ij} = a_{ij} + b_{ij}$. Associativa, commutativa, amb element neutre (la matriu zero), amb element oposat $(-A := (-a_{ij}))$. Es té $(A + B)^t = A^t + B^t$.
- Producte per un escalar $\lambda \in \mathbb{K}$. $\lambda A := (\lambda a_{ij})$. $0A = 0, \lambda (A+B) = \lambda A + \lambda B, (\lambda A)^t ? \lambda A^t$.
- Producte entre matrius. Siguin $A \in \mathcal{M}_{m \times n}, B \in \mathcal{M}_{n \times p}$. Aleshores, $AB := C \in \mathcal{M}_{m \times p}$ tal que $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. Cada columna de la matriu producte és una combinació lineal de les columnes d'A.

Definició:

 $\overline{\text{La traça d'una matriu }} A = (a_{ij}) \text{ és tr } A := \sum_{i=1}^{n} a_{ii}.$

• $\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B$.

- $\operatorname{tr}(\lambda A) = \lambda \operatorname{tr} A \ \forall \lambda \in \mathbb{K}.$
- $\operatorname{tr}(A^t) = \operatorname{tr} A$.
- $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Propietats: Producte de matrius.

- $\operatorname{Id}_{\mathrm{m}} A = A \operatorname{Id}_{\mathrm{n}} = A$ (element neutre).
- A(BC) = (AB)C.
- A(B+C) = AB + AC.
- (A+B)C = AC + BC.
- En general, $AB \neq BA$.
- $(AB)^t = B^t A^t$.
- En general, $\nexists A^{-1}$.

<u>Definició</u>:

La matriu inversa d' $A \in \mathcal{M}_n$ és una matriu $A^{-1} \in \mathcal{M}_n$ tal que $AA^{-1} = A^{-1}A = \mathrm{Id}_n$. Propietats:

- La inversa, si existeix, és única.
- $(A^{-1})^{-1} = A$.
- $(A^{-1})^t = (A^t)^{-1}$.
- $(AB)^{-1} = B^{-1}A^{-1}$.
- $(A^{-1})^k = (A^k)^{-1}$.

Definició:

Eliminació Gaussiana.

Transformacions elementals: donada una matriu $m \times n$, les transformacions elementals són les següents:

 $E_1: r_i \leftrightarrow r_j$ (canviar dues files).

 E_2 : $r_i \leftarrow cr_j$ (multiplicar per un escalar no nul).

 E_3 : $r_i \leftarrow r_i + cr_j$ (sumar un múltiple d'una fila a una altra).

Eliminació Gaussiana:

2 Espais vectorials.

Considerem el conjunt d'n-tuples de nombres reals:

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) | x_i \in \mathbb{R}\}.$$

- 2.1 Operacions a \mathbb{R}^n .
 - 1. **Suma:** Sigui $u = (x_1, x_2, ..., x_n), v = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$. Aleshores:

$$u + v = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \in \mathbb{R}^n$$
.

2. Multiplicació per un escalar: Sigui $u=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n,c\in\mathbb{R}$. Aleshores:

$$cu = (cx_1, cx_2, \dots, cx_n) \in \mathbb{R}^n.$$

PROPIETATS:

- u + v = v + u. (commutativitat)
- (u+v)+w=u+(v+w). (associativitat)
- $\exists \mathbf{0} \in \mathbb{R}^n : u + \mathbf{0} = u$. (vector zero; notació alternativa, $\vec{0}$)
- $\forall u \in \mathbb{R}^n \exists -u \in \mathbb{R}^n : u + (-u) = \mathbf{0}.$
- c(u+v) = cu + cv. (distributivitat)
- (c+d)u = cu + du. (distributivitat)
- c(du) = (cd)u.
- 1u = u.

2.2 Espai vectorial sobre un $\cos \mathbb{K}$.

Sigui \mathbb{K} un cos commutatiu (per exemple $\mathbb{Q}, \mathbb{R}, \mathbb{C}$). Un espai vectorial sobre \mathbb{K} (\mathbb{K} -e.v.) és un conjunt de vectors E amb dues operacions + i \cdot .

- +: Donats $u, v \in E$ dóna un element u + v també d'E. És una operació commutativa, associativa, té element neutre $(\mathbf{0} \text{ o } \vec{0})$ i tot $u \in E$ té invers respecte + (-u).
- ·: Donats $u \in E$ i $c \in \mathbb{K}$ dóna un element cu d'E.

La suma i el producte compleixen

$$c(u+v) = cu + cv$$
 $(c+d)u = cu + du$ $c(du) = (cd)u$ $1u = u$ $\forall u, v \in E, c, d \in \mathbb{K}$.

Exemple:

- $\mathbb{K}^n = \{(x_1, x_2, \dots, x_n) | x_i \in \mathbb{K}\}$ és un \mathbb{K} -e.v. amb la suma i el producte naturals heretats de \mathbb{K} .
- $\mathcal{M}_{m \times n}(\mathbb{K})$ és un \mathbb{K} -e.v. format per matrius de dimensions $m \times n$ amb entrades a \mathbb{K} i les operacions naturals de la suma de matrius i el producte per un escalar.
- El conjunt de polinomis de grau $\leq d$, $\mathbb{R}_d[x] = \{p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_dx^d | a_i \in \mathbb{R}\}$ és un espai vectorial amb la suma de polinomis i el producte per un escalar.
- $\mathbb{R}[x] = \{\text{polinomis en una variable } x \text{ i coeficients en els reals} \}$ és un \mathbb{R} -e.v.
- El conjunt $\mathcal{F}(\mathbb{R}, \mathbb{R})$ de funcions $f : \mathbb{R} \to \mathbb{R}$ és un \mathbb{R} -e.v.

Propietats:

- 1. $0u = \mathbf{0} = c\mathbf{0}$.
- 2. (-1)u = -u.
- 3. (-c)u = c(-u) = -(cu) = -cu.
- 4. $cu = 0 \iff c = 0 \lor u = 0$.

Demostració:

- 1. Sigui v=0u=(0+0)u=0u+0u=v+v. Aleshores $v=v+v\iff v+(-v)=v+v+(-v)\iff v=\mathbf{0}.\square$
- 2. Sigui v = (-1)u. Aleshores si $u + v = \mathbf{0}$, v = -u.

$$u+v=u+(-1)u=(u_1,\ldots,u_n)+(-u_1,\ldots,-u_n)=(u_1-u_1,\ldots,u_n-u_n)=(0,\ldots,0)=\mathbf{0}.\square$$

3.
$$-c = (-1)c \implies (-c)u = (-1)cu = c(-1)u = c(-u) = (-1)cu = -(cu) = -cu.$$

4. \implies : $cu = \mathbf{0} \land c \neq = \implies$ **PENDENT D'ACABAR.**

Definició:

Un vector u és <u>combinació lineal</u> dels vectors u_1, u_2, \ldots, u_k si existeixen escalars c_1, c_2, \ldots, c_k tals que $u = c_1u_1 + c_2u_2 + \ldots + c_ku_k$. Els escalars c_i són els coeficients de la combinció lineal.

Esbrinar si un vector a \mathbb{K}^n és combinació lineal d'una colecció de vectors donada és equivalent a resoldre un sistema lineal d'equacions:

$$\exists c_1, c_2, \dots, c_k \in \mathbb{K} : u = c_1 u_1 + c_2 u_2 + \dots + c_k u_k?$$

$$c_1 \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix} + c_2 \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix} + \dots + c_k \begin{pmatrix} x_{1k} \\ x_{2k} \\ \vdots \\ x_{nk} \end{pmatrix}$$

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_k \end{pmatrix}$$

Proposició:

Un sistema Ax = b és compatible si i només si b és una combinació lineal de les columnes d'A.

Demostració: Ax = b és compatible $\iff \exists c_1, \dots, c_n$ solució de:

$$\begin{pmatrix} a^1 & \dots & a^n \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} b \end{pmatrix} \iff c_1(a^1) + \dots + c_n(a^n) = (b) \iff b \text{ \'es una combinaci\'o}$$

lineal dels vectors columna d'A amb coeficients c_1, \ldots, c_n .

2.3 Subespais vectorials.

Sigui E un \mathbb{K} -e.v. Aleshores un subconjunt $V \neq \emptyset$ d'E és un subespai vectorial si V és un espai vectorial en si mateix (amb la suma i el producte d'E). Això és equivalent a:

$$\forall u, v \in V \ \forall c, d \in \mathbb{K} \quad cu + dv \in V.$$

Exemple:

- $V = \mathbb{K}^n$ és un subespai vectorial de \mathbb{K}^n .
- $V = \{0\}$ és un subespai vectorial de qualsevol E.
- $V = \{(x, y, z) \in \mathbb{R}^3 | x y = 0, 3z = 0\}$ és un subespai vectorial d' \mathbb{R}^3 .
- $F = \{(a+2b,0,b) \in \mathbb{R}^3 | a,b \in \mathbb{R}\}$ és un subespai vectorial d' \mathbb{R}^3 .

IMPORTANT! Els subespais vectorials són tancats respecte combinacions lineals. Proposició:

Sigui $Ax = \mathbf{0}$ un sistema lineal (homogeni), on $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Aleshores, el conjunt de solucions $V = \{v \in \mathbb{K}^n | Av = \mathbf{0}\}$ és un subespai vectorial de \mathbb{K} .

Demostració: Si $u \in V$ i $v \in V$, $Au = \mathbf{0}$ i $Av = \mathbf{0}$. Aleshores, $u + v \in V$ i $A(u + v) = Au + Av = \mathbf{0} + \mathbf{0} = \mathbf{0}$.

Definició:

Siguin v_1, \ldots, v_k vectors d'E. El conjunt de <u>totes</u> les combinacions lineals de v_1, \ldots, v_k

$$\{c_1v_1+\ldots+c_kv_k|c_1,\ldots,c_k\in\mathbb{K}\}$$

s'anomena el **conjunt generat** per v_1, \ldots, v_k i s'escriu $[v_1, \ldots, v_k]$.

Proposició:

 $V = [v_1, \ldots, v_k]$ és un subespai vectorial i és el subespai més petit que conté a $\{v_1, \ldots, v_k\}$. **Demostració:** Siguin $u, v \in V$. Aleshores, $u = x_1v_1 + \ldots + x_kv_k$ i $v = y_1v_1 + \ldots + y_kv_k$, $x_i, y_i \in \mathbb{K}$.

$$\implies cu + dv = (cx_1 + dy_1)v_1 + \ldots + (cx_k + dy_k)v_k$$
 és combinació lineal de $v_1, \ldots, v_k \implies cu + dv \in V.\square$

3 Aplicacions lineals

4 Diagonalització

Definició:

Diem que un endomorfisme és diagonalitzable a \mathbb{K} si existeix una base v d'E tal que $M_v(f)$ és una matriu diagonal $D \in \mathcal{M}_n(\mathbb{K})$.