Q1ab

1 a) $Y(z) = \frac{3}{4} z^{-1} Y(z) - \frac{1}{8} z^{-2} Y(z) + X(z)$
Y(2) (1-3=="1+1=="2") = X(2)
$H(z) = \frac{1}{X(z)} = \frac{1}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}} = \frac{8}{8 - 6z^{-1} + z^{-2}} = \frac{1}{ z } \frac{1}{ z }$
b) H(z) - 82 82 - A1 A2 Z 822-62+1 (4x-1)(2x-1) 4x-1 2x-1
A ₁ = 8 2
$A_2 = 82 = 4 = 4$ $42-1 _{z=\frac{1}{2}} = 2-1$
$H(z) = -1$ 2 $\Rightarrow H(z) = 2$ $1 - \frac{1}{2}z^{-1}$ $1 - \frac{1}{4}z^{-1}$
hEn3 = 2 (1) "UEn3 - (4) "UEn3 =

Q1c

C)
$$a_{EG} = U_{EG}$$
 $\Longrightarrow X_{(2)} = \frac{1}{1-z^{-1}}$
 $y_{step} E_{G} = h_{EG} * U_{EG}$ $\Longrightarrow Y_{s}(z) = X_{(2)} H_{(2)}$
 $Y_{s}(z) = \frac{1}{(1-\frac{3}{4}z^{2}+\frac{1}{8}z^{2})} = \frac{z^{3}}{(z-1)(z-\frac{1}{2})(z+\frac{1}{4})}$
 $Y_{s}(z) = \frac{1}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})(z-\frac{1}{4})} = \frac{z^{3}}{(z-1)(z-\frac{1}{4})(z-\frac{1}{4$

=>
$$\frac{1}{3}(z) = \frac{8}{3}(\frac{1}{1-z^{-1}}) - \frac{2(\frac{1}{1-\frac{1}{2}z^{-1}}) + \frac{1}{3}(\frac{1}{1-\frac{1}{4}z^{-1}})}{1-\frac{1}{4}z^{-1}}$$
 | $|z| > 1$
 $\frac{9}{5}$ [8] = $\frac{8}{3}$ $\frac{1}{2}$ ($\frac{1}{2}$)ⁿ $\frac{1}{3}$ ($\frac{1}{4}$)ⁿ $\frac{1}{3}$ ($\frac{1}{4}$)ⁿ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{3}$

d) $\chi_{[n]} = (\frac{1}{2})^n U_{[n]} \longrightarrow \chi_{(z)} = \frac{1}{1 - \frac{1}{2}z^1}$ $ z > \frac{1}{2}$
$Y(z) = H(z)X(z) = \frac{123}{(z-1)(z-1)} = \frac{121}{2}$
$A_{2} = \frac{z^{2}}{z - \frac{1}{4} z = \frac{1}{2}} = \frac{\frac{1}{4}}{\frac{1}{4} z = \frac{1}{4}} = \frac{1}{\frac{1}{4} z = \frac{1}{4} z = \frac{1}{4}}$ $A_{1} = 0$
$\lim_{z \to \infty} \left \frac{z^{3}}{(z-\frac{1}{2})^{2}(z-\frac{1}{4})} \right = A_{1}z + A_{2}z + A_{3}z + A_{3}z + A_{1}z + A_{2}z + A_{3}z + A_{1}z + A_{2}z + A_{3}z + A_{1}z + A_{2}z + A_{3}z + A_{2}z + A_{3}z + A_{1}z + A_{2}z + A_{3}z + A_{2}z + A_{3}z + A_{1}z + A_{2}z + A_{3}z + A_{3}z + A_{2}z + A_{3}z + A_{2}z + A_{3}z + A_{3}z + A_{2}z + A_{3}z + $
$Y_{z,z}(z) = \frac{2(1)z^{-1}}{(1-\frac{1}{2}z^{-1})^{2}} + \frac{1}{1-\frac{1}{4}z^{-1}}$ $Y_{z,z}[n] = 2n e(\frac{1}{2})^{n} U[n] + (\frac{1}{4})^{n} U[n]$

Q1e

e)
$$H(z) = \frac{1}{2}$$
 $X(z) = \frac{1}{3}z^{-1} + \frac{1}{8}z^{-2}$
 $Y(z) = \frac{3}{4}(\frac{1}{8}z^{-1}) + \frac{1}{8}(\frac{1}{8}z^{-1}) + \frac{$

$$\frac{1}{1/(2)} = \frac{-2z^{2} - 14z^{2}}{z^{2} - 3z^{2} + 18} = \frac{1}{z} = \frac{-2z - 14}{(z - \frac{1}{z})(z - \frac{1}{4})} = \frac{A_{1}}{z - 1/4}$$

$$A_{1} = \frac{-2z - 1/4}{z - 1/4} = \frac{-1 - 1/4}{1/4} = \frac{-1 - 1/4}{1/4}$$

$$A_{2} = \frac{-2z - 1/4}{z - 1/2} = \frac{-1/2 - 1/4}{1/4} = 3$$

$$= \frac{-1/2}{z - 1/2} = \frac{1}{z - 1/4} = \frac{-1/2}{z - 1/4}$$

$$\frac{1}{1 - 14z^{-1}} = \frac{-1}{1 - 12z^{-1}} = \frac{1}{121} > \frac{1}{2}$$

$$\frac{1}{2} = \frac{3}{12} = \frac{5}{12} = \frac{1}{12} = \frac{1}{1$$

f) from (x) Y(z)(1-3z-1+z-2) = X(z)-2-1/4z-1
$= > \frac{1}{\sqrt{(z)}} = \frac{X(z)}{1 - \frac{3}{4}z^{-1} + \frac{z^{-2}}{8}}, \frac{ z > \frac{1}{2}}{1 - \frac{1}{2}z^{-1}}$
9[1] = 9= [1] + 9= [1] => Y(z) = 1/25(2) + 1/21(2)
From the close form
n=0 $9[0]=0+1+3-5=-1$
$n=1$ $y_{EG} = 2(\frac{1}{2}) + \frac{1}{4} + \frac{3}{4} + \frac{5}{2} = 1 + 1 + \frac{5}{2} = \frac{4-5}{2} = -1$
$n-2$ $y_{12} = 4(\frac{1}{4}) + \frac{1}{16} + 3(\frac{1}{16}) - 5(\frac{1}{4}) = 1 + \frac{1}{4} - \frac{5}{4} = 0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$n=0$ $y_{ej}=\frac{3}{4}(2)-\frac{1}{8}(28)+1=\frac{5}{2}=\frac{28}{8}=1$
$n-1$ $9_{113}-\frac{3}{4}(-1)-\frac{1}{8}(2)+\frac{1}{2}=\frac{-3}{4}-\frac{1}{4}+\frac{1}{2}=-1+\frac{1}{2}=\frac{-1}{2}$
$n=2$ $\frac{1}{4}(\frac{1}{2}) - \frac{3}{4}(\frac{1}{2}) - \frac{1}{8}(-1) + \frac{1}{4} = \frac{-3}{8} + \frac{1}{8} + \frac{1}{4} = 0$
$n=3$ $4[3]=\frac{3}{4}(0)=\frac{1}{8}(\frac{-1}{2})+\frac{1}{8}=\frac{1}{16}+\frac{2}{16}=\frac{3}{16}$

2)a)
$$a_{[n]} = 2 + 2\cos(\frac{\pi n}{4}) + \cos(\frac{\pi n}{2}) + \frac{1}{2}\cos(\frac{3\pi n}{4})$$
 $a_{[n]} = 2\cos(\frac{\pi n}{4}) + 2\cos(\frac{\pi n}{2}) \Rightarrow N_{2} = 8$
 $a_{[n]} = 2\cos(\frac{\pi n}{4}) + 2\cos(\frac{\pi n}{2}) \Rightarrow N_{2} = 8$
 $a_{[n]} = \cos(\frac{\pi n}{2}) + 2\cos(\frac{\pi n}{2}) \Rightarrow N_{3} = 4$
 $a_{[n]} = \frac{1}{2}\cos(\frac{3\pi n}{4}) + \frac{1}{2}\cos(\frac{2\pi n}{3}) \Rightarrow N_{4} = 8$
 $N = 8 = \lim_{n \to \infty} (8, 1, 4, 8)$

b) $C_{[n]} = \frac{1}{2} \lim_{n \to \infty} \frac{1}{2} \lim_{n \to \infty$

Q3abc

3 a)
$$C_{k} = \cos(k\pi) + \sin(3k\pi)$$
 $C_{1}[K] = \cos(\pi K) = \cos(2\pi \frac{1}{8}K) \Rightarrow N=8$
 $C_{2}[K] = \sin(3\pi K) = \sin(2\pi \frac{3}{8}K) \Rightarrow N=8$
 $C_{k} = i \text{ peridic with } N=8$

b) $C_{k} = \frac{1}{2}e^{-\frac{1}{4}} + \frac{1}{2}e^{-\frac{1}{4}}e$

$$\frac{1}{100} = \frac{1}{2} \left(\frac{1+n}{8} \right) - \frac{1}{2} \left(\frac{1+n}{8} \right) + \frac{1}$$

