Quantum Measurement Zeno Effect

Leon Oleschko 30.01.2025

Modeling Quantum Hardware: open dynamics and control
Universität Konstanz

No phenomenon is a real until it is observed.

- John Archibald Wheeler 1970

Historical Note

```
1900 Plank & Einstein: Blackbody Radiation
1920 Bohr, Heisenberg: Copenhagen interpretation
      Born: Probabilistic interpretation P(m) = |\langle m | \psi \rangle|^2
      Schrödinger: Measurement Problem
1930 EPR Paradox
1932 von Neumann: Mathematical Foundations of Quantum
      Mechanics
1970 Decoherence Theory
      Experimental Interest
```

Projective (von Neumann) Measurement

Measurement Operator
$$\hat{A} = \sum m |m\rangle$$
 on ψ :

$$p(m) = |\langle m|\psi\rangle|^2$$

$$\psi \xrightarrow{\text{Measuring } m} |m\rangle$$

More formally with projector $\hat{M} \sim |m\rangle\langle m|$:

$$\rho' \propto \hat{M} \rho \hat{M}$$

Neglegting Normalization and Degenercy: POVM Measurement

Quantum Computation and Quantum Information, M. A. Nielsen et al. 2010 (2.2.3)

Quantum Measurement and Control, Wiseman et al. 2010 (1)

Example: Superposition

$$\begin{split} H &= \sigma_z \\ |\psi > &\propto |\uparrow\rangle + |\downarrow\rangle \\ i\partial_t \psi &= H\psi \end{split}$$

 \Rightarrow Superposition is stable

Example: Superposition

$$H = \sigma_z$$
$$|\psi > \propto |\uparrow\rangle + |\downarrow\rangle$$
$$i\partial_t \psi = H\psi$$

⇒ Superposition is stable

$$M = \sigma_z$$

$$p(\updownarrow) = |\langle \updownarrow | \psi \rangle|^2 = \frac{1}{2}$$

Example: Decay

$$H = \sigma_z$$

$$|\psi > \propto |\uparrow\rangle$$

$$M = \sigma_z$$

$$J = \kappa \sigma_-$$

$$\partial_t \rho = -i[H, \rho] + J\rho J^{\dagger} - \frac{1}{2} \{J^{\dagger} J, \rho\}$$

Example: Zeno

Zeno Effect

- Zeno of Elea (460 BCE): Arrow paradox
- Misra and Sudarshan (1977): "The Zeno's paradox in quantum theory"

"Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions", Kominis 2009

Zeno Effect

- Zeno of Elea (460 BCE): Arrow paradox
- Misra and Sudarshan (1977): "The Zeno's paradox in quantum theory"
- Experimentally demonstrated (1990) with 5000 ⁹Be⁺ ions at 250 mK

"Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions", Kominis 2009

FIG. 2. Diagram of the energy levels of ⁹Be⁺ in a magnetic field *B*. The states labeled 1, 2, and 3 correspond to those in Fig. 1.

FIG. 3. Graph of the experimental and calculated $1 \rightarrow 2$ transition probabilities as a function of the number of measurement pulses n. The decrease of the transition probabilities with increasing n demonstrates the quantum Zeno effect.

"Quantum Zeno effect", Itano et al. 1990

Zeno Effect

- Zeno of Elea (460 BCE): Arrow paradox
- Misra and Sudarshan (1977):
 "The Zeno's paradox in quantum theory"
- Experimentally demonstrated (1990) with 5000 ⁹Be⁺ ions at 250 mK
- Used in Magnetometers and possibly birds

"Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions", Kominis 2009

FIG. 2. Diagram of the energy levels of ${}^9\mathrm{Be^+}$ in a magnetic field B. The states labeled 1, 2, and 3 correspond to those in Fig. 1.

FIG. 3. Graph of the experimental and calculated $1 \rightarrow 2$ transition probabilities as a function of the number of measurement pulses n. The decrease of the transition probabilities with increasing n demonstrates the quantum Zeno effect.

"Quantum Zeno effect", Itano et al. 1990

Trapped lons

FIG. 2. Diagram of the energy levels of $^9{\rm Be^+}$ in a magnetic field B. The states labeled 1, 2, and 3 correspond to those in Fig. 1 .

- Trapped Ions
- Superconducting Qubits

- Trapped Ions
- Superconducting Qubits
- Stern-Gerlach Experiment

- Trapped Ions
- Superconducting Qubits
- Stern-Gerlach Experiment
- Quantum Dot Charge Readout

- Trapped Ions
- Superconducting Qubits
- Stern-Gerlach Experiment
- Quantum Dot Charge Readout

⇒ Used when the quantum wave function is collapsed into a classical result

But breaks on:

- simultaneous measurement of conjugate variables
- optical measurements

Quantum Measurement and Control, Wiseman et al. 2010

Weak Measurement

Measured system S and Measurement Device S combined to:

$$H = H_S \otimes 1 + 1 \otimes H_M + g(t) C_S \otimes P_M$$

Then a strong measurement X is performed on the M this yields $\langle C \rangle + \xi$ and partial collapse in S

Quantum measurement, Vladimir Braginsky et al. 1992 (Fig 8.4 modified) "Introduction to Weak Measurements and Weak Values", Tamir et al. 2013

Weak Measurement

Continuous application leads to *SME* for *S*:

$$\partial_t \rho = -i[H, \rho] + J\rho J^{\dagger} - \frac{1}{2} \{J^{\dagger} J, \rho\} + \left(C\rho + \rho C^{\dagger} - \text{Tr}(C\rho + \rho C^{\dagger})\right) \xi(t)$$

Quantum measurement, Vladimir Braginsky et al. 1992 (Fig 8.4 modified) "Introduction to Weak Measurements and Weak Values", Tamir et al. 2013

Example: Weak measurment

$$H=\sigma_z$$
 Atom $+a^\dagger a + g\sigma_z a^\dagger a$ M $J=\kappa \ a$ Dissipation $C=\kappa\eta \ a$ Measurement

Rabi Oscillations Setup

$$H = g (a^{\dagger}a)(\sigma^{+}\sigma^{-})$$

$$+ g_{s} (\sigma^{+} + \sigma^{-})$$

$$- i\beta(a^{\dagger} - a)$$

$$J = \kappa a$$

$$C = \sqrt{\kappa \eta} a$$

Coupling
Magnetic
Optic
Dissipation
Measurement

Time evolution

Types of Measurements

Symbol	Name	Definition
E	Efficient	$\forall r, \exists \hat{M}_r, O_r = \mathcal{J}[\hat{M}_r]$
C	Complete	$\forall \rho, \forall r, O_r \rho \propto O_r \hat{1}$
S	Sharp	$\forall r, \operatorname{rank}(\hat{E}_r) = 1$
0	Of an observable X	$\forall r, \hat{E}_r = E_r(\hat{X})$
BAE	Back-action-evading	O with $\forall \rho, \forall x \in \lambda(\hat{X}), Tr[\hat{\Pi}_x \rho] = Tr[\hat{\Pi}_x O \rho]$
MD	Minimally disturbing	$E \text{ with } \forall r, \ \hat{M}_r = \hat{M}_r^{\dagger}$
P	Projective	MD and O
VN	von Neumann	P and S

Problem Statement

"Cavity optomechanics", Aspelmeyer et al. 2014 Quantum Optomechanics, Bowen et al. 2015

Hamiltonian

Optical Cavity \hat{a} , $\omega_o(\hat{x}_{\mathsf{mech}}) = \omega_o + \frac{g}{\omega_o}\hat{x}_{\mathsf{mech}}$; mechanical oscillations \hat{b} , ω_m ; coupling g; Drive E, ω_L

$$H = \underbrace{\omega_o \ a^\dagger a}_{\text{Cavity}} + \underbrace{\omega_m \ b^\dagger b}_{\text{Mechanical}} - \underbrace{g \ a^\dagger a \ (b + b^\dagger)}_{\text{Interaction}} + \underbrace{E(a e^{i\omega_L t} + a^\dagger e^{-i\omega_L t})}_{\text{Drive}}$$

Rotating Wave Approximation at ω_L with $\Delta = \omega_o - \omega_L$, $a \to ae^{i\omega_L t}$:

$$H_{\text{RWA}} = \Delta \ a^{\dagger} a + \omega_m \ b^{\dagger} b - g \ a^{\dagger} a \left(b^{\dagger} + b \right) + E(a + a^{\dagger})$$

 $\hbar = 1$

Quantum Optomechanics, Bowen et al. 2015 (2.3)

QuantumOptics.jl, Krämer et al. 2024 (Optomechanical Cavity)

Hamiltonian Linearization (Currently not used)

$$H_{\text{RWA}} = \Delta \ a^{\dagger} a + \omega_m \ b^{\dagger} b - g \ a^{\dagger} a \ (b^{\dagger} + b) + E(a + a^{\dagger})$$

Linearize $a = \alpha + \delta a$, $b = \beta + \delta b$; with α, β steady state.

$$\begin{split} H_{\text{Interaction}} &= -g \ a^{\dagger} a \ (b^{\dagger} + b) \\ &\approx -\underbrace{g |\alpha|}_{G} \left(\delta a + \delta a^{\dagger} + \mathcal{O}(a^{2} + \delta a \delta a^{\dagger}) \right) \left(\delta b + \delta b^{\dagger} + 2\beta \right) \\ &a + a^{\dagger} = |\alpha| + \delta a + \delta a^{\dagger} \sim \delta a + \delta a^{\dagger} \end{split}$$

Therefore for small G:

$$H_{\text{lin}} = \Delta \, \delta a^{\dagger} \delta a + \omega_m \delta b^{\dagger} \delta b - G(\delta a + \delta a^{\dagger})(\delta b + \delta b^{\dagger}) + E(a + a^{\dagger})$$

$$\text{Problem Statement} \, \hat{Y}^2) + \frac{\omega}{2} (\hat{Q}^2 + \hat{P}^2) - G\hat{X}\hat{Q} + E\hat{X}$$

18

Linearization in Quadratures

$$X = \delta a + \delta a^{\dagger} \quad Q = \delta b + \delta b^{\dagger}$$

 $Y = i(\delta a^{\dagger} - \delta a) \quad P = i(\delta b^{\dagger} - \delta b)$
 $n = \delta a^{\dagger} a \quad m = \delta b^{\dagger} b$
 $H_{\text{RWA}} = \Delta n + \omega m - gnQ + EX$
 $H_{\text{lin}} = \Delta n + \omega m - GXQ + EX$

The drive EX is not getting lost in linearization. There is no point in the simplification if solved numerically.

Dissipation

Optical decay κ :

$$L = \sqrt{\kappa(n_T + 1)} \, \delta a + \sqrt{\kappa n_T} \, \delta a^{\dagger}$$

Mechanical resonator with γ and a thermal bath at the n-th thermal state:

$$+ \sqrt{\gamma (m_T+1)} \; \delta b \, + \, \sqrt{\gamma m_T} \; \delta b^{\dagger}$$

Implementation

truncated Fock Basis: $F_{\text{optical}} \otimes F_{\text{mechanical}}$

definition of H, J with $\delta a \otimes 1$

$$\psi(0) = |0\rangle \otimes |0\rangle$$

Time Evolution using the *Lindblad equation*:

$$\dot{\rho} = -i[H, \rho] + J\rho J^{\dagger} - \frac{1}{2} \{J^{\dagger}J, \rho\}$$

Continous measurement

Lindblad Master Equation:

$$\dot{\rho} = -i[H, \rho] + J\rho J^{\dagger} - \frac{1}{2} \{J^{\dagger}J, \rho\}$$

Stochastic Master Equation:

$$\dot{\rho} = -i[H, \rho] + J\rho J^{\dagger} - \frac{1}{2} \{J^{\dagger}J, \rho\} + \left(C\rho + \rho C^{\dagger} - \text{Tr}(C\rho + \rho C^{\dagger})\right) \xi(t)$$

Let's look at the Quadrature $C = \eta \sqrt{\kappa} (\delta a + \delta a^{\dagger})$

QuantumOptics.jl, Krämer et al. 2024 (Stochastic Master equation, Quantum Zeno Effect)
"A Straightforward Introduction to Continuous Quantum Measurement", Jacobs et al. 2006

Time Evolution

Spectrum

Power Dependence ~ G

Took ≈ 1 min of compute time. Why is the SME so much slower? True Measureme Yalues?

Expectation

$$S_x = S_x^{\text{imp}} + S_x^{\text{ba}} + S_x^{\text{zpf}}$$

 $S_x^{\text{imp}} \propto P^{-1} \omega^0$: Imprecision / Shot noise $S_x^{\text{ba}} \propto P$: Back action S_x^{zpf} : Zero Point Fluctuation

[&]quot;Nanomechanical motion measured with an imprecision below that at the standard quantum limit", Teufel et al. 2009 (Fig. 1)

Uncerstanding $S_{\text{det}}(\omega, P_{\text{in}})$

Where is the power dependence?

$$\overline{S}_{\mathsf{det}}(\omega) = \frac{1}{8\eta\Gamma|C_{\mathsf{eff}}|} + 2\Gamma|\chi(\omega)|^2|C_{\mathsf{eff}}|$$

$$C_{\mathsf{eff}}(\omega) = \frac{4g^2}{\kappa\Gamma(1-2i\omega/\kappa)^2}$$
$$\chi(\omega) = \frac{\Omega}{\Omega^2 - \omega^2 - i\omega\gamma}$$

 η : Detection efficiency

 $\Gamma = \gamma$: Damping of oscillator

$$\overline{S}_{\mbox{det}}(\omega) = \frac{\kappa\Gamma|1-2i\omega/\kappa|}{8\eta\Gamma 4g^2} + 2\Gamma\frac{\Omega^2}{|\Omega^2-\omega^2-i\omega\gamma|^2} \frac{4g^2}{\kappa\Gamma(1-2i\omega/\kappa)^2}$$

Quantum Optomechanics, Bowen et al. 2015 (eq. 3.51)

$$P/P^{SQL} = \{0.1, 0.4, 1, 4, 10\}$$

Looking for a source that derives $S_{det}(\omega, P)$?