Chapter 3: Cluster Analysis

- 3.1 Basic Concepts of Clustering
 - 3.1.1 Cluster Analysis
 - 3.1.2 Clustering Categories
- 3.2 Partitioning Methods
 - 3.2.1 The principle
 - 3.2.2 K-Means Method
 - 3.2.3 K-Medoids Method
 - 3.2.4 CLARA
 - 3.2.5 CLARANS
- 3.3 Hierarchical Methods
- 3.4 Density-based Methods
- 3.5 Clustering High-Dimensional Data
- > 3.6 Outlier Analysis

3.1.1 Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity & minimizing interclass similarity

Typical Applications

→ WWW, Social networks, Marketing, Biology, Library, etc.

3.1.2 Clustering Categories

Partitioning Methods

→ Construct k partitions of the data

Hierarchical Methods

Creates a hierarchical decomposition of the data

Density-based Methods

Grow a given cluster depending on its density (# data objects)

Grid-based Methods

Quantize the object space into a finite number of cells

Model-based methods

Hypothesize a model for each cluster and find the best fit of the data to the given model

Clustering high-dimensional data

→ Subspace clustering

Constraint-based methods

→ Used for user-specific applications

Chapter 3: Cluster Analysis

- 3.1 Basic Concepts of Clustering
 - 3.1.1 Cluster Analysis
 - 3.1.2 Clustering Categories
- ▶ 3.2 Partitioning Methods
 - 3.2.1 The principle
 - 3.2.2 K-Means Method
 - 3.2.3 K-Medoids Method
 - 3.2.4 CLARA
 - 3.2.5 CLARANS
- 3.3 Hierarchical Methods
- 3.4 Density-based Methods
- 3.5 Clustering High-Dimensional Data
- > 3.6 Outlier Analysis

3.2.1 Partitioning Methods: The Principle

- Given
 - → A data set of **n** objects
 - → K the number of clusters to form
- Organize the objects into k partitions (k<=n) where each partition represents a cluster
- The clusters are formed to optimize an objective partitioning criterion
 - → Objects within a cluster are similar
 - → Objects of different clusters are dissimilar

3.2.2 K-Means Method

Choose 3 objects (cluster centroids)

Assign each object to the closest centroid to form Clusters

Goal: create 3 clusters (partitions)

Update cluster centroids

K-Means Method

Recompute Clusters

If Stable centroids, then stop

K-Means Algorithm

Input

- → K: the number of clusters
- → D: a data set containing n objects
- Output: A set of k clusters
- Method:
 - (1) Arbitrary choose k objects from D as in initial cluster centers
 - (2) Repeat
 - (3) Reassign each object to the most similar cluster based on the mean value of the objects in the cluster
 - (4) Update the cluster means
 - (5) **Until** no change

K-Means Properties

The algorithm attempts to determine k partitions that minimize the square-error function

$$E = \sum_{i-1}^{k} \sum_{p \in C_{i}} (p - m_{i})^{2}$$

- → E: the sum of the squared error for all objects in the data set
- → P: the data point in the space representing an object
- → **m**_i: is the mean of cluster C_i
- It works well when the clusters are compact clouds that are rather well separated from one another

K-Means Properties

Advantages

- K-means is relatively scalable and efficient in processing large data sets
- The computational complexity of the algorithm is O(nkt)
 - → n: the total number of objects
 - → k: the number of clusters
 - → t: the number of iterations
 - → Normally: k<<n and t<<n</p>

Disadvantage

- Can be applied only when the mean of a cluster is defined
- Users need to specify k
- K-means is not suitable for discovering clusters with nonconvex shapes or clusters of very different size
- It is sensitive to noise and outlier data points (can influence the mean value)

Variations of the K-Means Method

- A few variants of the k-means which differ in
 - → Selection of the initial k means
 - → Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - → Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - → A mixture of categorical and numerical data

3.2.3 K-Medoids Method

- Minimize the sensitivity of k-means to outliers
- Pick actual objects to represent clusters instead of mean values
- Each remaining object is clustered with the representative object (Medoid) to which is the most similar
- The algorithm minimizes the sum of the dissimilarities between each object and its corresponding reference point

$$E = \sum_{i-1}^{k} \sum_{p \in C_i} |p - o_i|$$

- → E: the sum of absolute error for all objects in the data set
- → P: the data point in the space representing an object
- → O_i: is the representative object of cluster C_i

K-Medoids Method: The Idea

Initial representatives are chosen randomly

- The iterative process of replacing representative objects by no representative objects continues as long as the quality of the clustering is improved
- For each representative Object O
 - → For each non-representative object R, swap O and R
- Choose the configuration with the lowest cost
- Cost function is the difference in absolute error-value if a current representative object is replaced by a non-representative object

Data Objects

	A ₁	A_2
O ₁	2	6
02	3	4
O_3	3	8
O ₄	4	7
O ₅	6	2
O ₆	6	4
O ₇	7	3
O ₈	7	4
O ₉	8	5
O ₁₀	7	6

Goal: create two clusters

Choose randmly two medoids

$$O_2 = (3,4)$$

 $O_8 = (7,4)$

$$O_8^- = (7,4)$$

Data Objects

O₉

O₁₀

- →Assign each object to the closest representative object
- →Using L1 Metric (Manhattan), we form the following clusters

Cluster1 =
$$\{O_1, O_2, O_3, O_4\}$$

Cluster2 =
$$\{O_5, O_6, O_7, O_8, O_9, O_{10}\}$$

Data Objects

O₈

O₉

O₁₀

→Compute the absolute error criterion [for the set of Medoids (O2,O8)]

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} p - o_i \mid = \mid o_1 - o_2 \mid + \mid o_3 - o_2 \mid + \mid o_4 - o_2 \mid$$

$$+|o_5-o_8|+|o_6-o_8|+|o_7-o_8|+|o_9-o_8|+|o_{10}-o_8|$$

Data Objects

8 5

O₉

O₁₀

→The absolute error criterion [for the set of Medoids (O2,O8)]

$$E = (3+4+4)+(3+1+1+2+2) = 20$$

Data Objects

7 4

O₈

O₉

O₁₀

- →Choose a random object O₇
- →Swap **08** and **07**
- →Compute the absolute error criterion [for the set of Medoids (O2,O7)]

$$E = (3+4+4)+(2+2+1+3+3)=22$$

Data Objects

O₁₀

→Compute the cost function

Absolute error [for O_2, O_7] – Absolute error $[O_2, O_8]$

$$S = 22 - 20$$

 $S>0 \Rightarrow it is a bad idea to replace <math>O_8$ by O_7

K-Medoids Method

Data Objects

	\mathbf{A}_{1}	A_2
O ₁	2	6
02	3	4
O_3	3	8
O ₄	4	7
O ₅	6	2
O_6	6	4
O ₇	7	3
O ₈	7	4
O ₉	8	5
O ₁₀	7	6

- In this example, changing the medoid of cluster 2 did not change the assignments of objects to clusters.
- What are the possible cases when we replace a medoid by another object?

K-Medoids Method

- First case
- The assignment of P to A does not change

- Representative object
- Random Object
- Currently P assigned to A

- Representative object
- Random Object
- Currently P assigned to B

Second case

P is reassigned to A

K-Medoids Method

- Representative object
- Random Object
- Currently P assigned to B

- Representative object
- Random Object

Currently P assigned to A

Third case

P is reassigned to the new B

Fourth case

P is reassigned to B

K-Medoids Algorithm(PAM)

PAM: Partitioning Around Medoids

Input

- → K: the number of clusters
- → D: a data set containing n objects
- Output: A set of k clusters
- Method:
 - (1) Arbitrary choose k objects from D as representative objects (seeds)
 - (2) Repeat
 - (3) Assign each remaining object to the cluster with the nearest representative object
 - (4) For each representative object O_j
 - (5) Randomly select a non representative object O_{random}
 - (6) Compute the total cost S of swapping representative object Oj with O_{random}
 - (7) if S<0 then replace O_j with O_{random}
 - (8) Until no change

K-Medoids Properties(k-medoids vs.K-means)

- The complexity of each iteration is O(k(n-k)²)
- For large values of n and k, such computation becomes very costly

Advantages

→ K-Medoids method is more robust than k-Means in the presence of noise and outliers

Disadvantages

- → K-Medoids is more costly that the k-Means method
- → Like k-means, k-medoids requires the user to specify k
- → It does not scale well for large data sets

3.2.4 CLARA

- CLARA (Clustering Large Applications) uses a sampling-based method to deal with large data sets
- A random sample should closely represent the original data
- The chosen medoids will likely be similar to what would have been chosen from the whole data set

CLARA

- Draw multiple samples of the data set
- Apply PAM to each sample
- Return the best clustering

Choose the best clustering

CLARA Properties

- Complexity of each Iteration is: O(ks² + k(n-k))
 - → **s**: the size of the sample
 - → **k**: number of clusters
 - → **n**: number of objects
- PAM finds the best k medoids among a given data, and CLARA finds the best k medoids among the selected samples

Problems

- → The best k medoids may not be selected during the sampling process, in this case, CLARA will never find the best clustering
- → If the sampling is biased we cannot have a good clustering
- → Trade off-of efficiency

3.2.5 CLARANS

- CLARANS (Clustering Large Applications based upon RANdomized Search) was proposed to improve the quality and the scalability of CLARA
- It combines sampling techniques with PAM

It does not confine itself to any sample at a given time

It draws a sample with some randomness in each step of the search

CLARANS: The idea

Keep the current medoids

CLARANS: The idea

CLARA

- Draws a sample of nodes at the beginning of the search
- Neighbors are from the chosen sample
- Restricts the search to a specific area of the original data

Sample

medoids

. . .

CLARANS: The idea

CLARANS

- Does not confine the search to a localized area
- Stops the search when a local minimum is found
- Finds several local optimums and output the clustering with the best local optimum

Original data

medoids

The number of neighbors sampled from the original data is specified by the user

CLARANS Properties

Advantages

- Experiments show that CLARANS is more effective than both PAM and CLARA
- → Handles outliers

Disadvantages

- → The computational complexity of CLARANS is O(n²), where n is the number of objects
- → The clustering quality depends on the sampling method

Summary of Section 3.2

Partitioning methods find sphere-shaped clusters

K- mean is efficient for large data sets but sensitive to outliers

PAM uses centers of the clusters instead of means

CLARA and CLARANS are used for clustering large databases