Thick Film Chip Resistors

Performance Specification

Temperature Coefficient $0\Omega1 \sim 0\Omega99$ ±800PPM/°C $1\Omega \sim 10\Omega$ ±400PPM/°C

 $10.1\Omega \sim 100\Omega$ ±200PPM/°C

±100PPM/°C $(0201: >100\Omega \le \pm 200PPM/^{\circ}C)$ >1000

Short Time Overload $\pm 5\%$: $\pm (2.0\% + 0.1\Omega)$ Max

 $\pm 1\%$: $\pm (1.0\% + 0.1Ω)$ Max

Insulation Resistance Min. 1,000 Mega Ohm

Dieiectric Withstanding Voltage No evidence of flashover, mechanical damage, arcing or insulation

breakdown.

Terminal Bending \pm (1.0% + 0.05Ω)Max \pm (1.0% + 0.05Ω)Max Soldering Heat Solderability Min. 95% coverage.

Temperature Cycling $\pm 5\%$: $\pm (1.0\% + 0.05 Ω)$ Max

 $\pm 1\%$: $\pm (0.5\% + 0.05Ω)$ Max

 $\pm 5\%$: $\pm (3.0\% + 0.1\Omega)$ Max **Humidity (Steady State)**

 $\pm 1\%$: $\pm (0.5\% + 0.1 Ω)$ Max

Load Life in Humidity $\pm 5\%$: $\pm (3.0\% + 0.1\Omega)$ Max

 $\pm 1\%$: $\pm (1.0\% + 0.1\Omega)$ Max

Load Life $\pm 5\%$: $\pm (3.0\% + 0.1\Omega)$ Max

 $\pm 1\%$: $\pm (1.0\% + 0.1\Omega)$ Max

Ordering Procedure: Ex.: 1206, 1/4W-S, +/-5%, 10Ω T/R-5000

1 2 6 S 4 J 0 0 Т 5 Ε

Resistor Size:

0201, 0402, 0603, 0805, 1206, 1210, 1812, 2010, 2512

Wide Terminals:

0508, 0612, 1020, 1218, 1225

Wattage:

Normal size: WH=1/32W, WM=1/20W, WG=1/16W,

WA=1/10W, W8=1/8W, W4=1/4W,

W2=1/2W, 1W=1W

SA=1/10W-S, S8=1/8W-S, S4=1/4W-S, Small size:

S3=1/3W-S, 07=3/4W-S, U2=1/2W-SS

Applicable for Wide Terminal only: WJ=1.5W, 2W. 3W

Tolerance:

 $D = \pm 0.5\%$ $F = \pm 1\%$ $G = \pm 2\%$

 $J = \pm 5\%$

Resistance Value: E-24 series:

1st digit is "0"

2nd & 3rd digits are significant figures of the resistance

4th indicates the number of zeros

E-96 series:

1st to 3rd digits are significant figures of the resistance 4th digit indicates the number of

"J" ~0.1, "K" ~ 0.01, "L" ~ 0.001 Ex. 012J ~ 1Ω 2, 226K ~ 2Ω 26

Jumper: use "0" for 1st to 4th

digits

Packing Type:

T = Tape/Reel

Packing Qty:

2 = 2.000 pcs.1 = 1.000 pcs.4 = 4,000 pcs.5 = 5,000 pcs.C = 10,000 pcs.A = 500 pcs.D = 20,000 pcs. E = 15,000 pcs.

F = 40,000 pcs. G = 60,000 pcs.

Special Feature:

E = Lead (Pb) Free Plating Type/ RoHS compliant

Note:

- 1.) Special resistance value, tolerance, T.C.R. requirement is available on a case-to-case basis.
- 2.) Standard reel size = 7"
- 3.) 4", 10", & 13" reels are available upon request

Thick Film Chip Resistors

Features

- Small size and light weight
- Suitable for both wave and reflow soldering
- Reduction of assembly costs

Туре	Power Rating at 70°C	Max	Max	Dielectric	Tolerance %	Resistance Range	Dimension (mm)				
		Working Voltage/Current	Overload Voltage/Current	Withstanding Voltage			L	W	Н	ℓ 1	ℓ2
0201 (0603)	1/20W	0.5A	1A	-	Jumper	<50mΩ	0.60±0.03	0.30±0.03	0.23±0.03	0.10±0.05	0.15±0.05
		25V	50V	-	±1% ±2% ±5%	$1\Omega \sim 10 M\Omega$ $1\Omega \sim 10 M\Omega$ $1\Omega \sim 10 M\Omega$					
0402 (1005)	1/16W	1A	2A		Jumper	<50m Ω	1.00±0.10	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
		50V	100V	100V	±1% ±2% ±5%	$\begin{array}{c} 1\Omega \sim 10 M\Omega \\ 1\Omega \sim 10 M\Omega \\ 1\Omega \sim 10 M\Omega \end{array}$					
0603 (1608)	1/10W-S 1/16W	1A	2A		Jumper	<50mΩ	1.60±0.10	0.80 ^{+0.15} -0.10	0.45±0.10	0.30±0.20	0.30±0.20
		75V	150V	300V	±1% ±2% ±5%	$1\Omega \sim 10 M\Omega$ $1\Omega \sim 10 M\Omega$ $1\Omega \sim 10 M\Omega$					
0805 (2012)	1/8W-S 1/10W	2A	5A		Jumper	<50mΩ	2.00±0.15	1.25 ^{+0.15} -0.10	0.55±0.10	0.40±0.20	0.40±0.20
		150V	300V	500V	±1% ±2% ±5%	$1\Omega \sim 10 M\Omega$ $1\Omega \sim 10 M\Omega$ $1\Omega \sim 10 M\Omega$					
1206 (3216)	1/4W-S 1/8W	2A	10A		Jumper	<50mΩ	3.10±0.15	1.55 ^{+0.15} -0.10	0.55±0.10	0.45±0.20	0.45±0.20
		200V	400V	500V	±1% ±2% ±5%	$1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$					
1210 (3225)	1/2W-SS 1/3W-S 1/4W	2A	10A		Jumper	<50m Ω	3.10±0.10	2.60±0.15	0.55±0.10	0.50±0.25	0.50±0.20
		200V	500V	500V	±1% ±2% ±5%	$\begin{array}{c} 1\Omega \sim 10 M\Omega \\ 1\Omega \sim 10 M\Omega \\ 1\Omega \sim 10 M\Omega \end{array}$					
1812	1/2W 3/4W-S	2A	10A		Jumper	<50m Ω	4.50±0.20	3.20±0.20	0.55±0.20	0.50±0.20	0.50±0.20
		200V	500V	500V	±1% ±5%	1Ω~ 10MΩ					
2010 (5025)	3/4W-S 1/2W	2A	10A		Jumper	<50m Ω	5.00±0.10	2.50±0.15	0.55±0.10	0.60±0.25	0.50±0.20
		200V	500V	500V	±1% ±2% ±5%	$1\Omega \sim 10 M\Omega$ $1\Omega \sim 10 M\Omega$ $1\Omega \sim 10 M\Omega$					
2512 (6432)	1W	2A	10A		Jumper	<50mΩ	6.35±0.10	3.20±0.15	0.55±0.10	0.60±0.25	0.50±0.20
		200V	500V	500V	±1% ±2% ±5%	$1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$ $1\Omega \sim 10M\Omega$					

∃IIH

- 1.) Metric information inside parenthesis.
- 2.) Standard Operating Temp (°C): -55~ +155 3.) Standard: E-96 series: 0.5%, 1%

E-24 series: 2%, 5% 4.) Low resistance range (0.1 Ω ~ 0.99 Ω) is also

available for 0402, 0603, 0805, 1206, 1210, 2010 and 2512

Derating Curve

