ASSIGNMENT 7

We will be investigating the use of Polynomial Regression on the function y = x3. We want to add some randomness to x3, so we will add a fraction of a random value selected from a normal distribution with a standard deviation of 1 centered around 0:

```
y = x^{**}3 + 0.5 * np.random.normal(0,1,1)
```

```
In [9]: from random import randint
    import numpy as num
    import matplotlib.pyplot as plt
    from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn import linear_model
    from sklearn.metrics import mean_squared_error
    import math
    from math import sqrt
```

[999.44084088]

1. Test Points

Make a list of 10 random points between -2 and 2 (using a uniform distribution). Pass this list into the function described above to get a set of x and y coordinates. Display the (x,y) coordinates as a data frame.

2. Create Graphs

Now, create scatter plots of the (x,y) coordinates and:

a degree 1 (linear) regression model,

There should be 5 separate graphs for this step each clearly labeled and annotated.

degree 2 (quadratic) regression model,

degree 3 (cubic) regression model,

degree 5, and

degree 9.

3. Combine Graphs

Next, create a single graph that contains all 5 regression models from the last step as well as the (x,y) coordinates. Make sure there is a useful legend as well.

4. Test the Models

We want to see which model was the best predictor for our function. Which one do you think would be the best? To figure this out, create a set of 100 x coordinates randomly generated from a uniform distribution between -2 and 2. Then generate the corresponding y coordinates by passing in the x's to the x3 + (degree of randomness) function from earlier. Display the first few (x,y) coordinates to make sure they are what you expect.

```
In [26]: X_test = num.random.uniform(-2,2,100)
    y_test = func_test(X_test)
    print("X values")
    print(X_test)
    print()
    print("Y values")
    print(y_test)
```

```
X values
[-1.97724597e+00 -9.90294586e-01 1.18265003e+00 -1.93898012e+00]
 3.95373508e-01 4.15218156e-01 -1.57940926e+00 -4.72226220e-01
 -1.85409577e+00 1.56164625e+00 1.92368343e+00 -1.76023204e+00
 1.56218378e+00 3.07605998e-01 9.69918756e-01 5.20735746e-01
 3.27368770e-01 -1.91824347e+00 -1.15989369e+00 1.78739513e-01
 1.07646068e+00 -9.97219083e-01 -8.56417238e-01 1.40958035e+00
 1.90002597e+00 1.53941317e+00 -5.61968624e-01 3.95435784e-01
 -5.80817553e-01 -6.39239139e-01 -1.28767604e+00 -1.04922317e+00
 -1.82055087e+00 2.17257185e-02 -4.94990183e-01 3.71221604e-01
 5.19767502e-01 -1.42959874e+00 1.73536520e+00 1.78551952e+00
  4.09186631e-01 - 4.48934879e-01 - 5.47247984e-01 - 1.18261889e+00
 -8.92939754e-01 -1.01385648e+00 -1.30556799e+00 1.86643878e+00
 1.82805040e+00 3.91894737e-01 9.25203012e-01 -6.38459109e-01
 -1.63177759e+00 -1.46007924e-01 3.47955730e-02 -1.64615931e+00
 1.12140893e-01 1.96863215e+00 -4.19856273e-01 -6.57614233e-01
 1.22180215e+00 1.01739598e+00 -7.47734234e-01 5.36146732e-01
 1.61618301e-01 -8.12824996e-01 -1.55684840e+00 -7.49438808e-01
 -1.72083480e-01 6.35760281e-01 -9.82969929e-01 5.64405035e-01
 -1.19950557e+00 6.30499222e-01 1.11315686e+00 1.11839359e+00
 4.41312613e-01 -7.63998606e-01 7.90939630e-01 1.43847318e+00
 5.01295031e-01 1.92963132e+00 1.90600051e+00 -1.33322348e+00
 -1.90728745e+00 -1.35702181e+00 1.69398730e+00 1.81419940e+00
 -1.15608633e+00 -5.57898997e-01 1.97501047e-01 -9.12676603e-01
 -1.57593516e-01 7.84646259e-01 1.42358670e-03 8.64283962e-01
 1.03823745e-01 -1.99440391e+00 -4.21198853e-01 -3.13321204e-02
Y values
[-8.58237194 -1.53929593 \ 0.16746886 -7.2732161 \ -0.06263946 \ -0.15350207
 -3.87367557 -0.09419835 -6.21508754 3.43224057 6.47050606 -5.40636291
 3.60052411 -0.56388566 0.7297127 -0.49430584 0.82816968 -6.71178464
 -2.5395075 -0.06169032 0.47705976 0.03167655 -1.32663931 2.25213284
 6.73992487 2.93355699 0.29702779 0.05213529 0.25136061 0.1186364
 -2.88396818 -1.75200051 -5.38591247 0.47614807 -0.72990722 -0.02747621
 -0.6133731 -2.86780403 5.59956688 5.90721724 -0.63900983 -0.41085943
 0.22592313 - 1.87305639 0.32541875 - 1.21379693 - 2.53366549 6.88350621
 6.20537942 - 0.11404169 1.94130132 - 0.34285988 - 4.11178138 0.13188098
 -0.1598734 -5.03469991 0.85322223 7.26838316 0.47283136 -0.39914841
 1.81945752 0.78150206 -0.04153196 -0.65060229 0.97585268 -1.26073891
 -3.70832899 0.05375173 -1.01269022 0.21719838 -0.79925019 -0.66265704
 -1.61466954 -0.09181897 1.31623233 2.39402827 0.34744754 -0.454114
 0.28689219 2.29724458 -0.13124115 7.07690782 7.13538106 -2.91680597
                         4.50884496 5.67542223 -1.17665294 0.04428684
 -6.31977228 -2.6141091
  0.89570065 - 0.50370287 0.58134954 1.52193908 - 0.22796101 0.97019515
 -0.08627162 -7.42440244 -0.37471577 0.7880526 ]
```

5. The Results

To find the best model, we compare the root mean square error for each polynomial regression model. The model with the lowest error is the best!

```
In [27]: pred1 = m.predict(X test[:, np.newaxis])
          = sqrt(mean squared error(y test,y pred1))
         int('Root mean square error for Degree 1')
         int(r1)
         pred2 = x3.predict(X test[:, np.newaxis])
         = sqrt(mean squared error(y test,y pred2))
         int('Root mean square error for Degree 2')
         int(r2)
         pred3 = x4.predict(X test[:, np.newaxis])
         = sqrt(mean squared error(y test,y pred3))
         int('Root mean square error for Degree 3')
         int(r3)
         pred5 = x5.predict(X test[:, np.newaxis])
         = sqrt(mean squared error(y test,y pred5))
         int('Root mean square error for Degree 5')
         int(r5)
         pred9 = x6.predict(X test[:, np.newaxis])
         = sqrt(mean squared error(y test,y pred9))
         int('Root mean square error for Degree 9')
         int(r9)
         "Cubic regression is best because Degree 3:cubic regression has the lowest root mean square error among the others."""
         Root mean square error for Degree 1
         1.4902410023308104
         Root mean square error for Degree 2
         1.8292871801491593
         Root mean square error for Degree 3
         0.5385454583069078
         Root mean square error for Degree 5
         1.0665111079926206
         Root mean square error for Degree 9
         12.374312194587901
Out[27]: 'Cubic regression is best because Degree 3:cubic regression has the lowest root mean square error among the others.'
```

In []: