Support Vector Machines and their use in IR

Lorenzo Zanolin. lorenzo.zanolin@spes.uniud.it

May x, 2023

Outline

1 SVM over linearly separable data

SVM over non linearly separable data

3 SVM use in IR

Vector Space

Suppose you have to classify whether a document is *relevant* or not. We can think to use *terms* as features to divide properly the data. We will use a *t-dimensional* vector space to represent our documents.

Vector Space

Suppose you have to classify whether a document is *relevant* or not. We can think to use *terms* as features to divide properly the data. We will use a *t-dimensional* vector space to represent our documents.

Classification

For simplicity, we can reason using a 2D Space. Data can be separated using a *decision boundary*, which is an *hyperplane*.

Classification

For simplicity, we can reason using a 2D Space. Data can be separated using a *decision boundary*, which is an *hyperplane*.

Support Vectors

In the previous example the *decision boundary* is a line, represented by the equation $a + bt_1 + ct_2 = 0$. We can introduce two *parallels* hyperplanes (lines) to the decision boundary, called *support vectors* whose equations are

$$\begin{cases} a + bt_1 + ct_2 = 1\\ a + bt_1 + ct_2 = -1 \end{cases}$$
 (1)

Support Vectors

In the previous example the *decision boundary* is a line, represented by the equation $a + bt_1 + ct_2 = 0$. We can introduce two *parallels* hyperplanes (lines) to the decision boundary, called *support vectors* whose equations are

$$\begin{cases} a + bt_1 + ct_2 = 1\\ a + bt_1 + ct_2 = -1 \end{cases}$$
 (1)

Margin

For convenience, we can rewrite the three equations using *vectorization* notation.

$$\begin{cases} b^T t + a = 0 \\ b^T t + a = \pm 1 \end{cases}$$
 (2)

Margin

For convenience, we can rewrite the three equations using *vectorization* notation.

$$\begin{cases} b^T t + a = 0 \\ b^T t + a = \pm 1 \end{cases}$$
 (2)

Intuitively, we can define the *margin* of the two support vectors as the distance between them.

For convenience, we can rewrite the three equations using *vectorization* notation.

$$\begin{cases} b^T t + a = 0 \\ b^T t + a = \pm 1 \end{cases}$$
 (2)

Intuitively, we can define the *margin* of the two support vectors as the distance between them.

Consider an arbitrary point x_1 that lies on support vector s_1 . Since s_1 , s_2 are parallel, consider the closest point to x_1 belonging to s_2 , say x_2 .

Margin

Margin

Their distance is
$$\lambda ||b|| = \frac{2}{\sqrt{b^T b}}$$
.

Vector λb represents the distance between the two margins.

Their distance is
$$\lambda ||b|| = \frac{2}{\sqrt{b^T b}}$$
.

Vector λb represents the distance between the two margins.

SVM [2, 1] are used to find the *maximum margin linear classifier*, thus we want to maximize the margin.

Cost Function

Remembering that we want to classify documents, our goal is to find specific b s.t. given a document x belonging to class y the decision boundary behaves as follows:

$$\begin{cases} b^T x + a \ge 1 & \text{if } y = 1 \\ b^T x + a \le -1 & \text{if } y = -1 \end{cases}$$
 (3)

Cost Function

Remembering that we want to classify documents, our goal is to find specific b s.t. given a document x belonging to class y the decision boundary behaves as follows:

$$\begin{cases} b^T x + a \ge 1 & \text{if } y = 1 \\ b^T x + a \le -1 & \text{if } y = -1 \end{cases}$$
 (3)

We can define the *cost function* as a system of equations:

$$\begin{cases} \min_{b,a} \frac{\sqrt{b^T b}}{2} \\ subject \ to \quad y_i(b^T x_i + a) \ge 1 \quad \forall x_i \end{cases}$$
 (4)

Soft-Margin

In real world problem it is not likely to get an exactly separate line dividing the data within the space. It would be better for the smooth boundary to ignore few data points than be curved or go in loops, around the outliers.

Soft-Margin

In real world problem it is not likely to get an exactly separate line dividing the data within the space. It would be better for the smooth boundary to ignore few data points than be curved or go in loops, around the outliers.

So, we will use *slack variables* to introduce a penalty for each misclassified point.

Soft-Margin

In real world problem it is not likely to get an exactly separate line dividing the data within the space. It would be better for the smooth boundary to ignore few data points than be curved or go in loops, around the outliers.

So, we will use *slack variables* to introduce a penalty for each misclassified point.

The new cost function will be

$$\begin{cases} \min_{b,a} \frac{\sqrt{b^T b}}{2} + C \sum_i \xi_i \\ subject \ to \quad y_i(b^T x_i + a) \ge 1 - \xi_i \quad and \ \xi_i > 0 \quad \forall x_i \end{cases}$$
 (5)

Intuitively, *C* represents how much the penalty counts.

Visualization

The larger is C the stricter the classification is, since a larger C will give more evidence to slack variables.

$$\begin{cases} \min_{b,a} \frac{\sqrt{b^T b}}{2} + C \sum_i \xi_i \\ subject \ to \quad y_i(b^T x_i + a) \ge 1 - \xi_i \quad and \ \xi_i > 0 \quad \forall x_i \end{cases}$$
 (6)

Visualization

The larger is C the stricter the classification is, since a larger C will give more evidence to slack variables.

$$\begin{cases} \min_{b,a} \frac{\sqrt{b^T b}}{2} + C \sum_i \xi_i \\ subject \ to \quad y_i(b^T x_i + a) \ge 1 - \xi_i \quad and \ \xi_i > 0 \quad \forall x_i \end{cases}$$
 (6)

Non linearly separable data

What if our data is not linearly separable?

Non linearly separable data

What if our data is not linearly separable? It should be better to reason in a bigger dimensional space.

Non linearly separable data

What if our data is not linearly separable? It should be better to reason in a bigger dimensional space.

But augmenting dimensions costs a lot...

Consider the function $\phi: \mathbb{R}^3 \mapsto \mathbb{R}^{10}$ used to map points in a new vector space. Calculating the *similarity* $\phi(x_i)^T \phi(x_j)$ between each point may be intractable.

Consider the function $\phi: \mathbb{R}^3 \mapsto \mathbb{R}^{10}$ used to map points in a new vector space. Calculating the *similarity* $\phi(x_i)^T \phi(x_j)$ between each point may be intractable.

Here *Kernel Trick* [4] comes handy.

Consider the function $\phi : \mathbb{R}^3 \to \mathbb{R}^{10}$ used to map points in a new vector space. Calculating the *similarity* $\phi(x_i)^T \phi(x_j)$ between each point may be intractable.

Here *Kernel Trick* [4] comes handy. It consists of a simple linear algebra reformulation,

$$\phi(x_i)^T \phi(x_j) = K(x_i, x_j) = (1 + x_i^T x_j)^2.$$
 (7)

Consider the function $\phi : \mathbb{R}^3 \mapsto \mathbb{R}^{10}$ used to map points in a new vector space. Calculating the *similarity* $\phi(x_i)^T \phi(x_j)$ between each point may be intractable.

Here *Kernel Trick* [4] comes handy. It consists of a simple linear algebra reformulation,

$$\phi(x_i)^T \phi(x_j) = K(x_i, x_j) = (1 + x_i^T x_j)^2.$$
 (7)

K is a *kernel function* that operates on the lower dimension vectors x_i and x_j to produce a value equivalent to the dot-product of the higher-dimensional vectors.

Instead of doing the complex computations in the 10-dimensional space, we reach the same result within the 3-dimensional space by calculating the dot product.

There are lots of Kernel functions, an example is the *Gaussian*.

There are lots of Kernel functions, an example is the *Gaussian*.

The idea behind is to use all n training points as landmarks. Then we can calculate the similarities of each point and all the landmarks.

There are lots of Kernel functions, an example is the *Gaussian*.

The idea behind is to use all n training points as landmarks. Then we can calculate the similarities of each point and all the landmarks.

$$\forall l_i \, similarity(x, l^{(i)}) = \exp(-\frac{\|x - l^{(i)}\|^2}{2\sigma^2}) \tag{8}$$

There are lots of Kernel functions, an example is the *Gaussian*.

The idea behind is to use all n training points as landmarks. Then we can calculate the similarities of each point and all the landmarks.

$$\forall l_i \, similarity(x, l^{(i)}) = \exp\left(-\frac{\|x - l^{(i)}\|^2}{2\sigma^2}\right) \tag{8}$$

The result will be a mapping for each point in a n-dimensional space. Finally, we can identify an hyperplane which can divide correctly the two classes of points.

Pratical application

A hybrid technique used in the IR field will be presented; it uses two components:

- **K-Means**: model for unsupervised classification;
- **SVM**: model for *supervised classification*.

Pratical application

A hybrid technique used in the IR field will be presented; it uses two components:

- **K-Means**: model for unsupervised classification;
- **SVM**: model for *supervised classification*.

K-means algorithm is one of the most used clustering algorithms. It consists of partitioning unlabeled objects into k classes, where k is not predefined.

A brief explanation will follow.

K-means

The aim is to create clusters that contain *similar documents*. Given a training set $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$, the algorithm [5] used is the following:

K-means

The aim is to create clusters that contain *similar documents*. Given a training set $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$, the algorithm [5] used is the following:

```
1: K \leftarrow random Value
                                                               ▷ multiple K will be tried
 2: procedure K-MEANS(K)
          initialize cluster centroids \mu_1, \ldots, \mu_k randomly.
 3:
 4:
          repeat until convergence{
 5:
               for i \leftarrow 1 to m do
                   c^{(i)} = arg \ min_i ||x^{(i)} - \mu_i||
                                                                 \triangleright Closest centroid to x^{(i)}
 6:
               end for
 7:
               for k \leftarrow 1 to K do
 8:
                   \mu_j = \frac{\sum_{i=1}^{m} m \{c^{(i)} = j\} x^{(i)}}{\sum_{i=1}^{m} m \{c^{(i)} = j\}}
                                                             ▶ New centroid of cluster k
 9:
               end for
10:
11:
12: end procedure
```


Visual explanation

Hybrid IR System

The proposed system [3] can be summarized by the following figure:

Hybrid IR System

The proposed system [3] can be summarized by the following figure:

Documents clustering

Documents clustering

First part consists of text pre-processing, followed by a vector representation of each document using stemmed terms. Next, there is the clustering phase.

Documents clustering

First part consists of text pre-processing, followed by a vector representation of each document using stemmed terms. Next, there is the clustering phase.

Using *k-means*, documents are classified into classes of similar vectors according to the selected terms (dimensions).

Finally, terms are classified as *Trivial*, *Decisive* or *Standard*. Only the last two are preserved and used as indicator of the class.

A given user query is first stemmed and represented by a vector (as for documents).

A given user query is first stemmed and represented by a vector (as for documents).

Then, SVMs are used to classify queries; for each cluster C_i there will be an SVM_i responsible of determining the membership of each query q_j to it (giving a probability p_i).

A given user query is first stemmed and represented by a vector (as for documents).

Then, SVMs are used to classify queries; for each cluster C_i there will be an SVM_i responsible of determining the membership of each query q_i to it (giving a probability p_i).

So, this process allows the selection of documents from the correct cluster (the one with the highest p_i).

Conclusions

We have seen the combination of use of SVMs and Clustering in the Information Retrieval field, with great results [3].

To conclude, SVMs are a great tool utilized for classification and regression.

Since they are less expensive than Neural Networks, usually researchers start experimenting using them before NN.

References I

- Nello Cristianini and John Shawe-Taylor. "Support Vector [1] Machines". In: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000, pp. 93–124. DOI: 10.1017/CBO9780511801389.008.
- [2] Vikramaditya Jakkula. "Tutorial on support vector machine (svm)". In: School of EECS, Washington State *University* 37.2.5 (2006), p. 3.
- [3] Hamid Khalifi, Abderrahim Elqadi, and Youssef Ghanou. "Support vector machines for a new hybrid information retrieval system". In: Procedia Computer Science 127 (2018), pp. 139-145.
- [4]B. Scholkopf et al. "Input space versus feature space in kernel-based methods". In: IEEE Transactions on Neural Networks (1999). DOI: 10.1109/72.788641.

References II

[5] Kristina P. Sinaga and Miin-Shen Yang. "Unsupervised K-Means Clustering Algorithm". In: IEEE Access 8 (2020), pp. 80716–80727. DOI: 10.1109/ACCESS.2020.2988796.