

Python Basics - Math Cheat Sheet

by Mario (mariofreitas) via cheatography.com/42813/cs/13208/

Math Operations		
a = 3		
b = 4		
a + b	Sum <i>a</i> and <i>b</i> (7)	
a - b	Subtract b from a (-1)	
a * b	a times b (12)	
a / b	a divided by b (0.75)	
a // b	Integer part of a divided by b (0)	
a % b	Rest of a divided by b (3)	
a ** b	a to the power of b (81)	

Logic Tests	
5 > 3	Tests if 5 is greater than 3 (True)
5 >= 3	Tests if 5 is greater than or equal to 3 (True)
5 == 3	Tests if 5 is equal to 3 (False)
5 != 3	Tests if 5 is different than 3 (True)
5 <= 3	Tests if 5 is lower than or equal to 3 (False)
5 < 3	Tests if 5 is lower than 3 (False)
not True	Opposite of True (False)

Math Module	
import math	Imports module math
math.ceil(x)	Rounds x up
math.floor(x)	Rounds x down
round(x) 1	Rounds x with 0 decimal places
round(x, 2)	Rounds x with 2 decimal places
math.sqrt(x)	Square root of x
math.sin(angle)	Sine of angle
math.cos(angle)	Cosine of angle
math.tan(angle)	Tangent of angle
math.sinh(x)	Hiperbolic sine of <i>x</i>
math.cosh(x)	Hiperbolic cosine of x
math.tanh(x)	Hiperbolic tangent of x
math.asin(angle)	Arc sine of angle
math.acos(angle)	Arc cosine of angle

Math Module (cont)		
math.atan(angle)	Arc tangent of angle	
math.asinh(x)	Inverse hiperbolic sine of <i>x</i>	
math.acosh(x)	Inverse hiperbolic cosine of x	
math.atanh(x)	Inverse hiperbolic tangent of x	
math.degrees(angle)	Covert rad_angle from radians to degrees	
math.radians(angle)	Covert rad_angle from degrees to radians	
math.factorial(x)	Factorial of x	
math.gamma(x)	Gamma function of x	
math.exp(x)	e to the power of x	
math.log(x)	Natural logarithm of x	
math.log(x, 2)	Base 2 logarithm of x	
math.e	Constant e	
math.pi	Constant pi	
1 round is not part of the math module		

¹ round is not part of the *math* module

Second Degree Equation Roots

```
# This script solves ax^2 + bx + c = 0
import math
a = 1
b = -1
c = -6
delta = b*2 - 4a*c
r1 = (-b + math.sqrt(delta))/(2*a)
r2 = (-b - math.sqrt(delta))/(2*a)
print(f"r1 = {r1}")
print(f"r2 = {r2}")

r1 = 3.0
r2 = -2.0
```


 $^{^{2}% \}left(1\right) =\left(1\right) ^{2}\left(1\right)$

Python Basics - Math Cheat Sheet

by Mario (mariofreitas) via cheatography.com/42813/cs/13208/

Triangle Angles

```
# Calculates the angles of a triangle based on its
sides.
import math
side1, side2, side3 = 3, 4, 5
angle1 = math.atan(side2/side1)
angle2 = math.acos(side2/side3)
print(f"angle 1 = {math.degrees(angle1)}")
print(f"angle 2 = {math.degrees(angle2)}")
```

angle 1 = 53.13010235415598 angle 2 = 36.86989764584401

By **Mario** (mariofreitas) cheatography.com/mariofreitas/ github.com/MarioRaul/ Not published yet. Last updated 22nd October, 2017. Page 2 of 2. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com