Module MA2341 (Frolov), Advanced Mechanics I Homework Sheet 3

Each set of homework questions is worth 100 marks

Problem 1. Consider the Lagrangian of a particle moving in a potential field

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - U(r), \quad r = \sqrt{x^2 + y^2}.$$

- (a) Introduce the cylindrical coordinates (draw a picture), and derive an expression for the Lagrangian in terms of the coordinates.
- (b) Identify the cyclic coordinates, and find the corresponding conserved charges. What is their physical meaning? What symmetries do they correspond to?

Problem 2. Consider the Lagrangian of a particle moving in a potential field

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - U(r), \quad r = \sqrt{x^2 + y^2 + z^2}.$$

- (a) Introduce the spherical coordinates (draw a picture), and derive an expression for the Lagrangian in terms of the coordinates.
- (b) Identify the cyclic coordinates, and find the corresponding conserved charges. What is their physical meaning? What symmetries do they correspond?

Problem 3. Consider the following Lagrangian of a relativistic particle moving in a D-dimensional space and interacting with a central potential field (m, c, α, β) are constants

$$L = -mc^2 \sqrt{1 - \frac{v^2}{c^2}} - \frac{\alpha}{r^2} e^{-\beta r^2}, \quad v^2 \equiv \vec{v}^2 = \sum_{i=1}^D v_i^2, \quad r^2 \equiv \vec{r}^2 = \sum_{i=1}^D x_i^2.$$

For some questions below you may use that infinitesimal rotations are parametrised by a skew-symmetric matrix ϵ_{ij} , that is

$$x_i \to x_i' = x_i + \epsilon_{ij} x_j$$
, $\epsilon_{ij} + \epsilon_{ji} = 0$.

- (a) Show that L is invariant under infinitesimal rotations of the D-dimensional space. How do the coordinates x_i , velocities v_i , and momenta p_i transform under an infinitesimal rotation in the x_2x_5 -plane?
- (b) Find the momentum \vec{p} of the particle as a function of its velocity \vec{v} . What is the component of the momentum along the x_4 -axis?
 - Find the velocity \vec{v} of the particle as a function of \vec{p} . What is the component of the velocity along the x_2 -axis?

- (c) Use Noether's theorem to find conserved charges, J_{ij} , corresponding to the rotational symmetry of the Lagrangian. How many independent charges are there?
- (d) Specialise the formulae for J_{ij} to the D=3 case.

Define the angular momentum \vec{M} .

How are J_{ij} for D=3 related to the components M_k of \vec{M} ?

Express J_{ij} for D=3 in terms of M_i by using ϵ_{ijk} .

Express M_i in terms of J_{ij} by using ϵ_{ijk} .

(e) Use Noether's theorem to find the energy E of the particle.

Express E in terms of \vec{v} and \vec{r} . Express E in terms of \vec{p} and \vec{r} .

Problem 4. (To do the problem analyse the solution to Q2b of the 2017 final exam). Consider the following Lagrangian of a system with two physical degrees of freedom

$$L_{\lambda} = \frac{m}{2}(-v_0^2 + v_1^2 + v_2^2) + \lambda(-x_0^2 + x_1^2 + x_2^2 + a^2), \quad x_0 > 0,$$

where λ is a Lagrange multiplier. From the previous homework we know that

$$-x_0^2 + x_1^2 + x_2^2 + a^2 = 0, \quad x_0 > 0,$$

defines a surface which is the upper sheet of a hyperboloid of two sheets obtained by revolving the hyperbola $x_0^2 = x_1^2 + a^2$ in the x_0x_1 -plane about the x_0 -axis. This system however cannot be interpreted as a constrained system of a particle in three-dimensional Euclidean space \mathbb{R}^3 because of the minus sign in front of v_0^2 . It describes a particle moving in the two-dimensional Lobachevsky (or hyperbolic) plane H^2 embedded in Minkowski space-time $R^{2,1}$.

(a) Consider a set of all 3×3 matrices A which satisfy the condition

$$A_{ik}\eta_{kn}A_{jn} = \eta_{ij}$$
, summation over $k, n = 0, 1, 2 \iff A\eta A^T = \eta \iff A^T\eta A = \eta$,

where $\eta = (\eta_{ij}), i, j = 0, 1, 2$ is the following diagonal matrix

$$\eta = \operatorname{diag}(-1, 1, 1).$$

This set is denoted as O(2,1), and it is a Lorentz group of pseudo-rotations and reflections of the coordinates x_i in Minkowski space-time $R^{2,1}$. Prove that O(2,1) is a group under the standard matrix multiplication.

(b) Infinitesimal pseudo-rotations from O(2,1) are parametrised by a matrix ϵ_{ij}

$$x_i \to x_i' = x_i + \epsilon_{ij} x_j$$
, $A_{ij} = \delta_{ij} + \epsilon_{ij}$. (0.1)

Find relations between ϵ_{ij} , and write them down explicitly for all values of i, j.

(c) Prove that L_{λ} is invariant under the O(2,1) group of pseudo-rotations and reflections of the coordinates x_i :

$$x_i \to A_{ij}x_j$$
, summation over $j!$,

where $A \in O(2,1)$ is a 3×3 matrix.

- (d) Specify any continuous symmetries and use Noether's theorem to construct the corresponding conserved quantities.
- (e) A convenient choice of generalised coordinates in $\mathbb{R}^{2,1}$ is

$$x_1 = r \cos \phi \sinh \zeta$$
, $x_2 = r \sin \phi \sinh \zeta$, $x_0 = r \cosh \zeta$, (0.2)

which is an analog of spherical coordinates in \mathbb{R}^3 .

By using these coordinates solve the constraint.

Derive an expression for the reduced Lagrangian L, and express the conserved quantities in terms of ϕ and ζ , and their time derivatives (velocities).

- (f) Check explicitly that the conserved quantities you've found are indeed conserved.
- (g) Express the conserved quantities in terms of ϕ and ζ , and their conjugated momenta p_{ϕ} and p_{ζ} .