Parameter estimation with correlated photon pairs

Jan Gößwein

Institute of Applied Physics

Jena, October 22, 2025

Table of content

- 1 Motivation
- 2 Theory
- 3 Experiment
- 4 Results
- 5 Simulation
- 6 Summary

Motivation

Energy conservation

Momentum conservation

$$\vec{k}_{\mathrm{p}} = \vec{k}_{\mathrm{s}} + \vec{k}_{\mathrm{i}} - \Delta \vec{k}$$

Results

Transmittance model

Conventional approach:

$$N_{
m tot}^{
m ref} = \eta_{
m idl} \ N_{
m g} + N_{
m noise}^{
m ref}$$
 $N_{
m tot}^{
m sam} = T \ \eta_{
m idl} \ N_{
m g} + N_{
m noise}^{
m sam}$

Coincidence approach:

$$N_{
m cc}^{
m pure,sam} = \mathcal{T}\,\eta_{
m idl}\,\eta_{
m sig}\,N_{
m g},$$
 $N_{
m cc}^{
m pure,ref} = \eta_{
m idl}\,\eta_{
m sig}\,N_{
m d}$

Conventional approach

$$N_{
m tot}^{
m ref} = \eta_{
m idl} N_{
m g} + N_{
m noise}^{
m ref}$$

Conventional approach

$$egin{aligned} m{\mathcal{N}}_{ ext{tot}}^{ ext{ref}} &= \eta_{ ext{idI}} \, m{\mathcal{N}}_{ ext{g}} + m{\mathcal{N}}_{ ext{noise}}^{ ext{ref}} \ m{\mathcal{N}}_{ ext{tot}}^{ ext{sam}} &= m{\mathcal{T}} \, \eta_{ ext{idI}} \, m{\mathcal{N}}_{ ext{g}} + m{\mathcal{N}}_{ ext{noise}}^{ ext{sam}} \end{aligned}$$

Conventional approach

$$N_{
m tot}^{
m ref} = \eta_{
m idl} N_{
m g} + N_{
m noise}^{
m ref}$$
 $N_{
m tot}^{
m sam} = T \, \eta_{
m idl} N_{
m g} + N_{
m noise}^{
m sam}$
 $\Rightarrow T = rac{N_{
m tot}^{
m sam} - N_{
m noise}^{
m sam}}{N_{
m ref}^{
m ref} - N_{
m ref}^{
m ref}}$

Coincidence approach

$$N_{
m cc,tot}^{
m ref} = \eta_{
m idl} \, \eta_{
m sig} \, N_{
m g} + N_{
m ac}^{
m ref}$$

Summary

Coincidence approach

Coincidence approach

$$egin{align*} & \mathcal{N}_{ ext{cc,tot}}^{ ext{ref}} = \eta_{ ext{idl}} \, \eta_{ ext{sig}} \, \mathcal{N}_{ ext{g}} + \mathcal{N}_{ ext{ac}}^{ ext{ref}} \ & \mathcal{N}_{ ext{cc,tot}}^{ ext{sam}} = \mathcal{T} \, \eta_{ ext{idl}} \, \eta_{ ext{sig}} \, \mathcal{N}_{ ext{g}} + \mathcal{N}_{ ext{ac}}^{ ext{sam}} \ & \Rightarrow \mathcal{T} = rac{\mathcal{N}_{ ext{tot,cc}}^{ ext{sam}} - \mathcal{N}_{ ext{ac}}^{ ext{sam}}}{\mathcal{N}_{ ext{tot,cc}}^{ ext{ref}} - \mathcal{N}_{ ext{ac}}^{ ext{ref}}} \end{aligned}$$

Transmittance model

Conventional approach:

$$\mathsf{Var}(\mathcal{T}) = \left(\eta_{\mathsf{idl}} \, \mathit{N}_{\mathsf{g}}\right)^{-2} \left[\mathsf{Var}(\mathit{N}_{\mathsf{tot}}^{\mathsf{sam}}) + \mathsf{Var}\big(\mathit{N}_{\mathsf{noise}}^{\mathsf{sam}}\big) + \mathcal{T}^{2} \Big[\mathsf{Var}\big(\mathit{N}_{\mathsf{tot}}^{\mathsf{ref}}\big) + \mathsf{Var}\big(\mathit{N}_{\mathsf{noise}}^{\mathsf{ref}}\big) \Big] \right]$$

Coincidence approach:

$$\mathsf{Var}(\mathcal{T}) = \left(\eta_{\mathsf{sig}}\,\eta_{\mathsf{idl}}\,\mathsf{N}_{\mathsf{g}}\right)^{-2}\,\left[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{sam}}\big) + \mathsf{Var}(\mathsf{N}_{\mathsf{ac}}^{\mathsf{sam}}) + \,\mathcal{T}^2\Big[\mathsf{Var}\big(\mathsf{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{ref}}\big) + \mathsf{Var}\big(\mathsf{N}_{\mathsf{ac}}^{\mathsf{ref}}\big)\Big]\right]$$

Transmittance model

Conventional approach:

$$\mathsf{Var}(\mathcal{T}) = \left(\eta_{\mathsf{idl}} \, \mathit{N}_{\mathsf{g}}\right)^{-2} \left[\mathsf{Var}(\mathit{N}_{\mathsf{tot}}^{\mathsf{sam}}) + \mathsf{Var}(\mathit{N}_{\mathsf{noise}}^{\mathsf{sam}}) + \mathcal{T}^{2} \Big[\mathsf{Var}(\mathit{N}_{\mathsf{tot}}^{\mathsf{ref}}) + \mathsf{Var}(\mathit{N}_{\mathsf{noise}}^{\mathsf{ref}}) \Big] \right]$$

Coincidence approach:

$$\mathsf{Var}(\mathcal{T}) = \left(\eta_{\mathsf{sig}}\,\eta_{\mathsf{idl}}\,\mathit{N}_{\mathsf{g}}\right)^{-2}\,\left[\mathsf{Var}\big(\mathit{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{sam}}\big) + \mathsf{Var}(\mathit{N}_{\mathsf{ac}}^{\mathsf{sam}}) + \,\mathcal{T}^{2}\Big[\mathsf{Var}\big(\mathit{N}_{\mathsf{tot},\mathsf{cc}}^{\mathsf{ref}}\big) + \mathsf{Var}\big(\mathit{N}_{\mathsf{ac}}^{\mathsf{ref}}\big)\Big]\right]$$

Photon statistics

Coherent light:

$$\mathcal{P}(n) = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}$$

Thermal light:

$$\mathcal{P}_{m}(n) = \frac{(n+m-1)!}{(m-1)! \, n!} \, \frac{\langle n \rangle^{n}}{(1+\langle n \rangle/m)^{m} \, (\langle n \rangle - 1)!}$$

Motivation Theory Experiment Results Simulation Summary

Experimental setup

Dark counts

Single counts

Slide title in Palatino Linotype Font

block environment (lower-case b)

itemize:

- First Level
 - Second Level

Third Level has no item mark

Block environment (upper-case B)

enumerate:

- First Level
 - 1.1 Second Level
 - 1.1.1 Third Level

Font types

Normal Lorem ipsum dolor sit amet, consectetur adipiscing elit.

$$\mathbf{e}^{\mathbf{i}\pi} + 1 = 0 \tag{1}$$

Equations like eq. (1) use the beamer default font computer modern.

Summary and Outlook

Git repository

public accessible:

https://git.tpi.uni-jena.de/mstnhsr/latexbeamer_corporatedesign

Feedback

marc.steinhauser@uni-jena.de

