

# Knotenklassifikation in dynamischen Graphen mit Texten

Martin Thoma | 25. Februar 2014

#### INSTITUT FÜR PROGRAMMSTRUKTUREN UND DATENORGANISATION



## **Social Network**





Szenario ●000 Überblick 0000 Vokabular 000 Sprungtypen 00 Evaluation 00 Zusammenfassung

Ende 0000 2/22

# Partially labeled network









25. Februar 2014

# Partially labeled network with content





Szenario 0000

Überblick

Vokabular

Sprungtypen

Evaluation

Zusammenfassung

Ende 25. Februar 2014

# Beispiel 2: Literaturdatenbanken



The Development of the C Language Interprocess Communication in the Ninth Edition Unix System

Computer Science

The C Programming Language digital restoration and typesetter



Computer Science

The Identity
Thesis for
Language and
Music



Linguistics





#### Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| Szenario       | Uberblick                              | Vokabular         | Sprungtypen        |
|----------------|----------------------------------------|-------------------|--------------------|
| 0000           | ●000                                   | 000               | 00                 |
| Martin Thoma - | <ul> <li>Knotenklassifikati</li> </ul> | on in dynamischen | Graphen mit Texten |

25. Februar 2014





- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| Szenario       | Uberblick          | Vokabular         | Sprungtypen        |
|----------------|--------------------|-------------------|--------------------|
| 0000           | ●000               | 000               | 00                 |
| Martin Thoma - | Knotenklassifikati | on in dynamischen | Graphen mit Texten |





- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| Szenano        | Operblick            | VOKADUIAI         | Sprungtypen        |
|----------------|----------------------|-------------------|--------------------|
| 0000           | ●000                 | 000               | 00                 |
| Martin Thoma - | - Knotenklassifikati | on in dynamischen | Graphen mit Texten |





- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| Szenano        | Operblick            | VOKADUIAI         | Sprungtypen        |
|----------------|----------------------|-------------------|--------------------|
| 0000           | ●000                 | 000               | 00                 |
| Martin Thoma - | - Knotenklassifikati | on in dynamischen | Graphen mit Texten |





#### Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| Szeriano       | Operblick              | VUKADUIAI         | Sprungtypen        |
|----------------|------------------------|-------------------|--------------------|
| 0000           | ●000                   | 000               | 00                 |
| Martin Thoma - | - Knotenklassifikation | on in dynamischen | Graphen mit Texten |

Ende





- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| Szenario |
|----------|
| 0000     |
| A4 TI    |





- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| 0000    |    |
|---------|----|
| 0000    |    |
| Szellal | 10 |





- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| Szenario       | Oberblick            | vokabular         | Sprungtypen        |
|----------------|----------------------|-------------------|--------------------|
| 0000           | ●000                 | 000               | 00                 |
| Martin Thoma - | - Knotenklassifikati | on in dynamischen | Graphen mit Texten |





#### Klassifizieren des roten Knotens:

- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| 0000      |  |
|-----------|--|
| Mantin Ti |  |

Sprungtypen





- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| N /     | т. |
|---------|----|
| 0000    |    |
| Szenanc | ,  |





- Zählen von Knotenbeschriftungen in Random Walks
- 4 Random Walks, beginnend bei Rot
- 3 Sprünge pro Random Walk
- $4 \cdot a$ ,  $2 \cdot b \Rightarrow \text{Rot mit } a \text{ klassifizieren}$

| Szenani | ) |
|---------|---|
| 0000    |   |
|         |   |



- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz
- Idee: Graph erweitern
  - Texte als Wortmengen
  - Strukturknoten verweisen auf Wortknoten
  - vice versa

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten



- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweiterr
  - Texte als Wortmengen
  - Strukturknoten verweisen auf Wortknoten
  - vice versa



- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweitern
  - Texte als Wortmengen
  - Strukturknoten verweisen auf Wortknoter
  - vice versa



- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweitern
  - Texte als Wortmengen
  - Strukturknoten verweisen auf Wortknoter
  - vice versa



- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweitern
  - Texte als Wortmengen
  - Strukturknoten verweisen auf Wortknoten
  - vice versa



- Neben Struktur können Texte genutzt werden
- Einschränkung: Effizienz!
- Idee: Graph erweitern
  - Texte als Wortmengen
  - Strukturknoten verweisen auf Wortknoten
  - vice versa



# Erweiterter, semi-bipartiter Graph







Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

Ende



- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen



- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen



- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen



- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

#### Idee:

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten

Ende



- Füllwörter: und, oder, im, in, . . .
- ⇒ Beschränkung des Vokabulars sinnvoll

- Zufällige Beispielmenge von Texten für Vokabularbildung betrachten
- Gini-Koeffizient nutzen



- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$  mit  $p_i$  als relative Häufigkeit
- Hier:  $g \in (0,1]$
- g nahe bei  $1 \Rightarrow W$ ort ist stark ungleich verteilt
- $\Rightarrow$  Nehme Top-m Wörter mit höchstem Gini-Koeffizien

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

Ende



- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$  mit  $p_i$  als relative Häufigkeit
- Hier:  $g \in (0,1]$
- g nahe bei  $1 \Rightarrow W$ ort ist stark ungleich verteilt
- $\Rightarrow$  Nehme Top-m Wörter mit höchstem Gini-Koeffizien



- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$  mit  $p_i$  als relative Häufigkeit
- Hier:  $g \in (0,1]$
- $lue{g}$  nahe bei  $1 \Rightarrow \text{Wort}$  ist stark ungleich verteilt
- $\Rightarrow$  Nehme Top-m Wörter mit höchstem Gini-Koeffizien



- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$  mit  $p_i$  als relative Häufigkeit
- Hier:  $g \in (0,1]$
- g nahe bei  $1 \Rightarrow \mathsf{Wort}$  ist stark ungleich verteilt
- $\Rightarrow$  Nehme Top-m Wörter mit höchstem Gini-Koeffizient



- statistisches Maß für Ungleichverteilung
- $g = \sum_i p_i^2$  mit  $p_i$  als relative Häufigkeit
- Hier:  $g \in (0,1]$
- g nahe bei  $1 \Rightarrow Wort$  ist stark ungleich verteilt
- $\Rightarrow$  Nehme Top-m Wörter mit höchstem Gini-Koeffizient

Ende







in der Schule in dem Jahr





- Vorkommen insgesamt: 5×
- Vorkommen in "Informatik"  $2 \times \Rightarrow p_1 = \frac{2}{\epsilon}$
- Vorkommen in "Mathematik"  $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte"  $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient:  $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$











Mathematik

(Geschichte)

# Beispiel: "in"

- Vorkommen insgesamt: 5×
- Vorkommen in "Informatik"  $2 \times \Rightarrow p_1 = \frac{2}{\epsilon}$
- Vorkommen in "Mathematik"  $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte"  $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient:  $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$







in der Schule in dem Jahr



Beispiel: "in"

Vorkommen insgesamt: 5×

• Vorkommen in "Informatik"  $2 \times \Rightarrow p_1 = \frac{2}{\epsilon}$ 

Vorkommen in "Mathematik"  $1 \times \Rightarrow p_2 = \frac{1}{5}$ 

• Vorkommen in "Geschichte"  $2 \times \Rightarrow p_2 = \frac{2}{5}$ 

• Gini-Koeffizient:  $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$ 







in der Schule in dem Jahr



Mathematik

Geschichte

Beispiel: "in"

- Vorkommen insgesamt: 5×
  - Vorkommen in "Informatik"  $2 \times \Rightarrow p_1 = \frac{2}{5}$
  - Vorkommen in "Mathematik"  $1 \times \Rightarrow p_2 = \frac{1}{5}$
  - Vorkommen in "Geschichte"  $2 \times \Rightarrow p_2 = \frac{2}{5}$
  - Gini-Koeffizient:  $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$



Überblick

Vokabular 00● Sprungtypen

Evaluation

Zusammenfassung

Ende 0000 12/22







in der Schule in dem Jahr



(Mathematik)

Geschichte

Beispiel: "in"

- Vorkommen insgesamt: 5×
- Vorkommen in "Informatik"  $2\times \Rightarrow p_1=\frac{2}{5}$
- Vorkommen in "Mathematik"  $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte"  $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient:  $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$







in der Schule in dem Jahr



(Geschichte)

Beispiel: "in"

Vorkommen insgesamt: 5×

• Vorkommen in "Informatik"  $2 \times \Rightarrow p_1 = \frac{2}{5}$ 

• Vorkommen in "Mathematik"  $1 \times \Rightarrow p_2 = \frac{1}{5}$ 

• Vorkommen in "Geschichte"  $2 \times \Rightarrow p_2 = \frac{2}{5}$ 









in der Schule in dem Jahr



Mathematik

Geschichte

Beispiel: "in"

- Vorkommen insgesamt:  $5 \times$
- Vorkommen in "Informatik"  $2 \times \Rightarrow p_1 = \frac{2}{5}$
- Vorkommen in "Mathematik"  $1 \times \Rightarrow p_2 = \frac{1}{5}$
- Vorkommen in "Geschichte"  $2 \times \Rightarrow p_2 = \frac{2}{5}$
- Gini-Koeffizient:  $\left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2 = \frac{9}{25}$

## Sprungtypen







Überblick 0000 Vokabular 000 Sprungtypen

Evaluation 00 Zusammenfassung

Ende 0000 13/22



- **Struktursprung**: von Strukturknoten v zu Strukturknoten v'



- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
  - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
  - Nehme Top-*q*-Knoten (Anzahl der Pfade)
  - Wähle zufällig einen davon



- **Struktursprung**: von Strukturknoten v zu Strukturknoten v'
- **Inhaltlicher Zweifachsprung**: von Strukturknoten v über Wortknoten zu Strukturknoten v'
  - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
  - Nehme Top-*q*-Knoten (Anzahl der Pfade)



- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten  $v^\prime$ 
  - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
  - Nehme Top-q-Knoten (Anzahl der Pfade)
  - Wahle zufallig einen davon



- ullet Struktursprung: von Strukturknoten v zu Strukturknoten v'
- Inhaltlicher Zweifachsprung: von Strukturknoten v über Wortknoten zu Strukturknoten v'
  - Finde alle Knoten v', die über Wortknoten erreichbar sind (Pfadlänge 2)
  - Nehme Top-q-Knoten (Anzahl der Pfade)
  - Wähle zufällig einen davon



| Name | Knoten  | davon beschriftet | Kanten    | Beschriftungen |
|------|---------|-------------------|-----------|----------------|
| CORA | 19 396  | 14814             | 75 021    | 5              |
| DBLP | 806 635 | 18 999            | 4 414 135 | 5              |



#### Performance:

- Klassifizierung aller Knoten
- Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern

#### Klassifikationsgüte:



#### Performance:

- Klassifizierung aller Knoten
- Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kerr
- DBLP: < 25 s
- $\bullet$  CORA: < 5 s
- Klassifikationsgüte:
  - CORA: 82% 84%
  - DBLP: 61% 66%



- Performance:
  - Klassifizierung aller Knoten
  - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
  - DBLP: < 25 s
  - $\bullet$  CORA: < 5 s
- Klassifikationsgüte:
  - CORA: 82% 84%
  - DBLP: 61% 66%



- Performance:
  - Klassifizierung aller Knoten
  - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
  - DBLP: < 25 s
  - $\bullet$  CORA: < 5 s
- Klassifikationsgüte:
  - CORA: 82% 84%
  - DBLP: 61% 66%



#### Performance:

- Klassifizierung aller Knoten
- Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
- DBLP: < 25 s
- CORA: < 5 s</p>
- Klassifikationsgüte:
  - CORA: 82% 84%
    - DDID: 610/ 660/

Szenario



- Performance:
  - Klassifizierung aller Knoten
  - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
  - DBLP: < 25 s
  - CORA: < 5 s</p>
- Klassifikationsgüte:
  - CORA: 82% 84%
  - DBLP: 61% 66%



- Performance:
  - Klassifizierung aller Knoten
  - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
  - DBLP: < 25 s
  - CORA: < 5 s</p>
- Klassifikationsgüte:
  - CORA: 82% 84%
  - DBLP: 61% 66%



- Performance:
  - Klassifizierung aller Knoten
  - Intel Xeon 2.5 GHz mit 32 GB RAM, 1 Kern
  - DBLP: < 25 s
  - CORA: < 5 s</p>
- Klassifikationsgüte:
  - CORA: 82% 84%
  - DBLP: 61% 66%

## Wichtige Ideen



- Random Walk
- Gini-Koeffizient
- Inhaltlicher Zweifachsprung

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

## Wichtige Ideen



- Random Walk
- Gini-Koeffizient
- Inhaltlicher Zweifachsprung

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

## Wichtige Ideen



- Random Walk
- Gini-Koeffizient
- Inhaltlicher Zweifachsprung

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

25. Februar 2014



- DYCOS ist nur von der lokalen Situation abhängig

Überblick



- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach
- ⇒ Der Graph darf dynamisch sein; DYCOS funktioniert dennoch



- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach
- ⇒ Der Graph darf dynamisch sein; DYCOS funktioniert dennoch

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten



- DYCOS ist nur von der lokalen Situation abhängig
- Klassifizierung von einzelnen Knoten möglich
- Klassifizierung ist einfach
- ⇒ Der Graph darf dynamisch sein; DYCOS funktioniert dennoch

Martin Thoma - Knotenklassifikation in dynamischen Graphen mit Texten

## Danke!



# Gibt es Fragen?

## Bildquellen



Crystal\_Clear\_app\_personal.png von Wikipedia Commons

#### Literatur



- Charu C. Aggarwal, Nan Li: On Node Classification in Dynamic Content-based Networks.
- Smriti Bhagat, Graham Cormode und S. Muthukrishnan. Node Classification in Social Networks.
- M. F. Porter. Readings in Information Retrieval. Kapitel An Algorithm for Suffix Stripping.
- Jeffrey S. Vitter. Random Sampling with a Reservoir.

## Folien, LeTeXund Material



Der Foliensatz und die LATEX und TikZ-Quellen sind unter github.com/MartinThoma/LaTeX-examples/tree/master/presentations/Datamining-Proseminar Kurz-URL: tinyurl.com/Info-Proseminar