Exercice 1

Étudier les lois de compositions suivantes sur les ensembles spécifiés.

(commutativité? associativité? élément neutre? élément absorbant? ...)

- a) Sur \mathbf{Z} : a * b := 2a b + 1.
- b) Sur \mathbf{R} : $a \wedge b := \max(a, b)$.
- c) Sur $\mathbf{R}_{\geq 0}$: $a \star b := \sqrt{a^2 + b^2}$.
- d) Sur **Q**: $a \dagger b := \frac{1}{2}(a+b)$.
- e) Sur $\mathbf{R}_{>0}$: $R_1 /\!\!/ R_2 := (R_1^{-1} + R_2^{-1})^{-1}$.

Exercice 2

Loi de composition des vitesses en relativité restreinte : pour c > 0, $x * y := \frac{x + y}{1 + \frac{xy}{c^2}}$.

- a) Vérifier qu'il s'agit d'une loi commutative et associative sur [0,c] admettant un neutre et un élément absorbant.
- b) Peut-on la prolonger en une loi de composition interne sur [-c, c]? Et sur]-c, c[?
- c) Que se passe-t-il lorsque $c \to +\infty$? (i.e. $|x|, |y| \ll c$).

Exercice 3

Soit H un ensemble muni de deux lois de compositions * et \cdot admettant un neutre commun ε et satisfaisant

$$(a*b)\cdot(c*d)=(a\cdot c)*(b\cdot d)$$
 pour tous $a,b,c,d\in H$.

Montrer que ces lois sont commutatives.

Exercice 4

Soit E un ensemble muni d'une loi de composition \star et $a,b\in E$. Montrer que :

- a) si a est neutre à gauche et b neutre à droite, alors a = b;
- b) si a est absorbant à gauche et b absorbant à droite, alors a = b;
- c) si a est neutre à gauche et b absorbant à droite, alors a = b.

Que dire d'une loi qui admettrait un élément à la fois neutre et absorbant?

Exercice 5

Montrer que tout monoïde M pour lequel $\forall_{x \in M} \ x \star x = 1$ est commutatif.

Exercice 6

On définit sur $\mathbf{R}\times\mathbf{R}$ une loi de composition par la formule

$$(x,y) \star (x',y') := (x \cdot x', y + y').$$

Vérifier que cela définit une structure de monoïde sur \mathbb{R}^2 .

Exercice 7

Le but de cet exercice est de (re)construire l'ensemble ${\bf Z}$ des relatifs à partir de ${\bf N}$.

Sur \mathbb{N}^2 , on définit la somme des couples (a,b) et (c,d) par :

$$(a,b) \oplus (c,d) = (a+c,b+d)$$

ainsi qu'une relation d'équivalence :

$$(x,y) \sim (x',y') \iff x + y' = x' + y.$$

- a) Vérifier que \oplus est une loi associative, commutative et admettant un neutre.
- b) Vérifier que \sim est bien d'une relation d'équivalence sur \mathbb{N}^2 .
- c) Montrer que si $(a,b) \sim (a',b')$ et $(c,d) \sim (c',d')$ alors $(a,b) \oplus (c,d) \sim (a',b') \oplus (c',d')$ (on dit que la loi \oplus est *compatible* avec la relation \sim).
- d) Expliquer pourquoi l'opération définie par : $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$ a un sens.
- e) Vérifier que l'opération \oplus sur $\mathbf{Z} := \mathbf{N}^2/\sim$ est associative, commutative et admet un neutre que l'on notera $\mathbf{0}$.
- f) Montrer que : pour tout $\mathbf{m} \in \mathbf{Z}$, il existe un élément $\mathbf{m}' \in \mathbf{Z}$ pour lequel $\mathbf{m} \oplus (\mathbf{m}') = \mathbf{0}$. On pose alors pour $\mathbf{m}, \mathbf{n} \in \mathbf{Z} : \mathbf{n} \ominus \mathbf{m} = \mathbf{n} \oplus \mathbf{m}'$.
- g) Vérifier que $\iota(n) := (n,0)$ définit un morphisme injectif de **N** dans **Z** et que $(a,b) = \iota(a) \ominus \iota(b)$.

Exercice 8

Déterminer le groupe des inversibles M^{\times} chacun des monoïdes M suivants :

$$(\mathbf{R}, \cdot, 1), (\mathbf{Z}/7\mathbf{Z}, \cdot, 1), (\mathbf{Z}/12\mathbf{Z}, \cdot, 1), (\mathbf{R}[X], \cdot, 1), (\mathbf{R}[X], \cdot, X).$$

Exercice 9

Une matrice $A \in \mathcal{M}_{m \times n}(\mathbf{R})$ est dite inversible à gauche (resp. à droite) s'il existe une matrice $B \in \mathcal{M}_{n \times m}(\mathbf{R})$ pour laquelle $BA = I_n$ (resp. $AB = I_m$). Lesquelles des matrices suivantes sont inversibles à gauche? à droite? Déterminez dans chaque cas une matrice B possible.

$$\begin{bmatrix} 0 & 1 & -1 & -1 \\ 1 & 2 & 3 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 4 \\ 4 & -2 & 7 \\ 2 & 0 & 5 \\ 1 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$