FORMAL LANGUAGE & AUTOMATA THEORY (CSEN 3101)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)					
Choos	se the correct alterna	tive for the followin	ıg:	$10 \times 1 = 10$	
(i)	The smallest Finite Si is divisible by 3} has (a) 2 states	tate Automata, which			
(ii)	A language L is accep (a) Context-free	ted by Finite State A (b) Context sensitiv			
(iii)	Find the false statem (i) $L = \{a^nb^m, m, n \ge 1\}$ (ii) $L = \{X, where nu \}$ (iii) $L = \{a^nb^n, n \ge 1\}$ (a) (i) only	1} is regular mber of a > number	of b} is not regular (c) (ii) and (iii)	(d) (i) and (iii).	
(iv)	Context Free Language (a) Regular Language				
(v)	P, Q, R are three lang (a) Q = R (b)	_	regular and if PQ = I th (a) and (b)		
(vi)	Consider the grammar with following productions $S \rightarrow aB \mid b \mid ab$ $Sa \rightarrow bdb \mid b$ What type of grammar is it? (a) Context-free (b) Regular (c) Context Sensitive (d) None of these.				
(vii)	$a^{m}b^{n}c^{n} \cap a^{m}b^{m}c^{n} = ? ($ (a) a^{m} , $m \ge 0$ ((c) $a^nb^nc^n$, $n \ge 0$) (d) NULL.	

1.

- (viii) Which statement is correct or which statements are correct?
 - (i) Deterministic finite state automata is equally powerful as non-deterministic finite state automata
 - (ii) Deterministic Push down automata is equally powerful as nondeterministic push down automata
 - (iii) Deterministic Turing machine is equally powerful as non-deterministic Turing machine.
 - (a) (i) only
- (b) (i) and (iii)
- (c) (ii) and (iii)
- (d) none of these.
- (ix) Let L₀ be the set of all languages accepted by a Push down automata (PDA₁) by the final state and L₁ be the set of all languages accepted by PDA₁ but by the empty stack then
 - (a) $L_0 = L_1$
- (b) $L_0 \ge L_1$
- (c) $L_0 < L_1$
- (d) none of these.
- (x) A Turing machine is more powerful than the finite state automata as for its
 - (a) Infinite tape length

- (b) Ability to rewind
- (c) Ability to remember arbitrary length string (d) none of the above.

Group - B

2. (a) Convert the following Non-Deterministic Finite Automata (NFA) to Deterministic Finite Automata (DFA)

(b) Construct a DFA that accepts all possible strings over the input symbols {0, 1} that **do not** contain 011 as substring.

6 + 6 = 12

3. (a) Minimise the given DFA.

(b) Convert the following Mealy machine into an equivalent Moore machine.

6 + 6 = 12

Group - C

- 4. (a) What will be the regular expression of the Finite State Automata (FSA) that will accept all the binary strings (i.e. Σ : {0, 1}) that start with even number of zeros and end with odd number of ones?
 - (b) Find out the regular expression for the following Finite State Automata (FSA).

4 + 8 = 12

- 5. (a) Prove that there does not exist any Finite State Automata (FSA) that will accept the following language
 L: a^p | p is a prime number.
 - (b) Find out the regular grammar for the following FSA.

6 + 6 = 12

Group - D

6. (a) Design a PDA that will accept the language L, such that $\{L: a^nb^n \mid n \ge 0\}$ over the input alphabets $\sum \{a, b\}$.

(b) Show that there does not exist any PDA that will accept the language, L: $a^nb^nc^n|\ n\geq 0$

7 + 5 = 12

7. (a) Design the CFG for the following languages:

 $a^{n}bc^{n} | n \ge 0$ $0^{m}1^{n} | n > m, m \ge 0$

(b) Simplify the following CFG as much as possible

 $S \rightarrow DAa$

 $A \rightarrow b$

 $B \rightarrow a$

 $D \rightarrow \mathcal{E}$ (E represents NULL).

 $(4 \times 2) + 4 = 12$

Group - E

- 8. (a) Design a Turing machine that will accept the language L, such that $\{L: a^nbc^n \mid n > 0\}$, over the input alphabets (i.e. $\Sigma: \{a, b, c\}$).
 - (b) There exists a Turing machine M that accepts the language L. Can we infer that L is a recursive language? Justify your answer.

8 + 4 = 12

- 9. (a) Write short note on the following topics
 - (i) Turing machine halting problem
 - (ii) Multi-tape Turing machine.
 - (b) Design a Turing machine that generates the one's complement of any given binary input string (i.e. Σ : {0, 1}).

 $(4 \times 2) + 4 = 12$

Department & Section	Submission link:		
CSE	https://classroom.google.com/c/Mjc5NDY30Dk3NzEx/a/Mjc20DM10 DgyMzI1/details		