

Project-1: Applications

Yujiao Shi SIST, ShanghaiTech Spring, 2024

Outline

- Recurrent Neural Networks
 - □ Sequence modeling, Autoregressive models
 - □ (Vanilla) RNN models
 - □ LSTM
- Application : Optical Flow Estimation
 - ☐ FlowNet
 - □ Spynet
 - □ PWC-Net
 - □ RAFT

Sequence modeling

- Modeling a sequence of tokens
 - □ Running example: sentences
- Goal: learn/build a good distribution of sentences
- Inputs: a corpus of sentences $\mathbf{s}^{(1)}, \cdots, \mathbf{s}^{(N)}$
- Output: a distribution p(s)
- Common approach: maximum likelihood
 - ☐ Assume sentences are independent

$$\max \prod_{i=1}^N p(\mathbf{s}^{(i)})$$

Sequence modeling

- What is p(s)?
- A sentence is a sequence of words w_1, w_2, \cdots, w_T .

$$p(\mathbf{s}) = p(w_1, \dots, w_T) = p(w_1)p(w_2 \mid w_1) \cdots p(w_T \mid w_1, \dots, w_{T-1}).$$

- Essentially aim to predict the next word
- Markovian assumption
 - □ The distribution over the next word depends on the preceding few words. For example,

$$p(w_t | w_1, \ldots, w_{t-1}) = p(w_t | w_{t-3}, w_{t-2}, w_{t-1}).$$

- □ Autoregressive model
 - Memoryless
 - Can be modeled by a parametrized function

Traditional language models

- N-Gram model
 - □ Autoregressive model: Markov assumption
 - ☐ Use a conditional probability table

	cat	and	city	
the fat	0.21	0.003	0.01	
four score	0.0001	0.55	0.0001	
New York	0.002	0.0001	0.48	
:		:		

□ Estimate the probabilities from the empirical distribution

$$p(w_3 = \text{cat} \mid w_1 = \text{the}, w_2 = \text{fat}) = \frac{\text{count(the fat cat)}}{\text{count(the fat)}}$$

- □ The phrases we're counting are called n-grams (where n is the length), so this is an n-gram language model.
 - Note: the above example is considered a 3-gram model, not a 2-gram model!

Traditional language models

- Problems with n-gram language models
 - ☐ The number of entries in the conditional probability table is exponential in the context length
 - □ Data sparsity: most n-grams never appear in the corpus

Solutions

- □ Use a short context (less expressive)
- Smooth the probabilities (priors)
- Using an ensemble of n-gram models with different n

Neural language model

- Predicting the distribution of the next word given the previous K is a multiway classification problem
 - □ Inputs: previous K words
 - □ Output/Target: next word
 - □ Loss: cross-entropy

$$-\log p(\mathbf{s}) = -\log \prod_{t=1}^{T} p(w_t \mid w_1, \dots, w_{t-1})$$

$$= -\sum_{t=1}^{T} \log p(w_t \mid w_1, \dots, w_{t-1})$$

$$= -\sum_{t=1}^{T} \sum_{v=1}^{V} t_{tv} \log y_{tv},$$

where t_{iv} is the one-hot encoding for the *i*th word and y_{iv} is the predicted probability for the *i*th word being index v.

Neural language model

■ Model structure (context length = 2)

Neural language model

Word embedding

• If we use a 1-of-K encoding for the words, the first layer can be thought of as a linear layer with tied weights.

- The weight matrix basically acts like a lookup table. Each column is the representation of a word, also called an embedding, feature vector, or encoding.
 - "Embedding" emphasizes that it's a location in a high-dimensonal space; words that are closer together are more semantically similar
 - "Feature vector" emphasizes that it's a vector that can be used for making predictions, just like other feature mappigns we've looked at (e.g. polynomials)

Sequence modeling

- Problems?
- Autoregressive models are memoryless
 - □ Can only use information from their immediate context

- Adding connections between hidden units
 - □ Having a memory lets the model use longer-term dependencies

- Recurrent Neural Network as a dynamical system with one set of hidden units feeding into themselves
 - ☐ The network's graph has self-loops
- The RNN's graph can be unrolled by explicitly representing the units at all time steps
 - □ The weights and biases are shared

RNN examples

Summation network

RNN examples

Summation & comparison network

General formulation

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

General formulation

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

(Vanilla)Recurrent Neural Network 上海科技大学

General formulation

The state consists of a single "hidden" vector **h**:

$$h_t = f_W(h_{t-1}, x_t)$$
 $ig|$ $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ $y_t = W_{hy}h_t$

Recurrent Neural Networks: model variants

e.g. Image Captioning image -> sequence of words

Recurrent Neural Networks: model variants

sequence of words -> sentiment

Recurrent Neural Networks: model variants

e.g. Machine Translation seq of words -> seq of words

Recurrent Neural Networks: model variants

Standard RNN

Recall

- Each recurrent neuron receives past outputs and current input
- Pass through a tanh function

21

Long Short Term Memory(LSTM) 上海科技大学

■ LSTM uses multiplicative gates that decide if something is important or not

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation

Long Short Term Memory(LSTM)

Key component: a remembered cell state

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation

- A linear history
 - ☐ Carries information through
 - □ Only affected by a gate and addition of current information, which is also gated

Gates are simple sigmoid units with output range in (0,1)

Controls how much of the information will be let through

- Three gates
 - □ Forget gate
 - □ Input gate
 - Output gate

LSTM: forget gate

- The first gate determines whether to carry over the history or to forget it
 - □ Soft decision: how much of the history C_{t-1} to carry over
 - □ Determined by the current input x_t and the previous state h_{t-1}
 - can be viewed as partial key-value pairs

$$\langle h_{t-1}, C_{t-1} \rangle$$

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM: input gate

- The second gate has two parts
 - □ A gate that decides if it is worth remembering
 - □ A nonlinear transformation that extracts new and interesting information from the input
 - Both use the current input and the previous state

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

LSTM: Memory cell update

- The output of the second part is added into the current memory cell
 - □ Can be viewed as value update in a key-value pair
 - □ The input and state jointly decide how much of history info is kept and how much of embedded input info is added
 - □ A dynamic mixture of experts at each time step

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTM: Output gate

- The third gate is the output gate
 - □ To decide if the memory cell contents are worth reporting at this time using the current input and previous state
- The output of the cell or the state
 - □ A nonlinear transform of the cell values
 - □ Compress it with tanh to make it in (-1,1)
 - □ Note the separation of key-value representation

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Long Short Term Memory(LSTM)

[Hochreiter et al., 1997]

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Outline

- Recurrent Neural Networks
 - ☐ Sequence modeling, Autoregressive models
 - □ (Vanilla) RNN models
 - □ LSTM
- Application : Optical Flow Estimation
 - ☐ FlowNet
 - □ Spynet
 - □ PWC-Net
 - □ RAFT

What is Optical Flow?

How to estimate Optical Flow (OF) between two images?

OF Estimation Basics -- Correlation 上海科技大学

$$C_{ijkl} = \sum_{h} g_{\theta}(I_1)_{ijh} \cdot g_{\theta}(I_2)_{klh}$$

Global Cost Volume (with shape of H x W x H x W):

Disaster for memory and computation if H and W are large.

OF Estimation Basics -- Correlation 上海科技大学

$$C_{ijkl} = \sum_{h} g_{\theta}(I_1)_{ijh} \cdot g_{\theta}(I_2)_{klh}$$

Local Cost Volume (with shape of H x W x h x w):

FlowNet (ICCV 2015)

FlowNet (ICCV 2015)

SpyNet (CVPR 2017)

PWC-Net (CVPR 2018)

RAFT (ECCV 2020, Best Paper)

RAFT (ECCV 2020, Best Paper)

Encoder

Feature / Context Encoder

GRU - Cost Volume

Before Iteration:

$$\mathbf{C}(g_{\theta}(I_1), g_{\theta}(I_2)) \in \mathbb{R}^{H \times W \times H \times W}$$

$$C_{ijkl} = \sum_{h} g_{\theta}(I_1)_{ijh} \cdot g_{\theta}(I_2)_{klh}$$

GRU -- Multi-scale Cost Volume

Before Iteration:

· Correlation Pyramid

$$C^k: [H \times W \times \frac{H}{2^k} \times \frac{W}{2^k}]$$

GRU – Cost Volume

During Iteration:

GRU Structure

ature Extractor

Correlation Lookup (4D Cost Volume → 3D Correlation Feature)

GRU – Iteration

During Iteration:

- h_t : Hidden Unit of GRU
- x_t : Flow, Correlation Feature, Context Feature

$$z_{t} = \sigma(\operatorname{Conv}_{3x3}([h_{t-1}, x_{t}], W_{z}))$$

$$r_{t} = \sigma(\operatorname{Conv}_{3x3}([h_{t-1}, x_{t}], W_{r}))$$

$$\tilde{h}_{t} = \tanh(\operatorname{Conv}_{3x3}([r_{t} \odot h_{t-1}, x_{t}], W_{h}))$$

$$h_{t} = (1 - z_{t}) \odot h_{t-1} + z_{t} \odot \tilde{h}_{t}$$

$$f_{k+1} = f_k + \Delta f$$

GRU – Upsampling

$$w_4$$
 $\bigoplus w_5$ $\bigoplus w_6$ \bigoplus

$$w_7$$
 $\bigoplus w_8$ $\bigoplus w_9$