

CSSE2010/CSSE7201 Lecture 5

Flip-flops

School of Information Technology and Electrical Engineering
The University of Queensland

Today

- Admin
- Recap from week 2
- Circuits that remember values
 - Flip-flops
 - Latches

Admin

- Weekly quizzes:
 - \mathbf{y} Quiz 1 closed 414 attempts, 15.1/17 average, 17/17 median
 - ✓ Quiz 2 open now and due Friday 13-Aug 4pm AEST
- Labs:
 - IN students use Logisim to simulate logic circuits and also construct on breadboard if you have borrowed a kit
 - EX students use Logisim to simulate the logic circuits.

 Start acquiring your Arduino based hardware items required from week 7. Details on Blackboard

Prac Equipment - IN students

- Treat it carefully
- Report damage / missing parts
 - Don't use parts you're not familiar with and wait until we get into the relevant prac activity.
- Pay extra attention to the I/O board USB connector when you are using it
- Switch the power off before you build/change
- ✓ circuits
 - Check your wiring before you apply power

Recap from Last Week

Binary representations - unsigned, sign-mag, 1's comp, 2's comp, excess-2N-1

Recap from Last Week (cont...)

Clicker Question

4:1

Consider the multiplexer shown. What must the inputs A,B,C,D be so that the multiplexer output is

$$\checkmark X = S_1.S_0 + \overline{S_1}.G$$

3% None of the above

24% I don't know

$$S_1 S_0$$
 $A \rightarrow 0 + 1 \cdot G = G$
 $B \rightarrow 0 + 1 \cdot G = G$
 $V = G$
 V

Circuits that remember values

- The output of any logic gate or combinational circuit is dependent on the current value of inputs only
- If an input changes, the output can also change and the previous value is lost forever
- Sequential circuits: the current output depends not only on the current inputs but also on the past outputs.
- Circuits with memory can remember values, even if the input changes

Memory element: D Flip Flop

- D is input
- Q is output
- CLK (clock) is control input
- How does it work?

Q copies the value of D (and remembers it)
 whenever CLK goes from 0 to 1 (rising edge)

D Flip Flop

Remember: Q changes ONLY when clock (CLK) goes from 0 to 1

Characteristic Tables

 Characteristic table defines operation of flip-flop in tabular form

D flip-flop

Using the D flip-flop presented previously, what is the output waveform for Q?

D Flip-flops

- Summary: D flip-flop remembers either a "1" or "0" i.e. a single bit. That is the flip-flop remembers the value till the next clock edge, upon which the D input is transferred to output Q.
- So to remember n bits, you will need n D flip-flops
- Definition: A *n*-bit **register** can be made using *n* D flip-flops
 - There are other types of flip-flops, e.g.
 - JK flip-flops T flip-flops
 - Flip-flops can be made out of logic gates

Short Break

Stand up and stretch

SR Latch

SR Latch – to be completed in class

Try to complete this at home before the lecture. You can assume an initial value for Q output or treat it generic as Q and work out the rest for different combinations of inputs S and R

this is what a NOR gate does

useful states (operation)

Remember,

<u> </u>		
Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

15

Latches from NAND gates

Homework: Analyse the S-R latch circuit in the previous slide when NOR gates are replaced with NAND gates and complete the truth table.

Flip-Flops vs Latches

- Latches are level triggered devices i.e. able to latch the output and respond to changes of logic levels on the inputs
- Latch circuits can be modified such that they become sensitive to an edge (i.e. momentary transitions) of a control input (i.e. a clock signal)
- Such circuits are called "flip flops" and a flip flop can store 1 bit of information while being sensitive to a clock edge (i.e., flip flop will change its output only at the clock edges, based on the inputs)
- Latches are level triggered devices while flip flops are edge triggered devices
- A clock signal has two edges
 - Positive edge 0 to 1 transition
 - ✓ Negative edge 1 to 0 transition
- There are different types of flip flops
 - D flip flop we will only discuss this
 - JK flip flop not covered in this course
 - T flip flop not covered in this course
- So, a D flip flop can be positive edge triggered or negative edge triggered
- Positive edge triggered D flip flop → Input D is copied to output Q at the positive edge of the clock. In between the clock edges, flip flop is not responsive, thus stores the value.

D Latches and Flip-flops – Symbols Used

- Triangle indicates edge-triggered (therefore flip-flop)
 - (c) sensitive to rising edge of clock
 - (d) to falling edge
- State of a flip-flop is the value stored
- Flip-flops more useful than latches

D Flip-flop Chips

- (a) 74HCT74 chip(Dual D flip-flop)
- (b) 74HCT273 chip(Eight D flip-flops)
 - can hold one byte of information (8 bits).

See device symbols PDF on Blackboard

Combinational vs. Sequential Circuits

- Combinational Circuits (last week)
 - Logic gates only (no flip-flops)
 - Output is uniquely determined by the inputs
 - i.e. you'll always get the same output for a given set of inputs
 - Example from previously:

Adders
Multiplexers
Decoders
Demultiplexers
Encoders

✓ Counters

✓ Registers

- **Sequential** Circuits
 - Include flip-flops
 - Output determined by current inputs and current state (values in the flip-flops)
 - Output can only change when clock 'ticks'

Sequential Circuits

- State ≠ value stored in flip-flops
- Output depends on input and state
- Next state depends on inputs and state

Synchronous Sequential Circuit

 Storage elements (flip-flops) can only change at discrete instants of time

Assume

We have a clock signal:

- Output of storage elements change only on the edges of control signal
 - (compare with logic gates whose output changes whenever the input changes)

- A register is a group of flipflops
 - n-bit register consists of n flip-flops capable of storing n bits
- Example
 - 4-bit register
- A register is a sequential circuit without any combinational logic

Coming up...

- Quiz 2 due Friday 4pm this week
 - Lab 4
 - Combinational Logic
 - Make sure you attempt the preparation task
 - Use logic ICs or Logisim software to test your circuits
 - Lab 5
 - Flip-flops
 - Use Logisim software to test the circuits