Algorithms

Graphs, breadth- and depth-first search

Emanuele Rodolà rodola@di.uniroma1.it

Python

For the coding exercises given in the previous lecture, you should make use of classes in Python.

See the description and examples here:

https://docs.python.org/3/tutorial/classes.html

Graphs

A graph G=(V,E) is made of nodes V and edges E. Graphs are used pervasively in data sciences.

Graphs

undirected graph

undirected graph

adjacency list

 $adjacency\ matrix\\$

directed graph

adjacency list

adjacency list

Representation efficiency

undirected graph

adjacency list

 $\text{memory: } \Theta(|V|+|E|)$

adjacency matrix

memory: $\Theta(|V|^2)$

Representation efficiency

For undirected graphs, the adjacency matrix is symmetric.

 \Rightarrow requires half of the memory.

Representation efficiency

For undirected graphs, the adjacency matrix is symmetric.

 \Rightarrow requires half of the memory.

With adjacency matrices, most algorithms are lower bounded as $\Omega(|V|^2)$.

We start from a source vertex s, and discover all the reachable vertices.

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

Breadth-first: nodes at distance k explored before those at distance k+1.

A breadth-first tree is obtained as a side-product (shaded edges).

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

Breadth-first: nodes at distance k explored before those at distance k+1.

A breadth-first tree is obtained as a side-product (shaded edges).

ullet The tree changes if we change the source s (which is the root).

We start from a source vertex s, and discover all the reachable vertices.

Each discovered vertex has its distance to s (# edges) computed.

Breadth-first: nodes at distance k explored before those at distance k+1.

A breadth-first tree is obtained as a side-product (shaded edges).

- ullet The tree changes if we change the source s (which is the root).
- ullet The tree changes if we explore vertex x before vertex t.

```
BFS(G, s)

1 for each vertex u \in V[G] - \{s\}

2 do color[u] \leftarrow \text{WHITE}

3 d[u] \leftarrow \infty

4 \pi[u] \leftarrow \text{NIL}
```

- * initialize all distances $d = \infty$
- \ast the parent π of every vertex is NIL; parents constitute the tree
- * WHITE vertices are undiscovered

```
BFS(G, s)

1 for each vertex u \in V[G] - \{s\}

2 do color[u] \leftarrow \text{WHITE}

3 d[u] \leftarrow \infty

4 \pi[u] \leftarrow \text{NIL}

5 color[s] \leftarrow \text{GRAY}

6 d[s] \leftarrow 0

7 \pi[s] \leftarrow \text{NIL}

8 Q \leftarrow \emptyset

9 ENQUEUE(Q, s)
```

* GRAY vertices are discovered, but not yet explored

```
BFS(G, s)
     for each vertex u \in V[G] - \{s\}
           do color[u] \leftarrow WHITE
       d[u] \leftarrow \infty
             \pi[u] \leftarrow \text{NIL}
 5 color[s] \leftarrow GRAY
 6 d[s] \leftarrow 0
 7 \pi[s] \leftarrow \text{NIL}
 8 Q \leftarrow \emptyset
     ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
           do u \leftarrow \text{DEQUEUE}(Q)
                for each v \in Adi[u]
12
13
                     do if color[v] = WHITE
14
                            then color[v] \leftarrow GRAY
15
                                   d[v] \leftarrow d[u] + 1
16
                                   \pi[v] \leftarrow u
17
                                   ENQUEUE(Q, v)
18
                color[u] \leftarrow BLACK
```

```
BFS(G, s)
\Theta(1) \begin{array}{|c|c|c|}\hline 5 & color[s] \leftarrow \text{GRAY}\\ 6 & d[s] \leftarrow 0\\ 7 & \pi[s] \leftarrow \text{NIL}\\ 8 & Q \leftarrow \emptyset\\ 9 & \text{ENQUEUE}(Q, s)\\ \end{array}
             10 while Q \neq \emptyset
             11
                            do u \leftarrow \text{DEQUEUE}(Q)
             12
                                 for each v \in Adi[u]
             13
                                        do if color[v] = WHITE
             14
                                                 then color[v] \leftarrow GRAY
             15
                                                         d[v] \leftarrow d[u] + 1
             16
                                                          \pi[v] \leftarrow u
                                                          ENQUEUE(Q, v)
             17
             18
                                 color[u] \leftarrow BLACK
```

```
BFS(G, s)
 \Theta(1) \begin{vmatrix} 5 & color[s] \leftarrow GRAY \\ 6 & d[s] \leftarrow 0 \\ 7 & \pi[s] \leftarrow NIL \\ 8 & Q \leftarrow \emptyset \\ 9 & ENQUEUE(Q, s) \end{vmatrix}
O(|V|) \rightarrow 10 while Q \neq \emptyset
             11 do u \leftarrow \text{DEQUEUE}(Q)
             12
                               for each v \in Adi[u]
             13
                                      do if color[v] = WHITE
             14
                                              then color[v] \leftarrow GRAY
             15
                                                     d[v] \leftarrow d[u] + 1
             16
                                                     \pi[v] \leftarrow u
             17
                                                     ENQUEUE(Q, v)
             18
                               color[u] \leftarrow BLACK
```

```
BFS(G, s)
  \Theta(|V|) \left| \begin{array}{ll} 1 & \textbf{for each vertex } u \in V[G] - \{s\} \\ 2 & \textbf{do } color[u] \leftarrow \texttt{WHITE} \\ 3 & d[u] \leftarrow \infty \\ 4 & \pi[u] \leftarrow \texttt{NIL} \end{array} \right.
  \Theta(1) \begin{array}{|c|c|c|c|}\hline 5 & color[s] \leftarrow \text{GRAY} \\ 6 & d[s] \leftarrow 0 \\ 7 & \pi[s] \leftarrow \text{NIL} \\ 8 & Q \leftarrow \emptyset \\ 9 & \text{ENQUEUE}(Q, s) \\ \hline \end{array}
O(|V|) \rightarrow 10 while Q \neq \emptyset
                    11 do u \leftarrow \text{DEQUEUE}(Q)
O(|E|) \rightarrow 12
                                                  for each v \in Adi[u]
                     13
                                                            do if color[v] = WHITE
                     14
                                                                        then color[v] \leftarrow GRAY
                     15
                                                                                    d[v] \leftarrow d[u] + 1
                     16
                                                                                     \pi[v] \leftarrow u
                     17
                                                                                     ENQUEUE(Q, v)
                     18
                                                  color[u] \leftarrow BLACK
```

```
BFS(G, s)

1 for each vertex u \in V[G] - c

2 do color[u] \leftarrow \text{WHITE}

3 d[u] \leftarrow \infty

4 \pi[u] \leftarrow \text{NIL}

5 color[s] \leftarrow \text{GRAY}

6 d[s] \leftarrow 0

7 \pi[s] \leftarrow \text{NIL}

8 Q \leftarrow \emptyset

9 ENQUEUE(Q, s)

10 while Q \neq \emptyset

11 do u \leftarrow D

12 for each e
                                                    for each vertex u \in V[G] - \{s\}
                                                                                    do if color[v] = WHITE
                                                                                                  then color[v] \leftarrow GRAY
                                                                                                                d[v] \leftarrow d[u] + 1
                                                                                                                \pi[v] \leftarrow u
                                                                                                                ENQUEUE(Q, v)
                                                                         color[u] \leftarrow BLACK
```

Exploring a path recursively

Assume a breadth-first tree has already been constructed.

```
PRINT-PATH(G, s, v)

1 if v = s

2 then print s

3 else if \pi[v] = \text{NIL}

4 then print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, \pi[v])

print v
```

Exploring a path recursively

Assume a breadth-first tree has already been constructed.

```
PRINT-PATH(G, s, v)

1 if v = s

2 then print s

3 else if \pi[v] = \text{NIL}

4 then print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, \pi[v])

6 print v
```

Despite this being recursive, the total cost is O(|V|).

Line (5) is called on a path that is one edge shorter each time.

Depth-first search (DFS)

Inside each vertex, we write discovery time / finishing time.

Depth-first search (DFS)

Inside each vertex, we write discovery time / finishing time.

Depth-first search (DFS)

Inside each vertex, we write discovery time / finishing time.

Inside each vertex, we write discovery time / finishing time.

Inside each vertex, we write discovery time / finishing time.

 \boldsymbol{B} ack edge to an already discovered vertex.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Forward edge to an already discovered vertex.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Forward edge to an already discovered vertex.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Forward edge to an already discovered vertex.

Select a new source.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Forward edge to an already discovered vertex.

Select a new source.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Forward edge to an already discovered vertex.

Select a new source.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Forward edge to an already discovered vertex.

Select a new source.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Forward edge to an already discovered vertex.

Select a new source.

Inside each vertex, we write discovery time / finishing time.

Back edge to an already discovered vertex.

Backtrack to the next available move.

Forward edge to an already discovered vertex.

Select a new source.

Unlike BFS, we might have many disjoint trees (shaded edges), thus obtaining a depth-first forest.

Unlike BFS, we might have many disjoint trees (shaded edges), thus obtaining a depth-first forest.

Like BFS, the specific forest changes if the order of exploration changes.

```
\begin{array}{ll} \operatorname{DFS}(G) \\ 1 & \textbf{for} \ \operatorname{each} \ \operatorname{vertex} \ u \in V[G] \\ 2 & \textbf{do} \ \operatorname{color}[u] \leftarrow \operatorname{WHITE} \\ 3 & \pi[u] \leftarrow \operatorname{NIL} \\ 4 & \operatorname{time} \leftarrow 0 \\ 5 & \textbf{for} \ \operatorname{each} \ \operatorname{vertex} \ u \in V[G] \\ 6 & \textbf{do} \ \operatorname{if} \ \operatorname{color}[u] = \operatorname{WHITE} \\ 7 & \textbf{then} \ \operatorname{DFS-VISIT}(u) \end{array}
```

```
DFS(G)

1 for each vertex u \in V[G]

2 do color[u] \leftarrow \text{WHITE}

3 \pi[u] \leftarrow \text{NIL}

4 time \leftarrow 0

5 for each vertex u \in V[G]

6 do if color[u] = \text{WHITE}

7 then DFS-VISIT(u) (u will be the root of a new tree in the forest)
```

```
DFS(G)
    for each vertex u \in V[G]
          do color[u] \leftarrow WHITE
             \pi[u] \leftarrow \text{NIL}
   time \leftarrow 0
    for each vertex u \in V[G]
6
         do if color[u] = WHITE
                then DFS-VISIT(u) (u will be the root of a new tree in the forest)
DFS-Visit(u)
    color[u] \leftarrow GRAY
                                 \triangleright White vertex u has just been discovered.
2 time \leftarrow time + 1
3 d[u] \leftarrow time
    for each v \in Adj[u] \triangleright Explore edge (u, v).
         do if color[v] = WHITE
6
                then \pi[v] \leftarrow u
                      DFS-VISIT(v)
    color[u] \leftarrow BLACK \Rightarrow Blacken u; it is finished.
    f[u] \leftarrow time \leftarrow time + 1
```

```
DFS(G)
\Theta(|V|) \begin{vmatrix} 1 & \text{for each vertex } u \in V[G] \\ 2 & \text{do } color[u] \leftarrow \text{WHITE} \\ 3 & \pi[u] \leftarrow \text{NIL} \end{vmatrix}
        4 time \leftarrow 0
\Theta(|V|) \left\| \begin{array}{ll} 5 & \textbf{for} \ \text{each vertex} \ u \in V[G] \\ 6 & \textbf{do if} \ color[u] = \text{WHITE} \\ 7 & \textbf{then} \ \text{DFS-VISIT}(u) \end{array} \right. \quad (u \ \text{will be the root of a new tree in the forest)}
              DFS-Visit(u)
                  color[u] \leftarrow GRAY \triangleright White vertex u has just been discovered.
              2 time \leftarrow time + 1
              3 d[u] \leftarrow time
                    for each v \in Adj[u] \triangleright Explore edge (u, v).
                 do if color[v] = WHITE
                                      then \pi[v] \leftarrow u
                                                DFS-VISIT(v)
              8 color[u] \leftarrow BLACK \triangleright Blacken u; it is finished.
                    f[u] \leftarrow time \leftarrow time + 1
```

Depth-first search (DFS) DFS(G)

```
\Theta(|V|) \begin{vmatrix} 1 & \text{for each vertex } u \in V[G] \\ 2 & \text{do } color[u] \leftarrow \text{WHITE} \\ 3 & \pi[u] \leftarrow \text{NIL} \end{vmatrix}
       4 time \leftarrow 0
\Theta(|V|) \left\| \begin{array}{ll} 5 & \textbf{for} \ \text{each vertex} \ u \in V[G] \\ 6 & \textbf{do if} \ color[u] = \text{WHITE} \\ 7 & \textbf{then} \ \text{DFS-VISIT}(u) \end{array} \right. \  \, (u \ \text{will be the root of a new tree in the forest)}
                   DFS-VISIT(u)
                    1 color[u] \leftarrow GRAY \triangleright White vertex u has just been discovered.
                   2 time \leftarrow time + 1
                   3 d[u] \leftarrow time
\Theta(|E|) \left| \begin{array}{ll} \textbf{4} & \textbf{for} \ \text{each} \ v \in Adj[u] & \rhd \ \text{Explore edge} \ (u,v). \\ \textbf{5} & \textbf{do if} \ color[v] = \ \text{WHITE} \\ \textbf{6} & \textbf{then} \ \pi[v] \leftarrow u \\ \textbf{7} & \text{DFS-VISIT}(v) \end{array} \right.
                    8 color[u] \leftarrow BLACK \triangleright Blacken u; it is finished.
                   9 f[u] \leftarrow time \leftarrow time + 1
```

Suggested reading

Chapters 22.1, 22.2 (skip the "Shortest Paths" paragraph), and 22.3 (skip the "Properties of depth-first search" paragraph) of:

"Introduction to Algorithms – 2nd Ed.", Cormen et al.