Math 493 Lecture 4

Thomas Cohn

9/16/2019

Defn: Let G be a group, $A, B \in G$ subsets. We define $AB = \{ab | a \in A, b \in B\}$. If $A = \{a\}$, then we write it aB instead of $\{a\}B$.

Warning: If A, B are subgroups, AB is not always a subgroup. If $ab \in AB$, $a'b' \in AB$, then $(ab)(a'b') \neq aa'bb'$ in general.

Ex: $G = S_3$, $A = \langle (12) \rangle = \{1, (12)\}$, $B = \langle (13) \rangle = \{1, (13)\}$. Then $AB = \{1, (23), (12), (12), (12), (12), (12)\}$. So AB is not a subgroup by Lagrange's Theorem.

Prop: $A,B,C\subseteq G$ subsets. Then (AB)C=A(BC). Proof: Say $x\in (AB)C$. Then x=(ab)c for some $a\in A,b\in B,c\in C$. So x=a(bc), so $x\in A(BC)$. \square

Recall: a subgroup N of G is normal if $\forall g \in G, n \in N$, we have $gng^{-1} \in N$. This is true $\Leftrightarrow gNg^{-1} \subseteq N, \forall g \in G$ $\Leftrightarrow gNg^{-1} = N, \forall g \in G$ because given $n \in N, g^{-1}ng \in N, g(g^{-1}ng)g^{-1} = n \in gNg^{-1}$ $\Leftrightarrow gN = Ng, \forall g \in G$ because $(gNg^{-1})g = gN(g^{-1}g) = gN$

Fix a normal subgroup $N \subset G$. Define G/N to be the set of all cosets of N, $\{gN|g \in G\}$. Define a composition law on G/N using product of subsets.

Verify: (gN)(hN) = gNhN = ghNN = ghN. So it's a composition law. It's associative because multiplication of subsets is associative. N is the identity, because (gN)N = g(NN) = gN, and N(gN) = NgN = gNN = gN.

Inverses: $(gN)(g^{-1}N) = gg^{-1}N = N$, and $(g^{-1}N)(gN) = g^{-1}gN = N$. So $g^{-1}N$ is the inverse of gN.

Thus, G/N is a group!

We have a function $\pi:G\to G/N$ and it is a group homomorphism (and surjective). $g\mapsto gN$

$$\pi(g)\pi(h) = (gN)(hN) = (gh)N = \pi(gh).$$

Prop: $\ker(\pi) = N$. Proof: If $n \in N$, then $\pi(n) = nN = N$. So $N \subset \ker(\pi)$. Let $\pi(q) = N$. Then qN = N. So $q \in N$. So $\ker(\pi) \subset N$. \square

Given $g \in G$, put $\bar{g} = \pi(g) = gN$. Every element of G/N has the form \bar{g} for some g. Warning: $\bar{g} = \bar{h} \Leftrightarrow gh^{-1} \in N$.

Ex: $G = \mathbb{Z}$, $N = n\mathbb{Z}$, $G/N = \mathbb{Z}/n\mathbb{Z} = \{\bar{0}, \bar{1}, \dots, \overline{n-1}\}$. #G/N = n. $\bar{a} + \bar{b} = \overline{a+b}$, $\bar{a} = \bar{b}$ iff $a \equiv b \pmod{n}$.

Mapping Property for Quotients

$$G \downarrow_{\pi} \qquad \qquad Given \ \varphi, \ \text{we get} \ \psi \ \text{by} \ \psi = \varphi \circ \pi. \ \text{If} \ n \in N, \ \text{then} \ \psi(n) = \varphi(\pi(n)) = 1, \ \text{so} \ N \subset \ker(\psi).$$

$$G/N \xrightarrow{\varphi} H$$

Prop: Given a group homomorphism $\psi: G \to H$ s.t. $N \subset \ker(\psi)$, $\exists ! \varphi: G/N \to H$ s.t. $\psi = \varphi \circ \pi$. Moreover, φ is surjective iff ϕ is surjective;

in fact $\operatorname{im}(\varphi) = \operatorname{im}(\psi)$, and φ is injective iff $\ker(\psi = N)$.

Proof: attempt to define $\varphi(\bar{g}) = \psi(g)$. Check that this is well defined:

If $\bar{g} = \bar{h}$, then $\varphi(\bar{g}) = \psi(g) \stackrel{?}{=} \psi(h)$. Well, $\bar{g} = \bar{h} \Leftrightarrow g = hn$ for some $n \in N$. So

 $\psi(g) = \psi(hn) = \psi(h)\psi(n) = \psi(h)$, because $n \in \ker(\psi)$.

Verify that φ is a group homomorphism:

$$\varphi(\bar{g} \cdot \bar{h}) = \varphi(\bar{g}\bar{h}) = \psi(gh) = \psi(g)\psi(h) = \varphi(\bar{g})\varphi(\bar{h})$$

 φ is unique because π is surjective. Suppose $\varphi:G/N\to H$ s.t. $\psi=\varphi\circ\pi$. Evaluate at $g\colon \varphi(\bar{g})=\psi(g)$. So all values of φ are determined.

 $im(\varphi) = im(\psi)$:

Say $x \in \operatorname{im}(\varphi)$. Then $x = \varphi(\bar{g}) = \psi(g) \Rightarrow x \in \operatorname{im}(\Psi)$.

Say $x \in \operatorname{im}(\psi)$. Then $x = \psi(g) = \varphi(\overline{g}) \Rightarrow x \in \operatorname{im}(\varphi)$.

Suppose $\ker(\psi) = N$. Say $\varphi(\bar{g}) = 1$. Then $\psi(g) = 1$, so $g \in \ker(\psi) = N$. Thus, $\bar{g} = 1$ in G/N. $\ker(\varphi) = 1 \Rightarrow \varphi$ is injective.

Suppose φ is injective, $g \in \ker(\psi)$. $\psi(g) = 1$, so $\varphi(\bar{g}) = 1$, so $\bar{g} \in \ker(\varphi)$. Thus, $\bar{g} = \operatorname{id} \operatorname{in} G/N$, so $\bar{g} = N$. Thus, $\ker(\psi) \subseteq N$. \square

Cor: (First Isomorphism Theorem) Suppose $\psi: G \to H$ is a homomorphism. Then we have a natural isomorphism $G/\ker(\psi) \stackrel{\sim}{\to} \operatorname{im}(\psi)$.

Proof: Let $N = \ker(\psi)$ (a normal subgroup). Because $N \subseteq \ker(\psi)$, $\exists ! \varphi : G/N \to H$ s.t. $\psi = \varphi \circ \pi$. Then because $\operatorname{im} \varphi = \operatorname{im} \psi$ and φ is injective, φ is a bijection between G/N and $\operatorname{im} \varphi = \operatorname{im} \psi$. \square

Ex: Let G be a group and let $g \in G$ of order $1 \le n < \infty$. We have a group homomorphism $\psi : \mathbb{Z} \to G$ $m \mapsto a^m$

 $\operatorname{im}(\psi) = \langle g \rangle$, $\operatorname{ker}(\psi) = n\mathbb{Z}$. So according to the first isomorphism theorem, we have $\varphi : \mathbb{Z}/n\mathbb{Z} \stackrel{\sim}{\to} \langle g \rangle$. $\bar{m} \mapsto g^m$

Cor: Any two cyclic groups of the same order are isomorphic.

Proof: Any cyclic group of order n is isomorphic to $\mathbb{Z}/n\mathbb{Z}$.

Furthermore, any cyclic group of order ∞ is isomorphic to \mathbb{Z} .

Ex: Define $S^1=\{z\in\mathbb{C}\mid |z|=1\}$ (the unit circle in the complex plane). Observe:

- S_1 is a group under multiplication.
- |1| = 1, so $1 \in S^1$.
- $z, w \in S^1 \Rightarrow |zw| = 1 \Rightarrow |z||w| = 1$.
- $z \in S^1 \Rightarrow |z^{-1}| = |z|^{-1} = 1$.

We have a group homomorphism $\psi: \mathbb{R} \to S^1$. $x \mapsto e^{2\pi i x} \ .$

- $|\psi(x)| = |e^{2\pi ix}| = 1.$
- $\psi(x+y) = e^{2\pi i(x+y)} = e^{2\pi ix}e^{2\pi iy} = \psi(x)\psi(y).$
- $\ker(\psi) = \mathbb{Z}$.

Thus, by the first isomorphism theorem, $\mathbb{R}/\mathbb{Z} \overset{\sim}{\to} S^1$. $\bar{x} \mapsto e^{2\pi i x}$.

Ex: $S_n/A_n \cong \mathbb{Z}/n\mathbb{Z}$ if $n \geq 2$. We have $\operatorname{sgn}: S_2 \to \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$. sgn is surjective if $n \geq 2$. So by the first isomorphism theorem, $S_n/\underbrace{\ker(\operatorname{sgn})}_{=A_n} \cong \operatorname{im}(\operatorname{sgn}) \cong \mathbb{Z}/2\mathbb{Z}$.

Fact: #G/N = [G:N]. If G is finite, then $\#G/N = \frac{\#G}{\#N}$.

Product Groups

Let G, H be groups. Define $G \times H$ as a group (the direct product). Elements are ordered pairs (g, h) for $g \in G, h \in H$. We have the composition law (g, h)(g', h') = (gg', hh').

Exer: Check that this is a group.

Defn: Suppose K is a group, and we have two subgroups $\bar{G}, \bar{H} \subseteq K$. Then K is the **internal product** (or **direct product**) of \bar{G} and \bar{H} if

- 1. $x \in \bar{G}, y \in \bar{H} \Rightarrow xy = yx$.
- 2. $\bar{G} \cap \bar{H} = \{1\}.$
- 3. $K = \bar{G}\bar{H}$.

 $K = G \times H$. Let $\bar{G} = \{(g,1) \mid g \in G\} \subseteq K$ and $\bar{H} = \{(1,h) \mid h \in H\} \subseteq K$ subgroups.