

Bayesian integrated population modeling using JAGS

Multistate capturerecapture models

Multistate capture histories

State = individual, categorical covariate that may change temporally

Examples of states:

- Geographical locations
- Breeding status
- Disease status

ID	1992	1993	1994	1995	1996	1997	1998	1999
1	0	1	2	2	0	2	0	0
2	1	1	1	0	0	0	0	0
3	0	2	0	0	0	0	0	0
4	0	0	2	1	0	2	0	0
5	0	0	0	1	1	2	1	1
6	0	0	0	2	2	1	2	0

Conditional nature of the 2 processes

State process

Observation process

→ Stochastic processDeterministic process

State process

States at time t+1

state A
States at time t state B
dead

State A
$$\Phi_{AB}$$
 Φ_{AB} Φ_{AB} Φ_{AB} Φ_{BB} $\Phi_$

Observation process

Observations at time t

State process

State A

State B

Dead

$$\Omega = egin{array}{ll} ext{States at time t} & ext{state B} \ ext{dead} & ext{dead} \ ext{dead} & ext{dead} \ ext{dead} & ext{dead} \ ext{dead} \ ext{dead} & ext{dead} \ ext{d$$

States at time t+1

$$\mathbf{z}_{i,t+1} ig| \mathbf{z}_{i,t} \sim dcat ig(\Omega_{\mathbf{z}_{i,t}}, ig)$$

Observation process

State A

State B

Dead

Seen at A

Seen at B

Not seen

Observations at time t

$$oldsymbol{y}_{i,t}ig|oldsymbol{z}_{i,t}\sim oldsymbol{dcat}ig(\Theta_{oldsymbol{z}_{i,t}}ig)$$

Usual re-parameterisation

• $\Phi_{xv,t}$: probability to be in state y at time t+1, given presence in state x at time t

$$\begin{bmatrix} \Phi_{AA} & \Phi_{AB} & \mathbf{1} - \Phi_{AA} - \Phi_{AB} \\ \Phi_{BA} & \Phi_{BB} & \mathbf{1} - \Phi_{BA} - \Phi_{BB} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

- ϕ_x : probability to survive from time t to time t+1, given presence in state x at time t
- $\psi_{xy,t}$: probability to move from state x to state y shortly before time t+1, given survival from time t to time t+1

$$\begin{bmatrix} \phi_A \left(\mathbf{1} - \psi_{AB} \right) & \phi_A \psi_{AB} & \mathbf{1} - \phi_A \\ \phi_B \psi_{BA} & \phi_B \left(\mathbf{1} - \psi_{BA} \right) & \mathbf{1} - \phi_B \\ 0 & 0 & 1 \end{bmatrix}$$

```
# Likelihood
                                                        # Define state-transition and observation matrices
                                                        for (i in 1:nind) {
for (i in 1:nind) {
   # Define latent state at first capture
                                                           # Define probabilities of state S(t+1) given S(t)
                                                           for (t in f[i]:(n.occasions-1)){
   z[i,f[i]] \leftarrow y[i,f[i]]
   for (t in (f[i]+1):n.occasions)
                                                              ps[1,i,t,1] \leftarrow phiA[t] * (1-psiAB[t])
      # State process: draw S(t) given S(t-1)
                                                              ps[1,i,t,2] \leftarrow phiA[t] * psiAB[t]
      z[i,t] \sim dcat(ps[z[i,t-1], i, t-1,])
                                                              ps[1,i,t,3] < -1-phiA[t]
      # Observation process: draw O(t) given S(t)
                                                              ps[2,i,t,1] \leftarrow phiB[t] * psiBA[t]
      y[i,t] \sim dcat(po[z[i,t], i, t-1,])
                                                              ps[2,i,t,2] <- phiB[t] * (1-psiBA[t])
     } #t
                                                              ps[2,i,t,3] < -1-phiB[t]
   } #i
                                                              ps[3,i,t,1] < -0
                                                              ps[3,i,t,2] < -0
                                                              ps[3,i,t,3] < -1
                                                              # Define probabilities of O(t) given S(t)
                                                              po[1,i,t,1] <- pA[t]
                                                              po[1,i,t,2] < -0
# Priors and constraints
                                                              po[1,i,t,3] < -1-pA[t]
for (t in 1:(n.occasions-1)){
                                                              po[2,i,t,1] < -0
   phiA[t] <- mean.phi[1]</pre>
                                                              po[2,i,t,2] < - pB[t]
   phiB[t] <- mean.phi[2]</pre>
                                                              po[2,i,t,3] <- 1-pB[t]
   psiAB[t] <- mean.psi[1]</pre>
                                                              po[3,i,t,1] < -0
   psiBA[t] <- mean.psi[2]</pre>
                                                              po[3,i,t,2] < -0
   pA[t] <- mean.p[1]
                                                              po[3,i,t,3] < -1
   pB[t] <- mean.p[2]</pre>
                                                             } #t
                                                           } #i
for (u in 1:2) {
   mean.phi[u] ~ dunif(0, 1) # Priors for mean state-spec. survival
   mean.psi[u] \sim dunif(0, 1) # Priors for mean transitions
   mean.p[u] \sim dunif(0, 1) # Priors for mean state-spec. recapture
```

```
# Likelihood
for (i in 1:nind) {
   # Define latent state at first capture
   z[i, f[i]] \leftarrow y[i, f[i]]
   for (t in (f[i]+1):n.occasions) {
      # State process: draw S(t) given S(t-1)
      z[i,t] \sim dcat(ps[z[i,t-1], i, t-1,])
      # Observation process: draw O(t) given S(t)
      y[i,t] \sim dcat(po[z[i,t], i, t-1,])
      } #t
   } #i
```

Written generally, no changes needed, regardless of which model is fitted

} #i

```
# Define state-transition and observation matrices
for (i in 1:nind) {
    # Define probabilities of state S(t+1) given S(t)
    for (t in f[i]:(n.occasions-1)){
        ps[1,i,t,1] \leftarrow phiA[t] * (1-psiAB[t])
        ps[1,i,t,2] \leftarrow phiA[t] * psiAB[t]
                                                                                \begin{bmatrix} \phi_A \left( \mathbf{1} - \psi_{AB} \right) & \phi_A \psi_{AB} & \mathbf{1} - \phi_A \\ \phi_B \psi_{BA} & \phi_B \left( \mathbf{1} - \psi_{BA} \right) & \mathbf{1} - \phi_B \\ 0 & 0 & \mathbf{1} \end{bmatrix}
        ps[1,i,t,3] < -1-phiA[t]
        ps[2,i,t,1] \leftarrow phiB[t] * psiBA[t]
        ps[2,i,t,2] \leftarrow phiB[t] * (1-psiBA[t])
        ps[2,i,t,3] < -1-phiB[t]
        ps[3,i,t,1] < -0
        ps[3,i,t,2] < -0
        ps[3,i,t,3] < -1
         # Define probabilities of O(t) given S(t)
                                                                                         \left| \begin{array}{cccc} p_{_{\!A}} & 0 & 1 - p_{_{\!A}} \\ 0 & p_{_{\!B}} & 1 - p_{_{\!B}} \\ 0 & 0 & 1 \end{array} \right|
        po[1,i,t,1] <- pA[t]
        po[1,i,t,2] < -0
        po[1,i,t,3] <- 1-pA[t]
        po[2,i,t,1] < -0
        po[2,i,t,2] < - pB[t]
        po[2,i,t,3] < -1-pB[t]
        po[3,i,t,1] < -0
        po[3,i,t,2] < -0
        po[3,i,t,3] < -1
                                         Define the structure of the multistate model
        } #t
```

```
# Priors and constraints
for (t in 1:(n.occasions-1)){
   phiA[t] <- mean.phi[1]</pre>
   phiB[t] <- mean.phi[2]</pre>
   psiAB[t] <- mean.psi[1]</pre>
   psiBA[t] <- mean.psi[2]</pre>
   pA[t] \leftarrow mean.p[1]
   pB[t] \leftarrow mean.p[2]
for (u in 1:2) {
   mean.phi[u] \sim dunif(0, 1)
   mean.psi[u] \sim dunif(0, 1)
   mean.p[u] \sim dunif(0, 1)
```

```
\phi(s), \psi(.), p(s)
```

Define linear models for parameters and specify the needed priors

- As for single state capture-recapture, we can summarize multistate capture-recapture data in **multistate m-array** format
- Data analysed using the multinomial likelihood

From the capture-histories to the m-array data format

Multistate capture histories

- 1 0 2 0
- 2 2 0 0
- 1 0 2 1
- 0 1 0 0

		First reencounter occasion (state of reencounter)							
			2		3	4	4		
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt	
1	1				1				
1	2								
2	1	-	-						
2	2	-	-						
3	1	-	-	-	-				
3	2	-	-	-	-			1	

From the capture-histories to the m-array data format

Multistate capture histories

- 1 0 2 0
- 2 2 0 0
- 1 0 2 1
- 0 1 0 0

		First reencounter occasion (state of reencounter)							
		:	2		3		4		
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt	
1	1	•			1	•			
1	2		1						
2	1	-	-						
2	2	-	-					1	
3	1	-	-	-	-				
3	2	-	_	_	_			1	

From the capture-histories to the m-array data format

Multistate capture histories

			2	•	3	4	4	
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt.
1	1				1+1			
1	2		1					
2	1	-	-					
2	2	-	-					1
3	1	-	-	-	-			
3	2	-	-	-	-	1		1

From the capture-histories to the m-array data format

Multistate capture histories

1 0 2 0 2 2 0 0 1 0 2 1

		First reencounter occasion (state of reencounter)						
		:	2		3		4	
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt
1	1				1+1			•
1	2		1					
2	1	-	-					
2	2	-	-					1+1
3	1	-	-	-	-			
3	2	-	-	_	_	1		1

From the capture-histories to the m-array data format

Multistate capture histories

- 1 0 2 0
- 2 2 0 0
- 1 0 2 1
- 0 2 0 0

		First reencounter occasion (state of reencounter)							
			2		3		4	,	
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt.	
1	1	0	0	0	2	0	0	0	
1	2	0	1	0	0	0	0	0	
2	1	-	-	0	0	0	0	0	
2	2	-	-	0	0	0	0	2	
3	1	-	-	-	-	0	0	0	
3	2	-	-	-	-	1	0	1	

				reencou tate of re	nter occa encounte				
			2		3		4	,	
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt.	Released
1	1	0	0	0	2	0	0	0	2
1	2	0	1	0	0	0	0	0	1
2	1	-	-	0	0	0	0	0	0
2	2	-	-	0	0	0	0	2	2
3	1	-	-	-	-	0	0	0	0
3	2	-	-	-	-	1	0	1	2

			First reencounter occasion (state of reencounter)							
			2		3		4			
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt.		
1	1	$\phi^1 \psi^{11} p^1$	$\phi^1 \psi^{12} p^2$					1-Σ		
1	2	$\phi^2 \psi^{21} p^1$	$\phi^2 \psi^{22} p^2$							
2	1	-	-				<u></u>			
2	2	-	-							
3	1	-	-	-	-					
3	2	-	-	-	-					

$$\phi^1 \psi^{11} (1-p^1) \phi^1 \psi^{11} p^1 + \phi^1 \psi^{12} (1-p^2) \phi^2 \psi^{21} p^1$$

First reencounter occasion (state of reencounter)	
3	

		:	2	:	3	•	4		
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt.	Released
1	1	0	0	0	2	0	0	0	2
1	2	0	1	0	0	0	0	0	1
2	1	-	-	0	0	0	0	0	0
2	2	-	-	0	0	0	0	2	2
3	1	-	-	-	-	0	0	0	0
3	2	-	-	-	-	1	0	1	2

		First reencounter occasion (state of reencounter)							
		:	2		3		4		
Release occasion	State of release	(1	2)	(1	2)	(1	2)	Never recapt	
1	1	$\phi^1 \psi^{11} p^1$	$\phi^1 \psi^{12} p^2$					1-Σ	
1	2	$\phi^2 \psi^{21} p^1$	$\phi^2 \psi^{22} p^2$						
2	1	-	-						
2	2	-	-						
3	1	-	-	-	-				
3	2	-	-	-	-				

 $\begin{bmatrix} 0 & 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix} \sim Multinomial(P_{11}, 2)$

How to write the probabilities of the multistate m-array?

		Reencounter o	ccasion	Never reencountered
Release occasion	2	3	4	
1	$oldsymbol{\psi}_{_{\! 1}} D(oldsymbol{ ho}_{_{\! 1}})$	$\boldsymbol{\Psi}_{1}D(\boldsymbol{q}_{1})\boldsymbol{\Psi}_{2}D(\boldsymbol{p}_{2})$	$\boldsymbol{\Psi}_{1}D(\boldsymbol{q}_{1})\boldsymbol{\Psi}_{2}D(\boldsymbol{q}_{2})\boldsymbol{\Psi}_{3}D(\boldsymbol{p}_{3})$	$1-\Sigma_{_1}$
2		$oldsymbol{\Psi}_{\!\scriptscriptstyle 2} \! D(oldsymbol{ ho}_{\!\scriptscriptstyle 2})$	$oldsymbol{\Psi}_{2} D(oldsymbol{q}_{2}) oldsymbol{\Psi}_{3} D(oldsymbol{p}_{3})$	$1\!-\!\Sigma_{_2}$
3			$oldsymbol{\Psi}_{\scriptscriptstyle 3} D(oldsymbol{ ho}_{\scriptscriptstyle 3})$	$1 - \Sigma_3$

$$\boldsymbol{\Psi}_{t} = \begin{bmatrix} \boldsymbol{\phi}_{t}^{1} \left(1 - \boldsymbol{\psi}_{t}^{12} \right) & \boldsymbol{\phi}_{t}^{1} \boldsymbol{\psi}_{t}^{12} \\ \boldsymbol{\phi}_{t}^{2} \boldsymbol{\psi}_{t}^{21} & \boldsymbol{\phi}_{t}^{2} \left(1 - \boldsymbol{\psi}_{t}^{21} \right) \end{bmatrix}, D(\boldsymbol{p}_{t}) = \begin{bmatrix} \boldsymbol{p}_{t}^{1} & 0 \\ 0 & \boldsymbol{p}_{t}^{2} \end{bmatrix} \text{ and } D(\boldsymbol{q}_{t}) = \begin{bmatrix} 1 - \boldsymbol{p}_{t}^{1} & 0 \\ 0 & 1 - \boldsymbol{p}_{t}^{2} \end{bmatrix}$$

Comparison of approaches

- State-space likelihood
 - Very intuitive, very flexible modelling
 - State transition matrix must include the death state
 - Observation matrix must include the observation not seen
 - Rows of transition and observation matrices must sum to 1
 - Computationally demanding

Multinomial likelihood

- Reduced flexibility in modelling (no individual random effects)
- The definition of transition matrix and of recapture vector very similar to the corresponding definitions in MARK or E-SURGE
- Computational advantages (shorter run-time, faster convergence)

1. Age-dependent survival

State-space likelihood

2. Breeder vs. non-breeders

dead

State-space likelihood

3. Movement among 3 sites

States at time t+1

Observation process

Observations at time t

		seen at A	seen at B	seen at C	not seen
States at time t	site A	$\lceil oldsymbol{ ho}_{\!\scriptscriptstyle A}$	0	0	$1-p_{_A}$
	site B	0	$oldsymbol{ ho}_{\!\scriptscriptstyle B}$	0	$1-p_{\scriptscriptstyle B}$
	site C	0	0	p_{c}	$1-p_c$
	dead	0	0	0	1

3. Movement among 3 sites

States at time t+1

The parameters ψ_{AB} and ψ_{AC} (as well as ψ_{BA} & ψ_{BC} and ψ_{CA} & ψ_{CB}) must be in the interval [0, 1] and their sum must be \leq 1. Two possible options:

- Multinomial logit link function
- Dirichlet prior

4. Access to reproduction

States at time t+1 juvenile State process $\phi_1(1-\alpha_1)$ 0 $\phi_1 \alpha_1$ juvenile 0 $\phi_2(1-\alpha_2)$ $\phi_2\alpha_2$ 0 1y NB States at time t $1 - \phi_3$ 0 0 ϕ_3 2y NB $1 - \phi_B$ breeder 0 ϕ_B dead 0 0 0 0 1

Observation process

juvenile

1y NB

States at time t

2y NB

breeder

dead

Observations at time t

seen, 1y NB
$$\begin{bmatrix} 0 & 0 & 1 \\ p_1 & 0 & 0 & 1-p_1 \\ 0 & p_2 & 0 & 1-p_2 \\ 0 & 0 & p_3 & 1-p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. Temporary emigration

States at time t+1

Observations at time t

6. Immediate trap response

States at time t+1

State process

States at time t

alive, seen
alive, not seen
dead

$$\begin{cases} \phi p_s & \phi(1-p_s) & 1-\phi \\ \phi p_N & \phi(1-p_N) & 1-\phi \\ 0 & 0 & 1 \end{cases}$$

Observations at time t

Observation process

States at time t

alive, seen alive, not seen dead Seen 1

0 1

7. Combination of life and dead encounters

Multievent models

- Is a multistate model that allows for state assignment errors (state uncertainty)
- All capture-recapture models introduced so far can be seen as a special case of a multievent model
- Most general capture-recapture model
- Seminal paper: Pradel (2005), Biometrics
- We need a model of state assignment at the first encounter
- Additional parameters (state assignment probabilities)
- Ecological examples:
 - Sex assignment uncertainty (Pradel et al. 2008, Can. J. Stat.)
 - Disease status uncertainty (Cooch & Conn 2009, J. Appl. Ecol.)
 - Memory models (Rouan et al. 2009, JABES)
 - Heterogeneity / finite mixtures (Péron et al. 2010, Oikos)

Conditional nature of the 2 processes

State process

Observation process

→ Stochastic processDeterministic process

At first encounter

Initial state probability

States at first encounter

$$\begin{array}{cccc} dead & o \\ state 2 & \pi & o \\ \hline \begin{bmatrix} 1-\pi & \pi & o \end{bmatrix} \end{array}$$

State assignment

Observations at first encounter

States at first encounter

After first encounter

State process

States at time t

States at time t+1

Observation process

Observations at time t

state 1

state 2

dead

An example: uncertain disease status

- If an individual is seen that does not have the disease, we will never diagnose that the individual is infected.
- Yet, we may fail to diagnose the disease in infected individuals.
- Interest: disease dependent survival
- Disease state dynamics

States:

- Alive, without disease (Alive -)
- Alive, with disease (Alive +)
- Dead

Observations:

- Seen, no disease recorded (Seen -)
- Seen, disease recorded (Seen +)
- Not seen

At first encounter

Disease state: $\begin{bmatrix} 1 - \pi & \pi & 0 \end{bmatrix}$

$$\pi$$
 π 0

 π : Probability of being infected at first encounter

$$\Pi = \begin{bmatrix} 1 - \pi & \pi & 0 \end{bmatrix}$$

$$z_{i,f[i]} \sim dcat(\Pi)$$

At first encounter

State assignment

Observations at first encounter

Seen + Not seen Seen + Seen + Alive -
$$\begin{bmatrix} 1 & 0 & 0 \\ \beta & 1-\beta & 0 \\ Dead & 0 & 0 \end{bmatrix}$$

β: Probability of not diagnosing the disease

$$\mathbf{O} = \begin{bmatrix} 1 & 0 & 0 \\ \beta & \mathbf{1} - \beta & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad y_{i,f[i]} | \mathbf{z}_{i,f[i]} \sim dcat(\mathbf{O}_{\mathbf{z}_{i,f[i]}})$$

After first encounter

State process

States at time t+1

States at time t
$$Alive - \begin{cases}
\phi_H (1 - \psi_{HD}) & \phi_H \psi_{HD} & 1 - \phi_H \\
\phi_D \psi_{DH} & \phi_D (1 - \psi_{DH}) & 1 - \phi_D \\
Dead & 0 & 1
\end{cases}$$

 ϕ_H : survival probability of healthy individuals

 ϕ_D : survival probability of individuals infected with the disease

 ψ_{HD} : infection probability

 ψ_{DH} : recovery probability (probability to become healthy)

$$\Omega = \begin{bmatrix} \phi_{H} \left(\mathbf{1} - \psi_{HD} \right) & \phi_{H} \psi_{HD} & \mathbf{1} - \phi_{H} \\ \phi_{D} \psi_{DH} & \phi_{D} \left(\mathbf{1} - \psi_{DH} \right) & \mathbf{1} - \phi_{D} \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{z}_{i,t+1} \left| \mathbf{z}_{i,t} \sim \mathbf{dcat} \left(\Omega_{\mathbf{z}_{i,t}} \right) \right|$$

After first encounter

Observation process

Observations at time t

$$States at time t$$

$$Alive - \begin{bmatrix} p_H & 0 & 1-p_H \\ \beta p_D & (1-\beta)p_D & 1-p_D \\ 0 & 0 & 1 \end{bmatrix}$$

$$Dead$$

 $p_{\rm H}$: probability to encounter a healthy individual

 $p_{\rm D}$: probability to encounter an individual infected with the disease

 β : Probability of not diagnosing the disease

$$\Theta = \begin{bmatrix} \rho_{H} & 0 & 1 - \rho_{H} \\ \beta \rho_{D} & (1 - \beta) \rho_{D} & 1 - \rho_{D} \\ 0 & 0 & 1 \end{bmatrix} \qquad y_{i,t} | z_{i,t} \sim dcat(\Theta_{z_{i,t}})$$