• Time comparison (element-wise version vs. vectorized version, (m, K) = (1000, 2000))

	1 회차	2 회차	3 회차	4 회차	Average
Vectorized	0.421	0.463	0.404	0.442	0.4325
Element Wise	45.361	45.082	44.470	43.470	44.596

♥ Vectorized Version 이 Element Wise Version 보다 평균적으로 103 배 더 빨랐습니다.

Estimated unknown function parameters W & b

♥ Weight 와 bias 는 상황마다 다릅니다. 그래서 지금은 alpha 가 default 인 0.01 일 때의 weight 와 bias 의 평균을 구했습니다.

	1 회차	2 회차	3 회차	4 회차	5 회차	Average
Weight	(1.30,1.30)	(1.30,1.28)	(1.32,1.32)	(1.30,1.29)	(1.26,1.25)	(1.30,1.29)
Bias	0.0475	-0.0164	0.0505	-0.0255	-0.059	0.001

Weight: (1.30, 1.29)

Bias: 0.001

• Empirically determined (best) hyper parameter, a

<About Accuracy>

	1 회차	2회차	3 회차	
A=0.0001	98.8/97.0	97.5/96.0	99.1/100	
A=0.001	99.6/99.0	99.6/99.0	99.9/100	
A=0.01	99.9/100	99.7/98.0	99.8/100	
A=0.1	99.6/100	99.7/98.0	99.8/100	
A=1	99.6/100	99.7/98.0	99.9/100	
A=10	100/100	99.9/99.0	100/100	

⇒ 위의 표에서 보듯이 alpha 가 클 수록 미세하나마 accuracy 가 커진다는 것을 알 수 있으며 표에 표기하지 않았지만 cost 도 가장 작았다 그러므로 이번 과제에선 alpha=10 이 best hyper parameter 입니다.

• Accuracy (fill in the blanks in the tables below and add them to the report)

	m= 10, n= 100, K = 2000	m=100, n=100, K = 2000	m=1000, n=100, K=2000
Accuracy (m train set)	100	100	99.2
Accuracy (n test set)	95.0	99.0	100

	m= 10, n= 100, K = 20	m= 10, n= 100, K = 200	m= 10, n= 100, K = 2000
Accuracy (m train set)	100	100	100
Accuracy (n train set)	89.0	99.0	95.0

Discussion (what you learned in this experiment)

- 1. Vectorization version이 Element Wise version보다 압도적으로 빠릅니다.
- 2. Training set이나 여러가지 환경에 따라서 가장 좋은 learning rate 값이 다르고 다른 hyper parameter 값도 다르다.
- 3. Training set의 수가 작으면 train set에 대한 정확도는 증가하지만 Test set에 대한 정확도는 감소한다. 이는 Iteration에서도 마찬가지로, iteration이 감소하면 test set에 대한 정확도도 감소한다.

● 제출물에 대하여

- 1) Practice1.py는 요구하신 부분을 전부 구현한 코드입니다.
 - → Iteration이 10이 될 때마다 cost, weight, bias를 순서대로 print합니다.
- 2) Alpha.py는 alpha값이 0.0001, 0.001, 0.01, 0.1, 1, 10 일 때 결과를 print합니다. Best alpha를 구하기 위해서 만든 프로그램입니다.