Math 335 Types of Integrals

In calculus, there are 5 basic types of integrals.

1.) (Single) Integral: $\int_a^b f(x) dx$

An integral sums the values of f(x) along the \times -a \times \circ for $a \le x \le b$.

Application: Geometrically, $\int_a^b f(x) dx$ is area under y = f(x).

A double integral sums the values of f(x, y) over the $\frac{20}{20}$ region R.

Application: If f(x,y) = 1, then $\iint_R dA$ is \underline{Area}

3.) Triple Integral: $\iiint_D f(x, y, z) dV$

A triple integral sums the values of f(x, y, z) over the $\frac{3D}{V}$ volume D.

Application: If f(x, y, z) = 1, then $\iiint_D dV$ is volume of

4.) Line Integral: $\int_C f(x, y, z) ds$

A line integral sums the values of f(x, y, z) along the ____ C \vee C

Application: If f(x, y, z) = 1, then $\int_C ds$ is $\frac{ac}{ac} \frac{length}{6} \frac{6f}{c}$

If f(x, y, z) is the density, then $\int_C f(x, y, z) ds$ is $\frac{mass}{6} = \frac{1}{6}$

If $f(x, y, z) = \vec{F} \cdot \vec{T}$ for a velocity field \vec{F} , then $\int_C \vec{F} \cdot \vec{T} ds$ is $f(x, y, z) = \vec{F} \cdot \vec{T}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{T} ds$ is

If $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $\int_C \vec{F} \cdot \vec{n} \, ds$ is $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ ds is

5.) Surface Integral: $\iint_{S} f(x, y, z) dS$

A surface integral sums the values of f(x, y, z) over the $\int y \, dx \, dx = \int x \, dx \, dx$ S.

Application: If f(x,y,z) = 1, then $\iint_S dS$ is <u>surface</u> area.

If f(x, y, z) is the density, then $\iint_S f(x, y, z) dS$ is $\underbrace{mass} \circ F$

If $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $\iint_S \vec{F} \cdot \vec{n} \, dS$ is $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ decays is $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} , then $f(x, y, z) = \vec{F} \cdot \vec{n}$ decays is $f(x, y, z) = \vec{F} \cdot \vec{n}$ for a velocity field \vec{F} .

If $f(x, y, z) = \vec{F} \cdot \vec{n}$ for an electric field \vec{F} , then $\iint_S \vec{F} \cdot \vec{n} \, dS$ is electric flux

