System Design Fundamentals

Anshu Sharma – CTO, Uolo

Client—Serv er Model

- Client
- Server
- IP Address
- Port
- DNS (domain name system)

Network Protocols

- Protocol
- IP
 - Rules for sending messages over Internet
- IP Packet
- TCP
 - Send IP packets in ordered, reliable way
 - Communication happens over TCP connection
- HTTP

Network Protocols (contd)

- Protocol
- IP
 - Rules for sending messages over Internet
- IP Packet
- TCP
 - Send IP packets in ordered, reliable way
 - Communication happens over TCP connection
- HTTP

HTTP Requests typically have the following schema:

host: string (example: economictimes.com)

port: integer (example: 80 or 443)

method: string (example: GET, PUT, POST, DELETE, OPTIONS or PATCH)
headers: pair list (example: "Content-Type" => "application/json")

body: opaque sequence of bytes

HTTP Responses typically have the following schema:

status code: integer (example: 200, 401)

headers: pair list (example: "Content-Length" => 1238)

body: opaque sequence of bytes

Storage

- Databases
- Persistent Storage
 - HDD / SSD / Cloud
- Memory
 - RAM

Relational Databases

- Relational Database / SQL database
- Non-Relational Database / NoSQL database
- Database Indexes
- ACID Transaction
 - 1) Atomicity 2) Consistency 3) Isolation 4) Durability

ACID Properties

Atomicity

All the changes are performed, or none of them are...

Consistency

 Data is in a consistent state when a transaction starts and when it ends.

Isolation

Transactions that run concurrently appear to be serialized.

Durability

Completed transactions are recorded in <u>non-volatile memory</u>

Latency And Throughput

- Latency
 - Time taken to complete certain operation
- Throughput
 - Number of operations system can handle per unit time (RPS or QPS)

Reading 1 MB from RAM: 250 µs (0.25 ms)

Reading 1 MB from SSD: 1,000 µs (1 ms)

Transfer 1 MB over Network: 10,000 µs (10 ms)

Reading 1MB from HDD: 20,000 µs (20 ms)

Inter-Continental Round Trip: 150,000 µs (150 ms)

Availability (Uptime)

- Availability
- High Availability
- Nines
- Redundancy
- SLA
- SLO

Downtimes for different availabilities

```
- 99% (two 9s): 87.7 hours
```

- 99.9% (three 9s): 8.8 hours

- 99.99%: 52.6 minutes

- 99.999%: 5.3 minutes

Caching

- Cache
- Cache Hit
- Cache Miss
- Cache Eviction Policy
- Content Delivery Network

Proxies

- Forward Proxy
- Reverse Proxy

Load Balancers

- Vertical Scaling vs Horizontal Scaling
- Load Balancer
- Server-Selection Strategy
- Hot Spot
 - Requests(a-i) => Server 1
 - Requests(j-r) => Server 2
 - Requests(s-z) => Server 3

Data Sharding

- Conventional Hashing
 - hashF(key) = hash value
- Consistent Hashing
- Rendezvous Hashing

Hashing

- Conventional Hashing
- Consistent Hashing
- Rendezvous Hashing

Hashing (Contd.)

- Consistent Hashing
- Clients and Servers are mapped on a circle after hashing
- Addition/removal impacts only 1 or few servers
- Redundancy achieved by mapping servers through multiple hash functions

Hashing (Contd.)

- Consistent Hashing
- Clients and Servers are mapped on a circle after hashing
- Addition/removal impacts only 1 or few servers
- Redundancy achieved by mapping servers through multiple hash functions

Hashing (Contd.)

- Rendezvous Hashing
- Calculate server score for every client.
- Request is redirected to server with max score

CAP Theorem

- Consistency
- Availability
- Partitioning Tolerance

Data Replication

- Master Slave
 - Application writes to master & data is replicated to slave

Data Replication

- Master Master
 - Application can write to multiple masters
- Eventual consistency / Strict consistency

Quorum Consensus

- Allows for strict consistency without writing to all masters
- Keep version along with records

Key: Value: version

K1: a : 1 K2: b. : 2

R + W > N

Select R & W to optimize for reads or writes

Thank You