Rigid-Body Dynamics Project

Rigid-Body Spring Pendulum

November 12, 2018

By:

Jeffrey Chen Thorne Wolfenbarger Trey Dufrene

Submitted to:
Dr. Mark Sensmeier
In Partial Fulfillment of the Requirements of ES204 Dynamics - Fall 2018

College of Engineering Embry-Riddle Aeronautical University Prescott, AZ

Contents

1	Conce	eptuanze the Problem	J
	1.1	Constants and Assumptions	1
2	Free I	Body Diagram	2
3	Coord	dinate Frame	2
4	Sum o	of Forces	3
5	Know	rns and Unknowns	3
6	Const	traints	3
7	Solve	for the Equations of Motion	3
8	Solve	the Equations of Motion	3
9	Does it Make Sense?		
	9.1	Units	3
	9.2	Magnitude	3
10	Appendix		3
	10.1	Attributions	3
	10.2	Analytical Solution	4
	10.3	Numerical Solution	4

List of Figures

1 Conceptualize the Problem

The pendulumn system consists of two rigid bars attached at their ends by a linear spring.

1.1 Constants and Assumptions

Constants: Assumptions:

Bar Mass: m = 0.25 kg Frictionless

Bar Length: $L=0.5\mathrm{m}$ Released from Rest Gravity: $g=9.81^{m/s^2}$ Rigid-Body Dynamics

Linear Spring:

Spring Coefficient: k = 25 N/m

Unstretched Length: L

We are asked to determine the following:

- 1. The 6 Equations / 6 Unknowns for the system to solve for the Equations of Motion.
- 2. Integrate the Equations of Motion using various initial conditions.

(a)
$$\theta_o = \pi/12 \ rad$$
, $\phi_o = \pi/12 \ rad$

(b)
$$\theta_o = -\pi/12 \ rad, \quad \phi_o = \pi/12 \ rad$$

(c)
$$\theta_o = \pi/36 \ rad$$
, $\phi_o = \pi/12 \ rad$

- 3. Linearize the Equations of Motion assuming small angular positions and velocities (i.e. small angle approximation $\sin(x) \approx x$, $\cos(x) \approx 1$)
 - Determine the A matrix below.

$$\begin{bmatrix} \ddot{\theta} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \theta \\ \phi \end{bmatrix}$$

- 4. Find the natural frequencies of the system and their respective eigenvectors using the eigenvalues and eigenvectors of [A].
- 5. Using information from (5), solve for the analytical solution to the linearized Equations of Motion and plot them for the initial conditions defined in (2).

1

2 Free Body Diagram

 F_s : Force onto bar by the spring

mg: Mass · gravity, weight of the bar

G: Center of gravity of each bar

 θ , ϕ : Angle of bar relative to vertical

Acceleration Diagram

 α : $\ddot{\theta}$, $\ddot{\phi}$ respectively

3 Coordinate Frame

 $[-\sin(\theta)\hat{\mathbf{i}} + \cos(\theta)\hat{\mathbf{j}}] : \hat{e_n} \qquad \hat{e_t} : [\cos(\theta)\hat{\mathbf{i}} + \sin(\theta)\hat{\mathbf{j}}]$

4 Sum of Forces

 $\sum Stuff \tag{1}$

Where:

- θ : Position of the left bar.
- ϕ : Position of the right bar.
- $\dot{\theta}$: Angular velocity of the left bar.
- $\ddot{\theta}$: Angular acceleration of the left bar.
- $\dot{\phi}$: Angular velocity of the right bar.
- $\ddot{\phi}$: Angular acceleration of the right bar.
- m, L, g: Are constants; mass, length of each bar, and gravity, respectively

5 Knowns and Unknowns

Knowns: Unknowns:

Mass: m=0.142 kg String Tension: T String Length: L=0.5 m Angular Acceleration: $\ddot{\theta}$

Gravity: $g = 9.81^{m/s^2}$

State Variables:

Angular Velocity: $\dot{\theta}$ Angular Acceleration: $\ddot{\theta}$

6 Constraints

- 7 Solve for the Equations of Motion
 - 8 Solve the Equations of Motion
 - 9 Does it Make Sense?
 - 9.1 Units
 - 9.2 Magnitude
 - 10 Appendix
 - 10.1 Attributions

Jeffrey Chen

Thorne Wolfenbarger

Trev Dufrene

Joint Effort

- 10.2 Analytical Solution
- 10.3 Numerical Solution