

COMPUTER SCIENCE AND DATA ANALYTICS

REPORT 5

COURSE: GUIDED RESEARCH I

PROJECT TITLE: FINDING INFORMATIVE

REGIONS IN GRAYSCALE MAMMOGRAM

IMAGES.

Final report

[9]:	print((trai	in_de	escr:	iptor	^)											
														209 17	48	128	238
														10]			
	[160	128	106	169	116	195	186	99	94	37	88	19	149	136 50	64	218	43
	19	129	54	186	68	31	204	15	186	97	21	8	117	138]			
	[41	173	56	123	149	141	119	55	122	9	236	8	178	177 0	49	129	42
	74	24	122	232	80	63	239	223	20	121	80	8	202	170]			
	[142	92	22	191	167	226	189	101	156	22	87	179	252	119 43	79	99	115
														211]			
	[40	167	60	113	188	205	81	191	118	61	172	24	179	49 2	16	137	2
	72	8	58	248	115	63	239	223	52	113	64	72	214	106]			
	[30	199	206	159	174	98	63	236	148	87	223	179	77	103 171	79	127	83
	191	227	48	197	47	224	248	34	255	135	183	255	165	115]			
	[32	165	61	99	144	237	81	63	118	117	47	24	215	49 74	16	145	10
	104	24	58	120	121	23	205	159	16	116	192	202	198	234]			
	[44	180	181	97	17	111	99	154	118	251	43	24	215	117 72	60	17	28
	72	56	27	244	249	18	205	222	49	116	192	203	70	240]			
	[48	181	56	57	187	233	17	39	62	101	42	185	166	61 2	16	135	59
	205	17	54	184	81	23	239	245	16	115	208	0	135	91]			
	[195	223	102	31	243	148	190	183	185	81	70	245	104	238 150	247	166	111
	241	205	247	216	158	253	46	58	158	194	15	132	187	221]]			

Fig. 1 Descriptors for 10 features.

Descriptors obtained from ORB (Fig 1.) used as features for ML models. The descriptor is derived from the rBRIEF (Rotation-aware BRIEF) algorithm and is used to describe the local image content around a detected keypoint.

Threshold for feature was taken 8, and due to this reason 680 pictures (340/340 negative and positive ones) was given to ML models, such as KNN, SVM, Random Forest for training. 250 negative and 250 positive cancer images were given for testing and below in table 1 results obtained while testing.

	Accuracy	Recall	Precision	F1 Score
Random Forest	0.638	0.6683	0.548	0.6022
SVM	0.656	0.6875	0.572	0.6245
KNN	0.654	0.6667	0.616	0.6403
Logistic Regression	0.588	0.548	0.5957	0.5708

Table 1. Results of ML models for classification of cancer

As this images had interfering text information present in the corners of the mammograms, the keypoints extracted after Brute Force matching includes some of the

keypoints from text in this images, which prevents to classify images with high metrics.

Fig 2. Confusion matrix for Logistic regression

Future Work

The research proposal outlined for further steps focuses on a novel approach to breast cancer detection using augmented ORB descriptors extracted from Digital Imaging and Communications in Medicine (DICOM) mammograms. The key points of approach include:

Augmentation of Mammograms: Extensively augment mammograms to create diverse variations by applying rotations and resizing. The goal is to remove any interfering text information present in the corners of the mammograms.

ORB Descriptor Extraction: The core of this method involves extracting ORB descriptors from the augmented mammograms. These descriptors are keypoints identified within the images, each containing a 32-byte binary string.

Descriptor Selection: Then we plan to select a subset of these descriptors (e.g., 5) that are closely related to the original descriptor. Different closeness criteria such as Hamming distance and Levenshtein distance are explored to identify the most suitable comparison rule. This process aims to identify the most effective and common features.

Classification Model: The selected descriptors are then used to construct a final classification model using advanced machine learning techniques. This model will be evaluated on an independent test dataset to assess its performance.

Promise of Superior Performance: This approach aims to outperform conventional CNN-based architectures by applying innovative augmentation, preprocessing, and feature extraction techniques. The potential success of study could lead to improved breast cancer diagnosis, enabling earlier detection and better treatment outcomes.

Overall, future research proposal demonstrates a thoughtful and comprehensive approach to breast cancer detection, leveraging both image augmentation and advanced feature extraction methods to enhance the accuracy of diagnosis. The use of diverse comparison rules and a final classification model adds depth to the methodology, and the emphasis on rigorous evaluation on an independent dataset ensures the reliability of the results. If successful, then research could indeed have significant implications for breast cancer diagnosis and treatment.