北京工业大学 2014——2015 学年第 II 学期

"概率论与数理统计"课程(工)考试试卷

考试说明: 考试闭卷; 可使用文曲星除外的计算器。

承诺: 本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:	、:学号:					班号:		
注 :本试	卷共 _6	_ 页, 满	分 100 分	;考试时如	必须使用	卷后附加的	的统一草稿	纸。
		卷面质	戈 绩 汇	总 表(阅]卷教师均	真写)		
题号	_	二(1)	二(2)	二(3)	二(4)	二(5)	总成绩	
满分	30	14	14	14	14	14		
得分								
1. 设A与 A与B 2. 若离散 =	B 为事件, 相互独立的 型随机多 ; E(时, <i>P</i> (<i>B</i>) = を量 <i>X</i> 只耳 <i>X</i>) = 服从参数为	.4,P(A∪B 。 双±1和2 ,方身	,且 P(X = - É Var(X)= _	-1) = 0.2 ,	P(X=1)=0	P(B)=).4 。则 P(X 则 λ=	= 2)
$EX = _$ $\triangle \Phi(1)$	= 0.8413,	$Var(X) = \Phi(2) = 0.97$		。进一步, 4 < <i>X</i> <11]	记Φ(x) 为 } =	标准正态分 。	$X = X_1 - 2X_2$ 分布的分布函 S^2 为样本均	数,
值与样 6. 设 X ₁ ,…	··, X ₂₅ 是拍	 E偏方差)。 曲自总体 <i>X</i>	则 $ar{X}\sim$	σ^2)的随机 σ^2	(n−1)S² / 样本,经计	$f\sigma^2 \sim \underline{\hspace{1cm}}$ 十算得 $x=5$		根据

[, σ^2 的置信系数为 0.95 的置信区间为[σ^2 的

二、解答题(共72分)

注: 每题要有解题过程, 无解题过程不能得分!

- 1. (本小题 14 分) 有型号相同的产品两箱,第一箱装 12 件产品,其中两件为次品;第二箱装 8 件产品,其中一件为次品。先从第一箱中随机抽取两件产品放入第二箱,再从第二箱中随机抽取一件产品。
 - (1). 求从第二箱中取出次品的概率;
 - (2). 若从第二箱中取出了次品,求从第一箱中未取到次品的概率。

2.(本小题 15 分) 设随机变量 X 与 Y 独立同分布,且都服从参数为 1 的指数分布,令 U = $\min\{X,Y\}$, $V = \max\{X,Y\}$,求:

- (1). U 的概率密度函数 $f_U(x)$;
- (2). U+V 的概率密度函数 $f_{U+V}(x)$ 。

3. (本小题 15 分) 设二维随机变量(X, Y)的联合概率密度函数为

$$f(x,y) = {i \over i} c rac{1}{i} c rac{1}{i} x$$
, 0 $y ? x ? ,$ 其他.

(1). 求常数 c;

- (2). 求 X 和 Y 的边缘概率密度 $f_X(x)$, $f_Y(y)$;
- (3). 问X和Y是否独立?为什么? (4). 求E(Y)。

- 4. (本小**题** 14 分) 设 $X_1, X_2, \cdots, X_n (n > 2)$ 为抽自正态总体 $N(\mu_0, \sigma^2)$ 的随机样本,其中 μ_0 已知, $\sigma^2 > 0$ 未知,求:
 - (1). σ² 的矩估计**%**;
 - (2). σ^2 的极大似然估计估计 \hat{s}^2 ;
 - (3). E(\hat{s}^2) 和 Var(\hat{s}^2)。

- 5. (本小题 14 分) 设学生某次考试成绩服从正态分布 $N(\mu,\sigma^2)$,现从该总体中随机抽取 25 位的考试成绩,算得样本均值为 76. 5,标准差为 4. 05。问在显著性水平 0. 05 下,从样本看,
 - (1). 是否接受" $\mu = 75$ "的假设?
 - (2). 是否接受" $\sigma \leq 4.0$ "的假设?

 \mathbf{M} t 分布与 χ^2 分布表

$t_{24}(0.025) = 2.0639$	$t_{24}(0.05) = 1.7109$	$t_{25}(0.025) = 2.0595$	$t_{25}(0.05) = 1.7081$
$\chi_{24}^2(0.025) = 39.364$	$\chi_{24}^2(0.05) = 36.415$	$\chi_{25}^2(0.025) = 40.646$	$\chi^2_{25}(0.05) = 37.652$
$\chi_{24}^2(0.975) = 12.401$	$\chi_{24}^2(0.95) = 13.848$	$\chi^2_{25}(0.975) = 13.120$	$\chi^2_{25}(0.95) = 14.611$

	草	稿	纸	
姓夕·			学 是・	