Table of Contents

- 1 Phase3 Project
 - 1.1 Business Objective
- 2 Dataset
- 3 Import libraries
- 4 EDA
 - 4.1 Data Understanding
 - 4.2 Checking for Null values
 - 4.3 Checking the datatypes
 - 4.3.1 Categorical data
 - o 4.3.2 Numeric data
 - 4.3.2.1 Scaling the data
 - 4.4 Checking for duplicate data
- 5 Mapping waterpump distribution
- 6 Encoding
 - 6.1 Label encoding approach
 - 6.2 One-hot encoding
- 7 Building baseline models
 - 7.1 Logistic Regression
 - 7.2 Decision Tree
 - 7.3 KNN model
 - 7.4 Selecting a model
- 8 Decision Tree
 - 8.1 Hyperparameter Tuning
 - 8.1.1 max_depth
 - 8.1.2 min_samples_split
 - 8.1.3 min_samples_leaf
 - 8.1.4 model with optimized parameters
 - 8.2 feature_importance
 - 8.2.1 extracting top_10 features
 - 8.3 Decision Tree with the top10 features
 - 8.3.1 GridSearch CV
- 9 Random Forest with top10 features
- 10 Visualize scores
 - 10.1 Confusion Matrix
- 11 Random Forest with all the features
 - 11.1 Confusion matrix
- 12 Examining the target feature
- 13 Training a model with a balanced data set
 - 13.1 Confusion Matrix

- 14 Random forest model on the balanced dataset
- 15 Next Steps

Phase3 Project

Business Objective

To help the Government of Tanzania monitor the condition of installed waterpumps across the country. Given a set of parameters, the model should be able to predict the status of a waterpump. Status can be as classified as:

- 1. Functional
- 2. Functional needs repair
- 3. non functional

Dataset

Dataset sourced from: https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/page/23/

Import libraries

```
In [1]:
         import pandas as pd
         import numpy as np
         import geopandas as gpd
         from shapely.geometry import Point, Polygon
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model selection import train test split
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import classification_report
         from sklearn.metrics import f1_score,accuracy_score,precision_score,recall_score
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model selection import GridSearchCV
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.metrics import plot_confusion_matrix
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.preprocessing import StandardScaler
         import warnings
         warnings.filterwarnings('ignore')
```

EDA

```
In [2]: # importing dataset
    df = pd.read_csv('waterwell.csv')
    df.head()
```

_			
$^{\cap}$	114	1 ')	0
U	uъ	1 4 1	

	id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt_name
0	69572	6000.0	3/14/2011	Roman	1390	Roman	34.938093	-9.856322	none
1	8776	0.0	3/6/2013	Grumeti	1399	GRUMETI	34.698766	-2.147466	Zahanati
2	34310	25.0	2/25/2013	Lottery Club	686	World vision	37.460664	-3.821329	Kwa Mahundi
3	67743	0.0	1/28/2013	Unicef	263	UNICEF	38.486161	-11.155298	Zahanati Ya Nanyumbu
4	19728	0.0	7/13/2011	Action In A	0	Artisan	31.130847	-1.825359	Shuleni

5 rows × 41 columns

In [3]: | df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 59400 entries, 0 to 59399 Data columns (total 41 columns):

#	Column	Non-Null Count	Dtype
0	id	59400 non-null	int64
1	amount_tsh	59400 non-null	float64
2	date_recorded	59400 non-null	object
3	funder	55765 non-null	object
4	gps_height	59400 non-null	int64
5	installer	55745 non-null	object
6	longitude	59400 non-null	float64
7	latitude	59400 non-null	float64
8	wpt_name	59400 non-null	object
9	num_private	59400 non-null	int64
10	basin	59400 non-null	object
11	subvillage	59029 non-null	object
12	region	59400 non-null	object
13	region_code	59400 non-null	int64
14	district_code	59400 non-null	int64
15	lga	59400 non-null	object
16	ward	59400 non-null	object
17	population	59400 non-null	int64
18	<pre>public_meeting</pre>	56066 non-null	object
19	recorded_by	59400 non-null	object
20	scheme_management	55523 non-null	object
21	scheme_name	31234 non-null	object
22	permit	56344 non-null	object
23	construction_year	59400 non-null	int64
24	extraction_type	59400 non-null	object
25	<pre>extraction_type_group</pre>	59400 non-null	object
26	extraction_type_class	59400 non-null	object
27	management	59400 non-null	object
28	management_group	59400 non-null	object
29	payment	59400 non-null	object
30	payment_type	59400 non-null	object
31	water_quality	59400 non-null	object
32	quality_group	59400 non-null	object
33	quantity	59400 non-null	object

```
34 quantity_group 59400 non-null object 35 source 59400 non-null object 36 source_type 59400 non-null object 37 source_class 59400 non-null object 38 waterpoint_type 59400 non-null object 39 waterpoint_type_group 59400 non-null object 40 status_group 59400 non-null object dtypes: float64(3), int64(7), object(31) memory usage: 18.6+ MB
```

Data Understanding

Just a glance at the features, we can see that some features like

latitude, longitude, date_recorded, water_quality, construction_year and so on could be important for modelling. On the other hand, features like wpt_name, scheme_name, lga, ward can be considered as superflous and can be omitted during modelling. We will make informed decisions based on EDA and feature_importances_ after we build models.

Checking for Null values

```
# checking for null values and returning it as a pandas series
In [4]:
         empty=df.isna().sum()
         empty
Out[4]: id
                                       0
                                       0
        amount tsh
                                       0
        date recorded
        funder
                                    3635
        gps height
                                       0
        installer
                                    3655
        longitude
                                       0
        latitude
                                       0
        wpt_name
                                       0
        num_private
                                       0
        basin
                                       0
        subvillage
                                     371
                                       0
        region
        region_code
                                       0
                                       0
        district_code
        lga
                                       0
                                       0
        ward
                                       0
        population
        public_meeting
                                   3334
        recorded by
                                       0
        scheme management
                                   3877
        scheme name
                                   28166
        permit
                                   3056
        construction year
                                       0
        extraction type
                                       0
        extraction_type_group
                                       0
        extraction type class
                                       0
        management
                                       0
        management_group
                                       0
        payment
                                       0
        payment type
                                       0
        water_quality
                                       0
        quality_group
                                       0
        quantity
                                       0
                                       0
        quantity_group
        source
```

```
In [5]: #converting the empty series into a dictionary
empty_dict = dict(empty)

#looping thru dictionary to isolate the columns that have null values
empty_list =[]
for key,value in empty_dict.items():
    if value != 0:
        empty_list.append(key)

empty_list
# we now have the list of columns that have null values
```

Out[6]:

<pre>df_empty = df[empty_list] df_empty</pre>

	funder	installer	subvillage	public_meeting	scheme_management	scheme_name	permit
0	Roman	Roman	Mnyusi B	True	VWC	Roman	False
1	Grumeti	GRUMETI	Nyamara	NaN	Other	NaN	True
2	Lottery Club	World vision	Majengo	True	VWC	Nyumba ya mungu pipe scheme	True
3	Unicef	UNICEF	Mahakamani	True	VWC	NaN	True
4	Action In A	Artisan	Kyanyamisa	True	NaN	NaN	True
•••							
59395	Germany Republi	CES	Kiduruni	True	Water Board	Losaa Kia water supply	True
59396	Cefa- njombe	Cefa	Igumbilo	True	VWC	Ikondo electrical water sch	True
59397	NaN	NaN	Madungulu	True	VWC	NaN	False
59398	Malec	Musa	Mwinyi	True	VWC	NaN	True
59399	World Bank	World	Kikatanyemba	True	VWC	NaN	True

```
df_empty.info()
In [7]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 59400 entries, 0 to 59399
        Data columns (total 7 columns):
            Column
                               Non-Null Count Dtype
        ---
            -----
                               -----
         0
            funder
                               55765 non-null object
            installer
                               55745 non-null object
         1
            subvillage
         2
                               59029 non-null object
            public_meeting
         3
                               56066 non-null object
            scheme_management 55523 non-null object
         4
         5
            scheme_name
                               31234 non-null object
         6
            permit
                               56344 non-null object
        dtypes: object(7)
        memory usage: 3.2+ MB
        We can see that all the columns that have null values are categorical.
       Also, recall from the original df that total number of rows is 59400
         # looking at scheme name first since it has the highest number of null values
In [8]:
         df['scheme_name'].value_counts()
                                  682
Out[8]: K
                                  644
        None
        Borehole
                                  546
        Chalinze wate
                                  405
                                  400
        BL Nkenku kijijini
                                   1
        TM Lawate water supply
                                    1
        Nguluwater Supply
                                    1
        Ujindali
                                    1
        BL Laktore
        Name: scheme_name, Length: 2696, dtype: int64
        Since 'scheme_name' has approx. 47% of the data missing, even classifying this
       as 'missing'
       might skew the analysis. Hence it's best to remove it from the analysis.
```

In [9]:	<pre>#creating a copy of df for the analysis df1 =df.copy() df1.head()</pre>

Out[9]:		id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude	wpt_name
	0	69572	6000.0	3/14/2011	Roman	1390	Roman	34.938093	-9.856322	none
	1	8776	0.0	3/6/2013	Grumeti	1399	GRUMETI	34.698766	-2.147466	Zahanati
	2	34310	25.0	2/25/2013	Lottery Club	686	World vision	37.460664	-3.821329	Kwa Mahundi
	3	67743	0.0	1/28/2013	Unicef	263	UNICEF	38.486161	-11.155298	Zahanati Ya Nanyumbu

	id amount_tsh date_re	corded funder g	ps_height	installer	longitude	latitude	wpt_name
4 19	9728 0.0 7/1	3/2011 Action In A	0	Artisan	31.130847	-1.825359	Shuleni
5 row	s × 41 columns						
4							+
	emoving 'scheme_name' ; .drop('scheme_name',ax	_	e)				
Sinc	e, the rest of the co	olumns have app	rox. only	y 6% of	the data	missing,	we can
eithe	er choose to drop it						
or c	lassify it as 'MISSIN	G' for the anal	ysis. Le	t's cla	ssify it a	as 'MISSIN	NG'.
	olacing the null value. fillna('MISSING',inpl						
		ace=True)					
	hecking the df .info()						
	ss 'pandas.core.frame.						
	eIndex: 59400 entries, columns (total 40 col						
#	Column	Non-Null Count					
0	id	59400 non-null	int64				
1	amount_tsh	59400 non-null					
2 3	date_recorded funder	59400 non-null 59400 non-null					
4	gps_height	59400 non-null	int64				
5	installer	59400 non-null	-				
6 7	longitude latitude	59400 non-null 59400 non-null					
8	wpt_name	59400 non-null					
9	num_private	59400 non-null					
10 11	basin subvillage	59400 non-null 59400 non-null					
12	region	59400 non-null	-				
13	region_code	59400 non-null					
14 15	district_code lga	59400 non-null 59400 non-null					
16	ward	59400 non-null	-				
17	population	59400 non-null	int64				
18	public_meeting	59400 non-null	-				
19 20	recorded_by scheme_management	59400 non-null 59400 non-null	-				
21	permit	59400 non-null	-				
22	construction_year	59400 non-null					
23 24	<pre>extraction_type extraction_type_group</pre>	59400 non-null 59400 non-null	-				
25	extraction_type_group		-				
26	management	59400 non-null	object				
27	management_group	59400 non-null	-				
28 29	<pre>payment payment_type</pre>	59400 non-null 59400 non-null	-				
30	water_quality	59400 non-null					
31	quality_group	59400 non-null	object				
32	quantity	59400 non-null	-				

```
34 source 59400 non-null object 35 source_type 59400 non-null object 36 source_class 59400 non-null object 37 waterpoint_type 59400 non-null object 38 waterpoint_type_group 59400 non-null object 39 status_group 59400 non-null object dtypes: float64(3), int64(7), object(30) memory usage: 18.1+ MB
```

We can see that there no more missing values

Checking the datatypes

Categorical data

Let's explore some of the features and see if we can glean some information:

```
In [14]: df1[['payment','payment_type']]
```

Out[14]:		payment	payment_type
	0	pay annually	annually
	1	never pay	never pay
	2	pay per bucket	per bucket
	3	never pay	never pay
	4	never pay	never pay
	•••		
	59395	pay per bucket	per bucket
	59396	pay annually	annually
	59397	pay monthly	monthly
	59398	never pay	never pay
	59399	pay when scheme fails	on failure

59400 rows × 2 columns

Since they are the same, we can delete either 'payment' or 'payment_type'

```
In [15]: #dropping 'payment_type' from the df
    df1.drop('payment_type',axis=1,inplace=True)
In [16]: df1[['extraction_type', 'extraction_type_group', 'extraction_type_class']]
```

	extraction_type	extraction_type_group	extraction_type_class
0	gravity	gravity	gravity
1	gravity	gravity	gravity
2	gravity	gravity	gravity
3	submersible	submersible	submersible
4	gravity	gravity	gravity
•••			
59395	gravity	gravity	gravity
59396	gravity	gravity	gravity
59397	swn 80	swn 80	handpump
59398	nira/tanira	nira/tanira	handpump
59399	nira/tanira	nira/tanira	handpump

59400 rows × 3 columns

Out[16]:

Again, these are similar and we can chose to eliminate 2 of them from our analysis

```
In [17]: df1.drop(['extraction_type_group','extraction_type_class'],axis=1,inplace=True)
In [18]: df1[['management','management_group']]
```

Out[18]: management management_group 0 VWC user-group 1 user-group wug 2 user-group VWC 3 VWC user-group 4 other other 59395 water board user-group 59396 user-group VWC 59397 VWC user-group 59398 VWC user-group

59400 rows × 2 columns

VWC

59399

```
In [19]: df1['management'].unique()
Out[19]: array(['vwc', 'wug', 'other', 'private operator', 'water board', 'wua',
```

user-group

```
'company', 'water authority', 'parastatal', 'unknown',
                 'other - school', 'trust'], dtype=object)
           df1['management_group'].unique()
In [20]:
Out[20]: array(['user-group', 'other', 'commercial', 'parastatal', 'unknown'],
                dtype=object)
          We can remove 'management group' since 'management' provides more detail.
In [21]:
           #drop
           df1.drop('management group',axis=1,inplace=True)
           df1[['source','source_type','source_class']]
In [22]:
Out[22]:
                            source
                                         source_type source_class
              0
                            spring
                                              spring
                                                     groundwater
                 rainwater harvesting rainwater harvesting
                                                          surface
              2
                              dam
                                                dam
                                                          surface
              3
                       machine dbh
                                            borehole
                                                     groundwater
                 rainwater harvesting rainwater harvesting
                                                          surface
          59395
                            spring
                                              spring
                                                     groundwater
          59396
                                            river/lake
                                                         surface
                              river
                       machine dbh
          59397
                                            borehole
                                                     groundwater
                        shallow well
          59398
                                         shallow well
                                                     groundwater
          59399
                        shallow well
                                         shallow well
                                                     groundwater
         59400 rows × 3 columns
           df1['source'].unique()
In [23]:
Out[23]: array(['spring', 'rainwater harvesting', 'dam', 'machine dbh', 'other',
                  'shallow well', 'river', 'hand dtw', 'lake', 'unknown'],
                dtype=object)
           df1['source_type'].unique()
In [24]:
          array(['spring', 'rainwater harvesting', 'dam', 'borehole', 'other',
Out[24]:
                  'shallow well', 'river/lake'], dtype=object)
In [25]:
           df1['source_class'].unique()
Out[25]: array(['groundwater', 'surface', 'unknown'], dtype=object)
          We can choose 'source' over the other two features
In [26]:
           #drop
           df1.drop(['source_type','source_class'],axis=1,inplace=True)
```

```
df1[['water_quality','quality_group','quantity','quantity_group','waterpoint_type','wat
In [27]:
Out[27]:
                  water_quality quality_group
                                               quantity quantity_group waterpoint_type waterpoint_type_group
                                                                              communal
               0
                          soft
                                       good
                                                enough
                                                               enough
                                                                                           communal standpipe
                                                                              standpipe
                                                                              communal
                                                             insufficient
               1
                          soft
                                       good insufficient
                                                                                           communal standpipe
                                                                              standpipe
                                                                              communal
               2
                          soft
                                                                              standpipe
                                                                                           communal standpipe
                                       good
                                                enough
                                                               enough
                                                                               multiple
                                                                              communal
               3
                          soft
                                                                              standpipe
                                                                                           communal standpipe
                                       good
                                                    dry
                                                                   dry
                                                                               multiple
                                                                              communal
               4
                          soft
                                       good
                                               seasonal
                                                               seasonal
                                                                                           communal standpipe
                                                                              standpipe
                                                                              communal
           59395
                          soft
                                       good
                                                enough
                                                               enough
                                                                                           communal standpipe
                                                                              standpipe
                                                                             communal
           59396
                          soft
                                       good
                                                enough
                                                               enough
                                                                                           communal standpipe
                                                                              standpipe
           59397
                       fluoride
                                     fluoride
                                                enough
                                                               enough
                                                                             hand pump
                                                                                                   hand pump
           59398
                          soft
                                             insufficient
                                                             insufficient
                                                                            hand pump
                                                                                                   hand pump
                                       good
          59399
                          salty
                                        salty
                                                enough
                                                               enough
                                                                            hand pump
                                                                                                   hand pump
          59400 rows × 6 columns
In [28]:
           df1['water_quality'].unique()
          array(['soft', 'salty', 'milky', 'unknown', 'fluoride', 'coloured',
Out[28]:
                  'salty abandoned', 'fluoride abandoned'], dtype=object)
           df1['quality_group'].unique()
In [29]:
          array(['good', 'salty', 'milky', 'unknown', 'fluoride', 'colored'],
Out[29]:
                 dtype=object)
In [30]:
           df1['quantity'].unique()
          array(['enough', 'insufficient', 'dry', 'seasonal', 'unknown'],
Out[30]:
                 dtype=object)
In [31]:
           df1['quantity group'].unique()
          array(['enough', 'insufficient', 'dry', 'seasonal', 'unknown'],
Out[31]:
                 dtype=object)
           df1['waterpoint_type'].unique()
In [32]:
Out[32]: array(['communal standpipe', 'communal standpipe multiple', 'hand pump',
                  'other', 'improved spring', 'cattle trough', 'dam'], dtype=object)
```

```
In [33]:
          df1['waterpoint type group'].unique()
Out[33]: array(['communal standpipe', 'hand pump', 'other', 'improved spring',
                 'cattle trough', 'dam'], dtype=object)
In [34]:
          #dropping quality_group,quantity_group and waterpoint_type_group
          df1.drop(['quality_group','waterpoint_type_group','quantity_group'],axis=1,inplace=True
          df1.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 59400 entries, 0 to 59399
         Data columns (total 31 columns):
                                 Non-Null Count Dtype
          #
              Column
                                 -----
          - - -
          0
                                 59400 non-null int64
              id
          1
              amount tsh
                                 59400 non-null float64
          2
              date_recorded
                                 59400 non-null object
          3
              funder
                                 59400 non-null object
          4
              gps height
                                 59400 non-null int64
          5
              installer
                                 59400 non-null object
                                 59400 non-null float64
          6
              longitude
          7
                                 59400 non-null float64
              latitude
          8
              wpt_name
                                 59400 non-null object
          9
              num_private
                                 59400 non-null
                                                int64
          10
                                 59400 non-null object
              basin
          11
                                 59400 non-null object
              subvillage
          12 region
                                 59400 non-null object
          13 region code
                                 59400 non-null int64
          14 district_code
                                 59400 non-null int64
          15 lga
                                 59400 non-null object
          16 ward
                                 59400 non-null object
          17
              population
                                 59400 non-null int64
          18 public_meeting
                                 59400 non-null object
          19 recorded by
                                 59400 non-null object
          20 scheme management 59400 non-null object
                                 59400 non-null object
          21 permit
                                 59400 non-null int64
          22 construction_year
          23
                                 59400 non-null object
              extraction_type
          24
              management
                                 59400 non-null object
          25
              payment
                                 59400 non-null object
          26 water_quality
                                 59400 non-null object
          27 quantity
                                 59400 non-null object
          28 source
                                 59400 non-null object
          29 waterpoint_type
                                 59400 non-null
                                                object
          30 status_group
                                 59400 non-null object
         dtypes: float64(3), int64(7), object(21)
         memory usage: 14.0+ MB
          df1[['region','region_code','district_code']]
In [35]:
Out[35]:
                   region region_code district_code
             0
                    Iringa
                                  11
                                              5
             1
                    Mara
                                  20
                                              2
             2
                  Manyara
                                              4
                                  21
             3
                   Mtwara
                                  90
                                             63
                   Kagera
                                  18
                                              1
```

	region	region_code	district_code
59395	Kilimanjaro	3	5
59396	Iringa	11	4
59397	Mbeya	12	7
59398	Dodoma	1	4
59399	Morogoro	5	2

59400 rows × 3 columns

```
df1['public_meeting'].unique()
In [36]:
Out[36]: array([True, 'MISSING', False], dtype=object)
           df1['recorded_by'].unique()
In [37]:
Out[37]: array(['GeoData Consultants Ltd'], dtype=object)
           df1['num_private'].unique()
In [38]:
                                       45,
                                              6,
Out[38]: array([
                          39,
                                                         698,
                                                                 32,
                                                                               7,
                                                                                    25,
                     0,
                                  5,
                                                     3,
                                                                       15,
                           1,
                                       14,
                                             34,
                                                          17,
                                                               213,
                                                                       47,
                   102,
                                93,
                                                   120,
                                                                               8,
                                                                                    41,
                                       35,
                                            131,
                                                                 11,
                    80,
                         141,
                                20,
                                                          22,
                                                                       87,
                                                                              61,
                                                                                    65,
                                                     9,
                   136,
                               180,
                                       38,
                                             62,
                                                          16,
                                                                 23,
                                                                       42,
                                                                              24,
                                                                                    12,
                  668,
                         672,
                                58,
                                      150,
                                            280,
                                                   160,
                                                          50, 1776,
                                                                       30,
                                                                              27,
                                                                                    10,
                                      240,
                   94,
                          26,
                               450,
                                            755,
                                                    60,
                                                         111,
                                                              300,
                                                                       55, 1402],
                 dtype=int64)
           df1[['scheme_management','permit']]
In [39]:
```

	scheme_management	permit
0	VWC	False
1	Other	True
2	VWC	True
3	VWC	True
4	MISSING	True
•••		
59395	Water Board	True
59396	VWC	True
59397	VWC	False
59398	VWC	True
59399	VWC	True

59400 rows × 2 columns

Out[39]:

```
In [40]: df1['scheme_management'].unique()
```

Out[43]:		funder	installer
	0	Roman	Roman
	1	Grumeti	GRUMETI
	2	Lottery Club	World vision
	3	Unicef	UNICEF
	4	Action In A	Artisan
	•••		
	59395	Germany Republi	CES
	59396	Cefa-njombe	Cefa
	59397	MISSING	MISSING
	59398	Malec	Musa
	59399	World Bank	World

59400 rows × 2 columns

Numeric data

Scaling the data

```
In [44]: # Looking at the distributions of the numerical data
    #creating a subset of the numeric data
    df1_numeric = pd.DataFrame(df1.select_dtypes(include=['int64','float64']))
    df1_numeric.head()
```

Out[44]:		amount_tsh	gps_height	longitude	latitude	num_private	region_code	district_code	population
	0	6000.0	1390	34.938093	-9.856322	0	11	5	109
	1	0.0	1399	34.698766	-2.147466	0	20	2	280
	2	25.0	686	37.460664	-3.821329	0	21	4	250
	3	0.0	263	38.486161	-11.155298	0	90	63	58

4	0.0	0	31.130847	7 -1.8253	59	0	18	1		0
~	0.0	0	31.130047	-1.0233		0	10			
s d	scaling the caled = MinM f1_numeric_s	MaxScaler(scaled = p) d.DataFra		scaled.fit_ s=df1_numer			eric),ind	lex=df1_nu	ume
	amount_tsh	gps_height	longitude	latitude	num_privat	e region	_code dist	rict_code	population	
0	0.017143	0.517483	0.865979	0.153923	0.	0 0.10	02041	0.0625	0.003574	ļ.
1	0.000000	0.520629	0.860047	0.815659	0.	0 0.19	93878	0.0250	0.009180)
2	0.000071	0.271329	0.928504	0.671973	0.	0 0.20	04082	0.0500	0.008197	,
3	0.000000	0.123427	0.953922	2 0.042418	0.	0 0.90	08163	0.7875	0.001902	
4	0.000000	0.031469	0.771612	0.843309	0.	0 0.1	73469	0.0125	0.000000)
4 ▮)
d١	concatenate f1 = pd.cond f1.head()	the numer	ic df wit	th the sco		=True)				
dt	concatenate f1 = pd.con	the numer	ic df wit	th the sco	aled values	region	lga	a wa	ard public	_m
di di	concatenate f1 = pd.cond f1.head()	the numer cat([df1,d d funder	ic df wit f1_numeri	h the sco .c_scaled	aled values],axis=1,)				<u> </u>	_m
dt	concatenate f1 = pd.cond f1.head() date_recorde 3/14/201	the numer cat([df1,d d funder	ic df wit f1_numeri installer	th the sco c_scaled basin	aled values],axis=1,) subvillage	region		a Mundir	ndi	_m
d1 d1	concatenate f1 = pd.cond f1.head() date_recorde 3/14/201	the numer cat([df1,d d funder 1 Roman 3 Grumeti	ic df wit f1_numeri installer	basin Lake Nyasa Lake	aled values],axis=1,) subvillage Mnyusi B Nyamara	region Iringa	Ludewa	a Mundir :i Na	ndi tta	
d t d t	concatenate f1 = pd.cono f1.head() date_recorde 3/14/201 3/6/201	the numer cat([df1,d d funder 1 Roman 3 Grumeti Lottery Club	ic df wit f1_numeri installer Roman GRUMETI World	basin Lake Nyasa Lake Victoria	aled values],axis=1,) subvillage Mnyusi B Nyamara	region Iringa Mara Mara	Ludewa Serenget	a Mundir i Na o Ngori	ndi tta ika	
0 1 2	concatenate f1 = pd.cono f1.head() date_recorde 3/14/201 3/6/201 2/25/201	the numer cat ([df1,dd d funder 1 Roman 3 Grumeti 3 Lottery Club 3 Unicef	ic df wit f1_numeri installer Roman GRUMETI World vision	basin Lake Nyasa Lake Victoria Pangani Ruvuma / Southern	aled values],axis=1,) subvillage Mnyusi B Nyamara Majengo	region Iringa Mara Mara	Ludewa Serenget Simanjiro	a Mundir i Na o Ngori	ndi tta ika bu	
0 1 2 3	concatenate f1 = pd.cono f1.head() date_recorde 3/14/201 3/6/201 2/25/201	the numer cat ([df1,dd d funder 1 Roman 3 Grumeti 3 Lottery Club 3 Unicef 1 Action In A	ic df wit f1_numeri installer Roman GRUMETI World vision UNICEF	basin Lake Nyasa Lake Victoria Pangani Ruvuma / Southern Coast Lake	aled values],axis=1,) subvillage Mnyusi B Nyamara Majengo Mahakamani	region Iringa Mara Manyara Mtwara	Ludewa Serenget Simanjiro Nanyumbu	a Mundir i Na o Ngori	ndi tta ika bu	
0 1 2	concatenate f1 = pd.conc f1.head() date_recorde 3/14/201 3/6/201 2/25/201 1/28/201 7/13/201	the numer cat ([df1,dd d funder 1 Roman 3 Grumeti 3 Lottery Club 3 Unicef 1 Action In A	ic df wit f1_numeri installer Roman GRUMETI World vision UNICEF	basin Lake Nyasa Lake Victoria Pangani Ruvuma / Southern Coast Lake	aled values],axis=1,) subvillage Mnyusi B Nyamara Majengo Mahakamani	region Iringa Mara Manyara Mtwara	Ludewa Serenget Simanjiro Nanyumbu	a Mundir i Na o Ngori	ndi tta ika bu	

<class 'pandas.core.frame.DataFrame'> RangeIndex: 59400 entries, 0 to 59399 Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	date recorded	59400 non-null	object
1	funder	59400 non-null	object
2	installer	59400 non-null	object
3	basin	59400 non-null	object
4	subvillage	59400 non-null	object
5	region	59400 non-null	object
6	lga	59400 non-null	object
7	ward	59400 non-null	object
8	<pre>public_meeting</pre>	59400 non-null	object
9	recorded_by	59400 non-null	object
10	permit	59400 non-null	object
11	extraction_type	59400 non-null	object
12	management	59400 non-null	object
13	payment	59400 non-null	object
14	water_quality	59400 non-null	object
15	quantity	59400 non-null	object
16	source	59400 non-null	object
17	waterpoint_type	59400 non-null	object
18	status_group	59400 non-null	object
19	amount_tsh	59400 non-null	float64
20	gps_height	59400 non-null	float64
21	longitude	59400 non-null	float64
22	latitude	59400 non-null	float64
23	num_private	59400 non-null	float64
24	region_code	59400 non-null	float64
25	district_code	59400 non-null	float64
26	population	59400 non-null	float64
27	construction_year	59400 non-null	float64
d+vn	$as \cdot float64(9)$ ohi	act(19)	

dtypes: float64(9), object(19)

memory usage: 12.7+ MB

Checking for duplicate data

In [49]: #checking for duplicate data based on all the columns df[df1.duplicated()]

Out[49]:		id	amount_tsh	date_recorded	funder	gps_height	installer	longitude	latitude
	370	59310	0.0	7/18/2011	Government Of Tanzania	0	Government	0.0	-2.000000e- 08
	2634	26938	0.0	8/22/2011	Government Of Tanzania	0	DWE	0.0	-2.000000e- 08
	5563	30389	0.0	8/22/2011	Government Of Tanzania	0	DWE	0.0	-2.000000e- 08
	6218	4377	0.0	12/11/2012	Government Of Tanzania	0	RWE	0.0	-2.000000e- 08
	7709	23184	0.0	2/16/2013	Dwsp	0	DWE	0.0	-2.000000e- 08
	•••								

latitude	longitude	installer	gps_height	funder	date_recorded	amount_tsh	id	
-2.000000e- 08	0.0	DWE	0	Dwsp	10/25/2012	0.0	47039	57662
-2.000000e- 08	0.0	Government	0	Government Of Tanzania	8/26/2011	0.0	49622	57807
-2.000000e- 08	0.0	DWE	0	Dwsp	2/16/2013	0.0	1562	58463
-2.000000e- 08	0.0	LWI	0	Lwi	10/26/2012	0.0	63207	58859
-2.000000e- 08	0.0	World Vision	0	World Vision	1/22/2013	0.0	52986	59166

141 rows × 41 columns

→

We can that there are 141 rows of duplicate data. We can remove them from the dataset

In [50]:

```
#removing duplicates
df1.drop_duplicates(inplace=True, keep='first')
df1.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 59259 entries, 0 to 59399
Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	date_recorded	59259 non-null	object
1	funder	59259 non-null	object
2	installer	59259 non-null	object
3	basin	59259 non-null	object
4	subvillage	59259 non-null	object
5	region	59259 non-null	object
6	lga	59259 non-null	object
7	ward	59259 non-null	object
8	<pre>public_meeting</pre>	59259 non-null	object
9	recorded_by	59259 non-null	object
10	permit	59259 non-null	object
11	extraction_type	59259 non-null	object
12	management	59259 non-null	object
13	payment	59259 non-null	object
14	water_quality	59259 non-null	object
15	quantity	59259 non-null	object
16	source	59259 non-null	object
17	waterpoint_type	59259 non-null	object
18	status_group	59259 non-null	object
19	amount_tsh	59259 non-null	float64
20	gps_height	59259 non-null	float64
21	longitude	59259 non-null	float64
22	latitude	59259 non-null	float64
23	num_private	59259 non-null	float64
24	region_code	59259 non-null	float64
25	district_code	59259 non-null	float64
26	population	59259 non-null	float64
27	construction_year	59259 non-null	float64

```
dtypes: float64(9), object(19)
memory usage: 13.1+ MB
We now have a dataset that in has no null and duplicate values.
```

Mapping waterpump distribution

```
In [51]:
          #create a new df
          mapdf = df.copy()
          #filter out the longitude values
          mapdf = mapdf[mapdf['longitude'] > 0]
          #read the shape file with geopandas
          tanzania_map = gpd.read_file('Districts and TC as 2020.shp')
          # tanzania_map.plot(color='lightgrey',figsize=(8,8)); just look at the map of tanzania
          crs = {'init':'EPSG:4326'} #define CRS
          geometry = [Point(xy) for xy in zip(mapdf['longitude'], df['latitude'])] #create Points
          geo df = gpd.GeoDataFrame(mapdf,
                                    crs = crs,
                                    geometry = geometry) #define the geometry df
          #plot the data
          fig, ax = plt.subplots(figsize = (10,10))
          tanzania_map.to_crs(epsg=4326).plot(ax=ax, color='lightgrey')
          sns.scatterplot(x="longitude", y="latitude",data=mapdf,hue='status_group',ax=ax);
          ax.set_title('Distribution of Waterpumps in Tanzania');
```


Encoding

```
df1_cat = df1.select_dtypes(include=['object'])
In [52]:
           df1_cat.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 59259 entries, 0 to 59399
          Data columns (total 19 columns):
                Column
                                   Non-Null Count Dtype
                date recorded
                                   59259 non-null object
                                   59259 non-null object
            1
                funder
            2
                installer
                                   59259 non-null object
                basin 59259 non-null object subvillage 59259 non-null object region 59259 non-null object lga 59259 non-null object
            3
            4
            5
            6
            7
                ward
                                  59259 non-null object
            8
                public_meeting 59259 non-null object
                recorded_by
                                   59259 non-null object
                                   59259 non-null object
            10
                permit
```

```
11 extraction_type 59259 non-null object
           12 management 59259 non-null object
13 payment 59259 non-null object
14 water_quality 59259 non-null object
15 quantity 59259 non-null object
16 source 59259 non-null object
            17 waterpoint type 59259 non-null object
            18 status_group
                                    59259 non-null object
           dtypes: object(19)
           memory usage: 9.0+ MB
           #Cheking for the number of unique values in each column
In [53]:
            cols=[]
           unique number = []
           for name in df1_cat.columns:
                cols.append(name)
           for item in cols:
                unique_number.append(df1_cat[item].nunique())
            unique_dict =dict(zip(cols,unique_number))
            unique_dict
Out[53]: {'date_recorded': 356,
            'funder': 1898,
            'installer': 2146,
            'basin': 9,
            'subvillage': 19288,
            'region': 21,
            'lga': 125,
            'ward': 2092,
            'public_meeting': 3,
            'recorded_by': 1,
            'permit': 3,
            'extraction_type': 18,
            'management': 12,
            'payment': 7,
            'water quality': 8,
            'quantity': 5,
            'source': 10,
            'waterpoint_type': 7,
            'status group': 3}
           Since there are certain features with a large number of unique values, we can
          try encoding the categorical data by using two different methods to see which
```

works best: label encoding and one hot encoding

Label encoding approach

```
In [54]:
          #instantiate the encoder
          labelencoder = LabelEncoder()
          #converting df1_cat into str type
          df1_cat = df1_cat.astype('str')
          #fit and transform the categrical data
          df1_cat_enc = df1_cat.apply(labelencoder.fit_transform)
          df1_cat_enc.shape
```

Out[54]: (59259, 19)

One-hot encoding

```
#using the get dummies method to one hot encode
In [55]:
           df1_cat_ohe=pd.get_dummies(df1_cat)
           #creating another copy of the df for analysis
           df3 = df1.copy()
           df3.drop(df1 cat.columns,axis=1,inplace=True)
           #concatenating the two df's
           df3 = pd.concat([df3,df1 cat ohe],axis=1)
           df3.shape
Out[55]: (59259, 26021)
          We can see that having such a large df would be resource-intensive to work
         with.
         Hence, we will use the LabelEncoding approach for our analysis
           #making a copy for analysis
In [56]:
           df2 = df1.copy()
           #dropping the categorical columns
           df2.drop(df1 cat enc.columns,axis=1,inplace=True)
           df2.info()
           #combining the encoded and numeric data
           df2 = pd.concat([df2,df1 cat enc],axis=1)
           df2.head()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 59259 entries, 0 to 59399
          Data columns (total 9 columns):
           #
                Column
                                   Non-Null Count Dtype
           ---
               ----
                                     -----
               amount_tsh
gps_height
longitude
latitude
           0
                                     59259 non-null float64
                                     59259 non-null float64
           1
           2
                                     59259 non-null float64
           3
                                   59259 non-null float64
               num_private 59259 non-null float64
region_code 59259 non-null float64
district_code 59259 non-null float64
population 59259 non-null float64
           4
           5
           6
           7
                construction_year 59259 non-null float64
          dtypes: float64(9)
          memory usage: 4.5 MB
Out[56]:
              amount_tsh gps_height longitude
                                                latitude num_private region_code district_code population c
          0
                0.017143
                            0.517483
                                      0.865979 0.153923
                                                                  0.0
                                                                          0.102041
                                                                                         0.0625
                                                                                                   0.003574
                0.000000
                            0.520629
                                      0.860047 0.815659
                                                                          0.193878
          1
                                                                  0.0
                                                                                         0.0250
                                                                                                   0.009180
          2
                0.000071
                            0.271329
                                      0.928504 0.671973
                                                                  0.0
                                                                          0.204082
                                                                                         0.0500
                                                                                                   0.008197
          3
                0.000000
                            0.123427
                                      0.953922 0.042418
                                                                  0.0
                                                                          0.908163
                                                                                         0.7875
                                                                                                   0.001902
                0.000000
                            0.031469
                                      0.771612 0.843309
                                                                  0.0
                                                                          0.173469
                                                                                         0.0125
                                                                                                   0.000000
```

5 rows × 28 columns

We now have df2 with encoded values that we can use for modelling. We will build 3 different baseline models and compare their f1-scores. We will then select

the one with the highest f1-score to fine tune and build upon.

Building baseline models

Logistic Regression

```
#creating X and y
In [57]:
          X=df2.drop('status_group',axis=1)
          y=df2[['status_group']]
          #splitting the train and test sets
          X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=123)
          #instantiate logistic regression model
          logreg = LogisticRegression(random_state=123)
          #fit the model onto the train sets
          logreg.fit(X_train,y_train)
          logreg
          #predict values of the model
          y hat train = logreg.predict(X train)
          y_hat_test = logreg.predict(X_test)
          #evaluate model
          names = ['functional','non functional','functional needs repair']
          f1_logreg = round(f1_score(y_test,y_hat_test,average='macro'),3)
          print(classification_report(y_test,y_hat_test,target_names=names))
```

	precision	recall	f1-score	support
functional	0.54	0.97	0.69	7945
non functional	0.00	0.00	0.00	1091
functional needs repair	0.55	0.06	0.11	5779
accuracy			0.54	14815
macro avg	0.37	0.34	0.27	14815
weighted avg	0.51	0.54	0.42	14815

Decision Tree

```
In [58]: #instantiate
    clf = DecisionTreeClassifier(criterion='entropy',random_state=123)

#fit the model onto the train sets
    clf.fit(X_train,y_train)

#predict
    y_hat_train = clf.predict(X_train)
    y_hat_test = clf.predict(X_test)
```

```
#evaluate model
f1_tree = round(f1_score(y_test,y_hat_test,average='macro'),3)
print(classification_report(y_test,y_hat_test,target_names=names))
```

	precision	recall	f1-score	support
functional	0.79	0.79	0.79	7945
non functional	0.38	0.38	0.38	1091
functional needs repair	0.76	0.76	0.76	5779
accuracy			0.75	14815
macro avg	0.64	0.64	0.64	14815
weighted avg	0.75	0.75	0.75	14815

KNN model

```
In [59]: #instantiate
knn_baseline_model = KNeighborsClassifier()

#fit onto the data
knn_baseline_model.fit(X_train,y_train)

#predict
y_hat_train = knn_baseline_model.predict(X_train)
y_hat_test = knn_baseline_model.predict(X_test)

#evaluate model
f1_knn = round(f1_score(y_test,y_hat_test,average='macro'),3)
print(classification_report(y_test,y_hat_test,target_names=names))
```

	precision	recall	t1-score	support
functional	0.64	0.77	0.70	7945
non functional	0.30	0.15	0.20	1091
functional needs repair	0.59	0.49	0.54	5779
accuracy			0.61	14815
macro avg	0.51	0.47	0.48	14815
weighted avg	0.60	0.61	0.60	14815

Selecting a model

```
In [60]: #import the metrics library
    print(f'f1-score of baseline logistic regression is {f1_logreg}')
    print(f'f1-score of baseline decision tree is {f1_tree}')
    print(f'f1-score of knn model is {f1_knn}')

f1-score of baseline logistic regression is 0.269
    f1-score of baseline decision tree is 0.644
    f1-score of knn model is 0.477

Since, the decision tree baseline model has the highest performance score, we will build on that for further analysis
```

Decision Tree

```
#for the train and test sets
#instantiate
clf = DecisionTreeClassifier(criterion='entropy',random_state=123)
#fit the model onto the train sets
clf.fit(X_train,y_train)
clf
#predict
y_hat_train = clf.predict(X_train)
y_hat_test = clf.predict(X_test)
#evaluate model
from sklearn.metrics import classification report
print('TRAIN SCORES')
print(classification_report(y_train,y_hat_train,target_names=names))
print('-----')
print('TEST SCORES')
print(classification_report(y_test,y_hat_test,target_names=names))
accuracy_baseline_train = accuracy_score(y_train,y_hat_train)
accuracy_baseline_test = accuracy_score(y_test,y_hat_test)
```

TRAIN SCORES				
	precision	recall	f1-score	support
functional non functional functional needs repair	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	24241 3217 16986
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	44444 44444 44444
TEST SCORES				
TEST SCORES	precision	recall	f1-score	support
TEST SCORES functional non functional functional needs repair	precision 0.79 0.38 0.76	recall 0.79 0.38 0.76	f1-score 0.79 0.38 0.76	support 7945 1091 5779

We can see that the model is clearly overfitting on the train dataset.

Hyperparameter Tuning

max_depth

```
In [62]: #creating a list of depth values
   max_depth = np.arange(1,50)

#creating an empty list to store scores for each depth
   f1_test_scores = []
```

```
# create a loop for the classifier to run with the different depth values
for depth in max_depth:
    #instantiate
    classifier = DecisionTreeClassifier(criterion='entropy',max_depth=depth,random_stat
    #fit the model
    classifier.fit(X_train,y_train)
    #predict values
    y_hat_test = classifier.predict(X_test)
    #calculate
    f1 = f1_score(y_test,y_hat_test,average='macro')
    #add the scores to the list
    f1_test_scores.append(f1)
#visualize the data
import matplotlib.pyplot as plt
fig,ax = plt.subplots(figsize=(7,7))
ax.plot(max_depth,f1_test_scores,c='b')
ax.set_xlabel('max_depth')
ax.set_ylabel('f1-score')
ax.set_title('max_depth')
```

Out[62]: Text(0.5, 1.0, 'max_depth')

We can see that the accuracy for the model peaks at 20 before decreasing and

min_samples_split

```
#use the optimum value of depth
In [63]:
          depth = 20
          #define a range of min_samples_for each split
          min samples range = np.arange(18,30)
          #create a loop with the optimum depth and different min samples
          #creating an empty list to store scores for each depth
          f1 test scores = []
          # accuracy scores = []
          # precision_scores = []
          # recall_scores = []
          # create a loop for the classifier to run with the different depth values
          for sample in min samples range:
              #instantiate
              classifier = DecisionTreeClassifier(criterion='entropy',max_depth=depth,min_samples)
              #fit the model
              classifier.fit(X_train,y_train)
              #predict values
              y_hat_test = classifier.predict(X_test)
              #calculate
              f1 = f1_score(y_test,y_hat_test,average='macro')
              #add the scores to the list
              f1_test_scores.append(f1)
          #visualize
          fig,ax = plt.subplots(figsize=(7,7))
          ax.plot(min_samples_range,f1_test_scores,c='b')
          ax.set xlabel('min samples')
          ax.set ylabel('f1-score')
          ax.set_title('min_samples_split')
          plt.show();
```


We can see that the accuracy peaks at a sample value of 21

min_samples_leaf

```
In [64]:
          #use the optimum value of depth,min_samples_split
          depth = 20
          min samples = 21
          #define a range of min_samples_for each split
          min_leaf_range = np.arange(2,20)
          #create a loop with the optimum depth and different min samples
          #creating an empty list to store scores for each depth
          f1_test_scores = []
          # create a loop for the classifier to run with the different depth values
          for sample in min leaf range:
              #instantiate
              classifier = DecisionTreeClassifier(criterion='entropy',max depth=depth,min samples
                                                  min_samples_leaf=sample, random_state=123)
              #fit the model
              classifier.fit(X_train,y_train)
              #predict values
              y_hat_test = classifier.predict(X_test)
              #calculate
              f1 = f1_score(y_test,y_hat_test,average='macro')
```

```
#add the scores to the list
f1_test_scores.append(f1)

#visual
fig,ax = plt.subplots(figsize=(7,7))
ax.plot(min_leaf_range,f1_test_scores,c='b')

ax.set_xlabel('min_leaf')
ax.set_ylabel('f1-score')
ax.set_title('min_leaf_samples')

plt.show();
```


We can see that the peak value is 3

model with optimized parameters

	precision	recall	f1-score	support
functional	0.85	0.92	0.89	24241
non functional	0.71	0.49	0.58	3217
functional needs repair	0.89	0.83	0.86	16986
accuracy			0.86	44444
macro avg	0.82	0.75		44444
S				44444
weighted avg	0.86	0.86	0.85	44444
TEST SCORES				
	precision	recall	f1-score	support
functional	0.78	0.85	0.81	7945
non functional	0.47	0.34	0.39	1091
functional needs repair	0.79	0.74	0.76	5779
accuracy			0.77	14815
macro avg	0.68	0.64		14815
S				
weighted avg	0.76	0.77	0.76	14815

feature_importance

Out[66]:		features	importance
	0	amount_tsh	0.027697
	1	gps_height	0.042343
	2	longitude	0.113452
	3	latitude	0.090703
	4	num_private	0.000268

```
In [67]: #sorting the importance in ascending order
    df_importance_sorted = df_importance.sort_values(by=['importance'],ascending=True)
    df_importance_sorted.head()
```

```
Out[67]:
                      features importance
            18
                   recorded_by
                                   0.000000
             4
                   num_private
                                   0.000268
            23
                  water_quality
                                   0.004597
            19
                                   0.004823
                        permit
                public_meeting
                                   0.005430
```

```
In [68]: #plot the data
    fig,ax=plt.subplots(figsize=(10,10))
    df_importance_sorted.plot(kind='barh',ax=ax);
    ax.set_yticklabels(df_importance_sorted['features'])
    ax.set_title('feature_importance');
    ax.legend(loc=4);
```


Let's build a model based on the top_10 features to see if we can get better

extracting top_10 features

```
#create a new df with the top_10 features alone
In [69]:
           #get top10 features as a df
           cols = df_importance_sorted['features'].tail(10)
           cols=pd.DataFrame(data=cols)
           cols
Out[69]:
                      features
           15
                           lga
           1
                    gps_height
           13
                     subvillage
           8
               construction_year
           9
                 date_recorded
           10
                        funder
           26
                waterpoint_type
           3
                       latitude
           2
                     longitude
           24
                      quantity
In [70]:
           #df with top10 features
           df_top10 =df2[list(cols['features'])]
           #combine with the target variable
           df_top10 = pd.concat([df_top10,df1['status_group']],axis=1)
           print(df_top10.shape)
           df_top10.head()
           (59259, 11)
Out[70]:
                  gps_height subvillage construction_year date_recorded funder waterpoint_type
                                                                                                  latitude lo
          0
              51
                    0.517483
                                  11808
                                                                    171
                                                                           1370
                                                                                               1 0.153923
                                                                                                            0
                                                 0.993045
              103
                    0.520629
                                  15839
                                                 0.998510
                                                                    216
                                                                            469
                                                                                                 0.815659
                                                                                                            0
           2
              108
                    0.271329
                                   9075
                                                 0.998013
                                                                    144
                                                                            825
                                                                                               2 0.671973
                                                                                                            0
                                                                     21
                                                                           1742
                                                                                               2 0.042418
           3
              87
                    0.123427
                                   8983
                                                 0.986587
                                                                                                            0
              26
                    0.031469
                                   7698
                                                 0.000000
                                                                    268
                                                                             20
                                                                                               1 0.843309
                                                                                                            0
```

GridSearch CV

Rather than use the earlier approach, where we built a baseline model and then tuned each hyper parameter seperately, we can combine all these steps into one using GridSearchCV

```
In [71]:
         #define X & y
         X = df_top10.drop('status_group',axis=1)
         y=df top10[['status group']]
         #split the data
         X_top10_train,X_top10_test,y_top10_train,y_top10_test = train_test_split(X,y,random_sta
         #instantiate
         clf_top10 = DecisionTreeClassifier(random_state=123)
         #define the parameter grid
         param_grid = {'max_depth': np.arange(20,25),
                      'min samples split': np.arange(20,25),
                      'min_samples_leaf': np.arange(3,7)
         #instantiate
         gs tree = GridSearchCV(estimator=clf top10,param grid=param grid,cv=5)
         gs tree.fit(X top10 train,y top10 train)
         #predict
         gs_tree_train = gs_tree.predict(X_top10_train)
         gs_tree_test = gs_tree.predict(X_top10_test)
         print('TRAIN SCORES')
         print('----')
         print(classification_report(y_top10_train,gs_tree_train))
         print('TEST SCORES')
         print('----')
         print(classification_report(y_top10_test,gs_tree_test))
         accuracy_grid_train = accuracy_score(y_top10_train,gs_tree_train)
         accuracy_grid_test = accuracy_score(y_top10_test,gs_tree_test)
         f1 score gs tree train = f1 score(y top10 train,gs tree train,average='macro')
         f1_score_gs_tree_test = f1_score(y_top10_test,gs_tree_test,average='macro')
```

TRAIN SCORES

	precision	recall	f1-score	support
functional	0.83	0.92	0.87	24241
functional needs repair	0.67	0.40	0.50	3217
non functional	0.86	0.80	0.83	16986
accuracy			0.84	44444
macro avg	0.79	0.71	0.73	44444
weighted avg	0.83	0.84	0.83	44444
TEST SCORES				
	precision	recall	f1-score	support

```
functional needs repair
                              0.49
                                        0.30
                                                  0.37
                                                            1091
         non functional
                              0.79
                                        0.72
                                                  0.75
                                                            5779
                                                  0.76
                                                           14815
               accuracy
                              0.68
              macro avg
                                        0.63
                                                  0.65
                                                           14815
           weighted avg
                              0.76
                                        0.76
                                                  0.76
                                                           14815
#getting the best parameters
gs_tree.best_params_
```

0.86

7945

0.81

Out[72]: {'max_depth': 20, 'min_samples_leaf': 5, 'min_samples_split': 23}

functional

In [72]:

Random Forest with top10 features

0.77

Let's use a poupular ensemble method called Random Forest on the top_10 features to and compare it to the GridSearchCV model to see if we can make imporvements. Random Forest combines Bootstrapping and Sub-Space Sampling methods to build models that are robust and immune to noise in the data.

```
#instantiante the classifier with the same parameters from earlier
In [73]:
         forest=RandomForestClassifier(n estimators=100, max depth=depth, min samples split=min sa
                                     min samples leaf=leaf)
         #fit the data
         forest.fit(X top10 train,y top10 train)
         #predict
         forest_y_train = forest.predict(X_top10_train)
         forest_y_test = forest.predict(X_top10_test)
         #evaluate
         # print('TRAIN SCORES')
         # print('-----
         # print(classification_report(y_top10_train,forest_y_train))
         print('TEST SCORES')
         print('-----')
         print(classification_report(y_top10_test,forest_y_test))
         accuracy forest train = accuracy score(y top10 train, forest y train)
         accuracy_forest_test = accuracy_score(y_top10_test,forest_y_test)
         f1_score_rf_train = f1_score(y_top10_train,forest_y_train,average='macro')
         f1_score_rf_test = f1_score(y_top10_test,forest_y_test,average='macro')
```

TEST SCORES

	precision	recall	f1-score	support	
functional	0.77	0.91	0.83	7945	
functional needs repair	0.68	0.23	0.34	1091	
non functional	0.84	0.73	0.78	5779	
accuracy			0.79	14815	
macro avg	0.76	0.62	0.65	14815	

weighted avg 0.79 0.79 0.78 14815

Visualize scores

Confusion Matrix

```
In [75]: #Plot the confusion matrix of the random forest model
    fig,ax=plt.subplots(figsize=(8,8))
    plot_confusion_matrix(forest,X_top10_test,y_top10_test,ax=ax,display_labels=names);
    ax.set_title('Random Forest')
Out[75]: Text(0.5, 1.0, 'Random Forest')
```


We can clearly see that the 'functional needs repair' class is a problem for the model

Earlier, we built the model with only the top10 features based on feature importance. Let's now try and build a model with all the features and see if more data helps improve performance.

Random Forest with all the features

```
In [76]:
          #define X, y
          X=df2.drop('status_group',axis=1)
          y=df2[['status_group']]
          #using the cleaned dataset with all features
          X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=123)
          #instantiate the classifier
          new_forest =RandomForestClassifier(n_estimators=100,max_depth=depth,min_samples_split=m
                                              min samples leaf=leaf)
          #fit the data
          new_forest.fit(X_train,y_train)
          #predict
          y_hat_train = new_forest.predict(X_train)
          y_hat_test = new_forest.predict(X_test)
          #scores
          # print('TRAIN SCORES')
```

```
# print('----')
# print(classification_report(y_train,y_hat_train,target_names=names))
print('TEST SCORES')
print('----')
print(classification_report(y_test,y_hat_test,target_names=names))
```

TEST SCORES

	precision	recall	f1-score	support
functional	0.78	0.92	0.84	7945
non functional	0.72	0.25	0.37	1091
functional needs repair	0.86	0.75	0.80	5779
accuracy			0.80	14815
macro avg	0.78	0.64	0.67	14815
weighted avg	0.81	0.80	0.79	14815

Confusion matrix

```
fig,(ax1,ax2)=plt.subplots(figsize=(20,10),nrows=1,ncols=2)
    plot_confusion_matrix(forest,X_top10_test,y_top10_test,ax=ax1,display_labels=names)
    plot_confusion_matrix(new_forest,X_test,y_test,ax=ax2,display_labels=names);
    fig.tight_layout(pad=10.0)
    ax1.set_title('top10 features only');
    ax2.set_title('all features');
```


We can see that it makes a slight difference to the model.

Examining the target feature

```
In [78]: #examining the target variable
df1['status_group'].value_counts()
```

Out[78]: functional 32186 non functional 22765 functional needs repair 4308 Name: status_group, dtype: int64

Clearly, we can see an imbalance between the classes. We can try to train a

Training a model with a balanced data set

```
In [79]:
          #seperate each class into a seperate class with the same number of rows as the repair c
          functional = df2[df2['status_group'] == 0]
          functional = functional.iloc[0:4308,:]
          non functional = df2[df2['status group'] == 2]
          non_functional = non_functional.iloc[0:4308,:]
          repair = df2[df2['status group'] == 1]
          repair['status_group'].value_counts()
          #concatenate all three df's
          new_df = pd.concat([functional,non_functional,repair])
          #check the value counts
          new_df['status_group'].value_counts()
Out[79]: 2
            4308
         1
              4308
              4308
         Name: status group, dtype: int64
In [80]:
         #building the baseline model
          #define X, y
          X=new df.drop('status group',axis=1)
          y=new_df[['status_group']]
          #using the cleaned dataset with all features
          X_train_new,X_test_new,y_train_new,y_test_new = train_test_split(X,y,random_state=123)
          #instantiate the classifier
          newdf forest =RandomForestClassifier()
          #fit the data on the new df
          forest1=newdf forest.fit(X train new,y train new)
          #predict score on the new df
          y_hat_train_new = new_forest.predict(X_train_new)
          y_hat_test_new = new_forest.predict(X_test_new)
          #scores
          # print('TRAIN SCORES')
          # print('----')
          # print(classification report(y train new, y hat train new, target names=names))
          print('TEST SCORES')
          print('----')
          print(classification_report(y_test_new,y_hat_test_new,target_names=names))
         TEST SCORES
                                 precision recall f1-score support

      functional
      0.56
      0.95
      0.70

      non functional
      0.97
      0.29
      0.44

      functional needs repair
      0.82
      0.81
      0.82

                                                                       1074
                                                                       1067
                                                                       1090
```

```
accuracy 0.68 3231
macro avg 0.78 0.68 0.65 3231
weighted avg 0.78 0.68 0.65 3231
```

```
In [81]: # with the model trained on the balanced dataset, let's check for predictions on the un
y_preds_train = forest1.predict(X_train) # original df
y_preds_test = forest1.predict(X_test) #original df

print('TEST SCORES')
print('-----')
print(classification_report(y_test,y_preds_test,target_names=names))
```

TEST SCORES

	precision	recall	f1-score	support
functional	0.87	0.70	0.77	7945
non functional	0.34	0.95	0.50	1091
functional needs repair	0.82	0.76	0.79	5779
accuracy			0.74	14815
macro avg	0.68	0.80	0.69	14815
weighted avg	0.81	0.74	0.76	14815

Confusion Matrix

```
In [82]: fig,(ax1,ax2)=plt.subplots(figsize=(20,10),nrows=1,ncols=2)
    plot_confusion_matrix(new_forest,X_test,y_test,ax=ax1,display_labels=names)
    plot_confusion_matrix(forest1,X_test,y_test,ax=ax2,display_labels=names);
    fig.tight_layout(pad=10.0)
    ax1.set_title('trained on unbalanced data');
    ax2.set_title('trained on balanced data');
```


Random forest model on the balanced dataset

```
#fit the data on the balanced dataset
forest2.fit(X_train_new,y_train_new)

# predict data on the original df
y_hat_test_preds = forest2.predict(X_test) # original df
```

```
In [84]: fig,ax=plt.subplots(figsize=(8,8))
    plot_confusion_matrix(forest2,X_test,y_test,display_labels=names,ax=ax);
    ax.set_title('Random Forest on balanced data');
```



```
In [85]: print('TEST SCORES')
    print('-----')
    print(classification_report(y_test,y_hat_test_preds,target_names=names))
```

TEST SCORES

	precision	recall	f1-score	support
functional	0.84	0.68	0.75	7945
non functional	0.29	0.83	0.43	1091
functional needs repair	0.81	0.72	0.76	5779
accuracy			0.71	14815
macro avg	0.64	0.75	0.65	14815
weighted avg	0.79	0.71	0.73	14815

Next Steps

- 1. Possibly re-frame this as a binary classification problem i.e functional vs non-functional and see if we can build a better model.
- 2. Re-create the model with equal number of data points between functional and non-functional. Optimize parameters on this balanced dataset and test it on validation data to check for performance.