0. 거의 최단 경로

https://www.acmicpc.net/problem/5719

0. 거의 최단 경로

https://www.acmicpc.net/problem/5719

0. 거의 최단 경로

https://www.acmicpc.net/problem/5719

DP

알고레인져 블루

CONTENTS

- 분할 정복과 차이
- Memoization
- 002 DP기초
 - 피보나치
 - 123 더하기
 - 평범한 배낭
- 003 DP응용
 - 구간 합
 - SKK 문자열
- 004 여러가지 문제

1. DP

Dynamic Programming

특정 범위까지의 값을 구하기 위해서, 그것과 다른 범위까지의 값을 이용하여 구하는 알고리즘

- 기억하며 풀기. => 이전 계산 내용을 기억했다가 다음에 써먹기.
- Memoization임. Memorization이 아니다
- 피보나치, 0-1 배낭 문제, 가장 긴 증가 수열 문제, 플로이드- 워셜

Part 1.

DP 기본 문제

2-1. 피보나치

Dynamic Programming

$$Fibo(5) = Fibo(4) + Fibo(3)$$

$$Fibo(4) = Fibo(3) + Fibo(2)$$

$$Fibo(3) = Fibo(2) + Fibo(1)$$

2-2. 1, 2, 3 더하기

Dynamic Programming

정수 4를 1,2,3의 합으로 나타내는 방법은 총 7가지가 있다. 합을 나타낼 때는 수를 1개 이상 사용해야 한다.

- •1+1+1+1
- •1+1+2
- •1+2+1
- •2+1+1
- •2+2
- •1+3
- •3+1
- => 정수 n이 주어졌을 때, n을 1, 2, 3의 합으로 나타내는 방법의 수를 구하는 프로그램을 작성하시오.

1,2,3을 이용해 정수 4를 만들 수 있는 경우의 수

⇒ (3을 만드는 경우) + 1

2-3. 평범한 배낭

Dynamic Programming

가방에 최대 무게 K 까지 담을 수 있다. 배낭에 넣을 수 있는 물건들의 가치의 최댓값을 알려주자.

물건 번호	1	2	3	4
무게 Weight	5	4	6	3
Weight				
가치	10	40	30	50
Value	10	10		

물건 번호	1	2	3	4
Weight	5	4	6	3
Value	10	40	30	50

	K[i, w]	w										
i	고려 물건들	0	1	2	3	4	5	6	7	8	9	10
0	{ }	0	0	0	0	0	0	0	0	0	0	0
1	{1}	0	0	0	0	0	10	10	10	10	10	10
2	{1,2}	0	0	0	0							

물건 번호	1	2	3	4
Weight	5	4	6	3
Value	10	40	30	50

	K[i, w]	w										
i	고려 물건들	0	1	2	3	4	5	6	7	8	9	10
0	{ }	0	0	0	0	0	0	0	0	0	0	0
1	{1}	0	0	0	0	0	10	10	10	10	10	10
2	{1,2}	0	0	0	0	40	40					

물건 번호	1	2	3	4
Weight	5	4	6	3
Value	10	40	30	50

	K[i, w]	w										
i	고려 물건들	0	1	2	3	4	5	6	7	8	9	10
0	{ }	0	0	0	0	0	0	0	0	0	0	0
1	{1}	0	0	0	0	0	10	10	10	10	10	10
2	{1,2}	0	0	0	0	40	40	40	40	40	50	50

Part 2.

DP응용

2.1 누적 합

Dynamic Programming

	1	2	3	4	5
배열	7	6	3	2	1
누적합	7	13	16	18	19
	1-5-	////	7	///	

특정 범위의 합을 빠르게 구하는 데 사용 할 수 있다. sum[i] = sum[i-1] + arr[i]

2.1 누적 합

Dynamic Programming

	1	2	3	4	5
배열	7	6	3	2	1
누적합	7	13	16	18	19

$$6 + 3 + 2 = 18 - 7 = 11$$

2.1 누적 합

Dynamic Programming

a(i,j)	1	2	3	4	5	6
1	0	1	1	0	0	1
2	0	0	0	0	0	1
3	1	0	1	0	1	1
S(i,j)	1	2	3	4	5	6
1	0	1	2	2	2	3
2	0	1	2	2	2	4
3	1	2	4	4	5	8

2.1 누적 합

Dynamic Programming

a(i,j)	1	2	3	4	5	6	
1	0	1	1	0	0	1	
2	0	0	0	0	0	1	
3	1	0	1	0	1	1	
S(i,j)	1	2	3	4	5	6	
1	0	1	2	2	-2	3	-
2	0	1	2	2	2	4	
3	V 1	V 2	4	4	5	8	

(2,2)에서 (3,3)까지의 합

= sum[3][3] - sum[1][3] - sum[3][1] + sum[1][1]

https://www.acmicpc.net/problem/24525

K의 개수가 S의 개수의 정확히 2배인 문자열을 SKK 문자열이라고 한다. SKK문자열을 S,K 말고 다른 문자열도 포함할 수 있다.

문자열이 주어질 때, 부분 문자열을 가장 긴 SKK 문자열을 찾아라.

LUKESKYWALKER + LUKESKYWALKER

https://www.acmicpc.net/problem/24525

DP 배열을 만드는데, S가 나오면 +2, K가 나오면 -1을 해보자.

S	Α	K	S	K	K	U	K
2	2	1	3	2	1	1	0

https://www.acmicpc.net/problem/24525

S	Α	K	S	K	K	U	K
2	2	1	3	2	1	1	0

0이 된다 => K의 개수가 2의 개수 * 2

SAKSKKUK는 SKK 문자열이다.

https://www.acmicpc.net/problem/24525

1	2	3	4	5	6	7	8
S	А	K	S	K	K	U	K
2	2	1	3	2	1	1	0

KSK는 SKK 문자열이다.

1	2	3	4	5	6	7	8
S	А	K	S	K	K	U	K
2	2	1	3	2	1	1	0

AKSK는 SKK 문자열이다.

2.3 한계?

Dynamic Programming

	1	2	3	4	5
배열	7	6	3	2	1
누적합	7	13	16	18	19

Arr[1]을 7에서 20으로 바꾸면?

배열	20	6	3	2	1
누적합	20	26	29	31	32

Part 3.

문제 풀자

https://programmers.co.kr/learn/courses/30/lessons/42895