rGMAP

June 12, 2018

Type Package
Title Call hierarchical chromatin domains from HiC matrix by GMAP
Version 1.3
Date 06-12-2018
Author Wenbao Yu
Maintainer Wenbao Yu <yuw1@email.chop.edu></yuw1@email.chop.edu>
Description Call hierarchical chromatin domains from HiC contact matrix by Gaussian Mixture model And Proportion test
BugReports https://github.com/wbaopaul/rGMAP/issues
License GPL (>= 2)
LazyData TRUE
Imports data.table, ggplot2, mclust, EMD, caTools, Matrix, Rcpp (>= 0.12.5)
LinkingTo Rcpp
RoxygenNote 6.0.1
R topics documented:
data_simu 2 hic_rao_IMR90_chr15 2 plotdom 3 rGMAP 3
Index 5

data_simu

generate simulated hic_mat and true tads

Description

generate simulated hic_mat and true tads

Usage

```
data_simu(stype = "poisson-dist", nratio = 2.5, mu0 = 20, resl = 1)
```

Arguments

stype One of four types of simulated data in the manuscript: poission-dist, poission-

dist-hier, nb-dist, nb-dist-hier; poission- or nb- indicates poission distribution or negative bionomial distribution -hier indicated subtads are generated nestly

nratio The effect size between intra- and inter domain, larger means higher intra-tad

contacts

mu0 The mean parameter, default 20 res1 Resolution, default set to 1

Value

A list includes following elements:

hic_mat n by n contact matrix
hierTads True heirarchical domains

tads_true True TADs

hic_rao_IMR90_chr15

Normalized Hi-C data for IMR90, chr15 with resolution 10kb.

Description

Normalized Hi-C data for IMR90, chr15 with resolution 10kb.

Usage

```
hic_rao_IMR90_chr15
```

Format

A data table with 3 variables:

n1 bin 1

n2 bin 2

count normalized counts

plotdom 3

Source

Rao et al., Cell 2014, A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping

plotdom

visualize hierarchical domains

Description

visualize hierarchical domains

Usage

```
plotdom(hic_dat, hiertads_gmap, start_bin, end_bin, cthr = 20, kb_resl = 10)
```

Arguments

hiertads_gmap

the hierarchical domains called by gmap

start_bin the start bin of the genome end_bin the end bin of the genome

cthr the count threshold for color, default 20

kb_resl reslution of Hi-C data in kb

hic_mat with 3 columns matrix or data.frame with columns: bin1, bin2, counts,

in which bin1 and bin2, from 1 to m, are the bin

rGMAP

Detect hierarchical choromotin domains by GMAP

Description

Detect hierarchical choromotin domains by GMAP

Usage

```
rGMAP(hic_mat, resl = 10 * 10^3, logt = T, dom_order = 2, maxDistInBin = min(200, 2 * 10^6/resl), min_d = 25, max_d = 100, min_dp = 5, max_dp = 10, hthr = 0.95, t1thr = 0.5)
```

4 rGMAP

Arguments

hic_mat	Either a 3 columns Hi-C contact matrix for a given chromosome, with each row corrsponding to the start bin, end bin and the contact number; or a n by n matrix, n is the number of bins for a given chromosom
resl	The resolution (bin size), default 10kb
logt	Do log-transformation or not, default TRUE
dom_order	Maximum level of hierarchical structures, default 2 (call TADs and subTADs)
maxDistInBin	Only consider contact whose distance is not greater than maxDistInBIn bins, default 200 bins (or 2Mb) $$
min_d	The minimum d (d: window size), default 25
max_d	The maximum d (d: window size), default 100
min_dp	The minmum dp (dp: lower bound of tad size), defalt 5
max_dp	The maximum dp (dp: lower bound of tad size), defalt 10. min_d, max_d, min_dp and max_dp should be specified in number of bins
hthr	The lower bound cutoff for posterior probability, default 0.95
t1thr	Lower bound for t1 for calling TAD, default 0.5 quantile of test statistics of TADs, 0.9 of subTADs

Value

A list includes following elements:

A data frame with columns start, end indicates the start and end coordinates of

each domain, respectively

hierTads A data frame with columns start, end, dom_order, where dom_order indicates

the hierarchical status of a domain, 1 indicates tads, 2 indicates subtads, and so

on

params A data frame gives the final parameters for calling TADs

Examples

```
## On simulated data:
library(rGMAP)
simu_res = data_simu('poisson-dist-hier')
true_domains = simu_res$hierTads
simu_mat = simu_res$hie_mat
predicted_domains = rGMAP(simu_mat, resl = 1)$hierTads
true_domains
predicted_domains

## On an real data example
hic_rao_IMR90_chr15  # normalized Hi-C data for IMR90, chr15 with resolution 10kb
res = rGMAP(hic_rao_IMR90_chr15, resl = 10 * 1000, dom_order = 2)
names(res)
#quickly visualize some hierarchical domains
pp = plotdom(hic_rao_IMR90, res$hierTads, 6000, 7000, 30, 10)
pp$p2
```

Index

```
*Topic datasets
hic_rao_IMR90_chr15,2
data_simu,2
hic_rao_IMR90_chr15,2
plotdom,3
rGMAP,3
```