

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

TOPIC:

DYNAMIC PROGRAMMING SOLUTION FOR STEINER TREE

Assignment Project Exam Help
https://powcoder.com
Add WeChat powcoder

SUBMITTED BY

1. AATHIL TA

B160345CS

TEST CASES

PROOF:

The proof goes by dynamic programming.

Pick any terminal 'to' and let $T' = T \setminus \{t_0\}$.

For every nonempty $X \subset T'$ and every $v \in V$ we compute:

ST(X,v) = minimum edge weight of a Steiner tree for $(X \cup \{v\})$

Note that we allow $v \in X$ The answer is stored in $ST(T',t_0)$

1-The trivial case: If $X=\{x\}$ for some $x \in T'$

Assignment Project Exam Help

 $ST({x},v) = dist_G(x,v).$

3. Let us call it u. Possibly u=v. If $u \in X$ then we let $A_u \in X$ then we let $A_u \in X$ then $A_u \in X$ then

Otherwise we let X' be the vertices in X in one connected component of the tree with {u} removed. In both cases we have ∅!=X' (X and the tree can be split into three pieces

- the path fromv to u(possibly trivial)
- a tree for u and X'(possibly trivial)
- a tree for u and X\X

 $ST(X,v) = min_v \in V(dist_G(v,u) + (for all subset x')min(ST(X',u) + ST(X\X',u)))$

Running time:

Each vertex of T'can be either in X', in $X\setminus X'$, or in $T'\setminus X$.

There are 3¹t-1 *n² evaluations of the recurrence