Investigating activity dependent dynamics of synaptic structures using biologically plausible models of post-deafferentation network repair

Engineering and Computer Science Conference, 2019

Ankur Sinha, UH Biocomputation Group
17/04/2019

The brain: learning, plasticity, stability

The brain: in numbers

The brain: learning and plasticity

The brain: plasticity while homeostasis

Studying homeostatic processes

Experimental protocol I

 $^{^1}$ Keck2008

Experimental protocol II: after peripheral lesion

¹ Keck2008

Our model

Simulation protocol

Results and discussion

Deafferentation and successful repair

Conclusions

• New model: biologically realistic.

Conclusions

- New model: biologically realistic.
- Replicates experimental observations:

Conclusions

- New model: biologically realistic.
- Replicates experimental observations:
- Suggests:
 - Activity dependent dynamics for synaptic structures.
 - Single neuron stabilisation by structural plasticity.

Now what?

 Functional implications of structural plasticity? Associative memory?

Now what?

- Functional implications of structural plasticity? Associative memory?
- Application of growth dynamics to multi-compartmental neuron models?

Now what?

- Functional implications of structural plasticity? Associative memory?
- Application of growth dynamics to multi-compartmental neuron models?
- Faithful modelling of cytoskeleton modification (actin)?