Varying impacts of letters of recommendation on college admissions

Approximate balancing weights for subgroup effects in observational studies

Eli Ben-Michael

Harvard University

(joint work with Avi Feller and Jesse Rothstein)

JSM, August 2021

- 2016: UC Berkeley pilot program requests letters of recommendation (LORs) for undergrad admission
 - No LOR requirement at other UCs/CSUs

- Goal: Identify students from non-traditional backgrounds who might be overlooked
 - "Holistic review" of applicants

 Concern: Adverse impact on disadvantaged applicants, especially under-represented minority (URM) students

"LORs conflict with UC principles of access and fairness, because students attending under-resourced schools or from disadvantaged backgrounds will find it more difficult to obtain high-quality letters, and could be disadvantaged by a LOR requirement"

"LORs conflict with UC principles of access and fairness, because students attending under-resourced schools or from disadvantaged backgrounds will find it more difficult to obtain high-quality letters, and could be disadvantaged by a LOR requirement"

University Committee on Affirmative Action, Diversity, and Equity

"The burden of proof rests on those who want to implement the new letters of recommendation policy, and should include a test of statistical significance demonstrating measurable impact on increasing diversity in undergraduate admissions"

"LORs conflict with UC principles of access and fairness, because students attending under-resourced schools or from disadvantaged backgrounds will find it more difficult to obtain high-quality letters, and could be disadvantaged by a LOR requirement"

University Committee on Affirmative Action, Diversity, and Equity

"The burden of proof rests on those who want to implement the new letters of recommendation policy, and should include a test of statistical significance demonstrating measurable impact on increasing diversity in undergraduate admissions"

UC Berkeley administration requested independent review of LOR impact [Rothstein, 2017]

"LORs conflict with UC principles of access and fairness, because students attending under-resourced schools or from disadvantaged backgrounds will find it more difficult to obtain high-quality letters, and could be disadvantaged by a LOR requirement"

University Committee on Affirmative Action, Diversity, and Equity

"The burden of proof rests on those who want to implement the new letters of recommendation policy, and should include a test of statistical significance demonstrating measurable impact on increasing diversity in undergraduate admissions"

UC Berkeley administration requested independent review of LOR impact [Rothstein, 2017]

→ LORs discontinued before study results released

Our question: Impact of submitting LORs on admissions

- Variation across pre-defined subgroups, especially URM status
- ightarrow Design an observational study; one of many potential cuts at this problem

Our question: Impact of submitting LORs on admissions

- Variation across pre-defined subgroups, especially URM status
- ightarrow Design an observational study; one of many potential cuts at this problem

Challenge: Design the study for good overall and subgroup estimates

- Only optimizing for global balance → poor subgroup estimates
 - Ignores subgroup structure, assumes away heterogeneity
- Only optimizing for local balance → poor overall estimates
 - Potentially small errors compound across subgroups

Our question: Impact of submitting LORs on admissions

- Variation across pre-defined subgroups, especially URM status
- ightarrow Design an observational study; one of many potential cuts at this problem

Challenge: Design the study for good overall and subgroup estimates

- Only optimizing for global balance \rightarrow poor subgroup estimates
 - Ignores subgroup structure, assumes away heterogeneity
- Only optimizing for local balance → poor overall estimates
 - Potentially small errors compound across subgroups

Our paper: Balancing weights for subgroup analysis

- Partially pooled balancing weights, control both local balance and global balance
- Dual: IPW with hierarchical propensity score

Our question: Impact of submitting LORs on admissions

- Variation across pre-defined subgroups, especially URM status
- ightarrow Design an observational study; one of many potential cuts at this problem

Challenge: Design the study for good overall and subgroup estimates

- Only optimizing for global balance → poor subgroup estimates
 - Ignores subgroup structure, assumes away heterogeneity
- Only optimizing for local balance → poor overall estimates
 - Potentially small errors compound across subgroups

Our paper: Balancing weights for subgroup analysis

- Partially pooled balancing weights, control both local balance and global balance
- Dual: IPW with hierarchical propensity score

No evidence of differential impacts on URM applicants

Letters of Recommendation:

Pilot Study

LOR Pilot Study: Overview

- Total N = 40,541 applicants in 2016 [exclude athletes, other groups]
 - 14,596 invited to submit LORs
 - 11,143 submitted LoRs
- Two admissions readers
 - Scores of {No, Possible, Yes}
 - Admitted with 1-2 Yes votes
- Invitation to submit LORs:

[+ funkiness due to timing]

- First reader score of "possible"
- Predicted possible score of >50% [nearly all URM]

LoR Pilot Study: Subgroups

URM: Under-Represented Minority

- Low-income or first-gen college
- Underrepresented racial/ethnic group
- Low-performing high school
 55% of all applicants

Al: Admissibility Index

 Predicted prob. of admissions using 2015 data

Define subgroups by URM × AI bin

+ First reader score; college applied to

Setup and

Background

For applicant i = 1, ..., N observe

- Outcome $Y_i \in \mathbb{R}$ (admission)
- Treatment status $W_i \in \{0, 1\}$ (submit LoRs)
- Covariates $X_i \in \mathcal{X}$
- Group indicator $G_i \in \{1, \dots, K\}$

For applicant i = 1, ..., N observe

- Outcome $Y_i \in \mathbb{R}$ (admission)
- Treatment status $W_i \in \{0, 1\}$ (submit LoRs)
- Covariates $X_i \in \mathcal{X}$
- Group indicator $G_i \in \{1, \dots, K\}$

Estimands: Overall ATT and subgroup CATTs

$$\tau = \mathbb{E}[Y(1) - \underbrace{Y(0)}_{\widehat{\mu}_0 = \sum \widehat{\gamma}_i Y_i} \mid W = 1] \quad \text{and} \quad \tau_g = \mathbb{E}[Y(1) - \underbrace{Y(0)}_{\widehat{\mu}_{0g} = \sum_{G = g} \widehat{\gamma}_i Y_i} \mid W = 1, G = g]$$

Strong ignorability (sensitivity analysis in paper)

$$Y(1), Y(0) \perp W \mid X, G$$
 and $e(X, G) \equiv P(W = 1 \mid X, G) < 1$

Strong ignorability (sensitivity analysis in paper)

$$Y(1), Y(0) \perp W \mid X, G$$
 and $e(X, G) \equiv P(W = 1 \mid X, G) < 1$

Many methods for subgroup effects under ignorability

- Outcome model and design-based approaches
- Review: 2018 ACIC data challenge [Carvalho et al., 2020]

Inverse Propensity Score Weighting identities, with known e(x, g)

$$\mu_0 = \mathbb{E}[\text{missing } Y(0) \mid \text{treated}] = \mathbb{E}\Big[\underbrace{\frac{e(x,g)}{1 - e(x,g)}}_{\text{weights}} Y^{\text{obs}} \mid \text{control}\Big]$$

Inverse Propensity Score Weighting identities, with known e(x, g)

$$\mu_0 = \mathbb{E}[\text{missing } Y(0) \mid \text{treated}] = \mathbb{E}\Big[\underbrace{\frac{e(x,g)}{1 - e(x,g)}}_{\text{weights}} Y^{\text{obs}} \mid \text{control}\Big]$$

$$\mathbb{E}[\text{covariates} \mid \text{treated}] = \mathbb{E}\left[\underbrace{\frac{e(x,g)}{1 - e(x,g)}}_{\text{weights}} \text{ covariates} \mid \text{control}\right]$$

Inverse Propensity Score Weighting identities, with known e(x, g)

$$\mu_0 = \mathbb{E}[\text{missing } Y(0) \mid \text{treated}] = \mathbb{E}\Big[\underbrace{\frac{e(x,g)}{1-e(x,g)}}_{\text{weights}} Y^{\text{obs}} \mid \text{control}\Big]$$

$$\mathbb{E}[\text{covariates} \mid \text{treated}] = \mathbb{E}\Big[\underbrace{\frac{e(x,g)}{1-e(x,g)}}_{\text{covariates}} \text{ covariates} \mid \text{control}\Big]$$

weights

→ How to estimate weights?

Background: Traditional IPW workflow

Goal: $\hat{e}(x,g)$ close to e(x,g)

- 1. Directly estimate $\hat{e}(x,g)$, via MLE, ML, etc.
- 2. Calculate weights $\hat{\gamma} = \frac{\hat{e}(x,g)}{1 \hat{e}(x,g)}$
- 3. Indirectly balance covariates

Probability of treatment

Weight units

Balance

Background: Traditional IPW workflow

Goal: $\hat{\mathbf{e}}(x,g)$ close to $\mathbf{e}(x,g)$

- 1. Directly estimate $\hat{e}(x,g)$, via MLE, ML, etc.
- 2. Calculate weights $\hat{\gamma} = \frac{\hat{e}(x,g)}{1-\hat{e}(x,g)}$
- 3. Indirectly balance covariates
- Poor finite sample performance, esp with many covariates

Probability of treatment

Weight units

Balance

Background: Balancing weights workflow

Goal:
$$\hat{\gamma}$$
 close to $\frac{e(x,g)}{1-e(x,g)}$

- 1. Directly estimate $\hat{\gamma}$ to balance covariates
- 2. Indirectly estimate $\hat{\mathbf{e}}(x,g) = \frac{\hat{\gamma}}{1+\hat{\gamma}}$

Weight units

Balance

Background: Balancing weights workflow

Goal: $\hat{\gamma}$ close to $\frac{e(x,g)}{1-e(x,g)}$

- 1. Directly estimate $\hat{\gamma}$ to balance covariates
- 2. Indirectly estimate $\hat{\mathbf{e}}(x,g) = \frac{\hat{\gamma}}{1+\hat{\gamma}}$
 - Old history as raking and calibration in survey sampling with non-response
 [Deming and Stephan, 1940; Deville et al., 1993]
 - New causal inference literature
 [Hainmueller, 2011; Zubizarreta, 2015; Athey et al.,
 2018; Chernozhukov et al., 2018]

Probability of treatment Weight units Balance

Balancing weights to estimate

subgroup effects

Balancing weights for local balance only

Error for effect in subgroup g

For outcome model
$$m_0 = \eta_g \cdot \phi(x)$$
; weighting estimator $\hat{\mu}_{0g} = \sum \gamma Y_i$

$$\operatorname{error}_{g} \leq \|\eta_{g}\|_{2} \|\operatorname{Local Balance}_{g}\|_{2} + \|\gamma\|_{2}$$

Can generalize to flexible outcome models [Hirshberg et al., 2019; Hazlett, 2020]

Balancing local balance only

Balancing weights for subgroup g

$$\begin{aligned} & \min_{\gamma} & & \| \text{Local Balance}_g \|_2^2 & + & \frac{\lambda_g}{2} \| \gamma \|_2^2 \\ & \text{s.t.} & & \sum \gamma_i = 1, \quad \gamma_i \geq 0 \end{aligned}$$

Balancing local balance only

Balancing weights for subgroup g

$$\min_{\gamma} \quad \|\text{Local Balance}_g\|_2^2 \ + \ \frac{\lambda_g}{2} \|\gamma\|_2^2$$
 s.t.
$$\sum \gamma_i = 1, \quad \gamma_i \geq 0$$

Challenge:

- Small subgroups can be hard to balance well
- Balancing subgroups separately \rightarrow poor global balance

Balancing global balance and local balance

Partially Pooled Balancing Weights

$$\min_{\gamma} \quad \sum_{g} \|\text{Local Balance}_{g}\|_{2}^{2} \ + \ \frac{\lambda_{g}}{2} \|\gamma\|_{2}^{2}$$
 s.t.
$$\sum_{G_{i}=g} \gamma_{i} = n_{1g}, \quad \gamma_{i} \geq 0$$
 Global Balance $= 0$

Balancing global balance and local balance

Partially Pooled Balancing Weights

$$\min_{\gamma} \quad \sum_{g} \|\text{Local Balance}_{g}\|_{2}^{2} + \frac{\lambda_{g}}{2} \|\gamma\|_{2}^{2}$$
 s.t.
$$\sum_{G_{i}=g} \gamma_{i} = n_{1g}, \quad \gamma_{i} \geq 0$$
 Global Balance = 0

- Overall errors depends on both global balance and local balance
- Further expand to control differences in local balance
- \sim Tuning parameter: Global parameter $\lambda \Rightarrow \lambda_g = \lambda/n_g$

Dual perspective: M estimation of treatment odds

Dual when optimizing for for local balance only

Population:
$$\underbrace{\frac{e(x,g)}{1-e(x,g)}}_{\text{inverse prop. score weights}} \sim \underbrace{\alpha_g + \beta_g' \phi(x)}_{\text{balancing weights}}$$

Dual perspective: M estimation of treatment odds

Dual when optimizing for for local balance only

Population:
$$\underbrace{\frac{e(x,g)}{1-e(x,g)}}_{\text{inverse prop. score weights}} \sim \underbrace{\alpha_g + \beta_g' \phi(x)}_{\text{balancing weights}}$$

Sample:
$$\min_{\alpha_g, \beta_g}$$
 regression loss $+$ $\underbrace{\frac{\lambda}{2} \|\beta_g\|_2^2}_{\text{ridge penalty}}$

Global balance constraint ←→ partial pooling in the dual problem

Dual for Partially Pooled Balancing Weights

$$\min_{\alpha_g,\beta_g,\mu_{\beta}} \text{ regression loss } + \underbrace{\frac{\lambda_g}{2} \|\beta_g - \mu_{\beta}\|_2^2}_{\text{local} \rightarrow \text{global}}$$

Partially pool $local \rightarrow global$ model: regularization directly related to imbalance

Differential impacts of letters of

recommendation

Partially pooled balancing weights \rightarrow improved balance

Partially pooled balancing weights \rightarrow improved balance

Large overall effect

Baseline admissions rate ∼20%

No differences by URM status

Large differences by Admissibility Index

Relative effect sizes flip

Recap: Varying Impacts of Letters of Recommendation

Partially pooled balancing weights

- Find weights that control both Local Balance and Global Balance
- Dual relation to partially pooled IPW
- R package balancer
- ightarrow No evidence of different impacts by URM status

Recap: Varying Impacts of Letters of Recommendation

Partially pooled balancing weights

- Find weights that control both Local Balance and Global Balance
- Dual relation to partially pooled IPW
- R package balancer
- ightarrow No evidence of different impacts by URM status

Thank you!

ebenmichael.github.io

Appendix

Heterogeneity across admissibility index

Distribution of the estimated weights

Effective sample sizes

Hyperparameter tuning

- Evaluate across a range of λ
- Gains in precision, comparable imbalance

Simulation Study

Major gains relative to traditional IPW

 Comparable performance to ML methods; retain design-based advantages

Estimated group means

Augmentation diminishes differences

[Random forest outcome model]

Sensitivity to unmeasured confounding

- Adapt Soriano et al. [2021]
- Overall LOR effect still positive with $\Lambda=1.1\,$
- Consistent with wide range of subgroup estimates

References I

- Athey, S., Imbens, G. W., and Wager, S. (2018). Approximate residual balancing: debiased inference of average treatment effects in high dimensions. Technical report.
- Chernozhukov, V., Newey, W., Robins, J., and Singh, R. (2018). Double/de-biased machine learning of global and local parameters using regularized riesz representers. *arXiv preprint arXiv:1802.08667*.
- Deming, W. E. and Stephan, F. F. (1940). On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known. *The Annals of Mathematical Statistics*, 11(4):427-444.
- Deville, J. C., Särndal, C. E., and Sautory, O. (1993). Generalized raking procedures in survey sampling. *Journal of the American Statistical Association*, 88(423):1013-1020.
- Hainmueller, J. (2011). Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies. *Political Analysis*, 20:25-46.
- Hazlett, C. (2020). Kernel balancing: A flexible non-parametric weighting procedure for estimating causal effects. *Statistica Sinica*.
- Hirshberg, D. A., Maleki, A., and Zubizarreta, J. (2019). Minimax Linear Estimation of the Retargeted Mean.
- Zubizarreta, J. R. (2015). Stable Weights that Balance Covariates for Estimation With Incomplete Outcome Data. *Journal of the American Statistical Association*, 110(511):910–922.