SBML Model Report

Model name: "FelixGarza2017 - Blue Light Treatment of Psoriasis (simplified)"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Matthew Grant Roberts¹ at April 23rd 2018 at 9:32 a.m. and last time modified at April 24th 2018 at 10:04 a.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	12
events	3	constraints	0
reactions	35	function definitions	35
global parameters	55	unit definitions	2
rules	1	initial assignments	24

Model Notes

FelixGarza2017 - Blue Light Treatment of Psoriasis (simplified)

This model is described in the article: A Dynamic Model for Prediction of Psoriasis Management by Blue Light Irradiation. Flix Garza ZC, Liebmann J, Born M, Hilbers PA, van Riel NA. Front Physiol 2017; 8: 28

Abstract:

¹EMBL-EBI, mroberts@ebi.ac.uk

Clinical investigations prove that blue light irradiation reduces the severity of psoriasis vulgaris. Nevertheless, the mechanisms involved in the management of this condition remain poorly defined. Despite the encouraging results of the clinical studies, no clear guidelines are specified in the literature for the irradiation scheme regime of blue light-based therapy for psoriasis. We investigated the underlying mechanism of blue light irradiation of psoriatic skin, and tested the hypothesis that regulation of proliferation is a key process. We implemented a mechanistic model of cellular epidermal dynamics to analyze whether a temporary decrease of keratinocytes hyper-proliferation can explain the outcome of phototherapy with blue light. Our results suggest that the main effect of blue light on keratinocytes impacts the proliferative cells. They show that the decrease in the keratinocytes proliferative capacity is sufficient to induce a transient decrease in the severity of psoriasis. To study the impact of the therapeutic regime on the efficacy of psoriasis treatment, we performed simulations for different combinations of the treatment parameters, i.e., length of treatment, fluence (also referred to as dose), and intensity. These simulations indicate that high efficacy is achieved by regimes with long duration and high fluence levels, regardless of the chosen intensity. Our modeling approach constitutes a framework for testing diverse hypotheses on the underlying mechanism of blue light-based phototherapy, and for designing effective strategies for the treatment of psoriasis.

This model is hosted on BioModels Database and identified by: BIOMD0000000695.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name time

Definition 86400 s

2.2 Unit substance

Name substance

Definition mmol

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartmentOne Psoriatic	Healthy Psoriatic		3 3	1 1	litre litre	Z	

3.1 Compartment compartmentOne

This is a three dimensional compartment with a constant size of one litre.

Name Healthy

3.2 Compartment Psoriatic

This is a three dimensional compartment with a constant size of one litre.

Name Psoriatic

Produced by SBML2PTEX

4 Species

This model contains twelve species. Section 11 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
xFinal_1	Stem Cells	compartmentOne	$\operatorname{mmol} \cdot 1^{-1}$		
$xFinal_2$	Transit Amplifying Cells	${\tt compartmentOne}$	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$xFinal_3$	Growth Arrested Cells	${\tt compartmentOne}$	$\operatorname{mmol} \cdot 1^{-1}$		
$xFinal_4$	Spinous cells	${\tt compartmentOne}$	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$xFinal_5$	Granular Cells	${\tt compartmentOne}$	$\operatorname{mmol} \cdot 1^{-1}$		\Box
$xFinal_6$	Corneocytes	${\tt compartmentOne}$	$\operatorname{mmol} \cdot 1^{-1}$		
$xFinal_{-}7$	Stem Cells	Psoriatic	$\operatorname{mmol} \cdot 1^{-1}$		
$xFinal_8$	Transit Amplifying Cells	Psoriatic	$\operatorname{mmol} \cdot 1^{-1}$		
$xFinal_9$	Growth Arrested Cells	Psoriatic	$\operatorname{mmol} \cdot 1^{-1}$		
$xFinal_10$	Spinous cells	Psoriatic	$\operatorname{mmol} \cdot 1^{-1}$		
$xFinal_11$	Granular Cells	Psoriatic	$\operatorname{mmol} \cdot 1^{-1}$		
$xFinal_12$	Corneocytes	Psoriatic	$\operatorname{mmol} \cdot 1^{-1}$		

5 Parameters

This model contains 55 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
AId	AId		3.5	10^{-4}	\checkmark
AIh	AIh		0.001		$\overline{\mathbf{Z}}$
alpha	alpha		0.071		$\overline{\mathbf{Z}}$
alphaps	alphaps		0.286		$\overline{\mathbf{Z}}$
apopFBL	apopFBL		0.000		$\overline{\mathbf{Z}}$
aProl	aProl		1.000		$\overline{\mathbf{Z}}$
beta1h	beta1	1.9	97036443732479	10^{-6}	<u> </u>
beta2	beta2	2.0	07849419303164	10^{-5}	<u> </u>
beta3	beta3	2.5	59511413696436	10^{-4}	$\overline{\mathbf{Z}}$
beta4	beta4	6.0	68001601922307 -	10^{-5}	$ \overline{\checkmark} $
beta5	beta5	1.3	33360032038446	10^{-4}	<u> </u>
betaps1	betaps1	2.2	29680388135848	10^{-6}	<u> </u>
betaps2	betaps2	2.4	12284799679888	10^{-5}	<u> </u>
betaps3	betaps3	3.7	78132346321212	10^{-4}	<u> </u>
betaps4	betaps4	9.7	73340669234232	10^{-5}	<u> </u>
bProl	bProl		-0.003		<u> </u>
doseBL	doseBL		52.110		
gamma1h	gamma1h		0.003		
gamma1ps	gamma1ps		0.013		$\overline{\mathbf{Z}}$
gamma2	gamma2		0.014		$\overline{\mathbf{Z}}$
gamma2ps	gamma2ps		0.047		$ \overline{\mathbf{Z}} $
k1ah	k1ah		0.013		
k1sh	k1sh		0.002		
k2a	k2a		0.138		
k2s	k2s		0.017		$\overline{\mathbf{Z}}$
k3	k3		0.216		
k4	k4		0.056		
k5	k5		0.111		
Ka	Ka		392.773		
km1	km1			10^{-6}	
km2	km2			10^{-6}	
kmps1	kmps1			10^{-6}	
kmps2	kmps2			10^{-6}	$\overline{\mathbf{Z}}$
Кр	Kp		6.000		$\overline{\mathbf{Z}}$
kps1a	kps1a		0.052		
kps1s	kps1s		0.007		\square

Id	Name	SBO	Value	Unit	Constant
kps2a	kps2a		0.552		
kps2s	kps2s		0.069		$ \overline{\mathbf{A}} $
kps3	kps3		1.080		
kps4	kps4		0.278		
lambda	lambda		3.500		
LPSI0	LPSI0		5.340		
n	n		3.000		
omega	omega		100.000		
Psch	Psch		2267.675		
Pscmax	Pscmax		4500.000		
Ptah	Ptah		11184.784		$ \overline{\mathbf{Z}} $
rhoDe	rhoDe		4.000		
rhoSC	rhoSC		4.000		
rhoTA	rhoTA		4.000		
rhoTr	rhoTr		5.000		$ \overline{\mathbf{A}} $
skinType	skinType		0.579		$\overline{\mathbf{Z}}$
therI	therI		84.000		
${\tt thetaBLprol}$	thetaBLprol		0.837		$\overline{\mathbf{Z}}$
Treatment-	Treatment-		1.000		$\overline{\mathbf{Z}}$
$_{ t Duration}$	_Duration				

6 Initialassignments

This is an overview of 24 initial assignments.

6.1 Initialassignment alphaps

Derived unit contains undeclared units

Math rhoDe · alpha

6.2 Initialassignment beta1h

Derived unit contains undeclared units

6.3 Initialassignment beta2

Derived unit contains undeclared units

6.4 Initialassignment beta3

Derived unit contains undeclared units

6.5 Initialassignment beta4

Derived unit contains undeclared units

6.6 Initialassignment beta5

Derived unit contains undeclared units

6.7 Initialassignment betaps1

Derived unit contains undeclared units

6.8 Initialassignment betaps2

Derived unit contains undeclared units

Math $\frac{AId \cdot kps2s}{1-AId}$

6.9 Initialassignment betaps3

Derived unit contains undeclared units

Math $\frac{AId \cdot kps3}{1-AId}$

6.10 Initialassignment betaps4

Derived unit contains undeclared units

Math $\frac{AId \cdot kps4}{1-AId}$

6.11 Initialassignment doseBL

Derived unit contains undeclared units

Math 90 ⋅ skinType

6.12 Initialassignment gamma1ps

Derived unit contains undeclared units

Math rhoSC · gamma1h

6.13 Initialassignment gamma2ps

Derived unit contains undeclared units

Math rhoTA · gamma2 · thetaBLprol

6.14 Initialassignment kmps1

Derived unit contains undeclared units

Math km1

6.15 Initialassignment kmps2

Derived unit contains undeclared units

Math km2

6.16 Initialassignment kps1a

Derived unit contains undeclared units

Math rhoSC·k1ah

6.17 Initialassignment kps1s

Derived unit contains undeclared units

Math rhoSC · k1sh

6.18 Initialassignment kps2a

Derived unit contains undeclared units

Math rhoTA · k2a

6.19 Initialassignment kps2s

Derived unit contains undeclared units

Math rhoTA · k2s

6.20 Initialassignment kps3

Derived unit contains undeclared units

Math rhoTr·k3

6.21 Initialassignment kps4

Derived unit contains undeclared units

Math rhoTr · k4

6.22 Initialassignment Psch

Derived unit contains undeclared units

$$\textbf{Math} \ \ Pscmax \cdot \left(1 - \frac{1}{gamma1h} \cdot \left(k1sh + beta1h - \frac{km1 \cdot (k1ah + k1sh \cdot 2)}{km1 + k2s + beta2 - gamma2 - \frac{km2 \cdot (k2a + 2 \cdot k2s)}{km2 + k3 + beta3}}\right)\right)$$

6.23 Initialassignment Ptah

Derived unit contains undeclared units

6.24 Initialassignment thetaBLprol

Derived unit contains undeclared units

Math $aProl \cdot exp(bProl \cdot doseBL)$

7 Function definitions

This is an overview of 35 function definitions.

7.1 Function definition Function_for_R_7

Name Function for R₋7

Arguments AId, apopFBL, vol (compartmentOne), k3, rhoTr, [xFinal_9]

$$\frac{\text{AId} \cdot \text{k3} \cdot [\text{xFinal_9}] \cdot \frac{\text{rhoTr}}{1 - \text{AId}} + \text{apopFBL} \cdot [\text{xFinal_9}]}{\text{vol}\left(\text{compartmentOne}\right)} \tag{1}$$

7.2 Function definition Function_for_R_6

Name Function for R₆

Arguments vol (compartmentOne), k2a, rhoTA, [xFinal_8]

Mathematical Expression

$$\frac{\text{k2a} \cdot \text{rhoTA} \cdot [\text{xFinal_8}]}{\text{vol}(\text{compartmentOne})}$$
 (2)

7.3 Function definition Function_for_R_10

Name Function for R₋10

Arguments vol (compartmentOne), k1ah, rhoSC, [xFinal_7]

Mathematical Expression

$$\frac{\text{k1ah} \cdot \text{rhoSC} \cdot [\text{xFinal}_7]}{\text{vol}(\text{compartmentOne})}$$
 (3)

7.4 Function definition Function_for_R_3

Name Function for R₃

Arguments vol (compartmentOne), k3, rhoTr, [xFinal_9]

Mathematical Expression

$$\frac{\text{k3} \cdot \text{rhoTr} \cdot [\text{xFinal_9}]}{\text{vol} (\text{compartmentOne})}$$
 (4)

7.5 Function definition Function_for_R_1

Name Function for R_1

Arguments vol (compartmentOne), k4, rhoTr, [xFinal_10]

Mathematical Expression

$$\frac{k4 \cdot rhoTr \cdot [xFinal_10]}{vol (compartmentOne)}$$
 (5)

7.6 Function definition Function_for_R_2

Name Function for R₋₂

Arguments alpha, apopFBL, vol (compartmentOne), rhoDe, [xFinal_12]

$$\frac{\text{alpha} \cdot \text{rhoDe} \cdot [x\text{Final}_12] + \text{apopFBL} \cdot [x\text{Final}_12]}{\text{vol} (\text{compartmentOne})}$$
 (6)

7.7 Function definition Function_for_R_5

Name Function for R₋₅

Arguments vol (compartmentOne), k2s, rhoTA, [xFinal_8]

Mathematical Expression

$$\frac{\text{k2s} \cdot \text{rhoTA} \cdot [\text{xFinal_8}]}{\text{vol} (\text{compartmentOne})}$$
 (7)

7.8 Function definition Function_for_R_4

Name Function for R_4

Arguments AId, apopFBL, vol (compartmentOne), k4, rhoTr, [xFinal_10]

Mathematical Expression

$$\frac{AId \cdot k4 \cdot [xFinal_10] \cdot \frac{rhoTr}{1-AId} + apopFBL \cdot [xFinal_10]}{vol (compartmentOne)} \tag{8}$$

7.9 Function definition Function_for_R_12

Name Function for R₁₂

Arguments AId, apopFBL, vol (compartmentOne), k2s, rhoTA, [xFinal_8]

Mathematical Expression

$$\frac{\text{AId} \cdot \text{k2s} \cdot [\text{xFinal_8}] \cdot \frac{\text{rhoTA}}{1 - \text{AId}} + \text{apopFBL} \cdot [\text{xFinal_8}]}{\text{vol}\left(\text{compartmentOne}\right)} \tag{9}$$

7.10 Function definition Function_for_R_14

Name Function for R₋14

Arguments aProl, bProl, vol (compartmentOne), doseBL, gamma1h, rhoSC, [xFinal_7]

$$\frac{\text{aProl} \cdot \text{gamma1h} \cdot \text{rhoSC} \cdot \text{exp} \left(\text{bProl} \cdot \text{doseBL}\right) \cdot \left[\text{xFinal}_7\right]}{\text{vol} \left(\text{compartmentOne}\right)}$$
(10)

7.11 Function definition Function_for_R_13

Name Function for R₁₃

Arguments vol (compartmentOne), km1, [xFinal_8]

Mathematical Expression

$$\frac{\text{km1} \cdot [\text{xFinal_8}]}{\text{vol (compartmentOne)}}$$
 (11)

7.12 Function definition Function_for_R_19

Name Function for R₁9

Arguments vol (compartmentOne), k4, [xFinal_4]

Mathematical Expression

$$\frac{\text{k4} \cdot [\text{xFinal_4}]}{\text{vol}\left(\text{compartmentOne}\right)} \tag{12}$$

7.13 Function definition Function_for_R_8

Name Function for R₋₈

Arguments vol (compartmentOne), km2, [xFinal_9]

Mathematical Expression

$$\frac{\text{km2} \cdot [\text{xFinal_9}]}{\text{vol}(\text{compartmentOne})}$$
 (13)

7.14 Function definition Function_for_R_9

Name Function for R_9

Arguments vol (compartmentOne), k1sh, rhoSC, [xFinal_7]

Mathematical Expression

$$\frac{k1 sh \cdot rhoSC \cdot [xFinal_7]}{vol (compartmentOne)}$$
 (14)

7.15 Function definition Function_for_R_11

Name Function for R₋₁₁

Arguments aProl, bProl, vol (compartmentOne), doseBL, gamma2, rhoTA, [xFinal_8]

12

Mathematical Expression

$$\frac{\text{aProl} \cdot \text{aProl} \cdot \text{gamma2} \cdot \text{rhoTA} \cdot \text{exp} \left(\text{bProl} \cdot \text{doseBL}\right) \cdot \left[\text{xFinal_8}\right]}{\text{vol} \left(\text{compartmentOne}\right)}$$

$$(15)$$

7.16 Function definition Function_for_R_17

Name Function for R₋17

Arguments vol (compartmentOne), k5, [xFinal_5]

Mathematical Expression

$$\frac{k5 \cdot [xFinal_5]}{vol (compartmentOne)}$$
 (16)

7.17 Function definition Function_for_R_22

Name Function for R_22

Arguments AIh, apopFBL, vol (compartmentOne), k4, [xFinal_4]

Mathematical Expression

$$\frac{k4 \cdot \left[xFinal_4\right] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot \left[xFinal_4\right]}{vol\left(compartmentOne\right)} \tag{17}$$

7.18 Function definition Function_for_R_15

Name Function for R₋15

Arguments Pscmax, aProl, bProl, vol (compartmentOne), doseBL, gamma1h, lambda, rhoSC, [xFinal_6], [xFinal_7]

Mathematical Expression

$$\frac{a Prol \cdot gamma1h \cdot rhoSC \cdot exp\left(b Prol \cdot doseBL\right) \cdot \left[x Final_7\right] \cdot \frac{\left[x Final_6\right]}{lambda \cdot Pscmax}}{vol\left(compartmentOne\right)} \ (18)$$

7.19 Function definition Function_for_R_16

Name Function for R₋16

Arguments AId, Ka, Kp, Pscmax, aProl, apopFBL, bProl, vol (compartmentOne), doseBL, gamma1h, k1sh, lambda, rhoSC, [xFinal_7]

$$\frac{\text{aProl} \cdot \text{gamma1h} \cdot \text{rhoSC} \cdot \text{exp} \left(\text{bProl} \cdot \text{doseBL}\right) \cdot \left[\text{xFinal_7}\right] \cdot \frac{\left[\text{xFinal_7}\right]}{\text{lambda} \cdot \text{Pscmax}} + \text{AId} \cdot \text{k1sh} \cdot \left[\text{xFinal_7}\right] \cdot \frac{\text{rhoSC}}{1 - \text{AId}} + \text{apopFolescond}}{\text{vol} \left(\text{compartmentOne}\right)} + \frac{(19)^{-1}}{1 - \text{AId}} + \frac{(19)^{-1}}{1 -$$

7.20 Function definition Function_for_R_18

Name Function for R₋18

Arguments alpha, apopFBL, vol (compartmentOne), [xFinal_6]

Mathematical Expression

$$\frac{\text{alpha} \cdot [xFinal_6] + apopFBL \cdot [xFinal_6]}{\text{vol (compartmentOne)}}$$
 (20)

7.21 Function definition Function_for_R_26

Name Function for R_26

Arguments vol (compartmentOne), km2, [xFinal_3]

Mathematical Expression

$$\frac{\text{km2} \cdot [\text{xFinal}_3]}{\text{vol}(\text{compartmentOne})}$$
 (21)

7.22 Function definition Function_for_R_27

Name Function for R_27

Arguments Ptah, vol (compartmentOne), k1sh, n, omega, [xFinal_1], [xFinal_2], [xFinal_8]

Mathematical Expression

$$\frac{omega \cdot \left[xFinal_1\right] \cdot \frac{k1sh}{1 + (omega-1) \cdot \left(\frac{\left[xFinal_2\right] + \left[xFinal_8\right]}{Ptah}\right)^n}}{vol\left(compartmentOne\right)} \tag{22}$$

7.23 Function definition Function_for_R_20

Name Function for R_20

Arguments AIh, apopFBL, vol (compartmentOne), k5, [xFinal_5]

$$\frac{\text{k5} \cdot [\text{xFinal_5}] \cdot \frac{\text{AIh}}{1-\text{AIh}} + \text{apopFBL} \cdot [\text{xFinal_5}]}{\text{vol (compartmentOne)}}$$
(23)

7.24 Function definition Function_for_R_21

Name Function for R_21

Arguments vol (compartmentOne), k3, [xFinal_3]

Mathematical Expression

$$\frac{k3 \cdot [xFinal_3]}{vol (compartmentOne)}$$
 (24)

7.25 Function definition Function_for_R_23

Name Function for R₂₃

Arguments vol (compartmentOne), k2s, [xFinal_2]

Mathematical Expression

$$\frac{k2s \cdot [xFinal_2]}{vol (compartmentOne)}$$
 (25)

7.26 Function definition Function_for_R_24

Name Function for R_24

Arguments vol (compartmentOne), k2a, [xFinal_2]

Mathematical Expression

$$\frac{k2a \cdot [xFinal_2]}{vol (compartmentOne)}$$
 (26)

7.27 Function definition Function_for_R_25

Name Function for R_25

Arguments AIh, apopFBL, vol (compartmentOne), k3, [xFinal_3]

$$\frac{\text{k3} \cdot [\text{xFinal_3}] \cdot \frac{\text{AIh}}{1-\text{AIh}} + \text{apopFBL} \cdot [\text{xFinal_3}]}{\text{vol}\left(\text{compartmentOne}\right)}$$
 (27)

7.28 Function definition Function_for_R_32

Name Function for R_32

Arguments Ptah, aProl, bProl, vol (compartmentOne), doseBL, gamma1h, n, omega, [xFinal_1], [xFinal_2], [xFinal_8]

Mathematical Expression

$$\frac{a Prol \cdot gamma1h \cdot exp\left(b Prol \cdot doseBL\right) \cdot \left[x Final_1\right] \cdot \frac{omega}{1 + (omega-1) \cdot \left(\frac{\left[x Final_2\right] + \left[x Final_8\right]}{Ptah}\right)^n}}{vol\left(compartmentOne\right)}$$

7.29 Function definition Function_for_R_35

Name Function for R_35

Arguments AIh, apopFBL, vol (compartmentOne), k1sh, [xFinal_1]

Mathematical Expression

$$\frac{\text{k1sh} \cdot [\text{xFinal}_1] \cdot \frac{\text{AIh}}{1-\text{AIh}} + \text{apopFBL} \cdot [\text{xFinal}_1]}{\text{vol (compartmentOne)}}$$
(29)

7.30 Function definition Function_for_R_28

Name Function for R_28

Arguments Ptah, vol (compartmentOne), k1ah, n, omega, [xFinal_1], [xFinal_2], [xFinal_8]

Mathematical Expression

$$\frac{omega \cdot \left[xFinal_1\right] \cdot \frac{k1ah}{1 + (omega-1) \cdot \left(\frac{\left[xFinal_2\right] + \left[xFinal_8\right]}{Ptah}\right)^n}}{vol\left(compartmentOne\right)} \tag{30}$$

7.31 Function definition Function_for_R_29

Name Function for R_29

Arguments aProl, bProl, vol (compartmentOne), doseBL, gamma2, [xFinal_2]

$$\frac{\text{aProl} \cdot \text{gamma2} \cdot \exp(\text{bProl} \cdot \text{doseBL}) \cdot [\text{xFinal}_2]}{\text{vol}(\text{compartmentOne})}$$
(31)

7.32 Function definition Function_for_R_30

Name Function for R₋₃₀

Arguments AIh, apopFBL, vol (compartmentOne), k2s, [xFinal_2]

Mathematical Expression

$$\frac{\text{k2s} \cdot [\text{xFinal}_2] \cdot \frac{\text{AIh}}{1 - \text{AIh}} + \text{apopFBL} \cdot [\text{xFinal}_2]}{\text{vol}(\text{compartmentOne})}$$
(32)

7.33 Function definition Function_for_R_31

Name Function for R_31

Arguments vol (compartmentOne), km1, [xFinal_2]

Mathematical Expression

$$\frac{\text{km1} \cdot [\text{xFinal}_2]}{\text{vol}(\text{compartmentOne})}$$
 (33)

7.34 Function definition Function_for_R_33

Name Function for R₋₃₃

Arguments Pscmax, Ptah, aProl, bProl, vol(compartmentOne), doseBL, gamma1h, k1sh, n, omega, [xFinal_1], [xFinal_2], [xFinal_8]

Mathematical Expression

$$\frac{\text{gamma1h} \cdot \frac{\frac{\text{aProl-exp (bProl-doseBL)\cdot [xFinal.1] \cdot omega\cdot [xFinal.1]}{1+(omega-1)\cdot \left(\frac{[xFinal.2]+[xFinal.8]}{Ptah}\right)^n}{\text{Pscmax}} + k1\text{sh} \cdot \left[xFinal_-1\right] \cdot \frac{\text{omega}}{1+(omega-1)\cdot \left(\frac{[xFinal.2]+[xFinal.8]}{Ptah}\right)^n}{\text{vol (compartmentOne)}}$$

7.35 Function definition Function_for_R_34

Name Function for R_34

Arguments Pscmax, Ptah, aProl, bProl, vol(compartmentOne), doseBL, gamma1h, lambda, n, omega, [xFinal_1], [xFinal_2], [xFinal_7], [xFinal_8]

$$\frac{gamma1h \cdot \frac{\frac{aProl \cdot exp \left(bProl \cdot doseBL\right) \cdot \left[xFinal.1\right] \cdot omega \cdot \left[xFinal.7\right]}{1 + \left(omega-1\right) \cdot \left(\frac{\left[xFinal.2\right] + \left[xFinal.8\right]}{Ptah}\right)^{n}}{\frac{lambda}{Pscmax}}}{vol \left(compartmentOne\right)}$$

8 Rule

This is an overview of one rule.

8.1 Rule Ka

Rule Ka is an assignment rule for parameter Ka:

$$Ka = \frac{3^{\frac{1}{2}} \cdot Psch}{10} \tag{36}$$

9 Events

This is an overview of three events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

9.1 Event Treatment_Break_after_28_days

Name Treatment Break after 28 days

Trigger condition

$$((time > 28) \land (time < 84)) \land \left(time - \left|\frac{time}{\frac{7}{3}}\right| \cdot \frac{7}{3} > Treatment_Duration\right)$$
(37)

Assignment

$$doseBL = 0 \cdot 90 \cdot skinType \tag{38}$$

9.2 Event Treatment_Start_after_28_days

Name Treatment Start after 28 days

Trigger condition

$$\left((\text{time} > 28) \land (\text{time} < 84) \right) \land \left(\text{time} - \left\lfloor \frac{\text{time}}{\frac{7}{3}} \right\rfloor \cdot \frac{7}{3} < \text{Treatment_Duration} \right) \tag{39}$$

Assignment

$$doseBL = 90 \cdot skinType \tag{40}$$

9.3 Event Treatment_Stopped_on_Day_84

Name Treatment Stopped on Day 84

Trigger condition

 $time > 84 \tag{41}$

Assignment

doseBL = 0 (42)

10 Reactions

This model contains 35 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	R_1	R_001	$xFinal_10 \longrightarrow xFinal_12$	
2	R_2	R_002	$xFinal_{-}12 \longrightarrow \emptyset$	
3	R_3	R_003	$xFinal_9 \longrightarrow xFinal_10$	
4	R_4	R_004	$xFinal_10 \longrightarrow \emptyset$	
5	R_5	R_005	$xFinal_8 \longrightarrow 2 xFinal_9$	
6	R_6	R_006	$xFinal_8 \longrightarrow xFinal_8 + xFinal_9$	
7	R_7	R_007	$xFinal_9 \longrightarrow \emptyset$	
8	R_8	R_008	$xFinal_9 \longrightarrow xFinal_8$	
9	R_9	R_009	$xFinal_7 \longrightarrow 2 xFinal_8$	
10	R_10	R_010	$xFinal_7 \longrightarrow xFinal_7 + xFinal_8$	
11	R_11	R_011	$xFinal_8 \longrightarrow 2 xFinal_8$	
12	R_12	R_012	$xFinal_8 \longrightarrow \emptyset$	
13	R_13	R_013	$xFinal_8 \longrightarrow xFinal_7$	
14	R_14	R_014	$xFinal_7 \longrightarrow 2 xFinal_7$	
15	R_15	R_015	$xFinal_6 + xFinal_7 \longrightarrow xFinal_6$	
16	$R_{-}16$	R_016	$xFinal_{-}7 \longrightarrow \emptyset$	
17	R_17	R_017	$xFinal_5 \longrightarrow xFinal_6$	
18	R_18	R_018	$xFinal_{-}6 \longrightarrow \emptyset$	
19	R_19	R_019	$xFinal_4 \longrightarrow xFinal_5$	
20	R_20	R_020	$xFinal_5 \longrightarrow \emptyset$	
21	R_21	R_021	$xFinal_3 \longrightarrow xFinal_4$	
22	R_22	R_022	$xFinal_4 \longrightarrow \emptyset$	

No	Id	Name	Reaction Equation	SBO
23	R_23	R_023	xFinal_2 → 2 xFinal_3	
24	R_24	R_024	$xFinal_2 \longrightarrow xFinal_2 + xFinal_3$	
25	R_25	R_025	$xFinal_3 \longrightarrow \emptyset$	
26	R_26	R_026	$xFinal_3 \longrightarrow xFinal_2$	
27	R_27	R_027	$xFinal_1 + xFinal_2 + xFinal_8 \longrightarrow xFinal_1 +$	
			$3 xFinal_2 + xFinal_8$	
28	R_28	R_028	$xFinal_1 + xFinal_2 + xFinal_8 \longrightarrow xFinal_1 +$	
			2 xFinal_2 + xFinal_8	
29	R_29	R_029	$xFinal_2 \longrightarrow 2 xFinal_2$	
30	R_30	R_030	$xFinal_2 \longrightarrow \emptyset$	
31	R_31	R_031	$xFinal_2 \longrightarrow xFinal_1$	
32	R_32	R_032	$xFinal_1 + xFinal_2 + xFinal_8 \longrightarrow 2 xFinal_1 +$	
			xFinal_2 + xFinal_8	
33	R_33	R_033	$xFinal_1 + xFinal_2 + xFinal_8 \longrightarrow xFinal_2 +$	
			xFinal_8	
34	R_34	R_034	xFinal_1 + xFinal_2 + xFinal_7 +	
			$xFinal_8 \longrightarrow xFinal_2 + xFinal_7 + xFinal_8$	
35	R_35	R_035	$xFinal_1 \longrightarrow \emptyset$	

10.1 Reaction R_1

This is an irreversible reaction of one reactant forming one product.

Name R_001

Reaction equation

$$xFinal_10 \longrightarrow xFinal_12$$
 (43)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
xFinal_10	Spinous cells	

Product

Table 7: Properties of each product.

ruere //rrep	ermes or emem p	
Id	Name	SBO
xFinal_12	Corneocytes	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}(Psoriatic}) \cdot Function_for_R_1(\text{vol}(compartmentOne}), k4, rhoTr, [xFinal_10])$$
 (44)

$$Function_for_R_1 \left(vol \left(compartmentOne \right), k4, rhoTr, \left[xFinal_10 \right] \right) = \frac{k4 \cdot rhoTr \cdot \left[xFinal_10 \right]}{vol \left(compartmentOne \right)} \tag{45}$$

$$Function_for_R_1\left(vol\left(compartmentOne\right),k4,rhoTr,\left[xFinal_10\right]\right) = \frac{k4\cdot rhoTr\cdot\left[xFinal_10\right]}{vol\left(compartmentOne\right)} \tag{46}$$

10.2 Reaction R_2

This is an irreversible reaction of one reactant forming no product.

Name $R_{-}002$

Reaction equation

$$xFinal_1 = 0$$
 (47)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
xFinal_12	Corneocytes	

Kinetic Law

Derived unit contains undeclared units

 $v_2 = \text{vol}\left(\text{Psoriatic}\right) \cdot \text{Function_for_R_2}\left(\text{alpha}, \text{apopFBL}, \text{vol}\left(\text{compartmentOne}\right), \text{rhoDe}, [\text{xFir}(\text{all8})2]\right)$

$$Function_for_R_2 (alpha, apopFBL, vol (compartmentOne), rhoDe, [xFinal_12]) = \frac{alpha \cdot rhoDe \cdot [xFinal_12] + apopFBL \cdot [xFinal_12]}{vol (compartmentOne)}$$

$$(49)$$

$$\begin{aligned} & Function_for_R_2 \, (alpha, apopFBL, vol \, (compartmentOne) \, , rhoDe, [xFinal_12]) \\ &= \frac{alpha \cdot rhoDe \cdot [xFinal_12] + apopFBL \cdot [xFinal_12]}{vol \, (compartmentOne)} \end{aligned} \tag{50}$$

10.3 Reaction R_3

This is an irreversible reaction of one reactant forming one product.

Name R_003

Reaction equation

$$xFinal_9 \longrightarrow xFinal_10$$
 (51)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
xFinal_9	Growth Arrested Cells	

Product

Table 10: Properties of each product.

Id	Name	SBO
xFinal_10	Spinous cells	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(Psoriatic) \cdot Function_for_R_3(\text{vol}(compartmentOne), k3, rhoTr, [xFinal_9])$$
 (52)

$$Function_for_R_3 \ (vol \ (compartmentOne) \ , k3, rhoTr, [xFinal_9]) = \frac{k3 \cdot rhoTr \cdot [xFinal_9]}{vol \ (compartmentOne)}$$

$$(53)$$

$$Function_for_R_3 \left(vol \left(compartmentOne \right), k3, rhoTr, [xFinal_9] \right) = \frac{k3 \cdot rhoTr \cdot [xFinal_9]}{vol \left(compartmentOne \right)}$$

$$(54)$$

10.4 Reaction R_4

This is an irreversible reaction of one reactant forming no product.

Name R_004

Reaction equation

$$xFinal_{-}10 \longrightarrow \emptyset \tag{55}$$

Reactant

Table 11: Properties of each reactant.

THOSE TIVITOPETHES OF CHEST TOWNSHIP		
Id	Name	SBO
xFinal_10	Spinous cells	

Derived unit contains undeclared units

$$v_4 = \text{vol}(\text{Psoriatic})$$

· Function_for_R_4 (AId, apopFBL, vol (compartmentOne), k4, rhoTr, [xFinal_10]) (56)

$$Function_for_R_4 (AId, apopFBL, vol (compartmentOne), k4, rhoTr, [xFinal_10]) \\ = \frac{AId \cdot k4 \cdot [xFinal_10] \cdot \frac{rhoTr}{1-AId} + apopFBL \cdot [xFinal_10]}{vol (compartmentOne)}$$
 (57)

$$\begin{aligned} & Function_for_R_4\left(AId,apopFBL,vol\left(compartmentOne\right),k4,rhoTr,\left[xFinal_10\right]\right) \\ & = \frac{AId \cdot k4 \cdot \left[xFinal_10\right] \cdot \frac{rhoTr}{1-AId} + apopFBL \cdot \left[xFinal_10\right]}{vol\left(compartmentOne\right)} \end{aligned} \tag{58}$$

10.5 Reaction R_5

This is an irreversible reaction of one reactant forming one product.

Name $R_{-}005$

Reaction equation

$$xFinal_8 \longrightarrow 2xFinal_9$$
 (59)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
xFinal_8	Transit Amplifying Cells	

Product

Table 13: Properties of each product.

Id	Name	SBO
xFinal_9	Growth Arrested Cells	

Derived unit contains undeclared units

$$v_5 = \text{vol}(Psoriatic) \cdot Function_for_R_5(\text{vol}(compartmentOne), k2s, rhoTA, [xFinal_8])$$
 (60)

$$Function_for_R_5 \\ (vol \\ (compartmentOne) \\ , k2s, rhoTA, \\ [xFinal_8]) = \\ \frac{k2s \cdot rhoTA \cdot [xFinal_8]}{vol \\ (compartmentOne)} \\ (61)$$

$$Function_for_R_5 \\ (vol \\ (compartmentOne) \\ , k2s, rhoTA, [xFinal_8]) \\ = \\ \frac{k2s \cdot rhoTA \cdot [xFinal_8]}{vol \\ (compartmentOne)} \\ (62)$$

10.6 Reaction R_6

This is an irreversible reaction of one reactant forming two products.

Name R₋006

Reaction equation

$$xFinal_8 \longrightarrow xFinal_8 + xFinal_9$$
 (63)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
xFinal_8	Transit Amplifying Cells	

Products

Table 15: Properties of each product.

me	SBO
	ansit Amplifying Cells owth Arrested Cells

Derived unit contains undeclared units

$$v_6 = \text{vol}(Psoriatic) \cdot Function_for_R_6(\text{vol}(compartmentOne), k2a, rhoTA, [xFinal_8])$$
 (64)

$$Function_for_R_6 \\ (vol \\ (compartmentOne) \\ , k2a, rhoTA, \\ [xFinal_8]) = \frac{k2a \cdot rhoTA \cdot [xFinal_8]}{vol \\ (compartmentOne)} \\ (65)$$

$$Function_for_R_6 \\ (vol \\ (compartmentOne) \\ , k2a, rhoTA, [xFinal_8]) \\ = \\ \frac{k2a \cdot rhoTA \cdot [xFinal_8]}{vol \\ (compartmentOne)} \\ (66)$$

10.7 Reaction $R_{-}7$

This is an irreversible reaction of one reactant forming no product.

Name $R_{-}007$

Reaction equation

$$xFinal_{9} \longrightarrow \emptyset$$
 (67)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
xFinal_9	Growth Arrested Cells	

Kinetic Law

$$v_7 = \text{vol}(\text{Psoriatic}) \cdot \text{Function_for_R_7}(\text{AId}, \text{apopFBL}, \text{vol}(\text{compartmentOne}), \text{k3}, \text{rhoTr}, (68)$$
[xFinal_9])

$$Function_for_R_7 (AId, apopFBL, vol (compartmentOne), k3, rhoTr, [xFinal_9])$$

$$= \frac{AId \cdot k3 \cdot [xFinal_9] \cdot \frac{rhoTr}{1-AId} + apopFBL \cdot [xFinal_9]}{vol (compartmentOne)}$$
(69)

$$Function_for_R_7 (AId, apopFBL, vol (compartmentOne), k3, rhoTr, [xFinal_9]) = \frac{AId \cdot k3 \cdot [xFinal_9] \cdot \frac{rhoTr}{1-AId} + apopFBL \cdot [xFinal_9]}{vol (compartmentOne)}$$

$$(70)$$

10.8 Reaction R_8

This is an irreversible reaction of one reactant forming one product.

Name R_008

Reaction equation

$$xFinal_9 \longrightarrow xFinal_8$$
 (71)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
xFinal_9	Growth Arrested Cells	

Product

Table 18: Properties of each product.

Id	Name	SBO
xFinal_8	Transit Amplifying Cells	

Kinetic Law

$$v_8 = \text{vol}(Psoriatic) \cdot Function_for_R_8 (\text{vol}(compartmentOne), km2, [xFinal_9])$$
 (72)

$$Function_for_R_8 \\ (vol \\ (compartmentOne) \\ , km2, [xFinal_9]) = \frac{km2 \cdot [xFinal_9]}{vol \\ (compartmentOne)} \\ (73)$$

$$Function_for_R_8 (vol (compartmentOne), km2, [xFinal_9]) = \frac{km2 \cdot [xFinal_9]}{vol (compartmentOne)}$$
(74)

10.9 Reaction R_9

This is an irreversible reaction of one reactant forming one product.

Name R₋009

Reaction equation

$$xFinal_7 \longrightarrow 2xFinal_8$$
 (75)

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
xFinal_7	Stem Cells	

Product

Table 20: Properties of each product.

Id	Name	SBO
xFinal_8	Transit Amplifying Cells	

Kinetic Law

$$v_9 = \text{vol}(\text{Psoriatic}) \cdot \text{Function_for_R_9}(\text{vol}(\text{compartmentOne}), \text{k1sh}, \text{rhoSC}, [\text{xFinal_7}])$$
 (76)

$$Function_for_R_9 \\ (vol \\ (compartmentOne) \\ , \\ k1sh, \\ rhoSC, \\ [xFinal_7]) = \\ \frac{k1sh \cdot rhoSC \cdot [xFinal_7]}{vol \\ (compartmentOne)} \\ (77)$$

$$Function_for_R_9 \\ (vol \\ (compartmentOne) \\ , \\ k1sh, \\ rhoSC, \\ [xFinal_7]) = \\ \frac{k1sh \cdot rhoSC \cdot [xFinal_7]}{vol \\ (compartmentOne)} \\ (78)$$

10.10 Reaction R_10

This is an irreversible reaction of one reactant forming two products.

Name R_010

Reaction equation

$$xFinal_7 \longrightarrow xFinal_7 + xFinal_8$$
 (79)

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
xFinal_7	Stem Cells	

Products

Table 22: Properties of each product.

Id	Name	SBO
xFinal_7	Stem Cells	
$xFinal_8$	Transit Amplifying Cells	

Kinetic Law

$$v_{10} = \text{vol}(\text{Psoriatic}) \cdot \text{Function_for_R_10} (\text{vol}(\text{compartmentOne}), \text{k1ah}, \text{rhoSC}, [\text{xFinal_7}])$$
(80)

$$\begin{aligned} & Function_for_R_10 \left(vol \left(compartmentOne \right), k1ah, rhoSC, [xFinal_7] \right) \\ &= \frac{k1ah \cdot rhoSC \cdot [xFinal_7]}{vol \left(compartmentOne \right)} \end{aligned} \tag{81}$$

$$Function_for_R_10 (vol (compartmentOne), k1ah, rhoSC, [xFinal_7]) = \frac{k1ah \cdot rhoSC \cdot [xFinal_7]}{vol (compartmentOne)}$$
(82)

10.11 Reaction R_11

This is an irreversible reaction of one reactant forming one product.

Name R₋011

Reaction equation

$$xFinal_8 \longrightarrow 2xFinal_8$$
 (83)

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
xFinal_8	Transit Amplifying Cells	

Product

Table 24: Properties of each product.

Id	Name	SBO
xFinal_8	Transit Amplifying Cells	

Kinetic Law

$$v_{11} = \text{vol}(Psoriatic) \cdot Function_for_R_11 (aProl, bProl, vol (compartmentOne), doseBL, gamma2, rhoTA, [xFinal_8])$$
 (84)

$$Function_for_R_11 \ (aProl,bProl,vol \ (compartmentOne) \ , doseBL, gamma2, rhoTA, [xFinal_8]) \\ = \frac{aProl \cdot aProl \cdot gamma2 \cdot rhoTA \cdot exp \ (bProl \cdot doseBL) \cdot exp \ (bProl \cdot doseBL) \cdot [xFinal_8]}{vol \ (compartmentOne)}$$
 (85)

$$Function_for_R_11 \ (aProl,bProl,vol \ (compartmentOne) \ , doseBL, gamma2,rhoTA, [xFinal_8]) \\ = \frac{aProl \cdot aProl \cdot gamma2 \cdot rhoTA \cdot exp \ (bProl \cdot doseBL) \cdot exp \ (bProl \cdot doseBL) \cdot [xFinal_8]}{vol \ (compartmentOne)}$$

$$(86)$$

10.12 Reaction R_12

This is an irreversible reaction of one reactant forming no product.

Name R_012

Reaction equation

$$xFinal_8 \longrightarrow \emptyset$$
 (87)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
xFinal_8	Transit Amplifying Cells	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}(\text{Psoriatic}) \cdot \text{Function_for_R_12}(\text{AId}, \text{apopFBL}, \text{vol}(\text{compartmentOne}), \text{k2s}, \\ \text{rhoTA}, [\text{xFinal_8}])$$
 (88)

$$\begin{aligned} & Function_for_R_12 \left(AId, apopFBL, vol \left(compartmentOne\right), k2s, rhoTA, [xFinal_8] \right) \\ & = \frac{AId \cdot k2s \cdot [xFinal_8] \cdot \frac{rhoTA}{1-AId} + apopFBL \cdot [xFinal_8]}{vol \left(compartmentOne\right)} \end{aligned} \tag{89}$$

$$Function_for_R_12 (AId, apopFBL, vol (compartmentOne), k2s, rhoTA, [xFinal_8]) = \frac{AId \cdot k2s \cdot [xFinal_8] \cdot \frac{rhoTA}{1-AId} + apopFBL \cdot [xFinal_8]}{vol (compartmentOne)}$$

$$(90)$$

10.13 Reaction R_13

This is an irreversible reaction of one reactant forming one product.

Name $R_{-}013$

Reaction equation

$$xFinal_8 \longrightarrow xFinal_7$$
 (91)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
xFinal_8	Transit Amplifying Cells	

Product

Table 27: Properties of each product.

Id	Name	SBO
xFinal_7	Stem Cells	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{Psoriatic}) \cdot \text{Function_for_R_13}(\text{vol}(\text{compartmentOne}), \text{km1}, [\text{xFinal_8}])$$
 (92)

$$Function_for_R_13 (vol (compartmentOne), km1, [xFinal_8]) = \frac{km1 \cdot [xFinal_8]}{vol (compartmentOne)} \quad (93)$$

$$Function_for_R_13 \\ (vol \\ (compartmentOne) \\ , \\ km1, \\ [xFinal_8]) \\ = \\ \frac{km1 \cdot [xFinal_8]}{vol \\ (compartmentOne)} \\ \tag{94}$$

10.14 Reaction R_14

This is an irreversible reaction of one reactant forming one product.

Name $R_{-}014$

Reaction equation

$$xFinal_7 \longrightarrow 2xFinal_7$$
 (95)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
xFinal_7	Stem Cells	

Product

Table 29: Properties of each product.

Id	Name	SBO
xFinal_7	Stem Cells	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}(Psoriatic) \cdot Function_for_R_14 (aProl, bProl, vol (compartmentOne), doseBL, gamma1h, rhoSC, [xFinal_7])$$
 (96)

$$Function_for_R_14 (aProl, bProl, vol (compartmentOne), doseBL, gamma1h, rhoSC, \\ [xFinal_7]) = \frac{aProl \cdot gamma1h \cdot rhoSC \cdot exp (bProl \cdot doseBL) \cdot [xFinal_7]}{vol (compartmentOne)}$$

$$(97)$$

$$\begin{aligned} & Function_for_R_14 \left(aProl,bProl,vol\left(compartmentOne\right),doseBL,gamma1h,rhoSC,\\ & [xFinal_7]\right) = \frac{aProl\cdot gamma1h\cdot rhoSC\cdot exp\left(bProl\cdot doseBL\right)\cdot [xFinal_7]}{vol\left(compartmentOne\right)} \end{aligned} \tag{98}$$

10.15 Reaction R_15

This is an irreversible reaction of two reactants forming one product.

Name R_015

Reaction equation

$$xFinal_6 + xFinal_7 \longrightarrow xFinal_6$$
 (99)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
xFinal_6	Corneocytes	
$xFinal_{-}7$	Stem Cells	

Product

Table 31: Properties of each product.

Id	Name	SBO
xFinal_6	Corneocytes	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = Function_for_R_15 (Pscmax, aProl, bProl, vol (compartmentOne), doseBL, gamma1h, lambda, rhoSC, [xFinal_6], [xFinal_7])$$
 (100)

$$\begin{aligned} & Function_for_R_15 \left(Pscmax, aProl, bProl, vol \left(compartmentOne \right), \\ & doseBL, gamma1h, lambda, rhoSC, [xFinal_6], [xFinal_7] \right) \\ & = \frac{aProl \cdot gamma1h \cdot rhoSC \cdot exp \left(bProl \cdot doseBL \right) \cdot [xFinal_7] \cdot \frac{[xFinal_6]}{lambda \cdot Pscmax}}{vol \left(compartmentOne \right)} \end{aligned} \tag{101}$$

10.16 Reaction R_16

This is an irreversible reaction of one reactant forming no product.

Name R_016

Reaction equation

$$xFinal_{-}7 \longrightarrow \emptyset \tag{102}$$

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
xFinal_7	Stem Cells	

Derived unit contains undeclared units

$$v_{16} = vol\left(Psoriatic\right) \cdot Function_for_R_16\left(AId, Ka, Kp, Pscmax, aProl, apopFBL, bProl, \\ vol\left(compartmentOne\right), doseBL, gamma1h, k1sh, lambda, rhoSC, [xFinal_7]\right)$$

$$Function_for_R_16\left(AId, Ka, Kp, Pscmax, aProl, apopFBL, bProl, \\ vol\left(compartmentOne\right), doseBL, gamma1h, k1sh, lambda, rhoSC, [xFinal_7]\right) \\ = \frac{aProl \cdot gamma1h \cdot rhoSC \cdot exp\left(bProl \cdot doseBL\right) \cdot [xFinal_7] \cdot \frac{[xFinal_7]}{lambda \cdot Pscmax} + AId \cdot k1sh \cdot [xFinal_7] \cdot \frac{rhoSC}{I-AId} + apoperation + apopera$$

10.17 Reaction R_17

This is an irreversible reaction of one reactant forming one product.

Name $R_{-}017$

Reaction equation

$$xFinal_5 \longrightarrow xFinal_6$$
 (106)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
xFinal_5	Granular Cells	

Product

Table 34: Properties of each product.

Id	Name	SBO
xFinal_6	Corneocytes	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}\left(\text{compartmentOne}\right) \cdot \text{Function_for_R_17}\left(\text{vol}\left(\text{compartmentOne}\right), \text{k5}, [\text{xFinal_5}]\right)$$
(107)

$$Function_for_R_17 \\ (vol \\ (compartmentOne) \\ , k5, [xFinal_5]) = \frac{k5 \cdot [xFinal_5]}{vol \\ (compartmentOne)} \\ (108)$$

$$Function_for_R_17 (vol (compartmentOne), k5, [xFinal_5]) = \frac{k5 \cdot [xFinal_5]}{vol (compartmentOne)} \quad (109)$$

10.18 Reaction R_18

This is an irreversible reaction of one reactant forming no product.

Name $R_{-}018$

Reaction equation

$$xFinal_6 \longrightarrow \emptyset$$
 (110)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
xFinal_6	Corneocytes	

Kinetic Law

$$v_{18} = \text{vol} (\text{compartmentOne})$$

 $\cdot \text{Function_for_R_18} (\text{alpha}, \text{apopFBL}, \text{vol} (\text{compartmentOne}), [\text{xFinal_6}])$ (111)

$$Function_for_R_18 (alpha, apopFBL, vol (compartmentOne), [xFinal_6])$$

$$= \frac{alpha \cdot [xFinal_6] + apopFBL \cdot [xFinal_6]}{vol (compartmentOne)}$$
(112)

$$Function_for_R_18 (alpha, apopFBL, vol (compartmentOne), [xFinal_6]) = \frac{alpha \cdot [xFinal_6] + apopFBL \cdot [xFinal_6]}{vol (compartmentOne)}$$
(113)

10.19 Reaction R_19

This is an irreversible reaction of one reactant forming one product.

Name R_019

Reaction equation

$$xFinal_4 \longrightarrow xFinal_5$$
 (114)

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
xFinal_4	Spinous cells	

Product

Table 37: Properties of each product.

Id	Name	SBO
xFinal_5	Granular Cells	

Kinetic Law

$$v_{19} = vol\left(compartmentOne\right) \cdot Function_for_R_19\left(vol\left(compartmentOne\right), k4, [xFinal_4]\right) \tag{115}$$

$$Function_for_R_19 (vol (compartmentOne), k4, [xFinal_4]) = \frac{k4 \cdot [xFinal_4]}{vol (compartmentOne)}$$
 (116)

$$Function_for_R_19 (vol (compartmentOne), k4, [xFinal_4]) = \frac{k4 \cdot [xFinal_4]}{vol (compartmentOne)} \quad (117)$$

10.20 Reaction R_20

This is an irreversible reaction of one reactant forming no product.

Name R_020

Reaction equation

$$xFinal_5 \longrightarrow \emptyset \tag{118}$$

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
xFinal_5	Granular Cells	

Kinetic Law

$$v_{20} = \text{vol} (\text{compartmentOne})$$

· Function_for_R_20(AIh, apopFBL, vol (compartmentOne), k5, [xFinal_5]) (119)

$$Function_for_R_20 (AIh, apopFBL, vol (compartmentOne), k5, [xFinal_5]) = \frac{k5 \cdot [xFinal_5] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_5]}{vol (compartmentOne)}$$

$$(120)$$

$$Function_for_R_20 (AIh, apopFBL, vol (compartmentOne), k5, [xFinal_5])$$

$$= \frac{k5 \cdot [xFinal_5] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_5]}{vol (compartmentOne)}$$
(121)

10.21 Reaction R_21

This is an irreversible reaction of one reactant forming one product.

Name R_021

Reaction equation

$$xFinal_3 \longrightarrow xFinal_4$$
 (122)

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
xFinal_3	Growth Arrested Cells	

Product

Table 40: Properties of each product.

	<u> </u>	<u> </u>
Id	Name	SBO
xFinal_4	Spinous cells	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol} (\text{compartmentOne}) \cdot \text{Function_for_R_21} (\text{vol} (\text{compartmentOne}), \text{k3}, [\text{xFinal_3}])$$
(123)

$$Function_for_R_21 (vol (compartmentOne), k3, [xFinal_3]) = \frac{k3 \cdot [xFinal_3]}{vol (compartmentOne)} \quad (124)$$

$$Function_for_R_21 \ (vol \ (compartmentOne) \ , k3, [xFinal_3]) = \frac{k3 \cdot [xFinal_3]}{vol \ (compartmentOne)} \quad (125)$$

10.22 Reaction R_22

This is an irreversible reaction of one reactant forming no product.

Name $R_{-}022$

Reaction equation

$$xFinal_4 \longrightarrow \emptyset$$
 (126)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
xFinal_4	Spinous cells	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol} (\text{compartmentOne})$$

· Function_for_R_22(AIh, apopFBL, vol (compartmentOne), k4, [xFinal_4]) (127)

$$\begin{aligned} & Function_for_R_22 \, (AIh, apopFBL, vol \, (compartmentOne) \, , k4, [xFinal_4]) \\ & = \frac{k4 \cdot [xFinal_4] \cdot \frac{AIh}{I-AIh} + apopFBL \cdot [xFinal_4]}{vol \, (compartmentOne)} \end{aligned} \tag{128}$$

$$\begin{aligned} & Function_for_R_22 \, (AIh, apopFBL, vol \, (compartmentOne) \, , k4, [xFinal_4]) \\ & = \frac{k4 \cdot [xFinal_4] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_4]}{vol \, (compartmentOne)} \end{aligned} \tag{129}$$

10.23 Reaction R_23

This is an irreversible reaction of one reactant forming one product.

Name $R_{-}023$

Reaction equation

$$xFinal_2 \longrightarrow 2xFinal_3$$
 (130)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
xFinal_2	Transit Amplifying Cells	

Product

Table 43: Properties of each product.

Id	Name	SBO
xFinal_3	Growth Arrested Cells	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol} (\text{compartmentOne}) \cdot \text{Function_for_R_23} (\text{vol} (\text{compartmentOne}), \text{k2s}, [\text{xFinal_2}])$$
(131)

$$Function_for_R_23 (vol (compartmentOne), k2s, [xFinal_2]) = \frac{k2s \cdot [xFinal_2]}{vol (compartmentOne)} \quad (132)$$

$$Function_for_R_23 \\ (vol \\ (compartmentOne) \\ , k2s, [xFinal_2]) = \frac{k2s \cdot [xFinal_2]}{vol \\ (compartmentOne)} \\ (133)$$

10.24 Reaction R_24

This is an irreversible reaction of one reactant forming two products.

Name R_024

Reaction equation

$$xFinal_2 \longrightarrow xFinal_2 + xFinal_3$$
 (134)

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
xFinal_2	Transit Amplifying Cells	

Products

Table 45: Properties of each product.

Id	Name	SBO
	Transit Amplifying Cells Growth Arrested Cells	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol} (\text{compartmentOne}) \cdot \text{Function_for_R_24} (\text{vol} (\text{compartmentOne}), \text{k2a}, [\text{xFinal_2}])$$
(135)

$$Function_for_R_24 \\ (vol \\ (compartmentOne) \\ , k2a, [xFinal_2]) = \frac{k2a \cdot [xFinal_2]}{vol \\ (compartmentOne)} \\ (136)$$

$$Function_for_R_24 \\ (vol \\ (compartmentOne) \\ , k2a, [xFinal_2]) = \frac{k2a \cdot [xFinal_2]}{vol \\ (compartmentOne)} \\ (137)$$

10.25 Reaction R_25

This is an irreversible reaction of one reactant forming no product.

Name $R_{-}025$

Reaction equation

$$xFinal_3 \longrightarrow \emptyset \tag{138}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
xFinal_3 Growth Arrested Cells		

Derived unit contains undeclared units

$$v_{25} = \text{vol} (\text{compartmentOne})$$

· Function_for_R_25 (AIh, apopFBL, vol (compartmentOne), k3, [xFinal_3]) (139)

$$\begin{aligned} & Function_for_R_25 \, (AIh, apopFBL, vol \, (compartmentOne) \, , k3, [xFinal_3]) \\ & = \frac{k3 \cdot [xFinal_3] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_3]}{vol \, (compartmentOne)} \end{aligned} \tag{140}$$

$$\begin{aligned} & Function_for_R_25 \, (AIh, apopFBL, vol \, (compartmentOne) \, , k3, [xFinal_3]) \\ & = \frac{k3 \cdot [xFinal_3] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_3]}{vol \, (compartmentOne)} \end{aligned} \tag{141}$$

10.26 Reaction R_26

This is an irreversible reaction of one reactant forming one product.

Name R_026

Reaction equation

$$xFinal_3 \longrightarrow xFinal_2$$
 (142)

Reactant

Table 47: Properties of each reactant.

Id	Name	SBO
xFinal_3	Growth Arrested Cells	

Product

Table 48: Properties of each product.

Id	Name	SBO
xFinal_2	Transit Amplifying Cells	

Derived unit contains undeclared units

$$v_{26} = \text{vol} (\text{compartmentOne}) \cdot \text{Function_for_R_26} (\text{vol} (\text{compartmentOne}), \text{km2}, [\text{xFinal_3}])$$
(143)

$$Function_for_R_26 \\ (vol \\ (compartmentOne) \\ , km2, [xFinal_3]) = \frac{km2 \cdot [xFinal_3]}{vol \\ (compartmentOne)} \\ (144)$$

$$Function_for_R_26 \\ (vol \\ (compartmentOne) \\ , \\ km2, \\ [xFinal_3]) = \frac{km2 \cdot [xFinal_3]}{vol \\ (compartmentOne)} \\ (145)$$

10.27 Reaction R_27

This is an irreversible reaction of three reactants forming three products.

Name R_027

Reaction equation

$$xFinal_1 + xFinal_2 + xFinal_8 \longrightarrow xFinal_1 + 3xFinal_2 + xFinal_8$$
 (146)

Reactants

Table 49: Properties of each reactant.

Id	Name	SBO
xFinal_1	Stem Cells	_
$xFinal_2$	Transit Amplifying Cells	
xFinal_8	Transit Amplifying Cells	

Products

Table 50: Properties of each product.

	<u> </u>	
Id	Name	SBO
xFinal_1	Stem Cells	
$xFinal_2$	Transit Amplifying Cells	
$xFinal_8$	Transit Amplifying Cells	

Derived unit contains undeclared units

$$v_{27} = Function_for_R_27 (Ptah, vol (compartmentOne), k1sh, n, omega, [xFinal_1], [xFinal_2], [xFinal_8])$$
 (147)

$$Function_for_R_27 (Ptah, vol (compartmentOne), k1sh, n, omega, [xFinal_1], \\ omega \cdot [xFinal_1] \cdot \frac{k1sh}{1 + (omega-1) \cdot \left(\frac{[xFinal_2] + [xFinal_8]}{Ptah}\right)^n} \\ [xFinal_2], [xFinal_8]) = \frac{vol (compartmentOne)}{vol (compartmentOne)}$$

$$(148)$$

10.28 Reaction R_28

This is an irreversible reaction of three reactants forming three products.

Name R_028

Reaction equation

$$xFinal_1 + xFinal_2 + xFinal_8 \longrightarrow xFinal_1 + 2xFinal_2 + xFinal_8$$
 (149)

Reactants

Table 51: Properties of each reactant.

Id	Name	SBO
xFinal_1	Stem Cells	
$xFinal_2$	Transit Amplifying Cells	
$xFinal_8$	Transit Amplifying Cells	

Products

Table 52: Properties of each product.

Name	SBO
Stem Cells	
Transit Amplifying Cells	
Transit Amplifying Cells	
	Stem Cells Transit Amplifying Cells

Derived unit contains undeclared units

$$v_{28} = Function_for_R_28 (Ptah, vol (compartmentOne), k1ah, n, omega, [xFinal_1], [xFinal_2], [xFinal_8])$$
 (150)

$$Function_for_R_28 (Ptah, vol (compartmentOne), k1ah, n, omega, [xFinal_1], \\ omega \cdot [xFinal_1] \cdot \frac{k1ah}{1 + (omega-1) \cdot \left(\frac{[xFinal_2] + [xFinal_8]}{Ptah}\right)^n} \\ [xFinal_2], [xFinal_8]) = \frac{vol (compartmentOne)}{vol (compartmentOne)}$$

$$(151)$$

10.29 Reaction R_29

This is an irreversible reaction of one reactant forming one product.

Name R_029

Reaction equation

$$xFinal_2 \longrightarrow 2xFinal_2$$
 (152)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
xFinal_2	Transit Amplifying Cells	

Product

Table 54: Properties of each product.

	1 1	
Id	Name	SBO
xFinal_2	Transit Amplifying Cells	-

Derived unit contains undeclared units

$$v_{29} = \text{vol (compartmentOne)} \cdot \text{Function_for_R_29 (aProl, bProl, vol (compartmentOne)}, \\ \text{doseBL, gamma2, [xFinal_2])}$$
 (153)

$$Function_for_R_29 (aProl, bProl, vol (compartmentOne), doseBL, gamma2, [xFinal_2]) = \frac{aProl \cdot gamma2 \cdot exp (bProl \cdot doseBL) \cdot [xFinal_2]}{vol (compartmentOne)}$$
(154)

$$Function_for_R_29 (aProl, bProl, vol (compartmentOne), doseBL, gamma2, [xFinal_2]) = \frac{aProl \cdot gamma2 \cdot exp (bProl \cdot doseBL) \cdot [xFinal_2]}{vol (compartmentOne)}$$
(155)

10.30 Reaction R_30

This is an irreversible reaction of one reactant forming no product.

Name R_030

Reaction equation

$$xFinal.2 \longrightarrow \emptyset \tag{156}$$

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
xFinal_2	Transit Amplifying Cells	

Kinetic Law

$$v_{30} = \text{vol} (\text{compartmentOne})$$

· Function_for_R_30 (AIh, apopFBL, vol (compartmentOne), k2s, [xFinal_2]) (157)

$$\begin{aligned} & Function_for_R_30 \, (AIh, apopFBL, vol \, (compartmentOne) \, , k2s, [xFinal_2]) \\ & = \frac{k2s \cdot [xFinal_2] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_2]}{vol \, (compartmentOne)} \end{aligned} \tag{158}$$

$$\begin{aligned} & Function_for_R_30 \, (AIh, apopFBL, vol \, (compartmentOne) \, , k2s, [xFinal_2]) \\ & = \frac{k2s \cdot [xFinal_2] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_2]}{vol \, (compartmentOne)} \end{aligned} \tag{159}$$

10.31 Reaction R_31

This is an irreversible reaction of one reactant forming one product.

Name R_031

Reaction equation

$$xFinal_2 \longrightarrow xFinal_1$$
 (160)

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
xFinal_2	Transit Amplifying Cells	

Product

Table 57: Properties of each product.

Id	Name	SBO
xFinal_1	Stem Cells	

Kinetic Law

$$v_{31} = vol\left(compartmentOne\right) \cdot Function_for_R_31\left(vol\left(compartmentOne\right), km1, [xFinal_2]\right) \tag{161}$$

$$Function_for_R_31 \ (vol \ (compartmentOne) \ , km1, [xFinal_2]) = \frac{km1 \cdot [xFinal_2]}{vol \ (compartmentOne)} \quad (162)$$

$$Function_for_R_31 \ (vol \ (compartmentOne) \ , km1, [xFinal_2]) = \frac{km1 \cdot [xFinal_2]}{vol \ (compartmentOne)} \quad (163)$$

10.32 Reaction R_32

This is an irreversible reaction of three reactants forming three products.

Name R_032

Reaction equation

$$xFinal_1 + xFinal_2 + xFinal_8 \longrightarrow 2xFinal_1 + xFinal_2 + xFinal_8$$
 (164)

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
xFinal_1	Stem Cells	
$xFinal_2$	Transit Amplifying Cells	
$xFinal_8$	Transit Amplifying Cells	

Products

Table 59: Properties of each product.

	* *	
Id	Name	SBO
xFinal_1	Stem Cells	
$xFinal_2$	Transit Amplifying Cells	
$xFinal_8$	Transit Amplifying Cells	

Kinetic Law

$$v_{32} = Function_for_R_32 (Ptah, aProl, bProl, vol (compartmentOne), doseBL, gamma1h, n, omega, [xFinal_1], [xFinal_2], [xFinal_8])$$
 (165)

$$\begin{aligned} & Function_for_R_32 \left(Ptah, aProl, bProl, vol \left(compartmentOne\right), \\ & doseBL, gamma1h, n, omega, [xFinal_1], [xFinal_2], [xFinal_8] \right) \\ & = \frac{aProl \cdot gamma1h \cdot exp \left(bProl \cdot doseBL\right) \cdot [xFinal_1] \cdot \frac{omega}{1 + \left(omega-1\right) \cdot \left(\frac{[xFinal_2] + [xFinal_8]}{Ptah}\right)^n}}{vol \left(compartmentOne\right)} \end{aligned} \tag{166}$$

10.33 Reaction R_33

This is an irreversible reaction of three reactants forming two products.

Name R_033

Reaction equation

$$xFinal_1 + xFinal_2 + xFinal_3 \longrightarrow xFinal_2 + xFinal_3$$
 (167)

Reactants

Table 60: Properties of each reactant.

	*	
Id	Name	SBO
xFinal_1	Stem Cells	
$xFinal_2$	Transit Amplifying Cells	
$xFinal_8$	Transit Amplifying Cells	

Products

Table 61: Properties of each product.

Id	Name	SBO
	Transit Amplifying Cells Transit Amplifying Cells	

Kinetic Law

$$v_{33} = Function_for_R_33 (Pscmax, Ptah, aProl, bProl, vol (compartmentOne), doseBL, gamma1h, k1sh, n, omega, [xFinal_1], [xFinal_2], [xFinal_8])$$
 (168)

 $Function_for_R_33 \ (Pscmax, Ptah, aProl, bProl, vol \ (compartmentOne) \ , \\ doseBL, gamma1h, k1sh, n, omega, [xFinal_1], [xFinal_2], [xFinal_8])$

$$= \frac{gamma1h \cdot \frac{\frac{aProl \cdot exp(bProl \cdot doseBL) \cdot [xFinal . 1] \cdot omega \cdot [xFinal . 1]}{1 + (omega - 1) \cdot \left(\frac{[xFinal . 2] + [xFinal . 8]}{Ptah}\right)^n}}{Pscmax} + k1sh \cdot [xFinal _ 1] \cdot \frac{omega}{1 + (omega - 1) \cdot \left(\frac{[xFinal . 2] + [xFinal . 8]}{Ptah}\right)^n}}{vol\left(compartmentOne\right)}$$

$$(169)$$

10.34 Reaction R_34

This is an irreversible reaction of four reactants forming three products.

Name $R_{-}034$

Reaction equation

$$xFinal_1 + xFinal_2 + xFinal_7 + xFinal_8 \longrightarrow xFinal_2 + xFinal_7 + xFinal_8$$
 (170)

Reactants

Table 62: Properties of each reactant.

Id	Name	SBO
xFinal_1	Stem Cells	
$xFinal_2$	Transit Amplifying Cells	
$xFinal_7$	Stem Cells	
$xFinal_8$	Transit Amplifying Cells	

Products

Table 63: Properties of each product.

Id	Name	SBO
$xFinal_7$	Transit Amplifying Cells Stem Cells Transit Amplifying Cells	

Derived unit contains undeclared units

$$v_{34} = Function_for_R_34 (Pscmax, Ptah, aProl, bProl, vol (compartmentOne), doseBL, gamma1h, lambda, n, omega, [xFinal_1], [xFinal_2], [xFinal_7], [xFinal_8])$$

$$(171)$$

$$\begin{aligned} & Function_for_R_34\left(Pscmax,Ptah,aProl,bProl,vol\left(compartmentOne\right),\\ & doseBL,gamma1h,lambda,n,omega,\left[xFinal_1\right],\left[xFinal_2\right],\left[xFinal_7\right],\\ & \frac{aProl\cdot exp\left(bProl\cdot doseBL\right)\cdot\left[xFinal_1\right]\cdot omega\cdot\left[xFinal_7\right]}{1+\left(omega-1\right)\cdot\left(\frac{\left[xFinal_2\right]+\left[xFinal_8\right]}{Ptah}\right)^{n}}\\ & \left[xFinal_8\right]\right) = \frac{gamma1h\cdot\frac{aProl\cdot exp\left(bProl\cdot doseBL\right)\cdot\left[xFinal_1\right]\cdot omega\cdot\left[xFinal_7\right]}{\frac{lambda}{Pscmax}}}{vol\left(compartmentOne\right)} \end{aligned} \tag{172}$$

10.35 Reaction R_35

This is an irreversible reaction of one reactant forming no product.

Name R₋035

Reaction equation

$$xFinal_{-1} \longrightarrow \emptyset \tag{173}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
$xFinal_{-}1$	Stem Cells	

Kinetic Law

$$v_{35} = \text{vol} (\text{compartmentOne})$$

· Function_for_R_35 (AIh, apopFBL, vol (compartmentOne), k1sh, [xFinal_1]) (174)

$$\begin{aligned} & Function_for_R_35 \left(AIh, apopFBL, vol\left(compartmentOne\right), k1sh, [xFinal_1]\right) \\ &= \frac{k1sh \cdot [xFinal_1] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_1]}{vol\left(compartmentOne\right)} \end{aligned} \tag{175}$$

$$Function_for_R_35 (AIh, apopFBL, vol (compartmentOne), k1sh, [xFinal_1])$$

$$= \frac{k1sh \cdot [xFinal_1] \cdot \frac{AIh}{1-AIh} + apopFBL \cdot [xFinal_1]}{vol (compartmentOne)}$$
(176)

11 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

11.1 Species xFinal_1

Name Stem Cells

Initial concentration 362 mmol·l⁻¹

This species takes part in ten reactions (as a reactant in R_27, R_28, R_32, R_33, R_34, R_35 and as a product in R_27, R_28, R_31, R_32).

$$\frac{d}{dt}xFinal_{-1} = v_{27} + v_{28} + v_{31} + 2v_{32} - v_{27} - v_{28} - v_{32} - v_{33} - v_{34} - v_{35}$$
 (177)

11.2 Species xFinal_2

Name Transit Amplifying Cells

Initial concentration 77 mmol·l⁻¹

This species takes part in 18 reactions (as a reactant in R_23, R_24, R_27, R_28, R_29, R_30, R_31, R_32, R_33, R_34 and as a product in R_24, R_26, R_27, R_28, R_29, R_32, R_33, R_34).

$$\frac{d}{dt}xFinal 2 = v_{24} + v_{26} + 3v_{27} + 2v_{28} + 2v_{29} + v_{32} + v_{33} + v_{34} - v_{23} - v_{24} - v_{27} - v_{28} - v_{29} - v_{30} - v_{31} - v_{32} - v_{33} - v_{34}$$
(178)

11.3 Species xFinal_3

Name Growth Arrested Cells

Initial concentration $61 \text{ mmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R_21, R_25, R_26 and as a product in R_23, R_24).

$$\frac{d}{dt}xFinal_3 = 2 v_{23} + v_{24} - v_{21} - v_{25} - v_{26}$$
 (179)

11.4 Species xFinal_4

Name Spinous cells

Initial concentration 238 mmol·l⁻¹

This species takes part in three reactions (as a reactant in R_19, R_22 and as a product in R_21).

$$\frac{d}{dt}xFinal_4 = |v_{21}| - |v_{19}| - |v_{22}|$$
 (180)

11.5 Species xFinal_5

Name Granular Cells

Initial concentration 119 mmol·l⁻¹

This species takes part in three reactions (as a reactant in R_17, R_20 and as a product in R_19).

$$\frac{d}{dt}xFinal_5 = |v_{19}| - |v_{17}| - |v_{20}|$$
 (181)

11.6 Species xFinal_6

Name Corneocytes

Initial concentration $185 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R_15, R_18 and as a product in R_15, R_17).

$$\frac{d}{dt}xFinal_6 = |v_{15}| + |v_{17}| - |v_{15}| - |v_{18}|$$
(182)

11.7 Species xFinal_7

Name Stem Cells

Initial concentration $6459 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in R_9, R_10, R_14, R_15, R_16, R_34 and as a product in R_10, R_13, R_14, R_34).

$$\frac{d}{dt}xFinal_{7} = |v_{10}| + |v_{13}| + 2|v_{14}| + |v_{34}| - |v_{9}| - |v_{10}| - |v_{14}| - |v_{15}| - |v_{16}| - |v_{34}|$$
(183)

11.8 Species xFinal_8

Name Transit Amplifying Cells

Initial concentration $32098 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in 20 reactions (as a reactant in R_5, R_6, R_11, R_12, R_13, R_27, R_28, R_32, R_33, R_34 and as a product in R_6, R_8, R_9, R_10, R_11, R_27, R_28, R_32, R_33, R_34).

$$\frac{d}{dt} x Final_8 = v_6 + v_8 + 2 v_9 + v_{10} + 2 v_{11} + v_{27} + v_{28} + v_{32} + v_{33} + v_{34} - v_{5} - v_{6} - v_{11} - v_{12} - v_{13} - v_{27} - v_{28} - v_{32} - v_{33} - v_{34}$$
(184)

11.9 Species xFinal_9

Name Growth Arrested Cells

Initial concentration 20536 mmol·l⁻¹

This species takes part in five reactions (as a reactant in R_3 , R_7 , R_8 and as a product in R_5 , R_6).

$$\frac{d}{dt}xFinal_{9} = 2 v_{5} + v_{6} - v_{3} - v_{7} - v_{8}$$
 (185)

11.10 Species xFinal_10

Name Spinous cells

Initial concentration 79788 mmol·l⁻¹

This species takes part in three reactions (as a reactant in R_1, R_4 and as a product in R_3).

$$\frac{d}{dt}xFinal_{1}10 = |v_{3}| - |v_{1}| - |v_{4}|$$
 (186)

11.11 Species xFinal_11

Name Granular Cells

Initial concentration $0 \text{ } mmol \cdot l^{-1}$

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x} \mathbf{Final}_{-} \mathbf{1} \mathbf{1} = 0 \tag{187}$$

11.12 Species xFinal_12

Name Corneocytes

Initial concentration $77633 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_2 and as a product in R_1).

$$\frac{\mathrm{d}}{\mathrm{d}t} x \text{Final}_{-1} 2 = \boxed{v_1 - v_2} \tag{188}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany