Chapitre 6 : équilibre d'un solide soumis à trois forces non parallèles

الوحدة 6: توازن جسم صلب خاضَع لثلاث قوى غير متوازية

Www.AdrarPhysic.Fr

Situation-problème:

Le grimpeur de montagne est en équilibre sous l'action de trois forces ; son poids et les forces de contact appliquées par le fil et la surface de la montagne.

- Quelles conditions doivent vérifier ces trois forces pour que le grimpeur reste en équilibre ?
- Quel est l'effet des forces appliquées par la surface de la montagne sur les pieds du grimpeur ?

Objectifs:

- Savoir et appliquer la première condition d'équilibre
- Utilisation du polygone des forces et la méthode analytique lors de l'étude de l'équilibre d'un corps solide
- Savoir l'expression et l'exploitation du coefficient de frottement.

Site: www.chtoukaphysique.com

Gmail: prof.jenkalrachid@gmail.com

Www.AdrarPhysic.Fr

I. Conditions d'équilibre d'un solide soumis à trois forces non parallèles :

1. Etude de l'équilibre d'un solide soumis à trois forces non parallèles ;

Activité expérimentale N°1 : faire découvrir les conditions d'équilibre d'un solide soumis à 3 forces Une plaque en polystyrène (s) de masse négligeable est maintenue en équilibre par trois dynamomètres .

Exploitation:

- 1. Déterminer le système étudié
- 2. Citer les forces extérieures agissant sur la plaque (S), puis déterminer la force qu'on peut négliger son intensité devant les intensités des autres
- 3. Remplir le tableau des caractéristiques des actions exercées sur la plaque

force	Point d'application	Droite d'action	Sens	intensité

- 4. Prolonger au crayon, sur le document expérimental, les lignes d'action de ces trois forces vers l'intérieur de la plaque, Que remarquez-vous?
- 5. Les droites d'action sont-elles coplanaires ?
- 6. En choisissant une échelle convenable, représenter les trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$
- 7. Représenter la somme vectorielle de ces trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$, que constatez-vous? 8. Conclure les conditions d'équilibre d'un solide soumis à trois forces non parallèles

Interprétation :

- 1. Le système étudié est {la plaque S }
- 2. Le bilan des forces exercées sur la plaque
 - $\overrightarrow{F_1}$: la force exercée par le dynamomètre D_1

 - $\overrightarrow{F_2}$: la force exercée par le dynamomètre D_2 $\overrightarrow{F_3}$: la force exercée par le dynamomètre D_3
 - \vec{P} : le poids de la plaque

Puisque la masse de la plaque est néglieable ($m \approx 0$), alors son poids ($P = m.g \approx 0$) est néglieable devant les intensités des autres forces ($F_1=2\ N$, $F_2=2\ N$ et $F_3=0.9\ N$) .

Donc on peut dire que la plaque S est en équilibe sous l'action de trois forces $(\overrightarrow{F_1}, \overrightarrow{F_2}, \overrightarrow{F_3})$ non parallèles

Site: www.chtoukaphysique.com

3. Les caractéristiques des forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$:

force	Point d'application	Droite d'action	Sens	intensité
$\overrightarrow{F_1}$	A_1	La droite confondue avec	De A_1 vers D_1	$F_1 = 2 N$
1		le fil du dynamomètre D ₁		
$\overrightarrow{F_2}$	A_2	La droite confondue avec	De A ₂ vers D ₂	$F_2 = 2 N$
		le fil du dynamomètre D ₂		
$\overrightarrow{F_3}$	A_3	La droite confondue avec	De A ₃ vers D ₃	$F_3 = 0.9 \text{ N}$
3		le fil du dynamomètre D ₃		

4. Voir le schéma ci-dessous

On remarque les trois lignes d'action se coupent en un même point : on dit que les droites d'action des trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ sont concourantes

- 5. Après avoir réalisé l'équilibre de la plaque, l'expérience montre que les trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ non parallèle sont situées dans un même plan, on dit que les trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ sont coplanaires.
- 6. Représentation des forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$: Voir le schéma ci-dessus On utilise l'échelle suivante : 1 cm \rightarrow 1 N
- 7. Voir le schéma ci-dessus.

On représente la somme vectorielle de trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$. on obtient une ligne polygonale fermée. Donc on constate que la somme vectorielle de ces trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ est égale au vecteur nul : $\overrightarrow{F_1}$ + $\overrightarrow{F_2}$ + $\overrightarrow{F_3}$ = $\overrightarrow{0}$

8. Les conditions d'équilibre :

Pour qu'un solide soit en équilibre sous l'action de trois forces non parallèles, il faut que :

- a) Les droites d'action des trois forces soient coplanaires et concourantes.
- b) la somme vectorielle des forces soit égale au vecteur nul : $\overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3} = \overrightarrow{0}$ (On dit que la dynamique des forces est un triangle fermée / la ligne polygonale est fermée)

2. Conclusion:

Lorsqu'un solide soumis à trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ non parallèles est en équilibre, alors :

- la somme vectorielle des trois forces est égale au vecteur nul : $\overrightarrow{F_1}$ + $\overrightarrow{F_2}$ + $\overrightarrow{F_3}$ = $\overrightarrow{0}$ ou la ligne polygonale des trois forces est fermée . cette condition est nécessaire pour que le centre d'inertie G du corps soit au repos
- les droites d'action des trois forces sont coplanaires et concourantes. cette condition est nécessaire pour l'absence de rotation du corps autour de lui-même, sil la première condition est vérifiée.

Site: www.chtoukaphysique.com

II. Application: méthode géométrique, méthode analytique

- 1. Equilibre d'un solide sur un plan incliné: cas d'un contact sans frottement
 - **♣** Activité expérimentale N°2 : étude de l'équilibre d'un solide sur un plan incliné :

Un solide S de masse m = 360 g maintenu en équilibre, sur un plan incliné (π') d'un angle $\alpha = 25^{\circ}$ sur l'horizontale (π), grâce à un dynamomètre. Tel que T = 1,5 N.

- 1. Déterminer le système étudié
- 2. Faire l'inventaire des forces appliquées sur le solide (S)
- 3. Déterminer par deux méthodes différentes : **géométrique et** arithmétique (analytique), la réaction \vec{R} du plan sur le corps solide S (les caractéristiques de \vec{R}). Conclure

❖ Interprétation:

- 1. Le système étudié est le corps (S)
- 2. Le bilan des forces exercées sur la masse marquée:
 - \vec{P} : Le poids du corps (S)
 - \vec{T} : La force exercée par le dynamomètre
 - \vec{R} : La réaction du plan incliné (la force exercée par le plan incliné sur le corps (S))
- 3. Déterminons \vec{R} La réaction du plan incliné par deux méthodes : géométrique et analytique
 - **❖** Méthode géométrique / méthode graphique : (on trace la ligne polygonale)

Le corps est en équilibre sous l'action de trois forces \vec{P} , \vec{T} et \vec{R} donc $\vec{P} + \vec{T} + \vec{R} = \vec{0}$, alors la ligne polygonale est fermée (la dynamique des forces est un triangle fermé).

La connaissance des caractéristiques de \vec{P} et \vec{T} permet de tracer la ligne polygonale fermée et par conséquent, on peut déterminer les caractéristiques de \vec{R}

Donc pour tracer la somme des forces , on commence par \vec{T} qui a une droite d'action incliné d'un angle $\alpha = 25^{\circ}$ puis \vec{P} le poids qui est perpendiculaire au plan (π) et dirigé vers le bas , alors pour déterminer \vec{R} (les caractéristiques de \vec{R}) , on ferme le triangle (Voir le schéma)

Pour représenter les forces on utilise l'échelle suivante : $1,5 \text{ N} \rightarrow 2 \text{ cm}$

- ✓ Pour \vec{T} : On a T = 1,5 N \rightarrow 2 cm
- ✓ Pour \vec{P} : on a 1,5 N \rightarrow 2 cm

$$P = m . g = 360 . 10^{-3} . 10 = 3,6 N \rightarrow X cm$$

Alors
$$X = \frac{3.6 N \times 2 cm}{1.5N}$$
 donc $X = 4.8 cm$

Remarque : On remarque que la direction de \overrightarrow{R} est perpendiculaire au plan incliné (π'), cela signifie que le contact entre le solide et le plan se fait sans frottement.

Site: www.chtoukaphysique.com

Gmail: prof.jenkalrachid@gmail.com

Www.AdrarPhysic.Fr

- Les caractéristiques de \vec{R}
- Le point d'application : le point A,
- La droite d'action : droite perpendiculaire au plan incliné (π') et passant par le point A
- Le sens : vers le haut
- L'intensité : on peut déterminer R L'intensité de \vec{R} par deux méthodes
 - ✓ Méthode 1 : L'échelle : on a $1.5 \text{ N} \rightarrow 2 \text{ cm}$

$$R = ? N \rightarrow 4,36 \text{ cm}$$
 Alors $R = \frac{1,5 N \times 4,36 cm}{2 \text{ cm}}$ donc $R = 3,27 \text{ N}$

✓ Méthode 2 : théorème de Pythagore : (méthode trigonométrique)

D'après le théorème de Pythagore on a
$$R^2 + T^2 = P^2$$
, alors $R^2 = P^2 - T^2$ donc $\mathbf{R} = \sqrt{P^2 - T^2}$

AN
$$R = 3.27 \text{ N}$$

* Méthode Arithmétique ou Analytique : (projection des forces sur les axes d'un repère)

Cette méthode consiste sur la projection de la relation $\sum \vec{F}_{ext} = \vec{0}$ sur les axes d'un repère R(O, \vec{i} , \vec{j} , \vec{k}) quelconque.

considérons un repère orthonormé $R(O, \vec{l}, \vec{j}, \vec{k})$ tel que son origine O est confondu avec le centre d'inertie G du solide (S) (voir le schéma ci-contre)

Puisque le corps est en équilibre sous l'action de trois forces \vec{P} , \vec{T} et \vec{R} , alors $\vec{P} + \vec{T} + \vec{R} = \vec{0}$.

On projette cette relation sur les axes (Ox) et (Oy), et On obtient :

$$\begin{cases}
P_x + T_x + R_x = 0 \\
P_y + T_y + R_y = 0
\end{cases}$$

D'après le schéma On a :

Sin
$$\alpha = \frac{-P_x}{\frac{P}{P}}$$
 donc $\mathbf{P_x} = -\mathbf{P} \sin \alpha$
con $\alpha = \frac{-P_y}{P}$ donc $\mathbf{P_y} = -\mathbf{P} \cos \alpha$

$$T_{x} = T$$

$$T_{y} = 0$$

- P sin
$$\alpha$$
+ T + R_{x} = 0 donc
- P cos α + 0 + R_{y} = 0

Alors
$$\begin{cases} -P \sin \alpha + T + R_x = 0 & \text{donc} \\ -P \cos \alpha + 0 + R_y = 0 \end{cases} \begin{cases} R_x = P \sin \alpha - T = \text{m.g. } \sin \alpha - T \\ R_y = P \cos \alpha = \text{m.g. } \cos \alpha \end{cases}$$

AN:
$$R_{x} = 360 \cdot 10^{-3} \cdot 10 \cdot \sin 25 - 1.5 N \text{ donc } R_{x} = 0 \text{ N}$$

$$R_{v} = 360 \cdot 10^{-3} \cdot 10 \cdot \cos 25 \text{ donc } R_{v} = 3,26 \text{ N}$$
Or
$$R = R_{x}^{2} + R_{y}^{2} \text{ donc } R = \sqrt{0^{2} + 3.26^{2}} \text{ d'où } R = 3,26 \text{ N}$$

Or
$$\mathbf{R} = \sqrt{R_x^2 + R_y^2}$$
 donc $\mathbf{R} = \sqrt{0^2 + 3,26^2}$ d'où $\mathbf{R} = 3,26$ N

D'autre part, On sait que $\vec{R} = \vec{R_x} + \vec{R_y}$ donc $\vec{R} = \vec{R_y}$ puisque $\vec{R_x} = \vec{0}$, alors la réaction \vec{R} est perpendiculaire au plan incliné (π'), cela signifie que le contact entre le solide et le plan se fait sans frottement. (même résultat que celui obtenu dans la méthode précédente)

2. Equilibre d'un solide sur un plan incliné: Cas d'un contact avec frottement

♣ Activité expérimentale N°3 : Force de frottement, Angle de frottement, coefficient de frottement :

Un solide (s), de masse m = 5 Kg, est en équilibre avec frottement sur un plan incliné d'un angle $\alpha = 120^{\circ}$ par rapport à la verticale (voir la figure ci-contre)

- 1. Faire le bilan des forces extérieures agissant sur le solide et les dessiner sur le schéma de la figure
- 2. En appliquant la condition d'équilibre, déterminer :
 - a. L'intensité R de la réaction du plan incliné sur le solide
 - b. La composante normale R_N de la réaction \vec{R}
 - c. La composante tangentielle R_T de la réaction \vec{R} (la valeur de la force de frottement)
- 3. Calculer K le coefficient de frottement
- 4. Déduire φ l'angle de frottement

@chtoukaphysique

Interprétation:

- Le bilan des forces extérieurs exercées sur le solide (S):
 - \vec{P} : Le poids du solide
 - \vec{R} : La Réaction du plan incliné avec $\vec{R} = \vec{R}_N + \vec{R}_T$
- Remarque: Le plan incliné agit sur le corps solide (S) par
 - $\overrightarrow{R_N}$: La composante normale : c'est-à-dire perpendiculaire à la surface de contact. cette force empêche le solide de s'enfoncer dans le plan du support (le plan incliné)
 - $\overrightarrow{R_T}$: La composante tangentielle ou La force de frottement \vec{f} ($\vec{R}_T = \vec{f}$), elle est parallèle au plan du support (plan incliné), elle est toujours dirigée dans le sens opposé du mouvement, cette force tend à freiner le corps glissant sur le plan.

- $K = \operatorname{tg} \varphi = \frac{R_T}{R_N}$: Coefficient de frottement

Représentation des forces \vec{P} et \vec{R}

le corps (S) est en équilibre sous l'action de deux forces \vec{P} et \vec{R} , alors $\vec{P} + \vec{R} = \vec{0}$ donc $\vec{R} = -\vec{P}$, cela signifie que les deux forces ont la même droite d'action, des sens opposés et la même intensité R=P = m.g = 50 N On prend $10 \text{ N} \rightarrow 1 \text{ cm}$ comme l'échelle pour représenter ces deux forces (voir le schéma ci-dessus)

2. Etude de l'équilibre du solide (S) sur le plan incliné sous l'action de deux forces :

- a) Le corps (S) est en équilibre sous l'action de deux forces \vec{P} et \vec{R} , donc $\vec{R} = \vec{P} = 50 \text{ N}$
- b) Pour déterminer \mathbf{R}_{N} La composante normale de la réaction \mathbf{R}_{N} , on projette la relation $\mathbf{P} + \mathbf{R} = \mathbf{0}$ sur l'axe (Oy), puisque la force $\overline{R_N}$ est portée par l'axe (Oy), et on obtient : $P_V + R_V = 0$, D'après le schéma on remarque que :

$$R_y > 0$$
 et $P_Y < 0$, $R_Y = R_N$, $\cos \beta = \frac{-P_y}{P}$ ce qui donne $P_y = -P \cdot \cos \beta = -m.g \cdot \cos \beta$
Alors $-P \cdot \cos \beta + R_N = 0$ donc $R_N = P \cdot \cos \beta = m.g \cdot \cos \beta$ A.N $R_N = 43.3$ N.

c) Pour déterminer $\mathbf{R}_{\mathbf{T}}$ La composante tangentielle de la réaction $\overline{\mathbf{R}}$ (c'est-à-dire \mathbf{f} la force de **frottement**), on projette la relation $\vec{P} + \vec{R} = \vec{0}$ sur l'axe (Ox), puisque la force \vec{R}_T est portée par l'axe (Ox), et on obtient : $P_x + R_x = 0$,

D'après le schéma, on remarque que :

$$P_x > 0$$
 et $R_x < 0$, $R_y = -R_T$, $\sin\beta = \frac{P_x}{P}$ soit $P_x = P \cdot \sin\beta = -m.g \cdot \sin\beta$
Alors $P \cdot \sin\beta - R_T = 0$ donc $R_T = P \cdot \sin\beta = m.g \cdot \sin\beta$ A.N $R_T = f = 25,0$ N
On constate que $R = \sqrt{R_N^2 + R_T^2}$ (théorème de Pythagore)

3. Calculons K le coefficient de frottement :

On sait que
$$K = \lg \varphi = \frac{R_T}{R_N}$$
, AN $K = \frac{25}{43.3} = 0.58$

4. Déterminons φ l'angle de frottement :

D'après la question précédente , on a
$$\mathbf{tg}\,\varphi=0.58$$
 alors $tg^{-1}\,(\mathbf{tg}\,\varphi)=tg^{-1}\,(0.58)$, donc $\varphi=tg^{-1}\,(0.58)$ D'où $\varphi=30^\circ$

Www.AdrarPhysic.Fr