سوال اول) الف)

ب)

ج)

Taylor's method for order 4:

$$\begin{split} y_0 &= 1 \\ y_{i+1} &= y_i + hT^4(x_i, y_i) \\ T^4(x_i, y_i) &= f(x_i, y_i) + \frac{h}{2}f^{(1)}(x_i, y_i) + \frac{h^2}{6}f^{(2)}(x_i, y_i) + \frac{h^3}{24}f^{(3)}(x_i, y_i) \end{split}$$

$$f(x,y) = x + y$$

$$f^{(1)}(x,y) = 1 + y' = 1 + x + y$$

$$f^{(2)}(x,y) = 1 + y' = 1 + x + y$$

$$f^{(3)}(x,y) = 1 + y' = 1 + x + y$$

$$\begin{split} hT^4(x_i,y_i) &= (x_i+y_i) \left(h + \frac{h^2}{2} + \frac{h^3}{6} + \frac{h^4}{24} \right) + \frac{h^2}{2} + \frac{h^3}{6} + \frac{h^4}{24} = \alpha(x_i+y_i) + \alpha - 0.1 \\ y_1 &= y_0 + \alpha(x_0+y_0) + \alpha - 0.1 = 1.1103 \\ y_2 &= y_1 + \alpha(x_1+y_1) + \alpha - 0.1 = 1.1103 + \alpha(0.1+1.1103) + \alpha - 0.1 = 1.2428 \\ y_3 &= y_2 + \alpha(x_2+y_2) + \alpha - 0.1 = 1.2428 + \alpha(0.2+1.2428) + \alpha - 0.1 = 1.3997 \\ y_4 &= y_3 + \alpha(x_3+y_3) + \alpha - 0.1 = 1.4997 + \alpha(0.3+1.3997) + \alpha - 0.1 = 1.5836 \\ y_5 &= y_4 + \alpha(x_4+y_4) + \alpha - 0.1 = 1.5836 + \alpha(0.4+1.5836) + \alpha - 0.1 = 1.7974 \end{split}$$

Euler's method:

$$\begin{aligned} y_0 &= 0 \\ y_{i+1} &= y_i + hf(x_i, y_i) = y_i + 0.2(1 + x_i)\cos(2y) \\ y_1 &= y_0 + 0.2(1 + 0)\cos(0) = 0.2 \\ y_2 &= y_1 + 0.2(1 + 0.1)\cos(0.2 \times 2) = 0.4026 \\ y_3 &= y_2 + 0.2(1 + 0.2)\cos(0.4026 \times 2) = 0.5689 \end{aligned}$$

Runge – Kutta for order 4:

$$y_1 = 1, h = 0.1, f(x, y) = xy^{1/3}$$

$$k_1 = hf(x_i, y_i)$$

$$k_2 = hf(x_i + 0.5h, y_i + 0.5k_2)$$

$$k_3 = hf(x_i + 0.5h, y_i + 0.5k_2)$$

$$k_4 = hf(x_{i+1}, y_i + k_3)$$

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$\begin{split} 1) \ y_{1.1} &= y_1 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1.1068 \\ k_1 &= 0.1 \times 1 \times 1^{1/3} = 0.1 \\ k_2 &= 0.1 \times 1.05 \times 1.05^{1/3} = 0.10672 \\ k_3 &= 0.1 \times 1.05 \times 1.0534^{1/3} = 0.10684 \\ k_4 &= 0.1 \times 1.1 \times 1.10684^{1/3} = 0.11376 \end{split}$$

2)
$$y_{1.2} = y_{1.1} + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1.2279$$

 $k_1 = 0.1 \times 1.1 \times y_1^{\frac{1}{3}} = 0.11378$
 $k_2 = 0.1 \times 1.15 \times (y_1 + 0.5k_1)^{\frac{1}{3}} = 0.12096$

$$k_3 = 0.1 \times 1.15 \times (y_1 + 0.5k_2)^{\frac{1}{3}} = 0.12109$$

$$k_4 = 0.1 \times 1.2 \times (y_1 + k_3)^{\frac{1}{3}} = 0.12850$$

3)
$$y_{1,3} = 1.3641$$

$$y = \frac{x}{1+x^2} \to y' = \frac{(1+x^2) - x \times 2x}{(1+x^2)^2} = \frac{1}{1+x^2} - \frac{2x^2}{(1+x^2)^2} = \frac{1}{1+x^2} - 2y^2$$

ب)

Heun's method:

$$\begin{split} y_0 &= 0, h = 0.4, \\ y_{i+1} &= y_i + \frac{h}{4} \left(f(x_i, y_i) + 3f \left(x_i + \frac{2h}{3}, y_i + \frac{2h}{3} f \left(x_i + \frac{h}{3}, y_i + \frac{h}{3} f(x_i, y_i) \right) \right) \right) \\ y_1 &= 0 + 0.1 \left(f(0,0) + 3f \left(\frac{0.8}{3}, \frac{0.8}{3} f \left(\frac{0.4}{3}, \frac{0.4}{3} f(0,0) \right) \right) \right) = 0.34182 \\ f(0,0) &= 1 \\ f\left(\frac{0.4}{3}, \frac{0.4}{3} f(0,0) \right) = 0.94698 \\ f\left(\frac{0.8}{3}, \frac{0.8}{3} f \left(\frac{0.4}{3}, \frac{0.4}{3} \right) \right) = 0.80607 \\ y_2 &= y_1 + 0.1 \left(f(0.4, y_1) + 3f \left(0.4 + \frac{0.8}{3}, y_1 + \frac{0.8}{3} f \left(0.4 + \frac{0.4}{3}, y_1 + \frac{0.4}{3} f(0.4, y_1) \right) \right) \right) = 0.48932 \\ f(0.4, y_1) &= f(0.4, 0.34182) = 0.62839 \\ f\left(0.4 + \frac{0.4}{3}, y_1 + \frac{0.4}{3} f(0.4, y_1) \right) = f(0.533333, 0.42561) = 0.41627 \\ f\left(0.4 + \frac{0.8}{3}, y_1 + \frac{0.8}{3} f \left(0.4 + \frac{0.4}{3}, y_1 + \frac{0.4}{3} f(0.4, y_1) \right) \right) = f(0.66667, 0.45286) = 0.28221 \end{split}$$

Euler's method:

$$y_0 = 0$$

 $y_{i+1} = y_i + hf(x_i, y_i)$
 $y_1 = y_0 + hf(0.0) = 0.4$
 $y_2 = y_1 + hf(0.4, 0.4) = 61682$
 $y_3 = 0.5563, y_4 = 0.4726, y_5 = 0.4063$

 $y_3 = 0.4958, y_4 = 0.4523, y_5 = 0.4016$

ج)

point	Real value	Heun's method	Euler's method	Heun's absolute E	Euler's absolute E
y1	0.3448	0.3418	0.4	0.003	0.055
y2	0.4878	0.4893	0.61682	0.0015	0.129
y3	0.4918	0.4958	0.5563	0.004	0.065
y4	0.4494	0.4523	0.4726	0.0029	0.023
y5	0.4	0.4016	0.4063	0.0016	0.0063

Heun's error \rightarrow O(h³) Euler's error \rightarrow O(h²)

$$y_{i+1} = y_i + \frac{h}{4} \left(f(x_i, y_i) + 3f\left(x_i + \frac{2h}{3}, y_i + \frac{2h}{3}f(x_i, y_i)\right) \right)$$

Taylor's expansion:

$$\begin{split} f(x_0 + h, y_0 + k) &= \sum_{i=0}^n \frac{1}{i!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^i f(x_0, y_0) + \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^{n+1} f(x_0 + h(x), y + k(y)) \\ &\to f \left(x_i + \frac{2h}{3}, y_i + \frac{2h}{3} f(x_i, y_i) \right) = f(x_i, y_i) + \frac{2h}{3} \frac{\partial f(x_i, y_i)}{\partial x} + \frac{2hf(x_i, y_i)}{3} \frac{\partial f(x_i, y_i)}{\partial y} + \frac{1}{2!} \left(\frac{2h}{3} \frac{\partial}{\partial x} + \frac{2hf(x_i, y_i)}{3} \frac{\partial}{\partial y} \right)^2 f(x', y') \\ &= f(x_i, y_i) + \frac{2h}{3} \left(\frac{\partial f(x_i, y_i)}{\partial x} + \frac{dy(x_n)}{dx} \frac{\partial f(x_i, y_i)}{\partial y} \right) + \frac{2h^2}{9} \left(\frac{\partial^2}{\partial x^2} + 2 \frac{\partial^2}{\partial x \partial y} + \frac{\partial^2}{\partial y^2} \right) f(x', y') \\ &= f(x_i, y_i) + \frac{2h}{3} \frac{df(x_i, y_i)}{dx} + O(h^2) \\ &\to y_{i+1} = y_i + \frac{h}{4} \left(f(x_i, y_i) + 3f(x_i, y_i) + 2h \frac{df(x_i, y_i)}{dx} + O(h^2) \right) = y_i + hf(x_i, y_i) + \frac{h^2}{2} \frac{df(x_i, y_i)}{dx} + O(h^3) \end{split}$$

$$\begin{split} y_{i+1} &= y_i + h\Phi(x_i, y_i) \\ \Phi(x_i, y_i) &= f(x_i, y_i) + \frac{h}{2} \frac{df(x_i, y_i)}{dx} + O(h^2) \end{split}$$

taylor's expansion for y_{i+1} :

$$\begin{aligned} y_{i+1} &= y_i + hy'(x_i) + \frac{h^2}{2}y''(x_i) + O(h^3) \\ \frac{y_{i+1} - y_i}{h} &= y'(x_i) + \frac{h}{2}y''(x_i) + O(h^2) = f(x_i, y_i) + \frac{h}{2}\frac{df(x_i, y_i)}{dx} + O(h^2) \end{aligned}$$

local truncation error

$$\frac{y_{i+1} - y_i}{h} - \Phi(x_i, y_i) = f(x_i, y_i) + \frac{h}{2} \frac{df(x_i, y_i)}{dx} + O(h^2) - \left(f(x_i, y_i) + \frac{h}{2} \frac{df(x_i, y_i)}{dx} + O(h^2)\right) = O(h^2) \rightarrow Order \ 2 \ Runge - Kutta$$

```
Adams Bashford two step method:  y_0 = 6, y_1 \rightarrow \text{find via euler's method}   h = 0.1   y_{i+1} = y_i + \frac{h}{2} \big( 3f(x_i, y_i) - f(x_{i-1}, y_{i-1}) \big)
```

```
import numpy as np
def f(t, y):
    return 0.2 * y - 0.1 * y**2
def adams_bashforth(y0, y1, t0, t1, h):
    num\_steps = int((t1 - t0) / h)
    t_values = np.linspace(t0, t1, num_steps + 1)
   y_values = np.zeros(num_steps + 1)
   y_values[0] = y0
   y_values[1] = y1
   for i in range(1, num_steps):
        y_{values}[i + 1] = y_{values}[i] + h / 2 * (
            3 * f(t_values[i], y_values[i]) - f(t_values[i - 1], y_values[i - 1])
    return y_values
y0 = 6
t0 = 0
t end = 20
h = 0.1
y1 = y0 + h * f(t0, y0)
y_adams = adams_bashforth(y0, y1, t0, t_end, h)
print(y_adams[-1])
```

```
y(20) = 2.0247649200739883
```

Taylor's method for order n:

$$y_0 = 1$$

$$y_{i+1} = y_i + hT^n(x_i, y_i)$$

$$T^n(x_i, y_i) = f(x_i, y_i) + \frac{h}{2}f^{(1)}(x_i, y_i) + \dots + \frac{h^{n-1}}{n!}f^{(n-1)}(x_i, y_i)$$

$$\rightarrow y_{i+1} = y_i + h\Phi(x_i, y_i) \text{ where } \Phi(x_i, y_i) = T^n(x_i, y_i)$$

$$\begin{split} & \textit{Taylor exapansion of } y_{i+1} \textit{ over } y_i \rightarrow y_{i+1} = y_i + hy'(x_i) + \frac{h^2}{2} y^{(2)}(x_i) + \dots + \frac{h^n}{n!} y^{(n)}(x_i) + \frac{h^{n+1}}{(n+1)!} y^{(n+1)} \big(\xi_{x_i} \big) \\ & \frac{y_{i+1} - y_i}{h} = y'(x_i) + \frac{h}{2} y^{(2)}(x_i) + \dots + \frac{h^{n-1}}{n!} y^{(n)}(x_i) + \frac{h^n}{(n+1)!} y^{(n+1)} \big(\xi_{x_i} \big) \\ & = f(x_i, y_i) + \frac{h}{2} f^{(1)}(x_i, y_i) + \dots + \frac{h^{n-1}}{n!} f^{(n-1)}(x_i, y_i) + \frac{h^n}{(n+1)!} f^{(n)} \left(\xi_{x_i}, y \left(\xi_{x_i} \right) \right) \rightarrow y^{(k)}(x_i) = f^{(k-1)}(x_i, y_i) \end{split}$$

$$\rightarrow local\ truncation\ error = \frac{y_{i+1} - y_i}{h} - \ \Phi(\mathbf{x_i}, \mathbf{y_i}) = \frac{h^n}{(n+1)!} f^{(n)}\left(\xi_{x_i}, y\left(\xi_{x_i}\right)\right) \ = O(h^n)$$

Definition 5.22 Let $\lambda_1, \lambda_2, \dots, \lambda_m$ denote the (not necessarily distinct) roots of the characteristic equation

$$P(\lambda) = \lambda^m - a_{m-1}\lambda^{m-1} - \dots - a_1\lambda - a_0 = 0$$

associated with the multistep difference method

$$w_0=\alpha, \quad w_1=\alpha_1, \quad \ldots, \quad w_{m-1}=\alpha_{m-1}$$

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \cdots + a_0w_{i+1-m} + hF(t_i, h, w_{i+1}, w_i, \dots, w_{i+1-m}).$$

If $|\lambda_i| \le 1$, for each i = 1, 2, ..., m, and all roots with absolute value 1 are simple roots, then the difference method is said to satisfy the **root condition**.

Definition 5.23

- (i) Methods that satisfy the root condition and have $\lambda=1$ as the only root of the characteristic equation with magnitude one are called **strongly stable**.
- (ii) Methods that satisfy the root condition and have more than one distinct root with magnitude one are called weakly stable.
- (iii) Methods that do not satisfy the root condition are called **unstable**.

الف)

$$w_{i+1} = 3w_i - 2w_{i-1} + hF(...) \rightarrow P(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1) \rightarrow \lambda_1 = 2, \lambda_2 = 1$$

 \rightarrow doesn't statsify root condition \rightarrow unstable

$$\begin{aligned} & \text{Local truncation error} = \frac{y_{i+1} - w_{i+1}}{h} = \frac{y_{i+1} - 3y_i + 2y_{i-1}}{h} - F(...) = \frac{y_{i+1} - 3y_i + 2y_{i-1}}{h} - \frac{13f_{i+1} - 20f_i - 5f_{i-1}}{12} \\ & = \frac{y_{i+1} - 3y_i + 2y_{i-1}}{h} - \frac{13y'_{i+1} - 20y'_i - 5y'_{i-1}}{12} \end{aligned}$$

$$\begin{split} & \text{taylor expansion for } y_{i+1} \to y_{i+1} = y_i + h y_i' + \frac{h^2}{2} y_i^{(2)} + \frac{h^3}{6} \ y_i^{(3)} + \frac{h^4}{24} y^{(4)}(x_1) \\ & \text{taylor expansion for } y_{i-1} \to y_{i-1} = y_i - h y_i' + \frac{h^2}{2} y_i^{(2)} - \frac{h^3}{6} \ y_i^{(3)} + \frac{h^4}{24} y^{(4)}(x_2) \\ & \frac{y_{i+1} - 3y_i + 2y_{i-1}}{h} = \frac{y_i + h y_i' + \frac{h^2}{2} y_i^{(2)} + \frac{h^3}{6} \ y_i^{(3)} + \frac{h^4}{24} y^{(4)}(x_1) + 2y_i - 2h y_i' + h^2 y_i^{(2)} - \frac{h^3}{3} \ y_i^{(3)} + \frac{h^4}{12} y^{(4)}(x_2) - 3y_i \\ & = -y_i' + \frac{3h}{2} y_i^{(2)} - \frac{h^2}{6} y_i^{(3)} + O(h^3) \end{split}$$

$$\begin{split} & \text{taylor expansion for } y_{i+1}' = y_i' + h y_i^{(2)} + \frac{h^2}{2} y_i^{(3)} + \frac{h^3}{6} \ y^{(4)}(x_3) \\ & \text{taylor expansion for } y_{i-1}' = y_i' - h y_i^{(2)} + \frac{h^2}{2} y_i^{(3)} - \frac{h^3}{6} \ y^{(4)}(x_4) \\ & \frac{13 y_{i+1}' - 20 y_i' - 5 y_{i-1}'}{12} = \frac{13 y_i' + 13 h y_i^{(2)} + \frac{13 h^2}{2} y_i^{(3)} + \frac{13 h^3}{6} \ y^{(4)}(x_3) - 5 y_i' + 5 h y_i^{(2)} - \frac{5 h^2}{2} y_i^{(3)} + \frac{5 h^3}{6} \ y^{(4)}(x_4) - 20 y_i'}{12} \\ & = \frac{-12 y_i' + 18 h y_i^{(2)} + 8 h^2 y_i^{(3)}}{12} + 0 (h^3) = -y_i' + \frac{3 h}{2} y_i^{(2)} + \frac{2 h^2}{2} y_i^{(3)} + 0 (h^3) \end{split}$$

$$\rightarrow \text{Local truncation error} = \frac{y_{i+1} - 3y_i + 2y_{i-1}}{h} - \frac{13y_{i+1}' - 20y_i' - 5y_{i-1}'}{12} = -\frac{5h^2}{6}y_i^{(3)} + O(h^3) = O(h^2)$$

$$\begin{split} w_{i+1} &= \frac{4}{3}w_i - \frac{1}{3}w_{i-1} + hF(...) \rightarrow P(\lambda) = \lambda^2 - \frac{4}{3}\lambda + \frac{1}{3} = \left(\lambda - \frac{1}{3}\right)(\lambda - 1) \rightarrow \ \lambda_1 = \frac{1}{3}, \lambda_2 = 1 \\ \rightarrow \text{ statsifies root condition, more than 1 root} \rightarrow \text{weakly stable} \end{split}$$

$$\text{Local truncation error} = \frac{y_{i+1} - w_{i+1}}{h} = \frac{y_{i+1} - \frac{4}{3}y_i + \frac{1}{3}y_{i-1}}{h} - \frac{2f_{i+1}}{3} = \frac{y_{i+1} - \frac{4}{3}y_i + \frac{1}{3}y_{i-1}}{h} - \frac{2y'_{i+1}}{3} = \frac{y_{i+1} - \frac{4}{3}y_i + \frac{1}{3}y_i + \frac{1}{3$$

$$\begin{split} \text{taylor expansion for } y_{i+1} \to y_{i+1} &= y_i + h y_i' + \frac{h^2}{2} y_i^{(2)} + \frac{h^3}{6} \ y_i^{(3)} + \frac{h^4}{24} y^{(4)}(x_1) \\ \text{taylor expansion for } y_{i-1} \to y_{i-1} &= y_i - h y_i' + \frac{h^2}{2} y_i^{(2)} - \frac{h^3}{6} \ y_i^{(3)} + \frac{h^4}{24} y^{(4)}(x_2) \end{split}$$

taylor expansion for
$$y_{i-1} \rightarrow y_{i-1} = y_i - hy_i' + \frac{h^2}{2}y_i^{(2)} - \frac{h^3}{6}y_i^{(3)} + \frac{h^4}{24}y^{(4)}(x_2)$$

$$\begin{split} &\frac{y_{i+1} - \frac{4}{3}y_i + \frac{1}{3}y_{i-1}}{h} = \frac{3y_{i+1} - 4y_i + y_{i-1}}{3h} \\ &= \frac{3y_i + 3hy_i' + \frac{3h^2}{2}y_i^{(2)} + \frac{h^3}{2}y_i^{(3)} + \frac{h^4}{8}y^{(4)}(x_1) + y_i - hy_i' + \frac{h^2}{2}y_i^{(2)} - \frac{h^3}{6}y_i^{(3)} + \frac{h^4}{24}y^{(4)}(x_2) - 4y_i}{3h} \\ &= \frac{2hy_i' + 2h^2y_i^{(2)} + \frac{h^3}{3}y_i^{(3)} + O(h^4)}{3h} = \frac{2y_i'}{3} + \frac{2h}{3}y_i^{(2)} + \frac{h^2}{9}y_i^{(3)} + O(h^3) \end{split}$$

$$\text{taylor expansion for } y_{i+1}' = y_i' + h y_i^{(2)} + \frac{h^2}{2} y_i^{(3)} + \frac{h^3}{6} \; y^{(4)}(x_3) \to \frac{2y_{i+1}'}{3} = \; \frac{2y_i'}{3} + \frac{2h}{3} y_i^{(2)} + \frac{h^2}{3} y_i^{(3)} + O(h^3)$$

→ Local truncation error =
$$\frac{y_{i+1} - \frac{4}{3}y_i + \frac{1}{3}y_{i-1}}{h} - \frac{2y'_{i+1}}{3} = -\frac{2h^2}{9}y_i^{(3)} + O(h^3) = O(h^2)$$