MARS: A Multi-models Agent for Remote Sensing Images

Author: Weijie Cui

Supervisor: Dr. Muhammad Shahzad

Agenda

- Background
- Problem Definition
- Literature Review
- Project Aim and Objectives
- Project Methodology
- Results
- Discussions
- Conclusions and Future Work
- Self-Reflection
- Citation of Resources

Background

Remote Sensing (RS) images are vital for environmental monitoring and disaster rescue. Though visual models has already made good progress, they are still struggling with the RS images.

Complexity

Problem Definition

 Could Agent improve the accuracy of remote sensing image analysis?

 Can we enhance visual capabilities without increasing computing resource usage?

Literature Review

Visual Models

(Detection, Segmentation)

- YOLO [1] (small & efficient)
- SAMRS [2] (big & complex)

Reinforcement Learning

(Decision-making)

 Scale-Aware classification Network (SAN) [3]

Research Gap

- Poor scalability for detecting objects of various sizes.
- Requires a large amount of computing resources.
- Not suitable for applications of IoT in Remote Sensing.

Project Aim and Objectives

MARS

Reinforcement Learning + Environment + Vision Model

Evaluation

Intersection of Union, Accuracy

Potentiality

Small or partial obscured target

Methodology - Software Structure

Methodology – Environment

Responsibilities: a source image, current window, clipped images and action spaces.

Reward pseudocode:

if found objects: confidence + 1 else if zoom in: +0.1 else: -0.2

Methodology – Reinforcement Learning

Model: Q-table

Action Space:

- Left, Up, Right, Down
- Zoom In, Zoom Out

Q-value Equation:

Q = Q + alpha * (Reward + gamma * Max-Next – Q) eps=0.15, alpha=0.5, gamma=0.9.

Methodology – Ul

Results

Application framework: Gradio.

Window

Map

Control Panel

Messages

Results

- Size insensitive: magnification levels: x1, x2, x4, and x8.
- Partially obscured √
- Small targets
- Shadowed targets

Partially Obscured

Shadowed Objects

Small objects

Results – More Samples

A carpark with large and small vehicles

A lake with docks and ships

Discussions

- Contribution: MARS built a visual search environment and verified the feasibility of integrating agents and visual models.
- Limitations: Currently, only YOLO model is integrated and focuses on classification and positioning tasks.

Conclusions and Future Work

 MARS improved the visual model's recognition accuracy, achieving greater detail without upgrading GPU resource.

Self-reflection

- MARS Framework
 - Setting up Simulation Environment
 - Training Reinforcement Learning Model
 - Integrating and Valuating MARS

- Unfinished Work
 - Quantitative evaluation of performance

Citation of Resources

[1] Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024). YOLOv10: Real-Time End-to-End Object Detection. https://arxiv.org/pdf/2405.14458.

[2] Wang, D., Zhang, J., Du, B., Xu, M., Liu, L., Tao, D., & Zhang, L. (2023). SAMRS: Scaling-up Remote Sensing Segmentation Dataset with Segment Anything Model. ArXiv.org. https://arxiv.org/abs/2305.02034.

[3] Liu, Y., Zhong, Y., Shi, S. and Zhang, L. (2024). Scale-aware deep reinforcement learning for high resolution remote sensing imagery classification. ISPRS Journal of Photogrammetry and Remote Sensing, [online] 209, pp.296–311. doi:https://doi.org/10.1016/j.isprsjprs.2024.01.013.

Thank you!

- Author: Weijie Cui
- Supervisor: Dr. Muhammad Shahzad
- Email: fk824514@student.reading.ac.uk
- Git: https://github.com/WeijieCui/MARS