Fakt 1. Π rozkład stacjonarny wtw, gdy $\Pi = \Pi P$, tj. $\forall_x \pi_x = \sum_{y \in E} \pi_y p_{y,x}$.

Uwaga 2. Jeśli Π stacjonarny, to $\forall_x \mathbb{P}_{\Pi}(X_n = x) = \pi_x$.

Twierdzenie 3. Jeśli przestrzeń stanów jest skończona, to istnieje rozkład stacjonarny.

Twierdzenie 4 (ergodyczne dla skończonej przestrzeni stanów). $(X_n)_{n>0}$ *l.M. nieokresowy*, $nieprzywiedlny, o macierzy przejścia P i rozkładzie stacjonarnym <math>\Pi$. Wówczas

$$\forall_{x,y\in E} \lim_{n\to\infty} p_{x,y}(n) = \pi_y,$$

a nawet $\exists_{C<\infty,\gamma<1}|p_{x,y}(n)-\pi_y|\leqslant C\cdot\gamma^n$.

Twierdzenie 5. Rozkład stacjonarny w nieprzywiedlnym ł.M. jest jednoznaczny.

Stwierdzenie 6. Skończony nieprzywiedlny ł.M., Π rozkład stacjonarny. Wtedy $\forall_x \pi_x > 0$ oraz

$$\forall_x \pi_x = \frac{1}{\mu_x}, \quad \mu_x = \mathbb{E}t_x = \mathbb{E}\inf\{n \geqslant 1 : X_n = n\}.$$

Definicja 7 (częstość przebywania w zbiorze). $\nu_A(n) = \frac{1}{n} \#\{1 \leqslant k \leqslant n : x_k \in A\}$

Twierdzenie 8 (ergodyczne znowu). (X_n) nieprzywiedlny nieokresowy l.M. o skończonej przestrzeni stanów i dowolnym rozkładzie początkowym, wtedy $\forall_{A \subset E} \lim_{n \to \infty} \nu_n(A) = \sum_{x \in A} \pi_x$ p.n., $qdzie \Pi$ to rozkład stacjonarny.

Twierdzenie 9 (ergodyczne ogólne). (X_n) nieprzywiedlny nieodwracalny t.M., dla którego istnieje rozkład stacjonarny Π . Wówczas

- (i) $\prod jest \ jedyny \ i \ \forall_{x,y} \lim_{n\to\infty} p_{x,y}(n) = \pi_y$,
- (ii) l.M. jest powracający, $\forall_x \pi_x > 0$, $\pi_x = \frac{1}{\mu_x}$, $\mu_x = \mathbb{E}_x \inf\{n \ge 1 : X_0 = x\}$,
- (iii) $\forall_{A \subset E} \lim_{n \to \infty} \nu_n(A) = \Pi(A) = \sum_{x \in A} \pi_x \ p.n.$

Definicja 10 (prawdopodobieństwo dojścia z x do F). $p_F(x) = \mathbb{P}_x (\exists_{n \ge 0} X_n \in F)$

Definicja 11 (czas oczekiwania na dojście). $m_F(x) = \mathbb{E}_x \inf\{n \ge 0 : X_n \in F\}$

Fakt 12. p_F, m_F spełniają układ równań (o jednoznacznym rozwiązaniu dla $|E| < +\infty$):

$$\begin{cases} p_F(x) = 1 & \forall_{x \in F} \\ p_F(x) = 0 & x \nrightarrow F(\iff \forall_{y \in F, n} p_{xy}(n) = 0) \\ p_F(x) = \sum_{y \in F} p_{xy} p_P(y) & \forall_{x \notin F} \end{cases}$$

$$\begin{cases} m_F(x) = 0 & \forall_{x \in F} \\ m_F(x) = \infty & p_F(x) < 1 \\ m_F(x) = 1 + \sum_{y \in F} p_{xy} m_F(y) & \forall_{x \notin F} \end{cases}$$

$$\begin{cases} m_F(x) = 0 & \forall_{x \in F} \\ m_F(x) = \infty & p_F(x) < 1 \\ m_F(x) = 1 + \sum_{y \in F} p_{xy} m_F(y) & \forall_{x \notin F} \end{cases}$$