

ACH2026 Redes de Computadores

Introdução a Segurança da Informação

Profa. Dra. Cíntia B. Margi Dezembro/2009

"A arte da guerra nos ensina a contar não com a probabilidade de o inimigo não chegar, mas com nossa própria prontidão para recebê-lo; não com a chance de não ser atacado, mas com o fato de tornar nossa posição inatacável."

A Arte da Guerra, Sun Tzu

Introdução

- Requisitos de segurança da informação mudaram nas últimas décadas...
- Tradicionalmente obtida através de meios físicos e administrativos:
 - armários e cadeados para armazenar documentos;
 - processo de contratação; etc.
- Uso de computadores requer ferramentas automatizadas para proteger arquivos e outras informações armazenadas.
- Uso de redes e enlaces de comunicação requer medidas para proteger dados durante a transmissão.

Segurança

 "Prevenir que atacantes alcancem seus objetivos através do acesso não autorizado ou uso não autorizado dos computadores e suas redes" (Howard).

Definições

- Segurança de Computador nome genérico para conjunto de ferramentas projetadas para proteger dados e impedir hackers.
- Segurança de Rede medidas para proteger os dados durante a transmissão.
- Segurança da Internet (ou de Inter-rede) medidas para proteger os dados durante a transmissão através de uma coleção de redes interconectadas.

Objetivos

Segurança de Internet:

- consiste em medidas para desencorajar, impedir, detectar e corrigir violações de segurança que envolvam a transmissão de informações.

Escola de Artes, Ciências e Humanidades Statísticas do CERT

(b) Incidents reported

da Universidade de São Paulo

EACH

Tendências de Segurança da Universidade de São Paulo

High				Intru	der Kr	nowled	dge				Low
1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001

Source: CERT

Arquitetura de Segurança OSI

- Recomendação ITU-T X.800 "Security Architecture for OSI":
 - define uma maneira sistemática para definir e prover requisitos de segurança, e caracterizar técnicas para satisfazer esses requisitos;
 - provê visão geral útil e abstrata dos conceitos que serão estudados.

3 Aspectos de Segurança

- Ataque à segurança
- Mecanismo de Segurança
- Serviço de Segurança

Escola de Artes, Ciências e Humanidades taque à Segurança da Universidade de São Paulo

- Qualquer ação que comprometa a segurança da informação pertencente a uma organização.
- Segurança da Informação tem como objetivo impedir ataques, ou se isso falhar, detectá-los.
- Ataque e ameaça são comumente usados como sinônimos, mas...

Escola de Artes, Ciências e Humanidades Meaças e Ataques da Universidade de São Paulo

Table 1.1 Threats and Attacks (RFC 2828)

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action, or event that could breach security and cause harm. That is, a threat is a possible danger that might exploit a vulnerability.

Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act that is a deliberate attempt (especially in the sense of a method or technique) to evade security services and violate the security policy of a system.

Escola de Artes, Ciências e Humanidades taque à Segurança da Universidade de São Paulo

- Classificação de ataques (tanto X.800 como RFC2828):
 - passivo;
 - ativo.
- Qualquer um destes tipos de ataque irá alterar o fluxo normal da informação.

Ataques Passivos

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

- São aqueles onde a mensagem é apenas observada ou copiada.
- Um exemplo deste tipo de ataque é a interceptação.

Ataques Ativos

- São aqueles onde a mensagem sofre alterações ou é desviada.
- Exemplos: disfarce, repetição, modificação e negação de serviço.

Serviços de Segurança da Universidade de São Paulo

- X.800: serviço fornecido por uma camada de protocolo de comunicação de sistemas abertos, que garante a segurança adequada dos sistemas ou das transferências de dados
- RFC2828: serviço de processamento ou comunicação que é fornecido por um sistema para prover um tipo específico de proteção aos recursos do sistema; os serviços de segurança implementam políticas (ou diretrizes) de segurança e são implementados por mecanismos de segurança.

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (X.800)

- Autenticação
- Controle de Acesso
- Confidencialidade dos dados
- Integridade dos dados
- Irretratabilidade (Non-Repudiation)
- Disponibilidade de acordo com a recomendação, é uma propriedade associada aos serviços.

Autenticidade

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

- Requer que a origem ou o originador de uma mensagem seja corretamente identificado.
- A verificação de autenticidade é necessária após todo processo de identificação, seja de um usuário para um sistema, de um sistema para o usuário ou de um sistema para outro sistema.

Escola de Artes, Ciências e Humanidad Ontro e de Acesso da Universidade de São Paulo

- Consiste na capacidade de se permitir ou negar acesso aos serviços e recursos oferecidos pelo sistema.
- Acessos desconhecidos ou feitos por pessoas não autorizadas podem significar a necessidade de uma verificação de todos os recursos envolvidos em busca de possíveis estragos que possam ter sido causados ao sistema, mesmo que nada tenha ocorrido.

Escola de Artes, Ciências e Humanidades Confidencia de Confidencia

- Consiste em proteger a informação contra leitura ou cópia por alguém que não tenha sido explicitamente autorizado pelo proprietário daquela informação.
- A informação deve ser protegida qualquer que seja a mídia que a contenha: impressa, digital, etc...

Serviços de Segurança Integridade

- Consiste em proteger a informação (ou programas do sistema) contra modificação sem a permissão explicita do proprietário daquela informação.
- A modificação inclui ações como escrita, alteração de conteúdo, alteração de status, remoção, criação e o atraso de informações transmitidas.

Irretratabilidade

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

- Requer que o originador de uma mensagem (ou ação) não possa negar futuramente o envio da mensagem (ou a realização da ação).
- Do mesmo modo, o receptor de uma mensagem (ou ação) não deve ser capaz de negar o recebimento da mensagem (ou ação).

Disponibilidade

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

- Consiste na proteção dos serviços prestados pelo sistema de forma que eles não sejam degradados ou tornem-se indisponíveis sem autorização.
- Um sistema indisponível quando um usuário autorizado necessita dele pode resultar em perdas tão graves quanto as causadas pela remoção das informações daquele sistema.

Mecanismos de Segurança

 Um processo (ou um dispositivo incorporando tal processo) que é projetado para detectar, impedir ou permitir a recuperação de um ataque a segurança.

MECANISMOS DE SEGURANÇA ESPECÍFICOS

Podem ser incorporados à camada de protocolo apropriada a fim de oferecer alguns dos serviços de segurança OSI.

Cifragem

O uso de algoritmos matemáticos para transformar os dados em um formato que não seja prontamente decifrável. A transformação e subsequente recuperação dos dados depende de um algoritmo e zero ou mais chaves de criptografia.

Assinatura digital

Dados anexados a (ou uma transformação criptográfica de) uma unidade de dados que permite que um destinatário da unidade de dados comprove a origem e a integridade da unidade de dados e proteja-se contra falsificação (por exemplo, pelo destinatário).

Controle de acesso

Uma série de mecanismos que impõem direitos de acesso aos recursos.

Integridade de dados

Uma série de mecanismos utilizados para garantir a integridade de uma unidade de dados ou fluxo de unidades de dados.

Troca de informações de autenticação

Um mecanismo com o objetivo de garantir a identificação de uma entidade por meio da troca de informações.

Preenchimento de tráfego

A inserção de bits nas lacunas de um fluxo de dados para frustrar as tentativas de análise de tráfego.

Controle de roteamento

Permite a seleção de determinadas rotas fisicamente seguras para certos dados e permite mudanças de roteamento, especialmente quando existe suspeita de uma brecha de segurança.

Certificação

O uso de uma terceira entidade confiável para garantir certas propriedades de uma troca de dados.

MECANISMOS DE SEGURANÇA PERVASIVOS

Mecanismos que não são específicos a qualquer serviço de segurança OSI ou camada de protocolo específica.

Funcionalidade confiável

Aquela que é considerada como sendo correta em relação a alguns critérios (por exemplo, conforme estabelecido por uma política de segurança).

Rótulo de segurança

A marcação vinculada a um recurso (que pode ser uma unidade de dados) que nomeia ou designa os atributos de segurança desse recurso.

Detecção de evento

Detecção de eventos relevantes à segurança.

Registros de auditoria de segurança

Dados coletados e potencialmente utilizados para facilitar uma auditoria de segurança, que é uma revisão e exame independentes dos registros e atividades do sistema.

Recuperação de segurança

Lida com solicitações de mecanismos, como funções de tratamento e gerenciamento de eventos, e toma medidas de recuperação.

Table 1.4 Relationship Between Security Services and Mechanisms

Mechanism

Service	Enciph- erment	Digital signature	Access control	Data integrity	Authenti- cation exchange	Traffic padding	Routing control	Notari- zation
Peer entity authentication	Y	Y			Y			
Data origin authentication	Y	Y						
Access control			Y					
Confidentiality	Y						Y	
Traffic flow confidentiality	Y					Y	Y	
Data integrity	Y	Y		Y				
Non-repudiation		Y		Y				Y
Availability				Y	Y			

Modelo para Segurança da Rede

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Modelo de Segurança de Acesso a Rede

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Opponent

- -human (e.g., cracker)
- -software (e.g., virus, worm)

Access Channel

Gatekeeper function

Information System

Computing resources

(processor, memory, I/O)

Data

Processes

Software

Internal security controls

CERT.br

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

- http://www.cert.br/
- Centro de Estudos, Resposta e Tratamento de Incidentes de Segurança no Brasil.
- Mantido pelo NIC.br.
- É responsável por receber, analisar e responder a incidentes de segurança envolvendo redes conectadas à Internet no Brasil.

CERT.br (cont.)

- Disponibiliza estatísticas sobre incidentes no Brasil.
- Cartilha de Segurança para Internet: http://cartilha.cert.br/
- Projeto: HoneyPots Distribuídos.

Escola de Artes, Ciências e Humanidades de São Paulo Escola de Artes, Ciências e Humanidades de São Paulo

1. Navegar é preciso

 O vídeo trata do funcionamento da Internet, com suas vantagens, riscos e necessidade de proteção, principalmente mecanismos como o firewall.

2. Os Invasores

 Apresenta os tipos de códigos maliciosos e como eles podem entrar no computador do usuário, reforçando que a maioria dos códigos têm mais de um vetor de entrada e por isso mais de uma proteção é necessária.

Vídeos – Antispam.br (cont.)

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

• 3. Spam

 Aborda os tipos de spam existentes, suas diferenças e malefícios, incluindo códigos maliciosos e fraudes.

4. A Defesa

 O objetivo do vídeo é mostrar ao usuário como se proteger de ameaças e navegar com mais segurança na rede.

Bibliografia

- Livro-texto:
 - Capítulo 8 Segurança em redes de computadores
- William Stallings; "Criptografia e Segurança de Redes – Princípios e Práticas", Quarta edição. Pearson/Prentice Hall, São Paulo, 2007.
- Matt Bishop; "Introduction to Computer Security". Addison Wesley, 2005.

Dúvidas?

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo