Programação De Computadores

Professor: Yuri Frota

www.ic.uff.br/~yuri/prog.html

yuri@ic.uff.br

Usar apenas comandos de listas vistos na aula:

append (inserir elemento no final da lista)

len (tamanho da lista)

- + (concatenação de listas)
- * (multiplicação de listas)

200000000

Exercício 1): Na teoria de sistemas define-se um elemento minimax de uma matriz como sendo o menor elemento da linha em que se encontra o maior elemento da matriz (considere que não existem elementos repetidos na matriz). Faça um programa que receba uma matriz 4x4 e determine a posição (linha e coluna) do elemento minimax da matriz:

Ex:

linha com maior elemento da matriz (11) Dica: Encontre primeiro maior elemento da matriz e qual sua linha. Depois percorra essa linha para achar o menor elemento da linha

I percorre as linhas

J percorre as colunas

Encontra maior elemento da matriz, e define qual linha ele se encontra.

I percorre linha do maior elemento

Encontra menor elemento da linha e define sua coluna.

menor elemento da linha, minimax ! R- linha=2 coluna=0

200000000

Exercício 2): Faça um programa que lê dois inteiros positivos n e m (informado pelo usuário), depois recebe do usuário uma matriz de inteiros A nxm (n linhas e m colunas). O programa deve criar e preencher dois vetores SL (de dimensão n) e SC (de dimensão m), que contenham respectivamente, as somas das linhas e das colunas de A. No fim imprimir A, SL e

SC:							n?4
						SI	m?3
Ex: n=4,m=3						JL	Digite o valor de [0,0]:1
		4	2	4		2	Digite o valor de [0,1]:-2
		1	-2	4		3	Digite o valor de [0,2]:4
		6	3	1		10	Digite o valor de [1,0]:6
	Α	О	3	1	+	10	Digite o valor de [1,1]:3
	/ \	-1	2	0		1	Digite o valor de [1,2]:1
		-T	2	U		T	Digite o valor de [2,0]:-1
		5	-3	3		5	Digite o valor de [2,1]:2
		3	-3	3		3	Digite o valor de [2,2]:0
							Digite o valor de [3,0]:5
			+_				Digite o valor de [3,1]:-3
							Digite o valor de [3,2]:3
							[[1, -2, 4], [6, 3, 1], [-1, 2, 0], [5, -3, 3]]
	SC	11	0	8			[3, 10, 1, 5]
7		11	U	O			[11, 0, 8]
200000							DICA
	000						

Exercício 2): Faça um programa que lê dois inteiros positivos n e m (informado pelo usuário) , depois recebe do usuário uma matriz de inteiros A nxm (n linhas e m colunas). O programa deve criar e preencher dois vetores SL (de dimensão n) e SC (de dimensão m), que contenham respectivamente, as somas das linhas e das colunas de A. No fim imprimir A, SL e SC:

5C.								
Ex: n=4,m=3						S	L	
		1	-2	4		3		
	Α	6	3	1	+	10)	
	/ \	-1	2	0		1		
		5	-3	3		5		
			+					
	SC	11	0	8				
	000							

Dica: Primeiro calcule SL com laço duplo e depois calcule SC com outro laço duplo:

I percorre as linhas

J percorre as colunas

Realiza a soma da I-ésima linha

Guarda a soma da I-ésima linha em SL

I percorre as colunas

J percorre as linhas

Realiza a soma da I-ésima coluna

Guarda a soma da I-ésima coluna em SC

Exercício 3): Faça um programa que leia uma matriz <u>nxn</u> (imprima), troque os elementos da <u>diagonal principal</u> e da <u>diagonal secundária</u> (imprima), e inverta os elementos da primeira linha (imprima)

Ex: n=4

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

4	2	3	1	
5	7	6	8	
9	11	10	12	
16	14	15	13	

Lembrando que:

20000000

<u>Diag. Principal -> Propriedade</u>: coluna=linha

<u>Diag. Secundária -> Propriedade</u>: coluna=(n-1-linha)

Exercício 4): Dizemos que uma matriz A nxn eh um <u>Quadrado Magico</u> se a soma dos elementos <u>de cada linha</u>, a soma dos elementos <u>de cada coluna</u>, e a soma dos elementos das <u>diag. Principal e secundaria</u> são iguais. Faça um programa para ler uma matriz A nxn (informado pelo usuário) e dizer se é ou não é um quadrado mágico.

Ex: n=3

DICA	

0	4	2
4	2	0
2	0	4

Rezar

Até a próxima

Slides baseados no curso de Vanessa Braganholo