WHAT IS CLAIMED IS:

1	A process for depositing a film on a substrate disposed in a		
2	processing chamber, said process comprising the steps of:		
3	(a) introducing a process gas into said process chamber;		
4	(b) applying RF power to an inductively coupled coil to form		
5	a plasma from said process gas and deposit a first layer of said film over said		
6	substrate during a first time period;		
7	(c) maintaining said plasma during a second time period		
8	subsequent to said first time period and biasing said plasma toward said substrate to		
9	promote a sputtering effect of said plasma and deposit a second layer of said film over		
10	said first layer.		
1	2. The process of claim 1 wherein said biasing step is performed		
2	by applying RF power to capacitively coupled electrodes.		
1 ·	3. The process of claim 1 wherein said second time period is at		
2	least 10 times longer than said first time period.		
1	4. The process of claim 1/wherein said process gas comprises		
2	silicon and oxygen and said deposited film is a silicon oxide film.		
1	5. The process of claim 4, wherein said silicon oxide film is		
2	deposited at a temperature of between about 200-425 °C.		
1	6. The process of claim 4, wherein said silicon oxide film is		
2	deposited at a pressure of between about 1-25 millitorr.		
1	7. The process of claim 4, wherein said silicon oxide film is		
2	deposited at a temperature of between about 375-400°C and at a pressure of between		
3	about 4-7 millitorr.		

1	The process of claim 2, wherein the application of RF power to
2	said capacitively coupled electrodes is delayed between about 1 to 100 seconds while
3	the application of RF power to said inductively coupled coil is maintained.
1	9. The process of claim 8, wherein the application of RF power to
2	said capacitively coupled electrodes is delayed between about 5 to 20 seconds while
3	the application of RF power to said inductively coupled coil is maintained.
1	10. The process of claim 1, wherein said first layer is deposited to a
2	thickness of between about 1 to 15 percent of the thickness to which said second layer
3	is deposited.
	\mathcal{L}
1	11. The process of claim 1, wherein said film is about 1.0 microns
2	or less and said first layer is about 0.15 microns or less thick.
1	The process of claim 1 wherein said process gas comprises
2	silane and oxygen.
1	13. The process of claim 12 wherein said process gas further
2	comprises argon.
1	14. In a high-density plasma chemical vapor deposition chamber
2	having an inductively coupled coil and capacitively coupled electrodes, a process for
3	depositing a film on a substrate, said process comprising the steps of:
4	(a) introducing a process gas into said chamber;
5	(b) applying RF power to said inductively coupled coil to
6	form a plasma from said process gas and deposit a first layer of said film over said
7	substrate;
8	(c) maintaining said inductively coupled plasma and applying
9	RF power to said capacitively coupled electrodes to bias said plasma toward said
10	substrate, thereby promoting a sputtering effect of said plasma and depositing a
11	second layer of said film.

	1	15. The process of claim 14 further comprising the steps of:
	2	(d) maintaining said inductively coupled plasma and
	3	removing RF power from said capacitively coupled electrodes to stop biasing said
	4	plasma toward said substrate and deposit a third layer of said film over said substrate;
	5	(e) maintaining said inductively coupled plasma and applying
	6	RF power to said capacitively coupled electrodes to bias said plasma toward said
	7	substrate, thereby promoting a sputtering effect of said plasma and depositing a fourth
	,8	layer of said film;
	9	(f) repeating steps (d) and (e) iteratively until a selected
	10	thickness of said film is reached.
	1	16. An integrated circuit formed on a semiconductor substrate by the
W	2	method of claims 1, 14 or 15.
Д ni	(
Con (\mathcal{K}	17. A high-density plasma chemical vapor deposition system
	2	comprising:
	3 T	a housing for forming a vacuum chamber;
#	4	a vacuum pump for evacuating said vacuum chamber;
######################################	5	a pedestal, located within said housing, for holding a semiconductor
Ū, A,	6	substrate;
tia:	7	a gas distribution system for introducing a process gas into said vacuum
	8	chamber;
	9	a plasma generation system for creating an inductively coupled plasma
	10	from said process gas within said vacuum chamber and for biasing said plasma toward
	11	said substrate to enhance sputtering;
	12	a controller for controlling said vacuum pump, said gas distribution
	13	system and said plasma generation system;
	14	a memory coupled to said controller and storing a program for
	15	directing the operation of said system, said program including a set of instructions for
	16	depositing a stress-reduced film by
	17	first, controlling said gas distribution system to introduce said
	12	process are into said chamber:

19	second, controlling said plasma generation system to apply RF
20	power to said inductively coupled coil to form a plasma from said process gas and
21	deposit a first layer of said film over said substrate; and
22	third, controlling said plasma generation system to maintain said
23	inductively coupled plasma and bias said plasma toward said substrate, thereby
24	promoting a sputtering effect of said plasma and depositing a second layer of said
25	film.
2	
1	18. The apparatus of claim 17 wherein said program further includes
$\sqrt{2}$	instructions for depositing a plurality of said first layers and said second layers by
∫\ 3	fourth, controlling said plasma generation system to maintain
4	said inductively coupled plasma and stop biasing said plasma toward said substrate;
ω_{2}^{2}	fifth, controlling said plasma generation system to maintain said
(16)	inductively coupled plasma and bias said plasma toward said substrate, thereby
77	promoting a sputtering effect of said plasma; and
8	sixth, performing the second and third steps iteratively at least
9	once until a desired thickness of said film is reached.
•	19. The apparatus of claim 17 wherein said gas distribution system
	is adapted to introduce a process gas comprising silicon and oxygen into said
3	chamber.
1	20. A high-density plasma chemical vapor deposition system
2	20. A high-density plasma chemical vapor deposition system comprising:
	a housing for forming a vacuum chamber;
	a pedestal, located within said housing, for holding a semiconductor
	substrate;
	means for introducing reactants into said vacuum chamber, said
	reactants including silicon and oxygen;
	means for generating an inductively coupled plasma from said reactants
	to deposit a first layer of a silicon oxide film on said semiconductor substrate during a
10	first time period, said first layer for the reduction of mechanical stress in a
	20 21 22 23 24 25 1 2 3 4 5 6 7 8 9

subsequently deposited layer of a silicon oxide film; and

4	
	3

20					
means for biasing said plasma toward said substrate during a second					
time period after said first time period to enhance a sputtering of said plasma and					
deposit said subsequent layer.					
·					
21. The apparatus of claim 20, further comprising means for					
maintaining a pressure of between about 0.001-10 torr in said vacuum chamber while					
said films are deposited.					
22. The apparatus of claim 20, further comprising means for					
maintaining a wafer temperature of between about 100-500 °C in said vacuum					
chamber while said films are deposited.					
23. An integrated circuit formed on a semiconductor substrate, said					
integrated circuit comprising:					
(a) a plurality of active devices formed in said semiconductor					
substrate;					
(b) at least one metal layer formed above said semiconductor					
substrate; and					
(c) at least one insulating layer formed between said metal layer and					
said semiconductor substrate, said insulating layer having a plurality of patterned					
holes filled with electrically conductive material to electrically connect selected					
portions of said metal layer to selected portions of said semiconductor substrate,					
wherein said insulating layer comprises a first silicon oxide layer and a second silicon					
oxide layer, said first and said second silicon oxide layers deposited using a high-					
density plasma chemical vapor deposition process, said first silicon oxide layer					
deposited for the reduction of mechanical stress in said second silicon oxide layer.					
24. The integrated circuit of claim 23, further comprising:					
(d) a second metal layer formed above said semiconductor substrate					
and below said at least one insulating layer.					

a second insulating layer formed between said second metal

layer and said semiconductor substrate, said second insulating layer having a second

plurality of patterned holes filled with electrically conductive material to electrically

- 7 connect selected portions of said second metal layer to selected areas of said plurality
- 8 of active devices.