Spring 2023 Final Exam

Foundations of Data Science

	2	of 100 Points	Score:

Instructions

- Remove the last page of this exam that contains the list of Tables to reference while you complete the exam, and make sure you have a copy of the provided Final Reference Guide.
- Select the correct response(s) or provide a written response depending on the question type. If a prompt asks you to write code, then you can provide your own code or use the provided template. Try to provide your responses in the spaces provided. If you find that you need additional space, write your extended response(s) on one of the provided blank sheets of paper and number them, so we can connect your response to the question.
- You can assume the following code has been run, when you are writing your responses for Section B:

```
from datascience import *
import numpy as np
import matplotlib+
%matplotlib inline
import matplotlib.pyplot as plots
plots.style.use('fivethirtyeight')
```

- The Multiple choice questions (\bigcirc) and multiple answer questions (\Box) will be scored like in Canvas.
- The open response questions will be graded as:
 - 3 Points: The response is correct and may contain a very very small error.
 - 2 Points: The response will be correct with a few small edits.
 - 1 Point: A reasonable attempt was demonstrated at providing a response.
 - 0 Points: No reasonable attempt was provided.
- Once you are finished, turn in your exam and you are welcome to leave. Thank you being a part of the class!

Section A - 14 Points

- 1. (2 points) The median income from one group of US residents (Group 1) is \$58,600 while the median income for another group of US residents (Group 2) is \$42,500. What can we say for sure based on these statistics? Select all that apply.
 - \square Being identified with Group 2 will cause you to earn less than if you were identified with Group 1.
 - $\sqrt{}$ There is a measurable association between being identified with the groups and median incomes in the US.
 - \square There is a statistically significant difference between the median incomes of these two groups.
- 2. (2 points) What is a purpose of Bayes' Rule? Select all that are apply.
 - $\sqrt{}$ To quantify the impact of subjective probabilities on our predictions.
 - \square To test whether there is a causal relationship between two variables.
 - \square To evaluate the accuracy of a machine learning model on the population.
 - \Box To determine what percentage of our data lies within a certain number of standard deviations from the mean.
 - $\sqrt{}$ To update our predictions with new information.
- 3. The following histograms display the distribution of the heights of humans and non-humans based on the Star Wars character data found in the table characters. Respond to the following prompts based on these visuals.

- (a) (2 points) Based on the plot shown above, between 3% and 4% of humans have a height between 180 cm and 195 cm (not including 195 cm). Select one.

 - $\sqrt{\text{False}}$
 - This is not possible to determine from the graphic.

	iot iniciaanis	i so ciii)	onan nor	n-humans. Sele	ect one.		
○ True	е						
○ False	e						
$\sqrt{\text{ This}}$	s is not poss	sible to	determ	ine from the	graphi	ic.	
(c) (2 points) According than the stand	_				eviation	of non-huma	an heights is larger
√ Tru		01 110111					
○ False							
<u> </u>		le to det	ermine f	rom the graph	ic		
O Tillis	s is not possio			ioni ine grapii	.10.		
Rebecca Welton, or performance to make from the past 10 y columns Opponent of the columns hav	ke predictions years and put and Outcome	about us them has stri	pcoming in the ta	matches. She able called ma	random tches t	aly samples that contains	the team's matches is 6 columns. The
	Opponent	Home	Streak	Prior Goals	Goals	Outcome	
	Manchester	True	0	1.4	2	Draw	
	West Ham	True	3	2.2	4	Win	
	Everton	False	0	0.4	1	Lose	
	:	:	:	:	:		
that were won visualize the r Scat Pivo Tota Vove Line Bar (b) (2 points) Sup home games a relationship be relationship	and matches elationship be terplot of Table al Variation Derlaid Histoger Graph Chart opose Rebecca and away gan	that we stween the istance grams wants to mes. When	re lost. V nese varia o underst nich of t	Which of the following control to the followin	ollowing one. distribut	would be m	between matches nost appropriate to be tween dependent of the land

4.

(b) (2 points) Based on the plot shown above, there are more humans with a height between 180 cm

Section B - 24 Points

The following tasks focus on the Star Wars information stored in the characters and planets tables.

5. (3 points) Write code that outputs the name of the planet with the largest orbital period.

planets.___(a)___.__(b)___.item(0)

Sample Solution:

planets.sort('orbital_period', descending=True).column('name').item(0)

6. (3 points) Write code that would produce a table showing the average rotation period and the average orbital period for the planets in planets that have a temperate climate and those that don't.

planets.___(a)___.__(b)___

Sample Solution: planets.drop('name').group('has_temperate_climate', np.average)

7. (3 points) Write code that outputs a histogram of only the orbital periods for the planets that contain a temperate climate.

planets.___(a)___.__(b)___

Sample Solution:

planets.where('has_temperate_climate', True).hist('orbital_period')

	Sample Solution: planets.scatter('rotation_period', 'orbital_period')
` 1	B points) Complete the following code that produces a horizontal bar chart showing the counts of umans vs non-humans in the characters table.
_	haracters(a)((b))(c)((d))
	Sample Solution:
	characters.group('human').barh('human')
t	B points) Complete the following code that produces a table by combining the planets data with the haracters data based on the characters' homeworld values. The first few rows of the character_homeworld that your code should produce are in the Table Reference. haracter_homeworlds =(a)(b)((c),(d),(e))
	Sample Solution:
	<pre>character_homeworlds = characters.join('homeworld', planets, 'name')</pre>

11. (3 points) Write a function called weight that outputs the weight (in Newtons) of a character as if they were on Earth based on their mass. The input should be the mass (in kg) of the character as a float. To find that weight, you would multiply the mass (in kg) times the acceleration of gravity on Earth (9.8 Newtons/kg). For example, weight (84.2) would produce an output of 825.16.

```
Sample Solution:

def weight(mass):
    return mass * 9.8
```

12. (3 points) Use the 'weight' function to complete the following code that will output a table that has the same labels as characters, but with an extra column 'weight_on_Earth'. Assume the weight function you defined previously works as intended.

```
weights = characters.___(a)___
characters.with_column(___(b)___, ___(c)___)
```

```
Sample Solution:
weights = characters.apply(weight, 'mass')
characters.with_column('weight_on_Earth', weights)
```

Section C - 33 Points

3.	A cc	omputer script randomly selects a word from the following array:
	anin	mal_array = make_array('mouse', 'dog', 'dog', 'dog', 'cat', 'cat')
		(2 points) If np.random.choice(animal_array) is run, the chance that the resulting string is 'mouse' is 1 / 6. √ True
		·
	(3.)	○ False
	(b)	(3 points) If np.random.choice(animal_array) is run, what is the chance that the resulting string is 'rabbit'? Write your answer as a valid Python expression such as (3 / 16) ** 2. (Optionally, provide a short explanation of your result to help us consider partial credit in scoring.)
		Sample Solution: 0
	(c)	(3 points) If np.random.choice(animal_array, 3) is run, what is the chance that the resulting strings are all 'cat'? Write your answer as a valid Python expression such as (3 / 16) ** 2. (Optionally, provide a short explanation of your result to help us consider partial credit in scoring.)
		Sample Solution: (2 / 6) ** 3
	(d)	(3 points) If np.random.choice(animal_array, 3, replace=False) is run, what is the chance that the resulting strings are all 'dog'? Write your answer as a valid Python expression such as (3 / 16) ** 2. (Optionally, provide a short explanation of your result to help us consider partial credit in scoring.)
		Sample Solution: (3 / 6) * (2 / 5) * (1 / 4)

14.	There is a medical test for a disease that affects 1% of the people in a certain population. The test has high accuracy:
	• For a person who has the disease, the test returns a positive result with a chance of 98%.
	• For a person who does not have the disease, the test returns a negative result with a chance of 99%.
	(a) (2 points) If a randomly selected person from the population, takes the test, and the test result comes back positive, what is the probability that they actually have the disease? Select one.
	\bigcirc 0.01
	\bigcirc 0.98
	\bigcirc 0.99
	$\bigcirc 0.01 * 0.98$
	\bigcirc 0.01 * 0.99
	$\sqrt{(0.01 * 0.98) / (0.01 * 0.98 + 0.99 * 0.01)}$ $\bigcirc (0.01 * 0.99) / (0.01 * 0.99 + 0.99 * 0.98)$
	 (b) (2 points) Consider a slightly different situation where a person has symptoms of the disease and their doctor recommends that they take the test. If the test result comes back positive, what is the probability that they actually have the disease? Select one. \(\sum_{\text{The same as the probability in part a}} \)
	The same as the probability in part a.
	$\sqrt{\text{Greater than the probability in part (a)}}$.
15.	(2 points) According to the Central Limit Theorem, if a sample is large, and drawn at random from the population without replacement, then the probability distribution of the sample average is roughly normal. Select one.
	O True
	$\sqrt{\mathrm{False}}$
16.	(2 points) If a hypothesis test results in a p-value of 0%, then we know for sure that the null hypothesis is false and the alternative hypothesis is true. Select one.
	O True
	$\sqrt{ m \ False}$
17.	(2 points) An A/B Test can be used to determine if two sets of sample data were generated from the same population. Select one.
	$\sqrt{ m True}$
	() False

18. The table chocolate contains information on about 1,600 chocolate bars. You may assume that this is a simple random sample from a much larger population of chocolate bars. Belgium and Switzerland are two European countries known for their chocolate. Suppose we want to know which country's chocolate bars are rated higher on average in the population. In our sample, Belgium has a mean rating of 3.09 while Switzerland has a mean rating of 3.34, giving a mean difference of 0.25 in the sample, which we can use as an estimate of the mean difference in the population. We will use the bootstrap method to help us quantify the uncertainty of this estimate. The code below defines a function ave_rating that takes in a table tbl with the same column labels as chocolate, and a location loc, and computes the mean rating for all chocolate bars whose Location value is equal to loc. For example, ave_rating(chocolate, 'Belgium') should return 3.09.

```
def ave_rating(tbl, loc):
    loc_tbl = tbl.where('Location', are.equal_to('loc'))
    ratings = loc_tbl.column('Rating')
    return np.mean(ratings)
```

(a) (3 points) Write code to generate 5,000 bootstrap samples, compute the mean difference between the ratings of the Swiss and Belgian chocolate bars (that is, Swiss average minus Belgian average) in each bootstrap sample, and store all of the results in the array boot_diffs.

```
boot_diffs = make_array()
for ___(a)___:
   boot_table = chocolate.___(b)___
   ave_switz = ___(c)___
   ave_belgium = ___(d)___
   diff = ___(e)___
   boot_diffs = np.append(boot_diffs, ___(f)___)
```

```
Sample Solution:
boot_diffs = make_array()
for __ in np.arange(5_000):
   boot_table = chocolate.sample()
   ave_switz = ave_rating(boot_table, 'Switzerland')
   ave_belgium = ave_rating(boot_table, 'Belgium')
   diff = ave_switz - ave_belgium
   boot_diffs = np.append(boot_diffs, diff)
```

(b)	(3 points) Write code that uses boot_diffs to compute an approximate 95% confidence interval
	for the population mean difference between the ratings of Swiss and Belgian chocolate bars. After
	the code is executed, left should store the left endpoint of the interval and right should store the
	right endpoint. You may assume that boot_diffs has been computed correctly.

○ True√ False

	Sample Solution:
	<pre>left = percentile(2.5, boot_diffs) right = percentile(97.5, boot_diffs)</pre>
(c)	(2 points) Suppose that we are testing whether or not Belgian and Swiss chocolate bars have the same mean ratings in the population. Also, suppose that the numerical values of left and right turned out to be -0.03 and 0.56, respectively, so the confidence interval developed in part (b) is (-0.03, 0.56). In this particular situation, which of the following can we conclude from this hypothesis test? Select one.
	O Belgian and Swiss chocolate bars have the same mean ratings.
	Belgian and Swiss chocolate bars could have the same mean ratings.
	O Belgian and Swiss chocolate bars have different mean ratings.
(d)	(2 points) Which of the following are true based on the confidence interval above? Select all that apply.
	☐ If we repeat this process many times under the same conditions, we can expect that roughly 95% of the intervals that are created will contain the true population mean rating for Belgian chocolate bars.
	☐ If we randomly sample 1,000 chocolate bars without replacement, he can expect roughly 95% of the mean differences of chocolate bar ratings for the two countries to be between -0.03 and 0.56.
	\square 95% of mean differences of chocolate bar ratings for the two countries in the population are between -0.03 and 0.56.
	$\sqrt{\ }$ None of the above.
(e)	(2 points) There is a 95% chance that this hypothesis test will incorrectly reject the null hypothesis.

Section D - 29 Points

19. The following scatter plot shows the relationship between two numerical variables with the least-squares regression line drawn through the Points. Labels A (the triangle on the line), B (the dashed line), C (a dot), and D (the solid diagonal line) indicate various parts of the visualization. Match each term to its label/letter on the graph or "Not Pictured". Some letters may be used more than once or not at all, but there should be one correct response for each of the following parts.

- (a) (2 points) A predicted value
 - $\sqrt{\mathbf{A}}$ \bigcirc B \bigcirc C \bigcirc D \bigcirc Not Pictured
- (b) (2 points) A residual
 - \bigcirc A $\sqrt{}$ B \bigcirc C \bigcirc D \bigcirc Not Pictured
- (c) (2 points) The RMSE
 - \bigcirc A \bigcirc B \bigcirc C \bigcirc D \checkmark Not Pictured
- (d) (2 points) An observed value
 - \bigcirc A \bigcirc B $\sqrt{ }$ C \bigcirc D \bigcirc Not Pictured
- 20. Waystar is an organization that owns businesses and trades stocks in a variety of sectors including media, entertainment, tech, etc. Its executive team wants to understand the performance of its businesses. Waystar executives Siobhan and Roman put together a table called performance, which contains randomly sampled public information about the various businesses' performance over the last 40 years.
 - (a) For the next three questions, assume you know the following:
 - The Profit column has a mean of 50 and a standard deviation of 10.
 - The Year column has a mean of 2000 and a standard deviation of 5.
 - The correlation between the Profit and Year columns is 0.5.

	 i. (2 points) Suppose Siobhan wants to predict Profit from Year and decides to fit a regression line. Which of the follow is the regression line for this data? Select one ○ predicted_profit = 1 * year - 2050 ○ predicted_profit = 1 * year - 1950 ○ predicted_profit = 1 * year + 2050 ○ predicted_profit = 1 * year + 2050 ○ None of the above ii. (2 points) For Waystar businesses in 2008, what would this regression line predict as the profit? Select one.
	\bigcirc 50 \bigcirc 52 \bigcirc 54 $\sqrt{}$ 58 \bigcirc 66 \bigcirc None of the above
j	iii. (2 points) Should Siobhan make a prediction using this regression line for the year 2023? They decide to use a policy that the model should not be used for prediction if the input value is more than 3 standard deviations above or below the average for that value. Select one.
	Yes, the year is within 3 standard deviations of the sampled years.
	Yes, the year is not within 3 standard deviations of the sampled years.
	○ No, the year is within 3 standard deviations of the sampled years.
	No, the year is not within 3 standard deviations of the sampled years.
t r v	3 points) To forecast Waystar's performance, Siobhan wants to understand what the profits for the businesses might be in future years. She first creates a function called correlation, which returns the correlation between two numerical arrays. Complete her predict_profit function, which takes in a year_of_interest (int), years (np.array), profits (np.array), and returns the predicted profit for that provided year of interest. Note that the arrays years and profits can be assumed to have come from a table like performance.
	<pre>def predict_profit(year_of_interest, years, profits): r = correlation((a))</pre>
	<pre>slope = r * np.std(profits) / np.std(years) intercept =(b) predicted_profit =(c)</pre>
	return predicted_profit
	Sample Solution:
	<pre>def predict_profit(year_of_interest, years, profits):</pre>
	r = correlation(years, profits)
	<pre>slope = r * np.std(profits) / np.std(years)</pre>
	<pre>intercept = np.mean(profits) - slope * np.mean(years)</pre>

predicted_profit = intercept + slope * year_of_interest

 ${\tt return\ predicted_profit}$

21. Use a k-NN classifier to predict whether or not a planet in the Star Wars universe contains a temperate climate. The following scatter plot indicates data points associated with planets that contain a temperate climate with a solid dot and data points associated with planets without a temperate climate with a star. Each planet's rotation and orbital periods were used to plot the dots and stars.

(a) (3 points) The planet Dorin has a rotation period of 22 and an orbital period of 409. The planet Endor has a rotation period of 18 and an orbital period of 402. Based on these values, write an arithmetic expression that Python can evaluate to calculate the distance between these two data points. (Optionally, provide a short explanation to help us consider partial credit in scoring.)

Sample Solution: np.sqrt((18 - 22) ** 2 + (402 - 409) ** 2)

(b) (2 points) What has_temperate_climate label (True corresponds with a dot, False corresponds with a star) would a k-NN classifier with k = 5 assign to a planet with a rotation period of 22.5 and an orbital period of 600?

 $\sqrt{\text{True}}$

○ False

(c)	(3 points) The tables training_planets and testing_planets are randomly created from all the available planets that have a column labeled as temperate with values True or False. The data in the training_planets table is visualized in the above scatter plot. All of the test data is shown in the testing_planets table.
	The k-NN classifier with $k=5$ predicated a True label (predicting that they would have a temperate climate on at least part of the planet) for all the planets in the provided test data. What would be the accuracy of the classifier in this case? Express your answer as a fraction or decimal that Python can evaluate. (Optionally, provide a short explanation to help us consider partial credit in scoring.)
	Sample Solution: 6 / 10
(d)	(2 points) Which of the following reflections about this classification process are correct? Select all that apply.
	 □ Using a larger value for k will guarantee a higher accuracy for the classifier. □ Since the orbital period data and the rotational period data are of different magnitudes, then standardizing the data will guarantee a higher accuracy for the classifier.
	$\sqrt{\ }$ None of the above.
` -	oints) A classifier is considered to be overfitting if it performs very well on the training set, but very well on the test set. Select one
	$\sqrt{ m True}$
	○ False