INFSCI 2725 Data Analytics

Assignment 3

Zheng Liu E-mail:zhengliu@pitt.edu

Luda Wang E-mail:luw20@pitt.edu

Kewei Li E-mail:kel137@pitt.edu

1) Generate descriptive statistics and plot histograms for the following three columns: apret, tstsc, and salar.

The data description is below:

	spend	apret	top10	rejr
count	170.00	170.00	170.00	170.00
mean	10974. 51	56. 72	38. 46	30. 65
std	5500.07	18. 08	23. 41	17. 10
min	4125.00	18. 75	8. 00	0.00
25%	7371. 75	45. 37	22.00	19. 17
50%	9265.00	55. 71	30.00	27. 39
75%	12838.00	68. 69	49. 50	36. 81
max	35863.00	95. 25	98.00	84. 07
	tstsc	pacc	strat	salar
count	170.00	170.00	170.00	170.00
mean	66. 16	43. 17	16.09	61357.65
std	6. 98	13. 11	4. 01	9802.79
min	48. 13	8. 96	7. 20	38640.00
25%	61.11	33. 90	13.40	54650.00
50%	64. 78	40.85	16.00	61150.00
75%	70. 45	51.77	18. 58	67100.00
max	87. 50	76. 25	29. 20	87900.00

We performed the norm test for all data. The result table is below. Based on the P-value, we can tell the apret, strat and salar is not norm data.

	P-value	if P-value<0.05
spend	1. 58E-15	TRUE
apret	0. 137658975	FALSE
top10	1. 53E-05	TRUE
rejr	1. 36E-06	TRUE
tstsc	0.010140806	TRUE
pacc	0. 043632866	TRUE
strat	0. 077490657	FALSE
salar	0. 322014371	FALSE

We also perform the correlation with APRET. The table is below.

	Correlation
spend	0.601231173
apret	1
top10	0. 642464456
rejr	0. 514957973
tstsc	0. 782183117
pacc	-0. 302833887
strat	-0. 458311427
salar	0. 635851731

Feature with the most linear relation like is TSTSC. The least is PACC. The three histograms are below:

2) Perform linear regression of apret on tstsc and salar separately and then of apret on both tstsc and salar.

a. Regression with TSTSC

The function of APRET(Y) on TSTSC(X1) is:

Y=-77.3999+2.0271*X1

========	coef	std err	t	P> t	[0.025	0.975]
Intercept	-77.3999	8.288	-9.339	0.000	-93.762	-61.038
tstsc	2.0271	0.125	16.272		1.781	2.273

The p-value is good for coefficient.

b. Regression with SALAR

The function of APRET(Y) on SALAR(X1) is: Y=-15.2244+0.0012*X1

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-15.2244	6.823	-2.231	0.027	-28.693	-1.755
salar	0.0012	0.000	10.678	0.000	0.001	0.001

The p-value is good for coefficient.

c. Regression with TSTSC and SALAR

The function of APRET(Y) on SALAR(X1) and TSTSC(X2) is:

Y=-75.9111+0.0003*X1+1.7375*X2

	coef	std err	t	P> t	[0.025	0.975]
Intercept salar tstsc	-75.9111 0.0003 1.7375	8.210 0.000 0.176	-9.246 2.298 9.868	0.000 0.023 0.000	-92.119 4.06e-05 1.390	-59.703 0.001 2.085

The p-values are good for both coefficients.

3) And we have some interesting observations:

a. By using all the combinations of features to perform the linear regression with APRET, we find the best combination to predict the APRET by choosing the largest Adjusted R-Squared. The combination is TSTSC, PACC and STRAT. The regression result by using this combination is below.

The function is:

APRET=-45.7292+1.8229*TSTSC-0.2387*PACC-0.4884*STRAT

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-45.7292	11.711	-3.905	0.000	-68.850	-22.608
tstsc	1.8229	0.135	13.509	0.000	1.557	2.089
pacc	-0.2387	0.064	-3.722	0.000	-0.365	-0.112
strat	-0.4884	0.234	-2.089	0.038	-0.950	-0.027

All of the P-values are below 0.05, which means that all the coefficients are significantly different from zero.

b. We used the Python package "apyori" to perform the frequent item-set selection. For do the frequent item-set selection, we processed the data first. We separated each variable by its range into low, medium and high. We use the "apriori" function to get the most frequent item-set with three variables. The support is over 0.35.

The results are:

item-set	support
'spend-low', 'pacc-medium', 'top10-low'	0.38
'spend-low', 'top10-low', 'rejr-low'	0.39
'salar-medium', 'spend-low', 'tstsc-medium'	0.36
'spend-low', 'top10-low', 'strat-medium'	0.44