MTH 372 (Winter 2025): Tutorial VI

Instructor: Monika Arora

- 1. Let X_1, \ldots, X_n be a random sample from $N(\theta, \sigma^2), \sigma^2$ known. Show that the likelihood ratio test (LRT) for testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ rejects the null hypothesis if $\frac{\sqrt{n}(\overline{X} \theta_0)}{\sigma} \geq c_1$. Further, find the value of c_1 for $\alpha = 0.05$.
- 2. In general, LRT depends on a minimal sufficient statistic (MSS). Let X_1, \ldots, X_n be a random sample from Bernoulli(p). Then $T = \sum X_i$ is a MSS for p. The T follows Binomial(n, p). Consider n is known and p is unknown. Using the likelihood function of T perform LRT for $H_0: p \leq p_0$ versus $H_1: p \geq p_0$.
- 3. Let X_1, \ldots, X_n be a random sample whose pdf is given by

$$f_{\theta}(x) = \frac{1}{\theta} e^{-x/\theta}, \quad 0 < x < \infty, \quad \theta > 0.$$

Show that the likelihood ratio test (LRT) for testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ rejects the null hypothesis if $\overline{X} \leq c_1$ or if $\overline{X} \geq c_2$.

- 4. Let X_1, \ldots, X_n be a random sample from $N(\theta, \sigma^2), \theta, \sigma^2$ unknown. The likelihood ratio test (LRT) for testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta \geq \theta_0$ rejects the null hypothesis if $T = \frac{\sqrt{n(X \theta_0)}}{S} \geq c_1; T \sim t(n 1)$. Find the value of c_1 for $\alpha = 0.05$.
- 5. Suppose we have two independent random samples: X_1, \ldots, X_n are exponential (θ) and Y_1, \ldots, Y_m are exponential (μ) . Answer the following
 - (a) Find the LRT of $H_0: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (b) Show that the above test can be based on the statistic $T = \frac{\sum X_i}{\sum X_i + \sum Y_i}$.
 - (c) Find the distribution of T when H_0 is true.
- 6. Find the LRT of $H_0: \theta \leq 0$ versus $H_1: \theta > 0$ based on a random sample X_1, \ldots, X_n from a population with probability density function

$$f_{\theta,\lambda}(x) = \frac{1}{\lambda} e^{\frac{-(x-\theta)}{\lambda}} I_{(\theta,\infty)}(x).$$

Here the parameters, θ and λ are unknown.