

目录

ONE 定量变量的线性陷阱

边际效应恒定假设

从定量到定性

THREE 卡方检验划分法

有效的离散化方法

定量变量的线性陷阱

回顾模型结果

Logit	Rear	ession	Results
Lugit	Negi	CSSTOIL	Nesuccs

Dep. Variable: label_code No. Observations: 6512 Model: Df Residuals: 6500 Df Model: Method: Fri, 31 May 2019 Pseudo R-squ.: 0.2732 Date: 12:36:09 Log-Likelihood: -2611.6 Time: True LL-Null: -3593.4 converged: LLR p-value: 0.000

第五章的模型结果

预测变量:年收入是否大于50k

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-7.8418	0.304	-25.757	0.000	-8.438	-7.245
C(workclass, contrast_mat, levels=l) State-gov	0.7614	0.278	2.743	0.006	0.217	1.306
<pre>C(workclass, contrast_mat, levels=1) Self-emp-not-inc</pre>	0.7133	0.254	2.810	0.005	0.216	1.211
<pre>C(workclass, contrast_mat, levels=1) Private</pre>	0.7371	0.226	3.267	0.001	0.295	1.179
<pre>C(workclass, contrast_mat, levels=1) Federal-gov</pre>	1.1899	0.280	4.249	0.000	0.641	1.739
C(workclass, contrast_mat, levels=1) Local-gov	0.9964	0.254	3.916	0.000	0.498	1.495
<pre>C(workclass, contrast_mat, levels=1) Self-emp-inc</pre>	1.6298	0.280	5.820	0.000	1.081	2.179
C(sex)[T. Male]	1.2566	0.090	13.959	0.000	1.080	1.433
education_num	0.3361	0.016	21.347	0.000	0.305	0.367
capital_gain	0.0003	2.13e-05	14.196	0.000	0.000	0.000
capital_loss	0.0009	7.55e-05	12.085	0.000	0.001	0.001
hours_per_week	0.0265	0.003	8.841	0.000	0.021	0.032

系数 大于0

1n -	P(y=1)	$-=X\beta$
111	1 - P(y = 1)	$\frac{1}{2} - \Lambda \rho$

模型系数大于O

随着每星期工作时间的增加, 年收入大于50k的概率增加

定量变量的线性陷阱

模型结果与事实的差异

随着每星期工作时间的增加, 年收入大于50k的概率增加

根据数据,每周工作时间超过 80小时之后,年收入超过50k 的比例反而下降

hours_per_week和label的交叉报表

定量变量的线性陷阱

隐含的边际效应恒定假设

随着每星期工作时间的增加, 年收入大于50k的概率增加

模型结果与 事实不符

根据数据,每周工作时间超过 80小时之后,年收入超过50k 的比例反而下降

目录

ONE 定量变量的线性陷阱

边际效应恒定假设

TWO 变量离散化

从定量到定性

THREE 卡方检验划分法

有效的离散化方法

变量离散化

从定量到定性

变量离散化

从定量到定性

如何选择划 分区间?

划分太粗:

· 模型效果 欠佳 划分太细:

· 过拟合风 险上升

每星期工作时间等分为5份

	coef
<pre>Intercept C(hours_per_week_group)[T.20-40] C(hours_per_week_group)[T.40-60] C(hours_per_week_group)[T.60-80] C(hours_per_week_group)[T.80-100] education_num capital_gain capital_loss</pre>	-6.1776 1.1916 1.9972 1.9353 1.7762 0.3126 0.0003 0.0008

变量系 数与数 据相符

每星期工作时间等分为10份

	coef
Intercept	-5.8862
C(hours_per_week_group)[T.10-20]	-0.4022
C(hours_per_week_group)[T.20-30]	-0.1443
C(hours_per_week_group)[T.30-40]	1.0024
C(hours_per_week_group)[T.40-50]	1.6946
C(hours_per_week_group)[T.50-60]	1.7782
C(hours_per_week_group)[T.60-70]	1.6794
C(hours_per_week_group)[T.70-80]	1.6088
C(hours_per_week_group)[T.80-90]	1.7718
C(hours_per_week_group)[T.90-100]	1.2554
education_num	0.3116
capital_gain	0.0003
capital_loss	0.0008

目录

ONE 定量变量的线性陷阱

边际效应恒定假设

从定量到定性

THREE 卡方检验划分法

有效的离散化方法

卡方检验划分法

卡方检验

卡方检验(Chi-square test)用于度量两个 类别型变量之间的相关性

· 卡方统计量越大,两个变量之间的相关 性也就越大

$$T_{i,j} = \frac{(实际值 - 预测值)^2}{ 预测值}$$

$$T = \sum T_{i,j}$$

在这个例子中,T服从自由度为(3-1) X (2-1) = 2的 卡方分布

Contingency Table(列联表)

变量A的类别

		Д1	A2	Д3	总计
变量	B1	7	1	3	5
B的 类别	B2	1	1	10	12
i ees	总计	2	2	13	17

类别A3,B2包含10个数据

预测值:

$$17 \times P(A = A3) \times P(B = B2)$$

$$= 17 \times \frac{13}{17} \times \frac{12}{17} = 9.17$$

卡方检验划分法

求解算法

划分定量变量的原则是:

划分后的定性变量与被预测量处越相关越好

划分后的定性变量与y之间的卡方统计量越大越好

使用贪以算法来解决这个问题直至卡方统计量小于某一个阈值

卡方检验划分法

模型结果

基于卡方检验,将每星期工作时间"最优"地划分为5段

	coef
Intercept C(hours_per_week_group)[T.34-37] C(hours_per_week_group)[T.37-41] C(hours_per_week_group)[T.41-49] C(hours_per_week_group)[T.49-99] education_num capital_gain capital_loss	-6.1007 0.7750 1.2699 1.7780 1.9936 0.3118 0.0003 0.0008

THANK YOU