Prima prova in itinere (recupero)

Logica e Algebra 03 Febbraio 2017

Esercizio 1 Angelo, Bruno e Carlo sono gli unici tre membri di una commissione che vota una proposta. Usando le lettere enunciative: A= "Angelo vota a favore", B= "Bruno vota a favore", C= "Carlo vota a favore" scrivere le formule che traducono le seguenti frasi:

 F_1 : La votazione è stata unanime;

 F_2 : La proposta è stata approvata ed ha ricevuto solo un numero pari di voti a favore;

 F_3 : Angelo e Bruno votano allo stesso modo

Provare sia per via semantica sia usando la risoluzione che $\{F_2, F_3\} \vdash_L \neg F_1$.

Esercizio 2 Sia $\mathbb{N}=\{1,2,\ldots\}$ l'insieme dei numeri naturali, e si consideri la funzione

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

definita da f(n,m) = M.C.D(m,n) (il massimo comun divisore della coppia m,n).

- 1. La funzione f è iniettiva, suriettiva, biettiva?
- 2. In base alla risposta precedente costruire (se possibile) l'inversa sinistra e/o destra di f.
- 3. Descrivere la Ker(f)-classe dell'elemento (2,3).

Soluzione (I prova in itinere)

Esercizio 1

1. La formula \mathcal{F}_1 è $(A \wedge B \wedge C) \vee (\neg A \wedge \neg B \wedge \neg C)$. La formula \mathcal{F}_2 è $(A \wedge B \wedge \neg C) \vee (A \wedge \neg B \wedge C) \vee (\neg A \wedge B \wedge C)$. La formula \mathcal{F}_3 è $A \Leftrightarrow B$. Per il teorema di correttezza e completezza forte $\{\mathcal{F}_2, \mathcal{F}_3\}|_{-L} \neg F_1$ se e solo se $\{\mathcal{F}_2, \mathcal{F}_3\}|_{-L} \neg F_1$, ovvero se tutti i modelli di $\{\mathcal{F}_2, \mathcal{F}_3\}$ sono modelli di $\neg \mathcal{F}_1$. È immediato verificare che l'unico modello di $\{\mathcal{F}_2, \mathcal{F}_3\}$ è v(A) = v(B) = 1, v(C) = 0 che non è modello per \mathcal{F}_1 e dunque è modello per $\neg \mathcal{F}_1$. Quindi si è dimostrato per via semantica che $\{\mathcal{F}_2, \mathcal{F}_3\}|_{-L} \neg \mathcal{F}_1$ ovvero che $\{\mathcal{F}_2, \mathcal{F}_3\}|_{-L} \neg \mathcal{F}_1$.

Per usare la risoluzione ricordiamo che $\{\mathcal{F}_2, \mathcal{F}_3\}| = \neg \mathcal{F}_1$ se e solo se l'insieme di f.b.f $\{\mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_1\}$ è insoddisfacibile. Scriviamo le formule in forma a clausole. Si ha subito che $\mathcal{F}_3 \equiv (A \wedge B) \vee (\neg A \wedge \neg B) \equiv (A \vee \neg B) \wedge (\neg A \vee B)$, quindi $\{\mathcal{F}_3\}^c = \{\{A, \neg B\}, \{\neg A, B\}\}$. Le altre due formule si scrivono in forma a clausole più facilmente scrivendo direttamente la loro forma normale congiuntiva:

$$\{\mathcal{F}_2\}^c = \{\{A, B, C\}, \{\neg A, B, C\}, \{A, \neg B, C\}, \{A, B, \neg C\}, \{\neg A, \neg B, \neg C\}\}$$

$$\{\mathcal{F}_1\}^c = \{\{A, \neg B, \neg C\}, \{\neg A, B, \neg C\}, \{\neg A, \neg B, C\}, \{\neg A, B, C\}, \{A, \neg B, C\}, \{A, B, \neg C\}\}$$

Dobbiamo dimostrare che da

$$S = \{C_1 = \{A, \neg B\}, C_2 = \{\neg A, B\}, C_3 = \{A, B, C\}, C_4 = \{\neg A, B, C\}, C_5 = \{A, \neg B, C\}, C_6 = \{A, B, \neg C\}, C_7 = \{\neg A, \neg B, \neg C\}, C_8 = \{A, \neg B, \neg C\}, C_9 = \{\neg A, B, \neg C\}, C_{10} = \{\neg A, \neg B, C\}, C_{11} = \{\neg A, B, C\}, C_{12} = \{A, \neg B, C\}\}$$

ricaviamo per risoluzione la clausola vuota. Possiamo subito eliminare le clausole che ne contengono altre, ovvero C_4 , C_5 , C_8 , C_9 , C_{11} , C_{12} . Ora da C_3 , C_6 si ottiene $C_{13} = \{A, B\}$ da questa con C_2 si ricava $C_{14} = \{B\}$ e con C_1 si ricava $C_{15} = \{A\}$, che con C_7 produce $C_{16} = \{\neg B, \neg C\}$, da C_{16} e C_{14} si ottiene $C_{17} = \{\neg C\}$. Da questa con C_{10} si ricava $C_{18} = \{\neg A, \neg B\}$, che a sua volta con C_{14} produce $\{\neg A\}$ da cui con C_{15} si ottiene la clausola vuota.

Esercizio 2

Il testo dice già che f è una funzione (del resto è ben noto che per ogni coppia di interi positivi esiste ed è unico il loro massimo comun divisore).

- 1. La funzione f non è iniettiva infatti ad esempio le coppie (3,5) ed (1,1) sono diverse ma hanno la stessa immagine 1, quindi f non è biunivoca. La f è suriettiva, infatti per ogni $n \in N$ si ha f((n,n)) = n, e quindi n ha almeno una controimmagine mediante f.
- 2. La funzione f, essendo suriettiva, ma non iniettiva ammette inversa sinistra. Una inversa sinistra è ad esempio la funzione $g: N \to N \times N$ definita ponendo g(n) = (n, n). Infatti $g \cdot f(n) = f(g(n)) = f((n, n)) = n$ per ogni $n \in N$.
- 3. Essendo f((2,3)) = 1 la ker f-classe di (2,3) è formata da tutte la coppie di interi positivi (x,y) tali che f((2,3)) = f((x,y)) = 1, cioè da tutte le coppie di interi positivi primi fra loro.