Vorkurs Mathematik für Informatiker

Dienstag, 27. Oktober 2020

Wintersemester 2020/21

Dirk Hachenberger, Tobias Mömke, Kathrin Gimmi

Übungsblatt 6

Aufgabe 1 Untersuchen Sie, ob die folgenden Relationen linkseindeutig, rechtseindeutig, linkstotal oder rechtstotal sind.

- a) Sei \mathbb{P} die Menge aller Primzahlen und $R \subseteq \mathbb{P} \times \mathbb{N}$ definiert durch $pRn :\Leftrightarrow p$ teilt n.
- b) Sei $M := \{a, b, c, d\}$ und R die durch folgenden Digraphen beschriebene Relation (vgl. 18h):

- c) Sei M die Menge aller Studenten der Uni Augsburg, N die Menge aller an der Uni Augsburg angebotenen Fächer und $R \subseteq M \times N$ definiert durch $sRf :\Leftrightarrow s$ studiert f.
- d) Sei M eine beliebige Menge und $R \subseteq M \times \mathcal{P}(M)$ definiert durch $xRU : \Leftrightarrow x \in U$.
- e) Sei $M := \{ U \subseteq \mathbb{N} : U \text{ endlich } \} \subseteq \mathcal{P}(M) \text{ und } R \subseteq M \times M \text{ definiert durch } URV : \Leftrightarrow U \supseteq V, \text{ d. h. } U \supseteq V \text{ und } U \neq V.$

Aufgabe 2 Sei $M := \{a, b, c, d, e\}$. Zeichnen Sie den Digraph einer Relation auf M, welche

- a) linkstotal, rechtstotal, linkseindeutig und rechtseindeutig,
- b) rechtstotal und rechtseindeutig, aber weder linkstotal noch linkseindeutig,
- c) eine Abbildung ist.

Aufgabe 3

a) Wir betrachten die Menge $M := \{1, 2, 3, 5, 6, 10, 15, 30\}$ (die Teiler von 30) sowie die folgende binäre Relation auf M:

 $xRy : \Leftrightarrow x \neq y, x$ teilt y und es gibt kein $z \in M \setminus \{x, y\}$ mit x teilt z und z teilt y. Stellen Sie diese Relation als Digraph dar (vgl. 18h).

b) Bestimmen Sie alle natürlichen Zahlen n, sodass die Menge der Teiler von n zusammen mit der Relationsvorschrift aus a) einen Digraphen der gleichen Form wie in a) ergibt.

Aufgabe 4 Sei $R \subseteq M \times N$ eine rechtseindeutige Relation.

- a) Zeigen Sie: $\exists S \subseteq N \times M$ mit $R * S = \mathrm{id}_M : \Leftrightarrow R$ ist linkstotal und linkseindeutig. Dabei ist $\mathrm{id}_M \subseteq M \times M$ die Identitätsrelation auf M, also $\mathrm{id}_M \{ (x,x) : x \in M \}$.
- b) Gilt die Aussage aus a) auch für beliebige Relationen R? (also R nicht notwendigerweise rechtseindeutig)

Aufgabe 5 Seien M und N zwei Mengen und $f: M \to N$ eine Abbildung von M nach N. Welche der folgenden Aussagen treffen notwendig zu?

- a) Zu jedem $y \in N$ gibt es mindestens ein $x \in M$ mit y = f(x).
- b) Zu jedem $x \in M$ gibt es höchstens ein $y \in N$ mit y = f(x).
- c) Zu jedem $y \in N$ gibt es höchstens ein $x \in M$ mit y = f(x).
- d) Ist f injektiv, so gilt: Für $x, y \in M$ mit $x \neq y$ gilt $f(x) \neq f(y)$.
- e) Zu jedem $x \in M$ gibt es mindestens ein $y \in N$ mit y = f(x).

Aufgabe 6 Untersuchen Sie die folgenden Funktionen auf Injektivität und Surjektivität.

- a) $f_1: \mathbb{R} \to [0, \infty), x \mapsto |2x 5|$
- b) $f_2: \mathbb{R} \setminus (-1,1) \to \mathbb{R}, x \mapsto x \sqrt{x^2 1}$

Aufgabe 7 Gegeben sind die folgenden Funktionen:

- a) $f_1: \mathbb{R} \to [0, \infty), x \mapsto x^2$,
- b) $f_2:[0,\infty)\to\mathbb{R}, x\mapsto\sqrt{x}$.

Untersuchen Sie, welche dieser Funktionen injektiv, surjektiv bzw bijektiv sind. Schränken Sie Definitions- und Bildbereich von f_1 und f_2 so ein, dass beide Funktionen bijektiv sind.

Aufgabe 8 Sei $M := \{1, 2, \dots, n\}$ für ein $n \in \mathbb{N}^*$. Finden Sie eine bijektive Abbildung

$$\mathcal{P}(M) \to \sum_{i=1}^{n} \{0,1\}, U \mapsto x = (x_1, \dots, x_n)$$

und zeigen Sie deren Bijektivität.