Diseño de Proyectos de Investigación

Sesión 06:

Ingeniería de proyecto

Antes de comenzar...

- Busca en la sopa de letras las 12 palabras relacionadas con el marketing mix.
- Una vez que las encuentres, elige dos palabras y explica con tus propias palabras cómo se relacionan con el Marketing Mix.

Experiencias Previas

¿Qué es un diagrama de flujo?

¿Qué es un proyecto?

¿Qué es un proceso productivo?

Capacidad Terminal:

 Al terminar la presente sesión los alumnos serán capaces de comprender la importancia de los procesos y seleccionar de manera adecuada la tecnología idónea para un proyecto.

Niveles de calidad

PROCESO

Requisitos de calidad para el proceso (% de productos defectuosos)

PRODUCTO

Requisitos de calidad para el producto (atributo - necesidades)

Proceso

Conjunto de actividades repetitivas mutuamente relacionadas o que interactúan, las cuales transforman elementos de entrada en resultados o elementos de salida, agregando valor en cada una de sus etapas.

Elementos en los procesos

Procesos estratégicos o del sistema

Procesos destinados a definir y controlar las metas de la organización, sus políticas y estrategias.

Procesos operativos

Procesos que permiten generar el producto/servicio que se entrega al cliente. Aportan valor al cliente.

Procesos de soporte o de apoyo

Procesos que abarcan las actividades necesarias para el correcto funcionamiento de los procesos operativos.

Satisfacción del cliente

Símbolos del diagrama de flujo de información

Actividad

Actividad que será detallada en otro diagrama de flujo

→ Líneas de flujo

Diagrama de flujo de informaçión

Describe el flujo de información, clientes, personal, equipo y materiales a través de un proceso

Indicadores

Es una herramienta que permite medir, evaluar y monitorear el desempeño o eficiencia de una actividad, proceso o proyecto dentro de una organización.

Nombre del indicador: productos defectuosos

Fórmula: cantidad de productos defectuosos/ total de productos

Responsable de recolectar los datos: Asistente de control de calidad

Periodicidad de recolección: Semanal

Responsable del indicador: Jefe de producción

Valor objetivo: inferior al 0.5%

Ejercicio 1

Si nos solicitan entregar en un turno de trabajo 2500 unidades ¿Cuántas deberíamos programar, si sabemos que nuestro índice de productos defectuosos es del 0.5%?

$$Productos\ fabricados = rac{Producción\ Real}{1-Índice\ de\ defectos}$$

Ejercicio 2

¿Cuánto sería nuestro índice de productos defectuosos si cuando programamos producir 3000 unidades, el proceso sólo hace 2950 unidades buenas? (aproximar el resultado al centésimo).

Índice de defecto =
$$\frac{Productos defectos}{Productos fabricados} \times 100$$

Capacidad de producción

Capacidad

Cantidad de producto que puede ser obtenido durante un cierto período de tiempo. Puede referirse a la empresa en su conjunto o a un centro de trabajo.

Se expresa por medio de relaciones:

Toneladas/mes unidades/año unidades/día pasajeros/mes litros/turno, etc.

Capacidad Máxima:

Máxima tasa posible de producción para un proceso, dado el diseño actual de las máquinas y considerando que trabajamos todo el tiempo programado de producción.

$$CD = \frac{Tiempo\ programado\ de\ Producci\'on}{Tiempo\ que\ toma\ fabricar\ una\ unidad\ del\ producto}$$

Capacidad Efectiva:

Máxima tasa posible de producción para un proceso, dado el diseño actual de las máquinas y descontando el tiempo de paradas programadas.

$$CE = \frac{Tiempo\ programado\ de\ Producci\'on - Paradas\ programadas}{Tiempo\ que\ toma\ fabricar\ una\ unidad\ del\ producto}$$

Capacidad Real

Máxima tasa posible de producción para un proceso, dado el diseño actual de las máquinas y descontando el tiempo de paradas programadas y no programadas.

 $CR = \frac{Tiempo\ programado\ de\ Producci\'on - Paradas\ programadas - no\ programadas}{Tiempo\ que\ toma\ fabricar\ una\ unidad\ del\ producto}$

Capacidad Instalada

Te invitamos a ver el siguiente vídeo: https://www.youtube.com/watch?time_continue=23&v=4bXloxzbBeg&feature=emb_title

Ejercicio 3

Ahora vamos a responder las siguientes preguntas:

- 1. ¿Cuál era la capacidad de diseño de la **máquina**?
- 2. Si trabajamos a un turno de **8 horas, 6 días a la semana**, ¿cuánto sería nuestra capacidad de **diseño semanal**?
- 3. Si tenemos 10 h/sem en paradas programadas, ¿cuánto sería nuestra capacidad efectiva semanal?
- 4. Si tenemos en promedio 5h/semana en paradas no programadas, ¿cuánto sería nuestra capacidad real semanal?

Indicadores

<u>Índice de utilización</u>

$$IU = \frac{Capacidad Real}{Capacidad Máxima}$$

Índice de Eficiencia

$$IE = \frac{Capacidad Real}{Capacidad Efectiva}$$

Ejercicio 4

Calcule para la Cube Ice Machine

- Índice de utilización
- Índice de eficiencia

Conclusiones:

- Los **procesos productivos** son conjuntos de actividades organizadas que transforman insumos en productos o servicios finales. Su objetivo principal es maximizar la eficiencia y la calidad mediante una adecuada secuencia de tareas.
- Los **indicadores** son herramientas clave para medir el desempeño de estos procesos. Ayudan a evaluar factores como eficiencia, productividad, calidad y costos, permitiendo la identificación de mejoras y la optimización de recursos.
- Los diagramas de flujo visualizan el desarrollo de un proceso, facilitando la comprensión y análisis de cada etapa. Son útiles para identificar cuellos de botella y áreas de mejora, proporcionando claridad sobre la secuencia de actividades y las decisiones clave dentro del proceso.

Bibliografía:

- Ávila Rodríguez, A. (2016). **Metodología de la ingeniería de proyectos: Aplicación en el desarrollo de proyectos productivos**. Universidad Nacional Autónoma de México (UNAM). Repositorio Institucional de la UNAM.
- Bravo Calderón, E. (2019). **Gestión de proyectos de ingeniería en el sector energético**. Pontificia Universidad Católica de Chile. Repositorio UC.
- Soto Muñoz, P. (2020). Implementación de buenas prácticas en la gestión de proyectos de ingeniería. Universidad de los Andes, Colombia. Repositorio Uniandes.

