

QDA project 2025

In-situ monitoring of LPBF with dual pyrometry

Process monitoring for Laser Powder Bed Fusion

Laser Powder Bed Fusion process

https://www.youtube.com/watch?v=ruvRijM7f50

Defects in AM

Incomplete jobs or bending

Macrogeometry

Residual stress, cracking delamination

Acute corners

Microgeometry

Dross formation

Staircase effect

Microstructural defects and inclusions

Volumetric errors

In-situ monitoring in LPBF: the current landscape

Thermal imaging Hot-cold-spot Spattering (for roughness and microstructure) (geometrical and microstructure) (porosity) with GA Tech Grasso et al. 2020; Bugatti and Bugatti and Colosimo 2024 Repossini et al. 2017; Colosimo et al. 2024 Colosimo 2022, Yao et al. 2022 Input: optical Ground truth: X-ray image Packing density prediction (with MIT)

Imaging

Video imaging

"In a sense, AM has become a manufacturing domain that is **data-rich** but **knowledge-sparse**" https://doi.org/10.1115/DETC2019-98415

Caltanissetta et al. 2023

Pagani et al, 2020

PROCESS DATA

In-situ monitoring in LPBF: the current landscape

OPPORTUNITY

Image

5 - 10 Gbyte

High-speed videos

5 - 10 Tbyte

IR videos

50 - 100 Tbyte

Temperature monitoring in Laser Powder Bed Fusion

The quality of the LPBF printed parts depends on the stability of the melt pool that is generated during melting.

Monitoring the melt pool

https://doi.org/10.1115/1.4040264

Pyrometer for temperature monitoring in LPBF

Dual-wavelenght pyrometer:

A non-contact temperature sensor that measures emitted radiation at two wavelengths to calculate temperature.

Output of the pyrometer data

By combining the emitted radiation of the two photodiodes, an estimate of the temperature can be calculated (see appendix slides). The output is a real-time temperature signal of the melt pool.

How is it used in LPBF monitoring?

- **Process Quality Control**: Identifies defects like porosity or overheating.
- Real-Time Process Adjustment: Enables closed-loop control of laser power and scan speed.

Project description

The equipment

LPBF system: Aconity MIDI+

Monitoring: On-axis dual pyrometer

On-Axis Dual Pyrometer specifications

Optical arrangement Coaxial monitoring

Sensor type 2 x fiber coupled pyrometers

Pyrometer 1: 1,45 - 1,7 μm Spectral range

Pyrometer 2: 2,00 - 2,2 μm

Measuring range 500 - 2500 °C

ca. Ø 400 μm, lateral adjustable

Measurement area (may vary depending on

machine configuration)

Frame rate 100 kHz

Experimental plan

- 42 cubic samples (12x12x50mm)
- Same power and scan speed
- The pyrometer records the data over 5 consecutive layers every 100 layers.

Build platform

Examples of defects

Defects include:

- Under/overheating
- Melt pool instability

Which can occur at layer level or track level.

Design one or more control Aim of the work: charts to monitor if the printing process is stable.

The project

You will be given a dataset containing the measurements for one individual sample.

- PHASE 1 (31st of March 18th of May)
 - You will be given a set of files (one for each layer) containing the data collected when printing the first half of the sample.
 - Analyze / model the data.
 - Check assumptions, and design appropriate control chart(s) to monitor the process.
- PHASE 2 (18th of May 31st of May)
 - You will be given a new set of data containing the measurements of the second half of the same sample analyzed in Phase 1.
 - Test the control charts designed in phase 1 on the new dataset.

Phase 1

Design phase

Phase 2

Test phase

QDA Project 2025

The dataset

Each CSV file you will be given contains the following columns.

Column name	Description
t	Absolute time reading (in μs)
X	x coordinate of the measurement (in mm)
У	y coordinate of the measurement (in mm)
Z	z coordinate of the measurement (layer height, in mm)
layer_id	Layer number
sensor0	Intensity meas. from pyrometer in the 1450-1700 nm range
sensor1	Intensity meas. from pyrometer in the 2000-2200 nm range
temp	Temperature computed from the intensity meas. (in K)
track_id	ID of each individual track (from 0 to the # of tracks)
track_orient	Orientation of the scan track (0-360°, with respect to the x axis)
pos_rel	Relative position of the meas. with respect to the start of the track (in mm)
t_rel	Relative time of the meas. with respect to the start of the track (in μs)

Example of point cloud data from multiple layers.

x [mm]

x [mm]

Team registration

Click on this <u>link</u> to open the excel file. Each group must sign up with the names of the members, Polimi person code and email address.

- Create your team with up to 4 people per team (4 people recommended).
- In case your team is incomplete (less than 4 members), you can still register a team. We encourage students who don't have a team yet to contact other incomplete teams to join.
- If you can't find a team, register a 1-member team using the form and we will help you join a team.
- Teams that have less than 4 members, may be assigned additional team members.

△ A	В	С	D	E	F
QDA pr	oject regist	ration			
Team ID	Member	Full name	Polimi person code	Email	Note
Example	1	Name Surname	1999991	name1.surname@mail.polimi.it	
Example	2	Name Surname	19999992	name2.surname@mail.polimi.it	
Example	3	Name Surname	1999993	name3.surname@mail.polimi.it	
Example	4	Name Surname	19999994	name4.surname@mail.polimi.it	
1	1				
1	2				
1	3				
1	4				
2	1				
2	2				
2	2				

Deadline for team registration: 30th March 11:59PM

Thank you for the attention

Appendix 1

Dual pyrometer

Each pyrometer captures the **intensity of the radiation from the melt pool** (I_1 , I_2) and its surrounding area (approx. Ø 400 μ m) at high acquisition rate (100 kHz).

Assuming that the emissivity of the radiator is constant for the two wavelengths ($\epsilon_1 = \epsilon_2$), the temperature T can be determined from the ratio of the two intensities measured at different wavelengths.

$$I_{1} = \frac{\varepsilon_{1}K_{1}}{\lambda_{1}^{5}e^{\frac{hc_{0}}{k\lambda_{1}T}}} \qquad I_{2} = \frac{\varepsilon_{2}K_{2}}{\lambda_{2}^{5}e^{\frac{hc_{0}}{k\lambda_{2}T}}}$$

$$\frac{I_1}{I_2} = \frac{\varepsilon_1 K_1 \lambda_2^5 e^{\frac{h c_0}{k \lambda_2 T}}}{\varepsilon_2 K_2 \lambda_1^5 e^{\frac{h c_0}{k \lambda_1 T}}}$$

$$\Rightarrow T = \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right) \frac{h c_0}{k \ln\left(\frac{I_1 \lambda_1^5}{I_2 \lambda_2^5} \frac{K_2}{K_1}\right)}$$

