Beta_p estimations vs rq() coefficients on mtcars

mtcars Dataset

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

head(mtcars)

```
##
                     mpg cyl disp hp drat
                                              wt qsec vs am gear carb
## Mazda RX4
                    21.0
                           6 160 110 3.90 2.620 16.46
## Mazda RX4 Wag
                    21.0
                           6 160 110 3.90 2.875 17.02
                                                        0
## Datsun 710
                    22.8
                           4 108 93 3.85 2.320 18.61
## Hornet 4 Drive
                           6 258 110 3.08 3.215 19.44
                    21.4
                                                        1
                                                                     1
## Hornet Sportabout 18.7
                           8 360 175 3.15 3.440 17.02
                                                                     2
## Valiant
                    18.1
                           6 225 105 2.76 3.460 20.22 1 0
                                                                     1
```

Model: $mpg \sim cyl + drat + vs$

```
Data types: mpg: Real data, Miles/(US) gallon cyl: Integer/Count data, number of cylinders drat: Real data, Rear axle ratio vs: Binary data, Engine (0 = V-shaped, 1 = straight)
```

Quantreg

```
rqfit <- rq(mpg ~ cyl+drat+vs, data = mtcars, tau = quantiles)
summary(rqfit)
## Warning in rq.fit.br(x, y, tau = tau, ci = TRUE, ...): Solution may be nonunique
## Call: rq(formula = mpg ~ cyl + drat + vs, tau = quantiles, data = mtcars)
##
## tau: [1] 0.1
##
## Coefficients:
              coefficients lower bd upper bd
## (Intercept) 20.10375
                            13.58876 85.29796
## cyl
                -2.54063
                            -4.71292 -1.36945
## drat
                3.62500
                            -10.81283
                                        4.40818
               -1.85375
## vs
                            -3.00296
                                       5.83125
```

```
## Call: rq(formula = mpg ~ cyl + drat + vs, tau = quantiles, data = mtcars)
## tau: [1] 0.5
## Coefficients:
             coefficients lower bd upper bd
## (Intercept) 34.74953 9.74342 42.26316
## cyl
             -2.66449
                         -3.01620 -1.14358
             0.56075
                       -0.67615 4.67960
## drat
             -1.76075
                         -3.03684 2.16945
## vs
## Call: rq(formula = mpg ~ cyl + drat + vs, tau = quantiles, data = mtcars)
##
## tau: [1] 0.9
##
## Coefficients:
             coefficients lower bd upper bd
                         -51.55192 89.33789
## (Intercept) -3.53871
             0.23952
## cyl
                          -7.75896
                                    2.11267
## drat
              6.45161
                          -2.65866 16.07341
## vs
              8.65806 -13.09164 9.45551
```

Beta p estimations vs rq() coefficients

The plot titles are formatted as (sampling method) (quantile) (error distribution)_(beta_p). The histograms are the beta_p estimations yielded by the paper's model. The red horizontal line reflects rq() beta coefficients. The absence of red lines in some plots reflects big difference in our beta_p estimations and the rq() results.

Notations:

GWS: Gibbs sampler With Scale parameter GWOS: Gibbs sampler Without Scale parameter

DEP: Double Exponential Prior

TWS: Tobit quantile regression With Scale parameter TWOS: Tobit quantile regression Without Scale parameter

stdN: Standard Normal distribution student: Student t distribution

heteroN: Heteroscedastic Normal distribution $(1 + x_{i2})N(0, 1)$

beta_1: Intercept

beta_2: regression coefficient associated with cyl beta_3: regression coefficient associated with drat beta 4: regression coefficient associated with vs

