Near-Optimal Sparse Allreduce for Distributed Deep Learning

Model size growing exponentially

Parallel and distributed training

Data parallelism

Pros:

a. Easy to realize

Cons:

- a. Using DP alone may NOT work for large models, but works with others (OP, PP)
 - b. High allreduce overhead

This work (Ok-Topk) aims to solve

Cons:

 b. Communication for each operator or each layer)

Pipeline parallelism

Pros:

- a. Make large model training feasible
- b. No collective, only P2P

Cons:

- a. Bubbles in pipeline
- b. Removing bubbles leads to stale weights

We have **Chimera** (SC'21) to solve the above issues for pipeline parallelism.

Data parallelism

Training: update w to minimize f (e.g., SGD).

$$g_t = \frac{1}{b} \sum_{i=0}^b \nabla F(w_t, \xi_i)$$
 $w_{t+1} = w_t - \eta_t g_t$

Revisit Dense Allreduce (Rabenseifner's algorithm)

Reduce-Scatter (Recursive halving)

Latency-bandwidth model:

 α is the latency; β is the transfer time per word; β is the number of processes; β is the message size.

Comm. Cost = $2(\lg p)\alpha + 2((p-1)/p)n\beta$ Bandwidth optimal and scalable, but w.r.t. n

Gradient sparsification (Topk SGD)

Topk SGD: each process only selects **the largest** (absolute value) k of n components from the gradients, and usually the **density** k/n **is around 1% or less**.

How to **Allreduce** these **sparse** gradients?

Algorithm 1: Sparse Allreduce based on Allgather (TopkA)

Algorithm 2: Dynamic Sparse Allreduce (TopkDSA, SC'19)

Inspired by dense Rabenseifner's algorithm

Algorithm 3: Global Topk (gTopk, ICDCS'19)

Comm. Cost = $(2 \log p)\alpha + 4k(\log p)\beta$

Solve the fill-in issue, but

- (1) high top-k selection cost, and
- (2) suboptimal bandwidth cost.

O(k) sparse Allreduce

The cost of balanced $split_and_reduce = (P-1)\alpha + 2k((P-1)/P)\beta$

O(k) sparse Allreduce

(2) Global top-k selection & balanced Allgather

Scalability analysis for dense/sparse Allreduce algorithms

Algorithms	Bandwidth	Scalability
Dense [12]	$2n\frac{P-1}{P}\beta$	
TopkA [36, 47]	$2k(P-1)\beta$	*
TopkDSA [36]	$\left[4k\frac{P-1}{P}\beta,(2k+n)\frac{P-1}{P}\beta\right]^{1}$	P.
gTopk [42]	$4k(\log P)\beta$	•
Gaussiank [41]	$2k(P-1)\beta$	1414
Ok-Topk (ours)	$[2k\frac{P-1}{P}\beta, 6k\frac{P-1}{P}\beta]^1$	Ů

Existing sparse Allreduce algorithms suffer from scalability issue.

Ok-Topk solves the issue!

Efficient local and global top-k selection

Ok-Topk parallel SGD algorithm

```
1: Inputs: stochastic gradient G^i(\cdot) at worker i, value k, learning rate \alpha.
```

- 2: Initialize $\epsilon_0^i = 0$, $G_0^i = 0$
- 3: **for** t = 1 **to** T **do**
- 4: $acc_t^i = \epsilon_{t-1}^i + \alpha G_{t-1}^i(w_{t-1})$ > Accumulate residuals
- 5: u_t , $indexes = Ok_sparse_allreduce(acc_t^i, t, k)$
- 6: $\epsilon_t^i = acc_t^i acc_t^i(indexes)$ > Update residuals
- 7: $w_t = w_{t-1} \frac{1}{P}u_t$ > Apply the model update
- 8: end for

Convergence analysis for Ok-Topk SGD

True global top-k gradient

Ok-topk gradient

 $\leq |\alpha G_t(w_t)|$

Dense gradient

For full proof refer to: Dan Alistarh, et al., The convergence of sparsified gradient methods, NeurIPS'18

The effect of ξ is dampened by both small learning rates and P.

Evaluation

- CSCS Piz Daint supercomputer
 - Each node contains an Intel Xeon E5-2690 CPU, and one NVIDIA Tesla P100 GPU
 - Cray Aries interconnected network
 - mpi4py as the communication library, built against Cray-MPICH 7.7.16

Dense/Sparse algorithms used in evaluation

Algorithms	Bandwidth
Dense [12]	$2n\frac{P-1}{P}\beta$
TopkA [36, 47]	$2k(P-1)\beta$
TopkDSA [36]	$\left[4k\frac{P-1}{P}\beta,(2k+n)\frac{P-1}{P}\beta\right]^{1}$
gTop k [42]	$4k(\log P)\beta$
Gaussian k [41]	$2k(P-1)\beta$
Ok-Top k (ours)	$[2k\frac{P-1}{P}\beta, 6k\frac{P-1}{P}\beta]^1$

Neural networks used for evaluation

Tasks	Models	Parameters	Dataset
Image classification	VGG-16 [44]	14,728,266	
Speech recognition	LSTM [21]	27,569,568	
Language processing	BERT [13]	133,547,324	

Weak scaling evaluation

BERT training time, scaling from 32 GPUs to 256 GPUs

For Ok-Topk:

- Much better scalability for the communication overhead than the others.
- (2) Threshold reuse strategy for top-k selection is very effective.

Model accuracy evaluation

Conclusion

1. Model size rapidly grows

2. Sparse algorithms suffer from scalability issue

3. O(k) sparse Allreduce

4. Ok-Topk SGD and convergence analysis

5. Evaluation on supercomputer

6. For the future work, we will study how to use Ok-Topk with a hybrid data and pipeline parallelism.

For more questions: shigangli.cs@gmail.com