

Mahindra University Hyderabad

École Centrale School of Engineering Minor - I Exam

Branch: CM Year: II Subject: Functional Analysis (MA2212) Semester: II

Date: 27/02/2025

Start Time: 2:00 PM

Time Duration: 1.5 Hours Max. Marks: 25

Instructions:

1) Answer all the questions.

2) All questions are self-explanatory; no clarification will be provided during the exam.

Course outcomes (COs)

CO 1: Explain fundamental concepts of metric and normed spaces, including Banach spaces, with relevant examples.

CO 2: Classify and examine bounded linear operators and functionals, and characterize the dual of common Banach spaces.

CO 3: Utilize key results such as the Schwarz inequality, projection theorem, and Riesz representation theorem to analyze Hilbert spaces and related operators.

CO 4: Apply the Banach fixed point theorem to solve problems in analysis and understand its significance in applications.

Q.No.	Questions	Marks	СО	BL	РО	PI
						Code
	Let $X = R[a, b]$ be the set of all Riemann integrable functions defined on $[a, b]$. For $f, g \in X$, we define					
1	$d(f,g) = \int_a^b f(x) - g(x) dx.$ Check whether d is a metric on X or not.	3	CO1	L2	PO1	1.2.1
2	State Hölder's, Cauchy-Schwarz and Minkowski's inequalities.	3	CO1	L1	PO1	1.2.1
3	Using the theorem "A mapping f of a metric space (X,d) into a metric space (Y,\tilde{d}) is continuous if and only if the inverse image of any open subset of (Y,\tilde{d}) is an open subset of X ," show that every constant function defined from $\mathbb R$ to $\mathbb R$ is continuous, where $\mathbb R$ be the set of all real numbers with the usual metric.	3	CO1	L3	PO1	1.2.1

	Questions	Marks	СО	BL	РО	PI Code
4	Define a Cauchy sequence and completeness. Show that the sequence $\{f_n\}$ in $X = C[0,1]$ given by					
	$f_n(t) = \frac{nt}{n+t}$ for all $t \in [0,1]$,	5	CO1	L4	PO1	1.2.1
	is a Cauchy sequence with respect to metric $d_{\infty}(f,g) = \sup_{t \in [0,1]} f(t) - g(t) $.					
5	Define an isometry and homeomorphism. Show that a bijective isometry is necessarily a homeomorphism, but the converse need not be true.	5	CO1	L2	PO1	1.2.1
6	Define equivalent metrics. Show that the following metrics on \mathbb{R}^2 $d_1(x,y) = x_1 - y_1 + x_2 - y_2 $					
	$d_2(x,y) = ((x_1 - y_1)^2 + (x_2 - y_2)^2)^{\frac{1}{2}}$					
	$d_{\infty}(x,y) = \max\{ x_1-y_1 , x_2-y_2 \}$ satisfy the following relation	6	CO1	L4	PO1	1.2.1
	$d_2(x,y) \le d_1(x,y) \le 2d_\infty(x,y) \le 2d_2(x,y),$					
	where $x = (x_1, x_2), y = (y_1, y_2).$					

Bloom's Level wise Marks Distribution

BL – Bloom's Taxonomy Levels:

 $1-Remembering,\ 2-Understanding,\ 3-Applying,\ 4-Analysing,\ 5-Evaluating,\ 6-Creating$

CO - Course Outcomes

PO - Program Outcomes

PI Code - Performance Indicator Code