ELEMENTOS DE ÁLGEBRA :: PROVA 01'

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:

Questão 1. Considere o conjunto $\mathbb{C} = \{a + b\sqrt{-1} \mid a, b \in \mathbb{R}\}$ e a função $p \colon \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ dada por p(x, y) = xy (produto de dois números complexos).

- (a) (1,0 ponto) Explique por que (\mathbb{C},p) não é um grupo.
- (b) (1,0 ponto) Considere agora o grupo abeliano $S^1 = \{a + b\sqrt{-1} \in \mathbb{C} \mid a^2 + b^2 = 1\}$ munido da função p. Mostre que $H = \{z \in S^1 \mid p(z,z) = 1\}$ é um subgrupo de S^1 .
- (c) (1,0 ponto) Mostre que $|S^1|$ é infinita, |H| é finita, e explique por que isso não contradiz o Teorema de Lagrange.
- (d) (2,0 pontos) Mostre que existe um isomorfismo de grupos $S^1/H \cong S^1$.
- (a) Se (\mathbb{C}, p) fosse um grupo, para todo $z \in \mathbb{C}$ existiria $w \in \mathbb{C}$ tal que $p(z, w) = e_{\mathbb{C}} = p(w, z)$. Como p(1, z) = z = p(z, 1) para todo $z \in \mathbb{C}$, então $e_{\mathbb{C}} = 1$. Como p(0, z) = 0 para todo $z \in \mathbb{C}$, então não existe $w \in \mathbb{C}$ tal que p(z, w) = 1. Logo (\mathbb{C}, p) não pode ser um grupo.
- (b) Vamos verificar as condições (i) e (ii) da definição de subgrupo.
 - (i) Se $z_1, z_2 \in H$, então $z_1z_1 = z_2z_2 = 1$. Consequentemente, $p(z_1z_2, z_1z_2) = (z_1z_2)(z_1z_2) = (z_1z_1)(z_2z_2) = 1$. Logo $z_1z_2 \in H$.
 - (ii) Se $z \in H$, então p(z, z) = 1, ou seja, $z^{-1} = z \in H$.
- (c) Considere $q \in \mathbb{Q}$ e $z_q = \cos(q) + \sin(q)\sqrt{-1}$. Vamos mostrar que $z \in S^1$ e $z^k \neq 1$ para todo k > 0. Primeiro, $(\cos \theta)^2 + (\sin \theta)^2 = 1$ para qualquer $\theta \in \mathbb{R}$, em particular, para $\theta = q$. Além disso, $z^k = \cos(kq) + \sin(kq)\sqrt{-1}$ para todo k > 0. De fato, para k = 1, a afirmação é óbvia. Por indução, suponha que $z^{k-1} = \cos((k-1)q) + \sin((k-1)q)\sqrt{-1}$. Então

$$z^{k} = zz^{k-1}$$

$$= (\cos(q) + \sin(q)\sqrt{-1}) (\cos((k-1)q) + \sin((k-1)q)\sqrt{-1})$$

$$= \cos(q) \cos((k-1)q) - \sin(q)\sin((k-1)q)$$

$$+ (\cos(q)\sin((k-1)q) + \sin(q)\cos((k-1)q))\sqrt{-1}$$

$$= \cos(kq) + \sin(kq)\sqrt{-1}.$$

Observe que $\cos(\theta) = 1$ e sen $(\theta) = 0$ se, e somente se, $\theta \in \{(2\pi)n \mid n \in \mathbb{Z}\}$. Como $kq \in \mathbb{Q}$ e $2n\pi \notin \mathbb{Q}$, então $z^k \neq 1$ para todo k > 0.

O enunciado do Teorema de Lagrange é o seguinte: "Se G é um grupo **finito** e $H \subseteq G$ é um subgrupo, então |G:H| = |G|/|H|." Como $|S^1|$ não é finita, isso não contradiz o Teorema de Lagrage.

(d) Defina $f\colon S^1\to S^1$ por f(z)=p(z,z). Vamos mostrar que f um homomorfismo de grupos. Para quaisquer $z,w\in\mathbb{C}$, temos que f(zw)=p(zw,zw)=zwzw=zzww=p(z,z)p(w,w)=f(z)f(w). Agora vamos mostrar que f é sobrejetor. Dado $(a+b\sqrt{-1})\in S^1$, tome $w=\left(\frac{1+a}{2}\right)^{1/2}+\left(\frac{1-a}{2}\right)^{1/2}\sqrt{-1}$. Primeiro observe que $w\in S^1$. De fato, $\left(\frac{1+a}{2}\right)+\left(\frac{1-a}{2}\right)=1$. Além disso,

$$f(w) = ww = \left(\frac{1+a}{2} - \frac{1-a}{2}\right) + 2\left(\left(\frac{1+a}{2}\right)^{1/2} \left(\frac{1-a}{2}\right)^{1/2}\right) \sqrt{-1} = a + b\sqrt{-1}.$$

Como $\ker(f)=\{z\in\mathbb{C}\mid p(z,z)=1\}=H,$ segue do Primeiro Teorema de Isomorfismo de grupos que $S^1/H=S^1/\ker(f)\cong \operatorname{im}(f)=S^1.$

Questão 2. Considere n > 0, $M_n(\mathbb{R})$ o conjunto de matrizes de ordem $n \times n$ e entradas reais e $GL_n = \{A \in M_n(\mathbb{R}) \mid \det(A) \neq 0\}$. Munido da multiplicação usual de matrizes, GL_n é um grupo, e munido do produto usual de números reais, $\mathbb{R} \setminus \{0\}$ também é um grupo.

- (a) (1,0 ponto) Mostre que a função det: $GL_n \to \mathbb{R} \setminus \{0\}$ é um homomorfismo de grupos.
- (b) (1,0 ponto) Mostre que o subgrupo $SL_n = \{A \in GL_n \mid \det(A) = 1\} \subseteq GL_n$ é normal.
- (a) Como $\det(AB) = \det(A) \det(B)$ para todos $A, B \in GL_n(\mathbb{R})$, $\det: GL_n \to \mathbb{R} \setminus \{0\}$ é um homomorfismo de grupos.
- (b) Precisamos mostrar que $gSL_ng^{-1} = SL_n$ para todo $g \in GL_n$. Observe que, se $gSL_ng^{-1} \subseteq SL_n$ para todo $g \in GL_n$, então $SL_n = g(g^{-1}SL_ng)g^{-1} \subseteq gSL_ng^{-1}$ para todo $g \in GL_n$. Agora, para todo $A \in SL_n$, temos que $\det(gAg^{-1}) = \det(A) = 1$ para todo $g \in GL_n$. Isso mostra que $gSL_ng^{-1} = SL_n$ para todo $g \in GL_n$.

Questão 3. Sejam G um grupo finito e $\sigma: G \to G$ um isomorfismo de grupos que satisfaz: $\sigma^2 = \mathrm{id}_G$; $\sigma(g) = g$ se, e somente se, $g = e_G$.

- (a) (1,0 ponto) Mostre que $G = \{g^{-1}\sigma(g) \mid g \in G\}.$
- (b) (1,0 ponto) Mostre que $\sigma(g) = g^{-1}$ para todo $g \in G$.
- (c) (1,0 ponto) Mostre que G é abeliano.
- (a) Para todo $g \in G$, temos que g^{-1} , $\sigma(g) \in G$, e portanto $g^{-1}\sigma(g) \in G$. Então considere a função $f \colon G \to G$ dada por $f(g) = g^{-1}\sigma(g)$. Por construção, a imagem de f é $\{g^{-1}\sigma(g) \mid g \in G\}$. Se mostrarmos que f é injetora, obteremos que f é uma bijeção entre G e $\{g^{-1}\sigma(g) \mid g \in G\}$. Como G é finito e $\{g^{-1}\sigma(g) \mid g \in G\} \subseteq G$, segue daí que $G = \{g^{-1}\sigma(g) \mid g \in G\}$.

Para mostrar que f é injetora, tome $g, h \in G$. Se f(g) = f(h), então $g^{-1}\sigma(g) = h^{-1}\sigma(h)$. Logo $hg^{-1} = \sigma(h)\sigma(g)^{-1} = \sigma(hg^{-1})$. Como $\sigma(x) = x$ se, e somente se, $x = e_G$, então $hg^{-1} = e_G$. Segue daí que h = g. Isso mostra que f é injetora.

(b) Vamos mostrar que $g\sigma(g) = e_G\sigma(g)g$ para todo $g \in G$. Pelo item (a), para todo $g \in G$, existe $x \in G$ tal que $g = x^{-1}\sigma(x)$. Assim, temos que $\sigma(g) = \sigma(x^{-1}\sigma(x)) = \sigma(x)^{-1}x$. Logo

$$g\sigma(g) = (x^{-1}\sigma(x))(\sigma(x)^{-1}x) = e_G,$$

 $\sigma(g)g = (\sigma(x)^{-1}x)(x^{-1}\sigma(x)) = e_G.$

(c) Usando o item (b), temos que $\sigma(g)\sigma(h) = \sigma(gh) = (gh)^{-1} = h^{-1}g^{-1} = \sigma(h)\sigma(g)$ para todos $g, h \in G$. Agora, usando o fato de que σ é um isomorfismo de grupos, temos que $\{\sigma(g) \mid g \in G\} = G$. Isso mostra que xy = yx para todos $x, y \in G$, ou seja, que G é abeliano.

Questão 4. Determine se as afirmações a seguir são verdadeiras ou falsas. É necessário justificar a sua escolha provando as afirmações verdadeiras e encontrando contra-exemplos para as falsas.

- (a) (1,0 ponto) Seja G um grupo. Se $H_1, H_2 \subseteq G$ são subgrupos, então $(H_1 \cup H_2) \subseteq G$ é um subgrupo.
- (b) (1,0 ponto) Para todos os grupos G_1 e G_2 : $H = \{(g_1, e_{G_2}) \mid g_1 \in G_1\} \subseteq G_1 \times G_2$ é um subgrupo normal e $(G_1 \times G_2)/H \cong G_2$.
- (a) Falsa. Considere o grupo aditivo \mathbb{Z} . Para todo $n \in \mathbb{Z}$, considere o subgrupo $\langle n \rangle = \{zn \mid z \in \mathbb{Z}\}$. Observe que $\langle 2 \rangle \cup \langle 3 \rangle$ não é um subgrupo de \mathbb{Z} . De fato, $2, 3 \in \langle 2 \rangle \cup \langle 3 \rangle$, mas $2+3=5 \notin \langle 2 \rangle \cup \langle 3 \rangle$.
- (b) Verdadeira. Considere a função $f: G_1 \times G_2 \to G_2$ dada por $f(g_1, g_2) = g_2$. Primeiro observe que f é um homomorfismo de grupos. De fato, para todos $a_1, b_1 \in G_1$ e $a_2, b_2 \in G_2$, temos que $f((a_1, a_2)(b_1, b_2)) = f(a_1b_1, a_2b_2) = a_2b_2 = f(a_1, a_2)f(b_1, b_2)$. Além disso, f é sobrejetor, já que $f(e_{G_1}, g_2) = g_2$ para todo $g_2 \in G_2$. Agora, o núcleo de f é:

$$\ker(f) = \{(a,b) \in (G_1 \times G_2) \mid f(a,b) = b = e_{G_2}\} = \{(a,e_{G_2}) \mid a \in G_1\} = H.$$

Portanto, H é um subgrupo normal de $G_1 \times G_2$ e, pelo Primeiro Teorema do Isomorfismo de grupos, temos existe um isomorfismo de grupos $(G_1 \times G_2)/H \cong G_2$.