# AUTOMATY A GRAMATIKY

## 5

#### **Pavel Surynek**

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

## Výpočet dvousměrného automatu

- $\Box$  2KA A = (Q, X, δ, q<sub>0</sub>, F)
  - □ Ize se omezit na  $\delta'$ : Q×X  $\rightarrow$  Q×{-1, 1}
    - výpočet na místě nahradíme jeho výsledkem v okamžiku přesunu na další buňku
      - $\delta'(q,x) = \frac{\delta(p_i,x)}{\delta(p_i,x)}$  kde  $i \in \mathbb{N}_0$  je takové, že  $\frac{\delta(p_i,x)_2 \neq 0}{\delta(p_i,x)_2 \neq 0}$ ,  $p_1 = q$  a  $\frac{[p_{j+1}, 0] = \delta(p_j,x)}{\delta(p_j,x)}$  pro j = 1,2, ..., i-2
  - při výpočtu se pak střídá dopředný a zpětný chod
    - speciálně přijímající výpočet začíná dopředným chodem a končí dopředným
      - počet chodů v přijímajícím výpočtu je lichý

|    | а     | b     |
|----|-------|-------|
| →1 | 1,+1  | 2, +1 |
| ←2 | 2, +1 | 3, -1 |
| 3  | 1,+1  | 3, -1 |



## Ekvivalence KA a 2KA (1)

- $\square$  KA A =  $(Q_A, X, \delta_A, q_0, F_A) \Rightarrow 2KA B$ 
  - □ (ihned: B) =  $(Q_A, X, \delta_B, q_0, F_A)$ , kde  $\delta_B(q,x) = [\delta_A(q,x), +1]$  pro  $q \in Q$  a  $x \in X$
- $\square$  2KA  $\Rightarrow$  KA
  - omezme se na deterministický 2KA
    - bez újmy na obecnosti  $\delta$ : Q×X  $\rightarrow$  Q×{-1, 1}
  - i-tá přechodová (*crossing*) posloupnost
    - posloupnost stavů v <u>přijímajícím</u> výpočtu při práci nad symboly x<sub>i-1</sub> a x<sub>i</sub> (tj. nad (i-1)-ní a i-tou buňkou) ve slově w=x<sub>1</sub>x<sub>2</sub>...x<sub>n</sub>
      - směry výpočtu se střídají
        - dopředný chod pracuje se symbolem x<sub>i</sub>
        - zpětný chod pracuje se symbolem x<sub>i-1</sub>
      - posloupnosti jsou liché délky
    - stavy se v přechodové posloupnosti na lichých resp. sudých pozicích neopakují
      - jinak zacyklení, tj. nepřijímající výpočet
  - umíme ověřit, zda dvě dané přechodové posloupnosti po sobě mohou v přijímajícím výpočtu následovat



**Př.:** [q1, q2,q3] je i-tá přechodová posloupnost

## Ekvivalence KA a 2KA (2)

- $\square$  (deterministický) 2KA A = (Q<sub>\(\Delta\)</sub>, X,  $\delta_\(\Delta\)$ , q<sub>\(\Delta\)</sub>, F<sub>\(\Delta\)</sub>)
  - □ definujeme ekvivalentní KA B =  $(Q_B, X, \delta_B, q_{BO}, F_B)$ :
    - Q<sub>R</sub> nechť je množina všech přechodových posloupností vzhledem k A
      - $\blacksquare$  Q<sub>B</sub> konečná  $\leftarrow$  pod-posloupnosti na sudých resp. lichých pozicích jsou bez opakování stavů
    - $= q_{B0} = [q_{A0}]$  $q_{A0}$
    - $\delta_{R}([q_{1},q_{2},...,q_{k}], x) = \{[p_{1},p_{2},...,p_{l}] \mid$  $[p_1,p_2,...,p_l]$  může následovat po  $[q_1,q_2,...,q_k]$  při čtení x}
      - definujeme pro každou přechodovou posloupnost [q<sub>1</sub>,q<sub>2</sub>,...,q<sub>k</sub>]∈Q<sub>B</sub> a x∈X
    - $F_{B} = \{ [f] \mid f \in F_{A} \}$

## Ekvivalence KA a 2KA (3)

- nedeterministický 2KA A
  - stavy se v přechodových posloupnostech mohou opakovat
    - omezíme se na prosté přechodové posloupnosti
      - $= \text{jestliže } [q_0, i_0], [q_1, i_1], ..., [q_{\alpha}, i_{\alpha}], ..., [q_{\beta}, i_{\beta}], ...., [q_k, i_k], \text{kde } [q_{\alpha}, i_{\alpha}] = [q_{\beta}, i_{\beta}],$ je přijímající výpočet, pak  $[q_0,i_0]$ ,  $[q_1,i_1]$ , ...,  $[q_{\alpha},i_{\alpha}]$ ,  $[q_{\beta+1},i_{\beta+1}]$ ,....,  $[q_k,i_k]$ je rovněž přijímající výpočet
      - jestliže w∈L(A), pak existuje prostý výpočet, který přijímá w
      - v přechodových posloupnostech vzhledem k prostým přijímajícím se neopakují stavy na lichých ani sudých pozicích
  - přechodová funkce je nedeterministická
    - návaznost přechodových posloupností se bude ověřovat nedeterministicky
  - množina počátečních stavů
    - $S_{B0} = \{[q] \mid q \in S_0\}$

## Regulární **substituce**

- (obecná) **substituce** abecedy
  - nechť X a Y jsou abecedy
    - zobrazení  $f: X \rightarrow 2^{Y*}$  je substituce z X do Y
      - symbolům přiřazujeme množiny slov
  - nechť L je jazyk nad X
    - definujeme  $f(L) = \{w_1 w_2 ... w_n \mid (\exists x_1 x_2 ... x_n \in L) w_1 \in f(x_1) \land w_2 \in f(x_2) \land ... \land w_n \in f(x_n)\}$
  - nechť K je jazyk nad Y
    - definujeme  $f^{-1}(K) = \{x_1 x_2 ... x_n \mid (\exists w_1 w_2 ... w_n \in K)\}$  $W_1 \in f(x_1) \land W_2 \in f(x_2) \land \dots \land W_n \in f(x_n)$
- regulární substituce
  - substituce z X do Y je regulární, jestliže f(x) je regulární jazyk pro každé x∈X
  - $\square$  speciálně, když |f(x)|=1, tj. symbolům jsou přiřazena slova, se f nazývá homomorfismus

```
Př.: X={0, 1}; Y={a,b}
     L={000, 101, 11}
    f(0) = \{aba, abba, aa\}
    f(1) = {\lambda, bb, bab}
    f(L) = \{aba.abba.aa, aa.aa.aa,
            aba.aba.aa, ..., aa.bb,
            bb.abba.bab, ...}
```

## Uzavřenost regulární substituce

- regulární jazyky jsou uzavřené na regulární substituci
  - nechť L je regulární jazyk nad X, K je regulární jazyk nad Y a f regulární substituce, pak f(L) i f1(K) je regulární jazyk
    - speciálně je-li h homomorfismus, pak h(L) i  $h^{-1}(K)$  jsou regulární jazyky

#### Důkaz

- regularita f(L) resp. h(L) snadno pomocí regulárních výrazů
- regularita  $f^{-1}(K)$  resp.  $h^{-1}(K)$ 
  - KA A = (Q, Y, δ,  $q_0$ , F), že L(A) = K
  - pro každé  $x \in X$  máme KA  $A_x = (Q_x, Y, \delta_x, q_{x0}, F_x)$ , že  $L(A_x) = f(x)$ , kde množiny stavů jsou disjunktní, tj.  $Q_x \cap Q_{x'} = \emptyset$  pro x, x'∈X, že x≠x'
  - zkonstruujme <u>dvousměrný</u> konečný automat B =  $(Q_B, X, \delta_B, S_{BO}, F_B)$ , kde
    - $Q_B = \{f_B\} \cup Q \times (\bigcup_{x \in X} Q_x), \text{ kde } f_B \text{ je nový stav}$

$$\begin{array}{l} & F_B = \{f_B\} \\ & = \\ & \delta_B([q,r],x) = \\ &$$

■  $\delta_{\rm B}(f_{\rm B},x)=\emptyset$  pro x ∈X

## Regulární jazyky algebraicky

- nad danou abecedou X zavedeme třídu jazyků R a ukážeme, že R jsou právě regulární jazyky nad X
  - R bude definována algebraicky pomocí uzávěrových vlastností jako nejmenší třída jazyků splňující následující podmínky:
    - (i) Ø∈R (prázdný jazyk)
    - (ii)  $\{x\} \in R$  pro  $x \in X$  (jednopísmenné jazyky)
      - společně s Ø a {λ} tvoří tzv. elementární jazyky
    - $\blacksquare$  (iii) když  $K, L \in R$ , pak  $K \cup L \in R$ 
      - uzavřenost na sjednocení
    - (iv) když K,L $\in R$ , pak K.L $\in R$ 
      - uzavřenost na konkatenaci
    - $když(L \in R)$ ,  $pak(L^* \in R)$ (v)
      - uzavřenost na iteraci
  - speciálně platí:

    - $X^* \in R$  protože  $X \in R$  a libovolné slovo  $x_1 x_2 ... x_n \in X.X....X$ , kde  $x_i \in X$  pro i=1,2,...,n
      - pokud X chápeme jako jazyk jednopísmenných slov, je  $X=U_{y\in X}\{x\}$

bez požadavku na Pozn.: nejmenší třídu může být  $R = 2^{X^*}$  (všechny

jazyky nad X)

## Kleeneho věta (1)

- předpokládejme fixní abecedu X
  - třídu *R* tvoří právě jazyky přijímané konečnými automaty tj. regulární jazyky
    - tedy L∈R, právě když existuje KA A, že L(A)=L

#### Důkaz

- $\Rightarrow$  (již víme)
  - elementární jazyky jsou regulární
  - při budování R díky uzavřenosti regularity na sjednocení, konkatenaci a iteraci přidáme vždy regulární jazyk
- ← (idea z Floyd-Warshallova algoritmu)
  - mějme KA A=(Q, X,  $\delta$ ,  $q_1$ ,F), že L(A)=L, kde
    - $Q=\{q_1,q_2,...,q_n\}$
  - definujeme  $L_{i,i} = \{w \mid w \in X^* \land \delta^*(q_i, w) = q_i\}$ 
    - platí, že L(A)=U<sub>qi∈F</sub>L<sub>1,i</sub>

## Kleeneho věta (2)

#### Pokračování důkazu

- $\blacksquare \Leftarrow$ 
  - definujeme  $L_{i,j}^{k}=\{w \mid w \in X^* \land \delta^*(q_i,w)=q_j \text{ tak, že výpočet je tvaru } q_i p^1 p^2 ... p^m q_i, kde p^l \in \{q_1,q_2,...q_k\} \text{ pro } l=1,2,...,m\}$ 
    - vnitřní stavy výpočtu se omezují na prvních k stavů
  - zřejmě platí L<sub>i,j</sub>=L<sub>i,j</sub>n, protože omezení je prázdné
  - - výpočet buď stav q<sub>k+1</sub> nevyužije, nebo ano, a sice <u>libovolněkrát</u> (proto \*)
  - indukcí podle k
    - $L_{i,j}^{0}$  jsou elementární jazyky, tedy  $L_{i,j}^{0} \in R$
    - předpokládejme, že $(L_{i,j}^k, L_{i,k+1}^k, L_{k+1,k+1}^k, L_{k+1,j}^k \in R)$ , pak z uzavřenosti R na sjednocení, konkatenaci a iteraci je $(L_{i,i}^{k+1} \in R)$
    - celkem dostáváme L<sub>i,i</sub>∈R
  - z uzavřenosti R na sjednocení a z  $L(A)=U_{q_i \in F}L_{1,i}$  máme  $L(A)\in R$

## Regulární výrazy

- Kleeneho věta poskytuje alternativní popis regulárních jazyků nad danou abecedou X
  - umožňuje zavedení regulárních výrazů, což jsou slova nad abecedou  $X \cup \{\emptyset, \lambda, +, ., *, (, )\}$  vytvořené podle následujících pravidel:
    - předpokládáme, že  $\{\emptyset, \lambda, +, ., *, (, )\} \cap X = \emptyset$ 
      - (i) Ø a λ jsou regulární výrazy
      - (ii) x je regulární výraz pro každé x∈X
      - (iii) (α+β) je regulární výraz, když α, β jsou regulární výrazy
      - (iv) (α.β) je regulární výraz, když α, β jsou regulární výrazy
      - (v) α\* je regulární výraz, když α je regulární výraz
      - (vi) každý regulární výraz vznikne konečným použitím pravidel (i)-(v)
  - regulární výraz α **reprezentuje** jazyk [α], kde
    - $[\emptyset]=\emptyset$ ,  $[\lambda]=\{\lambda\}$ ,  $[x]=\{x\}$  pro  $x\in X$
    - $[(\alpha+\beta)]=[\alpha]\cup[\beta]$
    - $[(\alpha.\beta)]=[\alpha].[\beta]$
    - $[\alpha^*] = [\alpha]^*$
  - z Kleeneho věty vidíme, že reprezentovaný jazyk je regulární a naopak libovolný regulární jazyk lze reprezentovat nějakým regulárním výrazem

**Př:**  $X = \{a,b,c,d\}$ a(bc)\*a+cd (ab)\*(cd)\*+ca

**Př:** [a(bc)\*a+cd] =

 $[a(bc)*a]\cup[cd] =$ 

{abca,abcbca, ...

abcbc...bca, cd}

 $\{a\}.[bc]*.\{a\} \cup \{cd\} =$ 

### Regulární **výraz** ⇒konečný **automat**

- regulárním jazykem není reprezentující regulární výraz určen jednoznačně
  - chceme rozpoznávat, zda dvojice regulárních výrazů reprezentuje stejný jazyk, tj. zda jsou ekvivalentní
    - převodem na konečný automat  $A=(Q\cup\{q_0\}, X, \delta, \{q_0\}, F)$ 
      - regulární výrazy umožňují úspornou reprezentaci jazyka ⇒ rozhodnutí o ekvivalenci regulárních výrazů je PSPACE-úplný problém
    - 1. očíslujeme symboly v regulárním výrazu
      - množina stavů
    - 2. zjistíme, které očíslované symboly mohou stát na začátku reprezentovaného slova
      - počáteční stavy
    - 3. zjistíme, které dvojice očíslovaných symbolů mohou v reprezentovaném slově stát vedle sebe
      - přechodová funkce
    - 4. zjistíme, které očíslované symboly mohou stát na konci reprezentovaného slova
      - přijímající stavy
    - 5. speciálně ošetřit případ, kdy λ je reprezentováno regulárním výrazem

```
Př: X = \{a,b,c,d\}

a(bc)*a+cd

a_1(b_2c_3)*a_4+c_5d_6

Q=\{a_1, b_2, c_3, a_4, c_5,d_6\}
```

**Př:** začátek  $\{a_1, c_5\}$ 

**Př:** sousedství {[a<sub>1</sub>,b<sub>2</sub>], [b<sub>2</sub>,c<sub>3</sub>], [c<sub>3</sub>,b<sub>2</sub>], [c<sub>3</sub>,a<sub>4</sub>], [c<sub>5</sub>,d<sub>6</sub>]}

**Př:** konec  $\{a_4, d_6\}$ 

**Př:** λ reprezentováno není q<sub>o</sub> nebude v F

## Konečný **automat** ⇒ regulární **výraz**

- $\square$  mějme KA A=(Q, X, δ, q<sub>1</sub>,F), kde Q = {q<sub>1</sub>,q<sub>2</sub>, ..., q<sub>n</sub>}
  - využijeme důkaz Kleeneho věty, tj. zkonstruujeme regulární výrazy pro L<sub>i,i</sub>
    - induktivně podle:  $L_{i,j}^{k+1} = L_{i,j}^{k} \cup L_{i,k+1}^{k}.(L_{k+1,k+1}^{k})^{*}.L_{k+1,j}^{k}$
    - výsledný regulární výraz sestavíme (aditivně) z regulárních výrazů pro L<sub>1.i</sub>, kde q<sub>i</sub>∈F



| $L_{i,j}^0$ | 1   | 2   | 3 |
|-------------|-----|-----|---|
| 1           | a+λ | b   | Ø |
| 2           | Ø   | b+λ | а |
| 3           | а   | b   | λ |
|             |     |     |   |

| L <sub>i,j</sub> <sup>2</sup> | 1   | 2     | 3        |
|-------------------------------|-----|-------|----------|
| 1                             | a*  | a*bb* | a*bb*a   |
| 2                             | Ø   | b*    | b*a      |
| 3                             | aa* | a*bb* | a*bb*a+λ |

| $L_{i,j}^{-1}$ | 1   | 2   | 3 |
|----------------|-----|-----|---|
| 1              | a*  | a*b | Ø |
| 2              | Ø   | b+λ | а |
| 3              | aa* | a*b | λ |

| L <sub>i,j</sub> <sup>3</sup> | 1 | 2       | 3        |
|-------------------------------|---|---------|----------|
| 1                             | _ | (a+b)*b | (a+b)*ba |
| 2                             | _ | _       | _        |
| 3                             | _ | _       | _        |