Ethernet

Ethernet

- Es la primer LAN de alta velocidad.
- Es más simple que Token Ring, FDDI y ATM.
- Velocidad de 10Mbps a 10 Gbps.
- Hardware económico.

Topologías de red

Topología física

 es la disposición real de las máquinas, dispositivos de red y cableado (los medios) en la red.

 la determina únicamente la configuración de las conexiones entre nodos.

Topología Bus

Tiene todos sus nodos conectados directamente a un enlace y no tiene ninguna otra conexión entre si. Físicamente cada host está conectado a un cable común, por lo que se pueden comunicar directamente. La ruptura del cable hace que los hosts queden desconectados.

Topología Estrella

- En los 90 era común la topología Bus.
- Hoy (2005) domina la topología estrella.
- Elecciones de conexión: hub o switch.

Topología lógica

- es la forma en que las máquinas se comunican a través del medio físico.
- Los dos tipos más comunes de topologías lógicas son:
 - broadcast (Ethernet): simplemente significa que cada host envía sus datos hacia todos los demás hosts del medio de red.
 - transmisión de tokens (Token Ring y FDDI): controla el acceso a la red al transmitir un token eléctrico de forma secuencial a cada host.

Estructura de la trama Ethernet

El transmisor encapsula el datagrama IP (u otro protocolo de red) en la trama Ethernet.

Preámbulo (8 bytes):

- 7 bytes con patrón 10101010 seguido por un byte con patrón 10101011.
- Usado para sincronizar la frecuencia de reloj del receptor.

Dirección destino (6 bytes):

• Si el adaptador recibe una trama con dirección destino propia o dirección de broadcast (paquete ARP), éste pasa los datos de la trama al protocolo de capa de red, de otro modo, el adaptador descarta la trama.

Dirección fuente (6 bytes):

• El campo contiene la dirección MAC del transmisor.

Tipo (2 bytes):

• Indica el protocolo de capa superior (principalmente IP pero hay otros como Novell IPX y AppleTalk).

Datos (46 a 1,500 bytes):

- Contiene el datagrama IP.
 - MTU en Ethernet:
 - máximo de 1,500 bytes.
 - mínimo de 46 bytes.

CRC (4 bytes):

• Verificado en el receptor, si un error es detectado, la trama es simplemente descartada.

Codificación Manchester

¿Qué es?

- Un tipo de codificación empleada en diferentes aplicaciones, entre las más conocidas está la usada en la norma IEEE 802.3 (Ethernet) para la transmisión en redes LAN de cable coaxial o par trenzado.
- A la mitad de la señal de cada bit existe una conmutación por lo que se puede decir que es excelente para la sincronización entre emisor y receptor.

Funcionamiento

- Ocurre una transición a la mitad de cada bit para sincronización y se mantiene un mismo nivel de voltaje positivo o negativo.
- Para representar un 1:
 - transición es hacia arriba.
- Para representar un 0:
 - la transición es hacia abajo.
- Cada período de un bit se divide en dos intervalos iguales.

Ventajas

- El receptor puede sincronizar la señal usando dicha transición, es decir, que siempre está presente y no se interrumpe, por lo que también se dice que esta auto sincronizado.
- Se pueden detectar errores fácilmente si se descubre una ausencia de la transición esperada en mitad del intervalo.
- Se utiliza la misma cantidad de voltaje para representar un uno o un cero.

Desventajas

- Resulta un poco complicado determinar donde comienza y donde termina un bit.
- Se necesita el doble de ancho de banda para la misma información, debido a que los pulsos son de la mitad de ancho.

Ejemplo

Servicio no confiable y sin conexión

• Sin conexión:

• No hay handshaking entre adaptadores Tx y Rx.

No confiable:

- Receptor no envía acks o nacks al transmisor.
 - Flujo de datagramas enviados a la capa de red puede tener espacios vacíos.
 - Los espacios vacíos son llenados si la aplicación está usando TCP.
 - De otra manera, si falta algún fragmento, IP no podrá reensamblar el datagrama y lo descarta.

CSMA/CD

- No hay ranuras.
- Sensa portadora: adaptador no transmite si otro adaptador lo está haciendo.
- Detecta Colisiones: adaptador transmisor aborta cuando éste detecta que otro adaptador está transmitiendo.

 Acceso Aleatorio: Antes de intentar una retransmisión el adaptador espera un tiempo aleatorio.

Algoritmo CSMA/CD de Ethernet

- 1. El adaptador recibe un datagrama de la 4. Si el capa de red y crea la trama y la coloca transmisió en la memoria (*buffer*). y envía ur
- 2. Si el adaptador sensa que el canal está:

Libre: el adaptador comienza a transmitir la trama.

Ocupado: el adaptador espera hasta que esté libre el canal y transmite.

3. Si el adaptador transmite la trama entera sin detectar colisión, se considera transmisión lograda!

- Si el adaptador detecta otra transmisión mientras transmite, aborta y envía una señal de "jam".
- 5. Después de abortar, el adaptador entra en backoff exponencial. Después de la m-ésima colisión, el adaptador elige un K aleatorio entre {0,1,2,...,2^m-1}. El adaptador espera K*512 periodos de bit y regresa al paso 2.

CSMA/CD de Ethernet (detalles)

Señal de "jam": asegura que todos los transmisores detecten la colisión.

• el tamaño de la señal es de 48 bits.

Periodo de Bit: tiempo en que se transmite un solo bit.

 0.1 microsec en 10 Mbps Ethernet; para K=1023, se esperará alrededor de 50 msec.

Backoff Exponencial:

- *Meta*: retransmisiones intentan estimar la carga actual.
 - Alta carga: espera aleatoria será mayor.
- Primera colisión: elige K entre {0,1};
 retardo es K*512 periodos de bits.
- Después de segunda colisión: elige K de {0,1,2,3}...
- Después de 10 colisiones, elige K de {0,1,2,3,4,...,1023}

La eficiencia es mucho mayor que ALOHA (ranurado o no).

CSMA/CD

Eficiencia de Ethernet

Fracción de tiempo durante la transmisión de tramas en un canal sin que ocurra una colisión.

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

Donde:

 $t_{prop}
ightarrow ext{tiempo máximo que toma}$ la señal en propagarse entre dos adaptadores.

 $t_{trans} \rightarrow \text{tiempo para transmitir la}$ trama más grande.

Tecnologías Ethernet

Tecnologías como:

- ❖ 10BASE-T, 10BASE-2, 100BASE-T, 1000BASE-LX, 10GBASE-T.
 - > 10, 100, 1000, 10G → velocidad del enlace.
 - ➤ BASE → banda base, tráfico que transporta el medio físico.
 - ➤ T, LX → medio físico.
 - ➤ Ethernet → es capa física y capa de enlace.

Estandarizadas por:

✓ IEEE 802.3 CSMA/CD (Ethernet)

10BASE5

- Producto original de Ethernet del año 1980.
- Transmitía 10 Mbps en un sólo cable coaxial grueso.
- Forma parte del estándar original 802.3.
- Son económicos y no requieren de configuración.
- Usa codificación Manchester.
- Cable grueso, pesado y difícil de instalar.
- Transmisión half-duplex.

10BASE2

- Se introdujo en 1985.
- Instalación sencilla debido a su menor tamaño y peso, y por su mayor flexibilidad.
- Utiliza codificación Manchester.
- Los computadores en la LAN se conectaban entre sí con una serie de tendidos de cable coaxial sin interrupciones.
- Se usaban conectores BNC para unir estos tendidos a un conector en forma de T en la NIC.

10BASET

- Se introdujo en 1990.
- Utilizaba cable de cobre (UTP) de Categoría 3.
- Usa codificación Manchester.
- Tiene un conductor sólido para cada hilo en un cable horizontal con una longitud máxima de 90 metros.
- Utiliza conectores RJ-45 de ocho pines.
- Transporta 10 Mbps de tráfico en modo half-duplex y 20 Mbps en modo full-duplex.

Arquitectura 10BASET

- Los enlaces de 10BASE-T
- Consisten en una conexión entre la estación y un hub o switch.
- Los hubs y los repetidores no dividen los segmentos de la red en distintos dominios de colisión, solamente extienden la longitud de una red dentro de un solo dominio de colisión.
- Los puentes y los switches dividen un segmento en dominios de colisión individuales.
- Se debe mantener el retardo entre las estaciones lejanas, al mínimo.

Ethernet de 100-Mbps

- Se conoce como Fast Ethernet.
- Características comunes:
 - parámetros de temporización.
 - formato de trama.
 - proceso de transmisión.

- Para responder a los problemas de transmisión de datos se utilizan dos distintos pasos de codificación.
 - codificación que utiliza una técnica denominada 4B/5B.
 - codificación real de la línea específica para el cobre o la fibra.

Características

• En 1995, se convirtió en un éxito comercial.

En 1997, Ethernet se expandió para incluir capacidad de full dúplex.

Los switches reemplazan a los hubs.

Usa codificación 4B/5B

Transporta 100 Mbps de tráfico en modo half-dúplex.

Transporta 200 Mbps de tráfico en modo full-dúplex.

Arquitectura Fast Ethernet

- Generalmente consisten en una conexión entre la estación y el hub o switch.
- Los hubs se consideran repetidores multipuerto y los switches, puentes multipuerto.
- Estos están sujetos a la limitación de 100 m de distancia de los medios UTP.
- Un repetidor Clase 1
 - puede introducir hasta 140 tiempos de bit de latencia.
 - cambia entre una implementación de Ethernet y otra.
- Un repetidor Clase II
 - puede introducir 92 tiempos de bit de latencia.
 - para lograr menor latencia, los repetidores Clase II deben conectarse a tipos de segmentos que usen la misma técnica de señalización.
 - no puede superar los 5 metros.

Arquitectura de Gigabit Ethernet

- Las limitaciones de distancia de los enlaces full-duplex están restringidas sólo por el medio y no por el retardo de ida y vuelta.
- Se recomienda que todos los enlaces existentes entre una estación y un hub o switch estén configurados para Auto-Negociación para así permitir el mayor rendimiento conjunto.

Ethernet 10Mbps

stándar Ethernet	Fecha	Descripción
Ethernet experimental	1972 (patentado en 1978)	2.94 Mbit/s sobre cable coaxial en topología de bus.
Ethernet II (DIX v2.0)	1982	10 Mbit/s sobre coaxial fino (thinnet) - La trama tiene un campo de tipo de paquete. El protocolo IP usa este formato de trama sobre cualquier medio.
IEEE 802.3	1983	10BASE5 10 Mbit/s sobre coaxial grueso (thicknet). Longitud máxima del segmento 500 metros - Igual que DIX salvo que el campo de Tipo se substituye por la longitud.
802.3a	1985	10BASE2 10 Mbit/s sobre coaxial fino (thinnet o cheapernet). Longitud máxima del segmento 185 metros
802.3b	1985	10BRDAD36
802.3c	1985	Especificación de repetidores de 10 Mbit/s
802.3d	1987	FOIRL (Fiber-Optic Inter-Repeater Link) enlace de fibra óptica e <mark>n</mark> tre r <mark>epetido</mark> res.
802.3e	1987	1BASES o StarLAN
802.3i	1990	10BASE-T 10 Mbit/s sobre par trenzado (UTP). Longitud máxima del segmento 100 metros.
802.3j	1993	10BASE-F10 Mbit/s sobre fibra óptica. Longitud máxima del segmento 1000 metros.

Fast Ethernet

Estándar Ethernet	Fecha	Descripción
802.3u	1995	100BASE-TX, 100BASE-T4, 100BASE-FX Fast Ethernet a 100 Mbit/s con auto-negociación de velocidad.
802.3x	1997	Full Duplex (Transmisión y recepción simultáneos) y control de flujo.
802.3y	1998	100BASE-T2 100 Mbit/s sobre par trenza <mark>d</mark> o (UTP). Long <mark>itud máxima del segment</mark> o 100 metros

1Gbit Ethernet

Estándar Ethernet	Fecha	Descripción
802.3z	1998	1000BASE-X Ethernet de 1 Gbit/s sobre fibra óptica.
802.3ab	1999	1000BASE-T Ethernet de 1 Gbit/s sobre par trenzado
802.3ac	1998	Extensión de la tr <mark>ama máxima a 1522 bytes (para permitir las "O-tag") Las O-tag incluyen.</mark> información para 802.10 VLAN y manejan prioridades según el estandar 802.1p.
802.3ad	2000	Agregación de enlaces para enlaces gemelos.

10 Gbit Ethernet

Estándar Ethernet	Fecha	Descripción	
802.3ae	2003	Ethernet a 10 Gbit/s : 10GBASE-SR, 10GBASE-LR	
<u>IEEE 802.3af</u>	2003	Alimentación sobre Ethernet.	
802.3ah	2004	Ethernet en el último kilómetro.	
802.3ak	2004	10GBASE-CX4 Ethernet a 10 Gbit/s sobre cable bi-axial.	
802.3an	en proceso	10GBASE-T Ethernet a 10 Gbit/s sobre par trenzado (UTP)	
802.3ap	en proceso	Ethernet de 1 y 10 Gbit/s sobre circuito impreso.	
802.3aq	en proceso	10GBASE-LRM Ethernet a 10 Gbit/s sobre fibra óptica multimodo.	
802.3ar	en proceso	Gestión de Congestión	
802.3as en proceso		Extensión de la trama	

Bibliografía

Computer Networking: A Top Down Approach 4th edition Jim Kurose, Keith Ross Addison-Wesley, July 2007, ISBN: 9780321497703

Network Fundamentals, CCNA Exploration Companion Guide Mark A.Dye, Rick McDonald, Antoon W. Rufi Cisco Press, Noviembre 2007, ISBN: 9781587132087 Capítulo 5