期末复习

知识结构

No.

组合、排列与循环排列

集合{1, 2,, n}	计数
r组合	$\binom{n}{r} = \frac{n!}{r!(n-r)!}$
全排列	n!
r排列	$P(n,r) = \frac{n!}{(n-r)!} = n(n-1)(n-r+1)$
循环r排列	$\frac{P(n,r)}{r} = \frac{n!}{r(n-r)!}$
循环全排列	(n-1)!
项链排列	$\frac{(n-1)!}{2}$

NA.

多重集的排列

多重集	r 排列的个数 h _r
$S=\{\infty\cdot a_1,\infty\cdot a_2\ldots,\infty\cdot a_k\}$	k^r
	h_0, h_1, h_2, \ldots 的指数生成函数
	$g^{(e)}(x) = \left(\sum_{e_1=0}^{\infty} \frac{x^{e_1}}{e_1!}\right) \left(\sum_{e_2=0}^{\infty} \frac{x^{e_2}}{e_2!}\right) \dots \left(\sum_{e_k=0}^{\infty} \frac{x^{e_k}}{e_k!}\right)$
	的展开式中 $\frac{x^r}{r!}$ 的系数.
$S = \{n_1 \cdot a_1, n_2 \cdot a_2 \dots, n_k \cdot a_k\}$ $n = n_1 + n_2 + \dots + n_k$	$\frac{n!}{n_1!n_2!n_k!} (r=n)$
	h_0, h_1, h_2, \dots 的指数生成函数 $(r < n)$
	$g^{(e)}(x) = \left(\sum_{e_1=0}^{n_1} \frac{x^{e_1}}{e_1!}\right) \left(\sum_{e_2=0}^{n_2} \frac{x^{e_2}}{e_2!}\right) \dots \left(\sum_{e_k=0}^{n_k} \frac{x^{e_k}}{e_k!}\right)$
	的展开式中 $\frac{x^r}{r!}$ 的系数.

多重集的排列:每类元素出现次数有约束

多重集	r排列的个数 h _r
$S=\{\infty\cdot a_1,\infty\cdot a_2\ldots,\infty\cdot a_k\}$	k^r
	h_0, h_1, h_2, \ldots 的指数生成函数
	$g^{(e)}(x) = \left(\sum_{e_1=0}^{\infty} \frac{x^{e_1}}{e_1!}\right) \left(\sum_{e_2=0}^{\infty} \frac{x^{e_2}}{e_2!}\right) \dots \left(\sum_{e_k=0}^{\infty} \frac{x^{e_k}}{e_k!}\right)$
	的展开式中 x^r 的系数. 对应的因子进行约束
	$\frac{n!}{n_1!n_2!n_k!} (r=n)$
$S = \{n_1 \cdot a_1, n_2 \cdot a_2 \dots, n_k \cdot a_k\}$	h_0, h_1, h_2, \dots 的指数生成函数 $(r < n)$
$n=n_1+n_2+\ldots+n_k$	$g^{(e)}(x) = \left(\sum_{e_1=0}^{n_1} \frac{x^{e_1}}{e_1!}\right) \left(\sum_{e_2=0}^{n_2} \frac{x^{e_2}}{e_2!}\right) \dots \left(\sum_{e_k=0}^{n_k} \frac{x^{e_k}}{e_k!}\right)$
	的展开式中 $\frac{x^r}{r!}$ 的系数. 对应的因子进行约束

多重集的组合

多重集	r组合的个数 h _r
$S=\{\infty\cdot a_1, \infty\cdot a_2 \ldots, \infty\cdot a_k\}$	$\binom{r+k-1}{r} = \binom{r+k-1}{k-1}$
	方程 $x_1+x_2++x_k=r$ 的非负整数解的个数
	$h_0, h_1, h_2,$ 的生成函数 $g(x) = (\sum_{e_1=0}^{\infty} x^{e_1}) (\sum_{e_2=0}^{\infty} x^{e_2})(\sum_{e_k=0}^{\infty} x^{e_k})$ 的展开式中 x^r 的系数.
$S = \{n_1 \cdot a_1, n_2 \cdot a_2 \dots, n_k \cdot a_k\}$ $n = n_1 + n_2 + \dots + n_k$	$\binom{r+k-1}{r} = \binom{r+k-1}{k-1} (r \le n_i, 1 \le i \le k)$
	容斥原理: 方程 $x_1+x_2++x_k=r$ 的非负整数解的个数 ($0 \le x_i \le n_i$, $1 \le i \le k$)
	$h_0, h_1, h_2,$ 的生成函数 $(\exists i \ r > n_i)$ $g(x) = (\sum_{j=0}^{n_1} x^{e_1}) (\sum_{j=0}^{n_2} x^{e_2})(\sum_{j=0}^{n_k} x^{e_k})$ 的展开式中 x^r 的系数.

多重集的组合:每类元素出现次数有约束

多重集	r组合的个数 h _r
$S=\{\infty\cdot a_1, \infty\cdot a_2 \ldots, \infty\cdot a_k\}$	$\binom{r+k-1}{r} = \binom{r+k-1}{k-1}$
	方程 $x_1+x_2++x_k=r$ 的非负整数解的个数
	$h_0, h_1, h_2,$ 的生成函数 $g(x) = (\sum_{e_1=0}^{\infty} x^{e_1}) (\sum_{e_2=0}^{\infty} x^{e_2})(\sum_{e_k=0}^{\infty} x^{e_k})$ 的展开式中 x^r 的系数.对应的因子进行约束
$S = \{n_1 \cdot a_1, n_2 \cdot a_2 \dots, n_k \cdot a_k\}$ $n = n_1 + n_2 + \dots + n_k$	$\binom{r+k-1}{r} = \binom{r+k-1}{k-1} (r \le n_i, 1 \le i \le k)$
	容斥原理: 方程 $x_1+x_2++x_k=r$ 的非负整数解的个数 ($0 \le x_i \le n_i$, $1 \le i \le k$)
	$h_0, h_1, h_2,$ 的生成函数 $(\exists i \ r > n_i)$ $g(x) = (\sum_{j=0}^{n_1} x^{e_1}) (\sum_{j=0}^{n_2} x^{e_2})(\sum_{j=0}^{n_k} x^{e_k})$ 的展开式中 x^r 的系数. 对应的因子进行约束

容斥原理

设集合 S中具有性质 P_i 的元素的集合为 A_i

- 集合 S 不具有性质 $P_1, P_2, ..., P_m$ 的物体的个数: $|\overline{A_1} \cap \cdots \cap \overline{A_m}| = |S| \Sigma |A_i| + \Sigma |A_i \cap A_j| \Sigma |A_i \cap A_j \cap A_k| + ... + (-1)^m |A_1 \cap A_2 \cap ... \cap A_m|$
- 集合S中至少具有性质 $P_1, P_2, ..., P_m$ 之一的元素的个数为 $|A_1 \cup A_2 \cup ... \cup A_m| = \Sigma |A_i| \Sigma |A_i \cap A_j| + \Sigma |A_i \cap A_j \cap A_k|$ $+ ... + (-1)^{m+1} |A_1 \cap A_2 \cap ... \cap A_m$

其中,第一个和对 $\{1, 2, ..., m\}$ 的所有的 1 子集 $\{i\}$ 进行,第二个和对 $\{1, 2, ..., m\}$ 的所有的 2 集合 $\{i, j\}$ 进行,依此类推.

容斥原理的应用

- 多重集的组合
- 错位排列
- 带有绝对/相对禁止位置的排列
- 几何问题

容斥原理的应用:多重集的组合

多重集	r 组合的个数 h_r
$S=\{n_1\cdot a_1, n_2\cdot a_2 \dots, n_k\cdot a_k\}$	方程 $x_1+x_2++x_k=r$ 满足 $0 \le x_1 \le n_1, 0 \le x_2 \le n_1$
每个 n_i 可能为整数或 ∞	$n_2,, 0 \le x_k \le n_k$ 整数解的个数

■ 不满足以上形式的方程进行变量代换转化为以上形式

关键: x_i 系数不为1,则进行变量代换使得系数为1,使用生成函数方法

$$0 \le x_1 \le n_1, 0 \le x_2 \le n_2, ..., 0 \le x_k \le n_k$$

关键: 进行变量代换使之为非负整数

容斥原理的应用: 错位排列

- 设 $X=\{1,2,...,n\}$, 它的排列用 $i_1 i_2 ... i_n$ 表示,错位排列是使得 $i_1 \neq 1, i_2 \neq 2,..., i_n \neq n$ 的排列。
- 用 D_n 表示错位排列个数。

■ D_n 满足如下递推关系:

$$\Box D_n = (n-1)(D_{n-2} + D_{n-1}), n=3, 4,...$$

$$\Box D_n = nD_{n-1} + (-1)^n, \quad n=2, 3, ...$$

容斥原理的应用: 绝对禁止位置排列

$$i_1$$
不在 X_1 内, i_2 不在 X_2 内,…, i_n 不在 X_n 内

■ 带禁止位置的"非攻击型车"

容斥原理的应用: 相对禁止位置排列

- $\{1, 2, ..., n\}$ 的排列中没有 $\{1, 2, ..., (n-1)n\}$ 这些模式出现的排列的个数,记为 $\{Q_n\}$
- 对于*n*≥1,

$$Q_{n} = n! + \sum_{k=1}^{n-1} (-1)^{k} {n-1 \choose k} (n-k)!$$

$$= n! - {n-1 \choose 1} (n-1)! + {n-1 \choose 2} (n-2)! + \dots + (-1)^{n-1} {n-1 \choose n-1} 1!$$

 $\blacksquare Q_n = D_n + D_{n-1}$

生成函数与指数生成函数

- $\Diamond h_0, h_1, ..., h_n, ...$ 为一无穷数列, 其
 - □ 生成函数 $g(x)=h_0+h_1x+h_2x^2+...+h_nx^n+...$
 - □ 指数生成函数 $g^{(e)}(x) = h_0 + h_1 x + h_2 \frac{x^2}{2!} + ... + h_n \frac{x^n}{n!} + ...$
- $S=\{n_1\cdot a_1, n_2\cdot a_2..., n_k\cdot a_k\}$, 每个 n_i 可能为整数或 ∞

r 组合的个数 h_r : $h_0, h_1, h_2, ...$ 的生成函数

$$g(x) = (\sum_{j=0}^{n_1} x^{e_1}) (\sum_{j=0}^{n_2} x^{e_2}) ... (\sum_{j=0}^{n_k} x^{e_k})$$
 的展开式中 x^r 的系数.

r排列的个数 h_r : $h_0, h_1, h_2, ...$ 的指数生成函数

$$g^{(e)}(x) = (\sum_{e_1=0}^{n_1} \frac{x^{e_1}}{e_1!}) (\sum_{e_2=0}^{n_2} \frac{x^{e_2}}{e_2!}) ... (\sum_{e_k=0}^{n_k} \frac{x^{e_k}}{e_k!})$$
 的展开式中 $\frac{x^r}{r!}$ 的系数.

- 把对每类元素出现次数的约束加到(指数)生成函数对应的因子上。
- 生成函数的另一个应用: 求解常系数线性递推关系

Ŋė.

求解递推关系

- 从具体问题求递推关系
- 从递推关系求解一般项 h_n
 - □ 迭代法 + 数学归纳法证明
 - □常系数线性齐次递推关系
 - 特征方程方法
 - 生成函数法
 - □常系数线性非齐次递推关系
 - 特征方程方法
 - 生成函数法

Ŋė.

常系数线性齐次递推关系

常系数线性齐次递推关系:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k} \quad (a_k \neq 0, n \geq k)$$

- ■特征方程法
 - □ 求特征方程 $x^k-a_1x^{k-1}-a_2x^{k-2}-...-a_k=0$ 的特征根:
 - □ 分互异根及重根两种情形。
- ■生成函数法
 - □ 求生成函数形如p(x)/q(x)
 - □ 生成函数的展开式,通常化为代数分式和形式: $c/(1-rx)^t$,利用牛顿二项式展开。

求解常系数线性齐次递推关系

递推关系 $h_n - a_1 h_{n-1} - a_2 h_{n-2} - \dots - a_k h_{n-k} = 0$

 $h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k} \quad (a_k \neq 0, n \geq k) \quad (1)$

的解当且仅当 q 是多项式方程

$$x^{k} - a_{1}x^{k-1} - a_{2}x^{k-2} - \dots - a_{k-1}x - a_{k} = 0$$
 (2)

的一个根.

若多项式方程 (2) 有 k个不同的根 q_1, q_2, \ldots, q_k ,则

$$h_n = c_1 q_1^{n} + c_2 q_2^{n} + \dots + c_k q_k^{n}$$
 (3)

是下述意义下(1)的<u>通解</u>:任意给定<u>初始值 $h_0, h_1, ..., h_{k-1},$ </u>都存 在 c_1, c_2, \ldots, c_k 使得(3)式是满足(1)式和初始条件的唯一的数列。

求解常系数线性齐次递推关系

定理7.4.2 $\Diamond q_1, q_2, \dots, q_r$ 为常系数线性齐次递推关系:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k} \quad (n \ge k) \quad (1)$$

的特征方程的互异的根。

如果 q_i 是(1)的特征方程的 s_i 重根,那么该递推关系的通解中对应于 q_i 的部分为

$$H_n^{(i)} = c_1 q_i^{n} + c_2 n q_i^{n} + ... + c_{s_i} n^{s_i-1} q_i^{n},$$

且该递推关系的通解为:

 s_i 项的和

$$h_n = H_n^{(1)} + H_n^{(2)} + ... + H_n^{(t)}$$

Ŋ.

常系数线性非齐次递推关系

非齐次线性递推关系:

$$h_n = a_1 h_{n-1} + a_2 h_{n-2} + \dots + a_k h_{n-k} + b_n, (a_k, b_n \neq 0, n \geq k)$$

- 特征函数法
- (1) 求齐次关系的一般解
- (2) 求非齐次关系的一个特解
- (3) 将一般解和特解结合,通过初始条件确定一般解中出现的常系数值
- 生成函数法

特殊计数序列

- 差分数/序列
 - □计算一般项是多项式的序列的部分和
- 第二类Stirling数 S(p,k): 把p元素集合划分到 k个不可区分的盒子且没有空盒子的划分的个数
- $S^{\#}(p,k)$: 把 p元素集合划分到 k个非空、可区分的盒子的划分数
- BELL数将 p元素集合分到非空且不可区分盒子的划分数
- 第一类Stirling数 s(p,k)是将p个有标志的物体排成 k个非空的循环排列方法数
- 分拆数
- Catalan数

Ŋė.

排列和组合生成算法

- 排列生成算法
 - □递归方法
 - □邻位替换
 - □逆序生成算法
- 生成组合算法
 - □字典序
 - □组合压缩序
 - □反射Gray序(逐次法)
- 生成 r组合算法
 - □字典序 r组合生成算法

二项式系数

- 帕斯卡三角形
- 二项式定理
- 二项式系数的单峰性
- 多项式定理
- 牛顿二项式定理

鸽巢原理

- 主要内容
 - □鸽巢原理的简单形式
 - □鸽巢原理的加强形式
 - □Ramsey定理

定理3.1.1 如果把n+1个物体放进n个盒子,那么至少有一个盒子包含两个或者更多的物体。

定理3.2.1 $\Diamond q_1, q_2, ..., q_n$ 为正整数.若将

$$q_1+q_2+...+q_n-n+1$$

个物体被放进n个盒子内,那么,

- 或者第1个盒子至少含有 q_1 个物体,
- 或者第2个盒子至少含有 q_2 个物体,…,
- 或者第n个盒子至少含有 q_n 个物体。

平均原理:设m和n都是正整数。如果m个物体放入n个盒子,则至少有一个盒子包含至少[m/n]个物体。

Pólya计数

■ 非等价着色数的计算

定理14.2.3 (Burnside定理) 设 G 是 X 的置换群,C 是 X 中一个满足下面条件的着色集合:对于G中所有 f 与 C 中所有 c, f*c 仍在C中,则C 中非等价的着色数 N(G,C)为:

$$N(G, C) = \frac{1}{|G|} \sum_{f \in G} |C(f)|$$

即, *C*中非等价的着色数等于在 *G*中的置换作用下保持不变的着色的平均数。

计算|C(f)|的方法:

- ✓ 直接计算
- ✓ 循环因子分解
- 各颜色使用特定次数时的非等价着色数的计算
 - ✓ 循环因子分解 → 循环指数 → 生成函数

题型介绍

- 填空题(10空,每空5分)
- 计算题、证明题

1-9999之间的整数中各位数字之和等于7的数共有_____个。

设 h_n 是把1行n列棋盘的方格用红、黄和蓝色着色,并使得没有

着成红色的方格相邻的着色方法数,则 hn 满足的递推关系

$$h_n = 2h_{n-1} + 2h_{n-2} (n^7/2)$$

$$h_0 = 1 \quad h_1 = 3$$

把n个不同颜色球分到k个无区别的盒子($n \ge k$),且盒子允许为空,

方案数为
$$S(p,1)+S(p,2)+…+S(p,k)$$
.

W

二、证明:对任意的 n+1 个整数 $a_1, a_2, ..., a_{n+1}$ 存在两个整数 a_i 和 a_j , $i \neq j$, 使得 $a_i - a_j$ 能够被 n 整除。(10 分) $2 \neq j$

三、8个有区别的球放进4个有标志的盒子,要求第1、2两个盒子必须有奇数个球,第4个盒子有偶数个球,一共有多少种放法?(10分)