f(x) = $2x^2 + px + q$ where p and q are integers g(x) = $14x^2 + 37x + 14$

The equation f(x) = 0 has roots α and β

The equation g(x) = 0 has roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$

Given that p + q = -4 where p > 0 and without solving the equation g(x) = 0

- (a) find
 - (i) the value of p
 - (ii) the value of q

(9)

Given also that $\alpha > \beta$

(b) show that
$$\alpha^2 - \beta^2 = -\frac{3\sqrt{65}}{4}$$

(4)

Question	7 continued				
••••••		 	 	•••••	
•••••		 	 	•••••	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 7 continued	

8 (a) Given that x is measured in radians, complete the table of values for

$$y = \sin x - 3\cos 2x - 0.5$$

Give your answers to one decimal place.

x	0	0.5	0.8	1	1.6	2	2.5	3
у			0.3	1.6			-0.8	-3.2

(2)

- (b) On the grid opposite, draw the graph of $y = \sin x 3\cos 2x 0.5$ for $0 \le x \le 3$
- (c) Use a formula from page 2 to show that $\cos 2A = 1 2\sin^2 A$

$$f(x) = 2\sin x + 12\sin^2 x - x - 5$$

(d) By drawing a suitable straight line on the grid, obtain estimates, to one decimal place, of the roots of the equation f(x) = 0 in the interval $0 \le x \le 3$

24

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 8 continued	

