

Tagestemperatur

Aufgabennummer: B_252		
Technologieeinsatz:	möglich □	erforderlich ⊠

a) Die nachstehend angeführten 3 Messwerte wurden an einem Vormittag aufgezeichnet und sollen mithilfe einer abschnittsweise definierten linearen Funktion T in Abhängigkeit von der Zeit t beschrieben werden.

t in h	T in °C		
6	8		
9	10		
12	16		

t ... Zeit nach Mitternacht in Stunden (h)

T(*t*) ... Temperatur nach *t* Stunden in Grad Celsius (°C)

Es wird angenommen, dass in den Intervallen [6; 9] und [9; 12] die Temperatur jeweils linear zunimmt.

- Stellen Sie den Temperaturverlauf im Intervall [6; 12] grafisch dar.
- Stellen Sie die Funktion T abhängig von der Zeit t im Intervall [6; 12] auf.
- Berechnen Sie mithilfe dieser Funktion T die Temperatur um 11:30 Uhr.
- b) An einem Tag im Oktober hat man einen Temperaturverlauf gemessen, der durch eine Polynomfunktion 3. Grades mit $f(t) = a \cdot t^3 + b \cdot t^2 + c \cdot t + d$ angenähert werden kann.
 - t ... Zeit nach Mitternacht in Stunden
 - f(t) ... Temperatur zum Zeitpunkt t in °C

t	2	5	8	11	14	17	20	23
f(t)	5,4	4,3	8,3	12,2	15,3	14	9,1	7,2

- Erstellen Sie mithilfe der Regressionsrechnung eine zu den angegebenen Werten passende Polynomfunktion 3. Grades. (Runden Sie dabei die Koeffizienten auf 4 Nachkommastellen.)
- Berechnen Sie den Differenzenguotient dieser Polynomfunktion für das Intervall [6; 12].
- Beschreiben Sie, was dieser Differenzenquotient für das Intervall im Sachzusammenhang aussagt.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Tagestemperatur 2

Möglicher Lösungsweg

a) Ansatz über
$$T(t) = k \cdot t + d$$

$$k_1 = \frac{10-8}{9-6} = \frac{2}{3}$$
 \Rightarrow Punkt einsetzen: $8 = \frac{2}{3} \cdot 6 + d_1$
 $\Rightarrow d_1 = 4$

$$\Rightarrow d_1 = 4$$

$$k_2 = \frac{16 - 10}{12 - 9} = 2 \Rightarrow \text{Punkt einsetzen: } 10 = 2 \cdot 9 + d_2$$

$$\Rightarrow d_2 = -8$$

$$T(t) = \begin{cases} \frac{2}{3}t + 4 & \text{für } t \in [6; 9] \\ 2t - 8 & \text{für } t \in [9; 12] \end{cases}$$

$$T(11,5) = 2 \cdot 11,5 - 8 = 15$$

Um 11:30 Uhr ergibt das Modell 15 °C.

Mittels Technologieeinsatz kommt man zur folgenden Gleichung:

$$f(t) = -0.0057 \cdot t^3 + 0.1446 \cdot t^2 - 0.2598 \cdot t + 4.4186$$

Der Differenzenquotient wird gebildet mit: $\frac{f(12) - f(6)}{12 - 6} = 0,9066 \approx 0,91$

Der Differenzenquotient sagt aus, dass die Temperatur im Intervall [6; 12] durchschnittlich um rund 1 °C pro Stunde zunimmt.

Tagestemperatur 3

Klassifikation

□ Teil A ⊠ Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 3 Funktionale Zusammenhänge
- b) 4 Analysis

Nebeninhaltsdimension:

- a) 2 Algebra und Geometrie
- b) —

Wesentlicher Bereich der Handlungsdimension:

- a) A Modellieren und Transferieren
- b) A Modellieren und Transferieren

Nebenhandlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) C Interpretieren und Dokumentieren, B Operieren und Technologieeinsatz

Schwierigkeitsgrad:

Punkteanzahl:

a) schwer

a) 3

b) mittel

b) 3

Thema: Sonstiges

Quellen: -