Lab: DCGAN

Lab Objective:

In this lab, you will learn the classical form of GAN loss, and you will need to implement DCGAN, which apply convolutional neural networks to be the generator and de-convolutional neural networks to be the discriminator.

Turn in:

Report:

Demo:

Requirements:

- 1. Implement DCGAN
- 2. Show generated images
- 3. Plot the loss function of the generator and the discriminator

Implementation Details:

- Generative Adversarial Networks (GAN)
 - GAN consists of two major components: a generator and a discriminator.
 The discriminator, which is a binary classifier, tries to distinguish fake inputs from real inputs, while the generator tries to fool the discriminator.

2. The loss function of discriminator:

$$\mathcal{L}_{D} = -E_{x \sim p_{r}}[\log D(x)] - E_{x \sim p_{q}}[\log(1 - D(x))]$$

3. There are two most often used loss function of generator. The first one is:

$$\mathcal{L}_{G} = -\mathcal{L}_{D} = E_{x \sim p_{g}} [\log(1 - D(x))]$$

The second one is:

$$\mathcal{L}_{G} = E_{x \sim p_{q}}[-\log D(x)]$$

In this lab, you can use either of them, but you should tell me which one you used in your report.

- 4. The training of GAN usually suffers instability. There are a lot of papers discussing about why it happens. For more details, you can refer to the reference section.
- Deep Convolutional Generative Adversarial Networks (DCGAN)
 - DCGAN is an extension of classical GAN. The main contributions of DCGAN includes:
 - 1. Remove all fully-connected layers
 - Add de-convolutional layers to generator
 (https://datascience.stackexchange.com/questions/6107/what-are-deconvolutional-layers)
 - 3. Add batch normalize layers to both generators and discriminators
 - 4. Replace pooling layers with stride convolutional layers
 - 5. For more details, please refer to the reference
- Loading Dataset
 - CelebA_aligned_reduced.h5
 - 2. Using celebA dataset.py to load data

```
1 class CelebADataset(Dataset):
       def __init__(self, h5_path, transform=None):
 2
 3
           assert (os.path.isfile(h5_path))
           self.h5 path = h5 path
 5
           self.transform = transform
 6
 7
           # loading the dataset into memory
 8
           f = h5py.File(self.h5_path, "r")
9
           key = list(f.keys())
10
           print ("key list:", key)
11
           self.dataset = f[key[0]]
12
           print ("dataset loaded and its shape:", self.dataset.shape)
13
14
       def __getitem__(self, index):
15
           img = self.dataset[index]
16
           img = np.transpose(img, (1, 2, 0))
17
           if self.transform is not None:
18
                img = self.transform(img)
19
20
           return img, 0
21
22
       def __len__(self):
23
           return len(self.dataset)
```

3. The usage of this dataset is the same as MNIST or other datasets we used before

Model Architecture.

■ Generator

Name	Туре	Input	Kernel Size	Stride	Input Shape
Deconv1	Transpose	Input noise	4	1	(batch size, nz, 1, 1)
	convolution				
BN1	Batch Norm	Deconv1			(batch size, ngf*8, 4, 4)
ReLU1	ReLU	BN1			(batch size, ngf*8, 4, 4)
Deconv2	Transpose	Relu1	4	2	(batch size, ngf*8, 4, 4)
	convolution				
BN2	Batch Norm	Deconv2			(batch size, ngf*4, 8, 8)
ReLU2	ReLU	BN2			(batch size, ngf*4, 8, 8)
Deconv3	Transpose	ReLU2	4	2	(batch size, ngf*4, 8, 8)
	convolution				
BN3	Batch Norm	Deconv3			(batch size, ngf*2, 16,
					16)
ReLU3	ReLU	BN3			(batch size, ngf*2, 16,
					16)
Deconv4	Transpose	ReLU3	4	2	(batch size, ngf*2, 16,
	convolution				16)
BN4	Batch Norm	Deconv4			(batch size, ngf, 32, 32)
ReLU4	ReLU	BN4			(batch size, ngf, 32, 32)
Deconv5	Transpose	ReLU4	4	2	(batch size, ngf, 32, 32)
	convolution				
Output	Tanh	Deconv5			(batch size, 3, 64, 64)

Discriminator

Туре	Input	Kernel Size	Stride	Padding	Input	Туре
					Shape	
Conv1	Convolution	Input noise	4	2	1	(batch size, 3,
						64, 64)
LeakyReLU1	LeakyReLU	Conv1				(batch size,
						ndf, 32, 32)
Conv2	Convolution	LeakyReLU1	4	2	1	(batch size,
						ndf, 32, 32)
BN2	Batch Norm	Conv2				(batch size,
						ndf*2, 16, 16)
LeakyReLU2	LeakyReLU	BN2				(batch size,
						ndf*2, 16, 16)
Conv3	Convolution	LeakyReLU2	4	2	1	(batch size,
						ndf*2, 16, 16)
BN3	Batch Norm	Conv3				(batch size,
						ndf*4, 8, 8)
LeakyReLU3	LeakyReLU	BN3				(batch size,
						ndf*4, 8, 8)
Conv4	Convolution	LeakyReLU3	4	2	1	(batch size,
						ndf*4, 8, 8)
BN4	Batch Norm	Conv4				(batch size,
						ndf*8, 4, 4)
LeakyReLU4	LeakyReLU	BN4				(batch size,
						ndf*8, 4, 4)
Conv5	Convolution	LeakyReLU4	4	1	0	(batch size,
						ndf*8, 4, 4)
Output	Sigmoid	Conv5				(batch size, 1,
						1, 1)

- Hyper-parameters
 - 1. Batch size: 64
 - 2. Learning rate: 2e-4
 - 3. nz = 100
 - 4. ngf = 64
 - 5. ndf = 64
 - 6. Total epochs = 25
 - 7. Optimizer: Adam

Reference:

- 1. Goodfellow, Ian, et al. "Generative adversarial nets." *Advances in neural information processing systems*. 2014.
 - http://papers.nips.cc/paper/5423-generative-adversarial-nets
- Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
 - https://arxiv.org/abs/1511.06434
- A quick introduce to de-convolutional neural networks: https://datascience.stackexchange.com/questions/6107/what-are-deconvolutional-layers
- Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan." arXiv preprint arXiv:1701.07875 (2017). https://arxiv.org/abs/1701.07875
- Arjovsky, Martin, and Léon Bottou. "Towards principled methods for training generative adversarial networks." arXiv preprint arXiv:1701.04862 (2017).
 - https://arxiv.org/abs/1701.04862
- Pytorch DCGAN example: https://github.com/pytorch/examples/tree/master/dcgan

Report Spec [black: Demo, Gray: No Demo]:

- 1. Introduction (15%, 15%)
- 2. Experiment setups: (20%, 20%)
 - A. How you implement DCGAN
 - B. Which loss function of generator you used
- 3. Results:
 - A. Results of your samples (20%, 30%)
- 4. Discussion (25%, 35%)
- 5. Demo (20%)