AKI: Clinical Pearls to Accompany Concept Map

How Do We Define AKI?

- Rapid increase in serum creatinine, decrease in urine output, or both
- Change in serum creatinine is generally easier to quantify in patients who do not have a foley catheter (i.e., most pediatric patients not in the ICU)
- An increase in creatinine of 50% above baseline or an absolute increase of 0.3 mg/dl are the
 most commonly used cutoffs for defining pediatric AKI
 - there are multiple classifications schemes which are overall more similar than they differ, and the minute details are more important for research purposes than from clinical care
 - the take-home point is that the percentage change from baseline matters the most -an increase in creatinine from 0.2 mg/dL to 0.3 mg/dL represents the same loss of renal function as an increase from 1.0 mg/dL to 1.5 mg/dL
- General staging of acute kidney injury (slight differences in definition from each classification scheme)
 - Stage 1: Serum creatinine between 1.5 and 2 times baseline
 - Stage 2: Serum creatinine between 2 and 3 times baseline
 - Stage 3: Serum creatinine greater than 3 times baseline

How Can We Estimate Renal Function Based on Serum Creatinine?

- Use the **Bedside Schwartz Formula**: GFR = 0.413 * ht (in cm) / (SCr)
- Caution:
 - This is an estimation assuming steady state conditions, and renal function is dynamic in the setting of AKI (i.e., a doubling of serum creatinine in the acute setting represents transient total loss of renal function)
 - Healthy individuals can lose up to 50% of renal functional capacity without any associated change in GFR or creatinine (due to compensatory glomerular hyperfiltration)
 - Prerenal azotemia, if transient, may not result in true kidney *injury* (i.e., an irreversible and damaging process), but this is impossible to tell without (1) predicting the future or (2) performing a kidney biopsy

Why Do We Care About AKI?

- The conservative cutoff of an increase in creatinine by **50% above baseline** is used because even an increase this small has been a/w adverse outcomes, via multiple possible mechanisms:
 - Acidosis
 - Dyselectrolytemias (hyperkalemia, hyperphosphatemia, hypocalcemia) --> cardiac arrhythmias, impaired cellular functioning
 - o Fluid overload / third spacing
 - Toxin accumulation --> neutrophil dysfunction
 - Sequelae of uremia (platelet dysfunction, encephalopathy, pericarditis)
- Short-term complications
 - Patients with Stage 2 AKI (Cr 2.0x baseline or greater) that does not resolve within 7 days have 47% hospital mortality and 1-year survival of only 77%
- Long-term complications
 - Single episode of kidney injury --> "recovery" due to hyperfiltration of remaining functional nephrons --> serum creatinine "normalizes" but pt is at elevated risk of developing CKD

- Pre-renal: any cause of decreased blood flow to the kidney
 - **Systemic hypoperfusion** (i.e., decreased effective arterial blood volume): hypovolemia (GI losses), hemorrhage, sepsis, anaphylaxis, decompensated heart failure, cirrhosis
 - Localized decrease in renal blood flow: renal artery stenosis or thrombosis, ACE inhibitor / ARB use on top of second cause of hypoperfusion, medium-to-large vessel vasculitis, intra-abdominal hypertension
- Intrinsic renal: disease of renal parenchyma
 - Acute tubular necrosis results from prolonged ischemia or nephrotoxin exposure (drugs: vancomycin, zosyn, aminoglycosides, NSAIDs, iodinated contrast, antivirals [acyclovir, ganciclovir, cidofovir, etc], calcineurin inhibitors, cytotoxic chemotherapy vs other toxins: myoglobin, uric acid)
 - Classically w/ muddy brown casts on UA (but not necessarily)
 - Acute interstitial nephritis immune reaction to certain drugs (NSAIDs, penicillins) and infections in those with a genetic predisposition
 - classically with fever, rash, and eosinophiluria
 - Microvascular damage think small-vessel vasculitis (e.g., microscopic polyangiitis, granulomatosis with polyangiitis, Henoch-schonlein purpura, IgA nephritis) vs thrombotic microangiopathy (hemolytic-uremic syndrome, thrombotic thrombocytopenic purpura, disseminated intravascular coagulation, transplant-associated thrombotic microangiopathy)
 - Glomerular disease typically glomerulonephritis more so than nephrosis membanoproliferative GN, SLE nephritis, anti-GBM disease, IgAN
- Post-renal: any obstruction preventing urine outflow resulting in intra-glomerular HTN
 - Tubular obstruction cast nephropathy as in myeloma, crystalline nephropathy (indinavir, acyclovir)
 - Mechanical blockade posterior urethral valves, vesico-ureteral reflux, bilateral obstructing calculi (e.g., struvite staghorn calculi), cancer in urinary system or metastatic to abdomen with ureteral blockade

What Tests Are Helpful? Which Are Less Helpful, and in What Cases?

- Chem 10 gives BUN:Cr ratio (>15 suggestive of pre-renal), acid/base status, electrolytes
- CBC screen for infections, may give clues to etiology (e.g., lymphopenia --> SLE, anemia and thrombocytopenia --> HUS/TMA)
- UA with microscopy
 - Muddy brown casts think ATN
 - Eosinophils think AIN
 - Hematuria with RBC casts think GN
 - o Heavy proteinuria (urine protein:Cr ratio >2) think nephrotic syndrome
- C3/C4 if concerned regarding GN (e.g., SLE causes classically hypocomplementemic GN)
- CK to rule out rhabdomyolysis
- Renal ultrasound to rule out hydronephrosis (post-renal cause) or scarring (is AKI occurring in the background of occult CKD?)
- What about FeNa?
 - So-called "fraction of excreted sodium"
 - o (UNa x PCr) / (PNa x UCr)
 - Normalizes % of sodium excreted by relative ratio of urine to plasma creatinine
 - Can be helpful in distinguishing between pre-renal and intrinsic renal injury, but only if measured prior to fluid administration

- In the setting of pre-renal azotemia, kidneys will be maximally sodium-avid --> FeNa < 1%
- In the setting of intrinsic renal damage, kidneys will not be able to conserve Na properly --> FeNa > 2%

How do we Manage AKI?

- Unfortunately there is no specific therapy to reverse or treat renal injury
- Therapy focuses on identifying and reversing any active precipitants of renal damage:
 - Correct hypovolemia if present and aim for goal net even to slightly positive (assuming patient's overall fluid status can tolerate). This may include blood transfusions to restore Hgb > 7.0.
 - Correct causes of third spacing (i.e., reverse causes of effective arterial blood volume depletion -- manage sepsis, give albumin for profound hypoalbuminemia, decrease afterload and/or increase inotropy for acute decompensated heart failure)
 - Minimize dose and duration of nephrotoxic medications when possible (common culprits: NSAIDs, vancomycin, zosyn, iodinated contrast, aminoglycosides, antivirals [acyclovir, ganciclovir, cidofovir, etc], calcineurin inhibitors, cytotoxic chemotherapy)
 - Identify possible urinary obstruction and relieve obstruction as indicated (e.g., urologic surgery, stent placement)
- At the same time, be aware of complications:
 - Acidosis consider NaHCO₃ bolus; if refractory, dialyze
 - Hyperkalemia if K >6.5 and EKG changes, give calcium gluconate. Temporize with albuterol and/or insulin/glucose. Get rid of total body K burden via diuresis (loop diuretics preferred), Kayexalate (via decanting feeds and/or orally), and/or dialysis if severe and refractory.
 - Fluid overload provide respiratory support as necessary and diurese as tolerated;
 again, if refractory, dialyze
 - Uremia give DDAVP for uremic bleeding, dialyze for complications (encephalopathy, bleeding, pericarditis)

References for Additional Reading

Ronco C, Bellomo R, Kellum JA. Acute Kidney Injury. Lancet 2019; 394: 1949-64.