#### In [1]:

# import matplotlib.pyplot as plt

#### In [5]:

```
#line plot

x = [1,2,3,4,5,6]

y = [1,4,9,16,25,36]

plt.plot(x,y)

plt.grid()
```



#### In [4]:

```
#complete line plot
x = [1,2,3,4,5,6]
y = [1,4,9,16,25,36]
plt.xlabel('x values')  # assigning name to x label
plt.ylabel('y values')  # assigning name to y label
plt.title('Sample Line Plot')  # title of plot
plt.plot(x,y,color = 'red')  # colour of lines
plt.savefig('new_ml_graph.png')  # saving the plot
```



### In [12]:

```
# multi line plot

x = [1,2,3,4,5]
y = [50,40,70,80,20]
y2 = [80,20,20,50,60]

plt.plot(x,y,color = 'red', label = 'Maruti', linewidth = 1)
plt.plot(x,y2,color = 'blue', label = 'Honda city', linewidth = 4)
plt.xlabel('x values') # assigning name to x label
plt.ylabel('y values') # assigning name to y label
plt.title('Multi Line Plot')
plt.legend()
```

```
plt.show()
```



### In [13]:

```
#BAR PLOT
import matplotlib.pyplot as plt
x = [10,20,30,40,50]
y = ['A','B','C','D','E']

plt.xlabel('quan')
plt.ylabel('countries')
plt.title('sample bar plot')

plt.bar(y,x, color= 'green')
```

#### Out[13]:

<BarContainer object of 5 artists>



### In [3]:

```
#bar plot horizontal
import matplotlib.pyplot as plt
x = [10,20,30,40,50]
y = ['A','B','C','D','E']

plt.xlabel('quan')
plt.ylabel('countries')
plt.title('sample bar plot')

plt.barh(y,x, color= 'red')
```

### Out[3]:

<BarContainer object of 5 artists>

sample bar plot



### In [ ]:

#in horizontal graph we use height and in normal we use width parameter

#### In [12]:

```
#example 1
import matplotlib.pyplot as plt
x1 = [0.25, 1.25, 2.25, 3.25, 4.25]
y1 = [50, 40, 70, 80, 20]
plt.bar(x1,y1,color = 'red', label = 'Maruti', width = 0.3)
x2 = [0.26, 1.25, 2.25, 3.25, 4.25]
y2 = [80, 20, 20, 50, 60]
plt.bar(x2,y2,color = 'pink', label = 'Honda', width = 0.6)
x3 = [0.31, 1.5, 2.5, 3.5, 4.5]
y3 = [70, 20, 60, 40, 60]
plt.bar(x3,y3,color = 'green', label = 'Yamaha', width = 0.8)
x4 = [0.75, 1.75, 2.75, 3.75, 4.75]
y4 = [80, 20, 20, 50, 60]
plt.bar(x4,y4,color = 'blue', label = 'KTM', width = 0.4)
plt.legend()
plt.xlabel('Days')
plt.ylabel('distance(kms)')
plt.title('bikes details in bar plotting')
plt.show()
```



#### In [4]:

```
# simple scatter plot
import matplotlib.pyplot as plt
x= [1,2,3,4,5]
y = [1,4,9,16,25]
```

```
plt.scatter(x,y, color ='blue')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.title('sample scatter plot')
plt.show()
```



#### In [11]:

```
# multi scatter plot
import matplotlib.pyplot as plt
x=[1,1.5,2,2.5,3,3.5,3.6]
y = [7.5,8,8.5,9,9.5,10,10.5]
x1 = [8,8.5,9,9.5,10,10.5,11]
y1 =[3,3.5,3.7,4,4.5,5,5.2]
plt.scatter(x,y, label='high income low saving',color='green')
plt.scatter(x1,y1, label='low income high saving',color='blue')

plt.xlabel('saving*100')
plt.ylabel('saving*1000')
plt.title('multi scatter plot')
plt.show()
```



#### In [6]:

```
#pie plot
import matplotlib.pyplot as plt
sub=['DBMS','ML','Java','Python','HTML']
students =[23,17,35,29,12]
plt.pie(students,labels=sub,startangle=90,autopct='%1.2f')
plt.show()
```



```
ML 25.00 Python 30.17
```

# In [17]:

```
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('housing.csv')
df

y = df['latitude']
x = df['longitude']

plt.xlabel('longitude')
plt.ylabel('latitude')
plt.title('actual data set')

plt.plot(x,y,color='purple')
plt.show()
```



# **SEABORN LIBRARY**

```
In [24]:
```

```
import seaborn as sns
import pandas as pd
df = pd.read_csv('housing.csv')
df
```

# Out[24]:

|       | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_house_ |
|-------|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|---------------|
| 0     | -122.23   | 37.88    | 41.0               | 880.0       | 129.0          | 322.0      | 126.0      | 8.3252        | 452           |
| 1     | -122.22   | 37.86    | 21.0               | 7099.0      | 1106.0         | 2401.0     | 1138.0     | 8.3014        | 358           |
| 2     | -122.24   | 37.85    | 52.0               | 1467.0      | 190.0          | 496.0      | 177.0      | 7.2574        | 352           |
| 3     | -122.25   | 37.85    | 52.0               | 1274.0      | 235.0          | 558.0      | 219.0      | 5.6431        | 341           |
| 4     | -122.25   | 37.85    | 52.0               | 1627.0      | 280.0          | 565.0      | 259.0      | 3.8462        | 342           |
|       |           |          |                    |             |                |            |            |               |               |
| 20635 | -121.09   | 39.48    | 25.0               | 1665.0      | 374.0          | 845.0      | 330.0      | 1.5603        | 78            |
| 20636 | -121.21   | 39.49    | 18.0               | 697.0       | 150.0          | 356.0      | 114.0      | 2.5568        | 77            |
| 20637 | -121.22   | 39.43    | 17.0               | 2254.0      | 485.0          | 1007.0     | 433.0      | 1.7000        | 92            |

| 20638 | longitude<br>-121.32 | latitude<br>39.43 | housing_median_age | total_rooms<br>1860.0 | total_bedrooms<br>409.0 | population<br>741.0 | households<br>349.0 | median_income<br>1.8672 | median_house |
|-------|----------------------|-------------------|--------------------|-----------------------|-------------------------|---------------------|---------------------|-------------------------|--------------|
| 20639 | -121.24              | 39.37             | 16.0               | 2785.0                | 616.0                   | 1387.0              | 530.0               | 2.3886                  | 89           |

### 20640 rows × 10 columns

4

### In [25]:

sns.scatterplot(x='latitude',y='longitude',data =df)

### Out[25]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x273ab788>



# In [27]:

 $\verb|sns.distplot(df['latitude'])| # distribution plot|$ 

### Out[27]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x272fa608>



#### In [28]:

 $\verb|sns.barplot(x='latitude',y='longitude',data=df)| #bar plot|$ 

### Out[28]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x275f7c48>





### In [29]:

```
sns.regplot(x='latitude', y='latitude', data = df) #regression plot
```

# Out[29]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x2ac12108>



# In [31]:

```
sns.catplot(x='latitude',y='longitude',data=df)
```

# Out[31]:

<seaborn.axisgrid.FacetGrid at 0x277d0388>



# In [32]:

```
sns.countplot(x='latitude',data=df)
```

### Out[32]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x1e678dc8>

250 -



### In [34]:

sns.lineplot(x='latitude',y='longitude',data = df) #line plot

# Out[34]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x21ba5188>



# In [35]:

sns.distplot(df['latitude']) #distribution plot

### Out[35]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x21be1908>



# In [37]:

sns.pairplot(df) #pair plot

### Out[37]:

<seaborn.axisgrid.PairGrid at 0x26691088>



In [44]:

sns.heatmap(df.corr(),linewidth=2,annot=True) #heatmap

### Out[44]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x33ef2d88>



```
housing_
total
```

### In [45]:

```
cm = df.corr()
cm
```

### Out[45]:

|                    | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income |
|--------------------|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|
| longitude          | 1.000000  | 0.924664 | -0.108197          | 0.044568    | 0.069608       | 0.099773   | 0.055310   | -0.015176     |
| latitude           | -0.924664 | 1.000000 | 0.011173           | -0.036100   | -0.066983      | -0.108785  | -0.071035  | -0.079809     |
| housing_median_age | -0.108197 | 0.011173 | 1.000000           | -0.361262   | -0.320451      | -0.296244  | -0.302916  | -0.119034     |
| total_rooms        | 0.044568  | 0.036100 | -0.361262          | 1.000000    | 0.930380       | 0.857126   | 0.918484   | 0.198050      |
| total_bedrooms     | 0.069608  | 0.066983 | -0.320451          | 0.930380    | 1.000000       | 0.877747   | 0.979728   | -0.007723     |
| population         | 0.099773  | 0.108785 | -0.296244          | 0.857126    | 0.877747       | 1.000000   | 0.907222   | 0.004834      |
| households         | 0.055310  | 0.071035 | -0.302916          | 0.918484    | 0.979728       | 0.907222   | 1.000000   | 0.013033      |
| median_income      | -0.015176 | 0.079809 | -0.119034          | 0.198050    | -0.007723      | 0.004834   | 0.013033   | 1.000000      |
| median_house_value | -0.045967 | 0.144160 | 0.105623           | 0.134153    | 0.049686       | -0.024650  | 0.065843   | 0.688075      |
|                    |           |          |                    |             |                |            |            |               |

### In [47]:

sns.heatmap(cm,linewidth =2,annot=True)

# Out[47]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x35017d88>



### In [48]:

 $\verb|sns.barplot(x='latitude',y='longitude',data=df)| #bar plot|$ 

### Out[48]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x3531dc08>

0



# In [49]:

sns.kdeplot(df['longitude']) #kdeplot

# Out[49]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x35c4ae88>



# In [ ]: