Solutions to Exercise #5

(範圍: Relations)

1. P. 252: 4. (10%)

Sol: $A \times B = B \times A$, when A or B is empty, or $(a, b) \in A \times B$ iff $(a, b) \in B \times A$. The latter means that $a \in A$ iff $a \in B$ and $b \in B$ iff $b \in A$, i.e., A = B.

2. P. 252: 12. (10%)

Sol: Since $4096 = 2^{|A \times B|} = 2^{|A| \times |B|} = 2^{|A| \times 3}$, we have |A| = 4.

3. P. 364: 3. (10%)

Sol: It suffices to show that \Re is reflexive, antisymmetric, and transitive.

reflexive: for all $(a, b) \in A \times B$, $a \Re_1 a$ and $b \Re_2 b \Rightarrow (a, b) \Re_1 (a, b)$.

antisymmetric: for all $(a, b), (x, y) \in A \times B$,

 $(a, b) \Re (x, y)$ and $(x, y) \Re (a, b)$

 $\Rightarrow a \Re_1 x, b \Re_2 y, x \Re_1 a, \text{ and } y \Re_2 b$

 $\Rightarrow a = x \text{ and } b = y$

 \Rightarrow (a, b) = (x, y).

transitive: for all (a, b), (p, q), $(x, y) \in A \times B$,

 $(a, b) \Re (p, q)$ and $(p, q) \Re (x, y)$

 $\Rightarrow a \Re_1 p, b \Re_2 q, p \Re_1 x, \text{ and } q \Re_2 y$

 $\Rightarrow a \Re_1 x \text{ and } b \Re_2 y$

 \Rightarrow $(a, b) \Re (x, y)$.

4. P. 365: 6 (only for (a) and (c)). (10%)

Sol:

(c) a, b, c, d, e or a, c, b, d, e.

5. P. 370: 8. (10%)

Sol: (a) It suffices to show that \Re is reflexive, symmetric and transitive.

reflexive: for all $x \in A$, $3 \mid (x-x) \Rightarrow (x, x) \in \Re$.

symmetric: for all $x, y \in A$, $(x, y) \in \Re \Rightarrow 3 \mid (x - y) \Rightarrow 3 \mid (y - x) \Rightarrow (y, x) \in \Re$.

transitive: for all $x, y, z \in A$, $(x, y) \in \Re$ and $(y, z) \in \Re \Rightarrow 3 \mid (x - y)$ and $3 \mid (y - z)$ $\Rightarrow 3 \mid ((x - y) + (y - z)) \Rightarrow 3 \mid (x - z) \Rightarrow (x, z) \in \Re$.

- (b) The equivalence classes are $\{1, 4, 7\}, \{2, 5\}, \text{ and } \{3, 6\}.$ The partition of *A* induced by \Re is $\{\{1, 4, 7\}, \{2, 5\}, \{3, 6\}\}.$
- 6. P. 371: 14 (only for (a), (b), (d), (f)). (20%)
- Sol: (a) Since \Re is reflexive, we have $|\Re| \ge 7$. So, it is impossible to have \Re with $|\Re| = 6$.
 - (b) $\Re = \{(x, x) \mid \text{ for all } x \in A\}.$
 - (d) $\Re = \{(x, x) \mid \text{ for all } x \in A\} \cup \{(y, z), (z, y)\}, \text{ where } y \in A, z \in A \text{ and } y \neq z \text{ (for example, } \Re = \{(x, x) \mid \text{ for all } x \in A\} \cup \{(1, 2), (2, 1)\}).$
 - (f) Since \Re is symmetric, we have $|\Re| = 7 + 2k$, an odd value, where k is the number of pairs of symmetric two-tuples (i.e., (x, y) and (y, x)) contained in \Re . So, it is impossible to have \Re with $|\Re| = 22$, an even value.
- 7. P. 66: 2. (10%)

Sol:

p	q	$p \wedge q$	$p \lor (p \land q)$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

8. P. 66: 4. (10%)

Sol: $[(p \land q) \land r] \lor [(p \land q) \land \neg r] \Leftrightarrow (p \land q) \land (r \lor \neg r) \Leftrightarrow (p \land q) \land T \Leftrightarrow p \land q$. $[(p \land q) \lor \neg q] \Leftrightarrow (p \lor \neg q) \land (q \lor \neg q) \Leftrightarrow (p \lor \neg q) \land T \Leftrightarrow p \lor \neg q$. Therefore, the given statement simplifies to $(p \lor \neg q) \rightarrow s$ or $(q \rightarrow p) \rightarrow s$.

- 9. Prove that if $3 \mid n^2$, then $3 \mid n$, where n is a positive integer, by the methods of
 - (a) $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$; (5%)
 - (b) contradiction. (5%)
- Sol: (a) If n = 3k + 1, then $n^2 = (3k + 1)^2 = 3k' + 1$. If n = 3k + 2, then $n^2 = (3k + 2)^2 = 3k' + 1$.
 - (b) Suppose $3 \mid n^2$ and n = 3k + 1. $n = 3k + 1 \Rightarrow n^2 = (3k + 1)^2 = 3k' + 1$, a contradiction to $3 \mid n^2$. Similarly, there is a contradiction, if $3 \mid n^2$ and n = 3k + 2.