MobileNet CNNFor Mobile Vision Object Detection

Figure 1. MobileNet models can be applied to various recognition tasks for efficient on device intelligence.

- ¹ Introduction
- ² Methods of MobileNets
- 3. Experiments & Applications
- 4. **Q&A**

Introduction

The Problem

- Traditional deep learning models are computationally expensive.
- Require high-power GPUs and significant memory

Why Does it Matter

 The demand for efficient models is increasing in sectors like autonomous driving, augmented reality, and Internet of Things (IoT).

The Solution

 MobileNets promote computational efficiency, model accuracy, and run on resource-constrained devices.

- ¹ Introduction
- ² Methods of MobileNets
- 3. Experiments & Applications
- 4. **Q&A**

What are MobileNets?

- What are MobileNets?
 - Efficient models designed for mobile & embedded vision
 - Use depthwise separable convulsions for lightweight, efficient neural networks
- Key goals:
 - Reduce computational costs and model size
 - Optimize latency without compromising accuracy
 - Minimizing memory usage to fit in the memory constraints of mobile devices
 - Minimizing power consumption to extend battery life
 - Adaptability across platforms, such as phones, IoT devices, and embedded systems

MobileNet Architecture

- Depthwise separable convolutions
 - Breaks standard convolution into two operations
 - Depthwise convolution
 - Point convolution
 - Benefit: 8 to 9 times less computation than standard convolution
- Two key hyperparameters
 - Width multiplier (alpha)
 - Controls model size by thinning the network
 - Resolution multiplier (rho):
 - Reduces input image resolution for faster processing

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

- ¹ Introduction
- ^{2.} Methods of MobileNets
- 3. Experiments & Applications
- 4. **Q&A**

Experimental Results

- Classification performance
 - MobileNet achieves comparable accuracy with fewer computations than traditional models like VGG16 & GoogleNet
 - MobileNet vs VGG16
 - 32x smaller, 27x less computation with minimal accuracy reduction
- Model shrinking with settings
 - Width & resolution multipliers allow scalable model size for specific application needs

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
1.0 MobileNet-224	70.6%	569	4.2	
GoogleNet	69.8%	1550	6.8	
VGG 16	71.5%	15300	138	

Example: Fine-Grained Recognition

- Dataset
 - Stanford Dogs dataset, containing images of 120 breeds
 - High intra-class similarity and subtle differences between breeds
- Performance comparison
 - Inception V3 Model
 - Accuracy: ~84%
 - 23.2 million parameters, 5 billion mult-adds
 - MobileNet
 - Accuracy: ~83.3%
 - 3.3 million parameters, 569 million mult-adds
- Implications
 - MobileNet achieves similar performance with 7x lighter framework and 8.8x less computation cost

Applications & Use Cases

• Fine-Grained Recognition

 MobileNet achieved near state of the art recognition on the Stanford Dogs dataset

• Large Scale Geolocation

 MobileNet powered a compact version of PlaNet (geolocalization model) with minimal performance loss

Face Attributes

 MobileNet compressed a large face attribute classifier with similar performance and lower computational cost

• Object Detection

 MobileNet achieved comparable accuracy to other object detection models with fewer resources

Face Embeddings

 Distilled MobileNet excelled face recognition, rivaling FaceNet's performance

- ¹ Introduction
- ^{2.} Methods of MobileNets
- 3. Experiments & Applications
- 4. **Q&A**

Citations

- https://production-media.paperswithcode.com/datasets/Stanford_Dogs-000000 0577-91cb15b5_1ABtNf7.jpg
- https://arxiv.org/abs/1704.04861