Seeing like a sigma-field

February 3, 2023

Seeing Like a State

How Certain Schemes to Improve the Human Condition Have Failed

James C. Scott

σ -field

We want to define $\mathbb{E}[Y \mid \mathcal{F}]$ the conditional expectation of a random variable Y with respect to a σ -field \mathcal{F} .

Definition

Let $\mathcal F$ be a collection of subsets of a set Ω . Then $\mathcal F$ is called a **sigma-field** if it satisfies

- 1. $\Omega \in \mathcal{F}$
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
- 3. If $A_1, A_2, ... \in \mathcal{F}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

that is, if $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complementation and countable unions.

Example

Let Ω be the unit square, and

$$\mathcal{F} = \left\{ \boxed{}, \boxed{}, \boxed{}, \right\}$$

Conditional expectation w.r.t. a σ -field

There are two conditions for a function h on (Ω, \mathcal{F}) to be the conditional expectation $\mathbb{E}[Y \mid \mathcal{F}]$:

1. ["Average matching".] $\int_F Y dP = \int_F h dP$ for all $F \in \mathcal{F}$.

2. ["Measurability".] h is measurable with respect to \mathcal{F} . (That is, we must have $h^{-1}(B) \in \mathcal{F}$ for all Borel sets $B \in \mathcal{B}(\overline{\mathbb{R}})$).

Example

Consider the probability space given by

$$\Omega = [0,1]^2$$
 (the unit square) $\mathcal{F} = \mathcal{B}([0,1]^2)$ $P = ext{Uniform}$

and the random variable Y on (Ω, \mathcal{F}, P) given by

3	1
5	3

Now consider the sub $\sigma\text{-field }\mathcal{G}\subset\mathcal{F}$ given by

$$\mathcal{G} = \left\{ \boxed{}, \boxed{}, \boxed{}, \boxed{} \right\}$$

We want to think about the conditional expectation $\mathbb{E}[Y \mid \mathcal{G}]$ given a σ -field. In particular, we want to use this example to illuminate the two conditions for the conditional expectation.

Seeing like a σ -field

This example highlights two fundamental points about conditional expectations:

- 1. The true primitive for (the conditioning set of) a conditional expectation is a σ -field, not a random variable. No additional random variable is mentioned in this example! Indeed, the conditional expectation with respect to a random variable $E[Y \mid X]$ is a special case of the conditional expectation with respect to a σ -field $E[Y \mid \mathcal{G}]$. In case of $E[Y \mid X]$, the additional random variable X simply plays the intermediary role of inducing a particular kind of σ -field over the sample space Ω .
- The notion of measurability is <u>not</u> needed simply to avoid odd pathological sets (like Lebesgue non-measurable sets); it is in fact fundamental to the notion of conditional expectation, even when dealing with very simple collections of sets.