Calculus III Lecture 4

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Equations of Lines
 - Line from point and direction
 - Line from two points
- Equations of planes
 - Plane from point and normal
 - Plane from two directions
 - Plane from three points
- 3 Distances, Angles, Parallelism, Incidence
 - Distance Between Point and Line
 - Parallel Lines
 - Angle Between Lines
 - Distance Between Skew Lines
 - Distance Between Plane and Parallel Line
 - Angle Between Plane and Line
 - Parallel Planes
 - Angle Between Planes

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

Main Questions

What condition(s) should

- the position vector
- the coordinates

of a point satisfy for it to be on a specific

- line L
- plane \mathcal{P} ?

Condition(s) in terms of:

- position vector ⇒ vector (system of) equations;
- coordinates ⇒ scalar equations.

Line from Point and Direction

- Suppose we have line L that passes through point P₀ and has non-zero direction u.
- Denote by $\mathbf{r}_0 = \mathbf{OP}_0$ the position vector of P_0 .
- *P* with position vector **r** is on $L \Leftrightarrow$
- P₀P has the same direction as u ⇔
- P₀P is a scalar multiple of u ⇔
- $\mathbf{r} \mathbf{r}_0 = t\mathbf{u}$ for some real number t.

Definition

The equation

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{u}$$

is called a parametric equation of the the line L.

Line from Point and Direction

L- line with direction \mathbf{u} passing through P_0

- Point $P_0(x_0, y_0, z_0)$, $\mathbf{r}_0 = (x_0, y_0, z_0)$;
- Direction $\mathbf{u} = (u_1, u_2, u_3)$. P(x, y, z) with position vector \mathbf{r} is on $L \Leftrightarrow$

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{u} \Leftrightarrow$$

 $(x, y, z) = (x_0, y_0, z_0) + t(u_1, u_2, u_3) \Leftrightarrow$

Definition

The equations

$$\begin{vmatrix} x &= x_0 + tu_1 \\ y &= y_0 + tu_2 \\ z &= z_0 + tu_3 \end{vmatrix}, t \in \mathbb{R}$$

are called parametric scalar equations of the line L.

$$\begin{vmatrix} x & = x_0 + tu_1 \\ y & = y_0 + tu_2 \\ z & = z_0 + tu_3 \end{vmatrix} \Longrightarrow \boxed{\frac{x - x_0}{u_1} = \frac{y - y_0}{u_2} = \frac{z - z_0}{u_3}}$$
 Symmetric equations

• Caution! Symmetric equations are valid for $u_1, u_2, u_3 \neq 0$. For example if $u_2 = 0$ the equations should be:

$$\frac{x-x_0}{u_1} = \frac{z-z_0}{u_3} \quad \text{ and } \quad y = y_0$$

Example

- L line with direction $\mathbf{u} = (4,5,6)$ passing through $P_0(1,2,3)$. Find
 - a parametric vectorial equation of L;
 - a parametric scalar equation of L;
 - symmetric equations of L.

Parametric vectorial equation:

$$\mathbf{r} = (1,2,3) + t(4,5,6) \leftrightarrow \mathbf{r} = (1+4t,2+5t,3+6t)$$

Parametric scalar equations:

$$egin{array}{lll} x = & 1+4t \\ y = & 2+5t \\ z = & 3+6t \end{array}, \quad t \ \mbox{real number}.$$

Symmetric equations:

$$\frac{x-1}{4} = \frac{y-2}{5} = \frac{z-3}{6} \ .$$

Line from Two Points

- Given: distinct points P₀ and P₁, position vectors r₀ and r₁.
- Goal: write equations of line L through P₀ and P₁.
- Direction of L: $\mathbf{u} = \mathbf{r}_1 \mathbf{r}_0$.
- $\mathbf{u} = (x_1 x_0, y_1 y_0, z_1 z_0).$

Definition

Parametric equation of a line L:

$$\mathbf{r} = \mathbf{r}_0 + t(\mathbf{r}_1 - \mathbf{r}_0) \quad \Leftrightarrow \quad \mathbf{r} = (1 - t)\mathbf{r}_0 + t\mathbf{r}_1$$

Parametric scalar equations of a line *L*:

$$egin{array}{ccccccccc} x &= x_0 + t(x_1 - x_0) & & & x &= (1-t)x_0 + tx_1 \ y &= y_0 + t(y_1 - y_0) & \Leftrightarrow & y &= (1-t)y_0 + ty_1 \ z &= z_0 + t(z_1 - z_0) & z &= (1-t)z_0 + tz_1 \end{array}, \quad t \text{ real number.}$$

Example

Write the equations of line *L* through $P_0(1,2,3)$ and $P_1(5,2,1)$.

- Direction **u** of *L*: $\mathbf{u} = \mathbf{r}_1 \mathbf{r}_0 = (4, 0, -2)$.
- Parametric vector equation: $\mathbf{r} = (1,2,3) + t(4,0,-2) \Leftrightarrow \mathbf{r} = (1+4t,2,3-2t).$
- Parametric scalar equations:

$$\begin{vmatrix} x &= 1 + 4t \\ y &= 2 \\ z &= 3 - 2t \end{vmatrix}$$
, t real number.

Symmetric equations:

$$\frac{x-1}{4} = \frac{z-3}{-2}$$
 and $y = 2$.

Plane from Point and Normal

- Point P_0 , with position vector \mathbf{r}_0 ; $\mathbf{r}_0 = (x_0, y_0, z_0)$
- Direction **n**, non-zero vector. $\mathbf{n} = (a, b, c)$
- Goal: describe plane passing through P₀ and orthogonal to n.
- Point *P* with position **r** is on $\mathcal{P} \Leftrightarrow$
- ullet ${f P}_0{f P}={f r}-{f r}_0$ is orthogonal (normal) to ${f n}\Leftrightarrow$
- Implicit vectorial equation: $(\mathbf{r} \mathbf{r}_0) \cdot \mathbf{n} = 0$.
- A point P(x, y, z) is on $\mathcal{P} \Leftrightarrow$

Definition (Implicit scalar equation)

$$(x - x_0, y - y_0, z - z_0) \cdot (a, b, c) = 0 \Leftrightarrow a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Example

Find an equation of the plane

- passing through $P_0(1,2,3)$
- and perpendicular (normal) to the direction $\mathbf{n} = (6, 5, 4)$.

$$6(x-1) + 5(y-2) + 4(z-3) = 0$$

$$6x + 5y + 4z = 28$$

The general equation of a plane is given by:

$$ax + by + cz = d$$
.

The coefficients a, b, c are the components of normal to the plane,

$$\mathbf{n} = (a, b, c)$$
.

Plane from Point and two Directions

- Given: point P₀ with position vector r₀.
- Non-parallel directions u and v.
- Goal: give equations of plane P through P₀ and parallel to both u and v.

Normal direction $\mathbf{n} = \mathbf{u} \times \mathbf{v} \neq \mathbf{0}$.

Implicit equation: $P(\mathbf{r})$ is on $\mathcal{P} \iff (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$ Interpretation:

$$\text{Vol}(\textit{R}(\textbf{r}-\textbf{r}_0,\textbf{u},\textbf{v}))=0$$

 $P(\mathbf{r})$ is on the plane $\mathcal{P} \Leftrightarrow$

 $\mathbf{P}_0\mathbf{P}$ is a combination of $\mathbf{u}, \mathbf{v} \Leftrightarrow$

There are scalars s, t such that $\mathbf{r} - \mathbf{r}_0 = s\mathbf{u} + t\mathbf{v} \Leftrightarrow$

Plane from Point and two Directions

- Given: point P₀ with position vector r₀.
- Non-parallel directions u and v.
- Goal: give equations of plane P
 through P₀ and parallel to both u
 and v.

Parametric equation:

$$\mathbf{r} = \mathbf{r}_0 + s\mathbf{u} + t\mathbf{v}$$

Let $P_0(x_0, y_0, z_0)$, P(x, y, z) **u** = (u_1, u_2, u_3) , **v** = (v_1, v_2, v_3) . \Rightarrow Parametric scalar equations:

$$x = x_0 + su_1 + tv_1$$

 $y = y_0 + su_2 + tv_2$, for s, t real parameters.
 $z = z_0 + su_3 + tv_3$

Example

Find equations of a plane passing through $P_0(1,2,3)$ and parallel to the vectors $\mathbf{u} = (-1,0,2)$, $\mathbf{v} = (0,-2,1)$.

$$\mathbf{n} = \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 0 & 2 \\ 0 & -2 & 1 \end{vmatrix} = 4\mathbf{i} + \mathbf{j} + 2\mathbf{k}$$

⇒ implicit scalar equation given by:

$$4(x-1)+1(y-2)+2(z-3)=0 \iff 4x+y+2z=12$$

Parametric vectorial equation:

$$(x, y, z) = (1, 2, 3) + s(-1, 0, 2) + t(0, -2, 1)$$

Parametric scalar equations:

$$\begin{vmatrix} x & = 1 - s \\ y & = 2 - 2t \\ z & = 3 + 2s + t \end{vmatrix}$$
 s, t real parameters.

Plane from Three Points

- Given: three non-collinear points $P_0(\mathbf{r}_0)$, $P_1(\mathbf{r}_1)$, $P_2(\mathbf{r}_2)$.
- Goal: find equations fo plane \mathcal{P} passing through P_0 , P_1 , and P_2 .
- The plane is parallel to $\mathbf{u} = \mathbf{P}_0 \mathbf{P}_1 = \mathbf{r}_1 \mathbf{r}_0$ and passing through $P_0 \Rightarrow$ this problem was solved previously.

Normal $\mathbf{n} = \mathbf{u} \times \mathbf{v} = (\mathbf{r}_1 - \mathbf{r}_0) \times (\mathbf{r}_2 - \mathbf{r}_0)$ Implicit equation:

$$\begin{aligned} (\mathbf{r}-\mathbf{r}_0)\cdot\mathbf{n} &= 0\\ \hline (\mathbf{r}-\mathbf{r}_0)\cdot[(\mathbf{r}_1-\mathbf{r}_0)\times(\mathbf{r}_2-\mathbf{r}_0)] &= 0\\ \hline \text{Vol}(R(\mathbf{P}_0\mathbf{P},\mathbf{P}_0\mathbf{P}_1,\mathbf{P}_0\mathbf{P}_2)) &= 0 \end{aligned}$$

Example

Let $P_0(a,0,0)$, $P_1(0,b,0)$ $P_2(0,0,c)$ be three points, $a,b,c\neq 0$. Find plane $\mathcal P$ passing through P_0 , P_1 , P_2 (i.e., plane with prescribed x,y,z-intercepts).

$$\mathcal{P}$$
: parallel to $\mathbf{P}_0\mathbf{P}_1=(-a,b,0), \mathbf{P}_0\mathbf{P}_2=(-a,0,c).$ Normal:

$$\mathbf{n} = \mathbf{P}_0 \mathbf{P}_1 \times \mathbf{P}_0 \mathbf{P}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = bc\mathbf{i} + ac\mathbf{j} + ab\mathbf{k}.$$

Implicit scalar equation of plane:

$$(x - a, y, z) \cdot (bc, ac, ab) = 0$$
$$bcx + acy + abz = abc$$
$$\frac{x}{2} + \frac{y}{b} + \frac{z}{2} = 1$$

Todor Milev

Relationships betwee points lines and planes

- So far we studied the following geometric objects/
 - Points: *P*(**r**).
 - Lines: L: $r = r_0 + tu$
 - Planes: \mathcal{P} : $(\mathbf{r} \mathbf{r}_0) \cdot \mathbf{n} = 0$
- We investigate the following relationships/geometric quantities:
 - Parallelism
 - Perpendicularity
 - Angles
 - Distances
 - Intersections

Point and line

- Given: Point P(r₁),
- line $L: r = r_0 + tu$.
- Goal: find the distance between P and L.

Distance from *P* to *L*:

$$d(P, L) = |\operatorname{orth}_{\mathbf{u}}(\mathbf{r}_{1} - \mathbf{r}_{0})|$$

$$d(P, L) = \left|\mathbf{r}_{1} - \mathbf{r}_{0} - \frac{(\mathbf{r}_{1} - \mathbf{r}_{0}) \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}\right|$$

$$d(P, L) = \frac{|(\mathbf{r}_{1} - \mathbf{r}_{0}) \times \mathbf{u}|}{|\mathbf{u}|}$$

Valid only in 3 dimensions!

Distance between point and plane

- Given: point $P(\mathbf{r}_1) = (x_1, y_1, z_1)$,
- plane $\mathcal{P}: (\mathbf{r} \mathbf{r}_0) \cdot \mathbf{n} = 0$.
- Goal: find the distance between P and P.

Distance from
$$P$$
 to \mathcal{P} :
$$d(P,\mathcal{P}) = |\mathbf{proj_n(r_1 - r_0)}|$$
$$d(P,\mathcal{P}) = \frac{|(\mathbf{r_1 - r_0}) \cdot \mathbf{n}|}{|\mathbf{n}|}$$

Scalar equation:

$$\mathcal{P}: \ ax + by + cz + d = (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$$

$$\mathbf{n} = (a, b, c)$$

$$d(P, P) = \frac{|(\mathbf{r}_1 - \mathbf{r}_0) \cdot \mathbf{n}|}{|\mathbf{n}|} = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Parallel lines

• Given: lines
$$L_1: \mathbf{r} = \mathbf{r}_1 + t\mathbf{u}_1$$

 $L_2: \mathbf{r} = \mathbf{r}_2 + s\mathbf{u}_2$

Goal: distance between lines.

Parallel lines $L_1||L_2 \iff \mathbf{u}_1, \, \mathbf{u}_2 \text{ collinear}$ $\iff \mathbf{u}_1 \times \mathbf{u}_2 = \mathbf{0}$ Distance:

$$d = d(L_1, L_2) = d(P_1, L_2) = d(P_2, L_1)$$

$$d = d(L_1, L_2) = |\text{orth}_{u_1}(r_2 - r_1)|$$

$$d = \frac{|(r_2 - r_1) \times u_1|}{|u_1|} = \frac{|(r_2 - r_1) \times u_2|}{|u_2|}$$

Angle between lines

• Given: lines
$$L_1$$
: $\mathbf{r} = \mathbf{r}_1 + t\mathbf{u}_1$
 L_2 : $\mathbf{r} = \mathbf{r}_2 + s\mathbf{u}_2$.

Goal: find angle between L₁ and L₂.

Perpendicular lines $L_1\bot L_2 \Longleftrightarrow \boldsymbol{u}_1\bot \boldsymbol{u}_2$

$$|\mathbf{u}_1 \cdot \mathbf{u}_2 = 0|$$

Angle between lines α : angle between $L_1, L_2 \iff \alpha$: acute angle $\mathbf{u}_1, \mathbf{u}_2 \iff$

$$\alpha = \arccos\left(\frac{|\mathbf{u}_1 \cdot \mathbf{u}_2|}{|\mathbf{u}_1| \, |\mathbf{u}_2|}\right)$$

Distance between non-parallel lines

- Given: lines $\begin{array}{cccc} L_1: & \mathbf{r} & = & \mathbf{r_1} + t\mathbf{u_1} \\ L_2: & \mathbf{r} & = & \mathbf{r_2} + s\mathbf{u_2} \end{array}$
- The lines are skew or intersecting, i.e., $\mathbf{n} = \mathbf{u}_1 \times \mathbf{u}_2 \neq \mathbf{0}$.
- Goal: find distance between the lines
 = d(L₁, L₂) = shortest distance b-n
 points on the two lines.
- Construct plane P with directions \mathbf{u}_1 , \mathbf{u}_2 and passing through L_1 .
- Distance b-n L_2 and points on \mathcal{P} is constant.
- Project L_2 orthogonally on \mathcal{P} ; let the projection be L'_2 .
- Let L'_2 and L_1 intersect in point Q_1 .
- Let Q_2 be the heel of the perpendicular from Q_1 onto Q_2 .
- $\bullet \Rightarrow Q_1Q_2=d(L_1,L_2).$
- $|Q_1Q_2| = d(L_1, L_2)$.

Distance between non-parallel lines

- Given: lines $\begin{array}{cccc} L_1: & \mathbf{r} & = & \mathbf{r_1} + t\mathbf{u_1} \\ L_2: & \mathbf{r} & = & \mathbf{r_2} + s\mathbf{u_2} \end{array}$
- The lines are skew or intersecting, i.e., $\mathbf{n} = \mathbf{u}_1 \times \mathbf{u}_2 \neq \mathbf{0}$.
- Goal: find distance between the lines
 = d(L₁, L₂) = shortest distance b-n
 points on the two lines.
- $\mathbf{Q}_1\mathbf{Q}_2 \perp L_1, L_2 \Rightarrow \mathbf{Q}_1\mathbf{Q}_2$ is proportional to $\mathbf{n} = \mathbf{u}_1 \times \mathbf{u}_2$.
- Pick arbitrary points on L_1, L_2 say, the base points $P_1(\mathbf{r}_1), P_2(\mathbf{r}_2)$.
- Let R be such that $\mathbf{Q}_1\mathbf{R} = \mathbf{P}_1\mathbf{P}_2 = \mathbf{r}_2 \mathbf{r}_1$.
- Then P₂R is proportional to u₁.
- $\bullet \Rightarrow \mathbf{Q}_2\mathbf{R} = \mathbf{Q}_2\mathbf{P}_2 + \mathbf{P}_2\mathbf{R}$ is perpendicular to \mathbf{n} .

Distance between non-parallel lines

- Given: lines $\begin{array}{cccc} L_1: & \mathbf{r} & = & \mathbf{r_1} + t\mathbf{u_1} \\ L_2: & \mathbf{r} & = & \mathbf{r_2} + s\mathbf{u_2} \end{array}$
- The lines are skew or intersecting, i.e., $\mathbf{n} = \mathbf{u}_1 \times \mathbf{u}_2 \neq \mathbf{0}$.
- Goal: find distance between the lines $= d(L_1, L_2) =$ shortest distance b-n points on the two lines.
- ullet \Rightarrow $\mathbf{Q}_1\mathbf{Q}_2 = \mathbf{proj_n}(\mathbf{r}_2 \mathbf{r}_1).$
- $d(L_1, L_2) = |\text{proj}_{\mathbf{n}}(\mathbf{r}_2 \mathbf{r}_1)| = \left| \frac{|(\mathbf{r}_2 \mathbf{r}_1) \cdot \mathbf{n}|}{|\mathbf{n}|} \right| = \frac{|(\mathbf{r}_2 \mathbf{r}_1) \cdot (\mathbf{u}_1 \times \mathbf{u}_2)|}{|\mathbf{u}_1 \times \mathbf{u}_2|}$
- If lines are intersecting we know $d(L_1, L_2) = 0$. Since the lines intersect L_2 and L_2' coincide. $\Rightarrow (\mathbf{r}_2 \mathbf{r}_1) \cdot (\mathbf{u}_1 \times \mathbf{u}_2) = 0 \Rightarrow$ the formula $d(L_1, L_2) = \frac{|(\mathbf{r}_2 \mathbf{r}_1) \cdot (\mathbf{u}_1 \times \mathbf{u}_2)|}{|\mathbf{u}_1 \times \mathbf{u}_2|} = 0$ produces the expected result.

Distance between parallel line and plane

- Given: line L: $\mathbf{r} = \mathbf{r}_1 + t\mathbf{u}$,
- $\underset{\substack{\mathsf{proj}_{\mathbf{n}}(\mathbf{r}_1-\mathbf{r}_0)\\\mathsf{proj}_{\mathbf{n}}}}{\mathsf{orth}_{\mathbf{u}}(\mathbf{r}_1-\mathbf{r}_0)}=\bullet$ plane $\mathcal{P}:$ $(\mathbf{r}-\mathbf{r}_0)\cdot\mathbf{n}=0.$
 - The plane and the line are parallel,
 i.e. u ⋅ n = 0.
 - Goal: find distance between the the two.

Distance from
$$L$$
 to \mathcal{P} : $d(L,\mathcal{P}) = d(P_1,\mathcal{P})$
$$d(L,\mathcal{P}) = |\text{orth}_{\mathbf{u}}(\mathbf{r}_1 - \mathbf{r}_0)| = \text{proj}_{\mathbf{n}}(\mathbf{r}_1 - \mathbf{r}_0)|$$

$$d(L,\mathcal{P}) = \frac{|(\mathbf{r}_1 - \mathbf{r}_0) \times \mathbf{u}|}{|\mathbf{u}|} = \frac{|(\mathbf{r}_1 - \mathbf{r}_0) \cdot \mathbf{n}|}{|\mathbf{n}|}$$

Angle between line and plane

- Given: line L: $\mathbf{r} = \mathbf{r}_1 + t\mathbf{u}$,
- plane P: $(\mathbf{r} \mathbf{r}_0) \cdot \mathbf{n} = 0$.
- Goal: Find/define angle between line and plane.

Line perpendicular to plane $\Leftrightarrow \mathbf{u} || \mathbf{n} \Leftrightarrow \mathbf{u} \times \mathbf{n} = \mathbf{0}$ Angle between line and plane α : angle between L, \mathcal{P} .

$$\begin{array}{ccc} \sin \alpha & = & \frac{|\mathbf{proj_nu}|}{|\mathbf{u}|} = \frac{|\mathbf{u}\cdot\mathbf{n}|}{|\mathbf{n}||\mathbf{u}|} \\ \alpha & = & \arcsin\left(\frac{|\mathbf{u}\cdot\mathbf{n}|}{|\mathbf{u}||\mathbf{n}|}\right) \end{array}$$

Intersection between line and plane

- Given: line L: $\mathbf{r} = \mathbf{r}_1 + t\mathbf{u}$,
- $\mathbf{r}_1 = (x_1, y_1, z_1), u = (p, q, r),$
- plane P : ax + by + cz d = 0.
- Goal: find the intersection between line and plane.

Let $P_0(\mathbf{r}_0)$ be a point on the plane. Then a point $P(\mathbf{r})$, $\mathbf{r}=(x,y,z)$ is on the plane if $(\mathbf{r}-\mathbf{r}_0)\cdot\mathbf{n}=0$. A point $P(\mathbf{r})$ on the line is of the form $\mathbf{r}=\mathbf{r}_1+t\mathbf{u}$, therefore P lies on both the line and the plane if:

$$(\mathbf{r}_{1} + t\mathbf{u} - \mathbf{r}_{0}) \cdot \mathbf{n} = 0$$

$$(\mathbf{r}_{1} - \mathbf{r}_{0}) \cdot \mathbf{n} + t\mathbf{u} \cdot \mathbf{n} = 0$$

$$t = -\frac{(\mathbf{r}_{1} - \mathbf{r}_{0}) \cdot \mathbf{n}}{\mathbf{u} \cdot \mathbf{n}}$$

$$\mathbf{r} = \mathbf{r}_{1} - \frac{(\mathbf{r}_{1} - \mathbf{r}_{0}) \cdot \mathbf{n}}{\mathbf{u} \cdot \mathbf{n}} \mathbf{u}$$

$$= (x_{1}, y_{1}, z_{1}) - \frac{ax_{1} + by_{1} + cz_{1} - d}{ap + bq + cr} (p, q, r)$$

Parallel planes

Given: planes

$$\begin{array}{lclcrcl} {\cal P}_1: & (r-r_1) \cdot n_1 & = & 0 \\ {\cal P}_2: & (r-r_2) \cdot n_2 & = & 0 \end{array}.$$

 Goal: Establish whether planes are parallel, find distance b-n planes.

Planes are parallel $\mathcal{P}_1 || \mathcal{P}_2 \Leftrightarrow \mathbf{n}_1, \, \mathbf{n}_2 \text{ collinear} \Leftrightarrow \boxed{\mathbf{n}_1 \times \mathbf{n}_2 = \mathbf{0}}.$

Distance:
$$d(\mathcal{P}_1, \mathcal{P}_2) = |\mathbf{proj}_{\mathbf{n}_1}(\mathbf{r}_2 - \mathbf{r}_1)| = \left| \frac{|(\mathbf{r}_2 - \mathbf{r}_1) \cdot \mathbf{n}_1|}{|\mathbf{n}_1|} \right|$$

Assume $\mathbf{n}_1 = \mathbf{n}_2 = (a,b,c) \Rightarrow$ plane eq-ns: $\begin{array}{c} \mathcal{P}_1: ax + by + cz = d_1 \\ \mathcal{P}_2: ax + by + cz = d_2 \end{array}$.

$$\Rightarrow \boxed{d(\mathcal{P}_1,\mathcal{P}_2) = \frac{|\textit{d}_2 - \textit{d}_1|}{\sqrt{\textit{a}^2 + \textit{b}^2 + \textit{c}^2}}}$$

Angle between planes

- Given: planes $egin{array}{ll} \mathcal{P}_1: & (r-r_1)\cdot n_1 &=& 0 \\ \mathcal{P}_2: & (r-r_2)\cdot n_2 &=& 0 \end{array}$
- Goal: define and find the angle between the two planes.
- Let L intersection line of two planes.
- In \mathcal{P}_1 , drop perpendicular from arbitrary point Q_1 to L.
- In P₂, raise a perpendicular from the perpendicular heel.
- Define angle α b-n $\mathcal{P}_1, \mathcal{P}_2$ = acute angle b-n two perpendiculars.
- Consider the plane \mathcal{P}_3 spanned by the two constructed perpendiculars.

Todor Milev 2020

Angle between planes

- Given: planes $\begin{array}{ccc} \mathcal{P}_1: & (r-r_1)\cdot n_1 &=& 0 \\ \mathcal{P}_2: & (r-r_2)\cdot n_2 &=& 0 \end{array}$
- Goal: define and find the angle between the two planes.
- Consider the plane \mathcal{P}_3 spanned by the two constructed perpendiculars.
- \mathcal{P}_3 is orthogonal to L.
- $\Rightarrow \mathcal{P}_3$ contains the normal vectors \mathbf{n}_1 , \mathbf{n}_2 .
- $\mathbf{n}_1 \perp \mathbf{OQ}_1$ and $\mathbf{n}_2 \perp \mathbf{OQ}_2$.

$$\alpha = \text{acute} \angle (\mathbf{n}_1, \mathbf{n}_2)$$

- $\alpha = \arccos\left(\frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{|\mathbf{n}_1| |\mathbf{n}_2|}\right)$
- \perp planes: $\Rightarrow \alpha = \frac{\pi}{2} \Longleftrightarrow \boxed{\mathbf{n}_1 \cdot \mathbf{n}_2 = 0}$.
- Direction of *L* is $\mathbf{u} = \mathbf{n}_1 \times \mathbf{n}_2$.