INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA – CAMPUS FLORIANÓPOLIS. DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA CURSO SUPERIOR DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Aluno (a): Ariene Maciel Disciplina: Eletrônica I

SIMULAÇÃO DE CIRCUITOS COM AMPLIFICADORES OPERACIONAIS AD8040 E AD8539.

Questão 1:

Amplificadores operacionais					
	AD8040	AD8539			
Máxima e mínima tensão de					
alimentação	2.7 V to 12 V	2.7 V to 5.5 V			
Tensão de modo comum	$\pm VS \pm 0.5 V$	2,5 V			
	Min: $80 \text{ dB}/\text{Typ}$:	Min: 115 dB/			
CMRR	90 dB	Typ: 150 dB			
Máxima e mínima tensão de entrada	± 5V	0 a 5 V			
Tensão de offset	6 mV maximum	13 μV maximum			
		Typ: 15 pA/			
Corrente de polarização	$+0.7~\mu\mathrm{A}$ to $-1.5~\mu\mathrm{A}$	Max: 25 pA			
Consumo de corrente	1.3 mA	1 mA			
	Min: 65 dB/ Typ	Min: 115			
Ganho em malha aberta	74 dB	dB/Typ: 145 dB			
Impedância de entrada	$6\mathrm{M}\Omega$	$10~\mathrm{M}\Omega$			

Para todas as simulações abaixo utilize a alimentação simétrica recomendada no datasheet.

- 2. Simule um circuito seguidor de tensão com cada um dos ampops indicados e verifique os efeitos decorrentes da máxima e mínima tensão de entrada.
- 1. Dica utilize um sinal senoidal de 1kHz para auxiliar na visualização.

Resultados da Simulação

De acordo com o datasheet, os pinos VCC e VEE foram alimentados com 2.5 e -2.5 respectivamente. Também foi aplicado uma fonte senoidal com amplitude de 1 V e frequência de 1Khz.

<u>AD8539</u>

De acordo com o datasheet, os pinos VCC e VEE foram alimentados com 5 V e -5 V respectivamente. Também foi aplicado uma fonte senoidal com amplitude de 1 V e frequência de $1 \mathrm{Khz}$.

2. Responda quais os valores das tensões de saturação?

Valores fora do intervalo de VCC e VEE.

3. Simule um circuito amplificador inversor com cada um dos ampops indicados e calcule os resistores para ter um ganho igual -100 V/V.

Considerando $R_1 = 10\Omega$, tem-se:

$$G = -\frac{Rf}{R1}$$

Substituindo os valores:

$$Rf = 1000 \Omega$$

1. Aplique 0V(zero) na entrada e verifique o valor da tensão na saída. Explique o resultado.

--- Operating Point ---V(vcc): 2.5 voltage -2.5 V(vee): voltage V(n001): 3.33294e-007 voltage V(vout): -0.00166634 voltage I(Rf): -1.66667e-006 device current I(R1): 3.33294e-008 device current device_current I(V2): 0.00127511 I(V1): -0.00127684 device_current -1.7e-006 Ix(u1:1): subckt_current Ix(u1:2): -1.7e-006 subckt current 0.00127684 subckt current Ix(u1:3): -0.00127511 subckt current Ix(u1:4): Ix(u1:5): 1.66667e-006 subckt current

--- Operating Point ---

```
V(vcc):
               2.5
                             voltage
V(vee):
               -2.5
                             voltage
V(n001):
               1.37355e-005 voltage
V(vout):
               0.00138728
                             voltage
               1.37354e-006 device_current
I(Rf):
               1.37355e-006 device current
I(R1):
I(V2):
               0.00014441
                             device current
               -0.000145784 device current
I(V1):
               1e-011
                             subckt current
Ix(u1:1):
               -1e-011
                             subckt current
Ix(u1:2):
Ix(u1:99):
               0.000145784
                             subckt current
Ix(u1:50):
               -0.00014441
                             subckt current
               -1.37354e-006 subckt_current
Ix(u1:45):
```

Conclusões:

Idealmente quando se aplica Vin= 0V na entrada de um circuito amplificador inversor tem-se Vout= 0V. No entanto os dois amplificadores apresentam erros e por isso não alcançou o resultado ideal. Vale ressaltar também que apesar de ser um circuito inversor a saída do 8039 apresenta um menor valor no entanto não foi negativo.

2. Aplique um sinal senoidal de 10mVpp@1kHz na entrada e verifique o sinal de saída. Explique o resultado.

Dando um pouco de zoom no Pico das curvas, percebe-se que não atingiu o valor idealmente de $1\mathrm{V}$ e - $1\mathrm{V}$

Novamente percebe-se que a curva não alcançou o valor idealmente de pico.

4. Simule um circuito amplificador não inversor com cada um dos ampops indicados e calcule os resistores para ter um ganho igual $10 {
m V/V}$.

Considerando $R_1 = 10\Omega$, tem-se:

$$G = 1 + \frac{Rf}{R1}$$

Substituindo os valores:

$$Rf = 90 \Omega$$

1. Aplique 0V(zero) na entrada e verifique o valor da tensão na saída. Explique o resultado.

<u>AD8040</u>

--- Operating Point ---

2.5	voltage
-2.5	voltage
3.27471e-007	voltage
-0.000149725	voltage
-1.66725e-006	device_current
3.27471e-008	device_current
0.00127509	device_current
-0.00127682	device_current
-1.7e-006	subckt_current
-1.7e-006	subckt_current
0.00127682	subckt_current
-0.00127509	subckt_current
1.66725e-006	subckt_current
	-2.5 3.27471e-007 -0.000149725 -1.66725e-006 3.27471e-008 0.00127509 -0.00127682 -1.7e-006 -1.7e-006 0.00127682 -0.00127509

$\underline{\text{AD8539}}$

	Operating Point	-
V(vcc):	2.5	voltage
V(vee):	-2.5	voltage
V(n001):	1.37355e-005	voltage
V(vout):	0.000137355	voltage
I(Rf):	1.37354e-006	device_current
I(R1):	1.37355e-006	device_current
I(V2):	0.000144411	device_current
I(V1):	-0.000145784	device current
Ix(u1:1):	1e-011	subckt current
Ix(u1:2):	-1e-011	subckt_current
Ix(u1:99):	0.000145784	subckt_current
Ix(u1:50):	-0.000144411	subckt_current
Ix(u1:45):	-1.37354e-006	subckt_current

$\underline{Conclus\~oes:}$

Quando se aplica Vin=0V em um circuito não inversor, ele passa a ter um comportamento igual a um circuito não inversor. Novamente o AmpOp 8539 não apresenta um comportamento de um circuito inversor.

2. Aplique um sinal continuo de 5mV, 50mV, 200mV e 500mV na entrada e verifique o sinal de saída. Qual o erro com relação ao ganho calculado? Explique o resultado.

<u>AD8040</u>

Para V3= 5mV

```
--- Operating Point ---
V(vcc):
               2.5
                              voltage
V(vee):
               -2.5
                              voltage
               0.00492
V(n001):
                              voltage
               0.005
V(n002):
                              voltage
               0.0490471
V(vout):
                              voltage
I(Rf):
               0.000490301
                              device current
I(R1):
               0.000492
                              device current
I(V3):
               1.69917e-006 device current
I(V2):
               0.00127411
                              device current
               -0.00176781
                              device_current
I(V1):
               -1.69917e-006 subckt current
Ix(u1:1):
Ix(u1:2):
               -1.69918e-006 subckt_current
Ix(u1:3):
               0.00176781
                              subckt_current
Ix(u1:4):
               -0.00127411
                              subckt current
Ix(u1:5):
               -0.000490301
                              subckt current
```

Para V3= 50mV

Op	erating Point	-
V(vcc):	2.5	voltage
V(vee):	-2.5	voltage
V(n001):	0.0495485	voltage
V(n002):	0.05	voltage
V(vout):	0.495333	voltage
I(Rf):	0.00495316	device_current
I(R1):	0.00495485	device_current
I(V3):	1.69167e-006	device_current
I(V2):	0.00128037	device_current
I(V1):	-0.00623691	device_current
Ix(u1:1):	-1.69167e-006	subckt_current
Ix(u1:2):	-1.69174e-006	subckt_current
Ix(u1:3):	0.00623691	subckt_current
Ix(u1:4):	-0.00128037	subckt_current
Ix(u1:5):	-0.00495316	subckt_current

Para V3= 200mv

--- Operating Point ---2.5 V(vcc): voltage V(vee): -2.5voltage 0.175394 V(n001): voltage V(n002): 0.2voltage V(vout): 1.75379 voltage I(Rf): 0.0175377 device current I(R1): 0.0175394 device current I(V3): 1.66667e-006 device_current I(V2): 0.00126161 device current -0.0188394 device current I(V1): Ix(u1:1): -1.66667e-006 subckt current -1.67077e-006 subckt current Ix(u1:2): 0.0188394 Ix(u1:3): subckt current -0.00126147 subckt current Ix(u1:4): Ix(u1:5): -0.0175377 subckt_current

Para V3 = 500 mV

```
--- Operating Point ---
               2.5
V(vcc):
                              voltage
V(vee):
               -2.5
                              voltage
V(n001):
               0.175397
                              voltage
V(n002):
               0.5
                              voltage
               1.75382
V(vout):
                              voltage
               0.017538
I(Rf):
                              device current
               0.0175397
I(R1):
                              device current
I(V3):
               1.61667e-006 device current
I(V2):
               0.00119035
                              device current
I(V1):
               -0.0188396
                              device current
               -1.61667e-006 subckt current
Ix(u1:1):
Ix(u1:2):
               -1.67077e-006 subckt_current
Ix(u1:3):
               0.0188396
                              subckt_current
Ix(u1:4):
               -0.00119035
                              subckt_current
                              subckt current
Ix(u1:5):
               -0.017538
```

AD8539

Para V3= 5mV

```
--- Operating Point ---
               2.5
V(vcc):
                              voltage
                -2.5
V(vee):
                              voltage
               0.0050126
V(n001):
                              voltage
V(vout):
               0.050126
                              voltage
               0.005
V(vin):
                              voltage
I(Rf):
               0.00050126
                              device current
I(R1):
               0.00050126
                              device current
I(V3):
               -1e-011
                              device current
               -7.36854e-005 device current
I(V2):
I(V1):
               -0.000427575
                              device current
Ix(u1:1):
               1e-011
                              subckt current
               -1e-011
                              subckt current
Ix(u1:2):
Ix(u1:99):
               0.000427575
                              subckt current
Ix(u1:50):
               7.36854e-005
                              subckt current
               -0.00050126
Ix(u1:45):
                              subckt current
```

Para V3 = 50 mV

--- Operating Point ---

```
V(vcc):
                2.5
                               voltage
V(vee):
                -2.5
                               voltage
V(n001):
                0.050004
                               voltage
               0.50004
V(vout):
                               voltage
                0.05
V(vin):
                               voltage
                0.0050004
                               device current
I(Rf):
                0.0050004
                               device_current
I(R1):
I(V3):
                -1e-011
                               device current
I(V2):
                -0.0002
                               device current
                -0.0048004
I(V1):
                               device current
                               subckt current
                1e-011
Ix(u1:1):
                               subckt current
Ix(u1:2):
                -1e-011
Ix(u1:99):
                0.0048004
                               subckt_current
Ix(u1:50):
                0.0002
                               subckt current
Ix(u1:45):
                -0.0050004
                               subckt current
```

0	perating Point	
V(vcc):	2.5	voltage
V(vee):	-2.5	voltage
V(n001):	0.123626	voltage
V(vout):	1.23626	voltage
V(vin):	0.2	voltage
I(Rf):	0.0123626	device current
I(R1):	0.0123626	device current
I(V3):	-1e-011	device current
I(V2):	-0.0002	device current
I(V1):	-0.0121626	device current
Ix(u1:1):	1e-011	subckt current
Ix(u1:2):	-1e-011	subckt current
Ix(u1:99):	0.0121626	subckt current
Ix(u1:50):	0.0002	subckt current
Ix(u1:45):	-0.0123626	subckt_current

Para V3= 500mV

	Operating Point	
V(vcc):	2.5	voltage
V(vee):	-2.5	voltage
V(n001):	0.123993	voltage
V(vout):	1.23993	voltage
V(vin):	0.5	voltage
I(Rf):	0.0123993	device_current
I(R1):	0.0123993	device_current
I(V3):	-1e-011	device_current
I(V2):	-0.0002	device_current
I(V1):	-0.0121993	device_current
Ix(u1:1):	1e-011	subckt_current
Ix(u1:2):	-1e-011	subckt_current
Ix(u1:99):	0.0121993	subckt current
Ix(u1:50):	0.0002	subckt current
Ix(u1:45):	-0.0123993	subckt_current

 $A\ tabela\ a\ seguir\ apresenta\ o\ comparativo\ do\ comportamento\ dos\ dois\ Amp\ ops\ na$ medida em que se altera a tensão de entrada.

Tabela Comparativa							
8040			8539				
Vin	Vout	Ganho	Erro em relação ao ganho de 10 v/v	I Vin I Volit I (tanho I		Erro em relação ao ganho de 10 v/v	
0,005	0,0490471	9,81	1,91	0,005	0,0501260	10,03	-0,25
0,050	0,495333	9,91	0,93	0,05	0,50004	10,00	-0,01
0,200	1,753790	8,77	12,31	0,20	1,23626	6,18	38,19
0,500	1,753820	3,51	64,92	0,50	1,23993	2,48	75,20

É perceptível que o Amp op 8039 apresenta um erro menor quando a tensão de entrada é pequena se comparado com o 8040. No entanto o 8040 tem um erro menor quando a tensão de entrada é maior.

Caso deseja-se projetar um amplificador subtrator com ganho de 100V/V, para sinais muito pequenos com variação de +/-10uV até +/-30mV de muito baixa frequência, qual desses ampops você utilizaria? Justifique a sua resposta.

AmpOp 8539 pois apresenta menor erro para sinais de entrada baixo e por ter menor valor de tensão de modo comum, tensão de Offset e consumir menor corrente. E também segundo o datasheet do 8040 ele tem uma excelente performance de 125 MHz conforme o trecho a seguir: "the amplifiers provide excellent performance with 125 MHz small signal bandwidth and 60 $V/\mu s$ slew rate"

Escolha um terceiro ampop com características melhores que os ampops acima para uma aplicação como subtrator.

INA 592

1 Features

- · G = 1/2 amplifier
- · G = 2 amplifier
- · Low offset voltage: 40 µV (maximum)
- · Low offset voltage drift: ±2 μV/°C (maximum)
- Low noise: 18 nV/√Hz at 1 kHz
- · Low gain error: ±0.03% (maximum)
- · High common-mode rejection: 88 dB (minimum)
- · Wide bandwidth: 2 MHz GBW
- · Low quiescent current: 1.1 mA per amplifier
- · High slew rate: 18 V/µs
- · High capacitive load drive capability: 500 pF
- · Wide supply range:
- · Single supply: 4.5 V to 36 V
- Dual supply: ±2.25 V to ±18 V
- · Specified temperature range:
 - -40°C to +125°C
- · Packages: 8-Pin MSOP and SOIC, 10-pin VSON