Efficient Simulation Of A Simple Evolutionary System

Mahendra Duwal Shrestha

The University Of Tenessee

February 28, 2017

Outline

Background

Question 1: Distance between finite and infinite population

Question 2: Oscillation in finite population

Question 3: Oscillation in finite population under violation in mutation

Question 4: Oscillation in finite population under violation in crossover

Conclusion

Terms

Population P: a collection of length ℓ binary strings Population vector \mathbf{p} : \mathbf{p}_j is the proportion of string j in the population

If
$$P = 00, 01, 01, 10, 11, 11$$
, then $\mathbf{p}_3 = 2/6 = 1/3$

 ${\cal R}$ denotes a set binary strings of length ℓ

Addition and multiplication of elements in $\ensuremath{\mathcal{R}}$ are bitwise operations modulo 2

$$x = 1101, y = 1010$$

 $x + y = 1101 + 1010 = 0111$
 $xy = 1101 \cdot 1010 = 1000$
 $\bar{x} = 0010$

Crossover & Mutation

```
Crossover : Choose parents u and v, exchange bits using crossover mask m: u' = um + v\bar{m}, v' = u\bar{m} + vm u = \mathbf{11001011}, v = 11011111, m = 11110000 \{\mathbf{11001011}, 11011111\} \rightarrow \{\mathbf{1100}0000 + 00001111, 00001011 + 11010000\} \rightarrow \{\mathbf{1100}1111, 11011011\} Mutation: Flip bits using mutation mask: x \rightarrow x + m
```

Finite Population GA

Randomly select parents u and vCrossover u and v to produce u' and v'Keep one of u', v', and mutate Repeat above to form next generation Repeat whole process until system stops to improve or threshold is reached

Infinite Population Model

Population is modeled as a vector \mathbf{p} \mathcal{G} maps \mathbf{p} to the next generation $\mathcal{G}(\mathbf{p})_j = \text{probability that string } j$ occurs in the next generation The infinite population model is the sequence $\mathbf{p} \to \mathcal{G}(\mathbf{p}) \to \mathcal{G}(\mathcal{G}(\mathbf{p})) \to \cdots$