

Documentación Holt-Winters Temperatura

Bautista Hernández Jalil Damián

C20160002

Ingeniería en sistemas computacionales, Instituto Tecnológico de Oaxaca

SCD1022 - Simulación (5SB)

Matadamas Torres Lorenzo Alejandro

13 de noviembre de 2022

ÍNDICE

Pronc	ostico de temperatura	. პ
	Introducción	. 3
	Formulación del problema	. 3
	Definición del sistema	. 3
	Modelo conceptual	. 4
	Primera Fase	. 4
	Segunda fase	. 5
	Tercera Fase	. 6
	Cuarta Fase	. 7
	Quinta Fase	. 7
	Formulación del modelo	. 8
	Modelo de Holt-Winters	. 8
	Colección de datos	11
	Implementación del modelo	13
	Paso 1: Asignación de valores reales	13
	Paso2: Calcular el nivel estimado	14
	Paso 3 Calcular Estimación de Tendencia	16
	Paso 4: Estimación de estacionalidad	17
	Paso 5: Predicción de m periodos en el futuro	17
	Paso: Grafica	19
	Implementación del método en la computadora	20
	Ventana principal	20

	Clase Grafica	. 27
	Ventana Datos	. 28
	Ventana formulas	. 30
	Verificación del método	. 30
	Interpretación y resultado	. 34
	Conclusión	. 36
Refer	rencias	37

Pronóstico de temperatura

Introducción

En este documento, se analiza y explica el modelo de Holt-Winters para calcular el pronóstico de la temperatura del año 2022, con 12 periodos, se desarrolló un programa que nos permite visualizar los datos reales de temperatura del año 2020 al año 2021, a través de estos datos se pronostica las temperaturas del año 2022.

Formulación del problema

En la actualidad se está viviendo un gran cambio en la variación de la temperatura en el país de México, por diferentes factores, claramente podemos percibir que el clima ha cambiado notablemente durante los años, actualmente hace más calor que en los años anteriores, esto es una preocupación ambiental. El cambio del clima provoca cambios diversos en los sistemas naturales. El aumento de temperatura provoca la extinción de los insectos, plantas y de los vegetales. El principal problema es pronosticar las temperaturas del año 2022 para identificar si la temperatura mantendrá sus valores o tendrá un cabio brusco.

Definición del sistema

Se desarrollará un programa que nos permita pronosticar la temperatura del año 2022 utilizando el modelo de Holt-Winters, nuestro programa mostrará al usuario una tabla con los valores reales de la temperatura y los valores del pronosticados del 2022 año.

Nuestro sistema estará diseñado solamente para pronosticar la temperatura del año 2022, tomando como referencia los valores reales de los años anteriores para hacer un correcto pronostico. En nuestro programa se mostraran las formulas utilizadas y las variables de cada formula.

Modelo conceptual

Primera Fase

Para el desarrollo de la primera fase se realizo una consulta en diferentes páginas de artículos por internet, se seleccionado 60 artículos de modelos simulación. En esta etapa se leyeron los resúmenes de cada artículo y se verifico que el título del articulo tratara de un modelo de simulación.

Nuestras descargas se realizaron en las siguientes páginas

- http://www.pubfacts.com/
- http://www.mdpi.com/
- https://www.researchgate.net/publication
- http://www.sciencedirect.com/

Realizado nuestra descarga de los 60 artículos se almaceno en una carpeta para su posterior análisis, para la elección de un solo modelo de simulación en la última etapa. Se analizo el resumen de cada artículo para posteriormente seleccionar los mas atractivos y los que se puedan aplicar en el estado de Oaxaca.

Con	npartido conm > SIMULACION AGO-DIC 2022 10 > Baut	ista Hernández Jalil D >	Fase 1 - Descargas 60 A	rticulos 🔻
Nomi	ore ↑	Propietario	Última modificación	Tamaño de arc
PDF	3D simulation model of water infiltration for radioactive waste on a virtual reality E	yo	6 sept 2022 yo	1,9 MB
POF	A comparative study on cylindrical and spherical models in fabrication of bone tiss 🏝	yo	8 sept 2022 yo	4,8 MB
PDF	A dynamic model for process flowsheet simulation of semi-batch precipitation of s 🏝	yo	6 sept 2022 yo	1,9 MB
PDF	A library for wall-modelled large-eddy simulation based on OpenFOAM technology	yo	6 sept 2022 yo	4,2 MB
PDF	A realistic model for battery state of charge prediction in energy management sim	yo	6 sept 2022 yo	1,3 MB
PDF	A simulation study to assess the potential impact of developing normal tissue com $\stackrel{a.s.}{=}$	yo	6 sept 2022 yo	1,2 MB
POF	Agent-based modelling and simulation for circular business model experimentatio	yo	7 sept 2022 yo	2,3 MB
POF	An assessment of the sectional soot model and FGM tabulated chemistry coupling	yo	6 sept 2022 yo	3,3 MB
PDF	Analysis and numerical simulation of fractional Biswas–Milovic model.pdf 🚢	yo	6 sept 2022 yo	2,8 MB
PDF	Approximations for finite-time ruin probability in a dependent discrete-time risk mo 🎎	yo	6 sept 2022 yo	836 kB
PDF	Architectural Design Space for Modelling and Simulation as a Service A Review.pdf 🚢	yo	6 sept 2022 yo	1,1 MB
PDF	Automated discovery of business process simulation models from event logs.pdf 🚢	yo	6 sept 2022 yo	4 MB

Segunda fase

En la segunda fase, se analizó el resumen de cada artículo, este análisis permitió la selección de 30 artículos, la información recolectada se registró en un Exel.

El primer paso que se realizo en esta fase, fue el análisis del artículo, determinar si realmente se trataba de un modelo de simulación, esta información se almaceno en la primera columna de nuestro Excel nombrada "Titulo"

El segundo paso fue verificar que nuestro articulo fuera del año 2017 al 2022, la información del año se almaceno en la siguiente columna nombrada "año". Verificar esta información nos permitió tener un modelo de simulación actualizado.

El tercer paso es analizar que modelo utiliza el autor en el artículo, en este paso se analizo el resumen y la metodología de nuestro artículo, para encontrar como se llama el modelo y ver como el autor desarrollo las formula con los datos.

En el cuarto paso, se analizó las fórmulas que utilizan los autores de cada artículo, en este paso se analizo como los autores utilizan las fórmulas para el pronóstico o predicción del modelo y se analiza cómo se llegó al resultado. La información se almaceno en una columna de Exel nombrada "Formula".

Titulo	Año	Modelo Formula y nombre	Formula
Un estudio comparativo sobre modelos clindricos y esféricos en la fabricación de andamios de ingeniería de tejido deso: simulación y experimentos de elementos finitos	2021	modelo de poro cilíndrico modelo de poro esférico	Pute volume $V_{p} = 3\pi i V_{n} - 9\sqrt{i} \pi^{2}$ $V_{p} = 3\pi i V_{n} - \frac{1}{2}\pi i V_{n}^{2}$ Surface area $S_{p} = 6\pi i K - 4\pi^{2} - 6(4V_{n}^{2} + y)\pi^{2}$ $S_{p} = 8\pi i N^{2} + (6 + \frac{y}{2} - \frac{y}{2})K^{2} - 4\pi i 2^{2}$ $S_{p} = \frac{1}{2} - 3\pi i \frac{x}{2} + 3\pi i \frac{x}{2} + (9 - \frac{y}{2} - \frac{y}{2})K^{2} - (9 - \frac{y}{2} - \frac{y}{2})K^{2} - (9 - \frac{y}{2} - \frac{y}{2})K^{2}$ Solid block volume $V_{p} = (2D + 1)^{2} = K^{2}$ $V_{p} = (2D + 1)^{2} + K^{2}$
Un modelo dinámico para la simulación de diagramas de flujo de procesos de precipitación semicontinua de sales escasamente solubles	2020	modelo de semilotes	$\bar{R} = \left(\frac{\xi_{\rm gar}}{\xi_{\rm gar}}\right) \qquad S_{\rm u} = \gamma_0 \sqrt{\frac{\xi_{\rm gar} \cdot \xi_{\rm gar}}{R}}$
Una biblioteca para la simulación de grandes remolinos modelados en paredes basada en la tecnología OpenFOAM	2019	simulación de remolinos grandes modelados en paredes (WMLES),	ecuación de momento $\frac{\mathrm{d}}{\mathrm{d}t} \int_V \bar{u}_i \mathrm{d}V + \int_S \bar{u}_i \bar{u}_j n_j \mathrm{d}S = -\frac{1}{\rho} \oint_S \bar{p} n_i \mathrm{d}S + \oint_S \tau_{ij} n_j \mathrm{d}S.$ $\int_{\mathcal{B}_w} \tau_{ij} n_j \mathrm{d}S = -\int_{\mathcal{B}_w} \tau_{i2} \mathrm{d}S \approx \Psi_{w,i} \mathrm{d}S_w.$
modelo realista para la predicción del estado de carga de la batería en herramientas de simulación de gestión de energía	2019	modelo integral, modelo KiBaM, modelo propuesto en las Refs	$SoC_{\ell} = SoC_{\ell-1} + \frac{U_{\ell} \cdot L \cdot \Delta t}{E_{max}}$
Un estudio de simulación para evaluar el impacto potencial del desarrollo de modelos de probabilidad de complicaciones de tejidos normales con dosis acumulada		El modelo Lyman NTCP,	$NTCP = \Phi \left(\frac{gEUD - TD_{s_0}}{m \cdot TD_{s_0}} \right)$
Una evaluación del modelo de hollín seccional y el acoplamiento químico tabulado de FGM en simulaciones de llama laminar		modelos de hollín	$\frac{\partial (\rho\phi)}{\partial t} + \frac{\partial}{\partial x} (so\phi) - \frac{\partial}{\partial x} \left(\frac{\lambda}{\epsilon} \frac{\partial \phi}{\partial x} \right) - \frac{\partial}{\partial x} \left(\mathcal{D} \frac{\partial \phi}{\partial x} \right) + \sum_{i=1}^{N} \alpha_i \phi_i,$
	2021		with
Hoia1 ▼			◆ Explorar

Tercera Fase

En la tercera fase se analizaron los 30 artículos y se eligieron los mejores 15 articulo, en esta fase se analizó las variables de las fórmulas del modelo que los autores utilizan en su formulas y se determinó si los datos de las variables son fáciles de conseguir, los datos de las variables analizados fueron almacenadas en un Excel, en donde se le agrego una columna más para describir las variables del modelo.

	Titulo		Modelo Formula y nombre	Formula	Variables
1	modelo realista para la predicción del estado de carga de la batería en herramientas de simulación de gestión de energía	2019	modelo integral, modelo KiBaM, modelo propuesto en las Refs	$SeC_i = SeC_{i+1} + \frac{kk + kk}{k_{min}}$	* SoC estado de carga *(t) en un momento futuro * Emas como porcettaĵe de la capacidad máxima * II] corriente * U voltaĵe
2	Un estudio de simulación para evaluar el impacto potencial del desarrollo de modelos de probabilidad de complicaciones de tejidos normales con dosis acumulada	2018	El modelo Lyman NTCP,	NTCr- ϕ ($\frac{gUD-D_0}{\pi \cdot D_0}$) $PC_{ov} = \frac{Accumulated\ Dose-Planned\ Dose}{Planned\ Dose}*100$	exambio porrentual (PC) **In función O recresenta el modelo NTCP15 donde aEUD se evalúa valilizando TDS0
3	Una evaluación del modelo de hollín seccional y el acoplamiento químico tabulado de FGM en simulaciones de llama laminar	2021	modelos de hollín	$\begin{split} \frac{d(g_0^2)}{dg_0^2} + \frac{2}{dg} (g_0 g_0) &= \frac{2}{dg} \left(\frac{2}{g_0^2} \frac{\partial g}{\partial g} \right) - \frac{2}{dg} \left(\frac{2}{g_0^2} \frac{\partial g}{\partial g} \right) + \sum_{i=1}^{N} g_i g_i \\ &\text{with} \\ \partial &= \left[\frac{(-\sum_{i=1}^{N} g_0 g_0 g_0) - \frac{1}{g_0^2}}{2} \right] &\text{from finedets} \end{split}$	*fracción de mass de hollin (* (* 5.1)* **V. d.
4	Comparación de predicciones de campo completo de simulaciones de planticidad cristal ina utilizando Voce y las leyes de endureclimiento basadas en la densidad de dislocaciones Modelo basado en datos para la rotura de		modelado y la simulación de plasticidad cristalina	$\sigma(x) \equiv C(x) : e^{\theta}(x) \equiv C(x) : (e(x) - e^{\theta}(x))$ $\sigma(x) \equiv C(x) : e^{\theta}(x) \equiv C(x) : (e(x) - e^{\theta}(x))$	I ()) el tensor de tensión de Cauchy

Cuarta Fase

En esta fase se eligió los 5 mejores modelos, para un análisis completo de cada artículo, se leyó completamente el documento para analizar como el autor llega al resultado final utilizando el modelo. Realizamos una propuesta para la aplicación del modelo utilizada por el autor en el estado de Oaxaca, en esta fase se le agrego otra columna en el Excel con el nombre de "Aplicaciones del porque seleccione este modelo" en este apartado se describe una posible propuesta de cómo se aplicará el modelo en el estado de Oaxaca.

	Titulo	Año	Modelo Formula v nombre	Formula	Variables	Eplicación del porque seleccione este Modelo
,	Uso del Modelo de Holt- Winters como estrategia para la predicción de condiciones ambientales durante el proceso de almacenzamo del Cacao.	***	Holt-Winters	Serie nurriende exponencialmente o nivel estimado $A_t = a \frac{c}{T_{t-1}} + (1-a)A_{t-1} + T_{t-1})$ $a \in (0.1)$ Estimación de Tredencia $T_t = y(A_t - A_{t-1}) + (1-y)T_{t-1}$ $y \in (0.1)$ Estimación de estacionalidad $S_t = \delta \frac{s^2}{A_t} + (1-\delta)S_{t-1}$ $\delta \in (0.1)$ Predicción de meriodos en elituro $S_t = \delta \frac{s^2}{A_t} + (1-\delta)S_{t-1} + \delta \in (0.1)$ Predicción de meriodos en elituro $S_{t+n} = (A_t + mT_t)S_{t+n-r}$ $\delta \in (0.1)$	At: Valer de suavización para el nivel de la serie en el periodo t al Constante de suavización exponencial para nivel constante de suavización exponencial para nivel procesor de la constante de suavización exponencial para la tendencia. Si Constante de suavización exponencial para la tendencia. Si Constante de suavización exponencial para la tendencia. Constante de suavización exponencial para la tendencia. Constante de suavización exponencial para la estacionalidad si Longitud de tiempo de la estacionalidad (s-6 Semestra) X t-m: Predicción de tell-Winters para el periodo t-m	Elegi este modelo, porque lo puedo aplicar en el esatado de oazaca, para predecir las temperaturas de los siguientes meses en el estado de oazaca y otros estados, el modelo proquesto permidó predecir el comportamiento de la temperatura, para poder presecir la temperatura, necesitaria dalos del del cinegi. un período del 2020-2022 debendos del inegi.
2	modelo realista para la predioción del estado de oarga de la batería en herramientas de simulación de gestión de energía	2019	Modelo DiBu	$Sd_1 = Sd_{i-1} + \frac{2i \cdot 4i \cdot 4i}{6i \cdot m}$	(SiC) estado de capa (Si no immomento trazio (Emas) como pocama de dia sa panded misiana grando de dia sa panded misiana (Al) voltaje	Ent models is ell proque en etre model con premie explor un unado an utilizand la bettera, como el uso de emergensis, para demonrar alestricidad perime de proque sir l'ambiento perime alutare d'ambiento de la betteria, en model utilizo la betteria para reflete i model produce perimento perimento de resulta de produce de produce perimento perimento de resulta de produce perimento perimento de refleto de segui, a la reque en lo sufficientemente ample como para quinta de models perimento de la companio del la companio de la companio de la companio del la c
3	Un estudio de simulación para evaluar el impacto potencial del desarrollo de modelos de probabilidad de complicaciones de tejdos normales con dosis acumulada	2018	El modelo Lyman NTCP,	$20P * 6 \left(\frac{d(D * B_0)}{d B_0}\right)$ $= \frac{1}{B_0} - \frac{1}{B_0} - \frac{1}{B_0} = \frac{1}{B_0} = \frac{1}{B_0}$ $= \frac{1}{B_0} = \frac$	- sambio pocentual (PC) - 4.a función o representa el modelo NTO-PB donde gRUO se evalúa utilizando TO50	Earn explories a demonstration in secretal de recapion faires processives par exclusir el require citimo del secundo de modione del ITCP colles la será de desir exclusive de modione del ITCP colles la será de desir exclusives de la regia de plantate del responsable par de cercal de modione de la recursiva de la regia del productione de la recursiva de la regia de modione de recipione de la recipione de la regia de modione de recipione de la recipione del regia de modione de la recipione del recipione del regia de modione de la recipione del r
•	Simulación DEM para la predioción de la fuerza de tracción del arado de vertedera según la profundidad de labranza en suelo cohesivo	2021	modelos de suelo agrícola, modelado de suelos DEM	$\mathbf{F}_{n}=\left(t_{2ps}+t_{n}^{+}\right)\mathbf{u}$	-is leaves a normal total (Fig.) -if-net is levera normal de contracto total (fig.) -they are is leaves add resoure historekisto (fig.) -finder is leverate de morniquement normal (fig.) -finder is leverate de morniquement normal (fig.) -fine is leverate de morniquement normal (fig.) -fine is a pagesposición normal	El objetico de este modelo en bacer previsa de medición del suolo en docido en dembran coliticos, estas provisa an evalizara para abber, la carga de trabado apricad de una sucro que representa el encomo de trabajo. La lutras de tracción, que es la luerza de rescolón del suelo que acelía en diescolón operars al remotipa couando se acepía su implemento con tractores.
8	Identificación de las estrategias de adaptación agronómica más prometedoras para los sistemas de cultivo de tomate en el sur de lhalía a través de modelos de simulación	2019	El modelo de simulación TOMGRIO	$M = -\frac{D_{\rm total}}{2} dS \left(\frac{1}{\omega_{\rm colored}} (\omega d) \right) - \frac{B_{\rm total}}{\omega_{\rm total}} d\sigma_{\rm tot}$	Alg e el fiximero de simulaciones en el grupo q. « el riscimero total de prostipcio. « la riscimero total de prostipcio. « la riscimero de la del prostipcio de la riscimero de la riscimer	Este mendo lo seleccione porque su primojal dejerico es opinitar la produceridad del agua de los cultivos all'initar el pamientro de agua se un terceción de la exeptimisarjación de la pintar, a la identificación de lobacionam a productica al limitar para será que conducian la haring combene cabo in meliminar. Los del adorda que de para de la melinar, condernado la entergolit de la associada del plate del seguindo. Cinciano del composito del combene del co

Quinta Fase

En esta última fase se seleccionó el mejor articulo para aplicarlo en el estado de Oaxaca, El articulo seleccionado fue el "Uso del Modelo de Holt-Winters como estrategia para la predicción de condiciones ambientales durante el proceso de almacenamiento del Cacao."

El articulo nos abra de cómo se utiliza el modelo para pronosticar la temperatura de los meses Enero, febrero y marzo del año 2022, estos datos recolectados le ayudaron al actor a identificar cuando eran las mejores fechas para el almacenamiento de cacao, Tomando como referencia los datos del pronóstico de la temperatura.

El objetivo de la elección del artículo, fue porque es importante pronosticar las temperaturas futuras, al tener una temperatura más alta, significa que habla mayor calor, y

nuestro ecosistema presentara problemas, como la extinción de animales. Los datos de la temperatura son fáciles de conseguir a través de la página del INEGI "Instituto Nacional de Estadística y Geografía", y es un buen modelo para aplicarlo en el estado de Oaxaca, en donde hay producción de alimentos.

Revista EIA ISSN 1794-1237 e-ISSN 2463-0950 Ańo XIX/Volumen 19/ Edición N.38 Junio-Diciembre de 2022 Reia3820 pp. 1-17

Publicación científica semestral Universidad EIA, Envigado, Colombia Uso del Modelo de Holt-Winters como estrategia para la predicción de condiciones ambientales durante el proceso de almacenamiento del Cacao.

Formulación del modelo

Modelo de Holt-Winters

El Modelo de Holt-Winters: Se utiliza para datos con tendencia y estacionalidad. Este modelo presupone que a medida que se incrementan los datos, también se incrementa el patrón estacional. La mayoría de las gráficas de series de tiempo muestran este patrón.

En este modelo, la tendencia y los componentes de estación se multiplican y luego se suman al componente de error. Se desea proponer el uso del modelo del Holt-Winters como estrategia para predecir el comportamiento de la temperatura en el país de México por cada estado.

Por lo expresado anteriormente resulta relevante contar con un modelo que prediga las variaciones de temperatura del año 2022 para determinar posibles cambios de temperatura en el

cambio climático. Para ello, en esta sección se presenta el modelo de Holt-Winters para en predecir y generar intervalos de confianza sobre los posibles cambios de temperatura en un periodo del año 2020 al 2022.

Para el desarrollo del modelo de simulación Holt-Winters se utilizaron las siguientes ecuaciones:

Serie suavizada exponencialmente o nivel estimado

Se utiliza para descomponer las series temporales de cada ubicación de un cubo de espacio-tiempo en componentes estacionales y de tendencia para pronosticar eficazmente los periodos de tiempo futuros de cada ubicación.

Usualmente, cuando se realiza un pronóstico sobre una serie de tiempo, el primer paso es estimar el nivel. La ecuación para calcular el nivel está dada por:

$$A_{t} = \alpha \frac{X_{t}}{S_{t-s}} + (1 - \alpha)(A_{t-1} + T_{t-1}) \quad \alpha \in (0,1)$$

Para calcular el nivel estimado de la temperatura en el momento de tiempo A_t se requiere dar una ponderación α cuyos valores se encuentran en un intervalo [0,1], a la variable observada en el momento sin el efecto de la estacionalidad S_{t-S} . Con el fin de capturar el nivel actual, al nivel en el momento anterior A_{t-1} . Se le suma la tendencia en el momento anterior T_{t-1} y se le da una ponderación que es igual a $(1-\alpha)$.

En nuestra primera ecuación al primer término de la ecuación se le quita la estacionalidad al dato observado en el momento t y éste se pondera con la constante de suavización en donde Xt es nuestro valor original de la temperatura. En el segundo

término se calcula una posición esperada en el momento, tomando el nivel más la tendencia en el momento anterior

Estimación de Tendencia

La tendencia es el patrón que siguen nuestra temperatura. Se dice que una serie de tiempo tiene tendencia aditiva cuando sufre un crecimiento constante a través del tiempo. La tendencia que presentan la temperatura en el momento t puede ser expresada mediante bt. La ecuación para calcular la tendencia aditiva está dada por:

$$T_t = \gamma (A_t - A_{t-1}) + (1 - \gamma) T_{t-1} \quad \gamma \in (0,1)$$

Estimación de estacionalidad

Se dice que hay estacionalidad en la temperatura cuando en la serie de tiempo se puede observar que existe un patrón relativo al tiempo, como, por ejemplo: un día de la semana, una semana al mes, un mes al año, un bimestre del año, etc. La estacionalidad que presentan la temperatura en el momento puede ser expresada mediante. Las ecuaciones para calcular la estacionalidad multiplicativa están dadas por:

$$S_t = \delta \frac{X_t}{A_t} + (1 - \delta)S_{t-s} \quad \delta \in (0,1)$$

Predicción de m periodos en el futuro

En este apartado se le asigna el numero de periodos que se desea pronosticar, nuestros periodos serán 12 meses para el año 2022. En la siguiente ecuación nos permite hacer un pronóstico de nuestra temperatura.

$$\hat{X}_{t+m} = (A_t + mT_t)S_{t+m-s} \quad \delta \in (0,1)$$

11

Variables

Las variables que utiliza nuestro modelo de Holt-Winters es;

 A_t : Valor de suavización para el nivel de la serie en el periodo t

α: Constante de suavización exponencial para nivel

 X_t Valor real de la serie de tiempo en el periodo t

T_t: Componente de tendencia de la serie para el periodo t

y: Constante de suavización exponencial para la tendencia

 S_t : Componente estacional de la serie para el periodo t

St-s: componente estacional de la serie para el periodo t-s

δ: Constante de suavización exponencial para la estacionalidad

s: Longitud de tiempo de la estacionalidad (s=6 Semestral)

m: Periodos futuros a predecir

X̂ t+m: Predicción de Holt-Winters para el periodo t+m

Colección de datos

Para realizar la colección de datos, se consultaron diversas páginas de internet, en donde logramos obtener datos de la temperatura en un periodo de los años del 2020-2021 de los 31 Estados de la república mexicana. La página en donde se obtuvieron los datos fue en https://smn.conagua.gob.mx/ en esta página los datos están clasificados por estados, cada estado tiene su temperatura por mes.

Temperatura del año 2020 de Mexico.

La primera recolección de datos que se realizo fue del año 2020 para los 31 estados de la republica mexicana, teniendo en cuenta cada temperatura por mes en ese periodo.

CONAGUA Temperatura Máxima Promedio por Entidad Federativa y Nacional 2020

Entidad	<u>Ene</u>	<u>Feb</u>	Mar	Abr	May	<u>Jun</u>	<u>Jul</u>	Ago	Sep	Oct	Nov	Dic	Anual
Aguascalientes	21.6	23.7	29.0	31.1	30.6	30.2	28.1	26.9	26.0	27.4	25.9	22.9	27.0
Baja California	20.2	21.0	19.9	24.6	29.8	31.4	33.9	35.4	34.3	30.6	23.5	20.4	27.1
Baja California Sur	24.6	25.3	26.3	29.0	31.4	33.4	34.6	35.3	35.3	33.1	29.3	25.1	30.2
Campeche	30.2	32.4	34.9	38.5	36.7	34.1	35.0	34.4	34.0	32.2	31.0	29.1	33.5
Coahuila	21.6	23.5	29.2	31.5	34.1	34.8	35.7	35.5	30.4	31.2	27.2	22.0	29.7
Colima	32.6	31.9	33.2	33.5	33.2	33.9	34.1	33.2	33.1	34.3	34.4	32.3	33.3
Chiapas	31.1	32.3	32.8	34.9	33.5	30.9	31.8	31.3	30.8	30.2	30.0	28.4	31.5
Chihuahua	20.0	20.9	25.4	28.9	33.4	35.3	33.6	35.1	30.4	30.7	26.7	19.5	28.3
Ciudad de México	23.0	25.9	27.9	28.4	27.3	26.5	26.1	24.9	23.9	24.5	23.7	23.2	25.4
Durango	21.1	23.3	27.8	30.5	32.1	32.7	30.9	31.2	27.5	28.5	26.5	21.9	27.8
Guanajuato	23.9	26.5	30.1	32.3	31.2	29.7	28.6	27.2	26.6	28.0	26.6	24.7	28.0
Guerrero	31.5	32.4	33.6	34.5	34.2	33.2	32.2	31.9	31.1	32.0	32.2	31.2	32.5
Hidalgo	23.2	25.1	28.5	30.8	29.7	27.9	28.6	26.7	26.0	25.8	23.7	23.0	26.6
Jalisco	26.2	28.2	31.7	32.8	32.8	32.4	30.1	29.5	29.0	30.4	29.6	26.5	29.9
Estado de México	20.4	23.1	25.9	26.2	25.2	24.2	23.3	22.2	21.7	22.6	22.0	20.9	23.1
Michoacán	26.5	28.7	31.2	32.8	32.4	30.9	29.3	28.3	27.9	28.9	28.5	26.6	29.3
Morelos	28.1	30.3	33.7	34.9	34.0	32.0	29.4	28.8	27.5	28.7	29.3	28.3	30.4
Nayarit	29.9	29.9	32.6	34.1	35.3	35.8	34.3	34.0	33.3	34.8	34.5	29.1	33.1
Nuevo León	23.5	24.6	30.4	31.6	33.1	33.3	35.1	34.7	30.9	31.3	27.7	22.9	29.9
Oaxaca	28.8	30.4	32.8	34.6	33.2	31.4	31.3	30.3	30.1	30.0	29.3	27.5	30.8
Puebla	23.7	25.7	29.0	30.9	29.5	28.3	28.0	26.8	25.8	26.4	25.4	23.8	26.9
Querétaro	23.9	27.3	30.9	32.7	31.8	30.1	29.7	28.0	27.1	27.7	25.7	23.1	28.2
Quintana Roo	30.4	31.3	32.2	34.4	33.8	33.2	34.3	34.2	34.5	32.6	31.1	29.3	32.6
San Luis Potosí	25.5	27.1	32.0	36.1	34.6	34.4	35.1	33.4	31.8	31.8	29.1	24.9	31.3
Sinaloa	28.4	29.1	31.5	34.0	36.3	37.7	36.9	37.1	35.9	36.6	34.2	29.3	33.9
Sonora	23.8	24.5	25.8	31.1	36.1	39.0	39.0	39.9	38.5	36.0	30.7	24.3	32.4
Tabasco	29.1	31.0	33.6	36.9	35.4	33.1	34.6	33.5	32.6	31.4	29.7	27.9	32.4
Tamaulipas	25.5	25.6	31.5	33.8	34.0	34.2	36.1	35.1	32.8	32.2	29.3	25.2	31.3
Tlaxcala	21.0	23.7	26.5	26.7	25.1	24.1	23.8	22.8	21.8	23.2	22.2	21.0	23.5
Veracruz	24.6	25.7	30.0	33.0	31.6	30.3	31.7	30.0	29.5	28.8	26.8	24.0	28.8
Yucatán	29.9	32.1	34.6	38.8	36.0	33.7	34.9	34.7	34.7	32.0	30.1	28.8	33.4
Zacatecas	21.6	23.9	28.7	30.8	30.9	30.6	27.8	27.7	26.4	28.3	26.8	23.3	27.2
Nacional	24.6	26.0	29.2	32.0	33.3	33.5	33.4	33.3	31.4	31.1	28.5	24.5	30.1

Temperatura del año 2022

La segunda recolección de datos que se realizo fue del año 2021 para los 31 estados de la república mexicana, teniendo en cuenta cada temperatura por mes en ese periodo.

Entidad	<u>Ene</u>	<u>Feb</u>	Mar	Abr	May	<u>Jun</u>	<u>Jul</u>	Ago	Sep	Oct	Nov	Dic	Anual
Aguascalientes	23.0	25.8	28.9	29.8	29.8	26.6	25.0	26.0	24.9	25.4	24.3	24.8	26.2
Baja California	20.0	20.8	20.8	25.2	27.8	31.3	33.2	33.1	32.7	27.4	25.8	19.8	26.5
Baja California Sur	24.4	25.6	26.6	29.7	31.1	33.4	33.8	34.4	33.2	31.4	29.6	26.6	30.0
Campeche	29.3	31.3	33.9	36.5	36.2	34.8	34.6	34.4	34.2	33.4	30.5	31.3	33.4
Coahuila	21.6	24.4	28.4	30.9	33.5	35.0	33.7	34.0	33.7	31.0	25.8	26.9	29.9
Colima	31.9	31.3	32.5	32.7	34.1	33.3	33.8	33.1	32.7	33.7	33.6	32.6	32.9
Chiapas	30.2	31.4	32.4	33.9	32.7	31.5	31.9	31.5	30.8	30.9	28.7	29.8	31.3
Chihuahua	19.7	23.3	25.7	29.0	32.5	35.1	31.3	31.2	30.8	29.1	25.3	22.9	28.0
Ciudad de México	23.2	25.4	27.8	28.3	27.1	24.2	25.3	25.2	24.3	23.9	22.3	23.7	25.1
Durango	22.2	25.8	28.3	30.2	31.8	31.6	28.3	28.5	28.1	27.5	25.3	24.4	27.7
Guanajuato	25.1	27.5	30.5	31.4	30.5	26.9	26.5	26.9	25.7	26.5	25.2	25.8	27.4
Guerrero	31.0	31.4	33.4	34.6	34.5	31.3	32.2	31.2	31.1	31.5	31.4	31.8	32.1
Hidalgo	23.4	26.2	28.7	29.5	29.3	26.1	26.1	26.1	25.3	26.0	23.2	24.9	26.2
Jalisco	27.1	29.2	31.8	32.9	32.9	29.9	29.0	29.0	28.3	28.9	28.2	27.7	29.6
Estado de México	21.4	23.3	26.0	26.3	25.0	22.2	22.3	22.1	21.5	22.4	21.0	22.0	23.0
Michoacán	26.9	28.3	31.1	31.8	31.1	28.2	28.0	27.7	27.5	28.0	26.8	27.0	28.5
Morelos	28.4	30.6	33.2	34.3	32.2	28.3	28.9	28.5	27.9	29.0	28.2	28.9	29.9
Nayarit	28.9	30.9	32.8	34.3	35.2	34.1	33.4	33.3	32.3	33.2	32.9	30.4	32.6
Nuevo León	23.5	25.3	29.1	32.0	33.2	33.9	32.5	34.5	33.4	30.9	25.6	27.3	30.1
Oaxaca	28.1	30.3	32.0	33.4	32.6	29.6	30.7	30.3	29.6	30.1	28.8	28.5	30.3
Puebla	24.0	25.9	28.6	29.6	28.3	25.3	26.2	26.1	25.3	25.9	24.0	25.5	26.2
Querétaro	24.5	27.2	30.1	31.9	30.6	27.7	27.5	28.0	27.0	27.1	25.1	26.2	27.7
Quintana Roo	29.1	30.5	31.3	33.4	33.7	32.9	33.7	33.7	33.3	32.8	30.3	30.6	32.1
San Luis Potosí	25.5	27.9	31.9	34.7	34.4	32.2	31.8	32.6	31.1	30.5	26.9	28.6	30.7
Sinaloa	28.6	29.9	32.1	34.6	36.6	37.4	36.3	35.9	34.9	35.0	33.8	31.1	33.9
Sonora	23.6	25.8	27.3	32.1	35.1	39.2	37.1	37.3	35.8	33.4	31.1	25.4	31.9
Tabasco	28.4	30.3	32.8	35.2	34.8	33.6	34.2	34.0	33.3	32.7	29.4	30.8	32.5
Tamaulipas	25.0	25.2	29.8	32.7	34.2	34.1	33.9	35.7	34.2	32.0	27.4	28.9	31.1
Tlaxcala	21.3	22.9	26.6	26.5	24.8	21.9	23.1	22.6	22.0	22.9	22.0	23.1	23.3
Veracruz	24.2	25.8	28.8	31.2	31.7	30.0	30.0	29.8	29.7	29.2	25.9	27.3	28.6
Yucatán	28.9	31.5	33.4	36.4	35.9	33.9	34.4	34.1	33.7	33.4	30.2	30.7	33.0
Zacatecas	23.6	26.5	29.4	30.6	31.2	28.3	26.0	26.9	25.9	26.5	25.2	25.5	27.1
Nacional	24.6	26.7	29.2	31.6	32.8	32.8	31.8	32.0	31.2	30.2	27.6	26.7	29.8

Implementación del modelo

Paso 1: Asignación de valores reales

Creamos un Exel para la implementación de nuestro modelo en donde en nuestra primera columna de anotaron los meses del año 2020 y 2021 con sus respectivas temperaturas del estado de Aguascalientes. Le asignamos valores de ponderación a nuestras variables Alfa, beta y gama que son valores entre 1 y 0.

Ponderación	Valores
m	6
α	0.952
β	0.059
Υ	0.011

Enero	1	20	20
Febrero	2	20.9	20.8568
Marzo	3	25.4	25.184353
Abril	4	28.9	28.736188
Mayo	5	33.4	33.199877
Junio	6	35.3	35.234175
Julio	7	33.6	33.717118
Agosto	8	35.1	35.065721
Septiembre	9	30.4	30.657979
Octubre	10	30.7	30.717518
Noviembre	11	26.7	26.911392
Diciembre	12	19.5	19.862424
Enero	13	19.7	19.694117
Febrero	14	23.3	23.113063
Marzo	15	25.7	25.570644
Abril	16	29	28.837911
Mayo	17	32.5	32.335421
Junio	18	35.1	34.988989
Julio	19	31.3	31.506781
Agosto	20	31.2	31.231429
Septiembre	21	30.8	30.838662
Octubre	22	29.1	29.196857
Noviembre	23	25.3	25.496928
Diciembre	24	22.9	23.025889

Se coloco el numero de periodos que se van a ocupar en ST con un valor de 1. Los periodos que vamos a ocupar son 12, que son la cantidad de meses que se va a pronosticar para el año 2022, entonces serian un total de 12 unos.

Paso2: Calcular el nivel estimado

Nuestro siguiente paso fue calcular el nivel estimado para el desarrollo de nuestra primera formula, sustituimos nuestros respectivos datos de temperatura en nuestra primera ecuación

$$A_t = \alpha \frac{X_t}{S_{t-s}} + (1 - \alpha)(A_{t-1} + T_{t-1}) \quad \alpha \in (0,1)$$

Para calcular el nivel estimado de la temperatura en el momento de tiempo A_t se requiere dar una ponderación α cuyo valor tomara el 0.952, nuestro valor xt es el valor real de nuestra temperatura y comenzara a partir de febrero y la temperatura es de 20.9, a la variable observada en el momento sin el efecto de la estacionalidad S_{t-S} tomará un valor de 1 que es el valor que se agregó en st de la cantidad de periodos y se le resta nuestro valor de ponderación α . Con el fin de capturar el nivel actual, al nivel en el momento anterior A_{t-1} con valor 20 que es la temperatura de enero. Se le suma la tendencia en el momento anterior T_{t-1} y se le da una ponderación que es igual a $(1-\alpha)$. Nuestro formula AT del mes de febrero sustituyendo los valores nos quedaría de la siguiente forma

$$A_t = 0.952 \left(\frac{20.9}{1}\right) + (1 - 0.952)(20 + 0) = 20.85$$

S	UMA	<u>~</u> :	$\times \checkmark f_x$	=\$K\$11	*C15/F3+((1-\$K\$11)*	(D14+E14)					
	Α	В	С	D	E	F	G	Н	1	J	K		
1	Temperatura Promedio, Chihuahua 2020-2021												
2	Meses	t	Xt	At	Tt	St	Х						
3		-1	0			1 1	I						
4		-	9			1							
5		-	В			1							
6		2	7			1							
7		-	5			1							
8		-	5			1							
9			4			1				Ponderación	Valores		
10		-	3			1				m	6		
11		-	2			1				α	0.952		
12		-	1			1				β	0.059		
13			0			1				Υ	0.011		
14	Enero		1 20										
15	Febrero			=\$K\$11*C15			20	0.9					
16	Marzo		ວໄ າເ/	1 25 104252	0.2020042	1.0000043	20.007251	4 4026400					

Nuestro formula AT del mes de marzo sustituyendo los valores nos quedaría de la siguiente forma.

$$A_t = 0.952 \left(\frac{25.4}{1}\right) + (1 - 0.952)(20.8568 + 0.055512) = 25.184353$$

S	UMA	-	√]:[\times \checkmark f_x	=\$K\$11	*C16/F4+(1-\$K\$11)*	(D15+E15)			
	Α		В	С	D	E	F	G	н	1	J	K
1			Ten	peratura P	romedio,	Chihuah	ua 2020-2	021				
2	Meses	t		Xt	At	Tt	St	Х				
3			-10				1					
4			-9				1					
5			-8				1					
6			-7				1					
7			-6				1					
8			-5				1					
9			-4				1				Ponderación	Valores
10			-3				1				m	6
11			-2				1				α	0.952
12			-1				1				β	0.059
13			0				1				Υ	0.011
14	Enero		1	20			1					
15	Febrero		2	20.9			1.0000228	20	0.9			
	Marzo		3		=\$K\$11*C16			20.907351	4.4926488			
17	Abril		4	28.0	28 736188	0.4945818	1 0000627	25 487247	3 4127528			

Se realizo la misma formula para los 12 meses de cada año en cada estado.

Paso 3 Calcular Estimación de Tendencia

La tendencia que presentan la temperatura en el momento t puede ser expresada mediante Tt. Para el cálculo de la tendencia aditiva se pondera la tendencia que tienen la ponderación (y) en el momento t. El primer término de la ecuación pondera la tendencia actual (y) con valor 0.059 con el nivel que se tuvo en el momento t y en un momento anterior, El valor At es el valor real del mes del febrero =20.85.68 y se le restara el mes anterior enero=20. El valor st = 1 se le resta nuestro valor de y=0.059 y se multiplica por Tt=0. Se realizo el mismo paso para los siguientes meses del año 2020 y el año 2021

$$T_t = \gamma (A_t - A_{t-1}) + (1 - \gamma) T_{t-1} \quad \gamma \in (0,1)$$

$$T_t = 0.059(20.8568 - 20) + (1 - 0.059)(0) = 0.505512$$

Paso 4: Estimación de estacionalidad

Para el cálculo de la estimación de estacionalidad el primer paso es darle al valor de ponderación un valor entre 0 a 1. El valor Xt será igual a la temperatura original del mes de febrero. El valor At será igual a 20.8568 del mes de febrero y el valor se St es al primer valor 1

$$S_t = \delta \frac{X_t}{A_t} + (1 - \delta)S_{t-s} \quad \delta \in (0,1)$$

$$S_t = 0.011 \left(\frac{20.9}{20.8568}\right) + (1 - 0.011)(1) = 0.505512$$

Esta ecuación se repite para los demás meses del año 2020 y 2021

Paso 5: Predicción de m periodos en el futuro

Por último paso se calcula nuestro pronóstico de la temperatura el valor de At es la temperatura =20, el valor de m es el periodo y el valor de Tt es el valor de estimación tendencial. Y por ultimo el valor St =1

$$\hat{X}_{t+m} = (A_t + mT_t)S_{t+m-s}$$
 $\delta \in (0,1)$
$$x = (20+1)(0)(1) = 20$$

S	UMA	✓!	$\times \checkmark f_x$	=(D14+\$	\$B\$14*E14	1)*=3					
	Α	В	С	D	Е	F	G	Н	1	J	K
1		Ten	peratura P	romedio,	Chihuahu	ıa 2020-2	021				
2	Meses	t	Xt	At	Tt	St	х				
3		-10				1					
4		-9				1					
5		-8				1					
6		-7				1					
7		-6				1					
8		-5				1					
9		-4				1				Ponderación	Valores
10		-3				1				m	6
11		-2				1				α	0.952
12		-1				1				β	0.059
13		0				1				Υ	0.011
14	Enero	1	20	20	0	1					
15	Febrero	2		20.8568	0.0505512	1.0000228		0.9			
16	Marzo	3	25.4	25.184353	0.3028943	1.0000942	20.907351	4.4926488			

Nuestra tabla completa con los datos quedaría de la siguiente forma, ya utilizando nuestro modelo con todas sus fórmulas.

	Temp	eratura Pro	medio, A	guascalier	ntes 2020	-2021	
Meses	t	Xt	At	Tt	St	X	
	-10				1		
	-9				1		
	-8				1		
	-7				1		
	-6				1		
	-5				1		
	-4				1		
	-3				1		
	-2				1		
	-1				1		
	0				1		
Enero	1	21.6	21.6	0	1		
Febrero	2	23.7	23,5992	0.4018392	1.000047	21.6	2.1
Marzo	3	29	28.76005	1.3584003	1.0000918	24.001039	4.9989608
Abril	4	31.1	31.052886	1.5462219	1.0000167	30.11845	0.9815498
Mayo	5	30.6	30.695957	1.1636886	0.9999656	32.599107	1.9991075
Junio	6	30.2	30.279663	0.8461121	0.9999711	31.859646	1.6596458
Julio	7	28.1	28.245237	0.267124	0.9999434	31.125775	3.0257751
Agosto	8	26.9	26.977393	-0.041405	0.9999684	28.512361	1.6123612
Septiembre	9	26	26.044927	-0.220508	0.999981	26.935989	0.9359888
Octubre	10	27.4	27.324372	0.0809826	1.0000304	25.82442	1.5755804
Noviembre	11	25.9	25.972257	-0.20707	0.9999694	27.405355	1.5053547
Diciembre	12	22.9	23.037529	-0.755329	0.9999343	25.765187	2.865187
Enero	13	23	22.965546	-0.617977	1.0000165	22.2822	0.7178003
Febrero	14	25.8	25.633129	0.0424209	1.0001181	22.348619	3,4513812
Marzo	15	28.9	28.742702	0.6589183	1.000151	25.677907	3.2220934
Abril	16	29.8	29.780404	0.735054	1.0000237	29.402111	0.3978893
Mayo	17	29.8	29.835318	0.5983457	0.999953	30.514409	0.7144089
Junio	18	26.6	26,784749	-0.135086	0.9998955	30.432783	3.8327825
Julio	19	25	25.08053	-0.450482	0.9999087	26.648155	1.6481552
Agosto	20	26	25.935023	-0.188182	0.9999963	24.629271	1.370729
Septiembre	21	24.9	24.941098	-0.350136	0.9999631	25.746353	0.8463531
Octubre	22	25.4	25.36043	-0.195473	1.0000473	24.591711	0.8082893
Noviembre	23	24.3	24.342226	-0.360842	0.9999507	25.164187	0.8641867
Diciembre	24	24.8	24.762257	-0.203887	0.9999518	23.979809	0.8201909
Enero	25					24.558776	
Febrero	26					24.357359	
Marzo	27					24.154243	
Abril	28					23.947279	
Mayo	29					23.741707	
Junio	30		PRONÓ	etico		23.536478	
Julio	31		PHONU	31100		23.332921	
Agosto	32					23.13108	
Septiembre	33					22.926432	
Octubre	34					22.724465	
Noviembre	35					22.518393	
Diciembre	36					22.314543	

Paso: Grafica

Teniendo nuestra tabla se realiza la gráfica de la columna de datos reales xt y la del pronóstico x. Nuestro objetivo de simulación era obtener los datos del pronóstico más precisos del año 2022, pero solamente el modelo se acerca a los datos más reales en los meses de enero a abril del 2022.

Valores reales, estimados y de predicción sobre la temperatura promedio mensual [°C] Aguascalientes 2020-2021

Se realiza el mismo paso con todos los meses del México en un periodo del 2020 al 2021 para pronosticar la temperatura de los meses del año 2022. Al analizar la información que nos arroja nuestra gráfica, se obtuvieron datos más reales en los meses de enero a abril del nuestro pronostico del año 2022. A partir del mes mayo a diciembre, nuestros datos se empiezan a alejar de la realidad.

Nuestros valores se analizan en la etapa de interpretación.

Implementación del método en la computadora

Ventana principal

Paso 1

Se paso a realizar la parte de la programación y el diseño de la interfaz. Para la realización de nuestro programa primero se descargaron dos librerías, las librerías ocupadas en mi proyecto es:

- JFreeChart: Es una librería que nos permite crear graficas de manera sencilla el grafico utilizado en nuestro proyecto es el Gráficos XY. Es posible usar un eje del tiempo.
- JCommon: JCommon es una biblioteca de clases de Java que utilizan
 JFreeChart, Pentaho Reporting y algunos otros proyectos.

Paso 2

Se creo un nuevo proyecto para diseñar nuestras interfaces y subir nuestras imágenes e iconos que se ocuparan para la realización del programa

Paso 3

Importamos nuestras librerías a utilizar para nuestro programa. A qui se importa la librería Graphics la creación de nuestros mensajes. La librería PageFormat para imprimir nuestra grafica con la tabla de resultados. Los arreglos, todas estas librerías son importantes para la implementación de nuestro proyecto

```
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.print.PageFormat;
import java.awt.print.Printable;
import java.awt.print.PrinterException;
import java.awt.print.PrinterJob;
import java.io.IOException;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.table.DefaultTableModel;
import javax.swing.JOptionPane;
import java.io.FileOutputStream;
import java.io.IOException;
import javax.tools.JavaCompiler;
import javax.tools.ToolProvider;
```

Paso 4

Se crean arreglos para almacenar nuestros datos de temperatura de cada estado, estos datos son los reales.

```
double[] Aquascaliente = (21.6, 23.7, 29.0, 31.1, 30.6, 30.2, 28.1, 26.9, 28.0, 28.0, 28.0, 28.0, 28.9, 29.8, 29.8, 28.6, 28.0, 28.0, 19.9, 24.6, 28.8, 31.4, 33.9, 35.4, 34.3, 30.6, 23.5, 20.4, 20.0, 20.8, 20.6, 25.2, 27.8, 31.3, 33.2, 33.1, 32.7, 27.4, 25.8, 19.8); double[] Campache = (30.2, 32.4, 34.9, 29.5, 36.7, 34.1, 35.0, 34.4, 34.0, 32.2, 31.0, 29.1, 29.3, 31.3, 33.9, 36.5, 36.2, 34.8, 34.6, 34.4, 34.2, 33.4, 30.5, 34.3); double[] Colima = (32.6, 31.8, 33.2, 33.5, 33.2, 33.9, 34.1, 33.2, 33.1, 34.5, 34.3, 34.2, 27.2, 22.0, 21.6, 24.4, 28.4, 30.9, 33.5, 33.0, 33.7, 34.0, 33.7, 31.0, 25.8, 26.9); double[] Colima = (32.6, 31.8, 33.2, 32.8, 34.8, 33.5, 33.6, 33.1, 33.1, 33.1, 34.5, 34.8, 34.3, 34.3, 34.3, 32.5, 32.7, 34.1, 33.3, 33.8, 33.1, 32.7, 33.7, 33.6, 32.6); double[] Chinahua = (20.0, 20.9, 25.4, 28.4, 28.4, 33.4, 35.1, 30.8, 30.2, 30.0, 28.4, 30.2, 31.9, 31.3, 32.7, 31.5, 31.8, 31.5, 30.8, 30.9, 28.7, 29.8); double[] Chinahua = (20.0, 20.9, 25.4, 28.9, 28.4, 35.3, 35.5, 35.6, 51.1, 30.4, 30.7, 26.7, 19.5, 19.7, 23.3, 25.7, 29.0, 22.5, 33.1, 31.3, 31.2, 30.6, 29.1, 25.3, 22.9); double[] Chinahua = (20.0, 20.9, 25.4, 28.9, 33.4, 35.3, 35.6, 51.1, 30.4, 30.7, 26.7, 19.5, 19.7, 23.3, 25.7, 29.0, 25.9, 27.9, 28.4, 27.3, 26.5, 26.1, 24.9, 23.5, 24.5, 23.7, 23.2, 25.2, 25.4, 27.9, 28.3, 27.7, 28.4, 27.3, 26.5, 26.1, 24.9, 23.5, 24.5, 23.7, 23.2, 25.4, 27.9, 28.3, 27.7, 28.4, 27.9, 28.3, 27.3, 29.2, 28.3, 28.3, 29.2, 29.2, 29.2, 29.2, 29.2, 20.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29.2, 29
```

Paso 5

Se crea nuestro método para el modelo de Holt-Winters, es esta parte del código se inicializan los valores de nuestras variables de suavizada exponencial, la estimación tendencia, y estimación de estacionalidad.

```
public void modelo(double xt[], double alfa, double delta, double beta) {
    try {
        ArrayList cal = new ArrayList();
        ArrayList<ArrayList> Dcal = new ArrayList();
        ArrayList cal2 = new ArrayList();
        ArrayList cal3 = new ArrayList();
        double[] xd = new double[23];
        double At = xt[0];
        double St = 1.0;
        double Tt = 0.0;
        double x;
        int t;
```

En nuestro primer for se implementan las fórmulas de nuestro método cuando st vale 0, Serie suavizada exponencialmente o nivel estimado, Estimación de Tendencia, Estimación de estacionalidad, y nuestro pronostico, una vez calculados nuestros datos se almacenan en el arreglo de cal3. este for nos permitirá pronosticar las temperaturas.

```
for (int i = 1; i < 12; i++) {
    double at_l = At;
    double t = Tt;
    At = ((alfa * (xt[i]) / l)) + ((l - alfa) * (at_l + Tt));
    Tt = (delta * (At - at_l)) + ((l - delta) * Tt);
    St = ((xt[i] * beta) / At) + ((l - beta) * l);
    x = (at_l + (l * tt)) * l;
    cal3 = new ArrayList();
    cal3.add(xt[i]);
    cal3.add(cal3);
}</pre>
```

Nuestro segundo for es cuando toma valores reales de nuestros datos st, y se utilizan las mismas fórmulas que en el primer for, los datos de nuestra variable st fueron los obtenidos desde los años 2020 al 2021

```
St=1.0;
for (int i = 12; i < 24; i++) {
   double at_1 = At;
   double s = St;
   double tt = Tt;
   At = ((alfa * (xt[i]) / St)) + ((1 - alfa) * (at 1 + Tt));
   Tt = (delta * (At - at 1)) + ((1 - delta) * Tt);
   St = ((xt[i] * beta) / At) + ((1 - beta) * St);
   xd[i - 12] = St;
   x = (at_1 + (1 * tt)) * s;
   System.out.println("Xd");
   System.out.println(xd[i - 12]);
   cal = new ArrayList();
   cal.add(xt[i]);
   cal.add(x);
   Dcal.add(cal);
1
```

El ultimo for nos permite ver los datos pronosticados x del año 2022 en esta parte es donde se rellena nuestra tabla con los datos pronosticados utilizando el método g g = new g(); g.grafica(grafica, Dcal, 0); tabla(Dcal);

```
for (int i = 1; i < 13; i++) {
    x = (At + (i * Tt)) * xd[i - 1];
    //System.out.println(x);
    cal2 = new ArrayList();
    cal2.add(-1.0);
    cal2.add(x);
    Dcal.add(cal2);
}

//Rellena los datos de nuestra tabla en los valores pronosticados
    g g = new g();
    g.grafica(grafica, Dcal, 0);
    tabla(Dcal);
} catch (NumberFormatException e) {</pre>
```

Paso 6

Este método nos permite crear nuestra tabla, asignamos en nuestro modelo.addcolumna, los nombres de nuestras columnas que se van a utilizar en nuestra tabla, en un arreglo de mes, se agregan los meses a pronosticar y agrega los datos en una tabla con el arreglo datos.

```
public void tabla(ArrayList<ArrayList> arr) {
    DefaultTableModel modelo = new DefaultTableModel();
    String datos(] = new String[S];
    modelo.addColumn("Meses");
    modelo.addColumn("Temperatura");
    modelo.addColumn("Temperatura");
    modelo.addColumn("Fronostico");

    // Datos para la columna mes
    String mess[]=("2020-Entero", "2020-Febrero", "2020-Marzo", "2020-Abril", "2020-Mayo", "2020-Junio", "2020-Agosto", "2020-Septiembre", "2020-Octubre", "2020-Noviembre", "2021-Entero", "2021-Febrero", "2021-Harzo", "2021-Abril", "2021-Mayo", "2021-Junio", "2021-Agosto", "2021-Septiembre", "2021-Octubre", "2021-Noviembre", "2021-Geroro", "2022-Aforto", "2022-
```

Paso 7

Se crea el botón graficar

Para el funcionamiento del botón, se realiza la programación para graficar los datos reales y pronosticado de nuestras temperaturas, y nos muestra nuestra tabla. Para los valores de omega, alfa y beta se agregan por defecto para que el usuario no este ingresando datos.

```
private void BgActionPerformed(java.awt.event.ActionEvent evt) {
     if (es.getSelectedItem().toString() == "Aguascaliente") {
        modelo(Aguascaliente, 0.802, 0.011, 0.011);
     }if(es.getSelectedItem().toString()=="Baja California"){
        modelo(BajaCalifornia, 0.802, 0.11, 0.011);
     if (es.getSelectedItem().toString() == "Campeche") {
        modelo(Campeche, 0.999, 0.202, 0.011);
     if (es.getSelectedItem().toString() == "Coahuila") {
        modelo(Coahuila, 0.952, 0.202, 0.011);
     }if(es.getSelectedItem().toString()=="Chiapas"){
        modelo(Chiapas, 0.952, 0.202, 01);
     }if(es.getSelectedItem().toString() == "Chihuahua") {
        modelo(Chihuahua, 0.952, 0.202, 0.011);
     }if (es.getSelectedItem().toString() == "Colima") {
        modelo(Colima, 0.952, 0.202, 0.011);
     }if (es.getSelectedItem().toString() == "Ciudad de Mexico") {
        modelo(CiudadMexico, 0.952, 0.202, 0.011);
     if (es.getSelectedItem().toString() == "Durango") {
         modelo(Durango, 0.952, 0.202, 0.011);
     if (es.getSelectedItem().toString() == "Guanajuato") {
```

Paso 8

Se crean nuestros botones para movernos entre ventanas

```
private void FormulaActionPerformed(java.awt.event.ActionEvent evt) {
     // Nos cambia de ventana
     Formula pd = new Formula(); //Creamos objeto con la otra ventana que nos vamos a mover
     pd.setVisible(true); // Nos muestra la tra ventana
     this.dispose(); // metodo para que no se nos acumule la ventanas
private void infoActionPerformed(java.awt.event.ActionEvent evt) {
     // TODO add your handling code here:
     Datos pd = new Datos(); //Creamos objeto con la otra ventana que nos vamos a mover
     pd.setVisible(true); // Nos muestra la tra ventana
     this.dispose(); // metodo para que no se nos acumule la ventanas
     //Datos datos = new Datos();
```

Datos

Paso 9

Se crea nuestro botón imprimir

Para la realización de este botón se utilizó un método print en donde se hizo uso de la librería graphics este método nos permite imprimir nuestra pantalla en un tamaño de hoja carta

```
@Override
public int print(Graphics graphics, PageFormat pageFormat, int pageIndex) throws PrinterException {
  //Metodo para imprimir
  if (pageIndex==0) {
      Graphics2D graphics2d = (Graphics2D) graphics;
      //Conbierte el grafico normal a pd
      //graphics2d.translate(pageFormat.getImageableX()), pageFormat.getImageableY());
      graphics2d.translate(pageFormat.getImageableX(), pageFormat.getImageableY());
      //graphics2d.scale(0.4, 1.1);
      graphics2d.scale(0.5, 0.5);
      //tabla.printAll(graphics2d);
      //grafica.printAll(graphics2d);
      jPanell.printAll(graphics2d);
      return PAGE EXISTS;
  }else{
      return NO SUCH PAGE;
```

Ya por último en nuestro botón imprimir llamamos a nuestro método print para realizar la impresión de nuestra pantalla

```
private void btnImprimirActionPerformed(java.awt.event.ActionEvent evt) {
    // TODO add your handling code here:
    PrinterJob job = PrinterJob.getPrinterJob();
    job.setPrintable(this);
    if(job.printDialog()) {
        try{
            job.print();
        } catch(PrinterException ex) {
        }
    }else{
        JOptionPane.showMessageDialog(this, "La impresion se canselo");
    }
}
```

Paso 10

Para abrir el pdf del manual, se colocó la ruta de donde se encuentra nuestro pdf con un Runtime para abrir el pdf, este mismo paso se repitió en los botones del articulo manual y datos.

```
private void BTNManualActionPerformed(java.awt.event.ActionEvent evt) {
    // Boton para ver el pdf del manual
    try{
        Runtime.getRuntime().exec("rundl132 url.dll,FileProtocolHandler " +
        } catch (Exception e) {
            JOptionPane.showMessageDialog(null, "Check file details");
        }
   }
}
```

Paso 11

Nuestro botón de dudas nos muestra información importante sobre nuestra tabla

Clase Grafica

Nuestra clase grafica nos permite hacer el diseño de una gráfica en donde contendrá los datos del nuestro pronostico y los valores reales, en este método se agregaron variables para los meses, variables para los datos de los datos reales y del pronóstico, y se les asigno color diferente a cada uno.

```
public void grafica(JPanel p,ArrayList<ArrayList> d,int op){
     XYLineAndShapeRenderer renderer;
     XYPlot plot;
     XYSeries sSeries = new XYSeries("Temperatura");
     XYSeries iSeries = new XYSeries("Predicción");
     String mes[]=("Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre"+

"Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre"+
                "Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio", "Julio", "Agosto", "Septiembre", "Octubre", "Noviembre". "Diciembre"):
          if((double)d.get(x).get(0)!=-1.0){
    sSeries.add(x+1, (double)d.get(x).get(0));
     XYSeriesCollection oDataset = new XYSeriesCollection();
     JFreeChart oChart = ChartFactory.createXYLineChart("Temperatura Holt-Winters", "Mes", "T", oDataset, PlotOrientation.VERTICAL, true, false, false)
     plot = oChart.getXYPlot();
     renderer = new XYLineAndShapeRenderer();
     if(op==1) {
    oDataset.addSeries(sSeries);
           renderer.setSeriesPaint(0, Color.BLUE);
           renderer.setSeriesStroke(0, new BasicStroke(0.5f));
     }else if(op==2){
   oDataset.addSeries(iSeries);
          renderer.setSeriesPaint(0, Color.RED);
renderer.setSeriesStroke(0, new BasicStroke(0.5f));
     }else if(op==3) {
    renderer.setSeriesPaint(0, Color.GREEN);
          renderer.setSeriesStroke(0, new BasicStroke(0.5f));
     oDataset.addSeries(sSeries);
     oDataset.addSeries(iSeries);
     renderer.setSeriesPaint(0, Color.BLUE);
renderer.setSeriesPaint(1, Color.RED);
renderer.setSeriesPaint(2, Color.GREEN);
     renderer.setSeriesStroke(0, new BasicStroke(0.5f));
renderer.setSeriesStroke(1, new BasicStroke(0.5f));
renderer.setSeriesStroke(2, new BasicStroke(0.5f));
```

Ventana Datos

En esta ventana se crearon información para mostrar los datos importantes al usuario sobre el modelo.

Para la creación de los botones y de texto, se crearon variables para aguardar la información para posterior mente convertirlo a HTML.

```
private String que = "El método de Holt Winters permite analizar series de tiempo univariantes que contienen "
         + "factores de tendencia y/o estacionalidad, involucrando un enfoque de suavización exponencial " + "con métodos analíticos y patrones aditivos y multiplicativos. "
         + "El método de suavización exponencial utiliza los promedios históricos de una variable en un"
          + " período para intentar predecir su comportamiento futuro.";
private String vl = "At: Valor de suavización para el nivel de la serie en el periodo t";
private String v2 = "α:Constante de suavización exponencial para nivel";
private String v3 = "Xt: Valor real de la serie de tiempo en el periodo t";
private String v4 = "Tt: Componente de tendencia de la serie para el periodo t";
private String v5 = "γ: Constante de suavización exponencial para la tendencia";
private String v6 = "St: Componente estacional de la serie para el periodo t";
private String v7 = "St-s: componente estacional de la serie para el periodo t-s";
private String v8 = "5: Constante de suavización exponencial para la estacionalidad";
private String v9 = "s: Longitud de tiempo de la estacionalidad (s=6 Semestral)";
private String v10 = "m: Periodos futuros a predecir";
private String vll = "X^ t+m: Predicción de Holt-Winters para el periodo t+m";
private String DATOS = "Los datos recabados de la temperatura fueron tomados de la pagina https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-ll private String DATOS2="Información por entidad federativa de temperaturas (°C) media, máxima y mínima, así como de la lluvia (mm) total acumulada mens
        + "consultar los mapas de distribución de lluvias y temperaturas correspondientes a cada mes dando un doble click en el nombre del mes corresp
         + "tabla que se presenta por año. Se muestra una animación del año y evento que se desee visualizar dándose la posibilidad de obtener el mapa
```

Una vez que tengamos nuestras variables procedemos a cambiar nuestros Sting a HTML

En nuestro botón llamamos a nuestra variable en tipo HTML para mostrarlo en una etiqueta.

```
private void queesActionPerformed(java.awt.event.ActionEvent evt) {
    queque.setText(StrToHtml(que));
private void btnvariableActionPerformed(java.awt.event.ActionEvent evt) {
    variable.setText(htmlVa(v1));
    variable.setText(htmlVa(v2));
    variable.setText(htmlVa(v3));
     variable.setText(htmlVa(v4));
    variable.setText(htmlVa(v5));
     variable.setText(htmlVa(v6));
    variable.setText(htmlVa(v7));
    variable.setText(htmlVa(v8));
     variable.setText(htmlVa(v9));
    variable.setText(htmlVa(v10));
    variable.setText(htmlVa(v11));
private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
     dato.setText(DatosHtml(DATOS));
    dato.setText(DatosHtml(DATOS2));
```

Ventana formulas

La única función que tienen esta ventana es mostrarle al usuario las fórmulas que se ocuparon para la implementación del programa

FÓRMULAS HOLT-WINTERS

Serie suavizada exponencialmente o nivel estimado

$$A_{t} = \alpha \frac{X_{t}}{S_{t-s}} + (1 - \alpha)(A_{t-1} + T_{t-1}) \quad \alpha \in (0,1)$$

Estimación de Tendencia

$$T_t = \gamma (A_t - A_{t-1}) + (1 - \gamma) T_{t-1} \quad \gamma \in (0,1)$$

Estimación de estacionalidad

$$S_t = \delta \frac{X_t}{A_t} + (1 - \delta)S_{t-s} \quad \delta \in (0,1)$$

Predicción de m periodos en el futuro

$$\hat{X}_{t+m} = (A_t + mT_t)S_{t+m-s} \quad \delta \in (0,1)$$

Verificación del método

Para verificar el modelo, el primer paso que se realizo es pasar nuestros datos reales a un Excel en donde se implementaron las fórmulas de nuestro modelo, y se pasó a graficar los datos reales y los datos pronosticados. Se crearon las tablas y las gráficas de los 31 estados de la república mexicana.

Para verificar el metodo, eligimos el estado de coahuila para eso creamos nuestra tabla en el exel y graficamos. Y en el programa graficamos nuestros datos.

Como podemos observar en nuestra tabla los datos son los mismos, el modelo esta bien imprementado.

En la primera tabla se encuentra todos nuestro calculos que que se realizo en esta etapa, la primera columna de color amarillo son los datos reales de las temperaturas, y nuestra segunda columna son los datos de pronostico de la temperatura el desarrollo del calculo de nuestras formulas de este paso, se llevo en la etapa de imprementacion del modelo.

Febrero	2	23.5	23.4088	0.189924	1.0000429	21.6	1.9
Marzo	3	29.2	28.931139	0.7498275	1.0001022	23.598724	5.601276
Abril	4	31.5	31.412686	0.9316582	1.0000306	29.680966	1.8190337
Mayo	5	34.1	34.015729	1.1071535	1.0000273	32.344345	1.7556555
Junio	6	34.8	34.815498	1.0748782	0.9999951	35.122882	0.322882
Julio	7	35.7	35.709138	1.0558482	0.9999972	35.890377	0.1903765
Agosto	8	35.5	35.560719	0.9294001	0.9999812	36.764986	1.2649862
Septiembre	9	30.4	30.692326	0.3206318	0.9998952	36.490119	6.0901195
Octubre	10	31.2	31.191022	0.3393286	1.0000032	31.012958	0.1870425
Noviembre	11	27.2	27.407857	-0.0935333	0.9999166	31.530351	4.3303505
Diciembre	12	22	22.255088	-0.6247531	0.9998739	27.314324	5.3143235
Enero	13	21.6	21.601456	-0.6277853	0.9999993	21.630334	0.0303345
Febrero	14	24.4	24.234541	-0.2853939	1.0001175	20.97457	3.4254304
Marzo	15	28.4	28.183596	0.1592232	1.0001856	23.951595	4.448405
Abril	16	30.9	30.776356	0.4147446	1.0000744	28.343685	2.5563147
Mayo	17	33.5	33.388304	0.6454509	1.0000638	31.19195	2.3080495
Junio	18	35	34.953783	0.7420539	1.0000097	34.033588	0.966412
Julio	19	33.7	33.795891	0.5425595	0.999966	35.695737	1.9957368
Agosto	20	34	34.016854	0.5087919	0.999976	34.337805	0.3378051
Septiembre	21	33.7	33.742993	0.4266133	0.9998824	34.522028	0.8220283
Octubre	22	31	31.152048	0.1097697	0.9999494	34.169714	3.1697141
Noviembre	23	25.8	26.064216	-0.4359784	0.999806	31.259209	5.4592094
Diciembre	24	26.9	26.842185	-0.308514	0.999899	25.625007	1.2749933
Enero	25					26.533651	
Febrero	26					26.228238	
Marzo	27					25.921452	
Abril	28					25.610035	
Mayo	29					25.301228	
Junio	30			24.991343			
Julio	31					24.681748	
Agosto	32					24.373487	
Septiembre	33		24.062728				
Octubre	34					23.755844	
Noviembre	35					23.443981	
Diciembre	36					23.13768	

En la siguiente tabla son los datos que se obtubieron a partir de la creacion y imprementar el modelo en nuestro programa, como podemos observar estos datos son iguales a la informacion que registramos en nuestro exel, para comprobar que efectivabmente nuestra infomracion de nuestro programa funcionara correctamente.

Meses	Temperatura	Pronostico
2020-Abril	31.500	29.681
2020-Mayo	34.100	32.344
2020-Junio	34.800	35.123
2020-Julio	35.700	35.890
2020-Agosto	35.500	36.765
2020-Septiembre	30.400	36.490
2020-Octubre	31.200 27.200	31.013
2020-Noviembre	27.200	31.530
2020-Diciembre	22.000	27.314
2021-Enero	21.600	21.630
2021-Febrero	24.400	20.974
2021-Marzo	28.400	23.952
2021-Abril	30.900	28.348
2021-Mayo	33.500	31.193
2021-Junio	35.000	34.036
2021-Julio	33.700	35.696
2021-Agosto	34.000	34.337 34.524
2021-Septiembre	33.700	34.524
2021-Octubre	31.000	34.165
2021-Noviembre	25.800	31.260
2021-Diciembre	26.900	25.623
2022-Enero	-1.000	26.529
2022-Febrero	-1.000	26.223
2022-Marzo	-1.000	25.916
2022-Abril	-1.000	25.609
2022-Mayo	-1.000	25.301
2022-Junio	-1.000	24.993
2022-Julio	-1.000	24.683
2022-Agosto	-1.000	24.375
2022-Septiembre	-1.000	24.066
2022-Octubre	-1.000	23.756
2022-Noviembre	-1.000	23.445
2022-Diciembre	-1.000	23.137

Se realizan la comparación de nuestra grafica de nuestro Excel y la gráfica de nuestro programa. En nuestra grafica los datos de color azul son los valores de las temperaturas reales y los datos del pronostico son los de color naranja como podemos observar nuestras dos líneas de nuestras graficas se encuentran juntas esto significa que nuestros datos del pronóstico son más reales, entre más alejadas estén significa que el error del pronostico es mas grande.

Temperatura Holt-Winters

Interpretación y resultado

En esta etapa se realizó un análisis de nuestros datos obtuvimos, al comparar nuestras gráficas, se observó que los datos de nuestro pronostico de los primeros meses del año 2022 se acercan mas a la realizada

Meses	Temperatura	Pronostico
2020-Abril	33.500	33.268
2020-Mayo	33.200	33.668
2020-Junio	33.900	33.312
2020-Julio	34.100	34.074
2020-Agosto	33.200	34.306
2020-Septiembre	33.100	33.248
2020-Octubre	34.300	33.073
2020-Noviembre	34.400	34.443
2020-Diciembre	32.300	34.596
2021-Enero	31.900	32.163
2021-Febrero	31.300	31.614
2021-Marzo	32.500	30.956
2021-Abril	32.700	32.365
2021-Mayo	34.100	32.687 34.307
2021-Junio 2021-Julio	33.300	
2021-Julio	33.800 33.100	33.429
2021-Agosto	32.700	33.935 33.131
2021-Septiembre 2021-Octubre	33.700	32.629
2021-Octubre 2021-Noviembre	33.600	33.764
2021-Noviembre	32,600	33.691
2022-Enero	-1.000	32.525
2022-Febrero	-1.000	32.398
2022-Marzo	-1.000	32.272
2022-Abril	-1.000	32.146
2022-Mayo	-1.000	32.020
2022-Junio	-1.000	31.893
2022-Julio	-1.000	31.766
2022-Agosto	-1.000	31.639
2022-Septiembre	-1.000	31.512
2022-Octubre	-1.000	31.386
2022-Noviembre	-1.000	31.259
2022-Diciembre	-1.000	31.132

Se hizo un análisis te la temperatura en los diferentes estados, el primer análisis que se realizo fue del estado de colima, se analizó que los primeros 3 a 4 meses de nuestro pronostico

son datos que se acercan más a la realidad, a partir del mes de mayo nuestros datos se alejan de la realidad. Nuestras temperaturas van a disminuir conforme pase el tiempo en el periodo del 2022.

El segundo estado que se analizó fue el estado de Veracruz, se detectó que el modelo es preciso para pronosticar los meses de enero a abril del año 2022, a partir del mes de mayo a

diciembre los datos del pronóstico se alejan de la realidad. Y nuestra temperatura incrementa su valor, va subiendo.

Conclusión

El Objetivo de nuestra investigación fue el conocimiento sobre el comportamiento de nuestra variable temperatura a lo largo del tiempo, para realizar pronósticos a corto y mediano plazo. Se propuso el modelo de Holt-Winters como estrategia para el análisis y predicción sobre el comportamiento de variables en un periodo de tiempo de un año El modelo de Holt-Winters propuesto puede ser considerado como una herramienta de predicción muy importante para predecir cambios de temperaturas para los siguientes meses. Se determinó que el modelo es preciso para los primeros 3 a 4 meses del año 2022, mientras más lejano sea el tiempo el pronóstico de la temperatura es menos precisó. En conclusión, se llegó que es de suma importancia contar con una herramienta de pronóstico de temperatura, para determinar si en los próximos meses futuros, habrá un cambio brusco de temperatura que pueda perjudicar a nuestro ecosistema ambiental.

Referencias

- Banda Ortiz, H., & Garza Morales, R. (2014). Aplicación teórica del método HoltWinters al problema de credit scoring. 19. Obtenido de https://www.redalyc.org/pdf/5718/571863946001.pdf
- Rivero, O. M. (2016). El Método de Pronóstico Holt-Winters. 12. Obtenido de https://docplayer.es/60591978-El-metodo-de-pronostico-holt-winters.html
- Vesga Ferreira, J. C. (2022). Uso del Modelo de Holt-Winters como estrategia para la predicción de condiciones ambientales durante el proceso de almacenamiento del Cacao. 17. doi:10.24050/reia.v19i38.1593