Metrischer Raum

Definition:

Ein <u>metrischer Raum</u> ist ein geordnetes Paar (X,d) aus einer Menge X und einer Funktion $d: X \times X \to \mathbb{R}$ mit folgenden Eigenschaften:

- (1) $\forall x, y \in X : d(x, y) = 0 \Leftrightarrow x = y$
- (2) $\forall x, y \in X : d(x, y) = d(y, x)$ (Symmetrie)
- (3) $\forall x, y, z \in X : d(x, y) + d(y, z) \ge d(x, z)$ (Dreiecksungleichung)

Topologischer Raum

Definition:

Sei X eine Menge. Dann heißt $P(X) := \{ A \mid A \subseteq X \}$ **Potenzmenge** oder **Potenzklasse** von X.

Definition:

Das geordnete Paar (X,τ) mit $\tau \subseteq P(X)$ heißt <u>topologischer Raum</u> und τ <u>Topologie auf X</u> genau dann, wenn gilt:

- (1) $\emptyset \in \tau, X \in \tau$
- (2) $\forall A_1, A_2 \in \tau : A_1 \cap A_2 \in \tau$
- $(3) \ \forall U \subseteq \tau : (\bigcup_{A \in U} A) \in \tau$

Homöomorphismus

Definition:

Seien (X_1, τ_1) und (X_2, τ_2) zwei topologische Räume. Eine Funktion $f: X_1 \to X_2$ heißt **stetig** genau dann wenn gilt: $\forall O \in \tau_2: f^{-1}(O) \in \tau_1$

Definition:

Seien (X_1,τ_1) und (X_2,τ_2) zwei topologische Räume. Eine Funktion $f:X_1\to X_2$ heißt **Homöomorphismus** zwischen (X_1,τ_1) und (X_2,τ_2) , wenn f bijektiv (eineindeutig) und stetig ist und f^{-1} auch stetig ist.

Diese Räume werden auch **homöomorph** oder **topologisch äquivalent** genannt.

B-Rep - Modell

Wegzusammenhang

Definition:

Es sei I = [0,1] das abgeschlossene Einheitsintervall. Es seien a und b zwei Punkte des des topologischen Raumes (X,τ) . Eine stetige Abbildung $f: I \to X$ mit f(0) = a und f(1) = b heißt <u>Weg von a nach b</u>. Dabei bezeichnet man a als <u>Anfangspunkt</u> und b als <u>Endpunkt</u> des Weges f.

Definition:

Eine Teilmenge A des toplogischen Raumes (X,τ) heißt **wegzusammenhängend**, wenn es zu je zwei Punkten $a,b \in A$ einen Weg $f: I \to X$ von a nach b mit $f(I) \subset A$ gibt.

m-Zellen

Eine m-Zelle ist eine offene wegzusammenhängende Teilmenge des \mathbb{R}^m .

Beispiel für ein ungültiges Flächenmodell

Zellkomplex

<u>Definition</u> – Zellkomplex im \mathbb{R}^n : *)

Es sei K ein Teilraum des \mathbb{R}^n . Die Menge K heißt <u>Zellkomplex</u> des \mathbb{R}^n , wenn K aus m-Zellen $\{e_i\}$ mit $i \in I$ (eine Indexmenge) und $m \le n$ besteht und wenn diese e_i folgende Bedingungen erfüllen:

1. Die Vereinigung aller Zellen bildet den Zellkomplex selbst:

$$K = \bigcup_{i \in I} e_i$$

2. Die Begrenzung jeder m-Zelle besteht aus Zellen von K mit niedrigerer Dimension als m:

$$(\overline{e_i} \setminus e_i) \subset \{e_k \mid \dim(e_k) < \dim(e_i), k \in I\}$$

3. Die Zellen sind paarweise disjunkt:

$$e_i \cap e_j = \emptyset$$
 für alle $i \neq j$

^{*)} H. Masuda, K. Shimada, M. Numao, S. Kawaba: A mathematical theory an applications of non-manifold geometric modeling. 1990

Euler-Operatoren

Euler-Poincaré Gleichung: V - E + F + 2(H - S) - R = 0

	V	(-)E	F	(2)H	(-2)S	(-)R	Beschreibung
mev	1	1					make edge vertex
mef		1	1				make edge face
mvfs	1		1		1		make vertex face shell
kemr		-1				1	kill edge make ring
kfmrh			-1	1		1	kill face make ring hole
kev	-1	-1					kill edge vertex
kef		-1	-1				kill edge face
kvfs	-1		-1		-1		kill vertex face shell
mekr		1				-1	make edge kill ring
mfkrh			1	-1		-1	make face kill ring hole

Mannigfaltigkeit

Definition:

Sei (X,τ) ein topologischer Raum. Eine Teilmenge $B \subseteq \tau$ heißt <u>Basis der</u>

Topologie genau dann, wenn gilt:
$$\forall O \in \tau : \exists U \subseteq B : O = \bigcup_{A \in U} A$$

Definition:

Ein topologischer Raum (X,τ) heißt <u>n-Mannigfaltigkeit</u> wenn

- (1) es zu je zwei verschiedenen $x,y \in X$ zwei disjunkte offene Umgebungen U_x und U_y mit $x \in U_x$ und $y \in U_y$ gibt. (Haussdorfraum)
- (2) es eine abzählbare Basis der Topologie gibt. (zweites Abzählbarkeitsaxiom)
- (3) Es zu jedem $x \in X$ eine offene Umgebung U_x mit $x \in U_x$ gibt, die homöomorph zur offenen n-Einheitskugel ist.

Beispiele für non manifold Körper

Kriterien für manifold Körper:

- 1. An jede Kante stoßen genau zwei Flächen.
- 2. Um jede Ecke existiert ein einziger Ring von Flächen.
- 3. Die Euler-Poincaré Gleichung ist erfüllt.