Probabilistic Analysis of Power and Temperature Under Process Variation

Ivan Ukhov, Petru Eles, and Zebo Peng

Embedded Systems Laboratory Linköping University, Sweden

March 2015

Overview

- * Process variation
- * Uncertainty quantification

Process Variation

$$\overline{\Box}$$

Process Variation

Temperature

Process Variation

Temperature

Time

Goal

* Power-temperature analysis considering process variation

Proposed Framework

Uncertainty Quantification

Uncertainty Quantification

Monte Carlo

Monte Carlo

Monte Carlo

Solution

Polynomial Chaos

Polynomial Chaos

Polynomial Chaos

Power and Temperature

Quantities of Interest

- * f(Power)
- * g(Temperature)
- * h(Power, Temperature)

Reliability

Survival function

Design-Space Exploration

Minimize:

* f(Quantities of interest)

Such that:

* g(Quantities of interest)

Thank you! Questions?

- Ukhov et al., "Probabilistic Analysis of Power and <u>Temperature Under Process Variation for Electronic</u>
 <u>System Design</u>," IEEE TCAD, 2014.
- Ukhov et al., "<u>Temperature-Centric Reliability</u>
 Analysis and Optimization of Electronic Systems
 Under Process Variation," IEEE VLSI, 2015.