Απόδειξη του Euler's Theorem για Ομογενείς Συναρτήσεις

TK

Εισαγωγή

Το Euler's Theorem για ομογενείς συναρτήσεις αποτελεί θεμελιώδη έννοια στην ανάλυση πολλών μεταβλητών και έχει ευρείες εφαρμογές σε τομείς όπως η οικονομία, η φυσική και η μηχανική. Το θεώρημα δηλώνει ότι αν μια συνάρτηση είναι ομογενής βαθμού k, τότε ισχύει η ακόλουθη σχέση:

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = k f(x_1, x_2, \dots, x_n)$$

Απόδειξη

Ορισμοί και Υποθέσεις

Έστω $f:\mathbb{R}^n \to \mathbb{R}$ μια ομογενής συνάρτηση βαθμού k, δηλαδή για κάθε $\lambda>0$:

$$f(\lambda x_1, \lambda x_2, \dots, \lambda x_n) = \lambda^k f(x_1, x_2, \dots, x_n)$$

Βήμα 1: Ορισμός της Συνάρτησης $g(\lambda)$

Ορίζουμε τη συνάρτηση:

$$g(\lambda) = f(\lambda x_1, \lambda x_2, \dots, \lambda x_n)$$

Σύμφωνα με την ομογένεια, έχουμε:

$$g(\lambda) = \lambda^k f(x_1, x_2, \dots, x_n)$$

Βήμα 2: Παράγωγος της Συνάρτησης $g(\lambda)$

Παίρνουμε την παράγωγο της g ως προς λ :

$$\frac{dg}{d\lambda} = \frac{d}{d\lambda} \left(\lambda^k f(x_1, x_2, \dots, x_n) \right) = k\lambda^{k-1} f(x_1, x_2, \dots, x_n)$$

Βήμα 3: Εφαρμογή του Κανόνα της Αλυσίδας

Από την άλλη πλευρά, εφαρμόζουμε τον κανόνα της αλυσίδας για την παράγωγο της $g(\lambda)$:

$$\frac{dg}{d\lambda} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \cdot \frac{d(\lambda x_i)}{d\lambda} = \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}$$

Βήμα 4: Εξίσωση των Παραγώγων

Συνεπώς, συγκρίνοντας τις δύο εκφράσεις για την παράγωγο της $g(\lambda)$, έχουμε:

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = k \lambda^{k-1} f(x_1, x_2, \dots, x_n)$$

Βήμα 5: Επιλογή της Τιμής $\lambda=1$

 Γ ια $\lambda = 1$, η εξίσωση γίνεται:

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = k f(x_1, x_2, \dots, x_n)$$

Αυτό ολοκληρώνει την απόδειξη του Euler's Theorem για ομογενείς συναρτήσεις.

Διάγραμμα Εικονογράφησης του Θεωρήματος

Παρακάτω παρουσιάζεται ένα διάγραμμα που απεικονίζει την σχέση μεταξύ των μεταβλητών και των παραγώγων τους σε μια ομογενή συνάρτηση.

Συμπέρασμα

Το Euler's Theorem παρέχει μια ισχυρή σχέση μεταξύ μιας ομογενούς συνάρτησης και των μερικών παραγώγων της. Αυτή η σχέση είναι ιδιαίτερα χρήσιμη στην ανάλυση συστημάτων όπου η κλίμακα των εισροών επηρεάζει γραμμικά ή πολυωνυμικά την έξοδο. Το διάγραμμα Ι συνοψίζει τα βασικά βήματα της απόδειξης, βοηθώντας στην οπτική κατανόηση της διαδικασίας.

Σχήμα Ι: Διάγραμμα που απεικονίζει τα βήματα της απόδειξης του Euler's Theorem για ομογενείς συναρτήσεις