ADVANCED DATA STRUCTURES AND ALGORITHMS					
(Theory and Practice)					
Course	22MCE12TL	CIE Marks: 100			
Code:					
Hrs/week	L:T:P 3:0:1	SEE Marks: 100			
	42L + 28P				
Credits:	4	SEE: 3 Hrs			

UNIT-1

Algorithmic Complexity Measures Methods for expressing and comparing complexity of algorithms: worst and average cases, lower bounds, and asymptotic analysis. Abstract Data Type (ADT) Specification and Design techniques

Elementary ADTs: Lists, Trees, Stacks, Queues, and Dynamic Sets. Sorting in Linear Time Lower bounds for sorting, Radix sort and Bucket sort

Asymptotic Analysis

Asymptotic analysis is the process of calculating the running time of an algorithm in mathematical units to find the program's limitations, or "run-time performance."

The goal is to determine the best case, worst case and average case time required to execute a given task.

Asymptotic Notations allow us to analyze an algorithm's running time by identifying its behavior as the input size for the algorithm increases

Upper bound & Lower bound

- **Upper bound:** The **maximum time** a program can take to produce outputs, expressed in terms of the size of the inputs (**worst-case** scenario).
- Upper bound the maximum guaranteed time
- Lower bound: The minimum time a program will take to produce outputs, expressed in terms of the size of the inputs (best-case scenario).
- Lower bound the minimum guaranteed time.

Asymptotic notation

Precisely calculating the actual steps is tedious and not generally useful

Different operations take different amounts of time. Even from run to run, things such as caching, etc. cause variations

We want to identify categories of algorithmic runtimes

For example...

```
f_1(n) takes n^2 steps

f_2(n) takes 2n + 100 steps

f_3(n) takes 3n+1 steps
```

Which algorithm is better?

Is the difference between f_2 and f_3 important/significant?

Runtime examples

notation	name
O(1)	constant
$O(\log(n))$	logarithmic
$O((\log(n))^{c})$	polylogarithmic
O(n)	linear
$O(n^2)$	quadratic
$O(n^c)$	polynomial
$O(c^n)$	exponential

complexity class: A category of algorithm efficiency based on the algorithm's relationship to the input size N.

Complexity Class	Big-O	Runtime if you double N	Example Algorithm
constant	0(1)	unchanged	Accessing an index of an array
logarithmic	O(log ₂ N)	increases slightly	Binary search
linear	O(N)	doubles	Looping over an array
log-linear	O(N log ₂ N)	slightly more than doubles	Merge sort algorithm
quadratic	O(N ²)	quadruples	Nested loops!
me.			
exponential	O(2 ^N)	multiplies drastically	Fibonacci with recursion

O(g(n)) is the set of functions:

$$O(g(n)) = \int_{\uparrow}^{\uparrow} f(n)$$
: there exists positive constants c and n_0 such that $\int_{\downarrow}^{\downarrow} \int_{\downarrow}^{\downarrow} f(n) dn$ there exists positive constants c and n_0 such that $\int_{\downarrow}^{\downarrow} \int_{\downarrow}^{\downarrow} f(n) dn$ there exists positive constants c and n_0 such that $\int_{\downarrow}^{\downarrow} \int_{\downarrow}^{\downarrow} f(n) dn$ there exists positive constants c and n_0 such that $\int_{\downarrow}^{\downarrow} \int_{\downarrow}^{\downarrow} f(n) dn$ there exists positive constants c and n_0 such that $\int_{\downarrow}^{\downarrow} \int_{\downarrow}^{\downarrow} f(n) dn$ and $\int_{\downarrow}^{\downarrow} f(n) dn$ and

O(g(n)) is the set of functions:

$$O(g(n)) = \int_{1}^{n} f(n)$$
: there exists positive constants c and n_0 such that $\int_{1}^{n} f(n) dn$ $\int_{1}^{n} f(n) dn$ $\int_{1}^{n} f(n) dn$

We can bound the function f(n) above by some constant factor of g(n)

O(g(n)) is the set of functions:

O(g(n)) is the set of functions:

$$f_1(x) = 3n^2$$

$$O(n^2) = \frac{f_2(x)}{f_3(x)} = \frac{1/2n^2 + 100}{n^2 + 5n + 40}$$

O(g(n)) is the set of functions:

Generally, we're most interested in big O notation since it is an upper bound on the running time

Omega: Lower bound

 $\Omega(g(n))$ is the set of functions:

$$W(g(n)) = \begin{cases} f(n): & \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \end{cases}$$

Omega: Lower bound

 $\Omega(g(n))$ is the set of functions:

$$W(g(n)) = \begin{cases} f(n): & \text{there exists positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \end{cases}$$

We can bound the function f(n) below by some constant factor of g(n)

Omega: Lower bound

 $\Omega(g(n))$ is the set of functions:

$$W(g(n)) = \left\{ f(n): \text{ there exists positive constants } c \text{ and } n_0 \text{ such that } \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \right\}$$

$$f_1(x) = 3n^2$$

$$\Omega(n^2) = \frac{f_2(x)}{f_3(x)} = \frac{1/2n^2 + 100}{n^2 + 5n + 40}$$

 $\Theta(g(n))$ is the set of functions:

$$O(g(n)) = \int_{1}^{n} f(n):$$
 there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and c_1, c_2 and c_2, c_3 and c_3, c_4 and c_4, c_5 and c_5, c_6 and c_6, c_6 and c_6, c_6 and c_6, c_6 are exists positive constants c_1, c_2 and c_6, c_6 and c_6, c_6 are exists positive constants c_1, c_2 and c_6, c_6 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3

$\Theta(g(n))$ is the set of functions:

$$O(g(n)) = \int_{1}^{n} f(n):$$
 there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dn$ there exists positive constants c_1, c_2 and c_2, c_3 and c_3, c_4 and c_4, c_5 and c_5, c_6 and c_6, c_6 and c_6, c_6 and c_6, c_6 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_6, c_6, c_6 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3 and c_1, c_2, c_3 are exists positive constants c_1, c_2, c_3, c_4 and c_1, c_2, c_3, c_4 are exists c_1, c_2, c_3, c_4 and c_1, c_2, c_3, c_4 a

We can bound the function f(n) above **and** below by some constant factor of g(n) (though different constants)

 $\Theta(g(n))$ is the set of functions:

$$Q(g(n)) = \int_{1}^{n} f(n):$$
 there exists positive constants c_1, c_2 and n_0 such that $\int_{1}^{n} f(n) dx = \int_{1}^{n} f(n$

Note: A function is theta bounded **iff** it is big O bounded and Omega bounded

 $\Theta(g(n))$ is the set of functions:

$$Q(g(n)) = \int_{\uparrow}^{\uparrow} f(n): \text{ there exists positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } y \text{ is } 0 \notin c_1 g(n) \notin f(n) \notin c_2 g(n) \text{ for all } n \text{ is } n_0 \text{ is } y \text{ is } 0 \notin c_1 g(n) \notin f(n) \notin c_2 g(n) \text{ for all } n \text{ is } n_0 \text{ is } y \text{ is } y$$

Visually

Visually: upper bound

Visually: lower bound

Relations Between Θ , O, Ω

Worst-case vs. Best-case vs. Average-case

worst-case: what is the worst the running time of the algorithm can be?

best-case: what is the best the running time of the algorithm can be?

average-case: given random data, what is the running time of the algorithm?

Don't confuse this with O, Ω and Θ . The cases above are *situations*, asymptotic notation is about bounding particular situations

Proving bounds: find constants that satisfy inequalities

Show that $5n^2 - 15n + 100$ is $\Theta(n^2)$

Step 1: Prove $O(n^2)$ – Find constants c and n_0 such that $5n^2 - 15n + 100 \le cn^2$ for all $n > n_0$

$$cn^2 \ge 5n^2 - 15n + 100$$

 $c \ge 5 - 15/n + 100/n^2$

Let $n_0 = 1$ and c = 5 + 100 = 105. $100/n^2$ only get smaller as n increases and we ignore -15/n since it only varies between -15 and 0

Proving bounds

Step 2: Prove $\Omega(n^2)$ – Find constants c and n_0 such that $5n^2 - 15n + 100 \ge cn^2$ for all $n > n_0$

$$cn^2 \leq 5n^2 - 15n + 100$$

$$c \leq 5-15/n+100/n^2$$

Let $n_0 = 4$ and c = 5 - 15/4 = 1.25 (or anything less than 1.25). 15/n is always decreasing and we ignore $100/n^2$ since it is always between 0 and 100.

Bounds

Is
$$5n^2 O(n)$$
?

How would we prove it?

$$O(g(n)) = \int_{\uparrow}^{\uparrow} f(n)$$
: there exists positive constants c and n_0 such that $\int_{\uparrow}^{\uparrow} f(n) f(n) dn$ there exists positive constants c and n_0 such that $\int_{\uparrow}^{\uparrow} f(n) f(n) dn$ there exists positive constants c and n_0 such that $\int_{\uparrow}^{\uparrow} f(n) dn$ there exists positive constants c and n_0 such that $\int_{\uparrow}^{\uparrow} f(n) dn$ there exists positive constants c and n_0 such that $\int_{\uparrow}^{\uparrow} f(n) dn$ and $\int_{\downarrow}^{\uparrow} f(n) dn$ there exists positive constants c and c and c and c and c and c and c are c and c and c and c and c are c are c and c are c and c are c are c and c are c and c are c are c are c are c are c and c are c

Disproving bounds

Is
$$5n^2 O(n)$$
?

$$O(g(n)) = \int_{1}^{n} f(n)$$
: there exists positive constants c and n_0 such that $\int_{0}^{n} \int_{0}^{n} f(n) dn$ there exists positive constants c and n_0 such that $\int_{0}^{n} \int_{0}^{n} f(n) dn$

Assume it's true.

That means there exists some c and n₀ such that

$$5n^2$$
 £ cn for $n > n_0$

 $5n \pm c$ contradiction!

Some rules of thumb

Multiplicative constants can be omitted

- $14n^2$ becomes n^2
- $7 \log n$ become $\log n$

Lower order functions can be omitted

- \bullet n + 5 becomes n
- \bullet $n^2 + n$ becomes n^2

n^a dominates n^b if a > b

- n^2 dominates n, so n^2+n becomes n^2
- $n^{1.5}$ dominates $n^{1.4}$

Some rules of thumb

 a^n dominates b^n if a > b

• 3^n dominates 2^n

Any exponential dominates any polynomial

- 3^n dominates n^5
- 2^n dominates n^c

Any polynomial dominates any logarithm

- n dominates $\log n$ or $\log \log n$
- n^2 dominates $n \log n$
- $n^{1/2}$ dominates log n

Do **not** omit lower order terms of different variables $(n^2 + m)$ does not become n^2

Big O

$$n^2 + n \log n + 50$$

$$2^{n} - 15n^{2} + n^{3} \log n$$

$$n^{\log n} + n^2 + 15n^3$$

$$n^5 + n! + n^n$$

Some examples

- O(1) constant. Fixed amount of work, regardless of the input size
 - add two 32 bit numbers
 - determine if a number is even or odd
 - sum the first 20 elements of an array
 - delete an element from a doubly linked list
- $O(\log n)$ logarithmic. At each iteration, discards some portion of the input (i.e. half)
 - binary search

Some examples

- O(n) linear. Do a constant amount of work on each element of the input
 - find an item in a linked list
 - determine the largest element in an array
- O(n log n) log-linear. Divide and conquer algorithms with a linear amount of work to recombine
 - Sort a list of number with MergeSort
 - FFT

Some examples

- $O(n^2)$ quadratic. Double nested loops that iterate over the data
 - Insertion sort
- $O(2^n)$ exponential
 - Enumerate all possible subsets
 - Traveling salesman using dynamic programming
- O(n!)
 - Enumerate all permutations
 - determinant of a matrix with expansion by minors

A Common Misunderstanding

Confusing worst case with upper bound.

Upper bound refers to a growth rate.

Worst case refers to the worst input from among the choices for possible inputs of a given size.

Comparison of Functions

$$f \leftrightarrow g \approx a \leftrightarrow b$$

$$f(n) = O(g(n)) \approx a \leq b$$

 $f(n) = \Omega(g(n)) \approx a \geq b$
 $f(n) = \Theta(g(n)) \approx a = b$
 $f(n) = o(g(n)) \approx a < b$
 $f(n) = \omega(g(n)) \approx a > b$

Summations - Review

• Constant Series: For integers a and b, $a \le b$,

$$\sum_{i=a}^{b} 1 = b - a + 1$$

• Linear Series (Arithmetic Series): For $n \ge 0$,

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• Quadratic Series: For $n \ge 0$,

$$\sum_{i=1}^{n} i^{2} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

• Cubic Series: For $n \ge 0$,

$$\sum_{i=1}^{n} i^{3} = 1^{3} + 2^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

• Geometric Series: For real $x \neq 1$,

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

For
$$|x| < 1$$
, $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$

• Linear-Geometric Series: For $n \ge 0$, real $c \ne 1$,

$$\sum_{i=1}^{n} ic^{i} = c + 2c^{2} + \dots + nc^{n} = \frac{-(n+1)c^{n+1} + nc^{n+2} + c}{(c-1)^{2}}$$

• **Harmonic Series:** nth harmonic number, $n \in I^+$,

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
$$= \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + O(1)$$

Telescoping Series:

$$\sum_{k=1}^{n} a_k - a_{k-1} = a_n - a_0$$

• **Differentiating Series:** For |x| < 1,

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

Summation

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

$$\sum_{i=1}^{n} \frac{1}{2^{i}} = 1 - \frac{1}{2^{n}},$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1.$$

$$\sum_{i=1}^{n} \frac{i}{2^{i}} = 2 - \frac{n+2}{2^{n}}.$$