Sequencing versus genotyping

Genotyping

- Determining the sequence of an individual at a series of specific loci
- Determines a series of SNPs
- Doesn't capture rearrangements, unknown/unprobed changes
- Cheaper to collect and analyze data
- Sufficient for many genomics questions

Sequencing

- Determines identity of each base in the genome/ library (hopefully)
- Captures rearrangements, known and unknown SNPs
- Needs large datasets
 - many fold more for coverage
- Lots more data to analyze
- May provide more data than is needed for a specific question

When is genotyping better?

- Known series of DNA SNPs you care about
 - Cancer panel for determining cancer treatment
 - Ancestry analysis (Ancestry.com/23andMe)
 - Disease diagnosis/treatment
- Known set of RNAs you care about
 - Cancer diagnosis
 - Metabolic analysis
- Narrow scope of search
 - What genes/regions of genome might be correlated to a disease

When is sequencing better?

- Not sure what you're looking for
 - Are there changes in the genome, other than SNPs, that affect a phenotype
 - Metagenomics
 - Looking for new/different splicing, gene expression, or noncoding RNAs
- Genome construction

What are the problems with 2nd generation sequencers?

What are the problems with 2nd generation sequencers?

- Short reads (200-600bp)
- Amplification errors
- Time/expense

GATCTTCGTACTGAGT GATCTTCGTACTGAGT CTG Remember CTG haplotypes?

GATTTTCGTACGGAAT
GATTTTCGTACTGAGT

TGA Often large distances

TTG between loci (1-2kb).

Short reads make it

hard to identify these.

GATCTTCGTACTGAAT
GATTTTCGTACGGAAT

TGA

TTA

CGA

How can we fix?

GATTTTCGTACTGAAT
GATCTTCGTACGGAAT

Solve Haplotype problem

1. Mate Pairs

 If we get lucky see loci of interest in mate pair library

2. Get long reads

Ideally 1-2kb

3rd generation sequencers try to solve this problem

3rd generation sequences

Single Molecules

- Three main platforms
 - Helicos (short reads, died in ~2 years)
 - Pacific Biosciences
 - Oxford Nanopore

Pacific Biosciences!

• Single-molecule, long reads!

Foquet, M., et al.; Journal of Applied Physics 103, 034301 (2008); doi: 10.1063/1.2831366

Foquet, M., et al.; Journal of Applied Physics 103, 034301 (2008); doi: 10.1063/1.2831366

Mardis 2013

Korlach, J., et al.; PNAS, doi: 10.1073/pnas.0710982105

Need to make sure polymerase binds to bottom of ZMW

Need polymerase to bind in an active form: Proprietary technology Likely some adaptation of biotin/streptavidin or another technology of this type

Need to change the speed of polymerase: Faster or slower?

Accuracy

- Single-pass
 - **-~86%**
 - 30x passes ~99.999%
- If nucleotide take an unusually short or long time to incorporate (dwell time), often miscount that base – leading to indel errors

Most reads are >20kb

PacBio Specs

- PacBio RSII
 - Each cell 500Mb to 1Gb
 - Up to 16 cells run automatically
 - 10-60 kb per read
 - 50k reads
 - Up to 4 hours

- PacBio Sequel
 - Each cell 5Gb-10Gb
 - Up to 16 cells run automatically
 - 10-60 kb per read
 - 500k reads
 - Up to 4 hours

Questions?

Oxford Nanopore

Newest sequencer on the market

 $Feng, Y.\ et\ al.; \textit{Genomics, Proteomics \& Bioinformatics 13} (1), February\ 2015; \ http://doi.org/10.1016/j.gpb.2015.01.009.$

 Measure changes in voltage as nucleic acids cross through nanopore

Distinguish between each base

Two main types

- Biological
 - Membrane as barrier
 - Protein provides nanopore
- Solid-state
 - Non biological barrier
 - Silicon and Al₂O₃ common
 - Protein may still be involved in providing motion

Feng, Y. et al.; *Genomics, Proteomics & Bioinformatics* **13**(1), February 2015; http://doi.org/10.1016/j.gpb.2015.01.009.

Grégory F Schneider& Cees Dekker; Nature Biotechnology 30, 326–328 (2012) doi:10.1038/nbt.2181

DNA can be sequenced by threading it through a microscopic pore in a membrane. Bases are identified by the way they affect ions flowing through the pore from one side of the membrane to the other.

MANY lawsuits

- Illumina was suing Oxford over its use of MspA
 - Illumina licensed the technology developed here at UW, though they have not yet commercialized
- In August, they settled the suit as Oxford has moved to using a different molecule CsgC

http://omicsomics.blogspot.com/2016/03/oxfords-no-thanks-ive-already-got-one.html

MANY lawsuits

- Illumina was suing Oxford over its use of MspA
 - Illumina licensed the technology developed here at UW, though they never commercialized it
- In August, they settled the suit as Oxford has moved to using a different molecule CsgC
- In November PacBio filed suit again. Infringing patent of using linked double stranded templates
 - Still ongoing

1D and 2D reads

- Need to fragment DNA, but less
 - Can't sequence whole chromosomes yet
- Need to add adapter to 1 end that will allow it to bind to protein nanopore
- Can either sequence 1 strand only or the forward and reverse strand
 - To sequence both (2D) ligate hairpin to one end, so when you reach the end, the other strand will come through backwards

Oxford Nanopore Stats

MinION

- 5kb-200kb reads
- How much data depends on size of reads
- Nearly immediate access to data
 - can watch as it reads sequences
- \$99 for sequence after purchased device
- Can be used outside of a lab

GridION5X

 5 MinIONs in a box that can run then individually or together

PromethION

- Benchtop sequencer
 - 48 MinION flow cells
 - Computation system included in box
 - Not on market yet, but in beta testing in labs

Accuracy Problems

- Per base accuracy isn't great (like PacBio)
- 24% base call errors
- Unlike PacBio, can't reread enough to average out errors
- Ok for some applications

Greninger, AL, et al.l; Genome Medicine 2015 7:99 DOI: 10.1186/s13073-015-0220-9

Greninger, AL, et al.l; Genome Medicine 2015 7:99 DOI: 10.1186/s13073-015-0220-9

Greninger, AL, et al. I; Genome Medicine 2015 7:99 DOI: 10.1186/s13073-015-0220-9

- Able to identify correct strain in each sample, and the correct genome >90% of the time
- Able to do this in ~6 hours
- Quicker, cheaper, and possibly in the field

Questions?

In small groups

 Come up with a pro/con list for each of the technologies we discussed