1

Chapter 9 Gaussian

Jay Vikrant EE22BTECH11025

Q9.3.6: The probability that a student is not a swimmer is $\frac{1}{5}$. Then the probability that out of five students, four are swimmers

1)
$${}^{5}C_{4}\left(\frac{4}{5}\right)^{4}\frac{1}{5}$$

2)
$$\left(\frac{4}{5}\right)^4 \frac{1}{5}$$

3)
$${}^{5}C_{1}\frac{1}{5}\left(\frac{4}{5}\right)^{4}$$

4) None of these

Solution:

Parameter	Value	Description
n	5	number of students
q	<u>1</u> 5	not a swimmer
p	$\frac{4}{5}$	swimmer
k	4	number of swimmers
X_i	{0, 1, 2, 3, 4, 5}	student who can swim
Y	$\sum_{i=0}^{5} X_i$	five students considered

TABLE 4
GIVEN INFORMATION

Let Y be gaussian variable

$$\mu = np = 4 \tag{1}$$

$$\sigma^2 = npq = \frac{4}{5} \tag{2}$$

by the central limit theorem we can take a random variable Z such that, Now, Z is a random variable with $\mathcal{N}(0,1)$. Hence, the gaussian distribution function changes to:

$$p_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad (x \in Z)$$
 (3)

$$Z \approx \frac{Y - \mu}{\sigma}$$
 (4)

For pdf calculation

$$f_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (5)

$$\implies p_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{6}$$

Using Normal distribution at Y = 4.

$$Z = \frac{Y - \mu}{\sigma} = \frac{4 - 4}{\sqrt{\frac{4}{5}}} = 0 \tag{7}$$

and probability at Y = 4 is,

$$p_Z(0) = \frac{1}{\sqrt{2\pi}}e^{-\frac{0}{2}} = \frac{1}{\sqrt{2\pi}} = 0.44603$$
 (8)

Fig. 4. Binomial pmf vs Gaussian pdf

From the plot also, pmf is close to normal distribution pdf.

$$p_Y(4) = p_Z(0) = 0.44603$$
 (9)

From binomial desired probability is,

$$p_X(4) = {}^5C_4 \left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right)^{5-4} = 0.4096 \approx p_Y(4)$$
 (10)

Hence, option (3) is correct