EPITA / InfoS2#		Novembre 2022
NOM :	PRENOM:	Groupe :

Contrôle Architecture

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1.	Nombres à	virgule flottante	(6 points)
LACICICE I.	NOTHER C3 a	viiguic nottante	(U poilits)

<u>Exercice 1.</u> Nombres a virgule nottante (6 points)		
1. Convertissez, en détaillant chaque étape, les deux nombres ci-dessous dans le format flottant IEEE 754 simple précision. Vous exprimerez le résultat final sous forme <u>hexadécimale</u> .		
a82,3125		
b. 0,46875		

décima	rtissez, en detaillant au maximum, les nombres ci-dessous, dans leur representation ale. $4B50\ 0000_{16}$
b.	C070 0000 0000 0000 ₁₆
c.	$8005\ 0000\ 0000\ 0000_{16}$

3. Donnez, en puissance de 2, le plus grand nombre positif à mantisse dénormalisée qu'il est possible de coder dans le format flottant IEEE 754 simple précision

Exercice 2. Logique Séquentielle (14 points)

1. Compléter le chronogramme des sorties Q_0 , Q_1 et Q_2 du circuit suivant <u>jusqu'à retrouver l'état initial</u>. (On admettra que $Q_0=Q_1=Q_2=0$ à t=0)

EPITA / InfoS2# Novembre 2022

Si on lit les sorties Q_2 , Q_1 et Q_0 comme un nombre avec Q_0 en poids faible et Q_2 en poids fort, quel est le modulo et le type du circuit ainsi réalisé ?

2. Compteur de Johnson.

Compléter le chronogramme des sorties Q_0 , Q_1 , Q_2 et Q_3 du circuit suivant.(On admettra que $Q_i=0$ à t=0, $i\in [\![0,3]\!]$)

3. Compléter le chronogramme des sorties Q_A et Q_B du circuit suivant jusqu'à retrouver l'état initial (On admettra que $Q_A = Q_B = 0$ à t = 0).

Si on lit les sorties Q_2 , Q_1 et Q_0 comme un nombre avec Q_0 en poids faible et Q_2 en poids fort, quel est le modulo et le type du circuit ainsi réalisé ?

4. Compléter le chronogramme des sorties Q_0 , Q_1 , Q_2 et Q_3 du circuit suivant jusqu'à retrouver l'état initial.(On admettra que $Q_i=0$ à t=0, $i\in \llbracket 0,3 \rrbracket$).

Si on lit les sorties Q_3 , Q_2 , Q_1 et Q_0 comme un nombre avec Q_0 en poids faible et Q_3 en poids fort, quel est le modulo et le type du circuit ainsi réalisé ?