Assignment IV

Name: Sourav Bikash

Roll No.:11012338

Submission Date: 01/03/2013 Time:23:59 hrs.

Aim of the Problem:

The problem involves the use of the Box-Muller Method to generate standard normal numbers. The second part involves the use of a modification of the Box-Muller Method done by Marsaglia-Bray.

Mathematical Analysis/Theory:

Firstly we make use of the transformation theorem:

Theorem:

$$f(h^{-1}(y)) = |\partial(x_1, ..., x_n)/\partial(y_1, ..., y_n)|$$
, y? B

where $x = h^{-1}(y)$ and $\partial(x_1, ..., x_n)/\partial(y_1, ..., y_n)$ is the determinant of the Jacobian matrix of all first-order derivatives of $h^{-1}(y)$.

In this assignment we make use of the transformation in \mathbb{R}^2 to generate normal variates.

Method of Box-Muller:

To apply the Theorem we start with the unit square $S := [0, 1]^2$ and the density of the bivariate uniform distribution. The transformation is

$$y_1 = \sqrt{(-2 \log x_1)(\cos 2\pi x_2)} =: h_1(x_1, x_2)$$

 $y_2 = \sqrt{(-2 \log x_1)(\sin 2\pi x_2)} =: h_2(x_1, x_2)$

The function h(x) is defined on $[0, 1]^2$ with values in IR^2 . The inverse function h^{-1} is given by

$$x1 = \exp{-(y^2_1 + y^2_2)/2}$$

$$x2 = (arctan(y_2/y_1))/2\pi$$

Therefore the Algorithm:

- (1) generate $U_1 \sim \mathcal{U}[0,1]$ and $U_2 \sim \mathcal{U}[0,1]$.
- (2) $\theta := 2\pi U_2$, $\rho := \sqrt{-2\log U_1}$
- (3) $Z_1 := \rho \cos \theta$ is a normal variate (as well as $Z_2 := \rho \sin \theta$).

The Variant of Marsaglia:

The variant of Marsaglia prepares the input in the above Algorithm such that trigonometric functions are avoided. For $U \sim U[0,1]$ we have $V := 2U-1 \sim U[-1,1]$. (Temporarily we misuse also the financial variable V for local purposes.) Two values V_1 , V_2 calculated in this way define a point in the (V_1,V_2) -plane. Only points within the unit disk are accepted:

D := {
$$(V_1, V_2) : V_1^2 + V_2^2 < 1$$
}; accept only $(V_1, V_2) \supseteq D$.

In case of rejectance both values V_1 , V_2 must be rejected. As a result, the surviving (V_1, V_2) are uniformly distributed on D with density $f(V_1, V_2) = 1/\pi$ for $(V_1, V_2) \in D$. A transformation from the disk D into the unit square $S := [0, 1]^2$ is defined by

$$x_1 = V_1^2 + V_2^2$$

$$x_2=(1/2\pi)(arg(V_1,V_2))$$

That is the Cartesian Co-ordinates V_1,V_2 on D are mapped to the squared radius and the normalized angle. For illustration, see Figure. These "polar -coordinates" (x_1, x_2) are uniformly distributed on S.

With these variables the relations:

$$\cos 2\pi x_2 = V_1 / \sqrt{(V_1^2 + V_2^2)}$$

$$\sin 2\pi x_2 = V_2 / \sqrt{(V_1^2 + V_2^2)}$$

Hold, which means that it is no longer necessary to evaluate trigonometric relations in the Box-Muller Method.

Figure describing the transformations of Box-Muller and Marsaglia Variant.

The Algorithm:

(1) Repeat: generate
$$U_1, U_2 \sim \mathcal{U}[0, 1]; \ V_1 := 2U_1 - 1,$$
 $V_2 := 2U_2 - 1, \quad until \ W := V_1^2 + V_2^2 < 1.$
(2) $Z_1 := V_1 \sqrt{-2 \log(W)/W}$
 $Z_2 := V_2 \sqrt{-2 \log(W)/W}$
are both standard normal variates.

Part I:

This question wants to use the Box-Muller method and Marsaglia-Bray method to do the following :

- (a) Generate a sample of 100, 500 and 10000 values from N (0, 1). Hence find the sample mean and variance.
- (b) Draw histogram in all cases.

<u>Implementation using R (using the normal Box-Muller Method):</u>

```
boxmuller<-function(n)
{
     RN<-NULL;
     for(i in 1:n)
     {</pre>
```

```
u1<-runif(1,min=0,max=1);
u2<-runif(1,min=0,max=1);
r<--2*log(u1);
v<-2*(3.14)*u2;
z1<-(sqrt(r))*cos(v);
z2<-(sqrt(r))*sin(v);
RN<-c(RN,z1,z2);
}
return(RN);
}</pre>
```

Using the output the following histograms were generated:

a) For N=100

b) For N=500

c) For N=10000

The density plot of the so generated random numbers:

Conclusion:

By looking at the density plot of the numbers and comparing it with the standard normal distribution, we can say that our result is correct.

Implementation using R (using the Marsaglia Variant):-

#this is the r implementation of the box-muller method with marsaglia-bray modifications

```
boxmuller<-function(n)
{
     RN<-NULL;
     for(i in 1:n)</pre>
```

```
{
               u1<-0;
               u2<-0;
               k<-2;
               while(k>1)
                       u1<-runif(1,min=0,max=1);
                       u1<-(2*u1)-1;
                       u2<-runif(1,min=0,max=1);
                       u2<-(2*u2)-1;
                       k < -(u1*u1) + (u2*u2);
               #print(paste(k));
               r<-(-2)*log(k);
               cv<-u1/sqrt(k);</pre>
               sv<-u2/sqrt(k);</pre>
               z1<-sqrt(r)*cv;
               z2 < -sqrt(r)*sv;
               RN < -c(RN,z1,z2);
       return(RN);
s<-boxmuller(10000);</pre>
print(s);
```

<u>Using the output the following histograms were generated:</u> a) For N=100

b)For N=500

c) For N=10000

The density plot of the generated numbers comes out to be like this:

Conclusion:

By looking at the density plot of the numbers and comparing it with the standard normal distribution, we can say that our result is correct.

Results:

The sample mean:

-0.01023877

The Sample Variance:

1.013356

Part II:

This question asks us to use the above generated values to generated samples from $N(\mu = 0, 6 = 5)$ and $N(\mu = 5, 6 = 5)$.

For $N(\mu = 5, 6 = 5)$:

Implementation using R(using Box-Muller Method):

Using the output the following histogram was generated:

The density plot of the numbers was like this:

density.default(x = s1)

Implementation using R(using marsaglia variant):

```
#this is the r implementation of the box-muller method with marsaglia-bray modifications boxmuller<-function(n)  \{ \\ RN<-NULL; \\ for(i \ in \ 1:n) \\ \{ \\ u1<-0; \\ u2<-0; \\ k<-2; \\ while(k>1) \\ \}
```

u1<-runif(1,min=0,max=1);

u2<-runif(1,min=0,max=1);

u1 < -(2*u1)-1;

The histogram generated by using the output:

The density plot of the numbers generated:

density.default(x = s1)

Comparing with the standard normal curve generated theoretically:

For $N(\mu = 0, 6 = 5)$:

Implementation using R(using Box-Muller method):

```
boxmuller<-function(n)
{
     RN<-NULL;
     for(i in 1:n)
     {
          u1<-runif(1,min=0,max=1);
}</pre>
```

Assignment IV

```
u2<-runif(1,min=0,max=1);
r<--2*log(u1);
v<-2*(3.14)*u2;
z1<-(sqrt(r))*cos(v);
z2<-(sqrt(r))*sin(v);
RN<-c(RN,z1,z2);
}
return(RN);
}
s<-boxmuller(500);
s1<-0+s*sqrt(5);
print(s1);
hist(s1, freq=TRUE);</pre>
```

Using the output the following histogram was generated:

The Density plot the obtained numbers was like this:

density.default(x = s1)

Implementation using R(using the marsaglia variant):

```
#this is the r implementation of the box-muller method with marsaglia-bray modifications boxmuller<-function(n)  \{ \\ RN<-NULL; \\ for(i \ in \ 1:n) \\ \{ \\ u1<-0; \\ u2<-0; \\ k<-2; \\ while(k>1) \\ \}
```

u1<-runif(1,min=0,max=1);

Using the output the following histogram was generated:

The density plot of the numbers was like this:

density.default(x = s1)

Comparing with the standard normal curve generated theoretically:

Histogram of s1

Conclusion:

The density plot on comparison with the standard normal distribution shows that the numbers generated follow normal distribution.

Part III:

Time taken by Marsaglia-Bray method is in this case: **0.83s** (for 500 numbers)

Time taken by Box-Muller method is in this case: **0.97s** (for 500 numbers)

Therefore the Marsaglia-Bray Method is more economic and faster. (The time includes printing time for the values)

Tablulating some values:

Sample size	Box-Muller	Marsaglia Variant
1000	1.64s	1.63s
10000	19.83s	17.68s
20000	45.06s	39.24s
50000	137.86s	135.4s
100000	197.98s	183.7s
200000	501.92s	445.8s
500000		System failure!

Part IV:

This part calculates for the Marsaglia-Bray method the proportion of values rejected and accepted.

The R code given below calculate the acceptance ratio for us:

```
#this calculates the accepatance-rejection ratio
boxmuller<-function(n)
{
       RN<-NULL;
       val<-0;
       acc<-0;
       for(i in 1:n)
       {
               u1<-0;
               u2<-0;
               k<-2;
               while(k>1)
                      u1<-runif(1,min=0,max=1);
                      u1<-(2*u1)-1;
                      u2<-runif(1,min=0,max=1);
                      u2<-(2*u2)-1;
                      k<-(u1*u1)+(u2*u2);
                      val<-val+1;
               }
               acc=acc+1;
               #print(paste(k));
               r<-(-2)*log(k);
               cv<-u1/sqrt(k);
               sv<-u2/sqrt(k);</pre>
               z1<-sqrt(r)*cv;
               z2<-sqrt(r)*sv;
```

Assignment IV

```
RN<-c(RN,z1,z2);
}

print(paste(acc));
print(paste(val));
print(paste(acc/val));
return(RN);
}
s<-boxmuller(500);
#s1<-5+s*sqrt(5);
#print(s1);
```

Result:

Accepatance-Ratio: 0.7861635 Rejection ratio: 0.2138365

Thus, the rejection ratio is close to $(1-\pi/4)=0.2146018$.

Thus tablulating the results:-

Number of samples	Rejection ratio
100	0.2307692
500	0.2138365
10000	0.2142298