

معسكر علم البيانات و تعلم الآلة

20 -11 - 2022

نبذة عن المدرب

محتوى المعسكر

الأسبوع السادس Final Project	الأسبوع الخامس Modeling Interpretation in Action	الأسبوع الرابع EDA & FE in Action	الأسبوع الثالث Machine Learning	الأسبوع الثاني Data Analysis and Visualization	الأسبوع الأول Getting Started	اليوم
Final Project	Models Families: Distance & Time Series	DS Knowledge Catalog	Intro to ML	NumPy	Intro to DS	الأدد
Final Project	Models Evaluation: Regression & Classification	EDA1: Univariate & Multivariate Analysis	Supervised ML	Pandas	Git & Github	الإثنين
Final Project	Optimization Techniques	EDA2: Association Analysis & Hypothesis Construction	Supervised ML	Matplotlib	Python Review	الثلاثاء
Final Project	NLP and Text Mining Basics	Features Engineering: Scaling, Merging & Discretization	Unsupervised ML	Seaborn	Python Review	الأربعاء
Presentation	Neural Networks Basics	Models Families: Continuous & Categorical	Unsupervised ML	Plotly	Python Review	الخميس

**ملاحظة: قد تتغير المواضيع أو أوقات طرحها بناء على تقدم الطلاب.

عاللات النماذج

عوائل النماذج

الانحدار Continuous

تعتبر أنه توجد أنماط بين الخواص

- * Logistic Regression
- * Linear Regression
- * Neural Networks

المسافة Distance

تعتبر وجود مسافة بين الخواص

- * K-Means Clustering
- * SVM
- * DBScan

مصنِّفة Categorical

خواص تحتوي تصنيفات غير قابلة للترتيب (if statements)

- * Naïve Bayes
- * Decision Trees
- * Random Forest

المتسلسلات الزمنية Time Series

تعتمد البيانات اللاحقة على البيانات السابقة

- * ARIMA
- * Prophet
- * Markov

المسافات عنافات عنافات المسافات عنافات عناف

K-Means

المعادلة:

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n} \left\| x_i^{(j)} - c_j \right\|^2$$

- الجزء الأول يمثل عدد الكتل clusters
 - الجزء الثانى يمثل عدد الحالات
- الجز الأخير يمثل معادلة حساب المتغيرات والتي قدد تتغير باختلاف الخوارزمية Squared Euclidean Distance المتبعة، هنا نرى خوارزمية المسافة الإقليدية

أمثلة أخرى لحساب المسافات؟

K-Means

سلبياتها:

- غير قابلة للتفسير
- حساسة للتغيرات التي تطرأ على الـ Scales
 - حساسة للحالات الشاذة
 - حساسة لكثرة الأبعاد

مميزاتها:

- سهلة الفهم والتطبيق
- تعمل بشكل جيد مع البيانات
 - الضخمة
 - Unsupervised -

مثال دارج لتطبيقاتها: تقسيم العملاء / تصنيف المستندات

K-Means

طرق أخرى لحساب المسافات:

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

$$\sum_{i=1}^{k} |x_i - y_i|$$

$$\left(\sum_{i=1}^k \left(\left|x_i-y_i\right|\right)^q\right)^{1/q}$$

Minkowski Distance -

خوارزمیات أخری تتضمن حساب المسافات

- KNN -
- Learning Vector Quantization (LVQ) -
 - Self-Organizing Map (SOM) -

فكرتها:

نقطة من البيانات تنتمي إلى الكتلة فقط إذا كانت قريبة من عدد كبير من النقاط المتواجدة في تلك الكتلة.

المتغيرات فيها:

- Eps: وهو المسافة اللي تحدد النقاط المجاورة
- minPts: أقل عدد من النقاط ليتم اعتبار مجموعة من هذه النقاط تعتبر كتلة

فكرتها:

بالنظر للمتغيرات السابقة التي تعتمد عليها DBSCAN فإننا نستنتج أنها تعتمد على أنواع مختلفة من نقاط البيانات

أنواع النقاط:

- 1. نقطة أساسية Core Point
- 2. نقطة الحد Boarder Point
 - 3.نقاط شاذة Outliers

النقطة الأساسية Core Point

هي النقطة التي:

1. لها عدد minPts من النقاط المجاورة لها مع النقطة ذاتها

2. نصف القطر منها يساوي eps

نقطة الحد Boarder Point

هي النقطة التي:

1. لها عدد أقل من minPts من النقاط المجاورة

2. قابلة للوصول من النقطة الأساسية

نقاط شاذة Outliers

هي النقطة التي:

1. لل تُعد نقطة أساسية

2. غير قابلة للوصول من أي من النقاط الأساسية

سلبياتها:

- في معظم الأحيان، تحديد متغير المسافة eps
 لا يُعد عملية سهلة ويحتاج معرفة بالأعمال التى يُبنى من أجلها
- إذا كانت الكتل أو التجمعات التي نهدف للوصول إليها لا تعتمد بشكل أساسي على الكثافة والتكدس، فهي ليست بالاختيار الأمثل

مميزاتها:

- لا تحتاج لتحديد عدد الكتل مسبقًا
 - خات أداء ممتاز مع التجمعات
 عشوائية التمثيل
 - متكيفة مع النقاط العشوائية
 وتتعامل منعها على حدة

مثال دارج لتطبيقاتها: التسويق وتطبيقات نماذج التوصية

Support Vector Machine - SVM

المعادلة:

$$C = \alpha Kx + \beta > \epsilon$$

- α, β : المعاملات –
- kernel function K : معاملات الخوارزمية
- تقسم أبعاد البيانات المدخلة إلى تصنيفين
- تفترض وجود ترابط كبير بين المدخلات Binary Classes

ما هي الخوارزمية (من اليوم السابق) التي تفترض وجود تصنيفين فقط لتعمل بشكل صحيح؟

Support Vector Machine - SVM

سلبياتها:

- بطيئة في التحسن والدقتراب من النتائج
 - الفعلية
 - عرضة للـOverfitting

مميزاتها:

- لا تتأثر بشكل توزيع البيانات
- قليلة التأثر بالحالات الشاذة
- تعمل بشكل جيد مع البيانات
 - الضخمة
- تتواءم مع الأنماط المعقدة

مثال دارج لتطبيقاتها: تصنيف النصوص

äniojll "Illulusoll Time Series

ARIMA & SARIMA

المعادلة:

$$y_n = a_1 y_{n-1} + a_2 y_{n-2} + \dots$$

$$b_1 y_{n-s} + b_2 y_{n-2s} + \dots$$

$$\mu_1 w_1 + \mu_2 w_2 + \dots$$

- Model parameters: αi, bi, ci

ARIMA can be summarized in three hyperparameters (p,q,r): p for number of previous terms, q for number of moving average terms, and r for differencing order

ARIMA & SARIMA

المعادلة:

$$y_n = a_1 y_{n-1} + a_2 y_{n-2} + \dots$$

$$b_1 y_{n-s} + b_2 y_{n-2s} + \dots$$

$$\mu_1 w_1 + \mu_2 w_2 + \dots$$

- wi is independent normally distributed parameters Differencing may be applied to ensure stationarity
- $zi \rightarrow (yi-yi-1)$ then applying ARIMA on $\{zn\}$
- Seasonal ARIMA adds seasonality terms with hyper parameter (s).
 SARIMA is summarized by (p,q,r) + s(p,q,r)

ARIMA & SARIMA

سلبياتها:

مميزاتها:

تتأثر بالحالات الشاذة

- قابلة للتعميم
- سرعة في التقارب من النتائج الفعلية
 تضمن جميع البيانات في نمط واحد
 - تتأثر بالتذبذبات العالية

- سهلة التفسير

مثال دارج لتطبيقاتها: توقع حجم الطلبات وتوقعات الأسهم

Markov Chains

المعادلة:

$$P(y_n | y_{n-1}, y_{n-1}, \dots) = P(y_n | y_{n-1}) = D$$

- احتمالية الانتقال بين حالتين تقاس بالتوزيع D
 - تتوقع الحالة الحالية باعتماد على آخر حالة

الافتراضات:

- تغير التوزيع بطيء (لا يحدث بكثرة تغير في النمط)
- الحالة المتوقعة تتأثر فقط بالحالة التي تسبقها مباشرة

Markov Chains

سلبياتها:

- بطيئة في استيعاب التغيرات
- تتضمن نمط واحد للحالة السابقة
 - _

مميزاتها:

- قابلة للتعميم
- تستخدم في الكثير من الإجراءات
 - المتسلسلة كالألعاب، الأنشطة
 - الاقتصادية ... الخ

مثال دارج لتطبيقاتها: تحديد حالة الأسواق المالية، التحكم بحركة المرور

Markov Chains

المصدر: https://www.linkedin.com/pulse/weather-forecast-markov-chain-carlos-serra-traynor

للتسليم

مثال لاستخدام Markov Chains مع شرح مبسط للانتقال بين الحالات

Spadily Lucius