Clairant's Equation , It is a differential equation of the form y= px+f(p). Solution of differential equation is obtained by replacing [b=G] where is an arbitrary constant Sd. is yz Cx+fc) koof: " differential eq. is of form. y = px + f(p) = f(f,x) diff wit x. $b = \frac{dy}{dx} = b(0) + x \frac{dp}{dx} + f(p) \cdot \frac{dp}{dx}$ p- p+ dp (x+f'(P)) 2) dp (x+f(p))=0 discarding he factor (x+f(p)) y db, v os p=c. (Constant.) Sol u (y= Cx+f(c))

Or Solve he differential of кр2-ур+ a 2 0.

кр2-ур+ a 2 0. yp = xp+a. Sol 1 $y = \frac{xp^2 + a}{b} = px + \frac{a}{p}$ Which's of the form y = px + f(p) 1.e. it is Clauaul's Equation. Hence he solution is obtained by replacing pro i.e sol. is $y = Cx + \frac{a}{C}$ Oh Solve he diff. eq. $y+2\left(\frac{dy}{dn}\right)^2=\left(n+1\right)\frac{dy}{dx}$. Sol - Here put dy 2 p (1) or y+2p2= (x+1)p 2) 2p2- (x+1) p+ y2 0 or (2p2-px-p)+y=0 $y_2 p_x + (p_2 p^2)$ which is of form y = px + f(p) [Clairant's eq.]

solution is obtained by replacing pz (. Hence sol. is / y = Cx + C-2c2

Hence sol. is
$$\left(y = Cx + C - 2c^2\right)$$

$$5d_{-}$$
. $8y^{2}-4nyb=-b^{3}$

$$39\left(y-\frac{px}{2}\right)=-p^3$$

$$y - bx = -\frac{13}{80}$$

$$y^{2} = px - p^{3} - 0$$

$$Put \quad y^{1/2} = y \quad y^{2} y^{2}$$

$$y = \frac{2}{2} \frac{1}{2} \frac{1}{2} \left(\frac{2}{2} \frac{1}{2} \frac{1}{$$

$$9 \quad y = \frac{1}{2} \left(\frac{dy}{dn} - \left(\frac{dy}{dn} \right)^{3} \right)$$

dr dr $\frac{\partial}{\partial x} = \frac{\partial y}{\partial x} \cdot x - \left(\frac{\partial y}{\partial x} \right)^3 - \frac{\partial}{\partial x}$ It is of the form [J 2 pn + f(P)] (Cloudity) Solin grenty. Yz Cx- c3 2) \[\sqrt{y} = Cx - c^3 \] Or Solve he diff. eq. $n(\frac{dy}{dn}) + 2x(\frac{dy}{dn}) - y = 0$. $\int \int \frac{dy}{dx} dx = \frac{1}{y} + 2x - y = 0.$ $y = 2px + x^2 - y = 0.$ (a) x1/2 (b) (c) y1/2 (d) y2 (e) none of ner. Put $(x^{1/2} = X)$ = $x \times x^{2}$. dx = 2X dX $y = 2 \frac{dy}{dx} n + n^{2} \frac{dy}{dn}$ $y = 2 \frac{dy}{2xdx} \times x^{2} + (x^{2})^{2} \left(\frac{dy}{2xdx}\right)^{7}$ 3 y = · dy x + 1 (dy) 5 - 0

It is of he fam $g = p \times + f(p)$ Solution of eq D in given by 00 X2 X у 2 СX+ 1 Сч. (y 2 C/X+ 16 c) Or Solve he differential eq. (px-y)(x+py)=.2p. (a) x (b) y (c) x by. f(y-px) = - 2p x+pj X+dy J 25 y 2 px - 2p 2+py. Xdnry dy put (x2 X, y22 X) 2 X2 JX, J2JY dx 2 dx , dy 2 dx. p = dy = RIX dy = X dy dx 1 (X)