# PCT

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification 6:                                                                                                                     |        | (11) International Publication Number: WO 99/63760              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------|
| H04N 7/50                                                                                                                                                       | A1     | (43) International Publication Date: 9 December 1999 (09.12.99) |
| (21) International Application Number: PCT/SG<br>(22) International Filing Date: 30 May 1998 (                                                                  |        | CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,             |
| (71) Applicant (for all designated States exce.<br>SGS-THOMSON MICROELECTRONICS AS<br>CIFIC (PTE) LTD. [SG/SG]; 28 Ang Mo Kio<br>Park 2, Singapore 569508 (SG). | SIA P. | A- With international search report.                            |
| (72) Inventor; and<br>(75) Inventor/Applicant (for US only): HUI, Yau, W.<br>[SG/SG]; 10H Braddell Hill #24–31, Singapon<br>(SG).                               |        |                                                                 |
| (74) Agent: DONALDSON & BURKINSHAW; P.O. E<br>Singapore 905667 (SG).                                                                                            | юх 360 | 57,                                                             |
|                                                                                                                                                                 |        |                                                                 |
|                                                                                                                                                                 |        |                                                                 |
|                                                                                                                                                                 |        |                                                                 |
| (54) Title: SEQUENCE ADAPTIVE BIT ALLOCATION                                                                                                                    | 1 FOR  | PICTURES ENCODING                                               |

### (57) Abstract

A method and apparatus for encoding pictures of a moving pictures sequence according to an overall target bit—rate, such as a signed picture coding type for which can assigned picture losding type for which can assigned picture coding type for which coding to past bit usages, so that bits can be adaptively allocated amongst picture types for optimizing visual quality of the encoded pictures.



### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain               | LS | Lesotho               | SI | Slovenia                 |
|----|--------------------------|----|---------------------|----|-----------------------|----|--------------------------|
| AM | Armenia                  | FI | Finland             | LT | Lithuania             | SK | Slovakia                 |
| AT | Austria                  | FR | France              | LU | Luxembourg            | SN | Senegal                  |
| AU | Australia                | GA | Gabon               | LV | Latvia                | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom      | MC | Monaco                | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova   | TG | Togo                     |
| BB | Barbados                 | GH | Ghana               | MG | Madagascar            | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav   | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ircland             | MN | Mongolia              | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel              | MR | Mauritania            | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                | US | United States of America |
| CA | Canada                   | IT | Italy               | MX | Mexico                | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan               | NE | Niger                 | VN | Vict Nam                 |
|    | Congo                    | KE | Kenya               | NL | Netherlands           | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand           |    |                          |
|    | Cameroon                 |    | Republic of Korea   | PL | Poland                |    |                          |
| CN | China                    | KR | Republic of Korea   | PT | Portugal              |    |                          |
| CU | Cuba                     | KZ | Kazakstan           | RO | Romania               |    |                          |
| CZ | Czech Republic           | LC | Saint Lucia         | RU | Russian Federation    |    |                          |
| DE | Germany                  | LI | Liechtenstein       | SD | Sudan                 |    |                          |
| DK | Denmark                  | LK | Sri Lanka           | SE | Sweden                |    |                          |
| EE | Estonia                  | LR | Liberia             | SG | Singapore             |    |                          |
|    |                          |    |                     |    |                       |    |                          |

-1-

### SEQUENCE ADAPTIVE BIT ALLOCATION FOR PICTURES ENCODING

#### Technical Field

5 The present invention relates to a method and apparatus for encoding moving pictures sequences. In particular, the present invention relates to a method and apparatus for bit allocation in a video signal compression system.

#### Background Art

10

Methods for encoding moving pictures or video had been developed for efficient transmission and storage. A current art of such encoding methods is found in MPEG2 Test Model 5, ISO/IEC JTC1/SC29/WG11/NO400, April 1993, and the disclosure of that document is hereby expressly incorporated herein by reference. In this method, an input video sequence is organized into sequence layer, group-of-pictures, pictures, slices, macroblocks, and finally block layer. Each picture in a group-of-pictures will be coded according to its determined picture coding type.

The picture coding types used in the MPEG2 Test Model 5 include intra-coded picture (I20 picture), predictive-coded picture (P-picture), and bi-directionally predictive-coded picture
(B-picture). The I-pictures are used mainly for random access or scene update. The Ppictures use forward motion predictive coding with reference to previously coded I- or Ppictures (anchor pictures), and the B-pictures use both forward and backward motion
predictive/interpolative coding with reference to previously coded I- or P-pictures. A group
25 of pictures (GOP) is formed in encoded order starting with an I-picture and ending with the
picture before the next I-picture in the sequence.

A picture is partitioned into smaller and non-overlapping blocks of pixel data called macroblocks (MB) before encoding. Each MB from a P- or B-picture is subjected to a motion estimation process in which forward motion vectors, and backward motion vectors for the case of a B-picture MB, are determined using reference pictures from a frame

WO 99/63760

buffer. With the determined motion vectors, motion compensation is performed where the intra- or inter-picture prediction mode of the MB is first determined according to the accuracy of the motion vectors found, followed by generating the necessary predicted MB containing the prediction error.

5

The predicted MB is then subjected to discrete cosine transform (DCT) and quantization of the DCT coefficients based on quantization matrices and quantization step-size. The quantized DCT coefficients of the MB is then run-length encoded with variable length codes (VLC) and multiplexed with additional information such as selected motion vectors, MB coding modes, quantization step-size, and/or picture and sequence information, to form the output bitstream.

Local decoding is performed by inverse quantizing the quantized DCT coefficients, followed by inverse DCT, and motion compensation. Local decoding is performed such that the 15 reference pictures used in the motion compensation are identical to those used by any external decoder.

The quantization step-size (QS) used for quantizing the DCT coefficients of each MB has a direct impact on the number of bits produced at the output of the run-length VLC encoding process, and therefore the average output bit rate. It has also a direct impact on the encoding quality, which represents the output picture quality at the corresponding decoder. In general, larger QS generates lower output bit rate and lower encoding quality. In order to control output bit rate and picture quality so that the resulting bitstream can satisfy channel bandwidth or storage limitation as well as quality requirements, rate control and quantization 25 control algorithms are used.

Some methods for rate control and quantization control can be found in the above mentioned MPEG-2 Test Model 5. These methods comprise generally a bit allocation process, a rate control process, and an adaptive quantization process. In the bit allocation process, a target number of bits is assigned for a new picture to be coded according to a number of previously determined and pre-set parameters. The rate control step then calculates a reference

- 3 -

quantization step-size for each MB based on the target bits for the picture and the number of bits already used from the target bits in encoding MBs from that picture. In the adaptive quantization process, the calculated reference quantization step-size is scaled according to local activities of the MB, and an average MB activity determined from the current or a 5 previously coded picture. This scaling is done according to a level of masking effects of coding noise by human perception for MB with high or low activities within a picture. A video buffer verifier (VBV) may also be employed in such a way that underflow and overflow of the decoder input buffer are prevented as required by the MPEG standard to ensure a target bit rate is maintained.

10

It is assumed in the bit allocation process that the visual quality of a coded picture can be qualified with a single number  $V_0$ , expressed by the formula:

$$V_Q = \frac{K}{Q} \tag{1}$$

where Q is the average quantization step-size of the coded picture and K is a constant quality factor which depends only on the picture coding type. It is also assumed that the 15 visual qualities of all encoded pictures should be maintained at a similar level within a GOP. Therefore, for all pictures within a GOP, the bit allocation process maintains the following equality:

$$\frac{K_I}{Q_I} \approx \frac{K_P}{Q_P} \approx \frac{K_B}{Q_B} \tag{2}$$

where  $Q_P$ ,  $Q_P$ ,  $Q_B$  are the respective average quantization step-sizes of coded I-, P- and B-picture, and similarly  $K_P$ ,  $K_P$ ,  $K_B$  are respective pre-determined quality factors for I-, P
20 and B-pictures. Although this equality does not apply to an entire pictures sequence, it should be considered valid within a GOP as well as across consecutive GOP boundaries. For simplicity,  $K_P$ , of equation (2) is normalized to the value of 1.

From the above assumptions, an equation for determining target bit allocation for a picture 25 to be coded can be derived for each of the picture coding types. The equations are given

-4-

as follows for each of the I-, P- and B-picture coding type:

$$T_{I} = \frac{R}{1 + N_{F} \left(\frac{x_{p}K_{F}}{x_{p}K_{F}}\right) + N_{B} \left(\frac{x_{p}K_{F}}{x_{p}K_{B}}\right)}$$
(3)

$$T_{P} = \frac{R}{N_{P} + N_{B} \left(\frac{X_{B}K_{P}}{X_{P}K_{B}}\right)}$$
(4)

$$T_B = \frac{R}{N_B + N_p \left( \frac{X_p K_B}{X_p K_p} \right)}$$
 (5)

5 where

$$X_I = S_I Q_I,$$
  $X_P = S_P Q_P,$   $X_B = S_B Q_B,$ 

and

10

 $S_P$   $S_P$   $S_P$  are number of bits used by previously encoded I-, P-, B-picture respectively.

 $Q_p$ ,  $Q_p$ ,  $Q_g$  are the average quantization step-size used by previously encoded I-, P-, B-picture respectively,

 $N_F$  and  $N_B$  are the number of P- and B-pictures remaining in the current GOP with respect to the current picture to be coded,

15 R is the remaining number of bits assigned to the GOP according to a target bitrate, and

 $T_p$   $T_p$ ,  $T_B$  are the calculated target bit allocation for a new I-, P-, B-picture to be coded respectively.

- 5 -

An optional lower limit may be applied to the determined target bit allocation as given in the MPEG2 Test Model 5, hence:

$$(T_I \text{ or } T_P \text{ or } T_B) \ge \frac{Bit\_Rate}{K_1 \times Picture\_Rate}$$
 (6)

where Bit Rate is the target bitrate,

Picture\_Rate is number of pictures coded per second, and

5  $K_1$  is a constrant (eg. 8).

A typical video encoder system is designed to code picture sequences with various characteristics and complexities. In particular, sequences with little motion updates or complex motion scenes creates different requirements for coding pictures of difference picture coding types.

For example, a sequence with little motion updates may be best coded with higher ratio of bits allocated to the anchor pictures (I-pictures and P-pictures) for visual quality improvements. On the other hand, a sequence with complex motion scenes may be best coded with relatively even distribution of bits to pictures of all picture coding types for motion detail improvements, and hence higher ratio of bit allocation to the B-pictures. Present systems based on fixed visual quality ratios, for example according to equation (2), do not adequately address these changes in sequence characteristics.

20 In other words, the pre-determined and fixed quality factors K<sub>p</sub>, K<sub>p</sub> and K<sub>B</sub> have more or less determined the ratios of the average quantization step-sizes (ie. Q<sub>p</sub>, Q<sub>p</sub>, and Q<sub>g</sub> ratios) to be used for coding pictures of different picture coding types. This relationship limits the adaptivity of bit allocation to different picture coding types of different motion characteristics.

25

Furthermore, the adaptivity of bit allocation should depend on the visual quality itself.

When higher visual quality is achieved for the anchor pictures, a feature which re-

-6-

distributes the bits to B-pictures is desired such that both visual quality and motion details can be balanced.

### Summary of the Invention

4

It is an object of the present invention to provide a method or apparatus for picture sequence compression which better caters for changes in sequence and coding characteristics. In particular, an object of the present invention is to provide a method or apparatus for improving bit allocation.

10

While sophisticated methods of determining motion characteristics by frame difference detection or motion vector analysis may be employed, such methods may have significant impact on implementation cost. Implementation cost may be an important consideration for systems to be broadly used. A further object of the present invention is therefore to provide a method or apparatus for bit allocation with low implementation complexity.

One way of solving the above mentioned problems is to adaptively determine new quality factors  $K_P$ ,  $K_P$ , and  $K_B$  of equations (2), (3), (4), and (5) according to characteristics or parameters obtained from past coded pictures from a sequence. This is in effect changing the target ratios of the average quantization step-sizes for I-, P-, and B-pictures such that visual quality and/or motion details can be improved depending on the contents within the sequence.

A further simplified approach is to adaptively modify only the value of  $K_B$ , therefore the 25 target ratios of the average quantization step-size of B-pictures over that of I- or P-pictures', as experimentally determined that the impact is not significant in terms of solving above mentioned problems when  $K_s$  or  $K_s$  are also modified adaptively.

The quality factors are modified adaptively in the present invention according to the 30 average quantization step-sizes and bit usage of past coded I-pictures, P-pictures and B-

-7-

pictures. Encoding quality and coding complexity of a picture may be measured from its average quantization step-size and bits used. The ratios of coding complexities of pictures of different picture coding types together with encoding qualities may be used to indicate spatial and/or motion complexity, and therefore, the quality factors may be determined 5 accordingly.

A video encoding system encodes a video sequence of various picture coding types (I-, Pand B-pictures) with sequence adaptive bit allocation according to the present invention.

Initial values of necessary parameters for coding may be pre-determined. Bits are allocated
to each picture to be coded such that the resulting visual qualities defined as K/Q of all
pictures within a group-of-pictures remains at a similar level.

The quality factor K is dependent on the picture coding type; and furthermore, K, is adaptively modified according to the average quantization step-sizes (Q) and bit usages of past coded pictures.

With bits allocated to a picture to be coded, a rate controller is then used to regulate bits for coding of each macroblock within the picture. A video encoding system according to the present invention may include components that are similar to those used in the MPEG2 Test Model 5.

# Brief Description of the Drawings

The invention is described in greater detail hereinafter, by way of example only, with 25 reference to a preferred embodiment thereof and the accompanying drawings, wherein:

Fig. 1 is a block diagram illustrating a video encoding system with sequence adaptive bit allocation according to an embodiment of the present invention; and

Fig. 2 is a flow chart of an embodiment of a Quality Factor Estimator of present invention.

### Detailed Description of the Preferred Embodiment

Figure 1 illustrates a video encoding system 100 with sequence adaptive bit allocation according to an embodiment of the present invention. An input video picture sequence is 5 encoded by a video encoder 101 to produce a compressed output bitstream which may be transmitted to an external decoder via a communication channel or recorded on digital storage media for playback applications. Each picture from the input video sequence is coded according to its assigned picture coding type (I-, P-, or B-picture). A group-of-pictures (GOP) is formed starting with an I-picture, and followed by possibly sets of P-pictures and B-pictures.

Typically, the video encoder 101 utilizes motion estimation, motion compensation, discrete cosine transform (DCT) coding, and run-length/differential encoding with variable length codes (VLC) as video compression techniques. A video encoder may be

15 implemented such that the output bitstream is compliant to one of the ISO/IEC MPEG standards, and can be decoded by the corresponding MPEG video decoders.

A bit allocation processor 103 is coupled to or forms part of the video encoder, and is provided to determine a target number of bits (T) to be used for coding of a picture from 20 the input video according to its picture coding type and target bit-rate. The target bit-rate and picture coding type are provided as input to the bit allocation processor 103. Bits are allocated so that the resulting visual qualities defined as K/Q of all pictures within a group-of-pictures remains at a similar level. The quality factor K depends on the picture coding type (eg. K<sub>P</sub>, K<sub>P</sub>, K<sub>B</sub>) and Q is the average quantization step-size used for coding 25 that picture type. Example methods of bit allocation may be found in MPEG2 Test Model 5, as given by equations (3), (4), (5) with an optional lower limit given by (6). A set of initial values may be assumed for K<sub>P</sub>, K<sub>P</sub>, K<sub>P</sub>, X<sub>C</sub>, and X<sub>C</sub>.

After determining the target bits (7), a bit rate controller 104 and an adaptive quantization 30 processor 105 are used to calculate the quantization step-sizes for coding of each

-9-

macroblock (MB) in the picture. The quantization step-sizes are used optionally together with quantization matrices to quantize the MBs within the video encoder 101. The MBs may be subjected to motion estimation, motion compensation, and discrete cosine transform prior to quantization. Frame field adaptive methods mentioned in MPEG2 Test 5 Model 5 may also be applied. The quantized MBs are run-length encoded with variable length codes and multiplexed with all necessary side information to provide the compressed output bitstream.

The rate controller 104 calculates a reference quantization step-size for each MB based on 10 the target bits (T) for the pictures and the number of bits consumed from the target bits in encoding MBs from that picture. For adaptive quantization 105, the calculated reference step-size is scaled according to local activities of the MB and an average MB activity determined from the current or a previously coded picture. Methods of rate control and adaptive quantization may also be found in MPEG2 Test Model 5.

A quality factor estimator 102 is used to estimate the values of *K* according to the picture coding type and bit usages (S) of past coded pictures supplied as input from the video encoder, and the average quantization step-sizes (Q) which are supplied from the adaptive quantization processor 105. Together with the average quantization step-size *Q*, the 20 quality factor *K* determines the visual quality of an encoded picture. A set of values for *K* may be determined for each picture coding type. Hence, *K<sub>p</sub>*, *K<sub>p</sub>*, and *K<sub>g</sub>* may be adaptively determined. Furthermore, the set of values for *K* may be updated at for each picture or for every plurality of pictures, according to computation and visual quality adaptivity needs. The estimated values of *K* are used by bit allocation processor 103 to determine the target number of bits to be used for coding of each picture.

Figure 2 illustrates a flow chart 200 of operational steps of the quality factor estimator according to an embodiment of the present invention. Starting with step 201, coding information such as the picture coding types, the average quantization step-sizes and bit 30 usages of coded pictures are obtained. For step 202, encoding qualities are determined

- 10 -

using the average quantization step-sizes. The encoding qualities for past coded pictures of different picture coding types are determined for the purpose of re-distributing bits to B-pictures when good encoding quality for P-pictures is achieved. Similarly, bits are re-distributed to I-pictures when good encoding qualities for P-pictures and B-pictures are 5 achieved. For example, it is possible to set a maximum and minimum limit for the value of K of a particular picture coding type using average quantization step-sizes for past coded pictures as one such method. In particular, a simplified embodiment may be given as follows:

$$K_{B-MIN} = C_O$$
  
 $K_{B-MAX} = C_I \times Q_P + C_2$ , and  $C_3 \leq K_{B-MAX} \leq C_4$ 

10 where  $C_0$  to  $C_t$  are constants (eg. 1.4, 0.3, -0.4, 1.4, 2.0 respectively),  $Q_s$  is the average reference quantization step-size of a past coded P-picture, and  $K_{BMM}$  and  $K_{BMM}$  are the maximum and minimum quality factor K for B-pictures.

Similarly, K<sub>I-MADO</sub> K<sub>I-MINO</sub> K<sub>F-MADO</sub> and K<sub>F-MIN</sub> for I-pictures and P-pictures may be 15 determined. In fact, for simplicity K<sub>I-MADO</sub> K<sub>F-MINO</sub> K<sub>F-MADO</sub> and K<sub>F-MINO</sub> may also be normalized to the constant value of 1.0.

At 203, the coding complexities  $(X_p, X_p, X_p)$  of past coded pictures are calculated. The coding complexity indicates spatial and/or motion complexity in coding picture of a particular picture coding type. It is given as:

$$X_I = S_I \times Q_I$$

$$X_P = S_P \times Q_P$$

$$X_B = S_B \times Q_B$$

where  $S_p$ ,  $S_p$ ,  $S_B$  are the number of bits generated by encoding a past I-picture, P-picture

and B-picture respectively, and

- $Q_b$   $Q_p$ ,  $Q_B$  are the average quantization step-size used for encoding all macroblocks of the I-picture, P-picture and B-picture respectively.
- 5 With the determined encoding qualities and coding complexities, the quality factors (K<sub>p</sub>, K<sub>p</sub>, and K<sub>p</sub>) are estimated at the next step 204. The ratios of coding complexity of different picture coding type are used to define the ratios of the quality factors such that the bit allocation process can take into consideration spatial and/or motion complexities of different picture coding types. Furthermore, the ratios of the quality factors are also
- 10 limited according to the determined encoding qualities so as to maximize visual quality and motion details. For simplicity, the quality factors can be normalized according to the following example:

$$K_{l} = C_{5} \times \frac{X_{p}}{X_{l}} + C_{6}, \quad \text{and set } K_{l-MIN} \leq K_{l} \leq K_{l-MAX}$$
 (7)

$$K_p = 1.0, (8)$$

$$K_B = C_7 \times \frac{X_p}{X_B} + C_8$$
, and set  $K_{B-MBN} \le K_B \le K_{B-MAX}$  (9)

where  $C_5$  to  $C_8$  are constants.

15 The values of C<sub>s</sub> to C<sub>s</sub> may be experimentally determined. It is also possible to further simplify the method by setting C<sub>s</sub> to C<sub>s</sub> to values of 0, 1, 1, 0 respectively.

The bit allocation process attempts to maintain similar visual quality which is based on the average quantization step-sizes and the quality factors  $(K_P, K_P, \text{ and } K_B)$  while encoding

- 12 -

pictures or groups of pictures from an input video sequence. By adaptively modifying the quality factors according to picture coding types, and encoding qualities and coding complexities determined by the average quantization step-sizes and bit usages of coded pictures, a video encoder according to an embodiment of the present invention can 5 efficiently allocate bits from a target bit-rate to encode each pictures within the video sequence.

The quality factors are adapted in such a way that more bits are used for motion detail improvements when there are complex motion scenes within the picture sequence; and on 10 the other hand, more bits are allocated to improve visual (spatial) quality when scenes within picture sequence contain little motion updates. The bit allocation is further checked with the encoding qualities achieved so that the both motion details and visual quality can be optimized to enhance the overall objective results of the video encoder.

- 13 -

#### Claims

- A moving pictures encoder for encoding pictures in a moving pictures sequence according to an overall target bit-rate, each picture having an assigned picture coding type,
   the moving pictures encoder including:
  - a quality factor estimator for determining a quality factor according to the assigned picture coding type, bits used for past coded pictures of that type, and an average quantization step size;
- a bit allocation processor for determining a target number of bits for coding a picture 10 according to the overall target bit-rate, the assigned picture coding type and the corresponding quality factor;
  - a bit-rate controller for determining a reference quantization step-size based on the target number of bits and the number of bits used for the picture; and
- an adaptive quantization processor for determining a coding quantization step-size 15 based on the reference quantization step-size and picture activities for the picture, and for determining said average quantization step-size for past coded pictures.
- A moving pictures encoder as claimed in claim 1, wherein a corresponding quality
   factor is determined by the quality factor estimator for each picture type.
  - A moving pictures encoder as claimed in claim 2, wherein a value for the quality factor is determined for coding of each picture of the corresponding picture type.
- 25 4. A moving pictures encoder as claimed in claim 2, wherein a value for the quality factor is determined for coding of each plurality of pictures of the corresponding picture type.
  - A moving pictures encoder as claimed in claim 2, 3 or 4, wherein minimum and maximum limits are set for the quality factor of each picture type.

- 14 -

 A method for encoding pictures in a moving pictures sequence according to an overall target bit-rate, each picture having an assigned picture coding type, including the steps of:

determining a quality factor according to the assigned picture coding type, bits used for past coded pictures of that type, and an average quantization step size;

5 determining a target number of bits for coding a picture according to the overall target bit-rate, the assigned picture coding type and the corresponding quality factor;

determining a reference quantization step-size based on the target number of bits and the number of bits used for the picture;

determining a coding quantization step-size based on the reference quantization step-10 size and picture activities for the picture, and for determining said average quantization stepsize for past coded pictures; and

encoding a picture according to the determined coding quantization step size.

- A method as claimed in claim 1, wherein a corresponding quality factor is determined
   for each picture type.
  - A method as claimed in claim 2, wherein a value for the quality factor is determined for coding of each picture of the corresponding picture type.
- 20 9. A method as claimed in claim 2, wherein a value for the quality factor is determined for coding of each plurality of pictures of the corresponding picture type.
  - 10. A method as claimed in claim 2, 3 or 4, wherein minimum and maximum limits are set for the quality factor of each picture type.







Figure 2

### INTERNATIONAL SEARCH REPORT

|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | Interi nai App                                                                                                                                                                                                                | ileation No                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | PCT/SG 98                                                                                                                                                                                                                     | /00038                                                                                                                                                                                                                                              |
| A. CLASSI<br>IPC 6                                                                                  | FICATION OF SUBJECT MATTER<br>H04N7/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| According to                                                                                        | o international Patent Classification (IPC) or to both national classificat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion and IPC                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| B. FIELDS                                                                                           | SEARCHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| IPC 6                                                                                               | cumentation searched (classification system followed by classification H04N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n symbols)                                                                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| Documental                                                                                          | ion searched other than minimum documentation to the extent that su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ich documents are inci                                                                                                                                        | uded. In the fields so                                                                                                                                                                                                        | earched                                                                                                                                                                                                                                             |
| Electronic d                                                                                        | ata base consulted during the international search (name of data base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e and, where practical                                                                                                                                        | , search terms used                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                   |
|                                                                                                     | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| Category °                                                                                          | Citation of document, with indication, where appropriets, of the rele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vant passages                                                                                                                                                 |                                                                                                                                                                                                                               | Relevant to claim No.                                                                                                                                                                                                                               |
| A                                                                                                   | EP 0 804 035 A (MATSUSHITA ELECTR<br>LTD) 29 October 1997<br>see page 7, line 21 - page 8, lin-<br>see equations (1)-(3)<br>see figures 6,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                               |                                                                                                                                                                                                                               | 1-10                                                                                                                                                                                                                                                |
| A                                                                                                   | EP 0 655 867 A (PHILIPS ELECTRONI<br>31 May 1995<br>see page 4, line 24 - page 4, line<br>see equations (5),(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                             |                                                                                                                                                                                                                               | 1-10                                                                                                                                                                                                                                                |
|                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /                                                                                                                                                             |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |
| χ Furti                                                                                             | ner documents are listed in the continuation of box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X Patent family                                                                                                                                               | members are listed                                                                                                                                                                                                            | in annex,                                                                                                                                                                                                                                           |
| "A" docume "E" earlier or filing d "L" docume which citation "O" docume other r "P" docume later tr | Int defining the general state of the art which is not each to be of particular relevance concurrent to but published on or after themselonal as a second of the published on or after the state of the second of another or other second of the second of a specifical or other second of a specifical or other second of a specifical or other second of the s | invention  x* document of partic cannot be conside y* document of partic cannot be conside document is comit ments, such comit in the art  x* document member | d not in conflict with<br>d the principle or th<br>ular relevance; the c<br>ared novel or cannot<br>we step when the do<br>ular relevance; the<br>ared to involve an in<br>principle of the same patent<br>of the same patent | the application but<br>over underlying the<br>thatmed invention<br>be considered to<br>cumer is taken alone<br>learned invention<br>ventive step when the<br>pre-ventive step when the<br>pre-ventive step decided<br>to a person stilled<br>family |
|                                                                                                     | actual completion of the international search                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                               | the international se-                                                                                                                                                                                                         | arch report                                                                                                                                                                                                                                         |
|                                                                                                     | January 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15/01/1                                                                                                                                                       | .999                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     |
| Name and r                                                                                          | nailing address of the ISA<br>European Patent Office, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Authorized officer<br>Fassnac                                                                                                                                 | ht, C                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |

1

#### INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/SG 98/00038

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category \* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 5 686 963 A (UZ K METIN ET AL) 1-10 11 November 1997 see column 3, line 46 - column 6, line 13 see column 7, line 56 - column 9, line 53 see column 12, line 32 - column 13, line see column 15, line 38 - column 15, line HUA L ET AL: "EXPERIMENTAL INVESTIGATION Α 1 - 10ON MPEG-2 BASED VIDEO CODING AT 22 MBPS" IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, vol. 41, no. 3, August 1995, pages 615-619, XP000539514 see section "3. Adaptive quantization and Rate Control" Α EP 0 705 040 A (SONY CORP) 3 April 1996 1-10 see page 6, line 23 - page 7, line 16 see figure 10 TIHAO CHIANG ET AL: "A NEW RATE CONTROL 1 - 10SCHEME USING QUADRATIC RATE DISTORTION MODEL" IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY. vol. 7, no. 1, February 1997, pages 246-250, XP000678897 see section "III. Rate Control Description"

1

# INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No PCT/SG 98/00038

| Patent document<br>cited in search report |   | Publication date | (1             | Patent family<br>member(s)          | Publication date                       |
|-------------------------------------------|---|------------------|----------------|-------------------------------------|----------------------------------------|
| EP 0804035                                | А | 29-10-1997       | JP<br>JP       | 9294267 A<br>10126792 A             | 11-11-1997<br>15-05-1998               |
| EP 0655867                                | A | 31-05-1995       | BE<br>JP<br>US | 1007807 A<br>7203447 A<br>5606371 A | 24-10-1995<br>04-08-1995<br>25-02-1997 |
| US 5686963                                | A | 11-11-1997       | US             | 5847761 A                           | 08-12-1998                             |
| EP 0705040                                | A | 03-04-1996       | JP<br>US       | 8098179 A<br>5751358 A              | 12-04-1996<br>12-05-1998               |