Hi! This Jing in 2022.

I put down some of my past projects and course works here, involving control, planning, perception and mechanics.

My portfolio GitHub Repo: https://github.com/wwtse/folioS

Projects

DCmotor control

IMU filters

Cou<u>rse work</u>

Figure 8: Validation Datasets with Decision Boundary by logistic-quadratic-function $\,$

Machine Learning

Sensor and Navigation

Figure 1: data present in Google Map

DCmotor control

Demonstrate motor speed and position with Arduino coding and Simulink Real Time Target.

SLAM

Map of sequence 00 of kitti

SLAM using stereo cameras dataset (kitti and NUance) with ORB-SLAM2 and ROS.

IM<u>U</u> filters

Filter IMU raw data with the combination of FIR, IIR and complementary filters.

PuTTY is used to log the signal.

Nanoindentation Simulation

Bachelor Thesis

Demonstrate motor speed and position with Arduino coding and Simulink Real Time Target.

Machine Learning

Data and their classifier decisions versus true labels

Figure 8: kFold histogram

Figure 8: Validation Datasets with Decision Boundary by logistic-quadraticfunction

Figure 1: Data Distribution

Used Fisher LDA, ERM, MLE, MAP, Bayesian estimation, BIC and K-fold cross-validation to approximate model parameters. Trained 2-layer MLP.

Sensor and Navigation

Figure 5: 5 images using for mosaic

Figure 7: the panoramic mosaic of entire building

Figure 10: trajectory from calculation and gps

Figure 4:magnetometer calibration result

IMU, GNSS, camera, Lidar... All the sensors with ROS.