The Delphion Integrated View

 Get Now:
 More choices...
 Tools:
 Add to Work File:
 Create new Wo

 View:
 INPADOC
 Jump to:
 Top
 Image: Create new Wo

[®]Title: JP2002063936A2: HIGH POLYMER SOLID ELECTROLYTE AND LITE

POLYMER BATTERY USING IT

PCountry: JP Japan

Inventor: TSUMURA MANABU; WAHARA TAKANAO:

PAssignee: KANEGAFUCHI CHEM IND CO LTD

News, Profiles, Stocks and More about this company

Published / Filed: 2002-02-28 / 2000-08-15

Papplication JP2000000246153

Number: **9** IPC Code: **H01M 10/40**;

Priority Number: 2000-08-15 **JP2000000246153**

PROBLEM TO BE SOLVED: To provide a curing composition for a high polymer solid electrolyte applicable to a lithium polymer battery having characteristics superior in ionic conductivity and also

in workability, moldability, mechanical strength and flexibility

compared with a conventional solid electrolyte.

SOLUTION: This is the curing composition for the high polymer solid electrolyte having (A) to (D) as indispensable components. Here, (A) is poly siloxane having SiH group, (B) is a compound having at least two alkenyl groups, which have a structure selected among groups of benzene ring, siloxy bond, carbonyl group, amide bond and amino group, (C) is a hydrosilylation catalyst, and (D) is

an electrolyte sait compound. COPYRIGHT: (C)2002, JPO

Family: None

Other Abstract CHEMABS 136(13)203069D DERABS C2002-429911

Info:

this for the Gallery ...

lominate

© 1997-2003 Thomson Delphion

Research Subscriptions | Privacy Policy | Terms & Conditions | Site Map | Contac

(11) Publication number: 200%

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 2000246153

(51) Intl. Cl.: **H01M 10/40**

(22) Application date: 15.08.00

(30) Priority:

(43) Date of application

publication:

28.02.02

(84) Designated contracting

states:

(72) Inventor: TSUMURA MANABU

LTD

(71) Applicant: KANEGAFUCHI CHEM

IWAHARA TAKANAO

(74) Representative:

(54) HIGH POLYMER SOLID ELECTROLYTE AND LITHIUM POLYMER BATTERY USING IT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a curing composition for a high polymer solid electrolyte applicable to a lithium polymer battery having characteristics superior in ionic conductivity and also in workability, moldability, mechanical strength and flexibility compared with a conventional solid electrolyte.

SOLUTION: This is the curing composition for the high polymer solid electrolyte having (A) to (D) as indispensable components. Here, (A) is poly siloxane having SiH group, (B) is a compound having at least two alkenyl groups, which have a structure selected among groups of benzene ring, siloxy bond, carbonyl group, amide bond and amino group, (C) is a hydrosilylation catalyst, and (D) is an electrolyte salt compound.

COPYRIGHT: (C)2002,JPO

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-063936

(43) Date of publication of application: 28.02.2002

(51)Int.Cl.

H01M 10/40

(21)Application number: 2000-246153

(71)Applicant: KANEGAFUCHI CHEM IND CO

LTD

(22)Date of filing:

15.08.2000

(72)Inventor: TSUMURA MANABU

IWAHARA TAKANAO

(54) HIGH POLYMER SOLID ELECTROLYTE AND LITHIUM POLYMER BATTERY USING IT

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a curing composition for a high polymer solid electrolyte applicable to a lithium polymer battery having characteristics superior in ionic conductivity and also in workability, moldability, mechanical strength and flexibility compared with a conventional solid electrolyte.

SOLUTION: This is the curing composition for the high polymer solid electrolyte having (A) to (D) as indispensable components. Here, (A) is poly siloxane having SiH group, (B) is a compound having at least two alkenyl groups, which have a structure selected among groups of benzene ring, siloxy bond, carbonyl group, amide bond and amino group, (C) is a hydrosilylation catalyst, and (D) is an electrolyte salt compound.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-63936

(P2002-63936A)

(43)公開日 平成14年2月28日(2002.2.28)

(51) Int.CL' HO 1 M 10/40 識別配号

FI HOIM 10/40 ラーマコート*(参考) B 5H029

謝査請求 未請求 請求項の数18 OL (全 10 頁)

(54) 【発明の名称】 高分子固体電解質及びそれを用いたリチウムポリマー電池

(57)【要約】

【課題】 従来の固体電解質に比べてイオン伝導性に優れ、しかも加工性、成形性、機械的強度や柔軟性にも優れるという特徴を有するリチウムポリマー電池に適用可能な高分子固体電解質用硬化性組成物を提供する。

【解決手段】 (A)~(D)を必須成分とする高分子 固体電解質用硬化性組成物。(A)SiH基を有するポリシロキサン。(B)ベンゼン環、シロキシ結合。カルボニル基、アミド結合、及びアミノ基からなる群より選ばれる構造を有する2個以上のアルケニル基を有する化合物。(C)ヒドロシリル化酸媒、(D)海解質塩化合物 (2)

【特許請求の範囲】

【論求項1】(A)~(D)を必須成分とする高分子間 体電解質用硬化性組成物。

(A) S: H無を有するポリシロキサン

(B) ベンゼン環、シロキシ結合 (Si-O-Siから 構成される結合)、カルボニル基、アミド結合、及びア ミノ基からなる群より選ばれる有機整をし2個以上のア ルケニル基を有する化合物

(C)ヒドロシリル化触媒

(D) 電解質塩化合物

【謫求項2】(A)成分であるポリシロキサンが、ケイ 素原子上の置換益としてポリエチレンオキサイドを有す るとともに、SiH基を2個以上有することを特徴とす る請求項1記載の高分子固体電解質用硬化性組成物。

【躊求項3】(A)成分であるポリシロキサンが、ケイ 素原子上の置換基中に環状カーボネート構造を有すると ともに、SIH基を2個以上有することを特徴とする請 求項1記載の高分子圏体電解質用硬化性組成物。

【韻求項4】(A)成分であるポリシロキサン中のケイ 素原子の10%~95%が、オキシエチレン単位の重合 20 度が1~12であるポリエチレンオキサイドを置換基と して有することを特徴とする請求項2 に記載の高分子圏 体電解質用硬化性組成物。

【韻求項5】(A)成分であるポリシロキサン中のケイ 素原子の40%~90%が、オキシエチレン単位の宣合 度が1~12であるポリエチレンオキサイドを置換基と して有することを特徴とする請求項2に記載の高分子園 体電解質用硬化性組成物。

【論求項6】(B)成分が、ピスフェノールAジアリル エーテル、2、2' -ジアリルビスフェノールA. ジア リルアミン、ジビニルベンゼン、ジアリルマレート、 1、3-ジアリルウレア、ジアリルスクシネート、ジア リルカーボネート、ジアリルジカーボネート、ジアリル フタレート、1、3ージビニルー1、1、3、3ーテト ラメチルジシロキサン、1、3-ジビニル-1、1、 3、3ーテトラメチルジシラザン、及びアリル末端アク リルボリマーからなる群より選択されるものである諸求 項1~5のいずれかに記載の高分子固体電解質用硬化性 組成物。

【請求項7】(C)成分であるヒドロシリル化触媒が、 白金化合物、ルテニウム化合物、ロジウム化合物からな る群より選ばれることを特徴とする論求項1~6のいず れかに記載の高分子固体電解質用硬化性組成物。

【請求項8】(D)成分である電解質塩化合物が、金属 陽イオン、アンモニウムイオン、アミジニウムイオン、 及びグアニジウムイオンからなる群より選ばれる陽イオ ンと、塩素イオン、臭素イオン、沃索イオン、過塩素酸 イオン、チオシアン酸イオン、テトラフルオロホウ素酸 イオン、硝酸イオン、As F. 、PF, 一、ステアリル スルホン酸イオン、オクチルスルホン酸イオン、ドデシ 50 少なくとも1つの有機電解液を添加し、鈹組成物を硬化

ルベンゼンスルホン酸イオン、ナフタレンスルホン酸イ オン、ドデシルナフタレンスルホン酸イオン、RISO。 、(R¹SO₂) (R¹SO₂) N⁻、及び(R'SO₂) (R'SO₂) (R'SO₂) C⁻ (R', R', R'は電子吸 引性益を示す。〕からなる群より選ばれる陰イオンとか ちなる化合物であることを特徴とする論求項1~7のい

【鼬求項3】R¹、R¹、R¹が、炭素数が1から6まで のパーフルオロアルキル益又はパーフルオロアリール基 10 であることを特徴とする語求項8記載の高分子固体電解 質用硬化性組成物。

ずれかに記載の高分子固体電解質用硬化性組成物。

【論求項10】金属陽イオンが周期表1族又は2族に属 する金属から選ばれる金属の陽イオンであることを特徴 とする請求項8又は9記載の高分子固体電解質用硬化性

【鼬求項11】金属陽イオンがしょ。である鼬求項8又 は9記載の高分子固体電解質用硬化性組成物。

【論求項12】(D)成分である電解質化合物塩が、L 1010. LIPF. LIBF. LICESO.

Lin(CF,SO₂), 又はLi(C,F,SO₂),か ちなる群より選ばれるものであることを特徴とする請求 項8記載の高分子固体電解質用硬化性組成物。

【論求項13】金四陽イオンが遷移金属の陽イオンであ ることを特徴とする請求項8又は9記載の高分子園体電 解實用硬化性組成物。

【論求項14】金属陽イオンがMn. Fe、Co. N I. Cu、Zn及びAg金属からなる群より選ばれる金 層の陽イオンである請求項8又は9記載の高分子固体電 解質用硬化性組成物。

分子固体電解質用硬化性組成物1g中に0.10ミリモ ル~5. 0ミリモル含有されることを特徴とする論求項 1~14のいずれかに記載の高分子固体電解質用硬化性

【論求項16】負極と正極の間に請求項1~15のいず れかに記載の高分子固体電解質用硬化性組成物を硬化す ることによって得られた硬化物を電解質として配したり チウムボリマー電池。

【鼬求項17】負極が、金属リチウム、リチウム合金、 リチウムを吸蔵した無機材料およびリチウムを吸蔵した 炭素材から成る群から選ばれた少なくとも1つである請 求項16記載のリチウムポリマー電池。

【韻求項18】請求項1~15 記載の高分子固体電解質 用硬化性組成物に、プロビレンカーボネート、エチレン カーボネート、ジエチルカーボネート、ジメチルカーボ ネート、エチルメチルカーボネート、ァーブチロラクト ン、1、3ージオキソラン、ジメトキシエタン、テトラ ヒドロフラン、ジメチルスルホキシド及びポリエチレン グリコールジメチルエーテルよりなる群から選択された

http://www6.ipdl.jpo.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401=/NS...

5/23/2003

(3)

することによって得られた硬化物を薄解質として負極と 正極の間に配したゲル状リチウムボリマー電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高分子固体電解質 用硬化性組成物およびそれを用いたリチウムボリマー電 池に関するものである。本発明の高分子固体電解貿用硬 化性組成物は加工性に優れ、また、本発明の硬化性組成 物より得られる高分子圏体電解質は、イオン伝導度が高 く、優れた充放電特性を有し、電気化学的酸化、還元に 10 を与える硬化性組成物を提供するものである。 対しても良好な安定性を示す。

[0002]

【従来の技術】高分子電解質をリチウムイオン電池や電 気化学的デバイスに使用していくためには、低温から高 温の広い温度範囲で高いイオン伝導度を有し、結晶性を 示さないことなどが必要不可欠である。しかしながら、 このような必要性能を総合的に満足するような高分子電 解質はこれまで開発されていない。

【0003】リチウムイオン電池などに使用する電解質 には、例えば、従来はプロビレンカーボネート、エチル 20 メチルカーボネートなどの有機溶剤が幅広く使用されて いるが、これらは沸点と蒸気圧の関係で一般に70~9 ○℃が高温域での使用限界となっている。最近はこのよ うな有機溶媒の安全性を改良する方法として、ポリエチ レンオキサイド (以下、PEOと記載する) を中心とし た高分子電解質の研究が行われている。PEOは周期表 1族又は2族に属する金属塩、例えばしょCF,SO,、 LiCIO.、NaCF, SO. Lilなどと錯体を形 成し、室温以上の温度領域では比較的良好なイオン伝導 ら、PEOのイオン伝導性は温度依存性が大きく、60 ℃以上では良好なイオン伝導度を示すものの20℃以下 の温度ではイオン伝導度は着しく低下する。従って低温 で使用するような汎用性のある商品に組み込むことは困 難であった。低分子量PE○を用いてイオン伝導度を向 上させる方法としてビニル系ポリマーの側鏡に低分子量 PEOを導入する方法が、D. J. Banıstarら によって、Polymer. 25, 1600 (198 4)に報告されている。しかしながら、この高分子材料 はLi塩と錯体を形成するものの、低温でのイオン伝導 度が不十分であった。さらにポリシロキサンの側鎖に低 分子量PEOを導入した材料が、Journal of Power Sourse, 20. 327 (198 7) や特開昭63-136409号。特開平2-265 927に記載されているが、イオン伝導度が不十分ある

いは非晶質でない、合成処方が容易ではない、液状で加

工性・成形性に劣る、機械的強度は不十分などの理由で

実用化はされていない。PEO側鎖とSIH基を有する ボリシロキサンとボリエチレンオキサイドを主鎖に有す るオレフィンとのヒドロシリル化架橋体化合物に関して 特開平3-115359母に記載されているが、イオン 伝導度が4. 9×10-05・cm-1程度とかなり低いも のであり満足のいくものではなかった。

[0004]

【発明が解決しようとする課題】本発明は、高いイオン 伝導度を示し、機械的強度にも優れた高分子固体電解質

[0005]

【課題を解決するための手段】本発明は、(A)~ (D)を必須成分とする高分子園体電解質用硬化性組成 物に関するものである。

- (A) S | H 整を有するポリシロキサン
- (B) ベンゼン環、シロキシ結合 (Si-O-Siから 構成される結合)、カルボニル基、アミド結合、及びア ミノ基からなる群より選ばれる構造を有する2個以上の アルケニル基を有する化合物
- **(C)ヒドロシリル化触媒**
 - (D) 電解質塩化合物

[0006]

【発明の実施の形態】〔A成分について〕本発明の (A) 成分としては、SiH基を有するポリシロキサン であれば、従来公知のものを制限無く使用することが出 来る。

【0007】(A) 成分であるポリシロキサンは、ケイ 素原子上の遺換甚として、ポリエチレンオキサイド及び /又は、環状カーボネート構造及び/又は環状エーテル 性を示し、さらに保存安定性も良好である。しかしなが 30 構造を有し、なおかつSiH基を2個以上有するもので あることが好ましい。

> 【0008】(A)成分であるポリシロキサンが、ケイ 素原子上の置換盤としてポリエチレンオキサイドを有す るものである場合には、(A)成分であるポリシロキサ ン中のケイ素原子の10%~95%が、オキシエチレン 単位の章台度が1~12であるポリエチレンオキサイド を置換基として有することが好ましく。ポリシロキサン 中のケイ素原子の40%~90%が、オキシエチレン単 位の重合度が1~12であるポリエチレンオキサイドを 置換基として有することがさらに好ましい。

> 【0009】(A)成分であるポリシロキサンが、ケイ 素原子上の置換器としてポリエチレンオキサイドを有す る場合、(A)成分は以下の構造で表されるものである ことが好ましい。

[0010]

【化1】

特開2002-63936

Me₃SiO (SiO SiO SiMe₃) SiMe₃

(式中、m、nはそれぞれ1以上の整敷で、pは1~12の整数である。Rは水素原子又は炭素数1~20の炭化水素基を表し、nが2以上の場合、Rはそれぞれ同じでも異なっていてもよい。ただしRのうち少なくとも1つは水素原子である。なお、m個ある繰り返し単位とn個ある繰り返し単位の並び方は順不同である。)なお、本発明の(A)成分は分子中にSiH基を1個以上有するものであるが、SiH基を2個以上有するものであること(すなわち上式中のRのうち少なくとも2つが水素原子であること)がより好ましい。

【0011】また(A)成分が上式で表される場合には、以下に示すポリエチレンオキサイドの導入率(%、以下Gで表す)が $10\%\sim95\%$ であることが好ましく、 $40\%\sim90\%$ であることがさらに好ましい。 $G=\left(m/\left(m+n+2\right)\right)\times100$

(A) 成分であるポリシロキサンが、ケイ素原子上の農*

* 換禁としてポリエチレンオキサイドを有する場合。ポリシロキサンの側鎖にポリエチレンオキサイドを有していることから(A)成分の誘電率が高くなり、支持電解質を溶解、解離する能力に優れている。また主鎖にシロキ10 サンを有していることからガラス転移温度が低く。イオンの移動を容易にしている。またこのような高分子化合物は高温における安定性も高い。従って従来の高分子電解質では速成できなかった高温での劣化防止、低温における高イオン伝導性の発現が本発明によって達成された。

【0012】(A) 成分であるポリシロキサンが、ケイ素原子上の置換基中に環状カーボネート構造を有する場合、(A) 成分は以下の構造で表されるものであることが好ましい。

0 [0013]

[ft2]

(式中、m、mはそれぞれ1以上の整数である。Rは水素原子又は炭素数1~20の炭化水素益を表し、mが2以上の場合、Rはそれぞれ同じでも異なっていてもよい。ただしRのうち少なくとも1つは水素原子である。なお、m個ある繰り返し単位とm個ある繰り返し単位の並び方は順不同である。)

なお、本発明の(A)成分は分子中にSIH基を1個以上有するものであるが、SiH基を2個以上有するもの※

※ であること(すなわち上式中のRのうち少なくとも2つが水素原子であること)がより好ましい。

【0014】(A)成分であるポリシロキサンが、ケイ 素原子上の置換基中に環状エーテル構造を有する場合、

(A) 成分は以下の構造で表されるものであることが好ましい。

[0015]

[(£3]

(式中、m、nはそれぞれ1以上の整数である。Rは水 50 素原子又は炭素数1~20の炭化水素益を表し、nが2

以上の場合、Rはそれぞれ間じでも異なっていてもよい。ただしRのうち少なくとも1つは水素原子である。なお、m個ある繰り返し単位とm個ある繰り返し単位の並び方は順不同である。)

なお、本発明の(A)成分は分子中にS:H基を1個以上有するものであるが、SiH基を2個以上有するものであること(すなわち上式中のRのうち少なくとも2つが水素原子であること)がより好ましい。

【0016】(A)成分であるボリンロキサンが、ケイ素原子上の置換差中に環状カーボネート構造又は環状エ 10 ーテル構造を有する場合も、(A)成分の誘電率が高くなり、支持電解質を溶解、解離する能力に優れている。また主鎖にシロキサンを有していることからガラス転移温度が低く、イオンの移動を容易にしている。またこのような高分子化合物は高温における安定性も高い。従って従来の高分子電解質では達成できなかった高温での劣化防止、低温における高イオン伝導性の発現が本発明によって達成された。

【0017】本発明の(A)成分であるポリシロキサンの重量平均分子量Mw(ポリスチレン換算)は600~ 20100000であることが好ましく、2000~10000であることがさらに好ましい。

(B成分について) 本発明の(B) 成分としては、ベンゼン環、シロキシ結合(Si-O-Siから構成される結合)、カルボニル基、アミド結合及びアミノ益からなる群より選ばれる構造を有する2個以上のアルケニル基を有する化合物であれば従来公知のものを制限無く使用することが出来る。

【0018】(B) 成分としてこのましい分子量は80~1000の範囲である。

【0019】(B) 成分の具体例としては、ビスフェノールAジアリルエーテル、2,2 ージアリルビスフェノールA、ジアリルアミン、ジビニルベンゼン、ジアリルマレート、1、3ージアリルウレア、ジアリルスクシネート、ジアリルカーボネート、ジアリルフタレート、1,3ージビニルー1、1,3、3ーテトラメチルジンロキサン、1,3ージビニルー1、1,3、3ーテトラメチルジンラザン、アリル末端アクリルボリマーなどが挙げられる。

[C成分について] 本発明の(C)成分としては、ヒドロシリル化触媒であれば従来公知のものを制限無く使用することが出来る。

【0020】(C) 成分としては、白金化台物あるいは ルテニウム化合物あるいはロジウム化合物から遺ばれる ものが好ましく。白金化合物であることがさらに好ました。

【0021】(C) 成分として好ましいものとして、例えば、白金ビニルシロキサン、塩化白金酸、Pt(COD)、などが挙げられる。【D成分について】本発明の

(D)成分としては、電解質塩化合物であれば従来公知 50

のものを制限無く使用することが出来る。

【0022】(D) 成分としては、金属陽イオン、アンモニウムイオン、アミジニウムイオン、及びグアニジウムイオンからなる群より選ばれる陽イオンと、塩素イオン、臭素イオン、沃素イオン、過塩素酸イオン、持酸イオン、所酸イオン、所能イオン、所能イオン、所能イオン、所能イオン、ボクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、R'SO₂、(R'SO₂)(R'S

【0023】また、R'SO, (R'SO,)(R'SO,) (R'SO,) (R'SO,) (R'SO,) (R'SO,) C 、中のR'、R'、R'は各々独立して炭素数が1から6までのパーフルオロアルキル基又はパーフルオロアリール基であることが好ましい。

0 【0024】(D)成分の金属陽イオンは、周期表1族 又は2族に属する金属、選移金属、Mn、Fe.Co、 Ni.Cu、Zn及びAg金属から選ばれた金属の陽イ オンであることが好ましく。Liのイオンであることが 特に好ましい。

【0025】(D) 成分としては、具体的には、LiCiO、LiPF。、LiBF。LiCF。SO。、LiN(CF。SO。)。 又はLi(C。F。SO。)。 が特に好ましい。本発明の高分子固体電解質用硬化性組成物において、(A) 成分と(B) 成分のモル比は0.01~305.0であることが好ましく、さらに好ましくは0.05~3.0である。(C) 成分であるヒドロシリル化触媒は(B) 成分の二章結合1モルに対して、0.00001~0.1~0.1モルであることが好ましく、さらに好ましくは0.0001~0.01モルである。(D) 成分である電解質塩化合物は、高分子固体電解質用硬化性組成物1g中に0.01ミリモル~10ミリモル含有されることが好ましく、さらに好ましくは0.10ミリモル~5.0ミリモルの範囲である。

【0026】本発明の高分子固体電解質用硬化性組成物は、十分なイオン伝導度を有するが、さらに高いイオン伝導度が必要な場合などには、プロビレンカーボネート、ジェチルカーボネート、ジェチルカーボネート、エチルメチルカーボネート、アーブチロラクトン、1,3ージオキソラン、ジメトキシエタン、テトラヒドロフラン、ジメチルスルホキンド及びボリエチレングリコールジメチルエーテルなどの有機電解液を添加させても良い。また更に高分子化合物、他の両観媒性化合物などを添加しても良い。イオン伝導度と強度との両立の点から該有機電解液の量は(A)成分に対して10~90%が好ましく、30~70%がさらに

特開2002-63936

好ましい。

【0027】本発明の高分子固体電解貿用硬化性組成物は、ヒドロシリル化反応により架積して、3次元網目構造を有するものである。従って従来の高分子電解貿で朗題であった流動性の防止、機械的強度の向上、加工性・成形性の向上を達成することが可能である。

【固体電解質製造法】本発明の(A)成分であるS I H 基を有するポリシロキサンは、例えば以下に示す方法で 台成されるが、この方法に限定されるものではない。

【0028】ポリオルガノハイドロジェンシロキサンに 10 対し、溶媒中、ヒドロシリル化触媒、末端オレフィンを 有するポリエチレンオキサイドを滴下してヒドロシリル 化させ、十分撹拌した後に、溶媒を減圧除去することに より、ポリエチレンオキサイドを置換無に有するポリシ ロキサンを得る。ここで使用するポリシロキサンの重量 平均分子量Mw (ポリスチレン換算) は、2000~1 00000であることが好ましい。ここで使用する溶媒 は特に限定されるものではないが、好ましいものとして は、例えばトルエンなどが挙げられる。反応温度は特に 設定されるものではないが、室温~100℃で実施され 20 るのが好ましい。また添加する末端オレフィンを有する ポリエチレンオキサイドとポリシロキサン中のSiH基 の比率 (オレフィン基/SiH基のモル比)は0.10 ~0.95の範囲にあるのが好ましい。さらにはり、4 0~0.90の範囲にあるのが好ましい。特に好ましい のはり、50~0、85の範囲である。ヒドロシリル化 触媒は特に限定されるものではないが、白金化合物、ロ ジウム化合物。ルテニウム化合物が好ましい。例として は、白金ピニルシロキサン、塩化白金酸などが挙げられ る.

【0029】本発明の方法は、バッチ法、セミバッチ法 又は連続式で実施しうる。この反応容器は、例えば連続 的撹拌タンク反応容器でありうる。この方法はバッチ式 あるいは連続式でおこなうのが好ましい。

【0030】このようにして得られた(A) Si H基を 有するポリシロキサンに対し、(B) ベンゼン環 シロ キン結合、カルボニル基、アミド結合、及びアミノ基か ちなる群より選ばれる構造を有する2個以上のアルケニ ル基を有する化合物、(C) ヒドロシリル化触媒

(D) 電解質塩化合物を混合してから、加熱することに 40 より高分子固体電解質用のフィルムを得ることができる。硬化反応の温度は特に限定されるものではないが、室温~150℃の範囲が好ましく、室温~120℃の範囲がさらに好ましい。特に好ましくは70℃から100℃の範囲が好ましい。

【0031】本発明における高分子園体電解質用硬化性 組成物の製造方法には特に制約はない。また反応容器の 種類は重要でない。しかしながら副反応を防ぐため、非 反応性材料で形成された反応容器中でおこなうのが好ま しい。

〔電池作製〕本発明で示された高分子固体電解質用硬化 性組成物を用いると、高分子の利点である可とう性を有 して大面積薄膜形状の団体電解質が容易に得られる。本 発明で示されたの固体電解質を用いたリチウムポリマー 電池の作製が可能である。この場合、正極材料として好 ましいものとしては、例えばリチウムーマンガン複合酸 化物、コバルト酸リチウム、五酸化パナジウム、ポリア セン、ポリピレン、ポリアニリン、ポリフェニレン、ポ リフェニレンサルファイド、ポリフェニレンオキサイ ド、ポリピロール、ポリフラン、ポリアズレン、その他 硫黄化合物などが挙げられる。負極材料として好ましい ものとしては、例えばリチウム金属、リチウムがグラフ ァイトあるいはカーボンの層間に吸蔵された層間化台 物。リチウムー鉛合金などが挙げられる。また。本発明 の固体電解質の高い電気伝導性を利用して、アルカリ金 眉イオン、Cuイオン、Caイオン、及びMgイオンな どの陽イオンのイオン電極の隔膜として利用することも 考えられる。

10

[0032]

0 【実施例】次に本発明の実施例について具体的に説明するが、本発明は以下の実施例に限定されるものではない。

(実施例1) 反応容器に、ポリメチルハイドロジェンシ ロキサン4g、トルエン約10g及び白金ビニルシロキ サン1.2×10~mmo lを加え、反応温度80℃で 擬絆した。この混合物中に末端にアリル基を有する平均 分子量約400のポリエチレンオキサイド24g (58 mmol)を調下した。調下終了から3時間後反応を終 了させトルエンを減圧除去した。その結果、ポリエチレ ンオキサイドの導入率(ポリシロキサンの全ケイ素原子 中での、ポリエチレンオキサイドを置換基として有する ケイ素原子の割合)が74%のポリシロキサンが得られ た。得られたポリエチレンオキサイド変性のポリシロキ サン3.0gに、ビスフェノールAジアリルエーテル7 3mg(0.24mmol)、白金ピニルシロキサン 7. 2×10-1mmol及びL1C10,108mg (1. Ommol)をTHF約1mlに溶解させたもの を調合し、プレス機を使用して80℃で4時間加熱し た。その結果無色透明の薄膜状物質を得た。この得られ た薄膜状物質のイオン伝導度を、白金を電極とし、電圧 O. 5V、周波数範囲42Hz~5MHzの交流法を用 い、捜索インビーダンス法により算出した。その結果、 25℃におけるイオン伝導度は1.5×10~S/cm であった。

(実施例2) 実施例1と同様の方法で得られたポリエチレンオキサイド変性のポリシロキサン (変性率:50%)3.0gにアセトニトリル約1m1に溶解させたものにしょ(CF,SO₂),N947mg(しi/EO=0.08)を溶解した。この溶液にピスフェノールAジアリルエーテル131mg(0.43mmo+)。白金

(7)

特開2002-63936

ビニルシロキサン20×10°mmo1を混合し脱法し た。構強材としてポリプロビレン不線布に上記溶液を含 浸し、90℃、6時間空気中で硬化した。上記手順で厚 さ130 µmの電解質膜を得た。

11

(実施例3)

[LiCoO、正極の試作]以下のポリマー電解實合授 用しiCoO、正極を作製した。

・電極組成:LiCoOx:黒鉛:アセチレンブラッ

2: PVdF = 87:9:1:3

·電極密度:2.68g/cc(気孔率38%)

・電極厚み:51μm

- 電極伝導度:1. 2×10⁻¹S/cm

合浸用L₁C₀O₂正極に実施例2記載の未業績ポリマ ー溶液に浸し、減圧下1時間真空含浸した。90℃、6 時間空気中で硬化させることにより、密度:3.12 g/cc、電極伝導度:8.8×10~\$/cmの正極*

表1. 初期インピーダンス特件

*が得ら ねた。

(実施例4)

[電池の試作]

・正極:実施例3で作製したLLCo0,電極 1.0 ×1. 0 cm'

· 負額: リチウム金属、面積 1.2×1.2cm

・電解質膜:実施例2で作製した電解質膜 厚さ 13

の構成でリチウムボリマー電池を作製した。

10 【初期交流インビーダンス特性】上記で作製した電池に ついて、周波数:20000~0.1Hz、ΔV:10 mV、温度:25℃、60℃において初期交流インピー ダンス特性を評価した。結果を表 1. 図 1、図 2 に示し

[0033] 【表】】

電解質膜	厚み (μm)	温度	初期パルク抵抗 (Ω・c m2)	初期界面抵抗 (Q·cm2)
PE05 Li(CF3SO2)2N	130	25℃	81 (1.6×10 ⁴ S/cm)	355
		60℃	8 (1.6×10°S/cm)	53

電解質に起因するバルク抵抗は25℃で81Q・cm⁴ (イオン伝導度: 1. 6×10⁻¹S/cm)、60℃で 8Q·cm*(イオン伝導度:1.6×10~*S/c m) であった。また、リチウム界面に起因すると考えら

※度: 1. 3×10⁻⁴S/cm)、60℃で53Ω·cm くと良好な値を示した。

30 [初期充放電特性] 上記で作製した電池について以下の 条件で初期充放電特性を評価した。

れる界面抵抗も25℃で355Q·cm³(イオン伝導 ※ · 測定温度:60℃

·充放電条件

充電; 定電流(0.1CA:0.16mAh/cm²)

定電圧 (4. 2V vs Li/Li*) 12時間

放電: 定電流(0.1CA:0.16mAh/cm²)

終止 (3.0V vs Li/Lı*)

初期充放電曲線を図3に示した。初期容量は127mA h/g、初朝効率は84.5%であり、充放電可能であ 40 後のインピーダンス測定結果を図5.図6、表2に示し った。1サイクル終了後のインピーダン ス特性を図4 に示した。充放電により、187Qの正極界面に起因す る抵抗 が生じた。

[保存特性] 上記で作製した電池について、60℃、充

電状態で保存特性を評価した。200時間、500時間

[0034]

【表2】

http://www6.ipdl.jpo.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401=/NS...

5/23/2003

14

保存時のインピーダンス変化 (60℃)

電解質膜	時間	初期パルク抵抗 (Q・c m2)	界面抵抗1 (Ω·cm2)	界面抵抗2 (Ω·cm2)
PE05 LI(CF3SO3)2N	0時間	8	68	187
	200時間	8	76	168
	500時間	9	95	235

500時間保存後において、バルク抵抗の変化は認めら れなかった。また、界面抵抗についてはリチウム側(最 元順) に起因すると考えられる抵抗成分については、6 8Ωから95Ωと1. 4倍. 正極側 (酸化側) に起因す ると考えられる低抗成分については187Qから235 Qと1. 3倍に増加したものの、電気化学的酸化・還元 に対して基本的安定性を有していた。また、保存後の充 放電特性についても初期と同様であり、大きな劣化は認 20 められなかった。

[0035]

【発明の効果】本発明の高分子固体電解費用硬化性組成 物は加工性に優れ、また、本発明の高分子固体電解質用 硬化性組成物より得られる高分子固体電解質は、イオン 伝導度が高く、その温度依存性が小さく、さらに十分な 機械強度を有するものである。また、 該高分子固体電解 質を用いて作製したリチウムボリマー電池は優れた電気 化学的特性を有している。

【図面の簡単な説明】

【図1】本発明の高分子固体電解質を用いたリチウムボギ

*リマー電池の25℃におけるCole‐Coleプロッ トを示す図である。

【図2】本発明の高分子固体電解質を用いたリチウムボ リマー電池の60℃におけるCole-Coleプロッ トを示す図である。

【図3】本発明の高分子固体電解質を用いたリチウムボ リマー電池の酸化還元反応特性を示す図である。

【図4】本発明の高分子固体電解質を用いたりまウムボ リマー電池1サイクル充放電後の60℃におけるCol e-Coleプロットを示す図である。

【図5】本発明の高分子固体電解質を用いたリチウムボ リマー電池の60℃/200時間保存後の60℃におけ るCole-Coleプロットを示す図である。

【図6】本発明の高分子固体電解費を用いたリチウムボ リマー電池の60℃/500時間保存後の60℃におけ るCole-Coleプロットを示す図である。

【図7】本発明の高分子固体電解質を用いたリチウムボ リマー電池の60℃/500時間保存後の酸化還元反応 特性を示す図である。

[図3]

因3. 電池初期完放電特性

【図7】

图7. 500時間保存後完放館特性

[図1]

[図2]

図1. 初期インピーダンス特性(25°C)

図2. 初期インビーダンス特性(60°C)

[図4]

[図5]

図5 初期インピーダンス特性(60℃) (60℃ 200時間保存使)

図4. 初期インピーダンス特性(60℃) (1サイクル丸放成後) (10)

特開2002-63936

【図6】

Li/K-SPE/LiCoO, K-SPE

図6. 初期インピーダンス特性(60°C) (60°C 500時間保存後)

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] (A) Hardenability constituent for solid polymer electrolytes which uses - (D) as an

indispensable component.

(A) The polysiloxane (B) benzene ring which has a SiH basis, siloxy combination (combination which consists of Si-O-Si), a carbonyl group, amide combination, and (Compound C) hydrosilylation (catalyst D) electrolyte salt compound that carries out the organic machine chosen from the group which consists of an amino group, and has two or more alkenyl machines. [Claim 2] (A) The hardenability constituent for solid polymer electrolytes according to claim 1 with which it is characterized by having two or more SiH bases while the polysiloxane which is a component has a polyethylene oxide as a substituent on a silicon atom.

[Claim 3] (A) The hardenability constituent for solid polymer electrolytes according to claim 1 with which it is characterized by having two or more SiH bases while the polysiloxane which is a

component has annular carbonate structure in the substituent on a silicon atom.

[Claim 4] (A) The hardenability constituent for solid polymer electrolytes according to claim 2 characterized by 10% - 95% of the silicon atom in the polysiloxane which is a component having as a substituent the polyethylene oxide whose polymerization degree of an oxyethylene unit is 1-12. [Claim 5] (A) The hardenability constituent for solid polymer electrolytes according to claim 2 characterized by 40% - 90% of the silicon atom in the polysiloxane which is a component having as a substituent the polyethylene oxide whose polymerization degree of an oxyethylene unit is 1-12. [Claim 6] A component (B) Bisphenol A diaryl ether, 2, and 2'-diaryl bisphenol A, A diarylamine, a divinylbenzene, diallyl malete, 1, 3-diaryl urea, Diaryl succinate, diaryl carbonate, diallyl dicarbonate, A diallyl phthalate, 1, 3-divinyl - 1, 1, 3, and 3-tetramethyl disiloxane, 1, 3-divinyl - 1, 1, 3, and 3-tetramethyl disiloxane and hardenability constituent for solid polymer electrolytes according to claim 1 to 5 which is what is chosen from the group which consists of allyl-compound end acrylic polymer. [Claim 7] (C) The hardenability constituent for solid polymer electrolytes according to claim 1 to 6 with which the hydrosilylation catalyst which is a component is characterized by being chosen out of the group which it becomes from a platinum compound, a ruthenium compound, and a rhodium compound.

[Claim 8] (D) The cation chosen from the group which the electrolyte salt compound which is a component becomes from a metal cation, an ammonium ion, friend JINIUMU ion, and GUANIJIUMU ion, A chloride ion, bromine ion, iodine ion, perchloric acid ion, thiocyanic-acid ion, Tetrafluoro boron acid ion, a nitrate ion, AsF6-, PF6-, Stearyl sulfonic-acid ion, octyl sulfonic-acid ion, the dodecylbenzenesulfonic acid ion, naphthalene sulfonic-acid ion, dodecyl naphthalene sulfonic-acid ion, R1SO3-, N(R(R1SO2)2SO2)-, and (R1SO2) (R2SO2) (R3SO2) C-[--R1, R2, and R3 show an electronic suction nature machine] a shell -- the hardenability constituent for solid polymer electrolytes according to claim 1 to 7 characterized by being the compound which consists of

an anion chosen from a group

[Claim 9] The hardenability constituent for solid polymer electrolytes according to claim 8 with which R1, R2, and R3 are characterized by carbon numbers being the perfluoroalkyl machines or perfluoro aryl groups from 1 to 6.

[Claim 10] The hardenability constituent for solid polymer electrolytes according to claim 8 or 9

characterized by being the cation of the metal chosen from the metal with which a metal cation belongs to periodic-table 1 group or two groups.

[Claim 11] The hardenability constituent for solid polymer electrolytes according to claim 8 or 9 whose metal cation is Li+.

[Claim 12] (D) the electrolyte compound salt which is a component -- LiClO4, LiPF6, LiBF4, and LiCF3 -- the hardenability constituent for solid polymer electrolytes according to claim 8 characterized by being what chosen from SO3, LiN (CF3SO2)2, or the group that consists of Li (C2F5SO2)2

[Claim 13] The hardenability constituent for solid polymer electrolytes according to claim 8 or 9 characterized by a metal cation being a cation of transition metals.

[Claim 14] The hardenability constituent for solid polymer electrolytes according to claim 8 or 9 which is the cation of the metal chosen from the group which a metal cation becomes from Mn, Fe, Co, nickel, Cu, Zn, and Ag metal.

[Claim 15] (D) The hardenability constituent for solid polymer electrolytes according to claim 1 to 14 with which the electrolyte salt compound which is a component is characterized by carrying out 0.10 millimole -5.0 millimole content into 1g of hardenability constituents for solid polymer electrolytes. [Claim 16] The lithium-polymer battery which arranged as an electrolyte the hardened material obtained by hardening the hardenability constituent for solid polymer electrolytes according to claim 1 to 15 between a negative electrode and a positive electrode.

[Claim 17] The lithium-polymer battery according to claim 16 which is at least one chosen from the group which consists of the carbon material to which the negative electrode carried out occlusion of the inorganic material which carried out occlusion of a metal lithium, a lithium alloy, and the lithium, and the lithium.

[Claim 18] The gel lithium-polymer battery which added at least one organic electrolytic solution chosen from the group which becomes a hardenability constituent for solid polymer electrolytes according to claim 1 to 15 from propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, gamma-butyrolactone, 1, 3-dioxolane, dimethoxyethane, a tetrahydrofuran, dimethyl sulfoxide, and PORIECHIRENGURIKORUJIMECHIRUETERU, and was arranged between the negative electrode and the positive electrode by using as an electrolyte the hardened material obtained by hardening this constituent.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL FIELD

[The technical field to which invention belongs] this invention relates to the lithium-polymer battery which used the hardenability constituent for solid polymer electrolytes, and it. The solid polymer electrolyte which the hardenability constituent for solid polymer electrolytes of this invention excels [solid polymer electrolyte] in processability, and is obtained from the hardenability constituent of this invention has high ionic conductivity, it has the outstanding charge-and-discharge property, and good stability is shown also to electrochemical oxidation and reduction.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

PRIOR ART

[Description of the Prior Art] In order to use the polyelectrolyte for the lithium ion battery or the electrochemical device, it is indispensable that have high ionic conductivity by the hot large temperature requirement from low temperature, and crystallinity is not shown etc. However, a polyelectrolyte with which are synthetically satisfied of such a requirement is not developed until now.

[0003] Although organic solvents, such as propylene carbonate and ethyl methyl carbonate, are conventionally used for the electrolyte used for a lithium ion battery etc. broadly, generally as for these, 70-90 degrees C is a use limitation in a pyrosphere by the relation between the boiling point and vapor pressure. As a method of improving the safety of such an organic solvent, research of the polyelectrolyte centering on a polyethylene oxide (it is hereafter indicated as PEO) is done recently. the metal salt 3 with which PEO belongs to periodic-table 1 group or two groups, for example, LiCF3SO, and LiClO4 and NaCF3 -- SO3, LiI, etc. and a complex are formed, ion conductivity comparatively good in the temperature field beyond a room temperature is shown, and preservation stability is also still better However, although the ion conductivity of PEO has large temperature dependence and good ionic conductivity is shown above 60 degrees C, at the temperature of 20 degrees C or less, ionic conductivity falls remarkably. Therefore, it was difficult to include in goods with versatility which is used at low temperature. The method of introducing low molecular weight PEO into the side chain of vinyl system polymer as a method of raising ionic conductivity using low molecular weight PEO is reported to Polymer, and 25 and 1600 (1984) by D.J.Banistar and others. However, although these polymeric materials formed Li salt and the complex, its ionic conductivity in low temperature was inadequate. The material which furthermore introduced low molecular weight PEO into the side chain of a polysiloxane is Journal. of Power Although indicated by Sourse, 20,327 (1987) and JP,63-136409,A, and JP,2-265927,A, utilization is not carried out by which reason a synthetic prescription which is not [that ionic conductivity is inadequate or] amorphous is not easy for nil why it is liquefied and the mechanical strength inferior to processability and a moldability is inadequate. Although the hydrosilylation bridge formation object compound of a PEO side chain, the polysiloxane which has a SiH basis, and the olefin which has a polyethylene oxide in a principal chain was indicated by JP,3-115359,A, ionic conductivity was quite as low as about -one 4.9x10-6 Scm, and was not satisfactory.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention] The solid polymer electrolyte which the hardenability constituent for solid polymer electrolytes of this invention excels [solid polymer electrolyte] in processability, and is obtained from the hardenability constituent for solid polymer electrolytes of this invention has high ionic conductivity, and the temperature dependence has small still more sufficient mechanical strength. Moreover, the lithium-polymer battery produced using this solid polymer electrolyte has the outstanding electrochemical property.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] this invention shows high ionic conductivity and offers the hardenability constituent which gives the solid polymer electrolyte excellent also in the mechanical strength.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

MEANS

[Means for Solving the Problem] this invention relates to the hardenability constituent for solid polymer electrolytes which uses (A) - (D) as an indispensable component.

(A) The polysiloxane (B) benzene ring which has a SiH basis, siloxy combination (combination which consists of Si-O-Si), a carbonyl group, amide combination, and (Compound C) hydrosilylation (catalyst D) electrolyte salt compound that has two or more ARUKENIRU machines which have the structure chosen from the group which consists of an amino group. [0006]

[Embodiments of the Invention] [A component] If it is the polysiloxane which has a SiH basis as a (A) component of this invention, it can be used that there is no limit of a well-known thing conventionally.

[0007] (A) the polysiloxane which is a component -- as the substituent on a silicon atom -- a polyethylene oxide, annular carbonate structure, and/or cyclic ether structure -- having -- in addition -- and it is desirable that it is what has two or more SiH bases

[0008] (A) When the polysiloxane which is a component is what has a polyethylene oxide as a substituent on a silicon atom, it is desirable that 10% - 95% of the silicon atom in the polysiloxane which is the (A) component has as a substituent the polyethylene oxide whose polymerization degree of an oxyethylene unit is 1-12, and it is still more desirable that 40% - 90% of the silicon atom in a polysiloxane has as a substituent the polyethylene oxide whose polymerization degree of an oxyethylene unit is 1-12.

[0009] (A) When the polysiloxane which is a component has a polyethylene oxide as a substituent on a silicon atom, as for the (A) component, it is desirable that it is what is expressed with the following structures.

[0010]

[Formula 1]

Me

Me

Me

SiO

SiO

SiMe

$$(CH_2)_3(OCH_2CH_2)_pOCH_3$$

R

(m and n are one or more integers among a formula, respectively, and p is the integer of 1-12.) R expresses a hydrogen atom or the hydrocarbon group of carbon numbers 1-20, and when n is two or more, even if R is the same respectively, it may differ However, at least one of R is a hydrogen atom. In addition, how to locate in a line m repeat units [n] and the existing repeat unit is order different. In addition, although the (A) component of this invention has one or more SiH bases in a molecule, it is more desirable that it is what has two or more SiH bases (that is, at least two of R in an upper formula should be a hydrogen atom).

[0011] Moreover, when the (A) component is expressed with an upper formula, it is desirable that the rate of introduction of a polyethylene oxide (it expresses with Following G%) shown below is 10% - 95%, and it is still more desirable that it is 40% - 90%.

When the polysiloxane which is G=[m/(m+n +2)] x100 (A) component has a polyethylene oxide as a substituent on a silicon atom, since it has the polyethylene oxide in the side chain of a polysiloxane, the dielectric constant of the (A) component becomes high, and it excels in the capacity which dissolves a supporting electrolyte and is dissociated. Moreover, since it has the siloxane in the http://www4.ipdl.jpo.go.jp/cgi-bin/tran_web_cgi_ejje 6/4/2003

principal chain, a glass transition temperature is low and makes movement of ion easy. Moreover, the hot stability of such a high molecular compound is also high. Therefore, in the conventional polyelectrolyte, the degradation prevention in the elevated temperature which has not been attained and the manifestation of high ion conductivity in low temperature were attained by this invention. [0012] (A) When the polysiloxane which is a component has annular carbonate structure in the substituent on a silicon atom, as for the (A) component, it is desirable that it is what is expressed with the following structures.

[0013]

(m and n are one or more integers among a formula, respectively.) R expresses a hydrogen atom or the hydrocarbon group of carbon numbers 1-20, and when n is two or more, even if R is the same respectively, it may differ However, at least one of R is a hydrogen atom. In addition, how to locate in a line m repeat units [n] and the existing repeat unit is order different.

In addition, although the (A) component of this invention has one or more SiH bases in a molecule, it is more desirable that it is what has two or more SiH bases (that is, at least two of R in an upper formula should be a hydrogen atom).

[0014] (A) When the polysiloxane which is a component has cyclic ether structure in the substituent on a silicon atom, as for the (A) component, it is desirable that it is what is expressed with the following structures.

(m and n are one or more integers among a formula, respectively.) R expresses a hydrogen atom or the hydrocarbon group of carbon numbers 1-20, and when n is two or more, even if R is the same respectively, it may differ However, at least one of R is a hydrogen atom. In addition, how to locate in a line m repeat units [n] and the existing repeat unit is order different.

In addition, although the (A) component of this invention has one or more SiH bases in a molecule, it is more desirable that it is what has two or more SiH bases (that is, at least two of R in an upper formula should be a hydrogen atom).

[0016] (A) When the polysiloxane which is a component has annular carbonate structure or cyclic ether structure in the substituent on a silicon atom, the dielectric constant of the (A) component becomes high and excel in the capacity which dissolves a supporting electrolyte and is dissociated. Moreover, since it has the siloxane in the principal chain, a glass transition temperature is low and

makes movement of ion easy. Moreover, the hot stability of such a high molecular compound is also high. Therefore, in the conventional polyelectrolyte, the degradation prevention in the elevated temperature which has not been attained and the manifestation of high ion conductivity in low temperature were attained by this invention.

[0017] As for the weight average molecular weight Mw (polystyrene conversion) of the polysiloxane which is the (A) component of this invention, it is desirable that it is 600-100000, and it is still more desirable that it is 2000-100000.

[B component] If it is the compound which has two or more alkenyl machines which have the structure chosen from the group which consists of the benzene ring, siloxy combination (combination which consists of Si-O-Si), a carbonyl group, amide combination, and an amino group as a (B) component of this invention, it can be used that there is no limit of a well-known thing conventionally.

[0018] (B) as a component -- this -- be better and the ranges of molecular weight are 80-1000 [0019] (B) As an example of a component, it is bisphenol A diaryl ether, 2, and 2'-diaryl bisphenol A, diarylamine, divinylbenzene, diallyl malete, 1, 3-diaryl urea, diaryl succinate, diaryl carbonate, diallyl dicarbonate, diallyl-phthalate, 1, and 3-divinyl. - It is 1, 1, 3, and 3-tetramethyl disiloxane, 1, and 3-divinyl. - 1, 1, 3, and 3-tetramethyl disiloxane, allyl-compound end acrylic polymer, etc. are mentioned.

[C component] As a (C) component of this invention, if it is a hydrosilylation catalyst, it can be used that there is no limit of a well-known thing conventionally.

[0020] (C) As a component, what is chosen from a platinum compound, a ruthenium compound, or a rhodium compound is desirable, and it is still more desirable that it is a platinum compound. [0021] (C) As a thing desirable as a component, for example, a platinum vinyl siloxane, a chloroplatinic acid, Pt(COD) 2, etc. are mentioned. [D component] As a (D) component of this invention, if it is an electrolyte salt compound, it can be used that there is no limit of a well-known thing conventionally.

[0022] (D) The cation chosen from the group which consists of a metal cation, an ammonium ion, friend JINIUMU ion, and GUANIJIUMU ion as a component, A chloride ion, bromine ion, iodine ion, perchloric acid ion, thiocyanic-acid ion, Tetrafluoro boron acid ion, a nitrate ion, AsF6-, PF6-, Stearyl sulfonic-acid ion, octyl sulfonic-acid ion, the dodecylbenzenesulfonic acid ion, naphthalene sulfonic-acid ion, R1SO3-, N(R(R1SO2)2SO2)-, and (R1SO2) (R2SO2) (R3SO2) C-[--R1, R2, and R3 show an electronic suction nature machine] a shell -- it is desirable that it is the compound which consists of an anion chosen from a group [0023] Moreover, as for R1SO3-, N(R(R1SO2)2SO2)- and (R1SO2) (R2SO2) (R3SO2) C-, and inner R1, R2 and R3, it is desirable that carbon numbers are the perfluoroalkyl machines or perfluoro aryl groups from 1 to 6 respectively independently.

[0024] (D) As for the metal cation of a component, it is desirable that it is the cation of the metal chosen from the metal belonging to periodic-table 1 group or two groups, transition metals, Mn, Fe, Co, nickel, Cu and Zn, and Ag metal, and it is desirable that it is especially the ion of Li. [0025] (D) as a component -- concrete -- LiClO4, LiPF6, LiBF4, and LiCF3 -- SO3, LiN (CF3SO2)2, or especially Li (C2F5SO2)2 is desirable In the hardenability constituent for solid polymer electrolytes of this invention, it is desirable still more desirable that it is 0.01-5.0, and the mole ratios of the (A) component and the (B) component are 0.05-3.0. (C) It is desirable still more desirable that it is 0.000001-0.1 mols to one mol of double bonds of the (B) component, and the hydrosilylation catalyst which is a component is 0.00001-0.01 mols. (D) It is desirable still more desirable that 0.01 millimole -10 millimole content is carried out into 1g of hardenability constituents for solid polymer electrolytes, and the electrolyte salt compound which is a component is the range of 0.10 millimole -5.0 millimole.

[0026] Although the hardenability constituent for solid polymer electrolytes of this invention has sufficient ionic conductivity, it may make the organic electrolytic solutions, such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, gamma-butyrolactone, 1, 3-dioxolane, dimethoxyethane, a tetrahydrofuran, dimethyl sulfoxide, and a polyethylene-glycol wood ether, add, when still higher ionic conductivity is required. Furthermore,

you may add a high molecular compound, other amphiphilic compounds, etc. 10 - 90% of the amount of the point of coexistence with ionic conductivity and intensity to this organic electrolytic solution is desirable to the (A) component, and is still more desirable. [30 - 70% of]

[0027] The hardenability constituent for solid polymer electrolytes of this invention constructs a bridge by the hydrosilylation reaction, and has the 3-dimensional network structure. Therefore, it is possible to attain the fluid prevention which was a problem, improvement in a mechanical strength, and improvement in processability and a moldability by the conventional polyelectrolyte. [Solid electrolyte manufacturing method] Although the polysiloxane which has the SiH basis which is the (A) component of this invention is compounded by the method shown below, it is not limited to this method.

[0028] After making the polyethylene oxide which has a hydrosilylation catalyst and an end olefin drop and hydrosilylate among a solvent to a polyorgano hydrogen siloxane and stirring enough, the polysiloxane which has a polyethylene oxide in a substituent is obtained by carrying out reduced pressure removal of the solvent. As for the weight average molecular weight Mw (polystyrene conversion) of the polysiloxane used here, it is desirable that it is 2000-100000. Although especially the solvent used here is not limited, as a desirable thing, toluene etc. is mentioned, for example. Although especially reaction temperature is not limited, it is desirable to carry out at room temperature -100 degree C. Moreover, as for the ratio (mole ratio of an olefin machine / SiH basis) of the SiH basis in the polyethylene oxide which has the end olefin to add, and a polysiloxane, it is desirable that it is in the range of 0.10-0.95. Furthermore, it is desirable that it is in the range of 0.40-0.90. The ranges especially of a desirable thing are 0.50-0.85. Although especially a hydrosilylation catalyst is not limited, a platinum compound, a rhodium compound, and a ruthenium compound are desirable. A platinum vinyl siloxane, a chloroplatinic acid, etc. are mentioned as an example. [0029] The method of this invention can be enforced with a batch method, a semi batch method, or continuous system. This reaction container is for example, a continuous stirring tank reaction container, and it deals in it. As for this method, it is desirable that a batch type or continuous system performs.

[0030] Thus, after mixing the compound which has two or more ARUKENIRU machines which have the structure chosen from (B) benzene ring, siloxy combination, a carbonyl group, amide combination, and the group that consists of an amino group, (C) hydrosilylation catalyst, and (D) electrolyte salt compound to the polysiloxane which has obtained (A) SiH basis, the film for solid polymer electrolytes can be obtained by heating. Although especially the temperature of a hardening reaction is not limited, the range of room temperature -150 degree C is desirable, and the range which is room temperature -120 degree C is still more desirable. The range of 70 to 100 degrees C is especially preferably desirable.

[0031] There are especially no restrictions in the manufacture method of the hardenability constituent for solid polymer electrolytes in this invention. Moreover, the kind of reaction container is not important. However, in order to prevent side reaction, it is desirable to carry out in the reaction container formed with non-reactivity material.

[Cell production] If the hardenability constituent for solid polymer electrolytes shown by this invention is used, it will have the flexibility which is the advantage of a macromolecule and the solid electrolyte of a large area thin film configuration will be obtained easily. Production of the lithium-polymer battery using the showing [by this invention] solid electrolyte is possible. In this case, as a thing desirable as a positive-electrode material, a lithium-manganese multiple oxide, a cobalt acid lithium, a vanadium pentoxide, the poly acene, the poly pyrene, the poly aniline, a polyphenylene, polyphenylene sulfide, a polyphenylene oxide, polypyrrole, the poly furan, the poly azulene, other sulfur compounds, etc. are mentioned, for example. As a thing desirable as a negative-electrode material, an intercalation compound, a lithium-lead alloy, etc. to which occlusion of a lithium metal and the lithium was carried out, for example between graphite or the layer of carbon are mentioned. Moreover, using as a diaphragm of the ion electrode of cations, such as alkali-metal ion, Cu ion, calcium ion, and Mg ion, is also considered using the high electrical conductivity of the solid electrolyte of this invention.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EXAMPLE

[Example] Next, although the example of this invention is explained concretely, this invention is not limited to the following examples.

(Example 1) Poly methyl hydrogen siloxane 4g, toluene about 10g, and platinum vinyl siloxane 1.2x10-3mmol were added to the reaction container, and it stirred with the reaction temperature of 80 degrees C. Polyethylene-oxide 24g (58mmol) of the average molecular weight 400 [about] which has an allyl group at the end was dropped into this mixture. The reaction 3 hours after a dropping end was terminated, and reduced pressure removal of the toluene was carried out. Consequently, 74% of polysiloxane was obtained for the rate of introduction of a polyethylene oxide (the silicon atom which has a polyethylene oxide in the inside of all the silicon atom of a polysiloxane as a substituent comparatively). To polysiloxane 3.0g of the acquired polyethylene-oxide denaturation, what dissolved bisphenol A diaryl ether 73mg (0.24mmol), platinum vinyl siloxane 7.2x10-4mmol, and LiClO4108mg (1.0mmol) in THFabout 1ml was mixed, and it heated at 80 degrees C to it for 4 hours using the press machine. As a result, the transparent and colorless thin film-like matter was obtained. Platinum was used as the electrode and the ionic conductivity of this obtained thin film-like matter was computed by the complex impedance method using voltage 0.5V and the alternating current anodizing process of 42Hz - 5MHz of frequency ranges. Consequently, the ionic conductivity in 25 degrees C was 1.5x10-4 S/cm.

(Example 2) Li(CF3SO2)2N947mg (Li/EO=0.08) was dissolved in the thing which acetonitrile about 1ml was made to dissolve in polysiloxane (rate of denaturation: 50%) 3.0g of the polyethylene-oxide denaturation acquired by the same method as an example 1. Bisphenol A diaryl ether 131mg (0.43mmol) and platinum vinyl siloxane 20x10-4mmol were mixed in this solution, and the law was evaded in it. The above-mentioned solution was sunk into the polypropylene nonwoven fabric as reinforcing materials, and it hardened in 90 degrees C and 6-hour air. The electrolyte film with a thickness of 130 micrometers was obtained in the above-mentioned procedure. (Example 3)

LiCoO2 positive electrode for polymer electrolyte sinking in below [a trial production of LiCoO2 positive electrode] was produced.

- electrode composition: -- LiCoO2:graphite: -- acetylene black [:P] VdF=87:9:1:3 and electrode density: -- 2.68g (38% of porosity)/cc
- electrode thickness: -- 51 micrometer and electrode conductivity: -- it dipped in the non-crosslinked-polymer solution of example 2 publication, and vacuum impregnation was carried out to LiCoO2 positive electrode for 1.2x10-2 S/cm sinking in for bottom 1 hour of reduced pressure dense by making it harden in 90 degrees C and 6-hour air degree: -- the positive electrode of 3.12g [// cc] and electrode conductivity:8.8x10-3 S/cm -- profit ****. (Example 4)

[A trial production of a cell]

- Positive electrode: LiCoO2 electrode produced in the example 3 1.0x1.0cm2 and a negative electrode: A lithium metal, area 1.2x1.2cm2 and an electrolyte film: Electrolyte film produced in the example 2 Thickness The lithium-polymer battery was produced with 130-micrometer composition. About the cell produced by the [initial alternating current impedance-characteristic] above, the initial alternating current impedance characteristic was evaluated in frequency:20000-0.1Hz, deltaV:10mV, temperature:25 degree C, and 60 degrees C. The result was shown in Table 1, drawing 1, and http://www4.ipdl.jpo.go.jp/cgi-bin/tran_web_cgi_ejje

<u>drawing 2</u>. [0033] [Table 1]

表1. 初期インピーダンス特性

電解質膜	厚み (μm)	温度	初期パルク抵抗 (Ω · c m2)	初期界面抵抗 (Ω・c m2)
PE05 Li(CF3SO2)2N	130	25℃	81 (1.6×10⁴S/cm)	355
		60℃	8 (1.6×10 ⁻³ S/cm)	53

The bulk resistors resulting from an electrolyte were the 8 ohm-cm 2 (ionic conductivity: 1.6x10-3 S/cm) at 25 degrees C in 2 (ionic conductivity: 1.6x10-4 S/cm) or 60 degree C of 81 ohm-cm. Moreover, the interfacial resistance considered to originate in a lithium interface also showed the 53 ohm-cm 2 and the good value at 25 degrees C by 2 (ionic conductivity: 1.3x10-4 S/cm) or 60 degree C of 355 ohm-cm.

The initial charge-and-discharge property was evaluated by the following conditions about the cell produced by the [initial charge-and-discharge property] above.

- Measurement temperature: 60 degree C and charge-and-discharge conditions Charge; Constant current (0.1CA:0.16 mAh/cm2)

Constant voltage (4.2V vs Li/Li+) 12 hours Electric discharge; Constant current (0.1CA:0.16 mAh/cm2)

Termination (3.0V vs Li/Li+)

The initial charge-and-discharge curve was shown in <u>drawing 3</u>. Initial capacity was 127 mAh/g, initial efficiency was 84.5%, and charge and discharge were possible. In PIDAN after 1 cycle end The SU property was shown in <u>drawing 4</u>. Resistance which originates in a 187-ohm positive-electrode interface by charge and discharge It was generated.

About the cell produced by the [preservation property] above, the preservation property was evaluated by 60 degrees C and the charge state. The impedance measurement result of after (200 hours and 500 hours) was shown in <u>drawing 5</u>, <u>drawing 6</u>, and Table 2. [0034]

[Table 2]

表 2 . 保存時のインピーダンス変化 (60℃)

電解質膜	時間	初期パルク抵抗 (Ω・c m2)	界面抵抗1 (Ω・c m2)	界面抵抗2 (Ω · c m2)
PE05 Li(CF3SO3)2N	0時間	8	68	187
	200時間	8	76	168
	500時間	9	95	235

Change of a bulk resistor was not accepted after 500-hour preservation. Moreover, although it increased by 187 to 235 ohms, and 1.3 times about the resistance component considered to originate in a 95-ohm [68 to], and 1.4 time and positive-electrode side (oxidization side) about the resistance component considered to originate in a lithium side (reduction side) about an interfacial resistance, it had fundamental stability to electrochemical oxidation and reduction. Moreover, it is the same as that

of the first stage also about the charge-and-discharge property after preservation, and big degradation was not accepted.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is drawing showing the Cole-Cole plot in 25 degrees C of the lithium-polymer battery using the solid polymer electrolyte of this invention.

[Drawing 2] It is drawing showing the Cole-Cole plot in 60 degrees C of the lithium-polymer battery using the solid polymer electrolyte of this invention.

[Drawing 3] It is drawing showing the oxidation-reduction reaction property of the lithium-polymer battery using the solid polymer electrolyte of this invention.

[Drawing 4] It is drawing showing the Cole-Cole plot in 60 degrees C after the lithium-polymer battery 1 cycle charge and discharge using the solid polymer electrolyte of this invention.

[Drawing 5] It is drawing showing the Cole-Cole plot in 60 degrees C after 60 degrees C / 200-hour preservation of the lithium-polymer battery using the solid polymer electrolyte of this invention.

[Drawing 6] It is drawing showing the Cole-Cole plot in 60 degrees C after 60 degrees C / 500-hour preservation of the lithium-polymer battery using the solid polymer electrolyte of this invention.

[Drawing 7] It is drawing showing the oxidation-reduction reaction property after 60 degrees C / 500-hour preservation of the lithium-polymer battery using the solid polymer electrolyte of this invention.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 3]

Li/K-SPE/LiCoO2-K-SPE

図3. 電池初期充放電特性

[Drawing 7]

図7. 500時間保存後充放電特性

[Drawing 1]

図1. 初期インピーダンス特性(25℃)

[Drawing 2] Li/K-SPE/LiCoO₂-K-SPE

図2. 初期インピーダンス特性(60℃)

[Drawing 4] Li/K-SPE/LiCoO₂-K-SPE

図4. 初期インピーダンス特性(60℃) (1サイクル充放電後)

[Drawing 5] Li/K-SPE/LiCoO₂-K-SPE

図5. 初期インピーダンス特性(60℃) (60℃ 200時間保存後)

[Drawing 6] Li/K-SPE/LiCoO₂-K-SPE

