# Advanced Programming in Python (AI 853)

**Assignment 04** 



Due Date: 29/11/2022

Submitted by: Bilal Ubaid (Reg. No: 399675)

Discipline: Robotics and Intelligent Machines Engineering (RIME)

Submitted to: Dr. Muhammad Jawad Khan

SCHOOL OF MECHANICAL AND MANUFACTURING ENGINEERING (SMME)

### **DRAWING A CIRCLE USING TURTLE LIBRARY**

#### **CODE:**

```
1
     # -*- coding: utf-8 -*-
 2
 3
     Created on Tue Nov 29 11:43:31 2022
 5
     @author: billu
 6
 7
 8
     import turtle
 9
     x= turtle.Turtle ()
10
     def circle(angle):
11
             x.forward(100)
12
             x.right(angle )
13
             x.forward(5)
14
             x.right(angle )
15
             x.forward(100)
             #x.right(angle )
16
17
             #x.forward(100 )"""
18
             x.right(angle+1)
19
     for i in range(90):
20
         circle(90)
```

#### **RESULTS:**



## **MATH LIBRARY FUNCTIONS:**

| math.acos()  | Returns the arc cosine of a number                 |
|--------------|----------------------------------------------------|
| math.acosh() | Returns the inverse hyperbolic cosine of a number  |
| math.asin()  | Returns the arc sine of a number                   |
| math.asinh() | Returns the inverse hyperbolic sine of a number    |
| math.atan()  | Returns the arc tangent of a number in radians     |
| math.atan2() | Returns the arc tangent of $y/x$ in radians        |
| math.atanh() | Returns the inverse hyperbolic tangent of a number |
| math.ceil()  | Rounds a number up to the nearest integer          |

| r                | T                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------|
| math.comb()      | Returns the number of ways to choose k items from n items                                                |
|                  | without repetition and order                                                                             |
| math.copysign()  | Returns a float consisting of the value of the first parameter and                                       |
|                  | the sign of the second parameter                                                                         |
| math.cos()       | Returns the cosine of a number                                                                           |
| math.cosh()      | Returns the hyperbolic cosine of a number                                                                |
| math.degrees()   | Converts an angle from radians to degrees                                                                |
| math.dist()      | Returns the Euclidean distance between two points (p and q),                                             |
|                  | where p and q are the coordinates of that point                                                          |
| math.erf()       | Returns the error function of a number                                                                   |
| math.erfc()      | Returns the complementary error function of a number                                                     |
| math.exp()       | Returns E raised to the power of x                                                                       |
| math.expm1()     | Returns E <sup>x</sup> - 1                                                                               |
| math.fabs()      | Returns the absolute value of a number                                                                   |
| math.factorial() | Returns the factorial of a number                                                                        |
| math.floor()     | Rounds a number down to the nearest integer                                                              |
| math.fmod()      | Returns the remainder of x/y                                                                             |
| math.frexp()     | Returns the mantissa and the exponent, of a specified number                                             |
| math.fsum()      | Returns the sum of all items in any iterable (tuples, arrays, lists,                                     |
| main:isam()      | etc.)                                                                                                    |
| math.gamma()     | Returns the gamma function at x                                                                          |
| math.gcd()       | Returns the greatest common divisor of two integers                                                      |
| math.hypot()     | Returns the Euclidean norm                                                                               |
| math.isclose()   | Checks whether two values are close to each other, or not                                                |
| math.isfinite()  | Checks whether a number is finite or not                                                                 |
| math.isinf()     | Checks whether a number is infinite or not                                                               |
| math.isnan()     | Checks whether a value is NaN (not a number) or not                                                      |
|                  | Rounds a square root number downwards to the nearest integer                                             |
| math.isqrt()     | Returns the inverse of $\frac{\text{math.frexp}()}{\text{math.frexp}()}$ which is $x * (2^{**}i)$ of the |
| math.ldexp()     | given numbers x and i                                                                                    |
| moth loamma()    | 8                                                                                                        |
| math.lgamma()    | Returns the log gamma value of x                                                                         |
| math.log()       | Returns the natural logarithm of a number, or the logarithm of number to base                            |
| moth 100100      |                                                                                                          |
| math.log10()     | Returns the base-10 logarithm of x                                                                       |
| math.log1p()     | Returns the natural logarithm of 1+x                                                                     |
| math.log2()      | Returns the base-2 logarithm of x                                                                        |
| math.perm()      | Returns the number of ways to choose k items from n items                                                |
| 4 0              | with order and without repetition                                                                        |
| math.pow()       | Returns the value of x to the power of y                                                                 |
| math.prod()      | Returns the product of all the elements in an iterable                                                   |
| math.radians()   | Converts a degree value into radians                                                                     |
| math.remainder() | Returns the closest value that can make numerator completely                                             |
| 41               | divisible by the denominator                                                                             |
| math.sin()       | Returns the sine of a number                                                                             |
| math.sinh()      | Returns the hyperbolic sine of a number                                                                  |
| math.sqrt()      | Returns the square root of a number                                                                      |
| math.tan()       | Returns the tangent of a number                                                                          |
| math.tanh()      | Returns the hyperbolic tangent of a number                                                               |
| math.trunc()     | Returns the truncated integer parts of a number                                                          |

## **NUMPY LIBRARY FUNCTIONS:**

| numpy.shape()        | The elements of the shape tuple give the lengths of the               |
|----------------------|-----------------------------------------------------------------------|
|                      | corresponding array dimensions.                                       |
| numpy.type()         | describes how the bytes in the fixed-size block of memory             |
|                      | corresponding to an array item should be interpreted.                 |
| numpy.arange()       | Makes an array from 0 to the number added as an argument.             |
| arr = np.array([1,   | Slices the array backwards starting from the first element entered to |
| 2, 3, 4, 5, 6, 7])   | back.                                                                 |
| print(arr[-3:-1])    |                                                                       |
| Arr=np.arrange(4).   | Multiplies the 2 matrices.                                            |
| reshape((2, 2))      |                                                                       |
| print arr            |                                                                       |
| print arr.T • print  |                                                                       |
| np.dot(arr.T, arr) • |                                                                       |
| print np.dot(arr,    |                                                                       |
| arr.T)               |                                                                       |