CAPITOLUL 2. FIZICA AEROSTATULUI

2.1 PRINCIPIUL LUI ARHIMEDE

Arhimede a fost un renumit matematician și fizician grec, considerat unul dintre cei mai de seamă savanți din Antichitate. În fizică a stabilit legile pârghiilor și este autorul legii care-i poartă denumirea.

Legea lui Arhimede: "Asupra unui corp scufundat în lichid (sau în gaz) acționează o forță orientată vertical în sus egală numeric cu ponderea lichidului (sau a gazului) dezlocuit de acest corp".

Fig. 2.1 Prezentarea funcționării legii lui Arhimede pe cale experimentală [Fizica cl. 7]

Funcționarea și logica legii lui Arhimede se poate observa la introducerea oricărui corp într-un vas cu lichid. Experimental putem lua un corp, paralelipiped drept scufundat într-un vas cu apă fig. 2.2. Pe suprafața superioară și cea inferioară vor acționa 2 forțe de sens contrar.

Asupra bazei de sus acționează forța F_1 , iar pe baza de jos F_2 :

$$F_1 = p_1 \cdot S = \rho g h_1 \cdot S$$
 și $F_2 = p_2 \cdot S = \rho g h_2 \cdot S$

Unde:

- S este aria bazei
- ullet h_1 înălțimea coloanei de apă la baza superioară
- ullet h_2 înălțimea coloanei de apă de la baza inferioară la nivelul liber al lichidului

Fig. 2.2 Paralelipiped drept scufundat într-un vas cu apă [Fizica cl. 7]

Observăm că $h_2>h_1$, respectiv rezultă că $F_2>F_1$, diferența acestor forțe ne va rezulta forța Arhimede:

$$F_A = F_2 - F_1 =
ho \cdot g \cdot S \cdot (h_2 - h_1)$$

Unde:

- ullet F_A notată forța Arhimede
- ρ densitatea lichidului
- $S \cdot (h_2 h_1) \equiv V_d$ volumul corpului, care este egal și cu volumul lichidului care îl dezlocuiește

Deci forța Arhimede poate fi rescrisă ca: $F_A = \rho \cdot g \cdot V_d$ (1)

2.2 EXEMPLE DE CALCUL A FORȚEI ASCENSIONALE

Având la bază legea lui Arhimede, putem deduce forța ascensională al unui corp umplut cu gaz care plutește în aer:

$$F_a = (\rho_a - \rho_g) \cdot g \cdot V \tag{2}$$

Unde:

- ullet F_a forța ascensională
- ρ_a densitatea aerului în afara corpului
- ullet ho_g densitatea gazului din interiorul corpului
- *g* accelerația gravitațională
- ullet V volumul corpului

Pentru calcule se vor utiliza următoarele constante:

Symbol	Denumire	Valoare	U.M.
P_a	Presiunea absolută	101325	Pa
$ ho_{aer}$	Densitatea aerului din atmosfera la $20^{\circ}C$	1.20408	kg/m^3
$ ho_H$	Densitate hidrogen	0.0899	kg/m^3
$ ho_{He}$	Densitate heliu	0.1785	kg/m^3
$ ho_{a50}$	Densitatea aerului încălzit la $50^{\circ}C$	1.0923	kg/m^3
$ ho_{a80}$	Densitatea aerului încălzit la $80^{\circ}C$	0.9995	kg/m^3
g	Constanta gravitațională	9.80665	m/s^2

Se va efectua calculul pentru două cazuri, în ambele se va căuta cel mai eficient gaz dintre hidrogen, heliu, aer la $50^{\circ}C$ și aer la $80^{\circ}C$. Primul caz urmează determinarea forței ascensionale la volum impus, în al doilea caz se va determina volumul necesar pentru forța ascensională impusă. Calculele se efectuiază pentru un corp teoretic cu masă egală a aerului utilizat situat în atmosferă cu presiune de 1 bar și aer cald la $20^{\circ}C$.

CAZUL 1

Se determină
$$F_a = (
ho_a -
ho_g) \cdot g \cdot V$$
 , unde $V = 0 \div 300 \ \ [ext{m}^3]$

```
def forta_ascensionala(rho_a, rho_g, V):
    F = (rho_a-rho_g)*g*V
    return F

V = list(range(10, 301, 10)) # m3
Fa = {x: [forta_ascensionala(rho_aer, Gaz[x], Vx) for Vx in V] for x in Gaz} # N
```


Fig. 2.3 Forța ascensională pentru volum impus

În fig. 2.3 se observă o creștere liniară, cu cea mai mare forță obținută pentru hidrogen și cea mai mică la aerul încălzit la $50^{\circ}C$. Respectiv volumul necesar pentru o forță impusă la toate cele 4 gaze se așteaptă la hidrogen cu valoarea cea mai mică.

CAZUL 2

Se determină
$$V=rac{F_a}{(
ho_a-
ho_q)\cdot g}$$
 , unde $F_a=100\div 3000$ $\mathrm{[N]}$

```
def volum_necesar(F, rho_a, rho_g):
    V = F/((rho_a - rho_g) * g)
    return V

Fa = list(range(0, 3001, 100)) # N
    V = {x: [volum_necesar(Fx, rho_aer, Gaz[x]) for Fx in Fa] for x in Gaz} # m3
```


Fig. 2.4 Volumul pentru forța ascensională impusă

După cum și s-a așteptat, pozițiile sunt identice, cel mai mic volum este la hidrogen, iar cel mai mare la aerul încălzit la $50^{\circ}C$. Pe grafic se mai poate observa că la forțe ascensionale mari, aerul cu o temperatură de $50^{\circ}C$ este puțin eficient.

2.3 COMPORTAREA AEROSTATELOR LA VANT LATERAL