# Segmentation de clients

**Thomas Weber** 

#### Introduction

- Datazon cherche à comprendre ses différents types de clients afin de pouvoir réaliser des operations marketing plus ciblées et efficaces
- Source des données: 1 an de transactions (déc. 2010 déc. 2011) : environ 500 000 transactions
- Objectif:
  - Trouver des variables qui permettent de catégoriser les différents types de clients
  - Effectuer un clustering représentatif
  - Entraîner ensuite un modèle de classification qui soit capable de catégoriser de nouveaux clients

### Nettoyage

- CustomerID: suppression des valeurs manquantes
- Pays: limitation au Royaume-Uni (+90% des transactions)
- Suppression des doublons (env. 5 000 lignes)
- StockCode: suppression des valeurs non pertinentes
- Quantity: suppression des outliers (> 50000)

```
In [61]:
         df.nunique()
Out[61]:
         InvoiceNo
                         19641
         StockCode
                          3654
         Description
                          3853
         Quantity
                           418
         InvoiceDate
                         18273
         UnitPrice
                           435
         CustomerID
                          3942
         Price
                          3642
         Cancelled
         dtype: int64
```

## Feature engineering

• Création de 2 variables:

- Prix total payé par article:
   Price = Quantity \* UnitPrice
- Si la commande est une annulation (valeur booléenne):
   Cancelled = True if InvoiceNo starts with 'C'

## Exploration – Panier moyen



## Exploration - Saisonnalité



#### Sélection des features – Score RFM

- Métrique de base dans la segmentation client:
  - R pour Recency: nombre de jours depuis la dernière transaction
  - F pour Frequency: nombre de transactions
  - M pour Monetary value: montant total des commandes

| Customer   | Recency | Frequency | Monetary | R | F | М |
|------------|---------|-----------|----------|---|---|---|
| Α          | 53 days | 3 tran.   | \$230    | 2 | 2 | 2 |
| B 120 days |         | 10 tran.  | \$900    | 3 | 3 | 2 |
| С          | 10 days | 1 tran.   | \$20     | 1 | 1 | 1 |

#### Sélection des features

- 3 features supplémentaires:
  - Client\_since: nombre de jours depuis la 1<sup>e</sup> transaction
  - Quantity\_mean: quantité moyenne commandée par article
  - Cancel\_rate: taux d'annulation des commandes

## Clustering - Préparation

 Passage d'une liste de transactions à une table clients

Vérification des corrélations

- Transformation des variables:
  - Passage au log
  - Standardisation
  - ACP (3 composantes)



## Clustering - KMeans

- Nombre de clusters testés: 2 à 9
- Calcul du coefficient de silhouette
- Affichage des valeurs médianes de chaque cluster
- Affichage des clusters selon les axes RFM

• Nombre de clusters retenu: 5



## Clustering – Choix entre 4 et 5 clusters

- 5 groupes identifiés:
  - « Meilleurs clients »: ceux qui achètent le plus, le plus souvent (top 15%)
  - « Client réguliers »
  - « Grossistes »: ceux qui achètent de grandes quantités
  - « Clients perdus »: ceux qui ont acheté une fois au moins mais ne sont pas revenus depuis longtemps
  - « Nouveaux clients »: un achat récent

|           | recency          | client_since   | frequency | quantity_mean          | monetary_value    | cancel_rate          | cluster_size        | size_pct               |
|-----------|------------------|----------------|-----------|------------------------|-------------------|----------------------|---------------------|------------------------|
| cluster   |                  |                |           |                        |                   |                      |                     |                        |
| 0         | 31               | 50             | 1         | 9.666667               | 335.00            | 0.000000             | 854                 | 21.869398              |
| 1         | 16               | 317            | 6         | 10.404580              | 2128.83           | 0.009434             | 1295                | 33.162612              |
| 2         | 166              | 263            | 2         | 7.928571               | 365.27            | 0.000000             | 1511                | 38.693982              |
| 3         | 127              | 260            | 2         | 41.545455              | 601.56            | 0.100000             | 245                 | 6.274008               |
|           |                  |                |           |                        |                   |                      |                     |                        |
|           |                  |                |           |                        |                   |                      |                     |                        |
|           |                  |                |           |                        |                   |                      |                     |                        |
|           | recency          | client_since   | frequency | quantity_mean          | monetary_value    | cancel_rate          | cluster_size        | size_pct               |
| cluster   | recency          | client_since   | frequency | quantity_mean          | monetary_value    | cancel_rate          | cluster_size        | size_pct               |
| cluster 0 | recency<br>211.0 | client_since   | frequency | quantity_mean 7.592593 | monetary_value    | cancel_rate          |                     | size_pct<br>27.989757  |
|           |                  |                |           |                        |                   |                      | 1093                | 27.989757              |
| 0         | 211.0            | 259.0          | 1.0       | 7.592593               | 286.79            | 0.000000             | 1093<br>558         | 27.989757              |
| 0         | 211.0            | 259.0<br>358.0 | 1.0       | 7.592593<br>11.563245  | 286.79<br>3878.31 | 0.000000<br>0.013333 | 1093<br>558<br>1209 | 27.989757<br>14.289373 |

## Clustering - Visualisation





## Stabilité du clustering

Jeu de données entier

|         | recency | client_since | rrequency | quantity_mean | monetary_value | cancel_rate | ciuster_size |
|---------|---------|--------------|-----------|---------------|----------------|-------------|--------------|
| cluster |         |              |           |               |                |             |              |
| 0       | 210.5   | 259.0        | 1.0       | 7.596296      | 286.265        | 0.000000    | 1094         |
| 1       | 33.0    | 281.0        | 4.0       | 9.333333      | 1125.070       | 0.000000    | 1209         |
| 2       | 7.0     | 358.0        | 11.0      | 11.563245     | 3878.310       | 0.013333    | 558          |
| 3       | 32.0    | 47.0         | 1.0       | 9.537313      | 329.340        | 0.000000    | 817          |
| 4       | 130.0   | 261.0        | 2.0       | 43.666667     | 601.560        | 0.111111    | 227          |
|         |         |              |           |               |                |             |              |

recency client\_since frequency quantity\_mean monetary\_value cancel\_rate cluster\_size cluster 37 9.579832 1091.855 0.000000 886 0 280 133 42.647059 252 2 612.430 0.142857 153 2 11.625000 354 3559.210 0.013245 455 217 259 7.601724 266.125 0.000000 826 9.400000 329.295 0.000000 608

Jeu d'entraînement (75%)

## Stabilité temporelle du clustering

Jeu de données entier

| JEU | ue | uuli | 111662 | endei |
|-----|----|------|--------|-------|
|     |    |      |        |       |
|     |    |      |        |       |

| Données jusqu'au | 31/8 |
|------------------|------|
| (env. 9 mois)    |      |

|         | recency | client_since | frequency | quantity_mean | monetary_value | cancel_rate | cluster_size |
|---------|---------|--------------|-----------|---------------|----------------|-------------|--------------|
| cluster |         |              |           |               |                |             |              |
| 0       | 210.5   | 259.0        | 1.0       | 7.596296      | 286.265        | 0.000000    | 1094         |
| 1       | 33.0    | 281.0        | 4.0       | 9.333333      | 1125.070       | 0.000000    | 1209         |
| 2       | 7.0     | 358.0        | 11.0      | 11.563245     | 3878.310       | 0.013333    | 558          |
| 3       | 32.0    | 47.0         | 1.0       | 9.537313      | 329.340        | 0.000000    | 817          |
| 4       | 130.0   | 261.0        | 2.0       | 43.666667     | 601.560        | 0.111111    | 227          |

|         | recency | client_since | frequency | quantity_mean | monetary_value | cancel_rate | cluster_size |
|---------|---------|--------------|-----------|---------------|----------------|-------------|--------------|
| cluster |         |              |           |               |                |             |              |
| 0       | 29.0    | 37.0         | 1.0       | 10.422222     | 303.680        | 0.000000    | 342          |
| 1       | 125.0   | 176.0        | 1.0       | 15.000000     | 381.820        | 0.222222    | 145          |
| 2       | 13.0    | 260.5        | 9.0       | 11.979651     | 3242.470       | 0.012821    | 402          |
| 3       | 154.0   | 173.0        | 1.0       | 7.312500      | 251.210        | 0.000000    | 1161         |
| 4       | 49.0    | 211.0        | 3.0       | 9.313853      | 944.055        | 0.000000    | 920          |

#### Classification

- 4 modèles:
  - Régression logistique
  - SVM
  - K-Nearest Neighbors
  - Random Forest
- 3 stratégies multi-classes:
  - OVO: One versus One
  - OVR: One versus Rest
  - CS: Crammer-Singer (uniquement SVM)
- Choix des hyper-paramètres par validation croisée

## Régression logistique

- Modèle de classification binaire
  - $y \in \{0, 1\}$
- Transformation logistique

$$Logistic(u) = \frac{1}{1 + e^{-u}}$$

• Prédiction de p(Y = 1|x)

$$p(Y = 1|x) = \frac{1}{1 + e^{-(\beta_0 + \sum_{j=1}^p \beta_j x_j)}}$$

 Calcul des paramètres par la méthode du maximum de vraisemblance



#### Classification multi-classes

#### **Stratégie One-versus-Rest**

- 1 classifieur par classe pour séparer les points de cette classe de tous les autres points
- Pour chaque point on a alors sa probabilité d'appartenir à chacune des k classes



#### Stratégie One-versus-One

- 1 classifieur par couple de classes (k(k-1) classifieurs en tout)
- Pour chaque point, la classe prédite en majorité est retenue

$$y \in \{0, 1, 2, \dots, K - 1\}$$

#### Résultats



#### Matrice de confusion

- Peu d'erreurs
- Client réguliers: le plus d'erreurs
  - Normal car c'est la classe
     « intermédiaire »
- Pas de confusion entre nouveaux clients et clients perdus



#### Nouveaux clients

- Paramètres de la régression logistique et de la standardisation sont exportés via pickle
- En entrée, le programme prend un fichier csv avec la liste des transactions (même format que le jeu de données)
- En sortie, il donne la liste des clients (id) avec le groupe auquel ils appartiennent

#### Nouveaux clients - Test

- Client 1: 4 transactions (tous les 3 mois à peu près)
- Client 2: 9 transactions (tous les 1-2 mois)
- Client 3: 1 transaction lors du dernier mois
- Client 4: 1 transaction il y a plus de 6 mois
- Client 5: 1 transaction, avec de très grosses quantités

```
CustomerID

1 Clients réguliers

2 Meilleurs clients

3 Nouveaux clients

4 Clients perdus

5 Grossistes

Name: cluster_name, dtype: object
```