AI25BTECH11018-Hemanth Reddy

Question:

Let **A** be a 2×2 matrix with non-zero entries and let $\mathbf{A}^2 = \mathbf{I}$, where **I** is 2×2 identity matrix. Define

 $Tr(\mathbf{A})$ - sum of diagonal elements of \mathbf{A} and

|A|- determinant of matrix A.

Statement - 1: $Tr(\mathbf{A}) = 0$.

Statement - 2: $|\mathbf{A}| = 1$

- 1) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for Statement-1.
- 2) Statement 1 is true, Statement 2 is false.
- 3) Statement 1 is false, Statement 2 is true.
- 4) Statement 1 is true, Statement 2 is true; Statement 2 is a correct explanation for Statement-1.

Solution:

Given.

A is a 2×2 matrix with non-zero entries and $\mathbf{A}^2 = \mathbf{I}$

The Cayley-Hamilton Theorem states that every square matrix satisfies its own characteristic equation.

For a 2×2 matrix **A**, the characteristic equation is given by λ^2 -Tr(A) λ +det(A)=0.

By the theorem,
$$\mathbf{A}^2 - Tr(A)\mathbf{A} + \det(\mathbf{A})\mathbf{I} = 0$$
 (4.1)

Substituting $A^2 = I$ into the equation:

$$\mathbf{I} - Tr(A)\mathbf{A} + |\mathbf{A}|\mathbf{I} = 0 \tag{4.2}$$

$$Tr(A)\mathbf{A} = det(A)\mathbf{I} + \mathbf{I}$$
(4.3)

Rearranging the terms:

$$\mathbf{A} = \mathbf{I}(\frac{1 + det(A)}{Tr(A)})\tag{4.4}$$

If the trace, $Tr(\mathbf{A})$, is not zero, we would have $\mathbf{A} = \mathbf{I}(\frac{1+det(\mathbf{A})}{Tr(\mathbf{A})})$. This would mean \mathbf{A} is a scalar multiple of the identity matrix, which contradicts the problem statement that \mathbf{A}

1

has non-zero entries.

The only way for the equation to hold true for a general matrix \mathbf{A} with non-zero entries is if the coefficient of \mathbf{A} on the left side is zero(see eq. 4.3), which means $\text{Tr}(\mathbf{A})=0$. In this case, the right side must also be zero, so $1+\det(\mathbf{A})=0$

$$det(\mathbf{A}) = -1. \tag{4.5}$$

Statement - 1 is true, Statement - 2 is false.