Calc III Notes

Pierson

September 3, 2025

1 Multivariable calc goals

- vectors and geometry of R"
- functions of serval variables diff and int
- higher dimensional versions of FTC
- fund them for line integrals
- greens them
- stokes them
- divergence them

12 Chapter 12: vectors and geo of space

12.1

R = line

dist(x,y) = |y - x|

 $R^2 = Plane$

Orders pairs of (x,y) of real numbers

 $R^3 = space$

ordered triples of (x,y,z) of real numbers

right-hand rule: point fingers toward pos ${\bf x}\text{-}{\bf a}{\bf x}{\bf i}{\bf s}$ and curl towards pos ${\bf y}\text{-}{\bf a}{\bf x}{\bf i}{\bf s}$, thumb should point to positive ${\bf z}$

 $R^n = \text{n-tuples } (x_1, x_2, ... x_n) \text{ n-dim space}$

Distance D from (0,0) to (x,y)

$$D^2 = x^2 + y^2$$

Distance D from (0,0,0) to (x,y,z)

$$D = \sqrt{x^2 + yy^2 + z^2}$$

Sphere with center X_0, Y_0, Z_0 and radius R has equation:

$$(X - X_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$$

Find equation of the set of points equidistant from the points a 1,4,2, and b 3,3,3

$$AX = \sqrt{(x-1)^2 + (y-4)^2 + (z-2)^2}$$

$$BX = \sqrt{(x-3)^2 + (y-3)^2 + (z-3)^2}$$

set AX = BX

Result is a **plane**

12.2 vectors and geo of space

 $scaler = magnitude \le 0$

vector = magnitude + direction

$$\vec{u} = <5, 3>, \vec{u} = 5\hat{i} + 3\hat{j}$$

12.2.1 Scaler multiple

Changes the length of the vectors, ie, stretches them in a direction. Length of $k\vec{v} = |K| * |V|$ direction of $k\vec{V} = sameas\vec{V}ifk > 0$ real numbers work like scaling factors

Points =
$$(a,b)$$

Vector = $\langle a, b \rangle$

12.2.2 Vectors in \mathbb{R}^3

Extra cords for points and extra comps for vectors

$$point = (a,b,c)$$
$$vector = \langle a,b,c \rangle$$

$$if\vec{V} = P_1\vec{P}_2, then |\vec{V}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$P(4,-1,-3)$$

 $Q(8,0,-5)$

$$R(0, -2, -1)$$

$$\vec{PQ} = <8-4, 0--1, -5--3>$$

$$\vec{u} = <3, 1, 3>$$

$$\vec{v}=<1,3,7>$$

$$\vec{v} + \vec{v} = <3+1, 1+3, 3+7>$$

$$5 * \vec{v} = < 1 * 5, 3 * 5, 7 * 5 >$$

12.2.3 notation

$$V_n$$

set of all n-dim vectors $< V_1, V_2, ..., V_n > V_3$ set of all vectors $< v_1, v_2, v_3 > \hat{i} = <1,0,0>$

$$\hat{j} = <0, 1, 0 >$$

 $\hat{k} = <0, 0, 1 >$

unit vector = vector of length 1 $\hat{i}, \hat{j}, \hat{k}$ are unit vectors

find the unit vector that has the same direction as $\vec{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$

$$\sqrt{4^{2}(-2)^{2} + 3^{2}}$$

$$\sqrt{16 + 4 + 9}$$

$$\sqrt{29}$$

$$\frac{\vec{b}}{|\vec{b}|} = \frac{1}{\sqrt{29}}(4\hat{i} - 2\hat{j} + 3\hat{k})$$

12.2.4 dot product

 $\begin{array}{l} \text{dot product} \rightarrow 2 \text{ vectors} \rightarrow 1 \text{ scaler} \\ \text{cross product} \rightarrow 2 \text{ vectors} \rightarrow 1 \text{ vector} \end{array}$

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Properties

$$\vec{a} \cdot \vec{a} = \vec{a}^2$$

if θ is the angle between the vectors \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta)$

follows from the law of cosines

 \vec{a} and \vec{b} are orthogonal (or perp) if te angle between them is $\theta=\frac{\pi}{2}$

the zero vector $\vec{0}$ is considered orthogonal to all vectors

 $\vec{a} \cdot \vec{b} = 0 \ll \vec{a} \perp \vec{b}$, orthogonal, form 90deg angle

accute

 $\vec{a} \cdot \vec{b} > 0$

obtuse

$$\vec{a} \cdot \vec{b} > 0$$

find angle θ between a=<1,1,5> and b=<0,3,4>

$$a = \sqrt{1^2 + 1^2 + 5^2}$$

$$b = \sqrt{0^2 + 3^2 + 4^2}$$

$$\cos \theta = \frac{\vec{a}\vec{b}}{|\vec{a}|\vec{b}|}$$

$$\cos \theta = \frac{23}{3\sqrt{3} \times 5}$$

$$\theta = \arccos(\frac{23}{15\sqrt{3}})$$

12.3 Projections

 $proj_{\vec{a}}(\vec{b}) = \text{vector projection of } \vec{b} \text{ onto } \vec{a}$ Vector = A scaler-multiple of \vec{a}

 $comp_{\vec{a}}(\vec{a}) = \text{Scaler projection of } \vec{b} \text{ onto } \vec{a}$ Scaler = Signed magnitude of the vector projection = $|\vec{b}cos\theta|$

dot product

- valid in any dim
- result is a scaler
- application:work

cross product

- valid in only r^3
- result is a vector
- application: torque
- 13 Chapter 13: vector functions
- 14 Chapter 14: partial derivate
- 15 Chapter 15: multiple integrals
- 16 Chapter 16: vector calculus