Reinforcement Learning

Lecture 9: Model-based methods

Robert Lieck

Durham University

Lecture overview

Lecture covers chapter 8 in Sutton & Barto [1] and examples from David Silver [2]

- Model-based reinforcement learning
- taxonomy
- overview
- the simulation cycle
- characteristics
- 2 Integrated learning and planning
- Dyna-Q
- characteristics
- Monte Carlo tree search
- Model-based policy optimization
- Model ensembles
- Model rollouts

Model-based RL taxonomy

Model-based RL overview

In model-free RI:

- No model
- Learn the value function q(s,a) and/or the policy $\pi(a|s)$ from experience

In model-based RL:

- Learn the model from experience
- **Plan** the value function and/or the policy from the model

Model-based RL the simulation cycle

Model-based RL cycle:

- The agent experiences the real environment
- We learn a model to predict what the real environment does (when you take an action)
- We then use this simulated model to plan
- This allows us to estimate the value function and/or policy without directly interacting with the real environment
- But we use this policy to take real actions again

Model-based RL characteristics

Model-based RL advantages:

- The model may be much simpler than a value function
- Can be learnt by supervised learning
- Can reason about model uncertainty
- Can provide additional information (e.g. probabilities)
- Can change the reward function but keep the model

Model-based RL disadvantages:

- Another component that may introduce errors
- We can only be as good as our model
- Execution requires planning

Model-based RL definition

Definition: model

A model $\mathcal{M} = \langle \mathcal{P}_{\eta}, \mathcal{R}_{\eta} \rangle$ is a parameterised η representation of an MDP: $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R} \rangle$. It approximates state transitions $\mathcal{P}_{\eta} \approx \mathcal{P}$ and rewards $\mathcal{R}_{\eta} \approx \mathcal{R}$, learning a distribution over the next states and rewards:

$$S_{t+1} \sim \mathcal{P}(S_{t+1}|S_t, A_t)$$

$$R_{t+1} = \mathcal{R}(R_{t+1}|S_t, A_t),$$

which typically are conditionally independent of each other:

$$P(S_{t+1}, R_{t+1}|S_t, A_t) = P(S_{t+1}|S_t, A_t)P(R_{t+1}|S_t, A_t)$$

Example: environment model

Learning the model

We learn the model \mathcal{M}_{η} from experience $\{S_1,A_1,R_2,...,S_T\}$ using **supervised learning**.

- We receive a stream of actual experiences
- This gives us a dataset:

$$S_1, A_1 \rightarrow R_2, S_2$$

 $S_2, A_2 \rightarrow R_3, S_3$

- $s, a \rightarrow r$ is a regression problem
- $s, a \rightarrow s'$ is a density estimation problem

Integrated learning simulated and real experience

Experience can be simulated and real

Simulated experience sampled from \mathcal{M}_{η}

$$S' \sim \mathcal{P}_{\eta}(S'|S, A)$$
$$R = \mathcal{R}_{\eta}(R|S, A)$$

Real experience sampled from the true MDP

$$S' \sim \mathcal{P}_{s,s'}^a$$
$$R = \mathcal{R}_s^a$$

Model-based RL Dyna-Q

Algorithm: Dyna-Q [3, 4]

```
initialise Q(s,a) and model \mathcal{M}(s,a) for all s \in \mathcal{S} and a \in \mathcal{A}(s) while True: s \leftarrow current (nonterminal) state a \leftarrow \epsilon\text{-greedy}(s,Q) r,s' \leftarrow env.step(s,a) Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{\hat{a}} Q(s',\hat{a}) - Q(s,a)) \mathcal{M}(s,a) \leftarrow r,s' (assuming deterministic environment) for i in range(n): s \leftarrow random previously observed state a \leftarrow random action previously taken in s r,s' \leftarrow \mathcal{M}(s,a) Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{\hat{a}} Q(s',\hat{a}) - Q(s,a))
```

Model-based RL Dyna-Q characteristics

Model-based RL Monte Carlo tree search (MCTS)

Model-ensemble policy optimization ensembles

Algorithm Model-ensemble trust-region policy optimization (ME-TRPO) [5]

```
1: Initialize a policy \pi_{\theta} and all models \hat{f}_{\phi_1}, \hat{f}_{\phi_2}, ..., \hat{f}_{\phi_K}.
 2: Initialize an empty dataset \mathcal{D}.
 3: repeat
 4:
          Collect samples from the real system f using \pi_{\theta} and add them to D.
 5:
          Train all models using \mathcal{D}.
          repeat
                                                                                        \triangleright Optimize \pi_{\theta} using all models.
 6:
              Collect fictitious samples from \{\hat{f}_{\phi_i}\}_{i=1}^K using \pi_{\theta}.
               Update the policy on the fictitious samples.
 8:
 9:
               Estimate the performances \hat{\eta}(\theta; \phi_i) for i = 1, ..., K.
          until the performances stop improving.
10:
11: until the policy performs well in real environment f.
```

Model-based policy optimization rollouts

Algorithm Model-based policy optimization (MBPO) [6]

- 1: Initialize policy π_{ϕ} , predictive model p_{θ} , environment dataset \mathcal{D}_{env} , model dataset $\mathcal{D}_{\text{model}}$
- 2: for N epochs do
- 3: Train model p_{θ} on \mathcal{D}_{env} via maximum likelihood
- 4: **for** E steps **do**

6:

- 5: Take action in environment according to π_{ϕ} ; add to \mathcal{D}_{env}
 - for M model rollouts do
- 7: Sample s_t uniformly from \mathcal{D}_{env}
- 8: Perform k-step model rollout starting from s_t using policy π_{ϕ} ; add to $\mathcal{D}_{\text{model}}$
- 9: **for** G gradient updates **do**
- 10: Update policy parameters on model data: $\phi \leftarrow \phi \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi, \mathcal{D}_{\text{model}})$

Take Away Points

Summary

In summary, model-based methods:

- are trained with supervised learning methods
- allow for planning ahead without interacting with the environment
- can be very data efficient by generating simulated experience
- but the values and policies can only be as good as the model
- they can be combined with model-free methods
- allow for changing the reward function/task without relearning the model

References I

- [1] Richard S Sutton and Andrew G Barto.

 Reinforcement learning: An introduction (second edition). Available online . MIT press, 2018.
- [2] David Silver. Reinforcement Learning lectures. https://www.davidsilver.uk/teaching/. 2015.
- [3] Richard S Sutton. "Integrated architectures for learning, planning, and reacting based on approximating dynamic programming". In:

 Machine learning proceedings 1990. Elsevier, 1990, pp. 216–224.
- [4] Baolin Peng et al. "Deep Dyna-Q: Integrating planning for task-completion dialogue policy learning". In: arXiv preprint arXiv:1801.06176 (2018).
- [5] Thanard Kurutach et al. "Model-Ensemble Trust-Region Policy Optimization". In: International Conference on Learning Representations. 2018. URL: https://openreview.net/forum?id=SJJinbWRZ.

References II

[6] Michael Janner et al. "When to trust your model: Model-based policy optimization". In: arXiv preprint arXiv:1906.08253 (2019).