(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/83701 A2

(51) International Patent Classification7:

C12N

(21) International Application Number: PCT/US01/14394

(22) International Filing Date:

2 May 2001 (02.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/201,602

3 May 2000 (03.05.2000) US

- (71) Applicant: MONTEREY BAY AQUARIUM RE-SEARCH INSTITUTE [US/US]; 7700 Sandholt Road, Moss Landing, CA 95039 (US).
- (72) Inventors: DELONG, Edward, F.; 4 Blacktail Lane, Monterey, CA 93940 (US). BEJA, Oded; 408 Holovits Court, Marina, CA 93933 (US).

- (74) Agent: KAMINSKY, Rena; Lumen Intellectual Property Services, Inc., 45 Cabot Avenue, Suite 110, Santa Clara, CA 95051 (US).
- (81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CO, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: LIGHT-DRIVEN ENERGY GENERATION USING PROTEORHODOPSIN

(57) Abstract: A light-driven energy generation system using proteorhodopsin is provided. Proteorhodopsin sequences were retrieved and amplified from naturally occurring members of the domain Bacteria using proteorhodopsin-specific polymerase chain reaction primers. Proteorhodopsin sequences were placed in expression vectors for production of proteorhodopsin proteins in a host, for instance, E. coli and other bacteria. The system also includes a light source and a source of retinal, that allows the system to convert light into biochemical energy. The generated biochemical energy could be mediated into electrical energy by a mediator.

 $NO\ 01/837$

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Company of the Compan

PATENT APPLICATION

LIGHT-DRIVEN ENERGY GENERATION USING PROTEORHODOPSIN

INVENTORS

Edward F. DeLong and Oded Beja

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is cross-referenced to and claims priority from U.S Provisional application 60/201,602 filed 05/03/2000, which is hereby incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONDORED RESEARCH OR DEVELOPMENT

This invention was supported in part by grant number OCE 0001619 from the National Science Foundation (NSF). The U.S. government has certain rights in the invention.

STATEMENT TO COMPUTER DISK AND SEQUENCE LISTING

This application includes a sequence listing of 65 sequences and a computer disk labeled "Sequence Listing for application entitled "Light-driven energy generation using proteorhodopsin" by Edward F. DeLong and Oded Beja" containing files "MBA101-SEQLIST.prj", dated "04/23/01" with 174,089 bytes, which is the PatentIn

project file generated using PatentIn Version 3.0 software provided by the USPTO, and "MBA101-SEQLIST.txt", dated "04/23/01" with 323,739 bytes, which is the generated sequence listing from the PatentIn project file MBA101-SEQLIST.prj using PatentIn Version 3.0 software, all which are herein incorporated. The information recorded in computer readable format on the incorporated computer disk labeled "Sequence Listing" containing files "MBA101-SEQLIST.prj" and "MBA101-SEQLIST.txt" are identical to the incorporated written sequence listing.

FIELD OF THE INVENTION

The present invention relates generally to gene expression of functional recombinant proteins in bacteria. More particularly, the present invention relates to proteorhodopsin genes and proteins that function as a light-driven energy generator in *Escherichia coli* (E. coli) and other bacteria.

BACKGROUND ART

Retinal (vitamin A aldehyde) is a chromophore that binds integral membrane proteins (opsins) to form light-absorbing pigments called rhodopsins. Rhodopsins are currently known to belong to two distinct protein families. The visual rhodopsins, found in the eye throughout the animal kingdom, are photosensory pigments. Archeal rhodopsins, found in extreme halophilic environments, function as light-driven protons pumps (bacteriorhodopsins), chloride ion pumps (halorhodopsins), or photosensory receptors (sensory rhodopsins). The two protein families show no significant sequence similarity and may have different origins. They do, however, share identical topologies characterized by seven transmembrane α -helices that form a pocket in which retinal is covalently linked, as a pronated Schiff base (helix G).

The archaeal rhodopsins are able to generate a photocycle which produces a chemiosmotic membrane potential in response to light, as such light energy is converted into biochemical energy. Recently, a protein with high sequence similarity to the archaeal rhodopsins has also been retrieved in the eukaryote Neurospora crassa (J.A. Bieszke et al., Proceedings of National Academy of Sciences USA 96:8034, 1999). The eucaryal rhodopsin formed a photochemically reactive pigment when bound to all-trans retinal and exhibited photocycle kinetics similar to those of archaeal sensory rhodopsins (J.A. Bieszke et al., Biochemistry 38:14138, 1999). To date, however, no rhodopsin-like sequences have been reported in members of the domain Bacteria, and no light-driven proton pumps based on rhodopsin have ever before been functionally expressed in E coli.

The phototropic conversion of light energy into biochemical energy using bacteriorhodopsin can be harnessed for a variety of processes and applications, such as bio-electronic applications and bio-materials, as has been reported in US Patent No. 5,757,525 for optical devices, US Patent No. 5,854,710 for optical Fourier processing, and US Patent No. 5,470,690 for optical information storage. Bacteriorhodopsin in bio-electronic applications is aimed to interface, integrate, or substitute the silicon based microelectronics systems as well as molecular devices. Bacteriorhodopsin as a bio-material is integrated, for instance, in optical films for light mediated computer memory applications and pattern recognition.

Prevsiously, archaeal rhodopsins capable of generating a chemiosmotic membrane potential in response to light had only been found in halophilic archaea. Therefore, rhodopsins that originate from archaea adapted to highly saline environments cannot be functionally expressed in *E. coli*. Finally, the isolation and cultivation of

halorhodopsins is an elaborate process. At present one does not foresee an economic utilization possible for this process (e.g. US Patent 5,290,699).

Accordingly, as one skilled in the art might readily acknowledge, there is a strong need to retrieve and provide rhodopsin-like sequences from naturally occurring members of the domain Bacteria.

OBJECTS AND ADVANTAGES

In light of the above, it is the primary objective of the present invention to provide rhodopsin-like sequences from naturally occurring members of the domain Bacteria. More specifically, it is the objective of the present invention to provide a method to retrieve proteorhodopsin genes from DNA of naturally occurring bacteria that encodes DNA sequence for proteorhodopsin proteins.

It is another objective of the present invention to provide proteorhodopsin-specific polymerase chain reaction primers that amplify the proteorhodopsin-containing gene from a DNA sample of naturally occurring bacteria.

It is yet another objective of the present invention to produce variants of a proteorhodopsin gene using the same proteorhodopsin-specific polymerase chain reaction primers by amplifying a proteorhodopsin-containing gene from of a mixed sample of naturally occurring bacteria.

It is still another objective of the present invention to provide an expression vector that produces a proteorhodopsin protein in *E. coli* and other bacteria.

It is another objective of the present invention to provide a light-driven energy generator in which the functional properties of proteorhodopsin are utilized. These properties include the ability to integrate within a host, for instance a cell membrane of *E. coli*, making an integrated proteorhodopsin protein, and the ability to bind retinal, making a light absorbing pigment.

It is another objective of the present invention to provide a light source and illuminate the light absorbing pigment to convert light energy into biochemical energy.

It is another objective of the present invention to provide a mediator and mediate the biochemical energy into electrical energy.

It is another objective of the present invention to provide methods to manipulate the kinetics of the light-driven energy generator.

The advantage of the present invention over the prior art is that it is not restricted to operate in halophilic archaea and could therefore be functionally expressed in *E. coli* and other bacteria. Accordingly, another advantage of the present invention is that it provides for a fast and cheap production method that allows for mass production of functionally active proteorhodopsin.

SUMMARY

The present invention provides proteorhodopsin gene and protein sequences retrieved from samples of naturally occurring members of the domain Bacteria. More specifically, the present invention provides a method for the retrieval and amplification of proteorhodopsin genes from DNA samples of naturally occurring marine bacteria. In accordance with several exemplary embodiments of the present invention, DNA samples were obtained from naturally occurring bacteria such as, for instance, marine proteobacteria, SAR86 bacteria, or recombinant DNA libraries containing naturally occurring bacteria. The present invention provides proteorhodopsin-specific polymerase chain reaction (PCR) primers to amplify a proteorhodopsin gene from DNA samples of these marine bacteria. The present invention also provides a device and method for the placement of proteorhodopsin genes in an expression vector to produce functional proteorhodopsin proteins in *E. coli* and other bacteria.

Accordingly, the present invention provides a method to produce and obtain variants of proteorhodopsin genes and proteins. The same proteorhodopsin-specific polymerase chain reaction primers amplify different variants of proteorhodopsin-containing genes from a mixed sample of naturally occurring bacteria. As one skilled in the art might readily acknowledge, these variants of a proteorhodopsin gene produce functional variations in the photocycle kinetics of the proteorhodopsin protein.

Furthermore, the present invention provides a light-driven energy generator that utilizes proteorhodopsin to convert light-energy into biochemical energy. This light-driven energy generator takes advantage of the functional properties of the proteorhodopsin protein once expressed in, for example, *E. coli* or other bacteria as is

described in exemplary embodiments. These properties include the ability to integrate within a host such as, for instance, a cell membrane of *E. coli* or other Bacteria, and thereby making an integrated proteorhodopsin protein or integrated cell membrane protein. These properties also include the ability to bind retinal and thereby making a light absorbing pigment. Illuminating the light absorbing pigment with a light source converts light energy into biochemical energy. Finally, the biochemical energy can be mediated into electrical energy by a mediator.

In accordance with exemplary embodiments, the present invention enables one skilled in the art to manipulate the kinetics of the proteorhodopsin protein photocycle once it is operational in the light-driven energy generator. In particular, the present invention provides examples in which the light source characteristics are manipulated. Examples are the manipulation of the delivery of fast-light pulses and/or the delivery of light at different wavelengths. The present invention also provides examples in which incremental additions of retinal influences the function of the light-driven energy generator. In addition, a proteorhodopsin gene or protein variant can be selected to determine an absorption spectra of the light absorbing pigment to change the kinetics of the light energy generator, for instance to meet a design/functional criteria of an application wherein proteorhodopsin is utilized.

BRIEF DESCRIPTION OF THE FIGURES

The objectives and advantages of the present invention will be understood by reading the following detailed description in conjunction with the drawings, in which:

- FIG. 1 illustrates the phylogenetic tree of bacterial 16S rRNA gene sequences including that encoded on the 130 kb bacterioplankton BAC clone (EBAC31A8).
- FIG. 2 provides a nucleotide sequence of polymerase chain reaction primer 1 (Sequence ID No:2) used to amplify a proteorhodopsin gene.
- FIG. 3 provides a nucleotide sequence of polymerase chain reaction primer 2 (Sequence ID No:3) used to amplify a proteorhodopsin gene.
- FIG. 4 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:4) amplified from clone EBAC31A8 (Sequence ID No:1) using PCR primers 1 (Sequence ID No:2) and 2 (Sequence ID No:3), and the deduced amino acid sequence (Sequence ID No:5) of the proteorhodopsin gene Sequence ID No:4 amplified from clone EBAC31A8 (Sequence ID No:1).
- FIG. 5 provides a map of the secondary structure of the proteorhodopsin protein (Sequence ID No:7). Single letter amino acid codes are used (according to J. Sasaki and J.L. Spudich, Biophys. J. 75:2435, 1998). Predicted retinal binding pocket residues are marked in black.
- FIG. 6 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:8) amplified from clone EBAC40E8 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:9) of the proteorhodopsin gene Sequence ID No:8 amplified from clone EBAC40E8.
- FIG. 7 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:10) amplified from clone EBAC41B4 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:11) of the proteorhodopsin gene Sequence ID No:7 amplified from clone EBAC41B4.

- FIG. 8 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:12) amplified from clone EBAC64A5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:13) of the proteorhodopsin gene Sequence ID No:12 amplified from clone EBAC64A5.
- FIG. 9 provides a variants map of the DNA sequences of the proteorhodopsin gene with Sequence ID No:4, Sequence ID No:8, Sequence ID No:10, and Sequence ID No:12 that were amplified from clone EBAC38A8, EBAC40E8, EBAC41B4 and EBAC64A5 respectively using the proteorhodopsin-specific PCR primer 1 (Sequence ID No:2) and 2 (Sequence ID No:3). Dots represent sequences having identical sequence as those in Sequence ID No:4.
- FIG. 10 provides a variant map of the deduced amino acid sequences encoded by the proteorhodopsin gene with Sequence ID No:4, Sequence ID No:8, Sequence ID No:10, and Sequence ID No:12 that were amplified from respectively EBAC38A8, EBAC40E8, EBAC41B4 and EBAC64A5 using the proteorhodopsin-specific primer 1 (Sequence ID No:2) and 2 (Sequence ID No:3). Lower case represents the PCR primer sequence region. Dots represent residues having identical sequence as those in Sequence ID No:5.
- FIG. 11 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:14) amplified from clone HOT0m1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:15) of the proteorhodopsin gene Sequence ID No:14 amplified from clone HOT0m1.
- FIG. 12 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:16) amplified from clone HOT75m1 using PCR primers 1 (Sequence ID

- No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:17) of the proteorhodopsin gene Sequence ID No:16 amplified from clone HOT75m1.
- FIG. 13 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:18) amplified from clone HOT75m3 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:19) of the proteorhodopsin gene Sequence ID No:18 amplified from clone HOT75m3.
- FIG. 14 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:20) amplified from clone HOT75m4 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:21) of the proteorhodopsin gene Sequence ID No:20 amplified from clone HOT75m4.
- FIG. 15 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:22) amplified from clone HOT75m8 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:23) of the proteorhodopsin gene Sequence ID No:22 amplified from clone HOT75m8.
- FIG. 16 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:24) amplified from clone MB0m1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:25) of the proteorhodopsin gene Sequence ID No:24 amplified from clone MB0m1.
- FIG. 17 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:26) amplified from clone MB0m2 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence

- (Sequence ID No:27) of the proteorhodopsin gene Sequence ID No:26 amplified from clone MB0m2.
- FIG. 18 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:28) amplified from clone MB20m2 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:29) of the proteorhodopsin gene Sequence ID No:28 amplified from clone MB20m2.
- FIG. 19 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:30) amplified from clone MB20m5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:31) of the proteorhodopsin gene Sequence ID No:30 amplified from clone MB20m5.
- FIG. 20 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:32) amplified from clone MB20m12 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:33) of the proteorhodopsin gene Sequence ID No:32 amplified from clone MB20m12.
- FIG. 21 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:34) amplified from clone MB40m1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:35) of the proteorhodopsin gene Sequence ID No:34 amplified from clone MB40m1.
- FIG. 22 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:36) amplified from clone MB40m5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence

- (Sequence ID No:37) of the proteorhodopsin gene Sequence ID No:36 amplified from clone MB40m5.
- FIG. 23 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:38) amplified from clone MB40m12 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:39) of the proteorhodopsin gene Sequence ID No:38 amplified from clone MB40m12.
- FIG. 24 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:40) amplified from clone MB100m5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:41) of the proteorhodopsin gene Sequence ID No:40 amplified from clone MB100m5.
- FIG. 25 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:42) amplified from clone MB100m7 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:43) of the proteorhodopsin gene Sequence ID No:42 amplified from clone MB100m7.
- FIG. 26 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:44) amplified from clone MB100m9 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:45) of the proteorhodopsin gene Sequence ID No:44 amplified from clone MB100m9.
- FIG. 27 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:46) amplified from clone MB100m10 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence

- (Sequence ID No:47) of the proteorhodopsin gene Sequence ID No:46 amplified from clone MB100m10.
- FIG. 28 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:48) amplified from clone PALB1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:49) of the proteorhodopsin gene Sequence ID No:48 amplified from clone PALB1.
- FIG. 29 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:50) amplified from clone PALB2 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:51) of the proteorhodopsin gene Sequence ID No:50 amplified from clone PALB2.
- FIG. 30 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:52) amplified from clone PALB5 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:53) of the proteorhodopsin gene Sequence ID No:52 amplified from clone PALB5.
- FIG. 31 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:54) amplified from clone PALB7 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:55) of the proteorhodopsin gene Sequence ID No:54 amplified from clone PALB7.
- FIG. 32 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:56) amplified from clone PALB6 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence

- (Sequence ID No:57) of the proteorhodopsin gene Sequence ID No:56 amplified from clone PALB6.
- FIG. 33 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:58) amplified from clone PALB8 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:59) of the proteorhodopsin gene Sequence ID No:58 amplified from clone PALB8.
- FIG. 34 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:60) amplified from clone PALE1 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:61) of the proteorhodopsin gene Sequence ID No:60 amplified from clone PALE1.
- FIG. 35 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:62) amplified from clone PALE6 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:63) of the proteorhodopsin gene Sequence ID No:62 amplified from clone PALE6.
- FIG. 36 provides the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:64) amplified from clone PALE7 using PCR primers 1 (Sequence ID No:2) and 2 (Sequence No:3), and the deduced amino acid sequence (Sequence ID No:65) of the proteorhodopsin gene Sequence ID No:64 amplified from PALE7.
- FIG. 37 illustrates a phylogenetic tree of different proteorhodopsin genes.
- FIG. 38 provides an example of an alignment of proteorhodopsin amino acid sequences.
- FIG. 39 provides a light-driven energy generator that utilizes proteorhodopsin.

- FIG. 40 provides an example of a proteorhodopsin-expressing E. coli cell suspension (+) compared to control cells (-), both with all-trans retinal.
- FIG. 41 provides an example of absorption spectra of retinal-constituted proteorhodopsin in E coli membranes and a negative control.
- FIG. 42 provides an example of a light-driven transport of protons by a proteorhodopsin-expressing E. coli cell suspension.
- FIG. 43 provides an example of a transport of [³H]TPP⁺ in E. coli right-side-out vesicles containing expressed proteorhodopsin, reconstituted with or without 10 μM retinal in the presence of light or in the dark.
- FIG. 44 provides an example of laser flash-induced absorbance changes in suspensions of *E. coli* membranes containing proteorhodopsin.
- FIG. 45 provides an example of absorption spectra of retinal-constituted proteorhodopsin in *E. coli* membranes.

DETAILED DESCRIPTION

Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following preferred embodiment of the invention is set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.

Proteorhodopsin

The present invention provides rhodopsin-like gene and protein sequences retrieved from naturally occurring members of the domain Bacteria. More specifically, the present invention provides a method for the retrieval and amplification of proteorhodopsin genes from DNA samples of naturally occurring marine bacteria. In accordance with exemplary embodiments of the present invention, DNA samples were obtained from naturally occurring marine bacteria such as bacteria from the SAR86 group. Provided as an exemplary embodiment of the SAR86 group, DNA samples were obtained from a bacterioplankton Bacterial Artificial Chromosome (BAC) clone BAC31A8 (also referred to as EBAC31A08). In general, as will be appreciated by those of ordinary skill in the art, suitable DNA samples can also be obtained from other sources, e.g., from a marine environment or from a recombinant DNA library containing genomic fragments of samples of naturally occurring bacteria.

FIG. 1 shows the phylogenetic tree of bacterial 16S rRNA gene sequences including that encoded on the EBAC31A8. FIG. 1 also shows the relationship of EBAC31A8 to the SAR86 bacteria group as well as to the gamma-proteobacteria group. A subclone shotgun library was constructed from BAC clone 31A8, and subclones were sequenced in both directions on the MegaBACE 1000 capillary array electrophoresis DNA sequencing instrument (Molecular Dynamics, Sunnyvale, CA). Sequence analysis of a 130-kb genomic DNA that encodes the ribosomal RNA operon from BAC31A8, reveals an open reading frame encoding a proteorhodopsin. In an exemplary embodiment, the contiguous sequence was assembled using SEQUENCHER 3.1.1 software (Gene Codes Co., Ann Arbor, MI). Other sequencing techniques can also be used, as will be recognized by those skilled in the art. The sequence of the proteorhodopsin-containing contig has been deposited in GenBank under accession #AF279106 and deposit date October 23rd, 2000. Appendix A, hereby incorporated, shows the nucleotide sequence of the BAC clone BAC31A8 (Sequence ID No:1)

which contains the 130 kilobases genomic DNA from a naturally occurring marine bacterium.

Proteorhodopsin was amplified from the 130 kilobase bacterioplankton BAC clone 31A8 (Sequence ID No:1) by polymerase chain reaction (PCR), using the proteorhodopsin-specific primers 5'-aCCATGGgtaaattattactgatattagg-3' (Sequence ID No:2 and shown in FIG. 2) and 5'-agcattagaagattctttaacagc-3' (Sequence ID No:3 and shown in FIG. 3). References for PCR are, for instance, The Polymerase Chain Reaction, Mullis et al., Ed. (Birkhauser, Boston, 1994) and U.S. Patent Nos. 4,683,195 and 4,683,202 to Mullis et al. The proteorhodopsin-specific PCR primers include the addition of 3 nucleotides that encoded one amino acid not found in the native gene sequence of clone BAC31A8 (Sequence ID No:6), in the second amino acid position which is a glycine located on the 2nd codon ("GGT"). Therefore, compare the second amino acid position in the Sequence ID No:5 using PCR primers 1 and 2 with the native Sequence ID no:7. This addition of one non-native amino acid created a new restriction endonuclease site (NcoI site) not present in the native sequence. allowed subcloning of the amplified fragment into the NcoI restriction site of an expression vector pBAD TOPO TA Cloning® Kit (Invitrogen, La Jolla, CA). The present invention is not limited to the use of this type of expression vector and other expression vectors could also be used.

FIG. 4 shows the nucleotide sequence of the proteorhodopsin gene (Sequence ID No:4) that results from amplification of the proteorhodopsin-containing DNA in BAC31A8 using proteorhodopsin-specific PCR primers Sequence ID No:2 and Sequence No:3. FIG. 4 also shows the deduced amino acid sequences (Sequence ID No:5) encoded by the proteorhodopsin gene (Sequence ID No:4).

FIG. 5 shows an exemplary embodiment of a secondary structure of proteorhodopsin after it has been folded in a cell membrane 510 and bonded with retinal 520. FIG. 5 shows the native proteorhodopsin gene (Sequence ID No:6) obtained from clone BAC31A8 and encodes a proteorhodopsin protein of 249 amino acids with a molecular weight of 27 kD (Sequence ID No:7). In FIG. 5, 530 indicates seven transmembrane domains, a typical feature of the rhodopsin protein family, that aligned well with the corresponding helices of the archaeal rhodopsins. FIG. 5 also shows the amino acid residues that form a retinal binding pocket indicated by 520. Although the proteorhodopsin proteins shown in FIGS. 4 and 5 both originate from BAC31A8, they differ with respect to the second amino acid position. The reason is that the proteorhodopsin-specific PCR primers that were used to amplify the proteorhodopsin gene from BAC31A8 (which resulted in proteorhodopsin protein as in FIG. 4; Sequence ID No:5) included the addition of 3 nucleotides. These 3 nucleotides encoded one amino acid not found in the native gene sequence (Sequence ID No:6), in the second amino acid position which is a glycine located on the 2nd codon ("GGT"). Proteorhodopsin protein (Sequence ID No:7) as shown in FIG. 5 originates from the native gene sequence without the addition of the 3 nucleotides. As mentioned above, the addition of the 3 nucleotides created a new restriction endonuclease site (NcoI site) that was not present in the native sequence and thereby allowed the amplified fragment to be subcloned into the NcoI site of the expression vector.

In the exemplary embodiment presented above, PCR primers with Sequence ID No:2 and Sequence ID No:3 were used. In general, the present invention provides a method for designing different proteorhodopsin-specific PCR primers that are all capable of amplifying a proteorhodopsin gene from DNA samples of naturally occurring microbial populations by polymerase chain reaction. In designing these

primers one first needs to determine a DNA sequence of a proteorhodopsin gene. Then one can design oligodeoxynucleotide primers with a Watson-Crick base pair complementary to 5' and 3' ends of the proteorhodopsin gene.

Variants of Proteorhodopsin

In the previous section, an exemplary embodiment is provided of a proteorhodopsin gene and protein. The present invention also provides the retrieval of genetic variations of proteorhodopsin from naturally occurring genetic variations in naturally occurring bacterial populations. These genetic variations in proteorhodopsin sequences result in functional variations in the proteorhodopsin proteins as is discussed below.

The present invention enables one skilled in the art to use the same proteorhodopsin-specific PCR primers as shown in FIGS. 2 and 3 to successfully amplify different sequence variants from DNA originating from mixed naturally occurring bacterial populations when it is compared to for instance the proteorhodopsin gene as shown in FIG. 4. As mentioned above, different proteorhodopsin-specific PCR primers could be used to amplify genetic variants of proteorhodopsin.

FIGS. 6-8 show exemplary embodiments of three different and unique variants of the proteorhodopsin gene that were retrieved from a recombinant DNA library of other naturally occurring bacteria (i.e. the bacterial artificial chromosome library (BAC)). In general, genetic variants could be obtained from different DNA libraries containing naturally occurring bacteria as well as from samples of naturally occurring bacteria.

FIG. 6 shows the variant of the proteorhodopsin gene sequence (Sequence ID No:8) that is amplified from the BAC clone 40 (BAC40E8) with the same proteorhodopsin-

specific PCR primers as provided in Sequence ID No:2 and 3. Accordingly, FIG. 6 also shows the deduced amino acid sequence (Sequence ID No:9) of the genetic variant of proteorhodopsin shown in FIG. 6. FIG. 7 shows the variant of the proteorhodopsin gene sequence (Sequence ID No:10) that is amplified from the BAC clone 41 (BAC41B4) with the same proteorhodopsin-specific PCR primers as provided in Sequence ID No:2 and 3. Accordingly, FIG. 7 also shows the deduced amino acid sequence (Sequence ID No:11) of the genetic variant of proteorhodopsin shown in FIG. 7. FIG. 8 shows the variant of the proteorhodopsin gene sequence (Sequence ID No:12) that is amplified from the BAC clone 64 (BAC64A5) with the same proteorhodopsin-specific PCR primers as provided in Sequence ID No:2 and 3. Accordingly, FIG. 8 also shows the deduced amino acid sequence (Sequence ID No:13) of the genetic variant of proteorhodopsin shown in FIG. 8.

FIG. 9 provides a variants map of the nucleotide sequences of the proteorhodopsin gene Sequence ID No:4, Sequence ID No:8, Sequence ID No:10, and Sequence ID No:12 amplified from respectively BAC31A8, BAC40E8, BAC41B4 and BAC64A5 using the proteorhodopsin-specific PCR primers Sequence ID No:2 and Sequence ID No:3. In FIG. 9 lower case letters represent the PCR primer sequence region. Dots represent residues having identical sequence as those in Sequence ID No:4. These proteorhodopsin gene sequences differ by as much as 31 nucleotides as is shown in FIG. 10. FIG. 10 provides a variant map of the deduced amino acid sequences of the proteorhodopsin genes shown in FIG. 9.

Using the same proteorhodopsin-specific PCR primers, as for instance shown in FIGS. 2 and 3, proteorhodopsin genes were also amplified from bacterioplankton extracts. As mentioned above, any proteorhodopsin-specific PCR primer can be used. These bacterioplankton extracts include those from the Monterey Bay (referred to as MB)

clones), the Southern Ocean (Palmer Station, referred to as PAL clones), and waters of the central North Pacific Ocean (Hawaii Ocean Time series station, referred to as HOT clones).

FIGS. 11-36 show exemplary embodiments of different and unique variants of proteorhodopsin that were retrieved from the MB clones, PAL clones, and HOT clones. FIGS. 11-36 each show a variant of a proteorhodopsin gene sequence that is amplified with the same proteorhodopsin-specific PCR primers as provided in Sequence ID No:2 and Sequence ID No:3 from respectively clones HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7. The proteorhodopsin gene sequences retrieved from clones HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7, have respectively Sequence ID Nos: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, and 64. Accordingly, FIGS. 11-36 also show the deduced amino acid sequence of each genetic variant of proteorhodopsin. The deduced amino acid sequence encoded by the proteorhodopsin gene retrieved from clones HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7, have respectively Sequence ID Nos: 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, and 65.

In an exemplary embodiment shown in FIG. 37, fifteen different variants of proteorhodopsin in the PCR generated MB gene library 3710 were detected, falling into three clusters. The MB gene library includes MB clones MB0m2, MB40m5, MB20m2, MB40m12, MB100m10, MB20m12, MB40m1, MB100m5, MB20m5, MB100m7, MB0m1, and MB100m9 as well as BAC clones BAC40E8, BAC31A8 and BAC64A5. FIG. 37 is based on a phylogenetic analysis of the inferred amino acids of cloned proteorhodopsin genes. Evolutionary distances calculated from 220 positions were used to infer the tree topology by the neighbor joining method using the PaupSearch program of the Wisconsin Package version 10.0 (Genetics Computer Group (GCG), Madison Wisconsin). Other methods could also be used. The variants of the MB library share at least 97% identity over 248 amino acids, as shown in FIG. 38, and 93% identity at the DNA level. All the PCR amplified proteorhodopsin genes from Antarctic marine bacterioplankton (e.g. the PAL clones) were different from those of Monterey Bay (e.g. the MB clones) sharing 78% identity over 248 amino acids with the Monterey clade. The changes in amino acid sequences were not restricted to the hydrophilic loops, but spread over the entire protein including changes near the retinal binding domain 3830 as shown in FIG. 38, which are predicted retinal-FIG. 38 shows an example of a multiple alignment of binding residues. proteorhodopsin amino acid sequences that were obtained from different clones 3820. The secondary structure is derived from hydropathy plots (boxes 3810 shows transmembrane helices).

Light-driven energy generator

FIG. 39 provides a light-driven energy generator 3900 that utilizes proteorhodopsin, as obtained from naturally occurring bacteria as described above, to convert light-energy into biochemical energy. Light-driven energy generator 3900 takes advantage of the

functional properties of the proteorhodopsin protein once expressed in, for instance, E. coli and other bacteria. These properties include the ability of proteorhodopsin 3906 to integrate within the cell membrane 3904 of, for instance, E. coli making an integrated proteorhodopsin protein 3908 (also called an integrated cell membrane protein). These properties also include the ability of proteorhodopsin 3906 to bind retinal 3910, making a light absorbing pigment 3912. The source of retinal 3910 is not limited to chromophore retinal but could also include chemical derivatives of retinal, such as 3-methyl-5-(1-pyryl)-2E,4E-pentadienal, 3,7-dimethyl-9-(1-pyryl)-2E,4E,6E,8E-nonatetraenal, all-trans-9-(4-azido-2,3,5,6-tetrafluorophenyl)-3,7dimethyl-2,4,6,8,-nonatetraenal and 2,3-dehydro-4-oxoretinal. Illuminating light absorbing pigment 3912 with a light source 3914 results in a chemiosmotic gradient or proton pump in which light energy 3916 is converted into biochemical energy 3918. The chemiosmotic gradient involves pumping of protons from the inside to the outside of cell membrane 3904. When the protons return to the inside of cell membrane 3904 it produces biochemical energy 3918 via a proton translocating ATP-ase. Finally, the biochemical energy 3918 is harnessed by a mediator 3920 to produce energy 3922 for a particular process. For example, since proteorhodopsin functions as a light driven proton pump, it generates energy in the form of a proton motive force across the host cell membrane upon illumination. This light-driven proton motive force can be converted to many other forms of energy, one example above being the regeneration of adenosine triphosphate (ATP), via a proton-translocating ATPase. This coupling of the proton motive force generated by proteorhodopsin, for use by proton-translocating ATPases to synthesize ATP, could be accomplished both in living cells, as well as in artificially constructed membrane systems such as liposomes. Proteorhodopsin-based systems can convert light energy to a wide variety of useful mechanical, chemical, and electrical energy forms, for many industrial and technological applications. These

include, but are not limited to, use in targeted drug delivery, uses as primary or secondary energy generators for biocatalyic reactors, fuel cells and nano-machines (including molecular motors), as well as uses in molecular switching or data storage devices.

Applications that can potentially benefit from proteorhodopsin-light driven energy generation are, for instance, bio-electronics applications that are aimed to interface, integrate, or substitute the silicon based microelectronics systems as well as molecular devices. Other applications that can potentially benefit from proteorhodopsin-light driven energy generation are, for instance, in bio-materials, wherein proteorhodopsin is integrated as a bio-material in, for instance, optical films for light mediated computer memory applications, optical information storage and pattern recognition.

Alternatively, proteorhodopsin is useful for a process to enhance yield or increase the potential of recombinant protein production or converting the light induced membrane potential into cellular signals, including modulation of gene expression. The biochemical energy derived from functional proteorhodopsin exposed to light could be harnessed to support a variety of cellular processes. For instance, the energy derived from light-mediated proton pumping could be used to enhance the production of secondary metabolites, or recombinant proteins in host cells, such as *E. coli*. Often, production of specific compounds in the biotechnology industry is limited, since their optimal expression or production occurs in the late stationary phase of growth, when energy reserves of the host cells are low. Retinal-bound proteorhodopsin expressed in such cells would provide an ample source of biochemical energy, by simple illumination. Proteorhodopsin-mediated light driven proton production could enhance any variety of biosynthetic or physiological processes which require energy.

The biochemical energy derived from proteorhodopsin light driven proton pumping could also be converted to other generally useful energy forms, for example electricity. Microbial fuel cells currently use carbon-based compounds, such as glucose, as the primary energy source. Via specific mediators of reduction potential (e.g. electrons), these microbial fuel cells convert cellular biochemical energy to electrical potential. Unlike carbon-based microbial fuel cells, proteorhodopsin uses light as the energy source, that can then be converted into a chemiosmotic potential, and finally into cellular biochemical energy by membrane-bound proton ATP-ases. Therefore, the use of proteorhodopsin could be employed to derive energy from light as the primary or supplementary energy source, that could then be converted into electrical potential (analogous microbial fuel cells that derive their energy from glucose).

In addition to energy generation in vivo in living cells, membranes containing proteorhodopsin could be used to enhance or enable other specific processes in vitro. Polymers produced from proteorhodopsin-containing membranes may have specific properties that could be used similarly to those containing bacteriorhodopsin. One example includes the use of these light sensitive molecules for optical computing applications.

As shown in FIG. 39, the kinetics of proteorhodopsin as it is utilized in 3900 is influenced by various factors such as the type of light source 3914 and the manipulation of light source 3914 in terms of frequency and/or wavelength at which the light 3916 is delivered. Light source 3914 could be any type of light source that delivers light energy 3916 that would be absorbed by light absorbing pigment 3918.

For example, the light source 3914 could be tuned to optimally excite rhodopsin variances with an absorbance maximum of 490 nm or alternatively those rhodopsins with an absorbance maximum of 520 nm. Manipulation of the light source 3914 or the light 3916 being emitted by the light source 3914, for example, involves changing the frequency of fast-light pulses or the delivery of light 3916 as individual pulses, a train of pulses, or a continuous source of light. Manipulation also involves changing the wavelength of the delivery of light 3916 at different wavelengths. In addition, as is clear for one skilled in the art, changing the frequency and/or amount of retinal that will bind within integrated cell membrane protein 3908 also varies the function of proteorhodopsin. Finally, as was mentioned in the previous section, genetic variants of proteorhodopsin result in variants of the proteorhodopsin proteins that changes the kinetics of 3600 due to a difference in absorption of light at different wavelengths. The functional expression of such variation in these proteorhodopsin proteins adds another source of variation to the kinetics of proteorhodopsin as it is utilized in 3900.

As shown in FIG. 39, the light-driven energy generator includes a host 3902. In the present invention, as a preferred embodiment, host 3902 is a cell membrane preparation of *E. coli*. However, the present invention is not limited to the use of *E. coli* and, alternatively, other bacteria or eukaryotes could be used to provide host 3902 as an intact cell (in vivo) and/or as a cell membrane preparation (in vitro). For example, but not limited to, bacteria and yeast with developed genetic systems such as Bacillus spp. Species, Saccharomyces spp., Streptomyces spp. or Pichia spp. could be used as host for the expression of proteorhodopsin. In addition, in case a cell membrane preparation (in vitro) is used, host 3902 becomes equivalent to cell membrane 3904.

01/83701 PCT/US01/14394

The light-driven energy generator 3900, as shown in FIG. 39, further includes proteorhodopsin 3906. Proteorhodopsin is presented in the form of the earlier presented expression vector containing a proteorhodopsin gene or one of its variants. Once proteorhodopsin 3906 has been put into host 3902, the proteorhodopsin expression vector expresses the proteorhodopsin protein in host 3902. An integral cell membrane protein 3908 is created in which the proteorhodopsin protein inserts into and folds properly within the cell membrane 3904. This is accomplished in the *E. coli* host by virtue of the native signal sequence found in the 5' end of the proteorhodopsin gene. It could also be accomplished by replacement of native sequence with another host-specific signal sequence in non-*E. coli* host systems.

As shown in FIG. 39, once retinal 3910 is added to cell membrane 3904, retinal 3910 binds within integrated cell membrane protein 3908 and forms a light absorbing pigment 3912. The particular example of FIG. 40 shows an integrated proteorhodopsin protein 3908 bound to retinal 3910 in E. coli. Chemical derivatives of retinal (as discussed above) could also be used as a substitute chromophore to generate functional proteorhodopsin. For the particular example of FIG. 40, the proteorhodopsin protein was cloned with its native signal sequence and included an addition of the V5 epitope, and a polyhistidine tail in the C-terminus. The proteorhodopsin protein was expressed in host 3902, i.e. E. coli outer-membrane protease-deficient strain UT5600, and induced with 0.2 % arabinose for 3 hours. Cell membranes 3904 were prepared and resuspended in 50 mM Tris-Cl (pH 8.0) and 5 mM MgCl₂. **FIG. 40** shows a proteorhodopsin-expressing *E.coli* cell suspension. After 3 hours of induction in the presence of 10 µM all-trans retinal, cells expressing the protein acquire a reddish pigmentation as indicated by 4010 and the + (plus) symbol. FIG. 40 also shows that a cell suspension using the same PCR primers

(Sequence ID No:2 and 3) but now in opposite orientation as a negative control, did not acquire a reddish pigmentation as indicated by 4020 and the – (minus) symbol.

FIG. 41 shows an exemplary embodiment of the absorption spectra of light absorbing pigment 3912 upon illumination with light source 3914 as is shown in FIG 39. As mentioned above, the light absorbing pigment is a retinal-reconstituted proteorhodopsin in E. coli. FIG. 41 shows absorption spectra of light absorbing pigment 3912 as well as a negative control. After retinal 3910 addition to integrated proteorhodopsin protein 3908, light absorbing pigment 3912 was made. The retinal 3910 addition was done at selected time points, i.e. 10, 20, 30 and 40 min, and shows a progression from low to high absorption values indicated by respectively 4110, 4120, 4130 and 4140 upon illumination with light source 3914. FIG. 41 also shows the absorption spectra of retinal 3910 addition at these similar time points but now to a negative control of retinal 3910 containing a proteorhodopsin 3906 that was created using the same PCR primers in opposite orientation. 4150, 4160, 4170 and 4180 indicate the four absorption spectra for the negative control. An absorption peak at 520 nm was observed after 10 minutes (4110) of incubation as illustrated in FIG. 41. On further addition of retinal, the peak at 520 nm increased, and had a ~100 nm half bandwidth. The 520 nm absorption peak was generated only in membranes containing proteorhodopsin 3906, and only in the presence of retinal 3910. The red shifted λ max of retinal (λ max = 370 nm in the free state) is indicative of a protonated Shiff base covalent linkage of retinal to proteorhodopsin.

FIG. 42 shows an exemplary embodiment of the light mediated proton pump of the light-driven energy generator 3900 indicating the conversion of light energy 3916 as shown in FIG. 39. The proton pump action is illustrated by measuring pH changes in

the medium surrounding the host 3902, which in this particular example involves a cell suspension of $E.\ coli$, illuminated by light source 3914. The beginning and cessation of illumination (with yellow light >485 nm delivered by 3916) is indicated 4110 ("ON") and 4120 ("OFF") respectively. The cells were suspended in 10 mM NaCl, 10 mM MgSO₄·7H₂O and 100 μ M CaCl₂. Net outward transport of protons was observed solely in proteorhodopsin-containing $E.\ coli$ cells, and only in the presence of retinal 3910 and light 3916 and is indicated by 4210 in FIG. 42. Light-induced acidification of the medium was completely abolished by the presence of 10 μ M of the protonophore CCCP.

FIG. 43 is an exemplary embodiment showing that illumination by light source 3914 generates an electrical potential at the membrane 3904 in proteorhodopsin-containing right-side-out membrane vesicles, in the presence of retinal 3910, reaching –90 mV after 2 minutes from light 3916 onset. Transport of [³H]TPP+ in *E. coli* right-side-out vesicles containing expressed proteorhodopsin, reconstituted with (4310 and 4320) or without (4330 and 4340) 10 μM retinal 3910 in the presence of light (4310 and 4330) delivered by the light source 3914 or in the dark (4320 and 4340). FIG. 43 shows that proteorhodopsin, in its form of 3912 as a light absorbing pigment, pumps protons from the inside to the outside of cell membrane in a physiologically relevant range. The ability of proteorhodopsin to generate a physiologically significant membrane potential, even when heterologously expressed in nonnative membranes, is consistent with the proton pumping function for proteorhodopsin in the native gamma proteobacteria from which it is derived.

FIG. 44 is an exemplary embodiment showing that proteorhodopsin can have a fast photocycle and can therefore be characterized as a fast and therefore efficient

transporter of protons. For the particular example of FIG. 44, light absorbing pigment 3912 is induced by laser pulses delivered by light source 3914. Laser pulse-induced absorption changes are shown by 3912 in host 3902, which in this case are suspensions of E. coli membranes containing proteorhodopsin. A 532-nm pulse (6 ns duration, 40 mJ) was delivered at time 0 and absorption changes were monitored at various wavelengths in the visible range in a lab-constructed pulse photolysis system. 64 transients were collected for each wavelength. 4410 indicates transients at 3 wavelengths exhibiting maximal amplitudes. 4420 indicates absorption difference absorption spectra calculated from amplitudes at 0.5 ms (indicated by 4430) and between 0.5 ms and 5.0 ms (indicated by 4440). In 4410, transient depletion occurred near the absorption maximum of pigment 3912 (500-nm trace indicated by 4450), and transient absorption increase was detected at 400 nm (indicated by 4460) and 590 nm (indicated by 4470), indicating a functional photocyclic reaction pathway. In 4420, the absorption difference spectrum shows that within 0.5 ms an intermediate with maximal absorption near 400 nm is produced (indicated by 4430), typical of unprotonated Schiff base forms (M intermediates) of retinylidene pigments. The 5-ms minus 0.5-ms difference spectrum 4440 shows that following M decay an intermediate species redshifted from the unphotolyzed 520-nm state appears. The decay of proteorhodopsin final intermediate is the rate limiting step in the photocycle and is fit well by a single exponential process of 15 ms, with an upward baseline shift of 13% of the initial amplitude.

As mentioned above, a proteorhodopsin gene or protein variant can be selected to determine an absorption spectra of the light absorbing pigment to change the kinetics of the light energy generator 3900, for instance to meet a design/functional criteria of an application wherein proteorhodopsin is utilized. FIG. 45 shows an exemplary

embodiment of different absorption spectra of retinal-reconstituted proteorhodopsins in *E. coli* as a function of wavelength 4510. As shown in FIG. 45, the absorbance 4520 is different and depends on the clone from which the proteorhodopsin was amplified. In this particular example, 5 µm all-trans retinal was added to the membranes suspensions in a 100 mM phosphate buffer, with a pH 7.0, and absorption spectra were recorded. The four spectra 4530, 4540, 4550, and 4560 are respectively for the proteorhodopsin genes retrieved from clones HOT75m4, PALE6, HOT0m1, and BAC31A8 at 1 hour after retinal addition. The proteorhodopsin gene retrieved from clone HOT75m4 4530 and PALE6 4540 produced a blue (490 nm) absorption maximum. The proteorhodopsin gene retrieved from clone HOT0m1 4550 and BAC31A8 4560 produced a green (527 nm) absorption maximum. In general, a range of wavelengths could be obtained that is not limited to the range shown in the example of FIG. 45.

It will be clear to one skilled in the art that the above embodiment may be altered in many ways without departing from the scope of the invention, such as for instance by mutagenesis to change the genetic sequence of proteorhodopsin and thereby changing the kinetics of the proteorhodopsin protein once it is expressed. Accordingly, the following claims and their legal equivalents should determine the scope of the invention.

DEPOSITS

Depository address: 10801 University Boulevard, Manassas, VA 20110, USA.

The Escherichia coli containing cloned DNA BAC 31A8 having assigned ATCC number PTA-3083, the Escherichia coli containing cloned DNA BAC 40E8 having assigned ATCC number PTA-3082, the Escherichia coli containing cloned DNA BAC 41B4 having assigned ATCC number PTA-3080, and the Escherichia coli containing cloned DNA BAC 64A5 having assigned ATCC number PTA-3081, all having been deposited on February 21, 2001 with the ATCC Patent Depository.

The Escherichia coli containing a plasmid PAL E6 having assigned ATCC number PTA-3250, the Escherichia coli containing a plasmid HOT 0m1 having assigned ATCC number PTA-3251, the Escherichia coli containing a plasmid HOT 75m4 having assigned ATCC number PTA-3252, and the Escherichia coli containing cloned DNA BAC64A5 having assigned ATCC number PTA 3082, all having been deposited on March 30, 2001 with the ATCC Patent Depository.

LIGHT-DRIVEN ENERGY GENERATION USING PROTEORHODOPSIN

LIST OF SEQUENCES THAT ARE LISTED IN THE INCORPORATED SEQUENCE LISTING

Sequence ID No:1

bacterial artificial chromosome (BAC) clone 31A8

(EBAC31A8).

Sequence ID No:2

nucleotide sequence of proteorhodopsin-specific polymerase

chain reaction (PCR) primer 1.

Sequence ID No:3

nucleotide sequence of proteorhodopsin-specific polymerase

chain reaction (PCR) primer 2.

Sequence ID No:4

nucleotide sequence of the proteorhodopsin gene amplified

from clone EBAC31A8 (Sequence ID No. 1) using PCR

primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:5

deduced amino acid sequences of the proteorhodopsin gene

amplified from clone EBAC31A8 (Sequence ID NO:4).

Sequence ID No:6

native proteorhodopsin nucleotide sequence from clone

EBAC31A8 (Sequence ID No:1).

Sequence ID No:7 deduced amino acid sequences of the native proteorhodopsin nucleotide sequence from clone EBAC31A8 (Sequence ID

No:6).

Sequence ID No:8 nucleotide sequence of the proteorhodopsin gene amplified from clone EBAC40E8 using PCR primers according to

Sequence ID No:2 and Sequence No:3.

Sequence ID No:9 deduced amino acid sequences of the proteorhodopsin gene amplified from clone EBAC40E8 (Sequence ID NO:8).

Sequence ID No:10 nucleotide sequence of the proteorhodopsin gene amplified from clone EBAC41B4 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:11 deduced amino acid sequences of the proteorhodopsin gene amplified from clone EBAC41B4 (Sequence ID NO:10).

Sequence ID No:12 nucleotide sequence of the proteorhodopsin gene amplified from clone EBAC64A5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:13 deduced amino acid sequences of the proteorhodopsin gene amplified from clone EBAC64A5 (Sequence ID NO:12).

Sequence ID No:14 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT0m1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:15 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT0m1 (Sequence ID NO:14).

Sequence ID No:16 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT75m1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:17 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT75m1 (Sequence ID NO:16).

Sequence ID No:18 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT75m3 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:19 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT75m3 (Sequence ID NO:18).

Sequence ID No:20 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT75m4 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:21 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT75m4 (Sequence ID NO:20).

Sequence ID No:22 nucleotide sequence of the proteorhodopsin gene amplified from clone HOT75m8 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:23 deduced amino acid sequences of the proteorhodopsin gene amplified from clone HOT75m8 (Sequence ID NO:22).

Sequence ID No:24 nucleotide sequence of the proteorhodopsin gene amplified from clone MB0m1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:25 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB0m1 (Sequence ID NO:24).

Sequence ID No:26 nucleotide sequence of the proteorhodopsin gene amplified from clone MB0m2 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:27 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB0m2 (Sequence ID NO:26).

Sequence ID No:28 nucleotide sequence of the proteorhodopsin gene amplified from clone MB20m2 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:29 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB20m2 (Sequence ID NO:28).

Sequence ID No:30 nucleotide sequence of the proteorhodopsin gene amplified from clone MB20m5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:31 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB20m5 (Sequence ID NO:30).

Sequence ID No:32 nucleotide sequence of the proteorhodopsin gene amplified from clone MB20m12 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:33 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB20m12 (Sequence ID NO:32).

Sequence ID No:34 nucleotide sequence of the proteorhodopsin gene amplified from clone MB40m1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:35 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB40m1 (Sequence ID NO:34).

Sequence ID No:36 nucleotide sequence of the proteorhodopsin gene amplified from clone MB40m5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:37 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB40m5 (Sequence ID NO:36).

Sequence ID No:38 nucleotide sequence of the proteorhodopsin gene amplified from clone MB40m12 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:39 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB40m12 (Sequence ID NO:38).

Sequence ID No:40 nucleotide sequence of the proteorhodopsin gene amplified from clone MB100m5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:41 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB100m5 (Sequence ID NO:40).

Sequence ID No:42 nucleotide sequence of the proteorhodopsin gene amplified from clone MB100m7 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:43 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB100m7 (Sequence ID NO:42).

Sequence ID No:44 nucleotide sequence of the proteorhodopsin gene amplified from clone MB100m9 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:45 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB100m9 (Sequence ID NO:44).

Sequence ID No:46 nucleotide sequence of the proteorhodopsin gene amplified from clone MB100m10 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:47 deduced amino acid sequences of the proteorhodopsin gene amplified from clone MB100m10 (Sequence ID NO:46).

Sequence ID No:48 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:49 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB1 (Sequence ID NO:48).

Sequence ID No:50 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB2 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:51 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB2 (Sequence ID NO:50).

Sequence ID No:52 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB5 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:53 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB5 (Sequence ID NO:52).

Sequence ID No:54 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB7 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:55 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB7 (Sequence ID NO:54).

Sequence ID No:56 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB6 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:57 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB6 (Sequence ID NO:56).

Sequence ID No:58 nucleotide sequence of the proteorhodopsin gene amplified from clone PALB8 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:59 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALB8 (Sequence ID NO:58).

Sequence ID No:60 nucleotide sequence of the proteorhodopsin gene amplified from clone PALE1 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:61 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALE1 (Sequence ID NO:60).

Sequence ID No:62 nucleotide sequence of the proteorhodopsin gene amplified from clone PALE6 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:63 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALE6 (Sequence ID NO:62).

Sequence ID No:64 nucleotide sequence of the proteorhodopsin gene amplified from clone PALE7 using PCR primers according to Sequence ID No:2 and Sequence No:3.

Sequence ID No:65 deduced amino acid sequences of the proteorhodopsin gene amplified from clone PALE7 (Sequence ID NO:64).

Page 1/126

APPENDIX A

OCT	1 ;	5 2004	GE U.S. U.
٠.	יוו י	E ARK	9

840	gtggaaaagc	tctataggca	aggtatcacc	tcctactttc	gcaacaaggc
780	cgatcgagat	ggtattccac	tctatatgtg	taaatccagt	tggtctgtta
720	tatctaaaat	atattagaga	tgaaatatcc	cagtggggtt	gcttccattt
099	caggaatatt	tctacaactc	tattccatta	ttgctgcaaa	ttaggcttgt
600	acttagaaac	taaaattatt	aggcttgctg	cagctataga	gagcttatat
540	aggtaaagcc	tatggatcaa	tgtatccaca	agggcaaggt	atctcaaaag
480	ggaactttaa	actccctcat	atcaggtttt	ttattgcaga	tataaaaaac
420	gaaaaaagc	aaagtcaaag	ctcaactgct	ttcctatgtt	ggtgttgaat
360	aattttgttc	gatgttgcag	tgatgaaagc	aagaatactc	gattttcttc
300	taattgggat	gattttctag	taaagatgaa	atgaaagtta	tgctggcctt caaaagttat
240	cttatcaata	tgtggttaca	tgcaagtaga	ttgtgaatgt	gctttactag
180	tttgcgagtt	tcaagaaacc	ttccgctgag	gagttcttga	acagacatga
120	cttgctcaga	aatgcatttt	ttttacacta	ggttattgtt	gaataaattt tatatatttg
09 .	attagtttat	ctaatatata	taacttaata	attgctccaa	agtaatggct

006	096	1020	1080	1140	1200	1260	1320	1380	1440	1500	1560	1620	1680
tagaggcaga	aattttcagg	taaggctaaa	aaacagctcc	ttgagccggt	tagcttgttt	aggtagttaa	aagtacctaa	acatttgctc	ctgcaaccta	gatgccgaaa	gccagtgcat	gaaataaaaa	gtagatgcag
ataaactcgt	ttaataagac	actacatcat	tctgaactag	aaattaactg	atatattcta	aagaaaatat	gaattcccag	atcacctata	aagagaggat	aaatttatcc	tcaaggggta	aacaactcca	tggggacaac
aactatacat	accaccacct	agctatatca	tgatgaagca	ttctataaaa	attatttttg	gttataatac	gttcttttaa	tagcattaaa	ttttcctaaa	acaagattgt	gaaatcatgc	ttatgccaat	tactccaaca
ttgactgatc	tatgtgcgcc	ctatgtaata	ttaataattt	cctttagttc	caggatgaag	cactcataga	aaaaaaacag	gtttatgacg	gggaataaag	ggagcgtata	gcatcagcag	tgcttgatag	ggagccaaaa
ttaaccatct	ttttctctag	agacacctca tctgcaccat	ccattttcat	tgcctatgct	aaaatcatct	agcaacattt atctttgagc	actaaaaatt	taatgcatct	ttcaaagctg	taaaaacaga	ggttattgct	aaaaattaat	aaaaagattt
tcccaaaaga	agcaactatc	agacacctca	gacctctatc	agcaaatttg	tccaatacct	agcaacattt	ttattttgag	agcttattcc	taaatatttc ttcaaagct	tattttcttt taaaaacag	agaagaggg	gtaagaaatt	taaaagatgt aaaaagattt

APPENDIX A

Page 2/126

3/126	Page		APPENDIX A	AE		MBA-101	
2520	catctgaggc	atccaatgat	gaaatgaaat	gactttactc	aagcaggctt cacctttagc	aagcaggctt	
2460	aaattaaaaa	cttaaagtcc	catttgaaat	actgaaaaat	tagaactaaa	tagttggtgt	
2400	gcatatgttt	cttaagcgat	ggaaatctag	tttaactaca	gcagctctca agttacagag	gcagctctca	
2340	aggatgtttg	taagctttca	gaagttttct	gagatacctg	caaaatccca	tattaagtat	
2280	agagaaaaaa	tggtgaaaat	gatcagagat	attgttgagc	atttccaaag acttaatttt	atttccaaag	
2220	gctaatgtaa	aagttctggc	ttattgctat	aataaaaac	gaaagttaaa	cctacgcaag	
2160	gggttaaaag	agcacttgca	ctgggggcatt	tcagaacctg	ttgaagatac aagggttcta	ttgaagatac	
2100	aaagatatct	caccgctgta	atgaggtctg	gttagcgttg	agtcattaca	gcgtagatga	
2040	attaaagagt	ttttgatgtt	gaaaaaataa	tcaagggttg	ggtggcagta	ttgctgatgg	
1980	gtgggcctct	tttaaaagaa	aaagagttat	aaagctaata	tgaggccgta	cttgtcttgc	
1920	gaggattccg	tgttgaggtt	aaattgttgg	aagaaaataa	acagaataat	cctggatagc	
1860	ggtgtatctg	tattctagct	gaggaggagg	gttccggtgg	ataattttga tgttgtcttt	ataattttga	
1800	gaagataaaa	agaaattctt	ctataggaca	ggccaaggga	aacaattgct	acgaccctct	
1740	catccttttg	gtcttttgtt	aaaaaaaatt	attgcaaaga	ggcactgttt	cattaaaaga	

3360	taactctcca	ttaaagaagc	tttctctccc	accgattatc	ttcgaatccc	accataccca
3300	aaaattttct	gctatcttgt	tattgaacct	catttggaaa	cttaagttat	cgcattgatt
3240	ttctatattg	teettitetta	ccattcattt	gccatatcag	ttattatcct	ggcaagatta
3180	aatcatatga	tcttgtcttg	agataaggta	ttagatcaaa	tttattattt ttaaaccaat	tttattattt
3120	tgatctcatg	ctcttaagtc	aacaaattga	ctttcaaagc	ggattttttg	aatactaata
3060	catctgaaaa	tatccattag	tttataaagg	tattatttcc	tcattaacta	agtattaaat
3000	aagctacgcc	atttggaacg	tttatatcta	cgagctcata	gacaaaggag	aaatagatat
2940	aatagaccaa	ccacctttag	gtaaattctc	cctcctcgtc	gatctatcat	ctcggattga
2880	ctttgaacaa	tcccacggct	gctagggttt	aaagctcatc	ttaattgaaa	taatctaaat
2820	gttaatactt	aaaatgaaag	aagattttt	aaggcataca	aacctctaac	ttacagaaga
2760	ggnactattt	aaataagtca	taaatcattt	gacaagctaa	taaggataaa	gcatcgagag
2700	atattaattg	ttttggaaag	taggttcagc	tacaggaacc	ggmatatttc cttatttcat	ggmatatttc
2640	ggaaataaat	agagaaattt	taaattttct	ggcgcgctgt	tgagaagccg	gagagtttcc
2580	atatttaggg	caatgaaaga	gctctcataa	agtgactcag	tggcagaaat	atatggttgg

APPENDIX A

Page 4/126

WO 01/83701

3420

ctattcttct

gctgtaatac

ctcaaagtct

agttctttgc

gtcatatgtc

Page 6/126

APPENDIX A

5040	caattgagtt	ccatcaataa	atcaagagag	actcaggctc	gcattattcc	aatttcaaat	
4980	aaaaatctgt	gatgtttcat	agtaaaagga	ttttcttaag	agaagttcat	agccgttgta	
4920	agaaaattaa	tccttatttg	atatatacca	taaatccaac	tgaaaattct	atcattactt	
4860	agaacataga	gtcttcctgg	atctctaagc	aatttatttg	agagttttta tcgctaagtg	agagttttta	
4800	ctatatttat	ccatcaaagt	gttaccatca	tgaaagcttt	atagcaagaa	cccaagattt	
4740	aaagcgagtt	atggcatcga	ttgcgttttt	agtctcctgc	tctgtcttaa	tccatcccag	
4680	caatccaatc	tgtgtttttg	atcaaatttt	cccaataccc	aactcagaga	aggaataaaa	
4620	ttacatccca	ttcattaacg	atcaggctgt	ttatatcacc	tgcggtgtaa ttaatttttc	tgcggtgtaa	
4560	tataacgtaa	ttttcggcac	ccatgactca	cactgctaac	attgttccgg	tctactagcc	
4500	agtagtcatt	aactcttgaa	taagctatct	tttgtatttc	tttgtatagt	aagctttgat	
4440	gaaaaaagt	gatatatatg	tttatttgaa	taactgaatt	atctgaccct tcttggtttg	atctgaccct	
4380	cagccccaat	taaaagattt	tccagtgcta	gacgaccttt	attaatagct aaatttattt	attaatagct	
4320	cgaaatctgg	tcagcttgtc	atcatcactc	taataaccac	gcagaaaagt	agtttcttga	
4260	ctgagtaaaa	gctcttttt	attgaaaaat	attggttttc	tcaaatagtg	attactaata	

Page 7/126

APPENDIX A

	caaatctggt 5220	gagccaataa 5280	actcctgtca 5340	ttaacctctt 5400	aaagccatca 5460	aaagcttgaa 5520	ttttgcattt 5580	ttgctcttag 5640	tttttcacca 5700	aaccgatggg 5760	caacaatgct 5820	agcgtatgaa 5880
	atgcatatta ca	ctcgtttata ga	atttaaatca ac	atcttcactt tt	cagcaaatta aa	aagtttagta aa	taaggcaatg tt	aaaacttata tt	togtatttta tt	gctatacctg as	aggtactgcg ca	ttaacacatt ag
)	tttctccaaa	ttgatacctc	gcctgtatcc	tgttgacata	gctgctcatc	tattcttttt	aaggaaaata	cttggattaa	agagtgattt	accgccatgt	ttccctgtaa	ttcaaattta
	aggtcatgtt	aataaaggtc	ccatagccaa	atttcattta	aagaagttag	ggaatataaa	tcatttcgaa	aatacatttt	ccctgctcaa	aaaccaaatc	caaatcaggc	attgtatcgg
ン カ カ カ カ カ カ カ カ カ カ カ カ カ	atcatattta	cagtccaacc	atatccagag	cattaaatca	ttgatttata	aattactttt	tgtattgact	gattttttct	aatagactgc	cgaggctaac	aatttcataa	cacctattta
3333	aaaaaacata	attgataaca	ttctatcgaa	taggaataaa	tgatcccaaa	tttcgtcatc	ttaacaaatt	catgagtatt	ataaatcaga	taaattgtgc	tcaggtggtg	agaggaatat

Page 8/126

APPENDIX A

f tataagttta attgtactag aatgaattgg gcatggaaaa aataattttt aaaaacagaa	l tcaaaagatc taccttatcc tctagttcaa	s agtetette eetttgeaca taagaateta	tctgacatta ttttttgagt ttagttattt	tctggcggac aggctaacgt cagatctcgg		ctgatgccat caagctcatc atttaataat	ttggataaaa gcttactagc catagttaga ctgatgccat caagctcatc atttaataat	ttttgtatta gcttttcgat ttggataaaa gcttactagc ctgatgccat caagctcatc
aataattttt	tataagttta attgtactag	tcaaaagatc taccttatcc tataagttta attgtactag	agtetette eetttgeaca taagaateta teaaaagate taeettatee tetagtteaa tatetaeta aatgaattea	totgacatta ttttttgagt ttagttattt agtctctttc cctttgcaca taagaatcta tcaaaagatc taccttatcc tctagttcaa tataagttta attgtactag aatgaattgg	tctggcggac aggctaacgt tctgacatta tttttttgagt agtctctttc cctttgcaca tcaaaagatc taccttatcc tataagttta attgtactag	ctgatgccat caagctcatc atttaataat tctggcggac aggctaacgt cagatctcgg tctgacatta ttttttgagt ttagttattt agtctctttc cctttgcaca taagaatcta tcaaaagatc taccttatcc tctagttcaa tataagttta attgtactag aatgaattgg	ttggataaaa gcttactagc catagttaga ctgatgccat caagctcatc atttaataat tctggcggac aggctaacgt cagatctcgg tctgacatta ttttttgagt ttagttattt agtctctttc ccttttgcaca taagaatcta tcaaaaagatc taccttatcc tctagttcaa tattgtacta attgtactag aatgaattga	ttttgtatta gcttttcgat atctttatta ttggataaaa gcttactagc catagttaga ctgatgccat caagctcatc atttaataat tctggcggac aggctaacgt cagatctcgg tctgacatta ttttttgagt ttagttattt agtctctttc ccttttgcaca taagaatcta tcaaaagatc taccttatcc tctagttcaa tataagttta attgtactag aatgaattga
	attgtactag	taccttatcc attgtactag	cctttgcaca taccttatcc attgtactag	ttttttgagt cctttgcaca taccttatcc attgtactag	aggctaacgt ttttttgagt cctttgcaca taccttatcc attgtactag	caagctcatc aggctaacgt ttttttgagt cctttgcaca taccttatcc attgtactag	gcttactagc caagctcatc aggctaacgt ttttttgagt cctttgcaca taccttatcc attgtactag	gcttttcgat gcttactagc caagctcatc aggctaacgt ttttttgagt cctttgcaca taccttatcc attgtactag

7560	gatgataacc	ttaagccagg	tttatgaagt	gggagatgag	actacatgga	gatgttggtg	
7500	tgatgttcat	ggcttggact	gtgggacatt	tatgcataag	aggactttta	ggtgcattca	
7440	tcataaaaat	ttaatcagct	tctggcgatg	gggtattcta	ttgtagagtt	actgaaggtc	
7380	aaaagtaatt	tggtttcaga	gagccccaaa	tagcataatg	aaactggtaa	gatgctgtaa	
7320	tgctgcaatc	aagccaatct	attgtccaca	aatttataat	aacagctaca	ttttcagatg	
7260	aagtggaaaa	ccttcccagt	atcacaagaa	tgcatctgat	acaaaatgta	ggatgtgaat	
7200	ggtagacgca	atttaatttt	gcttcatcag	taaagagtta	ttgaaaatga	ttgcattata	
7140	tgcttgtgta	gaggtgaggg	atagttgctg	ttatacacct	ggtttccagc	aggggaggaa	•
7080	attcgccaaa	ttttatatga	gaggcgctat	gcaggaaata	gggacaatga	ataaagcctg	
7020	catgaaatct	atattgaggt	gctgaatcat	tgaaatttca	agagagcttg	gatattatga	
0969	gcatgaaatt	tcaaagataa	ttaaggctta	ggtaggaaat	gctcttcgat	attattgatg	
0069	atcaattgat	ggcacagcaa	tctaaagata	cgcagcaaat	aaagtaattg actggacatg	aaagtaattg	
6840	ctttgatcag	agaaaaatgg	tcaataggga	agttttttat	ggctagaaaa	atccttcaag	•
6780	aatgcctgaa	cagatgcttt	aataataaat	agcttttgaa	tttttgatca	aatgattttc	

MBA-1(

APPENDIX A

Page 9/126

3	gtt 7740	aaa 7800	ggt 7860	tgc 7920	att 7980	gaa 8040	gat 8100	acc 8160	gct 8220	att 8280	ctt 8340	aaa 8400
taatctaaca	tatggaggtt	gcttgaaaaa	agataagggt	tggtatttgc	aggcaaaatt	tttcaatgaa	tgagattgat	tggcatgacc	aaaaattgct	cgttgatatt	atttgcactt	gtcaataaaa
caggcaarar	tggcttagac	tttctcttag	tcaaagccct	taaaaaatat	gtgagggtac	atgtaaccta	tatttaataa	tgcttaaaga	caaatattgc	taacttttgt	aaaaaggaat	cagtggtttg
gtaacagatt	gaatcattga	ggtaattaca	gctagtagtt	atgcaaatgc	gtattagatg	aacctttcat	gaaagaacct	ccagagatca	ggaagaaatt	caaacagctt	gttttttctg	aataaatgca
cgacatcctt	tcaagaaata	agggataata	tgtcgaaaaa	tgagcattct	cagcatcgac	aggcagcgaa	tccatgtaaa	agaatctgat	tggatgtgat	tgactactta	agctcaccaa	gggtgagatg
gaatagagga	catctaatcc	tttctggcgg	aaaccgttat	tcactctcaa	ctcaaatcaa	caaaggacgt	taatttctga	atcttaatac	atctaattgc	gcagcttcga	cacatggcaa	cagaaggcaa
atcggcataa	gagaaggtgc	ccaattgtta	aataatatca	ataagaacag	ccatcaattg ctcaaatcaa	caatttctag	ttacaaaaac	tcagttcaga	ataaaaacga	tcacttacaa	gataatgatt	atgccactcc

IBA-1(

APPENDIX A

Page 10/126

Page 11/126

APPENDIX A

9240	ctaatcagaa	tgggagagct	acaatctgac	tacggcatgc		
9180	gcaatactat	gaggaactta	atagaacact	acgcgatttt	actcattgaa	gacatatttt
9120	cctgttactt	tggtatctta	ttcctgactg	gaaacattgt	tttagcgtga	tagtcctatt
0906	aactttcttt	attaggaaaa	gtgtgtgaag	caaaatttgt	acctgttctc agattcaacc	ctgttctc
0006	agatttacga	agatacttta	taccttttgc	atgattctca	ttttttatca	cactaatgcc
8940	ttàagaactt	tctaagttct	gacctttagc	taaacttttt	aaatttgtat	aataagtttt
8880	ctctggaatg	taagacatgc	gcattcttta	gtttgttaaa	ataaatcaaa	tcttcgttaa
8820	tťtaggtatt	tgatcagaaa	tatctaaggc	agaaaattta	tttgtggatt tatttggttc	tgtggatt
8760	tatggacttt	tgttgaagtc	aactttttaa	aaaaagtatg	agattagaag	aaaagatatg
8700	atcagtttta	ttaatgagaa	gggattgcct	ttataaaaaa	taattagttc	tgtgaagagg
8640	agatactttt	ttgcagatgc	aatctaggat	tcaaggtatt	ccttagcagg	tcaattcacc
8580	tgctgctcac	ttcttggtga	cctattgttc	tattagċgga	aaccatcatt ttgaaaacta	accatcatt
8520	taaattatcg	ttttaagttt	aagtcagaaa	tctcagggtt	ttaatgttag	gaatcaaagc
8460	ttatttttt	aaaataacat	gagtttgtaa	gcctgtatct	tgggagatga	aatcaagttt

10080	acgagttcaa	gaaattgtag	agcagatttt	cagtgattca	attatagttc	tgcacaaatg	
10020	gagacaggat	attaatcctg	agattttgag	gatcagatac	gcctggaata	aatggttcct	
0966	aaggagagct	tcagactatc	gttgattgat	atctggttgg	gcatggaatc gttcttggta	gcatggaatc	
0066	taggttctaa	agatcaggtt	ggttatacct	ttgcagcaat	gatcccggtc	gtacttagaa	
9840	gttttgcaat	atacctattg	atctcagttg	aagcaggaac	ctcagccttc	agatagtaat	
9780	gggcatgcct	ctcggcagga ttggatttaa	ctcggcagga	aaacaaaggg	cctcaatatg	gataccctta	
9720	tgggatccaa	aacccactaa	taagatcatt	acataaaaat	agagctttaa aaattgaaaa	agagctttaa	
0996	ttcaaccagg	aaatctttta	atgtaagtta	ctttaaaaaa	aaagacttat	aagttcatgg	
0096	ttctcgttga	ctggcagaaa	aacatgcggg	ttacgtattc	aatcctcata	tatttcagaa	
9540	acatagatgc	atgcaaatgt	caatccatca	taataggcca	tctgttttaa	attcatttcc	
9480	gtttaagtga	cttatccaaa	gatcgttaag	gccctggtga	tacttttctg	tgatgagctt	
9420	cagtctatac	atagctgaag	taattatcca	gtgatgggct	gcagactttt gatatatgca	gcagacttt	
9360	aaagaactaa	agcactgcag	aatattctgt	tagtagataa	cattcaattt	ctgcaaatct	
9300	tatcatgtta	gcaaataaaa	cattgaagaa	caagaaaagg	agaccattag	agattttgat	

APPENDIX A

Page 12/126

10920	ggagttacag	tttattatat	tttcacccac	tctaaaggat	gctttctaaa	cagtcaaggc	
10860	caagaaaaag	aaccaaggat	aattcgattt	gatgataaga	agtaaatgag	ctgaatattc	
10800	agagaatttt	tgaagcttta	ataaaaaaat	aaaattaata	cgaattaaga	ttatacccac	
10740	tttaatacct	tggtgaggtt	atcatcctat	gattactatc	gtggtcttct	attctatatt	
10680	ccaatttttg	gttcgacaag	aatatccttt	gtacttgatg	aattatcgct	ctataaaaaa	
10620	aaagcgggag	tttcctaaaa	aaaagccaga	aaaaatattc	agtggttata	agattgtagg	
10560	ggtaaaagga	agttcctttt	cccgcgtgtc	acaaaaggaa	gcttaaaatt	atagttctga	
10500	tgctttactt	tctaaggcaa	tttcattgcc	gacatagctg	tttttactat	acatgaaaat	
10440	ttcaatcaaa	acaacttctt	ataacaaaaa	gatgagaact	tcaaaatttg	cataataaaa tcaaaattt	
10380	tatcttttt	tcaggatgta	ttcacggtat	ggaataaaac	ctagcgtcat	cttatcagca	
10320	tgagaaagaa	gttgaacgaa	cgtatctaat	tcgtttgagt	tcccattctt	ttttccatct	
10260	atgggtatgt	agagggtagt	ggatatatca	gagaagcaga	taaaaaggat	cttaccggta	
10200	taattttttg	ccagtatcaa	aactcttccg	caaatttctg	aatctttctt	tttcttgcca	
10140	aaatttactt	ataaattgat	aagttcaggt	agggttttgg	aggggagaaa	tgagactcag	

APPENDIX A

Page 13/126

Page 14/126

APPENDIX A

10980	11040	11100	11160	11220	11280	11340	11400	11460	11520	11580	11640	11700	11760
aataataagt	cgatttgaga	aagagattaa	cgatcttcgg	gaccaatcat	agggcacagc	ttaaaacttg	aacaagcctc	gctaaagaga	tttattaata	gattgtaaat	cataggtgtg	tttaatatgt	aagactccaa
ttttattaaa	attgctctcg	aacagcagct	agtaggaact	tgaagagcat	aagtataaaa	gctgcaaact	agttgatgga	aggcggagtt	ggttctagtt	gtgggtagca	attaatttgt	gtctaatgac	cagctttgta
ttgccgaaac	taacccccca	attctaagca	taaaaaataat	taattatcga	ctagagactt	caaccccttc	ttcctaatcg	gccctttaat	gaggagaaca	gtagttgtgg	caagaaatag	cggcatgcaa	ttcttaaaag
tacttaagag	gaaataaatt	ggcatatatc	tttggttcta	attggtttaa	aaattctctg	ttgggatcag	agagttgata	atcaataaca	accatagaca	tatcaatgta	ttccaccagg	ttgtcttgtc	gttgaagaag
aacagaagtt	tttagttcca	tggtgaaatt	aaaagctaaa	tttagataac	agaagggttt	tccaattatt	taaatttata	agccttagat	aatgcaatca	cgctccactc	aaatttagtc	ctctgttaat	aacagagaga
ggtctggaaa	cagtattagt	atagatttaa	agacttggct	ctttagtgcc	ttaggcagtc	ttgcagatat	taaaagaaaa	ctaaattaat	caattgaagc	gacgaggatt cgctccactc	cttgtgatac	aatctgccta	atggagctgg

12600	aaggtatttg	aatactcata	agcctggatc	taagtcacaa	ttgtattttg	catccccttt	
12540	tctgataaga	tatcgctatt	ccccaaatct	tctacagtca	attaatttct	tattctctgt	
12480	ttgtttagtt	tattggttta	gtcctgggta	ttaattaatt	aatattaatc	acttaagcta	
12420	gatccaatag	tttcgacatt	ttaagtggtc	tctaataagg	atggccggaa	agtttgaaaa	
12360	ttgacaacag	attaaagttt	taaataaggt	aagacttttt	tgcaccaaag	tctatatcca	
12300	aggcaccaag	aggaaattat	cgaagtcgaa	tcattagttt	tcccttgcct	atgttattgg	
12240	actgatataa	atccaatagg	ttttaatttt	gagaaagctg	agatttccta	agagtaatgt	
12180	ccaactcaaa	gtgctcatca	gtctgcttag	actactttat	aaatgaactt acctccattt	aaatgaactt	
12120	accaatgagc	atgcctaagt	ttgcttctca	tatatgaaat	gacaggagat	ataaaattaa	
12060	ataaatctta	tcctgatgat	aaacaagata	gttattattc	tcttgcaaaa	gaaataataa	
12000	agagcaggaa	ggtctctgga	tgcttattca	atatctcaat	attagagaaa	aaattaatgc	
11940	ataagcccag	taatggcctt	taaatgctga	agcgttattt	agtcacctta	attttcctaa	
11880	aaaggacatg	aatgcttgca	ttggaactca	gcaattttag	ctcagacgca	aaattcattc ctcagacg	
11820	atagttaaaa	tatggaggct	aagtgggagc	tcaacaaaaa	taattagagt tgatcatgac	taattagagt	

APPENDIX A

Page 15/126

13440	tgagatgctc	acttccatcc	ttctggtaag	tcaacaacga	aatggactga ttcatataaa	aatggactga
13380	gggttttgcc	agtctgagtt	ctgtatttat	tttatatttt	aagctctaat	ttttcacctt
13320	tttttatttc	tttattgagg	ctctaatact	acaacaatat	atctatagca	cgtgacccgc
13260	tatttaccac	cgcaccaggg	tťgggccaac	aaaatattat	atctttttct	gtaacgtcac
13200	ttcgcaataa	ttctaactcc	ttaaggttct	taagtatctc	tcatcaccgg tctgtaccca	tcatcaccgg
13140	ccatctctaa	tgtctcatct	ttaaatctaa	tatctattat	agcatcctgg	catatttcct
13080	atatctgctc	tgaaacaaaa	cagcatggat	ctaaacccat	ggaagataat	caccctttac
13020	aaaacagaag	tgaccatata	aagcttcatc	acagtacttg	ttttagataa gttcctagca	ttttagataa
12960	tecetttgtt	ctgtattctt	ttatatcagc	tttagatttt	cctcatcaaa atcaactggc	cctcatcaaa
12900	cttgccgcat	ataggtttgt	atatttctgg	tttttcttat	ttcagaaatt	aaattttact
12840	ttagttccta	atccaatatc	ttttaagttg	aaagggtctc	aatttttgtg	tctttttatg
12780	tactcaacat	gaaatcagcg	taagaactct	tcaatagact	agaaggtata	caaccaatac agaaggta
12720	aaccctgact	gttggttata	cgtcttcagg	aatctttgtg	cttgcccttt	ttctccctgg cttgccct
12660	gcaatcattc	aacagatctt	ttcctaggaa	tagttatgta	ctttaggttt gtccttaaaa	ctttaggttt

APPENDIX A

Page 16/126

17/126

Page

APPENDIX

18/126

Page

ď

WBA-10

BA-101

APPENDIX

Page

Page 20/126

APPENDIX A

aaattacaaa	taaccttgat	acggtcatcg	gattcacact	tactaatatc	catttggggg	16020
cctatatagt	cagtagatac	gacagttaca	gaaataaata	aataaagaat	agaaaccggg	16080
acggtaatct	tataatagtg	cttťataaaa	atttctaaaa	tctttgaagc	atgatttgga	16140
agtgcgatca	gccaaaccc	ttttaaaaaa	gatagagccc	ccataacaac	aaaaattact	16200
gaccatagcc	tgtcagacca	ttccggctga	agaagaccag	ttaaaaaaag	aatcatccca	16260
aagaataaag	ctaaatagcc	tgagattttg	actttcgatc	caacaaattt	cgaaaagaga	16320
tatgtataaa	gaggctttat	aagaactagt	aaaccacagg	ccaagaaaaa	gaatgctaag	16380
tagtaattca	taagttagtt	tttatataaa	tgctccttaa	taatactaac	aagttctaag	16440
ggcttgtcca	atggaacatg	gtgagcagct	ccaggaaccc	cctcaaaagt	cataatgtca	16500
ccatatgtat	ttttaatatt	gtccaagata	cttccggagg	ttaataagct	gtcttcaccg	16560
tggatgaaca	aagcagggca	gccaaatgaa	aatgtgtaac	cgaataacct	ttcaagactg	16620
ctaaacatga	catcatcaaa	tttccatctc	cacccagcct	caatatttt	tactgagtgc	16680
tcagcaatgt	atcttaagta	ccaatcattc	gtacaatctt	gcttaggcat	taacctaaac	16740
cttttaataa	tatctgtctt	gtcttgatag	tgcttgatca	ttctgagagg	agaagagtgt	16800

APPENDIX A

Page

17700	17760	17820	17880	17940	18000	18060	18120	18180	18240	18300	18360	18420	18480
ataatgaaat	aaatagcccc	gtttttttat	tagacagtgt	ctatgattat	agcttttaga	tttttaaaga	attaaataat	gggtgggact	aaatatatct	ctttgttact	taatgttcca	tatcccagat	agtaatacat
atgttgttaa	atgcctcaac	tttgatacac	agtgagctca	ggtgagatgc	tegggeteta	ctgccaaagt	tatgaggatc	ttttcactgg	accetggtee	taaaaagaat	caaaaactct	atgaaacatt	atacgttaga
atatagagag	tttaattcta	aactaggaga	acatgatggt	atctcgttcg	acaatttgat	cccaccaatc	agataaaggg	aaccctggtg	accettgtcg	gatgggaaaa	ttgcctttat	tcatgggagg	acagacgaat
aatatcaaaa	tagaagaaaa	ctgaaataga	agaccggaga	cgctcaaaaa	aacaatgtgc	atgaggatat	tattgcctgg	aacagctccc	agatgatata	caaagcaggg	cccagccgca	tġgtgaatcc	tattattgag
gataaacata	aaaatctgtt	tggataaccc	cccaagcatc	ccaaaagaag	aaaaatttgg	aatctctcaa	tggaggggtc	ttactaaaat	tgattggcaa	atgaaattat	cagatcattc	ggctagtaga	atgataaaga
agatggagtc gataaaca	tgatttatat	tttctcgcat	tgcccacctc	ttggatttca	gcctacaata	aaatcagagg	agatggtgag tggaggggtc	atggacttaa	aatacttatt	gagcatctag atgaaattat	catacccata cagatcattc	atgtacggaa	attattttaa atgataaaga

APPENDIX A

Page 22/126

APPENDIX

23/126

Page

Page 24/126

APPENDIX A

19380	19440	19500	19560	19620	19680	19740	19800	19860	19920	19980	20040	20100	20160
gatagatcat	ttaggcaagc	gcaacaaatt	gtaacaaaag	tcagcaattt	ccagaaacat	cgcctggctc	attctttggt	aaattacctg	actccgaaga	gagataagta	ttaccgacaa	cctaaaattc	agagctctaa
tcctaaatta	cgatcttgtt	aatttcttta	tatcattaaa	aacagctgct	tagtctgtgg	atcctcgtct	ggtgtcgatc	ctcaataact	agatggctta	cgctattgga	gcaattagat	tccaactgta	ttgggccatc
ttgtcgtgtc	taatttttcc	caatagctcc	atgattcatt	caaaaccaac	cagctgtacc	agaagtatcc	taccaaaata	gccaagattg	cgtcatagag	gagtaatacc	caataacctc	taattggctc	gatcatcgcc
tcggcaaggg	attctgcgca	tctggttttg	ttgtcatcaa	attggatgat	ctttcaattt	ccggttatcc	tctttataca	atttgactag	tttccatgct	ggttttgttg	caccaagtat	gcctctggat	ttttaacag
aaccgaagga	ctttctaaga	ttgaattaaa	ataactaaag	ttgcccctta	cacaagagca	atcaactett	aaagtaaata	aatacttcta	ttctagcgta	tgctgaccca	ttcggtttgc	ccaatcccac	tcttttgtc
gagactcaac	tctcagcaat	ctggagcatt	gtttcaattc	catatattcc ttgcccct	tagggtggag	taagaacatc	catcaccagt	gatcaccata	cattagagcc	agggcagagt	cagaaccagt	cactgtagta	ttaggctatc tctttttgtc

20220

agotgtataa aaaatactaa tgtcatgctt atcgcatatc tcccaacacc

tggcagttgg

21840	teggteette	ccaacaccta	agtagttttc	tatttgctaa	teggetatet	attaaatgtt	
21780	aagaatcata	tgttctaaaa	ctctgccggt	agaagggatt	aaattcttta	gtttttataa	
21720	attggcttgg	gctagagctg	aagctgagtg	acaagaagaa	attctttgaa	aatttgttgc	
21660	taagatcttg	cttctttgtt	ttcaaaaagg	aaatcagcaa .ccctcactgt		ttctattaaa	
21600	atcgatcttt	tcagcgaata	aagagtaacc	cctcgttaga	agatccattt	tttgtcatat	
21540	ggtcatatac	agggttagat	tggcgcgtcc	ggtcggggtgt	tagattacta	tgcctgaaga	
21480	catcaatagg	tcttttaaca	agtaatcctg	ttcctctctt	tcgttaatat	tagatattgt	
21420	agtcaagagt	ctttccaggt	atcattcagt	ttgagtatgc	aagaaaaacc	actatagtct	
21360	aaggggcaga	attattaata	tgcagcatta	aattaatatc	ttggtttcta	atcgctatca	
21300	gcgattcgta	tttgtaatga	ggacattatt	ctttgggatt	aaattctttc	ggggttaatg	
21240	ttgaaggttg	tcttaaataa	ttcgaggcat	ctataaagct	atgttttggg	gattacttga	
21180	tttatataag	atcaaagtct	ctttgtattc	ttgtaaagtt	tatggattgc	aaggatcttc tatggatt	
21120	aaaaatttag	tagattttta	tttcgtttgc	cagcttatgt	gtcttccatc	ttgttttgaa	
21060	ttattgaatg	attaaattga	acttcgcatt	ccctcaaacc	tgttttacca	agctaatatt	

APPENDIX A

Page 26/126

22680	gggatctcca	atcgtctttg	tcttcttcga	tctcactgga	ctcttaagct	aatcttatag	,
22620	tttgttacta	taaaattgag	ttatctatct	cttaaccaga	agatggcatc	cctttatcat	
22560	taaaagatgg	agatgcctga	ctagcgtttg	atcaaacaat	aaaaatattt tgcagaactc	aaaaatattt	
22500	cattccattc	tctttcacc	ttttcaaaat	tgagcagagt	agatatttat ttaaatgaaa	agatatttat	
22440	agaaaggata	tacttggatc	aagtcattcc	attgctggca	gtgtcataac	cttagagcat	
22380	atcagtattt	taaccctatc	tgttggtttt	tgtaattgac	gaaagcctgg	gcagccataa	
22320	ccataacaat	ataacgaggg	cactttttca	attcttagaa	taatttctcc	tttctcacat	
22260	tcggaaaaat	catccataga	cgaagtacac	ttgttgttcg	cttggtattg ctgtgatttt	cttggtattg	
22200	tgaaaatttt	taatatagct	caaatatcct	ttgaagtacc	gaagttttaa	attctgctat	
22140	ctggctacca	ttttatatgg	tgtcgaagag	aaaccttgga	atgcagctct	agaaaatcat	
22080	tcttacaagg	aagctctctc	ttgtctccag	aataccactc	accacttccc	aaatcagtcc	
22020	atttttttgg	atgagtcatc	gttcctctca	agcaataatg	cattcatctc	tcactttttt cattcatc	
21960	agattcttca	atatttttgc	tagaagccaa	caactcgtta	gtttttatcc tagattatct	gtttttatcc	
21900	ataacgtata	gggttcattt	tttaatagct	gtggtacttc	tattttggaa	aattgcgata	

APPENDIX A

Page 27/126

22740	22800	22860	22920	22980	23040	23100	23160	23220	23280	23340	23400	23460	23520
ttctattttt	acaatcttgt	aacaatattt	ttcactccta	aaatgttttc	tagtecegtt	ttgaaggtct	taattatgaa	tcaagtgttt	ccaatttcat	gatagaccta	aactcttcct	agatgatcaa	gcaacaaaat
cgttatgatc	ctcttctatg	tcgaatcagt	cttcaagcaa	ttgaagcttt	cttttggctc	aattattttt	ctatcaaatc	tttaatttcg	cctcttaatt	ttgttcaata	ttcaaaagca	tttagctcta	aagaagaacg
ttaagcccat	acagtaaaat	atctttcctg	aaagttgcta	ccaattattc	atatcgaaat	taggcctgaa	ttattattat	gctgcttttc	tagcttcaag	cttgcttaat	tggttcttaa	aggtttcacc	ctttccaaag
gtgtatatgc	aagggcattc	atctctaaga	tcctgatctg	aaatctttg	attagtggct	accaaccaga	tttacttatc	tagccattta	gcagttggtc	ccataatcat	tetetatete	gggtctgcat	ttaagatgtt
taaccttctt	gacagtagta	cccaattatt	cctgatcact	gaaccaattt	caggcgtggc	gaacgcaccc	atatagcaaa	ttaagggcat	gcaatgagtt	ttcgcaccaa	aagttttctc	cctgtctact	catttcatcc
atagatacaa	tttgtaacag	tcaagagtgc	tcaccatctt	ttaaaaacat gaaccaattt	ctgatctgct	agtgcatcgc	tgaacgacag	tttttatgat	tgcaatgaat	caccacagga	ttttgctgat	cttgagaagc	aagttttttg catttcatcc

APPENDIX A

Page 28/126

24360	aaaatctata	ctacaacatc	tttgaatttt	ataaaaaatt	agccttcgat	gttaccatgt	
24300	atcgtcactt	cattaaagtt	gaaataacag	ctctaagact	ctttaaggtg	acgtccttgt	
24240	ggctttcttt	ааададасаа	cctgcatcag	atgaacaata	tcaaattttt ctttaaaacc	tcaaattttt	
24180	ctctattaaa	ttccatatga	atcatatcta	attacagaag	aaagcaacag cttcatcatc	aaagcaacag	
24120	tttaccagaa	caaggettte	acagcatcat	ataaaagcta	gcttttcttt	gtcatatagg	
24060	tgtaatagca	cggcgccttt	acacttccat	atctataaca	caaccccttt	gcatgcttct	
24000	ttctgcttga	gagttatttc	gtatctattg	agctccattg	acatatcacc	gatccggcaa	
23940	atgcataaac	gaaggtaggc	ttattccctt	tgcttcaata	tagtttgcaa acttagcaca	tagtttgcaa	
23880	ggaagatgca	caacaacctt	ccaaatgtct	aagtcttggc	catccgagct	ttcaagtacc	
23820	atttaatact	tttttaattt	agctagtcat	tgacaaaatt	tatcagatac	gtggagaaaa	
23760	gaattttagg	agattttata	cgaccatgta	gattttttt	tactgtcttg	gagcttttt	
23700	tttttaactg	ggcaacagtt	tagctttttt	tttttaåctg	gagetttttt ggtaacagtt	gagcttttt	
23640	tttttaactg	ggctgcaact	cagacttctt	gttgcttttg	attagctatt	tagatttatt attagcta	
23580	ggtgcaattt	agatttataa	cacccttctt	atatatttt	tgctgcactc	gtttcttcat tgctgcac	

APPENDIX A

Page 29/126

PCT/US01/14394

25200	ctgcttgata	gacaaagttc	tggattgcca	ccatagctag	gttcctccag	caacaaagca
25140	tcaacaattg	tttťctttaa	tttaaacgga	tttctaactc	gatgcatttc	caaaagcaca
25080	tcatcccatc	attaaggttt	tgactcaatc	acggaatacc	tttatagaaa	accaattctg
25020	cgaacattcc	aaaaagaatc	ttcttctgaa	tattagggag	tcattaatat	ttttgcaaca
24960	catcatcagt	gaaaatagta	taaaaaattt	tacatgaatt	ccacttctaa	aaagtatatt
24900	tagagggggc	gcttcatatt	aatgaagcct	gcattgctga	tgatccttat	attaatttct
24840	ctaacgttct	tttactgttt	tattatttgt	ttcctttttg	tcatgtgtta	atatcatatt
24780	aagggcgcta	aagcatttcc	gtatctacta	tttatättga	catggctgac	gataaaaatt catggctg
24720	gcctacactt	cggctacaag	gtcatagagt	agatgaaaga	gttcttcaga	ataggtgcct
24660	tttgctaatt	tttcaataag	teggetecea	agaaatcgat	caccgcaatc	gttgcagagc
24600	aagagaattg	ctgcagcaac	ccataatttg	gcaattcgaa	atacatgatg	gaaactctgc
24540	ttcatcatca	ttcttccatc	tcaagatagt	cctgagacta	ctccagccga	atatgtttga ctccagcc
24480	gctgacacca	tattttcaga	ggttgatctg	tttcccagtt	aaattaagca	ggagtaacta
24420	cttagcgtca	tcatagttct	agcatgctgc	actaactcca	caagatacgc	tctgatttac

APPENDIX A

Page 30/126

APPENDIX

4

31/126

Page

26880	gctaatgatg	aatttttaaa	gctatgattt	agacttgatt	agatcaagaa	ggattagttc	
26820	aggtgcgcag	tgatgcagct	atgcaaatat	aactttgcat	attcatcagc	ttatcgcttt	
26760	tatttattta	aatgattaaa	atatttaaaa	aaaatatagt	gcacgcgaa aatataaaca	gcacgcgcaa	
26700	aaatttcatg	gttaattaaa	attttatatt	tcataaatat	agagttgatt	gtagattagt	
26640`	cggttgtaga	gtttgcccat	aatttccaga	tttttttaca	ttagagaaaa	cacatctaat	
26580	aagattcaga	attatttttg	tgcaatatgt	ctactgcttt	aaatctaact	aaattgatat	
26520	taattttatc	gcaccaataa	cctaatgctc	gtttgccata	tatggtttgt	ttcataaagt	
26460	tttgaataaa	gcaacatttt	ttcaagacaa	tttcttttgt	aagaaggcat	attaactgaa	
26400	tcgcaactac	tcaggctttc	tgtattttt	ttgtttcagg	atatacgggt	aaatttttgc	
26340	acagctctaa	ttccaaggag	tttcattggg	agactgctaa	ttgcctgcaa	ataatctatt	
26280	tatattttgg	tctataaatt	catgtgttta	tcaatctaat	atccacataa	accctttgta	
26220	catctgtagg	gtatttgtaa	gaactcataa	tccagttggt	tgaaaattca tccacagtat	tgaaaattca	
26160	ttaattgttt	tattatgtat	acttaattct	tatgatatca	ttcttaattt ttaatttcga	ttcttaattt	
26100	aagctaattc	ttatgtgtca	atcaatttta	ctatggattt	cttggcctct ttgaataagg	cttggcctct	

APPENDIX A

Page 32/126

PCT/US01/14394

27000

26940

agctatcaag gctgtgaccc

attaaaactc tcatcacacc

agatagtaat

agctaccttt

aataaaaatt

cagctgattc

28560	tttaattgaa	attttgggaa	aatcttaggg	ttttactttt.	caataagttt	tcgttatttt caataagt
28500	caacgagctt	ctaaatctga	ttgatagtgc	tatctcttta	ataagaatcc	gattttgaaa
28440	ctcattaata	atccaatcgc	attttactaa	tgatttctta	actctataga	atagcaacac
28380	ttgtccagaa	gcctaatggt	ttaatttcat	aaatctctta	tagaaaatgg	ccaatitgca
28320	atttggatca	ttgcaacaat	cccgtttctt	caccagaagg	aatcacttac	atatttctaa
28260	agcaatatgc	cgccacccag	ggggcgcctt	cggaacaaga	tatggaattc	aataattgat
28200	agctttataa	gtgggtttct	aaaataattc	ccctatattt	ttgaaatccc	aatgagtaat
28140	attttttaca	tgtcatttct	gttccccata	gcctacatca	cattaccagg	tctaaaattg cattacca
28080	acaatatgca	gaaaatcact	ggaatctgaa	tttatcaaaa	ttgcaccatt	ttggctgcaa
28020	tacttttcct	caatgtgatc	cttcctaact	ttgaagcaat	aaaaattatt	tttctttaa
27960	ttttggacat	tgcctgttga	aagagctctt	ttttatatta	tggataatat	aagaatttct
27900	tttcttttt	tatcttcagc	gtacatagaa	ttcaaccagg	ttgctgaaaa	attatagatt ttgctgaa
27840	gattgaattt	catttttatg	ttattatgac	aatgtcacaa	cacaaatgac	gcaccaccgc
27780	cttgttatgg	ttaccagata	gaaattcttt	agccatctca	tatcattact	gagaggacga

APPENDIX A

Page 34/126

Page 35/126

APPENDIX A

29400	agtccataat	atataagcaa	ccagccaaag	agtctacatc	tcaaàaacga	ctctctaata
29340	attcgtcacc	attacatgaa	agtgtcataa	cactataagg	ttctctccat	attttttact
29280	cgatatcgcc	ttagcaatta	gttaataaac	tattaccatt	gcaaaatagg	aaacctattt
29220	cttcagtgaa	tttttactgg	aaagtactgt	cattttcatc	atattatttc	ggccttttgc atattatt
29160	ctcttaaaaa	tctaaagggg	atatgcaaaa	gagaactaat	ggattaaaat	cattctgttt
29100	gaacaggatg	attgtatgaa	gtgagctctt	cgactccatt	gctgcataat	tectetttt
29040	tcaccggcga	cctgtagttc	aatcccatcg	aaaaagaaac	ctttgaccag	acatccattc
28980	tctcattacc	tttataacta	atttgtatga	tcgaatactc	caatatctag	ttctaaatga
28920	tactaaattt	cttataccct	tttgcctttt	gagaaacttt	gtatcgccct	gaaaccaata
28860	aactcccaac	gccagtcctg	aggccctgtt	aatgtaaatg	ttaaactcat	cttacctatc
28800	ctattcttt	tttataggat	taattttact	cagctgatgg	ggtactggtt	taaattttt
28740	aacttgccct	agtgtatcaa	attctttaat	ataatttatt	tcctccattg	tttattgaac teetecati
28680	ttggagaaag	tcattactac	atctttttac	tccaatatag	tgactagttc ctgtcattgc	tgactagttc
28620	aatagcgtca	atgaaatatc	atgctaagaa	ttttgtacca	caagatgtat	tggaaatact

Page 36/126

APPENDIX A

30240	tctaacgata	ttgatttaaa	tccatttcat	aattagtgca	taatattttc	ccactatcat taatattt	
30180	aaggccgaag	tacccattgt	ctagtatgaa	tttttctact	tgtcggccct	tcactaaata	
30120	attacacttg	tatttccaac	tttatgtaaa	catatctcta	cagctcccac	gaaccaacaa	
30060	aaaaggctga	tttgtccacc	ccggatagat	ataaccgctg	caccagcctt	taattaggcc	
30000	ttgcagaagg	cgttaagaaa	acaacctttt	gttctttgag	atgctaccga	ttgccaccaa	
29940	gagttcagtg	gaatatttaa	tagtcctctt	aacctatcat	acttttttaa	tctttttgga	
29880	caagtaccgc	gcaaaagaaa	aatagaaaca	atattaagac	taaagcatta	tatatcaata	
29820	catatgtttc	ggcaaagatt	ttcttcaact	taatctcaat	aatttttcag	aggtatagag	
29760	tttgctcgag	tatgttttcg	atgcatctga	cttgcacctc	tttctccat	tattgaaaga	
29700	tttcaaaaat	actgaaaagt	atttaaaggc	tataagcagt	ctaaaaattt	ggagtctaat	
29640	tgatattttt	atgttagcaa	ccctggttta	gcattttttc	tattcaaaga	ctcaccagaa	
29580	tggttagctc	atctcaattc	atctttcatg	aatttatttg	attgaaatag	agtaaggcta	
29520	ctatttctgg	ttcttaaata	tttgcttata	actcaatact	gattcaatta	gctattgtaa	
29460	gaataatccc	aatgaggatt	tgcctcataa	catctagagc	ggaatatttg	cacactttcg	

31080	aaaatctata	agtatctgag	tgttttgcat	gccaacagct	ctgtttggag	atatggtctt
31020	accctcaaga	cgccggtggg	gcattgatct	gtaagatagg	cttttggtga	aaaatatggc
30960	actaatacat	agttccatgg	gcaacaggaa	tataagtatt	ttatttgccc	agggctgcac
30900	tccacatgca	ttactttatt	ggcttaactg	atgttctgag	gaattgaagt	atgtagccaa
30840	gttcacaatg	catgaaattt	accccaatct	atcttttggg	aatttaaagc	cctaggatta
30780	aatgccgtct	tgtcaccatg	tttgaaagca	gttattaacc	ccctttgat	gtgaatgcaa
30720	taaagacccg	ttgctgtttt	tgaatttttt	aaggctgctt	ggttacttgc	attgattcat
30660	caaaggaata	tctctgcaat	atgcctcctg	cattgaattt	aatcaacaat	agtgcgcttg
30600	ttgctcgaga	catcġġttġc	cgaataatat	aaatgctgaa	cagagctatc	catcgctgtc
30540	caaggcagag	agagaactct	tcttgtacac	atatatttcg	aaagatcgtc	atcattgata
30480	accaccctta	gttctttcat	ccaattttta	ttgagggttt	tgtcaagatt	ccgatatctg
30420	aattattgga	atgttttgct	ctatcaagag	agcattgaga	ctttgacgta	tcttcaaaac
30360	ataattotta	taaaaaataga	tcagcagacc	atctacatta	caaaattttc	gttggagcta
30300	ctcaattatt	tattatcaat	agatcagaaa	ctcgtctttt	gtccaaattg	tgaagtattg

APPENDIX A

Page 37/126

Page 38/126

APPENDIX A

31920	atagatttga	catcatagcc	acaggataac	ttttgtatag	taacagattt	gctaagtctg taacagatt
31860	ggctaaataa	tttttgcaca	ttaaaaattc	ttttccaca	tagggtaaat	gtagcaaatt
31800	tgcattatgt	aaatggtatg	tggattgcag	gccaagatga	ccttatttga	aattcataat ccttatttg
31740	tagtctttga	ccattccaaa	agcagctctc	ggacttataa	ttttgtttgc	gtatttaaga ttttgtttg
31680	atttttttca	aaattgaggt	atcggcgcat	atatttgcca	gcaagtcttt	agatagggta
31620	tettettaca	tttctaatag	tttgctccat	aaatgagctg	acctattaat	ggatcaagta
31560	atctgtttca	gccaagcaga	cctctggcaa	taaatggggc	tttttttcat cctcaatttt	tttttttcat
31500	tggtatctct	ttcttggcat	ttaaatatat	cggtctgtca	aaatcaaatc ctttagagtt	aaatcaaatc
31440	cctttcactt	ctaaattcac	tcaagcattt	aagctcctct	caaactttcc	tcttttgaat
31380	agcctttatt	aaatcgatga	tttgctttat	cttataatcc	tattggtttt	atgtcatgag
31320	aagagatgag	ttccatctgc	ccaatatttc	tgaggctgta	gatcatcata	atataatcta gatcatcat
31260	gctgcccttt	gttcttcaag	ctaatatttt	agaccattca	catgcatcaa	cttttttcaa catgcatca
31200	aatggatgct	ttttttctaa	tcgtctgcaa	tgcttcaatg	taaattagct cagaaggatt	taaattagct
31140	cataaggtaa	cggcttcatt	actgtttttc	agtattttgt	tttcatcaat	gcttctcťaa

31980

cataggtgct

gccgaacatg

ccttttacga

ccaatatgct

tttcataatc

gcatgcttaa

Page 40/126

APPENDIX A

32820	32880	32940	33000	33060	33120	33180	33240	33300	33360	33420	33480	33540	33600
ctcgctctta	ggtcatttaa	acttgttact	actgattcta	aattaaacga	tggaaaacag	tcataccgta	tctaattggt	aacacttact	aattcttaaa	tgcagatggt	tgattttaat	ccttgttcaa	tcaaaaattt
gttttgttct	gaaatcgaag	tcaggataaa	gtatcaactt	cacttaaatt	aattagattc	ttcatttggg	aagtaatttt	aaactaggcc	aagtttttaa	acaagcttgg	tggagcgtga	ttttataccc	gaggaacaga
aatgcatcta	agcatttttt	tatttcttgt	atagtgccaa	atgagtgatg	ttaaaaaaga	gctccagacc	cttgggcata	ggtaaaaata	tatgagaaac	gagtggtgca	gcaagaatgc	attcatgaat	gtcgaatgcg
ttcgcttaga	tattttattg	gatctgaaac	ttttaatctt	tgatagtcat	agagtctgat	tgatccaaca	ttttcaagat	agatccctcc	tgcaaaaaca	atttaattct	atataatgtt	aagcatagct	agaggctgat
ctagcccata	aagcatcaat	ttactaataa	atagctatta	aaaaacatta	agatcctcac	aggcggggtt	agctaagaca	gtcaaattgg	taatttcaaa	cagaagttaa	ttgcatcaaa	gcgcaaatca	ctgtagccct
tctttattat ctagccca	ttctctctgc	aaaatcagaa	tgttaatgtc atagctatta	ttaatgactt	ggaaccgacg	ctaatcatta	ttattaaata agctaagaca	gattttactg	tcagaagaat	aaagaattaa cagaagttaa	ttgattggtc	aaacgttata	ggatatgact ctgtagccct

33660 33720 33780 33840 33900 33960 34140 34200 34020 34080 34260 34380 34440 tatttcagac tttagcagaa aagaaattt ctttttatag ggttgtttta attaaataac aataggagtt agcttttctt tgatgttggg aagtacatct aatagaagat tattttattg gctcattttc tcaattatcc aagaacctca ccatgtcagt aggttggcaa atttcttctt taatatgcag tacaattaca tgtccaaatc aaataatgtc cagagaaaga ttaagtttct aatgcaagga agatgacatc actctgtaaa cttgcaatac gctacaaaga tcctatggtc ataaataaaa atgttcggta agetttaeet ccaagagata gatggttcga gacattcctt taatttcaaa aggccaggag tctatttatc aaaaataaat tagtccaaat aacaaattag tgctgcagga aagaattgtg gttaaaatcg ttgaaccagg tgagttactc agggaccaac cttggacgga gcctaatgat ttcagagggt aatgcctgat ttccattagt aaacctttta gacttgttaa acaaggcgga cctaatatta atctattctg gaatcaccat atagattcca tagggagaga aaaaaggtca aaacataatg tcaggatagc ttctagaagg tagatgaaga aaatggaaga tcaaagttct ggagatggtt aagggaagga aatttgctag cctaaaatgc ttgcgtgtaa aaaatggaga actgtaccca tttatagcaa gagttaatgt cttaagaaga gagttagtag caaagatttc gctgagggca gaggcgatga ttaaaaatta ataatgaaat

Page 42/126

APPENDIX A

35280	ttaactacag	acctcttaga	attcaccacc	ttatcaccat	atcatgccag	gcctgcctgc	
35220	ttattaaaaa	aacattttgt	agtcatcaaa	gaatatgcaa	aaatttagca	gtgcgtgtaa	
35160	ccaatttctt	tgatggagaa	tagcggttga	ccaccttgaa	tccattagag	ctagcaaacc	
35100	gtcgcagcca	ttgcaacatg	aattaggatt	actttaaata	cgccaacttg tggaattgcg	cgccaacttg	
35040	atgtccaaga	aaatctaagc	taaatttatg	cagcctatag	ttcccaggcc	catagtcact	
34980	tctggagagc	atctttctta	tttcaaactc	gctaataagt	aggcgaataa	tattatgcag	
34920	ccttcaacaa	atagcactca	gagtagttgg	gtagtaatca	tcttttagct	ctctatcatc	
34860	gagggtacta	gaatgaatga	ctgcaaactt	tgaagttttg	tatcacaccc ctgggactct	tatcacaccc	
34800	aatattggat	aattctaatt	ctcttccttc	ccatgaccag	tgttccggct	tatttttagg	
34740	ttaataattt	agcaacctgg	cataaacctc	agagcgtatc	tataacggat	aacccttatc	
34680	caaaaaaact	attagatatc	atattgagtt	cttatttttg	aaactcaatt	ggataccttc	
34620	ggccggcctg	tggcgatgag	gtatggccta	atcgacccaa	gtgatgaatg gagagtttat	gtgatgaatg	
34560	atgaagaaag	aatctctatg	gccaaaaaat	atagttgggt	cagtcgaact atcaggtcta	cagtcgaact	
3.4500	gagcccttaa	tgaaatgggt	ggagttctgt	tcagtttttt	acgggaccct _. cactgatggc	acgggaccct	-

Page 43/126

APPENDIX A

35400	35460	35520	35580	5640	35700	35760	5820	35880	35940	36000	0909	36120
atttttaagg 3	aagaatttaa 3	aaaagttctt 3	tttgtaaatg 3	cettttettt 3	tcagtaaaag 3	ctaatagaat 3	gtaagtgata 3.	ttcttgcttt 3	tgatcagggc 3	agaaacttaa 3	ggattctcat 3	tttggagctg 3
attactgtct	tttggatgga	ttotítocaa	agttacaaaa	acccattgtt	gaagtgaacc	gctaacacta	attttttatt	aaaagtatca	aataaaaggc	accaatagat	tggcttttca	aaacattaac
gtattggagt	gtgttccatc	ctttaagatc	tttctcgagg	caccaaaacc	ttaaatcaaa	tatttataaa	caaatgagcc	agtaaaacca	ctattaaagg	ctgtgccttc	aactccatct	caattttatg
ccatataaaa	atgggtattt	gagtcgtgtc	attttgtata	tcaatttcac	tatgctcctt	acaatagaat	tcattccaaa	ttttcagttg	attagctcat	tttctttcat	cttattcccc	tgagcagtac
gccaccatat	actaagatgg	aaataaagtt	agttagatta	tacctcatct	cttattttta	ataagaaact	accaacgact	gttcgcagca	ataagcgcct	atagagtcta	ttttacaaca	atcctcatct
agatattaaa	actttttgta actaagatgg	agtcagatgt	gtgacatatc	aaaaataaga	ctgttgctag cttattttta	tatcaacgag	tagtactttc	ctacttttcc	ctaaaaagct	ttagctgaac	ttttagaatc	aaacaatcac
•							•			•	•	

36960	ggatattcta	ctcagcctga	caaaacgtta	aaccccaata	catcaatggt	atagcaatgg	
36900	gatgcttgaa	cacccatcat	gtacttgccg	gttttttatt	aaaattggaa	ttttacgcaa	
36840	gcatggcaac	attcaatcga	ttatgaatca	tacaattacc	cataatactt	gcataaaaag	
36780	tatttattgc	catgtatatg	atagagctgc	actagaatta	tgagcaacta	ctgtttgatt	
36720	tcaaaattat	ttcagggtat	ctttatttga	ctaaaaggaa	gacttcttca	ggtatccatg	
36660	tcttcgatta	tctataagca	cctccatcca	cttgtaaaat	tgagtcctca	cccagtctgt	
36600	tgtctctcga	gaaattattt	atttttgtgt	tggcctataa	atatttattt	tagattttt	
36540	ttcttagcaa	ctcatctaaa	tatcccaaac	atcgaatctg	aggcatgctt	taacctgata	
36480	gttttttgt	ataataaaaa	catcattgaa	tgccatgacc	cttgctttgt	taatcatcag	
36420	tcacagtcct	ttggcattct	aaactctatc	ggatcaagta	gaactgattt	catcttctga	
36360	gagatagttc	acttgcaaga	taacgctggt	gcatcattac	tagaagagat	ttgagaaagc	
36300	ccatctgata	atcagaccca	aggttctcca	agtactttcc	ttcaatatca	tttttcctga ,	
36240	tcatcaagag	ttcaatccta	atttagccca	gcaccagaaa	ttcccatgaa	aatcatcatt	
36180	taaaatccag	tttttggtaa	gctcgtcgta	tcttccgatg	ttttaaaagc	tattaatatc	

APPENDIX

Page 44/126

37200 37260 37320 37380 37440 37500 37560 37620 37680 37740 37800 37020 37080 37140 tttgtttggg agtaattcca agattaacta gatagtatta ctaaaagaaa cgtagtttta cccagctttt caaaggagct atccattata taatccttcc acccaccatt agaaaatgag tctgggggct ctcagcttgg accactetta gatattaggc gtccacccag aggcaaaact gtctcttagg tcttccact tattaatact tgcttgaaga atggcaccac cagttgccca aatatgtaat gggtctgtag actaaataag ccatagaatc atttttgcat gcatttatta tttatacaag tcattaaaaa ggtatcttat acggatgagc aaaaaacac ggctctgtta tegtatgeat ataagaaat taatgcaatt agttgttctt gcaattattg aaacaacttt ggtggttcga cttattctta acaagaagaa ttgggaaag tttaacaatg tttcgtttac gggtgaggtc ttcctttata caaaaaacg cattttcct taattcatgc agcctttcta gatttttgtt atttttåggc tgtcttttt tatattttag tttagacaag ttaaattatc ccttctttc atacgaagct tgcactttgt atgagaatat taaatgcctt cttcagttgg caaggctttg ccctgataa taacttttat ttatgggagc tggggctatg tccgaagatt ctttgaacat gaatttttca tatcttatag atagaatctc cttaccatta agtccgggat gaataaatta ttagagcgca tggctaaagg agtatggctt attgagcctc tatgtagcag

37860	37920	37980	38040	38100	38160	38220	38280	38340	38400	38460	38520	38580	38640
tattatctag	gtcactgagc	tetetttett	ttagatctaa	cctttaacat	cctgattttt	actgaatcta	tacttagttg	ttaacttctt	acatgattaa	cctgagatag	ttcctaacta	attcgtcatc	tgccctcaac
agaagactat	cattattccg	gtcgatatta	tttccattta	taattcagta	atattcagat	ttggcttgaa	catattcaga	ttttttgaat	agatgtttca	aaagtatatg	cttatgaatt	tttacatcaa	tttagaattt
agttttttgt	taaagaacaa	aaagaaggtt	gatcccatat	tgtaaacatt	atctgcctct	aaagagttgt	gctgcccaag	gacctaatct	ttaaatcaaa	tattaaaagc	aacttaggta	ttcatcaatt	caaatgggtt
aaaaagaaat	aaatctattt	aatattitta	ccccacatca	taaacattaa	attggcaatg	gcaaatggca	tttgttaaag	acaatctctt	tttaacttac	agctcaatct	gagataaaaa	tcttcattat	tgcattcacg
aaaaaagaa	gccatcttta	taaaatagaa	aatatgaaac	ctctgctgag.	ttttactttt tactctataa	ttcttcggta	catagaaatc	tgtgatgata	tatttcaaaa	gcctcttacg	taactgaaga	cttttcataa	gattccttaa
aaagagcggc	tcgacctagg	ttactaaagc	tccaatccat	tggccacaac	ttttactttt	catttacaac	tagcatcttc	agccctttgt	tagctttctc tatttcaaaa	ggtattgctc	tccaaagtaa	aaaagttcat	accttttaaa

APPENDIX A

Page 46/126

39480	aatgaccttc	gtttcatgta	atcaaccatg	gatcttttcc	tttacatcaa	cctctcaggg
39420	atgcatcaaa	ccttcaacaa	atttgagagt	ctatatttac	cttacgatcg	tcccttcacg
39360	cacaaaccat	gcacagaaat	aatacctctt	aagtttttga	tcttttagaa	gacatcttta
39300	ctattctttt	agatcaacat	tccattatca	tcactacttt	gaaaaggcaa	ttttgcctta
39240	aggtgatttc	atctcagaga	cttcttttcg	tagaaagaat	ttttggccat	atcagacata
39180	ggatttgaag	taaatttcta	tcatagttat	gccttatcat	aaaattcgac	ataatgaaaa
39120	gaagatgcaa	caaagtagaa	cacaacatat	gctggcaagg	aacaaaaata	caccaagagc
39060	cttgccccag	gcttgcaaaa	cagttaccag	aatggaaata	attgagatag ggtaattaag	attgagatag
39000	taaagcttat	tagtgttatg	ctaatgcaaa	acaatcatta	tcctgcaatg	agttgatata
38940	taagttttgt	aggcatatga	cagcagggca	agttctgggt	tgctctgcct	tttctgaaca
38880	ttttttctag	atacctagat	catagtacag	gctacagatg	taaaaaaatt	ttgtagcgaa
38820	tacgtaaaaa	cggaactata	ataaaaacct	gtttcatttt	tgacatggat	ttgctcttta tgacatgg
38760	agcttattaa	attettttta	ctggccctct	cgcctcgcac	attccttgaa	ttcctcaacc
38700	agtattgacc	atatcaacgc	ttgattaaga	gtgcttttat	gaattcttaa	agtaataatt

IBA-10

40320	actagcccat	aaaaatacta	cagatgcata	atagctatag	aaaaataacc	tcagaattcc	
40260	gaaatcacca	cattttcaat	tccaagcgcc	caggcatctc	aaattaattt	ataggattat	
40200	gtatcttacc	cccatggggg	tttatatata	aaatgattat	aaaaaaacta	aaagaccatt	
40140	catcagcatt	atcggtcttg	agagtaggat	ttgttccgcc	tacattatgg	atctgattta	
40080	cattaaaggt	taaatagaat	gtagtggaaa	aggttggaga	gaatatttgt	taggccaatg	
40020	tagccctttc	aatttatttt	gttcttataa	agttttctgt	aaacgaaaat	caaataagta	
39960	ttctattcac	aaagtatttt	ttgggatgta	ataaattcct	gattgaaaat	cacaattcct	
39900	tacttccagg	ttatttttaa	accataaaaa	ctccatggat	gtttcccagt	ccacttccgg	
39840	agcccgcata	tttaacccaa	gttaatatcc	taaatttact	ttcttcttta tagtctttgc	ttcttcttta	
39780	gttgaatata	gcaaatccaa	aacgtaagga	tgtagtcagc	tgtaaatcat	aacccatgta	
39720	ttttaaccat	tttttttgg	tgttacagta	atgatttatt	ggatacgtag	tttcaattct	
39660	cataaaaaaa	agggcattac	aaactcaaca	cgtcatagcc	ctcgtatctg	taaatcccag ctcgtatc	
39600	acataaaatg	taaaatctgt	tttctccttt	ttttcatatt	aataataatt	caaagtaatt	
39540	cgcttgaaag	gcaataaggc	attctccgcc	cactatggtc	ccatgcatac	atgagaatgc	

APPENDIX A

Page 48/126

APPENDIX

40380	40440	40500	40560	40620	40680	40740	40800	40860	40920	40980	41040	41100	41160
ctgatggccg	agggaaagcc	gtaactaata	gctaaagcta	attttttctg	gcagtcccaa	taaccggcaa	gcaactgtca	aattctcttt	atttttatta	cccacaagcc	acttgtatac	cttagggcgg	aaacaataag
tactataagc	tgcaaaatac	atactgcttt	tggtgttagt	aaccatgcct	ggctgtcata	accaattcca	aagaactgtt	atcttcgaat	agggctcgaa	ccaagcagat	agagaaaaaa	teccatecet	taaatagaca
taacagaaaa	ctccctgaga	ggatttgaat	tccaaagatt	ttgttgcacc	ttccaaccat	ctacccttga	ctgtcagtaa	cagaaaaaat	caggcgatga	ctatcattga	taaatccagc	attgcatatc	ttgctcccaa
accaatgcta	attgcattgg	catacaccaa	aaaatactaa	aatccagctg	cctatatttg	aataagaact	ccaatgagtc	ggtaaggcaa	ttaagcctta	cctgaagtaa	gatcctaata	actgcaggaa	caaacaacta
gtaaacagct	tggccatttc	aaatacataa	atccgatgta	agccgaaagc	atttttggca	aattgggatt	tccaaattga	aagagatgcg	tcttttgagc	tgccataaaa	tagaccgaat	taccgttagg	acctgatagc
atgagagcca gtaaacagc	tgattataat	catatccttg aaatacata	aggtctctgg atccgatgt	gaccgataac	ctcgctctat atttttggc	tgccgaacac aattgggat	tagcagacgt	ttattggcga	caattgttag	aagttactaa	caagtttagg	ctgcacaaat	cggttaagct acctgatag

42000	tcccaggctt	attaatagaa	ttgatagtaa	attgcagtcc	agactcaagc	tgtcagcaga
41940	gaaactagtc	agactggaga	ttatcaaagg	gaagaagtta	tcaagctata	agacgagctc
41880	tttagtctag	actatatttt	caataatctt	ttattttatt	taaaaatcat	tgaaaatcat
41820	aggaattgca	ataatggcgg	gatccataca	ctttgaacct	gcctgagatc cttggaaact	gcctgagatc
41760	ggccatttcg	gcaaaggggt	taatttaatt	tattaatatc	tttttaaaca	tagattttat tttttaaa
41700	tattatctgc	caaccaaatc	tttttaaaaa	gttaatttaa	acagctttta	aataataata
41640	cgaatcttta	tcaggattca	gaacacgttc	gggtgaaaga	tttggttaaa	ttaatattta
41580	ttctcattta	gtccataacc	ctgttctctt	aaaaattgct	tggatcttt	aaggaaatat
41520	ttaatcagca	tgctgacatt	cagtattagg	aaaaatgcaa	agcatttatt	gaacaaccac
41460	aattcagcaa	aataaaccag	caagttgact	ggagttatgc	agcagctaat	ccaaagtaac
41400	gcaggaaatg	cagcatgatt	tctgctgagt	ccaaatgcca	tccaagagca	tgaccgctcc
41340	atagaagatg	acttcttgca	cggctccaag	ggcttgtctg	ttcagcccta	ataataattt
41280	aaagaatgcc	agatatatac	ctccaaagca	aaagctaaag	gataattaaa	, aaataaaaa
41220	ggctctccaa	tcttaataga	cacctaatat	gcacctgttc	ctctaataat	ctaaagactc ctctaata

APPENDIX A

Page 50/126

PCT/US01/14394

Page 51/126

APPENDIX A

42840	cttgtatccc	agaatttaga	cttttagtca	aaaagagata	aactacaaga	atttttcaga
42780	atttatgact	ttcacccttt	ctgagtcgca	tggggcaacc	tgatgctgat	ttcttagtta
42720	actgatgtca	cttaacgaat	gcctatcaag	gaatttcaaa	taaaaaattt	atcatcaatt
42660	gtaaaaattt	tgcctatggg	aaaaaagtaa	atggactctc	taagcctgga	cattatctga
42600	agtcttaata	tatagatggg	atatatggac	gatcctgcag	agagttagat	tatctcaaat
42540	aagtttctta	aaccacttat	ctgataacca	aattgggtaa	attaaaagtg	gcacatttag
42480	aaagatgaga	tacttctaag	acaagtctga	atttttctca	taggaagaat	ctgacggatt
42420	aaagattatt	agctataaag	cttataggtt	aaagacctca	aaattttaat	gcggtcctgt
42360	attgctgttg	taataccgga	atggaacttt	atggggtcat	tgaaatagtt	aagggaaggg
42300	gaaagctttg	agacccaaca	tttctacaaa	ctcatatata	aatggcgggg	ggtctagcgc
42240	gcaagaatag	cccccaagga	ttcacagagg	caaattgaag	tgatgttgat	ccacaacttt
42180	ggtggaattg	ttctgggcaa	atatagactt	ctgattgatg	caaactctgc agtaggttta	caaactctgc
42120	gaaagaactc	atctggctat	ttggagaaag	ataagaggaa	acatttccag	ctagagdaag
42060	gcaagtgatt	aaattttgct	taccaaattt	tcgtacctag	tgaaaacctt	taaagcactt

Page 52/126

APPENDIX A

43680	ttgaatgttg	ttatttatca	caaaccaatc	tggaagccaa	aggcatcaat	gtttttcaat aggcatcaat	
43620	ccaaaaaata	ggcgcatgct	gtagagaaca	gatatagaag	ttcaagacca	aaaattggat	
43560	acagaaataa	attgctaaat	ctaattttgg	ggtatatttg	taaatctcta	atgcactgaa	
43500	aatatagatt	cttagagtta	ttaataatgg	gcagaaggaa	tatacttaac ccaaaatgct	tatacttaac	
43440	aacacttttt	ttcagatccc	aggttgatcc	atttcaaccc	acaggtctta	gaaaagatca	
43380	tattctgatc	agtcctgttt	atcttggagc	tcaaaattaa	atttttccag	ttaatagtaa	
43320	gaagttggaa	aactaattac	cagaattttt	tattatgatc	tagaaattta	attcatcaaa	
43260	cttgataaaa	aggtcttggt	gatttaattt	aaccagggtg	taagggctat	ttaatattgc	
43200	aatatttatt	taataattct	aaactcttaa	tcactagtta	tggtaagttg	aaatgtctgg	
43140	ccatcaaata	atcattttca	cttatgacga	tattttgatt	taaatctaat	gggagaattt	
43080	ggtggaagat	aatttcaatt	aaacaataaa	ttaattaatg	tattgattat	tatttggaaa	
43020	agctattctt	ttcttcttca	tgagtgactt	tattattatt	atggtcctta ttttagtaac	atggtcctta	
42960	tcagacccat	tggagatcca	ctggtattta	aaaaaagata	aacaaatgct	atataaatga	
42900	agttttgtag	cgttgggggt	tcgaatgggt	gaaaaaagca	taaaaataca	aatttgcaga	

43740

tcatacaact

tacttctgag

cccataacaa

tactctgatt

tgagttctat

ttggtaaag

Page 54/126

APPENDIX A

45360	tagttgttgt	gcgcattctt	aacaagtatt	ttatttaaac	ttaaaaaata	agagaaaaaa
45300	taaaaaaatt	accctaaatt	tgatcagaac	atggaaaaat	ctcatacaaa	gagtatttcg
45240	agtacatgtg	cattatttag	gcatttttgt	gagaatggat	acaaatctta	attaaatgat acaaatctt
45180	aatattcagt	acaaataatg	gaaagcttat	caattttatg	gttgataggg	cttatcaaaa gttgatagg
45120	atgcttataa	tegttatega	tgatattgcc	atcctttttt	agttttaaca	ggagtactcg
45060	ttttagactg	aggttattt	ttggagggat	caaaccttct	ttgaataaga	tcataatgac
45000	atgttctctc	tctgataatt	actcaataac	tatacgacaa	ggatttgatt	tcttcataga
44940	aaaatataat	gaggttcctg	tttactaaag	tttacagaaa	ttttagcaat gacataaatt	ttttagcaat
44880	agaaaaaata	cccaaaagta	tattgatctc	aaattcatga	gaattaaaaa	acttggaacc
44820	ttttaaaaac	aatgaagttt	taaggattcc	tttcacttgg	ggtattgaat	atatatcgag
44760	tagtatggag	tatggaattt	tgatttgtct	ttttatttag	tttagatttt agtccagagg	tttagatttt
44700	aactaaaaat	atactcagcc	tgaaattttt	atcgagaaaa	ataaatgtag	cgcacacaaa
44640	atcatccatg	ttaagagttg	caaagcaatc	ttgataacat	atttgtaatt	tgaaatatct
44580	gccctgtatc	attaaatcag	tattaaaaca	atctagagat	aaaaatcata	tctagatata

Page 55/126

APPENDIX A

45840 45900 46020 46140 46140	cttactgtaa gtgattatca tacaaaggtc gtattgatat ataaactctc cattagttgc	gttgaagtta tcgatggttc gctgatgctg ggtagaattg tttgatattc tctgtagagt	cgtggatgtt gatgatccta atggaatata tgtagctgca tttgcattac ctatcatgat attgcatcct	tggataatag acattgtgat aagagggagg atgttggtac ttgatgtgca taaacctcac	tgttgatctt caggcagcca ttctcgttca gtcgccgaac tacccaacat agaattgtaa atatgatgta gagggcatgc gctaagaaaa atgaaaccct tgatgaaata gaagcagaac tgtgtgtgat gtagttaata
4596	tacaaaggtc gtattgatat	gctgatgctg ggtagaattg	atggaatata tgtagctgca	agagggagg tgttggtac	מ מ
∞ ∞	cttactgtaa gtgattatca	grtgaagtta tcgatggttc	cgtggatgtt gatgatccta	ygataatag cattgtgat	ัช นั
45780	ggtctgatca	gctggcattg	ggcaattaca	atttaaaaat	at
45720	taacaagaga	ccatattatt	acctttcttc	ttatatcaca	ττ
45660	ctgataaaga	ggatgtgagg	ggatggagat	cttctgataa	ctt
45600	ttgaagatgc	cgaaagtttc	actagggctt	tatctggaga	tato
45540	attttactcc	aaatctatag	tccatcccca	gaatgacact	gaat
45480	atttaccaaa	gcaagagatg	agaaaggtat	caggtatgcc	cago
45420	ttttatgtgt	gatatgaaaa	atgggggttt	ttacatttaa	ttac

47040	ccatctgcca	caaacttctt	tggcagcaac	cctagtgaca	tccctcagca	ccatattcat tccctcagc
46980	aacctagttc	agtagcaata	gtgcatcttg	tgatgaacag	tttcacattt	cgatagcctc
46920	gaagcattta	atctaactca	tgagtctagt	gatctcatga	atttgttaat	ccctttctgt
46860	ttattaagaa	aacagcttca	tcaatctctc	tctttttcaa	aagagctttt	attcatcacc
46800	gcaaaagtta	cacaatatca	caacctcatc	tagactcctg	cttcatgcat aatttttgga	cttcatgcat
46740	tccatagttc	ggctccaacc	cacatgacca	gcaaccattc	aaccagtcca	ggatgtcatt
46680	tccactgtcg	cattaattct	taatgctatg	gcctctgcca	aatagagtct	tttccttaat
46620	ttacttagcc	gttttagaac	taaaaaataa	ccgctaagta	tcagaagagg	cacagatggc
46560	agggtacagc	tcgtacacaa	gggtgcgcac	ttgcaggtat	aatggtgatc	gattgttcaa
46500	acccatattt	ccaattagag	tgcaggcgaa	aatgttattt	gaaattctag	tggggttaga
46440	gatatgccgc	gctcaaacaa	ttcgctatct	cttcaggtac	actcctcata	ccacggcatg
46380	caatgcctaa	gtatggagaa	aaatgatcac	aaccagctcc	tggtgatgtt tggttcccac	tggtgatgtt
46320	gtggttatgc	ggccagctaa	cttagagtca	ttgcaagagg	aaagatgcta	gatttgtgat
46260	ctcgtggcaa	atcaatactg	tgcatatatc	tgaaaagagg	attagtaaaa	tgatgaaatg

APPENDIX A

Page 56/126

47160 47280 47340 47400 47460 47520 47580 47640 47820 47880 ctttgcatgc aagagtatga acagaaaccg ttatgaataa ccagcagtct tctgggggtg tctttgcatc attgttccaa ataatactct acctcactat tgcattccac gcaacaatat atagcagttc gtaattttta tgctctaggt accaacatgg agtttgaagt atattctaga aaaaccatct agaggtgcat aggatttctt accaggatag attggtcatt tttagttttc aacatccttt tagaccagta atttgcagtc atttccatat ggtatttcaa gctcatctgc ataccaaata attcagttat gttaaaaat cttcatattg taccctgtgt tcattacctt ttcttttaac cgccacactc agtgccttac ggtattctgc cttttatcaa caaatggctt gctcggcaaa tggcgttaag cgataccttt caccaggacc tcaataatta aaattaacag ttctcaggcg tcctcctcta cctgggtgtc caggaaacgc gcttttaatg aaagctggga gccgctgcaa actcctgcta aacccctgca ttccattggg tctatctctg ggcaacaaat gtcatcttct tgcttcttt taaaaatgtt atttgctaat atttgatact tggatgttct taaaaacctc cattccatca agggcataaa tattgcttgt ttccaccga cttgaatgat cctatttatc aattaggaat ctacaacagg ttagtgatgg tggcaatttc gagggttac cagcttccat taactgcttg catcgcaacc cttttattcc gtccacccgc

A DDRINTY

58/126

Page

49920 49620 49680 49740 49800 49860 49980 50040 50100 50160 50220 50280 50340 50400 atcagtttga ctcttgatca tttattatca caaccggtca atttaggtat ttcatacagg tattacttaa gagttactca ttgaatcaac aggctattt cagaaactag ctgctggaaa tgcctgctgg ggaagaaaga atttatgaca gaaatcatag gcttcaggca acctctggaa aatgttatta cttcctttat ggcgagttaa catccagatt ccttgtgcag tctgactatg tggggtatga aaaataggat gggaatgaac cctggctatt aaaactcta cttatcaatt tatgatgaat taatatttct gattatgtat gcagcttttt tttagttgtc ttctatcaat tatcggcagc atgctggagt tggggggggaa tttgagtaat atccaattct tcatgcaggt gcagcaagga aaatattaca ggctgaaaga tggagatgat aatcagtcca atagtgagcc aagaagaatg atgaaaagt ataacattat cgcacaaaat gtgtttcgat tcaaggtggt ttaaaggccc actggtcttg, aatcgtccga attcttaatg gccatgatca cctgggaaag gttccagccc gaaagtgatt gatctagaag gttcccctg aaagagctaa tgttattcaa gagatttata ggagttaagt ataagcaagg catactgagg cggaatgaat agagtttgag gctcagttat atttgaccaa ggaagaagtt ccctaagggc ttcagcagct tctgtttgca agaaatggtg aaatttatca tccaggtgct accgcttctt gaagacttat agaagtaggc

ď

60/126

APPENDIX A

61/126

Page

51300 51480 51360 51420 51540 51600 51660 51780 51720 51840 51900 51960 52020 52080 attcacatat aatcaccagt taacaagacc caaagaaaa tgtaatcact tacctaatat tgcctcccc taaaaagcat atatttattt atcctggttc gactctttga gcctagagga ttgttggttt ttataagagg attaagtaga acagttggcg gcaataccag tctctttcaa gaaacaccag gcaataacac gaagcataat aggttlacaaa gttgcaattt ctttalaatta aggggttgcg cctcttttta aaagtagagg gcttgtgcaa agcagcaaga agaaactcta gtatctaaat atgtgtaata aaacaccata taacatgaaa atgccagaaa taaccaaaaa tgtaggaagt taatgacaaa atattaatag tattattgat atcgaaaaac aggaaatgaa agactatgga cattagttgc cagcagtaac tccattttgc ctgcagcaaa actcctatat gtatcatatt accaatcaat tgtacatgta atagtaacca gtcacacgga atcttgcaaa ctaagagtga ctatttttaa gatccagcaa accctctca aatgatgttt gctaataaag tcaccaccac actgttagta ttcatatata atgaaattta aatagaaaat gacttgttta atcacaaatg gttgcaatag ttaacagttg ttagcccaat cttaaataat ttcaatccat agatacagtt tacagtagat agcatcaagg taatagagga cagtaataat ctaattaaat tgcataagta tagaattaat tccaagaaag ctttgaccc caaggttgtt

MBA-101

APPENDIX A

Page

Page 63/126

APPENDIX A

52920	ttagatagtt	ttttttatca	gaagaataat	attcctaaat	actcccagac	caattctaag
52860	ttattttttg	gaagttttca	gtttgataaa	atatgatcat	aattaattca	cctcatcaaa
52800	ataattcttt	atcattataa	accttctggg	attgatccaa	agtaagatgc	cgatatcaga
52740	ttatgtttat	ttttattaac	gcccaaggtt	agaggttcag	atttttagaa	ttgcattaaa
52680	aaaaaatcct	gcatcctgaa	tagagtgact	atatttgttt	atagctttta	gattcattaa
52620	acattttttt	gataccgact	aaatattgcc	tcagacgcat	gaaaaggctt	ttttagctaa
52560	agcggatgaa	ggcatttttt	ctaactcatt	gcatctaaat	tcttttacaa	cagctactaa
52500	tttttccag	ctattgcttg ctctagtatc	ctattgcttg	cctccaacct	agaagtcttt taatgtagtt	agaagtcttt
52440	tcagctgagt	tggactacca	taaaatatcc	aatttaaatt	cttctcttcc atatacattt	cttctcttcc
52380	cagggctcgc	gcatttattg	tagtgccttt	gttttacaaa	attgacgatc	tagctctttg
52320	caaaaaaag	acaagcttca	cttagctctg	cgagtagaca	gcacttcgag	agtagagcag
52260	ttcatcctat	tcgaagtttg	aggcgatata	cagacttaaa	aaagaaatat	tagcttaatt
52200	atgtatcttc	agtctcattt	accaaaagaa	tttttttaac	ggctcccaat attgaaagca	ggctcccaat
52140	ataggtcgct	gcaacaatga	atttcagtta	ttgaatatga	gtttctgatt	cctacgagca

53760	aacttggtgt	gtctcttttg	ttcaacccat	ccaatgctaa	tagttatttt	ttttaactgg	
53700	aatatgctgc	ttetttetea	tttcgctgct	ttgcactgct	gctacacttc	atgatttgaa	
53640	tcttaggtaa	acaatgtcta	ctgacttcca	cagattctga	tggtttgttt	atagttaaat	
53580	taaaaccttc	ccattgatat	aataccttgg	atggaactgg	attecttett cetgttaetg	attccttctt	
53520	gaattgcata	atacttagct	aaagagtggc	cgccgccttg	cttccttctt gagttaacgg	cttccttctt	
53460	aatatgcttg	tcatactgtg	atttgctctt	gagtattttc	tctgtaaata	aatccttctt	
53400	cttcttgaat	tgggatctga	atttgaaaac	atgttaaaac	tttgcaacta	agcatttaca	
53340	cttgtttttg	gaaatcactg	actagtggcc	cttccagggc	acttgagtcg	tctgtagcca	
53280	ttgttccaac	acaacgtttc	caagagatca	tttctgcctg	tataagtttt	ttccgcgctg	
.53220	caagattttt	tttgcattag	gtaatcatat	tggcaagtat	agtcttagat	tgcgagccct	
53160	ttgttcccga	gctggagtaa	tactatgtca	tattaatttt	ctgagtaaat	gcatttttaa	
53100	ggaagttcag	ttcaacctct	tcagggttgt	ttaattgctc	tttaaatttt	gcaaagagcc	
53040	gcttctttca	gtgtatcctt	ggtttctgtt	ttccatctaa	atccaccact	tttcaaagct	
52980	tttactgagg	aacttgatct	agötttcgac	cttctttcta	atattttgct	taaaaattat	

APPENDIX A

Page 64/126

54300 54360 54480 54000 54060 54120 54180 54240 54420 54540 54600 53880 53940 cagatgtaga gctctttatc cagatattgc agttagttga cttcattata ctctaccaat ttcttgaggc ataacccaac ttcttactaa atttagattg aaaatgattt aaacatttat ctaacaagtt tgacgctcag gatttttatt agctcagcag geagttettt gttttgatag tattegttee tgaaccttaa aaaattcata ctgaatattt gtaaccctgg ttctcaagcg tagaatatct tctgttctaa gttatggctg tctgtaagag aaaagtgcta tttgcagtgc agctcttcct ttcatttaag ttgaactcca ttcagcagca tgtagggtca aaatgagata tttcttagag aagtgatcct ttttttaata gccaaaataa gagcggctga attaataatg aaattggcta ctgctttata ttattttata gatcaagttg caaagtctgc aaggctttaa catctcccaa ggagaagcgc ttgcagaata attgagcctc ctctaagtac ctagtctaaa atgaaatatt attttaacct ttatcaatag tattgctgct tgttttgctt tgctcaaatg aaccatgtat gtaatactcg gaatattccg tttattgaat ttataataaa ataagcaaac aaagactctc tcaaatgcca agactttcag ttcataactt aaaagagtta atcgaatctt aagattttgc tttacttaga tgcatttaga cctatattga tttttttaat caataatttt tggcaggtca tccactcaag tgctaaatat gatatccaaa tgtgtaaatt cagagcattt

55440	taaggctggg	taaatggctt	ggctcacatt	tgctcagggt	tcataccaac	tatgtgaatc
55380	cgatgaaacc	aaaataaact	agacccccaa	ttggtcatta	ttgcaatcaa	gagcttgaat
55320	tcaagctcaa	ctaaaaaatc	attgtatgct	gctagattca	acttggtttt	gagggagcag
55260	tgattcttcc	gctatttgat	gggctcaaaa	ttttgaagat	aaaagtggta	gatgataaac
55200	aaaaaagact	tcgttaatga	acgatagagt	tcctggatta	cagttctctg	aaggccaaag
55140	gcatttatta	aacagcttaa	attcagataa	aactatagag	catattttga	ccaaatccta
55080	taaattcaaa	ggacatcaat	agaaattctg	agtggggctc	caattgggga	gaattaaagc
55020	taagtcttct	ataatggaga	atcactttta	agaataccaa	gagattctaa	agagtaaaaa
54960	attagaggtt	tatctgatga	gtaaatgccc	agtttctgtt	atggtgttgg	ggtggccttc
54900	taatttctct	gagatgatta	aaattctctg	tgctggagcg	gtaaacttca	ctcatccttt
54840	aggtgttgag	ataaagtttc	cacccggaac	aattgatgag	ggggtatgcc	gatgatggaa
54780	taaggtctct	atggctttat	gttctaaaag	aaaagtatct	gttcaaacat	tcaggttatt
54720	tgaagctctt	attcggttga	gttcttgata	aattcaagaa	caaatcattt	acatctaacc
54660	gtatacggat	gacctgggat	gtcaaaaaaa	actagatcct	tcttatctgg	gcaattgaag

APPENDIX A

Page 66/126

57120	gatttctcaa	taatggtcct	tcaagataat	gttgatttac	atcacagttg	ataatccaaa
57060	catcttattg	tgccacagta	aaattattga	aatattaatg	tccatctcat	caacagatat
57000	gtaggaatgg	tggaattgct	atggcacttc	attttattga	actcccatct	ttccagccaa
56940	ccagtaattt	tcttttagag	ttgatggctc	cagcctaatt	agtcgattgg	agtctggaac
56880	tctgaattga	tcttttaatc	aatttgcaaa	aagttaacta	tacagaatct	caatgaggta
56820	tcttttgctg	tgatccaaaa	gttctcagga	ggtaactggg	agatggtcaa	acccttttgt
56760	tcattcaaat	tcaaaatttc	ttttaatggc	gaagctatgg	cgctgcatat	atggagacgg
56700	tttcatcccc	tataggaaaa	ttggagatgt	gcaagaactg	caaaaaatca	gctcaaagta
56640	cttgatgctg	agagcttggg	atgcaatgtc	agaatactct	tgttcaaaga	gccttaagcc
56580) attggagatg	tttgcctaat	tagatagagc	tatgtcattt	ctatgcaatg	cttatcttaa
56520	gctgaagagt	caagcaatat	caattagcct	caaataacct	tatgaaagaa	aaaatataaa
56460	gtctctagca	aaaagaaagg	gaatggcttg	agcaagaaaa	agaacgcacc	ttgtccaaaa ,
56400	ggacttactt	attctatgat	gataatgcaa	cagctcaagc	agctttctat	cagettgtte
56340	tgctactcgt	tgatggaccc	agagagactg	acctcaacta	aaatgaatcc	ggacttggtg

APPENDIX A

Page 68/126

4 APPENDIX

Page

58800	acctaacagt	cttggagaaa	tattattagg	gctcattttc	tcatcaacta	ttttaatccc
58740	tctcaaaaat	attatagatt	aagaagactg	ttagaagtta	agaggttgag	aaatgattga
58680	aaggtagata	aggatatagg	tgcttccaca	aggggaaata	aagagcaaaa	atatttctac
58620	ctagaaaact	actcaaagat	tcactttaaa	aagagattcc	tgaaagcgga	ctttaaggat
58560	gaggctagct	acttgtttct	cccatgcgca	gagttaatga	ctaaatttat agcaaaagaa	ctaaatttat
58500	ataccaaccg	aataataaat	aagggaataa	ggaaagggca	gccaactctt	ttgatgaatt
58440	atttttaaga	cagactttta	caaatattgg	gcagcagttt	tttgtatata	gagacgatca
58380	attaaagtaa	tcttaaagcc	aagcagacct	atccctcatg	atttatgaaa	caggaaaagc
58320	aataagaaat	tatggtttct	agtttaaaaa	tatatttcag	tggatatggc	tgaatactgc tggatatg
58260	ttcatgatta	tgaagataaa	ttgggaatga	tcttcattga	aaagttcatt	attctggagt
58200	gtatctgcag	tacaggaagg	gtgatcctat	agaggaatgg	tccatctgct	gtcactctct
58140	tcacttgcaa	gaaggettac	actcaaatgg	gtttttcttg	tcaagtttca	gaaagagcaa
58080	tatggaagag	acttcaagat	gagaagatgt	tcctatagag	cagctcactt	agatagaccc
58020	aaaggccatg	cagaagtgca	ctggctggat	ttgtctgcag	tacagtagtc	ctgagcctat

APPENDIX A

Page 70/126

APPENDIX A

Page

gcataacttt	cttgccaaag	taactgaggg	ctcatttatg	tagagatttg	ataaatgcca	59700
aagctcctca	gattgctttt	taagaatttt	tattagatct	ttatttgaat	gaccaaggtt	59760
agtgacggca	agtgacggca atgcctgctg	tgaaatcaat	atatttctta	ttatttaggt	cccatacatg	59820
cgatccactc	gctttttta	caacaaaatc	tgcaggagcg	taaaaaggca	ccatataatt	59880
agtatattct	ttaattatct	ctttcataaa	tatattgtat	cgtggtttca	gttcaaaaat	59940
taaatgacca	aaaatttcta	gtatctttaa	aaccaaacag	ctcactcatt	ggctttaata	00009
gaataatatt tatatctag	tatatctagt	atatctattg	tatgcggtgg	catagcattg	atatttttct	09009
tttttggagc aacgctcat	aadgotcatt	ttgccttttg	ctggtttaga	gcttggtatt	ctattcactg	60120
cattctattt	aagttttaaa	tggagtgata	aaaaagaaaa	aatatttatt	tctcaagatc	60180
ttgtaactat	agaaaaaggc	tctaattatg	ctgaatataa	atgggaagag	ttcaggtcat	60240
ttacctcttt ccaggtttc	ccaggtttca	aaagacagaa	gagatcttct	taagctaagc	tttaggtcta	60300
aaggcgagga	tgttgaggtt	ggcagctttc	taaatgaaga	tgataaaaat	gtattaatag	09809
aagagctaac	tcagatcata	gatacattaa	atcacgattc	cttctcaaag	ccagagcttt	60420
aatttéttt	taacttcttt	tagctttaat	tcttttattt	cagggatgcc	atttctaaaa	60480

APPENDIX A

Page 72/126

BA-101

APPENDIX A

62160	ggtcagatgg	gcatgtcttg	atctggctct	caaataatat	ttttctagtt ggtggaatat	ttttctagtt	
62100	gggatgtcgg	gatcagggta	tattatgtta	tgttgactca	acttcatata	taaaacaacg	
62040	gaacacatgg	gctatatctg	aaaggtttta	taaaaaataa	ggagaaattt	tgaaatgctt	
61980	agtcaggccc	cttccgttta	gtccaattct	agcatatttt	gaatccgttg	tagaggaaat	
61920	atgcactttc	gtgattggta	tgacttgtat	tgccagatgc	gggctatgac ataaaaagca	gggctatgac	
61860	aaatgatcaa	tttgatattg	tcttgatagc	tgtcagacta	tattcaattt tatcctccca	tattcaattt	
61800	ctggatcaga	catgaaatat	agagtcaggg	agatacttaa	ggccttgcta	ctttatgggc	
61740	tctgtggrac	atcttaggga	gcgaatacat	taactaatat	taaaaatatg taaagtatta	taaaaatatg	
61680	tgtactgaaa	ctccatcaaa	ttcatttttt	cgcatttttt	ccgccggatt gagcataaaa	ccgccggatt	
61620	tgcggtaacg	catttataac	ccagctgtag	aatcagagcg	ttatgcttct tggcctctaa	ttatgcttct	
61560	accgatgtct	cataaatttt	ttcttgcctg	caatattcca	tcagcgcgcc	agttcctcat	
61500	tgtatctatt	attcttttga	gcagatattg	tgactctaat	ccaccaggcc tatatttcaa	ccaccaggcc	
61440	cccaaaagcc	acctacatga	tttaacttaa	ctcaagatct	ttgtactctc tttcgcttga	ttgtactctc	
61380	aataagcctt	taaaaacatc	ttgtgcgctt	atatcctata	tgtaaaaaaa	ttaccgccat	

63000	aacccattgt	aaaatattaa	agacagccaa	tgaccaataa	gttattttga	ttatgatatt gttatttt	
62940	ctttctcaga	gcgatatctg	tatttctgca	ctgaagattt	actaacacta	cattgaatct	
62880	agaatgctag	gttttgtcag	tcgcaataat	tctggctaga	actcatgtta	aaaatcttta	
62820	ttgaatctgc	ttgtctttgg	ttctcatggc	tgtctggggg	tcaaacacta	tgagctaggc	
62760	ttggtctcat	aaaaaaatac	aaatccatca	tcgtaacaca	tctaatgccc	agaattttct tctaatgc	
62700	caaccgcaat	gctcatcatc	tgatgatttt	tagaaattta	tttgatggca	taaaggaagt	
62640	gattagaata	gtaaaaagaa	ctttgatggc	cattagctag	tctatcaaat	aattcaggat	
62580	atggaattca	gcaaagacag	tattttggcg	acatttegge	tttaaaaaact	agaacataat tttaaaaa	*
62520	ctttaatagg	aatgagttac	ttattcatta	aagaaagtat	ctaaaaatatg	tgataagact	
62460	cagtttattc	tcaattgagg	taatgctcat	caatcaataa	aatcagatag	aatttggtca	
62400	tcgatatggg	agagatetta	taaaaatata	ttgctgatga	gttgtttatt	aaatggaaat	
62340	taattccatc	ctaattaaaa	attccatcat	ttaaaagaca	ttagatgaca	ttttaataat ttagatga	
62280	atgctgatat.	gaatttgatc	caataatatc	ctatagtcat	tcaccaagca	tattcactat tcaccaag	
62220	gatcaaaatt	tttgataaaa	ttctgcattt	atgaatatga	attgaggcag	aacttttgtg	

APPENDIX A

Page 75/126

63840	aataccacaa	agtaaaacta	atttttaatc	aacctaaaat	ataagggaat	tcccccaata	
63780	gcatcatgat	ggtaacacca	aacctggcca	atagtgaaca	cccaataata	taagcattag	
63720	ggatagttac	gtatttgcct	tttcaatata	acaaaccttt	agggatttct	taaaaaccgt	
09989	ttgatggact	tctaagccaa	tagattttgc	ggcggcttat	ttatttattt taatattatt	ttatttattt	
63600	actacataaa	aagaatatct	actatattga	attctttcag	gcggatgaga	atgcagcaca	
63540	gaagcattcg	aaaactatta	atgagaaaca	ctaagctcaa	ccttatacct	acttagcagg	
63480	gttgcatacc	tgctgattca	actttggctc	atccaggttg	tgacctgccc	ctaagattag	
63420	gtaaagcatc	ttctcagctt	ctagcattct	cctgagatat	aagctgtttt ggcagaatat	aagctgtttt	
63360	gtagatgatc	agatccagag	aggcacagat	gctgatatta	actgcatatt	tagaagatgg	
63300	atatgtcaat	aatcagtaat	ataaggtgat	aaatctataa	gataactgta	gccttcttgg	
63240	ttgccaaatg	ctttaataat	aaattataga	agttttgttg	taagaaggga	tcactttttc	
63180	caaggcgatt	taatgagtet	ttaatgccaa	gtaattgttt	ccatggattt	tatccaagaa	
63120	aaaacatgtc	acagatggtt	ctaggtatat	atttttgagc	atctcttcaa	gtagcatcca	
09089	gccctcccag	aggaatagtc	tttttccttt	aatttaccag	gaaaaataat	agatcacttt	

APPENDIX A

Page 76/126

PCT/US01/14394

77/126

Page

Page 78/126

65520	tctgaaacaa	tttgaagcaa	aaaatcaaga	tcaattttaa	taaggtttta	taagtaatga taaggtttt
65460	gtaggtggtg	actcggttat	tttcacacgc	ccttacttat	aaataaatat	atagtagaga
65400	gatgttaggt	tgcatttata	aatttcagaa	agaagctacc	atttgaagta	aaatagcaaa
65340	tcgaaagaag	aaaagatctc	taacaattaa	aatagagagc	tgcaacttat	ttaaaaggag tgcaactta
65280	attaaaaatt	tgaaaacatt	attcagaaat	gagctatcag	taaaataata	ttaatatttc taaaataat
65220	gatttcatta	aaacttagat	caaaaattaa	atccaaccat	tgacctaata	tccctacata
65160	gttaataatg	aaatattcta	acaggaatgg	gtcatctatg	tgttcgagga	tagttcagcc
65100	aaagaagtgc	gaataaaaca	cagcactaaa	tatgaactag	ctattctgac	aggtttctag ctattctga
65040	tattctttac	tttcaagacc	tattcttgct	gccctgtttt	tttctttggg	ttatatattt tttctttgg
64980	agattgttgc	ctttttcaat	aaaaaagaag	aggtttgttg	tctgaatgag	aaatgattga
64920	tecetaceae	tcaaaaatct	ttttcaattc	ctataggtca	tagagcaaat	attgttctta
64860	gcttttcaag	tacctcacag	agteteacee	ctcgatctca	ataagataat	gataaatcta
64800	agatattett	gcatacctcg	ggttcatttg	tgtaattggt	agctttactt	gaaaatatga
64740	atccatgctg	tttttgaaaa	tttagtaaat	taattttgaa	agtcgttgaa	tcaagtggcg

Page 80/126

APPENDIX A

67200	taggttttat	ttgatattaa	ttttattaca	ctaggcatac	ccaataagca	taagccactt ccaataagc
67140	atttatataa	ttatcatcat	gccaattttt	aaatatcatt	gagattatta	gcaatcctct
67080	ttttaccct	gatttaggat	aagatggctt	atggagccaa	aaagaaataa	gatttttggt
67020	ttctaactat	gtattgattt	ggggggastt	tattttttgg	ttttctgggt	ttataataca
09699	accctgattt	agccaacctg	gtttgtagtt	tgctgttaat	ggttttggtt	tgtattcgtt ggttttggt
00699	ctaagcaagc	agcactgttg	agaagatatc	gcgcatcaca	tttttataca	gggtttattt
66840	tgtcggtcat	ataaccctgt	atttattgcg	atcaatattt	atttattttg	aaactttagc
08299	tagactttaa	aagaaaaat	tcaataaatg	aatgagctta	tgctgtttta	ctgttgctat tgctgtttt
66720	gttgcaggtc	cggcggttct	atggtgaaag	gttattgaaa	cagagtatgc agtaagtgtt	cagagtatgc
09999	atgcctgatc	ttttggtcca	tcattgtggc	gaccatgcaa	tggtaacaga	ggcaaaatat
00999	aaactagtaa	ggaagattac	cacaaacaaa	cttgtcagca	aacggttgag	caaaatctgg
66540	gttgttgctg	aaaatcatat	taaaaccttt	gctaaaagat	ttgaagatcc gagaggcact	ttgaagatcc
66480	attggagtta	ctcaagcatg	atcaaattca	tcagactggg	catagataac	ataatttaag
66420	gcttttataa	aagcaatact	gtgacagcct	tttgtcgaga	agagctatca	gaaatcttca

APPENDIX

81/126

Page

Page 82/126

APPENDIX A

68880	aatttaattc	gttattgcag	caccaatact	ttgagccaaa	tatatcctaa	tctgaagagc
68820	ctgagttaga	ccagattctc	gagttttgtt	ttcaagcaca	tcaatattta	actatcaact
68760	tattcacatt	aaaaaattat	taaaaaaatg	tcagaagagt	ttattactta	caatggcggt
68700	gatgtctatg	taatattagc	ttgctaagta	tttagggcta	tttttattgg tgatgataac	tttttattgg
68640	aaagatcttt	tgaagatgga	taatctttaa	ttcatacctt	tctaacaagg	ctcatgagtc tctaacaa
68580	ttttataaac	tgttagaaaa	atccaaacaa	acaaaaactt	aaagatcgta	agagagaagg
68520	catggatgga	tctttatgtt	ttgcaaatta	attggggagta	tgatgatgca	ttaattctgt
68460	gttgatttat	agatggttac	attttgatga	tatgctgtag	ctaccgagcc	tttcgtcaag
68400	gcacaattta	catgggatat	atgcgggagc	aaaggctcat	caaaacaaca	atttagatat
68340	agagaaaata	ccttttaaca	tagagttett	agagaactta	ttttttaga	gaagatctaa
68280	gatgacccgc	tttaggtttt	gtcttactac	gttttagata	tggatacaga	gcaataaagg
68220	aattatggca	cgtagaaact	ctattttagg	ataattactg	tcctaaagaa	aatttggagt
681.60	gctgagaaag	tttagagagg	atattaatgc	ataaaaaaa	caaaaaattt	tttcagaagg
68100	acaaaaagag	ctttataaaa	atagggctat	tgggatgaat	aacaaaaaca	ctgctgaaaa

69720	ctcctatcgt	aatatccagg	agttaataac	ctgtttataa	aatgttgaaa	aagtttcaaa
09969	ttcctagaac	tctattactc	agaggatata	tgggagttct	atacttggcg	acaagaaaag
00969	tttggggtgg	aatattacag	agaatatcag	gtgcagaaaa	aagatgttaa	tacaacacag
69540	ttagattttt	gagtatggat	aagattactt	tatcttccca	gatcgttttt	gtcagataat gatcgttt
69480	caggaagtaa	acagttgttg	gaggcttatt	ggggcggtat	tcagcaaaaa	tttagttggc
69420	ctggatactg	acagaagctg	aactggtcat	atggtgttaa	gactcagcag	atggagagac
69360	ataagctttt	ttaaatagaa	tattaagcaa	cttttaacaa	aagcaattta	atataagcag
69300	aatatgcttt	tttccagaag	cattaataaa	cagctaacta	aaaagattta gccaatctga	aaaagattta
69240	tttcatcagc	gaaaatcatt	gcttccagat	attcaacagg	atctttcaga	gaataatacg
69180	ctttggagat	tatgctgcct	aatgaactct	tegttgactt	gaaagaggct	aggcggcact
69120	cagaatatgc	gttgcaattg	tgatgcctct	agtcaggcaa	attatgattc	tttaaaaggt
09069	tatctgatct	aaagttacgg	agctggaaaa	cctttataga	gggtctaaga	gagaatgcaa
00069	aaaaagcatg	ctaattagtg	tgacgaagta	tatctcttga	aatggtttaa	tcagattgca
68940	ttgtggctga	actagctatg	taaaattatg	ctagcatgac	atagaaccag	agatttggaa

Page 84/126

APPENDIX A

70020 70080 70140 70260 70380 70440 70500	gcaattgctt gccgtagatt agtaatggct catgagccaa aaaccattaa acatcattgc gttattatgc gttattatgc gcattactaa caaaaagatt	taattcaact actagcgatg atctgaattt gtctcatatt tattaaatca ttgtgatgaa ttgtgatgaa cataaccaga cataaccaga	ttcctttctt ctgctagtca taataacatc atccattaag aggcgcactt ggaggtgtga aactagataa catctaatct tacttcccgg	tatgaagtag ttagaatttt attagaattct cgaggcgttg ggctatgcaa attaggtggg aatgcagcaa gaaggtggcg aatgcagcaa aatggaaata aatggaaata	atactttttc tgatagcgta ttgatgatca tataaaaaga taaaagaagt tatatttgaa atgtctatta tcaagttact gagtatcagt atgtgatgat ttggtaatgt tatgaacatg acaaagataa tttgttgacc caatctgcac cccagctcta ttaatgaatt aaaaaattat	atactttttc tgatagcgt ttgatgatca tataaaaag atgtctatta tcaagttac atgtctatta tcaagttac atgtctatta tcaagttac gagtatcagt atgtgatga ttggtaatgt tatgaacat acaaagataa tttgttgac caatctgcac cccagctct ttaatgaatt aaaaaatta
70260	aaaccattaa		aggagaaatt	ggctatgcaa	agaaaccttt	atttaaaaat
70200	catgagccaa	gtctcatatt	atccattaag	cgaggcgttg	tcaagttact	atgtctatta
70140	agtaatggct	atctgaattt	taataacatc	attaattett		taaaagaagt
70080	gccgtagatt	actagcgatg	ctgctagtca	ttagaatttt		ttgatgatca
70020	gcaattgctt	taattcaact	ttcctttctt	tatgaagtag		atacttttc
09669	tctcgagctt	atcacctttt	acataaaaat	actgtagata	ggcttttgat	tttttaatgg
00669	cttaaaggcg	gaaaacacca	tctaacagat	gcttatttgg	tggatattta	gttcgttctt tggatattt
69840	tatggtcaaa	tttggaagaa	taaaggtttt	atattgaagc	ggatttggtt gctttaaaaa	ggatttggtt
69780	ttctagttac	gatgagattg	aattagtaat	ctctagaaat	aaagtcggga	agttggtcaa

85/126

Page

Ø

APPENDIX

MBA-101

71220 71340 71400 70860 70920 70980 71040 71100 71160 71280 70620 70680 70740 70800 ttctttcttg attcagaagt tttgtctagc cataatgatc ttgaaataat gggcaactaa tttcagaaat ttccacaatc taagcttttc caatttgaga cccatttctg aagagtgaag tatcaagctc atacattttt acagaaggtt ggcctatctt ggatttttac ttggtattat aagctttact tcattctgtt gatttaagtt ttaatatttt agggctggcc ataactatat tcaagctcaa aaatgcatat agaagaggtg gttgtgaaat tcttttcaaa gcgcaacgaa atttgcaaga actatctaca gcataaattc tgcagactcc cactaaagag atccatatgg atttttaata taaagcttgc ttcttcaaaa tataccatcc tatccaaact tacccactta agtcagttta gtagtttatg ggataatttt tctttataag tcagtcttag atatattttg ttgcaatatt cacttggatt atttaattag ttttaccaac gccaaatctt ccatctgttt taagaccttt ttettgegeg tggeteacaa cttagttaga ttaataatta ctgttaataa ttcatttcag cctagaatct tctttatcac attaagtttt caaaccccag agctcaaatg tgatgcttaa gctatctcat taagaagttc tttattgaat gccatcacca tatcaaatgc attgcttgaa tttatttttc attggctgca ttccgctgat tttatcttca gtttccagag aaaagatagt aaattagtaa ttggagctgt aatgatgagg aaatttttaa gtaccaaaaa

4

86/126

Page

73080	gccaatattt	tcaacaggca	tatatataaa	caatacctcc	atcgcatgct	taagtgcagt	
73020	ttgaatatag	tgaaaaaatc	aagcgcctta	ccatatctct	tcaactaaat	ctcattgcct	
72960	tttaaaagg	gtaagaagct	catgccttgt	ctttaagaac	ttagccccat	tttggacatt	
72900	ttccttttga	tctacagtat	agattgagga	tttctatata	tacagtgtca gcgccatact	tacagtgtca	
72840	tgtaaagcct	gtaaacatca	agggggagct	gactttgctc	gaccattcta	agatgactct	
72780	caccttctac	aatcttgagg	ttttttcata	agttccatat	ttgctgacta	aaattttcta	
72720	ctaagtcaat	ttgggctcct	cgaaggatcc	cttcttgttt	cgattttctt cggagctcta	cgattttctt	
72660	gagtattatg	acctttttaa	gtcatttgta	ttgtttcaaa	ggctgtatta aatgaatatc	ggctgtatta	
72600	tcgaagcaat	agctccatta	aaagttaact	aatcaggtat	tctttaaaag	cgcattacct	
72540	ttgagatcga	caatattgat	ttcattaaga	ttattattgc	ttaagaataa	attgagagtt	
72480	gcgcaatagg	gagatatgag	taaatgttgt	aattattcca	tcaaagtaaa	ttgtgcaaag	
72420	caatttcttc	aagaacaggc caagaagatt	aagaacaggc	actcctctct	acttctaata	aaattcagaa acttctaat	
72360	ctattaaatt	tttacttgaa	cacctttcca	ccttacctct	aaggtttttg tctatcatta	aaggtttttg	
72300	ctttttgctc	gcttctatat	cagtgctaaa	tgtcgatagc	gatgccacat	gtttattgtt	

APPENDIX

Page 87/126

PCT/US01/14394

73140	73200	73260	73320	73380	73440	73500	73560	73620	73680	73740	73800	73860	73920
cgtaatacca	cagaaatatt	gctctggaag	aaacaaccgg	tgaactggat	atgcctcatc	caactggaag	tagatgcaaa	cataatcaag	gaattacatg	cagctttcac	accctattga	caggtcgtgt	ctgctccctg
gtaaatcttg	tttagtcgat	ttcttttta	ccattttcat	tctcttaatc	atttcaagag	cctttttgta	agattatatt	actccagttc	gtaattggat	tcagcttcag	ttttttgaca	aaaattgtat	tatttaattt
gtcagatgaa	tgtctctct	aggtgccgag	tcttggttca	cacacccag	atctttaata	tattaatttg	aggaatctct	acccatcact	cttcttcttt	tttagccata	cgattcatta	agaaacacca	ctcaatcatg
catctgcatt	caaaagtatc	ttaagggaat	catcaataac	tttgtctgct	cgtctgctaa	tatcagagtt	taataacttg	gagcaggaac	atacgggtat	gtttttcagc	agtcttttat	ttgctaaaaa	catcggaatc
tcaaacattt	ataaatgtat	tcattttgac	atatcctttt	ccccaatatc	ccaaggtttg	ccatcatatt	ttcattatta ttatcaaaac	ttcgaaatct ctttgatcat	tttccaatcc	ttaattccaa	ttgtttagaa	tttggtgata	tttaaagaat
tgaattttta	tgatgagtcc	ataaaaatct	cactataggc	aatagggcaa	taactgctca	agagtccatg	ttcattatta	ttcgaaatct	aagtacaaaa tttccaatcc	cattccacta ttaattccaa	ttctttgcat	tatagagtga	tgaaaatacc tttaaagaat

APPENDIX A

Page 88/126

73980

ccacctcatc

tcaggccaat

tttaacattt

tttgcattgt

atccaattcc

agatttccca

75600	gtcgcccatt	ctgttatttt	agtgtttttg	tttttcagcc	gaattccaga	ggaacgattt gaattccag	
75540	tttataacct	gaatctcatc	ttatcagatg	aaactcatca	caattttttt	atatctctag	
75480	tggatagccg	taatcataat	gccgttgcct	accdccacca	ttcctcttcc	acaactctca	
75420	ctctcttca	taagatcttc	gcatgtccaa	tgttatttct	ccatttttag cttcctgcat	ccatttttag	
75360	attgccgaat	aaatggtttc	ttttctagat	cccaataaat	acttcaatat gtctagggtt	acttcaatat	
75300	aactatttga	taccatcacc	gcctttcctt	taaatgtatc	cccttgtacc	atactgcaat	
75240	tataatatga	ttttttgatg	tcctcaatta	tgctggagct	ttatattaag	gcttcttgat	
75180	tttattaaga	ctattagtgt	ttgacacaag	ttcacataaa	acccttcgt aatttatttc	accccttcgt	
75120	aatagtgcca	ataaaaattc	ttatcttcgt	atagaattga	cttgtattca tttctataaa	cttgtattca	
75060	aacctgaatt	ccggatgttc	atttctgtta	gccagttatc	ctaaatcaaa	tgtgctttta	
75000	aattcttagt	tttcaagagc	tcaattggca	ttgatttagc	taatatcatc	ccatgaaaat	
74940	tagtgagtgg	ttctgcattc	tctgcattaa	atcaggatct	cctggggatg gttgaaaatt	cctggggatg	
74880	tgtaattgtt	tatgcatttt	ccgccaggtg	tatgccaaaa	taaatatgtg agtcatatct	taaatatgtg	
74820	atatcctcca	ggggaactct	tcatagttag	tagaagtgaa	tgatttttgc	gcctgagtaa	

APPENDIX A

Page 90/126

APPENDIX

91/126

Page

77280	attattaaac	tagtagtata	tcacattgga	tcacctgcaa	aaagatttgc tgaattcaat	aaagatttgc
77220	gagttttcaa	gaccctattt	tggcttctgg	aatacttcat	tgttaaagca	caacattggt
77160	gattgtttt	tatatatgct	tttgccaagt	ccatctctta	catataataa	tatccaagta
77100	agctctatac	tttaaatttg	gcactttatc	ttaaatggga	ctttacttga ctcaagcgtc	ctttacttga
77040	ctatatagat	aaattcatcc	tctcgccaaa	agaatctcag	ttcatctcta	ttataataaa ttcatctc
76980	atttcaatgc	tgaagaattt	ataagttcaa	aaaacctccg	atagtatatt	agcatccctg
76920	cccgcttcag	atagcaaaaa	tttgcatggg	agttgatttt	tttaaagata tttttataag	tttaaagata
76860	tttttaggat	atttacagat	tttaacagaa	tataatagat	aatatattca	atttataagc
76800	ggttgggggcc	agaagattga	tctagttccg	cttccttttc	ctgccatata	aagtgatttg ctgccata
76740	gaatatcttc	aaatcttgtt	taagactaat	tttgatttgc	ttgcattgat	agatattaaa
76680	tactttgaaa	tgctccgcat	tattatttca	gtattgattc	atagtgctat	tttttcttca
76620	caaagtctat	tttattatta	tgcagcagga	tatgagtata	gctatgctcg	atcccttata gctatgct
76560	caagaaatgc	atgttgacac	atagaatggt	ggtgaacctc	atgtctgaaa	tcttgtatat atgtctga
76500	taaattcctc	gagacatgtc	agatagatat	cagctatatc	atcacttctt	aataccagtt

APPENDIX A

Page 92/126

Page

4

APPENDIX

78960	ttagatctca	agcccagata	taactatcca	gctcttgatg	gccaacaacc	ttgctgacga
78900	gagctattga	taataaacct	tggcccttgt	atgattgcta	acaaagagtt	gagggcagcg
78840	gagctttctg	ataccctcat	ggttctatgc	gttgaaagac	gattgatgat	cacttgttga
78780	aaattaatgg	tgaagcaaaa	atgcaataga	tcaaaaaag	ctcaaaaagc	tactacttca
78720	actgaatcaa	taatcagata	acagagtagg	aacccttatc	gacctcacta	aagagccgat gacctcact
78660	atgatatttc	tattatatct	tgagaggaaa	ttactttcct	gtatgaaaag	taaatgccaa
78600	gatgagataa	gtttaatggc	cttctattaa	tccaaagagt	agcatcatat	aaaaaccaca
78540	cagctccttc	gtcaattctt	taactgctat	ggtaagtcgg	gtcaggttct	tggttggtga
78480	accttggcct	aaaaaatcaa	ttgatataga	aatataagtt	tgcagtggat	gattgtttaa tgcagtgg
78420	acaagggatg	caatttttca	acttaagcat	gaagtaagtg	taaaatttta	atactatgag
78360	atataagaaa	ttttaaaaga	gttgaagatt	gcagatagcc	tgaaagcagc	atgactaaat
78300	gtttgcatca	tgtttcatgg	tatccaacaa	acaattacat	ataatgtgaa	aaaggtaaac
78240	tttattacat	aatatgcata	gatggagaaa	tctatgcgat	gctttgatcc	gttacaggtg
78180	aacaattatc	ctttaccgcc	tttgaaaaaa	aaaatttaat	gattoggcot ttaatotott	gattcggcct

APPENDIX A

Page 94/126

79200 79260 79320 79380 79500 79560 79620 79680 79800 79020 79140 79440 79740 79080 cgaatgacag aagaataaat gatctaggcc gttgaacaag cttttagatg gagatcaatg acttttcatg gttggggaat tataagggga aaagaattga aaagaaagag tctttaataa tctattcaaa tatcttttta attatcacca tattactcat tacaaaaaa gccaataatt taaaaagaat aattggcctg cttagtttct aaaagaaaat gcttacaaaa aattgctaga attagatagg tgggcttact tggcaagata aatagtagct ctcacgaata ctaatttttt caaattccca cttatgggtc aaaatgaata caatactttt ttatgaagaa taagtgatga aaaatactac ctatagcaaa ttcactttaa caacatcagc tcggtatcga agagaattgc gataaccctg gatatcaact tttcaagatc ctgtcagatg ctaggcatgt aatgtttgtg aacaaccct ataccttcaa agtatttata ttgggtaagg ggtttaggtg cttgatgagc aaagagatac ggccaaaggc aaagtcaact tgagggaaga ccaaattgtt taaaaatgaa attttctgac tgaggtattt gcccaaatta ttactactca tacttccttt agttggtgaa gttttctgga ttttatgatt cgatttattg agataaggtt atattaaatt tgtctaagct gaaatactgt cagaacctca acttaaatgt ctgttaaaaa ctggatctgg aaaaaatgt tgggggagat tgaatcctgc ttcaggtaat tcgttcaaga acgaaaggat atccgcatga

80640	caagatgcaa	aagcagcagt	gtcttcctgg	ctaggcatga	gattgaagct	tggcttctgc	
80580	gcaaatacta	aatgtatacg	cttgtggggg	gggcctggat	ttccgtaaaa	tagaaaaaat	
80520	ttaattcatg	agaatctgaa	gcgatcttaa	tactcaaaag	aactggagag	tttgtgagaa	
80460	tatgttactg	aaataccgac	ctagtaaaga	tctatcaaac	atatggtggt	caatatttat	
80400	aatagaccat	ggcaagatta	ttattggaat	cctggatgca	taaaaatatg	gtggttgtga	
80340	attgctgtcg	tgatggagtt	gtcttggtta	gttgtgggat	aatagaaact	ttgcagattc	
80280	cgagaggtaa	tcttgtttct	tgaaatattc	acacagggta	ttctatgggt	ccgatggaat	
80220	attactgttt	ttttaatact	agggtgttct	tcaggaggaa	agttgatagt	ttgagaaatc	
80160	tcagagatcg	aaatgcactt	atatgcacat	accccatgca	agcaaaagta	cttccacagg	
80100	gttgggattg	aaaaccattt	aggmtttcac	ttcacatctg	aggagtaggt	caatgcttag	
80040	gcttctagat	taatcaagct	ttgacggtcc	aaagagctcg	aaartattca	tggcaaatag	
79980	atatymcmtm	ataattaaat	atgcatctga	gctttaaagt	actatcagct	ctaaaaaatt	
79920	caagactata	aagcccagag	aggtctttga	ccttctcaca	agagtcagga	gagaaatcgt	
79860	atgaaaaatg	tatttttgtt	tgtcagactt	attagatcga	taagtcatga tttaaaggtt	taagtcatga	

APPENDIX A

Page 96/126

10	97/126	Page		APPENDIX A	A	٠.	MBA-101
	81480	tctatattaa	agatggcgac	caataattaa	ggcttaattg	tgcagatggc	ctccagaggc
	81420	gggcacatta	atttgttgtt	gcactcatgg	ttttcaggag	agacggtcgt	cttttataac
	81360	gatcaggtag	aggtettgge	taatgggtca	acatctgcca	gctaaaacca	tgagagaaat
	81300	ggtccaggca	gccaaaagga	gatatgaagg	gttgtaatta	tggagatgtt	ctataaaagc
	81240	ctatctaaat	taaagcaatc	aagaaggggt	gattcagaag	tcgtgtattt	aaggaagtgc
	81180	acttcctttg	taaagaagga	aaattacggg	gcagttgcaa	gaaagatggt	gcaacttagc
	81120	attctgtatg	ccatcttaga	aatcaaatag	aatccaatta	agataattaa atcatttgat	agataattaa
	81060	cctgatcaag	accttacgag	ctggaataaa	gaaaatcttt	ttaccggtca gacgcttgct	ttaccggtca
	81000	tgtcttaccg	acacggcaat	agggattact	ttgcttgaga	aatgaaaact	ttcagccact
	80940	aatggcggta	actcaatgct	atatgtctga	ggttctcatt	taagcccttt	tggcagatct
	80880	acacccgtta	aggaaaaaaa	ttacaagaat	ctagatgact	tgatttagag	caataggggt
	80820	atggcgcatt	tttattggcc	cagttctgca	tcaactaatg	tctaggaggt	tggtaattgc
	80760	gctataacaa	ttttgagaat	ctaagaatgc	gatattatga	taagccttca	aaaaagatat
	80700	aatttattag	agcgataatg	aggctggcga	gattgtttta	caaagaagat	tttcacacga

Page 98/126

APPENDIX A

82320	cttcaaaatc	ctaggcaagt	agcttcaagt	ctgttaattc	ttatggtcca tttagagatg	ttatggtcca
82260	attcaaagtt	gcaaaatata	atcatatgca	caatcctact	tataaaaata	cgaaatggat
82200	aggcattgga	tctataagag	aagaataggc	tgatggatgg	ccatcagata	cataattgca
82140	ctgggacaga	ttagctcagg	atcactaaca	taaggaagca	ttagctgttt	tgatgagact
82080	atgttgataa	aaaaatgatt	cggtatttta	atgggcatga	tataccgatc	tctagaccca tataccga
82020	ctgatgttgc	atcttaatat	ccctgaaata	agaaacgatt	agtaacataa	tgaaactatc
81960	atttgatgtg	aatgcatcta	tgaggctatc	gcactggaga	аадаааааса	taatgattcc
81900	ttccagttat	attgccctat	tataaatacg	tagagcatga	gaagagctac	ttcagaaata
81840	attcaatttt	tatggacaag	tattaataga	gcatgcccaa	gctattgaaa	tggaaaagag
81780	aaggcttgag	tttataaaag	tcagccatta	atgatctaat	ttgtctacaa	tgaagttagg
81720	acttgcttgc	aacctcagag	tctcaattca	gaagaatgcg	agtagactaa	atttccaaat
81660	ttaaaagaaa	aatatgtatt	taacagatta	cttggagcgg	atcagctagt	aaagtgttaa
81600	aaatttgcaa	agtettagea	ccaaaaaagg	aaaacgcctc	ggtaaaccca	taagtagatg
81540	tcaaatagac	ggatgaaatt	atatttctga	ttaattctta	ttctgataag	ttgatgcaga

82560 82620 82680 82860 82920 82980 82500 82740 83040 83100 83160 82380 82440 82800 atataatttc gtgaatatag tagaatcatt aagaaatttc aagctttaat agaaacatta tggaataagg agtaggtgct caaagacttc gccactcaaa ctaaatgaac gtggtgtgga ctatggatat tgagcttggg gatgttatgt agagagattg ctgctaaata atatagctac catgaagttg tacgcagcta gtgatgaaga tttgggctga cagaaaaatc caggagttga tttaactttg aaggctgaaa acggaaataa ccttatctag caggttagtg tgaagctcta aattctaacg agcttgcacc aactgttgaa acagttgcag ggagagcctg gcttgaaagc atagaaattc ttggttgatt agtacagtag gaacttgtag ctttgcatac ttcgacttct aacaactaga gccaggtatg aaaacctgta aaaatataaa aagtacctac ataaaggatg gagctgatgc gagcaatgtg tgattcaaat atttaaaaac ggactttata ggattatcat accaataaat tcatggttaa tcataaaaac gaaaccttca aaatggatgt accttttcaa atgtcaccaa ctggcgattg taaattcaga cattaattat aacaattaga ttaaaataaa gcagacatag aaaagagcgg actaacaaat gcaagaaata agcgacgtct ccttgtaaac cttactgaaa catgcttaaa caaggagata aaggtttgca acaaaaaccc cagttatcaa aaaagtaaaa aataagtttt ctaaccaaac tttgcatatt taatgaaggt

100/126

Page

4

APPENDIX

Page

4.

APPENDIX

85680	agattcccta	ggtcttctgg	gatagaagca	cccatcctta	gcaaattcag aaaatgattt	gcaaattcag	
85620	tgaatttcta	taccaatagt	ggaccagaag	ttttcttctt	taatttgtgc	cttaagttat	
85560	tatatcaggt	gaatagtttt	cctcttactg	agctatgttg	ttattctagt	ttgagtttct	
85500	cagaccatca	gcccatcaaa	gcaactacca	agcagcctta	tttaaaccaa gcctttttat	tttaaaccaa	
85440	tgaattttgt	agaattcata	tcttcaattg	aggtaacatt	atatccct gagatgcaga	atatatccct	
85380	ttcaattgct	ctgacagaca	tottttttat	ctcaataata	tttctaaaag	tcaccaatat	
85320	ttctttaggg	caagaattaa	tctgcactgg	aaaagatcgc	tggcagcaac	gtaccttcca	
85260	agacaggcaa	tagctattgg	tcacataaaa	atttttatct	cctgatattt ttatttggcc	cctgatattt	
85200	taatattttc	cttcataaga	ttttcgttgc	tttataaatt	atatcttttc	tgaaaggaag	
85140	tgcaatatct	taatatctat	gcaaataaca	aaactcatca	cttccaaaat	gatttcgctc	
85080	taaaattaaa	tatcattttt	tcgtattaat	tttttgggcc	tcctgataaa	atattaggtt	
85020	tcacataaag	ttcttgagct	taagagctat	taaatatttt	ttgaattaat tttagaaaga	ttgaattaat	
84960	gaagggtcga	agcgattttt	ttttatcgat	atatttttaa	atatgaatga	ttaagtttga	
84900	ctagtaaaaa	agcagcttgg	cgtacgaagc	atatcaagtc	agattttaaa	aatcgaaaaa	

APPENDIX A

Page 102/126

PCT/US01/14394

caagtgtaga aatgaatagg 85800	ctccttctga tgtcatagga 85860	catctgcaac aaattttgcc 85920	ttttcatttt gtttccaata 85980	agtgaattcc tcaggaattt 86040	agatggcttt atttcattct 86100	gccaaaagga ggatcaagaa 86160	actaaatgca tccttaaaaa 86220	ttttgctaac acagaatagt 86280	tctggatatt gcttcaatac 86340	attttcaatc tcaaattgaa 86400	tettaaggaa teettaaatt 86460	totgatattg tttttcattt 86520
atcagectet agagaggaet caa	aagaggitta tcigittiggi cto	attgatctta gctaataact cal	ttgccttgta gctattctta tti	acactcttt ctttcaagat agt	tactcaaggt agattttaca aga	acttttaatt catattcttc gco	aagtcatttt ttttaatcca act	atgccaagaa gttgaatatt ttt	aacacaactt tttttgactg tct	aacaaatcaa gacatattaa att	tttaatttat ttgaagttgg tct	tttaaataac ctccagtgat tct
tatctgcttc	ccctttccac caatttcatg aaga	ccttaatatt	ctagttctga	cacatcgcca	ccaaggtagt aaatttacta tact	ttcgaattat agattttaga actt	aaaacgagat	tttatccttg	tttttttatt aagttcaacg aaca	cgttccggca	aattatttct	ttttttacct
tgcactgcaa	ccctttccac	acaagctcaa	tgatacattg	aaagagcctt	ccaaggtagt	ttcgaattat	gaattaaatc	aaactttaga	ttttttatt	caagcgcacc	gccaattaaa	cgaaaggtat

APPENDIX A

Page 103/126

87360	aagcgggcat tgacaagggt	aatgititgo ttattoottt	gcaaaaaata ccagagagct	aggtgagatt cgaagcattg	cagctggcaa tagttaatat	gaaataaatc caccatcttt
87240	aaaaaatatt	tatttggatc	gtaaaagtct	atctaataat	ttatctcaga	caagacggtt ttatctcag
87180	tatctctcct	gtgtttttat	gaaaagccaa	agagtgtgaa	ctagccagga	aacatttttg ctagccagg
87120	tcttgcctct	actcttttt	ataatactca	ttttatttta	aaaatgtatt	aaattttcaa
87060	agctatgaat	tgttgatggt	cactgacata	aaaattaata	tagcgatgag	caaactctct tagcgatga
87000	ggtcatgtca	tattgtgatt	acacacatac	atttcatacc	tgatcaatta	tttgtactgt tgatcaatt
86940	gctaatattt	aagtgcccag	cgtttttaaa	agcggcactc	ctgggattta	atagtggtga
86880	gatagattta	gaccgaaggt	gttcatttaa	aatctatgca	agatatttct	aaaatcaaga
86820	cttttaaata	ttgcataaac	ggtcctcttt	ataaaagaag	tcacaactca	cagctggaat
86760	atcaataaat	gctcgtttgt	ctcctagttt	tctttagatc	tacctctgtt	tttcttcagt
86700	gctataacag	aaagtttagt	acgagaataa	tcaaatgttg	tttactctgt cagtgtgatg	tttactctgt
86640	aggagctata	aaaagcaatg	ataattttag	gtcctacaag	tcatccatgm	aagttataat
86580	catttaaact	attamaaata	aataaatata	ctatttatta	atgggtatgc	tttttgcaaa

APPENDIX

Page 104/126

Page 105/126

APPENDIX A

88200	accgcataca	ttatgtatac	tatcatgtta	tgctaacata	atgttgacac	tttaatttta
88140	ttattcataa	gtgatgatag	ttaagtttcc	agttcttcct	gcattctata	gcctgcatgc
88080	ctatcacaaa	gtaaccatct	ttagtttagt	gatctaatac	ctttgcaagg	caccactttc ctttgcaa
88020	gtttgagaaa	ataaggagca	caaaatgcct	tattttgttt	atatacacat	caacagcggc
87960	ccaacggttg	ttttttaaag	gctcattaag	aaaaaacaa	taattttttt tggattctca	caattttttt
87900	tttttctttg	agtaacaagt	tgcttgcatt	cctatatatt	taaaccaaac	gtgcattttt taaaccaa
87840	tcatatgtat	aaacatcaaa	cagctgttcc	aagttaccaa	gtaatcggca	gaagatctgg
87780	gcagatttaa	tgttccattt	tattatcgta	ctttttctca	cgtctgctag attagcaaaa	gtctgctag
87720	tcctcaggct	ggcaatcact	tacatttaaa	caaagagtta	caacatagac	caagaccatg
87660	attatcccaa	cacctttctt	caactacatt	taatcatcac	attatcgtca	taggaccaga
87600	gcactagaaa	aattatattt	agttattagc	tgttcatcta	tttatctaga	cagttataac
87540	gagattagac	cagttaatta	ataacaatta	atcagaaaaa	gaccetttt	aaaggtcaag
87480	aaataacttt	aaatgcaggt	cataattcaa	atcttatgtg	taattottgg	tctctccaac
87420	tggaacctat	atcttgatcc	acaattcttg	tcaaactgaa	ttggaggagg	tatttacatt

MBA-101

89040	actgtcccag	caattaagtc	acatgggttc	agcaaaaggt	tcactgagaa	aaactaagca	
88980	agtaaagctc	caggatcaat	ttttttaato	atttgatacc	caatttttag	aataggttag	
88920	aggctccaat	tgtcaaccgg	ctggctccca	gttagagaga	caaaagctac	ggaatatcta	
88860	tgatatcaga	agtatgaatt	attggagatg	caaggttaag	actatatgaa	attccaatga	
88800	aagaatttct	atgttgaagc	ggctctagca	agaaatttta	tccaagtttt	aatgcaggtg	
88740	atcagtaatc	tagatacagg	aatagatttc	agttattcaa	cttttaatgg	ttactagctc	
88680	gcaaactaag	ttaaatttga	ttttatagag	gcagtatgat	tagctaagtc	gatcaaatag	
88620	ggctgaatct	atcttgataa	tctattcaag	tgggcatatt	tcagagcaga	tatataaatc	
88560	actagcaaga	ctgaacaagt	tttgatttag	aaaggctaaa	taaatcaatc	ttagcacaat	
88500	tagagaagct	cattggatga	gaacttgcct	cttaggggat	atgaggtcat	gatatcggag	
88440	tattaatgtt	agataaactc	atacctggaa	agcatttgaa	agtctaagct	ccatcagacc	
88380	aaagctcatt	aatttcctgg	gtaactagag	tgaatatgct	aaatgcttga	cttgaggtta	
88320	tttagaagtt	atcttgaggc	tttctatcaa	aggcaatgcg	ctcttttatt	accgtcatag	
88260	aataaataac	acataacaaa	agatatatga	agtcaaatac	tacatattaa	ttaagttgat	

APPENDIX A

Page 106/126

ď APPENDIX

107/126

Page

MBA-101

Page 108/126

APPENDIX A

90720	aggatgtgga	ccgttcttta	ggaaaaaatt	tgagttatat	ccagttctga	attaatggtt
09906	ttttggcgtt	tcttcattag	gtctataaca	cagtcattat	atggcaatga	cgtaggcggc
00906	gtattgaatt	gaagggtcga	tgttactgga	ttcttcctat	gtcttctctt	agcaacaacc
90540	ctgctgcaac	gctccattag	aaacttatgg	aaggactaaa	tatcaatgat tcaatttcac	tatcaatgat
90480	ctggattaaa	agaagagcat	ttataagaat	ttgttgaaga	gggattattg	tatagataat
90420	taggattgct	attattgcac	cactggaatt	tgacatctat	cccttgcata	tataggctta
90360	gttgtaggtt	gttatgattg	tatttgcctg	tgccattttc	actcttatcc	aataattgtt actcttatc
90300	ttagatcagc	tttcttggaa	aagtctttt	ttttagcttt	ttcattagca atattttttg	ttcattagca
90240	taaaaagttt	aatgagcttg	taaaaaattt	cttacacaac	gacgaatctg	tttagtttat gacgaatct
90180	tcactataga	ccgactgaga	agaaactctg	atgagatgag	attgttgtag	acgcgcaaca
90120	attatgtaga	agagtccatg	attttctcaa	gaaccggatc	tctgttgctg	. tgtagttatt
09006	ttaatggaaa	atattcttgt	tattgaagac	cggtttctcc	tcaaaaatcc	. ggcatttatt tcaaaaatc
00'006	tagatgatgt	atcatacagc	taaatcagag	aggttattaa	atacctatca	actctcagaa
89940	gcattcaaaa	aatatacaga	actcaaagat	ttttatatag	aattctgagc	ctcaaacaac

MBA-10

Page 109/126

APPENDIX A

90780	90840	00606	09606	91020	91080	91140	91200	91260	91320	91380	91440	91500	91560	
cctttttaaa	ctgttctagg	gagatatgtt	agagagttaa	attattcgtt	aaaaacaagg	tgattgaaaa	ttaatattga	ttggagatga	attctcctga	ttgaacttaa	aaatgtttac	taccagtcag	taacaatgcc	
aaatataggg	cttgcattgc	gctcaagata	actacaatgc	atagaaaaag	ggtggagaag	tattatgaaa	gacattatag	tatgtaattt	attattaaca	aatgttgagt	cttgtaaatg	aacaaagaaa	actagtttta	
aatccttaat	catgatatcg	tttettteet	ctcatcactt	tttaatttca	gaatgttgtt	tgctactgat	aaataaccct	agatgttagt	gctagagcta	ctcaataacc	tgccaattat	gttggattca	tacgggaaat	
gaaatgaaaa	gaagagcaat	tacctaaaga	cttctaacgc	tagatagtga	gagttttgat	ctgtattttt	gactggttaa	cggttttttc	ttggtgagga	caacttcaaa	ctggtcaaaa	ttggcactat	aaaacaatat	
gaagggtata	ttagttccta	attotttott tttaattott	atagaactgc	gaagatattc	atgatgccta	attgcgcagt	ttatcaagaa	tctggccccc	ctaaaatcac	tgtgagtctt acgaaatctg	atttcactgt	tgcaaacaat ggaatatttg	ctgtctaata	
tattagcaag	ctgggcgttc	attctttctt	tagagttaat	ggaaattaga	tatoggcaga	atccaataat	ccttccagat	tagtttctcg	tccagattta	tgtgagtctt	cagctcaaat	tgcaaacaat	gctgaaaggg	

91620	91680	91740	91800	91860	91920	91980	92040	92100	92160	92220	92280	92340	92400
caaacaaatc	ggatttggac	attttgaatt	ggggccaatc	taggcttggt	tcttatcaat	ttggaactat	tatctcacat	ttgttatcag	ttccacttat	tattaggcgc	aggttaagta	tgattcatga	tttatgaggt
agctcactaa	gttgagggct	gatgttaaag	gctgaaagca	cttataatag	tctgttgcat	tatggattta	attattgtct	cttgttgaag	ggtggttttc	agcattggag	ataatgagaa	ttacaataag	caatcitttt
tttcggaaaa	aacaaatgat	tattaaaaaa	acttggcgag	gtatttcatt	tctaattttg	ccagcaaaat	aaatgattca	caaagctgag	gacaacactt	ttgggcaatg	aatgtttatg	cctagctttt	atagagttat
attttgatag	atggccaaag	ctgaaaaatc	cattaaaaca	cagcttttat	gagaggctgg	tatttatagg	gcttatcaat	aatcactaac	ctacctcttt	aaccgcttgc	atattcctgc	ataatttett	acatttaatc
ctctcaaggt ggttttgagt	actaggcttg	ccgtctgcta	ataggctatt	ttatactctt	aattctttca	tttcttggtt	aagtgcaata gggttaattg	gctgagaaga	catataatca	gtattcttca	gccttattat	tttccgagca	cgcaagaatc
ctctcaaggt	gtcaacaatt	aggtacgctc	aagattgcca	tcaagcctca	tatggcgctt	tggactatcc	aagtgcaata	aaaagaagag	gtctacacgt	ttttgcaagt gtattcttc	gactattaca	ctagaacaac	gtataggtct cgcaagaatc

APPENDIX A

Page 110/126

Page 111/126

93000 93120 93180 93240	ataatcaata agcctcagtt atatttgcca attttttcca ttctgggcca	cagcatgcgc cctgttcagc caccaaaata gctgttctat	aggcctttca ttttctgctg tctacttgcg gaatcaatag attttttcag	atagctagaa tcttataaat ataaataagc tgcttctaat atcgtaataa		ataaagctat tatctctcg tttggatgcc taggatgaa tcagcattca taaattgag aaaggatatc ttgattcaa gccatccttc tttgggctt
93000	ataatcaata	taaaatatgc	aggcctttca	atagctagaa	tatctctcgt	ataaagctat
92940	cattcttaca	cagtatctgt	tttgatagat	gatatctcta	tagctcctga	aatgattcct tagctcctg
92880	tagttctgaa	agaattcagt	aatcttgtta	gctatcagga	tagaatattg	ttagcatatg tagaatatt
92820	atttctttgt	ttaaatagat	atcatatttc	atttcttgca	taatcagctg ccgcaagctc	taatcagctg
92760	actaacgtaa	gcgcatcaac	gctgctatat	tcttcttatt	cataatttgc	ttttcaatta
92700	gttaggaata	tttcactaga	gctctataat	gatcttaaga	aagcctctaa	gattcatatg
92640	atatcccaaa	gcaattcaat	gtatcttcaa	tatttttta	taatagaaat	tcttggtagt
92580	tgattgctca	cagatttttt	gacttatctt	agaccagcca	taaaattcca	ctatttctta taaaattco
92520	tgctggctta	agtcactaga	aacatttttt	ttttaataag	gtaatatcga	ggaatcaaaa
92460	tatgaccaat	tcaatataaa	gcagttatta	aaagaatacc	gagatctgaa	cctgatatga

a 93300	a 93360	93420	y 93480	93540	a 93600	93660	93720	93780	93840	93900	93960	94020	94080
tagttttaaa	aagcttgaaa	atgttccaaa	attattccag	aggtatccca	aagaacaaaa	aagattttat	atgatggaac	ggtcgggaat	atgagtctt	atacgtctat	gagataaaaa	ttgtaaagct	gaagaactca
atactataaa	atcgtaattt	attgttaaaa	atgtttacag	ataaatggag	agccctaaag	tttgaaaatg	tctggttgct atgatggaac	aatattccaa	gtagcaagaa	gtaaaaaaat	ccaattggaa	gctttaacat	atagagacag
acaattggca	tacctgcatt	agttcatatg	tacagcagaa	cagagttctt	gattgaatta	tgaaattcac	gcatccaggt	agaattgatc	cattctgctc	gaggagagtt	tatagaagag	tggcaaagat	ggatataaga
taacagagtt	ttgcacattc	ttttataata	tagacaaagc	tagaagaagg	agaatgatca	atatagattt	gtttaataat	ataaatttcc	atacttctgg	aaatgcagga	gaagcttttc	ttcgagaaga	actctgtgtt
tcagaattac aactaaccaa	ctttcattat	agattaattt	tgatctatct tcaatgaggc	aaaaaatgga	aaagtttatg	gaagctcaag	aaacctgctg	gggctcattt	ttagacaaag	tttattaatg	tctacactag	aaaatggcaa	attggaaact
tcagaattac	attagtttat	acatctattt	tgatctatct	aactcagata	gccaagagat	agtatcatgg	tataattaat	tctcgcaaat	tgttcatcga	taggaacttt tttattaatg	tgttattggt	taatagaacc	taaagaaaat

APPENDIX A

Page 112/126

tcagattagg	gtccatctat	catcaaaaaa	actaccaata	attggagata	aaacctatga	94140
cccaagcagg	tctattgcaa	gagataccc	tgaagagcta	attaatatta	tccgaggttt	94200
tccaaggcag gcattacat	gcattacatg	caacacacct	ctcattcaat	gaccaaaaaa	caaataatat	94260
tttttctttt gatattcco	gatattccca	ctccaaatga	tatggaggaa	ctacttctag	aattaagaaa	94320
attgatctaa	tagtaactaa	aaacttgttt	tttgattaat	aaaataatat	aaaccttatt	94380
cctaagagtt ttttggtaa	ttttggtaag	aaattgaaat	tatctggcgc	agacatgcta	atgcaagcac	94440
ttcatgatga aggtgttga	aggtgttgag	ctaatctttg	gctacccagg	tggagccgcg	cttcatatct	94500
atgatgcaat	ttttagacaa	gataaaatag	atcatatttt	agtaaggcat	gagcaaggtg	94560
caacccatgc	agcagatgga	tattcaaggg	cgacaggtaa	gccaggagtt	gtcttagtca	94620
cttctggacc	tggtgcaaca	aatgctatta	caggaatcgc	gactgcattt	atggattcca	94680
taccaatggt agttatttc	agttatttca	gggcaggttg	ctagccattt	aataggtact	gatgcttttc	94740
aagaaactga	aagaaactga tatgattggt	gtttcaagac	caattgttaa	gcatagctat	acagttttta	94800
atgctgaaga	aatacctaag	ataattaaag	aagcttttta	tgtcgcaact	tcaggcagac	94860
ctggacctgt	tgttatagat	atcccaaaag	acatgacagc	tccggataat	ctttttgatt	94920

APPENDIX A

Page 113/126

PCT/US01/14394

94980	95040	95100	95160	95220	95280	95340	95400	95460	95520	95580	95640	95700	09256
ccagaaaaaa	atatatgctg	gaaattattg	catcatagat	cataatgcag	ccatcaaagt	tcaaaaatta	ataaaagaaa	cacgatcaga	gaatctgatg	aatggggaag	tatcattttg	ggtttgccag	actggtgagg
tccgattgag	aaaaccagtt	tgaacttaat	ccctgctagt	tatggcaatg	taccaataaa	ctcatctgta	cttaaaatta	tcagccttgg	ttataaagat	tgagattaca	tgctcaatat	tatgggtttt	tgtttgcatt
catacaatcc	tgatatcaaa	aagaattact	tgggtattta	atcaggcaaa	atgacaggat	atgttgatca	taaaaaattc	ctttcgctct	attatgagct	agcatgtcca	aaatgittgc	gtctaggaac	aagatgaggt
aagataagat	gaagctatat	aatgccgaaa	ttaatgggat	catggaacat	gccagatttg	gttcatctag	tttgggcaag	tcttacgatt	catggtttaa	gctgtagtcc	ggtcagcatc	aattctggtg	gcttttccaa
tgaagaagcc	tagagcagtc	aattgctagt	tacaaatact	ttcttgggat gttagggatg	tgctattggc	tgccaaagtg	tgtagctgtt	aaaattagac	gaaatcacta	tttaccccag	ttccgatgtt	aagatggatc	tgtaaaactc
actcgtatcc	atcaaataga	gtggtggggc	atgctcctgt	ttcttgggat	acttaataat	ttgcacctaa	tagaagcaaa tgtagctgtt	ctcttgaaaa	taaaagaatg	atcatcccat tttacccca	catatgtgac	ataagcctag	cagcaatggg

Page 114/126

オロナー

Page

ď

APPENDIX

97440	agctaaggtc	gtaggggctg	aatagagtcg	aaattcatcc	gaagctacaa	aagcaataga	
97380	ctgttatgaa	actggcggac	caatgatggc	gtcgacaaag	ttgaatgact	agatgacttc	
97320	gaaaattcgc	atacagtcag	actagaaaat	tgaaaggaat	aaaaaagcaa	tagcgatacc	
97260	aagtaattac	agtggaccca	tgattatgtg	tg ctgagtatgg	tcaaatactg	ttactcaata tcaaatac	
97200	ctaatatgca	ggtggcattg	aattcaagaa	tcacagactt	acaaaactaa	ccttcatgaa	
97140	attttgaatg	gagatggcat	ctacagtgaa	ttgaggcagg	agctgggttt gaaactctag	agctgggttt	
97080	ctttaattaa	gggcttaccg	tttatgtggc	aacaagcagt	ttatttggcg	agaaacagat	
97020	aagaagaaac	acatctttta	tgttcttgaa	cgagggctgg	aatggcggca	tgcaaaagca aatggcgg	
09696	ctctatctta	aaagatgtag	ttattcagca	gtgatgaaga	gatgctttaa	tatatatgaa	
00696	ctctcatagc	ggcgttccat	caatggtgga	gtacttatac	tccaggccat actgttagaa	tccaggccat	
96840	caccaaaagg	attatgattg	taacagcgta	ctgaagcaac	aaaatagttc	tcattttgaa	
96780	gctttaatat	tttgcacatg	aattcttgca	aaaccagtgc	ccaaacttaa	cgaaatcaag	
96720	tatatgaaac	caaaaaaata	agatgaattc	ttttggcacc	ttggttatga	ccaagcagat	
09996	attcggtaat	acagttgctg	aaaagttcaa	aagcaggctt	aaggcagaag	ttcatgggca	

Page 117/126

APPENDIX A

98280	acctaggaac	cctgggctca	atgtgaaagc	gttaagttgg	taggtggttt	aaagcgcgcg	
98220	tactgggcgt	taatcggaat	gtgcaagcgt	aatacggaag	cagccgcggt	tccgtgccag	
98160	accggctaat	cagaataagc	atgttacctg	tataaccctg	aaagttataa gttaatacct	aaagttataa	
98100	gcagggagaa	agcactttaa	cgggttgtaa	agaaggcctt	gcgtgtgtga	cagccatacc	
98040	aagcctgatc	caatgggcgc	gaatattgga	cagcagtggg	ctacgggagg	gcccagactc ctacgggag	
97980	ctgagacacg	cacattggga	gacgatcagc	ggtctgagag	atctttagct	caaggcgacg	
97920	aaaggctcac	ttggtgaggt	gattagcttg	gcctgcgtaa	tactagatga	aagctttcgc	
97860	actatattg	agaaagaagg	ctccttcggg	taccgtatac	cccggattaa	cccggggaaa	
97800	aaggggatag	tacctagtag	cgtaggaatc	gtgagtaacg	cggcggacgg	atgagtagag	
97740	atcttcggat	gcgagaaagt	tgcaagtcgt	gcttaacaca	ctggcggtag	agattgaacg	
97680	atcatggctc	gaagagtttg	gatattaatt	aacaaaacat	ttagattttt tataaaaatc	ttagattttt	
97620	aaaaaataat	aaaatacgag	gtgggtgttc	ggttactcgt	gttgttcttt aaaaatattt	gttgttcttt	
97560	caaagaggcg	cgcgtccgca	cgttaagata	ggaataactt	tatcttcttc	aaaaaaagg	
97500	aaaattaatt	gaaattaatt	ggtggataaa	cacaaaaatt	ttcctaaatt	taaaatgaag	

MBA-10

99120	ttaccacggt	gggagggcgt	tctaacctta	aagtagatag	attgcaccag	atggaagtgg
09066	ccgtcacacc	tacacaccgc	tegggtettg	gaatacgttc	atgccgcggt	gcggatcagc
00066	gctagtaatc	agtcggaatc	gactccatga	tctgcaactc	cggattggag	tttcgtagtc
98940	ctaaaaagtc	ggtgctaatc	gccgcgaggt	cggacgctaa	gagatacaga	gctacaatgg
98880	ctacacacgt	acgagtaggg	catggccctt	gtcaagtcat	tgaggacgac	cggaggaagg
98820	ggtgataaac	ggggactgcc	ggaactataa	gattcggtcg	atttgccagc	ccttaccctt
98760	cgagcgcaac	agtcggataa	tgttccgtta	tgtcgtgaga	cgtcagctcg	gcatggctgt
98700	tacaggtgct	ggaaccaaga	tgtgcctttt	gtaatgagag	ggaggctctt	tgacatactt
98640	tacctactct	cgaaaaacct	cgatgcaacg	tggtttaatt	gtggagcatg	cgcacaagcg
98580	gacggggacc	caaatgaatt	ggctaaaact	acggccgcaa	cctggggagt	aagttgtccg
98520	ctaacgcttt	agtggcgcag	tatgtctttc	gttgggagac	acaactagct	gtaaacgatg
98460	agtccacgcc	ataccctggt	acaggattag	tgggtagcga	tgcgaaagcg	gacactgagg
98400	gatctgtact	aggaataatg	gtggcgaagg	aagaatacca	agatattatg	tggaatgcgt
98340	agtgtagcgg	tagaattcat	tagagggagg	tagagtacga	actaactcac	tgcatccaaa

APPENDIX A

Page 118/126

99180

gtgcttcatg actggggtga agtcgtaaca aggtagccgt aggggaacct gtggctggat

119/126	Page 1		APPENDIX A	A		MBA-101
09666	tgtgcttaca	cctgaaacct	tgaaatagaa	gcgagggag	aagaaccccg	gaaaggcgaa
00666	taccgtgagg	agtgaaccag	gctgaccgat	aatactctat	tccaaggcta	gggaccatcc
99840	tgaacatggg	aaatcttgac	gggacacgag	cgagtaggtc	taagtgaaat	aagactaatt
99780	ctgtatgcga	ggtgatagcc	agccatagta	tggaaagttt	tttagtccag caaaatattc	tttagtccag
99720	ttaagcttat	ggaccagccc	gagcgaaacc	tagtagcggc	gagattccgg	gaaatcaaca
09966	tagaggaaaa	tctaagtacc	aactgaaaca	aaacctaggg	tataagaggc	aatacatagg
00966	tcttatactg	aagtgtatta	caatacacat	tgggaaaacc	gatttccgaa	tcgatccgag
99540	taaataagct	ggggagctgg	gataagcctc	aataacctgc	tgaaggacgt	cataaggcga
99480	gccttggcag	caaggcggat	aggaagagca	gatcaagtaa	aaggttatat	aacctttttt
99420	aaaaatatgt	aaacttcaaa	aatgaagata	tactctcaaa	tttattaagt	attaatatat
99360	taaaaaagta	atgtgtatgt	atatgcattt	aaaaagtaac	cactgcaatt	tacataagat
99300	catttatgta	ctagtgtata	atgtaatttt	aatcattggt	agatatgtaa	aagaacattt
99240	tattaaaaaa	agtaatcaaa	cgcccacacg	gcgttttaaa	acgataaatc	cacctcctta

100080 100200 100260 100320 100380 100440 100500 100560 100620 100680 100800 tcaacgactt cttaataggg gatgagctgt gtggaagata gtgtgaaggt aaactattta gggtcatccc aggtcccaaa ggcttagaag atggtagaag agacagactg agaagtgcga gaaagccgta accaagggtt gtataatggg gaaaccgagt tccatggcca ctaggaggtt gtaggaatga tttatttaag aaaatgaggg ttctcttcga ctgtcagcta ttcggctagg tgagcacggg tggacgtatc tcgccgaaaa aggcgagggc cgtacctttt agagcactgt gggtgatcta agatagctgg taggcgtagg cttatgttga cctacaagta acaacccaga cactagtcga agatcttaaa gcacaaacag agaggcgaac aaaaacctct gagaaaata tctgtgacgg ccatttaggg cgcgaaccca tcaaacccgg actccgaata cgtaatagct acccgaaacc tgtagggggt atgtgggaag cgagagggaa ccgaagctac aggtaagctg gcagggtgag caaagaggtg gcagacttgt gcaagcttaa cgtgtattac cgtccgtagt gaaaggctaa accgatgcaa gtgggaaaca ctggaattag cgactggagg aaatcataaa ttaaagaaag gagtaacgat gctaatcgag aagcggttga agcagtcgga cgggtgctaa aatttcagta cgctcagttg cgagtaacat ggtagtgcct gacttaccaa ttatgattaa cagccatcct ggataggagt atgttgacat cctgtccaac agcgttctgt

MBA-101

APPENDIX

ď

120/126

Page

121/126

100980 101040 101100 101160 101220 101280 101340 101460 101520 101580 101640 100860 100920 101400 agacttgctc cacgaatggc ttcgcactgg gtccattatc gtgacggaga tgttctaggt gaagtagtcg acctaaacc gaaggaacta aaacatagca cggccgtaac ctgttaagat ccagtctttg ggaaggttaa ttactatagg ttccgacctg attgaaatcg tattcctgta ctttttataa ctgcgatggg tgtaggctgg cggtaaacgg tctaacctag ctacgagtgg aagaaaccgt gaactatggt tttggtgatg tgtttactaa gcccggtgcc agcagagacg gaaatteett gtegggtaag actcagtgaa ccgtgcacct tgttcaaggt tggctgcgac aacgaccact tgtgacgcct gaagctcttg. atcgaagccc gagactttga agattgaagt acctctaage ttcaggttat gtgtttgaga gtgcgccgcg cggttgtccg agataccagg aagtataggg cggaaagacc gagaactgat tccaccatag cacccttgta gtagaccaag tcgggagaag ggataggtgg aacaggttaa agcacggcga caccgtaact ccacactgtc acgtggtcga cgcagctaga cttgaaatac tccaggaaaa tcgtaagagg ctaaggtagc cgctaaggct gttaggtcga tagcttatgc tacttgtgta gtcgatggga tataacggtc ttgatggggt gtaacgatgg aggttagact aaatccggaa ataccatgct ggcaaaatag tctaagctga ctctgcaaac gcagtgtacc actttgacct tggagtcatc gacacaggtg

101700 101820 102000 101880 101940 102060 102180 102360 102480 taaagagtaa ataaaggcag gtcggctcat cttagtgatc gggataacag aagtggtacg gacgaacctc tggtgttccg gctgaaagca actttatgtc tcctaaagag gttgagctaa gcgtttggag ttaacgccaa ataatttgag ctgatgacaa ggtctcctcc tgaggtaagt gaaactaggt aggtacgccg gcacctcgat togccattta tctgctgtgg aaggataacc gctgcgaggc agcaaggttc accagtttgc gtgaaacgag tgactggggc tcggacatcg tcggtcccta tatgttcgga gccatcgctc aacggataaa gcggtgtttg gtatggctgt tctcccagag gagcaggtag gaccgaattg atgtgtaagc tgtaacctta aaagttacat gaactcagaa ctgggtagtt cttatcacgg gtgagacagt gaadaada caagattaaa tegaeggate catatcgacg ggtcccaagg agtacgagag gataggcaag ggcttgatca taaaaaataa atcccatctc acagtgcgtg cgaaggtatc gactgcgaga gaatggaagg cccaagagtt agctgattct cagtggcatt ggctggagca ttagaacgtc aagcctctcc ctatgacgtt taactcgtga tagtgagaat gaaccacctg gctgataccg tggatcaggg cggaggagta aaggatgctt cggtggttct cacatcctgg cgagctgggt atttgaggga gttgtcacgc tataagcggg taaaacattg tcgtcataga cttgtactaa tagcaacttg

MBA-10

APPENDIX

Page

103380 103440 103500 103560 103620 103680 103740 103800 103860 103920 104040 104100 104160 tcatcggttt caagatcatt atgagaaag aatatgcctc gcagcataac aatatttatt tattactatt gagtggcttg attcttgaga cactatttct atattccttt catcgagctg ctagtaattg actctaaaag tctccattca ccactttcaa gtaattttta tccaatttta gatatttgta cttagaccaa tttactatag tcaaacattg tcaagtactt aacttttttg acaagttttt tttaaataat tattactatt tataaattag acatcgtcgt ttcctcttt agtacttgtt aagcatagat aatgctcttt ccaatggaca tattttcacc aagatcacta cttgcgtatc ttgaccgtta gattttttg agcataagcc agattctgtc tgtatttggt atagctctct ttcaggtaca actgctaata atcatttgat tttaagaaag ttcttgtcac cagaattaat ctatttccga tctctagctc cttcggcaat ctattgattc cttgtctttg tttctagtcc actcaatggt gaagattaaa ttaggttcgt tgaaagatat ttgtttatgc gtttcaacat atttctgata tacttcattt tcattttttg agaagcaatc agaacaattt gctatatctg tcgatgagtg cattgagact gaatatatag ttttcattt taaatgatct agatttttac tctgcctaac actattttgt tcttttgaat ctgcttctca gaattgctgc ggctttttta tattcttata ttttgcttgc aattttattg cctacttttc attccttaaa

104220

ctattcctct

tgcgcatttt

aattcttttt

ttctgctctc

gcatcaaagt

cattcttctt	ccgggcattg	ttctacctgt	atgctcatca	atcaaaagaa	cctcaccgtt	105060	
cctaaccaaa	taatccacat	tctttttaaa	taagaagett	gctctaagtg	ttgcttgaac	105120	
aaatttcata	atttttaaat	tagaaacaga	gtaagcccat	ctgaggctcc	aagccgattc	105180	
cagc						105184	

Page 126/126

CLAIMS

What is claimed is:

- 1. A proteorhodopsin gene, comprising an isolated DNA sequence for encoding a proteorhodopsin protein.
 - 2. The proteorhodopsin gene of claim 1, wherein said proteorhodopsin gene is retrieved from a genomic fragment of a sample of naturally occurring bacteria.
 - 3. The proteorhodopsin gene of claim 2, wherein said naturally occurring bacteria are marine proteobacteria.
 - '4. The proteorhodopsin gene of claim 2, wherein said naturally occurring bacteria are SAR86 bacteria.
 - The proteorhodopsin gene of claim 2, wherein said naturally occurring bacterial genomic fragment is retrieved from a recombinant DNA library.
 - 6. The proteorhodopsin gene of claim 5, wherein said naturally occurring bacterial genomic fragment is retrieved from a bacterial artificial chromosome library.

- 7: The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone BAC31A8, said proteorhodopsin gene is Sequence ID No:4 and said proteorhodopsin protein is Sequence ID No:5.
- 8. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone BAC40E8, said proteorhodopsin gene is Sequence ID No:8 and said proteorhodopsin protein is Sequence ID No:9.
- 9. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone BAC41B4, said proteorhodopsin gene is Sequence ID No:10 and said proteorhodopsin protein is Sequence ID No:11.
- 10. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone BAC64A5, said proteorhodopsin gene is Sequence ID No:12 and said proteorhodopsin protein is Sequence ID No:13.
- 11. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT0m1, said proteorhodopsin gene is Sequence ID No:14 and said proteorhodopsin protein is Sequence ID No:15.

- 12. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT75m1, said proteorhodopsin gene is Sequence ID No:16 and said proteorhodopsin protein is Sequence ID No:17.
- 13. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT75m3, said proteorhodopsin gene is Sequence ID No:18 and said proteorhodopsin protein is Sequence ID No:19.
- 14. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT75m4, said proteorhodopsin gene is Sequence ID No:20 and said proteorhodopsin protein is Sequence ID No:21.
- 15. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone HOT75m8, said proteorhodopsin gene is Sequence ID No:22 and said proteorhodopsin protein is Sequence ID No:23.
- 16. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB0m1, said proteorhodopsin gene is Sequence ID No:24 and said proteorhodopsin protein is Sequence ID No:25.

- 17. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB0m2, said proteorhodopsin gene is Sequence ID No:26 and said proteorhodopsin protein is Sequence ID No:27.
- 18. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB20m2, said proteorhodopsin gene is Sequence ID No:28 and said proteorhodopsin protein is Sequence ID No:29.
- 19. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB20m5, said proteorhodopsin gene is Sequence ID No:30 and said proteorhodopsin protein is Sequence ID No:31.
- 20. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB20m12, said proteorhodopsin gene is Sequence ID No:32 and said proteorhodopsin protein is Sequence ID No:33.
- 21. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB40m1, said proteorhodopsin gene is Sequence ID No:34 and said proteorhodopsin protein is Sequence ID No:35.

- 22. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB40m5, said proteorhodopsin gene is Sequence ID No:36 and said proteorhodopsin protein is Sequence ID No:37.
- 23. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB40m12, said proteorhodopsin gene is Sequence ID No:38 and said proteorhodopsin protein is Sequence ID No:39.
- 24. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB100m5, said proteorhodopsin gene is Sequence ID No:40 and said proteorhodopsin protein is Sequence ID No:41.
- 25. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB100m7, said proteorhodopsin gene is Sequence ID No:42 and said proteorhodopsin protein is Sequence ID No:43.
- 26. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB100m9, said proteorhodopsin gene is Sequence ID No:44 and said proteorhodopsin protein is Sequence ID No:45.

- 27. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone MB100m10, said proteorhodopsin gene is Sequence ID No:46 and said proteorhodopsin protein is Sequence ID No:47.
- 28. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB1, said proteorhodopsin gene is Sequence ID No:48 and said proteorhodopsin protein is Sequence ID No:49.
- 29. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB2, said proteorhodopsin gene is Sequence ID No:50 and said proteorhodopsin protein is Sequence ID No:51.
- 30. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB5, said proteorhodopsin gene is Sequence ID No:52 and said proteorhodopsin protein is Sequence ID No:53.
- 31. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB7, said proteorhodopsin gene is Sequence ID No:54 and said proteorhodopsin protein is Sequence ID No:55.

- 32. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB6, said proteorhodopsin gene is Sequence ID No:56 and said proteorhodopsin protein is Sequence ID No:57.
- 33. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALB8, said proteorhodopsin gene is Sequence ID No:58 and said proteorhodopsin protein is Sequence ID No:59.
- 34. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALE1, said proteorhodopsin gene is Sequence ID No:60 and said proteorhodopsin protein is Sequence ID No:61.
- 35. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALE6, said proteorhodopsin gene is Sequence ID No:62 and said proteorhodopsin protein is Sequence ID No:63.
- 36. The proteorhodopsin gene of claim 2, wherein said genomic fragment is retrieved from a clone PALE7, said proteorhodopsin gene is Sequence ID No:64 and said proteorhodopsin protein is Sequence ID No:65.

- 37. The proteorhodopsin gene of claim 1, wherein said proteorhodopsin gene is amplified from a genomic fragment by polymerase chain reaction.
 - 38. The proteorhodopsin gene of claim 37, wherein said polymerase chain reaction is performed by primers with Sequence ID No:2 and Sequence ID No:3.
- 39. The proteorhodopsin gene of claim 1, wherein said proteorhodopsin gene is derived from a marine environment and placed in an expression vector for producing said proteorhodopsin protein in a host.
 - 40. The proteorhodopsin gene of claim 39, wherein said host is an artificial membrane system.
 - 41. The proteorhodopsin gene of claim 39, wherein said host is a bacterium.
 - 42. The proteorhodopsin gene of claim 41, wherein said host is a cell membrane preparation of said bacterium.
 - 43. The proteorhodopsin gene of claim 39, wherein said host is an eukaryote.
 - 44. The proteorhodopsin gene of claim 43, wherein said host is a cell membrane preparation of said eukaryote.

- 45. A method of retrieving a proteorhodopsin gene, comprising the steps of:
 - (a) providing a sample of naturally occurring bacteria;
 - (b) extracting a genomic fragment of said sample of naturally occurring bacteria; and
 - (c) amplifying said proteorhodopsin gene from said genomic fragment using polymerase chain reaction.
 - 46. The method of claim 45, further comprising the step of creating an expression vector containing said proteorhodopsin gene.
 - 47. The method of claim 45, wherein said naturally occurring bacteria are marine proteobacteria.
 - 48. The method of claim 45, wherein said naturally occurring bacteria are SAR86 bacteria.
 - 49. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is retrieved from a recombinant DNA library.
 - 50. The method of claim 49, said naturally occurring bacterial genomic fragment is retrieved from a bacterial artificial chromosome library.
 - 51. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone BAC31A8, and wherein said amplified

proteorhodopsin gene from said clone BAC31A8 is Sequence ID No:4 and encodes a proteorhodopsin protein according to Sequence ID No:5.

- 52. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone BAC40E8, and wherein said amplified proteorhodopsin gene from said clone BAC40E8 is Sequence ID No:8 and encodes a proteorhodopsin protein according to Sequence ID No:9.
- 53. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone BAC41B4, and wherein said amplified proteorhodopsin gene from said clone BAC41B4 is Sequence ID No:10 and encodes a proteorhodopsin protein according to Sequence ID No:11.
- 54. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone BAC64A5, and wherein said amplified proteorhodopsin gene from said clone BAC64A5 is Sequence ID No:12 and encodes a proteorhodopsin protein according to Sequence ID No:13.
- 55. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT0m1, and wherein said amplified proteorhodopsin gene from said clone HOT0m1 is Sequence ID No:14 and encodes a proteorhodopsin protein according to Sequence ID No:15.
- 56. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT75m1, and wherein said amplified

proteorhodopsin gene from said clone HOT75m1 is Sequence ID No:16 and encodes a proteorhodopsin protein according to Sequence ID No:17.

- 57. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT75m3, and wherein said amplified proteorhodopsin gene from said clone HOT75m3 is Sequence ID No:18 and encodes a proteorhodopsin protein according to Sequence ID No:19.
- 58. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT75m4, and wherein said amplified proteorhodopsin gene from said clone HOT75m4 is Sequence ID No:20 and encodes a proteorhodopsin protein according to Sequence ID No:21.
- 59. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone HOT75m8, and wherein said amplified proteorhodopsin gene from said clone HOT75m8 is Sequence ID No:22 and encodes a proteorhodopsin protein according to Sequence ID No:23.
- 60. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB0m1, and wherein said amplified proteorhodopsin gene from said clone MB0m1 is Sequence ID No:24 and encodes a proteorhodopsin protein according to Sequence ID No:25.
- 61. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB0m2, and wherein said amplified

proteorhodopsin gene from said clone MB0m2 is Sequence ID No:26 and encodes a proteorhodopsin protein according to Sequence ID No:27.

- 62. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB20m2, and wherein said amplified proteorhodopsin gene from said clone MB20m2 is Sequence ID No:28 and encodes a proteorhodopsin protein according to Sequence ID No:29.
- 63. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB20m5, and wherein said amplified proteorhodopsin gene from said clone MB20m5 is Sequence ID No:30 and encodes a proteorhodopsin protein according to Sequence ID No:31.
- 64. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB20m12, and wherein said amplified proteorhodopsin gene from said clone MB20m12 is Sequence ID No:32 and encodes a proteorhodopsin protein according to Sequence ID No:33.
- 65. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB40m1, and wherein said amplified proteorhodopsin gene from said clone MB40m1 is Sequence ID No:34 and encodes a proteorhodopsin protein according to Sequence ID No:35.
- 66. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB40m5, and wherein said amplified

proteorhodopsin gene from said clone MB40m5 is Sequence ID No:36 and encodes a proteorhodopsin protein according to Sequence ID No:37.

- 67. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB40m12, and wherein said amplified proteorhodopsin gene from said clone MB40m12 is Sequence ID No:38 and encodes a proteorhodopsin protein according to Sequence ID No:39.
- 68. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB100m5, and wherein said amplified proteorhodopsin gene from said clone MB100m5 is Sequence ID No:40 and encodes a proteorhodopsin protein according to Sequence ID No:41.
- 69. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB100m7, and wherein said amplified proteorhodopsin gene from said clone MB100m7 is Sequence ID No:42 and encodes a proteorhodopsin protein according to Sequence ID No:43.
- 70. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB100m9, and wherein said amplified proteorhodopsin gene from said clone MB100m9 is Sequence ID No:44 and encodes a proteorhodopsin protein according to Sequence ID No:45.
- 71. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone MB100m10, and wherein said amplified

proteorhodopsin gene from said clone MB100m10 is Sequence ID No:46 and encodes a proteorhodopsin protein according to Sequence ID No:47.

- 72. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB1, and wherein said amplified proteorhodopsin gene from said clone PALB1 is Sequence ID No:48 and encodes a proteorhodopsin protein according to Sequence ID No:49.
- 73. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB2, and wherein said amplified proteorhodopsin gene from said clone PALB2 is Sequence ID No:50 and encodes a proteorhodopsin protein according to Sequence ID No:51.
- 74. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB5, and wherein said amplified proteorhodopsin gene from said clone PALB5 is Sequence ID No:52 and encodes a proteorhodopsin protein according to Sequence ID No:53.
- 75. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB7, and wherein said amplified proteorhodopsin gene from said clone PALB7 is Sequence ID No:54 and encodes a proteorhodopsin protein according to Sequence ID No:55.
- 76. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB6, and wherein said amplified

proteorhodopsin gene from said clone PALB6 is Sequence ID No:56 and encodes a proteorhodopsin protein according to Sequence ID No:57.

- 77. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALB8, and wherein said amplified proteorhodopsin gene from said clone PALB8 is Sequence ID No:58 and encodes a proteorhodopsin protein according to Sequence ID No:59.
- 78. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALE1, and wherein said amplified proteorhodopsin gene from said clone PALE1 is Sequence ID No:60 and encodes a proteorhodopsin protein according to Sequence ID No:61.
- 79. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALE6, and wherein said amplified proteorhodopsin gene from said clone PALE6 is Sequence ID No:62 and encodes a proteorhodopsin protein according to Sequence ID No:63.
- 80. The method of claim 45, wherein said naturally occurring bacterial genomic fragment is in a clone PALE7, and wherein said amplified proteorhodopsin gene from said clone PALE7 is Sequence ID No:64 and encodes a proteorhodopsin protein according to Sequence ID No:65.
- 81. The method of claim 45, wherein said polymerase chain reaction is performed by primers with Sequence ID No:2 and Sequence ID No:3.

- 82. The method of claim 45, further comprising the step of providing a host.
 - 83. The method of claim 82, wherein said host is an artificial membrane system.
 - 84. The method of claim 82, wherein said host is a bacterium.
 - 85. The method of claim 84, wherein said host is a cell membrane preparation of said bacterium.
 - 86. The method of claim 82, wherein said host is an eukaryote.
 - 87. The method of claim 86, wherein said host is a cell membrane preparation of said eukaryote.
- 88. A light-driven energy generator, comprising:
 - (a) a proteorhodopsin protein;
 - (b) a host to correctly fold said proteorhodopsin protein in said host, thereby creating an integrated proteorhodopsin protein; and
 - (c) a source of retinal to bind covalently to said integrated proteorhodopsin protein, thereby creating a light absorbing pigment.
 - 89. The light-driven energy generator of claim 88, wherein said proteorhodopsin protein is encoded by a proteorhodopsin gene retrieved from a genomic fragment of a sample of naturally occurring bacteria.

- 90. The light-driven energy generator of claim 89, wherein said naturally occurring bacteria are marine proteobacteria.
- 91. The light-driven energy generator of claim 89, wherein said naturally occurring bacteria are SAR86 bacteria.
- 92. The light-driven energy generator of claim 89, wherein said naturally occurring bacterial genomic fragment is retrieved from a recombinant DNA library.
 - 93. The light-driven energy generator of claim 92, wherein said naturally occurring bacterial genomic fragment is retrieved from a bacterial artificial chromosome library.
- 94. The light-driven energy generator of claim 89, wherein said genomic fragment is retrieved from a clone, wherein said clone is a member of the group consisting of BAC31A8, BAC40E8, BAC41B4, BAC64A5, HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7.
- 95. The light-driven energy generator of claim 88, wherein said host is an artificial membrane system.

- 96. The light-driven energy generator of claim 88, wherein said host is a cell membrane obtained from a bacterium.
 - 97. The light-driven energy generator of claim 96, wherein said host is a cell membrane preparation obtained from a bacterium.
- 98. The light-driven energy generator of claim 88, wherein said host is a cell membrane obtained from an eukaryote.
 - 99. The light-driven energy generator of claim 98, wherein said host is a cell membrane preparation obtained from an eukaryote.
- 100. The light-driven energy generator of claim 88, further comprising a light source for illuminating said light absorbing pigment, whereby said energy generator converts light into biochemical energy.
 - 101. The light-driven energy generator of claim 100, wherein said light source is a fast-pulsed light source.
 - 102. The light-driven energy generator of claim 101, wherein said fast-pulsed light source comprises a mechanism for delivering intermittant fast-light pulses at predetermined time intervals.

- 103. The light-driven energy generator of claim 100, wherein said light source is a light source exhibiting different predetermined wavelengths.
- 104. The light-driven energy generator of claim 88, further comprising a mediator for mediating energy generated by said energy generator into chemical, mechanical or electrical energy.
- 105. The light-driven energy generator of claim 88, wherein said proteorhodops in protein is selected to determine an absorption spectra of said light absorbing pigment.
- 106. A method for making a light-driven energy generator, comprising the steps of:
 - (a) providing a proteorhodopsin protein;
 - (b) providing a host to correctly fold said proteorhodopsin protein in said host, thereby creating an integrated proteorhodopsin protein; and
 - (c) providing a source of retinal to bind covalently to said integrated proteorhodopsin protein, thereby creating a light absorbing pigment.
 - 107. The method of claim 106, wherein said proteorhodopsin protein is encoded by a proteorhodopsin gene retrieved from a genomic fragment of a sample of naturally occurring bacteria.
 - 108. The method of claim 107, wherein said naturally occurring bacteria are marine proteobacteria.

- 109. The method of claim 107, wherein said naturally occurring bacteria are SAR86 bacteria.
- 110. The method of claim 107, wherein said naturally occurring bacterial genomic fragment is retrieved from a recombinant DNA library.
 - 111. The method of claim 110, wherein said naturally occurring bacterial genomic fragment is retrieved from a bacterial artificial chromosome library.
- 112. The method of claim 107, wherein said genomic fragment is retrieved from a clone, wherein said clone is a member of the group consisting of BAC31A8, BAC40E8, BAC41B4, BAC64A5, HOT0m1, HOT75m1, HOT75m3, HOT75m4, HOT75m8, MB0m1, MB0m2, MB20m2, MB20m5, MB20m12, MB40m1, MB40m5, MB40m12, MB100m5, MB100m7, MB100m9, MB100m10, PALB1, PALB2, PALB5, PALB7, PALB6, PALB8, PALE1, PALE6 and PALE7.
- 113. The method of claim 106, wherein said host is an artificial membrane system.
- 114. The method of claim 106, wherein said host is a cell membrane obtained from a bacterium.

- 115. The method of claim 114, wherein said host is a cell membrane preparation obtained from a bacterium.
- 116. The method of claim 106, wherein said host is a cell membrane obtained from an eukaryote.
 - 117. The method of claim 116, wherein said host is a cell membrane preparation obtained from an eukaryote.
- 118. The method of claim 106, further comprising the step of providing a light source for illuminating said light absorbing pigment, whereby said energy generator converts light into biochemical energy.
 - 119. The method of claim 118, wherein said light source is a fast-pulsed light source.
 - 120. The method of claim 119, wherein said fast-pulsed light source comprises a mechanism for delivering intermittant fast-light pulses at predetermined time intervals.
 - 121. The method of claim 118, wherein said light source is a light source exhibiting different predetermined wavelengths.
- 122. The method of claim 106, further comprising the step of providing a mediator for mediating energy generated by said energy generator into chemical, mechanical or electrical energy.

- 123. The method of claim 106, wherein said proteorhodopsin protein is selected to determine an absorption spectra of said light absorbing pigment.
- 124. A PCR apparatus for amplifying a proteorhodopsin gene from DNA samples of naturally occurring microbial populations using polymerase chain reaction, comprising oligodeoxynucleotide primers with a Watson-Crick base pair complementarity to 5' and 3' ends of said proteorhodopsin gene.
 - 125. The apparatus of claim 124, wherein said primers are according to Sequence ID No:2 and Sequence ID No:3.
- 126. A method of designing PCR primers, comprising the steps of:
 - (a) determining a DNA sequence of a proteorhodopsin gene; and
 - (b) based on said determined DNA sequence in (a), designing oligodeoxynucleotide primers with a Watson-Crick base pair complementarity to said 5' and 3' ends of said proteorhodopsin gene.
 - 127. The method of claim 126, further comprising the step of using said oligodeoxynucleotide primers to amplify said proteorhodopsin gene from DNA samples of naturally occurring microbial populations by polymerase chain reaction.
 - 128. The method of claim 127, further comprising the step of cloning said amplified proteorhodopsin gene into an expression vector.

129. The method of claim 126, wherein said primers are according to Sequence ID No:2 and Sequence ID No:3.

Fig. 1

29

accatgggta aattattact gatattagg

24

agcattagaa gattetttaa cage

9	144	192	240	288	336
gtt Val	ttc Phe	act. Thr	atg Met 80	tac Tyr	tta Leu
ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
		Ser		ggt Gly	cct Pro
		gtt Val 55	$\tt ggt\\ \tt Gly$	act Thr	gtt Val
	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg Gly	.gat Asp
ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile
	gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20	gct gca ggt ggt gac ctt gat gct agt tac act ggt gtt Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25 ttt tgg tta gtt act gct tta tta gca tct act gta ttt ttc Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35	gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt Ala Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc bhe Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 550	get gea ggt ggt ggt gac étt gat get agt tac act ggt gtt ha ha ha ha ha Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25 ttt tgg tta gtt act gct tta tta tta gca tct act gta ttt ttc Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 45 gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 tct ggt ctt gtt act ggt att gct ttc tgg cat tac atg tac atg ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 80	get gea ggt ggt ggt gac ett gat get agt gat tac act ggt gtt Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr Ser Leu Thr Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Tyr Met Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Gly Leu Val Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ser Gly Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ser Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ser Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ser Tyr Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr

	•					
384	432	480	228	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt $_{ m G1Y}$	tat Tyr
aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	atc Hle
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg	gga Gly	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att 11e 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga Gly 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	tta Leu	gtg Val	gcg Ala	gga Gly 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gct Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt. Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	atc Ile	tac Tyr	act Thr	atc Ile	ctg Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	att Ile	tac Tyr

Figure

7	١.
0)
٤	Į
5	3
-	į
Ŀ	3
-	-

720	750
s aag att cta ttt ggt tta att ata tgg	tet aat get
n Lys Ile Leu Phe Gly Leu Ile Ile Trp	Ser Asn Ala
235	250
ctt gct gac ttt gtt aac	gtt gct gtt aaa gaa tct
Leu Ala Asp Phe Val Asn	Val Ala Val Lys Glu Ser
230	245
aac c Asn L 225	aat g Asn V

48	96	144	192	240	788	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	сса Рго	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	ttg Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gag Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
ааа Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tcg Ser	ggg Gly	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

432	480	528	576	624	672
g gca u Ala	t tgg a Trp 160	a tgt a Cys 5	g tat t Tyr	a ggt r Gly	c tat e Tyr
	ta gc .eu Al				ctt atc Leu Ile
atg Met	tgt Cys	aag Lys	aca a Thr M	tat t Tyr P 205	aac c Asn L
			aac Asn	ggt Gly	tta Leu 220
			tac Tyr	gta Val	aac Asn
		gga G1Y 170	gct Ala	cct Pro	ctt Leu
gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
atg Met 135	ggt Gly	cta Leu	gtg Val	gca Ala	gga Gly 215
gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
tct Ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly
ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
gtt Val 130	att Ile	tac Tyr	act Thr	atc Ile	cta Leu 210
ttg Leu	gga G1 <u>Y</u> 145	gta Val	aat Asn	ata 11e	tac Tyr
	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gag gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gag gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 att atg aac gct tgg ggt gca ttc gtt att ggg tgt tta gct tgg Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 150	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gag gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 att atg aac gct tgg ggt gca ttc gtt att ggg tgt tta gct tgg Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp Iso tac atg att tat gaa cta tgg gct gga gaa ggc aag gct gca tgt Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 175	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gag gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135 att atg aac gct tgg ggt gca ttc gtt att ggg tgt tta gct tgg Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 150 tac atg att tat gaa cta tgg gct gga gaa ggc aag gct gca tgt Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 165 act gca agt cct gct gtg caa tca gct tac aac aca atg atg tat Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gag gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135 att atg aac gct tgg ggt gca ttc gtt att ggg tgt tta gct tgg I50 tac atg att tat gaa cta tgg gct gga gaa ggc aag gct gca tgt Tyr Glu Leu Trp Ala Gly Glu Gly Iys Ala Ala Cys Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Iys Ala Ala Cys act gca agt cct gct gtg caa tca gct tac aac aca atg atg tat Tyr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr atc atc ttt ggt tgg gca att tat cct gta ggt tat tc aca ggt atc atc ttt ggt tgg gca att tat cct gta ggt tat tc aca ggt lie Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 200 200

Figure 6

720	750
tta att ata tgg Leu Ile Ile Trp 240	
ttt ggt Phe Gly 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
gac Asp 225	aat Asn

48	96	144	192	240	2 8 8	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac a Tyr 1	aga t Arg 1 95	tac t Tyr I
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tat Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gct Ala	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg G $1_{ m Y}$	gat Asp
atg Met 1	ttt	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	atc Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg	gga Gly	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga $_{ m G1Y}$	ttt Phe	att Ile	gga Gly 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	a tca g n Ser A 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	CCt	cta Leu	gtg Val	gcg Ala	gga G1y 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gct Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tat Ser	gct Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	atc Ile	tac Tyr	act Thr	atc Ile	ctg Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	att Ile	tac Tyr

Figure 7

720	750
ttt ggt tta att ata tgg Phe Gly Leu Ile Ile Trp 235	
att cta t Ile Leu P	at gct sn Ala 250
aag Lys	tct a Ser A
gtt aac Val Asn 230	gaa tct Glu Ser
ttt Phe	aaa Lys 245
st gat a Asp	t gtt. a Val
ctt gct Leu Ala	gtt gct Val Ala
aac Asn 225	aat Asn

48	9 9	144	192	240	288	336
att gca ctt cct aca Ile Ala Leu Pro Thr 15	gat tac act ggt gtt Asp Tyr Thr Gly Val 30	tct act gta ttt ttc Ser Thr Val Phe Phe 45	aaa aca tca tta act Lys Thr Ser Leu Thr 60	cat tac atg tac atg His Tyr Met Tyr Met 80	act gta ttt aga tac Thr Val Phe Arg Tyr 95	tgt gaa ttc tac tta Cys Glu Phe Tyr Leu 110
agt gtt s Ser Val 1 10	gct agt g Ala Ser A	tta gca t Leu Ala S	aaa tgg s Lys Trp I 6	ttc tgg c Phe Trp H 75	tcg cct a Ser Pro I 90	tta ata t Leu Ile C
ı tta ggt ! Leu Gly	ctt gat Leu Asp 25	gct cta Ala Leu 40	tct gca Ser Ala	att gct Ile Ala	ggt gat Gly Asp	cct tta Pro Leu 105
a ctg ata u Leu Ile	c ggt gac Y Gly Asp	t aca gct l Thr Ala	t aga gtt p Arg Val 55	t act ggt 1 Thr Gly 70	t gaa act e Glu Thr	a aca gtt ı Thr Val
a tta tta 7s Leu Leu 5	a ggt ggc a Gly Gly 20	rg tta gtt rp Leu Val	a aga gat u Arg Asp	t ctt gtt y Leu Val	a tgg att 1 Trp Ile 85	g tta cta p Leu Leu 100
atg ggt aaa Met Gly Lys 1	ttt gct gca Phe Ala Ala	tct ttt tgg Ser Phe Trp 35	ttt gtt gaa Phe Val Glu 50	gta tct ggt Val Ser Gly 65	aga gga gta Arg Gly Val	att gat tgg Ile Asp Trp

Figure 8

384	432	480	528	576	624	672
ctt Leu	gca Ala	tgg Trp 160	tgt Cys	gct Ala	ggt Gly	tat Tyr
ааа Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	att
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg Gl $_{ m Y}$	gga $_{ m G1Y}$	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	ata Ile	aac Asn
ggc Gly	tt Phe	att Ile	gga Gly 170	gct Ala	cct Pro	ctt Leu
gcc Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tat Tyr	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	gga G1y 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	tcg Ser	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gca Ala	att Ile	agt Ser 180	ttc Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	gtc Val 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	ata Ile	cta Leu 210
att Ile	cta Leu	gga Gly 145	gta Val	aat Asn	atc Ile	tac Tyr

,	v	v
	0	D
	è	٦.
	1	٠
	٠	4
	t	_
	τ	3
_		,
	ı	1
	þ	4

720	750
aac ctt gct gac ttt gtt aac aag att cta ttt ggt tta att ata tgg	aat gtt gct gtt aaa gaa tct tct aat gct
Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp	Asn Val Ala Val Lys Glu Ser Ser Asn Ala
225	245

50 50 50	100 100 100 100	150 150 150 150	200	250 250 250 250	300 300 300 300
tattactgat attaggTAGT GTTATTGCAC TTCCTACATT	GGTGGTGACC TTGATGCTAG TGATTACACT GGTGTTTCTT	TACTGCTGCT TTATTAGCAT CTACTGTATT TTTCTTTGTT	GAGTTTCTGC AAAATGGAAA ACATCATTAA CTGTATCTGG	GGTATTGCTT TCTGGCATTA CATGTACATG AGAGGGGTAT	TGGTGATTCG CCAACTGTAT TTAGATACAT TGATTGGTTA
tatta	GGTGC		GAGTT	GGTAT	TGGTG
atgggtaaat 	TGCTGCAGGT	TTTGGTTAGT	GAAAGAGATA	TCTTGTTACT	GGATTGAAAC
ਜਜਜਜ	51 51 51	101 101 101 101	151 151 151 151	201 201 201 201	251 251 251 251
EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64

Figure

350 350 350 350	400 400 400 400	450 450 450 450	500 500 500 500	550 550 550 550	600 600 600 600
TTGCTGCTGC	GGTTCTCTTG	GGCTGCATGG .AACT	TTTATGAATT	CCTGCTGTGC	TTGGGCGATT
TACTTAATTC	ATTACTAGTTT.GC.T	CAGGAATCAT	GTATACATGA	TACTGCAAGT	TCATCTTTGG
ATGTGAATTC	TATTTAAGAA .G	ATGGGTGAAG	TTTAGCTTGG	CTGCATGTAA	ATGTATATTAGCC.
CTCTATTAAT	GCTGGATCATCTGGCC	GTTTGGTTAC	TTATTGGGTG	GAAGGAAAAT CGG	CAACACAATG
CTAACAGTTC	AACTAATGTTA T	TTATGCTTGT	CCTGCATTCA GGG	ATGGGCTGGA	AATCAGCTTA
301 301 301 301	351 351 351 351	401 401 401 401	451 451 451 451	501 501. 501.	551 551 551 551
EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64	EBAC31A8 EBAC40 EBAC41 EBAC64

Figure

650	650	650	650	700	700	700	700		750	750	750	750
GTGGATCAGC	•			AACAAGATTC	•	•			ttctaatgct	•	•	•
TAICCIGIAG GITATITCAC AGGITACCIG AIGGGIGACG GIGGAICAGC	•		AA	TCTTAACTTA AACCTTATCT ATAACCTTGC TGACTTTGTT AACAAGATTC		Ε.	· · · · · · · · · · · · · · · · · · ·		ttaaagaatc			
AGGTTACCTG	A	•	A	ATAACCTTGC	 	•	•		AATGTTgctg	•	•	•
GTTATTTCAC	•	•		AACCTTATCT*	•		H		AATTATATGG	•		•
TATCCTGTAG		•	A	TCTTAACTTA	•	•	•		TATTTGGTTT AATTATATGG AATGTTGCtg ttaaagaatc ttctaatgct	•	•	•
601	601	601	601	651	651	651	651				701	701
EBAC31A8	EBAC40	EBAC41	EBAC64	EBAC31A8	EBAC40	EBAC41	EBAC64	•	EBAC31A8	EBAC40	EBAC41	EBAC64

Figure

_	>
~	1
2	1
	7
Ī	1

50 50 50 50	100 100 100 100	150 150 150 150	200 200 200 200	250 250 250 250
GVSFWLVTAA LLASTVEFEV	RGVWIETGDS PTVFRYIDWL	GSLVMLVFGY MGEAGIMAAW	PAVQSAYNTM MYIIIFGWAI	NKILFGLIIW NVAVKESSNA
GGDLDASDYT G	GIAFWHYMYM F	AGSLFKKLLV CAGO AGO AGO AGO AGO AGO AGO AGO AGO AGO	EGKSACNTAS E	NLIYNLADFV N
VIALPTFAAG	TSLTVSGLVT	YLILAAATNV	VYMIYELWAG	MGDGGSALNL
MGKLLLILGS	ERDRVSAKWK	LTVPLLICEF	PAFIIGCLAW G.V	YPVGYFTGYL
	527	101 101 101 101	151 151 151 151	201 201 201 201
EBAC31A8 EBAC40_1 EBAC41_1 EBAC64_1	EBAC31A8 EBAC40_1 EBAC41_1 EBAC64_1	EBAC31A8 EBAC40_1 EBAC41_1 EBAC64_1	EBAC31A8 EBAC40_1 EBAC41_1 EBAC64_1	EBAC31A8 EBAC40_1 EBAC41_1 EBAC64_1

48	96	144	192	240	288	336
			•	•		
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15.	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc tgg Phe Trp 75	tcg Ser 90	ttg Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tat Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	acc Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gag Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tcg Ser	ggg G $1_{ m Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 11

				·		
384	432	480	228	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa t Lys I	gag g Glu A	gct t Ala T	gca t Ala C 175	atg t Met T	aca g Thr G	atc t Ile T
aag Lys	ggt Gly	tta Leu	gct Ala	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aag Lys	aca Thr	tat Tyr 205	aac Asn
ctg Leu	tac Tyr 140	ggg Gl $_{Y}$	ggc Gly	aac Asn	ggt Gly	tta Leu 220
ggc Gly	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gct Ala	ttt Phe	gtt Val	gga G1 <u>y</u> 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	ggt Gly	cta Leu	gtg Val	gca Ala	gga G1y 215
aca Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct	ggt Gly	gac Asp
gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
att ctt Ile Leu	gtt Val 130	att Ile	tac Tyr	act Thr	atc Ile	cta Leu 210
att Ile	ttg Leu	gga G1y 145	gta Val	aat Asn	ata Ile	tac Tyr

720	750
ttt ggt tta att ata tgg Phe Gly Leu Ile Ile Trp 235	
cta Leu	t gct n Ala 250
att Ile	aat Asn
aag Lys	ser
aac Asn	tat Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn

WO 01/83701		PCT/US01/14394
	24/108	

			•			
48	96	144	192	240	288	336
tca Ser	gtt Val	ttt Phe	gct Ala	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr]	aga Arg ' 95	tat Tyr]
ctt	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct. Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tat Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 12

					•	
384	432	480	528	576	624	672
				₹'	· ·	•
n e	. س	— 0 –			•	
ctt Leu	gct Ala	tgg Trp 160	gta Val	atg Met	ggt Gly	ata Ile
aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga G1y	aac Asn 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga $_{ m G1Y}$	ggc $_{\mathrm{G1}Y}$
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr

753

720

att Ile 240	
atc Ile	
ttg Leu	
ggt Gly	
ttt Phe	•
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ctt Leu 230	aaa Lys
gac Asp	gtt Val 245
gcc Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
rat Tyr 225	tgg Trp

tat Tyr 225

48	96	144	192	240	288	336
a ctt cca tca a Leu Pro Ser 15	gtt ggt gtt val Gly val 30	gta ttc ttt Val Phe Phe	tca ctt act Ser Leu Thr	ctc tac atg Leu Tyr Met 80	ttt aga tat Phe Arg Tyr 95	ttc tat cta Phe Tyr Leu 110
t gct att gca r Ala Ile Ala	a agt gat act e Ser Asp Thr	a gcg gca act u Ala Ala Thr 45	g tgg aaa act s Trp Lys Thr 60	t tgg cat tat e Trp His Tyr 75	a cca aca gta r Pro Thr Val	a atg gtt gag n Met Val Glu
a tta ggt agt e Leu Gly Ser 10	t ¢ta gat ata o Leu Asp Ile 25	t ggt atg tta a Gly Met Leu 40	s agc gct aag 1 Ser Ala Lys	s ata gct ttt 7 Ile Ala Phe	ggt gat aca Gly Asp Thr 90	cca tta caa Pro Leu Gln 105
tta tta ctg ata Leu Leu Leu Ile 5	gct ggt ggc gat Ala Gly Gly Asp 20	ctg gtt aca gct Leu Val Thr Ala	aga gac caa gtc Arg Asp Gln Val 55	tta att act ggt Leu Ile Thr Gly 70	tgg ata gat act Trp Ile Asp Thr 85	tta tta act gtt Leu Leu Thr Val 100
atg ggt aaa t Met Gly Lys L	ttt gct gct gc Phe Ala Ala Al 20	tca ttc tgg c Ser Phe Trp Le 35	ttt gta gaa aq Phe Val Glu An 50	gta tct ggt tt Val Ser Gly Le 65	aga ggt gtt tç Arg Gly Val Tı	att gat tgg tta Ile Asp Trp Leu 100

Figure 13

WO	01	1837	n 1

DCT	/US0:	1/1/	204
rci	/USU.	1/14	. 374

28.	/1	nο
40 .	<i>,</i> ,	VΟ

384	432	480	528	576	624	672
g aag ctt s Lys Leu	c gaa gct Y Glu Ala	t gga tgg a Gly Trp 160	gct gta a Ala Val 175	y atg aag : Met Lys)	gct ggt a Ala Gly	ctt ata 1 Leu Ile
tta ttt aag Leu Phe Lys 125	ttt gca ggc Phe Ala Gly 140	ggt atg gct Gly Met Ala	ggt aag gct Gly Lys Ala	aac gca atg Asn Ala Met 190	gga tat gct Gly Tyr Ala 205	oc tta aac in Leu Asn i0
gct tca ti Ala Ser Le	gct gga tt Ala Gly Ph	att att gg Ile Ile G 155	ggt gaa gg Gly Glu Gl 170	gca tac aa Ala Tyr As	cct gct gg Pro Ala Gl	gct tca aac Ala Ser Asn 220
gtt gct Val Ala 1 120	tta ggt Leu Gly	gct ttc a	cat atg His Met (aac tct g Asn Ser 7 185	att tat d Ile Tyr 1 200	gta tac g Val Tyr ?
aca agt Thr Ser	gta atg Val Met 135	tta cct Leu Pro 150	gag cta Glu Leu	gct gtt Ala Val	tgg gca Trp Ala	gac ggt Asp Gly 215
c gct tgt a Ala Cys 5	c tca tta / Ser Leu	cct gta a Pro Val	y att tat : Ile Tyr 165	agt cct Ser Pro 180	att gga Ile Gly	g agt ggt : Ser Gly
att ctt gct Ile Leu Ala 115	cta gct ggt Leu Ala Gly 130	ggt tta gct Gly Leu Ala 145	tta tac atg Leu Tyr Met	gt act gca er Thr Ala	tt att gtt le Ile Val 195	tac cta atg Tyr Leu Met 210
W 1-7	ΟH	OI O FI	+ H	<u> </u>	ď Н	H H

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	ааа Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

48	0	144	192	240	288	336
gca ctt cca tca Ala Leu Pro Ser 15	act gtt ggt gtt Thr Val Gly Val 30	act gtg ttc ttt Thr Val Phe Phe 45	act tca ctt act Thr Ser Leu Thr	tat ct Tyr Le	gta ttc aga tat Val Phe Arg Tyr 95	gag ttc tat cta Glu Phe Tyr Leu 110
agt gct att Ser Ala Ile 10	ata agt gat Ile Ser Asp	tta gcg gca Leu Ala Ala	aag tgg aaa Lys Trp Lys 60	ttt tgg cat Phe Trp His 75	acc cca aca Thr Pro Thr 90	caa gtg gtt Gln Val Val
tta ggt Leu Gly	cta gat Leu Asp 25	ggt atg Gly Met 40	agc gct. Ser Ala	ata gct Ile Ala	ggt gat Gly Asp	cca tta Pro Leu 105
tta ctg ata Leu Leu Ile 5	ggt ggc gat Gly Gly Asp	gtt aca gct Val Thr Ala	gac caa gtc Asp Gln Val 55	att act ggt Ile Thr Gly 70	ata gac act Ile Asp Thr 85	tta act gtt Leu Thr Val
aaa tta Lys Leu	gct gct Ala Ala 20	tgg ctg Trp Leu 35	gaa aga Glu Arg	ggt tta Gly Leu	gtt tgg Val Trp	tgg tta Trp Leu 100
atg ggt Met Gly 1	ttt gct Phe Ala	tca ttc Ser Phe	ttt gta Phe Val 50	gta tct Val Ser 65	aga ggt Arg Gly	att gat Ile Asp

Figure 14

384	432	480	528	576	624	672
ctt Leu	gct Ala	. tgg . Trp 160	gta Val	atg Met	ggt Gly	ata Ile
aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc $_{ m G1Y}$	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg. Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga $_{ m G1Y}$	ggc Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga G1 <u>Y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr

•	₹	ľ
١	-	1
		11
	2	ע
	ŗ	
	İ	7
		,
1	þ	4

720	753
att Ile 240	
atc Ile	
ttg Leu	
ggt Gly	
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
	tct Ser
aac aag Asn Lys	ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

					•	
48	96	144	192	240	288	336
tca Ser	gtt Val	ttt	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35,	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

figure 15

384	432	480	528	576	624	672
aag ctt Lys Leu	gaa gct Glu Ala	gga tgg Gly Trp 160	gct gta Ala Val 175	atg gtg Met Val	gct ggt Ala Gly	ctt ata Leu Ile
ttt aag Phe Lys] 125	gca ggc Ala Gly (atg gct g Met Ala (aag gct g Lys Ala 2	gca atg a Ala Met M	t gct r Ala 5	aac Asn
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga t Gly I	aac Asn 220
gct tca Ala Ser	gct gga Ala Gly	att att Ile Ile 155	ggt gaa Gly Glu 170	gca tac Ala Tyr	cct gct Pro Ala	gct tca Ala Ser
gtt gct Val Ala 120	tta ggt Leu Gly	gct ttc Ala Phe	tat atg Tyr Met	aac tct Asn Ser 185	att tat Ile Tyr 200	gta tac Val Tyr
aca aat Thr Asn	gta atg Val Met	tgg cct Trp Pro 1 150	ag cta Iu Leu	gct gtt a Ala Val 2	gg gca arb Ala	ggt G1y 215
tgt Cys	tta Leu	gta Val	t tat ga e Tyr G 165	cct Pro	gga t Gly I	ggc gaa Gly Glu
gct gct Ala Ala 115	ggt tca Gly Ser	gct cct Ala Pro	atg att Met Ile	gca agt Ala Ser 180	gtt gtt Val Val 195	atg ggt Met Gly
att ctt Ile Leu	cta gct Leu Ala 130	gga ttg Gly Leu 145	tta tac Leu Tyr	agt act Ser Thr	att att Ile Ile	tac cta Tyr Leu 210

720	753
ggt ttg atc att e Gly Leu Ile Ile 240	
cta ttt Leu Phe 235	gct Ala
aag att Lys Ile	tct aat Ser Asn 250
gtt aac Val Asn	gaa tct Glu Ser
gac ctt Asp Leu 230	gtt aaa Val Lys 245
ctt gcc Leu Ala	gtt gct Val Ala
tat aac Tyr Asn 225	tgg aat Trp Asn

					•	
48	9	144	192	240	288	336
aca Thr	Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct a Pro 1 15	ggt g Gly v	ttt t Phe F	tta a Leu I	tac a Tyr M	aga t Arg T 95	tac t Tyr L
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10		tta Leu	aaa Lys	ttc Phe	tcg Ser 90	ttg Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	. gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt. Gly	act Thr	aga Arg	act Thr 70	gag Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
ааа Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
99	gct Ala	ttt Phe	gtt Val	tct Ser	ggg Gly	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 16

384	432	480	528	576	624	672
•						
tta Leu	gca Ala	tgg Trp 160	tgt Cys	gct Ala	ggt Gly	tat Tyr
aaa Lys	gag Glu	gct Ala	gca Ala 175	atg. Met	aca Thr	att 11e
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
ćtg Leu	tac Tyr 140	999 G1y	gga Gly	aac Asn	ggt Gly	tta Leu 220
ggc Gly	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gct Ala	ttt Phe	att Ile	gga G1 <u>y</u> 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tat Tyr	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met	cct Pro	cta Leu	gtt Val	gca Ala	gga G1y 215
aca Thr	gtt Val	tgg Trp 150	gaa Glu	tcg Ser	tgg Trp	ggt Gly
gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttc Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	gtc Val 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	act	ata Ile	cta Leu 210
att Ile	ttg Leu	gga G1y 145	gta Val	aat Asn	atc Ile	tac Tyr

750

720

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	•
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn

48	φ σ,	144	192	240	2 8 8	336
gtt att gca ctt cct aca Val Ile Ala Leu Pro Thr 15	agt gat tac act ggt gtt Ser Asp Tyr Thr Gly Val 30	gca tct act gta ttt ttc Ala Ser Thr Val Phe Phe 45	tgg aaa aca tca tta act Trp Lys Thr Ser Leu Thr 60	tgg cat tac atg tac atg Trp His Tyr Met Tyr Met 75	cca act gta ttt aga tac Pro Thr Val Phe Arg Tyr 95	ata tgt gaa ttc tac tta Ile Cys Glu Phe Tyr Leu 110
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc	tag Ser 90	tta Leu
a ggt u Gly	t gat 1 Asp 25	t tta a Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg G $1_{ m Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	a H1e

Figure 17

384	432	480	528	576	624	672,
				. — .		
tta Leu	gca Ala	tgg Trp 160	tgt Cys	atg Met	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gct Ala	gcg Ala 175	atg Met	aca Thr	atc
aag Lys	ggt Gly	tta Leu	gct Ala	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	ааа Lys	aca Thr	tat Tyr 205	aac Asn
ctg Leu	tac Tyr 140	ggg Gly	gga $_{ m G1Y}$	aac Asn	ggt Gly	tta Leu 220
ggc Gly	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gct Ala	ttt Phe	gtt Val	gga G1y 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	ctt Leu	tca Ser 185	tat Tyr	gca Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	cag	att Ile 200	tca Ser
aat Asn	atg Met 135	ggt Gly	ctt Leu	gtt Val	gca Ala	gga G1y 215
act Thr	gtt Val	tgg Trp 150	gag Glu	gct Ala	tgg Trp	ggt Gly
gct Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	aca Thr	atc Ile	cta Leu 210
att Ile	ttg Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	atc Ile	tac Tyr

720	750
tta att ata tgg Leu Ile Ile Trp 240	
rttt ggt t Phe Gly L 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt gct Leu Ala	gtt Val
aac Asn 225	aat Asn

wo	Λ1	/231	7N 1

PC	r/T	TCC	11/	14	304

4	~	14	Λ	Ω
4	Z	/ 1	0	X

48	96	144	192	240	28 8	336
gca ctt cct aca Ala Leu Pro Thr 15	tac act ggt gtt Tyr Thr Gly Val 30	it gta ttt ttc ir Val Phe Phe 5	a tca tta act 1r Ser Leu Thr	c atg tac atg r Met Tyr Met 80	a ttt aga tac 11 Phe Arg Tyr 95	a ttc tac tta u Phe Tyr Leu 110
att Ile	gat Asp	a tct act a Ser Thr 45	y aaa aca b Lys Thr 60	y cat tac His Tyr	act gta Thr Val	tgt gaa Cys Glu
agt gtt Ser Val 10	gct agt Ala Ser	tta g Leu A	aa Ly	ttc tgg Phe Trp 75	tcg cca Ser Pro 90	tta ata Leu Ile
tta ggt Leu Gly	ctt gat Leu Asp 25	gct tta Ala Leu 40	tct gca Ser Ala	att gct Ile Ala	ggt gat Gly Asp	cct cta Pro Leu 105
ctg ata Leu Ile	ggt gac Gly Asp	act gct Thr Ala	aga gtt Arg Val 55	act ggt Thr Gly 70	gaa act Glu Thr	aca gtt Thr Val
tta tta Leu Leu] 5	ggt ggt g Gly Gly (tta gtt a Leu Val	aga gat a Arg Asp A	ctt gtt a Leu Val 7	tgg att g Trp Ile (85	tta cta a Leu Leu 1 100
ааа Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
atg ggt Met Gly 1	ttt gct Phe Ala	tct ttt Ser Phe	ttt gtt Phe Val 50	gta tct Val Ser 65	aga ggg Arg Gl <u>y</u>	att gat Ile Asp

Figure 18

384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
ааа Lys	gag Glu	gct to Ala T	gca to Ala Cy 175	atg ta Met Ty	aca gc Thr G]	atc tat Ile Tyr
aag Lys	ggt : Gly	tta Leu	gct	atg Met 190	ttc Phe	ctt Leu
g ttt u Phe 125	c atg r Met 0	g tgt Y Cys	c aag Y Lys	c aca n Thr	t tat Y Tyr 205	a aac 1 Asn)
ggc ctg Gly Leu	ggt tac Gly Tyr 140	att ggg Ile Gly 155	gaa ggc Glu Gly	tac aac Tyr Asn	gta ggt Val Gly	aac tta Asn Leu 220
gct g Ala G	ttt g Phe G	gtt a Val I	gga ga Gly Gi 170	gct ta Ala Ty	cct gt Pro Va	ctt aac Leu Asn
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala 1
gtt 1 Val 120	ctt Leu	gca Ala	tgg Trp	r caa . Gln	att Ile 200	tca Ser
t aat r Asn	t atg 1 Met 135	g ggt p Gly 0	a cta u Leu	t gtg a Val	g gca o Ala	t gga 7 Gly 215
a act a Thr	t gtt eu Val	t tgg a Trp 150	it gaa r Glu is	t gct o Ala	t tgg y Trp	c ggt p Gly
gct gca Ala Ala	tct ctt Ser Leu	aac gct Asn Ala	att tat Ile Tyr 165	agt cct Ser Pro 180	ttt ggt Phe Gly	ggt gac Gly Asp
gct g Ala A 115	ggt t Gly S	atg a Met A	atg a Met I	gca a Ala S	atc t Ile P	atg g Met G
ctt Leu	gtt Val 130	att Ile	tac Tyr	act g Thr 1	atc a	cta a Leu M 210
att Ile	ttg Leu	gga Gly 145	gta Val	aat Asn	ata Ile	tac Tyr

1	C	Į	9
,	•		
	(ļ	j
	ì		
	1		7
8	1	r	ł
į	ľ	I	ì

.720	750
ttt ggt tta att ata tgg Phe Gly Leu Ile Ile Trp 235	
cta Leu	gct Ala 250
att	aat
Ile	Asn
aag	tat
Lys	Ser
aac	tat
Asn	Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac	gtt
Asp	Val
gct	gct
Ala	Ala
ctt	gtt
Leu	Val
aac Asn 225	aat Asn

48	96	144	192	240	8 8 8	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggc Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa G1u	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	Ser	ggg G $1_{ m Y}$	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

figure 19

384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	gct Ala	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	att Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg G $1_{ m Y}$	gga Gly	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga G1y	ttt Phe	att Ile	gga G1 <u>y</u> 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tat Tyr	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	$\begin{array}{c} ggg\\ G1Y\\ 215 \end{array}$
act Thr	gtt Val	tgg Trp 150	gaa Glu	tcg Ser	tgg Trp	ggt Gly
gct Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gct Ala	att Ile	agt Ser 180	ttc Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	gtc Val 195	atg Met
ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	ata Ile	cta Leu 210
att Ile	cta Leu	caa Gln 145	gta Val	aat Asn	atc Ile	tac Tyr
		-			•	

Figure 19

0	(
\sim	
	1

750

tgg Trp 240

ata Ile

att Ile

tta Leu

ggt Gly

ctt Leu 235

gct Ala 250

aat Asn

tct tct Ser Ser

gaa Glu

aaa Lys 245

gtt Val

gct Ala

gtt Val

aat Asn

ctt Leu

gtt aac aag a Val Asn Lys 230

cta Leu

att Ile

ttt Phe

gac Asp gct Ala

aac Asn 225

			•			
48	96	144	192	240	288	336
cct aca Pro Thr 15	ggt gtt Gly Val	ttt ttc Phe Phe	tta act Leu Thr	tac atg Tyr Met 80	aga tac Arg Tyr 95	tac tta Tyr Leu
gca ctt c Ala Leu 1	tac act g Tyr Thr G	ct gta hr Val 5	aca tca t Thr Ser I	tac atg t Tyr Met I	gta ttt a Val Phe A	gaa ttc t Glu Phe T 110
gtt att g Val Ile A	agt gat t Ser Asp I	gca tct a Ala Ser T.	tgg aaa a Trp Lys T 60	tgg cat t Trp His T 75	cca act g Pro Thr V	ata tgt g Ile Cys G
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
a tta ggt e Leu Gly	ctt gat p Leu Asp 25	gct tta Ala Leu 40	tct gca Ser Ala	att gct Ile Ala	ggt gat Gly Asp	cct cta Pro Leu 105
ctg ata Leu Ile	ggt gac Gly Asp	act gct Thr Ala	aga gtt Arg Val 55	act ggt Thr Gly 70	gaa act Glu Thr	aca gtt Thr Val
tta tta Leu Leu 5	ggt ggt Gly Gly 20	tta gtt Leu Val	aga gat Arg Asp	ctt gtt Leu Val	tgg att Trp Ile 85	tta cta Leu Leu 100
ggt aaa Gly Lys	gct gca Ala Ala	ttt tgg Phe Trp 35	gtt gaa Val Glu 50	tct ggt Ser Gly	ggg gta Gly Val	gat tgg Asp Trp
atg Met 1	ttt Phe	Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 20

384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
ааа Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca	atc Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg G 1 Y	gga ${ t G1}Y$	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga Gly 170	gcc Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct. Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	tta Leu	gtg Val	gcg Ala	gga G1 <u>y</u> 215
gct Ala	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tat Ser	gct Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	atc Ile	tac Tyr	act Thr	atc Ile	ttg Leu 210
att Ile	cta Leu	gga G1y 145	gta Val	aat Asn	att Ile	tac Tyr

Figure 20

750

720

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct tct Ser Ser
aac Asn	tct Ser
gtt aac Val Asn 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn
	•

Figure 2(

48	96	144	192	240	288	336
cct aca Pro Thr 15	ggt gtt Gly Val	ttt ttc Phe Phe	tta act Leu Thr	tac atg Tyr Met 80	ra tac rg Tyr	ic tta r Leu
ctt Leu	act Thr 30	gta Val	tca Ser	atg ta Met Ty	ttt aga Phe Arg 95	ttc tac Phe Tyr 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	ааа Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
ata Ile	gac ctt Asp Leu	gct Ala 40	Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa G1u	aca Thr
tta Leu 5	ggc Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	gga Gly	gat Asp
atg Met 1	ttt Phe	tct	ttt Phe	gta Val 65	aga Arg	att

Figure 2

52/108	1

384	432	480	528	576	624	672
ctt Leu	gca 1 Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aag aaa Lys Lys	ggt gaa Gly Glu	tta gct Leu Ala	tct gca Ser Ala 175	atg atg Met Met 190	ttc aca Phe Thr	ctt atc Leu Ile
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tca tta Ser Leu	ggt tac Gly Tyr 140	att ggg Ile Gly 155	gaa gga Glu Gly	tac aac Tyr Asn	gta ggt Val Gly	aac tta Asn Leu 220
ggc Gly	ttt Phe	att Ile	gga G1 <u>y</u> 170	gct Ala	cct Pro	ctt Leu
gtt gcc Val Ala 120	ctt gtg Leu Val	gca ttc Ala Phe	tat gct Tyr Ala	caa tca Gln Ser 185	att tat Ile Tyr 200	tca gct Ser Ala
aat Asn	atg Met 135	cct Pro	cta Leu	gtg Val	gcg Ala	gga Gly 215
gca act Ala Thr	ctt gtt Leu Val	gct tgg Ala Trp 150	tat gaa Tyr Glu 165	cct gct Pro Ala	ggt tgg Gly Trp	gac ggt Asp Gly
gct Ala	tct Ser	gca Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
ctt gct Leu Ala 115	gtt ggt Val Gly 130	att atg Ile Met	tat atg Tyr Met	aca gca Thr Ala	atc gtc Ile Val 195	ctg atg Leu Met 210
att o Ile I	cta g Leu 1	gga e G1y 1 145	gta t Val 1	aat a Asn 1	att a Ile 1	tac c Tyr I

Figure 21

720	750
cta ttt ggt tta att ata tgg	gct
Leu Phe Gly Leu Ile Ile Trp	Ala
235	250
att c	aat g
Ile I	Asn A
aag a Lys	1) G
aac	tct tct
Asn	Ser Se
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac	gtt
Asp	Val
gct	gct
Ala	Ala
ctt	gtt
Leu	Val
aac Asn 225	aat Asn

cct aca 48 Pro Thr 96 ggt gtt 96 gly Val 144 Phe Phe 192 tta act 192 Leu Thr 182 tac atg 240 Tyr Met 80 aga tac 288 Arg Tyr Arg Tyr	PC1/0S01/1
·	336
t gtt att gca ctt r Val Ile Ala Leu a Ser Asp Tyr Thr 30 a gca tct act gta u Ala Ser Thr Val a tgg aaa aca tca s Trp Lys Thr Ser 60 c tgg cat tac atg e Trp His Tyr Met 75 c act gta ttt r Val Phe	cta aca gtt cct cta ttg ata tgt gaa ttc tac Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr 105
ggt aaa Gly Lys gct gca Ala Ala Ala Ala 1tt tgg Phe Trp 35 gtt gaa Val Glu 50 tcg ggt Ser Gly Ser Gly	gat tgg Asp Trp
atg Met 1 ttt Phe ser gta Val 65	att Ile

Figure 22

ctg ttt aag aaa Leu Phe Lys Lys 125 tac atg ggt gag Tyr Met Gly Glu 140 ggg tgt tta gct Gly Cys Leu Ala ggc aag gct gca Gly Lys Ala Ala 175 aac aca atg atg Asn Thr Met Met 190 ggt tat ttc aca Gly Tyr Phe Thr 205 tta aac ctt atc	
ctg ttt aag aaa Leu Phe Lys Lys 125 tac atg ggt gag Tyr Met Gly Glu 140 ggg tgt tta gct Gly Cys Leu Ala ggc aag gct gca Gly Lys Ala Ala 175 aac aca atg atg Asn Thr Met Met 190 ggt tat ttc aca Gly Tyr Phe Thr 205 tta aac ctt atc	
aca aat gtt gct gct Thr Asn Val Ala Ala 120 gtt atg ctt gtg ttt Val Met Leu Val Phe 135 tgg ggt gca ttc gtt Trp Gly Ala Phe Val 150 gaa cta tgg gct gga Glu Leu Trp Ala Gly 170 gct gtg caa tca gct Ala Val Gln Ser Ala 185 tgg gca att tat cct Trp Ala Ile Tyr Pro ggt gga tca gct ctt Glv Glv Ser Ala 170	GLY GLY Ser Ala Leu Asn Leu Asn Leu 215
get gea Ala Ala Ala Ala Ala Ala Ala Ala Ala Al	
get get ala Ala Ala Ala Ala Ala Asn atg att Met Asn gea agt Ala Ser Ala Ser Ala Ser 116 Phe 1195 atg ggt Ala Glv Ala Ala Ser A	ĞΤŞ
att Ile Ile Ile Asn tac Tyr	

Figure 22

	2
	2
	Ø
	Н
•	크
	5
	ન
	Ŀ

720	750
t ggt tta att ata tgg e Gly Leu Ile Ile Trp 5	
cta ttt Leu Phe 235	gct Ala 250
aat Asn	aat Asn
aag Lys	tct
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn

					٠.	
48	96	144	192	240	288	336
•						·
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tat Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Hle	gat Asp	tct Ser	aaa Lys 60	cat	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	teg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	.ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	${ t ggt}$	act Thr	gtt Val
cgg Arg	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggc Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa G1u	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	gga Gly	gat Asp
atg Met 1	ttt Phe	tct	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 23

-	•

						:
384	432	480	228	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
ааа Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	atc Ile
aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc	ctt Leu
ttt Phe 125	atg Met	tgt Cys	ааа Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	ggg G $1 Y$	gga Gly	aac Asn	ggt Gly	tta Leu 220
Ser	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga G1 <u>y</u> 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtg Val	gcg Ala	gga G1y 215
act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	Ser	gct Ala	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc 11e 195	atg Met
ctt Leu	gtt Val 130	atc Ile	tac Tyr	act Thr	atc Ile	ctg Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	atc Ile	tac Tyr

Figure 23

720	750

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tct Ser
aac Asn	tct tct ser ser i
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn

			•		•	
48	96	144	192	240	288	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tat Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	CCa Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	аса Тhr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggc $_{ m G1Y}$	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	gga Gly	gat Asp
atg Met 1	ttt Phe	ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 24

		i			
432	480	528	576	624	672
gca Ala	tgg Trp 160	tgt Cys	gct Ala	ggt Gly	tat Tyr
			atg Met	aca Thr	att Ile
ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tac Tyr 140	ggg G1y	gga Gl Y	aac Asn		tta Leu 220
ggt Gly	att Ile 155	gaa Glu	tac Tyr		aac Asn
ttt Phe	att Ile	gga G1y 170	gct Ala		ctt Leu
gtg Val	ttc Phe	gct Ala			gct Ala
ctt Leu	gca Ala	tat Tyr			Ser
atg Met 135	cct Pro	cta Leu	gtt Val		gga G1y 215
gtt Val	tgg Trp 150	gaa Glu	tag Ser		ggt Gly
ctt Leu	gct Ala	tat Tyr 165	cct Pro		gac Asp
tct Ser	gca Ala	att Ile	agt Ser 180		ggt Gly
ggt Gly	atg Met	atg. Met	gca Ala	инα	atg Met
gtt Val 130	att Ile			ta 1e	cta Leu 210
cta Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	atc Ile	tac Tyr]
	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca 43 Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130	a gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca u Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 a att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg y Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 5	9tt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135 att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg 160 met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 160 met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 160 met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 160 met Ala Ala Trp 150 met Ile Ile Gly Cys Leu Ala Trp 160 met Ala Trp 160 met Ala Gly Glu Gly Lys Ser Ala Cys 177 met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 175	yal ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135 att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg 48 Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 160 tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt 52 tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt 57 Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 175 act gca agt cct tcg gtt caa tca gct tac aac aca atg atg gct 77 Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala	yet ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135 att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 155 tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 175 act gca agt cct tcg gtt caa tca gct tac aac aca atg atg gct Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 ata gtc ttc ggt tgg gca att tat cct gta ggt tat ttc aca ggt 190 ata gtc ttc ggt tgg gca att tat cct gta ggt tat ttc aca ggt 190 ata gtc ttc ggt tgg gca att tat cct gta ggt tat ttc aca ggt 195 195

Figure 24

750

720

tgg Trp 240	
ata Ile	
att Ile	
tta Leu	٠
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	tat Ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt	gtt Val
aac Asn 225	aat Asn

48	96	144	192	. 240	. CJ 	336
aca Thr	gtt v Val	ttc Phe	act Thr	atg Met 80	tac	tta Leu
. cct Pro 15	ggt	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
ааа Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg Gly	gat Asp
atg Met · 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

				•	
43.2	480	528	576	624	672
ಹ ಹ	р . О. С	L) ro	ı) et	1) S.	
		tgt Cys	gct Ala	ggt G13	tat Tyr
	gct Ala	gca Ala 175	atg Met	aca Thr	att Ile
ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe	ctt Leu
atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tac Tyr 140	ggg G $1_{ m Y}$	gga $_{ m GLY}$	aac Asn	ggt Gly	tta Leu 220
ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn
ttt Phe	att Ile	gga G1y 170	gct Ala	cct	ctt Leu
gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala
ctt Leu	gca Ala	tat Tyr	caa Gln	att Ile 200	tca Ser
atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	gga G1Y 215
gtt Val	tgg Trp 150	gaa Glu	tag Ser	tgg Trp	ggt Gly
ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
tct Ser	gca Ala	att Ile	agt Ser 180	ttc Phe	ggt Gly
ggt Gly	atg Met	atg Met	gca Ala	gtc Val 195	atg Met
gtt. Val 130	att Ile	tac Tyr	act Thr	ata Ile	cta Leu 210
cta Leu	gga Gly 145	gta Val	aat Asn	atc Ile	tac Tyr
	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 150	gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 150 tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Gly Gly Lys Ser Ala Cys 170	9tt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130 att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 150 tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 165 act gca agt cct tcg gtt caa tca gct tac aac aca atg atg gct Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180 Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Ala 180	att atg gca gct tgt atg ctt gtg ttt ggt tac atg ggt gaa gca Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala att atg gca gct tgg cct gca ttc att att ggg tgt tta gct tgg lie Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp Trp Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys act gca agt cct tcg gtt caa tca gct tac aac aca atg atg gct Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Gly Gly Glu Gly Tyr Ala Gly Tyr Asn Thr Met Met Ala Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Pro Tyr Pro Val Gly Tyr Pro Tyr Tyr Pro Val Gly Tyr Pro Tyr

Figure 25

0	0
\sim	IJ
	7

tgg Trp 240

ata

ttt ggt tta att a Phe Gly Leu Ile 1 235

cta Leu

aag Lys

aac Asn

ttt Phe

gac Asp

ctt gct Leu Ala

aac Asn 225

gtt Val 230

att

gct Ala 250

aat Asn tct.tct Ser Ser

gaa Glu

gtt Val

gct Ala

gct Ala

aat Asn

aaa Lys 245

48	96	144	192	240	288	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tat Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa ${ m Lys}$	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	.ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Léu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg. Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	Ser	ggg Gly	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	ata Ile

Figure 26

384	432	480	528	576	624	672
tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr
aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr	att ĭle
aag Lys	ggt Gly	tta Leu	Ser	atg Met 190	ttc Phe	ctt Leu
ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205	aac Asn
tta Leu	tac Tyr 140	$\mathfrak{G}\mathfrak{g}\mathfrak{g}$	gga \mathtt{Gl}_{Y}	aac Asn	ggt Gly	tta Leu 220
tca Ser	ggt Gly	att Ile 155	gaa G1u	tac Tyr	gta Val	aac Asn
gga Gly	ttt Phe	att Ile	gga G1y 170	gct Ala	cct Pro	ctt Leu
gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gca Ala
gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser
aat Asn	atg Met 135	cct Pro	cta Leu	gtg Val	gcg Ala	gga G1y 215
act Thr	gtt Val	tgg Trp 150	gaa G1u	gct Ala	tgg Trp	ggt Gly
gca Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp
gct Ala	tct Ser	gct Ala	att Ile	agt Ser 180	ttt Phe	ggt Gly
gcc Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met
ctt Leu	gtt Val 130	atc Ile	tac Tyr	act Thr	atc Ile	ctt Leu 210
att Ile	ctt Leu	gga Gl <u>y</u> 145	gta Val	aat Asn	atc Hle	tac Tyr

Φ
N
Ø
Н
Ħ
5
-1
Ŀ
- •

720	750
ttt ggt tta att ata tgg Phe Gly Leu Ile Ile Trp 235	
att cta Ile Leu	t aat gct r Asn Ala 250
gtt aac aag Val Asn Lys 230	gaa tct tct Glu Ser Ser
gac ttt g Asp Phe 1	gtt aaa g Val Lys C 245
aac ctt gct Asn Leu Ala 225	aat gtt gct Asn Val Ala

48	9	144	192	240	2 8 8	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
cct Pro 15	${ t ggt}$	ttt Phe	tta Leu	tat Tyr	aga Arg 95	tac Tyr
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt	ttc Phe 110
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
gtt Val	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu
ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggc $_{ m GLY}$	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	ttä Leu	aga Arg	ctt	tgg Trp	tta Leu 100
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	gga Gly	gat Asp
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 27

384	432	480	52.8	576	624	672
aaa ctt Lys Leu	gaa gca Glu Ala	gca tgg Ala Trp 160	gca tgt Ala Cys 175	itg tat let Tyr	aca ggt Thr Gly	att tat Ile Tyr
ttt aag a Phe Lys L 125	atg ggt g Met Gly G	tgt tta g Cys Leu A	aaa tot g Lys Ser A	aca atg atg Thr Met Met 190	t ttc r Phe 5	aac ctt a Asn Leu I
tca tta t Ser Leu P	ggt tac a Gly Tyr M 140	gtt gga t Val Gly C 155	gaa gga a Glu Gly L	tac aac a Tyr Asn T	gta ggt ta Val Gly Ty: 20.	aat cta aa Asn Leu Aa 220
gcc ggc t Ala Gly S	g ttt 1 Phe	ttc atc g Phe Ile V	t ggt a Gly 170	tca gct ta Ser Ala Ty 185	tat cct gl Tyr Pro Va	gct ctt aa Ala Leu Aa
aat gtt go Asn Val A 120	atg ctt gt Met Leu Va 135	cct gca t Pro Ala Pl	ta tgg gci eu Trp Ala	cag Gln	att Ile 200	tca Ser
act Thr	gtt Val	tgg Trp 150	it gaa cta r Glu Leu 55	t gct gta o Ala Val	rt tgg gca Y Trp Ala	c ggt gga p Gly Gly 215
t gct gca a Ala Ala 5	gt tct ctt ly Ser Leu	g gcg gct t Ala Ala	g att tat t Ile Tyr 165	a agt cct a Ser Pro 180	c gtt ggt e Val Gly 5	g ggt gac t Gly Asp
t ctt gct e Leu Ala 115	gtt g Val G 130	a ata atg Y Ile Met 5	a tat atg 1 Tyr Met	t act gca n Thr Ala	c atc atc e Ile Ile 195	c cta atg r Leu Met 210
att Ile	cta Leu	999 61,	gta Val	aat Asn	atc Il	tac Tyr

Figure 27

720	750
tgg Trp 240	
ata Ile	
att Hle	
tta Leu	
ggt Gly	
ttt Phe 235	
cta Leu	gct Ala 250
att Ile	aat Asn
aag Lys	ser
aac Asn	tct Ser
gtt Val 230	gaa Glu
ttt Phe	aaa Lys 245
gac Asp	gtt Val
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn 225	aat Asn

			·		•	
48	96	144	192	240	288	336
	• .			e the e rro g — Le		
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ott Leu	tac Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gta Val	tca Ser	ctc Leu	ttt Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	aca Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gat Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat,cta Asp Leu	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gat Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata 11e 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	cta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct. Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

384	432	480	528	576	624	672
ctt Leu	gct Ala	tgg Trp 160	gta Val	aag Lys	ggt Gly	ata Ile
aag Lys	gaa Glu	ggt Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aat Asn	gga $_{ m G1y}$	aac Asn 220
tca Ser	gga Gly	ctt Leu 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gct Ala	act Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	cat His	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gac Asp
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga ${ t G1y}$	ggt Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	att Ile	agt Ser
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	ggt Gly 145	tta Leu	agt Ser	att Ile	tac Tyr
		•				

	0	0
	C	1
	(() H
		4
	į	7
•		4
	Ġ	4

720	.753
att Ile 240	
atc Ile	
ttg Leu	
ggt Gly	٠.,
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag a Lys J	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac ctt Asn Leu	aat Asn'
tat Tyr 225	tgg Trp

48	9	144	192	240	28.8	336
gct att gca ctt cca tca Ala Ile Ala Leu Pro Ser 15	agt gat act gtt ggt gtt Ser Asp Thr Val Gly Val 30	gcg gca act gtg ttc ttt Ala Ala Thr Val Phe Phe 45	tgg aaa act tca ctt act Trp Lys Thr Ser Leu Thr 60	tgg cat tat ctc tat atg Trp His Tyr Leu Tyr Met 75	cca aca gta ttc aga tat Pro Thr Val Phe Arg Tyr 95	atg gtt gag ttc tat cta Met Val Glu Phe Tyr Leu 110
agt Ser	ata Ile	tta g	gag t Glu :	ttt t Phe 1	acc c Thr 1 90	caa a Gln N
g ggt aaa tta tta ctg ata tta ggt t Gly Lys Leu Leu Leu Ile Leu Gly 5	t gct gct gct ggt ggc gat cta gat e Ala Ala Gly Gly Asp Leu Asp 20	a ttc tgg ctg gtt aca gct ggt atg r Phe Trp Leu Val Thr Ala Gly Met 35	t gta gaa aga gac caa gtc agc gct e Val Glu Arg Asp Gln Val Ser Ala 50	a tot ggt tta att act ggt ata gct l Ser Gly Leu Ile Thr Gly Ile Ala 70	a ggt gtt tgg ata gat act ggt gat g Gly Val Trp Ile Asp Thr Gly Asp 85	t gat tgg tta tta act gtt cca tta e Asp Trp Leu Leu Thr Val Pro Leu 100
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

384	432	480	22 8	576	624	672
ctt gct gct tgt aca agt gtt gct gct tca tta ttt aag aag ctt 38 Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115	gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa gct Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130			act gca agt cct gct gtt aac tct gca tac aac gca atg atg 57 Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met 180		cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctt ata Leu Met Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210
att Ile	cta Leu	gga G1 <u>y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 29

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
cta t Leu P 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

48	96	. 144	192	240	2 8 8	336
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca t Pro 9 15	ggt g Gly 1	ttc t Phe E	ctt a Leu 1	tat a Tyr N	aga t Arg I 95	tat c Tyr I
ctt Leu	gtt Val 30	gtg Val	tca	ctc Leu	ttc .	ttc Phe 7
gca Ala	act Thr	act Thr 45	act	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa G1n
ggt Gly	gat Asp 25	atg Met	gct Ala	gcc Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt ${ t Gly}$	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 30

384	432	7480	528	576	624	672
aag ctt Lys Leu	gaa gct Glu Ala	gga tgg Gly Trp 160	gct gta Ala Val 175	atg atg Met Met	gct ggt Ala Gly	it ata su Ile
aag Lys	ggc Gly	gct Ala	gct ge Ala Al	atg Met 190	gct gc Ala Al	aac ctt Asn Leu
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	cta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga $_{ m G1Y}$	aac Asn 220
tca Ser	gga G1y	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	c tct g n Ser A 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca d Thr. 1	gta Val	tgg Trp 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggc Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta	gga G1Y 145	tta Leu	agt	att	tac Tyr

Figure 30

753

720

att Ile 240	-
atc Ile	
ttg Leu	
ggt Gly	
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

48	96	144	192	240	288	336
(1)						
Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tac Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gta Val	tca Ser	ctc Leu	ttt Phe	ttc Phe 110
gcg Ala	act Thr	act Thr 45	act	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	aca Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	CC & Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	acg Thr	caa Gln	act Thr 70	gat Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	ggt tta Gly Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt. Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tat Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

Figure 31

. 384	432	480	528	.576	624	672
t t	പ ര	σμο	в Н	t d	۲ ل	ע ט
ctt Leu	gc Al	tgg Trp 160	gt	atg Met	ggt Gly	a H H
aag Lys	gaa Glu	gga G1Y	gct Ala 175	atg Met	gct Ala	ctc Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	tct Ser 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
agt	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	ttg Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggc Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
gcc Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
att Ile	cta Leu	gga G1 <u>y</u> 145	tta Leu	agt	att Ile	tac Tyr

Figure 31

720	753
ttt ggt ttg atc att Phe Gly Leu Ile Ile 240	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt gct gac Leu Ala Asp	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

\mathbf{n}	$\alpha \alpha \alpha \alpha$	14 100
<i>D1</i>		/14394
		/ 1 4.3 74

WO 01/83701		, L	PCT/US01/1439
	04/100		

48	96	. 144	192	240	288	336
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala ,	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile
		-				•

Figure 32

WO 01/83701		Č	85/108	3	6	PCT/US01/14	
	384	432	480	528	576	624	672
	ctt Leu	gct Ala	tgg Trp 160	gta Val	gtg Val	ggt Gly	ata Ile
	aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
	aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
	ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	cta Leu
	tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga ${ t G1y}$	aac Asn 220
	tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
	gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
	gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
	gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
	aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
	aca Thr	gta Val	tgg Trp 150	gag Glu	gct Ala	tgg Trp	gaa Glu
	tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga $_{ m GLY}$	ggc $_{ m G1Y}$
	gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt. Val	ggt Gly
	gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
	ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
	att Ile	cta Leu	gga G1 <u>y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 32

	c	\ Y	
•	(

753
gct Ala
aat Asn 250
tct Ser
tat
gaa Glu
aaa Lys
gtt Val 245
gct Ala
gtt Val
aat Asn
tgg Trp

				•		
48	96	144	192	240	288	336
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr
ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	сса	atg Met
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc ${ t Gl} Y$	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
ааа Lys	gct Ala	tgg Trp 35	gaa G1u	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	Ser	ggt Gly	gat Asp
atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile

					•	
384	432	480	528	576	624	672
ctt	gct	tgg Trp 160	gta Val	atg Met	ggt Gly	ata Ile
aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu
aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
tca Ser	gga G1y	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu
tgt Cys	tta Leu	gta Val	tat Tyr 165	cct	gga Gly	ggc Gly
gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att. Ile	cta Leu 210
att Ile	cta Leu	gga G1y 145	tta Leu	agt Ser	att Ile	tac Tyr

Figure 33

ന

0

72(753
atc att Ile Ile 240	
ttg Leu	
ggt Gly	
ttt Phe	
cta Leu 235	gct Ala
att Ile	aat Asn 250
aag Lys	tct Ser
aac Asn	tct Ser
gtt Val	gaa Glu
ctt gtt Leu Val 230	ааа Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

48	96	144	192	240	288	336
a tca Ser	gtt 7 Val	ttt Phe	act Thr	atg Met 80	ı tat y Tyr	cta Leu
cca 1 Pro 15	ggt Gly	y ttc I Phe	a ctt	tat 1 Tyr	aga Arg 95	tat Tyr
ctt. Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	CCa	gtg Val
agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
ctg Leu	ggc G1y	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100
aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp
ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp
atg Met 1	ttt	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile
	•					

Figure 34

384	432	480	22	576	624	672
aag aag ctt Lys Lys Leu	ggc gaa gct Gly Glu Ala	t gga tgg la Gly Trp 160	it gct gta .a Ala Val 175	g atg atg t Met Met 10	t gct ggt a Ala Gly	c ctt ata n Leu Ile
tta ttt aa Leu Phe Ly 125	ttt gca gg Phe Ala Gl 140	ggt atg gct Gly Met Ala	ggc aag gct Gly Lys Ala	aac gca atg Asn Ala Met 190	gga tat gct Gly Tyr Ala 205	aac tta aac Asn Leu Asn 220
gct tca t Ala Ser I	gct gga t Ala Gly F	att att g Ile Ile G 155	ggt gaa g Gly Glu G 170	a tac a Tyr	cct gct g Pro Ala G	gct tca a Ala Ser As 2:
gtt gct g Val Ala A 120	tta ggt g Leu Gly A	gct ttc a Ala Phe I	tat atg g Tyr Met G	aac cct gc Asn Pro Al	att tat c Ile Tyr P 200	gta tac go Val Tyr A
aca agt g Thr Ser V	gta atg t Val Met i 135	ta cct eu Pro 50	gag cta t Glu Leu T	gct gtt a Ala Val A	tgg gca a Trp Ala I	gaa ggt g Glu Gly V 215
gct tgt a Ala Cys I	tca tta g Ser Leu V	cct gta t Pro Val L	att tat g Ile Tyr G 165	agt cct g Ser Pro A 180	gtt gga t Val Gly T	gt ggc ly Gly
ctt gct g Leu Ala 7 115	gct ggt t Ala Gly 8 130	tta gct c Leu Ala E	tac atg a Tyr Met I	act gca a Thr Ala S	att gtt g Ile Val V	cta atg g Leu Met G 210
att o Ile I	cta c Leu A	gga t Gly I 145	tta t Leu T	agt a Ser T	att a Ile I	tac c Tyr L

ttg atc att Leu Ile Ile 240
A t L D O
ttt ggt Phe Gly
cta t Leu P 235 gct Ala
att Ile aat Asn 250
aag Lys tct Ser
aac Asn tct Ser
gtt Val gaa Glu
ttt Phe 230 aaa aaa Lys
gac Asp gtt Val 245
gct Ala gct Ala
ctt Leu gtt Val
aac Asn aat Asn
tat Tyr 225 tgg Trp

'igure 34

						*
48	96	144	192	240	. 28	336
cca tca Pro Ser 15	ggt gtt Gly Val	ttc ttt Phe Phe	ctt act Leu Thr	tac atg Tyr Met 80	aga tat Arg Tyr 95	tat cta Tyr Leu
ctt Leu	gtt Val 30	gta Val	tca Ser	ctc Leu	ttt Phe	ttc Phe 110
att gca Ile Ala	gat act Asp Thr	gca act Ala Thr 45	aaa act Lys Thr 60	cat tat His Tyr	aca gta Thr Val	gtt gag Val Glu
agt gct Ser Ala 10	ata agt Ile Ser	tta gcg Leu Ala	aag tgg Lys Trp	ttt tgg Phe Trp 75	aca cca Thr Pro 90	caa atg Gln Met
tta ggt Leu Gly	cta gat Leu Asp 25	ggt atg Gly Met 40	agc gct Ser Ala	ata gct Ile Ala	ggt gat Gly Asp	cca tta Pro Leu (
ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val
tta ctg Leu Leu 5	ggt ggc Gly Gly	gtt aca Val Thr	gac caa Asp Gln	att act Ile Thr 70	ata gat Ile Asp 85	tta act Leu Thr
aaa tta Lys Leu	gct gct Ala Ala 20	tgg ctg Trp Leu 35	gaa aga Glu Arg	ggt tta Gly Leu	gtt tgg Val Trp	tgg tta Trp Leu 100
atg ggt Met Gly 1	ttt gct Phe Ala	tca ttc Ser Phe	ttt gta Phe Val 50	gta tct Val Ser 65	aga ggt Arg Gly	att gat Ile Asp
	•					

384	432	480	528	576	624	672
tca tta ttt aag aag ćtt	gga ttt gca ggc gaa gct	att ggt atg gct gga tgg	gaa ggt aag gct gct gta	tac aac gca atg atg aag	gct gga tat gct gct ggt	tca aac tta aac ctt ata
Ser Leu Phe Lys Lys Leu	Gly Phe Ala Gly Glu Ala	Ile Gly Met Ala Gly Trp	Glu Gly Lys Ala Ala Val	Tyr Asn Ala Met Met Lys	Ala Gly Tyr Ala Ala Gly	Ser Asn Leu Asn Leu Ile
125	140	155	175	190	205	220
att ctt gct gct tgt aca agt gtt gct gct	cta gct ggt tca tta gta atg tta ggt gct	ggt tta gct cct gta tta cct gct ttc att	tta tac atg att tat gag cta cat atg ggt	agt act gca agt cct gct gtt aac tct gca	att att gtt att gga tgg gca att tat cct	tac cta atg agt ggt gac ggt gta tac gct
Ile Leu Ala Ala Cys Thr Ser Val Ala Ala	Leu Ala Gly Ser Leu Val Met Leu Gly Ala	Gly Leu Ala Pro Val Leu Pro Ala Phe Ile	Leu Tyr Met Ile Tyr Glu Leu His Met Gly	Ser Thr Ala Ser Pro Ala Val Asn Ser Ala	Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro	Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala
115	130	145	165	180	195	210

720	753
ctt gct gac ttt gtt aac aag att cta ttt ggt ttg atc att	gtt gct gtt aaa gaa tct tct aat gct
Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile	Val Ala Val Lys Glu Ser Ser Asn Ala
230	245
aac c	aat g
Asn I	Asn V
tat Tyr 225	tgg Trp

				•		
48	96	144	192	240	2 8 8	336
ta tca co Ser S	ggt gtt Gly Val	ttc ttt Phe Phe	ctt act Leu Thr	at atg or Met 80	ya tat rg Tyr	it cta rr Leu
gca ctt cca Ala Leu Pro 15	act gtt gg Thr Val Gl	t gtg r Val	act tca ctt Thr Ser Leu	tat ctc tat Tyr Leu Tyr	gta ttc aga Val Phe Arg 95	ag ttc tat tu Phe Tyr 110
att Ile	agt gat ac Ser Asp Tł	gca Ala	aaa Lys 60	cat His	aca Thr	gg gtt gag et Val Glu
t agt gct Y Ser Ala 10	ata Ile	g tta gcg t Leu Ala	t aag tgg a Lys Trp	it ttt tgg a Phe Trp 75	t acc cca p Thr Pro 90	a caa atg u Gln Met 5
a tta ggt e Leu Gly	t cta gat p Leu Asp 25	t ggt atg a Gly Met 40	c agc gct I Ser Ala	t ata gct Y Ile Ala	t ggt gat r Gly Asp	t cca tta 1 Pro Leu 105
ctg ata Leu Ile	ggc gat Gly Asp	aca gct. Thr Ala	caa gtc Gln Val 55	act ggt Thr Gly 70	gat act Asp Thr	act gtt. Thr Val
tta tta Leu Leu 5	gct ggt Ala Gly 20	ctg gtt Leu Val	aga gac Arg Asp	tta att Leu Ile	tgg ata Trp Ile 85	tta tta Leu Leu 100
ggt aaa Gly Lys	gct gct Ala Ala	ttc tgg Phe Trp 35	gta gaa Val Glu 50	tct ggt Ser Gly	ggt gtt Gly Val	gat tgg Asp Trp
atg Met 1	ttt Phe	tca Ser	ttt	gta Val 65	aga Arg	att Ile

Figure 36

			•		•
432	480	528	576	624	672
a gct u Ala	a tgg Y Trp 160	t gta a Val 5	g atg t Met	t ggt a Gly	t ata u Ile
ggc ga Gly Gl	gct gg Ala Gl	gct gc Ala Al 17	atg at Met Me 190	gct gc Ala Al	aac ctt Asn Leu
gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
					aac Asn 220
					t tca a Ser
					tac gct Tyr Ala
	gct t Ala P	tat a Tyr M	aac t Asn S	att t Ile T 200	gta t Val T
atg Met 135	CCt	cta Leu	gtt Val	gca Ala	ggc G1 <u>y</u> 215
					gaa
					t ggc y Gly
					g ggt et Gly
gct gg Ala Gi 130	tta g Leu A]	tac at Tyr Me			cta atg Leu Met 210
cta Leu	gga Gly 145	cta Leu	agt Ser	att Ile	tac Tyr
	gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa gct 43 Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130	gct ggt tca tta gta atg.tta ggt gct gga ttt gca ggc gaa gct Ala Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 135 tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 150 150	gct ggt tca tta gta atg.tta ggt gct gga ttt gca ggc gaa gct Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 130 135 tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 160 tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta 52 tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta 52 Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 175	gct ggt tca tta gta atg.tta ggt gct gga ttt gca ggc gaa gct Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 150 tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 48	get ggt tea tta gta atg.tta ggt gct gga ttt gca ggc gaa gct Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 135 tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg 160 tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg 160 tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta 7rp 160 tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta 7rp 160 Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 175 act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg 57 Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 att gtt ggt gga tgg gca att tat cct gct gga tat gct gct ggt 180 att gtt gtt ggt gga att tat cct gct gga tat gct ggt 62 lie Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Ala Gly 195 lie Val Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Ala Gly 195

figure 36

753

720

c att e Ile 240	
at Il	
ttg Leu	*
ggt Gly	
ttt	
cta Leu 235	gct Ala ָ
att Ile	aat Asn 250
aag Lys	tct Ser-
aac Asn	tct Ser
gtt Val	gaa Glu
ttt Phe 230	aaa Lys
gac Asp	gtt Val 245
gct Ala	gct Ala
ctt Leu	gtt Val
aac Asn	aat Asn
tat Tyr 225	tgg Trp

Figure 3(

Fig. 37

Fig. 38A

Fig. 39

Fig. 40

Fig. 41

Fig. 42

Fig. 43

Fig. 44

Fig. 45

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES 18 30A9 CINT	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)