选自往年考试题目 第一章 命题逻辑复习题

1. 选择题

1) 以下语句是命题的是()。

	A. 此命题为假	₹。	B. 外星球上	有生物。	
	C. 我正在说谎	话。	D. 咱们去团	ī藏吧!	
2)	A. 如果一个B. 如果一个C. 如果一个	题是假命题()。 公式的合取范式唯一, 公式的合取范式不唯一 公式的析取范式唯一, 公式的析取范式不唯一	- ,那么汶川 2 那么汶川 200	008 年发生了地震 8 年没有发生地震	
3)	下列各组公式中联结词的命题2	中,哪组是互为对偶的 公式()。	,其中 P 为单	A独的命题变元,A	人为
	A. P, P		В. Р, ¬Р		
	C. A, (A*)*		D. A, A		
4)	前提¬P∨Q,¬g	$Q \lor R, R \to S$ 的有效结	论是 ()。		
	A. $P \wedge Q$		B. $P \rightarrow S$		
	C. S		D. $\neg P \lor \neg Q$		
5)	设A*和B*分别	川是公式A和B的对佩	引式,有如下四	个命题:	
	(1) A*⇔A		(2) 若A⇔1	B 则 A*⇔B*	
	(3) 若 A ⇒ B 列 则以下说法正		$(4) (A^*)^* \Leftarrow$	⇒ A	
	A. 只有1个命		B. 有 2 个命	·斯战 立	
	A. 只有 1 个		D. 有 4 个命		
6)	下面哪个集合	下是最小全功能联结证	月组()。		
-,	A. {¬,∧}		B. {¬,∨}		
	C. $\{\neg,\rightarrow\}$		D. {¬,↑}		

A 为含有

2.	判断题		
1)	Pv¬RvQ既是一个析取范式又是一个合取范式。	()
2)	$ \overline{A} \stackrel{-}{A} \stackrel{-}{\lor} C \Leftrightarrow \stackrel{-}{B} \stackrel{-}{\lor} C$,则 $A \Leftrightarrow B$ 。	()
	填空题 P: 我留下, Q: 你走,则"我留下仅当你走"的符号化形式为_		_0
2)	(Q→P)∧(¬P∧Q)的主析取范式为。		
3)	P →¬Q 的逆换式为。		
4)	P∧(¬R∧Q)的主合取范式为∏。		
4.	证明{¬,—}是最小全功能联结词组。		
5.	符号化下面各命题,并给出推理证明。 $\sqrt{2}$ 是有理数或无理数。 若 $\sqrt{2}$ 是有理数,则 2 能整除 3。 若 $\sqrt{2}$ 则 $\sqrt{3}$ 也是无理数。 而 2 不能整除 3。 所以 $\sqrt{2}$ 和 $\sqrt{3}$ 都是无理令 P: $\sqrt{2}$ 是有理数。 Q: $\sqrt{2}$ 是无理数。 R: 2 能整除 3。 S: $\sqrt{2}$	里数。	•
6.	设计举重表决器:设有主裁判 A 以及副裁判 B 和 C,在主裁判认判中至少有一位认定时,则成功举起。将结果用命题公式表示,是		
7.	甲、乙、丙、丁 4 人中有且只有 2 个人参加比赛。关于谁参加比断都是正确的: (1) 甲和乙只有 1 人参加; (2) 丙参加,则丁必参加; (3) 乙或丁至多参加 1 人; (4) 丁不参加,则甲也不参加。 符合化各命题并判断哪两个人参加了比赛。	浩赛 ,	下列判

答案

1.答案

(1) B (2) D (3) A (4) B (5) B (6) D

2.答案

(1) 是 (2) 是

3.答案

- (1) $P \rightarrow Q$ 或者 $\neg Q \rightarrow \neg P$
- (2) 0 或者 F 或者 (F∧Q) ∨(F∧¬P)
- (3) $\neg Q \rightarrow P$
- (4) $\prod_{0,1,2,3,4,5,7}$

4.

证明:因为 $\{\neg, \lor\}$ 是最小全功能联结词组,且 $\neg(\neg A \xrightarrow{c} B) \Leftrightarrow \neg A \to B \Leftrightarrow A \lor B$,故 $\{\neg, \xrightarrow{c}\}$ 是全功能联结词组..

由公式的定义可知,仅用一元联结词是不能表示二元联结词的,所以{¬}不是全功能联结词组..

若{--→}是全功能联结词组,则

$$\neg P \Leftrightarrow P \xrightarrow{c} (P \xrightarrow{c} \dots (P \xrightarrow{c} \dots) \dots)$$

对 P 指派为 F,则等价式左边为 T,右边为 F,矛盾..

5.

 $\sqrt{2}$ 是有理数或无理数。 若 $\sqrt{2}$ 是有理数,则 2 能整除 3。 若 $\sqrt{2}$ 是无理数,则 $\sqrt{3}$ 也是无理数。 而 2 不能整除 3。 所以 $\sqrt{2}$ 和 $\sqrt{3}$ 都是无理数。.

P: $\sqrt{2}$ 是有理数. Q: $\sqrt{2}$ 是无理数. R: 2 能整除 3. S: $\sqrt{3}$ 是无理数.

前提: $P \nabla Q$, $P \rightarrow R$, $Q \rightarrow S$, $\neg R$

结论: Q^S

 $(1) P \rightarrow R P$

或者(1) P→R P

 $(2) \neg R$ P

P $(2) \neg R$

 $(3) \neg P$ T(1)(2)

 $(3) \neg P$ T(1)(2)

 $(4) P \overline{\vee} Q P$

- (4) $P \overline{\vee} Q P$
- $(5) (P \lor Q) \land \neg (P \land Q)$ T(4)
- $(5) \neg (P \leftrightarrow Q) \quad T(4)$

(6) PvQ T(5) (6) $P \leftrightarrow \neg Q$ T(5)

(7) QT(3)(6)

P (8) $Q \rightarrow S$

 $(7) (P \rightarrow \neg Q) \land (\neg Q \rightarrow P)$

(9) S

 $(8) \neg Q \rightarrow P$ T(7)

T(7)(8)(10) $Q \wedge S = T(7)(9)$

- (9) Q T(3)(8) $(10) Q \rightarrow S$ P
- (11) S
- T(9)(10)
- (12) $Q \wedge S = T(9)(11)$

6. 答案

设: A: 主裁判 A 认定。B: 副裁判 B 认定。C: 副裁判 C 认定。D: 成功举起。

则: $(A \land \neg B \land C) \lor (A \land B \land \neg C) \lor (A \land B \land C) \Rightarrow D$

- $S \Leftrightarrow (A \land \neg B \land C) \lor (A \land B \land \neg C) \lor (A \land B \land C)$
 - $\Leftrightarrow (A \land (\neg B \lor B) \land C) \lor (A \land B \land (\neg C \lor C))$
 - \Leftrightarrow (A \land C) \lor (A \land B)
 - $\Leftrightarrow A \land (B \lor C)$
- 故, 简化为 A_\(B_\C) ⇒ D

A	В	С	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

T(6)

- 7.
- A: 甲参加了比赛. B: 乙参加了比赛.
- C: 丙参加了比赛. D: 丁参加了比赛.
- 则 $A \triangledown B$ 或 $(\neg A \land B) \lor (A \land \neg B)$, $C \rightarrow D$, $\neg (B \land D)$ 或 $B \rightarrow \neg D$ 或 $B \uparrow D$ 或 (4分) $(B \overline{\vee} D) \vee (\neg B \wedge \neg D)$ 或 $(\neg B \wedge D) \vee (B \wedge \neg D) \vee (\neg B \wedge \neg D)$, $\neg D \rightarrow \neg A$.

由(1)可知 A 与 B 有且只有 1 个成立

- (a) 若 A 成立
- (1) A P
- $(2) \neg D \rightarrow \neg A \qquad P$
- (3) D T(1)(2)

所以A、D成立,

即甲、丁参加比赛

- (b) 若 B 成立
- (1)B P
- $(2) \neg (B \land D) \quad P$
- $(3) \neg B \lor \neg D$ T(2)
- $(4) \neg D T(1)(3)$
- $(5) \neg D \rightarrow \neg A P$
- (6) $\neg A$ T(4)(5)
- $(7) C \rightarrow D P$
- (8) $\neg C$ T(4)(7)
- (9)¬D∧¬A∧¬C T(4)(6)(8) 即有3人都不去,与题意矛盾

选自往年考试题目 第二章 命题逻辑复习题

1.	选择题		
1)	$\forall x (A(x) \lor \neg B(x)) \to (\forall x A(x) \lor \exists x \neg B(x))$	x))的公式类型为()。	0
	A. 永真式 C. 不可满足式	B. 可满足式 D. 蕴含式	
2)	公式($\forall x$)($F(x) \rightarrow (\exists y)G(x,y)$)的前東京	5式为()。	
	A. $(\forall x)(\exists y)(F(x) \to G(x,y))$	B. $(\exists x)(\exists y)(F(x) \to G$	f(x,y)
	C. $(\forall x)(\forall y)(F(x) \rightarrow G(x,y))$	D. $(\exists x)(\forall y)(F(x) \to 0)$	G(x,y)
3)	对于下列各式:		
	$(1) \exists y \forall x A(x, y)$	(2) $\exists x \forall y A(x, y)$	
	(3) ∀x∃yA(x, y)	(4) ∃y∃xA(x, y)	
	存在着()。		
	A. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$	B. $(2) \Rightarrow (1), (3) \Rightarrow (4)$	
	C. $(1) \Rightarrow (3), (4) \Rightarrow (3)$	D. $(1) \Rightarrow (3) \Rightarrow (4), (2)$	\Rightarrow (4)
4)	下列公式中,不正确的是()。		
	A. $\exists x(A(x) \rightarrow B) \Leftrightarrow \exists xA(x) \rightarrow B$		
	B. $\exists x (B \to A(x)) \Leftrightarrow B \to \exists x A(x)$		
	C. $\exists x(A(x) \lor B) \Leftrightarrow \exists xA(x) \lor B$		
	D. $\exists x (B \lor A(x)) \Leftrightarrow B \lor \exists x A(x)$		
2.	判断题		
1)	$\exists x A(x) \land \exists x B(x) \Rightarrow \exists x (A(x) \land B(x))$.	()
2)	∀x(A(x)∧B(x))∧C(x)是命题。	(()

2) $\forall x (A(x) \land B(x)) \land C(x)$ 是命题。

3) $\exists x \forall y A(x, y) \Rightarrow \forall y \exists x A(x, y)$.

4)	$(\forall x)(\exists y)(P(x,$	$z) \to Q(y)) \leftrightarrow S(x,$	$y) \Leftrightarrow (\forall u)(\exists v)(P(u, $	$z) \rightarrow Q(v)$	\leftrightarrow S(x,	y) (
				()	
5)	$\exists x A(x) \rightarrow B =$	$\Rightarrow \forall x A(x) \rightarrow B$.		()	

3. 填空题

- 1) 设谓词的个体域为 $\{a,b,c\}$, 公式 $\forall x(A(x) \rightarrow B(x))$ 在该域上消去量词后应为
- 2) 谓词公式 $\neg((\forall x)F(x) \rightarrow (\forall y)G(y)) \land (\forall y)G(y)$ 的公式类型为
- 3) 设 A(x): x 是考生, B(x): x 提前进入考场, C(x): x 取得好成绩, D(x,y): x=y。则"有且只有一个提前进入考场的考生未取得好成绩"的符合化形式为

(80)

4. 符号化下面各命题,并给出推理证明。 (07) 为赈灾捐款的每个人都是有爱心的。有爱心的都是品德高尚的。乞丐老王为赈灾捐了款。因此,乞丐老王是品德高尚的。

设 D(x): x 是为赈灾捐款的人,L(x): x 是有爱心的,R(x): x 是品德高尚的。 a: 乞丐老王。

第二章 命题逻辑复习题-答案

选择题: A,A,D,A 判断题: FFT,T,T

填空题:

1) $(A(a) \rightarrow B(a)) \land (A(b) \rightarrow B(b)) \land (A(c) \rightarrow B(c))$

或($\neg A(a) \lor B(a)$) $\land (\neg A(b) \lor B(b)) \land (\neg A(c) \lor B(c))$

2) 不可满足式/矛盾式/永假式

3) $\exists x (A(x) \land B(x) \land \neg C(x))$

 $\land \forall x \ \forall y (A(x) \land B(x) \land \neg C(x) \land A(y) \land B(y) \land \neg C(y) {\rightarrow} \ D(x,y)))$

证明题:

证明: 前提:
$$(\forall x)(D(x) \rightarrow L(x))$$

$$(\forall x)(L(x) \rightarrow R(x))$$

D(a)

结论: R(a)

$$(1) (\forall x)(D(x) \to L(x))$$

P

(2)
$$D(a) \rightarrow L(a)$$

US (1)

(3)
$$(\forall x)(L(x) \rightarrow R(x))$$

P

(4)
$$L(a) \rightarrow R(a)$$

US (3)

(5)
$$D(a) \rightarrow R(a)$$

T(2)(4)

(6)
$$D(a)$$

P

(7)
$$R(a)$$

T(6)(7)

另证:

前提:
$$(\forall x)(D(x) \rightarrow L(x))$$

$$(\forall x)(L(x) \to R(x))$$

结论: $D(a) \rightarrow R(a)$

(1)
$$(\forall x)(D(x) \rightarrow L(x))$$

P

(2)
$$D(a) \rightarrow L(a)$$

US (1)

(3)
$$(\forall x)(L(x) \rightarrow R(x))$$

P

(4)
$$L(a) \rightarrow R(a)$$

US (3)

(5)
$$D(a) \rightarrow R(a)$$

T(2)(4)

选自往年考试题目 第三章 集合与关系复习题

1. 延痒越		
1) 下列关于集合的命题错误的:	是()。	
$A. \{x\} \subseteq \{x\}$	$B. \{x\} \in \{x\}$	
C. $\{x\} \in \{x, \{x\}\}$	D. $\{x\} \subseteq \{x, \{x\}\}$	
2) 下列等式不成立的是()。		
A. $(A \cup B) \times C = (A \times C) \cup (B \cup C)$	B×C)	
B. $(A-B)\times(C-D) = (A\times C)$	$(B \times D)$	
C. $(A-B)\times C = (A\times C)-(B$	×C)	
D. $(A \oplus B) \times C = (A \times C) \oplus (A \times C)$	B×C)	
3) 设R和S都是A上的反对称	r关系,则()也是反对称的。	0
A. $R \oplus S$	B. $R \cup S$	
C. R-S 4) 对任一集合 A, 下式能成立	D. R∘S 的是()。	
A. $A \in P(A)$	B. $\{A\} \in P(A)$	
C. $A \in A - \emptyset$	D. $A \in A \oplus \emptyset$	
5) $ ightharpoonup M = \{x \mid f_1(x) = 0\}, N = \{x\} $	$ f_2(x) = 0$ },则方程 $f_1(x) \cdot f_2(x)$	=0的解是()。
A. $M \cap N$	B. $M \cup N$	
C. M⊕N	D. M-N	
2. 判断题	六松净山港 日 杜入 净	()
1) 集合的对称差运算⊕既满足		
2) 设 A, B, C 为三个集合, 则	$\emptyset A \subseteq B \Leftrightarrow A \times C \subseteq B \times C .$	()
3) n个元素的集合上,可以定	主义 2 ^{n²} 个关系。	()
4) 设 A,B,C 为任意集合,则(A	A – B) ∪ (A – C)= Ø 的充要条件是	$\exists A \subseteq B \cap C$.
		()
5) 设 R 是 A 上的关系,若 R^2 =	=R,则 R 是自反和传递的。	• •
6) 设R和S是集合A上的关系	系,则r(R∪S)=r(R)∪r(S)。	()

3. 填空题

- 1) 给定自然数集合 N 的下列子集: $A=\{1,2,7,8\}$, $B=\{i|i^2<50\}$, $C=\{i|i$ 可被 3 整除且 $0\le i\le 30\}$,则 $B-(A\cup C)=$ 。
- 2) 集合 $A=\{a,b,c\}$ 上关系 R 的关系图如图 1 所示,则 R 的传递闭包 t(R)=______。

图 1

- 3) 设|A|=3,则 A 上有______个对称关系。
- 4) 设 A 是 12 的所有正因子组成的集合,其上的偏序关系为整除关系,则{2,3} 的上界是 。
- 5) 设集合 $A=\{a,b,c\}$,则集合 $S_1=\{\{a,b\},\{b,c\}\}$, $S_2=\{\{a\},\{a,b\},\{a,c\}\}$, $S_3=\{\{a\},\{b,c\}\}$, $S_4=\{\{a,b,c\}\}$, $S_5=\{\{a\},\{b\},\{c\}\}$ 和 $S_6=\{\{a\},\{a,c\}\}$ 中是 A 覆盖的有 ; 是 A 划分的有 _____。
- 4. 设 R 是集合 S 上的关系, S'是 S 的子集, 定义 S'上的关系 R'如下: $R' = R \cap (S' \times S')$ 。

证明:如果 R 是 S 上的偏序关系,那么 R'是 S'上的偏序关系。

5. 下图给出了集合{1,2,3,4}上的一个偏序关系图,请画出其哈斯图,并说明是 否是全序,是否是良序。

6. 设 R 是二元关系,S={<a,b>|存在某个 c, 使得<a,c>∈ R 且<c,b>∈ R}。 证明: 如果 R 是等价关系,则 S 也是等价关系。

第三章 集合与关系 复习题答案

选择题:

(1) B (2) B (3) C (4) A (5) B

判断题:

TFTTFT

填空题

- (1) $\{4, 5\}$
- (2) t(R)=R
- (3) 64, 2^6
- (4) {6, 12}
- (5) s1, s2, s3, s4, s5; s3, s4, s5

4

证明: ①自反性: 对任意的 $a \in S'$, $\langle a,a \rangle \in S' \times S'$ 。又因为 S'是 S 的子集,所以 $\langle a,a \rangle \in S$,因为 R 是自反的,所以 $\langle a,a \rangle \in R$,因此 $\langle a,a \rangle \in R \cap (S' \times S') = R'$ 。.

- ②反对称性:对任意的 $a,b\in S$ '且 $a\neq b$,若 $< a,b>\in R$ ' $\Rightarrow < a,b>\in R\cap (S'\times S')$,因为 R 是反对称的,故必有 $< b,a>\notin R$,所以 $< b,a>\notin R$ '。.
- ③传递性:对任意的 a,b,c∈S',
- $\langle a,b\rangle\in R'\wedge\langle b,c\rangle\in R'$
- $\Rightarrow <a,b> \in R \cap (S' \times S') \land <b,c> \in R \cap (S' \times S')$
- $\Rightarrow <a,b>\in R \land <b,c>\in R \land <a,b>\in (S'\times S') \land <b,c>\in (S'\times S')$
- ⇒<a,c>∈R∧a∈S'∧b∈S'∧c∈S' (可省略)
- ⇒ <a,c> ∈ R ∧ <a,c> ∈ S'×S'(因为 R 是偏序关系, S'×S'是全域关系, 都满足传递性)
- $\Rightarrow <a,c> \in R \cap (S' \times S')$
- $\Rightarrow < a,c > \in R'$.

上述证明过程中"⇒"可用文字叙述替代。

2 ¶
3 ¶
1 ¶

该篇序关系是全序, 良序。

6.

1) 设 R 是 A 上的等价关系。任取 x, $x \in A \Rightarrow \langle x, x \rangle \in R$ (因为 R 在 A 上自反) $\Rightarrow \exists x (\langle x, x \rangle \in R \land \langle x, x \rangle \in R) \Rightarrow \langle x, x \rangle \in S$ S 在 A 上自反。

2) 任取<x,y>,

 $\langle x,y \rangle \in S \Rightarrow \exists c(\langle x,c \rangle \in R \land \langle c,y \rangle \in R)$ $\Rightarrow \exists c(\langle c,x \rangle \in R \land \langle y,c \rangle \in R)$ (因为R在A上对称) $\Rightarrow \langle y,x \rangle \in S$ S 是对称的。

3) 任取<x,y>, <y,z>

 $\langle x,y \rangle \in S \land \langle y,z \rangle \in S$ $\Rightarrow \exists c(\langle x,c \rangle \in R \land \langle c,y \rangle \in R) \land \exists d(\langle y,d \rangle \in R \land \langle d,z \rangle \in R)$ $\Rightarrow \langle x,y \rangle \in R \land \langle y,z \rangle \in R$ (因为R在A上传递) $\Rightarrow \langle x,z \rangle \in S$ S 是传递的。

选自往年考试题目 第四章 集合与关系复习

1. 选择题

1. 及以干人区	
1) 设fog是复合函数,则以下	·说法正确的是哪些()。
(1) 如果fog是满射的,	则 f 是满射的。
(2) 如果f∘g是满射的,	则g是满射的。
(3) 如果fog是入射的,	则 f 是入射的。
(4)如果fog是入射的,	则g是入射的。
A. (1) 和 (3) 成立	B. (2) 和 (4) 成立
C. (1) 和(4) 成立	D. (2) 和 (3) 成立
射。	= Y , 则 f: X→Y 是入射的,当且仅当它是一个满 () 的函数,则 f∩g 也是从 X 到 Y 的函数。 ()
3. 填空题	
1) 假定 f: A→B, 并定义一个i	函数 g: B \rightarrow P(A),对于 b \in B,g(b)={x \in A f(x)=b}。
如果f是A到B的满射,则g	是(入射、满射、双射)。

答案:

- 1. C
- 2. 错, 对,
- 3. 入射

选自往年考试题目 第五章 复习题

选择题		
(1) 在	自然数集N上,下	列定义的运算中不可结合的只有。
	A. $a*b=min\{a,b\}$	
	B. $a*b = a+b$	
	• •	o) (a, b 的最大公约数)
	D. $a*b = a \pmod{b}$))
(2) 存在	在阶数为的群	不是阿贝尔群。
	A. 1	
	C. 3	D. 6
(3) 设约	-	nin{x,y},则 <g, *="">是</g,>
	A. 广群	
	C. 独异点	
		{x x∈R ∧x>0},*是数的乘法运算,< R ⁺ , *>是一个群,
则		的乘法运算构成该群子群的是。
	A. { R 中的有理	!数} B.{ R ⁺ 中的无理数}
(5) 沿		数} D. {1,2,3} nax{x,y},则 <g, *="">是</g,>
(3) 区。	桌音 G=N,x**y=m A. 广群	
	C. 独异点	
(6) 代	数系统<{命题},∨	
	A. T	
	C. F	
(7) 在	实数集合 R 上,下	列定义的运算中不存在幺元的只有。
	A. a*b=a+b	
	B. $a*b = x-y $	
	C. $a*b = max\{x,$	y}
	D. $a*b = a \times b$	
(8) 代	数系统<{命题},/	、>的幺元是。
	A. T	B. 不存在
	C. F	•
(9)	<g, *="">的运算表</g,>	長中的每一行或每一列都是 G 的元素的一个置换。
	A. 广群	B.半群

C. 独异点

D. 群

判断题

- (1) 在实数集合上定义二元运算 X*Y=XY-2X-2Y+6,则*满足结合律。
- (2) 群中可能有零元。
- (3) 循环群的任一子群都是循环群。
- (4) 一个循环群的生成元是唯一的。
- (5) 群中除幺元外,不含其他等幂元。

填空题

- (1) 若*为集合 A 上的二元运算,它的幺元也是零元,则 A 的基数是。
- (2) S 为非空集合, P(S)是 S 的幂集,则代数系统<P(S), U>的幺元是____,零元是。
- (3) 设<Z₆, +₆>是一个群,这里+₆是模 6 加法,Z₆={[0],[1],[2],[3],[4],[5]},写出<Z₆, +₆>的所有子群_______,_________,
- (5) 对于下面的集合 G 和运算•,循环群<G, •>的生成元为____。

$$G = \{1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 - i\sqrt{3}}{2}\}$$

$$= \{1, \varepsilon_1, \varepsilon_2\} \ \text{为} x^3 = 1 \text{的解}$$

$$\begin{array}{c} \cdot & 1 \quad \varepsilon_1 \quad \varepsilon_2 \\ \hline 1 & 1 \quad \varepsilon_1 \quad \varepsilon_2 \\ \varepsilon_1 \quad \varepsilon_1 \quad \varepsilon_2 \quad 1 \\ \varepsilon_2 \quad \varepsilon_2 \quad 1 \quad \varepsilon_1 \end{array}$$

证明题

- (1) 设<G *>是一个群, x∈G。定义: a∘b=a*x*b, ∀a, b∈G。证明<G, ∘>是群。
- (2) 设<G, >是群,对任一 $a \in G$,令 $H = \{y \mid y^* \ a = a^* \ y, y \in G \}$,证明<H, *>是<G, *>的子群。
- (2) 设 $G=\{\varphi \mid \varphi: x \to ax+b, \ \text{其中 } a,b \in R \ \text{且 } a \neq 0, \ x \in R\}, \ \Box$ 元运算o是映射的复合。证明< G, o >是一个群。

答案:

选择题

- (1) D
- (2) D
- (3) B
- (4) B
- (5) C
- (6) A
- (7) C
- (8) A
- (9) D

判断题

- (1) 是
- (2) 否
- (3) 是
- (4) 否
- (5) 否

填空题

- (1) <u>1</u>
- (2) ϕ , S
- $(3) \quad \langle Z_6, +_6 \rangle, \ \langle \{[0]\}, +_6 \rangle, \ \langle \{[0], [3]\}, +_6 \rangle, \ \langle \{[0], [2], [4]\}, +_6 \rangle$
- (4) \underline{S} , $\underline{\phi}$
- (5)

$$\varepsilon_1, \varepsilon_2$$

证明题

- (1) 要证。是 G 群,需证封闭性、结合性成立,同时有单位元,每个元素有逆元。
 - (a) ∀a, b∈G, x∈G, 有 a·b=a*x*b∈G。因此运算是封闭的。
 - (b) $\forall a, b, c \in G$,有 $(a \circ b) \circ c = (a * x * b) * x * c = a * x * (b * x * c) = a \circ (b \circ c)$,因此,运算是可结合的。
 - (c) x^{-1} 是<G, >>的单位元。 $\forall a \in G$,有 $a_{\circ} x^{-1} = a^* x^* x^{-1} = a; \quad x^{-1} \circ a = x^{-1} * x^* a = a.$
 - (d) $\forall a \in G$, $x^{-1}*a^{-1}*x^{-1}$ 是 a 在<G, \circ 中的逆元。 $a \circ (x^{-1}*a^{-1}*x^{-1}) = a^*x^*x^{-1}*a^{-1}*x^{-1} = x^{-1}$ $(x^{-1}*a^{-1}*x^{-1}) \circ a = x^{-1}*a^{-1}*x^{-1}*x^{*a} = x^{-1}$

- (2) (a) 因为 H={y| y* a= a* y, y∈G}, 有 H⊆G。又<G,>是群,所以*在 H 中满足结合性。
 - (b) 对于任意的 x,y∈H, 任意的 a∈G, 有(x*y)*a= x*y*a=x*(y*a)=x*a*y=a*x*y=a*(x*y),所以, x*y∈H, *关于 H 是封闭的。
 - (c) 因为 e*a=a*e, 所以 e∈H, 即存在幺元。
 - (d) 对于任意的 x∈H, 在 G 上有 x*x⁻¹=x⁻¹*x=e, 所以 a*x⁻¹=(x⁻¹*x)*(a*x⁻¹)=x⁻¹*(x*a)*x⁻¹ =x⁻¹*a*x*x⁻¹=x⁻¹*a
 因此, a*x⁻¹=x⁻¹*a。即 x⁻¹∈H。
 - 综上所述,<H, *>是<G, *>的子群。
- (3) (a) 对于任意的 $\phi_1, \phi_2 \in G$,设 $\phi_1(x) = ax_1 + b_1, a_1 \neq 0, \phi_2(x) = ax_2 + b_2, a_2 \neq 0$,由于 $\varphi_1 \circ \varphi_2(x) = \varphi_1(\varphi_2(x)) = \varphi_1(a_2x + b_2) = a_1(a_2x + b_2) + b_1$ $= (a_1a_2)x + (a_1b_2 + b_1)$ $a_1a_2 \in R, \quad a_1b_2 + b_1 \in R \coprod a_1a_2 \neq 0, \quad \text{所以} \varphi_1 \circ \varphi_2 \in R_\circ$
 - (b) 对于任意的 $\varphi_1, \varphi_2, \varphi_3 \in G$, 有 $(\varphi_1 \circ \varphi_2) \circ \varphi_3(x) = (\varphi_1 \circ \varphi_2)(\varphi_3(x)) = (\varphi_1(\varphi_2(\varphi_3(x)))$ 而 $\varphi_1 \circ (\varphi_2 \circ \varphi_3)(x) = \varphi_1(\varphi_2 \circ \varphi_3)(x) = (\varphi_1(\varphi_2(\varphi_3(x)))$ 所以 $(\varphi_1 \circ \varphi_2) \circ \varphi_3 = \varphi_1 \circ (\varphi_2 \circ \varphi_3)$
 - (c) 幺元为 ϕ_e ∈G,使 ϕ_e (x)=x。这是因为,对于任意的 ϕ ∈G,设 ϕ (x)=ax+b,

则

$$\varphi_e \circ \varphi(x) = \varphi_e(ax+b) = ax+b,$$
 $\varphi \circ \varphi_e(x) = \varphi(x) = ax+b,$
所以, $\varphi_e \circ \varphi(x) = \varphi \circ \varphi_e(x).$

(d) 对于任意的 ϕ ∈G,设 ϕ (x)=ax+b,a≠0,于是存在 ϕ -1∈G,使得

$$\varphi^{-1}(x) = \frac{1}{a}x - \frac{b}{a}$$
, 且有
$$\varphi \circ \varphi^{-1}(x) = \varphi(\varphi^{-1}(x)) = \varphi(\frac{1}{a}x - \frac{b}{a}) = a(\frac{1}{a}x - \frac{b}{a}) + b = x$$

$$\varphi^{-1} \circ \varphi(x) = \varphi^{-1}(ax + b) = \frac{1}{a}(ax + b) - \frac{b}{a} = x$$
所以, $\varphi \circ \varphi^{-1} = \varphi^{-1} \circ \varphi = \varphi_{-1} \circ \varphi = \varphi_{-1$

选自往年考试题目 第七章 复习题

1	选择题
1.	从时开

1) 设 G = <V, E>为无环的无向图, |V|=6, |E|=16, 则 G 是 ()。

A. 完全图

B. 零图

C. 简单图

D. 多重图

2) 连通图 G 是一棵树当且仅当 G 中()。

A. 有些边不是割边

B. 每条边都是割边

C. 无边割集

D. 每条边都不是割边

3) 对于任意的图 G,有 (),其中 x(G)为图 G 的最小着色数, $\triangle(G)$ 为图 G 的最大度。

A. $x(G) \leq \Delta(G)+1$

B. $x(G) \ge \triangle(G)+1$

 $C. x(G) < \Delta(G)+1$

D. $x(G) > \triangle(G)+1$

4) 下列图的顶点度数序列哪个可以图解为一个简单图()

A. (5,4,4,4,2,1)

B. (5,4,3,2,2)

C.(3,3,3,1)

D. (4,4,3,3,2,2)

5) 设图 G 如图 1 所示,下列哪个结点集合不是点割集()

A. $\{v_1, v_4\}$

B. $\{v_2, v_4\}$

C. $\{v_3\}$

D. $\{v_5\}$

2. 判断题

2) 仅当 n≤4 时, K_n为平面图。

3) 偏序集合的哈斯图一定是一个连通图。

()

5) 当且仅当 e 是 G 的割边时, e 才在 G 的每棵生成树中。

()

3. 填空题

- 1) 请写出所有非同构的五阶树的度数序列 _____。
- 2) n 阶零图、二部图及完全图 K_n 的着色数分别为_____。
- 3)6个结点5条边的所有可能不同构的无向简单连通图有_____个。
- 4) 图 G 如图 2 所示,则 G 中从结点 v_3 到 v_1 的长度不超过 3 的路的数目为

图 2

- 5) 6 阶所有非同构的无向树有 个。
- 7) 已知图 G 如图 3 所示,图 G 的点连通度为_____, 边连通度为____。

4. 有向图 D =
$$\langle V, E \rangle$$
的邻接矩阵为 A =
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
, 请问

 $D + v_1$ 到 v_3 长度为 2 的通路数是多少? v_1 到 v_3 长度为 3 的通路数是多少? v_1 到 v_3 长度为 4 的通路数是多少?

- **5.** 已知有 9 个人 $v_1, v_2, v_3, ... v_9$,其中 v_1 和两个人握过手, v_2, v_3, v_4, v_5 各和 3 个人握过手, v_6 和 4 个人握过手, v_7, v_8 各和 5 个人握过手, v_9 和 6 个人握过手。试证明 9 个人中一定可以找出 3 个人相互握过手。
- **6.** 试用图论的方法证明:在任何两个或两个以上人的组内,存在两个人在组内有相同个数的朋友。
- 7. 设 G 是 n (n≥11) 阶无向简单图,证明 G 或 G 的补图必为非平面图。
- 8. 设 G 是连通简单平面图,结点数为 v (v≥3),边数为 e,面数为 r,则 r≤2v-4。
- 9. 证明:小于30条边的平面简单图有一个结点度数小于等于4。
- 10. 证明:在6个结点12条边的联通平面的简单图中,每个面用3条边围城。

第7章复习题答案

答案:

1. 选择题: D, B, A, D, A

2. 判断题: 对,错,对

3. 填空题:

(1) (11222) (11123) (11114)

(2) 1,2, n

(3)6个

(4) 4个

(5)6个

(6) 12 个

(7) 2,2

4.

$$A^{2} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A^{3} = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad A^{4} = \begin{bmatrix} 1 & 2 & 6 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

由 A^2 中 a_{13} =3 可知, v_1 到 v_3 长度为 2 的通路有 3 条。. v_1 到 v_3 长度为 3 的通路有 4 条。. v_1 到 v_3 长度为 4 的通路有 6 条。.

5

证明: (1) 以 $v_1,v_2,v_3,...v_9$ 为结点, v_i 与 v_j 握过手就连一条边(v_i,v_j),得简单图 G。根据题意有 $d(v_1)$ =2, $d(v_2)$ = $d(v_3)$ = $d(v_4)$ = $d(v_5)$ =3, $d(v_6)$ =4, $d(v_7)$ = $d(v_8)$ =5, $d(v_9)$ =6。

(2) 与 v_9 邻接的点有 6 个,其中必有一点 v_k 为 v_6, v_7, v_8 之一,因此有 $d(v_k) \ge 4$ 。 与 v_9 邻接的其余 5 个点中必存在一点 v_h 与 v_k 相邻(如图 1),否则有 $d(v_k) \le 8$ -5=3,与已证结论 $d(v_k) \ge 4$ 矛盾。

由此 v₉, v_h,v_k三个人相互握过手。

6.

证明:把每个人当作图中的结点,两个人有朋友关系则两点相邻。显然该图是简单图。问题就转化为证明"至少有两个结点的简单图有两个相同度数的结点。"

因为每个结点仅仅能够与另外 n-1 个结点邻接,所以每个结点的度数小于等于 n-1。由于度数是 0 的结点是孤立结点,而度数是 n-1 的结点与其它所有结点都邻接,所以 0 和 n-1 度的结点在图 G 中不能同时出现。

因此在 G 中可以出现的度数应该分成以下两种情况:

(1) 0,1,2,...,n-2 (2) 1,2,3,...,n-1

无论哪种情况 n 个结点最多有 n-1 种不同的度数,因此,一定有两个或两个以上的结点有相同的度数。

7. 证明:用反证法.假设 G 与 G 的补图都是平面图。 因为 G 与 G 的补图的边数中至少有一个≥Kn 边数的一半。不妨设 G 的边数

 $m \ge n(n-1)/4$.

由定理3有

 $n(n-1)/4 \le m \le 3n-6$ 即

 n^2 -13n+24 ≤ 0 , 解此不等式, 得到

2 < n < 11 这与 n ≥ 11 相矛盾。

故G或G补图为非平面图。

8. 证:因为 G 是结点数 v ≥ 3 的简单连通平面图,所以 e ≤ 3v − 6 ,

- (1) e=2 时, v=3, 则 r=1, 2v-4=2, 故 r≤2v-4。
- (2) $e \ge 3$ 时,则连通简单平面图的每个面至少有 3 条边围成,于是 $3r \le 2e \le 2(3v-6)$, 故 $r \le 2v-4$ 。
- 9. 证明 使用反证法。假设每个结点的度数 > 4,即 $deg(v_i)>=5$ 。因为 $2e=\sum_{i=4} deg(v_i)>=5v$,即 v <= 2e/5,由于 e <= 3v-6,代入后得到 e <= 6e/5-6,既有 e>=30,与边数小于 30 相矛盾。
- 10. 证明: v=6,e=12,由欧拉公式 r=2+e-v=8。因为 E=1 deg $(r_i)=2e=24$ 而 $\deg(r_i)>=3$,故必有 $\deg(r_i)=3$,即每个面用 3 条边围城。