

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Seunghyun Lee*, Byung Cheol Song Department of Electrical and Computer Engineering, Inha University, Republic of Korea

Introduction

Search-based filter pruning

- Search the best sub-network with a given FLOPS
- Supernet: network trained to have sorted filters according to its importance

Problem definition

- (1) Validation loss does not represent its potential
- (2) Fine-tuning for the pruned network is essential but has not been researched so far

Key ideas

- (1) Define a novel measurement for sub-network evaluation
- (2) Distill knowledge from the search phase and utilze it in both search and fine-tuning phase

Advantages

- EKG needs only negligible computational cost
- → SOTA performance using acceptable GPU hours

Methods

- Accurate potential performance evaluation (1)
- The higher generalization performance, The smoother loss landscape
- Hessian requires to check smoothness, which is too costy
- → Utilze **knowledge distillation** as and indirect solution

$$\mathcal{R}(\Theta_i, \phi_{i,l}) = -\mathcal{L}(\mathcal{D}^{val}; \Theta_i \setminus \phi_{i,l}) - \mathcal{L}(\mathcal{T}_i; \Theta_i \setminus \phi_{i,l})$$

- Search with ensemble knowledge guidance (2)
 - Define interim sub-networks, i.e., by-products of iterative search process as teacher networks
 - Store and ensemble teacher networks knowledge into memory bank
 - → Give a gentle guidance by ensemble knowledge with a negligible cost

$$\mathcal{T}_i = \frac{1}{i+1} \sum_{j=0}^{i} \mathcal{O}(\mathcal{D}^{val}; \Theta_j)$$

- ◆ Fine-tuning with ensemble knowledge guidance (2)
 - Sample some of interim sub-networks from the sub-network seearch phase

$$\mathcal{M} = \{ \mathbf{M}_k = \mathcal{O}(\mathcal{D}^{train}, \mathcal{T}_k) | 1 \le k \le K \}$$

$$\mathcal{T}_k = \underset{\Theta_i}{\operatorname{argmin}} \left| \frac{K - k}{K} \mathcal{L}(\Theta^*) + \frac{k}{K} \mathcal{L}(\Theta_0) - \mathcal{L}(\Theta_i) \right|$$

- In order to prevent overfitting due to the fixed teacher, contrastive learning strategy is adopted
- → Make augmented features clustered into the fixed teacher knowledge

$$\mathcal{L}^{ft} = \sum_{a=1}^{2} \mathcal{L}(\mathcal{D}^{train}, \mathcal{A}_a; \Theta^*) + \mathcal{L}(\overline{\mathbf{M}}; \Theta_i \setminus \phi_{i,l}) \qquad \overline{\mathbf{M}} = \mathbb{E} \left\{ \mathbf{M}_k \middle| \begin{array}{c} 1 \leq k \leq K \\ \mathcal{L}(\mathbf{M}_k) \leq \mathcal{L}(\mathcal{D}^{train}; \Theta^*) \end{array} \right.$$

Overall algorithm

Experimental results

Feasibility check for the loss landscape smoothness

Comparison of potential loss vs validation loss and condition number

Score	L_1 [13]] FPGM [<u>16</u>] GBN [44] EKG				
Validation loss	0.1569	0.1066	0.0710	0.0713				
CIFAR10 Condition number	r 0.4078	0.1461	0.0414	0.0211				
Test accuracy	93.57	93.57	93.70	$\boldsymbol{93.85}$				
Validation loss	1.2050	0.7635	0.6816	0.7733				
CIFAR100 Condition number	r 0.2535	0.0838	0.0747	0.0649				
Test accuracy	71.43	71.60	71.60	71.82				
					L_{r}	FPGM	GBN	

Comparison of EKG and conventional search manner

Ablation study

Teacher			ResNet-56		MobileNet-v2			
Search	Fine-tune	CIFAR10	CIFAR100	GPU hours	CIFAR10	CIFAR100	GPU hours	
Baseline		93.84	72.62	0.44	94.21	76.07	1.83	
None	None	$93.78 \ (\pm 0.07)$	$71.63 \ (\pm 0.21)$	0.19 / 0.50	$93.69 (\pm 0.06)$	$74.27 (\pm 0.18)$	0.31 / 1.35	
Single	None	$93.54 \ (\pm 0.09)$	$71.66 \ (\pm 0.17)$	0.21 / 0.50	$93.73 (\pm 0.04)$	$74.10 \ (\pm 0.12)$	0.35 / 1.35	
Ensemble	None	$93.85 (\pm 0.10)$	$71.82 \ (\pm 0.20)$	0.21 / 0.50	$93.89 (\pm 0.04)$	$74.53 \ (\pm 0.16)$	0.35 / 1.35	
Ensemble	Single	$94.02 \ (\pm 0.08)$	$72.62 \ (\pm 0.15)$	0.22 / 0.88	$94.44 (\pm 0.09)$	$76.11 \ (\pm 0.15)$	0.38 / 2.36	
Ensemble	Ensemble	94.09 (± 0.07)	72.93 (± 0.16)	$0.22 \ / \ 0.68$	$ 94.52 \ (\pm 0.05) $	76.29 (± 0.17)	0.38 / 1.64	

Performance comparison of ResNet-famility trained on ImageNet

