Zadanie 1.

W pewnym jednorodnym portfelu składającym się z 200 ryzyk pojedyncze ryzyko ma następujące charakterystyki:

- przy danej wartości λ parametru ryzyka Λ łączna wartość szkód ma (warunkowo) złożony rozkład Poissona
- z warunkowa oczekiwana liczba szkód równa λ
- i z warunkowym rozkładem wartości pojedynczej szkody Y o gęstości:

$$f_{Y|\Lambda=\lambda}(y) = \frac{1}{\Gamma(2+\lambda)} y^{1+\lambda} e^{-y}, \quad y>0$$

Każde z 200 ryzyk w portfelu zostało niezależnie wylosowane z populacji ryzyk, w której rozkład parametru ryzyka Λ dany jest gęstością:

$$g_{\Lambda}(\lambda) = \frac{20^4}{\Gamma(4)} \lambda^3 e^{-20\lambda}, \quad \lambda > 0$$

Oczekiwana łączna wartość szkód z tego portfela wynosi:

- (A) 88
- (B) 90
- (C) 92
- (D) 94
- (E) 96

Zadanie 2.

Rozważamy zdyskontowaną na moment początkowy wartość składek pomniejszoną o wartość szkód w klasycznym procesie nadwyżki ubezpieczyciela:

$$B(t) = c \frac{1 - \exp(-\delta t)}{\delta} - \sum_{k:T_k \le t} \exp(-\delta T_k) Y_k$$
, gdzie:

- *ct* jest sumą składek które napłynęły do momentu *t*,
- T_k, Y_k to moment wystąpienia i wartość bieżąca k-tej szkody
- $Y_1, Y_2, Y_3,...T_1, (T_2 T_1), (T_3 T_2),...$ są niezależne
- $T_1, (T_2 T_1), (T_3 T_2), \dots$ mają rozkład wykładniczy o wartości oczekiwanej 0.01
- Y_1, Y_2, Y_3, \dots mają rozkład o momentach równych: $E(Y_1) = 1$, $E(Y_1^2) = 2$
- $\delta = 4\%$ to zakładana przy dyskontowaniu intensywność oprocentowania

Dobierz stałą *c* tak, aby współczynnik zmienności (odchylenie standardowe podzielone przez wartość oczekiwaną) zmiennej:

$$B(\infty) = \frac{c}{\delta} - \sum_{k=1}^{\infty} \exp(-\delta T_k) Y_k$$

Wyniósł 1/10.

- (A) 110
- (B) $100 + 10\sqrt{2}$
- (C) 120
- (D) $100 + 20\sqrt{2}$
- (E) 140

Wskazówka: zauważ, że $\sum_{k=1}^{\infty} \exp(-\delta T_k) Y_k \approx \sum_{k=1}^{\infty} \exp(-\delta hk) X_k^{(h)}$, gdzie $X_1^{(h)}, X_2^{(h)}, X_3^{(h)}, \dots$

to zmienne i.i.d. o rozkładzie złożonym Poisson $(\lambda h, F_{Y})$, oraz iż błąd tego przybliżenia znika gdy $h \to 0$.

Zadanie 3.

W pewnym ubezpieczeniu proces generowania szkód przez ubezpieczonego charakteryzującego się wartością λ parametru ryzyka Λ jest procesem Poissona o intensywności λ (rocznie).

Zakładamy, że rozkład wartości parametru ryzyka Λ w populacji wszystkich ubezpieczonych dany jest na półosi dodatniej gęstością:

•
$$f_{\Lambda}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} \exp(-\beta \lambda)$$
, gdzie $(\alpha, \beta) = (5, 20)$

Załóżmy, że tak w pierwszym jak i w drugim roku mamy w portfelu po 200 umów ubezpieczeniowych. Jednak 100 losowo dobranych ubezpieczonych z pierwszego roku kontynuuje ubezpieczenie w drugim roku, zaś pozostałych stu z pierwszego roku nie kontynuuje w roku następnym, zaś w portfelu w roku drugim w ich miejsce pojawia się 100 nowych, niezależnie dolosowanych z populacji. W rezultacie liczba szkód w roku pierwszym wynosi:

- $N_1 = N_1^P + N_1^T$, zaś w roku drugim jest równa:
- $N_2 = N_2^P + N_2^T$,
- gdzie N_1^P oraz N_2^P to liczby szkód wygenerowane przez kontynuatorów w roku pierwszym i drugim, odpowiednio,
- zaś N_1^T oraz N_2^T to liczby szkód wygenerowane przez ubezpieczonych którzy w naszym portfelu pojawili się wyłącznie w roku pierwszym lub wyłącznie w drugim, odpowiednio.

Przy tych założeniach $var(N_1 + N_2)$ wynosi:

- (A) 102.5
- (B) 103.75
- (C) 105
- (D) 106.25
- (E) 107.5

Zadanie 4.

Rozważamy klasyczny proces nadwyżki ubezpieczyciela, a więc proces:

$$U(t) = u + (1+\theta)\lambda\mu_{Y}t - S_{N(t)}$$
, gdzie:

- N(t) jest procesem Poissona z parametrem intensywności λ ,
- $S_n = \sum_{i=1}^n Y_i$ (lub zero, jeśli n = 0)
- $Y_1, Y_2, Y_3,...$ to niezależne zmienne losowe o tym samym rozkładzie danym na półosi dodatniej gęstością: $f_Y(y) = \frac{\alpha v^{\alpha}}{(v+y)^{\alpha+1}}$.

Wiemy, że parametry procesu wynoszą:

•
$$\alpha = 2$$
, $v = \frac{1}{2}$ oraz $\theta = \frac{1}{5}$.

Prawdopodobieństwo ruiny $\Psi(u)$, a więc zdarzenia:

•
$$\exists T > 0$$
 takie, że $U(T) < 0$

jest funkcją nadwyżki początkowej u. Wiadomo, że dla odpowiednio dobranych parametrów a,b,c funkcja ta spełnia zależność:

$$\lim_{u\to\infty} \Psi(u)(1+au)^b = c$$

(A)
$$(a,b,c) = (2,1,5)$$

(B)
$$(a,b,c) = \left(\frac{1}{2},1,5\right)$$

(C)
$$(a,b,c) = (2,2,5)$$

(D)
$$(a,b,c) = \left(\frac{1}{2}, 2, 5\right)$$

(E)
$$(a,b,c) = (1,2,5)$$

Zadanie 5.

Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci:

$$\bullet \quad U_n = u + c \cdot n - S_n \,, \qquad n = 0, 1, 2, \dots, \qquad S_n = W_1 + W_2 + \dots + W_n \,,$$

gdzie zmienne W_1, W_2, W_3, \dots są niezależne i mają ten sam rozkład dany na odcinku (0,2) gęstością:

$$f_W(x) = \frac{15}{16}x^2(2-x)^2$$

Jeśli parametry procesu wynoszą:

•
$$u = 0$$
, $c = 1$

to prawdopodobieństwo ruiny w horyzoncie dwóch okresów czasu (a więc prawdopodobieństwo zdarzenia, iż $U_1 < 0$ lub $U_2 < 0$) wynosi:

- $(A) \qquad \frac{1}{2}$
- (B) $\frac{9}{16}$
- (C) $\frac{5}{8}$
- (D) $\frac{11}{16}$
- (E) $\frac{3}{4}$

Zadanie 6.

W pewnym ubezpieczeniu liczba szkód, które w ciągu t lat wygeneruje ubezpieczony charakteryzujący się wartością λ parametru ryzyka Λ jest procesem Poissona o intensywności λ (rocznie).

Zakładamy, że rozkład wartości parametru ryzyka Λ w populacji wszystkich ubezpieczonych (tak naszych, jak i tych, którzy ubezpieczają się u konkurentów) dany jest na półosi dodatniej gęstością:

•
$$f_{\Lambda}(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} \exp(-\beta \lambda)$$
, gdzie $(\alpha, \beta) = (3, 9)$

Załóżmy, że w pierwszym roku tak nasza firma, jak i firmy konkurencyjne proponowały wszystkim ubezpieczenie w zamian za tę samą składkę. W drugim roku nasza firma kontynuuje praktykę z roku poprzedniego, natomiast konkurenci wprowadzili składki niższe od przeciętnej za bezszkodowy przebieg ubezpieczenia w pierwszym roku, zaś wyższe od przeciętnej odpowiednio dla ubezpieczonych, którzy mieli w pierwszym roku szkody. Zakładając, że wszyscy ubezpieczeni wybiorą tego ubezpieczyciela, który jest dla nich tańszy, oczekiwana częstotliwość szkód w drugim roku (w przeliczeniu na jednego ubezpieczonego) w naszej firmie wzrośnie w stosunku do pierwszego roku o:

- (A) 42,6%
- (B) 26,9%
- (C) 19,1%
- (D) 16,7%
- (E) 10,0%

Zadanie 7.

 $N, Y_1, Y_2, Y_3,...$ to niezależne zmienne losowe, N ma rozkład Poissona z wartością oczekiwaną równą 10, zaś $Y_1, Y_2, Y_3,...$ mają identyczny rozkład ciągły określony na półosi dodatniej.

Niech:

• $M = \max\{Y_1, Y_2, ..., Y_N\}$, przy czym jeśli N = 0, to przyjmujemy M = 0.

Niech dla dowolnej liczby $\alpha \in (0, 1)$:

- m_{α} oznacza taką liczbę, że $\Pr(M \le m_{\alpha}) = \alpha$, i analogicznie:
- y_{α} oznacza taką liczbę, że $Pr(Y_1 \le y_{\alpha}) = \alpha$

Niech α^* oznacza taką wartość liczby α , dla której zachodzi:

$$y_{\alpha} = m_{0,95}$$

Liczba α^* z dobrym przybliżeniem wynosi:

- (A) 0,975
- (B) 0,980
- (C) 0,985
- (D) 0,990
- (E) 0,995

Zadanie 8.

Zmienne losowe $N, Y_1, Y_2, Y_3,...$ są niezależne, przy czym:

- $Y_1, Y_2, Y_3,...$ mają identyczny rozkład taki, że: $Pr(Y_1 \le 100) = \frac{5}{6}$
- N ma rozkład ujemny dwumianowy:

$$Pr(N = k) = {r + k - 1 \choose k} (1 - q)^r q^k, \qquad k = 0,1,2,...$$

z parametrami
$$(r,q) = \left(3, \frac{6}{10}\right)$$
.

Niech M oznacza maksimum spośród N pierwszych wyrazów ciągu $Y_1,Y_2,Y_3,...$, a dokładniej:

$$\bullet \quad M = \begin{cases} 0 & gdy \quad N = 0\\ \max(Y_1, Y_2, \dots Y_N) & gdy \quad N > 0 \end{cases}$$

Prawdopodobieństwo: $Pr(M \le 100)$ wynosi:

- (A) $\frac{64}{729}$
- (B) 0.256
- (C) 0.512
- (D) $\frac{144}{235}$
- (E) 0.64

Zadanie 9.

Niech:

• N oznacza liczbę roszczeń z jednego wypadku ubezpieczeniowego, zaś:

• $T_1, T_2, ..., T_N$ oznacza czas, jaki upływa od momentu zajścia wypadku do zgłoszenia roszczenia odpowiednio 1-go, 2-go,..., N-tego (numeracja roszczeń od 1-go do N-tego jest całkowicie przypadkowa, nie wynika więc z chronologii ich zgłaszania) Załóżmy, że:

• zmienne losowe N, T_1, T_2, T_3, \dots są niezależne,

• zmienne losowe $T_1, T_2, T_3,...$ mają identyczny rozkład wykładniczy o wartości oczekiwanej 1 (jednostką pomiaru czasu jest miesiąc)

• zmienna losowa N ma rozkład logarytmiczny dany wzorem:

$$Pr(N = k) = \frac{1}{-\ln(1-c)} \frac{c^k}{k}, \quad k = 1,2,3,...$$
 z parametrem $c \in (0,1)$.

Właśnie pojawiło się roszczenie, i okazało się, że jest to pierwsze roszczenie z wypadku o którym dotąd nie wiedzieliśmy, a który miał miejsce miesiąc temu. Jednym słowem, wiadomo, że zaszedł wypadek, wiemy więc, że N wyniosło co najmniej 1, i że najmniejsza liczba ze zbioru $\{T_1, T_2, ..., T_N\}$, przyjęła wartość 1.

Wartość oczekiwana liczby roszczeń z tego wypadku, a więc:

$$E(N|\min\{T_1,T_2,...,T_N\}=1)$$

wynosi:

(A)
$$\frac{e}{e-c}$$

(B)
$$\frac{e-c}{ec}$$

(C)
$$\frac{e+c}{e-c}$$

(D)
$$\frac{c}{e-c}$$

(E)
$$\frac{e-c}{c}$$

Zadanie 10.

Oznaczmy przez:

- X_t łączną wartość szkód zaszłych w roku t w pewnym jednorodnym portfelu ubezpieczeń, zaś przez:
- $X_{t,k}$ tę część łącznej wartości szkód zaszłych w roku t, które likwidowane są w roku (t+k), k=0,1,2,...,
- EP_t składkę zarobioną w roku t,
- R_t wartość oczekiwaną szkód zaszłych i niezlikwidowanych na koniec roku t (rezerwę na szkody).

Wiemy, że dla każdego t zachodzi:

- $E(X_t) = 60\% EP_t$
- $E(X_{tk}) = E(X_t)w_k$, gdzie:
- $w_0 = \frac{1}{2}$, zaś dla k = 1,2,3,... $w_k = \frac{1}{3^k}$

Rezerwa na początek roku t=1 wynosi $R_0=990$. Zakładamy, że w rozpoczynającym się roku składka zarobiona wyniesie $EP_1=1200$ a w następnym $EP_2=1400$. Wobec tego oczekiwana wartość szkód zaszłych i niezlikwidowanych na koniec roku t=2 (a więc przewidywana obecnie wartość rezerwy R_2) wynosi:

- (A) 880
- (B) 800
- (C) 720
- (D) 650
- (E) 600

Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko :	K L U C Z	ODPOWIEDZ	I
_			
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	C	
3	Е	
4	A	
5	C	
6	В	
7	Е	
8	С	
9	A	
10	D	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.