$a, b \in \mathbb{F} : (i)\langle x, x \rangle > 0, eq.iff\mathbf{x} = 0$ (ii) $\langle x, a\mathbf{y} + b\mathbf{z} \rangle = a\langle x, y \rangle + b\langle x, z \rangle$ (iii) $\langle x, y \rangle = \langle y, x \rangle$ DEF A vector space together with an inner product is called an **inner product space** $(V, \langle \cdot, \cdot \rangle)$ PROP3.1.3 Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ an any $a \in \mathbb{F}$, we have (i) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle (iii) \langle a\mathbf{x}, \mathbf{y} \rangle = \overline{a} \langle x, y \rangle$

DEFinnerproduct on V, a scalar-valued map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ that satisfies, for $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$,

DEF Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. The length of a vector $\mathbf{x} \in V$ induced by the inner product is $||\mathbf{x}|| = \sqrt{\langle x, x \rangle}$. If $||\mathbf{x}|| = 1$, we say that x is a unit vector. The distance between two vectors $x, y \in V$ is the length of the difference, that is, dist(x, y) = ||x - y||

PROPCauchyShwarz Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For all $\mathbf{x}, \mathbf{y} \in V$, we have $|\langle x, y \rangle| \le ||\mathbf{x}|| ||\mathbf{y}||$

DEF Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. We define the angle between two nonzero vectors \mathbf{x}, \mathbf{y} be the unique angle $\theta \in [0, \pi]$ such that $\cos(\theta) = \langle x, y \rangle / ||\mathbf{x}|| ||\mathbf{y}||$ THMPythagoreanLaw If \mathbf{x}, \mathbf{y} are orthonoronal vectors in the inner product space $(V, \langle \cdot, \cdot \rangle)$, then $||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$

DEF Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For any unit vector $\mathbf{u} \in V$ and any $\mathbf{x}inV$, define the orthogonal projection of **x** onto span($\{\mathbf{u}\}$) to be $\operatorname{proj}_{span(\{\mathbf{u}\})}(\mathbf{x}) = \langle u, x \rangle u$ PROP3.1.23 Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. For any unit vector $\mathbf{u} \in V$ the map

 $\operatorname{proj}_{u}:V\to V$ is a linear operator. Moreover the following hold: (i) $\operatorname{proj}_{u}\circ\operatorname{proj}_{u}=\operatorname{proj}_{u}$ (ii) Residual vector $r = v - \text{proj}_{u}(v)$ is orthogonal to vector in span(u), including $\text{proj}_{u}(v)$. Thus r lies in $\mathcal{N}(\text{proj}_{u}(\text{iii}))$ The vector $\text{proj}_{u}(v)$ is the unique vector in span(u) that is nearest to \mathbf{v} REM for any $v \in V$, u = v/||v||, $\operatorname{proj} u(x) = \langle v/||v||, x \rangle v/||v|| = \langle v, x \rangle v/\langle v, v \rangle$

DEF Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and $\{\mathbf{x}_i\}_{i=1}^m$ is a finite orthonormal set with

 $\operatorname{span}(\{\mathbf{x}_i\}_{i=1}^m) = X$, then for any $\mathbf{v} \in V$ we define orthogonal projection onto X as $\operatorname{proj}_X(\mathbf{v}) =$ $\sum_{i=1}^{m} \langle \mathbf{x}_i, \mathbf{v} \rangle \mathbf{x}_i$.

every $x \in X$. Thus **r** lies in $\mathcal{N}proj_X$ (iii) The image $proj_X(\mathbf{v})$ is the unique vector in X that is nearest to v. That is, $||v - \operatorname{proj}_X(v)|| < ||v - \mathbf{x}||$ for all $\mathbf{x} \in X$ where $\mathbf{x} \neq \operatorname{proj}_X(v)$. THMPythagoreanTheorem LVbaips. If $\{\mathbf{x}_i\}_{i=1}^m$ is a finite orthonormal set with span = X,

then every $\mathbf{v} \in V$ satisfies $||v||^2 = \sum_{i=1}^m |\langle x_i, v \rangle|^2 + ||v - \sum_{i=1}^m \langle x_i, v \rangle x_i||^2$ Bessel's Inequality LV baips. If $\{\mathbf{x}_i\}_{i=1}^m$ is a finite subset of an orthonormal set $\mathscr{C} \in V$, then

every $v \in V$ satisfies $||v||^2 > \sum_{i=1}^m |\langle x_i, v \rangle|^2 = ||\operatorname{proj}_X(v)||^2$ DEF A linear map L from an IPS V to an inner product space W is called an orthonormal transformation if for every $x, y \in V$ we have $\langle x, y \rangle_V = \langle Lx, Ly \rangle_W$ If $L: V \to V$, it is an orthonormal operator.

PROP LVbaips. If L is an orthonormal operator, it is invertible.

DEF A square matrix Q is orthonormal if it is the matrix representation of an orthonormal operator on \mathbb{F}^n with the standard bases and the standard inner products.

THM Let Q, Q_1, Q_2 be orthonormal square matrices and assuming the usual inner product. Then (i) ||Qx|| = ||x|| (ii) Q_1Q_2 is an orthonormal matrix (iii) Q^{-1} is orthonormal matrix (iv) The

matrix Q is an orthonormal matrix iff $Q^HQ = QQ^H = I$. (v) The columns of Q are orthonormal (vi) $|\det(Q)| = 1$

THMGram - Schmidt Let $x_1, x_2, \ldots x_n$ be a linearly independent set in ipsV. Define $q_1 =$ $|x_1/||x_1||$ and $|q_k| = (x_k - p_{k-1})/||x_k - p_{k-1}||$ where $|p_{k-1}| = \operatorname{proj}_{Q^{k-1}}(x_k) = \sum_{i=1}^{k-1} \langle q_i, x_k \rangle q_i$. Resulting set orthonormal with same span as x_1, x_2, \dots, x_n .

THMQRDecomposition Let A be an mxn matrix of rank n. Then A can be factored into a product QR, where Q is an mxn matrix with orthonormal columns and R is a nonsingular nxn

upper triangular matrix $R = Q^H A$

DEF A Hyperplane W in a vector space V is any subspace such that V/W is one dimensional. DEF. Given a unit vector $v \in \mathbb{F}^n$, we define the hyperplane Y to be the subset of \mathbb{F}^n where every element of Y is orthogonal to v. More precisely $Y = \{y \in \mathbb{F}^n | \langle v, y \rangle = 0\}$. Reflection across hyperplane orthogonal to v given by $H_v = I - (2vv^H/v^Hv)$ PROP reflection through the hyperplane orthogonal to v is an orthonormal transformation.