Problem Set-9

PH11001 (Spring 2019-20)

Optics: Interference, Diffraction.

March 30, 2020

1. Fizeau fringes

A plane monochromatic light wave with a wavelength λ falls on the surface of a glass wedge of refractive index n. The angle of the wedge $\alpha << 1^{\circ}$. The plane of incidence is normal to the edge and the angle of incidence is θ_1 . Find the distance between neighbouring fringe maxima on a screen placed at right angles to the reflected light.

2. Newton's rings

The spherical surface of a plano-convex lens comes into contact with a glass plate. The space between the lens and the plate is filled up with a transparent liquid. The refractive indices of the lens, liquid and plate are given by: $n_1 = 1.5; n_2 = 1,63; n_3 = 1.70$ respectively. The radius of curvature of the spherical lens is equal to R = 100 cm. Find the radius of the fifth dark Newton's ring in reflected light of wavelength $\lambda = 0.50~\mu m$.

3. Thin film interference

A soap film of thickness 5.5×10^{-5} cm is viewed at an angle of 45° . Its index of refraction is 1.33. Find the wavelength of light in the visible spectrum which will be absent from the reflected light.

4. Single slit diffraction

The distance between the first and fifth minima of a single-slit diffraction pattern is 0.35 mm, with the screen 40 cm away from the slit, and light of wavelength 550 nm. Find the slit width.

5. Diffraction grating

Find the wavelength of monochromatic light falling normally on a diffraction grating with period $d=2.2~\mu m$, if the angle between the directions to the Fraunhofer maxima of the first and the second order is equal to $\Delta\theta=15^{\circ}$.