

IATF 16949: Ensuring Quality in the Automotive Industry

Group 5:

Michael Baeuerle, Maximilian Beil, Chin-I Feng, Benedict Horn, Ivo Pongratz

Hochschule Konstanz

Fakultät Elektrotechnik und Informationstechnik

HT WE Content G I

- Introduction
- History & Development
- 5 Core Tools of IATF 16949
- Benefits of IATF 16949 Certification (Example)
- Challenges of IATF 16949
- Conclusion

HT WE Introduction G |

- Definition: IATF 16949 (International Automotive Task Force 16949) is a global standard for Quality Management Systems in the automotive industry.
- Purpose: It is developed to improve quality, efficiency, and consistency in automotive production and supply chains.
- **Integration:** It built upon the ISO 9001 standards, adding automotive-specific requirements.

Source: IATF 2023

H T W E History & Development G | First Release

- Origins: ISO/TS 16949 was first published in 1999, integrating various national standards within the global automotive supply chain, like QS-9000 (USA), VDA6.1 (Germany), EAQF (France), and AVSQ (Italy).
- Collaboration: International Automotive Task Force and ISO

H T W E History & Development G | Evolution

- **The Milestone:** A significant update came in 2016, transitioning from ISO/TS 16949 to IATF 16949.
- Update: This change emphasized a more dynamic approach to risk management, process improvement, and customer satisfaction.

HT WE 5 Core Tools G | Introduction

- Set of techniques and methodologies
- Collectively they provide a framework to manage and improve processes

Aim at ensuring high-quality Products, reliability and customer

satisfaction

HT WE 5 Core Tools G | Overview

Source: Brückner/Bopp/Krauss 2019, S.3

H T W

W E Advanced Product Quality G | Planning (APQP)

Aims of APQP:

- Minimize, reduce or eliminate late changes
- Reduce/eliminate quality issues
- Reduce/eliminate risk and warranty
- Increase customer satisfaction
- Reduce/eliminate waste

Hochschule Konstanz Fakultät Elektrotechnik und Informationstechnik

H T W E APQP G | Model for implementation

Source: Brückner/Bopp/Krauss 2019, S. XXVI

H T W E FMEA: G | Failure Mode and Effects Analysis

Main purpose:

Prevention of errors rather than post-detection and correction

- Analytical method in reliability engineering
- ➤ Identification and assessment of potential product failures in the design phase

H T W E FMEA: G | Failure Mode and Effects Analysis

Main purpose:

Prevention of errors rather than post-detection and correction

- Analytical method in reliability engineering
- Identification and assessment of potential product failures in the design phase

Hochschule Konstanz Fakultät Elektrotechnik und Informationstechnik

WE FMEA:

Failure Mode and Effects Analysis

Book | June 2018 | *Improving failure mode and effect analysis* Source: https://link.springer.com/article/10.1007/s12008-018-0496-2

H T
W E FMEA:
G | Failure

Failure Mode and Effects Analysis

Process FMEA (P-FMEA):

- The potential failure modes within manufacturing or operational processes
- Focuses on identifying and mitigating risks associated with the process steps

System FMEA (S-FMEA):

- Failures at the system level
- For complex systems with multiple components and interactions

Software FMEA (SW-FMEA):

- · Potential failures in software systems
- Manly in industries where software plays a critical role

Types

Functional FMEA (F-FMEA):

- Failures in specific functions of a product or system
- Each function meets its intended purpose without failure

H T W E MSA: G | Measurement System Analysis

Main purpose:

Reliability of crucial input and main output data in the manufacturing process

- Comprises methods to evaluate the uncertainty of a measurement process under operating conditions
- Understanding variations attributed to people, machines, materials, methods, or the environment

Hochschule Konstanz Fakultät Elektrotechnik und Informationstechnik

H T W E MSA: G | Measurement System Analysis

Example:

ACCUARCY CLASS	A (MM)	B (MM/M)	C (MM)
I	0,1	0,1	0,1
II	0,3	0,2	0,2
III	0,6	0,4	0,3

14

1. Study Design:

- Define the scope and objectives of the MSA
- Identify the specific measurement tools and processes to be analyzed
- Set protocol for data collection

2. Precision and Accuracy Assessment:

- Conduct tests to evaluate measurement
- Apply statistical methods to quantify variations and pinpoint sources of error
- Ensure measurements align

3. Repeatability and Reproducibility:

- Perform experiments with multiple operators
- Use statistical tools to distinguish measurement variability
- Calculate repeatability and reproducibility

4. Linearity and Bias Evaluation:

- Test across the full measurement range
- Analyze data to identify systematic errors
- Adjust tools or processes

5. Implementation in Manufacturing:

- Monitor ongoing system performance
- Set regular calibration schedules

H T W E Statistical Process Control G | (SPC)

- Analyzing Measurements of a Process regarding its stability
- Main Focus: Variance

A process is defined stable, if the center of variance in a representative measurement is constant and the spread is in a constant range

H T W E SPC G | Causes of Variation

Common causes:

- Cannot be prevented entirely
- Constant variance => stable
- e. g. usual traffic

– Special causes:

- Unpredictable variance -> unstable
- e. g. traffic accident

H T W E SPC G | Main steps

- Detect & remove Special causes of Variation to reach a stable process
- 2. Reduce common causes to improve *capability of the process

*capability:

 Describes how well a process performs (term only used for stable processes)

Hochschule Konstanz

Fakultät Elektrotechnik und Informationstechnik

09.01.2024

19

H T W E SPC G | Statistical Tools

- X-bar, R-charts
- Capability (Cpk, Ppk)
- Run charts
- Cause & Effect Analysis
- Affinity
- Histogram
- Pareto
- Scatter Diagram
- Radar
- Force field Analysis

Hochschule Konstanz

H T W E SPC G | X-bar, R-chart example

Given a dataset with m samples $X = \{x_1, ..., x_n\}$:

Calculate...

	Centerline	Upper Limit	Lower Limit
X-bar	$\bar{\bar{X}} = \frac{1}{m} \sum \bar{X}$	$UCL = \bar{\bar{X}} + A_2 \bar{R}$	$LCL = \bar{\bar{X}} - A_2 \bar{R}$
R chart	$\bar{R} = \frac{1}{m} \sum \max(X) - \min(X)$	$UCL = D_4 \bar{R}$	$LCL = D_3 \bar{R}$

 Where A₂, D₃ & D₄ are constants of a control chart table for different sample sizes n

H T W E SPC G | X-bar, R-chart example

- *UCL & LCL define the range for constant variance
- X-Bar: avg(sample)
- R-chart: range(sample)
- Unstable behaviour in sample 21

*U-/LCL = "Upper-/Lower Control Limit"

 $Source: \ https://www.researchgate.net/figure/Fig-13-Example-of-X-bar-and-Range-X-bar-R-Chart_fig4_339738274$

W E Production Part Approval G | Process (PPAP)

- Goal: Ensuring understanding & compliance of requirements within a new / modified production process
- Origin / Usage: automotive Industry / sectors with high quality standards
- Output: PPAP-Package => Documentation demonstrating the capability of the production process to meet the requirements

Hochschule Konstanz Fakultät Elektrotechnik und Informationstechnik

PPAP: Package **Submission Levels**

- 5 levels in depth of documentation and testing:
 - Part Submission Warrant (PSW) only
 + Product Samples
 + limited supporting data
 + detailed supporting data

 - + capability studies
- Approaches to select the level:
 - Complexity of the product
 - Criticality of application
 - Requirements
- **Note:** Level independent, a full APQP is required

```
W E PPAP: Package
G | Key Documents [level req.]
```

- Part Submission Warrant (PSW) [1+]
- Sample Production Parts [2+]
- Design Records [3+]
- Dimensional / Material / Performance Test results [3+]
- Process Flow Diagram (PFD) [3/4+]
- Control Plan [3/4+]
- Measurement System Analysis (MSA) [4+]
- Initial Process Studies [4+]
- Capability Studies [5]

H T W E PPAP G I Approval

- Customer approval: Customer reviews submitted PPAP package and may inspect production process before granting approval for the supplier to proceed
- Ongoing monitoring: Supplier must continue monitoring and maintaining the process in compliance with agreed requirements

W E Benefits of IATF 16949 G | Certification - example

Introduction to BIWIN Technologies:

· Overview:

- Leading company in memory chip R&D, packaging, and testing.
- Recognized as a national high-tech enterprise with strategic investments.

Core Competencies:

- Integrated business model focused on the semiconductor memory industry.
- Expertise in storage medium research, firmware development, and chip packaging.

Source: https://www.eetasia.com/biwin-packaging-and-testing-center-achieves-iatf-16949-recognition/

W E Benefits of IATF 16949 G | Certification - example

• Certification Attained: BIWIN Technologies achieved IATF 16949:2016 certification for automotive quality management in 2018.

Significance:

- Affirms standardized management, quality control, and technological prowess.
- Symbolizes an intelligent management system with premium product delivery.

H T W E Benefits of IATF 16949 G | Certification - example

Integrated Advantage:

 BIWIN tightly integrates its operations around the semiconductor memory industry chain, emphasizing research and development with packaging and testing.

Automotive Market Presence:

- Strategically expanding presence in the automotive storage market.
- Meticulous control of each stage of the process according to automotive-grade requirements.

H T W E Benefits of IATF 16949 G | Certification - example

Advanced Packaging and Testing:

- Excellence in design and simulation of packaging for automotive-grade storage products.
- Established capabilities for high-temperature, ambient-temperature, and low-temperature testing of automotive-grade products.

Comprehensive Layout:

- Products widely applied in automotive information and entertainment systems, advanced driver assistance systems, intelligent cockpit systems, and more.
- Future plans include active deployment of integrated R&D and testing, deepening cooperation with automotive manufacturers.

W E Challenges of IATF 16949

Cost Implications

 Initial and ongoing costs for training, system changes, and audits can be substantial.

Complex Implementation

 Adapting existing processes to meet the standard's requirements can be time-consuming and complex.

Supplier Management

 Ensuring suppliers meet quality standards can strain resources and supplier relationships.

HT WE Conclusion G |

Improved Product Quality

 Rigorous adherence to IATF 16949 leads to a significant reduction in defects and errors in automotive production.

Enhanced Customer Satisfaction

Consistent adherence leads to increased customer satisfaction.

Global Market Access

Certification opens doors to global markets, enhancing competitiveness.

H T W E References G I

- Claudia Brückner; Reinhold Bopp; Frank Krauss: Qualitätsmanagement. Das Praxishandbuch für die Automobilindustrie, 2. Aufl., Carl Hanser Verlag, München 2019
- D. H Stamatis: Advanced Product Quality Planning. The Road to Success, Chapman and Hall/CRC, Milton 2018
- Edgar Dietrich; Alfred Schulze: Eignungsnachweis von Prüfprozessen. Prüfmittelfähigkeit und Messunsicherheit im aktuellen Normenumfeld, 5. Aufl., Carl Hanser Verlag, München 2017
- Jigar A. Doshi; Darshak Desai: Overview of Automotive Core Tools: Applications and Benefits.
 In: Journal of The Institution of Engineers (India): Series C. Band 98, Nr. 4, August 2017
- Florian Ebinger; Nadine Voll: Qualitätsmanagement So gelingt die Einführung. Ein Praxisleitfaden zur Umsetzung der ISO 9001, Carl Hanser Verlag, München 2024
- Julian Bär: Aufbau eines umfassenden Risikomanagements. Im Kontext einer Konzernstrukturveränderung, 1st ed., Springer Fachmedien, Wiesbaden 2023
- Susan Omondi; Christian Braun: Audits mit Gewinn: Qualitätsaudits als wirksames und nützliches Instrument einsetzen, 1st ed., Carl Hanser Verlag, München 2023
- IATF: "About". In: dies. online, o.J., URL: https://www.iatfglobaloversight.org/iatf-169492016/about/, Abruf 01.12.2023
- Key To Data: "PPAP". In: dies. online, o.J., URL: https://keytodata.com/en/glossary/ppap/, Abruf 03.12.2023

Thank you!

Hochschule Konstanz Fakultät Elektrotechnik

Fakultät Elektrotechnik und Informationstechnik

•