

1-WW COMEX

02.0220

July 24, 1975

MEMORANDUM

TO: Andrew Paretti,
Office of Water Program Operations

FROM: Fitzhugh Green

SUBJECT: Your report on the June 14-28 visit to the
USSR on chemical technology and prevention
of water pollution from industrial sources

Thank you for this latest in the series of good trip
reports. We are glad to see that the exchange under this
project continues to be beneficial to EPA.

cc: James Agee
John Rhett
Harold Cahill

bcc: EUR/SOV:Wm. Veale (w/cy incoming)

A-106:DHSStrother:jcp 7/24/75 X50523 W811C

SUBJECT: Trip Report for Chemical Technology
Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

DATE: JULY 9, 1975

FROM: Andrew Paretti, Head of Delegation,
Office of Water Program Operations WH-447

TO: Fitzhugh Green, Associate Administrator
for International Activities A-106

THRU: John T. Rhett, Deputy Assistant Administrator
for Water Program Operations WH-446

James L. Agee, Assistant Administrator James L. Agee
for Water and Hazardous Materials WH-556

22 JUL 1975

As part of Project II-2.2 - Prevention of Water Pollution from Industrial Sources, the Ministry of the Chemical Industry of the Soviet Union hosted the Environmental Protection Agency official delegation from 6-14 - 6-28, 1975. Their participants were headed by Vice Minister K. K. Cherednichenko. His personal interest was invaluable and his position in the Ministry insured that all possible courtesies were received by the delegation. He personally chaired our first and last conference in Moscow and hosted our welcome aboard and final dinner reception.

Of the industries covered to date in the Soviet Union, namely Pulp and Paper, Ferrous Metallurgy, and Chemical Industry, I would have to rank Chemical Industry last as far as wastewater treatment practice is concerned. When we complete the Ministry of Oil Refining and Petro Chemical Industries in October, we can make a more definitive rating as regards the four industry sub-groups and their wastewater treatment expertise.

Though beyond our control, only two of our scheduled visits covered wastewater treatment plants. The one at Kiev chemical fiber complex was shut down at the time of our visit. The one at Almalyak was a complete closed cycle at this fertilizer complex. A true zero discharge but obviously very costly. Because their raw material supply of phosphrite rock is of such poor quality they were forced into this closed system as their wastewater treatment technology was not capable of removing the impurities in the rock on any sensible economic basis. The raw material was loaded with sulphur, calcium, and manganese, amongst other impurities and was and is a real problem.

0437

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

So that the industry specialists would see more of the Soviet state of the art in wastewater treatment, I was able to get the Soviets to schedule visits to two municipal plants, both of which handled effluents from chemical plants that discharged primarily organic wastes into the effluent. These chemical effluents represented more than 50% of the input into the municipal plants. They were a good example of the municipal systems in the major Soviet cities and they are on a par with our own municipal facilities up to and including secondary treatment. From a technical point of view it was worth cancelling certain cultural visits to afford this opportunity to our industry representatives.

One of the biggest differences between our system and theirs is the use of design and research institutes. As noted we visited four such institutes (Fertilizer, Artificial Fibers, Domestic and Household Chemistry and Synthetic Fibers). They afford a central control over a whole industry. As a result there is usually a common design wastewater treatment plant for a particular manufacturing process, that is identical throughout the Soviet Union. In the United States where each company competes one with another, all develop varying types of treatment plants based on the best thinking of their various environmental engineering departments. There are advantages to both systems, but I think our plan is superior. Namely, establish the required guidelines that must be met but allow the manner of attaining that result to be completely clear of the bureaucratic process. This prevents locking in on a single design with the inherent risk of stifling the need for better and more economical designs--a fault that seems to be prevalent in the Soviet Union's system. If something new is developed, it is a monumental problem to change because of their single design concept. On the plus side, however, is the fact that these institutes employ in excess of 1,000 people each, with over half being engineers and scientists. Such large pools of talent should obviously generate many new approaches for preliminary pilot plant work-up.

The Ministry of Chemical Industry is very interested in continuing this technical exchange. They have come up with a detailed proposal for the year 1976 which I have incorporated as an appendix to the protocol. It is the opinion of the delegation that the technical exchange should be continued through 1976 with the Soviet Ministry of the Chemical Industry.

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

As is usual to this trip I am including a report on various technical subjects. One that seemed particularly apropos, (On The State of Water Use and Effluent Treatment in the Manufacture of Man-Made Fibers) I am also attaching to the report. It is indicative of the level of sophistication that the Soviets are capable of attaining. The tables are being translated into English but I did not wish to hold up the trip report pending the receipt of the translations which is usually a slow process.

In many instances, the technical expertise developed by the institutes is not carried through at the complex. Priorities as set up in their five year plans are binding. A prime example of this--something which is very obvious to the naked eye--is air pollution abatement. It has not been given the same priority as water pollution up till this point in time. As a result air pollution will get nominal attention until included in a five year plan.

There is every indication that our Soviet counterparts are still putting maximum support behind the Train/Israel Environmental Agreement reciprocal exchange program and that the policy makers encourage this policy. As usual detente and cultural exchange as well as the technological programs continue to be stressed.

on the visit to the USSR (15-28 June 1975) of the U.S. special
Approved for Release 2000/09/14 : CIA-RDP79-00798A000800070001-2
team to study methods of prevention of water pollution under Project 11-22 of the Environmental Agreement entitled "Prevention of water pollution from Industrial and Municipal Sources".

Cooperation development between the USSR and USA in the field of environmental protection in chemical industry is being realized in compliance with the Agreement signed in Moscow on May 23 d. 1972 by Mr. Nikolai V. Podgorni - Chairman of the Presidium of the Supreme Soviet of the USSR and Mr. Richard Nixon - the then President of the USA.

The beginning of cooperation in the field of environmental protection between the Ministry for Chemical industry of the USSR (MCI) and the US organizations within the framework of the USSR-US Joint Committee on Cooperation in the field of Environmental Protection was begun with the visit of the Soviet delegation to the USA (8- 18th September 1974). The Soviet delegation (consisting of 4 people) headed by Mr. Konstantin K. Tchernichenko - Vice-Minister for chemical industry paid a visit to the USA in compliance with the Memorandum of the 2nd Session of the Soviet American Commission (Nov 13 Washington, D.C.) The delegation visited a number of industrial facilities and scientific- research centers of some US companies, i.e.: American Cyanamid Company, Colgate- Palmolive Company, Union Carbide Corporation, Tennessee Valley Authority and FMC Corporation where they familiarized themselves with the methods of treatment and control of the effluents at synthetic detergent,

phosphate fertilizer and synthetic fiber plants. The Delegation
Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2
met with the senior specialists of the Environmental Protection
Agency in Washington, D.C. and discussed with them the prospects
for the development of further cooperation.

The return visit of the US delegation took place 15-28th
June 1975 in compliance with the Memorandum of the 3d Session
of the Soviet-American Commission. The US delegation consisting
of 5 people was headed by Mr. Andrew Paretti - Consultant,
Water Program Operations, Environmental Protection Agency. The
lists of the US and Soviet delegates are presented in appendices
1 and 2. In accordance with the pre-agreed program the US dele-
gation visited a number of MCI research institutes and industrial
facilities where it was introduced to various ways and means of
environmental protection at fertilizer, household chemistry
and chemical fiber plants. The US delegation also visited
municipal effluent (waste water) treatment plants in Moscow
and Kalinin. These facilities treat effluents from industrial
plants including those of the chemical industry.

The program of the US delegation visits is presented
in appendix 3.

While touring various MCI facilities and establishments
and discussing environmental protection problems with the Soviet
specialists, the US delegation was presented certain informative
literature.

On the 16th of June, 1975 the US delegation visited
the All-Union Scientific Research Institute for Fertilizers
and Insecto-fungicides named after Ya.V.Samoilov (NIUIF)
and met with professor V.M.Borisov - director of the Institute

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

and a group of leading specialists in environmental protection. The meeting and discussion was attended by Mrs. L.N. Arkhipova (laboratory head), Mr. A.D. Mikhailin (head of the department), Mr. V.V. Ivanov (group leader), Mrs. V.D. Troitskaya (group leader) and Mrs. L.G. Pominova (senior engineer).

In the course of the meeting prof. Borisov familiarized the US specialists with the works carried out in the Institute in the field of environmental protection. The following problems were discussed:

1) Recovery of fluorine gases when producing wet process phosphoric acid and NPK fertilizers at the Soviet and US industrial facilities. It was established after exchange of opinions that fluorine was recovered at the Soviet as well as at the US production facilities by sodium or calcium alkaline solutions resulting in fluorides of these salts. Venturi tubes and wet scrubbers are used as absorbers in the USSR as well as in the USA.

2) Phospho-gypsum by-products when producing phosphate fertilizers.

This problem has not been solved so far in the USSR and USA. Economic methods of phospho-gypsum conversion into sulfuric acid and construction materials have not been developed. At the present time this product is stored in specially allocated areas. Phospho-gypsum storage during long periods of the time causes environmental pollution (soil salinization and dusting).

3) Sulfur dioxide recovery from waste gases at sulfuric acid production facilities.

out in the Institute in the field of environmental protection.
Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

Messrs. Mogilevsky and Finger made special presentations on environmental protection and development of various methods and equipment for effluent (waste water) treatment. The US specialists visited section 1 of the experimental production facility and familiarized themselves with the experimental manufacture at a textile rayon filament, they also visited an environmental protection exhibition and the Institute computer center. Both sides noted the usefulness of the discussion and expediency of further development of the contacts.

On the 18th of June 1975 the US delegation visited in Kiev the All-Union Scientific-Research and Design Institute of household Chemistry (VNIIKHIMPROYEKT). The meeting and discussion were attended by Mr. G.G.Poturidis- chief engineer of the Institute, mr. B.P. Kotelnikov - deputy director for research, mr. O.I.Lavrentyev- head of sanitary engineering department, mr. A.A.Tchumak - head of technology department, mr. A.P.Shevchenko - head of a foreign relations section, mrs. R.S.Svetlova - head of laboratory for effluents (waste waters) and gas discharges of Tula branch of the Institute and mr. V.N. Maltsev - raw material laboratory head.

Environmental protection problems pertaining to the manufacture at synthetic detergents were discussed during the meeting, particularly new scientific - research trends aimed at polyphosphate replacement in detergent powders and electrostatic field application for cleaning gas discharges. The US specialists were taken round the Institute R & D laboratories for powdered, paste and liquid detergents. During the meeting the

mental protection pertaining to detergent production.

On the 19th of June 1975 the US delegation visited a leading production establishment of the Ukrainian household chemistry, industrial corporation "Ukrbitkhim".

The meeting was attended by Yu.F.Osadchi - director general, mr. E.E. Vetsker - deputy director general, mr. N.A. Masmokov - deputy chief engineer, mr. V.V. Korotum - production department head, mr. G.I. Vishnevsky - chief technologists.

At the meeting the director general described the Corporation activity, the products made by the latter and the actions taken in the field of environmental protection at the complexes and plants of the Corporation. The US delegation visited package making sections, filling section (for liquid detergents, hair lacquer), storage facility and an instrumentation shop.

On the 20th of June 1975 the US delegation visited Kiev chemical fiber complex and familiarized themselves with various measures taken in the field of environmental protection.

The meeting was attended by mr. A.I.Maltchevsky - the complex director, mr. J.N. Zagrekov - deputy chief of the technology department, mrs. L.K.Tchirikina - head of scientific - technical information department.

Mr. A.I. Maltchevsky described the range of products made by the complex and the complex activity on environmental protection. The US specialists visited carbon disulfide recovery plant and toured round effluent (waste water) treatment complex under construction comprising mechanical - chemical cleaning of acid, alkaline, rayon and slime (slurry) effluents. They

... associations and the plant for caprolactam recovery from solid caprolactam wastes and caprofactam waste water, at caprolactam filament and fiber production facilities.

On the 23d of June 1975 the US delegates visited Almalyk fertilizer plant.

The meeting was attended by mr. K.G. Sadikov - plant director and by U.S. Tadzhiev - deputy director. Mr. K.G. Sadikov gave information on the range of chemicals produced by the plant and the various measures adopted in the field of environmental protection. The US specialists saw the vent gas and dust purification plant (scrubbers, venturi apparatus, cyclones). The closed-circuit water recycle system with the reuse of treated and clarified effluents put on stream at the complex for the first time in wet process phosphoric acid and ammonium phosphate production processes caused the interest of the US specialists and was highly appraised by them.

The effluent treatment plant operation along with the reuse of clarified waste waters in a closed-circuited recycle system has shown that wide application of this method at phosphate fertilizer plants will make it possible to get rid of contaminated water discharges.

On the 25th of June 1975 the US delegation visited the All-Union Research Institute of Synthetic Fibers (VNIISV) in Kalinin and inspected the municipal effluent (waste water) treatment plants. These facilities treat effluents from industrial plants including those of Kalinin complex of chemical fibers. The delegation was received in the Institute by

Mr Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2
of the Institute activity, structure and principle scientific trends.

The meeting was attended by mr. Kvasha - head of labor protection department, mr. L.P. Slavgorodsky - head of toxicology laboratory, mr. A.T. Kotlovoi - head of the section for vent exhaust purification who briefly described principal achievements at the Institute in the field of environmental protection.

On the 26th of June 1975 the US delegates visited the Kuryanov aeration station establishment-one of the complexes of the Moscow sewerage and waste water treatment system. Mr. S.J. Bikov - head of the establishment familiarized the US specialists with the waste water treatment and precipitate (residue) processing flowsheets. The delegation examined mechanical and biological purification plants as well as an experimental plant for the precipitate (residue) vacuum filtration and thermal drying.

During the meetings and discussions both sides were pleased to note the expediency of joint efforts when solving common problems facing chemical industries at the both countries in the field of environmental protection.

A copy of the proposal to the draft program of scientific-technical cooperation in the field of environmental protection between the USSR and USA for 1976 within framework of the US-USSR Joint Committee on Cooperation in the Field of Environmental Protection is attached as Appendix 4.

This proposal will be considered and reviewed upon the return of the U.S. delegation to the United States. In addition the specific U.S. corporations referred to in the proposal will be contacted. The Environmental Protection Agency will solicit their interest and desires pertaining to the 1976 proposal of the Ministry of the Chemical Industry. The U.S. delegation supports the proposal in principle and feels that our respective chemical industries can engage in a mutually advantageous continuing exchange of waste water treatment and management technology. It is expected that a firm proposal for 1976 will be available for review at the fourth session of the Joint US-USSR Commission to be held in Washington D.C. during October 1975.

The both sides have agreed to exchange proposals on expanding environmental protection cooperation with regard to the other branches of chemical industry.

The both sides note that all the formal and informal meetings and discussions were held in a friendly atmosphere and were aimed at further broadening and strengthening of contacts.

As part of this official memorandum, the chairman of the American delegation would like to acknowledge the outstanding courtesies afforded by our Soviet escorts.

The memorandum is signed on June, 27, 1975 in Moscow in Russian and English with both texts of the same validity.

On behalf of the delegation
of the Ministry for Chemical
Industry of the USSR

Konstantin K. Cherednichenko

Vice-Minister

Chairman of the US
delegation

Andrew Paretti

Consultant Water Program
Operations,
EPA

DELEGATION TO TOUR THE SOVIET UNION
Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2
JUNE 15 - JUNE 28, 1975

TOUR OF THE MINISTRY OF THE CHEMICAL INDUSTRY - UNDER THE
WORKING GROUP FOR THE PREVENTION OF WATER POLLUTION FROM
INDUSTRIAL AND MUNICIPAL SOURCES

Andrew Paretti
Head of Delegation
EPA, Water Program Operations
1209 East Tower, Waterside Mall
Washington, D.C. 20460
202-426-8986

Mr. Preston P. Lee
Manager, Environmental Protection Engineering
Colgate-Palmolive Co.
8 Forest Road
Madison, New Jersey 07940
201-HE-4-1300

Mr. Neil Elphick
Director, Environmental Planning
FMC Corporation
1 Lantern Lane
Darien, Connecticut 06820
201-687-7400 Extention 294

Mr. R.L. Langerhans
Environmental Systems Dept.
Union Carbide Corp.
Old Saw Mill River Road
Tarrytown, New York 10591
914-345-3440

Dr. Charles P. Priesing
Director, Environmental Protection Dept.
American Cyanamid Company
8 William Street
Pequannock, New Jersey 07440
201-831-1234

DELEGATION

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2
of the specialists of Ministry for chemical
industry (MCI)

1. Mr.Konstantin K-Tcherednichenko - Leader of the delegation
Vice-Minister of the
chemical industry
2. Mr.Vladimir F.Rostunov - Head of Science and
Technology Directorate
(MCI)
3. Mr.Nikolai F. Volkov - Deputy Head of the Foreign
Relations Directorate
(MCI)
4. Mr.Victor M.Milakov - Head of the Directorate
(MCI)
5. Mr.Nikolai V.Snetkov - Deputy Head of the Directo-
rate (MCI)
6. Mr.Andrei M.Aleshin - " -
7. Mrs.Lyudmila F.Mokina - Department manager,
Science and Technology
Directorate
8. Dr.Dmitri S.Gorbenko-Germanov - Head of Environmental
protection Laboratory (MCI)
9. Prof. Vasili M.Borisov - Director of NPK Research
Institute
10. Mr. Ivan G.Shimko - Director of the Institute
of Artificial Fibers
11. Mr.Ivan M.Tanchenko - Director of Research and
Design Institute of Domes-
tic (Household) chemistry
plants
12. Prof. Alexander S.Tchegolya - Director of Scientific
Research Institute of
Synthetic Fibers
13. Mr.Yu,N.Sapov - Chief Engineer of Leningrad
Research and Design Insti-
tute

P R O G R A M
Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

of the stay in the USSR of the US specialists
on water effluent treatment in chemical plants

Period of stay: from 15 to 28 June 1975

Number of specialists: 5

Date and time	Program description
15th June 2nd day	Landing at Sheremetyevo airport Trip to Moscow and accomodation in the hotel
16th June 3d day 10 a m	Visit to NPK fertilizer scientific research institute and exchange of information on environmental protec- tion when making mineral fertilizers
13-00	Break for lunch
15-00	Meeting with Mr.Konstantin K.Tchered- nichenko - Vice-Minister of the chemical industry
19-00	Visit to the Moscow theatre
17th June 4th day 10 a m	Visit to Scientific Research Institute of Artificial Fibers Meeting with the Institute director, familiarizing with institute activities and information exchange on environ- mental protection when making artifi- cial fibers
13-00	Break for lunch
14-00	Visit to the Institute computer center, library and the "Nature pro- tection" Museum
15-30	Discussion of technical and scientific cooperation in the field of environ- mental protection
21-25	Departure to Kiev by train
18th June 5th day 9 a m	Arrival in Kiev, meeting at the station and hotel accomodation

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

1	:	2
12-00		Visit to Scientific Research and Design Institute of Domestic and Household Chemistry
		Meeting with the Institute director, familiarizing with the Institute activities and discussion on environmental protection when making household chemistry products
15-00		Break for lunch
16-00		Visit to the Institute laboratories engaged in making synthetic detergents for various applications
19-00		Visit to the Kiev Theatre
19th June 6 th day 10 a m		Visit to domestic and household chemistry headquarters
		Meeting with the director-general of the corporation, visit to the industrial facilities of the Kiev domestic and household chemistry factory
15-00		Break for lunch
16-00		Kiev sightseeing
20th June 7 th day 10 a m		Visit to Kiev chemical fiber complex.
		Meeting with the complex director, visit to water treatment, gas purification and caprolactam recovery facilities
15-00		Break for Lunch
22-25		Departure by train to Moscow
21th June 8th day 11 a m		Arrival in Moscow
15-00		Take-off for Tashkent from Domodedovo airport
22-00		Landing at Tashkent airport and hotel accomodation
22nd June 9 th day		Trip to Samarkand

23d June 10 th day 10 a m	Trip to Almalyk Fertilizer plant Meeting with the plant director, visit to the extraction, fluorine containing gases and acid effluent treatment facilities.
14-00	Break for lunch
16-00	Return to Tashkent
24th June 11 th day 9.58 a m	Take-off from Tashkent for Moscow
14-00	Landing at the Moscow airport, hotel accomodation
25th June 12th day 10 a m	Visit to Kalinin Scientific Research Institute of Synthetic Fibers, meeting with the Institute director, Tour round the laboratories and experimen- tal plant
14-00	Break for lunch
17-00	Visit to the Kalinin municipal effluent treatment plant
26th June 13 th day 10 a m	Visit to the Moscow municipal effluent treatment plant
27th June 14 th day 10 a m	Final meeting with Mr.Konstantin K.Tcheredni- chenko - Vice-Minister of the chemical industry, discussion concerning the results of the visits to the MCI establishments and prospects of the future cooperation develop- ment
17-00	Reception in honour of the American delega- tion
28th June 15 th day	Take-off for the USA from Sheremetyevo airport

PROPOSAL

Appendix 4

to the draft program of scientific-technical cooperation in the field of environmental protection between the USSR and USA for 1976 within the framework of the Soviet-American commission

It is suggested that the program should include:

10798A000800070001-2

110103A

to the draft program of scientific-technical cooperation in the field of environmental protection between the USSR and USA for 1976 within the framework of the Soviet-American commission

It is suggested that the program should include:

1. Visit of the Soviet delegation (7 people) to the USA in the first half of 1976 for 14 days (number of people to be delegated from each branch of chemical industry is indicated in the draft).

2. Visit of the American delegation (7 people) to the USSR in the second half of 1976 for 14 days.

Approved For Release 2000/09/14 :C

1
Release For Approved Study of the experience in designing and operation of local and complete effluent treatment plants (for the removal of surface-active agents) at synthetic detergent factories
I. House hold (domestic) chemistry

Improvement of the plants under design and modernization of existing effluent treatment plants in order to reduce the amount of harmful wastes in the effluents. All Union Corporation for household (domestic) chemistry (V/O "Soyuzbitkhim"). Household chemistry research and design institute

Union Corpora-
tion for house-
hold (domestic)
chemistry
V/O "Soyuzbit-
khim")
household chemi-
try research and
design institute
NIKHEIM-
Projekt)

Colgate-
-Palmolive
Company;
The Procter
and Gamble
Company

I. House hold (domestic)

Subject	Objective and results: MCI expected	Organizations	Number of Soviet specialists to be delegated
2			
3			
4			
5			
6			

IA-RDP79-00798A000800070001-2

E	-2	2	3	4	5	6
• Study of the control methods of the effluents when making synthetic detergents						
II Production of chemical fibers:						
Study of the experience in designing and operation of RDP79-00798A000800070001-2						
a) Rayon fiber and film factories and effluent treatment plants						
Improvement of existing systems. Reduction of raw material and water specific consumption rates. Provision of adequate environmental protection by development of effluent-free systems						
All Union Corporation of chemical fibers (V/O "Soyuz-khimvolokno" Scientific Research Institute of artificial fibers (VNIIV))						
Effluent treatment plants at acrylic fiber factories						
Improvement of existing production facilities with the view of reducing waste discharges into basins and development of effluent-free production facilities						
FMC Corporation, Olin Corporation, E.I. Du Pont, De Nemours and Co. Inc						

E.I. Du Pont
De Nemours
and C. Inc.

- 3 -

1 :	2 :	3 :	4 :	5 :
4. Computerization of production chemical fiber production process control and application of automated control systems for the operation of effluent treatment plants.	Improvement of existing production facilities with the view of improving the product quality, productivity growth and provision of adequate environmental protection by means of complete automation of recovery (regeneration) units.	- " -		
5. Introduction to carbon fiber and high modulus organic fiber production processes with the view of developing recovery (regeneration) processes of the effluents from these production facilities.	Development of new technological systems for trapping harmful substances and construction of effluent - free production facilities with closed circuit water recycles.	Aqua-Cell Company, Dow Chemical U.S.A. EMC Corporation		
6. Study of the methods for the effluent treatment of chemical fiber production facilities with the view of their reuse (electric dialysis, hyperfiltration, adsorption).	Development of local methods of effluent treatment with the view of water reuse.			

1 : 2 : 3 : 4 : 5 : 6 :
III. Production of mineral fertilizers

Study of designing and operation experience of effluent treatment plants of yellow phosphorus operations

Improvement of the plants under design and modernization of existing effluent treatment plants with the view of reducing the amount of harmful wastes in the effluents

TVA
Farmers
Chemical
Company,
Cooperatives
International
and Mining

Two MCI representatives are included additionally into the delegation with the view of expanding cooperation scope on other chemical productions.

On the State of Water Use and
Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2
Treatment In the
Manufacture of Man-Made Fibers

(O.P.Vasiljeva)

The enterprises of our branch of industry are in the majority of cases plants for the manufacture of man-made fibers. They combine the synthesis of polymer, sometimes it is proceeded by the synthesis of monomer, the production and partial processing of the fiber, solvent regeneration, liquid and solid wastes processing.

The effluents from all industrial plants are subjected to the whole complex of biological treatment separately or simultaneously with the domestic or other kinds of effluents.

In the USSR 4 types of water is employed in the production of man-made fibers including river (filtered), softened, demineralized and drinking water. The river filtered water is generally used for those operations where water doesn't come into contact with raw materials, intermediate products (for example, to cool the apparatus through the walls), the softened water and demineralized one are used directly in the production process, chemical reactions (for the solvent preparation, finished fiber washing, etc.).

Rates of water rase and standards for water quality are given in tables (1-2).

To prepare water for the production use the following processes are employed in the USSR:

1. Filtration with the help of sand and gravel filters, sometimes using organic and inorganic coagulators and flocculants to produce primary water;

2) Water softening by means of
Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2
(sulphonic-acid carbon, KU-2).

3) Demineralization of water using cationite-anionite filters or distillation to produce demineralized water.

In the Soviet Union water reuse is of wide application at man-made fiber plants. Firstly, all the water employed for cooling apparatus through the walls is in the return systems of water supply, which are equipped with the cooling towers. Secondly, the water which comes into contact with the chemical reaction products is generally reused in the technological processes until the amounts of impurities in it are attained corresponding to the calculated concentrations. Such systems are normally related to the recovery of the products coming to water on attaining the above concentrations in the water at the plants for vacuum evaporation, extraction, etc.

The standards for water quality in the return systems of water supply are given in table 3. The standards for reused water quality employed directly in the production process in each particular case are determined by the technological conditions.

In the last few years at some enterprises the water supply system is employed wherein the treated effluents are used subjected to after-treatment in the biological ponds and inorganic coagulators treatment followed by filtration.

In the USSR the effluent treatment at man-made fiber plants is generally afforded by the complex of units for biological treatment (capacity 50.000-150.000 m³/day), including 3 steps: mechanical treatment on the grids, sand traps and in the settling tanks (1-st step.). 2-nd step - biochemical treatment in the air tanks and the 3-rd - disinfection by means of chlorination. At some plants the above effluents are subjected to the after - treatment in

of treatment corresponding to data given in Table 4.

In the USSR the development of water supply system and water disposal system with maximum water return has become a problem of today due to the exhaustion of selfpurification of some water basins. The above problem is to work for our branch of industry too.

In the light of recent requirements in VNIISV and GIPROIV the complex system for the effluent treatment with maximum water return is being developed in relation to the polyamide fibers, the production process of which is characterized by the large amounts of water consumption. Later on this kind of work will extend to the fiber of different types.

Concurrent with the widely accepted in our branch of industry biological method of treatment, the above complex systems will also include the mechanico-chemical methods of effluent treatment. The methods are as follows: pressure floatation and filtration on the filter element from nonwoven materials intended for removing lubricant components from the effluents; ion exchange and back osmosis for demineralization; ozonization intended for oxidation of the small amounts of organic substances in the effluents and other methods which are at the stage of promotion.

In addition to the methods of treatment the works directed to the development of endorheic production plants will necessarily include the technological aspects, i.e. development and improvement of such production processes, which decrease or completely exclude the formation of effluents. The above works are carried out with success in VNIISV and at the plants and are expected to extend.

We are informed that similar problems are currently central in your country too. We believe that wide exchange of information and cooperation of our countries will assist in advantageous solving the problem of nature protection from the industrial sewage water.

ТРЕБОВАНИЯ К КАЧЕСТВУ ПОТРЕБЛЯЕМОЙ ВОДЫ
ЗАПОЛНОСТЬ ВОЛОКНА КАПРОН, АМИД, АВСАН, НИТРОЛ.

ТАБЛИЦА №1.

НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ И ЕДИНИЦА измерения.	ИД			РЕБЛЯЕМОЙ			ОДЫ.				
	ЦВЕТНОСТЬ В ПЛАТИНО-КО-БАЛЬТОВОЙ ШКАЛЕ	ПРОЗРАЧНОСТЬ ПО СНЕМЛЕНУ 3 см	АКТИВНАЯ РЕАКЦИЯ РН	ЩЕЛОЧНОСТЬ В МГ-ЭКВ/Л.	ОБЩЕЕ СОЛЕСОДЕРЖАНИЕ	ОКИСЛАЕМОСТЬ МГ О ₂ /Л.	ЖЕСТКОСТЬ МГ-ЭКВ/Л.	ОБЩАЯ КАРБО-НАТРАЯ	ЖЕЛЕЗО МГ/Л.	НЕБОЛЕЕ 40 МГ/Л	МАРГАНЕЦ МГ/Л.
ЧИСЛЕННАЯ ВОДА.	До 20	БОЛЕЕ 10	2,1- 7,7	5,5	500	До 10	6,0	5,5	0,3	40	0,1
ЯГЧЕРНАЯ ВОДА.	До 10	БОЛЕЕ 20	7,1- 7,7	40 5,5	500	До 4	0,035	-	0,05	0,03	
ЕССОМЕННАЯ ВОДА.	ОБЩЕЕ КОЛИЧЕСТВО	РАСТВОРИЕННЫХ СОЛЕЙ									
ТЬЕВОЯ ВОДА.	ГОСТ 2874-54										

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

УДЕЛЬНЫЕ РАСХОДЫ И ХАРАКТЕРИСТИКА РИДИ И СТОЧНОВА
 ВОД ПРОИЗВОДСТВА СИНТЕТИЧЕСКИХ ВОЛОКОН.
 Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

Табл 2 (1)

ПОТРЕБИТЕЛИ ВОДЫ И ИСТОЧНИКИ ПОСТУПЛЕНИЯ СТОЧНЫХ ВОД.	УДЕЛЬНЫЙ РАСХОД ВОДЫ В М ³ НА 1 Т ПРОДУКЦИИ.		
	ФИЛЬТРОВАННАЯ $t = 25$	$t = 40$	УМЯГЧЕННАЯ
ПРОИЗВОДСТВО ВОЛОКОНА КАПРОН.			
ХИМИЧЕСКИЙ ЦЕХ	230-250	90-100	20-25
ЦЕХ РЕГЕНЕРАЦИИ.	140-150	-	2-3
ПРЯДИЛЬНО-ОТДЕЛОЧНЫЙ ЦЕХ	120-130	230-250	100-110
ПРОИЗВОДСТВО ВОЛОКОНА АИНД.			
Все цеха основного производства	290-230	100	30-40

СТОЧНЫЕ ВОДЫ.

ПОТРЕБИТЕЛИ ВОДЫ И ИСТОЧНИКИ ПОСТУПЛЕНИЯ СТОЧНЫХ ВОД.	ЗАГРЯЗНЕННЫЕ			ПОСЛЕ ОХЛАЖДЕНИЯ ПРИГОДНЫЕ ДЛЯ ПОВТОРНОГО ИСПОЛЬЗОВАНИЯ	УСЛОВНО ЧИСТЫЕ, СБРАСЫВАЕМЫЕ В КЛИМАТИЧЕСКИЕ ВОДЫ
	ОСНОВНЫЕ ЗАГРЯЗНЕНИЯ	УДЕЛЬНЫЙ РАСХОД В М ³ /Т	НАИМЕНОВА- НИЕ	КОНЦЕНТРА- ЦИЯ МГ/Л.	
ПРОИЗВОДСТВО ВОЛОКОНА КАПРОН.					
ХИМИЧЕСКИЙ ЦЕХ	35-40	КАПРОЛАКТАМ	130-140	230-300	5-40
ЦЕХ РЕГЕНЕРАЦИИ	2-3	СРЕДЫ КАПРОЛАК- ТАМА, КИСЛОТ, ВОДЫ, ОКСИДЫ	-	140-150	3-5
ПРЯДИЛЬНО-ОТДЕЛОЧНЫЙ ЦЕХ	120-130	КАПРОЛАКТАМ, ЗАМЕЛАЗИВАТЕЛИ	180-200	320-350	10-20

ПРОИЗВОДСТВО ВОЛОКОНА АИНД.

Все цеха основного производст. ства.	10-20	ВТОМ ЧИСЛЕ 2 М ³ /Т, ЗАГРЯЗНЕННЫЕ ГЕКСАМЕТИЛЕН- ДИАМИНОМ С КОНЦЕНТРАЦИ- ЕЙ 2-3 Г/Л.	210-200	20-40

УДАЛЬНЫЕ РАСХОДЫ ВОДЫ И СТОЧНЫХ ВОД ПРИЗ-
ВОДСТВА СИНТЕТИЧЕСКОГО РАСТОРНЯКА
ХАРАКТЕРИСТИКОЙ.

Табл 2 (2)

ПОТРЕБИТЕЛИ ВОДЫ И ИСТОЧНИКИ ПОСТУПЛЕНИЯ СТОЧНЫХ ВОД.	УДЕЛЬНЫЙ РАСХОД ВОДЫ В М ³ НА 1Т ПРОДУКЦИИ		
	ФИЛЬТРОВАННАЯ		УМЯГЧЕННАЯ
	$t = 25^{\circ}\text{C}$	$t = 10^{\circ}\text{C}$	
ХИМИЧЕСКИЙ ЦЕХ	1-2	190-210	12-15
ПРЯДИЛЬНЫЙ ЦЕХ	70-75	180-185	8-10
ЦЕХ РЕГЕНЕРАЦИИ СМОЛЫ	—	18-20	6-8
ЦЕХ РЕГЕНЕРАЦИИ РАСТВОРИТЕЛЕЙ	10-12	60-65	—

СТОЧНЫЕ ВОДЫ.

ПОТРЕБИТЕЛИ ВОДЫ И ИСТОЧНИКИ ПОСТУПЛЕНИЯ СТОЧНЫХ ВОД.	ЗАГРЯЗНЕННЫЕ			ПОСЛЕ ОХЛАЖДЕНИЯ, ПРИГОДНАЯ ДЛЯ ПОВ- ТОРНОГО ИСПОЛЬЗОВАНИЯ	УСЛОВНО ЧИСТЫЕ, СБРАСЫВАЕМЫЕ В КАНА- ЛИЧАЮ.
	УДЕЛЬНЫЙ РАСХОД М ³ /Т	ОСНОВНЫЕ ЗАГРЯЗНЕНИЯ НАИМЕНОВАНИЕ	КОНЦЕНТ- РАЦИЯ МГ/Л.		
ХИМИЧЕСКИЙ ЦЕХ	10-12	МЕТАНОЛ, ЭТИЛЕНГЛЮКОЛ	600 500	170-180	23-25
ПРЯДИЛЬНЫЙ ЦЕХ	3-5	ПОЛИМЕР	60	230-240	8-10
ЦЕХ РЕГЕНЕРАЦИИ СМОЛЫ	4-5	—	40	18-20	1-2
ЦЕХ РЕГЕНЕРАЦИИ РАСТВОРИТЕЛЕЙ	10-12	МЕТАНОЛ, ЭТИЛЕНГЛЮКОЛ	200 150	60-65	2-3

СТОХИЕ ДОБРЫЕ

ЛІТПЕБНІАН БОАІН	НІТОУНКН НОСТУНАЕНН	СТОННІХ БОА.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	ЛІКЕХ ПАНАНДО-ОРАЕАОННІН ЛІКЕХ.	ЛІКЕХ ПЕРЕХЕПАЛІНН.
ЛІКЕХ ПЕРЕХЕПАЛІНН.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	СТОННІХ БОА.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	ЛІКЕХ ПАНАНДО-ОРАЕАОННІН ЛІКЕХ.	ЛІКЕХ ПЕРЕХЕПАЛІНН.
ЛІКЕХ ПЕРЕХЕПАЛІНН.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	СТОННІХ БОА.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	ЛІКЕХ ПАНАНДО-ОРАЕАОННІН ЛІКЕХ.	ЛІКЕХ ПЕРЕХЕПАЛІНН.
ЛІКЕХ ПЕРЕХЕПАЛІНН.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	СТОННІХ БОА.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	ЛІКЕХ ПАСТБОПЕННЯ, фнабріпайнн.	ЛІКЕХ ПАНАНДО-ОРАЕАОННІН ЛІКЕХ.	ЛІКЕХ ПЕРЕХЕПАЛІНН.

HTTPON (NO COEBOMY METOAY).
BEHNOH XAPAKTEPHCTIIKONI AA UPOH3B0ACTBA DOAOKHA
JAEVPHIE PACXOAB! BOA! H CTYHIBIX DOA C KAYECT-
Tas a 2 (3)

А. ФИЗИЧЕСКИЕ ПОКАЗАТЕЛИ:

Температура	°С	25-30	20
Прозрачность по Ширфту	см	1,5	9,5
Взвешенные вещества	мг/л	807	79,6
Масла и смолообразные продукты (эфирорасторимые)	—"	91	отс.

Б. ХИМИЧЕСКИЕ:

РН		7-13	7-8
Жесткость общая	мг-экв/л	35-5,5	35-5,5
Целочность общая	—"	5,7	5,4
Общее солесодержание	мг/л	10-100	
СЕ-	—"	70	0,3-15
SO ₄	—"	90	0,3-15
Ионы тяжелых металлов - медь	—"	4-15	0,35

В. БИОЛОГИЧЕСКИЕ

БПК ₅	мгО ₂ /л	1200	245-50
ХПК	—"	3000	200
Биогенные элементы	мг/л	4000	
Фосфор (в пересчете на P ₂ O ₅)	—"	5-12	103
-АЗОТ	—"	20	1-2

Г. СПЕЦИФИЧЕСКИЕ

ТОКСИЧНЫЕ ВЕЩЕСТВА:

Цианиды	мг/л	20-30	005-024
Додианиды	—"	30	отс.
НАК	—"	10-500	отс.
Метанол	—"	68	отс.

ФЕНОЛПРОИЗВОДНЫЕ

Фенолы	—"	33-100	1,0005
--------	----	--------	--------

А. ФИЗИЧЕСКИЕ ПОКАЗАТЕЛИ:

Температура	°С	20-25	18-24
Прозрачность по Шрифф.	см	4,6-8	15-20
Взвешенные вещества	мг/л	35-190	8-16
Масла и смолообразные продукты (эфирорастворимые)	—	56-118	9-15

Б. ХИМИЧЕСКИЕ

РН		6,8-7,7	7,4-7,8
Жесткость общая	мг-экв/л	7,6	6,0
Щелочность общая	—	6,5	7,0
Сухой остаток	мг/л	544-720	380-540
Прокаленный остаток	—	270,5	559
СЕ	—	15-160	10-82
SO ₄	—	19-31	9-17
Fe общее	—	5,8	2,0

В. БИОЛОГИЧЕСКИЕ

БПК ₅	мгО ₂ /л	198-780	9-12	Биологи-
ХПК	—	1030-3190	40-85	ческий
Биогенные элементы:	—	5-7	0-1	
Фосфор (в пересчете на P ₂ O ₅) и азот	—	17-20	1-2	

Г. СПЕЦИФИЧЕСКИЕ

Вещества, мешающие повторному использованию ст. вод	мг/л		
Метанол	—	84-120	0-2
Этиленгликоль	—	31-125	0гс.
Токсичные в-ва: формальдегид n-ксилол	—	11,6-16,5 8-28	0гс. 0гс.

3 ПОРИФИРОВАННЫЕ ПРОДУКТАМЫ И ИХ ИСПОЛЬЗОВАНИЕ В
СИСТЕМАХ ПРОСТЫНОГО И ОБОРОЧНОГО ВОДООБРАЩЕНИЯ
ПРЕДПРИЯТИИ ПРОМЫШЛЕННОСТИ ХИМИЧЕСКИХ ВОЛОД-
КОН /СИНТЕТИЧЕСКИЕ ВОЛОКНА/.

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

ТАБЛИЦА №3

№ п/п	НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ВОДЫ.	ЕДИНИЦА ИЗМЕРЕНИЯ	ВОДА, ИСПОЛЬЗУЕМАЯ ДЛЯ ОХЛАЖДЕНИЯ ОБОРОЧДАНИЯ И ПРОЦЕССОВ В ТЕПЛОСОФМЕННИКАХ- ГАРАПАХ, РАБОТАЮЩИХ ПРИ t -АХ ОХЛАЖДЕНИЯ ПРОДУКТА И АМСТЕБ- НИ.			
			1	2	3	4
Производство волокна КАПРОН, АМИД, АВСАН, НИТРОН.						
А. Физические:						
1.	Температура	°С	25-26			
2.	Взвешенные вещества	МГ/Л	10-15			
3.	Эфирорастворимые вещества	МГ/Л	105			
4.	Запах	БАЛЛЫ	НЕ НОРМИРУЕТСЯ			
5.	Цветность	ГРАДУСЫ ПЛАТИН-КОДАЛ- ТОВСКИХ ЦВЕЛЕЙ	НЕ НОРМИРУЕТСЯ			
Б. Химические:						
6.	РН		7-8			
7.	Жесткость общая	МГ-ЭКВ/Л	НЕ НОРМИРУЕТСЯ			
8.	Жесткость карбонатная	—	10 30			
9.	Щелочность общая	—	10 30			
10.	Общее солесодержание (сухой остаток)	МГ/Л	10 2000			
11.	Хлориды	—	200-300			
12.	Сульфаты	—	10 500			
13.	Железо	—	10 1			
14.	Ионы тяжелых металлов	—	ЧЕ НОРМИРУЕТСЯ			
15.	Погранично-активные вещества	—	—			
16.	Вещества, растворимость которых уменьшается при нагревании	—	НЕ НОРМИРУЕТСЯ			
В. Биологические^x						
17.	Окисляемость перманганатная	МГ О ₂ /Л	10 10			
18.	БПК	—	10 10			
19.	ХПК	—	20-30			
20.	Биогенные азотистые вещества - азот ^{xx} и фосфор (в пересчете на P ₂ O ₅ и N)	МГ/Л	0,5			
Г. Специфические:						
21.	Мембранные вещества	МГ/Л	НЕ ДОЛГОСТИСЯ			
22.	Токсические вещества ^{xx}	—	—			
23.	Пирогенные вещества	—	—			
24.	Сульфаты, растворимые при нагревании с ос- татком, и оксиды азота, образующие азот	—	—			

^x) В трубопроводах, исключающих биологические воздействия трубопроводов.

^{xx}) Нормируется в каждом отдельном случае в зависимости от технологиче-
го процесса.

ВЫПУСКАЕМЫХ В ВОДОЕМЫ ПОСЛЕ ОЧИСТКИ ПРИМЕРНЫЕ
 УСЛОВИЯ (ПО АДМИНИСТРАТИВНОМУ ПОРЯДКУ ОБРАЩЕНИЯ С
 МОИ ОЧИСТКЕ С ГОРОДСКИМИ СТОКАМИ).

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

ТАБЛИЦА №4

НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ КАЧЕСТВА СТОЧНЫХ ВОД, ВЫПУСКАЕМЫХ В ВОДОЕМЫ	ЕДИНИЦА ИЗМЕРЕНИЯ	ДО ОЧИСТКИ	ПОСЛЕ ОЧИСТКИ	МЕТОД ОЧИСТКИ
1	2	3	4	5
ПРОИЗВОДСТВО ВОДОКНА КАПРОН				
А. ФИЗИЧЕСКИЕ ПОКАЗАТЕЛИ				
ТЕМПЕРАТУРА	°С	20-25	13-20	
ПРОЗРАЧНОСТЬ ПО ШИФРУ	СМ	4-8	15-20	
ВЗВЕШЕННЫЕ ВЕЩЕСТВА	МГ/Л	88-220	5-15	
МАСА И СМОЛООБРАЗНЫЕ ПРОДУКТЫ (ЭФИРРАСТВОРЯМЫЕ)				
ЗАПАХ ХОЛОДНОЙ И НАГРЕТ. ВОДЫ				
Б. ХИМИЧЕСКИЕ:				
РН		7-8,4	7,4-7,9	
ХЕСТКОСТЬ ОБЩАЯ	МГ-ЭКВ/Л	3,5-6,4	4,5-6,8	
ЩЕЛОЧНОСТЬ ОБЩАЯ	—	9,4-9,0	4-6,3	
СУХОЙ ОСТАТОК	МГ/Л.	500-800	659-740	
ПРОКАЛЕННЫЙ ОСТАТОК	—	100		
СО ²⁺	—	80		
СС-	—	30-300	80-103	
SO ₄ ²⁻	—	82	66	
Fe ОШ.	—	4,0	0,5-1,5	
ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА	—	5-15	0,5-1,5	
В. БИОЛОГИЧЕСКИЕ				
ОКИСЛЕМОСТЬ ПЕРМАНГАНАТНАЯ	МГ О ₂ /Л	64-100	8-13	
БПК ₅	—	200-840	3-9	
ХПК	—	123-1363	25,5-30	
БИОГЕННЫЕ ЭЛЕМЕНТЫ-ФОСФОР	—	3-5	0-1	
(В ПЕРЕСЧЕТЕ НА Р ₂ О ₅ И АЗОТ).	—	17-20	1-2	
Г. СПЕЦИФИЧЕСКИЕ:				
ВЕЩЕСТВА, МЕНЯЮЩИЕ ПОВТОРНОУСПОЛЗУЮЩИЕСТВА — КАПСОЛАКТАМ.	МГ/Л	50-174	СЛЕДЫ	ФИЛТРО-
ТОКСИННЫЕ ВЕЩЕСТВА	—	0,3-0,45	0,03	ГИНЕСОЗ

COMEX SECRETARIAT DISSEMINATION LIST

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2

INFORMATION FOR

XEROX OPERATOR:

9

COPIES

<u>Recipient - Addressee</u>	<u>Number of Copies</u>	
Air Force (7602)-----		
Air Force AMD/RDIN(Gaston)-----		
<input checked="" type="checkbox"/> AFSTC (Charlottesville)-----	1	
Army HQDA DAMI-DOI-H-----		
Commerce-----		
<input checked="" type="checkbox"/> DIA AH 10'-----	1	
DIA-1A [REDACTED]	1	STATINTL
DIA-DB-1A [REDACTED]		
DIA- DB-4A [REDACTED]		
ERDA-----		STATINTL
FBI-----		
Navy-----		
Navy (NISC)-----		
State Department-----		
Treasury-----		
USIA-----		
NSA-----		
DoD/ISA -----		
IC Staff -----		
Headquarters: STATINTL		
<input checked="" type="checkbox"/> CRS/ISG/EUR/EE/ [REDACTED]	1	
<input checked="" type="checkbox"/> CRS/ISG/USSR/ [REDACTED]	1	
CRS/ [REDACTED]		STATINTL
CRS/ [REDACTED]		
<input checked="" type="checkbox"/> EA/CH OCER/ [REDACTED]	1	STATINTL
OER/ [REDACTED]	1	STATINTL
OER/ [REDACTED]		STATINTL
<input checked="" type="checkbox"/> OGCR/ [REDACTED]	1	STATINTL
OGCR/ [REDACTED]		
OGCR/EAS/ [REDACTED]		STATINTL
OSI/ [REDACTED]		STATINTL
OSI/ [REDACTED]	1	STATINTL
OSR/SEC/ [REDACTED]		
OWI/ [REDACTED]		STATINTL
SE/USSR/ [REDACTED]		STATINTL
SE/X/FR/ [REDACTED]		STATINTL
CI/ [REDACTED]		
CGAS/ [REDACTED]		STATINTL
DDI/OPR/SOV-EE/ [REDACTED]		STATINTL
OER/ [REDACTED]		STATINTL
COMEX Secretariat-----	LESS orig + 1	STATINTL

[PLEASE RETURN THIS DISSEMINATION LIST TO: COMEX SECRETARIAT
811 Key Building]

11/1/76

Approved For Release 2000/09/14 : CIA-RDP79-00798A000800070001-2