Математические и компьютерные основы защиты информации

Лекция 1

Антон Николаевич Гайдук | УНИВЕР vk.com/gaidukedu

09 февраля 2023 г.

Объем дисциплины

ЯНВАРЬ	ФЕВРАЛЬ	MAPT	АПРЕЛЬ
ПН ВТ СР ЧТ ПТ СБ ВС			
1	1 2 3 4 5	1 /2 3 4 5	1 2
2 3 4 5 6 7 8	6 7 8 / 9 10 11 12	6 7 8 9 10 11 12	3 4 5 (6) 7 8 9
9 10 11 12 13 14 15	13 14 15 16 17 18 19	13 14 15 16 17 18 19	10 11 12 13 14 15 16
16 17 18 19 20 21 22	20 21 22 23 24 25 26	20 21 22 23 24 25 26	17 18 19 20 21 22 23
23 24 25 26 27 28 29	27 28	27 28 29 \30/ 31	24 25 26 27 28 29 30
30 31		V	

- Лекции один раз в неделю (всего 9)
- Практические занятия один раз в неделю (всего 7)

Отчетность

- защита отчета по лабораторным работам
- зачет

Литература

Криптология: учебник / Ю. С. Харин [и др.]. - Минск: БГУ, 2013. -511 с. - (Классическое университетское издание). https://elib.bsu.by/handle/123456789/259637

Харин Ю. С. Компьютерный практикум по математическим методам защиты информации: Учеб. пособие / Ю. С. Харин. С. В. Агиевич. - Мн.: БГУ, 2001. - 190 с..

Криптографические методы. С.В. Агиевич. — 2014. http://apmi.bsu.by/assets/files/agievich/cm.pdf

Special Control

Содержание дисциплины

Раздел I Введение

• Тема 1. Введение. История. Основные понятия.

Раздел II Симметричная криптография

- Тема 2 Классические шифры.
- Тема 3 Поточные алгоритмы шифрования.
- Тема 4 Блочные алгоритмы шифрования.
- Тема 5 Функции хэширования.
- Тема 6 Математические методы криптоанализа.

Раздел III Асимметричная криптография

- Тема 7 Протокол Диффи-Хэллмана.
- Тема 8 Криптосистемы с открытым ключом.
- Тема 9 Электронная цифровая подпись.

Методы защиты информации

- Правовые
- Организационные
- Технические
- Стеганографические
- Криптографические

Криптогра́фия (от др.-греч. κρυπτός «скрытый» + γράφω «пишу»)

В отличии от других способов защиты информации криптографические методы основаны на математических и компьютерных преобразованиях защищаемой информации.

Примеры использования криптографии

Примеры использования криптографии

Криптология

Криптология = криптография и криптоанализ.

Современная криптология на стыке наук

- Теория множеств
- Теория чисел
- Дискретная математика
- Алгебра
- Теория информации
- Теория вероятностей
- Математическая статистика
- Математическое моделирование
- Теория алгоритмов
- Теория вычислимости
- Физика

История

Шифр Атбаш

- Шифр простой подстановки (замены)
- Правило шифрования состоит в замене i-й буквы алфавита буквой с номером n-i+1, где n число букв в алфавите.
- Впервые встречается в древнееврейском тексте Библии / Танаха.

プコハ (атбаш на иврите)

```
א - «<u>алеф</u>» (1-я буква еврейского алфавита),

- «<u>тав</u>» (последняя буква еврейского алфавита),

ב - «<u>бет</u>» (2-я буква еврейского алфавита),

- «<u>шин</u>» (предпоследняя буква еврейского алфавита)
```

- перестановочное шифрование
- секретный параметр шифра диаметр цилиндра

Пример

Шифр Цезаря

- шифр простой подстановки (замены)
- секретный параметр шифра величина сдвига

$$\left| {\begin{array}{*{20}{c}} A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\ D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U & V & W & X & Y & Z & A & B & C \\ \end{array} \right|$$

Пример

YLYDW VWXGHQW \longrightarrow VIVAT STUDENT

Способности к криптоанализу есть у каждого :)

По рзелульаттам илссеовадний одонго анлигисокго унвиертисета, не иеемт занчнеия, в кокам пряокде рсапожолены бкувы в солве. Галвоне, чотбы преавя и пслоендяя бквуы блыи на мсете. Осатьлыне бкувы мгоут селдовтаь в плоонм бсепордяке, все-рвано ткест чтаитсея без побрелм. Пичрионй эгото ялвятеся то, что мы не чиатем кдаужю бкуву по отдльенотси, а все солво цликеом.

- Характеризуется господством моноалфавитных шифров, основной принцип замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами.
- Основная уязвимость частотный криптоанализ.

История криптографии: эпоха Возрождения и новое время

- Появление омофонов шифров многозначной замены: каждой букве ставится в соответствие несколько эквивалентов, число которых пропорционально частоте встречаемости этой буквы
- Появление многоалфавитных шифров.

Диск Альберти

История криптографии: эпоха Возрождения и новое время

Шифр Виженера

- многоалфавитный шифр
- секретный параметр шифра ключевое слово

Пример (ключевое слово: MINSK)

V	- 1	V	Α	Т	S	Т	U	D	Ε	N	Т
М	1	N	S	K	М	- 1	N	S	K	М	1
Н	Q	- I	S	D	Е	В	Н	V	0	Z	В

Криптоанализ

- тест Касиски
- индекс Фридмана (индекс совпадений)

История криптографии: эпоха Возрождения и новое время

Шифр Кардано и Ришелье

- шифровальная решетка
- секретный параметр шифра трафарет с прорезями-ячейками

История криптографии: (конец XVIII в.)

Шифратор Джефферсона

- шифр многоалфавитной замены
- секретный параметр шифра порядок расположения букв на каждом из дисков и порядок дисков на оси (всего 36 дисков)

<u>История криптографии: (начало XX в.)</u>

Шифратор Хеберна

- шифр многоалфавитной замены: роторный шифратор
- секретный параметр шифра порядок расположения букв на диске

История криптографии: (начало и середина XX в.)

Энигма

- шифр многоалфавитной замены: роторный шифратор
- секретный параметр шифра диски, порядок расположения дисков

История криптографии: (начало XX в.)

Шифр Вернама (одноразовый блокнот)

- шифр с абсолютной криптографической стойкостью
- секретный параметр шифра ключ такой же длины, что и сообщение

Пример

История криптографии: конец XIX в.

Принципы Керкхоффса

Принцип Керкхоффса — правило разработки криптографических систем, согласно которому в засекреченном виде держится только определённый набор параметров алгоритма, называемый ключом, а сам алгоритм предполагается известным.

Книга «Военная криптография»

- Система должна быть практически, если не математически, невскрываемой;
- Нужно, чтобы не требовалось сохранение системы в тайне; попадание системы в руки врага не должно причинять неудобств;
- Хранение и передача ключа должны быть осуществимы без помощи бумажных записей; корреспонденты должны располагать возможностью менять ключ по своему усмотрению;
- Система должна быть пригодной для сообщения через телеграф;
- Система должна быть легко переносимой, работа с ней не должна требовать участия нескольких лиц одновременно;
- Наконец, от системы требуется, учитывая возможные обстоятельства её применения, чтобы она была проста в использовании, не требовала значительного умственного напряжения или соблюдения большого

История

- Алиса и Боб обмениваются сообщениями
- Ева перехватывает сообщения (нарушение конфиденциальности)

Обеспечение конфиденциальности информации — защита информации от ознакомления с ее содержанием со стороны лиц, не имеющих права доступа к ней

- Исходное сообщение Алисы называется открытым текстом
- Алиса шифрует или зашифровывает (encrypt) открытый текст и получает шифртекст
- Боб **расшифровывает** (decrypt) шифртекст
- Ева перехватывает и пытается **дешифровать** (decrypt) шифртекст (выполняет атаку)

Способность криптографического алгоритма противостоять атакам называется (крипто)стойкостью

Симметричное и асимметричное шифрование

Математическая модель симметричной шифрсистемы

Определение

Шифрсистемой называется пятерка $\{\mathcal{K}, \mathcal{P}, \mathcal{C}, E, D\}$, где \mathcal{K} — множество ключей (секретных параметров).

 \mathcal{P} — множество открытых текстов.

С — множество шифртекстов,

E — семейство преобразований зашифрования $E = \{E_k : \mathcal{P} o \mathcal{C} | k \in \mathcal{K}\}$

D — семейство преобразований расшифрования $D=\{D_k: \mathcal{C} \to \mathcal{P} | k \in \mathcal{K}\}$ с ограничениями

- ullet однозначность расшифрования: $D_k(E_k(p))=p$ для $orall p\in \mathfrak{P}$;
- ullet реализуемость всех шифртекстов: $\bigcup_{k\in\mathcal{K}}\bigcup_{p\in\mathcal{P}}E_k(p)=\mathcal{C}$, т.е.

 $\forall c \in \mathfrak{C} \qquad \exists p \in \mathfrak{P}, k \in \mathfrak{K} \text{ такие, что } E_k(p) = c.$

Математическая модель симметричной шифрсистемы

Пусть A — некоторый конечный алфавит, например:

$$A = \{0, 1\}, A = \{0, 1, \dots, 25\}, A = \{0, 1, \dots, 255\}$$

 $A=\{0,1\}, A=\{0,1,\dots,25\}, A=\{0,1,\dots,255\}.$ Через $A^n=\prod\limits_{}^nA$ обозначим множество всех слов длины n из алфавита A:

$$A^n = \{a_1 \dots a_n | a_i \in A, n \geqslant 1 \text{ in } i = \overline{1, n}\}$$

Через $A^* = \bigcup\limits_{i=1}^{\infty} A^i$ обозначим множество всех слов конечной длины.

Классификация симметричных шифрсистем

Поточные алгоритмы шифрования

По ключу $k\in\mathcal{K}$ строится последовательность $\gamma_1\dots\gamma_n$ шифрование открытого текста $p=p_1\dots p_n$ осуществляется посимвольно:

$$p = p_1 \dots p_n \to E_{\gamma_1}(p_1) \dots E_{\gamma_n}(p_n) = c_1 \dots c_n = c,$$

$$p_i \in A, c_i \in A, i = \overline{1, n}.$$

Блочные алгоритмы шифрования (режим ЕСВ)

Шифрование осуществляется блоками некоторой длины ${\cal L}$

$$p = p_1 \dots p_m \to E_k(p_1) \dots E_k(p_m) = c_1 \dots c_m = c,$$

$$p_i \in A^L, c_i \in A^L, i = \overline{1, n}$$
.

Спасибо за внимание :)

