Proof by Contrapositive

The contrapositive.

Important: The contrapositive of an implication $P \implies Q$ is $\sim Q \implies \sim P$.

- ▶ If $\sim Q$ is false (meaning Q is true) the implication $\sim Q \implies \sim P$ is automatically true.
- So we assume $\sim Q$ is true that is, that Q is false and try to conclude that $\sim P$ is true meaning that P is false.

Contrapositive.

Proposition: Suppose that $x \in \mathbb{Z}$. Suppose $x^2 - 4x + 3$ is even. Then x is odd.

Contrapositive

Proof: Suppose x is even. Then x = 2m for some integer m. Therefore

$$B = x^2 - 4x + 3 = 4m^2 - 8x + 3 = 2(2m^2 - 2m + 1) + 1.$$

Since B is of the form 2k+1 with $k=2m^2-2m+1$, we conclude that B is odd. Therefore B is not even. We have shown that if x is not odd, then B is not even, and therefore if B is even, x is odd.

Contrapositive

Proposition: Suppose that $x \in \mathbb{Z}$, that a is even, and that b is odd. If $x^2 - ax + b$ is even, then x is odd.

An example from calculus

Theorem: Let $f:[a,b] \to \mathbb{R}$ be a function that is continuous on the closed interval [a,b] and differentiable on the open interval (a,b). If f'(x)=0 for all $x\in [a,b]$, then f is constant.

Proof:

- We will show that if f is not constant, then there is an $x \in [a, b]$ with $f'(x) \neq 0$.
- Suppose that f(x) is not constant. Then there are two (different) points u and v in [a,b] such that $f(u) \neq f(v)$.

calculus cont'd

• $f:[u,v]\to\mathbb{R}$ is continuous on [u,v] and differentiable on (u,v). Therefore, by the mean value theorem, there is a point $c\in(u,v)$ such that

$$f'(c) = \frac{f(v) - f(u)}{v - u}.$$

Since $f(v) \neq f(u)$, the quantity on the right is not zero, and so $f'(c) \neq 0$.

▶ Therefore f'(x) is not zero for all $x \in [a, b]$. This proves our result.