>
$$d1 := diff(x(t), t) = 0.8 \cdot x(t) - 0.5 \cdot x(t) \cdot y(t) - 0.4 \cdot x(t) \cdot x(t)$$

$$d1 := \frac{d}{dt} x(t) = 0.8 x(t) - 0.5 x(t) y(t) - 0.4 x(t)^{2}$$
(1)

> $d2 := diff(y(t), t) = -0.3 \cdot y(t) + 0.7 \cdot x(t) \cdot y(t)$

$$d2 := \frac{d}{dt} y(t) = -0.3 y(t) + 0.7 x(t) y(t)$$
 (2)

- > $solve(\{rhs(d1) = 0, rhs(d2) = 0\}, \{x(t), y(t)\})$ $\{x(t) = 0, y(t) = 0.\}, \{x(t) = 2, y(t) = 0.\}, \{x(t) = 0.4285714286, y(t) = 1.257142857\}$ (3)
- > with(DEtools):
- > DEplot([d1, d2], [x(t), y(t)], t = -10..10, x = -1..2, y = -1..3, arrows = curve, dirfield = 1000, color = magnitude)

- > $syst1 := dsolve(\{d1, d2, x(0) = 3, y(0) = 5\}, \{x(t), y(t)\}, numeric, method = rkf45)$ $syst1 := proc(x_rkf45) \dots end proc$ (4)
- = **_>** with(plots):
- > odeplot(syst1, [[t, x(t)], [t, y(t)]], t = 0..100)

syst2 :=
$$dsolve(\{d1, d2, x(0) = 5, y(0) = 3\}, \{x(t), y(t)\}, numeric, method = rkf45)$$

syst2 := $proc(x_rkf45)$... end proc (5)

> odeplot(syst2, [[t, x(t)], [t, y(t)]], t = 0..100)

DEplot3d($\{d1, d2\}$, $\{x(t), y(t)\}$, t = 0..50, x = -1..5, y = -1..5, [x(0) = 1, y(0) = 1.5], [x(0) = 2, y(0) = 3], scene = [t, x(t), y(t)], stepsize = 0.01, title ='predator prey', linecolor = t)

predator prey

