Practice for Forced Oscillations

Why?

Exercise 1 On a piece of graph paper draw the vectors:

a)
$$\begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$b) \begin{bmatrix} -2 \\ -4 \end{bmatrix}$$

$$c) (3, -4)$$

Exercise 2 On a piece of graph paper draw the vector (1, 2) starting at (based at) the given point:

a) based at (0,0)

b) based at (1, 2)

c) based at (0,-1)

Exercise 3 On a piece of graph paper draw the following operations. Draw and label the vectors involved in the operations as well as the result:

a)
$$\begin{bmatrix} 1 \\ -4 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$b) \begin{bmatrix} -3 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$c) 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Exercise 4 Compute the magnitude of

a)
$$\begin{bmatrix} 7 \\ 2 \end{bmatrix}$$

$$b) \begin{bmatrix} -2\\3\\1 \end{bmatrix}$$

c)
$$(1,3,-4)$$

Exercise 5 Compute the magnitude of

a)
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$b) \begin{bmatrix} 2\\3\\-1 \end{bmatrix}$$

c)
$$(-2, 1, -2)$$

Exercise 6 Compute

a)
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 7 \\ -8 \end{bmatrix}$$

b)
$$\begin{bmatrix} -2 \\ 3 \end{bmatrix} - \begin{bmatrix} 6 \\ -4 \end{bmatrix}$$

$$c) - \begin{bmatrix} -3\\2 \end{bmatrix}$$

$$d) \ 4 \begin{bmatrix} -1 \\ 5 \end{bmatrix}$$

e)
$$5\begin{bmatrix}1\\0\end{bmatrix} + 9\begin{bmatrix}0\\1\end{bmatrix}$$

$$f)$$
 $3\begin{bmatrix}1\\-8\end{bmatrix}-2\begin{bmatrix}3\\-1\end{bmatrix}$

Exercise 7 Compute

a)
$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 6 \\ -3 \end{bmatrix}$$

$$b) \begin{bmatrix} -1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$c) - \begin{bmatrix} -5\\ 3 \end{bmatrix}$$

$$d) \ 2 \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

$$e) \ \ 3\begin{bmatrix}1\\0\end{bmatrix}+7\begin{bmatrix}0\\1\end{bmatrix}$$

$$f) 2 \begin{bmatrix} 2 \\ -3 \end{bmatrix} - 6 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Exercise 8 Find the unit vector in the direction of the given vector

$$a) \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

$$b) \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

$$c)$$
 $(3,1,-2)$

Exercise 9 Find the unit vector in the direction of the given vector

$$a) \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$b) \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

c)
$$(2, -5, 2)$$

Exercise 10 If $\vec{x} = (1, 2)$ and \vec{y} are added together, we find $\vec{x} + \vec{y} = (0, 2)$. What is \vec{y} ?

Exercise 11 If $\vec{v} = (1, -4, 3)$ and $\vec{w} = (-2, 3, -1)$, compute $3\vec{v} - 2\vec{w}$ and $4\vec{w} + \vec{v}$.

Exercise 12 Write (1,2,3) as a linear combination of the standard basis vectors \vec{e}_1 , \vec{e}_2 , and \vec{e}_3 .

Exercise 13 Determine if the following sets of vectors are linearly independent.

$$a) \ \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$b) \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\2 \end{bmatrix} \right\}$$

$$c) \ \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \ \begin{bmatrix} -1\\3 \end{bmatrix}, \ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$$

$$d) \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

$$e) \ \left\{ \begin{bmatrix} 1\\0\\0\\1\\-1 \end{bmatrix}, \ \begin{bmatrix} 0\\1\\2\\2 \end{bmatrix} \right\}$$

$$f) \ \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \ \begin{bmatrix} 0\\3\\-1 \end{bmatrix}, \ \begin{bmatrix} 0\\-2\\1 \end{bmatrix} \right\}$$

Exercise 14 If the magnitude of \vec{x} is 4, what is the magnitude of

- a) $0\vec{x}$
- b) $3\vec{x}$
- c) $-\vec{x}$
- $d) -4\vec{x}$
- e) $\vec{x} + \vec{x}$
- f) $\vec{x} \vec{x}$

Exercise 15 If the magnitude of \vec{x} is 5, what is the magnitude of

a) $4\vec{x}$

 $b) -2\vec{x}$

c) $-4\vec{x}$

Exercise 16 Suppose a linear mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ takes (1,0) to (2,-1) and it takes (0,1) to (3,3). Where does it take

a) (1,1)

b) (2,0)

c) (2,-1)

Exercise 17 Suppose a linear mapping $F: \mathbb{R}^3 \to \mathbb{R}^2$ takes (1,0,0) to (2,1) and it takes (0,1,0) to (3,4) and it takes (0,0,1) to (5,6). Write down the matrix representing the mapping F.

Exercise 18 Suppose that a mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ takes (1,0) to (1,2), (0,1) to (3,4), and it takes (1,1) to (0,-1). Explain why F is not linear.

Exercise 19 Suppose a linear mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ takes (1,0) to (1,-1) and it takes (0,1) to (2,0). Where does it take

a) (1,1)

b) (0,2)

c) (1,-1)

Exercise 20 Let P represent the space of quadratic polynomials in t: a point (a_0, a_1, a_2) in P represents the polynomial $a_0 + a_1 t + a_2 t^2$. Consider the derivative $\frac{d}{dt}$ as a mapping of P to P, and note that $\frac{d}{dt}$ is linear. Write down $\frac{d}{dt}$ as a 3×3 matrix.