## Streszczenie

#### Strona 3

Termodynamika równowagowa opisuje procesy, którym podlega dany układ, tak, jakby zachodziły w sposób kwazistatyczny. To oznacza, że proces jest ciągiem stanów równowagi, a więc na każdym etapie procesu układ jest w równowadze termodynamicznej. W takim opisie nie sposób zdefiniować prędkości procesu, gdyż sam jego czas zmierza do nieskończoności. Takie założenia nie zawsze są możliwe, przykładowo dla szybko zachodzących zmian jak w przypadku eksplozji, albo dla układów, w których interesuje nas nie tylko stan układu po osiągnięciu przez niego stanu równowagi, ale też jego zachowania podczas tej przemiany. W pracy zająłem się głównie reakcjami chemicznymi oscylacyjnymi, które są przykładem czasowej struktury dyssypatywnej. Struktur takich nie można rozpatrywać w ramach termodynamiki równowagowej, ponieważ są one typowe jedynie dla stanów nierównowagowych.

Celem pracy jest teoretyczna oraz numeryczna analiza oscylacyjnych reakcji chemicznych. W pracy zasymulowałem reakcje oscylacyjne, których mechanizmy opisane są odpowiednio modelami Lotki, Lotki-Volterry oraz bruskelatora. Przeprowadzono teoretyczną analizę stabilności w stanach stacjonarnych oraz sprawdzono jej prawdziwość przy użyciu symulacji. Numerycznie oszacowano produkcję entropii.

## **Abstract**

## Strona 4

Usuwam zasadę minimalnej produkcji entropii, ponieważ nie znalazłem satysfakcjonującego wyprowadzenia

Pracuję nad opisem procesów sprzężonych

# Spis treści

## Strona 5

## Spis treści

| 1  | Wst   | ęp                                                             | 6  |
|----|-------|----------------------------------------------------------------|----|
|    | 1.1   | Produkcja entropii w układach nierównowagowych                 | 8  |
|    | 1.2   | Szybkość reakcji chemicznej                                    | 10 |
|    | 1.3   | Termodynamika nierównowagowa liniowa i nieliniowa              | 11 |
| 2  | Nun   | neryczna i teoretyczna analiza modeli reakcji chemicznych      | 14 |
|    | 2.1   | Metody rozwiązywania układów nieliniowych równań różniczkowych | 16 |
|    | 2.2   | Stabilność rozwiązań układów równań różniczkowych              | 18 |
|    | 2.3   | Ogólny model bruskelator                                       | 27 |
|    | 2.4   | Porównanie metod numerycznych                                  | 31 |
| 3  | Pod   | sumowanie                                                      | 33 |
| W  | ykaz  | literatury                                                     | 34 |
| W  | ykaz  | rysunków                                                       | 35 |
| W  | ykaz  | tabel                                                          | 36 |
| Do | odate | k A                                                            | 37 |
| Do | odate | k B                                                            | 37 |
| 4  | Kod   |                                                                | 38 |

## 1 Wstęp

Oscylacyjne reakcje chemiczne są przykładem procesu samoorganizacji w układach z reakcją chemiczną. W trakcie przebiegu takiej reakcji możemy zaobserwować oscylacyjne zmiany stężenia niektórych reagentów pojawiających się w czasie jej przebiegu. Zwykle są to przejściowe związki chemiczne, które pojawiają się w mechanizmie reakcji pomiędzy substratami a produktami. Zjawisko takiej samoorganizacji obserwujemy tylko wówczas, gdy układ z reakcją chemiczną jest w stanie dalekim od stanu równowagi termodynamicznej.

Te oscylacyjne zmiany stężenia niektórych reagentów w oscylacyjnej reakcji chemicznej mogą odbywać się jednocześnie i tak samo w całej objętości układu, wówczas mówimy o powstaniu czasowej struktury dyssypatywnej. Jeśli stężenia tych reagentów zmieniają się zarówno w czasie jak i przestrzeni, wówczas mówimy o czasowo-przestrzennych strukturach dyssypatywnych. W tym drugim przypadku zaobserwujemy falę stężenia reagenta, która będzie przemieszczać się poprzez całą objętość układu. W trzecim przypadku te zmiany stężeń dotyczą tylko objętości układu, wówczas mówimy o przestrzennej strukturze dyssypatywnej. Wraz z osiągnięciem równowagi termodynamicznej w układzie opisane struktury zanikają.

Wyjaśnienie tych oscylacji z punktu widzenia termodynamiki wymaga wyjścia poza termodynamikę równowagową. Termodynamika równowagowa zajmuje się procesami, w których ignoruje się upływ czasu, a przemiana jest kwazistatyczna. Oznacza to, że każdy stan pośredni można traktować jako stan równowagi termodynamicznej. Model taki jest wystarczający do opisu większości procesów, w których interesuje nas stan początkowy oraz końcowy. Jest jednak niewystarczający, jeżeli interesuje nas szybkość zachodzenia procesu. Dopiero termodynamika nierównowagowa jest teorią, która obejmuje to, co dzieje się w trakcie rzeczywistych przemian i jest ona konieczna do opisu reakcji oscylacyjnych. Pierwsze odkrycia tego typu przemian sięgają końca XIX wieku. Były to reakcje w układach heterogenicznych, jak na przykład pierścienie Lieseganga lub oscylacje prądu płynącego przez ogniwo galwaniczne.

Pierwszy model teoretyczny został przedstawiony przez Alfreda Lotkę [1]. W modelu tym zakłada się, że reakcje przebiegają w układzie homogenicznym. Przez długi czas uważano, że nie może on przedstawiać rzeczywistych reakcji, ponieważ ówcześnie interpretowano, że łamie II Zasadę Termodynamiki. Jednak w 1921r. na przykładzie reakcji Bray'a-Liebhafky'ego pokazano, że reakcje oscylacyjne w układach homogenicznych są możliwe. Jest to reakcja rozkładu nadtlenku wodoru katalizowana jodanem (V). Zachodzą reakcje oscylacyjne z naprzemienną dominacją dwóch reakcji [2]:

$$5 H_2 O_2 + 2 H^+ + 2 I O_3^- \longrightarrow I_2 + 5 O_2 + 6 H_2 O_3$$

oraz

$$I_2 + 5 H_2 O_2 \longrightarrow 2 H^+ + 2 I O_3^- + 4 H_2 O_2$$

Oznacza to między innymi, że będziemy obserwować oscylacyjne zmiany stężenia I<sub>2</sub> oraz szybkości wydzielania O<sub>2</sub>, gdyż w pierwszej reakcji następuje produkcja I<sub>2</sub>, a w drugiej następuje jego zużycie. Reakcja sumaryczna w tej przemianie ma postać:

$$2 H_2 O_2 \longrightarrow 2 H_2 O + O_2$$
.

Jeszcze większy wpływ na rozwój termodynamiki nierównowagowej w opisie przemian chemicznych miało odkrycie reakcji Biełousowa-Żabotyńskiego. Pierwszą reakcją z tej grupy została zaobserwowanaw 1959 w wodnym roztworze bromianu (V) potasu, siarczanu (VI) ceru (IV), kwasu malonowego lub kwasu cytrynowego z dodatkiem rozcieńczonego kwasu siarkowego (VI). Reakcje te przebiegają według dość skomplikowanego mechanizmu, wciąż badanego, ale można podać uproszczone równania tej przemiany [2]:

W reakcji tej obserwujemy, że stężenia Br<sup>-</sup> oraz HBrO<sub>2</sub>, który nie jest obecny w przedstawionych wyżej sumarycznych równaniach, zmieniają się oscylacyjnie. Równocześnie stężenia Ce<sup>3+</sup> oraz Ce<sup>4+</sup> też podlegają oscylacjom. Oscylacje stężenia tego reagenta powoduje widoczne zmiany koloru roztworu w trakcie reakcji z bezbarwnego na żółty, a później ponownie na bezbarwny. Całkowita reakcja sumaryczna ma postać:

$$2 \text{ BrO}_3^- + 3 \text{ CH}_2(\text{COOH})_2 + 2 \text{ H}^+ \xrightarrow{\text{kat}} 2 \text{ BrCH}(\text{COOH})_2 + 4 \text{ H}_2\text{O} + 3 \text{ CO}_2.$$

W późniejszym okresie znaleziono również inne reagenty, dla których zachodzi reakcja analogiczna. Jedną z możliwych modyfikacji tej reakcji jest zamiana jonów Ce<sup>3+</sup> na Fe(o-phen)<sub>3</sub><sup>2+</sup>, zwanych ferroiną. Podmiana ta zmienia efekty wizualne w czasie przebiegu reakcji oscylacyjnej. Zamiast oscylacji między bezbarwnym i żółtym roztworem występuje oscylacja między pomarańczowym oraz niebieskim [2].

Odkrycie reakcji oscylacyjnych przyczyniło się do rozwoju termodynamiki nierównowagowej, a w konsekwencji do użycia jej aparatu teoretycznego do opisu procesów życiowych. Reakcja Biełousowa-Żabotyńskiego traktowana jest czasem jako analog cyklu Krebsa, będącego głównym źródłem energii organizmów tlenowych. Analogia ta dotyczy mechanizmu reakcji, w których występuje pętla sprzężenia zwrotnego, to oznacza, że produkt pierwszej reakcji jest substratem kolejnej, aż do osiagniecia produktu, który jest substratem tej pierwszej. [3, 4].

Niepoprawna interpretacja II Zasady Termodynamiki może doprowadzić do wniosku, że powstanie opisanych wyżej złożonych struktur z molekularnego chaosu powinno być niemożliwe. Tak rzeczywiście się dzieje, ale tylko dla układów izolowanych. Natomiast w przypadku innych układów, które oddziałują z otoczeniem samoorganizacja materii jest możliwa. Przykładem są procesy zachodzące w układach biologicznych, w którcyh interakcja z otoczeniem jest kluczowa. Wspomniana wyżej błędna interpretacja drugiej zasady termodynamiki polega na ekstrapolowaniu wyników z układów izolowanych do wszystkich innych.

#### 1.1 Produkcja entropii w układach nierównowagowych

Wszystkie procesy rzeczywiste podlegają drugiej zasadzie termodynamiki, która określa różniczkową zmianę entropii dS, w danych procesie samorzutnym nierównością [5]:

$$\mathrm{d}S > 0. \tag{1.1}$$

W powyższym zapisie pod symbolem  $\mathrm{d}S$  kryje się suma różniczkowych zmian entropii otoczenia  $\mathrm{d}S_{ot}$  i układu  $\mathrm{d}S_{uk}$ 

$$dS = dS_{uk} + dS_{ot}. ag{1.2}$$

W przyapadku układów izolowanych  $dS = dS_{uk}$ , więc w układach izolowanych entropia zawsze rośnie, a zatem spontaniczne uporządkowanie stabilnych struktur nie jest możliwe.

Aby nadać tej zasadzie ilościowy charakter, w której zastąpimy nierówność, wprowadza się pojęcie produkcji entropii, które przeanalizujemy najpierw z punktu widzenia układu. W przypadku układu zamkniętego, w którym przebiega proces samorzutny drugą zasadę termodynamiki zapiszemy następującą nierównością [2, 6, 7]:

$$dS_{uk} > \frac{dQ}{T_{ct}},\tag{1.3}$$

gdzie  $dS_{uk}$  to różniczkowa zmiana entropii układu, dQ to elementarne ciepło dostarczone do układu ze źródła o temperaturze  $T_{ot}$ . Jeśli wymiana dQ odbywa się w temperaturze T to

$$dS_{uk} > \frac{dQ}{T}. (1.4)$$

Nierówność (1.3) jest konsekwencją podstawienia  $dS_{ot}=-\frac{dQ}{T_{ot}}$  oraz (1.2) do (1.1), natomiast (1.4) otrzymujemy podstawiając  $dS_{ot}=-\frac{dQ}{T}$  do tych samych równań.

Z nierówności (1.3) lub (1.4) wynika, że różniczkową zmianę entropii układu  ${\rm d}S_{uk}$  możemy przedstawić jako sumę dwóch wkładów:

$$dS_{uk} = d_e S + d_i S, (1.5)$$

gdzie  $\mathrm{d}_e S = \frac{dQ}{T}$ , stanowi wkład do  $\mathrm{d}S_{uk}$  wynikający tylko z wymiany ciepła Q,  $\mathrm{d}_i S$  jest równy:

$$d_i S = dS_{uk} - \frac{dQ}{T}.$$
(1.6)

Składnik  $d_i S$  nazywany jest produkcją entropii. Na podstawie nierówności (1.1) lub (1.3) wynika, że  $d_i S > 0$  w przemianach samorzutnych.

Rozpatrzmy teraz drugą zasadę termodynamiki z punktu widzenia układu i otoczenia, która przyjmuje postać:

$$dS_{uk} + dS_{ot} > 0, (1.7)$$

gdzie symbolem  $\mathrm{d}S_{ot}$  oznaczono różniczkową zmianę entropii otoczenia. Zmiany entropii  $\mathrm{d}S_{ot}$  i  $\mathrm{d}S_{uk}$  mogą wynikać z wymiany ciepła dQ jak i produkcji entropii. Dlatego możemy zapisać:

$$d_e S_{uk} + d_i S_{uk} + d_e S_{ot} + d_i S_{ot} > 0.$$
(1.8)

Jeśli wymiana ciepła zachodzi w temperaturze T to wówczas:  $d_e S_{uk} = -d_e S_{ot}$ , otrzymujemy z równania (1.8)

$$d_i S_{uk} + d_i S_{ot} > 0. ag{1.9}$$

Warunek (1.9) obejmuje również przypadek, w którym produkcja entropii  $d_i S_{uk}$  zmaleje na tyle, że  $d_i S_{ot}$  skompensuje ten niedostatek. W innym przypadku  $d_i S_{ot}$  może na tyle zmaleć, że  $d_i S_{uk}$  będzie kompensować ten niedostatek. W termodynamice nierównowagowej dokonujemy jednak dodatkowo założenia:

$$d_i S_{uk} > 0$$

oraz

$$d_i S_{ot} > 0.$$

Założenie to możemy przenieść na sytuację, gdy układ dzielimy na mniejsze podukłady (komórki). Z punkty widzenia pojedynczej komórki, dla której pozostałe stanowią otoczenie, oznacza to, że produkcja entropii w jej wnętrzu ma być nieujemna i podobnie dla pozostałych. To oznacza dalej, że w każdym dowolnie małym obszarze układu, w którym zachodzą procesy samorzutne następuje związane z nimi tworzenie entropii. To stwierdzenie stanowi treść hipotezy termodynamiki nierównowagowej, nazywaną lokalnym sformuowaniem drugiej zasady termodynamiki. Nie wyklucza ona jednak takiego przypadku, w którym w jednym i tym samym miejscu zachodzi kilka procesów, z których niektóre zmniejszają entropię  $(\mathrm{d}_i S < 0)$ , pod warunkiem, że oprócz nich obecne są procesy produkujące entropię  $(\mathrm{d}_i S > 0)$ , które z naddatkiem zwiększa entropię w tym miejscu [2, 6, 8].

Tego typu sprzężenie procesów jest obserwowane w układach nierównowagowych. przykładem jest tutaj termodyfuzja w gazie. W procesie tym pod wpływem gradientu temperatury dochodzi do przepływu ciepła, co jest procesem nieodwracalnym, wytwarzającym entropię w każdym miejscu. Jednak równocześnie w początkowo jednorodnym układzie zaobserwujemy transport masy, którego rezultatem będzie pojawienie się niejednorodności stężenia gazu w przestrzeni, którą zajmuje. Z tym drugim procesem związane jest zmniejszenie entropii. Wytwarzanie entropii związane z przepływem ciepła większe niż jej spadek związany z wytworzeniem niejednorodności.

## 1.2 Szybkość reakcji chemicznej

Reakcje chemiczne można podzielić na dwie kategorie. Pierwsza z nich to reakcje homogeniczne, czyli takie zachodzące w jednej fazie. Druga to reakcje heterogeniczne, czyli reakcje zachodzące między związkami chemicznymi w różnych fazach i na granicy między nimi. Szybkość reakcji heterogenicznych jest trudniejsza do opisania, ponieważ zależy od szybkości dyfuzji, powierzchni rozdzielenia i innych czynników. Szybkość reakcji homogenicznej w stałej temperaturze jest funkcją stężeń reagentów. Można ją wyrazić poprzez szybkość zmiany stężenia pojedynczego reagenta  $c_i$  dla stałej objętości jako:

$$v = \frac{1}{\nu_i} \frac{\mathrm{d}c_i}{\mathrm{d}t}.\tag{1.10}$$

Jest to wielkość niezależna od konkretnego reagenta. Różniczkową zmianę  $c_i$  opisuje wyrażenie

$$\mathrm{d}c_i = \frac{\mathrm{d}n_i}{V} \tag{1.11}$$

gdzie  $\nu_i$  to współczynnik stechiometryczny (ujemny dla substratów, a dodatni dla produktów),  $c_i$  to stężenia molowe składników.

Można tak zdefiniowaną szybkość reakcji powiązać z szybkością zmiany liczby postępu reakcji [9]:

$$\mathrm{d}\xi = \frac{\mathrm{d}n_i}{\nu_i},\tag{1.12}$$

gdzie  $\xi$  to liczba postępu reakcji i jest niezależna od wyboru składnika. Wstawiając tą zależność do (1.10) otrzymujemy:

$$v = \frac{1}{V} \frac{\mathrm{d}\xi}{\mathrm{d}t}.\tag{1.13}$$

Szybkość reakcji chemicznej dla reakcji zapisanej wzorem:

$$x_1X_1 + x_2X_2 + \ldots \rightarrow y_1Y_1 + y_2Y_2 + \ldots$$

jest w ogólności funkcją stężeń wszystkich reagentów biorących udział w reakcji chemicznej:

$$v = f(x_1, x_2, \dots, y_1, y_2, \dots)$$
.

Odpowiednie wzory są wyznaczane empirycznie i znacząca część z nich okazuje się mieć prostszą formę tej zależności:

$$v = kx_1^{\alpha_1} x_2^{\alpha_2} \dots y_1^{\beta_1} y_2^{\beta_2} \dots$$
 (1.14)

Ustalone empirycznie zależności pomiędzy szybkością reakcji, a stężeniami reagentów są podstawą do tworzenia modeli zachodzenia reakcji chemicznych, ich kinetycznego opisu. Przykładowe reakcje i ich szybkości reakcji zostały przedstawione w Dodatku A na stronie 37. Według równania (1.14) szybkość reakcji można zmienić przez zmianę stężenia reagentów, które w niej uczestniczą lub zmianę stałej szybkości reakcji.

Reakcje chemiczne przebiegają według tak zwanego mechanizmu reakcji chemicznej. Opisuje on wszystkie jej etapy. Uwzględnia on procesy, które przebiegają w trakcie reakcji wraz z pojawieniem się i znikaniem reagenta pośredniego. Reakcja katalizowana przebiega jednak innym mechanizmem niż niekatalizowana, choć substraty i produkty obu są identyczne. Katalizator, otwierając nową drogę przemiany, powoduje to, że szybciej i wydajniej otrzymujemy produkty. Katalizatory nie występują w reakcji sumarycznej, ale występują w reakcjach elementarnych. Podobnie jak reakcje możemy podzielić katalizę na homogeniczną (zachodzącej w jednej fazie) oraz heterogeniczną (zachodząca na granicy faz). Szczególnym rodzajem reakcji katalitycznych jest autokataliza, w której produkt reakcji bierze w niej udział, przez co zwiększa jej szybkość [6, 9].

## 1.3 Termodynamika nierównowagowa liniowa i nieliniowa

We wcześniejszym podrozdziale opisaliśmy zmiany entropii układu, które dokonuje się w trakcie procesu samorzutnego. Jeżeli zmiany te odniesiemy do bardzo krótkiego przedziału czasu  $\mathrm{d}t$ , wówczas szybkość zmiany entropii dana będzie za pomocą równania [10]:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}_e S}{\mathrm{d}t} + \frac{\mathrm{d}_i S}{\mathrm{d}t},\tag{1.15}$$

gdzie pierwszy człon po prawej stronie równości opisuje szybkość wymiany entropii układu z otoczeniem, a drugi szybkość produkcji entropii w układzie. Produkcję tę możemy opisać za pomocą pojęcia źródła entropii  $\sigma$ . Jest to wielkość produkcji entropii w odniesieniu na jednostkę objętości. W ogólności to funkcja czasu i położenia. Relacja pomiędzy źródłem entropii, a szybkością produkcji entropii określa wzór:

$$\frac{\mathrm{d}_i S}{\mathrm{d}t} = \iiint_V \sigma \,\mathrm{d}V\,,\tag{1.16}$$

w którym  $\sigma > 0$ .

Chcąc przenieść wprowadzone pojęcie na poziom opisu, który pojawia się w lokalnym sformuowaniu II Zasady Termodynamiki, rozważmy mały fragment układu. Dla tego fragmentu zmiany entropii również odbywają się poprzez wymianę jej przez ścianki ograniczające rozważany fragment oraz z tworzenia jej wewnątrz tego fragmentu. Tę wymianę entropii z otoczeniem opisuje wektor przepływu entropii  $\mathbf{J}_s$ . Jest on zależny od położenia fragmentu i czasu. Biorąc pod uwagę pojęcie źródła entropii  $\sigma$  wzór opisujący zmianę w czasie entropii zapiszemy jako:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\nabla \cdot \mathbf{J}_S + \sigma. \tag{1.17}$$

Oprócz zmieniającej się entropii, w układzie, w ogólności, dochodzi do zmiany energii wewnętrznej. Różniczkową jej zmianę  $\mathrm{d}U$  zapiszemy poprzez wyrażenie:

$$dU = T dS - p dV + \sum_{i} \mu_{i} dn_{i}, \qquad (1.18)$$

gdzie symbolem  $\mu_i$  oznaczono potencjał chemiczny *i*-tej substancji.

$$\mu_i = \left(\frac{\partial U}{\partial n_i}\right)_{S,V,n_j:j \neq i} \tag{1.19}$$

Przekształcając równanie (1.18), zakładając że dV = 0, otrzymujemy [6]:

$$dS = \frac{1}{T} dU - \sum_{i} \frac{\mu_i}{T} dn_i.$$
(1.20)

Różniczkowa zmiana (1.20) na przyrost czasu dt ma postać:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{1}{T}\frac{\mathrm{d}U}{\mathrm{d}t} - \sum_{i} \frac{\mu_{i}}{T}\frac{\mathrm{d}n_{i}}{\mathrm{d}t}.$$
(1.21)

Jeżeli zmiany te odniesiemy do elementarnej ścianki da, wówczas relację gęstości strumienia opiszemy równaniem:

$$\mathbf{J}_S = \frac{1}{T} \mathbf{J}_U - \sum_i \frac{\mu_i}{T} \mathbf{J}_i. \tag{1.22}$$

Energia wewnętrzna U jest skalarem, który podlega równaniu ciągłości:

$$\frac{\mathrm{d}U}{\mathrm{d}t} = -\nabla \cdot \mathbf{J}_U \tag{1.23}$$

natomiast szybkość zmiany  $n_i$  dana jest wzorem:

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = -\nabla \cdot \mathbf{J}_i + \frac{\mathrm{d}n_{i;reak}}{\mathrm{d}t}.$$
 (1.24)

Różniczkowa zmiana liczby moli i-tego składnika  $\mathrm{d}n_{i;reak}$  możemy zapisać poprzez liczbę postępu reakcji  $\xi$  oraz współczynnik stechiometryczny  $\nu_i$ . Liczba postępu reakcji jest zdefiniowana jako  $\mathrm{d}\xi=\frac{\mathrm{d}n_{i;reak}}{\nu_i}$ , a roszerzając to do wielu równoległych reakcji przebiegających w roztworze otrzymujemy  $\mathrm{d}n_{i;reak}=\sum_r \nu_{ir}\,\mathrm{d}\xi_r$ . Zależności tą podstawiamy do równania (1.24) i otrzymujemy:

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = -\nabla \cdot \mathbf{J}_i + \sum_r \nu_{ir} \frac{\mathrm{d}\xi_r}{\mathrm{d}t}.$$
(1.25)

Podstawiając (1.22), (1.23) oraz (1.25) do (1.17) otrzymujemy:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{1}{T}\frac{\mathrm{d}U}{\mathrm{d}t} - \sum_{i} \frac{\mu_{i}}{T}\frac{\mathrm{d}n_{i}}{\mathrm{d}t} - \left[\mathbf{J}_{U} \cdot \mathbf{\nabla} \frac{1}{T} - \sum_{i} \mathbf{J}_{i} \cdot \mathbf{\nabla} \frac{\mu_{i}}{T} - \frac{1}{T}\sum_{r} \sum_{i} \nu_{ir} \mu_{i} \frac{\mathrm{d}\xi_{r}}{\mathrm{d}t}\right] + \sigma. \tag{1.26}$$

Wprowadzamy pojęcie powinowactwa chemicznego:

$$A_r = -\sum_i \nu_{ir} \mu_i. \tag{1.27}$$

Równanie (1.26) przybiera postać:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{1}{T}\frac{\mathrm{d}U}{\mathrm{d}t} - \sum_{i} \frac{\mu_{i}}{T}\frac{\mathrm{d}n_{i}}{\mathrm{d}t} - \left[\mathbf{J}_{U} \cdot \nabla \left(\frac{1}{T}\right) - \sum_{i} \mathbf{J}_{i} \cdot \nabla \left(\frac{\mu_{i}}{T}\right) + \sum_{r} \frac{A_{r}}{T}\frac{\mathrm{d}\xi_{r}}{\mathrm{d}t}\right] + \sigma. \tag{1.28}$$

Otrzymujemy z porównania tego wzoru z (1.21):

$$\sigma = \mathbf{J}_{U} \cdot \nabla \left(\frac{1}{T}\right) - \sum_{i} \mathbf{J}_{i} \cdot \nabla \left(\frac{\mu_{i}}{T}\right) + \sum_{r} \frac{A_{r}}{T} \frac{\mathrm{d}\xi_{r}}{\mathrm{d}t}.$$
 (1.29)

Wyrażenie (1.29) przedstawia źródło produkcji entropii  $\sigma$  jako sumę iloczynu sił termodynamicznych oraz powodowanych przez nie przepływów. Pominęliśmy w nim jednak produkcję entropii wynikającą z lepkości płynu. Odpowiednie siły oraz związanie z nimi przepływy zestawiono w tabeli 1.

| Proces            | Przepływ                                    | Siła termodynamiczna                          |
|-------------------|---------------------------------------------|-----------------------------------------------|
| Transport energii | $\mathbf{J}_U$                              | $oldsymbol{ abla}\left(rac{1}{T} ight)$      |
| Dyfuzja           | ${f J}_i$                                   | $-oldsymbol{ abla}\left(rac{\mu_i}{T} ight)$ |
| Reakcja chemiczna | $J_r = \frac{\mathrm{d}\xi_r}{\mathrm{d}t}$ | $rac{A_r}{T}$                                |

Tabela 1: Siły i przepływy termodynamiczne

Na podstawie wzoru (1.29) źródło produkcji entropii możemy zapisać ogólnym wzorem:

$$\sigma = \sum_{i} J_i X_i = \sum_{i} \sum_{j} L_{ij} X_i X_j, \tag{1.30}$$

gdzie  $X_k$  i  $J_k$  są skalarami, składowymi wektorów lub składowymi tensorów (dla przepływu lepkiego) [11].

W ogólności natężenie przepływów termodynamicznych jest dowolną funkcją sił termodynamicznych:

$$J = f(X)$$

Rozwinięcie w szereg Taylora tej funkcji wokół  $X^{eq}$  jest

$$J_{i} = J_{i}^{eq} + \sum_{j=1}^{n} \left[ \frac{\partial J_{i}}{\partial X_{j}} \left( X_{j} - X_{j}^{eq} \right) \right] + \frac{1}{2!} \sum_{j=1}^{n} \sum_{k=1}^{n} \left[ \frac{\partial^{2} J_{i}}{\partial X_{j} \partial X_{k}} \left( X_{j} - X_{j}^{eq} \right) \left( X_{k} - X_{k}^{eq} \right) \right] + \dots, \quad (1.31)$$

gdzie symbolami J,  $J^{eq}$  oznaczono odpowiednio natężenie przepływów termodynamicznych oraz to natężenie w stanie równowagi, natomiast X,  $X^{eq}$  oznaczają odpowiednio bodziec termodynamiczny i bodziec w stanie równowagi.

Wiadomo, że  $J_i^{eq}=0$  oraz  $X_j^{eq}=0$ , ponieważ jest to stan równowagi. W stanach zbliżonych do stanu równowagi można ograniczyć równanie (1.31) do następującego wyrażenia:

$$J_i = \sum_{j=1}^n \left[ \frac{\partial J_i}{\partial X_j} X_j \right], \tag{1.32}$$

które nazywane jest równaniem fenomenologicznym. Zasada symetrii Curie-Prigogine'a mówi, że przepływy i siły termodynamiczne muszą mieć taki sam charakter tensorowy [2]. Zapiszmy  $\frac{\partial J_i}{\partial X_j}$  jako  $L_{ij}$ 

$$J_i = \sum_{j=1}^{n} L_{ij} X_j. {(1.33)}$$

Natężenie przepływu może zależeć tylko od bodźca skoniungowanego jak w prawie Fouriera  $(J_q=-k\nabla T)$ , są to wtedy procesy proste [2]. Mogą one też zależeć od innych bodźców, przykładowo efekt Seebecka oraz Peltiera: [12]

$$Q = L_{qq}\Delta T + L_{qI}\Delta \phi$$

$$I = L_{Iq}\Delta T + L_{II}\Delta \phi$$
(1.34)

Występują w nich procesy krzyżowe; różnica temperatury wywołuje przepływ prądu oraz różnica potencjału elektrycznego wywołuje przepływ ciepła. Okazuje się, że współczynniki krzyżowe są

sobie równe:  $L_{qI}=L_{Iq}$ . Jest to reguła przemienności Onsagera, która została udowodniona doświadczalnie oraz na podstawie fizyki statystycznej.

Istnieje kilka podejść w próbie wyjścia poza zakres liniowej termodynamiki nierównowagowej. Jedno z nich zakłada, że współczynniki  $L_{ij}$  zależą od bodźców i przepływów, a więc

$$\frac{\partial L_{ij}}{\partial X_k} \neq 0,$$
  $\frac{\partial L_{ij}}{\partial J_k} \neq 0.$  (1.35)

Równanie fenomenologiczne (1.32) zostaje zachowane, ale ten zabieg powoduje, że teoria staje się nieliniowa.

Kolejne podejscie zakłada, że w rozwinięciu (1.31) uwzględnia większą liczbę wyrazów, przy zachowaniu niezależności współczynników rozwinięcia. Postuluje się jednocześnie, aby spełnione były relacje przemienności:

$$L_{ij} = L_{ji}$$

$$L_{ijk} = L_{jki} = L_{kij}.$$
(1.36)

Jednak próby nie były owocne, a przemienność współczynników  $L_{ij}, L_{ijk}, \ldots$  trudna do uzależnienia.

Bardziej owocne podejście do problemu wyjścia poza liniową termodynamikę nierównowagową, głównie w kontekście oscylacyjnych reakcji chemicznych, polegało na wykorzyskiwaniu metod stosowanych z teorii układów dynamicznych. Autorzy tej koncepcji pozostawiają postulat o istnieniu równowagi lokalnej. Hipoteza ta zakłada, że cały układ możemy podzielić na mniejsze podukłady (zwane niekiedy komórkami), w których parametry termodynamiczne są ściśle zdefiniowane, tak jak to mamy w zagadnieniach równowagowych. Parametry te w innych komórkach, mogą mieć inne wartości.

Zakłada się tutaj, że te komórki są na tyle małe, iż możemy przyjąć, że parametry zmieniają się w sposób ciągły. Jednak z drugiej strony trzeba przyjąć, iż nie mogą one mieć bardzo małych rozmiarów. Ich makroskopowy charakter musi być zachowany przy założeniu dodatkowym, iż w każdej z nich panuje stan wewnętrznej równowagi.

## 2 Numeryczna i teoretyczna analiza modeli reakcji chemicznych

W tym rozdziale przeprowadzono analizę teoretyczną oraz numeryczną modeli stosowanych w opisie reakcji oscylacyjnych. Pierwszym modelem istotnym dla rozważanych zagadnień jest model Lotki podany przez niego w roku 1910. Mimo, że oryginalnie miał on zastosowanie w badaniu wielkości populacji zwierząt, a dokładnie zależności między drapieżnikami oraz ofiarami, ma on również pewne znaczenie dla reakcji chemicznych. W 1920 Lotka, a w 1931 niezależnie

Volterra, zaproponowali zmodyfikowany model nazywany modelem Lotki-Volterry. Trzecim rozpatrywanym modelem jest bruskelator opracowany przez szkołę Prigogine'a w Brukseli. Jest on analizowany w postaci uproszczonej, jak i ogólnej z reakcjami odwracalnymi. W opisie mechanizmów tych reakcji założono, że szybkości reakcji zależą jedynie od współczynników stechiometrycznych substratów, tj.:

$$v = k[A]^a[B]^b \dots [J]^j,$$
 (2.1)

gdy rozpatrujemy reakcje typu:

$$aA + bB + ... + jJ \xrightarrow{k} kK + IL +$$

Jako pierwszy przeanalizujemy model Lotki:

$$A \xrightarrow{k_1} X$$

$$X + Y \xrightarrow{k_2} 2 Y$$

$$Y \xrightarrow{k_3} produkty.$$

W modelu tym przyjmujemy, że A jest stałe. Może to być osiągnięte poprzez wykorzystanie reaktora przepływowego, w którym kontroluje się dopływ składnika A. W pierwszym kroku A zostaje przekształcone w X, które w drugim kroku w reakcji z Y tworzy więcej składnika Y. Jest to najprostszy model zawierający autokatalizę. Układ taki wymaga więc zapoczątkowania reakcji pewną ilością Y. W końcowym kroku Y zostaje przekształcone w produkty końcowe. Reakcja sumaryczna w modelu Lotki ma postać:

$$A \longrightarrow produkty$$

zaś szybkości zmiann stężeń reagentów pośrednich X oraz Y opisują równania:

$$\frac{d[X]}{dt} = k_1[A] - k_2[X][Y] \frac{d[Y]}{dt} = k_2[X][Y] - k_3[Y].$$
 (2.2)

Kolejnym modelem jest model Lotki-Volterry, który jest modyfikacją powyższego:

$$A + X \xrightarrow{k_1} 2X$$

$$X + Y \xrightarrow{k_2} 2Y$$

$$Y \xrightarrow{k_3} \text{produkty}$$

W modelu tym zmodyfikowano pierwszy krok poprzez wprowadzenie autokatalizy. Zmienia to zachowanie się układu co zostało przeanalizowane poniżej. Konsekwencją dodania autokatalizy jest

dodatkowe wprowadzenie początkowego składnika X, a więc jednym z ze stanów stacjonarnych jest X=Y=0. Jest to jednak rozwiązanie trywialne i układ taki jest martwy, więc nie będzie to rozpatrywane. Reakcja sumaryczna:

$$A \longrightarrow produkty.$$

Odpowiednie szybkości zmian stężeń reagentów pośrednich mają postac:

$$\frac{d[X]}{dt} = k_1[A][X] - k_2[X][Y]$$

$$\frac{d[Y]}{dt} = k_2[X][Y] - k_3[Y]$$
(2.3)

Model bruskelator ma postać:

$$A \xrightarrow{k_1} X$$

$$2X + Y \xrightarrow{k_2} 3X$$

$$B + X \xrightarrow{k_3} D + Y$$

$$X \xrightarrow{k_4} E$$

Pierwszy krok modelu brukselator jest taki sam jak modelu Lotki. W drugim występuje autokataliza Y do X. W trzecim tworzenie Y z X, natomiast w ostatnim przekształcenie X w produkty końcowe. Reakcja sumaryczna:

$$A + B \longrightarrow C + D$$
.

Szybkości zmian stężeń reagentów pośrednich:

$$\frac{\mathrm{d}[X]}{\mathrm{d}t} = k_1[A] + k_2[X]^2[Y] - k_3[B][X] - k_4[X] 
\frac{\mathrm{d}[Y]}{\mathrm{d}t} = -k_2[X]^2[Y] + k_3[B][X].$$
(2.4)

W rozdziale 2.3 na stronie 27 będziemy analizować zmodyfikowany model bruskelatora, w którym reakcje zachodzą w obie strony.

#### 2.1 Metody rozwiązywania układów nieliniowych równań różniczkowych

W każdym z powyższych modeli otrzymujemy układy nieliniowych równań różniczkowych, które chcemy rozwiązać. Układ równań liniowych pierwszego rzędu o stałych współczynnikach ma w ogólności rozwiązanie analityczne [13]

$$\frac{\mathrm{d}X(t)}{\mathrm{d}t} = RX(t)$$
 (2.5) 
$$X(t) = \exp(Rt)X(0)$$

Rozpatrywane układy jednak nie mają rozwiązania analitycznego i należy je rozwiązać metodami numerycznymi.

W pracy tej wykorzystałem algorytmy wielokrokowe, w których jeden krok schematu numerycznego, to znaczy przejścia z punktu  $y_n$  do punktu  $y_{n+1}$ , wykorzystuje wyniki z j kroków, gdzie  $j \le n$ . Krok jest oznaczony  $h = x_{n+1} - x_n$ .

Ogólna forma metody różnicowej rozwiązującej równanie różniczkowe:

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}x} = \mathbf{f}(x, \mathbf{y}) \tag{2.6}$$

ma postać [14]:

$$\mathbf{y}_{n+1} = \sum_{i=1}^{k} a_i \mathbf{y}_{n+1-i} + h \sum_{i=0}^{k} b_i \mathbf{f}(x_{n+1-i}, \mathbf{y}_{n+1-i}), \quad n \ge k - 1.$$
 (2.7)

Wprowadzamy wielkość Y, która jest dokładnym rozwiązaniem równania (2.6). Możemy wtedy zapisać:

$$\mathbf{Y}_{n+1} = \sum_{i=1}^{k} a_i \mathbf{Y}_{n+1-i} + h \sum_{i=0}^{k} b_i \mathbf{f}(x_{n+1-i}, \mathbf{Y}_{n+1-i}) + \mathbf{T}_n,$$
 (2.8)

gdzie  $\mathbf{T}_n$  to błąd metody. Możemy to przepisać w postaci:

$$\mathbf{T}_n = \mathbf{Y}_{n+1} - \sum_{i=1}^k a_i \mathbf{Y}_{n+1-i} - h \sum_{i=0}^k b_i \mathbf{f}(x_{n+1-i}, \mathbf{Y}_{n+1-i}).$$
 (2.9)

Po rozpisaniu  $Y_{n+1-i}$  w postaci szeregu Taylora wokół  $x_{n+1-k}$  otrzymujemy:

$$\mathbf{T}_n = \sum_{j=0}^{\infty} Y_{n+1-k}^{(j)} h^j \left[ \frac{k^j}{j!} - \sum_{i=1}^k a_i \frac{(k-i)^j}{j!} - \sum_{i=0}^k b_i \frac{(k-i)^{j-1}}{(j-1)!} \right].$$
 (2.10)

Niech wielkości A<sub>s</sub> określone wzorami

$$A_0 = 1 - \sum_{i=1}^k a_i$$

$$A_s = \frac{k^s}{s!} - \sum_{i=1}^k a_i \frac{(k-i)^s}{s!} - \sum_{i=0}^k b_i \frac{(k-i)^{s-1}}{(s-1)!}, s \ge 1$$
(2.11)

to współczynniki przy  $h^s$ .

Jeżeli  $A_i=0$  dla  $i=0,1,\ldots,p$  oraz  $A_{p+1}\neq 0$  to metoda ta jest rzędu p. W tabeli 2 podano wybrane wzory różnicowe wykorzystywane podczas symulacji. Wzory 1 - 4 są typu Adamsa-Bashfortha [14]. Wzory o wyższym rzędzie wymagają znajomości wartości większej ilości poprzednich kroków, więc nie mogą być one wykorzystane dla kroków początkowych. W symulacji wykorzystano progresywnie schemat 1 dla pierwszego kroku, następnie 2 dla drugiego, 3 dla trzeciego oraz 4 dla każdego kolejnego.

| Lp. | Wzór                                                                          | p | $A_{p+1}$         |
|-----|-------------------------------------------------------------------------------|---|-------------------|
| 1   | $y_{n+1} = y_n + hy_n'$                                                       | 1 | $\frac{1}{2}$     |
| 2   | $y_{n+1} = y_n + \frac{h}{2}(3y'_n - y'_{n-1})$                               | 2 | $\frac{5}{12}$    |
| 3   | $y_{n+1} = y_n + \frac{h}{12}(23y'_n - 16y'_{n-1} + 5y'_{n-2})$               | 3 | $\frac{3}{8}$     |
| 4   | $y_{n+1} = y_n + \frac{h}{24} (55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3})$ | 4 | $\frac{251}{720}$ |

Tabela 2: Schematy różnicowe stosowane do rozwiązywania układów równań różniczkowych zwyczajnych

#### 2.2 Stabilność rozwiązań układów równań różniczkowych

Na potrzeby analizy można zredukować ilość parametrów danych równań różniczkowych stosując odpowiednie podstawienia. Najpierw należy wyznaczyć współrzędne punktu stacjonarnego, w którym obie pochodne stężeń reagentów są równe zero. Analiza zostanie przedstawiona na przykładzie modelu Lotki, ale analogiczne wyprowadzenie można przeprowadzić dla każdego z tych modeli. W stanie stacjonarnym stężenia reagentów są stałe, więc  $\frac{\mathrm{d}[X]}{\mathrm{d}t} = \frac{\mathrm{d}[Y]}{\mathrm{d}t} = 0$ 

$$k_1[A] - k_2[X]_{st}[Y]_{st} = 0$$

$$k_2[X]_{st}[Y]_{st} - k_3[Y]_{st} = 0$$
(2.12)

Rozwiązując ten układ równań otrzymujemy

$$[X]_{st} = \frac{k_3}{k_2}$$

$$[Y]_{st} = \frac{k_1[A]}{k_2}$$
(2.13)

Wprowadzamy podstawienie

$$x = \frac{[X]}{[X]_{st}}$$
  $y = \frac{[Y]}{[Y]_{st}}$   $\tau = k_3 t$   $a = \frac{k_1 k_2 [A]}{k_3^2}$ 

i otrzymujemy po przekształceniach dla modelu Lotki:

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = a - axy$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = xy - y$$
(2.14)

Analogiczne wyprowadzenie można przeprowadzić dla modelu Lotki-Volterry:

$$x = \frac{[X]}{[X]_{st}} \qquad [X]_{st} = \frac{k_3}{k_2} \qquad y = \frac{[Y]}{[Y]_{st}} \qquad [Y]_{st} = \frac{k_1[A]}{k_2} \qquad \tau = k_3t \qquad a = \frac{k_1[A]}{k_3}. \tag{2.15}$$

Model Lotki-Volterry po tych przekształceniach ma postać:

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = ax - axy$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = xy - y$$
(2.16)

W przypadku modelu bruskelator zastosowano następujące podstawienie:

$$x = \frac{[X]}{[X]_{st}} \quad [X]_{st} = \frac{k_1[A]}{k_4} \quad y = \frac{[Y]}{[Y]_{st}} \quad [Y]_{st} = \frac{k_3k_4[B]}{k_1k_2[A]} \quad \tau = k_4t \quad a = \frac{k_3[B]}{k_4} \quad b = \frac{k_1^2k_2[A]^2}{k_4^3}$$

Skutkuje to przekształceniem równania (2.4) do postaci:

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = 1 + ax^2y - ax - x$$

$$\frac{\mathrm{d}y}{\mathrm{d}\tau} = -bx^2y + bx$$
(2.17)

Stałe w powyższych równaniach wynikają z podstawienia odpowiednich x i y do odpowiadających równań i grupowanie stałych, aby otrzymać najprostszą formę.

Równania (2.14), (2.16) oraz (2.17) mają stan stacjonarny w x=y=1, co wynika z definicji x oraz y jako  $x=\frac{[X]}{[X]_{st}}$  oraz  $y=\frac{[Y]}{[Y]_{st}}$ , które dla  $[X]=[X]_{st}$  oraz  $[Y]=[Y]_{st}$  są równe 1. Zostaną one wykorzystane do numerycznego rozwiązania równań.

Na potrzeby dalszej analizy teoretycznej wprowadzam dalsze podstawienie:

$$\gamma = x - 1 \qquad \qquad \vartheta = y - 1$$

To powoduje, że stan stacjonarny przesuwa się do  $\gamma=\vartheta=0$ . Otrzymujemy dla modelu Lotki:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}\tau} = -a\gamma\vartheta - a\gamma - a\vartheta$$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}\tau} = \gamma\vartheta + \gamma.$$
(2.18)

Dla modelu Lotki-Volterry:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}\tau} = -a\gamma\vartheta - a\vartheta$$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}\tau} = \gamma\vartheta + \gamma.$$
(2.19)

Dla modelu bruskelator:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}\tau} = a\gamma^2\vartheta + a\gamma^2 + 2a\gamma\vartheta + a\gamma + a\vartheta - \gamma$$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}\tau} = -b\gamma^2\vartheta - b\gamma^2 - 2b\gamma\vartheta - b\gamma - b\vartheta.$$
(2.20)

Istnienie punktu stacjonarnego nie oznacza, że jest on atraktorem. Tutaj pod pojęciem atraktora rozumiemy zbiór  $\omega$ -graniczny, którego definicja ma postać:

**Definicja** (Zbiór  $\omega$ -graniczny).

$$\omega(p) = y \in \mathbb{R}^m : y = \lim_{t \to \infty} x(t; p),$$

gdzie x(t;p) to rozwiązanie  $\dot{x}=f(x)$  przy założeniu x(0;p)=p

**Definicja** (Cykl graniczny). "Jeśli istnieje orbita zamknięta  $\gamma$ , taka że dla punktów y należących do pewnego otoczenia U zbioru  $\gamma$  mamy  $\omega(y) = \gamma$  [...], to  $\gamma$  nazywamy cyklem granicznym."

Jeśli  $\gamma=\omega(y)$  dla każdego punktu z otoczenia U, to  $\gamma$  jest atraktorem. [13]

Układy są badane w stanie oddalonym od stanu stacjonarnego, dlatego wybieramy taki stan jako stan odniesienia, a pozostałe jako wyprowadzone z niego zaburzeniem. Badanie charakteru punktu stacjonarnego układu równań różniczkowych nieliniowych jest trudne, ale można

wprowadzić pewne uproszczenie i zlinearyzować ten układ [15, 13]. Oznacza to rozwiniecie funcji po prawej stronie równań w szereg Taylora i ograniczenie go do elementu liniowego. W rezultacie przeprowadzonej operacji otrzymujemy układ równań liniowych. Działanie to jest uzasadnione tym, że badamy jedynie najbliższe otoczenie i kolejne składniki mają mniejszy wkład im bliżej punktu stacjonarnego.

Po linearyzacji otrzymujemy dla modelu Lotki:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}\tau} = -a\gamma - a\vartheta$$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}\tau} = \gamma$$
(2.21)

Układ równań (2.21) w porównaniu z (2.18) nie zawiera składników o całkowitej potędze większej niż 1. Odpowiednie przekształcenie dla modelu Lotki-Volterry daje układ:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}\tau} = -a\vartheta$$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}\tau} = \gamma,$$
(2.22)

natomiast dla modelu brusselator:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}\tau} = (a-1)\gamma + a\vartheta$$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}\tau} = -b\gamma - b\vartheta$$
(2.23)

Można teraz badać stany stabilne metodami stosowanymi do analizy równań różniczkowych liniowych. Stabilność zależy od wartości własnych macierzy stałych oznaczonych symbolami  $\lambda_1$  i  $\lambda_2$ . Odnajdujemy je rozwiązując równanie kwadratore (2.24). W tabeli 3 przedstawiono zależności między pierwiastkami równania kwadratowego, a sumą i iloczynem tych pierwiastków. Suma oraz iloczyn są tutaj wykorzystywane, ponieważ można je w prosty sposów otrzymać ze wzorów Viete'a, które zostały wyprowadzone w Dodatku B na stronie 37:

$$a\lambda^2 + b\lambda + c = 0 \tag{2.24}$$

$$\lambda_1 + \lambda_2 = -\frac{b}{a}$$

$$\lambda_1 \lambda_2 = \frac{c}{a}$$
(2.25)

Charakter wykresu fazowego zależy od zależności między pierwiastkami równania charakterystycznego [2]. Dla modelu Lotki:

$$\det \begin{pmatrix} -a - \lambda & -a \\ 1 & -\lambda \end{pmatrix} = \lambda^2 + a\lambda + a = 0$$

$$\lambda_1 + \lambda_2 = -a$$

$$\lambda_1 \lambda_2 = a$$
(2.26)

Dla modelu Lotki-Volterry:

$$\det\begin{pmatrix} -\lambda & -a \\ 1 & -\lambda \end{pmatrix} = \lambda^2 + a = 0$$

$$\lambda_1 + \lambda_2 = 0$$

$$\lambda_1 \lambda_2 = a$$
(2.27)

Dla modelu brusselator:

$$\det \begin{pmatrix} a-1-\lambda & a \\ -b & -b-\lambda \end{pmatrix} = \lambda^2 + (-a+b+1)\lambda + b = 0$$

$$\lambda_1 + \lambda_2 = a - b - 1$$

$$\lambda_1 \lambda_2 = b$$
(2.28)

|                                                                              | $\lambda_1 + \lambda_2 < 0$                                           | $\lambda_1 + \lambda_2 = 0$                                           | $\lambda_1 + \lambda_2 > 0$                                           |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                              | $\lambda_1,\lambda_2\in\mathbb{C}$                                    |                                                                       | $\lambda_1,\lambda_2\in\mathbb{C}$                                    |
| $\left(\frac{\lambda_1 + \lambda_2}{2}\right)^2 < \lambda_1 \lambda_2$       | $\operatorname{Re}\{\lambda_1\} = \operatorname{Re}\{\lambda_2\} < 0$ | $\lambda_1,\lambda_2\in\mathbb{C}$                                    | $\operatorname{Re}\{\lambda_1\} = \operatorname{Re}\{\lambda_2\} > 0$ |
|                                                                              | $\lambda_1=\overline{\lambda_2}$                                      | $\operatorname{Re}\{\lambda_1\} = \operatorname{Re}\{\lambda_2\} = 0$ | $\lambda_1=\overline{\lambda_2}$                                      |
|                                                                              | Stabilne ognisko                                                      | $\lambda_1 = -\lambda_2$                                              | Niestabilne ognisko                                                   |
|                                                                              | $\lambda_1,\lambda_2\in\mathbb{R}$                                    | Centrum                                                               | $\lambda_1,\lambda_2\in\mathbb{R}$                                    |
| $0 < \lambda_1 \lambda_2 \le \left(\frac{\lambda_1 + \lambda_2}{2}\right)^2$ | $\lambda_1, \lambda_2 < 0$                                            | <b></b>                                                               | $\lambda_1, \lambda_2 > 0$                                            |
|                                                                              | Stabilny węzeł                                                        |                                                                       | Niestabilny węzeł                                                     |
| $\lambda_1 \lambda_2 = 0$                                                    | $\lambda_1,\lambda_2\in\mathbb{R}$                                    | $\lambda_1,\lambda_2\in\mathbb{R}$                                    | $\lambda_1,\lambda_2\in\mathbb{R}$                                    |
| $\lambda_1\lambda_2=0$                                                       | $\lambda_1 < \lambda_2 = 0$                                           | $\lambda_1 = \lambda_2 = 0$                                           | $0 = \lambda_1 < \lambda_2$                                           |
|                                                                              | $\lambda_1,\lambda_2\in\mathbb{R}$                                    | $\lambda_1,\lambda_2\in\mathbb{R}$                                    | $\lambda_1,\lambda_2\in\mathbb{R}$                                    |
| $\lambda_1\lambda_2 < 0$                                                     | $0 < \lambda_2 < -\lambda_1$                                          | $0 < \lambda_2 = -\lambda_1$                                          | $0 > \lambda_1 > -\lambda_2$                                          |
| $\lambda_1\lambda_2 \setminus 0$                                             | Siodło                                                                | Siodło                                                                | Siodło                                                                |
|                                                                              | (zawsze niestabilne)                                                  | (zawsze niestabilne)                                                  | (zawsze niestabilne)                                                  |

Tabela 3: Warunki stabilności dla liniowego układu dwóch równań różniczkowych

|                                                                              | $\lambda_1 + \lambda_2 < 0$ | $\lambda_1 + \lambda_2 = 0$ | $\lambda_1 + \lambda_2 > 0$ |
|------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| $\left(\frac{\lambda_1 + \lambda_2}{2}\right)^2 < \lambda_1 \lambda_2$       | 0 < a < 4                   |                             | -                           |
| $0 < \lambda_1 \lambda_2 \le \left(\frac{\lambda_1 + \lambda_2}{2}\right)^2$ | $4 \le a$                   | -                           | -                           |
| $\lambda_1 \lambda_2 = 0$                                                    | -                           | a = 0                       | -                           |
| $\lambda_1 \lambda_2 < 0$                                                    | -                           | -                           | a < 0                       |

Tabela 4: Warunki dla zlinearyzowanego modelu Lotki

|                                                                              | $\lambda_1 + \lambda_2 < 0$ | $\lambda_1 + \lambda_2 = 0$ | $\lambda_1 + \lambda_2 > 0$ |
|------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| $\left(\frac{\lambda_1 + \lambda_2}{2}\right)^2 < \lambda_1 \lambda_2$       | -                           | 0 < 0                       | -                           |
| $0 < \lambda_1 \lambda_2 \le \left(\frac{\lambda_1 + \lambda_2}{2}\right)^2$ | -                           | 0 < a                       | -                           |
| $\lambda_1 \lambda_2 = 0$                                                    | -                           | a = 0                       | -                           |
| $\lambda_1 \lambda_2 < 0$                                                    | -                           | a < 0                       | -                           |

Tabela 5: Warunki dla zlinearyzowanego modelu Lotki-Volterry

|                                                                              | $\lambda_1 + \lambda_2 < 0$ | $\lambda_1 + \lambda_2 = 0$ | $\lambda_1 + \lambda_2 > 0$ |
|------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| $\left(\frac{\lambda_1 + \lambda_2}{2}\right)^2 < \lambda_1 \lambda_2$       | $b+1-2\sqrt{b} < a < b+1$   | a = b + 1                   | $b+1 < a < b+1+2\sqrt{b}$   |
| ( 2 ) ( 11/2                                                                 | 0 < b                       | 0 < b                       | 0 < b                       |
| $0 < \lambda_1 \lambda_2 \le \left(\frac{\lambda_1 + \lambda_2}{2}\right)^2$ | $a \le b + 1 - 2\sqrt{b}$   | 0 < 0                       | $b + 1 + 2\sqrt{b} \le a$   |
| $0 < \lambda_1 \lambda_2 \le \left(-\frac{1}{2}\right)$                      | 0 < b                       |                             | 0 < b                       |
| $\lambda_1 \lambda_2 = 0$                                                    | a < 1                       | a = 1                       | 1 < a                       |
| $\lambda_1\lambda_2=0$                                                       | b=0                         | b = 0                       | b = 0                       |
| $\lambda_1 \lambda_2 < 0$                                                    | a < b + 1                   | a = b + 1                   | b + 1 < a                   |
| $\lambda_1\lambda_2 \subset 0$                                               | b < 0                       | b < 0                       | b < 0                       |

Tabela 6: Warunki dla zlinearyzowanego modelu bruskelator

W tabelach 4, 5 oraz 6 przedstawiono warunki z tabeli 3 wykorzystując odpowiednio równania (2.26), (2.27) oraz (2.28). Niektóre warunki nie są możliwe do spełnienia dla parametrów rzeczywistych, taka komórka zawiera '-'.

Przejdziemy teraz do badania zachowania trajektorii w przestrzeniach fazowych rozważanych modeli. Do wygenerowania pól wektorowych i trajektorii na rysunkach odpowiednio 1, 2, 3, 4, 5 oraz 6 wykorzystano równania przed linearyzacją (2.14), (2.16) oraz (2.17). Wektory na wykresach są znormalizowane. Interesuje nas jedynie ich kierunek, a nie sama wartość.

Na rysunkach 1 oraz 2 przedstawiają typowe wykresy dla modelu Lotki. Należy zwrócić uwagę na fakt, że zawsze jest to tor zbiegający do punktu stacjonalnego. Na rysunku 3 pokazano typowy wykres dla modelu Lotki-Volterry. Jest to zawsze krzywa zamknięta. Wykresy fazowe na rysunkach 4, 5 oraz 6 przedstawiają najważniejsze przypadki dla modelu brukselator. Wykorzystano odpowiednio stałe: a=0,5; b=4, a=3; b=4 oraz a=7; b=4. Parametry te dobrano tak, aby należały one do przedziałów podanych w tabeli 6.



Rysunek 1: Stabilne ognisko; Model Lotki, a=0.1



Rysunek 2: Stabilny węzeł; Model Lotki, a=5



Rysunek 3: Stabilne ognisko; Model Lotki-Volterry, a=1



Rysunek 4: Stabilny węzeł; Model bruskelator, a=0.5, b=4



Rysunek 5: Stabilne ognisko; Model bruskelator, a=3, b=4



Rysunek 6: Niestabilne ognisko; Model bruskelator, a=7, b=4

Trajektorie zachowują się w sposób oczekiwany według tabeli 6 i literatury, co dowodzi poprawnego działania stworzonego programu [2]. Na rysunku 6 zachodzi jednak coś na pierwszy rzut oka sprzecznego z analizą układu zlinearyzowanego. Układ osiąga stabilny cykl graniczny. Jest to niemożliwe w przypadku układów liniowych do których je sprowadziliśmy poprzez linearyzację, jednak linearyzacja jest dobrym przybliżeniem jedynie w najbliższym otoczeniu punktu stacjonarnego, cykl graniczny widoczny na rysunku 6 jest więc przejawem nieliniowości układu równań modelu bruskelator [2]. Istnieje na jednak twierdzenie, które wyjaśnia to zachowanie, jest to twierdzenie Poincarégo-Bendixsona.

**Twierdzenie** (**Poincarégo-Bendixsona**). "Jeśli w przestrzeni fazowej będącej podzbiorem płaszczyzny  $\mathbb{R}^2$  orbita zawiera co najmniej jeden swój punkt graniczny, to jest ona punktem krytycznym albo orbitą zamkniętą"[13]

Z twierdzenia tego możemy wywnioskować, że punkt krytyczny, zwany również punktem stacjonarnym, jest jedynym punktem zbioru granicznego, co ma miejsce w przypadku wykresu fazowego typu stabilne ognisko, albo istnieje cykl graniczny, co można zaobserwować na wykresach odpowiadającym modelowi klasycznego bruskelatora oraz bruskelatora z reakcjami odwracalnymi. Model ten został opisany poniżej.

Produkcja entropii powiązana jest z przebiegiem reakcji chemicznych zależnością:

$$Td_i S = A d\xi \tag{2.29}$$

lub dla wielu reakcji w postaci bardziej uogólnionej:

$$T d_i S = \sum_r A_r d\xi_r.$$
 (2.30)

Nie można jednak wykorzystać tych modeli do ilościowego symulowania produkcji entropii, ponieważ nie można zdefiniować A dla reakcji, które nie mają stanu równowagi. Wynika to z zapisu powinowactwa chemicznego A w roztworze:

$$A = RT \ln(K) - RT \ln\left(\prod_{i} c_i^{\nu_i}\right), \tag{2.31}$$

gdzie K to stała równowagi. W kinetyce chemicznej jest ona także równa  $K=\frac{k_1}{k_{-1}}$  dla reakcji X  $\frac{\mathsf{k}_1}{\mathsf{K}_{-1}}$  Y. W przypadku rozważanych powyżej reakcji  $k_{-1}=0$ , występuje więc dzielenie przez 0. Można jedynie stwierdzić, że w granicy A jest dodatnie dla każdych stężeń reagentów  $c_i>0$ . Stąd jako że reakcja przebiega w powyższych przykładach w stronę prawą to  $\mathrm{d}\xi>0$ , a więc ze wzoru (2.30) można jedynie stwierdzić, że:

$$d_i S = \frac{1}{T} \sum_r A_r \, d\xi_r > 0.$$
 (2.32)

#### 2.3 Ogólny model bruskelator

Będziemy teraz analizować uogólniony model bruskelatora, w którym reakcje mogą przebiegać w dwie strony z różnymi stałymi szybkości reakcji. Poprzedni model jest szczególnym przypadkiem poniższego przy założeniu  $k_{-1}=k_{-2}=k_{-3}=k_{-4}=0$ . Uogólniona forma modelu bruskelator ma postać:

1: A 
$$\frac{k_1}{k_{-1}}$$
 X  
2: 2 X + Y  $\frac{k_2}{k_{-2}}$  3 X  
3: B + X  $\frac{k_3}{k_{-3}}$  D + Y  
4: X  $\frac{k_4}{k_{-4}}$  E.

Reakcje są odwracalne i przebiegają przy różncyh stałych prędkości reakcji oznaczonych  $k_i$  oraz  $k_{-i}$  dla rekacji odpowiednio w prawą i lewą stronę.

Całkowita zmiana reagentów X oraz Y ma postać:

$$\frac{\mathrm{d}[X]}{\mathrm{d}t} = k_1[A] + k_2[X]^2[Y] - k_3[B][X] - k_4[X] - k_{-1}[X] - k_{-2}[X]^3 + k_{-3}[D][Y] + k_{-4}[E]$$
 (2.33)

$$\frac{\mathrm{d}[Y]}{\mathrm{d}t} = -k_2[X]^2[Y] + k_3[B][X] + k_{-2}[X]^3 - k_{-3}[D][Y]$$
(2.34)

Rozdzielam przyrosty na dwie części, odpowiadające reakcjom w prawą oraz lewą stronę:

$$\frac{\mathrm{d}[X]_1}{\mathrm{d}t} = k_1[A] + k_2[X]^2[Y] - k_3[B][X] - k_4[X]$$
(2.35)

$$\frac{\mathrm{d}[Y]_1}{\mathrm{d}t} = -k_2[X]^2[Y] + k_3[B][X] \tag{2.36}$$

$$\frac{\mathrm{d}[X]_2}{\mathrm{d}t} = -k_{-1}[X] - k_{-2}[X]^3 + k_{-3}[D][Y] + k_{-4}[E]$$
(2.37)

$$\frac{\mathrm{d}[Y]_2}{\mathrm{d}t} = +k_{-2}[X]^3 - k_{-3}[D][Y] \tag{2.38}$$

Stany stacjonarne odpowiadające odpowiednio  $[X]_1$  i  $[Y]_1$  oraz  $[X]_2$  i  $[Y]_2$  to:

$$[X]_{st,1} = \frac{k_1[A]}{k_4};$$
  $[Y]_{st,1} = \frac{k_3k_4[B]}{k_1k_2[A]}$  (2.39)

$$[X]_{st,2} = \frac{k_{-4}[E]}{k_{-1}}; [Y]_{st,2} = \frac{k_{-2}k_{-4}^3[E]^3}{k_{-1}^3k_{-3}[D]} (2.40)$$

Przyjmuję, że mogę dowolnie kontrolować stężenia reagentów [A], [B], [D] i [E]. [A] oraz [B] pozostają dowolnymi parametrami, natomiast [D] i [E] są zależne od innych parametrów. Po przyrównaniu  $[X]_{st,1}$  oraz  $[X]_{st,2}$  i analogicznie dla [Y] otrzymujemy wartości dla [D] oraz [E]:

$$[D] = \frac{k_1^4 k_2 k_{-2} [A]^4}{k_3 k_{-3} k_4^4 [B]}$$
 (2.41)

$$[E] = \frac{k_1 k_{-1}[A]}{k_4 k_{-4}} \tag{2.42}$$

Wspólna wartość stężeń dla stanu stacjonarnego:

$$[X]_{st} = \frac{k_1[A]}{k_4} \tag{2.43}$$

$$[Y]_{st} = \frac{k_3 k_4 [B]}{k_1 k_2 [A]} \tag{2.44}$$

Dla zwiększenia przejrzystości równań wprowadzam oznaczenia:

$$[X] = x[X]_{st} = x\frac{k_1[A]}{k_4}$$
 (2.45)

$$[Y] = y[Y]_{st} = y \frac{k_3 k_4[B]}{k_1 k_2[A]}$$
 (2.46)

$$\tau = k_4 t \tag{2.47}$$

$$a = \frac{k_3[B]}{k_4} {(2.48)}$$

$$b = \frac{k_1^2 k_2 [A]^2}{k_4^3} \tag{2.49}$$

$$c = \frac{k_{-1}}{k_4} \tag{2.50}$$

$$d = \frac{k_1^4 k_2 k_{-2} [A]^4}{k_3 k_5^4 [B]} \tag{2.51}$$

Równania różniczkowe mają wtedy postać

$$\frac{\mathrm{d}x}{\mathrm{d}\tau} = 1 + ax^2y - ax - x - cx - bc^3 + by + c \tag{2.52}$$

$$\frac{dy}{d\tau} = -bx^2y + bx + dx^3 - dy,$$
(2.53)

a punkt stacjonarny występuje dla x=1,y=1. Po wprowadzeniu podstawienia:

$$\gamma = x - 1$$

$$\vartheta = y - 1$$

i linearyzacji otrzymujemy:

$$\frac{\mathrm{d}\gamma}{\mathrm{d}\tau} = (a - c - 3b - 1)\gamma + (a + b)\vartheta \tag{2.54}$$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}\tau} = (-b + 3d)\gamma + (-b - d)\vartheta \tag{2.55}$$

Równanie charakterystyczne:

$$\lambda^2 - (a - c - 4b - d - 1)\lambda + (-4ad + bc + cd + 4b^2 + b + d)$$
 (2.56)

Powinowactwo chemiczne w stanie równowagi każdego z równań z osobna wynosi A=0 [6]. W ogólnej postaci ma ono postać:

$$A = A_0 - RT \ln \left( \prod_i c_i^{\nu_i} \right), \tag{2.57}$$

gdzie R to uniwersalna stała gazowa, T - temperatura bezwzględna,  $c_i$  - stężenie i-tego składnika, a  $\nu_i$  to współczynnik stechiometryczny reagenta i (dodatni dla produktów po prawej stronie,

ujemny dla substratów po lewej). RT jest jedynie stałą i na potrzeby symulacji przyjąłem RT=1. Otrzymujemy dla każdej z reakcji odpowiednio:

$$1:A_1 = \ln\left(\frac{1}{cx}\right) \tag{2.58}$$

$$2:A_2 = \ln\left(\frac{by}{dx}\right) \tag{2.59}$$

$$3:A_3 = \ln\left(\frac{bx}{dy}\right) \tag{2.60}$$

$$4: A_4 = \ln\left(\frac{x}{c}\right). {(2.61)}$$

Liczba postępu reakcji wyrażona jest równością:

$$\mathrm{d}\xi = \frac{\mathrm{d}n_i}{\nu_i} \tag{2.62}$$

dla dowolnego reagenta, lub używając  $dc_i = \frac{dn_i}{V}$ , gdzie V jest objętością, która także mogę przyjąc, że jest równa V = 1. Otrzymane liczby postępu reakcji dla poszczególnych reakcji:

$$\frac{\mathrm{d}\xi_1}{\mathrm{d}\tau} = [X]_{st}(1 - cx) \tag{2.63}$$

$$\frac{\mathrm{d}\xi_2}{\mathrm{d}\tau} = [X]_{st}(ax^2y - \frac{ad}{b}x^3) \tag{2.64}$$

$$\frac{\mathrm{d}\xi_3}{\mathrm{d}\tau} = [X]_{st}(ac - \frac{ad}{b}y) \tag{2.65}$$

$$\frac{d\xi_4}{d\tau} = [X]_{st}(x-c). \tag{2.66}$$

 $[X]_{st}$  można oczywiście przyjąć, że jest równe  $[X]_{st}=1$ . Z prawa de Dondera  $T\mathrm{d}_iS=\sum_r A_r\xi_r$  przyjmując T=1 otrzymujemy

$$\frac{\mathrm{d}_{i}S}{\mathrm{d}\tau} = \ln\left(\frac{1}{cx}\right)(1-cx) + \ln\left(\frac{by}{dx}\right)(ax^{2}y - \frac{ad}{b}x^{3}) + \ln\left(\frac{bx}{dy}\right)(ac - \frac{ad}{b}y) + \ln\left(\frac{x}{c}\right)(x-c) \quad \text{(2.67)}$$

Założenia  $R=T=V=[X]_{st}=1$  uargumentowane są tym, że interesuje nas jedynie charakter zmienności entropii w czasie, a nie konkretna wartość entropii. Jest to jedynie model, który nie odpowiada żadnemu rzeczywistemu układowi. Oczywiście wprowadzenie takich założeń zmienia jednostkę entropii, jednak ważna dla nas jest jedynie wartość i możemy ten fakt pominąć.

Wykresy otrzymane z przeprowadzonej symulacji dla kroku symulacji  $h={\rm d}\tau=0,001$  oraz warunku początkowego x=1,y=2:



Rysunek 7: Wykres fazowy dla a=9, b=1, c=1, d=0,1



Rysunek 8: Zależność wielkości x oraz y od  $\tau$ 



Rysunek 9: Zależność wielkości S oraz  $\frac{\mathrm{d}S}{\mathrm{d}\tau}$  od  $\tau$ 

#### 2.4 Porównanie metod numerycznych

W tej sekcji porównamy wykresy otrzymane przy tym samym kroku, ale innych metodach. Jeden z rezultatów tego porównania został zaprezentowany na rysunku 10. Wykres w kolorze czerwonym odpowiada wykorzystywanej metodzie opisanej wcześniej, natomiast w kolorze zielonym otrzymano wykorzystując jedynie metodę rzędu pierwszego, zwaną metodą Newtona. Wykorzystano model Lotki-Volterry dla a=1 oraz krok czasowy h=0,001 przez 1000000 kroków. Można zauważyć, że rozwiązanie metodą przeze mnie wykorzystywaną jest zbieżne przez długi czas, natomiast prostsza metoda rozbiega się po czasie.

Analogiczne porównanie przeprowadzono dla modelu bruskelatora, a przykładowy rezultat dla wybranych warunków początkowych został zaprezentowany na rysunku 11. Krok czasowy oraz ich ilość jest taka sama jak w poprzednim przypadku dla modulu Lotki-Volterry. Za model posłużył model bruskelator z reakcjami zachodzącymi tylko w jedną stronę przy parametrach a=7 oraz b=4.

Możemy zaobserwować, że w tym przypadku obie metody są zbieżne. Jest to spowodowane tym, że cykl graniczy jest w modelu bruskelator atraktorem, podczas gdy w modely Lotki-Volterry nim nie jest. Sprawia to, że odstępstwa od cyklu są korygowane, aby znowu ten cykl osiagnąć.



Rysunek 10: Porównanie w modelu Lotki-Volterry



Rysunek 11: Porównanie w modelu bruskelator

## 3 Podsumowanie

W pracy tej przedstawiono podstawy teorii termodynamiki nierównowagowej. Są to pojęcia produkcji entropii, hipotezy lokalnej równowagi. Wykorzystano pewne zagadnienia chemiczne, na przykład mechanizmu reakcji chemicznej oraz jej szybkości z działu kinetyki chemicznej. Wykorzystano popularne modele reakcji chemicznych do ich symulacji, są to modele Lotki, Lotki-Volterry oraz bruskelatora. Miały one duże znaczenie historyczne. Do ich analizy wykorzystano narzędzia matematyczne układów autonomicznych oraz metody numeryczne.

W wyniku tych symulacji otrzymano wykresy fazowe przedstawiające oscylacje reagentów przejściowych. Pokazuje to, że według modeli reakcje oscylacyjne są możliwe, co jest potwierdzone przez rzeczywiscie reakcje w układach homologicznych. Ważniejszymi przykładami są reakcje Bielousova-Żabotyńskiego oraz Briggsa-Rauschera.

## **Wykaz literatury**

- [1] Alfred J. Lotka. "Contribution to the Theory of Periodic Reactions". W: *The Journal of Physical Chemistry* 14.3 (1910), s. 271–274. DOI: 10.1021/j150111a004. eprint: https://doi.org/10.1021/j150111a004. URL: https://doi.org/10.1021/j150111a004.
- [2] Marek Orlik. Reakcje oscylacyjne. porządek i chaos. 1996.
- [3] Alexander Pechenkin. "B P Belousov and his reaction". W: Journal of Bioscience (2009).
- [4] Lubert Stryer John L. Tymoczko Jeremy M. Berg. *Biochemia. Krótki Kurs.* 2013.
- [5] W. Ufnalski H. Buchowski. Podstawy Termodynamiki. 2001.
- [6] Zdzisław Ruziewicz Krzysztof Pigoń. Chemia Fizyczna. Podstawy fenomenologiczne. 2013.
- [7] A. A. Dietław B. M. Jaworski. Fizyka. Poradnik encyklopedyczny. 2000.
- [8] Kazimierz Gumiński. Termodynamika procesów nieodwracalnych. 1962.
- [9] Peter William Atkins. Chemia. Przewodnik po chemii fizycznej. 1997.
- [10] P. Mazur S. R. de Groot. Non-equilibrium thermodynamics. 1962.
- [11] P. Petelenz K. Gumiński. Elementy chemii teoretycznej. 1989.
- [12] Józef Ceynowa. Zarys Liniowej Termodynamiki Nierównowagowej Układów Ciągłych i Membranowych. 2008.
- [13] Andrzej Palczewski. Równania Różniczkowe Zwyczajne. Teoria i metody numeryczne z wykorzystaniem programu rachunków symbolicznych. 2017.
- [14] Janusz Wąsowski Zenon Fortuna Bohdan Macukow. Metody Numeryczne. 2017.
- [15] Andrzej Lech Kawczyński. Reakcje Chemiczne od równowagi przez struktury dyssypatywne do chaosu. 1990.

# Wykaz rysunków

| 1  | Stabilne ognisko; Model Lotki, a=0.1                                     | 23 |
|----|--------------------------------------------------------------------------|----|
| 2  | Stabilny węzeł; Model Lotki, a=5                                         | 23 |
| 3  | Stabilne ognisko; Model Lotki-Volterry, a=1                              | 24 |
| 4  | Stabilny węzeł; Model bruskelator, a=0.5, b=4                            | 24 |
| 5  | Stabilne ognisko; Model bruskelator, a=3, b=4                            | 25 |
| 6  | Niestabilne ognisko; Model bruskelator, a=7, b=4                         | 25 |
| 7  | Wykres fazowy dla a=9, b=1, c=1, d=0,1                                   | 30 |
| 8  | Zależność wielkości $x$ oraz $y$ od $\tau$                               | 30 |
| 9  | Zależność wielkości $S$ oraz $rac{\mathrm{d}S}{\mathrm{d}	au}$ od $	au$ | 31 |
| 10 | Porównanie w modelu Lotki-Volterry                                       | 32 |
| 11 | Porównanie w modelu bruskelator                                          | 32 |

# Wykaz tabel

| 1 | Siły i przepływy termodynamiczne                                                       | 13 |
|---|----------------------------------------------------------------------------------------|----|
| 2 | Schematy różnicowe stosowane do rozwiązywania układów równań różniczkowych zwyczajnych | 18 |
| 3 | Warunki stabilności dla liniowego układu dwóch równań różniczkowych                    | 21 |
| 4 | Warunki dla zlinearyzowanego modelu Lotki                                              | 21 |
| 5 | Warunki dla zlinearyzowanego modelu Lotki-Volterry                                     | 22 |
| 6 | Warunki dla zlinearyzowanego modelu bruskelator                                        | 22 |

#### **Dodatek A**

W tym dodatku zamieszczone zostały przykładowe reakcje oraz odpowiednie im prędkości reakcji chemicznej.

$$2 \text{ N}_2 \text{O}_2 \longrightarrow 4 \text{ NO}_2 + \text{O}_2$$
 
$$v = k [\text{N}_2 \text{O}_2]$$
 
$$\text{CH}_3 \text{COCH}_3 + \text{I}_2 \longrightarrow \text{CH}_3 \text{COCH}_2 \text{I} + \text{HI}$$
 
$$v = k [\text{CH}_3 \text{COCH}_3]$$
 
$$\text{H}_2 + \text{Br}_2 \longrightarrow 2 \text{ HBr}$$
 
$$v = \frac{k_1 [\text{H}_2] [\text{Br}_2]^{1/2}}{1 + k_2 [\text{HBr}]/[\text{Br}]}.$$

Każdą z tych reakcji można rozdzielić na szereg występujących jednocześnie reakcji elementarnych. Przykładowo dla syntezy bromowodoru z cząsteczkowego wodoru i bromu:

$$H_2 + Br_2 \longrightarrow 2 \, HBr$$
 reakcja sumaryczna  $Br_2 \longrightarrow 2 \, Br^{ullet}$  reakcja elementarna  $Br^{ullet} + H_2 \longrightarrow HBr + H^{ullet}$  reakcja elementarna  $H^{ullet} + Br_2 \longrightarrow HBr + Br^{ullet}$  reakcja elementarna.

Jednak analogiczna reakcja syntezy jodowodoru przebiega w sposób bezpośredni:

$$H_2 + I_2 \longrightarrow 2 HI$$

co oznacza, że każdą reakcję należy rozpatrywać osobno i nie ma jednego uniwersalnego schematu [6].

## **Dodatek B**

Równanie kwadratowe można przedstawić w dwóch formach:

$$a\lambda^2 + b\lambda + c = 0 \tag{3.1}$$

oraz

$$a(\lambda - \lambda_1)(\lambda - \lambda_2) = 0, (3.2)$$

gdzie  $\lambda_1$  oraz  $\lambda_2$  to pierwiastki tego równania.

Po rozwinięciu równania (3.2) otrzymujemy:

$$a\lambda^2 - a(\lambda_1 + \lambda_2)\lambda + a\lambda_1\lambda_2 = 0. {(3.3)}$$

Przyrównując tak otrzymane równanie do (3.1):

$$a\lambda^2 + b\lambda + c = a\lambda^2 - a(\lambda_1 + \lambda_2)\lambda + a\lambda_1\lambda_2. \tag{3.4}$$

Aby było to spełnione współczynniki przy tych samych potęgach  $\lambda$  muszą być sobie równe. Z takiego warunku otrzymujemy:

$$a = a$$

$$b = -a(\lambda_1 + \lambda_2)$$

$$c = a\lambda_1\lambda_2,$$
(3.5)

co po przekształceniach daje na wzory Viéte'a:

$$\lambda_1 + \lambda_2 = -\frac{b}{a}$$

$$\lambda_1 \lambda_2 = \frac{c}{a}$$
(3.6)

## 4 Kod

```
import numpy as np
import scipy as sci
import matplotlib.pyplot as plt
def vec_grid(function, xlim, ylim, xnodes, ynodes):
Rysowanie pola wektorowego
    x = np.linspace(xlim[0], xlim[1], xnodes)
    y = np.linspace(ylim[0], ylim[1], ynodes)
    X, Y = np.meshgrid(x, y)
    U, V = function(0, [X, Y])[0: -1, :, :]
    plt.quiver(X, Y, U / np.sqrt(U ** 2 + V ** 2), V / np.sqrt(U ** 2 + V ** 2),
    U ** 2 + V ** 2, angles='xy')
def simulation(function, number_of_equations, length_of_sim, time_sample_rate,
init_val, color, xlim, ylim):
...
Przeprowadzanie symulacji za pomocą schematów krokowych
0.00
    time_step = 1 / time_sample_rate
    time = np.linspace(0, length_of_sim,
    int(length_of_sim * time_sample_rate + 1))
    value = np.empty((number_of_equations,
```

```
int(length_of_sim * time_sample_rate + 1)))
   initial_value = np.array(init_val)
   value[:, 0] = initial_value
   value[:, 1] = diff_eq_1(time, value, 0, time_step, function)
   value[:, 2] = diff_eq_2(time, value, 1, time_step, function)
   value[:, 3] = diff_eq_3(time, value, 2, time_step, function)
   plt.rcParams.update({
        "text.usetex": True,
        "font.family": "sans-serif"
   })
# Rysowanie wykresów
   for i in range(3, int(length_of_sim * time_sample_rate)):
        value[:, i + 1] = diff_eq_4(time, value, i, time_step, function)
   plt.plot(value[0, :], value[1, :], color=color, linestyle=' ', marker='.',
   label=r'$x=%.1f, y=%.1f$' % (initial_value[0], initial_value[1]))
   plt.xlabel(r'$x$')
   plt.ylabel(r', $y$')
   vec_grid(function, xlim, ylim, 21, 21)
   plt.legend()
   plt.show()
   plt.plot(time, value[0, :], color=color, linestyle='-', marker=None,
   label=r'$x=%.1f, y=%.1f: x$' % (initial_value[0], initial_value[1]))
   plt.plot(time, value[1, :], color=color, linestyle='--', marker=None,
   label=r'$x=%.1f, y=%.1f: y$' % (initial_value[0], initial_value[1]))
   plt.xlabel(r'$\tau$')
   plt.ylabel(r'$x, y$')
   plt.legend()
   plt.show()
   plt.plot(time, value[2, :], color=color, linestyle='-', marker=None,
   label=r'$S$')
   plt.plot(time, function(time, value)[2], color=color, linestyle='--',
   marker=None, label=r'$\frac{dS}{d\tau}$')
   plt.xlabel(r'$\tau$')
   plt.ylabel(r'$S, \frac{dS}{d\tau}$')
   plt.axhline(y=0, color='k')
```

```
plt.axvline(x=0, color='k')
    plt.legend()
    plt.show()
def brusselator_mod(time, value):
....
Model bruskelator z reakcjami w jedną stronę
Zwraca wartość funkcji f(y) w dy/dx=f(y)
0.00
    a = 7
    b = 4
    return np.array([1 + a * value[0] ** 2 * value[1] - (a + 1) * value[0],
                     - b * value[0] ** 2 * value[1] + b * value[0],
                     np.zeros_like(value[0])], dtype='float64')
def brusselator_rev(time, value):
Model bruskelator z reakcjami w dwie strony
Zwraca wartość funkcji f(y) w dy/dx=f(y)
11 11 11
    a = 9
    b = 1
    b_1 = b
   b_2 = b
    c = 1
    d = 0.1
    return np.array([1 + c - (a + c + 1) * value[0] + b_2 * value[1] +
                     a * value[0] ** 2 * value[1] - b_2 * value[0] ** 3,
                     b_1 * value[0] - d * value[1] - b_1 * value[0] ** 2 *
                     value[1] + d * value[0] ** 3,
                     np.log(1 / (c * value[0])) * (1 - c * value[0]) +
                     np.log((b * value[1]) / (d * value[0])) *
                     (a * value[0] ** 2 * value[1] - a * d / b * value[0] ** 3) +
                     np.log((b * value[0]) / (d * value[1])) * (a * c -
                     a * d / b * value[1]) +
                     np.log(value[0] / c) * (value[0] - c)], dtype='float64')
```

```
def lotka_mod(time, value):
0.00
Model Lotki
Zwraca wartość funkcji f(y) w dy/dx=f(y)
   a = 0.1
   return np.array([a - a * value[0] * value[1],
                     value[0] * value[1] - value[1]], dtype='float64')
def lotka_volterra_mod(time, value):
....
Model Lotki-Volterry
Zwraca wartość funkcji f(y) w dy/dx=f(y)
. . .
   a = 1
    return np.array([a * value[0] - a * value[0] * value[1],
                     value[0] * value[1] - value[1]], dtype='float64')
# Odpowiednio schematy 1, 2, 3, 5 w tabeli 1
def diff_eq_1(time, value, i, h, function):
    return value[:, i] + h * function(time[i], value[:, i])
def diff_eq_2(time, value, i, h, function):
    return value[:, i] + h * (3 * function(time[i], value[:, i])
                              - function(time[i-1], value[:, i-1])) / 2
def diff_eq_3(time, value, i, h, function):
    return value[:, i] + h * (23 * function(time[i], value[:, i])
                              - 16 * function(time[i-1], value[:, i-1])
                              + 5 * function(time[i-2], value[:, i-2])) / 12
def diff_eq_4(time, value, i, h, function):
   return value[:, i] + h * (55 * function(time[i], value[:, i])
```