深圳市盛乐科技有限公司

MC7332模块EVDO

硬件设计手册

版本: V1.0

Minoin

版本更新说明

产品版本	本 资料版本		资料更新说明
	V1. 0		手册第一次发行

作者

资料版本	日期	作者	审核者	批准者
V1. 0	2017-02-10	陶思斌	贺婷	王志宇

前言

概述

本文档通过介绍 EVDO 模块的产品原理图、模块引脚、硬件接口和模块结构等,用以指导用户对模块进行硬件设计,并在该模块基础上更方便快捷的进行各种终端无线产品的设计。

阅读对象

本文档主要适用于以下工程师:

- ●系统设计工程师
- ●结构工程师
- ●硬件工程师
- ●软件工程师
- ●测试工程师

内容简介

第Ⅱ页

本文档包含 5 章,内容如下:

- 1 模块整体说明 介绍 EVDO 模块的基本技术规格、参考涉及的相关文档和缩略语。
- 2 模块对外接口说明 简要介绍 EVDO 模块引脚名称和功能。
- 3 模块电气特性 介绍 EVDO 模块接口电平、功耗、可靠性等。
- 4 硬件接口描述 介绍 EVDO 模块各部分的硬件接口设计。
- 5 结构尺寸 介绍 EVDO 模块的外观图、装配图和主板 PCB 布线图。

2016 版权所有 版权所有未经许可不得扩散

目录

1	模块	整体说明	1
	1.1	模块功能介绍	1
	1.2	模块原理框图	2
	1.3	缩略语	3
2	模块	对外接口说明	6
	2.1	模块接口定义	6
	2.2	天线接口	7
	2.3	天线接口的射频性能	9
3	模块	电气特性	10
	3.1	接口电平说明	10
	3.2	模块功耗	10
	3.3	开关机时序	11
	3.4	可靠性特性	11
	3.5	ESD 特性	12
4	接口	电路参考设计	13
•	4.1	电源及复位	
	4.2	串口	
		4.2.1 全流控 UART 接口描述	
		4.2.2 UART2 接口描述	17
	4.3	UIM 卡接口	17
	4.4	工作状态指示灯	18
5	结构	尺寸	21
	5.1	外观图	21
	5.2	模块装配图	22
	5.3	模块主板 PCB 封装尺寸图	23

图表目录

表	1-1	1 模块功能介绍	1
图	1-1	1 模块原理示意图	2
表	1-2	2 缩略语介绍	3
表	2-1	1 模块接口定义介绍	6
图	2-1	天线接口示意图	8
表	2-2	? 天线接口的射频性能	9
表	3-1	1 模块对外主要接口电平说明	10
表	3-2	2 模块在主要状态下的功耗情况	10
图	3-1	开机时序图	11
表	3-3		11
表	3-4	4 模块温度特性	12
表	3- 5	5 模块 ESD 特性	12
图	4-1		
表	4-1	=	
	4-2		
图	4-3	BUART接口推荐电平转换电路	15
图 图	4-3 4-4	3 UART 接口推荐电平转换电路	15 16
图 图	4-3 4-4	BUART接口推荐电平转换电路	15 16
图图表	4-3 4-4 4-2	3 UART 接口推荐电平转换电路	15 16 16
图图表图	4-3 4-4 4-2 4-5	UART 接口推荐电平转换电路 UART DCE-DTE 连接关系图 2 全流控 UART 接口定义	15 16 16
图图表图表	4-3 4-4 4-2 4-5 4-3	UART 接口推荐电平转换电路 UART DCE—DTE 连接关系图 2 全流控 UART 接口定义 UART2 DCE—DTE 连接关系图	15 16 16 17
图图表图表表	4-3 4-4 4-2 4-5 4-3 4-4	UART 接口推荐电平转换电路	15161717
图图表图表表图	4-3 4-4 4-2 4-5 4-3 4-4	UART 接口推荐电平转换电路	1516171717
图图表图表表图表	4-3 4-4 4-5 4-3 4-4 4-6 4-6	UART 接口推荐电平转换电路	1516171717
图图表图表表图表图	4-3 4-4 4-2 4-5 4-3 4-4 4-6 4-6 4-7	UART 接口推荐电平转换电路	15161717171820
图图表图表表图表图图	4-3 4-4 4-2 4-5 4-3 4-4 4-6 4-6 4-7 5-1	UART 接口推荐电平转换电路	
图图表图表图表图图图	4-3 4-4 4-2 4-5 4-3 4-4 4-6 4-6 4-7 5-1 5-2	UART 接口推荐电平转换电路	

1 模块整体说明

EVDO 是 CDMA2000 1X , EVDO 单 800M 的工业模块,采用 30pin 邮票接口,可以内置到机顶盒、车载台等物联网应用中,使用户以无线方式直接进入互联网,随时随地收发 Email、浏览网页、高速下载、在线播放视频等。

在具有移动网络 CDMA2000 覆盖的地方,可以随时随地连接互联网,还具有收发短信息(SMS)、语音通话等功能,在移动数据通讯领域,为用户提供了高度自由、方便快捷的解决方案,真正实现移动办公的梦想。

本章主要对模块进行一个整体介绍,包括基本功能以及逻辑框图.

1.1 模块功能介绍

表 1-1 模块功能介绍

参 数	EVDO			
基本特点				
频段	CDMA 2000 1X , EVDO 800MHz			
尺寸	30. 00mm*25. 00mm*2. 68mm			
重量	6. 5g			
工作温度范围	-30°C~+75°C			
极限温度范围	-35°C~+80°C			
存储温度范围	-40°C~+85°C			
性能				
工作电压范围	3. 3V~4. 25V			
	标准: 3.6V			
	待机电流 (USB&UART Suspend): 5mA@ RX:-75dBm			
标准功耗(需要修改)	休眠电流(USB&UART Active): 5mA@RX:-75dBm			
你但切代(而安修以)	平均工作电流: 120mA@ RX:-75dBm			
	最大电流: 800mA@ RX:-104dBm			
最大发射功率	23dBm ~ 25dBm@ All up bits			
接收信号灵敏度	-106dBm			
接口				
连接方式	30 Pin 邮票孔			
天线	U. FL-R-SMT 50 欧 天线连接器			
全双工串口	AT 指令、数据传输			

参 数	EVDO
UIM 卡座电平	1.8V/3V
数据业务	·
模式	CDMA2000 1X, EVDO REV A
最大下行速度	3.1 Mbps
最大上行速度	1.8 Mbps
GPS	支持
LL NO	内部 TCP/IP 和 UDP/IP 协议堆栈
协议	TCP 服务器
	嵌入式 FTP
短消息	
	支持 TEXT/PDU 模式
	点对点 MO/MT
	SMS Cell Broadcast
AT 指令设置	
	标准 AT 指令
	专用 AT 指令

1.2 模块原理框图

EVDO 的主要逻辑功能,如框图所示:

图 1-1 模块原理示意图

1.3 缩略语

表 1-2 缩略语介绍

Λ		
ADC	Analan Dinital Communication	+
ADC	Analog-Digital Converter	模数转换
AFC	Automatic Frequency Control	自动频率控制
AGC	Automatic Gain Control	自动增益控制
ARFCN	Absolute Radio Frequency Channel Number	绝对射频信道号
ARP	Antenna Reference Point	天线参考点
ASIC	Application Specific Integrated Circuit	专用集成电路
В		
BER	Bit Error Rate	比特误码率
BTS	Base Transceiver Station	基站收发信台
С		
CDMA	Code Division Multiple Access	码分多址
CDG	CDMA Development Group	CDMA 发展组织
CS	Coding Scheme	译码图案
CSD	Circuit Switched Data	电路交换数据
CPU	Central Processing Unit	中央处理单元
D		
DAI	Digital Audio interface	数字音频接口
DAC	Digital-to-Analog Converter	数模转换
DCE	Data Communication Equipment	数据通讯设备
DSP	Digital Signal Processor	数字信号处理
DTE	Data Terminal Equipment	数据终端设备
DTMF	Dual Tone Multi-Frequency	双音多频
DTR	Data Terminal Ready	数据终端准备好
E	7	
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型 GSM
EMC	Electromagnetic Compatibility	电磁兼容
EMI	Electro Magnetic Interference	电磁干扰
ESD	Electronic Static Discharge	静电放电
ETS	European Telecommunication Standard	欧洲通信标准
F		
FDMA	Frequency Division Multiple Access	频分多址
FR	Full Rate	全速率
G		

GPRS	General Packet Radio Service	通用分组无线业务
GSM	Global Standard for Mobile Communications	全球移动通讯系统
GPS	Global Positioning System	全球定位系统
Н		
HR	Half Rate	半速率
Ι		
IC	Integrated Circuit	集成电路
IMEI	International Mobile Equipment Identity	国际移动设备标识
ISO	International Standards Organization	国际标准化组织
ITU	International Telecommunications Union	国际电信联盟
L		
LCD	Liquid Crystal Display	液晶显示器
LED	Light Emitting Diode	发光二极管
M		
MCU	Machine Control Unit	机器控制单元
MMI	Man Machine Interface	人机交互接口/人机界面
MS	Mobile Station	移动台
P		
PCB	Printed Circuit Board	印刷电路板
PCL	Power Control Level	功率控制等级
PCS	Personal Communication System	个人通讯系统
PDU	Protocol Data Unit	协议数据单元
PLL	Phase Locked Loop	锁相环
PPP	Point-to-point protocol	点到点协议
R		
RAM	Random Access Memory	随机访问存储器
RF	Radio Frequency	无线频率
ROM	Read-only Memory	只读存储器
RMS	Root Mean Square	均方根
RTC	Real Time Clock	实时时钟
S		
SIM	Subscriber Identification Module	用户识别卡
SMS	Short Message Service	短消息服务
SRAM	Static Random Access Memory	静态随机访问存储器
T		
TA	Terminal adapter	终端适配器
TDMA	Time Division Multiple Access	时分多址
TE	Terminal Equipment also referred it as DTE	终端设备,也指 DTE
U	•	
ě		

	receiver-transmitter	
UIM User Identifier Management		用户身份管理
USB Universal Serial Bus		通用串行总线
V		
VSWR Voltage Standing Wave Ratio		电压驻波比

2 模块对外接口说明

EVDO 模块采用 30pin 邮票孔的方式与外部相连。

2.1 模块接口定义

表 2-1 模块接口定义介绍

管脚	分类	信号名称	输入/ 输出	描述	备注
1	GND	GND			
2	ANT	RF_ANT	输出	RF 天线端子	兼容触点
3	GND	GND			
4	UART	RI	输出	串口铃流指示	2.85V, 低电平有效
5	GND	GND			
6	POWER	VBAT	输入	工作电源	
7	其他	RSSI_LED	输入	工作状态指示灯	高电平有效
8	UART	/RTS	输出	发送就绪	2.85V, 低电平有效
9	UART	/CTS	输入	接收就绪	2.85V, 低电平有效
10	UART	DCD	输出	载波检测	2.85V, 低电平有效
11	UIM	UIM_RST	输出	UIM卡复位	
12	UIM	UIM_CLK	输出	UIM卡时钟	
13	UIM	UIM_DATA	双向	UIM 卡数据	
14	UIM	V_UIM	输出	UIM卡电压	1.8/3V
15	UART	RXD	输入	串口接收	2.85V, 低电平有效
16	UART	TXD	输出	串口发送	2.85V, 低电平有效
17	POWER	/RESET	输入	模块复位	/RESET , 配合外部电路使用
18	NC	NC			不连接
19	NC	NC			不连接
20	NC	NC			不连接
21	NC	NC			不连接
22	NC	NC			不连接
23	NC	NC			不连接
24	POWER	ON/OFF	输入	开/关机使能(开 关)	内部上拉,低脉冲有效。更多说明请参见 3.1 电源及复位。
25	UART	/DTR	输入	数据终端就绪	2.85V, 低电平有效
26	UART	/DSR	输出	数据设备就绪	2.85V, 低电平有效
27	POWER	VREG_MSME2	输出	2.85V 输出	外部电平转换供电

管脚	分类	信号名称	输入/ 输出	描述	备注
28	GND	GND			
29	UART2	RX2	输入	第二组串口接收	2.85V, 低电平有效
30	UART2	TX2	输出	第二组串口发送	2.85V, 低电平有效

2.2 天线接口

模块天线部分应采取必要措施避免有用频段干扰信号,在外部天线和射频连接之间要有良好的屏蔽,而且,要使外部的射频缆线远离所有的干扰源,特别是高速数字信号及开关电源等。

模块所用天线按照移动设备标准,驻波比应在 1.1 到 1.5 之间,输入阻抗 50Ω,使用环境不同,对天线的增益要求也不同,一般情况下,带内增益越大,带外增益越小,天线的性能越好。当使用多端口天线时,各个端口之间的隔离度应大于 30dB。如双极化天线的两个不同极化端口,双频天线的两个不同频段端口之间,以及双频双极化天线的四个端口之间,隔离度应大于 30dB。

2.2.1 CDMA 天线接口部分

PIN2和射频连接端子的使用注意事项:

EVDO射频对外接口形式是一个兼容设计,给客户在使用模块进行二次开发的时候可以根据产品形态进行合理的选择,从而达到BOM成本最优。

方案1:

PIN2管脚为天线管脚,使用该管脚作为天线馈电管脚的时候,需要注意以下事项:

- (1)与PIN2连接的馈线为50欧姆的微带线或带状线。靠近模块,需要放π型或倒F型的匹配网络,做以后的调谐使用。
 - (2) 射频走线需要与GND保持一定的间距,一般为射频走线的3倍线宽。
 - (3) 禁止一些干扰源堆叠在射频走线或射频端口附近,比如DCDC, WIFI模块等一些干扰源。

方案2:

使用射频链接端子作为天线馈电的时候,需要把 PIN2 与所在的主板断开,并且要保证 PIN2 下面以及周边有一定的净空区域,具体做法是 PIN2 表层需要和 GND 保持 2MM 的间距, PIN2 正下方,需要挖空处理。不建议在使用射频连接端子的时候同时使用 PIN2 的兼容设计。

图 2-1 天线接口示意图

2.2.2 GPS 天线接口

GPS 天线接口仅能用射频链接端子作为天线馈电 ,没有 pin 脚兼容设计。

天线设计需要足够的净空,天线不能直接贴在 PCB 板或者电池等金属物上, 建议天线贴在整机塑料壳体边角位置. GPS 和 CDMA 之间有足够的隔离度, 所以 GPS 天线和 CDMA 天线没有位置上的要求,距离金属物能有 4^{*} 5mm 距离 。禁止干扰源堆叠在天线或射频端口附近,比如 DCDC,WIFI 模块等一些干扰源

2.3 天线接口的射频性能

2.3.1 C D M A 天线接口的射频性能如表 2-2 所示:

表 2-2 天线接口的射频性能

天线接射频性	•	模块上行链路 (MS->BTS)	模块下行链路 (BTS->MS)	功率(dBm)	天线接口接 收 灵敏度
CDMA		824MHz-849MHz	869MHz-894MHz	23 ± 1.5	< -108dBm

2.3.2 G P S 天线接口射频性能

天线接口 射频性能	模块上行链路 (MS->BTS)	模块下行链路 (BTS->MS)	功率(dBm)	天线接口接 收 灵敏度
GPS	X	1573.92 -1576.92MHz	X	< -150dBm

2.3.3 模块电气特性

本节主要介绍模块的电气特性,包括模块接口电平,功耗,可靠性特性等.

2.4 接口电平说明

表 3-2 模块对外主要接口电平说明

对外接口	高低电平	最小值	典型值	最大值	备注
UART	0		0	0.3*V_UART	
	1	0. 7*V_UART	V_UART		
UIM	0		0	0.3*VREG_UIM	
	1	0.7*VREG_UIM	VREG_UIM		

其中 V_UART 为 2.85V, VREG_RUIM 为 1.8V 和 2.85V。

2.5 模块功耗

表 3-2 模块在主要状态下的功耗情况

状态	业务信道	接收功率	最小值	平均功耗(mA)	最大值	备注
%±1.4⊓	204		2mA	<5mA		休眠
待机	384	-55dBm		20mA		
	1013	-55dBm		113		
	1013	-75dBm		152		
	1013	-104dBm		447		
工作	1013	All up bits		483		
_L1F	384	-55dBm		120		
	384	-75dBm		151		
	384	-104dBm		403		
	384	All up bits		455		

	777	-55dBm	119	
	777	-75dBm	147	
	777	-104dBm	427	
	777	All up bits	429	
找网			69	
GPS			+50mA	当GPS工作时,系统增加50mA电流

2.6 开关机时序

用时序图表示整个开关机过程.

图 3-1 开机时序图

表 2-3 开关机电路时间特性

t ^a	t ^b	tc	t ^d	t ^e
20mS	10mS		2S	6S

2.7 可靠性特性

模块在出厂之前都经过了一系列的可靠性测试,例如:高低温运行、高低温存储、温度冲击、交变湿热等。测试结果符合行业要求,先将模块工作温度列出如下表。

 参数
 参数描述
 最小值
 最大值
 备注

 To
 正常工作温度
 -30℃
 75℃

 Ta
 受限工作温度
 -40℃
 +85℃

+85℃

-40°C

表 2-4 模块温度特性

2.8 ESD 特性

Ts

模块接口一天线接口、UIM 卡接口,通过标准 ESD 性能测试:

模块存储温度

表 2-5 模块 ESD 特性

接口	测试项目	测试要求	性能
天线接口	空气放电	±8 kV	无异常
	接触放电	± 6 kV	无异常
штм	空气放电	±4 kV	无异常
UIM 卡接口	接触放电	±2 kV	无异常

3 接口电路参考设计

根据模块的功能,提供接口的参考设计电路以及注意事项。

3.1 电源及复位

电源部分电路参考设计原理如图 4-1 所示。

图 3-1 开关机及复位按键电路参考设计原理图

●电源设计

模块的电源由 VBAT 提供, 电压特性如表 4-1 所示。

分类	最小值	典型值	最大值
输入电压	3.3 V	3.6 V	4. 25 V
输入电流	< 3mA (平均值)		800mA (视网络信号状况而定)

表 3-1 电压特性

●开机

模块在正常上电后处于关机状态。

给模块 0N/0FF 引脚一个持续时间 2.5 $^{\sim}$ 4S 的低电平脉冲模块即可开机。

每次开机所需时间与模块状态有关, 通常要求低电平持续 2.5S 以上。

●美机

给模块 ON/OFF 引脚一个持续时间 2S 的低电平脉冲,即可关机。

●复位

给模块/RESET 引脚一个 100mS 的低脉冲,会导致模块复位。

复位后,模块将进入关机状态,需要给模块 0N/0FF 引脚一个持续时间 2.5S 以上的低电平脉冲模块即可重新开机。

●VREG_MSME2

EVDO 模块有一个带限流调节器的电压输出引脚,可以用来为主板上的一些外部电路供电。这个引脚的电压和基带处理器及存贮器的电压来自同一个电压调节器,只有在模块开机时才有电压输出,正常的输出电压是 2.85V,用户要尽可能少的从该引脚汲取电流(小于 10mA)。一般情况下,建议用户将此脚仅用于电平匹配需求时对芯片引脚的上拉。

模块在关机状态下,该引脚输出电压不变,但电源内阻很高。因此,不建议采用该引脚作为任何控制用途。

●其它建议

为了保证模块数据被安全保存,以及模块数据的安全性,请勿在模块运行中切断模块供电电源,强烈建议在应用中尽可能使用电池或者使用软开关机键。如果断电和上电的间隔时间少于 2 秒钟,会导致模块的自动开机。

3.2 串口

模块提供一组全流控 UART 接口,一组无流控 UART 接口,最大速率为 230.4kbps,典型值为 115.2kbps,对外输入输出 I0 电平为 2.85V CMOS 电平信号。可用于升级,串口通信等。使用注意:

- 1) 全流控 **UART** 用于模块的软件升级, **AT** 指令, 数据业务, 波特率默认为 115200 bps。**UART2** 固定波特率 9600 bps, 只用于 AT 指令 (UART2 不建议使用)
- 2) UART 的电平为 2.85V CMOS, 与非 2.85V 电平电路连接时, 必需经过电平转换连接, 否则, 会因电平不匹配导致串口不稳定或损坏模块。

模块内部串口引脚 DSR/DTR/RING/DCD RX/TX/RTS/CTS 都是 2.85V 输出。

使用注意:

EVDO 串口输入输出电平为 2.85V,与不同的逻辑电路连接时(如 MCU 或 RS232 驱动芯片 MAX3238 等),必需经过电平转换连接。否则,会因电平不匹配导致串口不稳定或模块损坏。电平转换可参照图 4-2 进行(图中是与 3.3V 电平转换为例,具体由开发者系统所需电压决定)。

3) 串口休眠通过/DTR 引脚实现。需要模块休眠时,请将该引脚设置为高电平,需要主动唤醒模块时,请将该引脚设置为低电平;

图 4-2 UART 接口推荐电平转换电路

4) 当有短信时 RI 引脚会产生低电平中断。

3.2.1 全流控 UART 接口描述

图 4-4 UART DCE-DTE 连接关系图

UART1 接口定义如表 4-2 所示。

表 3-2 全流控 UART 接口定义

分类	序号	定义	输入/ 输出	描述	备注
UART	15	UART_RX	输入	串口接收	DTE 发送串行数据
(2. 85V	8	UART_RTS	输出	发送就绪	DTE 通知 DCE 请求发送
)	16	UART_TX	输出	串口发送	DTE 接收串行数据
	25	UART_DTR	输入	数据终端就绪	DTE 准备就绪
	9	UART_CTS	输入	接收就绪	DCE 已切换到接收模式
	4	UART_RI	输出	串口铃流指示	通知 DTE 有远程呼叫
	26	UART_DSR	输出	数据设备就绪	DCE 准备就绪
	10	UART_DCD	输出	载波检测	数据链路已连接
		GND		地	

3.2.2 UART2 接口描述(不推荐使用, TX2 和 UIM 卡复用)

图 4-5 UART2 DCE-DTE 连接关系图

UART2 的接口定义如表 4-3 所示:

分类 序号 定义 输入/ 描述 备注 输出 UART 29 UART2_RX 输入 串口接收 DTE 发送串行数据 (2.85V)30 UART2_TX 输出 串口发送 DTE 接收串行数据 地 GND

表 3-3 UART2 接口定义

3.3 UIM 卡接口

模块支持 1.8V/2.85V 的 UIM 卡,设计如图 4-3 所示,使用时需要加上 ESD 器件以便保护 UIM 卡。

分类 序号 定义 描述 备注 输入/ 输出 UIM V RUIM 输出 UIM卡电压 14 11 UIM_RST UIM 卡复位 输出 12 UIM CLK UIM 卡时钟 输出 13 UIM_DATA 双向 UIM卡数据

表 3-4 UIM 卡接口定义

UIM 卡接口速率典型值在 3.25MHz 左右,因此 USIM 卡座应该距离模块接口较近的位置,避免因走线过长(走线建议不要超过 100mm),使波形严重变形,从而影响信号的通信。

UIM_CLK 和 USIM_DATA 信号的走线需要用地线包络。 在 V_RUIM 上加一个 0.1uF 或 0.22uF 的 电容,其余的 UIM_CLK、UIM_DATA、UIM_RST 上面对 GND 网络加 33pF 电容,滤出天线信号的干扰。此外,这 4 个信号都通过 TVS 管或 ESD 器件来防静电。参考设计如图所示。

图 4-6 UIM 卡电路参考设计图

注意:

UIM 卡的电路 PCB 布线尽可能靠近模块。ESD 器件靠近 UIM 卡座放置

3.4 音频接口(可选)

模块提供两路听筒,两路话筒接口,同一时间内只能有一对输入、输出工作。音频接口电路如图 3-所示。

分类	序号	定义	输入/ 输出	描述	备注
AUDIO	23	MIC1_N	输入	主机受话器	差分输入
	22	MIC1_P	输入	主机受话器	
	20	SPK1_N	输出	主机扬声器	差分输出
	19	SPK1_P	输出	主机扬声器	
	21	MIC2_P	输入	耳机受话器	单端输入
	18	SPK2_P	输出	耳机扬声器	单端输出

表 3-5 音频接口定义

注:未标注的电容值均为33pF

图 3-7 音频接口电路参考设计原理图

●话筒

话筒接口 MIC1_N 和 MIC1_P 是差分接口,也可以用于单端输入,推荐使用差分方式以减少噪声,直接连接到话筒上即可。接口 MIC2 P 是单端接口,内部提供偏置电压,直接连接到话筒即可。

●听筒

听筒接口 SPK1_P 和 SPK1_N 是为差分接口, 32Ω 阻抗,SPK2_P 是单端接口, 32Ω 阻抗,内部没有耦合电容,需要额外增加。

●模块手柄部分音频接口设计

SPK1 输出功率为 35mW, MIC1 内部最高增益可达 52dB, 因此可选用灵敏度低于-52dB 的麦克风进行设计。引脚 MIC1 P 的电平在 1.8V 左右。

注意:

如果采用其他音频输入方式,输入信号动态范围在 2V 以内。如果信号动态范围远小于此电压,则需要增加前置放大环节;如果大于此电压,则需要增加衰减网络。

●模块耳机部分音频接口设计

SPK2 输出功率为 10.8mW, MIC2 内部最高增益可达 52dB, 因此可选用灵敏度低于-52dB 的麦克风进行设计。引脚 MIC2_P 的电平在 1.8V 左右,设计同手柄部分。

3.5 工作状态指示灯

RSSI LED 内部下拉,高电平灯亮,需外加三极管驱动。

模块状态	指示灯状态	频率
开机状态	灭	
找网状态	较慢闪	3Hz
休眠/待机状态	慢闪	1Hz
业务状态	快闪	5Hz

表 3-6 工作状态指示灯描述

RSSI_LED 管脚输出状态属于软件定义的协议状态。RSSI_LED 管脚为普通 VO 口,驱动电流能力有限,不能直接驱动 LED,需要配合三极管使用。指示灯参考设计如图 4-5 所示。

图 4-8 指示灯参考设计原理图

4 结构尺寸

4.1 外观图

EVDO 模块外观如错误! 未找到引用源。所示。

图 5-1 EVDO 模块外观图

- ●尺寸(长 x 宽 x 高): 30.00mm×25.00mm×2.68mm
- ●重量: 6.5g

4.2 模块装配图

模块装配图如图 5-2 所示。

图 5-2 模块装配图

4.3 模块主板 PCB 封装尺寸图

模块主板 PCB 封装尺寸如图 5-3 所示。

图 5-3 对应的母座 PCB 封装尺寸图 (顶视)

图 5-4 对应的母座 PCB 封装尺寸图 (仰视)

客户 PCB 设计注意事项:

- 1) RF 测试点下面的区域,客户开发板 PCB 各层禁止敷铜和走线。
- 2) 为方便测试和维修,在客户开发板 PCB 上需要挖孔处理,漏出 J-TAG 测试点。