TERMODINÁMICA

Problema – 1 (4 puntos)

Nombre	Grupo	

En el diagrama T-s adjunto se representa un ciclo Rankine que opera entre las presiones de 100 bara, a la salida de caldera, y 0.1 bara en el condensador, con dos extracciones intermedias, a dos precalentadores de ciclo, uno de los cuales es cerrado y el otro es abierto. Se proporcionan valores numéricos de las propiedades del agua en la zona bifásica para facilitar los cálculos.

El rendimiento de las bombas se tomará igual al 100 %, es decir, $\Delta h = v_{entrada} * \Delta p$. No se tendrán en cuenta pérdidas de presión en tuberías ni a través de los equipos de intercambio de calor. De los precalentadores de ciclo tanto el condensado/agua de alimentación como los drenajes salen a una temperatura igual a la temperatura de saturación correspondiente a la presión de la carcasa del equipo de que se trate. Así mismo, el condensado sale del condensador como líquido saturado.

A la vista de la figura se pide:

- Representar un diagrama de bloques con los equipos/elementos que constituyen el ciclo, identificando los puntos con los del diagrama, colocando las bombas necesarias para la correcta operación del mismo.
- Calcular el rendimiento adiabático isentrópico de cada uno de los tres escalones de turbina, usando los
 valores obtenidos del diagrama tomando (donde sea necesario por no pasar exactamente una curva con
 valores concretos por el punto tratado) aproximaciones razonables.
- Para un caudal unitario de agua de alimentación calcular:
 - o Fracciones de vapor de extracción a cada precalentador.
 - o Potencia de cada uno de los escalones de turbina.
 - o Potencia necesaria de bombeo.
 - o Calor evacuado en el condensador.
- Calcular el rendimiento global del ciclo.

Р	Tsat	v_{f}	Vg	u_f	u_g	h_f	h_g
(bara)	(ºC)	(m ³ /kg)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)
0.1	45.8328	0.001010	14.6746	191.82	2438.03	191.83	2584.78
5	151.8438	0.001093	0.3747	639.57	2560.20	640.12	2747.54
25	223.9429	0.001197	0.0799	958.97	2601.17	961.96	2800.94
100	310.9607	0.001453	0.0180	1393.52	2547.32	1408.04	2727.73

Punto	Caudal	P (bara)	v (m3/kg)	H (kJ/kg)	Hs (kJ/kg)
1	1	100		3400	(30)
2	1	25		3200	3000
2e	0.12572464	25		3200	1 = 1 = 1.8(
3	0.87427536	5	-275	2900	2800
3e	0.17245614	5		2900	
4	0.70181922	0.1		2400	2250
5	0.87427536	0.1	0.00101	191.83	7 20
6	0.87427536	25		194.3449	
7	0.87427536	25		640.12	
8	1	25	0.001197	961.96	
9	1	100		970.9375	
10	0.17245614	5		640.12	
11	0.17245614	0.1		640.12	

Diagrama
Tablas
Calculado o deducido

(2) El estudio del diagrama permite deducir que se trata de un cielo Rankine con dos calenta. dores, el primero de ellos, de más baja presión, drevando hacia el condensador y el segundo euya salida se dirige a la caldera, les decir, el primero cerrado y el segundo abierto. Tos puntos identificados en el diagrama se mulestran en la figura esquemática. Es imposible representar en el diagrama los puntos 6 y 8 def esquema (ho hay precisión suficiente) Est cálculo se desarrolla de la signiente forma: · bu el diagrama se pueden leer los valores de estalpia y presión: los de presión permiten identificar todas las Idel ciclo y los de entalpia permiten identificat perfectamente la expansión de la turbina En tables preden determinance las condiciones de (5) (8) y (10). Como se dice que el agua de alibuentación sale del Calentador a la temperatura de saturación correspondiente a la presión de carcasa se puede asegurar que hz=h10 puesto que Tz=T10 y eu (7) se trata de agua sobrepresivizada (0 suberfiada). De acuerdo con esto, se puede calcular:

```
Kendisinento escalones de terrbina
   1) 9 = 3400 - 3200 = 0.5
   2) \ \gamma = \frac{3200 - 2900}{3200 - 2800} = 0.75
   3) 7 = 2900 - 2400 = 0.7692
Bourba de condensado (BC)
   h_6 = h_5 + v_5 (p_6 - p_5)

h_6 = 191.83 + 0.00101(25 - 0.1)100 =
              = 194, 3449 ps/kg
Bomba de agua de alimentación (BA)
    hg= h8+ vg(pg-p8)
    hg = 961,96 + 0.00/197 (100-25) 100 =
            = 970.9375 kJ/kg
 Balance calantados abierto (DES)
     my hy + & h2 = h8
     (1-x) 640.12+ x 3200 = 961.96
           \alpha = 0.125725
Balance calentados cerrado (HTR)
     mo (hy-ho) = B(h3-h10)
  (1-x) (-194.3449+640.12)= B(2900-640.12)
       13= 0.172456
```


TERMODINÁMICA

Problema – 2 (3 puntos)

Nombre	Grupo	

La Figura adjunta muestra una bomba de calor destinada a producir agua caliente para consumo doméstico (7) a partir de agua de la red (5). Para ello, toma calor en el evaporador de una corriente de agua que extrae de un pozo (8), inyectándola de nuevo en él (9) tras abandonar el evaporador. El compresor es refrigerado por la corriente de agua de red (5-6) antes de entrar en el condensador. Además, el compresor disipa calor al ambiente a través de su carcasa.

El fluido de trabajo de la bomba (R134a) llega al compresor a 15°C, saliendo del mismo a 97°C y 16,5 bar. Tras ceder calor al agua en el condensador, sale de éste como líquido saturado sin perder presión, para dirigirse así a la válvula, de la que sale a 3,5 bar, que es la presión de entrada al evaporador. Tras absorber calor en el evaporador a presión constante regresa al compresor.

El caudal de agua que se dirige al consumo es de 15 g/s y el que se toma del pozo es de 50 g/s. El agua se toma del pozo a 18°C y retorna al mismo a 13°C. El agua se toma de la red a 18°C y retira 40 W del compresor, que demanda 600 W para su accionamiento. El ambiente que rodea la instalación se encuentra a 25°C. No se consideran pérdidas de carga en el agua.

Se pide:

- a) Temperatura del agua que se dirige al consumo a la salida del condensador
- b) Calor evacuado por el compresor al ambiente
- c) COP real de la bomba de calor
- d) Entropía generada por irreversibilidades totales en el compresor.
- e) COP que habría tenido la bomba de calor si la operación hubiese sido totalmente reversible y operase entre las mismas temperaturas de agua (5/7 y 8/9), suponiendo que el calor disipado por el compresor al ambiente hubiese sido nulo

Propiedades de saturación (líquido-vapor) del R134a

p	T	V_{f}	Vg	U_f	u_g	$h_{\rm f}$	h_g	Sf	Sg
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
2	-10,09	0,000753	0,09987	38,28	224,5	38,43	244,5	0,15457	0,93773
2,5	-4,302	0,000764	0,08068	45,91	227,8	46,10	247,9	0,18327	0,93391
3	0,6527	0,000774	0,06770	52,50	230,5	52,73	250,8	0,20758	0,93103
3,5	5,008	0,000782	0,05831	58,34	232,9	58,62	253,3	0,22876	0,92876
4	8,91	0,000791	0,05120	63,62	235,1	63,94	255,6	0,24761	0,92691
15	55,21	0,000928	0,01305	130,27	257,5	131,66	277,1	0,46644	0,90919
15,5	56,56	0,000934	0,01257	132,37	258,0	133,81	277,5	0,47284	0,90852
16	57,88	0,000940	0,01212	134,43	258,5	135,93	277,9	0,47911	0,90784
16,5	59,17	0,000946	0,01170	136,45	258,9	138,01	278,2	0,48525	0,90715
17	60,43	0,000952	0,01130	138,44	259,4	140,06	278,6	0,49126	0,90644

Propiedades de vapor sobrecalentado del R134a

3,5 bar (sat: 5°C)						16,5 bar (sat: 59,17°C)				
Τ	V	u	h	S		Τ	V	u	h	S
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	_	[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
sat	0,05831	232,9	253,3	0,92876		sat	0,01170	258,9	278,2	0,90715
6	0,05862	233,7	254,3	0,93204		60	0,01180	259,9	279,4	0,91055
8	0,05924	235,4	256,1	0,93858		65	0,01235	265,6	285,9	0,93016
10	0,05985	237,0	257,9	0,94505		70	0,01286	271,0	292,2	0,94858
12	0,06045	238,6	259,7	0,95146		75	0,01334	276,3	298,3	0,96614
14	0,06105	240,2	261,6	0,95781		80	0,01379	281,5	304,2	0,98304
16	0,06164	241,8	263,4	0,96411		85	0,01422	286,6	310,0	0,99940
18	0,06223	243,4	265,2	0,97036		90	0,01464	291,6	315,8	1,01533
20	0,06281	245,0	267,0	0,97657		95	0,01504	296,7	321,5	1,03089
22	0,06339	246,6	268,8	0,98273		100	0,01543	301,7	327,1	1,04612
24	0,06397	248,2	270,6	0,98885		105	0,01580	306,7	332,7	1,06108

Evaporado:

Rétigerade del Compressor

Condentator

$$\frac{dev \, kodor}{\dot{w}_{r}(h_{2}-h_{3}) = \dot{w}_{w}(h_{7}-h_{6})}$$

$$\dot{w}_{r}(h_{2}-h_{3}) = \dot{w}_{w}(h_{7}-h_{6})$$

$$\dot{v}_{r}(h_{2}-h_{3}) = \dot{w}_{w}(h_{7}-h_{6})$$

Compress

$$\frac{\lambda prenof}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{1} + w_{w}} + w_{c} = w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}} + w_{w}h_{6} + o_{a}^{c}} + w_{w}h_{6} + o_{a}^{c}$$

$$\frac{\lambda r}{w_{r}h_{2} + w_{w}h_{6} + o_{a}^{c}} + w_{w}h_{6} + o_{a}^{c}}$$

$$cop = \frac{(ord comp)}{(ow + dw)} = \frac{11 \times 4.18 \times (43.1 - 18)}{(ov)} = \frac{2.6961}{(c)}$$

$$vi$$

$$cop = \frac{(ord comp)}{(ow + dw)} = \frac{2.6961}{(ov)} = \frac{2.6961}{(ov$$

$$+\frac{4\sqrt{1392}}{298}=0.9296\frac{W}{K}$$
 (d)

$$CoP_{rev} = \frac{T_w}{T_{we} - T_w} = \frac{26,1287}{100}$$

$$T_{W} = \frac{43.5 - 18}{L\left(\frac{43.5 + 273}{18 + 273}\right)} = 303, 57 K$$

$$T_{W}^{e} = \frac{13 - 17}{L\left(\frac{13 + 273}{18 + 273}\right)} = 288, 49 K$$

TERMODINÁMICA

Problema 3 (3 puntos)

Nombre	Grupo

La figura muestra el esquema de un ciclo de refrigeración por absorción. El propósito de este tipo de ciclos es aprovechar el calor de un proceso (Q_S) para alimentar un ciclo de potencia (M) que produce el trabajo necesario para alimentar un ciclo de refrigeración convencional (R), que extrae calor (Q_F) del recinto que se quiere refrigerar, devolviendo un calor Q_0 al ambiente.

Si el COP de este tipo de ciclos de refrigeración se define como el calor retirado del foco frío frente al calor aprovechado del proceso, suponiendo todos los procesos reversibles, se pide:

- a) Obtener el COP del ciclo dado, en función de las temperaturas T_S, T_F y T₀.
- b) Obtener la relación entre el COP del ciclo dado y el COP del ciclo de refrigeración R. A la vista del resultado, explicar las ventajas y desventajas de un ciclo de refrigeración por absorción frente a uno convencional.
- c) Si $T_S=120$ °C, $T_F=-15$ °C, $T_0=25$ °C y W=3 kW, calcular Q_S , Q_F y Q_0 .

a) Ciclo notor:
$$y_m = \frac{W}{Q_S} = (1 - \frac{T_0}{T_S})$$
 (ciclo totalmente revosible)

$$COP = \frac{QF}{Qs} = \frac{W' \cdot \frac{TF}{To - TF}}{W} = \frac{(1 - \frac{To}{Ts}) \cdot (\frac{TF}{To - TF})}{(1 - \frac{To}{Ts})} = \frac{TF}{Ts} \frac{(Ts - To)}{(To - TF)}$$

W=3KW

$$I_{M} = \left(1 - \frac{T_{0}}{T_{0}}\right) = 0.24$$

$$I_{M} = \left(1 - \frac{T_{0}}{T_{0}}\right) = 0.24$$
; $CoP_{R} = \frac{T_{F}}{T_{0} - T_{F}} = 6.45$; $CoP_{abs} = 1.56$