

Document Number QW_01_0011.002

G76S LoRa Wireless Communication Module

Date: Sep. 21th, 2017

Table of Contents

1.	GENE	ERAL DESCRIPTION	
	1-1	BLOCK DIAGRAM	3
	1-2	Product Version	
	1-3	SPECIFICATION	
2.	ELEC	TRICAL CHARACTERISTICS	4
	2-1	ABSOLUTE MAXIMUM RATINGS	4
	2-2	RECOMMENDED OPERATING RANGE	5
	2-3	Power Consumption Characteristics	5
	2-4	RF CHARACTERISTICS	6
	2-5	DIGITAL CHARACTERISTICS	7
	2-5.1	1 DC characteristics	7
	2-5.2	2 NRST pin characteristics	9
	2-5.3	3 UART Interface Parameters	10
3.	PIN D	DEFINITION	10
	3-1	PIN ASSIGNMENT	10
4.	MECI	HANICAL DIMENSION	14
	4-2	RECOMMENDED FOOTPRINT	15
L		OMMENDED REFLOW PROFILE	
5.			
6.	SIP N	MODULE PREPARATION	16
	6-1	HANDLING	16
	6-2	SMT Preparation	
	T.		
7.	PACK	KAGE INFORMATION	17
	7-1	Product Making	17
	7-2	Tray Dimension	18
	7-3	PACKING INFORMATION	19
	7-4	HUMIDITY INDICATOR CARD	19

1. General Description

The G76S integrates ARM Cortex®-M0+ (32-bit RISC core operating at a 32MHz frequency) MCU with LoRa[™] modulation that provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.

G76S can achieve a sensitivity of over -148 dBm. The high sensitivity combined with the integrated +19.5 dBm power amplifier yields industry leading link budget making it optimal for any low data rate application requiring range or robustness. LoRa™ also provides significant advantages in both blocking and selectivity over conventional modulation techniques, solving the traditional design compromise between range, interference immunity and energy consumption.

Features

- Small footprint: 13 mm x 11 mm x 1.1 mm
- LoRa™ Modem
- +19.5 dBm constant RF output vs. V supply
- Programmable bit rate up to 37500 bps
- High sensitivity: down to -148 dBm
- Excellent blocking immunity
- Preamble detection
- Automatic RF Sense and CAD with ultra-fast AFC
- Payload up to 242 bytes with CRC * Note
- Embedded memories (up to 192 Kbytes of Flash memory and 20 Kbytes of RAM)

Note: LoRa WAN FW mode: payload up to 242 Byte; GIOT FW mode: payload up to 51 Byte while SF is between 7~9.

1-1 Block Diagram

A simplified block diagram of the G76S module is depicted in the figure below.

1-2 Product Version

The features of G76S is detailed in the following table:

Part	Frequency	Spreading	Bandwidth	Effective	Est. Sensitivity
Number	Range	Factor	(KHz)	Bitrate (bps)	(dBm)
G76S	863~870 MHz &902~928 MHz	, ·-	62.5 - 500	146 - 37500	-109 to -139*

Note: LORA setting SF=12, BW=62.5k, Long-Range Mode, highest LNA gain, LnaBoost for Band 1.

1-3 Specification

Model Name	G76S		
Product Description	LoRa Wireless Communication Module		
Host Interface	UART		
Operation Conditions			
Temperature	■ Storage : -50°C ~ +105°C		
	■ Operating : -40°C ~ +85°C		
Humidity	■ Operating: 10 ~ 95% (Non-Condensing)		
	■ Storage : 5 ~ 95% (Non-Condensing)		
Dimension	13 mm x 11 mm x 1.1 mm		
Package	LGA type		

2. Electrical Characteristics

2-1 Absolute Maximum Ratings

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD33	Supply Voltage	-0.3		3.9	V
V _{IN}	Input voltage on digital pins	-0.3		3.9	V
Pmr	RF Input Level			+10	dBm

2-2 Recommended Operating Range

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD33	Supply Voltage	2.0	3.3	3.6	V
ML	RF Input Level			+10	dBm

2-3 Power Consumption Characteristics

Symbol	Parameter	Conditions	Тур.	Max.	Unit
IDDSL	Supply current in Sleep mode		5		uA
IDDST	Supply current in Standby mode	Crystal oscillator enabled	9	9.6	mA
IDDR	Supply current in Receive mode		17.5		mA
IDDT	Supply current in Transmit mode with impedance matching	RFOP = +19.5 dBm RFOP = +17 dBm RFOP = +13 dBm RFOP = + 7 dBm	127 82 65 49		mA

Note: Power consumption measured @3.3V.

2-4 RF Characteristics

The table below gives the electrical specifications for the transceiver operating with LoRa[™] modulation. Following conditions apply unless otherwise specified:

- Supply voltage = 3.3 V.
- Temperature = 25° C.
- Frequency range: 863~870 MHz &902~928 MHz*Note
- Bandwidth (BW) = 125 kHz.
- Spreading Factor (SF) = 12.
- Error Correction Code (EC) = 4/5.
- Packet Error Rate (PER)= 1%
- CRC on payload enabled.
- Output power = 19.5 dBm in transmission.
- Preamble Length = 12 symbols (programmed register PreambleLength=8)
- With matched impedances

Note: The frequency band could be configured within the range based on regulations stipulated in different countries.

LoRa Transmitter (Conductive)							
Item	Condition	Min.	Тур.	Max.	Unit		
Tx Power Level	PA_BOOST pin	18.0	19.5	21.0	dBm		
	LoRa Receiver (Conductive)						
Item	Condition	Min.	Тур.	Max.	Unit		
RFS_L62_HF	SF = 6		-119		dBm		
(Long-Range Mode,	SF = 7		-114		dBm		
highest LNA gain, LNA boost, 62.5 kHz	SF = 8		-127		dBm		
bandwidth)	SF = 12		-137		dBm		
RFS_L500_HF	SF = 6		-109		dBm		
(Long-Range Mode,	SF = 7		-114		dBm		
highest LNA gain, LNA boost, 500 kHz	SF = 8		-117		dBm		

bandwidth)	SF = 9	-120	dBm
	SF = 10	-123	dBm
	SF = 11	-126	dBm
	SF = 12	-128	dBm

2-5 Digital Characteristics

2-5.1 DC characteristics

Input voltage levels

Symbol	Description	Conditions	Min	Тур.	Max	Unit
	WO: 1	NRST	0.7xVDD33		-	V
VIH	I/O input high level voltage	воото	0.7xVDD33	-	-	V
		GPIO	0.7xVDD33	-	1	V
	I/O input	NRST	-	-	0.3xVDD33	V
VIL	low level voltage	ВООТ0	- 10 3	-	0.14xVDD33	V
		GPIO	-		0.3xVDD33	V
R_{PU}	Weak pull-up Equivalent resistor	V _{IN} = GND	30	45	60	ΚΩ
R _{PD}	Weak pull-down Equivalent resistor	V _{IN} =VDD33	30	45	60	ΚΩ

Output voltage levels

Symbol	Description	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port / IIO = +8 mA	-	0.4	
V _{он}	Output high level voltage for an I/O pin	-2.7 V≦VDD33≦3.6 V	VDD33-0.4	-	
V _{OL}	Output low level voltage for an I/O pin	TTL port / IIO =+ 8 mA 2.7 V≦VDD33≦3.6 V	-	0.4	
V _{ОН}	Output high level voltage for an I/O pin	TTL port / IIO =- 6 mA 2.7 V≦VDD33≦3.6 V	2.4	-	V
V _{OL}	Output low level voltage for an I/O pin	IIO = +15 mA 2.7 V≦VDD33≦3.6 V	-	1.3	
V _{ОН}	Output high level voltage for an I/O pin	IIO = -15 mA 2.7 V≦VDD33≦3.6 V	VDD33-1.3	-	
V _{OL}	Output low level voltage for an I/O pin	IIO = +4 mA 1.65 V≦VDD33≦3.6 V	-	0.45	
V _{OH}	Output high level voltage for an I/O pin	IIO = +4 mA 1.65 V≦VDD33≦3.6 V	VDD33- 0.45	-	

2-5.2 NRST pin characteristics

The NRST pin input driver uses CMOS technology.

It is connected to a permanent pull-up resistor (R_{PU}).

The following figure is recommended NRST pin protection circuit against parasitic resets.

Symbol	Description	Conditions	Min	Тур.	Max	Unit
V _{IL(NRST)}	NRST input low level voltage		VSS		0.8	V
V _{IH(NRST)}	NRST input high level voltage		1.4		VDD33	V
V _{OL(NRST)}	NRST output low level voltage	$I_{OL} = 2mA$ 2.7V < VDD33 < 3.6V			0.4	V
V _{OL(NRST)}	NRST output low level voltage	I _{OL} = 1.5mA 1.65V < VDD33 <			0.4	V
V _{hys(NRST)}	NRST schmitt trigger voltage hysteresis			10% VDD33		mV
R _{PU}	Weak pull-up Equivalent resistor	V _{IN} = GND	30	45	60	ΚΩ
V _F	NRST Input filtered pulse				50	nS
V_{NF}	NRST Input not filtered pulse	VDD33 > 2.7 V		350		nS

2-5.3 UART Interface Parameters

Baud Rate = 9600 bps

Data Bits =8 bits Stop Bits =1 bit

Parity Check = None Flow Control = None

3. Pin Definition

3-1 Pin Assignment

The SiP module will conform to the following pin map, shown in the following diagram (top view)

Pin	Definition	I/O	Description
1	NC		
2	GND		Ground pin
3	GND	у	Ground pin
4	PC0	I/O	MCU pin name: PC0
5	PC1	I/O	MCU pin name: PC1
6	PC2	I/O	MCU pin name: PC2
7	PC3	I/O	MCU pin name: PC3
8	NC		
9	NC		
10	NC		
11	NC		
12	NRST		Hardware reset pin
13	PA0	I/O	MCU pin name: PA0

14	GND		Ground pin
15	GND		Ground pin
16	PA2	I/O	MCU pin name: PA2
17	PA3	I/O	MCU pin name: PA3
18	PA4_SPI1_NSS	I/O	MCU pin name: PA4
19	PA5_SPI1_SCK	I/O	MCU pin name: PA5
20	PA6_SPI1_MISO	I/O	MCU pin name: PA6
21	PA7_SPI1_MOSI	I/O	MCU pin name: PA7
22	PC4	I/O	MCU pin name: PC4
23	PC5	I/O	MCU pin name: PC5
24	PB0_IO_INT1	I/O	MCU pin name: PB0
25	PB1_IO_INT2	I/O	MCU pin name: PB1
26	PC6	I/O	MCU pin name: PC6
27	PC7	I/O	MCU pin name: PC7
28	PC8	I/O	MCU pin name: PC8
29	PC9	I/O	MCU pin name: PC9
30	RXTX/RFMOD	0	Control signal from SX1276, which connects to internal RF switch at the same time.
31	GND		Ground pin
32	GND		Ground pin
33	RF_ANT	I/O	RF I/O
34	GND		Ground pin
35	GND		Ground pin
36	PA1_RF_FEM_CPS	I/O	MCU pin name: PA1
37	GND		Ground pin
38	NC		

39	GND		Ground pin
40	NC		
41	GND		Ground pin
42	NC		
43	VDD33		Power Supply
44	VDD33		Power Supply
45	PA8_USART1_CK	I/O	MCU pin name: PA8
46	PA10_USART1_RX	I/O	MCU pin name: PA10(UART)
47	PA9_USART1_TX	I/O	MCU pin name: PA9(UART)
48	PA11_USART1_CT S	I/O	MCU pin name: PA11
49	PA12_USART1_RT S	I/O	MCU pin name: PA12
50	PA13_SWDIO		Serial wire (SWD) debug interface
51	PA14_SWCLK		Serial wire (SWD) debug interface
52	PC10	I/O	MCU pin name: PC10
53	PC11	I/O	MCU pin name: PC11
54	PC12	I/O	MCU pin name: PC12
55	PD2	I/O	MCU pin name: PD2
56	PB5	1/0	MCU pin name: PB5
57	PB6_SCL	I/O	MCU pin name: PB6
58	PB7_SDA	1/0	MCU pin name: PB7
59	воото	I	Boot mode selection pin
60	PB8_IO_LED_FCT	I/O	MCU pin name: PB8
61	GND		Ground Pin
62	GND		Ground Pin

*Note: All unused IO pins should be kept floating.

4. Mechanical Dimension

Unit: mm

1,14±0,1 SIDE VIEW

4-2 Recommended Footprint

Unit: mm

TOP View

5. Recommended Reflow Profile

Preheat time	150°C —200°C: 105+/-15sec
Dwell time	Over 220°C: 70+5/-10 sec
Peak Temp	240 +10/-5°C
Ramp Up/Down Rate	Up: 3 +0/-2 °C / sec Down: 2 +0/-1 °C / sec

6. SiP Module Preparation

6-1 Handling

Handling the module must wear the anti-static wrist strap to avoid ESD damage. After each module is aligned and tested, it should be transported and stored with anti-static tray and packing. This protective package must remain in a suitable environment until the module is assembled and soldered onto the main board.

6-2 SMT Preparation

- 1. Estimated shelf life in sealed bag: 6 months at <40°C and <90% relative humidity (RH).
- 2. Peak package body temperature: 250°C.
- 3. After opening the bag, devices that will are due to undergo reflow soldering or other high temperature process must:
 - A. Be mounted within: 168 hours of factory conditions<30°C/60%RH.
 - B. Be stored at ≤ 10%RH with N2 flow box.
- 4. Devices may require baking before mounting, if:
 - A. Package bag was not kept in a vacuum environment after opening.
 - B. Humidity Indicator Card is >10% when read at 23±5℃.
 - C. Exposed at 3A condition over 8 hours or Exposed at 3B condition over 24 hours.
- 5. If baking is required, devices may need to be baked for 12 hours at 125±5℃.

7. Package Information

7-1 Product Making

Figure 1 below details the standard product marking for all Gemtek products. Cross reference to the applicable line number and table for a full detail of all the variables.

Figure 1 Standard Product Marking Diagram- TOP

VIEW

7-2 Tray Dimension

7-3 Packing Information

7-4 Humidity Indicator Card

Dry Wet

Indicates 指示點:

10%,20%,30,40%,50%,60% relative humidity 10%,20%,30,40%,50%,60% 相對濕度

Color Change 顏色變化: Brown (Dry) ---> Blue (Wet) 棕色 (乾燥) ---> 藍色 (潮溼)

Copyright © 2017 Gemtek Technology Corporation. All Rights Reserved