

1-loop

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Figure 1. The four different 1-loop diagrams that can lead to genuine neutrino mass models [15]. Top line: T-I-1 (left) and T-I-2 (right), bottom T-I-3 (left) and T-3 (right).

Up to electro-weak triplets (Color singlets)

Florian Bonnet (Wurzburg U.), Martin Hirsch (Valencia U., IFIC), Toshihiko Ota (Munich, Max Planck Inst.), Walter Winter (Wurzburg U.) (Apr, 2012)

Published in: JHEP 07 (2012) 153 • e-Print: 1204.5862 [hep-ph]

D pdf

@ DOI

reference search

192 citations

$$-i\Sigma_{ij}^{\nu}(p) = \int \frac{d4k}{(2\pi)^4} (y_{in\alpha}) iS_F(k) (y_{jn\alpha}) i\Delta_F(p+k)$$

$$\chi_n \qquad \qquad \chi_n \qquad \qquad \chi$$

Figure 9.1: Generic one-loop neutrino mass contribution

$$M_{ij}^{\nu} = -\frac{y_{in\alpha}y_{jn\alpha}}{16\pi^2}m_{\chi_n}\left[\cot(\infty) + f\left(m_{\chi_n}, m_{S_\alpha}^2\right)\right]$$

where

$$f\left(m_{\chi_n}^2, m_{S_\alpha}^2\right) = \frac{m_{S_\alpha}^2 \ln\left(m_{S_\alpha}^2\right) - m_{\chi_n}^2 \ln\left(m_{\chi_n}^2\right)}{m_{\chi_n}^2 - m_{S_\alpha}^2}$$

Up to electro-weak triplets (Color singlets)

$\textbf{Hirsch-subindex} \rightarrow \textbf{In the Acknowledgements section}$

ft "martin hirsch" and a AUTHOR

José W.F. Valle 16

Avelino Vicente 12

Diego Aristizabal 7

Diego Restrepo 7

A pdf

Figure 3. One-loop contribution to neutrino mass in the T1-3 models.

Ψ	ψ'	φ	ψ
1^F_{lpha}	$2_{1+\alpha}^F$	1_{α}^{S}	$2_{\alpha-1}^F$

Table 19. Model T1-3-A.

Up to electro-weak triplets (Color singlets)

118 citations

Result: 35 models

reference search

Diego Restrepo(Antioquia U.), Andrés Rivera(Antioquia U.), Marta Sánchez-Peláez(Antioquia U.), Oscar Zapata(Antioquia U.), Walter Tangarife(Tel Aviv U.)

PHYSICAL REVIEW D 92, 013005 (2015)

TABLE I. α set of scalars and Weyl fermions of the model.

Symbol	$(SU(2)_L, U(1)_Y)$	Z_2	Spin
S_{α}	(1,0)	_	0
N	(1,0)	_	1/2
\tilde{R}_u ,	(2, +1/2)	_	1/2
R_d	(2,-1/2)	_	1/2

FIG. 1. One-loop Weyl-spinor Feynman rules [29] for the contributions to the neutrino mass, with three Majorana fermions (n = 1, 2, 3) and a singlet scalar S.

Diego Restrepo(Antioquia U.), Andrés Rivera(Antioquia U.), Marta Sánchez-Peláez(Antioquia U.), Oscar Zapata(Antioquia U.), Walter Tangarife(Tel Aviv U.)

PHYSICAL REVIEW D 92, 013005 (2015)

TABLE I. α set of scalars and Weyl fermions of the model.

$(SU(2)_L, U(1)_Y)$	Z_2	Spin
(1,0)	_	0
(1,0)	_	1/2
(2, +1/2)	_	1/2
(2,-1/2)	_	1/2
	$ \begin{array}{c} (1,0) \\ (1,0) \\ (2,+1/2) \end{array} $	$ \begin{array}{cccc} (1,0) & - \\ (1,0) & - \\ (2,+1/2) & - \\ \end{array} $

Like the MSSM bino-Higgsino sector (arbitrary couplings)

FIG. 1. One-loop Weyl-spinor Feynman rules [29] for the contributions to the neutrino mass, with three Majorana fermions (n = 1, 2, 3) and a singlet scalar S.

$$M_{ij}^{\nu} = -\sum_{\alpha} \frac{h_{i\alpha}h_{j\alpha}}{16\pi^2} \sum_{n=1}^{3} (N_{3n})^2 m_{\chi_n} B_0(0; m_{\chi_n}^2, m_{S_\alpha}^2), \quad (6)$$

where $B_0(0; m_{\chi_n}^2, m_{S_\alpha}^2)$ is the B_0 Passarino-Veltman function [25] and (N_{mn}) are matrix elements of the rotation matrix \mathbf{N} . By using the identity

$$\sum_{n=1}^{3} (N_{3n})^2 m_n^{\chi} = (\mathbf{M}^{\chi})_{33} = 0, \tag{7}$$

we obtain the expected cancellation of divergent terms coming from the mass-independent term in B_0 , leading to the finite neutrino mass matrix

$$M_{ij}^{\nu} = \sum_{\alpha} \frac{h_{i\alpha} h_{j\alpha}}{16\pi^2} \sum_{n=1}^{3} (N_{3n})^2 m_{\chi_n} f(m_{S_\alpha}, m_{\chi_n})$$
 (8)

Diego Restrepo(Antioquia U.), Andrés Rivera(Antioquia U.), Marta Sánchez-Peláez(Antioquia U.), Oscar Zapata(Antioquia U.), Walter Tangarife(Tel Aviv U.)

PHYSICAL REVIEW D 92, 013005 (2015)

TABLE I. α set of scalars and Weyl fermions of the model.

Symbol	$(SU(2)_L, U(1)_Y)$	Z_2	Spin
S_{α}	(1,0)	_	0
N	(1,0)	_	1/2
\tilde{R}_u ,	(2,+1/2)	_	1/2
R_d	(2,-1/2)	_	1/2

FIG. 1. One-loop Weyl-spinor Feynman rules [29] for the contributions to the neutrino mass, with three Majorana fermions (n = 1, 2, 3) and a singlet scalar S.

Diego Restrepo(Antioquia U.), Andrés Rivera(Antioquia U.), Marta Sánchez-Peláez(Antioquia U.), Oscar Zapata(Antioquia U.), Walter Tangarife(Tel Aviv U.)

PHYSICAL REVIEW D 92, 013005 (2015)

TABLE I. α set of scalars and Weyl fermions of the model.

Symbol	$(SU(2)_L, U(1)_Y)$	Z_2	Spin
S_{α}	(1,0)	_	0
N	(1,0)	_	1/2
\tilde{R}_{u} ,	(2,+1/2)	_	1/2
\tilde{R}_u , R_d	(2,-1/2)	_	1/2

FIG. 1. One-loop Weyl-spinor Feynman rules [29] for the contributions to the neutrino mass, with three Majorana fermions (n = 1, 2, 3) and a singlet scalar S.

Diego Restrepo(Antioquia U.), Andrés Rivera(Antioquia U.), Marta Sánchez-Peláez(Antioquia U.), Oscar Zapata(Antioquia U.), Walter Tangarife(Tel Aviv U.)

PHYSICAL REVIEW D 92, 013005 (2015)

TABLE I. α set of scalars and Weyl fermions of the model.

Symbol	$(SU(2)_L, U(1)_Y)$	Z_2	Spin
S_{α}	(1,0)	_	0
N	(1,0)	_	1/2
\tilde{R}_{u} ,	(2, +1/2)	_	1/2
\tilde{R}_u , R_d	(2,-1/2)	_	1/2

FIG. 1. One-loop Weyl-spinor Feynman rules [29] for the contributions to the neutrino mass, with three Majorana fermions (n = 1, 2, 3) and a singlet scalar S.


```
minimal-lagrangians: Generating and studying dark matter model Lagrangians with just the particle content

Simon May (Garching, Max Planck Inst.) (Mar 18, 2020)

Published in: Comput.Phys.Commun. 261 (2021) 107773 • e-Print: 2003.08037 [hep-ph]

Published in: Comput.Phys.Commun. 261 (2021) 107773 • e-Print: 2003.08037 [hep-ph]
```

minimal-lagrangians 1.1.2

```
pip install minimal-lagrangians 😃
```

```
restrepo@tuxillo:~$ minimal-lagrangians T1-3-A 0
 -\frac{1}{5} M \varphi^2 \varphi^2
 -\lambda_1 (H^+ H) \phi^2 - \lambda_2 \phi^4
 - (Μ ψψ' ψ ψ' + H.c.) - (½ Μ Ψ Ψ Ψ + H.c.)
 - (y_1 (H^{\uparrow} \psi') \Psi + H.c.) - (y_2 (H \psi) \Psi + H.c.) - (y_3 (L \psi') \varphi + H.c.)
restrepo@tuxillo:~$ minimal-lagrangians --format SARAH T1-3-A 0
LagBSMNoHC = - 1/2 Mphi2 phi.phi \
          - lambda1 conj[H].H.phi.phi - lambda2 phi.phi.phi;
LagBSMHC = - Mpsipsig psi.psig - 1/2 MCPsi CPsi.CPsi \
          - v1 conj[H].psig.CPsi - v2 H.psi.CPsi - v3 l.psig.phi;
The SARAH model files (T1_3_A_alpha 0.m, particles.m, parameters.m, SPheno.m)
have been written to the directory ./SARAH model T1 3 A alpha 0/
```

Latest version

Released: Apr 13, 2020

Figure 2. Two examples of dark matter models. To the left the original scotogenic model [47]; to the right an accidentally stable DM model, see text.

How many 1-loop neutrino mass models are there?				#4	
Carolina Arbeláez (CCTVal, Valparaiso and Santa Maria U., Valparaiso), Ricardo Cepedello (Wurzburg U.), Juan Carlos Helo (La Serena U. and					na U. and
Unlisted, CL), Martin Hirsch (Unlisted, CL), Sergey Kovalenko (Andres Bello Natl. U.) (May 25, 2022)					
Published in: JHEP 08 (2022) 023 • e-Print: 2205.13063 [hep-ph]					
pdf	€ DOI	cite	🖫 claim	🖫 reference search	→ 7 citations

Ex	it models	Dark matter models		
SM field in the loop Only fields beyond the SM		Stabilizing symmetry	Accidentally stable	
38	368	115	203	
	406	318		
724				

Table 1: (i) use only scalars and fermions as BSM fields; and (ii) avoid stable charged relics. "Exits" as particles that can decay into standard model fields

1-loop Dirac neutrinos case

