Inverted Indexing For Cross-Lingual NLP

Polina Stadnikova

Saarland University

18th January 2018

Outline

- Motivation
- 2 Inverted Indexing Approach
- Experiments
- Discussion

Want to obtain cross-lingual word representations?

What has been done before:

Cross-lingual learning:

- Annotation projection: using manually annotated word alignments to project from the source to the target
- Delexicalized transfer: remove lexical features from monolingual data, retain reliable PoS-tags for the target

Want to obtain cross-lingual word representations?

The linguistic ressources problem:

- unevenly distributed
- how to transfer from the target to the source?
- Wikipedia articles in English and Greenlandic: 5549690 vs. 1643
- State of the art: cross-lingual representations with English as source language

Want to obtain cross-lingual word representations?

Why do we need a new approach?

We do not want to depend on:

- Neural networks training
- Parallel data availability

And we also want to:

Keep lexical features to make the truly cross-lingual transfer

Approach in a nutshell

- Make clusters of Wikipedia articles linking to the same concept
- Count occurrences of the words in clusters
- Simultaneously train models with lexical features on different source languages
- Test models on different tasks (PoS-tagging, parsing, etc)

Distributional representations

The problem with word representations:

 High dimensionality, sparseness, no fine-grained representation of relatedness

Vector representations

- Count-based: represent words by their co-occurrences; raw or weighted co-occurrence matrices
- *Prediction-based*: represent words in in the middle layer of NN; learn to predict words from the context, or vice versa

Monolingual representations

Count-based

- Co-occurrence information
- Binary matrices, raw counts, or point-wise mutual information
- Dimensionality reduction: SVD

Prediction-based

- 3 layers architecture: input, word representations, output
- Skip-gram model: input target word, output context
- CBOW model: input context, output target word

Klementiev et al. (2012): learn word embeddings from target and source languages

Method

- Use parallel texts with word alignments
- Minimize the loss between the target model and the source model
- Modifiable interaction matrix which enforces aligned words to have similar representations

Chandar et al. (2014): bag-of-words representations

Method

- Do not use word alignments
- Auto-encoder architecture
- \bullet Input layer \to source bag-of-words vectors, output layer \to target bag-of-words vectors
- Try to reconstruct the input at the output layer, passing representations through a middle layer
- Dimensionality reduction is provided by middle layers

What about count-based bilingual representations?

Inverted indexing

Basic idea:

Words glasses[en], Brille[de], gafas[es] occur in the Wikipedia article about Harry Potter
They should have the same representations

Why Wikipedia?

A lot of articles in different languages on the same topic \rightarrow linked to the same Wikipedia concept

Inverted indexing

Method: represent words by Wikipedia concepts they are used to describe

- For a set of languages (German, English, French, Spanish, and Swedish), find a common subset of Wikipedia concepts
- Describe each concept by a set of term occurring in the articles
- Create a concept to term set matrix
- Describe each word by a row in the inverted indexing of the matrix

Inverted indexing has been used for text categorization, cross-lingual relatedness measure

Settings

Baseline embeddings

- From Klementiev et al. (2012) and Chandar et al. (2014)
- Perform the nearest cross-language neighbors test in some representations
- Chandar and Inverted contain less noise

Parameters

- Fixed dimensionality in SVD: $\delta \in \{40, 80, 160\}$
- Scaling factor: $\sigma \in \{1.0, 0.1, 0.01, 0.001\}$

Tasks

Document classification, PoS-tagging, dependency parsing, word alignments

Data sets

	TRAIN		TEST		TOKEN COVERAGE					
lang	data points	tokens	data points	tokens	KLEMENTIEV	CHANDAR	INVERTED			
	RCV – DOCUMENT CLASSIFICATION									
en	10000	- 1	_	- 1	0.314	0.314	0.779			
de	_	-	4998	-	0.132	0.132	0.347			
	AMAZON – DOCUMENT CLASSIFICATION									
en	6000	-	_	_	0.314	0.314	0.779			
de	_	-	6000	-	0.132	0.132	0.347			
	Googl	E UNIVER	SAL TREEBA	nks – PO	S tagging & Di	EPENDENCY F	PARSING			
en	39.8k	950k	2.4k	56.7k	_	_	_			
de	2.2k	30.4k	1.0k	16.3k	0.886	0.884	0.587			
es	3.3k	94k	0.3k	8.3k	0.916	0.916	0.528			
fr	3.3k	74.9k	0.3k	6.9k	0.888	0.888	0.540			
sv	4.4k	66.6k	1.2k	20.3k	n/a	n/a	0.679			
			CoNLL 0	7 – Depe	NDENCY PARSING	3				
en	18.6	447k	_	_	_	_	_			
es	-	-	206	5.7k	0.841	0.841	0.455			
de	_	-	357	5.7k	0.616	0.612	0.294			
sv	_	-	389	5.7k	n/a	n/a	0.561			
			EUROPA	RL – Wo	RD ALIGNMENT					
en	_	- 1	100	-	0.370	0.370	0.370			
es	-		100	-	0.533	0.533	0.533			

Document classification

- Represent each document by the average of the word representations occurring both in documents and in embeddings
- No scaling, 40 dimensions
- Ignore stopwords
- No effect of OOV words

Dataset	KLEMENTIEV	Chandar	Inverted
AMAZON	0.32	0.36	0.49 0.55
RCV	0.75	0.90	

PoS-tagging

- Tags from the Google Universal Treebanks
- Scaled word representations
- Delexicalized PoS tagger with the inverted word representations

		de	es	fr	sv av-sv	
		EN-	TARGET	•		
EMBEDS	K12 C14	80.20 74.85	73.16 83.03	47.69 48.24	- 67.02 - 68.71	
Inverted	SVD	81.18	82.12	49.68	78.72 70.99	
Multi-source→target						
Inverted	SVD	80.10	84.69	49.68	78.72 70.66	

$$\sigma = 0.01, \delta = 160, i = 10$$

Dependency parsing

- Google Universal Treebanks, CoNLL treebanks for German, Spanish, Swedish
- Delex baseline: learns without lexical features, iterates over the data (single-source and multi-source setup), parameter set on the Spanish development data
- OOV words: mean vector for words with a specific PoS

			UAS	
		de	es	SV
	EN→T	ARGET		
DELEX	-	44.78	47.07	56.75
DELEX-XIAO	-	46.24	52.05	57.79
EMBEDS	K12	44.77	47.31	-
EMBED2	C14	44.32	47.56	
INVERTED	-	45.01	47.45	56.15
XIAO	-	49.54	55.72	61.88

CoNLL, unlabeled, $\sigma = 0.005, \delta = 20, i = 3$

Dependency parsing

			U	AS		L	AS	
		de	es	fr	sv de	es	fr	sv
				EN→TAF	RGET			
DELEX	-	56.26	62.11	64.30	66.61 48.24	53.01	54.98	56.93
Embeds	K12 C14	56.47 56.19	61.92 61.97	61.51 62.95	- 48.26 - 48.11		51.76 53.90	-
INVERTED	-	56.18	61.71	63.81	66.54 48.82	2 53.04	54.81	57.18
Multi-source→target								
DELEX INVERTED	-	56.80 56.56	63.21 64.03	66.00 66.22	67.49 49.3 2 67.32 48.82		56.53 56.79	57.86 57.70

Google Universal Treebanks, unlabeled and labeled, $\sigma=0.005,\,\delta=20,\,i=3$

Word alignments

- English-Spanish data with possible and certain alignments
- For each word representation, align every aligned word in the gold standard to its nearest neighbor

	KLEMENTIEV	CHANDAR	Inverted
En-Es (S+P)	0.20	0.24	0.25
Es-En (S+P)	0.35	0.32	0.41
En-Es (S)	0.20	0.25	0.25
Es-En (S)	0.38	0.39	0.53

Precision, S = sure (certain), P = possible

Document classification

For RCV: Klementiev and Chandar developed their methods on this data

For Amazon: Inverted outperforms

Document classification

For RCV: Klementiev and Chandar developed their methods on this data

For Amazon: Inverted outperforms

PoS-tagging

Best results with *Inverted*No general gain from multiple source languages

Document classification

For RCV: Klementiev and Chandar developed their methods on this data

For Amazon: *Inverted* outperforms

PoS-tagging

Best results with *Inverted*No general gain from multiple source languages

Dependency parsing

No significant improvements Klementiev and Chandar hurt performance, Inverted improves on some languages

Document classification

For RCV: Klementiev and Chandar developed their methods on this data

For Amazon: Inverted outperforms

PoS-tagging

Best results with *Inverted*No general gain from multiple source languages

Dependency parsing

No significant improvements Klementiev and Chandar hurt performance, Inverted improves on some languages

Word alignments

Consistent improvements with Inverted

We have seen the first *count-based* approach that enables multi-source learning using cross-lingual word representations

This approach...

...does not require training neural networks

This approach...

...does not require training neural networks

...does not depend on the parallel data between source and target

- ...does not require training neural networks
- ...does not depend on the parallel data between source and target
- ...enables obtaining truly cross-lingual word representations

- ...does not require training neural networks
- ...does not depend on the parallel data between source and target
- ...enables obtaining truly cross-lingual word representations
- ...is computationally efficient and almost parameter-free

- ...does not require training neural networks
- ...does not depend on the parallel data between source and target
- ...enables obtaining truly cross-lingual word representations
- ...is computationally efficient and almost parameter-free
- ...but, nevertheless, parameter-sensitive

- ...does not require training neural networks
- ...does not depend on the parallel data between source and target
- ...enables obtaining truly cross-lingual word representations
- ...is computationally efficient and almost parameter-free
- ...but, nevertheless, parameter-sensitive
- ...outperforms two state-of-the-art approaches in 14 of 17 datasets in 4 tasks

References

- Anders Søgaard, Zeljko Agic, Hector Martinez Alonso, Barbara Plank, and Bernd Bohnet (2015), *Inverted indexing for cross-lingual NLP*. In ACL, Vol. 1, pages 1713-1722.
- Alexandre Klementiev, Ivan Titov, and Binod Bhattarai (2012), Inducing crosslingual distributed representations of words. In COLING.
- Sarath Chandar, Stanislas Lauly, Hugo Larochelle, Mitesh Khapra, Balaraman Ravindran, Vikas C Raykar, and Amrita Saha (2014), An autoencoder approach to learning bilingual word representations. In NIPS.

Thanks for your attention! Questions?

Backup slides

Xiao and Guo (2014): learn from bilingual dictionaries

Method

- Use unambiguous source-target pairs from Wiktionary
- Force translations to have the same representations

Gouws and Søgaard (2015): a simple approach to learn prediction-based representations

Method

- Collect source-target pivot pairs of words
- Randomly replace pivot words with their equivalents from other languages

Baseline embeddings

	KLEMENTIEV	CHANDAR	INVERTED
es			
coche ('car', NOUN) expressed ('expressed', VERB) teléfono ('phone', NOUN) árbol ('tree', NOUN) escribió ('wrote', VERB) amarillo ('yellow', ADJ)	approximately beyond upgrading 1.61 55.8 month-to-month alexandra davison creditor tree market-oriented assassinate wrote alleges testified yellow louisiana 1911	car bicycle cars reiterates reiterating confirming phone telephone e-mail tree bread wooden wrote paul palace crane grabs outfit	driving car cars exists defining example phones phone telecommunication tree trees grows wrote inspired inspiration colors yellow oohs
de			
auto ('car', NOUN) ausgedrückt ('expressed', VERB)			car cars camaro adjective decimal imperative
fr			
voiture ('car', NOUN) exprimé ('expressed', VERB) téléphone ('phone', NOUN) arbre ('tree', NOUN) écrit ('wrote', VERB) jaune ('yellow', ADJ)			mercedes-benz cars quickest simultaneously instead possible phone create allowing tree trees grows published writers books classification yellow stages
sv			
bil ('car', NOUN) uttryckte ('expressed', VERB) telefon ('phone', NOUN) träd ('tree', NOUN) skrev ('wrote', VERB) gul ('yellow', ADJ)			cars car automobiles rejected threatening unacceptable telephones telephone share trees tree trunks death wrote biography greenish bluish colored

Three nearest neighbors in the English training data for words from the Spanish test data