BAYESIAN LEARNING - LECTURE 12

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

OVERVIEW

- ► Model evaluation Posterior predictive analysis
- ► Course summary and discussion

MODELS - WHY?

- ▶ We now know how to **compare** models.
- ▶ But how do we know if any given model is 'any good'?
- ► George Box: 'All models are false, but some are useful'.

WHAT IS YOUR MODEL FOR REALLY?

- Prediction.
 - Interpretation not a concern
 - ▶ Black-box approach may be ok.
 - Extrapolation?
 - ▶ Model averaging may be a good idea.
- ▶ Abstraction to **aid in thinking** about a phenomena.
 - Prediction accuracy of less concern.
 - Model averaging may be a bad idea.
- ▶ Model as a compact description of a complex phenomena.
 - Computational cost of model evaluation may be a concern.
 - Online/real-time analysis.

POSTERIOR PREDICTIVE ANALYSIS

- ▶ If $p(y|\theta)$ is a 'good' model, then the data actually observed should not differ 'too much' from simulated data from $p(y|\theta)$.
- ► Bayesian: simulate data from the posterior predictive distribution:

$$p(y^{rep}|y) = \int p(y^{rep}|\theta)p(\theta|y)d\theta.$$

- \triangleright Difficult to compare y and y^{rep} because of dimensionality.
- ▶ Solution: compare **low-dimensional statistic** $T(y, \theta)$ to $T(y^{rep}, \theta)$.
- ► Evaluates the full probability model consisting of both the likelihood and prior distribution.

POSTERIOR PREDICTIVE ANALYSIS, CONT.

- ▶ **Algorithm** for simulating from the posterior predictive density $p[T(y^{rep})|y]$:
- 1 Draw a $\theta^{(1)}$ from the posterior $p(\theta|y)$.
- 2 Simulate a data-replicate $y^{(1)}$ from $p(y^{rep}|\theta^{(1)})$.
- 3 Compute $T(y^{(1)})$.
- 4 Repeat steps 1-3 a large number of times to obtain a sample from $T(y^{rep})$.
- ▶ We may now compare the observed statistic T(y) with the distribution of $T(v^{rep})$.
- ▶ Posterior predictive p-value: $Pr[T(y^{rep}) \ge T(y)]$
- ► Informal graphical analysis.

POSTERIOR PREDICTIVE ANALYSIS - EXAMPLES

- ► Ex. 1. Model: $y_1, ..., y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. $T(y) = \max_i |y_i|$.
- ► Ex. 2. Assumption of no reciprocity in networks. $y_{ij} | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$. T(y) =proportion of reciprocated node pairs.
- **Ex.** 3. ARIMA-process. T(y) may be the autocorrelation function.
- **Ex.** 4. Poisson regression. T(y) frequency distribution of the response counts. Proportions of zero counts.

POSTERIOR PREDICTIVE ANALYSIS - NORMAL MODEL, MAX STATISTIC

