1.
$$\lim_{x \to 1} \frac{\sin(x-1)}{3x-3} = \lim_{x \to 1} \frac{1}{3} \frac{\sin(x-1)}{x-1} = \frac{1}{3} \lim_{x \to 1} \frac{\sin(x-1)}{x-1} = \frac{1}{3} \cdot 1 = \boxed{\frac{1}{3}}$$

$$2. \lim_{x \to 0} \cos\left(\frac{\pi x}{6x - 6x^2}\right) = \cos\left(\frac{\lim_{x \to 0} \frac{\pi x}{6x - 6x^2}\right) = \cos\left(\frac{\pi}{6} \lim_{x \to 0} \frac{x}{x - x^2}\right)$$

$$= \cos\left(\frac{\pi}{6} \lim_{x \to 0} \frac{x}{x - x^2}\right) = \cos\left(\frac{\pi}{6} \lim_{x \to 0} \frac{1}{1 - x}\right)$$

$$= \cos\left(\frac{\pi}{6} \lim_{x \to 0} \frac{1}{1 - x}\right) = \cos\left(\frac{\pi}{6} \lim_{x \to 0} \frac{1}{1 - x}\right)$$

$$= \cos\left(\frac{\pi}{6} \lim_{x \to 0} \frac{1}{1 - x}\right) = \cos\left(\frac{\pi}{6} \lim_{x \to 0} \frac{1}{1 - x}\right)$$

3. State the intervals on which the function $f(x) = \frac{1}{1 - \ln(x)}$ is continuous.

Because the numerator and denominator are continuous on their domains this function is also continuous on its domain, which is (0,e) u(e, ∞)

(Note the domain of ln(x) is (0,00) but x = e makes The denominator 0, so we must eliminate e from (0,00))

- 4. Draw the graph of one function f, with domain [-4, 4], meeting all of the following conditions.
 - f is continuous at all x except x = -1 and x = 1.
 - (b) f(3) = 2
 - (c) $\lim_{x \to 1} f(x) = 2$
 - (d) $\lim_{x \to -1^{-}} f(x) = 1$
 - (e) $\lim_{x \to -1^+} f(x) = -1$

1.
$$\lim_{x\to 0}\frac{7\sin(x)}{3x}=\frac{7}{3}\lim_{x\to \infty}\frac{\sin(x)}{x}=\frac{7}{3}$$

2.
$$\lim_{x \to 5} \log_3 \left(\frac{x^2 - x - 20}{x - 5} \right) = \log_3 \left(\lim_{x \to 5} \frac{x^2 - x - 20}{x - 5} \right)$$

$$= \log_3 \left(\lim_{x \to 5} \frac{(x + 4)(x - 5)}{x - 5} \right) = \log_3 \left(\lim_{x \to 5} (x + 4) \right)$$

$$= \log_3 \left(9 \right) = 2$$

3. State the intervals on which the function $f(x) = \frac{\sqrt{x+2}}{e^x - e}$ is continuous.

Because numerator and denominator are continuous on their domains this function is continuous on its domain, which is $\left[\left[-2,1\right) \cup \left(1,\infty\right) \right]$

(Note: TX+2 has domain [-2,00), however x=1 makes the denominator 0, so we have to eliminate x=1.)

- 4. Draw the graph of one function f, with domain [-4,4], meeting all of the following conditions.
 - (a) f is continuous at all x except x = 1 and x = 2.
 - (b) f(3) = -2
 - (c) $\lim_{x\to 2} f(x) = -1$
 - $(d) \quad \lim_{x \to 1^{-}} f(x) = 1$
 - (e) $\lim_{x \to 1^+} f(x) = 2$

