

Electronique Numérique Série de TD N°2

Exercice 1

- 1. a. Comparer $A1 = a \downarrow (b+c)$ et $B1 = (a \downarrow b) + (a \downarrow c)$
 - b. Comparer $A2 = a \downarrow (b, c)$ et $B2 = (a \downarrow b) \cdot (a \downarrow c)$
 - c. Conclure quant à la distributivité de l'opérateur NOR.
- 2. a. Comparer $A3 = a \uparrow (b + c)$ et $B3 = (a \uparrow b) + (a \uparrow c)$
 - b. Comparer $A = a \uparrow (b, c)$ et $B = (a \uparrow b) \cdot (a \uparrow c)$
 - c. Conclure quant à la distributivité de l'opérateur NAND.

Exercice 2

Soit $F = a.b + \bar{c}$

- 1. Tracer le logigramme de F.
- 2. Etablir la table de vérité de F.
- 3. Tracer le chronogramme de F.

Exercice 3

Trouver l'expression simplifiée de la sortie S.

Exercice 4

Soit la fonction F = a + b.c

- 1. Ecrire la fonction F à l'aide des portes NAND à 2 entrées. Donner son logigramme.
- 2. Ecrire la fonction F à l'aide des portes NOR à 2 entrées. Donner son logigramme.

Exercice 5

Trouver les compléments des fonctions suivantes :

- 1. $F1 = (\bar{a} + b).(a + \bar{b})$
- 2. $F2 = \overline{a}.\overline{b} + a.b.(c + \overline{d})$

CS CamScanner

Exercice 6

Simplifier par la méthode algébrique les équations suivantes :

$$S1 = \bar{a}.(a+b)$$

$$S2 = \overline{a + \overline{b} + \overline{a}.\overline{b}}$$

$$S3 = \overline{(\bar{a} + \bar{c}).(b + \bar{d})}$$

$$S4 = a.b.c + a.b + a.\overline{b} + a.\overline{c} + a.\overline{b}.c + c$$

$$S5 = (a + a.b).(a + b) + b.(a + b.c)$$

$$S6 = \bar{a}.b.c + a.\bar{b}.c + a.b.\bar{c} + a.b.c$$

$$S7 = a.b.\bar{c} + a.\bar{b}.c + \bar{a}.b + b.c$$

Exercice 7

Déterminer les équations de sorties simplifiées données par les tableaux de Karnaugh suivants :

\ ba			l quu		
dc'	00	01	11	10	
00	1	0	1	ı	
01	0	0	l	0	
11.	1	1	0	rì	uri.
10	IJ	V	0	1	
-				0	S1

ba					
dc	00	01	11	10	
00	1	0	. 0	a	
01	0	1	1	0	
11	0	T	X	0	
10	0	1	1	. 0	
		T			S2

Exercice 8

- 1. A partir des tables de vérité, donner les équations des S1 et S2.
- 2. Simplifier ces équations par la méthode algébrique et par le tableau de Karnaugh.
- 3. Etablir les logigrammes correspondants.

1	b	a	S1
	0	0	1
	0.	1	1
1	1	0	0
- 10	1	, 1	1

С	b	а	<i>S</i> 2
0	0	0	1
0	0	1	0
0	1	0	.1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1 .	1	1	1

Exercice 9

Simplifier les fonctions suivantes en utilisant le tableau de Karnaugh :

$$F1 = a.b.c + a.b.\bar{c} + \bar{a}.b.\bar{c} + \bar{a}.b.c$$

$$F2 = (a.\overline{b}.a) + a.b.\overline{c} + a.b.c.$$

$$F3 = b.\overline{d} + c.\overline{d} + \overline{c}.\overline{d} + \overline{a}.b.\overline{d} + a.b$$

$$F4 = \overline{a.b.c} + \overline{c.(a.b} + \overline{a.b})$$

$$F5 = a.\dot{b}.\dot{d}.\dot{e} + a.\dot{b}.\bar{e} + a.\dot{c}.\bar{d} + b.\dot{c}.\bar{d} + \bar{c}.\bar{d}$$

it .

Série N°2

Exercice 1:

-1-a.
$$A_1 = a \lor (b+c)$$
 & $B_1 = (a \lor b) + (a \lor c)$
 $A_2 = a + (b+c)$ $B_1 = \overline{a+b} + \overline{a+c}$
 $= \overline{a} (b+c)$ $B_1 = \overline{a+b} + \overline{a+c}$
 $= \overline{a} (b+\overline{c})$ $B_1 = \overline{a+b} + \overline{a+c}$
 $= \overline{a} (b+\overline{c})$ $= \overline{a} (\overline{b+c})$
 $= \overline{a+(b+c)}$ $= (a \lor b) (a \lor c)$
 $= \overline{a+(b+c)}$ $= (\overline{a+b}) (a+\overline{c})$
 $= \overline{a} (b+\overline{c})$ $= \overline{a} b \overline{c}$
 $= \overline{a} (b+\overline{c})$ $= \overline{a} b \overline{c}$
 $= \overline{a} (b+\overline{c})$ $= \overline{a} b \overline{c}$
 $= \overline{a} (b+c)$ $= \overline{a} b \overline{c}$
 $= \overline{a} b b b \overline{c}$

- c - NANDn'est pas distributive

Exercise ?:

$$F = a.b + \overline{c}$$

a	6	C	F
0	0	0	1
0	0	7	0
0	1	0	1
0	1	4	0
1	0	Ø	1
7	0	1	0
2	1	0	1
1	1	1	1

EXERCICE 3:

$$S = (a \cdot b) + \overline{c} \cdot a \cdot c = \overline{ab} \cdot c \cdot a \cdot c = (\overline{a} + \overline{b}) ac = a\overline{ac} + a\overline{bc}$$

Exercice 4:

1 Avec des NAND à l'entrées.

$$F = \frac{a+bc}{a+bc}$$

$$= \frac{a+bc$$

Exercice 5:

1)
$$F_2 = (\bar{a}+b)(a+\bar{b})$$

 $F_3 = (\bar{a}+b)(a+\bar{b}) = (\bar{a}+\bar{b})+(a+\bar{b}) = a.\bar{b}+\bar{a}.\bar{b}=a\theta \bar{b}$
Principe de dualdé:
 $F_2 = (a+\bar{b})+(\bar{a}.\bar{b}) = a\bar{b}+\bar{a}\bar{b} = a\theta \bar{b}$

2)
$$f_{e} = \overline{a \cdot b} + a \cdot b \cdot (c + \overline{a})$$
; principe de dualité.
 $f_{e} = (a + b) \overline{a + b} \cdot \overline{a \cdot b}$; principe de dualité.
 $f_{e} = \overline{ab} + ab(c + \overline{a}) = \overline{a \cdot b} \cdot \overline{ab}(c + \overline{a}) = (a + b) \cdot \overline{ab} + \overline{c} \cdot \overline{ab}$
 $= (a + b) \cdot \overline{a} + \overline{b} + \overline{c} \cdot \overline{a}$

Exercice 6:

$$S_{1} = \overline{a}(a+b) = \overline{a}a + \overline{a}b = \overline{a}b$$

$$S_{2} = \overline{a+b+a\cdot b} = \overline{a+b} \cdot \overline{a\cdot b} = (\overline{a}b)a\cdot b = 0$$

$$S_{3} = (\overline{a+c})(b+\overline{a}) = (\overline{a+c}) + (\overline{b+a}) = (\overline{a}.\overline{c}) + \overline{b}\overline{s}$$

$$= ac+\overline{b}\overline{d}$$

$$S_{4} = a.b.c + a.b + a.b + a.\overline{c} + ab.c + c$$

$$= a(bc+b+b+c+be) + c = a+c$$

$$S_5 = (a+a.b)(a+b)+b(a+bc)$$

$$= a (a+b) + ba + bc$$

$$= a+ab+ab+bc = a+bc$$

$$S_6 = \overline{a}bc + ab \cdot c + ab\overline{c} + a \cdot b \cdot c$$

$$= a (b \oplus c) + bc(\overline{a} + a)$$

$$= a(b \oplus c) + bc$$

Exercice 7:

00	01	11	10	
1	0	(1)	11	
0	O	1	Ø	
1	F	0	(I	
4	1	б	(T)	Egy.
				127
= ā	c + 1	dt +	bat +	ād
	4 0 1 4	1 0 0 0 1 1 1	1 0 (1) 0 0 1 1 1 0	1 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1

ba			6-48		
sc!	00	01	11	10	
00	1	Ø	O	1	
04	0	1	F	0	190
11	0	1	7	0	
10	0	1	1	0	
	i			1	S
30 .	- 50	tē +	ac +	a j	

Exercice 8: