Mathematik III

18.10.2016

Inhaltsverzeichnis

1	Vek	torräume 2
	1.1	Definition (Reelle Vektorräume)
	1.2	Beispiel
	1.3	Lemma
	1.4	Definition
	1.5	Beispiel
	1.6	Satz (Unterraumkriterium)
	1.7	Beispiel
	1.8	Satz
	1.9	Bemerkung
	1.10	Beispiel
	1.11	Beispiel
	1.12	Definition (Linearkombination, Erzeugendensystem) 10
	1.13	Bemerkung
	1.14	Fortsetzung Bsp. 1.11

1 Vektorräume

Bemerkung: 1.1-1.10 identisch mit 8.1-8.10 aus Mathematik 2, SS16

1.1 Definition (Reelle Vektorräume)

Ein R-Vektorraum V ist eine nichtleere Menge, deren Elemente Vektoren genannt werden (Bezeichnung mittels kleiner lateinischer Buchstaben, v, w, x, y, ...), auf der eine Addition + definiert ist, +: $V \times V \to V$; und eine Multiplikation mit reellen Zahlen ('Skalare') (Bezeichnung mittels kleiner griechischer Buchstaben $\alpha, \beta, \gamma, \lambda, \mu, ...$), ·: $\mathbb{R} \times V \to V$, so dass gilt:

- $(1.1) \ u + v + w = u + (v + w) \qquad \forall u, v, w \in V$
- (1.2) Es existiert ein Vektor $\mathcal{O} \in V$ ('Nullvektor') mit $v + \mathcal{O} = \mathcal{O} + v = v \qquad \forall v \in V$
- (1.3) Zu jedem $v \in V$ existiert ein Vektor $-v \in V$ mit $v + (-v) = \mathcal{O}$
- $(1.4) \ u + v = v + u \qquad \forall u, v \in V$

(Diese Eigenschaften (1.1) bis (1.4) kann man zusammenfassen als '(V, +) ist eine kommutative Gruppe').

$$(2.1) \ \ \overset{\text{Addition in } \mathbb{R}}{(\lambda + \mu)} \cdot v = \lambda \cdot v \ \ \overset{\text{Addition in } V}{+} \mu \cdot v \qquad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

(2.2)
$$\lambda(v+w) = \lambda v + \lambda w \quad \forall \lambda \in \mathbb{R}, v, w \in V$$

$$(2.3) \quad \begin{array}{c} \text{Multiplikation in } \mathbb{R} \\ (\lambda \cdot \mu) \quad \cdot v = \lambda \cdot \\ \end{array} \quad \begin{array}{c} \text{Multiplikation mit Skalar} \\ (\mu \cdot v) \\ \end{array} \quad \forall \lambda, \mu \in \mathbb{R}, v \in V$$

$$(2.4) \ 1 \cdot v = v \qquad \forall v \in V$$

1.2 Beispiel

- a) trivialer Vektorraum Nullraum: $V = \{\mathcal{O}\}$ Es gilt $\mathcal{O} + \mathcal{O} \coloneqq \mathcal{O}, \quad \lambda \cdot \mathcal{O} \coloneqq \mathcal{O} \quad \forall \lambda \in \mathbb{R}$
- b) $V=\mathbb{R}^n,$ Raum aller 'Spaltenvektoren' der Länge n über $\mathbb{R},$ Elemente haben

die Form
$$\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
 mit $x_1, \dots, x_n \in \mathbb{R}$.
$$\mathcal{O} = \begin{pmatrix} 0 \\ \dots \\ 0 \end{pmatrix}, \quad \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \dots \\ x_n + y_n \end{pmatrix}, \quad \lambda \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda \cdot x_1 \\ \dots \\ \lambda \cdot x_n \end{pmatrix}$$

c) \mathbb{R} ist ein \mathbb{R} -Vektorraum.

Vektoren: reelle Zahlen.

Skalare: reelle Zahlen.

$$\mathcal{O} = 0$$

d) Funktionenraum:

 $M \neq \emptyset$ Menge. $V = \mathcal{F}(M, \mathbb{R}) := \{f : M \to \mathbb{R}\}$

Menge der auf M definierten reellen Funktionen.

Für $f, g \in V$, $\lambda \in \mathbb{R}$ sei

$$-f+g:M\to\mathbb{R},\quad (f+g)(x)=f(x)+g(x)\quad \forall x\in M$$

$$-\lambda \cdot f \colon M \to \mathbb{R}, \quad (\lambda \cdot f)(x) = \lambda \cdot f(x) \quad \forall x \in M$$

Dann ist V mit $\mathbb{R}, +, \cdot$ ein Vektorraum. Nullvektor ist $f=0\colon M\to\mathbb{R}, \quad f(x)=0 \quad \forall x\in M.$

(kurz: $f \equiv 0$, identisch Null)

1.3 Lemma

Sei V ein \mathbb{R} -Vektorraum, $v \in V$, $\lambda \in \mathbb{R}$

a)
$$0 \cdot v = \mathcal{O}$$

b)
$$\lambda \cdot \mathcal{O} = \mathcal{O}$$

c) Zu jedem $v \in V$ ist der Vektor -v aus (1.3) in 8.1 eindeutig bestimmt.

d)
$$(-1) \cdot v = -v$$

Beweis

a)

$$\mathcal{O} \stackrel{(1.3)}{=} \underbrace{0 \cdot v}^{x} + \underbrace{(-0 \cdot v)}^{-x} = \underbrace{(0+0)v} + (-0 \cdot v)$$

$$\stackrel{(2.1)}{=} (0 \cdot v + 0 \cdot v) + (-0 \cdot v)$$

$$\stackrel{(1.1)}{=} 0 \cdot v + (0 * v + (-0 \cdot v))$$

$$\stackrel{(1.3)}{=} 0 \cdot v + \mathcal{O}$$

$$\stackrel{(1.2)}{=} 0 \cdot v$$

b) Wie a), starte mit $\mathcal{O} = \lambda \cdot \mathcal{O} + (-\lambda \cdot \mathcal{O})$, erhalte $\mathcal{O} = \lambda \cdot \mathcal{O}$

d)

$$\underbrace{v + (-1 \cdot v)}_{} = 1 \cdot v + (-1 \cdot v)$$

$$\stackrel{(2.1)}{=} (1 + (-1))v$$

$$= 0 \cdot v$$

$$\stackrel{a)}{=} \mathcal{O}$$

$$\stackrel{(1.3)}{=} v + (-v)$$

Addiere auf beiden Seiten -v:

$$v + (-1)v + (-v) = v + (-v) + (-v)$$
$$\Rightarrow -1 \cdot v = -v$$

c) Angenommen, zu $v \in V$ gibt es -v und -v' mit $v+(-v)=\mathcal{O}$ und $v+(-v')=\mathcal{O}$. Dann ist $v+(-v)=v+(-v') \stackrel{+(-v)\text{auf beiden Seiten}}{\Rightarrow} -v=-v'$

1.4 Definition

Sei V ein \mathbb{R} -Vektorraum.

Eine Teilmenge $U \subseteq V$, $U \neq \emptyset$ heißt Unter(vektor)raum von V, falls U bezüglich der Addition auf V und der Multiplikation mit Skalaren selbst ein Vektorraum ist.

1.5 Beispiel

- a) $V = \mathbb{R}^2$, $U = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ ist Unterraum von V
- b) $V = \mathbb{R}^2$, $U = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ ist kein Unterraum von V, z.B. (1.2) ist verletzt, Addition funktioniert auch nicht: $\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \notin U$
- c) $V = \mathbb{R}^2$, $U = \{ \begin{pmatrix} \lambda \\ 0 \end{pmatrix} | \lambda \in \mathbb{R} \}$ ist ein Unterraum von V (prüfe alle Eigenschaften von Definition 8.1) \to umständlich, einfacher geht es mit 8.6

1.6 Satz (Unterraumkriterium)

Sei V ein \mathbb{R} -Vektorraum, sei $\emptyset \neq U \subseteq V$.

Dann ist U Unterraum von V genau dann, wenn gilt (\Leftrightarrow) :

(1)
$$v \in U$$
, $\lambda \in \mathbb{R} \Rightarrow \lambda \cdot v \in U$

(2)
$$v, w \in U \Rightarrow v + w \in U$$

(oder äquivalent: $\forall v, w \in U, \forall \lambda, \mu \in \mathbb{R}$ ist $\lambda \cdot v + \mu \cdot w \in U$)

Man sagt: U ist abgeschlossen bezüglich der Vektoraddition und der Multiplikation mit Skalaren.

Beweis

- \Rightarrow ist klar, da U laut Definition 8.4 selbst Vektorraum
- \Leftarrow rechne die Vektorraumaxiome nach (Definition 8.1, also z.B. $\mathcal{O} \in U,...$)

1.7 Beispiel

a) $V \text{ ist ein } \mathbb{R}\text{-Vektorraum, } \mathcal{O} \neq v \in V.$ Dann ist $G = \{\lambda \cdot v | \lambda \in \mathbb{R}\}$ ein Unter-

 $V=\mathbb{R}^2,\mathbb{R}^3$: G ist Gerade durch Nullpunkt (geometrisch), z.B.

$$v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Aber: $G' = \{w + \lambda \cdot v | \lambda \in \mathbb{R}, w \in V\}$ ist kein Unterraum für $w \neq \mu \cdot v, \mu \in \mathbb{R}$.

Warum? Z.B. $\mathcal{O} \notin G'$

b)
$$V = \mathbb{R}^3$$
, $U_1 = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1 + x_2 - x_3 = 0 \}$ ist Unterraum. Wir zeigen (1), (2) aus 8.6:

$$-U_1 \neq \emptyset$$
, z.B. $\mathcal{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in U_1$, denn $0 + \begin{pmatrix} x_1 \\ 0 \end{pmatrix} = 0$

(1) Sei
$$\lambda \in \mathbb{R}$$
, $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \in U_1$, d.h. $v_1 + v_2 - v_3 = 0$

Prüfe: Ist $\lambda \cdot v \in U_1$? $\lambda \cdot v = \begin{pmatrix} \lambda \cdot v_1 \\ \lambda \cdot v_2 \\ \lambda \cdot v_3 \end{pmatrix}$

$$\lambda \cdot v_1 + \lambda \cdot v_2 - \lambda \cdot v_3 = \lambda(v_1 + v_2 - v_3)$$

$$= \lambda \cdot 0$$

$$= 0$$

Also ist $\lambda \cdot v \in U_1$

(2) Seien
$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
, $w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \in U_1$, d.h. $v_1 + v_2 - v_3 = 0$, $w_1 + w_2 - w_3 = 0$. Gilt $v + w \in U_1$? $v + w = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix}$

$$(v_1 + w_1) + (v_2 + w_2) - (v_3 + w_3) = \underbrace{(v_1 + v_2 - v_3)}_{=0} + \underbrace{(w_1 + w_2 - w_3)}_{=0}$$

Also $v + w \in U_1$

- Geometrische Interpretation:

$$U_{1} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{1} + x_{2} \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$
$$= \left\{ x_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$

D.h. U_1 ist die Ebene durch $O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ mit den Richtungsvektoren

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 und $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

c)
$$U_2 = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1 + x_2 - x_3 = 1 \}$$
 ist kein Unterraum. Z.B. $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \mathcal{O} \notin U_2$: $0 + 0 - 0 = 0 \neq 1$.

Anderes Argument: Sei $\lambda \in \mathbb{R}$, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in U_2$, d.h. $x_1 + x_2 - x_3 = 1$.

Gilt
$$\lambda \cdot x \in U_2$$
? $\lambda \cdot x = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix}$

$$\lambda x_1 + \lambda x_2 - \lambda x_3 = \lambda \underbrace{(x_1 + x_2 - x_3)}_{=1}$$

$$= \underbrace{\lambda = 1}_{\text{nur für } \lambda = 1}$$

 \Rightarrow nicht erfüllt für $\lambda \neq 1$.

Geometrische Interpretation:

$$U_{2} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{1} + x_{2} - 1 \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$

$$= \left\{ \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + x_{1} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + x_{2} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \middle| x_{1}, \quad x_{2} \in \mathbb{R} \right\}$$

Ebene durch $\begin{pmatrix} 0\\0\\-1 \end{pmatrix}$ mit Richtungsvektoren $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ und $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$

d)
$$U_3 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 \le 1 \right\}$$
 ist kein Unterraum, z.B.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in U_3, \qquad 1^2 + 0^2 + 2 \le 1 \quad \checkmark, \text{ aber}$$

$$2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \notin U_3, \text{ denn } 2^2 + 0^2 + 0^2 \nleq 1$$

Geometrische Interpretation:

$$U_3$$
 ist eine Kugel um $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ mit Radius 1

e) $I \subseteq \mathbb{R}$ Intervall

Menge C(I) (C: continuous, stetig) der stetigen Funktionen auf I ist Unterraum von $\mathcal{F}(I,\mathbb{R})$ (vgl. Beispiel 8.2d)).

Menge der diffbaren Funktionen auf I ist Unterraum von C(I).

1.8 Satz

V ist ein \mathbb{R} . Vektorraum, U_1, U_2 sind Unterräume von V.

- a) $U_1 \cap U_2 = \{u \in V | u \in U_1 \land u \in U_2\}$ ist Unterraum von V.
- b) $U_1 + U_2 := \{u_1 + u_2 | u_1 \in U_1 \land u_2 \in U_2\}$ Summe von U_1, U_2 ist Unterraum von V (das ist nicht die Vereinigung $U_1 \cap U_2$!)

Beweis

Prüfe Unterraumkriterium 8.6

- a) Übung: Prüfe $\mathcal{O} \in U_1 \cap U_2$? \checkmark , (1), (2)
- b) $-U_1 + U_2 \neq \emptyset$, denn $U_1 + U_2 \ni \mathcal{O} = \underbrace{\mathcal{O}}_{\in U_1} + \underbrace{\mathcal{O}}_{\in U_2}$
 - Seien $v = u_1 + u_2$, $u_1 \in U_1$, $u_2 \in U_2$ und $w = u'_1 + u'_2$, $u'_1 \in U_1$, $u'_2 \in U_2$, also $v, w \in U_1 + U_2$ und $\lambda, \mu \in \mathbb{R}$.

$$\Rightarrow \lambda v + \mu v = \lambda (u_1 + u_2) + \mu (u'_1 + u'_2)$$

$$= \underbrace{\lambda u_1 + \mu u'_1}_{\in U_1} + \underbrace{\lambda u_2 + \mu u'_2}_{\in U_2} \qquad \in U_1 + U_2$$

1.9 Bemerkung

- a) lässt sich für unendlich viele Unterräume ausweiten
- b) lässt sich für endlich viele Unterräume ausweiten
- $U_1 \cup U_2$ ist im Allgemeinen <u>kein</u> Unterraum

1.10 Beispiel

•
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^2$$
 $G_1 = \{\lambda v | \lambda \in \mathbb{R}\}$

•
$$w = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \in \mathbb{R}^2$$
 $G_2 = \{\mu w | \mu \in \mathbb{R}\}$

(vgl. 8.7a), Geraden durch $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, Unterräume

• $G_1 + G_2$ ist Ebene

•
$$G_1 \cap G_2$$
 ist $\mathcal{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

1.11 Beispiel

•
$$u = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

•
$$v = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

•
$$E = \{\lambda_1 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} | \lambda_1, \lambda_2 \in \mathbb{R} \}$$

- E $\subseteq \mathbb{R}^3$ ist Untervektorraum (UVR) und wird <u>aufgespannt/erzeugt</u> von u und v. Man nennt $\left\{\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\0 \end{pmatrix}\right\}$ <u>Erzeugendensystem</u> von E.
- D.h. $w \in E \Leftrightarrow \exists \lambda_1, \lambda_2 \in \mathbb{R} : w = \underbrace{\lambda_1 \cdot u + \lambda_2 \cdot v}_{\text{Linearkombination von } u \text{ und } v}$

•
$$w \notin E$$
, z.B. $w = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ ergibt:

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \lambda_1 \cdot u + \lambda_2 \cdot v = \lambda_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \text{Letzte Zeile: } 1 = \lambda_1$$

$$\text{Zweite Zeile: } 0 = \lambda_1$$

$$\Rightarrow \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \notin E$$

$$\Rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \notin E$$

1.12 Definition (Linearkombination, Erzeugendensystem)

 $V: \mathbb{R}\text{-VR}$ (V ist Vektorraum in den reellen Zahlen)

- (i) $v_1, ..., v_m \in V$ und $\lambda_1, ..., \lambda_m \in \mathbb{R}$ Der Vektor $\lambda_1 \cdot v_1 + ... + \lambda_m \cdot v_m$ heißt <u>Linearkombination</u> von $v_1, ..., v_m$.
- (ii) Sei $M \subseteq V$. Dann ist

$$\langle M \rangle_{\mathbb{R}} = \{ \sum_{k=1}^{n} \lambda_k \cdot v_k | \lambda_k \in \mathbb{R}, v_k \in M, n \in \mathbb{N} \}$$

der von M aufgespannte/erzeugte UVR von V

Vereinbarung:
$$\langle \emptyset \rangle = \{0\}$$

Schreibweise: $M = \{v_1, ..., v_m\}_{\mathbb{R}}$
 $\langle M \rangle_{\mathbb{R}} = \langle v_1, ..., v_m \rangle_{\mathbb{R}}$

(iii) Ist $v = \langle M \rangle_{\mathbb{R}}$, so heißt M ein Erzeugendensystem von V. V heißt endlich erzeugt, falls es ein endliches Erzeugendensystem gibt.

1.13 Bemerkung

 $M \subseteq V \Rightarrow \langle M \rangle_{\mathbb{R}}$ ist der kleinste UVR von V, der M enthält.

Beweis

- $\langle M \rangle_{\mathbb{R}}$ ist UVR. erfüllt Kriterien von 1.6, daher klar: 1.6 2) erfüllt. $u \in \langle M \rangle_{\mathbb{R}} \Rightarrow u = \lambda_1 \cdot v_1 + ... + \lambda_n \cdot v_n \quad (M = \{v_1, ..., v_n\}) \Rightarrow \lambda \cdot u = \underbrace{\lambda \lambda_1}_{\in \mathbb{R}} \cdot v_1 + ... + \underbrace{\lambda \lambda_n}_{\in \mathbb{R}} \cdot v_n$ 1.6 3) ähnlich.
- Angenommen U ist der kleinste UVR, so dass $M \subseteq U$. Z. z.: $\langle M \rangle_{\mathbb{R}} = U$. Wegen 1.6 enthält U alle Linearkombinationen von Vektoren aus M. ⇒ $\langle M \rangle_{\mathbb{R}} \subseteq U$ ⇒ U kann nicht kleiner sein als $\langle M \rangle_{\mathbb{R}}$ ⇒ $\langle M \rangle_{\mathbb{R}} = U$

1.14 Fortsetzung Bsp. 1.11

a)
$$E = \langle \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \rangle_{\mathbb{R}}$$

b) \mathbb{R}^n wird erzeugt von $e_j=\begin{pmatrix} 0\\ \vdots\\ 1\\ \vdots\\ 0 \end{pmatrix}$, wobei j die Stelle ist, an der der Vektor 1

ist.
$$R^{n} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\rangle_{\mathbb{R}}$$
 "kanonische Einheitsvektoren"
$$v = \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix} = v_{1} \cdot e_{1} + v_{2} \cdot e_{2} + \dots + e_{n} \cdot v_{n}$$

c) Spannen $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ den \mathbb{R}^2 auf?

Wenn ja, dann muss für $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ $\alpha, \beta \in \mathbb{R}$ existieren mit

$$\alpha \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \beta \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Leftrightarrow \qquad \qquad \alpha + \beta = x$$

$$\alpha + 2\beta = y$$

$$\Rightarrow \qquad \qquad \alpha = x - \beta$$

$$= y - 2\beta$$

$$\Leftrightarrow \qquad \qquad \beta = y - x$$

$$\alpha = 2x - y$$

$$\Rightarrow \quad \text{Allg. } \begin{pmatrix} x \\ y \end{pmatrix} = (2x-y) \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (y-x) \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Rightarrow \mathbb{R}^2 = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle_{\mathbb{R}}$$

- d) Spannen $\binom{1}{2}$ und $\binom{3}{6}$ den \mathbb{R}^2 auf? Nein, denn $\binom{3}{6}$ ist $3 \cdot \binom{1}{2} \Rightarrow \langle \binom{1}{2}, \binom{3}{6} \rangle_{\mathbb{R}} = \langle \binom{1}{2} \rangle_{\mathbb{R}} = \{\lambda \cdot \binom{1}{2} | \lambda \in \mathbb{R} \} \subsetneq \mathbb{R}^2$
- e) $\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle_{\mathbb{R}} = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle_{\mathbb{R}} = \mathbb{R}^2$, d.h. Erzeugendensysteme sind <u>nicht</u> eindeutig!
- $\begin{array}{l} {\rm f)} \ \, \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \rangle_{\mathbb{R}} = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \rangle_{\mathbb{R}}, \, {\rm da} \, \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \\ {\rm D.h.} \ \, M \, = \, \{\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \} \, \, {\rm ist \ kein \ \underline{minimales}} \, \, {\rm Erzeugenden \, system \, des} \\ {\mathbb{R}}^2, \, {\rm denn} \, \, v \in M \, \, {\rm kann \, immer \, dargestellt \, werden \, als \, Linear kombination \, von \, \, Vektoren \, {\rm aus} \, \, M \setminus v. \end{array}$

Man sagt: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ sind <u>linear abhängig</u>.