

Scenarios for future changes in extremes for agricultural modelling

Ole Bøssing Christensen, Cathrine Fox Maule (DMI)
Clare Goodess, Richard Cornes (CRU)

Sources of climate change data

- CORDEX (http://www.cordex.org)
- Regional models covering land areas of the World

Regional Model Output

- For all simulations, there are gridded daily data for daily maximum and minimum temperature plus precipitation on a common grid, both non-corrected and bias corrected.
- ➤ Other fields, e.g. incoming solar radiation, actual and potential evaporation etc. are available, but cannot be bias corrected

Study sites in SW Europe

Available CORDEX simulations

Europe: 11 simulations (present-day, RCP4.5, RCP8.5)

GCM	RCM	Acronym	Calendar
CNRM-CERFACS-CNRM-CM5_r1i1p1	CLMcom-CCLM4-8-17	CERFACS-CCLM	Standard
CNRM-CERFACS-CNRM-CM5_r1i1p1	SMHI-RCA4	CERFACS-RCA	Standard
ICHEC-EC-EARTH_r1i1p1	KNMI-RACMO22E	ECEARTH-RACMO	Standard
ICHEC-EC-EARTH_r3i1p1	DMI-HIRHAM5	ECEARTH-HIRHAM	Standard
ICHEC-EC-EARTH_r12i1p1	CLMcom-CCLM4-8-17	ECEARTH-CCLM	Standard
ICHEC-EC-EARTH_r12i1p1	SMHI-RCA4	ECEARTH-RCA	Standard
IPSL-IPSL-CM5A-MR_r1i1p1	IPSL-INERIS-WRF331F	IPSLCM-WRF	365-day calendar
IPSL-IPSL-CM5A-MR_r1i1p1	SMHI-RCA4	IPSLCM-RCA	365-day calendar
MOHC-HadGEM2-ES_r1i1p1	SMHI-RCA4	HadGEM-RCA	360-day calendar
MPI-M-MPI-ESM-LR_r1i1p1	CLMcom-CCLM4-8-17	MPIESM-CCLM	Standard
MPI-M-MPI-ESM-LR_r1i1p1	SMHI-RCA4	MPIESM-RCA	Standard

Bias correction

- ➤ Bias correction needs observations!
- > Available observations:

MODEXTREME STUDY AREA	CORDEX DOMAIN	OBSERVATIONS	Simulations available	Simulations selected
France				
Spain				
Italy	F CODDEV 0.11	E-OBS (tasmax, tasmin, pr)	11	4
Switzerland	Euro-CORDEX 0.11	Entire grid		
Ukraine				
South Africa	CORDEX Africa 0.44	One station	18	4
China	CORDEX East Asia 0.44	GHCN (tasmax, tasmin, pr)	3	3
	CONDEX East Asia 0.44	10 stations close to 7 study sites	3	0
Argentina		Station data		
Brazil	CORDEX South America 0.44	Argentina: 11 stations for 6 sites	2	2
		Brazil: 1 station for 2 sites		

Bias correction

- Method is quantile-based for temperature and precipitation
- ➤ Basically, we sort model values and observed values according to size and correct modelled present-day values to the corresponding observed value. Do "the same" for scenario.
- Corrections depend on time of year, based on 20 years of overlapping observation/simulation, 30-day running calendar window, i.e., 600 values
- Some problems for large extremes
- Possibility to make T-based corrections for specific humidity and dew point T

Model selection

➤ We choose to select up to 4 models per area, one central and 3 to span the variation within a set of 8 indices based on precipitation: Average precipitation plus

RX1day	Highest precipitation amount in one-day period.	-	•
RX5day	Highest precipitation amount in five-day period.	-	•
SDII	Simple daily intensity index	Mean of precipitation (RR) on days when rain occurred (days when RR \geq 1mm).	•
R10mm	Heavy precipitation days	Count of days where RR (daily precipitation amount) ≥ 10 mm.	•
R20mm	Very heavy precipitation days	Count of days where RR (daily precipitation amount) ≥ 20 mm.	•
CDD	Consecutive dry days	Maximum length of dry spell (RR < 1 mm).	•
CWD	Consecutive wet days	Maximum length of wet spell (RR ≥ 1 mm)	•

Model selection

- Principal Component Analysis in index/model space: Identify which models and which indices follow each others, and which are independent.
- Select one central and 3 others spanning the independent directions subjectively
- Selected simulations for SW Europe: ECEARTH-HIRHAM (central), CERFACS-RCA, ECEARTH-RACMO, MPIESM-CCLM
- For Ukraine: CERFACS-RCA, ECEARTH-RACMO, HadGEM-RCA, MPIESM-CCLM

Choice of models for South Africa

Differences in climate change

Extremes Indices: full list

Standard Indices: Temperature		Standard Indices: Precipitation			
1	FD	Frost days (Tmin < 0°C)	8	RX1day	Highest precipitation amount in one-day period.
2	SU	Summer days (Tmax > 25°C)	9	RX5day	Highest precipitation amount in five-day period.
3	TR	Tropical nights (Tmin > 20°C)	10	SDII	Simple daily intensity index
4	GSL	Growing season length	12	R10mm	Heavy precipitation days (RR > 10mm)
5	WSDI	Warm Spell Duration Index	12	R20mm	Very heavy precipitation days (RR > 20mm)
6	WSDImax	Length of longest Warm Spell	13	CDD	Consecutive dry days
7	CSDI	Cold spell duration index	14	CWD	Consecutive wet days

Phenological Indices: Cold Temperatures		Phenological Indices: Extreme Heat			
15	S.EM.CRIT.8	Sowing-emergence critical days (< -8°C)	22	TMAX.40	Ceiling temperature for development (Tmax > 40°C)
16	S.EM.CRIT.3	Sowing-emergence critical days (< -3°C)	23	TMAX.45	Ceiling temperature for development (Tmax > 45°C)
17	EM.AN.CRIT.2	Emergence-flowering critical days (< -2°C)	Phenological Indices: Grasslands		Phenological Indices: Grasslands
18	LASTFROST.0	Final frost day (0°C)	24	GSL.GRASS	Growing Season length for Grasses/Clover mix
19	LASTFROST.8	Final frost day (-8°C)	25	VHOT.DAYS	Very Hot Days (Tmax > 35°C)
20	LASTFROST.3	Final frost day (-3°C)			
21	LASTFROST.2	Final frost day (-2°C)			* Bold Indicates the six "core" indices

Good and bad things for bias correction

We are guaranteed the statistics of temperature and precipitation, including extremes, which correspond to observations

Good and bad things for bias correction

- The corrected values may not be consistent with weather type.
- Other variables cannot be corrected; thereforeP+E may have erroneous values.
- It is difficult to treat future extremes larger than anything seen in the calibration period; the current technique has present-day period the same as calibration period, which leads to correction-induced biases in climate change

Indices from corrected model data

Annual Frost Days

Number of days where Tmin < 0°C

Indices from corrected model data

Annual Growing Season Length

Conclusions

- We have varying amounts of simulations and of observation data for the different MODEXTREME areas
- For all areas we will be able to something, but uncertainty estimates may not be possible
- ➤ With bias correction we can improve temperature and precipitation. It remains to be seen how well the corrected and non-corrected fields can be used together

Acknowledgement

The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016

East Anglia

ModExtreme Science Workshop September 10, 2015