LeNet to ResNet: A Deep Journey

Journey of Improving Accuracy

Competition	Accuracy Measure	Start	Finish	Improvement	Duration
Netflix (2006 – 2009)	MSE	0.95	0.85	10.05%	3 years
ImageNet (2010 – 2015)	Error Rate	28.2	3.57	87.34%	5 years

Winning Strategy?

Netflix never used its \$1Million algorithm

Deeper and Simpler

Deep Learning is a household name

LeNet5 (1998): The origin of convolutional neural network

Characteristics	Key Contributions	The Gap
 Repeat of Convolution – Pooling – Non Linearity Average pooling Sigmoid activation for the intermediate layer tanh activation at F6 5x5 Convolution filter 7 layers and less than 1M parameters 	 Use of convolution to extract spatial features Subsample using spatial average of maps Sparse connection matrix between layers to avoid large computational cost 	 Slow to train Hard to train (Neurons dies quickly) Lack of data

ImageNet Classification

- ImageNet is an image database organized according to the WordNet hierarchy
 - is formally a project aimed at (manually) labeling and categorizing images
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Training Data: 1.2 Million Images, 1000+ categories
- Validation and Test Data: 150K Images, 50K Validation, Remaining Test
- Image Net Data: http://image-net.org/challenges/LSVRC/2010/browse-synsets
- Multiple Challenges; Object recognition, localization etc.
- Fun fact: In 2015, <u>Baidu</u> scientists were banned for a year for using different accounts to greatly exceed the specified limit of two submissions per week.

2012: The beginning of Deep

AlexNet (2012)

					•
na	ıra	CT	'n۲	'ICT	ics
116	па	C	L I	136	163

- 11x11, 5x5 and 3x3 Convolutions
- Max pooling
- 3 FC layers
- 60 Million parameters

Key Contributions

- GPU and training in parallel
- ReLu Activation
- Dropout regularization
- Image Augmentation

ReLU Non-Linearity – Simpler Activation

A 4 layer CNN with ReLUs is 6 times faster than equivalent network with thanh in reaching 25% error rate on CIFR-10 dataset

Dropout – Simpler Regularization

(a) Standard Neural Net

(b) After applying dropout.

```
""" Vanilla Dropout: Not recommended implementation (see notes below) """
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) 
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
 out = np.dot(W3, H2) + b3
```

Data Augmentation

- Extract 224x224 patches randomly from 256x256 images
 - Also, take their horizontal reflection
- During test time average the predictions on 5 patches and their reflection

VGG (2014)

		ConvNet C	onfiguration		war and a second	
A	A-LRN	В	С	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
	i	nput (224×2)	24 RGB image	e)		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
			pool	33	70.	
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
	W 25		pool		200 ANI	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool	37		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
			4096			
		70000	4096			
			1000			
		soft-	-max			

Table 2: Number of parameters (in millions).

	F		().			
Network	A,A-LRN	В	C	D	E	
Number of parameters	133	133	134	138	144	

- Smaller size convolution 3x3 throughout the net
- Sequence of 3x3 convolution can emulate larger receptive fields, e.g., 5x5 or 7x7
- Use of 1x1 convolution
 - Decrease in spatial volume and increase in depth of input

What's the advantage of using 3 layers of 3x3 instead of one layer of 7x7?

- 3 non-linear rectification layers
- Less number of parameters, 27C² as opposed to 49C²

Key Points

- Depth is important
- Simplify the network to go deep
- 140M parameters (mostly due to the FC layers)

GoogleNet or Inception (2014)

- 22 Layer CNN
- Heavy use of 1x1 'Network in Network'
- Use of average pooling before the classification
- Auxiliary classifiers connected to intermediate layers
 - During training add the loss of the auxiliary classifiers with a discount (0.3) weight

GoogleNet Key Ideas

- At each layer of traditional ConvNet you have to decide whether to do pooling or convolution operation, if convolution then filter size.
- Perform all these operations in parallel

Way too many output!!!

Naïve Version

Why 1x1 convolution?

- Introduced as "Network in Network" in 2014
- Is a way to increase Non-Linearity and spatially combine features across feature maps

Use 1x1 for dimensionality reduction

Modified Idea

Only 4M parameters compared to 60M in AlexNet

ResNet (Residual Neural Network) (2015)

Well said Leo, well said

Why go deeper?

- Wide network is good for memorization, but not so good for generalization
- Multiple layers can learn features at various levels of abstraction
- Deep layers can provide features with global semantic meaning and abstract details (relations of relations ... of relations of objects), while using only small kernels
- Small kernels keep the number of parameters less

How to go deep?

• Simply stack layers after layers

- Plain nets: stacking of 3x3 conv layers
- 56-layers got higher training and test error

Problem of going deeper?

- Vanishing Gradient
 - Most neurons will die during back propagating the weights.

Residual Learning

Figure 2. Residual learning: a building block.

- Introduce shortcut connections (exists in prior literature in various forms)
- Key invention is to skip 2 layers.
 Skipping single layer didn't give much improvement for some reason

ResNet

BottleNeck: A practical design

- # parameters
 - 256 x 64 + 64 x 3 x 3x 64 + 64 x 256 = ~70K
- # parameters just using $3 \times 3 \times 256 \times 256$ conv layer = 600 K

Deeper the better!!!

Reference

- LeNet5: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
- VGG: https://arxiv.org/pdf/1409.1556.pdf
- ResNet Tutoral: http://kaiminghe.com/icml16tutorial/icml2016_tutorial_deep_residu al networks kaiminghe.pdf
- http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexne t_tugce_kyunghee.pdf
- http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures.pdf