THE SOUTH CHINA NORMAL UNIVERSITY

School of Mathematical Sciences

Numerical Analysis (2023-2024 The Second Term)

Homework 4:

Due Date: April 24, 2024 (Wednesday)

§3.3 Upper-triangular Linear Systems

Exercise 1. Solve the upper-triangular system and find the value of the determinant of the coefficient matrix.

$$3x_1$$
 - $2x_2$ + x_3 - x_4 = 8
 $4x_2$ - x_3 + $2x_4$ = -3
 $2x_3$ + $3x_4$ = 11
 $5x_4$ = 15

Solve Solving for x_4 in the last equation yields

$$x_4 = \frac{15}{5} = 3.$$

Using $x_4 = 3$ in the third equation, we obtain

$$x_3 = \frac{11 - 3 \cdot 3}{2} = 1.$$

Now $x_3 = 1$ and $x_4 = 3$ are used to find x_2 in the second equation:

$$x_2 = \frac{-3 - 2 \cdot 3 + 1}{4} = -2.$$

Finally, x_1 is obtained using the first equation:

$$x_1 = \frac{8+3-1-4}{3} = 2.$$

And the determinant of the coefficient matrix is

$$\begin{vmatrix} 3 & -2 & 1 & -4 \\ 0 & 4 & -1 & 2 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 5 \end{vmatrix} = 3 \cdot 4 \cdot 2 \cdot 5 = 120.$$

Exercise 2.

(a) Consider the two upper-triangular matrices

$$m{A} = \left[egin{array}{cccc} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{array}
ight] \quad ext{and} \quad m{B} = \left[egin{array}{cccc} b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{33} \end{array}
ight].$$

Show that their product C = AB is also upper triangular.

(b) Let \boldsymbol{A} and \boldsymbol{B} be two $N \times N$ upper-triangular matrices. Show that their product is also upper triangular.

Solve (a) Since

$$\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \\ 0 & a_{22}b_{22} & a_{22}b_{23} + a_{23}b_{33} \\ 0 & 0 & a_{33}b_{33} \end{pmatrix},$$

the product of \boldsymbol{A} and \boldsymbol{B} is also upper triangular.

(b) Consider the product $C = (c_{ij})_{N \times N}$ of two upper-triangular matrices $A = (a_{ij})_{N \times N}$ and $B = (b_{ij})_{N \times N}$, c_{ij} with i > j is given by

$$\sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{i-1} a_{ik} b_{kj} + \sum_{k=i}^{n} a_{ik} b_{kj} = 0,$$

since $a_{ik} = 0$ when $k \leq i - 1$ and $b_{kj} = 0$ when $k \geq i > j$. Hence C is an upper triangular. \square