VDL Mode 2

VHF Datalink mode 2

Presented by

Na TAO

ALTRAN on behalf of ENAC

Objectives

• List the principles of VDL Mode 2

Contents

- Introduction
- System Architecture
- Physical layer
- Link layer
- Sub-network layer

Introduction

- One of the air-ground sub network
- VDL mode 2 : selected for the first implementation of data link in Europe following the European LINK 2000 + Project

Introduction

- VDL: Four modes have been specified
 - Mode 1
 - uses ACARS analog radios
 - Mode 2
 - improved radios and data encoding (D8PSK), CSMA, 31.5 Kbit/s
 - Operational deployment by ARINC & SITA
 - Mode 3
 - integrates voice and data, TDMA
 - No deployment
 - Mode 4
 - based on STDMA, air-air communications
 - May be used for surveillance (ADS-B)

Some dates

- 1988 : starting of the first work on the ATN by ICAO
- 1990 : decision to use VHF to support air-ground segment
- 1991 : starting of work on VDL standard
- 1996: the VDLm2 SARPs are approved
- 1997 : the SARPs are applicable
- 2009: European regulation to provide VDLM2

System Architecture - Overview

System Architecture - Data plane

System Architecture – Control plane

System Architecture

Management entities

VDL mode 2 protocol stack

ACARS ATN Upper layers AOA Layer 3 SNAcP (ISO 8208) **AVLC LME** DLS Layer 2 MAC (P-persistent CSMA) Physical (D8PSK) Layer 1

Physical Layer

Modulation FEC Interleaving & Scrambling

Physical layer

- Voice channels: 25 kHz
- VHF band (118 137 MHz)
- CSC (Common Signaling Channel) for initial link establishment: 136.975 MHz worldwide
- Multi-frequency
- Supplied functions
 - Transmission channel activation
 - Bit synchronization
 - Data transmission/reception
 - Channel signalization status (SQP : Signal Quality Parameter)

Modulation

- D8PSK : Differential 8 Phase Shift Keying
- Modulation speed: 10500 symbols per second
- Throughput : 10500 * 3 = 31,5 Kbit/s
- Three bits symbols
- Use of Gray code
 - Reduces noise sensitivity

Tribit	Δφ
000	$0*\pi/4$
001	$1*\pi/4$
011	$2*\pi/4$
010	$3*\pi/4$
110	$4*\pi/4$
111	$5*\pi/4$
101	$6*\pi/4$
100	$7*\pi/4$

Modulation

- D8PSK
 - Differential
 - On phase change
- Coding = $\Delta \varphi$
 - NOT coding on φ
- Using a Nyquist filter

Symbol Error Rate

Physical frame

transmitter ramp-up	synchronisation word	reserved	length	header FEC (error code)	Data
15 bits	48 bits	3 bits	17 bits	5 bits	

Total burst header 88 bits

Maximum frame length: $2^{17} - 1 = 131\ 071$ bits

Header FEC

- Controls the HEADER
 - limited to
 - The "Reserved" segment
 - The length field
- Matrix based
 - $[P1,...P5]=[R1,..R3,L1,...L17]*H^T$

FEC (Forward Error Correction)

- Use of forward error correction for the data
 - Reed Solomon type
 - If X symbols are added
 - Able to correct up to X/2 symbols errors
 - For the VDL 2 : RS (255,249)
 - 255 bytes per blocks
 - 249 bytes of data
 - 6 bytes of RS code
 - Corrects up to 3 erroneous bytes
 - Detect up to 6 erroneous bytes

Additional information

- The maximum size of a bloc using Reed Solomon coding is given by the expression 2^m-1, where m is the number of elements of the symbol.
 - In the case of VDL2, the symbol is the byte which contains 8 elements. The maximum size of a Reed Solomon block is then 255 bytes (FEC code included).
- In the case: size of the date < 249 bytes
 - the last bloc is padded with 0 for the RS code computation. However, these padding bytes are not transmitted
 - If there are less than 67 bytes (but at least 31 bytes) in the last bloc, the RS code contains 4 bytes (up to 2 bytes can be corrected)
 - If there are less than 31 bytes in the last bloc, the RS code contains only 2 bytes (one byte may be corrected).

After Reed Solomon

249 bytes data blocks

+ 6 bytes of RS code

D1	D2	D3	D249	RS1	RS2	RS3	RS4	RS5	RS6
D250	D251	D252	D498	RS7	RS8	RS9	RS10	RS11	RS12
D499	D 500		D747	RS13	RS14	RS15	RS16	RS17	RS18

Interleaving

- The errors
 - Per packet
 - Grouped Corruptions
- Principle
 - Organize data in 2 dimensions :
 - Each Reed Solomon block is a row
 - Send data column by column
 - → Spreads errors among the blocks

Without interleaving

Row-by-row sending method: If 4 bytes are corrupted, they most probably will belong to the same RS block, and the RS will not be able to correct the data. → The block is lost!

D1	D2	D3	D4	RS1	RS2	RS3	RS4	RS5	RS6
D250	D251	D252	D253	RS7	RS8	RS9	RS10	RS11	RS12
D 499	D 500			RS13	RS14	RS15	RS16	RS17	RS18

With interleaving

Column-by-column sending method: the same corruption will be spread over several RS blocks. It is more likely that the power of the RS correction will not be exceeded in this case.

Bit Scrambling

- Bit synchronization
 - It is the aim of the preamble
- Keeping the bit synchronization
 - Problem of having series of identical symbols
 - Risk of clock drift
 - Break series with a polynomial code
 - For the VDL $2: X^{15} + X + 1$

Processing description

Physical frame

VDL mode 2 burst (max burst : 131 071 bits, N=65)

Some remarks (Physical Layer)

- Integrity requirement at output : P= 10⁻⁴
- Thoughput (Practice VS Theory)
 - Hidden transmitters issue
 - Signal reflection/propagation issues
 - Protocol overhead

- ...

- \rightarrow The actual throughput will be < 31,5 Kbits/s
 - Simulation results give 5% to 40% of usable throughput (1575 to 12600 bits/s)
 - Real measures will tell the truth...

Link Layer

MAC (Medium Access Control)

DLS (Data Link Service)

Link Management

Link layer

- The MAC (Medium Access Control) entity
 - Shared channel access
- The DLS (Data Link Service) entity
 - Provides a connected service
 - Between two DLE (Data Link Entity)
 - Also provides connectionless service
 - Currently not used
 - The VME(VDL Management Entity)/LME (Link Management Entity)

MAC

 P-CSMA (P-persistent Carrier Sense Multiple Access)

MAC

- P-CSMA with following tuning:
 - TM1: minimum delay between access attempts
 - min : 0.5 ms max : 125 ms default : 4.5 ms
 - TM2: maximum delay for a transmission
 - min : 6 s max : 120 s default : 60 s
 - M1: maximum number of attempts
 - min: 1 max: 65535 default: 135
 - p : probability of sending
 - min: 1/256 max: 1 default: 13/256

DLS (Data Link Service)

- Bit interface
 - can convey any data
- AVLC (Aviation VHF Link Control) protocol derived from ISO HDLC (High-Level Data Link Control)
 - Frame numbering
 - Frame error detection
 - Addressing

AVLC

- Frame Format:
 - Frame delimiter flag: 7E (Hexadecimal Code)
 - Address
 - Control
 - Data
 - Frame Check Sequence (FCS)
 - Format of an AVLC frame

7Eh	Address block	Control	Data	FCS	7Eh
	8 bytes	1 byte		2 bytes	

Bit Stuffing

- Series of 1s will be interpreted as a flag
- Use of « bit stuffing »
 - Inserting a "0" after 5 consecutive "1" bits
 - Except for the Flag
- Example: 1F 22: 0001/1111- 0010/0010
 - LSB: 1111/1000 0100/0100
 - Stuffing: 1111/1000 0010/0010 0...
 - Lecture: 0001/11111 0100/0100 0: 1F 44

FCS (Frame Check Sequence)

- Based on CRC (Cyclic Redundancy Check)
- 2 bytes (16 bits)
 - Probability of non detection $< 2^{-16}=1,53.10^{-5}$
 - CCITT polynomial: $X^{16} + X^{12} + X^5 + 1$
- Overall probability of non detection
 - BER: 10⁻⁴ maximum (output of physical layer)
 - Probability of error $< 10^{-4} \times 1,53.10^{-5} = 1,53.10^{-9}$

7Eh	Address block	Control	Data	FCS	7Eh
	8 bytes	1 byte		2 bytes	

System Architecture

Undetected error rate?

AVLC

Bit error rate < 10⁻⁴

Physical

BER (Bit error rate) $< 10^{-3}$

Integrity requirement for VDLm2

- At the output of the MAC sub layer
 - Average packet length of 128 bytes
- RER (Residual Error Rate):
 - < 10^{-6} uplink (to the A/C)
 - < 10^{-5} downlink (from the A/C)
- Application :

$$RER < (128 \times 8) \times 10^{-4} \times 2^{-16} = 1,56 \cdot 10^{-6}$$

Integrity checking also at transport layer

Address Format

- 4 bytes long LSB first
- LSB of each byte shall be 0, except for the last one (HDLC compatible format)
- The first usable bits are used for:
 - Air/Ground bit in the destination address part
 - 0 only for aircraft (If VDL subsystem is able to detect take off)
 - 1 for aircraft and ground station
 - C/R (Command/Response) bit in the source address part
 - 0 for a command; 1 for a response

	7Eh	Address block	Control	Data	FCS	7Eh	
	3	8 bytes	1 byte		2 bytes		
EN	IAC	中国人航大学 Civil Aviation University Of China	VDL M	lode 2	39		

Address Format

- Aircraft : use the ICAO 24 bits address
 - 3 remaining bits code the type of address (always 001)
- Ground station :
 - ICAO administered address
 - ICAO delegated address
- Types of address (bits 27/26/25)
 - Aircraft: 0/0/1
 - Ground station
 - ICAO: 1/0/0
 - Other: 1/0/1

Broadcast : 1/1/1

Broadcast et multicast

- Global Broadcast:
 - Type: 111
 - All the address bits to "1"
- Broadcast for one type of addresses
 - Type as requested
 - All the address bits to "1"
 - Broadcasting all Planes : _____

Ground Station & Ground System

- Ground System
 - Bound to physical limits of the ground net
- Ground Station
 - Has an address
 - Has a Ground System mask
- Address & bitwise mask => Ground System Number
- Stations have the same Ground System Number means
 - Stations belong to the same Ground System

AVLC Control Field

- The control field:
 - XID (Exchange Identity)
 - INFO
 - RR (Receive Ready)
 - SREJ (Selective reject)
 - FRMR (Frame reject)
 - UI/UA (Unnumbered Info/Acknowledgment)
 - DISC/DM (Disconnect Mode)

	7Eh	Address block	Control	Data	FCS	7Eh	
		8 bytes	1 byte		2 bytes		
EN	JAC S	中国人航大学 Civil Aviation University Of China	VDL Mode 2		43		

AVLC T1 Parameter

- Retransmission timer: T1
 - Delay while waiting for the ACK (acknowledgement)
 - Adaptive
 - $-T1 = T1_{min} + 2TD_{99} + min(U(x), T1_{max})$
 - TD₉₉: transmit delay for 99 % of the transmissions
 - Random part: U(x)
- $T1_{min} = 1s$ (default)
- $T1_{max} = 15s$ (default)
 - At least about 3s
 - Depends on Idle/Busy ratio
 - Depends on number of retransmissions

AVLC T2 Parameter

- T2: maximum delay before sending the ACK
 - Used to group acknowledgements
 - Aims at reducing channel occupancy
 - →Do not acknowledge immediately
- By default: T2 = 500 ms

AVLC T3 Parameter

- T3: link establishment delay
 - Similar to T1 (but longer)
 - Between a link establishment request and its response
 - By default T3_{min} is 6s

Other AVLC parameters

- k: window size, by default: 4
- N1: max number of bits in a frame
 - Without flags and bit stuffing
 - default: 8312 bits max: 16504 bits
- N2: max number of transmission
 - Incr. if no response to a frame (T1 expired)
 - default : N2 = 6
- T4: maximum delay between transmissions
 - Send a RR(Receive Ready) command P=1 if T4 expires
 - default : 20 minutes

What about...

- What do you think about N1 compared to the length of the physical burst?
- What is the useful/real throughput ratio at the AVLC service interface?
 - Use next diagram for physical layer,
 - Assume p=1,
 - No bit stuffing at link layer,
 - Continuously send 128 bytes INFO frames
 - No frame grouping

What about...

SREJ (Selective Reject)

- Ask for retransmission of one or several frames
 - I receive frames 1;2;4: frame 3 is missing
 - SREJ(3) asks for the retransmission of frame 3 and acknowledges frames 1 & 2
 - AVLC specific: I may also ACK frame 4 here
 - I receive frame 3 I acknowledge up to 4 : RR(5)
- Advantage ?

SREJ (Selective Reject)

51

XID (Exchange Identification)

- One AVLC control field value
- Several significations, depending on the data contained in the Information field:
 - XID_CMD or XID_RSP
 - XID_CMD_LE
 - XID_CMD_GSIF

Link establishment

- Ground station transmission
 - The ground stations SHALL regularly send an identification frame on the CSC
 - Common Signaling Channel = 136.975MHz
- GSIF: Ground Station Information Frame
 - XID_CMD frame
 - May contain alternate frequencies
 - Max delay between transmissions (TG3: 100 to 120s)
 - Max delay between GSIF (TG4: 100 to 120 s)

Link establishment

- The GSIF are sent by the ground to the LME
- Choice to establish the connection
 - Based on received GSIF
- If OK
 - XID_CMD_LE : Link Establishment request
 - XID_RSP_LE : ground accepts
 - XID_RSP_LCR : ground refuses (exceptional)

Link establishment

- 1 Signal decoding
- 2 FCS validation
- 3 @_{DST} validation

XID decoding

GSIF – forward to

LME

- 4 LE decision
- 5 LE request
- 6 XID_CMD_LE
- 7 XID_RSP_LE
- 8 Forward to LME

Link establishment summary

Link validity

- TG3 and TG4 already presented before
- TG1: frequency scanning time
 - Maximum time to stay on a "silent" frequency
- TG2: maximum idle activity time
 - Maximum time to keep data on an inactive distant Station
 - Detects out-of-coverage with no com
- TG5: maximum link overlap time (used during a handoff)

Mobility management

- A Ground System contains several Ground Stations
- LME (Link Management Entity)
 - Manages the link between a Ground System and an Aircraft
 - Shared among the Ground Stations of a Ground System
- Passing the connection from one Ground Station to another is called the Handoff

Handoff between Ground Systems

- Can only be initiated by the Aircraft
- Procedure:
 - New link with the new Ground System
 - Through one of its Ground Stations
 - DISC with the previous Ground System
- Link Establishment = Login into ground system

Air Initiated Handoff

Handoff inside Ground System

- 4 Possibilities :
 - Aircraft initiated Handoff
 - Ground initiated Handoff
 - Aircraft requested Ground initiated Handoff
 - Only if supported by the Ground System
 - The A/C requests the handoff from the Ground System
 - Ground requested Aircraft Initiated Handoff
 - Only if supported by the A/C
 - The Ground System requests the handoff from the A/C
 - Used for Multifrquency management (load balancing)

Aircraft initiated Handoff

- Required if
 - SQP (Signal Quality Parameter) of the new station >>
 SQP current station
 - N2 retransmission (AVLC layer)
 - TG2 expires = inactive station
 - TM2 expires (MAC layer) = congestion

Aircraft initiated Handoff

Ground Initiated Handoff

Aircraft requested Ground initiated Handoff

Ground requested Aircraft Initiated Handoff

LME: state machine (aircraft)

Summary

- The air-ground communication is established
- We are able to manage the mobility
- The link is reliable
- Parameters are tuned to limit the channel occupancy

Link loss detection issue

The asymmetry

- For the A/C:
- An A/C flying out of the station's coverage
 - Without transmission
 - Detection in: TG2 seconds (4 minutes)
 - With transmission
 - Detection in N2*T1 seconds
- If the A/C is in the coverage of another station
 - Air initiated handoff

Link loss detection issue

- For the Ground:
- Without transmission
 - Detection in: TG2 seconds (60 minutes)
- With transmission
 - Detection in N2*T1 seconds

Subnetwork layer

3a sub-layer

- Functions
 - Segmentation
 - Establish VC (Virtual Circuits) between airborne router and ground router
- Between the A/C and the Ground Station
 - X25 like Layer 3
 - Only defines an interface
 - No description of ground network

Addresses

- A network level address is required
 - Aircraft:
 - ICAO 24 bits address (8 symbols) binary coded
 - Ground:
 - X121 address (option)
 - Also called VSDA: VDL Specific DTE Addressing
- Use of the X25 address extension option

VC establishment in X25

Questions?

- How to provide the X121 @ or the VSDA to the A/C?
 - The ground station provides it in the GSIF
- And then?
 - X25 like
 - Ground station "binds" the two ends transparently

ISO 8208 air tuning

- Sending window W (default is 7)
 - Acknowledgement window A (default is 4)
- Flow management
 - Stop sending RR to stop the transmissions
 - If no loss on layer 2, no problem
 - Optional protection T24/T25 : forces transmission of RR after 180 seconds

ISO 8208 air tuning

- Reset:
 - On reception of a RESET on the ground
 - Only a ground-ground problem
 - Not propagated to the air
- Most options are prohibited
- Fast Select authorized
 - To transmit up to 128 bytes of data during the establishment

Global view

The requirements

- Availability:
 - 99,9 %
 - Single failure tolerance
- Integrity : 10⁻⁶
- Delay: 5 major components –95 % limit
 - Transmission/reception switching delay: 1 ms
 - Packet transmission delay: 250 ms
 - Propagation delay: 1,3 ms
 - Process delay: 100 ms
 - Access delay: 3000 ms

ARINC coverage

SITA coverage

WORLDWIDE VDL AIRCOM COVERAGE

ON-LINE VOLARE IN RED. PLANNED ARE IN BLU

Conclusion

- The main characteristics of VDL mode 2:
 - Physical layer
 - MAC layer
 - Link layer
 - Sub-network layer

Bibliography

- AEEC 631
- ICAO SARPs: Annex 10 Volume III –
 Communications systems Part 1 Digital
 Communication Systems
- Technical Manual : ICAO Doc 9776
- MASPS DO 224 A

