

### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

# TABLE OF CONTENTS

| PARAGRAPH |      |                                                                               | PAGE |
|-----------|------|-------------------------------------------------------------------------------|------|
| 1.        | GENE | RAL DATA                                                                      | 2    |
|           | A.   | Applicable Conditions for the RB 211 Trent 800 Power Plant Wiring Repair Data | 2    |
|           | B.   | RB 211 Trent 800 Power Plant Wiring Repair Data and Procedures                | 2    |



#### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

#### 1. GENERAL DATA

#### A. Applicable Conditions for the RB 211 Trent 800 Power Plant Wiring Repair Data

The data and procedures that are given in Subject 20-23-00 through Subject 20-23-39 are applicable only for the RB 211 Trent 800 power plant wire harnesses that have Rolls-Royce part numbers.

CAUTION: THE DATA AND PROCEDURES IN SUBJECT 20-23-00 THROUGH SUBJECT 20-23-39

ARE NOT APPLICABLE FOR THE REPAIR OF THE WIRING OF OTHER POWER
PLANTS, OF OTHER POWER PLANT MANUFACTURERS, OR OF RB 211 TRENT 800
WIRING THAT HAS A BOEING PART NUMBER. REPAIRS THAT ARE NOT APPROVED
CAN CAUSE UNSATISFACTORY PERFORMANCE OF THE WIRING.

#### Refer to:

- The remainder of the SWPM for an RB 211 Trent 800 power plant wire harness that has a Boeing part number
- Rolls-Royce for problems with the RB 211 Trent 800 power plant wiring repair data and procedures.

### B. RB 211 Trent 800 Power Plant Wiring Repair Data and Procedures

Table 1
WIRING REPAIR DATA AND PROCEDURES

| Wiring Repair Data or Procedure       | Location         |
|---------------------------------------|------------------|
| Connectors                            | Subject 20-23-01 |
| Wire and Cable Types                  | Subject 20-23-03 |
| Wiring Repair                         | Subject 20-23-15 |
| Repair of Wire Harness Identification | Subject 20-23-16 |
| Repair of Shielded Cables             | Subject 20-23-17 |
| Repair of Alternator Lead Wires       | Subject 20-23-19 |
| Wire Harness Disassembly and Assembly | Subject 20-23-30 |
| Assembly of Terminal Lugs             | Subject 20-23-32 |
| Connector Disassembly and Assembly    | Subject 20-23-37 |
| Assembly of Backshells                | Subject 20-23-39 |



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**

### **TABLE OF CONTENTS**

| PARAGRAPH PARAGRAPH |        |                                  | PAGE |
|---------------------|--------|----------------------------------|------|
| 1.                  | GENER  | RAL DATA                         | 2    |
|                     | A.     | Applicable Conditions            | 2    |
| 2.                  | PART I | NUMBERS AND DESCRIPTIONS         | 2    |
|                     | A.     | Connector Part Numbers           | 2    |
|                     | B.     | ESC30() Contact Part Numbers     | 3    |
|                     | C.     | CA66279-106 Contact Part Numbers | 4    |
|                     | D.     | ESC36() Seal Plug Part Numbers   | 4    |
| 3.                  | INSER  | T CONFIGURATIONS                 | 4    |
|                     | A.     | ESC10 and ESC11 Connectors       | 4    |
|                     | В      | ITT Cannon CA66279-106 Connector | 10   |



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**

### 1. GENERAL DATA

#### A. Applicable Conditions

For the conditions that are applicable to the data and procedures of this Subject, refer to Subject 20-23-00.

### 2. PART NUMBERS AND DESCRIPTIONS

#### A. Connector Part Numbers

Table 1
CONNECTOR PART NUMBERS

| Part Number | Contact Retention | Supplier   |
|-------------|-------------------|------------|
| ESC10()     | Rear Release      | QPL        |
| ESC11()     | Rear Release      | QPL        |
| CA66279-106 | Front Release     | ITT Cannon |

Table 2
APPROVED SUPPLIERS OF ESC10() AND ESC11() CONNECTORS

| Standard | Supplier |  |  |
|----------|----------|--|--|
|          | Amphenol |  |  |
| ESC10()  | Deutsch  |  |  |
|          | Souriau  |  |  |
|          | Amphenol |  |  |
| ESC11()  | Deutsch  |  |  |
|          | Souriau  |  |  |



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**



2447815 S00061544787\_V1

# ESC10 AND ESC11 CONNECTOR PART NUMBER STRUCTURE Figure 1

#### B. ESC30() Contact Part Numbers

To find the contact part numbers, refer to the Aircraft Illustrated Parts Catalogue (AIPC).

Table 3
APPROVED SUPPLIERS

| Standard | Supplier |
|----------|----------|
|          | Amphenol |
| ESC30()  | Deutsch  |
|          | Souriau  |



2447816 S00061544788\_V1

# ESC30() CONTACT PART NUMBER STRUCTURE Figure 2



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**

# Table 4 CONTACT ENGAGING END SIZE AND CRIMP BARREL SIZES

| Contact Size | Engaging End Size | Crimp Barrel Size |
|--------------|-------------------|-------------------|
| 16           | 16                | 16                |
| 20           | 20                | 20                |

#### C. CA66279-106 Contact Part Numbers

To find the contact part numbers, refer to the Aircraft Illustrated Parts Catalogue (AIPC).

### D. ESC36() Seal Plug Part Numbers

# Table 5 ESC() SEAL PLUG PART NUMBERS

| Part Number | Contact Cavity Size | Supplier |
|-------------|---------------------|----------|
| ESC3620     | 20                  | QPL      |
| ESC3616     | 16                  | QPL      |

# Table 6 APPROVED SUPPLIERS OF ESC36() SEAL PLUGS

| Standard | Supplier |  |
|----------|----------|--|
|          | Amphenol |  |
| ESC36()  | Deutsch  |  |
|          | Souriau  |  |

### 3. INSERT CONFIGURATIONS

#### A. ESC10 and ESC11 Connectors

**NOTE:** The contact cavity size that is specified in Table 7 is equivalent to the size of the engaging end of the contact.

Table 7
CONNECTOR INSERT CONFIGURATIONS

| Income Configuration | Contact Cavity |      | Reference |
|----------------------|----------------|------|-----------|
| Insert Configuration | Quantity       | Size | Reference |
| 08-03                | 3              | 20   | Figure 3  |
| 08-98                | 3              | 20   | Figure 3  |
| 10-05                | 5              | 20   | Figure 4  |
| 12-03                | 3              | 16   | Figure 5  |
| 12-12                | 12             | 20   | Figure 5  |
| 14-07                | 7              | 16   | Figure 6  |
| 14-15                | 15             | 20   | Figure 6  |
| 16-10                | 10             | 16   | Figure 7  |



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**

### Table 7 CONNECTOR INSERT CONFIGURATIONS (Continued)

| luna de Orașii annotica | Contact Cavity |      | Defense   |
|-------------------------|----------------|------|-----------|
| Insert Configuration    | Quantity       | Size | Reference |
| 16-24                   | 24             | 20   | Figure 7  |
| 18-14                   | 14             | 16   | Figure 8  |
| 18-31                   | 31             | 20   | Figure 8  |
| 20-39                   | 2              | 16   | Figure 9  |
| 20-39                   | 37             | 20   | Figure 9  |
| 20-41                   | 41             | 20   | Figure 9  |
| 22-19                   | 19             | 16   | Figure 10 |
| 22-55                   | 55             | 20   | Figure 10 |
| 24-30                   | 30             | 16   | Figure 11 |
| 24-61                   | 61             | 20   | Figure 11 |
| 28-42                   | 42             | 16   | Figure 12 |

**NOTE:** Figure 3 through Figure 12 show the rear face of an insert that has sockets. The view of the rear face of an insert that has pins is the mirror image of this view.



2447805 S00061544789\_V1

# 08-() INSERT CONFIGURATIONS Figure 3



2447806 S00061544790\_V1

10-() INSERT CONFIGURATIONS Figure 4



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**



2447807 S00061544791\_V1

# 12-() INSERT CONFIGURATIONS Figure 5



2447808 S00061544792\_V1

14-() INSERT CONFIGURATIONS Figure 6



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**



2447809 S00061544793\_V1

# 16-() INSERT CONFIGURATIONS Figure 7



2447810 S00061544794\_V1

18-() INSERT CONFIGURATIONS Figure 8



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**



2447811 S00061544795\_V1

# 20-() INSERT CONFIGURATIONS Figure 9



2447812 S00061544796\_V1

22-() INSERT CONFIGURATIONS Figure 10



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**



2447813 S00061544797\_V1

# 24-() INSERT CONFIGURATIONS Figure 11



2447814 S00061544798\_V1

28-() INSERT CONFIGURATIONS Figure 12



### **RB 211 TRENT 800 POWER PLANT: CONNECTORS**

#### B. ITT Cannon CA66279-106 Connector

**NOTE:** The contact cavity size that is specified in Table 8 is equivalent to the size of the engaging end of the contact.

Table 8
CONNECTOR INSERT CONFIGURATIONS

| Incort Configuration | Contact Cavity |      | Reference |
|----------------------|----------------|------|-----------|
| Insert Configuration | Quantity       | Size | Reference |
| 6                    | 3              | 4    | Figure 13 |
| 0                    | 3              | 16   | Figure 13 |

**NOTE:** Figure 13 shows the rear face of an insert that has sockets. The view of the rear face of an insert that has pins is the mirror image of this view.



2447804 S00061544799\_V1

INSERT CONFIGURATION 6
Figure 13



### **RB 211 TRENT 800 POWER PLANT: WIRE AND CABLE TYPES**

### **TABLE OF CONTENTS**

| PAR | PARAGRAPH |                                             |   |
|-----|-----------|---------------------------------------------|---|
| 1.  | GENER     | RAL DATA                                    | 2 |
|     | A.        | Applicable Conditions                       | 2 |
| 2.  | WIRE S    | SPECIFICATIONS                              | 2 |
|     | A.        | Specified Wire Part Numbers and Description | 2 |
|     | В.        | Alternative Wires                           | 2 |



### **RB 211 TRENT 800 POWER PLANT: WIRE AND CABLE TYPES**

This Subject gives the wire part number data of the RB 211 Trent 800 power plant wiring.

### 1. GENERAL DATA

### A. Applicable Conditions

For the conditions that are applicable to the data and procedures of this Subject, refer to Subject 20-23-00.

### 2. WIRE SPECIFICATIONS

### A. Specified Wire Part Numbers and Description

Table 1
SPECIFIED WIRES

| 55 TING            |            |                    |                            |                                   |
|--------------------|------------|--------------------|----------------------------|-----------------------------------|
| Wire Specification | Conductors | Wire Size<br>(AWG) | Material                   | Note                              |
| ESW1200-010-006    | 1          | 20                 | High Strength Copper Alloy | Fire Resistant                    |
| ESW1202-022-006    | 2          | 20                 | High Strength Copper Alloy | Fire Resistant, Twisted, 1 Shield |
| ESW1202-032-006    | 3          | 20                 | High Strength Copper Alloy | Fire Resistant, Twisted, 1 Shield |
| ESW1202-032-012    | 3          | 16                 | High Strength Copper Alloy | Fire Resistant, Twisted, 1 Shield |
| ESW1602-022-006    | 2          | 20                 | 1 Alumel, 1 Chromel        | Fire Resistant, Twisted, 1 Shield |
| Low Noise Cable    | -          | -                  | -                          | -                                 |
| MI Cable           | -          | -                  | -                          | -                                 |
| RTS71445           | 2          | 18                 | Nickel Clad Copper         | Fire Resistant, Twisted, 1 Shield |
| RTS71446           | 3          | 18                 | Nickel Clad Copper         | Fire Resistant, Twisted, 1 Shield |
| RTS77084           | 1          | 16                 | High Strength Copper Alloy | Fire Resistant, Shield            |
| RTS77086           | 3          | 20                 | High Strength Copper Alloy | Twisted, 2 Shields                |
| RTS77161           | 3          | 8                  | Nickel Clad copper         | Twisted                           |
|                    |            |                    |                            |                                   |

#### B. Alternative Wires

Table 2
ALTERNATIVE WIRES

| Considered Wine | Alternative Wire             |          |  |
|-----------------|------------------------------|----------|--|
| Specified Wire  | Specification or Part Number | Supplier |  |
| ESW1200-010-006 | BMS 13-55 Type II Class 1    | Boeing   |  |
| ESW1202-022-006 | BMS 13-55 Type IV Class 2    | Boeing   |  |
| ESW1202-032-006 | BMS 13-55 Type IV Class 3    | Boeing   |  |
| ESW1202-032-012 | BMS 13-55 Type IV Class 3    | Boeing   |  |
| ESW1602-022-006 | -                            | -        |  |
| Low Noise Cable | -                            | -        |  |
| MI Cable        | -                            | -        |  |



### **RB 211 TRENT 800 POWER PLANT: WIRE AND CABLE TYPES**

### Table 2 ALTERNATIVE WIRES (Continued)

| Out of the I William | Alternative Wire             |          |  |
|----------------------|------------------------------|----------|--|
| Specified Wire       | Specification or Part Number | Supplier |  |
| RTS71445             | BMS 13-55 Type III Class 2   | Boeing   |  |
| RTS71446             | BMS 13-55 Type III Class 3   | Boeing   |  |
| RTS77084             | BMS 13-55 Type IV Class 1    | Boeing   |  |
| RTS77086             | -                            | -        |  |
| RTS77161             | BMS 13-58 Type I Class 3     | Boeing   |  |



### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

# TABLE OF CONTENTS

| PAR | AGRAPH |                                                                 | PAGE |
|-----|--------|-----------------------------------------------------------------|------|
| 1.  | GENE   | RAL DATA                                                        | 2    |
|     | A.     | Applicable Conditions                                           | 2    |
|     | B.     | Damage and Repair Conditions                                    | 2    |
| 2.  | WIRIN  | G COMPONENT REPLACEMENT                                         | 4    |
|     | A.     | Applicable Conditions for the Replacement of a Wiring Component | 4    |
|     | B.     | Replacement of a Contact                                        | 5    |
|     | C.     | Replacement of a Connector                                      | 5    |
|     | D.     | Replacement of a Backshell                                      | 6    |
|     | E.     | Replacement of a Terminal Lug                                   | 6    |
|     | F.     | Replacement of a Shielded Cable - Temporary Repair              | 6    |
|     | G.     | Replacement of a Shielded Cable - Permanent Repair              | 11   |
| 3.  | CLEAN  | NING OF ELECTRICAL CONNECTORS                                   | 13   |
|     | Α.     | Removal of Liquid and Solid Contamination                       | 13   |



### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

### 1. GENERAL DATA

#### A. Applicable Conditions

For the conditions that are applicable to the data and procedures of this Subject, refer to Subject 20-23-00.

### B. Damage and Repair Conditions

Table 1
LOCATION OF DAMAGE AND REPAIR CONDITIONS

| Component             | Location |
|-----------------------|----------|
| Alternator Lead Wire  | Table 2  |
| Connector             | Table 3  |
| Identification Marker | Table 4  |
| Shielded Cable        | Table 5  |
| Terminal Lug          | Table 6  |

Table 2
DAMAGE AND REPAIR CONDITIONS - ALTERNATOR LEAD WIRE

| Type of Damage               | Damage Condition                                                   | Repair Condition                 | Procedure        |
|------------------------------|--------------------------------------------------------------------|----------------------------------|------------------|
| Damage to the shield         | The shield is not in its original configuration                    | Replacement of the<br>alternator | АММ              |
|                              | The area is more than 50 percent of the circumference of the cable | Replacement of the alternator    | Subject 20-23-17 |
|                              | The length is more than 2 inches (50 millimeters)                  | Replacement of the alternator    | АММ              |
| Damage that goes through the | T                                                                  | Repair of the jacket             | Subject 20-23-17 |
| jacket                       | The length is less than 2 inches (50 millimeters)                  | Replacement of the alternator    | AMM              |
|                              | The area is less them 50 manual.                                   | Repair of the jacket             | Subject 20-23-17 |
|                              | The area is less than 50 percent of the circumference of the cable | Replacement of the alternator    | АММ              |

Table 3
DAMAGE AND REPAIR CONDITIONS - CONNECTOR COMPONENTS

| Type of Damage          | Damage Condition                                  | Repair Condition             | Procedure      |
|-------------------------|---------------------------------------------------|------------------------------|----------------|
|                         | The backshell has corrosion                       | Replacement of the backshell | Paragraph 2.B. |
| Damage to the backshell | The backshell is not in its initial configuration | Replacement of the backshell | Paragraph 2.B. |
| Damage to the contact   | The contact is not in its initial configuration   | Replacement of the contact   | Paragraph 2.D. |
|                         | The contact has corrosion                         | Replacement of the contact   | Paragraph 2.D. |



### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

### Table 3 DAMAGE AND REPAIR CONDITIONS - CONNECTOR COMPONENTS (Continued)

| Type of Damage                  | Damage Condition                                        | Repair Condition             | Procedure      |
|---------------------------------|---------------------------------------------------------|------------------------------|----------------|
| Damage to the connector shell   | The connector shell is not in its initial configuration | Replacement of the connector | Paragraph 2.C. |
| Damage to the connector shell   | The connector shell has corrosion                       | Replacement of the connector | Paragraph 2.C. |
| Damage to the connector         | The grommet is oil soaked                               | Replacement of the connector | Paragraph 2.C. |
| grommet                         | The grommet is swollen                                  | Replacement of the connector | Paragraph 2.C. |
| The connector has contamination | The contamination cannot be removed                     | Replacement of the connector | Paragraph 2.C. |
|                                 | The contamination can be removed                        | Cleaning of the connector    | Paragraph 3.A. |

# Table 4 DAMAGE AND REPAIR CONDITIONS - IDENTIFICATION MARKER

| Type of Damage                     | Damage Condition         | Repair Condition   | Procedure        |
|------------------------------------|--------------------------|--------------------|------------------|
| Damage to the identification marks | The marks cannot be read | Marker Replacement | Subject 20-23-16 |

# Table 5 DAMAGE AND REPAIR CONDITIONS - SHIELDED CABLE

| Type of Damage           | Damage Condition                                             | Repair Condition                                                         | Procedure            |
|--------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|----------------------|
| Damage to the insulation | The insulation of the component wires are                    | Replacement of the cable without removal of the old cable Paragraph 2.F. |                      |
| of the component wire    | have damage                                                  | Replacement of the cable with removal of the old cable                   | Paragraph 2.G.       |
|                          |                                                              | Splice of the cable                                                      | Subject 20-23-17     |
|                          | The area of damage on the jacket is equal                    | Replacement of the cable without removal of the old cable                | Paragraph 2.F.       |
|                          | to or more than 50 percent of the circumference of the cable |                                                                          | Paragraph 2.G.       |
| Damage to the shield     |                                                              | Splice of the cable                                                      | ole Subject 20-23-17 |
| Damage to the shield     | The area is less than 50 percent of the                      | cable                                                                    | Paragraph 2.F.       |
|                          | circumference of the cable                                   | Replacement of the cable with removal of the old cable                   | Paragraph 2.G.       |
|                          |                                                              | Splice of the cable                                                      | Subject 20-23-17     |



### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

#### Table 5 DAMAGE AND REPAIR CONDITIONS - SHIELDED CABLE (Continued)

| Type of Damage                      | Damage Condition                                                   | Repair Condition                                                         | Procedure        |
|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|
|                                     | The length is equal to or more than 2                              | Replacement of the cable without removal of the old cable Paragraph 2.F. |                  |
|                                     | inches (50 millimeters)                                            | Replacement of the cable with removal of the old cable                   | Paragraph 2.G.   |
|                                     |                                                                    | Splice of the cable                                                      | Subject 20-23-17 |
|                                     | The area is equal to or more than 50                               | Replacement of the cable without removal of the old cable                | Paragraph 2.F.   |
|                                     | percent of the circumference of the cable                          | Replacement of the cable with removal of the old cable                   | Paragraph 2.G.   |
|                                     |                                                                    | Splice of the cable                                                      | Subject 20-23-17 |
| Damage that goes through the jacket |                                                                    | Replacement of the cable without removal of the old cable                | Paragraph 2.F.   |
|                                     | The length is less than 2 inches (50 millimeters)                  | Replacement of the cable with removal of the old cable                   | Paragraph 2.G.   |
|                                     |                                                                    | Splice of the cable                                                      | Subject 20-23-17 |
|                                     |                                                                    | Repair of the jacket                                                     | Subject 20-23-17 |
|                                     |                                                                    | Replacement of the cable without removal of the old cable                | Paragraph 2.F.   |
|                                     | The area is less than 50 percent of the circumference of the cable | Replacement of the cable with removal of the old cable                   | Paragraph 2.G.   |
|                                     |                                                                    | Splice of the cable                                                      | Subject 20-23-17 |
|                                     |                                                                    | Repair of the jacket                                                     | Subject 20-23-17 |

# Table 6 DAMAGE AND REPAIR CONDITIONS - TERMINAL LUG

| Type of Damage             | Damage Condition                                     | Repair Condition                | Procedure      |
|----------------------------|------------------------------------------------------|---------------------------------|----------------|
| Damage to the terminal lug | The terminal lug is not in its initial configuration | Replacement of the terminal lug | Paragraph 2.E. |
|                            | The terminal lug has corrosion                       | Replacement of the terminal lug | Paragraph 2.E. |

### 2. WIRING COMPONENT REPLACEMENT

### A. Applicable Conditions for the Replacement of a Wiring Component

If it is necessary to replace a component, the component must be replaced with a component that:

- Has the same part number
- Is a specified alternative component
- Is an equivalent component.

Refer to the WDM equipment list to find:



#### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

- · The connector part number
- The backshell part number.

Refer to the WDM wire list to find:

- The wire type
- · The wire size
- · The wire color
- The wire length.

**NOTE:** For alternative wires and cables, refer to Subject 20-23-03.

Refer to the Aircraft Illustrated Parts Catalog (AIPC) to find:

- · The contact part numbers
- · The support bushing part numbers
- The part numbers of alternative connectors.

#### B. Replacement of a Contact

For the general conditions that are applicable for the replacement of a wiring component, refer to Paragraph 2.A.

(1) Find the contact part number.

Refer to:

- The WDM to find the connector equipment number
- The Aircraft Illustrated Parts Catalog (AIPC) for the contact part number.
- (2) Cut the contact at the center of the crimp barrel.
- (3) Remove the remaining length of the contact crimp barrel from the end of the wire.
- (4) Examine the length of the wire.
- (5) If a wire is too short to install a new contact assembly in the connector, replace the wire or cable. For the replacement of a shielded cable as:
  - A temporary repair, refer to Paragraph 2.F.
  - A permanent repair, refer to Paragraph 2.G.

**NOTE:** As an alternative, a new length of wire or cable can be added to the wire or cable with a splice. Refer to Subject 20-23-17.

(6) Assemble the contact. Refer to Subject 20-23-37.

### C. Replacement of a Connector

For the general conditions that are applicable for the replacement of a wiring component, refer to Paragraph 2.A.

(1) Find the connector part number.

Refer to:

- The WDM for the part number
- The Aircraft Illustrated Parts Catalog (AIPC) for the alternative connector part number.
- (2) Disassemble the connector. Refer to Subject 20-23-37.
- (3) Assemble the new connector. Refer to Subject 20-23-37.



#### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

#### D. Replacement of a Backshell

For the general conditions that are applicable for the replacement of a wiring component, refer to Paragraph 2.A.

(1) Find the backshell part number.

Refer to:

- The WDM for the part number
- The Aircraft Illustrated Parts Catalog (AIPC) for the alternative backshell part number.
- (2) Disassemble the backshell. Refer to Subject 20-23-37.
- (3) Assemble the new backshell. Refer to Subject 20-23-39.

#### E. Replacement of a Terminal Lug

For the general conditions that are applicable for the replacement of a wiring component, refer to Paragraph 2.A.

- (1) Find the terminal lug part number. Refer to the WDM.
- (2) Remove the installation nut or the installation bolt that holds the terminal lug.
- (3) Remove the heat shrinkable sleeve from the terminal lug and the wire.
- (4) Cut the terminal lug at the center of the crimp barrel.
- (5) Carefully remove the remaining length of the terminal lug crimp barrel from the conductor.
- (6) Examine the length of the wire.
- (7) If the wire is too short to install a new terminal lug assembly on the stud, replace the wire or the cable.

For the replacement of a shielded cable as:

- A temporary repair, refer to Paragraph 2.F.
- A permanent repair, refer to Paragraph 2.G.
- (8) Assemble the new terminal lug on the wire. Refer to Subject 20-23-32.

### F. Replacement of a Shielded Cable - Temporary Repair

For the general conditions that are applicable for this procedure, refer to Paragraph 2.A.

This Paragraph gives the procedure to replace a cable as a temporary repair. For the procedure to replace a cable as a permanent repair, refer to Paragraph 2.G.

CAUTION: REPLACEMENT OF A CABLE WITHOUT REMOVAL OF THE OLD CABLE IS A TEMPORARY REPAIR. THE CABLE MUST BE REPLACED AT THE SUBSEQUENT SCHEDULED AIRPLANE MAINTENANCE.

# Table 7 NECESSARY MATERIALS

| Material | Specification | Description              | Supplier            |
|----------|---------------|--------------------------|---------------------|
| Tape     | A-A-5479      | PTFE, Pressure Sensitive | An available source |



#### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

(1) Make a selection of a tape from Table 7.

**NOTE:** An equivalent tape is a satisfactory alternative.

- (2) Find the identification of the cable with damage.
- (3) Find the part numbers of the contacts.

Refer to:

- The WDM to for the connector equipment number
- The Aircraft Illustrated Parts Catalog (AIPC) for the contact part numbers.
- (4) Find the cable part number.

For wire type, wire class, wire size and wire length data, refer to the WDM.

**NOTE:** An equivalent cable is a satisfactory alternative. Refer to Subject 20-23-03.

NOTE: It is not necessary to have the same wire color.

- (5) Disassemble the connector on one end of the cable. Refer to Subject 20-23-37.
- (6) Remove the wire harness ties between the end of the cable and the first wire harness clamp.
- (7) Cut the cable between the first and second wire harness clamp approximately two inches (51 millimeters) from the first clamp. Refer to Figure 1.



2447825 S00061544803 V1

# LOCATION TO CUT THE SHIELDED CABLE Figure 1

- (8) Remove the end of cable held by the first clamp.
- (9) Wind two layers of tape around the remaining end of the cable.
- (10) Fold the end of the cable back on the wire harness.
- (11) Assemble a wire harness tie on the cable to hold it in its position. Refer to Subject 20-23-30.
- (12) Do Step 2.F.(5) through Step 2.F.(11) again for the other end of the cable.
- (13) If the damaged cable goes through a fire seal and it is known where the damaged cable goes through the seal:
  - (a) Remove the wire harness ties between one side of the seal and the first wire harness clamp.
  - (b) Cut the cable approximately 2 inches (51 millimeters) from the seal. Refer to Figure 2.



### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**



2447826 S00061544804 V1

# LOCATION TO CUT THE SHIELDED CABLE AT A FIRE SEAL Figure 2

- (c) Wind two layers of tape around the end of the cable.
- (d) Fold the end of the wire back against the wire harness.
- (e) Assemble a wire harness tie on the end of the cable and the wire harness to hold the end of the cable in its position. Refer to Subject 20-23-30.
- (f) Do Step (a) through Step (e) again on the other side of the seal.
- (g) Remove the short piece of cable from the seal.
- (h) Put the new cable through the hole in the seal.
- (14) If the damaged cable goes through a fire seal and it is not known where the cable goes through the seal:
  - (a) Disassemble the seal. Refer to Figure 3.



### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**



2447828 S00061544805 V1

# DISASSEMBLY OF THE FIRE SEAL Figure 3

- (b) Remove a ceramic seal plug from the seal. Refer to Figure 3.
- (c) Assemble the seal.
- (d) Put the new cable through the hole in the seal.
- (15) Attach the new cable to the wire harness. Refer to Figure 4.



2447827 S00061544806\_V1

# INSTALLATION OF A NEW CABLE Figure 4

- (a) Put the new cable along the outer surface of the wire harness and the wire harness clamps.Make sure that the cable does not touch adjacent components and cannot rub against them.
- (b) Put each end of the new cable through the clamp that is nearest the connector at each end of the cable.
- (c) Assemble wire harness ties along the new cable. Refer to Subject 20-23-30.

**NOTE:** It is not necessary to assemble a wire harness tie at a clamp.

- (16) Prepare one end of the new cable.
  - (a) Remove necessary length of the cable jacket.
    - Make sure that the length of jacket that is removed on the new cable is the same as the length of jacket that is removed on the damaged cable.
  - (b) Push the shield rearward to expand it at the end of the jacket.



### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

(c) Make a hole in the shield near the end of the cable jacket with a nylon tool. Refer to Figure 5.

**CAUTION:** DO NOT CUT OR CAUSE DAMAGE TO THE INSULATION OF THE WIRES. DAMAGE TO THE INSULATION CAN CAUSE A SHORT TO OCCUR.



2447822 S00061544808 V1

# PREPARATION OF THE HOLE IN THE SHIELD Figure 5

(d) Carefully bend the cable until the component wires can be seen in the hole. Refer to Figure 6.



2447823 S00061544809 V1

# POSITION OF THE COMPONENT WIRES Figure 6

- (e) Pull one wire at a time through the hole in the shield.
- (f) Pull the shield tight to make a flat conductor. Refer to Figure 7.



#### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**



2447824 S00061544810 V1

# PREPARATION OF THE SHIELD GROUND WIRE Figure 7

- (g) Assemble the new contacts. Refer to Subject 20-23-37.
- (h) Remove the identification marker for each contact from the old wires.
- (i) Put the identification marker for each contact on the new wires.
- (17) Assemble the connectors at each end of the new cable. Refer to Subject 20-23-37.

#### G. Replacement of a Shielded Cable - Permanent Repair

For the general conditions that are applicable for this procedure, refer to Paragraph 2.A.

This Paragraph gives the procedure to replace a cable as a permanent repair. For the procedure to replace a cable as a temporary repair, refer to Paragraph 2.F.

- (1) Find the identification of the cable that has damage.
- (2) Find the part numbers of the contacts.

Refer to:

- The WDM to for the connector equipment number
- The Aircraft Illustrated Parts Catalog (AIPC) for the contact part numbers.
- (3) Find the cable part number.

For wire type, wire class, wire size, wire color, and wire length data, refer to the WDM.

Make sure that the new cable is a minimum of 0.75 inch (19 millimeters) longer than the length necessary to connect the connectors on the ends of the cable.

**NOTE:** An equivalent cable is a satisfactory alternative. Refer to Subject 20-23-03.

- (4) Remove the black equipment identification marker from the wire harness.
  - Make sure to put the identification marker in a safe place.
- (5) Disassemble the connector on one end of the cable. Refer to Subject 20-23-37.
- (6) Remove the damaged cable from the backshell and the support bushing.
- (7) Prepare one end of the new cable.
  - (a) Remove necessary length of the cable jacket.

Make sure that the length of jacket that is removed is the same as the length of jacket that is removed on the damaged cable.



### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

- (b) Push the shield rearward to expand it at the end of the jacket.
- (c) Make a hole in the shield near the end of the cable jacket with a nylon tool. Refer to Figure

**CAUTION:** DO NOT CUT OR CAUSE DAMAGE TO THE INSULATION OF THE WIRES. DAMAGE TO THE INSULATION CAN CAUSE A SHORT TO OCCUR.



2447822 S00061544808\_V1

# PREPARATION OF THE HOLE IN THE SHIELD Figure 8

(d) Carefully bend the cable until the component wires can be seen in the hole. Refer to Figure 9.



2447823 S00061544809\_V1

# POSITION OF THE COMPONENT WIRES Figure 9

- (e) Pull one wire at a time through the hole in the shield.
- (f) Pull the shield tight to make a flat conductor. Refer to Figure 10.



#### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**



2447824 S00061544810\_V1

# PREPARATION OF THE SHIELD GROUND WIRE Figure 10

- (g) Assemble the new contacts. Refer to Subject 20-23-37.
- (h) Remove the identification marker of each contact from the old wires.
- (i) Put the identification marker of each contact on the new wires.
- (8) Remove the necessary length of cable from the other end of the cable.
- (9) Do Step 2.G.(7) again to prepare the other end of the cable.
- (10) Put the ends of the cable through the backshell and the support bushing of each connector.
- (11) Assemble the connector. Refer to Subject 20-23-37.
- (12) Assemble the backshell. Refer to Subject 20-23-39.
- (13) Remove the damaged cable from the wire harness. Refer to Subject 20-23-30.
- (14) Install the new cable in the wire harness. Refer to Subject 20-23-30.
- (15) Install the black identification marker on the wire harness.
- (16) Install the receptacles in the engine bracket. Refer to Subject 20-23-37.
- (17) Connect the plug and the receptacle. Refer to Subject 20-23-37.
- (18) Do the necessary tests. Refer to the AMM.

### 3. CLEANING OF ELECTRICAL CONNECTORS

#### A. Removal of Liquid and Solid Contamination

# Table 8 NECESSARY TOOLS

| Tool            | Specification | Description       | Supplier            |
|-----------------|---------------|-------------------|---------------------|
| Brush           | -             | Solvent Resistant | An available source |
| Wiper           | A-A-59323     | Cloth, Lint Free  | An available source |
| Spray Equipment | -             | For solvent       | An available source |



#### **RB 211 TRENT 800 POWER PLANT: WIRING REPAIR**

# Table 9 SOLVENTS

| Specification | Description               | Supplier            |
|---------------|---------------------------|---------------------|
| BDH 10224     | Isopropanol, Analar Grade | An available source |

- (1) Make a selection of these tools from Table 8:
  - A wiper
  - A brush or a spray equipment.

**NOTE:** An equivalent tool is a satisfactory alternative.

(2) Make a selection of a solvent from Table 9.

**NOTE**: An equivalent solvent is a satisfactory alternative.

- (3) Apply the solvent to the contamination.
- (4) Use the brush or the solvent spray to remove the contamination.
- (5) Use a wiper to absorb the used solvent.

NOTE: Clean, dry compressed air is a satisfactory alternative to remove the remaining solvent.

CAUTION: DO NOT USE A COMPRESSED AIR SUPPLY WITH A PRESSURE THAT IS MORE THAN 15 POUNDS PER SQUARE INCH (1.03 BAR). DAMAGE TO THE CONNECTOR CAN OCCUR.

(6) Dry the connector with clean, dry, compressed air.

CAUTION: DO NOT USE A COMPRESSED AIR SUPPLY WITH A PRESSURE THAT IS MORE THAN 15 POUNDS PER SQUARE INCH (1.03 BAR). DAMAGE TO THE CONNECTOR CAN OCCUR.

- (7) Examine the connector for remaining contamination.
- (8) If the connector has remaining contamination:
  - (a) Do Step 3.A.(4) through Step 3.A.(6) again.
  - (b) Examine the connector.
  - (c) If the connector has remaining contamination, replace the connector. Refer to Paragraph 2.C.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF WIRE HARNESS IDENTIFICATION**

### **TABLE OF CONTENTS**

| PAR | AGRAPH |                                                  | PAGE |
|-----|--------|--------------------------------------------------|------|
| 1.  | GENER  | RAL DATA                                         | 2    |
|     | A.     | Applicable Conditions                            | 2    |
| 2.  | REPLA  | ACEMENT OF A DISCONNECT OR A WIRE HARNESS MARKER | 2    |
|     | A.     | Location of a Marker                             | 2    |
|     | B.     | Replacement of a Marker                          | 2    |



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF WIRE HARNESS IDENTIFICATION**

#### 1. GENERAL DATA

#### A. Applicable Conditions

For the conditions that are applicable to the data of this Subject, refer to Subject 20-23-00.

#### 2. REPLACEMENT OF A DISCONNECT OR A WIRE HARNESS MARKER

#### A. Location of a Marker

A marker for:

- · A disconnect identification that is on the harness near each connector and backshell assembly
- · A harness identification marker that is on the wire harness assembly at one location.

### B. Replacement of a Marker

# Table 1 NECESSARY MATERIALS

| Description                         | Part Number | Supplier |
|-------------------------------------|-------------|----------|
| Tape, Electrical, White Glass Cloth | Scotch 69   | 3M       |

# Table 2 NECESSARY TOOLS

| Description            | Specification | Supplier            |
|------------------------|---------------|---------------------|
| Pen, Ball Point, Black | DIN 16554/2   | An available source |

(1) Make a selection of a tape from Table 1.

**NOTE:** An equivalent tape is a satisfactory alternative.

(2) Make a selection of a pen from Table 2.

**NOTE:** An equivalent pen is a satisfactory alternative.

- (3) Record the identification number that is printed on the marker.
- (4) Cut the marker along the longitudinal axis of the marker.
- (5) Remove the marker.
- (6) Put two layers of tape on the wire harness assembly at the location of the old marker.

Make sure that:

- The edge of the tape is perpendicular to the longitudinal axis of the wire harness assembly
- Each layer of tape makes a 100 percent overlap.
- (7) Put the identification mark from the old marker on the tape with the pen.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

### **TABLE OF CONTENTS**

| PAR | AGRAPH | <u>[</u>                                                          | PAGE |
|-----|--------|-------------------------------------------------------------------|------|
| 1.  | GENE   | RAL DATA                                                          | 2    |
|     | A.     | General Conditions                                                | 2    |
|     | B.     | Applicable Conditions for the Repair of a Cable with a Splice     | 2    |
| 2.  | REPAI  | R OF A CABLE JACKET                                               | 2    |
|     | A.     | Repair of the Cable Jacket with Tape                              | 2    |
| 3.  | SELEC  | CTION OF A SPLICE ASSEMBLY                                        | 4    |
|     | A.     | Selection of a Splice Assembly Configuration                      | 4    |
|     | В.     | Splice Component Part Numbers                                     | 5    |
|     | C.     | Necessary Materials                                               | 5    |
|     | D.     | Necessary Tools                                                   | 7    |
| 4.  | REPAI  | R OF A SHIELDED CABLE WITH A SPLICE                               | 8    |
|     | A.     | Class 1 Cable - New Length of Cable with the Connector on the End | 8    |
|     | B.     | Class 1 Cable - New Length of Cable Between the Connectors        | 14   |
|     | C.     | Class 2 Cable - New Length of Cable with the Connector on the End | 20   |
|     | D.     | Class 2 Cable - New Length of Cable Between the Connectors        | 30   |
|     | E.     | Class 3 Cable - New Length of Cable with the Connector on the End | 37   |
|     | F.     | Class 3 Cable - New Length of Cable Between the Connectors        | 47   |
| 5.  | WIRE ( | CHECKS                                                            | 54   |
|     | A.     | Wire Continuity Check                                             | 54   |
|     | B.     | Insulation Resistance Check                                       | 55   |
| 6.  | APPRO  | OVED TOOL SUPPLIERS                                               | 55   |
|     | Α.     | Ferrule Crimp Tools                                               | 55   |



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

#### 1. GENERAL DATA

#### A. General Conditions

For the conditions that are applicable to the data and procedures of this Subject, refer to Subject 20-23-00.

### B. Applicable Conditions for the Repair of a Cable with a Splice

These conditions are applicable for the new length of cable of a splice assembly:

- The cable must be the same type of cable as the initial cable
- · The cable have the same color as the initial cable
- The cable can be a specified alternative; refer to Subject 20-23-03.

A splice of a cable is not permitted:

- In a drip loop
- In a generator feeder cable
- In a location where a clamp holds the wire harness
- In a location that makes it necessary to change the position of the wire harness
- At a distance of less than 6.0 inches (150 millimeters) from the strain relief clamp of the connector backshell.

<u>CAUTION</u>: IF THE SPLICE OF A CABLE IS NOT A PERMITTED REPAIR, THE CABLE MUST BE REPLACED.

#### 2. REPAIR OF A CABLE JACKET

#### A. Repair of the Cable Jacket with Tape

For the conditions that are applicable for this procedure, refer to Subject 20-23-15.

**CAUTION:** REPAIR OF THE CABLE JACKET IS A TEMPORARY REPAIR. THE CABLE MUST BE REPLACED AT THE NEXT ENGINE SHOP VISIT.

# Table 1 NECESSARY TOOLS

| Tool  | Description       | Part Number or Specification | Supplier       |
|-------|-------------------|------------------------------|----------------|
| Wiper | Disposable Tissue | 7105 Kimwipes                | Kimberly-Clark |

# Table 2 SOLVENTS

| Description        | Part Number or Specification | Supplier            |
|--------------------|------------------------------|---------------------|
| Alcohol, Isopropyl | TT-I-735                     | An available source |



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

# Table 3

| Description             | Part Number or Specification | Supplier |
|-------------------------|------------------------------|----------|
| Polyimide, 1 inch width | Scotch 92                    | 3M       |
| PTFE, 1 inch width      | Scotch 62                    | 3M       |

(1) Make a selection of a wiper from Table 1.

**NOTE:** An equivalent tool is a satisfactory alternative.

(2) Make a selection of a solvent from Table 2.

**NOTE:** An equivalent solvent is a satisfactory alternative.

- (3) Make a selection of these tapes from Table 3:
  - · A polyimide tape
  - · A PTFE tape.

**NOTE:** An equivalent tape is a satisfactory alternative.

- (4) Remove the necessary wire harness support clamps and wire harness ties to get access to the area of the cable that has damage.
- (5) Clean the area of the cable that has damage with solvent and a wiper. Refer to Figure 1.
  Make sure to clean a minimum of 3.0 inches (75 millimeters) on each side of the damage.



2447160 S00061543474\_V1

# AREA TO CLEAN Figure 1

- (6) Dry the solvent with a wiper.
- (7) Wind one layer of polyimide tape on the area with damage. Refer to Figure 2.

Make sure that the layer of tape:

- Starts a minimum of 1.0 inch (25 millimeters) from one side of the damage
- Stops a minimum of 1.0 inch (25 millimeters) from the other side of the damage
- Makes a 20 percent overlap.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447835 S00061544816 V1

# INSTALLATION OF THE FIRST LAYER OF TAPE Figure 2

8) Wind one layer of PTFE tape on the polyimide tape. Refer to Figure 2.

Make sure that the layer of tape:

- Is in the opposite direction of the first layer of tape
- Starts a minimum of 0.5 inch (13 millimeters) from one end of the first layer of tape
- Stops a minimum of 0.5 inch (13 millimeters) from the other end of the first layer of tape
- · Makes a 20 percent overlap.
- (9) Assemble a wire harness tie on each end of the second layer of tape.

#### Refer to:

- Figure 2
- Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (10) Put the wire harness in its initial configuration.
- (11) Do a wire continuity check of the component wires in the cable. Refer to Paragraph 5.A.
- (12) Do an insulation resistance check of the component wires in the cable. Refer to Paragraph 5.B.

### 3. SELECTION OF A SPLICE ASSEMBLY

### A. Selection of a Splice Assembly Configuration

For the conditions that are applicable for:

- The damage and repair of shielded cables, refer to Subject 20-23-15
- The repair of a cable with a splice, refer to Paragraph 1.B.

# Table 4 SPLICE ASSEMBLY CONFIGURATIONS

| Cable Class                                       | Splice Assembly Configuration                     | Procedure      |
|---------------------------------------------------|---------------------------------------------------|----------------|
| New length of cable with the connector on the end |                                                   | Paragraph 4.A. |
| 1                                                 | New length of cable between the connectors        | Paragraph 4.B. |
| 2                                                 | New length of cable with the connector on the end | Paragraph 4.C. |
| 2                                                 | New length of cable between the connectors        | Paragraph 4.D. |



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

### Table 4 SPLICE ASSEMBLY CONFIGURATIONS (Continued)

| Cable Class | Splice Assembly Configuration                     | Procedure      |
|-------------|---------------------------------------------------|----------------|
| 2           | New length of cable with the connector on the end | Paragraph 4.E. |
| 3           | New length of cable between the connectors        | Paragraph 4.F. |

### **B.** Splice Component Part Numbers

# Table 5 MECHANICAL FERRULE PART NUMBERS

|                                 | Wire          |       |               |               |
|---------------------------------|---------------|-------|---------------|---------------|
| Part Number or<br>Specification | Size<br>(AWG) | Class | Inner Ferrule | Outer Ferrule |
| ESW()-022-006                   | 20            | 2     | BACS13S187BNP | BACS13S281CNP |
| ESW()-032-006                   | 20            | 3     | BACS13S205BNP | BACS13S312CNP |
| ESW()-032-012                   | 16            | 3     | BACS13S232BNP | BACS13S348CNP |
| RTS77084                        | 16            | 1     | BACS13S149BNP | BACS13S232CNP |
| RTS71445                        | 18            | 2     | BACS13S232BNP | BACS13S348CNP |
| RTS71446                        | 18            | 3     | BACS13S250BNP | BACS13S375CNP |

# Table 6 SPLICE PART NUMBERS

| Crimp Barrel Size | Part Number | Supplier |
|-------------------|-------------|----------|
| 22-16             | 322325      | AMP      |

# Table 7 THERMOCOUPLE SPLICE PART NUMBERS

| Crimp Barrel Size | Wire Conductor Material | Splice      |          |
|-------------------|-------------------------|-------------|----------|
| Crimp Barrei Size |                         | Part Number | Supplier |
| 22-16             | Alumel                  | 1-322325-0  | AMP      |
| 22-16             | Chromel                 | 1-322325-1  | AMP      |

#### C. Necessary Materials

# Table 8 SOLVENTS

| Description        | Part Number or Specification | Supplier            |
|--------------------|------------------------------|---------------------|
| Alcohol, Isopropyl | TT-I-735                     | An available source |



## RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES

## Table 9 TAPES

| Description             | Part Number or Specification | Supplier |
|-------------------------|------------------------------|----------|
| Polyimide, 1 inch width | Scotch 92                    | 3M       |
| PTFE, 1 inch width      | Scotch 62                    | 3M       |

## Table 10 SHIELD TAPE MATERIAL

| Description      | Туре                                          | Width<br>(inch) | Part Number or<br>Specification | Supplier |
|------------------|-----------------------------------------------|-----------------|---------------------------------|----------|
| Copper Foil Tape | EMI/RFI Foil Shield Tape, conductive adhesive | 1 inch          | Scotch 1181                     | 3M       |

# Table 11 FIRE RESISTANT SLEEVES

| Sleeve | Wire Size<br>(AWG) | Part Number | Supplier      |
|--------|--------------------|-------------|---------------|
|        |                    | EXSH-1      | Raychem       |
|        |                    | EXSH-2      | Raychem       |
|        | 20                 | TSX 1       | Bently Harris |
|        |                    | TSX 2       | Bently Harris |
|        |                    | TSX 4       | Bently Harris |
| Inner  |                    | EXSH-2      | Raychem       |
|        | 18                 | TSX 2       | Bently Harris |
|        |                    | TSX 4       | Bently Harris |
|        | 16                 | EXSH-2      | Raychem       |
|        |                    | TSX 2       | Bently Harris |
|        |                    | TSX 4       | Bently Harris |
|        | 20                 | EXSH-2      | Raychem       |
|        |                    | TSX 2       | Bently Harris |
|        |                    | TSX 6       | Bently Harris |
|        |                    | EXSH-3      | Raychem       |
| Outer  | 18                 | TSX 3       | Bently Harris |
|        |                    | TSX 6       | Bently Harris |
|        | 16                 | EXSH-3      | Raychem       |
|        |                    | TSX 3       | Bently Harris |
|        |                    | TSX 6       | Bently Harris |



## **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

#### D. Necessary Tools

# Table 12 NECESSARY TOOLS

| Tool  | Description       | Part Number or Specification | Supplier       |  |
|-------|-------------------|------------------------------|----------------|--|
| Wiper | Disposable Tissue | 7105 Kimwipes                | Kimberly-Clark |  |

# Table 13 INSULATION REMOVAL TOOLS

| Wire Size | Removal Tool |          |  |
|-----------|--------------|----------|--|
| (AWG)     | Part Number  | Supplier |  |
| 22-10     | 45-092       | ldeal    |  |

## Table 14 FERRULE CRIMP TOOLS

|               | Crimp Tool  |                 |        |  |
|---------------|-------------|-----------------|--------|--|
| Ferrule       | Deede Heit  | Die             |        |  |
|               | Basic Unit  | Die Part Number | Cavity |  |
| BACS13S149BNP | M22520/5-01 | M22520/5-37     | В      |  |
| BACS13S187BNP | M22520/5-01 | M22520/5-43     | В      |  |
| BACS13S205BNP | M22520/5-01 | M22520/5-19     | В      |  |
| BACS13S232BNP | M22520/5-01 | M22520/5-45     | А      |  |
| BACS13S232CNP | M22520/5-01 | M22520/5-45     | А      |  |
| BACS13S250BNP | M22520/5-01 | M22520/5-45     | А      |  |
| BACS13S281CNP | M22520/5-01 | M22520/5-41     | А      |  |
| BACS13S312CNP | M22520/5-01 | M22520/5-39     | А      |  |
| BACS13S348CNP | M22520/5-01 | M22520/5-35     | А      |  |
| BACS13S375CNP | M22520/5-01 | M22520/5-47     | Α      |  |

## Table 15 SPLICE CRIMP TOOLS

| Crimp Barrel Si | ze | Crimp Tool | Supplier |
|-----------------|----|------------|----------|
| 22-18           |    | 46673      | AMP      |



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

#### 4. REPAIR OF A SHIELDED CABLE WITH A SPLICE

#### A. Class 1 Cable - New Length of Cable with the Connector on the End

For the conditions that are applicable for:

- The damage and repair of shielded cables, refer to Subject 20-23-15
- The repair of a cable with a splice, refer to Paragraph 1.B.

CAUTION: REPAIR OF A CABLE WITH A SPLICE IS A TEMPORARY REPAIR. THE CABLE MUST BE REPLACED WHEN THE SUBSEQUENT, SCHEDULED ENGINE MAINTENANCE IS DONE.



2447851 S00061544818 V1

# SPLICE WITH A NEW LENGTH OF CABLE WITH THE CONNECTOR ON THE END Figure 3

Refer to Figure 3.

(1) Find the cable part number. Refer to the WDM.

**NOTE:** For alternative cables, refer to Subject 20-23-03.

(2) Make a selection of a wiper from Table 12.

**NOTE:** An equivalent wiper is a satisfactory alternative.

(3) Make a selection of a solvent from Table 8.

**NOTE:** An equivalent solvent is a satisfactory alternative.

(4) Make a selection of a shield tape material from Table 10.

**NOTE:** An equivalent shield tape material is a satisfactory alternative.

- (5) Make a selection of these tapes from Table 9:
  - A polyimide tape
  - · A PTFE tape.

**NOTE**: An equivalent tape is a satisfactory alternative.

- (6) Make a selection these fire resistant sleeves from Table 11:
  - An inner sleeve
  - An outer sleeve.

**NOTE:** An equivalent sleeve is a satisfactory alternative.

(7) Make a selection of two inner ferrules and two outer ferrules from Table 5.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (8) Make a selection of a insulation removal tool from Table 13.
- (9) Make a selection of a ferrule crimp tool from Table 14.
- (10) Make a selection of a splice crimp tool from Table 15.
- (11) Remove the necessary wire harness support clamps and wire harness ties to get access to the area of the cable that has damage.
- (12) Find the location on the damaged cable to put the cable splice.Make sure that the location of the splice is in a permitted location; refer to Subject 20-23-15.
- (13) Cut the cable.
  - Make sure that area of the cable with damage is fully removed.
- (14) Clean the end of the cable with solvent and a wiper.Make sure to clean a minimum of 12.0 inches (305 millimeters) from the end of the cable.
- (15) Prepare the end of the damaged cable.
  - (a) Remove 4.0 inches (102 millimeters) of the jacket from the end of the cable. Refer to Figure 4.



2447854 S00061544819 V1

# JACKET REMOVAL Figure 4

- (b) Remove the necessary length of shield to make the distance from the end of the jacket to the end of the shield equal to 0.75 inch (19 millimeters). Refer to Figure 4.
- (c) Remove the necessary length of the component wire to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 5.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447855 S00061544820 V1

## CABLE PREPARATION Figure 5

- (16) Do Step 4.A.(15) again for one end of the new length of cable.
- (17) Put the mechanical ferrules on the cables.
  - (a) Put the inner and outer ferrules on the end of each cable in this sequence:
    - The outer ferrule
    - The inner ferrule.
  - (b) Move the outer ferrules back on the cable away from the splice area.
- (18) Install the inner ferrule on the end of the cable.
  - (a) Push the inner ferrule forward on the cable until the forward end of the inner ferrule is aligned with the end of the jacket. Refer to Figure 6.



2447860 S00061544821\_V1

# INSTALLATION OF THE INNER FERRULE Figure 6

- (b) Crimp the inner ferrule.
- (19) Fold the shield back on the inner ferrule.

Make sure that:

- · The shield is smooth
- The strands are symmetrical around the circumference of the ferrule.
- (20) Do Step 4.A.(18) through Step 4.A.(19) again for each inner ferrule on each cable.
- (21) Put the fire resistant sleeves on the component wire in this sequence:



## **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- The inner sleeve
- The outer sleeve.

Refer to Figure 7.

Make sure that:

- The sleeve is expanded
- The length of the sleeve is sufficient to extend farther than each end of the splice.



2447856 S00061544822\_V1

# WIRE PREPARATION Figure 7

- (22) Remove 0.25 inch (6 millimeters) to 0.28 inch (7 millimeters) of insulation from the end of the component wire. Refer to Figure 7.
- (23) Put the new length of cable in its position for the assembly of the cable splice.
- (24) Assemble a splice of the each component wire. Refer to Figure 8.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447853 S00061544823 V1

# ASSEMBLY OF THE CONDUCTOR SPLICE Figure 8

- (a) Put a conductor in each end of the splice.
  - Make sure all of the strands are in the crimp barrel.
- (b) Crimp the splice.
- (c) Lightly pull each conductor to make sure that they are held tightly in the splice.
- (d) Move the inner fire resistant sleeve on the splice.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (e) Move the outer fire resistant sleeve on the inner sleeve.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (f) Assemble a wire harness tie on each end of the sleeves. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (25) Wind a layer of shield tape material on the splice area. Refer to Figure 8.

Make sure that the layer of shield tape material:

- Starts at the end of the folded back shield on one end of the splice assembly
- Ends at the end of the folded back shield on the other end of the splice assembly
- Makes a 0.5 inch (13 millimeters) overlap.
- (26) Move the outer ferrule into its position on the inner ferrule.
- (27) Crimp the outer ferrule.
- (28) Remove the shield tape material that extends farther than the rear end of each outer ferrule.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (29) Tightly wind a layer of polyimide tape on the splice assembly. Refer to Figure 9.
  - Make sure that the layer of tape:
    - Starts a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at one end of the splice assembly
    - Stops a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at the other end of the splice assembly
    - Makes a 50 percent overlap.



2447840 S00061544824 V1

## INSTALLATION OF THE LAYERS OF POLYIMIDE TAPE Figure 9

- (30) Tightly wind a second layer of polyimide tape on the splice assembly. Refer to Figure 9. Make sure that the layer of tape:
  - Is in the opposite direction of the first layer of tape
  - Starts a minimum of 0.5 inch (13 millimeters) from one end of the first layer of tape
  - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the first layer of tape
  - · Makes a 50 percent overlap.
- (31) Tightly wind a layer of PTFE tape on the splice assembly. Refer to Figure 10.

Make sure that the layer of tape:

- Starts a minimum of 0.5 inch (13 millimeters) from the one end of the layer of the polyimide tape
- Stops a minimum of 0.5 inch (13 millimeters) from the other end of the layer of polyimide tape
- Makes a 50 percent overlap.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447852 S00061544825 V1

## INSTALLATION OF THE LAYERS OF PTFE TAPE Figure 10

(32) Tightly wind a second layer of PTFE tape on the splice assembly. Refer to Figure 10.

Make sure that the layer of tape:

- Is in the opposite direction of the first layer of PTFE tape
- Starts a minimum of 1.0 inch (25 millimeters) from one end of the first layer of PTFE tape
- Stops a minimum of 1.0 inch (25 millimeters) from the other end of the first layer of PTFE tape
- Makes a 50 percent overlap.
- (33) Assemble a wire harness tie approximately 1 inch (25 millimeters) from each end of the splice assembly. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (34) Put the wire harness in its initial configuration.
- (35) Do a wire continuity check of the component wires in the cable. Refer to Paragraph 5.A.
- (36) Do an insulation resistance check of the component wires in the cable. Refer to Paragraph 5.B.
- B. Class 1 Cable New Length of Cable Between the Connectors

For the conditions that are applicable for:

- The damage and repair of shielded cables, refer to Subject 20-23-15
- The repair of a cable with a splice, refer to Paragraph 1.B.

CAUTION: REPAIR OF A CABLE WITH A SPLICE IS A TEMPORARY REPAIR. THE CABLE MUST BE REPLACED WHEN THE SUBSEQUENT, SCHEDULED ENGINE MAINTENANCE IS DONE.

**NOTE:** The procedure to assemble a splice with a new length of cable with the connector on the end is a satisfactory alternative to this procedure. Refer to Paragraph 4.A.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447887 S00061544826 V1

# SPLICE WITH A NEW LENGTH OF CABLE BETWEEN THE CONNECTORS Figure 11

Refer to Figure 11.

(1) Find the cable part number. Refer to the WDM.

NOTE: For alternative cables, refer to Subject 20-23-03.

(2) Make a selection of a wiper from Table 12.

**NOTE:** An equivalent wiper is a satisfactory alternative.

(3) Make a selection of a solvent from Table 8.

**NOTE:** An equivalent solvent is a satisfactory alternative.

(4) Make a selection of a shield tape material from Table 10.

**NOTE:** An equivalent shield tape material is a satisfactory alternative.

- (5) Make a selection of these tapes from Table 9:
  - A polyimide tape
  - · A PTFE tape.

**NOTE:** An equivalent tape is a satisfactory alternative.

- (6) Make a selection these fire resistant sleeves from Table 11:
  - · An inner sleeve
  - · An outer sleeve.

**NOTE:** An equivalent sleeve is a satisfactory alternative.

- (7) Make a selection of four inner ferrules and four outer ferrules from Table 5.
- (8) Make a selection of a insulation removal tool from Table 13.
- (9) Make a selection of a ferrule crimp tool from Table 14.
- (10) Make a selection of a splice crimp tool from Table 15.
- (11) Remove the necessary wire harness support clamps and wire harness ties to get access to the area of the cable that has damage.
- (12) Find the location on the damaged cable to put the cable splice.

Make sure that the location of the splice on each end of the splice assembly is in a permitted location; refer to Subject 20-23-15.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (13) Cut the cable on each side of the area with damage.
- (14) Clean the ends of the cable with solvent and a wiper.Make sure to clean a minimum of 12.0 inches (305 millimeters) from the end of the cable.
- (15) Prepare the ends of the damaged cable and the new length of cable.
  - (a) Remove 4.0 inches (102 millimeters) of the jacket from the end of the cable. Refer to Figure 12.



2447854 S00061544819 V1

# JACKET REMOVAL Figure 12

- (b) Remove the necessary length of shield to make the distance from the end of the jacket to the end of the shield equal to 0.75 inch (19 millimeters). Refer to Figure 12.
- (c) Remove the necessary length of the component wire to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 13.



2447855 S00061544820\_V1

# CABLE PREPARATION Figure 13

- (d) Do Step (a) through Step (c) again for the other end of the damaged cable and the ends of the new length of cable.
- (16) Put the mechanical ferrules on the cables.
  - (a) Put an inner and outer ferrule on the end of each cable in this sequence:
    - · The outer ferrule
    - The inner ferrule.
  - (b) Move the outer ferrules back on the cables away from the splice area.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (17) Install the inner ferrule on the end of the cable.
  - (a) Push the inner ferrule forward on the cable until the forward end of the inner ferrule is aligned with the end of the jacket. Refer to Figure 14.



2447860 S00061544821 V1

# INSTALLATION OF THE INNER FERRULE Figure 14

- (b) Crimp the inner ferrule.
- (18) Fold the shield back on the inner ferrule.

Make sure that:

- · The shield is smooth
- The strands are symmetrical around the circumference of the ferrule.
- (19) Do Step 4.B.(17) through Step 4.B.(18) again for each inner ferrule on each cable.
- (20) Put necessary length of fire resistant sleeves on the component wire in this sequence:
  - The outer sleeve
  - The inner sleeve.

Refer to Figure 15.

Make sure that:

- · The sleeve is expanded
- The length of the sleeve is sufficient extend farther than each end of the splice.



2447856 S00061544822\_V1

WIRE PREPARATION Figure 15



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (21) Remove 0.25 inch (6 millimeters) to 0.28 inch (7 millimeters) of insulation from the end of the component wire. Refer to Figure 15.
- (22) Put the new length of cable in its position for the cable splice.
- (23) Assemble a splice of the component wire. Refer to Figure 16.



2447853 S00061544823\_V1

# ASSEMBLY OF THE CONDUCTOR SPLICE Figure 16

- (a) Put a conductor in each end of the splice.
  - Make sure that all of the strands are in the crimp barrel.
- (b) Crimp the splice.
- (c) Lightly pull each conductor to make sure that they are held tightly in the splice.
- (d) Move the inner fire resistant sleeve on the splice.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (e) Move the outer fire resistant sleeve on the inner sleeve.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (f) Assemble a wire harness tie on each end of the sleeves. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (24) Wind a layer of shield tape material on the splice area. Refer to Figure 16.

Make sure that the layer of shield tape material:

- · Starts at the end of the folded back shield on one end of the splice
- Ends at the end of the folded back shield on the other end of the splice assembly
- · Makes a 0.5 inch (13 millimeters) overlap.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (25) Move the outer ferrule into its position on the inner ferrule.
- (26) Crimp the outer ferrule.
- (27) Remove the shield tape material that extends farther than the rear end of each outer ferrule.
- (28) Tightly wind a layer of polyimide tape on the splice assembly. Refer to Figure 17.

Make sure that the layer of tape:

- Starts a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at one end of the splice assembly
- Stops a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at the other end of the splice assembly
- Makes a 50 percent overlap.



2447840 S00061544824 V1

# INSTALLATION OF THE LAYERS OF POLYIMIDE TAPE Figure 17

- (29) Tightly wind a second layer of polyimide tape on the splice assembly. Refer to Figure 17.
  Make sure that the layer of tape:
  - Is in the opposite direction of the first layer of tape
  - Starts a minimum of 0.5 inch (13 millimeters) from one end of the first layer of tape
  - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the first layer of tape
  - Makes a 50 percent overlap.
- (30) Tightly wind a layer of PTFE tape on the splice assembly. Refer to Figure 18.

Make sure that the layer of tape:

- Starts a minimum of 0.5 inch (13 millimeters) from the end of the layer of polyimide tape at one end of the splice assembly
- Stops a minimum of 0.5 inch (13 millimeters) from the end of the polyimide tape at the other end of the splice assembly
- Makes a 50 percent overlap.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447852 S00061544825\_V1

## INSTALLATION OF THE LAYERS OF PTFE TAPE Figure 18

(31) Tightly wind a second layer of PTFE tape on the splice assembly. Refer to Figure 18.

Make sure that the layer of tape:

- Is in the opposite direction of the first layer of PTFE tape
- Starts a minimum of 1.0 inch (25 millimeters) from one end of the first layer of PTFE tape
- Stops a minimum of 1.0 inch (25 millimeters) from the other end of the first layer of PTFE tape
- Makes a 50 percent overlap.
- (32) Assemble a wire harness tie approximately 1 inch (25 millimeters) from each end of the splice assembly. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (33) Put the wire harness in its initial configuration.
- (34) Do a wire continuity check of the component wires in the cable. Refer to Paragraph 5.A.
- (35) Do an insulation resistance of the component wires in the cable. Refer to Paragraph 5.B.
- C. Class 2 Cable New Length of Cable with the Connector on the End

For the conditions that are applicable for:

- The damage and repair of shielded cables, refer to Subject 20-23-15
- The repair of a cable with a splice, refer to Paragraph 1.B.

**CAUTION:** REPAIR OF A CABLE WITH A SPLICE IS A TEMPORARY REPAIR. THE CABLE MUST BE REPLACED WHEN THE SUBSEQUENT, SCHEDULED ENGINE MAINTENANCE IS DONE.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447851 S00061544818 V1

## SPLICE WITH A NEW LENGTH OF CABLE WITH THE CONNECTOR ON THE END Figure 19

Refer to Figure 19.

(1) Find the cable part number. Refer to the WDM.

NOTE: For alternative cables, refer to Subject 20-23-03.

(2) Make a selection of a wiper from Table 12.

**NOTE:** An equivalent wiper is a satisfactory alternative.

(3) Make a selection of a solvent from Table 8.

**NOTE:** An equivalent solvent is a satisfactory alternative.

(4) Make a selection of a shield tape material from Table 10.

**NOTE:** An equivalent shield tape material is a satisfactory alternative.

- (5) Make a selection of these tapes from Table 9:
  - A polyimide tape
  - · A PTFE tape.

**NOTE:** An equivalent tape is a satisfactory alternative.

- (6) Make a selection these fire resistant sleeves from Table 11:
  - · An outer sleeve
  - · An inner sleeve.

**NOTE:** An equivalent sleeve is a satisfactory alternative.

- (7) Make a selection of two inner ferrules and two outer ferrules from Table 5.
- (8) Make a selection of a insulation removal tool from Table 13.
- (9) Make a selection of a ferrule crimp tool from Table 14.
- (10) Make a selection of a splice crimp tool from Table 15.
- (11) Remove the necessary wire harness support clamps and wire harness ties to get access to the area of the cable that has damage.
- (12) Find the location on the damaged cable to put the cable splice.

Make sure that the location of the splice on each end of the splice assembly is in a permitted location; refer to Subject 20-23-15.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (13) Cut the cable.
  - Make sure that area of the cable with damage is removed.
- (14) Clean the end of the cable with solvent and a wiper.Make sure to clean a minimum of 12.0 inches (305 millimeters) from the end of the cable.
- (15) Prepare the ends of the damaged cable.
  - (a) Remove 6.0 inches (152 millimeters) of the jacket from the end of the cable. Refer to Figure



2447836 S00061544827 V1

# JACKET REMOVAL Figure 20

- (b) Remove the necessary length of shield to make the distance from the end of the jacket to the end of the shield equal to 0.75 inch (19 millimeters). Refer to Figure 20.
- (c) Remove the necessary length of component wire A to make the distance from the end of the jacket to the end of the wire equal to 4.0 inches (102 millimeters). Refer to Figure 21 and Figure 22.

**NOTE**: The component wires have been given letters to help make sure that the same wires are cut to the correct length on the end of each cable.



2447872 S00061544828\_V1

COMPONENT WIRE CONFIGURATION Figure 21



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447837 S00061544829 V1

## CABLE PREPARATION Figure 22

- (d) Remove the necessary length of component wire B to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 21 and Figure 22.
- (16) Prepare the new length of cable.
  - (a) Cut the necessary length of cable.
    - Make sure that the length is 12.0 inches (305 millimeters) longer than the distance between the two ends of the damaged cable.
  - (b) Clean the ends of the cable with solvent and a wipe.
    - Make sure to clean a minimum of 12.0 inches (305 millimeters) from each end of the cable.
  - (c) Remove 6.0 inches (152 millimeters) of the jacket from the end of the cable. Refer to Figure 23.



2447836 S00061544827\_V1

### JACKET REMOVAL Figure 23

- (d) Remove the necessary length of shield to make the distance from the end of the jacket to the end of the shield equal to 0.75 inch (19 millimeters). Refer to Figure 23.
- (e) Remove the necessary length of component wire A to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 21 and Figure 24.

**NOTE:** The component wires have been given letters to help make sure that the same wires are cut to the correct length on the end of each cable.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447845 S00061544830 V1

## CABLE PREPARATION Figure 24

- (f) Remove the necessary length of component wire B to make the distance from the end of the jacket to the end of the wire equal to 4.0 inches (102 millimeters). Refer to Figure 21 and Figure 24.
- (17) Put the mechanical ferrules on the end of each cable.
  - (a) Put the ferrules on the end of the cables in this sequence:
    - The outer ferrule
    - The inner ferrule.
  - (b) Move the ferrules back on the cable away from the splice area.
- (18) Install the inner ferrule on the end of the cable.
  - (a) Push the inner ferrule forward on the cable until the forward end of the inner ferrule is aligned with the end of the jacket. Refer to Figure 25.



2447846 S00061544831 V1

# INSTALLATION OF THE INNER FERRULE Figure 25

- (b) Crimp the inner ferrule.
- (19) Fold the shield back on the inner ferrule.

Make sure that:

- The shield is smooth
- The strands are symmetrical around the circumference of the ferrule.
- (20) Do Step 4.C.(18) through Step 4.C.(19) again for the inner ferrule on each cable.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (21) Put the necessary lengths of fire resistant sleeves on the longest component wire of the new length of cable in this sequence:
  - · The outer layer
  - · The inner layer.

Refer to Figure 26.

Make sure that:

- · The sleeve is expanded
- The length of the sleeve is sufficient to extend farther than each end of the splice.



2447838 S00061544832 V1

# POSITION OF THE FIRE RESISTANT SLEEVES Figure 26

- (22) Put the necessary lengths of fire resistant sleeves on the longest component wire of the damaged cable in this sequence:
  - · The outer layer
  - · The inner layer.

Refer to Figure 26.

Make sure that:

- · The sleeve is expanded
- The length of the sleeve is sufficient to extend farther than each end of the splice.
- (23) Remove 0.25 inch (6 millimeters) to 0.28 inch (7 millimeters) of insulation from the end of each component wire. Refer to Figure 26.
- (24) Put the new length of cable in position for the assembly of the cable splice.
- (25) Assemble a splice of the each component wire. Refer to Figure 27.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447839 S00061544833 V1

# ASSEMBLY OF THE CONDUCTOR SPLICE Figure 27

- (a) Put a conductor in each end of the splice.
  - Make sure all of the strands are in the crimp barrel.
- (b) Crimp the splice.
- (c) Lightly pull each conductor to make sure that they are held tightly in the splice.
- (d) Move the inner fire resistant sleeve on the splice.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (e) Move the outer fire resistant sleeve on the inner sleeve.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (f) Assemble a wire harness tie on each end of the sleeves. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (26) Wind a layer of shield tape material on the splice area. Refer to Figure 27.

Make sure that the layer of shield tape material:

- · Starts at the end of the folded back shield on one end of the splice
- · Ends at the end of the folded back shield on the other end of the splice assembly
- Makes a 0.5 inch (13 millimeters) overlap.
- (27) Move the outer ferrule into its position on the inner ferrule.
- (28) Crimp the outer ferrule.
- (29) Remove the shield tape material that extends farther than the rear end of each outer ferrule.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (30) Tightly wind a layer of polyimide tape on the splice assembly. Refer to Figure 28. Make sure that the layer of tape:
  - Starts a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at one end of the splice assembly
  - Stops a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at the other end of the splice assembly
  - Makes a 50 percent overlap.



2447840 S00061544824 V1

## INSTALLATION OF THE LAYERS OF POLYIMIDE TAPE Figure 28

- (31) Tightly wind a second layer of polyimide tape on the splice assembly. Refer to Figure 28. Make sure that the layer of tape:
  - Is in the opposite direction of the first layer of tape
  - Starts a minimum of 0.5 inch (13 millimeters) from one end of the first layer of tape
  - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the first layer of tape
  - · Makes a 50 percent overlap.
- (32) Tightly wind a layer of PTFE tape on the splice assembly. Refer to Figure 29. Make sure that the layer of tape:
  - Starts a minimum of 0.5 inch (13 millimeters) from the end of the layer of polyimide tape
  - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the layer of polyimide tape
  - Makes a 50 percent overlap.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447852 S00061544825 V1

## INSTALLATION OF THE LAYERS OF PTFE TAPE Figure 29

- (33) Tightly wind a second layer of PTFE tape on the splice assembly. Refer to Figure 29. Make sure that the layer of tape:
  - Is in the opposite direction of the first layer of PTFE tape
  - Starts a minimum of 1.0 inch (25 millimeters) from one end of the first layer of PTFE tape
  - Stops a minimum of 1.0 inch (25 millimeters) from the other end of the first layer of PTFE tape
  - Makes a 50 percent overlap.
- (34) Assemble a wire harness tie approximately 1 inch (25 millimeters) from each end of the splice assembly. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (35) Prepare the end of the new length of cable.
  - (a) Remove necessary length of the cable jacket.
    - Make sure that the length of jacket that is removed on the new cable segment is the same as the length of jacket that is removed on the damaged cable.
  - (b) Push the shield rearward to expand it at the end of the jacket.
  - (c) Make a hole in the shield near the end of the cable jacket with a nylon tool. Refer to Figure 30.

**CAUTION:** DO NOT CUT OR CAUSE DAMAGE TO THE INSULATION OF THE WIRES. DAMAGE TO THE INSULATION CAN CAUSE A SHORT TO OCCUR.



## **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447822 S00061544808 V1

## PREPARATION OF THE HOLE IN THE SHIELD Figure 30

(d) Carefully bend the cable until the component wires can be seen in the hole. Refer to Figure 31.



2447823 S00061544809\_V1

# POSITION OF THE COMPONENT WIRES Figure 31

- (e) Pull one wire at a time through the hole in the shield.
- (f) Pull the shield tight to make a flat conductor. Refer to Figure 32.



2447824 S00061544810\_V1

# PREPARATION OF THE SHIELD GROUND WIRE Figure 32

- (g) Assemble the new contacts. Refer to Subject 20-23-37.
- (h) Remove the identification marker for each contact from the old wires.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (i) Put the identification marker for each contact on the new wires.
- (36) Disassemble the connector on the end of the damaged cable. Refer to Subject 20-23-37.
- (37) Remove the damaged cable from the wire harness clamps.
- (38) Put the wire harness in its initial configuration.
- (39) Assemble the connector. Refer to Subject 20-23-37.
- (40) Do a wire continuity check of the component wires in the cable. Refer to Paragraph 5.A.
- (41) Do an insulation resistance check of the component wires in the cable. Refer to Paragraph 5.B.

#### D. Class 2 Cable - New Length of Cable Between the Connectors

For the conditions that are applicable for:

- The damage and repair of shielded cables, refer to Subject 20-23-15
- The repair of a cable with a splice, refer to Paragraph 1.B.

CAUTION: REPAIR OF A CABLE WITH A SPLICE IS A TEMPORARY REPAIR. THE CABLE MUST BE REPLACED WHEN THE SUBSEQUENT, SCHEDULED ENGINE MAINTENANCE IS DONE.

**NOTE:** The procedure to assemble a splice with a new length of cable with the connector on the end is a satisfactory alternative to this procedure. Refer to Paragraph 4.C.



2447887 S00061544826\_V1

# SPLICE WITH A NEW LENGTH OF CABLE BETWEEN THE CONNECTORS Figure 33

Refer to Figure 33.

(1) Find the cable part number. Refer to the WDM.

**NOTE:** For alternative cables, refer to Subject 20-23-03.

(2) Make a selection of a wiper from Table 12.

**NOTE:** An equivalent wiper is a satisfactory alternative.

(3) Make a selection of a solvent from Table 8.

**NOTE:** An equivalent solvent is a satisfactory alternative.

(4) Make a selection of a shield tape material from Table 10.

**NOTE:** An equivalent shield tape material is a satisfactory alternative.

(5) Make a selection of these tapes from Table 9:



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- · A polyimide tape
- · A PTFE tape.

**NOTE:** An equivalent tape is a satisfactory alternative.

- (6) Make a selection these fire resistant sleeves from Table 11:
  - · An inner sleeve
  - · An outer sleeve.

**NOTE:** An equivalent sleeve is a satisfactory alternative.

- (7) Make a selection of four inner ferrules and four outer ferrules from Table 5.
- (8) Make a selection of a insulation removal tool from Table 13.
- (9) Make a selection of a ferrule crimp tool from Table 14.
- (10) Make a selection of a splice crimp tool from Table 15.
- (11) Remove the necessary wire harness support clamps and wire harness ties to get access to the area of the cable that has damage.
- (12) Find the location on the damaged cable to put the cable splice.
  - Make sure that the location of the splice on each end of the splice assembly is in a permitted location; refer to Subject 20-23-15.
- (13) Cut the damaged cable on each side of the area with damage.
- (14) Clean the ends of the damaged cable with solvent and a wiper.Make sure to clean a minimum of 12.0 inches (305 millimeters) from each end of the cable.
- (15) Prepare the ends of the damaged cable.
  - (a) Remove 6.0 inches (152 millimeters) of the jacket from the end of the cable. Refer to Figure



2447836 S00061544827\_V1

### JACKET REMOVAL Figure 34

(b) Remove the necessary length of shield to make the distance from the end of the jacket to the end of the shield equal to 0.75 inch (19 millimeters). Refer to Figure 34.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

(c) Remove the necessary length of component wire A to make the distance from the end of the jacket to the end of the wire equal to 4.0 inches (102 millimeters). Refer to Figure 35 and Figure 36.

**NOTE:** The component wires have been given letters to help make sure that the same wires are cut to the correct length on the end of each cable.



2447872 S00061544828\_V1

## COMPONENT WIRE CONFIGURATION Figure 35



2447837 S00061544829\_V1

# CABLE PREPARATION Figure 36

- (d) Remove the necessary length of component wire B to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 35 and Figure 36.
- (e) Do Step (a) through Step (d) again for the other end of the cable.
- (16) Prepare the new length of cable. Refer to Figure 34.
  - (a) Cut the necessary length of cable.
    - Make sure that the length is 12.0 inches (305 millimeters) longer than the distance between the two ends of the damaged cable.
  - (b) Clean the ends of the cable with solvent and a wiper.
    - Make sure to clean a minimum of 12.0 inches (305 millimeters) from each end of the cable.
  - (c) Remove 6.0 inches (152 millimeters) of the jacket from the end of the cable. Refer to Figure 37.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447836 S00061544827 V1

#### JACKET REMOVAL Figure 37

- (d) Remove the necessary length of shield to make the distance from the end of the jacket to the end of the shield equal to 0.75 inch (19 millimeters). Refer to Figure 34.
- (e) Remove the necessary length of component wire A to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 35 and Figure 38.

**NOTE:** The component wires have been given letters to help make sure that the same wires are cut to the correct length on the end of each cable.



2447845 S00061544830\_V1

# CABLE PREPARATION Figure 38

- (f) Remove the necessary length of component wire B to make the distance from the end of the jacket to the end of the wire equal to 4.0 inches (102 millimeters). Refer to Figure 35 and Figure 38.
- (g) Do Step (c) through Step (f) again for the other end of the new length of cable.
- (17) Put the mechanical ferrules on the cables.
  - (a) Put an inner and outer ferrule on the end of each cable in this sequence:
    - · The outer ferrule
    - The inner ferrule.
  - (b) Move the outer ferrules back on the cables away from the splice area.
- (18) Install the inner ferrule on the end of the cable.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

(a) Push the inner ferrule forward on the cable until the forward end of the inner ferrule is aligned with the end of the jacket. Refer to Figure 39.



2447846 S00061544831\_V1

# INSTALLATION OF THE INNER FERRULE Figure 39

- (b) Crimp the inner ferrule.
- (19) Fold the shield back on the inner ferrule.

Make sure that:

- · The shield is smooth
- The strands are symmetrical around the circumference of the ferrule.
- (20) Do Step 4.D.(18) through Step 4.D.(19) again for each inner ferrule on each cable.
- (21) Put necessary length of fire resistant sleeves on the component wire of the new length of cable in this sequence:
  - The outer sleeve
  - The inner sleeve.

Refer to Figure 40.

Make sure that:

- · The sleeve is expanded
- The length of the sleeve is sufficient extend farther than each end of the splice.



2447838 S00061544832\_V1

# POSITION OF THE FIRE RESISTANT SLEEVES Figure 40



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (22) Put necessary length of fire resistant sleeves on the component wire of the damaged cable in this sequence:
  - The outer sleeve
  - The inner sleeve.

Refer to Figure 40.

Make sure that:

- · The sleeve is expanded
- The length of the sleeve is sufficient extend farther than each end of the splice.
- (23) Remove 0.25 inch (6 millimeters) to 0.28 inch (7 millimeters) of insulation from the end of the component wire. Refer to Figure 40.
- (24) Put the new length of cable in its position for the assembly of the cable splice.

Make sure that:

- The component wires on the new length of cable are aligned with the same color of the component wires of the damaged cable
- The shorter component wire of the new length of cable is aligned with the longer component wire of the damaged cable.
- (25) Assemble a splice of each component wire. Refer to Figure 41.



2447839 S00061544833\_V1

# ASSEMBLY OF THE CONDUCTOR SPLICE Figure 41

- (a) Put a conductor in each end of the splice.Make sure all of the strands are in the crimp barrel.
- (b) Crimp the splice.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (c) Lightly pull each conductor to make sure that they are held tightly in the splice.
- (d) Move the inner fire resistant sleeve on the splice.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (e) Move the outer fire resistant sleeve on the inner sleeve.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (f) Assemble a wire harness tie on each end of the sleeves. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (26) Wind a layer of shield tape material on the splice area. Refer to Figure 41.

Make sure that the layer of shield tape material:

- Starts at the end of the folded back shield on one end of the splice
- Ends at the end of the folded back shield on the other end of the splice assembly
- Makes a 0.5 inch (13 millimeters) overlap.
- (27) Move the outer ferrule into its position on the inner ferrule.
- (28) Crimp the outer ferrule.
- (29) Remove the shield tape material that extends farther than the rear end of each outer ferrule.
- (30) Tightly wind a layer of polyimide tape on the splice assembly. Refer to Figure 42. Make sure that the layer of tape:
  - Starts a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at one end of the splice assembly
  - Stops a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at the other end of the splice assembly
  - Makes a 50 percent overlap.



2447840 S00061544824\_V1

# INSTALLATION OF THE LAYERS OF TAPE Figure 42

- (31) Tightly wind a second layer of polyimide tape on the splice assembly. Refer to Figure 42.
  Make sure that the layer of tape:
  - Is in the opposite direction of the first layer of tape
  - Starts a minimum of 0.5 inch (13 millimeters) from one end of the first layer of tape
  - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the first layer of tape



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- · Makes a 50 percent overlap.
- (32) Tightly wind a layer of PTFE tape on the splice assembly. Refer to Figure 43.

Make sure that the layer of tape:

- Starts a minimum of 0.5 inch (13 millimeters) from one end of the layer of polyimide tape
- Stops a minimum of 0.5 inch (13 millimeters) from the other end of layer of polyimide tape
- Makes a 50 percent overlap.



2447852 S00061544825 V1

## INSTALLATION OF THE LAYERS OF PTFE TAPE Figure 43

- (33) Tightly wind a second layer of PTFE tape on the splice assembly. Refer to Figure 43. Make sure that the layer of tape:
  - Is in the opposite direction of the first layer of PTFE tape
  - Starts a minimum of 1.0 inch (25 millimeters) from one end of the first layer of PTFE tape
  - Stops a minimum of 1.0 inch (25 millimeters) from the other end of the first layer of PTFE tape
  - Makes a 50 percent overlap.
- (34) Assemble a wire harness tie approximately 1 inch (25 millimeters) from each end of the splice assembly. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (35) Do a wire continuity check of the component wires in the cable. Refer to Paragraph 5.A.
- (36) Do an insulation resistance check of the component wires in the cable. Refer to Paragraph 5.B.
- E. Class 3 Cable New Length of Cable with the Connector on the End

For the conditions that are applicable for:

- The damage and repair of shielded cables, refer to Subject 20-23-15
- The repair of a cable with a splice, refer to Paragraph 1.B.

**CAUTION:** REPAIR OF A CABLE WITH A SPLICE IS A TEMPORARY REPAIR. THE CABLE MUST BE REPLACED WHEN THE SUBSEQUENT, SCHEDULED ENGINE MAINTENANCE IS DONE.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447851 S00061544818 V1

## SPLICE WITH A NEW LENGTH OF CABLE WITH THE CONNECTOR ON THE END Figure 44

Refer to Figure 44.

(1) Find the cable part number. Refer to the WDM.

NOTE: For alternative cables, refer to Subject 20-23-03.

(2) Make a selection of a wiper from Table 12.

**NOTE:** An equivalent wiper is a satisfactory alternative.

(3) Make a selection of a solvent from Table 8.

**NOTE:** An equivalent solvent is a satisfactory alternative.

(4) Make a selection of a shield tape material from Table 10.

**NOTE:** An equivalent shield tape material is a satisfactory alternative.

- (5) Make a selection of these tapes from Table 9:
  - A polyimide tape
  - · A PTFE tape.

**NOTE:** An equivalent tape is a satisfactory alternative.

- (6) Make a selection these fire resistant sleeves from Table 11:
  - · An inner sleeve
  - · An outer sleeve.

**NOTE:** An equivalent sleeve is a satisfactory alternative.

- (7) Make a selection of two inner ferrules and two outer ferrules from Table 5.
- (8) Make a selection of a insulation removal tool from Table 13.
- (9) Make a selection of a ferrule crimp tool from Table 14.
- (10) Make a selection of a splice crimp tool from Table 15.
- (11) Remove the necessary wire harness support clamps and wire harness ties to get access to the area of the cable that has damage.
- (12) Find the location on the damaged cable to put the cable splice.

Make sure that the location of the splice on each end of the splice assembly is in a permitted location; refer to Subject 20-23-15.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (13) Cut the cable.
  - Make sure that area with damage is on the end of the cable that is replaced.
- (14) Clean the end of the cable with solvent and a wiper.
  - Make sure to clean a minimum of 16 inches (406 millimeters) from the end of the cable.
- (15) Prepare the ends of the damaged cable.
  - (a) Remove 8.0 inches (203 millimeters) of the jacket from the end of the cable. Refer to Figure 45



2447857 S00061544834 V1

### JACKET REMOVAL Figure 45

- (b) Remove the necessary length of shield to make the distance from the end of the jacket to the end of shield equal to 0.75 inch (19 millimeters). Refer to Figure 45.
- (c) Remove the necessary length of component wire A to make the distance from the end of the jacket to the end of the wire equal to 6.0 inches (152 millimeters). Refer to Figure 46 and Figure 47.

**NOTE:** The component wires have been given letters to help make sure that the same wires are cut to the correct length on the end of each cable.



2447871 S00061544835\_V1

COMPONENT WIRE CONFIGURATION Figure 46



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447869 S00061544836 V1

## CABLE PREPARATION Figure 47

- (d) Remove the necessary length of component wire B to make the distance from the end of the jacket to the end of the wire equal to 4.0 inches (102 millimeters). Refer to Figure 46 and Figure 47.
- (e) Remove the necessary length of component wire C to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 46 and Figure 47.
- (16) Prepare the new length of cable.
  - (a) Cut the necessary length of cable.
    - Make sure that the length is 8.0 inches (203 millimeters) longer than the distance from the end of the damaged cable to the location of the connector on the end of the cable.
  - (b) Clean the ends of the cable with solvent and a wiper.
    - Make sure to clean a minimum of 16.0 inches (406 millimeters) from each end of the cable.
  - (c) Remove 8.0 inches (203 millimeters) of the jacket from the end of the cable. Refer to Figure 48.



2447857 S00061544834 V1

### JACKET REMOVAL Figure 48

(d) Remove the necessary length of shield to make the distance from the end of the jacket to the end of shield equal to 0.75 inch (19 millimeters). Refer to Figure 48.



#### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

(e) Remove the necessary length of component wire A to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 46 and Figure 49.

**NOTE:** The component wires have been given letters to help make sure that the same wires are cut to the correct length on the end of each cable.



2447858 S00061544837\_V1

## CABLE PREPARATION Figure 49

- (f) Remove the necessary length of component wire B to make the distance from the end of the jacket to the end of the wire equal to 4.0 inches (102 millimeters). Refer to Figure 46 and Figure 49.
- (g) Remove the necessary length of component wire C to make the distance from the end of the jacket to the end of the wire equal to 6.0 inches (152 millimeters). Refer to Figure 46 and Figure 49.
- (17) Put the mechanical ferrules on the end of each cable.
  - (a) Put the ferrules on the end of the cables in this sequence:
    - · The outer ferrule
    - The inner ferrule.
  - (b) Move the ferrules back on the cable away from the splice area.
- (18) Install the inner ferrule on the end of the cable.
  - (a) Push the inner ferrule forward on the cable until the forward end of the inner ferrule is aligned with the end of the jacket. Refer to Figure 50.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447861 S00061544838 V1

# INSTALLATION OF THE INNER FERRULE Figure 50

- (b) Crimp the inner ferrule.
- (19) Fold the shield back on the inner ferrule.

Make sure that:

- · The shield is smooth
- The strands are symmetrical around the circumference of the ferrule.
- (20) Do Step 4.E.(18) through Step 4.E.(19) again for the inner ferrule on each cable.
- (21) Put the necessary length of fire resistant sleeves on the longest component wire of the new cable segment in this sequence:
  - The outer sleeve
  - The inner sleeve.

Make sure that:

- · The sleeve is expanded
- The length of the sleeve is sufficient extend farther than each end of the splice.
- (22) Put the necessary length of fire resistant sleeves on the two longest component wires of the damaged cable in this sequence:
  - · The outer sleeve
  - The inner sleeve.

Make sure that:

- · The sleeve is expanded
- The length of the sleeve is sufficient extend farther than each end of the splice.
- (23) Remove 0.25 inch (6 millimeters) to 0.28 inch (7 millimeters) of insulation from the end of each component wire.
- (24) Put the new length of cable in position for the assembly of the cable splice.
- (25) Assemble a splice of each component wire. Refer to Figure 51.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447859 S00061544839 V1

# ASSEMBLY OF THE CONDUCTOR SPLICE Figure 51

- (a) Put a conductor in each end of the splice.
  - Make sure that all of the strands are in the crimp barrel.
- (b) Crimp the splice.
- (c) Lightly pull each conductor to make sure that they are held tightly in the splice.
- (d) Move the inner fire resistant sleeve on the splice.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (e) Move the outer fire resistant sleeve on the inner sleeve.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (f) Assemble a wire harness tie on each end of the sleeves. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (26) Wind a layer of shield tape material on the splice area. Refer to Figure 51.
  - Make sure that the layer of shield tape material:
    - Starts at the end of the folded back shield on one end of the splice
    - · Ends at the end of the folded back shield on the other end of the splice assembly
    - Makes a 0.5 inch (13 millimeters) overlap.
- (27) Move the outer ferrule into its position on the inner ferrule.
- (28) Crimp the outer ferrule.
- (29) Remove the shield tape material that extends farther than the rear end of each outer ferrule.



## **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (30) Tightly wind a layer of polyimide tape on the splice assembly. Refer to Figure 52. Make sure that the layer of tape:
  - Starts a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at one end of the splice assembly
  - Stops a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at the other end of the splice assembly
  - Makes a 50 percent overlap.



2447840 S00061544824 V1

# INSTALLATION OF THE LAYERS OF POLYIMIDE TAPE Figure 52

- (31) Tightly wind a second layer of polyimide tape on the splice assembly. Refer to Figure 52. Make sure that the layer of tape:
  - Is in the opposite direction of the first layer of tape
  - Starts a minimum of 0.5 inch (13 millimeters) from one end of the first layer of tape
  - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the first layer of tape
  - Makes a 50 percent overlap.
- (32) Tightly wind a layer of PTFE tape on the splice assembly. Refer to Figure 53. Make sure that the layer of tape:
  - Starts a minimum of 0.5 inch (13 millimeters) from one end of the layer of polyimide tape
  - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the layer of polyimide tape
  - · Makes a 50 percent overlap.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447852 S00061544825 V1

# INSTALLATION OF THE LAYERS OF PTFE TAPE Figure 53

(33) Tightly wind a second layer of PTFE tape on the splice assembly. Refer to Figure 53.

Make sure that the layer of tape:

- Is in the opposite direction of the first layer of PTFE tape
- Starts a minimum of 1.0 inch (25 millimeters) from one end of the first layer of PTFE tape
- Stops a minimum of 1.0 inch (25 millimeters) from the other end of the first layer of PTFE tape
- Makes a 50 percent overlap.
- (34) Assemble a wire harness tie approximately 1 inch (25 millimeters) from each end of the splice assembly. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (35) Prepare the end of the new length of cable.
  - (a) Remove necessary length of the cable jacket.
    - Make sure that the length of jacket removed on the new cable segment is the same as the length of jacket that is removed on the damaged cable segment.
  - (b) Push the shield rearward to expand it at the end of the jacket.
  - (c) Make a hole in the shield near the end of the cable jacket with a nylon tool. Refer to Figure 54.

**CAUTION:** DO NOT CUT OR CAUSE DAMAGE TO THE INSULATION OF THE WIRES. DAMAGE TO THE INSULATION CAN CAUSE A SHORT TO OCCUR.



# **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447822 S00061544808 V1

# PREPARATION OF THE HOLE IN THE SHIELD Figure 54

(d) Carefully bend the cable until the component wires can be seen in the hole. Refer to Figure 55.



2447823 S00061544809\_V1

# POSITION OF THE COMPONENT WIRES Figure 55

- (e) Pull one wire at a time through the hole in the shield.
- (f) Pull the shield tight to make a flat conductor. Refer to Figure 56.



2447824 S00061544810\_V1

# PREPARATION OF THE SHIELD GROUND WIRE Figure 56

- (g) Assemble the new contacts on the wires. Refer to Subject 20-23-37.
- (h) Remove the identification marker for each contact from the old wires.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (i) Put the identification marker for each contact on the new wires.
- (36) Disassemble the connector on the end of the damaged cable. Refer to Subject 20-23-37.
- (37) Remove the damaged cable from the wire harness clamps.
- (38) Put the wire harness in its initial configuration.
- (39) Assemble the connector. Refer to Subject 20-23-37.
- (40) Do a wire continuity check of the component wires in the cable. Refer to Paragraph 5.A.
- (41) Do an insulation resistance check of the component wires in the cable. Refer to Paragraph 5.B.

### F. Class 3 Cable - New Length of Cable Between the Connectors

For the conditions that are applicable for:

- The damage and repair of shielded cables, refer to Subject 20-23-15
- The repair of a cable with a splice, refer to Paragraph 1.B.

CAUTION: REPAIR OF A CABLE WITH A SPLICE IS A TEMPORARY REPAIR. THE CABLE MUST BE REPLACED WHEN THE SUBSEQUENT, SCHEDULED ENGINE MAINTENANCE IS DONE.

**NOTE:** The procedure to assemble a splice with a new length of cable with the connector on the end is a satisfactory alternative to this procedure. Refer to Paragraph 4.E.



2447887 S00061544826\_V1

# SPLICE WITH A NEW LENGTH OF CABLE BETWEEN THE CONNECTORS Figure 57

Refer to Figure 57.

(1) Find the cable part number. Refer to the Subject 20-23-15 and the WDM.

**NOTE:** For alternative cables, refer to Subject 20-23-03.

(2) Make a selection of a wiper from Table 12.

**NOTE:** An equivalent wiper is a satisfactory alternative.

(3) Make a selection of a solvent from Table 8.

**NOTE:** An equivalent solvent is a satisfactory alternative.

(4) Make a selection of a shield tape material from Table 10.

**NOTE:** An equivalent shield tape material is a satisfactory alternative.

(5) Make a selection of these tapes from Table 9:



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- A polyimide tape
- · A PTFE tape.

**NOTE**: An equivalent tape is a satisfactory alternative.

- (6) Make a selection these fire resistant sleeves from Table 11:
  - · An inner sleeve
  - · An outer sleeve.

**NOTE:** An equivalent sleeve is a satisfactory alternative.

- (7) Make a selection of four inner ferrules and four outer ferrules from Table 5.
- (8) Make a selection of a insulation removal tool from Table 13.
- (9) Make a selection of a ferrule crimp tool from Table 14.
- (10) Make a selection of a splice crimp tool from Table 15.
- (11) Remove the necessary wire harness support clamps and wire harness ties to get access to the area of the cable that has damage.
- (12) Find the location on the damaged cable to put the cable splice.
  - Make sure that the location of the splice on the cable is in a permitted location; refer to Subject 20-23-15.
- (13) Cut the damaged cable on each side of the area with damage.
- (14) Clean the ends of the damaged cable with solvent and a wiper.Make sure to clean a minimum of 16.0 inches (406 millimeters) from each end of the cable.
- (15) Prepare the ends of the damaged cable.
  - (a) Remove 8.0 inches (203 millimeters) of the jacket from the end of the cable. Refer to Figure 58.



2447857 S00061544834\_V1

## JACKET REMOVAL Figure 58

(b) Remove the necessary length of shield to make the distance from the end of the jacket to the end of the shield equal to 0.75 inch (19 millimeters). Refer to Figure 58.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

(c) Remove the necessary length of component wire A to make the distance from the end of the jacket to the end of the wire equal to 6.0 inches (152 millimeters). Refer to Figure 59 and Figure 60.

**NOTE:** The component wires have been given letters to help make sure that the same wires are cut to the correct length on the end of each cable.



2447871 S00061544835\_V1

# COMPONENT WIRE CONFIGURATION Figure 59



2447869 S00061544836\_V1

# CABLE PREPARATION Figure 60

- (d) Remove the necessary length of component wire B to make the distance from the end of the jacket to the end of the wire equal to 4.0 inches (102 millimeters). Refer to Figure 59 and Figure 60.
- (e) Remove the necessary length of component wire C to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 59 and Figure 60.
- (f) Do Step (a) through Step (d) again for the other end of the cable.
- (16) Prepare the length of new length of cable.
  - (a) Cut the necessary length of cable.
    - Make sure that the length is 16.0 inches (406 millimeters) longer than the distance between the two ends of the damaged cable.
  - (b) Clean the ends of the cable with solvent and a wiper.
    - Make sure to clean a minimum of 12.0 inches (305 millimeters) from each end of the cable.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

(c) Remove 8.0 inches (203 millimeters) of the jacket from the end of the cable. Refer to Figure 61.



2447857 S00061544834 V1

### JACKET REMOVAL Figure 61

- (d) Remove the necessary length of shield to make the distance from the end of the jacket to the end of the shield equal to 0.75 inch (19 millimeters). Refer to Figure 61.
- (e) Remove the necessary length of component wire A to make the distance from the end of the jacket to the end of the wire equal to 2.0 inches (51 millimeters). Refer to Figure 59 and Figure 62.

**NOTE:** The component wires have been given letters to help make sure that the same wires are cut to the correct length on the end of each cable.



2447858 S00061544837\_V1

# CABLE PREPARATION Figure 62

- (f) Remove the necessary length of component wire B to make the distance from the end of the jacket to the end of the wire equal to 4.0 inches (102 millimeters). Refer to Figure 59 and Figure 62.
- (g) Remove the necessary length of component wire C to make the distance from the end of the jacket to the end of the wire equal to 6.0 inches (152 millimeters). Refer to Figure 59 and Figure 62.
- (h) Do Step (c) through Step (f) again for the other end of the new cable segment.
- (17) Put the mechanical ferrules on the cables.
  - (a) Put an inner and outer ferrule on the end of each cable in this sequence:
    - The outer ferrule



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- The inner ferrule.
- (b) Move the outer ferrules back on the cables away from the splice area.
- (18) Install the inner ferrule on the end of the cable.
  - (a) Push the inner ferrule forward on the cable until the forward end of the inner ferrule is aligned with the end of the jacket. Refer to Figure 63.



2447861 S00061544838 V1

# INSTALLATION OF THE INNER FERRULE Figure 63

- (b) Crimp the inner ferrule.
- (19) Fold the shield back on the inner ferrule. Refer to Figure 63.

Make sure that:

- · The shield is smooth
- The strands are symmetrical around the circumference of the ferrule.
- (20) Do Step 4.F.(18) through Step 4.F.(19) again for each inner ferrule on each cable.
- (21) Put the necessary lengths of fire resistant sleeves on the longest component wire of the new length of cable in this sequence:
  - · The outer sleeve
  - · The inner sleeve.

Make sure that:

- · The sleeve is expanded
- The length of the sleeve is sufficient extend farther than each end of the splice.
- (22) Put the necessary lengths of fire resistant sleeves on the two longest component wires of the damaged cable in this sequence:
  - The outer sleeve
  - The inner sleeve.

Make sure that:

- The sleeve is expanded
- The length of the sleeve is sufficient extend farther than each end of the splice.
- (23) Remove 0.25 inch (6 millimeters) to 0.28 inch (7 millimeters) of insulation from the end each the component wire.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (24) Put the new length of cable in its position for the assembly of the cable splice.
- (25) Assemble a splice of the each component wire. Refer to Figure 64.



2447859 S00061544839\_V1

# ASSEMBLY OF THE CONDUCTOR SPLICE Figure 64

- (a) Put a conductor in each end of the splice.
  - Make sure all of the strands are in the crimp barrel.
- (b) Crimp the splice.
- (c) Lightly pull each conductor to make sure that they are held tightly in the splice.
- (d) Move the inner fire resistant sleeve on the splice.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (e) Move the outer fire resistant sleeve on the inner sleeve.
  - Make sure that the center of the sleeve is aligned with the center of the splice.
- (f) Assemble a wire harness tie on each end of the sleeves. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (26) Wind a layer of shield tape material on the splice area. Refer to Figure 64.

Make sure that the layer of shield tape material:

- · Starts at the end of the folded back shield on one end of the splice
- Ends at the end of the folded back shield on the other end of the splice assembly
- Makes a 0.5 inch (13 millimeters) overlap.
- (27) Move the outer ferrule into its position on the inner ferrule.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

- (28) Crimp the outer ferrule.
- (29) Remove the shield tape material that extends farther than the rear end of each outer ferrule.
- (30) Tightly wind a layer of polyimide tape on the splice assembly. Refer to Figure 65.
  Make sure that the layer of tape:
  - Starts a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at one end of the splice assembly
  - Stops a minimum of 0.5 inch (13 millimeters) from the rear of outer ferrule at the other end of the splice assembly
  - · Makes a 50 percent overlap.



2447840 S00061544824 V1

# INSTALLATION OF THE LAYERS OF POLYIMIDE TAPE Figure 65

- (31) Tightly wind a second layer of polyimide tape on the splice assembly. Refer to Figure 65. Make sure that the layer of tape:
  - Is in the opposite direction of the first layer of tape
  - Starts a minimum of 0.5 inch (13 millimeters) from one end of the first layer of tape
  - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the first layer of tape
  - Makes a 50 percent overlap.
- (32) Tightly wind a layer of PTFE tape on the splice assembly. Refer to Figure 66.

Make sure that the layer of tape:

- Starts a minimum of 0.5 inch (13 millimeters) from the end of the layer of polyimide tape
- Stops a minimum of 0.5 inch (13 millimeters) from the other end of the layer of polyimide tape
- Makes a 50 percent overlap.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**



2447852 S00061544825\_V1

# INSTALLATION OF THE LAYERS OF PTFE TAPE Figure 66

(33) Tightly wind a second layer of PTFE tape on the splice assembly. Refer to Figure 66.

Make sure that the layer of tape:

- Is in the opposite direction of the first layer of PTFE tape
- Starts a minimum of 1.0 inch (25 millimeters) from one end of the first layer of PTFE tape
- Stops a minimum of 1.0 inch (25 millimeters) from the other end of the first layer of PTFE tape
- Makes a 50 percent overlap.
- (34) Assemble a wire harness tie approximately 1 inch (25 millimeters) from each end of the splice assembly. Refer to Subject 20-23-30 for the procedure to assemble a wire harness tie.
- (35) Do a wire continuity check of the component wires in the cable. Refer to Paragraph 5.A.
- (36) Do an insulation resistance check of the component wires in the cable. Refer to Paragraph 5.B.

#### 5. WIRE CHECKS

### A. Wire Continuity Check

- (1) Find the wire termination data. Refer to the WDM.
- (2) Disconnect each connector on the circuit that must have a wire continuity check.

CAUTION: EACH CONNECTOR ON THE CIRCUIT THAT MUST HAVE A TEST MUST BE DISCONNECTED. IF THE CONNECTORS ARE NOT DISCONNECTED, UNSATISFACTORY RESISTANCE INDICATIONS OR DAMAGE TO THE CONNECTOR CAN OCCUR.

(3) Measure the resistance on all wires.

Make sure that each circuit has continuity from one end of the wire to the other end of the wire.

CAUTION: DO NOT BEND OR PUT STRESS ON THE CONTACTS. DAMAGE TO THE CONNECTOR OR THE CONTACTS CAN OCCUR.



### **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

#### B. Insulation Resistance Check

(1) Make a selection of a multimeter.

WARNING: DO NOT USE A MEGOHMETER FOR THE INSULATION RESISTANCE TEST OF THE ON-WING WIRING REPAIR. INJURY TO PERSONNEL OR DAMAGE TO THE AIRPLANE CAN OCCUR.

- (2) Set the meter to the 100 megohm scale.
- (3) Attach one meter test lead to the contact assembly on the connector.

**CAUTION:** DO NOT BEND OR PUT STRESS ON THE CONTACTS. DAMAGE TO THE CONNECTOR OR THE CONTACTS CAN OCCUR.

(4) Attach the other meter test lead to a contact assembly on a wire that does not connect to the same circuit.

**CAUTION:** DO NOT BEND OR PUT STRESS ON THE CONTACTS. DAMAGE TO THE CONNECTOR OR THE CONTACTS CAN OCCUR.

(5) Read the meter.

Make sure that the resistance is a minimum of 100 megohm.

- (6) Do Step 5.B.(3) through Step 5.B.(5) for each contact in the connector.
- (7) Attach the one meter test lead to the backshell.
- (8) Attach the other meter test lead to the contact assembly on the wire that must have a test.

**CAUTION:** DO NOT BEND OR PUT STRESS ON THE CONTACTS. DAMAGE TO THE CONNECTOR OR THE CONTACTS CAN OCCUR.

(9) Read the meter.

Make sure that the resistance is a minimum of 100 megohm.

(10) Do Step 5.B.(8) through Step 5.B.(9) for each wire that must have a test.

### 6. APPROVED TOOL SUPPLIERS

### A. Ferrule Crimp Tools

Table 16
MECHANICAL FERRULE CRIMP TOOL SUPPLIERS

| Crimp Tool  | Supplier |
|-------------|----------|
| M22520/5-01 | QPL      |
| M22520/5-19 | QPL      |
| M22520/5-35 | QPL      |
| M22520/5-37 | QPL      |
| M22520/5-39 | QPL      |
| M22520/5-41 | QPL      |



# **RB 211 TRENT 800 POWER PLANT: REPAIR OF SHIELDED CABLES**

# Table 16 MECHANICAL FERRULE CRIMP TOOL SUPPLIERS (Continued)

| Crimp Tool  | Supplier |
|-------------|----------|
| M22520/5-43 | QPL      |
| M22520/5-45 | QPL      |
| M22520/5-47 | QPL      |



# **RB 211 TRENT 800 POWER PLANT: REPAIR OF ALTERNATOR LEAD WIRES**

# **TABLE OF CONTENTS**

| PARAGRAPH |       | PAGE                   |   |
|-----------|-------|------------------------|---|
| 1.        | GENER | RAL DATA               | 2 |
|           | A.    | Applicable Conditions  | 2 |
| 2.        | ALTER | NATOR LEAD WIRE REPAIR | 2 |
|           | A.    | Cable Jacket Repair    | 2 |



### RB 211 TRENT 800 POWER PLANT: REPAIR OF ALTERNATOR LEAD WIRES

### 1. GENERAL DATA

#### A. Applicable Conditions

For the conditions that are applicable to the data of this Subject, refer to Subject 20-23-00.

### 2. ALTERNATOR LEAD WIRE REPAIR

### A. Cable Jacket Repair

For the conditions that are applicable for this procedure, refer to Subject 20-23-15.

# Table 1 SOLVENTS

| Description        | Specification | Supplier            |
|--------------------|---------------|---------------------|
| Alcohol, Isopropyl | TT-I-735      | An available source |

# Table 2 TAPES

| Description             | Part Number | Supplier |
|-------------------------|-------------|----------|
| Polyimide, 1 inch width | Scotch 62   | 3M       |
| PTFE, 1 inch width      | Scotch 92   | 3M       |

# Table 3 NECESSARY TOOLS

| Description       | Part Number  | Supplier       |
|-------------------|--------------|----------------|
| Disposable Tissue | Kimwipe 7105 | Kimberly-Clark |

(1) Make a selection of a solvent from from Table 1.

**NOTE:** An equivalent solvent is a satisfactory alternative.

(2) Make a selection of a wiper from Table 3.

**NOTE:** An equivalent wiper is a satisfactory alternative.

- (3) Make a selection of these tapes from Table 2:
  - · A polyimide tape
  - · A PTFE tape.

**NOTE:** An equivalent tape is a satisfactory alternative.

- (4) Remove the necessary wire harness support clamps and wire harness ties to get access to the area of the wire that has damage.
- (5) Clean the area of the cable that has damage with solvent and a wiper. Refer to Figure 1.

  Make sure to clean a minimum of 3.0 inches (75 millimeters) on each side of the damage.



### RB 211 TRENT 800 POWER PLANT: REPAIR OF ALTERNATOR LEAD WIRES



2447844 S00061544844 V1

# AREA TO CLEAN Figure 1

- (6) Dry the solvent with a wiper.
- (7) Wind one layer of polyimide tape on the area with damage. Refer to Figure 2.

Make sure that the layer of tape:

- Starts a minimum of 1.0 inch (25 millimeters) from one side of the damage
- Stops a minimum of 1.0 inch (25 millimeters) from the other side of the damage
- · Makes a 20 percent overlap.



2447835 S00061544816 V1

# INSTALLATION OF THE FIRST LAYER OF TAPE Figure 2

- (8) Wind one layer of PTFE tape on the polyimide tape. Refer to Figure 2.
  - Make sure that the layer of tape:
    - Is in the opposite direction of the first layer of tape
    - Starts a minimum of 0.5 inch (13 millimeters) from one end of the first layer of tape
    - Stops a minimum of 0.5 inch (13 millimeters) from the other end of the first layer of tape
    - · Makes a 20 percent overlap.
- (9) Assemble a wire harness tie on each end of the second layer of tape. Refer to Subject 20-23-30.



# RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY

## **TABLE OF CONTENTS**

| PAR | AGRAPH          |                                                                                          | PAGE |
|-----|-----------------|------------------------------------------------------------------------------------------|------|
| 1.  | I. GENERAL DATA |                                                                                          |      |
|     | A.              | Applicable Conditions                                                                    | 2    |
| 2.  | WIRE I          | HARNESS DISASSEMBLY                                                                      | 2    |
|     | A.              | Replacement of a Damaged Cable                                                           | 2    |
| 3.  | WIRE I          | HARNESS ASSEMBLY                                                                         | 2    |
|     | A.              | General Conditions                                                                       | 2    |
|     | B.              | Wire Harness Tie Materials                                                               | 3    |
|     | C.              | Assembly of a Wire Harness Tie                                                           | 3    |
|     | D.              | Assembly of a Wire Harness Tie Where a Wire Harness Goes Across a Different Wire Harness | 6    |
|     | E.              | Assembly of a Wire Harness Tie at a Junction                                             | 8    |
|     | F.              | Assembly of a Wire Harness Tie at a 90 Degree Branch                                     | 11   |
|     | G.              | Assembly of a Wire Harness Tie at a Branch                                               | 12   |



### RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY

#### 1. GENERAL DATA

#### A. Applicable Conditions

For the conditions that are applicable to the data and procedures of this Subject, refer to Subject 20-23-00.

#### 2. WIRE HARNESS DISASSEMBLY

#### A. Replacement of a Damaged Cable

- (1) Loosen the first wire harness clamp that is next to the connector on one end of the wire harness.
- (2) Remove all of the wire harness ties between the first clamp and the second clamp.
- (3) Remove the damaged cable from the first clamp.
- (4) Put the new cable in its position in the first clamp.
- (5) Fully install the first clamp.
- (6) Assemble wire harness ties on the wire harness between the first clamp and the second clamp. Refer to Paragraph 3.C. for the procedure to assemble a wire harness tie.
  - Make sure that a new wire harness tie is assembled at the same position as the wire harness tie that is removed.
- (7) Loosen the second wire harness clamp.
- (8) Remove all of the wire harness ties between the second clamp and the third clamp.
- (9) Remove the damaged cable from the third clamp.
- (10) Put the new cable in its position in the second clamp.
- (11) Fully install the second clamp.
- (12) Assemble wire harness ties on the wire harness between the first clamp and the second clamp. Refer to Paragraph 3.C. for the procedure to assemble a wire harness tie.
  - Make sure that a new wire harness tie is assembled at the same position as the wire harness tie that is removed.
- (13) Do Step 2.A.(7) through Step 2.A.(9) again for each clamp location until the damaged cable is fully removed and the new cable is fully installed.
  - Make sure that a new wire harness tie is assembled at the same position as the wire harness tie that is removed.

#### 3. WIRE HARNESS ASSEMBLY

### A. General Conditions

These conditions are applicable for the location of a wire harness tie:

- A replacement wire harness tie must be assembled at the same location as the initial wire harness tie that was removed
- A wire harness tie must be assembled at a maximum distance of 2 inches (51 millimeters) from an adjacent wire harness tie.

These conditions are applicable for the assembly of a wire harness tie:

All wires must be parallel before the wire harness tie is assembled on the wire harness



# **RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY**

• A wire harness tie must be assembled on two or more wires or cables that are together.

#### B. Wire Harness Tie Materials

Table 1
LACING TAPE PART NUMBERS

| Part Number or Specification   | Description                                                                  | Supplier         |
|--------------------------------|------------------------------------------------------------------------------|------------------|
| BMS13-54 Type III Finish C     | Nomex, flat braid; 0.110 inch ±0.010 inch wide, 0.014                        |                  |
| Bivi313-34 Type III Fillisti C | inch ±0.003 inch thick                                                       | Western Filament |
| ESW-1900                       | Nomex, flat braid; 0.110 inch ±0.010 inch wide, 0.014 inch ±0.003 inch thick | Polamco          |
| MIL-T-43435 Type V Finish C    | Nomex, flat braid; 0.110 inch ±0.010 inch wide, 0.014 inch ±0.003 inch thick | QPL              |
| T085                           | Nomex, flat braid; 0.110 inch ±0.010 inch wide, 0.014 inch ±0.003 inch thick | Raydex/CDT       |

## C. Assembly of a Wire Harness Tie

This paragraph gives the procedure to assemble a wire harness tie when no special conditions occur. For the procedures to assemble a wire harness tie:

- Where a wire harness tie goes across a different wire harness, refer to Paragraph 3.D.
- At a junction, refer to Paragraph 3.E.
- At a 90 degree branch, refer to Paragraph 3.F.
- At a branch, refer to Paragraph 3.G.



2447879 S00061544846\_V1

ASSEMBLY OF A WIRE HARNESS TIE Figure 1



## RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY

Refer to Figure 1.

(1) Make a selection of a lacing tape from Table 1.

**NOTE:** An equivalent lacing tape is a satisfactory alternative.

(2) Make the wires parallel with a minimum number of twists.

**CAUTION:** THE WIRES OR THE CABLES MUST NOT GO ACROSS EACH OTHER. DAMAGE TO THE WIRE OR THE CABLES CAN OCCUR.

(3) Make a clove hitch knot on the wire harness. Refer to Figure 2.

<u>CAUTION</u>: DO NOT CAUSE DEFORMATION OF THE INSULATION OF THE WIRE OR THE CABLE DURING THE ASSEMBLY OF THE CLOVE HITCH. DAMAGE TO THE WIRE OR THE CABLE CAN OCCUR.



2447875 S00061544847\_V1

# CLOVE HITCH KNOT Figure 2

(4) Make a square knot on top of the clove hitch knot. Refer to Figure 3.

**CAUTION:** MAKE SURE THAT THE TIE IS NOT TOO TIGHT. DAMAGE TO THE WIRE INSULATION CAN OCCUR.



# **RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY**



2447878 S00061544849\_V1

# SQUARE KNOT Figure 3

(5) Cut each end of the lacing tape.

Make sure that the distance from the knot to the end of the lacing tape is between 0.25 inch (6 millimeters) and 0.50 inch (13 millimeters).



## RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY

D. Assembly of a Wire Harness Tie Where a Wire Harness Goes Across a Different Wire Harness



2447873 S00061544850\_V1

# CONFIGURATION OF TWO WIRE HARNESSES THAT GO ACROSS EACH OTHER Figure 4

Refer to Figure 4.

- (1) Make a selection of a lacing tape from Table 1.
- (2) Make the wires parallel with minimum of twists.

**CAUTION:** THE WIRES OR THE CABLES MUST NOT GO ACROSS EACH OTHER. DAMAGE TO THE WIRE OR THE CABLES CAN OCCUR.

(3) Assemble a clove hitch on one wire harness where the wire harnesses goes across the other wire harness. Refer to Figure 5.

<u>CAUTION</u>: DO NOT CAUSE DEFORMATION OF THE INSULATION OF THE WIRE OR THE CABLE DURING THE ASSEMBLY OF THE CLOVE HITCH. DAMAGE TO THE WIRE OR THE CABLE CAN OCCUR.



# **RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY**



2447875 S00061544847 V1

# CLOVE HITCH Figure 5

- (4) Make a figure 8 wind around the wire harnesses.
- (5) Pull the lacing tape tight.
- (6) Do Step 3.D.(4) through Step 3.D.(5) again 5 times.
- (7) Make a wind around the lacing tape between the two wire harnesses.
- (8) Pull the lacing tape tight.
- (9) Do Step 3.D.(7) through Step 3.D.(8) again 2 times.
- (10) Make a square knot. Refer to Figure 6.

<u>CAUTION</u>: MAKE SURE THAT THE TIE IS NOT TOO TIGHT. DAMAGE TO THE WIRE INSULATION CAN OCCUR.



# **RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY**



2447878 S00061544849\_V1

# SQUARE KNOT Figure 6

(11) Cut each end of the lacing tape.

Make sure that the distance from the knot to the end of the lacing tape is between 0.25 inch (6 millimeters) and 0.50 inch (13 millimeters).

## E. Assembly of a Wire Harness Tie at a Junction



2447874 S00061544851\_V1

# CONFIGURATION OF A WIRE HARNESS JUNCTION Figure 7

Refer to Figure 7.

- (1) Make a selection of a lacing tape from Table 1.
- (2) Make the wires parallel with a minimum number of twists.

**CAUTION:** THE WIRES OR THE CABLES MUST NOT GO ACROSS EACH OTHER. DAMAGE TO THE WIRE OR THE CABLES CAN OCCUR.



### RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY

(3) Assemble a clove hitch on one wire harness. Refer to Figure 8.

<u>CAUTION</u>: DO NOT CAUSE DEFORMATION OF THE INSULATION OF THE WIRE OR THE CABLE DURING THE ASSEMBLY OF THE CLOVE HITCH. DAMAGE TO THE WIRE OR THE CABLE CAN OCCUR.



2447875 S00061544847 V1

# CLOVE HITCH Figure 8

(4) Make a figure 8 wind around the wire harnesses. Refer to Figure 9.



2447868 S00061544852 V1

# FIGURE 8 WINDS OF THE LACING TAPE Figure 9

- (5) Pull the lacing tape tight.
- (6) Do Step 3.E.(4) and Step 3.E.(5) again 5 times.
- (7) Put the one end of the lacing tape through the two harnesses.
- (8) Make a wind around the lacing tape between the branches.
- (9) Pull the lacing tape tight.
- (10) Do Step 3.E.(8) through Step 3.E.(9) again 2 times.
- (11) Assemble a square knot. Refer to Figure 10.

<u>CAUTION</u>: DO NOT CAUSE DEFORMATION OF THE WIRE OR THE CABLE DURING ASSEMBLY OF THE SQUARE KNOT. DAMAGE TO THE WIRE OR CABLE CAN OCCUR.



# **RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY**



2447878 S00061544849\_V1

# SQUARE KNOT Figure 10

(12) Cut each end of the lacing tape.

Make sure that the distance from the knot to the end of the lacing tape is between 0.25 inch (6 millimeters) and 0.50 inch (13 millimeters).



### RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY

F. Assembly of a Wire Harness Tie at a 90 Degree Branch



2447864 S00061544854\_V1

# CONFIGURATION OF A 90 DEGREE WIRE HARNESS BRANCH Figure 11

Refer to Figure 11.

- (1) Make a selection of a lacing tape from Table 1.
- (2) Make the wires parallel with a minimum number of twists.

**CAUTION:** THE WIRES OR THE CABLES MUST NOT GO ACROSS EACH OTHER. DAMAGE TO THE WIRE OR THE CABLES CAN OCCUR.

- (3) Assemble a wire harness tie at the location of the branch. Refer to Paragraph 3.C. for the procedure to assemble a wire harness tie.
- (4) Move each wire to make a 90 degree branch.

Make sure that:

- Each side of the branch has an equal number of wires
- The distance between the wires on one side of the tie are a 0.75 inch (19 millimeters) minimum from wires on the other side of the tie.
- (5) Assemble a wire harness tie on the branch between 1 inch (25 millimeters) and 2 inches (51 millimeters) from the main wire harness. Refer to Paragraph 3.C. for the procedure to assemble a wire harness tie.



### RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY

### G. Assembly of a Wire Harness Tie at a Branch

This paragraph gives the procedure to assemble a wire harness tie at a branch that is not 90 degrees. For the procedure to assemble a wire harness tie at a 90 degree branch, refer to Paragraph 3.F.



2447863 S00061544855 V1

# CONFIGURATION OF A WIRE HARNESS BRANCH THAT IS NOT 90 DEGREES Figure 12

Refer to Figure 12.

- (1) Make a selection of a lacing tape from Table 1.
- (2) Make the wires parallel with a minimum number of twists.

CAUTION: THE WIRES OR THE CABLES MUST NOT GO ACROSS EACH OTHER. DAMAGE TO THE WIRE OR THE CABLES CAN OCCUR.

- (3) Assemble a wire harness tie on the main wire harness branch a maximum of 2 inches (51 millimeters) before the branch. Refer to Paragraph 3.C. for the procedure to assemble a wire harness tie.
- (4) Assemble a wire harness tie on the main wire harness a maximum of 2 inches (51 millimeters) from the location of the wire harness branch.

Refer to:

- Figure 13
- Paragraph 3.C. for the procedure to assemble a wire harness tie.
- (5) Assemble a clove hitch on the main wire harness at the location of the wire harness branch. Refer to Figure 13.



2447875 S00061544847\_V1

CLOVE HITCH Figure 13



# **RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY**

(6) Make a figure 8 wind around the wire harnesses Refer to Figure 14.



2447868 S00061544852 V1

# FIGURE 8 WINDS OF THE LACING TAPE Figure 14

- (7) Pull the lacing tape tight.
- (8) Do Step 3.G.(6) and Step 3.G.(7) again 5 times.
- (9) Put the one end of the lacing tape through the two harnesses.
- (10) Make a wind around the strands of the lacing tape between the branches.
- (11) Pull the lacing tape tight.
- (12) Do Step 3.G.(10) through Step 3.G.(11) again 2 times.
- (13) Assemble a square knot. Refer to Figure 15.

<u>CAUTION</u>: DO NOT CAUSE DEFORMATION OF THE WIRE OR THE CABLE DURING ASSEMBLY OF THE SQUARE KNOT. DAMAGE TO THE WIRE OR CABLE CAN OCCUR.



# **RB 211 TRENT 800 POWER PLANT: WIRE HARNESS DISASSEMBLY AND ASSEMBLY**



2447878 S00061544849\_V1

# SQUARE KNOT Figure 15

(14) Cut each end of the lacing tape.

Make sure that the distance from the knot to the end of the lacing tape is between 0.25 inch (6 millimeters) and 0.50 inch (13 millimeters).



# **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF TERMINAL LUGS**

# **TABLE OF CONTENTS**

| PARAGRAPH                |                 | PAGE                               |   |
|--------------------------|-----------------|------------------------------------|---|
| 1.                       | 1. GENERAL DATA |                                    | 2 |
|                          | A.              | Applicable Conditions              | 2 |
| 2. TERMINAL LUG ASSEMBLY |                 | 2                                  |   |
|                          | A.              | Assembly of Terminal Lugs          | 2 |
| 3.                       | TERMI           | NAL LUG INSTALLATION               | 4 |
|                          | A.              | Installation on a Stud             | 4 |
|                          | В.              | Installation with a Nut and a Bolt | 4 |



# **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF TERMINAL LUGS**

## 1. GENERAL DATA

### A. Applicable Conditions

For the conditions that are applicable to the data and procedures of this Subject, refer to Subject 20-23-00.

## 2. TERMINAL LUG ASSEMBLY

# A. Assembly of Terminal Lugs

# Table 1 NECESSARY MATERIALS

| Material | Specification | Description             | Supplier            |
|----------|---------------|-------------------------|---------------------|
| Tape     | A-A-59474     | TFE, Pressure Sensitive | An available source |

# Table 2 INSULATION REMOVAL TOOLS

| Wire Size | Remo        | oval Tool |
|-----------|-------------|-----------|
| (AWG)     | Part Number | Supplier  |
| 22-10     | 45-092      | ldeal     |

# Table 3 CRIMP TOOLS

| Crimp Portal Size | Crimp       | Tool     |
|-------------------|-------------|----------|
| Crimp Barrel Size | Part Number | Supplier |
| 22-16             | 46673       | AMP      |



## **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF TERMINAL LUGS**



2447862 S00061544857 V1

# TERMINAL LUG ASSEMBLY Figure 1

### Refer to Figure 1.

- Make a selection of an insulation removal tool from Table 2.
- (2) Make a selection of crimp tool from Table 3.
- (3) Make a selection of a tape from Table 1.

**NOTE:** An equivalent tape is a satisfactory alternative.

- (4) Remove 0.25 inch (6 millimeters) of the length of the insulation from the end of the wire.
- (5) Put the end of the wire in the crimp barrel of the terminal lug.Make sure that the end of the conductor can be seen at the front of the crimp barrel.
- (6) Crimp the terminal lug.
  - (a) Align the number printed on the terminal lug with the number printed on the jaws of the crimp tool.
  - (b) Put the terminal lug in the center of the jaws of the crimp tool.
  - (c) Move the crimp tool handles together until the ratchet releases.
  - (d) Pull gently on the wire to make sure that the wire is held tightly in the terminal lug.
- (7) Do a continuity test:
  - (a) Set the multimeter to the 100 ohm scale.
  - (b) Attach one meter test lead to a backshell in the wire harness.
  - (c) Insert the other meter test lead to the terminal lug.



## **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF TERMINAL LUGS**

- (d) Measure the resistance.
  - Make sure that the resistance is less than 1 ohm.
- (8) Wind two layers of tape on the crimp barrel and the wire.

### 3. TERMINAL LUG INSTALLATION

#### A. Installation on a Stud

- (1) Put the terminal lug on the stud.
- (2) If a washer is specified, put the washer on the stud.
- (3) Fully engage the threads of the nut and the threads of the stud.
- (4) Tighten the nut to the specified torque. Refer to the AMM.
- (5) Do the necessary tests. Refer to the AMM.

#### B. Installation with a Nut and a Bolt

- (1) Put the terminal lug in its position on the engine bracket.
- (2) Install the boot on the terminal lug.
- (3) If a washer is specified, put the washer on the bolt.
- (4) Put the bolt through the hole in the terminal lug and the bracket.
- (5) Tighten the nut to the specified torque. Refer to the AMM.
- (6) Do the necessary tests. Refer to the AMM.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

### **TABLE OF CONTENTS**

| PAF | PAGE |                                                        |    |
|-----|------|--------------------------------------------------------|----|
| 1.  | GENE | 2                                                      |    |
|     | A.   | Applicable Conditions                                  | 2  |
| 2.  | CONN | ECTOR DISASSEMBLY OF THE ESC() CONNECTORS              | 2  |
|     | A.   | Separation of the ESC() Plug and Receptacle            | 2  |
|     | B.   | Removal of an ESC() Receptacle from a Bracket          | 2  |
|     | C.   | Disassembly of a ESC() Plug Connector                  | 3  |
|     | D.   | Disassembly of a ESC() Receptacle Connector            | 7  |
|     | E.   | Seal Plug and Seal Rod Removal                         | 11 |
|     | F.   | Contact Removal - ESC() Rear Release Connectors        | 11 |
| 3.  | CONN | ECTOR DISASSEMBLY OF THE CA66279-106 CONNECTOR         | 12 |
|     | A.   | Separation of the CA66279-106 Plug and the Receptacle  | 12 |
|     | B.   | Disassembly of a CA66279-106 Plug Connector            | 13 |
|     | C.   | Contact Removal - CA66279-106 Front Release Connectors | 14 |
| 4.  | CONN | ECTOR ASSEMBLY OF THE ESC() CONNECTOR                  | 15 |
|     | A.   | ESC() Contact Assembly                                 | 15 |
|     | B.   | ESC() Contact Insertion                                | 19 |
|     | C.   | Seal of an Empty Contact Cavity                        | 20 |
|     | D.   | ESC() Backshell Assembly                               | 20 |
| 5.  | CONN | ECTOR ASSEMBLY OF THE CA66279-106 CONNECTOR            | 21 |
|     | A.   | CA66279-106 Contact Assembly                           | 21 |
|     | B.   | CA66279-106 Contact Insertion                          | 24 |
|     | C.   | CA66279-106 Backshell Assembly                         | 25 |
| 6.  | WIRE | CHECKS                                                 | 25 |
|     | A.   | Wire Continuity Check                                  | 25 |
|     | B.   | Insulation Resistance Check                            | 26 |
| 7.  | CONN | ECTOR INSTALLATION OF THE ESC() CONNECTOR              | 27 |
|     | A.   | ESC() Receptacle Installation in a Bracket             | 27 |
|     | B.   | Connection of the ESC() Plug and Receptacle            | 28 |
| 8.  | CONN | ECTOR INSTALLATION OF THE CA66279-106 CONNECTOR        | 29 |
|     | A.   | Connection of the CA66279-106 Plug and a Receptacle    | 29 |



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

#### 1. GENERAL DATA

### A. Applicable Conditions

For the conditions that are applicable to the data and procedures of this Subject, refer to Subject 20-23-00.

### 2. CONNECTOR DISASSEMBLY OF THE ESC() CONNECTORS

#### A. Separation of the ESC() Plug and Receptacle

**NOTE:** If disassembly of the backshell of the plug is necessary, the plug must stay connected to the receptacle.

Table 1
NECESSARY TOOLS

| Tool             | Part Number | Supplier |
|------------------|-------------|----------|
|                  | BT-SJ-468   | Daniels  |
| Pliers, Soft Jaw | TG69        | Daniels  |
|                  | 1909        | Glenair  |

- (1) Make a selection of pliers from Table 1.
- (2) Disengage the threads of the coupling ring of the plug connector and the receptacle with the pliers.
- (3) Pull the plug from the receptacle.

### B. Removal of an ESC() Receptacle from a Bracket

**NOTE:** If disassembly of the backshell of the receptacle is necessary, the receptacle must stay installed in the bracket.

Table 2
NECESSARY TOOLS

| Tool                           | Part Number | Supplier            |
|--------------------------------|-------------|---------------------|
| Marker                         | Sharpie     | Sanford             |
| Screwdriver, Number 3 Phillips | -           | An available source |

- (1) Make a selection of a screwdriver from Table 2.
- (2) For a connector that has a 90 degree backshell or a 45 degree backshell:
  - (a) Make a selection of a marker from Table 2.

**NOTE**: An equivalent marker is a satisfactory alternative.

(b) Make a mark on the engine bracket on the same side as the keyway of the connector.

**NOTE:** This records the master keyway clock position on the engine bracket.

- (3) Remove the nuts and the bolts that attach the receptacle to the engine bracket.
- (4) Remove the receptacle from the engine bracket.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

### C. Disassembly of a ESC() Plug Connector

**NOTE:** For the removal of the strain relief backshell or the backshell extension, the plug must be connected to the receptacle.

Table 3
NECESSARY TOOLS

| Tool                           | Part Number | Supplier            |
|--------------------------------|-------------|---------------------|
| Marker                         | Sharpie     | Sanford             |
|                                | BT-SJ-468   | Daniels             |
| Pliers, Soft Jaw               | TG69        | Daniels             |
|                                |             | Glenair             |
| Screwdriver, Number 3 Phillips | -           | An available source |

(1) Make a selection of pliers from Table 3:

**NOTE:** An equivalent pliers is a satisfactory alternative.

(2) Make a selection of a screwdriver from Table 3:

**NOTE:** An equivalent screwdriver is a satisfactory alternative.

(3) Examine the plug and the receptacle.

Make sure that:

- The receptacle connector is attached to the engine bracket
- The plug and the receptacle are connected.
- (4) Loosen the saddle bar screws sufficiently to let the support bushing move rearward on the wire harness. Refer to Figure 1.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY



2447834 S00061544859 V1

# ESC() CONNECTOR AND BACKSHELL DISASSEMBLY Figure 1

- (5) If the saddle bars do not let the bushing move rearward on the harness, remove the screws and the saddle bars. Refer to Figure 1.
- (6) If the saddle bars are removed, put these strain relief assembly components in a safe place:
  - · The screws
  - · The washers
  - · The saddle bars.

**NOTE:** These components are necessary to assemble the backshell again.

- (7) Push the support bushing rearward on the wire harness. Refer to Figure 1.
- (8) Loosen the coupling ring of the strain relief backshell with the pliers. Refer to Figure 1.
- (9) Loosen the coupling ring of the backshell extension with the pliers. Refer to Figure 1.
  Make sure that you do not turn the backshell extension if the backshell is a 45 degree or a 90 degree backshell.

**NOTE:** The position of the angled backshell extension is the backshell clock position.

- (10) Disengage the threads of the coupling ring of the plug connector and the receptacle with the pliers. Refer to Figure 1.
- (11) Pull the plug from the receptacle.
- (12) For a 45 degree or a 90 degree backshell, record the backshell clock position. Refer to Figure 2.
  - (a) Make a selection of a marker from Table 3.

**NOTE:** An equivalent marker is a satisfactory alternative.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

(b) Make a mark on the backshell extension on the same side as the master key of the connector.



2447849 S00061544860\_V1

# THE POSITION OF THE MARK ON THE ESC() BACKSHELL EXTENSION Figure 2

**NOTE:** This records the backshell clock position on the backshell extension.

(13) Disengage the threads of the coupling ring of the strain relief backshell from the backshell extension. Refer to Figure 3.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY



2447801 S00061544861 V1

# DISASSEMBLY OF THE ESC() STRAIN RELIEF BACKSHELL Figure 3

- (14) Carefully push the strain relief backshell rearward on the wire harness. Refer to Figure 3.
- (15) Carefully cut the wire harness tie that holds the shields. Refer to Figure 3.

<u>CAUTION</u>: DO NOT CAUSE DAMAGE TO THE WIRES, CABLES OR SHIELDS OF THE WIRE HARNESS.

- (16) Push the ground ring rearward on the wire harness.
- (17) Fold the shields rearward on the wire harness.
- (18) Disengage the threads of the coupling ring of the backshell extension from the connector.
- (19) Push the backshell extension rearward on the wire harness, away from the connector.

<u>CAUTION</u>: DO NOT CAUSE DAMAGE TO THE WIRES, CABLES OR SHIELDS OF THE WIRE HARNESS.

- (20) Remove the contacts from the connector. Refer to Paragraph 2.F.
- (21) Remove these backshell components from the end of the harness:
  - The backshell extension
  - The ground ring
  - The backshell strain relief clamp
  - The support bushing.

Refer to Figure 4.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY



2447773 S00061544863 V1

# THE POSITION OF THE ESC() BACKSHELL EXTENSION, THE GROUND RING, THE STRAIN RELIEF BACKSHELL, AND THE SUPPORT BUSHING Figure 4

#### D. Disassembly of a ESC() Receptacle Connector

**NOTE:** For the removal of the strain relief backshell or the backshell extension, the receptacle must be installed in the engine bracket.

Table 4
NECESSARY TOOLS

| Tool                           | Part Number | Supplier            |
|--------------------------------|-------------|---------------------|
| Marker                         | Sharpie     | Sanford             |
|                                | TG69        | Glenair             |
| Pliers, Soft Jaw               | 1909        | Daniels             |
|                                | BT-SJ-468   | Daniels             |
| Screwdriver, Number 3 Phillips | -           | An available source |

(1) Make a selection of pliers from Table 4:

**NOTE:** An equivalent pliers is a satisfactory alternative.

(2) Make a selection of a screwdriver from Table 4:

**NOTE:** An equivalent screwdriver is a satisfactory alternative.

(3) Examine the receptacle.

Make sure that the receptacle connector is attached to the engine bracket.

(4) Loosen the saddle bar screws sufficiently to let the support bushing move rearward on the wire harness. Refer to Figure 5.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**



2447843 S00061544864 V1

# ESC() CONNECTOR AND BACKSHELL DISASSEMBLY Figure 5

- (5) If the saddle bars do not let the bushing move rearward on the harness, remove the screws and the saddle bars. Refer to Figure 5.
- (6) If the saddle bars are removed, put these strain relief assembly components in a safe place:
  - · The screws
  - The washers
  - · The saddle bars.

**NOTE:** These components are necessary to assemble the backshell again.

- (7) Push the support bushing rearward on the wire harness. Refer to Figure 5.
- (8) Loosen the coupling ring of the strain relief backshell with the pliers. Refer to Figure 5.
- (9) Loosen the coupling ring of the backshell extension with the pliers. Refer to Figure 5.
  Make sure that you do not turn the backshell extension if the backshell is a 45 degree or a 90 degree backshell.

**NOTE:** The position of the angled backshell extension is the backshell clock position.

- (10) Disengage the threads of the coupling ring of the plug connector and the receptacle with the pliers. Refer to Figure 5.
- (11) Pull the plug from the receptacle.
- (12) For a 45 degree or a 90 degree backshell, record the backshell clock position. Refer to Figure 6.
  - (a) Make a selection of a marker from Table 4.

**NOTE:** An equivalent marker is a satisfactory alternative.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

(b) Make a mark on the backshell extension on the same side as the master keyway of the connector.



2447847 S00061544865\_V1

# THE POSITION OF THE MARK ON THE ESC() BACKSHELL EXTENSION Figure 6

**NOTE:** This records the backshell clock position on the backshell extension.

- (13) Remove the receptacle from the engine bracket. Refer to Paragraph 2.B.
- (14) Disengage the threads of the coupling ring of the strain relief backshell from the backshell extension. Refer to Figure 7.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY



2447842 S00061544866 V1

# DISASSEMBLY OF THE ESC() STRAIN RELIEF BACKSHELL Figure 7

- (15) Carefully push the strain relief backshell rearward on the wire harness. Refer to Figure 7.
- (16) Carefully cut the wire harness tie that holds the shields. Refer to Figure 7.

<u>CAUTION</u>: DO NOT CAUSE DAMAGE TO THE WIRES, CABLES OR SHIELDS OF THE WIRE HARNESS.

- (17) Push the ground ring rearward on the wire harness.
- (18) Fold the shields rearward on the wire harness.
- (19) Disengage the threads of the coupling ring of the backshell extension from the connector.
- (20) Push the backshell extension rearward on the wire harness, away from the connector.

<u>CAUTION</u>: DO NOT CAUSE DAMAGE TO THE WIRES, CABLES OR SHIELDS OF THE WIRE HARNESS.

- (21) Remove the contacts from the connector. Refer to Paragraph 2.F.
- (22) Remove these backshell components from the end of the harness:
  - The backshell extension
  - The ground ring
  - The backshell strain relief clamp
  - The support bushing.

Refer to Figure 8.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY



2447773 S00061544863 V1

# THE POSITION OF THE ESC() BACKSHELL EXTENSION, THE GROUND RING, THE STRAIN RELIEF BACKSHELL, AND THE BUSHING Figure 8

#### E. Seal Plug and Seal Rod Removal

(1) Make a selection of a needle nose pair of pliers.

**CAUTION:** MAKE SURE THAT THE PLIERS HAVE SMOOTH SURFACES AND NO SHARP EDGES. PLIERS WITH A ROUGH SURFACE OR A SHARP EDGE CAN CAUSE DAMAGE TO THE REAR GROMMET.

- (2) If it is necessary, remove a plastic tie strap or a wire harness tie that is less than 6 inches from the connector.
- (3) Hold the end of the seal plug or the seal rod tightly in the jaws of the pliers.
- (4) Pull the seal plug or the seal rod from the contact cavity.

### F. Contact Removal - ESC() Rear Release Connectors

Table 5
CONTACT REMOVAL TOOLS - REAR RELEASE CONNECTORS

| Contact Size | Removal Tool | Supplier |
|--------------|--------------|----------|
| 16           | M81969/14-03 | QPL      |
| 10           | M83723/31-16 | QPL      |
|              | M81969/14-02 | QPL      |
| 20           | M81969/14-11 | QPL      |
|              | M83723/31-20 | QPL      |

- (1) Make a selection of a contact removal tool from Table 5.
- (2) Put the tip of the tool on the wire.

<u>WARNING</u>: DO NOT USE A REMOVAL TOOL THAT HAS A BENT TIP. AN INJURY CAN OCCUR.

- (3) At the rear of the connector, axially align the tool and the contact cavity at the rear of the connector.
- (4) Carefully push the tool into the contact cavity until it stops.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

Make sure that the tool stays aligned with the contact cavity.

CAUTION: DO NOT USE MORE THAN THE NECESSARY AMOUNT OF FORCE TO PUSH

THE TOOL INTO THE CONTACT CAVITY. DAMAGE TO THE CONTACT CAVITY

CAN OCCUR.

CAUTION: DO NOT TURN THE TOOL CLOCKWISE OR COUNTERCLOCKWISE WHEN IT IS

IN THE CONTACT CAVITY. DAMAGE TO THE CONTACT RETENTION CLIPS CAN

OCCUR.

(5) Hold the wire against the tool.

(6) Pull the tool and the wire out from the contact cavity at the same time.

Make sure that the tool stays aligned with the contact cavity.

(7) If the contact is not released:

(a) Carefully remove the tool.

(b) Turn the tool approximately 90 degrees.

(c) Do Step (2) through Step (6) again.

### 3. CONNECTOR DISASSEMBLY OF THE CA66279-106 CONNECTOR

### A. Separation of the CA66279-106 Plug and the Receptacle

**NOTE:** If disassembly of the backshell of the plug is necessary, the plug must stay connected to the receptacle.

Table 6
NECESSARY TOOLS

| Tool                   | Part Number | Supplier            |
|------------------------|-------------|---------------------|
| Adapter, Coupling Ring | MT0011      | Daniels             |
| Drive Extension        | -           | An available source |
| Wrench, Socket         | -           | An available source |

- (1) Make a selection of these tools from Table 6:
  - A coupling ring adapter
  - · A drive extension
  - · A socket wrench.
- (2) Disengage the threads of the coupling ring of the plug connector and the receptacle with the coupling ring adapter, the drive extension, and the socket wrench.
- (3) Pull the plug from the receptacle.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

### B. Disassembly of a CA66279-106 Plug Connector

**NOTE:** For the removal of the strain relief backshell, the plug must be connected to the receptacle and the receptacle must be installed in the bracket.

# Table 7 NECESSARY TOOLS

| Tool                           | Part Number | Supplier            |
|--------------------------------|-------------|---------------------|
|                                | BT-SJ-468   | Daniels             |
| Pliers, Soft Jaw               | TG69        | Daniels             |
|                                | 1909        | Glenair             |
| Screwdriver, Number 3 Phillips | -           | An available source |
| Adapter, Coupling Ring         | MT0011      | Daniels             |
| Drive Extension                | -           | An available source |
| Wrench, Socket                 | -           | An available source |

(1) Make a selection of pliers from Table 7:

**NOTE:** An equivalent pliers is a satisfactory alternative.

(2) Make a selection of a screwdriver from Table 7.

**NOTE:** An equivalent screwdriver is a satisfactory alternative.

- (3) Remove the saddle bar screws and the saddle bars.
- (4) Push the support bushing rearward on the wire harness.
- (5) Loosen the strain relief backshell with the pliers.
- (6) Push the strain relief backshell rearward on the wire harness. Refer to Figure 9.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**



2447832 S00061544870 V1

# BACKSHELL REMOVAL Figure 9

- (7) Make a selection of these tools from Table 7:
  - · A coupling ring adapter
  - A drive extension
  - · A socket wrench.
- (8) Disengage the threads of the coupling ring using the coupling ring adapter, the socket extension, and the socket wrench.
- (9) Pull the plug from the receptacle.
- (10) Remove the contacts from the connector. Refer to Paragraph 2.F.
- (11) Remove the strain relief backshell from the wire harness. Refer to Figure 9.

#### C. Contact Removal - CA66279-106 Front Release Connectors

Table 8
CONTACT REMOVAL TOOLS - FRONT RELEASE CA66279-106 CONNECTORS

| Engaging End | Removal Tool | Supplier   |
|--------------|--------------|------------|
|              | 294-239      | Amphenol   |
| 4            | CET-FRF-4    | ITT Cannon |
| 4            | M81969/19-04 | QPL        |
|              | MS90456-4    | QPL        |



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

### Table 8 CONTACT REMOVAL TOOLS - FRONT RELEASE CA66279-106 CONNECTORS (Continued)

| Engaging End | Removal Tool   | Supplier   |
|--------------|----------------|------------|
|              | 294-219        | Amphenol   |
| 16           | CET-FRF-16-22A | ITT Cannon |
| 10           | M81969/19-02   | QPL        |
|              | MS90456-3      | QPL        |

- (1) Make a selection of a contact removal tool from Table 8.
- (2) Axially align the tool and the contact cavity at the front face of the connector. Make sure that the plunger of the removal tool is fully retracted.
- (3) Push the tool into the contact cavity until it stops.

**CAUTION:** DO NOT USE MORE THAN THE NECESSARY AMOUNT OF FORCE TO PUSH THE TOOL INTO THE CONTACT CAVITY. DAMAGE TO THE CONTACT CAVITY CAN OCCUR.

(4) Push the plunger of the tool until the contact starts to come out of the contact cavity.

<u>CAUTION</u>: DO NOT TURN THE TOOL CLOCKWISE OR COUNTERCLOCKWISE WHEN IT IS IN THE CONTACT CAVITY. DAMAGE TO THE CONTACT RETENTION CLIPS CAN OCCUR.

- (5) Carefully pull the tool out from the contact cavity.
  Make sure that the tool stays aligned with the contact cavity.
- (6) Pull the contact out of the contact cavity from the rear of the connector.

### 4. CONNECTOR ASSEMBLY OF THE ESC() CONNECTOR

### A. ESC() Contact Assembly

# Table 9 CONTACT CRIMP TOOLS

| Wire Size | Cuiman Baural Sina | Crimp Tool             |                            |          |
|-----------|--------------------|------------------------|----------------------------|----------|
| (AWG)     | Crimp Barrel Size  | Basic Unit Part Number | <b>Locator Part Number</b> | Supplier |
| 16        | 16                 | M22520/7-01            | M22520/7-03                | Daniels  |
| 20        | 20                 | M22520/7-01            | M22520/7-02                | Daniels  |



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

# Table 10 INSULATION REMOVAL LENGTH

| Wire Size | Crimp Barrel Size | Removal Length L<br>(inch) |         | Removal Length L<br>(millimeters) |         |
|-----------|-------------------|----------------------------|---------|-----------------------------------|---------|
|           |                   | Minimum                    | Maximum | Minimum                           | Maximum |
| 20        | 20                | 0.11                       | 0.15    | 3                                 | 4       |
| 16        | 16                | 0.21                       | 0.25    | 5                                 | 6       |

- (1) Make a selection of a crimp tool from Table 9.
- (2) Assemble the crimp tool. Refer to Figure 10.

**CAUTION:** TO PREVENT DAMAGE TO THE CRIMP TOOL, THE HANDLE OF THE BASIC UNIT MUST BE IN THE OPEN POSITION WHEN THE LOCATOR IS:

- INSTALLED
- REMOVED
- · RELEASED.



2445677 S00061544872\_V1

# CONTACT CRIMP TOOL Figure 10

- (a) Remove the lock clip from the lock ring on the locator.
- (b) Put the locator in the lock plate of the basic unit.
- (c) Align the locator pins with the ring slots on the lock plate.
- (d) Push the locator into the basic unit.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

- (e) Turn the locator in a clockwise direction until it locks in its position, approximately 90 degrees.
- (f) Put the lock clip in the lock ring.
- Adjust the crimp tool.

**CAUTION:** IF THE SELECTOR KNOB OF THE BASIC UNIT IS IN AN INCORRECT POSITION WHEN THE CONTACT IS CRIMPED:

- · DAMAGE TO THE CONTACT CAN OCCUR
- UNSATISFACTORY RELIABILITY AND PERFORMANCE OF THE CONTACT ASSEMBLY CAN OCCUR.
- (a) Remove the lock clip from the lock ring hole in the selector knob.
- (b) Lift and turn the selector knob of the basic unit until the number on the knob is the same as the number on the locator data plate for the size of the wire.
- (c) Put the lock clip in the lock ring hole.
- (d) Align the number on the knob to the index mark on the basic unit.
- (e) Release the knob.
- (4) Remove the necessary length of insulation from the end of the wire.

#### Refer to:

- Figure 11
- Table 10 for the insulation removal length.



2447829 S00061544874 V1

# INSULATION REMOVAL LENGTH Figure 11

(5) Put the conductor in the crimp barrel of the contact.

Make sure that:

- · All the strands of the conductor are in the crimp barrel
- The conductor can be seen in the inspection hole
- The distance from the end of the insulation to the end of the crimp barrel is not more than 0.03 inch (1 millimeter).



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**



2447830 S00061544875 V1

# POSITION OF THE WIRE IN THE CRIMP BARREL OF THE CONTACT Figure 12

(6) Put the wire and the contact in the locator of the crimp tool. Refer to Figure 13.
Make sure that the forward end of the contact is against the bottom of the locator.



2450236 S00061544876\_V1

# ALIGNMENT OF THE WIRE, THE CONTACT, AND THE CRIMP TOOL Figure 13

(7) Crimp the contact.

Make sure that:

- · All the strands of the conductor are in the crimp barrel
- You can see the conductor in the inspection hole
- The distance from the end of the insulation to the end of the crimp barrel is not more than 0.03 inch (1 millimeter).
- (a) Close the handles of the basic unit until the ratchet is released.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

**CAUTION:** DO NOT RELEASE THE LATCH FOR THE LOCATOR WHEN THE BASIC UNIT HANDLE IS IN THE CLOSED POSITION.

- (b) Remove the contact assembly from the tool.
- (8) Hold the wire and lightly pull the contact to make sure that the contact is crimped on the conductor.

#### B. ESC() Contact Insertion

**NOTE:** If a backshell is specified, the necessary backshell components must be put on the wire harness before the insertion of the contacts into the connector. Refer to Subject 20-23-39.

Table 11
CONTACT INSERTION TOOLS - REAR RELEASE CONNECTORS

| Contact Size | Insertion Tool | Supplier |
|--------------|----------------|----------|
| 20           | M83723/31-20   | QPL      |
| 16           | M83723/31-16   | QPL      |

Table 12
CONTACT RETENTION TEST TOOLS

| Conta             |        |            | Contact Retention Test Tool |          |
|-------------------|--------|------------|-----------------------------|----------|
| Engaging End Size | Туре   | Basic Unit | Tip                         | Supplier |
| 20                | Pin    | HT250-4    | 68-020-01                   | Daniels  |
| 20                | Socket | HT250-4    | 67-020-01                   | Daniels  |
| 16                | Pin    | HT250-4    | 68-016-01                   | Daniels  |
| 16                | Socket | HT250-4    | 67-016-01                   | Daniels  |

- (1) Make a selection of an insertion tool from Table 11.
- (2) Lubricate the rear grommet of the connector with isopropyl alcohol.

<u>CAUTION</u>: DO NOT PUT THE CONNECTOR GROMMET OR CONTACT ASSEMBLY FULLY INTO THE ALCOHOL. TOO MUCH LUBRICANT CAN CAUSE DAMAGE TO THE CONNECTOR.

- (3) Put the contact assembly in the insertion tool.
- (4) At the rear of the connector, axially align the tool and the contact cavity.
- (5) Carefully push the contact into the contact cavity until it stops.
  Make sure that the tool and the contact cavity stay axially aligned.

CAUTION: DO NOT USE MORE THAN THE NECESSARY AMOUNT OF FORCE TO PUSH THE TOOL INTO THE CONTACT CAVITY. DAMAGE TO THE CONTACT RETENTION CLIPS CAN OCCUR.

CAUTION: DO NOT TURN THE TOOL CLOCKWISE OR COUNTERCLOCKWISE WHEN IT IS IN THE CONTACT CAVITY. DAMAGE TO THE CONTACT RETENTION CLIPS CAN OCCUR.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

- (6) Carefully pull the tool out of the contact cavity.
  Make sure that the tool and the contact cavity stay axially aligned.
- (7) Do a contact retention test:

**NOTE:** The retention test tool applies a known force to the contact to make sure that the connector holds the contact.

- (a) Make a selection of a contact retention test tool basic unit from Table 12.
- (b) Make a selection of a contact retention test tool tip from Table 12:
  - · A tip for a pin to test a pin contact
  - A tip for a socket to test a socket contact.
- (c) Axially align the retention test tool, the tip, and the engaging end of the contact.
- (d) Apply hand pressure with the test tool against the contact until the indicator located on the tip is aligned with the body of the test tool.

<u>CAUTION</u>: KEEP THE RETENTION TEST TOOL AXIALLY ALIGNED TO THE CONTACT. DAMAGE TO THE CONTACT CAN OCCUR.

- (e) If the contact stays locked in the contact cavity, the contact retention is satisfactory.
- (f) Do steps (7a) through (7d) again for all the contacts in the connector.
- (8) If the contact is not locked in the contact cavity:
  - (a) Pull the contact assembly out of the contact cavity.
  - (b) Do Step 4.B.(3) through Step 4.B.(7) again.

#### C. Seal of an Empty Contact Cavity

All empty contact cavities must be sealed. Refer to Subject 20-60-08.

If a stub wire is necessary, the length of the stub wire must be 4 inches to 6 inches.

### D. ESC() Backshell Assembly

- (1) Assemble the backshell. Refer to Subject 20-23-39.
- (2) Do an insulation resistance check for each wire that terminates in the connector. Refer to Paragraph 6.B.
- (3) Do a wire continuity check for each wire that terminates in the connector. Refer to Paragraph 6.A.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

### 5. CONNECTOR ASSEMBLY OF THE CA66279-106 CONNECTOR

### A. CA66279-106 Contact Assembly

# Table 13 INDENTER TYPE CRIMP TOOLS

| Wire  | Wire            |                 | Crimp Tool   |         |          |             |       |          |
|-------|-----------------|-----------------|--------------|---------|----------|-------------|-------|----------|
| Size  | Engaging<br>End | Crimp<br>Barrel | Basic Ui     | nit     | Die      | Locator     | •     | Supplier |
| (AWG) |                 |                 | Part Number  | Setting |          | Part Number | Color |          |
|       |                 |                 | 294-126      | -       | -        | -           | -     | Amphenol |
|       |                 |                 | M22520/1-01  | 6       | -        | M22520/1-02 | Blue  | QPL      |
| 16    | 16 1            | 16              | MS3191-1     | 6       | -        | MS3191-16A  | Blue  | QPL      |
|       |                 |                 | ST2220-1-Y   | 6       | -        | ST2220-1-2  | -     | Boeing   |
|       |                 |                 | WA27F        | 6       | -        | M22520/1-02 | Blue  | Daniels  |
|       |                 |                 | 400B         | -       | 414DA-8N | 4112        | -     | Pico     |
| 8     | 4               | 8               | M22520/23-01 | -       | WA23-2   | WA23-9      | -     | QPL      |
|       |                 |                 | WA23         | -       | WA23-2   | WA23-9      | -     | Daniels  |

# Table 14 HEX TYPE CRIMP TOOLS

|                    | Contac       | ct Size      |            | Crimp Tool |           |                |
|--------------------|--------------|--------------|------------|------------|-----------|----------------|
| Wire Size<br>(AWG) | Engaging End | Crimp Barral | Basic Unit | Die Set    |           | Supplier       |
| (7.11.5)           | Engaging End | Crimp Barrei | Basic Unit | Primary    | Secondary |                |
| 8                  | 4            | 8            | 13642      | ST2354-5   | 11732     | Thomas & Betts |

# Table 15 INSULATION REMOVAL LENGTH

| Wire<br>Size | Engaging<br>End | Crimp<br>Barrel | Removal Length L Removal Length L (inch) (millimeter) |         |         |         | Special Instructions          |
|--------------|-----------------|-----------------|-------------------------------------------------------|---------|---------|---------|-------------------------------|
| Size         | End             | Darrei          | Minimum                                               | Maximum | Minimum | Maximum |                               |
| 16           | 16              | 16              | 0.22                                                  | 0.28    | 6       | 7       | -                             |
| 8            | 4               | 8               | 0.50                                                  | 0.56    | 13      | 14      | Increase the O.D. of the wire |



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

# Table 16 NECESSARY MATERIALS

| Description                                                                         | Part Number | Approved Supplier                     |
|-------------------------------------------------------------------------------------|-------------|---------------------------------------|
| Tape, self-bonding silicone rubber, high temperature, 0.012 inch thick, 1 inch wide | 912-10X12   | Arlon, Silicone Technologies Division |

(1) Remove the necessary length of insulation from the end of the wire.

#### Refer to:

- Figure 14
- Table 15 for the insulation removal length.



2447829 S00061544874 V1

# INSULATION REMOVAL LENGTH Figure 14

- (2) Make a selection of a crimp tool from:
  - Table 13 for size 16 contacts
  - Table 13 or Table 14 for size 4 contacts.
- (3) Put the conductor in the crimp barrel of the contact.

#### Make sure that:

- · All the strands of the conductor are in the crimp barrel
- The conductor can be seen in the inspection hole
- The distance from the end of the insulation to the end of the crimp barrel is not more than 0.03 inch (1 millimeter).



2447830 S00061544875\_V1

# POSITION OF THE WIRE IN THE CRIMP BARREL OF THE CONTACT Figure 15



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

- (4) If the crimp tool is an indenter type crimp tool, crimp the contact.
- (5) If the crimp tool is a hex type crimp tool:
  - (a) Put the contact in the primary crimp die. Refer to Figure 16.

Make sure that the distance from the rear end of the crimp barrel to the rear edge of the die is between 0 inch (0 millimeter) and 0.03 inch (1 millimeter).



2446920 S00061544881\_V1

# POSITION OF THE CONTACT AND WIRE IN THE CRIMP TOOL DIE Figure 16

- (b) Crimp the contact with the primary crimp die.
- (c) Turn the contact 60 degrees on the longitudinal axis of the contact.
- (d) Put the crimp barrel end of the contact in the secondary crimp die. Refer to Figure 16.
  - Make sure that the distance from the rear end of the crimp barrel to the rear edge of the die is between 0 inch (0 millimeter) and 0.03 inch (1 millimeter).
- (e) Crimp the contact with the secondary crimp die.
- (f) If the contact crimp barrel has flash, do Step (c) through Step (e) again.
  - **NOTE:** Copper that can be seen on the edges of the crimp barrel is permitted.
- (6) Hold the wire and lightly pull the contact to make sure that the contact is crimped on the conductor.
- (7) To increase the outside diameter of the 8 AWG wire, make a selection of tape from Table 16.
  - **NOTE:** An equivalent tape is a satisfactory alternative.
- (8) Increase the outside diameter of the 8 AWG wire by winding 4.5 to 5.0 layers of tape around the wire.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

Make sure that:

- The distance from the forward edge of the tape to the end of the contact crimp barrel is 0.09 inches (2 millimeters) maximum
- Each layer of tape has a 100 percent overlap
- The minimum outside diameter of the wire and tape is 0.23 inch (6 millimeter) minimum.



2447833 S00061544882\_V1

# LOCATION OF THE TAPE ON THE WIRE Figure 17

#### B. CA66279-106 Contact Insertion

**NOTE:** If a backshell is specified, the necessary backshell components must be put on the wire harness before the insertion of the contacts into the connector. Refer to Subject 20-23-39.

Table 17
CONTACT INSERTION TOOLS - FRONT RELEASE CONNECTORS

| Contact Size | Insertion Tool | Supplier   |
|--------------|----------------|------------|
|              | 294-192        | Amphenol   |
| 16           | CIT-16         | ITT Cannon |
|              | M81969/17-01   | QPL        |
|              | M81969/17-04   | QPL        |
| 4            | 294-236        | Amphenol   |
| 4            | M81969/17-08   | QPL        |

- (1) Make a selection of an insertion tool from Table 17.
- (2) Lubricate the rear grommet of the connector with isopropyl alcohol.

CAUTION: DO NOT PUT THE CONNECTOR GROMMET OR CONTACT ASSEMBLY FULLY INTO THE ALCOHOL. TOO MUCH LUBRICANT CAN CAUSE DAMAGE TO THE CONNECTOR.

- (3) Put the contact assembly in the insertion tool.
- (4) At the rear of the connector, axially align the tool and the contact cavity.
- (5) Carefully push the contact into the contact cavity until it stops.
  Make sure that the tool and the contact cavity stay axially aligned.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

**CAUTION:** DO NOT USE MORE THAN THE NECESSARY AMOUNT OF FORCE TO PUSH

THE TOOL INTO THE CONTACT CAVITY. DAMAGE TO THE CONTACT

RETENTION CLIPS CAN OCCUR.

CAUTION: DO NOT TURN THE TOOL CLOCKWISE OR COUNTERCLOCKWISE WHEN IT IS

IN THE CONTACT CAVITY. DAMAGE TO THE CONTACT RETENTION CLIPS CAN

OCCUR.

(6) Carefully pull the tool out of the contact cavity.

Make sure that the tool and the contact cavity stay axially aligned.

(7) Lightly pull the wire to make sure that the contact is locked in the contact cavity.

CAUTION: DO NOT PULL THE WIRE WITH A STRONG OR A SUDDEN FORCE. THE FORCE

CAN CAUSE DAMAGE TO THE CONNECTOR OR THE CONTACT.

CAUTION: DO NOT MAKE A DENT IN THE WIRE INSULATION WITH THE FINGERNAILS.

DAMAGE TO THE WIRE INSULATION CAN CAUSE UNSATISFACTORY

PERFORMANCE OF THE WIRE.

(8) Do Step 5.B.(7) again for all the contacts in the connector.

(9) If the contact is not locked in the contact cavity:

- (a) Pull the contact assembly out of the contact cavity.
- (b) Do Step 5.B.(3) through Step 5.B.(7) again.

### C. CA66279-106 Backshell Assembly

- (1) Assemble the backshell. Refer to Subject 20-23-39.
- (2) Do an insulation resistance check for each wire that terminates in the connector. Refer to Paragraph 6.B.
- (3) Do a wire continuity check for each wire that terminates in the connector. Refer to Paragraph 6.A.

### 6. WIRE CHECKS

#### A. Wire Continuity Check

- (1) Find the wire termination data. Refer to the WDM.
- (2) Disconnect each connector on the circuit that must have a wire continuity check.

**CAUTION:** EACH CONNECTOR ON THE CIRCUIT THAT MUST HAVE A TEST MUST BE

DISCONNECTED. IF THE CONNECTORS ARE NOT DISCONNECTED, UNSATISFACTORY RESISTANCE INDICATIONS OR DAMAGE TO THE

CONNECTOR CAN OCCUR.

(3) Measure the resistance on all wires.

Make sure that each circuit has continuity from one end of the wire to the other end of the wire.

**CAUTION:** DO NOT BEND OR PUT STRESS ON THE CONTACTS. DAMAGE TO THE

CONNECTOR OR THE CONTACTS CAN OCCUR.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

#### B. Insulation Resistance Check

(1) Make a selection of a multimeter.

**WARNING:** DO NOT USE A MEGOHMETER FOR THE INSULATION RESISTANCE TEST OF THE ON-WING WIRING REPAIR. INJURY TO PERSONNEL OR DAMAGE TO THE AIRPLANE CAN OCCUR.

- (2) Set the meter to the 100 megohm scale.
- (3) Attach one meter test lead to the contact assembly on the connector.

**CAUTION:** DO NOT BEND OR PUT STRESS ON THE CONTACTS. DAMAGE TO THE CONNECTOR OR THE CONTACTS CAN OCCUR.

(4) Attach the other meter test lead to a contact assembly on a wire that does not connect to the same circuit.

**CAUTION:** DO NOT BEND OR PUT STRESS ON THE CONTACTS. DAMAGE TO THE CONNECTOR OR THE CONTACTS CAN OCCUR.

(5) Read the meter.

Make sure that the resistance is a minimum of 100 megohm.

- (6) Do Step 6.B.(3) through Step 6.B.(5) for each contact in the connector.
- (7) Attach the one meter test lead to the backshell.
- (8) Attach the other meter test lead to the contact assembly on the wire that must have a test.

<u>CAUTION</u>: DO NOT BEND OR PUT STRESS ON THE CONTACTS. DAMAGE TO THE CONNECTOR OR THE CONTACTS CAN OCCUR.

(9) Read the meter.

Make sure that the resistance is a minimum of 100 megohm.

(10) Do Step 6.B.(8) through Step 6.B.(9) for each wire that must have a test.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

### 7. CONNECTOR INSTALLATION OF THE ESC() CONNECTOR

### A. ESC() Receptacle Installation in a Bracket

# Table 18 RECEPTACLE INSTALLATION FASTENER TORQUE

| Factorian Thread Size | Fastener Torque |                 |                      |
|-----------------------|-----------------|-----------------|----------------------|
| Fastener Thread Size  | (pound-inches)  | (Newton-meters) | Connector Shell Size |
|                       |                 |                 | 08                   |
|                       |                 |                 | 10                   |
|                       | 5.0             | 0.57            | 12                   |
| 4-40                  |                 |                 | 14                   |
| 4-40                  |                 |                 | 16                   |
|                       |                 |                 | 18                   |
|                       |                 |                 | 20                   |
|                       |                 |                 | 22                   |
| 0.00                  | 10.0            | 4.40            | 24                   |
| 6-32                  | 10.0            | 1.13            | 28                   |

### Table 19 NECESSARY TOOLS

| Tool                           | Special Instructions                                          | Supplier            |
|--------------------------------|---------------------------------------------------------------|---------------------|
| Screwdriver, Number 3 Phillips | -                                                             | An available source |
| Torque                         | Tool must measure 10 inch-pounds (1.13 newton-meters) minimum | An available source |

- (1) Make a selection of these tools from Table 19.
  - A screwdriver
  - A torque tool.
- (2) For a connector that has a 90 degree backshell or a 45 degree backshell, align the keyway of the connector with the mark that was made on the engine bracket.
- (3) Put the receptacle in its installation location in the engine bracket.
- (4) Put the screws through the installation holes in the engine bracket and the installation holes in the receptacle flange.
- (5) Engage the threads of the installation nuts and the screws.
- (6) Tighten the nuts to the specified torque. Refer to Table 18.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**

### B. Connection of the ESC() Plug and Receptacle



2447803 S00061544884\_V1

# CONNECTION OF THE PLUG AND RECEPTACLE Figure 18

- (1) Align the key of the receptacle and the keyway of the plug.
  - Make sure that the contacts are correctly aligned.

Make sure that the wire harness has sufficient slack for the plug:

- · To move forward
- To make a satisfactory connection with the receptacle
- To prevent tension on the contact assemblies in the plug.
- (2) Engage the threads of the plug and the receptacle.

Make sure that the threads of the plug and receptacle are correctly engaged.

- (3) Push the plug into the receptacle.
- (4) Tighten the coupling ring with the hand.
- (5) Move the backshell from side to side and continue to tighten the coupling ring of the plug with the hand.
- (6) Tighten the coupling ring of the plug connector with the hand until you cannot see the blue line. Refer to Figure 18.

**NOTE:** If you can see the blue line on the connector, the connector is not installed correctly.



### RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY

### 8. CONNECTOR INSTALLATION OF THE CA66279-106 CONNECTOR

### A. Connection of the CA66279-106 Plug and a Receptacle

# Table 20 NECESSARY TOOLS

| Tool                   | Part Number | Supplier            |
|------------------------|-------------|---------------------|
| Adapter, Coupling Ring | MT0011      | Daniels             |
| Drive Extension        | -           | An available source |
| Wrench, Torque         | -           | An available source |

- (1) Make a selection of these tools from Table 20:
  - · A coupling ring adapter
  - · A drive extension
  - A torque wrench.
- (2) Align the key of the receptacle and the keyway of the plug.

Make sure that the contacts are correctly aligned.

Make sure that the wire harness has sufficient slack for the plug:

- · To move forward
- To make a satisfactory connection with the receptacle
- To prevent tension on the contact assemblies in the plug.
- (3) Engage the threads of the plug and the receptacle.

Make sure that the threads of the plug and receptacle are correctly engaged.

- (4) Push the plug into the receptacle.
- (5) Tighten the coupling ring with the hand.
- (6) Move the backshell from side to side and continue to tighten the coupling ring of the plug with the hand.



### **RB 211 TRENT 800 POWER PLANT: CONNECTOR DISASSEMBLY AND ASSEMBLY**



2447831 S00061544885\_V1

# CONNECTION OF THE PLUG AND RECEPTACLE Figure 19

(7) Torque the coupling ring 200 inch-pounds (23 newton-meters) to 240 inch-pounds (27 newton-meters).

**CAUTION:** DO NOT USE A METAL JAW TOOL TO TIGHTEN THE COUPLING RING OF THE CONNECTOR. DAMAGE TO THE CONNECTOR WILL OCCUR.



### RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS

### **TABLE OF CONTENTS**

| PAR | RAGRAPH | <u>!</u>                                           | PAGE |  |
|-----|---------|----------------------------------------------------|------|--|
| 1.  | GENE    | GENERAL DATA                                       |      |  |
|     | A.      | Applicable Conditions                              | 2    |  |
| 2.  | PART    | NUMBERS AND DESCRIPTION                            | 2    |  |
|     | A.      | Backshell Part Numbers                             | 2    |  |
|     | B.      | Support Bushing Part Numbers                       | 3    |  |
| 3.  | ESC B   | ACKSHELL ASSEMBLY                                  | 5    |  |
|     | A.      | Assembly of Straight ESC Backshells                | 5    |  |
|     | B.      | Assembly of 45 Degree and 90 Degree ESC Backshells | 9    |  |
|     | C.      | Strain Relief Assembly Without a Support Bushing   | 15   |  |
| 4.  | ASSE    | MBLY OF BACKSHELLS FOR CA66279-106 CONNECTORS      | 17   |  |
|     | A.      | Assembly of Backshells for CA66279-106 Connectors  | 17   |  |
|     | В.      | Standard Strain Relief Assembly                    | 18   |  |



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

### 1. GENERAL DATA

### A. Applicable Conditions

For the conditions that are applicable:

- To the data and procedures of this Subject, refer to Subject 20-23-00
- For the replacement of wiring components, refer to Subject 20-23-15.

### 2. PART NUMBERS AND DESCRIPTION

#### A. Backshell Part Numbers

Table 1
BACKSHELL PART NUMBERS

| Backshell    |               | Cumpling   |
|--------------|---------------|------------|
| Part Number  | Configuration | Supplier   |
| ESC75()      | Straight      | QPL        |
| ESC76()      | 90 Degree     | QPL        |
| ESC77()      | 45 Degree     | QPL        |
| 057-0872-000 | Straight      | ITT Cannon |

Table 2
APPROVED SUPPLIERS OF ESC STANDARD BACKSHELLS

| Standard | Approved Supplier |
|----------|-------------------|
| ESC75()  | Glenair           |
| E3C/3()  | Polamco           |
| E9C76/\  | Glenair           |
| ESC76()  | Polamco           |
| F2C77()  | Glenair           |
| ESC77()  | Polamco           |



2447820 S00061544888\_V1

# ESC75, ESC76 AND ESC77 BACKSHELL PART NUMBER STRUCTURE Figure 1



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

### **B.** Support Bushing Part Numbers

To find the ESC support bushing part numbers, refer to the Aircraft Illustrated Parts Catalog (AIPC).

**NOTE:** If the diameter of the wire harness is changed from the initial configuration, a new support bushing for the backshell strain relief can be selected from Table 3.



2447821 S00061544889\_V1

# SUPPORT BUSHING Figure 2

# Table 3 SUPPORT BUSHING PART NUMBERS

| SUPPORT BUSHING PART NUMBERS |                 |                    |                          |             |
|------------------------------|-----------------|--------------------|--------------------------|-------------|
|                              | Support Bushing |                    |                          |             |
| Shell Size                   | Dimension       | Diameter<br>(inch) | Diameter<br>(millimeter) | Part Number |
| 08                           | A               | 0.13               | 3.3                      | ESC53-20    |
|                              | В               | 0.27               | 6.9                      | ESC53-20    |
|                              | А               | 0.15               | 3.8                      | ESCE2 24    |
|                              | В               | 0.27               | 6.9                      | ESC53-21    |
|                              | А               | 0.20               | 5.1                      | ESC52 22    |
|                              | В               | 0.46               | 11.7                     | ESC53-22    |
| 10                           | А               | 0.25               | 6.4                      | ESC52 22    |
| 10                           | В               | 0.46               | 11.7                     | ESC53-23    |
|                              | А               | 0.30               | 7.6                      | ESC53-24    |
|                              | В               | 0.46               | 11.7                     | ESU03-24    |
|                              | А               | 0.25               | 6.4                      | ESC53-25    |
|                              | В               | 0.59               | 15.0                     | ESU03-25    |
| 12                           | А               | 0.30               | 7.6                      | ESC53-26    |
| 12                           | В               | 0.59               | 15.0                     | ESU03-20    |
|                              | А               | 0.35               | 8.9                      | E0052.07    |
|                              | В               | 0.59               | 15.0                     | ESC53-27    |



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

### Table 3 SUPPORT BUSHING PART NUMBERS (Continued)

|            | Support Bushing |                    |                          |             |
|------------|-----------------|--------------------|--------------------------|-------------|
| Shell Size | Dimension       | Diameter<br>(inch) | Diameter<br>(millimeter) | Part Number |
|            | A               | 0.25               | 6.4                      | FSC52 20    |
|            | В               | 0.65               | 16.5                     | ESC53-28    |
|            | A               | 0.30               | 7.6                      | ESC53-29    |
| 14         | В               | 0.65               | 16.5                     | ESC53-29    |
| 14         | A               | 0.35               | 8.9                      | ESC53-30    |
|            | В               | 0.65               | 16.5                     | ESC53-30    |
|            | A               | 0.40               | 10.2                     | ESC53-31    |
|            | В               | 0.65               | 16.5                     | ESC53-31    |
|            | A               | 0.40               | 10.2                     | ECCE2 22    |
|            | В               | 0.78               | 19.8                     | ESC53-32    |
| 16         | А               | 0.50               | 12.7                     | E0052.22    |
| 10         | В               | 0.78               | 19.8                     | ESC53-33    |
|            | А               | 0.60               | 15.2                     | ESC53-34    |
|            | В               | 0.78               | 19.8                     | ESC53-34    |
|            | A               | 0.40               | 10.2                     | ESC53-32    |
|            | В               | 0.78               | 19.8                     | ESC53-32    |
| 18         | А               | 0.50               | 12.7                     | ESC53-33    |
| 10         | В               | 0.78               | 19.8                     | ESC53-33    |
|            | A               | 0.60               | 15.2                     | ESC53-34    |
|            | В               | 0.78               | 19.8                     | ESC33-34    |
|            | A               | 0.40               | 10.2                     |             |
|            | В               | 0.98               | 24.9                     | ESC53-35    |
|            | A               | 0.50               | 12.7                     | ESC53-36    |
| 22         | В               | 0.98               | 24.9                     | E3U33-30    |
| 22         | A               | 0.60               | 15.2                     | EQ052 27    |
|            | В               | 0.98               | 24.9                     | ESC53-37    |
|            | Α               | 0.70               | 17.8                     | EQC52 20    |
|            | В               | 0.98               | 24.9                     | ESC53-38    |



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

### Table 3 SUPPORT BUSHING PART NUMBERS (Continued)

|            | Support Bushing |                    |                          |             |
|------------|-----------------|--------------------|--------------------------|-------------|
| Shell Size | Dimension       | Diameter<br>(inch) | Diameter<br>(millimeter) | Part Number |
|            | A               | 0.50               | 12.7                     | ESC53-39    |
|            | В               | 1.28               | 32.5                     | ESC53-39    |
|            | А               | 0.75               | 19.1                     | ESC53-40    |
| 24         | В               | 1.28               | 32.5                     | ESC53-40    |
| 24         | А               | 0.88               | 22.4                     | ECC52 44    |
|            | В               | 1.28               | 32.5                     | ESC53-41    |
|            | А               | 1.00               | 25.4                     | ECCE2 42    |
|            | В               | 1.28               | 32.5                     | ESC53-42    |
|            | A               | 0.75               | 19.1                     | E0050 40    |
|            | В               | 1.40               | 35.6                     | ESC53-43    |
|            | А               | 0.88               | 22.4                     | E0050 44    |
| 28         | В               | 1.40               | 35.6                     | ESC53-44    |
|            | А               | 1.00               | 25.4                     | ECCE2 45    |
|            | В               | 1.40               | 35.6                     | ESC53-45    |
|            | А               | 1.20               | 30.5                     | ESCE2 40    |
|            | В               | 1.40               | 35.6                     | ESC53-46    |

# Table 4 APPROVED SUPPLIERS OF ESC53 STANDARD SUPPORT BUSHINGS

| Part Number | Supplier |
|-------------|----------|
| ESC53()     | Dunlop   |

# 3. ESC BACKSHELL ASSEMBLY

### A. Assembly of Straight ESC Backshells

# Table 5 NECESSARY MATERIALS

| Material | Description | Supplier            |
|----------|-------------|---------------------|
| Tape     | Adhesive    | An available source |



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

# Table 6 BACKSHELL INSTALLATION TOOLS

| Tool                         | Part Number       | Supplier            |
|------------------------------|-------------------|---------------------|
| Pliers, Soft Jaw, Adjustable | BT-SJ-468         | Daniels             |
|                              | TG69              | Daniels             |
|                              | 1369              | Glenair             |
| Screwdriver                  | Number 3 Phillips | An available source |

(1) Make a selection of a tape from Table 5.

**NOTE:** An equivalent tape is a satisfactory alternative.

(2) Make a selection of pliers from Table 6.

**NOTE:** An equivalent pliers is a satisfactory alternative.

- (3) Make a selection of a screwdriver from Table 6.
- (4) If the diameter of the wire harness is not the same as the initial configuration, make a selection of a new support bushing from Table 3.

Make sure that the new support bushing is the correct size for the wire harness diameter and the diameter of the cable clamp of the strain relief backshell.

- (5) Put the necessary backshell components on the wire harness in this sequence:
  - The support bushing
  - The strain relief backshell
  - The ground ring
  - The backshell extension.

Refer to Figure 3.

Make sure that:

- The end of the strain relief backshell that has the coupling ring is pointed forward to the end
  of the wire harness
- The end of the ground ring that has the larger diameter is pointed rearward away from the end of the wire harness
- The end of the backshell extension that has the coupling ring is pointed forward to the end
  of the wire harness.



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**



2447773 S00061544863 V1

# BACKSHELL COMPONENTS ON THE WIRE HARNESS Figure 3

- (6) Install the contacts in the connector. Refer to Subject 20-23-37.
- (7) Fold the shields back on the wire harness.

Make sure that:

- The shields are symmetrical around the circumference of the wire harness
- The shields are flat against the wire harness.
- (8) Wind a layer of tape on the ends of the shields to temporarily hold the shields on the harness.
- (9) Fully engage the threads of the coupling ring of the backshell extension and the connector. Refer to Figure 4.



2447800 S00061544890\_V1

# ENGAGED THREADS OF THE BACKSHELL EXTENSION AND THE CONNECTOR Figure 4

- (10) To remove the play between the backshell extension and the connector:
  - (a) Tighten the coupling ring of the backshell extension with the hand and, at the same time, twist the backshell extension clockwise and counterclockwise approximately 1/8 inch in each direction.
  - (b) Move the backshell extension from side to side and continue to tighten the coupling ring.
  - (c) Twist the backshell extension clockwise and counterclockwise approximately 1/8 inch in each direction and fully tighten the coupling ring.
- (11) Remove the tape that holds the shields on the wire harness.
- (12) Carefully fold the shields forward on the backshell extension.



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

- (13) Push the ground ring forward into the backshell extension.
- (14) Carefully fold the shields back against the wire harness.Make sure that the shields are even and symmetrical around the ground ring.
- (15) Assemble a wire harness tie on the ends of the shields at the rear end of the ground ring. Refer to:
  - Figure 5
  - Subject 20-23-30 for the procedure to assemble a wire harness tie.



2447801 S00061544861\_V1

# POSITION OF THE WIRE HARNESS TIE ON THE ENDS OF THE SHIELDS Figure 5

- (16) Fully engage the threads of the coupling ring of the strain relief backshell and the backshell extension.
- (17) Align the center of the support bushing with the saddle bar installation screw holes in the legs of the strain relief backshell.
- (18) Align the installation screw holes of the saddle bars and the legs of the strain relief backshell.
- (19) Install the saddle bar screws.Make sure that the screws are not fully tightened.
- (20) If the connector is a receptacle, install it. Refer to Subject 20-23-37.
- (21) If the connector is a plug, connect it to the related receptacle. Refer to Subject 20-23-37.
  - **NOTE:** The receptacle must be installed before the coupling ring can be fully tightened.
- (22) Move the backshell extension from side to side and, at the same time, tighten the backshell extension coupling ring with the pliers until the pliers move on the surface of the coupling ring.



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

- (23) Move the strain relief backshell from side to side and, at the same time, tighten the strain relief backshell coupling ring with the pliers until the pliers move on the surface of the coupling ring.
- (24) Fully tighten the saddle bar screws. Refer to Figure 6.

Make sure that:

- The saddle bar screws are tight
- The saddle bars are against the legs of the strain relief backshell
- The wire harness cannot be moved in the cable clamp.



2447834 S00061544859\_V1

# FULLY ASSEMBLED BACKSHELL Figure 6

### B. Assembly of 45 Degree and 90 Degree ESC Backshells

# Table 7 NECESSARY MATERIALS

| Material | Description | Supplier            |
|----------|-------------|---------------------|
| Tape     | Adhesive    | An available source |



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

# Table 8 NECESSARY TOOLS

| Tool                         | Part Number       | Supplier            |
|------------------------------|-------------------|---------------------|
| Marker                       | Sharpie           | Sanford             |
|                              | BT-SJ-468         | Daniels             |
| Pliers, Soft Jaw, Adjustable | TG69              | Daniels             |
|                              |                   | Glenair             |
| Screwdriver                  | Number 3 Phillips | An available source |

(1) Make a selection of a tape from Table 7.

**NOTE:** An equivalent tape is a satisfactory alternative.

(2) Make a selection of a marker from Table 8.

NOTE: An equivalent marker is a satisfactory alternative.

(3) Make a selection of pliers from Table 8.

**NOTE:** An equivalent pliers is a satisfactory alternative.

- (4) Make a selection of a screwdriver from Table 8.
- (5) If the diameter of the wire harness is not the same as the initial configuration, make a selection of a new support bushing from Table 3.

Make sure that the new support bushing is the correct size for the wire harness diameter and the diameter of the cable clamp of the strain relief backshell.

(6) Make a mark on the new backshell extension in the same location as the mark on the backshell extension in the initial installation.

#### Refer to:

- Figure 7
- Subject 20-23-37 for the procedure to record the clock position of the backshell extension of the initial installation.



## **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**



2447850 S00061544891\_V1

# MARK ON THE NEW BACKSHELL EXTENSION IN THE SAME LOCATION AS THE MARK ON THE OLD BACKSHELL EXTENSION

### Figure 7

- (7) Put the necessary backshell components on the wire harness in this sequence:
  - The support bushing
  - The strain relief backshell
  - · The ground ring
  - The backshell extension.

Refer to Figure 8.

Make sure that:

- The end of the strain relief backshell that has the coupling ring is pointed forward to the end of the wire harness
- The end of the ground ring that has the larger diameter is pointed rearward away from the end of the wire harness
- The end of the backshell extension that has the coupling ring is pointed forward to the end of the wire harness.



## **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**



2447819 S00061544892\_V1

# BACKSHELL COMPONENTS ON THE WIRE HARNESS Figure 8

- (8) Install the contacts in the connector. Refer to Subject 20-23-37.
- (9) Fold the shields back on the wire harness.

Make sure that:

- The shields are symmetrical around the circumference of the wire harness
- The shields are flat against the wire harness.
- (10) Wind a layer of tape on the ends of the shields to temporarily hold the shields on the harness.
- (11) Align the mark on the backshell extension with the master key or the master keyway of the connector. Refer to Figure 9.



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**



2447817 S00061544893 V1

# ALIGNMENT OF THE BACKSHELL EXTENSION AND THE CONNECTOR Figure 9

- (12) Fully engage the threads of the coupling ring of the backshell extension and the connector. Make sure that the mark on the backshell extension stays aligned with the master key or the master keyway of the connector. Refer to Figure 9.
- (13) To remove the play between the backshell extension and the connector:
  - (a) Tighten the coupling ring of the backshell extension with the hand and, at the same time, twist the backshell extension clockwise and counterclockwise approximately 1/8 inch in each direction.
  - (b) Move the backshell extension from side to side and continue to tighten the coupling ring.
  - (c) Twist the backshell extension clockwise and counterclockwise approximately 1/8 inch in each direction and fully tighten the coupling ring.
- (14) Remove the tape that holds the shields on the wire harness.
- (15) Carefully fold the shields forward on the backshell extension.
- (16) Push the ground ring forward into the backshell extension.
- (17) Carefully fold the shields back against the wire harness.Make sure that the shields are even and symmetrical around the ground ring.
- (18) Assemble a wire harness tie on the ends of the shields at the rear end of the ground ring. Refer to:
  - Figure 10
  - Subject 20-23-30 for the procedure to assemble a wire harness tie.



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**



2447818 S00061544894 V1

# POSITION OF THE WIRE HARNESS TIE ON THE ENDS OF THE SHIELDS Figure 10

- (19) Fully engage the threads of the coupling ring of the strain relief backshell and the backshell extension.
- (20) Align the center of the support bushing with the saddle bar installation screw holes in the legs of the strain relief backshell.
- (21) Align the installation screw holes of the saddle bars and the legs of the strain relief backshell.
- (22) Install the saddle bar screws.Make sure that the screws are not fully tightened.
- (23) If the connector is a receptacle, install it. Refer to Subject 20-23-37.
- (24) If the connector is a plug, connect it to the related receptacle. Refer to Subject 20-23-37.
  - NOTE: The receptacle must be installed before the coupling ring can be fully tightened.
- (25) Move the backshell extension from side to side and, at the same time, tighten the backshell extension coupling ring with the pliers until the pliers move on the surface of the coupling ring.
- (26) Move the strain relief backshell from side to side and, at the same time, tighten the strain relief backshell coupling ring with the pliers until the pliers move on the surface of the coupling ring.
- (27) Fully tighten the saddle bar screws. Refer to Figure 11.

Make sure that:

- · The saddle bar screws are tight
- The saddle bars are against the legs of the strain relief backshell
- The wire harness cannot be moved in the cable clamp.



## **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**



2447802 S00061544895\_V1

# FULLY ASSEMBLED BACKSHELL Figure 11

## C. Strain Relief Assembly Without a Support Bushing

# Table 9 NECESSARY MATERIALS

| Material | Specification | Description                                  | Supplier            |
|----------|---------------|----------------------------------------------|---------------------|
| Tape     | A-A-59474     | TFE, High Temperature, Pressure<br>Sensitive | An available source |

# Table 10 NECESSARY TOOLS

| Tool        | Description       | Supplier            |
|-------------|-------------------|---------------------|
| Screwdriver | Number 3 Phillips | An available source |



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**



2447848 S00061544896 V1

# FULLY ASSEMBLED BACKSHELL Figure 12

### Refer to Figure 12.

- (1) Make a selection of a screwdriver from Table 10.
- (2) Align the installation screw holes of the saddle bars and the legs of the strain relief backshell.
- (3) Install the saddle bar screws.
- (4) Fully tighten the saddle bar screws.

### Make sure that:

- · The saddle bar screws are tight
- The saddle bars do not crush or pinch the wire harness
- The wire harness does not move in the cable clamp.
- (5) If the wire harness can be moved in the clamp, increase the diameter of the wire harness with tape:
  - (a) Remove the saddle bars.
  - (b) Make a selection of tape from Table 9.
  - (c) Wind a sufficient number of layers of tape on the wire harness where the saddle bars hold the wire harness to increase the wire harness diameter.

Make sure that the layers of tape make a 100 percent overlap.

- (6) If the ends of the saddle bars are not against the legs, or the wire harness is too tight in the clamp, decrease the diameter of the wire harness:
  - (a) Remove the saddle bars.



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

- (b) Remove a sufficient number of layers of tape to decrease the diameter of the wire harness.
- (7) Fully tighten the saddle bar screws.

### Make sure that:

- The saddle bar screws are tight
- The saddle bars are against the legs of the strain relief backshell
- The saddle bars do not crush or pinch the wire harness
- The wire harness cannot be moved in the cable clamp
- Tape is not between the saddle bars and the legs of the strain relief backshell.
- (8) If the fit of the wire harness in the clamp is not correct, do Step 3.C.(5) through Step 3.C.(7) again.

### 4. ASSEMBLY OF BACKSHELLS FOR CA66279-106 CONNECTORS

### A. Assembly of Backshells for CA66279-106 Connectors

# Table 11 NECESSARY MATERIALS

| Material             | Part Number | Approved Supplier |
|----------------------|-------------|-------------------|
| Thread Lock Compound | 222         | Loctite           |

# Table 12 NECESSARY TOOLS

| Tool   | Description                   |
|--------|-------------------------------|
| Torque | Torque tool with strap wrench |

# Table 13 BACKSHELL INSTALLATION TORQUE VALUES

| Connector Shell Size | Torque<br>(inch-pounds) |         | Torque<br>(newton-meters) |         |
|----------------------|-------------------------|---------|---------------------------|---------|
|                      | Minimum                 | Maximum | Minimum                   | Maximum |
| 28                   | 115                     | 120     | 1.33                      | 1.38    |

- (1) Put the necessary backshell components on the wire harness in this sequence:
  - The ESC53-37 support bushing
  - The strain relief backshell

Make sure that the strain relief end of the backshell is pointed rearward away from the end of the wire harness.

- (2) Install the contacts in the connector. Refer to Subject 20-23-37.
- (3) Make a selection of thread lock compound from Table 11.
- (4) Put one drop of thread lock compound on the threads at the rear of the connector on one side of the connector.



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

CAUTION: THREAD LOCK COMPOUND MUST NOT BE APPLIED ON THE COUPLING MECHANISM OF THE CONNECTOR. UNSATISFACTORY OPERATION OF THE COUPLING MECHANISM CAN OCCUR.

(5) Put one drop of thread lock compound on the threads at the rear of the connector on the other side of the connector.

CAUTION: THREAD LOCK COMPOUND MUST NOT BE APPLIED ON THE COUPLING MECHANISM OF THE CONNECTOR. UNSATISFACTORY OPERATION OF THE COUPLING MECHANISM CAN OCCUR.

(6) Engage the threads of the backshell and the connector.

CAUTION: THREAD LOCK COMPOUND MUST NOT BE APPLIED ON THE COUPLING MECHANISM OF THE CONNECTOR. UNSATISFACTORY OPERATION OF THE COUPLING MECHANISM CAN OCCUR.

- (7) Torque the backshell 115 inch-pounds (1.33 newton-meters) to 120 inch-pounds (1.38 newton-meters).
- (8) Assemble the strain relief. Refer to Paragraph 4.B.

### B. Standard Strain Relief Assembly

# Table 14 NECESSARY MATERIALS

| Material             | Part Number | Approved Supplier |
|----------------------|-------------|-------------------|
| Thread Lock Compound | 222         | Loctite           |

### Table 15 NECESSARY TOOLS

| Tool        | Туре       | Supplier            |
|-------------|------------|---------------------|
| Screwdriver | Flat Blade | An available source |

# Table 16 TERMINAL LUG PART NUMBERS

| Crimp Barrel Size | Part Number | Supplier |
|-------------------|-------------|----------|
| 16-14             | 322334      | AMP/Tyco |

(1) Make a selection of a terminal lug from Table 16.

**NOTE:** An equivalent terminal lug is a satisfactory alternative.

Make sure that:

- The type of terminal lug is applicable for the type of the shield ground wire
- The type of terminal lug is applicable for the location of the installation of the connector
- The stud size hole of the terminal lug is applicable for the cable clamp screw.
- (2) Assemble the terminal lug. Refer to Subject 20-23-32.
- (3) Make a selection of a screwdriver from Table 15.



### **RB 211 TRENT 800 POWER PLANT: ASSEMBLY OF BACKSHELLS**

- (4) Make a selection of thread lock compound from Table 14.
- (5) Align the center of the support bushing with the saddle bar installation screw holes in the legs of the strain relief backshell.
- (6) Put a lockwasher on each cable clamp screw.
- (7) Put the terminal lug in its position on the saddle clamp screw.



2447865 S00061544898 V1

# POSITION OF THE TERMINAL LUG Figure 13

- (8) Align the screw holes of a saddle bar of the cable clamp and the screw holes in the legs of the backshell.
- (9) Put the other saddle bar on the wire harness and the backshell.
- (10) Push the saddle bars of the cable clamp together.
- (11) Engage the threads of each cable clamp screw and the applicable screw hole.
- (12) Put a thin layer of the compound on one or two threads of the cable clamp screws around the circumference of the threads.

Make sure that the thread lock compound is applied to screw threads that engage the threads in the saddle bar.

CAUTION: THREAD LOCK COMPOUND MUST NOT BE APPLIED ON THE COUPLING MECHANISM OF THE CONNECTOR. UNSATISFACTORY OPERATION OF THE COUPLING MECHANISM CAN OCCUR.

(13) Tighten the screws until the ends of the saddle bars are against the legs of the backshell.

Make sure that:

- The saddle bars do not crush or pinch the wire harness
- The wire harness is tight in the cable clamp
- The cable clamp screws are tight.