Note

Wayne Zheng intuitionofmind@gmail.com

August 19, 2017

1 Translational operation

Suppose the square lattice is formed with $N_x \cdot N_y = N$ sites and they have been numbered as $k = 0, \dots, N-1$ in a certain way, for instance, a *snake*. Here we choose the convention to label the number of fermionic opertors as $k = j \cdot N_x + i$, where integer pair (i,j) denotes the lattice coordinates with respect to x- and y-directions. With consideration of one hole doped case, a generic basis can be defined in such a one-dimensional way

$$c_{0\sigma_0}^{\dagger}\cdots c_{h-1\sigma_{h-1}}^{\dagger}c_{h+1\sigma_{h+1}}^{\dagger}\cdots c_{N-1\sigma_{N-1}}^{\dagger}|0\rangle = (-)^h c_{h\sigma_h}|s\rangle \equiv |h;s\rangle, \qquad (1)$$

where $|s\rangle\equiv c_{0\sigma_0}^\dagger\cdots c_{N-1\sigma_{N-1}}^\dagger|0\rangle$ is the half-filled spin background created by ordered fermionic operators. In periodic boundary condition, translational operator can be defined as

$$\mathcal{T}_x c_{k\sigma_k}^{\dagger} \mathcal{T}_x^{-1} = c_{k'\sigma_k}^{\dagger}, \tag{2}$$

in which k and k' correspond to the coordinate (i,j) and (i+1,j), respectively. Note that i+1 certainly takes the modulus of N_x . We are going to find what a state transformed under the operation of \mathcal{T}_x . Consider a generic basis operated by \mathcal{T}_x

$$\mathcal{T}_x(-)^h c_{h\sigma_h} |s\rangle = (-)^h \mathcal{T}_x c_{h\sigma_h} \mathcal{T}_x^{-1} \mathcal{T}_x |s\rangle.$$
 (3)

In the first place we compute

$$\mathcal{T}_{x}|s\rangle = \mathcal{T}_{x}c_{0\sigma_{0}}^{\dagger} \cdots c_{N-1\sigma_{N-1}}^{\dagger}|0\rangle
= \mathcal{T}_{x}c_{0\sigma_{0}}^{\dagger}\mathcal{T}_{x}^{-1} \cdots \mathcal{T}_{x}c_{N-1\sigma_{N-1}}^{\dagger}\mathcal{T}_{x}^{-1}\mathcal{T}_{x}|0\rangle
= (-)^{(N_{x}-1)\cdot N_{y}}|s'\rangle,$$
(4)

where the fermionic sign $(-)^{N_x-1}$ arises from the translational permutation of every horizontal row and there are N_y rows. $\mathcal{T}_x|0\rangle = |0\rangle$ is regarded as a basic assumption. $|s'\rangle$ is just the corresponding translated half-filled bosonic spin configuration. Then

$$\mathcal{T}_x(-)^h c_{h\sigma_h} |s\rangle = (-)^{h+(N_x-1)\cdot N_y} c_{h'\sigma_{h'}} |s'\rangle = \operatorname{sign} \cdot (-)^{h'} c_{h'\sigma_{h'}} |s'\rangle, \tag{5}$$

where an extra sign = $(-)^{h-h'+(N_x-1)\cdot N_y}$ must be multiplied in practical computer program. Note that \mathcal{T}_x although does not change the spin of $c_{h\sigma_h}$, in the new half-filled configuration $|s'\rangle$, $\sigma_{h'}$ indeed corresponds to σ_h in $|s\rangle$. The case for \mathcal{T}_y is very similar to \mathcal{T}_x .