

77th STLE Annual Meeting & Exhibition (2023)

Long Beach, CA, May 21-25, 2023

Durability of Materials for Nanoelectromechanical Switches Studied by Scanning Probe Microscopy

Cangyu Qu and Robert W. Carpick

Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania

Overview

- Background
- □ Controlling tribopolymer formation:
 - contact stress and bias voltage
- Exploring contact materials
- Summary

Background

EINIAC, the world's first generalpurpose computer (1945)

Power crisis:

Information and communication technology accounts for **5-9% of world's** electricity consumption, **2% of all emissions**.

Processor of a modern smart phone

Trend for world's computing energy consumption (2015 report, Semiconductor Industry Association & Semiconductor Research Corporation)

Solid-State Transistors & NEMS switches

Solid-state transistors

Facing scaling limits:

- Leaking current even at OFF state
- Requires large voltage to turn on

- NEMS switches
 10~100 times lower power consumption:
 - Negligible OFF-state leakage
 - Low operating voltage/power

Field Effect Transistor

Image: J. Kim et al. (2004)

F. Streller, et al. Novel materials solutions and simulations for nanoelectromechanical switches. IEEE Nanotechnol. Mag. 9, 18 (2015).

Reliability Challenge in NEMS switches

- Reliability issue
 - Required: 10⁹ to 10¹⁵ cycles
- Degradation mechanisms:
 - Tribomechanical
 - Adhesion, plasticity, wear, ...
 - Mechanochemical
 - Tribopolymer, oxidation, ...
 - Electromechanical
 - Arcing, electromigration, ...

- International Technology Roadmap for Semiconductors (2009 report) Emerging Research Devices.
- F. Streller, et al. Novel materials solutions and simulations for nanoelectromechanical switches. IEEE Nanotechnol. Mag. 9, 18 (2015).

Tribopolymers in Electrical Contacts

Macroscale contacts

MEMS switch

- H. W. Hermance and T. F. Egan, Organic Deposits on Precious Metal Contacts. Bell Syst. Tech. J. 37, 739 (1958).
- V. Brand, et al. Effects of electrical current and temperature on contamination-induced degradation in ohmic switch contacts. Tribol. Int. 85, 48 (2015).

Tribopolymers in Electrical Contacts

Chemical composition (nano IR): C=C, -OH, C=O, CH=CH, etc.

Tribopolymer

- Insulating organic deposits, resulting from airborne hydrocarbon contaminants.
- Tribo-electro-chemical reaction catalyzed by contact material.

• Streller, Frank, Development and Characterization of Next-Generation Contact Materials for Nanoelectromechanical Switches, (2016). Publicly Accessible Penn Dissertations. http://repository.upenn.edu/edissertations/2043.

Overview

- Background
- □ Controlling tribopolymer formation:
 - contact stress and bias voltage
- Exploring contact materials
- Summary

Experimental Setup

- Testing conditions
 - Ambient air, room temperature
- Pt electrical contact
 - 10~100 nm thick Pt coating, by magnetron sputtering (for both tip and sample)
 - Single asperity nano-contact
- Conductive AFM
 - Simulating NEMS switch contact
 - Capable of both mechanical and electrical measurements

Visualizing Tribopolymers: AFM Imaging

Cyclic testing

(typical parameters & values)

	Imaging cycles Reaction cycles		
Mode	Tapping	Tapping	
Scan size	2x2 μm² 🤇	500x500 nm ²	
Scan speed	5 μm/s	15 μm/s	
Tapping frequency	70 kHz		
Signals measured	surface height	\	
N	1:50		

In 7 hr lab runtime:

3500 reaction scans $\approx 1.6 \times 10^9$ ON/OFF events

Controlling Stress for Tribopolymer Growth

Cyclic testing

(typical parameters & values)

	Imaging cycles	Reaction cycles	
Mode	Tapping	Contact	
Scan size	1x1 μm²	300x300 nm ²	
Contact force	7 nN (peak value)	64 nN (constant)	
Scan speed	5 μm/s	15 μm/s	
Tapping frequency	70 kHz	\	
Signals measured	(surface height)	(apply) normal force, bias voltage	
N	1:10		
	Volume of tribopolymers		

Stress-assisted Tribopolymer Growth

- Tribopolymer growth under various contact force/stress
 - Stress calculated from normal force and (initial) tip radius
 - Stress-dependent growth rate: stress-assisted thermal activation model

Reaction coordinate

^{*} Tip radius 34 nm, pressure calculated from initial geometry 12

Voltage-assisted Tribopolymer Growth

Voltage-assisted tribopolymer growth

- Similar exponential dependence: $\ln \Gamma \sim aU + b$
- 5 V \approx 2 GPa \approx 260 times increase in growth rate

Consistent with MEMS observations:

Passing through current produces

more tribopolymers

V. Brand, et al. Effects of electrical current and temperature on contamination-induced degradation in ohmic switch contacts. Tribol. Int. 85, 48 (2015).

Monitoring Conductivity Evolution with AFM

Cyclic testing

(typical parameters & values)

	Imaging cycles	Reaction cycles
Mode	Contact	Tapping
Contact force	31 nN (constant)	72 nN (peak value)
Scan size	1.5x1.5 μm²	500x500 nm ²
Scan speed	5 μm/s	15 μm/s
Tapping frequency	\	70 kHz
Signals measured (surface height, electric current (@3mV voltage)	\
N	1:1	.00

Conductivity Evolution

Electric current images:

- Evolution of contact resistance
 - Cycled region shows a 2 times increase in resistance, but...
 - It partially recovers as scanning goes on
 - Overall: increase of resistance for **both** cycled and reference regions
 - suggests formation and spreading of tribopolymers ...

^{*}maximum tapping force 72 nN, estimated pressure 2.7 GPa

^{*}errorbars represent standard deviation of current

Overview

- Background
- □ Controlling tribopolymer formation:
 - contact stress and bias voltage
- Exploring contact materials
- Summary

Contact Material and Tribopolymer Growth

WC, TiC, and Pt:

cyclic sliding

 Comparing conductivity loss after cyclic sliding

 WC and TiC build much less tribopolymers compared to Pt

Conductivity & Thermal Stability

Conductivity & thermal stability

- Pt:
 - no change (small decrease) in contact resistance
- WC and TiC:
 - Contact resistance increase in after heated in air...

U, I

voltage (mV)

Conductivity & Thermal Stability

WC, TiC, and Pt:

Conductivity & thermal stability

- Pt:
 - no change (small decrease) in contact resistance
- WC and TiC:
 - Contact resistance increase in after heated in air...

Conductivity Loss due to Oxidation

WC, TiC, and Pt:

Thermal stability - oxidation

 XPS results: conductivity loss is due to oxidation

Ti atomic%	Ti ²⁺ (TiC)	Ti³+ (Ti ₂ O ₃)	Ti ⁴⁺ (TiO ₂)
Before heating	37%	44%	19%
After heating	\	\	100%

W atomic%	WC	WO ₂	WO ₃
Before heating	58%	26%	15%
After heating	40%	14%	45%

Exploring Contact Materials

WC, TiC, and Pt:

- Thermal stability/oxidation resistance: Pt > WC >TiC
- Tribopolymer-free: TiC≈ WC > Pt

Searching for ideal contact materials ...

Overview

- Background
- □ Controlling tribopolymer formation:
 - contact stress and bias voltage
- Exploring contact materials
- □ Summary

Summary

- Using AFM to study electrical contacts under NEMS switch-like conditions:
 - Monitoring conductivity evolution or tribopolymer growth, depending on imaging mode
- Stress and voltage dependence of tribopolymer growth
- Evaluating and searching for ideal contact materials.....

Acknowledgements

Carpick group

Prof. David Srolovitz

Penn-CMU collaboration

Prof. Maarten de Boer Prof. Gianluca Piazza

Carnegie Mellon University College of Engineering

This work was supported by NSF CMMI-1854702, and was carried out in part at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant NNCI-2025608.