

# KOLHAPUR INSTITUTE OF TECHNOLOGY'S, COLLEGE OF ENGINEERING (AUTONOMOUS), KOLHAPUR

## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Second Year B.Tech. (SEM - III) COMPUTATIONAL MATHEMATICS (UCSE0301)

# Unit No. 6: Fuzzy Arithmetic

## 1. Fuzzy Number:

A fuzzy number is a fuzzy set 'A' define on set of real numbers (R) must satisfies the following three properties.

- 1. Fuzzy set (A) must be a normal fuzzy set. i. e. h(A) = 1.
- 2.  $\alpha$  cut of fuzzy set A is a closed interval for all  $\alpha \in [0,1]$ .
- 3. The support of fuzzy set A must be bounded.

## **Examples**

**Example 1:** Determine following fuzzy sets is a fuzzy numbers or not.

$$A(x) = \begin{cases} \tan x & \text{if } 0 \le x \le \frac{\pi}{4} \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We draw the diagram of given fuzzy set A(x) as,

1. We define height of fuzzy set A as,  $h(A) = \sup_{x \in X} A(x)$ 

here, 
$$A(x) = \tan x \implies A\left(\frac{\pi}{4}\right) = 1 \text{ as, } \frac{\pi}{4} \in \left[0, \frac{\pi}{4}\right]$$

Here h(A) = 1 so A(x) is normal fuzzy set.

2. We define  $\alpha$ -cut of fuzzy set A as,

$$^{\alpha}A = \{x \in X / A(x) \ge \alpha \}$$

$$\tan x \ge \alpha \implies x \ge \tan^{-1} \alpha$$

$$^{\alpha} A = \left[ \tan^{-1} \alpha, \frac{\pi}{4} \right]$$
 for every  $\alpha \in [0, 1]$ 



3. We define support of fuzzy set A as, Supp  $A = {}^{0+}A = \{x \in X \mid A(x) > 0\}$ 



$$Supp A = {}^{0+}A = \left(0, \frac{\pi}{4}\right]$$

 $^{0+}$  A is bounded.

Here, A(x) has satisfied all three properties therefore A(x) is a fuzzy number.

**Example 2:** Determine following fuzzy sets is a fuzzy numbers or not.

$$A(x) = \begin{cases} \sin x & \text{if } 0 \le x \le \pi \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We draw the diagram of given fuzzy set A(x) as,

1. We define height of fuzzy set A as,

$$h(A) = \sup_{x \in X} A(x)$$

here, 
$$A(x) = \sin x \implies A\left(\frac{\pi}{2}\right) = 1 \text{ as, } \frac{\pi}{2} \in [0, \pi]$$

Here h(A) = 1 so A(x) is normal fuzzy set.



2. We define  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X / A(x) \ge \alpha \}$ 

$$\sin x \ge \alpha \quad \Rightarrow x \ge \sin^{-1} \alpha$$

$${}^{\alpha} A = \left[ \sin^{-1} \alpha, \pi - \sin^{-1} \alpha \right] \text{ for every } \alpha \in [0, 1]$$

 $\alpha$  cut of fuzzy set A is a closed interval for all  $\alpha \in [0,1]$ .

3. We define support of fuzzy set A as, Supp  $A = {}^{0+}A = \{x \in X \mid A(x) > 0\}$ 

Supp 
$$A = {}^{0+}A = (0, \pi)$$

 $^{0+}$  A is bounded.

Here, A(x) has satisfied all three properties therefore A(x) is a fuzzy number.

**Example 3:** Determine following fuzzy sets is a fuzzy numbers or not.

$$A(x) = \begin{cases} \cos x & \text{if } 0 \le x \le \frac{\pi}{2} \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We draw the diagram of given fuzzy set A(x) as,

1. We define height of fuzzy set A as,

$$h(A) = \sup_{x \in X} A(x)$$

here, 
$$A(x) = \cos x \implies A(0) = 1$$
 as,  $0 \in \left[0, \frac{\pi}{2}\right]$ 



Here h(A) = 1 so A(x) is normal fuzzy set.

2. We define  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X / A(x) \ge \alpha \}$ 

$$\cos x \ge \alpha \quad \Rightarrow x \ge \cos^{-1} \alpha$$

$$^{\alpha} A = [0, \cos^{-1} \alpha]$$
 for every  $\alpha \in [0, 1]$ 

 $\alpha$  cut of fuzzy set A is a closed interval for all  $\alpha \in [0,1]$ .

3. We define support of fuzzy set A as, Supp  $A = {}^{0+}A = \{x \in X \mid A(x) > 0\}$ 

Supp 
$$A = {}^{0+}A = \left[0, \frac{\pi}{2}\right]$$
  ${}^{0+}A$  is bounded.

Here, A(x) has satisfied all three properties therefore A(x) is a fuzzy number.

Example 4: Determine following fuzzy sets is a fuzzy numbers or not.

$$A(x) = \begin{cases} x & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We draw the diagram of given fuzzy set A(x) as,

1. We define height of fuzzy set A as,

$$h(A) = \sup_{x \in X} A(x)$$

here, 
$$A(x) = x \implies A(1) = 1$$
 as,  $1 \in [0,1]$ 

Here h(A) = 1 so A(x) is normal fuzzy set.



2. We define  $\alpha$ -cut of fuzzy set A as,

$$\alpha A = \{ x \in X / A(x) \ge \alpha \}$$

$$x \ge \alpha$$
  $\alpha A = [\alpha, 1] \text{ for every } \alpha \in [0, 1]$ 

 $\alpha$  cut of fuzzy set A is a closed interval for all  $\alpha \in [0,1]$ .

3. We define support of fuzzy set A as, Supp  $A = {}^{0+}A = \{x \in X \mid A(x) > 0\}$ 

Supp 
$$A = {}^{0+}A = (0, 1]$$
  ${}^{0+}A$  is bounded.

**Example 5:** Determine following fuzzy sets is a fuzzy numbers

or not.

$$A(x) = \begin{cases} 1 & \text{,if } 0 \le x \le 10 \\ 0 & \text{,otherwise} \end{cases}$$

**Solution:** We draw the diagram of given fuzzy set A(x) as,

1. We define height of fuzzy set A as,

$$h(A) = \sup_{x \in X} A(x)$$
 here,  $A(x) = 1$ 

Here h (A) = 1 for  $0 \le x \le 10$ , so A(x) is normal fuzzy set.

2. We define  $\alpha$ -cut of fuzzy set A as,

$$^{\alpha}A = \{x \in X / A(x) \ge \alpha \}$$

$$^{\alpha}$$
 A = [0,10] for every  $\alpha \in [0,1]$ 

 $\alpha$  cut of fuzzy set A is a closed interval for all  $\alpha \in [0,1]$ .



Supp 
$$A = {}^{0+}A = [0, 10]$$
  ${}^{0+}A$  is bounded.

Here, A(x) has satisfied all three properties therefore A(x) is a fuzzy number.

**Example 6:** Determine following fuzzy sets is a fuzzy numbers or not.

$$A(x) = \begin{cases} 1 & \text{if } x = 5 \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We draw the diagram of given fuzzy set A(x) as,

1. We define height of fuzzy set A as,

$$h(A) = \sup_{x \in X} A(x)$$

here, 
$$A(x) = 1 \implies A(5) = 1$$
 as,  $5 \in [0,1]$ 

Here h(A) = 1, so A(x) is normal fuzzy set.

2. We define  $\alpha$ -cut of fuzzy set A as,

$$^{\alpha}A = \{x \in X / A(x) \ge \alpha \}$$

$$^{\alpha} A = \{5\}$$
 for every  $\alpha \in [0,1]$ 



 $A(\alpha) = I$ 

 $\alpha$  cut of fuzzy set A is a closed interval for all  $\alpha \in [0,1]$ .

3. We define support of fuzzy set A as, Supp  $A = {}^{0+}A = \{x \in X / A(x) > 0\}$ 

Supp 
$$A = {}^{0+}A = \{5\}$$
  ${}^{0+}A \text{ is bounded.}$ 

Here, A(x) has satisfied all three properties therefore A(x) is a fuzzy number.

Example 7: Determine following fuzzy sets is a fuzzy

numbers or not. 
$$A(x) = \begin{cases} \min\{1, x\} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$



**Solution:** We draw the diagram of given fuzzy set A(x) as,

1. We define height of fuzzy set A as,

$$h(A) = \sup_{x \in X} A(x)$$

here, 
$$A(x) = \min\{1, x\}$$

Here h (A) = 1, for  $x \ge 1$  so A(x) is normal fuzzy set.

2. We define  $\alpha$ -cut of fuzzy set A as,

$$^{\alpha} A = \left\{ x \in X / A(x) \ge \alpha \right\}$$

$$^{\alpha} A = [\alpha, \infty]$$
 for every  $\alpha \in [0, 1]$ 

 $\alpha$  cut of fuzzy set A is not a closed interval for all  $\alpha \in [0,1]$ .

3. We define support of fuzzy set A as, Supp  $A = {}^{0+}A = \{x \in X \mid A(x) > 0\}$ 

Supp 
$$A = {}^{0+}A = (0, \infty]$$
  ${}^{0+}A$  is not bounded.

Here, A(x) has not satisfied all three properties therefore A(x) is not a fuzzy number.

## **Examples for Practice**

**Example 1:** What are the criteria's of a fuzzy set to be a fuzzy number. Determine whether the following fuzzy set is a fuzzy number.

$$A(x) = \begin{cases} \sin 2x & \text{if } 0 \le x \le \frac{\pi}{4} \\ 0 & \text{otherwise} \end{cases}$$

Example 2: Determine whether the following fuzzy set is a fuzzy number.

$$A(x) = \begin{cases} 1+x & \text{if } -1 \le x \le 0 \\ 0 & \text{otherwise} \end{cases}$$

**Example 3:** Determine whether the following fuzzy set is a fuzzy number.

$$A(x) = \begin{cases} 1 - |x| & \text{if } -1 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Example 4: Determine whether the following fuzzy set is a fuzzy number.

$$A(x) = \begin{cases} \frac{x}{10} & \text{if } 0 \le x \le 10 \\ 0 & \text{otherwise} \end{cases}$$

## 2. Fuzzy Cardinality:

Fuzzy cardinality is defined as a fuzzy number rather than as a real number, as is the case for a scalar cardinality. When a fuzzy set A has a finite support its fuzzy cardinality is denoted by  $|\widetilde{A}|$  is a fuzzy set defined on N whose membership function is defined by,

$$|\widetilde{A}| = \frac{\alpha}{|\alpha_A|}$$
 A: N  $\rightarrow$  [0, 1]

Where,  $| {}^{\alpha}A |$  is the cardinality of  $\alpha$  - cut of A.

**Example 1:** Find Fuzzy Cardinality for the fuzzy set,  $A(x) = 3^{-x}$  for  $x \in \{0,1,...,5\}$ 

**Solution:** Given fuzzy set,  $A(x) = 3^{-x}$  for universal set X = [0, 1, 2...5]

Fuzzy set A(x) can be represented as,

$$A(x) = \left\{ \frac{1}{0} + \frac{0.3333}{1} + \frac{0.1111}{2} + \frac{0.037}{3} + \frac{0.0123}{4} + \frac{0.0041}{5} \right\}$$

We define Level set of fuzzy set A as,

$$\Lambda A = \{ \alpha / A(x) = \alpha \text{ for some } x \in X \}$$
  
$$\Lambda A = \{ 0.0041, 0.0123, 0.037, 0.1111, 0.3333, 1 \}$$

We define  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X / A(x) \ge \alpha \}$ 

$$\begin{array}{lll}
0.0041 & A = \{x \in X / A(x) \ge 0.0041\} & 0.0041 A = \{0, 1, 2, 3, 4, 5\} & \therefore | 0.0041 A | = 6 \\
0.0123 & A = \{x \in X / A(x) \ge 0.0123\} & 0.0123 A = \{0, 1, 2, 3, 4\} & \therefore | 0.0123 A | = 5 \\
0.037 & A = \{x \in X / A(x) \ge 0.037\} & 0.037 A = \{0, 1, 2, 3\} & \therefore | 0.037 A | = 4 \\
0.1111 & A = \{x \in X / A(x) \ge 0.1111\} & 0.1111 A = \{0, 1, 2\} & \therefore | 0.1111 A | = 3 \\
0.3333 & A = \{x \in X / A(x) \ge 0.3333\} & 0.3333 A = \{0, 1\} & \therefore | 0.3333 A | = 2 \\
1 & A = \{x \in X / A(x) \ge 1\} & 1 & A = \{0\} & \therefore | 1 A | = 1
\end{array}$$

Fuzzy cardinality of A (x) is,  $|\widetilde{A}| = \frac{\alpha}{|\alpha_A|}$ 

$$|\widetilde{A}| = \left\{ \frac{1}{1} + \frac{0.3333}{2} + \frac{0.1111}{3} + \frac{0.037}{4} + \frac{0.0123}{5} + \frac{0.0041}{6} \right\}$$

**Example 2:** Let A and B be fuzzy sets defined on the universal set X=Z (set of integers) whose membership functions are given by,

$$A(x) = \left\{ \frac{0}{1} + \frac{0.2}{1.5} + \frac{0.35}{2} + \frac{0.15}{2.5} + \frac{0.5}{3} + \frac{0.25}{3.5} + \frac{0.4}{4} \right\}$$
$$B(x) = \left\{ \frac{1}{1} + \frac{0.15}{1.5} + \frac{0.2}{2} + \frac{0.35}{2.5} + \frac{0.4}{3} + \frac{0.125}{3.5} + \frac{0.4}{4} \right\}$$

Find Fuzzy Cardinality of  $\overline{A \cup B}$ .

**Solution:** Given the fuzzy set A and B as,

$$A(x) = \left\{ \frac{0}{1} + \frac{0.2}{1.5} + \frac{0.35}{2} + \frac{0.15}{2.5} + \frac{0.5}{3} + \frac{0.25}{3.5} + \frac{0.4}{4} \right\}$$

 $B(x) = \left\{ \frac{1}{1} + \frac{0.15}{1.5} + \frac{0.2}{2} + \frac{0.35}{2.5} + \frac{0.4}{3} + \frac{0.125}{3.5} + \frac{0.4}{4} \right\}$ 

Union of fuzzy set A and B defined as,  

$$A \cup B(x) = Max \{ A(x), B(x) \}$$

$$A \cup B(x) = \left\{ \frac{1}{1} + \frac{0.2}{1.5} + \frac{0.35}{2} + \frac{0.35}{2.5} + \frac{0.5}{3} + \frac{0.25}{3.5} + \frac{0.4}{4} \right\}$$

Complement of fuzzy set  $A \cup B$  defined as,

$$\overline{A \cup B}(x) = 1 - A \cup B(x)$$

$$\overline{A \cup B}(x) = \left\{ \frac{0}{1} + \frac{0.8}{1.5} + \frac{0.65}{2} + \frac{0.65}{2.5} + \frac{0.5}{3} + \frac{0.75}{3.5} + \frac{0.6}{4} \right\}$$

We define Level set of fuzzy set  $\overline{A \cup B}$  as,

$$\Lambda \overline{A \cup B} (x) = \left\{ \alpha / \overline{A \cup B} = \alpha \text{ for some } x \in X \right\}$$
$$\Lambda \overline{A \cup B} (x) = \left\{ 0, 0.5, 0.6, 0.65, 0.75, 0.8 \right\}$$

We define  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X / A(x) \ge \alpha \}$ 

$$^{0}\overline{A \cup B}(x) = \left\{ x \in X / \overline{A \cup B}(x) \ge 0 \right\}$$

$${}^{0}\overline{A \cup B}(x) = \{1, 1.5, 2, 2.5, 3, 3.5, 4\}$$
  $\therefore {}^{0}\overline{A \cup B} = 7$ 

$$^{0.5}\overline{A \cup B}(x) = \left\{ x \in X / \overline{A \cup B}(x) \ge 0.5 \right\}$$

$$0.5 \overline{A \cup B} (x) = \{1.5, 2, 2.5, 3, 3.5, 4\}$$
  $\therefore | {}^{0.5} \overline{A \cup B} | = 6$ 

$$0.6 \overline{A \cup B}(x) = \left\{ x \in X / \overline{A \cup B}(x) \ge 0.6 \right\}$$

$$0.6 \overline{A \cup B} (x) = \{1.5, 2, 2.5, 3.5, 4\}$$
 
$$\therefore | {}^{0.6} \overline{A \cup B} | = 5$$

$$0.65 \overline{A \cup B}(x) = \left\{ x \in X / \overline{A \cup B}(x) \ge 0.65 \right\}$$

$$0.65 \overline{A \cup B} (x) = \{1.5, 2, 2.5, 3.5\}$$

$$0.75 \overline{A \cup B} (x) = \{x \in X / \overline{A \cup B} (x) \ge 0.75\}$$

$$0.75 \overline{A \cup B} (x) = \{1.5, 3.5\}$$

$$0.8 \overline{A \cup B} (x) = \{x \in X / \overline{A \cup B} (x) \ge 0.8\}$$

$$0.8 \overline{A \cup B} (x) = \{1.5\}$$

Fuzzy cardinality of A (x) is,  $|\widetilde{A}| = \frac{\alpha}{|\alpha_A|}$ 

$$|\widetilde{A}| = \left\{ \frac{0}{7} + \frac{0.5}{6} + \frac{0.6}{5} + \frac{0.65}{4} + \frac{0.75}{2} + \frac{0.8}{1} \right\}$$

**Example 3:** Find the degree of subset hood  $S(|\widetilde{A}|, |\widetilde{B}|)$  for the fuzzy sets,

$$A(x) = \frac{x}{x+3}$$
,  $B(x) = \frac{x}{x+2}$ ,  $x \in \{0,1,2\}$ 

**Solution:** Given fuzzy set,  $A(x) = \frac{x}{x+3}$  for universal set X = [0, 1, 2]

Fuzzy set A(x) can be represented as,

$$A(x) = \left\{ \frac{0}{0} + \frac{0.25}{1} + \frac{0.4}{2} \right\}$$

We define Level set of fuzzy set A as,

$$\Lambda A = \{ \alpha / A(x) = \alpha \text{ for some } x \in X \}$$
  
$$\Lambda A = \{ 0, 0.25, 0.4 \}$$

We define  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X / A(x) \ge \alpha \}$ 

$${}^{0} A = \{x \in X / A(x) \ge 0\}$$

$${}^{0} A = \{0, 1, 2\}$$

$$\therefore |{}^{0} A| = 3$$

$${}^{0.25} A = \{x \in X / A(x) \ge 0.25\}$$

$${}^{0.25} A = \{1, 2\}$$

$$\therefore |{}^{0.25} A| = 2$$

$${}^{0.4} A = \{x \in X / A(x) \ge 0.4\}$$

$${}^{0.4} A = \{2\}$$

$$\therefore |{}^{0.4} A| = 1$$

Fuzzy cardinality of A (x) is,  $|\widetilde{A}| = \frac{\alpha}{|\alpha A|}$ 

$$|\widetilde{A}| = \left\{ \frac{0}{3} + \frac{0.25}{2} + \frac{0.4}{1} \right\}$$

Scalar cardinality of fuzzy set A as,  $\|\widetilde{A}\| = \sum_{x \in X} |\widetilde{A}|(x) = 0.65$ 

Given fuzzy set,  $B(x) = \frac{x}{x+2}$  for universal set X = [0, 1, 2]

Fuzzy set A(x) can be represented as,

$$B(x) = \left\{ \frac{0}{0} + \frac{0.3333}{1} + \frac{0.5}{2} \right\}$$

We define Level set of fuzzy set B as,

$$\Lambda B = \{ \alpha / B(x) = \alpha \text{ for some } x \in X \}$$
  
$$\Lambda B = \{ 0, 0.3333, 0.5 \}$$

We define  $\alpha$ -cut of fuzzy set A as,  $\alpha B = \{x \in X / B(x) \ge \alpha \}$ 

$${}^{0}B = \{x \in X / B(x) \ge 0\}$$

$${}^{0}B = \{0, 1, 2\}$$

$${}^{0.3333}B = \{x \in X / B(x) \ge 0.3333\}$$

$${}^{0.3333}B = \{1, 2\}$$

$${}^{0.5}B = \{x \in X / B(x) \ge 0.5\}$$

$${}^{0.5}B = \{2\}$$

$${}^{0.4}B = 1$$

Fuzzy cardinality of A (x) is,  $|\widetilde{B}| = \frac{\alpha}{|{}^{\alpha}B|}$ 

$$|\widetilde{B}| = \left\{ \frac{0}{3} + \frac{0.3333}{2} + \frac{0.5}{1} \right\}$$

Scalar cardinality of fuzzy set B as,  $\|\widetilde{B}\| = \sum_{x \in X} |\widetilde{B}|(x) = 0.8333$ 

By definition,  $|\widetilde{A}| \cap |\widetilde{B}|(x) = Min\{|\widetilde{A}|(x), |\widetilde{B}|(x)\}$ 

$$|\widetilde{A}| \cap |\widetilde{B}| = \left\{ \frac{0}{3} + \frac{0.25}{2} + \frac{0.4}{1} \right\}$$

Scalar cardinality of fuzzy set  $|\widetilde{A}| \cap |\widetilde{B}|(x)$  as,  $\|\widetilde{A}| \cap |\widetilde{B}| = \sum_{x \in X} |\widetilde{A}| \cap |\widetilde{B}| = 0.65$ 

Degree of Subset hood, 
$$S(|\widetilde{A}|, |\widetilde{B}|) = \frac{|\widetilde{A}| \cap |\widetilde{B}|}{|\widetilde{A}|} = \frac{0.65}{0.65} = 1$$

## **Examples for Practice**

**Example 1:** Find Fuzzy Cardinality for the fuzzy set,  $A(x) = 3^{-x}$  for  $x \in \{0,1,...,5\}$ 

**Example 2:** Find Fuzzy Cardinality for the fuzzy set,  $A(x) = \frac{x+2}{x+5}$  for  $x \in \{0,1,...,10\}$ 

**Example 3:** Find Fuzzy Cardinality for the fuzzy set,  $A(x) = \frac{x}{x+2}$  for  $x \in \{6,7,...,10\}$ 

**Example 4:** Find Fuzzy Cardinality for the fuzzy set,  $B(x) = \frac{1}{1+10(x-1)^2}$  for  $x \in \{0,1,...,5\}$ 

**Example 5:** Find Fuzzy Cardinality for the fuzzy set,  $A(x) = \frac{2x+5}{3x+7}$  for  $x \in \{0,1,...,10\}$ 

**Example 6:** Find Fuzzy Cardinality for the fuzzy set,  $A(x) = \frac{x+5}{4x+9}$  for  $x \in \{0,1,...,10\}$ 

**Example 7:** Find the degree of subset hood  $S(|\widetilde{A}|, |\widetilde{B}|)$  for the fuzzy sets,

$$A(x) = \frac{x}{x+4}$$
,  $B(x) = 3^{-x}$ ,  $x \in \{0,1,2...5\}$ 

**Example 8:** Find the degree of subset hood  $S(|\widetilde{A}|, |\widetilde{B}|)$  for the fuzzy sets,

$$A(x) = \frac{2x+1}{5x+2}$$
,  $B(x) = \frac{x}{x+1}$ ,  $x \in \{0,1,2...10\}$ 

**Example 9:** Let A and B be fuzzy sets defined on the universal set X=Z (set of integers) whose membership functions are given by,

$$A(x) = \left\{ \frac{0}{1} + \frac{0.2}{1.5} + \frac{0.35}{2} + \frac{0.15}{2.5} + \frac{0.5}{3} + \frac{0.25}{3.5} + \frac{0.4}{4} \right\}$$

$$B(x) = \left\{ \frac{1}{1} + \frac{0.15}{1.5} + \frac{0.2}{2} + \frac{0.35}{2.5} + \frac{0.4}{3} + \frac{0.125}{3.5} + \frac{0.4}{4} \right\}$$

Find Fuzzy Cardinality of  $A \cap B$ 

Example 10: Let fuzzy numbers A and B each defined on its own inverse be

$$A(x) = \left\{ \frac{0.5}{1} + \frac{0.6}{2} + \frac{0.9}{3} + \frac{1}{4} + \frac{0.2}{5} \right\} \quad , \quad B(x) = \left\{ \frac{0.3}{3} + \frac{0.4}{4} + \frac{0.7}{5} + \frac{1}{6} + \frac{0.3}{7} \right\}$$

Find Fuzzy Cardinality of  $A \cup \overline{B}$ .

## 3. Method of developing Fuzzy Arithmetic is based on extension Principle:

Let A is a function from  $A: R \to [0,1]$  and  $B: R \to [0,1]$  be two fuzzy numbers if \* be binary operation defined on set of real numbers (R) then,

$$f(A,B)(z) = \max_{X^*Y=Z} \{ \min[A(x),B(x)] \}$$

**Example 1:** Let A and B be fuzzy sets defined on the universal set X=Z (set of integers) whose membership functions are given by,

$$A(x) = \left\{ \frac{0.4}{-2} + \frac{0.5}{-1} + \frac{0.3}{0} + \frac{1}{1} + \frac{0.5}{2} \right\} \qquad B(x) = \left\{ \frac{0.2}{1} + \frac{0.7}{2} + \frac{1}{3} + \frac{0.3}{4} + \frac{0.5}{5} \right\}$$

Find f (A, B) if f:  $X \times X \rightarrow X$  is defined by f ( $x_1, x_2$ ) =  $x_1 + x_2 \forall x_1, x_2 \in X$ 

**Solution:** Universal set values of  $A = \{-2,-1, 0, 1, 2\}$  and  $B = \{1, 2, 3, 4, 5\}$ 

| A+B | 1  | 2 | 3 | 4 | 5 |
|-----|----|---|---|---|---|
| -2  | -1 | 0 | 1 | 2 | 3 |
| -1  | 0  | 1 | 2 | 3 | 4 |
| 0   | 1  | 2 | 3 | 4 | 5 |
| 1   | 2  | 3 | 4 | 5 | 6 |
| 2   | 3  | 4 | 5 | 6 | 7 |

Here, 
$$Z = \{-1, 0, 1, 2, 3, 4, 5, 6, 7\}$$

| Z  | $\{ A(\mathbf{x}_1), B(\mathbf{x}_2) \}$          | $Min\{ A(x_1), B(x_2) \}$ | Max |
|----|---------------------------------------------------|---------------------------|-----|
| -1 | (0.4,0.2)                                         | 0.2                       | 0.2 |
| 0  | (0.5,0.2), (0.4,0.7)                              | 0.2, 0.4                  | 0.4 |
| 1  | (0.3,0.2), (0.5,0.7), (0.4,1)                     | 0.2, 0.5, 0.4             | 0.5 |
| 2  | (1,0.2), (0.3,0.7), (0.5,1), (0.4,0.3)            | 0.2, 0.3, 0.5, 0.3        | 0.5 |
| 3  | (0.5,0.2), (1,0.7), (0.3,1), (0.5,0.3), (0.4,0.5) | 0.2, 0.7, 0.3, 0.3, 0.4   | 0.7 |
| 4  | (0.5,0.7), (1,1), (0.3,0.3), (0.5,0.5)            | 0.5, 1, 0.3, 0.5          | 1   |
| 5  | (0.5,1), (1,0.3), (0.3,0.5)                       | 0.5,0.3,0.3               | 0.5 |
| 6  | (0.5,0.3), (1,0.5)                                | 0.3,0.5                   | 0.5 |
| 7  | (0.5,0.5)                                         | 0.5                       | 0.5 |

By, extension principle,

$$f(A,B)(z) = \underset{X^*Y=Z}{Max} \left\{ \min[A(x), B(x)] \right\}$$
$$f(A,B) = \left\{ \frac{0.2}{-1} + \frac{0.4}{0} + \frac{0.5}{1} + \frac{0.5}{2} + \frac{0.7}{3} + \frac{1}{4} + \frac{0.5}{5} + \frac{0.5}{6} + \frac{0.5}{7} \right\}$$

**Example 2:** Let A and B be fuzzy sets defined on the universal set X=Z (set of integers) whose membership functions are given by,

$$A(x) = \left\{ \frac{0.5}{-1} + \frac{1}{0} + \frac{0.5}{1} + \frac{0.3}{2} \right\} \qquad B(x) = \left\{ \frac{0.5}{2} + \frac{1}{3} + \frac{0.5}{4} + \frac{0.3}{5} \right\}$$

Find f(A, B) if  $f: X \times X \rightarrow X$  is defined by  $f(x_1, x_2) = x_1 \times x_2 \quad \forall x_1, x_2 \in X$ 

**Solution:** Universal set values of  $A = \{-1, 0, 1, 2\}$  and  $B = \{2, 3, 4, 5\}$ 

| A x B | 2  | 3  | 4  | 5  |
|-------|----|----|----|----|
| -1    | -2 | -3 | -4 | -5 |
| 0     | 0  | 0  | 0  | 0  |
| 1     | 2  | 3  | 4  | 5  |
| 2     | 4  | 6  | 8  | 10 |

Here,  $Z = \{-5, -4, -3, -2, 0, 2, 3, 4, 5, 6, 8, 10\}$ 

| Z  | $\{ A(\mathbf{x}_1), B(\mathbf{x}_2) \}$ | $Min\{ A(x_1), B(x_2) \}$ | Max |
|----|------------------------------------------|---------------------------|-----|
| -5 | (0.5, 0.3)                               | 0.3                       | 0.3 |
| -4 | (0.5, 0.5)                               | 0.5                       | 0.5 |
| -3 | (0.5, 1)                                 | 0.5                       | 0.5 |
| -2 | (0.5, 0.5)                               | 0.5                       | 0.5 |
| 0  | (1, 0.5), (1, 1), (1, 0.5), (1, 0.3)     | 0.5, 1, 0.5, 0.3          | 1   |
| 2  | (0.5,0.5)                                | 0.5                       | 0.5 |
| 3  | (0.5,1)                                  | 0.5                       | 0.5 |
| 4  | (0.5,0.5),(0.3,0.5)                      | 0.5, 0.3                  | 0.5 |
| 5  | (0.5, 0.3)                               | 0.3                       | 0.3 |
| 6  | (0.3,1)                                  | 0.3                       | 0.3 |
| 8  | (0.3,0.5)                                | 0.3                       | 0.3 |
| 10 | (0.3,0.3)                                | 0.3                       | 0.3 |

By, extension principle,  $f(A,B)(z) = Max_{X*Y=Z} \{ min[A(x),B(x)] \}$ 

$$f(A,B) = \left\{ \frac{0.3}{-5} + \frac{0.5}{-4} + \frac{0.5}{-3} + \frac{0.5}{-2} + \frac{1}{0} + \frac{0.5}{2} + \frac{0.5}{3} + \frac{0.5}{4} + \frac{0.3}{5} + \frac{0.3}{6} + \frac{0.3}{8} + \frac{0.3}{10} \right\}$$

**Example 3:** Let A and B be two fuzzy sets defined on the universal set X = Z (the set of integers) whose membership function are given by,

$$A(x) = \left\{ \frac{0.3}{-1} + \frac{0.5}{0} + \frac{0.7}{1} + \frac{1}{2} \right\} \text{ and } B(x) = \left\{ \frac{0.2}{-3} + \frac{0.4}{-2} + \frac{0.8}{-1} + \frac{1}{0} \right\}.$$

Let a function  $f: X \to X$  be defined by  $f(x_1, x_2) = x_1 + x_2 \ \forall \ x_1, x_2 \in X$ . Calculate f(A,B).

**Solution:** Universal set values of  $A = \{-1, 0, 1, 2\}$  and  $B = \{-3, -2, -1, 0\}$ 

| A+B | -3 | -2 | -1 | 0  |
|-----|----|----|----|----|
| -1  | -4 | -3 | -2 | -1 |
| 0   | -3 | -2 | -1 | 0  |
| 1   | -2 | -1 | 0  | 1  |
| 2   | -1 | 0  | 1  | 2  |

Here, 
$$Z = \{-4, -3, -2, -1, 0, 1, 2\}$$

| Z  | $\{ A(\mathbf{x}_1), B(\mathbf{x}_2) \}$   | $Min\{ A(x_1), B(x_2) \}$ | Max |
|----|--------------------------------------------|---------------------------|-----|
| -4 | (0.3, 0.2)                                 | 0.2                       | 0.2 |
| -3 | (0.5, 0.2), (0.3, 0.4)                     | 0.2, 0.3                  | 0.3 |
| -2 | (0.7, 0.2),(0.5,0.4),(0.3,0.8)             | 0.2, 0.4, 0.3             | 0.4 |
| -1 | (1, 0.2), (0.7, 0.4), (0.5, 0.8), (0.3, 1) | 0.2, 0.4, 0.5, 0.3        | 0.5 |
| 0  | (1, 0.4), (0.7, 0.8), (0.5, 1)             | 0.4, 0.7, 0.5             | 0.7 |
| 1  | (1, 0.8), (0.7, 1)                         | 0.8,0.7                   | 0.8 |
| 2  | (1,1)                                      | 1                         | 1   |

By, extension principle,

$$f(A,B)(z) = \max_{X*Y=Z} \{ \min[A(x), B(x)] \}$$

$$f(A,B) = \left\{ \frac{0.2}{-4} + \frac{0.3}{-3} + \frac{0.4}{-2} + \frac{0.5}{-1} + \frac{0.7}{0} + \frac{0.8}{1} + \frac{1}{2} \right\}$$

## **Examples for Practice**

**Example 1:** Let A and B be fuzzy sets defined on the universal set X whose membership functions are given by,

$$A(x) = \left\{ \frac{0.5}{-1} + \frac{1}{0} + \frac{0.5}{1} + \frac{0.3}{2} \right\}, \quad B(x) = \left\{ \frac{0.5}{2} + \frac{1}{3} + \frac{0.5}{4} + \frac{0.3}{5} \right\}$$

Find f(A, B) if  $f: X \times X \rightarrow X$  is defined by  $f(x_1, x_2) = x_1 + x_2 \quad \forall x_1, x_2 \in X$ 

Ans: 
$$f(A,B) = \left\{ \frac{0.5}{1} + \frac{0.5}{2} + \frac{1}{3} + \frac{0.5}{4} + \frac{0.5}{5} + \frac{0.3}{6} + \frac{0.3}{7} \right\}$$

**Example 2:** Let A and B be fuzzy sets defined on the universal set X whose membership functions are given by,

$$A(x) = \left\{ \frac{0.4}{-2} + \frac{0.6}{-1} + \frac{1}{0} + \frac{0.5}{1} + \frac{0.3}{2} \right\} , \quad B(x) = \left\{ \frac{0.4}{-2} + \frac{0.6}{-1} + \frac{1}{0} + \frac{0.5}{1} + \frac{0.3}{2} \right\}$$

Find f(A, B) if  $f: X \times X \rightarrow X$  is defined by  $f(x_1, x_2) = x_1 \cdot x_2 \quad \forall x_1, x_2 \in X$ 

$$Ans: f(A,B) = \left\{ \frac{0.3}{-10} + \frac{0.4}{-8} + \frac{0.4}{-6} + \frac{0.3}{-5} + \frac{0.5}{-4} + \frac{0.6}{-3} + \frac{0.6}{-2} + \frac{0.4}{-1} + \frac{1}{0} + \frac{0.4}{1} + \frac{0.5}{2} + \frac{0.5}{3} + \frac{0.5}{4} + \frac{0.3}{5} + \frac{0.3}{6} + \frac{0.3}{8} + \frac{0.3}{10} \right\}$$

Example 3: Let fuzzy numbers A and B each defined on its own inverse be

$$A(x) = \left\{ \frac{0.5}{1} + \frac{0.6}{2} + \frac{0.9}{3} + \frac{1}{4} + \frac{0.2}{5} \right\} , \quad B(x) = \left\{ \frac{0.3}{3} + \frac{0.4}{4} + \frac{0.7}{5} + \frac{1}{6} + \frac{0.3}{7} \right\}$$

Determine the membership grades for algebraic mapping f(A, B) =A .B (arithmetic product)

$$Ans: f(A,B) = \left\{ \frac{0.3}{3} + \frac{0.4}{4} + \frac{0.5}{5} + \frac{0.5}{6} + \frac{0.3}{7} + \frac{0.4}{8} + \frac{0.3}{9} + \frac{0.6}{10} + \frac{0.6}{12} + \frac{0.3}{14} + \frac{0.7}{15} + \frac{0.4}{16} + \frac{0.9}{18} + \frac{0.7}{20} + \frac{0.3}{21} + \frac{1}{24} + \frac{0.2}{25} + \frac{0.3}{28} + \frac{0.2}{30} + \frac{0.2}{35} \right\}$$

**Example 4:** Let A and B be fuzzy sets defined on the universal set X=Z (set of integers) whose membership functions are given by,

$$A(x) = \left\{ \frac{0.5}{1} + \frac{0.6}{2} + \frac{0.9}{3} + \frac{1}{4} + \frac{0.2}{5} \right\} \qquad B(x) = \left\{ \frac{0.3}{3} + \frac{0.4}{4} + \frac{0.7}{5} + \frac{1}{6} + \frac{0.3}{7} \right\}$$

Find f(A, B) if  $f: X \times X \rightarrow X$  is defined by  $f(x_1, x_2) = 2x_1 + x_2 \quad \forall x_1, x_2 \in X$ 

$$Ans: f(A,B) = \left\{ \frac{0.3}{5} + \frac{0.4}{6} + \frac{0.5}{7} + \frac{0.5}{8} + \frac{0.6}{9} + \frac{0.6}{10} + \frac{0.7}{11} + \frac{0.9}{12} + \frac{0.7}{13} + \frac{1}{14} + \frac{0.3}{15} + \frac{0.2}{16} + \frac{0.2}{17} \right\}$$

Example 5: Let fuzzy numbers A and B each defined on its own inverse be

$$A(x) = \left\{ \frac{0.2}{1} + \frac{1}{2} + \frac{0.7}{4} + \frac{0.1}{8} \right\} , B(x) = \left\{ \frac{0.1}{1} + \frac{0.5}{2} + \frac{1}{4} + \frac{0.2}{8} \right\}$$

Determine the membership grades for algebraic mapping f(A, B) = A.B (arithmetic product)

**Example 6:** Let A and B be fuzzy sets defined on the universal set X whose membership functions are given by,

$$A(x) = \left\{ \frac{0}{1} + \frac{0.2}{1.5} + \frac{0.35}{2} + \frac{0.15}{2.5} + \frac{0.5}{3} \right\}, \quad B(x) = \left\{ \frac{0.2}{2} + \frac{0.35}{2.5} + \frac{0.4}{3} + \frac{0.15}{3.5} + \frac{0}{4} \right\}$$

Find f(A, B) if  $f: X \times X \rightarrow X$  is defined by  $f(x_1, x_2) = x_1 + x_2 \quad \forall x_1, x_2 \in X$ 

**Example 7:** Determine the membership grades for algebraic mapping f(A, B) = 2A - B where A and B are the fuzzy numbers.

$$A(x) = \left\{ \frac{0.2}{1} + \frac{1}{2} + \frac{0.7}{4} + \frac{0.1}{8} \right\} \quad , \quad B(x) = \left\{ \frac{0.1}{1} + \frac{0.5}{2} + \frac{1}{4} + \frac{0.2}{8} \right\}$$

**Example 8:** Let A and B be fuzzy sets defined on the universal set X whose membership functions are given by,

$$A(x) = \left\{ \frac{0.35}{2} + \frac{0.15}{3} + \frac{0.5}{4} + \frac{0.25}{5} \right\} , \quad B(x) = \left\{ \frac{1}{0} + \frac{0.15}{1} + \frac{0.2}{2} + \frac{0.35}{3} \right\}$$

Find f(A, B) if  $f: X \times X \to X$  is defined by  $f(x_1, x_2) = x_1 \cdot x_2 \ \forall \ x_1, x_2 \in X$ 

## 4. Method of developing Fuzzy Arithmetic is based on $\alpha$ – cut sets:

Let A and B are fuzzy numbers, if \* be binary operation defined on set of real numbers (R) then, A\* B by defining it's  $\alpha$  – cut.

$$\alpha A * B = \alpha A * \alpha B$$

The four arithmetic operations on closed intervals are defined as follows,

1) 
$$[a,b]+[c,d]=[a+c,b+d]$$

For example, [2,5]+[1,3]=[2+1,5+3]=[3,8]

2) 
$$[a,b]-[c,d]=[a-d,b-c]$$

For example, [2,5]-[1,3]=[2-3,5-1]=[-1,4]

3) 
$$[a, b] \times [c, d] = \{ \min [ac, ad, bc, bd], \max [ac, ad, bc, bd] \}$$

For example,

$$[-1,1] \times [-2,-0.5] = (\min[2,0.5,-2,-0.5], \max[2,0.5,-2,-0.5]) = (-2,2)$$

4) 
$$[a, b]/[c, d] = \left(\min\left[\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right], \max\left[\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right]\right)$$

For example,

$$[4,10]/[1,2] = \left(\min\left[\frac{4}{1},\frac{4}{2},\frac{10}{1},\frac{10}{2}\right],\max\left[\frac{4}{1},\frac{4}{2},\frac{10}{1},\frac{10}{2}\right]\right) = (2,10)$$

Example 1: Consider fuzzy number A and B defined by,

$$A(x) = \begin{cases} \frac{x+3}{3} & \text{if } -3 < x \le 0 \\ \frac{3-x}{3} & \text{if } 0 < x \le 3 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-3}{3} & \text{if } 3 < x \le 6 \\ \frac{9-x}{3} & \text{if } 6 < x \le 9 \\ 0 & \text{otherwise} \end{cases}$$

Calculate fuzzy numbers i) A + B ii) A - B

ii) 
$$A - B$$
 iii)  $A * B$  iv)  $A / B$ 

**Solution:** We know that  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X / A(x) \ge \alpha\}$ 

$$A(x) \ge \alpha$$

$$\frac{x+3}{3} \ge \alpha$$

$$x+3 \ge 3\alpha$$

$$x \ge 3\alpha - 3 \dots (1)$$

$$A(x) \ge \alpha$$

$$\frac{3-x}{3} \ge \alpha$$

$$3-x \ge 3\alpha$$

$$3-3\alpha \ge x \dots (2)$$

From equation (1) and (2) we get,  ${}^{\alpha}A = [3\alpha - 3, 3 - 3\alpha]$ 

We know that  $\alpha$ -cut of fuzzy set B as,  $\alpha B = \{x \in X / B(x) \ge \alpha \}$ 

$$B(x) \ge \alpha$$

$$\frac{x-3}{3} \ge \alpha$$

$$x-3 \ge 3\alpha$$

$$x \ge 3\alpha + 3......(3)$$

$$B(x) \ge \alpha$$

$$\frac{9-x}{3} \ge \alpha$$

$$9-x \ge 3\alpha$$

$$9-3\alpha \ge x.....(4)$$

From equation (3) and (4) we get,  ${}^{\alpha}B = [3\alpha + 3, 9 - 3\alpha]$ 

## 1. for A+B:

We know that, 
$$\alpha A + B = \alpha A + \alpha B$$
  

$$\alpha A + B = [3\alpha - 3, 3 - 3\alpha] + [3\alpha + 3, 9 - 3\alpha]$$

$$\alpha A + B = [3\alpha - 3 + 3\alpha + 3, 3 - 3\alpha + 9 - 3\alpha]$$

$$\alpha A + B = [6\alpha, 12 - 6\alpha]$$

$$i.e. 6\alpha \le x \le 12 - 6\alpha$$

$$6\alpha = x$$

$$\alpha = \frac{x}{6}$$

$$12 - 6\alpha = x$$

$$\alpha = \frac{12 - x}{6}$$

$$if \ \alpha = 0 \Rightarrow x = 0$$

$$if \ \alpha = 1 \Rightarrow x = 6$$

$$if \ \alpha = 0 \Rightarrow x = 12$$

$$Hence, \quad (A+B)(x) = \begin{cases} \frac{x}{6} & \text{if } 0 < x \le 6\\ \frac{12-x}{6} & \text{if } 6 < x \le 12\\ 0 & \text{otherwise} \end{cases}$$

#### 2. for A - B:

We know that, 
$${}^{\alpha}A - B = {}^{\alpha}A - {}^{\alpha}B$$

$${}^{\alpha}A - B = [3\alpha - 3, 3 - 3\alpha] - [3\alpha + 3, 9 - 3\alpha]$$

$${}^{\alpha}A - B = [3\alpha - 3 - 9 + 3\alpha, 3 - 3\alpha - 3\alpha - 3]$$

$${}^{\alpha}A - B = [6\alpha - 12, -6\alpha]$$

$$i.e. 6\alpha - 12 \le x \le -6\alpha$$

$$6\alpha - 12 = x$$

$$\alpha = \frac{x + 12}{6}$$

$$if \alpha = 0 \Rightarrow x = -12$$

$$if \alpha = 1 \Rightarrow x = -6$$

$$if \alpha = 0 \Rightarrow x = 0$$

$$A - B = [6\alpha - 12, -6\alpha]$$

$$\alpha = -\alpha$$

$$\alpha = \frac{-x}{6}$$

$$\alpha = -\alpha$$

$$\alpha =$$

#### 3. For A\*B:

We know that,  ${}^{\alpha}A \times B = {}^{\alpha}A \times {}^{\alpha}B$ 

$$^{\alpha} A \times B = [3\alpha - 3, 3 - 3\alpha] \times [3\alpha + 3, 9 - 3\alpha]$$

$$^{\alpha} A \times B = [\min\{(3\alpha - 3)(3\alpha + 3), (3\alpha - 3)(9 - 3\alpha), (3 - 3\alpha)(3\alpha + 3), (3 - 3\alpha)(9 - 3\alpha)\},$$

$$\max\{(3\alpha - 3)(3\alpha + 3), (3\alpha - 3)(9 - 3\alpha), (3 - 3\alpha)(3\alpha + 3), (3 - 3\alpha)(9 - 3\alpha)\}]$$

| α   | $(3\alpha-3)(3\alpha+3)$ | $(3\alpha-3)(9-3\alpha)$ | $(3-3\alpha)(3\alpha+3)$ | $(3-3\alpha)(9-3\alpha)$ |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|
| 0.5 | - 6.75                   | - 11.25                  | 6.75                     | 11.25                    |

#### 4. for A/B:

We know that,  ${}^{\alpha}A/B = {}^{\alpha}A/{}^{\alpha}B$ 

$$^{\alpha} A/B = [3\alpha - 3, 3 - 3\alpha]/[3\alpha + 3, 9 - 3\alpha]$$

$$^{\alpha}A/B = \left[\min\left(\frac{3\alpha - 3}{3\alpha + 3}\right), \left(\frac{3\alpha - 3}{9 - 3\alpha}\right), \left(\frac{3 - 3\alpha}{3\alpha + 3}\right), \left(\frac{3 - 3\alpha}{9 - 3\alpha}\right), \left(\frac{3\alpha - 3}{9 - 3\alpha}\right), \left(\frac{3\alpha$$

| α   | $(3\alpha-3)/(3\alpha+3)$ | $(3\alpha-3)/(9-3\alpha)$ | $(3-3\alpha)/(3\alpha+3)$ | $(3-3\alpha)/(9-3\alpha)$ |
|-----|---------------------------|---------------------------|---------------------------|---------------------------|
| 0.5 | - 0.3333                  | -0.2                      | 0.3333                    | 0.2                       |

$$\frac{\alpha}{A/B} = \left[ \left( \frac{3\alpha - 3}{3\alpha + 3} \right), \left( \frac{3 - 3\alpha}{3\alpha + 3} \right) \right]$$

$$i.e. \left( \frac{3\alpha - 3}{3\alpha + 3} \right) \le x \le \left( \frac{3 - 3\alpha}{3\alpha + 3} \right)$$

$$\frac{3\alpha - 3}{3\alpha + 3} = x$$

$$3\alpha - 3 = 3\alpha x + 3x$$

$$3\alpha - 3\alpha x = 3 + 3x$$

$$\alpha(1 - x) = 1 + x$$

$$\alpha = \frac{1 + x}{1 - x}$$

$$if \alpha = 0 \Rightarrow x = -1$$

$$if \alpha = 1 \Rightarrow x = 0$$

$$if \alpha = 0 \Rightarrow x = 1$$

Hence, 
$$(A/B)(x) = \begin{cases} \frac{1+x}{1-x} & \text{if } -1 < x \le 0 \\ \frac{1-x}{1+x} & \text{if } 0 < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Example 2: Consider fuzzy number A and B defined by,

$$A(x) = \begin{cases} \frac{x+4}{4} & \text{if } -4 < x \le 0\\ \frac{4-x}{4} & \text{if } 0 < x \le 4\\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-4}{4} & \text{if } 4 < x \le 8\\ \frac{12-x}{4} & \text{if } 8 < x \le 12\\ 0 & \text{otherwise} \end{cases}$$

Calculate fuzzy numbers i) A + B

**Solution:** We know that  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X \mid A(x) \geq \alpha\}$ 

$$A(x) \ge \alpha$$

$$\frac{x+4}{4} \ge \alpha$$

$$x+4 \ge 4\alpha$$

$$x \ge 4\alpha - 4...........(1)$$

$$A(x) \ge \alpha$$

$$\frac{4-x}{4} \ge \alpha$$

$$4-x \ge 4\alpha$$

$$4-4\alpha \ge x..........(2)$$

From equation (1) and (2) we get,  ${}^{\alpha}A = [4\alpha - 4, 4 - 4\alpha]$ 

We know that  $\alpha$ -cut of fuzzy set B as,  $\alpha B = \{x \in X / B(x) \ge \alpha \}$ 

$$B(x) \ge \alpha$$

$$\frac{x-4}{4} \ge \alpha$$

$$x-4 \ge 4\alpha$$

$$x \ge 4\alpha + 4......(3)$$

$$B(x) \ge \alpha$$

$$\frac{12-x}{4} \ge \alpha$$

$$12-x \ge 4\alpha$$

$$12-4\alpha \ge x.....(4)$$

From equation (3) and (4) we get,  ${}^{\alpha}B = [4\alpha + 4, 12 - 4\alpha]$ 

#### 1. for A+B:

We know that, 
$$\alpha A + B = \alpha A + \alpha B$$
  

$$\alpha A + B = [4\alpha - 4, 4 - 4\alpha] + [4\alpha + 4, 12 - 4\alpha]$$

$$\alpha A + B = [4\alpha - 4 + 4\alpha + 4, 4 - 4\alpha + 12 - 4\alpha]$$

$$\alpha A + B = [8\alpha, 16 - 8\alpha]$$
i.e.  $8\alpha \le x \le 16 - 8\alpha$   

$$8\alpha = x$$

$$\alpha = \frac{x}{9}$$

$$16 - 8\alpha = x$$

$$\alpha = \frac{16 - x}{9}$$

$$if \ \alpha = 0 \Rightarrow x = 0$$

$$if \ \alpha = 1 \Rightarrow x = 8$$

$$if \ \alpha = 1 \Rightarrow x = 8$$

$$if \ \alpha = 0 \Rightarrow x = 16$$

$$Hence, \quad (A+B)(x) = \begin{cases} \frac{x}{8} & \text{if } 0 < x \le 8\\ \frac{16-x}{8} & \text{if } 8 < x \le 16\\ 0 & \text{otherwise} \end{cases}$$

#### 2. for A - B:

We know that, 
$${}^{\alpha}A - B = {}^{\alpha}A - {}^{\alpha}B$$

$${}^{\alpha}A - B = [4\alpha - 4, 4 - 4\alpha] - [4\alpha + 4, 12 - 4\alpha]$$

$${}^{\alpha}A - B = [4\alpha - 4 - 12 + 4\alpha, 4 - 4\alpha - 4\alpha - 4]$$

$${}^{\alpha}A - B = [8\alpha - 16, -8\alpha]$$

$$i.e. 8\alpha - 16 \le x \le -8\alpha$$

$$8\alpha - 16 = x$$

$$\alpha = \frac{x + 16}{8}$$

$$if \alpha = 0 \Rightarrow x = -16$$

$$if \alpha = 1 \Rightarrow x = -8$$

$$if \alpha = 0 \Rightarrow x = 0$$

$$A - B = [8\alpha - 16, -8\alpha]$$

$$A - B = [8\alpha - 16,$$

#### 3. for A\*B:

We know that,  ${}^{\alpha}A \times B = {}^{\alpha}A \times {}^{\alpha}B$ 

$$^{\alpha} A \times B = [4\alpha - 4, 4 - 4\alpha] \times [4\alpha + 4, 12 - 4\alpha]$$

$$^{\alpha} A \times B = [\min\{(4\alpha - 4)(4\alpha + 4), (4\alpha - 4)(12 - 4\alpha), (4 - 4\alpha)(4\alpha + 4), (4 - 4\alpha)(12 - 4\alpha)\}, \\ \max\{(4\alpha - 4)(4\alpha + 4), (4\alpha - 4)(12 - 4\alpha), (4 - 4\alpha)(4\alpha + 4), (4 - 4\alpha)(12 - 4\alpha)\}]$$

| α   | (4α-4) (4α+4) | (4α-4) (12-4α) | (4-4α) (4α+4) | $(4-4\alpha)(12-4\alpha)$ |
|-----|---------------|----------------|---------------|---------------------------|
| 0.5 | - 12          | - 20           | 12            | 20                        |

$${}^{\alpha}A \times B = [(4\alpha - 4)(12 - 4\alpha), (4 - 4\alpha)(12 - 4\alpha)]$$

$${}^{\alpha}A \times B = [-16\alpha^{2} + 64\alpha - 48, 16\alpha^{2} - 64\alpha + 48]$$

$$i.e. -16\alpha^{2} + 64\alpha - 48 \le x \le 16\alpha^{2} - 64\alpha + 48$$

$$-16\alpha^{2} + 64\alpha - 48 = x$$

$$-16\alpha^{2} + 64\alpha = x + 48$$

$$\alpha^{2} - 4\alpha = \frac{-x - 48}{16}$$

$$\alpha^{2} - 4\alpha + 4 = \frac{-x - 48}{16} + 4$$

$$(2 - \alpha)^{2} = \frac{16 - x}{16}$$

$$(2 - \alpha) = \frac{\sqrt{16 - x}}{4}$$

$$2 - \frac{\sqrt{16 - x}}{4} = \alpha$$

$$if \alpha = 0 \Rightarrow x = -48$$

$$if \alpha = 1 \Rightarrow x = 0$$

$$if \alpha = 1 \Rightarrow x = 0$$

$$if \alpha = 0 \Rightarrow x = 48$$

Hence, 
$$(A \times B)(x) = \begin{cases} \frac{8 - \sqrt{16 - x}}{4} & \text{if } -48 < x \le 0 \\ \frac{8 - \sqrt{16 + x}}{4} & \text{if } 0 < x \le 48 \\ 0 & \text{otherwise} \end{cases}$$

#### 4. for A/B:

We know that,  $\alpha A/B = \alpha A/\alpha B$ 

$$^{\alpha} A/B = [4\alpha - 4, 4 - 4\alpha]/[4\alpha + 4, 12 - 4\alpha]$$

$$^{\alpha}A/B = \left[\min\left(\frac{4\alpha - 4}{4\alpha + 4}\right), \left(\frac{4\alpha - 4}{12 - 4\alpha}\right), \left(\frac{4 - 4\alpha}{4\alpha + 4}\right), \left(\frac{4 - 4\alpha}{12 - 4\alpha}\right), \max\left(\frac{4\alpha - 4}{4\alpha + 4}\right), \left(\frac{4\alpha - 4}{12 - 4\alpha}\right), \left(\frac{4 - 4\alpha}{4\alpha + 4}\right), \left(\frac{4\alpha - 4}{12 - 4\alpha}\right), \left(\frac{4\alpha - 4}{12 - 4\alpha}\right), \left(\frac{4\alpha - 4\alpha}{4\alpha + 4}\right), \left(\frac{4\alpha - 4\alpha}{4\alpha +$$

| α   | $(4\alpha - 4)/(4\alpha + 4)$ | (4α - 4)/ (12 - 4α) | $(4-4\alpha)/(4\alpha+4)$ | $(4 - 4\alpha)/(12 - 4\alpha)$ |
|-----|-------------------------------|---------------------|---------------------------|--------------------------------|
| 0.5 | - 0.3333                      | - 0.2               | 0.3333                    | 0.2                            |

$$a A/B = \begin{bmatrix} \left(\frac{4\alpha - 4}{4\alpha + 4}\right), \left(\frac{4 - 4\alpha}{4\alpha + 4}\right) \end{bmatrix}$$

$$i.e. \left(\frac{4\alpha - 4}{4\alpha + 4}\right) \le x \le \left(\frac{4 - 4\alpha}{4\alpha + 4}\right)$$

$$\frac{4\alpha - 4}{4\alpha + 4} = x$$

$$4\alpha - 4 = 4\alpha x + 4x$$

$$4\alpha - 4\alpha x = 4 + 4x$$

$$4\alpha - 4\alpha x = 4 + 4x$$

$$4\alpha - 4\alpha x = 4\alpha x + 4\alpha$$

$$\alpha(1 - x) = 1 + x$$

$$\alpha = \frac{1 + x}{1 - x}$$

$$if \alpha = 0 \Rightarrow x = -1$$

$$if \alpha = 1 \Rightarrow x = 0$$

$$if \alpha = 0 \Rightarrow x = 1$$

Hence, 
$$(A/B)(x) = \begin{cases} \frac{1+x}{1-x} & \text{if } -1 < x \le 0 \\ \frac{1-x}{1+x} & \text{if } 0 < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

## **Examples for Practice**

**Example 1:** Consider fuzzy number A and B defined by,

$$A(x) = \begin{cases} \frac{x-1}{3} & \text{if } 1 < x \le 4 \\ \frac{7-x}{3} & \text{if } 4 < x \le 7 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-7}{3} & \text{if } 7 < x \le 10 \\ \frac{13-x}{3} & \text{if } 10 < x \le 13 \\ 0 & \text{otherwise} \end{cases}$$

Calculate fuzzy numbers i) A + B

**Solution:** 

$$(A+B)(x) = \begin{cases} \frac{x-8}{6} & \text{if } 8 < x \le 14 \\ \frac{20-x}{6} & \text{if } 14 < x \le 20 \\ 0 & \text{otherwise} \end{cases} \qquad (A-B)(x) = \begin{cases} \frac{x-12}{6} & \text{if } -12 < x \le -6 \\ \frac{-x}{6} & \text{if } -6 < x \le 0 \\ 0 & \text{otherwise} \end{cases}$$

$$(A \times B)(x) = \begin{cases} \frac{-4 + \sqrt{9 + x}}{3} & \text{if } 7 < x \le 40 \\ \frac{10 - \sqrt{9 + x}}{3} & \text{if } 40 < x \le 91 \\ 0 & \text{otherwise} \end{cases}$$
 
$$(A/B)(x) = \begin{cases} \frac{13x - 1}{3(x+1)} & \text{if } \frac{1}{13} < x \le \frac{2}{5} \\ \frac{7 - 7x}{3(1+x)} & \text{if } \frac{2}{5} < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

**Example 2:** Consider fuzzy number A and B defined by,

$$A(x) = \begin{cases} \frac{x+2}{2} & \text{if } -2 < x \le 0 \\ \frac{2-x}{2} & \text{if } 0 < x \le 2 \\ 0 & \text{otherwise} \end{cases}$$

$$B(x) = \begin{cases} \frac{x-2}{2} & \text{if } 2 < x \le 4 \\ \frac{6-x}{2} & \text{if } 4 < x \le 6 \\ 0 & \text{otherwise} \end{cases}$$
Calculate fuzzy numbers i) A + B
ii) A - B
iii) A \* B
iv) A / B

**Solution:** 

$$(A+B)(x) = \begin{cases} \frac{x}{4} & \text{if } 0 < x \le 4\\ \frac{8-x}{4} & \text{if } 4 < x \le 8\\ 0 & \text{otherwise} \end{cases} \qquad (A-B)(x) = \begin{cases} \frac{x+8}{4} & \text{if } -8 < x \le -4\\ \frac{-x}{4} & \text{if } -4 < x \le 0\\ 0 & \text{otherwise} \end{cases}$$

$$(A \times B)(x) = \begin{cases} \frac{-4 + \sqrt{4 - x}}{-2} & \text{if } -12 < x \le 0 \\ \frac{4 - \sqrt{4 + x}}{2} & \text{if } 0 < x \le 12 \\ 0 & \text{otherwise} \end{cases}$$
 
$$(A/B)(x) = \begin{cases} \frac{2x + 2}{2(1 - x)} & \text{if } -1 < x \le 0 \\ \frac{2 - 2x}{2(1 + x)} & \text{if } 0 < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

## Example 3: Consider fuzzy number A and B defined by,

$$A(x) = \begin{cases} \frac{x-1}{2} & \text{if } 1 < x \le 3 \\ \frac{5-x}{2} & \text{if } 3 < x \le 5 \\ 0 & \text{otherwise} \end{cases}$$

$$B(x) = \begin{cases} \frac{x-3}{2} & \text{if } 3 < x \le 5 \\ \frac{7-x}{2} & \text{if } 5 < x \le 7 \\ 0 & \text{otherwise} \end{cases}$$
Calculate fuzzy numbers i) A + B
ii) A - B
iii) A \* B
iv) A / B

#### **Solution:**

$$(A+B)(x) = \begin{cases} \frac{x-4}{4} & \text{if } 4 < x \le 8\\ \frac{12-x}{4} & \text{if } 8 < x \le 12\\ 0 & \text{otherwise} \end{cases} \qquad (A-B)(x) = \begin{cases} \frac{x+6}{4} & \text{if } -6 < x \le -2\\ \frac{2-x}{4} & \text{if } -2 < x \le 2\\ 0 & \text{otherwise} \end{cases}$$

$$(A \times B)(x) = \begin{cases} \frac{-2 + \sqrt{1 + x}}{2} & \text{if } 3 < x \le 15 \\ \frac{6 - \sqrt{1 + x}}{2} & \text{if } 15 < x \le 35 \\ 0 & \text{otherwise} \end{cases}$$
 
$$(A/B)(x) = \begin{cases} \frac{7x - 1}{2(1 + x)} & \text{if } \frac{1}{7} < x \le \frac{3}{5} \\ \frac{5 - 3x}{2(1 + x)} & \text{if } \frac{3}{5} < x \le \frac{5}{3} \\ 0 & \text{otherwise} \end{cases}$$

## 5. Fuzzy Equation:

Fuzzy equation is important area in fuzzy set theory and fuzzy numbers. In fuzzy equations coefficient and unknowns are fuzzy numbers and formulas are constructed by operation of fuzzy arithmetic.

## 1. Fuzzy equation of the type A + X = B:

To solve the fuzzy equation by representing it's  $\alpha$  – cuts,

$${}^{\alpha}A = \begin{bmatrix} a_1 , a_2 \end{bmatrix} \quad \text{and} \quad {}^{\alpha}B = \begin{bmatrix} b_1 , b_2 \end{bmatrix}$$
Then, 
$${}^{\alpha}A + {}^{\alpha}X = {}^{\alpha}B \quad \Rightarrow {}^{\alpha}X = {}^{\alpha}B - {}^{\alpha}A$$

$$\therefore {}^{\alpha}X = \begin{bmatrix} b_1 , b_2 \end{bmatrix} - \begin{bmatrix} a_1 , a_2 \end{bmatrix}$$

$$\therefore {}^{\alpha}X = \begin{bmatrix} b_1 - a_1 , b_2 - a_2 \end{bmatrix}$$

Then solution of fuzzy equation by using Decomposition theorem,

$$X = \bigcup_{\alpha \in (0,1]} \alpha X$$
, Where,  $\alpha X = \alpha^{\alpha} X$  i.e special fuzzy set

## 2. Fuzzy equation of the type AX = B:

To solve the fuzzy equation by representing it's  $\alpha$  – cuts,

$${}^{\alpha} A = \begin{bmatrix} a_1 , a_2 \end{bmatrix} \quad \text{and} \quad {}^{\alpha} B = \begin{bmatrix} b_1 , b_2 \end{bmatrix}$$
Then, 
$${}^{\alpha} A \times^{\alpha} X = {}^{\alpha} B \quad \Rightarrow {}^{\alpha} X = \frac{{}^{\alpha} B}{{}^{\alpha} A}$$

$$\therefore {}^{\alpha} X = \frac{[b_1 , b_2 ]}{[a_1 , a_2 ]}$$

$$\therefore {}^{\alpha} X = \begin{bmatrix} \frac{b_1}{a_1}, \frac{b_2}{a_2} \end{bmatrix}$$

Then solution of fuzzy equation by using Decomposition theorem,

$$X = \bigcup_{\alpha \in (0,1]} \alpha X$$
, Where,  $\alpha X = \alpha^{\alpha} X$  i.e special fuzzy set

## **Solved Examples**

**Example 1:** A and B be two fuzzy numbers such that,

$$A(x) = \left\{ \frac{0.2}{[0,1)} + \frac{0.6}{[1,2)} + \frac{0.8}{[2,3)} + \frac{0.9}{[3,4)} + \frac{1}{4} + \frac{0.5}{(4,5]} + \frac{0.1}{(5,6]} \right\}$$

$$B(x) = \left\{ \frac{0.1}{[0,1)} + \frac{0.2}{[1,2)} + \frac{0.6}{[2,3)} + \frac{0.7}{[3,4)} + \frac{0.8}{[4,5)} + \frac{0.9}{[5,6)} + \frac{1}{6} + \frac{0.5}{(6,7]} + \frac{0.4}{(7,8]} + \frac{0.2}{(8,9]} + \frac{0.1}{(9,10]} \right\}$$

Then find the solution of the equation A + X = B.

**Solution:** To solve the fuzzy equation by representing it's  $\alpha$  – cuts,

$${}^{\alpha}A = \begin{bmatrix} a_1 , a_2 \end{bmatrix} \quad \text{and} \quad {}^{\alpha}B = \begin{bmatrix} b_1 , b_2 \end{bmatrix}$$
Then, 
$${}^{\alpha}A + {}^{\alpha}X = {}^{\alpha}B \quad \Rightarrow {}^{\alpha}X = {}^{\alpha}B - {}^{\alpha}A$$

$$\therefore {}^{\alpha}X = \begin{bmatrix} b_1 , b_2 \end{bmatrix} - \begin{bmatrix} a_1 , a_2 \end{bmatrix}$$

$$\therefore {}^{\alpha}X = \begin{bmatrix} b_1 - a_1 , b_2 - a_2 \end{bmatrix}$$

The all relevant  $\alpha$  – cuts of A, B and X are given in the following table,

| α   | $\alpha_{ m A}$ | $\alpha_{\mathrm{B}}$ | $\alpha_{\rm X} = \alpha_{\rm B} - \alpha_{\rm A}$ |
|-----|-----------------|-----------------------|----------------------------------------------------|
| 0.1 | [0,6]           | [0,10]                | [0,4]                                              |
| 0.2 | [0,5]           | [1,9]                 | [1,4]                                              |
| 0.3 | [1,5]           | [2,8]                 | [1,3]                                              |
| 0.4 | [1,5]           | [2,8]                 | [1,3]                                              |
| 0.5 | [1,5]           | [2,7]                 | [1,2]                                              |
| 0.6 | [1,4]           | [2,6]                 | [1,2]                                              |
| 0.7 | [2,4]           | [3,6]                 | [1,2]                                              |
| 0.8 | [2,4]           | [4,6]                 | [2,2]                                              |
| 0.9 | [3,4]           | [5,6]                 | [2,2]                                              |
| 1   | [4,4]           | [6,6]                 | [2,2]                                              |

Therefore the range of X is [0, 4] is divided in to [0, 1), [1, 2), 2, (2, 3], (3, 4]

Then solution of fuzzy equation by using Decomposition theorem,

$$X = \bigcup_{\alpha \in (0,1]} \alpha X$$
, Where,  $\alpha X = \alpha^{\alpha} X$  i.e special fuzzy set

$$X = \left\{ \frac{0.1}{[0,1)} + \frac{0.7}{[1,2)} + \frac{1}{2} + \frac{0.4}{(2,3]} + \frac{0.2}{(3,4]} \right\}$$

**Example 2:** A and B be two fuzzy numbers such that,

$$A(x) = \left\{ \frac{0.2}{[0,1)} + \frac{0.5}{[1,2)} + \frac{0.6}{[2,3)} + \frac{0.8}{[3,4)} + \frac{0.9}{[4,5)} + \frac{1}{5} + \frac{0.4}{(5,6]} + \frac{0.3}{(6,7]} + \frac{0.1}{(7,8]} \right\}$$

$$B(x) = \left\{ \frac{0.1}{[0,1)} + \frac{0.2}{[1,2)} + \frac{0.5}{[2,3)} + \frac{0.6}{[3,4)} + \frac{0.7}{[4,5)} + \frac{0.8}{[5,6)} + \frac{0.9}{[6,7)} + \frac{1}{7} + \frac{0.5}{(7,8)} + \frac{0.4}{(8,9)} + \frac{0.3}{(9,10)} + \frac{0.2}{(10,11)} + \frac{0.1}{(11,12)} \right\}$$

Then find the solution of the equation A + X = B.

**Solution:** To solve the fuzzy equation by representing it's  $\alpha$  – cuts,

$${}^{\alpha}A = \begin{bmatrix} a_1 , a_2 \end{bmatrix} \quad \text{and} \quad {}^{\alpha}B = \begin{bmatrix} b_1 , b_2 \end{bmatrix}$$
Then, 
$${}^{\alpha}A + {}^{\alpha}X = {}^{\alpha}B \quad \Rightarrow {}^{\alpha}X = {}^{\alpha}B - {}^{\alpha}A$$

$$\therefore {}^{\alpha}X = \begin{bmatrix} b_1 , b_2 \end{bmatrix} - \begin{bmatrix} a_1 , a_2 \end{bmatrix}$$

$$\therefore {}^{\alpha}X = \begin{bmatrix} b_1 - a_1 , b_2 - a_2 \end{bmatrix}$$

The all relevant  $\alpha$  – cuts of A, B and X are given in the following table,

| α   | $\alpha_{ m A}$ | $\alpha_{\mathrm{B}}$ | $\alpha_{\rm X} = \alpha_{\rm B}$ - $\alpha_{\rm A}$ |
|-----|-----------------|-----------------------|------------------------------------------------------|
| 0.1 | [0,8]           | [0,12]                | [0,4]                                                |
| 0.2 | [0,7]           | [1,11]                | [1,4]                                                |
| 0.3 | [1,7]           | [2,10]                | [1,3]                                                |
| 0.4 | [1,6]           | [2,9]                 | [1,3]                                                |
| 0.5 | [1,5]           | [2,8]                 | [1,3]                                                |
| 0.6 | [2,5]           | [3,7]                 | [1,2]                                                |
| 0.7 | [3,5]           | [4,7]                 | [1,2]                                                |
| 0.8 | [3,5]           | [5,7]                 | [2,2]                                                |
| 0.9 | [4,5]           | [6,7]                 | [2,2]                                                |
| 1   | [5,5]           | [7,7]                 | [2,2]                                                |

Therefore the range of X is [0, 4] is divided in to [0, 1), [1, 2), [0, 4]. Then solution of fuzzy equation by using Decomposition theorem,

$$X = \bigcup_{\alpha \in (0,1]} \alpha X , \quad \text{Where,} \quad \alpha X = \alpha^{-\alpha} X \text{ i.e special fuzzy set}$$

$$X = \left\{ \frac{0.1}{[0,1)} + \frac{0.7}{[1,2)} + \frac{1}{2} + \frac{0.5}{(2,3]} + \frac{0.2}{(3,4]} \right\}$$

**Example 3:** Solve the fuzzy equation for A + X = B,

$$A(x) = \begin{cases} \frac{x+2}{2} & \text{if } -2 < x \le 0 \\ \frac{2-x}{2} & \text{if } 0 < x \le 2 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-2}{2} & \text{if } 2 < x \le 4 \\ \frac{6-x}{2} & \text{if } 4 < x \le 6 \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We know that  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X \mid A(x) \ge \alpha\}$ 

From equation (1) and (2) we get,  ${}^{\alpha}A = [2\alpha - 2, 2 - 2\alpha]$ 

We know that  $\alpha$ -cut of fuzzy set B as,  $\alpha B = \{x \in X / B(x) \ge \alpha \}$ 

$$B(x) \ge \alpha$$

$$\frac{x-2}{2} \ge \alpha$$

$$x-2 \ge 2\alpha$$

$$x \ge 2\alpha + 2$$

$$(4)$$

$$B(x) \ge \alpha$$

$$\frac{6-x}{2} \ge \alpha$$

$$6-x \ge 2\alpha$$

$$6-2\alpha \ge x$$

From equation (3) and (4) we get,  ${}^{\alpha}B = [2\alpha + 2, 6 - 2\alpha]$ 

Then, 
$${}^{\alpha}X = {}^{\alpha}B - {}^{\alpha}A$$
  $\therefore {}^{\alpha}X = \begin{bmatrix} b_1 & b_2 \end{bmatrix} - \begin{bmatrix} a_1 & a_2 \end{bmatrix}$   
 $\therefore {}^{\alpha}X = \begin{bmatrix} 2\alpha + 2 & 6 - 2\alpha \end{bmatrix} - \begin{bmatrix} 2\alpha - 2 & 2 - 2\alpha \end{bmatrix}$   
 $\therefore {}^{\alpha}X = \begin{bmatrix} 2\alpha + 2 - 2\alpha + 2 & 6 - 2\alpha - 2 + 2\alpha \end{bmatrix}$  we know that  ${}^{\alpha}X = \begin{bmatrix} b_1 - a_1 & b_2 - a_2 \end{bmatrix}$   
 $\therefore {}^{\alpha}X = \begin{bmatrix} 4 & 4 \end{bmatrix}$ 

Then solution of fuzzy equation by using Decomposition theorem,

$$X = \bigcup_{\alpha \in (0,1]} \alpha X , \quad \text{Where, } \alpha X = \alpha^{\alpha} X \quad \text{i.e special fuzzy set}$$
 
$$X(x) = \begin{cases} 1 & \text{if } x = 4 \\ 0 & \text{otherwise} \end{cases}$$

**Example 4:** Solve the fuzzy equation for A+X = B,

$$A(x) = \begin{cases} x - 4 & \text{if } 4 < x \le 5 \\ 6 - x & \text{if } 5 < x \le 6 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x - 10}{5} & \text{if } 10 < x \le 15 \\ \frac{25 - x}{10} & \text{if } 15 < x \le 25 \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We know that  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X \mid A(x) \ge \alpha\}$ 

$$A(x) \ge \alpha$$

$$x - 4 \ge \alpha$$

$$x \ge \alpha + 4.....(1)$$

$$A(x) \ge \alpha$$

$$6 - x \ge \alpha$$

$$6 - \alpha \ge x....(2)$$

From equation (1) and (2) we get,  $\alpha A = [\alpha + 4, 6 - \alpha]$ 

We know that  $\alpha$ -cut of fuzzy set B as,  $\alpha B = \{x \in X / B(x) \ge \alpha \}$ 

$$B(x) \ge \alpha$$

$$\frac{x-10}{5} \ge \alpha$$

$$x-10 \ge 5\alpha$$

$$x \ge 5\alpha + 10$$

$$B(x) \ge \alpha$$

$$\frac{25-x}{10} \ge \alpha$$

$$25-x \ge 10\alpha$$

$$25-10\alpha \ge x$$
....(4)

From equation (3) and (4) we get,  $^{\alpha}B = [5\alpha + 10,25 - 10\alpha]$ 

Then, 
$${}^{\alpha}X = {}^{\alpha}B - {}^{\alpha}A$$
  $\therefore {}^{\alpha}X = \begin{bmatrix} b_1 & b_2 \end{bmatrix} - \begin{bmatrix} a_1 & a_2 \end{bmatrix}$ 

$${}^{\alpha}X = \begin{bmatrix} 5\alpha + 10 & 25 - 10\alpha \end{bmatrix} - \begin{bmatrix} \alpha + 4 & 6 - \alpha \end{bmatrix}$$

$$we know that {}^{\alpha}X = \begin{bmatrix} b_1 - a_1 & b_2 - a_2 \end{bmatrix}$$

$${}^{\alpha}X = \begin{bmatrix} 5\alpha + 10 - \alpha - 4 & 25 - 10\alpha - 6 + \alpha \end{bmatrix}$$

$${}^{\alpha}X = \begin{bmatrix} 4\alpha + 6 & 19 - 9\alpha \end{bmatrix}$$

$$i.e. \quad 4\alpha + 6 \le x \quad \leq 19 - 9\alpha$$

$$4\alpha + 6 = x \quad 19 - 9\alpha = x$$

$$\alpha = \frac{x - 6}{4} \quad 19 - 9\alpha = x$$

$$\alpha = \frac{19 - x}{9}$$

$$if \quad \alpha = 1 \Rightarrow x = 10$$

$$if \quad \alpha = 0 \Rightarrow x = 19$$

Then solution of fuzzy equation by using Decomposition theorem,

$$X = \bigcup_{\alpha \in (0,1]} \alpha X , \quad \text{Where, } \alpha X = \alpha \alpha X \quad \text{i.e special fuzzy set}$$

$$Hence, \quad X(x) = \begin{cases} \frac{x-6}{4} & \text{if } 6 < x \le 10 \\ \frac{19-x}{9} & \text{if } 10 < x \le 19 \\ 0 & \text{otherwise} \end{cases}$$

**Example 5:** Solve the fuzzy equation for A  $\cdot$  X = B,

$$A(x) = \begin{cases} x - 3 & \text{if } 3 < x \le 4 \\ 5 - x & \text{if } 4 < x \le 5 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x - 12}{8} & \text{if } 12 < x \le 20 \\ \frac{32 - x}{12} & \text{if } 20 < x \le 32 \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We know that  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X / A(x) \ge \alpha \}$ 

$$A(x) \ge \alpha$$
  $A(x) \ge \alpha$   
 $x - 3 \ge \alpha$   $5 - x \ge \alpha$   
 $x \ge \alpha + 3$ ................................(2)

From equation (1) and (2) we get,  $^{\alpha}A = [\alpha + 3, 5 - \alpha]$ 

We know that  $\alpha$ -cut of fuzzy set B as,  ${}^{\alpha}B = \{x \in X / B(x) \ge \alpha \}$ 

$$B(x) \ge \alpha$$

$$\frac{x-12}{8} \ge \alpha$$

$$x-12 \ge 8\alpha$$

$$x \ge 8\alpha + 12....(3)$$

$$B(x) \ge \alpha$$

$$\frac{32-x}{12} \ge \alpha$$

$$32-x \ge 12\alpha$$

$$32-12\alpha \ge x...(4)$$

From equation (3) and (4) we get,  $^{\alpha}B = [8\alpha + 12,32 - 12\alpha]$ 

Then, 
$${}^{\alpha}A \times {}^{\alpha}X = {}^{\alpha}B \implies {}^{\alpha}X = \frac{{}^{\alpha}B}{{}^{\alpha}A} :: {}^{\alpha}X = \frac{[b_1, b_2]}{[a_1, a_2]}$$

$$:: {}^{\alpha}X = \frac{[8\alpha + 12, 32 - 12\alpha]}{[\alpha + 3, 5 - \alpha]} \qquad we know that {}^{\alpha}X = \left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]$$

$$\therefore {}^{\alpha}X = \left[\frac{8\alpha + 12}{\alpha + 3}, \frac{32 - 12\alpha}{5 - \alpha}\right]$$

$$i.e. \left(\frac{8\alpha + 12}{\alpha + 3}\right) \le x \le \left(\frac{32 - 12\alpha}{5 - \alpha}\right)$$

$$\frac{8\alpha + 12}{\alpha + 3} = x$$

$$8\alpha + 12 = \alpha x + 3x$$

$$8\alpha - \alpha x = 3x - 12$$

$$\alpha(8 - x) = 3x - 12$$

$$\alpha(8 - x) = 3x - 12$$

$$\alpha = \frac{3x - 12}{8 - x}$$

$$if \alpha = 0 \Rightarrow x = 4$$

$$if \alpha = 1 \Rightarrow x = 5$$

$$if \alpha = 0 \Rightarrow x = \frac{32 - 5x}{12 - x}$$

$$if \alpha = 0 \Rightarrow x = \frac{32}{5}$$

Then solution of fuzzy equation by using Decomposition theorem,

$$X = \bigcup_{\alpha \in (0,1]} \alpha X$$
, Where,  $\alpha X = \alpha^{\alpha} X$  i.e special fuzzy set

Hence, 
$$X(x) = \begin{cases} \frac{3x-12}{8-x} & \text{if } 4 < x \le 5 \\ \frac{32-5x}{12-x} & \text{if } 5 < x \le \frac{32}{5} \\ 0 & \text{otherwise} \end{cases}$$

**Example 6:** Solve the fuzzy equation for A  $\cdot$  X = B,

$$A(x) = \begin{cases} \frac{x-2}{2} & \text{if } 2 < x \le 4 \\ \frac{6-x}{2} & \text{if } 4 < x \le 6 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-6}{2} & \text{if } 6 < x \le 8 \\ \frac{10-x}{2} & \text{if } 8 < x \le 10 \\ 0 & \text{otherwise} \end{cases}$$

**Solution:** We know that  $\alpha$ -cut of fuzzy set A as,  $\alpha A = \{x \in X / A(x) \ge \alpha \}$ 

From equation (1) and (2) we get,  $^{\alpha}A = [2\alpha + 2, 6 - 2\alpha]$ 

We know that  $\alpha$ -cut of fuzzy set B as,  $\alpha B = \{x \in X / B(x) \ge \alpha \}$ 

From equation (3) and (4) we get,  $^{\alpha}B = [2\alpha + 6,10 - 2\alpha]$ 

Then, 
$${}^{\alpha}A \times {}^{\alpha}X = {}^{\alpha}B$$
  $\Rightarrow {}^{\alpha}X = \frac{{}^{\alpha}B}{{}^{\alpha}A}$   $\therefore {}^{\alpha}X = \frac{[b_1, b_2]}{[a_1, a_2]}$ 

$$\therefore {}^{\alpha}X = \frac{[2\alpha + 6, 10 - 2\alpha]}{[2\alpha + 2, 6 - 2\alpha]}$$
 we know that  ${}^{\alpha}X = \left[\frac{b_1}{a_1}, \frac{b_2}{a_2}\right]$ 

$$\vdots e.\left(\frac{2\alpha + 6}{2\alpha + 2}, \frac{10 - 2\alpha}{6 - 2\alpha}\right]$$

$$i.e.\left(\frac{2\alpha + 6}{2\alpha + 2}\right) \le x \le \left(\frac{10 - 2\alpha}{6 - 2\alpha}\right)$$

$$\frac{2\alpha + 6}{2\alpha + 2} = x$$

$$2\alpha + 6 = 2\alpha x + 2x$$

$$2\alpha - 2\alpha x = 2x - 6$$

$$2\alpha(1 - x) = 2(x - 3)$$

$$\alpha = \frac{x - 3}{1 - x}$$

$$if \alpha = 0 \Rightarrow x = 3$$

$$if \alpha = 1 \Rightarrow x = 2$$

$$if \alpha = 0 \Rightarrow x = \frac{5}{3}$$

This condition is not valid hence given fuzzy number has no solution.

## **Examples for Practice**

**Example 1:** A and B be two fuzzy numbers such that,

$$A(x) = \left\{ \frac{0.2}{[0,1)} + \frac{0.6}{[1,2)} + \frac{0.9}{[2,3)} + \frac{1}{3} + \frac{0.4}{(3,4]} + \frac{0.1}{(4,5]} \right\}$$

$$B(x) = \left\{ \frac{0.1}{[0,1)} + \frac{0.2}{[1,2)} + \frac{0.6}{[2,3)} + \frac{0.7}{[3,4)} + \frac{0.9}{[4,5)} + \frac{1}{5} + \frac{0.4}{(5,6)} + \frac{0.4}{(6,7)} + \frac{0.1}{(7,8)} \right\}$$

Then find the solution of the equation A + X = B.

**Example 2:** A and B be two fuzzy numbers such that,

$$A(x) = \left\{ \frac{0.1}{[0,1)} + \frac{0.2}{[1,2)} + \frac{0.5}{[2,3)} + \frac{0.7}{[3,4)} + \frac{0.8}{[4,5)} + \frac{0.9}{[5,6)} + \frac{1}{6} + \frac{0.5}{(6,7]} + \frac{0.4}{(7,8]} + \frac{0.2}{(8,9]} + \frac{0.1}{(9,10]} \right\}$$

$$B(x) = \left\{ \frac{0.1}{[0,1)} + \frac{0.2}{[1,2)} + \frac{0.4}{[2,3)} + \frac{0.6}{[3,4)} + \frac{0.7}{[4,5)} + \frac{0.8}{[5,6)} + \frac{0.9}{[6,7)} + \frac{1}{7} + \frac{0.5}{(7,8)} + \frac{0.5}{(8,9)} + \frac{0.3}{(9,10)} + \frac{0.2}{(10,11)} + \frac{0.1}{(11,12)} \right\}$$

Then find the solution of the equation A + X = B.

**Example 3:** Solve the fuzzy equation for A + X = B,

$$A(x) = \begin{cases} \frac{x-2}{2} & \text{if } 2 < x \le 4 \\ \frac{6-x}{2} & \text{if } 4 < x \le 6 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-6}{2} & \text{if } 6 < x \le 8 \\ \frac{10-x}{2} & \text{if } 8 < x \le 10 \\ 0 & \text{otherwise} \end{cases}$$

**Example 4:** Solve the fuzzy equation for A + X = B,

$$A(x) = \begin{cases} x - 3 & \text{if } 3 < x \le 4 \\ 5 - x & \text{if } 4 < x \le 5 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x - 12}{8} & \text{if } 12 < x \le 20 \\ \frac{32 - x}{12} & \text{if } 20 < x \le 32 \\ 0 & \text{otherwise} \end{cases}$$

**Example 5:** Solve the fuzzy equation for AX = B,

$$A(x) = \begin{cases} \frac{x-2}{2} & \text{if } 2 < x \le 4 \\ \frac{6-x}{2} & \text{if } 4 < x \le 6 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-6}{2} & \text{if } 6 < x \le 8 \\ \frac{10-x}{2} & \text{if } 8 < x \le 10 \\ 0 & \text{otherwise} \end{cases}$$

**Example 6:** Solve the fuzzy equation for AX = B,

$$A(x) = \begin{cases} x - 4 & \text{if } 4 < x \le 5 \\ 6 - x & \text{if } 5 < x \le 6 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x - 10}{10} & \text{if } 10 < x \le 20 \\ \frac{35 - x}{10} & \text{if } 20 < x \le 35 \\ 0 & \text{otherwise} \end{cases}$$

**Example 7:** Solve the fuzzy equation for A X = B,

$$A(x) = \begin{cases} \frac{x+2}{2} & \text{if } -2 < x \le 0 \\ \frac{2-x}{2} & \text{if } 0 < x \le 2 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-2}{2} & \text{if } 2 < x \le 4 \\ \frac{6-x}{2} & \text{if } 4 < x \le 6 \\ 0 & \text{otherwise} \end{cases}$$

**Example 8:** Solve the fuzzy equation for A + X = B,

$$A(x) = \begin{cases} x - 4 & \text{if } 4 < x \le 5 \\ 6 - x & \text{if } 5 < x \le 6 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x - 10}{5} & \text{if } 10 < x \le 15 \\ \frac{25 - x}{10} & \text{if } 15 < x \le 25 \\ 0 & \text{otherwise} \end{cases}$$

**Example 9:** Solve the fuzzy equation for A + X = B,

$$A(x) = \begin{cases} \frac{x-2}{2} & \text{if } 2 < x \le 4 \\ \frac{6-x}{2} & \text{if } 4 < x \le 6 \\ 0 & \text{otherwise} \end{cases} \qquad B(x) = \begin{cases} \frac{x-6}{2} & \text{if } 6 < x \le 8 \\ \frac{10-x}{2} & \text{if } 8 < x \le 10 \\ 0 & \text{otherwise} \end{cases}$$

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*