SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL - SENAC BACHARELADO EM ENGENHARIA DA COMPUTAÇÃO

HENRIQUE MACEDO DE SOUZA ISAQUE VENANCIO ROCHA MIGUEL HENRIQUE ALMEIDA PIMENTEL NATHALY VIEIRA COSTA

RESUMO: CONTROLE PID DE POTÊNCIA EM CORRENTE ALTERNADA - ARDUINO E TRIAC

NATHALY VIEIRA COSTA

RESUMO: CONTROLE PID DE POTÊNCIA EM CORRENTE ALTERNADA - ARDUINO E TRIAC

Resumo de artigo apresentado ao Serviço Nacional de Aprendizagem Comercial -SENAC como parte dos requisitos da disciplina Projeto: Ciência e Tecnologia Aplicada I. Resumo do artigo: Controle PID de potência em corrente alternada - Arduino e TRIAC

O objetivo do artigo lido é explicar a teoria por trás do uso do Controle Proporcional-Integral Diferencial - PID no controle de corrente alternada. O PID é um mecanismo de controle por realimentação, um sistema que considera a resposta do processo durante o ajuste para modificar o seu comportamento, e é utilizado em sistemas de controles industriais.

O PID possui três componentes: o proporcional (P) que responde ao erro atual, o integral (I) que compensa erros acumulados ao longo do tempo e derivativo (D) que prevê erros futuros com base na taxa de variação do erro. Quando ajustados esses três parâmetros, podemos atender às demandas específicas de cada processo a ser controlado.

Como exemplo à utilização do PID, podemos pensar no ajuste de temperatura realizado necessário quando tomamos banho em um dia frio. Nesse caso, a temperatura é a variável de processo (VP), o valor desejado é o set point (SP) e as voltas dadas na torneira é a variável manipulada (MV). A diferença de temperatura medida e o SP é o erro (e).

Um circuito controlado pode ser utilizado para controlar qualquer processo em que tenhamos um PV, um SP e um MV que possa alterar o PV e el pode ser utilizado para regular qualquer variável passível de medição.

O controle do PID é feito pela soma de manipuladores da variável manipulada e os termos P, I e D são somados para calcular a saída do controle PID.

Equação final:

$$u(t) = MV(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$

Controle proporcional:

Calcula o MV utilizando a distância entre o set point e o valor da variável PV em certo instante. O termo proporcional produz um valor de saída proporcional ao erro e um alto ganho proporcional resulta em uma grande mudança na saída. Isso pode resultar em um sistema instável. Já um ganho proporcional pequeno pode resultar em um SP não atingido.

Controle Derivativo:

Esse controle faz com que o sistema atue rápido ou devagar de acordo com a taxa de resposta do PV. A resposta será inversamente proporcional à taxa de variação do PV.

Controle Integral:

O controle integral leva em conta quanto tempo estamos afastados do set point e ele tenta evitar que o sistema fique oscilando.

É importante no PID que seja definida a proporção relativa de cada componente, utilizando as constantes Kp, Ki e Kd.

Para implementar o PID em um controle de corrente alternada é preciso de um mecanismo de controle que permita a variação de energia enviada à resistência.

O gráfico acima mostra a relação entre tempo e tensão em uma corrente alternada. A tensão alterna entre +220V e -220V, passando por 0V. O caminho que a tensão percorre entre 0V e o próximo 0V corresponde a meio ciclo. Para controlar a

energia enviada à resistência, é necessário recortar uma parte dessa onda proporcional ao controle desejado.

O circuito com o Arduino que realiza esse controle é dividido em duas etapas: (1) um sensor que informa a passagem da curva senoide pelo zero e (2) um circuito de controle comandado pelo Arduino que permita que apenas uma parte da onda seja enviada ao circuito a ser controlado.

Circuito responsável pelo item 1:

O circuito é composto por dois resistores e um optoacoplador 4N25 (composto por um fotodiodo e um fototransistor). O optoacoplador acopla opticamente ou desacopla eletricamente dois circuitos. O circuito de baixa tensão será conectado ao lado esquerdo pelo opto sem que haja passagem de corrente e ele será utilizado para informar ao Arduino a passagem por zero da senoide.

O sinal de alta tensão será ligado ao fotodiodo através de um resistor e o circuito de baixa tensão será montado conectando o pino 5 do optoacoplador ao pino 2 digital do Arduino e ao resistor. O código do Arduino utilizará um recurso que chamará uma rotina quando um pino do Arduino mudar de estado.

Circuito para controle de uma carga 110V ou 220V:

Um circuito baseado em TRIAC (como BTA12-600) e um optoacoplador de disparo (MOC3020) é usado para controlar a potência. O Arduino ativa o TRIAC em momentos específicos de cada meio ciclo, permitindo que apenas uma porção da onda senoidal chegue à carga (110V ou 220V). O TRIAC desliga automaticamente na próxima passagem por zero.