Computer Architecture

Ngo Lam Trung, Pham Ngoc Hung, Hoang Van Hiep Department of Computer Engineering School of Information and Communication Technology (SoICT) Hanoi University of Science and Technology E-mail: [trungnl, hungpn, hiephv]@soict.hust.edu.vn

Chapter 4: Arithmetic for Computers

[with materials from COD, RISC-V 2nd Edition, Patterson & Hennessy 2021, and M.J. Irwin's presentation, PSU 2008,

The RISC-V Instruction Set Manual, Volume I, ver. 2.2]

What are stored inside computer?

- □ Data, of course!
 - Audio, video, image, drawings,...
 - Documents, personal information,...
 - Finance record, corporate business data,...
 - 0 ...
- Complex data are constructed from basic data types.
 - Integers
 - Real numbers (Floating point)
 - Symbols (Characters)
- All are represented as binary numbers.

Content

- □ (Super) Basics of logic design
- Integer representation
- Integer arithmetic (inside computer)
- Floating point number representation and arithmetic

Unsigned Binary Integers

Using n-bit binary number to represent non-negative integer

$$\begin{split} x &= x_{n-1} x_{n-2} ... x_1 x_0 \\ &= x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_1 2^1 + x_0 2^0 \end{split}$$

- □ Range: 0 to +2ⁿ 1
- Example

0000 0000 0000 0000 0000 0000 1011₂
=
$$0 + ... + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

= $0 + ... + 8 + 0 + 2 + 1 = 11_{10}$

Data range using 32 bits

0 to
$$2^{32}$$
-1 = 4,294,967,295

IT3030E, Fall 2024

5

Eg: 32 bit Unsigned Binary Integers

Hex	Binary	Decimal
0x00000000	00000	0
0x0000001	00001	1
0x00000002	00010	2
0x00000003	00011	3
0x00000004	00100	4
0x0000005	00101	5
0x00000006	00110	6
0x00000007	00111	7
0x00000008	01000	8
0x00000009	01001	9
0xFFFFFFC	11100	2 ³² -4
0xFFFFFFD	11101	2 ³² -3
0xFFFFFFE	11110	2 ³² -2
0xFFFFFFF	11111	2 ³² -1

Exercise

Convert from decimal to 32-bit binary integers

25 = 0000 0000 0000 0000 0000 0001 1001

125 = 0000 0000 0000 0000 0000 0000 0111 1101

255 = 0000 0000 0000 0000 0000 0000 1111 1111

Convert 32-bit binary integers to decimal

 $0000\ 0000\ 0000\ 0000\ 0000\ 1100\ 1111 = 207$

 $0000\ 0000\ 0000\ 0000\ 0001\ 0011\ 0011 = 307$

Signed binary integers

Using n-bit binary number to represent integer, including negative values

$$\begin{split} x &= x_{n-1} x_{n-2} ... x_1 x_0 \\ &= -x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_1 2^1 + x_0 2^0 \end{split}$$

- □ Range: -2^{n-1} to $+2^{n-1} 1$
- Example

Using 32 bits

-2,147,483,648 to +2,147,483,647

8

Signed integer negation

- □ Given $x = xn_{1}x_{n2}$ $x_{1}x_{0}$, how to calculate -x?
- □ Let $\bar{x} = 1$'s complement of x

$$\bar{x} = 1111 \dots 11_2 - x$$

(1 \rightarrow 0, 0 \rightarrow 1)

Then

$$\bar{x} + x = 1111 \dots 112 = -1$$

$$\rightarrow \qquad \bar{x} + 1 = -x$$

Example: find binary representation of -2

Exercise

Find 16 bit signed integer representation of

```
16 = 0000\ 0000\ 0001\ 0000
```

-16 = 1111 1111 1111 0000

100 = 0000 0000 0110 0100

-100 = 1111 1111 1001 1100

Sign extension

- □ Given n-bit integer $x = x_{n-1}x_{n-2}$ x_1x_0
- □ Find corresponding m-bit representation (m > n) with the same numeric value

$$x = x_{m-1}x_{m-2} \quad x_1x_0$$

- □ → Replicate the sign bit to the left
- □ Examples: 8-bit to 16-bit
 - +2: 0000 0010 => 0000 0000 0000 0010
 - -2: 1111 1110 => 1111 1111 1111 1110

Instruction to work with sign/unsigned

- □ lb/lbu, lh/lhu
- blt/bltu, bge/bgeu
- slt/sltu, slti/sltiu
- div/divu, rem/remu

Example

- What is the output of the following program?
- What if the blt instruction is replaced by bltu?

```
li t0, 20
     li t1, -20
     blt t1, t0, else
     li a0, 1
     j print
else:
     li a0, 0
print:
     li a7, 1
     ecall
```

Example

■ What are the decimal values of s0, s1, s2, s3?

```
.data
     x: .byte 20
     y: .byte -20
.text
     la t0, x
     la t1, y
     lb s0, 0(t0)
     lbu s1, 0(t0)
     lb s2, 0(t1)
     lbu s3, 0(t1)
```

Addition and subtraction

Addition

- Similar to what you do to add two numbers manually
- Digits are added bit by bit from right to left
- Carries passed to the next digit to the left

Subtraction

Negate the second operand then add to the first operand

 $\begin{array}{c} \bullet \\ \hline 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0111_{\mathsf{two}} = 7_{\mathsf{ten}} \\ \hline 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 01101_{\mathsf{two}} = 6_{\mathsf{ten}} \\ \hline \hline 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 1101_{\mathsf{two}} = 13_{\mathsf{ten}} \\ \hline \end{array}$

Carryout and Overflow

- Carryout: adding or substracting n-bit binary numbers result in carryout to or borrow from bit n+1.
- Overflow: adding or subtracting n-bit signed integers result in a value that cannot be represented by a n-bit signed integer.
 - When adding operands with different signs or when subtracting operands with the same sign, overflow can never occur

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

Examples

□ All numbers are 8-bit signed integer

$$12 + 8 =$$

$$122 + 8 =$$

$$122 + 80 =$$

Basics of logic design (Appendix A)

- Boolean logic: logic variable and operators
- □ Logic variable: values of 1 (TRUE) or 0 (FALSE)
- Basic operators: AND, OR, NOT
 - \square A AND B: $A \cdot B$ hay AB
 - \square A OR B: A+B
 - \square NOT A:
 - □ Order: NOT > AND > OR
- Additional operators: NAND, NOR, XOR
 - \square A NAND B: $A \cdot B$
 - \square A NOR B: A+B
 - \square A XOR B: $A \oplus B = A \bullet B + A \bullet B$

Truth tables

А	В	A AND B A•B
0	0	0
0	1	0
1	0	0
1	1	1

А	В	A OR B A + B
0	0	0
0	1	1
1	0	1
1	1	1

	NOT A
Α	А
0	1
1	0

Unary operator NOT

_	6	A NAND B
Α	В	A∙B
0	0	1
0	1	1
1	0	1
1	1	0

_	_	A XOR B
Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

_	В	A NOR B	
Α		A + B	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Logic gates

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A B F	$F = A \bullet B$ or $F = AB$	AB F 0000 010 100 1111
OR	A B F	F = A + B	AB F 0000 011 101 111
NOT	A F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A B F	$F = \overline{AB}$	AB F 00 1 01 1 10 1 11 0
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	$\begin{array}{c} A \\ B \end{array} \longrightarrow F$	$F = A \oplus B$	A B F 0 0 0 0 1 1 1 0 1 1 1 0

Laws of Boolean algebra

$$A \cdot B = B \cdot A$$

$$A \bullet (B + C) = (A \bullet B) + (A \bullet C)$$

$$1 \cdot A = A$$

$$A \bullet \overline{A} = 0$$

$$0 \cdot A = 0$$

$$A \cdot A = A$$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$
 (DeMorgan's law)

$$A + B = B + A$$

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

$$0 + A = A$$

$$A + \overline{A} = 1$$

$$1 + A = 1$$

$$A + A = A$$

$$A + (B + C) = (A + B) + C$$

$$\overline{A + B} = \overline{A} \bullet \overline{B}$$
 (DeMorgan's law)

IT3030E, Fall 2024 22₂₂

Example: multiplexor

- Depending on S, output C is equal to one of the two inputs A, B
- Explain how this circuit works?

Adder implementation

□ 1-bit full adder

Inputs			Outputs	
А	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\Box S = Cin \oplus (A \oplus B)$$

$$\Box C_{out} = AB + BCin + ACin$$

Adder implementation

N-bit ripple-carry adder

Performance depends on data length

→ Performance is low

Making addition faster: infinite hardware

- Parallelize the adder with the cost of hardware
- Given the addition:

$$a_{n-1}a_{n-2} a_1a_0 + bn_{-1}b_{n-2} b_1b_0$$

 \Box Let c_i is the carry at bit i

$$c2 = (b1.c1) + (a1.c1) + (a1.b1)$$

 $c1 = (b0.c0) + (a0.c0) + (a0.b0)$

Find c2 from a0, b0, a1, b1?

Making addition faster: Carry Lookahead

- Video demo: https://www.youtube.com/watch?v=yj6wo5SCObY
- Approach
 - Make hardwired 4 bit adder → fast and simple enough
 - Develop a carry lookahead unit to calculate the carry bit before finishing the addition
- □ At bit *i*

$$ci + 1 = (bi \cdot ci) + (ai \cdot ci) + (ai \cdot bi)$$
$$= (ai \cdot bi) + (ai + bi) \cdot ci$$
$$gi = ai \cdot bi$$
$$pi = ai + bi$$

Denote

$$ci + 1 = gi + pi \cdot ci$$

→ Then

Carry lookahead

With 4-bit adder

$$c1 = g0 + (p0 \cdot c0)$$

$$c2 = g1 + (p1 \cdot g0) + (p1 \cdot p0 \cdot c0)$$

$$c3 = g2 + (p2 \cdot g1) + (p2 \cdot p1 \cdot g0) + (p2 \cdot p1 \cdot p0 \cdot c0)$$

$$c4 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$+ (p3 \cdot p2 \cdot p1 \cdot p0 \cdot c0)$$

- → All carry bits can be calculated after 3 gate delay
- → All result bits can be calculated after maximum of 4 gate delay

→ How to implement bigger adder?

Carry lookahead

□ For 16-bit adder → fast C1, C2, C3, C4 is needed

Carry lookahead

Denote

$$P0 = p3 \cdot p2 \cdot p1 \cdot p0$$

$$G0 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$P1 = p7 \cdot p6 \cdot p5 \cdot p4$$

$$G1 = g7 + (p7 \cdot g6) + (p7 \cdot p6 \cdot g5) + (p7 \cdot p6 \cdot p5 \cdot g4)$$

$$P2 = p11 \cdot p10 \cdot p9 \cdot p8$$

$$G2 = g11 + (p11 \cdot g10) + (p11 \cdot p10 \cdot g9) + (p11 \cdot p10 \cdot p9 \cdot g8)$$

$$P3 = p15 \cdot p14 \cdot p13 \cdot p12$$

$$G3 = g15 + (p15 \cdot g14) + (p15 \cdot p14 \cdot g13) + (p15 \cdot p14 \cdot p13 \cdot g12)$$

Then big-carry bits can be calculated fast

$$\begin{aligned} \text{C1} &= \text{G0} + (\text{P0} \cdot \text{c0}) \\ \text{C2} &= \text{G1} + (\text{P1} \cdot \text{G0}) + (\text{P1} \cdot \text{P0} \cdot \text{c0}) \\ \text{C3} &= \text{G2} + (\text{P2} \cdot \text{G1}) + (\text{P2} \cdot \text{P1} \cdot \text{G0}) + (\text{P2} \cdot \text{P1} \cdot \text{P0} \cdot \text{c0}) \\ \text{C4} &= \text{G3} + (\text{P3} \cdot \text{G2}) + (\text{P3} \cdot \text{P2} \cdot \text{G1}) + (\text{P3} \cdot \text{P2} \cdot \text{P1} \cdot \text{G0}) \\ &\quad + (\text{P3} \cdot \text{P2} \cdot \text{P1} \cdot \text{P0} \cdot \text{c0}) \end{aligned}$$

16-bit Adder

Multiply

 Binary multiplication is just a bunch of right shifts and adds

n-bit multiplicand and multiplier → 2n-bit product

Example

$$\begin{array}{ccc} \text{Multiplicand} & & 1000_{\text{ten}} \\ \text{Multiplier} & x & & \frac{1001_{\text{ten}}}{1000} \\ & & & 0000 \\ & & 0000 \\ \hline & & 1000 \\ \hline \text{Product} & & 1001000_{\text{ten}} \end{array}$$

How to do this in hardware?

Add and Right Shift Multiplier

Add and Right Shift Multiplier Hardware

Fast multiplier – Design for Moore

■ Why is this fast?

Fast multiplier – Design for Moore

- How fast is this?
- Note: the size of addition circuits

RISC-V Multiply Instruction (RV32M extension)

unsigned

□ Multiply instructions: mul, mulh mulhu, mulhsu mul t1, s0, s1 #set t1 to lower 32 bits of s0 * s1 mulh t1, s0, s1 #set t1 to upper 32 bits of s0 * s1 mulhu t1, s0, s1 #set t1 to upper 32 bits of s0 * s1(unsigned multiplication) mulhsu t1, s0, s1 #set t1 to upper 32 bits of s0 * s1, where s0 is signed and s1 is

Division

Division is just a bunch of quotient digit guesses and left shifts and subtracts

dividend = quotient x divisor + remainder

Left Shift and Subtract Division Hardware

Result: remainder 0, quotient 3

RISC-V Divide Instruction (RV32M extension)

Instructions:

```
div t1, t2, t3 \#t1 = t2/t3 (signed division)
divu t1, t2, t3 \#t1 = t2/t3 (unsigned division)
rem t1, t2, t3 \#t1 = remainder of t2/t3
remu t1, t2, t3 \#t1 = remainder of t2/t3
(unsigned)
```

- As with multiply, divide ignores overflow so software must determine if the quotient is too large.
- Software must also check the divisor to avoid division by 0.

Signed integer multiplication and division

- Reuse unsigned multiplication then fix product sign later
- Multiplication
 - Multiplicand and multiplier are of the same sign: keep product
 - Multiplicand and multiplier are of different sign: negate product
- Division:
 - Dividend and divisor of the same sign:
 - Keep quotient
 - Keep/negate remainder so it is of the same sign with dividend
 - Dividend and divisor of different sign:
 - Negate quotient
 - Keep/negate remainder so it is of the same sign with dividend

- Write a RISC-V program
 - Reads 2 integers a and b from console
 - □ Print out the two values: (a / b) and (a % b) to console

Exercise

- Write a program that
 - Reads two integers a and b from console.
 - Find and print out the greatest common divisor of a and b.
 - Find and print out the least common multiplier of a and b.

Representing Big (and Small) Numbers

- Encoding non-integer value?
 - □ Earth mass: (5.9722±0.0006)×1024 (kg)

 - PI number

- Problem: how to represent the above numbers?
- → We need reals or floating-point numbers!
- → Floating point numbers in decimal:
 - **→** 1000
 - $\rightarrow 1 \times 10^3$
 - \rightarrow 0.1 x 10⁴

Floating point number

In decimal system

$$2013.1228 = 201.31228 * 10$$

$$= 20.131228 * 10^{2}$$

$$= 2.0131228 * 10^{3}$$

$$= 20131228 * 10^{-4}$$

■ What is the "standard" form?

$$2.0131228 * 10^3 = 2.0131228E + 03$$
mantissa exponent

- □ In binary $X = \pm 1.xxxxx * 2^{yyyy}$
- Sign, mantissa, and exponent need to be represented

Floating point number

- Defined by the IEEE 754-1985 standard
 - Single precision: 32 bit
 - Double precision: 64 bit
 - Correspond to float and double in C
- Single precision floating point representation

$$(-1)^{sign} \times 1.F \times 2^{E-bias}$$

- □ Fit everything in 32 bits
- □ Bias = 127 (with single precision)

S	E (exponent)	F (fraction)

1 sign bit 8 bits 23 bits

Ex1: convert X into decimal value

 $X = 1100\ 0001\ 0101\ 0110\ 0000\ 0000\ 0000\ 0000$

```
sign = 1 \rightarrow X is negative

E = 1000 0010 = 130

F = 10101100...00

\rightarrow X = (-1)<sup>1</sup> x 1.101011000..00 x 2<sup>130-127</sup>

= -1.101011 x 2<sup>3</sup> = -1101.011

= -13.375
```

Ex2: find decimal value of X

 $X = 0011 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

sign = 0
e = 0111 1111 = 127
m = 000...0000 (23 bit 0)
X =
$$(-1)^0$$
 x 1.00...000 x $2^{127-127}$ = 1.0

□ Ex3: find binary representation of X = 9.6875 in IEEE 754 single precision

Converting X to plain binary

$$9_{10} = 1001_2$$

$$\rightarrow$$
 9.6875₁₀ = 1001.1011₂

□ Ex3: find binary representation of X = 9.6875 in IEEE 754 single precision

$$X = 9.6875_{(10)} = 1001.1011_{(2)} = 1.0011011 \times 2^{3}$$

Then
$$S = 0$$

$$e = 127 + 3 = 130_{(10)} = 1000 \ 0010_{(2)}$$

$$m = 001101100...00 \ (23 \ bit)$$

- \square 1.0₂ x 2⁻¹ =
- □ 100.75₁₀ =

Some special values

- □ Largest+: 0 11111110 1.11111111111111111111111 = $(2-2^{-23}) \times 2^{254-127}$

Too large or too small values

- Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field
- Underflow (floating point) happens when a negative exponent becomes too large to fit in the exponent field

Double precision: 64 bits

s E (exponent)		F (fraction)					
1 bit	11 bits	20 bits					
F (fraction continued)							
32 bits							

IEEE 754 FP Standard Encoding

- Special encodings are used to represent unusual events
 - ± infinity for division by zero
 - NAN (not a number) for invalid operations such as 0/0
 - True zero is the bit string all zero

Single Pre	ecision	Double Pred	Object		
E (8)	F (23)	E (11)	F (52)	Represented	
0000 0000	0	0000 0000	0	true zero (0)	
0000 0000	nonzero	0000 0000	nonzero	± denormalized number	
0111 1111 to +127,-126	anything	01111111 to +1023,-1022	anything	± floating point number	
1111 1111	+ 0	1111 1111	- 0	± infinity	
1111 1111	nonzero	1111 1111	nonzero	not a number (NaN)	

Floating Point Addition

Addition (and subtraction)

$$(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Align fractions by right shifting F2 by E1 E2 positions (assuming E1 ≥ E2) keeping track of (three of) the bits shifted out in G R and S
- Step 2: Add the resulting F2 to F1 to form F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 and increment
 E3 (check for overflow)
 - If F1 and F2 have different signs → F3 may require many left shifts each time decrementing E3 (check for underflow)
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Floating Point Addition Example

Add

$$(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0:
- Step 1:
- Step 2:

- Step 3:
- Step 4:
- Step 5:

Floating Point Addition Example

- □ Add: 0.5 + (-0.4375) = ? $(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$
 - ☐ Step 0: Hidden bits restored in the representation above
 - Step 1: Shift significand with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once)
 - Step 2: Add significands
 1.0000 + (-0.111) = 1.0000 0.111 = 0.001
 - Step 3: Normalize the sum, checking for exponent over/underflow
 - $0.001 \times 2^{-1} = 0.010 \times 2^{-2} = .. = 1.000 \times 2^{-4}$
 - □ Step 4: The sum is already rounded, so we're done
 - Step 5: Rehide the hidden bit before storing

Floating Point Multiplication

Multiplication

$$(\pm F1 \times 2^{E1}) \times (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 - 127 = E3
 - also determine the sign of the product (which depends on the sign of the operands (most significant bits))
- Step 2: Multiply F1 by F2 to form a double precision F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift F3 and increment E3
 - Check for overflow/underflow
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Floating Point Multiplication Example

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0:
- Step 1:

- Step 2:
- Step 3:
- Step 4:
- Step 5:

Floating Point Multiplication Example

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Add the exponents (not in bias would be -1 + (-2) = -3 and in bias would be (-1+127) + (-2+127) 127 = (-1-2) + (127+127-127) = -3 + 127 = 124
- Step 2: Multiply the significands
 1.0000 x 1.110 = 1.110000
- Step 3: Normalized the product, checking for exp over/underflow
 1.110000 x 2⁻³ is already normalized
- □ Step 4: The product is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing

Support for Accurate Arithmetic

- Rounding (except for truncation) requires the hardware to include extra F bits during calculations
 - □ Guard and Round bit 2 additional bits to increase accuracy
 - Sticky bit used to support Round to nearest even; is set to a 1 whenever a 1 bit shifts (right) through it (e.g., when aligning F during addition/subtraction)

- □ IEEE 754 FP rounding modes
 - □ Always round up (toward +∞)
 - □ Always round down (toward -∞)
 - Truncate
 - Round to nearest even (when the Guard || Round || Sticky are 100) always creates a 0 in the least significant (kept) bit of F

http://pages.cs.wisc.edu/~markhill/cs354/Fall2008/notes/flpt.apprec.html

Calculate:

$$0.2 \times 5 = ?$$

$$0.333 \times 3 = ?$$

$$(1.0/3) \times 3 = ?$$

Floating point instructions: RV32F

RV32F / D Floating-Point Extensions

Inst	Name	FMT	Opcode	funct3	funct5	Description (C)
flw	Flt Load Word	*				rd = M[rs1 + imm]
fsw	Flt Store Word	*				M[rs1 + imm] = rs2
fmadd.s	Flt Fused Mul-Add	*				rd = rs1 * rs2 + rs3
fmsub.s	Flt Fused Mul-Sub	*				rd = rs1 * rs2 - rs3
fnmadd.s	Flt Neg Fused Mul-Add	*				rd = -rs1 * rs2 + rs3
fnmsub.s	Flt Neg Fused Mul-Sub	*				rd = -rs1 * rs2 - rs3
fadd.s	Flt Add	*				rd = rs1 + rs2
fsub.s	Flt Sub	*				rd = rs1 - rs2
fmul.s	Flt Mul	*				rd = rs1 * rs2
fdiv.s	Flt Div	*				rd = rs1 / rs2
fsqrt.s	Flt Square Root	*				rd = sqrt(rs1)
fsgnj.s	Flt Sign Injection	*				rd = abs(rs1) * sgn(rs2)
fsgnjn.s	Flt Sign Neg Injection	*				rd = abs(rs1) * -sgn(rs2)
fsgnjx.s	Flt Sign Xor Injection	*				rd = rs1 * sgn(rs2)
fmin.s	Flt Minimum	*				rd = min(rs1, rs2)
fmax.s	Flt Maximum	*				rd = max(rs1, rs2)
fcvt.s.w	Flt Conv from Sign Int	*				rd = (float) rs1
fcvt.s.wu	Flt Conv from Uns Int	*				rd = (float) rs1
fcvt.w.s	Flt Convert to Int	*				rd = (int32_t) rs1
fcvt.wu.s	Flt Convert to Int	*				rd = (uint32_t) rs1
fmv.x.w	Move Float to Int	*				rd = *((int*) &rs1)
fmv.w.x	Move Int to Float	*				rd = *((float*) &rs1)
feq.s	Float Equality	*				rd = (rs1 == rs2) ? 1 : 0
flt.s	Float Less Than	*				rd = (rs1 < rs2) ? 1 : 0
fle.s	Float Less / Equal	*				rd = (rs1 <= rs2) ? 1 : 0
fclass.s	Float Classify	*				rd = 09

Exercise

Write the corresponding RISC-V assembly program equivalent to the following C code:

```
float x = 0.75;
printf("%f", x);
```