## **Microsoft Studios Project**

Student name: Leah Kalumba Katiwa

Student pace: Full Time

Instructor name: William Okomba

Blog post URL: <a href="https://github.com/leah-katiwa/dsc-phase-1-project-v2-4.git">https://github.com/leah-katiwa/dsc-phase-1-project-v2-4.git</a> (<a href="https://github.com/leah-katiwa/dsc-phase-1-project-v2-4.git">https://github.com/leah-katiwa/dsc-phase-1-project-v2-4.git</a>)

### **Project Overview**

For this project, we will use exploratory data analysis to generate insights for a business stakeholder.

\*\*Following the creation of movie studio, we have been tasked by Microsoft, who have no idea about making films, to identify what makes a film perform well at the box office. After identifying return on investment (RoI) as the primary metric of success, we narrowed down the datasets provided to the top 200 most grossing movies worldwide then calculated the RoI for each. After plotting several scatter and bar plots comparing runtime, production budget, gross revenue, release date, genre, directors, writers, and rating, the analysis identified the following: The best time to release a film is during Summer. Films directed by Kyle Balda, Pierre Coffin, Chris Rennaud, David F. Sandberg, and James Wan perform the best, whereas those Gary Dauberman were the most successful of all the other writers. Lastly we that length of a film, gross revenue and rating, and have no impact on the RoI of a film.



Type *Markdown* and LaTeX:  $\alpha^2$ 

### **Business Problem**

Microsoft sees all the big companies creating original video content and they want to get in on the fun. They have decided to create a new movie studio, but they don't know anything about creating movies. We are charged with exploring what types of films are currently doing the best at the box office. We must then translate those findings into actionable insights that the head of

\*\*Microsoft has decided to enter the original video content scene by creating a new movie studio. However, they don't know anything about creating movies. In order to solve this problem, the analysis shall be centered around answering the following question:

What types of films are currently performing the best at the box office? According to this Holywood Reporter article, we see that the metric used to determine performance of a movie at the box office may vary. Therefore, it is important to clarify that within this analysis, the metric that shall be used to determine the success of a movie will be based on the return on investment (RoI) of the highest grossing films. RoI is an important performance measure used by businesses to evaluate the profitability of an investment or compare the efficiency of a number of different investments.

In order to further understand the types of movies that are currently performing the best at the box office, this analysis will look into the impact following features have on the RoI:

Runtime

**Production Budget** 

Gross Revenue

Release Date

Genre

**Directors** 

Writers

Rating

## **EDA**

## 1. Bom Movie CSV Dataset

### **Data Understanding**

```
In [2]: #we Load the given dataset and view the data
bom_movie = pd.read_csv("bom.movie_gross.csv")
bom_movie
```

### Out[2]:

| title                                       | studio                                                                                                                                                                   | domestic_gross                                                                                                                                                                                                     | foreign_gross                                                                                                                                                                                                                                                                                              | year                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Toy Story 3                                 | BV                                                                                                                                                                       | 415000000.0                                                                                                                                                                                                        | 652000000                                                                                                                                                                                                                                                                                                  | 2010                                                                                                                                                                                                                                                                                                                                                                         |
| Alice in Wonderland (2010)                  | BV                                                                                                                                                                       | 334200000.0                                                                                                                                                                                                        | 691300000                                                                                                                                                                                                                                                                                                  | 2010                                                                                                                                                                                                                                                                                                                                                                         |
| Harry Potter and the Deathly Hallows Part 1 | WB                                                                                                                                                                       | 296000000.0                                                                                                                                                                                                        | 664300000                                                                                                                                                                                                                                                                                                  | 2010                                                                                                                                                                                                                                                                                                                                                                         |
| Inception                                   | WB                                                                                                                                                                       | 292600000.0                                                                                                                                                                                                        | 535700000                                                                                                                                                                                                                                                                                                  | 2010                                                                                                                                                                                                                                                                                                                                                                         |
| Shrek Forever After                         | P/DW                                                                                                                                                                     | 238700000.0                                                                                                                                                                                                        | 513900000                                                                                                                                                                                                                                                                                                  | 2010                                                                                                                                                                                                                                                                                                                                                                         |
|                                             |                                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |
| The Quake                                   | Magn.                                                                                                                                                                    | 6200.0                                                                                                                                                                                                             | NaN                                                                                                                                                                                                                                                                                                        | 2018                                                                                                                                                                                                                                                                                                                                                                         |
| Edward II (2018 re-release)                 | FM                                                                                                                                                                       | 4800.0                                                                                                                                                                                                             | NaN                                                                                                                                                                                                                                                                                                        | 2018                                                                                                                                                                                                                                                                                                                                                                         |
| El Pacto                                    | Sony                                                                                                                                                                     | 2500.0                                                                                                                                                                                                             | NaN                                                                                                                                                                                                                                                                                                        | 2018                                                                                                                                                                                                                                                                                                                                                                         |
| The Swan                                    | Synergetic                                                                                                                                                               | 2400.0                                                                                                                                                                                                             | NaN                                                                                                                                                                                                                                                                                                        | 2018                                                                                                                                                                                                                                                                                                                                                                         |
| An Actor Prepares                           | Grav.                                                                                                                                                                    | 1700.0                                                                                                                                                                                                             | NaN                                                                                                                                                                                                                                                                                                        | 2018                                                                                                                                                                                                                                                                                                                                                                         |
|                                             | Toy Story 3 Alice in Wonderland (2010) Harry Potter and the Deathly Hallows Part 1 Inception Shrek Forever After The Quake Edward II (2018 re-release) EI Pacto The Swan | Toy Story 3 BV Alice in Wonderland (2010) BV Harry Potter and the Deathly Hallows Part 1 WB Inception WB Shrek Forever After P/DW The Quake Magn. Edward II (2018 re-release) FM El Pacto Sony The Swan Synergetic | Toy Story 3 BV 415000000.0 Alice in Wonderland (2010) BV 334200000.0 Harry Potter and the Deathly Hallows Part 1 WB 296000000.0 Inception WB 292600000.0 Shrek Forever After P/DW 238700000.0 The Quake Magn. 6200.0 Edward II (2018 re-release) FM 4800.0 EI Pacto Sony 2500.0 The Swan Synergetic 2400.0 | Toy Story 3 BV 415000000.0 652000000 Alice in Wonderland (2010) BV 334200000.0 691300000 Harry Potter and the Deathly Hallows Part 1 WB 296000000.0 664300000 Inception WB 292600000.0 535700000 Shrek Forever After P/DW 238700000.0 513900000 The Quake Magn. 6200.0 NaN Edward II (2018 re-release) FM 4800.0 NaN EI Pacto Sony 2500.0 NaN The Swan Synergetic 2400.0 NaN |

3387 rows × 5 columns

```
In [3]: #we check the shape of the data - shows number of rows and columns
bom_movie.shape
```

Out[3]: (3387, 5)

In [4]: #We use bom\_movie.info to get a concise summary of the dataframe i.e including
bom\_movie.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 5 columns):

```
Column
                   Non-Null Count Dtype
   ----
   title
                   3387 non-null
                                   object
1
   studio
                   3382 non-null
                                   object
2
                                   float64
   domestic gross 3359 non-null
3
   foreign_gross
                   2037 non-null
                                   object
   year
                   3387 non-null
                                   int64
```

dtypes: float64(1), int64(1), object(3)

memory usage: 132.4+ KB

In [5]: #We use .describe() to calculate the basic summary statistics for each column
bom\_movie.describe()

### Out[5]:

|       | domestic_gross | year        |
|-------|----------------|-------------|
| count | 3.359000e+03   | 3387.000000 |
| mean  | 2.874585e+07   | 2013.958075 |
| std   | 6.698250e+07   | 2.478141    |
| min   | 1.000000e+02   | 2010.000000 |
| 25%   | 1.200000e+05   | 2012.000000 |
| 50%   | 1.400000e+06   | 2014.000000 |
| 75%   | 2.790000e+07   | 2016.000000 |
| max   | 9.367000e+08   | 2018.000000 |

### **Data Cleaning**

```
In [6]: #we check the column labels of the Dataframe
bom_movie.columns
```

```
In [7]: #we identify for duplicated values
bom_movie.duplicated().sum()
```

Out[7]: 0

shows there is no duplicated values

```
In [8]: #we check for any missing data values
bom_movie.isna().any()
```

```
Out[8]: title False studio True domestic_gross True foreign_gross True year False dtype: bool
```

If there is at least one missing value in a column or row, the corresponding element in the resulting boolean Series is True; otherwise, it is False.

Observation: 'studio' has 5 missing values, 'domestic\_gross' has 28 and 'foreign gross' has 1350 missing values.

```
In [10]: #We drop the 'foreign gross' column has lots of missing values which may resu
bom_movie.drop("foreign_gross", axis=1, inplace=True)

In [11]: #We replace the missing values in the domestic gross column with the mean value mean_bom = bom_movie['domestic_gross'].mean()
bom_movie['domestic_gross'].fillna(mean_bom, inplace = True)
```

```
In [12]: #We replace the missing values in the studio column with the mode value
mode_bom = bom_movie['studio'].mode()[0]
bom_movie['studio'].fillna(mode_bom, inplace = True)
```

we use mode since is a measure of central tendency that represents the most commonly occurring value in a dataset.

```
In [13]: #we check the summarised data to confirm our changes
bom_movie.info()
```

```
RangeIndex: 3387 entries, 0 to 3386
Data columns (total 4 columns):
    Column
                    Non-Null Count Dtype
                    _____
                                   ____
 0
    title
                    3387 non-null
                                    object
    studio
                    3387 non-null
                                    object
 1
 2
                                    float64
    domestic_gross 3387 non-null
                                    int64
 3
                    3387 non-null
dtypes: float64(1), int64(1), object(2)
memory usage: 106.0+ KB
```

<class 'pandas.core.frame.DataFrame'>

The studio non-null count now reads 3387 which is the total number of rows -all the missing values have been replaced

### **Data Analysis**

we group studio data with domestic gross to see the performance of each studio within the home country domestic\_gross\_ = bom\_movie.groupby('studio')["domestic\_gross"].sum() domestic\_gross\_.sort\_values(ascending = False).head()

```
In [15]: #we identify the top 10 best selling studios withing the country( consider the
# Order the studios from the one that has the highest domestic gross
bom_movie.sort_values(by='domestic_gross', ascending=False, inplace=True)
domestic_gross_by_studio = bom_movie.groupby(['studio'])['domestic_gross'].sd
domestic_gross_by_studio
```

```
Out[15]: studio
BV 1.841903e+10
Uni. 1.290239e+10
WB 1.216805e+10
Fox 1.094950e+10
Sony 8.488429e+09
```

Name: domestic\_gross, dtype: float64

### **Data visualization**

```
In [16]: #Visualizing the first top_10_studios with the highest domestic gross
fig, ax = plt.subplots(figsize=(6, 4))
ax.bar(domestic_gross_by_studio.index, domestic_gross_by_studio.values)

# Set the title and axis labels
ax.set_title('Total Domestic_gross by Studio (Top 5)')
ax.set_xlabel('Studio')
ax.set_ylabel('Total Domestic Gross (in millions)')
plt.show()
```



### **Observation**

\*\*The graph displays the top 5 studios based on their domestic gross in millions. The graph is a bar chart, where the x-axis shows the studios name, and the y-axis shows their domestic gross in millions. From the bar graph it's evident that BV, Uni, WB Studio, Fox, and Sony are the top 5 best performing studios in terms of domestic gross. Microsoft should consider partnering with these established and well successful studios since they already have a substantial fan-base for their products.

## 2. TN MOVIE BUDGETS FILE

## **Data Understanding**

In [17]: #we Load the tn movie dataset and view the data
movie\_budgets = pd.read\_csv("tn.movie\_budgets.csv")
movie\_budgets

|          | movie  |     | ugets                      |                                                   |                   |                |                 |
|----------|--------|-----|----------------------------|---------------------------------------------------|-------------------|----------------|-----------------|
| Out[17]: |        | id  | release_date               | movie                                             | production_budget | domestic_gross | worldwide_gross |
|          | 0      | 1   | Dec 18, 2009               | Avatar                                            | \$425,000,000     | \$760,507,625  | \$2,776,345,279 |
|          | 1      | 2   | May 20, 2011               | Pirates of the<br>Caribbean: On<br>Stranger Tides | \$410,600,000     | \$241,063,875  | \$1,045,663,875 |
|          | 2      | 3   | Jun 7, 2019                | Dark Phoenix                                      | \$350,000,000     | \$42,762,350   | \$149,762,350   |
|          | 3      | 4   | May 1, 2015                | Avengers: Age of<br>Ultron                        | \$330,600,000     | \$459,005,868  | \$1,403,013,963 |
|          | 4      | 5   | Dec 15, 2017               | Star Wars Ep.<br>VIII: The Last<br>Jedi           | \$317,000,000     | \$620,181,382  | \$1,316,721,747 |
|          |        |     |                            |                                                   |                   |                |                 |
|          | 5777   | 78  | Dec 31, 2018               | Red 11                                            | \$7,000           | \$0            | \$0             |
|          | 5778   | 79  | Apr 2, 1999                | Following                                         | \$6,000           | \$48,482       | \$240,495       |
|          | 5779   | 80  | Jul 13, 2005               | Return to the<br>Land of Wonders                  | \$5,000           | \$1,338        | \$1,338         |
|          | 5780   | 81  | Sep 29, 2015               | A Plague So<br>Pleasant                           | \$1,400           | \$0            | \$0             |
|          | 5781   | 82  | Aug 5, 2005                | My Date With<br>Drew                              | \$1,100           | \$181,041      | \$181,041       |
|          | 5782 ı | ows | × 6 columns                |                                                   |                   |                |                 |
| In [18]: |        |     | k the shape<br>dgets.shape | of the data t                                     | o know the numbe  | er of rows and | columns of our  |
|          |        |     |                            |                                                   |                   |                |                 |

Out[18]: (5782, 6)

This data has 5782 rows and 6 columns.

```
In [19]: #we check a summary of the data i.ethe column names, data types, and the number
         movie budgets.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5782 entries, 0 to 5781
         Data columns (total 6 columns):
              Column
                                 Non-Null Count Dtype
              ----
                                 -----
                                                 ----
          0
              id
                                 5782 non-null
                                                 int64
          1
              release_date
                                 5782 non-null
                                                 object
          2
                                 5782 non-null
                                                 object
              movie
          3
              production budget 5782 non-null
                                                 object
          4
              domestic_gross
                                 5782 non-null
                                                 object
          5
              worldwide_gross
                                 5782 non-null
                                                 object
         dtypes: int64(1), object(5)
```

This dataset contains data in the float, interger and object types.

### **Data Cleaning**

memory usage: 271.2+ KB

```
In [20]: #we check for any duplicated values
movie_budgets.duplicated().sum()
```

Out[20]: 0

There is no duplicated values in the dataset

release\_date 0
movie 0
production\_budget 0
domestic\_gross 0
worldwide\_gross 0
dtype: int64

There are no missing values rows in the data set.

```
In [22]: #we convert production_budget, domestic_gross and worldwide_gross columns from
#we then remove the dollar signs ($) and commas from the values

movie_budgets['production_budget'] = movie_budgets['production_budget'].str.re
movie_budgets['domestic_gross'] = movie_budgets['domestic_gross'].str.replace
movie_budgets['worldwide_gross'] = movie_budgets['worldwide_gross'].str.replace
```

```
In [23]: #we then verify that the values in the production_budget, domestic_gross and u
movie_budgets.dtypes
```

Out[23]: id int64
release\_date object
movie object
production\_budget float64
domestic\_gross float64
worldwide\_gross float64
dtype: object

production\_budget,domestic\_gross,worldwide\_gross are now in float form that is decimal place

## In [24]: #we preview our data again movie\_budgets.head()

### Out[24]:

|   | id | release_date | movie                                             | production_budget | domestic_gross | worldwide_gross |
|---|----|--------------|---------------------------------------------------|-------------------|----------------|-----------------|
| 0 | 1  | Dec 18, 2009 | Avatar                                            | 425000000.0       | 760507625.0    | 2.776345e+09    |
| 1 | 2  | May 20, 2011 | Pirates of the<br>Caribbean: On<br>Stranger Tides | 410600000.0       | 241063875.0    | 1.045664e+09    |
| 2 | 3  | Jun 7, 2019  | Dark Phoenix                                      | 350000000.0       | 42762350.0     | 1.497624e+08    |
| 3 | 4  | May 1, 2015  | Avengers: Age of<br>Ultron                        | 330600000.0       | 459005868.0    | 1.403014e+09    |
| 4 | 5  | Dec 15, 2017 | Star Wars Ep. VIII:<br>The Last Jedi              | 317000000.0       | 620181382.0    | 1.316722e+09    |

As seen above, the values in the release\_date column are object data type. We have to convert in order to use the data.

# In [25]: # we convert the release date from an object movie\_budgets['release\_date'] = pd.to\_datetime(movie\_budgets['release\_date']) movie\_budgets.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 6 columns):

Column Non-Null Count Dtype ---------0 id 5782 non-null int64 5782 non-null datetime64[ns] 1 release date 2 movie 5782 non-null object 3 float64 production budget 5782 non-null 4 domestic gross 5782 non-null float64 5 worldwide\_gross 5782 non-null float64

dtypes: datetime64[ns](1), float64(3), int64(1), object(1)

memory usage: 271.2+ KB

```
In [26]:
         movie budgets['year'] = movie budgets['release date'].dt.year
          movie budgets['month'] = movie budgets['release date'].dt.month
          movie budgets['day'] = movie budgets['release date'].dt.day
          #we print the updated dataframe
          print(movie_budgets)
                id release date
                                                                           movie \
          0
                 1
                     2009-12-18
                                                                          Avatar
          1
                 2
                      2011-05-20
                                  Pirates of the Caribbean: On Stranger Tides
          2
                 3
                     2019-06-07
                                                                   Dark Phoenix
          3
                 4
                     2015-05-01
                                                        Avengers: Age of Ultron
                 5
          4
                     2017-12-15
                                             Star Wars Ep. VIII: The Last Jedi
                78
                     2018-12-31
                                                                          Red 11
          5777
                79
          5778
                     1999-04-02
                                                                       Following
          5779
                80
                     2005-07-13
                                                 Return to the Land of Wonders
                                                           A Plague So Pleasant
          5780
                81
                     2015-09-29
          5781
                82
                     2005-08-05
                                                              My Date With Drew
                production budget
                                    domestic gross
                                                     worldwide gross
                                                                              month
                                                                                     day
                                                                        vear
          0
                      425000000.0
                                                         2.776345e+09
                                                                        2009
                                                                                       18
                                        760507625.0
                                                                                  12
          1
                                                                                  5
                                                                                       20
                      410600000.0
                                        241063875.0
                                                         1.045664e+09
                                                                        2011
          2
                                                                        2019
                                                                                        7
                      350000000.0
                                         42762350.0
                                                         1.497624e+08
                                                                                  6
                                                                                        1
          3
                       330600000.0
                                        459005868.0
                                                         1.403014e+09
                                                                        2015
                                                                                  5
                       317000000.0
                                        620181382.0
                                                                        2017
                                                                                 12
                                                                                       15
          4
                                                         1.316722e+09
                                                                         . . .
                                                                                 . . .
                                                                                      . . .
                               . . .
          . . .
                                                . . .
                                                         0.000000e+00
                                                                                 12
          5777
                            7000.0
                                                0.0
                                                                        2018
                                                                                       31
          5778
                            6000.0
                                            48482.0
                                                         2.404950e+05
                                                                        1999
                                                                                  4
                                                                                        2
                                                                                  7
                                                                                       13
          5779
                            5000.0
                                             1338.0
                                                         1.338000e+03
                                                                        2005
                                                                                  9
                                                                                       29
          5780
                            1400.0
                                                0.0
                                                         0.000000e+00
                                                                        2015
          5781
                            1100.0
                                           181041.0
                                                         1.810410e+05
                                                                        2005
                                                                                        5
```

[5782 rows x 9 columns]

Now our release date is in form of a datetime not object anymore

In [27]: #We confirm from the above updated dataframe if th of the data to see the charmovie\_budgets.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 9 columns):

| #    | Column                       | Non-Null Count  | Dtype                          |  |  |  |  |
|------|------------------------------|-----------------|--------------------------------|--|--|--|--|
|      |                              |                 |                                |  |  |  |  |
| 0    | id                           | 5782 non-null   | int64                          |  |  |  |  |
| 1    | release_date                 | 5782 non-null   | datetime64[ns]                 |  |  |  |  |
| 2    | movie                        | 5782 non-null   | object                         |  |  |  |  |
| 3    | <pre>production_budget</pre> | 5782 non-null   | float64                        |  |  |  |  |
| 4    | domestic_gross               | 5782 non-null   | float64                        |  |  |  |  |
| 5    | worldwide_gross              | 5782 non-null   | float64                        |  |  |  |  |
| 6    | year                         | 5782 non-null   | int64                          |  |  |  |  |
| 7    | month                        | 5782 non-null   | int64                          |  |  |  |  |
| 8    | day                          | 5782 non-null   | int64                          |  |  |  |  |
| dtyp | es: datetime64[ns](          | 1), float64(3), | <pre>int64(4), object(1)</pre> |  |  |  |  |
| memo | memory usage: 406.7+ KB      |                 |                                |  |  |  |  |

In [28]: #we check summary statistics data
movie\_budgets.describe()

### Out[28]:

|       | id          | production_budget | domestic_gross | worldwide_gross | year        | m       |
|-------|-------------|-------------------|----------------|-----------------|-------------|---------|
| count | 5782.000000 | 5.782000e+03      | 5.782000e+03   | 5.782000e+03    | 5782.000000 | 5782.00 |
| mean  | 50.372363   | 3.158776e+07      | 4.187333e+07   | 9.148746e+07    | 2003.967139 | 7.05    |
| std   | 28.821076   | 4.181208e+07      | 6.824060e+07   | 1.747200e+08    | 12.724386   | 3.48    |
| min   | 1.000000    | 1.100000e+03      | 0.000000e+00   | 0.000000e+00    | 1915.000000 | 1.00    |
| 25%   | 25.000000   | 5.000000e+06      | 1.429534e+06   | 4.125415e+06    | 2000.000000 | 4.00    |
| 50%   | 50.000000   | 1.700000e+07      | 1.722594e+07   | 2.798445e+07    | 2007.000000 | 7.00    |
| 75%   | 75.000000   | 4.000000e+07      | 5.234866e+07   | 9.764584e+07    | 2012.000000 | 10.00   |
| max   | 100.000000  | 4.250000e+08      | 9.366622e+08   | 2.776345e+09    | 2020.000000 | 12.00   |
| 4     |             |                   |                |                 |             | •       |

## **Data Analysis**

### Correlation

To determine whether there is a correlation between the production budget, domestic gross, and worldwide gross variables, perform a correlation analysis to determine if there is a strong, moderate, or weak linear relationship between them.

Out[29]:

|                   | production_budget | domestic_gross | worldwide_gross |
|-------------------|-------------------|----------------|-----------------|
| production_budget | 1.000000          | 0.685682       | 0.748306        |
| domestic_gross    | 0.685682          | 1.000000       | 0.938853        |
| worldwide_gross   | 0.748306          | 0.938853       | 1.000000        |

## **Data Visualization**

```
In [30]: # Plot a heatmap sowing the correlation between these variables
    sns.set(font_scale=1.2)
    sns.heatmap(correlation_matrix, annot=True)
    plt.title('Correlation Matrix of Movie Budget and Gross Revenue')
    plt.show()
```



Based on the correlation matrix, there is a strong positive correlation between the production budget both with the domestic and worldwide gross. This means that as the production budget increases, the domestic and worldwide gross also increase. Therefore, if Microsoft wants to generate maximum profits it should consider investing more money in its production budget of its movies. However, it is important to note that correlation alone does not imply causation and therefor other factors also affect the success of a movie.

In [31]: #calculating and creating a new column in the dataframe named Return on Invest movie\_budgets['return\_on\_investment'] = ((movie\_budgets['worldwide\_gross'] - imovie\_budgets.head()

| Out | [3I] |
|-----|------|
|     |      |
|     |      |

|   | id | release_date | movie                                                      | production_budget | domestic_gross | worldwide_gross | year | mo |
|---|----|--------------|------------------------------------------------------------|-------------------|----------------|-----------------|------|----|
| 0 | 1  | 2009-12-18   | Avatar                                                     | 425000000.0       | 760507625.0    | 2.776345e+09    | 2009 |    |
| 1 | 2  | 2011-05-20   | Pirates of<br>the<br>Caribbean:<br>On<br>Stranger<br>Tides | 410600000.0       | 241063875.0    | 1.045664e+09    | 2011 |    |
| 2 | 3  | 2019-06-07   | Dark<br>Phoenix                                            | 350000000.0       | 42762350.0     | 1.497624e+08    | 2019 |    |
| 3 | 4  | 2015-05-01   | Avengers:<br>Age of<br>Ultron                              | 330600000.0       | 459005868.0    | 1.403014e+09    | 2015 |    |
| 4 | 5  | 2017-12-15   | Star Wars<br>Ep. VIII:<br>The Last<br>Jedi                 | 317000000.0       | 620181382.0    | 1.316722e+09    | 2017 |    |
| 4 |    |              |                                                            |                   |                |                 |      | •  |

In [32]: # Create a new column that contains the month that the movies were released
 release\_time = movie\_budgets.copy()

release\_time['release\_month'] = release\_time["release\_date"].dt.strftime('%B'
 release\_time.head() # Preview the updated 'release\_time\_df' DataFrame

| _   |   |    | _ ~ | · ~ · | ٠. |
|-----|---|----|-----|-------|----|
| ( ) | ш | т. | . ≺ |       | н  |
|     |   |    |     |       |    |

|   | id | release_date | movie                                                      | production_budget | domestic_gross | worldwide_gross | year | mo |
|---|----|--------------|------------------------------------------------------------|-------------------|----------------|-----------------|------|----|
| 0 | 1  | 2009-12-18   | Avatar                                                     | 425000000.0       | 760507625.0    | 2.776345e+09    | 2009 |    |
| 1 | 2  | 2011-05-20   | Pirates of<br>the<br>Caribbean:<br>On<br>Stranger<br>Tides | 410600000.0       | 241063875.0    | 1.045664e+09    | 2011 |    |
| 2 | 3  | 2019-06-07   | Dark<br>Phoenix                                            | 350000000.0       | 42762350.0     | 1.497624e+08    | 2019 |    |
| 3 | 4  | 2015-05-01   | Avengers:<br>Age of<br>Ultron                              | 330600000.0       | 459005868.0    | 1.403014e+09    | 2015 |    |
| 4 | 5  | 2017-12-15   | Star Wars<br>Ep. VIII:<br>The Last<br>Jedi                 | 317000000.0       | 620181382.0    | 1.316722e+09    | 2017 |    |
| 4 |    |              |                                                            |                   |                |                 |      | •  |

## **Data Visualization**

```
In [33]: # Create a plot that shows average return on investment (RoI) by month
fig, ax = plt.subplots(figsize=(20,7))
    release_time.groupby('release_month')['return_on_investment'].mean().sort_valuax.set_xlabel('Month', fontsize=15)
    plt.xticks(rotation=0)
    ax.set_ylabel('Average Return on Investment (%)', fontsize=15)
    ax.set_title('Average Return on Investment per Month of Release', fontsize=20
```



Observation: The highest return on investment for movie release is on june . Microsoft studio should consider releasing their movies on June since its potraying to have the highest return on Investment.

```
In [34]: # Create a plot that shows the number of films released each month
fig, ax = plt.subplots(figsize=(20,7))
    release_time.groupby('release_month')['movie'].count().sort_values().plot(kind ax.set_xlabel('Month', fontsize=15)
    plt.xticks(rotation=0)
    ax.set_ylabel('Number of Films', fontsize=15)
    ax.set_title('Distribution Of Films Released per Month', fontsize=20);
```



Observation: December has the highest number of films released as shown above therefore microsoft should consider releasing their films during that month but bearing in mind that month of film release has slight effect on the number of films released

## 3. IMDB file

The ERD (Entity Relation Diagram) for this database is shown below:



### **Data Understanding**

```
In [35]: #we connect to the database
conn = sqlite3.connect("im.db")
```

```
In [36]: #we import data from the movie_basics file.
imdb_basics = pd.read_sql("""
SELECT *
FROM movie_basics
""", conn)
imdb_basics
```

|     | $\Gamma \sim \Gamma$ |     |
|-----|----------------------|-----|
| ()) | I スムコ                | ١ ٠ |
| out |                      |     |
|     |                      |     |

|        | movie_id  | primary_title                                        | original_title                                       | start_year | runtime_minutes | genres               |
|--------|-----------|------------------------------------------------------|------------------------------------------------------|------------|-----------------|----------------------|
| 0      | tt0063540 | Sunghursh                                            | Sunghursh                                            | 2013       | 175.0           | Action,Crime,Drama   |
| 1      | tt0066787 | One Day<br>Before the<br>Rainy<br>Season             | Ashad Ka Ek<br>Din                                   | 2019       | 114.0           | Biography,Drama      |
| 2      | tt0069049 | The Other<br>Side of the<br>Wind                     | The Other<br>Side of the<br>Wind                     | 2018       | 122.0           | Drama                |
| 3      | tt0069204 | Sabse Bada<br>Sukh                                   | Sabse Bada<br>Sukh                                   | 2018       | NaN             | Comedy,Drama         |
| 4      | tt0100275 | The<br>Wandering<br>Soap Opera                       | La<br>Telenovela<br>Errante                          | 2017       | 80.0            | Comedy,Drama,Fantasy |
|        |           |                                                      |                                                      |            |                 |                      |
| 146139 | tt9916538 | Kuambil Lagi<br>Hatiku                               | Kuambil Lagi<br>Hatiku                               | 2019       | 123.0           | Drama                |
| 146140 | tt9916622 | Rodolpho<br>Teóphilo - O<br>Legado de<br>um Pioneiro | Rodolpho<br>Teóphilo - O<br>Legado de<br>um Pioneiro | 2015       | NaN             | Documentary          |
| 146141 | tt9916706 | Dankyavar<br>Danka                                   | Dankyavar<br>Danka                                   | 2013       | NaN             | Comedy               |
| 146142 | tt9916730 | 6 Gunn                                               | 6 Gunn                                               | 2017       | 116.0           | None                 |
| 146143 | tt9916754 | Chico<br>Albuquerque<br>- Revelações                 | Chico<br>Albuquerque<br>- Revelações                 | 2013       | NaN             | Documentary          |

146144 rows × 6 columns



In [37]: #We check concise summary of the dataframe i.e the column names, data types,
imdb\_basics.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 146144 entries, 0 to 146143
Data columns (total 6 columns):
    Column
                     Non-Null Count
                                     Dtype
    ----
                     -----
                                     ----
 0
    movie_id
                     146144 non-null object
 1
    primary_title
                     146144 non-null object
 2
    original title
                     146123 non-null object
 3
    start year
                     146144 non-null int64
 4
    runtime_minutes 114405 non-null float64
 5
                     140736 non-null object
    genres
dtypes: float64(1), int64(1), object(4)
memory usage: 6.7+ MB
```

The table contains object, float and integer as data types.

### Out[38]:

|       | movie_id   | averagerating | numvotes |
|-------|------------|---------------|----------|
| 0     | tt10356526 | 8.3           | 31       |
| 1     | tt10384606 | 8.9           | 559      |
| 2     | tt1042974  | 6.4           | 20       |
| 3     | tt1043726  | 4.2           | 50352    |
| 4     | tt1060240  | 6.5           | 21       |
|       |            |               |          |
| 73851 | tt9805820  | 8.1           | 25       |
| 73852 | tt9844256  | 7.5           | 24       |
| 73853 | tt9851050  | 4.7           | 14       |
| 73854 | tt9886934  | 7.0           | 5        |
| 73855 | tt9894098  | 6.3           | 128      |

73856 rows × 3 columns

The table contains object, float and integer as data types.

| _   |     | r 20' |    |
|-----|-----|-------|----|
| 111 | + 1 | 1 24  | ۱. |
| Ju  | u   |       | ١. |

|    | movie_id  | primary_title                            | original_title                           | start_year | runtime_minutes | geni                       |
|----|-----------|------------------------------------------|------------------------------------------|------------|-----------------|----------------------------|
| 0  | tt0063540 | Sunghursh                                | Sunghursh                                | 2013       | 175.0           | Action,Crime,Dra           |
| 1  | tt0066787 | One Day<br>Before the<br>Rainy Season    | Ashad Ka Ek<br>Din                       | 2019       | 114.0           | Biography,Dra              |
| 2  | tt0069049 | The Other<br>Side of the<br>Wind         | The Other<br>Side of the<br>Wind         | 2018       | 122.0           | Dra                        |
| 3  | tt0069204 | Sabse Bada<br>Sukh                       | Sabse Bada<br>Sukh                       | 2018       | NaN             | Comedy,Dra                 |
| 4  | tt0100275 | The<br>Wandering<br>Soap Opera           | La Telenovela<br>Errante                 | 2017       | 80.0            | Comedy,Drama,Fanta         |
| 5  | tt0112502 | Bigfoot                                  | Bigfoot                                  | 2017       | NaN             | Horror,Thri                |
| 6  | tt0137204 | Joe Finds<br>Grace                       | Joe Finds<br>Grace                       | 2017       | 83.0            | Adventure, Animation, Come |
| 7  | tt0146592 | Pál Adrienn                              | Pál Adrienn                              | 2010       | 136.0           | Dra                        |
| 8  | tt0154039 | So Much for<br>Justice!                  | Oda az<br>igazság                        | 2010       | 100.0           | Histo                      |
| 9  | tt0159369 | Cooper and<br>Hemingway:<br>The True Gen | Cooper and<br>Hemingway:<br>The True Gen | 2013       | 180.0           | Document                   |
| 10 | tt0162942 | Children of<br>the Green<br>Dragon       | A zöld<br>sárkány<br>gyermekei           | 2010       | 89.0            | Dra                        |
| 11 | tt0170651 | T.G.M<br>osvoboditel                     | T.G.M<br>osvoboditel                     | 2018       | 60.0            | Document                   |
| 12 | tt0176694 | The Tragedy of Man                       | Az ember<br>tragédiája                   | 2011       | 160.0           | Animation,Drama,Hist       |
| 13 | tt0192528 | Heaven &<br>Hell                         | Reverse<br>Heaven                        | 2018       | 104.0           | Dra                        |
| 14 | tt0230212 | The Final<br>Journey                     | The Final<br>Journey                     | 2010       | 120.0           | Dra                        |
| 15 | tt0247643 | Los pájaros<br>se van con la<br>muerte   | Los pájaros<br>se van con la<br>muerte   | 2011       | 110.0           | Drama,Myst                 |
| 16 | tt0249516 | Foodfight!                               | Foodfight!                               | 2012       | 91.0            | Action,Animation,Come      |
| 17 | tt0250404 | Godfather                                | Godfather                                | 2012       | NaN             | Crime,Dra                  |
| 18 | tt0253093 | Gangavataran                             | Gangavataran                             | 2018       | 134.0           | Nc                         |
| 19 | tt0255820 | Return to<br>Babylon                     | Return to<br>Babylon                     | 2013       | 75.0            | Biography,Comedy,Dra       |
| 4  |           |                                          |                                          |            |                 | •                          |

```
#We check the concise summary of the dataframe i.e the column names, data type
imdb.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 73856 entries, 0 to 73855
Data columns (total 8 columns):
     Column
                      Non-Null Count
                                     Dtype
                      73856 non-null object
 0
     movie id
 1
     primary_title
                      73856 non-null object
 2
     original title
                      73856 non-null object
 3
     start_year
                      73856 non-null int64
 4
     runtime_minutes 66236 non-null float64
 5
     genres
                      73052 non-null object
 6
     averagerating
                      73856 non-null float64
 7
     numvotes
                      73856 non-null int64
dtypes: float64(2), int64(2), object(4)
memory usage: 4.5+ MB
```

The joined table contains object, float and integer as data types.

### **Data Cleaning**

```
#we check for missing values in the imdb data
In [41]:
         imdb.isna().sum()
Out[41]: movie id
                                0
         primary title
                                0
         original_title
                                0
         start_year
                             7620
         runtime minutes
                              804
         genres
                                0
         averagerating
         numvotes
                                0
         dtype: int64
```

runtime\_minutes column has 7,620 missing values while genres column has 804 missing values.

```
In [42]: #we check for any duplicated data
imdb.duplicated().sum()
```

Out[42]: 0

There are no duplicated data in the rows.

```
In [43]: # how to confirm the most occurring genre
         imdb['genres'].value counts()
Out[43]: Drama
                                        11612
         Documentary
                                        10313
         Comedy
                                         5613
         Horror
                                         2692
         Comedy, Drama
                                         2617
         Documentary, Family, Musical
                                            1
         Action, Family, Mystery
                                            1
         Fantasy, Horror, Romance
                                            1
         Action, Adventure, Musical
                                            1
         Fantasy, Horror, Western
         Name: genres, Length: 923, dtype: int64
         Drama has a frequency of 11612 hence the most occuring genre
In [44]: #Since the 'genre' column is categorical data, we replace the missing values i
         imdb['genres'].mode()[0]
Out[44]: 'Drama'
In [45]: #We replace the missing values in the genres column with drama (most occuring
         imdb mode = imdb['genres'].mode()[0]
         imdb['genres'].fillna('imdb mode', inplace = True)
In [46]: #we check a summary of the data to check update of our work
         imdb.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 73856 entries, 0 to 73855
         Data columns (total 8 columns):
              Column
                               Non-Null Count Dtype
              -----
                                -----
          0
              movie id
                               73856 non-null object
              primary_title
                               73856 non-null object
          1
          2
              original_title
                               73856 non-null object
          3
              start year
                               73856 non-null int64
          4
              runtime minutes 66236 non-null float64
          5
              genres
                               73856 non-null object
                               73856 non-null float64
          6
              averagerating
          7
              numvotes
                                73856 non-null int64
         dtypes: float64(2), int64(2), object(4)
         memory usage: 4.5+ MB
```

```
In [47]: #we confirm if there is still missing
         imdb.isna().sum()
Out[47]: movie id
                               0
         primary title
                               0
         original title
                               0
         start_year
                               0
         runtime minutes
                            7620
         genres
                               0
         averagerating
                               0
                               0
         numvotes
         dtype: int64
In [48]: # we replace the missing values in the runtimme minutes
         imdb mean = imdb['runtime minutes'].mean()
         imdb['runtime_minutes'].fillna('imdb_mean', inplace = True)
In [49]: # we get to confirm our concise summary of our data
         imdb.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 73856 entries, 0 to 73855
         Data columns (total 8 columns):
          #
              Column
                              Non-Null Count Dtype
                               -----
         ---
              ----
                                              ----
                              73856 non-null object
          0
              movie id
              primary_title
                              73856 non-null object
          1
          2
              original_title
                              73856 non-null object
          3
              start_year
                              73856 non-null int64
          4
              runtime minutes 73856 non-null object
          5
              genres
                              73856 non-null object
              averagerating
          6
                              73856 non-null float64
          7
              numvotes
                              73856 non-null int64
         dtypes: float64(1), int64(2), object(5)
         memory usage: 4.5+ MB
```

### **Data Analysis**

In [51]: mean\_of\_genres = pd.DataFrame(im\_db.groupby("genres")["numvotes"].mean()).sor
mean\_of\_genres

Out[51]:

numvotes

| genres                  |           |
|-------------------------|-----------|
| Action,Adventure,Sci-Fi | 1512360.5 |
| Action,Thriller         | 1387769.0 |
| Adventure,Drama,Sci-Fi  | 1299334.0 |
| Drama,Western           | 1211405.0 |
| Biography,Crime,Drama   | 1035358.0 |
| Mystery,Thriller        | 1005960.0 |

## **Data Visualization**

In [52]: #ploting a bar chart to show relationship between number of votes and move ger
plt.figure(figsize=(10, 8))
plt.xticks(rotation=90, fontsize=14)
y = mean\_of\_genres["numvotes"]
plt.xlabel("movie\_genre", fontsize=14, fontweight='bold')
plt.ylabel("num\_of\_votes", fontsize =14, fontweight= 'bold')
plt.title('Votes for Movie Genres', fontsize=14);
plt.bar(y.index, y.values);



Observation: The bar chart above can be used show which movie genre is most populary used hence this is of importance to microsoft in deciding on which movie genre to produce consider the demand in the market.

### Correlation

```
In [53]: plt.figure(figsize=(16, 10))
    sns.scatterplot(x='numvotes', y='averagerating', data = imdb)
    plt.title("The Correlations between runtime_minutes,\n and averagerating"
    plt.tight_layout()
    plt.show()
```



Observation: The correlation between the runtime and the number of votes is positive but weakly related hence microsoft should note that the runtime and number of votes have small or zero relationship.





Observations: The histogram has 10 bins representing the range of values of 'averagerating' that is it was rated out of 10. The x-axis represents the intervals and the y-axis shows the count of observations that fall within each bin. The distribution of 'averagerating' appears to be

slightly skewed to the right, indicating that the majority of the films have a rating of 6-8 on a

## RECOMMENDATIONS

From the bom data Microsoft should consider working hand in hand with BV,Uni,Wb,fox and Sony since they are the top 5 studios considering the domestic gross.By merging with these top studio will give Microsoft a competitive advantage in the market and this will result to high profit generation in Microsoft studio.

Based on the budget data microsoft should consider having efficient capital as their mean of financing their studio since its evident that in consideration of other factors the higher the production budget the higher the domestic gross and the higher the worldwide gross too. In this movie production industry the quality of the performance is through efficient production budget.

Considering the imdb data Microsft should consider producing Action, Adventureand Sci-Fi movies since they are the most watched genres in the current market hece to be on the safe side it should consider the market scale. This is affect the voting carried out during the research.

## **NEXT STEP**

Microsoft should consider doing further research to identify how different runtimes perform so as to be the best and outrun the other studios.

Microsoft should be careful on their return on investment since quality beats quantity hence producing more films can have less return on investment in the case where the number of films produced were of low quantity and less demanded in the market while the few number of films are of high quality and produced according to the market demand consider supply demand force thhat is producing what is highly demanded

Microsoft should carry a research on how the marketing of their band has positive impact on the return on income in this case advertsing of their released movie film through well established and best selling industry is a bonus to their high return on investment of their quality work examaple work in partnership with Netflix or prime video.

Microsoft should narrow down how different director and specific actors spice up the quality of the movie hence leading to high return on investment