:DAC-ADC -4 שאלות הכנה מעבדה

- 1. המושגים מתייחסים לנק' הייחוס של המתח, ז"א עבור single-ended נק' הייחוס (המינימום) היא האדמה זה 0v, ועבור differential הכוונה לאיזו שהיא נק' ייחוס שונה. ובעוד עבור single-ended הממיר מתייחס לשינוי המתח עבור adifferential הוא מתייחס לסך הפרשי המתח והוא יכול להשוות גם שני מתחים אפילו אם אחד מהם הוא לאו דווקא מוארק
 - 2. רזולוציית ה-ADC מוגדרת כמתח המצטבר הקטן ביותר שניתן לזהות ובכך גורם לשינוי בפלט הדיגיטלי. זה מבוטא כמספר הסיביות שיוצאות מה-ADC. לכן, ל-ADC הממיר את בפלט הדיגיטלי. זה מבוטא כמספר הסיביות. היא נקבעת ע"י כמות הביטים אם ישנם n ביטים אז הממיר יכול לתת עד 2^n ערכים דיגיטליים ואם לדוגמה יש 3.3v אז הרזולוציה היא $\frac{3.3}{n}$
 - ADCx_CFG1 ע"י רגיסטר.3

.6

- 4. ישנם שני טריגרים טריגר חומרה וטריגר תוכנה: חומרה: ההמרה המתחילה כאשר יש עלייה באות בADHWT תכנה: ההמרה מסתיימת כשאר כותבים משהו אל רגיסטר SC1A
- .5 אומר שהממיר עושה ממוצע בין כמה כניסות של אותות. Hardware Average אומר שהמוצע בין כמה כניסות של אותות. ADCה Compare function

17. ע"פ הקוד לדוגמה בחרנו ב ADC_CFG1_ADICLK(ADICLK_BUS) איז הוא שזהו האטרב $\frac{24M}{4}$ איז בנוסף מחלקים ע"י (ADC_CFG1_ADIV(ADIV_4) ב4. לכן תדר הדגימה הוא $\frac{24M}{4}$ ב4. לכן תדר הדגימה הוא $\frac{6MHz}{6MHz}$ משך זמן הדגימה מחושב ע"י 4. מחזורי שעון ובנוסף בהגדרות שלנו ישנן עוד 20 אקסטרה $\frac{1}{6MHz} \cdot 24 = \frac{1}{6MHz} \cdot 24$ מחזורי שעון לזמן דגימה ארוך ולכן סה"כ 24 מחזורי שעון $\frac{1}{6MHz} \cdot 24 = \frac{1}{6MHz}$

