실험계획 기말과제

김보민(5638835)

안효준(5463312)

이민혁(5526429)

1.	분석 목적	· p3
2.	첫 번째 디자인 분석	· p3
	2.1 모형 설정 및 분산분석	· p3
	2.2 선택된 모델 설정 및 분산분석	· p4
	2.3 다중비교 (Tuckey) ····································	· p5
	2.4 다중비교 (Bonferroni)	· p6
	2.5 잔차 분석	· p6
3.	두 번째 디자인 분석	· p7
	3.1 모형 설정 및 분산분석	· P7
	3,2 선택된 모형의 분산분석	· P9
	3.3 다중비교 (Tuckey) ····································	· P9
	3.4 다중비교 (Bonferroni)	P10
	3.5 잔차 분석	P11
4.	최종 모형 선정	P12

1. 분석 목적

온도, 방법 각각의 효과와 상호작용 효과를 보기 위하여 반복이 있는 이원배치법 모형(CRD)을 통해 확인하고자 한다. 또한, 반복을 시간 변수로 고려하여 각 변수들 간 효과와 상호작용 효과를 보기 위하여 삼원배치법 모형(CRD)을 통해 확인해 보고자 한다.

2. 첫 번째 디자인 분석

첫 번째 디자인에 대한 가정으로 현재까지 알려진 리튬이온 배터리를 만드는 방법이 3가지 밖에 없다고 가정했으며, 배터리를 만드는 기계의 온도 제어가 700도, 800도, 900도, 1000도의 4가지만 가능하다고 가정했다. 따라서 두 요인을 고정효과로 둔 반복이 3회인 이원배치법으로 디자인을 설정한다.

위 디자인은 36번의 실험 순서를 랜덤하게 배치하였다. (랜덤화의 원리) 단, 동일 집단별 3회의 반복을 만족하게 실험 하였다. (반복의 원리)

위 디자인의 분산분석을 진행하기 전 데이터에 대한 정규성과 등분산성을 확인해 보려고 한다.

-정규성

히스토그램과 Q-Q Plot 확인 시 어느 정도 정규성을 띄는 것으로 보인다.

데이터의 정규성 검정

	정규	성 검정		
검정	통게랑		pat	
Shapiro-Wilk	w	0.969177	Pr < W	0.4035
Kolmogorov-Smirnov	D	0.128989	Pr > D	0.1458
Cramer-von Mises	W-8q	0.076604	Pr > W-8q	0.2284
Anderson-Darling	A-8q	0.453039	Pr > A-8q	>0:2500

 H_0 : 정규성을 만족한다 H_1 : 정규성을 만족하지 않는다

모든 검정에서 유의수준 0.05 하에서 귀무가설을 채택하여 정규성을 만족한다.

-등분산성

이원배치법 모형의 등분산성을 확인하기 위하여 각 온도와 방법별 새 그룹(12그룹)을 부여하여 그룹별 등분산성을 확인하고자 한다.

Levene's Test

Levene's Test for Homogeneity of life Variance ANOVA of Squared Deviations from Group Means							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
group	11	3682.2	334.7	2.67	0.0218		
Error	24	3014.5	125.6				

Bartlett's Test

Bartlett's	Test fo	r Homogeneity o	f life Variance
Source	DF	Chi-8quare	Pr > Chi8q
group	11	13.6321	0.2540

 H_0 : 등분산을 만족한다 H_1 : 등분산을 만족하지 않는다

유의수준 0.05 하에서 Levene's Test는 등분산을 만족하지 않고 Bartlett's Test는 등분산을 만족하는 상반된 결론을 내린다. 두 검정의 결과가 상반되긴 하지만 정규성을 만족할 때 더 바람직한 Bartlett의 결과를 따르기로 한다.

⇒ 따라서 데이터가 등분산성을 만족한다고 볼 수 있다.

2.1 모형 설정 및 분산분석

모형식: $y_{ijk}=\mu+\alpha_i+\beta_j+(\alpha\beta)_{ij}+\epsilon_{ijk}$ $(i=1,2,3,\ j=1,2,3,4,\ k=1,2,3)$

$$\sum_{i=1}^{3} \alpha_i = 0, \ \sum_{j=1}^{4} \beta_j = 0, \ \sum_{i=1}^{3} (\alpha \beta)_{ij} = 0, \ \sum_{j=1}^{4} (\alpha \beta)_{ij} = 0, \ \epsilon_{ijk} \sim iidN(0, \sigma^2)$$

분산분석표1

Source	DF	8um of 8quares	Mean Square	F Value	Pr > F
Model	11	532.3055556	48.3914141	4.00	0.0022
Error	24	290.6866667	12.1111111		
Corrected Total	35	822.9722222			

Source	DF	Type III 88	Mean Square	F Value	Pr > F
method	2	77.555556	38.7777778	3.20	0.0585
temp	3	434.0833333	144.6944444	11.95	<.0001
method*temp	6	20.6666667	3.444444	0.28	0.9387

Ī	R-Square	Coeff Var	Root M8E	life Mean
	0.646809	8.482307	3.480102	41.02778

- 모형의 유의성 검정 $(H_0$: 모형이 유의하지 않다 H_1 : 모형이 유의하다) 유의수준 0.05 하에서 귀무가설 기각 (즉, 모형이 유의하다)

- 방법의 유의성 검정

 H_0 : 방법에 따른 배터리 수명에 차이가 없다 H_1 : 방법에 따른 배터리 수명에 차이가 있다 유의수준 0.05 하에서 귀무가설 채택 (즉, 방법에 따른 배터리 수명에 차이가 없다)

- 온도의 유의성 검정

 H_0 : 온도에 따른 배터리 수명에 차이가 없다 H_1 : 온도에 따른 배터리 수명에 차이가 있다 유의수준 0.05 하에서 귀무가설 기각 (즉, 온도에 따른 배터리 수명에 차이가 있다)

- 방법과 온도의 상호작용 유의성 검정

 H_0 : 상호작용 효과가 없다 H_1 : 상호작용 효과가 있다 유의수준 0.05 하에서 귀무가설 채택 (즉, 상호작용 효과가 없다)

* 조건부 주효과(slice option)는 주로 상호작용은 유의한데 주효과가 유의하지 않을 때 확인하므로 조건부 주효과는 확인하지 않았다.

- 상호작용 풀링의 고려

상호작용 효과가 유의하지 않았기 때문에 오차항으로 풀링 시킬지 고려해야 한다.

※ 기준

- 1. 상호작용 효과가 유의하지 않을 때 (p_value > 0.25) <= 만족한다. (p_value = 0.9387)
- 2. 오차항의 자유도가 적을 경우 (< 20) <= 불만족한다. (df = 24)
- 3. 상호작용이 없을 것이라는 확신이 들 때 <= 없을 것이라고 확신한다.

비록 오차항의 자유도가 20보다 크지만 상호작용 효과의 유의확률이 상당히 크므로 상호작용 풀링을 진행한다.

2.2 선택된 모형의 분산분석

- 선택된 모델

모형식: $y_{ijk}=\mu+\alpha_i+\beta_j+\epsilon_{ijk}$ $(i=1,2,3,\ j=1,2,3,4,\ k=1,2,3)$

$$\sum_{i=1}^{3} \alpha_{i} = 0, \ \sum_{j=1}^{4} \beta_{j} = 0, \ \epsilon_{ijk} \sim iid N(0, \sigma^{2})$$

분산분석표2

Source	DF	8um of 8quares	Mean Square	F Value	Pr > F
Model	5	511.6388889	102.3277778	9.86	<.0001
Error	30	311.3333333	10.3777778		
Corrected Total	35	822.9722222			

Source	DF	Type III 88	Mean Square	F Value	Pr > F
method	2	77.555556	38.7777778	3.74	0.0356
temp	3	434.0833333	144.6944444	13.94	<.0001

R-8quare	Coeff Var	Root M8E	life Mean
0.821898	7.851890	3.221456	41.02778

- 모형의 유의성 검정 $(H_0: 모형이 유의하지 않다 <math>H_1: 모형이 유의하다)$ 유의수준 0.05 하에서 귀무가설 기각 (즉, 모형이 유의하다)

- 방법의 유의성 검정

 H_0 : 방법에 따른 배터리 수명에 차이가 없다 H_1 : 방법에 따른 배터리 수명에 차이가 있다 유의수준 0.05 하에서 귀무가설 기각 (즉. 방법에 따른 배터리 수명에 차이가 있다)

- 온도의 유의성 검정

 H_0 : 온도에 따른 배터리 수명에 차이가 없다 H_1 : 온도에 따른 배터리 수명에 차이가 있다 유의수준 0.05 하에서 귀무가설 기각 (즉, 온도에 따른 배터리 수명에 차이가 있다)

이전 모델과 다르게 방법과 온도 모두 유의한 결과가 나왔다. R^2 의 값이 이전 모델의 결과보다 0.02 정도 작게 나왔지만 큰 차이가 아니며 RMSE의 값이 더 작게 나왔으므로 괜찮은 모델이라고 생각된다.

2.3 다중비교 (Tukey)

온도와 방법의 어느 부분에서 차이가 있는지 확인하기 위해 다중비교를 실시하였다.

	ast Squa > t for Depe		ean(i)=L8	Mean(j)
i/j	1	2	3	4
1		0.1478	0.0007	<.0001
2	0.1478		0.1478	0.0028
3	0.0007	0.1478		0.3501
4	<.0001	0.0028	0.3501	

좌측 그래프: (700도, 800도), (800도, 900도), (900도, 1000도)로 집단을 구분 지을 수 있다. 우측 표: H_0 : 온도 간 배터리 수명 차이가 없다 H_1 : 온도 간 배터리 수명 차이가 있다

- \Rightarrow 700도와 900도 사이에 배터리 수명 차이가 있다. (p_value = 0.0007)
- ⇒ 700도와 1000도 사이에 배터리 수명 차이가 있다. (p_value < 0.0001)
- ⇒ 800도와 1000도 사이에 배터리 수명 차이가 있다. (p_value = 0.0028)

Ulfe Tukey Grouping for LS-Means of method (Alpha ~ 0.05)
LB-means covered by the same bar are not significantly different.
method Estimate

3 43.0833

1/j
2 40.2500

39.7500

	Squares Me t for H0: L		BMean(j)
i/j	1	2	3
1		0.9236	0.0429
2	0.9236		0.0959
3	0.0429	0.0959	

좌측 그래프: (방법 1, 방법 2), (방법 2, 방법 3)으로 집단을 구분 지을 수 있다. 우측 표: H_0 : 방법 간 배터리 수명 차이가 없다 H_1 : 방법 간 배터리 수명 차이가 있다 \Rightarrow 방법 1과 방법 3 사이에 배터리 수명 차이가 있다. (P-value = 0.0429)

2.4 다중비교 (Bonferroni)

	Depe	endent Va	riable: life	•
i/j	1	2	3	4
1		0.2162	0.0008	<.0001
2	0.2162		0.2162	0.0032
3	0.0008	0.2162		0.6167
4	<.0001	0.0032	0.6167	

좌측 그래프: (700도, 800도), (800도, 900도), (900도, 1000도)로 집단을 구분 지을 수 있다. 우측 표: H_0 : 그룹 간 배터리 수명 차이가 없다 H_1 : 그룹 간 배터리 수명 차이가 있다

- ⇒ 700도와 900도 사이에 배터리 수명 차이가 있다. (p_value = 0.0008)
- ⇒ 700도와 1000도 사이에 배터리 수명 차이가 있다. (p_value < 0.0001)
- ⇒ 800도와 1000도 사이에 배터리 수명 차이가 있다. (p_value = 0.0032)

좌측 그래프: 집단을 구분 지을 수 없다. (Tukey 때와 다른 결과가 나옴)

우측 표: H_0 : 그룹 간 배터리 수명 차이가 없다 H_1 : 그룹 간 배터리 수명 차이가 있다

방법 1과 방법 3 사이의 유의확률이 0.0501인 것을 확인할 수 있다. 따라서 아주 근소하게 유의하지 않은 결과가 나오긴 했지만, 어느 정도의 유의성을 고려할 수 있다.

2.5 잔차 분석

-잔차의 정규성

잔차의 히스토그램과 Q-Q plot 확인 시 어느 정도 정규성을 띄는 것으로 보인다.

잔차의 정규성 검정

 H_0 : 잔차가 정규성을 만족한다 H_1 : 잔차가 정규성을 만족하지 않는다

점규성 검정								
검정	동개항		p⊋t					
Shapiro-Wilk	w	0.988901	Pr < W	0.9707				
Kolmogorov-Smirnov	D	0.10005	Pr > D	>0.1500				
Cramer-von Mises	W-8q	0.035284	Pr > W-8q	>0.2500				
Anderson-Darling	A-8q	0.214928	Pr > A-8q	>0.2500				

모든 검정에서 유의수준 0.05 하에서 귀무가설을 채택하여 잔차가 정규성을 만족한다.

- 잔차의 등분산성

그룹별 잔차의 산점도

등분산 검정

					Committee of the Commit		Variance oup Means	
8ource	DF	8um	of 8qu	ares	Mean 8	3quare	F Value	Pr > F
group	.13		36	82.2		334.7	2.67	0.0216
Error	24		30	14,5	125.8			
	Bartle Source groun	СӨ	ost for	Ch	geneity i-8quare	P	Variance r > Chi8q	

 H_0 : 그룹 별 잔차의 분산이 같다 H_1 : 분산이 다른 그룹이 적어도 하나 존재한다

유의수준 0.05 하에서 levene은 등분산을 만족하지 않고 bartlett은 등분산을 만족한다.

두 검정의 결과가 상반되긴 하지만 우리는 정규성을 만족할 때 더 바람직한 bartlett의 결과를 따르기로 결정하였다.

⇒ 따라서 잔차가 등분산성을 만족한다고 볼 수 있다.

결과적으로 잔차 분석의 결과까지 좋았으므로 첫 번째 디자인의 최종 모형은 $y_{ijk}=\mu+\alpha_i+\beta_j+\epsilon_{ijk}$ $(i=1,2,3,\ j=1,2,3,4,\ k=1,2,3)$ 로 결정하였다.

$$* \sum_{i=1}^{3} \alpha_i = 0, \ \sum_{j=1}^{4} \beta_j = 0, \ \sum_{i=1}^{3} (\alpha \beta)_{ij} = 0, \ \sum_{j=1}^{4} (\alpha \beta)_{ij} = 0, \ \epsilon_{ijk} \sim iid N(0, \sigma^2)$$

3. 두 번째 디자인 분석

두 번째 디자인에 대한 가정으로 배터리를 만드는 기계의 과부하로 인해 6시간 간격으로 기계를 작동시킬 수 있어 반복 3회를 각각 아침(6시), 점심(12시), 저녁(18시)에 실시했다고 가정하고 시간대 변수를 생성하였다. 따라서 방법, 온도, 시간대의 3가지 요인을 고정효과로 둔 삼원배치법으로 디자인을 설정한다. 위 디자인은 36번의 실험 순서를 랜덤하게 배치하였다. (랜덤화의 원리)

또한, 데이터에 대한 정규성은 앞선 첫 번째 디자인에서 36개의 수명에 대해 정규성을 확인하였으며 등분산성은 그룹 (방법, 온도, 시간대)별 반복이 존재하지 않아 검정할 수 없다.

3.1 모형 설정 및 분산분석

모형식: $y_{ijk}=\mu+\alpha_i+\beta_j+\gamma_k+(\alpha\beta)_{ij}+(\alpha\gamma)_{ik}+(\beta\gamma)_{jk}+\epsilon_{ijk}$ (3요인의 상호작용은 고려 X) $(i=1,2,3,\ j=1,2,3,4,\ k=1,2,3)$

$$\sum_{i=1}^{3} \alpha_i = 0, \ \sum_{j=1}^{4} \beta_j = 0, \ \sum_{k=1}^{3} \gamma_k = 0, \ \sum_{i=1}^{3} (\alpha \beta)_{ij} = 0, \ \sum_{j=1}^{4} (\alpha \beta)_{ij} = 0, \ \sum_{i=1}^{3} (\alpha \gamma)_{ik} = 0,$$

$$\sum_{k=1}^{3} (\alpha \gamma)_{ik} = 0, \ \sum_{j=1}^{4} (\beta \gamma)_{jk} = 0, \ \sum_{k=1}^{3} (\beta \gamma)_{jk} = 0 \ , \epsilon_{ijk} \sim iidN(0, \sigma^2)$$

분산분석표3

Source	DF	8um of 8quares	Mean Square	F Value	Pr > F
Model	23	772.1388889	33.5712560	7.93	0.0003
Error	12	50.8333333	4.2381111		
Corrected Total	35	822.9722222			

Source Source	DF	Type III 88	Mean Square	F Value	Pr > F
temp	3	434.0833333	144.6944444	34.18	<.0001
method	2	77.555556	38.7777778	9.15	0.0039
time	2	128.3888889	84.1944444	15.15	0.0005
temp+method	6	20.6668887	3,444444	0.81	0.5797
temp*time	6	75.1688887	12.5277778	2.96	0.0520
method*time	-4	36.2777778	9.0694444	2.14	0.1382

R-Square	Coeff Var	Root M8E	life Mean	
0.938232	5.016558	2.058182	41.02778	

- 상호작용(온도와 방법) 풀링의 고려

온도와 방법의 상호작용 효과가 유의하지 않았기 때문에 오차항으로 풀링시킬지 고려해야 하며 오차항의 자유도도 20 미만이고 유의확률도 0.25 이상이므로 풀링을 진행한다.

분산분석표4

Source Source	DF	8um of 8quares	Mean Square	F Value	Pr > F
Model	17	751.4722222	44.2042484	11.13	<.0001
Error	18	71,5000000	3.9722222		
Corrected Total	35	822.9722222			

Source	DF	Type III 88	Mean Square	F Value	Pr > F
temp	3	434.0833333	144.6944444	36,43	<.0001
method	2	77.555556	38.7777778	9.76	0.0013
time	2	128.3888889	64.1944444	16.16	<.0001
temp*time	6	75.1668887	12.5277778	3.15	0.0271
method*time	4	36.2777778	9.0694444	2.28	0.1003

R-Square	Coeff Var	Root M8E	life Mean
0.913120	4.857790	1.993043	41.02778

- 상호작용(방법과 시간) 풀링의 고려

방법과 시간의 상호작용 효과가 유의하지 않았기 때문에 오차항으로 풀링시킬지 고려해야 하며 유의확률이 그렇게 크지 않지만 오차항의 자유도가 20 미만이므로 풀링을 진행한다.

분산분석표5

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	13	715.1944444	55.0149573	11.23	<.0001
Error	22	107.777778	4.8989899		
Corrected Total	35	822.9722222			

Source Source	DF	Type III 88	Mean Square	F Value	Pr > F
temp	3	434.0833333	144.6944444	29.54	<.0001
method	2	77.555556	38.7777778	7.92	0.0028
time	2	128.3888889	84.1944444	13.10	0.0002
temp*time	8	75.1686667	12.5277778	2.56	0.0494

R-8quare	Coeff Var	Root M8E	life Mean
0.869038	5.394799	2,213366	41.02778

3.2 선택된 모형의 분산분석

- 선택된 모델

모형식:
$$y_{ijk}=\mu+\alpha_i+\beta_j+\gamma_k+(\alpha\gamma)_{ik}+\epsilon_{ijk}$$
 $(i=1,2,3,\ j=1,2,3,4,\ k=1,2,3)$

$$\sum_{i=1}^{3}\alpha_{i}=0\,,\;\sum_{j=1}^{4}\beta_{j}=0\,,\;\sum_{k=1}^{3}\gamma_{k}=0\,,\;\sum_{i=1}^{3}(\alpha\gamma)_{ik}=0\,,\;\sum_{k=1}^{3}(\alpha\gamma)_{ik}=0\,,\;\epsilon_{ijk}\sim iid\,N(0,\sigma^{2})$$

※ 분산분석표는 분산분석표5를 사용한다.

- 모형의 유의성 검정 $(H_0:$ 모형이 유의하지 않다 $H_1:$ 모형이 유의하다) 유의수준 0.05 하에서 귀무가설 기각 (즉, 모형이 유의하다)

- 온도의 유의성 검정

 H_0 : 온도에 따른 배터리 수명에 차이가 없다 H_0 : 온도에 따른 배터리 수명에 차이가 있다 유의수준 0.05 하에서 귀무가설 기각 (즉, 온도에 따른 배터리 수명에 차이가 있다)

- 방법의 유의성 검정

 H_0 : 방법에 따른 배터리 수명에 차이가 없다 H_0 : 방법에 따른 배터리 수명에 차이가 있다 유의수준 0.05 하에서 귀무가설 기각 (즉, 방법에 따른 배터리 수명에 차이가 있다)

- 시간의 유의성 검정

 H_0 : 시간에 따른 배터리 수명에 차이가 없다 H_0 : 시간에 따른 배터리 수명에 차이가 있다 유의수준 0.05 하에서 귀무가설 기각 (즉, 시간에 따른 배터리 수명에 차이가 있다)

- 온도와 시간의 상호작용 유의성 검정

 H_0 : 상호작용 효과가 없다 H_0 : 상호작용 효과가 있다 유의수준 0.05 하에서 귀무가설 기각 (즉, 상호작용 효과가 있다)

* 조건부 주효과(slice option)는 주로 상호작용은 유의한데 주효과가 유의하지 않을 때 확인하므로 조건부 주효과는 확인하지 않았다.

비록 분산분석표4의 결과보다 R^2 값이 작고 RMSE도 크지만 두 값 모두 나쁘지 않은 수치라고 생각하며 무엇보다 모든 효과의 유의확률이 0.05보다 낮아 괜찮은 모델이라고 생각한다.

3.3 다중비교 (Tukey)

유의한 효과의 어느 부분에서 차이가 있는지 확인하기 위해 다중비교를 실시하였다.

			온도 ·	-			
	(Alph	of for LS-Means of temp a = 0.05) me bar are not significantly different.		st Squar t for F			
temp	Estimate			Deper	ndent Var	riable: life	е
4	45,4444		i/j	1	2	3	4
3	42.8889		1		0.0202	<.0001	<.0001
2	39 5556		2	0.0202		0.0202	<.0001
٤	38.0000		3	<.0001	0.0202		0.0969
3	36.2222		4	<.0001	<.0001	0.0969	

좌측 그래프: (700도), (800도), (900도, 1000도)로 집단을 구분 지을 수 있다.

우측 표: H_0 : 온도 간 배터리 수명 차이가 없다 H_1 : 온도 간 배터리 수명 차이가 있다

⇒ 900도와 1000도 사이를 제외하고 모든 쌍에서 배터리 수명 차이가 있다.

- 방법 -

Least Squares Means for effect method Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: life									
i/j	1 2 3								
1		0.8459	0.0035						
2	0.8459		0.0128						
3	0.0035	0.0128							

좌측 그래프: (방법 1, 방법 2), (방법 3)으로 집단을 구분 지을 수 있다.

우측 표: H_0 : 방법 간 배터리 수명 차이가 없다 H_1 : 방법 간 배터리 수명 차이가 있다

⇒ 방법 1과 방법 2 사이를 제외하고 모든 쌍에서 배터리 수명 차이가 있다.

- 시간대
life Tukey Grouping for LS-Means of time
(Alpha = 0.05)
LS-means covered by the same bar are not significantly different.

time Estimate

2 43.5000

i/j
1 40.8667
1 2
3 38.9167

Least Squares Means for effect time Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: life							
i/j	1	2	3				
1		0.0128	0.1522				
2	0.0128		0.0001				
3	0.1522	0.0001					

좌측 그래프: (아침, 저녁), (점심)으로 집단을 구분 지을 수 있다.

우측 표: H_0 : 시간대 간 배터리 수명 차이가 없다 H_1 : 시간대 간 배터리 수명 차이가 있다

⇒ 아침과 저녁 사이를 제외하고 모든 쌍에서 배터리 수명 차이가 있다.

- 온도와 시간대의 상호작용 -

	Least Squares Means for effect temp∙time Pr > t for H0: LSMean(i)=LSMean(j)											
	Dependent Variable: life											
i/j	1	2	3	4	5	6	7	8	9	10	- 11	12
1		0.6716	1.0000	0.2591	0.0016	1.0000	0.0011	0.0007	0.2591	0.0016	<.0001	0.0003
2	0.6716		0.9324	0.9997	0.1357	0.7784	0.0953	0.0658	0.9997	0.1357	0.0038	0.0303
3	1.0000	0.9324		0.5573	0.0058	1.0000	0.0038	0.0025	0.5573	0.0058	0.0001	0.0011
4	0.2591	0.9997	0.5573		0.4459	0.3449	0.3449	0.2591	1.0000	0.4459	0.0203	0.1357
5	0.0016	0.1357	0.0058	0.4459		0.0025	1.0000	1.0000	0.4459	1.0000	0.8676	0.9997
6	1.0000	0.7784	1.0000	0.3449	0.0025		0.0016	0.0011	0.3449	0.0025	<.0001	0.0005
7	0.0011	0.0953	0.0038	0.3449	1.0000	0.0016		1.0000	0.3449	1.0000	0.9324	1.0000
8	0.0007	0.0658	0.0025	0.2591	1.0000	0.0011	1.0000		0.2591	1.0000	0.9718	1.0000
9	0.2591	0.9997	0.5573	1.0000	0.4459	0.3449	0.3449	0.2591		0.4459	0.0203	0.1357
10	0.0016	0.1357	0.0058	0.4459	1.0000	0.0025	1.0000	1.0000	0.4459		0.8676	0.9997
11	<.0001	0.0038	0.0001	0.0203	0.8676	<.0001	0.9324	0.9718	0.0203	0.8676		0.9980
12	0.0003	0.0303	0.0011	0.1357	0.9997	0.0005	1.0000	1.0000	0.1357	0.9997	0.9980	

좌측 그래프: 집단을 4가지로 구분 지을 수 있다.

우측 표: H_0 : 집단 간 상호작용 효과가 없다 H_1 : 집단 간 상호작용 효과가 있다

⇒ 총 66쌍 중 21쌍에서 상호작용 효과가 있다.

3.4 다중비교 (Bonferroni)

- 온도 -

Least Squares Means for effect temp Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: life								
i/j	1	2	3	4				
1		0.0251	<.0001	<.0001				
2	0.0251		0.0251	<.0001				
3	<.0001	0.0251		0.1365				
4	<.0001	<.0001	0.1365					

좌측 그래프: (700도), (800도), (900도, 1000도)로 집단을 구분 지을 수 있다.

우측 표: H_0 : 온도 간 배터리 수명 차이가 없다 H_1 : 온도 간 배터리 수명 차이가 있다

⇒ 900도와 1000도 사이를 제외하고 모든 쌍에서 배터리 수명 차이가 있다.

- 방법 -

	method (Alph	ng for LS-Means of na = 0.05) ar are not significantly different.
method	Estimate	
3	43.0833	
2	40,2500	
1	39.7500	

Least Squares Means for effect method Pr > [t] for H0: LSMean(i)=LSMean(j) Dependent Variable: life								
i/j	1	2	3					
1		1.0000	0.0039					
2	1.0000		0.0144					
3	0.0039	0.0144						

좌측 그래프: (방법 1, 방법 2), (방법 3)으로 집단을 구분 지을 수 있다.

우측 표: H_0 : 방법 간 배터리 수명 차이가 없다 H_1 : 방법 간 배터리 수명 차이가 있다

⇒ 방법 1과 방법 2 사이를 제외하고 모든 쌍에서 배터리 수명 차이가 있다.

- 시간대 -

Least Squares Means for effect time Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: life							
i/j	1	2	3				
1		0.0144	0.1972				
2	0.0144		0.0001				
3	0.1972	0.0001					

좌측 그래프: (아침, 저녁), (점심)으로 집단을 구분 지을 수 있다.

우측 표: H_0 : 시간대 간 배터리 수명 차이가 없다 H_1 : 시간대 간 배터리 수명 차이가 있다 \Rightarrow 아침과 저녁 사이를 제외하고 모든 쌍에서 배터리 수명 차이가 있다.

- 온도와 시간대의 상호작용 -

	Least Squares Means for effect temp∙time Pr > [t] for H0: LSMean(i)=LSMean(j)											
	Dependent Variable: life											
i/j	- 1	2	3	4	5	6	7	8	9	10	- 11	12
1		1.0000	1.0000	0.7427	0.0023	1.0000	0.0015	0.0010	0.7427	0.0023	<.0001	0.0004
2	1.0000		1.0000	1.0000	0.3173	1.0000	0.2053	0.1322	1.0000	0.3173	0.0057	0.0542
3	1.0000	1.0000		1.0000	0.0089	1.0000	0.0057	0.0036	1.0000	0.0089	0.0002	0.0015
4	0.7427	1.0000	1.0000		1.0000	1.0000	1.0000	0.7427	1.0000	1.0000	0.0346	0.3173
5	0.0023	0.3173	0.0089	1.0000		0.0036	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	0.0036		0.0023	0.0015	1.0000	0.0036	<.0001	0.0006
7	0.0015	0.2053	0.0057	1.0000	1.0000	0.0023		1.0000	1.0000	1.0000	1.0000	1.0000
8	0.0010	0.1322	0.0036	0.7427	1.0000	0.0015	1.0000		0.7427	1.0000	1.0000	1.0000
9	0.7427	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.7427		1.0000	0.0346	0.3173
10	0.0023	0.3173	0.0089	1.0000	1.0000	0.0036	1.0000	1.0000	1.0000		1.0000	1.0000
11	<.0001	0.0057	0.0002	0.0346	1.0000	<.0001	1.0000	1.0000	0.0346	1.0000		1.0000
12	0.0004	0.0542	0.0015	0.3173	1.0000	0.0006	1.0000	1.0000	0.3173	1.0000	1.0000	

좌측 그래프: 집단을 3가지로 구분 지을 수 있다.

우측 표: H_0 : 집단 간 상호작용 효과가 없다 H_1 : 집단 간 상호작용 효과가 있다

⇒ 총 66쌍 중 21쌍에서 상호작용 효과가 있다.

3.5 잔차 분석

-잔차의 정규성

잔차의 히스토그램과 Q-Q plot 확인 시 어느 정도 정규성을 띄는 것으로 보인다.

잔차의 정규성 검정

정규성 검정							
검정	통	계량	p &t				
Shapiro-Wilk	W	0,964124	Pr < W	0,2871			
Kolmogorov-Smirnov	D	0,143248	Pr > D	0,0610			
Cramer-von Mises	W-Sq	0,076474	Pr > W-Sq	0,2292			
Anderson-Darling	A-Sq	0,423519	Pr > A-Sq	>0,2500			

 H_0 : 잔차가 정규성을 만족한다 H_1 : 잔차가 정규성을 만족하지 않는다 모든 검정에서 유의수준 0.05 하에서 귀무가설을 채택하여 잔차가 정규성을 만족한다.

- 잔차의 등분산성

반복을 시간대 변수로 변환했기 때문에 반복 수가 없어 그룹별 분산을 비교할 수 없으므로 등분산 검정을 시행할 수 없다.

따라서 이 사실을 염두에 두기로 한다.

결과적으로 잔차 분석의 결과가 괜찮았으므로 두 번째 디자인의 최종 모형은 모형식: $y_{ijk}=\mu+\alpha_i+\beta_j+\gamma_k+(\alpha\gamma)_{ik}+\epsilon_{ijk}$ $(i=1,2,3,\ j=1,2,3,4,\ k=1,2,3)$ 로 결정했다.

$$\sum_{i=1}^{3}\alpha_{i}=0\,,\;\sum_{j=1}^{4}\beta_{j}=0\,,\;\sum_{k=1}^{3}\gamma_{k}=0\,,\;\sum_{i=1}^{3}(\alpha\gamma)_{ik}=0\,,\;\sum_{k=1}^{3}(\alpha\gamma)_{ik}=0\,,\;\epsilon_{ijk}\sim iid\,N(0,\sigma^{2})$$

4. 최종 모형 선택

첫 번째 디자인의 R^2 의 값은 0.621696이며 RMSE의 값은 3.221456이다.

두 번째 디자인의 R^2 의 값은 0.869038이며 RMSE의 값은 2.213366이다.

두 번째 디자인이 첫 번째 디자인보다 R^2 의 값이 크게 나왔으며 RMSE의 값이 작게 나왔다.

그러므로 두 번째 디자인을 최종 모델로 선정한다.

최종 모형식: $y_{ijk}=\mu+\alpha_i+\beta_j+\gamma_k+(\alpha\gamma)_{ik}+\epsilon_{ijk}$ $(i=1,2,3,\ j=1,2,3,4,\ k=1,2,3)$.

$$\sum_{i=1}^{3}\alpha_{i}=0\,,\;\sum_{j=1}^{4}\beta_{j}=0\,,\;\sum_{k=1}^{3}\gamma_{k}=0\,,\;\sum_{i=1}^{3}(\alpha\gamma)_{ik}=0\,,\;\sum_{k=1}^{3}(\alpha\gamma)_{ik}=0\,,\;\epsilon_{ijk}\sim iid\,N(0,\sigma^{2})$$

P.S.: 비록 두 번째 디자인을 최종 모형식으로 선정하긴 했지만, 첫 번째 디자인과 달리 등분산 검정을 진행하지 못했다는 점이 있기 때문에 첫 번째 디자인과 두 번째 디자인의 일장일단이 있다고 생각한다.

또한, 최종 모형의 분산분석 결과 온도, 방법, 시간과 온도와 시간의 상호작용이 배터리의 수명에 영향을 끼친다는 점을 확인하였다.

다중검정 결과 온도별 배터리 수명은 900도, 1000도의 차이가 없으며 그 외 온도별은 차이가 있다고 볼 수 있다.

방법별 배터리 수명은 방법 1, 2간 차이가 없으며 그 외 방법 간 차이가 있다고 볼 수 있다.

시간대별 배터리 수명은 아침, 저녁 간 차이가 없으며 그 외 시간대별 차이가 있다고 볼 수 있다.

온도와 시간대의 상호작용 비교 결과 총 4개의 집단으로 구분 지을 수 있었다.

조원들의 기여 내용

이민혁: 첫 번째 디자인 제안 및 분석

안효준: 두 번째 디자인 제안 및 분석

김보민: 리포트 작성 및 전체 분석과정에 대한 수정 및 검토