

Universidad Simón Bolívar. Departamento de Matemáticas Puras y Aplicadas.

2^{er} Parcial. (30 %) TIPO A1

1. (7 puntos) Halle los valores de la constante k para los cuales el vector (3 - k, 4, 2k) pertenece a gen $\{(1, 4, 1), (2, 6, 1)\} \subset \mathbb{R}^3$.

Solución: Deben existir números x y y, tales que x(1,4,1)+y(2,6,1)=(3-k,4,2k), es decir, debe tener solución el sistema:

$$\begin{cases} x + 2y = 3 - k \\ 4x + 6y = 4 \\ x + y = 2k \end{cases}$$

por lo cual, usando Gauss-Jordan, se tiene:

$$\begin{bmatrix} 1 & 2 & 3-k \\ 4 & 6 & 4 \\ 1 & 1 & 2k \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3-k \\ 0 & -2 & -8+4k \\ 0 & -1 & 3k-3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3k-5 \\ 0 & 1 & 4-2k \\ 0 & 0 & -2k-2 \end{bmatrix} \Rightarrow k = -1.$$

En el tipo **A2** la segunda ecuación es 2x + 3y = 2 la respuesta es la misma.

2. Considere el espacio vectorial $\mathbf{P}_3 = \{ p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 : a_0, a_1, a_2, a_3 \in \mathbb{R} \}$, con las operaciones usuales de suma y multiplicación por escalares reales. Sea:

$$H = \{p(x) \in \mathbf{P}_3: p(3) = 0 \text{ y } p'(3) = 0\}$$

- a) (3 puntos) ¿Es H un subespacio de P_3 ?
 - i) Claramente el polinomio cero está en H, también se puede tomar el polinomio

$$p(x) = (x-3)^2 = x^2 - 6x + 9, \quad p'(x) = 2x - 6,$$

el cual satisface p(3) = 0 y p'(3) = 0, por lo cual $H \neq \emptyset$.

ii) Sean

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in H$$

$$q(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 \in H$$

entonces p(3) = 0, p'(3) = 0, q(3) = 0, q'(3) = 0, como la derivada de la suma es la suma de las derivadas entonces,

$$(p+q)(3) = p(3) + q(3) = 0$$
 y $(p+q)'(3) = p'(3) + q'(3) = 0$

por lo cual $p(x) + q(x) \in H$.

- iii) Si α es un escalar, $(\alpha p)(3) = \alpha p(3) = 0$ y $(\alpha p')(3) = \alpha p'(3) = 0$.
- b) (3 puntos) Pruebe que $\Omega = \{(x-3)^2, (x-3)^3\}$ es un subconjunto de H. Sea $p(x) = (x-3)^2 = x^2 - 6x + 9$, luego p'(x) = 2x - 6, y claramente p(3) = 0 y p'(3) = 0, similarmente sea $q(x) = (x-3)^3 = x^3 - 9x^2 + 27x - 27$, luego $q'(x) = 3x^2 - 18x + 27$, y claramente q(3) = 0 y q'(3) = 0.

c) (3 puntos) ¿Es Ω linealmente independiente? Supongamos que ap(x)+bq(x)=0, entonces

$$ap(x) + bq(x) = a(x^2 - 6x + 9) + b(x^3 - 9x^2 + 27x - 27)$$

= $bx^3 + (a - 9b)x^2 + (-6a + 27b)x + (9a - 27b)$
= 0.

de las dos primeras ecuaciones b=0 y a-9b=0 se desprende que a=0 y b=0 por lo cual son linealmente independientes.

En el tipo **A2** se evalúa el polinomio y su derivada en 2.

3. (7 puntos) Sea r la recta que pasa por los puntos P=(1,0,1) y Q=(0,2,3) y sea π el plano de ecuación x+y+z=11. Si A es el punto intersección de la recta r con el plano π , halle una representación paramétrica de la recta que pasa por A y es perpendicular a π .

Solución:

Un vector director de la recta r es $\overrightarrow{PQ} = (-1, 2, 2)$ y una ecuación paramétrica de la recta r es:

$$r: \left\{ \begin{array}{lll} x & = & 1 & - & t \\ y & = & & 2t \\ z & = & 1 & + & 2t. \end{array} \right.$$

sustituyendo en la ecuación del plano tenemos

$$(1-t) + 2t + (1+2t) = 11$$

 $3t = 11-2$
 $t = 3$.

De donde obtenemos el punto A=(-2,6,7) y un vector director de la recta pedida es un vector normal de plano $\hat{n}=(1,1,1)$, por lo que la recta será

$$\begin{cases} x = -2 + t \\ y = 6 + t \\ z = 7 + t. \end{cases}$$

En el tipo $\mathbf{A2}$, t=2, A=(-1,4,5) y la ecuación es:

$$\begin{cases} x = -1 + t \\ y = 4 + t \\ z = 5 + t. \end{cases}$$

4. a) (4 puntos) Sea V un espacio vectorial y $\vec{0}$ el elemento neutro de V. Pruebe que si H es un subespacio de V, entonces $\vec{0} \in H$.

Solución: Como H es un subespacio, $H \neq \emptyset$, sea $v \in H$ entonces $(-1)v = -v \in H$ y $\vec{0} = v - v \in H$, otra manera de hacerlo es tomar cualquier vector $v \in H$ y el escalar 0 y entonces $\vec{0} = 0v \in H$.

b) (3 puntos) Si
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 1 & 6 & 3 & 8 \\ 0 & 2 & 0 & 3 \end{pmatrix}$$
 y Adj $(A) = (c_{ij})$. Encuentre c_{23} .

Solución:

$$c_{23} = (-1)^{2+3} \det(M_{32}) = - \begin{vmatrix} 1 & 3 & 4 \\ 5 & 7 & 8 \\ 0 & 0 & 3 \end{vmatrix} = -3 \begin{vmatrix} 1 & 3 \\ 5 & 7 \end{vmatrix} = -3(7-15) = 24.$$

En el tipo **A2**, sólo hay un cambio de signo $(-1)^{3+1} = 1$.