

Santiago Emanuel Nieva

Intencionalmente dejada en blanco

Intencionalmente dejada en blanco

Breve repaso

Continuidad

- En un punto
- En un intervalo
- Ejemplos
- Teorema del Valor intermedio:
 - Enunciado
 - Aplicación
- Teorema de Weierstrass:
 - Enunciado

2 Derivación

- Definición de derivadas, interpretacion geométrica
- Reglas de Derivación
- Derivada de funciones trigonométricas
- Derivadas de exponenciales y logaritmos
- Derivada de la función inversa
 - Funciones trigonométricas inversas
- Ecuación de la recta tangente
- Derivadas de orden superior
- Diferenciación logaritmica

3 Análisis de funciones

- Información a partir de f(x)
- Información a partir de f'(x)
- Información a partir de f''(x)
- Ejemplos:
 - Análisis completo y gráfica de $f(x) = -x^4 + 2x^2 + 3$
 - Análisis completo y gráfica de $f(x) = \frac{x^2+1}{x^2-1}$

1 Continuidad:

Continuidad en un punto

Una función f es continua en un valor si:

$$\lim_{x \to a} f(x) = f(a)$$

- Condiciones:
 - 1 f debe estar definida en x = a:
 - $a \in \mathbb{D}$ om de $f \Rightarrow \exists f(a)$
 - f 2 Tiene que existir el limite de f alrededor de a
 - $\exists \lim_{x \to a} f(x)$
 - ${f 3}$ f esta definida en un intervalo abierto que contiene a a
 - 4 Los limites laterales son iguales:

$$\blacksquare \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a} f(x)$$

Si alguno de estas condiciones no se cumpliese:

ullet Diremos que f es discontinua en a

Tipos de discontinuidades

- $\blacksquare \ a \in \mathit{Dom}\, f, \Rightarrow \exists \, f(a) \, \checkmark \times$
- $\exists \lim_{x\to a} f(x) \checkmark$

DISCONTINUIDAD EVITABLE (la evito redefiniendo f(a)=L)

- $\mathbf{II} \ a \in Dom f, \Rightarrow \exists f(a) \checkmark \mathsf{X}$
- - $\lim_{x \to a^{-}} f(x) = L \neq M = \lim_{x \to a^{+}} f(x)$

DISCONTINUIDAD DE SALTO

- $\blacksquare \ a \in Dom f, \Rightarrow \exists f(a) \checkmark \times$
- $\exists \lim_{x \to a} f(x) \times$
 - $\lim_{x\to a^{-}} f(x) = \pm \infty \text{ o bien}$
 - $\lim_{x\to a^+} f(x) = \pm \infty$

DISCONTINUIDAD ESENCIAL

Continuidad lateral:

Continuidad por Izquierda

 Una funcion f es continua por izquierda en un valor a si:

$$\lim_{x\to a^-} f(x) = f(x)$$

Continuidad por Derecha

 Una funcion f es continua por derecha en un valor a si:

$$\lim_{x \to a^+} f(x) = f(x)$$

Continuidad en Intervalo:

Definición

ullet Una funcion f es continua en un intervalo abierto (a,b) si es continua en todo número del intervalo

Definición

- Una funcion f es continua en un intervalo abierto [a,b] si:
- 1 Es continua en todo número del intervalo abierto (a, b)
- 2 Es continua por <u>derecha</u> en a
- 3 Es continua por <u>izquierda</u> en b

Propiedades de funciones

- Sean f y g continuas en a, entonces tambien son continuas en a las siguientes funciones:
 - 1 (f+g)(x)
 - $2 (f \cdot g)(x)$
 - $c \cdot f(x)$, siendo c constante.
- $4 \left(\frac{f}{g}\right)(x)$, $si\ g(a) \neq 0$
- $(f \circ g)(x)$,si f es continua en g(a)

Resultados utiles para demostrar la continuidad

- Sea *a* un punto cualquiera dentro del dominio (sin los extremos)
- La radicación es continua en los puntos de su dominio (sin los extremos)
- Toda función racional es continua en cualquier punto de su dominio
- 4 Las funciones trigonométricas $\sin(x)$ y $\cos(x)$ son continuas en $\mathbb R$

Ejercicios resueltos

Usando la definición de continuidad y las propiedades de los limites:

• Demostrar que f es continua en a:

$$f(x) = \sqrt[3]{3 \cdot x^2}, \quad a = 3$$

Recordamos

- 1 $a \in \mathbb{D}$ om $f \Rightarrow f(a)$
- $\exists \lim_{x \to a} f(x)$
- $3 \quad f(a) = \lim_{x \to a} f(x)$

Resuelvo:

 \mathbb{D} om $f = \mathbb{R}$,

$$f(3) = \sqrt[3]{3 \cdot (3^2)} = \sqrt[3]{27} = 3$$
 /

$$\lim_{x \to a} \sqrt[3]{3 \cdot x^2} \underset{\text{prop.Raiz}}{=} \sqrt[3]{\lim_{x \to a} (3 \cdot x^2)}$$

$$\underset{\text{prop.poliomio}}{=} \sqrt[3]{3 \cdot 3^2} = 3 \quad \checkmark$$

f(x) es continua en a=3

ho