Logic Synthesis & Verification, Fall 2024

National Taiwan University

Problem Set 3

Due on 2024/11/1 (Friday) 23:59.

1 [Cofactor and Generalized Cofactor]

(16%) Let f and g be completely specified functions. Prove or disprove the following equalities:

- (a) (4%) $f = xf_x \oplus (\neg x)f_{\neg x}$
- (b) (4%) $f = g \wedge co(f, g) \vee \neg g \wedge co(f, \neg g)$
- (c) (4%) $co(f \oplus g, h) = co(f, h) \oplus co(g, h)$
- (d) (4%) $co(\neg f, g) = \neg co(f, g)$

$\mathbf{2}$ [Operation on Cube Lists]

(4%) Consider the following orthogonal cube list.

$$\begin{pmatrix}
-0 & 0 & 0 & --- \\
0 & 1 & --1 & 1 & 0 \\
-0 & -1 & 0 & -0
\end{pmatrix}$$

Add the cube (100--0) to the above list with orthogonality being maintained.

[Symmetric Functions] 3

(20%) Given a Boolean function $f(x_1, \ldots, x_n)$, consider the following symmetry definitions.

- S_1 : $f(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)$ S_2 : $f(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, \neg x_i, x_{i+1}, \ldots, x_{j-1}, \neg x_i, x_{j+1}, \ldots, x_n)$
- S_3 : $f(x_1, \ldots, x_n) = \neg f(x_1, \ldots, x_{i-1}, x_j, x_{i+1}, \ldots, x_{j-1}, x_i, x_{j+1}, \ldots, x_n)$
- S_4 : $f(x_1, \ldots, x_n) = \neg f(x_1, \ldots, x_{i-1}, \neg x_j, x_{i+1}, \ldots, x_{j-1}, \neg x_i, x_{j+1}, \ldots, x_n)$
- S_5 : $f(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, \neg x_j, x_{i+1}, \ldots, x_{j-1}, x_i, x_{j+1}, \ldots, x_n)$
- S_6 : $f(x_1,\ldots,x_n)=f(x_1,\ldots,x_{i-1},x_j,x_{i+1},\ldots,x_{j-1},\neg x_i,x_{j+1},\ldots,x_n)$
- S_7 : $f(x_1, \ldots, x_n) = \neg f(x_1, \ldots, x_{i-1}, \neg x_j, x_{i+1}, \ldots, x_{j-1}, x_i, x_{j+1}, \ldots, x_n)$
- S_8 : $f(x_1, \ldots, x_n) = \neg f(x_1, \ldots, x_{i-1}, x_j, x_{i+1}, \ldots, x_{j-1}, \neg x_i, x_{j+1}, \ldots, x_n)$
- (a) (16%) For each S_i , for i = 1, ..., 8, find the necessary and sufficient condition of f to be S_i -symmetric on variables x_1 and x_2 .
- (b) (4%) Which of the above definitions S_1, \ldots, S_8 satisfy transitivity, that is, if f is S_i -symmetric on (x_1, x_2) and (x_2, x_3) , then f is S_i -symmetric on (x_1, x_3) ?

4 [Unate Functions]

(16%) Prove or disprove the following statements.

- (a) (8%) A prime cover of a unate function must be a unate cover.
- (b) (8%) An irredundant prime cover of a unate function does not necessarily represent a minimum sum-of-products expression.

5 [Threshold and Unate Functions]

(16%)

Definition 1. A threshold function f over Boolean variables x_1, x_2, \ldots, x_n is defined by

$$f = \begin{cases} 1, & \text{if the linear inequality } \sum_{i=1}^{n} w_i x_i \ge T \text{ holds,} \\ 0, & \text{otherwise,} \end{cases}$$

for w_i 's and T are constants in \mathbb{R} .

- (a) (4%) Is the Boolean function $f(x_1, x_2, x_3) = x_1x_2 \lor x_2x_3 \lor x_1x_3$ a threshold function? If yes, give the minimal values of w_1, w_2, w_3 , and T?
- (b) (8%) Show that a threshold function must be a unate function.
- (c) (4%) Show that a unate function is not necessarily a threshold function.

6 [Unate Recursive Paradigm: Prime Generation]

(8%) Generate all prime implicants of the function

$$f = ab'c + ab'c'e' + abde' + a'bc + a'bc'e' + a'b'cd + a'b'cd'e' + a'b'c'de'$$

by using the unate recursive paradigm. Apply the binate select heuristic for branching and show your detailed derivation.

7 [Quine-McCluskey]

(20%) Given two incompletely specified functions f and g over variables a, b, c, d, let f be of onset minterms

$$\{0010, 0100, 0101, 1010, 1110\}$$

and don't care set minterms

$$\{0001, 1101\},\$$

and g be of onset minterms

$$\{0100, 0101, 0110, 0111, 1000, 1010, 1100, 1111\}$$

 $\{1110\}.$

Apply the Quine-McCluskey procedure to minimize the multi-output cover with the following steps.

- (a) (5%) Derive all prime implicants for the multi-output cover by pairwise minterm merging.
- (b) (5%) Build the Boolean matrix for column covering.
- (c) (5%) Simplify the Boolean matrix to its cyclic core.
- (d) (5%) Compute the minimum column covering and obtain the minimum multi-output cover.