3. Элементы статистического анализа (продолжение)

3.3 Поиск статистических взаимосвязей между признаками

3.3.1 Основные понятия

Взаимосвязи между признаками

Взаимосвязь между признаками выражается в некоторой закономерности встречаемости значений этих признаков.

В самом общем виде взаимосвязи делят на

- функциональные,
- корреляционные.

Функциональная зависимость

Если каждому возможному значению СВ X соответствует одно определенное возможное значение СВ Y, то Y называется функцией случайного аргумента X:

$$Y = \varphi(X).$$

Пример.

X	-2	2	3
p	0,2	0,5	0,3

Y	4	9
р	0,7	0,3

На практике строгая функциональная зависимость реализуется редко.

<u>Пример</u>: СВ X - объем (в руб.) сделок, заключенных менеджером в течение календарного периода, СВ Y - доход менеджера с учетом % от заключенных сделок

Статистической называется зависимость, при которой изменение одной из CB влечет за собой изменение закона распределения другой CB.

В частности, статистическая зависимость может проявляться в том, что при изменении одной СВ изменяется среднее значение другой СВ.

В этом случае статистическая зависимость называется корреляционной.

Важно:

- □ Корреляционная связь <u>описывает тенденцию</u>;
 - при этом <u>изменение одной величины может не иметь никаких</u> последствий в отдельно взятом наблюдении другой величины.
 - Например: установлена корреляционная взаимосвязь между ВВП на душу населения и «уровнем счастья» (по субъективной самооценке) в разных странах; но это не означает, что при увеличении ВВП на 1 у. е. каждый конкретный человек станет на 1 пункт счастливее.
- Выявление корреляционной взаимосвязи между двумя величинами не означает установление каких-либо причинноследственных связей.

Self-reported life satisfaction vs. GDP per capita, 2022

Our World in Data

1:4B

(historical

estimates)

Self-reported life satisfaction is measured on a scale ranging from 0-10, where 10 is the highest possible life satisfaction. GDP per capita is adjusted for inflation and differences in the cost of living between countries.

Источник данных.

Data source: World Happiness Report (2023); World Bank (2023) Note: GDP per capita is expressed in international-\$1 at 2017 prices. OurWorldInData.org/happiness-and-life-satisfaction | CC BY

Корреляционная связь может быть

- положительной (прямой),
- отрицательной (обратной).

Положительная связь характеризуется тем, что рост значений одного признака сопровождается ростом значений другого признака (пример выше).

В случае *отрицательной связи* рост значений одного признака сопровождается уменьшением значений другого признака.

Положительные и отрицательные связи

Пример.

3.3.2 Выявление линейной взаимосвязи двух признаков (количественные данные)

Коэффициент корреляции

Для оценки силы взаимосвязи между количественными или порядковыми признаками используется мера, называемая коэффициентом корреляции.

Эта мера вычисляется по-разному в зависимости от вида данных (количественные с распределением, близким к нормальному, либо не являющиеся таковыми).

Мера взаимосвязи количественных признаков

Мера <u>линейной</u> взаимосвязи количественных признаков **X** и **Y** - **коэффициент корреляции Пирсона**:

$$r_{\rm B} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}},$$

где n - число наблюдений (объем выборки);

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

Свойства коэффициента корреляции Пирсона

- Для любых СВ \emph{X} и \emph{Y} $-1 \leq r_{\scriptscriptstyle B} \leq 1$. При этом:
 - знак $r_{\rm B}$ совпадает с характером связи (положительная или отрицательная);
 - чем ближе значение $|r_{\rm B}|$ к 1, тем сильнее линейная связь между величинами X и Y;
 - значение $r_{\rm B}$, близкое нулю, означает отсутствие линейной связи (но возможна нелинейная связь).
- Величина $r_{\scriptscriptstyle
 m B}$ <u>чувствительна к выбросам</u>.

Как и все метрики, основанные на вычислении средних

Свойства коэффициента корреляции Пирсона

Итог:

коэффициент корреляции Пирсона - хорошая мера линейной связи количественных признаков, если данные не содержат аномалий (в идеале - распределение, близкое к нормальному, без выбросов).

Если какие-то из указанных условий не выполнены, то следует использовать другие меры связи (будут рассмотрены далее).

Значимость коэффициента корреляции Пирсона

Важно:

вся генеральная совокупность обычно не доступна для анализа, и коэффициент корреляции (как и другие статистические показатели) вычисляется <u>по выборке</u>.

Таким образом, мы имеем **выборочный коэффициент корреляции**, который является <u>оценкой</u> коэффициента корреляции $\boldsymbol{r}_{\scriptscriptstyle \Gamma}$ генеральной совокупности.

Значимость коэффициента корреляции Пирсона

Предположим:

выборочный коэффициент корреляции $r_{\scriptscriptstyle \mathrm{B}}$ оказался отличным от нуля.

Вопрос:

является ли это отличие значимым (означает ли оно, что и коэффициент корреляции $r_{\scriptscriptstyle \Gamma}$ генеральной совокупности также отличен от нуля, и можно предполагать наличие линейной связи между признаками в генеральной совокупности)?

Значимость коэффициента корреляции Пирсона

Для ответа на поставленный вопрос - проверка статистической гипотезы о значимости выборочного коэффициента корреляции.

 \mathbf{H}_0 : $\mathbf{r}_{\Gamma} = \mathbf{0}$ (корреляция отсутствует);

 $\mathbf{H_1}$: $r_{\Gamma} \neq \mathbf{0}$ (корреляция существует).

Применяется общая схема проверки статистических гипотез.

В качестве статистического критерия используется статистика

$$T = r_{\scriptscriptstyle \mathrm{B}} \cdot rac{\sqrt{n-2}}{\sqrt{1-r_{\scriptscriptstyle \mathrm{B}}^2}}$$
 ,

(вычисляется по данным выборки).

Алгоритм проверки нулевой гипотезы

- 1. По данным выборки найти значение выборочного коэффициента корреляции $m{r}_{\scriptscriptstyle \mathrm{B}}$ и $m{t}_{\scriptscriptstyle \mathrm{Ha6J}}$ наблюдаемое значение СВ $m{T}$.
- 2. Зная, что СВ T имеет pacnpedenehue Cmbюdehma с n 2 степенями свободы, найти $p ext{-}value$ вероятность того, что при условии справедливости нулевой гипотезы (признаки не коррелированы) по данным выборки будет получен выборочный коэффициент корреляции, не меньший $r_{\scriptscriptstyle B}$: $P(T \geq t_{\scriptscriptstyle {\rm Hafn}})$.
- 3. Сравнить значение *p-value* с заранее выбранным уровнем значимости *a*:
 - в случае *p-value* > *a* нулевая гипотеза принимается; в противном случае отвергается.

Вычисление коэффициента корреляции Пирсона и проверка его значимости

Вычисления с помощью библиотеки Scipy.

Функция **pearsonr()** (модуль **stats** библиотеки **Scipy**) позволяет вычислить коэффициент корреляции Пирсона и выполнить оценку его значимости.

Возвращает значение выборочного коэффициента корреляции $r_{\scriptscriptstyle \mathrm{B}}$ и величину *p-value*.

Документация функции.

3.3.3 Выявление взаимосвязи двух признаков (порядковые данные)

Исследование порядковых данных

Для случаев, когда

- признаки измерены в порядковой шкале,
- либо данные содержат выбросы,
- либо распределение существенно отличается от нормального,

существуют другие меры взаимосвязи - коэффициенты ранговой корреляции Спирмена и (тау) Кендалла.

Исследование порядковых данных

Эти показатели имеют <u>общие черты</u> с коэффициентом корреляции Пирсона:

- характеризуют наличие взаимосвязи между признаками, ее силу и направленность;
- могут принимать значения в диапазоне [-1, 1].

<u>Отличие</u> от коэффициента корреляции Пирсона: основаны не на абсолютных значениях признаков, а на рангах.

Коэффициент корреляции Спирмена

- 1. Объекты выборки следует расположить в порядке «убывания» значений признака X; каждому из объектов приписать ранг $x_i = i$, равный порядковому номеру объекта.
- 2. Объекты выборки расположить в порядке «убывания» значений признака Y; каждому из объектов приписать ранг \mathbf{y}_i , равный порядковому номеру объекта (для удобства сравнения индекс i по-прежнему равен порядковому номеру объекта по признаку X).
- Итог две последовательности рангов; причем в общем случае $\mathbf{x}_i \neq \mathbf{y}_i$.

Коэффициент корреляции Спирмена

- 3. Обозначим $d_i = x_i y_i$.
- 4. Коэффициент ранговой корреляции Спирмена равен

$$\rho = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2-1)},$$

где n - объем выборки.

Если несколько объектов имеют одно и то же значение по какому-то из признаков, то каждому из этих объектов приписывается ранг, равный среднему арифметическому порядковых номеров этих объектов

Коэффициент корреляции Кендалла

- 1. Объекты выборки следует расположить в порядке «убывания» значений признака X; каждому из объектов приписать ранг $x_i = i$, равный порядковому номеру объекта.
- 2. Объекты выборки расположить в порядке «убывания» значений признака Y; каждому из объектов приписать ранг y_i , равный порядковому номеру объекта (для удобства сравнения индекс i попрежнему равен порядковому номеру объекта по признаку X).

Те же действия, что при вычислении коэффициента ранговой корреляции Спирмена

Коэффициент корреляции Кендалла

- 3. Обозначим $R = \sum_{i=1}^{n-1} R_i$, где R_i число рангов, больших \mathbf{y}_i ,
- 4. Коэффициент ранговой корреляции Кендалла равен

$$\tau = \frac{4R}{n(n-1)} - 1,$$

где **п** - объем выборки.

Значимость коэффициентов ранговой корреляции

Вопросы о значимости коэффициентов ранговой корреляции Спирмена и Кендалла ставятся по аналогии с вопросом о значимости коэффициента корреляции Пирсона.

Для получения ответа на эти вопросы - проверка соответствующих статистических гипотез.

Вычисление коэффициентов ранговой корреляции и проверка их значимости

Вычисления с помощью библиотеки Scipy.

Функция **spearmanr()** (модуль **stats** библиотеки **scipy**) позволяет вычислить коэффициент ранговой корреляции Спирмена и выполнить оценку его значимости.

Возвращает значение выборочного коэффициента корреляции Спирмена и величину *p-value*.

Документация функции.

Вычисление коэффициентов ранговой корреляции и проверка их значимости

Вычисления с помощью библиотеки Scipy.

Функция **kendalltau()** (модуль **stats** библиотеки **scipy**) позволяет вычислить коэффициент ранговой корреляции Кендалла и выполнить оценку его значимости.

Возвращает значение выборочного коэффициента корреляции Кендалла и величину *p-value*.

Документация функции.

3.3.4 Исследование взаимосвязи двух категориальных признаков

Для значений признаков, измеренных в категориальной (номинальной) шкале, недоступны не только числовые операции, но и упорядочивание.

В таких случаях инструментом анализа являются *таблицы* сопряженности признаков.

Таблицы сопряженности

Предположим:

имеющаяся выборка содержит *п* наблюдений, причем

- для признака X были зарегистрированы значения $x_1, x_2, ..., x_k$,
- а для признака Y значения $y_1, y_2, ..., y_l;$

при этом пары значений $X = x_i$, $Y = y_j$ наблюдались n_{ij} раз.

Таблицы сопряженности

Результаты наблюдений могут быть представлены в виде *таблицы сопряженности признаков*:

	y ₁	y ₂	•••	Υı	Всего
x ₁	n ₁₁	n ₁₂	•••	n _{1l}	$M_{1\cdot} = \sum_{j=1}^{l} n_{1j}$
x ₂	n ₂₁	n ₂₂	•••	n _{2l}	$M_{2\cdot} = \sum_{j=1}^l n_{2j}$
•••	•••	•••	•••	•••	•••
X _k	<i>n</i> _{k1}	n _{k2}	•••	n _{kl}	$M_{k\cdot} = \sum_{j=1}^{l} n_{kj}$
Всего	$M_{\cdot 1} = \sum_{i=1}^k n_{i1}$	$M_{\cdot 2} = \sum_{i=1}^k n_{i2}$	•••	$M_{\cdot l} = \sum_{i=1}^{k} n_{il}$	n

Таблицы сопряженности

Величины $M_{i \cdot}$ и $M_{\cdot j}$

называются маргинальными частотами.

Они определяют одномерные распределения признаков.

Постановка задачи

Пусть данные наблюдений СВ *X* и *Y* представлены таблицей сопряженности.

Требуется проверить нулевую гипотезу: признаки \boldsymbol{X} и \boldsymbol{Y} не связаны между собой зависимостью

при альтернативной гипотезе:

признаки Х и У являются связанными.

Статистический критерий χ^2 позволяет оценить меру расхождения эмпирических (наблюдаемых) и теоретических (вычисленных в предположении справедливости нулевой гипотезы) частот.

Обозначим:

$$p_i = P(X = x_i)$$
, $q_j = P(Y = y_j)$ — теоретические вероятности; $p_i^* = rac{1}{n} \sum_{j=1}^l n_{ij} = rac{1}{n} M_i$, $q_j^* = rac{1}{n} \sum_{i=1}^k n_{ij} = rac{1}{n} M_{\cdot \cdot j}$ —

статистические оценки вероятностей \boldsymbol{p}_i и \boldsymbol{q}_j (относительные частоты по данным таблицы сопряженности).

Если СВ X и Y независимы, то вероятность совместного наблюдения $X = x_i$ и $Y = y_j$ равна

$$P((X = x_i) \& (Y = y_j)) = p_i \cdot q_j,$$

а статистическая оценка вероятности этого события -

$$p_i^* \cdot q_j^* = \frac{1}{n^2} M_i \cdot M_{ij}.$$

Суммарное расхождение эмпирических и теоретических частот по всем наблюдениям оценивается величиной

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(n_{ij} - n \cdot p_{i}^{*} \cdot q_{j}^{*})^{2}}{n \cdot p_{i}^{*} \cdot q_{j}^{*}}$$

ИЛИ

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{\left(n_{ij} - \frac{1}{n} M_{i} \cdot M_{j}\right)^{2}}{\frac{1}{n} M_{i} \cdot M_{j}}.$$

СВ χ^2 имеет так называемое распределение «хи-квадрат» с числом степеней свободы равным (k-1)(l-1).

Алгоритм проверки нулевой гипотезы

- 1. По данным таблицы сопряженности найти наблюдаемое значение критерия $\chi^2_{\rm набл}$ и число степеней свободы.
- 2. Найти *p-value* вероятность того, что при условии справедливости нулевой гипотезы (признаки независимы) по данным выборки будет получено значение критерия, не меньшее $\chi^2_{\rm набл}$:

$$P(\chi^2 \geq \chi^2_{\text{набл}}).$$

- 3. Сравнить значение *p-value* с заранее выбранным уровнем значимости *a*:
 - в случае p-value > a нулевая гипотеза принимается;
 - в противном случае отвергается.

Замечание 1.

Критерий χ^2 считается надежным, только если в таблице сопряженности не слишком много клеток с небольшими частотами (количество клеток с частотами менее 5 не должно превышать 20%).

Замечание 2.

Критерий χ^2 позволяет только <u>проверить наличие</u> взаимосвязи между признаками, но не позволяет оценить силу и направленность связи.

Вычисления с помощью Python-библиотек.

Функция crosstab() (библиотека Pandas) позволяет сформировать таблицу сопряженности из двух массивов/списков/серий наблюдаемых значений признаков.

Возвращает объект DataFrame, содержащий таблицу сопряженности.

Документация функции.

Вычисления с помощью Python-библиотек.

□ Функция chisquare() (модуль stats библиотеки scipy) позволяет проверить гипотезу о независимости признаков.

Возвращает наблюдаемое значение χ^2 и величину **p-value**.

Документация функции.

Параметры:

```
f_obs - массив/список наблюдаемых частот;
f_exp - массив/список теоретических частот;
ddof - число наложенных связей: в данном случае <math>k + l - 2;
        (по умолчанию ddof=0);
axis - устанавливает измерения, к которым применяется
      критерий;
      при axis = None все значения f_obs обрабатываются как
      один набор;
      по умолчанию axis=0.
```

Вычисления с помощью Python-библиотек.

□ Функция chi2_contingency() (модуль stats библиотеки scipy) позволяет проверить гипотезу о независимости признаков. В отличие от chisquare(), предварительное вычисление наблюдаемых и теоретических частот не требуется (уже реализовано в коде функции).

Возвращает наблюдаемое значение χ^2 и величину **p-value**.

Документация функции.

Коэффициент Крамера

При исследовании зависимостей между признаками важно не только выявить наличие взаимосвязей, но и оценить силу связи (при ее наличии).

Например, в случае, когда нужно определить, какие факторы сильнее других влияют на некоторый целевой признак.

Для оценки силы взаимосвязи между категориальными признаками используется *коэффициент Крамера*:

$$V = \sqrt{\frac{\chi^2}{n \cdot \min\{k-1, l-1\}}}$$

(с учетом принятых ранее обозначений).

Свойства коэффициента Крамера

- Для любых признаков X и Y 0 ≤ V ≤ 1.
 При этом:
 - значение V, близкое нулю, означает отсутствие связи между X и Y;
 - значение V, равное 1, означает полное совпадение.
- Значение **V** можно использовать для сравнения силы связи между различными парами признаков.
- Не позволяет судить о характере и направленности связи.