Probability Theory & Statistics

Introduction

Motivation

Data and statistics are the language of modern business and science. It is rare in the modern work place to embark on a task or project that doesn't require some form of collection of data and some form of description of that data. Probability and statistics are *descriptions of data*. Moreover, the language they provide for describing data is rich and nuanced, but requires practice (as with any language be it German or Python!)

Aim

The sessions' aim to develop fluency in *statistical language* and *probabilistic thinking*.

Delivery

The sessions should occur every two weeks, over the period of a year to two years depending on the depth of discussions during sessions.

Fundamental Objects

There are 4 fundamental objects¹ in probability theory:

- 1. Events
- 2. Random Variables
- 3. Distributions
- 4. Numbers

We will work through and discuss each of these objects and most importantly practice using them in problems.

Structure

Prerequisites

Each session tries to be self-contained, although this is sometimes difficult or impossible for certain topics, in which case a *prerequisite* list of sessions or reading is suggested at the start of the session document. Further reading is also provided at the end of each session for a more in-depth discussion of the session topic.

¹Thinking in terms of objects helps avoid category errors.

Notation

New terms and concepts are *emphasized*.

Interpretation

We will try to avoid too much mathematical jargon and unnecessary proofs, keeping formal notation to the bare minimum and where necessary explained in plain language.

Discussions

Frequently asked questions from each session are added to the end of the session notes for future reference.

Practice

Practice questions and their solutions are provided, the expectation is that they are worked through during the session as an informal discussion, rather than set as exercises.

Sessions

List of the sessions in suggested reading order

- 1. Events
- 2. Counting
- 3. Conditioning
- 4. Distributions
- $5. \ Inequalities$
- 6. Simulation
- 7. Intervals