

Udine, 27 September 2025

popswap ● IT

PopSwap (popswap)

Dato un intero N, S_N è l'insieme di tutte le permutazioni di (0,...,N-1). Inoltre, E_N è l'insieme di tutte le coppie ordinate (p,q) tali che:

- $p \in q$ sono elementi di S_N ;
- \bullet p e q si possono ottenere l'una dall'altra scambiando due elementi adiacenti.

Nota che, se $(p,q) \in E_N$, allora anche $(q,p) \in E_N$.

Il tuo obiettivo è etichettare ogni elemento di S_N con un unico numero naturale in $[0,2^{60})$, cioè produrre una funzione iniettiva¹ \mathcal{L} (chiamata etichettatura) da S_N all'insieme dei numeri naturali minori di 2^{60} .

La qualità di un'etichettatura è misurata da due parametri che devono essere minimizzati:

- la magnitudine $M(\mathcal{L})$, definita come il più piccolo numero naturale k tale che $2^k > \mathcal{L}(p)$ per ogni elemento p di S_N .
- la *vicinanza*, definita come:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

dove \oplus è l'or esclusivo bit a bit e popcount(x) è il numero di bit a 1 nella rappresentazione binaria di x.

Il tuo compito è trovare un'etichettatura \mathcal{L} che ottenga valori bassi sia per $M(\mathcal{L})$ che per $C(\mathcal{L})$. Nota che non è richiesta una soluzione ottima.

Implementazione

Questo è un problema di tipo *output-only*. Devi inviare un file di output separato per ogni file di input. I file di input e output devono seguire il seguente formato.

Formato dell'input

I file di input consistono di una singola riga contenente un intero N e l'indice G dell'input.

Formato dell'output

I file di output devono consistere di N! righe, l'i-esima delle quali contiene l'etichetta della i-esima permutazione in ordine lessicografico.²

Assegnazione del punteggio

Questo problema ha esattamente 2 test case: input000.txt e input001.txt, ed in entrambi N=10.

Il punteggio per la tua soluzione su ogni test case è determinato da $S_M(\mathcal{L}) \times S_C(\mathcal{L})$, dove $S_C(\mathcal{L})$ e $S_M(\mathcal{L})$ sono funzioni della tua etichettatura \mathcal{L} .

- $S_C(\mathcal{L}) = \left(\min(1, 36 \cdot 10^6/C(\mathcal{L}))\right)^2$ per ogni input.
- $S_M(\mathcal{L})$ è diverso per ogni input, secondo le seguenti tabelle. Tra i valori specificati nelle tabelle, S_M varia linearmente.

popswap Pagina 1 di 2

¹Una funzione è detta iniettiva se mappa elementi distinti a elementi distinti

²Formalmente, date due permutazioni $p \neq q$, diciamo che p è lessicograficamente più piccola di q se e solo se $p_k < q_k$ dove k è il più piccolo indice tale che $p_k \neq q_k$.

Un output malformato riceve sempre zero punti.

input000.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$
> 60	0
60	6
≤ 25	60

input	input001.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$	
> 25	0	
25	0	
≤ 22	40	

Il punteggio totale per il problema è la somma dei punteggi su ogni test case.

Esempi di input/output

input	output
3 -1	32
	16
	8
	4
	2
	1

Spiegazione

Nota che il **primo caso di esempio** non è un test case ufficiale, dato che $N \neq 10$ e $G \notin \{0, 1\}$. L'output di esempio rappresenta la seguente etichettatura:

$$\mathcal{L}(p) = \begin{cases} 32 \text{ se } p = (0, 1, 2) \\ 16 \text{ se } p = (0, 2, 1) \\ 8 \text{ se } p = (1, 0, 2) \\ 4 \text{ se } p = (1, 2, 0) \\ 2 \text{ se } p = (2, 0, 1) \\ 1 \text{ se } p = (2, 1, 0) \end{cases}$$

Dato che $2^5 \not > 32$ ma $2^6 > 32$, la magnitudine dell'etichettatura è $M(\mathcal{L}) = 6$. Dato che ci sono $3! \cdot (3-1) = 12$ elementi in E_3 e dato che popcount $(\mathcal{L}(p), \mathcal{L}(q)) = 2$ per ogni $p,q \in S_N$, la vicinanza dell'etichettatura è $C(\mathcal{L}) = 12 \cdot 2 = 24$.

popswap Pagina 2 di 2