

Força de atrito

TEORIA - AULA A4 Física I

Competências que você irá desenvolver nesta aula

- Identificar forças de atrito aplicadas num corpo
- Modelar matematicamente um sistema com atrito para analisar seu equilíbrio translacional

Força de Atrito Estrutura da aula

Força de Atrito
Força de Atrito
Seco, atrito em fluídos e atrito interno)

Força de Atrito
Seco

Causas
Microscópicas

Força de Atrito:
estático e cinético

Tipos de Força de Atrito

Tipos de Força de Atrito

<u>Atrito Seco</u> (<u>superfícies sólidas –</u> <u>não lubrificadas</u>)

Atrito em Fluidos (gases ou líquidos)

Atrito Interno
(quanto maior a deformação
plástica, maior o atrito devido às
forças internas)

Pneu e o asfalto

Óleo na pista de boliche

Força de atrito seco

Quando duas superfícies não lubrificadas estão em condições de deslizamento ou de tendência de deslizamento, existe uma força tangente às superfícies de contato.

Força de atrito seco

O atrito seco é também conhecido como atrito de Coulomb.

Num corpo apoiado sobre uma superfície não lubrificada, além da reação normal, existe a força de atrito somente se houver deslizamento ou tentativa de deslizamento do corpo.

Resultante no apoio em superfície com atrito

Note que, a resultante sobre um corpo devida a força de contato com uma superfície, é a soma da força normal com a força de atrito.

Força de atrito seco

A Força de Atrito que impede que o pé escorregue enquanto andamos.

Para nos deslocarmos, os sapatos exercem no solo uma força para trás.

A força de atrito que se opõe a esta força para trás, e garante que o sapato não escorregue e, a sustentação para o movimento.

Força de atrito seco

Força Normal e Força de Atrito

http://www.animations.physics.unsw.edu.au/jw/weight_and_friction.htm

Força Normal e Força de Atrito

1. A força de atrito estático é PROPORCIONAL à força Normal.

$$F_{\scriptscriptstyle E} \propto N$$

2. A força de atrito cinético é PROPORCIONAL à força Normal.

$$F_{\rm C} \propto N$$

EXPERIMENTO

Determinação dos Coeficientes de Atrito Estático e Cinético Utilizando-se a Aquisição Automática de Dados. (RBF. <u>24</u> (2002) 146)

Gráfico da força de atrito em função do tempo entre duas superfícies de madeira, sendo uma revestida de carpete.

COMENTÁRIOS

- 1. A força de atrito estático não é constante.
- 2. O valor máximo da força de atrito estático é proporcional ao valor da força normal (figura). A inclinação da reta fornece o valor do coeficiente de atrito estático.
- 3. O comportamento da força de atrito cinético é, em média, constante.
- 4. A força de atrito é não conservativa, ou seja, não conserva energia mecânica.

Gráfico da força de atrito em função do tempo entre duas superfícies de madeira, sendo uma revestida de borracha. m = 1,118Kg, fe = 9,30N e fc = 7,28N;

Força de atrito em função da força que solicita o movimento

Módulo de força de atrito cinético:

$$f_{\rm c} = \mu_{\rm c} n \tag{5.5}$$

Módulo de força de atrito estático:

$$f_{\rm s} \le \mu_{\rm s} n \tag{5.6}$$

Fonte: YOUNG & FREEDMAN. 2008. p. 150, 12^a ed.

Força de atrito em função da força que solicita o movimento

Fonte: YOUNG & FREEDMAN. 2008. p. 150, 12^a ed.

- 1. Opõe-se à tendência de deslizamento, ou ao deslizamento da superfície.
- 2. Força de atrito estático se manifesta quando houver tendência de deslizamento relativo entre as superfícies em contato.
- 3. Força de atrito cinético se manifesta quando houver deslizamento entre as superfícies em contato.
- 4. A intensidade da força de atrito cinética é proporcional ao valor da força normal:

$$F_{c} = \mu_{c} N$$

5. Para o caso da força de atrito estático, a intensidade dessa força poderá assumir qualquer valor, até o limite crítico:

$$0 < F_E \le F_{E_{Max}} \qquad F_{E_{Max}} = \mu_E N$$

- 6. Os coeficientes de atrito μ_E e μ_C são constantes adimensionais, cujos valores dependem da natureza das superfícies em contato.
- 7. Experimentalmente, observa-se que $\mu_E > \mu_C$

Tabelas de coeficiente de atrito (Superfícies secas)

Material	$\mu_{ m e}$	μ_c
Aço sobre aço (duro)	0,78	0,42
Chumbo sobre aço	0,74	0,57
Cobre sobre aço	0,53	0,36
Níquel sobre níquel	1,10	0,53
Teflon sobre teflon	0,04	0,04

Fonte Alonso & Finn – v. 1 – 2ª edição

Outros exemplos de Força de Atrito

Faça o DCL do corpo de massa *m*

Outros exemplos de Força de Atrito

Faça o DCL do corpo de massa *m*

Observe que a força de atrito é designada por *F*.

Outros Exemplos 2

Faça o DCL dos corpos

O bloco superior está preso por um fio. Nenhum dos blocos deve escorregar.

Meriam and Kraige, 5ª edição

Outros Exemplos 2

Faça o DCL do corpo de massa m

O bloco superior está preso por um fio. Nenhum dos blocos deve escorregar. F_1 , F_2 e F_3 são forças de atrito.

Meriam and Kraige, 5ª edição

Exercício 5.36:

Considere o sistema indicado na figura. O bloco A pesa 45N e o bloco B, 25N.
Suponha que o bloco B desça com velocidade constante.
a) Ache o coeficiente de atrito cinético entre o bloco A e o topo da mesa.

Exercício 5.37:

Duas caixas estão ligadas por uma corda sobre uma superfície horizontal. A caixa A possui massa m_A e a caixa B possui massa m_B . O coeficiente de atrito cinético entre cada caixa e a superfície é μ_c . As caixas são empurradas para a direita com velocidade constante por uma força horizontal \vec{F} . Em termos de m_A , m_B e de μ_c , calcule a) o módulo da força \vec{F} ; b) a tensão na corda que conecta os blocos.

Inclua um diagrama de corpo livre ou os diagramas que você usou para achar suas respostas.

Exercício Prova P1 2018

Sabendo que o peso do bloco W_1 é 100 N, e do bloco W_2 é 50 N. Considerando que o coeficiente de atrito estático entre o bloco e o plano inclinado, de ângulo 37° com a horizontal, é 0,10 e que as cordas de massa desprezível e polias são ideais.

- a) Faça o DCL do bloco W_1 , considerando a tendência de movimento para cima no plano inclinado.
- b) Qual a tração mínima que o homem deve fazer para começar a mover o bloco para cima no plano inclinado?
- c) Faça o DCL do bloco W_1 , considerando a tendência de movimento para baixo no plano inclinado.

d) Qual a tração mínima que o homem deve fazer para que o bloco W_1 não se mova para baixo no plano inclinado?

Um bloco uniforme de massa 10,0 kg está encostado numa parede, sendo o coeficiente de atrito estático entre ambos igual à 0,50.

a) Faça o DCL do bloco considerando que o bloco tende a se mover para cima.

b) Determine a força F necessária para que o bloco comece a se mover para cima partindo do repouso.

