THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

STUVAC Statistical Snacks

MATH1062/MATH1005: Mathematics 1B/Statistical Thinking With Data Semester 1, 2024 Lecturers: J. Baine, T. Cui, J. Spreer, M. Stewart

- 1. 0-1 Box (specific example) A box contains 10 tickets. 3 are 1 and 7 are 0. In the questions below, if necessary, round to 3 decimal places.
 - (a) What is the mean μ and SD σ of the box (that is, of the list of numbers represented on the tickets in the box)?
 - (b) Suppose n = 100 tickets are drawn randomly, with replacement, yielding numbers X_1, \ldots, X_n . Write $S = X_1 + \ldots + X_n$ for the sum of the draws and $\bar{X} = S/n$ for the average of the draws.
 - (i) What is $E(X_1)$?
 - (ii) What is $SE(X_1)$?
 - (iii) What is $E(X_1 + X_2)$?
 - (iv) What is $SE(X_1 + X_2)$?
 - (v) What is E(S)?
 - (vi) What is SE(S)?
 - (vii) What is $E(\bar{X})$?
 - (viii) What is $SE(\bar{X})$?
 - (c) By appealling to the Central Limit Theorem, determine a value v such that the interval $0.3 \pm v$, i.e. [0.3 v, 0.3 + v], serves as an (approximate) 98% prediction interval for \bar{X} . In other words, find v such that

$$P\{0.3 - v \le \bar{X} \le 0.3 + v\} \approx 0.98$$
.

The R output below may be useful for this.

```
qnorm(0.95)
## [1] 1.644854
qnorm(0.975)
## [1] 1.959964
qnorm(0.98)
## [1] 2.053749
qnorm(0.99)
## [1] 2.326348
```

- **2. 0-1 Box** (general case) Repeat question 1, but for a box with N tickets: pN are $\boxed{1}$ and (1-p)N are $\boxed{0}$. Write out answers to the questions below in terms of general sample size n and proportion of $\boxed{1}$ s p.
 - (a) What is the mean μ and SD σ of the box (that is, of the list of numbers represented on the tickets in the box)?

- (b) Suppose n tickets are drawn randomly, with replacement, yielding numbers X_1, \ldots, X_n . Write $S = X_1 + \ldots + X_n$ for the sum of the draws and $\bar{X} = S/n$ for the average of the draws. You may assume that n is large enough that the Central Limit Theorem applies.
 - (i) What is $E(X_1)$?
 - (ii) What is $SE(X_1)$?
 - (iii) What is $E(X_1 + X_2)$?
 - (iv) What is $SE(X_1 + X_2)$?
 - (v) What is E(S)?
 - (vi) What is SE(S)?
 - (vii) What is $E(\bar{X})$?
 - (viii) What is $SE(\bar{X})$?
- (c) By appealling to the Central Limit Theorem, determine a value v such that the interval $p \pm v$, i.e. [p-v,p+v], serves as an (approximate) 98% prediction interval for \bar{X} . In other words, find v such that

$$P\left\{p - v \le \bar{X} \le p + v\right\} \approx 0.98.$$

The R output below part question 1 (c) may be useful for this.