Robust Synthetic Likelihood Inference with Variational Bayes

Megan: The main goal of this research is to make VBSL more efficient and robust. But first, let's understand VBSL.

1 Derivation

Let y_{obs} be the observed data, and let \mathcal{M} be a parametric model, with model parameter θ , for explaining y_{obs} . Let $p(y_{\text{obs}}|\theta)$ be the likelihood function, and $p(\theta)$ be the prior; the task is to approximate the posterior distribution

$$p(\theta|y_{\rm obs}) \propto p(\theta)p(y_{\rm obs}|\theta).$$

Consider the ABC problem in which the likelihood function $p(y_{\text{obs}}|\theta)$ is intractable but it is possible to generate data from the model. That is, given any value of the model parameter θ , we can generate data $y = y(\theta)$ from \mathcal{M} .

In the ABC literature, it is often desirable to work with a set of lower-dimensional summary statistics s_{obs} of y_{obs} ; then, we work with the likelihood $p(s_{\text{obs}}|\theta)$ instead of $p(y_{\text{obs}}|\theta)$. The synthetic likelihood method further assumes that

$$p(s_{\text{obs}}|\theta) = N_d(s_{\text{obs}}; \mu(\theta), \Sigma(\theta))$$

with d the length of s_{obs} .

In VB, we need to estimate the gradient of the lower bound

$$\nabla_{\lambda} LB(\lambda) = \mathbb{E}_{q_{\lambda}} \left[\nabla_{\lambda} \log q_{\lambda}(\theta) \times \left(h_{\lambda}(\theta) - c \right) \right]$$

$$= \mathbb{E}_{q_{\lambda}} \left[\nabla_{\lambda} \log q_{\lambda}(\theta) \times \left(\log p(\theta) + \log p(s_{\text{obs}}|\theta) - \log q_{\lambda}(\theta) - c \right) \right].$$
(2)

with c the vector of control variates. As the term $\log p(s_{\text{obs}}|\theta)$ is intractable, the VBSL paper suggests to replace this term by an unbiased estimator $\hat{\ell}_N(s_{\text{obs}}|\theta)$ as follows. Let $y_1,...,y_N$ be N datasets generated from model \mathcal{M} given parameter θ , and let $s_1,...,s_N$ be the corresponding summary statistics. Compute the sample mean and sample variance

$$\hat{\mu}(\theta) = \frac{1}{N} \sum_{i} s_i, \ \hat{\Sigma}(\theta) = \frac{1}{N} \sum_{i} (s_i - \hat{\mu}(\theta))(s_i - \hat{\mu}(\theta))^{\top}.$$

Then, an unbiased estimator of $\log p(s_{\text{obs}}|\theta)$ is (ignore irrelavant constants that are independent of θ)

$$\hat{\ell}_N(s_{\text{obs}}|\theta) = -\frac{1}{2}\log\hat{\Sigma}(\theta) - \frac{N - d - 2}{2(N - 1)}(s_{\text{obs}} - \hat{\mu}(\theta))^{\top}\hat{\Sigma}(\theta)^{-1}(s_{\text{obs}} - \hat{\mu}(\theta))$$
(3)

(2) becomes

$$\nabla_{\lambda} LB(\lambda) = \mathbb{E}_{\theta \sim q_{\lambda}} \left[\nabla_{\lambda} \log q_{\lambda}(\theta) \times \left(\hat{h}_{\lambda}(\theta) - c \right) \right]$$

$$= \mathbb{E}_{\theta \sim q_{\lambda}} \left[\nabla_{\lambda} \log q_{\lambda}(\theta) \times \left(\log p(\theta) + \hat{\ell}_{N}(s_{\text{obs}}|\theta) - \log q_{\lambda}(\theta) - c \right) \right]. \tag{4}$$

The control variates $c = (c_1, ..., c_D)$, with D the length of λ , are

$$c_i = \operatorname{cov}\left(\nabla_{\lambda_i}[\log q_{\lambda}(\theta)]\hat{h}_{\lambda}(\theta), \nabla_{\lambda_i}[\log q_{\lambda}(\theta)]\right) / \mathbb{V}\left(\nabla_{\lambda_i}[\log q_{\lambda}(\theta)]\right). \tag{5}$$

2 VBSL algorithm

Let us use Cholesky Gaussian VB where $q_{\lambda}(\theta) = N(\mu, \Sigma)$ with $\Sigma^{-1} = CC^{\top}$ and C a lower triangular matrix. The variational parameter λ is

$$\lambda = \begin{pmatrix} \mu \\ \text{vech}(C) \end{pmatrix},$$

and

$$\begin{split} \log q_{\lambda}(\theta) &= -\frac{d}{2} \log(2\pi) + \log|C| - \frac{1}{2} (\theta - \mu)^{\top} C C^{\top}(\theta - \mu), \\ \nabla_{\lambda} \log q_{\lambda}(\theta) &= \begin{pmatrix} C C^{\top}(\theta - \mu) & \text{diff dimensions cant take coverage} \\ \operatorname{Vech}\left(\operatorname{C}^{-1} \right) - (\theta - \mu)(\theta - \mu)^{\top} C) \end{pmatrix} \end{split}$$

The algorithm below provides a detailed pseudo-code implementation of this CGVB approach that uses the control variate for variance reduction and moving average adaptive learning.

Algorithm 1 (VBSL algorithm). Input: Initial $\lambda^{(0)} = (\mu^{(0)}, C^{(0)})$, adaptive learning weights $\beta_1, \beta_2 \in (0,1)$, fixed learning rate ϵ_0 , threshold τ , rolling window size t_W and maximum patience P. Modelspecific requirement: synthetic likelihood estimate (3).

- Initialization
 - Generate $\theta_s \sim q_{\lambda^{(0)}}(\theta)$, s = 1,...,S.
 - Compute the unbiased estimate of the LB gradient

$$\widehat{\nabla_{\lambda} LB}(\lambda^{(0)}) := \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\theta_{s}) \times \hat{h}_{\lambda}(\theta_{s})|_{\lambda = \lambda^{(0)}}.$$

- Set $g_0 := \widehat{\nabla_{\lambda} LB}(\lambda^{(0)}), \ v_0 := (g_0)^2, \ \bar{g} := g_0, \ \bar{v} := v_0.$
- Estimate the vector of control variates c as in (5) using the samples $\{\theta_s, s=1,...,S\}$.
- $-\ \mathit{Set}\ t\!=\!0,\ \mathit{patience}\!=\!0\ \mathit{and}\ \mathit{stop}\text{-}\mathit{false}.$
- While stop=false:
 - Calculate $\mu^{(t)}$ and $C^{(t)}$ from $\lambda^{(t)}$. Generate $\theta_s \sim q_{\lambda^{(t)}}(\theta)$, s = 1,...,S.

- Compute the unbiased estimate of the LB gradient¹

$$g_t := \widehat{\nabla_{\lambda} LB}(\lambda^{(t)}) = \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\theta_s) \circ (h_{\lambda}(\theta_s) - c)|_{\lambda = \lambda^{(t)}}.$$

- Estimate the new control variate vector c as in (5) using the samples $\{\theta_s, s=1,...,S\}$.
- Compute $v_t = (g_t)^2$ and

$$\bar{g} = \beta_1 \bar{g} + (1 - \beta_1) g_t, \ \bar{v} = \beta_2 \bar{v} + (1 - \beta_2) v_t.$$

- Compute $\alpha_t = \min(\epsilon_0, \epsilon_0 \frac{\tau}{t})$ and update

$$\lambda^{(t+1)} = \lambda^{(t)} + \alpha_t \bar{q} / \sqrt{\bar{v}}$$

- Compute the lower bound estimate

$$\widehat{LB}(\lambda^{(t)}) := \frac{1}{S} \sum_{s=1}^{S} \hat{h}_{\lambda^{(t)}}(\theta_s).$$

- If $t \ge t_W$: compute the moving averaged lower bound

$$\overline{LB}_{t-t_W+1} = \frac{1}{t_W} \sum_{k=1}^{t_W} \widehat{LB}(\lambda^{(t-k+1)}),$$

and if $\overline{LB}_{t-t_W+1} \ge \max(\overline{LB})$ patience = 0; else patience:= patience+1.

- If $patience \ge P$, stop=true.
- Set t := t+1.

3 Tasks

Implement the VBSL algorithm above and repeat the α -stable model example (Section 5.2 in the VBSL paper).

¹The term $\nabla_{\lambda} \log q_{\lambda}(\theta_s) \circ (h_{\lambda}(\theta_s) - c)$ should be understood component-wise, i.e. it is the vector whose *i*th element is $\nabla_{\lambda_i} \log q_{\lambda}(\theta_s) \times (\hat{h}_{\lambda}(\theta_s) - c_i)$.