Summary Optimal Bayesian Classifier I

Ingredients:

- 1. Stochastic variables (X,Y) with distribution $P(\cdot,\cdot)$
- 2. Loss function $L(\cdot,\cdot)$
- 3. Construct $\hat{Y}(\cdot)$ by minimizing $EL(Y, \hat{Y}(X))$

Summary Optimal Bayesian Classifier I

Ingredients:

- 1. Stochastic variables (X,Y) with distribution $P(\cdot,\cdot)$
- 2. Loss function $L(\cdot, \cdot)$
- 3. Construct $\hat{Y}(\cdot)$ by minimizing $EL(Y, \hat{Y}(X))$

Solution:

 $\forall x$, solve $\min_{\hat{Y}(x)} E_{Y|X=x} L(Y, \hat{Y}(x))$.

Summary Optimal Bayesian Classifier I

Ingredients:

- 1. Stochastic variables (X,Y) with distribution $P(\cdot,\cdot)$
- **2.** Loss function $L(\cdot, \cdot)$
- 3. Construct $\hat{Y}(\cdot)$ by minimizing $EL(Y, \hat{Y}(X))$

Solution:

 $\forall x$, solve $\min_{\hat{Y}(x)} E_{Y|X=x} L(Y, \hat{Y}(x))$.

In the binary case:

$$\hat{Y}(x) = I(\frac{P(Y=1|X=x)L(0,1)}{P(Y=0|X=x)L(1,0)} > 1)$$
(1)

This is of the form:

$$\hat{Y}(x) = I(\frac{P(Y=1|X=x)}{P(Y=0|X=x)} > c), \qquad c = \frac{L(1,0)}{L(0,1)}$$
(2)

We derived it last time when X is a discrete s.v; the results are true in general.

Observe that by Bayes rule:

$$P(Y = y|X = x) = P(X = x|Y = y)P(Y = y)\frac{1}{P(X = x)}$$

Observe that by Bayes rule:

$$P(Y = y | X = x) = P(X = x | Y = y)P(Y = y)\frac{1}{P(X = x)}$$

Hence

$$\hat{Y}(x) = I(\frac{P(Y=1|X=x)}{P(Y=0|X=x)} > c), \qquad c = \frac{L(1,0)}{L(0,1)}$$
(3)

Observe that by Bayes rule:

$$P(Y = y | X = x) = P(X = x | Y = y)P(Y = y)\frac{1}{P(X = x)}$$

Hence

$$\hat{Y}(x) = I(\frac{P(Y=1|X=x)}{P(Y=0|X=x)} > c), \qquad c = \frac{L(1,0)}{L(0,1)}$$
(4)

can be rewritten as:

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)P(Y=1)}{P(X=x|Y=0)P(Y=0)} > c), \qquad c = \frac{L(1,0)}{L(0,1)}$$
(5)

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)}{P(X=x|Y=0)} > c_1), \qquad c_1 = \frac{L(1,0)P(Y=0)}{L(0,1)P(Y=1)}$$
(6)

Remember:

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)}{P(X=x|Y=0)} > c_1), \qquad c_1 = \frac{L(1,0)P(Y=0)}{L(0,1)P(Y=1)}$$
(7)

Suppose $X|Y = y \sim \mathcal{N}(\mu_y, \sigma^2)$

$$P(X|Y=0), P(X|Y=1),$$

How does $\hat{Y}(x)$ look like?

Remember:

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)}{P(X=x|Y=0)} > c_1), \qquad c_1 = \frac{L(1,0)P(Y=0)}{L(0,1)P(Y=1)}$$
(8)

Suppose $X|Y = y \sim \mathcal{N}(\mu, \sigma_y^2)$

$$P(X|Y=0), P(X|Y=1),$$

How does $\hat{Y}(x)$ look like?

Remember:

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)}{P(X=x|Y=0)} > c_1), \qquad c_1 = \frac{L(1,0)P(Y=0)}{L(0,1)P(Y=1)}$$
(9)

Suppose $X|Y = y \sim \mathcal{N}(\mu_y, \sigma^2)$

$$P(X|Y=0), P(X|Y=1),$$

How does $\hat{Y}(x)$ look like?

Observe:

Strictly speaking not necesarry to know the (conditional) distributions, only their ratio.

We solve a harder problem than the original one.

Naive Bayesian Classifier

Remember:

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)}{P(X=x|Y=0)} > c_1), \qquad c_1 = \frac{L(1,0)P(Y=0)}{L(0,1)P(Y=1)}$$
(10)

How to define (estimate) P(X = x | Y = y) in general? This is not obvious if X is a (high dimensional) vector.

Naive Bayesian Classifier

Remember:

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)}{P(X=x|Y=0)} > c_1), \qquad c_1 = \frac{L(1,0)P(Y=0)}{L(0,1)P(Y=1)}$$
(11)

How to define (estimate) P(X = x | Y = y) in general? This is not obvious if X is a (high dimensional) vector.

The naive Bayesian classifier is based on the simplification (assumption) that X|Y=y are independent s.v. : $P(X=x|Y=y)=\prod_i P(X_i=x_i|Y=y)$.

Instead of 1 d-dimensional problem, we have d 1-dimensional problems.

We say
$$X = (X_1, \dots, X_d) \sim \mathcal{N}(\mu, \Sigma)$$
 if
$$f_X(x) = \frac{1}{(2\pi)^{d/2} \sqrt{|\Sigma|}} \exp(-\frac{(x-\mu)^t \Sigma^{-1} (x-\mu)}{2})$$

We say
$$X = (X_1, \dots, X_d) \sim \mathcal{N}(\mu, \Sigma)$$
 if

$$f_X(x) = \frac{1}{(2\pi)^{d/2}\sqrt{|\Sigma|}} \exp(-\frac{(x-\mu)^t \Sigma^{-1}(x-\mu)}{2})$$

Example:

Take d = 2.

(from: Keith Sircombe, axes shoud be x_1 and x_2)

Contours are ellipses (ellipsoides)

We say
$$X = (X_1, \dots, X_d) \sim \mathcal{N}(\mu, \Sigma)$$
 if

$$f_X(x) = \frac{1}{(2\pi)^{d/2}\sqrt{|\Sigma|}} \exp(-\frac{(x-\mu)^t \Sigma^{-1}(x-\mu)}{2})$$

Example:

Take d=2.

Contours are ellipses (ellipsoides)

We say $X \sim \mathcal{N}(\mu, \Sigma)$ if

$$f_X(x) = \frac{1}{(2\pi)^{d/2}\sqrt{|\Sigma|}} \exp(-\frac{-(x-\mu)^t \Sigma^{-1}(x-\mu)}{2})$$

Example:

Take d=2.

Contours are ellipses (ellipsoides)

Properties:

- $EX = \mu$
- $Cov(X) := [Cov(X_i, X_j)]_{i,j} = \Sigma$

Properties:

- $l^t X$ is also normal distributed. In general $Y = \mathbb{A} X \sim \mathcal{N}(\mathbb{A} \mu, \mathbb{A} \Sigma \mathbb{A}^t)$
- Marginal and conditional distributions are also normal.
- X has independent components if and only if Σ is diagonal matrix.

Optimal Bayesian Classifier II

Remember:

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)}{P(X=x|Y=0)} > c_1), \qquad c_1 = \frac{L(1,0)P(Y=0)}{L(0,1)P(Y=1)}$$
(12)

Case 1: $X|Y = y \sim \mathcal{N}(\mu_y, \Sigma)$

How does $\hat{Y}(x)$ look like?

Optimal Bayesian Classifier II

Remember:

$$\hat{Y}(x) = I(\frac{P(X=x|Y=1)}{P(X=x|Y=0)} > c_1), \qquad c_1 = \frac{L(1,0)P(Y=0)}{L(0,1)P(Y=1)}$$
(13)

Case 1: $X|Y = y \sim \mathcal{N}(\mu_y, \Sigma)$

How does $\hat{Y}(x)$ look like?

Remember

$$f_X(x) = \frac{1}{(2\pi)^{d/2}\sqrt{|\Sigma|}} \exp(-\frac{(x-\mu)^t \Sigma^{-1}(x-\mu)}{2})$$

$$log\frac{P(X=x|Y=1)}{P(X=x|Y=0)} = \frac{-(x-\mu_1)^t \Sigma^{-1}(x-\mu_1)}{2} + \frac{(x-\mu_0)^t \Sigma^{-1}(x-\mu_0)}{2} + c^*$$

RHS is of the form

$$\Sigma^{-1}(\mu_1 - \mu_0)x + c^{**}$$

Hence classifier is of the form:

$$\hat{Y}(x) = I(l^t x > c^{***}), \qquad l = \Sigma^{-1}(\mu_1 - \mu_0)$$
 (14)

This is called the Linear Discriminant Analysis Classifier (LDA)

(from: Duda and Hart book)

(from: Duda and Hart book)

Case 2: $X|Y = y \sim \mathcal{N}(\mu_y, \Sigma_y)$

How does $\hat{Y}(x)$ look like?

(from: Duda and Hart book)

This is called the Quadratic Discriminant Analysis Classifier (QDA)

k- Nearest Neighbor classifier

Idea:

Given x. To decide $\hat{y}(x)$, look for $N_k(x)$ the set of the k nearest observations to x.

For clasification: decide by voting: assign most frequent category in $\{y_i, i \in N_k(x)\}$ For regression: decide by averaging: calculate mean of $\{y_i, i \in N_k(x)\}$

Example for classification:

(LHS from: Duda and Hart book)

For k = 1: relation with Voronoi diagram

k- Nearest Neighbor classifier

Idea:

Given x. To decide $\hat{y}(x)$, look for $N_k(x)$ the set of the k nearest observations to x.

For clasification: decide by voting: assign most frequent category in $\{y_i, i \in N_k(x)\}$ For regression: decide by averaging: calculate mean of $\{y_i, i \in N_k(x)\}$

Example for regression:

(from: ISL book)

k=1 versus k=7

Quiz: What properties do you observe?

Denote by L^* the (mean) error of the optimal Bayes classifier, f_n a classifier based on $\{(X_i,Y_i)\}_1^n$, and $L(f_n)=E(L(Y,f_n(X))$, one can prove:

Property 1 If $n \to \infty$ and f_n is 1-NN classifier:

$$L^* \le EL(f_n) \le 2 * L^*$$

Property 2 If $n \to \infty$ and $k \to \infty$ such that $k/n \to 0$, if f_n is k-NN classifier: for any P():

$$EL(f_n) \to L^*$$

On the other hand:

Theorem no free lunch: for finite n, within any assumption about P, no classifier is superior.