ГОСТ Р 8.736-2011 Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата введения 01.01.2013

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева" (ФГУП "ВНИИМ им. Д.И.Менделеева") Федерального агентства по техническому регулированию и метрологии
- 2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2011 г. N 1045-ст

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на прямые многократные независимые измерения и устанавливает основные положения методов обработки результатов этих измерений и вычисления погрешностей оценки измеряемой величины.

В настоящем стандарте учтены требования, предъявляемые к методам и результатам измерений в соответствии с ГОСТ Р 5725-1, ГОСТ Р 5725-2, ГОСТ Р 5725-3, ГОСТ Р 5725-4, ГОСТ Р 5725-6*.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

^{*} Вероятно ошибка оригинала. Следует читать: ГОСТ Р ИСО 5725-1, ГОСТ Р ИСО 5725-2, ГОСТ Р ИСО 5725-3, ГОСТ Р ИСО 5725-4, ГОСТ Р ИСО 5725-5, ГОСТ Р ИСО 5725-6.

ГОСТ Р ИСО 5725-1-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения

ГОСТ Р ИСО 5725-2-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

ГОСТ Р ИСО 5725-3-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 3. Промежуточные показатели прецизионности стандартного метода измерений

ГОСТ Р ИСО 5725-4-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 4. Основные методы определения правильности стандартного метода измерений

ГОСТ Р ИСО 5725-5-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 5. Альтернативные методы определения прецизионности стандартного метода измерений

ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1

результат измерения физической величины; результат измерения; результат: Значение величины, полученное путем ее измерения. [Рекомендации по межгосударственной стандартизации [1], статья 8.1]

- 3.2 неисправленный результат измерений величины: Результат измерений величины, полученный до введения в него поправки в целях устранения систематических погрешностей.
- 3.3 исправленный результат измерений величины: Результат измерений величины, полученный после введения поправки в целях устранения систематических погрешностей в неисправленный результат измерений величины.
- 3.4 неисправленная оценка измеряемой величины: Среднее арифметическое значение результатов измерений величины до введения в них поправки в целях устранения систематических погрешностей.
- 3.5 исправленная оценка измеряемой величины: Среднее арифметическое значение результатов измерений величины после введения поправки в целях устранения систематических погрешностей в неисправленную оценку измеряемой величины.
- 3.6 группа результатов измерений величин: Несколько результатов измерений (не менее четырех, $n \geq 4$), полученных при измерениях одной и той же величины, выполненных с одинаковой тщательностью, одним и тем же средством измерений, одним и тем же методом и одним и тем же оператором.
- 3.7 погрешность измерения: Разность между результатом измерения величины и

действительным (опорным) значением величины.

- 3.8 случайная погрешность измерения; случайная погрешность: Составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях одной и той же величины, проведенных с одинаковой тщательностью.
- 3.9 систематическая погрешность измерения; систематическая погрешность: Составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины, проведенных с одинаковой тщательностью.
- 3.10 неисключенная систематическая погрешность измерения: Составляющая погрешности измерения, обусловленная погрешностью оценивания систематической погрешности, на которую введена поправка, или систематической погрешностью, на которую поправка не введена.
- 3.11 грубая погрешность измерения: Погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей.

4 Общие положения

4.1 Необходимость выполнения прямых многократных измерений устанавливают в конкретных методиках измерений.

Примечание - Под многократными измерениями понимают не менее четырех измерений.

- 4.2 При статистической обработке группы результатов прямых многократных независимых измерений выполняют следующие операции:
- исключают известные систематические погрешности из результатов измерений;
- вычисляют оценку измеряемой величины;
- вычисляют среднее квадратическое отклонение результатов измерений;
- проверяют наличие грубых погрешностей и при необходимости исключают их;
- проверяют гипотезу о принадлежности результатов измерений нормальному распределению;
- вычисляют доверительные границы случайной погрешности (доверительную случайную погрешность) оценки измеряемой величины;
- вычисляют доверительные границы (границы) неисключенной систематической погрешности оценки измеряемой величины;
- вычисляют доверительные границы погрешности оценки измеряемой величины.
- 4.3 Проверку гипотезы о том, что результаты измерений принадлежат нормальному распределению, проводят с уровнем значимости q от 10% до 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике измерений.
- 4.4 Для определения доверительных границ погрешности оценки измеряемой величины доверительную вероятность P принимают равной 0,95.

В случаях, когда измерение не представляется возможным повторить, помимо границ, соответствующих доверительной вероятности P = 0.95, допускается указывать границы для доверительной вероятности P = 0.99.

В особых случаях, например при измерениях, результаты которых имеют значение для здоровья людей, допускается кроме доверительной вероятности P = 0.99 указывать более высокую доверительную вероятность.

4.5 В настоящем стандарте изложены требования к методам обработки результатов измерений и к оцениванию точности измеряемой величины посредством погрешностей.

5 Оценка измеряемой величины и среднее квадратическое отклонение

5.1 Оценку измеряемой величины \bar{x} , за которую принимают среднее арифметическое значение исправленных результатов измерений, вычисляют по формуле

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

где $x_i - i$ -й результат измерений;

ⁿ - число исправленных результатов измерений.

Примечание - Если во всех результатах измерений содержится постоянная систематическая погрешность, ее допускается исключить после вычисления среднего арифметического значения неисправленных результатов измерений.

5.2 В целях удобства вычислений формулу (1) допускается записать в виде

$$\overline{x} = a + \frac{1}{n} \sum_{i=1}^{n} y_i \tag{2}$$

где a - близкое к \bar{x} значение, удобное для расчета;

$$y_i = x_i - a$$

5.3 Среднее квадратическое отклонение S группы, содержащей n результатов измерений, вычисляют по формуле

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$
 (3)

Примечание - Наличие случайных погрешностей вызывает рассеяние результатов измерений. В качестве основной числовой характеристики случайного рассеяния результатов измерений принята дисперсия $D=\sigma^2$ или стандартное отклонение σ . Ограниченное число результатов измерений позволяет получать лишь оценки этих характеристик (S^2 и S). Математическое ожидание оценки S^2 равно дисперсии ($M[S^2]=\sigma^2$) , однако математическое ожидание оценки S^2 отлично от S^2 0 , так как оценка S^2 0 смещена.

Несмещенную оценку ${\mathcal S}$ допускается вычислять по упрощенной формуле

$$S = \sqrt{\frac{\sum\limits_{i=1}^{n}(x_i - \overline{x})^2}{n - 1.5}}$$

В этом случае смещение оценки S не более 1%.

5.4 Среднее квадратическое отклонение среднего арифметического (оценки измеряемой величины) $S_{\bar{x}}$ вычисляют по формуле

$$S_{x} = \frac{S}{\sqrt{n}} \tag{4}$$

6 Исключение грубых погрешностей

6.1 Для исключения грубых погрешностей используют критерий Граббса. Статистический критерий Граббса исключения грубых погрешностей основан на предположении о том, что группа результатов измерений принадлежит нормальному распределению. Для этого вычисляют критерии Граббса G_1 и G_2 , предполагая, что наибольший G_2 или

наименьший x_{\min} результат измерений вызван грубыми погрешностями:

$$G_1 = \frac{|x_{\text{max}} - \overline{x}|}{S}, G_2 = \frac{|\overline{x} - x_{\text{min}}|}{S}.$$
 (5)

Сравнивают G_1 и G_2 с теоретическим значением G_T критерия Граббса при выбранном уровне значимости G_2 . Таблица критических значений критерия Граббса приведена в приложении G_2

Если G_1 $^{>G_T}$, то $^{x_{\max}}$ исключают как маловероятное значение. Если G_2 $^{>G_T}$, то $^{x_{\min}}$ исключают как маловероятное значение. Далее вновь вычисляют среднее арифметическое и среднее квадратическое отклонения ряда результатов измерений и процедуру проверки наличия грубых погрешностей повторяют.

Если $^{G_1 \ \le G_T}$, то $^{x_{\max}}$ не считают промахом и его сохраняют в ряду результатов измерений. Если $^{G_2 \le G_T}$, то $^{x_{\min}}$ не считают промахом и его сохраняют в ряду результатов измерений.

7 Доверительные границы случайной погрешности

7.1 Доверительные границы случайной погрешности оценки измеряемой величины в соответствии с настоящим стандартом устанавливают для результатов измерений, принадлежащих нормальному распределению.

При невыполнении этого условия методы вычисления доверительных границ случайной погрешности должны быть указаны в методике измерений.

7.2 При числе результатов измерений $n \le 15$ принадлежность их к нормальному распределению не проверяют. При этом вычисление доверительных границ случайной погрешности оценки измеряемой величины по методике, предусмотренной настоящим стандартом, допускается только в том случае, если заранее известно, что результаты измерений принадлежат нормальному распределению.

Примечание - Если не известно распределение погрешностей оценки искомой величины, способы нахождения доверительных границ случайной погрешности могут быть указаны в методике измерений с учетом того, что подобные измерения повторяют.

7.3 При числе результатов измерений 15 $\frac{n}{2}$ 50 для проверки принадлежности их к нормальному распределению предпочтителен составной критерий, приведенный в приложении Б.

7.4 При числе результатов измерений n > 50 для проверки принадлежности их к нормальному распределению предпочтителен один из критериев: χ^2 К.Пирсона или ω^2 Мизеса-Смирнова. Критерий К.Пирсона χ^2 приведен в приложении В, критерий ω^2 Мизеса-Смирнова - в приложении Г.

7.5 Доверительные границы ^є (без учета знака) случайной погрешности оценки измеряемой величины вычисляют по формуле

$$\varepsilon = tS_{\overline{\chi}}, \tag{6}$$

где t - коэффициент Стьюдента, который в зависимости от доверительной вероятности P и числа результатов измерений n находят по таблице, приведенной в приложении Π .

8 Доверительные границы неисключенной систематической погрешности

8.1 Неисключенная систематическая погрешность (далее - НСП) оценки измеряемой величины образуется из составляющих, в качестве которых могут быть приняты НСП:

- метода;

- средства измерений;

В качестве границ составляющих НСП принимают, например, пределы допускаемых основных и дополнительных погрешностей средств измерений, если случайные составляющие погрешности пренебрежимо малы.

8.2 Границу НСП $^{\Theta_{\Sigma}}$ оценки измеряемой величины при наличии менее трех (m < 3) НСП, каждая из которых представлена границами $^{\Theta_{i}}$, оценивают по формуле

$$\Theta_{\Sigma} = \pm \sum_{i=1}^{m} |\Theta_{i}|$$

8.3 При наличии трех и более составляющих НСП распределение внутри границ этих составляющих (погрешности средств измерений каждого типа, погрешности поправок и т.д.) рассматривают как распределение случайных величин. При отсутствии данных о виде распределения случайных величин их распределения принимают равномерными.

8.4 При числе составляющих НСП более или равном трем ($^{m \geq 3}$) доверительные границы НСП $^{\Theta_{\Sigma}(P)}$ оценки измеряемой величины вычисляют путем построения композиции НСП. При равномерном распределении НСП доверительные границы $^{\Theta_{\Sigma}(P)}$ допускается вычислять по формуле

$$\Theta_{\Sigma}(P) = \pm k \sqrt{\sum_{i=1}^{m} \Theta_i^2} , \qquad (8)$$

где Θ_i - граница i -й НСП;

k - коэффициент, определяемый принятой доверительной вероятностью, числом составляющих НСП и их соотношением между собой.

Для доверительной вероятности P = 0.95 коэффициент k пренебрежимо мало зависит от числа составляющих НСП и их соотношения, поэтому при указанной доверительной вероятности коэффициент k принимают равным 1,1.

Для доверительной вероятности P = 0,99 коэффициент k принимают равным 1,4, если число суммируемых НСП более четырех ($m \ge 4$). Если же число суммируемых НСП равно четырем или менее четырех ($m \le 4$), то коэффициент k определяют по графику зависимости k = f(m,l), приведенному на рисунке 1, где ось абсцисс соответствует

 $l=\frac{1}{\Theta_2}$ значениям отношения m=2; кривая m=2; к

Рисунок 1 - Зависимость k = f(m, l)

При трех или четырех суммируемых НСП в качестве Θ_1 принимают составляющую, по

числовому значению наиболее отличающуюся от других, в качестве Θ_2 следует принять ближайшую к Θ_1 составляющую.

8.5 Если НСП появляется в результате исключения систематической погрешности от воздействия влияющей величины Y на измеряемую величину X, то при исключении систематической погрешности, возникающей из-за изменения этой влияющей величины, необходимо определить зависимость измеряемой величины от влияющей величины [например, X = f(Y)]. В этом случае при вычислении границ НСП оценки измеряемой

величины необходимо учитывать коэффициент влияния $\frac{\overline{\partial Y}}{\partial Y}$, получаемый при разложении функции влияния в ряд Тейлора.

При наличии одной НСП, представленной границами, и второй НСП, представленной с коэффициентом влияния, формула (7) будет иметь вид

$$\Theta_{\Sigma} = \pm \left(|\Theta_1| + \left| \frac{\partial f}{\partial Y} \Theta_2 \right| \right). \tag{9}$$

При суммировании не более трех НСП ($m \le 3$), полученных от воздействия влияющих величин (и при отсутствии НСП, возникающих при непосредственном влиянии систематической погрешности на измеряемую величину), формула (7) будет иметь вид

$$\Theta_{\Sigma} = \pm \sum_{i=1}^{m} \left| \frac{\partial f_i}{\partial Y_i} \Theta_i \right| . \tag{10}$$

При наличии числа $^{\mu}$ НСП, представленных границами, и числа $^{m-\mu}$ НСП, полученных от воздействия влияющих величин и представленных с коэффициентами влияния, формула (8) будет иметь вид

$$\begin{split} \Theta_{\Sigma}(P) &= \pm k \sqrt{\sum_{i=1}^{\mu} \Theta_{i}^{2} + \sum_{i=\mu+1}^{m} \left(\frac{\partial f_{i}}{\partial Y_{i}} \Theta_{i}\right)^{2}} \\ . &\qquad \qquad (11) \end{split}$$

Доверительную вероятность для вычисления границ неисключенной систематической погрешности принимают той же, что при вычислении доверительных границ случайной погрешности результата измерения.

9 Доверительные границы погрешности оценки измеряемой величины

9.1 Доверительные границы погрешности оценки измеряемой величины находят путем построения композиции распределений случайных погрешностей и НСП, рассматриваемых как случайные величины в соответствии с 8.3. Если доверительные границы случайных погрешностей найдены в соответствии с разделом 7, границы погрешности оценки измеряемой величины Δ (без учета знака) вычисляют по формуле

$$\triangle = KS_{\Sigma_{\bullet}}$$
(12)

где K - коэффициент, зависящий от соотношения случайной составляющей погрешности и НСП.

Суммарное среднее квадратическое отклонение $^{\mathcal{S}_{\Sigma}}$ оценки измеряемой величины вычисляют по формуле

$$S_{\Sigma} = \sqrt{S_{\Theta}^2 + S_{\overline{x}}^2} , \qquad (13)$$

где $^{S_{\Theta}}$ - среднее квадратическое отклонение НСП, которое оценивают в зависимости от способа вычисления НСП по формуле

$$S_{\Theta} = \frac{\Theta_{\Sigma}}{\sqrt{3}} \tag{14}$$

где $^{\Theta_{\Sigma}}$ - границы НСП, которые определяют по одной из формул (7), (9), (10) или

$$S_{\Theta} = \frac{\Theta_{\Sigma}(P)}{k\sqrt{3}}, \tag{15}$$

где $^{\Theta_{\Sigma}(P)}$ - доверительные границы НСП, которые определяют по одной из формул (8), (11);

k - коэффициент, определяемый принятой доверительной вероятностью P , числом составляющих НСП и их соотношением между собой.

Коэффициент K для подстановки в формулу (12) в зависимости от числа НСП определяют по эмпирическим формулам соответственно

$$K = \frac{\varepsilon + \Theta_{\Sigma}}{S_{\overline{\chi}} + S_{\Theta}} \quad K = \frac{\varepsilon + \Theta_{\Sigma}(P)}{S_{\overline{\chi}} + S_{\Theta}} \quad (16)$$

10 Форма записи оценки измеряемой величины

10.1 Оформление записи оценок измеряемых величин проводят в соответствии с правилами по межгосударственной стандартизации [2].

10.2 Округление при обработке результатов измерений выполняют в соответствии с приложением Е.

10.3 При симметричных доверительных границах погрешности оценку измеряемой величины представляют в форме

$$\bar{x} \pm \Delta$$
, P ,

где \bar{x} - оценка измеряемой величины.

Числовое значение оценки измеряемой величины должно оканчиваться цифрой того разряда, что и значение погрешности \triangle .

10.4 При отсутствии данных о виде функций распределений составляющих погрешности оценки измеряемой величины и необходимости дальнейшей обработки результатов измерений или анализа погрешностей оценки измеряемой величины представляют в форме

$$\bar{x}$$
; $S_{\bar{x}}$; n ; Θ . (18)

В случае когда границы неисключенной систематической погрешности вычисляют в соответствии с 8.5, следует дополнительно указывать доверительную вероятность \mathcal{P} .

Примечание - Оценки $S_{\overline{x}}$ и Θ могут быть выражены в абсолютной и относительной формах.

Приложение А

(справочное)

Критические значения для критерия Граббса

Таблица А.1 - Критические значения $\,^{G_{_{\mathbf{T}}}}\,$ для критерия Граббса

n	Одно наибольшее или одно наименьш	вее значение при уровне значимости q
	Свыше 1%	Свыше 5%
3	1,155	1,155
4	1,496	1,481
5	1,764	1,715
6	1,973	1,887
7	2,139	2,020
8	2,274	2,126
9	2,387	2,215
10	2,482	2,290
11	2,564	2,355
12	2,636	2,412
13	2,699	2,462
14	2,755	2,507
15	2,806	2,549
16	2,852	2,585
17	2,894	2,620
18	2,932	2,651
19	2,968	2,681
20	3,001	2,709
21	3,031	2,733
22	3,060	2,758
23	3,087	2,781
24	3,112	2,802
25	3,135	2,822
26	3,157	2,841
27	3,178	2,859
28	3,199	2,876
29	3,218	2,893
30	3,236	2,908
31	3,253	2,924
32	3,270	2,938
33	3,286	2,952
	3,301	2,965
36	3,330	2,991
	3,356	3,014
	3,381	3,036

Приложение Б

(справочное)

Проверка гипотезы о нормальности распределения результатов измерений при числе результатов измерений 15 $^{<}$ $_{\it N}$ $^{<}$ 50

При числе результатов измерений $n \le 50$ нормальность их распределения проверяют с помощью составного критерия.

Б.1 Критерий

Вычисляют отношение \widetilde{d}

$$\widetilde{d} = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{nS^*}, \tag{5.1}$$

где \mathcal{S}^* - смещенное среднее квадратическое отклонение, вычисляемое по формуле

$$S^* = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$
 (5.2)

Результаты измерений в ряду считают распределенными нормально, если

$$d_{1-q/2} < \widetilde{d} \le d_{q/2} , \tag{5.3}$$

где $d_{1-q/2}$ и $d_{q/2}$ - квантили распределения, получаемые из таблицы Б.1 по n, $q_1/2$ и $(1-q_1/2)$, причем q_1 - заранее выбранный уровень значимости (1%, 5%, 99% или 95%).

Таблица Б.1 - Квантили $^{d_{q/2}}$ и $^{d_{1-q/2}}$ распределения

n	$(q_1 / 2)$	·100%	$(1-q_1/2)$ ·100%		
	1%	5%	99%	95%	
16	0,9137	0,8884	0,6829	0,7236	
21	0,9001	0,8768	0,6950	0,7304	
26	0,8901	0,8686	0,7040	0,7360	
31	0,8826	0,8625	0,7110	0,7404	
36	0,8769	0,8578	0,7167	0,7440	
41	0,8722	0,8540	0,7216	0,7470	
46	0,8682	0,8508	0,7256	0,7496	
51	0,8648	0,8481	0,7291	0,7518	

Б.2 Критерий 2

Считают, что результаты измерений принадлежат нормальному распределению, если не более m разностей $(x_i - \overline{x})$ превысили значение $z_{P/2} \cdot S$,

где S - среднее квадратическое отклонение, вычисляемое по формуле (3);

 $^{Z_{P/2}}$ - верхний квантиль распределения нормированной функции Лапласа, отвечающий вероятности $^{P/2}$.

Значения вероятности P определяют из таблицы Б.2 по выбранному уровню значимости q_2 , %, и числу результатов измерений n . Зависимость $^{ZP/2}$ от P приведена в таблице Б.3.

Таблица Б.2 - Значения Р для вычисления ^{Z p/2}

n	m	q ₂ .	100%	,)
		1%	2%	5%
10	1	0,98	0,98	0,96
11-14	1	0,99	0,98	0,97
15-20	1	0,99	0,99	0,98
21-22	2	0,98	0,97	0,96
23	2	0,98	0,98	0,96
24-27	2	0,98	0,98	0,97
28-32	2	0,99	0,98	0,98
33-35	2	0,99	0,98	0,98
36-49	2	0,99	0,99	0,98

Таблица Б.3 - Значения $^{ZP/2}$

P	$Z_{P/2}$
0,96	2,06
0,97	2,17
0,98	2,33
0,99	2,58

При уровне значимости, отличном от предусмотренных в таблице Б.2, значение P находят путем линейной интерполяции.

При несоблюдении хотя бы одного из критериев считают, что распределение результатов измерений группы не соответствует нормальному.

Приложение В

(справочное)

Проверка гипотезы о нормальности распределения результатов измерений при числе измерений n > 50

В.1 При числе результатов измерений n > 50 для проверки критерия согласия теоретического распределения с практическим чаще всего используют критерий К.Пирсона. Рекомендуемые числа интервалов r в зависимости от числа результатов измерений приведены в таблице В.1. Вычисления сводят в таблицу В.2, в которой приведен алгоритм вычислений для проверки гипотезы о нормальности распределения результатов измерений. При этом группируют результаты измерений. Группирование - разделение результатов измерений от наименьшего r0 наибольшего r1 на r2 интервалов.

Таблица В.1 - Рекомендуемые числа интервалов в зависимости от числа результатов измерений

Число результатов измерений ^п	Рекомендуемое число интервалов <i>r</i>
40-100	7-9
100-500	8-12
500-1000	10-16
1000-10000	12-22

Таблица В.2 - Вспомогательная таблица для проверки распределения результатов измерений

интервала x_{i0}	$x_{i0} - \overline{x}$	$z_i = \frac{x_{i0} - \overline{x}}{S}$	$n_i = n \frac{h}{S} \varphi \times \left(\frac{x_{i0} - \overline{x}}{S} \right)$	$\chi_i^2 = \frac{(\widetilde{n_i} - n_i)^2}{n_i}$

Ширину интервала h выбирают постоянной и вычисляют по формуле

$$h = \frac{x_{\text{max}} - x_{\text{min}}}{r} \tag{B.1}$$

В.2 Установив границы интервалов, подсчитывают число результатов измерений $n_i^{\widetilde{n}_i}$, попавших в каждый интервал. Далее вычисляют: середины интервалов $n_i^{\widetilde{n}_i}$, среднее арифметическое $n_i^{\widetilde{x}}$ и среднее квадратическое отклонение результатов измерений $n_i^{\widetilde{n}_i}$. Определяют число результатов измерений $n_i^{\widetilde{n}_i}$, которое должно было бы находиться в интервале, если бы распределение результатов измерений было нормальным, по формуле

$$n_i = n \frac{h}{S} \varphi \left(\frac{x_{i0} - \overline{x}}{S} \right), \tag{B.2}$$

 $\varphi(\xi) = \frac{1}{\sqrt{2\pi}}e^{\frac{\xi^2}{2}}$ где $^{\varphi}$ - плотность нормального распределения

$$\varphi\left(\frac{x_{i0}-\overline{x}}{S}\right)$$
 - вероятность попадания результатов измерении в i -й интервал.

$$\chi_i^2 = \frac{{(\widetilde{n_i} - n_i)}^2}{n_i}$$
 В.З Для каждого интервала вычисляют критерий К.Пирсона $\frac{r}{n_i} = \frac{r}{n_i} \left[(\widetilde{n_i} - n_i)^2 \right]$

Просуммировав χ_i^2 по всем r интервалам, получают $\chi^2 = \sum_{i=1}^r \left[\frac{(\widetilde{n_i} - n_i)^2}{n_i}\right]$ с определенным числом степеней свободы f . Для нормального распределения f = r - 3 .

В.4 Выбрав уровень значимости q по таблицам распределения $^{\chi^2}$, находят нижнее $^{\chi^2_{\rm H}}$ и верхнее $^{\chi^2_{\rm B}}$ (значения q -процентных точек для распределения $^{\chi^2}$ приведены в таблице В.3).

Выбрав уровень значимости критерия, определяют квантили $\chi_{\rm H}^2$ и $\chi_{\rm B}^2$. Квантиль $\chi_{\rm B}^2$, вычисленный по результатам измерений, должен находиться между $\chi_{\rm H}^2$ и $\chi_{\rm B}^2$.

Таблица В.3 - Значения q -процентных точек $^{\chi^2_q}$ для распределения $^{\chi^2}$

$P(\chi^2 \ge \chi_q^2)$	Число	Число степеней свободы f							
	4	6	8	10	12	14	16	18	
99,0	0,30	0,87	1,65	2,56	3,57	4,66	5,81	7,02	
95,0	0,71	1,64	2,73	3,94	5,23	6,57	7,96	9,39	
90,0	1,06	2,20	3,49	4,86	6,30	7,79	9,31	10,89	
10,0	7,78	10,64	13,36	15,99	18,55	21,06	23,54	25,99	
5,0	9,49	12,59	15,51	18,31	21,03	23,68	26,30	28,87	
1,0	13,28	16,81	20,09	23,21	26,22	29,14	32,00	34,80	

Приложение Г

(справочное)

Проверка гипотезы о нормальности распределения результатов измерений при числе измерений $n \geq 50$, критерий ω^2

 Γ .1 Критерий Мизеса-Смирнова ω^2 использует статистику, имеющую вид

$$\omega_n^2[\Psi(F)] = \int\limits_{-\infty}^{\infty} [F_n(x) - F(x)]^2 \Psi[F(x)] dF(x)$$

где $F(\mathbf{x})$ - теоретическая функция распределения;

 $^{F_{n}\left(x
ight) }$ - эмпирическая функция распределения;

 $\Psi[F(x)]$ - весовая функция, область определения которой представляет собой область значений функции F(x) .

Конкретный вид статистики ω_n^2 (или, точнее, $n\omega_n^2$) зависит от вида весовой функции. Как правило, используют весовые функции двух видов: $\Psi(F)=1$, при которой все значения

функции распределения обладают одинаковым весом, и $\frac{\Psi(F)}{F(1-F)}$, при которой вес результатов измерений увеличивается на "хвостах" распределений. В приведенном критерии использована весовая функция второго вида, поскольку на практике различия между распределениями наиболее отчетливы в области крайних значений. Однако почти всегда малое число результатов измерений имеется как раз в области крайних значений. Поэтому целесообразно придать этим результатам больший вес.

Если принять весовую функцию второго вида, то статистика $n \omega_n^2$ после выполнения интегрирования имеет вид

$$n\omega_{n}^{2}[1/F(1-F)] = n\Omega_{n}^{2} = -n - 2\sum_{j=1}^{n} \left\{ \frac{2j-1}{2n} \ln F(x_{j}) + \left(1 - \frac{2j-1}{2n}\right) \ln[1-F(x_{j})] \right\}, \quad (\Gamma.1)$$

где $F(x_j)$ - значение функции теоретического распределения при значении аргумента, равном x_j (j=1,...,n);

 $x_1 \leq x_2 \leq ... \leq x_n$ - результаты измерений, упорядоченные по значению.

Результаты измерений x_j рекомендуется свести в таблицу, аналогичную таблице Г.1 расчетного примера применения критерия ω^2 , а соответствующие им значения $^{F(x_j)}$ внести в третий столбец таблицы, аналогичной таблице Г.2 этого же примера.

Статистика ${}^{n\Omega_n^2}$ подчиняется асимптотическому (при n ightarrow ${}^{\infty}$) распределению

$$P(n\Omega_n^2 \le x) = a(x) = \frac{\sqrt{2\pi}}{x} \sum_{j=0}^{\infty} (-1)^j \frac{\Gamma\left(j+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)\Gamma(j+1)} (4j+1) e^{\frac{-(4j+1)^2\pi^2}{8x}} \int\limits_{0}^{\infty} e^{\frac{x}{8(y^2+1)} - \frac{(4j+1)^2\pi^2y^2}{8x}} dy.$$

Значения функции распределения a(x) для $0 \le x \le 2,6$ с шагом 0,01 приведены в таблице Г.3.

Г.2 Применение критерия ω^2 требует выполнения большого объема вычислительных операций, но этот критерий более мощный, чем критерий Пирсона χ^2 . Число результатов измерений при использовании этого критерия должно быть более 50.

Г.3 При использовании критерия ω^2 вычисления проводят в следующем порядке:

Г.3.1 Вычисляют значение статистики ${}^{n\Omega}{}^{2}_{n}$ по формуле (Г.1).

Промежуточные вычисления по формуле (Г.1) рекомендуется сводить в таблицу, аналогичную таблице Г.2 примера. После заполнения таблицы суммируют значения, внесенные в ее последний столбец. Значение величины ${}^{n\Omega_{n}^{2}}$ находят, подставляя полученную сумму в формулу (Г.1).

Г.3.2 По таблице Г.3 находят значение функции распределения a(x) для x , равного вычисленному значению $n\Omega_n^2$.

Г.3.3 Задают уровень значимости $^{\alpha}$. Рекомендуется выбирать значение $^{\alpha}$, равное 0,1 или 0,2.

Г.3.4 Если $a^{-2}(1-\alpha)$, то гипотезу о согласии эмпирического и теоретического распределений отвергают, если $a^{-2}(1-\alpha)$, то гипотезу принимают.

Пример применения критерия ω^2

Пример составлен при малом количестве данных в целях иллюстрации сложного вычислительного процесса при использовании критерия ω^2 .

Результаты измерений приведены в таблице Г.1.

Таблица Г.1 - Результаты измерений

	I
Номер результата измерений j	Результат измерений $^{x_{j}}$
1	15,61
2	20,71
3	21,68
4	22,28
5	23,22
6	24,14
7	24,59
8	26,18
9	26,23
10	27,59
11	27,88
12	28,74
13	29,34
14	30,86
15	32,08

Требуется проверить гипотезу о том, что группа результатов измерений не противоречит нормальному распределению. Среднее арифметическое значение и среднее квадратическое отклонение результатов измерений, представленных в таблице Γ .1, равные соответственно \overline{x} = 25,4087 и S = 4,3241, приняты в качестве параметров нормального распределения, значения функции распределения которого $F(x_j)$ представлены в третьем столбце таблицы Γ .2.

Результаты дальнейших вычислений также приведены в таблице Г.2.

Таблица Г.2 - Результаты промежуточных вычислений значения статистики $n\Omega_n^2$ по формуле (Г.1)

j	A	В	C	D	E	F	G	Н	I
	$A_j = \frac{2j-1}{2n}$	$B_j = F(x_j)$	$C_j = \ln(B_j)$	$D_j = (A_j) \cdot (C_j)$	$E_j = 1 - (A_j)$	$F_j = 1 - (B_j)$	$G_j = \ln(F_j)$	$H_j = (E_j) \cdot (G_j)$	$I_j = (D_j) + (H_j)$
1	0,033	0,011726	-2,14336	-0,07145	0,9667	0,882740	-0,12472	-0,12057	-0,19201
2	0,100	0,136321	-1,99274	-0,19927	0,9000	0,863679	-0,14655	-0,13190	-0,33117
3	0,167	0,194344	-1,63813	-0,27302	0,8333	0,805656	-0,21610	-0,18008	-0,45310
4	0,233	0,234533	-1,45016	-0,33837	0,7667	0,765467	-0,26727	-0,20491	-0,54328
5	0,300	0,306428	-1,18277	-0,35483	0,7000	0,693572	-0,36590	-0,25613	-0,61096
6	0,367	0,384761	-0,95513	-0,35022	0,6333	0,615239	-0,48574	-0,30764	-0,65785
7	0,433	0,425046	-0,85556	-0,37074	0,5667	0,574954	-0,55346	-0,31363	-0,68437
8	0,500	0,570639	-0,56100	-0,28050	0,5000	0,429361	-0,84546	-0,42273	-0,70323
9	0,567	0,575345	-0,55279	-0,31325	0,4333	0,424655	-0,85648	-0,37114	-0,68439
10	0,633	0,692869	-0,36691	-0,23238	0,3667	0,307131	-1,18048	-0,43284	-0,66522
11	0,700	0,716339	-0,33360	-0,23352	0,3000	0,283661	-1,25998	-0,37799	-0,61151
12	0,766	0,729350	-0,31560	-0,24196	0,2333	0,270650	-1,30693	-0,30495	-0,54691
13	0,833	0,818325	-0,20050	-0,16708	0,1667	0,181675	-1,70554	-0,28426	-0,45134
14	0,900	0,896346	-0,10943	-0,09849	0,1000	0,103654	-2,26670	-0,22667	-0,32516
15	0,966	0,938585	-0,06338	-0,06127	0,0333	0,061415	-2,79010	-0,09300	-0,15427

Примечания 1 В первой строке заголовочной части таблицы приведена нумерация столбцов со 2-го по 10-й заглавными буквами латинского алфавита (A, B, ..., I). 2 Во второй строке заголовочной части таблицы для столбцов с 4-го по 10-й (столбцы C, ..., I) приведены формулы для вычисления значений в строках, имеющих номер J^{j} ($J^{j}=1,...,15$), использующие значения (J^{k} , ..., J^{k}), указанные на пересечении соответствующих столбцов и строк с номерами J^{k} . 3 Для вычисления значений J^{k} во втором столбце таблицы (столбец J^{k}) число измерений J^{k} = 15.

Сумма значений, приведенных в столбце 10 таблицы Г.2, равна минус 7,61478. Тогда результат вычисления по формуле (Г.1) будет

$$n\Omega_n^2 = -n - 2(-7,61478) = 0,229554 \approx 0,23$$

. Значение функции a(x) , в соответствии с таблицей Г.З, для $x = n\Omega_n^2 = 0.23$ равно 0,016.

Это значение достаточно мало (0,016

Таблица Г.3 - Значения функции a(x)

Значение х	0	1	2	3	4	5	6	7	8	9
0,0		0.000						0.000		0,000
0,1										0,005
0,2										0,048
0,3										0,132
0,4										0,233
0,5										0,333
0,6	0,343	0,352	0,361	0,371	0,380	0,389	0,398	0,407	0,416	0,424
0,7	0,433	0,441	0,449	0,458	0,466	0,474	0,482	0,489	0,497	0,504
0,8	0,512	0,519	0,526	0,533	0,540	0,547	0,554	0,560	0,567	0,573
0,9	0,580	0,586	0,592	0,598	0,604	0,610	0,615	0,621	0,627	0,632
1,0	0,637	0,643	0,648	0,653	0,658	0,663	0,668	0,673	0,677	0,682
1,1	0,687	0,691	0,696	0,700	0,704	0,709	0,713	0,717	0,721	0,725
1,2	0,729	0,732	0,736	0,740	0,744	0,747	0,751	0,754	0,758	0,761
1,3	0,764	0,768	0,771	0,774	0,777	0,780	0,783	0,786	0,789	0,792
1,4	0,795	0,798	0,800	0,803	0,806	0,809	0,811	0,814	0,816	0,819
1,5	0,821	0,824	0,826	0,828	0,831	0,833	0,835	0,837	0,839	0,842
1,6	0,844	0,846	0,848	0,850	0,852	0,854	0,856	0,858	0,859	0,861
1,7	0,863	0,865	0,867	0,868	0,870	0,872	0,873	0,875	0,877	0,878
1,8	0,880	0,881	0,883	0,884	0,886	0,887	0,889	0,890	0,892	0,893
1,9	0,894	0,896	0,897	0,898	0,900	0,901	0,902	0,903	0,905	0,906
2,0	0,907	0,908	0,909	0,910	0,912	0,913	0,914	0,915	0,916	0,917
2,1	0,918	0,919	0,920	0,921	0,922	0,923	0,924	0,925	0,926	0,927
2,2	0,928	0,929	0,929	0,930	0,931	0,932	0,933	0,934	0,934	0,935
2,3	0,936	0,937	0,938	0,938	0,939	0,940	0,941	0,941	0,942	0,943
2,4	0,943	0,944	0,945	0,945	0,946	0,947	0,947	0,948	0,949	0,949
2,5	0,950	0,951	0,952	0,952	0,953	0,953	0,954	0,954	0,955	0,956

Приложение Д

(справочное)

Значения коэффициентов t для случайной величины Y , имеющей распределение Стьюдента с $^{n-1}$ степенями свободы

Таблица Д.1 - Значения коэффициентов Стьюдента t

n -1	P = 0.95	P = 0.99
3	3,182	5,841
4	2,776	4,604
5	2,571	4,032
6	2,447	3,707
7	2,365	2,998
8	2,306	3,355
9	2,262	3,250
10	2,228	3,169
12	2,179	3,055
14	2,145	2,977
16	2,120	2,921
18	2,101	2,878
20	2,086	2,845
22	2,074	2,819
24	2,064	2,797
26	2,056	2,779
28	2,048	2,763
30	2,042	2,750
00	1,960	2,576

Приложение Е

(обязательное)

Правила округления при обработке результатов измерений

E.1 Точность результатов измерений и точность вычислений при обработке результатов измерений должны быть согласованы с требуемой точностью получаемой оценки измеряемой величины.

E.2 Погрешность оценки измеряемой величины следует выражать не более чем двумя значащими цифрами.

Две значащие цифры в погрешности оценки измеряемой величины сохраняют:

- при точных измерениях;

- если первая значащая цифра не более трех.

Е.З Число цифр в промежуточных вычислениях при обработке результатов измерений должно быть на две больше, чем в окончательном результате.

E.4 Погрешность при промежуточных вычислениях должна быть выражена не более чем тремя значащими цифрами.

E.5 Сохраняемую значащую цифру в погрешности оценки измеряемой величины при округлении увеличивают на единицу, если отбрасываемая цифра неуказываемого младшего разряда больше либо равна пяти, и не изменяют, если она меньше пяти.

Библиография

[1]	межгосударственной	Государственная система обеспечения единства измерений. Метрология. Основные термины и определения
	межгосударственной	Государственная система обеспечения единства измерений. Результаты и характеристики качества измерений. Формы представления
