

Rajwant Kaur, Philipp Werdenbach, Oliver D. Mücke

Table of Contents

- 1. Introduction
- 2. Objective
- 3. Data Analysis
- 4. Predictions
- 5. Conclusions

Introduction

Why are flights delayed?

- Aircraft delay from previous flight
- Extreme weather conditions
- Air traffic control restrictions
- Waiting for crew or staff strike
- Mechanical issues
- Bird strike etc...

Objective

Goal:

To predict the estimated duration of **flight delay in minutes** for each flight mainly flying from or to the Tunis-Carthage International Airport

Why do we need predictions?

- To decrease of capital costs caused by reallocation of flight crews and aircraft
- To minimize the negative impact on passenger demand

- years 2016 to 2018
- ca. 100,000 samples
- 9 attributes

slightly more flights on weekend

More flights in the summer months July and August

Absolute number of delayed flights is larger in the summer season

Absolute number of delayed flights is larger for months July and August

Absolute number of delayed flights is smallest for Tuesdays and Wednesdays, increases afterwards

Mean delay is largest on Sundays and smallest on Tuesdays/Wednesdays

Mean delay is largest in July-September

Mean delay is largest in summer

Attributes are mainly uncorrelated and the correlation with target is very small (<0.1)

Attributes are mainly uncorrelated and the correlation with true label is very small (<0.15)

Predictions

How good are Models?

- Lower the values of Error <a>¬
- Closer the predicted values are to the test
- Better is the model 🖒

Our Models:

- Regression analysis performed
- Different regressors/models are chosen
- Error analysis

Predictions

Linear regression (base model)

RMSE (test): 112.60 min

Linear regression (optimized)

RMSE (test): 111.311 min

Decision Tree

RMSE (test): 110.675 min

XGBoost

RMSE (test): 105.045 min

Predictions - Average

Actual delay	48 min
--------------	--------

Linear Regression (base model) 49 min (+/- 16 min)

Linear Regression (optimized) 49 min (+/- 24 min)

Decision Tree 49 min (+/- 27 min)

XGBoost 48 min (+/- 46 min)

Predictions - Average

Decision tree for regression

Overall the features show only weak correlation with the target. Despite, the features having most influence are:

- FLTID (-0.121)
- hour_STA (+0.093)
- year (+0.088)
- hour_STD (+0.060)
- country_dep (-0.058)
- season (-0.048)
- elevation_dep (+0.042)
- day_of_week (0.039)

Decision tree for regression

with Grid search:

R-squared (train): 0.053

R-squared (test): 0.052

RMSE (train): 114.125 min

RMSE (test): 110.675 min

XGBoost regressor

Metrics on training data

RMSE: 97.88 min

R2: 0.315

Metrics on test data

RMSE: 105.045 min

R2: 0.083

Milestone 3: Error Analysis

Model: XGBRegressor

RMSE(test): 100.2 minutes RMSE(train): 98.7 minutes

Conclusions

- Predictions contain large errors
- Attributes are no good indicator for delay
- More meaningful attributes might be gathered