

Sergei Izrailev

Chief Data Scientist @ Beeswax

@sizrailev / bit.ly/MLatScale / sergei@beeswax.com / www.beeswax.com

Design Patterns for Machine Learning in Production

Motivation

- A widespread need to leverage in-house data
- Data science expertise is available
- And yet, it seems to be too hard to extract value from ML

About

- Beeswax
 - Beeswax is an ad tech startup; 40 employees in NYC and London
 - Founded by three ex-Googlers
 - Real-time bidding (RTB) platform for buying online ads (1M+ QPS)
 - Platform tailored for customers to leverage in-house data science
- Myself
 - Production Al systems in Pharma, Finance and Ad Tech
 - Interested in both technology and organizations
 - bit.ly/MLatScale

Overall process Discovery Problem Research Statement Cost Value **Prototype** Constraints Production

Start with defining the problem

Problem statement

- Is this the right problem to solve?
- Suppose, we've solved the stated problem what's the value?
- Is ML the right tool to solve the problem?
- What are the constraints?

Define constraints

- Existing production environment architecture
- Technology stack
- Available people and their skills
- Requirements for scale

Dimensions of ML system scalability

- Volume: how much data do we need to process?
- Velocity: how quickly does the data change?
- Variety: what are the types of data, models, and applications?
- Veracity: how accurate are our models?
- Value: how does it matter to the ML consumer?
- Viability: do the benefits outweigh the costs?

Technical Design of ML Systems

Machine learning systems

ML system design

Model deployment

Model deployment

- Data transformations must be the same in training and scoring
- Some transformations are "models" (PCA, top N, TF-IDF)
- Hence, most ML pipelines are DAGs
- These DAGs must be reproduced in production scoring

Interface between building and scoring

- In-memory model is never persisted, train then score
 - single application, also streaming
- Data only linear coefficients, PMML, etc.
 - code is independent
- Serialized objects Pickle, R, Spark, custom
 - reuse code
- Code + Data e.g., H2O's POJO
 - code is generated

Scoring systems

Batch processing

Batch features; consumer predicts

Single-row predictions

A service for a single row consumer

A service for a single row consumer

Cached predictions

Near-real-time **Predictions** Cache **Predictions** Key Prediction Trans-Add data form New data New data Consumer Apply Default Predict

Cached features **Features** Cache **Features** Key Features Trans-New data form New data Apply Consumer Predict Model

Evolution of ML systems

Prototype

Production Fault-tolerant systems

- We should expect problems
 - models don't converge; input data changes; bugs
- Produce acceptable results even when something fails
- Handle predictable error conditions automatically
- Minimal human intervention
- Easy diagnostics and recovery in case of fatal errors

Conway's law: "Any piece of software reflects the organizational structure that produced it."

People Questions

- Who is developing training?
- Who is developing scoring?
- Who is responsible for training in production?
- Who is responsible for scoring in production?
- Who deploys new models and model updates?
- Who is responsible for quality control?

People's Functions

Product management

Data science

Data engineering

Application engineering (RT

server-side applications, client-

side applications)

UX BEESWAX⟨**⊕**⟩

- Front-end development
- Data collection (e.g., logging)
- Code deployment
- Testing and QA
- Infrastructure provisioning
- Support

Data scientists as consumers

Over the wall

Deliver predictions only (aka "black box")

Deliver data (serialized model)

Deliver code and data

Cross-functional team

ML platform

Conclusion

- Find the right problem
- Define constraints
- Design components and interfaces
- Take into account organizational constraints
- Production can't be an afterthought
- The process is a lot of work, but it's not rocket science

Questions?

Yes, we are hiring...

sergei@beeswax.com

