

SGMII and QSGMII Flexible Mixed-use Design Application Guide

(AN04023, V1.1) (20.02.2023)

Shenzhen Pango Microsystems Co., Ltd.

All Rights Reserved. Any infringement will be subject to legal action.

Revisions History

Document Revisions

Version	Date of Release	Revisions
V1.1	20.02.2023	Initial release.
		1

Application F. Kannole For Reference Only

(AN04023, V1.1) 1 / 24

About this Manual

Terms and Abbreviations

Meaning
High Speed Serial Transceiver Low Performance
Physical Code Sublayer
Physical Media Attachment
1Gigabit Media Independent Interface
1Gigabit Media Independent Interface

(AN04023, V1.1) 2 / 24

Table of Contents

Revisions History		1
About this Manual		2
Table of Contents		3
Tables		4
Figures		5
Chapter 1 Overview		6
1.1 Introduction		6
1.2 Main Functions		6
1.3 Design Information		6
1.4 Resource Usage	6)	7
Chapter 2 Function Description		8
2.1 SGMII and QSGMII Flexible Mixed-use Ethern	net System Design Architecture	8
2.2 Interface List	<u> </u>	9
2.3 Parameter Definitions	, O ^y	12
2.4 Interface Timing		14
Chapter 3 Register Descriptions		15
Chapter 4 Reference Design	<u> </u>	16
4.1 Reference Function Design		
4.2 Reference Design Interface List		18
4.3 Reference Design File Directory		
4.4 Reference Design Simulation		20
4.5 Reference Design On-board Verification		21
Chapter 5 Appendix		22
D'. 1. '		2.4

Tables

Table 1-1 SGMII and QSGMII Flexible Mixed-use Design Information	6
Table 2-1 Interface List.	9
Table 2-2 Top-level Parameter Definitions	12
Table 3-1 Address Allocation	15
Table 4-1 Register Address Allocation	17
Table 4-2 List of Interfaces	18
Table 5-1 Key Configuration Information for Common Modes	22
	O y
Ref. Ref.	
	10
	3 ⁷
A 47	
• 0	
2 9 9	

(AN04023, V1.1) 4 / 24

Figures

gure 2-1 Block Diagram of Ethernet System Functions	8
gure 4-1 QSGMII and SGMII Mixed-use Design	16
gure 4-2 Examples of Parameter Configuration	18
gure 4-3 File Directory	20
gure 4-4 Reference Design On-board Verification	21
gure 4-4 Reference Design On-board Verification	14
	O'
	0
4.0	
APPlication	

(AN04023, V1.1) 5 / 24

Chapter 1 Overview

1.1 Introduction

This document serves as the application manual for the Ethernet system interface product launched by Shenzhen Pango Microsystems Co., Ltd. This document primarily introduces the function list, design architecture, interface definition, interface timing, supported devices and reference designs of SGMII and QSGMII Flexible Mixed-use Design.

In the Logos2 family FPGA, HSSTLP has only two lpll, resulting in 4 lanes that cannot be freely used. In multi-lane applications, it cannot directly invoke multiple sgmii Ips and qsgmii Ips for mixed-use. This design provides users with SGMII And QSGMII IP flexible mixed-use implementation Scheme through parametrized settings.

1.2 Main Functions

It mainly realizes the flexible mixed-use of PCS from sgmii and qsgmii within one quad. The current version only supports the following four types of modes:

- 1. sgmii (lane0) + sgmii (lane1) + qsgmii (lane2) + qsgmii (lane3)
- 2. qsgmii (lane0) + qsgmii (lane1) + qsgmii (lane2) + qsgmii (lane3)
- 3. qsgmii (lane0) + qsgmii (lane1)
- 4. Sgmii (lane0) + sgmii (lane1) + sgmii (lane2)

1.3 Design Information

Table 1-1 SGMII and QSGMII Flexible Mixed-use Design Information

SGMII and QSGMII Flexible Mixed-use Design			
Supported Devices	PG2L50H family FPGA products		
Supported User Interface	GMII Interface		
Provided Design Files			
QSGMII and SGMII PCS Design Document	Encrypted file		
SGMII and QSGMII Design Top- level and Reference Design	Verilog files		
Constraint File	fdc file		

(AN04023, V1.1) 6/24

Development Tools				
Design Tools	PDS Development Suite Pango Design Suite 2021 Supported. 1-SP2 versions			
Simulation Tool	The third party tool			

1.4 Resource Usage

(AN04023, V1.1) 7 / 24

Chapter 2 Function Description

SGMII and QSGMII Flexible Mixed-use Design primarily separate PCS and HSST from the SGMII IP and QSGMII IP respectively. The parameterized calls are implemented according to the user's configuration.

2.1 SGMII and QSGMII Flexible Mixed-use Ethernet System Design Architecture

Figure 2-1 Block Diagram of Ethernet System Functions

The entire design consists of 5 parts: HSST, QSGMII PCS, SGMII PCS, Selection Logic and APB Address Partition Module.

HSST:

The number (k) of lanes used by HSST is determined by the user through configuration parameter LANE*_PROTOCOL. Configuration value is set to No. "DISABLE" indicates that the current lane is in use. The value of k is no more than 4, k = i + j.

(AN04023, V1.1) 8 / 24

QSGMII PCS:

QSGMII PCS is a PCS module stripped from the QSGMII IP. The number (i) of module calls is determined by the user through configuration parameter LANE*_PROTOCOL, with the value of "QSGMII", indicating that the current lane uses the QSGMII protocol. The value of i is no more than 4.

SGMII PCS:

SGMII PCS is a PCS module stripped from the SGMII IP. The number (j) of module calls is determined by the user through configuration parameter LANE*_PROTOCOL, with the value not set to "QSGMII" or "DISABLE", indicating that the current lane uses the SGMII or GE protocol. j is no more than 4.

Selection Logic:

Determine the selection of the clock, PLL, mode and data path based on user-configured parameters.

apb_addr_divide module:

Mainly to implement QSGMII PCS, SGMII PCS and APB address partition of HSST access space.

2.2 Interface List

Table 2-1 Interface List

Signal Name	Input/Output	Bit width	Description			
Global signals	Global signals					
external_rstn	Input	1	Global reset signal, active-low			
free_clk	Input	1	Configuration clock, 10–100M			
cfg_rstn	Output	1	Configuration reset signal output by SGMII Core, operating in the free_clk clock domain. 0: Reset; 1: Reset release.			
HSST interfaces						
REFCK0N	Input	1	HSST Reference Clock 0. 125M or 156.25M			
REFCK0P	Input	1	HSST Reference Clock 0. 125M or 156.25M			
REFCK1N	Input	1	HSST Reference Clock 1. 125M or 156.25M			
REFCK1P	Input	1	HSST Reference Clock 1. 125M or 156.25M			
L0TXN	Output	1	LANE0 transmits differential signal, N side			

(AN04023, V1.1) 9 / 24

Signal Name	Input/Output	Bit width	Description
LOTXP	Output	1	LANE0 transmits differential signal, P side
LORXN	Input	1	LANE0 receives differential signal, N side
LORXP	Input	1	LANE0 receives differential signal, P side
L1TXN	Output	1	LANE1 transmits differential signal, N side
L1TXP	Output	1	LANE1 transmits differential signal, P side
L1RXN	Input	1	LANE1 receives differential signal, N side
L1RXP	Input	1	LANE1 receives differential signal, P side
L2TXN	_	1	LANE2 transmits differential signal, N side
L2TXP	Output	1	
	Output		LANE2 transmits differential signal, P side
L2RXN	Input	1	LANE2 receives differential signal, N side
L2RXP	Input	1	LANE2 receives differential signal, P side
L3TXN	Output	1	LANE3 transmits differential signal, N side
L3TXP	Output	1	LANE3 transmits differential signal, P side
L3RXN	Input	1	LANE3 receives differential signal, N side
L3RXP	Input	1	LANE3 receives differential signal, P side
hsst_ch_ready	Output	4	HSSTLP IP Serdes RX channel reset completion flag, with bit3~bit0 corresponding to Lane3~Lane0, defaulting to Lane0. 0: HSSTLP IP Serdes RXchannel reset not completed; 1: HSSTLP IP Serdes RX channel reset completed. Note: The signal operates within the free_clk clock domain.
signal_loss	Output	4	Bit3~Bit0 correspond to Lane3~Lane0 respectively 0: Indicates a valid signal was detected from the port P_L*RXP/P_L*RXN; 1: Indicates no valid signal was detected from the port P_L*RXP/P_L*RXN Note: This is an asynchronous signal.
cdr_align	Output	4	Bit3~Bit0 correspond to Lane3~Lane0 respectively 0: Indicates CDR lock signal not established; 1: Indicates CDR lock signal successfully established. Note: This is an asynchronous signal.
tx_pll_lock	Output	2	Bit1~bit0 correspond to pll1 and pll0 0: PLL is not locked; 1: PLL is locked. Note: This is an asynchronous signal.
lsm_synced	Output	4	Bit3~Bit0 correspond to Lane3~Lane0 respectively 0: Word Align not successful; 1: Word Align successful. Note: This is an asynchronous signal.
txpll_sof_rst_n	Input	2	Bit1~bit0 correspond to pll1 and pll0 HSSTLP IP PLL soft reset. 0: Reset; 1: Reset release; Note: This signal is synchronized internally in HSSTLP IP to the free_clk clock domain.
hsst_cfg_soft_rstn	Input	4	Bit3~Bit0 correspond to Lane3~Lane0 respectively HSSTLP IP configuration module soft reset signal. 0: Reset; 1: Reset release;

(AN04023, V1.1) 10 / 24

Signal Name	Input/Output	Bit width	Description
			Note: This reset is located in the free_clk clock domain;
			Perform one external_rstn after enabling this reset.
			Bit3~Bit0 correspond to Lane3~Lane0 respectively
			HSSTLP IP Serdes TX channel soft reset.
			0: Reset;
txlane_sof_rst_n	Input	4	1: Reset release.
			Notes: This signal is synchronised internally in the
			HSSTLP IP to the free_clk clock domain, used only during
			debugging, and after the TX reset, the RX reset is required.
			Bit3~Bit0 correspond to Lane3~Lane0 respectively
			HSSTLP IP Serdes RX channel soft reset, with bit3~bit0
			corresponding to Lane3~Lane0 respectively, defaulting to
	Input	4	Lane0.
rxlane_sof_rst_n			0: Reset;
			1: Reset release;
			Notes: This signal is synchronised internally in the
			HSSTLP IP to the free_clk clock domain, used only during
			debugging.
			HSSTLP IP reset sequence watchdog clear signal, used
4 1 1 1	T.,4		during debugging. 0: Normal operation;
wtchdg_clr	Input	2	1: Watchdog counter cleared;
			Note: The signal is required to operate within the free_clk clock domain.
			CIOCK GOIHAIII.

SGMII Interface

The specific signal is the same as SGMII IP, supports up to 4 channels (CH0 to CH3), and CH0-CH3 don't correspond to Lane0-Lane3, and are configured by the user; when using one SGMII channel, use CH0; when using two SGMII channels, use CH0-CH1, and so on.

QSGMII Interface

The specific signal is the same as QGMII IP, supports up to 4 channels (CH0 to CH3), and CH0-CH3 don't correspond to Lane0-Lane3, and are configured by the user; when using one QGMII channel, use CH0; when using two QGMII channels, use CH0-CH1, and so on.

Configuration signals

apb_clk	Input	1	Configuration clock signal, with a frequency range of 10–100MHz		
apb_penable	Input	1	Configuration access enable		
apb_pwrite	Input	1	Read/write selection configuration signal, high for write, and low for read		
apb_paddr	Input	19	Configuration address bus		
apb_pwdata	Input	32	Configuration write data		
apb_psel	Input	1	Configuration selection signal		
apb_prdata	Output	32	Configuration read data		
apb_pready	Output	1	Configure read/write ready output		
Debug Signal					
pcs_nearend_loop	Input	4	Bit3~Bit0 correspond to Lane3~Lane0 respectively PCS parallel near-end loopback enable signal. 0: PCS parallel near-end loopback disabled. 1: PCS parallel near-end loopback enabled.		
pcs_farend_loop	Input	4	Bit3~Bit0 correspond to Lane3~Lane0 respectively PCS parallel far-end loopback enable signal. 0: PCS parallel far-end loopback disabled; 1: PCS parallel far-end loopback enabled.		

(AN04023, V1.1) 11/24

Signal Name	Input/Output	Bit width	Description
pma_nearend_ploop	Input	4	Bit3~Bit0 correspond to Lane3~Lane0 respectively PMA serial near-end loopback enable signal. 0: PMA serial near-end loopback disabled; 1: PMA serial near-end loopback enabled.
pma_nearend_sloop	Input	4	Bit3~Bit0 correspond to Lane3~Lane0 respectively PMA parallel near-end loopback enable signal. 0: PMA parallel near-end loopback enabled; 1: PMA parallel near-end loopback enabled.

2.3 Parameter Definitions

Table 2-2 Top-level Parameter Definitions

Parameter	Description
LANE0_PROTOCOL	Select the protocol type for LANE0, the selectable types are as follows: SGMII: SGMII mode, equivalent to the SGMII mode in SGMII IP. GE: GE mode, equivalent to the GE mode in SGMII IP. SGMII_GE: Compatible with SGMII and GE modes, equivalent to the BOTH mode in SGMII IP. QSGMII: QSGMII mode DISABLE: Disable this lane
LANE0_PLL	Select the PLL to be used by LANE0, equivalent to the pll selection of HSSTLP IP, and the optional values are: PLL0 and PLL1
LANE0_CLK_SOURCE	Select the reference clock source for LANE0, equivalent to the clock source selection of HSSTLP IP, and the optional values are: Diff_REFCK0 and Diff_REFCK1
LANE0_REF_CLK_FREQ	Select the reference clock frequency for LANE0, and the optional values are: 125.0 and 156.25
LANE0_BUFFER	Select whether to use the internal elastic buffer of SGMII or QSGMII IP, equivalent to the no buffer setting of SGMII or QSGMII IPinterface, and the optional values are: FALSE: Do not use internal buffer TRUE: Use internal buffer
LANE0_PHY_MODE	Select SGMII or QSGMII mode, and the optional values are: 0: PHY_MODE 1: MAC MODE
LANE0_AUTO_NEGOTIATION	Select SGMII or QSGMII and enable auto-negotiation module, and the optional values are: TRUE: Auto-negotiation enabled FALSE: Auto-negotiation not enabled
LANE0_MDIO_ENABLE	Select whether to enable MDIO configuration interface, and the optional values are: TRUE: MDIO interface enabled FALSE: MDIO interface not enabled
LANE1_PROTOCOL	Select the protocol type for LANE1, the selectable types are as follows: SGMII: SGMII mode, equivalent to the SGMII mode in SGMII IP. GE: GE mode, equivalent to the GE mode in SGMII IP. SGMII_GE: Compatible with SGMII and GE modes, equivalent to the BOTH mode in SGMII IP. QSGMII: QSGMII mode DISABLE: Disable this lane
LANE1_PLL	Select the PLL to be used by LANE1, equivalent to the pll selection of HSSTLP IP, and the optional values are: PLL0 and PLL1
LANE1_CLK_SOURCE	Select the reference clock source for LANE1, equivalent to the clock source selection of HSSTLP IP, and the optional values are: Diff_REFCK0

(AN04023, V1.1) 12 / 24

Parameter	Description
	and Diff_REFCK1
	Select the reference clock frequency for LANE1, and the optional values
LANE1 REF CLK FREQ	are:
	125.0 and 156.25
	Select whether to use the internal elastic buffer of SGMII or QSGMII IP,
LANE1 BUFFER	equivalent to the no buffer setting of SGMII or QSGMII IPinterface, and the optional values are:
LANEI_BOFFER	FALSE: Do not use internal buffer
	TRUE: Use internal buffer
	Select SGMII or QSGMII mode, and the optional values are:
LANE1_PHY_MODE	0: PHY_MODE
	1: MAC_MODE
	Select SGMII or QSGMII and enable auto-negotiation module, and the
LANE1 AUTO NEGOTIATION	optional values are:
	TRUE: Auto-negotiation enabled
	FALSE: Auto-negotiation not enabled Select whether to enable MDIO configuration interface, and the optional
	values are:
LANE1_MDIO_ENABLE	TRUE: MDIO interface enabled
	FALSE: MDIO interface not enabled
	Select the protocol type for LANE2, the selectable types are as follows:
	SGMII: SGMII mode, equivalent to the SGMII mode in SGMII IP.
	GE: GE mode, equivalent to the GE mode in SGMII IP.
LANE2_PROTOCOL	SGMII_GE: Compatible with SGMII and GE modes, equivalent to the
	BOTH mode in SGMII IP.
	QSGMII: QSGMII mode
	DISABLE: Disable this lane Select the PLL to be used by LANE2, equivalent to the pll selection of
LANE2_PLL	HSSTLP IP, and the optional values are: PLL0 and PLL1
	Select the reference clock source for LANE2, equivalent to the clock
LANE2 CLK SOURCE	source selection of HSSTLP IP, and the optional values are: Diff REFCK0
	and Diff_REFCK1
	Select the reference clock frequency for LANE2, and the optional values
LANE2_REF_CLK_FREQ	are:
	125.0 and 156.25
	Select whether to use the internal elastic buffer of SGMII or QSGMII IP,
LANE2_BUFFER	equivalent to the no buffer setting of SGMII or QSGMII IPinterface, and the optional values are:
LANEZ_BOTTER	FALSE: Do not use internal buffer
	TRUE: Use internal buffer
0	Select SGMII or QSGMII mode, and the optional values are:
LANE2_PHY_MODE	0: PHY_MODE
40 ⁷	1: MAC_MODE
0	Select SGMII or QSGMII and enable auto-negotiation module, and the
LANE2 AUTO NEGOTIATION	optional values are:
<i>y</i> – – – – – – – – – – – – – – – – – – –	TRUE: Auto-negotiation enabled
	FALSE: Auto-negotiation not enabled
	Select whether to enable MDIO configuration interface, and the optional values are:
LANE2_MDIO_ENABLE	TRUE: MDIO interface enabled
	FALSE: MDIO interface enabled
	TALSE. WIDTO IIICHACCHOL CHAUICU

(AN04023, V1.1) 13 / 24

Parameter	Description
LANE3_PROTOCOL	Select the protocol type for LANE3, the selectable types are as follows: SGMII: SGMII mode, equivalent to the SGMII mode in SGMII IP. GE: GE mode, equivalent to the GE mode in SGMII IP. SGMII_GE: Compatible with SGMII and GE modes, equivalent to the BOTH mode in SGMII IP. QSGMII: QSGMII mode DISABLE: Disable this lane
LANE3_PLL	Select the PLL to be used by LANE3, equivalent to the pll selection of HSSTLP IP, and the optional values are: PLL0 and PLL1
LANE3_CLK_SOURCE	Select the reference clock source for LANE3, equivalent to the clock source selection of HSSTLP IP, and the optional values are: Diff_REFCK0 and Diff_REFCK1
LANE3_REF_CLK_FREQ	Select the reference clock frequency for LANE3, and the optional values are: 125.0 and 156.25
LANE3_BUFFER	Select whether to use the internal elastic buffer of SGMII or QSGMII IP, equivalent to the no buffer setting of SGMII or QSGMII IPinterface, and the optional values are: FALSE: Do not use internal buffer TRUE: Use internal buffer
LANE3_PHY_MODE	Select SGMII or QSGMII mode, and the optional values are: 0: PHY_MODE 1: MAC MODE
LANE3_AUTO_NEGOTIATION	Select SGMII or QSGMII and enable auto-negotiation module, and the optional values are: TRUE: Auto-negotiation enabled FALSE: Auto-negotiation not enabled
LANE3_MDIO_ENABLE	Select whether to enable MDIO configuration interface, and the optional values are: TRUE: MDIO interface enabled FALSE: MDIO interface not enabled

2.4 Interface Timing

Refer to "UG042007_Logos2_QSGMII_IP" and "UG042005_Logos2_SGMII_ 1GbE_IP"

(AN04023, V1.1) 14 / 24

Chapter 3 Register Descriptions

HSST is accessed through APB interface. For the list of registers, refer to HSST manual "*UG040008_Logos2 Family FPGA*". High-Speed Serial Transceiver Low Performance (HSSTLP) User Guide

The PCS registers of QSGMII and SGMII can be accessed throughMDIO (LANE*_MDIO_ENABLE parameter configured to TRUE) or APB interface. MDIO access method is the same as IP. The address partition of PCS by APB access method can be implemented within the module. For PCS registers, refer to IP user documentation. Internal APB address partition is as follows, users can also allocate by themselves based on actual needs:

Table 3-1 Address Allocation

Addr [17] ==1'd0	HSST access space
Addr [17] == 1'd1 & Addr[16:12]=5'd0	First channel SGMII PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd1	Second channel SGMII PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd2	Third channel SGMII PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd3	Fourth channel SGMII PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd4	First channel QSGMII port0 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd5	First channel QSGMII port1 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd6	First channel QSGMII port2 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd7	First channel QSGMII port3 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd8	Second channel QSGMII port0 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd9	Second channel QSGMII port1 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd10	Second channel QSGMII port2 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd11	Second channel QSGMII port3 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd12	Third channel QSGMII port0 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd13	Third channel QSGMII port1 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd14	Third channel QSGMII port2 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd15	Third channel QSGMII port3 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd16	Fourth channel QSGMII port0 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd17	Fourth channel QSGMII port1 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd18	Fourth channel QSGMII port2 PCS access space
Addr [17] == 1'd1 & Addr[16:12]=5'd19	Fourth channel QSGMII port3 PCS access space

The address space allocation is fixed for 4 channels of SGMII and 4 channels of QSGMII respectively.

(AN04023, V1.1) 15 / 24

Chapter 4 Reference Design

4.1 Reference Function Design

The following figure shows the block diagram of the reference design provided. The 2.5G Ethernet system can verify the data transmitted and received through docking with third-party devices. The module functions are introduced as follows:

Figure 4-1 QSGMII and SGMII Mixed-use Design

packet_gen module

Generate data packets with random or fixed lengths based on configurations.

Sgmii_qsgmii_top module

QSGMII reference design

global_reg module

Global configuration register, configuring packet transmit modes, etc.

reg union bridge top module

Register address space allocation

(AN04023, V1.1) 16 / 24

Table 4-1 Register Address Allocation

Addr[20]=1'b0	Access global register space
Addr[20]=1'b1	AccessHSST, SGMII PCS, QSGMII PCS register space

pgr_uart_ctrl_top_inst module

The serial port module, with a fixed baud rate of 115200, receives UART data and outputs data in the format required by the APB protocol during debugging. For read and write operations, the address width is 24 bits (higher 5 bits are 0), and the data width is 32 bits.

The format for read and write operations through UART is:

Read: 72 + address (byte-reversed)

Write: 77 + address (byte-reversed) + data (byte-reversed)

Example of serial port read and write:

Read the value of the configuration register at address 0x13 and change the value of this register to 1.

Read: 72130000

Write: 7713000001000000

The parameter configuration instructions for this reference design are illustrated by using the scenario of three instances of SGMII IP, with lane 0, lane 1 and lane 2 implemented The specific configuration parameters of SGMII mode are as follows:

(AN04023, V1.1) 17 / 24


```
sgmii_qsgmii_top #
 LANEO_PROTOCOL
                                                                            ), //SGMII、GE、 SGMII_GE、QSGMII、DISABLE
.LANEO_PLL
.LANEO_CLK_SOURCE
.LANEO_REF_CLK_FREQ
                                              ("PT.T.O"
                                                                                   //PLL0 v PLL1
                                                                            ), //Diff_REFCKO Diff_REFCK1
                                               ("Diff_REFCKO"
                                               ("125.0"
                                                                                   //125.0 \ 156.25
LANEO_BUFFER
LANEO_BY_MODE
.LANEO_AUTO_NEGOTIATION
.LANEO_MDIO_ENABLE
.LANE1_PROTOCOL
                                                                                   //"FALSE":DISABLE ELASTIC BUFFER "TRUE":ENABLE ELASTIC BUFFER
                                               ("TRUE"
                                                                            ), //1:PHY_MODE 0: MAC_MODE
), //"TRUE":AN ENABLE "FALSE": AN DISABLE
                                                                            ), //TRUE":MDIO ENABLE "FALSE": MDIO DISABLE
), //SGMII、GE、 SGMII_GE、QSGMII、DISABLE
                                              ("FALSE"
("SGMII"
                                                                                  //PLL0 \ PLL1
//Diff_REFCK0 Diff_REFCK1
.LANE1_PLL
                                               ("PLLO"
.LANE1_CLK_SOURCE
.LANE1_REF_CLK_FREQ
                                              ("Diff_REFCKO"
("125.0"
                                                                            ), //125.0 \ 156.25
LANE1 BUFFER
.LANE1 PHY MODE
.LANE1 AUTO NEGOTIATION
.LANE1 MDIO ENABLE
.LANE2 PROTOCOL
                                              ("TRUE"
                                                                                   //"FALSE":DISABLE ELASTIC BUFFER "TRUE":ENABLE ELASTIC BUFFER
                                                                            ), //"FALSE":DISABLE ELASTIC BUFFER "TRUE":ENAI
), //1:PHY_MODE 0: MAC_MODE
), //"TRUE":AN ENABLE "FALSE": AN DISABLE
), //"TRUE":MDIO ENABLE "FALSE": MDIO DISABLE
), //SGMII\GE\SGMII_GE\QSGMII\DISABLE
                                              (1
("FALSE"
                                               ("FALSE"
("SGMII"
.LANE2_PLL
                                               ("PLLO"
                                                                            ), //PLL0 \ PLL1
.LANE2_CLK_SOURCE
.LANE2_REF_CLK_FREQ
                                               ("Diff_REFCK0"
("125.0"
                                                                            ), //Diff_REFCK0 Diff_REFCK1 ), //125.0 \ 156.25
LANE2_BUFFER
.LANE2_PHY_MODE
.LANE2_AUTO_NEGOTIATION
.LANE2_MDIO_ENABLE
.LANE3_PROTOCOL
                                                                            ), //"FALSE":DISABLE ELASTIC BUFFER "TRUE":ENABLE ELASTIC BUFFER
), //1:PHY_MODE 0: MAC_MODE
), //"TRUE":AN ENABLE "FALSE": AN DISABLE
                                               ("TRUE"
                                               ("TRUE"
                                              ("FALSE"
("DISABLE"
                                                                             ), //"TRUE":MDIO ENABLE "FALSE": MDIO DISABLE
), //SGMII、GE、SGMII_GE、QSGMII、DISABLE
                                                                            ), //PLL0 \ PLL1
.LANE3_PLL
                                               ("PLL1"
.LANE3_CLK_SOURCE
.LANE3_REF_CLK_FREQ
                                              ("Diff_REFCK1"
("156.25"
                                                                            ), //Diff_REFCK0 Diff_REFCK1 ), //125.0 \ 156.25
.LANE3 BUFFER
.LANE3_PHY_MODE
.LANE3_AUTO_NEGOTIATION
.LANE3_MDIO_ENABLE
                                               ("TRUE"
                                                                            ), //"FALSE":DISABLE ELASTIC BUFFER "TRUE":ENABLE ELASTIC BUFFER
), //1:PHY_MODE 0: MAC_MODE
), //"TRUE":AN ENABLE "FALSE": AN DISABLE
                                               (0
("TRUE"
                                                                                     //"TRUE":MDIO ENABLE "FALSE": MDIO DISABLE
)sgmii_qsgmii_top_inst
```

Figure 4-2 Examples of Parameter Configuration

4.2 Reference Design Interface List

Table 4-2 List of Interfaces

Signal Name	I/O	Bit width	Description
Global signals		_ <	
i_free_clk	Input	1,7	External clock input, with a frequency of 50MHz
sys_rst	Input	1	System reset interface, reset at a high level
HSSTHP-end signal			
ref_clk0_n	Input	1	HSSTHP differential reference clock negative end, 125 Mhz or 156M
ref_clk0_p	Input	1	HSSTHP differential reference clock positive end, 125 Mhz or 156M
ref_clk1_n	Input	1	HSSTHP differential reference clock negative end, 125 Mhz or 156M
ref_clk1_p	Input	1	HSSTHP differential reference clock positive end, 125 Mhz or 156M
rxn0	Input	1	HSSTHP differential data input negative end
rxp0	Input	1	HSSTHP differential data input positive end
txn0	Output	1	HSSTHP differential data output negative end
txp0	Output	1	HSSTHP differential data output positive end
rxn1	Input	1	HSSTHP differential data input negative end
rxp1	Input	1	HSSTHP differential data input positive end
txn1	Output	1	HSSTHP differential data output negative end
txp1	Output	1	HSSTHP differential data output positive end

(AN04023, V1.1) 18 / 24

rxn2	I/O	Bit width	Description
IXIIZ	Input	1	HSSTHP differential data input negative end
rxp2	Input	1	HSSTHP differential data input positive end
txn2	Output	1	HSSTHP differential data output negative end
txp2	Output	1	HSSTHP differential data output positive end
rxn3	Input	1	HSSTHP differential data input negative end
rxp3	Input	1	HSSTHP differential data input positive end
txn3	Output	1	HSSTHP differential data output negative end
txp3	Output	1	HSSTHP differential data output positive end
Status signals			
led1	Output	1	Test signals
led2	Output	1	Test signals
SFP_TX_DISABLE	Output	4	Optical module enable signal
Serial port signals			
txd	Output	1	Serial port transmit
rxd	Input	1	Serial port receive
		3	
APPlicat		\$1.00	

(AN04023, V1.1) 19 / 24

4.3 Reference Design File Directory

Design Example Directory Structure Diagram: -docs //Application guide -pnr //Project directory l ⊢sgmii qsgmii.fdc //Constraint file I ⊢sgmii qsgmii demo.pds //Project file -source //Source file directory I ⊢sgmii qsgmii top demo.v //Test project top level I ⊢sgmii_qsgmii_top.v //Reference design top-level I ⊢global reg.v //Test project global register file ⊢reg union bridge top.v //Test project address allocation file I ⊢apb addr divide.v //Reference design register address allocation module I ⊢clk cal.v //Frequency test module I ⊢ipm2l hsstlp I ⊢rtl //hsstlp IP folder (contains encrypted source code) — qsqmii | ⊢rtl //qsgmii IP folder (contains encrypted PCS source code) ⊢sgmii | |-rt| //sgmii IP folder (contains encrypted PCS source code) | ⊢uart ctrl 32bit //Serial port to APB interface code l ⊢pkg gen //Message generation and detection code | ⊢sim lib Simulation Library Files -sim // Simulation scripts -testbench Simulation Stimulus Files

Figure 4-3 File Directory

4.4 Reference Design Simulation

The current simulation file is configured with 3SGMII mode, i.e., Lane 0, Lane 1 and Lane2 are in SGMII mode. In each lane, HSST differential interface independent loopback is configured to 1000M mode.

After setting up the simulation environment, open the "sim" directory to run the "sim.bat" script. For detailed simulation steps, refer to sgmii ip or qsgmiiip simulation description.

(AN04023, V1.1) 20 / 24

4.5 Reference Design On-board Verification

On-board verification uses the P04I50KF01 A0board in conjunction with the 390H QSGMII IP and SGMII IP for interconnection testing, enabling two single boards to interconnect through optical fibre. The 50H demo board sends random or fixed packet lengths, 390H loopback is read to the 50H demo board. Send/receive MAC statistics to check for consistency and CRC errors.

Figure 4-4 Reference Design On-board Verification

(AN04023, V1.1) 21/24

Chapter 5 Appendix

Table 5-1 Key Configuration Information for Common Modes

Mode	Key Parameter Configuration	GMII channel
2sgmii+2qsgmii	LANEO_PROTOCOL LANEO_PLL ("PLLO"), LANEO_CLK_SOURCE LA ("Diff_REFCKO"), NEO_REF_CLK_FREQ ("125.0"), LANE1_PROTOCOL ("SGMII"), ("PLLO"), LANE1_PLL ("PLLO"), LANE1_CLK_SOURCE LA ("Diff_REFCKO"), NE1_REF_CLK_FREQ ("125.0"), ("125.0"), ("125.0"), ("125.0"), ("QSGMII"), ("PLL1"), LANE2_PLL ("PLL1"), LANE2_PLL ("Diff_REFCK1"), NE2_REF_CLK_FREQ ("156.25"), ("QSGMII"), LANE3_PLL ("PLL1"), ("	SGMII: Using GMII data from CH0 and CH1 SGMII channels . QSGMII: Using GMII data from CH0 and CH1 QSGMII channels .
4qsgmii	LANE3_REF_CLK_FREQ ("156.25"), LANE0_PROTOCOL ("QSGMII"), LANE0_PLL ("PLL0"), LANE0_CLK_SOURCE .LA ("Diff_REFCK0"), NE0_REF_CLK_FREQ ("156.25"), LANE1_PROTOCOL ("QSGMII"), LANE1_PLL ("PLL0"), LANE1_CLK_SOURCE .LA ("Diff_REFCK0"), NE1_REF_CLK_FREQ ("156.25"), LANE2_PROTOCOL ("QSGMII"), LANE2_PLL ("PLL0"), LANE2_PLL ("PLL0"), LANE2_CLK_SOURCE .LA ("Diff_REFCK0"), NE2_REF_CLK_FREQ ("156.25"), LANE3_PROTOCOL ("QSGMII"), LANE3_PLL ("PLL0"), LANE3_PLL ("PLL0"), LANE3_PLL ("PLL0"), LANE3_CLK_SOURCE ("Diff_REFCK0"), Note: PLLcan also usePLL1 and CLK_SOURCE Diff_REFCK1	Using GMII data from CH0, CH1, CH2andCH3 QSGMII channels
2qsgmii (Lane0 and Lane1)	LANE0_PROTOCOL ("QSGMII"), LANE0_PLL ("PLL0"), LANE0_CLK_SOURCE .LA ("Diff_REFCK0"), NE0_REF_CLK_FREQ ("156.25"), LANE1_PROTOCOL ("QSGMII"), LANE1_PLL ("PLL0"), LANE1_CLK_SOURCE ("Diff_REFCK0"), LANE1_REF_CLK_FREQ ("156.25"), Note: PLLcan also usePLL1 and CLK_SOURCE Diff_REFCK1	Using GMII data from CH0 and CH1 QSGMII channels.

(AN04023, V1.1) 22 / 24

	Key Parameter Configuration		GMII channel
	.LANEO_PLL ("PLI	MII"), L0"), f_REFCK0"),	SGMII: Using GMII data from CH0, CH1 and CH2
	NEO_REF_CLK_FREQ ("125	ī.0"),	SGMII channels.
3sgmii	I ANE 1 DI I	MII"), L0"),	
(Lane0 , Lane1 and Lane2)		f_REFCK0"),	
	.LANE2_PROTOCOL ("SGI	MII"),	4
		L0"), f REFCK0"),	14
			O.Y.
		X8) "
		KO,	
		O O'Y	
		Y	
	10		
	20,		
	A P P		
	421		
	ion Fital		
	ation		
	allon		
	ation		
opii	allon		
APPIN	, attorned to the same of the		
APPI	Air		
APPI	, alion in the same of the sam		
APPI	, alion in the same of the sam		

(AN04023, V1.1) 23 / 24

Disclaimer

Copyright Notice

This document is copyrighted by Shenzhen Pango Microsystems Co., Ltd., and all rights are reserved. Without prior written approval, no company or individual may disclose, reproduce, or otherwise make available any part of this document to any third party. Non-compliance will result in the Company initiating legal proceedings.

Disclaimer

- 1. This document only provides information in stages and may be updated at any time based on the actual situation of the products without further notice. The Company assumes no legal responsibility for any direct or indirect losses caused by improper use of this document.
- 2. This document is provided "as is" without any warranties, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or any other warranties mentioned in proposals, specifications, or samples. This document does not grant any explicit or implied intellectual property usage license, whether by estoppel or otherwise.
- 3. The Company reserves the right to modify any documents related to its series products at any time without prior notice.
- 4. The information contained in this document is intended to assist users in resolving application-related issues. While we strive for accuracy, we cannot guarantee that the document is entirely free from flaws. Should any functional abnormalities and performance degradation arise due to deviation from the prescribed procedures outlined herein, our company will neither be held liable nor concede that such issues stem from product deficiencies. The solutions presented in this document are just one of the feasible options and cannot cover all application scenarios.
 Consequently, if users encounter functional abnormalities or performance degradation despite adhering to the prescribed procedures outlined herein, we cannot assure that such issues are indicative of product deficiencies.

(AN04023, V1.1) 24 / 24