

# Graph-based Knowledge Distillation by Multi-head Attention Network

Seunghyun Lee\*, Byung Cheol Song lsh910703@gmail.com, bcsong@inha.ac.kr
Department of Electronic Engineering, Inha University, Republic of Korea





e Processing Lab.

### Introduction

### Knowledge Distillation

- Achieve optimal performance from a small student network (SN) by distilling the knowledge of a large teacher network (TN) and transferring the distilled knowledge to the small SN.
- Distilled knowledge can be applied for other purposes such as semi-supervised learning and pruning.

### Contribution Points

- Analyze previous knowledge distillation methods and point out their fundamental issue.
- Propose a **novel algorithm to extract embedding procedure knowledge** via attention networks.

### Problem Statement

### Limitations of Previous Approaches

- Most of the previous methods focus on How to distill knowledge, not What to distill.
- All type of knowledge is not still acceptable as a neural network's knowledge.
- Neural response & Multi-connection: Too naïve.
- Shared-representation: Cannot find inter-data relation.
- Inter-data relation knowledge: Only focus on the last embedded space.

### Problem Definition

- Find the knowledge which coincides with neural network's purpose.
- Embed high-dimensional data into low-dimension for easier analysis.
- A good teacher teaches not only answer but how to solve.
- → Embedding procedure is the real knowledge of the network.

### Method

### **♦** Training Multi-head Attention to Distill Knowledge

**Estimator** which estimates set of back-end singular vector ( $\mathbf{V}^B$ ) using set of front-end singular vector ( $\mathbf{V}^F$ ).

$$\overline{\mathbf{V}}^B = f_2(\mathbf{G}, f_1(\mathbf{V}^F))$$
 
$$L_{MHAN} = \sum_{m=1}^M \frac{1}{N} \mathbf{V}_m^B \overline{\mathbf{V}}_m^B$$

• Attention head which enhances the estimator's feature vector to make it easy to estimate  $\mathbf{V}^{B}$ .

$$\mathbf{G} = [Nm(\mathbf{S}_a)]_{1 \le a \le A} \quad Nm(\mathbf{S}) = \left[\frac{\exp(\mathbf{S}_{i,j})}{\sum_k \exp(\mathbf{S}_{i,k})}\right]_{1 \le i,j \le N} \quad \mathbf{S} = [\theta(\mathbf{v}_i^B) \cdot \phi(\mathbf{v}_i^F)]_{1 \le i,j \le N}$$

### Attention map as Graph-based Knowledge

- Attention heads extract the relation between  $\mathbf{V}^F$  and  $\mathbf{V}^B$  to enhance to estimate  $\mathbf{V}^B$  easily.
- $\rightarrow$  Give more attention to the  $\mathbf{V}^F$  embedded into similar points.
  - → Embedding procedure is expressed by graph-form.

$$L_{transfer} = \sum_{m,i,j,a} \mathbf{G}_{m,i,j,s}^{S} \left( \log(\mathbf{G}_{m,i,j,s}^{S}) - \log(\mathbf{G}_{m,i,j,s}^{T}) \right)$$

### **♦** Transfer of Graph-based Knowledge

- Adaptive constraint multi-task learning via gradient clipping [1].
- Transfer the TN's knowledge as much as possible without overregularization.

$$\left(\frac{\partial \Theta}{\partial L_{KD}}\right)_{clipped} = \frac{1}{1 + \exp(-\tau)} \frac{\partial \Theta}{\partial L_{transfer}}, \text{ where } \tau = \max \left(1, \left\|\frac{\partial \Theta}{\partial L_{main}}\right\|_{2} / \left\|\frac{\partial \Theta}{\partial L_{transfer}}\right\|_{2}\right)$$

# ♦ Post-processing • Remove bad properties of singular vector Teacher network Teacher network SVD Post-processing $V_s = [\tilde{a}_k V_{s,\tilde{i}_k}]_{1:s_k \in \mathbb{N}}$ $\tilde{a}_k = \operatorname{sign}(v_{T,k}^* V_{s,\tilde{i}_k})$ Teacher network SVD Post-processing $V_s = [\tilde{a}_k V_{s,\tilde{i}_k}]_{1:s_k \in \mathbb{N}}$ $\tilde{a}_k = \operatorname{sign}(v_{T,k}^* V_{s,\tilde{i}_k})$ Teacher network SVD Post. V Post-processing $V_s = [\tilde{a}_k V_{s,\tilde{i}_k}]_{1:s_k \in \mathbb{N}}$ $\tilde{a}_k = \operatorname{sign}(v_{T,k}^* V_{s,\tilde{i}_k})$ Teacher network O SVD Post. V Post. V Post.





### Experimental results

### ♦ Small Network Enhancement

Network architectures

| VGG       TN (VGG16)       143.7       11.83         SN (VGG7)       17.6 (12.2%)       17.6 (18.5%)         WResNet       TN (WResNet22-4)       374.2       0.417         SN (WResNet10-4)       93.2 (24.9%)       0.1404 (33.7%) |         | Network          | FLOPS (M)             | Params (M)              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|-----------------------|-------------------------|--|
| SN (VGG7) 17.6 (12.2%) 17.6 (18.5%)  WResNet TN (WResNet22-4) 374.2 0.417                                                                                                                                                            | VGG     | TN (VGG16)       | 143.7                 | 11.83                   |  |
| W/Recitief \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                     |         | SN (VGG7)        | 17.6 ( <b>12.2%</b> ) | 17.6 ( <b>18.5</b> %)   |  |
| SN (WResNet10-4) 93.2 (24.9%) 0.1404 (33.7%)                                                                                                                                                                                         | WResNet | TN (WResNet22-4) | 374.2                 | 0.417                   |  |
|                                                                                                                                                                                                                                      |         | SN (WResNet10-4) | 93.2 ( <b>24.9</b> %) | 0.1404 ( <b>33.7</b> %) |  |

### Transfer Knowledge to Different Architectures

• Even though transferring knowledge to SN that is different from TN's architecture, the proposed method outperforms the others.

### Effect of Attention Head

- More heads tend to produce much knowledge.
- But too many attention heads may cause over-constraint.

| Performance comparison of several KD methods for CIFAR100. |         |         |             |       |       |        |         |       |  |  |
|------------------------------------------------------------|---------|---------|-------------|-------|-------|--------|---------|-------|--|--|
| Method                                                     | Teacher | Student | Soft-logits | FSP   | AB    | KD-SVD | KD-SVDF | MHGD  |  |  |
| VGG                                                        | 67.99   | 59.97   | 60.95       | 61.87 | 64.56 | 64.25  | 64.38   | 67.02 |  |  |
| WResNet                                                    | 77.22   | 71.62   | 71.88       | 71.57 | 72.23 | 71.83  | 71.82   | 72.79 |  |  |

| —————————————————————————————————————— |         |         |             |       |       |        |         |       |  |
|----------------------------------------|---------|---------|-------------|-------|-------|--------|---------|-------|--|
| Method                                 | Teacher | Student | Soft-logits | FSP   | AB    | KD-SVD | KD-SVDF | MHGD  |  |
| VGG                                    | 56.30   | 52.40   | 53.78       | 54.85 | 54.99 | 55.33  | 55.35   | 56.35 |  |
| WResNet                                | 61.31   | 55.91   | 56.00       | 56.04 | 56.53 | 55.72  | 55.95   | 56.90 |  |

Performance comparison of several KD methods in TinyImagaNat

### Performance comparison of various KD methods with WResNet as the TN.

| Method    | Student | Soft-logits | FSP   | AB    | KD-SVD | MHGD  |
|-----------|---------|-------------|-------|-------|--------|-------|
| VGG       | 69.76   | 70.51       | 69.44 | 71.24 | 70.31  | 71.52 |
| MobileNet | 66.18   | 67.35       | 60.35 | 67.84 | 67.03  | 68.32 |
| ResNet    | 71.57   | 71.81       | 70.40 | 71.55 | 71.55  | 72.74 |

## The performance change according to the **number of attention heads**.

| num_head | 0 (Student) | 1     | 2     | 4     | 8     | 16    |
|----------|-------------|-------|-------|-------|-------|-------|
| Accuray  | 59.97       | 65.71 | 66.41 | 67.01 | 67.02 | 66.70 |

### Comparison with SOTA

• The codes for proposed and previous methods are available at above QR code or https://github.com/sseung0703/KD\_methods\_with\_TF

| Method   | Student            | Teacher               | Soft-logits <sup>[2]</sup> | FitNet <sup>[5]</sup> | $AT^{[6]}$         | FSP <sup>[3]</sup> |
|----------|--------------------|-----------------------|----------------------------|-----------------------|--------------------|--------------------|
| Accuracy | 71.76              | 78.96                 | 71.79                      | 72.74                 | 72.31              | 72.65              |
| Method   | DML <sup>[7]</sup> | KD-SVD <sup>[1]</sup> | $\mathrm{FT}^{[8]}$        | $AB^{[4]}$            | RKD <sup>[9]</sup> | MHGD               |
| Accuracy | 73.27              | 73.68                 | 73.35                      | 73.08                 | 73.40              | 73.98              |
|          |                    |                       |                            |                       |                    |                    |

