Smartcards

https://pplware.sapo.pt/informacao/saiba-como-renovar-online-o-seu-cartao-de-cidadao/https://knowtechie.com/security-matters-5-benefits-of-contactless-smart-cards/

Smartcard: Definition

- > Card with computing processing capabilities
 - CPU
 - ROM
 - EEPROM
 - RAM

Chip card

Smartcard
(w/ μprocessor)

- > Interface
 - With contact
 - Contactless

Smartcard: Components

- > CPU
 - 8/16 bit
 - Crypto-coprocessor (opt.)
- > ROM
 - Operating system
 - Communication
 - Cryptographic algorithms
- **DEEPROM**
 - File system
 - Programs / applications
 - Keys / passwords

> RAM

- Transient data
 - Erased on power off
- - ISO 7816-2
 - Power
 - Soft reset
 - Clock
 - Half duplex I/O
- > Physical security
 - Tamperproof case
 - Resistance to side-channel attacks

Smartcard applications: Communication protocol stack

Off-card application

APDU (Application Protocol Data Unit)

T=0 / T=1

On-card application

APDU (Application Protocol Data Unit)

T=0/T=1

T=0 and T=1

- > T=0
 - Each byte transmitted separately
 - Slower
- > T=1
 - Blocks of bytes transmitted
 - Faster
- - Response of the card to a reset operation
 - Reports the protocol expected by the card

Security

APDU (ISO 7816-4)

headerbodyCLA INSP1P2LcOptional dataLeOptional data

body trailer
Optional data SW1 SW2

⊳Command APDU

- •CLA (1 byte)
 - · Class of the instruction
- •INS (1 byte)
 - Command
- •P1 and P2 (2 bytes)
 - Command-specific parameters
- +Lc
 - Length of the optional command data
- •Le
 - Length of data expected in subsequent Response APDU
 - · Zero (0) means all data available

▶ Response APDU

- •SW1 and SW2 (2 bytes)
 - Status bytes
 - 0x9000 means SUCCESS

Encoding objects in smartcards: TLV and ASN.1 BER

- - Object description with a tag value, the length of its contents and the contents
 - Each element of TLV is encoded according with ASN.1 BER
- > Values can contain other TLV objects
 - The structure can be recursive

7

Smartcard: File system (1/3)

- > File identification
 - Name or number
- > File types
 - Master File (MF)
 - File system root, ID 0x3F00
 - Dedicated File (DF)
 - Similar to a directory
 - Can contain other EFs or DF
 - Elementary File (EF)
 - · Ordinary data file
 - File size fixed and determined when created

Smartcard: File system (2/3)

- > File system types
 - Transparent
 - Data blocks identified by offset + length
 - Fixed records
 - Indexed records
 - Variable records
 - Indexed records
 - Cyclic
 - Read pointer, write pointer
 - Cyclic increments

length

Smartcard: File system (3/3)

- > Access control
 - No restrictions
 - Protected
 - The file access APDU must contain a MAC computed with a key shared between the card and the off-card application
 - External authentication
 - The file access APDU is only allowed if the card already checked the existence of a common shared key with the off-card application
 - Previous login

Java cards

- > Smartcards that run Java Applets
 - That use the JCRE
 - The JCRE runs on top of a native OS
- - Java Virtual Machine
 - Card Executive
 - Card management
 - Communications
 - Java Card Framework
 - Library functions

Cryptographic protocols (1/6)

- > External authentication
 - The smartcard authenticates the off-card application
 - Challenge-response protocol with random number
 - Initiated by the off-card application

Security

Cryptographic protocols (2/6)

- > Internal authentication
 - The off-card application authenticates the smartcard
 - Challenge-response protocol with random number and key number
 - Initiated by the off-card application

Cryptographic protocols (3/6)

- Secure messaging
 - Protect data red from the smartcard
 - Protect data written into the smartcard
 - Protection forms
 - Authentication with MAC
 - Authentication with MAC and data encryption

Cryptographic protocols (4/6)

> Authenticated readings

> Authenticated writings

Cryptographic protocols (5/6)

> Authenticated and confidential readings

> Authenticated and confidential writings

Cryptographic protocols (6/6)

Session key derivation

Session key uploading

OpenCard Framework (OCF)

- Goal: facilitate the development of smartcard-based solutions
 - Make the parts of the solution, typically provided by different parties, independent of each other
 - https://www.openscdp.org/ocf

Parties:

- Card issuer
 - Card initialization, personalization and issuing
- Card OS provider
 - · Basic, lowest level card behavior
- Card reader / terminal provider
 - Interfaces that deal with reading from and writing into cards
- Application / service provider
 - Development of off-card (and possibly on-card) applications

Security

Cryptographic services

- Digest functions
- Key management
 - Key import
 - Key export

- Digital signatures
 - Generation
 - Verification
- - Generation
 - Verification

Cryptographic services: Middleware

- ► Libraries that bridge the gap between functionalities of smartcards and high-level applications
- > Some standard approaches:
 - PKCS #11
 - Cryptographic Token Interface Standard (Cryptoki)
 - Defined by RSA Security Inc.
 - PKCS #15
 - Cryptographic Token Information Format Standard
 - Defined by RSA Security Inc.
 - CAPI CSP
 - CryptoAPI Cryptographic Service Provider
 - Defined by Microsoft for Windows systems
 - PC/SC
 - Personal computer/smartcard
 - Standard framework for smartcard access on Windows systems

Cryptoki middleware integration

Cryptoki object hierarchy

Cryptoki sessions

- - R/O and R/W sessions
 - Session owners
 - Public
 - User
 - Security Officer (SO)
- >Operations on open sessions
 - Administrative
 - Login/logout
 - Object management
 - Create / destroy an object on the token
 - Cryptographic

- - Transient objects created during sessions
- - Usually for a single operation on the token

Cryptoki R/O sessions login/logout

- ▷ R/O public session
 - Read-only access to public token objects
 - Read/write access to public session objects
- ▷ R/O user functions
 - Read-only access to all token objects (public or private)
 - Read/write access to all session objects (public or private)

Cryptoki R/W sessions login/logout

⊳R/W public session

Read/write access to all public objects

⊳R/W SO functions

- Read/write access only to public objects on the token
 - Not to private objects
- The SO can set the normal user's PIN

⊳R/W user functions

Read/write access to all objects

Cartão de Cidadão: Middleware for Unix (Linux/MacOS)

Cartão de Cidadão: Middleware for Windows

