TD 2

Exercice 1. Montrer, à l'aide de la définition, que la suite de terme général $u_n = \frac{n+1}{2n+3}$ a pour limite 1/2.

Exercice 2. Montrer, à l'aide de la définition, que la suite determe gééral $u_n = \frac{2n+1}{n+2}$ a pour limite 2.

Exercice 3. Soit la suite géométrique de raison 1/4 et de premier terme $u_1 = 2$. Exprimer le n-ième terme en fonction du (n-1)-ième puis en fonction de n. Etudier la monotonie de cette suite. Cette suite est-elle convergente?

Exercice 4. Soit la suite arithmétique de raison 5 et de premier terme $u_1 = 1$. Exprimer le n-ième terme en fonction du (n-1)-ième puis en fonction de n. Etudier la monotonie de cette suite. Cette suite est-elle convergente?

Exercice 5. La suite $\left(\frac{\cos n}{n+1}\right)$ est-elle convergente?

Exercice 6. La suite $\left(-\frac{\sin n^2}{n+3}\right)$ est-elle convergente?

Exercice 7. Déterminer la nature et la limite éventuelle des suites de termes généraux :

1)
$$u_n = \sqrt{n^2 + 3n + 1} - \sqrt{n^2 + 2n + 1}$$
; 2) $u_n = \frac{1 - n}{n^2}$; 3) $u_n = \frac{2 + n}{1 + n} \left(1 + \frac{8}{n^2} \right)$.

Exercice 8. Déterminer la nature et la limite éventuelle des suites de termes généraux :
$$1)u_n = \frac{3^n - 2^n}{3^n + 2^n}; \quad 2) \ u_n = \frac{1 - n}{n}; \quad 3) \ u_n = e^{-n^{\pi}} \cos(\pi/6).$$

Exercice 9. On considère la suite (u_n) définie par $u_n = e^{2n-1}$

- 1) Trouver le plus petit entier n_0 tel que $n \ge n_0 \Rightarrow |u_n| > 10^7$.
- 2) Démontrer que $\lim_{n\to+\infty} u_n = +\infty$ en utilisant la définition.

Exercice 10. On considère la suite (u_n) définie par $u_n = \ln(2n^2 + 1)$

- 1) Trouver le plus petit entier n_0 tel que $n \ge n_0 \Rightarrow |u_n| > 10^7$.
- 2) Démontrer que $\lim_{n\to+\infty} u_n = +\infty$ en utilisant la définition.

Exercice 11. Parmi les suites définies ci-dessous par leur terme général dire celles qui sont divergentes et trouver la limite de celles qui sont convergentes

1

ouver la limite de celles qui sont
$$\frac{1-n^2}{n} \qquad 3n-7$$

$$n\sin^2(n\pi/2) \quad \frac{2n^3+n^2}{(1+n)^2}$$

$$\left(\frac{n}{1+n}\right)^{2n} \qquad (n^4+2n^2)e^{1-n}$$

Exercice 12. Parmi les suites définies ci-dessous par leur terme général dire celles qui sont divergentes et trouver la limite de celles qui sont convergentes

$$\frac{1-n}{n^2} \qquad 3n^3 - 2n^2 + n - 5$$

$$\sqrt{n+1} - \sqrt{n} \qquad \frac{\ln(n)}{n^{1/2}}$$

$$\left(n + \frac{1}{n}\right)^n \qquad \frac{(\ln n)^{\alpha}}{n^{\beta}}$$

Exercice 13. 1) Montrer que la suite $(\sin(n\frac{\pi}{2}))$ n' a pas de limite.

2) On considère la suite de terme général $u_n = \sin \frac{n\pi}{2} + \frac{1}{n}$. Construire trois suites extraites de (u_n) : une qui converge vers 0, une qui converge vers 1 et une qui converge vers -1.

Exercice 14. Soit q un entier au moins égal à 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos \frac{2n\pi}{q}$.

- 1) Montrer que $u_{n+q} = u_n$ pour tout n.
- 2) Calculer u_{nq} et u_{nq+1} . En déduire que (u_n) n'a pas de limite.