TopogrElow

TensorFlow API r1.4

tf.space_to_batch_nd

```
space_to_batch_nd(
    input,
    block_shape,
    paddings,
    name=None
)
```

Defined in tensorflow/python/ops/gen_array_ops.py.

See the guide: Tensor Transformations > Slicing and Joining

SpaceToBatch for N-D tensors of type T.

This operation divides "spatial" dimensions [1, ..., M] of the input into a grid of blocks of shape block_shape, and interleaves these blocks with the "batch" dimension (0) such that in the output, the spatial dimensions [1, ..., M] correspond to the position within the grid, and the batch dimension combines both the position within a spatial block and the original batch position. Prior to division into blocks, the spatial dimensions of the input are optionally zero padded according to paddings. See below for a precise description.

Args:

- input: A Tensor. N-D with shape input_shape = [batch] + spatial_shape + remaining_shape, where spatial_shape has M dimensions.
- block_shape: A Tensor. Must be one of the following types: int32, int64. 1-D with shape [M], all values must be
 >= 1.
- paddings: A Tensor. Must be one of the following types: int32, int64. 2-D with shape [M, 2], all values must be
 >= 0. paddings[i] = [pad_start, pad_end] specifies the padding for input dimension i + 1, which corresponds to spatial dimension i.lt is required that block_shape[i] divides input_shape[i + 1] + pad_start + pad_end.

This operation is equivalent to the following steps:

- Zero-pad the start and end of dimensions [1, ..., M] of the input according to paddings to produce padded of shape padded_shape.
- 2. Reshape padded to reshaped_padded of shape:

```
[batch] + [padded_shape[1] / block_shape[0], block_shape[0], ..., padded_shape[M] / block_shape[M-1], block_shape[M-1]] + remaining_shape
```

- 3. Permute dimensions of reshaped_padded to produce permuted_reshaped_padded of shape:
 block_shape + [batch] + [padded_shape[1] / block_shape[0], ..., padded_shape[M] / block_shape[M-1]] + remaining_shape
- 4. Reshape **permuted_reshaped_padded** to flatten **block_shape** into the batch dimension, producing an output tensor of shape:
 - [batch * prod(block_shape)] + [padded_shape[1] / block_shape[0], ..., padded_shape[M] / block_shape[M-1]] + remaining_shape

Some examples:

(1) For the following input of shape [1, 2, 2, 1], block_shape = [2, 2], and paddings = [[0, 0], [0, 0]]:

```
x = [[[1], [2]], [[3], [4]]]
```

The output tensor has shape [4, 1, 1, 1] and value:

```
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
```

(2) For the following input of shape [1, 2, 2, 3], block_shape = [2, 2], and paddings = [[0, 0], [0, 0]]:

```
x = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]]
```

The output tensor has shape [4, 1, 1, 3] and value:

```
[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]
```

(3) For the following input of shape [1, 4, 4, 1], block_shape = [2, 2], and paddings = [[0, 0], [0, 0]]:

$$x = [[[1], [2], [3], [4]], [[5], [6], [7], [8]], [[9], [10], [11], [12]], [[13], [14], [15], [16]]]$$

The output tensor has shape [4, 2, 2, 1] and value:

```
x = [[[1], [3]], [[9], [11]]], [[[2], [4]], [[10], [12]]], [[[5], [7]], [[13], [15]]], [[[6], [8]], [[14], [16]]]]
```

(4) For the following input of shape [2, 2, 4, 1], block_shape = [2, 2], and paddings = [[0, 0], [2, 0]]:

```
x = [[[1], [2], [3], [4]], [[5], [6], [7], [8]]], [[[9], [10], [11], [12]], [[13], [14], [15], [16]]]]
```

The output tensor has shape [8, 1, 3, 1] and value:

```
x = [[[0], [1], [3]]], [[[0], [9], [11]]], [[[0], [2], [4]]], [[[0], [10], [12]]], [[[0], [5], [7]]], [[[0], [13], [15]]], [[[0], [6], [8]]], [[[0], [14], [16]]]
```

Among others, this operation is useful for reducing atrous convolution into regular convolution. * name: A name for the operation (optional).

Returns:

A Tensor . Has the same type as input .

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0 License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated November 2, 2017.

Stay Connected Blog GitHub Twitter Support Issue Tracker Release Notes Stack Overflow English Terms | Privacy