

■ Estimating Travel Time Based on Recurrent Neural Networks

When will you arrive?¹

Motivation

- Routes planning, Navigation
- Traffic dispatching

Previous work

- Estimate for each individual road
- Road intersections and traffic lights
- No driving habits

Definitions

Objective

Given: 1. path 2. driver 3. start time

Estimate:

the travel time for the given path.

Train data

GPS trajectory
Sample points from path

Challenges

- The travel time of a specific path can be very different
 - ✓ Peak/Non-peak hour
 - ✓ The day of the week
- Diverse values of trajectory length/distance.

Different driving habits

Architecture

- 1. Use Attributes Component incorporate various factors
- Use Sequence Learning Component to handle trajectory
- 3. Use Estimation Component to predict the travel time
- 4. Extend to multi-task learning by introducing an AuxiliaryComponent

■ Sequence Learning Component

- RNN(Recurrent Neural Network)
- LSTM (Long Short Term Memory)
- Time dependence and spatial dependence

$$x_i = (lng_i, lat_i, lng_{i+1}, lat_{i+1}, d_{i,i+1})$$

Sequence Learning Component

- $\blacksquare x_i \rightarrow h_i$
 - Abstract of the first i points
 - Deal the new point
- Trajectory -> Vector
 - Represent the whole trajectory with all h_i.
- Handling different trajectory lengths
 - Mean Pooling Trick
 - Sampling Trick

Auxiliary Component

To utilize the "local information"

- estimate the travel time of each subtrajectory
- extend to a multi-task model
- used as the auxiliary output

■ Model Training

- Evaluate: mean absolute percentage error (MAPE)
 - Estimation Component

$$\mathrm{loss}_{seq} = |e - \Delta t_{p_1 \rightarrow p_{L_m}}| / \Delta t_{p_1 \rightarrow p_{L_m}}.$$

Auxiliary Component

$$\mathrm{los} s_{aux} = rac{1}{m-1} \sum_{i=1}^{m-1} rac{|e_i - \Delta t_{p_{L_i}
ightarrow p_{L_{i+1}}}|}{\Delta t_{p_{L_i}
ightarrow p_{L_{i+1}}} + \epsilon}.$$

Final loss:

$$loss = loss_{seq} + \alpha \cdot loss_{aux}$$

Data Description

- 1.4 billion GPS records of 14,864 taxis in Oct. 2014 in Chengdu.
- Total number of trajectories: 9,653,822. (60GB)
- Use the last 7 days (from 24th to 30th) as the test set and the remaining ones as the training set.

Table: Performance Comparison

Model	MAPE
Gradient Boosting	20.32%
MLP-3 layers	16.17%
MLP-5 layers	15.75%
Vanilla RNN	18.85%
DeepTTE	13.14%

Table: Performance of Different Number of Samples

#Samples	MAPE	Time (per epoch)
DeepTTE-10	15.45%	674s
DeepTTE-30	13.14%	1729s
DeepTTE-70	13.02%	3879s
DeepTTE-100	12.74%	5484s
DeepTTE-Var	12.87%	5841s

Effects of Components

- Eliminate Estimation Component, 28.44%;
- Eliminate Auxiliary Component, 13.95%;
- Our entire model, 13.14%.

Table: Effects of Attribute Component

Model	MAPE
DeepTTE-30	13.14%
Eliminate driverID	13.37%
Eliminate weekID	13.58%
Eliminate both	13.59%

Conclusion

- New block for handle trajectory (with LSTM)
- 2. Extend to multi-task learning by introducing an Auxiliary Component

Thank you