

RL78/G14

RENESAS MCU

R01DS0053EJ0100 Rev. 1.00 Feb 21, 2012

True Low Power Platform (as low as 66 μ A/MHz, and 0.60 μ A for RTC + LVD), 1.6 V to 5.5 V operation, 16 to 256 Kbyte Flash, 44 DMIPS at 32 MHz, for General Purpose Applications

1. OUTLINE

1.1 Features

Ultra-Low Power Technology

- 1.6 V to 5.5 V operation from a single supply
- Stop (RAM retained): 0.24 μA, (LVD enabled): 0.32 μA
- Halt (RTC + LVD): 0.60 μA
- Snooze: T.B.D
- Operating: 66 μA/MHz

16-bit RL78 CPU Core

- Delivers 44 DMIPS at maximum operating frequency of 32 MHz
- Instruction execution: 86% of instructions can be executed in 1 to 2 clock cycles
- CISC architecture (Harvard) with 3-stage pipeline
- Multiply signed & unsigned: 16 x 16 to 32-bit result in 1 clock cycle
- MAC: 16 x 16 to 32-bit result in 2 clock cycles
- 16-bit barrel shifter for shift & rotate in 1 clock cycle
- 1-wire on-chip debug function

Code Flash Memory

- Density: 16 KB to 256 KB
- Block size: 1KB
- On-chip single voltage flash memory with protection from block erase/writing
- Self-programming with secure boot swap function and flash shield window function

Data Flash Memory

- Data flash with background operation
- Data flash size: 4 KB to 8 KB size options
- Erase cycles: 1 Million (typ.)
- Erase/programming voltage: 1.8 V to 5.5 V

RAM

- 2.5 KB to 24 KB size options
- Supports operands or instructions
- Back-up retention in all modes

High-speed On-chip Oscillator

- 32 MHz with +/- 1% accuracy over voltage (1.8 V to 5.5 V) and temperature (-20°C to 85°C)
- Pre-configured settings: 64 MHz,48 MHz,32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 4 MHz & 1 MHz
- 64 MHz, 48 MHz for timer RD

Reset and Supply Management

- Power-on reset (POR) monitor/generator
- Low voltage detection (LVD) with 14 setting options (Interrupt and/or reset function)

General Purpose I/O

- 5 V tolerant, high-current (up to 20 mA per pin)
- · Open-drain, on-chip pull-up resistor

Data Transfer Controller (DTC)

- 39 sources & 24 different settings
- Transfer data: 8 bits/16 bits
- · Normal mode and repeat mode

Event Link Controller (ELC)

- Reduce interrupt intervention
- Link 26 events to specified peripheral function

Multiple Communication Interfaces

- Up to 8 x I2C master
- Up to 2 x I2C multi-master
- Up to 8 x CSI/SPI (7-, 8-bit)
- Up to 4 x UART (7-, 8-, 9-bit)
- Up to 1 x LIN

Extended-Function Timers

- Multi-function 16-bit timers: Up to 8 channels
- Motor control timer (3 ph complementary mode)
- Timer with encoder function: 16-bit, 1 channel
- Real-time clock (RTC): 1 channel (full calendar and alarm function with watch correction function)
- Interval timer: 12-bit, 1 channel
- 15 kHz watchdog timer: 1 channel (window function)

Rich Analog

- \bullet ADC: Up to 20 channels, 10-bit resolution, 2.1 μs conversion time
- Supports 1.6 V
- 2 x window comparators, with ELC connection
- D/A converter: 2 channels, 8-bit resolution
- Internal voltage reference (1.45 V)
- On-chip temperature sensor

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation
- · RAM parity error check
- RAM write protection
- SFR write protection
- Illegal memory access detection
- Clock stop/frequency detection
- ADC self-test
- I/O port read back function (echo)

Operating Ambient Temperature

- Standard: -40°C to + 85°C
- Extended: -40°C to + 105°C <under planning>

Package Type and Pin Count

From 4 mm x 4 mm to 14 mm x 20 mm QFP: 32, 44, 48, 52, 64, 80,100 QFN: 32, 40, 48

SSOP: 30 LGA: 36, 64

○ ROM, RAM capacities

Flash ROM	Data flach	Data flash	RAM		RL78	RL78/G14		
Flasii KOW	Data ilasii	KAW	30 pins	32 pins	36 pins	40 pins		
192 KB	8 KB	20 KB	_	_	_	R5F104EH		
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG		
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF		
64 KB	4 KB	5.5 KB Note 1	R5F104AE	R5F104BE	R5F104CE	R5F104EE		
48 KB	4 KB	5.5 KB Note 1	R5F104AD	R5F104BD	R5F104CD	R5F104ED		
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC		
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA		

Flash ROM	Data flach	Data flach	Data flash	Data flash	Data flash	RAM	RL78/G14			
Flasii KOW	Data ilasii	KAW	44 pins	48 pins	52 pins	64 pins				
256 KB	8 KB	24 KB Note 2	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ				
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH				
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG				
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF				
64 KB	4 KB	5.5 KB Note 1	R5F104FE	R5F104GE	R5F104JE	R5F104LE				
48 KB	4 KB	5.5 KB Note 1	R5F104FD	R5F104GD	R5F104JD	R5F104LD				
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC				
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	_	_				

Flash ROM Data flash	Data flach	RAM	RL78/G14		
	Data ilasii	a liasti RAW	80 pins	100 pins	
256 KB	8 KB	24 KB Note 2	R5F104MJ	R5F104PJ	
192 KB	8 KB	20 KB	R5F104MH	R5F104PH	
128 KB	8 KB	16 KB	R5F104MG	R5F104PG	
96 KB	8 KB	12 KB	R5F104MF	R5F104PF	

Note 1. This is about 4.5 KB when the self-programming function and data flash function are used.

Note 2. This is about 23 KB when the self-programming function and data flash function are used.

1.2 Ordering Information

(1/2)

Pin count	Package	Part Number
30 pins	30-pin plastic SSOP (7.62 mm (300))	R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGDSP
32 pins	32-pin plastic WQFN (fine pitch) (5 x 5)	R5F104BAANA, R5F104BCANA, R5F104BDANA, R5F104BEANA, R5F104BFANA, R5F104BGANA R5F104BADNA, R5F104BCDNA, R5F104BDDNA, R5F104BEDNA, R5F104BFDNA, R5F104BGDNA
	32-pin plastic LQFP (7 x 7)	R5F104BAAFP, R5F104BCAFP, R5F104BDAFP, R5F104BEAFP, R5F104BFAFP, R5F104BGAFP R5F104BADFP, R5F104BCDFP, R5F104BDDFP, R5F104BEDFP, R5F104BFDFP, R5F104BFDFP, R5F104BGDFP
36 pins	36-pin plastic FLGA (4 × 4)	R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CADLA, R5F104CCDLA, R5F104CFDLA, R5F104CFDLA, R5F104CGDLA
40 pins	40-pin plastic WQFN (fine pitch) (6 x 6)	R5F104EAANA, R5F104ECANA, R5F104EDANA, R5F104EEANA, R5F104EFANA, R5F104EGANA, R5F104EDANA, R5F104EDNA, R5F104EDNA, R5F104EDNA, R5F104EDNA, R5F104EDNA, R5F104EDNA, R5F104EDNA, R5F104EDNA
44 pins	44-pin plastic LQFP (10 x 10)	R5F104FAAFP, R5F104FCAFP, R5F104FDAFP, R5F104FEAFP, R5F104FAFP, R5F104FGAFP, R5F104FADFP, R5F104FADFP, R5F104FDFP, R5F104FFDFP, R5F104FFDFP, R5F104FFDFP, R5F104FFDFP, R5F104FFDFP, R5F104FDFP
48 pins	48-pin plastic LQFP (fine pitch) (7 x 7)	R5F104GAAFB, R5F104GCAFB, R5F104GDAFB, R5F104GEAFB, R5F104GFAFB, R5F104GGAFB, R5F104GDFB, R5F104GDFB, R5F104GDFB, R5F104GDFB, R5F104GFDFB, R5F104GDFB, R5F104GDFB, R5F104GDFB
	48-pin plastic WQFN (7 x 7)	R5F104GAANA, R5F104GCANA, R5F104GDANA, R5F104GEANA, R5F104GFANA, R5F104GGANA, R5F104GHANA, R5F104GJANA R5F104GADNA, R5F104GCDNA, R5F104GDDNA, R5F104GFDNA, R5F104GFDNA, R5F104GGDNA, R5F104GJDNA
52 pins	52-pin plastic LQFP (10 x 10)	R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JJDFA

(2/2)

Pin count	Package	Part Number				
64 pins	64-pin plastic LQFP (12 x 12)	R5F104LCAFA, R5F104LDAFA, R5F104LEAFA, R5F104LFAFA,				
оч рипо		R5F104LGAFA, R5F104LHAFA, R5F104LJAFA				
		R5F104LCDFA, R5F104LDDFA, R5F104LEDFA, R5F104LFDFA,				
		R5F104LGDFA, R5F104LHDFA, R5F104LJDFA				
	64-pin plastic LQFP (fine pitch) (10 x 10)	R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB,				
		R5F104LGAFB, R5F104LHAFB, R5F104LJAFB				
		R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB,				
		R5F104LGDFB, R5F104LHDFB, R5F104LJDFB				
	64-pin plastic FLGA (5 × 5)	R5F104LCALA, R5F104LDALA, R5F104LEALA, R5F104LFALA,				
		R5F104LGALA, R5F104LHALA, R5F104LJALA				
		R5F104LCDLA, R5F104LDDLA, R5F104LEDLA, R5F104LFDLA,				
		R5F104LGDLA, R5F104LHDLA, R5F104LJDLA				
	64-pin plastic LQFP (14 x 14)	R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP,				
		R5F104LGAFP, R5F104LHAFP, R5F104LJAFP				
		R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP,				
		R5F104LGDFP, R5F104LHDFP, R5F104LJDFP				
80 pins	80-pin plastic LQFP (fine pitch) (12 x 12)	R5F104MFAFB, R5F104MGAFB, R5F104MHAFB, R5F104MJAFB				
		R5F104MFDFB, R5F104MGDFB, R5F104MHDFB, R5F104MJDFB				
	80-pin plastic LQFP (14 x 14)	R5F104MFAFA, R5F104MGAFA, R5F104MHAFA, R5F104MJAFA				
		R5F104MFDFA, R5F104MGDFA, R5F104MHDFA, R5F104MJDFA				
100 pins	100-pin plastic LQFP (fine pitch) (14 x 14)	R5F104PFAFB, R5F104PGAFB, R5F104PHAFB, R5F104PJAFB				
		R5F104PFDFB, R5F104PGDFB, R5F104PHDFB, R5F104PJDFB				
	100-pin plastic LQFP (14 x 20)	R5F104PFAFA, R5F104PGAFA, R5F104PHAFA, R5F104PJAFA				
		R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA				

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14

1.3 Pin Configuration (Top View)

1.3.1 **30-pin products**

• 30-pin plastic SSOP (7.62 mm (300))

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

1.3.2 32-pin products

- 32-pin plastic WQFN (fine pitch) (5 x 5)
- 32-pin plastic LQFP (7 x 7)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

1.3.3 36-pin products

• 36-pin plastic FLGA (4 × 4)

P62/SSI00 P61/SDAA0 Vss REGC RESET P120/ANI19/ VCOUT0 Note P72/SO21 P71/SI21/ SDA21 P71/RECLKD/ (SCLA0) P31/TI03/TO03/ INTP4/PCLBUZ0/ (TRJI00) TRGCLKA/ (TRJI00) TRGCLKA/ (TRJI00) TRJI00 TRJI00 TRJI00 P21/ANI1/ ANO0 Note AVREFP AVREFM AVREFM AVREFM AVREFM AVREFM AVREFM AVREFM P23/ANI3/ ANO1 Note P30/INTP3/ SCK00/SCL00/ INTP5/TRDIOCO/ (RXD0) P16/TI01/TO01/ TRDIOB1/ IVREF0 Note/ (RXD0) P17/TI02/TO02/ (RXD0) P17/TI02/TO02/ SO20/TRDIOA1/ TRDIOA1/ TRDIOC1 P12/SO11/ TRDIOC1 P147/ANI18/ VCOUT1 Note P25/ANI5 P25/ANI5 P25/ANI5 P25/ANI5 P25/ANI5 P25/ANI5 P25/ANI5 TRDIOD1		Α	В	С	D	Е	F	
P72/SO21	6	P60/SCLA0	VDD	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
SDA21 SDA20/TRDIODO/ (SCLA0) INTP4/PCLBUZO/ (TRJO0) TRGCLKA/ (TRJO0) TRJIO0	5	P62/SSI00	P61/SDAA0	Vss	REGC	RESET		5
SI00/RxD0/ SCL21 SCK20/SCL20/ ANO0 Note AVREFP AVREFM AVREFM SCK20/SCL20/ TRDIOB0/ (SDAA0) SDA00/TRGIOA/ (TRJO0) P16/TI01/TO01/ P12/SO11/ P11/SI11/ P24/ANI4 P23/ANI3/ ANO1 Note ANO1 Note P30/INTP3/ IVREF0 Note/ (RXD0) IVREF1 Note TRDIOC1 TRDIOC1 P13/TxD2/ SO00/TxD0/ TRDIOA0/ TRDIOA0/ SO20/TRDIOA1/ SCL11/ SCL11/ VCOUT1 Note TRDIOD1 TRDIOD1	4	P72/SO21	,	SDA20/TRDIOD0/	INTP4/PCLBUZ0/	TRGCLKA/	RxD1/TRGCLKB/	4
2 SCK00/SCL00/ INTP5/TRDIOC0/ TRDIOB1/ TRDIOC1 SDA11/ TRDIOC1 ANO1 Note 2	3	SI00/RxD0/ TOOLRxD/ SDA00/TRGIOA/		SCK20/SCL20/ TRDIOB0/			,	3
SO00/TxD0/	2	SCK00/SCL00/	INTP5/TRDIOC0/ IVREF0 Note/	TRDIOB1/	SDA11/	P24/ANI4		2
A B C D F F	1	SO00/TxD0/ TOOLTxD/ TRGIOB	TRDIOA0/ TRDCLK0/ IVCMP0 Note/ (TXD0)	SO20/TRDIOA1/ IVCMP1 Note	SCL11/ TRDIOD1	VCOUT1 Note		1

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

1.3.4 40-pin products

• 40-pin plastic WQFN (fine pitch) (6 x 6)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

1.3.5 44-pin products

• 44-pin plastic LQFP (10 x 10)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

1.3.6 48-pin products

• 48-pin plastic LQFP (fine pitch) (7 x 7)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

• 48-pin plastic WQFN (7 × 7)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

1.3.7 52-pin products

• 52-pin plastic LQFP (10 x 10)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

1.3.8 64-pin products

- 64-pin plastic LQFP (14 x 14)
- 64-pin plastic LQFP (12 x 12)
- 64-pin plastic LQFP (fine pitch) (10 x 10)

- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the same potential as EVDD0 pin, or the potential that is higher than the EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

• 64-pin plastic FLGA (5 × 5)

	Α	В	С	D	E	F	G	Н	
8	EVDD0	EVsso	P121/X1	P122/X2/ EXCLK	P137/INTP0	P123/XT1	P124/XT2/ EXCLKS	P120/ANI19/ VCOUT0 Note	8
7	P60/SCLA0	VDD	Vss	REGC	RESET	P01/TO00/ TRGCLKB/ TRJIO0	P00/TI00/ TRGCLKA/ (TRJO0)	P140/ PCLBUZ0/ INTP6	7
6	P61/SDAA0	P62/SSI00	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/ SO10/TxD1	P141/ PCLBUZ1/ INTP7	6
5	P77/KR7/ INTP11/(TXD2)	P31/TI03/ TO03/INTP4/ (PCLBUZ0)/ (TRJIO0)	P53/(INTP2)	P42/(INTP8)	P03/ANI16/ SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANI0/ AVREFP	5
4	P75/KR5/ INTP9/ SCK01/ SCL01	P76/KR6/ INTP10/ (RXD2)	P52/(INTP1)	P54/(INTP3)	P16/TI01/ TO01/INTP5/ TRDIOC0/ IVREF0 Note/ (SI00)/(RXD0)	P21/ANI1/ AVREFM	P22/ANI2/ ANO0 Note	P23/ANI3/ ANO1 Note	4
3	P70/KR0/ SCK21/ SCL21	P73/KR3/ SO01	P74/KR4/ INTP8/SI01/ SDA01	P17/Tl02/TO02/ TRDIOA0/ TRDCLK0/ IVCMP0 Note/ (SO00)/(TXD0)	P15/SCK20/ SCL20/ TRDIOB0/ (SDAA0)	P12/SO11/ TRDIOB1/ IVREF1 Note/ (INTP5)	P24/ANI4	P26/ANI6	3
2	P30/INTP3/ RTC1HZ/ SCK00/ SCL00/TRJO0	P72/KR2/ SO21	P71/KR1/ SI21/SDA21	P06/(INTP11)/ (TRJIO0)	P14/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)	P11/SI11/ SDA11/ TRDIOC1	P25/ANI5	P27/ANI7	2
1	P05/(INTP10)	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/ TRGIOA/ (TRJO0)	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P55/ (PCLBUZ1)/ (SCK00)/ (INTP4)	P13/TxD2/ SO20/ TRDIOA1/ IVCMP1 Note	P10/SCK11/ SCL11/ TRDIOD1	P146	P147/ANI18/ VCOUT1 Note	1
	A	В	С	D	F	F	G	Н	•

Note Mounted on the 96 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as Vss pin.

Caution 2. Make VDD pin the same potential as EVDD0 pin, or the potential that is higher than the EVDD0 pin.

Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

(Remarks are listed on the next page.)

- Remark 1. For pin identification, see 1.4 Pin Identification.

 Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVsso pins to separate ground lines.

1.3.9 80-pin products

- 80-pin plastic LQFP (14 x 14)
- 80-pin plastic LQFP (fine pitch) (12 x 12)

- ${\bf Caution} \qquad {\bf Make\ EVss0\ pin\ the\ same\ potential\ as\ Vss\ pin.}$
- Caution 1. Make VDD pin the same potential as EVDD0 pin, or the potential that is higher than the EVDD0 pin.
- Caution 2. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.3.10 100-pin products

• 100-pin plastic LQFP (fine pitch) (14 x 14)

- Caution Make EVsso, EVss1 pins the same potential as Vss pin.
- Caution 1. Make VDD pin the same potential as EVDD0 pin, or the potential that is higher than the EVDD0 pin.

 Make EVDD1 pin the same potential as EVDD0 pin.
- Caution 2. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

• 100-pin plastic LQFP (fine pitch) (14 x 20)

- Caution Make EVsso, EVss1 pins the same potential as Vss pin.
- Caution 1. Make VDD pin the same potential as EVDD0 pin, or the potential that is higher than the EVDD0 pin.

 Make EVDD1 pin the same potential as EVDD0 pin
- Caution 2. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.4 Pin Identification

ANI0 to ANI14,: Analog input RxD0 to RxD3: Receive data

ANI16 to ANI20 SCK00, SCK01, SCK10,: Serial clock input/output

ANO0, ANO1: Analog output SCK11, SCK20, SCK21,

AVREFM: A/D converter reference SCK30, SCK31

potential (- side) input SCLA0, SCLA1, SCL00,: Serial clock input/output

AVREFP: A/D converter reference SCL01, SCL10, SCL11,

potential (+ side) input SCL20, SCL21, SCL30,

EVDD0, EVDD1: Power supply for port SCL31

EVsso, EVss1: Ground for port SDAA0, SDAA1, SDA00,: Serial data input/output

EXCLK: External clock input SDA01, SDA10, SDA11,

(main system clock) SDA20, SDA21, SDA30,

EXCLKS: External clock input SDA31

(sub system clock) SI00, SI01, SI10, SI11,: Serial data input

INTP0 to INTP11: External interrupt input SI20, SI21, SI30, SI31

IVCMP0, IVCMP1: Comparator input SO00, SO01, SO10,: Serial data output

IVREF0, IVREF1: Comparator reference input SO11, SO20, SO21,

KR0 to KR7: Key return SO30, SO31

P00 to P06: Port 0 SSI00: Serial interface chip select input

P10 to P17: Port 1 TI00 to TI03,: Timer input

P20 to P27: Port 2 TI10 to TI13

P30, P31: Port 3 TO00 to TO03,: Timer output

P40 to P47: Port 4 TO10 to TO13, TRJ00

P50 to P57: Port 5 TOOL0: Data input/output for tool

P60 to P67: Port 6 TOOLRxD, TOOLTxD: Data input/output for external device

TRGCLKB

P70 to P77: Port 7 TRDCLK0, TRGCLKA,: Timer external input clock

P80 to P87: Port 8

P100 to P102: Port 10 TRDIOA0, TRDIOB0,: Timer input/output

 P110, P111:
 Port 11
 TRDIOC0, TRDIOD0,

 P120 to P124:
 Port 12
 TRDIOA1, TRDIOB1,

 P130, P137:
 Port 13
 TRDIOC1, TRDIOD1,

P140 to P147: Port 14 TRGIOA, TRGIOB, TRJIO0

P150 to P156: Port 15 TxD0 to TxD3: Transmit data

PCLBUZ0, PCLBUZ1: Programmable clock VCOUT0, VCOUT1: Comparator output

output/buzzer output VDD: Power supply

REGC: Regulator capacitance Vss: Ground

RESET: Reset X1, X2: Crystal oscillator (main system clock)

RTC1HZ: Real-time clock correction clock XT1, XT2: Crystal oscillator (subsystem clock)

(1 Hz) output

1.5 Block Diagram

1.5.1 30-pin products

1.5.2 32-pin products

1.5.3 **36-pin products**

1.5.4 40-pin products

1.5.5 **44-pin products**

1.5.6 **48-pin products**

Note Mounted on the 96 KB or more code flash memory products.

1.5.7 52-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.8 64-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.9 **80-pin products**

1.5.10 100-pin products

1.6 Outline of Functions

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

		30-pin	32-pin	36-pin	40-pin	
	Item	R5F104Ax (x = A, C to E)	R5F104Bx (x = A, C to E)	R5F104Cx (x = A, C to E)	R5F104Ex (x = A, C to E)	
Code flash me	mory (KB)	16 to 64	16 to 64	16 to 64	16 to 64	
Data flash mer	mory (KB)	4	4	4	4	
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	2.5 to 5.5 Note	2.5 to 5.5 Note	
Memory space	.	1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscill 1 to 20 MHz: VDD = 2.7 to	ation, external main system 5.5 V, 1 to 8 MHz: VDD = 2	, ,	'DD = 1.6 to 1.8 V	
	High-speed on-chip oscillator clock (fiн)		•	,	: 1 to 16 MHz (VDD = 2.4 to eration: 1 to 4 MHz (VDD =	
Subsystem clo	ck		-		XT1 (crystal) oscillation 32.768 kHz (TYP.): VDD = 1.6 to 5.5 V	
Low-speed on	-chip oscillator clock	15 kHz (TYP.): VDD = 1.6	to 5.5 V			
General-purpo	se register	8 bits × 32 registers (8 bits	s × 8 registers × 4 banks)			
Minimum instru	uction execution time	0.03125 μs (High-speed o	on-chip oscillator clock: fін	= 32 MHz operation)		
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)				
		— 30.5 μs (Subsystem clock: fsuB = 32.768 operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 				
I/O port	Total	26	28	32	36	
	CMOS I/O	21	22	26	28	
	CMOS input	3	3	3	5	
	CMOS output	_	_	_	_	
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3	
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)				
Watchdog timer Real-time clock (RTC) 12-bit interval timer Timer output		1 channel				
		1 channel				
		1 channel				
		16 (TAU: 4, Timer RJ: 2, Timer PWM outputs: 10 (TAU: 3		1)		
	RTC output		-		1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)	

Note In the case of the 5.5 KB, this is about 4.5 KB when the self-programming function and data flash function are used.

(2/2)

					· , ,			
ltem		30-pin	30-pin 32-pin 36-pin 40-pin					
		R5F104Ax	R5F104Bx	R5F104Cx	R5F104Ex			
		(x = A, C to E)	(x = A, C to E)	(x = A, C to E)	(x = A, C to E)			
Clock output/buzzer output		2	2	2	2			
		(Main system clock: fMA [40-pin products] • 2.44 kHz, 4.88 kHz, 9.7 (Main system clock: fMA • 256 Hz, 512 Hz, 1.024 k	6 kHz, 1.25 MHz, 2.5 MHz, N = 20 MHz operation) 6 kHz, 1.25 MHz, 2.5 MHz,	, 5 MHz, 10 MHz	2.768 kHz			
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels			
Serial interface		CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products] CSI: 1 channel/UART (U CSI: 1 channel/UART: 1	JART supporting LIN-bus): channel/simplified I ² C: 1 c channel/simplified I ² C: 1 c JART supporting LIN-bus): channel/simplified I ² C: 1 c 1 channel/simplified I ² C: 2	channel channel 1 channel/simplified I ² C: 4				
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer control	ller (DTC)	28 sources 29 sources						
Event link controller	(ELC)	Event input: 20 Event trigger output: 7						
Vectored interrupt	Internal	24	24	24	24			
sources	External	6	6	6	7			
Key interrupt	1	_	_	_	4			
Reset		Reset by RESET pin Internal reset by watchc Internal reset by power Internal reset by voltage Internal reset by illegal i Internal reset by RAM p Internal reset by illegal-	on-reset e detector nstruction execution ^{Note} arity error					
Power-on-reset circuit		Power-on-reset: 1.51 ±0.03 V Power-down-reset: 1.50 ±0.03 V						
		Fower-down-reset. 1.5	1.63 V to 4.06 V (14 stages)					
Voltage detector								
Voltage detector On-chip debug funct	ion							
		1.63 V to 4.06 V (14 stage						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

					(1/2)	
		30-pin	32-pin	36-pin	40-pin	
ltem		R5F104Ax	R5F104Bx	R5F104Cx	R5F104Ex	
		(x = F, G)	(x = F, G)	(x = F, G)	(x = F to H)	
Code flash men	nory (KB)	96 to 128	96 to 128	96 to 128	96 to 192	
Data flash mem	ory (KB)	8	8	8	8	
RAM (KB)		12 to 16	12 to 16	12 to 16	12 to 20	
Memory space		1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscilla 1 to 20 MHz: VDD = 2.7 to		,	/DD = 1.6 to 1.8 V	
	High-speed on-chip oscillator clock (fін)		•	,	n: 1 to 16 MHz (VDD = 2.4 to peration: 1 to 4 MHz (VDD =	
Subsystem cloc	k		_		XT1 (crystal) oscillation	
					32.768 kHz (TYP.):	
					VDD = 1.6 to 5.5 V	
Low-speed on-o	chip oscillator clock	15 kHz (TYP.): VDD = 1.6 t	o 5.5 V			
General-purpos	e register	8 bits × 32 registers (8 bits	s × 8 registers × 4 banks)			
Minimum instru	ction execution time	0.03125 μs (High-speed o	n-chip oscillator clock: fін	= 32 MHz operation)		
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)				
		— 30.5 μs (Subsystem clock: fsue = 32.768 kH; operation)				
		Adder and subtractor/log Multiplication (8 bits × 8 Multiplication and Accur Rotate, barrel shift, and	bits, 16 bits × 16 bits), Div nulation (16 bits × 16 bits	+ 32 bits)	,	
I/O port	Total	26	28	32	36	
	CMOS I/O	21	22	26	28	
	CMOS input	3	3	3	5	
	CMOS output	_	_	_	_	
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3	
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel				
	Real-time clock (RTC)	1 channel				
12-bit interval timer		1 channel				
	Timer output	16 (TAU: 4, Timer RJ: 2, Time PWM outputs: 10 (TAU: 3,	,	1)		
	RTC output		_		1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)	

(2/2)

				-	(=,=)			
		30-pin	32-pin	36-pin	40-pin			
ltem		R5F104Ax	R5F104Bx	R5F104Cx	R5F104Ex			
		(x = F, G)	(x = F, G)	(x = F, G)	(x = F to H)			
Clock output/buzze	r output	2	2	2	2			
		(Main system clock: fma [40-pin products] • 2.44 kHz, 4.88 kHz, 9.7 (Main system clock: fma • 256 Hz, 512 Hz, 1.024 I (Subsystem clock: fsub	6 kHz, 1.25 MHz, 2.5 MHz IN = 20 MHz operation) 6 kHz, 1.25 MHz, 2.5 MHz IN = 20 MHz operation) kHz, 2.048 kHz, 4.096 kHz = 32.768 kHz operation)	z, 5 MHz, 10 MHz z, 8.192 kHz, 16.384 kHz	1			
8/10-bit resolution A	VD converter	8 channels	8 channels	8 channels	9 channels			
D/A converter		1 channel	2 channels					
Comparator		2 channels						
Serial interface		CSI: 1 channel/UART (I CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products] CSI: 1 channel/UART (I	CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I ² C: 1 channel					
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer contro	oller (DTC)	28 sources 29 sources						
Event link controller		Event input: 20 Event trigger output: 7						
Vectored interrupt	Internal	24	24	24	24			
sources	External	6	6	6	7			
Key interrupt	L	_	_	<u> </u>	4			
Reset		Reset by RESET pin Internal reset by watche Internal reset by power- Internal reset by voltage Internal reset by illegal Internal reset by RAM p Internal reset by illegal-	on-reset e detector instruction execution ^{Note} parity error		,			
Power-on-reset circuit		Power-on-reset: 1.5 Power-down-reset: 1.5	51 ±0.03 V 50 ±0.03 V					
Voltage detector		1.63 V to 4.06 V (14 stages)						
Voltage detector		, ,	Provided					
Voltage detector On-chip debug fund	etion	Provided						
		Provided VDD = 1.6 to 5.5 V						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

					` '		
		44-pin	48-pin	52-pin	64-pin		
Item		R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx		
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)		
Code flash me	emory (KB)	16 to 64	16 to 64	32 to 64	32 to 64		
Data flash me	mory (KB)	4	4	4	4		
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	4 to 5.5 Note	4 to 5.5 Note		
Memory space	е	1 MB			1		
Main system clock	High-speed system clock	,	scillation, external main to 5.5 V, 1 to 8 MHz: Vo	, , ,	,		
	High-speed on-chip oscillator clock (fiH)		1 to 32 MHz (VDD = 2.7 ow-speed operation: 1 t (VDD = 1.6 to 5.5 V)	, .	•		
Subsystem clo	ock	XT1 (crystal) oscillation 32.768 kHz (TYP.): VD					
Low-speed on	n-chip oscillator clock	15 kHz (TYP.): VDD = 1	I.6 to 5.5 V				
General-purpo	ose register	8 bits × 32 registers (8	bits x 8 registers x 4 ba	anks)			
Minimum instr	ruction execution time	0.03125 μs (High-spee	ed on-chip oscillator clo	ck: fiн = 32 MHz opera	tion)		
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)					
		30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)					
Instruction set		 Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 					
I/O port	Total	40	44	48	58		
	CMOS I/O	31	34	38	48		
	CMOS input	5	5	5	5		
	CMOS output	_	1	1	1		
	N-ch open-drain I/O (6 V tolerance)	4	4	4	4		
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)					
Watchdog timer		1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	16 (TAU: 4, Timer RJ: 2, Timer RD: 8, Timer RG: 2) PWM outputs: 10 (TAU: 3, Timer RD: 6, Timer RG: 1)					
		1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)					

Note In the case of the 5.5 KB, this is about 4.5 KB when the self-programming function and data flash function are used.

(2/2)

					(2/2)
		44-pin	48-pin	52-pin	64-pin
ltem		R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)
Clock output/buzzer output		2	2	2	2
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 			
8/10-bit resolution A/D converter		10 channels	10 channels	12 channels	12 channels
Serial interface		 [44-pin products] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels [48-pin, 52-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels [64-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 			
I ² C bus		1 channel	1 channel	1 channel	1 channel
Data transfer cont		29 sources	30 sources	· onamo	31 sources
Event link controller (ELC)		Event input: 20 Event trigger output: 7			
Vectored interrupt sources	Internal	24	24	24	24
	External	7	10	12	13
Key interrupt	1	4	6	8	8
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access			
Power-on-reset circuit		 Power-on-reset: 1.51 ±0.03 V Power-down-reset: 1.50 ±0.03 V 			
Voltage detector		1.63 V to 4.06 V (14 stages)			
Voltage detector		1.63 V to 4.06 V (14 st	tages)		
Voltage detector On-chip debug fur	nction	1.63 V to 4.06 V (14 st	tages)		
		<u>`</u>	tages)		

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

					-		
		44-pin	48-pin	52-pin	64-pin		
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx		
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)		
Code flash me	emory (KB)	96 to 256	96 to 256	96 to 256	96 to 256		
Data flash me	mory (KB)	8	8	8	8		
RAM (KB)		12 to 24 Note	12 to 24 Note	12 to 24 Note	12 to 24 Note		
Memory space	Э	1 MB			1		
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) 1 to 20 MHz: VDD = 2.7 to 5.5 V, 1 to 8 MHz: VDD = 1.8 to 2.7 V, 1 to 4 MHz: VDD = 1.6 to 1.8 V					
	High-speed on-chip oscillator clock (fiH)	(VDD = 2.4 to 5.5 V), Lo	High-speed operation: 1 to 32 MHz ($VDD = 2.7$ to 5.5 V), High-speed operation: 1 to 16 MH ($VDD = 2.4$ to 5.5 V), Low-speed operation: 1 to 8 MHz ($VDD = 1.8$ to 5.5 V), Low-voltage operation: 1 to 4 MHz ($VDD = 1.6$ to 5.5 V)				
Subsystem clo	ock	XT1 (crystal) oscillation 32.768 kHz (TYP.): VD					
Low-speed on	-chip oscillator clock	15 kHz (TYP.): VDD = 1	.6 to 5.5 V				
General-purpo	ose register	8 bits × 32 registers (8	bits × 8 registers × 4 b	anks)			
Minimum instruction execution time		0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)					
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)					
		30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)					
Instruction set		Multiplication (8 bits : Multiplication and Ac	/logical operation (8/16	s), Division (16 bits ÷ 1 6 bits + 32 bits)	6 bits, 32 bits ÷ 32 bits)		
I/O port	Total	40	44	48	58		
	CMOS I/O	31	34	38	48		
	CMOS input	5	5	5	5		
	CMOS output	_	1	1	1		
	N-ch open-drain I/O (6 V tolerance)	4	4	4	4		
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)					
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	16 (TAU: 4, Timer RJ: 2, Timer RD: 8, Timer RG: 2) PWM outputs: 10 (TAU: 3, Timer RD: 6, Timer RG: 1)					
	RTC output	1 • 1 Hz (subsystem close	ck: fsuB = 32.768 kHz)				

Note In the case of the 24 KB, this is about 23 KB when the self-programming function and data flash function are used.

(2/2)

					(2/2)			
		44-pin	48-pin	52-pin	64-pin			
It	em	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx			
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)			
Clock output/buzz	er output	2	2 2 2 2					
		(Main system clock: • 256 Hz, 512 Hz, 1.02	9.76 kHz, 1.25 MHz, 2.4 fmain = 20 MHz operatic 24 kHz, 2.048 kHz, 4.09 UB = 32.768 kHz operat	on) 96 kHz, 8.192 kHz, 16.3				
8/10-bit resolution	A/D converter	10 channels	10 channels	12 channels	12 channels			
D/A converter	7.7.2 00.11.01.10.	2 channels	10 01101111010	12 01101111010	1 2 0.10.11.00			
Comparator		2 channels						
Serial interface		[44-pin products]			1			
		 CSI: 2 channels/UAF [48-pin, 52-pin production CSI: 2 channels/UAF CSI: 1 channel/UAF CSI: 2 channels/UAF [64-pin products] CSI: 2 channels/UAF 	 CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels [48-pin, 52-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels [64-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 					
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer cont	roller (DTC)	29 sources	30 sources		31 sources			
Event link controll	er (ELC)	Event input: 20 Event trigger output: 7						
Vectored	Internal	24	24	24	24			
interrupt sources	External	7	10	12	13			
Key interrupt		4	6	8	8			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access						
Power-on-reset ci	rcuit	Power-on-reset: Power-down-reset:	1.51 ±0.03 V 1.50 ±0.03 V					
Voltage detector		1.63 V to 4.06 V (14 s	tages)					
On-chip debug fur	nction	Provided						
Power supply volt	age	VDD = 1.6 to 5.5 V						
Operating ambien	t temperature	Ta = -40 to +85 °C						
		1						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[80-pin, 100-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

		80-pin	100-pin			
	Item	R5F104Mx	R5F104Px			
		(x = F to H, J)	(x = F to H, J)			
Code flash mer	mory (KB)	96 to 256	96 to 256			
Data flash mem	nory (KB)	8	8			
RAM (KB)		12 to 24 ^{Note}	12 to 24 Note			
Memory space		1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main 1 to 20 MHz: VDD = 2.7 to 5.5 V, 1 to 8 MHz: VD				
	High-speed on-chip oscillator clock (fiH)	gh-speed operation: 1 to 32 MHz ($VDD = 2.7$ to 5.5 V), High-speed operation: 1 to 16 MH. $VDD = 2.4$ to 5.5 V), Low-speed operation: 1 to 8 MHz ($VDD = 1.8$ to 5.5 V), Low-voltage operation: 1 to 4 MHz ($VDD = 1.6$ to 5.5 V)				
Subsystem cloo	ck	XT1 (crystal) oscillation 32.768 kHz (TYP.): VDD = 1.6 to 5.5 V				
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V				
General-purpos	se register	8 bits x 32 registers (8 bits x 8 registers x 4 ba	anks)			
Minimum instruction execution time		0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 Multiplication (8 bits × 8 bits, 16 bits × 16 bits Multiplication and Accumulation (16 bits × 16 Rotate, barrel shift, and bit manipulation (Sei 	s), Division (16 bits \div 16 bits, 32 bits \div 32 bits) 8 bits + 32 bits)			
I/O port	Total	74	92			
	CMOS I/O	64	82			
	CMOS input	5	5			
	CMOS output	1	1			
	N-ch open-drain I/O (6 V tolerance)	4	4			
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel				
	Real-time clock (RTC)	1 channel				
	12-bit interval timer	1 channel				
	Timer output	20 (TAU: 8, Timer RJ: 2, Timer RD: 8, Timer RG: 2) PWM outputs: 13 (TAU: 6, Timer RD: 6, Timer RG: 1)				
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)				

Note In the case of the 24 KB, this is about 23 KB when the self-programming function and data flash function are used.

(2/2)

		00 '-	400 1			
_		80-pin	100-pin			
lt lt	em	R5F104Mx	R5F104Px			
		(x = F to H, J)	(x = F to H, J)			
Clock output/buzz	er output	2	2			
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz				
		(Main system clock: fmain = 20 MHz operation	on)			
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09	96 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz			
		(Subsystem clock: fsub = 32.768 kHz opera	tion)			
8/10-bit resolution	A/D converter	17 channels	20 channels			
D/A converter		2 channels	2 channels			
Comparator		2 channels	2 channels			
Serial interface		[80-pin, 100-pin products]				
		CSI: 2 channels/UART (UART supporting LI	N-bus): 1 channel/simplified I ² C: 2 channels			
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels			
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels				
	I ² C bus	2 channels	2 channels			
Data transfer cont	roller (DTC)	39 sources	39 sources			
Event link controll	er (ELC)	Event input: 26				
		Event trigger output: 9				
Vectored	Internal	32	32			
interrupt sources	External	13	13			
Key interrupt		8	8			
Reset		Reset by RESET pin				
		Internal reset by watchdog timer				
		Internal reset by power-on-reset				
		Internal reset by voltage detector				
		Internal reset by illegal instruction execution	Note			
		Internal reset by RAM parity error				
		Internal reset by illegal-memory access				
Power-on-reset ci	rcuit	• Power-on-reset: 1.51 ±0.03 V				
		• Power-down-reset: 1.50 ±0.03 V				
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug fur	nction	Provided				
Power supply volt	age	VDD = 1.6 to 5.5 V				
Operating ambien	t temperature	TA = -40 to +85 °C				

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

Caution 1. The RL78/G14 has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Caution 2. The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3.10 100-pin products.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25 $^{\circ}$ C) (1/2)

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	Vss		-0.5 to +0.3	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 Note 1	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vıз	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-0.3 to EVDD0 +0.3 Note 2	V
	VO2	P20 to P27, P150 to P156	-0.3 to VDD +0.3	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EV _{DD0} +0.3 Note 2	V
	VAI2	ANI0 to ANI14	-0.3 to V _{DD} +0.3 Note 2	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Caution

Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Note 2. Must be 6.5 V or lower.

Absolute Maximum Ratings (TA = 25 $^{\circ}$ C) (2/2)

(2/2)

Parameter	Symbols	_	Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal of	pperation mode	-40 to +85	°C
temperature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution

Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 Main system clock oscillator characteristics

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic		X1 clock oscillation frequency	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	1.0		20.0	MHz
resonator	Vss X1 X2	(fx) Note	1.8 V ≤ VDD < 2.7 V	1.0		8.0	
	Rd C1 = C2 =		1.6 V ≤ VDD < 1.8 V	1.0		4.0	
Crystal resonator		X1 clock oscillation frequency	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1.0		20.0	MHz
	Vss X1 X2	(fx) Note	1.8 V ≤ VDD < 2.7 V	1.0		8.0	
	Rd C1 — C2 —		1.6 V ≤ VDD < 1.8 V	1.0		4.0	

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Caution 2. Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Note 1	fін			1		32	MHz
High-speed on-chip oscillator		-20 to +85 °C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1		+1	%
clock frequency accuracy Note 2			1.6 V ≤ VDD ≤ 1.8 V	-5		+5	%
		-40 to -20 °C	1.8 V ≤ VDD < 5.5 V	-1.5		+1.5	%
			1.6 V ≤ VDD ≤ 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

- **Note 1.** High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.
- Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

 When SSOP (30-pin), WQFN (32-, 40-, 48-pin), FLGA (36-pin), LQFP (7 x 7) (48-pin), LQFP (10 x 10) (52-pin), LQFP (12 x 12) (64-, 80-pin), LQFP (14 x 14) (80-, 100-pin), LQFP (14 x 20) (100-pin) products, these specifications show target values, which may change after device evaluation.

2.2.3 Subsystem clock oscillator characteristics

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Resonator	Recommended Circuit	Items	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	Vss XT2 XT1 Rd C4 — C3 —	XT1 clock oscillation frequency (fxT) Note		32	32.768	35	kHz
	<i>m</i>						

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- Caution 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
- Caution 2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	1.6 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-55.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \leq \text{EVDD0} < 4.0 \text{ V}$			-10.0	mA
		(When duty = 70% Note 3)	1.8 V ≤ EVDD0 < 2.7 V			-5.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			-2.5	mA
		Total of P05, P06, P10 to P17,	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-80.0	mA
		P30, P31, P50 to P57,	2.7 V ≤ EVDD0 < 4.0 V			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110,	1.8 V ≤ EVDD0 < 2.7 V			-10.0	mA
		P111, P146, P147 (When duty = 70% Note 3)	1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA
		Total of all pins (When duty = 70% Note 3)	1.6 V ≤ EVDD0 ≤ 5.5 V			-135.0 Note 4	mA
	IOH2	Per pin for P20 to P27, P150 to P156	1.6 V ≤ VDD ≤ 5.5 V			-0.1 Note 2	mA
		Total of all pins (When duty = 70% Note 3)	1.6 V ≤ VDD ≤ 5.5 V			-1.5	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.
- Note 2. However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
- <Example> Where n = 50 % and loh = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(50 \times 0.01) = -14.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Note 4. The applied current for the products of industrial application (R5F104xxDxx) is -100 mA.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			70.0	mA
		P102, P120, P130, P140 to P145	2.7 V ≤ EVDD0 < 4.0 V			15.0	mA
		(When duty = 70% Note 3)	1.8 V ≤ EVDD0 < 2.7 V			9.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			4.5	mA
		Total of P05, P06, P10 to P17,	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			80.0	mA
		P30, P31, P50 to P57,	2.7 V ≤ EVDD0 < 4.0 V			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110,	1.8 V ≤ EVDD0 < 2.7 V			20.0	mA
		P111, P146, P147 (When duty = 70% Note 3)	1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
		Total of all pins (When duty = 70% Note 3)				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty = 70% Note 3)	1.6 V ≤ VDD ≤ 5.5 V			5.0	mA

- **Note 1.** Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
- **Note 2.** However, do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor is 70 %.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70 % to n %).

• Total output current of pins = $(IOL \times 0.7)/(n \times 0.01)$

<Example> Where n = 50 % and lol = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(50 \times 0.01) = 14.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P31, P43, P44, P50,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EV _{DD0}	V
		P53 to P55, P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	2.0		EV _{DD0}	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	1.50		EV _{DD0}	V
	VIH3	P20 to P27, P150 to P156		0.7 Vdd		Vdd	V
	VIH4	P60 to P63		0.7 EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0.8 VDD		VDD	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P31, P43, P44, P50,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	0		0.8	V
		P53 to P55, P80, P81, P142, P143	TTL input buffer 2.7 V ≤ EVDD0 < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EVDD0 < 2.7 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156	•	0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 VDD	V

Caution The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $I_{OH1} = -10.0 \text{ mA}$	EVDD0 - 1.5			V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $IOH1 = -3.0 \text{ mA}$	EVDD0 - 0.7			V
		P111, P120, P130, P140 to P147	$1.8 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $IOH1 = -1.5 \text{ mA}$	EVDD0 - 0.5		1.3 0.7 0.4 0.4 0.4 2.0 0.4 0.4 0.4 0.4	V
			1.6 V ≤ EVDD0 < 1.8 V, IOH1 = -1.0 mA	EVDD0 - 0.5			V
	VOH2	P20 to P27, P150 to P156	$1.6~V \le V$ DD $\le 5.5~V$, IOH2 = -100 μA	VDD - 0.5			V
Output voltage, low	VOL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$4.0~\text{V} \leq \text{EVDD0} \leq 5.5~\text{V},$ $I_{\text{OL1}} = 20.0~\text{mA}$			1.3	V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$ $IOL1 = 8.5 \text{ mA}$			0.7	V
		P111, P120, P130, P140 to P147	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$ $\text{IOL1} = 4.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $\text{IOL1} = 1.5 \text{ mA}$			0.4	V
			$1.8 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$ $\text{IOL1} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{EVDD0} < 1.8 \text{ V},$ $\text{IOL1} = 0.3 \text{ mA}$			0.4	V
	VOL2	P20 to P27, P150 to P156	$1.6~V \leq V_{DD} \leq 5.5~V,$ $I_{OL2} = 400~\mu A$			0.4	V
	VOL3	P60 to P63	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $10 \text{L3} = 15.0 \text{ mA}$			2.0	V
			$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$ $\text{IOL3} = 5.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $\text{IOL3} = 3.0 \text{ mA}$			0.4	V
			$1.8 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $\text{IOL3} = 2.0 \text{ mA}$			0.4	V
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 1.0 mA			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Items	Symbol	Condit	ions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVDDO)			MAX. 1 1 10 -1 -10	μА
	ILIH2	P20 to P27, P137, P150 to P156, RESET	VI = VDD				1	μА
	Ішнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μА
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μА
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μА
				In resonator connection			-10	μА
On-chip pll-up resistance	Rυ	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso	o, In input port	10	20	100	kΩ

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(Ta = -40 to +85 °C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	High-speed	fHOCO = 64 MHz,	Basic	VDD = 5.0 V		2.4		mA
current		mode	operation Notes 3, 5	fıн = 32 MHz	operation	VDD = 3.0 V		2.4		
Note 1				fHOCO = 32 MHz,	Basic	VDD = 5.0 V		2.1		
				fıн = 32 MHz	operation	VDD = 3.0 V		2.1		
			High-speed	fHOCO = 64 MHz,	Normal	VDD = 5.0 V		5.2	8.7	mΑ
			operation Notes 3, 5	fıн = 32 MHz	operation	VDD = 3.0 V		5.2	8.7	
				fHOCO = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.1	
				fıн = 32 MHz	operation	VDD = 3.0 V		4.8	8.1	
				fHOCO = 48 MHz,	Normal	VDD = 5.0 V		4.1	6.9	
				fıн = 24 MHz	operation	VDD = 3.0 V		4.1	6.9	
				fHOCO = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.3	
				fıн = 24 MHz	operation	VDD = 3.0 V		3.8	6.3	
				fHOCO = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.6	
				fıн = 16 MHz	operation	VDD = 3.0 V		2.8	4.6	
			Low-speed	fHOCO = 8 MHz,	Normal	VDD = 3.0 V		1.3	2.0	mA
			operation Notes 3, 5	fih = 8 MHz	operation	VDD = 2.0 V		1.3	2.0	
			Low-voltage	fHOCO = 4 MHz,	Normal	VDD = 3.0 V		1.3	1.8	mA
			operation Notes 3, 5	fih = 4 MHz	operation	VDD = 2.0 V		1.3	1.8	
			High-speed	fmx = 20 MHz,	Normal	Square wave input		3.3	5.3	mΑ
			operation Notes 2, 5	VDD = 5.0 V	operation	Resonator connection		3.5	5.5	
			operation	fmx = 20 MHz,	Normal	Square wave input		3.3	5.3	
				VDD = 3.0 V	operation	Resonator connection		3.5	5.5	
				fmx = 10 MHz,	Normal	Square wave input		2.0	3.1	
				VDD = 5.0 V	operation	Resonator connection		2.1	3.2	
				fmx = 10 MHz,	Normal	Square wave input		2.0	3.1	
				VDD = 3.0 V	operation	Resonator connection		2.1	3.2	
			Low-speed	fmx = 8 MHz,	Normal	Square wave input		1.2	1.9	mA
			operation Notes 2, 5	VDD = 3.0 V	operation	Resonator connection		1.2	2.0	
			operation	fmx = 8 MHz,	Normal	Square wave input		1.2	1.9	
				VDD = 2.0 V	operation			1.2	2.0	
			Subsystem clock	fsub = 32.768 kHz	Normal	Square wave input		4.7		μА
			operation Note 4	TA = -40 °C	operation	Resonator connection		4.7		μιν
			operation Note 4	fsub = 32.768 kHz	Normal	Square wave input		4.7	6.1	
				TA = +25 °C	operation	Resonator connection		4.7	6.1	
				fsub = 32.768 kHz	Normal			4.8	6.7	
				TA = +50 °C	operation	Square wave input Resonator connection		4.8	6.7	-
										-
				fsub = 32.768 kHz TA = +70 °C	Normal operation	Square wave input		4.8	7.5	-
						Resonator connection		4.8	7.5	-
				fsub = 32.768 kHz TA = +85 °C	Normal operation	Square wave input		5.4	8.9	-
				1A = 700 C	operation	Resonator connection		5.4	8.9	1

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current (except for background operation (BGO)). However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When real-time counter and watchdog timer is stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

High speed operation: VDD = 2.7 V to 5.5 V@1 MHz to 32 MHz

VDD = 2.4 V to 5.5 V@1 MHz to 16 MHz

Low speed operation: VDD = 1.8 V to 5.5 V@1 MHz to 8 MHzLow voltage operation: VDD = 1.6 V to 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.) Note
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Note fin is controlled by hardware to be set to two frequency division of fhoco when fhoco is set to 64 MHz or 48 MHz, and the same clock frequency as fhoco when fhoco is set to 32 MHz or less. When supplying 64 MHz or 48 MHz to timer RD, set fclk to fin.

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85 $^{\circ}$ C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	High-speed	fHOCO = 64 MHz,	VDD = 5.0 V		0.80	3.09	mA
current	Note 2		operation Notes 4, 7	fін = 32 MHz	VDD = 3.0 V		0.80	3.09	
Note 1				fHOCO = 32 MHz,	VDD = 5.0 V		0.54	2.40	
				fıн = 32 MHz	VDD = 3.0 V		0.54	2.40	
				fHOCO = 48 MHz,	VDD = 5.0 V		0.62	2.40	
				fін = 24 MHz	VDD = 3.0 V		0.62	2.40	
				fHOCO = 24 MHz,	VDD = 5.0 V		0.44	1.83	
				fıн = 24 MHz	VDD = 3.0 V		0.44	1.83	
				fHOCO = 16 MHz,	VDD = 5.0 V		0.40	1.38	
				fін = 16 MHz	VDD = 3.0 V		0.40	1.38	
			Low-speed	fHOCO = 8 MHz,	VDD = 3.0 V		260	710	μА
			operation Notes 4, 7	fih = 8 MHz	VDD = 2.0 V		260	710	
			Low-voltage	fHOCO = 4 MHz,	VDD = 3.0 V		420	700	μΑ
			operation Notes 4, 7	fih = 4 MHz	VDD = 2.0 V		420	700	
			High-speed	fmx = 20 MHz,	Square wave input		0.28	1.55	mA
			operation Notes 3, 7	VDD = 5.0 V	Resonator connection		0.53	1.74	
				fmx = 20 MHz,	Square wave input		0.28	1.55	
				VDD = 3.0 V	Resonator connection		0.49	1.74	
				fmx = 10 MHz,	Square wave input		0.19	0.86	
				VDD = 5.0 V	Resonator connection		0.30	0.93	
				fmx = 10 MHz,	Square wave input		0.19	0.86	
				VDD = 3.0 V	Resonator connection		0.30	0.93	
			Low-speed	fmx = 7 MHz,	Square wave input		95	550	μΑ
			operation Notes 3, 7	VDD = 3.0 V	Resonator connection		145	590	
				fmx = 8 MHz,	Square wave input		95	550	
				VDD = 2.0 V	Resonator connection		145	590	
			Subsystem clock	fsub = 32.768 kHz,	Square wave input		0.25		μΑ
			operation Note 5	TA = -40 °C	Resonator connection		0.44		
				fsub = 32.768 kHz,	Square wave input		0.30	0.57	
				TA = +25 °C	Resonator connection		0.49	0.76	
				fsub = 32.768 kHz,	Square wave input		0.33	1.17	
				TA = +50 °C	Resonator connection		0.52	1.36	
				fsub = 32.768 kHz,	Square wave input		0.36	1.97	
				TA = +70 °C	Resonator connection		0.55	2.16	
				fsub = 32.768 kHz,	Square wave input		0.97	3.37	
				TA = +85 °C	Resonator connection		0.16	3.56	
	IDD3	STOP	Ta = -40 °C				0.18		μА
		mode Note 6	TA = +25 °C				0.24	0.51	
			Ta = +50 °C				0.26	1.10	
			Ta = +70 °C				0.29	1.90	
			Ta = +85 °C				0.90	3.30	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1). When high-speed onchip oscillator and high-speed system clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
- **Note 6.** When high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

High speed operation: VDD = 2.7 V to 5.5 V@1 MHz to 32 MHz

VDD = 2.4 V to 5.5 V@1 MHz to 16 MHz

Low speed operation: VDD = 1.8 V to 5.5 V@1 MHz to 8 MHzLow voltage operation: VDD = 1.6 V to 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.) Note
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25 °C

Note fiн is controlled by hardware to be set to two frequency division of fносо when fносо is set to 64 MHz or 48 MHz, and the same clock frequency as fносо when fносо is set to 32 MHz or less. When supplying 64 MHz or 48 MHz to timer RD, set fclk to fiн.

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +85 $^{\circ}$ C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	High-speed	fHOCO = 64 MHz,	Basic	VDD = 5.0 V		2.6		mA
current		mode	operation Notes 3, 5	fiH = 32 MHz	operation	VDD = 3.0 V		2.6		
Note 1				fHOCO = 32 MHz,	Basic	VDD = 5.0 V		2.3		
				fih = 32 MHz	operation	VDD = 3.0 V		2.3		
			High-speed	fHOCO = 64 MHz,	Normal	VDD = 5.0 V		5.8	10.2	mA
			operation Notes 3, 5	fін = 32 MHz	operation	VDD = 3.0 V		5.8	10.2	1
				fHOCO = 32 MHz,	Normal	VDD = 5.0 V		5.4	9.6	
				fін = 32 MHz	operation	VDD = 3.0 V		5.4	9.6	
				fHOCO = 48 MHz,	Normal	VDD = 5.0 V		4.5	7.8	
				fih = 24 MHz	operation	VDD = 3.0 V		4.5	7.8	
				fHOCO = 24 MHz,	Normal	VDD = 5.0 V		4.2	7.4	1
				fıн = 24 МНz	operation	VDD = 3.0 V		4.2	7.4	
				fHOCO = 16 MHz,	Normal	VDD = 5.0 V		3.1	5.3	1
				fih = 16 MHz	operation	VDD = 3.0 V		3.1	5.3	
			Low-speed	fHOCO = 8 MHz,	Normal	VDD = 3.0 V		1.4	2.3	mA
			operation Notes 3, 5	fih = 8 MHz	operation	VDD = 2.0 V		1.4	2.3	
			Low-voltage	fHOCO = 4 MHz,	Normal	VDD = 3.0 V		1.4	1.9	mA
			operation Notes 3, 5		operation	VDD = 2.0 V		1.4	1.9	
			High-speed	fmx = 20 MHz,	Normal	Square wave input		3.7	6.2	mA
			operation Notes 2, 5	'	operation	Resonator connection		3.9	6.4	1117
			operation roles 2, s	fmx = 20 MHz,	Normal	Square wave input		3.7	6.2	
				VDD = 3.0 V	operation	Resonator connection		3.9	6.4	
				fmx = 10 MHz,	Normal	Square wave input		2.2	3.6	
				$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		2.3	3.7	
				fmx = 10 MHz,	Normal	Square wave input		2.2	3.6	
				VDD = 3.0 V	operation	Resonator connection		2.3	3.7	
			Low-speed	fmx = 8 MHz,	Normal	Square wave input		1.3	2.2	mA
			operation Notes 2, 5		operation	Resonator connection		1.3	2.3	ША
			operation Notes 2, 3	fmx = 8 MHz,	Normal	Square wave input		1.3	2.2	
				VDD = 2.0 V	operation	Resonator connection		1.3	2.3	
			Subsystem clock	fsuB = 32.768 kHz	Normal	Square wave input		5.0	2.5	μА
			1	TA = -40 °C	operation	Resonator connection		5.0		μΛ
			operation Note 4	fsuB = 32.768 kHz	Normal	Square wave input		5.0	7.1	
				TA = +25 °C	operation	Resonator connection				
				fsub = 32.768 kHz				5.0	7.1	
				TA = +50 °C	Normal operation	Square wave input Resonator connection		5.1	8.8	
					_			5.1	8.8	
				fsub = 32.768 kHz Ta = +70 °C	Normal operation	Square wave input	-	5.5	10.5	
						Resonator connection		5.5	10.5	
				fsub = 32.768 kHz Ta = +85 °C	Normal operation	Square wave input		6.5	14.5	
				14 - 100 0	υρσιαιίση	Resonator connection		6.5	14.5	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0 and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The values below the MAX. column include the peripheral operation current (except for background operation (BGO)). However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When real-time counter and watchdog timer is stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

High speed operation: VDD = 2.7 V to 5.5 V@1 MHz to 32 MHz

VDD = 2.4 V to 5.5 V@1 MHz to 16 MHz

Low speed operation: VDD = 1.8 V to 5.5 V@1 MHz to 8 MHzLow voltage operation: VDD = 1.6 V to 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.) Note
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25 °C

Note fin is controlled by hardware to be set to two frequency division of fhoco when fhoco is set to 64 MHz or 48 MHz, and the same clock frequency as fhoco when fhoco is set to 32 MHz or less. When supplying 64 MHz or 48 MHz to timer RD, set for it to fin

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	High-speed	fHOCO = 64 MHz,	VDD = 5.0 V		0.88	3.32	mA
current		Note 2	operation Notes 4, 7	fiH = 32 MHz	VDD = 3.0 V		0.88	3.32	•
Note 1				fHOCO = 32 MHz,	VDD = 5.0 V		0.62	2.63	•
				fiH = 32 MHz	VDD = 3.0 V		0.62	2.63	•
				fhoco = 48 MHz,	VDD = 5.0 V		0.68	2.57	
				fıн = 24 MHz	VDD = 3.0 V		0.68	2.57	1
				fHOCO = 24 MHz,	VDD = 5.0 V		0.50	2.00	1
				fiH = 24 MHz	VDD = 3.0 V		0.50	2.00	
				fHOCO = 16 MHz,	VDD = 5.0 V		0.44	1.49	
				fін = 16 MHz	VDD = 3.0 V		0.44	1.49	
			Low-speed	fHOCO = 8 MHz,	VDD = 3.0 V		290	800	μΑ
			operation Notes 4, 7	fiH = 8 MHz	VDD = 2.0 V		290	800	
			Low-voltage	fHOCO = 4 MHz,	VDD = 3.0 V		440	755	μА
			operation Notes 4, 7	fiH = 4 MHz	VDD = 2.0 V		440	755	1
			High-speed	fmx = 20 MHz,	Square wave input		0.31	1.63	mA
			operation Notes 3, 7	VDD = 5.0 V	Resonator connection		0.50	1.85	1
				fmx = 20 MHz,	Square wave input		0.31	1.63	1
				VDD = 3.0 V	Resonator connection		0.50	1.85	1
				fmx = 10 MHz,	Square wave input		0.21	0.89	1
				VDD = 5.0 V	Resonator connection		0.30	0.97	
				fmx = 10 MHz,	Square wave input		0.21	0.89	
				VDD = 3.0 V	Resonator connection		0.30	0.97	
			Low-speed	fmx = 8 MHz,	Square wave input		110	580	μА
			operation Notes 3, 7	VDD = 3.0 V	Resonator connection		160	630	
				fmx = 8 MHz,	Square wave input		110	580	
				VDD = 2.0 V	Resonator connection		160	630	
			Subsystem clock	fsub = 32.768 kHz,	Square wave input		0.28		μА
			operation Note 5	TA = -40 °C	Resonator connection		0.47		
				fsub = 32.768 kHz,	Square wave input		0.34	0.66	
				TA = +25 °C	Resonator connection		0.53	0.85	
				fsub = 32.768 kHz,	Square wave input		0.37	2.35	
				Ta = +50 °C	Resonator connection		0.56	2.54	
				fsub = 32.768 kHz,	Square wave input		0.61	4.08	
				Ta = +70 °C	Resonator connection		0.80	4.27	
				fsub = 32.768 kHz,	Square wave input		1.55	8.09	
				Ta = +85 °C	Resonator connection		1.74	8.28	
	IDD3	STOP	TA = -40 °C				0.19		μΑ
	mode Note 6	TA = +25 °C				0.25	0.57		
			TA = +50 °C				0.28	2.26	
			TA = +70 °C				0.52	3.99	
			TA = +85 °C				1.46	8.00	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0 and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, EVDD1 or Vss, EVss0, EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1). When high-speed onchip oscillator and high-speed system clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
- **Note 6.** When high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

High speed operation: VDD = 2.7 V to 5.5 V@1 MHz to 32 MHz

VDD = 2.4 V to 5.5 V@1 MHz to 16 MHz

Low speed operation: VDD = 1.8 V to 5.5 V@1 MHz to 8 MHzLow voltage operation: VDD = 1.6 V to 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.) Note
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25 °C

Note fill is controlled by hardware to be set to two frequency division of fhoco when fhoco is set to 64 MHz or 48 MHz, and the same clock frequency as fhoco when fhoco is set to 32 MHz or less. When supplying 64 MHz or 48 MHz to timer RD, set folk to fill.

(3) Common to RL78/G14 all products

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
RTC operating current	IRTC	fsub = 32.768 kHz	Real-time clock operation		0.02		μΑ
	Notes 1, 2		12-bit interval timer operation		0.02		
Watchdog timer	Iwdt	fıL = 15 kHz			0.22		μΑ
operating current	Notes 2, 3						
A/D converter	IADC	When conversion	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
operating current	Note 4	at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter	IADREF				75		μΑ
reference voltage							
current							
D/A converter	IDAC Notes	Per D/A converter c	hannel			1.5	mA
operating current	5, 9						
Comparator operating	ICMP Notes	VDD = 5.0 V,	Window comparator mode		12.5		μΑ
current	6, 9	Regulator output	High-speed comparator mode		6.5		μΑ
		voltage = 2.1 V	Low-speed comparator mode		1.7		μΑ
		VDD = 5.0 V,	Window comparator mode		8.0		μΑ
		Regulator output	High-speed comparator mode		4.0		μΑ
		voltage = 1.8 V	Low-speed comparator mode		1.3		μΑ
Temperature sensor	ITMPS				75		μΑ
operating current							
LVD operating current	I _{LVI} Note 7				0.08		μА
BGO operating	IBGO Note 8				2.50	12.20	mA
current							

- Note 1. Current flowing only to the real-time clock (excluding the operating current of the XT1 oscillator). The TYP value of the current value of the RL78/G14 is the sum of the TYP values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. The IDD1 and IDD2 MAX. values also include the real-time clock operating current. However, IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).

 The current value of the RL78/G14 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates in STOP mode.
- **Note 4.** Current flowing only to the A/D converter. The current value of the RL78/G14 is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 5. Current flowing only to the D/A converter. The current value of the RL78/G14 is the sum of IDD1 or IDD2 and IADC when the D/A converter operates in an operation mode or the HALT mode.
- Note 6. Current flowing only to the comparator circuit. The current value of the RL78/G14 is the sum of IDD1, IDD2 or IDD3 and ICMP when the comparator circuit operates in the Operating, HALT or STOP mode.
- Note 7. Current flowing only to the LVD circuit. The current value of the RL78/G14 is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
- **Note 8.** Current flowing only to the BGO. The current value of the RL78/G14 is the sum of IDD1 or IDD2 and IBGO when the BGO operates in an operation mode.
- Note 9. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25 °C

2.4 AC Characteristics

2.4.1 Basic operation

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

Items	Symbol		Conditions	3	MIN.	TYP.	MAX.	Unit
Instruction cycle	Tcy	Main system	High-speed	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	0.03125		1	μS
(minimum instruction		clock (fmain)	main mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μS
execution time)		operation	Low voltage main mode	$1.6~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	0.25		1	μS
			Low-speed main mode	$1.8~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	0.125		1	μS
		Subsystem clock	(fsub) operation	$1.8~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μS
		In the self	High-speed	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	0.03125		1	μS
		programming	main mode	2.4 V ≤ VDD < 2.7 V	0.0625		1	μS
		mode	Low voltage main mode	$1.8~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	0.25		1	μS
			Low-speed main mode	$1.8~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	0.125		1	μS
External main system	fex	$2.7~\text{V} \leq \text{Vdd} \leq 5.5$	V		1.0		20.0	MHz
clock frequency		1.8 V ≤ VDD < 2.7	V		1.0		8.0	MHz
		1.6 V ≤ VDD < 1.8	V		1.0		4.0	MHz
	fexs				32		35	kHz
External main system	texH,	$2.7~\text{V} \leq \text{Vdd} \leq 5.5$	V		24			ns
clock input high-level	texL	1.8 V ≤ VDD < 2.7	V		60			ns
width, low-level width		1.6 V ≤ VDD < 1.8	V		120			ns
	texhs,				13.7			μS
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttih, ttil				1/fMCK + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	100			ns
				1.8 V ≤ EVDD0 < 2.7 V	300			ns
				1.6 V ≤ EVDD0 < 1.8 V	500			ns
Timer RJ input high-	fwH, fwL	TRJIO		$2.7 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	40			ns
level width, low-level				1.8 V ≤ EVDD0 < 2.7 V	120			ns
width				1.6 V ≤ EVDD0 < 1.8 V	200			ns

Note The following conditions are required for low voltage interface when EVDD0 < VDD

 $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V} : \text{MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V} : \text{MIN. } 250 \text{ ns}$

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel

number (n = 0 to 3))

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Items	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
TO00 to TO03, TO10 to T13	fто	High-speed main mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
output frequency			2.7 V ≤ EVDD0 < 4.0 V			8	MHz
			1.8 V ≤ EVDD0 < 2.7 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		Low voltage main mode	1.6 V ≤ EVDD0 ≤ 5.5 V			2	MHz
		Low-speed main mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fPCL	High-speed main mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
frequency			2.7 V ≤ EVDD0 < 4.0 V			8	MHz
			1.8 V ≤ EVDD0 < 2.7 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		Low voltage main mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		Low-speed main mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
Interrupt input high-level width,	tinth,	INTP0	$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to INTP11	1.6 V ≤ EVDD0 ≤ 5.5 V	1			μS
Key interrupt input low-level	tkr	1.8 V ≤ EVDD0 ≤ 5.5 V	•	250			ns
width		1.6 V ≤ EVDD0 < 1.8 V		1			μS
RESET low-level width	trsl			10			μS

2.5 Peripheral Functions Characteristics

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) (TA = -40 to +85 $^{\circ}$ C, 1.6 V \leq EVDD0 = EVDD1 \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate Note 1					fmck/6 Note 2	bps
		Theoretical value of the maximum transfer rate fclk = 32 MHz, fMck = fclk			5.3	Mbps

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Note 1. Transfer rate in the SNOOZE mode is MAX. 9600 bps and MIN. 4800 bps.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4~V \le EVDD0 < 2.7~V$: MAX. 2.6~Mbps $1.8~V \le EVDD0 < 2.4~V$: MAX. 1.3~Mbps $1.6~V \le EVDD0 < 1.8~V$: MAX. 0.6~Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode (fMCK/2), \overline{SCKp} ... internal clock output) (TA = -40 to +85 °C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tKCY1	$2.7 \text{ V} \le \text{EVdd0} \le 5.5 \text{ V}$	62.5 Note 1			ns
SCKp high-/low-level width	tĸнı,	4.0 V ≤ EVDD0 ≤ 5.5 V	tkcy1/2 - 7			ns
	tKL1	2.7 V ≤ EVDD0 ≤ 5.5 V	tkcy1/2 - 10			ns
SIp setup time (to SCKp↑) Note 2	tsik1	4.0 V ≤ EVDD0 ≤ 5.5 V	23			ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	33 Note 5			ns
SIp hold time (from SCKp↑) Note 3	tKSI1	2.7 V ≤ EVDD0 ≤ 5.5 V	10			ns
Delay time from SCKp↓ to SOp output Note 4	tKSO1	C = 20 pF Note 6			10	ns

- Note 1. The value must also be 2/fclk or more.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from \overline{SCKp} " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from $\overline{SCKp}\uparrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. Using the fMCK within 24 MHz.
- **Note 6.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remark 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.
- **Remark 2.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))

(3) During communication at same potential (CSI mode) (master mode (fMCK/4), \overline{SCKp} ... internal clock output) (TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tKCY1	2.7 V ≤ EVDD0 ≤ 5.5 V	125 Note 1			ns
		2.4 V ≤ EVDD0 ≤ 5.5 V	250 Note 1			ns
		1.8 V ≤ EVDD0 ≤ 5.5 V	500 Note 1			ns
		1.6 V ≤ EVDD0 ≤ 5.5 V	1000 Note 1			ns
SCKp high-/low-level width	tĸнı,	4.0 V ≤ EVDD0 ≤ 5.5 V	tkcy1/2 - 12			ns
	tKL1	2.7 V ≤ EVDD0 ≤ 5.5 V	tксү1/2 - 18			ns
		2.4 V ≤ EVDD0 ≤ 5.5 V	tkcy1/2 - 38			ns
		1.8 V ≤ EVDD0 ≤ 5.5 V	tkcy1/2 - 50			ns
		1.6 V ≤ EVDD0 ≤ 5.5 V	tkcy1/2 - 100			ns
SIp setup time (to SCKp↑) Note 2	tsik1	4.0 V ≤ EVDD0 ≤ 5.5 V	44			ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	44			ns
		2.4 V ≤ EVDD0 ≤ 5.5 V	75			ns
		1.8 V ≤ EVDD0 ≤ 5.5 V	110			ns
		1.6 V ≤ EVDD0 ≤ 5.5 V	220			ns
SIp hold time (from SCKp↑) Note 3	tKSI1		19			ns
Delay time from SCKp↓ to SOp output Note 4	tKSO1	C = 30 pF Note 5			25	ns

- Note 1. The value must also be 4/fclk or more.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from \overline{SCKp} " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from $\overline{SCKp}\uparrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **Note 5.** C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

TA = -40 to +85 °C, 1.6 \ Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
SCKp cycle time Note 5	tKCY2	4.0 V ≤ EVDD0 ≤ 5.5 V	20 MHz < fmck	8/fmck			ns
			fMCK ≤ 20 MHz	6/fмск			ns
		2.7 V ≤ EVDD0 < 4.0 V	16 MHz < fmck	8/fмск			ns
			fмcк ≤ 16 MHz	6/fмск			ns
		1.8 V ≤ EVDD0 < 2.7 V	16 MHz < fмск	8/fмск			ns
			fмcк ≤ 16 MHz	6/fмск			ns
		1.6 V ≤ EVDD0 < 1.8 V		6/fмск			ns
SCKp high-/low-level width	tKH2, tKL2	1.6 V ≤ EVDD0 ≤ 5.5 V		tKCY2/2			ns
Slp setup time (to SCKp↑) Note 1	tsik2	2.7 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 20			ns
		1.8 V ≤ EVDD0 < 2.7 V		1/fмск + 30			ns
		1.6 V ≤ EVDD0 < 1.8 V		1/fмск + 40			ns
SIp hold time	tKSI2	$2.7 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$		1/fмск + 31			ns
(from SCKp↑) Note 2		2.4 V ≤ EVDD0 < 2.7 V		1/fмск + 31			ns
		1.8 V ≤ EVDD0 < 2.4 V		1/fмск + 31			ns
		1.6 V ≤ EVDD0 < 1.8 V		1/fмск + 250			ns
Delay time from $\overline{\text{SCKp}} \downarrow$ to	tKSO2	C = 30 pF Note 4	$4.0~V \leq EV_{DD0} \leq 5.5~V$			2/fмск + 44	ns
SOp output Note 3			$2.7~\text{V} \leq \text{EVDD0} < 4.0~\text{V}$			2/fmck + 44	ns
			$2.4 \text{ V} \le \text{EVDD0} < 2.7 \text{ V}$			2/fmck + 75	ns
			1.8 V ≤ EVDD0 < 2.4 V			2/fмск + 110	ns
			1.6 V ≤ EVDD0 < 1.8 V			2/fмск + 220	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from Note 3. SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Select the TTL input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using Caution port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00 to 03, 10 to 13))

(2/2)

Caution The pins mounted depend on the product. Refer to 1.3.1 30-pin products to 1.3.10 100-pin products.

(4) During communication at same potential (CSI mode) (slave mode, $\overline{SCKp...}$ external clock input) (TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SSI00 setup time	tssik	DAPmn = 0	$2.7 \text{ V} \leq \text{EVdd0} \leq 5.5 \text{ V}$	120			ns
			1.8 V ≤ EVDD0 < 2.7 V	200			ns
			1.6 V ≤ EVDD0 < 1.8 V	400			ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{EVdd0} \leq 5.5 \text{ V}$	1/fмск + 120			ns
			1.8 V ≤ EVDD0 < 2.7 V	1/fмск + 200			ns
			1.6 V ≤ EVDD0 < 1.8 V	1/fмск + 400			ns
SSI00 hold time	tkssi	DAPmn = 0	$2.7 \text{ V} \leq \text{EVdd0} \leq 5.5 \text{ V}$	1/fмск + 120			ns
			1.8 V ≤ EVDD0 < 2.7 V	1/fмск + 200			ns
			1.6 V ≤ EVDD0 < 1.8 V	1/fмск + 400			ns
		DAPmn = 1	$2.7 \text{ V} \leq \text{EVdd0} \leq 5.5 \text{ V}$	120			ns
			1.8 V ≤ EVDD0 < 2.7 V	200			ns
			$1.6 \text{ V} \leq \text{EVDD0} < 1.8 \text{ V}$	400			ns

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) During communication at same potential (simplified I²C mode)

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{EVdd} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}Ω$		1000	kHz
		1.8 V \leq EVDD0 \leq 5.5 V, Cb = 100 pF, Rb = 3 kΩ		400	kHz
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ		300	kHz
		1.6 V \leq EVDD0 $<$ 1.8 V, Cb = 100 pF, Rb = 5 kΩ		250	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		ns
		1.8 V ≤ VDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		ns
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		ns
		1.6 V ≤ EVDD0 < 1.8 V, Cb = 100 pF, Rb = 5 kΩ	1850		ns
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1150		ns
		1.8 V \leq EVDD0 $<$ 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1550		ns
		1.6 V \leq EVDD0 $<$ 1.8 V, Cb = 100 pF, Rb = 5 kΩ	1850		ns
Data setup time (reception)	tsu:DAT	$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/fMCK + 85 Note		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	1/fMCK + 145 Note		ns
		1.8 V ≤ EVDD0 < 2.7 V, Cb = 100 pF, Rb = 5 kΩ	1/fMCK + 230 Note		ns
		$1.6 \text{ V} \le \text{EVDD0} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1/fMCK + 290 Note		ns
Data hold time (transmission)	thd:dat	2.7 V ≤ EVDD0 ≤ 5.5 V,	0	305	ns
		Cb = 50 pF, Rb = 2.7 kΩ 1.8 V ≤ EVDD0 ≤ 5.5 V, Cb = 100 pF, Rb = 3 kΩ	0	355	ns
		Cb = 100 pF, Rb = 3 k Ω 1.8 V \leq EVDD0 $<$ 2.7 V, Cb = 100 pF, Rb = 5 k Ω	0	405	ns
		$C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$ $1.6 \text{ V} \le \text{EVDD0} < 1.8 \text{ V},$	0	405	ns

Note Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

(Caution and Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Caution Select the TTL input buffer and the N-ch open drain output (EVDD0 tolerance) mode for the SDAr pin and the N-ch open drain output (EVDD0 tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

Remark 1. $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14), h: POM number (h = 0, 1, 3 to 5, 7, 14)

Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (dedicated baud rate generator output) (TA = -40 to +85 $^{\circ}$ C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Transfer rate		reception	$4.0 \text{ V} \leq \text{EVdd0} \leq 5.5 \text{ V},$				fMCK/6 Note 1	bps
Notes 1, 2	$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate fclk = 32 MHz, fMck = fclk			5.3	Mbps		
		2.7 V ≤ EVDD0 < 4.0 V,				fMCK/6 Note 1	bps	
			2.3 V ≤ V _b ≤ 2.7 V	Theoretical value of the maximum transfer rate fclk = 32 MHz, fMCK = fclk			5.3	Mbps
			$\begin{array}{l} 1.8 \; \text{V} \leq \text{EVDD0} < 3.3 \; \text{V}, \\ \\ 1.6 \; \text{V} \leq \text{Vb} \leq 2.0 \; \text{V} \end{array}$				fMCK/6 Note 1 to Note 3	bps
				Theoretical value of the maximum transfer rate fclk = 8 MHz, fmck = fclk			1.3	Mbps

- Note 1. Transfer rate in the SNOOZE mode : MAX. 9600 bps, MIN. 4800 bps
- **Note 2.** Use it with $EVDD0 \ge Vb$.
- Note 3. The following conditions are required for low voltage interface when EVDD0 < VDD.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD0 tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remark 1. Vb[V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.

 $4.0~\text{V} \leq \text{EVdd0} \leq 5.5~\text{V},~2.7~\text{V} \leq \text{Vb} \leq 4.0~\text{V};~\text{Vih} = 2.2~\text{V},~\text{Vil} = 0.8~\text{V}$

 $2.7~\text{V} \leq \text{EVDD0} < 4.0~\text{V},~2.3~\text{V} \leq \text{Vb} \leq 2.7~\text{V};~\text{ViH} = 2.0~\text{V},~\text{Vil} = 0.5~\text{V}$

1.8 V \leq EVDD0 < 3.3 V, 1.6 V \leq Vb \leq 2.0 V: ViH = 1.50 V, ViL = 0.32 V

Remark 5. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (dedicated baud rate generator output) (TA = -40 to +85 $^{\circ}$ C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol		MIN.	TYP.	MAX.	Unit		
Transfer		transmission	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$				Notes 1, 2	bps
rate			$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$			2.8 Note 3	Mbps
			$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$				Notes 2, 4	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$			1.2 Note 5	Mbps
			$1.8 \ V \le EVDDO < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V$				Notes 2, 6, 7	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$			0.40 Note 8	Mbps

Note 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD0 \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

- Note 2. Transfer rate in the SNOOZE mode: MAX. 9600 bps, MIN. 4800 bps
- **Note 3.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 4. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

 $(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times In (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

- **Note 5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- Note 6. Use it with $EVDD0 \ge V_b$.

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 7. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate

Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{In} (1 - \frac{1.5}{\text{Vb}})\} }{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} }$$

- Note 8. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD0 tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** $Rb[\Omega]$: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.

$$\begin{split} 4.0 \ V & \leq \text{EVDD0} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq \text{Vb} \leq 4.0 \ \text{V}; \ \text{VIH} = 2.2 \ \text{V}, \ \text{VIL} = 0.8 \ \text{V} \\ 2.7 \ \text{V} & \leq \text{EVDD0} < 4.0 \ \text{V}, \ 2.3 \ \text{V} \leq \text{Vb} \leq 2.7 \ \text{V}; \ \text{VIH} = 2.0 \ \text{V}, \ \text{VIL} = 0.5 \ \text{V} \\ 1.8 \ \text{V} & \leq \text{EVDD0} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{Vb} \leq 2.0 \ \text{V}; \ \text{VIH} = 1.50 \ \text{V}, \ \text{VIL} = 0.32 \ \text{V} \\ \end{split}$$

Remark 5. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

UART mode connection diagram (during communication at different potential)

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

UART mode bit width (during communication at different potential) (reference)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD0 tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

(7) Communication at different potential (2.5 V, 3 V) (fMCK/2) (CSI mode) (master mode, \overline{SCKp} ... internal clock output) (TA = -40 to +85 °C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tKCY1	$ 4.0 \text{ V} \leq \text{EV}_{DD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, \\ Cb = 20 \text{ pF}, Rb = 1.4 \text{ k}\Omega $	200 Note 1			ns
		$\label{eq:second_equation} \begin{array}{l} 2.7~\text{V} \leq \text{EVDD0} < 4.0~\text{V}, 2.3~\text{V} \leq \text{Vb} \leq 2.7~\text{V}, \\ \text{Cb} = 20~\text{pF}, \text{Rb} = 2.7~\text{k}\Omega \end{array}$	300 Note 1			ns
SCKp high-level width	tkH1	$ \begin{aligned} 4.0 \ V &\leq \text{EVDD0} \leq 5.5 \ \text{V}, 2.7 \ \text{V} \leq \text{Vb} \leq 4.0 \ \text{V}, \\ C_b &= 20 \ \text{pF}, R_b = 1.4 \ \text{k}\Omega \end{aligned} $	tKCY1/2 - 50			ns
		$\label{eq:second-equation} \begin{array}{l} 2.7~\text{V} \leq \text{EVDD0} < 4.0~\text{V}, 2.3~\text{V} \leq \text{Vb} \leq 2.7~\text{V}, \\ \text{Cb} = 20~\text{pF}, \text{Rb} = 2.7~\text{k}\Omega \end{array}$	tkcy1/2 - 120			ns
SCKp low-level width	tKL1	$ 4.0 \text{ V} \leq \text{EV}_{DD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, \\ Cb = 20 \text{ pF}, Rb = 1.4 \text{ k}\Omega $	tkcy1/2 - 7			ns
		$ 2.7 \text{ V} \leq \text{EVDD0} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ \text{Cb} = 20 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $	tkcy1/2 - 10			ns
Slp setup time (to SCKp↑) Note 2	tsiK1	$ 4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ Cb = 20 \text{ pF}, \text{ Rb} = 1.4 \text{ k}\Omega $	58			ns
		$ 2.7 \text{ V} \leq \text{EVddo} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ \text{Cb} = 20 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $	121			ns
SIp hold time (from SCKp↑) Note 2	tksi1	$ 4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ Cb = 20 \text{ pF}, \ Rb = 1.4 \text{ k}\Omega $	10			ns
		$ 2.7 \text{ V} \leq \text{EVDD0} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ \text{Cb} = 20 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $	10			ns
Delay time from SCKp↓ to SOp output Note 2	tKSO1	$ 4.0 \text{ V} \leq \text{EVddo} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ Cb = 20 \text{ pF}, Rb = 1.4 \text{ k}\Omega $			60	ns
		$ 2.7 \text{ V} \leq \text{EVddo} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ \text{Cb} = 20 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $			130	ns
Slp setup time (to SCKp↓) Note 3	tsiK1	$ 4.0 \text{ V} \leq \text{EVddo} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ Cb = 20 \text{ pF}, \ Rb = 1.4 \text{ k}\Omega $	23			ns
		$ 2.7 \text{ V} \leq \text{EVddo} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ \text{Cb} = 20 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $	33			ns
SIp hold time (from SCKp↓) Note 3	tksi1	$ 4.0 \text{ V} \leq \text{EVddo} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ Cb = 20 \text{ pF}, \ Rb = 1.4 \text{ k}\Omega $	10			ns
			10			ns
Delay time from SCKp↑ to SOp output Note 3	tKSO1	$ 4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, $ $ C_b = 20 \text{ pF}, \ R_b = 1.4 \text{ k}\Omega $			10	ns
· 					10	ns

(Notes, Caution and Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Note 1.** The value must also be 2/fclk or more.
- **Note 2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- **Note 3.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDDO tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** Rb[Ω]: Communication line (\overline{SCKp} , SOp) pull-up resistance, Cb[F]: Communication line (\overline{SCKp} , SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
 - $4.0~V \leq \text{EVdd0} \leq 5.5~V,~2.7~V \leq \text{Vb} \leq 4.0~V;~\text{ViH} = 2.2~V,~\text{Vil} = 0.8~V$ $2.7~V \leq \text{EVdd0} < 4.0~V,~2.3~V \leq \text{Vb} \leq 2.7~V;~\text{ViH} = 2.0~V,~\text{Vil} = 0.5~V$
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
- Remark 5. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (2.5 V, 3 V) (fMCK/4) (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85 °C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tKCY1	$ 4.0 \text{ V} \leq \text{EV}_{DD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, \\ Cb = 30 \text{ pF}, Rb = 1.4 \text{ k}\Omega $	300 Note			ns
		$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$	500 Note			ns
			1150 Note			ns
CKp high-level width tkH1	tkH1	$ 4.0 \text{ V} \leq \text{EV}_{DD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, \\ Cb = 30 \text{ pF}, Rb = 1.4 \text{ k}\Omega $	tkcy1/2 - 75			ns
		$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ $C_b = 30~pF,~R_b = 2.7~k\Omega$	tkcy1/2 - 170			ns
			tKCY1/2 - 458			ns
SCKp low-level width	tKL1	$ 4.0 \text{ V} \leq \text{EV}_{DD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, \\ Cb = 30 \text{ pF}, Rb = 1.4 \text{ k}\Omega $	tkcy1/2 - 12			ns
		$ 2.7 \text{ V} \leq \text{EVDD0} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ \text{Cb} = 30 \text{ pF}, \ \text{Rb} = 2.7 \text{ k}\Omega $	tkcy1/2 - 18			ns
			tKCY1/2 - 50			ns

- Note 1. The value must also be 4/fclk or more.
- Caution 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDDO tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Caution 2. Use it with EVDD0 \geq Vb.
- **Remark 1.** Rb[Ω]: Communication line (\overline{SCKp} , SOp) pull-up resistance, Cb[F]: Communication line (\overline{SCKp} , SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
 - $4.0~\text{V} \leq \text{EVdd0} \leq 5.5~\text{V},~2.7~\text{V} \leq \text{Vb} \leq 4.0~\text{V};~\text{Vih} = 2.2~\text{V},~\text{Vil} = 0.8~\text{V}$
 - $2.7~V \le EV_{DD0} < 4.0~V,~2.3~V \le V_{b} \le 2.7~V;~V_{IH} = 2.0~V,~V_{IL} = 0.5~V_{b} \le 2.7~V_{b} \le 2.7~V_$
 - $1.8~\text{V} \leq \text{EVDD0} < 3.3~\text{V},~1.6~\text{V} \leq \text{Vb} \leq 2.0~\text{V};~\text{ViH} = 1.50~\text{V},~\text{ViL} = 0.32~\text{V}$
- Remark 4. 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8) Communication at different potential (2.5 V, 3 V) (fMck/4) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +85 °C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Slp setup time (to SCKp↑) Note 1	tsik1	$ 4.0 \text{ V} \leq \text{EVdd0} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, $ $C_b = 30 \text{ pF}, \ R_b = 1.4 \text{ k}\Omega $	81			ns
		$ 2.7 \text{ V} \leq \text{EVddo} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, $ $C_b = 30 \text{ pF}, \ R_b = 2.7 \text{ k}\Omega $	177			ns
		$\label{eq:continuous} \begin{array}{l} 1.8~V \leq \text{EVDD0} < 3.3~V, \ 1.6~V \leq V_b \leq 2.0~V, \\ C_b = 30~pF, \ R_b = 5.5~k\Omega \end{array}$	479			ns
SIp hold time (from SCKp↑) Note 1	tksi1	$ \begin{cases} 4.0 \text{ V} \leq \text{EVddo} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 30 \text{ pF}, \ R_b = 1.4 \text{ k}\Omega \end{cases} $	19			ns
		$\label{eq:2.7} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19			ns
		$\label{eq:local_local_local_local} \begin{array}{l} 1.8~\text{V} \leq \text{EVddo} < 3.3~\text{V}, \ 1.6~\text{V} \leq \text{Vb} \leq 2.0~\text{V}, \\ \text{Cb} = 30~\text{pF}, \ \text{Rb} = 5.5~\text{k}\Omega \end{array}$	19			ns
Delay time from SCKp↓ to SOp output Note 1	tKSO1	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$			100	ns
		$ 2.7 \text{ V} \leq \text{EVdd0} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ Cb = 30 \text{ pF}, \ Rb = 2.7 \text{ k}\Omega $			195	ns
		$\label{eq:local_local_local_local} \begin{array}{l} 1.8~\text{V} \leq \text{EVddo} < 3.3~\text{V}, 1.6~\text{V} \leq \text{Vb} \leq 2.0~\text{V}, \\ \text{Cb} = 30~\text{pF}, \text{Rb} = 5.5~\text{k}\Omega \end{array}$			483	ns
SIp setup time (to SCKpJ) Note 2	tsik1	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$	44			ns
		$ 2.7 \text{ V} \leq \text{EVdd0} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ Cb = 30 \text{ pF}, \ Rb = 2.7 \text{ k}\Omega $	44			ns
		$\label{eq:local_local_local_local} \begin{array}{l} 1.8~\text{V} \leq \text{EVddo} < 3.3~\text{V}, 1.6~\text{V} \leq \text{Vb} \leq 2.0~\text{V}, \\ \text{Cb} = 30~\text{pF}, \text{Rb} = 5.5~\text{k}\Omega \end{array}$	110			ns
SIp hold time (from SCKp↓) Note 2	tksi1	$4.0~V \leq E V \text{dd} \leq 5.5~V,~2.7~V \leq V \text{b} \leq 4.0~V,$ $C \text{b} = 30~p \text{F},~R \text{b} = 1.4~k \Omega$	19			ns
		$ 2.7 \text{ V} \leq \text{EVdd0} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ Cb = 30 \text{ pF}, \ Rb = 2.7 \text{ k}\Omega $	19			ns
		$\label{eq:local_local_local_local} \begin{array}{l} 1.8~\text{V} \leq \text{EVddo} < 3.3~\text{V}, 1.6~\text{V} \leq \text{Vb} \leq 2.0~\text{V}, \\ \text{Cb} = 30~\text{pF}, \text{Rb} = 5.5~\text{k}\Omega \end{array}$	19			ns
Delay time from SCKp↑ to SOp output Note 2	tKSO1	$4.0~V \leq E V \text{DD0} \leq 5.5~V,~2.7~V \leq V \text{b} \leq 4.0~V,$ $C \text{b} = 30~p \text{F},~R \text{b} = 1.4~k \Omega$			25	ns
		$2.7~V \leq \text{EVddo} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ $C_b = 30~\text{pF},~R_b = 2.7~\text{k}\Omega$			25	ns
		$\label{eq:local_local_local_local} \begin{array}{l} 1.8~\text{V} \leq \text{EVddo} < 3.3~\text{V}, \ 1.6~\text{V} \leq \text{Vb} \leq 2.0~\text{V}, \\ \text{Cb} = 30~\text{pF}, \ \text{Rb} = 5.5~\text{k}\Omega \end{array}$			25	ns

(Notes, Caution and Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential

- **Note 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDD0 tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Caution 2. Use it with $EVDD0 \ge V_b$.
- **Remark 1.** Rb[Ω]: Communication line (\overline{SCKp} , SOp) pull-up resistance, Cb[F]: Communication line (\overline{SCKp} , SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.
 - $4.0~V \le EV_{DD0} \le 5.5~V,~2.7~V \le V_{b} \le 4.0~V;~V_{IH} = 2.2~V,~V_{IL} = 0.8~V$
 - $2.7~\text{V} \leq \text{EVDD0} < 4.0~\text{V},~2.3~\text{V} \leq \text{Vb} \leq 2.7~\text{V};~\text{ViH} = 2.0~\text{V},~\text{Vil} = 0.5~\text{V}$
 - $1.8~\text{V} \leq \text{EVdd0} < 3.3~\text{V},~1.6~\text{V} \leq \text{Vb} \leq 2.0~\text{V};~\text{ViH} = 1.50~\text{V},~\text{Vil} = 0.32~\text{V}$
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDDO tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)

Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, \overline{SCKp} ... external clock input) (TA = -40 to +85 °C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time Note 1	tKCY2	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$	24 MHz ≤ fмcк	14/fмск			ns
		$2.7~V \leq V_b \leq 4.0~V$	20 MHz < fмcк ≤ 24 MHz	12/fмск			ns
			8 MHz < fмcк ≤ 20 MHz	10/fмск			ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск			ns
			fмcк ≤ 4 MHz	6/fмск			ns
		2.7 V ≤ EVDD0 < 4.0 V,	24 MHz < fmck	20/fмск			ns
		$2.3~V \leq V_b \leq 2.7~V$	20 MHz < fмcк ≤ 24 MHz	16/fмск			ns
			16 MHz < fмcк ≤ 20 MHz	14/fмск			ns
			8 MHz < fмcк ≤ 16 MHz	12/fмск			ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск			ns
			fмcк ≤ 4 MHz	6/fмск			ns
		1.8 V ≤ EVDD0 < 3.3 V,	24 MHz ≤ fмcк	48/fмск			ns
		$1.6~V \leq V_b \leq 2.0~V~Note~2$	20 MHz < fмcк ≤ 24 MHz	36/fмск			ns
			16 MHz < fмcк ≤ 20 MHz	32/fмск			ns
			8 MHz < fмcк ≤ 16 MHz	26/fмск			ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск			ns
			fмcк ≤ 4 MHz	10/fмск			ns
SCKp high-/low-level	tĸн2,	4.0 V ≤ EVDD0 ≤ 5.5 V, 2	.7 V ≤ Vb ≤ 4.0 V	tkcy2/2 - 12			ns
width	tKL2	2.7 V ≤ EVDD0 < 4.0 V, 2	.3 V ≤ Vb ≤ 2.7 V	tkcy2/2 - 18			ns
		1.8 V ≤ EVDD0 < 3.3 V, 1	.6 V ≤ V _b ≤ 2.0 V Note 2	tkcy2/2 - 50			ns
SIp setup time	tsik2	2.7 V ≤ EVDD0 < 5.5 V		1/fмск + 20			ns
(to SCKp↑) Note 3		1.8 V ≤ EVDD0 < 3.3 V		1/fмск + 30			ns
SIp hold time (from SCKp↑) Note 4	tKSI2			1/fмск + 31			ns
Delay time from SCKp↓ to SOp output Note 5	tKSO2	$4.0~\text{V} \leq \text{EVDD0} \leq 5.5~\text{V}, 2$ $C_b = 30~\text{pF}, R_b = 1.4~\text{k}\Omega$	$.7~V \le V_b \le 4.0~V,$	1/fмск + 250		2/fмcк + 120	ns
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V}, 2$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			2/fмcк + 214	ns	
		1.8 V \leq EVDD0 $<$ 3.3 V, 1 Cb = 30 pF, Rb = 5.5 kΩ	$.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V Note 2},$			2/fмск + 573	ns

(Notes, Caution and Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Note 2.** Use it with $EVDD0 \ge V_b$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to \overline{SCKp}]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from \overline{SCKp} " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (EVDD0 tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remark 1. R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 02, 10))
- Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.

```
 4.0 \text{ V} \leq \text{EVdd0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}; \text{Vih} = 2.2 \text{ V}, \text{Vil} = 0.8 \text{ V} \\ 2.7 \text{ V} \leq \text{EVdd0} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}; \text{Vih} = 2.0 \text{ V}, \text{Vil} = 0.5 \text{ V} \\ 1.8 \text{ V} \leq \text{EVdd0} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}; \text{Vih} = 1.50 \text{ V}, \text{Vil} = 0.32 \text{ V} \\ \end{aligned}
```

Remark 5. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (EVDD0 tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)

Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(10) Communication at different potential (2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85 °C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscL	4.0 V ≤ EVDD0 ≤ 5.5 V,		1000	kHz
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$			
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		2.7 V ≤ EVDD0 < 4.0 V,		1000	kHz
		2.3 V ≤ Vb < 2.7 V,			
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$4.0 \text{ V} \leq \text{EVddo} \leq 5.5 \text{ V},$		400	kHz
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$			
		$C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$			
		2.7 V ≤ EVDD0 < 4.0 V,		400	kHz
		2.3 V ≤ Vb < 2.7 V,			
		$C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		1.8 V ≤ EVDD0 < 3.3 V,		300	kHz
		1.6 V ≤ V _b ≤ 2.0 V Note 1,			
		C _b = 100 pF, R _b = 5.5 kΩ			
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$	475		ns
riola lime when eoel = E	LLOW	$2.7 \text{ V} \le 2.000 = 0.0 \text{ V},$	470		110
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		2.7 V ≤ EVDD0 < 4.0 V,	475		nc
		$2.7 \text{ V} \le \text{EVDDO} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$	475		ns
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		•	4450		
		$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$	1150		ns
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$			
		$C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$			
		2.7 V ≤ EVDD0 < 4.0 V,	1150		ns
		$2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$			
		Cb = 100 pF, Rb = $2.7 \text{ k}\Omega$			
		$1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V},$	1550		ns
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note 1},$			
		$C_b = 100 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Hold time when SCLr = "H"	tHIGH	$4.0 \text{ V} \leq \text{EVddo} \leq 5.5 \text{ V},$	245		ns
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$			
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		2.7 V ≤ EVDD0 < 4.0 V,	200		ns
		$2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$			
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$	675		ns
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$			
		$C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$			
		2.7 V ≤ EVDD0 < 4.0 V,	600		ns
		2.3 V ≤ Vb < 2.7 V,			
		$C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		1.8 V ≤ EVDD0 < 3.3 V,	610		ns
		1.6 V \leq Vb \leq 2.0 V Note 1,			
	İ	···- · - · · · · · ,			l

(Notes, Caution and Remarks are listed on the next page.)

(10) Communication at different potential (2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85 $^{\circ}$ C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (reception)	tsu:dat	$4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$	1/fMCK + 135 Note 2		ns
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$ $Cb = 50 \text{ pF}, Rb = 2.7 \text{ k}\Omega$	Note 2		
		$2.7 \text{ V} \le \text{EVDD0} < 4.0 \text{ V},$	1/fмск + 135		ns
		$2.3 \text{ V} \le \text{Vb} < 2.7 \text{ V},$	Note 2		
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$4.0 \text{ V} \leq \text{EVddo} \leq 5.5 \text{ V},$	1/fмск + 190		ns
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$	Note 2		
		$C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$			
		$2.7 \text{ V} \leq \text{EVDD0} < 4.0 \text{ V},$	1/fмcк + 190		ns
		$2.3 \text{ V} \leq \text{Vb} < 2.7 \text{ V},$	Note 2		
		Cb = 100 pF, Rb = $2.7 \text{ k}\Omega$			
		$1.8 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V},$	1/fмcк + 190		ns
		$1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note 1}},$	Note 2		
		$C_b = 100 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			
Data hold time (transmission)	thd:dat	$4.0~\text{V} \leq \text{EVdd0} \leq 5.5~\text{V},$	0	305	ns
		$2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V},$			
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$2.7 \text{ V} \leq \text{EVDD0} < 4.0 \text{ V},$	0	305	ns
		$2.3 \text{ V} \leq \text{Vb} < 2.7 \text{ V},$			
		$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$	0	355	ns
		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$			
		$C_b = 100 \text{ pF}, R_b = 2.8 \text{ k}\Omega$			
		$2.7 \text{ V} \leq \text{EVDD0} < 4.0 \text{ V},$	0	355	ns
		$2.3 \text{ V} \leq \text{Vb} < 2.7 \text{ V},$			
		$C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
		1.8 V ≤ EVDD0 < 3.3 V,	0	405	ns
		$1.6 \text{ V} \le \text{Vb} \le 2.0 \text{ V} \text{ Note 1},$			
		$C_b = 100 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			

Note 1. Use it with $EVDD0 \ge V_b$.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (EVDD0 tolerance) mode for the SDAr pin and the N-ch open drain output (EVDD0 tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Caution Select the TTL input buffer and the N-ch open drain output (EVDD0 tolerance) mode for the SDAr pin and the N-ch open drain output (EVDD0 tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)

Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 3), mn = 00 to 03, 10, 12, 13)

Remark 4. VIH and VIL below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in simplified I²C mode.

 $4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V;~V_{IH} = 2.2~V,~V_{IL} = 0.8~V$ $2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V;~V_{IH} = 2.0~V,~V_{IL} = 0.5~V$

1.8 V \leq EVDD0 < 3.3 V, 1.6 V \leq Vb \leq 2.0 V: VIH = 1.50 V, VIL = 0.32 V

2.5.2 Serial interface IICA

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Co	Conditions		Standard Mode		Mode	Fast Mode Plus		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fclk ≥ 10 MHz	2.7 V ≤ EVDD0 ≤ 5.5 V					0	1000	kHz
		Fast mode: fcLk ≥ 3.5 MHz	1.8 V ≤ EVDD0 ≤ 5.5 V			0	400			kHz
		Normal mode: fclk ≥ 1 MHz	1.6 V ≤ EVDD0 ≤ 5.5 V	0	100					kHz
Setup time of restart condition Note 1	tsu:sta			4.7		0.6		0.26		μS
Hold time	thd:sta			4.0		0.6		0.26		μS
Hold time when SCLA0 = "L"	tLOW			4.7		1.3		0.5		μS
Hold time when SCLA0 = "H"	thigh			4.0		0.6		0.26		μS
Data setup time (reception)	tsu:dat			250		100		50		ns
Data hold time (transmission) Note 2	thd:dat			0	3.45	0	0.9	0		μS
Setup time of stop condition	tsu:sto			4.0		0.6		0.26		μS
Bus-free time	tBUF			4.7		1.3		0.5		μS

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the \overline{ACK} (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω Fast mode: C_b = 320 pF, R_b = 1.1 k Ω Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

2.5.3 On-chip debug (UART)

(TA = -40 to +85 °C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate			115.2 k		1 M	bps

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

(1) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI2 to ANI14 (supply ANI pin to VDD)

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Notes 1, 2	AINL	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V		1.2	±3.5	LSB
		AVREFP = VDD	1.6 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.125		39	μS
		AVREFP = VDD	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.1875		39	μS
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μS
			1.6 V ≤ VDD ≤ 5.5 V	57		95	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±0.25	% FSR
		AVREFP = VDD	1.6 V ≤ VDD < 5.5 V			±0.50	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD	1.8 V ≤ VDD ≤ 5.5 V			±0.25	% FSR
			1.6 V ≤ VDD ≤ 5.5 V			±0.50	% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD	1.8 V ≤ VDD ≤ 5.5 V			±2.5	LSB
			1.6 V ≤ VDD ≤ 5.5 V			±5.0	LSB
Differential linearity error	DLE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±1.5	LSB
Note 1		AVREFP = VDD	1.6 V ≤ VDD ≤ 5.5V			±2.0	LSB
Reference voltage (+)	AVREFP		•	1.6		Vdd	V
Analog input voltage	VAIN			0		AVREFP	V
	VBGR	2.4 V ≤ VDD < 5.5 V, HS (high-speed main) mode		1.38	1.45	1.5	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

(2) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI16 to ANI20 (supply ANI pin to EVDDO)

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Notes 1, 2	AINL	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V		1.2	±5.0	LSB
		AVREFP = VDD	$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.125		39	μS
		AVREFP = VDD	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	3.1875		39	μS
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μS
			$1.6~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±0.35	% FSR
		AVREFP = VDD	$1.6~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±0.60	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±0.35	% FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±3.5	LSB
			$1.6~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±6.0	LSB
Differential linearity error	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±2.0	LSB
Note 1		AVREFP = VDD	$1.6~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			±2.5	LSB
Reference voltage (+)	AVREFP			1.6		Vdd	V
Analog input voltage	VAIN			0		AVREFP and EVDD0	V
	VBGR	$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V},$ HS (high-speed main) mode		1.38	1.45	1.5	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

(3) When AVREF (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), AVREF (-) = Vss (ADREFM = 0), target ANI pin: ANI0 to ANI14, ANI16 to ANI20

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = VSS)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Notes 1, 2	AINL	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V		1.2	±7.0	LSB
			1.6 V ≤ VDD ≤ 5.5 V		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.125		39	μS
			$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.1875		39	μS
			$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μS
			$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±0.60	% FSR
			$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±0.85	% FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±0.60	% FSR
			$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±0.85	% FSR
Integral linearity error Note 1	ILE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±4.0	LSB
			$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±6.5	LSB
Differential linearity error	DLE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±2.0	LSB
Note 1			$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20		0		EV _{DD0}	V
	VBGR	$ 2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}, $ HS (high-speed main) mode		1.38	1.45	1.5	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

(4) When AVREF (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target ANI pin: ANI0 to ANI14, ANI16 to ANI20

(TA = -40 to +85 °C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR, Reference voltage (-) = AVREFM = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN. TYP. MAX.			Unit
Resolution	Res				8		bit
Conversion time	tconv	8-bit resolution	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	17		39	μS
Zero-scale error Notes 1, 2	EZS	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Reference voltage (+)	VBGR		•	1.38	1.45	1.5	V
Reference voltage (-)	AVREFM			Vss		V	
Analog input voltage	VAIN			0		VBGR	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

2.6.2 Temperature sensor characteristics

(TA = -40 to +85 °C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25 °C		1.05		V
Reference output voltage	VCONST	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/C
Operation stabilization wait time	tamp				5	μS

2.6.3 D/A converter characteristics

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = $4 \text{ M}\Omega$	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
		Rload = $8 \text{ M}\Omega$	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$			3	μS
			1.6 V ≤ VDD < 2.7 V			6	μs

2.6.4 Comparator

(TA = -40 to +85 °C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EV _{DD0} - 1.4	V
	Ivcmp			-0.3		EV _{DD0} + 0.3	٧
Output delay	td	$VDD = 3.0 \text{ V}$ Input slew rate > 50 mV/ μ s	High-speed comparator mode, standard mode			1.2	μS
			High-speed comparator mode, window mode			2.0	μS
			Low-speed comparator mode, standard mode		3		μS
High-electric-potential judgment voltage	VTW+	High-speed comparator mod		0.76 VDD		V	
Low-electric-potential judgment voltage	VTW-	High-speed comparator mod		0.24 VDD		V	

2.6.5 POR circuit characteristics

(TA = -40 to +85 $^{\circ}$ C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	POR Power supply rise time		1.51	1.54	V
	VPDR	Power supply fall time		1.50	1.53	V
Minimum pulse width	Tpw		300			μS
Detection delay time					350	μS

2.6.6 LVD circuit characteristics

(TA = -40 to +85 °C, VPDR \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVI0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVI1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVI2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVI3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVI4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVI5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVI6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVI7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVI8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVI9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVI10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVI11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVI12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVI13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pul	se width	tLW		300			μS
Detection de	lay time	tLD				300	μS

Caution Set the detection voltage (VLVI) to be within the operating voltage range. The operating voltage range depends on

the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 5.5 V@1 MHz to 32 MHz

VDD = 2.4 to 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 5.5 V@1 MHz to 8 MHzLV (low voltage main) mode: VDD = 1.6 to 5.5 V@1 MHz to 4 MHz

Remark VLVI(n-1) > VLVIn: n = 1 to 13

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85 °C, VPDR \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit				
Interrupt and reset	VLVI13	VPOC0,	VPOC1, VPOC2 = 0, 0, 0, fa	alling reset voltage: 1.6 V	1.60	1.63	1.66	V				
mode	VLVI12		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V				
			(+0.1 V)	Falling interrupt voltage	1.70	1.73	1.77	V				
	VLVI11		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V				
			(+0.2 V)	Falling interrupt voltage	1.80	1.84	1.87	V				
	VLVI4		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V				
			(+1.2 V)	Falling interrupt voltage	2.80	2.86	2.91	V				
	VLVI11	VPOC0,	VPOC1, VPOC2 = 0, 0, 1, fa	alling reset voltage: 1.8 V	1.80	1.84	1.87	V				
	VLVI10		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V				
			(+0.1 V)	Falling interrupt voltage	1.90	1.94	1.98	V				
	VLVI9		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V				
			(+0.2 V)	Falling interrupt voltage	2.00	2.04	2.08	V				
	VLVI2		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V				
			(+1.2 V)	Falling interrupt voltage	3.00	3.06	3.12	V				
	VLVI8	VPOC0,	VPOC1, VPOC2 = 0, 1, 0, fa	alling reset voltage: 2.4 V	2.40	2.45	2.50	2.50 V				
	VLVI7		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V				
			(+0.1 V)	Falling interrupt voltage	2.50	2.55	2.60	V				
	VLVI6		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V				
			(+0.2 V)	Falling interrupt voltage	2.60	2.65	2.70	V				
	VLVI1		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V				
			(+1.2 V)	Falling interrupt voltage	3.60	3.67	3.74	V				
	VLVI5	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, fa	alling reset voltage: 2.7 V	2.70	2.75	2.81	V				
	VLVI4		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V				
			(+0.1 V)	Falling interrupt voltage	2.80	2.86	2.91	V				
	VLVI3		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V				
			(+0.2 V)	Falling interrupt voltage	2.90	2.96	3.02	V				
	VLVI0		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V				
			(+1.2 V)	Falling interrupt voltage	3.90	3.98	4.06	V				

Caution Set the detection voltage (VLVI) to be within the operating voltage range. The operating voltage range depends on the setting of the user option byte (000C2H/010C2H). The following shows the operating voltage range.

HS (high-speed main) mode: VDD = 2.7 to 5.5 V@1 MHz to 32 MHz

VDD = 2.4 to 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: VDD = 1.8 to 5.5 V@1 MHz to 8 MHzLV (low voltage main) mode: VDD = 1.6 to 5.5 V@1 MHz to 4 MHz

2.7 Power Supply Rise Time

(TA = -40 to +85 $^{\circ}$ C, Vss = EVss0 = EVss1 = 0 V)

Parameter	Conditions	MIN.	TYP.	MAX.	Unit
VDD rise inclination	Трир			53.0	V/ms

2.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(TA = -40 \text{ to } +85 ^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.5 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.9 Flash Memory Programming Characteristics

(Ta = -40 to +85 °C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	1.8 V ≤ VDD ≤ 5.5 V		1		32	MHz
Number of code flash rewrites Number of data flash rewrites	Cerwr	1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.	Retained for 20 years (Self/serial programming) Note Retained for 1 years (Self/serial programming) Note	1,000	1,000,000		Times
			Retained for 5 years (Self/serial programming) Note	100,000			

Note When using flash memory programmer and Renesas Electronics self programming library.

Remark When updating data multiple times, use the flash memory as one for updating data.

2.10 Timing Specs for Switching Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when a pin reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the pin reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until a pin reset ends	tsu	POR and LVD reset must end before the pin reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after a reset ends	tHD	POR and LVD reset must end before the pin reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The pins reset ends (POR and LVD reset must end before the pin reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external and internal resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends

thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end

REVISION HISTORY	RL78/G14 Datasheet
------------------	--------------------

Rev.	Date		Description
Nev.	Page		Summary
0.01	Feb 10, 2011	_	First Edition issued
0.02	May 01, 2011	1 to 2	1.1 Features revised
		3	1.2 Ordering Information revised
		4 to 13	1.3 Pin Configuration (Top View) revised
		14	1.4 Pin Identification revised
		15 to 17	1.5.1 30-pin products to 1.5.3 36-pin products revised
		23 to 26	1.6 Outline of Functions revised
0.03	Jul 28, 2011	1	1.1 Features revised
1.00	Feb 21, 2012	1 to 40	1. OUTLINE revised
		41 to 97	2. ELECTRICAL SPECIFICATIONS added

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical "Specific": implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +444-1628-585-100, Fax: +444-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-2353-1155, Fax: +86-10-8235-7679

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 161F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiv Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: 482-2-558-5141

© 2012 Renesas Electronics Corporation. All rights reserved.