Securing the FL Landscape:

A Comparative Analysis of Attacks in Centralized and Decentralized Models

By: Alberte Krogh Hansen, Alexis Donato Calin, and Kimika Uehara

Table of contents

- 1. Introduction
- 2. Federated Learning VS Decentralized Federated Learning
- 3. Components of DFL & Security Implications
- 4. Attacks and Defenses in FL and DFL
- 5. Discussion
- 6. Challenges and Future Directions

What is Federated Learning?

Advantages of FL

- Privacy: Data remains on local devices; only model updates are shared.
- Communication Efficiency: Only small parameter updates are exchanged.
- Scalability: Ideal for distributed systems requiring privacy-preserving collaboration.

Challenges in FL

- Single Point of Failure (SPoF): Dependency
 on a central server creates vulnerabilities.
- Server Vulnerabilities: Risks of data breaches and model corruption.
- Fairness & Scalability: Aggregated models may not perform equally well across diverse clients.

What is Decentralized Federated Learning?

Advantages of DFL

- Scalability: Handles many participants effectively.
- Fairness: Reduces bias from centralized aggregation.
- Robustness: Resilient to central server failures.

Challenges in DFL

- Higher Complexity: More difficult to implement and manage.
- Consistency Issues: Requires advanced synchronization mechanisms.
- Lack of central management: No central server to aggregate and update = adds to higher complexity.

FL VS DFL

Key Trade-off

- FL: Simplicity vs.Vulnerability.
- DFL: Robustness vs. Complexity.

Components of DFL & Security Implications

Decentralized Federated Learning

Network Topology

Decentralization & Aggregation Schema

Communication Protocols

Network Topology pt. 1

Source: Liangqi Yuan, Ziran Wang, Lichao Sun, Philip S. Yu, and Christopher G. Brinton. Decentralized federated learning: A survey and perspective, 2024.

Network Topology pt. 2

Model	Characteristics		Security Implications
Erdos-Renyi (ER)	Random graphs with homogeneous structure		PROS : More uniform, better local data retention, less targeted attacks CONS : Limited knowledge diffusion
Barabasi-Al bert (BA)	Random scale-free networks (power law)		PROS: High-degree hubs enhance connectivity CONS: Potential SPoF
Stochastic Block Model (SBM)	Community-like network		PROS: Distinct communities with limited external data access CONS: Limited learning efficiency and knowledge sharing

Decentralization & Aggregation Schema

Fully Decentralized

Model updates aggregated through direct exchanges among clients

Partial Aggregation

Intermediate nodes perform some aggregation

✓Intermediate nodes act as filters

XTrusted nodes become target

Blockchain

Blockchain stores the global model
Aggregation via miner code
/ smart contract

- ✓ Tamper-proof✓ Traceable✓ Consensus mechanisms
- XBlockchain-based vulnerabilities

Communication Protocols

Common Attacks and Defenses on FL

3. Poisoning Attacks

Data Poisoning: Manipulating client datasets to mislead model training.

Model Poisoning: Uploading malicious model updates to the server.

Impact: Reduces model accuracy, introduces biased or incorrect predictions.

Defence: E.g. Anomaly Detection

1. Byzantine Attack

Attack:

- Collusion by multiple malicious clients (Byzantine users).
- Fake updates disrupt global model convergence or degrade accuracy.
- Hard to detect in large-scale systems.

Defence:

Credibility-Based detection

Blockchain-Based FL framework

2. Server Exploitation

- Centralized server is a high-value target for attackers.
- Exploits can lead to model corruption or extraction of sensitive data.

Common Attacks and Defenses on DFL

1. Poisoning Attacks and Defenses in DFL

Data Poisoning: aim to poison the global model by sending model updates derived from mislabeled data

Model Poisoning: manipulates the model's parameters to cause it to behave in an undesirable way

Defences:

- Anomaly Detection
- Pruning
- Federated distillation

2. Privacy Breach Attacks on DFL

Model Inversion: Exploit shared model parameters to reconstruct private data.

Membership Interference: Aim to infer whether a data record was used to train a target model or not.

Defence:

- Secure Multi-Party Computing
- Differential Privacy
- Homomorphic Encryption

3. Blockchain-based Attacks and Defenses in DFL

Attack	Characteristics	
Consensus/Sybil	Majority control with fake nodes	
Privacy Poisoning	Inject personal data	
Routing Attacks	Tamper with packet routing	
Private Key Hijacking	Flaws in key-signing mechanisms	
DDoS	Fill the buffer with spam data	

Discussion

Interplay between Money, Business, and Security for both FL and DF

- FL: Cheaper to implement at the cost of security
- DFL: Better security at the cost of a more expensive implementation
- Neither are better or worse for facilitating the business

Challenges and Future Directions

Challenges:

- Communication overhead & scalability
- Processing power & energy usage

Future Directions:

- Network dynamics & model aggregation strategies
- Blockchain integration
- Empirical studies & tailored solutions

