Universidad Nacional Autónoma de Honduras Topología Ejercicios de Repaso Complementarios para el Parcial I

Profesor: Dr. Fredy Vides

- 1. Dado un conjunto X tal que $|X| < \infty$, considerado como EM respecto de la métrica discreta d, y dada una función inyectiva $I: X \hookrightarrow \mathbb{R}^{10}$, calcular la cantidad más pequeña de conjuntos abiertos en $I(X) \subset \mathbb{R}^{10}$ tales que $I \in C(X, I(X))$ con respecto a la métrica discreta d.
- 2. Una sucesión $\{x_n\}_{n\geq 1}$ se dice eventualmente constante su existe $N\in\mathbb{Z}^+$ tal que $x_m=x_N$ para todo $m\geq N$. Probar of refutar que toda sucesión $\{x_n\}_{n\geq 1}\subset\mathbb{Z}$ es de Cauchy ssi es eventualmente constante.
- 3. Sea $\{U_{\alpha}\}_{{\alpha}\in A}$ una cubierta abierta finita de un EM compacto X. Probar que existe $\varepsilon>0$ tal que para cada $x\in X$, la bola abierta $B(x;\varepsilon)$ está contenida en alguno de los U_{α} 's. **Observación:** Este número ε se denomina número de Lebesgue de la cubierta $\{U_{\alpha}\}_{{\alpha}\in A}$ de X.
- 4. Dados $a, b \in \mathbb{R}$ y $n \in \mathbb{Z}^+$. Probar o refutar que el conjunto $X_n = \{a + k(b-a)/n | 0 \le k \le n\}$ es un EM compacto con respecto a la métrica discreta. Calcular (de ser posible) el número de Lebesgue de $C_n = \{\{a + k(b-a)/n\} | 0 \le k \le n\}$.
- 5. Probar o refutar que el subespacio $\{0\} \cup \{1/n|n \in \mathbb{Z}^+\} \subset \mathbb{R}$ es un EM compacto con respecto a la métrica usual en R.
- 6. Dados EM (X, d_X) , (Y, d_Y) con X compacto. Probar que si $f \in C(X, Y)$, entonces $f(X) \subset Y$ es un subespacio métrico compacto de Y. En particular, probar que f(Y) es acotado.
- 7. Probar que para cualquier EM compacto X, toda $f \in C(X,\mathbb{R})$ alcanza su máximo y mínimo valor.
- 8. Probar que un EM X es compacto ssi, para toda $f \in C(X, \mathbb{R})$ se cumple que f(X) es acotado.
- 9. Sean (X, d_X) y (Y, d_Y) EM tales que X es completo. Sea $\{f_n\}_{n\geq 1} \subset C(X, Y)$ tal que $\{f_n(x)\}$ converge para cada $x \in X$. Probar que para cada $\varepsilon > 0$, existen $N \geq 1$ y un subconjunto abierto no vacío U de X tales que $d_Y(f_n(x), f_m(x)) < \varepsilon$ para toda $x \in U$ y cada $m, n \geq N$.