Variables aleatorias continuas

Christian Limbert Paredes Aguilera

9/12/2021

Variables aleatorias continuas definición

Notemos que si X es una v.a. con función de distribución continua se tiene que $P(X = x_0) = F_X(x_0) - F(x_0^-) = 0$ por lo que no tiene sentido definir función de probabilidad

En general tendremos que $P(X < x_0) = P(X \le x_0)$

Propiedades

Los sucesos del tipo $\{X \leq x\}$ y $\{X < x\}$ tendrán la misma probabilidad.

Dada una v.a. continua X se tiene que:

• $P(X \le b) = P(X < b)$

Demostración.- $P(X \le b) = P(X \le b) + P(X = b) = P(X \le b)$

• P(X < b) = P(X < a) + P(a < X < b)

Demostración.- Sea $\{X < a\} \cap \{a < X < b\} = \emptyset$ y $\{X < a\} \cup \{a < X < b\} = \{X < b\}$ entonces,

$$P(X \le b) = P(\{X < a\} \cup \{a < X < b\})$$

= $P(X < a) + P(a < X < b)$

• P(a < X < b) = P(X < b) - P(X < a)

Demostración.- Si reescribimos la igualdad dada nos queda,

$$P(X \le b) = P(X < a) + P(a < X < b),$$

de donde por la primera y segunda propiedad queda demostrada la proposición.

Propiedades de la función de distribución

Dada una variable aleatoria contina se tiene que:

- $F_X(b) = F_X(a) + P(a < X < b)$
- $P(a < X < b) = F_X(b) F_X(a)$
- $P(a \le X \le b) = FX(b) F_X(a)$

Función de densidad

Una función $f: \mathbb{R} \to \mathbb{R}$ es una función de densidad sobre \mathbb{R} si cumple que

- $f_X(x) \ge 0$ para todo $x \in \mathbb{R}$
- f es continua salvo a lo más en una cantidad finita de puntos sobre cada intervalo acotado de \mathbb{R} .

•
$$\int_{-\infty}^{\infty} f_X(x) \ dx = 1$$

Función de densidad de una variable aleatoria

Sea X una v.a. con función de distribución F_X . Sea $f: \mathbb{R} \to \mathbb{R}$ una función de desidad tal que

$$F_X(x) = \int_{-\infty}^{\infty} f_X(t) dt \quad \forall x \in \mathbb{R}.$$

Entonces X es una variable aleatoria continua y f_X es la densidad de v.a. X

Dominio de una variable aleatoria continua

El conjunto $D_X = \{x \in \mathbb{R} | f_X(x) > 0\}$ recibe el nombre de soporte de la variable eleatoria continua y se interpreta su conjunto de resultados posible

Densidad diana

$$f_X(x) \begin{cases} 0 & si \quad x \le 0 \\ = 1 & si \quad 0 < x < 1 \\ 0 & si \quad 1 \le x \end{cases}$$

$$Si \qquad x \le 0 \qquad entonces \qquad \int_{-\infty}^x f_X(t) \ dt = 0$$

$$Si \qquad 0 \le x \le 1 \qquad entonces \qquad \int_{\infty}^x f_X(t) \ dx = \int_0^x 1 \ dt = x$$

$$Si \qquad x \ge 1 \qquad entonces \qquad \int_{-\infty}^x F_X(t) \ dt = \int_0^1 1 \ dt = 1$$

$$Por \ lo \ tanto \qquad \int_{\infty}^x f_X(x) \ para \ todo \ x \in \mathbb{R}$$

```
curve(dunif(x,0,1),xlim = c(-0.5,1.5),col="blue",
main="Densidad de la distribución uniforme en [0,1]")
```

Densidad de la distribución uniforme en [0,1]

Utilidad de la función de densidad

La función de densidad nos permite calcular diversas probabilidades

Propiedades

Sea X una v.a. continua con función de distribución ${\cal F}_X$ y de densidad f_X entonces

•
$$P(a < X < b) = P(a < X \le b) = P(a \le X \le b) = P(a \le X \le b) = \int_a^b f_X(x) dx$$

• Si A es un conjunto adecuado de $\mathbb R$ entonces

$$P(X \in A) = \int_A f(X) \ dx = \int_{A \cap D_X} f(x) \ dx$$

Propiedades de la función de densidad

Sea X una v.a. continua con función de distribución ${\cal F}_X$ y de densidad f_X entonces

- Si f_X es continua en un punto x, F_X es derivable en ese punto y $F_X^{'}(x) = f_X(x)$
- $P(X = x) = 0 \ \forall x \in \mathbb{R}.$