CS204: Discrete Mathematics

Ch 1. The Joundations: Logic and Proofs Predicate Logic-3 Formal Proof

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Here we use a big turnstile notation.

1	$(P \rightarrow Q)$	- premise
2		
3		
4		
5		
6		
7		
7 8		
9		
10		
11		
12		
13		
14	$(\neg P \lor Q)$	-

$\neg(\neg P \lor Q)$ 2 3 4 5 6 8 9 10 11 12 $\neg \neg (\neg P \lor Q)$ $(\neg P \lor Q)$ 13 14

Hint:

- premise

- premise

- ¬-intro, 2-12, 8, 12

- ¬-elim, 13

Use proof by contradiction!

¬-intro (proof by contradiction)

$$\sum$$
, A |- B, \neg B

$$\sum |- \neg A|$$

1	$(P \rightarrow Q)$	- premise
2	¬(¬P ∨ Q)	- premise
3		_
4		
5		
6		
7		
7 8 9	Q	
9		
10		
11		
12	¬Q	
13 14	¬ ¬(¬P ∨ Q) (¬P ∨ Q)	- ¬-intro, 2-12, 8, 12 - ¬-elim, 13

- premise $\neg(\neg P \lor Q)$ 2 - premise 3 4 5 6 Р 8 Q - →-elim, 1, 7 9 10 11 12 - ¬-intro, 2-12, 8, 12 13 14 - ¬-elim, 13

- premise $\neg (\neg P \lor Q)$ 2 - premise 3 - premise 4 5 - ¬-intro, 3-5, 4, 5 6 Р - ¬-elim, 6 8 Q - →-elim, 1, 7 9 10 11 12 13 - ¬-intro, 2-12, 8, 12 14 - ¬-elim, 13

- premise 2 $\neg(\neg P \lor Q)$ - premise 3 - premise $\neg P \lor Q$ - \lor -intro, 3 $\neg (\neg P \lor Q)$ - 2 4 5 - ¬-intro, 3-5, 4, 5 6 8 Q - →-elim, 1, 7 9 10 11 12 13 - ¬-intro, 2-12, 8, 12 14 - ¬-elim, 13

- premise 2 $\neg(\neg P \lor Q)$ - premise 3 - premise $\neg P \lor Q$ - \lor -intro, 3 $\neg (\neg P \lor Q)$ - 2 4 5 6 - ¬-intro, 3-5, 4, 5 Р Q 8 $- \rightarrow$ -elim, 1, 7 9 - premise Q 10 11 12 - ¬-intro, 9-11, 10, 11 13 - ¬-intro, 2-12, 8, 12 14 - ¬-elim, 13

- premise $\neg(\neg P \lor Q)$ 2 - premise 3 - premise ¬P ∨ Q - ∨-intro, 3 ¬(¬P ∨ Q) - 2 4 5 - ¬-intro, 3-5, 4, 5 6 7 8 - →-elim, 1, 7 9 - premise $\neg P \lor Q$ - \lor -intro, 9 $\neg (\neg P \lor Q)$ - 2 10 11 12 - →-intro, 9-11, 10, 11 $\neg \neg (\neg P \lor Q)$ - $\neg -intro, 2-12, 8, 12$ 13 14 - ¬-elim, 13

Quiz 06-2

Which of the following is NOT a good approach to constructing a formal proof?

- (a) Use the main connective or the quantifier of the conclusion as the key to making an overall proof plan.
- (b) Use the forward-backward technique if necessary.
- (c) If the conclusion is a conjunction, it is a good idea to prove each conjunct one by one and apply the ∧-Intro rule.
- (d) If the conclusion is a disjunction and none of the disjuncts are easily proved, it is a good idea to try a proof by cases or a proof by contradiction.
- (e) Try to derive as many formulas as possible from the formulas that have been already derived to determine the most appropriate one from which to move forward with the proof.

