Логика-2, 3 курс М

Виктор Львович Селиванов 1

¹ФМКН СП6ГУ

Весенний семестр, 2024

v.selivanov@spbu.ru

Важная дополнительная информация: https://github.com/vseliv/Logic2-2023/tree/main

Литература

- 1. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. 4-е изд., доп. М.: МЦНМО, 2012. 240 с.
- 2. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. 4-е изд., доп. М.: МЦНМО, 2012. 159 с.
- 3. Н. Катленд. Вычислимость. Введение в теорию рекурсивных функций. М: Мир, 1983, 255 с.
- 4. И.А. Лавров, Л.Л. Максимова, Задачи по теории множеств, математической логике и теории алгоритмов. Издание четвертое, М.: Наука, 2001. 256 с.
- 5. Дж. Шенфилд. Математическая логика. М.: Наука, 1975. 528

Выражения Π^{σ} строятся из следующих исходных различных символов:

Непустое множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число — местность этого символа

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Непустое множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Непустое множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- ightharpoonup Логические символы $\land \lor \to \lnot \forall \exists$

Выражения ЛП $^{\sigma}$ строятся из следующих исходных различных символов:

- Непустое множество σ предикатных и функциональных символов, каждому из которых сопоставлено натуральное число местность этого символа
- lacktriangle Счетное множество Var переменных $v_0 \ v_1 \ v_2 \dots$
- lacktriangle Логические символы $\land \lor \to \lnot \forall \exists$
- ▶ Вспомогательные символы () ,

Осмысленные выражения $\Pi \Pi^{\sigma}$

тоже терм.

 σ -ТЕРМЫ: любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$

Осмысленные выражения $\Pi\Pi^{\sigma}$

σ -ТЕРМЫ:

любая переменная есть терм; если f-n-местный функциональный символ из σ и t_1,\ldots,t_n — термы, то выражение $f(t_1,\ldots,t_n)$ тоже терм.

σ -ФОРМУЛЫ:

суть формулы.

выражение $P(t_1,\ldots,t_n)$, где t_1,\ldots,t_n — термы, а P - n-местный предикатный символ из σ , является формулой; если φ и ψ — формулы, а x — переменная, то выражения $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, $\neg \varphi$, $\forall x \varphi$, $\exists x \varphi$

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ; $FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Свободные и связанные переменные

Множество $FV(\varphi)$ свободных переменных формулы φ определяется по индукции: $FV(P(t_1,\ldots,t_n))$ состоит из переменных, входящих хотя бы в один из термов t_1,\ldots,t_n ; $FV(\varphi \wedge \psi) = FV(\varphi) \cup FV(\psi)$, и аналогично для \vee,\to,\neg ;

 $FV(\forall x \varphi) = FV(\varphi) \setminus \{x\}$, и аналогично для \exists .

Переменные, которые входят в формулу, но не являются свободными, называются связанными. Формулы без свободных переменных называются предложениями.

Запись $\varphi=\varphi(x_1,\ldots,x_m)$ означает, что $FV(\varphi)\subseteq\{x_1,\ldots,x_m\}$. Аналогично для термов.

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to \{\text{И},\text{Л}\},$ а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

σ -Структуры

 σ -Структура — пара $\mathbb{A}=(A;I)$, состоящая из непустого множества A и интерпретации I всех сигнатурных символов в A (I сопоставляет n-местному предикатному символу $P\in\sigma$ некоторый n-местный предикат $P^I=P^{\mathbb{A}}:A^n\to\{\mathsf{VI},\mathsf{II}\}$, а каждому n-местному функциональному символу f из σ — некоторую n-местную функцию $f^I=f^{\mathbb{A}}$ на A).

Изоморфизмом $\mathbb A$ на $\mathbb B$ называется биекция g множества A на множество B такая, что $P^{\mathbb A}(a_1,\dots,a_n)=P^{\mathbb B}(g(a_1),\dots,g(a_n))$ и $g(f^{\mathbb A}(a_1,\dots,a_n))=f^{\mathbb B}(g(a_1),\dots,g(a_n))$ для любых $a_1,\dots,a_n\in\mathbb A$.

Структуры \mathbb{A} и \mathbb{B} называются изоморфными ($\mathbb{A} \simeq \mathbb{B}$), если существует изоморфизм \mathbb{A} на \mathbb{B} .

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathrm N, \mathrm J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x), f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu});$$

Значения термов и формул

Для любой σ -структуры $\mathbb A$ и означивания $\nu: Var \to A$ определяем значения $t^{\mathbb A, \nu} \in A$ и $\varphi^{\mathbb A, \nu} \in \{\mathsf N, \mathsf J\}$ индукцией:

$$x^{\mathbb{A},\nu} = \nu(x)$$
, $f(t_1,\ldots,t_n)^{\mathbb{A},\nu} = f^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $P(t_1,\ldots,t_n)^{\mathbb{A},\nu} = P^{\mathbb{A}}(t_1^{\mathbb{A},\nu},\ldots,t_n^{\mathbb{A},\nu})$; $(\varphi \wedge \psi)^{\mathbb{A},\nu} = \varphi^{\mathbb{A},\nu} \wedge \psi^{\mathbb{A},\nu}$, аналогично для \vee,\to,\neg ;

$$(\forall x\varphi)^{\mathbb{A},\nu} = \bigwedge_{a \in A} \varphi^{\mathbb{A},\nu_a^x} \text{ in } (\exists x\varphi)^{\mathbb{A},\nu} = \bigvee_{a \in A} \varphi^{\mathbb{A},\nu_a^x}$$

где ν_a^x — означивание, полученное из ν изменением значения x на a.

Значения термов и формул

Пусть $t = t(x_1, \ldots, x_m)$ и $\varphi = \varphi(x_1, \ldots, x_m)$.

- Если означивания μ и ν согласованы на x_1,\dots,x_m , то $t^{\mathbb{A},\mu}=t^{\mathbb{A},\nu}$ и $\varphi^{\mathbb{A},\mu}=\varphi^{\mathbb{A},\nu}$. Поэтому вместо $t^{\mathbb{A},\nu}$ часто пишут $t^{\mathbb{A}}(x_1/a_1,\dots,x_m/a_m)$ или, короче, $t^{\mathbb{A}}(a_1,\dots,a_m)$, где $a_i=\nu(x_i)$; аналогично для формул. Вместо $\varphi^{\mathbb{A}}(a_1,\dots,a_m)=\mathbb{N}$ часто пишут $\mathbb{A}\models\varphi(a_1,\dots,a_m)$.
- Если a изоморфизм $\mathbb A$ на $\mathbb B$, то $g(t^{\mathbb A, \nu}) = t^{\mathbb A, g \circ \nu}$ и $\varphi^{\mathbb A, \nu} = \varphi^{\mathbb A, g \circ \nu}$. Иными словами, $g(t^{\mathbb A}(a_1, \dots, a_m)) = t^{\mathbb B}(g(a_1), \dots, g(a_m))$ и $\varphi^{\mathbb A}(a_1, \dots, a_m) = \varphi^{\mathbb B}(g(a_1), \dots, g(a_m))$.
- ▶ Если $\mathbb{A} \simeq \mathbb{B}$, то эти структуры элементарно эквивалентны ($\mathbb{A} \equiv \mathbb{B}$), т.е. в них истинны одни и те же σ -предложения.

Общезначимость и ее варианты

- ho общезначима (тождественно истинна), если $\varphi^{\mathbb{A}, \nu} = \mathbb{N}$ для любых \mathbb{A} и ν .
- $ightharpoonup \varphi$ и ψ равносильны $(\varphi \equiv \psi)$, если $\varphi^{\mathbb{A},\nu} = \psi^{\mathbb{A},\nu}$ для любых \mathbb{A} и ν .
- ▶ Моделью множества предложений T называется структура, в которой все предложения из T истинны.
- ▶ Предложение φ логически следует из множества педложений T ($T \models \varphi$), если φ истинно в любой модели множества T.

Общезначимость и ее варианты

- ightharpoonup arphi общезначима $\iff \models arphi$.
- $ho = \psi \iff (\varphi \to \psi) \land (\psi \to \varphi)$ общезначима.
- ightharpoonup arphi(ar x) общезначима $\iff orall ar x arphi$ общезначима.
- $T \models (\varphi \to \psi) \iff T \cup \{\varphi\} \models \psi.$
- $ightharpoonup T \models arphi \iff T \cup \{ \neg arphi \}$ не имеет модели.
- $lacktriangledown T \models arphi \iff \bigwedge T
 ightarrow arphi$ общезначима, где T конечное множество предложений.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $A \in F \vee (I \setminus A) \in F$ для любого $A \subseteq I$.

Фильтры и ультрафильтры

Фильтр F на множестве I — это собственное подмножество множества P(I), замкнутое относительно пересечения и надмножеств. Фильтр F называется ультрафильтром, если $A \in F \vee (I \setminus A) \in F$ для любого $A \subseteq I$.

ПРЕДЛОЖЕНИЕ.

- 1. Ультрафильтры на I это в точности максимальные фильтры по включению.
- 2. Если F ультрафильтр, то $A \in F \iff (I \setminus A) \in F$ и $A \cup B \in F \iff (A \in F \lor B \in F) \in F$, для любых $A, B \subseteq I$.
- 3. Любой фильтр на I содержится в некотором ультрафильтре.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

Фильтрованные произведения

Пусть $\{\mathbb{A}_i\}_{i\in I}$ — семейство σ -структур и F — фильтр на I. Тогда отношение $a\equiv_F b\iff \{i\mid a(i)=b(i)\}\in F$ есть эквивалентность на $A=\{a:I\to\bigcup_i A_i\mid \forall i(a(i)\in A_i)\}.$ Определим σ -структуру \mathbb{A}_F на $A/_{\equiv_F}$ так: $P^{\mathbb{A}_F}([a_1],\ldots,[a_n])\iff \{i\mid P^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))\}\in F$, $f^{\mathbb{A}_F}([a_1],\ldots,[a_n])=[a]$, где $a(i)=f^{\mathbb{A}_i}(a_1(i),\ldots,a_n(i))$; это определение корректно.

ТЕОРЕМА. Для любых ультрафильтра F, σ -формулы $\varphi(x_1,\ldots,x_m)$ и $a_1,\ldots,a_m\in A$ имеем: $\mathbb{A}_F\models\varphi([a_1],\ldots,[a_m])\iff\{i\mid\mathbb{A}_i\models\varphi(a_1(i),\ldots,a_m(i))\}\in F.$

В частности, при m=0: $\mathbb{A}_F\models \varphi\iff \{i\mid \mathbb{A}_i\models \varphi\}\in F.$

Теорема компактности

TEOPEMA. Если любое конечное подмножество данного множества предложений T имеет модель, то и все множество T имеет модель.

Теорема компактности

TEOPEMA. Если любое конечное подмножество данного множества предложений T имеет модель, то и все множество T имеет модель.

Далее предполагаем, что σ содержит символ равенства = (двухместный предикатный символ). σ -Структура называется нормальной, если символ равенства в ней интерпретируется стандартным образом, как отношение равенства элементов.

TEOPEMA. Если любое конечное подмножество данного множества предложений T сигнатуры с равенством имеет нормальную модель, то и все множество T имеет нормальную модель.

Для доказательства надо применить предыдущую теорему к множеству $T \cup E_{\sigma}$, где E_{σ} — аксиомы равенства (утверждающие, что = есть σ -конгруэнтность) и профакторизовать полученную модель $\mathbb A$ по конгруэнтности $=^{\mathbb A}$.

Аксиомы равенства, нормальные модели

$$\forall x(x = x), \ \forall x \forall y(x = y \to y = x),$$

$$\forall x \forall y \forall z(x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \to P(y_1, \dots, y_n)).$$

Аксиомы равенства, нормальные модели

$$\forall x(x = x), \ \forall x \forall y(x = y \to y = x),$$

$$\forall x \forall y \forall z(x = y \land y = z \to x = z),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \to f(x_1, \dots, x_n) = f(y_1, \dots, y_n)),$$

$$\forall x_1 \forall y_1 \dots \forall x_n \forall y_n(x_1 = y_1 \land \dots \land x_n = y_n \land P(x_1, \dots, x_n) \to P(y_1, \dots, y_n)).$$

TEOPEMA. Если теория содержит аксиомы равенства и имеет модель, то она имеет и нормальную модель.

- lack A подструктура $\Bbb B$ ($\Bbb A\subseteq\Bbb B$), если $A\subseteq B$, $P^{\Bbb A}(a_1,\ldots,a_n)=P^{\Bbb B}(a_1,\ldots,a_n)$ и $f^{\Bbb A}(a_1,\ldots,a_n)=f^{\Bbb B}(a_1,\ldots,a_n)$ для всех $a_1,\ldots,a_n\in A$;
- ▶ *вложение* структуры \mathbb{A} в структуру \mathbb{B} это изоморфизм \mathbb{A} на подструктуру структуры \mathbb{B} ;
- ▶ \mathbb{A} элементарная подструктура \mathbb{B} ($\mathbb{A} \leq \mathbb{B}$), если $A \subseteq B$ и $\varphi^{\mathbb{A}}(\overline{a}) = \varphi^{\mathbb{B}}(\overline{a})$) для всех $\overline{a} \in \mathbb{A}$ и для всех формул $\varphi(\overline{x})$;
- ▶ элементарное вложение \mathbb{A} в \mathbb{B} это изоморфизм \mathbb{A} на элементарную подструктуру структуры \mathbb{B} ;
- $ightharpoonup \mathbb{A}$ элементарно эквивалентно \mathbb{B} ($\mathbb{A} \equiv \mathbb{B}$), если они удовлетворяют одни и те же предложения.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X\subseteq A$, $|X|\leq |\mathsf{For}_\sigma|$. Тогда существует $\mathbb{B}\preceq \mathbb{A}$: $X\subseteq B$ и $|\mathbb{B}|\leq |\mathsf{For}_\sigma|$.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |\mathsf{For}_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ и $|\mathbb{B}| \leq |\mathsf{For}_{\sigma}|$.

Д. Определим последовательность

$$X = S_0 \subseteq S_1 \subseteq \dots$$
 по индукции:

$$S_{n+1} = S_n \cup \{ \eta(e) \mid e \in E_n \},$$

где E_n и $\eta:E_n\to A$ определены так:

$$E_n = \{ (\overline{a}, \varphi(\overline{x}, y)) \mid \overline{a} \in S_n \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \} \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \} \text{ if } A \models \exists y \ \varphi(\overline{a}, y) \}$$

$$\mathbb{A} \models \varphi(\overline{a}, \eta(e))$$
 для всех $e \in E_n$. $B = \bigcup_n S_n$.

ТЕОРЕМА. Пусть есть \mathbb{A} , $X \subseteq A$, $|X| \leq |\mathsf{For}_{\sigma}|$. Тогда существует $\mathbb{B} \preceq \mathbb{A}$: $X \subseteq B$ и $|\mathbb{B}| \leq |\mathsf{For}_{\sigma}|$.

Д. Определим последовательность $X=S_0\subseteq S_1\subseteq\dots$ по индукции: $S_{n+1}=S_n\cup\{\eta(e)\mid e\in E_n\},$ где E_n и $\eta:E_n\to A$ определены так: $E_n=\{(\overline{a},\varphi(\overline{x},y))\mid \overline{a}\in S_n \text{ и } \mathbb{A}\models \exists y\;\varphi(\overline{a},y)\}$ и $\mathbb{A}\models \varphi(\overline{a},\eta(e))$ для всех $e\in E_n.$ $B=\bigcup_n S_n.$

Известен следующий важный результат: Не существует логики, собственным образом расширяющей логику предикатов и удовлетворяющей теоремам компактности и понижения мощности.

Константное обогащение

Если $\sigma\subseteq \tau$, то сигнатура τ называется *обогащением* сигнатуры σ . Если $\mathbb{A}-\sigma$ -структура, то, определив интерпретацию символов из $\tau\setminus\sigma$ в A, получим τ -структуру \mathbb{B} , называемую обогащением структуры \mathbb{A} . Наоборот: если $\mathbb{B}-\tau$ -структура, то, "забывая" интерпретацию символов из $\tau\setminus\sigma$, получим σ -обеднение $B|_{\sigma}$ структуры \mathbb{B} . Чаще всего сигнатуры обогащаются константными символами.

Константное обогащение

Если $\sigma\subseteq \tau$, то сигнатура τ называется *обогащением* сигнатуры σ . Если $\mathbb{A}-\sigma$ -структура, то, определив интерпретацию символов из $\tau\setminus\sigma$ в A, получим τ -структуру \mathbb{B} , называемую обогащением структуры \mathbb{A} . Наоборот: если $\mathbb{B}-\tau$ -структура, то, "забывая" интерпретацию символов из $\tau\setminus\sigma$, получим σ -обеднение $B|_{\sigma}$ структуры \mathbb{B} . Чаще всего сигнатуры обогащаются константными символами.

Например, пусть $\mathbb{A}-\sigma$ -структура, а $\sigma_A=\sigma\cup\{c_a\mid a\in A\}$ ее обогащение новыми константными символами c_a такими, что $c_a\neq c_b$ при $a\neq b$. Стандартным константным обогащением структуры \mathbb{A} называется ее σ_A -обогащение, в котором новые символы интерпретируются так: $c_a\mapsto a$, для любого $a\in A$.

Диаграммы структур

Диаграмма σ -структуры \mathbb{A} — это множество $D(\mathbb{A})$ σ_A -предложений вида $f(c_{a_1},\ldots,c_{a_n})=c_a,\ P(c_{a_1},\ldots,c_{a_n}),$ $\neg P(c_{a_1},\ldots,c_{a_n})$, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Полная диаграмма σ -структуры \mathbb{A} — это множество $D^*(\mathbb{A})$ всех σ_A -предложений, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Диаграммы структур

Диаграмма σ -структуры \mathbb{A} — это множество $D(\mathbb{A})$ σ_A -предложений вида $f(c_{a_1},\ldots,c_{a_n})=c_a,\ P(c_{a_1},\ldots,c_{a_n}),$ $\neg P(c_{a_1},\ldots,c_{a_n}),$ истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

Полная диаграмма σ -структуры \mathbb{A} — это множество $D^*(\mathbb{A})$ всех σ_A -предложений, истинных в \mathbb{A}_A при естественной интерпретации новых константных символов.

ПРЕДЛОЖЕНИЕ. 1. σ -Структура $\mathbb A$ изоморфно вкладывается в σ -структуру $\mathbb B\iff \mathbb B$ является σ -обеднением некоторой модели множества $D(\mathbb A)$.

2. σ -Структура $\mathbb A$ элементарно вкладывается в σ -структуру $\mathbb B \iff \mathbb B$ является σ -обеднением некоторой модели множества $D^*(\mathbb A)$.

Повышение мощности

TEOPEMA. Пусть имеется бесконечная σ -структура $\mathbb A$ и кардинал $\kappa \geq \max(|A|,|\mathsf{For}_\sigma|)$. Тогда $\mathbb A$ элементарно вкладывается в некоторую структуру мощности κ .

Повышение мощности

TEOPEMA. Пусть имеется бесконечная σ -структура $\mathbb A$ и кардинал $\kappa \geq \max(|A|,|\mathsf{For}_\sigma|)$. Тогда $\mathbb A$ элементарно вкладывается в некоторую структуру мощности κ .

В качестве следствий получаем:

TEOPEMA. Если σ -теория T имеет модель мощности $\geq n$ для любого $n\in\mathbb{N}$, то она имеет модель любой мощности $\kappa\geq |{\sf For}_\sigma|.$

ТЕОРЕМА. Если σ -теория T имеет единственную с точностью до изоморфизма модель некоторой мощности $\kappa \geq |\mathsf{For}_\sigma|$ и не имеет конечных моделей, то она полна (т.е. $T \models \varphi \lor T \models \neg \varphi$ для любого σ -предложения φ).

Аксиоматизируемые классы

- ightharpoonup T множество σ -предложений.
- ▶ Теории T соответствует класс ее моделей $\mathrm{Mod}(T) = \{\mathbb{A} \mid \mathbb{A} \models T\}$
- ► Классу структур $K \subseteq \operatorname{Str}_{\sigma}$ соответствует его теория $\operatorname{Th}(K) = \{ \varphi \in \operatorname{Sent}_{\sigma} \mid \forall \mathbb{A} \in K \ (\mathbb{A} \models \varphi) \}.$
- Класс структур K аксиоматизируем, если $K = \mathsf{Mod}(T)$ для некоторой теории T.
- Класс структур K конечно аксиоматизируем, если $K = \mathsf{Mod}(T)$ для некоторой конечной теории $T = \{\varphi_1, \dots, \varphi_n\}$. Это равносильно аксиоматизируемости одной формулой $(\varphi_1 \wedge \dots \wedge \varphi_n)$.

Аксиоматизируемые классы: свойства

- 1. Если $T \subseteq T'$, то $\mathsf{Mod}(T) \supseteq \mathsf{Mod}(T')$;
- 2. Если $K \subseteq K'$, то $\mathsf{Th}(K) \supseteq Th(K')$;
- 3. $K \subseteq \mathsf{Mod}(\mathsf{Th}(K))$ и $T \subseteq \mathsf{Th}(\mathsf{Mod}(T))$;
- 4. Класс K аксиоматизируем тогда и только тогда, когда $K = \mathsf{Mod}(\mathsf{Th}(K));$
- 5. Любое пересечение аксиоматизируемых классов является аксиоматизируемым классом. Объединение двух аксиоматизируемых классов является аксиоматизируемым классом;
- 6. Класс K конечно аксиоматизируем тогда и только тогда, когда K и $\mathsf{Str}_\sigma \backslash K$ аксиоматизируемы;
- 7. Класс K аксиоматизируем тогда и только тогда, когда K замкнут относительно элементарной эквивалентности и ультрапроизведений.

Классификация формул

- Σ_0 множество всех формул, равносильных бескванторным формулам;
- lacksquare Σ_1 множество всех формул, равносильных формулам вида $\exists \overline{x} \ \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- ▶ Σ_2 множество всех формул, равносильных формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная, и т.д.;
- lacktriangle множество Π_n определяется аналогично множеству Σ_n с заменой \exists на \forall и наоборот.

Классификация формул

- Σ_0 множество всех формул, равносильных бескванторным формулам;
- lacksquare Σ_1 множество всех формул, равносильных формулам вида $\exists \overline{x} \ \psi(\overline{x}, \overline{y})$, где ψ бескванторная;
- ▶ Σ_2 множество всех формул, равносильных формулам вида $\exists \overline{x_1} \, \forall \overline{x_2} \, \psi(\overline{x_1}, \overline{x_2}, \overline{y})$, где ψ бескванторная, и т.д.;
- ▶ множество Π_n определяется аналогично множеству Σ_n с заменой \exists на \forall и наоборот.

```
ПРЕДЛОЖЕНИЕ. \Sigma_n \cup \Pi_n \subseteq \Sigma_{n+1} \cap \Pi_{n+1}; \varphi \in \Pi_n тогда и только тогда, когда \neg \varphi \in \Sigma_n; \bigcup \Sigma_n = \bigcup \Pi_n = \mathsf{For}_\sigma.
```

Π_1 - и Π_2 -аксиоматизируемость

В теории моделей имеется ряд теорем об аксиоматизируемости классов структур предложениями того или иного вида. Приведем два важных примера.

TEOPEMA. Аксиоматизируемый класс является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур (т.е. если какая-то структура лежит в классе, то и любая её подструктура тоже лежит в нём).

Π_1 - и Π_2 -аксиоматизируемость

В теории моделей имеется ряд теорем об аксиоматизируемости классов структур предложениями того или иного вида. Приведем два важных примера.

ТЕОРЕМА. Аксиоматизируемый класс является Π_1 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно подструктур (т.е. если какая-то структура лежит в классе, то и любая её подструктура тоже лежит в нём).

Класс структур K замкнут относительно объединений цепей структур, если из $\forall n \ (\mathbb{A}_n \in K)$ и $\mathbb{A}_0 \subseteq \mathbb{A}_1 \subseteq \ldots$ следует $\bigcup \mathbb{A}_n \in K$.

TEOPEMA. Аксиоматизируемый класс является Π_2 -аксиоматизируемым тогда и только тогда, когда он замкнут относительно объединений цепей структур.

Полные теории

 σ -Теория T называется *полной*, если она имеет модель и, для любого σ -предложения φ , либо $T\models\varphi$, либо $T\models\neg\varphi$. ПРЕДЛОЖЕНИЕ. Для теории T, имеющей модель, равносильны следующие условия: T-полна; $[T]=\text{Th}(\mathbb{A}),$ для любой $\mathbb{A}\models T$ (где $[T]=\{\varphi\mid T\models\varphi\}-\text{множество всех логических следствий теории }T;$ $\text{Th}(\mathbb{A})=\text{Th}(\mathbb{B})$ для любых $\mathbb{A},$ $\mathbb{A}\models T.$

Полные теории

 σ -Теория T называется *полной*, если она имеет модель и, для любого σ -предложения φ , либо $T \models \neg \varphi$.

ПРЕДЛОЖЕНИЕ. Для теории T, имеющей модель, равносильны следующие условия:

T — полна;

 $[T]=\operatorname{Th}(\mathbb{A})$, для любой $\mathbb{A}\models T$ (где $[T]=\{arphi\mid T\modelsarphi\}$ — множество всех логических следствий теории T; $\operatorname{Th}(\mathbb{A})=\operatorname{Th}(\mathbb{B})$ для любых \mathbb{A} , $\mathbb{A}\models T$.

Теория называется *категоричной в мощности* κ , если она имеет единственную с точностью до изоморфизма модель мощности κ .

Ранее уже доказали простую, но важную теорему:

Если σ -теория не имеет конечных моделей и категорична в некоторой мощности $\geq |\mathsf{For}_{\sigma}|$, то она полна.

Модельно полные теории

Теория T модельно полна, если она имеет модель и отношения \subseteq, \preceq совпадают на $\mathsf{Mod}(T)$.

Модельно полные теории

Теория T модельно полна, если она имеет модель и отношения \subseteq, \preceq совпадают на $\mathsf{Mod}(T)$.

TEOPEMA. Для теории T, имеющей модель, равносильны:

- 1. *T* модельно полна.
- 2. Для любой $\mathbb{A} \models T$, теория $T \cup D(\mathbb{A})$ полна.
- 3. Для любых $\mathbb{A},\mathbb{B}\models T$ из $\mathbb{A}\subseteq\mathbb{B}$ следует, что любое Σ_1 -предложение в сигнатуре σ_A , которое истинно в \mathbb{B}_A , будет истинно и в \mathbb{A}_A .
- 4. $\Sigma_1=\Pi_1$ по модулю T (т.е. любая Σ_1 -формула $\varphi(\overline{x})$ равносильна подходящей Π_1 -формуле $\psi(\overline{x})$ в T: $T\models \forall \overline{x}\; (\varphi(\overline{x})\leftrightarrow \psi(\overline{x}))$.
- 5. $For_{\sigma} = \Pi_1$ по модулю T.

Дополнительные свойства

TEOPEMA.

- 1. Любая модельно полная теория Π_2 -аксиоматизируемая.
- 2. Если модельно полная теория T имеет модель, которая вкладывается в любую модель T, то T полна.
- 3. Если для любых двух моделей модельно полной теории T существует третья модель, в которую они обе вкладываются, то T полна.
- 4. Теория T допускает элиминацию кванторов (т.е. $For_{\sigma} = \Pi_0$ по модулю T) в точности тогда, когда теория $T \cup D(\mathbb{A})$ полна для любой $\mathbb{A} \subseteq \mathbb{B} \models T$.
- 5. Если теория Π_2 -аксиоматизируема, не имеет конечных моделей и категорична в некоторой мощности $\lambda \geq |\mathsf{For}_\sigma|$, то она модельно полна.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

II выигрывает в описанной партии, если конечные подструктуры, порождённые построенными кортежами элементов $\overline{a}, \overline{b}$, изоморфны относительно соответствия $a_i \mapsto b_i$, $c^\mathbb{A} \mapsto c^\mathbb{B}$; пустые подструктуры изоморфны по определению.

Считаем, что σ конечна, содержит =, и не содержит функциональных символов местности >0. Пусть $\mathbb A$ и $\mathbb B$ — σ -структуры с непересекающимися носителями.

В игре Эренфойхта с n ходами $G_n(\mathbb{A},\mathbb{B})$ каждый из игроков I и II делает по n ходов (при n=0 ходов нет). При n>0, на первом ходе I выбирает элемент $a\in A$ или $b\in B$, II отвечает выбором элемента в другой структуре; получили обогащение каждой структуры константой: $(\mathbb{A},a),(\mathbb{B},b)$. Далее игра идет как $G_{n-1}((\mathbb{A},a),(\mathbb{B},b))$.

II выигрывает в описанной партии, если конечные подструктуры, порождённые построенными кортежами элементов $\overline{a}, \overline{b}$, изоморфны относительно соответствия $a_i \mapsto b_i$, $c^\mathbb{A} \mapsto c^\mathbb{B}$; пустые подструктуры изоморфны по определению.

Игра $G(\mathbb{A},\mathbb{B})$ отличается только тем, что первый ход I начинает выбором числа n; далее игра идёт как $G_n(\mathbb{A},\mathbb{B})$.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегия для данного игрока называется выигрышной, если игрок, следуя этой стратегии, выигрывает в любой партии, при любых ходах своего оппонента.

Стратегии

Стратегия для игрока в $N \ni -$ правило, определящее его ход в любой текущей позиции. Более формально, стратегия для I может быть задана функцией $(A \cdot B)^* \to A \cup B$ (используются обозначения из теории формальных языков), а стратегия для II — парой функций $(A \cdot B)^* \cdot A \to B$ и $(A \cdot B)^* \cdot B \to A$). Еще точнее, в игре $G_n(\mathbb{A},\mathbb{B})$ достаточны оганичения этих функций на слова длины < 2n, а для игры $G(\mathbb{A},\mathbb{B})$ в начале стратегия I еще должна выбрать n.

Стратегия для данного игрока называется выигрышной, если игрок, следуя этой стратегии, выигрывает в любой партии, при любых ходах своего оппонента.

Выражение $G_n^I(\mathbb{A},\mathbb{B})$ означает, что игрок I имеет выигрышную стратегию в игре $G_n(\mathbb{A},\mathbb{B})$. Аналогично определяются сокращения $G_n^{II}(\mathbb{A},\mathbb{B})$, $G^I(\mathbb{A},\mathbb{B})$, $G^{II}(\mathbb{A},\mathbb{B})$.

Свойства выигрышных стратегий

- 1. $G_{n+1}^{I}(\mathbb{A}, \mathbb{B}) \Leftrightarrow (\exists a \in \mathbb{A} \ \forall b \in \mathbb{B} \ G_{n}^{I}((\mathbb{A}, a), (\mathbb{B}, b))) \lor (\exists b \in \mathbb{B} \ \forall a \in \mathbb{A} \ G_{n}^{I}((\mathbb{A}, a), (\mathbb{B}, b))).$
- 2. $G_{n+1}^{II}(\mathbb{A}, \mathbb{B}) \Leftrightarrow (\forall a \in \mathbb{A} \exists b \in \mathbb{B} G_n^{II}((\mathbb{A}, a), (\mathbb{B}, b))) \land (\forall b \in \mathbb{B} \exists a \in \mathbb{A} G_n^{II}((\mathbb{A}, a), (\mathbb{B}, b)))$
- 3. $G_{n+1}^{II}(\mathbb{A}, \mathbb{B}) \implies G_n^{II}(\mathbb{A}, \mathbb{B}).$
- 4. $G^{II}(\mathbb{A}, \mathbb{B}) \Leftrightarrow \forall n \ G_n^{II}(\mathbb{A}, \mathbb{B}).$
- 5. $G^I(\mathbb{A}, \mathbb{B}) \Leftrightarrow \exists n \ G_n^I(\mathbb{A}, \mathbb{B}).$
- 6. В любой игре $G_n(\mathbb{A}, \mathbb{B})$ ровно один из игроков имеет выигрышную стратегию.
- 7. В любой игре $G(\mathbb{A},\mathbb{B})$ ровно один из игроков имеет выигрышную стратегию.

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : Если φ атомарная, то $q(\varphi)=0$; Если $\varphi=\neg\varphi_1$, то $q(\varphi)=q(\varphi_1)$; Если $\varphi=\varphi_1\wedge\varphi_2$, то $q(\varphi)=\max(q(\varphi_1),q(\varphi_2))$; Если $\varphi=\exists x\ \varphi_1$, то $q(\varphi)=q(\varphi_1)+1$.

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : Если φ атомарная, то $q(\varphi) = 0$; Если $\varphi = \neg \varphi_1$, то $q(\varphi) = q(\varphi_1)$; Если $\varphi = \varphi_1 \wedge \varphi_2$, то $q(\varphi) = \max(q(\varphi_1), q(\varphi_2))$; Если $\varphi = \exists x \ \varphi_1$, то $q(\varphi) = q(\varphi_1) + 1$. Пусть $C_n^{\overline{x}}$ — множество всех σ -формул $\varphi(\overline{x})$ глубины не более n. Если φ — предложение, сокращаем C_n^{\emptyset} до C_n .

Кванторная глубина

Кванторная глубина формулы φ — натуральное число $q(\varphi)$, определяемое рекурсией по φ : Если φ атомарная, то $q(\varphi)=0$; Если $\varphi=\neg\varphi_1$, то $q(\varphi)=q(\varphi_1)$; Если $\varphi=\varphi_1\wedge\varphi_2$, то $q(\varphi)=\max(q(\varphi_1),q(\varphi_2))$; Если $\varphi=\exists x\ \varphi_1$, то $q(\varphi)=q(\varphi_1)+1$.

Пусть $C_n^{\overline{x}}$ — множество всех σ -формул $\varphi(\overline{x})$ глубины не более n. Если φ — предложение, сокращаем C_n^{\emptyset} до C_n .

ЛЕММА. Фактор-множество $C_n^{\overline{x}}/_{\equiv}$ по отношению равносильности формул конечно.

Выигрышные стратегии и элементарная эквивалентность

TEOPEMA.
$$G_n^{II}(\mathbb{A}, \mathbb{B}) \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$$

Выигрышные стратегии и элементарная эквивалентность

ТЕОРЕМА. $G_n^{II}(\mathbb{A}, \mathbb{B}) \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$ СЛЕДСТВИЕ. $G^{II}(\mathbb{A}, \mathbb{B}) \iff \forall \varphi \in \mathsf{Sent}_{\sigma} \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}) \iff \mathbb{A} \equiv \mathbb{B}.$

Выигрышные стратегии и элементарная эквивалентность

ТЕОРЕМА.
$$G_n^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in C_n \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}).$$
 СЛЕДСТВИЕ. $G^{II}(\mathbb{A},\mathbb{B}) \iff \forall \varphi \in \mathsf{Sent}_\sigma \, (\varphi^{\mathbb{A}} = \varphi^{\mathbb{B}}) \iff \mathbb{A} \equiv \mathbb{B}.$

Отношение элементарной эквивалентности структур гораздо грубее чем отношение изоморфизма, однако во многих случаях оно полезно, поскольку дает важную классификацию структур, и с ним легче работать. В приложениях важны также следующие варианты элементарной эквивалентности: говорят, что $\mathbb A$ n-эквивалентно $\mathbb B$ (обозначение $\mathbb A \equiv_n \mathbb B$), если $\forall \varphi \in C_n(\varphi^\mathbb A = \varphi^\mathbb B)$.

Основной результат ЛП

Множество всех общезначимых предложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

Основной результат ЛП

Множество всех общезначимых предложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

- 1) фиксируются некоторые конкретные простые общезначимые предложения (называемые аксиомами);
- 2) фиксируются некоторые простые правила, позволяющие чисто синтаксически выводить одни формулы из других;
- 3) доказывается, что многократное применение правил вывода к аксиомам и уже выведенным формулам порождает все общезначимые формулы.

Основной результат ЛП

Множество всех общезначимых предложений любой конечной сигнатуры перечислимо, т.е. существует алгоритм, который перечисляет все элементы этого множества, и никакие другие предложения. Схема доказательства:

- 1) фиксируются некоторые конкретные простые общезначимые предложения (называемые аксиомами);
- 2) фиксируются некоторые простые правила, позволяющие чисто синтаксически выводить одни формулы из других;
- 3) доказывается, что многократное применение правил вывода к аксиомам и уже выведенным формулам порождает все общезначимые формулы.

Глубина основного результата в том, что определение Тарского не дает никакой верхней границы для вычислительной сложности множества общезначимых предложений. Известно, что не существует логики, расширяющей ЛП и удовлетворяющей теоремам компактности и основному результату.

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним *исчисление секвенций с равенством*. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним *исчисление секвенций с равенством*. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Аксиомы:
$$\Gamma, \varphi \vdash \Delta, \varphi$$
; $\Gamma \vdash \Delta, t = t$

Исчисление секвенций

Известно много способов фиксации аксиом и правил вывода. Напомним исчисление секвенций с равенством. Секвенция — упорядоченная пара (Γ, Δ) конечных множеств σ -формул, записанная в виде $\Gamma \vdash \Delta$. Неформальный смысл: из всех формул слева от \vdash вытекает хотя бы одна формула справа.

Аксиомы:
$$\Gamma, \varphi \vdash \Delta, \varphi; \qquad \Gamma \vdash \Delta, t = t$$
 Правила:
$$\frac{\Gamma \vdash \Delta, \varphi; \, \varphi, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} \qquad \frac{\Gamma \vdash \Delta, \varphi; \, \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \rightarrow \psi \vdash \Delta} \qquad \frac{\Gamma, \varphi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \rightarrow \psi}$$

$$\frac{\Gamma, \varphi(t) \vdash \Delta, \psi(t)}{\Gamma, t = t', \varphi(t') \vdash \Delta, \psi(t')} \qquad \frac{\Gamma, \varphi(t) \vdash \Delta, \psi(t)}{\Gamma, t' = t, \varphi(t') \vdash \Delta, \psi(t')}$$

Дополнительные правила см. ниже

Дополнительные правила вывода

$$\frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta}, \qquad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma, \neg \varphi \vdash \Delta}, \qquad \frac{\Gamma, \varphi(t) \vdash \Delta}{\Gamma, \forall x \varphi(x) \vdash \Delta}, \qquad \frac{\Gamma, \varphi(y) \vdash \Delta}{\Gamma, \exists x \varphi(x) \vdash \Delta},$$

$$\frac{\Gamma \vdash \Delta, \varphi; \ \Gamma \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \land \psi},$$

$$\frac{\Gamma \vdash \Delta, \varphi \land \psi}{\Gamma \vdash \Delta, \varphi \lor \psi},$$

$$\frac{\Gamma \vdash \Delta, \varphi \vdash \Delta}{\Gamma \vdash \Delta, \neg \varphi},$$

$$\frac{\Gamma \vdash \Delta, \varphi(y)}{\Gamma \vdash \Delta, \forall x \varphi(x)},$$

$$\frac{\Gamma \vdash \Delta, \varphi(t)}{\Gamma \vdash \Delta, \exists x \varphi(x)}$$

Проблема разрешимости ЛП

Множество общезначимых предложений перечислимо, но будет ли оно вычислимым, т.е. существует ли алгоритм, который по данному предложению определяет, будет ли оно общезначимо? Замечательный результат логики состоит в том, что в общем случае (для любой конечной сигнатуры) ответ отрицателен.

Проблема разрешимости ЛП

Множество общезначимых предложений перечислимо, но будет ли оно вычислимым, т.е. существует ли алгоритм, который по данному предложению определяет, будет ли оно общезначимо? Замечательный результат логики состоит в том, что в общем случае (для любой конечной сигнатуры) ответ отрицателен.

Отметим, что интуитивного понятия алгоритма достаточно для того, чтобы убедиться в вычислимости многих функций (например, $x\cdot y$, x^y , x! и другие знакомые функции и предикаты из теории чисел). Совершенно другого подхода требует доказательство того, что какая-то функция или отношение не является вычислимой. Для строгого доказательства необходимо иметь строгое определение вычислимой функции.

Рекурсивные функции и предикаты

Сначала будем изучать вычислимость лишь на \mathbb{N} , в частности значения всех переменных науральные. Определим понятие рекурсивной функции - одну из формализаций понятия вычислимой функции.

Рекурсивные функции и предикаты

Сначала будем изучать вычислимость лишь на \mathbb{N} , в частности значения всех переменных науральные. Определим понятие рекурсивной функции - одну из формализаций понятия вычислимой функции.

Если предикат P(x) истинен при некотором значении $x \in \mathbb{N}$, то $\mu x P(x)$ — наименьшее число из \mathbb{N} , для которого предикат P(x) истинен. Например, $\mu x (4 < x^2) = 3$.

Рекурсивные функции и предикаты

Сначала будем изучать вычислимость лишь на \mathbb{N} , в частности значения всех переменных науральные. Определим понятие рекурсивной функции - одну из формализаций понятия вычислимой функции.

Если предикат P(x) истинен при некотором значении $x \in \mathbb{N}$, то $\mu x P(x)$ — наименьшее число из \mathbb{N} , для которого предикат P(x) истинен. Например, $\mu x (4 < x^2) = 3$.

При n>0 и $1\le k\le n$ определим n-местную функцию I_n^k следующим образом: $I_n^k(x_1,\dots,x_n)=x_k.$ Введем также двухместную функцию l(x,y): l(x,y)=0 при x< y и l(x,y)=1 при $x\ge y.$

```
ОПРЕДЕЛЕНИЕ Функции +, \cdot, l и I_n^k рекурсивны; если рекурсивны функции g(y_1,\ldots,y_k), h_1(\bar{x}),\ldots,h_k(\bar{x}), то функция g(h_1(\bar{x}),\ldots,h_k(\bar{x})) рекурсивна;
```

```
ОПРЕДЕЛЕНИЕ
Функции +, \cdot, l и I_n^k рекурсивны;
если рекурсивны функции g(y_1,\ldots,y_k),
h_1(\bar{x}), \dots, h_k(\bar{x}), то функция g(h_1(\bar{x}), \dots, h_k(\bar{x}))
рекурсивна;
если функция g(\bar{x},y) рекурсивна и
\forall \bar{x} \exists y (g(\bar{x},y)=0), то функция
f(\bar{x}) = \mu y(g(\bar{x}, y) = 0) рекурсивна;
```

```
ОПРЕДЕЛЕНИЕ
Функции +, \cdot, l и I_n^k рекурсивны;
если рекурсивны функции g(y_1,\ldots,y_k),
h_1(\bar{x}),\ldots,h_k(\bar{x}), то функция g(h_1(\bar{x}),\ldots,h_k(\bar{x}))
рекурсивна;
если функция g(\bar{x},y) рекурсивна и
orall ar{x}\exists y(g(ar{x},y)=0), то функция
f(\bar{x}) = \mu y(g(\bar{x},y) = 0) рекурсивна;
других рекурсивных функций нет.
```

Рекурсивность и вычислимость

Нетрудно показать, что всякая рекурсивная функция вычислима. Достаточно заметить:

Рекурсивность и вычислимость

Нетрудно показать, что всякая рекурсивная функция вычислима. Достаточно заметить:

функции +, \cdot , l и I_n^k вычислимы; если функции $g(y_1,\ldots,y_k)$ и $h_1(\bar x),\ldots,h_k(\bar x)$ вычислимы, то функция $g(h_1(\bar x),\ldots,h_k(\bar x))$ вычислима; если $\forall \bar x \exists y (g(\bar x,y)=0)$ и функция $g(\bar x,y)$ вычислима, то функция $f(\bar x)=\mu y(g(\bar x,y)=0)$ вычислима.

Верно ли обратное? Почти все специалисты считают верным следующее утверждение.

Рекурсивность и вычислимость

Нетрудно показать, что всякая рекурсивная функция вычислима. Достаточно заметить:

функции +, \cdot , l и I_n^k вычислимы; если функции $g(y_1,\ldots,y_k)$ и $h_1(\bar x),\ldots,h_k(\bar x)$ вычислимы, то функция $g(h_1(\bar x),\ldots,h_k(\bar x))$ вычислима; если $\forall \bar x \exists y (g(\bar x,y)=0)$ и функция $g(\bar x,y)$ вычислима, то функция $f(\bar x)=\mu y(g(\bar x,y)=0)$ вычислима.

Верно ли обратное? Почти все специалисты считают верным следующее утверждение.

ТЕЗИС ЧЁРЧА. Класс всех рекурсивных функций совпадает с классом всех вычислимых функций.

Рекурсивные предикаты

- 1. Характеристической функцией предиката $P(\bar{x})$ называют функцию $\chi_P(\bar{x})$, задаваемую условиями: $\chi_P(\bar{x})=0$, если $P(\bar{x})=\mathsf{N}$; $\chi_P(\bar{x})=1$, если $P(\bar{x})=\mathsf{N}$.
- 2. Предикат рекурсивен, если его характеристическая функция рекурсивна.

Рекурсивные предикаты

- 1. Характеристической функцией предиката $P(\bar{x})$ называют функцию $\chi_P(\bar{x})$, задаваемую условиями: $\chi_P(\bar{x})=0$, если $P(\bar{x})=\mathsf{N}$; $\chi_P(\bar{x})=1$, если $P(\bar{x})=\mathsf{N}$.
- 2. Предикат рекурсивен, если его характеристическая функция рекурсивна.

Легко видеть, что определенная выше функция l есть характеристическая функция предиката $<: l(x,y) = \chi_<(x,y)$. Поэтому предикат < рекурсивен.

Рекурсивные предикаты

- 1. Характеристической функцией предиката $P(\bar{x})$ называют функцию $\chi_P(\bar{x})$, задаваемую условиями: $\chi_P(\bar{x})=0$, если $P(\bar{x})=\mathsf{N}$; $\chi_P(\bar{x})=1$, если $P(\bar{x})=\mathsf{N}$.
- 2. Предикат рекурсивен, если его характеристическая функция рекурсивна.

Легко видеть, что определенная выше функция l есть характеристическая функция предиката $<: l(x,y) = \chi_<(x,y)$. Поэтому предикат < рекурсивен.

Из тезиса Черча следует, что класс всех рекурсивных предикатов совпадает с классом всех вычислимых предикатов.

Свойства рекурсивных функций и предикатов

- 1. Если предикат $P(y_1,\ldots,y_k)$ и функции $h_1(\bar{x}),\ldots,h_k(\bar{x})$ рекурсивны, то рекурсивен и предикат $P(h_1(\bar{x}),\ldots,h_k(\bar{x})).$
- 2. Если предикат $P(\bar x,y)$ рекурсивен и $\forall \bar x \exists y P(\bar x,y)$, то функция $f(\bar x) = \mu y P(\bar x,y)$ рекурсивна.
- 3. Если предикаты $P(\bar{x})$, $Q(\bar{x})$ и $R(\bar{x},y)$ рекурсивны, то предикаты $P(\bar{x}) \wedge Q(\bar{x})$, $P(\bar{x}) \vee Q(\bar{x})$, $P(\bar{x}) \rightarrow Q(\bar{x})$, $\neg p(\bar{x})$, $\forall y < zR(\bar{x},y)$ и $\exists y < zR(\bar{x},y)$ рекурсивны.
- 4. Пусть $P_1(\bar{x}),\dots,P_k(\bar{x})$ рекурсивные предикаты такие, что для любого истинен ровно один из этих предикатов, а $g_1(\bar{x}),\dots,g_k(\bar{x})$ рекурсивные функции. Тогда рекурсивна и функция

Функция Гёделя

ТЕОРЕМА. Существует рекурсивная функция $\beta(a,i)$ такая, что: $\beta(0,i)=0$; $\beta(a+1,i)\leq a$; для любых $n,\,a_0,\ldots,a_n$ из $\mathbb N$ найдется $a\in\mathbb N$ такое, что $\beta(a,0)=a_0,\ldots,\beta(a,n)=a_n$.

Функция Гёделя

ТЕОРЕМА. Существует рекурсивная функция $\beta(a,i)$ такая, что: $\beta(0,i)=0$; $\beta(a+1,i)\leq a$; для любых $n,\,a_0,\ldots,a_n$ из $\mathbb N$ найдется $a\in\mathbb N$ такое, что $\beta(a,0)=a_0,\ldots,\beta(a,n)=a_n$.

Рекурсивная функция $p(x,y) = (x+y)^2 + x + 1$ — инъекция из \mathbb{N}^2 в \mathbb{N} такая, что x,y < p(x,y). $\beta(a,i) = \mu x ((a=0) \lor (x+1=a) \lor \exists y < a \exists z < a (a=p(y,z) \land y \vdots (1+z \cdot p(x,i)))$.

Функция Гёделя

ТЕОРЕМА. Существует рекурсивная функция $\beta(a,i)$ такая, что: $\beta(0,i)=0$; $\beta(a+1,i)\leq a$; для любых $n,\,a_0,\ldots,a_n$ из $\mathbb N$ найдется $a\in\mathbb N$ такое, что $\beta(a,0)=a_0,\ldots,\beta(a,n)=a_n$.

Рекурсивная функция $p(x,y) = (x+y)^2 + x + 1 - u$ нъекция из \mathbb{N}^2 в \mathbb{N} такая, что x,y < p(x,y). $\beta(a,i) = \mu x ((a=0) \lor (x+1=a) \lor \exists y < a \exists z < a (a=p(y,z) \land y \vdots (1+z \cdot p(x,i)))$.

Функция β позволяет любой последовательности a_1, \ldots, a_n сопоставить ее код $\langle a_1, \ldots, a_n \rangle = \mu a(\beta(a,0) = n \land \beta(a,1) = a_1 \land \ldots \land \beta(a,n) = a_n).$

Свойства кодирования. Определение по индукции

- 1. Если $a=\langle a_1,\ldots,a_n \rangle$, то $\beta(a,0)=n$ и $\beta(a,i)=a_i < a$ при $1 \leq i \leq n$.
- 2. Если $(a_1, \ldots, a_n) \neq (b_1, \ldots, b_m)$, то $\langle a_1, \ldots, a_n \rangle \neq \langle b_1, \ldots, b_m \rangle$.
- 3. Существует рекурсивная функция нau(a,i), которая для любого a, являющегося кодом последовательности a_1, \ldots, a_n длины $n \geq i$, равна коду начального отрезка этой последовательности длины i.
- 4. Предикат $\mathsf{Поc}(a)$, истинный в точности тогда, когда a есть код некоторой последовательности, рекурсивен.

Свойства кодирования. Определение по индукции

- 1. Если $a=\langle a_1,\ldots,a_n \rangle$, то $\beta(a,0)=n$ и $\beta(a,i)=a_i < a$ при $1 \leq i \leq n$.
- 2. Если $(a_1, \ldots, a_n) \neq (b_1, \ldots, b_m)$, то $\langle a_1, \ldots, a_n \rangle \neq \langle b_1, \ldots, b_m \rangle$.
- 3. Существует рекурсивная функция $\mathit{hav}(a,i)$, которая для любого a, являющегося кодом последовательности a_1,\ldots,a_n длины $n\geq i$, равна коду начального отрезка этой последовательности длины i.
- 4. Предикат $\mathsf{Поc}(a)$, истинный в точности тогда, когда a есть код некоторой последовательности, рекурсивен.

TEOPEMA. 1. Если $g(\bar{x},y,z)$ рекурсивна, то $f(\bar{x},y)=g(\bar{x},y,\langle f(\bar{x},0),\dots,f(\bar{x},y-1)\rangle)$ тоже рекурсивна. 2. Если $Q(\bar{x},y,z)$ рекурсивен, то $P(\bar{x},y)=Q(\bar{x},y,\langle \chi_P(\bar{x},0),\dots,\chi_P(\bar{x},y-1)\rangle)$ тоже рекурсивен.

Рекурсивная биекция между \mathbb{N}^k и \mathbb{N}

ПРЕДЛОЖЕНИЕ. Для любого $k \geq 2$ существует рекурсивная биекция между \mathbb{N}^k и \mathbb{N} . Точнее, существуют рекурсивная биекция $c^k: \mathbb{N}^k \to \mathbb{N}$ и рекурсивные функции $p_1^k(x), \dots, p_k^k(x)$ такие, что $x \mapsto (p_1^k(x), \dots, p_k^k(x))$ — функция, обратная к c^k .

Рекурсивная биекция между \mathbb{N}^k и \mathbb{N}

ПРЕДЛОЖЕНИЕ. Для любого $k \geq 2$ существует рекурсивная биекция между \mathbb{N}^k и \mathbb{N} . Точнее, существуют рекурсивная биекция $c^k: \mathbb{N}^k \to \mathbb{N}$ и рекурсивные функции $p_1^k(x), \dots, p_k^k(x)$ такие, что $x \mapsto (p_1^k(x), \dots, p_k^k(x))$ — функция, обратная к c^k .

Индукция по k. При k=2 полагаем

$$\begin{array}{l} c^2(x_1,x_2)=2^{x_1}(2x_2+1)-1\text{, }p_1^2(x)=\mu y((x+1)\not /2^{y+1})\text{,}\\ p_2^2(x)=((x+1)/2^{p_1^2(x)}-1)/2. \end{array}$$

Рекурсивная биекция между \mathbb{N}^k и \mathbb{N}

ПРЕДЛОЖЕНИЕ. Для любого $k \geq 2$ существует рекурсивная биекция между \mathbb{N}^k и \mathbb{N} . Точнее, существуют рекурсивная биекция $c^k: \mathbb{N}^k \to \mathbb{N}$ и рекурсивные функции $p_1^k(x), \dots, p_k^k(x)$ такие, что $x \mapsto (p_1^k(x), \dots, p_k^k(x))$ — функция, обратная к c^k .

Индукция по k. При k=2 полагаем

$$c^2(x_1,x_2) = 2^{x_1}(2x_2+1)-1$$
, $p_1^2(x) = \mu y((x+1)/2^{y+1})$, $p_2^2(x) = ((x+1)/2^{p_1^2(x)}-1)/2$.

При
$$r=3$$
 полагаем $c^3(x_1,x_2,x_3)=(c^2(x_1,x_2),x_3)$, $p_1^3(x)=p_1^2(p_1^2(x))$, $p_2^3(x)=p_2^2(p_1^2(x))$, $p_3^3(x)=p_2^2(x)$.

И так далее.

Чтобы применить рекурсивные функции к логике, нужно научиться представлять логические объекты (термы, формулы, выводы) натуральными числами (поскольку рекурсивные функции определены и принимают значения в \mathbb{N}), т. е. ввести кодирование этих объектов. Такое кодирование можно построить для любой конечной или счетной сигнатуры, а мы сделаем это для сигнатуры $\Sigma = \{=,<,+,\cdot,0,1\}.$

Чтобы применить рекурсивные функции к логике, нужно научиться представлять логические объекты (термы, формулы, выводы) натуральными числами (поскольку рекурсивные функции определены и принимают значения в \mathbb{N}), т. е. ввести кодирование этих объектов. Такое кодирование можно построить для любой конечной или счетной сигнатуры, а мы сделаем это для сигнатуры $\Sigma = \{=,<,+,\cdot,0,1\}.$

Каждому исходному символу сопоставим число в соответствии с таблицей:

v_n	Λ	V	\rightarrow	7	A	\exists	=	<	+	•	0	1
2n	1	3	5	7	9	11	13	15	17	19	21	23

Сопоставим каждому терму t его код $\lceil t \rceil \in \mathbb{N}$: $\lceil v_n \rceil = \langle 2n \rangle$, $\lceil 0 \rceil = \langle 21 \rangle$, $\lceil 1 \rceil = \langle 23 \rangle$, $\lceil t_1 + t_2 \rceil = \langle 17, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$, $\lceil t_1 \cdot t_2 \rceil = \langle 19, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$, где t_1 и t_2 - термы.

Сопоставим каждому терму t его код $\ulcorner t \urcorner \in \mathbb{N}$: $\ulcorner v_n \urcorner = \langle 2n \rangle$, $\ulcorner 0 \urcorner = \langle 21 \rangle$, $\ulcorner 1 \urcorner = \langle 23 \rangle$, $\ulcorner t_1 + t_2 \urcorner = \langle 17, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$, $\ulcorner t_1 \cdot t_2 \urcorner = \langle 19, \ulcorner t_1 \urcorner, \ulcorner t_2 \urcorner \rangle$, где t_1 и t_2 - термы. Каждой формуле φ сопоставим ее код $\ulcorner \varphi \urcorner \in \mathbb{N}$: $\ulcorner s = t \urcorner = \langle 13, \ulcorner s \urcorner, \ulcorner t \urcorner \rangle$, $\ulcorner s < t \urcorner = \langle 15, \ulcorner s \urcorner, \ulcorner t \urcorner \rangle$, $\ulcorner \psi \wedge \theta \urcorner = \langle 1, \ulcorner \psi \urcorner, \ulcorner \theta \urcorner \rangle$, $\ulcorner \psi \vee \theta \urcorner = \langle 3, \ulcorner \psi \urcorner, \ulcorner \theta \urcorner \rangle$, $\ulcorner \psi \rightarrow \theta \urcorner = \langle 5, \ulcorner \psi \urcorner, \ulcorner \theta \urcorner \rangle$, $\lnot \neg \psi \urcorner = \langle 7, \ulcorner \psi \urcorner \rangle$, $\lnot \forall v_n \psi \urcorner = \langle 9, 2n, \ulcorner \psi \urcorner \rangle$, $\ulcorner \exists v_n \psi \urcorner = \langle 11, 2n, \ulcorner \psi \urcorner \rangle$, где s и t — термы, ψ и θ — формулы.

Сопоставим каждому терму t его код $\lceil t \rceil \in \mathbb{N}$: $\lceil v_n \rceil = \langle 2n \rangle$, $\lceil 0 \rceil = \langle 21 \rangle$, $\lceil 1 \rceil = \langle 23 \rangle$, $\lceil t_1 + t_2 \rceil = \langle 17, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$, $\lceil t_1 \cdot t_2 \rceil = \langle 19, \lceil t_1 \rceil, \lceil t_2 \rceil \rangle$, где t_1 и t_2 - термы.

Каждой формуле φ сопоставим ее код $\lceil \varphi \rceil \in \mathbb{N}$: $\lceil s = t \rceil = \langle 13, \lceil s \rceil, \lceil t \rceil \rangle$, $\lceil s < t \rceil = \langle 15, \lceil s \rceil, \lceil t \rceil \rangle$, $\lceil \psi \wedge \theta \rceil = \langle 1, \lceil \psi \rceil, \lceil \theta \rceil \rangle$, $\lceil \psi \vee \theta \rceil = \langle 3, \lceil \psi \rceil, \lceil \theta \rceil \rangle$, $\lceil \psi \rightarrow \theta \rceil = \langle 5, \lceil \psi \rceil, \lceil \theta \rceil \rangle$, $\lceil \neg \psi \rceil = \langle 7, \lceil \psi \rceil \rangle$, $\lceil \forall v_n \psi \rceil = \langle 9, 2n, \lceil \psi \rceil \rangle$, $\lceil \exists v_n \psi \rceil = \langle 11, 2n, \lceil \psi \rceil \rangle$, где s и t—термы, ψ и θ — формулы.

Каждой секвенции $\{\gamma_1,\ldots,\gamma_m\} \vdash \{\delta_1,\ldots,\delta_n\}$ сопоставим ее код $\langle\langle \lceil \gamma_1 \rceil,\ldots,\lceil \gamma_m \rceil\rangle,\langle \lceil \delta_1 \rceil,\ldots,\lceil \delta_n \rceil\rangle\rangle$.

Основным понятиям логики предикатов соответствуют предикаты и функции от кодов термов и формул, в частности:

Основным понятиям логики предикатов соответствуют предикаты и функции от кодов термов и формул, в частности:

```
\mathsf{Терм}(a) \equiv a есть код некоторого терма;
\Phi(a) \equiv a есть код некоторой формулы;
\Phi_0(a) \equiv (a - \text{код некоторой формулы, не содержащей}
свободных переменных, отличных от v_0);
\mathsf{\Pi}\mathsf{p}(a) \equiv (a \mathsf{ectb} \mathsf{kod} \mathsf{hekotoporo} \mathsf{предложения});
Cek(a) \equiv a есть код некоторой секвенции;
otp(a) — функция, равная \neg \varphi \neg, если \Phi(a) = \mathsf{N} и
a = \lceil \varphi \rceil; если же \Phi(a) = \Pi, то orp(a) = 0;
\mathsf{подc}(a,b,c) — функция, равная \lceil \varphi(t) \rceil, если \Phi(a) = \mathsf{VI}.
a=\lceil \varphi(v_n) \rceil, b=\lceil v_n \rceil, Терм(c)=\mathsf{V}, c=\lceil t \rceil и допустима
подстановка \varphi(t); в противном случае node(a, b, c) = 0.
```

C произвольным множеством формул T свяжем следующие предикаты:

$$P_T(a) \equiv (\Phi(a) = \mathsf{VI}, \ a = \lceil \varphi \rceil \mathsf{v} \ \varphi \in T);$$

Выв $_T(a,b)\equiv (a=\langle a_1,\ldots,a_n\rangle,n>0,b=a_n,a_i=\ulcorner S_i\urcorner(1\leq i\leq n)$ и S_1,\ldots,S_n — вывод секвенции $\vdash \varphi$ (с кодом b) из T в исчислении секвенций.

C произвольным множеством формул T свяжем следующие предикаты:

$$P_T(a) \equiv (\Phi(a) = \mathsf{VI}, \ a = \lceil \varphi \rceil \mathsf{VI} \ \varphi \in T);$$

Выв $_T(a,b)\equiv (a=\langle a_1,\dots,a_n\rangle, n>0, b=a_n, a_i=\ulcorner S_i\urcorner (1\leq i\leq n)$ и S_1,\dots,S_n — вывод секвенции $\vdash \varphi$ (с кодом b) из T в исчислении секвенций.

СВОЙСТВА: 1. Разным термам, формулам, и секвенциям соответствуют разные коды.

- 2. Предикаты Терм, Φ , Φ_0 , Пр, Сек, и функции *отр*, *подс* рекурсивны.
- 3. Если множество кодов формул из T рекурсивно, то рекурсивен и предикат $\mathsf{B}\mathsf{\mathsf{u}}\mathsf{\mathsf{B}}_T.$
- 4. Существует алгоритм, вычисляющий по терму (формуле, секвенции) соответствующий код.
- 5. Существует алгоритм, определяющий по заданному коду соответствующий терм (формулу, секвенцию).

Минимальная арифметика

- 1.0 + 1 = 1;
- 2. $\forall x \neg (x + 1 = 0);$
- 3. $\forall x \forall y (x+1=y+1 \rightarrow x=y);$
- 4. $\forall x(x+0=x)$;
- 5. $\forall x \forall y (x + (y+1) = (x+y) + 1);$
- 6. $\forall x(x \cdot 0 = 0);$
- 7. $\forall x \forall y (x \cdot (y+1) = (x \cdot y) + x);$
- 8. $\forall x \neg (x < 0)$;
- 9. $\forall x \forall y (x < y \lor x = y \lor y < x);$
- 10. $\forall x \forall y (x < y + 1 \leftrightarrow (x < y \lor x = y)).$

Представимость рекурсивных предикатов в МА

ОПРЕДЕЛЕНИЕ 1. Предикат $P(x_1,\dots,x_n)$ представим, если существует такая формула $\varphi(x_1,\dots,x_n)$, что из $P(\bar{x})=$ И следует $MA \vdash \varphi(\hat{x}_1,\dots,\hat{x}_n)$ и из $P(\bar{x})=$ Л следует $MA \vdash \neg \varphi(\hat{x}_1,\dots,\hat{x}_n)$. Здесь $\hat{0}=0$, $\hat{1}=1$, $\hat{2}=1+1$, $\hat{3}=(1+1)+1$, и т.д.

2. Функция $f(\bar{x})$ представима, если существует формула $\psi(x_1,\dots,x_n,y)$, удовлетворяющая при всех x_1,\dots,x_n из $\mathbb N$ соотношению

$$MA \vdash \forall y (\psi(\hat{x}_1, \dots, \hat{x}_n, y) \leftrightarrow y = \widehat{f(x)}).$$

Представимость рекурсивных предикатов в МА

ОПРЕДЕЛЕНИЕ 1. Предикат $P(x_1,\dots,x_n)$ представим, если существует такая формула $\varphi(x_1,\dots,x_n)$, что из $P(\bar{x})=$ И следует $MA\vdash\varphi(\hat{x}_1,\dots,\hat{x}_n)$ и из $P(\bar{x})=$ Л следует $MA\vdash\neg\varphi(\hat{x}_1,\dots,\hat{x}_n)$. Здесь $\hat{0}=0$, $\hat{1}=1$, $\hat{2}=1+1$, $\hat{3}=(1+1)+1$, и т.д.

2. Функция $f(\bar{x})$ представима, если существует формула $\psi(x_1,\dots,x_n,y)$, удовлетворяющая при всех x_1,\dots,x_n из $\mathbb N$ соотношению

$$MA \vdash \forall y (\psi(\hat{x}_1, \dots, \hat{x}_n, y) \leftrightarrow y = \widehat{f(x)}).$$

ТЕОРЕМА. Любой рекурсивный предикат представим.

Представимость рекурсивных предикатов в МА

ОПРЕДЕЛЕНИЕ 1. Предикат $P(x_1,\dots,x_n)$ представим, если существует такая формула $\varphi(x_1,\dots,x_n)$, что из $P(\bar{x})=$ И следует $MA \vdash \varphi(\hat{x}_1,\dots,\hat{x}_n)$ и из $P(\bar{x})=$ Л следует $MA \vdash \neg \varphi(\hat{x}_1,\dots,\hat{x}_n)$. Здесь $\hat{0}=0$, $\hat{1}=1$, $\hat{2}=1+1$, $\hat{3}=(1+1)+1$, и т.д.

2. Функция $f(\bar{x})$ представима, если существует формула $\psi(x_1,\dots,x_n,y)$, удовлетворяющая при всех x_1,\dots,x_n из $\mathbb N$ соотношению

$$MA \vdash \forall y(\psi(\hat{x}_1,\ldots,\hat{x}_n,y) \leftrightarrow y = \widehat{f(x)}).$$

ТЕОРЕМА. Любой рекурсивный предикат представим.

СЛЕДСТВИЕ. Все рекурсивные функции и предикаты определимы в стандартной модели арифметики.

Неразрешимость и неполнота арифметики

TEOPEMA. Для любого непротиворечивого множества предложений $T\supseteq MA$ множество [T] нерекурсивно.

Неразрешимость и неполнота арифметики

TEOPEMA. Для любого непротиворечивого множества предложений $T\supseteq MA$ множество [T] нерекурсивно.

СЛЕДСТВИЕ. 1. Множества [MA], [PA] и $Th(\mathbb{N})$ нерекурсивны.

2. Множества [MA], [PA] и $Th(\mathbb{N})$ неразрешимы, т.е. не существует алгоритмов, выясняющих по любому предложению, принадлежит ли оно этим множествам.

Неразрешимость и неполнота арифметики

TEOPEMA. Для любого непротиворечивого множества предложений $T\supseteq MA$ множество [T] нерекурсивно.

СЛЕДСТВИЕ. 1. Множества [MA], [PA] и $Th(\mathbb{N})$ нерекурсивны.

2. Множества [MA], [PA] и $Th(\mathbb{N})$ неразрешимы, т.е. не существует алгоритмов, выясняющих по любому предложению, принадлежит ли оно этим множествам.

TEOPEMA. Любое непротиворечивое рекурсивно перечислимое множество предложений $T\supseteq MA$ неполно.

Разрешимые и неразрешимые теории

TEOPEMA. Множество всех общезначимых предложений сигнатуры арифметики нерекурсивно.

Разрешимые и неразрешимые теории

TEOPEMA. Множество всех общезначимых предложений сигнатуры арифметики нерекурсивно.

Конечные сигнатуры, для которых логика предикатов разрешима, имеют простое описание: это в точноси сигнатуры, не имеющие предикатных символов местности более 1, и которые, возможно, имеют единственный одноместный функциональный символ.

Разрешимые и неразрешимые теории

TEOPEMA. Множество всех общезначимых предложений сигнатуры арифметики нерекурсивно.

Конечные сигнатуры, для которых логика предикатов разрешима, имеют простое описание: это в точноси сигнатуры, не имеющие предикатных символов местности более 1, и которые, возможно, имеют единственный одноместный функциональный символ.

Для $A,B\subseteq\mathbb{N}$, A m-сводится к B ($A\leq_m B$), если $A=f^{-1}(B)$ для подходящей рекурсивной функции $f:\mathbb{N}\to\mathbb{N}$. Справедливы соотношения (структуры рассматриваются в сигнатуре $\{=,+,\cdot\}$): $Th(\mathbb{R})\equiv_m Th(\mathbb{C})<_m Th(\mathbb{N})\equiv_m Th(\mathbb{Q})$.

Разрешимые и неразрешимые теории

TEOPEMA. Множество всех общезначимых предложений сигнатуры арифметики нерекурсивно.

Конечные сигнатуры, для которых логика предикатов разрешима, имеют простое описание: это в точноси сигнатуры, не имеющие предикатных символов местности более 1, и которые, возможно, имеют единственный одноместный функциональный символ.

Для $A,B\subseteq\mathbb{N}$, A m-сводится к B ($A\leq_m B$), если $A=f^{-1}(B)$ для подходящей рекурсивной функции $f:\mathbb{N}\to\mathbb{N}$. Справедливы соотношения (структуры рассматриваются в сигнатуре $\{=,+,\cdot\}$): $Th(\mathbb{R})\equiv_m Th(\mathbb{C})<_m Th(\mathbb{N})\equiv_m Th(\mathbb{Z})\equiv_m Th(\mathbb{Q})$.

Для большинства популярных теорий известно, какие из них разрешимы, а какие нет.

Программы

Программа — это непустая конечная последовательность $P = (I_0, \dots, I_l)$ операторов, занумерованных начальным сегментом натурального ряда.

Оператор — это либо оператор присваивания, либо условный оператор $r_i = r_j \Rightarrow k$ (условный переход на оператор с меткой k).

Oператор присваивания — это либо $r_i:=0$, либо $r_i:=r_i+1$, либо $r_i:=r_j$.

В программах используются переменные r_0, r_1, r_2, \ldots со значениями в \mathbb{N} .

Пример программы:

Программы

Программа — это непустая конечная последовательность $P = (I_0, \dots, I_l)$ операторов, занумерованных начальным сегментом натурального ряда.

Оператор — это либо оператор присваивания, либо условный оператор $r_i = r_j \Rightarrow k$ (условный переход на оператор с меткой k).

Оператор присваивания — это либо $r_i := 0$, либо $r_i := r_i + 1$, либо $r_i := r_i$.

В программах используются переменные r_0, r_1, r_2, \ldots со значениями в $\mathbb{N}.$

Пример программы:

0.
$$r_1 := r_1 + 1$$

1.
$$r_2 := r_2 + 1$$

$$2. r_1 = r_0 \Rightarrow 4$$

3.
$$r_0 = r_0 \Rightarrow 0$$

4.
$$r_0 := r_2$$

Пример вычисления по программе

время/память	0	1	2	3	4	5	6	7	8	9	10	11	12
r_0	7	7	7	7	7	7	7	7	7	7	7	7	3
r_1	4	5	5	5	5	6	6	6	6	7	7	7	7
r_2	0	0	1	1	1	1	2	2	2	2	3	3	3
номер команды	0	1	2	3	0	1	2	3	0	1	2	4	5

время/ память	0	1	2	3	4	5	
r_0	7	7	7	7	7	7	
r_1	7	8	8	8	8	8	
r_2	2	2	3	3	3	3	
номер команды	0	1	2	3	0	1	

Параметры программы

Длина программы P — число l+1. Память P наибольшее m, для которого r_m входит в P. Состояние программы P в момент t при начальных значениях $r_i = x_i \in \mathbb{N}$ — это кортеж $(r_0(t),\ldots,r_m(t),k(t))$, где $r_i(t)$ — содержимое регистра r_i в момент t, а k(t) — номер оператора, выполняющегося в момент t; $(r_0(0), \ldots, r_m(0), k(0)) = (x_0, \ldots, x_m, 0)$. Если k(t) > l + 1, то считаем k(t + 1) = k(t). Вычисление по программе P — последовательнось состояний $\{(r_0(t), \ldots, r_m(t), k(t))\}_t$. Порядок выполнения команд как в языках программирования. Вычисления по программе заканчиваются, если программа должна выполнять команду с номером большим или равным длины программы.

R-вычислимые функции

Пусть P — программа и $n\geq 0$. Тогда P вычисляет частичную функцию $\varphi_P(x_0\ldots,x_n)$ на $\mathbb N$, которая определяется так: при любых $\overline x\in\mathbb N$ зададим значения $r_0=x_0,\ldots,r_n=x_n$; $r_i=0$ при i>n, и запустим P. Если P никогда не останавливается (то есть $\forall t\ k(t)\leq l$), то $\varphi_P(\overline x)$ не определена. Если же она остановится в момент t, то $\varphi_P(\overline x)=r_0(t)$. Функции такого вида называются R-вычислимыми.

Если вычисление $P(\bar{x})$ никогда не остановится, будем обозначать это $P(\bar{x})\uparrow$ (или $\varphi_P(\bar{x})\uparrow$, в противном случае пишем $P(\bar{x})\downarrow$ (или $\varphi_P(\bar{x})\downarrow$. Таким образом, $\varphi_P(\bar{x})\downarrow$ в точности тогда, когда $\varphi_P(\bar{x})$ определено.

R-вычислимые функции

Пусть P — программа и $n \geq 0$. Тогда P вычисляет частичную функцию $\varphi_P(x_0\dots,x_n)$ на $\mathbb N$, которая определяется так: при любых $\overline x \in \mathbb N$ зададим значения $r_0=x_0,\dots,r_n=x_n$; $r_i=0$ при i>n, и запустим P. Если P никогда не останавливается (то есть $\forall t\ k(t) \leq l$), то $\varphi_P(\overline x)$ не определена. Если же она остановится в момент t, то $\varphi_P(\overline x)=r_0(t)$. Функции такого вида называются R-вычислимыми.

Если вычисление $P(\bar{x})$ никогда не остановится, будем обозначать это $P(\bar{x})\uparrow$ (или $\varphi_P(\bar{x})\uparrow$, в противном случае пишем $P(\bar{x})\downarrow$ (или $\varphi_P(\bar{x})\downarrow$. Таким образом, $\varphi_P(\bar{x})\downarrow$ в точности тогда, когда $\varphi_P(\bar{x})$ определено.

ТЕЗИС ТЬЮРИНГА: Частичная функция на $\mathbb N$ R-вычислима в точности тогда, когда она вычислима (по некоторому алгоритму).

Кодирование R-вычислений

Кодом программы $P=(I_0,\ldots,I_l)$ назовем число $\ulcorner P \urcorner = \langle \ulcorner I_0 \urcorner,\ldots, \ulcorner I_l \urcorner \rangle$, где $\ulcorner r_i := 0 \urcorner = \langle 0,i \rangle$, $\ulcorner r_i := r_{i+1} \urcorner = \langle 1,i \rangle$, $\ulcorner r_i := r_j \urcorner = \langle 2,i,j \rangle$, и $\ulcorner r_i = r_j \Rightarrow k \urcorner = \langle 3,i,j,k \rangle$.

Кодирование R-вычислений

```
Кодом программы P=(I_0,\ldots,I_l) назовем число \ulcorner P \urcorner = \langle \ulcorner I_0 \urcorner,\ldots, \ulcorner I_l \urcorner \rangle, где \ulcorner r_i := 0 \urcorner = \langle 0,i \rangle, \ulcorner r_i := r_{i+1} \urcorner = \langle 1,i \rangle, \ulcorner r_i := r_j \urcorner = \langle 2,i,j \rangle, и \ulcorner r_i = r_j \Rightarrow k \urcorner = \langle 3,i,j,k \rangle.
```

 $\mathsf{On}(a) \iff a - \mathsf{код}$ некоторого оператора.

Прог $(a) \iff a$ — код некоторой программы.

 $\mathsf{\Piep}(i,a) \iff a - \mathsf{код}$ некоторой программы, в которую входит r_i .

 $\mathrm{д}\mathrm{J}(a)=\mathrm{д}\mathrm{J}$ лине программы P, если $a-\mathrm{kod}$ программы P; иначе 0.

 $\operatorname{пам}(a)=\operatorname{памяти} P$, если a — код программы P; иначе 0. $\operatorname{coc}(a,x_0,\ldots,x_n,t)=$ коду состояния P в момент t при $r_i=x_i$ для $i\leq n$ и $r_i=0$ для i>n, если a — код P; иначе 0.

Свойства кодирования

- 1. Коды разных операторов различны.
- 2. Коды разных программ различны.
- 3. Все определенные на предыдущем слайде предикаты и функции рекурсивны.
- 4. Если r_i входит в P, то $i < \lceil P \rceil$.
- 5. Если k номер оператора, входящий в P, то $k < \lceil P \rceil$
- 6. Существует алгоритм, который по программе вычисляет её код и наоборот.

R-вычислимость и рекурсивность

TEOPEMA. Класс всех тотальных R-вычислимых функций совпадает с классом всех рекурсивных функций.

R-вычислимость и рекурсивность

TEOPEMA. Класс всех тотальных R-вычислимых функций совпадает с классом всех рекурсивных функций.

Справедлив вариант для частичных функций (ЧФ).

- 1) Функции $+,\cdot,\chi_<,I_k^m$ являются R-вычислимыми ЧФ.
- 2) Суперпозиция R-вычислимых ЧФ является R-вычислимой ЧФ.
- 3) Минимизация R-вычислимой ЧФ является R-вычислимой ЧФ. При этом минимизация ЧФ $g(\bar x,y)$ определяется как ЧФ $f(\bar x)=\mu y(g(\bar x,y)=0)$, значение которой в точке $\bar x$ равно числу y (если оно существует) такому, что $g(\bar x,y)=0$, и для всякого z< y значение $g(\bar x,z)$ определено, но отлично от 0.

R-вычислимость и рекурсивность

TEOPEMA. Класс всех тотальных R-вычислимых функций совпадает с классом всех рекурсивных функций.

Справедлив вариант для частичных функций (ЧФ).

- 1) Функции $+,\cdot,\chi_<,I_k^m$ являются R-вычислимыми ЧФ.
- 2) Суперпозиция R-вычислимых ЧФ является R-вычислимой ЧФ.
- 3) Минимизация R-вычислимой ЧФ является R-вычислимой ЧФ. При этом минимизация ЧФ $g(\bar x,y)$ определяется как ЧФ $f(\bar x)=\mu y(g(\bar x,y)=0)$, значение которой в точке $\bar x$ равно числу y (если оно существует) такому, что $g(\bar x,y)=0$, и для всякого z< y значение $g(\bar x,z)$ определено, но отлично от 0.

ТЕОРЕМА. Класс всех R-вычислимых ЧФ совпадает с классом всех рекурсивных ЧФ.

Относительная R-вычислимость и рекурсивность

Пусть $h: \mathbb{N} \to \mathbb{N}$ — произвольная (возможно, не рекурсивная) функция. Частичные функции, вычислимые относительно h определяются так же, как и обычные рекурсивные ЧФ, но в список начальных функций добавляется h.

Относительная R-вычислимость и рекурсивность

Пусть $h:\mathbb{N}\to\mathbb{N}$ — произвольная (возможно, не рекурсивная) функция. Частичные функции, вычислимые относительно h определяются так же, как и обычные рекурсивные ЧФ, но в список начальных функций добавляется h.

R-вычислимые относительно h частичные функции (или ЧФ, вычислимые c оракулом h) — это ЧФ, вычислимые k-программами k оракулом k. k-программа k оператором k оператором k оператором k оператором k оператором k оператором k оракуле k ораку

Относительная R-вычислимость и рекурсивность

Пусть $h:\mathbb{N}\to\mathbb{N}$ — произвольная (возможно, не рекурсивная) функция. Частичные функции, вычислимые относительно h определяются так же, как и обычные рекурсивные ЧФ, но в список начальных функций добавляется h.

R-вычислимые относительно h частичные функции (или ЧФ, вычислимые c оракулом h) — это ЧФ, вычислимые k-программами k оракулом k. k-программа k оператором k оператор

ТЕОРЕМА. Для любой функции $h:\mathbb{N}\to\mathbb{N}$, класс всех ЧФ, рекурсивных относительно h, совпадает с классом всех ЧФ, R-вычислимых относительно h.

Главная вычислимая нумерация РЧФ

Пусть \mathcal{F} — множество всех одноместных РЧФ. Нумерация $\nu:\mathbb{N}\to\Phi$ называется *вычислимой*, если двуместная функция $\tilde{\nu}(n,x)=\nu_n(x)$ вычислима. Вычислимая нумерация ν называется *главной*, если любая вычислимая нумерация $\mu:\mathbb{N}\to\Phi$ сводится к ν , т.е. $\mu=\nu\circ f$ для некоторой РФ f.

Главная вычислимая нумерация РЧФ

Пусть \mathcal{F} — множество всех одноместных РЧФ. Нумерация $\nu:\mathbb{N}\to\Phi$ называется *вычислимой*, если двуместная функция $\tilde{\nu}(n,x)=\nu_n(x)$ вычислима. Вычислимая нумерация ν называется *главной*, если любая вычислимая нумерация $\mu:\mathbb{N}\to\Phi$ сводится к ν , т.е. $\mu=\nu\circ f$ для некоторой РФ f.

Определим нумерацию $\varphi:\mathbb{N} o\mathcal{F}$ соотношением:

$$arphi_n = egin{cases} arphi_P^{(1)}, & ext{если } n = \ulcorner P
ceil \ \emptyset, & ext{иначе} \end{cases}$$

Главная вычислимая нумерация РЧФ

Пусть \mathcal{F} — множество всех одноместных РЧФ. Нумерация $\nu:\mathbb{N}\to\Phi$ называется *вычислимой*, если двуместная функция $\tilde{\nu}(n,x)=\nu_n(x)$ вычислима. Вычислимая нумерация ν называется *главной*, если любая вычислимая нумерация $\mu:\mathbb{N}\to\Phi$ сводится к ν , т.е. $\mu=\nu\circ f$ для некоторой РФ f.

Определим нумерацию $\varphi:\mathbb{N} o\mathcal{F}$ соотношением:

$$arphi_n = egin{cases} arphi_P^{(1)}, & ext{если } n = \ulcorner P
ceil \ \emptyset, & ext{иначе} \end{cases}$$

TEOPEMA. φ — главная вычислимая нумерация одноместных РЧФ.

Свойства нумерации φ

TEOPEMA о неподвижной точке. Для любой одноместной РФ f(x) найдётся e такая, что $\varphi_e=\varphi_{f(e)}.$

Свойства нумерации φ

TEOPEMA о неподвижной точке. Для любой одноместной РФ f(x) найдётся e такая, что $\varphi_e=\varphi_{f(e)}.$

Рассмотрим вычислимую нумерацию $\mu_n = \varphi_{\varphi_n(n)}$. По предыдущей теореме, существует РФ s такая, что $\mu_n = \varphi_{s(n)}$. Функция $f \circ s$ рекурсивная, поэтому $f \circ s = \varphi_v$ для некоторого v. Значит e = s(v) подходит: $\varphi_{s(v)} = \mu_v = \varphi_{\varphi_v(v)} = \varphi_{f(s(v))}$.

Свойства нумерации φ

TEOPEMA о неподвижной точке. Для любой одноместной РФ f(x) найдётся e такая, что $\varphi_e=\varphi_{f(e)}.$

Рассмотрим вычислимую нумерацию $\mu_n = \varphi_{\varphi_n(n)}$. По предыдущей теореме, существует РФ s такая, что $\mu_n = \varphi_{s(n)}$. Функция $f \circ s$ рекурсивная, поэтому $f \circ s = \varphi_v$ для некоторого v. Значит e = s(v) подходит: $\varphi_{s(v)} = \mu_v = \varphi_{\varphi_v(v)} = \varphi_{f(s(v))}$.

ТЕОРЕМА Райса. Пусть $\emptyset \subset C \subset \Phi$. Тогда множество $\varphi^{-1}(C)=\{n\mid \varphi_n\in C\}$ нерекурсивно.

Главная вычислимая нумерация РПМ

Напомним, что $A\subseteq \mathbb{N}$ РП, если $A=\emptyset \lor A=rng(f)$ для некоторой рекурсивной функции f. Пусть \mathcal{E} — множество всех РПМ.

Нумерация $\nu:\mathbb{N}\to\mathcal{E}$ вычислима, если $\{\langle n,x\rangle\mid x\in\nu_n\}$ РП. Вычислимая нумерация называется *главной*, если к ней сводится любая другая вычислимая нумерация.

Главная вычислимая нумерация РПМ

Напомним, что $A\subseteq \mathbb{N}$ РП, если $A=\emptyset\lor A=rng(f)$ для некоторой рекурсивной функции f. Пусть \mathcal{E} — множество всех РПМ.

Нумерация $\nu:\mathbb{N}\to\mathcal{E}$ вычислима, если $\{\langle n,x\rangle\mid x\in\nu_n\}$ РП. Вычислимая нумерация называется *главной*, если к ней сводится любая другая вычислимая нумерация.

- 1. А рекурсивно \Leftrightarrow А и \overline{A} РП.
- 2. А РП $\Leftrightarrow A = rng(\varphi_n)$ для некоторого $n \in \mathbb{N} \Leftrightarrow A = dom(\varphi_n)$ для некоторого $n \in \mathbb{N}$.
- 3. $W_n = dom(\varphi_n)$ главная вычислимая нумерация множества $\mathcal E$, удовлетворяющая аналогам теоремы о неподвижной точке и теоремы Райса.
- 4. Множества $C=\{n\mid n\in W_n\}$ и $U=\{\langle n,x\rangle\mid x\in W_n\}$ РП, но не рекурсивны.
- 5. Любое РПМ m-сводится к множествам C и U.
- 6. Если $A \leq_m B$ и B рекурсивно (РП), то и A рекурсивно (РП).