Homework 2 Zichen Pan zp2197

Problem 1:
(a)
$$\hat{\pi} = \arg\max_{\pi} \sum_{i=1}^{n} (np(y_i|\pi)) \quad p(y_i|\pi) = \pi^{y_i}(1-\pi)^{-y_i}$$

let $l = \frac{n}{1-1} \ln p(y_i|\pi) = \frac{n}{1-1} \ln \pi \cdot \mathbf{1}_{\{y_i=i\}} + \frac{n}{1-1} \ln (1-\pi) \cdot \mathbf{1}_{\{y_i=o\}}$

= $\{ \#(y_i=i) \} \cdot \ln \pi + \{ \#(y_i=o) \} \cdot \ln (1-\pi) \}$
 $\Rightarrow l = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{1-\pi} \{ \#(y_i=o) \} = 0 , \text{ and } \{ \#(y_i=o) \} = n - \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{1-\pi} \{ \#(y_i=o) \} = 0 , \text{ and } \{ \#(y_i=o) \} = n - \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{1-\pi} \{ \#(y_i=o) \} = 0 , \text{ and } \{ \#(y_i=o) \} = n - \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{1-\pi} \{ \#(y_i=o) \} = 0 , \text{ and } \{ \#(y_i=o) \} = n - \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{1-\pi} \{ \ln p(x_i,d) \mid x_i,d) \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \ln p(x_i,d) \mid x_i,d) \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=i) \} \}$
 $\Rightarrow \hat{\pi} = \frac{1}{\pi} \cdot \{ \#(y_i=i) \} + \frac{1}{\pi} \cdot \{ \#(y_i=$

Problem 2

(a)

(~)		
Truth	1	0
Prediction		
1	1703	490
0	110	2297

Accuracy = 0.8695652173913043

(b)

For dimension 16 and 52, the estimated value of lambda for both when y=1 are larger that the counterpart, and y=1 means spam email, which means the word 'free' and character '!' appears more frequently in spam email.

(d)

(f)		
Truth	1	0
Prediction		
1	1604	144
0	209	2643

Accuracy = 0.9232608695652174