SOME USEFUL FORMULAS

$$\Phi_X(u) = \int_{-\infty}^{\infty} f_X(x) e^{iux} dx \qquad f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_X(iu) e^{-iux} du$$

$$S_X(\omega) = \int_{-\infty}^{\infty} R_X(\tau) e^{-i\omega\tau} d\tau \qquad R_X(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_X(\omega) e^{i\omega\tau} d\omega$$

$$\sum_{n=0}^{\infty} r^n = \frac{1}{(1-r)}, \quad |r| < 1 \qquad \sum_{n=1}^{m} r^n = r \frac{1-r^m}{1-r} \qquad \sum_{n=1}^{\infty} n \, r^n = \frac{r}{(1-r)^2}, \quad |r| < 1$$

$$\sum_{n=m}^{\infty} r^n = \frac{r^m}{1-r}, \quad |r| < 1 \qquad (A+B)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} A^{n-k} B^k$$

$$\sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} q^{n-k} = np, \ 0$$

$$2\cos A\cos B = \cos(A-B) + \cos(A+B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

$$2\sin A\cos B = \sin(A-B) + \sin(A+B)$$

I
$$\int_{a}^{b} e^{i\alpha x} \left\{ \frac{1}{b-a} \right\} dx = e^{iu(b+a)/2} \frac{\sin u(b-a)/2}{u(b-a)/2}$$

II
$$\int_{0}^{\infty} e^{iux} \left\{ \frac{\lambda(\lambda x)^{n}}{n!} e^{-\lambda x} \right\} dx = \left(\frac{\lambda}{\lambda - iu} \right)^{n+1} \int_{0}^{\infty} \alpha^{n} e^{-\alpha} d\alpha = n!$$

III
$$\int_{-\infty}^{\infty} e^{iux} \left\{ \frac{1}{\sqrt{2\pi} \sigma} e^{-(x-m)^2/2\sigma^2} \right\} dx = e^{ium - u^2\sigma^2/2}$$

Transform Tables

Probability Equivalents

$$\int_{-\infty}^{+\infty} f(t)e^{-i\omega t}dt = F(\omega) \qquad t \to x \ \omega \to -u \qquad \int_{-\infty}^{+\infty} f(x)e^{i\omega t}dx = \Phi_X(u)$$

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega)e^{i\omega t}d\omega = f(t) \qquad \frac{1}{2\pi} \int_{-\infty}^{+\infty} \Phi_X(u)e^{-i\omega t}du = f(x)$$

FOURIER TRANSFORM PAIRS

	$f(t) \leftrightarrow F(\omega)$		
1	$e^{-at}u(t)\leftrightarrow \frac{1}{a+t\omega},\ a>0$	14	$\delta(t) \leftrightarrow 1$
2	$e^{at}u(-t)\leftrightarrow \frac{1}{a-i\omega},\ a>0$	15	$1 \leftrightarrow 2\pi\delta(\omega)$
3	$e^{-a t } \leftrightarrow \frac{2a}{a^2+\omega^2}, a>0$	16	$\delta(t-t_o) \leftrightarrow e^{-j\omega t_o}$
4	$\frac{a^2}{a^2+t^2} \leftrightarrow \pi a e^{-a \omega }, \ a>0$	17	$e^{j\omega_o t} \leftrightarrow 2\pi\delta(\omega-\omega_o)$
5	$te^{-at}u(t)\leftrightarrow \frac{1}{(a+j\omega)^2},\ a>0$	18	$\cos(\omega_o t) \leftrightarrow \pi [\delta(\omega - \omega_o) + \delta(\omega + \omega_o)]$
6	$t^n e^{-at} u(t) \leftrightarrow \frac{n!}{(a+j\omega)^{n+1}}, a>0$	19	$\sin(\omega_o t) \leftrightarrow j\pi[\delta(\omega + \omega_o) - \delta(\omega - \omega_o)]$
7	$rect(\frac{t}{\tau}) \leftrightarrow \tau sinc(\frac{\omega \tau}{2})$	20	$\cos(\omega_o t) u(t) \leftrightarrow \frac{\pi}{2} [\delta(\omega - \omega_o) + \delta(\omega + \omega_o)] + \frac{j\omega}{\omega_o^2 - \omega^2}$
8	$\operatorname{sinc}(Wt) \leftrightarrow \frac{\pi}{W}\operatorname{rect}(\frac{\omega}{2W})$	21	$\sin(\omega_o t)u(t) \leftrightarrow j\frac{\pi}{2}[\delta(\omega+\omega_o)-\delta(\omega-\omega_o)]+\frac{\omega_o}{\omega_o^2-\omega^2}$
9	$\Delta(\frac{t}{\tau}) \leftrightarrow \frac{\tau}{2} \mathrm{sinc}^2(\frac{\omega \tau}{4})$	22	$\operatorname{sgn}(t) \leftrightarrow \frac{2}{t\omega}$
10	$\operatorname{sinc}^2(\frac{Wt}{2}) \leftrightarrow \frac{2\pi}{W}\Delta(\frac{\omega}{2W})$	23	$u(t) \leftrightarrow \pi \delta(\omega) + \frac{1}{i\omega}$
11	$e^{-at}\sin(\omega_o t)u(t)\leftrightarrow \frac{\omega_o}{(a+j\omega)^2+\omega_o^2},\ a>0$	24	$\sum_{n=-\infty}^{\infty} \delta(t-nT) \leftrightarrow \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(\omega - n\frac{2\pi}{T})$
12	$e^{-at}\cos(\omega_o t)u(t)\leftrightarrow \frac{a+j\omega}{(a+j\omega)^2+\omega_a^2}, a>0$	25	$\sum_{n=-\infty}^{\infty} f(t)\delta(t-nT) \leftrightarrow \sum_{n=-\infty}^{\infty} \frac{1}{T}F(\omega-n\frac{2\pi}{T})$
13	$e^{-\frac{1^2}{2\sigma^2}} \leftrightarrow \sigma \sqrt{2\pi} e^{-\frac{\sigma^2 \omega^2}{2}}$		

FOURIER TRANSFORM RELATIONSHIPS

	Name:	Condition:	Property:
1	Amplitude scaling	$f(t) \leftrightarrow F(\omega)$, constant K	$Kf(t) \leftrightarrow KF(\omega)$
2	Addition	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega), \cdots$	$f(t) + g(t) + \cdots \leftrightarrow F(\omega) + G(\omega) + \cdots$
3	Hermitian	Real $f(t) \leftrightarrow F(\omega)$	$F(-\omega) = F^*(\omega)$
4	Even	Real and even $f(t)$	Real and even $F(\omega)$
5	Odd	Real and odd $f(t)$	Imaginary and odd $F(\omega)$
6	Symmetry	$f(t) \leftrightarrow F(\omega)$	$F(t) \leftrightarrow 2\pi f(-\omega)$
7	Time scaling	$f(t) \leftrightarrow F(\omega)$, real s	$f(st) \leftrightarrow \frac{1}{ s }F(\frac{\omega}{s})$
8	Time shift	$f(t) \leftrightarrow F(\omega)$	$f(t-t_o) \leftrightarrow F(\omega)e^{-j\omega t_o}$
9	Frequency shift	$f(t) \leftrightarrow F(\omega)$	$f(t)e^{j\omega_o t} \leftrightarrow F(\omega - \omega_o)$
10	Modulation	$f(t) \leftrightarrow F(\omega)$	$f(t)\cos(\omega_o t) \leftrightarrow \frac{1}{2}F(\omega-\omega_o) + \frac{1}{2}F(\omega+\omega_o)$
11	Time derivative	Differentiable $f(t) \leftrightarrow F(\omega)$	$4\!$
12	Freq derivative	$f(t) \leftrightarrow F(\omega)$	$-jtf(t) \leftrightarrow \frac{d}{d\omega}F(\omega)$
13	Time convolution	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega)$	$f(t)*g(t) \leftrightarrow F(\omega)G(\omega)$
14	Freq convolution	$f(t) \leftrightarrow F(\omega), g(t) \leftrightarrow G(\omega)$	$f(t)g(t) \leftrightarrow \frac{1}{2\pi}F(\omega) * G(\omega)$
15	Compact form	Real $f(t)$	$f(t) = \frac{1}{2\pi} \int_0^\infty 2 F(\omega) \cos(\omega t + \angle F(\omega)) d\omega$
16	Parseval, Energy W	$f(t) \leftrightarrow F(\omega)$	$W \equiv \int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$