

Выполнил:

Юдин Николай Евгеньевич, БПМИ202

План

- 1. Что такое прунинг и в чем его недостатки?
- 2. Lottery Ticket Hypothesis и базовый алгоритм поиска билетов
- 3. Эксперименты и возможные вариации алгоритма
- 4. Важность начальных данных
- 5. Применение в других задачах
- 6. Выводы

Что такое прунинг?

Долго обучаемся

Много времени

Что такое прунинг?

Хотим: не обучать большую нейросеть, а потом выкидывать параметры, хочется как-то сразу, за одно обучение нейросети

Основная гипотеза

Пусть дана нейросеть $f(x,\theta)$ с инициализацией θ_0 .

Тогда существует подсеть $(m \in \{0,1\}^{|\theta|})$ такая, что если учить с нуля нейросеть $f(x,\theta\odot m)$ с инициализацией $\theta_0\odot m$, то

- 1. Минимум на валидации будет достигнут за меньшее число итераций нежели в исходном случае.
- 2. Ошибка на валидации будет не больше чем у исходной нейросети
- 3. Количество параметров у такой подсети сильно меньше чем у исходной

Такую подсеть и будем называть лотерейным билетом.

А как искать билеты?

- 1. Произвольно проинициализируем нейросеть $f(x; heta_0)$
- 2. Поучимся какое-то количество итераций, получим новые параметры
- 3. Сделаем прунинг, проредим какую-то долю, р% параметров
- 4. Теперь будем обучать нейросеть $f(x, \theta_0 \odot m)$. Данная нейросеть и есть наш выигрышный билет.

Рубрика "Эксперименты"

Датасеты: MNIST и CIFAR10

Вариации алгоритма

Видно, что итеративный прунинг очень хорош в сравнении с остальными методами.

Интересное замечание

Здорово, что лотерейные билеты имеют хорошую обобщающую способность

Рандомно инициализировать плохо?

Не стоит рандомно переинициализироваться, обучается долго и плохо

А не совсем рандомно?

Случайный шум в целом не принес успеха, но и не сильно ухудшил

А если сразу избавиться от лишнего?

Совсем все плохо если убрать без разбора некоторые параметры

Немного про сверточные нейросети

Общая тенденция сохранилась, обучаемся быстрее и не сильно хуже

VGG19 и ResNet-18

0

Обучение VGG19

Проблемы с поиском: при высоком Ir появились проблемы, да и разогрев не помог особо

VGG19 и ResNet-18

ResNet-18 и его обучение

Здесь проблемы с поиском проявляются еще сильнее чем раньше

А что если разные датасеты?!

Проверка лотерейного билета обученного на ImageNet на остальных датасетах

Проверка лотерейного билета обученного на Places365 на остальных датасетах.

А что если другая задача?

Производительность лотерейных билетов для LSTM обученной на WikiText-2

А что если другая задача?

Производительность лотерейных билетов для Transformers, обученной на WikiText-2

Поздняя перемотка лучше чем алгоритм из задач классификации

Выводы

Лотерейные билеты хороши потому что:

- Обучаются действительно быстрее без потери качества
- Переносятся между разными датасетами
- Могут не только в классификацию (надеемся)

Однако

- На высоких Ir иногда все равно провал
- Иногда тяжело их оптимизировать (некоторые люди и статьи утверждают обратное)

Ответы на вопросы

Спасибо за внимание!

Источники

https://arxiv.org/pdf/1803.03635.pdf

https://ai.facebook.com/blog/understanding-the-generalization-of-lottery-tickets-in-neural-networks/

https://arxiv.org/pdf/1906.02768.pdf

