WHAT IS CLAIMED IS:

1. A compound represented by the formula

5 and the pharmaceutically acceptable salts, esters and prodrugs thereof, wherein

L is selected from the group consisting of:

- (1) -CH(OH)CH₃;
- (2) C₁-C₆ alkyl, optionally substituted with one or more substituents selected from the group consisting of aryl, substituted aryl, heteroaryl and substituted heteroaryl;
 - (3) C₂-C₆ alkenyl, optionally substituted with one or more substituents selected from the group consisting of aryl, substituted aryl, heteroaryl and substituted heteroaryl; and
 - (4) C₂-C₆ alkynyl, optionally substituted with one or more substituents selected from the group consisting of aryl, substituted aryl, heteroaryl and substituted heteroaryl;

 R_1 is selected from the group consisting of C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl and C_2 - C_6 -alkynyl, each optionally substituted with one or more substituents selected from the group

20 consisting of:

15

- (1) halogen;
- (2) aryl;
- (3) substituted aryl;
- (4) heteroaryl;
- 25 (5) substituted heteroaryl;
 - (6) -O-R₅, where R₅ is selected from the group consisting of:

28

- a. hydrogen;
- b. aryl;

- c. substituted aryl;
- d. heteroaryl; and
- e. substituted heteroaryl;
- (7) $-O-C_1-C_6$ -alkyl- R_5 , where R_5 is as previously defined;
- (8) -O-C₂-C₆-alkenyl-R₅, where R₅ is as previously defined;
- (9) -O-C₂-C₆-alkynyl-R₅, where R₅ is as previously defined; and
- (10) -NR₆R₇, where R₆ and R₇ are each independently selected from the group consisting of: hydrogen; C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic; C₂-C₆-alkenyl, optionally substituted with one or more substituents selected from the group consisting of halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic; and C₂-C₆-alkynyl, optionally substituted with one or more substituents selected from the group consisting of halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic; or R₆R₇ taken together with the nitrogen atom to which they are connected form a 3- to 7-membered ring which may optionally contain one or more hetero functions selected from the group consisting of -O₇-NH₇, -N(C₁-C₆-alkyl)₇, -N(aryl)₇, -N(heteroaryl)₇, -S₇, -S(O)₇ and -S(O)₂-;

 R_2 is selected from the group consisting of:

- (1) hydrogen;
- (2) C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of:
 - a. halogen;
 - b. aryl;
 - c. substituted aryl;
 - d. heterocyclic;
 - e. substituted heterocyclic;
 - f. -O-R₃, where R₃ is selected from the group consisting of:
 - i. hydrogen;
 - ii. aryl;
 - iii. substituted aryl;

15

5

10

20

25

30

	iv. heteroaryl; and
	v. substituted heteroaryl;
	gO-C ₁ -C ₆ -alkyl-R ₃ , where R ₃ is as previously defined;
	hO-C ₂ -C ₆ -alkenyl-R ₃ , where R ₃ is as previously defined;
5	iO-C ₂ -C ₆ -alkynyl-R ₃ , where R ₃ is as previously defined; and
	j. $-NR_6R_7$, where R_6 and R_7 are as previously defined;
	(3) C ₂ -C ₆ -alkenyl, optionally substituted with one or more substituents
	selected from the group consisting of:
	a. halogen;
10	b. aryl;
	c. substituted aryl;
	d. heterocyclic;
	e. substituted heterocyclic;
	f. $-O-R_3$, where R_3 is as previously defined;
15	g. $-O-C_1-C_6$ -alkyl- R_3 , where R_3 is as previously defined;
	hO-C ₂ -C ₆ -alkenyl-R ₃ , where R ₃ is as previously defined;
	iO-C ₂ -C ₆ -alkynyl-R ₃ , where R ₃ is as previously defined; and
	jNR ₆ R ₇ , where R ₆ and R ₇ are as previously defined; and
	(4) C_2 - C_6 -alkynyl, optionally substituted with one or more substituents
20	selected from the group consisting of:
	a. halogen;
	b. aryl;
	c. substituted aryl;
	d. heterocyclic;
25	e. substituted heterocyclic;
	f. $-O-R_3$, where R_3 is as previously defined;
	g. $-O-C_1-C_6$ -alkyl- R_3 , where R_3 is as previously defined;
	h. $-O-C_2-C_6$ -alkenyl- R_3 , where R_3 is as previously defined;
	iO-C ₂ -C ₆ -alkynyl-R ₃ , where R ₃ is as previously defined; and
30	j. $-NR_6R_7$, where R_6 and R_7 are as previously defined;
	X is selected from the group consisting of:
	(a) S(O)n, where n is 0, 1, or 2;
	(b) O; and

(c) NR_5 , where R_5 is as previously defined;

and

Rp is hydrogen or a hydroxy protecting group.

- 5 2. A compound according to Claim 1 wherein L is CH₂CH₃, X is -S-, R₁ is CH₃ and R₂ and Rp are as defined in Claim 1.
 - 3. A compound according to Claim 1 which is selected from the group consisting of:

Compound of formula (I): $L = CH_2CH_3$, X = S, $R_1 = CH_3$, $R_2 = 2$ -[6-(dimethylamino-

10 methyleneamino)purin-9-yl]-ethyl and Rp = H;

Compound of formula (I): $L = CH_2CH_3$, X = S, $R_1 = CH_3$, $R_2 = 2$ -(6-amino-purin-yl)-ethyl and Rp = H;

Compound of formula (I): $L = CH_2CH_3$, X = S, $R_1 = CH_3$, $R_2 = 3$ -(3-pyridinyl)-1H-pyrazole-ethyl and Rp = H;

Compound of formula (I): $L = CH_2CH_3$, X = S, $R_1 = CH_3$, $R_2 = [3-(3-pyridinyl)-1H-1,2,4-triazole-1-yl]-ethyl and <math>Rp = H$;

Compound of formula (I): $L = CH_2CH_3$, X = S, $R_1 = CH_3$, $R_2 = = [4-(3-pyridinyl)-1H-imidazole]-1-ethyl and <math>Rp = H$; and

Compound of formula (I): $L = CH_2CH_3$, X = O, $R_1 = CH_3$, $R_2 = CH_2CH_2$ -phenyl and Rp = 20 H.

- 4. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically-acceptable salt, ester or prodrug thereof, in combination with a pharmaceutically acceptable carrier.
 - 5. A method for controlling a bacterial infection in an animal comprising

administering to an animal a therapeutically-effective amount of a pharmaceutical composition according to Claim 4.

6. A process for preparing a compound represented by the formula

5

wherein L, X, R_1 , R_2 , and R_2 are as defined in Claim 1, the method comprising

(a) acylating a compound represented by the formula

10

wherein L and R_1 are as defined in Claim 1 and R_2 is a hydroxy protecting group, by reaction with a carboxylic acid, optionally in the presence of a catalyst, optionally in the presence of a dehydration reagent and optionally in the presence of a base in an aprotic organic solvent to provide a product represented by the formula

15

wherein L, R₁, and Rp are as defined in Claim 1, and where Y is halogen;

(b) reacting a compound from step a with an anion of R_2 -X-M where R_2 and X are as defined in Claim 1, Rp is a hydroxy protecting group and M is sodium, potassium, or lithium, or R_2 -X-H in the presence of a base in the presence of an aprotic solvent at a

ENP-044

temperature from -20°C to 50°C for 1-48 hours to provide compound represented by the formula

- 5 wherein L, R₁, R₂, Rp and X are as defined in Claim 1; and
 - (c) reacting a compound from step b with a base in organic solvent to effect cyclization to provide a compound of formula (I).

10