

AMENDMENTS TO THE CLAIMS

1. (Previously Presented) A polymer comprising a phenolic monomeric unit wherein the H atom of the hydroxy group of the phenolic monomeric unit is replaced by a N-imide group Q having the structure

wherein L is a linking group, wherein k is 0 or 1, wherein L is covalently bound to the O atom of the polymer when k is 1, or wherein the N atom of the N-imide group is covalently bound to the O atom of the polymer when k is 0, wherein X or Y are independently selected from O or S, and wherein T¹ and T² represent a terminal group.

2. (Original) A polymer according to claim 1 wherein the terminal groups T¹ and T² are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein T¹ and T² together with the N-imide group represent the necessary atoms to form a cyclic structure, or wherein T¹ and T² represent the following structures -L¹-R¹ and -L²-R², wherein L¹ and L² represent independently a linking group, wherein R¹ and R² are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -CN, or -NO₂, or therein two groups selected from each L¹, L², R¹ and R² together represent the necessary atoms to form a cyclic structure.

3. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has the following formula

wherein G¹ and G² are independently selected from O, S, NR³ or CR⁴R⁵, with the limitation that G¹ is not O or S when G² is O and that G¹ is not O or S when G² is NR³, wherein R⁴ and

R^5 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^3-R^6$, wherein L^3 is a linking group, wherein R^3 and R^6 are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R^3 , R^4 , R^5 , R^6 and L^3 together represent the necessary atoms to form a cyclic structure.

4. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has the following formula

wherein G^3 to G^5 are independently selected from O, S, NR⁷ or CR⁸R⁹, with the limitation that at least one group, selected from G^3 to G^5 , is CR⁸R⁹ and that two neighboring groups, selected from G^3 to G^5 , are not represented by O and S, by O and NR⁷, by S and NR⁷ or by O and O, or wherein G^4 is a linking group, wherein R⁸ and R⁹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^4-L^{10}$, wherein L⁴ is a linking group, wherein R⁷ and R¹⁰ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R⁷, R⁸, R⁹, R¹⁰ and L⁴ together represent the necessary atoms to form a cyclic structure.

5. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has the following formula

wherein G^6 is a group selected from O, S, NR¹¹ or CR¹²R¹³, wherein m is 0 or 1, wherein R¹² to R¹⁵ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^5-R^{16}$,

wherein L⁵ is a linking group, wherein R¹¹ and R¹⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and L⁵ together represent the necessary atoms to form a cyclic structure.

6. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has the following formula

wherein E¹ and E² are independently selected from O, S, NR¹⁷ or CR¹⁸R¹⁹, wherein p and q are independently 0 or 1, wherein R¹⁸ to R²¹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁶-R²², wherein L⁶ is a linking group, wherein R¹⁷ and R²² are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

7. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has one of the following formula:

wherein each R²³ to R²⁶ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R²⁷, -NH-SO₂-R³⁰, -CO-NR²⁷-R²⁸, -NR²⁷-CO-R³⁰, -NR²⁷-CO-NR²⁸-R²⁹, -NR²⁷-CS-NR²⁸-R²⁹, -NR²⁷-CO-O-R²⁸, -O-CO-NR²⁷-R²⁸, -O-CO-R³⁰, -CO-O-R²⁷, -CO-R²⁷, -SO₃-R²⁷, -O-SO₂-R³⁰, -SO₂-R²⁷, -SO-R³⁰, -P(=O)(-O-R²⁷)(-O-R²⁸), -O-P(=O)(-O-R²⁷)(-O-R²⁸), -NR²⁷-R²⁸, -O-R²⁷, -S-R²⁷, -CN, -NO₂, -N(-CO-R²⁷)(-CO-R²⁸), -N-phthalimidyl, -M-N-phthalimidyl, or -M-R²⁷, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R²⁷ to R²⁹ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R³⁰ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein a and d are independently 0, 1, 2, 3 or 4, wherein b and c are independently 0, 1, 2 or 3, wherein E³ is selected from O, S, NR³¹ or CR³²R³³, wherein R³² and R³³ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or -L⁷-R³⁴, wherein L⁷ is a linking group, wherein R³¹ and R³⁴ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

8. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has one of the following formula:

wherein R^{35} to R^{44} are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, $-SO_2-NH-R^{45}$, $-NH-SO^2-R^{48}$, $-CO-NR^{45}-R^{46}$, $-NR^{45}-CO-R^{48}$, $-NR^{45}-CO-NR^{46}-R^{47}$, $-NR^{45}-CS-NR^{46}-R^{47}$, $-NR^{45}-CO-O-R^{46}$, $-O-CO-NR^{45}-R^{46}$, $-O-CO-R^{48}$, $-CO-O-R^{45}$, $-CO-R^{45}$, $-SO_3-R^{45}$, $-O-SO_2-R^{48}$, $-SO_2-R^{45}$, $-SO-R^{48}$, $-P(=O)(O-R^{45})(-O-R^{46})$, $-O-P(=O)(-O-R^{45})(-O-R^{46})$, $-NR^{45}-R^{46}$, $-O-R^{45}$, $-S-R^{45}$, $-CN$, $-N(-CO-R^{45})(-CO-R^{46})$, $-N$ -phthalimidyl, $-M-N$ -phthalimidyl, or $-M-R^{45}$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R^{45} to R^{47} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, and wherein R^{48} is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

9. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has one of the following formula:

wherein R⁴⁹ to R⁵⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, and wherein R⁵⁷ and R⁵⁸ are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

10. (Previously Presented) A polymer according to claim 1 wherein the N-imide group Q has one of the following formula:

11. (Previously Presented) A polymer according to claim 1, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.

12. (Previously Presented) A heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface and an oleophilic coating [[,]] provided on the hydrophilic surface, said coating comprising an infrared light absorbing agent and a polymer comprising a phenolic monomeric unit wherein the H atom of the hydroxy group of the phenolic monomeric unit is replaced by a N-imide group Q having the structure

wherein L is a linking group, wherein k is 0 or 1, wherein L is covalently bound to the O atom of the polymer when k is 1, or wherein the N atom of the N-imide group is covalently bound to the O atom of the polymer when k is 0, wherein X or Y are independently selected from O or S, and wherein T¹ and T² represent a terminal group.

13. (Original) A lithographic printing plate precursor according to claim 12, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

14. (Previously Presented) A lithographic printing plate precursor according to claim 13, wherein said dissolution inhibitor is selected from the group consisting of an organic compound which comprises at least one aromatic group and a hydrogen bonding site,

a polymer or surfactant comprising siloxane or perfluoroalkyl units, and mixtures thereof.

15. (Canceled)

16. (Previously Presented) A lithographic printing plate precursor according to claim 12, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

17. (Canceled)

18. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has the following formula

wherein G¹ and G² are independently selected from O, S, NR³ or CR⁴R⁵, with the limitation that G¹ is not O or S when G² is O and that G¹ is not O or S when G² is NR³, wherein R⁴ and R⁵ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L³-R⁶, wherein L³ is a linking group, wherein R³ and R⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R³, R⁴, R⁵, R⁶ and L³ together represent the necessary atoms to form a cyclic structure.

19. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has the following formula

wherein G³ to G⁵ are independently selected from O, S, NR⁷ or CR⁸R⁹, with the limitation that at least one group, selected from G³ to G⁵, is CR⁸R⁹ and that two neighbouring groups, selected from G³ to G⁵, are not represented by O and S, by O and NR⁷, by S and NR⁷ or by O and O, or wherein G⁴ is a linking group, wherein R⁸ and R⁹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl,

heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^4-L^{10}$, wherein L^4 is a linking group, wherein R^7 and R^{10} are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R^7 , R^8 , R^9 , R^{10} and L^4 together represent the necessary atoms to form a cyclic structure.

20. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has the following formula

wherein G^6 is a group selected from O, S, NR¹¹ or CR¹²R¹³, wherein m is 0 or 1, wherein R¹² to R¹⁵ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^5-R^{16}$, wherein L⁵ is a linking group, wherein R¹¹ and R¹⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and L⁵ together represent the necessary atoms to form a cyclic structure.

21. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has the following formula

wherein E¹ and E² are independently selected from O, S, NR¹⁷ or CR¹⁸R¹⁹, wherein p and q are independently 0 or 1, wherein R¹⁸ to R²¹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^6-R^{22}$, wherein L⁶ is a linking group, wherein R¹⁷ and R²² are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

22. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has one of the following formula:

wherein each R²³ to R²⁶ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R²⁷, -NH-SO₂-R³⁰, -CO-NR²⁷-R²⁸, -NR²⁷-CO-R³⁰, -NR²⁷-CO-NR²⁸-R²⁹, -NR²⁷-CS-NR²⁸-R²⁹, -NR²⁷-CO-O-R²⁸, -O-CO-NR²⁷-R²⁸, -O-CO-R³⁰, -CO-O-R²⁷, -CO-R²⁷, -SO₃-R²⁷, -O-SO₂-R³⁰, -SO₂-R²⁷, -SO-R³⁰, -P(=O)(-O-R²⁷)(-O-R²⁸), -O-P(=O)(-O-R²⁷)(-O-R²⁸), -NR²⁷-R²⁸, -O-R²⁷, -S-R²⁷, -CN, -NO₂, -N(-CO-R²⁷)(-CO-R²⁸), -N-phthalimidyl, -M-N-phthalimidyl, or -M-R²⁷, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R²⁷ to R²⁹ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R³⁰ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein a and d are independently 0, 1, 2, 3 or 4, wherein b and c are independently 0, 1, 2 or 3, wherein E³ is selected from O, S, NR³¹ or CR³²R³³, wherein R³² and R³³ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or -L⁷-R³⁴, wherein L⁷ is a linking group, wherein R³¹ and R³⁴ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

23. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has one of the following formula:

wherein R³⁵ to R⁴⁴ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R⁴⁵, -NH-SO²-R⁴⁸, -CO-NR⁴⁵-R⁴⁶, -NR⁴⁵-CO-R⁴⁸, -NR⁴⁵-CO-NR⁴⁶-R⁴⁷, -NR⁴⁵-CS-NR⁴⁶-R⁴⁷, -NR⁴⁵-CO-O-R⁴⁶, -O-CO-NR⁴⁵-R⁴⁶, -O-CO-R⁴⁸, -CO-O-R⁴⁵, -CO-R⁴⁵, -SO₃-R⁴⁵, -O-SO₂-R⁴⁸, -SO₂-R⁴⁵, -SO-R⁴⁸, -P(=O)(O-R⁴⁵)(-O-R⁴⁶), -O-P(=O)(-O-R⁴⁵)(-O-R⁴⁶), -NR⁴⁵-R⁴⁶, -O-R⁴⁵, -S-R⁴⁵, -CN, -N(-CO-R⁴⁵)(-CO-R⁴⁶), -N-phthalimidyl, -M-N-phthalimidyl, or -M-R⁴⁵, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R⁴⁵ to R⁴⁷ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R⁴⁸ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

24. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has one of the following formula:

wherein R⁴⁹ to R⁵⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, and wherein R⁵⁷ and R⁵⁸ are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

25. (Previously Presented) A polymer according to claim 2 wherein the N-imide group Q has one of the following formula:

26. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the terminal groups T^1 and T^2 are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein T^1 and T^2 together with the N-imide group represent the necessary atoms to form a cyclic structure, or wherein T^1 and T^2 represent the following structures $-L^1-R^1$ and $-L^2-R^2$, wherein L^1 and L^2 represent independently a linking group, wherein R^1 and R^2 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -CN, or $-NO_2$, or therein two groups selected from each L^1 , L^2 , R^1 and R^2 together represent the necessary atoms to form a cyclic structure.

27. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has the following formula

wherein G^3 to G^5 are independently selected from O, S, NR⁷ or CR⁸R⁹, with the limitation that at least one group, selected from G^3 to G^5 , is CR⁸R⁹ and that two neighboring groups, selected from G^3 to G^5 , are not represented by O and S, by O and NR⁷, by S and NR⁷ or by O and O, or wherein G^4 is a linking group, wherein R⁸ and R⁹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or $-L^4-L^{10}$, wherein L⁴ is a linking group, wherein R⁷ and R¹⁰ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R⁷, R⁸, R⁹, R¹⁰ and L⁴ together represent the necessary atoms to form a cyclic structure.

28. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has the following formula

wherein G^3 to G^5 are independently selected from O, S, NR⁷ or CR⁸R⁹, with the limitation that at least one group, selected from G^3 to G^5 , is CR⁸R⁹ and that two neighboring groups, selected from G^3 to G^5 , are not represented by O and S, by O and NR⁷, by S and NR⁷ or by O and O, or wherein G^4 is a linking group, wherein R⁸ and R⁹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁴-L¹⁰, wherein L⁴ is a linking group, wherein R⁷ and R¹⁰ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R⁷, R⁸, R⁹, R¹⁰ and L⁴ together represent the necessary atoms to form a cyclic structure.

29. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has the following formula

wherein G^6 is a group selected from O, S, NR¹¹ or CR¹²R¹³, wherein m is 0 or 1, wherein R¹² to R¹⁵ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁵-R¹⁶, wherein L⁵ is a linking group, wherein R¹¹ and R¹⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein two groups selected from each R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶ and L⁵ together represent the necessary atoms to form a cyclic structure.

30. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has the following formula

wherein E¹ and E² are independently selected from O, S, NR¹⁷ or CR¹⁸R¹⁹, wherein p and q are independently 0 or 1, wherein R¹⁸ to R²¹ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group or -L⁶-R²², wherein L⁶ is a linking group, wherein R¹⁷ and R²² are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

31. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has one of the following formula:

wherein each R²³ to R²⁶ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R²⁷, -NH-SO₂-R³⁰, -CO-NR²⁷-R²⁸, -NR²⁷-CO-R³⁰, -NR²⁷-CO-NR²⁸-R²⁹, -NR²⁷-CS-NR²⁸-R²⁹, -NR²⁷-CO-O-R²⁸, -O-CO-NR²⁷-R²⁸, -O-CO-R³⁰, -CO-O-R²⁷, -CO-R²⁷, -SO₃-R²⁷, -O-SO₂-R³⁰, -SO₂-R²⁷, -SO-R³⁰, -P(=O)(-O-R²⁷)(-O-R²⁸), -O-P(=O)(-O-R²⁷)(-O-R²⁸), -NR²⁷-R²⁸, -O-R²⁷, -S-R²⁷, -CN, -NO₂, -N(-CO-R²⁷)(-CO-R²⁸), -N- phthalimidyl, -M-N-phthalimidyl, or -M-R²⁷, wherein M represents a divalent linking group

containing 1 to 8 carbon atoms, wherein R²⁷ to R²⁹ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R³⁰ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein a and d are independently 0, 1, 2, 3 or 4, wherein b and c are independently 0, 1, 2 or 3, wherein E³ is selected from O, S, NR³¹ or CR³²R³³, wherein R³² and R³³ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or -L⁷-R³⁴, wherein L⁷ is a linking group, wherein R³¹ and R³⁴ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

32. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has one of the following formula:

wherein R³⁵ to R⁴⁴ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, halogen, -SO₂-NH-R⁴⁵, -NH-SO²-R⁴⁸, -CO-NR⁴⁵-R⁴⁶, -NR⁴⁵-CO-R⁴⁸, -NR⁴⁵-CO-NR⁴⁶-R⁴⁷, -NR⁴⁵-CS-NR⁴⁶-R⁴⁷, -NR⁴⁵-CO-O-R⁴⁶, -O-CO-NR⁴⁵-R⁴⁶, -O-CO-R⁴⁸, -CO-O-R⁴⁵, -CO-R⁴⁵, -SO₃-R⁴⁵, -O-SO₂-R⁴⁸, -SO₂-R⁴⁵, -SO-R⁴⁸, -P(=O)(O-R⁴⁵)(-O-R⁴⁶), -O-P(=O)(-O-R⁴⁵)(-O-R⁴⁶), -NR⁴⁵-R⁴⁶, -O-R⁴⁵, -S-R⁴⁵, -CN, -N(-CO-R⁴⁵)(-CO-R⁴⁶), -N-phthalimidyl, -M-N-phthalimidyl, or -M-R⁴⁵, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R⁴⁵ to R⁴⁷ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl

group, wherein R⁴⁸ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

33. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has one of the following formula:

wherein R⁴⁹ to R⁵⁶ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

and wherein R⁵⁷ and R⁵⁸ are independently selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group.

34. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 12, wherein the N-imide group Q has one of the following formula:

35. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 26, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

36. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 27, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

37. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 28, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

38. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 29, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

39. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 30, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

40. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 31, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

41. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 32, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

42. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 33, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

43. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 34, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

44. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 26, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

45. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 27, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

46. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 28, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

47. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 29, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

48. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 30, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

49. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 31, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

50. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 32, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

51. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 33, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

52. (Previously Presented) A heat-sensitive lithographic printing plate precursor according to claim 34, wherein said coating further comprises a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

This listing of claims replaces all prior versions, and listings, of claims in the application.