

Mô hình ngẫu nhiên dự báo và kiểm soát dịch bệnh COVID-19 ở Trung Quốc

Các mô hình ng**ẫ**u nhiên và **ứ**ng d**ụ**ng

I. Đặt vấn đề

- Dịch bệnh COVID-19 đang hoành hành trên thế giới.
- Cần đưa ra một mô hình có khả năng dự báo chính xác về dịch bệnh.
- Kiến nghị một vài thời điểm thích hợp để người dân có thể quay trở về cuộc sống thường nhật.

II. Mô hình

- Ta sẽ sử dụng mô hình ngẫu nhiên rời rạc SEIR làm cơ sở để xây dựng mô hình mới.
- Chuỗi thời gian được xem như là rời rạc, với time step là 1 ngày.
- Sự dịch chuyển từ trạng thái này sang trạng thái kia là một quá trình ngẫu nhiên.
- Thời gian mà một người ở một trạng thái nhất định tuân theo phân phối mũ.
- Số lượng dòng vào và ra của một trạng thái tuân theo phân phối nhị thức.
- Tỷ lệ tiếp xúc được xây dựng như là một hàm thành phần, là một hằng số trước thời điểm áp dụng các biện pháp cách lý; và giảm dần sau khi các biện pháp được áp dụng.

Mô hình được trình bày chi tiết trong báo cáo

Hàm t**ỷ** lệ tiếp xúc

$$c(t) = \begin{cases} c_0 & \text{n\'eu } t \le t^* \\ (c_0 - c_u)e^{-k(t - t^*)} + c_u & \text{n\'eu } t > t^* \end{cases}$$

Bảng tham số của mô hình

Parameters	Definition	Baseline values	Range	Means value	(estimated)Std	Source
c_0	Tỷ lệ tiếp xúc ban đầu	31	(0, 50]	34.037	0.389	MCMC
c_u	Tỷ lệ tiếp xúc thấp nhất khi đã áp dụng các biện pháp giãn cách xã hội	1	(0, 50]	0.933	0.0037	MCMC
k	Tỷ lệ giảm của tỷ lệ tiếp xúc theo thời gian	0.1	[0, 1]	0.144	0.0035	MCMC
β	Xác suất lan truyền của dịch bệnh	0.095	[0, 1]	0.111	0.0015	MCMC
q	Tỷ lệ cách ly những trường hợp bị phơi nhiễm	0.4	[0, 1]	0.415	0.016	MCMC
σ	Tỷ lệ chuyển từ trạng thái E sang I	1/7	[0, 1]	1/7	_	[9]
λ	Tỷ lệ chuyển từ S_q sang S (được thả từ cách ly)	1/14	[0, 1]	1/14	_	[9]
δ_I	Tỷ lệ chuyển từ I sang H	0.1	[0, 1]	0.304	0.001	MCMC
$\delta_{m{q}}$	Tỷ lệ chuyển từ E_q sang H	0.42	[0, 1]	0.413	0.0116	MCMC
γ_I	Tỷ lệ chuyển từ I sang R (tỷ lệ những trường hợp có khả năng tự hồi phục)	0.008	[0, 1]	0.0085	0.0001	MCMC
γ_H	Tỷ lệ chuyển từ H sang R (tỷ lệ hồi phục sau khi được chăm sóc y tế)	0.017	[0, 1]	0.018	0.0003	MCMC
α	Tỷ lệ chết	0.0027	[0, 1]	0.0027	0.0001	MCMC
N	Toàn bộ dân số (xấp xỉ S)	_	_	1.4×14^{10}	_	Data
E(0)	Các trường hợp phơi nhiễm ban đầu	105	[1, 200]	52	0.64	MCMC
I(0)	Các trường hợp nhiễm bệnh ban đầu	54	[1, 100]	31	0.346	MCMC
$S_q(0)$	Các trường hợp không bị phơi nhiễm được cách ly ban đầu	_	_	734	-	Data
$E_q(0)$	Các trường hợp bị phơi nhiễm được cách ly ban đầu	2	[0, 100]	5	0.24	MCMC
H(0)	Các trường hợp nhiễm bệnh được chăm sóc y tế ban đầu	-	-	41	-	Data
R(0)	Các trường hợp hồi phục ban đầu	_	_	6	_	Data

III. Dữ liệu

- Dữ liệu được thu thập từ website của chính phủ Trung Quốc.
- Có một vài điểm dữ liệu bị sai, nhóm đã sửa lại trong khi thực hiện cài đặt thuật toán ước lượng tham số và mô hình.

IV. Ước lượng tham số

- Tham số được ước lượng bằng thuật toán Metropolis Hastings.
- Không thể sử dụng ước lượng hợp lý cực đại do không thu thập được đủ dữ liệu cần thiết.
- Một vài tham số được rút ra từ đặc tính của dịch bệnh.
- Kết quả ước lượng cho thấy sự phù hợp với các dữ liệu được
 dùng để ước lượng

V. Dự báo

- Sử dụng hệ số lây nhiễm hiệu quả để đánh giá khả năng bùng phát của dịch bệnh.
- Kết quả dự báo trong 350 ngày kể từ ngày 11 tháng 1 cho thấy mô hình có khả năng dự báo tốt về dịch bệnh
- Dự báo chính xác thời điểm đạt đỉnh của dịch bệnh cũng như thời điểm dịch bệnh cơ bản được dập tắt ở Trung Quốc.

VI. Kiến nghị

- Dựa trên những mô phỏng của mô hình, nhóm đặt ra 4 trường hợp khác nhau về thời điểm quay trở lại cuộc sống bình thường và tỷ lệ tiếp xúc khác nhau.
- Kết quả cho thấy tốt nhất là quay trở lại vào ngày 20 tháng 3.
- Việc kéo dài thời gian giãn cách xã hội góp phần lớn vào công tác dập dịch.
- Ngoài ra, các biện pháp bảo vệ như đeo khẩu trang, hạn chế di chuyển... cũng góp phần rất lớn.

