Kapitel 5: Kombinatorik

Kasper K. S. Andersen

7 oktober 2021

5.2.1 Additions- och multiplikationsprincipen

Sats (Additionsprincipen): Antallet sätt att göra ett val mellan

- n_1 varianter av A_1 , eller
- n_2 varianter av A_2 , eller
- . . .
- n_r varianter av A_r ,

ges av
$$n_1 + n_2 + \ldots + n_r$$

Sats (Multiplikationsprincipen): Antallet sätt att välja mellan

- n_1 varianter av A_1 , och
- n_2 varianter av A_2 , och
- . . .
- n_r varianter av A_r ,

ges av
$$n_1 \cdot n_2 \cdot \ldots \cdot n_r$$

Exempel 1. På hur många sätt kan man välja *en* rätt om man väljer bland 3 förrätter, 4 huvudrätter och 5 efterrätter?

Lösning: Det blir 3 + 4 + 5 = 12 möjliga menyer (additionsprincipen).

Exempel 2. På hur många sätt kan man välja en meny för en måltid med förrätt, huvudrätt och efterrätt, om man väljer bland 3 förrätter, 4 huvudrätter och 5 efterrätter?

Lösning: Det blir $3 \cdot 4 \cdot 5 = 60$ möjliga menyer (multiplikationsprincipen).

Exempel 3. På hur många sätt kan man välja en meny med 2 rätter från ett menykort med 3 förrätter, 4 huvudrätter och 5 efterrätter? Två förrätter, två huvudrätter eller två efterrätter är inte är inte tillåtet.

Lösning:

- förrätt och huvudrätt: 3.4 = 12 möjligheter (multiplikationsprincipen),
- förrätt och efterrätt: $3 \cdot 5 = 15$ möjligheter (multiplikationsprincipen),
- huvudrätt och efterrätt: $4 \cdot 5 = 20$ möjligheter (multiplikationsprincipen).

Totalt blir det 12 + 15 + 20 = 47 möjliga val (additionsprincipen).

5.2.2 Ordnade urval: Permutationer

Definition 1. Varje uppställning av ett antal *olika* objekt i någon *ordning* kallas en *permutation*.

Påminnelse: Vi definierar $n! = n \cdot (n-1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$ (kallad n fakultet). Per definition gäller 0! = 1.

Sats 5.5 (Ordnad urval): Antallet sätt att välja k objekt i ordning bland n olika objekt utan att något element upprepas är ${}_{n}P_{k} = \frac{n!}{(n-k)!}$.

Bevis:

- 1:a elementet kan väljas på n sätt.
- 2:a elementet kan väljas på n-1 sätt.
- 3:a elementet kan väljas på n-2 sätt.
- . . .
- k:a elementet kan väljas på n (k 1) sätt.

Totala antallet sätt blir då enligt multiplikationsprincipen

$$n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1) \cdot (n-k) \cdot (n-k-1) \cdot \ldots \cdot 1}{(n-k) \cdot (n-k-1) \cdot \ldots \cdot 1}$$
$$= \frac{n!}{(n-k)!}$$

Anmärkning: Om k = n talar man om antallet permutationer av en mängd:

$$_{n}P_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$$

Exempel 4. (a) Antalet permutationer ("ord", "följder") av bokstaver i ordet "BLÅGRÖN" är 7! = 5040 (observera att alla bokstäver är olika).

(b) Antallet sätt att välja 4 bokstäver i ordning bland de 7 bokstäver är $_7P_4 = \frac{7!}{(7-4)!} = 840.$

5.2.3 Icke-ordnade urval: Kombinationer och binomialkoefficienter

Definition 2. Ett urval av k element från n olika element $utan \ h\ddot{a}nsyn \ till$ ordning och $utan \ upprepning$ kallas en kombination.

Sats 5.6 (Icke-ordnat urval): Antallet kombinationer bestående av k element valt bland n element, ges av

$$_{n}C_{k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Bevis: Antallet *permutationer* ges enligt Sats 5.5 av $\frac{n!}{(n-k)!}$. Varje *kombination* räknas k! gångar, så det finns alltså $\frac{n!}{k!(n-k)!}$ kombinationer.

Anmärkning: Observera att

$$\binom{n}{0} = \frac{n!}{0!(n-0)!} = \frac{n!}{n!} = 1 \quad \text{och} \quad \binom{n}{n} = \frac{n!}{n!(n-n)!} = \frac{n!}{n!0!} = 1.$$

Exempel 5. (Lotto): Antallet sätt att välja 7 element från $\{1, 2, 3, ..., 35\}$ utan hänsyn till ordning är $\binom{35}{7} = 6724520 \approx 6.7 \times 10^6$.

Exempel 6. Låt $A = \{1, 2, 3, 4, a, b, c, d, e\}$. Hur många sätt finns det att välja utt 2 siffror och 3 bokstäver utan hänsyn till ordning och utan upprepning?

Lösning:

- Siffrorna kan väljas på $\binom{4}{2} = 6$ sätt.
- Bokstäverna kan väljas på $\binom{5}{3} = 10$ sätt.

Multiplikationsprincippen ger då att det finns $\binom{4}{2} \cdot \binom{5}{3} = 6 \cdot 10 = 60$ möjliga sätt.

5.2.4 Permutationer av multimängder

Sats 5.7 (Ordnad urval): Antalet sätt att ordna en mängd objekt där man har

- n_1 styckan av 1:a sorten,
- n_2 styckan av 2:a sorten,
- . . .
- n_r styckan av r:a sorten,

är

$$\underbrace{\binom{n_1 + n_2 + \ldots + n_r}{n_1, n_2, \ldots, n_r}}_{\text{multinomial koefficient}} = \frac{(n_1 + n_2 + \ldots + n_r)!}{n_1! n_2! \ldots n_r!}$$

Exempel 7. Hur många "ord" (samma längd) kan bildas av orden

- "NOLL": Antallet permutationer blir $\binom{4}{1,1,2} = \frac{4!}{1!1!2!} = 12$ ty de 2 stycken "L" kan permuteras på 2! sätt.
- "VÄXELSTRÖMSMASKIN": Svar: $29\,640\,619\,008\,000 \approx 2.9 \times 10^{13}$.

5.3 Postfacksprincipen

Om brevbäraren kommer med 6 brev som ska levereras i ett postrum med 5 postfack så måste det finnas ett fack som innehåller minst 2 brev. Detta kallas postfacksprincipen, duvslagsprincipen, fågelholksprincipen eller Dirichlets lådprincip.

Sats 5.8 (Postfacksprincipen): Om n brev ska fördelas i m postfack och n > m så måste det finnas minst 2 brev i något postfack.

Exempel 8. Bland 13 personer måste minst 2 fylla år i samma månad. Här brev = personer och postfack = månader.

Exempel 9. Bilnummer består av tre bokstäver följda av tre siffror (förra 2019). Bland 1000 bilar som står på en parkering måste det finnas *minst* 2 bilar där sifferdelen utgör samma tal.

Lösning: Antallet 3-siffriga tal: $10 \cdot 10 = 1000$. Numret "000" är inte tillåten. Det finns alltså 999 möjliga tal (*postfack*) för sifferdelen. Då det finns 1000 bilar (*brev*) finns det alltså minst 2 bilar med samma sifferdel.

Exempel 10. Man väljar 5 elementer ur $\{1, 2, 3, \dots, 8\}$. Visa att *minst en* summa av dessa tal blir 9.

Lösning: Bilda de 4 delmängderna $\{1,8\}$, $\{2,7\}$, $\{3,6\}$ och $\{4,5\}$ (postfack). Man väljer 5 element (brev). Minst två elementer tillhör alltså samma delmängd och har därför summan 9.

Generelt: Om n brev ska placeras i m postfack så måste minst et postfack innehålla minst $\left\lfloor \frac{n-1}{m} \right\rfloor + 1$ brev. Här betecknar $\lfloor x \rfloor$ heltalsdelen av x, tex. $\lfloor 3.65 \rfloor = 3$ och $\lfloor 4 \rfloor = 4$.

Exempel 11. Bland 38 personer måste *minst fyra* fylla år samma månad, ty m = 12 månader (postfack), n = 38 personer (brev) och

$$\left| \frac{m-1}{n} \right| + 1 = \left| \frac{38-1}{12} \right| + 1 = \left| \frac{37}{12} \right| + 1 = 3 + 1 = 4.$$

5.4.1 Partitioner och Stirlingtal

En partition är en uppdelning av en mängd i ett antal disjunkta delmängder.

Definition 3. Delmängderna A_1, A_2, \ldots, A_r av A utgör en partition av A om $\bigcup_{i=1}^r A_i = A$ och $A_i \cap A_j = \emptyset$ for $i \neq j$. En partition betecknas $\mathscr{P} = \{A_1, A_2, \ldots, A_r\}$.

Exempel 12. Avgör om följande mängder är en partition av $A = \{a, b, c, d, e\}$:

- (a) $\{\{a,b\},\{e\},\{c,d\}\}$: Ja.
- (b) $\{\{a,b\},\{c,d\},\{a,e\}\}: \text{Nej, ty } \{a,b\} \cap \{a,e\} = \{a\} \neq \emptyset.$

(c)
$$\{\{a,b\},\{c,e\}\}$$
: Nej, ty $\{a,b\} \cup \{c,e\} = \{a,b,c,e\} \neq A$.

Fråga: Hur bestämmer man antallet sätt att lägga n olika brev i k likadana postfack så att inget postfack blir tomt?

Svar: Antalet sätt är antallet partitioner med precis k delmängder (postfack) av en mängd med n element (brev). Detta antallet ges av rekursionsformeln i följande sats.

Sats 5.9: Antallet sätt att dela upp n olika föremål i k högar är S(n,k) (såkallade *Stirlingtallen av 2:a ordningen*), som uppfyller

- (1) S(n,1) = S(n,n) = 1.
- (2) $S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$ om 1 < k < n.
- (3) S(n,k) = 0 om k > n.

Exempel 13. (a) Åtta stycken olika mynt skall stoppas i fyra stycken likadana sparbössar (ingen får vara tom!). Antallet sätt är S(8,4) = 1701.

- (b) Om vi tillåter tomma sparbösser får vi fyra fall:
 - Alla mynt i en sparbössa: S(8,1) = 1.
 - Alla mynt i två sparbössar: S(8,2) = 127.
 - Alla mynt i tre sparbössar: S(8,3) = 966.
 - Alla mynt i fyra sparbössar: S(8,4) = 1701.

Enligt additionsprincipen ges antalet möjliga sätt att fördela mynten lika av

$$S(8,1) + S(8,2) + S(8,3) + S(8,4) = 1 + 127 + 966 + 1701 = 2795.$$

Extenta

- (a) På hur många sätt kan man placera 14 olika kulor i 3 likadanna skålar om ingen skål får vara tom? Lösning: $S(14,3) = 788\,970$.
- (b) På hur många sätt kan man placera 14 olika kulor i 3 olika skålar om ingen skål får vara tom? Lösning: $S(14,3) \cdot 3! = 788\,970 \cdot 6 = 4\,733\,820$.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	3	1	0	0	0	0	0	0	0	0	0	0	0	0
4	1	7	6	1	0	0	0	0	0	0	0	0	0	0	0
5	1	15	25	10	1	0	0	0	0	0	0	0	0	0	0
6	1	31	90	65	15	1	0	0	0	0	0	0	0	0	0
7	1	63	301	350	140	21	1	0	0	0	0	0	0	0	0
8	1	127	966	1701	1050	266	28	1	0	0	0	0	0	0	0
9	1	255	3025	7770	6951	2646	462	36	1	0	0	0	0	0	0
10	1	511	9330	34105	42525	22827	5880	750	45	1	0	0	0	0	0
11	1	1023	28501	145750	246730	179487	63987	11880	1155	55	1	0	0	0	0
12	1	2047	86526	611501	1379400	1323652	627396	159027	22275	1705	66	1	0	0	0
13	1	4095	261625	2532530	7508501	9321312	5715424	1899612	359502	39325	2431	78	1	0	0
14	1	8191	788970	10391745	40075035	63436373	49329280	20912320	5135130	752752	66066	3367	91	1	0
15	1	16383	2375101	42355950	210766920	420693273	408741333	216627840	67128490	12662650	1479478	106470	4550	105	1

Stirlingtal av 2:a ordningen S(n,k)