LINEAR ALGEBRA, NUMERICAL AND COMPLEX ANALYSIS

MA11004

SECTION 1 and 2

Dr. Jitendra Kumar

Professor
Department of Mathematics
Indian Institute of Technology Kharagpur
West Bengal 721302, India

Webpage: http://www.facweb.iitkgp.ac.in/~jkumar/

Linear Algebra

- ☐ System of Linear Equation Introduction
- **☐** Solution Geometrical Interpretation
- **☐** Solution of the System Gauss Elimination
- ☐ Consistency of Solution

System of Linear Equations

Matrix form: $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

m equations and n unknowns

A system of equation is **consistent** if it has at least one solution, and **inconsistent** if it has no solution.

System of Linear Equations

Consider
$$x + 2y = 4$$
 (L_1)

$$x - y = 1 \qquad (L_2)$$

OR
$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Case of Unique Solution

System of Linear Equations (vectors interpretation)

$$x + 2y = 4 \qquad x - y = 1$$

OR

$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

OR

$$x \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

The vector $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ can only be produced by ONE linear combination of col-1 & col-2. Hence this is the case of unique solution.

System of Linear Equations

Consider
$$x - y = 1$$
 (L_1)

$$-x + y = 2 \qquad (L_2)$$

Lines do not intersect.

Case of No Solution

System of Linear Equations (vectors interpretation)

Consider
$$x - y = 1$$
 $-x + y = 2$

$$x \begin{bmatrix} 1 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

It is not possible to produce $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ by any linear combination of col-1 & col-2. Hence this is the case of no solution.

System of Linear Equations

Consider
$$x - y = 2$$
 (L_1) $-x + y = -2$ (L_2)

Both are the same equation. Any point on the line is a solution of the given system

Case of Infinitely Many Solutions

System of Linear Equations (vectors interpretation)

$$x - y = 2 \qquad -x + y = -2$$

$$x\begin{bmatrix} 1 \\ -1 \end{bmatrix} + y\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

The vector $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ can be produced by many linear combinations of col-1 & col-2. Hence this is the case of infinitely many solution.

Summary:

System of Linear Equations

- Unique Solution
- Infinitely Many Solutions
- No Solution

System of Linear Equations: Solution Methods

Method of Determinants: Cramer's rule

• Matrix Inversion Method: $Ax = b \Rightarrow x = A^{-1}b$

direct method (exact solution)

- Gauss Elimination Method
- Iterative Method Jacobi & Gauss-Seidel method solution

System of Linear Equations: Gauss Elimination Method

Elementary Row Operations

- Interchange of *i*-th and *j*-th rows $(R_i \leftrightarrow R_j)$
- Multiplication of the *i*-th row by a nonzero number λ ($R_i \leftarrow \lambda R_i$)
- Addition of λ times the j-th row to the i-th row $(R_i \leftarrow R_i + \lambda R_j)$

Gauss Elimination: Example - 1

$$x_1 + x_2 + x_3 = 4$$

 $2x_1 + 3x_2 + x_3 = 7$
 $x_1 + 2x_2 + 3x_3 = 9$

$$x_1 + x_2 + x_3 = 4$$

 $x_2 - x_3 = -1$
 $x_2 + 2x_3 = 5$

$$x_1 + x_2 + x_3 = 4$$
$$x_2 - x_3 = -1$$
$$3x_3 = 6$$

$$[A|b] = \begin{bmatrix} 1 & 1 & 1 & | & 4 \\ 2 & 3 & 1 & | & 7 \\ 1 & 2 & 3 & | & 9 \end{bmatrix}$$

Augmented Matrix

$$R_2 \leftarrow R_2 - 2R_1$$

$$R_3 \leftarrow R_3 - R_1$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & 2 & 5 \end{bmatrix}$$

$$R_3 \leftarrow R_3 - R_2$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 3 & 6 \end{bmatrix}$$

Gauss Elimination: Example - 1

$$x_1 + x_2 + x_3 = 4$$

 $x_2 - x_3 = -1$
 $3x_3 = 6$

$$[A|b] \sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 3 & 6 \end{bmatrix}$$
 Echelon form

Solution:

$$x_3 = 2$$
 $x_2 = -1 + 2 = 1$
 $x_1 = 4 - 1 - 2 = 1$

Back substitution:

$$x_3 = 2$$

$$x_2 = -1 + x_3 = 1$$

$$x_1 = 4 - x_2 - x_3 = 1$$

Number of Pivots = Number of Unknowns \implies Unique Solution

OR every column has a pivot

Gauss Elimination: Example - 2

$$[A|b] = \begin{bmatrix} 1 & 1 & 1 & | & 4 \\ 2 & 3 & 1 & | & 7 \\ 1 & 2 & 0 & | & 9 \end{bmatrix} \qquad R_2 \leftarrow R_2 - 2R_1$$
$$R_3 \leftarrow R_3 - R_1$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & 5 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

Equations are inconsistent and hence the solution does not exist.

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 6 \end{bmatrix} \qquad \begin{array}{c} \text{right-most column has a pivot} \\ \Rightarrow \text{No Solution} \end{array}$$

Gauss Elimination: Example - 3

$$[A|b] = \begin{bmatrix} 1 & 1 & 1 & | & 4 \\ 2 & 3 & 1 & | & 7 \\ 1 & 2 & 0 & | & 3 \end{bmatrix} \qquad R_2 \leftarrow R_2 - 2R_1 \\ R_3 \leftarrow R_3 - R_1$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \quad R_3 \leftarrow R_3 - R_2$$

 x_3 Free variable

number of pivots (r)

< numer of unknowns (n)

number of free variable = (n - r)

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad x_3 \text{ Free variable}$$

$$x_1 + x_2 + x_3 = 4$$

 $2x_1 + 3x_2 + x_3 = 7$
 $x_1 + 2x_2 = 3$

Choose
$$x_3 = \alpha$$

 $x_2 = -1 + \alpha$
 $x_1 = 5 - 2\alpha$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
particular solution of solution
$$Ax = 0$$
(Null Space)

$$x = x_p + x_h$$

Solution of System of Linear Equations:

$$A_{m \times n} x_{n \times 1} = b_{m \times 1}$$

Echelon Form:

$$\boxtimes$$
 – pivot element \neq 0

Echelon Form

$$[A|b] \sim \begin{pmatrix} & * & * & * & * & * & \cdots & \cdots & * & | & * \\ 0 & 0 & \boxtimes & * & * & \cdots & \cdots & * & | & * \\ 0 & 0 & 0 & \boxtimes & * & \cdots & \cdots & * & | & * \\ 0 & 0 & 0 & 0 & \boxtimes & * & \cdots & \cdots & * & | & * \\ 0 & 0 & 0 & 0 & \boxtimes & * & \cdots & * & | & * \\ \vdots & | & * \\ 0 & \cdots & 0 & 0 & 0 & \boxtimes & * & \cdots & * & | & * \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & | & \boxtimes \\ \vdots & & & & & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & | & \boxtimes \end{pmatrix}$$

$$(r)$$

$$(m-r)$$

 \triangleright If $\otimes \neq 0$ the equations become inconsistent and hence the system has no solution

OR in terms of rank: Rank $(A) \neq \text{Rank}([A|b])$

Echelon Form

ightharpoonup If $\otimes = 0$ and number of pivot elements (r) = number of unknowns (n)

OR each column has a pivot Then the system has a unique solution

OR in terms of rank: Rank (A) = Rank([A|b]) = n

Echelon Form

$$[A|b] \sim \begin{pmatrix} \boxtimes & * & * & * & * & * & \cdots & \cdots & * & | & * \\ 0 & 0 & \boxtimes & * & * & \cdots & \cdots & * & | & * \\ 0 & 0 & 0 & \boxtimes & * & \cdots & \cdots & * & | & * \\ 0 & 0 & 0 & 0 & \vdots & \vdots & \vdots & \vdots & \vdots & | & * \\ 0 & 0 & 0 & 0 & \vdots & \vdots & \vdots & \vdots & | & * \\ \vdots & | & * \\ 0 & \cdots & 0 & 0 & 0 & \boxtimes & * & \cdots & * & | & * \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & | & \boxtimes \\ \vdots & & & & & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & | & \boxtimes \end{pmatrix}$$

$$(m-r)$$

ightharpoonup If $\otimes = 0$ and number of pivot elements (r) < number of unknowns (n)

Then the system has infinitely many solutions

OR in terms of rank: Rank (A) = Rank([A|b]) < n

Problem -1 Solve the system of equations Ax = b with

$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 \\ 2 & 4 & -4 & 0 & 3 & 2 \\ -1 & -2 & 3 & 3 & 4 & 3 \\ 3 & 6 & -7 & 1 & 1 & \beta \end{bmatrix}; \qquad \beta \in \mathbb{R}$$

$$R_2 \to R_2 - 2R_1 \qquad R_3 \to R_3 + R_1 \qquad R_4 \to R_4 - 3R_1$$

$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 5 & 4 \\ 0 & 0 & 1 & 4 & 2 & 8 - 3 \end{bmatrix}$$

$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 & 5 & 4 & \beta - 3 \end{bmatrix}$$

$$R_2 \leftrightarrow R_3$$

$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 5 & 4 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & \beta - 3 \end{bmatrix}$$

$$R_4 \to R_4 + R_2$$

$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 & 0 & \beta - 3 \end{bmatrix}$$

$$R_4 \to R_4 + R_2$$

$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 5 & 4 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 \end{bmatrix}$$

$$R_4 \rightarrow R_4 - 3R_3$$

$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 5 & 4 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \beta+1 \end{bmatrix}$$

$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 5 & 4 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & \beta+1 \end{bmatrix}$$

Case – I:
$$\beta \neq -1 \implies \text{No Solution}$$

Case – II:
$$\beta = -1$$
 x_1 x_3 x_4 dependent variables
$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 5 & 4 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x_2$$
 x_5 free variables

Case – II:
$$\beta = -1$$

dep. variables
$$x_1$$
 x_3 x_4
$$[A|b] = \begin{bmatrix} 1 & 2 & -2 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 5 & 4 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 free variables x_2 x_5

Take
$$x_2 = \alpha_1$$
, $x_5 = \alpha_2$, then

$$x_4 = -\frac{1}{2}\alpha_2 \qquad x_3 = 4 - 4\alpha_2$$

$$x_1 = 9 - 2\alpha_1 - 9.5\alpha_2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 4 \\ 0 \\ 0 \end{bmatrix} + \alpha_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} -9.5 \\ 0 \\ -4 \\ -0.5 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \alpha_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} -9.5 \\ 0 \\ -4 \\ -0.5 \\ 1 \end{bmatrix}$$

$$x = x_p + x_h$$

$$Ax_p = b \qquad Ax_h = 0$$

Solution of nonhomogeneous linear system are of the form $x = x_p + x_h$, where x_p is any fixed solution of Ax = b and x_h runs through all the solutions corresponding to homogeneous system Ax = 0.

Remarks:

- > Free variable(s) is (are) responsible for infinitely many solutions
- \triangleright An invertible matrix has no free variable ($Ax = b \implies x = A^{-1}b$) unique solution
- \triangleright Vectors that generate solutions of Ax = 0 are $[-2, 1, 0, 0, 0]^T \& [-9.5, 0, -4, -0.5, 1]^T$
- \triangleright These generators are called BASIS of solution space of Ax = 0 (NULL Space)
- NULL Space is a vector space (next lecture)

SUMMARY:

System of Linear Equations

- Gauss Elimination
- Echelon form
- Solution (Consistency & Inconsistency)
- Free variables Infinitely many solutions
- $x = x_p + x_h$

Thank Ofour