How are Variables at Different Levels Related?

Sequences of individual/group processes and their outcomes

Ming Ming Chiu Purdue University

Dan Suthers asked me this question at an Alpine Workshop in 2009.

I appreciate the research assistance of Choi Yik Ting

Research Questions

- Among groups of students working on an algebra problem, do groups with more sequences of correct evaluations → correct, new idea (micro-creativity) have better group solutions?
- How are sequences of talk / online messages related to group outcomes?
- More generally, how are variables at different levels related to one another?

Data at Different Levels

- Country
- Province
- School
- Classroom
- Group
- Individual
- Time periods
- Turns of talk, messages, codes, etc.

Two Approaches

Choose unit of analysis

- Higher-level variables
 - Group level
 - -e.g., group solution score
- Lower-level variables
 - Turn of talk level
 - e.g., micro-creativity

Advantages of Higher-level Analyses

- Simple to implement via regressions
 - OLS, Logit/Probit, ordered Logit/Probit
 - For continuous, binary, ordered outcomes
- Enter lower-level variables as percentages
 - -% of A→B sequences
 - -# (Correct evaluations → Micro-creativity)
 Total sequences (2 turns long)
- Control for other variables (e.g., math grade)

Videotape Group Problem Solving

- 80 average ability, 9th grade students in US city
 - Worked in 20 groups of 4
 - -3,234 turns of talk
- Introduce 2 variable algebraic equations
 - 1st day of group work
 - No group work preparation
 - Work on problem for 30 minutes
- Videotape & Transcripts
 - Two RAs coded each turn of talk
 - High inter-rater reliability: Krippendorf's ✓

Algebra Problem: Texting Plans

- Under the *Universal Texting* plan, each text message costs \$.10. *Budget Texting* costs \$.01 per text message, but charges a monthly fee, \$18.
- 1) How many text messages do you send each month?
- 2) Which company costs less for you?
- 3) How many texts should you send for the *Universal* plan and the *Budget* plan to cost the same?

Higher-level Analysis

Outcome

• Solution Score (0-3)

Explanatory variables

• Group's average mathematics grade

• % of Correct evaluation → Micro-creativity sequences

Higher-level Analysis

Disadvantages of Higher-level Analyses

- Coarser analysis
- Hard to model lower-level variables
 - -especially their interactions
- Fewer observations → Less precise
- Requires large data set
 - Medium effect (0.3) requires
 - 84 groups for 80% statistical power
 - 112 groups for 90% statistical power

Higher-level Analysis

Outcome

• Solution Score (0-3)

Explanatory variables

- Group's average mathematics grade
- % of Correct evaluation → Micro-creativity sequences
- % of Correct evaluations
- % Micro-creativity

Higher-level Analysis

Advantages of Lower-level Analyses

- Finer-grained analyses
- Directly model lower-level variables
- More observations → More precise
- 3,234 turns of talk yield > 99% statistical power for even a small effect (0.1)
- Can test complex explanatory models

Disadvantages of Lower-level Analyses

- Harder to implement
 - -Multilevel analysis
 - -To also model time,
 - Time-series analysis
 - Statistical Discourse Analysis (SDA)

Statistical Discourse Analysis

Analytical Difficulty	Strategy
Differences across topics	Multilevel analysis
Time periods differ $(T_2 \triangleleft T_4)$	Breakpoint analysis & Multilevel analysis
Serial correlation $(t_8 \rightarrow t_9)$	index of Q-statistics; Model with lag variables
Parallel talk $(\rightarrow \rightarrow \Rightarrow \Rightarrow)$	Store path: ID prior turn, Vector Auto-Regression
Discrete outcomes (Yes / No)	Logit / Probit
\blacksquare Multiple outcomes (Y_1, Y_2)	Multivariate outcome models
Infrequent outcomes (00010)	Logit bias estimator
People & Groups differ 🚅	Multilevel analysis
$\blacksquare Mediation effects (X \rightarrow M \rightarrow Y)$	Multilevel mediation tests
False positives (+ + + + +)	-stage linear step-up procedure
Missing data (101?001?10)	Markov Chain Monte Carlo multiple imputation
Robustness	Separate outcome models; Data subsets & unimputed data

Lower-level Analysis

Disadvantages of Lower-level Analyses

- Hard to model control variables for the higher-level outcome *solution*
- To do so, we identify the portion of the outcome *solution* that is explained by control variables, and we remove it

Remove Control Variables' Effects on Solution

- Higher-level regression on the outcome *solution* with all control variables
- Store unexplained part of solution score (solution residual)

Unexplained Residual after Controlling for Other Variables

Store unexplained component in Solution residual

Remove Control Variables' Effects on Solution

- Higher-level regression on the outcome *solution* with all control variables
- Store unexplained part of solution score (solution_residual)
- Lower-level regression on micro-creativity
 - Replace all instances of solution with solution_residual

Lower-level Analysis, adjusted

Low-level Analysis Limitation

- Multi-stage regressions often ignore uncertainty / error in earlier stages
 - Compute residuals without estimating uncertainty / error

Test Links among Variables across Levels

- Run simpler, less precise, higher-level regressions
- If we need more precision or a more complex model, run lower-level regressions
- If controls for higher-level outcome(s) are needed, run multi-stage regressions
- Ideally, results are consistent
 - -Directions of the effects do not flip

Thank you!