Part II: Real Analysis

4

Let E be a measurable subset of \mathbb{R} and let $f_n \to f$ a.e., where $f \in L^1(E)$. Show that $\int_E |f_n - f| d\mu \to 0$ if and only if $\int_E |f_n| d\mu \to \int_E |f| d\mu$.

Solution:

Proof. (\Rightarrow) Suppose $\int_E |f_n - f| d\mu \to 0$. Then

$$\int_{E} |f_n| \ d\mu - \int_{E} |f| \ d\mu = \int_{E} (|f_n| - |f|) \ d\mu \le \int_{E} |f_n - f| \ d\mu \to 0.$$

(\Leftarrow) Suppose $\int_E |f_n| \ d\mu \to \int_E |f| \ d\mu$. Then there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $\int_E |f_n| \ d\mu < \int_E |f| \ d\mu + 1$. Thus, since $|f_n - f| \leq |f_n| + |f|$,

$$\int_{E} |f_n - f| \ d\mu \le \int_{E} |f_n| \ d\mu + \int_{E} |f| \ d\mu < 2 \int_{E} |f| \ d\mu + 1 < \infty,$$

for all $n \geq N$. Hence, by the Dominated Covergence Theorem applied to $\{|f_n - f|\}_{n=N}^{\infty}$,

$$\lim_{n \to \infty} \int_{E} |f_{n} - f| \ d\mu = \int_{E} \lim_{n \to \infty} |f_{n} - f| \ d\mu = 0.$$

5

Construct a function on [0,1] which is monotone increasing and discontinuous precisely at the rationals. Rigorously prove that your function has the desired properties.

Solution: Let $\{\alpha_n\}_{n=0}^{\infty}$ be an enumeration of the rationals in [0,1]. Let $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) := \sum_{\{n: \alpha_n \le x\}} 2^{-n}, \quad \forall \ x \in [0, 1].$$

Claim 1: f is monotone increasing.

Proof of claim 1: Trivial by the construction of f.

■ Claim 1

Claim 2: f is discontinuous at every rational in [0,1] and continuous otherwise.

Proof of claim 2: Let $x \in [0, 1]$

Case 1 $x \in [0,1] - \mathbb{Q}$.

Let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $2^{-N} < \epsilon$. By the denseness of the rationals in [0,1], we can choose $\delta > 0$ such that n > N for all $\alpha_n \in \mathbb{Q} \cap (x-\delta,x+\delta)$. Now let $y \in (x-\delta,x+\delta)$. Without loss of generality suppose y > x. Then

$$|f(x) - f(y)| = \sum_{\{n: x < \alpha_n \le y_n\}} 2^{-n} \le \sum_{n=N+1}^{\infty} 2^{-n} = 2^{-N} < \epsilon.$$

Therefore f is continuous at x.

Case 2 $x \in \mathbb{Q}$.

There exists $N \in \mathbb{N}$ such that $\alpha_N = x$. So clearly $f(x) - f(y) > 2^{-N}$ for all y < x (assuming $x \neq 0$ of course). Therefore f is discontinuous at x.

■ Claim 2