The Medium Access Control Sublayer

Chapter 4

Channel Allocation Problem

- Static channel allocation
- Assumptions for dynamic

Disadvantages of static allocation

- Waste of capacity
- Increasing delay

```
Delay = 1/(ServiceRate - ArrivalRate)
```

Assumptions for Dynamic Channel Allocation

- 1. Independent traffic
- 2. Single channel
- Observable Collisions
- 4. Continuous or slotted time
- 5. Carrier sense or no carrier sense

Multiple Access Protocols

- ALOHA
- Carrier Sense Multiple Access
- Collision-free protocols
- Limited-contention protocols
- Wireless LAN protocols

ALOHA (1)

In pure ALOHA, frames are transmitted at completely arbitrary times

ALOHA (2)

Vulnerable period for the shaded frame.

ALOHA (3)

Throughput versus offered traffic for ALOHA systems.

Carrier Sense Multiple Access (CSMA) Protocols

- Protocols in which stations listen for a carrier and act accordingly are called carrier sense protocols.
- 1-persistent CSMA
 - If the channel is busy sense till it becomes idle, transmit and wait, if collusion wait a random perid of time then retry.
- Nonpersistent CSMA
 - If busy donot sense retry after a random

Carrier Sense Multiple Access (CSMA) Protocols

- p-persistent CSMA
 - Works for slotted channels. If it is idle, transmit with prob p in that slot, with prob (1-p) defer. If decided to transmit in the next slot, in the next slot transmits or defers.
 - If the slot is busy, wait for the next slot and retry the above algorithm.
 - It continues till the frame transmitted.

Persistent and Nonpersistent CSMA

Comparison of the channel utilization versus load for various random access protocols.

CSMA with Collision Detection (CSMA/CD)

CSMA/CD can be in one of three states: contention, transmission, or idle.

CSMA/CD

- CSMA/CD is the basis for Ethernet-LAN.
- Question: How long one should wait to detect a collision?

Collision-Free Protocols (1)

The basic bit-map protocol.

Collision-Free Protocols (2)

Token ring.

Binary Countdown (SKIPPED)

The binary countdown protocol. A dash indicates silence.

Limited-Contention Protocols (SKIPPED)

Acquisition probability for a symmetric contention channel.

The Adaptive Tree Walk Protocol (SKIPPED)

The tree for eight stations

Wireless LAN Protocols (1)

A wireless LAN. (a) A and C are hidden terminals when transmitting to B.

Wireless LAN Protocols (2)

A wireless LAN. (b) B and C are exposed terminals when transmitting to A and D.

Wireless LAN Protocols (3)

The MACA (Multiple Access with Collision Avoidance) protocol. (a) *A sending an RTS to B. (b) B responding* with a CTS to *A.*

Ethernet (IEEE 802.3)

- Physical layer
- MAC sublayer protocol
- Ethernet performance
- Switched Ethernet
- Fast Ethernet
- Gigabit Ethernet
- 10 Gigabit Ethernet
- IEEE 802.2: Logical Link Control
- Retrospective on Ethernet

Classic Ethernet Physical Layer

Architecture of classic Ethernet

MAC Sublayer Protocol (1)

Frame formats. (a) Ethernet (DIX). (b) IEEE 802.3.

MAC Sublayer Protocol (2)

Collision detection can take as long as 2τ .

Minimum Frame Size

- 10-Mbps Ethernet LAN with max length 2500 m (4 repeaters)
- Round trip time: 50 μsec
- In this duration 500 bits can be transmitted
- Hence min. frame size: 64Bytes

CSMA/CD with Binary Exponential Backoff

- Original Ethernet is 1-persistent.
- Then modified:
- When collision occurs time is divided into the slots of size propagation delay.
- After i collisions the number of slots to be waited is decided accoring to a random number between 0 – (2 ⁱ -1)
- Max slots to wait 1023. A failure report generated after 16th collision.

Ethernet Performance

Efficiency of Ethernet at 10 Mbps with 512-bit slot times.

Switched Ethernet (1)

(a) Hub. (b) Switch.

Switched Ethernet (2)

An Ethernet switch.

Fast Ethernet

Name	Cable	Max. segment	Advantages	
100Base-T4	Twisted pair	100 m	100 m Uses category 3 UTP	
100Base-TX	X Twisted pair 100 m		Full duplex at 100 Mbps (Cat 5 UTP)	
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs	

The original fast Ethernet cabling.

Gigabit Ethernet, READ

A two-station Ethernet

Gigabit Ethernet (2)

A two-station Ethernet

Gigabit Ethernet (3)

Name	Cable	Max. segment	Advantages	
1000Base-SX	Fiber optics	550 m Multimode fiber (50, 62.5 microns)		
1000Base-LX	Fiber optics	5000 m	00 m Single (10 μ) or multimode (50, 62.5 μ	
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair	
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP	

Gigabit Ethernet cabling.

10 Gigabit Ethernet

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85µ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3µ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5µ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

Gigabit Ethernet cabling

Wireless Lans

- 802.11 architecture and protocol stack
- 802.11 physical layer
- 802.11 MAC sublayer protocol
- 802.11 frame structure
- Services

802.11 Architecture and Protocol Stack (1)

802.11 architecture - infrastructure mode

802.11 Architecture and Protocol Stack (2)

802.11 architecture – ad-hoc mode

802.11 Architecture and Protocol Stack (3)

Part of the 802.11 protocol stack.

Mode of operation

- a) Distributed Coordination Function (DCF)
- b) Point Coordination Function (PCF)

The 802.11 MAC Sublayer Protocol (1)

Sending a frame with CSMA/CA.

The 802.11 MAC Sublayer Protocol (2)

A wants to send to B but cannot hear that B is busy

The hidden terminal problem.

The 802.11 MAC Sublayer Protocol (3)

B wants to send to C but mistakenly thinks the transmission will fail

The exposed terminal problem.

The 802.11 MAC Sublayer Protocol (4)

The use of virtual channel sensing using CSMA/CA.

The 802.11 MAC Sublayer Protocol (5)

Interframe spacing in 802.11

SIFS: Short InterFrame Spacing

AIFS: Arbitration InterFrame Spacing

DIFS: DCF InterFrame Spacing

EIFS: Extended InterFrame Spacing

802.11 Frame Structure

Format of the 802.11 data frame

Broadband Wireless (SKIPPED)

- Comparison of 802.16 with 802.11, 3G
- 802.16 architecture and protocol stack
- 802.16 physical layer
- 802.16 frame structure

Comparison of 802.16 with 802.11 and 3G

The 802.16 architecture

802.16 Architecture and Protocol Stack

The 802.16 protocol stack

802.16 Physical Layer

Frames structure for OFDMA with time division duplexing.

802.16 MAC Sublayer Protocol

Classes of service

- 1. Constant bit rate service.
- 2. Real-time variable bit rate service.
- 3. Non-real-time variable bit rate service.
- 4. Best-effort service.

802.16 Frame Structure

(a) A generic frame. (b) A bandwidth request frame.

Bluetooth

- Architecture
- Applications
- Protocol stack
- Radio layer
- Link layers
- Frame structure

Bluetooth Architecture

Two piconets can be connected to form a scatternet

Bluetooth Protocol Stack

The Bluetooth protocol architecture.

Bluetooth Frame Structure

Typical Bluetooth data frame at (a) basic, and (b) enhanced, data rates.

RFID

- EPC Gen 2 architecture
- EPC Gen 2 physical layer
- EPC Gen 2 tag identification layer
- Tag identification message formats

EPC Gen 2 Architecture

RFID architecture.

EPC Gen 2 Physical Layer

Reader and tag backscatter signals.

EPC Gen 2 Tag Identification Layer

Example message exchange to identify a tag.

Tag Identification Message Formats

Format of the Query message.

Data Link Layer Switching

- Uses of bridges
- Learning bridges
- Spanning tree bridges
- Repeaters, hubs, bridges, switches, routers, and gateways
- Virtual LANs

Learning Bridges (1)

Bridge connecting two multidrop LANs

Learning Bridges (2)

Bridges (and a hub) connecting seven point-to-point stations.

Learning Bridges (3)

Protocol processing at a bridge.

Spanning Tree Bridges (1)

Bridges with two parallel links

Spanning Tree Bridges (2)

A spanning tree connecting five bridges. The dotted lines are links that are not part of the spanning tree.

Poem by Radia Perlman (1985) Algorithm for Spanning Tree (1)

I think that I shall never see
A graph more lovely than a tree.
A tree whose crucial property
Is loop-free connectivity.
A tree which must be sure to span.
So packets can reach every LAN.

. . .

Poem by Radia Perlman (1985) Algorithm for Spanning Tree (2)

. . .

First the Root must be selected

By ID it is elected.

Least cost paths from Root are traced

In the tree these paths are placed.

A mesh is made by folks like me

Then bridges find a spanning tree.

Repeaters, Hubs, Bridges, Switches, Routers, and Gateways

- (a) Which device is in which layer.
- (b) Frames, packets, and headers.

Virtual LANs (1)

A building with centralized wiring using hubs and a switch.

Virtual LANs (2)

Two VLANs, gray and white, on a bridged LAN.

The IEEE 802.1Q Standard (1)

Bridged LAN that is only partly VLAN-aware. The shaded symbols are VLAN aware. The empty ones are not.

The IEEE 802.1Q Standard (2)

The 802.3 (legacy) and 802.1Q Ethernet frame formats.

End

Chapter 4