Title of the Exercise: Scott Connection of Transformer

Date: 10/11/2020

<u>Aim:</u> To obtain balanced two-phase supply from three-phase supply by Scott arrangement of two single phase transformers

Tool used: MATLAB and SIMULINK

Electrical Circuit:

Scott Connection or T-T Connection

Parameters used for the study:

Transformer rating = 25KVA

 $V_{RB} = V_{BY} = V_{YR} = 400V$ (primary voltage in Rms)

Frequency f=50 Hz

Transformer ratio=2

 $R_1 = 0.7488$ ohm (Primary winding resistance)

 $X_{11} = 1.00224$ ohm (Primary winding reactance)

 $R_2 = 0.007488$ ohm (Secondary winding resistance)

 $X_{12} = 0.0100224$ ohm (Secondary winding reactance)

 $X_M = 5,008$ ohm (Magnetizing reactance

 $R_c = 33,391$ ohm (Resistance for core losses)

Theoretical Analysis:

$$V_{2T} = V_{RC} \frac{N_2}{0.866N_1}$$

$$V_{RC}\!\!=\!\!0.866\;V_L$$

$$V_{2T} = V_{L} \frac{N_2}{N_1}$$

$$V_{2T} = V_L \frac{N_2}{N_1}$$
 $V_{2M} = V_{BY} \frac{N_2}{N_1}$

$$V_{BY} = V_L$$

$$V_{BY} = V_{L}$$

$$V_{2M} = V_{L} \frac{N_{2}}{N_{1}}$$

$$I_{BY}*N_1 = I_{2M}*N_2$$

$$I_{BY} = I_{2M} \frac{N_2}{N_1}$$

$$I_R*0.866* N_1 = I_{2T}*N_2$$

$$I_R = 1.15*I_{2T} \frac{N_2}{N_1}$$

Calculations (predetermination):

$$\frac{N_2}{N_1}$$
 = 2; $I_{R=}$ 0.06963A

$$V_L=V_{BY}=400V$$

$$V_{2T}=400*(2)=800V$$

$$V_{2M} = 400 * 2 = 800 V$$

Procedure:

- Step1-Initialize the input parameters and write coding for the as per requirement of plots in m file and save it.
- Step 2-open new Simulink and make mathematical modelling as per circuit diagram and save it
- Step 3-Run the Simulink file.
- Step 4- Get the plots from the corresponding scopes.

Simulink file:

Result:

Three phase input voltage

Two phase output voltage

Primary side and secondary side line voltage(rms)

Observations:

Parameters	Theoretical values(V)	Simulation values(V)
$V_{\rm L}$	400	398.3
V_{2T}	800	796.4
V_{2R}	800	795.9

Conclusion:

Hence, two-phase supply is obtained from three phase supply using Scott arrangement of two single phase transformers.

Inference:

Therefore, the theoretical values of line voltage nearly matches with simulation ones.

References:

- https://in.mathworks.com/
- Analysis and design of control systems using MATLAB By Rao V.Dukkipati