数字逻辑与部件设计

12. 半导体存储器

register 寄存器、存储器 memory

字宽 位宽 (二维)

• \mathbf{r} **r** \mathbf{r} \mathbf

存储器的分类

	半导体器件	TTL、MOS
存储介质	磁性材料	磁盘、磁带
	光存储器	光盘
	顺序存取	磁带
存取方式	随机存取	ROM、RAM。存取时间与存储单元物理位置无关
	直接存取	磁盘。沿磁道方向顺序读取,垂直半径方向随机存取
法官社会	只读	ROM (Read-Only Memory)
读写功能	读写	RAM (Random Access Memory)
冷 白目从州	易失	RAM。断电后信息消失
信息易失性	非易失	ROM、硬盘、光盘、U盘···。 断电后仍能保存信息
上CDU#人程序	内部存储器	cache、主存
与CPU耦合程度	外部存储器	硬盘、光盘 ••• 4/39

多级存储系统

一个具有不同容量、成本和访问时间的存储设备的层次结构。

半导体存储器的分类

存储器的技术指标

容

量

• 存储容量:存储器中可存储的信息比特数 (bit / Byte)。

存储字数 x 存储字长 如: 1024 x 8 bit

(房间数) (每个房间的人数)

速

度

▶ 存取时间 / 访问时间: 从 存储器接收到读/写命令开始,

到信息被读出或写入完成所需的时间。

▶ 存取周期 / 存储周期: 在存储器连续读写过程中,一次完整的存取操作所需的时间。

只读存储器 ROM

掩膜 ROM

由厂家一次写入, 无法修改

一次性编程ROM

(PROM)

由用户用专门的设备一次性写入, 之后无法修改

紫外线擦除PROM (EPROM)

用紫外线擦除,修改次数有限,写入时间长

电可擦除PROM (EEPROM)

用电擦除,速度快,一般可以擦除1百万次左右

闪存 (Flash memory)

高密度、非易失。如 U盘

固态硬盘 (SSD)

闪存芯片 + 控制单元

FLASH 存储器 (闪存)

- 高密度非易失性的读/写存储器。
- 既有RAM优点,又有ROM优点。
- FLASH存储元由单个MOS晶体管组成。
- FLASH三种基本操作:
 - 读出操作
 - 写入操作(编程)
 - 擦除操作

用于数据处理系统的快闪电子式外存储方法及其装置

- 1999年朗科 Netac 提交"**U盘**"专利 ~2019到期
- 核心技术: FLASH (1988 Intel) + USB (1996)
- 躺着挣钱: 每年专利获利超千万

与机械硬盘相比

优点:没有移动部件,速度快、能耗低、更结实。

缺点: 价格贵、损坏后难以修复、写入次数有限、

静置时数据消失。

mini PCI-E SSD

ROM 结构示意图

ROM 存储的内容

ROM Truth Table (Partial)

	Inputs					Outputs						
I ₄	<i>I</i> ₃	l ₂	<i>I</i> ₁	Io	A ₇	A ₆	A ₅	A ₄	A_3	A ₂	A ₁	A ₀
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	. 0	0	1	0
		:							•			
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

1: 连接, 0: 断开

ROM设计: 电路输入是3位二进制,输出是输入数值的平方

Inputs			Outputs						
A ₂	A ₁	A ₀	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
0	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9
1	0	0	0	1	0	0	0	0	16
1	0	1	0	1	1	0	0	1	25
1	1	0	1	0	0	1	0	0	36
1	1	1	1	1	0	0	0	1	49

0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	1	0	0
1	0	1	0	1	1	0
1	1	0	1	0	0	1
1	1	1	1	1	0	0

 $A_2 \ A_1 \ A_0 \ B_5 \ B_4 \ B_3 \ B_2$

(b) ROM truth table

用ROM实现组合电路:

- 1 写出原始电路真值表
- ② 化简为ROM的真值表
- ③ 确定ROM容量

【例3.6】使用LE实现: 3分频计数器

当前	状态	下一状态			
S_1	S_0	S ′ ₁	S'_0		
0	0	0	1		
0	1	1	0		
1	0	0	0		
1	1	0	0		
	(C)	(C)	(C I)		

				(S_1)	(S_0)	(S_1') LUT output
dat	<u>a 1</u>	data 2	a	lata 3	data 4	LUT output
X		X	•	0	0	0
X		X		0	1	1
X		X		1	0	0
X		X		1	1	0

		(S_0)	(S_1)	(S_0') LUT output
data 1	data 2	data 3	data 4	LUT output
X	X	0	0	1
X	X	0	1	0
X	X	1	0	0
X	X	1	1	0

随机读写存储器 RAM

从任何单元存取信息的时间都是相同的

存储元阵列 (读)

存储器

地址译码: 单译码结构

(字宽×位宽)

 $32 = 2^5$

地址译码: 双译码结构

地址复用可减少IC封装中的引脚个数

32x1位

任天堂FC游戏机 (灰机)的SRAM **2K** X **8** bit

SRAM 存储元

• 有0、1两个稳定状态。

由M1, M2, M3, M4组成两个交叉耦合CMOS反相器;

M5、M6:两个控制开关。

- **读出操作**: (假设存储元中原来保存 1) 置WL=1, M6导通, *BL*=1; M5导通, \overline{BL} =0
- **写入操作**: (若要写入0) 置WL=1, 置BL=0且 \overline{BL} =1, **0**写入存储元中。
- 除6管的,还有8管、10管······ 用于多端口的读写访问。

SRAM基本逻辑结构

DRAM 存储元

MOS晶体管 + 电容器 组成的单管记忆电路 (开关) (电量高=1) (电量低=0)

• **写1**: 仅<u>输入缓冲器</u>打开,行线导通CMOS, Din=1, 给电容器充电。

• **写0**: 仅<u>输入缓冲器</u>打开,行线导通CMOS, Din=0, 电容器放电。

• **读1**:仅<u>输出缓冲器</u>打开,行线导通CMOS, Dout=1。电容电量减少。

DRAM 存储元

MOS晶体管 + 电容器 组成的单管记忆电路 (开关) (电量高=1) (电量低=0)

• **写1**: 仅<u>输入缓冲器</u>打开,行线导通CMOS, Din=1, 给电容器充电。

• **写0**: 仅<u>输入缓冲器</u>打开,行线导通CMOS, Din=0, 电容器放电。

• **读1**: 仅<u>输出缓冲器</u>打开,行线导通CMOS, Dout=1。电容电量减少。

• **刷新**:仅<u>刷新缓冲器</u>打开,行线导通CMOS, Dout=1 电流再流回到电容上。

DRAM芯片的逻辑结构

DRAM 的刷新

- 每次读操作后都要刷新
- 电容放电,需定期刷新

集中式刷新

分散式刷新

同步DRAM (SDRAM)

双数据率

Double Data Rate

DDR SDRAM

DDR与SDR相比:

- 时钟上下沿都能传数据
- CK + CK: 差分时钟
- DDR2、DDR3、DDR4···

(Cached) CDRAM

1M×4位 CDRAM (内含1片512×4位 cache)

首次读:

DRAM→SRAM

下次读:

比较SRAM?

优点

- 突发速度快
- 读,写并行
- 读,刷新并行

存储器位扩展

【例1】2片1M×4位 → 1M×8位

存储器字扩展

- 数据线共用;
- 地址线中的最高位 (A₁₂)取反后连到第2个DRAM的片选控制线,

存储器字扩展 + 译码器

【例2】8片 256K×8位 → 2048K×8位

存储器字+位扩展

