# **Chemical Engineering**

**Advisory Board Meeting** 

14 April 2017

United States Military Academy
Department of Chemistry and Life Science

# **Advisory Board Meeting Agenda**

#### 14 April 2017

| Time      | Event                                                                                      | Location                 |
|-----------|--------------------------------------------------------------------------------------------|--------------------------|
| 0730-0745 | Shuttle at Buffalo Soldiers Field                                                          | BSF                      |
| 0745-0800 | Arrival                                                                                    | CLS Conference room      |
| 0800-0830 | Session 1: Introductory remarks and ABET orientation                                       | CLS Conference room      |
| 0830-0920 | Session 2: Program assessment Student Outcomes Assessment Discussion of Program Objectives | CLS Conference room      |
| 0920-0930 | Board Surveys                                                                              | Survey Parts 1 and 2     |
| 0930-0950 | Session 3: CH367 Overview                                                                  | CLS Conference Room      |
| 1010-1050 | Career Panel                                                                               | CLS Conference Room      |
| 1100-1140 | Cadet Discussions                                                                          | CLS Conference Room      |
| 1200-1245 | Lunch and Firstie Resume Round Robin                                                       | West Point Club          |
| 1300-1330 | Board backbrief on cadet interactions                                                      | West Point Club          |
| 1340-1430 | Session 4: Future Challenges                                                               | CLS Conference Room      |
| 1430-1455 | Admin and Unit Ops Lab tour                                                                | Bartlett Hall (Optional) |
| 1500-1530 | Wrap-up                                                                                    | CLS Conference Room      |

# Potential Topics of Discussion

- Open professional discussion with cows and firsties (J-hour and lunch)
- Overview of CH367, review of history, place in curriculum, current proposed lesson blocks)
- Rotating board members and possible broader field of members
- Tour and overview of experiment in subbasement
- Potential ABET 3 & 5 changes reduction of ET credits to 45; possible change of elective requirements?
- Additional elective offerings discussion: chemical explosives, numerical solutions, bioengineering sequence
- Possible curricular changes: writing course, second design semester,
- Résumé speed discussion with Firsties

# **Chemical Engineering**

## **Advisory Board Meeting**

14 April 2017

1. Introductory Remarks

United States Military Academy

Department of Chemistry and Life Science

## Thank You! Advisory Board 2016-2017

| Kevin Shipe ✓ Automation Innovation Engineer NALCO Champion 7705 Hwy 90A, Sugarland, TX 77498 281-263-7335 kevin.a.shipe@gmail.com            | Lucy Hair ✓ EleCent Team Leader CPOIS Program Lawrence Livermore National Lab 925-423-8545 hair1@llnl.gov         | COL (Ret) Paul Dietrich ✓ 3855 Victory Blvd Staten Island, NY 10314-6716 718-698-8526 paul@the-dietrichs.com                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LTC Andrew Pfluger ✓ US Army Student Detachment Colorado School of Mines 845-545-2235 andrew.r.pfluger.mil@mail.mil                           | Anthony Pavone ✓ Process Economics Program HIS Chemicals (650) 384-4311 tonypavone@ihs.com                        | Kisondra Waters ✓ Principal Analyst, Competitive Cost & Margin Analytics, HIS Chemical 1 N Lexington Ave, 17th Floor, White Plains NY 10601, 650-714-1751 kisondra@gmail.com |
| Anthony Hatfield ✓ Eli Lilly Hatfield_Anthony@lilly.com                                                                                       | COL (Ret) Vance P. (Phil) Visser 2925 Thomas Smith Lane, Williamsburg, VA 23185 philvisser@yahoo.com 757-254-3017 | COL (Ret) Dwight Springer Former Deputy Head Chemistry and Life Science US Military Academy 817-431-5331 dss5456@verizon.net                                                 |
| President, Simulation Solutions, Inc.<br>179 Avenue at the Common<br>Shrewsbury, NJ 07702<br>732-389-5400<br>dglaser@simulation-solutions.com | Matt Garvey Simulation Solutions, Inc. Shrewsbury, NJ mgarvey@simulation-solutions.com                            |                                                                                                                                                                              |

## Thank you!

- For the opportunity to show you America's Military Academy
- For your service and insights to help our program improve
- For the time you have dedicated to this visit
- For your dedication to the profession





## **USMA MISSION**

To educate, train, and inspire the Corps of Cadets so that each graduate is a commissioned *leader of character* committed to the values of **Duty, Honor, Country** and prepared for a career of professional excellence and service to the Nation as an officer in the United States Army.

# **USMA VISION**

Within an Army in transition,
West Point is the preeminent leader
development and academic institution
whose graduates thrive in tomorrow's
complex security environments,
and are inspired to a lifetime of service to
our Army and the Nation as leaders of
character.

# PROGRAM VISION

We envision an Army that is prepared for all dimensions of modern warfare, drawing upon disciplined, highly trained chemical engineers to develop solutions to the challenges facing the nation.

## PROGRAM MISSION

The mission of the chemical engineering program is to prepare commissioned leaders of character who are proficient in applying chemical and engineering principles to solve problems in a complex operational environment.



# Engineering Technology Accreditation Commission



Accredited 1 October 2012 to present

Next Record Year: AY2019-2020

Next ABET Visit: Fall 2020

# Why ABET Accreditation?

- An external certification of quality
- Keeps us in touch with the engineering profession
- Helps USMA (and ChemE) recruiting (classes of 2019 and 2020 each signed 30+ plebes – new highs; 95 total)
- Provides important opportunities for graduates
- Allows USMA engineering majors to take the Fundamentals of Engineering Examination
- It is required by Army Regulations (10-87).
- Almost everything that ABET expects us to do is something we should be doing anyway.

# Thoughts to Consider

- The ABET process is expensive in terms of faculty time
  - USMA is a <u>small undergraduate college</u> with limited human resources (faculty) and high faculty turnover
- The ABET accreditation is important to the institution and to the Army (so we tend to do it well)
- The only way we can be successful with ABET is to orient our program processes around the ABET criteria
  - By doubling up our efforts we obtain some efficiency
  - Much of what follows is oriented around the ABET processes and terminology
  - We need to be strategic in deciding on new initiatives

# Why ABET Accreditation?

- It's what we should do anyway. A discipline of best practices for engineering educational excellence:
  - Precisely (re)define success and how to measure it
  - Decide how to achieve it and allocate resources
  - Collect key data, systematically evaluate, decide how to improve
  - Execute improvements and check progress
- Contributes to quality admissions:
  - Parents and applicants expect it
  - Foundation for grad school and PE certification
- Keeps us engaged with the world:
  - A natural way to benchmark with others
  - Helps articulate educational standards to the Army

# **ABET History**

- Established in NY as Engineers Council for Professional Development (ECPD) in 1932 by seven engineering societies
- Original focus on guidance, education, recognition
- Evaluated first engineering degree programs in 1936
- Became Accreditation Board for Engineering and Technology (ABET) in 1980
- Became ABET, Inc. in 2005 with 28 member societies
- Currently accredits 3,100 programs at more than 670 colleges and universities in 24 countries

# **ABET Organization**

- <u>Board of Directors</u> approves policies, procedures, and accreditation criteria
- <u>ABET Commissions</u> propose policies, procedures, and criteria; deliberate and make accreditation decisions for programs
  - Engineering Accreditation Commission (EAC)
  - Computing Accreditation Commission (CAC)
  - Technology Accreditation Commission (TAC)
  - Applied Science Accreditation Commission (ASAC)
- <u>Professional Societies</u> provide Program Evaluators and Program Criteria
- Goal is assurance of quality improvement in applied science, computing, engineering, and technology education
- ABET accredits programs, <u>not institutions</u>

# **USMA ABET Accreditation**

- Four programs initially accredited in 1985 (with introduction of majors into curriculum)
  - Civil Engineering
  - Electrical Engineering
  - Engineering Management
  - Mechanical Engineering
- Three programs initially accredited in 1997
  - Computer Science
  - Environmental Engineering
  - Systems Engineering
- Two programs initially accredited in 2008
  - Information Technology
  - Nuclear Engineering
- One program initially accredited in 2015
  - Chemical Engineering (retroactive to class of 2013)

# **ABET Processes & Procedures**

There are nine individual criteria used as the core of determining program accreditation:

- the first eight are common

and

 the *last is program-specific* – this criterion defines disciplinary differences between programs

# **ABET Criteria**

- I. General Criteria for Baccalaureate Level Programs
  - 1. Students
  - 2. Program Educational Objectives
  - 3. Student Outcomes
  - 4. Continuous Improvement
  - 5. Curriculum
  - 6. Faculty
  - 7. Facilities
  - 8. Support

#### III. Program Criteria

 Curriculum – Basic Math and Science; design, analysis and control; hazards associated with processes

# Terms You Should Know

#### Program Educational Objectives (PEOs)

- Gleaned by asking program constituents
  - For us: Army, profession, graduate schools, other
- Our external Advisory Board a key resource.
- Desired professional accomplishments of graduates 5-7 years after graduation
- Adjust every 3 years or so...

#### Student Outcomes

- What <u>students</u> should be able to do at graduation
- Must be measurable
- Designed to lead naturally to the PEOs
- Assess/evaluate some fraction yearly.

#### Assessment → Continuous improvement

- Collect meaningful data to evaluate performance indicators (PIs)
- Assess PIs for outcome attainment → information → COAs for change
- Implement change
- Assess its effects and level of success ("closing the loop")
- Repeat all the above
- Periodically check and adjust both Student Outcomes and PEOs



# Assessment $\rightarrow$ Improvement



# **Assessment Cycle**



#### **Timeline for Curricular Actions**



# **Advisory Board Findings**

Excerpts from Minutes of 4-5 November 2014

- The USMA program satisfies Army requirements while complying with ABET guidelines.
- As a result of the review of student course grade performance, student performance on the FE exam, and survey results of graduating seniors and graduated Army officers, we find the curriculum amply satisfies the ABET and USMA program objectives.
- Program provides a comprehensive student immersion in chemical engineering theory and practice.
- Cadets felt that the more generic aspects of a chemical engineering education would likely be useful within their first 5 years of active duty
  - there remain questions about specific chemical engineering practice areas in the Army in general, and especially within the first 5 years of active duty service.

# **Advisory Board Findings**

Excerpts from Minutes of 8 April 2016

- The USMA program satisfies ABET requirements while meeting the mission and vision of both the Army and the Academy.
- ChE courses required at USMA cover the spectrum of topics relevant to ChE practice, both within the Army and in the private sector.
- The USMA cadets interviewed are the finest group of young people the Board members individually and collectively have been privileged to meet.
- The Chemistry and Life Sciences department has been diligent in assessing conformance to objectives, and has a demonstrated track record in continuously improving the program.
- The enrichment opportunities afforded by summer internships are outstanding.

## **Advisory Board Opportunities for Improvements**

Excerpts from Minutes of 8 April 2016

- There are problems in the course content and applications in the process controls course. Cadets report a perception of the course being too theoretical, inadequate in practical applications, and focused on mechanical controls and robotics, rather than process industry controls
- More effective technical communication training should be provided. Consideration of a technical writing course (CH300) would improve the program, and should also cover the effective visual display of technical information (Edward Tufte program).
- The proposed bioengineering concentration is important, and should incorporate topics that other schools have determined to be important in their bioengineering concentrations that were established years ago.

# **End of Section 1**

# **Chemical Engineering**

## **Advisory Board Meeting**

14 April 2017

#### 2. Program Assessment

United States Military Academy

Department of Chemistry and Life Science

#### **Student Outcomes**

Identical to ABET a-k as described on slide 11

#### On completion of the chemical engineering program, our graduates will be able to:

- 1. Apply knowledge of mathematics, science, and engineering.
- 2. Design and conduct experiments, as well as analyze and interpret data.
- 3. Design a system, component, or process to meet desired needs within economic, environmental, social, political, ethical, health and safety, manufacturing, and sustainability constraints.
- 4. Function on multidisciplinary teams.
- 5. Identify, formulate, and solve engineering problems.
- 6. Understand professional and ethical responsibilities.
- 7. Communicate effectively.
- 8. Understand the impact of engineering solutions in a global economic, environmental, and societal context.
- 9. Recognize the need and develop the skills required for life-long learning.
- 10. Demonstrate knowledge of contemporary issues.
- 11. Demonstrate an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.

  6/30/2020

#### **Student Outcomes**

Additional outcomes articulated by the program as described on slide 11

# 12. The program provides the graduate with a thorough grounding and working knowledge of the chemical sciences, including:

- a. General, organic, and physical chemistry.
- b. Material and energy balances on chemical processes, including safety and environmental factors.
- c. Thermodynamics of physical and chemical equilibria.
- d. Heat, mass, and momentum transfer.
- e. Chemical reaction engineering.
- f. Continuous and staged separation operations.
- g. Process dynamics and control.
- h. Modern experimental and computing techniques.
- i. Process design.

| Required | d Courses * (for classes 2017, 2018, 2019)                          |
|----------|---------------------------------------------------------------------|
| MA366    | Engineering Mathematics with Applications                           |
| CH362    | Mass & Energy Balances                                              |
| CH363    | Separation Processes                                                |
| CH364    | Chemical Reaction Engineering                                       |
| XE472    | Dynamic Modeling & Control                                          |
| CH485    | Heat & Mass Transfer                                                |
| CH459    | Chemical Engineering Laboratory                                     |
| CH402    | Chemical Engineering Process Design                                 |
| CH400    | Professional Practice                                               |
| MC311    | Thermal-Fluid Systems I                                             |
| MC312    | Thermal-Fluid Systems II                                            |
| EE301    | Fundamentals of Electrical Engineering                              |
| MC300    | Fundamentals of Engineering Mechanics & Design (Statics & Dynamics) |
| CH365    | Chemical Engineering Thermodynamics                                 |
| CH383    | Organic Chemistry 1                                                 |

| Require | d Courses * (for classes 2020+)                                            |
|---------|----------------------------------------------------------------------------|
| MA366/N | MA365 Engineering Mathematics with Applications                            |
| CH362   | Mass & Energy Balances                                                     |
| CH363   | Separation Processes                                                       |
| CH364   | Chemical Reaction Engineering                                              |
| XE472   | Dynamic Modeling & Control CH367 Introduction to Automatic Process Control |
| CH485   | Heat & Mass Transfer                                                       |
| CH459   | Chemical Engineering Laboratory                                            |
| CH402   | Chemical Engineering Process Design                                        |
| CH400   | Professional Practice                                                      |
| MC311   | Thermal-Fluid Systems I                                                    |
| MC312   | Thermal-Fluid Systems II                                                   |
| EE301   | Fundamentals of Electrical Engineering                                     |
| MC300   | Fundamentals of Engineering Mechanics & Design (Statics & Dynamics)        |
| CH365   | Chemical Engineering Thermodynamics                                        |
| CH383   | Organic Chemistry 1                                                        |

<sup>\*</sup>Not including prerequisites

#### **Assessment**

**CHEME Coursework Embedded Indicators** 

**MECHE Coursework Embedded Indicators** 

Fundamentals of Engineering Exam Topics

Participation in FE Exam (not pass rate)

Student end of semester surveys

Student CHEME Program Exit Surveys

**Course Grades** 



# **Example Data: Coursework Embedded Indicators**

#### Student Outcome 1





Values in parentheses are coverage ratings from Table 5-3 in the Self Study, page 5-9

Data shown here is for Class of 2016 Similar data is collected for all 11 ABET outcomes

### **Performance on Embedded Indicators**

Program Averages AY2011 to AY2016



## **Example Data: End-of-Semester Surveys**

#### Student Outcome 1

This course has improved my ability to apply knowledge of mathematics, science, and engineering.



Data shown here is for Class of 2016 Similar data is collected for all 11 ABET outcomes

# **End-of-Semester Surveys**

### Normalized Program Averages from AY11-16



# **Fundamentals of Engineering Exam**

Outcome 9: Recognizing the Need and Develop the Skills for Life-long Learning



# Outcome 12 Evaluation

Performance Indicators AY07 to AY16

#### **FEE Results**



Year-to-year variations in the difficulty of the exam are accounted for by normalizing with national average (next slide).

# Topical Outcomes Evaluation

Deviations from National Averages AY07 to AY16



# **Topical Outcomes Evaluation**

Average Course GPA from Transcripts, AY2011 to AY2016



# Advisory Board Student Outcomes Surveys

Normalized Program Averages from AY10-16

Data are normalized to compensate your yearto-year fluctuations in the survey average.



# Faculty Student Outcomes Surveys Normalized Program Averages from AY10-16

Data are normalized to compensate your yearto-year fluctuations in the survey average.



# Advisory Board Completes Survey Part 1

# **ABET Criterion 2: Objectives**

The program must have published program educational objectives that are consistent with the mission of the institution, the needs of the program's various constituencies, and these criteria.

There must be a documented, systematically utilized, and effective process, involving program constituencies, for the periodic review of these program educational objectives that ensures they remain consistent with the institutional mission, the program's constituents' needs, and these criteria.

# **Program Objectives (Current Redbook)**

During a career as commissioned officers in the United States Army and beyond, program graduates:

- 1. Contribute to the solution of infrastructure and operational problems in a complex operational environment.
- 2. Succeed in graduate school or advanced study programs.
- 3. Advance their careers through clear and precise technical communication.
- 4. Demonstrate effective leadership and chemical engineering expertise.

# **Program Objectives (Current Redbook)**

During a career as commissioned officers in the United States Army and beyond, program graduates:

- 1. Demonstrate effective leadership and chemical engineering expertise.
- 2. Contribute to the solution of infrastructure and operational problems in a complex operational environment.
- 3. Succeed in graduate school or advanced study programs.
- 4. Advance their careers through clear and precise technical communication.

Advisory Board Recommended: October 2012

# **Assessment Instruments for Objectives**

## Program Surveys

Program Advisory Board Surveys
Program Faculty Surveys
Program Cadet Surveys

# Strategy going forward:

Assess consistency with the mission of the institution and the needs of the constituencies improve objectives.

# **Enrichment Opportunities**

Advanced Individual Academic Development (AIAD)

Goal: Faculty Collaboration

Cadet Mentoring/Research

Cadet Mentoring/Research

- Lawrence Livermore National Lab
- Sandia National Lab
- Army Research Labs
- Picatinny Arsenal
- BAE Systems Radford AAP
- BAE Systems Holston AAP
- Southern Polymer
- Uniform Color Company
- Renewable Energy Group



13 fully funded internships 16+ available

# **CHEME AIADS 2017**

|    | IAD(A) | CADET                | PN_ID     | DEPARTMENT               | LOCATION                      |
|----|--------|----------------------|-----------|--------------------------|-------------------------------|
| 1  | 14213  | INZINGA, CHRISTOPHER | C30716521 | Chemistry & Life Science | RADFORD VA, UNITED STATES     |
| 2  | 14213  | MAHR, HUGH           | C46490071 | Chemistry & Life Science | RADFORD VA, UNITED STATES     |
| 3  | 14213  | ONAKA, KENJI         | C47915105 | Chemistry & Life Science | KINGSPORT TN UNITED STATES    |
| 4  | 14214  | PONTIUS, DAVID       | C13282792 | Chemistry & Life Science | RENEWABLE ENERGY GROUP        |
| 5  | 14214  | SCHWARZMAN, SARAH    | C57499315 | Chemistry & Life Science | RENEWABLE ENERGY GROUP        |
| 6  | 14214  | MARTIN, JACQUELINE   | C58907922 | Chemistry & Life Science | RENEWABLE ENERGY GROUP        |
| 7  | 14215  | COOPER, LAUREN       | C75124712 | Chemistry & Life Science | AUDIA, WASHINGTON PENN        |
| 8  | 14216  | NIEHOF, ROBERT       | C81482975 | Chemistry & Life Science | PICATINNY ARSENAL, NEW JERSEY |
| 9  | 14217  | MEDICI, FRANK        | C17179951 | Chemistry & Life Science | AUDIA, SOUTHERN POLYMER       |
| 10 | 14217  | RABBIA, DANIEL       | C39375125 | Chemistry & Life Science | AUDIA, SOUTHERN POLYMER       |
| 11 | 14219  | PALMER, JESSE        | C06769786 | Chemistry & Life Science | ARL ADELPHI, MARYLAND         |
| 12 | 14219  | BURNS, ALVIN         | C20528450 | Chemistry & Life Science | ARL ADELPHI, MARYLAND         |
| 13 | 14219  | HARKINS, SAWYER      | C54449973 | Chemistry & Life Science | ARL ADELPHI, MARYLAND         |
| 14 | 14219  | MORTIMER, DADE       | C91580900 | Chemistry & Life Science | ARL ADELPHI, MARYLAND         |
| 15 | 14212  | BUI, JACK            |           | PANE                     | LLNL                          |
| 16 | 14212  | SOWATZKE, ZACH       |           | PANE                     | SANDIA                        |

# Advisory Board Completes Survey Part 2

# **Chemical Engineering**

### **Advisory Board Meeting**

14 April 2017

#### 3. Introduction to Automatic Process Control

United States Military Academy

Department of Chemistry and Life Science

# Former Proposed Change 1

# CH367 Introduction to Automatic Process Control CH366 Chemical Engineering Process Control

- Key potential shortcoming in response to assessment of chemical engineering control theory is apparent in the state of t
- Demonstrated effort at continuous promise improvement is critical to ABET accreditation (Criterion 4).
- Making this change is not per bullet (does not guarantee accreditation). But, it does be nonstrate we are responding to the data.
- Loss of XE472 an (interdisciplinary nature of program is a concern.

Intimately connected ith assessment. Having collected data over a long period of time, response to data is critical. This rationale for creating and altering courses was pivotal in last ABET visit.

# **Brief on CH367 Status**

# **Lunch – West Point Club**





http://www.westpointmwr.com/club/index.html

# **Chemical Engineering**

## **Advisory Board Meeting**

14 April 2017

### 4. Future Challenges

United States Military Academy
Department of Chemistry and Life Science

# **Academic Excellence**



**#1 Most Accessible Professors** 

**#2 Best College Library** 



**#1 Public College in the country** 

**#6 Liberal Arts Universities** 

#11 In the Northeast

**#14 Overall College in the country** 



**#2 Top Public Schools (Liberal Arts)** 

**#3 Best Undergrad Engineering Program** 

**#4 Civil Engineering Program** 

**#7 Mechanical Engineering Program** 

**#19 National Liberal Arts College** 

# Strategic Influence



# **Chemical Engineering Faculty**

### Can we support critical courses?

|             | AY17 | AY18 | AY19 | AY20 | AY21 | AY22 |
|-------------|------|------|------|------|------|------|
| Biaglow     | Х    | Х    | Х    | Х    | Х    | Х    |
| Lachance    | a    | a    | ?    | Ş    | ?    | ?    |
| Winter      | Χ    |      |      |      |      |      |
|             |      |      |      |      |      |      |
| Bull        | Χ    | Χ    | ?    | ?    |      |      |
| Kalainoff   | b    | b    | b    | ?    | ?    | ?    |
| Armstrong   | Χ    | Χ    | Χ    | Χ    | Χ    | ?    |
| White       | Χ    | Χ    | Χ    |      |      |      |
| Onwuanumkpe | X    | Χ    | X    |      |      |      |
| Nagelli     | Х    | Χ    | X    | Х    | Х    | Х    |
| James       |      | X    | ?    | Χ    | Χ    | Χ    |
| Miller, A.  |      | Χ    | Χ    | Χ    |      |      |
| Pfluger     |      |      | X    | Χ    | Χ    |      |
| Corrigan    |      |      | Χ    | Χ    | Χ    |      |
| Totals      | 9    | 10   | 9    | 7    | 6    | 3+   |

a – available to teach; currently in registrar's office
b – available to teach; currently acting department deputy

? - uncertain status

# **Current Curriculum**

**CEN1 - Class of 2020** 

|                 |                 |                 | CLINI - Class 01 2020 |              |             |           |              |  |  |  |  |  |
|-----------------|-----------------|-----------------|-----------------------|--------------|-------------|-----------|--------------|--|--|--|--|--|
| 4th Class       |                 | 3rd Class       |                       | 2nd Class    |             | 1st Class |              |  |  |  |  |  |
| Year            |                 | Year            |                       | Year         |             | Year      |              |  |  |  |  |  |
| Fall Term       | Spring Term     | Fall Term       | Spring Term           | Fall Term    | Spring Term | Fall Term | Spring Term  |  |  |  |  |  |
| E               | E               | E               | R                     | R            | R $D$ $D,R$ |           |              |  |  |  |  |  |
| MA103           | MA104           | MA205           | (CH362)               | EE301        | MC300       | CH459     | ( CH402 )    |  |  |  |  |  |
| 4.0             | 4.5             | 4.5             | 9.5                   | 3.5          | 3.0         | 35        | 30           |  |  |  |  |  |
| /D              | D/R             | R               | R/                    | R            | R           |           |              |  |  |  |  |  |
| EV203/<br>CH101 | CH101/<br>PH205 | PH205/<br>PH206 | PH206/<br>EV203       | <b>CH363</b> | CH364       | CH365     | <b>CH400</b> |  |  |  |  |  |
| 4.0             | 4.0             | 4.0             | 4.0                   | 3.5          | 3.5         | 3.0       | 1.5          |  |  |  |  |  |
|                 |                 | R               |                       | R            |             | Ř         | Engr         |  |  |  |  |  |
| EN101           | EN102           | CH102           | MA366                 | СН383        | MC312       | (CH485)   | Elective     |  |  |  |  |  |
| 3.0             | 3.0             | 4               | 3.0                   | 3.5          | 3.0         | 25        | 3.0          |  |  |  |  |  |
|                 |                 | E               |                       | D            |             | Engr      | D            |  |  |  |  |  |
| IT105           | PL100           | DFL1            | PY201                 | MC311        | (CH367)     | Elective  | LW403        |  |  |  |  |  |
| 3.0             | 3.0             | 4.0             | 3.0                   | 3.5          | 3.0         | 3.0       | 3.5          |  |  |  |  |  |
|                 |                 | R               | Е                     |              |             | Engr      | R            |  |  |  |  |  |
| HI105           | HI108           | SS201           | DFL2                  | MA206        | SS307       | Elective  | HI302        |  |  |  |  |  |
| 3.0             | 3.0             | 3.5             | 4.0                   | 3.0          | 3.0         | 3.0       | 3.0          |  |  |  |  |  |
|                 |                 |                 | R                     |              |             |           |              |  |  |  |  |  |
|                 |                 |                 | SS202                 | PL300        |             |           | MX400        |  |  |  |  |  |
|                 |                 |                 | 3.5                   | 3.0          |             |           | 3.0          |  |  |  |  |  |

We began the major with 5 chemical engineering courses taught in the department.

With advisory board support, we now have nine.



# Chemical Engineering United States Military Academy



| Example Schedule for | Chemical Engineering. | Classes of 2020 and Beyond** |
|----------------------|-----------------------|------------------------------|
|                      |                       |                              |

| Fall Term    | Course                                 |       | Credit     | Spring       | Course                              |       | Credit     |
|--------------|----------------------------------------|-------|------------|--------------|-------------------------------------|-------|------------|
| 4th CLASS    |                                        |       | Hours      | Term         |                                     |       | Hours      |
| MA103        | Math. Modeling & Intro. Calculus       |       | 4.5        | <b>MA104</b> | Calculus I                          |       | 4.5        |
| CH101        | General Chemistry I                    |       | 4.0        | CH102        | General Chemistry II                |       | 4.0        |
| EN101        | Composition                            |       | 3.0        | EN102        | Literature                          |       | 3.0        |
| HI107        | Western Civilization                   |       | 3.0        | HI108        | Regional Studies in World History   |       | 3.0        |
| IT105        | Introduction to Computing & IT         |       | 3.0        | PL100        | General Psychology                  |       | 3.0        |
| PE11x        | Combatives / Boxing / Movement         |       | 0.5        | MS100        | Introduction to Warfighting         |       | 1.5        |
|              |                                        |       |            | PE150        | Fundamentals/Personal Fitness       |       | 1.5        |
| 3rd CLASS    |                                        | Total | 18.0       |              |                                     | Total | 20.5       |
| <b>MA205</b> | Calculus II                            |       | 4.0        | CH362        | Mass and Energy Balances            |       | <i>3.5</i> |
| PH205        | Physics I                              |       | 4.0        | MA366        | Applied Engineering Math            |       | <i>3.0</i> |
| Lx203        | Foreign Language                       |       | 4.0        | PH206        | Physics II                          |       | 4.0        |
| SS201        | Economics                              |       | 3.0        | Lx204        | Foreign Language                    |       | 4.0        |
| PY201        | Philosophy                             |       | 3.0        | SS202        | American Politics                   |       | 3.0        |
| MS200        | Fundamentals: Army Operations          |       | 1.5        | EV203        | Physical Geography                  |       | 3.0        |
|              |                                        |       |            | PE 2xx       | Lifetime Physical Activity          |       | 0.5        |
| 2nd CLASS    |                                        | Total | 19.5       |              |                                     | Total | 21.0       |
| СН363        | Separation Processes                   |       | 3.5        | CH364        | Chemical Reaction Engineering       |       | 3.5        |
| EE301        | Fundamentals of Electrical Engineering |       | 3.5        | <i>XE472</i> | Dynamic Modeling and Control        |       | <i>3.0</i> |
| CH383        | Organic Chemistry 1                    |       | 3.5        | <b>ME312</b> | Thermal-Fluid Systems 2             |       | <i>3.0</i> |
| MC311        | Thermal-Fluid Systems 1                |       | 3.5        | MC300        | Fundamentals of Eng. Mech. & Design |       | <i>3.0</i> |
| PL300        | Military Leadership                    |       | 3.0        | Elective     | Engineering Elective 1              |       | <i>3.0</i> |
| <b>MA206</b> | Probability and Statistics             |       | 3.0        | MS300        | Platoon Operations                  |       | 1.5        |
| PE32x        | Survival Swimming                      |       | 0.5        | PE360        | Combat Applications                 |       | 0.5        |
| 1st CLASS    |                                        | Total | 20.5       |              |                                     | Total | 17.5       |
| CH459        | Chemical Engineering Laboratory        |       | 3.5        | CH402        | Chemical Engineering Process Design |       | 3.5        |
| СН365        | Chemical Engineering Thermodynamics    |       | <i>3.0</i> | CH400        | Chemical Engineering Prof. Practice |       | 1.5        |
| CH485        | Heat & Mass Transfer                   |       | 3.5        | Elective     | Engineering Elective 3              |       | <b>3.0</b> |
| Elective     | Engineering Elective 2                 |       | <i>3.0</i> | HI302        | History of the Military Art         |       | 3.0        |
| SS307        | International Relations                |       | 3.0        | LW403        | Constitutional & Military Law       |       | 3.0        |
| PE450        | Army Fitness Development               |       | 1.5        | <b>MX400</b> | Officership                         |       | 3.0        |
|              | . <u> </u>                             | Total | 17.5       |              | -                                   | Total | 17.0       |

#### **15 Required Courses**

#### Mass and Energy Balances (CH362):

Introduction to chemical engineering calculations.

#### **Vector Calculus and Introduction to Partial Differential Equations (MA366):**

Mathematical techniques needed for the study of chemical engineering electives.

#### Organic Chemistry I (CH383):

Introduction to reaction mechanisms and structure-function relationships in organic molecules.

#### Fundamentals of Electrical Engineering (EE301):

Introduces electrical circuit theory and analysis.

#### Thermal-Fluid Systems I and II (MC311 & MC312):

Integrated study of thermodynamics and fluid systems.

#### **Chemical Reaction Engineering (CH364):**

Teaches selection, design, and operation of chemical reactors.

#### **Introduction to Automatic Process Control (CH367):**

Introduction to dynamic modeling and control of engineering linear systems.

#### Fundamentals of Engineering Mechanics and Design (MC300):

Study of deformable engineering structures such as trusses, frames, and vessels.

#### **Chemical Engineering Thermodynamics (CH365):**

Expands on the specific thermodynamic properties of chemical reactions.

#### Chemical Engineering Laboratory (CH459):

Provides laboratory experience in operating large chemical processes.

#### Heat and Mass Transfer (CH485):

Introduces the mathematical modeling of heat and mass movement.

#### Chemical Engineering Process Design (CH402):

Introduction to the concept of chemical processes and design.

#### **Chemical Engineering Seminar (CH400):**

Helps cadets prepare for the FE Exam and introduction to the practice of chemical engineering.

# Recent Curriculum Changes and Ongoing Impact

- Plebes choose majors prior to Spring Break
  - Additional administrative requirements
  - Trend of more changes of major (both into and out of)
- Removal of EN302 and HI301 core courses
  - More electives required for validations
  - 'Writing Across the Curriculum'
- MA205, CH102, PH206 no longer required core courses
  - remain prerequisites for chemical engineering courses
- Introduction of CH275 Introductory Biology
  - Acceptable alternative to CH102?
- 'Flexible' science scheduling
  - Ordering of prerequisites program has no control

### **Timeline for Curricular Actions**



# **Proposed Curriculum Change 1**

## **CH300 Technical Writing**

- Response to curriculum changes.
- Perceived shortcoming in cadet writing ability across the Corps
- Dean is currently requiring us to sacrifice technical content from one of our courses to address perceived shortcoming.
- Opportunity for us to engage in engineering-specific communication skills
  - USMA objective
  - ABET Criterion
  - PROGRAM Objective (advisory board)

Apparently unconnected with program assessment. Anecdotal evidence driving the assessment at USMA level. This approach has some risks associated with ABET. However, our choices are limited and we would like to make the best of it.

# Proposed Curriculum Change 2 Addition of CH401 Chemical Engineering Design Principles

Assign 3.0 credit hours in AY2019

Reason - bolster the USMA chemical engineering performance on design principles in embedded indicators

Precedent - Parity with other USMA programs

- 1. EE400 EE Professional Considerations
- 2. CS400 Computer Science Seminar
- 3. MX400 Officership

# **Proposed Curriculum Change 3**

## **CH359 Engineering Measurements**

- Response to observations in CH459.
- Improvements needed in cadet understanding of basic measurements and measuring devices.
- Improvement needed in cadet understanding of measurement error.
- Opportunity for us to enhance the controls thread.
- Opportunity to fill hole left by removal of CH371 Analytical Chemistry (2010).

# **Electives Proposals**

- Cadets have expressed ongoing interest in more chemical engineering electives
- Currently have 3 engineering electives in our major (to meet ABET requirements)
- Possible (probable?) upcoming ABET change to Criteria 3 & 5 may lower the required number of strictly engineering credit hours
  - This may allow some flexibility for cadets
  - A few potential options
  - What sorts of ChE electives would be most useful?

# **Engineering Concentrations**

Pre-approved elective sequences, but ultimately cadet choice (can choose any 3)

#### **Materials Engineering**

MC364 Mechanics of Materials MC380 Engineering Materials Open Elective

#### **Nuclear Engineering**

NE300 Nuclear Reactor Analysis NE350 Nuclear Reactor Design NE450 Nuclear Systems Design

#### **Decision Analysis**

SE301 Foundations of Engineering Design & Systems Management SE 481 Systems Simulation EM484 Dynamic Systems Analysis

#### **Advanced Control Systems**

EE360 Digital Computer Logic EM484 Dynamic Systems Analysis XE475 Mechatronics

#### **Energy Conversion Systems**

EE377 Electrical Power Generation ME472 Energy Conversion Systems ME480 Heat Transfer

#### **Power Systems**

ME306 Dynamics
ME491 Mechanical Power Plants
EE377 Electrical Power Generation
XE442 Alternative Energy Engineering
Industrial Engineering
SE301 Foundations of Engineering Design
& Systems Management
EM411 Project Management

#### **Other Advanced Engineering Electives**

Satisfy prerequisites Engineering Science or design = 3.0 credits Program director approval

**EM420 Production Operations Management** 

# Proposed Bioengineering Electives

- Proposed courses as a potential Engineering
   Sequence
  - Meet engineering sequence requirement for life scientists
  - Electives for chemical engineers
  - Initial proposal (working DRAFTS)
    - Modeling and Analysis of Biological Systems
    - Forces, Fields, and Flows in Biological Systems
    - Biological Systems Design

# Other Electives

- Numerical Methods for Chemical Engineering Problems
  - Enhance cadet experience with calculational tools (MMA, Matlab)
  - Ready to execute
- Chemical Explosives
  - Taught before, ready to execute with instructor prep
- If ABET criteria change...
  - Allow (mandate?) an additional chemistry elective? (Orgo II?
     Analytical? Biology? Polymers? PChem? )

# Proposal

## Proposal:

- Increase the pool of advisory board members
- Rotate on-site visiting members on bi-annual basis (i.e., visit ~every other year)

### • Rationale:

- Ease traveling for board members
- New/broader/different experiences for interface with cadets
- Some cost efficiencies (couldn't support larger pool every year)

# Some Administrative

- Next Advisory Board on-site
  - Late April/Early May 2018
  - Coincide with USMA Projects Day invite 1-2 board members to come a day early and participate as a judge?
- Travel Paperwork
- Tour of Unit Operations Lab now operational

## **End of Section 4**

# **Chemical Engineering**

**Advisory Board Meeting** 

14 April 2017

5. Supplemental Slides

United States Military Academy

Department of Chemistry and Life Science

## **ABET Criterion 2: Objectives**

Change as of 2013-2014:

The program must have an assessment and evaluation process that periodically documents and demonstrates the degree to which the objectives are attained.

No longer required.

### **NEEDED?**

# Accreditation AAR

- Self-study review and Q&A 15 June to 27 September.
- Site visit 28-30 September
  - Document audit
  - Tour of facilities
  - Interviews
- The review process went extremely well
  - No shortcomings in program completely "clean"
  - Very impressed with curriculum, cadets, faculty, and facilities
  - Positive feedback to cadets
- Next level review ABFT "editors"
  - Review self-study and findings from visit
  - Recommendation in July 2015
  - Backdate accreditation to October 2012
- PEV feedback was that we should streamline our student outcomes

# **Topical (Criterion "9") Outcomes Evaluation**

FE Exam Pass Rates for USMA Engineers in the Graduating Class of 2012

Discipline-Specific Results Reported by the National Council for Engineering Education

Fundamentals of Engineering Exam 6 April 2013

|                      | USMA         |           |           | National  |               |         |  |
|----------------------|--------------|-----------|-----------|-----------|---------------|---------|--|
| Major                | Took         | Passed    | Percent   | Took      | Passed        | Percent |  |
| Mechanical           | 66           | 54        | 82%       | 5406      | 4468          | 83%     |  |
| Civil                | 44           | 42        | 95%       | 5312      | 6638          | 80%     |  |
| Electrical           | 25           | 22        | 88%       | 1060      | 1472          | 72%     |  |
| Eng. Management      | 43 <b>SI</b> | ide taken | ou636%rev | iseđ≆lide | <b>es?</b> 33 | 62%     |  |
| Systems              | 47           | 39        | 83%       | 53        | 43            | 81%     |  |
| Chemical             | 12           | 11        | 92%       | 1507      | 1301          | 86%     |  |
| Environmental        | 17           | 17        | 100%      | 629       | 551           | 88%     |  |
| Nuclear <sup>a</sup> | 14           | 12        | 86%       | 18        | 16            | 89%     |  |

<sup>&</sup>lt;sup>a</sup> No discipline-specific exam offered.

USMA engineers scored at or above the national average in all disciplines.

### **Student Outcomes 12-20**

Analysis of Transcripts (Course Grades for Chemical Engineers)

| Slide removed?  0-4 "GPA" scale  Course ∅ | Advanced Chemistry | Material & Energy Bal. | Thermodynamics | Transport | Reaction Engineering | Separations | Dynamics & Control | Process Design | Experiment & Compute |
|-------------------------------------------|--------------------|------------------------|----------------|-----------|----------------------|-------------|--------------------|----------------|----------------------|
| CH383 Organic Chemistry I                 | 3.05               |                        |                |           |                      |             |                    |                |                      |
| CH481 Physical Chemistry I                | 3.77               |                        | 3.77           |           |                      |             |                    |                |                      |
| CH362 Mass & Energy Balances              |                    | 3.64                   |                |           |                      |             |                    |                |                      |
| CH363 Separation Processes                |                    |                        |                |           |                      | 3.72        |                    |                |                      |
| CH364 Chem. Reaction                      |                    |                        |                |           | 3.28                 |             |                    |                |                      |
| CH459 Chem. Laboratory                    |                    |                        |                |           |                      |             |                    |                | 3.87                 |
| CH485 Heat and Mass Transfer              |                    |                        |                | 3.77      |                      |             |                    |                |                      |
| CH400 Chemical Engineering Sem.           |                    |                        | 3.90           |           | 3.90                 | 3.90        | 3.90               |                |                      |
| CH402 Chem. Process Des.                  |                    |                        |                |           |                      |             |                    | 3.23           |                      |
| MA366 Engineering Math                    |                    |                        |                |           |                      |             |                    |                |                      |
| MC311 Thermal-Fluid Systems I             |                    |                        | 3.64           | 3.64      |                      |             |                    |                |                      |
| MC312 Thermal-Fluid Systems II            |                    |                        | 3.59           | 3.59      |                      |             |                    |                |                      |
| MC300 Fund. Eng. Mech. & Des.             |                    |                        |                |           |                      |             |                    |                |                      |
| EE301 Intro. to Electrical Engineering    |                    |                        |                |           |                      |             |                    |                |                      |
| XE472 Modeling & Control                  |                    |                        |                |           |                      |             | 3.44               |                |                      |
| Average Grade 2014                        | 3.41               | 3.64                   | 3.72           | 3.67      | 3.59                 | 3.81        | 3.82               | 3.23           | 3.87                 |
| Standard Deviation 2014                   | 0.66               | 0.67                   | 0.60           | 0.52      | 0.51                 | 0.42        | 0.48               | 0.61           | 0.44                 |

# **Survey of Chemical Engineering Curricula**

(Internal Study, July – Aug 2012; Occhlogross & Rosa, J. Chem. Eng. Ed., Sum 1996, pp. 184-187)

### What the other guys are doing.

| Summary Statistics            |     |
|-------------------------------|-----|
| Programs in Survey            | 159 |
| Programs in USA a,b           | 159 |
| Percent Surveyed              | 100 |
| States in Survey <sup>a</sup> | 52  |
| States with Programs          | 49  |
| States without Programs       | 3   |
| Percent of States Surveyed    | 100 |

<sup>&</sup>lt;sup>a</sup> Includes Puerto Rico and the District of Columbia

All programs are different and each is designed for the constituency of the program.

<sup>&</sup>lt;sup>b</sup> ABET lists 160 programs.

## **Program Benchmarking**

### What do department call themselves?



| <b>Summary Stats</b>              |     |  |
|-----------------------------------|-----|--|
| Programs in Survey:               | 159 |  |
| Programs in USAa,b                | 159 |  |
| % Surveyed:                       | 100 |  |
| States <sup>a</sup> in Survey:    | 52  |  |
| States <sup>a</sup> w/ Programs:  | 49  |  |
| States <sup>a</sup> w/o Programs: | 3   |  |
| % States Surveyed:                | 100 |  |
|                                   |     |  |

alncludes DC & Puerto Rico

b160 programs are listed in ABET

### ChemE "National" Curriculum

| Course / Content                    | National, 1994 <sup>a</sup> | National, 2012 | USMA |
|-------------------------------------|-----------------------------|----------------|------|
| Design                              | 4.9                         | 5.7            | 3.5  |
| Laboratory                          | 3.7                         | 4.1            | 3.5  |
| Reactor Design                      | 1.9                         | 3.1            | 3.5  |
| Separations                         | 3.2                         | 3.0            | 3.5  |
| Control                             | 2.3                         | 3.0            | 3.0  |
| Material & Energy Balances          | 3.6                         | 3.6            | 3.5  |
| Transport Phenomena                 | 11.7                        | 6.3            | 7.0  |
| Chemical Engineering Thermodynamics | 4.2                         | 4.8            | 3.5  |
| Chemistry (excl. Phys. Chem.)       | 19.0                        | 14.7           | 10.5 |
| Physical Chemistry                  | 6.4                         | 3.0            | 3.5  |
| Physics mode: 0.0 (47)              | 1.1                         | 1.1            | 7.0  |
| Mathematics (through ODEs)          | 14.5                        | 14.8           | 16.5 |
| Computers / Programming             | 3.6                         | 2.4            | 3.0  |
| Statistics                          | 3.0                         | 1.0            | 3.0  |
| Electrical Engineering              | 3.8                         | 1.0            | 3.5  |
| Civil Engineering                   | 3.8                         | 0.9            | 3.0  |

# **Cadet Enrollment in USMA Academic Majors**

ABET Departments Only, Class of 2016, as of January 2014

| Major                          | Number |
|--------------------------------|--------|
| Mechanical Engineering         | 117    |
| Systems Engineering            | 79     |
| Computer Science               | 64     |
| Civil Engineering              | 38     |
| Life Science                   | 35     |
| Systems Design and Management  | 32     |
| Chemical Engineering           | 30     |
| Electrical Engineering         | 28     |
| Environmental Engineering      | 26     |
| Engineering Management (GE)    | 24     |
| Human Geography                | 23     |
| Physics                        | 22     |
| Environmental Science          | 16     |
| Kinesiology                    | 16     |
| Nuclear Engineering            | 14     |
| Information Technology         | 13     |
| Geospatial Information Science | 12     |
| Chemistry                      | 7      |
| Engineering Management (CE)    | 7      |
| Engineering Management (ENV)   | 7      |
| Engineering Management (ME)    | 6      |
| Interdisciplinary Science      | 5      |
| Elec & Info Tech Sys           | 4      |
| Environmental Geography        | 4      |
| Engineering Management (EE)    | 2      |
| Engineering Management (NE)    | 1      |
|                                |        |

### **ABET Criteria**

- 1. STUDENTS
- 2. PROGRAM EDUCATIONAL OBJECTIVES
- 3. PROGRAM OUTCOMES
- 4. CONTINUOUS IMPROVEMENT
- 5. CURRICULUM
- 6. FACULTY
- 7. FACILITIES
- 8. SUPPORT
- 9. PROGRAM CRITERIA

### **Definitions**

### **Program Educational Objectives**

Program educational objectives are broad statements that describe what graduates are expected to attain within a few years of graduation.

### **Student Outcomes**

Student outcomes describe what students are expected to know and be able to do by the time of graduation (skills, knowledge, and behaviors).

### **Outcomes**

- Program outcomes are ABET a-k outcomes plus any additional outcomes articulated by the program
- Program must have assessment and evaluation process that periodically demonstrates and documents the degree to which outcomes are attained

**End of Section 5 (Supplements)** 

# **Chemical Engineering**

**Advisory Board Meeting** 

8 April 2016

6. Old Supplemental Slides

United States Military Academy

Department of Chemistry and Life Science

### **ABET Table 5-1**

|        |                                      | Category (Credit Hours) |                                                  |          |       |  |  |
|--------|--------------------------------------|-------------------------|--------------------------------------------------|----------|-------|--|--|
|        |                                      | Math and                | Engineering                                      | General  |       |  |  |
| emeste | Course Number and Descritption       | Basic                   | Check if contains                                | Educatio | Other |  |  |
| 1      | MA103 Math Modeling/Intro Calculus   | 4.0                     | 0                                                |          |       |  |  |
|        | CH101 General Chemistry I            | 3.5                     | l ii                                             |          |       |  |  |
|        | EN101 Composition                    |                         | l ii                                             |          | 3.0   |  |  |
|        | HI10x History                        |                         | lii                                              |          | 3.0   |  |  |
|        | PL100 General Psychology             |                         | lii                                              |          | 3.0   |  |  |
|        | PE11x Combatives/Boxing/Movement     |                         | l iii                                            |          | 0.5   |  |  |
|        | MD101 4th Class Military Perf I      |                         | 17                                               |          |       |  |  |
|        | The fact that except a minary and    |                         | H ''                                             |          |       |  |  |
| 2      | MA104 Calculus I                     | 4.5                     | n                                                |          |       |  |  |
| -      | CH102 General Chemistry II           | 3.5                     | H                                                |          |       |  |  |
|        | EN102 Literature                     | 0.0                     | H                                                |          | 3.0   |  |  |
|        | HI10x History                        |                         | <u> </u>                                         |          | 3.0   |  |  |
|        | IT105 Intro to Computing and IT      |                         | 0.5                                              |          | 2.5   |  |  |
|        | MS100 Introduction to Warfighting    |                         | 0.5                                              |          | 1.5   |  |  |
|        |                                      |                         | <del>  ''</del>                                  |          | 1.0   |  |  |
|        | MD102 4th Class Military Perf II     |                         | 0                                                |          |       |  |  |
| _      |                                      | 4.5                     |                                                  |          |       |  |  |
| 3      | MA205 Calculus II                    | 4.5                     | Ω                                                |          |       |  |  |
|        | PH201Physics I                       | 3.5                     | 0                                                |          |       |  |  |
|        | Lx203 Foreign Language I             |                         | U                                                |          | 3.5   |  |  |
|        | SS201Economics                       |                         | 0                                                |          | 3.5   |  |  |
|        | PY201 Philosophy                     |                         | ()                                               |          | 3.0   |  |  |
|        | PE215 Fundamentals/Personal          |                         | ()                                               |          | 1.5   |  |  |
|        | MS200 Fundamentals: Army             |                         | ()                                               |          | 1.5   |  |  |
|        | MD2013rd Class Military Perf I       |                         | ()                                               |          |       |  |  |
|        |                                      |                         |                                                  |          |       |  |  |
| 4      | MA366 Appl. Engineering              | 2.0                     | 1.0                                              |          |       |  |  |
|        | CH362 Mass & Energy Balances         |                         | 3.5 ()                                           |          |       |  |  |
|        | PH202 Physics II                     | 3.5                     | ()                                               |          |       |  |  |
|        | Lx204 Foreign Language II            |                         | ()                                               |          | 3.5   |  |  |
|        | SS202 American Politics              |                         | (1)                                              |          | 3.5   |  |  |
|        | EV203 Physical Geography             | 2.5                     | l ii                                             |          | 0.5   |  |  |
|        | PE2xx Lifetime Physical Activity     |                         | i i                                              |          | 0.5   |  |  |
|        | MD202 3rd Class Military Perform. II |                         | lii                                              |          |       |  |  |
|        |                                      |                         | <u> </u>                                         |          |       |  |  |
| 5      | CH363 Separation Processes           |                         | 3.5 (√)                                          |          |       |  |  |
|        | EE301 Fund of Electrical Engineering |                         | 3.5                                              |          |       |  |  |
|        | CH383 Organic Chemistry I            | 3.5                     | - 0                                              |          |       |  |  |
|        | MC311 Thermal-Fluid Systems I        | 0.0                     | 35 (√)                                           |          |       |  |  |
|        | MA206 Probability and Statistics     | 2.5                     | 0.5                                              |          |       |  |  |
|        | PL300 Military Leadership            | 2.0                     | 0.5                                              |          | 3.0   |  |  |
|        | PE320 Survival Swimming              |                         | H                                                |          | 0.5   |  |  |
|        | MS300 Platoon Operations             |                         | H                                                |          | 1.5   |  |  |
|        | <u> </u>                             |                         | <del>                                     </del> |          | 1.0   |  |  |
|        | MD3012nd Class Military Perf I       |                         |                                                  |          |       |  |  |

| tau murt<br>tirfy one | Percent of Total:  Minumum Credit Hours Percent of Total: |       | 31.5%<br>48 Hours<br>37.5% | Н        | 0.0%                      | 42.13 |
|-----------------------|-----------------------------------------------------------|-------|----------------------------|----------|---------------------------|-------|
|                       | 155.5                                                     | 00.44 | OLEV                       |          | 0.05                      | 40.4  |
|                       | Total Credit Hours:                                       | 41.0  | 49.0                       | Min.     | Min. if all 3.0 electives |       |
| otals - A             | BET Basic Level Requirements:                             | 32.0  | 48.0                       |          | 0.0                       | 65.5  |
|                       | •                                                         |       |                            |          |                           |       |
|                       | MD402 1st Class Military Perf II                          |       |                            | Ö        |                           |       |
|                       | LW403 Constitutional/Military Law                         |       |                            | Ö        |                           | 3.5   |
|                       | HI302 Military History II                                 |       |                            | o        |                           | 3.0   |
|                       | SS307 International Relations                             |       |                            | m        |                           | 3.5   |
|                       | Engineering Elective 3                                    |       | 3.0                        | m        |                           |       |
|                       | CH400 Chem Eng Professional                               |       | 1.0                        | m        |                           |       |
| 8                     | CH402 Chem Eng Process Design                             |       | 3.5                        | (√)      |                           |       |
|                       | THE TOTISCOIDS INITIALLY FEIT                             |       |                            | $\vdash$ |                           |       |
|                       | MD4011st Class Military Perf I                            |       |                            | ┞┸┤      |                           | 2.0   |
|                       | MX400 Officership                                         |       |                            | HH       |                           | 2.0   |
|                       | PE450 Army Fitness Development                            |       |                            | HH       |                           | 1.5   |
|                       | HI301 Military History I                                  |       | 3.0                        | H        |                           | 3.0   |
|                       | CH485 Heat and Mass Transfer                              |       | 3.5                        | H        |                           |       |
|                       | Engineering Elective 2                                    | 3.0   | 3.0                        | (1)      |                           |       |
| 7                     | CH459 Chem Engr Laboratory CH481 Physical Chemistry I     | 3.5   | 3.5                        | (v)      |                           |       |
| _                     |                                                           |       |                            | 4.6      |                           |       |
|                       | , , , , , , , , , , , , , , , , , , , ,                   |       |                            |          |                           |       |
|                       | MD302 2nd Class Military Perf II                          |       |                            | М        |                           |       |
|                       | PE360 Combat Applications                                 |       |                            | M        |                           | 0.5   |
|                       | EN302 Advanced Composition                                |       | 0.0                        | n        |                           | 3.0   |
|                       | MC300 Fund of Engr Mech & Dsn                             |       | 3.0                        | ί√i      |                           |       |
|                       | MC312 Thermal-Fluid Systems II                            |       | 3.0                        | H        |                           |       |
|                       | Engineering Elective 1                                    |       | 3.0                        | H        |                           |       |
| •                     | XE472 Dynamic Modeling & Control                          |       | 3.0                        | n        |                           |       |
| 6                     | CH364 Chemical Reaction                                   |       | 3.5                        | (√)      |                           |       |

### Shoring up engineering credits

- •adding CH365
- •increasing CH400 to 1.5 credits
- •extensive internal review

### **ABET-Proofing our Split Credit Courses**

### Fundamental Question – Are These Safe?

- Program evaluator (PEV) will see us at 49.0 versus 48.0 ET.
- •Split-credit courses are an ABET red flag issue. MA366, MA206, and IT105 are all at risk.
- •Pool of ABET PEVs is diverse (education, employment, background, etc.)
  - •Can we model the evaluation process using the advisory board?
- Design a method for quantifying the risk.
- •Summer ET-credit test survey.

## **Assessing Engineering Content**

Instructions for Part 2: This survey contains several problems. Your job is to assess whether the primary theme of the problem is mathematics, basic science, or engineering. Following each problem is a short survey. For each problem, read the problem and then complete the survey. Darken the box under the term that most accurately describes your opinion regarding that response. Use your best judgment in making the assessment. There are absolutely no right or wrong answers.

An insulated cable placed in the Atlantic Ocean connecting the United States to the United
Kingdom is used for telecommunications. Symptoms develop in the operation of the cable
indicating the possibility that a hole may have formed in the insulation. Discuss possible
methods for finding (i) whether or not a hole has in fact formed, and (ii) the location of the hole,
if it exists.



|                                                   | Great extent |  | Moderate |  | Not at all |
|---------------------------------------------------|--------------|--|----------|--|------------|
| To what extent is this a mathematics problem?     |              |  |          |  |            |
| To what extent is this a basic science problem?   |              |  |          |  |            |
| To what extent is an engineering problem?         |              |  |          |  |            |
| To what extent is this some other type of problem | s? 🗆         |  |          |  |            |



### **Comparing the Assessments**

Author's intention versus reader's perception



-1 for each 1-point deviation from instructor's answer.

For example, if the instructor answered 5 and you answered 4, 1 pt. was deducted for that response.

Total points determined from total possible cuts.

# **Comparing the Assessments**

Author's intention versus reader's perception



-1 for each 1-point deviation from instructor's answer.

For example, if the instructor answered 5 and you answered 4, 1 pt. was deducted for that response.

Total points determined from total possible cuts.

# **ABET-Proofing our Split Credit Courses**

### Conclusions

- •A good program evaluator (PEV) will examine book and background of faculty in addition to course content.
- •At this time, USMA process (ABET Committee) involves course content only.
- •Interest in continuing this study, imperfect as it is? If so, need volunteers to examine MA366.
- •Long-term fix is to not use split credit hours (challenging with 26 core courses).

## **How Faculty View the PEO Process?**

Faculty are another key constituency.



# **Funding Pipeline**



# **Challenge 1 - ABET Bean Counting**

### ABET Self Study Table 5-1

|                                    |                    |                                                                     |                             | Subject Area (0       | Credit Hours)        |       |                                                |                                                                                       |
|------------------------------------|--------------------|---------------------------------------------------------------------|-----------------------------|-----------------------|----------------------|-------|------------------------------------------------|---------------------------------------------------------------------------------------|
| Course                             |                    | Required,<br>Elective or<br>Selected<br>Elective<br>(R, E or an SE) | Math &<br>Basic<br>Sciences | Engineering<br>Topics | General<br>Education | Other | Last Two<br>Terms the<br>Course was<br>Offered | Maximum Section Enrollment for the Last Two Terms the Course was Offered <sup>2</sup> |
| Term 1 (Semester                   | 1):                |                                                                     | -                           |                       |                      |       |                                                | -                                                                                     |
| MA103 Math Modeling/Intro          | o Calculus         | R                                                                   | 4.0                         |                       |                      |       | 14-1, 14-2                                     | 19                                                                                    |
| CH101 General Chemistry I          |                    | R                                                                   | 3.5                         |                       |                      |       | 14-1,14-2                                      | 20                                                                                    |
| EN101 Composition                  |                    | R                                                                   |                             |                       |                      | 3.0   | 14-1,14-2                                      | 18                                                                                    |
| HI10x History                      |                    | R                                                                   |                             |                       |                      | 3.0   | 14-1,14-2                                      | 18                                                                                    |
| PL100 General Psychology           |                    | R                                                                   |                             |                       |                      | 3.0   | 14-1,14-2                                      | 19                                                                                    |
| PE11x Combatives/Boxing/           | Movement           | R                                                                   |                             |                       |                      | 0.5   | 14-1,14-2                                      | 44                                                                                    |
| IT105 Introduction to Comp         | uting & IT         | R                                                                   |                             | 0.5                   |                      | 2.5   | 14-1,14-2                                      | 18                                                                                    |
| MA366 Applied Engineering          |                    | R                                                                   | 2.0                         | 1.0                   |                      | 2.0   | 13-2,14-2                                      | 18                                                                                    |
| MA206 Probability and Stati        |                    | R                                                                   | 2.5                         | 0.5                   |                      |       | 14-1,14-2                                      | 19                                                                                    |
| <u> </u>                           |                    |                                                                     |                             |                       | ( )                  |       | ( (                                            | T ~                                                                                   |
| TOTALS-ABET BASIC-LE               | VEL REQUI          | REMENTS                                                             | 41.0                        | 49.5                  |                      | 66.5  |                                                |                                                                                       |
| OVERALL TOTAL CREDI                | T HOURS            | 156.0                                                               |                             |                       |                      |       |                                                |                                                                                       |
| PERCENT OF TOTAL                   |                    |                                                                     | 26.0                        | 31.4                  |                      | 42.5  |                                                |                                                                                       |
| Total must satisfy either          | Minimum S<br>Hours | emester Credit                                                      | 32 Hours                    | 48 Hours              |                      |       |                                                |                                                                                       |
| credit hours or percentage Minimun |                    | ercentage                                                           | 25%                         | 37.5 %                |                      |       |                                                |                                                                                       |

# **Career Counseling**



### **Engineer**



Year Group 2014

**INTELLIGENCES:** Interpersonal, Logical-Mathematical, Spatial

**SKILLS:** Engineer officers must possess an innate ability to evaluate and assess problems, the resident knowledge to brainstorm possibilities, and then quickly implement solutions to solve problems facing our maneuver commanders. This requires a design mindset – the ability to develop tasks and work processes for teams and motivate those teams to reach harmoniously, efficiently, and effectively desired outcomes. Officers must thrive in the world of abstract concepts and data-based reasoning, be able to discriminate and filter information of importance, and be capable of rapid visualization; all while skillfully possessing the ability to communicate concepts verbally or in writing. Collectively, these skills make Engineer officers superb problem solvers and invaluable to our Army and Nation.

**KNOWLEDGE:** The Engineer branch strongly desires officers with academic backgrounds in the domain-specific disciplines listed below, with particular emphasis on degrees that are accredited by the Accreditation Board for Engineering and Technology (ABET). These disciplines provide officers with a foundation in the scientific method that enhances their ability to become expert problem solvers.

- ➤ RELEVANT EDUCATION PRIORITY 1: ABET Engineering Majors (Civil, Mechanical, Electrical, Systems, Environmental, Chemical, Nuclear, Engineering Management, Computer Science, Information Technology).
- > RELEVANT EDUCATION PRIORITY 2: Non-ABET Engineering; Science, Technology, and Mathematics (STEM) disciplines.
- > RELEVANT EDUCATION PRIORITY 3: All other disciplines.
- > RELEVANT TRAINING/EXPERIENCE: Cadet Troop Leading Time / Leader Development Time (CTLT / CLDT) with Engineer Unit or Academic Enrichment Program in engineering or related activity (not all inclusive).

#### **BEHAVIORS:** (In addition to foundational)

> ADAPTABLE > AMBITIOUS

- > DEPENDABLE
- > DETAIL FOCUSED
- > INNOVATIVE > INSPIRING

> PROBLEM SOLVING

- > CHARISMATIC > COMMITTED
- > DILIGENT > EXPERT

- > INTELLECTUALLY CURIOUS
- > TENACIOUS

> PROACTIVE

> PERCEPTIVE

> VISIONARY

#### **TALENT PRIORITIES:**

- **1. DOMAIN-SPECIFIC EDUCATION:** Possessing an engineering degree (ABET-preferred), high performers in science, technology, engineering, and math (STEM) disciplines.
- 2. PROJECT MANAGER: Able to determine requirements, develop work processes, delegate responsibilities, and lead teams to desired outcomes.
- 3. PROBLEM SOLVER: Able to choose between best practices and unorthodox approaches to reach a solution. Accomplishes the task.
- 4. INSPIRATIONAL LEADER: Motivates teams to work harmoniously and productively towards a common goal.
- 5. SPATIALLY INTELLIGENT: Easily perceives, understands, and operates within the multi-dimensional world.

# **Branch Distribution of Chemical Engineers**

Where our graduates are currently serving



All USMA "green-suiter" graduates as of July 2013

### **Government Employment of Chemical Engineers**

As of July 2013



### **Government Employment of Chemical Engineers**

### As of July 2013



## **Government Employment of Chemical Engineers**

**Labor Market Survey** 



# **Chemical Engineering Salary Survey**

| Occupation: Chemical Engineers (SOC code 172041)             |               |                     |
|--------------------------------------------------------------|---------------|---------------------|
| Period: May 2012                                             |               |                     |
| Industry (NAICS Code)                                        | Employment(1) | Annual mean wage(2) |
| Professional Scientific and Technical Services (541000)      | 10170         | \$104,840           |
| Chemical Manufacturing (325000)                              | 9850          | \$99,440            |
| Petroleum and Coal Products Manufacturing (324000)           | 1890          | \$109,280           |
| Management of Companies and Enterprises (551000)             | 1250          | \$142,790           |
| Plastics and Rubber Products Manufacturing (326000)          | 960           | \$81,410            |
| Educational Services (611000)                                | 780           | \$74,080            |
| Computer and Electronic Product Manufacturing (334000)       | 720           | \$95,280            |
| Merchant Wholesalers Nondurable Goods (424000)               | 690           | \$89,160            |
| Oil and Gas Extraction (211000)                              | 580           | \$133,870           |
| Utilities (221000)                                           | 550           | \$118,150           |
| Paper Manufacturing (322000)                                 | 480           | \$91,360            |
| Wholesale Electronic Markets and Agents and Brokers (425000) | 410           | \$91,160            |
| Machinery Manufacturing (333000)                             | 380           | \$85,860            |
| Mining (except Oil and Gas) (212000)                         | 40            | \$106,280           |
| Beverage and Tobacco Product Manufacturing (312000)          | 40            | \$91,150            |
| Textile Mills (313000)                                       | 40            | \$79,770            |
| Government                                                   | 1140          | \$104,210           |
| Department of the Army                                       | 433           | \$101,757           |
| Department of the Navy                                       | 312           | \$98,270            |
| Department of the Air Force                                  | 61            | \$99,423            |
| Departent of Defense                                         | 15            | \$99,423            |
| Enotrates:                                                   | •             |                     |

#### Footnotes:

- (1) Estimates for detailed occupations do not sum to the totals because the totals include occupations not shown separately. Estimates do not include self-employed workers.
- (2) Annual wages have been calculated by multiplying the hourly mean wage by 2080 hours; where an hourly mean wage is not published the annual wage has been directly calculated from the reported survey data.
- (8) Estimate not released.

SOC code: Standard Occupational Classification code -- see http://www.bls.gov/soc/home.htm

NAICS code: North American Industry Classification System code -- see http://www.bls.gov/bls/naics.htm

Data extracted on June 21 2013

## **Topical (Criterion "9") Outcomes Evaluation**

FE Exam Pass Rates for USMA Engineers in the Graduating Class of 2012

Discipline-Specific Results Reported by the National Council for Engineering Education

Fundamentals of Engineering Exam 6 April 2013

|                      |      | USMA   |         | National |        |         |  |
|----------------------|------|--------|---------|----------|--------|---------|--|
| Major                | Took | Passed | Percent | Took     | Passed | Percent |  |
| Mechanical           | 66   | 54     | 82%     | 5406     | 4468   | 83%     |  |
| Civil                | 44   | 42     | 95%     | 5312     | 6638   | 80%     |  |
| Electrical           | 25   | 22     | 88%     | 1060     | 1472   | 72%     |  |
| Eng. Management      | 43   | 27     | 63%     | 53       | 33     | 62%     |  |
| Systems              | 47   | 39     | 83%     | 53       | 43     | 81%     |  |
| Chemical             | 12   | 11     | 92%     | 1507     | 1301   | 86%     |  |
| Environmental        | 17   | 17     | 100%    | 629      | 551    | 88%     |  |
| Nuclear <sup>a</sup> | 14   | 12     | 86%     | 18       | 16     | 89%     |  |

<sup>&</sup>lt;sup>a</sup> No discipline-specific exam offered.

USMA engineers scored at or above the national average in all disciplines.

## **Program Graduates Survey Results**

26 out of 55 active duty graduates responded.



## **Program Graduates Survey Results**

26 out of 55 active duty graduates responded.

How many times have you been called upon to use your chemical engineering expertise in the last year?



### Continuing education activities



### **Program Graduates Survey Results**

26 out of 55 active duty graduates responded.

### Rank and Branch demographics



### **How Cadets View the PEO Process**

Cadets are a key constituency



**End of Section 6 (Old Supplements)**