DSiBA: Series 3

Data Wrangling - 1

Table of contents

1	Introduction	1
2	Counting the Data	2
3	Widening and Longening the Data	2
4	Handling Missing Values	4
5	Selecting and Renaming Columns	4
6	Mutating Columns	5
7	Filtering and Excluding Records	6
8	Summarising Data	6
9	Conclusion	7

1 Introduction

In this series, we focus on data wrangling in R, covering key concepts from data manipulation. These exercises are designed to help you practice tasks such as widening and longening data, handling missing values, selecting and mutating columns, filtering data, and summarising information using the tidyverse package.

For this exercise, we will use the flights dataset from the nycflights13 package, which contains information about flights departing from New York City in 2013. The dataset includes details such as flight times, delays, distances, and carrier information. We will explore various data wrangling techniques to manipulate and summarise this dataset effectively.

```
library(tidyverse)
library(nycflights13)
```

2 Counting the Data

2.1 Counting Flights per Tail Number, Carrier, and Month

Question

Count the number of flights per tailnum, carrier, and month. This will help you understand how often each aircraft is used by different carriers across different months. Name this dataset flights_count.

• Use count() to calculate the number of flights per tailnum, carrier, and month.

flights_count

#	A	tibble:	38,0)28 x	4	
		tailnum	carri	er m	onth	n
		<chr></chr>	<chr></chr>	• <	int>	<int></int>
1	L :	D942DN	DL		2	1
2	2	D942DN	DL		3	2
3	3	D942DN	DL		7	1
4	1	NOEGMQ	MQ		1	41
Ę	5	NOEGMQ	MQ		2	28
6	3	NOEGMQ	MQ		3	30
7	7	NOEGMQ	MQ		4	29
8	3	NOEGMQ	MQ		5	13
ç)	NOEGMQ	MQ		6	32
10)	NOEGMQ	MQ		7	11
#	i	38,018	more	rows		

3 Widening and Longening the Data

3.1 Widening the Data

Question

Create a wide version of the flights_count dataset named wide_flights, where each carrier has a separate column for the number of flights per month. Use tailnum and month as identifiers for each aircraft.

• Use pivot_wider() to create a wide table with separate columns for each carrier.

wide_flights

# .	A tibble	: 37,98	38 x 18	3								
	tailnum	${\tt month}$	DL	MQ	EV	US	UA	`9E`	FL	В6	AA	WN
	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
1	D942DN	2	1	0	0	0	0	0	0	0	0	0
2	D942DN	3	2	0	0	0	0	0	0	0	0	0
3	D942DN	7	1	0	0	0	0	0	0	0	0	0
4	NOEGMQ	1	0	41	0	0	0	0	0	0	0	0
5	NOEGMQ	2	0	28	0	0	0	0	0	0	0	0
6	NOEGMQ	3	0	30	0	0	0	0	0	0	0	0
7	NOEGMQ	4	0	29	0	0	0	0	0	0	0	0
8	NOEGMQ	5	0	13	0	0	0	0	0	0	0	0
9	NOEGMQ	6	0	32	0	0	0	0	0	0	0	0
10	NOEGMQ	7	0	11	0	0	0	0	0	0	0	0
# .	i 37 978	more i	COWS									

- # i 37,978 more rows
- # i 6 more variables: F9 <int>, AS <int>, VX <int>, HA <int>, OO <int>,
- # YV <int>

3.2 Longening the Data

Question

Create a long version of the wide_flights dataset named long_flights, where each observation represents a carrier and its corresponding number of flights per month for each aircraft (tailnum).

- Use pivot_longer() to convert the wide table back to a long format.
- \bullet Ensure that the final dataset has columns for tailnum, month, carrier, and n_flights.

long_flights

# A tibble	: 607,8	308 x 4	
tailnum	month	carrier	n_flights
<chr></chr>	<int></int>	<chr></chr>	<int></int>
1 D942DN	2	DL	1
2 D942DN	2	MQ	0
3 D942DN	2	EV	0
4 D942DN	2	US	0
5 D942DN	2	UA	0
6 D942DN	2	9E	0
7 D942DN	2	FL	0
8 D942DN	2	B6	0
9 D942DN	2	AA	0
10 D942DN	2	WN	0
# i 607,79	8 more	rows	

4 Handling Missing Values

4.1 Removing Rows with Missing Arrival Delay

Question

Remove rows where the arr_delay (arrival delay) is missing, as these might indicate cancelled flights. After removing the rows, calculate how many rows were removed from the dataset and explain why removing these rows is a reasonable approach.

- Use filter() to exclude rows with missing arr_delay.
- Use nrow() to calculate the number of rows before and after filtering.

num_removed

[1] 9430

5 Selecting and Renaming Columns

5.1 Selecting Columns Starting with "arr"

Question

Use select() to create a new table containing only columns that start with "arr" (e.g., arr_delay, arr_time). These columns provide information related to the arrival of flights.

• Use select() with starts_with("arr") to select the columns.

arr_columns

```
# A tibble: 336,776 x 2
   arr_time arr_delay
      <int>
                  <dbl>
        830
                     11
 1
 2
        850
                     20
 3
        923
                     33
 4
       1004
                    -18
 5
        812
                    -25
 6
        740
                     12
 7
        913
                     19
8
         709
                    -14
                     -8
9
         838
10
         753
                      8
```

i 336,766 more rows

5.2 Renaming tailnum to aircraft_id

Question

Rename the tailnum column to aircraft_id to make it more descriptive, and relocate it to the first column in the dataset.

- Use rename() to change the column name.
- Use relocate() to move the column to the first position.

flights_renamed

# A tibble: 336,776 x 1	#	Α	tibble:	336.	776	X	19
-------------------------	---	---	---------	------	-----	---	----

	aircraft_id	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time
	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>
1	N14228	2013	1	1	517	515	2	830
2	N24211	2013	1	1	533	529	4	850
3	N619AA	2013	1	1	542	540	2	923
4	N804JB	2013	1	1	544	545	-1	1004
5	N668DN	2013	1	1	554	600	-6	812
6	N39463	2013	1	1	554	558	-4	740
7	N516JB	2013	1	1	555	600	-5	913
8	N829AS	2013	1	1	557	600	-3	709
9	N593JB	2013	1	1	557	600	-3	838
10	N3ALAA	2013	1	1	558	600	-2	753

[#] i 336,766 more rows

6 Mutating Columns

6.1 Adding Average Speed Column

Question

Add a new column called avg_speed that calculates the average speed (in miles per hour) for each flight using the distance and air_time columns. Relocate avg_speed after the arr_time column in the dataset. Note that air_time is in minutes, so you will need to convert it to hours for the calculation.

- Use mutate() to create the new column.
- Use .after = arr_time argument in mutate() to place the new column after arr_time.

[#] i 11 more variables: sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,

[#] flight <int>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

[#] hour <dbl>, minute <dbl>, time_hour <dttm>

flights_speed

# A tibble:	336,776	x 20
-------------	---------	------

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	avg_speed
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
1	2013	1	1	517	515	2	830	370.
2	2013	1	1	533	529	4	850	374.
3	2013	1	1	542	540	2	923	408.
4	2013	1	1	544	545	-1	1004	517.
5	2013	1	1	554	600	-6	812	394.
6	2013	1	1	554	558	-4	740	288.
7	2013	1	1	555	600	-5	913	404.
8	2013	1	1	557	600	-3	709	259.
9	2013	1	1	557	600	-3	838	405.
10	2013	1	1	558	600	-2	753	319.

- # i 336,766 more rows
- # i 12 more variables: sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
- # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
- # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

7 Filtering and Excluding Records

7.1 Excluding Certain Flights

Question

Exclude flights with a distance of less than 500 miles or an air_time of less than 60 minutes. Calculate how many flights remain in the dataset after applying this filter.

- Use filter() to apply the conditions.
- Use nrow() to count the remaining flights.

remaining_flights

[1] 250677

8 Summarising Data

8.1 Creating a Summary Table

Question

DSiBA: Series 3 9 Conclusion

Create a summary table that shows the **average arrival delay** and **average departure delay** for each combination of **origin** and **carrier**. This will help you understand the delays for different carriers at different origins.

- Use group_by() and summarise() to calculate the mean delays.
- Ignore missing values using na.rm = TRUE in the mean() function.

summary_table

```
# A tibble: 35 \times 4
# Groups:
             origin [3]
   origin carrier mean_arr_delay mean_dep_delay
   <chr>
           <chr>>
                              <dbl>
                                               <dbl>
                                                5.95
 1 EWR
           9E
                              1.62
 2 EWR
                              0.978
                                               10.0
           AA
 3 EWR
                                                5.80
           AS
                             -9.93
 4 EWR
          B6
                              9.39
                                               13.1
 5 EWR
          DL
                              8.78
                                               12.1
 6 EWR
          ΕV
                             17.0
                                               20.2
                             16.3
                                               17.5
 7 EWR
          MQ
 8 EWR
          00
                             21.5
                                               20.8
9 EWR
          UA
                              3.48
                                               12.5
10 EWR
                              0.977
                                               3.74
          US
# i 25 more rows
```

9 Conclusion

In this exercise, we've practiced various data wrangling techniques using the tidyverse package in R. These included counting and reshaping data, handling missing values, selecting and mutating columns, filtering records, and summarising data. Mastery of these techniques is essential for effective data analysis and interpretation.