Introduction to Text Mining with R

Dictionary Methods

```
technologies
source sources
quality indexmarginnote
ref web part collection one
xml the chapter html use example
information jsontechniques
documents can book general
```

Simon Munzert | IPSDS

Classifying documents when categories are known:

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - ► Sad, happy, angry, anxious... for emotions
 - ► Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech many others: see LIWC, VADER, SentiStrength, LexiCoder...

ext Mining with R Simon Munz

Classifying documents when categories are known:

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - ► Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech many others: see LIWC, VADER, SentiStrength, LexiCoder...
- Count number of times they appear in each document
- Normalize by document length (optional)

ext Mining with R Simon Mun

Classifying documents when categories are known:

- Lists of words that correspond to each category:
 - Positive or negative, for sentiment
 - ► Sad, happy, angry, anxious... for emotions
 - Insight, causation, discrepancy, tentative... for cognitive processes
 - Sexism, homophobia, xenophobia, racism... for hate speech many others: see LIWC, VADER, SentiStrength, LexiCoder...
- Count number of times they appear in each document
- Normalize by document length (optional)
- Validate, validate, validate.
 - Check sensitivity of results to exclusion of specific words
 - Code a few documents manually and see if dictionary prediction aligns with human coding of document

ext Mining with R Simon Mun:

Example: Linguistic Inquiry and Word Count

4/1

ext Mining with R Simon Munz

Linguistic Inquiry and Word Count

- Created by Pennebaker et al see http://www.liwc.net
- You can buy it here: http://www.liwc.net/descriptiontable1.php
- Uses a dictionary to calculate the percentage of words in the text that match each of up to 82 language dimensions
- Consists of about 4,500 words and word stems, each defining one or more word categories or sub-dictionaries
- For example, the word *cried* is part of five word categories: sadness, negative emotion, overall affect, verb, and past tense verb. So observing the token *cried* causes each of these five sub-dictionary scale scores to be incremented
- Hierarchical: so "anger" are part of an *emotion* category and a *negative emotion* subcategory

ext Mining with R Simon Mur

Example: Emotional Contagion on Facebook

Source: Kramer et al. 2014

Potential advantage: Multi-lingual

APPENDIX B DICTIONARY OF THE COMPUTER-BASED CONTENT ANALYSIS

	NL	UK	GE	IT
Core	elit*	elit*	elit*	elit*
	consensus*	consensus*	konsens*	consens*
	ondemocratisch* ondemokratisch*	undemocratic*	undemokratisch*	antidemocratic*
	referend*	referend*	referend*	referend*
	corrupt*	corrupt*	korrupt*	corrot*
	propagand* politici*	propagand* politici*	propagand* politiker*	propagand* politici*
	bedrog	*deceit*	täusch*	ingann*
	bedrieg	*deceiv*	betrüg* betrug*	0"
	verraa *verrad*	*betray*	*verrat*	tradi*
	schaam*	shame*	scham* schäm*	vergogn*
	schand*	scandal*	skandal*	scandal*
	waarheid*	truth*	wahrheit*	verità
	oneerlijk*	dishonest*	unfair* unehrlich*	disonest*
Context	establishm* heersend* capitul* kapitul* kaste*	establishm* ruling*	establishm* *herrsch*	partitocrazia
	leugen* lieg*		lüge*	menzogn* mentir*

Source: Rooduijn and Pauwels 2011

Potential disadvantage: Context specific

Lexicons' Accuracy in Document Classification Compared to Machine-Learning Approach

Source: González-Bailón and Paltoglou (2015)

ext Mining with R Simon Munz

Text Mining with R Simon Mur

- The ideal content analysis dictionary associates all and only the relevant words to each category in a perfectly valid scheme
- Three key issues:

Validity Is the dictionary's category scheme valid?

Recall Does this dictionary identify all my content?

Precision Does it identify *only* my content?

 Imagine two logical extremes of including all words (too sensitive), or just one word (too specific)

Text Mining with R Simon Munz

- 1. Identify "extreme texts" with "known" positions. Examples:
 - Tweets by populist vs mainstream parties (for populism dictionary)
 - Facebook comments to news about natural catastrophes vs football victories (for sentiment dictionary)
 - Subreddits for white nationalist groups vs regular politics (for racist rhetoric)

Ext Mining with R Simon Munz

- 1. Identify "extreme texts" with "known" positions. Examples:
 - Tweets by populist vs mainstream parties (for populism dictionary)
 - Facebook comments to news about natural catastrophes vs football victories (for sentiment dictionary)
 - Subreddits for white nationalist groups vs regular politics (for racist rhetoric)
- 2. Search for differentially occurring words using word frequencies

- 1. Identify "extreme texts" with "known" positions. Examples:
 - Tweets by populist vs mainstream parties (for populism dictionary)
 - Facebook comments to news about natural catastrophes vs football victories (for sentiment dictionary)
 - Subreddits for white nationalist groups vs regular politics (for racist rhetoric)
- 2. Search for differentially occurring words using word frequencies
- 3. Examine these words in context to check their precision and recall

ext Mining with R Simon Mun:

- 1. Identify "extreme texts" with "known" positions. Examples:
 - Tweets by populist vs mainstream parties (for populism dictionary)
 - Facebook comments to news about natural catastrophes vs football victories (for sentiment dictionary)
 - Subreddits for white nationalist groups vs regular politics (for racist rhetoric)
- 2. Search for differentially occurring words using word frequencies
- 3. Examine these words in context to check their precision and recall
- 4. Use regular expressions to see whether stemming or wildcarding is required

ext Mining with R Simon Mun