Security - Message Space and Ciphertext Space

To better understand Message Spaces and Cipher Spaces, we will first explain the alphabet of definitions.

A denotes a finite set called the *alphabet of definition*. For example, $A = \{0,1\}$ is the *binary alphabet*. It is a frequently used alphabet of definition.

 ${\it M}$ denotes a set called *message space*. ${\it M}$ consists of strings composed of symbols from an alphabet of definition.

 ${\it C}$ denotes a set called the *ciphertext space*. ${\it C}$ consists of strings composed of symbols from an alphabet of definition which might or might not differ from that of ${\it M}$.

For example, consider the following encryption: You get a message composed of lowercase English characters only. For any letter in the message, you shift it one time and create a new message that you then transmit. If you get "abz" then you transform it to "bca".

Here,
$$A$$
 is $\{'a', 'b', 'c', ..., 'z'\}$.

Both $oldsymbol{C}$ and $oldsymbol{M}$ are sets of all strings composed of lowercase English characters.

For example:

$$\{abc, degg, fe, \dots\} \in M$$

and

 $\{\mathit{bcd}, \mathit{efhh}, \mathit{gf}, \dots\} \in \mathit{C}$ (corresponding to the strings in M)

For every possible string in M, there is a string in C.

In this task, your alphabet of definition is $A = \{0, 1, 2, \dots, 9\}$.

 ${\it M}$ and ${\it C}$ are both sets of all strings consisting of decimal digits. Given a coded message, you need to find the new message you obtain if you shift each digit in the message string. You must shift ${\bf 1}$ to the right, and it is cyclic.

Constraints

1 < Length of the string < 10

Input Format

Input consists of a single line that contains the string.

Output Format

Output a single line, the shifted string.

Sample Input

982

Sample Output

093