Convex optimization exercise sheet

Mathurin Massias

Notation

For a linear operator A, its adjoint is A^* and its Moore-Penrose pseudoinverse is A^{\dagger} . \mathcal{X} and \mathcal{Y} are two Hilbert spaces. Number of coffee cups (\clubsuit) indicates difficulty of exercise.

1 Convexity

Exercise 1.1. • Show that local minimizers of convex functions are global minimizers.

Exercise 1.2 (Pointwise supremum preserves convexity). \clubsuit Let $(f_i)_I$ be a family of convex functions (not necessarily countable). Show that $x \mapsto \sup_{i \in I} f_i(x)$ is convex.

Exercise 1.3 (Precomposition by linear operator preserves convexity). \clubsuit Let $f: \mathcal{Y} \to \mathbb{R}$ be a convex function and $A: \mathcal{X} \to \mathcal{Y}$ a linear operator. Show that f(A) is convex (on \mathcal{X}).

Exercise 1.4 (Misconceptions on existence of minimizers). * Provide an example of convex function which does not admit a minimizer.

What if the function is continuous and lower bounded?

Exercise 1.5 (Continuity). Show that a convex function is locally Lipschitz (hence continuous) on the interior of its domain.

2 Least squares

Exercise 2.1. \clubsuit *Let* $A \in \mathbb{R}^{n \times d}$. *Show that* Ker $A = \text{Ker } A^*A$.

Show that for any $b \in \mathbb{R}^n$ there exist a solution to $A^*Ax = A^*b$.

▶ Show that there does not always exist a solution to $A^*Ax = A^*b$ in the infinite dimensional case (when A is a bounded linear operator between infinite dimensional Hilbert spaces.)

Exercise 2.2. \clubsuit Let $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$. Show that solving Ordinary Least Squares:

$$\min \frac{1}{2} ||Ax - b||^2 , \qquad (1)$$

amounts to solving $A^*Ax = A^*b$ (aka the normal equations).

Show that the set of solutions is:

$$(A^*A)^{\dagger}A^*b + \operatorname{Ker} A .$$

Exercise 2.3 (Least squares with intercept). $\clubsuit \clubsuit$ An intercept x_0 is a constant scalar term in the linear prediction function, that becomes $a \mapsto a^{\top}x + x_0$. Fitting an intercept can be done by adding a column of 1s to A. Alternatively, show that the solution of least squares with intercept

$$(\hat{x}, \hat{x}_0) \in \underset{x \in \mathbb{R}^d, x_0 \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} ||Ax - b - x_0 \mathbf{1}||^2$$
 (2)

is given by:

$$\hat{x} = \hat{x}_c \quad , \tag{3}$$

$$\hat{x}_0 = \frac{1}{n} \sum_{i=1}^{n} (a_i^{\top} \hat{x} - b_i) , \qquad (4)$$

where \hat{x}_c is the solution of least squares without intercept on centered data A_c and b_c (versions of A and b where the rowwise mean has been subtracted).

Exercise 2.4 (Gradient descent on isotropic parabola). \clubsuit Let $A \in \mathbb{R}^{n \times d}$ be such that its condition number 1 $\kappa(A)$ is equal to 1. Show that gradient descent with stepsize 1/L converges in a single iteration for the problem $\min \frac{1}{2} ||Ax - b||^2$.

3 Continuous time

Exercise 3.1 (Preliminaries). \clubsuit Let $f: \mathcal{X} \to \mathbb{R}$ be twice differentiable. Let $\theta: \mathbb{R}_+ \to \mathcal{X}$ be differentiable. Show that

$$\frac{d}{dt}f(\theta(t)) = \langle \nabla f(\theta(t)), \dot{\theta}(t) \rangle ,$$

$$\frac{d}{dt}\nabla f(\theta(t)) = \nabla^2 f(\theta(t))\dot{\theta}(t) .$$

Exercise 3.2 (Everything decreases in gradient flow). \clubsuit Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex twice differentiable function. Let x(t) be the gradient flow on f, defined as a solution of $\dot{x}(t) = -\nabla f(x(t))$. Show that f(x(t)) decreases.

Show that $\|\nabla f(x(t))\|$ decreases.

4 Gradient

Exercise 4.1. Provide an example of setting where the gradient is not equal to the vector of partial derivatives.

Exercise 4.2. • Show that the gradient of a function is orthogonal to the level lines of that function.

Exercise 4.3. \clubsuit Compute the gradients and Hessians of $x \mapsto ||x||^2$, $x \mapsto ||x||$, $x \mapsto a^\top x$. Is it true that the gradient of $x \mapsto \frac{1}{2}x^\top Ax$ is equal to Ax?

Exercise 4.4. $\blacksquare \blacksquare$ Compute the gradient of the logdet function, $M \mapsto \log \det(M)$.

Exercise 4.5. \clubsuit Let $A \in \mathbb{R}^{n \times d}$, $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^d \to \mathbb{R}$ defined as g(x) = f(Ax) for all $x \in \mathbb{R}^d$. Show that

$$\nabla g(x) = A^* \nabla f(Ax) \ ,$$

$$\nabla^2 g(x) = A^* \nabla^2 f(Ax) A \ .$$

Exercise 4.6 (Exercise 3.2 in discrete time). $\blacksquare \blacksquare$ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex, twice differentiable L-smooth function.

Show that the iterates of gradient descent on f with step size $0 < \alpha < 2/L$ have decreasing gradient norm.

Can you show it if f is not twice differentiable?

Is it still true when f is not convex?

Exercise 4.7. \clubsuit Provide a finite dimensional example of convex L-smooth function f such that gradient descent with stepsize < 2/L diverges.

¹i.e. the ratio between the largest and the smallest eigenvalues of A^*A .

5 Convexity inequalities

Exercise 5.1. $\clubsuit \clubsuit$ Let f be a convex and Gateaux-differentiable function. Let L > 0. Show that the following properties are equivalent:

- 1. $\forall x, y, \|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
- 2. $\forall x, y, f(x) \le f(y) + \langle \nabla f(y), x y \rangle + \frac{L}{2} ||x y||^2$
- 3. $\forall x, y, \frac{1}{L} \|\nabla f(x) \nabla f(y)\| \le \langle x y, \nabla f(x) \nabla f(y) \rangle$

Exercise 5.2. \clubsuit Let $f: \mathbb{R}^d \to \mathbb{R}$, let $\mu > 0$. Show that f is μ -strongly convex function with respect to the ℓ_2 -norm if and only if $f - \frac{\mu}{2} \| \cdot \|^2$ is convex.

Provide a counter example when the underlying norm is not the Euclidean one.

Exercise 5.3 (Polyak-Łojasiewicz inequality). $\blacksquare \blacksquare$ Let f be a μ -strongly-convex and differentiable function. Let $x^* = \operatorname{argmin} f(x)$. Show that f satisfies the Polyak-Łojasiewicz inequality:

$$\mu(f(x) - f(x^*)) \le \frac{1}{2} \|\nabla f(x)\|^2 . \tag{5}$$

Provide an example of function which is not strongly convex, but satisfies the inequality.

Exercise 5.4. $\blacksquare \blacksquare$ Let f be a L-smooth μ -strongly convex function. Show that for any x, y, y

$$\frac{\mu L}{\mu + L} \|x - y\|^2 + \frac{1}{L + \mu} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle x - y, \nabla f(x) - \nabla f(y) \rangle.$$

Exercise 5.5 (3 point descent lemma). \clubsuit Let f be convex and L-smooth. Show that for any triplet (x, y, z),

$$f(x) \le f(y) + \langle \nabla f(z), x - y \rangle + \frac{L}{2} ||x - z||$$
.

6 Around fixed point schemes

Exercise 6.1. $\blacksquare \blacksquare$ Let $T: \mathcal{X} \to \mathcal{X}$ be a q-contractive operator, meaning that for all $x \in \mathcal{X}$,

$$||Tx|| < q||x||$$
,

with q < 1.

Show that T admits at most one fixed point.

Show that the sequence defined by $x_0 \in \mathcal{X}$, $x_{k+1} = Tx_k$ converges, and that the limit is a fixed point. Show that, denoting x^* this fixed point, the sequence x_k converges to x^* at linear speed.

Exercise 6.2. \clubsuit Show that the results of Exercise 6.1 do not hold when q = 1.

7 Constrained optimization

Exercise 7.1. \clubsuit Show that the indicator function ι_C is convex (resp. lower semicontinuous, resp. proper) if C is convex (resp. closer, resp. nonempty).

Exercise 7.2 (Global optimality condition for constrained convex optimisation). \clubsuit Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex differentiable function, let C be a convex subset of \mathbb{R}^d . Show that $x^* \in \operatorname{argmin}_{x \in C} f(x)$ if and only if

$$\forall x \in C, \langle \nabla f(x^*), x - x^* \rangle \ge 0$$
.

Exercise 7.3. Let C be a non-empty closed convex set. Show that for all $x \in C, y \in \mathbb{R}^d$,

$$||x - y||^2 \ge ||x - \Pi_C(y)||^2 + ||y - \Pi_C(y)||^2$$
.

In particular this shows that $||y-x|| \ge ||x-\Pi_C(y)||$, which says that projection can only get you closer to optimum (taking $x = x^*$, if your current iterate is y).

8 Subdifferential and subgradients

Exercise 8.1. • Provide an example of convex function which has an empty subdifferential at some point of its domain.

Exercise 8.2 (Non emptiness of subdifferential). Show that the subdifferential of a convex function is non empty on the interior of its domain.

Exercise 8.3. Let $f: \mathbb{R}^d \to \mathbb{R}$ be separable: $f(x) = \sum_{i=1}^d f_i(x_i)$ where the f_i 's are functions of the real variable.

Show that $\partial f(x) = \partial f_1(x_1) \times \ldots \times f_d(x_d)$.

Compute the subdifferential of the ℓ_1 -norm.

Exercise 8.4. \clubsuit Show that the subdifferential of ι_C at $x \in C$ is equal to the normal cone of C at x, that is:

$$\mathcal{N}_C(x) = \{ u : \forall z \in C, \langle u, z - x \rangle \le 0 \}$$

Exercise 8.5 (Exercise 7.2 revisited). • Show that the first order optimality condition for differentiable convex constrained optimization rewrites:

$$x^* \in \underset{\mathcal{C}}{\operatorname{argmin}} f(x) \Leftrightarrow -\nabla f(x^*) \in \mathcal{N}_C(x^*)$$
.

9 Bregmaneries

Exercise 9.1 (Some misconceptions). • Why is a Bregman divergence not "like a distance" in general? Is it "like a distance" in the Euclidean case?

Exercise 9.2 (KL is Bregman divergence of negative entropy). Show that the Bregman divergence associated to negative entropy $x \mapsto \sum_{i=1}^{d} x_i \log(x_i)$ is the Kullback-Leibler divergence:

$$D(x,y) = \sum_{1}^{d} y_i \log \left(\frac{x_i}{y_i}\right) .$$

Exercise 9.3. \clubsuit Let $x, y, z \in \mathbb{R}^d$ and D be a Bregman divergence associated to a differentiable convex function ϕ .

Show that

$$D(x,y) + D(z,x) - D(z,y) = \langle \nabla \phi(x) - \nabla \phi(y), x - z \rangle$$
.

How is this a generalization of Pythagoras theorem?

Exercise 9.4 (Exercise 7.3 for Bregman projection). $\clubsuit \clubsuit$ Let ϕ a differentiable convex function. Let D be the associated Bregman divergence. Let C be a non-empty closed and convex subset of \mathbb{R}^d , let $z \in \mathbb{R}^d$ and $y = \operatorname{argmin}_{y' \in C} D(y', z)$ its Bregman projection onto C. Show that for all $x \in C$:

$$D(x,z) > D(x,y) + D(y,z) .$$

This definitely shows that D is not "like a distance".

Exercise 9.5 (Bregman projection onto the simplex). \Longrightarrow Show that the Bregman projection of $x \in \mathbb{R}^d_+$ onto the simplex Δ , when the potential is the negative entropy, is $(x_i/\sum_1^d x_i)_i$. Compare to the Euclidean projection.

10 Sarsity

Exercise 10.1. \clubsuit It is often claimed that the ℓ_1 -norm is not differentiable at 0. Do you know a norm which is differentiable at 0?

Exercise 10.2 (Huber function). $\blacktriangleright \blacktriangleright b$ Compute $\|\cdot\|_1 \square \frac{\rho}{2}\|\cdot\|^2$. In which sense is it a smooth approximation of the ℓ_1 -norm?

11 Logistic regression

Exercise 11.1. Let $b \in \{-1,1\}^n$, $A \in \mathbb{R}^{n \times d}$. Let $f(x) = \sum_{i=1}^n \log(1 + \exp(-b_i a_i^\top x))$. Compute ∇f , $\nabla^2 f$. Is f convex? Strictly convex? Strongly convex?