INFORMACIJOS KODAVIMAS KOMPIUTERYJE

Parengė:

IT mokytoja

Vilma Bernotienė

Visa informacija kompiuteryje koduojama dvejetainiu kodu (būsenomis 1 ir 0).

Teoriškai dvejetainio kodo naudojimo idėją XX a. viduryje pagrindė vienas infomacijos teorijos pradininkų Klodas Šenonas (*Claude Elwood Shannon*).

Teksto kodavimas

Kompiuteryje kiekvienas teksto ženklas koduojamas dvejetainiu kodu naudojant specialias **koduote** (kodų lenteles), kuriose nurodomi tam tikrų ženklų dvejetainiai kodai.

- XX a. Septintajame dešimtmetyje buvo sukurta ASCII
 (American Standart Code for Information
 Interchange)
- 2000 m. priimtas Lietuvos standartas
 LST ISO/IEC 8859-13, atitinkantis tarptautinį standartą
 ISO/IEC 8859-13 (8 bitų koduotė).
- 2005 m. apibrėžta Windows 1257 koduotė.
- Diegiamas unikodas UTF-8 (16 bitų koduotė).

$$2^{16} > 65$$

Čia pateikiama standartinė 7 bitų ASCII kodų lentelė. $2^7 = 128$

Naudojant 8 bitų (vienu bitu išplėstą) ASCII kodų lentelę, dar 128 kodai skirti įvairių kalbų abėcėlių specialiems ženklams, matematikos ir nesudėtingos grafikos ženklams.

ASCII kody lentelė

	00	01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E	0F
00		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
10	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
20	32	! 33	** 34	# 35	\$	% 37	& 38	1 39	() 41	*	+	, 44	- 45	. 46	/ 47
30	0	1	2	3	4	5	6	7	8	9	: 58	;	< 60	= 61	> 62	?
40	@ 64	A 65	B 66	C	D ₆₈	E 69	F	G	H 72	I 73	J 74	K 75	L	M	N 78	O
50	P 80	Q	R 82	S 83	T 84	U 85	V 86	W 87	X 88	Y 89	Z 90	[91	\ 92]	^ 94	_ 95
60	96	a 97	b 98	C 99	d	e 101	f	g 103	h	i 105	j	k	l 108	m	n 110	0
70	p	q	r 114	S 115	t	u 117	V 118	W 119	X 120	y 121	Z 122	{ 123	124	}	~	127

ASCII kodų lentelės didžiųjų ir mažųjų raidžių kodai

Dešimtainis kodas	Dvejetainis kodas	Raidė	Dešimtainis kodas	Dvejetainis kodas	Raidė
65	0100 0001	A	97	0110 0001	a
66	0100 0010	В	98	0110 0010	b
67	0100 0011	С	99	0110 0011	с
68	0100 0100	D	100	0110 0100	d
69	0100 0101	Е	101	0110 0101	e

Bet kokį ženklą dokumente galima įvesti nuspaudus klavišą *Alt* ir skaitmenų klaviatūra surinkus dešimtainį ženklo kodą.

Norint rašyklės dokumente įvesti kirčiuotą raidę, pirmiausia reikia įvesti nekirčiuotą raidę, po to – kirčio kodą ir tada nuspaudus klavišą *Alt* įvesti raidę x.

Kirčių kodai: kairinio kirčio (`) kodas – 0300, dešininio (') – 0301, riestinio (~) – 0303.

Pavyzdžiui, norint surinkti ỹ, reikia įvesti y0303, po to nuspaudus klavišą Alt įvesti x.

Tačiau yra ir išimčių.

Norint įvesti kirčiuotas raides a arba e, po raidės reikia įvesti tarpą, po to – kirčio kodą, tada nuspaudus klavišą Alt įvesti raidę x ir atsargiai panaikinti tarpą.

Standarto LST 1590-3 (Windows-1257) kodų lentelė

00	10	20	30	40	50	60	70	80	90	A0	B0	C0	D0	E0	F0	
0	16	SP 32	0	@	P 80	۰ 96	p	€ 128	144	NBSP 160	0 176	Ą 192	Š 208	ą 224	š 240	00
1	17	! 33	1	A	$Q_{_{\! \!\!\! 81}}$	a 97	q 1113	129	145	161	±	Į 193	Ń 209	į 225	ń	01
2	18	!! 34	2	B 66	R 82	b 98	r 114	130	? 146	¢	2 178	Ā	N 210	ā 226	ņ 242	02
3	19	# 35	3	C	S 83	C 99	S	131	147	£	3 179	Ć	Ó	Ć 227	Ó 243	03
4	20	\$	4	D_68	T ₈₄	d	t	?? 132	?? 148) 164	180	Ä 196	Ō 212	ä 228	Ō 244	04
s	21	% 37	5 53	E	U 85	e 101	u 117	133	• 149	165	$\mu_{_{181}}$	Å	Õ	å	Õ 245	05
6	22	& 38	6	F	$ m V_{_{86}}$	f	V 118	† 134	_ 150	 166	¶ 182	Ę 198	Ö 214	ę 230	Ö 246	06
7	23	' 39	7	G 71	W 87	g	W	‡ 135	151	§ 167	183	Ē	× 215	ē 231	÷	07
8	24	(8	H	X_{88}	h	X 120	136	152	Ø 168	Ø 184	Č	Ų	č 232	ų 248	08
9	25)	9	I 73	Y 89	i 105	y 121	%o 137	TM	© 169	1 185	É	Ł	é 233	ł 249	09
10	26	*	:	J	Z 90	j 106	Z 122	138	154	R	Ţ 186	Ź 202	Ś 218	Ź 234	Ś 250	OA.
11	27	+ 43	; 59	K 75	[k 107	{ 123	139) 155	171	>> 187	Ė 203	$ar{\mathbf{U}}_{_{219}}$	ė 235	ū	0B
12	28	> 44	< 60	L 76	\ 92	1	124	140	156	172	1/ ₄ 188	Ģ 204	Ü	ģ 236	ü 252	0C
13	29	- 45	=	\mathbf{M}_{77}]	m	} 125	141	- 157	SHY 173	1/2 189	Ķ 205	Ż	ķ 237	Ż 253	0D
14	30	46	> 62	N 78	^ 94	n 110	~ 126	142	158	(R) 174	3/ ₄ 190	Ī	Ž	Ī 238	Ž 254	0E
1.5	31	47	?	O 79	_ 95	O 111	127	143	159	Æ 175	æ	<u>L</u> 207	ß 223	1 239	255	0F

Grafinės informacijos kodavimas

Vektoriniu būdu informacija koduojama atkarpoms nurodant jų kryptį bei ilgį (vektorių) ir aprašant ir taikant matematines formules. Keičiantis grafinės informacijos dydžiui vaizdas nėra iškraipomas, tačiau vektorine grafika sunku pavaizduoti smulkias vaizdo detales. Populiariausi vektrinės grafikos failų formatai – CDR, EPS, WMF.

Taškinės (rastrinės) grafikos informacija koduojama taškais. Kuo daugiau taškų yra mažesniame plote, tuo vaizdas kokybiškesnis. Grafinės informacijos kokybė matuojama taškai į colį (dpi). Didinant taškų skaičių auga ir grafinės informacijos dydis. Kitaip negu vektorinėje grafikoje, vaizdas keičiant jo dydį gali būti iškraipomas. Į failą iš eilės įrašoma paveiklo kiekvieno taško spalva. Tokie failai dažniausia turi prievardžius **BMP**, **GIF**, **TIF**, JPEG, PNG.

Spalvoto vaizdo ekrane kiekvieno pikselio spalva gaunama skirtingomis proporcijomis maišant tris pagrindines spalvas (raudoną, žalią ir mėlyną). Toks spalvų modelis vadinamas $R\check{Z}M$ (spalvų pavadinimų pirmųjų raidžių santrumpa: R – raudoną, \check{Z} – žalia, M – mėlyna, angl. RGB). Lentelėje nurodytos aštuonios spalvos, gautos maišant tris grynąsias spalvas (jei pagrindinė spalva yra derinyje, atitinkamame langelyje pažymėtas vienetas, jei nėra – nulis).

Pikselio spalva Pagrindinė spalva	Juoda	Mėlyna	Žalia	Žydra	Raudona	Purpurinė	Geltona	Belta
Raudona	0	0	0	0	1	1	1	1 255
Žalia	0	0	1	1	0	0	1	1 250
Mėlyna	0	1	0	1	0	1	0	1 255

Jei vaizdas būtų sudarytas tik iš šių aštuonių spalvų, tai kiekvienam vaizdo pikseliui laikyti kompiuterio atmintinėje reikėtų 3 bitų. Tikroviškam vaizdui reikia daug spalvų. Jos gaunamos nurodant kiekvienos pagrindinės spalvos intensyvumą intervale [0; 255]. Pavyzdžiui, spalvai pagrindinių spalvų intensyvumas turi būti toks: raudonos – 100, žalios – 150, mėlynos – 200. Kiekvienos pagrindinės spalvos reikšmei užkoduoti kompiuterio atmintinėje reikia 8 bitų. Iš viso pasirinktai spalvai užkoduoti reikia 24 bitų. Vaizdą koduojant 24 bitais galima gauti maždaug 16 milijonų spalvų.

$$\bigcirc P_{e_{X}} = \mathbb{Z}_{e}$$

Garso kodavimas

Oru sklindantis garsas, patekęs į mikrafoną, pakeičimas elektroniniu signalu, kurio įtampa ir dažnis kinta laike. Garso plokštėje šis signalas **skaitmeninamas** – verčiamas dvejetainiu kodu ir po to įrašomas į kompiuterio atmintinę.

Skaitmeninimas vyksta periodiškai matuojant signalo įtampą. Matavimų rezultatai – trumpi impulsai. Matavimų skaičius per sekundę vadinamas **išrankos dažniu**.

Intervalas tarp įtampos mažiausios ir didžiausios reikšmių dalijamas į vienodus lygius – **kvantavimo lygius**. Kiekvienam kvantavimo lygiui priskiriamas dvejetainis kodas

Šiuolaikinės garso plokštės geba išskirti 65536 signalo reikšmes (kiekvienas impulsas koduojamas 16 bitų). Vienas populiariausių garso failų formatų **WAV**, **MIDI** – skirtas instrumentinei muzikai, o **MP3** – įrašo tik žmogaus ausiai išskiriamus garsus.

Tipas	Formatas	Aprašymas
Talkinė grafika	ВМР	Windows šeimos operacinėse sistemose naudojamas grafikos failų ti- pas. Spalvai koduoti naudojama nuo 1 iki 48 bitų. Pailai labai dideli, todėl nėra naudojami tinklalapiuose.
	OIF	Dažnai naudojamas funkcijų grafikams, diagramoms įrašyti. Jis lei- džia įrašyti ne daugiau kaip 256 spalvas, todėl nėra tinkamas spalvo- toms nuotraukoms.
	PNO	Sukurtas formatui OIF pakeisti. Leidžia koduoti spalvas ir 24 bitais. Olaudinant duomenis, vaisdo kokybė neprarandama.
Tail	JPEO	Nedidelės apimties, todėl naudojamas grafikos vaisdams dėti tinkle arba pateiktyse, taip pat skaitmeniniuose fotoaparatuose. Leidžia įra- šyti vaisdą koduojant spalvas 24 arba 32 bitais. Olaudinant duome- nis, parandama vaisdo kokybė.
	TIPF	Naudojamas vaizdui, kuris bus spausdinamas, įrašyti. Duomenis ga- lima suglaudinti beveik dvigubai, nepraradus vaisdo kokybės.
	EPS	Orafikos formatas, naudojamas poligrafijoje. Leidžia įrašyti vektorinį valodą kartu su įdėta į jį taškine valodo ministiūra.
rinė grafika	svo	Naudojamas statiniam vaisdui, taip pat įvairiems efektams ir anima- cijai įrašyti. Vaisdas aprašomas panašiai, kaip ir hipertekstinis doku- mentas.
Vektorinė	PDF	Naudojamas tuomet, kai reikia susieti taškinį vaisdą su vektoriniu tekstu, tekste naudoti nuorodas. Tai universalus formatas. Jo privalumas – dokumentas atrodo vienodai visuose kompiuteriuose, nesvarbu, kokia yra operacinė sistema, aparatinė ir programinė įranga, kokie įdiegti šriftai. Kitas privalumas – duomenų apsauga nuo taisymo ir / ar spausdinimo.

	MIDI	Leidžia įrašyti išimtinai muzikos garsus, nėra galimybės įrašyti kalbos garsų originalaus skambesio. Muziką galima kurti kompiuteriu naudojant klaviatūrą ar kitokį įvedimo įtaisą. Oarsui atgaminti reikalinga garso plokštė. Įrašas yra kompaktiškas, todėl kartais šis formatas naudojamas kaip muzikinis tinklalapių fonas.
senys	WAV	Windows šeimos operacinėse sistemose naudojamas garso failų tipas. Pailo kokybė priklauso nuo išrankos dažnio ir nuo kvantavimo lygių skaičiaus. Duomenys nėra glaudinami, todėl failai yra gana dideli. Dažniausiai naudojamas trumpiems garso efektams žaidimuose ir programose įrašyti.
Garsiniai duomenys	мрз	Oana aukštos kokybės garso failų glaudinimo formatas, gaunamas iš garso failų pašalinus šmogaus negirdimus aukšto dažnio garsus. Sumažina informacijos kiekį tūkstančius kartų, todėl kelių minučių trukmės melodija ar daina lengvai gali būti siunčiama net elektro- niniu paštu.
	AAC	Sukurtas MPJ formato pagrindu. Leidžia stipriai sumažinti duome- nų kiekį išsaugant garso įrašo kokybę. Esant tokiam pat failo dydžiui, AAC formato garso įrašo kokybė geresnė nei MPJ.
	WMA	Windows šeimos operacinėse sistemose naudojamas garso failų tipas. Oarso kokybė labai panaši į MPJ. Turi apsaugos nuo kopijavimo priemones.
	PLAC	Atvirojo kodo. Olaudinant duomenis, garso kokybė neprarandama.

Kompiuterinė abėcėlė

Kompiuteris naudoja dvejetainė skaičiavimo sistemą, kurioje visa informacija koduojama skaičių 0 ir 1 sekomis.

Dešimtainio skaičiaus vertimas dvejetainiu:

Duotą skaičių nuosekliai dalijame iš dviejų, kol gautas dalybos dalmuo bus 0. Užrašius visa liekamas, pradedant paskutine, gaunamas dvejetainis skaičius.

$$13 = 1101_2$$

Dvejetainio skaičiaus vertimas dešimtainiu:

Verčiant dvejetainį skaičių dešimtainiu visi dvejetainio skaičiaus skaitmenys dauginami iš dvejetų, pakeltų laipsniu, kuris atitinka skaitmens poziciją (pradedama nuo 0 pozicijos dešinėje) ir sudedami.

$$1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

Dvejetainių ir dešimtainių skaičių atitikmenys

Dešimtainis	Dvejetainis
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010