

Description

The Power MOSFET is fabricated using the advanced planer VDMOS technology. The resulting device has low conduction resistance, superior switching performance and high avalanche energy.

Features

- ♦ Low R_{DS(on)}
- ◆ Low gate charge (typ. Q_g = 58.3 nC)
- 100% UIS tested
- RoHS compliant

Applications

- Power factor correction.
- Switched mode power supplies.
- LED driver.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	650	V
Continuous drain current (T _C = 25°C)	I _D	20	A
(T _C = 100°C)		12.5	A
Pulsed drain current 1)	I _{DM}	80	Α
Gate-Source voltage	V _{GSS}	±30	V
Avalanche energy, single pulse 2)	E _{AS}	720	mJ
Peak diode recovery dv/dt 3)	dv/dt	5	V/ns
Power Dissipation C C TO-220Fc = 25°C)		45	W
Derate above 25°C		0.36	W/°C
Power Dissipation	P _D		
TO-247/C C C TO-220c = 25°C)		250	W
Derate above 25°C		2	W/°C
Operating junction and storage temperature range	T _J , T _{STG}	-55 to +150	°C
Continuous diode forward current	Is	20	A
Diode pulse current	Is,pulse	80	А

Thermal Characteristics

Parameter	Cumbal	Value		l lmi4	
	Symbol	C C C TO-220F	TO-247/C C C TO-220	Unit	
Thermal resistance, Junction-to-case	Rejc	2.78	0.5	°C/W	
Thermal resistance, Junction-to-ambient	R _{0JA}	62.5	40	°C/W	

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube	Units/Reel
VSM20N65-TC	TO-220C	VSM20N65-TC	30	
VSM20N65-TF	TO-220F	VSM20N65-TF	50	
VSM20N65-T7	TO-247	VSM20N65-T7	50	

Electrical Characteristics T_o = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =0.25 mA	650	-	-	V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =0.25 mA	2	-	4	V
Drain cut-off current	I _{DSS}	V _{DS} =650 V, V _{GS} =0 V,				
		T _j = 25°C	-	-	1	μΑ
		T _j = 125°C	-		100	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =30 V, V _{DS} =0 V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-30 V, V _{DS} =0 V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =10A	-	0.42	0.5	Ω
Dynamic characteristics						
Input capacitance	Ciss	V _{DS} = 25 V, V _{GS} = 0 V,	-	2962	-	
Output capacitance	Coss	f = 1 MHz	-	266	-	pF
Reverse transfer capacitance	C _{rss}		-	18	-	
Turn-on delay time	t _{d(on)}	V _{DD} = 325 V, I _D = 20A	-	18.8	-	
Rise time	t _r	$R_{G} = 10 \Omega, V_{GS} = 15 V$	-	43.4	-	ns
Turn-off delay time	t _{d(off)}		-	98.2	-	
Fall time	t _f		-	16.9	-	
Gate charge characteristics						
Gate to source charge	Q _{gs}	V _{DD} =520 V, I _D =20 A,	-	16.7	-	
Gate to drain charge	Q _{gd}	V _{GS} =0 to 10 V	-	19.3	-	nC
Gate charge total	Qg		-	58.3	-	
Gate plateau voltage	V _{plateau}		-	5	-	V
Reverse diode characteristics						
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =20A	-	-	1.5	V
Reverse recovery time	t _{rr}	V _R =325 V, I _F =20A	-	492.8	-	ns
Reverse recovery charge	Qrr	dI _F /dt=100 A/µs	-	7.46	-	μC
Peak reverse recovery current	I _{rrm}	1	-	30.3	-	Α

Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. L=10mH, I_{AS} = 12A, Starting T_j = 25°C.
- 3. I_{SD} = 20A, di/dt \leq 100A/us, V_{DD} \leq BV_{DS}, Starting T_j= 25°C.

Electrical Characteristics Diagrams

Figure 1. Typical Output Characteristics

Figure 3. On-Resistance Variation vs. Drain Current

Figure 5. Breakdown Voltage vs. Temperature

Figure 2. Transfer Characteristics

Figure 4. Threshold Voltage vs. Temperature

Figure 6. On-Resistance vs. Temperature

Figure 7. Capacitance Characteristics

Figure 9. Maximum Safe Operating Area C C TO-220F

Figure 11. Power Dissipation vs. Temperature

Figure 8. Gate Charge Characteristics

Figure 10. Maximum Safe Operating Area TO-247/C C TO-220

Figure 12. Power Dissipation vs. Temperature

Figure 13. Continuous Drain Current vs. Temperature

Figure 15 Transient Thermal Impedance, Junction to Case C TO-220F

Figure 16. Transient Thermal Impedance, Junction to Case, TO-247/C TO-220

Gate Charge Test Circuit & Waveform

Unclamped Inductive Switching Test Circuit & Waveforms

