Practical Tools for Artificial Intelligence

Learning Objectives

After completing this lecture, you will be able to:-

Describe the primary software tools used in this course

Our Toolset

- Python (programming language, use py3!)
- Anaconda (with Intel's Math Kernel Library, MKL)
 - Intel distribution
- Jupyter notebooks (interactive coding)
- Numpy, SciPy, Pandas (numerical computation)
- Matplotlib, Seaborn (data visualization)
- Scikit-learn (machine learning)

Jupyter Notebook

- Polyglot analysis environment
 —blends multiple languages
- Jupyter is an anagram of: Julia, Python, and R
- Supports multiple content types: code, narrative text, images, movies, etc.

Jupyter Notebook

- HTML & Markdown
- LaTeX (equations)
- Code

Jupyter Notebook

 Code is divided into cells to control execution

- Enables interactive development
- Ideal for exploratory analysis and model building

Jupyter Notebook – Cell Magic

%matplotlib inline: display plots inline in Jupyter notebook

%%timeit: time how long a cell takes to execute

- %run filename.ipynb: execute code from another notebook or python file
- %load filename.py: copy contents of the file and paste into the cell

Jupyter Notebook – Cell Magic

- %matplotlib inline: display plots inline in Jupyter notebook
- %%timeit: time how long a cell takes to execute
- %run filename.ipynb: execute code from another notebook or python file
- %load filename.py: copy contents of the file and paste into the cell

Jupyter Notebook Keyboard Shortcuts

Keyboard shortcuts

The Jupyter Notebook has two different keyboard input modes. **Edit mode** allows you to type code/text into a cell and is indicated by a green cell border. **Command mode** binds the keyboard to notebook level actions and is indicated by a grey cell border with a blue left margin.

Command Mode (press Esc to enable)

F: find and replace

Ctrl-Shift-P: open the command palette

Enter: enter edit mode

Shift-Enter : run cell, select below

Ctrl-Enter: run selected cells

Alt-Enter: run cell, insert below

Shift-J: extend selected cells below

A: insert cell above

B: insert cell below

x: cut selected cells

c : copy selected cells

Shift-V: paste cells above

Keyboard shortcuts can be viewed from Help → Keyboard Shortcuts

Jupyter Notebook Re-use

Extracting code from a Jupyter notebook

Convert from command-line

>>> jupyter nbconvert --to python notebook.ipynb

Export from Notebook

Pandas

- Library for computation with tabular data
- Mixed types of data allowed in a single table
- Columns and rows of data can be named
- Advanced data aggregation and statistical functions

pandas

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

Pandas Basic Data Structures

Type

Pandas Name

Vector (1 Dimension)

Series

Array (2 Dimensions)

DataFrame

Pandas Series

Creating a Pandas Series

Code

```
>>> 0 3620
1 7891
2 9761
3 3907
4 4338
5 5373
Name: steps, dtype: int64
```


Pandas Series

Add a date range to a Series

Code

Output

>>> 2015-03-29 3620
2015-03-30 7891
2015-03-31 9761
2015-04-01 3907
2015-04-02 4338
2015-04-03 5373
Freq: D, Name: steps,

Pandas Series

Select data by the index values

Code

```
# Just like a dictionary
print(step_counts['2015-04-01'])

# Or by index position--like an array
print(step_counts[3])

# Select all of April
print(step_counts['2015-04'])
```

Output

>>> 3907

>>> 3907

>>> 2015-04-01 3907 2015-04-02 4338 2015-04-03 5373

Freq: D, Name: steps,

Pandas Datatypes

Data types can be viewed and converted

Code

```
# View the data type
print(step_counts.dtypes)

# Convert to a float
step_counts = step_counts.astype(np.float) >>> float64

# View the data type
print(step_counts.dtypes)
```


Pandas Datatypes

Data types can be viewed and converted

Code

```
# Create invalid data
step_counts[1:3] = np.NaN

# Now fill it in with zeros
step_counts = step_counts.fillna(0.)
# equivalently,
# step_counts.fillna(0., inplace=True)
print(step_counts[1:3])
```

Output

```
>>> 2015-03-30 0.0 2015-03-31 0.0
```

Freq: D, Name: steps,

dtype: float64

DataFrames can be created from lists, dictionaries, and Pandas Series

Code

Output

print(activity_df)

Labeled columns and an index can be added

Code

Output

	Walking	Cycling
2015-03-29	3620	10.7
2015-03-30	7891	0.0
2015-03-31	9761	NaN
2015-04-01	3907	2.4
2015-04-02	4338	15.3
2015-04-03	5373	10.9

DataFrame rows can be indexed by row using the 'loc' and 'iloc' methods

Code

Select row of data by index name print(activity_df.loc['2015-04-01'])

```
# Select row of data by integer position
print(activity_df.iloc[-3])
```

Output

>>> Walking 3907.0 Cycling 2.4

Name: 2015-04-01,

dtype: float64

>>> Walking 3907.0 Cycling 2.4

Name: 2015-04-01,

dtype: float64

DataFrame columns can be indexed by name

Code

```
# Name of column
print(activity_df['Walking'])
```

Output

```
>>> 2015-03-29 3620 2015-03-30 7891 2015-03-31 9761 2015-04-01 3907 2015-04-02 4338 2015-04-03 5373
```

Freq: D, Name: Walking,

DataFrame columns can be indexed as properties

Code

Object-oriented approach print(activity_df.Walking)

Output

```
>>> 2015-03-29 3620
2015-03-30 7891
2015-03-31 9761
2015-04-01 3907
2015-04-02 4338
2015-04-03 5373
```

Freq: D, Name: Walking,

DataFrame columns can be indexed by integer

Code

```
# First column
print(activity_df.iloc[:,0])
```

Output

```
>>> 2015-03-29 3620
2015-03-30 7891
2015-03-31 9761
2015-04-01 3907
2015-04-02 4338
2015-04-03 5373
```

Freq: D, Name: Walking,

CSV and other common filetypes can be read with a single command

Code

```
# The location of the data file
filepath = 'data/Iris_Data/Iris_Data.csv'

# Import the data
data = pd.read_csv(filepath)

# Print a few rows
print(data.iloc[:5])
```


	sepal_length	sepal_width	petal_length	petal_width	species	
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	

Data can be (re-)assigned to a DataFrame column

Code

Print a few rows and columns
print(data.iloc[:5, -3:])

Output

_					
	petal_width	species	sepal_area		
0	0.2	Iris-setosa	17.85		
1	0.2	Iris-setosa	14.70		
2	0.2	Iris-setosa	15.04		
3	0.2	Iris-setosa	14.26		
4	0.2	Iris-setosa	18.00		

Functions can be applied to columns or rows of a DataFrame or Series

Code

Output

	petal_width	species	abbrev
0	0.2	Iris-setosa	setosa
1	0.2	Iris-setosa	setosa
2	0.2	Iris-setosa	setosa
3	0.2	Iris-setosa	setosa
4	0.2	Iris-setosa	setosa

Two DataFrames can be concatenated along either dimension

Code

```
print(small_data.iloc[:,-3:])
```

See the 'join' method for
SQL style joining of dataframes

Output

	petal_length	petal_width	species
0	1.4	0.2	Iris-setosa
1	1.4	0.2	Iris-setosa
148	5.4	2.3	Iris-virginica
149	5.1	1.8	Iris-virginica

Using the groupby method to calculate aggregated DataFrame statistics

Code


```
>>> species
   Iris-setosa 50
   Iris-versicolor 50
   Iris-virginica 50
   dtype: int64
```


Pandas Statistical Calculations

Pandas contains a variety of statistical methods – mean, median, and mode

Code

Mean calculated on a DataFrame print(data.mean())

```
# Median calculated on a Series
print(data.petal_length.median())
```

```
# Mode calculated on a Series
print(data.petal_length.mode())
```

```
>>> sepal_length 5.843333
    sepal_width 3.054000
    petal_length 3.758667
    petal_width 1.198667
    dtype: float64
```


Pandas Statistical Calculations

Standard deviation, variance, SEM and quantiles can also be calculated

Code

Standard dev, variance, and SEM

```
# As well as quantiles
print(data.quantile(0))
```

Output

```
>>> 1.76442041995
3.11317941834
```

0.144064324021

```
>>> sepal_length 4.3
sepal_width 2.0
```

petal_length 1.0

petal_width 0.1

Name: 0, dtype: float64

Pandas Statistical Calculations

Multiple calculations can be presented in a DataFrame

Code

Output

print(data.describe())

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Pandas DataFrames Samples

DataFrames can be randomly sampled from

Code

print(sample.iloc[:,-3:])

Output

>>>

	petal_length	petal_width	species	
73	4.7	1.2	Iris-versicolor	
18	1.7	0.3	Iris-setosa	
118	6.9	2.3	Iris-virginica	
78	4.5	1.5	Iris-versicolor	
76	4.8	1.4	Iris-versicolor	

SciPy and NumPy also contain a variety of statistical functions.

Visualization Libraries

Visualizations can be created in multiple ways:-

- Matplotlib
- Pandas (via Matplotlib)
- Seaborn
 - Statistically-focused plotting methods
 - Global preferences incorporated by Matplotlib

Basic Scatter Plots with Matplotlib

Scatter plots can be created from Pandas Series

Code

Basic Scatter Plots with Matplotlib

Multiple layers of data can also be added

Code

Histograms with Matplotlib

Histograms can be created from Pandas Series

Code

plt.hist(data.sepal_length, bins=25)

Customizing Matplotlib Plots

Every feature of Matplotlib plots can be customized

Code

fig, ax = plt.subplots()

```
# Set position of ticks and tick labels
ax.set_yticks(np.arange(0.4,10.4,1.0))
ax.set_yticklabels(np.arange(1,11))
ax.set(xlabel='xlabel', ylabel='ylabel',
```

title='Title')

Incorporating Statistical Calculations

Statistical calculations can be included with Pandas methods

Code

Statistical Plotting with Seaborn

Joint distribution and scatter plots can be created

Code

Statistical Plotting with Seaborn

Correlation plots of all variable pairs can also be made with Seaborn

Code

End of Lecture

Many thanks to Intel
Software for providing a
variety of resources for
this lecture series

