PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2005-023070

(43) Date of publication of application: 27.01.2005

(51)Int.Cl.

CO7D401/04 CO7C 49/92 CO7F 15/00 CO8K 5/56 C08L101/00 CO9K 11/06 H05B 33/14

(21)Application number: 2004-171194

(71)Applicant: HITACHI CHEM CO LTD

(22)Date of filing:

09.06.2004

(72)Inventor: NOMURA MICHIYUKI

MORISHITA YOSHII TSUDA YOSHIHIRO

(30)Priority

Priority number: 2003164321 Priority date: 09.06.2003

Priority country: JP

(54) METAL COORDINATION COMPOUND, POLYMER COMPOSITION AND ORGANOELECTROLUMINESCENT ELEMENT OBTAINED USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a metal coordination compound exhibiting blue phosphorescence of excellent color purity, a polymer composition, and an organoelectroluminescent element using the same. SOLUTION: The metal coordination compound is represented by either one of formulae (1)-(6) (wherein M is Ir, Rh, Ru, Os, Pd or Pt; n is 2 or 3; when M is Ir, Rh, Ru or Os and n is 2, another bidentate ligand is bonded to M; the ring A is a cyclic compound containing a nitrogen atom bonded to M; X1-X7 are each a hydrogen atom, a halogen atom, a cyano group, a nitro group, a straight chain, cyclic or branched alkyl or halogensubstituted alkyl group, an aryl group, a heteroaryl group, an aralkyl group, a halogen-substituted aryl group, a halogen-substituted heteroaryl group or a halogensubstituted aralkyl group; and the ring A may bear the same substituent group as the groups defined for X1-X7).

(19) 日本国特許厅(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2005-23070 (P2005-23070A)

(43) 公開日 平成17年1月27日(2005.1.27)

(51) Int.C1. ⁷	F 1			テーマコード(
CO7D 401/04	CO7D	401/04		3K007	
CO7C 49/92	CO7C	49/92		4CO63	
CO7F 15/00	CO7F	15/00	E	4H006	
CO8K 5/56	CO8K	5/56	•	4H050	
CO8L 101/00	CO8L	101/00		4J002	
	審査請求 オ	·請求 請求項	頁の数 6 OL	(全 26 頁) 最	終頁に続く
(21) 出願番号	特願2004-171194 (P2004-171194)	(71) 出願人	000004455		
(22) 出願日	平成16年6月9日 (2004.6.9)		日立化成工業株式	大会社	
(31) 優先權主張番号	特願2003-164321 (P2003-164321)	1	東京都新宿区西新	所宿2丁目1番1	号
(32) 優先日	平成15年6月9日 (2003.6.9)	(74) 代理人	100083806		
(33) 優先権主張国	日本国 (JP)		弁理士 三好 秀	春和	
		(74) 代理人	100100712		
			弁理士 岩▲崎▼	▼ 幸邦	
	v **	(74) 代理人	100087365		
			弁理士 栗原 章	ţ	
		(74) 代理人	100100929		
			弁理士 川又 沿	建雄	
		(74) 代理人	100095500	•	
			弁理士 伊藤 正	E和	
,		(74) 代理人	100101247		
			弁理士 高橋 俊	& —	
				最終頁	に続く

(54) 【発明の名称】金属配位化合物、ポリマー組成物、およびこれらを用いた有機エレクトロルミネセンス素子

(57)【要約】

【課題】 色純度に優れる青色りん光発光を有する金属配位化合物、ポリマー組成物、及びこれらを用いた有機エレクロルミネッセンス素子を提供すること。

【解決手段】 式(1)~(6)の何れかで表される金属配位化合物。

【化1】

【特許請求の範囲】

【請求項1】

式(1)~(6)の何れかで表されることを特徴とする金属配位化合物。

【化红】

【請求項2】

前記式(1)~(6)において、環Aが、 X_1 ~ X_7 で定義される基と同様の置換基を有していてもよいピリジン、キノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾトリアゾール、イミダゾール、ピラゾール、オキサゾール、チアゾール、トリアゾール、ベンゾピラゾールまたはトリアジンである請求項1に記載の金属配位化合物。

【請求項3】

前記式(1)~(6)における X_1 ~ X_7 、あるいは、環Aが有する X_1 ~ X_7 と同様に定義される置換基の少なくとも1つが、フッ素原子あるいはトリフルオロメチル基である請求項1または2に記載の金属配位化合物。

【請求項4】

30

前記式(1)~(6)におけるMがIrである請求項1~3いずれかに記載の金属配位化合物。

【請求項5】

請求項1~4いずれかに記載の金属配位化合物、並びに共役及び/又は非共役ポリマーを含むポリマー組成物。

【請求項6】

請求項1~4いずれかに記載の金属配位化合物、または請求項5記載のポリマー組成物を用いて作製された有機エレクトロルミネセンス素子。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、新規な金属配位化合物、ポリマー組成物、およびこれらを用いた有機エレクトロルミネセンス(EL)素子に関する。

【背景技術】

[0002]

近年、エレクトロルミネセンス素子は、例えば、白熱ランプ、ガス充填ランプの代替えとして、大面積ソリッドステート光源用途に注目されている。もう一方で、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイを置き換えることのできる最有力の自発光ディスプレイとしても注目されている。特に、素子材料が有機材料によって構成されている有機エレクトロルミネセンス(EL)素子は、低消費電力型のフルカラーFPDとして製品化が進んでいる。

[0003]

これまで、一般的な有機 E L 素子は、励起一重項が基底状態に緩和する際の蛍光を取り出していた。しかし、有機薄膜に電荷を注入してできる励起子の割合は、統計的に一重項:三重項=1:3といわれており、有機 E L 素子の内部量子効率の理論的限界値は25%といわれている。このことは、有機 E L 素子を低消費電力化する上で一つの障害となっていた。

[0004]

この問題を解決する一つの手段として、励起三重項からのりん光を利用する素子の検討がなされている。励起三重項からのりん光を利用できれば、励起一重項からの蛍光を利用した場合より原理的に少なくとも3倍の発光量子収率が期待できる。さらに、エネルギー的に高い一重項からの三重項への項間交差による励起子の利用も考え合わせると、原理的には4倍、即ち100%の発光量子収率が期待できる。

[0005]

これまでの研究例としては、例えばM.A.Baldoら.,Appl.Phys.Lett.1999.75.4などがある。この文献では、以下に示す材料が用いられている。各材料の略称は以下の通りである

[0006]

A 1 q a : アルミーキノリノール錯体 (tris(8-quinolinolato)aluminum)

 $\alpha - N P D : N, N'-Di-naphthalen-1-yl-N, N'-diphenyl-biphenyl-4, 4'-diamine$

C B P: 4,4'-N,N'-dicarbazole-biphenyl

B C P: 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline

Ir (ppy) 3: イリジウムーフェニルピリジン錯体 (tris(2-phenylpyridine)iridium)

[0007]

他に、励起三重項からの発光を利用した例には、特開平11-329739号公報、特開平11-256148号公報、特開平8-319482号公報などがある。

【非特許文献1】M.A.Baldoら.,Appl.Phys.Lett.1999.75.4

【特許文献1】特開平11-329739号公報

【特許文献2】特開平11-256148号公報

10

20

30

50

【特許文献 3】特開平8-319482号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

しかしながら、上記、りん光発光を用いたフルカラー有機 E L 素子を作製しようとした場合、色純度の良い青色りん光発光を有する金属配位化合物が見出されていない。

[0009]

本発明は、上記した従来の問題に鑑み、色純度に優れる青色りん光発光を有する金属配位化合物を提供することを目的とする。また、本発明は、前記金属配位化合物を含むポリマー組成物を提供することを目的とする。さらに、本発明は、前記の金属配位化合物又は前記のポリマー組成物を用いた有機エレクトロルミネッセンス素子を提供することを目的とする。

【課題を解決するための手段】

[0010]

本発明者らは鋭意検討した結果、配位子としてカルバゾール誘導体を有する金属配位化合物が、色純度に優れる青色りん光発光を有する優れたりん光発光材料であることを見出し、本発明を完成するに至った。

$[0\ 0\ 1\ 1\]$

すなわち、本発明は、以下の式 (1) ~ (6) の何れかで表される金属配位化合物に関する。

【化1】

[0012]

(4)

(式中、MはIr、Rh、Ru、Os、PdまたはPtであり、nは2または3である。 MがIr、Rh、RuまたはOsであって、nが2の場合、Mにはさらに他の二座配位子 が結合する。環AはMに結合した窒素原子を含む環状化合物である。X1~X7は水素原

(6)

(5)

10

20

20

子、ハロゲン原子、シアノ基、ニトロ基、炭素数 $1 \sim 2$ 2 個の直鎖、環状もしくは分岐アルキル基、又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数 $6 \sim 2$ 1 個のアリール基、炭素数 $2 \sim 2$ 0 のヘテロアリール基もしくは炭素数 $7 \sim 2$ 1 のアラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基、ハロゲン置換アラルキル基のいずれであってもよく、また、 $X_1 \sim X_7$ は同一であっても異なっていてもよく、環 A は $X_1 \sim X_7$ で定義される基と同様の置換基を有していてもよい。)

[0013]

また本発明は、前記の金属配位化合物を、共役あるいは非共役ポリマーに混合あるいは共重合させたポリマー組成物に関する。

[0014]

また本発明は、前記の金属配位化合物、または前記のポリマー組成物を用いて作製された有機エレクトロルミネセンス素子に関する。

【発明の効果】

[0015]

本発明の金属配位化合物は、例えば、発光特性に優れた有機 E L 素子用材料として好適である。これらは、中でも、発光色の短波長化に有効である。

【発明を実施するための最良の形態】

[0016]

有機ELにおいて、青色のりん光発光を得るためには、最低励起状態のエネルギーレベルが高いことが必要である。しかしながら、これまでの金属配位化合物ではその最低励起状態のエネルギーレベルが青色発光するためには低かったため、発光色が青緑色から赤色になっていたと考えられる。

[0017]

そこで、本発明者らは種々の検討を行い、下記式(1)~(6)で示される金属配位化合物が、青色のりん光発光を有することを見出した。

40

50

[0018]

(式中、MはIr、Rh、Ru、Os、PdまたはPtであり、nは2または3である。MがIr、Rh、RuまたはOsであって、nが2の場合、Mにはざらに他の二座配位子が結合する。環AはMに結合した窒素原子を含む環状化合物である。 $X_1 \sim X_7$ は水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数 $1 \sim 22$ 個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数 $6 \sim 21$ 個のアリール基、炭素数 $2 \sim 20$ のヘテロアリール基もしくは炭素数 $7 \sim 21$ のアラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換ヘテロアリール基、ハロゲン間換アラルキル基のいずれであってもよく、また、 $X_1 \sim X_7$ は同一であっても異なっていてもよく、環Aは $X_1 \sim X_7$ で定義される基と同様の置換基を有していてもよい。)

[0019]

以下に $X_1 \sim X_6$ 及びRで表される置換基の例を示すが、本発明においては、以下に限定されるものではない。

[0020]

X₁~X₇及びRの例としては、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、シアノ基、ニトロ基、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソプチル基、tertーブチル基、シクロブロピル基、ブチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ベキシル基、シクロヘキシル基、ベプチル基、シクロヘプチル基、オクチル基、ノニル基、デシル基、フェニル基、トリル基、キシリル基、メシチル基、グメニル基、ベンジル基、フェネチル基、メチルベンジル基、ジフェニルメチル基、スチリル基、シンナミル基、ビフェニル残基、ターフェニル残基、ナフチル基、アントリル基、フルオレニル基、フラン残基、チオフェン残基、ピロール残基、オキサゾール残基、チアゾール残基、イミダゾール残基、

ピリジン残基、ピリミジン残基、ピラジン残基、トリアジン残基、キノリン残基、キノキサリン残基またはこれらがフッ素原子、塩素原子、臭素原子、ヨウ素原子等で置換された ハロゲン置換体を挙げることができる。

[0021]

前記式(1)~(6)で示される金属配位化合物のうち、環Aが、以下に示す構造を有する環状化合物のいずれかであることが好ましく、 $X_1 \sim X_7$ (以下、まとめて置換基 $X_1 \sim X_2 \sim X_3$)で定義される基と同様の置換基を有していてもよいピリジン、キノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾトリアゾール、イミダゾール、ピラゾール、オキサゾール、チアゾール、トリアゾール、ベンゾピラゾールまたはトリアジンであることが好ましく、 $X_1 \sim X_2 \sim X_3 \sim X_4 \sim X_$

【化3】

[0022]

(ここで、 $Z_1 \sim Z_6$ は水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数 $1 \sim 2$ 2 個の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数 $6 \sim 2$ 1 個のアリール基、炭素数 $2 \sim 2$ 0 のヘテロアリール基もしくは炭素数 $7 \sim 2$ 1 のアラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置

換ヘテロアリール基、ハロゲン置換アラルキル基のいずれであってもよく、また、 Z₁ ~ Z₆ は同一であっても異なっていても良い。)

∷[0 0 2 3·]

また、本発明において、式(1)~(6)中、MはIrであることが好ましい。

[0024]

金属MがIr、Rh、Ru、Osの場合で、n=2の場合、金属Mに結合するもう一つの配位子は、以下に示す構造を有する化合物のいずれかであることが好ましい。

【化4】

$$0 \longrightarrow Y_1 \qquad Y_1 \longrightarrow Y_2 \qquad Y_3 \qquad Y_4 \longrightarrow Y_4$$

[0025].

(ここで $Y_1 \sim Y_4$ は水素原子、ハロゲン原子、シアノ基、ニトロ基、炭素数 $1 \sim 220$ の直鎖、環状もしくは分岐アルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、炭素数 $6 \sim 210$ のアリール基、炭素数 $2 \sim 200$ の つテロアリール基もしくは炭素数 $1 \sim 210$ アラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アリール基、ハロゲン置換フラルキル基のいずれであってもよく、また、 $1 \sim 100$ は同一であっても異なっていても良い。)

[0026]

前記式(1)~(6)で示される金属配位化合物において、置換基Xn、あるいは、環Aが有するXnと同様に定義される置換基の少なくとも1つが、発光波長の短波長化に有効であるという観点から、ハロゲン原子、シアノ基またはトリフルオロメチル基であることが好ましく、フッ素原子、塩素原子、シアノ基またはトリフルオロメチル基であることがより好ましく、フッ素原子またはトリフルオロメチル基であることがさらに好ましく、フッ素原子であることが最も好ましい。置換基Xn、あるいは、環Aが有するXnと同様に定義される置換基の少なくとも1つが、前記いずれかの置換基を有する場合、他のXnは水素原子である場合が多いが、さらに他の置換基であってもよい。例えば、Xァルキル基またはハロゲン置換アルキル基であることが好ましい。

[0027]

前記式(1)~(6)で示される金属配位化合物中、合成が容易であるという観点から、式(1)または(4)で示される金属配位化合物であることが好ましい。

[0028]

本発明の金属配位化合物は、りん光性発光を有するものであり、最低励起状態は三重項MLCT(Metal-to-Ligand charge transfer)励起状態か、 $\pi-\pi^*$ 励起状態であると考えられる。これらの状態から基底状態に遷移するときにりん光性発光が生じる。

[0029]

本発明の発光材料のりん光量子収率は0. 1から0. 9と高い値が得られ、りん光寿命は $1\sim6$ 0 μ s であった。りん光寿命が短いことは、有機 EL 素子にしたときに発光効率の高効率化の条件となる。つまり、りん光寿命が長いと、励起三重項状態でいる分子の割合が多くなり、高電流密度において、 $\tau-\tau$ アニヒレーションに基づく発光効率の低下が生じる。本発明の金属配位化合物は、りん光発光効率が高く発光寿命も短いので有機 EL

10

20

30

40

素子の発光材料に適した材料である。

[0030]

また、前記式(1)~(6)で示される金属配位化合物は最低励起状態のエネルギーレベルが高いことが期待され、有機 E L の青色りん光発光材料として適している。

[0031]

(金属配位化合物の合成方法の詳細な説明)

以下、本発明の金属配位化合物の合成方法を、金属配位化合物の具体例を用いながら詳細に説明する。

[0032]

本発明の金属配位化合物は、種々の当業者公知の合成法により製造できる。例えば、S. Lamanskyら.,J.Am.Chem.Soc.2001.123.に記載されている方法を用いることができる。本発明で用いられる前記式(1)~(6)で示される金属配位化合物の合成経路の一例(環Aが置換ピリジンの場合)をイリジウム配位化合物を例として示す。なお、ここで説明するのは、以下表1に示した(2)に関するものであるが、他の例示化合物についてもほぼ同じ方法で合成することができる。

[0033]

(配位子しの合成)

【化5】

$$\begin{array}{c} X_3 \\ X_4 \\ X_5 \\ X_1 \\ X_7 \\ X_6 \end{array} \begin{array}{c} Br \\ Mg \\ THF \end{array} \begin{array}{c} (CH_3O)_3B \\ THF_7-78C:2h \\ TOluene,reflux:10h \\ X_2 \\ X_1 \\ X_7 \\ X_6 \end{array} \begin{array}{c} (CH_3O)_3B \\ (CH_3O)_3B \\ TOluene,reflux:10h \\ (CH_3O)_3B \\$$

[0034]

(イリジウム錯体の合成)

【化6】

Glycerol, 180C:8h

[0035]

または、

【化7】

[0036]

金属配位化合物の具体例として、下記に例示化合物を示すが、これらに限定されるものではない。なお、表 1 中の X 、 ~ X 。は環 A の置換基を表す。

【表1】

表 1

(金属配位化合物の例示)

No	М	n	カルバゾール 単位	X,	環A	X,	X ₂	X ₃	X ₄	その他 配位子
(1)	lr	2	O X	CH ₃	X, X ₂	Н	Н	Н	Н	CH ₃
(2)	۱r	3	Q X	CH ₃	X, X,	Н	Н	Н	Н	_
(3)	Ir	2		CH ₃	X ₁ X ₂ X ₃	Н	Н	Н	Н	
(4)	lr	2		C ₂ H ₅	x, x,	Н	CF ₃	Н	Н	CH ₃
(5)	l r	3		C₂H₅	X, X ₂ X ₃	Н	CF ₃	Н	Н	-
(6)	.lr	2		C₂H₅	X, X ₂ X ₃	Н	CF ₃	Н	Н	
(7)	lr	2		C₂H₅	X, X ₂ X ₃	Н	Н	CF ₃	Н	о Сн ₃
(8)	Ir	3		C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	-
(9)	lr	2		C₂H₅	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	2.
(10)	l r	2		C₂H₅	x, x ₂ x ₃	Н	Н	NO ₂	Н	СНэ СНэ
(11)	lr	3		C₂H₅	X, X,	Н	Н	NO ₂	Н	-
(12)	lr	2		C₂H₅	X ₁ X ₂ X ₃	Н	Н	NO ₂	Н	Q.
(13)	lr.	2	Q X	C₂H₅	X, X ₂ X ₃ X ₄	Н	Н	F	H	CH,
(14)	lr	3		C₂H₅	X, X,	Н	Н	F	Н	-

10

20

30

					•					
(15)	lr	2	O _N	C ₂ H ₅	×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×	Н	H	F	H *	\mathcal{L}
(16)	Tr	2	ON S	C ₂ H ₅	X, X,	Н	H	CN	H	Сн.
(17)	Ir	3		C₂H₅	X, X ₂ X ₃	H.	Н	CN	H-	
(18)	lr	2		C ₂ H ₅	X, X, x, X,	Н	Н	CN	Н	J.
(19)	Ir	2	O'N'	CH ₂ CF ₃	X, X,	Н	Н	Н	H	CH,
(20)	lr	3		CH ₂ CF ₃	X, X ₂	Н	H	Н	H	
(21)	lr	2	O O	CH ₂ CF ₃	X, X2 X, X,	Н	Н	Н	Н	
(22)	lr	2		CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	CF ₃	Н	Н	CH ₃
(23)	l r	3	O C	CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	CF ₃	Н	Н	- · ,
(24)	1r	2		CH ₂ CF ₃	X, X ₂ X ₃	H	CF ₃	Н	H	$\mathcal{L}_{\mathbf{c}}$
(25)	l r	2		CH ₂ CF ₃	X, X ₂	Н	Н	CF ₃	Ή	CH ₃
(26)	lr	3	ON X	CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	_
(27)	lr	2		CH ₂ CF ₃	×, ×,	Н	Н	CF ₃	Н	
(28)	ir	2	Q C	CH ₂ CF ₃	X, X,	Н	Н	NO ₂	Н	CH ₃
(29)	Ir	3	Q _N	CH ₂ CF ₃	X, X, X,	Н	Н	NO _z	Н	-
(30)	Ir	2		CH ₂ CF ₃	X, X,	Н	Н	NO ₂	Н	S.
				٠,						

20

30

40

[0038]

		1						1		T
(31)	1r	2	ON THE RESERVE TO THE	CH ₂ CF ₃	X,	Н	H	F	Н	Сн ³
(32)	İr	3		CH ₂ CF ₃	X, X,	Н	Н	F	Н	_
(33)	lr	2		CH ₂ CF ₃	X, X ₂ X,	Н	Н	F	Н	2.
(34)	l r	2	QXX	CH ₂ CF ₃	X, X ₉	Н	Н	CN	Н	CH ³
(35)	Ir	3	Q X	CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	Н	CN	Н	-
(36)	Ir	2		CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	Н	CN	Н	Q.
(37)	Ir	2	F ₃ C N X ₇	CH ₃	X, X, X,	Н	Н	Н	Н	CH ₉
(38)	lr	3	F ₃ C N X ₇	CH₃	X, X ₂ X ₃	Н	Н	Н	Н	_
(39)	ir	2	F ₃ C	CH ₃	X, X ₂ X ₃	Н	Н	H	Н	
(40)	Ir	2	F ₃ C N × ₇	CH₃	X ₁ X ₂ X ₃	Н	CF ₃	Н	Н	CH ₃
(41)	Ir	3	F ₃ C N X ₇	CH ₃	X, X, x,	Н	CF ₃	Н	H.	-
(42)	lr	2	F ₃ C N X ₇	CH ₃	X, X,	Н	CF ₃	Н	Н	
(43)	ir	2	F ₃ C N N N N N N N N N N N N N N N N N N N	CH₃	X, X, X, X,	Н	Н	CF ₃	Н	CH3
(44)	l r	3	F ₃ C N X ₇	CH₃	X, X, X,	Н	H *	CF ₃	Н	_
(45)	lr .	2	F ₃ C	CH ₃	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	.
(46)	lr	2	F ₃ C	CH ₃	$X_1 \longrightarrow X_2 \times X_3$	Н	Н	NO ₂	Н	CH3

20

30

40

[0039]

(47) Ir 3 FC. CH3 H H H NO2 H - (48) Ir 2 FC. CH3 H H H NO2 H CH3 H H H H H F H H F H H F H H F H H F H H F H H CH3 F CH4 F H H H F H H CH4 F H											
(48) Ir 2 ************************************	(47)	۱r	3		CH ₃	X, X,	Η.	Н	NO ₂	Н	-
(49) Ir 2	(48)	۱r		F ₃ C	CH ₃		Н	Н	NO ₂	Н	Ĵ.
(50) Ir 3	(49)	Ir	2	F ₃ C	CH ₃	X, X ₂	Н	Н -	F	Н	ॐ
(51)	(50)	Ir	3	F ₃ C	CH ₃	· >=<	Н.	Η.	F	Н	-
(52) Ir 2	(51)	lr	2	F ₃ C	CH ₃	X, X, X,	Н	Н	F	Н	7.
(54) Ir 2 F ₃ C CH ₂ CF ₃ X H H H H H CF ₃ H H CF ₃ H H CF ₃ H CF ₄ CH ₂ CF ₃ X H CF ₄ H CF ₃ H CF ₄ H CF ₃ H CF ₄ H CF ₃ H CF ₄ H CF ₄ H CF ₄ H CF ₅ H CF ₄ CH ₂ CF ₅ X CH ₂ CF ₅ CH ₂	(52)	lr	2			X, X2 X, X,		Н			CH ³
(55) Ir 2 F ₃ C CH ₂ CF ₃ X H H H H H CF ₃ H CF ₃ CH ₂ CF ₃ X X X H H CF ₃ H CF ₃ CH ₂ CF ₃ X X X X X X X X X X X X X X X X X X X	(53)	Ir	3			X, X, X,			÷		
(55) Ir 2	(54)	۱r	2		CH₃	X ₁ X ₂ X ₃	H.	,Н .	CN	H	
(57) Ir 2 F ₃ C CH ₂ CF ₃ X _x H H H H H CF ₃ H H CF ₃ H H CF ₃ H H CF ₃ H CF ₄ CF ₅ CH ₂ CF ₃ CH ₂ C	(55)	Ir	2		CH ₂ CF ₃	x, x ₂ x,	H	Н		H	⟨⊅
(58) Ir 2 F ₃ C CH ₂ CF ₃ A H CF ₃ H A H CF ₃ H CF ₄ CH ₂ CF ₃ A A CH ₂ CF ₃ A	(56)	۱r	3		CH ₂ CF ₃	X, X ₂	H	Н	Н	H	- ,
$(58) \text{If} 2 \text{CH}_2\text{CF}_3 $	(57)	lr	2		CH ₂ CF ₃	X, X, X,	Н	Н	Н	Н	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(58)	.lr	2			X, X,	Н		Н	Н	CH ₃
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(59)	lr	3	F ₉ C	CH ₂ CF ₃	X, X ₂ X ₃	H * .				-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(60)	lr	2	F ₃ C		X, X,	Н				, C
(62) Ir 3 Fac CH ₂ CF ₃ × H H CF ₃ H -	(61)	Ir	2	F ₃ C		X,	Н				
	(62)	lr	3	F ₃ C	CH ₂ CF ₃	X, X2	Н	Н	CF ₃	H	_

[0040]

(63)	۱r	2	F ₃ C	CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	
(64)	۱r	2	F ₃ C N X Y	CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	H	NO ₂	Н	CH ₃
(65)	۱r	3	F ₃ C N X ₇	CH ₂ CF ₃	X, X,	Н	Н	NO ₂	Н	_
(66)	l'r	2	F ₃ C N X ₇	CH ₂ CF ₃	X, X,	Н	Н	NO ₂	Н	
(67)	۱r	2	F ₃ C N X ₇	CH ₂ CF ₃	X, X,	Н	Н	F	Н	Сн ₃
(68)	l r	3	F ₃ C N X ₇	CH ₂ CF ₃	X, X ₂ X ₃	Н	Н	F	Н	_
(69)	l r	2	F ₃ C N X ₇	CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	Н	F	Н	
(70)	۱r	2	F ₃ C N X ₇	CH ₂ CF ₃	X, X _s	Н	Н	CN	Н	CH3
(71)	۱r	3	F ₃ C N X ₇	CH ₂ CF ₃	X ₁ X ₂ X ₃	Н	Н	CN	H	-
(72)	lr	2	F ₃ C N X ₇	CH ₂ CF ₃	X_1 X_2 X_3	Н	Н	CN	Н	
(73)	lr	2		t−C₄H ₉	X ₁ X ₂ X ₃	Н	Н.	Н	Н	OCH3
(74)	۱r	3		t-C₄H ₉	X, X ₂ X ₃	Н	Н	Н	Н	_
(75)	lr	2		t−C₄H ₉	X, X ₂ X,	Н	Н	H .	Н	
(76)	۱r	2		t−C₄H ₉	X ₁ X ₂ X ₃	Н	CF ₃	Н	H	СH ³
(77)	1r	3	ON X7	t−C₄H ₉	X_1 X_2 X_3 X_4	Н	. CF ₃	Н	Н	-
(78)	1r	2		t−C₄H₃	X ₁ X ₂ X ₃	Н	CF ₃	Н	Н	Ĵ.

20

30

40

[0041]

(79)	۱r	2		t-C₄H ₉	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	СН, СН,
(80)	۱r	3		t−C₄H ₉	X, X, X,	Н	Н	CF ₃	H	
(81)	۱r	2		t,−C₄H ₉	X, X,	Н	Н	CF ₃	Н	2
(82)	۱r	2	O S	t −C₄H ₉	X, X,	Н	Н	NO ₂	Н	Сн. Сн.
(83)	۱r	3		t−C₄H ₉	X, X, x,	Н	H	NO ₂	Ή	
(84)	۱r	2	O'X	t−C ₄ H ₉	X, X,	Н	Н	NO ₂	Н	Q.
(85)	۱r	2	×.×.	t-C₄H ₉	X, X ₀	H	H	F	Н	CH.
(86)	lr	3		t−C₄H ₉	x, x,	H	H	F	H	-
(87)	l r	.2		t−C₄H,	X, X, X,	Н	Н	F	H ,	\mathcal{L}
(88)	lr	2		t-C₄H ₉	X ₁ X ₂ X ₃	Н	Н	CN	Н	CH ³
(89)	lr	3		t-C ₄ H ₉	X, X, X,	Н	Н	CN	Н	
(90)	۱r	2		t−C₄H₃	X ₁ X ₂ X ₃	Н	Н	CN	Н	
(91)	Rh	2	O'X	C₂H₅	X, X,	Н	CF ₃	H	H	CH ₃
(92)	Rh	3	O.S	C₂H₅		Н	CF ₃	Н	Н	-
(93)	Rh	2		C ₂ H ₅	X, X,	Н	CF ₃	Н	Н	\mathcal{L}
(94)	Ru	2	Q X	C₂H₅	X ₁ X ₂ X ₃	Н	CF ₃	Н	Н	CH ₃

(95)	Ru	3		C₂H₅	x, x,	Н	CF ₃	H	H	-
(96)	Ru	2		C ₂ H ₅	X, X ₂ X,	Н	CF ₃	Н	Н	
(97)	0s	2		C ₂ H ₅	X, X ₂ X, X ₃	Н	CF ₃	Н	Н	CH3
(98)	0s	3		C ₂ H ₅	X ₁ X ₂ X ₃	Н	CF ₃	Н	Н	_
(99)	0s	2		C ₂ H ₅	X, X ₂ X,	Н	CF ₃	Н	Н	\$
(100)	Pd	2		C ₂ H ₅	X, X, X,	H .	CF ₃	Н	Н	-
(101)	Pd	2		C₂H₅	X, X, X,	H	CF ₃	Н	Н	-
(102)	Pt	2		C ₂ H ₅	×, ×,	Н	CF ₃	Н	Н	
(103)	Pt	2		C ₂ H ₅	X, X ₂	Н	CF ₃	Н	Н	
(104)	۱r	2		C ₂ H ₅	X, X ₂ X ₃	Н	Н	Н	Н	H ₉ C, CH ₉ C-CH ₂ C-CH ₃ H ₃ C CH ₉
(105)	lr.	2		C₂H₅	X, X ₂ X ₃ X ₄	Н	Н	Н	Н	CH ₃
(106)	l r	2		C₂H₅	X, X ₂ X,	Н	Н	H	Н	S. E.
(107)	l r	2	₩ × v	C₂H₅	X, X ₂ X ₃	Н	Н	CF ₃	Н	H ₃ C , CH ₃ C-CH ₃ C-CH ₃ H ₃ C CH ₃
(108)	۱r	2	ON X,	C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	CH ₃
(109)	lr	2		C ₂ H ₅	X, X, X,	Н	Н	CF ₃	Н	, МСн, осн,

20

30

								•		•	
(110)	İr	3	ON X	C ₂ H ₅		Η .	Н	Н	H.	* * *	* * .
(111)	lr	3		C₂H₅	√°S)	H :	Н	Н	Н		
(112)	l r	3		C₂H₅	- x x x x x x x x x x x x x x x x x x x	Н	Н	H	Н	-	
(113)	lr	3	O N	C₂H₅	$ X_{x_2}$	H .	Ò	. -		-	· .
(114)	Tr.	3		CH ₂ CF ₃		H ,	Н	Н	Н	_	
(116)	lr:	3	F ₃ C N X ₇	C₂H₅		H	Н	Н	Н	_	
(117)	lr	2		C₂H₅	-30	Н	H.	H ;	Н	CH ₃	
(118)	lr.	2	O S	C₂H₅	-	H	H	Н	Н	\mathbb{R}^{n}	, .
(119)	lr -	2		C ₂ H ₅	-\	Η ,	H	Н	Н	CH ³	
(120)	lr	2		C₂H₅	~\\\X_1\\X_2\\	Н	Ö	_			141
(121)	lr	2	00	CH ₂ CF ₃	-,**	Н	Н	H	Н	CH ₃	.*
(122)	۱r	2	F ₃ C	C ₂ H ₅		Н	Н	Н	Н		
(123)	Ir	2		C₂H₅		H ,	Н	Н	Н	H ₃ C CH ₃ C-CH ₃ C-CH ₃	
(124)	lr	2	ON S	C₂H₅		H	H .	Н	Н	CH ₃	-
(125)	lr 	2	Q X	C₂H₅	-n,M	Н	Н	H	Н	СНа	
				1			* *			A *	

[0044]

本発明の金属配位化合物は、エレクトロルミネセンス素子の活性層材料として使用できる。活性層とは、層が電界の適用時に発光し得るもの(発光層)、または、電荷の注入もしくは電荷の移動を改良するもの(電荷注入層または電荷移動層)を意味する。ここで、電荷とは負または正の電荷をいう。活性層の膜厚は、10~100nmであることが好ましく、より好ましくは20~60nm、さらに好ましくは20~40nmである。

10

20

30

[0045]

本発明の金属配位化合物は、それ以外の材料と混合して使用してもよい。また、本発明の金属配位化合物用いたエレクトロルミネセンス素子は、上記の金属配位化合物以外の材料を含む層が本発明の金属配位化合物を含む活性層と積層されていてもよい。本発明の金属配位化合物と混合して用いてもよい材料としては、正孔注入および/または正孔移動材料、電子注入および/または電子移動材料、発光材料、バインダーポリマーなどの公知のものが使用できる。混合する材料としては、高分子材料でも、低分子材料でもかまわない

[0046]

正孔注入および/または正孔移動材料に使用可能なものとしては、アリールアミン誘導 体、トリフェニルメタン誘導体、スチルベン系化合物、ヒドラゾン系化合物、カルバゾー ル系化合物、高分子量アリールアミン、ポリアニリン、ポリチオフェン、などの材料およ びそれらを高分子化した材料が例示される。電子注入および/または電子移動材料に使用 可能なものとしては、オキサジアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾキノ ン誘導体、キノリン誘導体、キノキサリン誘導体、チアジアゾール誘導体、ベンゾジアゾ ール誘導体、トリアゾール誘導体、金属キレート錯体化合物、などの材料およびそれらを 高分子化した材料が例示される。発光材料に使用可能なものとしては、アリールアミン誘 導体、オキサジアゾール誘導体、ペリレン誘導体、キナクリドン誘導体、ピラゾリン誘導 体、アントラセン誘導体、ルブレン誘導体、スチルベン誘導体、クマリン誘導体、ナフタ レン誘導体、金属キレート錯体、IrやPtなどの中心金属を含む金属錯体、などの材料 およびそれらを高分子化した材料、ポリフルオレン誘導体、ポリフェニレンビニレン誘導 体、ポリフェニレン誘導体、ポリチオフェン誘導体、などのポリマー材料が例示される。 バインダーポリマーに使用可能なものとしては、特性を著しく低下させないものであれば 使用できる。当該バインダーポリマーとしては、ポリスチレン、ポリカーボネート、ポリ アリールエーテル、ポリアクリレート、ポリメタクリレート、ポリシロキサン、などの材 料が例示される。

[0047]

中でも、本発明においては、前記の金属配位化合物、及び必要に応じこれ以外の低分子材料を用い、有機エレクトロルミネセンス素子を製造することができる。

[0048]

前記低分子材料の具体例としては、CBP(4,4'-N,N'-dicarbazole-biphenyl)、CDBP(2,2'-dimethyl-4,4'-N,N'-dicarbazole-biphenyl)、mCP(m-dicarbazole-benzene) などが挙げられる。これらの低分子材料と金属配位化合物の混合の比率は、低分子材料の重量に対し、金属配位化合物 $1\sim 1$ 5重量%、より好ましくは $2\sim 1$ 0重量%、さらに好ましくは $3\sim 8$ 重量%である。金属配位化合物の濃度が低すぎると発光効率が低下する傾向があり、高すぎると金属配位化合物間の相互作用により濃度消光が生じ、発光効率が低下する傾向がある。

[0049]

また、本発明においては、前記の金属配位化合物、並びに共役及び/又は非共役ポリマーを含むポリマー組成物を用い、有機エレクトロルミネセンス素子を製造することができる。本発明において、ポリマー組成物とは、前記の金属配位化合物を、共役及び/又は非共役ポリマーに混合して得た組成物、あるいは前記の金属配位化合物と共役及び/又は非共役ポリマーとを共重合させて得た組成物をいう。

[0050]

前記共役及び/又は非共役ポリマーの具体例としては、主骨格として、ポリフルオレン、ポリフェニレン、ポリ(フェニレンビニレン)、ポリチオフェン、ポリキノリン、ポリアニリン、ポリビニルカルバゾール等又はそれらの誘導体の構造を含むポリマー、ユニットとして(即ち、主骨格中の構造だけではなく、側鎖の構造であってもよい)、ベンゼン、ナフタレン、アントラセン、フェナントレン、クリセン、ルブレン、ピレン、ペリレン、インデン、アズレン、アダマンタン、フルオレン、フルオレノン、ジベンゾフラン、カ

10

20

30

40

ルバゾール、ジベンゾチオフェン、フラン、ピロール、ピロリン、ピロリジン、チオフェン、ジオキソラン、ピラゾール、ピラゾリン、ピラゾリジン、イミダゾール、オキサゾール、チアゾール、オキサジアゾール、トリアゾール、チアジアゾール、ピラン、ピリジン、ピペラジン、ドリアジン、トリチアン、ノルボルネン、ベンゾフラン、インドール、ベンゾチオフェン、ベンズイミダゾール、ベンゾオキサゾール、ベンゾチアゾール、ベンゾオキサジアゾール、ベンゾトリアゾール、プリン、キノリン、イソキノリン、クマリン、シノリン、キノキサリン、アクリジン、フェナントロリン、フェノチアジン、フラボン、トリフェニルアミン、アセチルアセトン、ジベンゾイルメタン、ピコリン酸、シロール、ポルフィリン等又はそれらの誘導体の構造を含むポリマーなどがあげられる。これらのポリマーと金属配位化合物の混合又は共重合の比率は、ポリマー100重量部に対して金属配位化合物0.1~20重量部とすることが好ましい。

[0051]

ポリマー組成物に用いられる溶媒として、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレン、メシチレン、アニソール、アセトン、メチルエチルケトン、酢酸エチル、酢酸ブチル、エチルセロソルブアセテート等を用いることができる。

[0052]

本発明の金属配位化合物、又は、ポリマー組成物をエレクトロルミネセンス素子の活性層材料として使用するためには、当業者に公知の方法、例えば、真空蒸着、インクジェット、キャスト、浸漬、印刷またはスピンコーティングなどを用いて基体に薄膜を積層することにより達成することができる。印刷法には、凸版印刷、凹版印刷、オフセット印刷、平板印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等がある。このような積層方法は、通常、一20~+300℃の温度範囲、好ましくは10~100℃、特に好ましくは15~50℃で実施することができる。また、積層されたポリマー溶液の乾燥は、通常、常温乾燥、ホットプレートによる加熱乾燥などで実施することができる。

[0053]

エレクトロルミネセンス素子は、通常、電極の少なくとも1つが透明であるカソードとアノードとの間に、エレクトロルミネセント層(発光層)を含むものである。さらに、1つ以上の電子注入層および/または電子移動層が、エレクトロルミネセント層(発光層)とカソードとの間に挿入され得るもので、さらに、1つ以上の正孔注入層および/または正孔移動層が、エレクトロルミネセント層(発光層)とアノードとの間に挿入され得るものである。カソード材料としては、例えば、Li、Ca、Mg、A1、In、Cs、Mg/Ag、LiFなどの金属または金属合金であるのが好ましい。アノード材料としては、透明基体(例えば、ガラスまたは透明ポリマー)上に、金属(例えば、Au)または金属導電率を有する他の材料、例えば、酸化物(例えば、ITO:酸化インジウム/酸化錫)を使用することもできる。

[0054]

電子注入および/または電子移動層には、オキサジアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾキノン誘導体、キノリン誘導体、キノキサリン誘導体、チアジアゾール誘導体、ベンゾジアゾール誘導体、トリアゾール誘導体、金属キレート錯体化合物、などの材料を含む層が挙げられる。

[0055]

正孔注入および/または正孔移動層には、銅フタロシアニン、トリフェニルアミン誘導体、トリフェニルメタン誘導体、スチルベン系化合物、ヒドラゾン系化合物、カルバゾール系化合物、高分子量アリールアミン、ポリアニリン、ポリチオフェン、などの材料を含む層が挙げられる。

【実施例】

[0056]

本発明を以下の実施例により説明するが、本発明はこれらの実施例に限定されるもので

50

はない。また、下記に示す実施例の他、上述の本発明の種々の金属配位化合物を用いた場合にも、色純度に優れ、信頼性、発光特性等に優れたエレクトロルミンセンス素子を得る ことができる。

[0057]

実施例1 金属配位化合物(1)の合成

マグネシウム(1.9g、80mmol)のTHF混合物中に、3一ブロモー9ーメチルカルバゾール(30mmol)のTHF溶液を、アルゴン気流下、よく攪拌しながら徐々に加え、グリニヤール試薬を調製した。得られたグリニヤール試薬を、トリメチルホウ酸エステル(300mmol)のTHF溶液に一78℃でよく攪拌しながら、2時間かけて徐々に滴下した後、2日間室温で攪拌した。反応混合物を粉砕した氷を含有する5%希硫酸中に注ぎ攪拌した。得られた水溶液をトルエンで抽出し、抽出物を濃縮したところ、無色の固体が得られた。得られた固体をトルエン/アセトン(1/2)から再結晶することにより、無色結晶としてカルバゾール誘導体ボロン酸が得られた(40%)。得られたカルバゾール誘導体ボロン酸(12mmol)と1,2-エタンジオール(30mmol)をトルエン中で10時間還流した後、トルエン/アセトン(1/4)から再結晶したところ、カルバゾール誘導体ボロンエステルが無色結晶として得られた。

[0058]

【化8】

2-プロモピリジン(10 m m o 1)、カルバゾール誘導体ボロンエステル(10 m m o 1)、P d(0)(P P h $_3$) $_4$ (0. 2 m m o 1)のトルエン溶液に、アルゴン気流下、2 M の K_2 C O_3 水溶液を加え、激しく攪拌しながら 4 8 時間還流した。反応混合物を室温まで冷却した後、大量のメタノール中に注ぎ、固体を沈殿させた。析出した固体を吸引濾過し、メタノールで洗浄することにより、3-(2'-ピリジル)-9-メチルカルバゾールの固体を得た。

【化9】

[0059]

200mlの3つロフラスコに塩化イリジウム(III) (1.7mmol)、3-(2'-ピリジル)-9-メチルカルバゾール(7.58mmol)、エトキシエタノール50mlと水20mlを入れ、窒素気流下室温で30分間攪拌し、その後24時間還流攪拌した。反応物を室温まで冷却し、沈殿物を濾取水洗後、エタノール及びアセトンで順次洗浄した。室温で減圧乾燥し、ジーμークロローテトラキス[3-(2'-ピリジル)

50

- 9 - メチルカルバゾール - N ¹ , C ²] ジイリジウム (III) の淡黄色粉末を得た。 【化 1 0 】

[0060]

200m1の3つロフラスコにエトキシエタノール70m1、 $ジー\mu$ ークロローテトラキス $[3-(2'-ピリジル)-9-メチルカルバゾールーN^1$ 、 C^2] ジイリジウム (III) (0.7 m m o 1)、アセチルアセトン (2.10 m m o 1)と炭酸ナトリウム (9.4 3 m m o 1)を入れ、窒素気流下室温で攪拌し、その後 1.5 時間還流攪拌した。 反応物を氷冷し、沈殿物を濾取水洗した。この沈殿物をシリカゲルカラムクロマト(溶離液:クロロホルム/メタノール:30/1)で精製し、ビス $[3-(2'-ピリジル)-9-メチルカルバゾールーN^1$ 、 C^2] (アセチルアセトナト)イリジウム (III) の 淡黄色粉末を得た。

[0061]

なお、得られた化合物については、NMRスペクトル、IRスペクトル等によりその確認を行った。以下に示す化合物についても同様である。

【化11】

[0062]

実施例2 金属配位化合物(2)の合成

200m103つロフラスコに $3-(2'-ピリジル)-9-メチルカルバゾール(1.7mmo1)、実施例1で合成したビス <math>[3-(2'-ピリジル)-9-メチルカルバゾール-N^1$, C^2] (アセチルアセトナト)イリジウム (III) (0.28mmo1)とグリセロール55m1を入れ、窒素気流下約180で8時間加熱攪拌した。反応物を室温まで冷却して1N-塩酸 350m1に注入し、沈殿物を濾取水洗し、100で 5時間減圧乾燥した。この沈殿物をクロロホルムを溶離液としたシリカゲルカラムクロマトで精製し、トリス $[3-(2'-ピリジル)-9-メチルカルバゾール-N^1$, C^2]

イリジウム (III) の淡黄色粉末を得た。 【化 1 2】

[0063]

実施例3~実施例9 各種金属配位化合物の合成

カルバゾール単位、環A、その他配位子などの出発原料を変更した以外は実施例1及び実施例2の合成方法と同様な方法によって、下記表2に示されるような各種金属錯体化合物を合成した。

【表2】

表 2

No	M	n	カルハ・ソ・ール 単位	X ₇	環A	X ₁	X ₂	X ₃	X ₄	その他配位子
(5)	lr	3	ON X	C ₂ H ₅	X ₁ X ₂ X ₃	Н	CF ₃	Н	Н	-
(14)	lr	3	Q,X	C ₂ H ₅	X, X ₂	Н	Н	F	Н	_
(73)	lr	2		t-C ₄ H ₉	X ₁ X ₂ X ₃	Н	Н	Н	Н	O CH ₃
(75)	ir	2		t−C₄H ₉	X, X ₂ X ₃	Н	Н	Н	Н	
(80)	lr.	3		t-C₄H ₉	X, X ₂	Н	Н	CF ₃	Н	_
(106)	lr	2	Q X	C ₂ H ₅	X ₁ X ₂ X ₃	Н	Н	Н	H	. N _ Сн ₃
(107)	lr	2	O X	C₂H₅	X ₁ X ₂ X ₃	Н	Н	CF ₃	Н	H ₃ C CH ₃ C-CH ₃ C-CH ₃ H ₃ C CH ₃

40

20

30

[0064]

実施例10 有機EL素子の作製

実施例2で得た化合物を用いて、有機層が3層の有機EL素子を作製し、素子特性を評

価した。

[0065]

ITO (酸化インジウム錫) を 2 m m 幅にパターンニングしたガラス基板上に、ホール輸送層として α - N P D を、 1 O $^{-5}$ P a の真空チャンバー内で抵抗加熱による真空蒸着法にて、膜厚 4 O n m 形成した。その上に、実施例の金属配位化合物を C B P と重量比が 5 %になるように共蒸着を行った(膜厚 3 O n m)。さらに、電子輸送層として前記 A 1 q $_3$ を 3 O n m 蒸着した。この上に、陰極電極層としてLiFを 0 . 5 ~ 2 n m 、 A 1 を 1 O 0 ~ 1 5 O n m 蒸着した。

[0066]

有機 E L 素子の特性は室温にて、電流電圧特性をヒューレットパッカード社製の微小電流計 4 1 4 0 B で測定し、発光輝度はトプコン社製 S R - 3 で測定した。 I T O を正極、 L i F / A I を陰極にして電圧を印加したところ、約 6 V で青色発光(λ = 4 5 0 n m)が観測された。

[0067]

- 一定電流 (50 m A / c m²) で駆動したときの輝度半減時間を測定したところ、100時間であった。

[0068]

比較例1

[0069]

一定電流($50\,\mathrm{m\,A/c\,m^2}$)で駆動したときの輝度半減時間を測定したところ、 $80\,\mathrm{m\,m^2}$ 時間であった。

フロントページの続き

(51) Int.C1.⁷

FΙ

テーマコード (参考)

C O 9 K 11/06

H O 5 B 33/14

C O 9 K 11/06 660 CO9K 11/06 680

H O 5 B 33/14

В

(74)代理人 100098327

弁理士 高松 俊雄

(72)発明者 野村 理行

茨城県つくば市和台48 日立化成工業株式会社総合研究所内

(72)発明者 森下 芳伊

茨城県つくば市和台48 日立化成工業株式会社総合研究所内

(72)発明者 津田 義博

茨城県つくば市和台48 日立化成工業株式会社総合研究所内

Fターム(参考) 3K007 AB03 AB04 DB03 FA01

4C063 AA01 BB01 CC12 DD08 EE10

4H006 AA03 AB82

4H050 AA01 AA03 AB91 WB11 WB13 WB14 WB21

4J002 BK001 BQ001 CC181 CE001 CH121 CM011 CM021 CM031 CN011 EZ006

FD206 GP00 GP03 HA03

【要約の続き】

(式中、MはIr、Rh、Ru、Os、PdまたはPtであり、nは2または3である。MがIr、Rh、Ruまた

はOsであって、nが2の場合、Mにはさらに他の二座配位子が結合する。環AはMに結合した窒素原子を含む環状化合物である。 $X_1 \sim X_7$ は水素原子、ハロゲン原子、シアノ基、ニトロ基、直鎖、環状もしくは分岐アルキル基又はハロゲン置換アルキル基、アリール基、ヘテロアリール基もしくはアラルキル基又はハロゲン置換アリール基、ハロゲン置換へテロアリール基、ハロゲン置換アラルキル基のいずれであってもよく、環Aは $X_1 \sim X_7$ で定義される基と同様の置換基を有していてもよい。)

【選択図】 なし