RS/Conference2019

San Francisco | March 4-8 | Moscone Center

SESSION ID: CRYP-T07

Downgradable Identity-based Encryption and Applications

Olivier Blazy, Paul Germouty, Duong Hieu Phan

Associate Professor, Xlim, University of Limoges, France http://www.blazy.eu

- Context
- Model
- Generic Transformations
- Construction

RS/Conference2019

Identity-Based Encryption

History of IBE

- Shamir '84
- Boneh-Franklin, Cocks '01
- Boneh-Boyen, Waters '05
- Waters '09,
- Chen-Wee, Blazy –Kiltz-Pan

So Many Variants

- Hierarchical IBE
- Wildcarded IBE
- Wicked IBE

• ...

#RSAC

Relations?

#RSAC

RS/Conference2019

Model

Identity-Based Encryption

- 4 algorithms:
 - Keygen: Generates mpk, msk
 - USKGen(id, msk): Generates usk[id]
 - Enc(mpk,id): Generates a capsule C leading to a key K for id
 - Dec(C,usk[id]): Recovers K' from C

```
\begin{array}{|c|c|c|c|}\hline \textbf{Procedure Initialize:} & \textbf{Procedure Enc(id^*):} & //one \\ \hline (mpk, msk) \overset{\$}{\leftarrow} Gen(\mathfrak{K}) & query \\ \hline Return mpk & (sk^*, C^*) \overset{\$}{\leftarrow} Enc(mpk, id^*) \\ \hline \textbf{Procedure USKGen(id):} & sk^* \overset{\$}{\leftarrow} \mathcal{K}; C^* \overset{\$}{\leftarrow} CS \\ \hline Return (sk^*, C^*) & \hline Return (sk^*, C^*) \\ \hline \hline \textbf{Return usk[id]} \overset{\$}{\leftarrow} \textbf{USKGen(msk, id)} & \hline \textbf{Procedure Finalize}(\beta): \\ \hline \hline Return (id^* \notin \mathcal{Q}_{ID}) \wedge \beta & \hline \\ \hline \end{array}
```


Downgradable Identity-Based Encryption

- 5 algorithms:
 - Keygen: Generates mpk, msk
 - USKGen(id, msk): Generates usk[id]
 - Enc(mpk,id): Generates a capsule C leading to a key K for id
 - Dec(C,usk[id]): Recovers K' from C
 - USKDown(usk[id],id'): Return usk[id'] if id' << id</p>
 - Given a key for an id, one can deduce a key for id' if id' can be obtained by replacing some 1 in id by 0. (101 << 111)

Downgradable Identity-Based Encryption

Procedure Initialize:

 $(\mathsf{mpk}, \mathsf{msk}) \overset{\$}{\leftarrow} \mathsf{Gen}(\mathfrak{K})$

Return mpk

Procedure USKGen(id):

$$\overline{\mathcal{Q}_{\mathsf{ID}} = \mathcal{Q}_{\mathsf{ID}} \cup \{\mathsf{id}\}}$$

Return usk[id] ← USKGen(msk, id)

Procedure Enc(id*): //one

query

$$(sk^*, C^*) \xleftarrow{\$} Enc(mpk, id^*)$$

$$\mathsf{sk}^* \xleftarrow{\$} \mathcal{K}; \mathsf{C}^* \xleftarrow{\$} \mathsf{CS}$$

Return (sk^*, C^*)

Procedure Finalize(β):

Return $(\neg(id^* \leq \mathcal{Q}_{ID})) \wedge \beta$

RS/Conference2019

Wildcard Identity-Based Encryption

Allows * in targeted identities

$$\mathsf{id}[2i, 2i + 1] = \begin{cases} 01 & \text{if } \mathsf{wid}[i] = 0 \\ 10 & \text{if } \mathsf{wid}[i] = 1 \\ 00 & \text{otherwise.} \end{cases}$$

Wildcard Identity-Based Encryption

WIBE.Gen(\mathfrak{K}): Gen(\mathfrak{K}), except that instead of defining ID as strings of size

 2ℓ , we suppose the public key define WID of enriched identities of size ℓ .

 $\mathsf{WIBE.USKGen}(\mathsf{sk},\mathsf{id}) = \mathsf{USKGen}(\mathsf{sk},\phi(\mathsf{id})).$

 $\mathsf{WIBE}.\mathsf{Enc}(\mathsf{mpk},\mathsf{id}) = \mathsf{Enc}(\mathsf{mpk},\phi(\mathsf{id})).$

WIBE.Dec(usk[id], id, C) checks if id \leq id, then computes usk[ϕ (id)] = USKDown(usk[ϕ (id)]).

Returns $\mathsf{Dec}(\mathsf{usk}[\phi(\mathsf{id})], \mathsf{id}, \mathsf{C})$ or rejects with \bot .

Hierarchical Identity-Based Encryption

- Allows to derive keys for lower level
 - This means * at the end of original identities

$$\operatorname{id}[2i, 2i + 1] = \begin{cases} 01 & \text{if } \operatorname{hid}[i] = 0 \\ 10 & \text{if } \operatorname{hid}[i] = 1 \\ 11 & \text{otherwise}(\operatorname{hid}[i] = \bot). \end{cases}$$

Hierarchical Identity-Based Encryption

 $\mathsf{HIB}.\mathsf{Gen}(\mathfrak{K})$: $\mathsf{Gen}(\mathfrak{K})$, except instead of defining ID as strings of size 2ℓ , we suppose the public key define HID of enriched identities of size ℓ .

HIB.USKGen(sk, id) = USKGen(sk, ϕ (id)). It should be noted that in case of an DIBKEM, some identities are never to be queried to the downgradable IBKEM: those with 00 is 2i, 2i + 1, or those with 11 at 2i, 2i + 1 and then a 0 (this would correspond to *punctured* identities).

 $\mathsf{HIB.USKDel}(\mathsf{usk}[\mathsf{id}],\mathsf{id} \in \mathcal{BS}^p,\mathsf{id}_{p+1}) = \mathsf{USKDown}(\mathsf{usk}[\phi(\mathsf{id})],\phi(\mathsf{id}||\mathsf{id}_{p+1})).$

By construction we have $\phi(\mathsf{id}||\mathsf{id}_{p+1}) \leq \phi(\mathsf{id})$.

 $\mathsf{HIB}.\mathsf{Enc}(\mathsf{mpk},\mathsf{id}) = \mathsf{Enc}(\mathsf{mpk},\phi(\mathsf{id})).$

HIB.Dec(usk[id], id, C) returns $Dec(usk[\phi(id)], \phi(id), C)$ or the reject symbol \bot .

Wicked Identity-Based Encryption

- Allows to derive keys for lower level
 - This means * in the original identities

$$\operatorname{id}[2i, 2i + 1] = \begin{cases} 01 & \text{if } \operatorname{wkdid}[i] = 0 \\ 10 & \text{if } \operatorname{wkdid}[i] = 1 \\ 11 & \text{if } \operatorname{wkdid}[i] = * \end{cases}$$

Wicked Identity-Based Encryption

WKDIB.Gen(\mathfrak{K}): Gen(\mathfrak{K}), except instead of defining ID as strings of size 2ℓ , we suppose the public key define WKDID of enriched identities of size ℓ . WKDIB.USKGen(msk, id) = USKGen(msk, ϕ (id)). It should be noted that in case of an WKD-DIBE, some identities are never to be queried to the downgradable IBE: those with 00.

WKDIB.USKDel(usk[id], id, id') = USKDown(usk[ϕ (id)], ϕ (id), ϕ (id')).

WKDIB.Enc(mpk, id) = Enc(mpk, $\phi(id)$).

WKDIB.Dec(usk[id], id, C) returns Dec(usk[ϕ (id)], ϕ (id), C) or the reject symbol \bot .

Transformations

- All those transformations are tight
- However they use a space of size 4 for a ternary alphabet.
 - It could be improve, but would not drastically improve the tightness

Attribute-Based Encryption

- User keys have 1 where they have the attribute
- Ciphertext have a 0 where an attribute is not mandatory
- If the policy < attributes, a user can properly downgrade his key

RS/Conference2019

Downgradable Identity-Based Encryption

- Can be constructed by adapting BKP'14
 - Can be instantiated under any k-MDDH assumption (SXDH, Dlin,...)
 - Depending on the use case, it is possible to ensure that the downgraded key is indistinguishable from a fresh one.
 - Encapsulation is only k+1 elements (k=1 for SXDH)
 - Same goes for user keys

Wicked / Wildcard Identity-Based Encryption

Name	pk	usk	C	assump.	Sec	Loss
WKD [AKN07]	n+4	n+2	2	BDDH	Sel. standard	$O(nq_k)$
WKD [AKN07]	(n+1)n + 3	n+2	2	BDDH	Full standard	$O(q_k^n)$
WKD-DIBE	4n + 2	3n + 5	5	$\begin{array}{c} DLin\;(\mathrm{any}\\ k-MDDH) \end{array}$	Full standard	$O(q_k)$
SWIBE [KLLO18]	n+4	2n + 3	4	ROM	Full	$O((n+1)(q_k+1)^n)$
WIBE [BDNS07]	(n+1)n + 3	n+1	(n+1)n+2	BDDH	Full standard	$O(n^2q_k^n)$
Wild-DIBE	4n + 2	3n + 5	5	$\begin{array}{c} DLin\;(\mathrm{any}\\ k-MDDH) \end{array}$	Full standard	$O(q_k)$

Attribute-Based Encryption

Name	pk	sk	C	pairing	$\exp \mathbb{G}$	$\exp \mathbb{G}_t$	Reduction Loss
[OT10]	4U+2	3U + 3	7m + 5	7m + 5	0	$^{\mathrm{m}}$	$O(q_k)$
[LW12]	24U + 12	6U + 6	6m + 6	6m + 9	0	m	$O(q_k)$
[CGW15]	6UR + 12	3UR + 3	3m + 3	6	6m	0	$O(q_k)$
[Att16] scheme 10	6UR + 12	3UR + 6	3m + 6	9	6m	0	$O(q_k)$
[Att16] scheme 13	$\frac{96(M+TR)^2 + \log(UR)}{\log(UR)}$	3UR + 6	3m + 6	9	6m	0	$O(q_k)$
Our DNF- ABE	4U + 2	3U + 3	3k + 2	13	0	0	$O(q_k)$

Conclusion

- Another IBE related primitive
 - However it can be tightly linked to the others
 - So any progress on DIBE should lead to progress to the other primitive

- Can DIBE be achiever in a Post Quantum world?
- How to avoid the DNF limitation for ABE

RSA°Conference2019

Thank you

Any questions?

