Study Notes: Fundamental Probability Rules & Bayes' Rule

Course: Machine Learning / Probability & Statistics

Purpose: Conceptual clarity, quick revision, and exam preparation.

1. Basic Probability Concepts

Sample Space (S): The set of all possible outcomes of a random experiment.

Event (A): A subset of the sample space.

2. Fundamental Rules of Probability

2.1 Addition Rule (Union of Events)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Used when calculating the probability that A or B (or both) occur.

If A and B are mutually exclusive:

$$P(A \cap B) = 0 \rightarrow P(A \cup B) = P(A) + P(B)$$

2.2 Multiplication Rule (Joint Probability)

$$P(A \cap B) = P(A) \times P(B|A) = P(B) \times P(A|B)$$

Used to compute the probability that A and B both occur.

If A and B are independent: $P(A \cap B) = P(A) \times P(B)$

2.3 Conditional Probability

$$P(A | B) = P(A \cap B) / P(B), \text{ if } P(B) > 0$$

Represents the probability of A given B has occurred.

Conditional probability is not symmetric: $P(A \mid B) \neq P(B \mid A)$

3. Bayes' Rule (Bayes' Theorem)

Formula: $P(A \mid B) = [P(B \mid A) \times P(A)] / P(B)$

Interpretation:

- Prior Probability (P(A)) Initial belief before evidence
- Likelihood (P(B|A)) Probability of observing B if A is true
- Evidence (P(B)) Total probability of the observed data
- Posterior Probability (P(A|B)) Updated belief after seeing evidence

Example: Medical Diagnosis

A disease affects 2% of the population. A test detects it 98% of the time if present and gives a false positive 3% of the time.

Given:
$$P(D) = 0.02$$
, $P(+ \mid D) = 0.98$, $P(+ \mid \neg D) = 0.03$

Bayes' Rule:

$$P(D \mid +) = [0.98 \times 0.02] / [(0.98 \times 0.02) + (0.03 \times 0.98)] = 0.0196 / 0.049 \approx 0.4$$

Even with a positive test, the actual probability of having the disease is only 40%.

4. Applications in Machine Learning

Concept	Role
Naive Bayes Classifier	Uses Bayes' Rule to predict class labels
Spam Filtering	P(Spam "free", "offer", etc.)
Bayesian Networks	Graphical models with conditional dependencies
Probabilistic Inference	Update predictions based on data

5. Summary Table

Rule	Formula	Use
Union	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	"A or B"
Intersection	$P(A \cap B) = P(A) \times P(B A)$	"A and B"
Conditional	$P(A \mid B) = P(A \cap B) / P(B)$	"Given B"
Bayes' Rule	$P(A \mid B) = [P(B \mid A) \times P(A)]$ $/ P(B)$	Reverse inference