Конспект по теории вычислимости IV семестр, 2021 год Современное программирование, факультет математики и компьютерных наук, СПбГУ (лекции Пузыниной Светланы Александровны)

Тамарин Вячеслав

February 19, 2021

Contents

Вычислимость. Система вычислимости по Клини			3	
1.1	Рекур	сивные функции	3	
	1.1.1	Простейшие функции	3	
	1.1.2	Операторы	3	
	1.1.3	Функции	4	
	1.1.4	Оператор ограниченной минимизации	6	
	1.1.5	Предикаты	7	
	1.1.6	Теоремы про рекурсии	8	
1.2	Равно	сильность МТ и $\mathbf{\Psi}\mathbf{P}\mathbf{\Phi}$	11	
	1.2.1	Функция Аккермана	14	
Разј	решим	ные и перечислимые множества	15	
	-	-	15	
	1 1	•		
	Исходный код на https://github.com/tamarinvs19/theory_university			
Нек	оторы			
Ис	правля	1		
	1.1 1.2 Раз _ј 2.1	1.1 Рекурс 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.2 Равно 1.2.1 Разрешим 2.1 Опред	1.1.1 Простейшие функции 1.1.2 Операторы 1.1.3 Функции 1.1.4 Оператор ограниченной минимизации 1.1.5 Предикаты 1.1.6 Теоремы про рекурсии 1.2 Равносильность МТ и ЧРФ 1.2.1 Функция Аккермана Разрешимые и перечислимые множества 2.1 Определения	

Index

k-местная частичная функция, 3

кусочное задание функции, 10 общерекурсивная функция, 4 оператор минимизации, 4 оператор ограниченной минимизации, 6 оператор примитивной рекурсии, 3 оператор суперпозиции, 3 предикаты, 7 примитивно рекурсивная функция, 4 простейшие функции, 3

рекурсия возвратная, 9 рекурсия совместная, 10 частично рекурсивная функция, 4

Chapter 1

Вычислимость. Система вычислимости по Клини

1.1 Рекурсивные функции

Лекция 1: †

11 feb

Определение 1

Пусть функция $f: \mathbb{N}^k \to \mathbb{N}$, $k \in \mathbb{N}$, где $\mathbb{N} = \{0, 1, 2, \ldots\}$. Такая функция называется k-местной частичной функцией. Если k = 0, то f = const.

1.1.1 Простейшие функции

Простейшими будем называть следующие функции:

- Нуль местный нуль функция без аргументов, возвращающая 0;
- Одноместный нуль 0(x) = 0;
- Функция следования s(x) = x + 1;
- Функция выбора (проекция) $I_n^m(x_1, \dots x_n) = x_m$

1.1.2 Операторы

Определим три оператора:

Определение 2

• Функция f получается оператором суперпозиции из функций h и g_i , где

$$h(y_1,...,y_m), g_i(x_1,...,x_n); 1 \le i \le n,$$

если

$$f=h(g_1(x_1,\ldots,x_n),\ldots g_m(x_1,\ldots,x_n)).$$

Оператор обозначается **S**.

• Функция $f^{(n+1)}a$ получается оператором примитивной рекурсией из $g^{(n)}$ и $h^{(n+2)}$, если

$$\begin{cases} f(x_1, \dots x_n, 0) = g(x_1, \dots x_n) \\ f(x_1, \dots x_n, y + 1) = h(x_1, \dots x_n, y, f(x_1, \dots x_n, y)) \end{cases}$$

Оператор обозначается **R**.

• Функция f задается **оператором минимизации** (**M**), если она получается из функции g следующим образом:

$$\begin{split} f(x_1,\dots x_n) &= \mu y \big[g(x_1,\dots x_n,y) = 0 \big] = \\ &= \begin{cases} y & g(x_1,\dots x_n,y) = 0 \land g(x_1,\dots x_n,i)^b \neq 0 \ \forall i < y \\ \uparrow & else \end{cases} \end{split}$$

Пример 1.1.1.

$$x - y = \begin{cases} x - y, & x \ge y \\ \uparrow, & x < y \end{cases}$$

Можно задать, используя оператор минимизации:

$$x - y = \mu z \lceil |(y + z) - x| = 0 \rceil.$$

1.1.3 Функции

Определение 3: Примитивно рекурсивная функция

Функция f называется **примитивно рекурсивной** (**ПРФ**), если существует последовательность таких функций $f_1, \ldots f_k$, что все f_i либо простейшие, либо получены из предыдущих $f_1, \ldots f_{i-1}$ с помощью одного из операторов **S** и **R** и $f = f_k$.

Пример 1.1.2. Докажем, что $f(x,y) = x + y - \mathbf{\Pi} \mathbf{P} \mathbf{\Phi}$. По **R** можем получить f так:

$$\begin{cases} f(x,0) &= x = I_1^1(x) = g \\ f(x,y+1) &= (x+y) + 1 = s(f(x,y)) = s(I_3^3(x,y,f(x,y)) = h \end{cases}$$

Теперь построим последовательность функций f_i , где последним элементом будет f, полученный с помощью \mathbf{R} :

$$I_1^1$$
, s, I_3^3 , $h = \mathbf{S}(s, I_3^3)$, f.

Определение 4: Частично рекурсивная функция

Функция f называется **частично рекурсивной функцией** (**ЧРФ**), если существует последовательность функций $f_1, \ldots f_k$, таких что f_i либо простейшая, либо получается из предыдущих с помощью одного из операторов **S**, **R**, **M**.

Замечание. Частично рекурсивная функция может быть не везде определена. Но примитивно рекурсивная определена везде.

Замечание. Существуют частично рекурсивные функции, которые всюду определены, но при этом не являются $\mathbf{\Pi}\mathbf{P}\mathbf{\Phi}$.

Определение 5

aЗдесь и далее $f^{(n)}$ обозначается функция, принимающая n аргументов, то есть n-местная

 $^{^{}b}$ подразумевается, что функция определена в этих точках

cне определена

Общерекурсивная функция — всюду определенная частично рекурсивная.

Пример 1.1.3. $\mu y[x+y+1=0]$ — нигде не определена, но получается из последовательности других функций с помощью операторов.

Лемма 1. Следующие функции являются ПРФ:

- 1. $const^{(n)}$
- 2. x + y
- 3. $x \cdot y$
- 4. x^{y} , где 0^{0} можем определить, как хотим
- 5. $sg(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$
- $6. \overline{sg}(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$
- 7. $x \div 1 = \begin{cases} u & x = 0 \\ x 1 & x > 0 \end{cases}$
- 8. $x y = \begin{cases} 0 & x < y \\ x y & else \end{cases}$
- 9. |x y|

1. Сначала можем получить нужное число последовательной суперпозицией функции следования (получили константу от одной переменной), затем проецируем I_1^{n+1} , чтобы получить n переменных (первая - наша константа).

- 2. Доказали выше в примере 1.1.2.
- 3. f(x,y) = xy определим так:

$$\begin{cases} f(x,0) &= 0 \\ f(x,y+1) &= f(x,y) + x \end{cases}$$

а складывать мы умеем.

4. $f(x,y) = x^y$:

$$\begin{cases} f(x,0) &= 1 = s(0) \\ f(x,y+1) &= f(x,y) * y \end{cases}$$

Умножать тоже можно по третьему пункту.

5. $sg(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$

$$\begin{cases} sg(0) &= 0 \\ sg(x+1) &= 1 = s(0) \end{cases}$$

6. Аналогично

7.
$$f(x) = x \div 1$$

$$\begin{cases} f(0) &= 0 \\ f(x+1) &= x = I_1^1(x) \end{cases}$$

8.
$$f(x,y) = x - y$$

$$\begin{cases} f(x,0) &= x = I_1^1(x) \\ f(x,y+1) &= f(x,y) \div 1 \end{cases}$$

9.
$$f(x,y) = |x - y| = (x - y) + (y - x)$$

Замечание. Обычное вычитание не является $\Pi P \Phi$, так как не везде определено на $\mathbb N$.

1.1.4 Оператор ограниченной минимизации

Определение 6: Оператор ограниченной минимизации

Функция $f^{(n)}$ задается **оператором ограниченной минимизации** из функций $g^{(n+1)}$ и $h^{(n)}$, если

$$\mu y \leq h(\overline{x}) [g(\overline{x}, y) = 0]^a$$
.

Это означает, что

$$f(\overline{x}) = \begin{cases} y & g(\overline{x}, y) = 0 \land y \le h(\overline{x}) \land g(\overline{x}, i) \neq 0^b \ \forall i < y \\ h(\overline{x}) + 1 & else \end{cases}$$

Утверждение. Пусть $g^{(n+1)}$, $h^{(n)}$ — примитивно рекурсивные функции, $f^{(n)}$ получается из g и h с помощью ограниченной минимизации, то f тоже **ПРФ**.

 \square Заметим, что f можно получить следующим образом:

$$f(\overline{x}) = \sum_{y=0}^{h(x)} \prod_{i=0}^{y} \operatorname{sg}(g(\overline{x}, i)).$$

Внутреннее произведение равно единице только тогда, когда все $g(\overline{x},i) \neq 0$. Если для некоторого y обнуляется $g(\overline{x},y)$, то все произведения, начиная с y+1, будут равны нулю, поэтому просуммируются только y единиц. Если же такого y нет, получим сумму из $h(\overline{x})+1$ единицы. Именно это и нужно.

Проверим, что можно получить $a(\overline{x},y) = \sum_{i=0}^{y} g(\overline{x},i)$ и $m(\overline{x},y) = \prod i = 0^{y} g(\overline{x},i)$ с помощью примитивной рекурсии:

$$\begin{cases} a(\overline{x},0) &= g(\overline{x},0) \\ a(\overline{x},y+1) &= a(\overline{x},y) + g(\overline{x},y+1) \end{cases} \begin{cases} m(\overline{x},0) &= g(\overline{x},0) \\ m(\overline{x},y+1) &= m(\overline{x},y) \cdot g(\overline{x},y+1) \end{cases}$$

Замечание. 0(x) можно исключить из определения простейших функций, так как она получается с помощью **R** для нульмерного 0 и $I_2^2(x,y)$:

$$0(y) = \begin{cases} 0(0) &= 0\\ 0(y+1) &= I_2^2(y,0) \end{cases}$$

aЗдесь и далее $\overline{x} = x_1, \dots x_n$.

 $^{^{}b}$ Аналогично, подразумевается, что функция определена в этих точках

1.1.5 Предикаты

Определение 7

Предикат — условие задающее подмножество: $R \subset \mathbb{N}^k$.

Предикат называется **примитивно рекурсивным (общерекурсивным)**, его характеристическая функция примитивно рекурсивная (общерекурсивная).

$$\chi_R(\overline{x}) = \begin{cases} 1, & \overline{x} \in R \\ 0, & \overline{x} \notin R \end{cases}$$

Утверждение.

- Если R,Q примитивно рекурсивные (общерекурсивные) предикаты, то $P \lor Q, P \land Q, P \to Q, \neg P$ тоже примитивно рекурсивные (общерекурсивные).
- Предикаты =, \leq , \geq , <, > тоже примитивно и общерекурсивны.
- Проверим, что характеристические функции примитивно / общерекурсивны:

$$\chi_{P\vee Q}(\overline{x}) = \chi_{P}(\overline{x}) \cdot \chi_{Q}(\overline{x})$$

$$\chi_{P\wedge Q}(\overline{x}) = \operatorname{sg}(\chi_{P}(\overline{x}) + \chi_{Q}(\overline{x}))$$

$$\chi_{P\to Q}(\overline{x}) = \operatorname{\overline{sg}}(\chi_{P}(\overline{x}) + \operatorname{\overline{sg}}(\chi_{Q}(\overline{x})))$$

$$\chi_{\neg P}(\overline{x}) = \operatorname{\overline{sg}}(\chi_{P}(\overline{x}))$$

• Аналогично выразим, через простейшие:

$$\chi_{x=y}(x) = \overline{sg}(|x-y|) = \begin{cases} 1, & x = y \\ 0, & x \neq y \end{cases}$$
$$\chi_{x < y}(x) = sg(x - y)$$

Остальные можем выразить также или через уже проверенные < и ¬.

Лемма 2. Следующие функции являются примитивно рекурсивными:

1.
$$\left\lfloor \frac{x}{y} \right\rfloor$$
, считаем, что $\left\lfloor \frac{x}{0} \right\rfloor = x$

2.
$$\operatorname{Div}(x,y) = \begin{cases} 1, & y \mid x \\ 0, & else \end{cases}$$

3. Prime(x) =
$$\begin{cases} 1, & x \in \mathbb{P} \\ 0, & else \end{cases}$$

4.
$$f(x) = p_x$$
, где p_x — x -тое простое число, $p_0 \coloneqq 2$

5.
$$\operatorname{ex}(i,x)$$
 — степень простого числа p_i разложении $x,\operatorname{ex}(i,0)\coloneqq 0$

1. $f(x,y) = \left\lfloor \frac{x}{y} \right\rfloor$. Найдем минимальное k, что f'(x,y,k) = yk > x. Чтобы получить $f(x,y) = \min(k \mid f'(x,y,k)) - 1$. Используем оператор минимизации:

$$f(x,y) = \mu k [\neg f'(x,y,k) = 0] - 1.$$

- 2. Div $(x, y) = \left\lfloor \frac{x}{y} \right\rfloor \cdot y = x$
- 3. Определим $\mathrm{Div}'(x,y) = (y \le 1) \lor (\neg \mathrm{Div}(x,y))$, эта функция проверяет, что y не является нетривиальным делителем x.

Теперь, используя ограниченную минимизацию, выразим Prime(x):

$$Prime(x) = (\mu y \le h(x)[Div'(x,y) = 0]) = x$$
, где $h(x) = x - 1$.

То есть мы посмотрели на все меньшие числа, если среди них найдется нетривиальный делитель, то число не простое.

4. Пусть f'(x) = количество простых $\leq x$.

$$\begin{cases} f'(0) &= 0 \\ f'(x+1) &= \text{Prime}(x+1) + f(x) \end{cases}$$

Теперь можно вычислить f(x): для этого определим функцию g(x,y)=(f'(y)=x),

$$f(x) = \mu y [\neg f'(x, y) = 0].$$

5. Чтобы найти степень вхождения простого числа p_i в x, сначала находим это простое число по номеру, затем находим минимальное k, что x не делится на p_i^k и вычитаем единицу.

1.1.6 Теоремы про рекурсии

Теорема 1.1.1 (Канторовская нумерация). Пусть $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

$$\pi(x,y) = \frac{1}{2}(x+y)(x+y+1) + y.$$

- Тогда для любого z существует единственное представление $z = \pi(x, y)$.
- Причем функции x(z), y(z) примитивно рекурсивные.
- Запишем $\pi(x,y) = \binom{x+y}{2} + y$. Заметим, что для n > m верно

$$\binom{n}{2} - \binom{m}{2} \ge \binom{n}{2} - \binom{n-1}{2} = n-1.$$

Предположим, что x + y > x' + y' и $\pi(x, y) = \pi(x', y')$. Тогда

$$y' - y = {x + y \choose 2} - {x' + y' \choose 2} \ge x + y - 1 \ge x' + y'.$$

Но $y \ge 0$, $x' \ge 0$, поэтому единственный возможный вариант, когда они равны нулю, а x + y = x' + y' + 1. Проверим на равенство $\pi(x, y)$ и $\pi(x', y')$:

$$\pi(x,y) = \frac{1}{2}x(x+1) = \frac{1}{2}(y'+1)(y'+2) = \frac{1}{2}y'(y'+1) + y'+1$$

$$\pi(x',y') = \frac{1}{2}y'(y'+1) + y'$$

Равенства нет.

• Можно по-честному все посчитать и выразить x(z), y(z). Пусть

$$w = x + y$$

$$t = \frac{1}{2}w(w+1) = \frac{w^2 + w}{2}$$

$$z = t + y$$

Решим квадратное уравнение, чтобы выразить w через t (отрицательный корень можем сразу отбросить):

$$w = \frac{-1 + \sqrt{8t+1}}{2}.$$

Запишем неравенство:

$$t \le z = t + y < t + (w + 1) = \frac{(w + 1)^2 + (w + 1)}{2}.$$

Отсюда

$$w \leq \frac{-1 + \sqrt{8z + 1}}{2} < w + 1.$$

Тогда

$$w = \left\lfloor \frac{-1 + \sqrt{8z + 1}}{2} \right\rfloor$$
$$t = \frac{w^2 + w}{2}$$
$$y = z - t$$
$$x = w - y$$

Таким образом, мы выразили через z обе координаты. Единственный момент — нужно извлекать корень, в натуральную степень возводить мы умеем, поэтому можем с помощью ограниченной минимизации перебрать все меньшие числа, возвести их в квадрат и сравнить с нашим числом.

Теорема 1.1.2 (Возвратная рекурсия). Зафиксируем *s*. Пусть

$$\begin{cases} f(\overline{x},0) &= g(\overline{x}) \\ f(\overline{x},y+1) &= h(\overline{x},y,f(\overline{x},t_1(y)),\dots f(\overline{x},t_s(y))) \end{cases}$$

где $\forall 1 \le i \le s \ t_i(y) \le y, g^{(n)}, h^{(n+1+s)}, t_i^{(1)}, h^{(n+1+s)}$

Тогда, если g, h, t_i — примитивно / общерекурсивные, то и f тоже.

Основная идея этой теоремы — можем использовать все ранее вычисленные значения функции, а не только предыдущее.

Построим с помощью примитивной рекурсии функцию $m(\overline{x}, y)$, которая возвращает закодированную последовательность $f(\overline{x}, i)$, $0 \le i \le y$.

Кодировать будем так: каждому $f(\bar{x},i)$ будет соответствовать p_i (*i*-ое простое число) в степени 1 + $f(\overline{x},i)$.

Если мы построим эту функцию, то $f(\bar{x}, y)$ — уменьшенная на 1 степень *y*-ого простого, обозначим функцию, которая это делает:

$$f(\overline{x}, y) = ith(y, m(\overline{x}, y)).$$

Вернемся к построению m:

$$\begin{cases} m(\overline{x},0) &= 2^{1+g(\overline{x})} \\ m(\overline{x},y+1) &= m(\overline{x},y) \cdot p_{y+1}^{1+h(\overline{x},y,\operatorname{ith}(t_1(y),m(\overline{x},y)),\ldots\operatorname{ith}(t_k(y),m(\overline{x},y)))} \end{cases}$$

Теорема 1.1.3 (Совместная рекурсия). Пусть $f_i^{(n+1)}$, $1 \le i \le k$,

$$\begin{cases} f_i(\overline{x},0) &= g_i(\overline{x}) \\ f_i(\overline{x},y+1) &= h_i(\overline{x},y,f_1(\overline{x},y),\dots f_k(\overline{x},y)) \end{cases}$$
 Если $g_i^{(n)},h_i^{(k+2)},\ 1\leqslant i\leqslant k$ — примитивно / общерекурсивные, то f_i тоже.

Основная идея этой теоремы — можем использовать y-е значение каждой из k функций.

Заметим, что канторовскую функцию можно, последовательно применив несколько раз, расширить до k-местной. Обозначим полученную функцию за c, а обратные за $c_1, \ldots c_k$.

Давайте просто объединим все f_i в одну функцию

$$m(\overline{x},y) = c(f_1(\overline{x},y), \dots f_k(\overline{x},y)).$$

Теперь каждую f_i можно вычислить

$$f_i(\overline{x},y)=c_i(m(\overline{x},y)).$$

Чтобы получить m достаточно использовать примитивную рекурсию:

$$\begin{cases} m(\overline{x},0) &= c\left(g_1(\overline{x}),\ldots g_k(\overline{x})\right) \\ m(\overline{x},y+1) &= c(\\ &h_1\left(\overline{x},y,c_1(m(\overline{x},y)),\ldots c_k(m(\overline{x},y))\right),\\ &\vdots\\ &h_k\left(\overline{x},y,c_1(m(\overline{x},y)),\ldots c_k(m(\overline{x},y))\right) \\) \end{cases}$$

Теорема 1.1.4 (Кусочное задание функции). Пусть $R_0, \dots R_k$ — отношения a , такие что $\bigsqcup_{i=0}^k R_i = \mathbb{N}^m$ b . Для $|\overline{x}| = n$ кусочно зададим функцию $f^{(n)}$:

$$f(\overline{x}) = \begin{cases} f_0(\overline{x}), & \text{если } R_0(\overline{x}) \\ f_1(\overline{x}), & \text{если } R_1(\overline{x}) \\ \vdots & \vdots \\ f_k(\overline{x}), & \text{если } R_k(\overline{x}) \end{cases}$$

Если $f_i^{(n)}$, R_i — примитивно / общерекурсивны, то и f тоже.

^аНабор предикатов

 b То есть для $i \neq j$ верно $R_i \cap R_i = \emptyset$.

 \square Рассмотрим характеристические функции χ_{R_i} для R_i . Тогда

$$f(\overline{x}) = \sum_{i=0}^{k} f_i(\overline{x}) \cdot \chi_{R_i}(\overline{x}).$$

А это просто сумма произведений, которые мы можем вычислять.

1.2 Равносильность МТ и ЧРФ

Теорема 1.2.1. Функция вычисляется машиной Тьюринга тогда и только тогда, когда она частично рекурсивная (то есть вычислима по Клини).

 $2 \Longrightarrow 1$ Если $f(x_1, \dots x_n) = y$, то считаем, что МТ получаем $1^{x_1}01^{x_2}0\dots 01^{x_n}$ и должна выдать 1^y ; если f не определена, МТ должна зацикливаться и наоборот.

- Для простых функций можем построить МТ напрямую:
 - Если мы хотим выдавать нуль, просто стираем вход.
 - Если нужно увеличить число на один, приписываем 1 в конец справа.
 - Если нужно вернуть k-ую проекцию, стираем все до начала k-ого числа (то есть нужно отсчитать k-1 нуль на входе), далее стереть все после.
- Для операторов **S**, **R**, **M**:
 - **S:** Пусть есть набор функций $h^{(n)}$, $g_1^{(m)}$, . . . , $g_n^{(m)} \longrightarrow f^{(m)}$, для каждой из которых есть машина Тьюринга M_h и M_{g_i} .

Хотим построить MT M_S для S.

Сделаем это так:

- Копируем весь вход n раз:

$$(1^{x_1}01^{x_2}\dots01^{x_n}*)^n$$
.

– Запускаем M_{g_i} на соответствующей части полученного входа.

Если нужно что-то записать, то будем сдвигать всю правую часть на нужное число клеток, чтобы освободить для место.

МТ запускаем псведопараллельно (по очереди даем поработать).

В каждой часть после окончания работы оставляем только ответ:

$$1^{y_1} * 1^{y_2} \dots * 1^{y_n}$$
,

где
$$y_i = g_i(x_1, \dots x_m)$$
.

- Запускаем на этом результате M_h .

Лекция 2: †

R: Пусть рекурсия задает $f^{(m+1)}(x_1, \dots x_m, y)$ из $g^{(m)}$ и $h^{(m+2)}$.

$$\begin{cases} f(\overline{x}, 0) &= g(\overline{x}) \\ f(\overline{x}, y + 1) &= h(\overline{x}, y, f(\overline{x}, y)) \end{cases}$$

18 feb

Считаем, что для g,h уже есть МТ (M_g и M_h), и мы хотим построить M_f , которая будет вычислять f.

Построим вспомогательные МТ:

- M_1 : для входа $1^{x_1}0\dots01^{x_m}01^y$ построим $1^y01^{x_1}0\dots01^{x_m}001^{g(x_1,\dots x_m)}$. Для этого просто запустим M_g на входе, но не будем стирать его, а результат просто припишем после двух нулей справа.
- M_2 : для входа $1^y 01^{x_1} 0 \dots 01^{x_m} 01^u 01^z$ построим $1^y 01^{x_1} 0 \dots 01^{x_m} 01^{u+1} 01^{h(x_1, \dots x_m, u, z)}$, аналогично, используя M_h , допишем в конец вместо z результат h и допишем единицу к 1^u . Здесь u+1 обозначает текущее значение y', а значение h— значение f(y').
- M_3 : для входа $1^y 01^{x_1} 0 \dots 01^{x_m} 01^u 0^z$ оставим только 1^z .
- Φ : для входа $1^{y}01^{x_1}0...01^{x_m}01^{u}01^{z}$ проверим, что $u \neq y$.

Теперь соберем все вместе: сначала запустим M_1 , далее пока Φ возвращает неравенство, запускаем M_2 (увеличиваем u на один, вычисляем следующее значение функции), и в конце стираем лишнее, запустив M_3 .

М: Хотим по МТ $M_{\mathfrak{G}}$ построить $M_{\mathfrak{f}}$, вычисляющую

$$f(\overline{x}, y) = \begin{cases} y & g(\overline{x}, y) = 0 \land g(\overline{x}, z) \neq 0 & \forall z < y \\ \uparrow & else \end{cases}$$

Аналогично построим несколько вспомогательных МТ:

- N_1 : приписывает 0 ко входу:

$$1^{x_1}0...01^{x_m} \longrightarrow 1^{x_1}0...01^{x_m}0.$$

- N_2 : дублирует вход, разделяя решеткой: $w \longrightarrow w \# w$
- N_3 : в продублированному входе меняет вторую половину на результат M_{φ}

$$1^{x_1}0...01^{x_m}01^y\#1^{x_1}0...01^{x_m}01^y \xrightarrow{M_g} 1^{x_1}0...01^{x_m}01^y\#1^{g(x_1,...x_m,y)}$$

- N_4 : очищает все после решетки и дописывает единицу в конец

$$1^{x_1}0...01^{x_m}01^y # w \longrightarrow 1^{x_1}0...01^{x_m}01^{y+1}.$$

- N_5 : стирает все, кроме ответа

$$1^{x_1}0 \dots 01^{x_m}01^y \# w \longrightarrow 1^y$$

– Φ : проверяет, что после решетки что-то еще есть $w \# v \longrightarrow v \neq \varepsilon$. Теперь можем построить M_u так:

$$N_1$$
; N_2 ; N_3 ; while Φ do N_4 , N_2 , N_3 ; N_5 .

1 ⇒ 2 Теперь мы хотим промоделировать работу МТ с помощью частично рекурсивной функции. На вход должны либо выдать результат, либо зациклится. Так как машины Тьюринга работают со строками, а функции с натуральными числами, нужно придумать правила кодирования.

Пусть есть конфигурация МТ

$$\alpha q_i a_j \beta$$
,

где α — строка слева от головки, q_i — состояние, a_j — текущий символ, β — справа от головки.

Пронумеруем рабочий алфавит $\Gamma = \{a_0, \dots a_{m-1}\}$, где a_0 — пустой символ (_).

Кодирование конфигураций Теперь можем конфигурацию записать как

$$\widetilde{\alpha}$$
, \widetilde{q}_i , \widetilde{a}_j , $\widetilde{\beta}$,

где $\tilde{\alpha}$ — число, соответствующее α в m-ичной записи, $\tilde{q_i}$ — просто номер состояния, $\tilde{a_j}$ — номер в алфавите (j), $\tilde{\beta}$ — число, соответствующее β в m-ичной записи, записанное справа налево. Сдвиги обозначать будем d: вправо d=1, влево d=2.

Терминальное состояние — z. Множество состояний тоже пронумеруем и получим множество состояний $\widetilde{Q} = \{0, 1, \dots |Q| - 1\}$.

остоянии
$$Q = \{0, 1, \dots |Q| - 1\}$$
.

Пример 1.2.1. Рассмотрим небольшой пример. $\Gamma = \{a_0, a_1\}$, тогда состояние $\underbrace{a_1 a_0 a_1 a_1 a_0}_{\alpha} q_3 \underbrace{a_1 a_1 a_0 a_1 a_1}_{\beta}$ будет записано так: (22, 3, 1, 13).

Кодирование команд Пусть есть переход $(q,a) \to (p,b,d)$. Сопоставим p,b,d тройку функций $\varphi_q, \varphi_a, \varphi_d$:

$$\varphi_a \colon \widetilde{Q} \times \widetilde{\Gamma} \to \widetilde{\Gamma}$$

$$\varphi_q \colon \widetilde{Q} \times \widetilde{\Gamma} \to \widetilde{Q}$$

$$\varphi_d \colon \widetilde{Q} \times \widetilde{\Gamma} \to \{1, 2\}$$

Эти функции будут примитивно рекурсивными, так как заданы на конечном множестве, на остальных можем доопределить нулем.

Преобразование конфигураций Пусть у нас есть переход между двумя конфигурациями:

$$K = \alpha q_i a_j \beta \rightarrow \alpha' q_i' a_j' b' = K'.$$

Зададим функцию на числах, которая проделает этот переход $\Phi: K \to K'$. На самом деле эта функция состоит из четырех, которые мы сейчас и определим. Пусть

$$\begin{split} \widetilde{q}_{i}'(\widetilde{\alpha},\widetilde{q}_{i},\widetilde{a}_{j},\widetilde{\beta}) &= \varphi_{q}(\widetilde{q}_{i},\widetilde{a}_{i}) \\ \widetilde{\alpha}'(\widetilde{\alpha},\widetilde{q}_{i},\widetilde{a}_{j},\widetilde{\beta}) &= \begin{cases} \widetilde{\alpha} \cdot m + \varphi_{a}(\widetilde{q}_{i},a_{j}), & \varphi_{d}(\widetilde{q}_{i},\widetilde{a}_{j}) = 1 \\ \left\lfloor \frac{\widetilde{\alpha}}{m} \right\rfloor, & \varphi_{d}(\widetilde{q}_{i},\widetilde{a}_{j}) = 2 \end{cases} \\ \widetilde{\beta}'(\widetilde{\alpha},\widetilde{q}_{i},\widetilde{a}_{j},\widetilde{\beta}) &= \begin{cases} \widetilde{\beta} \cdot m + \varphi_{a}(\widetilde{q}_{i},a_{j}), & \varphi_{d}(\widetilde{q}_{i},\widetilde{a}_{j}) = 1 \\ \left\lfloor \frac{\widetilde{\beta}}{m} \right\rfloor, & \varphi_{d}(\widetilde{q}_{i},\widetilde{a}_{j}) = 2 \end{cases} \\ \widetilde{a}_{j}' &= \begin{cases} \widetilde{\beta} \mod m, & \varphi_{d}(\widetilde{q}_{i},\widetilde{a}_{j}) = 1 \\ \widetilde{\alpha} \mod m, & \varphi_{d}(\widetilde{q}_{i},\widetilde{a}_{j}) = 2 \end{cases} \end{split}$$

Заметим, что все эти формулы примитивно рекурсивные 1 .

Общая работа МТ Пусть $K(0) = (\widetilde{\alpha_0}, \widetilde{q_0}, \widetilde{a_0}, \widetilde{\beta_0})$ — начальная конфигурация. Чтобы получить новую конфигурацию для шага t, посчитаем все четыре параметра:

$$K(t) = ($$

$$K_{\alpha}(\widetilde{\alpha_{0}}, \widetilde{q_{0}}, \widetilde{a_{0}}, \widetilde{\beta_{0}}, t)$$

$$K_{q}(\widetilde{\alpha_{0}}, \widetilde{q_{0}}, \widetilde{a_{0}}, \widetilde{\beta_{0}}, t)$$

$$K_{a}(\widetilde{\alpha_{0}}, \widetilde{q_{0}}, \widetilde{a_{0}}, \widetilde{\beta_{0}}, t)$$

$$K_{\beta}(\widetilde{\alpha_{0}}, \widetilde{q_{0}}, \widetilde{a_{0}}, \widetilde{\beta_{0}}, t)$$

$$)$$

¹Единственное, чего нет явно в лемме 1 выше, это остаток по модулю, но его легко получить из деления нацело.

Теперь запишем совместную рекурсию для K_{α} , K_{q} , K_{a} , K_{β} :

$$\begin{cases} K_{\alpha}(\widetilde{\alpha_{0}},\widetilde{q_{0}},\widetilde{a_{0}},\widetilde{\beta_{0}},0) &= \widetilde{\alpha_{0}} \\ K_{\alpha}(\widetilde{\alpha_{0}},\widetilde{q_{0}},\widetilde{a_{0}},\widetilde{\beta_{0}},t+1) &= \widetilde{\alpha}' \Big(K_{\alpha}(\ldots,t),K_{q}(\ldots,t),K_{a}(\ldots,t),K_{\beta}(\ldots,t) \Big) \end{cases}$$

Для остальных точно также.

Результат Пусть начальное состояние $q_0 a_0 \beta_0$ (стоим на самом левом символе), конечное — $q_z a_z \beta_z$, причем z встречаем впервые. То есть нам нужно вычислить функцию, которая переводит $\widetilde{a_0}$ + $\widetilde{b_0}m \longrightarrow a_z + \beta_z m$, если машина Тьюринга пришла сюда и не определена, если МТ зацикливается:

$$t_z = \mu t [K_a(t) = z].$$

Тогда результатом работы МТ будет

$$\varphi(x) = m \cdot K_{\beta} \Big(0, 0, x \mod m, \lfloor \frac{x}{m} \rfloor,$$

$$\mu t \Big[K_{q}(0, 0, x \mod m, \lfloor \frac{x}{m} \rfloor, t) = z \Big] \Big) +$$

$$+ K_{a}(0, 0, x \mod m, \lfloor \frac{x}{m} \rfloor)$$

Следствие 1. Любую частично рекурсивную функцию можно представить так, что минимизация использовалась только один раз.

□ Сначала запишем для нее MT, а потом постоим обратно функцию. В итоге получим эквивалентную функцию, причем по построению оператор минимизации использовался лишь один раз. ■

Следствие 2. Функция вычислимая за примитивно рекурсивное время (время, ограниченное примитивно рекурсивной функцией), является примитивно рекурсивной.

В построении функции использовали минимизацию по числу шагов МТ, поэтому, если работаем примитивно рекурсивное время, можем применить ограниченную минимизацию.

1.2.1 Функция Аккермана

Можно построить общерекурсивную функцию, которая растет быстрее любой примитивно рекурсивной. Из этого следует, что $\mathbf{\Pi} \mathbf{P} \mathbf{\Phi}$ не совпадает с $\mathbf{O} \mathbf{P} \mathbf{\Phi}$.

Определение 8: Функция Аккермана

Функция Аккермана — функция от двух аргументов $\alpha_n(x)$, которая определяется следующим образом:

$$\begin{cases} a_0(x) &= x+1 \\ a_{n+1}(x) &= a_n^{[x+2]}(x) = \underbrace{a_n(a_n(\dots(x)))}_{x+2 \text{ pasa}} \end{cases}$$

Теорема 1.2.2. $\alpha_n(n): \mathbb{N} \to \mathbb{N}$ растет быстрее любой примитивно рекурсивной.

«Доказательство – упражнение», занимает пару страниц, в ближайшее время появится здесь.

Chapter 2

Разрешимые и перечислимые множества

2.1 Определения

Определение 9: Разрешимое множество

Множество $X \subseteq \mathbb{N}^k$ называется **разрешимым**, если его характеристическая функция вычислима a .

Замечание. Любое конечное множество разрешимо. Пересечение, объединение, разность разрешимых тоже разрешимо.

Теорема 2.1.1. Множество $X \subseteq \mathbb{N}$ разрешимо тогда и только тогда, когда X — множество значений всюду определенной вычислимой неубывающей функции (или пустое множество).

 $1 \Longrightarrow 2$ Можем в характеристической функции $\chi_X(n)$ возвращать n вместо 1, а в остальных значениях прошлое выданное. Эта функция подходит под описание.

 $2 \Longrightarrow 1$ Пусть есть функция f. Из нее хотим построить χ_X . Посчитаем $\chi_X(n)$ так:

- вычислим f(0);
- если значение больше n, то в следующих входах, значения будут еще больше, поэтому можем сразу вернуть 0;
- если меньше, то посчитаем f(1) и сравним еще раз;
- так как функция неубывающая, мы либо найдем значение больше n (тогда вернем 0), либо равное (тогда вернем единицу).

Определение 10: Перечислимое множество

Множество $X \subseteq \mathbb{N}^k$ называется **перечислимым**, если его *полухарактеристическая* функция вычислима:

$$\chi_X(n) = \begin{cases} 1, & n \in X \\ \uparrow, & n \notin X \end{cases}$$

 $[^]a$ Это может быть частично рекурсивная функция, машина Тьюринга, λ -функция...