Discrete Mathematics, 2016 Fall - Worksheet 12

October 24, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

1. Calculate the first six terms of the sequence (that is, a_0 through a_5)

$$a_n = 2a_{n-1} + 2, \qquad a_0 = 1$$

Solution. Simple computation reveals $a_1 = 4$, $a_2 = 10$, $a_3 = 22$, $a_4 = 46$, $a_5 = 94$.

2. Let $e_0 = 1$, $e_1 = 4$ and, for n > 1, let $e_n = 4(e_{n-1} - e_{n-2})$. What are the first five terms of the sequence e_0, e_1, e_2, \ldots ? Prove $e_n = (n+1)2^n$ for any natural n.

Solution. $e_0 = 1$, $e_1 = 4$, $e_2 = 12$, $e_3 = 32$, $e_4 = 80$. We show the formula by strong induction. It clearly holds for n = 0, 1. Assume that it holds for any n < k with $k \ge 2$. Then we have, in particular, that

$$e_{k-1} = k2^{k-1}, e_{k-2} = (k-1)2^{k-2}.$$

Then by the recursion,

$$e_k = 4(e_{k-1} - e_{k-2}) = 4(k2^{k-1} - (k-1)2^{k-2}) = k2^{k+1} - (k-1)2^k = 2^k(2k-k+1) = (k+1)2^k$$

3. Solve the following first order recurrence relations.

(a)
$$a_n = \frac{2}{3}a_{n-1}, a_0 = 4.$$

Solution. We know from class that the solution has the form $a_n = c_1 \left(\frac{2}{3}\right)^n + c_2$. Matching with the initial condition we get

$$4 = a_0 = c_1 + c_2 = 4,$$
 $\frac{8}{3} = a_1 = \frac{2}{3}c_1 + c_2.$

This can be solved to get $c_1 = 4$, $c_2 = 0$ and the solution to the recurrence relation is $a_n = 4\left(\frac{2}{3}\right)^n$.

(b)
$$a_n = 2a_{n-1} + 2, a_0 = 2.$$

Solution. Again, by what we learned in class, we look for the solution in the form $c_1 2^n + c_2$. Matching with the initial condition gives

$$2 = a_0 = c_1 + c_2,$$
 $6 = a_1 = 2c_1 + c_2$

which can be solved to get $c_1 = 4$ and $c_2 = -2$ and thus the solution is

$$a_n = 4 \cdot 2^n - 2$$

- 4. Solve the following second order recurrence relations.
 - (a) $a_n = 3a_{n-1} + 4a_{n-2}, a_0 = 3, a_1 = 2.$

Solution. The characteristic equation is $r^2 = 3r + 4$ which has roots $r_1 = 4$ and $r_2 = -1$, therefore we can look for the solutions in the form $a_n = c_1 4^n + c_2 (-1)^n$. Matching the initial condition gives

$$3 = a_0 = c_2 + c_2,$$
 $2 = a_1 = c_1 4 - c_2$

which can be solved to be $c_1 = 5$ and $c_2 = -2$, and the solution therefore is

$$a_n = 5 \cdot 4^n - 2(-1)^n$$

(b) $a_n = -6a_{n-1} - 9a_{n-2}, a_0 = 3, a_1 = 6.$

Solution. The characteristic equation is $r^2 = -6r - 9$ which has a double root r = -3, therefore we can look for the solutions in the form $a_n = c_1(-3)^n + c_2n(-3)^n$. Matching with inital conditions gives

$$3 = a_0 = c_1,$$
 $6 = a_1 = c_1(-3) + c_2(-3)$

which has solution $c_1 = 3$ and $c_2 = -5$ and therefore the solution is

$$a_n = (3 - 5n) \cdot (-3)^n$$
.

- 5. What can go wrong with the technique we used to solve the non-homogeneous equation on the slides? Try to solve
 - $a_n = 4a_{n-1} + 5a_{n-2} + 4, a_0 = 2, a_1 = 3.$

Solution. The characteristic equation of the homogeneous solution is $r^2 = 4r + 5$ which has roots r = 5, -1 and thus

$$a_n^h = c_1 5^n + c_2 (-1)^n$$
.

Now we can try a constant for the inhomogeneous solution:

$$c_3 = 4c_3 + 5c_3 + 4$$

which gives us $c_3 = -1/2$ and we have

$$a_n = c_1 5^n + c_2 (-1)^n - \frac{1}{2}$$

Matching with the initial condition gives

$$2 = a_0 = c_1 + c_2 - \frac{1}{2},$$
 $3 = a_1 = 5c_1 - c_2 - 1/2$

which has solution $c_1 = 1$ and $c_2 = 3/2$ and finally the solution is

$$a_n = 5^n + \frac{3}{2}(-1)^n - \frac{1}{2}.$$

In this case everything was alright.

• $a_n = 3a_{n-1} - 2a_{n-2} + 5, a_0 = a_1 = 3.$

Solution. The characteristic equation of the homogeneous part is $r^2 - 3r + 2 = 0$ with roots r = 1, 2, which means

$$a_n^h = c_1 2^n + c_2.$$

If we try to find a constant solution to the inhomogeneous equation we get

$$c_3 = 3c_2 - 2c_3 + 5 \qquad \rightarrow 0 = 5$$

which is clearly impossible. No constant solves the inhomogeneous equation. Instead, we will try the next simplest $a_n = c_3 n$. Then plugging this back into the recurrence relation, we get

$$c_3n = 3c_3(n-1) - 2c_3(n-2) + 5$$
 $\rightarrow c_3 = -5$

and we can write the solution of the inhomogeneous equation in the form

$$a_n = c_1 2^n + c_2 - 5n$$

Matching with the initial condition is left to the reader.

• $a_n = 2a_{n-1} - a_{n-2} + 2, a_0 = 4, a_1 = 2.$

This is very similar to the previous example, except that now even c_3n will give no solution to the in homogeneous equation. Try c_3n^2 .