NASA Technical Memorandum 81787

DO NOT DESTROY RETURN TO LIBRARY

A Study of Panel Loads and Centers of Pressure of Three Different Cruciform Aft-Tail Control Surfaces of a Wingless Missile From Mach 1.60 to 3.70

Milton Lamb and Charles D. Trescot, Jr.

MAY 1980

A Study of Panel Loads and Centers of Pressure of Three Different Cruciform Aft-Tail Control Surfaces of a Wingless Missile From Mach 1.60 to 3.70

Milton Lamb and Charles D. Trescot, Jr. Langley Research Center Hampton, Virginia

Scientific and Technical Information Office

SUMMARY

An investigation was made of the forces and moments on the cruciform aft-tail control surfaces of a wingless missile model to determine the variation of panel load and center of pressure with angle of attack, tail deflection, model roll angle, and Mach number. Also, a limited force-moment and surface-pressure investigation was made on a noncircular aft end to determine the effects of fin unporting. These investigations were made in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 2.36, and 3.70 and at a Reynolds number per meter of 6.6×10^6 .

The results indicated very little variation in center of pressure for the highly loaded windward tail. Equally good results can be obtained with force or pressure measurements. The normal-force slope can be predicted quite well using linear theory, but the location of the center of pressure cannot be. The centers of pressure for all three sets of tails tend to be at the spanwise location of the mean aerodynamic chord and at 36 percent of the mean aerodynamic chord. The results of the noncircular aft-end tests indicate no significant effect of fin unporting on fin loads.

INTRODUCTION

The estimation of hinge moments for all-movable control surfaces is a difficult task because of frequent nonlinear variations of hinge-moment coefficients with control deflection and angle of attack (refs. 1 and 2). It was postulated (refs. 3 and 4) that these nonlinearities are due to the influence of vortices generated by the body or forward surfaces and/or the unporting of the control surfaces at large deflections.

An investigation of control-surface nonlinearities has been undertaken to provide a data base for missile panel loads from both pressure measurements and panel force— and moment-balance measurements on several tail planforms. The results of the pressure measurements are presented in reference 5, and the current paper presents a comparison of the panel force and moment measurements with integrated pressure loads, as well as with existing theoretical analysis. A limited investigation is also made to evaluate panel loads with a missile body that is shaped such that the panels do not unport when deflected.

The experimental investigation to determine panel loads and center of pressure was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.60 to 3.70 and over an angle-of-attack range of -4° to 20° and a roll-angle range of 0° to 90° .

SYMBOLS

The aerodynamic coefficient data are referred to the body axis system, except for lift and drag, which are referred to the stability axis system. Both body axis and stability axis systems are fixed in the vertical-horizontal planes regardless of the model roll angle. The moment reference was located at 62.15 percent of the body length measured from the nose.

- A maximum cross-sectional area, m²
- b exposed semispan of control surface, cm

$$C_A$$
 axial-force coefficient, $\frac{Axial force}{q_m A}$

$$c_{BM}$$
 control-surface root bending-moment coefficient, $\frac{Bending\ moment}{q_{\infty}Ab}$

$$C_D$$
 drag coefficient, $\frac{Drag}{q_{\infty}A}$

$$c_{HM}$$
 control-surface hinge-moment coefficient, $\frac{Hinge\ moment}{q_{\infty}Ac_r}$

$$c_L$$
 lift coefficient, $\frac{Lift}{q_m^A}$

$$c_m$$
 pitching-moment coefficient, $\frac{Pitching moment}{q_{\infty}A_{l}}$

$$c_N$$
 normal-force coefficient, $\frac{Normal force}{q_{\infty}A}$

$$c_{NF}$$
 control-surface normal-force coefficient, c_{NF} panel normal force c_{NF}

$$C_{NF\alpha}$$
 control-surface normal-force slope near α = 0°, per deg

$$C_p$$
 pressure coefficient, $\frac{p_l - p_{\infty}}{q_{\infty}}$

- mean aerodynamic chord, cm
- body length, cm
- M free-stream Mach number
- p₁ local pressure, Pa
- p free-stream static pressure, Pa
- q free-stream dynamic pressure, Pa
- T_A, T_B, T_C tail planforms (see fig. 1)
- x/c fraction of local tail chord (see fig. B2)
- chordwise center-of-pressure location of tail in exposed rootcr chord lengths
- hinge-line location of tail in exposed root-chord lengths
- $x_{LE,\bar{c}}$ leading edge of mean aerodynamic chord measured from root-chord leading edge, cm
- spanwise center-of-pressure location of tail in exposed span
 lengths
- y_c^- spanwise location of mean aerodynamic chord
- α angle of attack, deg
- δ pitch-control deflection (negative with leading edge down; two tails deflected for φ = 0^O and 90^O ; four tails deflected for φ = $45^O)$, deg
- $\Delta C_p = C_{p,L.s.} C_{p,U.s.}$
- φ model roll angle (positive clockwise when viewed from rear; $φ = 0^{\circ}$ when tail 1 is at upper vertical position (see fig. 1)), deg
- ϕ_f roll altitude of specific tail panel (positive clockwise when viewed from rear; tail 1 for $\phi_f < 90^\circ$; tail 2 for $\phi_f \ge 90^\circ$), deg

Abbreviations:

- L.S. lower surface (see fig. B1)
- U.S. upper surface (see fig. B1)

APPARATUS AND TESTS

Tunnel

The tests were conducted in both the low and high Mach number test sections of the Langley Unitary Plan Wind Tunnel, which is a variable-pressure, continuous-flow facility. Asymmetric sliding-block nozzles permit a continuous variation in Mach number from about 1.5 to 2.9 in the low Mach number test section and from about 2.3 to 4.7 in the high Mach number test section.

Model

The configuration consisted of a wingless aft-tail cruciform control missile model with three sets of interchangeable tail surfaces having identical root chords and span lengths. Details of the model are given in figure 1 and table I. The missile model was sting-mounted from the rear on the main model support system of the tunnel.

Test Conditions

The model was tested at the following conditions:

Mach number	Stagnation temperature, K	Stagnation pressure,	Reynolds number, m-1	
1.60	339	54.6	6.6 × 10 ⁶	
2.36	339	75.7	6.6	
3.70	339	152.7	6.6	

The dewpoint temperature measured at stagnation pressure was maintained below 239 K to assure negligible condensation effects. In order to insure turbulent boundary layer, all tests were conducted with boundary-layer transition strips on the body 3.05 cm aft of the nose and 1.02 cm (measured streamwise) aft of the leading edges of the tails. At a Mach number of 1.60, the 0.16-cm-wide transition strips were composed of No. 60 sand sprinkled lightly; for the other two Mach numbers, the strips were composed of single-spaced No. 40 sand.

Measurements and Corrections

Aerodynamic forces and moments on the model were measured by means of a six-component strain-gage balance which was housed within the model. Forces and moments on two adjacent tails (tails 1 and 2) were measured by means of three-component strain-gage balances in the tails. The model was rolled in order to provide $\varphi_{\mathbf{f}}$ variation for tail loads. Balance-chamber pressure was measured by means of a static-pressure orifice located within the balance cavity.

The angles of attack have been corrected for sting and balance deflection due to aerodynamic loads and for tunnel airflow misalinement. The axial-force coefficients have been adjusted to free-stream conditions acting over the model base.

PRESENTATION OF RESULTS

For the convenience of the reader, tabulated values of the aerodynamic characteristics α , C_N , C_A , C_m , C_L , and C_D for the configuration with the three sets of interchangeable tail surfaces are given in tables Al to A9 of appendix A. The longitudinal aerodynamic characteristics and control-panel data for the configuration with tail B employing a circular aft end or a flattened aft end are given in appendix B for M=1.60. The control-panel loads and the resulting center-of-pressure locations for the circular aft-end configurations are presented in figures 2 to 20 as follows:

		Figure
Effect of tail roll orientation on tail loads for T_A at $\delta = 0^{\circ}$		2
Effect of tail deflection on tail loads for T_A	•	3
Effect of tail roll orientation on tail loads for T_B at $\delta = 0^{\circ}$	•	4
Effect of tail deflection on tail loads for T_B	•	5
Effect of tail roll orientation on tail loads for T_C at $\delta = 0^{\circ}$.	•	6
Effect of tail deflection on tail loads for T_C	•	7
Comparison of balance-measured and pressure-integrated panel	•	,
		8
loads for T_A at $\delta = 0^\circ$ and $M = 1.60$	• .	8
Comparison of balance-measured and pressure-integrated panel		^
loads for T_A at $\delta = 0^\circ$ and $M = 2.36$	•	9
Comparison of balance-measured and pressure-integrated panel		
loads for T_A at $\delta = 0^{\circ}$ and $M = 3.70$	•	10
Comparison of balance-measured and pressure-integrated center		
of pressure for T_A at $\delta = 0^{\circ}$ and $M = 1.60$	•	11
Comparison of balance-measured and pressure-integrated center		
of pressure for T_A at $\delta = 0^{\circ}$ and $M = 2.36$	•	12
Comparison of balance-measured and pressure-integrated center		
of pressure for T_A at $\delta = 0^{\circ}$ and $M = 3.70$	•	13
Comparison of balance-measured and pressure-integrated panel		
loads for T_A at $\delta = -15^{\circ}$ and $M = 1.60$		٦4
Comparison of balance-measured and pressure-integrated panel		
loads for T_A at $\delta = -15^{\circ}$ and $M = 2.36$	•	15
Comparison of balance-measured and pressure-integrated panel		
loads for T_A at $\delta = -15^{\circ}$ and $M = 3.70$	•	16
Comparison of balance-measured and pressure-integrated center		
of pressure for T_A at $\delta = -15^{\circ}$ and $M = 1.60$		17
Comparison of balance-measured and pressure-integrated center		
of pressure for T_A at $\delta = -15^{\circ}$ and $M = 2.36$		18
Comparison of balance-measured and pressure-integrated center		
of pressure for T_A at $\delta = -15^{\circ}$ and $M = 3.70$		19
Comparison of experimental and theoretical control-surface	-	
normal-force slope and centers of pressure of horizontal		
panel at $\phi = 0^{\circ}$ and $\delta = 0^{\circ}$		20
guina and T o min o o vivit vi	•	

DISCUSSION

The experimental tail loads for the three sets of tails are given in figures 2 to 7. The loads for all of the tails are based on the same geometric characteristics. The effects of roll orientation on the tail loads are as might be expected. The lift on the windward tail tends to be quite linear with angle of attack, and the increment due to tail deflection is generally constant. The lift on the leeward tail is nonlinear, especially at the low Mach number, but becomes more linear with increasing Mach number (fig. 2). The data for $\phi_{\rm f}=0^{\rm O}$ and $\phi_{\rm f}=180^{\rm O}$ do not coincide exactly and are especially noticeable at M = 1.60 for tails $T_{\rm A}$ and $T_{\rm B}$.

Comparison of the balance-measured loads and center of pressure of the present test and the pressure-integrated loads and center of pressure of reference 5 is shown in figures 8 to 19. The comparisons are quite good; in fact, the areas of disagreement are limited to conditions of very small panel loads. In general, the center-of-pressure variation with angle of attack and deflection is constant for the highly loaded windward tail.

Comparisons of experimental and theoretical control-surface normal-force slope and center of pressure of the horizontal panel are shown in figure 20. The theoretical values were obtained from the method of reference 6. The experimental values for y_{Cp}/b and x_{Cp}/c_r are averages over the angle-of attack range. For all cases, $C_{NF\alpha}$ is predicted quite well, but the comparison of center of pressure is not so good. However, if a correlation based on y_C^2 is used as the spanwise location and 0.36c is used as the longitudinal location, good agreement can be obtained.

CONCLUDING REMARKS

A study of the forces and moments on the cruciform aft-tail control surfaces of a wingless missile model was made to determine the variation of panel loads and center of pressure with angle of attack, tail deflection, model roll, and Mach number. The results indicate very little variation in center of pressure for the highly loaded windward tail. Also equally good results can be obtained with force or pressure measurements as shown by the comparisons. The normal-force slope can be predicted quite well using linear-theory methods, but the location of center of pressure cannot be. However, if the spanwise location of the mean aerodynamic chord is used as the spanwise center-of-pressure location and if 36 percent of the mean aerodynamic chord is used as the longitudinal center-of-pressure location, good estimates of the center-of-pressure location can be made. The results of the noncircular aft-end test indicate no significant effect of fin unporting on fin loads.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 March 27, 1980

LONGITUDINAL AERODYNAMIC CHARACTERISTICS

The longitudinal aerodynamic characteristics for the configuration with the three sets of interchangeable control surfaces are given in tables Al to A9. The characteristics are referred to the body axis system, except for lift and drag, which are referred to the stability axis system. Both body axis and stability axis systems are fixed in the vertical-horizontal plane regardless of the model roll angle.

TABLE A1.- LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR CONFIGURATION WITH TAIL A FOR M=1.60

	Φ=0°, δ=0°							
a, deg	CN	C A	C m	C	CD			
-3.80	-1.4674	1.1534	-1645	-1 -3875	1.2483			
-1.83	7291	1.1606	-0849	6916	1.1833			
.19	-0869	1.1721	0108	0830	1.1724			
2.17	8469	1.1661	- 1004	-8021	1 - 1974			
4.27	1.6513	1 - 1658	1873	1.5599	1.2856			
6 . 28	2.4270	1 - 1641	2569	2.2850	1.4227			
8.25	3.1496	1.1514	3097	2.9517	1 -5915			
10.21	3 - 9088	1.1377	3498	3.6449	1.8131			
12.25	4.7041	1.1197	3709	4 - 3594	2.0924			
16 -22	6.3716	1.1010	3006	5.8102	2 - 8374			
20.24	8.0843	1.0621	1494	7-2176	3 7934			

	φ=22.5°,δ=0°							
a, deg	CN	СВ	C m	C	СД			
-3.64	-1.4156	1 - 1405	-1607	-1 -3402	1 2282			
-1-61	6525	1.1583	.0786	6196	1.1763			
.41	-1682	1.1697	0202	-1596	1.1709			
2.39	-9616	1 - 1687	1130	.9119	1 2079			
4.35	1.7144	1.1612	1961	1.6211	1.2882			
6.44	2.5239	1 - 1527	2725	2.3787	1.4286			
8.34	3.2627	1.1392	3304	3.0629	1.6005			
10.39	4.0570	1.1154	- 3752	3.7892	1.8292			
12.35	4.8490	1.0933	- 4014	4.5029	2.1054			
16.36	6.4623	1.0414	3178	5.9071	2.8199			
20.31	8.0917	.9897	1732	7.2448	3.7374			

	$\Phi = 45 \cdot 0^{\circ}, \delta = 0^{\circ}$							
a, deg	C _N	C _A	C	c ^L	C _D			
-3.63	-1.4389	1.1289	-1636	-1.3645	1.2178			
-1.59	6586	1.1579	.0786	6262	1.1758			
.34	-1353	1.1720	0155	-1282	1 - 1728			
2.47	-9842	1.1657	1162	.9330	1.2071			
4.42	1 . 7454	1 - 1539	2010	1.6511	1 - 2852			
6 - 38	2.5196	1 - 1 4 5 4	2752	2.3765	1.4187			
8.43	3.2947	1.1271	3344	3.0937	1.5982			
10.40	4.0542	1.1051	3745	3.7880	1.8189			
12.37	4 8322	1.0806	3973	4.4884	2.0908			
16.40	6.4302	1 - 0284	3037	5.8780	2.8026			
20.42	8 • 1294	.9979	1385	7.2703	3.7717			

Φ=67.5°, δ=0°					
α, deg	CN	C	C m	CL	CD
-3.61	-1.4372	1.1386	-1620	-1.3625	1.2271
-1.65	6508	1.1604	-0780	6171	1.1787
•33	-1179	1.1676	0143	-1110	1.1683
2.46	-9555	1.1670	- 1122	-9044	1.2071
4.40	1 - 7057	1 - 1585	- 1956	1.6117	1.2861
6.37	2.4775	1.1541	2689	2.3340	1.4220
8.39	3.2465	1 - 1371	3285	3.0458	1.5987
10.42	4.0018	1.1109	- 3688	3.7348	1.8166
12.39	4 7912	1.0904	3928	4.4456	2.0930
16.49	6.4706	1.0450	3124	5.9073	2 8397
20.47	8 1719	.9971	- 1465	7.3071	3.7921

	Φ = 90 · 0°, δ = 0°							
a, deg	CN	CA	C m	C	СD			
-3.66	-1.4192	1.1533	.1588	-1.3424	1.2417			
-1.69	6663	1-1610	0780	6315	1 - 1803			
•32	1422	1.1697	0176	.1356	1.1705			
2.28	-8990	1.1713	1059	-8516	1.2062			
4.28	1 - 6507	1.1691	1868	1.5588	1.2892			
6.27	2.4073	1 - 1726	2560	2.2648	1.4286			
8.36	3.1926	1.1648	3127	2.9890	1.6170			
10.34	3.9368	1.1506	3511	3.6663	1.8388			
12.22	4.6717	1 - 1371	3749	4.3250	2.1004			
16.23	6.3306	1-1131	- 3023	5.7669	2.8387			
20.28	8.0725	1.0682	- 1358	7.2015	3.8006			

	$\Phi = 0^{\circ}$, $\delta = -15^{\circ}$						
a, deg	CN	C _A	C m	C	С		
-3.78	-4.5647	2.0325	8018	-4 4205	2.3294		
-1.80	-3.8985	1.9079	.7385	-3.8364	2.0299		
79	-3.5434	1.8490	-6995	-3.5174	1.8980		
.23	-3.2002	1 - 7943	-6604	-3.2074	1.7814		
2.21	-2.5214	1.6921	-5861	-2.5850	1.5932		
4.21	-1 -8440	1-6081	-5175	-1.9572	1.4683		
6.22	-1-1584	1.5226	-4611	-1.3166	1.3880		
8.20	4449	1.4237	4131	6436	1.3456		
10.22	-3810	1.3028	.3648	-1436	1.3498		
12.22	1.2394	1 - 1623	.3245	-9651	1.3985		
16.20	3.1873	.9002	.3428	2.8095	1.7537		

	Φ=45.0°, δ=-15°						
a,deg	CN	D D	C m	C	С		
-3.59	<u>-</u> 5.7373	2.6347	1.0464	-5.5607	2.9894		
-1.60	5 - 1382	2.5226	-9918	-5.0656	2.6654		
.42	-4.3840	2.3584	.9030	-4.4013	2.3260		
2.41	_3.6456	2.2003	-8139	-3.7349	2.0451		
4.40	-2.9122	2.0438	.7325	-3.0605	1.8141		
6.40	-2.2528	1.9135	-6816	-2.4522	1.6502		
8.39	-1 6024	1.7969	-6462	-1.8475	1.5438		
10.41	8700	1.6606	.6123	-1 - 1557	1.4760		
12.40	0953	1.5127	-5930	4181	1.4569		
16.40	1 - 5859	1.2401	-6680	1.1712	1.6375		
20.39	3.6032	.9251	-7655	3.0549	2.1229		

TABLE A2.- LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR CONFIGURATION

WITH TAIL A FOR M = 2.36

	Φ = 0°, δ = 0°							
α,deg	CN	С	m	C ^F	С			
-4.27	-1-1215	-7632	-1359	-1.0615	-8447			
-2.22	5680	.7502	.0695	5385	.7716			
17	0450	.7463	-0054	0427	.7464			
1.87	-4831	.7485	0595	-4584	-7638			
3.92	1.0428	-7576	1263	-9886	-8271			
5.98	1.6301	-7682	1886	1.5411	-9341			
8.06	2.3133	.7785	2459	2.1813	1.0952			
10.15	3.0842	-7881	2858	2.8970	1.3194			
12.27	3.9264	.7965	3097	3.6672	1.6132			
16 - 54	5 6251	-7808	3188	5.1699	2 . 3502			
20.82	7.5288	-7838	3493	_6.7583	3.4092			

	φ=22.5°,δ=0°						
α,deg	C _N	CA	C m	C	С		
-4.43	-1 -1650	.7641	-1422	-1.1023	.8519		
-2.38	- 6198	.7561	.0755	5878	.7812		
33	- 1000	.7545	-0121	0955	.7551		
1.71	-4161	.7562	0508	3933	.7682		
3.76	-9852	.7615	1182	-9331	.8245		
5.82	1.5818	.7715	- 1822	1.4954	-9280		
7.89	2.2380	.7737	2372	2.1104	1:0739		
9.99	3.0005	.7755	- 2781	2.8203	1.2846		
12.12	3.8390	.7787	3002	3.5899	1.5675		
16.39	5.6114	.7774	3251	5.1639	2.3294		
20.68	7.4832	-7908	3484	6.7214	3.3833		

	φ=45.0°,δ=0°						
a,deg	CN	С	C m	C	С		
-4.52	-1 - 1952	-7589	.1440	-1.1315	-8509		
-2.47	6442	.7576	.0769	6109	.7847		
43	1127	.7557	-0128	1070	.7565		
1.62	-4116	.7591	0497	-3899	.7704		
3.67	-9590	.7621	1148	-90.81	-8220		
5.72	1 -5549	-7697	1780	1.4703	.9211		
7.81	2,2273	-7748	2357	2.1014	1.0704		
9.91	2.9624	.7785	2706	2.7842	127.67		
12.03	3.7937	•7 <u>8</u> 27	2861	3.5471	1.5567		
16.32	5.5977	-78 <u>68</u>	3255	5.1509	2.3283		
20.62	7.5721	-8244	3717	6.7964	3.4387		

φ=67.5°,δ=0°								
a, deg	CN	СВ	C m	C	С			
-4.43	-1 - 1673	.7625	-1395	-1.1048	-8505			
-2.38	6216	.7588	-0743	5895	.7841			
33	1044	.7566	-0123	0999	.7572			
1.71	.4231	.7610	0508	4001	-7.7.33			
3.76	.9704	.7694	1159	.9177	.8315			
5.83	1.5655	.7778	1784	1.4783	-9331			
5 - 84	1.5791	.7773	1797	1.4918	.9339			
7.89	2.2184	-7808	- 2340	2.0901	1.0.782			
10.00	2.9846	-7827	2723	2.8031	1.2895			
12.13	3.7935	-7870	2941	3.5432	1.5671			
16.42	5.5735	-7841	3173	5.1243	2.3281			

	φ = 90 · 0°, δ = 0°							
a, deg	CN	CA	Cm	C	С			
-4.42	-1.1544	-7674	-1354	-1.0917	.8542			
-2.38	5979	.7594	-0714	5659	-7836			
33	- 0696	-7581	-0082	0652	.7585			
1.71	.4468	-7630	0536	.4237	-7.761			
3.76	.9915	.7741	1190	-9385	-8376			
5.83	1.5956	-7881	1837	1.5072	.9462			
7.90	2.2517	•7983	2393	2.1205	1.1005			
10.01	3.0311	-8109	2817	2.8438	13258			
12.14	3.8590	-8199	3048	3.6000	1.6136			
16.44	5.5877	-8041	3138	5.1315	2.3529			
20.75	7.4737	-8065	3448	6.7027	3.4030			

	Φ=0°,δ=-15° •							
α, deg	C _N	С	C m	C	С			
-4.30	-3-3887	1.5467	-7534	-3.2630	1.7966			
-2.25	-2.8851	1.4627	-6992	-2.8253	1.5752			
21	-2.3988	1.3730	-6432	-2.3936	1.3819			
1.83	-1 -8704	1.2708	-5788	-1.9102	1.2102			
3.88	-1.2957	1.1570	-5081	-1.3712	1.0664			
5.95	6835	1-0521	.4427	7889	-9755			
8.03	- 0235	.9493	-3904	1559	-9367			
10.12	.7113	-8504	-3592	.5507	.9622			
12.24	1 - 5465	.7530	.3421	1.3516	10639			
16.52	3.3712	.5748	-3098	3.0684	1.5100			
20.82	5.2351	-4674	-2943	4.7270	2.2978			

			50 - 4	-0	
		Φ=45.	0° , $\delta = -1$	5	
a, deg	CN	D _O	. C m	C	C
-4.52	-4.4854	2,2310	1.0613	-4.2954	2.5780
-2.46	-3.9504	2.1192	.9973	-3.8556	2.2872
41	-3.4368	2.0004	-9342	-3.4221	2.0254
1.62	-2.9033	1.8600	-8655	-2.9549	1 - 7.7.69
3.67	-2.2850	1.6807	.7825	-2.3880	1.5308
5.73	-1-6209	1.4975	.7041	-1.7625	1.3279
7.81	- •9385	1.3354	-6439	-1.1114	_1 - 1954
9.91	1998	1.1864	-6088	4012	1.1342
12.04	.5991	1.0596	-5992	.3649	1.1613
16.32	2.3180	-8699	-5845	1.9800	1.4864
20.63	4.0951	.7494	-5890	3.5683	2.1443

TABLE A3.- LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR CONFIGURATION WITH TAIL A FOR M=3.70

	$\Phi = 0^{\circ}, \delta = 0^{\circ}$								
a, deg	CN	CA	C m	C	С				
-4.07	8053	•5354	.0403	7652	-5913				
-2.04	3893	•5246	.0188	3704	<u>.</u> 5381				
-01	.0065	.5203	0003	.0065	.5203				
2.04	.3840	.5213	0183	3652	-5346				
4.07	.7978	.5257	0365	.7585	-5811				
6.12	1 .2889	.5357	0544	1.2244	-6701				
8.18	1.8731	-5446	0683	1.7766	-8055				
10.24	2.4863	-5545	0783	2.3481	-9877				
12.30	3.1357	.5761	0888	2.9409	1.2311				
16.44	4.5490	6377	- 1203	4.1824	1.8992				
20.61	6.2392	-7154	1828	5 - 5882	2.8657				

	Φ=22.5°,δ=0°							
α,deg	CN	CA	C m	СГ	С			
-4.06	7994	.5418	-0389	7590	-5971			
-2.03	3798	-5338	-0179	3607	-5469			
0.00	.0077	5309	0008	.0077	-5309			
2.04	.3955	.5290	0182	:3764	-5428			
4.07	.8141	.5284	0383	.7745	.5849			
6.12	1.2908	.5345	0544	1.2264	-6691			
8.19	1.8646	.5374	0656	1.7690	.7975			
10.24	2.4736	-5455	0758	2.3373	-9764			
12.31	3.1089	•5663	0845	2.9167	1.2161			
16.45	4.5255	6243	1174	4 1635	1.8804			
20.62	6.2198	.7135	1821	5.5703	2.8579			

	Φ=45.0°,6=0°								
α,deg	CN	CA	С т	CL	С				
-4.06	7859	-5312	.0375	7463	-5856				
-2.04	3654	5281	.0159	3464	-5408				
-01	.0254	-5232	0020	•0254	•5232				
2.04	.3996	-5212	0183	.3808	.5351				
4 - 08	.8184	-5200	0372	.7794	•5768				
6.12	1 .2978	5239	0550	1 .2345	-6594				
8 18	1.8667	-5345	0652	1.7716	.7947				
10.25	2.4699	-5512	0720	2.3324	-9818				
12.32	3.1076	-5740	0815	2.9137	1 2236				
16.47	4.5212	•6388	1120	4.1548	1.8941				
20.64	6.1857	7207	- 1734	5.5348	2.8545				

	Φ=67.5°, δ=0°								
a, deg	CN	CA	C m	C	С				
-4.10	7801	.5294	•0353	7403	.5839				
2.07	3643	.5271	-0154	3450	-5399				
03	.0172	-5233	0012	-0174	.5233				
2.01	.3924	.5247	0172	•3737	-5381				
4.05	.8060	.5274	0357	.7667	-5830				
6.10	1.2832	-5342	0519	1.2191	-6675				
8.15	1.8476	-5382	0627	1.7526	.7948				
10.22	2.4633	-5487	0721	2.3268	.9772				
12.29	3.0973	.5709	- 0823	2,9047	1.2173				
16.45	4.5181	-6311	- 1137	4.1544	1.8849				
20.62	6.1937	.7200	1768	5.5433	2 8553				

	φ=90.0°,δ=0°								
a, deg	C _N	D T	т	C	С				
-4.26	8229	.5490	.0365	7799	-6086				
-2.22	4043	.5420	-0177	3830	.5572				
18	0151	.5382	0004	0134	-5382				
1.86	.3603	-5398	0164	.3426	.5512				
3.90	.7773	-5467	0351	.7384	• 5983				
5.95	1.2600	-5579	0525	1 • 1 9 5 3	6856				
8.00	1.8303	•5679	0669	1.7334	-8172				
10.07	2.4400	-5787	0762	2.3011	.9966				
12.15	3.0854	-6009	0857	2.8899	1.2367				
16.30	4.4938	-6633	1159	4.1270	1 -8980				
20.48	6.1689	.7424	1765	5.5191	2.8540				

	Φ=0°,δ=-15°								
a, deg	C _N	C A	C m	СГ	C _D				
-4.09	-2.5045	1.1748	.5012	-2.4144	1.3504				
-2.05	-2.0141	1.0750	4607	-1.9743	1.1464				
02	-1.5436	.9802	-4198	-1.5434	.9806				
2.02	-1.1089	8912	.3839	-1.1396	8515				
4.07	6355	-8114	.3516	6915	.7643				
6.11	1206	.7308	.3244	1977	.7138				
8.16	.5055	6516	•3001	.4078	.7167				
10.23	1.1016	-6049	-2967	.9767	.7909				
12.29	1.6413	.5877	-3135	1.4786	-9236				
16.43	2.7707	-5812	3623	2.4932	1.3411				
20.59	4.0756	-5736	4052	3 6135	1.9703				

φ=45.0°, δ=-15°							
a, deg	CN	C _A	C _m	C	c_{n}		
-4.07	-3.1356	1.6631	-6731	-3.0095	1.8817		
-2.04	-2.6595	1.5441	-6343	-2.6029	1.6377		
0.00	-2.2067	1.4162	.5955	-2.2066	1.4163		
2.04	-1 7530	1.2885	-5571	-1.7977	1.2254		
4.07	-1.2674	1.1557	-5172	-1.3462	1.0629		
6.12	7306	1.0337	-4818	- 8366	-9500		
8.18	1798	.9531	.4712	3136	<u>-9179</u>		
10.24	3823	-8958	-4735	-2169	•9495		
12.31	.9375	-8644	-4854	.7316	1.0444		
16.46	2.0963	-8257	-5233	1.7765	1.3858		
20.62	3.4040	.7939	-5623	2,9062	1.9420		

TABLE A4.- LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR CONFIGURATION WITH TAIL B FOR M=1.60

	Φ = 0°, δ = 0°								
a, deg	CN	C A	C m	C	С				
-3.85	-1.3130	1.0670	.1310	-1 -2382	1.1530				
-1.84	6285	1.0800	-0644	5934	1.0997				
.15	.0464	1.0882	0058	.0435	1.0883				
2.14	-6941	1.0862	0727	-6529	1 - 1 1 1 4				
4.15	1.3858	1.0751	1409	1.3042	1.1727				
6.14	2.0774	1.0646	2011	1.9515	1.2808				
8.16	2.7958	1.0506	2519	2.6183	1.4369				
10.14	3.5133	1.0290	2889	3.2771	1.6318				
12.15	4.2999	1.0129	3096	3.9901	1.8958				
16.16	5.9681	-9908	2400	5.4565	2.6127				
20.13	7.6372	-9598	0830	6.8400	3.5302				

	φ=22.5°,δ=0°								
a.deg	CN	CA	C m	C	С				
-3.74	-1 -2552	1.0618	.1247	-1.1833	1.1414				
-1.72	5755	1 0808	.0589	5427	1.0977				
- 26	-0834	1.0902	0095	.0783	1.0906				
2,26	.7377	1.0868	0773	-6942	1.1151				
4.24	1.4062	1.0700	1446	1.3231	1.1712				
6.26	2.1198	1.0485	- 2093	1.9928	1.2734				
8.27	2.8738	1.0234	2647	2.6966	1.4262				
10.24	3.6090	.9930	3031	3.3747	1-6194				
12 - 25	4.3909	.9619	3275	4.0867	1.8721				
16.26	6.0284	.9230	2447	5.5287	2.5743				
20.24	7.6518	-8827	0716	6.8738	3.4757				

	Φ=45·0°, δ=0°								
a, deg	CN	C _A	C m	C	C ^D				
-3.74	-1.2197	1.0460	-1201	-1.1487	1.1234				
-1.73	5683	1.0738	-0590	5356	1 .0905				
25	-0864	1.0856	0092	-0816	1 -0860				
2.25	.7393	1.0807	0772	-6962	1.1089				
4.25	1.4272	1.0592	1473	1.3447	1.1621				
6.25	2.1609	1_0341	2128	2.0353	1.2635				
8 - 25	2.8779	1_0081	2649	2.7034	1.4107				
10.24	3.6159	.9785	- 3036	3.3841	1.6063				
12.26	4.4072	9466	3272	4.1056	1.8610				
16 25	6.0445	-9114	2446	5.5478	2.5667				
20.27	7.6930	-8839	0717	6.9103	3.4946				

	Φ=67.5°,δ=0°.								
a,deg	CN	CA	C m	C	С				
-3.73	-1.2290	1.0552	.1214	-1.1576	1.1330				
-1.73	5613	1.0751	.0579	5284	1.0916				
.25	-0741	1.0836	0080	-0692	1.0839				
2.26	- 7426	1-0814	0780	-6994	1.1098				
4.25	1.4273	1.0634	1468	1 - 3444	1.1665				
6.26	2.1471	1.0431	2098	2 0205	1 2710				
8 . 25	2.8550	1.0197	- 2615	2.6790	1.4191				
10.26	3.5993	-9881	2979	3.3657	1.6135				
12.26	4.3890	.9583	3214	4.0852	1 -8688				
16.26	6.0380	-9219	2459	5.5380	2.5765				
2027	7 - 7054	-88 63	0726	6.9211	3.5011				

	Φ=90·0°,δ=0°								
a, deg	CN	C A		CL	C _D				
-3.80	-1 -2586	1_0644	.1251	-1.1853	1.1456				
-1.78	5889	1.0767	-0609	5550	1.0946				
21	0691	1.0836	0074	-0651	1.0839				
2.21	.7229	1.0814	0756	-6806	1.1086				
4.21	1.4126	1.0736	1436	1.3299	1.1745				
6.22	2.1050	1.0621	2040	1 -9775	1.2839				
8.21	2.8365	1.0515	2557	2.6571	1.4461				
10.20	3.5539	1.0345	- 2901	3.3143	1.6481				
12.21	4.3234	1.0177	- 3104	4.0101	1.9096				
16.22	6-0029	9976	2375	5.4852	2.6348				
20 - 21	7 - 7025	9703	0745	6.8926	3.5724				
20 - 21	7 - 7025	<u>.9703</u>	0745	<u>6.8926</u>	3.5724				

	Φ=0°,δ=-15°							
a.deg	CN	CA	C m	C	С			
-3.90	-4.2476	1.7982	.7351	-4.1152	2.0834			
-1 -85	-3.6052	1.6950	.6772	-3.5486	1.8105			
-20	2.9295	1.6062	-6064	-2.9352	1.5958			
2.17	-2.2697	1.5247	.5384	-2.3259	1.4375			
4.15	1.6745	1.4574	-4838	-1.7757	1.3322			
6.14	_1.0087	1.3812	.4282	-1 -1508	1.2652			
8.17	2771	1.2887	.3778	- 4576	1.2362			
10.16	-4684	1 - 1892	_3385	-2513	1 -2532			
12.14	1 -2586	1.0739	.3120	1 - 0045	1.3147			
16.15	3.0134	-8516	.3706	2.6575	1.6563			
20.15	4.8782	6332	-5074	4.3615	2.2749			

			-0					
	φ=45.0°, δ=-15°							
α,deg	CN	CA	C m	C	С			
-3.74	-5-4598	2.4370	.9982	-5.2891	2.7882			
-1.76	-4.8968	2.3254	-9528	-4.8229	2.4750			
.27	-4.1924	2.1731	-8738	-4 2026	2.1533			
2.25	-3.4720	2.0191	-7873	-3.5488	1.8809			
4.25	-2.7572	1.8697	.7078	-2.8885	1.6597			
6.28	-2.1012	1.7401	-6570	-2.2791	1.4996			
8.27	-1.4426	1.6232	.6157	-1-6611	1.3988			
10. 27	7231	1_4906	-5820	9775	1.3376			
12.27	-0338	1.3626	5653	2565	1.3387			
16.26	1.5867	1.1307	.6667	1-2064	1.5299			
20.23	3.3777	-8826	-8050	2.8638	1.9966			

TABLE A5.- LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR CONFIGURATION WITH TAIL B FOR M=2.36

	Φ=0°,δ=0°									
a, deg	C _N	C _A	C w	C ^F	CD					
-4.02	-1.0131	-7608	-0470	9572	.8300					
-2.06	4963	.7494	.0244	4690	-7668					
11	0189	7401	-0009	0174	7401					
1.78	-4528	.7393	0213	.4296	.7530					
3.61	-8968	.7434	0405	-8482	.7985					
5.42	1.3937	.7504	0566	1_3165	8788					
7.25	1.9276	.7601	0613	1.8163	.9973					
8.89	2.4486	.7633	0481	2.3011	1.1329					
10.51	3.0128	.7626	0181	2.8231	1.2995					
13.57	4.1510	.7574	.0702	3.8572	1.7106					
16.55	5.3448	.7419	.1553	4.9120	2.2338					

	φ=22.5°,δ=0°								
a,deg	CN	CA	C m	C	С				
3.94	9925	.7561	-0473	9382	-8225				
-2.01	- 4854	.7453	.0242	4589	.7619				
15	0293	.7372	.0013	0273	.7372				
1.83	.4587	.7362	0220	.4348	.7505				
3.66	-9129	7379	0413	-8638	7948				
5.48	1.4078	.7439	- 0593	1.3302	-8751				
_ 7.28	1 . 9354	.7480	0661	1.8250	.9872				
9.14	2.5268	.7503	0557	2.3754	1.1425				
10.75	3.1083	.7466	0212	2.9143	1.3136				
13.93	4.3200	.7369	.0679	4.0152	1.7558				
17.00	5.5483	.7362	.1568	5.0902	2.3271				

	φ=45.0°,δ=0°								
a, deg	CN	CA	C	СГ	С				
-3.91	-1.0006	-7523	.0469	9468	-8189				
-2.07	5219	.7450	-0249	4946	-7634				
13	0335	.7375	-0011	0319	.7376				
1 -84	.4427	.7370	0216	.4187	.7509				
3.71	.9229	.7385	0430	_8731	-7968				
5.77	1.4901	.7438	0620	1.4076	-8900				
7.58	2.0134	7471	- 0652	1.8972	1.0062				
9.45	2.6242	.7496	0508	2.4654	1.1704				
11.12	3.2312	-7531	- 0152	3.0251	1.3626				
14 60	4.5650	.7504	-0815	4.2282	1.8773				
18.10	6.0422	.7614	.1720	5.5065	2.6012				

	Φ=67.5°,δ=0°								
a, deg	C _N	СА	С т	CL	С				
-4.09	-1.0228	.7546	.0467	9663	-8257				
-1.98	4779	7425	.0229	4518	7586				
13	0271	.7369	.0013	0254	.7369				
1.85	-4650	.7372	0220	-4408	.7519				
3.88	.9781	.7435	0448	.9255	-8081				
5.81	1 5129	.7512	0613	1.4290	-9006				
7.80	2.1028	.7567	- 0626	1.9805	1 -0353				
9.76	2.7412	7569	0399	2.5730	1.2111				
11.67	3.4212	.7539	-0066	3.1979	1.4306				
15.38	4.8883	-7458	.1123	4.5153	2 - 0.158				
19.40	6.5778	.7557	.2205	5.9531	2.8979				

	Φ=90.0°,δ=0°								
a, deg	CN	CA	С т	С ^Г	С				
-4.07	-1.0332	7530	.0470	9771	-8245				
-2.04	4977	.7414	-0248	4710	-7586				
09	0318	.7356	.0028	0307	.7357				
1.94	-4640	.7394	0204	.4386	-7.548				
3.96	-9858	.7483	0433	.9316	-8147				
5.98	1.5468	.7603	0593	1.4591	-9173				
8.02	2.1507	.7722	0585	2.0219	1.0648				
9.96	2.7929	<u>.</u> 7753	0318	2.6166	1.2470				
11.94	3.5067	.7750	.0194	3.2704	1.4839				
15.97	5.0654	.7578	-1406	4.6614	2.1223				
19.97	6.8120	-7582	.2422	6.1435	3.0392				

	Φ=0°,δ=-15°								
a, deg	CN	CA	C m	CL	С				
-4.75	-3.0512	1.3919	.4325	-2.9254	1.6399				
_3.00	-2.6194	1 3242	.4221	-2 -5464	1.4597				
-1.10	-2.1774	1.2550	.4071	-2.1528	1.2967				
84	1.7480	1.1809	.3892	-1 7652	1.1552				
2.63	-1.3124	1.1115	.3733	-1.3621	1.0500				
4.53	- 8400	1.0315	3558	- 9190	-9618				
6.35	3188	.9497	.3429	4220	9086				
8.00	-1880	-8774	.3444	.0640	-8950				
9.72	- 7681	8036	.3605	-6213	-9218				
12.79	1.9744	6922	.4372	1.7721	1.1123				
15.82	3.2601	-5803	-5096	2.9782	1.4474				

	φ=45.0°, δ=-15°								
a, deg	CN	СА	C m	CL	С				
-4.64	-3.8815	5.9749	-6125	-3.3844	6.2699				
2.79	-3.4576	5.9171	-6025	-3.1644	6.0789				
80	-3.0028	5.8313	-5847	-2.9201	5.8731				
1.13	-2.5725	5.7407	-5673	-2.6858	5.6886				
3.05	-2.1073	5.6282	-5472	-2.4044	5.5078				
4.99	-1.5833	5.4934	.5241	-2.0558	5.3346				
6.95	-1.0100	5.3495	-5104	-1 -6504	5-1878				
8 - 83	- 4277	5.2155	5158	-1.2241	5.0879				
10.50	.1546	5.1104	-5458	7795	5-0530				
14.08	1.5258	4.9299	-6477	. 2804	5.1530				
17.41	2.8905	4.8019	-7438	1.3210	5.4469				

TABLE A6.- LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR CONFIGURATION WITH TAIL B FOR M=3.70

	$\Phi = 0^{\circ}$, $\delta = 0^{\circ}$								
a, deg	CN	D D	т	c ^r	C _D				
-3.87	7124	-5182	0220	6758	-5651				
-2.04	3628	-5108	0115	3443	.5234				
- 15	0313	-5087	- · OD10	0300	-5088				
1.66	-2874	-5082	-0096	.2725	-5164				
3.52	-6495	-5139	-0208	.6167	-5529				
5.35	1.0549	-5241	.0385	1.0014	-6203				
7.13	1.5229	-5310	-0626	1.4451	.7160				
8 - 85	2.0265	-5413	.0917	1.9191	-8467				
10.56	2.5456	-5564	.1231	2,4004	1.0138				
14.02	3 6344	-6092	-1866	3.3784	1 -4720				
17.42	4 8297	-6675	-2510	4.4080	2 0833				

Φ=22.5°, δ=0°							
a, deg	<u></u>		<u></u>	٦	٢		
a, acg.	N	ĞΑ	m	L	D		
-3.93	7254	.5118	0200	6886	-5603		
-2.01	3545	-5073	0094	3365	-5194		
24	0312	-5042	0012	0291	-5043		
1.67	3104	-5039	.0089	-2955	.5127		
3.50	-6609	.5075	-0209	.6286	.5469		
5.36	1.0747	.5121	.0376	1.0221	-6104		
7.17	1.5570	-5173	.0620	1.4802	.7078		
8.95	2.0730	.5299	-0924	1.9652	.8463		
10.69	2.5918	.5446	.1237	2.4458	1.0161		
14.17	3.7001	.5939	-1866	3.4420	1.4821		
17.66	4.9732	-6610	.2440	4.5380	2.1392		

	Φ=45·0°, δ=0°								
a, deg	CN	C _A	т	CL	С				
-4-10	7530	.5128	0210	7.143	-5654				
-2.24	3892	5072	010.1	3691	-5221				
33	0425	.5042	0011	0396	-5044				
1.64	.3063	5064	-0097	-2917	.5149				
3.52	.6787	.5070	.0213	-6462	-5478				
5 45	1.1133	.5117	-0391	1.0596	-6153				
7.32	1.6117	.5215	-0656	1.5321	.7226				
9.19	2.1380	.5367	-1012	2.0247	-8715				
11.04	2.6896	.5557	-1354	2.5334	1.0605				
14.70	3.8827	-6175	-1995	3.5988	1.5829				
18.41	5.2791	6941	-2596	4.7895	2.3263				

	φ=67.5°,δ=0°								
a, deg	C N	С	ъ Э	د	CD				
-4.23	7846	-5145	0229	- • 7.445	-5710				
-2.25	3995	-5081	0111	37.92	-5234				
27	0421	.5050	0012	0.397	-5052				
1 - 73	3192	5069	.0094	-3037	-5164				
3.69	-6993	5113	.0222	-6650	-5552				
5.66	1.1472	.5180	-0407	1.0905	-6287				
7.63	1 -6802	.5260	0708	1.5955	- 7445				
9.58	2 2408	-5408	-10.63	2.1194	-9066				
11.54	2.8397	-5621	.1426	2.6697	1.1192				
15.47	4 1501	-6276	2111	3.8322	1.7121				
19.37	5 6553	.7112	.2742	5.0990	2.5471				

	φ = 90 · 0°, δ = 0°								
a, deg	CN	CA	C m	CL	С				
-4.24	8007	-5182	- 0269	7601	.5760				
-2.25	4207	-5100	0137	4002	-5262				
-1.19	2254	.5087	- 00.78	2147	-5133				
19	0532	-5077	0022	0515	-5079				
1.78	.2979	-5101	-0098	-2819	-5192				
3.84	.7072	.5190	-0247	-6708	-5653				
5.77	1.1384	-5329	.0441	1.0790	-6447				
7.77	1.6950	-5426	-0.7.30	1.6060	7669				
9.81	2 2965	-5587	-1108	2.1677	.9421				
11.78	2.8958	-5845	-1476	2.7154	1.1636				
15.83	4.2542	-6535	-2217	3.9143	1 .7897				

	Φ=0°,δ=-15°								
a, deg	C N	Ð	C m	C ^r	CD				
-4.36	-2.2381	1.0643	.2714	-2-1506	1.2315				
-2.44	-1.8211	.9842	.2754	-17775	1.0608				
61	-1.4380	.9030	-2720	-1.4281	.9185				
1 -25	-1 0518	.8279	-2702	-1.0697	-8047				
3.15	- 6564	.7606	.2735	- 6973	.7233				
4.98	2333	.7005	2830	- 2932	.6776				
6 - 76	2505	6403	-2991	.1734	-6654				
8.49	.7795	.5858	.3211	-6844	.6945				
10.21	1 -2503	-5652	-3605	1.1302	.7 7 80				
13.62	2.1588	-5617	-4575	1.9658	1.0543				
16.96	3.1130	.5682	-5659	2.8116	1.4520				

Φ=45.0°, δ=-15°							
α, deg	CN	CA	C m	CĹ	С		
-4.54	-2.8424	7.5060	-3921	-2.2387	7.7076		
-2.59	-2.4179	7.3997	.3943	-2.0803	7.5015		
61	-2.0001	7.2812	-3912	-1-9215	7.3024		
1.30	-1.6076	7.1817	-387.9	-1.7712	7.1431		
3.23	-1 -1757	7.0723	3860	-1.5729	6.9947		
5.14	6921	6.9718	-3887	-1.3146	6.8817		
7.02	2134	6.8941	.4119	-10546	6.8163		
8.91	.2865	6.8430	-4519	7.7.68	6 8048		
10.73	.7680	6.8090	.4955	5131	6.8329		
14.42	1.7679	6.7741	-5969	.0251	7.0010		
18.05	2.8507	6.7707	•7 <u>12</u> 3	-6115	7.3208		

	$\Phi = 0^{\circ}, \delta = 0^{\circ}$								
a, deg	C _N	CA	C m	C	С				
-4.28	-1.2264	1.0197	-1008	-1 - 1467	1.1085				
-2.16	6328	1.0272	-0556	5934	1.0504				
09	0231	1.0369	-0030	- 0214	1.0370				
1.98	.5676	1.0328	0478	-5315	1.0518				
4.07	1.1968	1.0224	0990	1-1211	1.1050				
6.18	1.8404	1.0113	1411	1.7207	1 2038				
8.30	2.4873	-9959	1702	2.3175	1.3445				
10.44	3.1641	.9824	1791	2.9336	1.5397				
12.61	3.8614	-9696	- 1597	3.5564	1.7896				
17.05	5.4848	.9440	-0010	4.9669					
08	.0041	1 -0392	.0029	.0056	1.0392				

	Φ=22.5°,δ=0°								
α,deg	CN	C A	C	C	C _D				
-3.87	-1.1260	1.0103	.0931	-1.0551	1.0840				
-1.76	5195	1.0277	.0469	4875	1.0433				
.29	.0722	1.0369	0051	.0669	1 0373				
2.39	.6741	1.0325	0581	-6302	1.0598				
4.48	1.2969	1.0174	1079	1.2134	1.1157				
6.58	1.9367	1.0008	1519	1.8091	1.2163				
8.71	2.6090	-9828	1822	2.4300	1 3667				
10.84	3.2648	-9556	1942	3.0266	1.5529				
13.00	4.0180	-9281	1868	3.7059	1.8088				
17.48	5.6379	-8981	- 0103	5.1076	2.5503				
22.01	7.5378	-8492	.2053	6.6701	3.6123				

	Φ=45.0°,δ=0°								
α,deg	CN	CA	C m	CL	CD				
-3.62	-1.0387	1.0063	_0837	- 9730	1 · 0699				
-1.58	4614	1.0282	-0419	4328	1.0406				
.51	.1406	1.0378	0109	.1313	1.0391				
2.62	.7452	1.0321	0639	-6972	1.0651				
4.69	1.3578	1.0130	1135	_ 1 .2703	1.1207				
4.69	1.3550	1.0132	1138	12675	1.1207				
6.78	2.0011	-997.6	1584	1 -8691	1.2271				
8.90	2.6369	-9821	1847	2.4532	1.3783				
11.03	3.3134	.9579	- 1959	3.0689	1.5742				
13.20	4.0943	.9450	1942	3 7.7.02	1 8552				
17.68	5,6583	.9216	0025	5-1111	2.5967				

Φ=67.5°, δ=0°								
a, deg	C _N	С	C m	CL	С			
-3.50	-1.0150	1.0104	0823	9513	1.0706			
-1.41	4298	1.0279	.0390	4042	1.0382			
-66	-1686	1.0353	0140	.1566	1.0372			
2.74	.7612	1.0321	- 0660	.7108	1.0674			
4.84	1.3856	1.0196	- 1171	1.2944	1.1331			
6.94	2.0145	1.0069	- 1580	_1 -87.81	1.2430			
9.05	2.6575	.9911	- 1854	2.4684	1 3971			
11.20	3 3258	-9686	1942	3.0742	1.5963			
13.35	4.0489	9453	- 1844	3.7212	1 8547			
17.82	5.6590	9205	0009	5.1057	2.6084			
22.36	7.5451	.8797	-2196	6.6425	3.6850			

	$\phi = 90 \cdot 0^{\circ}, \delta = 0^{\circ}$								
a, deg	C _N	CA	C	C	C D				
-3.56	-1 0304	1.0167	-0833	9651	1.0788				
-1-46	4192	1.0261	.037.6	3928	1.0365				
-61	.1560	1.0353	0133	.1449	1.0369				
2.70	.7775	1.0309	- 0681	.7280	1.0664				
4.78	1.3730	1.0285	1158	1 -2824	1.1395				
4.79	1.3920	1.0285	1172	1.3012	1.1412				
6.91	2.0226	1.0252	- <u>.157</u> 5	18846	1-2612				
9.00	2.6682	1.0166	1823	2.4762	1.4217				
11.14	3.3379	1.0085	1914	3.0800	1.6346				
13.30	3.9979	1 -0033	- 1707	3.6598	1.8962				
.61	.1667	1.0355	0138	1557	1.0372				

	Φ=0°,δ=-15°								
a, deg	C _N	C _A	C m	C.L	С				
-4.05	-3.3913	1.5907	-5553	-3.27.04	1.8265				
-4.05	-3.3804	1.5847	-5543	-3.2600	1.8196				
-2.03	-2.8952	1.5288	.5314	-2.8391	1.6307				
04	-2 3976	1.4675	.4954	-2.3965	1.4693				
1.95	-1.8841	1.4109	-4581	-1.9312	1.3457				
3.97	-1.3416	1.3590	-4219	-1.4325	1.2628				
5.94	7637	_1 .2964	-3874	8939	1.2103				
7.96	1306	1.2183	-3546	2981	1.1884				
9.95	-5381	1 - 1328	-3316	-3341	1.2088				
11.95	1 - 2498	1.0409	.3252	1.0069	1.2773				
15.98	2.8490	8543	.4158	2.5037	1.6056				

-	φ=45.0°,δ=-15°								
α,deg	c _N	C	C m	C	С				
-3.43	-4.3660	2.0411	- 7684	-4.2358	2.2990				
-1.42	-3.9081	1.9618	7509	-3-8581	2.0584				
-55	-3.3839	1.8696	.7096	-3.4019	1 -8368				
2.54	-2.8238	1.7692	-6616	-2.8997	1.6418				
4.56	-2.2689	1 6755	-620.1	-2.3951	1.4896				
6.54	-1.7107	1 5931	-5945	-1.8812	1-3877				
8 - 55	-1.1294	1.5021	.5714	-1.3403	1.3173				
10.55	4940	1.3924	-5533	740.7	1.2784				
12.56	.1939	1.2779	<u>-5529</u>	- 0.886	1.2895				
14.56	.8969	1.1739	•5825	-5730	1.3617				
16.53	1.5698	1.0963	-667.7	1.1928	1.4977				

TABLE A8.- LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR CONFIGURATION WITH TAIL C AT M = 2.36

	Φ = 0°, δ = 0°									
a, deg	CN	CA	C m	Ĉ	C ^D					
-4.32	9573	.7455	-0879	- 8983	-8156					
-2.27	- 4714	.7408	.0430	- 4416	-7590					
22	0533	-7368	-0045	0504	.7370					
1.81	-3891	-7391	0359	3654	-7511					
3.87	-8612	.7443	0770	-8089	8008					
5.92	1.3582	.7557	1119	1.2729	.8920					
8.00	1.9193	-7632	1343	1.7942	1.0232					
10.10	2.5463	.7639	1364	2.3728	1.1987					
12.23	3.2499	-7582	1177	3.0155	1.4296					
16.49	4.7.702	.7474	0736	4.3616	2.0711					
20.78	6.5007	.7538	0550	5.8104	3.0111					

	Φ=22·5°, δ=0°								
a, deg	CN	CA	C m	СГ	С				
-4.47	- 9701	.7497	.0867	- • 9086	.8231				
-2.42	5107	.7454	.0464	4787	.7664				
38	0708	.7412	0061	0658	-7416				
1.66	.3590	.7422	0327	-3372	7524				
3.71	.8207	.7443	0723	.7707	-7960				
5.78	_1.3385	.7497	1077	1.2562	-8807				
7 . 85	1.8761	.7486	1296	1.7561	-9981				
9.96	2.5303	-7498	1326	2.3625	1 - 1762				
12.07	3.2221	.7448	1202	2,9949	1.4026				
16.34	4.7459	.7385	0751	4 3461	2.0445				
20.64	6 4485	-7506	0465	5.7698	2.9759				

	Φ=45.0°,δ=0°								
α,deg	CN	C	C m	cL	CD				
-4.47	- 9848	.7469	-0884	9236	8214				
-2.41	5144	.7448	-0457	4824	.7659				
36	- 0918	-7419	.0073	0870	7425				
1.67	-3424	.7419	0303	.3205	.7516				
3.73	.7891	.7440	- 0677	.7390	.7938				
5.79	1.3002	-7474	1010	1.2181	.8748				
786	1 -8388	-7469	1254	1.7192	.9916				
9.97	2.47.31	-7466	1261	2.3063	1.1637				
12.10	3.1652	-7464	1094	2.9383	1.3934				
16.38	4.7367	.7475	0760	4.3334	2.0534				
20.68	6-4429	.7645	0529	5.7576	2.9909				

	Φ=67.5°,δ=0°								
a, deg	CN	С	С т	C	С				
-4 -58	-1.0074	.7495	-0915	9443	-8275				
-2.53	5384	.7464	-0480	5049	7695				
47	0987	-7437	-0086	0925	.7445				
1.56	.3211	.7460	0286	-3006	.7545				
3.62	-8051	-7504	0682	-7561	.7998				
5.69	12873	.7550	- 1012	1.2061	·8790				
7.77	18447	.7576	1251	1.7253	1.0000				
9.87	2.4585	.7537	1272	2.2928	1.1641				
12.00	3.1421	-7473	1101	2.9181	1.3843				
16.29	4.6856	.7373	0664	4.2904	2.0226				
20.61	6.3884	.7482	0364	5.7158	2.9497				

	Φ=90·0°,δ=0°								
α,deg	CN	CA	C m	С	CD				
-4.43	- 9880	-7566	-0879	9266	-8307				
-2.38	5214	.7507	-0464	4897	.7717				
32	0849	-7485	.0071	0806	.7490				
1.72	-3465	.7491	0311	.3239	.7592				
3.7.7	-8281	.7588	0732	.7763	-8117				
5 - 83	1.3242	.7684	1079	1.2392	-8991				
7.92	18731	.7753	1321	1.7483	1.0261				
10.02	2.4897	.7767	1337	2.3164	1-1983				
12.16	3.1941	.7691	1182	2.9603	1.4248				
16.46	4.7.1.18	.7574	0689	4.3039	2.0617				
20.78	6.4424	.7622	0505	5.7525	~2.9 9 90				

	Φ=0°,δ=-15°								
a,deg	CN	CA	С т	C	С				
-4.34	-2.5377	1.2724	-5163	-2.4339	1.4611				
-2.29	-2.1382	1.2129	.4940	-2.0878	1.2977				
24	-1.7388	1.1473	.4645	-1.7338	1.1549				
1.79	-1.3330	1.0847	.4339	-1.3664	1.0423				
3 - 85	8919	1.0153	-3993	9581	-9531				
5.91	3959	.9403	-3633	4906	-8946				
7.98	-1817	-8594	.3344	-0606	-8763				
10.08	-8556	.7761	-3238	.7065	-9139				
12-19	1 -5726	-6973	-3248	1.3898	1.0138				
16.46	3.2621	-5684	•3350	2.9672	1.4698				
20.74	4.9646	.4917	.3611	4.4685	2.2185				

				<u> </u>	-				
	φ=45.0°, δ=-15°								
α, deg	CN	CA	Cm	CL	С				
-4.47	-3.2687	1.7442	.7168	-3.1227	1.9939				
-2.41	-2.8687	1.6752	6916	-2.7955	1.7947				
37	-2.480.1	1.5945	6624	-2.4697	1 6106				
1.68	-2.0628	1.5041	-6295	-2.1060	1.4429				
3.72	-1.6203	1.3976	-5907	-1.7078	1.2892				
5.79	-10894	1.2720	-5490	-1.2123	1.1556				
7.86	5511	1.1616	-5233	7049	1.0753				
9.97	.0981	1.0535	-5242	0857	1.0546				
12.10	.7918	.9392	-5372	-5773	1 -0844				
16.38	2.3150	.8017	.5742	1.9949	1.4221				
20.68	3.97.74	.7219	-6185	3.4661	2.0800				

	Φ=0°,δ=0°								
a,deg	CN	C _A	С т	СГ	C _D				
-4.40	7388	-5478	-0101	6945	.6029				
-2.36	3629	<u>.5366</u>	.0036	3405	-5511				
33	0443	-5330	-0001	0412	•5332				
1.70	.2919	5303	- 0050	-2760	-5388				
3.74	-6557	.5377	0095	-6192	-5794				
5.78	1.0794	-5468	- 0104	1.0188	-6529				
7.84	1.5963	-5545	0080	1.5057	-7670				
9.90	2.1587	-5652	0028	2.0292	-9282				
11.97	2.7512	5874	-0054	2.5695	1 - 1455				
16.11	3.9971	-6425	-0145	3.6618	1.7265				
20.27	5.4963	.7081	.0114	4.9104	2.5688				

	Φ=22.5°,δ=0°								
a, deg	CN	С	C m	C	С				
-4.24	7185	-5455	.0109	6761	-5972				
-2.21	3647	-5380	.0053	3436	-5517				
17	- 0293	•5348	.0001	0276	.5349				
1.85	-3134	-5331	- 0046	2 9 59	. 5430				
3.89	-6701	-5345	- 0080	-6323	-5787				
5.93	1.0850	-5380	0087	1.0235	-6473				
7.99	1 . 5954	-5428	0041	1.5044	7595				
10.06	2.1424	-5528	.0038	2.0128	-9186				
12.13	2.7274	.5716	.0097	2.5463	1.1320				
16.26	4.0101	-6267	-0154	3.6739	1.7251				
20.43	5.5133	.7060	.0059	4.9200	2.5862				

φ=45.0°, δ=0°					
a,deg	CN	CA	C m	C	CD
-4.29	7375	-5484	.0108	6944	-6020
_2.25	3670	-5429	.0037	- • 3453	-5569
- 22	0446	-5385	- 0000	0426	-5386
1.81	-2891	-5355	0029	.2720	-5444
3 - 85	-6501	-5349	0072	-6127	-5774
5.90	1.0707	-5396	0088	1 0095	-6469
7.96	1 - 5803	.5459	0038	1.4894	-7595
10.02	2.1139	-5596	-0069	1.9842	-9191
12.10	2.6977	5800	.0150	2.5161	1.1327
16.24	3.9898	-6380	-0193	3.6519	1.7289
20.41	5.5073	.7148	-0033	4.9120	2.5910

Φ=67.5°,δ=0°					
a, deg	C N	CA	C m	.C_	CD
-4.50	7718	-5515	-0124	7261	-6104
-2.46	3943	-5417	.0048	3706	.5582
42	0663	-5384	-0013	0623	-5389
1.60	-2652	-5381	0020	-2500	.5453
3.64	-6285	.5403	0063	.5929	.5793
5.69	1.0480	.5475	0070	-9885	-6487
776	1.5535	5533	0025	1.4645	.7580
9.82	2.1065	-5613	.0041	1.9798	.9126
11.89	2.6886	.5793	-0111	2.5114	1.1212
16.05	3.9673	-6335	-0186	3.6373	1.7061
20.22	5.4669	.7136	-0090	4.8830	2.5598

	Φ=90·0°,δ=0°					
α,.deg	C _N	D H	C m	C	C D	
-4.50	7865	-5525	0113	7407	-6126	
-2.46	- 4128	.5426	-0059	- • 3890	-5599	
42	0780	5394	-0016	- 0739	-5400	
1.60	-2601	.5376	0029	.2449	.5447	
3.65	-6193	-5456	0073	-5833	-5839	
5.70	1.0387	.5547	0087	9785	-6552	
7.75	1 -5477	-5632	0068	1 - 4576	.7669	
9.82	2.1183	.5724	0019	1.9895	.9256	
11.89	2.6923	-5963	-0068	2.5115	1 - 1386	
16.05	3.9566	-6544	.0173	3.6212	1 - 7233	
20 24	5.4334	.7212	-0138	4 - 8484	2.5564	

Φ=0°,δ=-15°					
a, deg	CN	CA	C m	C	С
4.40	-1.9698	1.0159	-3438	-1 -8859	1.1643
-2.37	-1.5870	.9370	-3324	-1.5468	1.0019
33	-1 2091	-8647	-3169	-1 -2040	.8718
1.69	8495	.7958	.3019	8727	.7704
3.72	- 4608	.7320	-2901	5074	.7005
5.78	0038	.6701	-2810	- 0713	-6663
7.83	-5632	-6035	.2721	-4757	.6747
9.90	1 - 1246	-5650	-2760	1 0107	.7500
11.95	1.6399	-5547	-3008	1 - 4894	8824
16-10	2.7187	-5576	-3619	2.4574	1.2898
20,-25	3.9748	-5609	.4208	3.5349	1.9020

	Φ=45.0°, δ=-15°					
α,.deg	CN	СА	Cm	C	С	
-4.28	-2.4079	1.3879	-4756	-2.2973	1.5641	
-2.25	-2.0202	1.3019	.4627	-1.9674	1 .3804	
21	-1.6473	1.2049	.4453	-1-6427	1.2111	
1.81	-1.2728	1.1028	4283	-1.3072	1.0619	
3.85	8708	-9979	-4095	- • 9359	-9371	
5.90	4017	9031	-3943	4925	8570	
796	-0940	-8403	.4006	0232	8453	
10.02	-6041	.7971	.4179	-4561	8901	
12.09	1.1258	.7712	-4387	.9392	.9900	
16.23	2.2024	.7563	-4972	1.9030	1.3420	
20.40	3.4576	-7481	-5534	2.9796	1.9069	

APPENDIX B

EFFECT OF A FLATTENED AFT END

It was thought that if the deflected control surface could remain in contact with the body, then the high-pressure air below the surface would not bleed over onto the upper surface, and thus the characteristics of the tail surface could be improved. Simple fairing pieces were added to the aft end of the circular configuration to obtain the flattened aft end. The details of the fairing pieces and the resulting aft end, which allowed tail B to be in contact with the body up to 15° tail deflection, are shown in figure B1.

Figure B2 shows a typical comparison at M=1.60 of ΔC_p for the tails on the circular and flattened aft ends. There appear to be no real differences in the ΔC_p for the two configurations. The basic aerodynamic data for the flattened aft-end configuration are given in table B1. Figure B3 shows the panel loads for the two configurations, and there only seem to be slight variations in the two configurations, with the largest differences occurring at the higher angles of attack. Figure B4 shows the resulting center-of-pressure locations, and the only difference seems to be an outboard shift in the center of pressure for $\phi_f = 90^{\circ}$. The scatter of data in figure B4 at the higher angles of attack results from dividing the panel moments by panel forces that approach zero. The overall conclusion is that the flattened aft end does not greatly improve the characteristics of tail B.

APPENDIX B

TABLE B1.- LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR CONFIGURATION
WITH FLATTENED AFT END AND TAIL B

M = 1.60						
	$\phi = 0^{\circ}$, $\delta = -15^{\circ}$					
α,deg	CN	CA	C	c	CD	
-3.84	-4.2183	1.8985	.7343	-4.0815	2.1771	
-1.84	-3.5663	1.7919	.6724	-3.5066	1 -9060	
-16	-2.9146	1.7024	-6033	-2.9195	1 .6939	
2.15	-2.2928	1.6230	•5402	-2.3522	1.5356	
4 . 16	-1,6520	1.5573	.4834	-1.7606	1.4333	
6.15	-1,60082	1.4889	•4309	-1.1621	1.3722	
8.13	-112930	1.3991	-3816	- 4879	1.3436	
10.15	•4720	1.2915	.3398	-2369	1.3545	
12.15	1.2653	1.1765	.3140	-9892	1.4165	
16.16	3.0504	-9382	3645	2.6687	1.7502	
20.15	4.8869	-7168	. 4866	4.3407	2.3565	

M = 1.60						
	Φ=45·0°,δ=-15°					
a,deg	CN	C _A	C m	C	С	
-3.74	-5.4925	2.5213	1.0054	-5.3162	2.8745	
-1.74	-4.9114	2.4033	_ •9555	-4.8360	2.5518	
.25	-4.2293	2.2467	.8776	-4 2391	2.2282	
2.25	-3.4965	2.0963	.7911	-3.5764	1.9568	
4.24	-2.7728	1.9511	.7118	-2.9097	1.7404	
6.24	-2.1244	1.8263	-6614	-2.3106	1.5842	
8.25	-1.4517	1.7099	6189	-1.6823	1.4836	
10.25	7436	1.5878	-5879	-1.0144	1.4301	
12.26	0105	1.4608	•5699	3205	1.4253	
16.24	1.5279	1.2524	-6802	1.1164	1.6299	
20.26	3.3534	1.0085	.8133	2.7964	2.1076	

M = 2.36						
	Φ=0°,δ=-15°					
a, deg	CN	CA	C m	C	CD	
-4.74	-3.0872	1.4637	.4404	-2.9554	1.7142	
-3.02	-2.6544	1.3993	-4281	-2.5768	1.5375	
-1.08	-2.1858	1.3233	4097	-2.1604	1 - 3644	
.76	-1.7839	1.2538	-3945	-1-8005	1.2299	
2.72	-1.3176	1.1744	3778	-1.3720	1.1104	
4.52	8591	1.0990	.3622	9431	1.0277	
6.36	3270	1.0162	-3484	4377	.9737	
8.13	-2252	•9322	3447	-0909	-9547	
9.69	.7883	. 8612	•3592	•6320	.9816	
12.75	1.9958	-7466	4271	1.7817	1 - 1688	
15.90	3.3809	-6256	-4981	3.0801	1.5281	

M = 3.70							
	Φ=0°,δ=-15°						
a, deg	C _N	CA	C m	C,	СП		
-4.37	-2.2782	1.1054	.2804	-2.1872	1.2760		
-2.52	-1.8691	1.0282	2834	-1.8220	1 - 1095		
61	-1.4538	-9431	.2773	-1 -4435	-9586		
1.27	-1.0631	-8650	.2744	-1.0821	.8411		
3.16	6538	•7928	•2765	6966	-7554		
4.95	- 2156	. 7286	·28 <u>0</u> 6	2778	•7072		
6.77	2959	-6617	-2939	-2157	-6920		
8.52	-8441	6081	-3131	.7446	-7265		
10.22	1.3263	•5895	3512	1.2006	-8157		
13.64	2.2541	-5842	•4458		1.0995		
17.00	3.2332	-5908	.5501	2.9192	1.5104		

Section A-A rotated 45° clockwise

Figure B1.- Flattened aft end. All dimensions in centimeters.

(a) $\alpha \approx 0^{\circ}$; $\delta = -15^{\circ}$; $\phi = 0^{\circ}$.

Figure B2.- Comparison of ΔC_p for circular and flattened aft end at M = 1.60.

O Circular aft end ☐ Flattened aft end

b) $\alpha \approx 0^\circ$; $\delta = -15^\circ$; $\phi = 45^\circ$.

Figure B2.- Concluded.

Figure B3.- Comparison of panel loads for circular and flattened aft-end configurations at M = 1.60.

(b) $\phi_{f} = 90^{\circ}; \quad \phi = 0^{\circ}.$

Figure B3.- Continued.

(c) $\phi_f = 135^\circ$; $\phi = 45^\circ$.

Figure B3.- Concluded.

Figure B4.- Comparison of center of pressure for circular and flattened aft-end configurations at M = 1.60.

(b) $\phi_f = 90^\circ$; $\phi = 0^\circ$.

Figure B4.- Continued.

(c) $\phi_f = 135^\circ; \quad \phi = 45^\circ.$

Figure B4.- Concluded.

REFERENCES

- Corlett, William A.: Aerodynamic Characteristics at Mach Numbers From 0.40 to 2.86 of a Maneuverable Missile With Cruciform Trapezoidal Wings and Aft Tail Controls. NASA TM X-2681, 1972.
- Corlett, William A.; and Howell, Dorothy T.: Aerodynamic Characteristics at Mach 0.60 to 4.63 of Two Cruciform Missile Models, One Having Trapezoidal Wings With Canard Controls and the Other Having Delta Wings With Tail Controls. NASA TM X-2780, 1973.
- 3. Nielsen, Jack N.: Missile Aerodynamics. McGraw-Hill Book Co., Inc., 1960.
- Kaattari, George E.; Hill, William A., Jr.; and Nielsen, Jack N.: Control for Supersonic Missiles. NACA Conference on Automatic Stability and Control of Aircraft - A Compilation of Papers Presented, NACA, Mar. 1955, pp. 251-263.
- 5. Lamb, Milton; Sawyer, Wallace C.; Wassum, Donald L.; and Babb, C. Donald: Pressure Distributions on Three Different Cruciform Aft-Tail Control Surfaces of a Wingless Missile at Mach 1.60, 2.36, and 3.70. Volumes I to III. NASA TM-80097, 1979.
- 6. Jackson, Charlie M., Jr.; and Sawyer, Wallace C.: A Method for Calculating the Aerodynamic Loading on Wing-Body Combinations at Small Angles of Attack in Supersonic Flow. NASA TN D-6441, 1971.

TABLE I .- FIN CHARACTERISTICS

	$\mathbf{T}_{\mathbf{A}}$	$\mathtt{T}_{\mathtt{B}}$	$ extbf{ extbf{ iny T}}_{ extbf{ iny C}}$
Exposed area per panel, cm^2	101.613	92.926	75.000
Exposed semispan (reference span), cm	11.430	11.430	11.430
Exposed root chord (reference chord), cm	11.430	11.430	11.430
Maximum thickness, cm	1.110	1.110	1.110
Exposed aspect ratio	1.286	1.406	1.742
Exposed taper ratio	0.556	0.423	0.333
Leading-edge sweep, deg	12.53	30.000	45.000 inboard 14.040 outboard
x _{HL} /c _r	0.467	0.589	0.680

Figure 1.- Details of model. All dimensions are in centimeters.

Figure 2.- Effect of tail roll orientation on tail loads for T_A at δ = 0°.

(D) M = 2.50.

Figure 2.- Continued.

Figure 2.- Concluded.

Figure 3.- Effect of tail deflection on tail loads for T_A .

M = 2.36; $\phi_f = 45^\circ$; $\phi = 45^\circ$ Figure 3.- Continued.

(c) M = 3.70; $\phi_f = 45^\circ$; $\phi = 45^\circ$ Figure 3.- Continued.

(d) M = 1.60; $\phi_f = 90^\circ$; $\phi = 0^\circ$. Figure 3.- Continued.

Figure 3.- Continued.

(f) M = 3.70; $\phi_f = 90^\circ$; $\phi = 0^\circ$. Figure 3.- Continued.

(g) M = 1.60; $\phi_f = 135^\circ$; $\phi = 45^\circ$. Figure 3.- Continued.

(h) M = 2.36; $\phi_f = 135^\circ$; $\phi = 45^\circ$ Figure 3.- Continued.

(i) M = 3.70; $\phi_f = 135^\circ$; $\phi = 45^\circ$ Figure 3.- Concluded.

Figure 4.- Effect of tail roll orientation on tail loads for T_B at $\delta = 0^\circ$.

Figure 4.- Continued.

(c) M = 3.70.

Figure 4.- Concluded.

Figure 5.- Effect of tail deflection on tail loads for $T_{\mbox{\footnotesize{B}}}.$

(b) M = 2.36; $\phi_f = 45^\circ$; $\phi = 45^\circ$ Figure 5.- Continued.

(c) M = 3.70; $\phi_f = 45^\circ$; $\phi = 45^\circ$.

Figure 5.- Continued.

(d) M = 1.60; $\phi_f = 90^\circ$; $\phi = 0^\circ$. Figure 5.- Continued.

(e) M = 2.36; $\phi_f = 90^\circ$; $\phi = 0^\circ$.

Figure 5.- Continued.

(f) M = 3.70; $\phi_f = 90^\circ$; $\phi = 0^\circ$.

Figure 5.- Continued.

(g) M = 1.60; $\phi_f = 135^\circ$; $\phi = 45^\circ$. Figure 5.- Continued.

(h) M = 2.36; $\phi_f = 135^{\circ}$; $\phi = 45^{\circ}$. Figure 5.- Continued.

(i) M = 3.70; $\phi_f = 135^\circ$; $\phi = 45^\circ$. Figure 5.- Concluded.

Figure 6.- Effect of tail roll orientation on tail loads for T_C at δ = 0°.

(b) M = 2.36.

Figure 6.- Continued.

Figure 6.- Concluded.

Figure 7.- Effect of tail deflection on tail loads for T_C .

(b) M = 2.36; $\phi_f = 45^\circ$; $\phi = 45^\circ$ Figure 7.- Continued.

(c) M = 3.70; $\phi_f = 45^\circ$; $\phi = 45^\circ$.

Figure 7.- Continued.

(d) M = 1.60; $\phi_f = 90^\circ$; $\phi = 0^\circ$. Figure 7.- Continued.

(e) M = 2.36; $\phi_f = 90^\circ$; $\phi = 0^\circ$. Figure 7.- Continued.

(f) M = 3.70; $\phi_f = 90^\circ$; $\phi = 0^\circ$. Figure 7.- Continued.

(g) M = 1.60; $\phi_f = 135^\circ$; $\phi = 45^\circ$. Figure 7.- Continued.

(h) M = 2.36; $\phi_f = 135^\circ$; $\phi = 45^\circ$ Figure 7.- Continued.

(i) M = 3.70; $\phi_f = 135^\circ$; $\phi = 45^\circ$. Figure 7.- Concluded.

Figure 8.- Comparison of balance-measured and pressure-integrated panel loads for T_A at δ = 0° and M = 1.60.

Figure 8.- Continued.

Figure 8.- Continued.

(d) $\phi = 67.5^{\circ}$.

Figure 8.- Continued.

(e) $\phi = 90^{\circ}$.

Figure 8.- Concluded.

Figure 9.- Comparison of balance-measured and pressure-integrated panel loads for $T_{\rm A}$ at δ = $0^{\rm O}$ and M = 2.36.

Figure 9.- Continued.

(c) $\phi = 45^{\circ}$.

Figure 9.- Continued.

Figure 9.- Continued.

Figure 9.- Concluded.

Figure 10.- Comparison of balance-measured and pressure-integrated panel loads for $T_{\rm A}$ at δ = 0 $^{\rm O}$ and M = 3.70.

1116 6.

(b) $\phi = 22.5^{\circ}$.

Figure 10.- Continued.

Figure 10.- Continued.

(d) $\phi = 67.5^{\circ}$.

Figure 10.- Continued.

Figure 10.- Concluded.

Figure 11.- Comparison of balance-measured and pressure-integrated centers of pressure for $T_{\rm A}$ at δ = 0° and M = 1.60.

Figure 11.- Continued.

(c) $\phi = 45^{\circ}$.

Figure 11.- Continued.

Figure 11.- Continued.

Figure 11.- Concluded.

Figure 12.- Comparison of balance-measured and pressure-integrated centers of pressure for T_A at δ = 0° and M = 2.36.

Figure 12.- Continued.

Figure 12.- Continued.

Figure 12.- Continued.

(e)

Figure 12.- Concluded.

 $\phi = 90^{\circ}$.

Figure 13.- Comparison of balance-measured and pressure-integrated centers of pressure for T_A at δ = 0° and M = 3.70.

Figure 13.- Continued.

(c) $\phi = 45^{\circ}$.

Figure 13.- Continued.

Figure 13.- Continued.

Figure 13.- Concluded.

(e)

Figure 14.- Comparison of balance-measured and pressure-integrated panel loads for T_A at δ = -150 and M = 1.60.

Figure 14.- Concluded.

Figure 15.- Comparison of balance-measured and pressure-integrated panel loads for T_A at δ = -15° and M = 2.36.

(b) $\phi = 45^{\circ}$.

TAIL 1

TAIL 2

Figure 15.- Concluded.

Figure 16.- Comparison of balance-measured and pressure-integrated panel loads for T_A at δ = -15° and M = 3.70.

TAIL 2

(b) $\phi = 45^{\circ}$.

TAIL 1

Figure 16.- Concluded.

Figure 17.- Comparison of balance-measured and pressure-integrated centers of pressure for T_A at δ = -15 $^{\circ}$ and M = 1.60.

Figure 17.- Concluded.

(b)

 $= 45^{\circ}.$

Figure 18.- Comparison of balance-measured and pressure-integrated centers of pressure for T_A at δ = -15 $^{\rm O}$ and M = 2.36.

Figure 18.- Concluded.

Figure 19.- Comparison of balance-measured and pressure-integrated centers of pressure for T_A at δ = -15° and M = 3.70.

Figure 19.- Concluded.

(b)

= 45°.

Figure 20.- Comparison of experimental and theoretical control-surface normal-force slope and centers of pressure of horizontal panel at ϕ = 0° and δ = 0°.

1. Report No. NASA TM-81787	2. Government Accession No.	3. Rec	ipient's Catalog No.	
4. Title and Subtitle A STUDY OF PANEL LOADS AND CENTERS OF PRESSURE O		May	ort Date 7 1980	
THREE DIFFERENT CRUCIFORM AFT-TAIL CONTROL S OF A WINGLESS MISSILE FROM MACH 1.60 TO 3.70		ES 6. Perf	orming Organization Code	
7. Author(s) Milton Lamb and Charles D. Trescot, Jr.		l l	8. Performing Organization Report No. L=13501	
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665			k Unit No. 5-43-23-02	
		11. Con	tract or Grant No.	
2. Sponsoring Agency Name and Addre	555		e of Report and Period Covered	
National Aeronautics and Space Administrati Washington, DC 20546		14. Spo	nsoring Agency Code	
5. Supplementary Notes				
load and center of presangle, and Mach number. tigation was made on a	ringless missile model to desure with angle of attack, Also, a limited force-mononcircular aft end. These wind Tunnel at Mach numb	tail deflection ment and surfaction e investigation	on, model roll ce-pressure inves- us were made in	
load and center of presangle, and Mach number. tigation was made on a	ssure with angle of attack, Also, a limited force-mononocircular aft end. Thes an Wind Tunnel at Mach numb	tail deflection ment and surfaction e investigation	riation of panel on, model roll ce-pressure inves- ns were made in	
load and center of pres angle, and Mach number. tigation was made on a the Langley Unitary Pla	ssure with angle of attack, Also, a limited force-mononocircular aft end. Thes an Wind Tunnel at Mach numb	tail deflection ment and surfaction e investigation	riation of panel on, model roll ce-pressure inves- ns were made in	
load and center of pres angle, and Mach number. tigation was made on a the Langley Unitary Pla	ssure with angle of attack, Also, a limited force-mononocircular aft end. Thes an Wind Tunnel at Mach numb	tail deflection ment and surfaction e investigation	riation of panel on, model roll ce-pressure inves- ns were made in	
load and center of pres angle, and Mach number. tigation was made on a the Langley Unitary Pla	ssure with angle of attack, Also, a limited force-mononocircular aft end. Thes an Wind Tunnel at Mach numb	tail deflection ment and surfaction e investigation	riation of panel on, model roll ce-pressure inves- ns were made in	
load and center of pres angle, and Mach number, tigation was made on a the Langley Unitary Pla at a Reynolds number po	ssure with angle of attack, Also, a limited force-mononcircular aft end. Thes an Wind Tunnel at Mach number meter of 6.6 × 10 ⁶ .	tail deflection ment and surface investigation ers of 1.60, 2.	riation of panel on, model roll ce-pressure inves- ns were made in	
load and center of pres angle, and Mach number. tigation was made on a the Langley Unitary Pla at a Reynolds number po	ssure with angle of attack, Also, a limited force-mononcircular aft end. These an Wind Tunnel at Mach number meter of 6.6 × 10 ⁶ .	tail deflection ment and surface investigation ers of 1.60, 2.	riation of panel on, model roll ce-pressure inves- ns were made in 36, and 3.70 and	
load and center of pres angle, and Mach number. tigation was made on a the Langley Unitary Pla at a Reynolds number po 7. Key Words (Suggested by Author(s)) Panel loads	ssure with angle of attack, Also, a limited force-mononcircular aft end. These an Wind Tunnel at Mach number meter of 6.6 × 10 ⁶ . 18. Distrib	tail deflection ment and surface investigation ers of 1.60, 2.	riation of panel on, model roll ce-pressure inves- ns were made in 36, and 3.70 and	
load and center of presangle, and Mach number tigation was made on a the Langley Unitary Plaat a Reynolds number post at a Reynolds number of pressure that the property of the pressure of pressure that the pressure of pressure that the pressure of pressure that the pressure tha	ssure with angle of attack, Also, a limited force-mononcircular aft end. These an Wind Tunnel at Mach number meter of 6.6 × 10 ⁶ . 18. Distribute	tail deflection ment and surface investigation ers of 1.60, 2.	riation of panel on, model roll ce-pressure inves- ns were made in 36, and 3.70 and	
load and center of presangle, and Mach number tigation was made on a the Langley Unitary Plaat a Reynolds number post at a Reynolds number post. 7. Key Words (Suggested by Author(s)) Panel loads Panel centers of pressu	ssure with angle of attack, Also, a limited force-mononcircular aft end. These an Wind Tunnel at Mach number meter of 6.6 × 10 ⁶ . 18. Distribute	tail deflection ment and surface investigation ers of 1.60, 2.	ariation of panel on, model roll ce-pressure inves- ns were made in 36, and 3.70 and	
load and center of presangle, and Mach number tigation was made on a the Langley Unitary Plaat a Reynolds number post at a Reynolds number of pressure that the property of the pressure of pressure that the pressure of pressure that the pressure of pressure that the pressure tha	ssure with angle of attack, Also, a limited force-mononcircular aft end. These an Wind Tunnel at Mach number meter of 6.6 × 10 ⁶ . 18. Distribute	tail deflection ment and surface investigation ers of 1.60, 2.	riation of panel on, model roll ce-pressure inves- ns were made in 36, and 3.70 and	