! Problem 2.7. Find the electric field a distance z from the center of a spherical surface of radius R (Fig. 2.11) that carries a uniform charge density σ . Treat the case z < R (inside) as well as z > R (outside). Express your answers in terms of the total charge q on the sphere. [Hint: Use the law of cosines to write z in terms of R and θ . Be sure to take the positive square root: $\sqrt{R^2 + z^2 - 2Rz} = (R - z)$ if R > z, but it's (z - R) if R < z.]

Fig. 2.11

$$\int \frac{z - Ru}{(R^2 + z^2 - 2Rz\cos\theta)^{3/2}} du = \frac{zu - R}{z^2 (R^2 + z^2 - 2Rz\cos\theta)^{1/2}}$$

Problem 2.12. Use Gauss's law to find the electric field inside and outside a spherical shell of radius R that carries a uniform surface charge density σ . Compare your answer to Prob. 2.7; notice how much quicker and easier Gauss's method is.

Problem 2.17. A long coaxial cable (Fig. 2.26) carries a uniform *volume* charge density ρ on the inner cylinder (radius a), and a uniform *surface* charge density σ on the outer cylindrical shell (radius b). This surface charge is negative and is of just the right magnitude that the cable as a whole is electrically neutral. Find the electric field in each of the following three regions: (i) inside the inner cylinder (s < a), (ii) between the cylinders (a < s < b), (iii) outside the cable (s > b). Plot | E| as a function of s.

Fig. 2.26

• Problem 2.23. Find the potential a distance s from an infinitely long straight wire that carries a uniform line charge λ . Compute the gradient of your potential, and check that it yields the correct field.