





# Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese Geographic Re-Ranking

Yong Cao<sup>1</sup>, Ruixue Ding<sup>2</sup>, Boli Chen<sup>2</sup>, Xianzhi Li<sup>1</sup>, Min Chen<sup>3</sup>, Daniel Hershcovich<sup>4</sup>, Pengjun Xie<sup>2</sup>, and Fei Huang<sup>2</sup>

Huazhong University of Science and Technology
Alibaba Group, Hangzhou, China
School of Computer Science and Engineering, South China University of Technology

<sup>4</sup> Department of Computer Science, University of Copenhagen

### Task

 Geographic re-ranking is a critical aspect of recent information retrieval systems

 Optimization of Chinese geographical sentence representations based solely on text remains underexplored.



## Problem Statement



 Chinese geographic re-ranking faces unique challenges

- Linear-chain structure
- Chunks Contribution
- Lack of Standardization

## Linear-chain structure



江苏省南京市新城科技园3栋5单元。 Unit 5, Building 3, Sci-Tech Park, Nanjing City, Jiangsu Province.



我高中就读于江苏省南京市的中学。 My high school is one of middle schools of Nanjing, Jiangsu Province.

## Chunks Contribution

Specific chunks (e.g., road) exhibit greater diversity compared to general ones (e.g., country).



The information entropy of Chinese Address dataset

## Lack of Standardization



江苏省南京市科技园3栋5单元。 Unit 5, Building 3, Sci-Tech Park, Nanjing City, Jiangsu Province.



<del>江苏省</del>南京<del>市</del>科技园3栋5单元。 Unit 5, Building 3, Sci-Tech Park, Nanjing <del>City,</del> <del>Jiangsu Province.</del>



江苏省南京市新城科技园3栋5单元。 Unit 5, Building 3, New Sci-Tech Park, Nanjing City, Jiangsu Province.

## Background

(b) Cross-Encoder

[sep]



• Existing framework and approaches: Simple Sentence Representation Based on BERT [CLS]

## Methodology

### Chunking Contribution Learning

$$e_{cls}^q, e_{1:l}^q = Encoder(q), q \in Q$$

$$u_i^q = mean(\Gamma(e_{1:l}^q, I_i^q))$$

$$Score_u = (U^Q * W^U) * (U^C * W^U)$$



## Methodology

$$\mathcal{L}_u = \Phi(Score_u, Y)$$

$$\mathcal{L}_{cls} = \Phi(E_{cls}^Q * E_{cls}^C, Y)$$

### Asynchronous Update Mechanism

$$w_u' = w_u + \lambda \cdot \nabla w_u \cdot \gamma$$



### Dataset

#### • GeoTES:

 A widely recognized, large-scale benchmark dataset

#### GeoIND

 Our collected moderately-sized, real-world industry dataset

| Benchmark | Sets  | Query  | Tokens | ASL  | Cands |
|-----------|-------|--------|--------|------|-------|
| GeoTES    | Train | 50,000 | 3,599  | 18.8 | 20    |
|           | Dev   | 20,000 | 3,322  | 17.2 | 40    |
|           | Test  | 20,000 | 3,351  | 17.1 | 40    |
| GeoIND    | Train | 7,359  | 3,768  | 15.1 | 20    |
|           | Dev   | 2,453  | 3,376  | 15.1 | 20    |
|           | Test  | 2,469  | 2,900  | 15.0 | 20    |

| Field      | Content                                                    |
|------------|------------------------------------------------------------|
|            | 浙江省杭州市人民检察北东院侧广播电视台东门南                                     |
|            | South of the East Gate of People's Procuratorate North     |
| Query      | East Radio and Television Station, Hangzhou City,          |
|            | Zhejiang Province.                                         |
|            | 浙江省人民北路路旁播州区人民检察院                                          |
|            | People's Procuratorate of Bozhou District, beside Renmin   |
|            | North Road, Zhejiang Province.                             |
|            | 浙江省人民检察院                                                   |
|            | Zhejiang Provincial People's Procuratorate.                |
| Candidates | 浙江省浙江北路136号山东广播电视台                                         |
|            | Shandong Radio and Television Station, No. 136 Zhejiang    |
|            | North Road, Zhejiang Province.                             |
|            | 台州路1号杭州市拱墅区人民检察院                                           |
|            | People's Procuratorate of Gongshu District, Hangzhou City, |
|            | No. 1 Taizhou Road.                                        |

## **Evaluation Metrics**

• Hit@K (k=1,3)

$$HR@K = rac{NumberOfHits@K}{GT}$$

• NDCG@1 Normalized Discounted cumulative

$$CG_k = \sum_{i=1}^k rel(i) \hspace{0.5cm} DCG_k = \sum_{i=1}^k rac{rel(i)}{log_2(i+1)} \hspace{0.5cm} NDCG = rac{DCG}{IDCG}$$

• MRR@3 Mean Reciprocal Rank

$$MRR = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{rank_i}$$

## Main Results

- Our proposed approach achieves a remarkable state-of-the-art performance across all evaluated metrics.
- RoBERTa performs emerges as the superior candidate

| M- J-1                               | GeoTES |       |        | GeoIND |       |       |        |       |
|--------------------------------------|--------|-------|--------|--------|-------|-------|--------|-------|
| Model                                | Hit@1  | Hit@3 | NDCG@1 | MRR@3  | Hit@1 | Hit@3 | NDCG@1 | MRR@3 |
| Word2vec (Mikolov et al., 2013)      | 19.26  | 30.60 | 28.79  | 24.15  | 47.79 | 71.69 | 66.15  | 58.27 |
| Glove (Pennington et al. 2014)       | 48.02  | 67.33 | 63.32  | 59.35  | 52.38 | 74.87 | 71.95  | 69.35 |
| SBERT (Reimers and Gurevych, 2019)   | 24.22  | 51.22 | 46.65  | 35.80  | 42.20 | 71.24 | 64.56  | 54.92 |
| Argument-Encoder (Peng et al., 2022) | 56.54  | 80.01 | 73.47  | 67.08  | 59.58 | 85.54 | 78.61  | 71.19 |
| MGEO-BERT (Ding et al., 2023)        | 62.76  | 80.89 | 75.95  | 70.87  | 64.12 | 88.66 | 81.35  | 75.04 |
| Geo-Encoder                          | 68.98  | 85.82 | 81.11  | 76.56  | 66.71 | 89.35 | 82.78  | 76.99 |
| MGEO-ERNIE (Ding et al., 2023)       | 67.50  | 84.54 | 79.60  | 75.15  | 63.95 | 87.89 | 81.06  | 74.60 |
| Geo-Encoder                          | 68.66  | 85.64 | 80.75  | 76.30  | 65.33 | 89.06 | 82.10  | 75.98 |
| MGEO-RoBERTa (Ding et al., 2023)     | 68.74  | 85.16 | 80.63  | 76.15  | 63.63 | 88.70 | 81.62  | 74.81 |
| Geo-Encoder                          | 70.39  | 86.69 | 81.97  | 77.72  | 67.27 | 90.28 | 83.61  | 77.56 |
|                                      |        |       |        |        |       |       |        |       |

Table 2: Main results on GeoTES and GeoIND, where bold values indicate the best performance within each column. Our proposed method consistently outperforms all three baselines across all metrics on both datasets.

## Ablation Study

• Fix Contribution vs. Learning Weight

Geo Chunking vs. General Chunking

| Method       | Hit@1        | Hit@3 | NDCG@1 | MRR@3 |  |  |
|--------------|--------------|-------|--------|-------|--|--|
| GeoTES       |              |       |        |       |  |  |
| baseline     | 62.76        | 80.89 | 75.95  | 70.87 |  |  |
| w Fixed_1.0  | 68.08        | 85.35 | 80.48  | 75.84 |  |  |
| w Fixed_0.5  | 66.02        | 83.91 | 78.97  | 74.03 |  |  |
| w Fixed_0.1  | 68.19        | 84.95 | 80.31  | 75.70 |  |  |
| w POS (Ours) | 68.25        | 85.55 | 80.65  | 76.02 |  |  |
| w Geo (Ours) | <b>68.98</b> | 85.82 | 81.11  | 76.56 |  |  |
| GeoIND       |              |       |        |       |  |  |
| baseline     | 64.12        | 88.66 | 81.35  | 75.04 |  |  |
| w Fixed_1.0  | 65.61        | 89.59 | 82.47  | 76.39 |  |  |
| w Fixed_0.5  | 65.69        | 89.06 | 82.28  | 76.23 |  |  |
| w Fixed_0.1  | 64.20        | 87.85 | 81.14  | 74.77 |  |  |
| w POS (Ours) | 65.21        | 89.59 | 82.24  | 76.06 |  |  |
| w Geo (Ours) | 66.71        | 89.35 | 82.78  | 76.99 |  |  |

## **Ablation Study**

 Sub-optimal nature of synchronously updating metrics with model parameters.

Inference times remain remarkably similar



| Method           | Geo      | TES       | GeoIND   |           |  |
|------------------|----------|-----------|----------|-----------|--|
| Method           | Training | Inference | Training | Inference |  |
|                  | (hour)   | (ms/case) | (hour)   | (ms/case) |  |
| Word2vec         | _        | 5.9       | -        | 3.5       |  |
| Augment-Encoder  | 6.24     | 32.7      | 1.52     | 15.8      |  |
| <b>MEGO-BERT</b> | 4.50     | 33.8      | 0.92     | 18.9      |  |
| Geo-Encoder      | 5.94     | 35.6      | 1.25     | 19.5      |  |

## Chunking Weight Distribution



#### (a) BERT chunk attention weights on GeoIND dataset



(b) Statistical distribution of attention matrix

| Model      | IndBERT | IndRoBERTa | IndERNIE |
|------------|---------|------------|----------|
| IndBERT    | _       | 0.796*     | 0.785*   |
| IndRoBERTa | 0.796*  | _          | 0.932*   |
| IndERNIE   | 0.785*  | 0.932*     | _        |

| Model      | TesBERT | TesBERTa | TesERNIE |
|------------|---------|----------|----------|
| TesBERT    | _       | 0.819*   | 0.604*   |
| TesRoBERTa | 0.819*  | _        | 0.374    |
| TesERNIE   | 0.604*  | 0.374    | -        |

| Model             | IndBERT | IndRoBERTa | IndERNIE |
|-------------------|---------|------------|----------|
| TesBERT           | 0.614*  | 0.409*     | 0.501*   |
| <b>TesRoBERTa</b> | 0.713*  | 0.634*     | 0.672*   |
| TesERNIE          | 0.253   | 0.035      | 0.175    |

## Conclusion

- A novel framework called Geo-Encoder for Chinese geographic reranking task
- Chunks Contribution Learning
- Asynchronous update mechanism
- A real-world CGR dataset

## Thanks! Feel free to reach out.



yongcaoplus.github.io



yongcao@di.ku.dk



