

Shortage of IPv4 Addresses

- How To Handle Shortage of IPv4 Addresses?
 - NAT: Network Address Translation
 - Reuse some IP addresses Called non-routable addresses
 - IPv6: IP version 6

Non-Routable Addresses

- Certain IP addresses have been defined to be reusable as many times as necessary
- A small pool of IP addresses to serve a large number of computers
- The reused addresses will NOT be globally unique
 - Hosts using these addresses are invisible to the WAN
 - Routers need to do translation These hosts are invisible

Non-Routable Address Blocks

- One class of special IP addresses
- Three blocks have been defined in RFC 1918
 to be reused

 prefix=number of bits in Net ID
 - 10.0.0.0- 10.255.255.255 (10/8 prefix)
 - 172.16.0.0 172.31.255.255 (172.16/12 prefix)
 - 192.168.0.0- 192.168.255.255 (192.168/16 prefix)
- May be used <u>internally</u> without any coordination with any Internet registry
- Routinely used in small offices and home networks

NAT Example

Single unique address outside the LAN

Reusable (not unique) address within LAN

All packets leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Packets with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

Ref. Kurose, computer networking

NAT Implementation in Router

- Outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - Source address is not globally unique
 - NAT IP address is unique
- NAT translation table: has (source IP address, port #) to (NAT IP address, new port #) translation pair
- Incoming datagrams: replace (NAT IP address, new port #) in destination fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

Example

Going outside LAN: Router records (IP address, port number) of source, and its translated (IP address, port number) to the WAN side

Coming to LAN: When router receives a message, it looks at the (destination IP, port number), and from the translation table it gets the original source on the LAN side

Question – Top hat

Q_reusable IP address

Note

- Until IPv6 is universally deployed, NAT and RFC 1918 expands the availability of IP addresses
- Many experts hate NAT because it does not preserve IP addresses end-to-end
 - Hundreds of thousands of devices could have the same IP address.
 - But NAT has a huge commercial success

IP Version 6

IPv6 defined in RFC 2460

 Primarily expands source and destination address fields from 32 bits to 128 bits

 Eliminates header checksum: Modern networks assumed to be fairly robust

Subnetting in IPv6

- RFC 3587
 - Standard lengths for network and subnet parts of unicast IPv6 addresses
 - Global routing prefix (network part)
 - 48 bits
 - Subnet ID
 - 16 bits

- Interface ID (host part)
 - 64 bits
- Simplifies packet processing & routing

Questions

- There are protocols in the application layer that supports the following functions:
 - How does a device get its own IP address & subnet Information
 - DHCP: Dynamic Host Configuration Protocol

- How does a device get the destination IP address
 - DNS: Domain Name Service

Summary: Address Shortage

- Solutions to shortage of IPv4 address
 - NAT: non-routable addresses and network address translation
 - Allows reuse of predefined IP address blocks
 - NAT router makes translation from globally assigned address to internal address though maintaining NAT forwarding table.
 - IPv6 expands the IP address space from 32 bits to 128 bits.