Novena sesión Análisis Convexos - CM3E2

Jonathan Munguia¹

¹Facultad de Ciencias Universidad Nacional de Ingeniería

11 de mayo de 2021

Outline

- Cono de recesión
 - Definición

Definición 1 (Dirección de recesión)

Dado $C \subset \mathbb{R}^n$ y $d \in \mathbb{R}^n \setminus \{0\}$. Se dice que C se aleja en la dirección d y que d es una dirección de recesión de C si C contiene todas las semirectas con dirección d y que inician en un punto arbitrario de C. Es decir

$$\forall x \in C, \ \forall \lambda > 0: \ x + \lambda d \in C.$$

Un rayo de recesión o semirecta emanando de $x \in C$ y apuntando en la dirección de recesión d es el subconjunto:

$$\{x + \lambda d : \lambda \ge 0\} \subset C$$
.

Definición 2 (Cono de recesión)

El conjunto de todas las direcciones de recesión de C y el vector nulo se llama cono de recesión o cono asintótico y se denota por $\operatorname{recc}(C)$. Por tanto, si C es un conjunto no vacío, se tiene

$$\operatorname{recc}(C) = \{ d \in \mathbb{R}^n : x + \lambda d \in C \mid \forall x \in C, \forall \lambda > 0 \},$$

mientras que $recc(\emptyset) = \{0\}.$

Observación 1

Si C es acotado entonces no contiene rayos de recesión. Otras notaciones para el cono de recesión son C_{∞} y 0^+C .

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Figura: 3 conjuntos convexos y sus correspondientes conos de recesión trasladados a + recc(C).

Definición 3 (Conjunto de direcciones de recesión en un punto)

Dado $C \subset \mathbb{R}^n$ convexo no vacío, se define el conjunto de direcciones con respecto a $x \in C$ como

$$C_{\infty}(x) := \{ d \in \mathbb{R}^n : x + \lambda d \in C \quad \forall \lambda > 0 \}.$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩♡

Ejemplo 1

i)
$$\operatorname{recc}(\mathbb{R}_{+} \times [0,1]) = \operatorname{recc}(\mathbb{R}_{+} \times]0,1[) = (\mathbb{R}_{+} \times \{0\})$$

- ii) $\operatorname{recc}(\mathbb{R}_+ \times]0, 1[\cup \{(0,0)\}) = \{(0,0)\}$
- \Rightarrow iii) recc $\{x \in \mathbb{R}^2 : x^2 + y^2 \le 1\} = ?$
 - iv) $\operatorname{recc}\{x \in \mathbb{R}^2 : y \ge x^2\} = ?$
 - v) $recc\{x \in \mathbb{R}^2 : y \ge 1/x, x > 0\} = ?$

El conjunto $C_{\infty}(x)$ es un cono convexo con punta.

Teorema 1

Observación 2

Dado $C \subset \mathbb{R}^n$ convexo no vacío. El cono de recesión de C se puede escribir como

$$recc(C) = \bigcap_{x \in C} C_{\infty}(x).$$

Observación 3

Dado $C \subset \mathbb{R}^n$ convexo no vacío, el cono de recesión de C es un cono convexo ya que la intersección de conos convexos e un cono convexo.

4 D F 4 D F 4 D F 4 D F 5

3 de Coo (x) t=1 ⇒ x+1.d ∈ C

Dado $C \subset \mathbb{R}^n$, el cono de recesión de C cumple

$$C = C + \frac{10}{10}$$

$$C = C + \frac{10}{10}$$

Proposición 2

Proposición 1

Dado C convexo no vacío. El cono de recesión se expresa como

$$recc(C) = \{d \in \mathbb{R}^n : C + d \subset C\}.$$

Demostración

Dado $d \in \mathbb{R}^n \setminus \{0\}$ y $x \in C$ fijo arbitrario, se tiene que $x + nd \in C$ para todo $n \in \mathbb{N}$. Luego, dado $\lambda \in \mathbb{R}$, existe $n_0 \in \mathbb{N}$ tal que $n_0 \le \lambda \le n_0 + 1$. Debido a la convexidad $[x + n_0d, x + (n_0 + 1)d] \subset C$ y por tanto

$$x + \lambda d \in C$$
.

and do artarild

Teorema 2

Sea C un conjunto c<u>onvexo</u> c<u>errad</u>o no vacío. d es una dirección de recesión de C si y solo si

$$\exists x \in C \quad \text{t.q.} \quad \{x + \lambda d : \lambda > 0\} \subset C.$$
 (1)

S(x, 11d11)

₹ e C?

Demostración
$$K \in \mathbb{N}$$
 $Z_k - x = Kd$

Sea x verificando (1), entonces consideremos la sucesión $\{z_k\} \subset C$ con $z_k = x + kd$ se tiene que $||z_k - x|| \to \infty$. Además la sucesión $\overline{x} + d_i \in S[\overline{x}, ||d||]$ (esfera cerrada de centro \overline{x} y radio ||d||) con

$$d_k = \|d\| \frac{z_k - x}{\|z_k - \overline{x}\|}.$$

Luego, sumando convenientemente x, se infiere que

$$\frac{d_k}{\|d\|} = \frac{x - \overline{x}}{\|z_k - \overline{x}\|} + \frac{z_k - x}{\|z_k - \overline{x}\|} = \frac{x \cdot \overline{x}}{\|z_k - \overline{x}\|}$$

$$= \frac{x - \overline{x}}{\|z_k - \overline{x}\|} + \frac{\|z_k - x\|}{\|z_k - \overline{x}\|} \frac{d}{\|d\|},$$

donde $\frac{x-\overline{x}}{\|z_{\nu}-\overline{x}\|} o 0$ y $\frac{\|z_{k}-x\|}{\|z_{\nu}-\overline{x}\|} o 1$. Por tanto $\overline{x}+d_{k} o \overline{x}+d$. Por la convexidad $\{\overline{x} + d_k\} \subset C$ y por la cerradura $\overline{x} + d \in C$.

112x-X11 < 11x-X1+1174-X11

$$\frac{1}{12} \frac{1}{12} \frac$$

Definición 4 (Espacio de linealidad)

Sea C un conjunto convexo cerrado no vacío. El espacio de linealidad de C, se define como

$$L_C := \operatorname{recc}(C) \cap \operatorname{recc}(-C).$$

Observación 4

- i) Si $d \in L_C$, entonces C contiene la recta definida por d y cualquier punto de C.
- ii) Sea C un conjunto convexo cerrado no vacío. Entonces,

$$C = L_C + (C \cap L_C^{\perp}).$$

Observación 5

- iii) $\operatorname{recc}(C) = L_C + (\operatorname{recc}(C) \cap L_C^{\perp}).$
- iV) También se obtiene una descomposición ortogonal si reemplazamos L_C por un subespacio S.

12 / 15

Proposición 3

Sea C un conjunto convexo no vacío. y $A: \mathbb{R}^n \to \mathbb{R}^p$ lineal, entonces

$$A(ri(C)) = ri(A(C)) = ri(A(\overline{C})).$$

Teorema 3

Sea C un conjunto convexo no vacío. y $A: \mathbb{R}^n \to \mathbb{R}^p$ lineal. Si además:

$$Ad = 0 \land d \in recc(\overline{C}) \Rightarrow -d \in recc(\overline{C}),$$

entonces

- a) $\overline{A(C)} = A(\overline{C})$,
- b) $A(recc(\overline{C})) = recc(\overline{A(C)})$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Alrico C ri (A(C)) ZEA/NIC) EIRA x & A(C) evalprin => Frience, Fx'& Ctg Z=Az' ~ x = Ax' en portrailer por x'aC, 7,271 by (1-1/x+12+€ C tomamos la unagen mia A (1-M) Ax + MAZ' & A(C) (1-M)x+ M Z G A (C) = Zeru(A(C))

C= 1(24) GTR + XY > 1/2 corrado

Observación 6 A WY) = A (C) = (0, +0) no es current

- i) Si $C \subset \mathbb{R}^n$ es cerrado y $A : \mathbb{R}^n \to \mathbb{R}^p$ lineal, la imagen A(C) no es cerrado necesariamente.
- ii) La suma de dos conjuntos convexos cerrados no siempre es cerrado.

Sean C y D convexos de \mathbb{R}^n que satisfacen la condición

Entonces,

$$\overline{C+D} = \overline{C} + \overline{D} \quad \wedge \quad \operatorname{recc}(\overline{C+D}) = \operatorname{recc}(\overline{C}) + \operatorname{recc}(\overline{D}).$$

Governeix - Ocaran 4 D > 4 B > 4 E > 4 E > 9 Q P

FIN