Niveau 3-4-7

DNS – DHCP

DNS

- Domain Name System (or Service)
- Permet de faire le mapping entre une adresse symbolique (www.petitmou.com) et une adresse IP (207.46.197.100)
- UDP (ou TCP) Port 53
- Notion de FQDN (Fully Qualified Domain Name): « test » vs « test.brussels.petitmou.com »

DNS – Exemple

Modèle client-serveur!

DNS – Format du paquet

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Identification	Flags			
Number of questions	Number of answers			
Number of Authority RRs	uthority RRs Number of additional RRs			
Question(s)				
Answer(s)				

DNS – Divers

- Il s'agit donc d'une DB distribuée sur l'internet!
- Quand une application doit transformer un nom symbolique en adresse IP, elle devient un client du DNS.
- Pourquoi une adresse symbolique? Parce que c'est plus simple à retenir.
- La structure de la DB est hiérarchique! Les niveaux étant séparés par des points (pingouin.petitmou.com)

DNS – Notion d'autorité

- Chaque partie du DNS (client, DNS intermédiaire) fait partie d'un arbre et contrôle une partie de cet arbre.
- Un serveur DNS a autorité sur le sous-arbre qu'il contrôle
- Quand un serveur reçoit une demande pour un nom de domaine sur lequel il n'a pas autorité, il envoie la requête au niveau supérieur
- Qui gère les serveurs ? Les registrars !

DNS – Les top-level domains (TLD)

Générique (en pleine évolution):

- com (commercial),
- edu (education),
- gov (governement),
- mil (military),
- net (network support center),
- org (autres),
- int (international organisation)
- biz (business)
- info (information)
- name (information personnelles)
- coop (monde coopératif)
- aero (compagnies aériennes et fabricants)
- museum
- xxx (adulte)
- + .jobs, .travel, .cat, .mobi, .tel, .asia

Par pays (environ 260):

- fr
- uk
- be
- as
- au
- eu
- us ...
- Défini dans ISO 3166
- Dans certains pays, il est impossible d'avoir un nom '.pays'. Il faut passer par des sous-domaines (.co.uk)

IDN – Internationalized Domain Name

- Possibilité d'utiliser des caractères non-ascii (éèëààâàùçñ etc...)
- Possibilité d'utiliser d'autres alphabets (cyrillique arabe etc...)
- Utilisation de 'ToAscii' et 'ToUnicode'
- Conversion en PunnyCodes (RFC 3492 algorithme)
- Prepend de "xn--"
- Exemple: bücher.ch \rightarrow xn--bcher-kva.ch

DNS – Fonctionnement 1

- Utilisation d'un champ 'Identification' pour faire correspondre les réponses aux demandes
- Divers 'flags' pour décrire l'état de la réponse, de savoir si une récursion est possible, si elle est 'autoritaire' ou pas...
- Nombre de requêtes et de réponses dans ce paquet (le nombre de réponses vaut 0 pour une requête et au moins 1 pour une réponse)
- Chaque requête et chaque réponse a un type. Les paquets contiennent un ou plusieurs Ressource Records (RR) qui décrivent ce type.

DNS – Fonctionnement 2

- Le client envoie une requête à son DNS local.
- Le DNS local n'a pas autorité pour ce nom, il envoie la requête à un 'root (top-level)' DNS
- Le root DNS renvoie l'adresse du sous-domaine au DNS local.
- Le DNS local renvoie la requête au DNS reçu etc...

DNS – Fonctionnement 3

Yves Gancberg

Internet – Intranet – v 6.3

DNS – Les root DNS

•	a.root-servers.net	198.41.0.4,	2001:503:ba3e::2:30	VeriSign, Inc.
•	b.root-servers.net	192.228.79.201		University of Southern California (ISI)
•	c.root-servers.net	192.33.4.12		Cogent Communications
•	d.root-servers.net	199.7.91.13,	2001:500:2d::d	University of Maryland
•	e.root-servers.net	192.203.230.10		NASA (Ames Research Center)
•	f.root-servers.net	192.5.5.241,	2001:500:2f::f	Internet Systems Consortium, Inc.
•	g.root-servers.net	192.112.36.4		US Department of Defence (NIC)
•	h.root-servers.net	128.63.2.53,	2001:500:1::803f:235	US Army (Research Lab)
•	i.root-servers.net	192.36.148.17,	2001:7fe::53	Netnod
•	j.root-servers.net	192.58.128.30,	2001:503:c27::2:30	VeriSign, Inc.
•	k.root-servers.net	193.0.14.129,	2001:7fd::1	RIPE NCC
•	l.root-servers.net	199.7.83.42,	2001:500:3::42	ICANN
•	m.root-servers.net 2	202.12.27.33,	2001:dc3::35	WIDE Project

Internet – Intranet – v 6.3

Slide 12 / 25

Yves Gancberg

DNS – Types

- Chaque query / answer est d'un type particulier:
 - A: Address record: nom -> IPv4
 - AAAA: Address record: nom -> IPv6
 - CNAME: Canonical name: Alias
 - MX: Mail exchange: mail servers
 - PTR: Pointer: IPv4 -> nom (alias 'reverse', puis inverse de A)
 - NS: Name server: serveur DNS du domaine
 - SRV: Serveur SIP

— ...

DNS - TTL

- Les records DNS ont un TTL, afin de pouvoir contrôler la durée de la validité d'un record...
- Plus long: moins de requêtes
- Plus court: plus de requêtes, mais plus de contrôle (vitesse de propagation de changement plus élevée)

DNS - IPv6

- De nouveaux types de RR ont été définis pour pouvoir renvoyer des adresses IPv6.
- Nouveau type également (AAAA)

DHCP

- Dynamic Host Configuration Protocol
- RFC 2131. Port UDP 67 (Serveur) et 68 (Client)
- Basé sur une architecture client-serveur
- But: permettre au client d'obtenir automatiquement sa configuration au niveau IP, en la demandant à un serveur
- Basé sur BOOTP (basé sur une configuration manuelle sur le serveur, alors que DHCP offre une possibilité d'allocation d'adresse dynamique)

DHCP – Exemple

Modèle client-serveur!

DHCP – Les plus

- Les requêtes DHCP sont des paquets broadcast – les réponses peuvent l'être aussi (flags) ...
- Notion de 'lease': les paramètres sont alloués pour une durée déterminée
- DHCP offre aussi une possibilité de récupération et de réallocation dynamique d'adresse grâce à un mécanisme de leasing

DHCP – Les plus

- Les requêtes (broadcast) peuvent passer les routeurs (option 'DHCP helper' ou 'BOOTP helper' ou 'UDP helper' sur le routeur)
- Si pas, le serveur doit être dans le même broadcast domain que le client

Paquet ARP (rappel)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Hardware Type		Protocol type			
Hardware address length	Protocol address length	Opcode			
Source Hardware Address					
Source Protocol Address					
Destination Hardware Address					
Destination Protocol Address					

DHCP – Format du paquet 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Opcode	HW Type	HW Address Length	Hop Count		
Transaction ID					
Number of seconds		Flags			
Client IP Address					
Your IP Address					
Server IP Address					
Gateway IP Address					
Client HW Address (16 Bytes)					
Server Hostname (64 Bytes)					
Boot Filename (128 Bytes)					
OPTIONS (> 4 Bytes) En particulier: DHCP Message Type					

Yves Gancberg

DHCP – Les champs

- Opcode: 1 = Bootrequest, 2 = Bootreply
- Filename: 128 Bytes → Limitation!
- Client IP address: utilisé lors du lease (pas pour l'acquisition de l'adresse)
- Your IP address: l'adresse assignée au client par le serveur
- Server IP address: adresse du serveur assignant l'adresse

DHCP – Fonctionnement

DHCP – Les messages (référence) – 1

- DHCPDISCOVER: Le client cherche les serveurs
- DHCPOFFER: Les serveurs répondent au client
- DHCPREQUEST: Réponse du client au serveur ou extension du lease
- DHCPRELEASE: Le client annonce au serveur qu'il n'a plus besoin de l'adresse
- DHCPINFORM: Le client informe le serveur qu'il a déjà une adresse

DHCP – Les messages (référence) – 2

- DHCPACK: Le serveur confirme l'allocation de l'adresse au client
- DHCPNACK: Le serveur indique au client que son adresse est incorrecte ou que son lease est expiré
- DHCPDECLINE: Le client annonce au serveur que l'adresse reçue est déjà utilisée