Computer Input and Output (I/O)

- One of the basic and essential features designed in a computer system is its ability to exchange data with other external devices, and to allow the user to interact with the system:
 - Input Devices include:
 - Switches, Keyboards, Mice, Scanners, Cameras, etc.
 - Output devices include:
 - Lamp/LED/LCD displays, Video monitors, Speakers, Printers, etc.
- One or more interface circuits usually are used between I/O devices and the CPU to:
 - Handle transfer of data between CPU and I/O interface.
 - Handle transfer of data between I/O device and interface.
 - Enable the CPU to request the status of data sent/received by the interface.
- Common I/O interfaces:
 - Serial I/O: RS-232C Data exchanged one bit at a time.
 - Parallel I/O: Date exchanged one byte at a time.

A Typical CPU I/O Connection

For each I/O device or interface:

- A number of registers, reachable by the CPU, are present.
- These registers are used for data transfer, I/O device control and configuration and for device status monitoring by the CPU.
- Each of the registers is given a unique address.
- The address decoder enables the device to recognize its addresses when issued

Memory Mapped I/O

Addresses of data, control and status registers in I/O devices or interfaces are treated by the CPU as if they were conventional memory locations or addresses:

Hence the same instructions that move data to or from memory can be used to transfer data to or from I/O devices.

68000 Memory Mapped I/O

The Motorola 68000 uses memory mapped I/O, where device registers are assigned unique addresses within the memory address space. I/O data and control registers are treated as if they were memory locations.

Example: The SBC08K 68008 board used in the lab includes:

Two parallel ports A, B using the Motorola 68230 Parallel
Interface/Timer (PI/T) chip, with a Port General Control
Register, PGCR address of \$0FF000

- Parallel data port A (or PA) has the following addresses:
 - Data Register of port A, DRA has address: \$0FF010
 - Data Direction Register of port A, DDRA has address: \$0FF004
 - Port A Control Register, PACR has address: \$0FF00C
- Parallel data port B (or PB) has the following addresses:
 - Data Register of port B, DRB has address: \$0FF012
 - Data Direction Register of port B, DDRA has address: \$0FF006
 - Port B Control Register, PBCR has address: \$0FF00E

The Motorola 68230 Parallel Interface Timer (PI/T)

• A general purpose Parallel Interface and Timer, PI/T chip that offers several *very complex* modes of operation.

The Motorola 68230 PI/T

- Contains three 8-bit parallel ports: PA, PB & PC
- PA & PB can be programmed as input or output ports, or as both at the same time (full-duplex operation).
- Can be programmed to interrupt the processor when any port receives new data.
- 68230 also contains a programmable 24 bit counter.
- Handshaking lines can be programmed to provide different communications protocols to the I/O device.
- The 68230 is programmed, and data transfers take place using a total of 23 internal 8-bit registers.

A Typical 68230 Single Board Setup

Programming The 68230

- Ports A and B are capable of operating in one of four possible modes programmed using the two msb's of PGCR:
 - Mode 0 Unidirectional 8 bit transfers (used in lab 3 PGCR = 00).
 - Mode 1 Unidirectional 16 bit transfers (PA is MSB).
 - Mode 2 Bidirectional 8 bit transfers.
 - Mode 3 Bidirectional 16 bit transfers.
- Within each of these modes are sub modes programmed using PACR and PBCR:
 - 00 Double-buffered input, single buffered output.
 - 01 Double buffered output, no latching of inputs.
 - 1X Input unlatched, No buffering of output.
- Each of the three ports has a Data Direction Register (DDRA, DDRB and DDRC) associated with it:
 - Each bit in the DDR controls the direction of I/O on the corresponding bit on the port (1 for output and 0 for input).
 - e.g. DDRA = \$00 for input \$FF for output.

68230 Parallel I/O Data Latching/Buffering

68230 Register Address Equates

PIT	EQU	\$0FF000	Base Address of PI/T
PGCR	EQU	PIT	Port General Control Register
PSRR	EQU	PIT+2	Port service request register
PADDR	EQU	PIT+4	Data direction register A
PBDDR	EQU	PIT+6	Data direction register B
PACR	EQU	PIT+\$0C	Port A control register
PBCR	EQU	PIT+\$0E	Port B control register
PADR	EQU	PIT+\$10	Port A data register
PBDR	EQU	PIT+\$12	Port B data register
PSR	EQU	PIT+\$1A	Port status register
TCR	EQU	PIT+\$20	Timer control register
TSR	EQU	PIT+\$34	Timer status register

I/O Example This program continuously reads Port A (e.g. switches) and outputs the						
	ORG	\$1000	value to port B (LEDs)			
DRA	EQU	\$0FF010	Data Register of Port A			
DDRA	EQU	\$0FF004	Data Direction Register of Port A			
PACR	EQU	\$0FF00C	Port A Control Register			
DRB	EQU	\$0FF012	Data Register of Port B			
DDRB	EQU	\$0FF006	Data Direction Register of Port B			
PBCR	EQU	\$0FF00E	Port B Control Register			
PGCR	EQU	\$0FF000	Address of Port General Control Register			
PGCRM	EQU	\$00	Equate set mode to 0			
DDA	EQU	\$00	Equate Port A direction: input			
DDB	EQU	\$FF	Equate Port B direction: Output			
START	MOVE.B	#PGCRM,PGCR	Initialize the mode to 0			
	MOVE.B	#\$80,PACR	Initialize port A to submode 1x, non-latched			
	MOVE.B	#\$80,PBCR	Initialize Port B to mode 1x, single buffered			
	MOVE.B	#DDA,DDRA	Initialize Port A as input port			
	MOVE.B	#DDB,DDRB	Initialize Port B as output port			
LOOP	NOP		No operation			
	MOVE.B	DRA,D0	Read a byte from Port A into D0			
	MOVE.B	D0,DRB	Write a byte to Port B (value read from A)			
	NOP		No operation			
	BRA	LOOP	Always branch.			
	END	START	EECC250 - Shaaban			