

Neural Machine Translation CMPT 413/825, Fall 2019

Jetic Gū School of Computing Science

Overview

- Focus: Neural Machine Translation
- Architecture: Encoder-Decoder Neural Network
- Main Story:
 - Introduction
 - Encoder-Decoder Architecture: Sequence-to-Sequence
 - Attention Mechanisms
 - *Copy Mechanism
 - *BeamSearch
 - *[Extra] Beyond Seq2Seq: Attention is all you need
 - *[Extra] Beyond NMT

P0 Prelude

Machine Translation

Was hat Prof. Sarkar gegessen?

What did Prof. Sarkar eat?

P0 Prelude

Machine Translation

P0 Prelude

Machine Translation

$$Pr(E \mid F)$$

History

- Started in the 1950s: rule-based, tightly linked to formal linguistics theories
- 1980s: Statistical MT
- 2000s-2015: Statistical Phrase-Based MT
- 2015-Present: Neural Machine Translation

History

- Started in the 1950s: rule-based, tightly linked to formal linguistics theories
- 1980s: Statistical MT
- 2000s-2015: Statistical Phrase-Based MT
- 2015-Present: Neural Machine Translation

History

- Started in the 1950s: rule-based, tightly linked to formal linguistics theories
- 1980s: Statistical MT
- 2000s-2015: Statistical Phrase-Based MT
- 2015-Present: Neural Machine Translation
- ~2018-Present: Neural Machine Translation + PBMT Hybrid

Recap: Generative Neural LM

$$Pr(e' = e_t | e_{< t})$$

 Next token's probability distribution over the vocabulary, conditioned on previous tokens.

Recap: Generative Neural LM

$$Pr(E) = \prod_{t} Pr(e' = e_t | e_{< t})$$

 Next token's probability distribution over the vocabulary, conditioned on previous tokens.

$$Pr(e' = e_5 | y_{1:4}) = Pr(e' = 'eat' | 'what did prof. sarkar')$$

Conditional Generative Neural LM

$$F = (f_1, f_2, \dots, f_{|F|})$$

$$E = (e_1, e_2, \dots, e_{|E|})$$

$$Pr(E \mid F) = \prod_{t} Pr(e' = e_t \mid F, e_{< t})$$
CLM

Conditional Generative Neural LM

$$Pr(E) = \prod_{t} Pr(e' = e_t \mid e_{< t})$$

$$Pr(E \mid F) = \prod_{t} Pr(e' = e_t \mid F, e_{< t})$$

Conditional Generative Neural LM

$$Pr(E \mid F) = \prod_{t} Pr(e' = e_t \mid F, e_{< t})$$

Conditional Generative Neural LM

$$Pr(E \mid F) = \prod_{t} Pr(e' = e_t \mid F, e_{< t})$$
CLM

Ooluo

Conditional Generative Neural LM

$$h_0^{dec} = h_{|F|}^{enc} \qquad \qquad W \in \mathbb{R}^{|V_E| \times d} \qquad h_2^{dec} = RNN^{dec}(\text{`what'}, h_1^{dec})$$

$$h_1^{dec} = RNN^{dec}(\text{`softmax}(Wh_1^{dec} + b)) \qquad \text{what} \qquad \text{did} \qquad \text{prof.} \qquad \text{sarkar} \qquad \text{eat} \qquad ? \qquad \text{EOS>}$$

$$h_{|F|}^{enc} \qquad \qquad \text{NNN} \qquad \text{RNN} \qquad$$

$$Pr(E \mid F) = \prod_{t} Pr(e' = e_t \mid F, e_{< t})$$

Ool

Sequence-to-Sequence

$$Pr(E \mid F) = \prod_{t} Pr(e' = e_t \mid F, e_{< t})$$

Sequence-to-Sequence

- S2S: can the two RNNs have the same vocab?
- S2S: can the two RNNs be the same?
- S2S: are there other ways to connect the two RNNs?

CLM

Sequence-to-Sequence

e.g.
$$h_0^{dec} = [\overrightarrow{h}_{|F|}^{enc}; \overleftarrow{h}_{|F|}^{enc}] \in \mathbb{R}^{2d}$$

e.g.
$$h_0^{dec} = MLP([\vec{h}_{|F|}^{enc};\overset{\leftarrow}{h}_{|F|}^{enc}]) \in \mathbb{R}^d$$

$$Pr(E \mid F) = \prod_{t} Pr(e' = e_t \mid F, e_{< t})$$
CLM

Sequence-to-Sequence

$$Pr(E | F) = \prod_{t} Pr(e' = e_t | F, e_{< t})$$

Sequence-to-Sequence

- Difference between a Generative LM and a Conditional Generative LM?
- Difference between Encoder-Decoder and Conditional Generative LM?
- Difference between Encoder-Decoder and Sequence-to-Sequence?

CLM

Summary

- From Generative Neural Language Model (LM) to Conditional Generative Neural Language Model (CLM)
- Encoder-Decoder Architecture
- Vanilla sequence-to-sequence Model
- Common approaches to seq2seq: BiRNN (e.g. BiLSTM, BiGRU) encoder, RNN decoder (LSTM, GRU)

Is Vanilla Seq2Seq Good Enough?

- Relies on $h_{|F|}^{enc} \in \mathbb{R}^d$ to represent entire source sentence
 - word-level information, semantics, style, sentiment, etc.
- Problematic when facing longer source sentences

Is Vanilla Seq2Seq Good Enough?

- Phrase-Based MT: explicit alignment
- Attention: provide decoder-relevant contextual information at each step t

Couces

Attention

 $*f(x,y) = V \tanh(W'x + W''y)$

 $score_{t,i} = f(h_i^{enc}, h_t^{dec})$

 $\alpha_t = \text{softmax}(score_{t_i}) \quad \alpha_{t,1}$

Attention

Ookyo

Attention

Course

- Why does Attention work?
- What is in the context vector?
- What is in α ?

$$score_{t,i} = f(h_i^{enc}, h_t^{dec})$$

$$\alpha_t = softmax(score_{t_i})$$

$$context_t = \sum_{i} \alpha_{t,i} h_i^{enc}$$

- Why does Attention work?
- What is in the context vector?
- What is in α ?
 - Alignment¹!

 $score_{t,i} = f(h_i^{enc}, h_t^{dec})$ $\alpha_t = softmax(score_{t_i})$ $context_t = \sum_i \alpha_{t,i} h_i^{enc}$

- Why does Attention work?
- What is in the context vector?
- What is in α ?
 - It's alignment¹!
 - learns to refer to useful information in src
 - similar to human attention: we pay attention to whatever is needed

- $score_{t,i} = f(h_i^{enc}, h_t^{dec})$
- $\alpha_t = \text{softmax}(score_{t_i})$
- $context_t = \sum_{i} \alpha_{t,i} h_i^{enc}$

- 1. CL2015008 [Bahdanau et al.] Neural Machine Translation by Jointly Learning to Align and Translate
- 2. CL2017342 [Ghader et Monz] What does Attention in Neural Machine Translation Pay Attention to?

Decoding with Attention

Attention A Tad More on Attention α

$$context_t = \sum_{i} \alpha_{t,i} h_i^{enc}$$
 $\alpha_t = softmax(score_{t_i})$ $score_{t,i} = f(h_i^{enc}, h_t^{dec})$

- $f(x, y) = V \tanh(W'x + W''y)$
- $f(x, y) = x^T y$
- $f(x, y) = x^T W y$

Sequence-to-Sequence

$$Pr(E \mid F) = \prod_{t} Pr(e' = e_t \mid F, e_{\leq t})$$
CLM

"HW4 is out. Good luck."

Next Tuesday:

- Copy Mechanism
- BeamSearch
- [Extra] Beyond Seq2Seq: Attention is all you need
- [Extra] Beyond NMT

