

Alexandros Zerntev Nikos Episkopos Spyros Nikolakis

1. Introduction

Social media revolution (2010 -)

- Access from everywhere
- Write whatever you want
- Share whatever you want
- Meet new people
- Chat with friends
- New services areoffered all the time

Privacy concerns

Family with young children online privacy & dangers

Family with young children online privacy & dangers

Photo censorship

Data Description and Sources

Sources to create custom dataset:

- Gathered images from search engines
- Added personal photographs

Type of images:

- Random infants photographs found online
- Open Photographs of families with children

Examples of Photographs

Process of creating the dataset

3 datasets created (training, validation, testing)

Process:

- Collect images
- 2. Extract faces from images as separate images
- Manually classify the images of the extracted faces into two categories, placing each one in the respective directory (<u>babies</u> and <u>not-babies</u>)

3. Face Detection

Extracting faces from images

YOLOFace

- Deep learning based Face Detection in images
- Uses YOLOv3 real-time object detector
- Open-source software (MIT license, hosted on GitHub)
- Trained on "Wider Face" dataset:

Faces Extraction Example

Other methods tried

- OpenCV Haar cascades
- OpenCV DNN Face Detector
- O HOG + Linear SVM Face Detector
- MMOD + CNN Face Detector
- MTCNN

Did not work as well for us.

Classification Models

Get a good classifier with a few data?

Visual Transformers

- Based on Transformers from NLP
- Pre Trained on imagenet21k
- "Understands" context
- Does not assume locality of features
- Generalizes well even with small dataset

VGGFace2

- Task-specific pretrained model ResNet-50
- 3M images from 9000+ people from all over the world
- 2 uses
 - Feature extraction and then classification
 - Fine tuning

Results and Conclusions

Models results

Models results

Overall results

Successful result

Result with small error

Further improvements

- More data is always welcome
- More diverse and adversarial examples in trainset (adults with baby faces or babies with aged faces)
- More complex data (pose, angle, age, scale, etc...)
- Improvement of Face detection model for more accurate bounding boxes

A little show off Let's watch a demo video

Thanks!

Any questions?

You can find us at: alexzerntev @ di.uoa.gr episko @ di.uoa.gr snikola @ di.uoa.gr