Определение формы пленки, натянутой между кольцами

Калиничев И. А.

10 июня 2020 г.

Постановка задачи

Между двумя кольцами радиуса R, разведенными на расстояние d, натянута мыльная пленка. Необхожимо определить профиль пленки в приближении $d \ll R$.

Сведение к матану

По известной формуле внутренняя энергия пленки $U = \left(\sigma - T \frac{d\sigma}{dT}\right) F$ пропорциональна ее площади, следовательно пленка примет форму в которой ее площадь минимальна, то есть должен принимать минимум интеграл

$$\int_0^1 2\pi d^2 x(z) \sqrt{1 + (x'(z))^2} dz$$

Здесь были введены обезразмеренные параметры $x(0) = x(1) = \tfrac{R}{d}, z_{max} = 1$

Картнка 1

Рис.: Ожидаемая форма кривой

Нахождение х(z)

$$L(x(z), x'(z)) = x(z)\sqrt{1 + (x'(z))^2}$$

Для того, чтобы функционал принял минимум необходимо, чтобы $\frac{\partial L(x,x')}{\partial x} = \frac{d}{dz} \frac{\partial L(x,x')}{\partial x'}$, в итоге получим уравнение

$$(x'(z))^2 = x(z)x''(z) - 1$$

от куда

$$x(z) = e^{c_1} ch(e^{-c_1}(z - c_2))$$

Нахождение констант

$$\begin{cases} x(0) = e^{c_1} ch(e^{-c_1} c_2) = \frac{R}{d} \\ x(1) = e^{c_1} ch(e^{-c_1} (1 - c_2)) = \frac{R}{d} \end{cases}$$
$$\begin{cases} c_2 = \frac{1}{2} \\ e^{-c_1} = \frac{d}{R} ch(\frac{e^{-c_1}}{2}) \end{cases}$$

Второе уравнение системы не решается точно, чтобы найти приближенное решение обозначим $e^{-c_1} = \beta$, методом последовательных приближений получим

$$\beta_0 = 0, \ \beta_1 = \frac{d}{R}, \ \beta_2 = \frac{d}{R}ch(\frac{d}{2R}), \ |\beta_2 - \beta_1| \ll 1 \Rightarrow \beta \approx \frac{d}{R} + \frac{d^3}{8R^3}$$

Решение уравнения

$$x(z) = \left(\frac{d}{R} + \frac{d^3}{8R^3}\right)^{-1} ch\left[\left(\frac{d}{R} + \frac{d^3}{8R^3}\right)\left(z - \frac{1}{2}\right)\right]$$

Прогиб

$$P = R - dx \left(\frac{1}{2}\right) = R - \frac{8R^3}{8R^2 + d^2} \approx \frac{d^2}{8R} \ll d$$

Спасибо за внимание.