Related works:

Title	Dataset name and URL	Dataset descrip -tion (samples, classes, images/ class or per split)	Methods name	Accuracy of the model	Pros	Cons	Citation
PriBeL: A Primary Betel Leaf Dataset from Field and Controlled Environme nt	PriBeL Dataset (<u>ScienceDir</u> ect)	1,800 images; 3 classes (Healthy, Diseased, Dried); collected from field & lab setups	CNN, ResNet- 50	94.8%	High-qualit y diverse dataset; controlled and field images	Limited dataset size	1
Dataset on the Effect of Diseases on Nagvel-Bet el (Piper betle) Leaves	Nagvel-Bet el Dataset (Mendeley)	4,156 leaf images; multiple disease categories	VGG16, DenseNet	92.1%	Multiple disease classes; high resolution	Imbalanced data across classes	2
Comprehen sive Betel Leaf Disease Dataset for Advanced Pathology Research	Betel Leaf Pathology Dataset (Mendeley)	12,222 images; 3 classes (Healthy, Leaf Rot, Leaf Spot)	EfficientNet -B0	95.3%	Large dataset; well labeled	Focused only on 3 disease types	3
Betel Leaf Image Dataset from Banglades h	Betel Leaf Banglades h (<u>Mendeley</u>)	3,589 images; 4 classes (Healthy, Dried, Bacterial, Fungal)	VGG16, CNN	93.2%	Balanced dataset; includes local variety	Limited augmentati on details	4
Good and Bad Classificati on of Betel Leaf (Piper betle)	Betel Leaf Quality Dataset (Mendeley)	1,000 samples; 2 classes (Good, Bad); includes visual & physical features	SVM, Random Forest	89.7%	Quality-bas ed labeling; small dataset	Not image-focu sed	5

Optimized Betel Leaf Disease Detection Using Improved CNN Model for Precision Agriculture	Custom dataset (India) (Journal ESRGroup s)	3,000 images; 5 disease classes	Improved CNN, MobileNetV 2	96.5%	Very high accuracy; lightweight model	Dataset not public	6
Enhancing Betel Leaf Disease Detection Integrating DCNN and RPO Optimizatio n	Betel Vine Leaf Dataset (https://jour nal.esrgrou ps.org/jes/a rticle/view/6 614?utm_s ource=t.co m)	2,400 images; 4 classes	DCNN + RPO optimizer	97.2%	Hybrid approach improved precision	High computatio nal cost	7
Early Betel Leaf Disease Detection Using Vision Transforme r and Deep Learning	Betel Leaf Enhancing Betel Leaf Disease Detection Integrating Donn and Rpo Optimizatio n for Accurate Classificati on Journal of Electrical Systems Vis ion Dataset (Research Gate)	2,000 images; 3 disease categories	Vision Transforme r, CNN	94.1%	Uses transformer architecture	Small dataset	8
Betel Leaf Disease Classificati on Using Data Augmentati on and CNN/VGG1	Betel Vine Dataset (<u>River</u> <u>Publishers</u>)	5,000 images (augmente d); 3 disease classes	CNN, VGG16	95.6%	Strong augmentati on improves generalizati on	Limited to three categories	9
Deep Learning Based Betelvine Leaf Disease Detection (Piper betle L.)	Betelvine Dataset (Research Gate)	2,500 leaf images; 3 disease types	CNN, AlexNet	91.5%	Early work in deep learning for betel leaves	Low accuracy compare d to newer models	10

References:

- [1] Mane, G., Bhise, R., Kadam, R., Kaur, G., Verma, D., Chopade, R., ... & Mousavirad, S. J. (2025). PriBeL: A primary betel leaf dataset from field and controlled environment. *Data in Brief*, 111674.
- [2] Gayakwad, Milind, et al. "Applying the Transfer Learning Models on the Dataset on the effect of diseases on Nagvel-betel (Piper betle) leaves." *Data in Brief* (2025): 111987.
- [3] Hridoy, R. H., et al. "Comprehensive betel leaf disease dataset for advanced pathology research." *Mendeley Data* 1 (2025).
- [4] Rashid, M. R. A., Hossain, M. M., Biswas, J., & Majumder, H. (2024). Betel leaf image dataset from Bangladesh. *Mendeley Data*, 2.
- [5] Gayakwad, Milind, et al. "Applying the Transfer Learning Models on the Dataset on the effect of diseases on Nagvel-betel (Piper betle) leaves." *Data in Brief* (2025): 111987.
- [6] ESRGroups Journal, 2024. Optimized Betel Leaf Disease Detection Using Improved CNN Model
- [7] ESRGroups Journal, 2024. Enhancing Betel Leaf Disease Detection Integrating DCNN and RPO Optimization.
- [8] Kusuma, S., and K. R. Jothi. "Early betel leaf disease detection using vision transformer and deep learning algorithms." *International Journal of Information Technology* 16.1 (2024): 169-180.
- [9
- [10] Nickolas, S. "Deep learning based betelvine leaf disease detection (piper betlel.)." 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA). IEEE, 2020.
- 11. https://www.sciencedirect.com/science/article/pii/S2666154325005137 (Al bhaia)