Lineare Algebra 1 – WS 2024/25

Übungsblatt 2-6.11.2024

Aufgabe 1

Stellen Sie jeweils für die gegebenen Vektoren \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 im \mathbb{R}^3 fest, ob diese linear unabhängig sind. Drücken Sie andernfalls einen Vektor als Linearkombination der beiden anderen Vektoren aus.

$$\mathbf{v}_1 = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -4 \\ 0 \\ 2 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix};$$

$$\mathbf{v}_1 = \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1\\1\\1 \end{pmatrix};$$

$$\mathbf{v}_1 = \begin{pmatrix} -1\\3\\2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 5\\1\\4 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 13\\-7\\2 \end{pmatrix}.$$

Aufgabe 2

Für welche $\lambda \in \mathbb{R}$ sind die Vektoren

$$\mathbf{u} = \begin{pmatrix} \lambda \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix}$$

linear unabhängig?

Aufgabe 3

Gegeben sind die Vektoren

$$\mathbf{x} = \begin{pmatrix} -1 \\ -3 \\ 2 \end{pmatrix}, \quad \mathbf{b}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} 0 \\ -1 \\ 4 \end{pmatrix}, \quad \mathbf{b}_3 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$$

im \mathbb{R}^3 .

- (a) Zeigen Sie, dass $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ eine Basis des \mathbb{R}^3 ist.
- (b) Bestimmen Sie die Koordinaten von \mathbf{x} bezüglich der Basis $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$.

Aufgabe 4

Es seien \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 Vektoren im \mathbb{R}^3 . Wir nennen \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 paarweise linear unabhängig, wenn für alle $1 \le i < j \le 3$ die Vektoren \mathbf{v}_i , \mathbf{v}_j linear unabhängig sind.

Untersuchen Sie die folgenden beiden Aussagen auf ihren Wahrheitsgehalt (Beweis oder Gegenbeispiel).

- (a) Sind \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 linear unabhängig, so sind sie auch paarweise linear unabhängig.
- (b) Sind \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 paarweise linear unabhängig, so sind sie linear unabhängig.

Aufgabe 5

Es sei $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ eine Basis des \mathbb{R}^3 . Es seien weiters \mathbf{a} , \mathbf{b} zwei linear unabhängige Vektoren im \mathbb{R}^3 . Beweisen Sie, dass es ein $i \in \{1, 2, 3\}$ gibt, so dass \mathbf{a} , \mathbf{b} , \mathbf{e}_i linear unabhängig sind.

Aufgabe 6

Es seien **v**, **w** Vektoren im \mathbb{R}^d (mit $d \in \{2,3\}$). Zeigen Sie:

- (a) $\|\mathbf{v}\| = \|\mathbf{w}\| \Leftrightarrow (\mathbf{v} \mathbf{w}) \perp (\mathbf{v} + \mathbf{w}).$
- (b) ist $\mathbf{v} \neq o$ und $\mathbf{w} \neq o$, so gilt

$$\left\| \frac{\mathbf{v}}{\|\mathbf{v}\|^2} - \frac{\mathbf{w}}{\|\mathbf{w}\|^2} \right\| = \frac{\|\mathbf{v} - \mathbf{w}\|}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|}.$$

Zusatz: Interpretieren Sie (a) geometrisch.