Food Review & Analysis

Guide
Prof S Na

Prof. S. Natarajan

Team Members

Rohan Agarwal - 1PI13CS124

VK Sangamesh - 1PI13CS134

Anirudh Agarwal - 1PI13CS199

The IDEA...

Two things missing in today's Food Searching Platforms:

No mention of specialities of restaurant

Empire Restaurant JAYANAGAR Birvani, Kerala

CALL NOW!

JAYANAGAR North Indian. Chinese

AB's - Absolute Barbecues JAYANAGAR

Cable Car JAVANAGAR North Indian, Italian

Reetle Juice Bar - Springs Hotel & BASAVANAGUDI Finger Food

Addhuri Udupi Bhojana

Timepass Dinner BASAVANAGUDI North Indian

Aagaman Veg JAYANAGAR Buffets starting

Cafes

Coffee, snacks & beverages

Unique Brew Sports Cafe JAYANAGAR Fun, Food and

Leanin' Tree Art Cafe BASAVANAGUDI Cafe, Continental

Costa Coffee JAYANAGAR Cafe

Problem Statement

I. Tagging of food menu items by user reviews for restaurants, to identify best/worst dishes of a place as mentioned by users and also to identify best places serving a particular dish as per user experience.

DataSet

- I. Restaurants 17
- II. 40 reviews per restuarants
- III. A total of 715 menu items
- *All humanely annotated

Restaurants we thought of ...

Vidyarthi Bhavan <4.2> Tim Tai <4.2>

Taaza Thindi <4.9> Mamagoto <4.3>

Indian Coffee house <3.6> Kapoor's cafe <4>

Shri Sagar <4.7> Punjab grill <4.2>

Brahmin's Coffee bar <4.9> Kopper kadai <4.1>

Chetty's Coffee <3.3> Kesariya <3.9>

Sri laxmi venkatesh coffee bar <4.4> Dal tadkaa <2.5>

Milano ice cream <4.9> Belgvum <4.7>

filano ice cream <4.9> Belgyum <4.7>

Mr. Idli <2.6>.

Demo ...

Model / Pipeline Menu Items For Each Restaurant & Price User Custom Reviews NER Food Mentions Tagging Analysis in Reviews Box

Custom Named Entity Recognizer

> Not learnt (due to unavailability of dataset), but rule based

Tagging Box

- ExactMatch ('Noodles','Noodles')
- II. SubstringMatch ('Chef's Special Bhaji Pao', 'Bhaji Pao')
- III. PartialMatch ('Fetter Cheese Pasta', 'Cheese Paste')
- IV. FuzzyMatch ('Masale Dose', 'Masala Dosa')
 - V. PercentMatch ('Red Pasta', 'Past')

DataStructure

ALIAS

RestName: Id

DISH SEARCH

MenuItemName:[(RestId, RestRating, Price, MenuItemRating, MenuItemPopularity)]

REVIEWS

Restld:

[(Reviews,Rating])]

RESTAURANT SEARCH

RestId:(Rest_Rating,{MenuItem:(Price,Rating,Popularity)})

MENU

RestId: (Rest_rating,[MenuItem, Price])

MENTION

RestId:{Mention:[Popularity, Rating]}

Hurdles {Data : The Missing Piece}

- Zomato API erroneous
- II. Image to Text Cluttered
- III. Zomato US Menu Empty Calls
- IV. Yelp Dataset (has latitude & longitude of restaurants, not menus)
- V. Yelp API does not exposes Menus, obtained from Loci
- VI. Third Party Indian Menu APIs hoaxes
- VII. Last Resort Manual Creation

Visualization Inferences

- 1. Graphical Representation helps decipher hidden correlations among entities.
- We modelled some visualizations to infer certain obscure correlations.

Bubble Plot

- 1. Represents 3-dimensions
- Average Price, Average Review Length & Avg Rating
- 3. Modelled for individual restaurant

Inferences:

- Smaller bubbles have lower ratings, bigger have larger.
- Heavy Price doesn't mean review is good.
- When people write more, means they loved the place :)

Scatter Plot [Price vs Review Length]

Inferences:

• When customer pay more, they don't talk much about it.

Bar Charts [Restaurants]

Visual comparison of different restaurants.

Bar Graph - Review Length vs Average Rating

X-axis - Average review length

Y-axis - Rating associated with the review.

Inferences -

- Unremarkably higher number of more expressive reviews for highly rated dishes.
- 2. Also interesting is the many reviews with high number of words for dishes rated as low as 1.5 (possibly expressing the discontent).

Donut - Rating vs Number of Reviews

Serves to highlight the percentage of the number of reviews for a particular rating.

Inferences -

1. A general trend observed is the high number of reviews for dishes that are rated highly by the users. (And consequently the less number of reviews for dishes with low ratings)

Scatter plot - Price vs Rating

X-axis - Price of a menu item

Y-axis - Rating of a menu item

Inferences -

- 1. An upward trend among the ratings as the price of the menu items increases.
- However reasonably high ratings are observed for a number of lower prices menu items as well.

Scatter plot - Price vs Popularity

X-axis - Price of a menu item

Y-axis - Popularity(total number of reviews) of a menu item

Inferences

- 1. The number of reviews for most of the dishes fall within a specific range of 10-15 reviews. Not very strongly dependent on the price of the dish.
- 2. Very high number of reviews seen for a few dishes is likely due to the generally high demand/popularity of the dish.

Scope

Machine Learning Components we skipped because of data unavailability:

I. NER

II. SVM to identify mentions of food mentions

III. Tagging Box Implementation via SVM with algorithm outputs as features.

PS - Both II & III need human annotation of sizable data as features for predictions.

Thank you