EDRP Lab 4

Version: 2020-04-22

1 Simulations of branching processes

1. Write a function simulating a given number of generations of a branching process with a given offspring distribution \mathbf{a} (with a finite number of non-zero values). Your function, when called with parameters n and a, should return a vector of the length n+1 of the form

$$(1,z_1,\ldots,z_n),$$

where z_i is the simulated size of the *i*-th generation of the branching process with the offspring distribution a.

- 2. Use your function to run simulations in some
- subcritical,
- critical.
- and supercritical cases.

2 Mean and variance of generation size

1. Fix an offspring distribution

```
a < -c(0.6, 0.2, 0.2)
```

for subcritical case. Run nsim = 10000 simulations of 10 generations Z_0, \ldots, Z_{10} of a branching process with offspring distribution **a**.

Hint: You can use replicate function:

```
simlist<-replicate(nsim, YourFunction(10,a))</pre>
```

where YourFunction stands for the name of the function you wrote when solving Problem 1 to simulate 10 generations of a brancing process with offspring distribution **a**.

- 2. Use your simulations to estimate means and variances of Z_1 , Z_5 and Z_{10} . Compare your findings with theoretical values.
- 3. Repeat the same steps for the critical case with

```
a < -c(0.2, 0.6, 0.2)
```

and supercritical case with

a < -c(0.2, 0.2, 0.6)

3 Estimation of extinction probability

Consider a branching process with offspring distribution $\mathbf{a} = (1/4, 1/4, 1/2)$. Run 100 simulations of 20 generations Z_0, \ldots, Z_{20} . Use simulations to estimate the extinction probability of the process. Compare the estimate with the theoretical value, obtained by solving a quadratic equation.

4 Numerical computation of extinction probability

- 1. Consider a branching process with offspring distribution $\mathbf{a} = (1/4, 1/4, 1/2)$. Write a program, which implements the following algorithm (explained in the lectures), solving the equation s = G(s), where G is the pgf of \mathbf{a} .
- Initialize with $s_0 \in (0,1)$.
- Successively compute $s_n := G(s_{n-1})$ for $n \ge 1$. Print the values of s_n to see the speed of convergence.
- Set $s = s_n$ for large n.

5 Finding extinction probabilities in various cases

- 1. Use simulations to estimate the extinction probabilities of the branching processes specified below. Compare the estimates with the values obtained from the numerical solution of the equation s = G(s) (see the previous problem).
- $a_0 = 0.8$, $a_4 = 0.1$, $a_9 = 0.1$,
- offspring distribution is uniform on $\{0, 1, \dots, 10\}$,
- $a_0 = 0.6$, $a_3 = 0.2$, $a_6 = 0.1$, $a_{12} = 0.1$.