<u>MultiQC</u>

(http://multiqc.info)

A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.

 $Report\ generated\ on\ 2022-01-23,\ 19:54\ based\ on\ data\ in:\ / \texttt{media/data04/gaye/workspace/rnaseq/alignments2/hisat2}$

General Statistics

\$\frac{1}{2}\$ Copy table				
Sample Name	% Aligned	% Dups	% GC	M Seqs
SRR12424243				
SRR12424244				
SRR12424245				
SRR12424255				
SRR12424256				
SRR12424257				

Bowtie 2 / HiSAT2

Bowtie 2 (http://bowtie-bio.sourceforge.net/bowtie2/) and HISAT2 (https://ccb.jhu.edu/software/hisat2/) are fast and memory-efficient tools for aligning sequencing reads against a reference genome. Unfortunately both tools have identical log output by default, so it is impossible to distiguish which tool was used.

Single-end alignments

∂ Help

This plot shows the number of reads aligning to the reference in different ways.

FastQC

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is a quality control tool for high throughput sequence data, written by Simon Andrews at the Babraham Institute in Cambridge.

Sequence Counts

6 Help

Sequence counts for each sample. Duplicate read counts are an estimate only.

Sequence Quality Histograms

9 Help

The mean quality value across each base position in the read.

Per Sequence Quality Scores

6

6

8 Help

The number of reads with average quality scores. Shows if a subset of reads has poor quality.

5

Per Base N Content

9 Help

The percentage of base calls at each position for which an N was called.

Sequence Length Distribution

6

3

All samples have sequences of a single length (51bp).

Sequence Duplication Levels 3

9 Help

The relative level of duplication found for every sequence.

8 Help

The total amount of overrepresented sequences found in each library.

6 samples had less than 1% of reads made up of overrepresented sequences

Adapter Content

6

8 Help

The cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position.

No samples found with any adapter contamination > 0.1%

Status Checks

9 Help

Status for each FastQC section showing whether results seem entirely normal (green), slightly abnormal (orange) or very unusual (red).

↓ F Sort by highlight

MultiQC v1.9 (http://multiqc.info). - Written by Phil Ewels (http://phil.ewels.co.uk), available on GitHub (https://github.com/ewels/MultiQC).

This report uses HighCharts (http://www.highcharts.com/), jQuery (https://jquery.com/), jQuery UI (https://jqueryui.com/), Bootstrap (http://getbootstrap.com/), FileSaver.js (https://github.com/eligrey/FileSaver.js) and dlipboard.js (https://dipboardjs.com/).