1 Notes on Quantum computation and quantum information by Nielsen and Chuang

2 Chapter 2: Linear algebra

2.I vector space

• C^n : space of all n-tuple complex numbers (c numbers)

i.e.
$$(z_1, z_2, z_3, ..., z_n)$$

• a vector space is closed under scalar multiplicationa nd addition

2.II Dirac notation

Symbols	Meaning
$ v\rangle$	ket, a vector in vec space
$\langle v $	bra, a dual vector in vec space; the complex transpose of ket $\left\langle v ight = \left(\left v ight angle^* ight)^T$
$\langle v w angle$	inner product of $ v angle$ and $ w angle$
$ arphi angle\otimes \psi angle$	tensor product of $ \varphi\rangle$ and $ \psi\rangle$ abbriviates as $ \varphi\rangle \psi\rangle$
A^*	complex conjugate of $oldsymbol{A}$
A^T	transpose of $oldsymbol{A}$
A^\dagger	hermitian conjugate of $m{A}$ i.e. $m{A}^\dagger = \left(m{A}^* \right)^T$ $ \begin{pmatrix} a & b \\ c & d \end{pmatrix}^\dagger = \begin{pmatrix} a^* & c^* \\ b^* & d^* \end{pmatrix} $
$\langle arphi m{A} \psi angle$	inner product betweeen $ arphi angle$ and $oldsymbol{A} \psi angle$

2.III Span

a set of bec $|v_1\rangle, |v_2\rangle, ..., |v_n\rangle$ spans the vector space if any vector in the space can be written as

$$|v\rangle = \sum_i a_i |v_i\rangle$$

for some complex numbers a_i

2.IV Linear Independence

a set of non-zero vectors $|v_1\rangle, |v_2\rangle, ..., |v_n\rangle$ are liinearly dependent if there exists a set of complex numbers $a_1, a_2, ..., a_n$, s.t.

$$a_1|v_1\rangle + a_2|v_2\rangle + \dots + a_n|v_n\rangle = 0$$

If the only solution to the above equation is $a_1=a_2=\ldots=a_n=0$, then the vectors are **linearly** independent

2.V Linear operators

A linear operator A is any linear function that

$$A\Biggl(\sum_i a_i |v_i\rangle\Biggr) = \sum_i a_i A(|v_i\rangle)$$

It is convention to write $A(|v_i\rangle)=A|v_i\rangle$

- Identity Operator $I_V:I_V|v\rangle\equiv|v\rangle.$ It is convinent to write I if no confution arises.
- zero operator $0|v\rangle \equiv 0$
- composition of linear operators A and B is AB

We observe that the above is equivalent to the matrix representation of linear transformations.

In other words, for a linear operator $A:V\to W,$ and suppose $|v_1\rangle,|v_2\rangle,...,|v_m\rangle$

3 Inner product