Alfabeto: Insieme finito di simboli Σ ={a1, a2, ..., an}

Parola: (o stringa) su un alfabeto Σ è una sequenza finita di simboli appartenenti a Σ

 Σ^* = Insieme delle parole su Σ compresa ε Σ^+ = Insieme delle parole su Σ senza ε

prefisso di y se y= $\mathbf{x} \cdot \mathbf{z}$ **suffisso** di y se y= $\mathbf{z} \cdot \mathbf{x}$ **fattore** di y se y= $\mathbf{z} \cdot \mathbf{x} \cdot \mathbf{w}$

Linguaggio formale: Un linguaggio L sull'alfabeto Σ è un insieme di parole di Σ^* , cioè un qualunque sottoinsieme (finito o infinito) L $\subseteq \Sigma^*$.

Operazioni tra linguaggi:

Unione: $A \cup B = \{ w \in \Sigma^* | w \in A \lor w \in B \}$ **Intersezione**: $A \cap B = \{ w \in \Sigma^* | w \in A \land w \in B \}$

Complemento: $A^c = \{w \in \Sigma^* | w \notin A\}$ **Prodotto**: dati i linguaggi L1 e L2 sull'alfabeto Σ , il loro

prodotto è il linguaggio L1 · L2 = {w $\in \Sigma$ | w= xy , con x \in L1 e y \in L2 }

Potenza: Poiché il prodotto è associativo, possiamo definire la potenza L^k , dove $L^0 = \{ \epsilon \}$ e

$$L^{k+1} = L^{k} \cdot L$$

Chiusura di Kleene: dato un linguaggio L, la sua chiusura è il linguaggio $L^* = L^0 \cup L^1 \cup ... \cup L^k \cup ... = \bigcup_{k=0}^{\infty} L^k$

$$L^+ = \bigcup_{k=1}^{\infty} L^k$$

dove $L^n = L \cdot L^{n-1}$ e, per convenzione, $L^0 = \varepsilon$.

Codice: Un linguaggio L è un codice quando ogni parola in L^+ è ottenuta in un unico modo come prodotto di parole di L. **Codice prefisso:** L è un codice prefisso quando è un codice e ogni parola in L non è prefisso di altre parole in L

Procedura: una sequenza finita di passi che può o meno terminare con un risultato.

 $F_w(x)$ indica il risultato dell'esecuzione della procedura **w** su input **x**:

 $F_w(x) \downarrow \text{procedura termina}; \qquad F_w(x) = 1 \text{ uscita 1}; \qquad F_w(x) = 0 \text{ uscita 0};$

 $F_w(x) \uparrow$ indica che la procedura **w** su input **x** genera una computazione che non termina (un loop).

Algoritmo: un algoritmo è semplicemente una procedura **w** che su qualsiasi ingresso **x** genera una computazione che termina (dando come risultato, nel nostro caso, 0 oppure 1).

Linguaggio ricorsivo: Un linguaggio L è detto ricorsivo(o decidibile) se esiste un algoritmo w tale che $F_w(x) = 1$ se $x \in L$, 0 se $x \notin L$; tale algoritmo è anche detto **riconoscitore**, e calcola dunque la

Funzione caratteristica del linguaggio L, cioè la funzione χ_L tale che $\chi_L(x)$ = 1 se x \in L, 0 altrimenti. (ammette un sistema riconoscitivo: automa). AMMETTE RICONOSCITORE

Linguaggio ricorsivamente numerabile: Un linguaggio L è detto ricorsivamente numerabile(o semidecidibile) se esiste una procedura \mathbf{w} tale che $F_w(x) = 1$ se $x \in L$, mentre $F_w(x) \uparrow$ altrimenti. (ammette un sistema generativo: grammatica)

Teorema: $L ricorsivo \Rightarrow L^c ricorsivo$

Infatti, se L è ricorsivo esisterà un algoritmo \mathbf{w} tale che $F_w(x) = 1$ se $x \in L$, mentre $F_w(x) = 0$ se $x \notin L$; possiamo costruire allora un algoritmo $\mathbf{w2}$ tale che, su input \mathbf{x} , calcola $F_w(x)$ e, se \mathbf{w} ritorna 1, $\mathbf{w2}$ ritorna 0, mentre se \mathbf{w} ritorna 0, $\mathbf{w2}$ ritorna 1.

Teorema: L ricorsivo \Rightarrow L ricorsivamente numerabile

Infatti se L è ricorsivo esiste un algoritmo \boldsymbol{w} che calcola la sua funzione caratteristica; costruiamo ora una nuova procedura che prima simula \boldsymbol{w} e poi, se l'uscita è 0, genera una computazione che non termina. Questo prova che L è anche ricorsivamente numerabile.

Questo fa notare il fatto che un algoritmo può sempre essere peggiorato in una procedura.

L ricorsivamente numerabile \Rightarrow L ricorsivo? NO

Infatti non è possibile sostituire una computazione che non termina con una che termina e dà come risultato 0.

Dunque esistono linguaggi che sono ricorsivamente numerabili, ma non ricorsivi. Per dare un esempio è necessario richiamare il concetto di interprete.

Interprete: un interprete è un programma \mathbf{u} che accetta in ingresso due parole \mathbf{x} , $\mathbf{w} \in \{0,1\}^*$ (due parole binarie) e simula l'esecuzione della procedura codificata con \mathbf{w} su input \mathbf{x} ; in simboli:

 $F_u(x\$w) = F_w(x)$ se w è un programma $F_u(x\$w) = \bot$ altrimenti

Ciò è possibile in quanto w è sia un programma(semanticamente) sia una parola binaria(sintatticamente). **nota bene:** l'esempio di linguaggio ricorsivamente numerabile ma non ricorsivo fatto dalla prof. Palano è il seguente: $L = \{x : F_u(x \$ x) \downarrow \}$

cioè il linguaggio L delle parole tali per cui l'esecuzione della procedura codificata binariamente nella parola stessa, avendo in input la parola stessa, termina. Il linguaggio è detto:

Linguaggio dell'arresto ristretto: $D = \{x \in \{0,1\}^* | F_u(x \$ x) \downarrow \}$

Il suo complemento: $D^c = \{x \in \{0,1\}^* | F_u(x \$ x) \uparrow\}$

Proprietà: \underline{D} è ricorsivamente enumerabile; D non è ricorsivo; D^c non è ricorsivamente enumerabile RICNUM(x) {

y = Fu(x\$x);

return 1;

} // return 1 sse appartiene al linguaggio e e fa loop se non appartiene

Calcolo logico: dato da una funzione che permette di "dimostrare" tutte e sole le affermazioni vere(f) di un linguaggio L.

Calcolo logico per il linguaggio L: dato un linguaggio $L \subseteq \Sigma$ *, un calcolo logico per L è un calcolo logico V corretto e completo per L. In tal caso sarà $L = \{x \mid \exists d \ V(x, d) = 1\}$.

Grammatica: una grammatica G è una quadrupla $\langle \Sigma, Q, P, S \rangle$ dove:

- 1. **\(\sigma\)** e **Q** sono due alfabeti finiti disgiunti, rispettivamente di simboli terminali e metasimboli;
- 2. P è un insieme finito di regole di produzione;
- 3. **S** è un elemento in Q, detto **assioma** o simbolo di partenza.

Un linguaggio ammette più grammatiche che lo generano se è ricorsivamente numerabile.

Due grammatiche G1 e G2 sono dette **equivalenti** se generano lo stesso linguaggio, cioè se L(G1)=L(G2).

Teorema: Il linguaggio L è generato da una grammatica $\Leftrightarrow L$ è ricorsivamente numerabile.

Questo significa che, se per un linguaggio L esiste un calcolo logico corretto e completo, allora L è generabile da una grammatica. Le grammatiche risultano dunque sistemi formali per esprimere calcoli logici.

Grammatica tipo 0	Grammatica	Grammatica tipo 2	Grammatica tipo 3
	tipo 1		
Regole di produzione arbitrarie	$\alpha \to \beta \in I(\beta) \ge$	$\alpha \to \beta$ tale che α è	$A \rightarrow \sigma B$,
	l(α)	un metasimbolo	$A \rightarrow \sigma$
	regola $S \to \varepsilon$		$A \to \varepsilon$
Genera L di tipo 0	Genera L di tipo	Genera L di tipo 2	Genera L di tipo 3
L ricorsivamente enumerabili	1	L liberi da contesto	<u>L regolari</u>
	L dipendenti da	(acontestuali)	
	<u>contesto</u>		
L ammette un <mark>calcolo logico</mark>		<i>L generato da G 2</i> ⇔L è	⇔ L è riconosciuto da
$\Leftrightarrow L$ è ricorsivamente		riconosciuto da un	un <mark>automa a stati finiti</mark>
numerabile		riconoscitore a pila.	
L ricorsivamente enumerabile		L libero da contesto ⇔	Teorema di Kleene:
⇔ ammette G che lo genera		è accettato da un	L è denotato da una
		riconoscitore a pila	espressione regolare
			⇔L è riconosciuto da un
			automa a stati finiti
		Alberi di derivazione	Generato da una G
		è possibile utilizzare una	lineare a dx
		pila per simulare una	
		derivazione left-most in	
		una grammatica di tipo 2 in fng	
		9	

Teorema di inclusione degli Rk

$$R_3 \subset R_2 \subset R_1 \subset R_0$$

Se A e B sono linguaggi regolari allora anche il complemento di A, e A intersecato B lo sono .

Grammatica ambigua / non ambigua: una grammatica $G = \langle \Sigma, Q, P, S \rangle$ di tipo 2 è detta **ambigua** se esiste una parola $w \in L(G)$ che ammette due diversi alberi di derivazione; viceversa, una grammatica $G = \langle \Sigma, Q, P, S \rangle$ di tipo 2 è detta **non ambigua** se ogni parola $w \in L(G)$ ammette un unico albero di derivazione.

Automa a stati: Un automa a stati è un sistema $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ dove:

- 1) **Q** è un insieme di stati;
- 2) £ è un alfabeto finito;
- 3) $\delta: \Sigma \times Q \rightarrow Q$ è la funzione di transizione;
- 4) $q_0 \in Q$ è lo stato iniziale;
- 5) $\mathbf{F} \subseteq Q$ è l'insieme degli <u>stati finali</u> che definisce una funzione $\lambda : Q \to \{0,1\}$, dove: λ (q) = 1 se q $\in F$, altrimenti λ (q) = 0.

Se l'insieme Q è finito, l'automa è detto a stati finiti.

Automa a stati finiti non deterministico (NFA): sistema $A = \langle \Sigma, Q, q0, R, F \rangle$ dove Q è un insieme finito di stati, Σ è un alfabeto e R è l'insieme delle relazioni di transizione, non si parla quindi più di funzione bensì di relazione di transizione non deterministica:

- R (q, σ, p) = 0 "non si può raggiungere p da q tramite la lettura di σ"
- R (q, σ, p) = 1 "si può raggiungere p da q tramite la lettura di σ"

Automa a stati finiti deterministico (DFA): è un particolare automa non deterministico $A = \langle \Sigma, Q, q0, R, F \rangle$ dove è sempre possibile sostituire la funzione di transizione δ con una relazione di transizione R

Teorema: Per ogni L riconosciuto da un NFA esiste un DFA che lo riconosce.

Parola ambigua: Una parola è ambigua se ammette due alberi di derivazione diversi.

Grammatica ambigua: Una grammatica G si dice ambigua se genera almeno una parola ambigua.

Linguaggio inerentemente ambiguo: Un linguaggio si dice inerentemente ambigui se ogni G che lo genera è ambigua.

Forma Normale di Chomsky (FNC): $A \to BC$ $A \to \sigma \text{ con } A, B, C \in V$ $e \ \sigma \in T$ Forma Normale di Greibach (FNG): $A \to \sigma W \text{ con } A \in V$, $\sigma \in T$ $e \ W \in V^*$

Pila: Memoria ad accesso limitato con politica (LIFO - *Last in first out*). Si può lavorare solo su x perché è quello più in alto.

Riconoscitore a pila:

Un riconoscitore a pila è una tupla $A = (\Sigma, K, S, \delta)$ dove:

- Σ alfabeto di input
- K alfabeto della pila $\Sigma \cap K = \emptyset$
- S simbolo iniziale della pila
- δ funzione di evoluzione della pila $\delta: K \times \Sigma \to 2^{k^*}$ $\delta(x, \sigma) = \{w_1, w_2, \dots, w_s\}$ con $w_i \in K^*$

Si indica che:

- X è letto in cima alla pila (TOP)
- σ è letto sul nastro di input
- X viene cancellato dalla pila (POP)
- Viene scelto un $W_i \in K^*$ in maniera **NON DETERMINISTICA** da inserire nella pila (**PUSH**)

Criterio di accettazione: La parola x si dirà accettata se nel grafo di computazione di x esiste un cammino da S a ε

Pumping Lemma: Esprime una condizione necessaria per i linguaggi di tipo 2.

L non soddisfa il lemma ⇒L non è di tipo 2.

L soddisfa il lemma ⇒L può essere di tipo 2 o no.

Per ogni L di tipo 2 esiste una costante H tale che per ogni $z \in L$ con |z| > H esiste una scomposizione in uvwxy = z che soddisfa:

- 1. $|vx| \ge 1$
- 2. $|vwx| \leq H$
- 3. $\forall k \geq 0 \ uv^k w x^k y \in L$