BULLETIN

OF THE

NATIONAL RESEARCH COUNCIL

April, 1931 Number 82

LIST OF SEISMOLOGICAL STATIONS OF THE WORLD

SECOND EDITION

Compiled under the auspices of the Section of Seismology of the American Geophysical Union with the Cooperation of the Research Information Service, National Research Council, U. S. A.

BY

H. E. McCOMB U. S. Coast and Geodetic Survey

AND

CLARENCE J. WEST Director, Research Information Service, National Research Council.

PUBLISHED BY THE NATIONAL RESEARCH COUNCIL OF
THE NATIONAL ACADEMY OF SCIENCES

THE NATIONAL ACADEMY OF SCIENCES
WASHINGTON, D. C.

1931

CONTENTS

I	AGE
Introduction	1
Alphabetical List of Stations	4
Table of Instrumental Constants	82
Bosch-Omori	83
Central Meteorological Observatory Type	8 4
Conrad	8 4
Galitzin	85
Gray-Milne	87
Hawaiian Volcano Observatory Type	88
Imamura	88
Mainka	89
Milne	91
Milne-Shaw	92
Nikiforoff	93
Omori	94
Omori Portable	95
Omori Tromometer	96
Quervain-Piccard	97
Stiattesi	98
Strong Motion Instruments.	98
Vicentini	99
Wiechert	
Astatic and Vertical	100
Horizontal and Vertical	
Wood-Anderson	
Instruments of Tokyo Imperial University	
Miscellaneous	
Geographical Index of Stations	115

INTRODUCTION

In July 1921, the National Research Council published as Bulletin No. 15, "A List of Seismologic Stations of the World," by Harry O. Wood, at that time Secretary of the American Geophysical Union.

At the meeting of the Section of Seismology of the International Geodetic and Geophysical Union in Prague in 1927, it was announced that the National Research Council had decided to issue a new list of stations, because many changes in instrumental equipment had been made at old stations, and also because a number of new stations had since been established.

The National Research Council requested C. J. West, Director of its Research Information Service, to collect the information for the new list and to take general charge of the publication. For use in this work a new form of questionnaire, prepared by H. O. Wood, was circulated in 1928 to all known seismologic stations, and again in 1929 to those stations from which no replies had been received. By January 1930, replies had been received from the majority of stations circularized. Owing to the great mass of information contained in those replies it was felt that a much simpler form of publication than that used in the original book would meet practically all of the requirements and at the same time result in reduced cost. Experience having shown that a publication of this kind cannot remain current for many years, the amount of effort given to its preparation should be adjusted to this fact.

It was therefore decided that a committee of three members of the Section of Seismology of the American Geophysical Union should be appointed for the purpose of placing the information in final form for publication. The committee appointed consisted of H. E. McComb, Chairman, H. O. Wood, and James B. Macelwane, S. J. The Chairman compiled the data from the questionnaires and from other sources, carrying out the details of the committee work by correspondence.

After an announcement was made at the Stockholm meeting of the International Geodetic and Geophysical Union in 1930, that this publication would go to press within a reasonable time, considerable international interest was manifest in this project.

Information which had not been included in the questionnaires was obtained from station bulletins, instrumental reports, etc. In the case of the Japanese stations, the "List of Seismological Stations of Japan," issued in June 1930, and presented at the Stockholm meeting, was very useful. As no replies were received from a number of stations listed in the

former publication, these are omitted from the new list. It is desired that information relative to omissions, errors, new stations, etc., should be forwarded to the National Research Council so that supplements to this publication may be issued if that is found desirable and practicable.

It has not been possible to include in this publication all of the information contained in the replies to questionnaires but it is believed that the information omitted is needed only in special cases. The complete information for any particular station from which a questionnaire has been received will be made available to those who may desire it.

It was proposed that a list of seismologists should be included but owing to the fact that many outstanding seismologists are not directly associated with seismological stations it was finally decided that this list should be treated as a separate project and as such it is commended to the International Seismological Association.

The preparation of a map of the world showing the distribution of seismological stations was given consideration. It soon became apparent, however, that a map of suitable dimensions for showing all of the stations would be so large as to make it impractical and inconvenient for use in connection with a publication of this kind. In a smaller map the stations in Japan, for example, would be so crowded as to cover the entire space. For these reasons it was decided to omit the map.

The stations have been arranged alphabetically for the whole world, each station having a number and being referred to by this number in all cases where cross references are necessary, or where a station is known by more than one name.

A card questionnaire has been prepared and inserted in each volume for use by the proper administrative official at each station in submitting additions or corrections.

Although this publication is intended for international use it has been necessary, on account of the limited funds available, to confine it to the English language only.

Opportunity is taken here to express appreciation to the organizations and stations for their splendid cooperation, which has made this publication possible.

EXPLANATION OF TABLES

For the sake of uniformity all descriptions of stations are arranged in the following manner:

- A. Postal address of the seismological station.
- P. Official in charge of the station, and other personnel.
- C.-F. Geographical coordinates, elevation above sea-level, natural lithologic foundation upon which the pier rests and depth to water table.

- Instruments in operation showing dates of inauguration of station or installation of new equipment.
- S. Supporting institutions or affiliated organizations.
- Pu. Seismological bulletin, annual report, special publication, etc., in which results are published.

The stations have been listed alphabetically and referred to by number for convenience in cross reference.

The tables of instrumental constants were compiled from the questionnaires and from the latest available seismological bulletins at hand. In general these tables show the different types of instruments in operation; components; natural, undamped period of the seismometer (T_0) or T_s); the maximum nominal magnification (V_m); kind of damping; damping ratio (ϵ), that is, the ratio of any two successive amplitudes of the undamped oscillations of the seismometer or system; the frictional coefficient (r/T_0^*) ; the paper speed, that is, the peripheral speed of the recorder; and direction of motion of the steady mass corresponding to upward motion on the seismogram (Up). In the case of Galitzin instruments the following additional constants are given: the length of the equivalent simple pendulum (1); the damping constant (μ^2) ; the distance from galvanometer lens to face of recorder (A_1) ; the undamped period of the galvanometer (Tg); and the transfer constant (k), a constant depending upon the value of the inductive coupling.

SEISMOLOGICAL STATIONS

1. Aachen.

- A. Erdbebenwarte der Technischen Hochschule, Wullnerstrasse 2, Aachen, Deutschland.
 - P. P. Wilski, Director.
 - C.-F. 50° 47′ N; 6° 05′ E. 179 m. Sandy clay.
- I. Wiechert, N and E, 1906; Wiechert photographic, N, E and Z.
 - S. Technische Hochschule, Aachen.
 - Pu. Special Observatory Publication.

2. Abisko.

- A. Abisko Geofysiska Observatorium, Abisko, Lapland, Sweden, or Bruno Rolf, Meteorological Bureau, Stockholm 8, Sweden.
 - P. Bruno Rolf, Director; N. R. F. Enger, Observer.
- C.-F. 68° 21′ N; 18° 49′ E. 385 m. Morainic material on schist. 12 m to water.
- I. Wiechert, N, at Vassijaure, 1906; transferred to Abisko in 1915; Galitzin, N, E and Z.
 - S. Foreningen Vassijaure Naturvetenskapliga Station. Pu. No.

Academie des Sciences de l'U. S. S. R. See Sebastopol, No. 271; Simferopol, No. 277; Vladivostok, No. 338.

3. Accra.

- A. Seismological Station, Accra, Gold Coast Colony, West Africa.
 - P. Jack R. W. Reid, Officer in charge.
 - C.-F. 5° 32' N; 0° 12' W.
 - I. Milne, 1914.
 - S. The Government of the Gold Coast.
 - Pu. International Seismological Summary, Oxford, England.

Açores, Serviço Meteorologico dos. See Ponta Delgada, No. 239.

4. Adelaide.

- A. Adelaide Observatory, Adelaide, South Australia.
- P. G. F. Dowell, Government Astronomer, in charge; A. L. Dawson, A. E. Markey, R. V. Burton, Assistants.
 - C.-F. 34° 56′ S; 138° 35′ E. 43 m. Marly limestone over clay.

- I. Milne, E. 1909; Milne-Shaw, N. 1925.
- S. Ministry of Education, Government of South Australia.
- Pu. International Seismological Summary, Oxford, England.

Agana. See Guam, No. 87.

5. Agra.

- A. Upper Air Observatory, Agra, Agra and Gudh, India.
- P. G. Chatterjee, in charge; N. K. Sur, B. N. Screenivasaiah, D. M. Patel.
 - C.-F. 27° 10′ N; 78° 05′ E. 170 m. Gravel. 12 m to water.
 - I. Omori-Ewing, N and E, 1929.
 - S. Government of India.
 - Pu. India Weather Review.

Agram. See Zagreb, No. 348.

6. Aidu.

A. Aidu Meteorological Observatory, Aidu, Japan.

P.

C.-F. 37° 34′ N; 140° 07′ E.

I. Milne seismometer, horizontal.

S.

 Pu_{\bullet}

Aiti-ken Meteorological Observatory. See Nagoya, No. 206.

7. Akita.

- A. Akita Meteorological Observatory, Akita, Japan.
- P. K. Funayama, Director.
- C.-F. 39° 41′ N; 140° 06′ E. 60 m. Soft ground.
- I. Imamura, N and E; Omori tromometer, N and E; 1914. Wiechert, N, E and Z.

 $\mathcal{S}.$

Pu.

8. Albany.

A. Director, New York State Museum, Albany, New York, U. S. A.

P.

C.-F.

- I. Bosch-Omori, 1906; discontinued in 1913 due to change in site.
 - S. University of the State of New York.

Pu. No.

9. Alger-Bouzaréah.

- A. Station Seismique, Observatoire d'Alger-Bouzaréah, Algérie.
- P. F. Gonnessiat, Director.
- C.-F. 36° 48′ N; 3° 02′ E. 332 m. Schists and limestones.
- I. Bosch-Mainka, N and E, 1911.
- S. University Observatory.

 Pu_{n}

10. Alicante.

- A. Ingeniero Jefe de la Estación Sismológica de Alicante, España.
 - P. D. José Poyato y Osuna, Director.
 - C.-F. 38° 21' N; 0° 29' W. 35 m. Upper cretaceous (marls).
 - I. Mainka, N and E; Wiechert, Z; service began 1914.
 - S. Instituto Geográfico y Catastral (State Office).
 - Pu. Seismological Bulletin, Instituto Geográfico y Catastral.

11. Alipore.

- A. The Observatory, Alipore, Calcutta, India.
- P. V. V. Sohoni, in charge.
- C.-F. 22° 32′ N; 88° 20′ E. 6 m. Alluvium.
- I. Milne, 1899. Replaced by Omori-Ewing, N and E, 1915.
- S. Government of India.
- Pu. India Weather Review.

12. Alma-Ata.

- A. Alma-Ata, Turkestan, U.S.S.R. (Formerly Verny).
- P. N. A. Kharin, Official in charge.
- C.-F. 43° 16′ N; 76° 57′ E. 800 m. Sandy and muddy strata interbedded with gravel.
 - I. Nikiforoff, N and E, 1927
 - S. Commissariate of Agriculture of Kasakstan.
 - Pu. No.

13. Almeria.

- A. Estación Sismológica y Meteorologica, Almeria, España.
- P. José Rodriguez Navarro de Fuentes, Ingeniero Geográfico, Jefe; Domingo Liria Valls, Auxiliar administrativo.
 - C.-F. 36° 51′ N; 2° 28′ W. 65 m. Calcareous limestone.
- I. Vicentini, N, E and Z; Bosch, N and E; Mainka, N, E and Z; service began 1911.
 - S. Instituto Geográfico y Catastral, Madrid.
 - Pu. Monthly Bulletin, Instituto Geográfico y Catastral, Madrid.

14. Amboina.

A. Batavia Observatory, Java, Netherlands East Indies.

P.

C.-F. 3° 42′ S; 128° 10′ E. 4 m. Quaternary.

I. Wiechert, N and E, 1924.

S. Royal Observatory, Batavia.

Pu. Seismological Bulletin, Batavia.

15. Ambulong, Batangas, P. I.

A. Manila Observatory, Manila, P. I.

Р.

C.-F. 14° 07′ N; 121° 04′ E. 10 m.

I. Vicentini, N, E and Z. Time not reliable.

S. Philippine Government.

Pu. Seismological Bulletin, Manila Observatory.

American University of Beirut. See Beirut, No. 29.

16. Andalgala.

A. Estación sismológica, Andalgala, F/C. C. N. A., Argentina.

P. Max Schmidt, Director.

C.-F. 27° 36′ S; 66° 26′ W. 1072 m. Rock.

I. Milne, N and E, 1910.

S. Ministerio de Agricultura, Republica Argentina.

Pu. Meteorological Bulletin of Argentina.

17. Ann Arbor.

A. Seismological Station, Astronomical Observatory, University of Michigan, Ann Arbor, Michigan, U. S. A.

P. Ralph H. Curtiss, Director; Mary E. Lindsey, Assistant.

C.-F. 42° 17′ N; 83° 44′ W. 282 m. Clay. 15 m to water.

I. Bosh-Omori, N and E; Wiechert, N, E and Z; 1909.

S. University of Michigan.

Pu. Publications of the Astronomical Observatory.

18. Apia.

A. The Observatory, Apia, Western Samoa.

P. F. W. Glover, Assistant Director.

C.-F. 13° 48′ S; 171° 46′ W. 2 m. Coral sand. 3 m to water.

I. Wiechert, N, E and Z, 1904.

S. Government of New Zealand.

Pu. Quarterly report.

19. Asahigawa.

A. Asahigawa Meteorological Observatory, Asahigawa, Hokkaido, Japan.

P. N. Hoshikawa, in charge.

C.-F. 43° 47′ N; 142° 22′ E. 111 m.

I. C. M. O. type, 1919.

S. Hokkaido Government.

Pu. Reports to Central Astronomical Observatory of Tokyo.

20. Ascension.

A. Eastern, Eastern Extension and Pacific Telegraph Co., Island of Ascension.

P.

C.-F. 7° 57′ S; 14° 21′ W.

I. Milne, E, 1910. (Not functioning at present.)

S.

Pu.

21. Athens.

- A. Section Géodynamique, Observatoire National d'Athènes, Grèce.
- P. D. Eginitis, Director; N. Critikos, Chief of Geodynamical Section.
 - C.-F. 37° 58' N; 23° 43' E. 95 m. Limestone.
 - I. Mainka, N and E; Wiechert, N, E and Z. Service began 1899.
 - S. Ministry of Public Instruction.

Pu. Monthly Bulletin, National Observatory of Athens.

22. Awomori.

- A. Awomori Meteorological Observatory, Awomori, Japan.
- P. S. Kimura, Director.

C.-F. 40° 49′ N; 140° 47′ E.

I. Omori portable, horizontal.

S.

Pu.

Bagnères de Bigore. See Pic du Midi, No. 235

23. Baguio, Benguet, P. I.

A. Manila Observatory, Manila, P. I.

P.

C.-F. 16° 25′ N; 120° 36′ E. 512 m.

- I. Vicentini, N, E and Z. Omori, N and E. Time not reliable.
- S. Philippine Government.

Pu. Seismological Bulletin, Manila Observatory.

24. Baku.

- A. Baku, Bely Gorod, Lunacharski Garden 102, Baku, Caucasus, U. S. S. R.
 - P. N. V. Malinovskij, Official in charge.
 - C.-F. 40° 23′ N; 49° 54′ E. 12 m. Clay and sand.
- I. Galitzin, N, E and Z, 1912. Service began 1903 with Repsold pendulums.
 - S. Academy of Sciences of the U.S.S.R., Leningrad.
- Pu. Monthly Bulletin, Baku, and Academy of Sciences, Leningrad.

25. Balboa.

- A. Chief of Surveys, Balboa Heights, Canal Zone, Central America.
 - P. R. Z. Kirkpatrick, Chief of surveys; G. E. Matthew, in charge.
 - C.-F. 8° 58′ N; 79° 33′ W. 28 m. Basalt.
- I. Bosch-Omori, 25 kg, N and E; Bosch-Omori, 100 kg., N and E; 1908.
 - S. Panama Canal.
 - Pu. Monthly Bulletin.

26. Barcelona.

- A. Real Academia de Ciencias y Artes, Estacion Sismica, Rambla de los Estudios-9, Barcelona, España.
 - P. Eduardo Fontseré, Director.
 - C.-F. 41° 25′ N; 2° 08′ E. 405 m. Paleozoic slates.
- I. Mainka, N and E; Vicentini, Z; Vicentini Micro-seismograph, N; service began, 1914.
 - S. Real Academia de Ciencias y Artes de Barcelona.
 - Pu. Monthly Bulletin.

27. Basle.

- A. Prof. Dr. Th. Niethammer, Binnigen, Basle, Switzerland.
- P. Th. Niethammer.
- C.-F. $47^{\circ} 34' \text{ N}$; $7^{\circ} 30' \text{ E}$.
- I. Expect to install instruments similar to those at Zurich.
- S. Astronomisch-meteorologische Anstalt der Universität, Basle. Pu. No.

28. Batavia.

- A. Batavia Observatory, Weltevreden, Java, Netherlands East Indies.
 - P. S. W. Visser, in charge.
 - C.-F. 6° 11'S; 106° 46' E. 8 m. River quaternary.

- I. Bosch, N and E, 1912; Wiechert, N and E, 1908. Wiechert, Z, 1926.
 - S. Royal Observatory, Batavia.
 - Pu. Seismological Bulletin, monthly and annual.

Batavia Observatory. See Amboina, No. 14; Batavia, No. 28; Malabar, No. 169; Maron, No. 173; Medan, No. 179.

29. Beirut.

- A. Observatory, American University of Beirut, Beirut, Syria.
- P. J. A. Brown, Director.
- C.-F. 33° 54′ N; 35° 28′ E. 30 m. Limestone.
- I. Milne, E, 1902. (Service temporarily suspended.)
- S. American University Observatory.

Pu.

Belén, Colegio de. See Havana, No. 95.

30. Belgrade.

- A. Institut Seismologique a Tasmaidan, Belgrade, Jugoslavie.
- P. Yèlénko Mihailovitsch, Director; Adjoint, Rajica Marinkovitsch.
 - C.-F. 44° 49′ N; 20° 27′ E. 129 m. Calcareous rock.
- I. Galitzin, horizontal; Wiechert, N, E and Z; Mainka, horizontal; Belar, N, E and Z; Conrad, horizontal; began 1909.
 - S. Université de Belgrade.
- Pu. Provisional Monthly Bulletin; "Annuaire Seismique" of Microseisms.

31. Benevento.

- A. Osservatorio Meteorologico e Geodinamico, Benevento, Italia.
- P. F. Venanzio Vari.
- C.-F. 41° 08′ N; 14° 48′ E. 154 m.
- I. Agamennone, N and E; Tromosismometrografo, NE and NW; began 1884.
 - S. Collegio de la Salle.
 - Pu. Occasional publication.

32. Bergen.

- A. Jordskjaelvsstationen, Bergens Museum, Bergen, Norge.
- P. Carl Fred Kolderup, Director.
- C.-F. 60° 24' N; 5° 18' E. 22 m. Gneiss.
- I. Wiechert, N, E and Z; Bosch, N and E; service began 1904.
- S. Geological Institute of Bergens Museum.
- Pu. Seismological Bulletin, Quarterly.

33. Berkeley.

- A. Seismograph Station, University of California, Berkeley, California, U. S. A.
 - P. Perry Byerly, Assistant Professor of Seismology.
 - C.-F. 37° 52′ N; 122° 16′ W. 85 m. Sandstone.
- I. Bosch-Omori, N and E; Wiechert, Z, 1910; Wood-Anderson, N and E; Wilip-Galitzin, N, E and Z.
 - S. University of California.
 - Pu. Bulletin of the Seismographic Stations.

34. Besançon.

- A. Observatoire National de Besançon, Besançon, Doubs, France.
- P. A. Lebeuf, Director; M. R. Goudey, in charge.
- C.-F. 47° 15′ N; 5° 59′ E. 311 m. Clays and marls on sandstone.
- I. Mainka, N and E, 1910.
- S. Observatoire de Besançon.
- Pu. Monthly Bulletin, Strasbourg, France.

35. Bidston.

- A. Liverpool Observatory, Bidston, Birkenhead, England.
- P. J. Proudman, Director; A. T. Doodson, Associate Director.
- C.-F. 54° 24' N; 3° 14' W. 61 m. Sandstone.
- I. Milne-Shaw, N, 1926; Milne, 1898, discontinued.
- S. University of Liverpool and Mersey Docks and Harbour Board.
 - Pu. International Seismological Summary, Oxford, England.

Blackburn. See Stonyhurst, No. 283.

36. Bochum.

- A. Erdbebenwarte der Westfälischen Berggewerkschaftskasse zu Bochum, Bochum, Westfalen, Deutschland.
 - P. W. Lohr, Surveyor.
 - $\emph{C.-F.}$ 51° 30′ N ; 7° 14′ E. 118 m. Alluvium.
- I. Wiechert, 200 kg, N and E; Wiechert, 1000 kg, N and E; Wiechert, Z; service began 1908.
 - S. Westfälische Berggewerkschaftskasse zu Bochum,
 - Pu. Reports to Jena.

37. Bogota.

- A. Observatorio Nacional de San Bartolomé, Bogota, Colombia.
- P. S. Sarasola, Director.
- C.-F.

I. No instruments.

S.

Pu.

Bombay. See Colaba, No. 59. Bruxelles. See Uccle. No. 326.

38. Budapest.

- A. Budapesti Földrengesi Observatorium, VIII Muzeum Körút, 6-8, Budapest, Hungary.
 - P. Rado de Kövesligethy, Director.
- C.-F. 47° 29' N; 19° 04' E. 110 m. Sand and alluvium. 8 m to water.
- I. Wiechert, N and E; Galitzin, second order, N and E; Quervain-Piccard, portable, N, E and Z.
- S. Association of the Hungarian National Collections and Museums.

Pu. Observatory Quarterly Report.

39. Buffalo.

- A. Seismological Observatory, Canisius College, Buffalo, New York, U. S. A.
- P. John P. Delaney, Director; Austin McTigue and Fred Goeddeke, Assistant Directors.
- C.-F. 42° 56′ N; 78° 51′ W. 191 m. Cherty limestone. 1.2 m to water.
- I. Wiechert, N and E; Galitzin-Wilip, Z; began, 1911; Galitzin-Wilip, 1930.
 - S. Canisius College.
- Pu. Bulletin, Jesuit Seismological Association, Saint Louis University, St. Louis, Missouri, U. S. A.

40. Butuan, Agusan, Mindanao, P. I.

A. Manila Observatory, Manila, P. I.

Р.

C.-F. 8° 56′ N; 125° 32′ E. 2 m.

I. Wiechert, N and E. Time not reliable

S. Philippine Government.

Pu. Seismological Bulletin, Manila Observatory.

Cadiz. See San Fernando, No. 261.

Cairo. See Helwan, No. 101.

Calcutta. See Alipore, No. 11.

California, University of. See Berkeley, No. 33.

41. Cambridge.

- A. Harvard Seismograph Station, Geology Museum, Oxford St., Cambridge, Massachusetts, U. S. A.
- P. Kirtley F. Mather, Chairman, Department of Geology and Geography; L. Don Leet, Professor of Seismology.
- C.-F. 42° 23' N; 71° 07' W. 5 m. Glacial sand and clay. 5 m to water.
- I. Milne-Shaw, N and E, 1928; Bosch-Omori, N and E, 1908; latter discontinued when Milne-Shaw instruments installed.
 - S. Harvard University.
 - Pu. Monthly bulletin.

Canisius College. See Buffalo, No. 39.

42. Cape of Good Hope.

- A. Royal Observatory, Cape Town, Cape of Good Hope, South Africa.
 - P. H. Spencer Jones, H. M. Astronomer at the Cape.
 - C.-F. 33° 56′ S; 18° 29′ E. 13 m. Slate.
 - I. Milne-Shaw, E.
 - S. Admiralty, Imperial Government of Great Britain.
 - Pu. International Seismological Summary, Oxford, England.

43. Cardiff.

- A. Cardiff Seismological Station, City Hall, Cardiff, Wales.
- P. Ralph M. F. Picken, in charge.
- C.-F. 51° 30′ N; 3° 10′ W. 62 m. Sandstone.
- I. Milne, 1909.
- S. Cardiff City Council.
- Pu. No.

44. Carloforte.

- A. Regia Stazione Astronomica di Carloforte, Cagliari Sardegna, Italia.
 - P. Giovani Peisino, Director.
 - C.-F. 39° 09′ N; 8° 19′ E. 18 m. Trachyte.
- I. Vicentini seismograph destroyed; resumed operation with Agamennone in 1928; N and E.
 - S. Regia Commissione Geodetica Italiana.

Pu. No.

45. Cartuja.

- A. Estación Sismológica, Apartado No. 32, Granada, Spain.
- P. S. Navarro Neumann, Director.

- C.-F. 37° 12′ N; 3° 36′ W. 768 m. Limestone.
- I. Belarmino, Z; Canisio, E; Berchmans, N and E; Cartuja bifilar, N, E and Z; Javier, E. Service began, 1903.
 - S. The order of S. J. and endowed by the Spanish Government. Pu. Monthly bulletin.

Catamia. See Mineo, No. 184.

46. Cernauti.

- A. Universitatea din Cernauti, Cernauti, Roumania.
- P. N. Steliami, Director.
- C.-F. 48° 17′ N; 25° 56′ E. 225 m.
- I. Mainka, N and E; not in operation.
- S. Institutl de fizica cosmica.

Pu. No.

47. Charlottesville.

- A. Rouss Physical Laboratory, University of Virginia, University, Virginia, U. S. A.
 - P. L. G. Hoxton, Director; Arthur J. Weed, in charge.
 - C.-F. 38° 02′ N; 78° 30′ W.
 - I. Weed inverted pendulum, N and E.
 - S. University of Virginia.
- Pu. Seismograms sent to U.S. Coast & Geodetic Survey, Washington, D.C., immediately after a seismic disturbance is recorded.

48. Cheltenham.

- A. Cheltenham Magnetic Observatory, Cheltenham, Maryland, U. S. A.
- P. George Hartnell, Observer in charge; S. Townshend, Assistant.
 - C.-F. 38° 44′ N; 76° 50′ W. 72 m. Sand and gravel.
- I. Bosch-Omori instruments dismantled in 1928; experimental station only at present.
 - S. U. S. Coast & Geodetic Survey, Washington, D. C., U. S. A. Pu. Monthly Report; U. S. Earthquakes, Annual.

49. Chiavari.

- A. Osservatorio Sismico del Seminario, Chiavari, Genoa, Italia.
- P. Giovanni Sanguinets, Director.
- C.-F. 44° 19′ N; 9° 19′ E. 5 m. Alluvium.
- I. Stiattesi, NE and SE; Alfani tromometrograph, SE; Vertical pendulum; service began, 1909.
 - S. Seminario Vescoville.
 - Pu. Appendix of the Meteorological Bulletin.

50. Chicago.

- A. Seismological Station, Loyola University, Rogers Park, Chicago, Illinois, U. S. A.
 - P. G. J. Brunner.
 - C.-F. 41° 54' N; 87° 38' W. 183 m. Sand. 3 m to water.
 - I. Wiechert, N and E, 1912.
 - S. Loyola University.
 - Pu. Monthly Bulletin.

51. Chicago.

- A. Seismological Station, U. S. Weather Bureau Office, University of Chicago, Chicago, Illinois, U. S. A.
 - P. P. E. Johnson, Meteorologist in Charge.
 - C.-F. 41° 47′ N; 87° 37′ W. 180 m. Bed rock.
 - I. Milne-Shaw, N and E, 1918.
 - S. U. S. Coast & Geodetic Survey, Washington, D. C., U. S. A.
 - Pu. Monthly Report; U. S. Earthquakes, Annual.

52. Chihuahua.

- A. Estación Sismológica de Chihuahua, Chihuahua, Mexico.
- P. Refugio Lara, in charge.
- C.-F. 28° 38' N; 106° 05' W. 1430 m. Rhyolitic tufa.
- I. Wiechert, N, E and Z, 1927.
- S. Instituto de Geológico, 6 del Cipres, núm. 176, Mexico, D. F.
- Pu. Catalog de los Temblores, Annual.

53. Christchurch.

- A. The Director, Magnetic Observatory, Christchurch, New Zealand.
- P. Henry F. Skey, Director; Hamilton F. Baird, Assistant; J. W. Beagley, Computer.
- C.-F. 43° 32' S; 172° 37' E. 8 m. Alluvium. 20 meters to water.
 - I. Milne, E, 1901.
 - S. Department of Lands & Survey, New Zealand Government.
- Pu. Records of the Survey of New Zealand, Annual; International Seismological Summary, Oxford, England.

54. Chur.

- A. Erdbebenwarte der Kantonschule, Chur, Schweiz.
- P. Alfred Kreis, Director.
- C.-F. 46° 51' N; 9° 32' E. 630 m. Solid rock.
- I. Quervain-Piccard, N, E and Z, 1916.
- S. Schweizerische Meteorologische Zentralanstalt in Zurich.
- Pu. Collected Bulletins of Switzerland, Monthly; and Annual Report of Switzerland; Earthquake Service, Zurich.

55. Cincinnati.

- A. St. Xavier College, Dana Avenue and Victory Parkway, Cincinnati, Ohio, U. S. A.
 - P. Vincent V. Herr, Director.
 - C.-F. 39° 09′ N; 84° 30′ W. 203 m. Limestone.
- I. Wood-Anderson, N and E, long period; Wood-Anderson, N and E, short period, 1927; Galitzin, Z, to be installed.
 - S. St. Xavier College.
 - Pu. Seismological Bulletin.

56. Clausthal.

A. Physikalisches Institut der Preussischen Bergakademie Clausthal, Clausthal (Harz), Deutschland.

P.

C.-P. 51° 48' N; 10° 20' E. Solid rock.

I. Horizontal pendulum, 1908; discontinued.

S.

Pu.

57. Cleveland.

- A. Angelo Secchi Observatory, John Carroll University, Cleveland, Ohio, U. S. A.
 - P. Frederick L. Odenbach, Director.
 - C.-F. 41° 29' N; 81° 42' W. 206 m. Glacial drift. 5 m to water.
 - I. Wiechert, N, E and Z; Hengler Horizontal Pendulum; 1907.
 - S. John Carroll University.

Pu. No.

Cocos Island. See Keeling Islands, No. 131.

58. Coimbra.

- A. The Director of the Instituto Geofisico de Universidade, Coimbra, Portugal.
 - P. Anselmo Ferraz de Carvalho, Director.
 - C.-F. 40° 12′ N; 8° 26′ W. 140 m. Sandstone.
 - I. Wiechert, N, E and Z, 1903.
 - S. Universidade de Coimbra.
 - Pu. Monthly bulletin.

59. Colaba.

- A. Government Observatory, Colaba, Bombay No. 5, India.
- P. S. K. Banerji, in charge.
- C.-F. 18° 54′ N; 72° 49′ E. 6 m. Trap.

- I. Milne, 1898; discontinued, 1918; Omori-Ewing, E, 1907; Horizontal Pendulum, local construction, N and E, 1907; Milne-Shaw, N, 1923.
 - S. Government of India.

Pu. India Weather Review.

Colegio Alberoni. See Piacenza, No. 233. Colegio del Sagardo Corazon. See Sucre, No. 287. College of the Pacific. See Stockton, No. 282.

60. Colombo.

- A. Colombo Observatory, Buller's Road, Colombo, Ceylon.
- B. A. J. Bamford, Superintendent; H. Jameson, Assistant.
- C.-F. 6° 54′ N; 79° 52′ E. 7 m. Sandstone.
- I. Milne, 1909-1927; Milne-Shaw, E, 1927.
- S. Ceylon Survey Department, Colombo, Ceylon, India.

Pu. Annual Report Colombo Observatory; International Seismological Summary, University Observatory, Oxford, England.

60.1. Columbia.

- A. Department of Geology, University of South Carolina, Columbia, South Carolina, U. S. A.
 - P. Stephen Taber and A. C. Carson.
 - C.-F. 34° 00' N; 81° 02' W. 94m. Semiconsolidated sand.
 - I. McComb-Romberg, N and E, Dec., 1930.
- Su. Cooperative station of University of South Carolina and U. S. Coast and Geodetic Survey, Washington, D. C.
- P. Seismological publications of the U.S. Coast and Geodetic Survey: (a) U.S. Earthquakes; (b) Monthly Bulletin.

61. Copenhagen.

- A. Geodetic Institute, Copenhagen, Denmark.
- P. I. Lehmann, in charge.
- C.-F. 55° 41′ N; 12° 27′ E. 13 m. Chalk.
- I. Galitzin, N, E and Z; Wiechert, N, E and Z; Milne-Shaw, N and E; Wood-Anderson, N and E, not functioning.
 - S. Geodaetisk Institut, Proviantgaarden, Copenhagen, Denmark. Pu. Quarterly Bulletin.

62. Copiapó.

- A. Estación Sismológica de Copiapó, Copiapó, Chile.
- P. Luis Sierra Vera, Director.
- C.-F. 27° 21' S; 70° 21' W. 370 m. Rock.

- I. Wiechert, N and E, 1908.
- S. University of Chile.

Pu. Seismological Service of Chile, Santiago, Chile.

Cornell University. See Ithaca, No. 120.

63. Dairen.

- A. Meteorological Observatory, Kwanto, Dairen, Kwanto-shu, Japan.
 - P. S. Migunuchi, Director.

C.-F. 38° 54' N; 121° 38' E. 97 m. Quartzite.

I. Omori tromometer, N and E, 1918; Wiechert, N, E and Z.

S.

Pu.

Dalhousie University. See Halifax, No. 90.

64. DeBilt.

- A. Royal Netherlands Meteorological Institute, DeBilt, Netherlands.
- P. E. Van Everdingen, Chief Director; G. Van Dijk, Director of Seismological Investigations.
 - C.-F. 52° 06' N; 5° 11' E. 3 m. Sand.
- I. Galitzin, N, E and Z; Wiechert, N and E; Bosch-Omori, N and E, 1908.
 - S. Royal Netherlands Meteorological Institute.
 - Pu. Annual Report, Seismic Registration.

65. Dehra Dun.

- A. Director, Geodetic Branch, Survey of India, Dehra Dun, India.
 - P. J. de Graaff Hunter, in charge.
 - C.-F. 30° 19′ N; 78° 03′ E. 683 m. Alluvium.
 - I. Omori, E., 1912.
 - S. Survey of India.

Pu. International Seismological Summary, University Observatory, Oxford, England.

66. Denton.

- A. John W. Crain (Private Earthquake Station), Denton, Texas, U. S. A.
 - P. John W. Crain, in charge.
 - C.-F. 33° 13' N; 97° 08' W. 208 m. Yellow clay.
 - I. Inverted Pendulum, local construction, E, 1925.
 - S. John Crain.
- Pu. Reports to Jesuit Seismological Association and U. S. Coast & Geodetic Survey, Washington, D. C.

į.

67. Denver.

- A. Regis College Seismic Station, W. 50th Avenue and Lowell Boulevard, Denver, Colorado, U. S. A.
 - P. A. W. Forstall, Director.
 - C.-F. 39° 41′ N; 104° 57′ W. 1655 m. Conglomerate.
 - I. Wiechert, N and E, 1909.
 - S. Regis College and Jesuit Seismological Association.
- Pu. Seismological Bulletin, monthly, and Reports to Jesuit Seismological Association, St. Louis, Missouri.

Dominion Observatory. See Ottawa, No. 225; Wellington, No. 341.

68. Dubrovnik.

- A. Station Seismologique, Dubrovnik II, Jugoslavie.
- P. Jovan Krcmar, Director.
- C.-F. 40° 39′ N; 18° 06′ E. 20 m. Limestone.
- I. Conrad, NW, 1928.
- S. Institut Seismologique de Belgrad.
- Pu. Provisional Monthly Bulletin; Annual Report, Belgrade.

69. Ebro.

- A. Observatorio del Ebro, Apartado, 9 Tortosa, España.
- P. Luis Rodes, Director.
- C.-F. 40° 49' N; 0° 30' E. Conglomerate.
- I. Mainka, N and E; Vicentini, E and Z; Vertical Pendulum; began 1905.
 - S. Observatorio del Ebro.
 - Pu. Monthly bulletin.

70. Edinburgh.

- A. Royal Observatory, Edinburgh, Scotland.
- P. R. A. Sampson, Director.
- C.-F. 55° 56′ N ; 3° 11′ W. 132 m. Lava.
- I. Milne-Shaw, E, 1919; Bifilar pendulum, 1894; Second bifilar in 1898; Milne, 1900; all superseded by Milne-Shaw.
 - S. Royal Observatory.
 - Pu. International Seismological Summary, Oxford, England.

71. Eger.

- A. Erdbebenwarte, Eger, Czechoslovakia.
- P. Georg Irgang, in charge.
- C.-F. $50^{\circ} 05' \text{ N}$; $12^{\circ} 23' \text{ E}$. 430 m. Sand and clay.
- I. Mainka, N; Belar-horizontal pendulum, N and E; service began 1908.

S. Staats-Anstalt für Geophysik in Prag.

Pu. Annual Report of State Industrial School, 1908-1914; Reports to Prague twice per month since 1914.

Ekaterinburg. See Sverdlovsk, No. 291.

72. Eskdalemuir.

- A. Eskdalemuir Observatory, Eskdalemuir, Scotland.
- P. A. H. R. Goldie, Superintendent; H. W. L. Absalom, Assistant Superintendent
 - C.-F. 55° 19' N; 3° 12' W. 242 m. Stratified rock.
- I. Galitzin, N, E and Z, 1908; transferred to Kew Observatory, in 1925.
- S. The Meteorological Office, Air Ministry, Kingsway, London, W. C. 2.

Pu. British Meteorological and Magnetic Year Book, 1911-1921, London; The Observatories' Year Book, Meteorological Office, London, 1922-1925.

Fabra. See Barcelona, No. 26. Firenze. See Florence, No. 73.

73. Florence.

- A. Osservatorio Ximeniano, Piazza S. Lorenzo, Firenze, Italia.
- P. Guido Alfani, in charge.
- C.-F. 43° 47′ N; 11° 15′ E. 75 m. Alluvium.
- I. Alfani, N and E; Omori-Alfani, two comp; Vicentini, N, E and Z; Vicentini-microseismograph pantograph; Ortosismograph Alfani; Galitzin, N, E and Z.
 - S. Private observatory.
 - Pu. Monthly bulletin.

74. Florence.

- ${\cal A}.$ Regio Osservatorio Astrofisico, Quarto-Castello, Firenze, Italia.
 - P. Raffaello Stiattesi, Director.
 - C.-F. 43° 49′ N; 11° 13′ E. 120 m. Limestone.
 - I. Vicentini; Stiattesi, N and E, 1895.
 - S. Regio Osservatorio Astrofisico.
 - Pu. Seismological Bulletin.

75. Florissant.

- A. Seismograph Station, St. Louis University, St. Louis, Missouri, U. S. A.
 - P. James B. Macelwane, Director; J. S. Joliat; George B. Blum.

- C.-F. 38° 48′ N; 90° 22′ W. 160 m. Hard clay.
- I. Wood-Anderson, N and E; Galitzin-Wilip, N, E and Z, 1928; Shortt clock.
 - S. St. Louis University.
 - Pu. Monthly Bulletin.

76. Foggia.

- A. Specola Metero-Sismica, Foggia, Italy.
- P. Michele Nigri, Director.
- C.-F. 41° 27′ N; 15° 31′ E. 20 m.
- I. Bertelli Tromometer; De Rossi Microsismograph; Cecchi Seismometer; Agamennone; Stiattesi, N and E.
 - S. Ufficio Centrale di Meteorologia e Geofizica, Roma.
 - Pu. Monthly report.

77. Fordham.

- A. Seismic Station of Fordham University, New York, New York, U. S. A.
 - P. Joseph Lynch, Director.
 - C.-F. 40° 52′ N; 73° 53′ W. 26 m. Dolomite and Gneiss.
 - I. Wiechert, N and E; Milne-Shaw, N and E; Galitzin.
 - S. Fordham University, New York, N. Y.
 - Pu. Monthly Bulletin.

78. Fort de France.

- A. Observatoire de la Martinique, Fort de France, Martinique.
- P. Professor Simon, Director; Professor Boutin, Associate.
- C.-F. $14^{\circ} 44'$ N; $61^{\circ} 09'$ W. 6 m. Tufa.
- I. Bosch-Omori, N and E, 1902; Mainka, N and E, 1926; at new site: Elevation, 510 m.; 14° 36′ N; 61° 04′ W.
 - S. Colonie de la Martinique.
 - Pu. Monthly bulletin.

Frankfurt-am-Main. See Taunus, No. 304.1.

79. Frunse.

- A. Seismologic Station, Frunse, Turkestan, U. S. S. R.
- P. G. Okulich-Kasarin, Official in charge.
- C.-F. 42° 53′ N; 74° 35′ E. 655 m. Gravel.
- I. Nikiforoff, N and E, 1927.
- S. Central Executive Committee of the Kirghiz, U. S. S. R.; Network of stations of Physico-Mathematical Institute of the Academy of Sciences of the U. S. S. R., Leningrad.
 - Pu. No.

80. Fukui.

A. Fukui Meteorological Observatory, Fukui, Japan.

Р.

C.-F. 36° 03′ N; 136° 16′ E.

I. C. M. O. horizontal.

S.

Pu.

Geodetic Institute, Copenhagen. See Scoresby-Sund, No. 270.

81. Georgetown.

- A. Seismological Observatory, Georgetown University, Washington, District of Columbia, U. S. A.
 - P. F. W. Sohon, Director
 - C.-F. 38° 54' N; 77° 04' W. 42 m. Decayed diorite.
- I. Mainka, N and E, 1911; Bosch-Omori (discontinued); Wiechert, N and E; Galitzin, Z; Galitzin, N and E, 1930.
 - S. Georgetown University.
 - Pu. Seismological Bulletin.

Georgia, Geophysical Observatory of. See Tiflis, No. 306.

82. Gifu.

- A. Gifu Meteorological Observatory, Gifu, Japan.
- P. Y. Tanaka, Director.
- C.-F. 35° 24′ N; 136° 46′ E. 13 m. Soft ground.
- I. Omori tromometer, N and E, 1910; Wiechert, N, E and Z. S.

ν.

Pu.

83. Göttingen.

- A. Geophysikalisches Institut der Universität Göttingen, Herzberger Landstr. 180, Göttingen, Deutschland.
 - P. E. Wiechert, Director.
 - C.-F. 51° 33′ N; 9° 58′ E. 270 m. Solid rock.
- I. Wiechert, N, E and Z; Wiechert, N, 17000 kg; service began 1908.
 - S. Universitäts-Institut.

Pu. No.

Gonzaga University. See Spokane, No. 281.

84. Gorje.

- A. Sismologique Station a Gorje (près Bled), Jugoslavie.
- P. M. Albin Belar, Chief of the station.

- C.-F. 46° 23' N; 14° 05' E. 600 m. Calcareous rock.
- I. Belar pendulum, new construction.
- S. Observatoire Belar.
- Pu. Provisional Monthly Bulletin; Annual Report, Belgrad.

Granada. See Cartuja, No. 45.

85. Graz.

- A. Erdbebenstation am Physikalischen Institut der Universtät Graz, Graz, Steiermark, Oesterreich.
 - P. Hans Bendrof, Director.
 - C.-F. 47° 05′ N; 15° 27′ E. 375 m. Shale.
 - I. Wiechert, N and E.
 - S. Physikalisches Institut der Universität Graz.
 - Pu. Seismological Bulletin.

86. Guadalajara.

- A. Estación Sismológica de Guadalajara, Guadalajara, Mexico.
- P. Benjamin del Rio, in charge.
- C.-F. 20° 41′ N; 103° 50′ W. 1567 m. Alluvium.
- I. Wiechert, N, E and Z.
- S. Instituto de Geológico, 6 del Cipres, num. 176, Mexico, D. F.
- Pu. Catalog de los Temblores, Annual.

87. Guam.

- A. Governor of Guam, Agana, Guam, M. I.
- P. Governor of Guam, Director; W. W. Rowley, in charge.
- C.-F. 13° 28′ N; 144° 45′ E. 5 m. 2 m to water.
- I. Wiechert, N and E, 1914.
- S. Manila Observatory, P. I.
- Pu. Station Bulletin and Manila Observatory Bulletin.

88. Haboro.

A. Haboro Meteorological Observatory, Haboro, Hokkaido District, Japan.

Р.

C.-F. 44° 23′ N; 141° 42′ E.

I. C. M. O. horizontal.

 S_{-}

Pu.

89. Hakodate.

- A. Hakodate Meteorological Observatory, Hakodate, Japan.
- P. T. Kajinuma, Director.

C.-F. 41° 47′ N; 140° 43′ E.

I. Omori portable, horizontal.

S.

Pu.

90. Halifax.

- A. Seismologic Station, Dalhousie University, Halifax, Nova Scotia, Canada.
 - P. H. L. Bronson, in charge.
 - C.-F. 44° 38' N; 63° 36' W; 46 m. Carbonaceous slate.
 - I. Mainka, N and E, 1915.
- S. Dalhousie University and Dominion Observatory, Ottawa, Canada.
 - Pu. Dominion Observatory Publications, Ottawa, Canada.

91. Hamada.

A. Hamada Meteorological Observatory, Hamada, Shimaneken, Japan.

P.

C.-F. 34° 54′ N; 132° 04′ E.

I. Wiechert, N, E and Z.

S.

Pu.

92. Hamamatsu.

- A. Hamamatsu Meteorological Observatory, Hamamatsu, Japan.
- P. M. Simidu, Director; T. Otsuka, Assistant.
- C.-F. 34° 43′ N; 137° 43′ E. 29 m. Soft ground. 10 m to water.
 - I. Omori portable tromometer, N and E, 1913.
 - S. The Siznoka Prefecture.
 - Pu. Monthly Bulletin.

93. Hamburg.

- A. Hauptstation für Erdbebenforschung am Physikalischen Staatsinstitut, Hamburg, 36, Jungiusstrasse 9, Deutschland.
 - P. Richard Schütt, Director; Ernst Tams, in charge.
 - C.-F. 53° 33' N; 9° 59' E. 17 m. Marl.
- I. Wiechert, N, E and Z; Mainka, N and E; v. Reuber-Hecker, N and E; service began 1898.
 - S. Physikalisches Staatsinstitut der Hamburgischen Universität. Pu. Monthly Bulletin.

Harvard University. See Cambridge, No. 41.

94. Hatidyôzima.

A. Hatidyôzima Meteorological Observatory, Hatidyôzima, Japan.

P.

C.-F. 33° 06′ N; 139° 50′ E.

I. Wiechert, N, E and Z.

 S_{-}

Pu.

95. Havana.

- A. Observatorio del Colegio de Belén, Marianao, Habana, Cuba.
- P. M. Gutinez Lanza, Director.
- C.-F. 23° 06′ N; 82° 21′ W. 35 m. Limestone.
- I. Bosch-Omori, N and E, 1907. (Service suspended temporarily.)
 - S. Colegio de Belén.

Pu.

96. Haiwee.

- A. Seismological Laboratory, 220 North San Rafael Avenue, Pasadena, California, U. S. A.
- P. Harry O. Wood, Research Associate in Seismology, Carnegie Institution of Washington.
- C.-F. 36° 08′ N; 117° 59′ W. 1110 m. Loosly cemented tuff. Depth to water unknown, probably slight.
 - I. Wood Anderson, N and E, 1929.
- S. Carnegie Institution of Washington and Bureau of Water Works and Supply, City of Los Angeles, California.
 - Pu. No routine publication; see Pasadena.

Hawaiian Volcano Observatory. See Hilo, No. 103; Kona, No. 141; Uwekahuna, No. 331; Volcano House, No. 339.

Haynald Observatorium. See Kalocsa, No. 126.

97. Heidelberg.

- A. Erdbebenwarte der Königstuhl-Sternwarte, Heidelberg, Baden, Germany.
 - P. H. Vogt, Official in charge.
 - C.-F. 49° 24′ N; 8° 43′ E. 558 m. Sandstone.
 - I. Wiechert, N and E, 1904.
 - S. Government Observatory.
 - Pu. Reports to central station at Jena.

98. Heijo.

A. Heijo Meteorological Observatory, Heijo, Korea.

Ρ.

C.-F. 39° 01′ N; 125° 41′ E.

I. C. M. O. strong motion.

S.

Pu.

99. Helgoland.

A. Staatl. Biologische Anstalt auf Helgoland, Helgoland, Deutschland.

P. W. Mielck, Director; H. Hertling, Assistant.

C.-F. 54° 11' N; 7° 53' E. 42 m. Sandstone.

I. Wiechert, N and E, 1907.

S. Preussiches Ministerium für Wissenschaft, Kunst und Volksbildung.

Pu. Reports sent to Universität Göttingen.

100. Helsingfors.

A. Laboratory of Physics, Brobergsterrassen, Helsingfors, Finland.

P. Henrik Renqvist, Director.

C.-F. 60° 10′ N; 24° 58′ E. 20 m. Gneiss.

I. Mainka, N, E and Z, 1924.

S. University of Helsingfors.

Pu. Seismological Bulletin.

101. Helwan.

A. Observatory, Helwan (near Cairo), Egypt.

P. P. A. Curry, Director.

C.-F. 29° 51' N; 31° 20' E. 116 m. Limestone.

I. Milne-Shaw, E; Replaced two Milne instruments which had been in operation since 1904.

S. Physical Department, Public Works Ministry, Egypt.

Pu. International Seismological Summary, Oxford, England.

102. Hikone.

A. Hikone Meteorological Observatory, Hikone, Japan.

Р.

C.-F. 35° 16′ N; 136° 15′ E.

I. Wiechert, N, E and Z.

S.

Pu.

103. Hilo.

A. Hawaiian Volcano Observatory, Volcano House, Hawaii, U. S. A.

P.

C.-F. 19° 44′ N; 155° 04′ W.

- I. Volcano Observatory type, N and E.
- S. Hawaiian Volcano Observatory and U. S. Geological Survey.

Pu. Weekly Letter and Monthly Bulletin, Hawaiian Volcano Observatory; see Volcano House.

104. Hiroshima.

A. Hiroshima Meteorological Observatory, Hiroshima, Japan.

Р.

C.-F. 34° 23′ N; 132° 27′ E.

I. C. M. O. type; horizontal.

8.

Pu.

105. Hof.

- A. Erdbeben Station, Hof, Bavaria, Germany.
- P. Fr. Adami, Official in charge.
- C.-F. 50° 19′ N; 11° 53′ E. 573 m. Devon.
- I. Wiechert, N, E and Z, 1908.
- S. Nord-Oberfränkischer Verein für Natur-, Geschicts-, und Landeskunde.

Pu.

106. Hohenheim.

- A. Erdbebenwarte, Hohenheim, Stuttgart, Deutschland.
- P. A. Wigand, Director.
- C.-F. 48° 43′ N; 9° 13′ E. 396 m. Liassic.
- I. Mainka, N and E; Bosch-Omori, N and E; Schmidt, Trifilar gravimeter; service began 1893.
- S. Meteorologisch-Geophysikalischen Abteilung des Württembergischen. Statistischen Landesamts, Stuttgart.

Pu. Seismological Bulletin, Hohenheim, Stuttgart and Ravensburg, semi-annual.

107. Hoko.

- A. Taihoku Sokko Syo, Taihoku, Taiwan (Formosa), Japan.
- P. K. Ookuma, Director.
- C.-F. 23° 32' N; 119° 33' E. 9 m. Basaltic.
- I. Gray-Milne, E, E and Z; Omori tromometer, E, 1900.
- S. Government of Formosa.

Pu. No.

Holy Cross College. See Worcester, No. 342.

108. Hong Kong.

- A. The Director, Royal Observatory, Hong Kong, China.
- P. T. F. Claxton, Director.
- C.-F. 22° 18′ N; 114° 10′ E. 33 m. Disintegrated granite.
- I. Milne-Shaw, N and E, 1921.
- S. Government of Hong Kong.
- Pu. Monthly Bulletin; International Seismological Summary, Oxford, England.

109. Honolulu.

- A. U. S. Coast and Geodetic Survey, 5th Floor, Aloha Tower, Honolulu, Hawaii, U. S. A.
- P. J. H. Peters, Officer in charge; H. Katakura and I. Miyake, Observers.
 - C.-F. 21° 18′ N; 157° 49′ W; 20 m. Alluvium on basalt.
- I. Milne-Shaw, N and E, installed at Ewa, February, 1921, replacing Milne, E, which had been in operation since 1903; Milne-Shaw instruments moved from Honolulu Magnetic Observatory, Ewa, Hawaii, to University of Hawaii, Honolulu, in November, 1926, and March, 1927.
- S. U. S. Coast and Geodetic Survey, Washington, D. C., and University of Hawaii, Honolulu, Hawaii.
 - Pu. Monthly Report; U. S. Earthquakes, Annual.

110. Hukuoka.

- A. The Hukuoka Meteorological Observatory, Hukuoka, Japan.
- P. T. Ikegami, Director; R. Hiroe, Assistant.
- C.-F. 33° 35′ N; 130° 25′ E. 4 m. Alluvium. 1.2 m to water.
- I. Milne, N, E and Z, 1893; Omori, E, 1907; Omori, tromometer,N, 1907; C. M. O. type, N, E and Z, 1927.
 - S. Hukuoka prefecture.
 - Pu. Monthly Seismological Bulletin.

111. Husan.

- A. Husan Seismic Station, Husan, Korea.
- Р.
- C.-F. 35° 06′ N; 129° 00′ E. 12 m. Porphyrite.
- I. Omori Horizontal Pendulum, N.
- S. Government-General of Tyosen, Korea.
- Pu. Annual report, Meteorological Observatory of the Government-General of Tyosen.

112. Husiki.

4. Husiki Meteorological Observatory, Husiki, Japan.

P.

C.-F. 36° 47′ N; 137° 03′ E.

I. Omori portable, horizontal.

S.

Pu.

113. Hyderabad.

- A. Nizamiah Observatory, Begumpet, Hyderabad, Deccan, India.
 - P. T. P. Bhackaran, Director; M. K. Bappu, Assistant.
 - C.-F. 17° 26' N; 78° 57' E. 554 m. Granite.
 - I. Milne-Shaw, E, 1923.
 - S. H. E. H. the Nizam's Government.

Pu. International Seismological Summary, Oxford, England.

114. Idzuhara.

A. Idzuhara Meteorological Observatory, Idzuhara, Kyúsyû District, Japan.

P.

C.-F. 33° 35′ N; 130° 25′ E.

I. Omori portable, horizontal.

S.

Pu.

115. Iida.

A. Iida Meteorological Observatory, Iida, Japan.

Р.

C.-F. 35° 31′ N; 137° 50′ E.

I. Nakamura seismometer, horizontal.

S.

Pu.

Imperial Marine Observatory. See Kobe, No. 136.

116. Innsbruck.

- A. Institut für kosmische Physik, Innsbruck, Schöpfstrasse 41, Oesterreich.
 - P. Arthur Wagner, Director.

C.-F. 47° 16′ N; 11° 24′ E. 575 m. Alluvium.

I. Mainka, NE and NW, 1913.

S. Universität Innsbruck.

Pu. Seismological Catalog.

Institut de Physique du Globe. See Strasbourg, No. 284. Institut für kosmische Physik. See Innsbruck, No. 116.

Institut Geophysique National Tschecoslovaque. See Prague, No. 243.

Institut Météorologique Central de Bulgarie. See Sofia, No. 280.

Institut Seismologique a Tasmaidan. See Belgrade, No. 30.

Instituto di Fisica. See Padova, No. 227.

Instituto Geofisico de Universidado. See Coimbra, No. 58.

Instituto Geográfico y Catastral. See Madrid, No. 166.

Instituto y Observatorio de Marina. See San Fernando, No. 261.

International Latitude Observatory. See Mizusawa, No. 193.

117. Irkutsk.

- A. The Seismologic Station, No. 98 Bolshaya Blvnovs-Kaya Street, Irkutsk, Siberia, U. S. S. R.
 - P. Andrew S. Treskow, in charge.
 - C.-F. 52° 16′ N; 104° 19′ E. 467 m. Hard clay.
 - I. Galitzin, N, E and Z. Service began 1901.
- S. The Physico-mathematique Institut V. Steklov de l'Académie des Sciences de l'U. S. S. R.

Pu. Monthly Bulletin.

118. Ishigakijima.

- A. Ishigakijima Meteorological Observatory, Okinawa-ken, Japan.
 - P. T. Iwasaki, Director.
 - C.-F. 24° 20′ N; 124° 09′ E. 6 m. Coral reef.
 - I. C. M. O., N and E, 1915; Wiechert, N, E and Z.

S.

 P_{2L}

119. Ishinomaki.

A. Ishinomaki Meteorological Observatory, Ishinomaki, Japan.

P.

C.-F. 38° 26' N; 141° 19' E.

I. Omori portable, horizontal.

S.

Pu.

120. Ithaca.

- A. Seismograph Station, Department of Geology, Cornell University, McGraw Hall, Ithaca, New York, U. S. A.
 - P. P. G. Sheldon, in charge.
 - C.-F. 42° 27′ N; 76° 29′ W. 243 m. Ithaca shale.
 - I. Bosch-Omori, N and E, 1909.
 - S. Cornell University.

Pu. Monthly Bulletin and Reports to U. S. Coast & Geodetic Survey, Washington, D. C.

120.1 Jena.

- A. Reichsanstalt für Erdbebenforschung, Jena, Deutschland.
- P. Oskar Hecker, Director; August Sieberg, Dr. Krumbach, Scientific workers; Otto Meisser, H. Martin, F. Wolf, Assistants.
 - C.-F. 50° 56′ N; 11° 36′ E. 195 m. Clay.
- I. Wiechert, N and E. Vertical pendulum, 1300 kg; 15000 kg pendulum, E; service began 1926.
 - S. Reichsbehorde.
 - Pu. Seismological Bulletin, quarterly.

121. Jinsen.

- A. Meteorological Observatory of the Government-General of Tyosen, Jinsen, Tyosen, Korea.
 - P. I. Goto, Director.
 - C.-F. 37° 29' N; 126° 37' E. 69 m. Orthogneiss.
- I. Omori Tromometer, N and E; Wiechert, N, E and Z. Strong motion Seismometer, N, E and Z; Omori Portable Seismometer, N and E, 1915.
 - S. The Government-General of Tyosen.
 - Pu. Annual report.

122. Johannesburg.

- A. Union Observatory, Johannesburg, South Africa.
- P. W. W. Worssell, Scientific Assistant in charge.
- C.-F. 26° 11′ S; 28° 04′ E. 1806 m. Quartzite.
- I. Wiechert, N and E, 1910.
- S. Union Observatory.

Pu. No.

John Carroll University. See Cleveland, No. 57.

123. Kabansk.

- A. Seismologic Station, Kabansk, Transbaikalia, Siberia, U. S. S. R.
 - P. N. A. Krassilnivkov, Official in charge.
 - C.-F. 52° 03′ N; 106° 37′ E. 470 m. Diluvium.
 - I. Galitzin, N and E, 1912.
 - S. Academy of Sciences of the U.S.S. R., Leningrad.
 - Pu. No.

124. Kagoshima.

- A. Kagoshima Meteorological Observatory, Kagoshima, Japan.
- P. Heitaro Maruoka, Director; Yoshio Imamura, Assistant.
- C.-F. 31° 33′ N; 130° 34′ E. 4 m. Soft ground. 1 m to water.

- I. Omori tromometer, N and E; Imamura, N, E and Z, 1915; Wiechert to be installed.
 - S. Central Observatory, Tokyo.
 - Pu. Meteorological and Seismological Bulletin.

125. Kakioka.

A. Kakioka Meteorological Observatory, Kakioka, Japan.

P.

C.-F. 36° 14′ N; 140° 11′ E.

I. Wiechert, N, E and Z.

S.

Pu.

126. Kalocsa.

- A. Haynald Observatorium, Kalocsa, Hungary.
- P. Theodore Angehrn, Director.
- I. Wiechert, 200 kg; not in operation.

C.-F. 46° 32′ N; 18° 59′ E. 92 m.

S.

Pu. No.

127. Kamakura.

A. Kamakura Seismological Station, Kamakura, Japan.

P.

C.-F. 35° 18' N; 139° 32' E. Sand.

- I. Strong motion, N, E and Z; No. 2, E; No. 3, Z; No. 4, N and E.
 - S. Tokyo Imperial University.

Pu. See Tokyo.

128. Kanazawa.

A. Kanazawa Meteorological Observatory, Kanazawa, Ishikawa-Ken, Japan.

Р.

C.-F. 36° 32′ N; 136° 39′ E.

I. Omori portable, horizontal.

S.

Pu

Kansas, University of. See Lawrence, No. 155.

129. Karenko.

- A. Taihoku Sokko Syo, Taihoku, Taiwan (Formosa), Japan.
- P. N. Myojin, Director in charge.
- C.-F. 23° 58' N; 121° 36' E. 18 m. Alluvium.

- I. Omori tromometer, N and E, 1914.
- S. Government of Formosa.

Pu. No.

130. Karlsruhe.

- A. Geodätisches Institut der Technischen Hochschule, Karlsruhe, Deutschland.
 - P. A. Schlötzer, Director; H. Merkel.
- C.-F. 49° 01′ N; 8° 25′ E. 114 m. Soil and gravel. 7 m to water.
 - I. Mainka, N and E; service began 1880.
- S. Naturwissenschaftlichen Verein, Karlsruhe und Technische. Hochschule, Karlsruhe.

Pu. Seismological Bulletin, monthly.

131. Keeling Islands.

- A. Superintendent, Eastern Extension Telegraph Co., Ltd., Cocos Island, via Singapore.
 - P. P. C. Murray, in charge.
 - C.-F. 12° 12′ S; 96° 54′ E.
 - I. Destroyed in 1914 and not replaced.

132. Keijo.

A. Keijo Meteorological Observatory, Keijo (Korea), Japan.

Р.

- C.-F. 37° 34′ N; 126° 59′ E.
- I. Omori portable, horizontal.

 $\mathcal{S}.$

Pu.

133. Kew.

- A. Kew Observatory, Richmond, Surrey, England.
- P. F. J. W. Whipple, Superintendent; F. J. Scrase, Seismologist.
- C.-F. 51° 28' N; 0° 19' W. 5 m. Gravel.
- I. Galitzin, N, E and Z, 1925. (Milne, 1898, discontinued in 1925.)
 - S. Meteorological Office, Air Ministry.
 - Pu. Monthly Bulletin; Observatory Year Book.

Kiadvamjai. See Budapest, No. 38.

134. Kingston.

- A. Government Meteorologist, Kingston, Jamaica, British West Indies.
 - P. J. F. Brennan, Meteorologist in charge.

- C.-F. 17° 58' N; 76° 48' W. 32 m. Alluvium.
- I. Gray-Milne, 1907; Duplex Pendulum, 1920; Horizontal Pendulum of local construction.
 - S. Private station.

Pu. No.

135. Kiyosumi.

 ${m A}.$ The Kiyosumi Dendrological Laboratory, Kiyosumi, Awa, Japan.

P.

C.-F. 35° 09' N; 140° 11' E. 290 m. Tertiary.

I. No. 1; N and E.

S. Tokyo Imperial University.

Pu. See Tokyo.

Klausthal. See Clausthal, No. 56.

136. Kobe.

- A. Imperial Marine Observatory, Kobe, Japan.
- P. Kwanji Suda, Official in charge.
- C.-F. 34° 41′ N; 135° 11′ E. 58 m. Diluvium.
- I. Wiechert, N, E and Z; Omori, N and E; Strong Motion Seismometer, N, E and Z; 1907.
- S. Imperial Marine Observatory and Kobe Meteorological Observatory.

Pu. Seismological Bulletin.

Kobe Meteorological Observatory. See Sumoto, No. 288; Toyooka, No. 315.

Kobenhavn. See Copenhagen, No. 61.

137. Kochi.

- A. Kochi Sokkojo, Kochi, Shikoku, Japan.
- P. S. Akamatsu, Director.
- C.-F. 33° 33' N; 133° 32' E. 40 m. Serpentine.
- I. Wiechert, N, E and Z; Omori, N and E; Omori Portable; Imamamura Strong Motion; 1926.
 - S. The Central Meteorological Observatory, Tokyo.

Pu. Monthly Bulletin.

138. Kodaikanal.

- A. Director, Kodaikanal Observatory, Kodaikanal Observatory, P. O., S. India.
 - P. T. Royds, Director.
 - C.-F. 10° 14′ N; 77° 28′ E. 2343 m. Charnockite rock.

- I. Milne, E, 1898.
- S. Government of India.

Pu. India Weather Review; International Seismological Summary, Oxford, England.

139. Kodiak.

- A. Kodiak Seismograph Station, Kodiak, Alaska, U. S. A.
- P. Ruth E. Floyd, Observer.
- C.-F. 57° 47′ N; 152° 24′ W. 43 m.
- I. Hawaiian Volcano Observatory type, N and E, 1927.
- S. Hawaiian Volcano Observatory and U.S. Geological Survey.

Pu. See Volcano House.

140. Kofu.

A. Kofu Meteorological Observatory, Kofu, Japan.

P

C.-F. 35° 38′ N; 138° 34′ E.

I. C. M. O. horizontal.

S.

Pu.

141. Kona.

A. Hawaiian Volcano Observatory, Volcano House, Hawaii, U. S. A.

P.

- C.-F. 71 km west of Hawaiian Volcano Observatory.
- I. Single Component, Volcano Observatory type.
- S. Hawaiian Volcano Research Association and U. S. Geological Survey.

Pu. Hawaiian Volcano Observatory; Weekly letter and monthly bulletin.

142. Königsberg.

- A. Geophysikalische Warte der Albertus-Universität, Königsberg, Preussen, Deutschland.
 - P. Karl Andrée, Director.
 - C.-F. 54° 50' N; 20° 30' E. 33 m. Loam and sand.
 - I. Wiechert, N, E and Z. Service began 1912.
 - S. Albertus-Universität, Königsberg, Pr.
 - Pu. Seismological Bulletin, Yearly.

Königstein. See Taunus, No. 304.1.

143. Kosyun.

- A. Taihoku Sokko Syo, Taihoku, Taiwan (Formosa), Japan.
- P. Y. Kawakami, Director.

- C.-F. 22° 00′ N; 120° 45′ E. 22 m. Alluvium.
- I. Omori Tromometer, E, 1907; Gray-Milne, N, E and Z, 1909.
- S. Government of Formosa.

Pu. No.

144. Ksara.

- A. Observatoire de Ksara, Saad-Nail, Syrie.
- P. Ch. Combier, Director; B. Berloty, Assistant.
- C.-F. 33° 49′ N; 35° 54′ E. 918 m. Solid rock.
- I. Mainka, N and E, 1911.
- S. Observatoire de Ksara.
- Pu. Annales de l'Observatoire de Ksara.

145. Kucino.

- A. Seismologic Station of the Geophysical Observatory of Kucino, Obiralovka near Moscow, U. S. S. R.
 - P. V. F. Bonckovskij, Official in charge.
 - C.-F. 55° 45' N; 37° 58' E. 135 m. Sand and clay.
 - I. Galitzin, N, E and Z, 1923.
- S. State Geophysical Research Institute in Moscow; Station belongs in the net of the Academy of Sciences, Leningrad.
 - Pu. Monthly Bulletin, Kucino.

146. Kumagaya.

- A. Saitamaken-Kumagaya-Sokkosyotyo, Kumagaya-Mati, Saitama-Ken, Japan.
 - P. Hirano Tadayosi, in charge.
 - C.-F. 36° 09′ N; 139° 23′ E. 30 m.
- I. Wiechert, N, E, Z; Omori, N and E; Nakamura, N and E; C. M. O. type, N, E and Z, 1896.

S.

Pu.

147. Kumamoto.

- A. Kumamoto Meteorological Observatory, Kumamoto, Japan.
- P. S. Kuriyama, Director.
- C.-F. $32^{\circ} 49' \text{ N}$; $130^{\circ} 41' \text{ E}$.
- I. Omori tromometer, N and E, 1918; Wiechert, N, E and Z.

S.

Pu.

148. Kure.

- A. Kure Meteorological Observatory, Kure, Japan.
- P.
- C.-F. 34° 14′ N; 133° 33′ E.

I. Omori portable, horizontal.

s.

Pu.

149. Kushiro.

A. Kushiro Meteorological Observatory, Kushiro, Hokkaido, Japan.

Р.

C.-F. 42° 59′ N; 144° 24′ E.

I. Omori portable, horizontal.

 $\mathcal{S}.$

Pu.

150. Kyoto.

A. Kyoto Meteorological Observatory, Kyoto, Japan.

P. T. Miyake, Director.

C.-F. 35° 01' N; 135° 44' E. 42 m. Sandy clay.

Wiechert, N, E and Z, 1926; Omori, N and E, 1916; C. M. O. type, N, E and Z, 1926; Milne, N, E and Z.

S. Honsyu prefecture.

Pu. Monthly Bulletin.

151. Kyusyu.

A. Kyusyu Meteorological Observatory, Kyusyu, Japan..

P.

C.-F. 33° 35′ N; 130° 23′ E.

I. Wiechert, N, E and Z.

s.

Pu.

152. La Jolla.

- A. Seismological Laboratory, 220 North San Rafael Avenue, Pasadena, California, U. S. A.
- P. Harry O. Wood, Research Associate in Seismology, Carnegie Institution of Washington.
- C.-F. 32° 52′ N; 117° 15′ W. 8 m. Consolidated alluvium. Depth to water unknown but is slight.
 - I. Wood-Anderson, N and E, 1927.
- S. Carnegie Institution of Washington and Scripps Institution of Oceanography of the University of California.

Pu. No routine publication; see Pasadena.

153. La Paz.

- A. Observatorio San Calixto, La Paz, Bolivia.
- P. P. M. Descotes, Director.

- C.-F. 16° 30′ S; 68° 08′ W. 3658 m. Alluvium.
- I. Bi-filar pendulums, N and E; Vertical pendulum, 1500 kg, 1913; Galitzin, E and Z, 1929.
 - S. Colegio San Calixto; Jesuit Society.
 - Pu. Seismological Bulletin.

154. La Plata.

- A. Observatorio Astronómico, La Plata, Argentina.
- P. Juan Hartmann, Director; Frederico Lúnkenheimer, Seismologist.
 - C.-F. 34° 54′ S; 57° 56′ W. 72 m. Loess. 12 m to water.
- I. Vicentini, N, E and Z; Wiechert, Z; Mainka, N and E; began 1907.
 - S. National University of La Plata.
 - Pu. Monthly Bulletin, and "Contribuciones Geofisicas," Annual.

Lassen Volcano Observatory. See Mineral, No. 185.

155. Lawrence.

- A. Seismograph Station, University of Kansas, Lawrence, Kansas, U. S. A.
 - P. C. T. Posey in charge.
 - C.-F. 38° 58' N; 95° 15' W. 301 m. Shale.
 - I. Wiechert, N and E, 1909.
 - S. University of Kansas.

Pu. No.

156. Leipzig.

- A. Erdbebenwarte des Geophysikalischen Instituts der Universität, Leipzig, C 1, Talstrasse 38 III.
 - P. Ludwig Weickmann, Director.
 - C.-F. 51° 20' N; 12° 24' E. 113 m. Gravel.
 - I. Wiechert, N and E, 1902.
 - S. Universität Leipzig.
 - Pu. 13 Berichte der Erdbebenwarte Leipzig.

157. Le Mans.

- A. Station sismologique, Le Mans, France.
- P. Albert Jagot, in charge.
- C.-F. 48° 00' N; 0° 13' E. 77 m. Clay.
- I. Mainka, N and E, 1912.
- S. City of La Mans.

Pu.

158. Lemberg.

- A. Observatory of the Technical High School, Polytechnical Academy, Lwow (Lemberg), Poland.
 - P. L. Grabowski, Director; J. Ryzner, Adjunct.
- C.-F. 49° 50' N; 24° 01' E. 310 m. Sand and sandstone. 11 m to water.
 - I. Bosch-Omori, N and E. Service began 1899.
 - S. Observatory of the Technical High School, Lwow.
 - Pu. Seismological Bulletin.

159. Leningrad.

- A. Seismologic Station, Physico-Mathematical Institute, Academy of Sciences, Leningrad, U. S. S. R.
 - P. P. Nikiforoff, Superintendent.
 - C.-F. 59° 56′ N; 30° 18′ E. 3 m. Clay.
 - I. Galitzin, N. E and Z. 1925.
 - S. Academy of Sciences, Leningrad, U.S.S.R.
 - Pu. Monthly Bulletin, Leningrad.

Lick Observatory. See Mt. Hamilton, No. 199.

160. Lima.

- A. Director Servicio Sismológico, Lima, Peru.
- P. Scipion E. Llona, Director.
- C.-F. 12° 03′ S; 77° 01′ W. 154 m. Alluvium on diorite.
- I. Wiechert, N and E; Milne, E; 1925.
- S. Servicio Sismológico del Peru.
- Pu. Special Publication, "Teoria Cicloidal"; second volume in preparation.

161. Lisbon.

- A. Observatório Central Meteorológico, Magnético e Sismológico, Rua da Escola Politécnica, Lisboa, Portugal.
 - P. General João Maria de Almeida Lima, Officer in charge.
 - C.-F. $38^{\circ} 43' \text{ N}$; $9^{\circ} 08' \text{ E}$. 78 m. Marl.
 - I. Wiechert, N, E and Z; Mainka; January, 1928.
 - S. Lisbon University.
 - Pu. Monthly bulletin and Observatory annual.

162. Little Rock.

- A. Seismological Station, Little Rock College, Pulaski Heights, Little Rock, Arkansas, U. S. A.
 - P. John J. Healy, Director.
 - C.-F. 34° 47′ N; 92° 21′ W. 135 m. Sandstone.

- I. Wood-Anderson, N and E, 1931.
- S. Little Rock College.

Pu. Monthly Bulletin through St. Louis University, St. Louis, Missouri.

Liverpool Observatory. See Bidston, No. 35.

163. Livorno.

- A. Osservatorio Sismico, Livorno, Italia.
- P. Giuseppe Schiavaghi, Director.
- C.-F. 43° 32' N; 10° 18' E. Sea-level. Sandy rock.
- I. Horizontal pendulums as follows: 300 kg, N and E; 500 kg, N and E; 207 kg, N and E; 100 kg, N and E; 100 kg, Z; Vertical pantografico; 2 vertical pendulums, 45 kg.
 - S. Osservatorio Geodinamico.
 - Pu. Seismological Bulletin, Rome.

164. Ljubljana.

- A. Institut Météorologique de l'Université, Ljubljana, Jugoslavia.
 - P. M. Oskar Reya, Director.
 - C.-F. 46° 03′ N; 14° 31′ E. 300 m. Diluvium.
 - I. Wiechert, NE and NW. Service began 1897.
 - S. University of Ljubljana.
 - Pu. Annuaire Seismique, Belgrad.

Loyola University. See Chicago, No. 50. Loyola University. See New Orleans, No. 211.

165. Lund.

- A. Seismologic Station, Observatorium, Lund, Sweden.
- P. W. Gyllenberg, Acting Director; Sture Holm, in charge.
- C.-F. 55° 42′ N; 12° 56′ E. 32 m. Glacial moraines. 10 m to water.
 - I. Wiechert, NE and NW, 1917.
 - S. University of Lund.

Pu. Expects to publish in the Bulletin of the Seismologic Station of the Geodaetisk Institut, Copenhagen, Denmark.

Lwow. See Lemberg, No. 158. Madras. See Kodaikanal, No. 138.

166. Madrid.

A. Jefe del Servicio Sismológico, Instituto Geográfico y Catastral, Madrid, España.

P. José Galbis y Rodriguez, Director.

C.-F. 40° 24' N; 3° 41' W.

I. Wiechert, N and E.

S. Instituto Geográfico y Catastral.

Pu. Seismological Bulletin.

167. Maebashi.

A. Maebashi Meteorological Observatory, Maebashi, Japan.

P. K. Akaii, Director.

C.-F. 36° 24′ N; 139° 40′ E. 112 m. Soft ground.

I. Omori tromometer, N and E, 1912.

 $\mathcal{S}.$

 $P_{u_{-}}$

168. Makeevka.

A. Seismologic Station, Makeevka, District Stalin, U. S. S. R.

P. A. B. Gavdenski, Official in charge.

C.-F. 48° 02′ N; 37° 59′ E. 181 m. Sandstone.

I. Galitzin, N, E and Z, 1912.

S. Board of Public Economy of the Ukraine and Trade Commissariate of the U. S. S. R., Academy of Sciences, Leningrad.

Pu. Monthly Bulletin and Institut Seismologique, de l'Academie des Sciences de l'U. R. S. S., Bulletin.

169. Malabar.

A. Batavia Observatory, Java.

P. K. A. R. Bosscha, in charge.

C.-F. 7° 13′ S; 107° 37′ E. 1550 m. Volcanic.

I. Wiechert, N and E, 1911.

S. Batavia Observatory, Java.

Pu. Seismological Bulletin, Batavia.

170. Malaga.

A. Estación Sismológica y Meteorológica de Málaga, Málaga, España.

P. Juan Garcia de Lomas, Director.

C.-F. $36^{\circ} 44' \text{ N}$; $4^{\circ} 25' \text{ W}$. 60 m. Limestone.

I. Mainka, N and E; Wiechert, Z, 1915.

S. Instituto Geográfico y Catastral.

Pu. Monthly Bulletin, Instituto Geográfico y Catastral.

171. Manila.

A. Manila Observatory, Manila, P. I.

P. Miguel Selga, Director; W. C. Repetti, Chief Seismologist; Cesareo Duluena, Assistant Chief Seismologist.

- C.-F. 14° 35′ N; 120° 59′ E. 3 and 10 m. Alluvium.
- I. Wiechert, N and E, 1884; Vicentini, N, E and Z; Omori, N and E; Galitzin-Willip, N, E and Z, 1930.
 - S. Philippine Government.
 - Pu. Seismological Bulletin.

Manila Observatory. See Ambulong, No. 15; Baguio, No. 23; Butuan, No. 40.

172. Manzanillo.

- A. Estación Sismológica de Manzanillo, Manzanillo, Mexico.
- P. Lorenzo Fernandez, in charge.
- C.-F. 19° 03′ N; 104° 20′ W. 60 m. Basalt.
- I. Wiechert, N, E and Z, 1930.
- S. Instituto de Geologia, 6 del Cipres, núm. 176, Mexico, D. F.
- Pu. Catalog de los Temblores, Annual.

173. Maron.

- A. Batavia Observatory, Java.
- Р.
- C.-F. 7° 34′ S; 110° 25′ E. 960 m. Volcanic.
- Omori Tremometer, NE, 1924.
- S. Batavia Observatory, Java.
- Pu. Seismological Bulletin, Batavia.

Marquette University. See Milwaukee, No. 183.

174. Marseilles.

- A. Observatoire de Marseille, Marseille, France.
- P. R. Baillaud and Ch. Gallinot, Astronomers.
- C.-F. 43° 18′ N; 5° 24′ E. 75 m. Limestone.
- I. Mainka, N and E, 1912.
- S. Observatoire National.
- Pu. Seismograms sent to Strasbourg.

Martinique, Observatoire de la. See Fort de France, No. 78.

175. Matsumoto.

- A. Matsumoto Meteorological Observatory, Matsumoto, Japan.
- P. I. Yanagisawa, Director.
- C.-F. 36° 14′ N; 137° 59′ E. 581 m. Alluvium.
- I. C. M. O. horizontal.
- S.

Pu.

176. Matsuyama.

- A. Matsuyama Meteorological Observatory, Matsuyama, Japan.
- P. K. Hiroe, Director.
- C.-F. 33° 50′ N; 132° 45′ E. 31 m. Granitic gravel, soil.
- I. Omori tromometer, N and E, 1911; Wiechert, N, E and Z.

S.

Pu.

177. Mauritius.

- A. Royal Alfred Observatory, Mauritius.
- P. R. A. Watson, Director.
- C.-F. 20° 06' S; 57° 33' E. 51 m. Soil on basalt.
- I. Milne, N and E; 1898; not functioning since 1921.

S.

Pu.

178. Mazatlan.

- A. Estación Sismológica de Mazatlán, Mazatlán, Sinaloa, Mexico.
 - P. Eduardo Schober, in charge.
 - C.-F. 23° 11′ N; 106° 24′ W. 65 m. Andesite.
 - I. Wiechert, N, E and Z, 1910.
 - S. Instituto de Geológia, 6 del Cipres, núm. 176, Mexico, D. F.

Pu. Catalog de los Temblores, Annual.

179. Medan.

- A. Batavia Observatory, Java, Netherlands East Indies.
- P.
- C.-F. 3° 35′ S; 98° 41′ E. 25 m. Quaternary.
- I. Wiechert, N and E, 1929.
- S. Royal Observatory, Batavia.
- Pu. Seismological Bulletin, Batavia.

180. Melbourne.

- A. Government Astronomer, Melbourne Observatory, South Yarra, SE 1, Victoria, Australia.
- P. J. M. Baldwin, Government Astronomer; W. M. Holmes, in charge.
 - C.-F. 37° 50′ S; 144° 58′ E. 26 m. Tertiary rock.
 - I. Milne-Shaw, E (Milne, discontinued; began 1900).
 - S. Government of Victoria, Australia.
- Pu. Seismological Bulletin and Reports to Oxford, Strasbourg and Ottawa.

181. Mera.

A. Mera Meteorological Observatory, Mera, Japan.

P.

C.-F. 34° 55′ N; 139° 50′ E.

I. Wiechert, N, E and Z.

S.

Pu.

182. Merida.

- A. Estación Sismológica de Merida, Merida, Yucatan, Mexico.
- P. Rafael Acosta Ocampo, in charge.

C.-F. 20° 57′ N; 89° 37′ W. 6 m. Limestone.

I. Wiechert, N, E and Z, 1912.

S. Instituto de Geológia, 6 del Cipres, num. 176, Mexico, D. F.

Pu. Catalog de los Temblores, Annual.

Mexico City. See Tacubaya, No. 295.

Michigan, University of. See Ann Arbor, No. 17.

183. Milwaukee.

- A. Marquette University Seismological Station, Marquette University, Milwaukee, Wisconsin, U. S. A.
 - P. A. H. Poetker, Director; J. C. Cantwell, Assistant.

C.-F. 43° 02′ N; 87° 55′ W. 194 m. Alluvium.

I. Wiechert, N and E, 1909.

S. Marquette University.

Pu. Jesuit Seismological Station Bulletin, St. Louis, Mo.

184. Mineo.

- A. Osservatorio Geofisico, Mineo, Italy.
- P. Corrado Guzzanti, Director.

C.-F. 37° 15′ N; 14° 44′ E. 510 m. Pliocene.

I. Guzzanti, N and E; Brassart; Agamennone, N and E.

S. Osservatorio Geofisica Guzzanti.

Pu.

185. Mineral.

- A. Lassen Volcano Observatory, Mineral, California, U.S.A.
- P. R. H. Finch, Associate Volcanologist.
- C.-F. 40° 21' N; 121° 35' W. 1504 m. 3 m to water.
- I. Hawaiian Volcano Observatory type, N and E, 1926.
- S. U. S. Geological Survey.

Pu. Hawaiian Volcano Observatory, Weekly Letter and Monthly Bulletin.

186. Misaki.

A. Misaki Seismological Station, Miura Peninz, Kanagawa, Japan.

P.

C.-F. 35° 10′ N; 139° 38′ E. Tertiary.

I. No. 1, N and E.

S. Tokyo Imperial University.

Pu. See Tokyo.

187. Misima.

A. Misima Meteorological Observatory, Misima, Japan.

P.

C.-F. 35° 07′ N; 138° 55′ E.

I. Wiechert, N, E and Z.

 \mathcal{S}_{-}

Pu.

188. Mitaka.

A. Mitaka Seismological Station, Tokyo Imperial University Astronomical Observatory, Mitaka, Japan.

P.

C.-F. 35° 59′ N; 139° 05′ E.

I. No. 1, N and E; No. 2, N and E.

S. Tokyo Imperial University.

Pu. See Tokyo.

189. Mito.

A. Mito Meteorological Observatory, Mito, Japan.

P. H. Uno, Director.

C.-F. 36° 23' N; 140° 28' E. 30 m. Hilly ground.

I. Omori tromometer, N and E, 1905.

S.

Pu.

190. Miyako.

A. Miyako Meteorological Observatory, Miyako, Japan.

P.

C.-F. 39° 38′ N; 141° 59′ E.

I. C. M. O. horizontal

S.

Pu.

191. Miyatsu.

A. Miyatsu Meteorological Observatory, Miyatsu, Japan.

Р.

C.-F. 35° 32′ N; 135° 12′ E.

I. Omori portable, horizontal.

s.

Pu.

192. Miyazaki.

- A. Miyazaki Meteorological Observatory, Miyazaki, Japan.
- P. K. Itonaga, Director.
- C.-F. 31° 55′ N; 131° 25′ E. 8 m. Quaternary. 3 m to water.
- I. Wiechert, N, E and Z; Omori, N and E (two sets); C. M. O. type, N, E and Z, 1889.
 - S. Miyazaki Ken Prefecture.
 - Pu. Monthly Bulletin.

193. Mizusawa.

- A. International Latitude Observatory of Mizusawa, Iwateken, Japan.
 - P. H. Kimura Rigakuhakushi, Director.
 - C.-F. 39° 08' N; 141° 08' E. 61 m. Clay. 4 m to water.
 - I. Omori tromometer, N and E, 1902.
 - S. Iwateken Prefecture, Department of Education.

Pu. Annual report of the observatory.

194. Mobile, Alabama.

A. Seismic Observatory, Spring Hill College, Spring Hill, Mobile County, Alabama, U. S. A.

P.

- C.-F. 30° 42′ N; 88° 09′ W. 60 m. Alluvium.
- I. Wiechert, N and E, 1910.
- S. Spring Hill College.

Pu.

195. Moncalieri.

- A. Osservatorio Sismico, Moncalieri, Turin, Italia.
- P. G. Penta, Director.
- C.-F. 45° 00' N; 7° 42' E. 238 m. Alluvium. 15 m to water.
- I. Stiattesi, N and E; Horizontal Pendulum, ENE; Vertical Pendulum, 1906
 - S. Real Collegio Carlo Alberto.

Pu. Annual Bulletin.

196. Montecassino.

- A. Osservatorio Geofisico de Montecassino, Montecassino, Italia.
- P. Bernardo M. Paoloni, Director.

C.-F. 41° 29' N; 13° 49' E. 540 m. Limestone.

I. Cancani, N and E; Agamennone, N, E and Z; 1909.

S.

Pu. Weekly Bulletin, R. Uff. Centrale di Meteorologia e Geofisica, Roma (See Naples); and the Montecassino Review, 6 times a vear.

197. Morioka.

A. Morioka Meteorological Observatory, Morioka, Japan.

P.

C.-F. 39° 42′ N; 141° 09′ E.

I. Wiechert, N, E and Z.

 $\mathcal{S}.$

Pu.

198. Mostar.

- A. Observatoire Meteorologique, Mostar, Hercegovine, Yougo-slavie.
 - P. M. Adolf Klinger, Director.

C.-F. 43° 21' N; 17° 49' E. 70 m. Diluvium.

- I. Vicentini.
- S. Institut Seismologique de Belgrade.

Pu. Annuaire Seismique, Seismological Institute, University of Belgrade.

199. Mt. Hamilton.

- A. Lick Observatory Seismologic Station, Mt. Hamilton, California, U. S. A.
- P. R. G. Aitken, Associate Director, Lick Observatory; R. J. Trumpler, Associate Astronomer, Lick Observatory; Perry Byerly, Assistant Professor of Seismology, University of California, in charge of seismometric measurements.
 - C.-F. 37° 20′ N; 121° 39′ W. 1282 m. Feldspathic sandstone.
- I. Wiechert, N, E and Z, 1911; Duplex Pendulum Seismograph; Ewing, N, E and Z; Wood-Anderson, N and E, 1928; Service began 1887.

Pu. Bulletin of the Seismological Stations, Berkeley, California.

200. Mount Wilson.

- A. Seismological Laboratory, 220 North San Rafael Avenue, Pasadena, California, U. S. A.
- P. Harry O. Wood, Research Associate in Seismology, Carnegie Institution of Washington.

- C.-F. 34° 13′ N; 118° 03′ W. 1742 m. Granite. Depth to water unknown, probably great.
 - I. Wood-Anderson, N and E, 1928.
 - S. Carnegie Institution of Washington.
 - Pu. No routine publication; see Pasadena.

201. Munich.

- A. Erdphysikalische Warte b. d. Sternwarte, München 27, Sternwarte, München, Deutschland.
- P. A. Wilkens, Director; C. W. Lutz, Chief Observer; F. Burmeister, Observer.
- C.-F. 48° 09' N; 11° 37' E. 528 m. Glacial drift. 12 m to water.
 - I. Wiechert, N and E, 1905.
 - S. Supported by government.
 - Pu. Reports sent to Jena.

202. Muroran.

A. Muroran Meteorological Observatory, Muroran, Hokkaido District, Japan.

Ρ.

C.-F. 42° 20′ N; 140° 57′ E.

I. C. M. O. horizontal.

S.

Pu.

203. Muroto.

A. Muroto Meteorological Observatory, Muroto, Sikoku District, Japan.

P.

C.-F. 33° 15′ N; 134° 11′ E.

I. Omori portable, horizontal.

S.

Pu.

204. Nagano.

- A. Nagano Meteorological Observatory, Nagano, Japan.
- P. M. Kadima, Director.
- C.-F. 36° 40′ N; 138° 12′ E. 418 m. Clay. 5 m to water.
- I. Wiechert, N, E and Z; Omori, N and E; Portable, N and E; Strong motion, N, E and Z, 1903.
 - S. Nagano prefecture.
 - Pu. No publications in foreign languages.

205. Nagasaki.

- A. Nagasaki Meteorological Observatory, Nagasaki, Japan.
- P. I. Goto, Director.
- C.-F. 32° 44′ N; 129° 53′ E. 131 m. Volcanic agglomerate.
- I. Omori tromometer, N and E; Imamura, N and E; Omori seismograph, N, E and Z, 1913; Wiechert, N, E and Z.

S.

Pu.

206. Nagoya.

- A. Aiti-ken Meteorological Observatory, Nagoya, Japan.
- P. Y. Yosida, Director; H. Yosikawa, Assistant.
- C.-F. 35° 10′ N; 136° 58′ E. 52 m. Clay. 20 meters to water.
- I. Wiechert, N. E and Z; Omori, N and E, 1910.
- S. Aiti prefecture.

Pu. Monthly and annual bulletins.

207. Naples.

- A. Geophysical Institute of the R. University, 10 Large S. Marcellino, Italy.
 - P. Giovanni Battista Rizzo, Director; Ester Majo, Assistant.
 - C.-F. 40° 51' N; 14° 16' E. 20 m. Volcanic tuff.
- I. Vicentini, N, E and Z; Wiechert and Milne-Shaw to be installed; began 1861.
 - S. The R. University of Naples.
- Pu. Publications of the R. Ufficio Centrale di Meteorologia e Geofisica, Roma.

See also Valle di Pompeii, No. 333.

208. Nase.

 $m{A}$. Nase Meteorological Observatory, Nase, Okinawa Islands, Japan.

Р.

C.-F. 28° 23′ N; 129° 30′ E.

I. Wiechert, N, E and Z.

s.

Pu.

209. Nemuro.

A. Nemuro Meteorological Observatory, Nemuro, Hokkaido District, Japan.

P.

C.-F. 42° 59′ N; 144° 24′ E.

I. Omori portable, horizontal.

 $\mathcal{S}.$

Pu.

Nevada, University of. See Reno, No. 248.

209.1 Neuchatel.

- A. Station sismique, Observatoire de Neuchatel, Switzerland.
- P. Louis Arndt, Director.
- C.-F. 47° 00' N; 6° 56' E. 488 m. Rock.
- I. Quervain-Piccard, N, E and Z; Mainka, N and E, 1911.

S.

Pu. Publications of the Observatory of Neuchatel.

210. New Haven.

- A. Yale Seismograph Station, Peabody Museum, Yale University, New Haven, Connecticut, U. S. A.
 - P. Fred C. Herpich, in charge.
 - C.-F. 41° 19′ N; 72° 54′ W. 11 m. Piers 8 meters to sandstone.
 - I. Bosch-Omori, N and E, 1925.
 - S. Yale University.

Pu. No.

211. New Orleans.

- A. Nicholas D. Burke Seismic Observatory, Loyola University, New Orleans, Louisiana, U. S. A.
 - P. O. L. Abell, Director; T. Carter, Assistant.
- C.-F. 29° 57′ N; 90° 07′ W. 2 m. Alluvial. Pier of concrete. Floor of building rests on 60 ft. piles.
 - I. Wiechert, N, E and Z, 1910.
 - S. Loyola University, New Orleans, Louisiana.
- Pu. Jesuit Seismological Association Bulletin, St. Louis, Missouri.

New York, N. Y. See Fordham, No. 77.

New York State Museum. See Albany, No. 8.

212. Niigata.

- A. Niigata Meteorological Observatory, No. 5932 Hamaura Nishfunami St., Niigata, Japan.
 - P. T. Sasaki, Director.
 - C.-F. 37° 56′ N; 139° 03′ E. 7 m. Sand. 8 m to water.
 - I. Omori tromometer, N and E; Imamura, N, E and Z; 1893.
 - S. Niigata prefecture.
 - Pu. Annual report.

213. Niihama.

A. Niihama Meteorological Observatory, Niihama, Sikoku District, Japan.

P.

C.-F. 33° 58′ N; 133° 16′ E.

I. Omori portable, horizontal.

S.

Pu.

Nizamiah Observatory. See Hyderabad, No. 113.

214. Nördlingen.

- A. Erdbebenwarte Nördlingen, Bayern, Germany.
- P. Otto Aumüller, in charge.
- C.-F. 48° 51′ N; 10° 29′ E. 432 m. Limestone.
- I. Mainka, E, 1911.
- S. Sternwarte München.
- Pu. Reports sent to Jena.

215. Numazu.

A. Numazu Meteorological Observatory, Numazu, Japan.

Р.

C.-F. 35° 06′ N; 138° 51′ E. 6 m. Soft ground.

I. Wiechert, N, E and Z; Omori Seismograph, N and E.

S.

Pu. Monthly Bulletin.

216. Oaxaca.

- A. Estación Sismológica de Oaxaca, Mexico.
- P. Alfonso Rueda, in charge.
- C.-F. 17° 01′ N; 96° 46′ W. 1571 m. Tufa.
- I. Wiechert, N, E and Z, 1910.
- S. Instituto de Geológia, 6 del Cipres, núm. 176, Mexico, D. F.
- Pu. Catalog de los Temblores, Annual.

217. Obihiro.

A. Obihiro Meteorological Observatory, Obihiro, Hokkaido District, Japan.

P.

C.-F. 42° 55′ N; 142° 13′ E.

I. C. M. O. horizontal.

S.

Pu.

Observatoire météorologique du Seminaire St. Martial. See Port-au-Prince, No. 240.

Observatoire National d'Athens. See Athens, No. 21. Observatorio Nacional de San Bartolomé. See Bogota, No. 37.

Observatorio San Calixto. See La Paz, No. 153.

218. 0iwake.

A. Oiwake Meteorological Observatory, Oiwake, Japan.

Р.

C.-F. 36° 20′ N; 138° 33′ E.

I. Omori portable, horizontal.

 $\mathcal{S}.$

Pu.

219. Okayama.

A. Okayama Meteorological Observatory, Okayama, Japan.

 \boldsymbol{P}

C.-F. 40° 40′ N; 132° 54′ E.

I. C. M. O. type.

S.

Pu.

220. Okinawa.

A. Okinawa Meteorological Observatory, Okinawa, Okinawa Islands, Japan.

Р.

C.-F. 26° 12′ N; 127° 39′ E.

I. Wiechert, N, E and Z.

S.

Pu.

221. Onahama.

A. Onahama Meteorological Observatory, Onahama, Japan.

P.

C.-F. 36° 56′ N; 140° 54′ E.

I. Nakamura seismometer, horizontal.

S.

Pu.

222. Ooita.

A. Ooita Meteorological Observatory, Ooita, Kyusyu District, Japan.

Р.

C.-F. 33° 14′ N; 131° 37′ E.

I. Omori portable, horizontal.

8.

Pu.

223. Ootomari.

- A. Ootomari Meteorological Observatory, Karafuto, Japan.
- P. T. Noda, Director; T. Yosioka, Chief Observer.
- C.-F. 46° 39' N; 142° 46' N. 36 m. Tertiary. 24 m to water.
- I. Omori, E; Portable, N and E; Omori tromometer, N; 1911.
- S. Karafuto prefecture.
- Pu. Annual and temporary reports.

Ootomari Meteorological Observatory. See also Sikka, No. 276.

224. Osaka.

- A. Osaka Meteorological Observatory. Osaka, Japan.
- \boldsymbol{P}
- C.-F. 34° 39' N; 135° 33' E. 3 m. Sandy loam.
- I. Omori tromometer, N and E; Omori, N and Z; Omori portable, N and E; Omori Strong-motion, N, E and Z; Imamura Strong Motion, N, E and Z; Omori Clinometer, N and E; Wiechert, N, E and Z.
 - S. Meteorological Observatory.
 - Pu. Quarterly Bulletin, Japanese and English.

Osservatorio Simbruino. See Subiaco, No. 286. Osservatorio Ximeniano. See Florence, No. 73.

225. Ottawa.

- A. The Director, Dominion Observatory, Ottawa, Canada.
- P. R. Meldrum Stewart, Director; Ernest A. Hodgson, Chief, Division of Seismology; W. W. Doxsee, Assistant Seismologist.
- C.-F. 45° 24' N; 75° 43' W. 83 m. Boulder clay over limestone. 7 m to water.
- I. Bosch-Photographic, N and E; Milne-Shaw, N and E; Wiechert, Z; service began in 1906.
 - S. Department of the Interior, Dominion Government.
 - Pu. Dominion Observatory, Seismological Bulletin.

226. Oxford.

- A. University Observatory, Oxford, England.
- P. J. S. Hughes.
- C.-F. 51° 46' N; 1° 15' W. 61 m. Gravel.
- I. Milne-Shaw, N and E, 1918.
- S. University of Oxford; British Association.
- Pu. International Seismological Summary.

227. Padova (Padua).

- A. Instituto di Fisica, Padova, Italia.
- P. G. Vicentini.
- C.-F. 45° 24' N; 11° 52' E. 111 m. Alluvium.
- I. Vicentini.
- S. Instituto di Fisica, Royal University of Padova.
- Pu. Seismological Bulletin.

228. Palo Alto.

- A. Branner Seismograph Station, Stanford University, California, U. S. A.
 - P. S. D. Townley, in charge.
 - C.-F. 37° 25' N; 122° 11' W. 83 m. Solid rock.
 - I. Wood-Anderson, N and E.
- S. Stanford University and University of California; seismograms analyzed at University of California by Perry Byerly.
 - Pu. Bulletin of the Seismograph Stations, Berkeley, California.

229. Parc Saint-Maur.

- A. Observatoire du Parc Saint-Maur, Seine, France.
- P. C. E. Brazier, Director; L. Elbe, in charge.
- C.-F. 48° 48' N; 2° 37' E. 50 m. Limestone.
- I. Wiechert, N and E; Mainka, N and E; Galitzin, N, E and Z; 1908.
 - S. University of Paris.
 - Pu. Monthly Bulletin.

230. Pasadena.

- A. Seismological Laboratory, 220 North San Rafael Avenue, Pasadena, California, U. S. A.
- P. Harry O. Wood, Research Associate in Seismology, Carnegie Institution of Washington; Charles F. Richter, Assistant; Hugo Benioff, Assistant.
- C.-F. 34° 09′ N; 118° 10′ W. 295 m. Granite. Depth to water unknown, probably great.
- I. Wood-Anderson, N and E (V=1400); Wood-Anderson, N and E (V=400). 1923; new station, 1927.
- S. Carnegie Institution of Washington and California Institute of Technology.
- Pu. No routine publication; special publications in Bulletin of the Seismological Society of America, Physical Review, etc.

231. Pavia.

- A. R. Osservatorio Geofisico, Pavia, Italia.
- P. Pericle Gamba, Director.

- C.-F. 45° 11′ N; 9° 10′ E. 78 m.
- I. Vicentini; Galitzin, 1891.
- S. Ministero Economia Nazionale.

Pu. R. Ufficio Centrale di Meteorologia e Geofisica, Roma; Annual.

232. Perth.

- A. The Perth Observatory, Perth, Western Australia.
- P. H. B. Ciulewis.
- C.-F. 31° 57′ S; 115° 50′ E. 60 m. Sand and limestone. 55 m to water.
 - I. Milne, 1900; Milne-Shaw, N, 1923.
- S. Chief Secretary's Department, Government of Western Australia.

Pu. Seismological Bulletin and International Seismological Summary, Oxford, England.

Physikalisches Institut der Preussischen Bergakademie Clausthal. See Clausthal, No. 56.

233. Piacenza.

- A. Osservatorio Sismico-Meteorologico, Colegio Alberoni, Piacenza, Italia.
 - P. Pietro Andreoli; Giusseppe Zeppieri.
 - C.-F. 45° 02′ N; 9° 44′ E. 53 m. Alluvium.
- I. Wiechert, N and E; Vicentini, N, E and Z; Agamennone, NE and NW.
 - S. Colegio Alberoni.

Pu. Not yet.

234. Piatigorsk.

- A. Seismologic Station, Alexandrovskaya, Piatigorsk, Northern Caucasus, U. S. S. R.
 - P. A. N. Ogilvie, Official in charge.
 - C.-F. 44° 02′ N; 43° 04′ E. 497 m. Alluvial clay.
 - I. Galitzin, N and E. 1909.
 - S. Academy of Sciences of U.S.S.R., Leningrad.

Pu. Bulletin, Leningrad.

235. Pic du Midi.

- A. Observatoire du Pic du Midi, Bagnères de Bigorre, Hautes Pyrenees, France.
 - P. C. Dausere, Director
 - C.-F. 42° 56' N; 0° 08' E. 2859 m. Alluvium.
 - I. Mainka, N and E, 1924.
 - S. University of Toulouse.
 - Pu. Monthly Bulletin, Strasbourg.

236. Plauen.

- A. Erdbebenstation, Plauen i. Vogtland, Sachen, Deutschland.
- P. E. Weise, in charge.
- C.-F. 50° 30′ N; 12° 09′ E. 380 m. Breccia.
- I. Wiechert, N, 1905.
- S. University of Leipzig.
- Pu. Reports sent to Leipzig.

237. Plymouth.

- A. H. W. Fisher, 2 West Hoe Terrace, Plymouth, England.
- P. Herbert W. Fisher, Owner and Operator.

C.-F.

- I. Horizontal Pendulum, local construction; 1924.
- S. Private property.
- Pu. Reports to Oxford.

238. Point Loma.

- A. Theosophical University, Point Loma, California, U.S.A.
- P. Charles M. Savage, Cooperative Observer; H. Percy Leonard, Assistant.
- C.-F. 32° 43′ N; 117° 15′ W. 91 m. Aeolian hard pan on sandstone.
- I. West a tatic pendulum, N and E; local instrument, Z; service began in 1906.
 - S. Theosophical University.
 - Pu. Seismological report, semi-annual.

239. Ponta Delgada.

- A. Servico Meteorologico dos Açores, Ponta Delgada, Açores.
- P. J. Agostinho, Director.
- C.-F. 37° 44′ N; 25° 41′ W. 16 m. Basalt.
- I. Milne, E, 1902.
- S. Portuguese Government.
- Pu. Reports to Strasbourg; and Meteorological Service of the Azores, Annual.

240. Port-au-Prince.

- A. Observatoire météorologique du Seminaire St. Martial, Portau-Prince, Haiti.
 - P. R. Baltenweck, Director.
 - C.-F. 18° 33′ N; 72° 20′ W. 26 m. Calcareous tufa.
 - I. Bosch-Omori, NE and NW, 1911.
 - S. Seminaire-Collège St. Martial.
 - Pu. Observatory Bulletin, Annual.

241. Potsdam.

- A. Geodätisches Institut, Potsdam, Germany.
- P. R. Berger and K. Jung.
- C.-F. 52° 23' N; 13° 04' E. 80 m. Sand.
- I. Wiechert, N and E; Galitzin-Wilip instruments being installed.
 - S. Des Preussischen Geodätischen Instituts.
 - Pu. Seismological Bulletin, Annual.

242. Poughkeepsie.

- A. Vassar College, Department of Geology, Poughkeepsie, New York, U. S. A.
 - P. Thomas M. Hills; L. D. Burling.
 - C.-F. 41° 43′ N; 73° 55′ W.
 - I. Wiechert, N and E; not functioning at present.
 - S. Vassar College.
 - Pu. No.

243. Prague (Praha).

- A. Institut Geophysique National Tschecoslovaque, Praha, Czechoslovakia.
 - P. Vaclav Laska, Director.
 - C.-F.
 - I. Wiechert, N and E.
 - S. National Geodetic Institute of Czechoslovakia.
 - Pu. Annual Bulletin.

244. Puebla.

- A. Estación Sismológica del Colegio del Estado, Puebla, Mexico.
- P. Francisco Tenorio, in charge.
- C.-F. 19° 02′ N; 90° 12′ W. 2162 m. Basalt.
- I. Wiechert, N and E; Milne, N, E and Z, 1920.
- S. Instituto de Geológia, 6 del Cipres, núm. 176, Mexico, D. F.
- Pu. Catalog de los Temblores, Annual.

245. Pulvoko.

- A. Seismologic Station, Pulvoko (near Leningrad), U. S. S. R.
- P. P. Nikiforoff, Director.
- C.-F. 59° 46′ N; 30° 19′ E. 65 m. Clay.
- I. Galitzin, N, E and Z.
- S. Academy of Sciences, U.S. S. R., Leningrad.
- Pu. Monthly Bulletin, Pulvoko; and Bulletin of Academy of Sciences, Leningrad.

Quarto-Castello. See Florence, No. 74.

246. Quito.

- A. Observatorio Astronomico y Meteorologico, Apartado 165, Quito, Ecuador, S. America.
 - P. Luis Eduardo Mena, in charge.
 - C.-F. 0° 14′ S; 78° 32′ W. 2908 m.
 - I. Mainka seismographs being installed.
 - S. Ministerio de Instruccion Publica.

Pu. No.

247. Ravensburg.

- A. Erdbebenwarte, Ravensburg, Württemberg, Deutschland.
- P. Prof. Dr. Hoffman, Director.
- C.-F. 47° 47′ N; 9° 37′ E. 400 m. Glacial sand.
- I. Mainka, N and E; Conrad, N; 1914.
- S. Württemberg Statistisches Landesamt, Stuttgart.
- Pu. Hohenheim and Ravensburg Bulletin, semi-annual.

Real Academia de Ciencias y Artes. See Barcelona, No. 26.

Regio Osservatorio Geofisico. See Pavia, No. 231.

Regio Osservatorio Astrofisico. See Florence, No. 74.

Regis College Seismic Station. See Denver, No. 67.

248. Reno.

- A. University of Nevada, Department of Geology, Reno, Nevada.
- U.S.A.
 - P. J. Claude Jones, Professor of Geology, in charge.
 - C.-F. 39° 32′ N; 119° 48′ W. 1388 m. Alluvium.
 - I. Wiechert, N and E; Ewing duplex; 1911.
 - S. University of Nevada.

Pu. No.

249. Reykjavik.

- A. School of Navigation, Veourstofan, Reykjavik, Iceland.
- P. Thorkell Thorkelsson, Director.
- C.-F. 64° 09' N; 21° 57' W. 25 m. Doleritic rock.
- I. Mainka, N and E, 1909.
- S. Meteorological Office of Iceland.
- Pu. Seismological Bulletin.

Richmond. See Kew, No. 133.

250. Rio de Janeiro.

- A. Observatorio Nacional, Rio de Janeiro, Brazil.
- P. Alix Lemos, Director; Gualter Macedo Soares, Assistant.
- C.-F. 22° 54′ S; 43° 13′ W. 29 m. Gneiss.

- I. Mainka, N; Milne-Shaw, E, began 1906.
- S. Observatorio Nacional.
- Pu. Observatory publications; Seismological Bulletin.

251. Riverside.

- A. Seismological laboratory, 220 North San Rafael Avenue, Pasadena, California, U. S. A.
- P. Harry O. Wood, Research Associate in Seismology, Carnegie Institution of Washington.
- C.-F. 34° 00′ N; 117° 22′ W. 250 m. Granite. Depth to water unknown; probably great.
 - I. Wood-Anderson, N and E; 1926.
- S. Carnegie Institution of Washington and City of Riverside, Calif.
 - Pu. No routine publication; see Pasadena.

252. Riverview.

- A. Riverview College Observatory, Sydney, New South Wales, Australia.
 - P. Edward Francis Pigot, Director.
 - C.-F. 33° 50′ S; 151° 10′ E. 42 m. Triassic sandstone.
- I. Wiechert, N, E and Z, 1909; Mainka, N and E, 1910; Galitzin,
 N, E and Z, 1925.
 - S. Observatory and Government of New South Wales.
 - Pu. Seismological Bulletin.

253. Rocca di Papa.

- A. R. Osservatorio Geofisico di Rocca di Papa, presso Roma, Italia.
 - P. Giovanni Agamennone, Director.
 - C.-F. 41° 46′ N; 12° 43′ E. 760 m. Lava.
- I. Agamennone, 200 kg, N and E; Agamennone, 3000 kg, N; Agamennone universal microseismometrograph, N, E and Z; Agamennone seismometrograph 200 kg, N and E; Brassart seismometrograph, N, E and Z; Agamennone, 2 kg, macroseismograph, N, E and Z; various seismoscopes. Began 1889.
 - S. R. Ufficio Centrale di Meteorologia e Geodinamica, Roma.

254. Rome.

- A. R. Ufficio Centrale di Meteorologia e Geodinamica, Via Caravita, No. 7, Roma, Italia.
 - P. Luigi Palazzo, Director.

C.-F. 41° 54' N: 12° 29' E. 30 m. Quaternary.

I. Agamennone, 50 kg., NE and NW, 1909.

S. Collegio Roma.

Pu.

Royal Alfred Observatory. See Mauritius, No. 177.

Royal Netherlands Meteorological Institute. See DeBilt, No. 64.

Royal Observatory. See Cape of Good Hope, No. 42.

255. Saga.

A. Saga Meteorological Observatory, Saga, Japan.

P. K. Miyazima, Director.

C.-F. 33° 12′ N; 130° 18′ E. 12 m. Soft ground.

I. Omori, horizontal.

S.

Pu.

256. St. Boniface.

A. Observatoire sismologique du College de Saint Boniface, Saint Boniface, Manitoba, Canada.

P

C.-F. 49° 54′ N; 97° 07′ W. 230 m. Shale.

I. Wiechert, N and E, 1910; Instruments destroyed by fire in 1922.

S. College de St. Boniface.

Pu. No.

257. St. Helena Island.

- A. The Eastern Telegraph Co., Ltd., The Briars, Island of St. Helena.
 - P. The Superintendent, Eastern Telegraph Co., in charge.

C.-F. 15° 55′ S; 5° 44′ W. 274 m. Volcanic material.

I. Milne, E, 1907.

S. The Eastern Telegraph Company.

Pu. Reports to University Observatory, Oxford, England.

258. St. Louis.

- A. Seismographic Station, St. Louis University, 221 North Grand Boulevard, St. Louis, Missouri, U. S. A.
- P. James B. Macelwane, Director; J. S. Joliat, George E. Rueppel, Alfred E. Zeller, Cornelius G. Dahm.
 - C.-F. 38° 38' N; 90° 14' W. 161 m. Limestone.
 - I. Wiechert, N and E, 1909; Wood-Anderson, N and E, 1927.

S. St. Louis University.

Pu. Monthly Bulletin; Preliminary report on Epicenters.

St. Louis University. See Florissant, No. 75.

St. Xavier College. See Cincinnati, No. 55.

Saitamaken-Kumagaya-Sokkosyotyo. See Kumagaya, No. 146.

259. Sakai.

A. Sakai Meteorological Observatory, Sakai, Japan.

P.

C.-F. 35° 33′ N; 133° 14′ E.

I. Omori portable, horizontal.

S.

Pu.

260. Samarkand.

- A. Seismologic Station, Vseobuch Boulevard 8, Samarkand, Turkestan, U. S. S. R.
 - P. M. P. Repnikov, Official in charge.

C.-F. 39° 39' N; 66° 52' E. Alluvium.

- I. Galitzin mechanical registration, N and E, 1913.
- S. Uzbekistan Scientific Center.

Pu. No publication.

261. San Fernando.

- A. Instituto y Observatorio de Marina, San Fernando (Cadiz), España.
- P. Leon Herrero y Garcia, Director. Salvador de Matos Sestelo, in charge.

C.-F. 36° 28' N; 6° 12' W. 28 m. Calcareous rock.

- I. Milne, N and E; Bifilar pendulum, N, N and E; Vertical pendulum; 1928.
 - S. Government of Spain.

Pu. Monthly Bulletin.

262. San Juan.

- A. San Juan Magnetic Observatory, Box 3067, San Juan, Porto Rico, U. S. A.
- P. Eoline R. Hand, Officer in charge; James W. Roberts, Assistant.
 - C.-F. 18° 23′ N; 66° 07′ W. 80 m. Broken limestone.
- I. Bosch-Omeri, N and E, 1926 (Discontinued, 1928); Wenner, N and E, 1930.
 - S. U. S. Coast and Geodetic Survey, Washington, D. C., U. S. A. Pu. Monthly Report; Earthquakes of the United States, Annual.

263. Santa Barbara.

- A. Seismological Laboratory, 220 North San Rafael Avenue, Pasadena, California, U. S. A.
- P. Harry O. Wood, Research Associate in Seismology, Carnegie Institution of Washington.
- C.-F. 34° 27' N; 119° 43' W. 100 m. Heavy alluvium. Depth to water unknown but probably slight.
 - I. Wood-Anderson, N and E, 1927.
- S. Carnegie Institution of Washington and Santa Barbara Museum of Natural History.

Pu. No routine publication; see Pasadena.

264. Santa Clara.

- A. Observatory, Santa Clara University, Santa Clara, California, U. S. A.
 - P. Jerome S. Ricard, Director; Albert J. Newlin.
- C.-F. 37° 21' N; 121° 57' W. 28 m. Sand and gravel. 28 m to water.
- I. Wiechert, N, E and Z, 1909; expecting to install Galitzin instruments.
 - S. University of Santa Clara.

Pu. Jesuit Seismological Association, Monthly Bulletin, St. Louis, Mo.

265. Santiago.

- A. Servico Sismológico de Chile, Santiago, Chile.
- P. Carlos Bobillier, Director.
- C.-F. 33° 27′ S; 70° 11′ W. 581 m. Basalt.
- I. Bosch-Omori, NNE and NNW; Wiechert, ESE, ENE and Z; Stiattessi, N and E.
 - S. University of Chile.

Pu. Bulletin of the Seismological Service of Chile, Annual.

266. Sapporo.

- A. Sapporo Meteorological Station, Sapporo, Hokkaido, Japan.
- P. Chozaburo Kazinuma, in charge.
- C.-F. 43° 04′ N; 141° 21′ E. 15 m.
- I. Wiechert, N, E and Z, 1924.
- S. Central Meteorological Observatory, Tokyo.

Pu.

267. Sarajevo.

A. Seismologique Station, Observatoire Meteorologique, Sara-jevo, Jugoslavia.

P. M. Jovan Popovic, Director.

C.-F. 43° 52′ N; 17° 49′ E. 630 m. Marnes tertiaries.

I. Wiechert, N and E.

 \mathcal{S} .

Pu. Annuaire Seismique, Seismological Institute, University of Belgrad.

Saskatchewan, University of. See Saskatoon, No. 269.

268. Sasebo.

A. Sasebo Meteorological Observatory, Sasebo, Kyusyu District, Japan.

Ρ.

C.-F. 33° 10′ N; 129° 43′ E.

I. Omori portable, horizontal.

S.

Pu.

269. Saskatoon.

- A. University of Saskatchewan, Saskatcoon, Saskatchewan, Canada.
 - P. E. L. Harrington, Professor of Physics, in charge.
 - C.-F. 52° 08' N; 106° 30' W. 515 m. Clay and sand.
 - I. Mainka, N and E, 1915.
- S. University of Saskatchewan and Dominion Observatory, Ottawa, Canada.

Pu. Monthly Bulletin, Dominion Observatory, Ottawa, Canada.

270. Scoresby-Sund.

A. Geodetic Institute, Copenhagen, Denmark.

P.

C.-F. 70° 29' N; 21° 57' W. 69 m. Granite.

I. Galitzin, N, E and Z, 1928.

S. Geodetic Institute, Copenhagen, Denmark; Carlsberg Foundation.

Pu. Bulletin, Published by Geodetic Institute, Copenhagen.

271. Sebastopol.

- A. Institut Seismologique de l'Academie des Sciences de l'U.
- S. S. R., Leningrad, U. S. S. R.
 - P. V. Sneginski, Official in charge.
 - C.-F. 44° 37′ N; 33° 32′ E. 2 m. Limestone.
 - I. Nikiforoff, N and E, 1928.
 - S. Academy of Sciences, Leningrad.
 - Pu. Bulletin, Academy of Sciences, Leningrad.

272. Sendai.

- A. Physical Institute, Tohoku Imperial University, Sendai, Japan.
 - P. Saemontaro Nakamura, Director.
 - C.-F. 38° 15′ N; 140° 52′ E. 88 m. Tertiary.
- I. Imamura; Omori micro-seismometer; Omori seismometer; Omori vertical component seismometer; Wiechert, Z; Mainka; Omori tromometer; Nakamura seismometer; 1913.
 - S. Tohoku Imperial University.

Pu. No publications at present.

273. Shimonoseki.

A. Shimonoseki Meteorological Observatory, Shimonoseki, Japan.

P.

C.-F. 33° 57′ N; 130° 56′ E.

I. C. M. O. horizontal.

 S_{-}

Pu.

274. Shionomisaki.

- A. Shionomisaki Meteorological Observatory, Shionomisaki, Wakayama, Japan.
 - P. Zyunzi Terazima, in charge.
 - C.-F. 33° 27′ N; 135° 46′ E. 74 m.
 - I. Wiechert, N, E and Z; Omori strong motion, N, E and Z, 1911.
 - S. Central Meteorological Observatory, Tokyo.

Pu. Bulletin of the C. M. O.

275. Sibenik.

- A. Station Seismologique, Sibenik, Jugoslavia.
- P. M. M. Angelli, Director.
- C.-F. 43° 03' N; 15° 54' E. 4 m. Limestone.
- I. Conrad, E, 1926.
- S. Institut Seismologique de Belgrad.

Pu. Annuaire Seismique, Seismological Institute, University of Belgrad.

276. Sikka.

- A. Ootomari Meteorological Observatory, Karafuto, Japan.
- Р.
- C.-F. 49° 14' N; 143° 07' E. 2 m. Tertiary.
- I. Imamura, N and E.
- S. Karafuto prefecture.
- Pu. Seismological Bulletin of the Ootomari Meteorological Observatory.

277. Simferopol.

- A. Institut Seismologique de l'Academie des Sciences de l'U. S. S. R., Leningrad, U. S. S. R.
 - P. I. Tikhanovski, Official in charge.
 - C.-F. 44° 57′ N; 34° 07′ E. 277 m. Limestone.
 - I. Nikiforoff, N and E, 1928.
- S. Academy of Sciences, Leningrad, Executive Committee of the Crimes.
 - Pu. Bulletin, Academy of Sciences, Leningrad.

278. Simizu.

A. Simizu Meteorological Observatory, Simizu, Sikoku District, Japan.

P.

C.-F. 32° 47′ N: 132° 58′ E.

I. Wiechert, N, E and Z.

S.

Pu.

279. Sitka.

- A. U. S. Magnetic Observatory, Sitka, Alaska, U. S. A.
- P. Franklin P. Ulrich, Observer in charge.
- C.-F. 57° 03′ N; 135° 20′ W. 15 m. Slate.
- I. Bosch-Omori, N and E, 1904, discontinued; Wood-Anderson, E, temporary; Wenner, N and E, to be installed in 1930.
 - S. U. S. Coast and Geodetic Survey, Washington, D. C., U. S. A.
 - Pu. Monthly Report, Earthquakes of the United States, Annual.

280. Sofia.

- A. Institut Météorologique Central de Bulgarie, rue Regentska, Sofia, Bulgarie.
 - P. K. T. Kiroff, Official in charge.
 - C.-F. 42° 42′ N; 23° 30′ E. 350 m. Alluvium on sand.
 - I. Bosch-Omori, N and E and NE, 1905.

S.

Pu. Bulletin Seismographique, 1910-1911; discontinued.

South Yarra. See Melbourne, No. 180.

Specola Metero-Sismica. See Foggia, No. 76.

281. Spokane, Washington.

- A. Seismograph Station, Gonzaga University, Spokane, Washington, U.S.A.
 - P. A. M. Jung, Seismologic Observer in charge.
 - C.-F. 47° 40' N; 117° 25' W. 584 m. Gravel and sand.

- I. Wiechert, N and E, 1909.
- S. Gonzaga University.
- Pu. Yearly Bulletin.

Spring Hill College. See Mobile, Ala., No. 194. Stanford University. See Palo Alto, No. 228.

282. Stockton.

A. College of the Pacific, Biologic Sciences, Stockton, California,
U. S. A. (Instruments not yet installed, January, 1928.)

283. Stonyhurst.

- A. Stonyhurst College Observatory, North Blackburn, England.
- P. E. D. O'Connor, Director, J. P. Rowland, Seismologist.
- C.-F. 53° 51' N; 2° 28' W. 116 m. Clay over limestone.
- I. Milne, 1909, discontinued, 1924; Milne-Shaw, E; 1928.
- S. Stonyhurst College.
- Pu. Monthly Bulletin.

284. Strasbourg.

- A. Institut de Physique du Globe, 38, boulevard d'Anvers, Strasbourg, France.
- P. E. Rothé, Director; Joseph Lacoste, Assistant Director; Charles Bois, Assistant.
 - C.-F. 48° 35′ N; 7° 46′ E. 135 m. Gravel.
- I. Galitzin, N, E and Z; Milne-Shaw, N and E; Wiechert, N, E and Z; 19 ton apparatus, N and E; service began, 1899.
 - S. University of Strasbourg.
- Pu. Monthly Bulletin, Central Bureau; Monthly Bulletin, University of Strasbourg; Monthly Bulletin, International Geodetic and Geophysical Union; Annual Publication of the Institut de Physique du Globe.

285. Stuttgart.

- A. Erdbebenwarte, Hohenheim, Stuttgart, Deutschland.
- P. A. Wigand, Director.
- C.-F. 48° 46′ N; 9° 12′ E. 375 m. Marls.
- I. Galitzin, N, E and Z; 80 kg. Pendulum, N and E; magnetic damping; 1930.
- S. Meteorologisch-Geophysikalischen Ableitung des Württ. Statistischen Landesamts, Stuttgart.
- Pu. Seismological Bulletin, Hohenheim, Stuggart and Ravensburg, semi-annual.

286. Subjeco.

- A. Osservatorio Simbruino, Subiaco, Roma, Italia.
- P. Ugo Cipolletti in charge.
- C.-F. 41° 54′ N; 13° 00′ E. 511 m.
- I. Astatic pendulum, N and E, 1915.
- S. Regio Ufficio Centrale di Meteorologia e Geofisica di Roma. Pu. Reports to above.

287. Sucre.

- A. Observatorio del Colegio del Sagardo Corazon, Sucre, Bolivia.
- P. Francisco Cerro, Director.
- C.-F. 19° 03' S; 65° 16' W. 2850 m. Red clay.
- I. Bifilar, 3000 kg., N; vertical component, 1340 kg.; 1926.
- S. Colegio del Sagardo; Jesuit Association.
- Pu. Seismological Bulletin.

288. Sumoto.

- A. Sumoto Branch Office, Kobe Meteorological Observatory, Sumoto Awaji, Japan.
 - P. Kwanji Suda, Official in charge.
 - C.-F. 34° 21' N; 134° 53' E. 109 m. Cretaceous.
- I. Wiechert, N, E and Z; Omori seismograph, N and E; C. M. O. type; strong motion seismometer.
 - S. Kobe Meteorological Observatory.
- Pu. Seismological Bulletin of the Imperial Marine Observatory and Kobe Meteorological Observatory.

289. Suttu.

- A. Suttu Meteorological Observatory, Suttu, Hokkaido District, Japan.
 - P.
 - C.-F. 42° 48′ N; 140° 13′ E.
 - I. Omori portable, horizontal.
 - S.
 - Pu.

290. Suva, Fiji.

- \boldsymbol{A} .
- P
- C.-F. 18° 07' S; 178° 23' E.
- I. Milne, twin-boom.
- s.
- Pu. Reports to Wellington, N. Z.

291. Sverdlovsk (Formerly Ekaterinburg).

- A. Seismologic Station, Geophysical Observatory, Sverdlovsk, Uralian Province, U. S. S. R.
 - P. Z. Weiss-Xenofontova, Official in charge.
 - C.-F. 58° 50' N; 60° 38' E. 275 m. Serpentine.
 - I. Galitzin, N, E and Z, 1913.
 - S. Academy of Sciences, Leningrad.
- Pu. Monthly Bulletin, and Bulletin Academy of Sciences, Leningrad.

292. Swarthmore.

- A. Sproul Observatory, Swarthmore, Pennsylvania, U. S. A.
- P. John A. Miller, Director.
- C.-F. 39° 54′ N; 75° 21′ W. 59 m. Clay.
- I. Milne, E, 1902.
- S. Swarthmore College; Sproul Observatory.
- Pu. No.

293. Sydney.

- A. Government Observatory, Sydney, New South Wales, Australia.
 - P. James Nangle, Director; W. C. Graham, Observer.
 - C.-F. 33° 52′ S; 151° 12′ E. 43 m. Hawksbury sandstone.
 - I. Milne, E, 1906.
 - S. Sydney Observatory.
- Pu. Monthly reports to Oxford; International Seismological Summary, Oxford, England.

294. Tachkent.

- A. Seismologic Station, Tachkent, Turkestan, U. S. S. R.
- P. G. Popov, Official in charge.
- C.-F. 41° 20′ N; 69° 18′ E. Loess.
- I. Galitzin, N, E and Z, 1912.
- S. Academy of Sciences, U. S. S. R., Leningrad.
- Pu. Monthly Bulletin, and Bulletin Academy of Sciences, U. S. S. R., Leningrad.

295. Tacubaya.

- A. Instituto Geológico, 6a Cipres, núm. 176, Mexico, D. F.
- P. Manuel Munoz Lumbier, Chief Seismologist; Francisco Patiño Ordáz, First Seismologist; Ulisea Ocampo Rubio, Second Seismologist.
 - C.-F. 19° 24′ N; 99° 12′ W. 2297 m. Volcanic series.

- I. Service began 1910; Wiechert, 17,000 kg, N and E; Wiechert, 1200 kg, N and E; Wiechert, 200 kg, N and E; Wiechert, 125 kg, N and E; Wiechert, 1300 kg, Z; Wiechert, 80 kg, Z; Bosch-Omori, N and E; Bosch-Omori. 0.2 kg, N and E; Wiechert-Mintrop tromometer; Schmidt trifilar gravimeter.
- S. Servico Sismológico Nacional, dependiente del Instituto Geológico de Mexico.
 - Pu. Catalog de los Temblores, Annual.

296. Tadotu.

- A. Tadotu Meteorological Station, Tadotu, Kagawa Ken, Japan.
- P. Y. Katsuno, Director; S. Amino, Assistant.
- C.-F. 34° 17′ N; 133° 36′ E. 4 m. Alluvium.
- I. Omori, 1892; Omori portable, E; Strong motion, N and E, 1927; Milne, N, E and Z.
 - S. Kagawa province.
 - Pu. Bulletin of the local office.

297. Taihoku.

- A. Meteorological Observatory, Taihoku, Taiwan, Japan.
- P. S. Teramoto, Director; F. Fujii, in charge.
- C.-F. 25° 02′ N; 121° 31′ E. 8 m. Alluvium.
- I. Gray-Milne, N, E and Z; Omori tromometer, N and E; Wiechert, N, E and Z; 1898.
 - S. Government of Formosa.
 - Pu. Monthly Bulletin.

298. Taiku.

- A. Taiku Meteorological Observatory, Taiku, Korea, Japan.
- P.
- C.-F. 35° 52′ N; 128° 36′ E.
- I. Wiechert, N, E and Z.
- S.
- Pu.

298.1. Tainan.

- A. Meteorological Observatory, Taihoku, Taiwan, Japan.
- P. J. Watanabe, Director.
- C.-F. 23° 00′ N; 120° 13′ E. 13 m. Alluvial.
- I. Gray-Milne, N, E, Z; Omori tromometer, E, 1900.
- S. Government of Formosa.
- Pu. No.

299. Taitô.

- A. Meteorological Observatory, Taihoku, Taiwan, Japan.
- P. H. Otuka, Director in charge.
- C.-F. 22° 45′ N; 121° 09′ E. 9 m. Alluvium.
- I. Omori tromometer, E, 1902; Gray-Milne, 1909.
- S. Government of Formosa.

Pu. No.

300. Taityû.

- A. Meteorological Observatory, Taihoku, Taiwan, Japan.
- P. I. Ititi, Director in charge.
- C.-F. 24° 09' N; 120° 41' E. 77 m. Alluvium.
- I. Omori tromometer, E, 1902; Gray-Milne, N, E and Z, 1909.
- S. Government of Taiwan.

Pu. No.

301. Takata.

- A. Takata Meteorological Observatory, Takata, Japan.
- Р.
- C.-F. 37° 06′ N; 138° 15′ E.
- I. Nakamura, horizontal.
- \mathcal{S} .

Pu.

302. Takayama.

- A. Takayama Meteorological Observatory, Takayama, Japan.
- Р.
- C.-F. 36° 09′ N; 137° 15′ E. 560 m. Soft ground.
- I. Omori tromometer, N and E, 1915.

S.

Pu.

303. Tananarive.

- A. The Director, Observatoire de Tananarive, Tananarive, Madagascar.
 - P. Charles Poisson, in charge.
 - C.-F. 18° 55' S; 47° 33' E. 1375 m. Red clay and gneiss.
 - I. Cecchi, 1898; Mainka, N and E, 1927.
 - S. Roman Catholic Mission at Tananarive (Jesuit).
 - Pu. Monthly Bulletin.

304. Tarente.

- A. Osservatoire Meteorologique et Geophisique de Tarente, Italy.
- P. Louis Ferrajolo, Director.
- C.-F. 40° 28' N; 17° 15' E. 22 m. Gravel.

- I. Wiechert, SW and SE; Vicentini, N, E and Z; Cartuja.
- S. Provincial and municipal governments.
- Pu. Quarterly report.

304.1 Taunus.

- A. Taunus Observatorium, Königstein, Taunus, Deutschland.
- P. F. Linke, Director.
- C.-F. 50° 13′ N; 8° 27′ E. 873 m. Quartzite.
- I. Galitzin, N; Mainka, N and E; Wiechert, Z, 1912.
- S. Taunus Observatorium, University of Frankfurt-am-Main.
- Pu. Monthly Bulletin.

305. Theodosia.

- A. Hydro-Meteorological Office, Theodosia, the Crimea, U. S. S. R.
 - P. S. V. Szymanowski, Official in charge.
 - C.-F. 45° 01' N; 35° 23' E. 59 m. Marly clay.
 - I. Nikiforoff, NNW and NNE, 1927.
- S. Central Office of the Marine Transport; Academy of Sciences, U. S. S. R., Leningrad.
- Pu. Bulletin, Academy of Sciences, U. S. S. R., Leningrad. Theosophical University. See Point Loma, No. 238.

306. Tiflis.

- A. Geophysical Observatory of Georgia, Tiflis, Georgia, Caucasus, U. S. S. R.
- P. E. J. Buss, Official in charge; V. M. Ghighineyshvili, Physicist.
 - C.-F. 41° 43′ N; 44° 48′ E. 401 m. Alluvial conglomerate.
- I. Galitzin, N, E and Z. Galitzin mechanical registration, N and E; Cancani pendulum, 1900.
 - S. Geophysical Observatory of Georgia.
 - Pu. Monthly Bulletin.

307. Tinemaha.

- A. Seismological Laboratory, 220 North San Rafael Avenue, Pasadena, California, U. S. A.
- P. Harry O. Wood, Research Associate in Seismology, Carnegie Institution of Washington.
- C.-F. 37° 06' N; 118° 16' W. 1180 m. Basalt. Depth to water unknown, but probably great.
 - I. Wood Anderson, N and E, 1929.
- S. Carnegie Institution of Washington and Bureau of Water Works and Supply, City of Los Angeles, Calif.
 - Pu. No routine publication; see Pasadena.

308. Titibu.

A. Titibu Seismological Station, Saitama, Japan. (Dendrological Laboratory of the Tokyo Imperial University.)

P.

C.-F. 35° 59′ N; 139° 05′ E.

I. No. 1, N and E.

S. Tokyo Imperial University.

Pu. See Tokyo.

309. Togane.

A. Togane Seismological Station, Togani-mati, Tiba, Japan.

P

C.-F. 35° 34′ N; 140° 22′ E.

I. No. 1, N and E.

S. Tokyo Imperial University.

Pu. See Tokyo.

Tohoku Imperial University. See Sendai, No. 272.

310. Tokushima.

A. Tokushima Meteorological Observatory, Tokushima, Japan.

P. G. Jimba, Director.

C.-F. 34° 04′ N; 134° 33′ E. 3 m. Soft ground.

I. Imamura, N and E, 1913; Omori portable, horizontal.

S.

Pu.

311. Tokyo.

A. Central Meteorological Observatory, Chuo-Kishodai, Tokyo, Japan.

P. T. Okada, Director; S. I. Kunitomi, in charge.

C.-F. 35° 41′ N; 139° 45′ E. 21 m. Diluvium.

I. Galitzin, N, E and Z; Mainka, N and E; Wiechert, N, E and Z; Omori, N and E; C. M. O. type, N, E and Z; C. M. O. portable, N and E, 1875.

S. Imperial Japanese Government, Department of Education.

Pu. Seismological Bulletin of the C. M. O.; Annual in English.

312. Tokyo.

A. Seismological Institute, Tokyo Imperial University, Tokyo, Japan.

P. Akitune Imamura, Director.

C.-F. 35° 43′ N; 139° 46′ E. 19 m. Diluvium, clay.

I. Strong motion, N, E and Z, 5 sets; Wiechert, N, E and Z; Accelerometer; Horizontal Seismometers as follows: No. 4, N and E; No. 5, N and E; No. 6, E; No. 7, N; No. 8, N; No. 13, E;

No. 14, E; No. 15, N; No. 16, E; No. 17, N and E; No. 19, Z; No. 20, N and E; 1880.

- S. Tokyo Imperial University.
- Pu. (a) Routine measurements not published.
 - (b) Bulletin of the Earthquake Research Institute.
 - (c) Journal of the Faculty of Science.
 - (d) Japanese Journal of Astronomy and Geophysics.
 - (e) Proceedings of the Imperial Academy.

313. Toledo.

- A. Seismológica, Toledo, España.
- P. Alfonso Rey Pastor, Director.
- C.-F. 39° 52′ N; 4° 02′ W. 519 m. Gneiss.
- I. Wiechert, NE and NW; Wiechert, Z, 1909.
- S. Instituto Geográfico y Catastral, Madrid.
- Pu. Monthly Bulletin, Instituto Geográfico y Catastral, Madrid.

314. Toronto.

- A. The Director of the Meteorological Service, Toronto, Canada.
- P. Frederick Stupart, Director; J. Young, Seismologist; W. G. Carroll, Assistant.
 - C.-F. 43° 40' N; 79° 24' W. 111 m. Sand and clay.
- I. Milne-Shaw, N and E, 1923, replacing Milne, E, in operation since 1897.
 - S. Dominion Government.
 - Pu. Monthly Bulletin and Monthly Meteorological Report.

Tortosa. See Ebro, No. 69.

315. Toyooka.

A. Branch Station, Kobe Meteorological Observatory, Kobe, Japan.

Р.

C.-F. 35° 32′ N; 134° 49′ E. 32 m. Diluvium.

- I. Wiechert, N, E and Z.
- S. Kobe Meteorological Observatory, Kobe, Japan.
- Pu. Seismological Bulletin, Imperial Marine Observatory and Kobe Meteorological Observatory.

316. Travnik.

- A. Gymnasium, Travnik, Jugoslavia.
- P. P. Gartler, Director.

C.-F.

I. Conrad, E.

s.

Pu.

317. Trenta.

- ${\it A.}$ Osservatorio Meteorologico-Geodinamico "Proviero," Trenta, Cosenza, Italia.
 - P. D. Antonio Proviero, Director.
 - C.-F. 39° 17′ N; 16° 19′ E. 586 m. Sedimentary rocks.
- I. Agamennone Seismometrograph, N, E and Z; vertical microseismometrograph, 1915.
 - S. Royal and provincial governments.

Pu. Bulletin of the R. Ufficio Centrale di meteorologia e geodinamico di Roma.

318. Treviso.

- A. Osservatorio del Seminario, Treviso, Italy.
- P. Giacomo Schiavon, Director; Giulio Stocco.
- C.-F. 45° 40′ N; 12° 15′ E. 14 m. Alluvium. 5 m to water.
- I. Vicentini, N, E and Z; Alfani, N, E and Z, 1914.
- S. Roman Catholic Episcopal Seminary of Treviso.

Pu. Reports to R. Ufficio Centrale di Meteorologia e Geofisica, Rome, and Strasbourg, France.

319. Tsingtao.

- A. Observatoire de Tsingtao, Tsingtao, Changtung, China.
- P. P. J. Tsiang, Director; T. I. Sie, Assistant.
- C.-F. 36° 04′ N; 120° 19′ E. 70 m. Igneous rock.
- I. Wiechert, N and E, 1926.
- S. Observatoire de Tsingtao.

Pu.

320. Tsitsishima.

A. Tsitsishima Meteorological Observatory, Tsitsishima, Japan.

 \boldsymbol{P} .

C.-F. 27° 05′ N; 142° 11′ E.

I. Wiechert, N, E and Z.

S.

Pu.

321. Tsu.

- A. Tsu Meteorological Station, Tsu, Mie, Japan.
- P. S. Yasaki, Director.
- C.-F. 34° 44′ N; 136° 31′ E. 3 m. Sand. 4 m to water.
- I. Milne, N, E and Z; C. M. O. Type, N and E, 1910.
- S. Mie prefecture.
- Pu. Reports to C. M. O.

322. Tsukuba-san.

- A. Tsukuba-san Meteorological Observatory, Tsukuba-san Ibaraki-ken, Japan.
 - P. Z. Sato, Director.
 - C.-F. 36° 13′ N; 140° 06′ E. 870 meters. Diorite.
 - I. Wiechert, N, E and Z.

S.

Pu.

Sub-station.

C.-F. 36° 12′ N; 140° 06′ E. 240 m. Decomposed Diorite.

I. Omori tromometer, E, 1902.

323. Tukuba.

A. Tukuba Seismological Station, Hitati, Japan.

Р.

C.-F. 36° 09' N; 140° 09' E. 290 m. Granite.

I. Gray-Ewing, N, E and Z; No. 2, N.

S. Tokyo Imperial University.

Pu. See Tokyo.

324. Tucson.

- A. Tucson Magnetic Observatory, R. F. D. No. 2, Tucson, Arizona, U. S. A.
 - P. A. K. Ludy, Observer in charge; John Hershberger, Assistant.

C.-F. 32° 15' N; 110° 50' W. 770 m. Sand and gravel.

- I. Bosch-Omori, N and E, 1909; Discontinued in 1925; Wood-Anderson, N and E, long period, 1925.
 - S. U. S. Coast and Geodetic Survey, Washington, D. C.

Pu. Same as Sitka, No. 279.

325. Tyôsi.

A. Tyôsi Meteorological Observatory, Tyôsi, Japan.

Р.

C.-F. 35° 44′ N; 140° 51′ E.

I. Wiechert, N, E and Z.

S.

Pu.

326. Uccle.

- A. Observatoire Royal, Uccle (Bruxelles), Belgique.
- P. P. Strosbant, Director. O. Somville, Chief of Seismologic Service; Ch. Charlier, Assistant Seismologist.
 - C.-F. 50° 48′ N; 4° 22′ E. 100 m. Limestone.

- I. Wiechert, N, E and Z; Galitzin, N and E; 1924.
- S. Supported by the Government.

Pu. Seismological Bulletin.

Union Observatory. See Johannesburg, No. 122.

- U. S. Coast and Geodetic Survey. See Honolulu, No. 109.
- U. S. Magnetic Observatory. See Sitka, No. 279.
- U. S. Weather Bureau. See Chicago, No. 51.

327. Unzen-dake.

A. Unzen-dake Meteorological Observatory, Unzen-dake, Kyusyu District, Japan.

Р.

C.-F. 32° 44′ N; 130° 17′ E.

I. Omori Tromometer, horizontal; Wiechert, Z.

S.

Pu.

Upper Air Observatory. See Agra, No. 5.

328. Upsala.

- A. Meteorological Observatory, Upsala, Sweden.
- P. Philip Akerblom, Director.

C.-F. 59° 51′ N; 17° 38′ E. 14 m. Crystalline rock.

- I. Wiechert, N and E, 1904.
- S. University of Upsala.

Pu. Series: Seismological Observations made at the Meteorological Observatory of Upsala.

329. Utsunomiya.

A. Utsunomiya Meteorological Observatory, Utsunomiya, Japan.

P.

C.-F. 36° 34′ N; 139° 53′ E.

I. Omori portable, horizontal.

S.

Pu.

330. Uwazima.

 ${\it A.}$ Uwazima Meteorological Observatory, Uwazima, Sikoku District, Japan.

P.

C.-F. 33° 14′ N; 132° 33′ E.

I. Nakamura, horizontal.

S.

Pu.

331. Uwekahuna.

- A. Hawaiian Volcano Observatory, Volcano House, Hawaii, U. S. A.
 - P. T. A. Jaggar, Volcanologist in charge.
- C.-F. 3 km. west of Hawaiian Volcano Observatory, Volcano House, Hawaii.
 - I. Imamura, N, E and Z, 1930.
- S. U. S. Geological Survey and Hawaiian Volcano Research Association.
- Pu. Weekly Letter and Monthly Bulletin, Hawaiian Volcano Observatory.

332. Uzhorod.

- A. Observatoire sismologique, Realgimnasium Uzhorod, Ungvar, Czechslovakia.
 - P. Papp Ferenc, in charge.
 - C.-F. 48° 38' N; 22° 18' E. 137 m. Concrete to 18 m.
 - I. Bosch-Omori, N and E, 1911.
 - S. Government institution.
- Pu. Seismological Bulletin; Institut Geophisique National Tschecoslovaque.

333. Valle di Pompei.

- A. Osservatorio, Valle di Pompei, Napoli, Italia.
- P. Giovanni Alfano, Director.
- C.-F. $40^{\circ} 45'$ N; $14^{\circ} 30'$ E. 12 m. Tuffs.
- I. Omori-Alfani, N and E; Navarro-Neumann, E; Marcelli, N; Grablovitz vasca, N and E; Alfani Ortosismografo, Z; began 1907.
 S.
 - Pu. Bulletin, three times a year.

Vassar College. See Poughkeepsie, No. 242.

334. Venice.

- A. Osservatorio Geofisico del Seminario Patriarcale di Venezia, Venezia, Italia.
 - P. Francisco Saverio Zanon, Director.
 - C.-F. 45° 26' N; 12° 20' E. 1 m. Argillaceous rock.
- I. Vicentini, N, E and Z; Agamennone, N and E; Bertelli Tromometer; Agamennone Seismoscope; began 1904.
 - S. Osservatorio Geofisico del Seminario Patriarcale.
 - Pu. Monthly Bulletin.

335. Vera Cruz.

- A. Estación Sismológica del Colegio Preparatorio, Vera Cruz, Mexico.
 - P. Ernesto Dominguez, in charge.
 - C.-F. 19° 12′ N; 96° 08′ W. 3 m. Basalt.
 - I. Wiechert, N, E and Z, 1921.
 - S. Instituto de Geologia, 6a del Cipres, núm. 176, Mexico, D. F.
 - Pu. Catalog de los Temblores, Annual.

Verny. See Alma-Ato, No. 12.

336. Victoria.

- A. Director, Dominion Meteorological Observatory, Gonzales Heights, Victoria, B. C., Canada.
 - P. F. Napier Denison, Director.
 - C.-F. 48° 25′ N; 123° 19′ W. 68 m. Rock.
- I. Milne, N and E, 1898; Wiechert, Z; Milne-Shaw, N and E, 1922.
- S. Dominion Meteorological Service, Toronto, Canada. Science Service, Washington, D. C., telegraphic reports.

 Pu.

337. Vienna (Wien).

- A. Erdbebenwarte, Zentralanstalt für Meteorologie und Geodynamik, Wien, XIX/1, Hohe Warte 38, Oesterreich.
 - P. F. M. Exner, Director. Victor Conatd, in charge of station.
 - C.-F. 48° 15′ N; 16° 22′ E. 198 m. Loess.
 - I. Wiechert, N, E and Z; Conrad, NE, 1905.
 - S. Government station.
 - Pu. Seismological Bulletin.

Virginia, University of. See Charlottesville, No. 47.

338. Vladivostok.

- A. Academy of Sciences, U.S. S. R., Leningrad.
- P. A. Ulanov, Official in charge.
- C.-F. 43° 07′ N; 131° 57′ E. Sandstone.
- I. Galitzin, N, E and Z.
- S. Academy of Sciences, U.S. S. R., Leningrad.
- Pu. Seismological Bulletin, U. S. S. R., Leningrad

339. Volcano House.

- A. Hawaiian Volcano Observatory, Volcano House, P. O., Hawaii, U. S. A.
 - P. T. A. Jaggar, Volcanologist, Director.

- C.-F. 19° 26′ N; 155° 16′ W. 1213 m. Basalt.
- I. Bosch-Omori, N and E, 1912.
- S. U. S. Geological Survey; Hawaiian Volcano Research Association.

Pu. Weekly Letter; Monthly Bulletin.

340. Wakayama.

A. Wakayama Meteorological Observatory, Wakayama, Japan.

 \boldsymbol{P}

C.-F. 34° 14′ N; 135° 10′ E.

I. C. M. O. type.

S.

Pu.

Washington, D. C. See Georgetown, No. 81.

341. Wellington.

- A. Dominion Observatory, Kelburn, Wellington, New Zealand.
- P. Charles Edward Adams, Dominion Astronomer and Seismologist.
 - C.-F. 41° 17' S; 174° 46' E. 127 m. Graywacke and argillite.
 - I. Milne, E, 1898; Milne-Shaw, N and E, 1924.
 - S. New Zealand Government.

Pu. Earthquake Reports, Immediate; Quarterly Report for New Zealand and Fiji.

Weltevreden. See Batavia, No. 28.

342. Worcester.

- 1. Seismologic Station, Holy Cross College, Worcester, Massachusetts, U. S. A.
 - P. T. H. Quigley, in charge.
 - C.-F. 42° 16′ N; 71° 48′ W. 203 m.
 - I. Wiechert, N and E; not in operation.
 - S. College of the Holy Cross.

Pu. No.

343. Yagi.

- Yagi Meteorological Observatory, Yagi Cho, Nara, Japan.
- P. T. Oyama, Director.
- C.-F. 34° 31′ N; 135° 48′ E. 63 m. Alluvium.
- I. Horizontal Seismograph, E, 1917.
- S. Nara prefecture.

Pu. No.

Yale Seismograph Station. See New Haven, No. 210.

344. Yalta.

- A. Seismologic Station, Proletarskaya St., 10, Yalta, Crimea, U. S. S. R.
 - P. A. Polumb, Official in charge.
 - C.-F. 44° 30′ N; 34° 10′ E. 93 m. Clayey schists.
 - I. Nikiforoff, N and E, 1928.
- S. Executive Committee of Yalta and Academy of Sciences, U. S. S. R., Leningrad.
 - Pu. Seismological Bulletin, U. S. S. R., Leningrad.

345. Yamagata.

- A. Yamagata Meteorological Observatory, Yamagata, Japan.
- P. M. Morita, Director.
- C.-F. 38° 15′ N; 140° 21′ E. 151 m. Soft ground.
- I. Imamura, N and E, 1913; Nakamura, horizontal.
- S.

Pu.

346. Yokohama.

- A. Yokohama Meteorological Observatory, Yokohama. Japan.
- Р.
- C.-F. 35° 26′ N; 139° 39′ E.
- I. Wiechert, N, E and Z.
- S.

 $p_{u_{\cdot}}$

347. Yokosuka.

- A. Yokosuka Meteorological Observatory, Yokosuka, Japan.
- P.
- C.-F. 35° 17′ N; 139° 40′ E.
- I. Omori portable, horizontal.
- S.

Pu.

348. Zagreb.

- A. Geofizicki institut, Zagreb IV-Gric. 3, Zagreb, Jugoslavia.
- P. Stjepan Skreb, Director.
- C.-F. 45° 49' N; 15° 59' E. 155 m. Clay.
- I. Wiechert, 1000 kg., NE and NW; Wiechert, 80 kg., NE and NW, 1883.
 - S. Geophysical Institute, Bureau of the Government.
 - Pu. Monthly Bulletin.

349. Zi-ka-wei.

- A. de l'Observatoire de Zi-ka-wei, près Chang-hai, Chine.
- P. E. Gherzi, in charge; Zi Ling-fong, Assistant.
- C.-F. 31° 12′ N; 121° 26′ E. 7 m. Alluvium.
- I. Omori, N and E, 1903; Wiechert, N and E, 1909; Wiechert,Z, 1923; Galitzin, Z., 1913.
 - S. Jesuit Mission of Nankin.
 - Pu. Seismological Bulletin; Notes on Seismology, Annual.

350. Zürich.

- A. Schweizerischer Erdbebendienst, Meteorologische Centralanstalt, Zürich, Schweiz.
- P. Julius Maurer, Director; Ernest Wanner, in charge of seismology.
 - C.-F. 47° 22' N; 8° 35' E. 604 m. Sandstone.
- I. Quervain-Piccard, 20,600 kg., N, E and Z; Bosch-Mainka, N and E; Wiechert, Z; Quervain-Piccard, transportable, N, E and Z, 1879.
 - S. Schweizerische Meteorologische Centralanstalt.
 - Pu. Annual bulletin.

TABLE OF INSTRUMENTAL CONSTANTS

The following table of instrumental constants was compiled from the questionnaires received from the various seismological stations and from the latest available seismological bulletins in hand.

ABBREVIATIONS

- A. Distance from the galvanometer lens to the face of the recorder (Galitzin).
- C Components.
- k Transfer constant, a constant depending upon the value of the inductive coupling (Galitzin).
- 1 Length of the equivalent simple pendulum (Galitzin).
- r/To2 Frictional coefficient.
 - S Sensitivity (trace amplitude per second of arc tilt).
 - T_s Undamped period of the galvanometer (Galitzin).
 - T. Natural, undamped period of the seismometer (general).
 - T. Natural, undamped period of the seismometer (Galitzin).
 - Up Direction of motion of the steady mass corresponding to upward motion on the seismogram.
 - V_m Maximum nominal magnification.
 - e Damping ratio.
 - μ^2 Damping constant (Galitzin).

BOSCH-OMORI

Station	C	Mass	m	77]	Dampi	ng	Paper speed	
Station	0	kg.	To	V _m	Kind	€	$ m r/T_o^2$	$\frac{mm}{min}$.	Uр
Ann Arbor, Mich., U. S. A.	N E	100 100	12 12	50 40	no no			15 15	N W
Balboa Heights, C. Z.	N	100 100	20 20	35 35		•••		15 15	S E
	ZEZE	25 25							
Berkeley, Calif.,	Z	100	12	40	air	4	.002	15	<u>s</u>
U. S. A. DeBilt, Holland	ZEZ	100 25	12 18	40 20	air 	4	.002	15	E
Fort de France,	E N	$\begin{array}{c c} 25 \\ 12.5 \end{array}$	18	20 		4		15	• • •
Martinique Hohenheim, Germany	E	12.5 50	9	23	oil	3		15 15	::
Ithaca, N. Y., U. S. A.	HZHZHZHZH	50 25	9 26	23 16	oil air	3		15 15	SENEN
Lemberg, Poland	E	25 25	22 30	15 10	air	$\frac{\bar{4}}{5.3}$.0048	15 15	Ë
New Haven, Conn.,	Ê	25	30	ĩŏ	air	3.7	.0022	15	ŵ
U. S. A.	E NE	70		40				10.	
Port-au-Prince, Haiti	NW	70	6	40	none			13 13	• • •
Santiago, Chile	NNE ESE	100 100	12 12	50 48	air air	3 4	.011 .012	15 15	
Sitka, Alaska*	E	10 10	17 18	10 10	none		.001	15 15	S W
Sofia, Bulgaria	N E	10 10	22 22	10 10				15 15	SE
Tacubaya, Mexico	NE	25 0.2	16	10	• • • •			15 15	sw
Uzhorod.	ZEZEZE	0.2		10		4		15	
Czechoslovakia Volcano House,	E	100	13	10 116	oil	4		50	s
Hawaii	É	100	7.4	116	oil	8		50	E

^{*}Discontinued, 1930.

CENTRAL METEOROLOGICAL OBSERVATORY TYPE

Station	С	Mass	T.	V _m	Dan	nping		Paper speed mm.	Up
		kg.			Kind	ε	r/T_o^2	min.	
Asahigawa, Japan Fukui, Japan	N E		10 10	20 20 20		•••			• • •
Haboro, Japan	NE		9.0	50 50					::
Hiroshima, Japan	Ñ		4.2	50 50					
Hukukoka, Japan	NE Z	2.2 2.2 0.2	4.0 4.0 1.0	2 2 2	oil	$\frac{3.6}{2.0}$.016 .042 .300	30 30 30	NEU
Kofu, Japan	NE		8.0	20 20		•••			
Kumagaya, Japan	NE	2.2 2.2 0.23	5.0 5.0	2 2	oil	3.5 3.5 3.0	.004		S W D
Kyoto, Japan	ZNEZ	2 2 2	5.0 5.0	2 2 2	magnetic	2.9 2.4	.002		···
Matsumoto, Japan	NE		3.5 10 10	20 20	• • • • •	1.2	.001		
Miyako, Japan	NE	:::	7.0	50	• • • • •				::
Miyazaki, Japan	NE	2.3	$\frac{3.5}{4.0}$	50 2 2	magnetic	1.7	.080	28 28	::
Muroran, Japan	Z	2.3	5.0 4.5 4.5	50 50		2.2	.056	28	::
Obihiro, Japan	ZE		5.0	50 50					::
Okayama, Japan	N E	:::	3.0	25 25					::
Shimonoseki, Japan	N	:::	3.7	37 37					::
Sumoto, Japan Tsu, Japan	ENNE	10 15	5 10	20 20					::
Tokyo, Japan	ENEZ	15	10 3.5 3.5 4.0	2			.015 .015		NE U
Wakayama, Japan	N E N		4.5 4.5 3.0	50 50			.009		SE
	E		3.0						

CONRAD

Station	C	Mass	T.	V _m	I	Dampi	ng	Paper	***
		kg.	10	V m	Kind	€	r/T_o^2	speed mm./min.	Up
Belgrade, Jugoslavia Dubrovnik, Jugoslavia Ravensburg, Germany Sibenik, Jugoslavia Vienna, Austria	NW SE N E NE	30 40 40 23 40 24	3.6 5.3 5.3 5.0 3.6 4.3	30 47 47 13 25 16	air air air air	4.1 2.3 2.3 3.0 4.2	.02 .03 .03 .002 .30 .002	20 20 15 16 15	.: .: .:

GALITZIN

Station	c	1	Undar perio	nped ods	μ^2	A ₁	k	Up	Paper speed
			T _s	$\mathbf{T}_{\mathbf{g}}$		mm.			mm./min.
Abisko, Sweden	N E Z	123 122 402	11.8 11.9 11.6	11.8 11.8 11.7	08 12 + .21	1404 1276 1303	85 92 254	NE U	25 25 25 25
Baku, USSR	NEZ	122 127 398	24.1 24.4 12.5	24.2 24.6 12.7	.00 + .01 + .01	1275 1290 1338	31 35 208	ğ ₩ D	30 30 30 30
Belgrade, Jugoslavia	N	148	17.2	10.0	+ .14	315	24		30
Berkeley, Calif., U. S. A.	NEZ	112 113 149	$12.0 \\ 12.0 \\ 12.0$	$12.0 \\ 12.0 \\ 12.0$	0 0 + .002	1130 1130 1130	125 126 108	N D D	30 30 30
Buffalo, N. Y., U. S. A.	Z	125	12.5	12.6	+ .08	1000	107	D	30
Copenhagen, Denmark	EZ	125 125 144	$12.5 \\ 12.5 \\ 10.0$	$12.7 \\ 11.6$	+ .20 00	1000	100 105		
DeBilt, Holland	NEZ	123 123 406	24.4 25.0 12.0		0	1380 1380 1380	11 11 175	N E U	30 30 30
Florence, Italy	NE								
Florissant, Mo., U. S. A.	ZNEZ		12.5 13.0 12.0	12.9 12.9 12.7	0 0		130 130 120		
Georgetown, D. C., U. S. A.	N E	41.1	25.6 25.9 10.0	26.0 25.8 9.1	+ .07 10	4270 4290 1530	81 93 288		30 30 30
Irkutsk, USSR	ZNEZ	120 115 424	$12.2 \\ 12.5 \\ 12.3$	12.3 12.2 12.4	.00 + .01 04	1000 1000 1000	100 115 265	S W D	29 29 29
Königstein, Germany	Z	100	19.5		′ 0	2000	50		30
Kucino, USSR	ZE	124 122	25.0 21.9	24.3 24.6	05 02	1250 1166	36 139	S W D	29 29 29
La Paz, Bolivia	ZEZ	400 112 148	10.1 11.7 10.2	13.1 11.7 11.8	+ .08 39 + .46	1153 1255 1255	134 128		
Leningrad, USSR	NE	125 125	11.8 12.0	11.7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		84 86	W	30 30
Makeevka, USSR	ZNE	389 117 108	11.8 12.2 13.0	11.5 12.1 13.4	+ .01	1361 1135	289 54 77 184	SW	30 30
Manila., P. I.	ZNE	400 115 114	13.7 12.4 11.8	11.5	+ .06	1005 8 1005	107 101		
Parc Saint-Maur, France	ZNEZ	148 132 99 432	11.6 11.1 11.1 11.7		1 03	1000	80 76	3 ::	30 30

GALITZIN-Continued

Station	С	ı		mped iods	μ2	$\mathbf{A_1}$	k	Up	Paper speed
			T _s	T_{g}	'	mm			mm./min.
Pavia, Italy									32
Pulvoko, USSR	N E Z	124 124 407	14.8 13.4 14.0	13.7 13.7 13.2	+ .01 04 + .01	1383 1354 1365	93 92 248	S W D	32 30 30 30
Richmond, England	N E Z	118 118 360	24.7 24.8 13.0	24.8 23.9 12.7	+ .014 + .117 350	1100 1100 1130	15.6 13.8 115.0	S W D	30 30 30
Riverview, Australia	N E Z	124 124 407	14.8 13.4 14.0	13.7 13.7 13.2	$\begin{array}{c} + .01 \\04 \\ + .01 \end{array}$	1383 1354 1365	93 92 248	S W D	30 30 30
Scoresby-Sund, Greenland	N E Z	120 120 141	12.4 11.9 10.1	12.5 11.9 9.5	0	1000 1000 1000	29 39 34		
Stuttgart, Germany	N E Z	112 112	12.1 12.0 11.6	11.9 11.9 11.7	+ .2 + .2 + .05	1000 1000 1000	105 103 108	• • • • • • • • • • • • • • • • • • • •	•••
Sverdlovsk, USSR	N E Z	124 124 399	25.2 25.0 12.7	24.8 25.0 12.8	+ .06 09 + .03	1323 1336 1459	53 47 467	S W D	30 30 30
Tachkent, USSR	N E Z	116 107 394	12.8 12.7 12.3	13.0 12.7 12.3	+ .03 + .04	1158 991 1160	83 75 258	S W D	15 15
Tiflis, USSR	N E Z	124 125 407	12.5 12.4 12.3	12.5	009 + .007		80 80	S W	15 60 60
Tokyo, Japan	NEZ	407	19.0 19.0	16.0 16.0	+ .017		216	Ds≱;	60
Tokyo, Imp. Univ., Japan	NE Z	• • • •	$10.0 \\ 24.0 \\ 24.0$	12.0				υ 	•••
Uccle, Belgium	N	124	13.0 24.5	24.5	± .06	1035	40		30
Vladivostok, USSR	EZE	124 127 130	24.5 11.7 12.0	24.5 11.6 11.6	± .06 + .07 + .02	1035 1000 1000	40 74 80		30
Zi-ka-wei, China	Z Z	378 40.3	13.2 13.2	11.7 13.2	+ .06 + .01	1000 1000	251 400	••	···

GALITZIN (Mechanical)

Station	С	Mass	T.	V _m	Dan	ping		Paper speed	TT_
Station		kg.	Το	V m	Kind	€	r/T _o ²	$\frac{mm.}{min.}$	Up
Budapest, Hungary	N E		••••			•••		25 25	
Kabansk, USSR	N		12.0	45	magnetic	4		30	Š
Piatigorsk, USSR	EZE		$12.0 \\ 12.0 \\ 12.0$	45 45 45	magnetic magnetic magnetic	4 4 4		30 30 30	S W S W
Samarkand, USSR	NE		23 23	45 45	magnetic	4	:::	30 30	''.
Tiflis, USSR	ZE		20 21	50 60	magnetic magnetic magnetic	3.5 5.0	0.8	15 15	N E

GRAY-MILNE

Station	С	
Baku Gai, Japan	N E Z	automatic starting
Kingston, Jamaica Kosyun, Japan Taihoku, Japan		automatic starting automatic starting
Tainan, Japan	NEZNEZ	automatic starting
Taito, Japan Taityu, Japan	N E Z	automatic starting

HAWAIIAN VOLCANO OBSERVATORY TYPE

Station	С	Mass kg.	T.	. V _m -	I	Dampin	g	Paper speed	Uр
			Το	V m	Kind	E	r/T_o^2	$\frac{mm.}{min.}$	Ор
Hilo, Hawaii	N E	70 70		130 130	oil oil	 «	::	30 30	• • •
Kodiak, Alaska	NE	70 70	::	130 130	oil oil	∞ ∞		30 30	N
Kona, Hawaii Mineral, Calif., U. S. A.	N E	225 lb.	7 7	200 200 200	oil oil	 80 80		30 30	N W

IMAMURA

Station	С	Mass	T _o	V _m	Dan	nping		Paper speed	Up
Station		kg.	10	V m	Kind	€	r/T_o^2	$\frac{mm.}{min.}$	ОР
Kagoshima, Japan	N E Z		8 8 3	2 2 2				25 25 25	::
Kochi, Japan Niigata, Japan	N E Z	2.5 2.4	5.7 7.1	1 1	magnetic magnetic	2.1 2.6	.019	27 27 27	::
Sendai, Japan Sikka, Japan	ZNNE	0.4	2.3 10 8 8	1 2 2 2	magnetic	1.6	.059	27	
	E		0	Z				•••	

MAINKA

Station	С	Mass	T.	V _m	D	ampir	ıg	Paper speed	Up
		kg.		v m	Kind	ε	$ m r/T_o^2$	$\frac{mm.}{min.}$	Op
Alicante, Spain	N E	750 750	10 10	102 120		$\frac{2.5}{2.5}$.002	15 15	
Almeria, Spain	NEZ	750 750 500	9.3 9.4 10.0	291 218 93	oil oil oil		.007 .006 .008	15 15 15 15	:NEU
Athens, Greece	NE	136 136	5.8 5.8	80 80		5 5	.006		
Barcelona, Spain*	ZE	141 144	9.8 10.5	50 49		3	.010		::
Belgrade, Jugoslavia Besançon, France	NE	450 133 133	6.0	200	air	•••	.064	14	
Eger, Czechoslovakia Fort de France,	ZZZE	450 450	10 9	100	air		.005	14 15	S
Martinique Georgetown, D. C., U. S. A.	ANE	450 135 135	9 10 10	164 200 214		2 4	.001	15	W
Halifax, Nova Scotia	NE	139 139	10		air	6		12 12	::
Hamburg, Germany	N	225	10	80	air			13	S
Helsingfors, Finland	EZE	730 730	10 12 13	150 125	air	4 5	.004	13 20 20	W
Hohenheim, Germany	Z	300 450	5 9	100		3.7	.004	20 15	N N
Innsbruck, Austria	NE NE NE	450 135	10	129		4.0	.004	15 16	NE SE
Karlsruhe, Germany	NE	135 2000 2000	10 7.6 7.5	300 300		4.2	.003	16 16 16	NE
Königstein, Germany	N	450 450	7 7	150 150		5 5		12 12	
Ksara, Syria	HZHZHZ		11 11			5		16 16	NW
La Plata, Argentina	Z	450 450	12 12	220 220	none		.0003	13	
Le Mans, France*	NE		7 9	43 48		:::		6 6	::
Malaga, Spain	EZE	750 750	10 10	120 100	oil	2 3	.001	15 15	NW
Marseilles, France	EZE	130		100				12 12	::
Neuchatel, Switzerland* Nördlingen, Germany	EXEE	130 146 146 465	7.2 6.1 5	46 65 200				30 30	::
Parc Saint-Maur,	NE	400	7.5	135			.015	13	NW
France Pic du Midi, France	NE	433	10	130			.02	13 15	NE
Puy de Dôme, France†	EZE	433	7.5	83 85		3		15 12 12	

^{*}Bifilar †Bosch-Mainka.

MAINKA-Continued

Station	C	Mass	T.	V _m	D	ampin	ıg	Paper speed	Up
nomance		kg.	10	V m	Kind	€	r/T _o ²	$\frac{mm.}{min.}$	
Ravensburg, Germany	N E	450 450	9.0 9.1	130 143		$\frac{2.5}{2.3}$.013 .014	15 15	NW
Reykjavik, Iceland	N E N	135 135	5.0 6.9	85 70		• • •	.02 .01	18 26	
Rio de Janeiro, Brazil	N	420 450	6.5	134	'	3.5	.05	• • •	s
Riverview, Sydney, New South Wales*	\mathbf{E}	450	8.6	135		2.9	.10	::	
Saskatoon, Canada†	N E	139 139	9.1 9.3		air air	5 5		15 15	NE
Sendai, Japan			10	ioo			::::		١
Tortosa, Spain	NEN	1500 157	14.8 7.8	170 62	• • • • •	• • • •	.003	$\begin{array}{c c} 12 \\ 12 \end{array}$	NW
Tananarive,	N	450	13	131	air	4	.008	15	
Madagascar Tokyo, Japan	E	450 450	1.3	112 88	• • • • •	4	.006	15	w
ronyo, wapan	ΙE	450	11	88	::::		.019	::	<u>s</u>
	N E	450 450	8	125 102		• • • •	.025		SEX
	Z		7.5	125				::	
]		1	<u> </u>	<u> </u>	<u> </u>	1	

^{*}Conical Pendulum. †Bifilar

MILNE

Station	C	Mass	T.	V _m	E	ampir	ng	Paper speed	TT
Station		kg.	10	V m.	Kind	€	$ m r/T_o^2$	$\frac{mm.}{min.}$	Up
Accra, Africa Adelaide, Australia Aidu, Japan Andalgala, Argentina Cardiff, Wales Christ Church, New Zealand	Z BZBZB:	2.4 2.4 2.4	6.7 6.7 17 17 17	50 50 50	no			5 13.3 13.3 4	E
Hukukoka, Japan Kodaikanal, India Kyoto, Japan Lima, Peru Perth, W. Australia Ponta del Gada, Azores Puebla, Mexico Saint Helena Island San Fernando, Spain	ZENEZENEZENEZE	2.6 2.6 0.6 2 2 2 2 	2 2 16.5 4 4 18 16 20	5 5 5 9.8 5 10 7			.35 .62 .13 .004 .004 .004	24 24 24 4.3 1.0 4.0 4.0	N W D
Suva, Fiji* Swarthmore, Pa., U.S.A. Sydney, Australia Todatsu, Japan Tsu, Japan Wellington, New Zealand	EEZENZENE	2.4 5 5 5 3 3 .188	20 3 3 3 6 6 2 14.6	5 5 10 5 5 5 5 5 5	no			1.0 4.3 24 24 24 4.0	E

^{*}Twin Boom.

MILNE-SHAW (Magnetic damping)

Station	С	Mass kg.	T.	V _m	€	S mm.	Paper speed $\frac{mm}{min}$.	Up
Adelaide, South Australia Bidston, England Cambridge, Mass., U. S. A. Cape Town, Africa Chicago, Ill., U. S. A. Colaba, India Colombo, Ceylon Copenhagen, Denmark Edinburg, Scotland Fordham, N. Y., U. S. A. Helwan, Egypt Hong Kong, China Honolulu, Hawaii Hyderabad, India Melbourne, Australia Naples, Italy* North Blackburn, England Ottawa, Canada Oxford, England Perth, West Australia Rio de Janeiro, Brazil Stonyhurst† Strasbourg, France Toronto, Canada Victoria, Canada Wellington, N. Z.	ZZZEEZEZEZEZEZEZEZEZEZEZEZEZEZEZEZEZEZ	22222222222222222222222222222222222222	12 12 12 12 12 12 12 12 12 12 12 12 12 1	150 250 250 250 150 250 250 250 250 250 250 250 2	20:1 20:1 20:1 20:1 20:1 20:1 20:1 20:1	45 45 26 26 43 38 19 26 28 26 44 43 45 26 44 43 45 26	min. SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	zaz≱kz£c: : : : : : : : : : : : : : : : : : :
	E	2.2	10	150	23:1		8	E

^{*}To be Installed. †See North Blackburn.

NIKIFOROFF (Magnetic Damping)

Station	Com- ponent	1	V _o	T.	μ²	Paper speed mm. min.	Up
Alma-ata, USSR	N		380 360	2.8 3.0	0.50 0.50	30 30	N W
Frunse, USSR	ZEZEZEZE		360 385	2.5 2.5	0.60	30 30	Ň
Sebastopol, USSR	N	5.1 4.7	392 425	2.0 2.0	0.83		
Simferopol, USSR	N	5.1 5.0	392 400	2.0 2.0	0.84	29 29	S
Theodosia, USSR	NNE ESE	5.3 5.3	560 560	2.0 2.0	0.90	30 30	NNE
Yalta, USSR	N13W N77E	5.3 5.4	380 370	2.0 2.0	0.75 0.82	30 30	W N

OMORI

Station	c	Mass	T _o	V _m	Da	mping	ğ	Paper speed mm.	Up
3,000		kg.			Kind	ϵ	r/T _o ²	$\frac{min.}{min.}$	
Asahigawa, Japan Baguio, P. I.	ï								
Dehra Dun, India Hoko, Japan	EENE		 14 14	 6 6		:::		i3 	
Hukukoka, Japan Husan, Korea Kobe, Japan	ENN	15	21 30 18.0	20 20 20	none		.009	25 	E
Kochi, Japan	E N E	20	16.8 13.7 13.2	20 34 27		• • • •	.001 .02 .02		
Kosyun, Japan	N		16.0	10				::	::
Kumagaya, Japan	ENE	14.8 14.8	$16.0 \\ 18.7 \\ 27.1$	10 10 10	magnetic magnetic	1.4 1.5	.002		N W
Kyoto, Japan	NE	11.9	5.0	50 50			.002	24 24	
Maebashi, Japan	NE	11.9	4.1	100					::
Manila, P. I.	E	20	4.1	100					::
Mito, Japan	l N	20	30	20		• • •		::	
Mizusawa, Japan	E		30 36	20 20					::
Nagano, Japan	E	15.1	36 17	20 10		3	.004	25	N
Nagoya, Japan	EZEZEZ	15.8	17 20 20	10 20 20		3 4 3	.004	27 25 25	ENW
Niigata, Japan	Й		25	25			.02	25	"
Numazu, Japan	ENE		25 16 16	25 20 20		4.2 3.0	.005	.:	::
Ootomari, Japan Osaka, Japan	E	13 63	30 15	20 120		3.0	.0017		::
Saga, Japan	ZNE	4	15 20 20	20 20 20		:::	.004	::	::
Sendai, Japan		::::	30	20			::::	::	::
Sumoto, Japan	N	20	30 20	20 17.5		2.3			::
Tacubaya, Mexico	EN	20 10	20	16.		2.4	.001	15	::
Tadotu, Japan	E	10 12	3	50			.035	15	::
Tainan, Japan	ENE	12	3 13 13	50 6 6		:::	.047	::	::
Taito, Japan	I E		14	6		:::			::
Tokyo, Japan	ENE		14 16 16	6 20 20			.003		

Omori Portable (Japan)

Station	C	Mass	T.	V _m	D	ampii	ng	Paper speed	TT
Station		kg.	то	V m	Kind	€	$ m r/T_o^2$	$\frac{mm.}{min.}$	Up
Asahigawa Awomori Hakodate Hamamatsu Husiki Idzuhara Ishinomaki Jinsen Kanazawa Karenko Keijo Kochi Kure Kushiro Miyatsu Muroto Nagano Nühama Oiwake Ooita Ootomari Sakai Sasebo Suttu	N&E	20	1.7 3.0 4.5 3.5 3.3 4.5 4.5 60 4.4 5.5	50 50 50 50 50 50 50 50 50 50 50 50 50 5	none		.03	19 	S & W
Tadotu Takayama Tokushima Utsunomiya Yagi Yokosuku	E	12	22 3 4.5 4.5 5 3	50 50 50 50 30 50					

Omori Tromometer

Baku Gai, Japan	Station	С	Mass	T.	V _m	Dan	ping		Paper speed	TI
Hukukoka, Japan N 47 14 120 none 0.025 25 S N 150 none 0.06 25 E S N 50 20 150 none 0.06 25 E S N 150 none 0.06 25 E N 150 none 0.06 25 N 150 n	Station		kg.	10	V m.	Kind	€	$ m r/T_{o}^{2}$	$\frac{mm.}{min.}$	Up
Hukukoka, Japan N 47 14 120 none 0.025 25 S N 150 none 0.06 25 E S N 50 20 150 none 0.06 25 E S N 150 none 0.06 25 E N 150 none 0.06 25 N 150 n	Baku Gai, Japan	E	6	12	6	none			12.5	
Kagoshima, Japan N 4.5 50 <	Hukukoká, Japan	N	47	14	120	none	ĺ	.025		S
Kagoshima, Japan N 4.5 50 <	Jinsen, Korea	N	50	20	150	none	ĺ	0.1	25	N
Kagoshima, Japan N 4.5 50 <	•	E	50	20	150	none	١	0.06	25	E
Japan Karenko, Japan Karenko, Japan N 13.5 5 50 none 12.5	Kagoshima,	N		4.5	50		1			
Kosyun, Japan	Japan '	\mathbf{E}		4.0	50					
Kosyun, Japan Maron, Java N 15 27 20 magnetic .005 28	Karenko, Japan		13.5		50	none			12.5	
Maron, Java N 15 27 20 magnetic magnetic	· -		13.5		50	none			12.5	١
Miyazaki, Japan N 15 27 20 magnetic magnetic .005 28 N 15 16 20 magnetic .021 28 N 12 3.5 50 .140 28 Mizusawa, Japan N 17.6 36 20 none .0004 26 N Niigata, Japan N 15 3.3 30 .053 12.5 Ootomari, Japan N 50 30 20 none .0007 27.5 S Osaka, Japan N 17 30 20 none .0007 27.5 S Sendai, Japan N 17 30 20 Shinomisaki, Japan N 2.3 4.2 2 magnetic .004 25 N Tadotu, Japan N 12 3 50 magnetic .004		Œ	6	20	10	none	١	1 1	12.5	١
E 15 16 20 magnetic .021 28										۱
Mizusawa, Japan Mizusawa, Japan Mizusawa, Japan N	Miyazaki, Japan					magnetic				
Mizusawa, Japan E 12 2.5 50 .080 28 Niigata, Japan N 17.6 36 20 none .0004 26 N Niigata, Japan N 15 3.3 30 .053 12.5 Ootomari, Japan N 50 30 20 none .0007 27.5 S Osaka, Japan N 17 30 20 Sendai, Japan N 2.3 4.2 2 magnetic Shinomisaki, Japan N 2.3 4.2 2 magnetic Tadotu, Japan N 12 3 50 magnetic Taihoku, Japan N 55 16 120 none <						magnetic		.021		
Mizusawa, Japan N 17.6 36 20 none n										١
Niigata, Japan										
Niigata, Japan N	Mizusawa, Japan					none				\mathbf{N}
Cottomari, Japan E 15 2.7 30 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>none</td><td></td><td></td><td></td><td>E</td></t<>						none				E
Octomari, Japan N 50 30 20 none	Niigata, Japan									
Osaka, Japan N 17 30 20	0 1 . *								12.5	<u>.</u> .
E 17 30 20 .003 .	Ootomari, Japan					none			27.5	S
Sendai, Japan	Osaka, Japan									
Shinomisaki, Japan	Clauda: Taman) JE	17					.003		
Tadotu, Japan E 2.3 4.0 2 magnetic .004 25 W Tadotu, Japan N 12 3 50 magnetic .035 24 E 12 3 50 magnetic .047 24 Taihoku, Japan N 55 16 120 none 12.5 S Tainan Si, Japan E 6 12 6 none 12.5 Taito, Japan E 6 12 6 none 12.5 Takayama, Japan N 1 3 50 Unzendake, Japan N 1 3 50 Unzendake, Japan N 1 3 50 E 120 20 Unzendake, Japan N 1 20 20 Takotu, Japan N 12 3 50 magnetic Taihoku, Japan E 6 12 6 none 12.5 Takayama, Japan N 1 3 50 Unzendake, Japan N 1 20 20 Unzendake, Japan N 1 20 20 Takayama, Japan N 1 20 20 Unzendake, Japan N 1 20 20 Takayama, Japan N 1 20 20 Takayama, Japan N 1 20 20 Takayama, Japan N 1 20 20	Sendai, Japan					· · · · · · <u>· ·</u>		1 .:::	42	1 ::
Tadotu, Japan Z 1.0 4.2 3 magnetic .003 25 D N 12 3 50 magnetic .035 24 Taihoku, Japan N 55 16 120 none 24 Tainan Si, Japan E 16 25 20 none 12.5 S Taito, Japan E 6 12 6 none 12.5 Takayama, Japan N 3 50 Unzendake, Japan N 120 20	Sumomisaki, Japan	17								
Tadotu, Japan N 12 3 50 magnetic		#								
E 12 3 50 magnetic .047 24 Taihoku, Japan N 55 16 120 none 12.5 S Tainan Si, Japan E 6 12 6 none 12.5 W Taito, Japan E 6 12 6 none 12.5 Takayama, Japan N 3 50 Unzendake, Japan N 120 20 E 120 20 Unzendake, Japan N 120 20 E 120 20 Taihoku, Japan E 6 12 6 none 12.5 Unzendake, Japan N 120 20 Unzendake, Japan N 120 20 Unzendake, Japan Taito, Japan N 120 20	Todata Issan	<u>4</u>								ע
Taihoku, Japan Z 12 3 50 magnetic 24 N 55 16 120 none 12.5 S Tainan Si, Japan E 16 25 20 none 12.5 W Taito, Japan E 6 12 6 none 12.5 Takayama, Japan N 3 50 Unzendake, Japan N 120 20	radoud, Japan	1 12					(
Taihoku, Japan N 55 16 120 none 12.5 S Tainan Si, Japan E 6 12 6 none 12.5 W Taito, Japan E 6 12 6 none 12.5 Takayama, Japan N 3 50 Unzendake, Japan N 120 20		1 %) 3				.047		••
Tainan Si, Japan E 16 25 20 none 12.5 W Taito, Japan E 6 12 6 none 12.5 Takayama, Japan N 3 50 Unzendake, Japan N 120 20	Taihoku Janan	N					1			. a.
Tainan Si, Japan E 6 12 6 none 12.5 Taito, Japan E 6 12 6 none 12.5 Takayama, Japan N 3 50 Unzendake, Japan N 120 20	ramozu, sapan	12					1			
Taito, Japan E 6 12 6 none	Tainan Si Janan						l		12.0	
Takayama, Japan N 3 50 Unzendake, Japan N 120 20	Taito Japan						_			1
Unzendake, Japan E 3 50	Takayama Janen		١٠		_	попе			12.0	
Unzendake, Japan N 120 20	Jume, Japan	E							• • • •	
E 120 20	Unzendake, Japan		120				1	1	• • • • •	
	Januaro, Garan									1
		-	120	20			•••		• • • •	

QUERVAIN-PICCARD AND HEAVY PENDULUMS

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Station	Station C Mass		T.	V _m	Dan		Paper speed	Up	
Chur, Switzerland N 13500 1350 1	Station		kg.		V m.	Kind	Kind €			Qp
N 80 2.0 50 oil 5 .1 60 I	Hungary Chur, Switzerland Göttingen, Germany* Jena, Germany Neuchatel, Switzerland Strasbourg, France Tacubaya, Mexico* Zürich,	ZENZNEZENZEN ZENZE	25 25 13500 13500 17000 17000 15000 18100 18100 19072 19072 20600 20600 20600 80 80	1.8 0.9 3.3 2.0 1.5 2.9 2.9 2.9 1.4 2.0 3.0 3.0 3.0 3.0 3.0	66 68 1350 1350 1350 1350 1600 1600 1500 1658 947 1700 1700 1700 50	magnetic magnetic magnetic magnetic magnetic magnetic magnetic magnetic oil	4.6 3.0 3.0 3.0 2.5 4.4 4.3 7 4.4 2.5 5	.158 .259 .15 .7 .2 .1 .1 .6 .1	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CHACHE : HWCHET : CAZE:

^{*}See Wiechert.

STIATTESI

Curation	С	Mass	m	$v_{\mathbf{m}}$	Da	mping		Paper speed	Up
Station		kg.	T.	V m	Kind	€	r/T_{o}^{2}	$\frac{mm.}{min.}$	Ор
Chiavari (Genoa), Italy Foggia, Italy	NE SE N	200 200	11.0 12.8	35 46				30 30	::
Moncalieri, Italy	ZEZE	260 260	19.4 20.3	34 35				17 17	
Quarto, Italy	ZE	500 500	21 17	50 50				30 30	

STRONG MOTION INSTRUMENTS

QL	Station C Mass To			Vm	Dar		Paper speed	Uр	
Station		kg.	Τ,	V _m	Kind	ε	r/To2	$\frac{mm.}{min.}$	Ор
Heijo, Korea	N		5 5	2					
Jinsen, Korea	ENE	2.3 1.3	4	2 2	magnetic magnetic	2 2	.03	21 21	N W
Kobe, Japan	Z N E	1.5 5 5	4 4 4	$\begin{vmatrix} 2\\2\\2 \end{vmatrix}$	magnetic	2 	.03	21 	υ
Nagano, Japan	EZNEZNEZNEZ	5 5 2.3 2.3	4 4 3.5 3.5	2 2 2 2 2 2 2 2 3		2.5 2.5	.004	25 25 25	Ň W
Osaka, Japan	ZNE	$\begin{bmatrix} 2.3 \\ 1.7 \\ 1.7 \end{bmatrix}$	5.0 5 5 5	1		2.5	.003	25 	υ
Sumoto, Japan	Z	5.89	5 4	2 2			.003	<u> </u>	::

VICENTINI

Station	С	Mass	т.	V _m	Dan	ping		Paper speed	Up
Station)	kg.		V III.	Kind	ϵ	r/T_o^2	$\frac{mm.}{min.}$	Op
Almeria, Spain	NEZ	100 100 50	2.4 2.4 0.8	88 112 109			0.011 0.027 0.008	10 10 10	S W D
Ambulong, P. I.	ZNE					• • • •			• •
Baguio, P. I.	Z N E					• • • •		••	
Barcelona, Spain*	Z		0.9	i25		• • • •			••
Florence, Italy	ZNE	56	0.9	125				5 60 60	D
La Plata, Argentina	Z NEZ	150 105 105 54	Pant 2.2 2.2 0.8	ograp 220 220 265	h	• • • • • • • • • • • • • • • • • • • •	.002	60 100 	 N W D
Malaga, Spain	NE E	100	2.4	72				::	::
Manila, P. I.	N E								
Mostar, Jugoslavia Naples, Italy	ZZNE	100 100 100	2.3 1.1 1.1	50	none		.05	15 10 10	
Padova, Italy	ZNENE	56 409 409 100 100	1.1 6.2 6.2 2.3 2.3	100 100 110 110	oil oil no no	2 2 	.06 .06 .02	10 15 15 9 9	
Pavia, Italy	N	100	15	150	magnetic			10	::
Piacenza, Italy	NE	100	13 13	130 130				10 10	
Quarto, Italy	ZNE	500 500	4 4.6 4.6	130 80 80				30 30	::
Tarente, Italy	N E	100 100	2.4 2.4	100				12 12 12	S E
Tortosa, Spain	Z E Z	100 50	$\begin{vmatrix} 0.8 \\ 2.4 \\ 0.8 \end{vmatrix}$	120 77 92			.008	12 12	Ë
Treviso, Italy	NE	100 100	2.8					10 10	SE
Venice, Italy	ZNEZ	45 100 100 50	0.9 2.4 2.4 .8	120 120 140				300	D

^{*}Microseismograph.

WIECHERT: ASTATIC AND VERTICAL

Station	С	Mass	T _o	V _m		Dan	ping		Paper speed	Up
Susuion		kg.	10	V III	Kind	€	r	r/T_o^2	$\frac{mm.}{min.}$	Op
Aachen, Germany	N E	1000 1000	$12.0 \\ 12.6$	215 200		5.5 7.0		.0010 .0013	14 14	S
Abisko, Sweden	N E	130 130	9.0 9.0	60 60	air air	5.0 5.0	0.6 0.6		10 10	N E
Alicante, Spain Amboina,	Z N	80 1000	6.0	65		2.0		.025	7 12	
N. East Indies Ann Arbor, Mich.,	E N	1000	6	80	air				12 15	NW W
U. S. A.	\mathbf{E}	100	5	80	air	;·:		• • • • •	15	SE
Apia, Western Samoa	N E	1000	9.0	130 130		4.5			16 16	NE
Athens, Greece	Z N E	1000	9.0	70 175		3.0			9	D
Determin Town	Z	1000	9.0 6.0	175 180	:::	3.2			;;	···
Batavia, Java	\mathbf{E}	1000	6.7	193 210		3.4	.14		15 15	M N
Belgrade,	Z N E	1300	4.8 12.6	330 180		2,9 3.4	1.31	.021	4	D
Jugoslavia	7	1000	12.6 4.8	180 170	air	3.4		.021		::
Bergen, Norway	NE	1000	8.5 9.0	150 100	:::	3.0	:::	.022	15 15	::
Berkeley, Calif., U. S. A.	Z	1300	3.5 5.0	90 40	air	1.5 4.0		.003	10 13	Ü
Bochum, Germany	N E	1000 1000	9	120 140		4.4	0.1 0.1		14 14	s W
	NE	200	7.2	68		8.0 5.0	0.4		10	s w
Budapest,	Z	1300	3.4	180		2.1	0.12		10	Ď S
Hungary	ΙE	1000	10.0 8.9	100 98		5.0 3.6		.0019	16	w
Buffalo, N. Y., U. S. A.	NE	80 80	$\begin{array}{ c c } 7.0 \\ 7.0 \\ \end{array}$	80 80	air air	5 5	:::		9	E
Butuan, P. I.	N E	180 180	1	1			:::			
Chicago, Ill., U. S. A.	N E	80 80	5.0	103 95	air air	3		.011	10 10	SE
Chihuahua, Mexico	NE	1200 1200	6.0	250 250		2.8 2.8			15 15	S
Cleveland, Ohio,	Z	1300 80	4.0 7.0	160 20		3.5 8			10 10	N W
U. S. A. Coimbra,	E	1000	7.0	20 130		8 5.0		.002	10 15	W
Portugal	E	1000	13 4	130 80		5.0		.002	15 10	WU
Copenhagen, Denmark	N E	1000	9.2	219 198		4.1 3.9	0.4			
Copiapo, Chile	Z	1300		165		4.0	0.3		1.0	.:
<u>F</u> <u>F</u>	Ē		:::				:::		1.0	

WIECHERT: ASTATIC AND VERTICAL—Continued

Station	С	Mass	т.	V _m	 -	Dan	ping		Paper speed	Up
~		kg.		· 	Kind	ε	r	r/T_o^2	$\frac{mm.}{min.}$	
DeBilt, Holland	N E	200 200	5.6 5.6	173 162		4			••	
Denver, Colo.,	Ŋ	80	4.4	120	air	$\overline{2}$	• • • •		ii	SE
U. S. A.	\mathbf{E}	80	4.3	130	air	3			īī	Ē
Fordham, N. Y.,	N	80	6	80					13	
U. S. A.	Ē	80	6	80	. ; .	$\dot{2}.\dot{\dot{2}}$;·:	• • • •	13	••
Göttingen,	N E	1000	$10.6 \\ 14.0$	160 151	air air	2.2 4.3	$\frac{1.3}{2.5}$	• • • •	10 10	
Germany	Ž	1300	3.6	233	air	$\frac{1}{2}.2$	0.4		10	٠٠.
	\mathbf{z}	17000	1.5	2100	air	$\overline{2}.\overline{2}$	$0.\overline{4}$		60	
Graz, Austria	N	1000	11.0	174	air	5.0		.008	15	N
	E	1000	11.0	225	air	5.0		.005	15	E
Guam, M. I.	N	180				• • •	• • • •		15	• •
Hamburg,	NE NE	180	10	220	air	5		.005	15 15	N
Germany	Ē	1000	iŏ	220	air	5	:::	.005	15	E
•	$\overline{\mathbf{z}}$	1250	5	210	air	5		.010	15	מ
Heidelberg,	ZNE	2100	7.4	90	air		0.53		6	NW
Germany	E	2100	12.9	240	air	1::	1.30		6	W
Helgoland,	Ž.	985 985	11.5 11.1	126 153	air air	4.1 3.9			13 13	Š
Germany Hof, Germany	Z	900	11.1	80	all	3.8			12	
mor, commany	ZEZE	1		80		:::			12	
	NZEZE							1	12	٠ <u>.</u> .
Jena, Germany	\widetilde{N}	1200	8.1	210		3.5		.02	15	8
Times Trans	E	1200	8.0 5.0	200	1 :::	3.0		.016	15 26	SWSE
Jinsen, Korea	16	200	5.0	84	air air	4.0	:::	.02	26	E
	Ž	80	4.0	87	air		:::	.02	23	Ū
Johannesburg,	ZNE	200			no				9	
Union of South	E	200			no				9	
Africa	NT.	90	3.8	05				.005		
Kobe, Japan	N E	80 80	3.9	95	:::	ap.	1 :::	.006	::	1
	Z	80	3.1	61	:::	4.6		.002	::	
Kochi, Japan	ZNE	200	4.6	106		5.1		.03	31	
• •	E	200	4.7	93		4.7		.03	31	
T7#1- 1	Z	80	3.6	87	• • • •	1 2		.05	28	N
Königsburg,	l E	985 985	9.5	180 180		4.5		.015	15 15	w
Germany	2	1300	3.5	175	air	3.5	1 :::	.04	12	lΰ
Königstein,	ZNEZZ	80	4.0	100		5.0	1 :::		12	
Germany	i	1	ì		1 .					1
Kumagaya, Japan	N E	80	6.5	75	air	5.8		.019		ន្ទ
	E	80	5.0	90	air	7.3	• • • •	.018		E
Kyoto, Japan	ZNE	200	3.6	50 80	air	8.0	1 :::	.002	27	
asyou, vapan	E	200	4.5	80	air	7.0	1	.002	8 27	::
	Z	80	5.0	80	air	8.0	1	.002	26	- 1
La Plata, Argentine	Z	80	3.1	185	none	•	.0:	2	10	ΰ

WIECHERT: ASTATIC AND VERTICAL—Continued

Station	С	Mass	T.	V _m		Dan	nping		Paper speed	Up
Station		kg.	10	'm	Kind	€	r	r/T_o^2	$\frac{mm.}{min.}$	
Lawrence, Kans.,	N		3.4	205		4			8	N
U. S. A. Leipzig, Germany	E	1100	3.4 9.6	177 260	air	$\frac{4}{5.0}$	•••	.0033	8 15	W
Deipaig, Germany	N E	1100	9.6	260	air	5.0		.0033	15	S W
Lima, Peru	N	200							10	• •
Lisbon, Portugal	E	200 1000	12	238	• • • •	7.8	i.i	• • • •	10 15	Ň
minor, rorugar	Œ	1000	12	248		7.4	1.4		15	w
Ljubjana,	Z NE	300	6	ii4		6.0			15	D NE
Jugoslavia	NW	200	6	160		4.0	.03	• • • •	17 17	NW
Lund, Sweden	NE	1000	11.3	160	air	3.5	0.6		15	sw
36-1-1	ΝW	1000	11.3	195	air	4.5	0.6		15	NW
Malabar, Java	N E	100 100		• • •		• • •	•••		$\frac{12}{12}$	• • •
Málaga, Spain	\mathbf{z}	80	6.5	82	air	3		.007	10	Ď
Manila, P. I.	N	1000	7.7	165		4		021	15	
Manzanillo,	E	1000 125	7.8 5.0	166 80		$\frac{4}{3.5}$	•••	.025	15 14	N
Mexico	E	125	5.0	80		3.5	:::		14	NE U
M41 M1	Z	80	4.0	80		4.0			14	ũ
Mazatlan, Mexico	Z N E	200	5.0	80 80		4.0			14 14	Ň
	Z	80	4.0	80	:::	4.0			14	บี
Medan, Java	N	1000								
Merida, Mexico	E	1000 1200	6.0	250	• • •	2.8	•••		i.5	ŝ
Merida, Mexico	N E	1200	6.0	250	:::	2.8	:::		15	۱
3.57 3 777	7.	1300	4.0	160		3.5			15	U
Milwaukee, Wis., U. S. A.	N E	80 80	$\begin{vmatrix} 6.1 \\ 5.4 \end{vmatrix}$	51	air	7 9	• • • •	.0067	9	W
Miyazaki, Japan	N	200	5.6	80	air	2.8		.024	28	**
, ,	E	200	5.0	80	air	3.1		.018	28	
Mobile, Alabama	Z	80 80	6.8	80	air	2.9		.016	28	•••
MIODIO, Madama	Œ	80	:::	:::				::::	• •	• • •
Mt. Hamilton,	N	160	6.0	90		5			12	
Calif., U.S.A.	E	160 80	6.0	90		5	• • • •		$\begin{array}{c c} 12 \\ 12 \end{array}$	•••
Munich,	NE	1000	9.0	190		5		.004	15	s
Germany	E	1000	9	190		5		.004	15	w
Nagano, Japan	N E	200	6.4	60		4.0		.034	26	N
	Z	80	$\begin{vmatrix} 6.4 \\ 6.0 \end{vmatrix}$	60 45	:::	4.0		.035	26 25	N W U
Nagoya, Japan	N	200	5.7	64	air	6.1	:::	.018	30	N W U
	E	200	5.9	64	air	5.1		.017	30	W
Naples, Italy*	Z	80	3.2	64	air	5.0		.083	35	"
- / •	E			:::						::
New Orleans,	N	80			air				11	N
La., U. S. A.	EZ	80	:::		air				11	E
	_		1	1	1	1		1	1 **	1

^{*}Out of use.

WIECHERT: ASTATIC AND VERTICAL—Continued

Station	С	Mass kg.	T.	V _m		Dan		Paper speed	TT.	
DUA GIOLI					Kind	ϵ	r	r/To2	$\frac{mm.}{min.}$	Up
Oaxaca, Mexico Ottawa, Canada Parc Saint Maur, France Piacenza, Italy Plauen, Germany Poughkeepsie, N. Y. Puebla, Mexico Reno, Nevada, U. S. A. Riverview, NSW St. Louis, Mo., U. S. A. Santa Clara, Calif., U. S. A. Santiago, Chile Sapporo, Japan	ZENNZEZEZEZEZEZEZEZEZEZEZEZEZEZEZEZEZEZ	200 200 80 80 1000 1000 1200 200 10 80 80 	5.0 5.0 4.0 10.5 12.0 13.1 7 7 4.0 3.4 3.4 2.5 4.3 4.3	80 80 80 160 225 235 232 2116 116 20 80 80 83 80 	Kind air air air air air air air air	4.0 4.0 4.0 75.0 4.0 3.2 2.2 3.0 1.2 1.2 87 5.0 2.5 5.0 4.0 2.5 5.0 4.0 3.0 1.0 4.0 3.0 4.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.9 0.9 0.9 2.5 2.5 	r/T _o ²	13 13 13 15 13 15 14 4 14 12 12 12 15	NEUUsw : : : : : : : : : : : : : : : : : : :
Sendai, Japan Shinonisaki, Japan Strasbourg, France Sumoto, Japan Tacubaya, Mexico	NENZENZENZENZEZEZEZENNZEN	200 200 1000 1200 80 200 17000 17000 1200 200 200 125 125 1300 80 200 200 80	5.0 5.0 4.0 4.0 6	90 90 240 90 100 80 180 115 114 96 2000 2000 200 40 40 40 80 80 80 80 80 80	air air	33.57.5.5.5 33.57.5.5.5 30.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	1.51.0		25 25 25 15 15 15 15 15 15 15 15 15 15 15 15 15	NW DN E U

WIECHERT: ASTATIC AND VERTICAL—Continued

	-	Mass kg.	T.	V _m		Dan	Paper speed			
Station	C				Kind	E	r	r/T _o ²	$\frac{mm.}{min.}$	Up
Tarente, Italy Tokyo, Japan (C. M. O.) Tokyo, Japan (Imp. Univ.) Toledo, Spain Toyooka, Japan Tsingtao, China Uccle, Belgium Upsala, Sweden Vera Cruz, Mexico Victoria, Canada Vienna, Austria Zagreb, Jugoslavia	WENEZNEZEW ZNEZENEZENEZZEZENEZEW ZNEZEW ZNEZ	200 200 200 200 200 300 200 1300 1000 1200 80 80 1000 1000 1300 1000 200 200 80 80 80 1000 1000 1310 1000 1310 1000 100	8 8 4 .0 9 4 .4 25 22 5 4 .1 10 .0 8 5 .7 0 11 .2 0 9 6 6	120 120 79 77 70 120 120 120 450 440 102 64 145 165 183 186 80 80 80 80 160 210 160 200 200 20	Kind air air air air air air air air air	33.50 87.11.05.05.50 22.11.05.05.50 44.00 54.50	0.8 1.0		10 10 10 10 20 20 20 12 15 15 15 15 15 15 15 15 15	NNSWU : : NEU : : NEUUNEOWEEE : :
Zürich, Switzerland	N E Z Z	1200 1200 80 80	9.0 9.0 6.0 7.5	170 170 40 100	oil	2.5 2.5 2.0 5.0	i.ò	.005	30	Ü

WIECHERT: HORIZONTAL AND VERTICAL

Station	c	Mass kg.	T.	V _m		Dan		Paper speed	Up	
					Kind	ϵ	r	r/T _o ²	$\frac{mm.}{min.}$	Оp
Akita, Japan	N		5.5	80						
· -	Ĕ		5.5	80						
Daines Terres	Z		5.0	70	• • • •	• • •				
Dairen, Japan	E	• • • • •	4.5	80 80	•••	• • •			••	• •
	Z		4.5	70			• • • •		٠٠.	• •
Fukushima,	N		4.5	70	:::					
Japan	\mathbf{E}		4.5	70						
	Z		5.0	70						
Georgetown,	N	200	4.8	109		1				
D. C., U. S. A. Gifu, Japan	E	200	5.0	116	• • •	1			•••	• •
Giru, Japan	Ë		4.5	75						• •
	Ž	::::	4.0	70		• • •			::	• •
Hamada, Japan	Z		4.5	84	:::		:::	::::	::	
, -	E		4.5	84						
	Z		4.4	83]]	
Hamamatsu,	E		4.5	70	• • •					• •
Japan	Ei		4.5	70 80	• • •			• • • •		• •
Hatidyozima,	Z N E	::::	5.0	80		• • •	• • • •			• •
Japan	Ê		5.0	80	1 :::		:::			• •
V	\overline{z}		4.5	70	:::		:::			
Hikone, Japan	ZNE		5.5	80						
	E		5.5	80						
Table Litter	Z		6.0	75						
Ishigakijima, Japan	E		5.0	75 75				• • • • •		• •
Japan	2	::::	5.0	70					::	• •
Kagoshima,	ZNE	::::	4.5	80		: : :				• •
Japan	Œ		4.5	80			:::	1	::	
	Z	1	4.5	70						
Kakioka, Japan	ZNE		7.1	75					• • •	
	E	• • • • •	7.1	75						• •
Kumamoto,	ZNE		6.0	62 75			• • •			• • •
Japan	E	::::	4.5	75	:::				::	
· · · · · · · · · · · · · · · · · · ·	\overline{z}		4.5	70	:::		:::	::::	::	::
Kyusyu, Japan	ZNE		4.5	70						
	E		4.5	70	[. .	١
3.6.4	Z N E	1	4.5	60						• • •
Matsuyama, Japan	I I		5.0	80			• • •			•••
aghan	2		5.0 4.5	80		• • •	1			
Mera, Japan	Ñ	1	4.0	80		• • • •	1 :::		::	• • •
	ZNE	::::	4.0	80	:::		:::	1	::	l ::
	Z		4.0	80]			1	
Misima, Japan	ZNE		4.2	75					1	
	E		4.2	75		1			• •	
Morioka, Japan	Z NT		5.2	81	• • • •	• • • •		1	••	
MACHIONA, JADAN	ZNE	• • • • •	5.5	80	• • •	• • • •			• •	
	Ž		6.0	60			1 :::		::	::
	~	1	1 3.3	55	1	1	1	1	1	١.,

WIECHERT: HORIZONTAL AND VERTICAL—Continued

Station	С	Mass kg.	т.	V _m		Dan		Paper speed	Up	
					Kind	ε	r	r/T_{o}^{2}	$\frac{mm.}{min.}$	Ор
Nagasaki, Japan	N		5.0	80						
	E Z	• • • • •	5.0	80 70	• • •	• • •	• • • •	• • • •	•••	• •
Nase, Japan	N	• • • • •	4.5 4.5	75	• • • •		• • •	• • • • •	• • •	• •
mase, Japan	Ë		4.5	75	• • •		• • • •			• •
	$\tilde{\mathbf{z}}$	1	4.5	70						• •
Nemuro, Japan	N		5.0	80						
, -	E		5.0	80						
	Z		4.5	75				.:::		• •
Numazu, Japan	N		4.6	89	• • •	10	• • • •	.017	· • •	• •
	E Z	• • • • •	4.6 5.3	89 53	• • • •	$\frac{10}{3.1}$	• • • •	.017	• • •	• •
Okinawa, Japan	Ň	::::	5.0	80		3.1	•••	.010	• • •	
Okinawa, Japan	Ë		5.0	80			:::		::	
	\overline{z}	::::	5.0	70		1	:::		::	
Ootomari, Japan	N		4.5	70						
, ,	\mathbf{E}		4.5	70						١
	Z		4.5	70		٠				٠٠.
Osaka, Japan	N E	200	4.0	80		3.7		.023		• • •
	Z	200 80	4.0	80 80		3.7		.023		•••
Potsdam,	Ň	1000	10	280		4		.014		٠٠.
Germany	Ê	1000	6	330		2			1	
Prague,	N	1000	10	237		5	:::	.003	1 ::	::
Czechoslovakia	\mathbf{E}	1000	10	222		5		.003		
Sarajevo,	\bar{N}	200	4.2	90		3.6		.08		
Jugoslavia	E	200	ن: : ا	1 :::		• • • •				٠.
Simizu, Japan	N E		4.5	70	• • • •					• •
	Z		4.5	70 60		• • • •				• •
Spokane, Wash.,	Ñ	80	5.9	80		8			::	
U. S. A.	Ē	80	5.1	80	:::	8	1 :::	::::	::	::
Taiku, Japan	N		5.0	80						
	Ē		5.0	80						
600-24-2-7-2	Z		4.5	70						
Tsitsishima,	NE		4.5	75	• • •				• • •	
Japan	Z	• • • •	4.5 3.0	75 55	• • • •			• • • •		
Tsukuba-san,	Ñ		4.5	75				::::	::	::
Japan	Ē	: : : :	4.5	75		:::	:::	::::	1 ::	· · ·
-	\mathbf{z}		4.0	70	1				1	1 ::
Tyôsi, Japan	N		5.0	75						١
	Ē		5.0	75						
Timean delas Tas	Z		4.5	80			• • • •			
Unzen-dake, Japan Wakayama, Japan	Z		4.5	70			• • •			
Yokohama, Japan	N		4.0	75 70		• • •				
Tomonama, vapan	È	1 ::::	4.5	70	:::			1		•••
	Ž		4.0	80	:::	:::		1	::	
					1	1	1		1	١.,

WOOD-ANDERSON

Station	С	т.	V _m	€	Sensi- tivity	Paper speed mm. min.	Up
Berkeley, Calif., U. S. A. Cincinnati, Ohio, U. S. A. Copenhagen, Denmark* Florissant, Mo., U. S. A. Haiwee, Calif., U. S. A. La Jolla, Calif., U. S. A. Little Rock, Ark., U. S. A. Mt. Hamilton, Calif., U. S. A. Mt. Wilson, Calif., U. S. A. Pasadena, Calif., U. S. A. Riverside, Calif., U. S. A.	BZBBZBZBZBZBZBZBZBZBZBZBZBZBZBZBZBZBZ	0.8 5.5 5.5 1.5 2.2 2.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0	3000 3000 500 500 1500 1500 2400 2400 1400 1400 1400 2400 2400 3000 3000 1400 1400 1400 1400 1400 1	15 15 00 00 00 00 00 00 00 00 00 0		60 60 15 15 60 60 60 60 60 60 60 60 60 60 60 60 60	ZEWEZK : :ZEWEZK : :ZKWEZKZ
Santa Barbara, Calif., U. S. A. Sitka, Alaska† St. Louis, Mo., U. S. A. Stanford University, Calif., U. S. A. Tinemaha, Calif., U. S. A. Tucson, Ariz., U. S. A.	EZEEZEZEZEZE	0.8 0.8 0.8 6.5 6.0 0.8 0.8 0.8 10.5 10.0	1400 1400 1400 1400 763 760 3000 3000 1400 1400 435 435	h=0.8 h=0.8 20 0 15 15 h=0.8 h=0.8 20 20	 56 51	60 60 60 15 60 60 60 60 60 80 30	Wakae :aeakakak

^{*}Not in operation. †Temporary installation.

INSTRUMENTS OF TOKYO IMPERIAL UNIVERSITY

Paper speed mm./min.	25554444588995100010001000100010001000100100100100100
Kind of damping	oil oil oil air air air magnetic magnetic
T.	255 55 55 55 55 55 55 55 55 55 55 55 55
Vmex	2000.55 2000.5
Steady mass kg.	220 221 221 230 230 230 230 230 230 230 240 250 250 250 250 250 250 250 250 250 25
Com- ponent	NGNZENZEZENZENZENZENZENZENZENZENZENZENZENZ
Туре	Wiechert Wiechert Wiechert Tanakadate Tanakadate Tanakadate Tanakadate Tanakadate
Instru- ment No.	1111222222447776699877443322224111
Station	Imperial University

*Accelerometer 1 cm = 0.1 g. †Automatic starting.

INSTRUMENTS OF TORYO IMPERIAL UNIVERSITY—Continued

Station	Instru- ment No.	Туре	Com- ponent	Steady mass kg.	Vmex	T	w	Kind of damping	Paper speed mm./min.
Imperial University	30 30 30		ZE	1900 1900	1500	44.44.5	: : :	air air mognotio	90 82 82
	ដេន	Galitzin	ZE	a 52	889	4 4	8 8	magnetic	12.0
	3 67	CRITICALL	22	191	8	12	:		22 6
	**	Galitzin	22	53	8 8 4	13	1.2	magnetic	0.1
	24*	:		0 00	12	32	1.2	:	0.1
	25.25	Ishimoto	::	7000.	96	89	.0.	: [[o	.028
	-	:	ZĢ	210	4 CV	22	20.0	lio	95
		:	16	0.45	163	5	2.0	oil	40
	6	:	1日	15	10	30	2.5	:	0 %
	3 60		Z	41	28	919	27-		 628
	4	:	Z [25	35		: :	20
	4	:	42		35	200	1.5	:	20
	-	:	Z [5	- ^	32	∞	1.5	:	26 S
	٦,	:	12	15	120	4	1.5	:	25
	- 1,	:	4 64	26	120	4	1.5	:	25
		:	4 2	1,5	20	91	1.5	:	200
		:	4 F		202	10	1.5	:	25
	0	:	1Z	30	300	:	:	:	:
	70	:	(FE	8	300	:	: ;	:	: 5
	4 -	:	Z	~	22	91	ç.	:	36
	٠,-		田	2	200	019		:	35
			z	_	25	35) ¥	:	86
	4		A	2	20	2 ¹		:	38
	;=	Gray	z	1.5	20.00	O 14		:	909
	ī 	Ewing	闰	1.5	9 6	Öκ	- 1.5		888
	-	Ewing	× ×	25.73	120	- 6	20.0	: : : : : :	22
	7	:	z	e e	2	:			

•Clinograph.

MISCELLANEOUS INSTRUMENTS

		7	Mass	E	 	Dar	Damping		Paper	<u> </u>
Station	Instrument	၁	kg.	 To	a	Kind	Ę	r/T_o^2	specu mm./min.	ď
Aschen, Germany	Wiechert photographic	Z	83	16	105	::	:	.0002	14	:
	Wiechert photographic	32	88	16	105	: :	: :	200	14	: :
Agra, India	Omori-Ewing	Z	20.00	33	22 8	:		:	12	SO E
Alger-Bouzaréah, Algeria	Omori-twing Bosch-Mainka	42	36	:	₹ :	: :	. :	: :	:21	: :
Alinoma India	Bosch-Mainka Omori-Fwing	щZ	90 :	30	:53	: :	: :	: :	22 22	:z
Authore, man	Omori-Ewing	Ħ		56	62	:	:	:8	52;	臼。
Almeria, Spain	Bosch Rosch	ZĦ	88	44	13	: :	::	38	15 15	Ω≽
Barcelona, Spain	Javier-Canisio	:	:	:	:	:	:	:	: #	:
Batavia, Java	Bosch	되 왕 건	360	4.6	:6	non	:4		e r :	: :
Beigrade, Jugoslavia	Belar	5 E	360	4.2	120	none	4	.03	: :	::
;	Belar	Z	360	9.0	8	none	က -	25	: <u>x</u>	:
Bergen, Norway	Bosch	四	201	3 81	3,4	: :	1.5	14	15	: :
Carloforte, Italy		N SE	250	45	47	:	:,	:00	27	:
Cartuja, Spain	Cartuja Di-mar Belarmino	ØŚ	0±0 3.5	22	3 :	: :	_H :	3 :	: :	: :
	Javier	闰	7.5	15		:	:.	:;	:	:
	: : : : : : : : : : : : : : : : : : : :	ZF	0000	4.0	260	:	4.	5.5	:	:
Chiomoni Itolu	Alfoni	⊒£	300	12.0	25.	: :	+ :	70.	: :	: :
Omavani, roany	Under construction	Z	000	:	} :	: :	: :	: :	:	:
Cleveland, Ohio		Z	895	1.3	20	none	:	:	:	:
		:	8	7	9	none	:	:	:	:
							_			

MISCELLANEOUS INSTRUMENTS—Continued

TI		:	: :	: :	:	:		:	:	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Paper	mm./min.	:	: 5	} :	12	:	1	100	8	301	:			:	:	:	:;	15	:	:;	7.7	:	:	:	:	:	:	:	:	:	
	r/T,²	:	:		.003	:		:	:	:	:			:	:	:	:	S	:	8	8	10.	<u>8</u> .	:	:	:	:	:	:		
Damping	Ψ	:		3	: :	:		:	:	:	:			:	:	:	:	7	:	4	:	:	:	:	:	:	:	:	:		
Dan	Kind	:	::7	1000	orion.	magnetic	0	:	:	:	:			:	:	:	:	:	:	magnetic	oil	oil	oil	:	:	:	:	-			
;	A A	:	. 1	0 5	38	120		40	25	150	:			:	:	:	22	215	:	30	180	350	1100	:	:	:	:		:	:	:
	To	:	:	120	0.0	12:3	1			:	:			:	:	:	5.6	4.2	•	9	14	12	2.4	:	:				:	:	:
Mass	kg.	:	:	23	216 216	-	4	200	200	200	:			:	:	:		1300		9	2000	3500	1500	300	300	202	3	102	4	7	:
;	ပ	N&E	田	H S N	¥16	N A E	3	ď	1 F	32	ı :			:	:		1 × 2	36	1	. 보 : 수	Ż	15	E 之	z	z	į į	1FE	16	3 5	3	:
	Instrument	Horizontal pendulum	Omori-Ewing	McComb-Romberg	Local construction		Horizontal pendulum	photographic register	Altani	Omori-Ausm	Ammono Bertelli	tromometer. De Rossi,	Chechi	Dolon	Delai - Deliber-Hocker	C.L. A. tri flor	Senmide, cri-man	Nakamura		Unipiex pendulum	Nakamura			TT.	HOLIZOHEN Pendum	Horizontal pendului	Horizontal pendum	Horizontal penduluii	Vertical pendulum	Vertical pendulum	Pantografico
	Station	O-1-t- India	Colstos, muns	Columbia, So. Carolina	Denton, Texas	Ebro, Spain	Eger, Czechoslovakia	•	Florence, Italy		; ;	Foggia, Italy			Gorje, Jugoslavia	Hamburg, Germany	Hohenheim, Germany	lida, Japan	Jens, Germany	Kingston, Jamaica	Kumagaya, Japan	La Paz, Bolivia		•	Livorno, Italy						

MISCRILLANEOUS INSTRUMENTS—Continued

Paper II.	mm./min.	500 6 6 16 12: : : : : : : : : : : : : : : : : : :	_
AT 6		1	
••	r/T°	80	: -
Damping	ų.	::::::::::::::::::::::::::::::::::::::	-
Da	Kind	 : : : : : : : : : : : : : : : : : :	
4	E .	201 120 120 120 120 120 120 120 120 120	-
E	10	: 6 : 6 : 6 : 6 : 6 : 6 : 6 : 6 : 6 : 6	
Mass	kg.	200 200 200 200 200 200 200 200 200 200	c
ζ	כ	N N N N N N N N N N N N N N N N N N N	-
7.	TIBRITHERA	Wiechert, new Guzzanti Brassart Agamemone Horizontal pendulum Vertical pendulum Cancani Agamemone Nakamura Omori clinometer and Nakamura Bosch photographic Bosch photographic Agamemone Local construction Agamemone Ag	Octon white Co.
	порядо	Madrid, Spain Mineo, Italy Moncaliere, Italy Montecassino, Italy Mt. Hamilton, Calif. Onahama, Japan Osaka, Japan Ottawa, Canada Piacenza, Italy Plymouth, England Point Lona, Calif. Roca di Papa, Rome, Italy	

MISCELLANEOUS INSTRUMENTS—Continued

5	, <u>, , , , , , , , , , , , , , , , , , </u>		Mass	E	Þ	Dar	Damping		Paper	Ę
Station	anampasur	٥	kg.	70	A B	Kind	ę	$\rm r/T_o^2$	specu mm./min.	ď
Collegio Romano, Rome, Italy San Fernando, Spain San Juan, Porto Rico Santiago, Chile Sendai, Japan Stuttgart, Germany Subiaco, Italy Sucre, Bolivia Tacubaya, Mexico Takata, Japan Tananarive, Madagascar Tarente, Italy Tiflis, USSR Tokyo, Japan	Agamennone Agamennone Menner, galvanometric registration Omori microseismograph Nakamura Horizontal pendulum Astatic pendulum Grav-Ewing automatic Sancani Grav-Ewing, automatic starting Tanaru accelerometer Tanaru accelerometer Ishimoto clinograph	NAME NAME NAME NAME NAME NAME NAME NAME	\$50 600 600 600 600 600 600 700 800 800 800 800 800 1340 11.5 11.5 11.5	80 82 112 5 112 5 12 2 2 2 2 2 2 2 2 2 2 2 2	50 16 16 17 17 18 18 18 18 18 18 18 18 18 18	electro magnetic air magnetic nagnetic none	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0001	27 27 115 115 116 116 117 117 117 117 117 117 117 117	::" ::::::::::::::::::::::::::::::::::

too Ehro

MISCELLANEOUS INSTRUMENTS—Continued

Station	1		Mass	E		Dai	Damping		Paper	Ę
	Instrument	٥	kg.	т.	E >	Kind	Ų	$ m r/T_o^2$	mm./min.	do
Trenta, Italy Ag	Agamennone	NÆE	22	7	20	:	:	:	:	:
-	Agamennone	Z	20	8.1	20	:	:	:	:	:
	Agamennone	7	000	80.	- 220	:	:	:	::	:
Treviso, Italy Alf	fani	Z	89	a;	:	:	:	:	7.	:
All	Alfani	<u>جا</u> :	33	14	:	:	:	:	21	:
	Alfani	.7	200	2.6	:	:	:;	:	17	:
Tukuba, Japan Gr	Gray-Ewing, automatic	E E E	1.5	ıÇ:	27 (:	1.5	:	909	:
	starting	2	.75	2	27	:	:	:	999	:
Uwazima, Japan Na	Nakamura	NEE	:	20	දු	:	:	:	:	:
	Omori-Alfani	\$	225	10	10	:	:	:	1.6	:
Naples, Italy Na	Navarro-Neumann	田	820	1.9	150	:	:	:	3.0	:
	ercalli-Grablovitz	z	200	2.0	220	:	:	:	18	:
Me	Mercalli-Grablovitz	NEE	1000	1.0	140	:	:	:	7.3	:
•	Alfani	Z	200	10	100	:	:	:		:
Venice, Italy	:	z	22	2	4	:	:	:	27	:
		闰	22	8.7	49	:	:	:	27	:
	Horizontal pendulum	囝	18	:	8	:	:	8.	19	•:
Yamagata, Japan Na.	Nakamura	N & E	:	∞	20	:	:	:	:	:
pd	Bosch-Mainka	z	:	9.5	120	:	5	5.	90	Z
	Bosch-Mainka	囶	:	9.5	120	:	જ	10:	30	囝

GEOGRAPHICAL INDEX

North America

CANADA British Columbia Victoria, 336 Manitoba St. Boniface, 256 Nova Scotia Halifax, 90 Ontario Ottawa, 225 Toronto, 314 Saskatchewan Saskatoon, 269

UNITED STATES

Alabama Mobile, 194 Alaska Kodiak, 139 Sitka, 279 Arizona Tucson, 324 Arkansas Little Rock, 162 California Berkeley, 33 La Jolla, 152

Mineral, 185

Mt. Wilson, 200 Palo Alto, 228

Mt. Hamilton, 199

Pasadena, 96, 230, 307

Point Loma, 238 Riverside, 251 Santa Barbara, 263 Santa Clara, 264 Stockton, 282

Colorado Denver, 67 Connecticut

New Haven, 210 District of Columbia Georgetown, 81

Illinois

Chicago, 50, 51

Kansas

Lawrence, 155

Louisiana

New Orleans, 211

Maryland

Cheltenham, 48 Massachusetts

> Cambridge, 41 Worcester, 342

Michigan Ann Arbor, 17

Missouri

St. Louis, 75, 258 Nevada

Reno, 248

New York Albany, 8

Buffalo, 39

Ithaca, 120 New York, 77 Poughkeepsie, 242

Ohio

Cincinnati, 55 Cleveland, 57

Pennsylvania Swarthmore, 292 South Carolina Columbia, 60.1

Texas

Denton, 66 Virginia

Charlottesville, 47

WashingtonSpokane, 281 Wisconsin

Milwaukee, 183

MEXICO

Chihuahua, 52 Guadalajara, 86 Manzanillo, 172 Mazatlan, 178 Merida, 182 Oaxaca, 216

Puebla, 244 Tacubaya, 295 Vera Cruz, 335

West Indies

CUBA

Havana, 95

HAITI

Port-au-Prince, 240

JAMAICA

Kingston, 134

MARTINIQUE

Fort de France, 78

PORTO RICO San Juan, 262

South America COLOMBIA BRAZIL ARGENTINE Bogota, 37 Rio de Janeiro, 250 Andalgala, 16 La Plata, 154 ECUADOR CANAL ZONE Quito, 246 Balboa, 25 BOLIVIA PERU CHILE Lima, 160 Copiapo, 62 La Paz, 153 Santiago, 265 Sucre, 287 Europe TTALY Marseilles, 174 AUSTRIA Parc Saint-Maur, 229 Benevento, 31 Graz, 85 Pie du Midi. 235 Carloforte, 44 Innsbruck, 116 Strasbourg, 284 Chiavari, 49 Vienna, 337 Florence, 73, 74 **GERMANY** Foggia, 76 BELGIUM Aachen, 1 Livorno, 163 Uccle, 326 Bochum, 36 Mineo, 184 Clausthal, 56 Moncalieri, 195 BULGARIA Göttingen, 83 Montecassino, 196 Hamburg, 93 Sofia, 280 Naples, 207, 333 Heidelberg, 97 Padova, 227 CZECHOSLOVAKIA Helgoland, 99 Pavia, 231 Hof, 105 Piacenza, 233 Eger, 71 Hohenheim, 106 Rome, 253, 254, 286 Prague, 243 Jena, 120.1 Subiaco, 286 Ungvar, 332 Karlsruhe, 130 Tarente, 304 Königsberg, 142 Trenta, 317 DENMARK Leipzig, 156 Treviso, 318 Copenhagen, 61 Munich, 201 Venice, 334 Scoresby-Sund, 270 Nördlingen, 214 Plauen, 236 JUGOSLAVIA ENGLAND Potsdam, 241

Belgrade, 30 Dubrovnik, 68 Gorie, 84 Ljubljana, 164 Mostar, 198 Sarajevo, 267 Sibenik, 275 Travnik, 316 Zagreb, 348

NORWAY

Bergen, 32

Bidston, 35 Kew, 133 North Blackburn, 283 Oxford, 226 Plymouth, 237

FINLAND

Helsingfors, 100

FRANCE

Besancon, 34 Le Mans, 157 Ravensburg, 247 Stuttgart, 285

Taunus, 304.1

GREECE

Athens, 21

HOLLAND

DeBilt, 64

HUNGARY

Budapest, 38 Kalocsa, 126

POLAND

Lemberg, 158

PORTUGAL

Coimbra, 58 Lisbon, 161

ROUMANIA

Cernauti, 46

SCOTLAND

Edinburgh, 70 Eskdalemuir, 72

SPAIN

Alicante, 10 Almeria, 13

Barcelona, 26 Cartuia, 45

Ebro, 69 Madrid, 166 Malaga, 170 San Fernando, 261 Toledo, 313

SWEDEN

Abisko, 2 Lund, 165 Upsala, 328

SWITZERLAND

Basle, 27 Chur, 54 Neuchatel, 209.1 Zürich, 350

U. S. S. R.

Baku, 24 Kucino, 145 Leningrad, 159 Makeevka, 168 Obiralovka, 145 Piatigorsk, 234 Pulvoko, 245 Sebastopol, 271 Simferopol, 277 Sverdlovsk, 291 Theodosia, 305 Tiflis, 306 Yalta, 344

WALES

Cardiff, 43

Asia

CHINA

Hong Kong, 108 Tsingtao, 319 Zi-ka-wei, 349

INDIA

Agra, 5 Alipore, 11 Colaba, 59 Dehra Dun, 65 Hyderabad, 113 Kodaikanal, 138

JAPAN

Aidu, 6 Akita, 7 Asahigawa, 19 Awomori, 22 Dairen, 63 Fukui, 80 Gifu, 82 Haboro, 88 Hakodate, 89 Hamada, 91 Hamamatsu, 92 Hatidyozima, 94 Hikone, 102 Hiroshima, 104 Hoko, 107 Hukukoka, 110 Husiki, 112 Idzuhara, 114 Iida, 115 Ishigakijima, 118 Ishinomaki, 119 Kagoshima, 124 Kakioka, 125 Kamakura, 127 Kanazawa, 128 Karenko, 129 Kiyosumi, 135 Kobe, 136 Kochi, 137 Kofu, 140 Kosyun, 143 Kumagaya, 146 Kumamoto, 147 Kure, 148

Kushiro, 149

Kvusvu, 151

Maebashi, 167

Matsumoto, 175

Matsuyama, 176

Kyoto, 150

Mera, 181

Misaki, 186 Misima, 187 Mitaka, 188 Mito, 189 Miyako, 190 Mivatsu, 191 Miyazaki, 192 Mizusawa, 193 Morioka, 197 Muroran, 202 Muroto, 203 Nagano, 204 Nagasaki, 205 Nagova, 206 Nase, 208 Nemuro, 209 Niigata, 212 Niihama, 213 Numazu, 215 Obihiro, 217 Oiwake, 218 Okavama, 219 Okinawa, 220 Onahama, 221 Ooita, 222 Ootomari, 223 Osaka, 224 Saga, 255

Sakai, 259	Titibu, 308	KOREA
Sapporo, 266	Togane, 309	Heijo, 98
Sasebo, 268	Tokushima, 310	Husan, 111
Sendai, 272	Tokyo, 311, 312	Jinsen, 121
Shimonoseki, 273	Toyooka, 315	Keijo, 132
Shionomisaki, 274	Tsitsishima, 320	Acres
Sikka, 276	Tsu, 321	SYRIA
Simizu, 278	Tsukuba-san, 322	Beirut, 29
Sumoto, 288	Tukuba, 323	Saad-Nail, 144
Suttu, 289	Tyôsi, 325	U. S. S. R.
Tadotu, 296	Unzen-dake, 327	
Taihoku, 297	Utsunomiya, 329	Alma-Ata, 12
Taiku, 298	Uwazima, 330	Frunse, 79
Tainan, 298.1	Wakayama, 340	Irkutsk, 117
Taito, 299	Yagi, 343	Kabansk, 123
Taityû, 300	Yamagata, 345	Samarkand, 260
Takata, 301	Yokohama, 346	Tachkent, 294
Takayama, 302	Yokosuka, 347	Vladivostok, 338
	Africa	
ALGIERS	EGYPT	SOUTH AFRICA
Alger-Bouzaréah, 9	Helwan, 101	Johannesburg, 122
CAPE OF GOOD HOPE	GOLD COAST	
Cape Town, 42	Accra, 3	
	·	
	Australia	
Adelaide, 4	Perth, 232	Sydney, 293
Melbourne, 180	Riverview, 252	-yy,
•	•	
,	Atlantic Ocean	
Ascension, 20	Ponta Delgada, Azores,	St. Helena Island, 257
	239	
٠	A office The office	
	Arctic Regions	
	Reykjavik, Iceland, 249	
	East Indies	
JAVA		7.5
	Batavia, 28	Maron, 173
Amboina, 14	Malabar, 169	Medan, 179

Indian Ocean

Colombo, Ceylon, 60 Tananarive, Madagascar, Mauritius, 177 Keeling Islands, 131 303

	Pacific Ocean	
Apia, 18	Kona, 141	PHILIPPINE ISLANDS
Suva, Fiji, 290 Guam, 87	Volcano House, 331, 339	Ambulong, 15 Baguio, 23
HAWAII	NEW ZEALAND	Butuan, 40 Manila, 171
Hilo, 103	Christchurch, 53	•
Honolulu, 109	Wellington, 341	