'Movement' Group Introduction to Galois Theory

Rivers

Nanjing University

2019年3月11日

Table of Contents

- 1 'Movement' Group
- 2 Introduction to Galois theory
 - ■定理阐述
 - 问题的第一次转化
 - 问题的第二次转化

Associative:

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

Identity Element:

$$\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$$

Inverse Element:

$$\vec{a} + (-\vec{a}) = (-\vec{a}) + \vec{a} = \vec{0}$$

Commutative:

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

Subgroup:

All Linear Subspace

Table of Contents

- 1 'Movement' Group
- 2 Introduction to Galois theory
 - 定理阐述
 - 问题的第一次转化
 - 问题的第二次转化

└─定理阐述

定理阐述

定理

有理数域上的大于等于 5 次的多项式没有根式解

多项式的根的对称性

考虑:

$$(x^2+1)(x^2-5)=0$$

其解:

$$x = \pm \sqrt{5}, \pm i$$

对称性: 含有 $\pm\sqrt{5}$ 的多项式,交换 $\pm\sqrt{5}$,多项式仍成立

$$(1+\sqrt{5})(1+\sqrt{5}) = 6 + 2\sqrt{5}$$

$$(1 - \sqrt{5})(1 - \sqrt{5}) = 6 - 2\sqrt{5}$$

─ 问题的第一次转化

方程的解与数域

数域

对于加减乘除四则运算封闭的集合

有理数域 ℚ 是最小的数域

└─问题的第一次转化

方程的解与数域

数域

对于加减乘除四则运算封闭的集合

有理数域 ℚ 是最小的数域

为什么有理系数一次方程的解可以由四则运算给出, 而二次方程需要开方? 一问题的第一次转化

域扩张

考虑一个方程:

$$x^2 - 5 = 0$$

这个方程在有理数里无解,但是通过对 5 开方,我们可以获得 $\sqrt{5}$,而后将 $\sqrt{5}$ 和有理数进行加减乘除四则运算,就可以得到 新的数域,记作 $\mathbb{Q}(\sqrt{5})$. 我们由此可以看到,开方的操作使得原来的有理数域扩大了,这也被称之为域扩张。

解的对称性与域的对称性

自同构

$$f: \mathbb{F} \to \mathbb{F}$$

$$f(a+b) = f(a) + f(b)$$

$$f(ab) = f(a)f(b)$$

__问题的第一次转化

自同构群

自同构群

一个域的所有的自同构及其复合操作,构成的群

__问题的第一次转化

伽罗瓦群

伽罗瓦群

域 $\mathbb F$ 扩展为域 $\mathbb E$,则 $\mathbb E$ 的自同构群中,由不改变 $\mathbb F$ 的变换构成的子群,记作 $Gal(\mathbb E/\mathbb F)$.

考虑:

$$(x^2 - 5)(x^2 + 1) = 0$$

其解为 $x = \pm i, \pm \sqrt{5}$

可以对应以下三个域:

$$\mathbb{Q}, \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{5}, i)$$

└─问题的第二次转化

□问题的第二次转化

To be continued...

- ■正规子群
- ■商群
- ■正规子群链
-