## Workbook for Introduction to TTE modeling

#### Relationship between functions

#### 2023-07-11

### Contents

| Preliminaries for R examples                                                                             |
|----------------------------------------------------------------------------------------------------------|
| Plotting hazard and survival functions over time for some common distributions  Exponential distribution |
| library(tidyverse)                                                                                       |
| library(stringr)                                                                                         |
| library(survival)                                                                                        |
| library(survminer)                                                                                       |
| library(texreg)                                                                                          |
| library(mgcv)                                                                                            |
| library(flexsurv)                                                                                        |
| library(muhaz)                                                                                           |
| library(Hmisc)                                                                                           |
| theme set(theme bw())                                                                                    |

# Plotting hazard and survival functions over time for some common distributions

To better understand the relationship between the hazard, cumulative hazard, survival and density functions, let's plot them for a three commonly used parametric distributions in TTE modeling: exponential, Weibull, and log-normal.

#### Exponential distribution

```
The hazard is constant as a function of time: h(t) = \lambda. From first principles: * h(t) = lambda * H(t) = lambda * t * S(t) = exp(-lambda * t) * f(t) = h(t) * S(t) = lambda * exp(-lambda * t)  plot_data <- crossing(lambda = c(0.5,1,2), times = seq(0,5,length=100)) %>% mutate(hazard = lambda, cumulative_hazard = lambda * times, survival = exp(-cumulative_hazard),
```

```
density = hazard * survival)

plot_data %>%
  pivot_longer(cols=hazard:density, names_to = 'type', values_to='value') %>%
  ggplot(aes(x=times, y=value, col=as.factor(lambda), group=lambda)) +
  geom_line() +
  facet_wrap(~type, scales = "free_y")
```



#### Weibull

The Weibull distribution has two parameters: lambda and gamma

The log hazard is linear in the log of time:

$$h(t) = \gamma \lambda t^{\gamma - 1} \iff \log h(t) = \log \gamma + \log \lambda + (\gamma - 1) \log t$$

```
pivot_longer(cols=hazard:density, names_to = 'type', values_to='value') %>%
mutate(combination = paste(lambda,gamma,sep='-')) %>%
ggplot(aes(x=times, y=value, col=as.factor(gamma), group=combination)) +
geom_line() +
facet_grid(type~lambda, scales = "free_y")
```



#### Log-normal

The hazard isn't easily expressed in closed form. How can you derive it from first principles? Edit the code below to make the plots.

Hint: the log normal pdf and survival function are obtained using the dlnorm and plnorm functions, respectively.

Plot the log-normal hazard function for combinations of mean (1, 2) and standard deviation (0.3,1) modifying the code below.

#### Solution:

```
mutate(combination = paste(mean,sd,sep='-')) %>%
ggplot(aes(x=times, y=value, col=as.factor(sd), group=combination)) +
geom_line() +
facet_grid(type~mean, scales = "free_y")
```



#### Bonus exercise

There is no reason the hazard function needs to follow one of these functions, or any function associated with a 'named' probability distribution.

Make up your own hazard function and calculate the cumulative hazard, survival and density functions.

#### Solution:

Let's set up a hazard function that declines exponentially from a starting value of theta0:

$$h(t) = \theta_0 * \exp(-\lambda \cdot t)$$

With this hazard function, the cumulative hazard function is

$$\int_0^t h(s) \ ds = \theta_0 / \lambda * (1 - \exp(-\lambda \cdot t))$$

This is an example of a cure-rate model, where the survival function has a limiting value other than 0.

```
density = hazard * survival
)

plot_data %>%
  pivot_longer(cols=hazard:density, names_to = 'type', values_to='value') %>%
  mutate(combination = paste(theta0,lambda,sep='-')) %>%
  ggplot(aes(x=times, y=value, col=as.factor(lambda), group=combination)) +
  geom_line() +
  facet_grid(type~theta0, scales = "free_y")
```

