into the system

$$\begin{pmatrix} A \\ -c \end{pmatrix} x \le \begin{pmatrix} b \\ -(\mu + \epsilon) \end{pmatrix}.$$

By Proposition 47.4 (Farkas II), there is some linear form $(\lambda, z) \in (\mathbb{R}^{m+1})^*$ such that $\lambda \geq 0$, $z \geq 0$,

$$(\lambda \quad z) \begin{pmatrix} A \\ -c \end{pmatrix} \ge 0_m^{\mathsf{T}},$$

and

$$(\lambda \quad z) \begin{pmatrix} b \\ -(\mu + \epsilon) \end{pmatrix} < 0,$$

which means that

$$\lambda A - zc \ge 0_m^{\top}, \quad \lambda b - z(\mu + \epsilon) < 0,$$

that is,

$$\lambda A \ge zc$$
$$\lambda b < z(\mu + \epsilon)$$
$$\lambda \ge 0, \ z \ge 0.$$

On the other hand, since $x^* \geq 0$ is an optimal solution of the system $Ax \leq b$, by Farkas II again (by taking the negation of the equivalence), since $\lambda A \geq 0$ (for the same λ as before), we must have

$$\lambda b \ge 0.$$
 $(*_1)$

We claim that z > 0. Otherwise, since $z \ge 0$, we must have z = 0, but then

$$\lambda b < z(\mu + \epsilon)$$

implies

$$\lambda b < 0, \tag{*}_2)$$

and since $\lambda b \geq 0$ by $(*_1)$, we have a contradiction. Consequently, we can divide by z > 0 without changing the direction of inequalities, and we obtain

$$\frac{\lambda}{z}A \ge c$$

$$\frac{\lambda}{z}b < \mu + \epsilon$$

$$\frac{\lambda}{z} \ge 0,$$

which shows that $v = \lambda/z$ is a feasible solution of the Dual Problem (D). However, weak duality (Proposition 47.6) implies that $cx^* = \mu \leq yb$ for any feasible solution $y \geq 0$ of the Dual Program (D), so (D) is bounded below and by Proposition 45.1 applied to the version of (D) written as a maximization problem, we conclude that (D) has some optimal solution.