Statistical Test Results for RQ1-RQ4 (COMPLEMENTS RESULTS in SECTION 5)

NEGIN AYOUGHI, DAVID DEWAR, SHIVA NEJATI AND MEHRDAD SABETZADEH

Table 1. Statistical tests for **RQ1** comparing **AMPL-based variants** and **Python-based variants** based on (a) execution success rate (Success) using the Z-test; and (b) based on relative-error using the Mann-Whitney *U* test. Blue cells indicate significant improvements of AMPL-based over Python-based variants. Green cells indicate significant improvements of Python-based over AMPL-based variants.

(a) Comparing the variants based on the Success metric

	Variant		Pı	UBLIC	Inc	dustry
LLM	Structuring	Refinement	Z	p-value	Z	p-value
	Unstructured	One-off	-5.31	0.00	-2.34	0.02
Gemini 1.5-Flash	Clistracturea	Refinement	3.02	0.00	-1.10	0.28
Gennin 1.5-Flash	Structured	One-off	-0.32	0.74	-2.61	0.00
	Structureu	Refinement	6.64	0.00	0.00	1.00
	Unstructured	One-off	-8.56	0.00	0.00	1.00
GPT-40	Offstructured	Refinement	-3.72	0.00	0.27	0.80
	Structured	One-off	-2.76	0.00	-4.39	0.00
	Structureu	Refinement	6.24	0.00	-0.55	0.58
	Unstructured	One-off	-4.82	0.00	-1.39	0.16
Gemini 2.5-Pro	Olistiacturea	Refinement	-1.06	0.28	-0.47	0.64
Gennin 2.5-110	Structured	One-off	-2.62	0.00	-2.09	0.04
	Structureu	Refinement	2.20	0.02	0.00	1.00
o4-mini	Unstructured	One-off	-4.33	0.00	-1.13	0.26
	Olistiacturea	Refinement	0.26	0.80	0.31	0.76
04-111111	Structured	One-off	3.71	0.00	-0.55	0.58
	Structured	Refinement	7.77	0.00	0.31	0.76

(b) Comparing the variants based on the relative-error metric

	Variant			Dataset	ataset Industry Datase		
LLM	Structuring	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}	
	Unstructured	One-off	0.23	0.47	0.53	0.50	
Gemini 1.5-Flash	Olistiacturea	Refinement	1.00	0.58	0.93	0.57	
Gennin 1.5-Flash	Structured	One-off	0.99	0.58	0.86	0.54	
	Structured	Refinement	0.00	0.41(S)	0.56	0.51	
	Unstructured	One-off	0.13	0.46	0.57	0.51	
GPT-40	Olistiacturea	Refinement	0.04	0.45(N)	0.32	0.45	
	Structured	One-off	1.00	0.60	0.50	0.48	
	Structured	Refinement	0.98	0.56	0.01	0.32(M)	
	Unstructured	One-off	0.23	0.48	0.84	0.56	
Gemini 2.5-Pro	Olistiacturea	Refinement	1.00	0.57	0.51	0.50	
Gennin 2.5-F10	Structured	One-off	0.11	0.47	1.00	0.50	
	Structured	Refinement	0.00	0.42(S)	0.72	0.53	
o4-mini	Unstructured	One-off	0.01	0.45(N)	0.68	0.53	
	Clistituctureu	Refinement	0.17	0.48	0.48	0.50	
04-111111	Structured	One-off	0.82	0.52	0.17	0.47	
	Structured	Refinement	1.00	0.59	0.49	0.50	

Table 2. Statistical tests for **RQ2** comparing **structured variants** and **unstructured variants** based on (a) execution success rate (Success) using the Z-test; and (b) based on relative-error using the Mann-Whitney *U* test. Blue cells indicate significant improvements of structured over unstructured variants. Green cells indicate significant improvements of unstructured over structured variants. All reported p-values are rounded to two decimal places.

(a) Comparing the variants based on the Success metric

	Variant		Pı	UBLIC	Inc	lustry
LLM	Language	Refinement	Z	p-value	Z	p-value
	AMPL	One-off	2.63	0.00	0.00	1.00
Gemini 1.5-Flash	AWIL	Refinement	0.96	0.34	1.69	0.08
Gennin 1.5-Flash	Python	One-off	-2.39	0.02	0.29	0.78
	rython	Refinement	-2.79	0.00	0.61	0.54
	AMPL	One-off	2.44	0.00	-1.39	0.16
GPT-40	AWIL	Refinement	5.73	0.00	0.00	1.00
	Python	One-off	-3.53	0.00	3.16	0.00
	Fymon	Refinement	-4.25	0.00	0.81	0.42
	AMPL	One-off	0.67	0.50	-1.06	0.30
Gemini 2.5-Pro	AWIL	Refinement	0.31	0.76	0.38	0.70
Gennin 2.5-110	Python	One-off	-1.62	0.10	-0.33	0.74
	rython	Refinement	-2.92	0.00	-0.09	0.94
o4-mini	AMPL	One-off	1.92	0.06	0.00	1.00
	AWIL	Refinement	2.15	0.04	0.00	1.00
04-111111	Python	One-off	-6.07	0.00	-0.58	0.56
	Fymon	Refinement	-5.80	0.00	0.00	1.00

(b) Comparing the variants based on the relative-error metric

	Variant		Public	ic Dataset Industry Datas		
LLM	Language	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	AMPL	One-off	1.00	0.54	1.00	0.50
Gemini 1.5-Flash	AMFL	Refinement	0.00	0.34(M)	0.04	0.41(S)
Gennin 1.5-riasn		One-off	0.49	0.50	0.34	0.47
	Python	Refinement	0.11	0.47	0.58	0.51
		One-off	0.95	0.56	1.00	0.50
GPT-40	AMPL	Refinement	1.00	0.57	0.07	0.39
Gr 1-40		One-off	0.01	0.44(S)	0.79	0.57
	Python	Refinement	0.17	0.47	0.78	0.57
		One-off	1.00	0.58	0.18	0.46
Gemini 2.5-Pro	AMPL	Refinement	0.00	0.42(S)	0.55	0.51
Geiiiiii 2.5-F10		One-off	1.00	0.59	0.48	0.50
	Python	Refinement	1.00	0.58	0.32	0.47
o4-mini		One-off	0.99	0.55	0.54	0.50
	AMPL	Refinement	1.00	0.56	0.44	0.49
		One-off	0.07	0.46	0.85	0.53
	Python	Refinement	0.03	0.46(N)	0.52	0.50

Table 3. Statistical tests for RQ3 comparing refinement variants and one-off variants based on (a) execution success rate (Success) using the Z-test; and (b) based on relative-error using the Mann-Whitney U test. Blue cells indicate significant improvements of refinement over one-off variants. No significant difference where one-off variants outperform refinement variants. All reported p-values are rounded to two decimal places.

(a) Comparing the variants based on the Success metric

	Variant		Pt	JBLIC	Ini	USTRY
LLM	Language	Structuring	Z	p-value	Z	p-value
	AMPL	Unstructured	10.68	0.00	1.55	0.12
Gemini 1.5-Flash	AWIL	Structured	9.10	0.00	3.16	0.00
Gennin 1.5-Flash	Python	Unstructured	2.71	0.00	1.55 0.1 3.16 0.0 0.29 0.7 0.61 0.5 1.81 0.0 1.50 0.1 -0.89 0.3 0.79 0.4 2.19 0.0 0.09 0.9 1.43 0.1	0.78
	1 ython	Structured	2.30	0.02	0.61	0.12 0.00
	AMPI.	Unstructured	7.13	0.00	1.81	0.06
GPT-40	AWIL	Structured	10.15	0.00	3.13	0.00
	Python	Unstructured	2.23	0.02	1.50	0.12
	Fython	Structured	1.48	0.14	-0.89	0.38
	AMPI.	Unstructured	5.13	0.00	0.79	0.42
Gemini 2.5-Pro	AWIL	Structured	4.80	0.00	2.19	0.02
Gennin 2.5-110	Python	Unstructured	1.43	0.16	-0.15	0.88
	1 ython	Structured 0.08 0	0.94	0.09	0.92	
o4-mini	AMPI.	Unstructured	5.45	0.00	1.43	0.16
	AWIL	Structured	5.53	0.00	1.43	0.16
	Python	Unstructured	0.92	0.36	0.00	1.00
	1 y 111011	Structured	1.15	0.24	0.58	0.56

(b) Comparing the variants based on the relative-error metric

Variant		Public Dataset		INDUSTRY Datase		
LLM	Language	Structuring	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
Gemini 1.5-Flash	AMPL	Unstructured	1.00	0.64	0.86	0.58
	AWIL	Structured	0.00	0.41(S)	0.82	0.56
Gennin 1.5-Masii	Python	Unstructured	0.68	0.51	0.69	0.53
	rymon	Structured	0.26	0.48	0.63	0.53
	AMPL	Unstructured	0.72	0.52	0.40	0.47
GPT-40	AMIL	Structured	0.78	0.52	0.16	0.41
GF 1-40	Python	Unstructured	0.78	0.52	0.88	0.61
	Fymon	Structured	0.99	0.56	0.79	0.56
	AMPL	Unstructured	1.00	0.58	0.72	0.54
Gemini 2.5-Pro	AMIL	Structured	0.00	0.43(S)	0.98	0.38
Gennin 2.5-110	Python	Unstructured	0.38	0.49	0.77	0.54
	rython	Structured	0.21	0.48	0.62	0.52
o4-mini	AMPL	Unstructured	0.65	0.51	0.38	0.48
	AMFL	Structured	0.78	0.52	0.88	0.56
04-111111	Python	Unstructured	0.07	0.47	0.64	0.52
	1 y 111011	Structured	0.01	0.45(N)	0.67	0.52

4 • Negin Ayoughi, David Dewar, Shiva Nejati and Mehrdad Sabetzadeh

Table 4. Statistical tests for **RQ4** comparing EXEOS variants when used with **reasoning** LLMs, i.e., Gemini 2.5-Pro and o4-mini, versus when used with **instruction-following** LLMs, i.e., Gemini 1.5-Flash and GPT-40, based on (a) execution success rate (Success) using the Z-test, and (b) relative-error using the Mann-Whitney U test. Blue cells indicate significant improvements in results obtained with reasoning LLMs over those obtained with instruction-following LLMs. No significant difference where instruction-following LLMs outperforms reasoning. All reported p-values are rounded to two decimal places.

(a) Comparing the variants based on the Success metric

Variant			Pτ	Public		OUSTRY
Language	Structuring	Refinement	Z	p-value	Z	p-value
	Unstructured	One-off	12.78	0.00	2.30	0.02
AMPL	Offstructured	Refinement	8.02	0.00	1.99	0.04
	Structured	One-off	11.23	0.00	2.58	0.00
	Structureu	Refinement	4.10	0.00	1.07	0.28
	Unstructured	One-off	9.79	0.00	2.59	0.00
Python	Clistructureu	Refinement	8.03	0.00	1.65	0.10
	Structured	One-off	8.04	0.00	-0.42	0.68
	Structured	Refinement	11.35	0.00	2.28	0.02

(b) Comparing the variants based on the relative-error metric

Variant			Public	Dataset	Industr	y Dataset
Language	Structuring	Refinement	p-value	\hat{A}_{12}	p-value	\hat{A}_{12}
	Unstructured	One-off	0.04	0.47(N)	0.40	0.49
AMPL	Offstructured	Refinement	0.00	0.42(S)	0.38	0.48
	Structured	One-off	0.01	0.45(N)	0.05	0.44
	Structureu	Refinement	0.01	0.47(N)	0.60	Â ₁₂ 0.49 0.48
	Unstructured	One-off	0.00	0.45(N)	0.41	0.49
D-41	Offstructured	Refinement	0.00	0.42(S)	0.19	0.46
Python	Structured	One-off	0.76	0.51	0.03	0.42(S)
	Judetuleu	Refinement	0.62	0.51	0.01	0.39(M)