

2020 Mathematical Methods Trial Exam 1 Solutions © 2020 itute

Q1a
$$y = -x^2 + 4$$

O1b
$$y = b$$
, $x^2 = 4 - b$, $x = \pm \sqrt{4 - b}$

Area
$$A = \frac{1}{2}b(4+2\sqrt{4-b}) = b(2+\sqrt{4-b})$$

Q1c Let
$$\frac{dA}{db} = (2 + \sqrt{4 - b}) + b(\frac{-1}{2\sqrt{4 - b}}) = 0$$

$$4\sqrt{4-b} + 2(4-b) - b = 0$$
, $4\sqrt{4-b} = 3b - 8$,

$$16(4-b) = 9b^2 - 48b + 64$$
, $9b^2 - 32b = 0$, $b = \frac{32}{9}$

Q2ai

$$Q(x) = x^4 - x^2 + 4$$
, Remainder = 0

Q2aii
$$P(x) = (x^2 + 4)(x^4 - 4x^2 + 16)$$

= $(x^2 + 4)(x^4 + 8x^2 + 16 - 12x^2) = (x^2 + 4)((x^2 + 4)^2 - (2\sqrt{3}x)^2)$
= $(x^2 + 4)(x^2 - 2\sqrt{3}x + 4)(x^2 + 2\sqrt{3}x + 4)$

Q2b The turning points are (0, 4), $(\sqrt{3}, 1)$ and $(-\sqrt{3}, 1)$.

$$\tan \theta = \pm \frac{4-1}{0-\sqrt{3}} = \mp \sqrt{3}$$
, $\theta = \frac{2\pi}{3}$ or $\frac{\pi}{3}$, .: equilateral

Q3
$$x' = -y$$
 and $y' = -x$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \frac{1}{2} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -y \\ -x \end{bmatrix} \end{pmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x - y \\ y - x \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{x - y - 2}{2} \\ \frac{y - x}{2} + 1 \end{bmatrix} = \begin{bmatrix} \frac{x - y - 2}{2} \\ \frac{y - x + 2}{2} \end{bmatrix}$$

$$X = \frac{x - y - 2}{2}, Y = \frac{y - x + 2}{2}, \therefore X + Y = 0$$

Q4a
$$5e^{-4x} + 2e^{-2x} - 3 = 0$$
, $(5e^{-2x} - 3)(5e^{-2x} + 1) = 0$

$$\therefore 5e^{-2x} - 3 = 0$$
, $e^{2x} = \frac{5}{3}$, $x = \frac{1}{2}\log_e \frac{5}{3}$

Q4b
$$\log_4 x = \log_3 3 - \log_3 5 = \log_3 \frac{3}{5} = \frac{\log_{10} \frac{3}{5}}{\log_{10} 3}$$

$$\log_e x = \frac{\log_4 x}{\log_4 e} = \log_4 x \times \frac{\log_{10} 4}{\log_{10} e} = \frac{\left(\log_{10} \frac{3}{5}\right)\left(\log_{10} 4\right)}{\left(\log_{10} 3\right)\left(\log_{10} e\right)}$$

Q4c
$$y = Ae^{kx}$$
, $e = Ae^{ke}$ and $e^2 = Ae^{ke^2}$

$$\frac{e^2}{e} = \frac{e^{ke^2}}{e^{ke}}, \ e = e^{ke^2 - ke}, \ ke^2 - ke = 1, \ k = \frac{1}{e^2 - e}$$

$$A = \frac{e}{e^{ke}} = e^{1-ke} = e^{1-\frac{1}{e-1}} = e^{\frac{e-2}{e-1}}$$

Q5a The two dotted curves

Q5b By addition of ordinates, sketch the solid curve

$$y = 2\sin x + \cos\left(x + \frac{5\pi}{6}\right)$$

From graph,
$$2 \sin x + \cos \left(x + \frac{5\pi}{6} \right) = 0$$
 at $x = -\frac{5\pi}{6}, \frac{\pi}{6}, \frac{7\tau}{6}$

Q5c
$$x = \frac{\pi}{6} + n\pi$$
 where *n* is an integer.

Q6a
$$f'(x) = \frac{\sin x(-\sin x) - \cos x(\cos x)}{\sin^2 x} = -\frac{1}{\sin^2 x}$$

Q6b
$$\int_{-\pi}^{\frac{\pi}{2}} \frac{\cos^2 x}{\sin^2 x} dx = \int_{-\pi}^{\frac{\pi}{2}} \frac{1 - \sin^2 x}{\sin^2 x} dx = \int_{-\pi}^{\frac{\pi}{2}} \left(\frac{1}{\sin^2 x} - 1 \right) dx$$

$$= \left[-\frac{\cos x}{\sin x} - x \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}} = \left(-\frac{\pi}{2} \right) - \left(-1 - \frac{\pi}{4} \right) = 1 - \frac{\pi}{4}$$

Q7a
$$Pr(A \cap B) = Pr(A) - Pr(A \cap B') = \frac{3}{5} - \frac{1}{4} = \frac{7}{20}$$

Q7b
$$Pr(A \mid B) = \frac{3}{5}, \frac{Pr(A \cap B)}{Pr(B)} = \frac{3}{5}, :: Pr(B) = \frac{7}{12}$$

:
$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) = \frac{5}{6}$$

Q7c
$$\Pr(A' \cap B') = \Pr(B') - \Pr(A \cap B') = \frac{5}{12} - \frac{1}{4} = \frac{1}{6}$$

$$Pr(A')Pr(B') = \frac{2}{5} \times \frac{5}{12} = \frac{1}{6}$$
, .: A' and B' are independent.

Q8a A:
$$E(\hat{P}) \approx 0.36$$
, $sd(\hat{P}) \approx \sqrt{\frac{0.36 \times 0.64}{4}} = 0.24$,

Approx. 95% confidence interval (0, 0.84)

B:
$$E(\hat{P}) \approx 0.64$$
, $sd(\hat{P}) \approx \sqrt{\frac{0.64 \times 0.36}{144}} = 0.04$

Approx. 95% confidence interval (0.56, 0.72)

Better to choose A, because the chance of waiting longer than 5 minutes can be close to zero.

Q8b Pr(waiting > 5 min)
$$\approx \frac{1}{2} \times 0.36 + \frac{1}{3} \times 0.64 + \frac{1}{6} \times 0 \approx 0.4$$

Q9a Given n is a positive odd integer, $\therefore n+2$ is also a positive odd integer, \therefore both $x^{\frac{1}{n}}$ and $x^{\frac{1}{n+2}}$ are odd functions Given m is a positive even integer, $\therefore m+2$ is also a positive

even integer,
$$x^{\frac{m}{n}} = \left(x^{\frac{1}{n}}\right)^m$$
, $x^{\frac{m+2}{n+2}} = \left(x^{\frac{1}{n+2}}\right)^{m+2}$,

.: both $x^{\frac{m}{n}}$ and $x^{\frac{m+2}{n+2}}$ are even functions f(-x) = f(x)

Given m > n, 2m > 2n, mn + 2m > mn + 2n,

$$m(n+2) > n(m+2)$$
, .: $\frac{m}{n} > \frac{m+2}{n+2}$

.: for
$$x \in (-1, 0)$$
 or $(0, 1)$, $x^{\frac{m}{n}} < x^{\frac{m+2}{n+2}}$, .: $x^{\frac{m+2}{n+2}} > x^{\frac{m}{n}}$

Q9b
$$y = x^{\frac{m}{n}}$$
 and $y = x^{\frac{m+2}{n+2}}$ intersect at $x = -1, 0, 1$

$$A = \int_{-1}^{0} \left(x^{\frac{m+2}{n+2}} - x^{\frac{m}{n}} \right) dx + \int_{0}^{1} \left(x^{\frac{m+2}{n+2}} - x^{\frac{m}{n}} \right) dx = 2 \int_{0}^{1} \left(x^{\frac{m+2}{n+2}} - x^{\frac{m}{n}} \right) dx$$
$$- 2 \left[x^{\frac{m+2}{n+2}+1} - x^{\frac{m}{n}+1} \right]^{1} - 2 \left(1 - 1 \right) - 2 \left(n+2 - n \right)$$

$$= 2\left[\frac{x^{\frac{m+2}{n+2}+1}}{x^{\frac{m+2}{n+2}+1}} - \frac{x^{\frac{m}{n}+1}}{x^{\frac{m}{n}+1}}\right]_{0}^{1} = 2\left(\frac{1}{\frac{m+2}{n+2}+1} - \frac{1}{\frac{m}{n}+1}\right) = 2\left(\frac{n+2}{m+n+4} - \frac{n}{m+n}\right)$$

$$= \frac{4(m-n)}{m+n}$$

Q9c
$$A = \frac{4(m-n)}{(m+n+4)(m+n)} < \frac{4(m+n)}{(m+n+4)(m+n)} = \frac{4}{m+n+4}$$

i.e.
$$0 < A < \frac{4}{m+n+4}$$

As
$$n \to \infty$$
, $m \to \infty$ (since $m > n$), $\therefore \frac{4}{m+n+4} \to 0$, $\therefore A \to 0$

Please inform mathline@itute.com re conceptual and/or mathematical errors