Wednesday March 15, 2017

Last time:

- Electric current: a microscopic picture
- Current density (a vector) vs current (a scalar)
- Electric fields in conductors and electron drift speed
- Resistance as geometric quantity
- Resistors in series
- Resistors in parallel

Today:

- Ohmic vs non-ohmic materials
- Microscopic view of resistivity
- Temperature dependence of resistivity/resistance
- Ideal vs non-ideal batteries
- RC circuits (charging/discharging capacitors)

TopHat Question

A cylindrical resistor is composed of 1/3 copper and 2/3 Tungsten as shown (ρ_{Cu} = 1.69x10⁻⁸ Ω m, and ρ_{W} = 5.25x10⁻⁸ Ω m). The radius of the cylinder is R = 0.105 mm, and it is L = 5.26 cm long.

Each piece has a resistance. Are these resistors in series or in parallel?

A. Series

B. Parallel

C. Neither

TopHat Question

A cylindrical resistor is composed of 1/3 copper and 2/3 Tungsten as shown (ρ_{Cu} = 1.69x10⁻⁸ Ω m, and ρ_{W} = 5.25x10⁻⁸ Ω m). The radius of the cylinder is R = 0.105 mm, and it is L = 5.26 cm long.

What is the total resistance of this device?

Α. 0.0468 Ω

B. 0.197 Ω

C. 0.105Ω

D. 0.0729 Ω

$$R = \overset{\mathcal{R}}{\varsigma} \frac{1}{R_{Cu}} + \frac{1}{R_W} \overset{\ddot{0}^{-1}}{\varnothing}$$

$$R_{Cu} = \Gamma_{Cu} \frac{L}{\frac{1}{3} \rho R^2}$$

$$R_W = \Gamma_W \frac{L}{\frac{2}{3} \rho R^2}$$

Ohmic vs non-Ohmic devices

Materials with isotropic electrical properties

Materials with anisotropic electrical properties (pn junction diode)

Microscopic view of resistivity

Electrons bounce around inside the metal at speeds very high speeds on the order of 0.5% light speed.

When an electric field is applied in the conductor, there is a net force on the electrons, leading to an average "drift speed" of $v_d = 0.5 \,\mu\text{m/s}$

The acceleration felt by the electrons from the E-field is

$$a_x = \frac{eE}{m}$$

So the average drift speed of the electrons will be given by

$$v_d = at = \frac{eEt}{m}$$
 but we found before: $v_d = \frac{J}{ne}$

Microscopic view of resistivity

The average time between collisions is τ and is called the *mean free time*. Equating the two expressions for the drift speed, we get:

$$\frac{eEt}{m} = \frac{J}{ne}$$
 Rearrange this to find $E = \frac{\partial}{\partial t} \frac{m}{ne^2 t} \frac{\ddot{0}}{\dot{0}} J$

This gives a microscopic picture of resistivity:

$$r = \frac{m}{ne^2 t}$$

Resistivity and temperature

- As temperature increases, the ions in the conductor vibrate more, and electrons can only travel shorter distances before they have a collision.
- The resistivity of a metallic conductor tends to increase as it gets warmer.
- A simple linear model of this effect on resistivity is approximately valid over a small (100 C) temperature range.

$$\Gamma - \Gamma_0 = \Gamma_0 \partial (T - T_0)$$

Resistivity and temperature

Superconducting Magnet

The length of superconducting wire in the magnet is typically several miles. The coil of wire is kept at a temperature of 4.2K by immersing it in liquid helium. The coil and liquid helium is kept in a large dewar. The typical volume of liquid Helium in an MRI magnet is 1700 liters. This dewar is surrounded by a liquid nitrogen (77.4K) dewar which acts as a thermal buffer between the room temperature (293K) and the liquid helium.

Non-ideal Batteries: internal resistance

Every voltage source has **some** internal resistance to it. Usually this can be ignored but not always

The internal resistance simply acts as a resistor in series with the rest of the circuit.

$$e - Ir - IR = 0$$

$$I = \frac{e}{(r + R)}$$

TopHat question

• A real battery with internal resistance $r = 5.0 \Omega$ is connected to a circuit with a resistive load of $R = 150 \Omega$ as shown in the diagram. If the voltage across the terminals of the battery (labeled A and B) is 12.0 V, what is the emf of the battery?

A. 12.4 V

B. 12.2 V

C. 12.0 V

D. 11.6 V

