Using ADC on Firebird-V Robot

e-Yantra Team Embedded Real-Time Systems Lab Indian Institute of Technology-Bombay

> IIT Bombay July 7, 2015

Agenda for Discussion

- Analog to Digital Conversion
 - Need for ADC
 - ADC of LPC2148
 - ADC Channels
- 2 Coding ADC
 - ADC Initilization
 - ADxCR
 - ADxGDR
 - Program

√ IR Proximity sensors

- √ IR Proximity sensors
- √ Sharp IR Range sensors

- √ IR Proximity sensors
- √ Sharp IR Range sensors
- √ white line sensors

- √ IR Proximity sensors
- √ Sharp IR Range sensors
- √ white line sensors
- √ battery voltage sensing

- √ IR Proximity sensors
- ✓ Sharp IR Range sensors
- √ white line sensors
- √ battery voltage sensing
- √ etc..

√ 10-bit Resolution

- √ 10-bit Resolution
- $\checkmark~>$ 2.44 μ s Conversion Time

- √ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.

- √ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.
- ✓ Input multiplexing among 8 pins in ADC1.

- √ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.
- ✓ Input multiplexing among 8 pins in ADC1.
- √ Power-down mode.

- ✓ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.
- ✓ Input multiplexing among 8 pins in ADC1.
- ✓ Power-down mode.
- √ Measurement range 0 V to VREF (typically 3 V).

- √ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.
- ✓ Input multiplexing among 8 pins in ADC1.
- ✓ Power-down mode.
- ✓ Measurement range 0 V to VREF (typically 3 V).
- ✓ Burst conversion mode for single or multiple inputs.

- ✓ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.
- ✓ Input multiplexing among 8 pins in ADC1.
- ✓ Power-down mode.
- ✓ Measurement range 0 V to VREF (typically 3 V).
- ✓ Burst conversion mode for single or multiple inputs.
- ✓ Optional conversion on transition on input pin or Timer Match signal.

- ✓ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.
- ✓ Input multiplexing among 8 pins in ADC1.
- ✓ Power-down mode.
- ✓ Measurement range 0 V to VREF (typically 3 V).
- ✓ Burst conversion mode for single or multiple inputs.
- ✓ Optional conversion on transition on input pin or Timer Match signal.
- √ Global Start command for both converters.

- ✓ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.
- ✓ Input multiplexing among 8 pins in ADC1.
- Power-down mode.
- ✓ Measurement range 0 V to VREF (typically 3 V).
- ✓ Burst conversion mode for single or multiple inputs.
- ✓ Optional conversion on transition on input pin or Timer Match signal.
- ✓ Global Start command for both converters.
- √ Free Running or Single Conversion Mode

- ✓ 10-bit Resolution
- \checkmark >2.44 μ s Conversion Time
- ✓ Input multiplexing among 6 pins in ADC0.
- ✓ Input multiplexing among 8 pins in ADC1.
- Power-down mode.
- ✓ Measurement range 0 V to VREF (typically 3 V).
- ✓ Burst conversion mode for single or multiple inputs.
- ✓ Optional conversion on transition on input pin or Timer Match signal.
- ✓ Global Start command for both converters.
- √ Free Running or Single Conversion Mode
- √ Interrupt on ADC Conversion complete

ADC Channels

• Table for ADC Channels

Pin No.	Pin Name	Description
P0.13	AD1.4	ADC input for Battery Voltage Monitoring
P0.29	AD0.2	ADC input for White Line Sensor 3(Right)
P0.28	AD0.1	ADC input for White Line Sensor 2(Center)
P0.12	AD1.3	ADC input for White Line Sensor 1(Left)
P0.4	AD0.6	ADC input for Sharp IR range sensor 2
P0.6	AD1.0	ADC input for Sharp IR range sensor 3
P0.5	AD0.7	ADC input for Sharp IR range sensor 4

ADC Channels

• Table for ADC Channels

Pin No.	Pin Name	Description
P0.13	AD1.4	ADC input for Battery Voltage Monitoring
P0.29	AD0.2	ADC input for White Line Sensor 3(Right)
P0.28	AD0.1	ADC input for White Line Sensor 2(Center)
P0.12	AD1.3	ADC input for White Line Sensor 1(Left)
P0.4	AD0.6	ADC input for Sharp IR range sensor 2
P0.6	AD1.0	ADC input for Sharp IR range sensor 3
P0.5	AD0.7	ADC input for Sharp IR range sensor 4

 \checkmark To Program ADC, we have to initialize registers before using it.

The registers are:

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

ADxCR where x=0 or 1

ADOCR for ADC0 - ADC0 Control Register

√ To Program ADC, we have to initialize registers before using it.

The registers are:

ADxCR where x=0 or 1

ADOCR for ADC0 - ADC0 Control Register

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

- ADOCR for ADC0 ADC0 Control Register
- 2 AD1CR for ADC1 ADC1 Control Register

ADC Initilization

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

- ADOCR for ADC0 ADC0 Control Register
- AD1CR for ADC1 ADC1 Control Register

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

- ADOCR for ADC0 ADC0 Control Register
- AD1CR for ADC1 ADC1 Control Register
- \checkmark Both the Registers are of 32 Bits.

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

- ADOCR for ADC0 ADC0 Control Register
- AD1CR for ADC1 ADC1 Control Register
- ✓ Both the Registers are of 32 Bits.

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

 $AD \times CR$ where x = 0 or 1

- ADOCR for ADC0 ADC0 Control Register
- AD1CR for ADC1 ADC1 Control Register
- ✓ Both the Registers are of 32 Bits.

NOTE: AD0.0 and AD0.5 pins are not available for ADC0

✓ To Program ADC, we have to initialize registers before using it.

The registers are:

 $AD \times CR$ where x = 0 or 1

- ADOCR for ADC0 ADC0 Control Register
- AD1CR for ADC1 ADC1 Control Register
- ✓ Both the Registers are of 32 Bits.

NOTE: AD0.0 and AD0.5 pins are not available for ADC0

ADxCR

ADxCR- ADCx Control Register This register is Used to control ADC operation

ADxCR

ADxCR- ADCx Control Register This register is Used to control ADC operation

Bit Sym	bol Description	Bit Value
---------	-----------------	-----------

	Bit	Symbol	Description	Bit Value
ſ	7-0	SEL	Selects pins to be sampled and converted	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-	8 CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-3	17 CLKS	Selects the number of clocks	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1

Bit	Symb	ool [Description	Bit Value
7-0	SEI	- 3	Selects pins to be sampled and converted	00000000
15-	8 CLKE		To produce the clock	00001110
16	BUR	ST T	To disable Repeated conversions	0
19-3	17 CLK	S S	Selects the number of clocks	000
20	-	F	Reserved	0
21	. PDI	V c	operational or power-down mode	1
23-2	22 -	F	Reserved	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	000

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	000
27	EDGE	Rising or falling edge	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	000
27	EDGE	Rising or falling edge	0

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	000
27	EDGE	Rising or falling edge	0
31-28	-	Reserved	

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	000
27	EDGE	Rising or falling edge	0
31-28	-	Reserved	0000

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	000
27	EDGE	Rising or falling edge	0
31-28	-	Reserved	0000

ADxCR- ADCx Control Register

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	000
27	EDGE	Rising or falling edge	0
31-28	-	Reserved	0000

ADxCR = 0x00200E00;

ADxCR- ADCx Control Register

This register is Used to control ADC operation

Bit	Symbol	Description	Bit Value
7-0	SEL	Selects pins to be sampled and converted	00000000
15-8	CLKDIV	To produce the clock	00001110
16	BURST	To disable Repeated conversions	0
19-17	CLKS	Selects the number of clocks	000
20	-	Reserved	0
21	PDN	operational or power-down mode	1
23-22	-	Reserved	0
26-24	START	Control start of ADC conversion	000
27	EDGE	Rising or falling edge	0
31-28	-	Reserved	0000

ADxCR = 0x00200E00;

ADxCR

ADxCR contd...

Bits 7-0 in ADxCR(SEL)

SEL	Description
7	1- ADx.7 is sampled and converted
'	0- ADx.7 is not sampled and converted
6	1- ADx.6 is sampled and converted
0	0- ADx.6 is not sampled and converted
5	1- ADx.5 is sampled and converted
3	0- ADx.5 is not sampled and converted
4	1- ADx.4 is sampled and converted
4	0- ADx.4 is not sampled and converted
3	1- ADx.3 is sampled and converted
3	0- ADx.3 is not sampled and converted
2	1- ADx.2 is sampled and converted
-	0- ADx.2 is not sampled and converted
1	1- ADx.1 is sampled and converted
1	0- ADx.1 is not sampled and converted
0	1- ADx.0 is sampled and converted
U	0- ADx.0 is not sampled and converted

• Bits 19-17 in ADxCR (CLKS)

Function
11clocks/ 10bits
10clocks/ 9bits
9clocks/8bits
8clocks/ 7bits
7clocks/ 6bits
6clocks/ 5bits
5clocks/ 4bits
4clocks/ 3bits

• Bits 19-17 in ADxCR (CLKS)

Function
11clocks/ 10bits
10clocks/ 9bits
9clocks/8bits
8clocks/ 7bits
7clocks/ 6bits
6clocks/ 5bits
5clocks/ 4bits
4clocks/ 3bits

ADxCR

 Bits 26-24 in ADxCR(START): When the BURST bit is 0, these bits control whether and when an A/D conversion is started,

Bit Value	Function
000	No start
001	Start Conversion now
010	Start conversion when the edge occurs on P0.16/MAT0.2
011	Start conversion when the edge occurs on P0.22/MAT0.0
100	Start conversion when the edge occurs on MAT0.1
101	Start conversion when the edge occurs on MAT0.3
110	Start conversion when the edge occurs on MAT1.0
111	Start conversion when the edge occurs on MAT1.1

ADxCR

 Bits 26-24 in ADxCR(START): When the BURST bit is 0, these bits control whether and when an A/D conversion is started,

Bit Value	Function
000	No start
001	Start Conversion now
010	Start conversion when the edge occurs on P0.16/MAT0.2
011	Start conversion when the edge occurs on P0.22/MAT0.0
100	Start conversion when the edge occurs on MAT0.1
101	Start conversion when the edge occurs on MAT0.3
110	Start conversion when the edge occurs on MAT1.0
111	Start conversion when the edge occurs on MAT1.1

ADxGDR - A/D Global Data Register

This register contains the ADC's DONE bit and the result of the most recent A/D conversion.

Bit	Symbol	Description
5-0	-	Reserved
15-6	RESULT	When DONE is 1, this
		field contains ADC converted data
23-16	-	Reserved
26-24	CHN	Channel Number
29-27	-	Reserved
30	OVERUN	1 if the results of one or more conversions were lost before
		the conversion that produced the result in the RESULT bits.
31	DONE	This bit is set to 1 when an A/D conversion completes.

Syntax for C-Program ADC Initialization

Syntax for C-Program ADC Initialization

```
Init_ADC_Pin
```


Syntax for C-Program ADC Initialization

```
Init_ADC_Pin
```

```
void Init_ADC_Pin (void) //Configure ADC Ports
{

PINSEL0= 0x0F003F00; //Set pins P0.4, P0.5, P0.6, P0.12, P0.13 as ADC pins
PINSEL1= 0x05000000; //Set pins P0.28 and P0.29 as ADC pins
}
```


Syntax for C-Program ADC Initialization

```
Init\_ADC\_Pin
```

```
void Init_ADC_Pin (void) //Configure ADC Ports
{

PINSEL0= 0x0F003F00; //Set pins P0.4, P0.5, P0.6, P0.12, P0.13 as ADC pins
PINSEL1= 0x05000000; //Set pins P0.28 and P0.29 as ADC pins
}
```

ADC Initialization

Program

Syntax for C-Program ADC Initialization

Init_ADC_Pin

```
void Init_ADC_Pin (void) //Configure ADC Ports
{

PINSEL0= 0x0F003F00; //Set pins P0.4, P0.5, P0.6, P0.12, P0.13 as ADC pins
PINSEL1= 0x05000000; //Set pins P0.28 and P0.29 as ADC pins
}
```

ADC Initialization

```
void Init_ADC() //Set Register Values for starting ADC
{
    ADOCR = ADICR = }
```


Program

Syntax for C-Program ADC Initialization

Init_ADC_Pin

```
void Init_ADC_Pin (void) //Configure ADC Ports
{

PINSEL0= 0x0F003F00; //Set pins P0.4, P0.5, P0.6, P0.12, P0.13 as ADC pins
PINSEL1= 0x05000000; //Set pins P0.28 and P0.29 as ADC pins
}
```

ADC Initialization

```
void Init_ADC() //Set Register Values for starting ADC
{
    ADOCR = ADICR = }
```


Syntax for C-Program


```
Main Program
```


Main Program

Main Program

Syntax for C-Program

AD0 Conversion Function

Program

Syntax for C-Program Program

AD0 Conversion Function

```
unsigned char ADO_Conversion(unsigned char Ch)
unsigned int Temp;
if(channel!=0)
    ADOCR = (ADOCR & OxFFFFFF00) | (1<<channel);
else
    ADOCR = (ADOCR & OxFFFFFF00) | 0x01;
ADOCR = (1 << 24);
while((ADOGDR & 0x80000000)==0);
Temp = ADOGDR;
Temp = (Temp>>8) & 0xFF;
return Temp;
```


Syntax for C-Program

AD1 Conversion Function

Program

Syntax for C-Program Program

AD1 Conversion Function

```
unsigned char AD1_Conversion(unsigned char Ch)
{
  unsigned int Temp;
  if(channel!=0)
{
      AD1CR = (AD1CR & OxFFFFFF00) | (1<<channel);
}
else
{
      AD1CR = (AD1CR & OxFFFFFF00) | 0x01;
}
AD1CR = (AD1CR & 0xFFFFFF00) | 0x01;
}
AD1CR|=(1 << 24);
while((AD1GDR & 0x80000000)==0);
Temp = AD1GDR;
Temp = (Temp>>8) & 0xFF;
return Temp;
}
```


Thank You!

Post your queries on: http://qa.e-yantra.org/

