Etude métrique et construction de la cardioïde

Le plan géométrique euclidien est muni d'un repère orthonormé direct $\mathcal{R} = (O; \vec{i}, \vec{j})$.

Pour tout $\theta \in \mathbb{R}$, on note $\vec{u}_{\theta} = \cos\theta.\vec{i} + \sin\theta.\vec{j}$ et $\vec{v}_{\theta} = -\sin\theta.\vec{i} + \cos\theta.\vec{j}$ les vecteurs polaires d'angle θ . L'objet de ce problème est l'étude de la courbe Γ définie par l'équation polaire $\rho = 1 + \cos\theta$, c'est à dire la courbe de point courant $M(\theta)$ déterminé par $\overrightarrow{OM(\theta)} = \rho(\theta) \vec{u}_{\theta}$ avec $\rho(\theta) = 1 + \cos\theta$.

- 1.a Comparer les points $M(\theta)$ et $M(\theta+2\pi)$ d'une part et $M(\theta)$ et $M(-\theta)$ d'autre part. Pour étudier Γ , à quel intervalle peut-on limiter l'étude de la fonction $\rho: \theta \mapsto 1 + \cos\theta$?
- 1.b Dresser le tableau de variation de la fonction $\rho: \theta \mapsto 1 + \cos \theta \text{ sur } [0, \pi]$.
- 1.c Préciser, pour les paramètres $\theta = 0$, $\theta = \pi$, $\theta = \pi/2$, le point et la tangente à la courbe en ce point.
- 1.d Donner l'allure de la courbe Γ .
- 2.a Calculer la longueur de la courbe Γ .
- 2.b Calculer le rayon de courbure en tout point régulier de Γ .
- 2.c Calculer l'aire du domaine borné délimité par Γ .
- 3. On note $\mathcal C$ le cercle de centre $\Omega(1/2,0)$ et passant par O. On rappelle que l'équation polaire de cercle est $\rho=\cos\theta$.
- 3.a On note $I(\theta)$ le milieu du segment d'extrémités $M(\theta)$ et $M(\theta+\pi)$. Justifier que $I(\theta) \in \mathcal{C}$ et calculer la longueur $I(\theta)M(\theta)$.
- 3.b On note $J(\theta)$ le point du cercle $\mathcal C$ diamétralement opposé au point $I(\theta)$. Exprimer $\overrightarrow{OJ(\theta)}$ en fonction de θ et du vecteur $\overrightarrow{v}_{\theta}$.
- 3.c A quelles conditions particulières a-t-on $J(\theta) = M(\theta)$? On suppose désormais ce cas exclu.
- 3.d Montrer que la droite joignant les points $J(\theta)$ et $M(\theta)$ est orthogonale à la tangente à Γ en $M(\theta)$.
- 3.e Des informations précédentes, déterminer un procédé permettant, à l'aide du cercle $\mathcal C$, de construire les points $M(\theta)$ et les tangentes à Γ en ces points.