Wednesday, January 8, 2020 10:20

Last time: Hölder inequality.

if $f, g \in (1, \infty)$ $w \neq \frac{1}{2} = 1$ (conjugate exponents) and $f \in L^p$, $g \in L^q$, then $fg \in L'$ and $\|fg\|_1 \le \|f\|_p \|g\|_q$.

Minkowski ineq: for 1≤P<∞, f.g ∈ LP, ||f+g||p ≤ ||f||p+ ||g||p

 $\frac{Pf}{F}$ for P>1, $|f+g|^P \leq (|f|+|g|)|f+g|^{P-1}$

 Note: $\frac{P+\varrho}{Pq} = 1$ $P+\varrho = \varrho$ $2(P-1) = \varrho$ and $2(P-1) = \varrho$ $= \varrho$

Ex: When does equality hold in Minkowski?

Examples of Los paces.

1) $X = \mathbb{R}^d$ w/ belonge measure. $L^p(\mathbb{R}^d)$

Wheeder-Zygmund.

2)
$$X = N$$
 w/ counting measure $l^{p}(N) =: l^{p}$

Theorem 1: for 1cp < 00, L' is a Banach space.

We need:

- · A normed space X is complete if absolutely convergent services converge.
- · Monotone Convergence than

(fn) in I nondecreasing sequence => limfn = Slimfn.

· Dominated conveyence thum.

(fn) in l' sit. fn →f sie. & 3gel' sit Hnlig Vn aie. > hmffn = flimfn.

Proof of theorem 1: let $\mathbb{Z}_{f_k}^{\infty}$ be an absolutely convergent series (i.e. $\mathbb{Z}_{k}^{\infty}\|f_k\|_p = :B < \infty$).

D

Partial sums $S_n = \sum_{i=1}^{n} |f_{ki}|$, $S = \sum_{i=1}^{\infty} |f_{ki}|$. $|S_n||_{p} \leq \sum_{i=1}^{n} ||f_{ni}||_{p} \leq B$ $\forall n$.

By Mct, $\int \lim S_n^P = \lim \int S_n^P \Rightarrow \int S_n^P = \lim \int S_n^P \leqslant B_n^P < \infty$,

So SELP so Sea a.e. so $\sum_{k=1}^{\infty} f_k$ converges a.e. (to F, say).

 $\left| F - \sum_{i=1}^{n} f_{k} \right|^{p} \leq (2s)^{p} \in L'$

 $\implies \lim_{D \to \infty} \left| \lim_{x \to \infty} \int_{x} \left| F - \sum_{i=1}^{\infty} f_{i} \right|^{2} = \int_{x} \lim_{x \to \infty} \left| F - \sum_{i=1}^{\infty} f_{i} \right|^{2} = \int_{x} 0 = 0$

~> \(\sum_k \) converges in \(\L^p \).

Examples of L' functions:

Consider LP(Rd). Let

 $f_{\alpha}(x) = \begin{cases} |x|^{-\alpha} & \text{if } |x| < 1 \\ 0 & \text{otherwise} \end{cases}$

Exercise: fx & l' iff px < d.

Proof if X has positive finite measure of $P \leq q$ then $\lfloor P > \lfloor 2 \rfloor$ Proof direct application of Hölder:

suppose $f \in \lfloor 2 \rfloor$. Let $r = \frac{q}{P}$, S = conjugate of r.

If $\int_{P}^{P} = \int |f|^{p} = \int |f|^{p} \cdot 1 = \|f^{p}\|_{r} \cdot \|1\|_{S} = \left(\int (|f|^{p})^{3/p}\right)^{p/2} \cdot \mu(X)^{3/s} = \|f\|_{q}^{p} \cdot \mu(X)^{3/s}$ There $\frac{1}{S} = |-\frac{p}{1}|_{Q} \cdot \mu(X)^{\frac{1}{p-1}} = \frac{1}{2}$

 \Box

Propo" Simple functions are dense in L' for 16pc ..