Отчет по задаче 8.11.4. Трубачев Илья

$$\begin{cases} x' = z \\ y' = u \\ z' = -\frac{x}{(x^2 + y^2)^{3/2}} \\ u' = -\frac{y}{(x^2 + y^2)^{3/2}} \end{cases} \quad 0 < t < 20, x(0) = 0.5, y(0) = z(0) = 0, u(0) = 1.73$$

Использованы методы Рунге-Кутты с соответствующими таблицами Бутчера:

	0				$\frac{0}{1/2}$	1/9			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1/2	$\begin{array}{c c} 1/2 \\ 0 \\ 1/6 \end{array}$	$\frac{1}{4/6}$	1/6	1/2	0	1/2	1	
		1/0	1/0	1/0		1/6	2/6	2/6	1/6

Построены графики u(t) и траектория f(x,y,z)=0 для различных значений шага интегрирования. Видно, что точность построения графиков зависит от шага интегрирования: для наглядности можно сравнить графики, построенные методом PK первого порядка для шага 0.5 и 0.001.