P. Pages: 3

B.E. (Computer Science Engineering) Fourth Semester (C.B.S.)

Theoretical Foundation of Computer Science

Time: Three Hours

* 0 2 0 4 *

Max. Marks: 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Solve Question 1 OR Questions No. 2.
 - 3. Solve Question 3 OR Questions No. 4.
 - 4. Solve Question 5 OR Questions No. 6.
 - 5. Solve Question 7 OR Questions No. 8.
 - 6. Solve Question 9 OR Questions No. 10.
 - 7. Solve Question 11 OR Questions No. 12.
 - 8. Due credit will be given to neatness and adequate dimensions.
 - 9. Assume suitable data whenever necessary.
 - 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 1. a) Explain Pigeon hole principal.

8

3

6

7

7

6

NRJ/KW/17/4436

- b) Define the following terms with suitable example.
 - i) Prefix
 - ii) Suffix
 - iii) Substring
 - iv) Subsequences
- c) Explain closure of a Relation, 2

find R* for

$$R = \{(1,1), (1,2), (2,1), (2,3), (3,2)\}$$

OR

- **2.** a) Explain Chomsky Hierarchy in detail.
 - b) Using Mathematical induction, prove that

P(n):1.1!+2.2!+3.3!+....+n.n!

$$=(n+1)!-1, n>1$$

3. a) Design a Finite Automata for accepting

 $L = \begin{cases} w & | w \in (a/b)^* \\ n(a) W M0D3 > n(b) W M0D3 \end{cases}$

also write application of Finite Automata.

b) Obtain a Deterministic Finite Automata for

OR

NRJ/KW/17/4436 1 P.T.O

4. Convert the given Mealy Machine into equivalent Moore Machine. a)

Design a Moore and Mealy machine over $\Sigma = \{a, b\}$ such that it will generate output b) EVEN if the number of a's are Even & generate output ODD if number of a's are odd.

6

7

5. Convert the given Finite Automata to equivalent Regular Expression. a)

8

Construct NFA with ∈ -transitions equivalent to the given Regular Expression. b)

6

$$R = 10 + (0 + 11)0^*1$$

OR

Explain the procedure to convert Right linear grammar to equivalent left linear grammar, **6.** a) convert the given RLG into LLG.

8

 $S \rightarrow 01A|10$

$$A \rightarrow 10A | 10$$

Convert the given grammar into GNF without renaming the grammar. $S \to AB$ $A \to BS \mid b$ b)

6

$$A \rightarrow BS \mid b$$

$$B \rightarrow SA \mid a$$

7

7

7. a) Design a Non deterministic PDA for

$$L = \left\{ WW^{R} \middle| W \in (a/b)^{*} \right\}$$

$$W^{R} \text{ is Reverse of } W$$

Also explain STACK Execution with valid string.

Design a PDA for given CFG. b)

 $S \rightarrow XY$

$$X \rightarrow AX \mid BX \mid a$$

$$Y \rightarrow YA \mid YB \mid a$$

- $A \rightarrow a$
- $B \rightarrow b$

OR

8. a) Design a PDA for

$$L = \left\{ W \middle| \begin{aligned} W \in (a/b)^* \\ n_a(W) = n_b(W) \end{aligned} \right.$$

Where $n_a(W) \rightarrow Number of a's in W$

& $n_b(W) \rightarrow Number of b's in W$

b) Convert the given PDA to CFG.

$$\delta(q_0, a, z_0) \Rightarrow (q_0, xz_0)$$

$$\delta(q_0, a, x) \Rightarrow (q_0, xx)$$

$$\delta(q_0, b, x) \Rightarrow (q_1, \epsilon)$$

$$\delta(q_1, b, x) \Rightarrow (q_1, \epsilon)$$

$$\delta(q_1,\in,z_0)\!\Rightarrow\!(q_1,\in)$$

- 9. a) Design a Turing Machine to perform $\frac{(n+1)}{2}$ where n is an uniary number.
 - b) Explain different types of Turing Machine.

OR

7

7

7

6

7

6

7

6

7

6

10 a) Design a Turing Machine that has INPUT: → #W# and generates OUTPUT: → #W#W

where $W = \{a, b\}^{+}$.

- b) Explain various properties of Recursively Enumerable Language.
- 11. a) What do you mean by Primitive Recursive Functions? Show that $A_{DD}(x,y)$ and SUB (x,y) are Primitive Recursive?
 - b) Write short notes on LBA.

OR

- 12. a) What is Ackermann's Function, Calculate A(1,1) A(1,2) A(2,1)
 - b) What is the significance of PCP, Solve the following using PCP

i	wi	хi
1	0	000
2	01000	01
3	01	1
