

http://visnow.icm.edu.pl

UNIVERSITY OF WARSAW Interdisciplinary Centre for Mathematical and Computational Modelling www.icm.edu.pl

VisNow availability

Open source project

- Open access to Java source code
- GitLab: https://gitlab.com/ICM-VisLab/VisNow
- Cooperation possible

Platform independent

- Java >=1.7
- Windows, Linux, Mac OS X

VISNOW

Current version

• v1.3.1

http://visnow.icm.edu.pl

Advanced visualization with VisNow platform Data structures

Data for visualization

Geometry

- N-dimensional point coordinates (N=1,2,3)
 - Location in space
 - Naturally given or calculated on the basis of structure or values
 - Explicit or easily calculable

Structure

- Logical relations between points
- Usually imposes possible interpolations
- Problem dependant

Values

Scalar, vector, tensor, symbolic, etc.

Generic data type

FIELD = geometry + structure + values

VisNow fields

Regular Field

- Structured grid of neighbouring nodes
- 1/2/3-dimensional grid
- Values defined on nodes
- Simple example: image data

Irregular Field

- Unstructured nodes
- Cells defined over nodes
- Cell sets defined over cells form a grid
- 0/1/2/3-dimensional cells
- Values defined on nodes or cells
- Simple example: scanned 3D surface

Regular Field structure

Structure

- Array based
- Indexed as i,j,k

1D

2D

3D

nematical

Regular Field geometry

Explicit/curvlinear/arbitrary

 Geometry described explicitly by x,y,z coordinates for each node

Affine/linear

- Geometry described implicitly by base
- N base vectors for N-dimensional field
- Node coordinates calculated from position in structure (i,j,k), basis vectors and origin point

Irregular Field structure and geometry

Explicit geometry

Geometry described explicitly by x,y,z coordinates for each node

Structure

- Nodes indexed as i
- Cell
 - 0D/1D/2D/3D
 - Given by list of vertices/node indices
 - Limited to declared types
- Cellset
 - Group of cells of any types
 - Additionaly group of boundary cells
- Irregular Field
 - Can contain any number of cellsets
 - Cellsets can overlap

F WARSAW Centre for Mathematical nal Modelling

Irregular Field cells

OD Cells	1D Cells	2D Cells		3D Cells	Vertices	Example
Point		1				
	Segment		2			
	Tri angle	3				
Quad rilate		iteral	4			
		Tera hedron		4		
		Pyramid	5			
		Prism 6				
		Hex ahedron	8			

Irregular Field examples

Regular Field values

Node data

- Value assigned to node
- Interpolated on walls and edges
- · Global for field

Irregular Field values

Node data

- Value assigned to node
- Interpolated on walls and edges
- · Global for field

Cell data

- Value assigned to whole cell
- Local for cellset

Data components

- Each field or cellset can have several values assigned
- Consistent piece of information, declared over all nodes (node data) or all cells in cellset (cell data) is called data component
- E.g. numerical weather forecast simulation calculates several values in each grid node: pressure, temperature, wind direction and velocity, etc. Each such measurement is stored as a single data component.
- Values stored in components can be numbers, texts or other objects (e.g. atom) and can be scalar or vector

Component

- Name used for component identification and description
- Type defines data type of this component
- Vector length 1 for scalar data, >1 for vector data
- Range range of numerical values
- Physical range range of linearly mapped physical values
- Unit unit for physical range

Data types

Byte

- Unsigned single byte
- Values 0 255

Short

- Signed short (two bytes)
- Values -32768 32768

Int

- Signed integer (four bytes)
- Values -2^31-1 2^31-1

Float

Single precision floating numbers (four bytes)

Double

Double precision floating numbers (eight bytes)

Logic

Binary true/false

String

Text data

Complex

- Complex numbers
- Single precision (float)

Object

- Any Java object
- Requires additional suport in modules

Other field parameters

Mask

- Binary information on node validity
- Invalid nodes are not displayed

Time

- Time dependent geometry
- Time dependent data
- Time dependent mask

visnow.icm.edu.pl

Contact:

visnow@icm.edu.pl

Interdisciplinary Centre for Mathematical and Computational Modelling

University of Warsaw

Bartosz Borucki, Krzysztof Nowiński

Visualisation lecture and practicals

Contact:

Bartosz Borucki <u>babor@icm.edu.pl</u>

Krzysztof Nowiński know@icm.edu.pl

Jędrzej Nowosielski <u>inow@icm.edu.pl</u>

Interdisciplinary Centre for Mathematical and Computational Modelling

University of Warsaw

