MATH4404 Theorems

Conal O'Leary

October 2021

The theorem about the existence of a completion of a normed space.

Theorem 1. If E is a normed linear space, then there exists a complete normed space \tilde{E} such that

- i) $E \subset \tilde{E}$
- ii) $||x||_E = ||x||_{\tilde{E}}$
- iii) E is dense in \tilde{E}

Proof. Construct \tilde{E} as equivalence classes of Cauchy Sequences $(x_1, x_2, \ldots,) \sim (y_1, y_2, \ldots,)$ if $(x_1, y_1, x_2, y_2, \ldots,)$ is also Cauchy. We embed each $x \in E$ as $(x, x, x, \ldots,) \in \tilde{E}$. This is certainly a Cauchy sequence and as such, well defined.

Now we will show that our operations $(+,\cdot)$ are well defined. Take two sequences $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ in \tilde{E} such that $(x_n)_{n=1}^{\infty} \in [x']$ and $(y_n)_{n=1}^{\infty} \in [y']$. Our operations is defined as below,

$$(x_1, x_2, \dots,) + (y_1, y_2, \dots,) = (x_1 + y_1, x_2 + y_2, \dots,)$$

We wish to show that this sequence is an element of [x' + y']. Consider the sequence.

$$(z_n)_{n=1}^{\infty} = (x_1 + y_1, x' + y', x_2 + y_2, x' + y', \dots,)$$

We will show this is Cauchy.

Given $\varepsilon > 0$, there exists large enough $N \in \mathbb{N}$ such that (x_n) and (y_n) behave as expected. Now for all n > m, there are two cases,

$$||z_n - z_m|| = ||x_n + y_n - x_m - y_m||$$

 $\leq ||x_n - x_m|| + ||y_n - y_m||$

or

$$||z_n - z_m|| = ||x_n + y_n - x' - y'||$$

 $\leq ||x_n - x'|| + ||y_n - y'||$
 $\leq \varepsilon$

So we have $(z_n)_{n=1}^{\infty} \in [x'+y']$.

Multiplication is defined as expected. The norm in \tilde{E} is defined as follows,

$$||[(x_1, x_2, \dots,)]||_{\tilde{E}} = \lim_{n \to \infty} ||x_n||_E$$

We will now show that the properties of the norm hold. It is trivial that $||\cdot||_{\tilde{E}\geq 0}$ since $||\cdot||_{E}\geq 0$. We will now show that $x=0\iff ||x||_{\tilde{E}}=0$

 \Longrightarrow

Let $(x_n)_{n=1}^{\infty}$ be an element of [0], so we know for every $\varepsilon > 0$ and large enough n, $||x_n - 0|| < \varepsilon$. Continuing,

$$||[(x_1, x_2, \dots,)]||_{\tilde{E}} = \lim_{n \to \infty} ||x_n||_E$$

$$< \varepsilon$$

This holds for every $\varepsilon > 0$ So we have $||[(x_1, x_2, \dots,)]|| = 0$.

 \leftarrow

Assume $||[(x_1, x_2, ...,)]|| = 0$, we wish to show $(x_1, x_2, ...,) \in [0]$. By the continuity of the norm (Reverse Triangle Inequality),

$$0 = \lim_{n \to \infty} ||x_n||$$
$$= ||\lim_{n \to \infty} x_n||$$

We have that E is a normed space so it holds that $||x_n||_E = 0 \implies x_n = 0$. So it is quite clear that $(x_1, 0, x_2, 0, \ldots,)$ is Cauchy. Thus, $(x_n)_{n=1}^{\infty} \in [0]$.

Now we will prove the Triangle Inequality, let $(x_n)_{n=1}^{\infty}$ and $(y_n)_{n=1}^{\infty}$ in \tilde{E} . Wish to show $||[(x_1, x_2, ...)]| + [(y_1, y_2, ...)]|| \le ||[(x_1, x_2, ...)]|| + ||[(y_1, y_2, ...)]||$

$$||[(x_1, x_2, \dots)] + [(y_1, y_2, \dots,)]|| = \lim_{n \to \infty} ||x_n + y_n||$$

$$\leq \lim_{n \to \infty} ||x_n|| + ||y_n||$$

$$= \lim_{n \to \infty} ||x_n|| + \lim_{n \to \infty} ||y_n||$$

Since $(||x_n||)_{n=1}^{\infty}$ and $(||y_n||)_{n=1}^{\infty}$ are Cauchy \mathbb{R} and \mathbb{R} is complete. So $||\cdot||_{\tilde{E}}$ is a valid norm. We will now show that \tilde{E} is indeed complete.

Take some Cauchy sequence $(\tilde{x}_n)_{n=1}^{\infty} \subset \tilde{E}$, will show there exists an $\tilde{x} \in \tilde{E}$ such that $\lim_{n\to\infty} \tilde{x}_n = \tilde{x}$. Since E is dense in \tilde{E} , for every $n \in \mathbb{N}$ there exists $x_n \in E$ such that

$$||(x_n, x_n, \dots) - \tilde{x}_n|| < \frac{1}{n}$$

$$(x_1, x_1, x_1, \dots,) - \tilde{x}_2 < 1$$

$$(x_2, x_2, x_2, \dots,) - \tilde{x}_2 < \frac{1}{2}$$

Define $\tilde{x} = [(x_1, x_2, x_3, \dots)] = [(x_n)_{n=1}^{\infty}]$. We now need to verify that $(x_n)_{n=1}^{\infty}$ is indeed Cauchy.

$$||x_{k} - x_{m}||_{E} = ||(x_{k}, x_{k}, \dots,) - (x_{m}, x_{m}, \dots,)||_{\tilde{E}}$$

$$\leq ||(x_{k}, x_{k}, \dots,) - \tilde{x}_{k}|| + ||\tilde{x}_{k} - \tilde{x}_{m}||_{\tilde{E}} + ||\tilde{x}_{m} - (x_{m}, x_{m}, \dots,)||_{\tilde{E}}$$

$$\leq \frac{1}{k} + \frac{1}{m} + ||\tilde{x}_{k} - \tilde{x}_{m}||_{\tilde{E}}$$

Since $(\tilde{x}_n)_{n=1}^{\infty}$ is Cauchy this goes to 0 as $k, m \to \infty$. Thus $(x_n)_{n=1}^{\infty}$ is Cauchy.

$$||\tilde{x}_n - \tilde{x}||_{\tilde{E}} = ||\tilde{x}_n - (x_n, x_n, \dots,)||_{\tilde{E}} + ||(x_n, x_n, \dots,) - \tilde{x}||_{\tilde{E}}$$

$$\leq \frac{1}{n} + \lim_{m \to \infty} ||x_n - x_m||_{E}$$

Since $(x_n)_{n=1}^{\infty}$ we have that this goes to 0 as $n, m \to \infty$, and so $(\tilde{x}_n)_{n=1}^{\infty}$ converges to \tilde{x} .

The Bunyakovsky-Cauchy-Schwarz inequality.

Theorem 2. Let H be an inner product space, for all $x, y \in H$,

$$|(x,y)|^2 \le (x,x)(y,y)$$

Proof. If x=0 or y=0 use linearity to prove. Assume $y\neq 0$. Let $\lambda=\frac{(x,y)}{(y,y)}$. Note that

$$(x - \lambda y, y) = (x, y) - \lambda(y, y)$$
$$= (x, y) - \frac{(x, y)}{(y, y)}(y, y)$$
$$= 0$$

So,

$$0 \le (x - \lambda y, x - \lambda y)$$

$$= (x - \lambda y, x) - \overline{\lambda}(x - \lambda y, y)$$

$$= (x - \lambda y, x)$$

$$= (x, x) - \lambda(y, x)$$

$$= (x, x) - \frac{|(x, y)|^2}{(y, y)}$$

So, $|(x,y)|^2 \le (x,x)(y,y)$.

The theorem about the equivalence of all the norms in \mathbb{R}^n .

Theorem 3. Any two norms in \mathbb{R}^n are equivalent. If $||\cdot||_1$ and $||\cdot||_2$ are norms in \mathbb{R}^n then there exists $c_1, c_2 > 0$ such that

$$|c_1||x||_1 \le ||x||_2 \le |c_2||x||_1$$

Proof. We may assume that $||\cdot||_1$ is the standard Euclidian norm in \mathbb{R}^n . We know that the unit sphere (w.r.t the standard norm) $S_1(0)$ is compact in \mathbb{R}^n since it is closed and bounded (Heine-Borel). We will now prove that the function $x \mapsto ||x||_2$ is a continuous function. Indeed, consider the sequence $(x_n)_{n=1}^{\infty}$ which converges to x, we wish to show that $||x_n||_2$ converges to $||x||_2$.

$$|||x_n|| - ||x||| \le ||x_n - x||_2 \to 0$$

So indeed this function is continuous. Therefore by EVT it attains its maximum and minimum on $S_1(0)$. Therefore

$$||x||_2 = ||x||_1 \times \left\| \frac{x}{||x||_1} \right\|_2$$

 $\leq ||x||_1 \times \sup_{x \in S_1(0)} ||x||_2$

Analogously for the other direction, inf non-zero since $x \in S_1(0)$.

A functional (operator) is continuous at one point if and only if it is continuous everywhere.

Theorem 4. (Same for both) Let E_1, E_2 be normed vector spaces, if A, a linear operator between E_1 and E_2 is continuous at one point, then A is continuous everywhere.

Assume A is continuous at the point $x_0 \in E_1$. Given $x \neq x_0$ we wish to prove A is continuous at x. Take a sequence $(x_n)_{n=1}^{\infty} \subset E$ such that $\lim_{n\to\infty} x_n = x$. We will show $\lim_{n\to\infty} A(x_n) = A(x)$.

$$\lim_{n \to \infty} A(x_n + x_0 - x_0 + x - x) = \lim_{n \to \infty} A((x_n - x) + x_0) + A(x - x_0)$$

$$\to A(x_0) + A(x) - A(x_0)$$

$$= A(x)$$

So $A(x_n) \to A(x)$, so A is continuous.

A functional (operator) is continuous if and only if it is bounded.

Theorem 5. (Same for both) Let E be a normed vector space and l be a linear functional on E. l is continuous if and only if it is bounded.

Proof. \Longrightarrow Assume l is bounded, we wish to show that l is continuous at one point, and thus everywhere. Consider a sequence $(x_n)_{n=1}^{\infty} \subset E$ such that $\lim_{n\to\infty} x_n = 0$.

$$|l(x_n)| \le c||x_n|| \to 0 \quad n \to \infty$$

So l is continuous at 0 and thus everywhere.

 \Leftarrow For the sake of contradiction, assume l is continuous but unbounded. There exists a sequence $(x_n)_{n=1}^{\infty} \subset E$ such that

$$|l(x_n)| \ge n||x_n||$$

Define $\hat{x}_n = \frac{x_n}{n||x_n||}$, we have that $||\hat{x}_n|| = \frac{1}{n} \to 0$ as $n \to \infty$. So by continuity, $l(\hat{x}_n)$ should go to 0. However,

$$|l(\hat{x}_n)| = \frac{|l(x_n)|}{n||x_n||} \ge 1$$

Here lies our contradiction.

The theorem about the completeness of the dual space.

Theorem 6. Let E be a normed vector space, E', it's dual, is complete.

Proof. Take a Cauchy sequence $(l_n)_{n=1}^{\infty} \subset E'$. Let us construct its limit l. For $x \in E$, we have

$$|l_n(x) - l_m(x)| \le ||l_n - l_m|| \cdot ||x|| \to 0$$

As $n, m \to \infty$. So let us define,

$$l(x) = \lim_{n \to \infty} l_n(x)$$

We will now show linearity and boundedness of l.

$$l(\lambda x + \gamma y) = \lim_{n \to \infty} (l_n(\lambda x + \gamma y))$$
$$= \lim_{n \to \infty} (\lambda l_n(x) + \gamma l_n(y))$$
$$= \lambda l(x) + \gamma l(y)$$

$$||l|| = \sup_{||x|| \le 1} ||l(x)||$$

$$= \sup_{||x|| \le 1} ||\lim_{n \to \infty} l_n(x)||$$

$$\le \sup_{||x|| \le 1} \lim_{n \to \infty} ||l_n|| \cdot ||x||$$

$$\le C \cdot \sup_{||x|| \le 1} ||x||$$

$$< C$$

For some C > 0 as $(||l_n||)_{n=1}^{\infty}$ is Cauchy, it is bounded. It remains to show $||ln - l|| \to 0$. Since $(l_n)_{n=1}^{\infty}$ is Cauchy, for large enough n and m,

$$|l_n - l_m| < \varepsilon ||x||$$

Now pass the limit $m \to \infty$

$$\lim_{m \to \infty} |l_n - l_m| = |l_n - l|$$

$$\leq \varepsilon ||x||$$

So finally,

$$||l_n - l|| \to 0$$

The Hahn-Banach theorem.

Theorem 7. Let E be a normed space and G a linear subset. For every $l \in G'$, there exists some $L \in E'$ such that $L|_{G} = l$ and ||L|| = ||l||.

Lemma 1 (Dense subset). Let E be a normed space, $G \subset E$ a dense subset and $l \in G'$. Then there exists a unique $L \in E'$ such that $L|_G = l$ and ||L|| = ||l||.

Proof. Take $x \in E$. By density there exists a sequence $(g_n)_{n=1} 6\infty \subset E$ such that $\lim_{n\to\infty} g_n = x$. Define

$$L(x) = \lim_{n \to \infty} l(g_n)$$

Why is this well defined?

$$|l(g_n) - l(g_m)| \le ||l|| \cdot ||g_n - g_m|| \to 0$$

as $n, m \to \infty$. Thus $(l(g_n))_{n=1}^{\infty}$ converges. Why is L(x) independent of the sequence $(g_n)_{n=1}^{\infty}$. Indeed, consider $(g'_n)_{n=1}^{\infty} \subset E$ converging to x.

$$|l(g_n) - l(g'_n)| \le ||l|| \cdot (||g_n - x|| + ||g'_n - x||) \to 0$$

as $n \to \infty$. $L|_G = l$ since for every $x \in G$, take $g_n = x$ for every $n \in \mathbb{N}$. Let us show that the norm is preserved.

$$|L(x)| = |\lim_{n \to \infty} l(g_n)|$$

$$\leq \lim_{n \to \infty} ||l|| \cdot ||g_n||$$

$$= ||l|| \cdot \lim_{n \to \infty} ||g_n||$$

$$= ||l|| \cdot ||x||, \quad \text{by continuity of the norm}$$

Thus $||L|| \le ||l||$ and so ||L|| = ||l||. Now we will show uniqueness, consider $L_1|_G = L_2|_G = l$, by continuity,

$$L_1(x) = \lim_{n \to \infty} l(g_n) = L_2(x)$$

Lemma 2 (Extension of a functional by one dimension). Let E be a real normed space and $G \subset E$ a linear subspace. Choose $y \notin G$ and define $F = \operatorname{span}(G \cup \{y\})$. For any linear bounded functional l on G. There is a bounded linear functional $L \in F'$ such that $L|_{G} = l$ and ||L|| = ||l||.

Proof. Every $x \in F$ can be written as

$$x = g + \lambda y$$

where $g \in G$ and $\lambda \in \mathbb{R}$ in a unique way. Define $L: F \to \mathbb{R}$ by,

$$L(x) = l(y) + \lambda \cdot c$$

for some $c \in \mathbb{R}$. Let us now show that we can pick such a $c \in \mathbb{R}$ so ||L|| = ||l||, it is sufficient to show that $||L|| \le ||l||$, that is ||L|| has not increased any larger than ||l||.

The inequality $||L|| \le ||l||$ is equivalent to

$$|L(g + \lambda y)| = |l(y) + \lambda \cdot c|$$

$$\leq ||l|| \cdot |g + \lambda y| \qquad (*)$$

Sufficient to prove this for $\lambda > 0$, since $g + \lambda y = -(-g + (-\lambda)y)$. We can rewrite (*) as follows,

$$-||l|| \cdot |g+y| - l(y) \le \lambda c \le ||l|| \cdot |g+y| - l(y)$$

Now let $h = \lambda^{-1}g$ and divide the inequality by λ

$$-||l|| \cdot |h+y| - l(h) \le c \le ||l|| \cdot |h+y| - l(h)$$

To find such a c, notice that for all $h_1, h_2 \in G$.

$$\begin{split} l(h_2) - l(h_1) &\leq ||l|| \cdot ||h_2 - h_1 + y - y|| \\ &\leq ||l|| \cdot ||(h_2 + y) + -(h_1 + y)|| \\ &\leq ||l|| \cdot |h_1 + y| + ||l|| \cdot |h_2 + y|| \end{split}$$

Therefore,

$$-||l|| \cdot |h_1 + y| - l(h_1) \le ||l|| \cdot ||h_2 + y|| - l(h_2)$$

This implies that

$$\sup_{h_1 \in G} (-||l|| \cdot |h_1 + y| - l(h_1)) \le \inf_{h_2 \in G} (||l|| \cdot ||h_2 + y|| - l(h_2))$$

Choosing c in between this sup and inf will obtain (*).

Lemma 3 (Real and separable). Let E be a real, linear, separable normed space and $G \subset E$ a linear subset. For every $l \in G'$ there exists an $L \in E'$ such that $L|_{G} = l$ and ||L|| = ||l||.

Proof. Let

$$A = \{x_1, x_2, x_3, \dots\}$$

be a dense subset of E. Choose x_{n_1} to be the first element of A that does not lie in G. Define $G_1 = \operatorname{span}(G \cup \{x_{n_1}\})$. Extend l to $l_1: g_1 \to \mathbb{R}$ preserving the norm by Lemma 2. Repeating this procedure we obtain the subspaces,

$$G \subset G_1 \subset G_2 \subset \cdots$$

and similarly, functionals l, l_1, l_2, \ldots all with the same norm.

Define

$$M = \bigcup_{i=1}^{\infty} G_n$$

This is a linear set and is dense in E since it contains all of A. Now define $L_0: M \to \mathbb{R}$ as follows, if $x \in M$, then $x \in G_n$ for some $n \in \mathbb{N}$, so define

$$L_0(x) = l_n(x)$$

This clearly also preserves the norm since $||l|| = ||l_n||$ for every $n \in \mathbb{N}$. By continuity we can extend L_0 to all of E.

Lemma 4 (Complex and separable). Let E be a complex, linear, separable normed space and $G \subset E$ a linear subset. For every $l \in G'$ there exists an $L \in E'$ such that $L|_G = l$ and ||L|| = ||l||.

Proof. We can consider E as a vector space over the reals, denote it $E_{\mathbb{R}}$. Take $k \in E'$ and let $m = \Re(k)$ and $n = \Im(k)$, both of these lie in $E_{\mathbb{R}}$. Let us show they are bounded

$$|m(x)| \le |m(x) + in(x)| = |k(x)| \le ||k|| \cdot ||x||$$

Similar for |n(x)|. Thus $||m||, ||n|| \le ||k||$. Observe

$$m(ix) + in(ix) = k(ix)$$

$$= ik(x)$$

$$= i(m(x) + in(x))$$

$$= -n(x) + im(x)$$

So m(ix) = -n(x) and n(ix) = m(x).

We have that l is defined on $G \subset E$. We can extend l from $G_{\mathbb{R}}$ to $E_{\mathbb{R}}$ and moreover $\Re(l) = m \in G'_{\mathbb{R}}$ can be extended to $M \in E'_{\mathbb{R}}$ by Lemma 3.

Define

$$L(x) = M(x) - iM(ix)$$

Clearly $L|_G = l$ and L is linear, indeed,

$$L((\alpha + i\beta)x) = \alpha L(x) + \beta L(ix)$$

= $\alpha L(x) + \beta (M(ix) - iM(ix))$
= $\alpha L(x) + \beta i(M(x) - iM(-x))$

Now we will show ||L|| = ||l||, indeed take θ such that

$$L(x) = |L(x)|e^{i\theta}$$

Now,

$$\begin{split} |L(x)| &= L(x)e^{-i\theta} \\ &= L(xe^{-i\theta}) \\ &= M(xe^{-i\theta}) \\ &\leq |M(xe^{-i\theta})| \\ &\leq ||M|| \cdot ||xe^{-i\theta}|| \\ &= ||M|| \cdot ||e^{-i\theta}| \cdot ||x|| \\ &= ||M|| \cdot ||x|| \\ &\leq ||l|| \cdot ||x|| \end{split}$$

So $||L|| \le ||l||$.

Proof. (The field over E is \mathbb{R}) Let l_P be an extension of l to the subspace $P \subset E$ containing G. At least one such an extension exists by Lemma 2.

Let X be the set of all such extensions which preserve the norm. Define $l_p \leq l_q$ if $P \subset Q$ and $l_p = l_q|_P$. This is a partial ordering on X.

Let $Y = \{l_{P_{\alpha}} \mid \alpha \in A\}$ be a chain in X. This chain has an upper bound, set

$$\tilde{P} = \bigcup_{\alpha \in A} P_{\alpha}$$

The define \tilde{l} on \tilde{P} by,

$$\tilde{l}(x) = l_{\alpha}(x)$$

if $x \in P_{\alpha}$. Clearly well defined and $||\tilde{l}|| = ||l||$. We can then extend \tilde{l} to the closure of \tilde{P} by continuity, then \tilde{l} is an upper bound for Y.

By Zorn's Lemma, X has a maximal element, denoted L. This is defined on all of E since if it weren't we could extend it and it wouldn't be maximal. By construction \tilde{l} is a norm-preserving extension of l.

If E is complex, same argument as used in the separable case.

The theorem about a monomorphism between a normed space and its second dual.

Theorem 8. The map $\Phi: E \to E''$ given by $x \mapsto \phi_x$ is an isometric mono-morphism.

Proof. Let us first show linearity,

$$\begin{split} \Phi(\alpha x + \beta y)(l) &= \phi_{\alpha x + \beta y}(l) \\ &= l(\alpha x + \beta y) \\ &= \alpha l(x) + \beta l(y) \\ &= \alpha \phi_x(l) + \beta \phi_y(l) \\ &= \alpha \Phi(x)(l) + \beta \Phi(y)(l) \end{split}$$

Now we will show the isomorphism. Take $x \neq y$, we will show that $\phi_{x-y} \neq 0$. Indeed, by Hahn-Banach, there exists some $l \in E'$ such that $l(x-y) = ||x-y|| \neq 0$. Then,

$$\phi_{x-y}(l) = l(x-y) \neq 0$$

Now we will show the norm is preserved. Indeed

$$|\phi_x(l)| = |l(x)|$$

$$\leq ||l|| \cdot ||x||$$

So $||\phi_x|| \le ||x||$ Now we will show $||x|| \le ||phi_x||$. If x = 0 this is trivial. Take $x \ne 0$. By Hahn Banach, there exists some $l \in E'$ such that ||l|| = 1 and l(x) = ||x||.

$$\begin{aligned} ||x|| &= l(x) \\ &= \phi_x(l) \\ &\leq ||\phi_x|| \cdot ||l|| \\ &= ||\phi_x|| \end{aligned}$$

The Banach-Steinhaus theorem.

Theorem 9. Let E be a Banach space. Consider a sequence $(l_n)_{n=1}^{\infty} \subset E'$. Assume that for every $x \in E$, there exists $c_x > 0$ such that

$$|l_n(x)|| \leq c_x$$

for all $n \in \mathbb{N}$. The conclusion is that there exists c > 0 such that

$$||l_n|| \le c$$

for all $n \in \mathbb{N}$.

Lemma 1 (Nested Ball Lemma). Consider a sequence of balls,

$$\overline{B_{r_1}(x_1)}\supset \overline{B_{r_1}(x_2)}\supset \overline{B_{r_3}(x_3)}\supset \cdots$$

Such that $r_i \to 0$ as $i \to \infty$. Then

$$\bigcap_{i=1}^{\infty} \overline{B_{r_i}(x_i)} \neq \emptyset$$

Proof. To begin $(x_i)_{i=1}^{\infty}$ is a Cauchy sequence. Denote

$$x^* = \lim_{i \to \infty} x_i$$

Given $m \in \mathbb{N}$, $x_k \in \overline{B_{r_m}(x_m)}$ for all $k \geq m$. By closedness we know the limit point $x^* \in \overline{B_{r_m}(x_m)}$. Thus x^* is in all of the balls and the intersection is non-empty.

Lemma 2 (Baire Category Theorem). Let $(C_n) \subset E$ be a sequence of closed sets such that

$$\bigcup_{n=1}^{\infty} C_n = E$$

Then there exists $n \in \mathbb{N}$, $x \in E$ and r > 0 such that $B_r(x) \subset C_n$.

Proof. Assume the contrary, choose $x \in \underline{E \setminus C_1}$. Since C_1 is closed, the complement must be open. Thus there must exist some $r_1 > 0$ such that $\overline{B_{r_1}(x)} \subset E \setminus C_1$. Now by our assumption, $B_{r_1}(x) \cap (E \setminus C_2) \neq \emptyset$. Take $x_2 \in B_{r_1}(x) \cap (E \setminus C_2)$. There exists some $r_2 < \frac{r_1}{2}$ such that $\overline{B_{r_2}(x_2)} \subset B_{r_1}(x) \cap (E \setminus C_2)$.

Now there exists some $x_3 \in B_{r_2}(x_2) \cap (X \setminus C_3)$. Choose $r_3 < \frac{r_2}{2}$ such that $\overline{B_{r_3}(x_3)} \in B_{r_2}(x_2) \cap (E \setminus C_3)$. Continuing this procedure we obtain,

$$\overline{B_{r_1}(x_1)} \supset \overline{B_{r_2}(x_2)} \supset \cdots$$

With $r_n \to 0$ as $n \to \infty$. Clearly

$$\bigcap_{n=1}^{B} r_n(x_n) \supset \{x\}$$

for some $x \in E$. By construction $x \in E \setminus C_n$ for all $n \in \mathbb{N}$. This means that

$$\bigcup_{n=1}^{\infty} C_n \neq E$$

Contradiction.

Lemma 3. There exists $x \in E$ and r > 0 such that the set

$$S_{r,a} = \{l_n(x) \mid x \in \overline{B_r(a)}, n \in \mathbb{N}\}$$

is bounded.

Proof. Denote

$$C_m = \{ x \in E \mid |l_n(x)| \le m. \forall n \in \mathbb{N} \}$$

We have that C_m is closed. Indeed if $(x_k)_{k=1}^{\infty} \subset C_m$ converges to some $x \in E$. Then for every $n \in \mathbb{N}$

$$|l_n(x)| = \left| \lim_{k \to \infty} l_n(x_k) \right| \le m$$

By assumption of the theorem,

$$E = \bigcup_{m=1}^{\infty} C_m$$

Thus, by Lemma 2, at least one C_m contains a ball.

Proof. Recall that

$$||l_n|| = \sup_{x \in B_1(0)} |l_n(x)|$$

It suffices to show that $|l_n(x)| \leq c$ for all $x \in \overline{B_1(0)}$ and $n \in \mathbb{N}$.

Given $x \in \overline{B_1(0)}$, define x' = rx + a where r and a are from Lemma 3. Thus $x = \frac{1}{r}(x' - a)$ and

$$|l_n(x)| = \left| l_n(\frac{1}{r}(x'-a)) \right|$$

$$\leq \frac{1}{r}(|l_n(x')| + |l_n(a)|)$$

By Lemma 3 the two summands are bounded by some c' > 0 and so

$$|l_n(x)| \le \frac{2c'}{r}$$

and is bounded on $B_1(0)$ uniformly in n.

The theorem about the weak compactness of the unit sphere in the dual space.

Theorem 10. If E is separable then the unit sphere in E' is weakly compact, i.e. $(l_n)_{n=1}^{\infty} \subset S^1(0)$ has a weakly convergent subsequence.

Theorem "Previous Theorem". Let E be a Banach space. Assume that M is dense in E. The sequence $(l_n)_{n=-1}^{\infty} \subset E'$ converges weakly to $l \in E'$ iff

a) $l_n(x) \to l(x)$ on M. (b) $||l_n|| \le c$ for some c independent of M

Proof. Let $M = \{x_1, x_2, x_3, \dots\}$ be dense in E. Then,

$$|l_n(x_1)| \le ||l|| \cdot ||x_1|| = ||x_1||$$

So there exists a subsequence $(l_{k_1})_{k=1}^{\infty}$ such that

$$(l_{k_1}(x_1))_{k=1}^{\infty}$$

converges. By the same token, there is a subsequence $(l_{k_2})_{k=1}^{\infty} \subset (l_{k_1})_{k=1}^{\infty}$ such that

$$(l_{k_2}(x_2))_{k=1}^{\infty}$$

converges. Continuing in this manner to obtain a subsequence $(l_{k_q})_k^{\infty} = 1$ such that

$$(l_{k_q}(x_q))_{k=1}^{\infty}$$

converges for every q. The sequence,

$$(l_{k_k}(x_k))_{k=1}^{\infty}$$

converges for every $k \in \mathbb{N}$. Define

$$l(x_i) = \lim_{k \to \infty} l_{k_k}(x_i)$$

for $i \in \mathbb{N}$. This is quite clearly linear, further more,

$$||l|| \le \sup ||l_{k_k}|| = 1$$

We can then extend l to all of E by continuity. The previous theorem implies that $l_{k_k} \to l$ weakly.

The theorem about the existence and uniqueness of the orthogonal projection in a Hilbert space.

Theorem 11. Let $G \subset H$ be a subspace. Given $x \in H$ there exists unique $y \in G$ such that $(x - y) \perp G$, i.e. $(x - y) \in G^{\perp}$.

Proof. If $x \in G$ then y = x. Assume $x \notin G$. Then let

$$d := dist(x, G) = \inf_{y \in G} ||x - y|| > 0$$

Choose $(y_n)_{n=1}^{\infty} \subset G$ s.t $||x-y_n|| \to d$ as $n \to \infty$. We will show that $(y_n)_{n=1}^{\infty}$ is a Cauchy sequence. Take $h \in G$ such that $h \neq 0$ and $\eta \in \mathbb{C}$. Then,

$$d^{2} \leq ||x - (y_{n} + \eta h)||^{2}$$

$$= (x - (y_{n} + \eta h), x - (y_{n} + \eta h))$$

$$= ||x - y_{n}||^{2} + |\eta|||h^{2}|| - \overline{\eta}(x - y_{n}, h) - \eta(h, x - y_{n})$$

Now let

$$\eta = ||h||^{-2}(x - y_n, h)$$

This simplifies the above to

$$d^{2} \le ||x - y_{n}||^{2} - \frac{|(x - y_{n}, h)|^{2}}{||h||^{2}}$$

That is,

$$||h||^2||x-y_n||^2 - |(x-y_n,h)|^2 - d^2||h||^2 \ge 0$$

or

$$|(x - y_n, h)|^2 \le ||h||^2 (d_n^2 - d^2)$$
 (*)

Where $d_n = ||x - y_n||$. Thus,

$$|(x - y_n, h)| \le ||h|| \sqrt{d_n^2 - d^2}$$

This holds for $h \in G$. Set $h = y_n - y_m$, for $n, m \in \mathbb{N}$. Then we have

$$|(y_n - y_m \pm x, h)| \le |(x - y_n, y)| + |(x - y_m, h)|$$

 $\le ||h||(\sqrt{d_n^2 - d} + \sqrt{d_m^2 - d})$

So

$$||y_n - y_m||^2 \le ||y_n - y_m||(\sqrt{d_n^2 - d} + \sqrt{d_m^2 - d}) \to 0$$

as $n, m \to \infty$. Thus $(y_n)_{n=1}^{\infty}$ is Cauchy. Denote $y = \lim_{n \to \infty} y_n$, certainly $y \in G$. Passing the limit through to (*) we find that (x - y, h) = 0 for all $h \in G$. Thus $y = \operatorname{proj}_G(x)$. Why is y unique? If $(x - y) \perp G$ and $(x - y') \perp G$ then

$$(y - y' \pm x, h) = (y - x, h) + (x - y', h) = 0$$

for all $h \in G$ so set h = y - y', we find

$$||y - y'||^2 = 0$$

So
$$y = y'$$
.

The Riesz representation theorem.

Theorem 12. Let H be a Hilbert space, given $y \in H$ the formula

$$x\mapsto (x,y)\quad (*)$$

defines a functional in H'. Conversely for every $l \in H'$, there exists some $y \in H$ such that

$$l(x) = (x, y)$$

for all $x \in H$. Moreover ||l|| = ||y||.

Proof. (*), we will denote this as l from here on is clearly linear, why is it bounded? By Cauchy-Schwarz we have

$$|(x,y)| \le ||x|| \cdot ||y||$$

so

$$||l|| \le ||y||$$

Indeed, this is an equality, since $|(y,y)| = ||y||^2$.

Conversely, take $l \in H'$. Denote $G = \ker(l)$. G is a subspace and $H = G \oplus G^{\perp}$. Moreover $\dim(G^{\perp})$ has dimension 1. Fix $c \in G^{\perp}$ with ||c|| = 1. For every $x \in H$ we have $x = g + \lambda c$ where $g \in \ker(l)$ and $\lambda \in \mathbb{C}$. Thus,

$$l(x) = l(g + \lambda c)$$
$$= l(g) + \lambda l(c)$$
$$= \lambda l(c)$$

and

$$(x,c) = (g + \lambda c, c)$$
$$= (g,c) + \lambda(c,c)$$
$$= \lambda$$

We conclude that

$$l(x) = (x, c)l(c) = (x, \overline{l(c)}c)$$

Now take $y = \overline{l(c)}c$ to get (*). Now why is y unique? If l(x) = (x, y) = (x, y'). Then (x, y - y') = l(x) - l(x) = 0 for all $x \in H$ so choose x = y - y' and $||y - y'||^2 = 0$ so y = y'.

The theorem about the invertibility of 1 - A when ||A|| is small.

Theorem 13. Let E be a Banach Space. Let $A \in \mathcal{L}(E)$, satisfy ||A|| = q < 1. Then 1 - A is invertible and

$$(1 - A)^{-1} = 1 + A + A^2 + A^3 + \cdots$$

Proof. Let

$$S_n = \mathbb{1} + A + A^2 + \dots + A^n$$

We claim that S_n is Cauchy, we have

$$||S_{n+p} - S_n|| = ||A^{n+1}|| + ||A^{n+2}|| + \dots + ||A^{n+p}||$$

$$\leq q^{n+1} + \dots + q^{n+p}$$

$$\leq q^n \frac{1}{1-q}$$

$$\to 0$$

as $n \to \infty$. Since E is Banach so is $\mathcal{L}(E)$, so $(S_n)_{n=1}^{\infty}$ converges to S in norm. We need to show $S(\mathbb{1}-A) = (\mathbb{1}-A)S = \mathbb{1}$. We will first show that $(\mathbb{1}-A)S_n \to (\mathbb{1}-A)S$. Indeed

$$||(\mathbb{1} - A)S_n - (\mathbb{1} - A)S|| \le ||(\mathbb{1} - A)|| \cdot ||S_n - S|| \to 0$$

It suffices to show that $(\mathbb{1} - A)S_n \to \mathbb{1}$. We have that

$$(\mathbb{1} - A)S_n = S_n(\mathbb{1} - A)$$

= \mathbb{1} + A + \cdots + A^n - A - A^2 - \cdots - A^n - A^{n+1}
= \mathbb{1} - A^{n+1}

So

$$||(\mathbb{1} - A)S_n - \mathbb{1}|| = ||S_n(\mathbb{1} - A) - \mathbb{1}||$$

$$= ||\mathbb{1} - A^{n+1} - \mathbb{1}||$$

$$= ||A^{n+1}||$$

$$\leq ||A||^{n+1}$$

$$\to 0$$

as $n \to \infty$.

The open mapping theorem and the bounded inverse theorem.

Theorem 14.1 (Open Mapping Theorem). Let E_1 and E_2 be Banach spaces. The operator $A \in \mathcal{L}(E_1, E_2)$ is open iff it is surjective.

Lemma 1. There exists some $y_0 \in E_1$, $r_0 > 0$ and $\alpha \in (0,1)$ such that

$$B_{\alpha r_0}(Ay_0) \subset \overline{A(B_{r_0}(y_0))}$$

Proof. The sets $\overline{B_n(0)}$ are closed an their union over $n \in \mathbb{N}$ is E_2 . By the Baire Category Theorem. At least one of these sets contains a ball, i.e. there exists $r > 0, n \in \mathbb{N}$ and $x \in E_2$ s.t.

$$B_r(x) \subset \overline{A(B_n(0))}$$

Choose $y_0 \in E_1$ such that $x = Ay_0$ and choose $r_0 > 0$ such that $B_{r_0}(y_0) \supset B_n(0)$. Thus,

$$B_r(Ay_0) \subset \overline{A(B_n(0))} \subset \overline{A(B_{r_0}(y_0))}$$

It suffices to set $\alpha = \frac{r}{r_0}$.

Lemma 2. For every point $y \in E_1$ and r > 0

$$B_{\alpha r}(Ay) \subset \overline{A(B_r(y))}$$

Proof. Take $z \in B_{\alpha r}(Ay)$ then,

$$A(y_0) + \frac{r_0}{r}(z - Ay) \in B_{\alpha r_0}(Ay_0)$$

So,

$$A(y_0) + \frac{r_0}{r}(z - Ay) \in \overline{A(B_{r_0}(y_0))}$$

By Lemma 1. Hence there exists some sequence $(z_n)_{n=1}^{\infty} \subset B_{r_0}(y_0)$ such that

$$Ay_0 + \frac{r_0}{r}(z - Ay) - Az_n \to 0$$

Rewriting this we get,

$$z - A(y + \frac{r}{r_0}(z_n - y_0)) \to 0$$

and we have

$$A(y + \frac{r}{r_0}(z_n - y_0)) \in B_r(y)$$

So $z \in \overline{A(B_r(y))}$

Lemma 3. For every $y \in E_1$ and every r > 0

$$B_{\frac{\alpha r}{2}}(Ay) \subset A(B_r(y))$$

Proof. Take $z \in B_{\frac{\alpha}{2}r}(Ay)$ and $\varepsilon < 1$. By Lemma 2 there exists some $y_1 \in B_{\frac{r}{2}}(y)$ such that

$$||z - Ay_1|| < \alpha \varepsilon$$

so, $z \in B_{\alpha\varepsilon}(Ay_1) \subset \overline{A(B_{\varepsilon}(y_1))}$. Again there is a $y_2 \in B_{\varepsilon}(y_1)$ such that

$$||z - Ay_2|| < \alpha \varepsilon^2$$

, then $z \in B_{\alpha \varepsilon^2}(Ay_2) \subset \overline{A(B_{\varepsilon^2}(y_2))}$. Continue this process to obtain a sequence $(y_n)_{n=1}^{\infty}$ such that

$$||z - Ay_n|| < \alpha \varepsilon^n$$

and

$$||y_n - y_{n+1}|| < \varepsilon^n$$

So $(y_n)_{n=1}^{\infty}$ converges to some $y^* \in E_1$ and $Ay^* = z$. Now we will show that y^* is indeed in $B_r(y)$.

$$||y - y^*|| \le ||y \pm y_n \pm y_{n-1} \pm \dots - y^*||$$

 $\le ||y - y_n|| + \sum_{k=2}^n ||y_k - y_{k-1}|| + ||y_1 - y^*||$
 $\le 0 + \sum_{k=2}^n \varepsilon^k + \frac{r}{2}$
 $\le \frac{\varepsilon}{1 - \varepsilon} + \frac{r}{2}$

We can choose ε small enough such that this is less than r.

 $Proof. \implies$

Assume A is an open mapping, we will show A is surjective. Indeed take $B_1(0) \subset E_1$, we know that $A(B_1(0))$ is an open set in E_2 so there exists $\varepsilon > 0$ such that

$$B_{\varepsilon}(0) \subset A(B_1(0))$$

We can write every $y \in E_2$ as en element of this ball by setting $\tilde{y} = \frac{\varepsilon}{2||y||}y$. Thus there exists $x \in B_1(0)$ such that

$$A(x) = \tilde{y}$$

$$A(x) = \frac{\varepsilon}{2||y||}y$$

$$A\left(\frac{2||y||}{\varepsilon}x\right) = y$$

So we have that A is surjective.

 \leftarrow

Assume that A is surjective. Take an open set $V \subset E_1$, we need to show A(V) is open. Take $y \in A(V)$, let x be such that Ax = y. Since V is open, there exists some r > 0 such that

$$B_r(x) \subset V$$

By Lemma 3 we have

$$B_{\frac{\alpha}{2}}r(Ax) \subset A(B_r(x)) \subset AV$$

This holds for all y and x satisfying the above, thus AV is open.

Theorem 14.2 (Bounded Inverse Theorem). Let $A \in \mathcal{L}(E_1, E_2)$ be a bijection. Then A is invertible. That is, $A^{-1}: E_2 \to E_1$.

Proof. For A^{-1} the pre-image of an open set is open.

The closed graph theorem.

Theorem 15. If E_1 and E_2 are Banach spaces, then $A: E_1 \to E_2$ is a linear operator and $\Gamma(A)$ is closed. Then A is bounded.

Proof. Observe that $\Gamma(A)$ is a Banach space with the norm

$$||(x,Ax)||_{\Gamma(A)} = ||x||_{E_1} + ||Ax||_{E_2}$$

Now define $\pi_1: \Gamma(A) \to E_1$ and $\pi_2: \Gamma(A) \to E_2$ by

$$\pi_1((x,Ax)) = x$$

and

$$\pi_2((x,Ax)) = Ax$$

Clearly π_1 and π_2 are bounded. Moreover π_1 is invertible by the Bounded Inverse Theorem. This implies that

$$A = \pi_2 \pi_1^{-1}$$

is bounded. \Box

The theorem about the decomposition of an operator into it's real and imaginary parts.

Theorem 16. Let H be a Hilbert space. For every operator $A \in \mathcal{L}(H)$ there exists $\Re(A), \Im(A)$ both in $\mathcal{L}(H)$ such that they are self adjoint and $A = \Re(A) + \Im(a)$.

Proof. Let $\Re(A) = \frac{A+A^*}{2}$ and $\Im(A) = \frac{A-A^*}{2i}$.

$$(\Re(A))^* = \frac{A^* + (A^*)^*}{2} = \frac{A^* + A}{2} = \Re(A)$$

$$(\Im(A))^* = \frac{A^* - (A^*)^*}{-2i} = \frac{A - A^*}{2i} = \Im(A)$$

The Hellinger-Toeplitz Theorem

Theorem 17. Let H be a Hilbert space. Assume $A: H \to H$ is a linear and (Ax, y) = (x, Ay) for all $x, y \in H$. Then A is bounded, i.e. $A \in \mathcal{L}(H)$.

Proof. Let us prove that $\Gamma(A)$ is closed. Take a sequence (x_n, Ax_n) converging to $(x, y) \in H \times H$. We wish to show that y = Ax. Given $z \in H$, we can see that

$$(z,y) = \lim_{n \to \infty} (z, Ax_n)$$
$$= \lim_{n \to \infty} (Az, x_n)$$
$$= (Az, y)$$
$$= (z, Ay)$$

Thus (z, y - Ax) = 0 for all $z \in H$, take z = y - Ax and $||y - Ax||^2 = 0$ so y = Ax.

Every sesquilinear form is generated by an operator.

Theorem 18. Let H be a Hilbert space. Assume b is a sesquilinear form on H such that

$$|b(x,y)| \le c||x|| \cdot ||y||$$

for some c > 0. Then there exists some $A \in \mathcal{L}(H)$ such that b(x, y) = (Ax, y).

Proof. Fix $x \in H$ and set $l(y) = \overline{b(x,y)}$. This is a bounded linear functional on H.

By Riesz Representation Theorem, there exists $a_x \in H$ such that

$$\overline{b(x,y)} = l(y) = (y, a_x)$$

Now set $Ax = a_x$. We will show that A is linear and bounded.

$$(A(\alpha x_1 + \beta x_2), y) = b(\alpha x_1 + \beta x_2, y)$$

= $b(\alpha x_1, y) + b(\beta x_2, y)$
= $\alpha b(x_1, y) + \beta(x_2, y)$
= $\alpha (Ax_1, y) + \beta (Ax_2, y)$

$$||Ax||^2 = b(x, Ax) \le c||x|| \cdot ||Ax||$$

So $||Ax|| \le c||x||$

Every self adjoint operator that squares itself is a projector

Theorem 19. Let $A \in \mathcal{L}(H)$ be a self-adjoint operator with $A^2 = A$. Then $A = P_G$ for some $G \subset H$.

Proof. Define $G = \ker(A - 1)$. This is certainly a subspace of H. Since $A^2 = A$ for all $x \in H$ we have $Ax \in G$. Given $g \in G$,

$$(Ax,g) = (x,Ag)$$
$$= (x,g)$$
$$= (x,P_Gg)$$
$$= (P_Gx,g)$$

So we have $(Ax - P_Gx, g) = 0$ for all $g \in G$. Let $g = Ax - P_Gx$ and we arrive at $||Ax - P_Gx||^2 = 0$ so $Ax = P_Gx$.

The theorem about the inverse of a unitary operator

Theorem 20. Let H be a Hilbert space and $A \in \mathcal{L}(H)$ a unitary operator. Then $A^* = A^{-1}$.

Proof. We know that A is invertible since

$$||Ax|| = ||x||$$

since A is unitary. Now given $x, y \in H$

$$(x, A^*y) = (Ax, y)$$

= $(Ax, AA^{-1}y)$
= $(x, A^{-1}y)$

So $A^*y = A^{-1}y$ for all $y \in H$.

The Hilbert-Schmidt norm is basis independent

Theorem 21. If $(e_i)_{i=1}^{\infty}$ and $(f_i)_{i=1}^{\infty}$ are both orthonormal bases of H, then

$$\sum_{i=1}^{\infty} ||Ae_i||^2 = \sum_{i=1}^{\infty} ||Af_i||^2$$

Proof.

$$\sum_{i=1}^{\infty} ||Ae_i||^2 = \sum_{i=1,j=1}^{\infty} |(Ae_i, f_j)|^2$$

$$= \sum_{i=1,j=1}^{\infty} |(e_i, A^*f_j)|^2$$

$$= \sum_{i=1,j=1}^{\infty} |(A^*f_j, e_i)|^2$$

$$= \sum_{i=1}^{\infty} ||A^*f_i||^2$$

$$= \sum_{k=1,j=1}^{\infty} |(A^*f_j, f_k)|^2$$

$$= \sum_{k=1,j=1}^{\infty} |(Af_k, f_j)|^2$$

$$= \sum_{k=1}^{\infty} ||Af_k||^2$$

The theorem about the closedness and boundedness of the spectrum.

Theorem 22.1. Let E be a normed space and consider an operator $A \in \mathcal{L}(E)$. Then

$$\operatorname{spec}(A) \subset \overline{B_{||A||}(0)}$$

Proof. Assume that |z| > ||A||, we will show that z is a regular point of A. That is, $(A - z\mathbb{1})$ is invertible. Indeed, $A - z\mathbb{1} = -z(\mathbb{1} - \frac{A}{z})$ and $\frac{||A||}{|z|} < 1$ so $(A - z\mathbb{1})$ is invertible and z is a regular point of A.

Theorem 22.2. The spectrum of an operator A is closed.

Proof. Let z_0 be a regular point of A, if $z \in \mathbb{C}$ then

$$A - z\mathbb{1} = A + z_0\mathbb{1} - z_0\mathbb{1} - z\mathbb{1}$$
$$= A - z_0\mathbb{1} + (z_0 - z)\mathbb{1}$$

Then choose z small enough so that $||(z_0 - z)\mathbb{1}|| < ||(A - z_0\mathbb{1})||^{-1}$. Then the sum is invertible.

The spectrum is non-empty.

Theorem 23. Let A be an operator, $\operatorname{spec}(A) \neq \emptyset$.

Lemma 1. The function $z \mapsto ||R_z||$ is bounded on $\overline{B_{2||A||}(0)}$. Moreover,

$$\lim_{|z| \to \infty} ||R_z|| \to 0$$

Proof. Outside of $\overline{B_{2||A||}(0)}$,

$$||R_z|| = ||(-z)^{-1} (\mathbb{1} - A \frac{1}{z})^{-1}||$$

$$= |z|^{-1} ||(\mathbb{1} - A \frac{1}{z})||^{-1}$$

$$\leq \frac{1}{|z|} \cdot \frac{1}{1 - \frac{||A||}{|z|}}$$

$$\leq \frac{1}{z} \cdot \frac{1}{1 - \frac{||A||}{2||A||}}$$

$$= \frac{2}{z}$$

$$\leq \frac{1}{||A||}$$

Lemma 2. Fix $\alpha \in E$ and $l \in E'$. Define $f_{x,l} : \mathbb{C} \setminus \operatorname{spec}(A) \to \mathbb{C}$ by

$$f_{x,l}(z) = l(R_z(x))$$

Then $f_{x,l}$ is analytic.

Proof. For $z \in \mathbb{C} \setminus \operatorname{spec}(A)$,

$$\lim_{h \to 0} \frac{1}{h} (f_{x,l}(z+h) - f_{x,l}(z)) = \lim_{h \to 0} \frac{1}{h} l((R_{z+h} - R_z)(x))$$

$$= l(\lim_{h \to 0} \frac{1}{h} (R_{z+h} - R_z)(x))$$

$$= l(\lim_{h \to 0} \frac{1}{h} (z+h-z)(R_{z+h}R_z)(x))$$

$$= l(R_z^2(x))$$

Proof. Assume spec(A) = \emptyset . Then $f_{x,l}$ is analytic on \mathbb{C} . Moreover, it is bounded. Indeed $||R_z||$ is bounded on $\mathbb{C} \setminus \overline{B_{2||A||}(0)}$ by Lemma 1 and on $\overline{B_{2||A||}(0)}$ by continuity. Thus

$$\sup_{z \in \mathbb{C}} ||R_z|| = d < \infty$$

Therefore,

$$|f_{x,l}(z)| = |l(R_z(x))| \le ||l|| \cdot ||x|| \cdot d$$

By Liousville's Theorem, $f_{x,l}$ is constant. Since $\lim_{|z|\to\infty}||R_z||=0$, $f_{x,l}$ is identically 0. This means

$$l(R_z x) = 0$$

for all l and so $R_z x = 0$ for every x and so $R_z = 0$. This is impossible since R_z is invertible, here lies our contradiction.