Chapter 14 Probabilistic Reasoning

Motivations

- □ Full joint probability distribution can answer any question but can become intractably large as number of variable increases
- Specifying probabilities for atomic events can be difficult,
 e.g., large set of data, statistical estimates, etc.
- □ Independence and conditional independence reduce the probabilities needed for full joint probability distribution.

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- A directed, acyclic graph (DAG)
- A set of nodes, one per variable (discrete or continuous)
- A set of directed links (arrows) connects pairs of nodes. X is a parent of Y if there is an arrow (direct influence) from node X to node Y.
- Each node X_i has a conditional probability distribution $P(X_i | Parents(X_i))$ that quantifies the effect of the parents on the node.
- Combinations of the topology and the conditional distributions specify (implicitly) the full joint distribution for all the variables.

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

causes should be parents that of effects

Example: Burglar alarm system

- I have a burglar alarm installed at home
 - It is fairly reliable at detecting a burglary, but also responds on occasion to minor earth quakes.
- I also have two neighbors, John and Mary
 - They have promised to call me at work when they hear the alarm
 - John always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and calls then, too.
 - Mary likes rather loud music and sometimes misses the alarm altogether.
- Bayesian networks variables:
 - Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Bayesian belief network.

Variable Order= [John, Mary, Alarm, Burglar, Earthquake]

Compactness of Bayesian networks

A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values

Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1 - p)

I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution

For burglary net, 1+1+4+2+2=10 numbers (vs. $2^5-1=31$)

Global Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

e.g.,
$$P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$$

$$= P(j|a)P(m|a)P(a|\neg b, \neg e)P(\neg b)P(\neg e)$$

$$= 0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$$

$$\approx 0.00063$$

Example

Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!) Assessing conditional probabilities is hard in noncausal directions Network is less compact: 1+2+4+2+4=13 numbers needed

Example

$$\mathsf{P}(A) = \sum_{b \in \{B, !B\}} \sum_{e \in \{E, !E\}} P(A, b, e)$$

0.001 0.999

Alarm

JohnCalls

P(J|A)

Earthquake

P(A|B,E)

MaryCalls

0.001 0.999

P(M|A)

Recall from conditional probability: $P(A,B)=P(A|B)\cdot P(B)$

So $P(A,B,E)=P(A|B,E)\cdot P(B,E)$,

for example.

Which means:

P(A)=P(A|B,E)P(B,E)+P(A|B,!E)P(B,!E)+P(A|!B,E)P(!B,E)+P(A|!B,!E)P(!B,!E)

This is because there are 4 ways in which A can happen.

A can happen if events B and E happen, if B happens and not E, if E happens and not B, or if neither of them happen.

Working that out (and assuming B and E are independent), we have:

P(A) = (0.95*0.001*0.002) + (0.94*0.001*0.998) + (0.29*0.999*0.002) + (0.001*0.999*0.998) = 0.002516442

Example:2

Two events can cause grass to be wet: an active sprinkler or rain. Rain has a direct effect on the use of the sprinkler (namely that when it rains, the sprinkler usually is not active). This situation can be modeled with a Bayesian network. Each variable has two possible values, T (for true) and F (for false).

What is the probability that it is raining, given the grass is wet?

What is the probability that it is raining, given the grass is wet?

We can then calculate, for example:

$$P(\text{it is raining } | \text{ grass is wet}) = \frac{P(\text{it is raining AND grass is wet})}{P(\text{grass is wet})}$$

$$= \frac{\sum_{\text{sprinkler} \in \{T,F\}} P(\text{grass is wet} = \text{T AND sprinkler AND raining} = \text{T})}{\sum_{\text{sprinkler} \in \{T,F\}, \text{ raining} \in \{T,F\}} P(\text{grass is wet} = \text{T AND sprinkler AND raining})}$$

The joint probability Distribution formula is

$$\Pr(G,S,R) = \Pr(G|S,R)\Pr(S|R)\Pr(R)$$

where $G = Grass\ wet\ (true/false)$, $S = Sprinkler\ turned\ on\ (true/false)$, and $R = Raining\ (true/false)$.

The joint probability Distribution formula is

$$\Pr(G, S, R) = \Pr(G|S, R) \Pr(S|R) \Pr(R)$$

where $G = Grass \ wet \ (true/false)$, $S = Sprinkler \ turned \ on \ (true/false)$, and $R = Raining \ (true/false)$. Grass wet $\frac{1}{1}$ by using the $\frac{1}{1}$ conditional probability formula and summing over all $\frac{1}{1}$ random variables:

$$\Pr(R = T | G = T) = \frac{\Pr(G = T, R = T)}{\Pr(G = T)} = \frac{\sum_{S \in \{T, F\}} \Pr(G = T, S, R = T)}{\sum_{S, R \in \{T, F\}} \Pr(G = T, S, R)}$$

Using the expansion for the joint probability function Pr(G, S, R) and the conditional probabilities from CPT

$$\Pr(G = T, S = T, R = T) = \Pr(G = T | S = T, R = T) \Pr(S = T | R = T) \Pr(R = T)$$

= 0.99 × 0.01 × 0.2
= 0.00198.

$$\Pr(R = T | G = T) = \frac{0.00198_{TTT} + 0.1584_{TFT}}{0.00198_{TTT} + 0.288_{TTF} + 0.1584_{TFT} + 0.0_{TFF}} = \frac{891}{2491} \approx 35.77\%.$$

Conditional Probability

Q1: You, your Father and Mother lineup randomly in a queue to take a memorable picture at your Convocation. Find the P(A/B) such that

A= Daughter on one end, B= Father in Middle

Q2: Consider the following contingency table

	RIGHT-HANDED	LEFT-HANDED	TOTAL
MALE	0.41	0.08	0.49
FEMALE	0.45	0.06	0.51
TOTAL	0.86	0.14	1

Find the Probability that a randomly selected person is

A: A Male given that he is right handed.

B: Right handed given that he is a male.

C: A Female given that she is left handed.

D: Are the events being a female and being left handed Independent? Justify

Naïve Bays

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate P(A₁, A₂, ..., A_n | C)?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_i) P(A_2 | C_i)... P(A_n | C_i)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j .
 - New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximum.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Class: $P(C) = N_c/N$

- e.g.,
$$P(No) = 7/10$$
, $P(Yes) = 3/10$

- For discrete
 attributes: P(A_i | C_k)
 - $= |A_{ik}|/N_c$
 - where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
 - Examples: