Yakeen NEET 2.0 2026

Physics by Saleem Sir

DPP: 3

Motion in a Plane

- Q1 If the time of flight of a bullet over a horizontal range R is T, then the angle of projection with horizontal is

 - (A) $\tan^{-1}\left(\frac{gT^2}{2R}\right)$ (B) $\tan^{-1}\left(\frac{2R^2}{gT}\right)$ (C) $\tan^{-1}\left(\frac{2R}{g^2T}\right)$

 - (D) $\tan^{-1}\left(\frac{2R}{qT}\right)$
- Q2 A particle is projected from the ground with velocity u at angle θ with horizontal. The horizontal range, maximum height and time of flight are R,H and T respectively. They are given by, $R=rac{u^2\sin2 heta}{g}$, $m H~=~rac{u^2\sin^2 heta}{2g}~and T~=~rac{2u\sin heta}{g}$

$$H = \frac{u^2 \sin^2 \theta}{2g}$$
 and $T = \frac{2u\sin \theta}{g}$

Now keeping u as fixed, θ is varied from 30° to 60° . Then.

- (A) R will first increase then decrease, H will increase and, T will decrease
- (B) R will first increase then decrease while Hand T both will increase
- (C) R will decrease while H and T will increase
- (D) R will increase while H and T will increase
- Q3 The range of a projectile for a given velocity is maximum when the angle of projection is 45° . The range will be minimum, if the angle of projection is
 - (A) 90°
 - (B) 180°

- $(C) 60^{\circ}$
- (D) 75°
- Q4 The horizontal range is four times the maximum height attained by a projectile. The angle of projection is
 - (A) 90°
 - (B) 60°
 - (C) 45°
 - (D) 30°
- Q5 A football player throws a ball with a velocity of 50 metre/sec at an angle 30 degrees from the horizontal. The ball remains in the air for

$$(g=10 \text{ m/s}^2)$$

- (A) 2.5sec
- (B) 1.25sec
- (C) 5sec
- (D) 0.625sec
- Q6 A projectile is projected from the foot of incline of angle 30° with the velocity $30~{\rm ms}^{-1}$. The angle of projection as measured from the horizontal is 60° . The speed of the projectile when it will be moving parallel to incline is (A) 10 ms^{-1}
 - (B) $2\sqrt{3} \text{ ms}^{-1}$
 - (C) $5\sqrt{3} \; {\rm ms}^{-1}$
 - (D) $10\sqrt{3} \text{ ms}^{-1}$
- **Q7** Two incline plane of angle 30° and 60° are placed touching each other at the base as shown

in the figure. A projectile is projected with speed of $10\sqrt{3}~{\rm ms}^{-1}$ from point P as shown and hits the other inclined at point Q normally.

If the co-ordinate are taken along the inclines as shown in the figure, then;

- (A) Component of acceleration in x-direction is $-5\sqrt{3}~{
 m ms}^{-2}$
- (B) Component of acceleration in x-direction is $-10\sqrt{3}~\mathrm{ms^{-2}}$
- (C) Component of acceleration in y-direction is $-5\sqrt{3}~\mathrm{ms}^{-2}$
- (D) Component of acceleration in y-direction is $-10\sqrt{3}~\mathrm{ms}^{-2}$
- Q8 Two incline plane of angle 30° and 60° are placed touching each other at the base as shown in the figure. A projectile is projected with speed of $10\sqrt{3}~{\rm ms}^{-1}$ from point P as shown and hits the other inclined at point Q normally. If the co-ordinate are taken along the inclines as shown in the figure, then The time of flight in the above problem is

- (A) 1 s
- (B) $2 \mathrm{s}$
- (C) 3 s
- (D) $4 \mathrm{s}$

- **Q9** At the top of the trajectory of a projectile, the acceleration is
 - (A) Maximum
- (B) Minimum
- (C) Zero
- (D) g
- **Q10** A body is thrown at an angle 30° to the horizontal with the velocity of $30~\rm m/s$. After 1sec, its velocity will be (in m/s) $\left(g=10~\rm m/s^2\right)$
 - (A) $10\sqrt{7}$
 - (B) $700\sqrt{10}$
 - (C) $100\sqrt{7}$
 - (D) $\sqrt{10}$

Answer Key

Q1	(A)	Q6	(D)
Q2	(B)	Q 7	(A)
Q3	(A)	Q8	(B)
Q4	(C)	Q9	(D)
Q5	(C)	Q10	

Master NCERT with PW Books APP

