

UNIVERSIDADE FEDERAL DE MATO GROSSO INSTITUTO DE COMPUTAÇÃO COORDENAÇÃO DE ENSINO DE PÓS GRADUAÇÃO EM GESTÃO E CIÊNCIAS DE DADOS

APRENDIZADO SUPERVISIONADO

FÁBIO JOSÉ DO NASCIMENTO

 $\begin{array}{c} CUIAB\acute{A}-MT \\ 2024 \end{array}$

Problema 1: Estimativa de Salário, base de dados emprego.csv

Tabela_01: Base de dados emprego.csv

Os parâmetros que foram usados e tiveram os melhores desempenho nos métodos foram; ssc_p, hsc_p, degree_t, etest_p e mba_p, onde o target é **salary**.

Tabela_02: Resultados obtidos usando os métodos, Regressão Linear, Random Forest e RNA Regressão.

ऑ Méto	odo: Reg	ressão Li	near	M	létodo: Ra	ndom Forest	t	Método: RNA Regressão						
Métricas de Treino					Métricas	de Treino		Métricas de Treino						
MSE:	715093734	11.05		MSE:	7765761179.5	50		MSE:	12896306528.					
RMSE:	84563.22			RMSE:	88123.56			RMSE:	113561.90					
MAE:	53390.00			MAE:	52871.10			MAE:	68206.71					
R2:	0.18			R2:	0.11			R2:	-0.320678944					
Métricas de Teste					Métricas	de Teste		Métricas de Teste						
MSE:	9795753997.82			MSE:	6035617942.2	27		MSE: 8706670966.76						
RMSE:	98973.50	98973.50		RMSE:	77689.23			RMSE: 93309.54						
MAE:	67637.43	67637.43		MAE:	58836.39			MAE:	67089.04					
R2:	-0.16	-0.16		R2:	0.0234748457	740221295		R2:	-0.03					
R	eal vs Pred	lição			Real vs Predi	ção		Real vs Predição						
Nº Resg.	Real	Predição		Nº Resg.	Real	Predição		Nº Resg.	Real	Predição				
178	350000.00	341043.11		178	350.000,00	349.254,00		178	350.000,00	257.025,00				
74	336000.00	354627.30		74	336.000,00	331.136,00		74	336.000,00	270.416,00				
203	260000.00	314951.02		203	260.000,00	316.457,00		203	260.000,00	176.447,00				
28	350000.00	308256.14		28	350.000,00	277.598,00		28	350.000,00	295.607,00				
145	400000.00	271649.79		145	400.000,00	281.450,00		145	400.000,00	304.952,00				
20	265000.00	265493.07		20	265.000,00	258.601,00		20	265.000,00	182.648,00				
	250000.00	277506.03		112	250.000,00	276.946,00		112	250.000,00	162.398,00				
112	250000.00 250000.00			112 48	250.000,00 250.000,00			112 48	250.000,00 250.000,00					
112 48		316283.11			250.000,00	289.306,00			250.000,00	224.998,00				

Com base nas métricas de teste que tem maior peso para decisão de qual método usar. O método **Random Forest** é a melhor opção no geral, considerando que possui os menores valores de MSE e RMSE, indicando uma performance mais consistente, testei com varias combinações de atributos onde melhor performance foi essa nos três métodos utilizados.

Problema 2: Identificação de faixa de preço, base de dados celulares.csv

Tabela_03: Base de dados celulares.csv

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	рс	px_height	px_width	ram	sc_h	sc_w	talk_time	three_g	touch_screen	wifi	price_range
0	842		2.2						188					2549							
1	1021							0.7	136			905	1988	2631							
2													1716	2603							
3	615							0.8				1216	1786	2769							
4			1.2																		

Ao contrário do primeiro problema o próprio algoritmo faz as correlações e define quais parâmetros usar para melhor desempenho e acurácia, assim obtendo melhores resultados.

Tabela_04: Resultados obtidos usando os métodos, Regressão Logística, Árvore de Decisão e RNA Classificação.

Méto	do: Regre	ssão Lo	gística		M	étodo: Á	rvore D	ecisão		Método: RNA Classificação						
	Precision	Recall	F1-Score	Support		Precision	Recall	F1-Score	Support							
											Precision	Recall	F1-Score	Support		
0	1.00	0.94	0.97	105		0.93	0.88	0.90	105	0	0.97	0.94	0.95	1		
1	0.93	1.00	0.96	91		0.76	0.86	0.80	91	1	0.90	0.95	0.92	1		
2	0.99	0.97	0.98	92		0.77	0.75	0.76	92	2	0.97	0.90	0.93	1		
3	0.98	0.99	0.99	112		0.90	0.87	0.88	112	3	0.95	0.99	0.97	1		
Accuracy			0.97	400	Accurac	,		0.84	400	Accuracy			0.94	6		
Macro AVG	0.97	0.98	0.97	400	Macro AVO	0.84	0.84	0.84	400	Macro AVG	0.95	0.94	0.94	6		
Weighted AVG	0.98	0.97	0.98	400	Weighted AV	0.84	0.84	0.84	400	Weighted AVG	0.95	0.94	0.94	6		
	Rea	l vs Predig	ão				Real vs Pre	dição			Re	al vs Predi	ição			
	Nº Resg.	Real	Predição			Nº Resg.	Real	Predição			Nº Resg.	Real	Predição			
	1860	C	0			186	0 () (0		1860	0) ()		
	353	2	2 2			35	3 :	2 :	2		353	2	2 2	2		
	1333	1	1			133	3	1 :	1		1333	1	1 1			
	905	_	3			90	_	3	3		905		3	1		
	1289	_	1			128		ι :	1		1289		1 1	l		
	1273		1			127		1 :	1		1273	1	1	l .		
	938	_	2 2			93	+	2 :	1		938	2	2 2	2		
	1731	0	0			173			0		1731) ()		
	65	3	3			6.		_	2		65	3	3	1		
	1323	1	1			132	3	1 :	1		1323	1	1	L .		

Com base nas métricas de teste que tem maior peso para decisão de qual método usar. O método **Regressão Logística** é a melhor opção no geral alcançando 94% de acurácia, um excelente resultado para o método. O método **RNA Classificação** também obteve um bom resultado com 94% de acurácia.

Algoritmo Regressão Linear

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import OneHotEncoder
import numpy as np
import matplotlib.pyplot as plt
# Carregar o dataset
file_path = 'c:/emprego.csv'
data = pd.read_csv(file_path)
# Remover linhas com valores nulos
data = data.dropna(subset=['salary'])
# Selecionar variáveis independentes e a variável dependente
X = data.drop(columns=['sl_no', 'salary', 'status'])
y = data['salary']
# One-hot encoding para variáveis categóricas
X = pd.get\_dummies(X, drop\_first=True)
# Dividir os dados em conjuntos de treino e teste
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
# Treinar o modelo de regressão linear
model = LinearRegression()
model.fit(X_train, y_train)
# Fazer previsões
y_pred_train = model.predict(X_train)
y pred test = model.predict(X test)
# Avaliar o modelo no conjunto de treino
mse_train = mean_squared_error(y_train, y_pred_train)
rmse_train = np.sqrt(mse_train)
mae_train = mean_absolute_error(y_train, y_pred_train)
r2_train = r2_score(y_train, y_pred_train)
# Avaliar o modelo no conjunto de teste
mse_test = mean_squared_error(y_test, y_pred_test)
rmse_test = np.sqrt(mse_test)
mae_test = mean_absolute_error(y_test, y_pred_test)
r2\_test = r2\_score(y\_test, y\_pred\_test)
# Imprimir métricas de treino
print('Métricas de Treino:')
print(f'MSE: {mse train:.2f}')
print(f'RMSE: {rmse_train:.2f}')
print(f'MAE: {mae train:.2f}')
print(f'R2: {r2_train:.2f}')
```

```
# Imprimir métricas de teste
print('\nMétricas de Teste:')
print(f'MSE: {mse_test:.2f}')
print(f'RMSE: {rmse_test:.2f}')
print(f'MAE: {mae_test:.2f}')
print(f'R2: {r2_test:.2f}')

# Real vs Previsões de teste
predictions_df = pd.DataFrame({
    'Real': y_test,
    'Predição': y_pred_test
}).head(10)

print('\nPrimeiras 10 Previsões de Teste:')
print(predictions_df)
```

Algoritmo Random Forest

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import OneHotEncoder
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
# Carregar o dataset
file_path = 'c:/emprego.csv'
data = pd.read csv(file path)
# Remover linhas com valores nulos
data = data.dropna(subset=['salary'])
# Selecionar variáveis independentes e a variável dependente
X = data.drop(columns=['sl_no', 'salary', 'status'])
y = data['salary']
# One-hot encoding para variáveis categóricas
X = pd.get_dummies(X, drop_first=True)
# Dividir os dados em conjuntos de treino e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Treinar um modelo de Random Forest para avaliar a importância das características
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
# Obter a importância das características
feature_importances = rf_model.feature_importances_
# Criar um DataFrame para visualizar as importâncias
feature_importance_df = pd.DataFrame({
  'Feature': X train.columns,
  'Importance': feature importances
}).sort_values(by='Importance', ascending=False)
# Plotar Características Relevantes
plt.figure(figsize=(12, 8))
sns.barplot(x='Importance', y='Feature', data=feature_importance_df)
plt.title('Características Relevantes')
plt.show()
# As 6 Características mais Relevantes
top features = feature importance df['Feature'].head(6).values
X_{train_top} = X_{train_top_features}
X_{\text{test\_top}} = X_{\text{test[top\_features]}}
# Treinar o modelo de regressão linear
model = LinearRegression()
```

```
model.fit(X_train_top, y_train)
# Fazer previsões
y_pred_train = model.predict(X_train_top)
y_pred_test = model.predict(X_test_top)
# Avaliar o modelo no conjunto de treino
mse_train = mean_squared_error(y_train, y_pred_train)
rmse_train = np.sqrt(mse_train)
mae_train = mean_absolute_error(y_train, y_pred_train)
r2 train = r2 score(y train, y pred train)
# Avaliar o modelo no conjunto de teste
mse_test = mean_squared_error(y_test, y_pred_test)
rmse_test = np.sqrt(mse_test)
mae_test = mean_absolute_error(y_test, y_pred_test)
r2_test = r2_score(y_test, y_pred_test)
# Imprimir métricas de treino
print('Métricas de Treino:')
print(f'MSE: {mse_train:.2f}')
print(f'RMSE: {rmse_train:.2f}')
print(f'MAE: {mae_train:.2f}')
print(f'R2: {r2_train:.2f}')
# Imprimir métricas de teste
print('\nMétricas de Teste:')
print(f'MSE: {mse_test:.2f}')
print(f'RMSE: {rmse_test:.2f}')
print(f'MAE: {mae_test:.2f}')
print(f'R2: {r2_test:.2f}')
# Real vs Previsões de teste
predictions\_df = pd.DataFrame({
  'Real': y_test,
  'Predição': y_pred_test
}).head(10)
print('\nPrimeiras 10 Previsões de Teste:')
print(predictions_df)
```

Algoritmo RNA Regressão

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn import metrics
from sklearn.neural network import MLPRegressor
from sklearn.preprocessing import MinMaxScaler
# Carregar dados
df = pd.read_csv('c:/emprego.csv')
df.dropna(inplace=True)
x = df[['ssc_p', 'hsc_p', 'degree_p', 'etest_p', 'mba_p']]
y = df['salary']
# Normalizar os dados
scaler = MinMaxScaler()
x = scaler.fit\_transform(x)
# Dividir os dados em treino e teste
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
# Definir o modelo
modelo = MLPRegressor(random state=20)
# Definir a grade de parâmetros
param_grid = {
  'hidden_layer_sizes': [(10, 5, 5), (50, 30, 10), (100,)],
  'activation': ['relu', 'tanh'],
  'solver': ['adam'],
  'learning_rate': ['constant', 'adaptive'],
  'learning rate init': [0.001, 0.01, 0.1],
  'max_iter': [300, 500, 1000]
}
# Configurar o Grid Search
grid_search = GridSearchCV(estimator=modelo, param_grid=param_grid, cv=3, verbose=2,
n jobs=-1, scoring='r2')
# Treinar o modelo usando Grid Search
grid_search.fit(X_train, y_train)
# Mostrar os melhores parâmetros
print("Melhores parâmetros encontrados: ", grid search.best params )
# Avaliar o modelo com os melhores parâmetros
best_model = grid_search.best_estimator_
plt.plot(best_model.loss_curve_)
plt.xlabel('Época')
plt.ylabel('Loss')
print('Dados de treinamento')
```

```
predicao = best_model.predict(X_train)
print('R2:', metrics.r2_score(y_train, predicao))
print('MAE:', metrics.mean_absolute_error(y_train, predicao))
print('MSE:', metrics.mean_squared_error(y_train, predicao))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_train, predicao)))
print('Dados de teste')
predicao1 = best_model.predict(X_test)
print('R2:', metrics.r2_score(y_test, predicao1))
print('MAE:', metrics.mean_absolute_error(y_test, predicao1))
print('MSE:', metrics.mean_squared_error(y_test, predicao1))
print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predicao1)))
# Real vs Previsões de teste
predictions_df = pd.DataFrame({
  'Real': y_test,
  'Predição': predicao1
}).head(10)
print('\nPrimeiras 10 Previsões de Teste:')
print(predictions_df)
```

Algoritmo Regressão Logística

```
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# Carregar a planilha
file_path = 'c:/celulares.csv'
df = pd.read_csv(file_path)
# Separar as características (X) e a variável alvo (y)
X = df.drop(columns=['price_range'])
y = df['price_range']
# Dividir os dados em conjuntos de treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Normalizar as características
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_{test\_scaled} = scaler.transform(X_{test})
# Treinar o modelo de regressão logística com validação cruzada para ajustar os
hiperparâmetros
param grid = {
  'C': [0.01, 0.1, 1, 10, 100],
  'solver': ['lbfgs', 'liblinear', 'saga']
log_reg = LogisticRegression(max_iter=1000)
grid_search = GridSearchCV(log_reg, param_grid, cv=5, scoring='accuracy')
grid search.fit(X train scaled, y train)
# Melhor modelo
best_model = grid_search.best_estimator_
# Avaliar a acurácia no conjunto de teste
y_pred = best_model.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print("Melhor modelo:", best model)
#print("Acurácia no conjunto de teste:", accuracy)
from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred))
# Real vs Previsões de teste
predictions df = pd.DataFrame({
  'Real': y_test,
  'Predição': y_pred
}).head(10)
```

Algoritmo Árvore Decisão

```
import pandas as pd
from sklearn.model selection import train test split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score
# Carregar a planilha
file_path = 'c:/celulares.csv'
df = pd.read_csv(file_path)
# Separar as características (X) e a variável alvo (y)
X = df.drop(columns=['price_range'])
y = df['price_range']
# Dividir os dados em conjuntos de treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Normalizar as características
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X test scaled = scaler.transform(X test)
# Treinar o modelo de árvore de decisão com validação cruzada para ajustar os hiperparâmetros
param_grid = {
  'criterion': ['gini', 'entropy'],
  'max_depth': [None, 10, 20, 30, 40, 50],
  'min_samples_split': [2, 5, 10],
  'min samples leaf': [1, 2, 5, 10]
tree = DecisionTreeClassifier()
grid_search = GridSearchCV(tree, param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train_scaled, y_train)
# Melhor modelo
best_tree_model = grid_search.best_estimator_
# Avaliar a acurácia no conjunto de teste
y pred tree = best tree model.predict(X test scaled)
accuracy_tree = accuracy_score(y_test, y_pred_tree)
print("Melhor modelo de árvore de decisão:", best_tree_model)
#print("Acurácia no conjunto de teste:", accuracy_tree)
from sklearn.metrics import classification_report
print(classification_report(y_test,y_pred_tree))
# Real vs Previsões de teste
predictions_df = pd.DataFrame({
  'Real': v test,
  'Predição': y_pred_tree
}).head(10)
print('\nPrimeiras 10 Previsões de Teste:')
print(predictions df)
```

Algoritmo RNA Classificação

```
import pandas as pd
from sklearn.model selection import train test split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy score
# Carregar os dados
file_path = 'c:/celulares.csv'
df = pd.read_csv(file_path)
# Visualizar as primeiras linhas do dataframe
print(df.head())
# Definir as features (X) e o target (y)
X = df.drop(columns=['price_range'])
y = df['price_range']
# Dividir os dados em treino e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Normalizar os dados
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_{\text{test}} = \text{scaler.transform}(X_{\text{test}})
# Definir o modelo
modelo = MLPClassifier(random state=42, max iter=300)
# Definir a grade de parâmetros
param grid = {
  'hidden_layer_sizes': [(50, 50, 50), (100,), (150, 100, 50)],
  'activation': ['tanh', 'relu'],
  'solver': ['adam', 'sgd'],
  'alpha': [0.0001, 0.05],
  'learning_rate': ['constant', 'adaptive'],
}
# Configurar o Grid Search
grid_search = GridSearchCV(estimator=modelo, param_grid=param_grid, cv=3, verbose=2,
n_jobs=-1, scoring='accuracy')
# Treinar o modelo usando Grid Search
grid_search.fit(X_train, y_train)
# Mostrar os melhores parâmetros
print("Melhores parâmetros encontrados: ", grid_search.best_params_)
# Avaliar o modelo com os melhores parâmetros
best_model = grid_search.best_estimator_
y_pred_train = best_model.predict(X_train)
y_pred_test = best_model.predict(X_test)
from sklearn.metrics import classification_report
```

```
print(classification_report(y_test,y_pred_test,))
# Real vs Previsões de teste
predictions_df = pd.DataFrame({
    'Real': y_test,
    'Predição': y_pred_test
}).head(10)
print('\nPrimeiras 10 Previsões de Teste:')
print(predictions_df)
```