KP N4

из первой вершино во все достиженные вершины в кагруженным граде, заданным матрицей длем дуг.

Temenue.

1. Cocmoibine madring uniquaiser. Une paiser $\lambda^{(2)}$ borne corbame ne nysieno, m. k. $\lambda^{(3)}$ $\lambda^{(6)}$.

	V1	V2	V ₃	V4	V5	Ve	V7	V3	7(0)	1(1)	7(2)	7(3)	10	λ(5)	7(6)	7(9)
Va	00	4	5	00	8	00	00	00	0	0	0	0	0	0	0	0
V_2	0	00	2	6	00	00	00	00	00	4	Н	4	4	4	4	4
V_3	00	00	00	3	2	00	00	00	2	to	5	5	5	5	5	3
Vy	13	00	00	00	∞	1	5	00	00	00	13	8	8	8	8	8
V ₅	0	00	00	00	00	1	00	9	00	8	到	4	7	7	7	7
Vô	80	00	00	00	00	00	3	6	00	8	9	3	8	8	8	8
V7	00	00	00	00	00	00	00	2	00	00	00	12	TO TO	11	11	11
V8	00	3	5	6	00	7	8	0	00	00	17	15	14	TO	13	13

2. Durinor menumantenoix nymén uz bepunnos v, bo bee ocmantenos bepunnos onpegenents b nocuequem emontose masmuzor.

3. Напрем вершиной, входящие в миниманьных пути

из 1/1 во все останьные веришиот укада

равиа 4. $N_1^{(0)} + C_{12} = 0 + 4 = N_2^{(1)}$

3.2. Mun. nyme uz Va 6 V3: V1-V3, ero gruna palea 5

KP NY

Tyrogoriscenne

3.3. Municipalité nymb uz V_1 B V_4 : $V_1-V_3-V_4$, ero giuna pabua 8. $N_3^{(n)}+C_{34}=5+3=8=N_4^{(n)}$ $N_1^{(n)}+C_{13}=0+5=5=N_3^{(n)}$

3.4. Illumination in nymber $y = V_1 + V_5 = V_5 + V_5 = V_5$ greena palma 4. $\chi_3^{(n)} + C_{35} = 5 + 2 = 7 = \chi_5^{(n)}$ $\chi_4^{(n)} + C_{13} = 0 + 5 = 5 = \chi_3^{(n)}$

3.6. Mun. nymb uz $V_1 6 V_2$: $V_1 - V_3 - V_5 - V_6 - V_7$, ero guerror pabro 11. $\Lambda_6^{(3)} + C_{67} = 8 + 3 = 11 = \Lambda_7^{(4)}$ $\Lambda_5^{(2)} + C_{56} = 7 + 1 = 8 = \Lambda_6^{(3)}$ $\Lambda_3^{(4)} + C_{35} = 5 + 2 = 7 = 7_5^{(2)}$