Shap-CAM: Visual Explanations for Convolutional Neural Networks based on Shapley Value by Zheng et al.

Karol Pustelnik & Krystian Król

Grad-CAM - overview

Grad-CAM - examples

A man is holding a hot dog in his hand

A large clock tower with a clock on the top of it

Shapley value

Shapley value is the only way of assigning attributions to players that satisfies the following four properties:

- Null player.
- Symmetry.
- Linearity.
- Efficiency.

Shap-CAM - overview

Shap-CAM - examples

Experiments

Faithfulness evaluation

Faithfulness: An explanation is faithful to the model if it represents the true decision/reasoning process of the model

$$\sum_{i=1}^{N} \frac{sign(Y_i^c < O_i^c)}{N} \times 100\%$$

Table 1. Recognition evaluation results on the ImageNet (ILSVRC2012) validation set (lower is better in Average Drop, higher is better in Average Increase).

Method	Mask	RISE	$\operatorname{GradCAM}$	GradCAM++	ScoreCAM	ShapCAM
Avr. Drop(%)	63.5	47.0	47.8	45.5	31.5	28.0
Avr. Increase(%)	5.29	14.0	19.6	18.9	30.6	31.8

Table 2. Recognition evaluation results on the PASCAL VOC 2007 validation set (lower is better in Average Drop, higher is better in Average Increase).

Method	Mask	RISE	$\operatorname{GradCAM}$	$\operatorname{GradCAM}++$	ScoreCAM	ShapCAM
Avr. Drop(%)	45.3	31.3	28.5	19.5	15.6	13.2
Avr. Increase(%)	10.7	18.2	21.4	19.0	28.9	32.7

Localization evaluation

$$Proportion = rac{\sum L^{c}_{(i,j) \in bbox}}{\sum L^{c}_{(i,j) \in bbox} + \sum L^{c}_{(i,j)
otin bbox}}$$

Table 3. Localization Evaluations of Proportion (%) using Energy-based Pointing Game (Higher the better).

Method	Grad-CAM	Grad-CAM++	Score-CAM	Shap-CAM
VGG-16	39.95	40.16	40.10	40.45
ResNet18	40.90	40.85	40.76	41.28

Knowledge Distillation

Table 4. Test error rate (%) for knowledge distillation to train a student from a deeper teacher network. L_{CE} is the normal cross entropy loss function. The Column 2-6 refer to the modified loss function L_{stu} where the explanations for images are generated using the corresponding interpreter.

Loss function	L_{CE}	$\operatorname{GradCAM}$	GradCAM++	ScoreCAM	ShapCAM
$\mathrm{w/o}\ L_{KD}$	6.78	6.86	6.74	6.75	6.69
$\mathrm{w}/\ L_{KD}$	5.68	5.80	5.56	5.42	5.37

Our opinions / time for questions

• Authors don't mention the dependency of Shapley-value on seed. Worst case scenario, which we don't imply, is that they cherry-picked the seed to look good in the paper and tried to hide it in the paper.