MATH 55A PSET 3

SDVS

Cambridge, MA 02138 youremailhere@college.harvard.edu

- **1.** Let V be an n-dimensional vector space, and $T: V \to V$ a linear map; suppose that T is nilpotent, i.e. $T^N = 0$ for some N > 0.
- (a) Show that $T^n = 0$.
- (b) Show that I + T is invertible (where I is the identity operator), and give a formula for its inverse.

Proof. We begin with (a). Note that this creates three cases,

I. n = N, trivial;

II.
$$n > N$$
, $\implies T^n = T^N T^{n-N} = 0 T^n - N = 0$;

III. n < N, w

2. Let V be a vector space over a field k and $\phi: V \to V$ a linear operator. dimensions of the kernal and image of T? What changes if char = 2?

- (a) Show that for all $m \geq 1$, $\operatorname{Im}(\phi^{m+1}) \subset \operatorname{Im}(\phi^m)$, and if $\operatorname{Im}(\phi^{m+1}) = \operatorname{Im}(\phi^m)$ then $\operatorname{Im}(\phi^n) = \operatorname{Im}(\phi^m)$ for all $n \geq m$.
- (b) The eventual image of ϕ , denoted $\operatorname{evIm}(\phi)$, is the set of vectors which can be expressed as $\phi^m(v)$ for all $m \in \mathbb{N}$, i.e. $\operatorname{evIm}(\phi) = \bigcap_{m \geq 1} \operatorname{Im}(\phi^m)$. Show that $\operatorname{evIm}(\phi)$ is an invariant subspace for ϕ .
- (c) Show that, if V is finite-dimensional, then the eventual image of ϕ and its generalized kernel gKer $(\phi) = \{v \in V \mid \exists m \in \mathbb{N}, \ \phi^m(v) = 0\}$ coincide with the image and kernel of ϕ^n where $n = \dim V$, and the restriction of ϕ to $\operatorname{evIm}(\phi)$ is surjective.
- (d) Still assuming V is finite-dimensional, deduce from the above results that V decomposes into the direct sum of invariant subspaces $V = \text{evIm}(\phi) \oplus \text{gKer}(\phi)$, where ϕ is invertible on $\text{evIm}(\phi)$ and nilpotent on $\text{gKer}(\phi)$.
- (e) Show that, if V is infinite-dimensional, then none of the statements in (d) need to hold: find an infinite-dimensional vector space V and two linear operators $\phi, \psi : V \to V$ for which:
 - (1) $\operatorname{evIm}(\phi) = \operatorname{gKer}(\phi) = V$, the restriction of ϕ to $\operatorname{evIm}(\phi)$ is not injective, and the restriction of ϕ to $\operatorname{gKer}(\phi)$ is not nilpotent;
 - (2) $\operatorname{evIm}(\psi) = \operatorname{gKer}(\psi) = 0$.

Proof.

3.

Fix a field k, and consider the category $Vect_k$ of all vector spaces over k.

Date: October 5, 2025.

- (a) Show that there exists a contravariant functor from the category Vect_k to itself, which on objects takes each vector space V to its dual $V^* = \operatorname{Hom}(V, k)$.
- (b) Recall that for each vector space V we have a "natural" homomorphism $ev_V: V \to V^{**}$ taking every vector $v \in V$ to the element $ev_V(v)$ of $V^{**} = \operatorname{Hom}(V^*, k)$ which maps $\ell \in V^*$ to $\ell(v) \in k$. Show that these homomorphisms determine a natural transformation from the identity functor to the square of the functor of part (a).

4.

- (a) Find a field \mathbb{F}_4 with 4 elements! Namely, denote the elements by $\{0, 1, \alpha, \beta\}$ and write out the tables for addition and multiplication in \mathbb{F}_4 .
- (b) If we forget the multiplicative structure of \mathbb{F}_4 and just think of it as an abelian group for addition, is it isomorphic to $\mathbb{Z}/4$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$?
- (c) Show that this is the unique field with 4 elements up to isomorphism.