Week - 5 Tutorial Solution of Quadratic Equations Mathematics for Data Science - 1

1. Two curves representing the functions $y_1 = a_1x^2 + b_1x + c$ and $y_2 = a_2x^2 + b_2x + c$ intersect each other at two points, then what will be their X- coordinates, where $(a_1 \neq a_2)$?

Use following information to solve question 2 and 3.

The approximate temperature (T) (in ${}^{o}C$) variation at a particular place with time (t) is give in Table T-5.0.

t	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00
T	30	32	34	36	40	43	46	48	46	43	40	35	32

Table T-5.0

- 2. Anshu fit a quadratic equation for temperature during day time as $T(x) = -0.4x^2 + 5x + 25$ where x is the number of hours after 08:00 AM. If she will not go out of her home if temperature is greater than $40^{\circ}C$ (strictly greater than 40), then what is the minimum time gap when she will not come out?
- 3. Rather than fitting a quadratic in above case we can fit two linear equations ℓ_1 and ℓ_2 respectively as shown in Figure.

Figure T-5.1

Given that:

$$\ell_1 \equiv T = 3x + 25, \quad x \in [0, 7]$$

 $\ell_2 \equiv T = -3x + 67, \quad x \in [7, 12]$

Draw a rough sketch of quadratic equation $(T(x) = -0.4x^2 + 5x + 25, \text{ vertex} \equiv (6.25, 40.625))$ mentioned in question 2 with respect to these two lines.

- 4. If $5x^2 + 8x + 1 = 0$, then answer the following.
 - (a) Find the roots of above equation.
 - (b) Calculate sum and product of roots.
 - (c) With the help of above answers prove that sum and product of roots for any quadratic equation $ax^2 + bx + c = 0$ will be $-\frac{b}{a}$ and $\frac{c}{a}$ respectively.
- 5. Let M and N be the sets of all values of m and n respectively such that both equations $x^2 + mx + 4 = 0$ and $x^2 nx + 1 = 0$ have always two real distinct roots each, then find the sets of M and N.

Let C be a set of positive integers and values of m and n to be chosen randomly from C, then define the set C such that both the equations have two real distinct roots each.

6. A sniper shoots a bullet at some inclination from the ground towards a bird flying in -ve X- direction at a constant height of 1600 ft. Because of gravity, the path of the bullet is a projectile as shown in Figure T-5.2. The height y (in ft) of the bullet after t seconds varies as $y(t) = u_y t - \frac{1}{2}gt^2$, where u_y is the initial vertical speed of bullet in m/s. Further, distance travelled by the bullet in X- direction can be measured as $x = u_x t$ where u_x is the speed of bullet in X- direction. Given that $u_x = u_y = 400 \ ft/s$, $g = 32 \ ft/s^2$, one unit = one ft, and neglect the effect of wind, then find the position of hitting.

Figure T-5.2

7. Figure T-5.3 shows the curves C_1 and C_2 , and line ℓ with their representing functions F_1 and F_2 respectively. If C_1' and C_2' are the functions F_1' and F_2' which are reflections of C_1 and C_2 respectively around ℓ .

