WE CLAIM:

1	1.	A method of connection establishment in a short-range wireless communication
2	environment,	comprising:
3	a)	generating a RF-ID interrogation signal by a first terminal equipped with a RF-ID
4	tag reader de	vice;
5	b)	detecting the RF-ID interrogation signal by a second terminal equipped with
6	means to detect and respond to RF-ID interrogation signals when within the range of the RF-ID	
7	interrogation	signal;
8	c)	notifying a processor in the second terminal of the presence of the RF-ID
9	interrogation	signal for setting a short-range communication module in the second terminal into a
10	predefined or	peration mode for being capable of detecting paging signals directed to the second
11	terminal;	
12	d)	responding to the RF-ID interrogation signal by transmitting a RF-ID response
13	signal to the	first terminal including identification information relating to the short-range
14	communication	on module of the second terminal;
15	e)	processing the received RF-ID response signal by the first terminal to activate a
16	short-range c	ommunication module in the first terminal to initiate a shortened session setup by
17	transmitting a	a short-range paging signal directed to the second terminal based on information of
18	the received l	RF-ID response signal to establish a short-range connection with the second

terminal; and

20	f)	detecting the paging signal by the short-range communication module in the	
21	second termin	nal for immediate establishment of a short-range connection between the first and	
22	second termin	second terminals.	
1	2.	The method of Claim 1 further comprising:	
2	g)	incorporating in the second mobile terminal a RF-ID tag reader having tag	
3	functionality	and terminal identification information.	
1	3.	The method of Claim 2 further comprising:	
2	h)	switching the RF-ID tag reader in the second terminal to operate in a show	
3	communication	on mode and simulate a RF-ID tag device.	
1	4.	The method of Claim 1 wherein the first and second terminals include RF-ID tag	
2	readers opera	ting in an active mode.	
1	5.	The method of Claim 1 wherein the RF-ID tag reader of the second terminal	
2	operates in a powered down state and passive mode.		

1 6. The method of Claim 4 wherein one RF-ID tag reader automatically switches to a 2 passive state when de-energized. 1 7. The method of Claim 1 wherein the short-range communication modules of the 2 first and the second terminals conform to the principles of Bluetooth technology. 1 8. The method of Claim 7 wherein the processor of the second terminal responding 2 terminal to the second terminal informs the Bluetooth module of the second terminal to enter into 3 a Bluetooth page scan mode after detecting an interrogation signal and responding to it with 4 identification information of the Bluetooth communication module in order to provide a 5 shortened device discovery and session setup between the terminals. 1 9. The method of Claim 7 wherein transmitting the paging signal by the first 2 terminal comprises transmitting by the first terminal a Bluetooth paging message to the second 3 terminal including the Bluetooth identification information of the short-range communication 4 module of the second terminal. 1 The method of claim 7, wherein the predefined operation mode of the second 10. 2 terminal is Bluetooth Page scanning mode.

1 11. The method of Claim 7, wherein the identification information relating to the 2 short-range communication module of the second terminal includes at least a unique Bluetooth 3 identification number of the short-range communication module of the second terminal. 1 12. The method of Claim 1, further comprising: 2 i) periodically updating at least portion of the identification information relating to 3 the second terminal. 1 13. The method of Claim 12, wherein the identification information relating to the 2 short-range communication module of the second terminal includes a Bluetooth serial number 3 and Bluetooth Clock Offset information of the short-range communication module of the second 4 terminal. 1 14. The method of Claim 1, wherein one of the terminals is a stationary access point 2 connected to an infrastructure network enabling the other terminal to conduct transactions with 3 service applications within the communication network through the established wireless short

range connection.

1	15.	The method of Claim 14, wherein the infrastructure network is the Internet.
1	16.	The method of Claim 1, wherein the first and the second terminals are mobile
2	terminals.	
1	17.	The method of Claim 16 further comprising:
2	j)	determining whether a short-range connection is acceptable.
1	18.	The method of Claim 17 further comprising:
2	k)	instructing the short-range communication module to enter into a page scanning
3	mode if the Bl	uetooth mode is acceptable.
1	19.	Method of Claim 17 further comprising:
2	1)	instructing the short-range communication module to enter into a non-
3	connectable co	onnection if the Bluetooth mode is not acceptable.

1	20.	Apparatus for connection establishment in a short-range wireless communication
2	environment,	comprising:

- 3 a) means for generating a RF-ID interrogation signal by a first terminal equipped 4 with a RF-ID tag reader device;
- 5 b) means for detecting the RF-ID interrogation signal by a second terminal equipped 6 with means to detect and respond to RF-ID interrogation signals when within the range of the 7 RF-ID interrogation signal;
 - c) means for notifying a processor in the second terminal of the presence of the RF-ID interrogation signal for setting a short-range communication module in the second terminal into a predefined operation mode for being capable of detecting paging signals directed to the second terminal;
 - d) means in the second terminal for responding to the RF-ID interrogation signal by transmitting a RF-ID response signal to the first terminal including identification information relating to the short-range communication module of the second terminal;
 - e) means in the first terminal processing the RF-ID response signal to activate a short-range transceiver in the first transceiver to initiate a shortened session setup by transmitting a short-range paging signal to the second terminal based on information of the received RF-ID response signal to establish a short-range connection with the second terminal; and

8

9

10

11

12

13

14

15

16

17

18

20 f) means in the second terminal for detecting the paging signal by the short-range 21 communication module for immediate establishment of a short-range connection between the 22 first and second terminals. 1 21. The Apparatus of Claim 20 wherein the second mobile terminal is a RF-ID tag 2 reader having tag functionality and terminal identification information 1 22. The Apparatus of Claim 20 further comprising: 2 g) means for switching the RF-ID tag reader in the second terminal to operate in a 3 show communication mode and simulate a RF-ID tag device. 1 23. The Apparatus of Claim 20 wherein the first and second terminals include RF-ID 2 tag readers operating in an active mode. 1 24. The Apparatus of Claim 20 wherein the RF-Tag reader of the second terminal 2 operates in a powered down state and passive mode.

1 25. The Apparatus of Claim 24 wherein one RF-Tag reader automatically switches to 2 passive state when de-energized. 1 26. The Apparatus of Claim 20 wherein the short-range communication modules of the first and second terminals conform to the principles of Bluetooth technology. 2 1 27. The Apparatus of Claim 26 wherein the processor of the first terminal responding 2 terminal to the second terminal informs the Bluetooth module of the first terminal to enter into a 3 Bluetooth page scan mode after detecting an interrogation signal and responding to it with a 4 Bluetooth communication module identification information in order to provide a shortened 5 device discovery and session setup between the terminals. 1 28. The Apparatus of Claim 26 wherein transmitting the paging signal by the first 2 terminal comprises transmitting by the first terminal a Bluetooth paging message to the second 3 terminal including the Bluetooth identification information of the short-range communication 4 module of the second terminal. 1 29. The Apparatus of claim 26, wherein the predefined operation mode of the second 2 terminal is Bluetooth Page scanning mode.

1 30. The Apparatus of Claim 26, wherein the identification information relating to the 2 short-range communication module of the second terminal includes at least a unique Bluetooth 3 identification number of the short-range communication module of the second terminal. 1 31. The Apparatus of Claim 20, further comprising: 2 h) means periodically updating at least portion of the identification information 3 relating to the second terminal. The Apparatus of Claim 31, wherein the identification information relating to the 1 32. 2 short-range communication module of the second terminal includes a Bluetooth serial number 3 and Bluetooth Clock Offset information of the short-range communication module of the second 4 terminal. 1 33. The Apparatus of Claim 20, wherein one of the terminals is a stationary access 2 point connected to an infrastructure network enabling the other terminal to conduct transactions 3 with service applications within the communication network through the established wireless

short range connection.

1 34. The Apparatus of Claim 33 wherein the infrastructure network is the Internet. 1 35. The Apparatus of Claim 20, wherein the first and the second terminals are mobile 2 terminals. 1 36. The Apparatus of Claim 20 further comprising: 2 i) determining means determining whether a short-range connection is acceptable. 1 37. The Apparatus of Claim 36 further comprising: 2 j) instructing means instructing the short-range communication module to enter into 3 a page scanning mode if the Bluetooth mode is acceptable. 1 38. The apparatus of Claim 37 wherein the instructing means instructs the short-range 2 communication module to enter into a non-connectable connection if the Bluetooth mode is not 3 acceptable

1	39.	The Apparatus of Claim 20 wherein the RF-ID tag reader comprises:
2	k)	a radio frequency interface and an antenna; and
3	1)	an associated logic unit, which is connectable to the radio frequency, interface
4	where the asse	ociated logic unit is operable in a transponder operation mode, in which the reader
5	device acts as	radio frequency identification transponder.
1	40.	The Reader device according to Claim 20 which comprises a reader logic unit,
2	which is connected to said radio frequency interface and which allows for operating said reader	
3	operation mod	de.
1	41.	The Reader device according to Claim 40, wherein said transponder operation
2	mode is opera	ble independently from any power supply.
1	42.	The Reader device according to Claim 20 or Claim 21 wherein said reader device
2	is adapted to o	operate as a passive radio frequency identification transponder in said transponder
3	operation mod	le.

1	43.	The Reader device according to Claim 40, wherein said reader device acts as a
2	passive read-	only radio frequency identification transponder in said transponder operation mode.
1	44.	The Reader device according to Claim 40, wherein said transponder logic unit
2	comprises a tr	ransponder memory.
1 2	45. non-volatile.	The Reader device according to Claim 44 wherein said transponder memory is
1 2	46. configurable.	The Reader device according to Claim 45 wherein said transponder memory is
1 2 3	_	The Reader device according to Claim 40, wherein said transponder logic unit is agh a switch unit to said radio frequency interface, wherein said switch unit is elect between said reader operation mode and said transponder operation mode.

- 1 48. The Reader device according to Claim 40 wherein said reader device operates
 2 autonomously in said transponder operation mode during periods of time, within which said
 3 reader device is not energized.

 1 49. The Reader device according to Claim 40, wherein said radio frequency interface.
- 1 49. The Reader device according to Claim 40, wherein said radio frequency interface 2 is adapted to provide signals required for operation of said reader device in said reader operation 3 mode and said transponder operation mode.
- 1 50. The Reader device according to Claim 40, wherein said reader device supports
 2 near field communication (ECMA-340) standard, wherein said reader device is operable with a
 3 passive communication mode in said reader operation mode, wherein said reader device is
 4 operable with a show communication mode in said transponder operation mode.
- The Reader device according to Claim 40 wherein said reader device is operable
 with an active communication mode in said reader operation mode.

1 52. A portable electronic device, which is, connected to a reader device for radio 2 frequency identification transponders, wherein said reader device comprises: 3 a) a radio frequency interface and an antenna such that said reader device is 4 adapted to communicate at least with said radio frequency identification transponders in a reader 5 operation mode; and 6 b) an associated transponder logic unit which is connectable to said radio frequency 7 interface, wherein said transponder logic unit (is operable in a transponder operation mode, in 8 which said reader device acts as a radio frequency identification transponder. 1 The portable terminal according to Claim 52, wherein said reader device is a 53. 2 reader device according to Claim 39. 1 54. The portable terminal according to Claim 52, wherein said portable electronic 2 device is enabled to communicate via a public land mobile network. 1 55. A system including a portable electronic device and a reader device for radio 2 frequency identification transponders, which is connected to said portable electronic device, 3 wherein said reader device comprises:

- a) a radio frequency interface and an antenna such that said reader device is
 adapted to communicate at least with said radio frequency identification transponders in a reader
 operation mode; and
- b) a transponder logic unit, which is connected /to, said radio frequency interface,
 wherein said transponder logic unit is operable in a transponder operation mode, in which said
 reader device acts as a radio frequency identification transponder.