Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product information in this catalog is as of October 2012. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance. Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

- The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel").

 It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.
- Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.
- Caution for export

 Certain items in this catalog m

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations", and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

MULTILAYER CERAMIC CAPACITORS

WAVE

REFLOW

■PARTS NUMBER

J	М	K	3	1	6	Δ	В	J	1	0	6	М	L	_	Т	Δ
1	2	3		4		5	(3		7		8	9		_	_

△=Blank space

∢ nn	- 11	
1)Rated	voita	ge

Code	Rated voltage[VDC]
Р	2.5
Α	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

③End	termination

Code	End termination
K	Plated
R	High Reliability Application

4 Dimension (L × W)

Туре	Dimensions (L×W)[mm]	EIA (inch)
042	0.4×0.2	01005
063	0.6×0.3	0201
105	1.0 × 0.5	0402
105	0.52 × 1.0 💥	0204
107	1.6 × 0.8	0603
107	0.8 × 1.6 💥	0306
212	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2×2.5	1210
432	4.5 × 3.2	1812
	. (=1404)	

Note: ※LW reverse type(□WK) only

②Series name

@ 001100 11a1110	
Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor

⑤Dimension tolerance

Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
				0.45±0.05
Α	212	2.0+0.15/-0.05	1.25+0.15/-0.05	0.85±0.10
				1.25+0.15/-0.05
	010	201000	1.05 0.00	0.85±0.10
	316	3.2±0.20	1.25±0.20	1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	161000/ 0	0.010.00/	0.45±0.05
В	107	1.6 + 0.20 / -0	0.8+0.20/-0	0.8+0.20/-0
	010	0.010.00/	1.05 0.00 / 0	0.85±0.10
	212	2.0+0.20/-0	1.25 + 0.20 / -0	1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
С	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0

Note: P.6 Standard external dimensions

Δ= Blank space

6Temperature characteristics code

■ High dielectric type (Excluding Super low distortion multilayer ceramic capacitor (CFCAPTM))

Code		icable idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code										
	JIS	В	-25~+ 85	20	±10%	±10%	K										
BJ	JIS	В	-257 - 7 65	20	± 10%	±20%	М										
	EIA	X5R	−55 ~ + 85	25	±15%	±10%	K										
	EIA	ASK	-55 ~ + 85		±13%	±20%	М										
В7	EIA	X7R	-55~+125	25	±15%	±10%	K										
	EIA	A/IX	33.4 1 123	25	±1370	±20%	M										
00	ГΙΛ	EIA X6S	-55~+105	25	±22%	±10%	K										
C6	EIA		-557- + 105			±20%	M										
C7	F14 V76	EIA X7S −55~+	V70	V7C	V7C	V70	V70	V70	V70	V70	V70	V70	EE I 10E	25	± 220/	±10%	K
C/	EIA		-55~+125	25	±22%	±20%	М										
LD(\\)	ГΙΛ	VED	EE I OE	0.5	+150/	±10%	K										
LD(※)	EIA	EIA X5R	−55 ~ + 85	25	±15%	±20%	М										
ΔF	JIS	F	−25~+ 85	20	+30/-80%	+80/-20%	Z										
	EIA	Y5V	-30~+ 85	25	+22-82%	+80/-20%	Z										

Note : $\mbox{\ensuremath{\mbox{$\chi$}}.LD}$ Low distortion high value multilayer ceramic capacitor

△= Blank space

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

■Temperature compensating type

Code		cable idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code	
		JIS CH				±0.1pF	В	
	JIS		JIS CH	СН		20		±0.25pF
СН			-55 ~ +125		0±60ppm/°C	±0.5pF	D	
СП			-55~+125		0±60ppm/ C	1pF	F	
	EIA	C0H		25		±5%	J	
						±10%	K	
CJ	JIS	CJ	−55∼+125	20	0±120ppm/°C	±0.25pF	С	
00	EIA	C0J		25	0±120ppm/ C	± 0.23p1		
СК	JIS	CK	-55~+125	20	0±250ppm/°C	±0.25pF	С	
CK	EIA	C0J	-55~+125	25	0±250ppm/ C	±0.25pF	C	
	JIS	UJ		20		±0.25pF	С	
UJ	EIA	U2J	-55 ~ +125	−750±120ppm	$-750 \pm 120 \text{ppm/}^{\circ}\text{C}$	±0.5pF	D	
	EIA			25		±5%	J	
UK	JIS	UK	-55~+125	20	-750±250ppm/°C	±05-F	С	
	EIA	U2K	-55~+125	25	— /30 ± 250ppm/ C	±0.5pF		
SL	JIS	S	-55~+125	20	+350~-1000ppm/°C	±5%	J	

6 Series code

(Super low distortion multilayer ceramic capacitor(CFCAPTM) only)

(Super low dist	ortion mutuayer ceramic capacitor (or oAr	/ Offiny /
Code	Series code	
SD	Standard	

7Nominal capacitance

Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100p
102	1,000pF
103	10,000pF
104	0.1 μ F
105	1.0 <i>μ</i> F
106	10 μ F
107	100 μ F

Note : R=Decimal point

Code	Capacitance tolerance			
В	±0.1pF			
С	±0.25pF			
D	±0.5pF			
F	±1pF			
J	±5%			
K	±10%			
М	±20%			
Z	+80/-20%			

Thickness

3 I III CKITESS	
Code	Thickness[mm]
С	0.2
D	0.2(Temperature compensating of 042type)
Р	0.3
Т	0.3
K	0.45
V	0.5
W	0.5
Α	0.8
D	0.85(212type or more)
F	1.15
G	1.25
Н	1.5
L	1.6
N	1.9
Υ	2.0 max
М	2.5

10Special code

Code Special code					
— Standard					
Н	MLCC for Industrial, Automotive Comfort and Safety				

11)Packaging

U) F a C K a g i i i g						
Code	Packaging					
F	ϕ 178mm Taping (2mm pitch)					
Т	φ178mm Taping (4mm pitch)					
Р	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)					
	325 type (Thickness code M)					
W	φ 178mm Taping (1mm pitch) 042type only					

12Internal code

Code	Internal code	
Δ	Standard	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

★ LW reverse type

Т / ГІА)	Dimension [mm]				
Type(EIA)	L	W	T	*1	е
□MK042(01005)	0.4±0.02	0.2±0.02	0.2±0.02	C D	0.1±0.03
□MK063(0201)	0.6±0.03	0.3±0.03	0.3±0.03	P T	0.15±0.05
			0.2±0.02	С	
□MK105(0402)	1.0±0.05	0.5±0.05	0.3±0.03	Р	0.25±0.10
			0.5±0.05	٧	
□VK105(0402)	1.0±0.05	0.5±0.05	0.5±0.05	W	0.25±0.10
□WK105(0204)※	0.52±0.05	1.0±0.05	0.3±0.05	Р	0.18±0.08
□MK107(0603)	1.6±0.10	0.8±0.10	0.45±0.05	K	0.35±0.25
□MK107(0603)	1.0±0.10	0.8±0.10	0.8±0.10	Α	0.35±0.25
□MR107(0603)	1.6±0.10	0.8±0.10	0.8±0.10	Α	0.1~0.6
□WK107(0306)※	0.8±0.10	1.6±0.10	0.5±0.05	V	0.25±0.15
	2.0±0.10	1.25±0.10	0.45±0.05	K	
□MK212(0805)			0.85±0.10	D	0.5±0.25
			1.25±0.10	G	
□MR212(0805)	2.0±0.10	1.25±0.10	1.25±0.10	G	0.25~0.75
□WK212(0508)※	1.25±0.15	2.0±0.15	0.85 ± 0.1	D	0.3 ± 0.2
		1.6±0.15	0.85±0.10	D	
□MK316(1206)	3.2±0.15		1.15±0.10	F	0.5+0.35/-0.25
□MK310(1200)	3.2 ± 0.15		1.25±0.10	G	0.5+0.35/-0.25
			1.6±0.20	L	
□MR316(1206)	3.2±0.15	1.6±0.15	1.6±0.20	L	0.25~0.85
			0.85±0.10	D	
			1.15±0.10	F	
□MK325(1210)	3.2±0.30	2.5±0.20	1.5±0.10	Н	0.6±0.3
□MK325(1210)	3.2 ± 0.30	2.5 ± 0.20	1.9±0.20	N	0.0 ± 0.3
			1.9+0.1/-0.2	Υ	
			2.5±0.20	М	
□MR325(1210)	3.2±0.30	2.5±0.20	1.9±0.20	N	0.3~0.9
□INIK25(1710)	3.2±0.30	Z.3±0.20	2.5±0.20	М	0.3~0.9
□MK432(1812)	4.5±0.40	3.2±0.30	2.5±0.20	М	0.9±0.6

Note: ※. LW reverse type, *1.Thickness code

■STANDARD QUANTITY

Т	FIA (in ala)	Dime	ension	Standard quantity[pcs]		
Туре	EIA (inch)	[mm]	Code	Paper tape	Embossed tape	
042	01005	0.2	С	_	40000	
042	01003	0.2	D		40000	
063	0201	0.3	Р	15000	_	
003	0201	0.5	T	13000		
		0.2	С	20000	_	
	0402	0.3	Р	15000	-	
105	0402	0.5	V			
		0.5	W	10000	_	
	0204 ※	0.30	Р			
	0603	0.45	K	4000	ı	
107	0003	0.8	Α	4000		
	0306 ※	0.50	V	_	4000	
		0.45	К	4000	_	
010	0805	0.85	D			
212		1.25	G	_	3000	
	0508 ※	0.85	D	4000	_	
		0.85	D	4000	_	
216	1206	1.15	F		3000	
316	1200	1.25	G	_	3000	
		1.6	L	_	2000	
		0.85	D			
		1.15	F			
325	1210	1.5	Н	-	2000	
	1210	1.9	N			
		2.0 max	Y			
		2.5	М	_	500(T), 1000(P)	
432	1812	2.5	M	-	500	

Note : ※.LW Reverse type(□WK)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

Multilayer Ceramic Capacitors

■PACKAGING

1 Minimum Quantity

Taped package

Τ /ΓΙΔ)	Thick	ness	Standard o	Standard quantity [pcs]	
Type(EIA)	mm	code	Paper tape	Embossed tape	
☐MK042(01005)	0.2	C, D	_	40000	
☐MK063(0201)	0.3	P, T	15000		
□WK105(0204) ※	0.3	Р	10000		
	0.2	С	20000		
☐MK105(0402)	0.3	Р	15000	_	
	0.5	V	10000		
□VK105(0402) ※	0.5	W	10000		
□MK107(0603)	0.45	K	4000		
□WK107(0306) ※	0.5	V	_	4000	
□MR107(0603)	0.8	Α			
□MK212(0805)	0.45	K	4000	_	
□WK212(0508) ※	0.85	D			
□MR212(0805)	1.25	G	_	3000	
	0.85	D	4000	_	
□MK316(1206)	1.15	F		2000	
□MR316(1206)	1.25	G	_	3000	
	1.6	L			
	0.85	D			
	1.15	F		0000	
□MK325(1210)	1.5	Н	7	2000	
□MR325(1210)	1.9	N	7 -		
	2.0max.	Υ			
	2.5	М		500(T), 1000(P)	
□MK432(1812)	2.5	М	_	500	

Note: X LW Reverse type.

2Taping material

XNo bottom tape for pressed carrier tape

Card board carrier tape

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

3 Representative taping dimensions

Paper Tape (8mm wide)

● Pressed carrier tape (2mm pitch)

Type(EIA)	Chip Cavity		Insertion Pitch	Tape Thicknes	
	Α	В	F	Т	T1
☐MK063(0201)	0.37	0.67		0.45max.	0.42max.
□WK105(0204) ※			2.0±0.05		
☐MK105(0402) (*1 C)	0.65	1.15		0.4max.	0.3max.
□MK105(0402) (*1 P)				0.45max.	0.42max.

Note *1 Thickness, C:0.2mm ,P:0.3mm. 💥 LW Reverse type.

Unit:mm

●Punched carrier tape (2mm pitch)

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
	Α	В	F	Т
□MK105 (0402) □VK105 (0402)	0.65	1.15	2.0±0.05	0.8max.

Unit:mm

●Punched carrier tape (4mm pitch)

Type(EIA)	Chip Cavity		Insertion Pich	Tape Thickness	
Type(LIA)	Α	В	F	Т	
□MK107(0603)					
□WK107(0306) ※	1.0	1.8		1.1max.	
☐MR107(0603)			40101	Ì	
□MK212(0805)	1.05	0.4	4.0±0.1		
□WK212(0508) ※	1.65	2.4		1.1max.	
□MK316(1206)	2.0	3.6			

Note: Taping size might be different depending on the size of the product. X LW Reverse type.

Unit:mm

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Embossed tape (4mm wide)

Type(EIA)	Chp Cavity		Insertion Pitch	Tape Thickness	
	Α	В	F	K	Т
□MK042(01005)	0.23	0.43	1.0±0.02	0.5max.	0.25max.

Unit:mm

Embossed tape (8mm wide)

2.020.1							
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape TI	nickness		
Type(EIA)	Α	В	F	K	Т		
□WK107(0306) ※	1.0	1.8		1.3max.	0.25±0.1		
☐MK212(0805) ☐MR212(0805)	1.65	2.4		4.0±0.1 3.4max.	0.6max.		
□MK316(1206) □MR316(1206)	2.0	3.6	4.0±0.1				
□MK325(1210) □MR325(1210)	2.8	3.6					

Note: ※ LW Reverse type. Unit:mm

Embossed tape (12mm wide)

Tuno(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness		
Type(EIA)	Α	В	F	K	Т	
☐MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.	
					Unit:mm	

4 Trailer and Leader

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Α	В	С	D	E	R
ϕ 178 ± 2.0	ϕ 50min.	ϕ 13.0 \pm 0.2	ϕ 21.0 ± 0.8	2.0±0.5	1.0

	Т	W
4mm wide tape	1.5max.	5±1.0
8mm wide tape	2.5max.	10±1.5
12mm wide tape	2.5max.	14±1.5

 $\mathsf{Unit}\!:\!\mathsf{mm}$

©Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

7Bulk Cassette

The exchange of individual specification is necessary.

Please contact Taiyo Yuden sales channels.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Multilayer Ceramic Capacitors

■RELIABILITY DATA

Methods and

Charge/discharge current

Remarks

1.Operating Te	mperature Range						
	Temperature	Standard		0 -			
	Compensating (Class1)	High Frequency Type	−55 to +	−55 to +125°C			
				Specification	Temperature	Range	
				В	-25 to +		
			BJ	X5R	-55 to +	85°C	
pecified			В7	X7R	-55 to +		
alue	High Permittivity (Class2	\	C6	X6S	-55 to +	105°C	
	nigh Permittivity (Glassz)	C7	X7S	−55 to +	125°C	
			LD(※)	X5R	−55 to +	85°C	
			F	F	-25 to +		
				Y5V	-30 to +		
			Note: 🔆	LD Low distortion h	nigh value multilayer	ceramic cap	
Storage Con	nditions	Ī	I				
	Temperature	Standard	-55 to +	-125°C			
	Compensating(Class1)	High Frequency Type	- 7 00				
				Specification	Temperature	Range	
			BJ	В	−25 to +	85°C	
			БЈ	X5R	−55 to +	85°C	
pecified			B7	X7R	-55 to +		
alue	High Permittivity (Class2)	C6	X6S	-55 to +		
		,	C7 LD(※)	X7S	-55 to +		
				X5R	-55 to +		
				F	-25 to +		
			L	Y5V	-30 to +		
			Note: ½	LD Low distortion h	ligri value multilayer	ceramic cap	
Rated Voltag	ge						
	Temperature	Standard	50VDC, 25	VDC, 16VDC			
pecified	Compensating(Class1)	High Frequency Type	50VDC, 16				
lue	High Permittivity (Class2		,	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC			
	Thight offined vicy (Glados	,	00120,00	150, 20150, 1015	0, 10120, 0.0120,	1100, 2.010	
Withstanding	y Voltage (Between termina	le)					
		Standard					
pecified	Temperature Compensating(Class1)		Na b! '	au dar			
ue		High Frequency Type	ino preakd	own or damage			
	High Permittivity (Class2					1	
st			ass 1		Class 2		
ethods and	Duration		volta × 3		voltage × 2.5		
marks			1 to 5 sec.				
	Charge/discharge curre	nt		50mA max.			
Insulation Re	esistance						
	Temperature	Standard					
pecified	Compensating(Class1)	High Frequency Type	10000 MΩ	min.			
/alue			0<0047	t F : 10000 MΩ min.			
	High Permittivity (Class2) Note 1	-	ε F: 10000 M Ω = μ F ε F: 500M Ω • μ F	•		
est	A 15 1 16	B : 1 : 1	0 / 0.047 /	ι . υυυίνι 3ε - μ Γ			
	Applied voltage : Rated voltage						

 $:60\pm5$ sec.

: 50mA max.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Capacitance	(Tolerance)							
· · · · · · · · · · · · · · · · · · ·	Temperature	Standard	C□ U□ SL		: ±0.25pF : ±0.5pF : ±5% or ±10%			
Specified Value	Compensating (Class1)	High Frequency Type	CH RH	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%			
High Pern	High Permittivity (Class2)	igh Permittivity(Class2)			BJ, B7, C6, C7, LD(※): ±10% or ±20%, F: +80/-20% Note: %LD Low distortion high value multilayer ceramic capacitor			
			Class 1		Class 2			
T		Standar	d.	High Frequency Type	C≦10 <i>μ</i> F	C>10 μ F		
Test	Preconditioning		None		Thermal treatment (at 150°C for 1hr) Note 2			
Methods and	Measuring frequency		1MH:	z±10%	1kHz±10%	120±10Hz		
Remarks	Measuring voltage Note		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1rms		
	Bias application		one					

Specified Co Value	Temperature Compensating(Class1)	Standard		$C < 30pF : Q \ge 400 + 20C$ $C \ge 30pF : Q \ge 1000$ (C:Nominal capacitance)			
	Compensating (Class I)	High Frequency Type		Refer	to detailed specification	1	
	High Permittivity (Class2) Note 1			BJ, B7, C6, C7:2.5% max., F:7% max.			
			Class 1		Class 2		
			Standard		High Frequency Type	C≦10 μ F	C>10 μ F
	Preconditioning		None		Thermal treatment (at 150°C for 1hr) Note 2		
Test	Measuring frequey		1MHz±10%		1GHz	1kHz±10%	120±10Hz
Methods and	Measuring voltage Note	1			5Vrms	1±0.2Vrms	0.5±0.1Vrms
Remarks	Bias application		None				
	High Frequency Type						
	Measuring equipment	: HP	4291A				
	Measuring jig : HP16192A						

8. Temperature	Characteristic (Without vo	Itage application)						
			Tem	Temperature Characteristic [ppm/°C]			Tolerance [ppm/°C]	
			C□:	0	CH, CJ, CK			H: ±60
	Temperature	Standard	U□ :	— 750	UJ, UK			J: ±120 K: ±250
	Compensating (Class1)		SL :	+350 to −100	00			
			Tem	perature Charac	cteristic [ppm/°	C]	Toler	rance [ppm/°C]
		High Frequency Type	C□:	0	CH			11 1.00
			R□ : ·	-220	RH	H: ±60		H: ±60
Specified Value			Specification	Capacitance change		erence erature	Temperature Range	
			BJ	В	±10%	2	:0°C	−25 to +85°C
				X5R	±15%	2	:5°C	−55 to +85°C
			B7	X7R	±15%	2	:5°C	-55 to +125°C
	High Permittivity (Class2))	C6	X6S	±22%	2	:5°C	−55 to +105°C
			C7	X7S	±22%	2	!5°C	-55 to +125°C
			LD(※)	X5R	±15%	2	:5°C	-55 to +85°C
				F	+30/-80%	2	:0°C	-25 to +85°C
			F	Y5V	+22/-82%	2	:5°C	−30 to +85°C
		Note:		ortion high value				

Class 1

Capacitance at 20°C and 85°C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

$$\frac{(C_{85} - C_{20})}{C_{20} \times \Delta T} \times 10^{6} (ppm/^{\circ}C) \qquad \Delta T = 65$$

Test Methods and Remarks

Class 2

Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

Step	B, F	X5R、X7R、X6S、X7S、Y5V				
1	Minimum operating temperature					
2	20°C	25°C				
3	Maximum operating temperature					

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

 $\frac{(C-C_2)}{C_2}$ × 100 (%)

C : Capacitance in Step 1 or Step 3

C2 : Capacitance in Step 2

9. Deflection				
Temperature	I Standard I ''		: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.	
Specified	Compensating (Class1) pecified	pensating(Class1) High Frequency Type		: No abnormality : Within \pm 0.5 pF
Value High Permittivity (Class)	Appearance Capacitance change	: No abnormality : Within ±12.5%(BJ, B7, C6, C7,LD(※)) Within ±30%(F)	

Note: XLD Low distortion high value multilayer ceramic capacitor

Test Methods and Remarks

	Multilayer Ceramic Capacitors					
	042, 063, *105 Type	The other types				
Board	Glass epoxy-resin substrate					
Thickness	0.8mm	1.6mm				
Warp	1mm					
Duration	10 sec.					

(Unit: mm

Capacitance measurement shall be conducted with the board bent

10. Body Stren	10. Body Strength					
0 15 1	Temperature	Standard	1			
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.			
Value	High Permittivity (Class2))	-			
Test Methods and Remarks	High Frequency Type Applied force : 5N Duration : 10 sec.	Pres Pres	R0.5 Pressing Jig Chip O.6A A			

11. Adhesive S	trength of Terminal Ele	ctrodes		
Specified Value	Temperature	Standard		
	Compensating (Class	High Frequency Ty	/pe No terminal separat	No terminal separation or its indication.
- Value	High Permittivity (Cl	ass2)		
	Multilayer Ceramic		amic Capacitors	Hooked jig
Test		042, 063 Type	105 Type or more	
Methods and	Applied force	2N	5N	R=05
Remarks	Duration	30±	5 sec.] T +Chip /
				☐ ☐ ☐ Chip ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐

12. Solderability	У				
	Temperature	Standard			
Specified Value	Compensating(Class1)	High Frequency Type	At least 95% of terminal electrode is covered by new		by new solder.
Value	High Permittivity (Class2))			
- .		Eutectic so	older	Lead-free solder	
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu	
Remarks	Solder temperature	230±5°	С	245±3°C	
Remarks	Duration		4±1 sec.		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

. Resistance	to Soldering		T		
Specified Value	Temperature	Standard	Appearance Capacitance change Q Insulation resistance Withstanding voltage	: No abnormIty : Within ±2.5% or ± : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality
	Compensating(Class1)	High Frequency Type	Appearance Capacitancecange Q Insulation resistance Withstanding voltage	: No abnormality : Within ±2.5% : Initial value : Initial value (between terminals)	: No abnormality
	High Permittivity(Class2) Note 1		Appearance Capactace change Dissipation factor Insulation resistance Withstanding voltage Note: ※LD Low distored	: No abnormality : Within ±7.5%(BJ, E Within ±20%(F) : Initial value : Initial value (between terminals) ortion high value multilay	: No abnormality
			lss 1		
		042, 063 Type		105 Type	
	Preconditioning		None		
	Preheating	150°C, 1 to 2 min.		100°C, 2 to 5 min. 200°C, 2 to 5 min.	
	Solder temp.		270±5°C		
	Duration	3±0.5 sec.			
est	Recovery	6 to 24 hrs	(Standard condition)	Noe 5	
Methods and Remarks				Class 2	
		042,063 Type	105	107, 212 Type	316, 325 Type
	Preconditioning		Thermal treatment	(at 150°C for 1 hr) N	ote 2
	Preheating	150°C, 1 to 2 min.		100°C, 2 to 5 min. 200°C, 2 to 5 min.	80 to 100°C, 5 to 10 min. 150 to 200°C, 5 to 10 min.
	Solder temp.			270±5°C	
	Duration			3±0.5 sec.	
	Recovery		24±2 hrs (St	andard condition) Note	5

14. Temperatur	re Cycle (Thermal Shock)					
Specified Value	Temperature	Standard		Capacitance change : Q : Insulation resistance :	No abnormality Within ±2.5% or ±0.25 Initial value Initial value (between terminals): N	7
	Compensating (Class1)	High Frequency Type		Capacitance change : Q : Insulation resistance :	No abnormality Within ±0.25pF Initial value Initial value (between terminals): N	No abnormality
	High Permittivity(Class2) Note 1		Capacitance change : Dissipation factor : Insulation resistance :	No abnormality Within ±7.5% (BJ, B7, Within ±20% (F) Initial value Initial value (between terminals) : No n high value multilayer of	lo abnormality
			C	ass 1		Class 2
	Preconditioning		١	None	Thermal trea	atment (at 150°C for 1 hr) Note 2
Test Methods and Remarks	1 cycle		tep 1 2 3 4	Temperat Minimum operatii Normal tem Maximum operatir Normal tem	ng temperature nperature ng temperature	Time(min.) 30±3 2 to 3 30±3 2 to 3
	Number of cycles			Į.	5 times	
	Recovery	6 to 24 hrs (Stand	lard condition)Note 5	24±2 hrs (\$	Standard condition)Note 5

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

15. Humidity ((Steady State)				
Specified Value	Temperature Compensating(Class1)	Standard	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within $\pm 0.5 pF$, : 1000 M Ω min.	
	High Permittivity(Class	s2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low distort	: No abnormality : Within $\pm 12.5\%$ (BJ, B7, C6, C7, LD($\stackrel{.}{\times}$)) Within $\pm 30\%$ (F) : 5.0% max.(BJ, B7, C6, C7, LD($\stackrel{.}{\times}$)) 11.0% max.(F) : 50 M Ω μ F or 1000 M Ω whichever is smaller. tion high value multilayer ceramic capacitor	
		Cla	ass 1	Class 2	
		Standard	High Frequency Typ	pe All items	
Test	Preconditioning	N	one	Thermal treatment (at 150°C for 1 hr) Note 2	
Methods and	Temperature	40±2°C	60±2°C	40±2°C	
Remarks	Humidity	90 to	95%RH	90 to 95%RH	
	Duration	500+24	4/-0 hrs	500+24/-0 hrs	
	Recovery	6 to 24 hrs (Standa	ard condition) Note 5	24±2 hrs (Standard condition) Note 5	

16. Humidity Lo	oading				
	Temperature	Standard	Appearance Capacitance change Q Insulation resistance	: Wit : C < C≧	abnormality thin $\pm 7.5\%$ or ± 0.75 pF, whichever is larger. <30 pF: $Q \ge 100 + 10$ C/3 ≥ 30 pF: $Q \ge 200$ (C:Nominal capacitance) 0 M Ω min.
Specified Value	Compensating (Class1)	High Frequency Type	Appearance Capacitance change Insulation resistance	: C≦ C>	abnormality ${}^{\leq}_{2pF:Within}\pm0.4~pF$ ${}^{\circ}_{2pF:Within}\pm0.75~pF$ (C:Nominal capacitance) 0 M Ω min.
	High Permittivity(Class2		: Wit Wit : 5.0 11. : 25	abnormality thin ±12.5% (BJ, B7, C6, C7, LD(※)) thin ±30% (F) % max. (BJ, B7, C6, C7, LD(※)) 0% max. (F) M Ω μ F or 500 M Ω, whichever is smaller. gh value multilayer ceramic capacitor	
		(Class 1		Class 2
	Standard Preconditioning		High Frequency Ty	pe	All items Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3
Test	Temperature	40±2°C	60±2°C		40±2°C
Methods and	Humidity	90 1	to 95%RH		90 to 95%RH
Remarks	Duration	500+	24/-0 hrs		500+24/-0 hrs
	Applied voltage	Rate	ed voltage		Rated voltage
	Charge/discharge current	50	mA max.		50mA max.
	Recovery	6 to 24 hrs (Stan	dard condition)Note 5		24±2 hrs(Standard condition) Note 5

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

17. Then Temp	erature Loading					
Specified Value	Temperature Compensating(Class1)	Standard	Appearance Capacitance change Q Insulation resistance	: C<10pF: Q≧200+10C 10≦C<30pF:Q≧275+2.5C C≧30pF: Q≧350(C:Nominal capacitance)		
		High Frequency Type	Appearance Capacitance change Insulation resistance			
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: %LD Low dist	Within ±30% (F): 5.0% max.(BJ, B7, C6, C7, LD(※)) 11.0% max.(F)		
		Clas	s 1	Class 2		
		Standard H	High Frequency Type	BJ, LD(<u>*</u>), F C6 B7, C7		
	Preconditioning	Nor	ne	Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4		
Test	Temperature	Maximum operati	ng temperature	Maximum operating temperature		
Methods and	Duration	1000+48	/-0 hrs	1000+48/-0 hrs		
Remarks	Applied voltage	Rated vol	tage × 2	Rated voltage × 2 Note 4		
Remarks	Charge/discharge	50mA	max.	50mA max.		
	04110110			24±2 hrs(Standard condition)Note 5		

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

- Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150 \pm 0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.
- Note 3 Voltage treatment: Initial value shall be measured after test sample is voltage—treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.
- Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.
- Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.

Temperature: $20\pm2^{\circ}$ C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Precautions on the use of Multilayer Ceramic Capacitors

■PRECAUTIONS

1. Circuit Design

- ◆Verification of operating environment, electrical rating and performance
- 1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.

Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.

Precautions

- ◆Operating Voltage (Verification of Rated voltage)
 - 1. The operating voltage for capacitors must always be their rated voltage or less.
 - If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
 - For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
 - 2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

2. PCB Design

Precautions

- ◆Pattern configurations (Design of Land-patterns)
- 1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance. Therefore, the following items must be carefully considered in the design of land patterns:
 - (1) Excessive solder applied can cause mechanical stresses which lead to chip breaking or cracking. Therefore, please consider appropriate land-patterns for proper amount of solder.
 - (2) When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated by solder-resist.
- ◆Pattern configurations (Capacitor layout on PCBs)

After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, land pattern configurations and positions of capacitors shall be carefully considered to minimize stresses.

◆Pattern configurations (Design of Land-patterns)

The following diagrams and tables show some examples of recommended land patterns to prevent excessive solder amounts.

- (1) Recommended land dimensions for typical chip capacitors
- Multilayer Ceramic Capacitors : Recommended land dimensions (unit: mm)

Wave-soldering

Type		107	212	316	325
Sizo L		1.6	2.0	3.2	3.2
Size W 0.8		1.25	1.6	2.5	
A	`	0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5
В		0.5 to 0.8	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7
С		0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5

Reflow-soldering

Technical considerations

Ту	ре	042	063	105	107	212	316	325	432
Size	L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
Size	W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
-	4	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
E	3	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
()	0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5

Note: Recommended land size might be different according to the allowance of the size of the product.

●LWDC: Recommended land dimensions for reflow-soldering (unit: mm)

_				
Ту	ре	105	107	212
Size	┙	0.52	0.8	1.25
Size	W	1.0	1.6	2.0
-	4	0.18 to 0.22	0.25 to 0.3	0.5 to 0.7
В		0.2 to 0.25	0.3 to 0.4	0.4 to 0.5
)	0.9 to 1.1	1.5 to 1.7	1.9 to 2.1

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

(2) Examples of good and bad solder application

- ◆Pattern configurations (Capacitor layout on PCBs)
 - 1-1. The following is examples of good and bad capacitor layouts; capacitors shall be located to minimize any possible mechanical stresses from board warp or deflection.

Items	Not recommended	Recommended		
Deflection of board			Place the product at a right angle to the direction of the anticipated mechanical stress.	

1-2. The amount of mechanical stresses given will vary depending on capacitor layout. Please refer to diagram below.

3. Mounting

considerations

1-3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location.

Adjustment of mounting machine 1. When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. 2. Maintenance and inspection of mounting machines shall be conducted periodically. Precautions ◆Selection of Adhesives 1. When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked: size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information. ◆Adjustment of mounting machine 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. Technical

- - (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection.
 - (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

2. As the alignment pin is worn out, adjustment of the nozzle height can cause chipping or cracking of capacitors because of mechanical impact on the capacitors.

To avoid this, the monitoring of the width between the alignment pins in the stopped position, maintenance, check and replacement of the pin shall be conducted periodically.

Selection of Adhesives

Some adhesives may cause IR deterioration. The different shrinkage percentage of between the adhesive and the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect components. Therefore, the following precautions shall be noted in the application of adhesives.

- (1) Required adhesive characteristics
 - a. The adhesive shall be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive shall have sufficient strength at high temperatures.
 - c. The adhesive shall have good coating and thickness consistency.
 - d. The adhesive shall be used during its prescribed shelf life.
 - e. The adhesive shall harden rapidly.
 - f. The adhesive shall have corrosion resistance.
 - g. The adhesive shall have excellent insulation characteristics.
 - h. The adhesive shall have no emission of toxic gasses and no effect on the human body.
- (2) The recommended amount of adhesives is as follows;

[Recommended condition]

Figure	212/316 case sizes as examples					
а	0.3mm min					
b	100 to 120 μ m					
С	Adhesives shall not contact land					

4. Soldering

Precautions

◆Selection of Flux

Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;

- (1) Flux used shall be less than or equal to 0.1 wt% (in Cl equivalent) of halogenated content. Flux having a strong acidity content shall not be applied.
- (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.
- (3) When water-soluble flux is used, special care shall be taken to properly clean the boards.

◆ Solderin

Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.

Sn-Zn solder paste can adversely affect MLCC reliability.

Please contact us prior to usage of Sn-Zn solder.

◆Selection of Flux

- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.
- 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.

Technical considerations

♦Soldering

- · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock
- Preheating: Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 100 to 130°C.
- \cdot Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than $100^{\circ}\text{C}.$
- This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

[Reflow soldering]

[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free

Caution

- 1) The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of a capacitor.
- 2Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible.

[Wave soldering]

[Recommended conditions for eutectic

[Recommended condition for Pb-free

Caution

①Wave soldering must not be applied to capacitors designated as for reflow soldering only.

[Hand soldering]

[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free

Caution

- ①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm.
- 2)The soldering iron shall not directly touch capacitors.

5. Cleaning

◆Cleaning conditions

Precautions

- 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.)
- 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.

Technical considerations

- 1. The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance).
- 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked;

Ultrasonic output: 20 W/l or less Ultrasonic frequency: 40 kHz or less Ultrasonic washing period: 5 min. or less

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/)

6. Resin coating and mold 1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors.

The use of such resins, molding materials etc. is not recommended.

7. Handling Splitting of PCB 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. 2. Board separation shall not be done manually, but by using the appropriate devices. Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions	
Precautions	 ◆Storage 1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. •Recommended conditions Ambient temperature: Below 30°C Humidity: Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. •Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. 2. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour.
Technical considerations	If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.

**RCR-2335B(Safety Application Guide for fixed ceramic capacitors for use in electronic equipment) is published by JEITA. Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).