Deterministic Optimization

Linear Optimization Modeling Electricity Markets

Andy Sun

Assistant Professor
Stewart School of Industrial and Systems Engineering

A Real-World Example

Modeling using Linear Programs

Learning Objectives for this Lesson

- Solve some simple examples to gain intuition of locational marginal price
- Appreciate the power of optimization in real-world electricity markets

LP Model for Market Clearing

• $\max \sum_{i=1}^{|D|} v_i d_i - \sum_{i=1}^{|G|} c_i p_i$ subject to

$$\sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ij} = p_i \ \forall i \in G$$

$$\pi_{i} \longrightarrow \sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ij} = -d_{i} \quad \forall i \in D$$

$$\sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ij} = 0 \quad \forall i \in N \setminus (G \cup D)$$

- $f_{ij} = B_{ij}(\theta_i \theta_i) \ \forall (i,j) \in E$

• $-F_{ij} \le f_{ij} \le F_{ij} \quad \forall (i,j) \in E$ • $p_i^m \le p_i \le p_i^M \ \forall i \in G$ • $d_i^m \le d_i \le d_i^M \ \forall i \in D$ Locational Marginal Price: π_i is the **optimal objective change per unit**

increase of demand at node i

A Simple Example: No Congestion

- Two-node system:
 - Generator 1 offers \$20/MWh with capacity 150MW
 - Generator 2 offers \$10/MWh with capacity 300MW
 - Demand 1 is fixed at 150MW
 - Demand 2 is fixed at 100MW

- Transmission capacity $F_{12} = 300 \text{MW}$
- Since transmission constraint is never binding (i. e. $-F_{12} < f_{12} < F_{12}$), we can ignore the network flow constraints
- Market clearing problem minimizes the total cost:
 - $p_1 = 0$ MW, $p_2 = 250$ MW, LMP: $\pi_1 = 10 /MWh, $\pi_2 = 10 /MWh
- When there is no congestion, price is uniform.

A Simple Example: Congestion

- Two-node system:
 - Generator 1 offers \$20/MWh with capacity 150MW
 - Generator 2 offers \$10/MWh with capacity 300MW
 - Demand 1 is fixed at 150MW
 - Demand 2 is fixed at 100MW

- Transmission capacity $F_{12} = 80 \text{MW}$
- Transmission constraint will be binding, we cannot ignore them
- Market clearing problem minimizes the total cost:

$$p_1 = 70$$
 MW, $p_2 = 180$ MW, $f_{12} = -80$ MW, LMP: $\pi_1 = \$20$ /MWh, $\pi_2 = \$10$ /MWh

• When there is congestion, locational prices are different.

Real-World Examples

- ISO New England Market
- PJM (Pennsylvania-New Jersey-Maryland) Market
- New York ISO Market

MidContinental ISO Market

Summary

- Explored the intuition of LMP by a simple two-node system
- Examined some real-world electricity markets' real time pricing