Research Plan

Area of Focus

– In their paper on Proximal Policy Optimization, Schulman et. al. [1] propose the clipped surrogate loss function for a fixed parameter ϵ :

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$$

where $r_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}$ and \hat{A}_t is the generalized advantage estimator. For simplicity, let $r_t(\theta) = r_t$. \hat{A}_t can be replaced with a number of other " γ -just" estimators that must satisfy certain conditions [2]. Generalizing \hat{A}_t to these estimators, which will be denoted \hat{G}_t , yields:

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min \left(r_t \hat{G}_t, \text{clip}(r_t, 1 - \epsilon, 1 + \epsilon) \hat{G}_t \right) \right]$$

- The goal is to investigate replacements for the clipper function $\operatorname{clip}(r_t, 1 \epsilon, 1 + \epsilon)$. Let us refer to these replacements as "min-filters," and let $m(r_t)$ denote an arbitrary min-filter.
- In this experimental framework, we have the loss function:

$$L^{m}(\theta) = \hat{\mathbb{E}}_{t} \left[\min \left(r_{t}(\theta) \hat{G}_{t}, m(r_{t}) \hat{G}_{t} \right) \right]$$

- L^{CLIP} is simply an instance of this where $m(r_t) = \text{clip}(r_t, 1 - \epsilon, 1 + \epsilon)$.

– Illustrating minimization under ${\cal L}_{CLIP}$ on individual expectation components:

Expectation component, $\hat{G}_t > 0$

Expectation component, $\hat{G}_t < 0$

The paper on Trust Region Policy Optimization by Schulman et. al. [3] proposes a target function whose maximization guarantees monotonic improvement:

$$targ(\theta) = L_{\theta_{old}}(\theta) - CD_{KL}^{max}(\theta, \theta_{old})$$

where C is a fixed positive constant (see paper for specifics) and it is shown that

$$L_{\theta_{old}}(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{s \sim p_{\theta_{old}}, a \sim \theta_{old}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)} A_{\theta_{old}}(s, a) \right]$$

where $p_{\theta_{old}}$ is the normalized discounted visitation frequency distribution.

- Assuming that the on-policy distribution matches the normalized dis-

counted visitation frequency distribution, we can write:

$$L_{\theta_{old}}(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{t \in (1, \dots, \infty)} \left[r_t \hat{A}_t \right]$$

– By definition, any γ -just estimator can replace \hat{A}_t because doing so only adds a constant to $targ(\theta)$. Therefore, we can redefine $L_{\theta_{old}}(\theta)$ as:

$$L_{g,\theta_{old}}(\theta) = \frac{1}{1 - \gamma} \mathbb{E}_{t \in (1,\dots\infty)} \left[r_t \hat{G}_t \right]$$

– Plugging into the target function, multiplying by $1 - \gamma$, and absorbing $1 - \gamma$ into C leaves us with the gradient-equivalent target function:

$$targ_g(\theta) = \mathbb{E}_t \left[r_t \hat{G}_t \right] - CD_{KL}^{max}(\theta, \theta_{old})$$
$$\nabla_{\theta} targ_g(\theta) = \nabla_{\theta} targ(\theta)$$

- Consider the case where $\forall t \in (1, \dots \infty)$, $\hat{G}_t > 0$ and $r_t < 1 + \epsilon$ and let $\theta \neq \theta_{old}$. In this case, no penalty is applied and the clipped loss is a strict overestimate without the same gradient:

$$\begin{split} L^{CLIP}(\theta) &= \hat{\mathbb{E}}_t \left[\min \left(r_t \hat{G}_t, \operatorname{clip}(r_t, 1 - \epsilon, 1 + \epsilon) \hat{G}_t \right) \right] \\ &= \hat{\mathbb{E}}_t \left[r_t \hat{G}_t \right] \\ &\geq \mathbb{E}_t \left[r_t \hat{G}_t \right] - CD_{KL}^{max}(\theta, \theta_{old}) \\ &= targ_g(\theta) \\ \nabla_{\theta} L^{CLIP}(\theta) &= \nabla_{\theta} \hat{\mathbb{E}}_t \left[r_t \hat{G}_t \right] \\ &\neq \nabla_{\theta} \mathbb{E}_t \left[r_t \hat{G}_t \right] - C\nabla_{\theta} D_{KL}^{max}(\theta, \theta_{old}) \\ &= \nabla_{\theta} targ_g(\theta) \end{split}$$

- Removing the assumption that $\hat{G}_t > 0$, the above still holds only if, for all positive \hat{G}_t , $r_t < 1 + \epsilon$, and for all negative \hat{G}_t , $r_t > 1 \epsilon$.
- If r_t is independent of the sign of \hat{G}_t , this is generally a harder condition to meet. Experimentally, I found that, on almost every batch, the number of timesteps t where $r_t < 1 + \epsilon$ was greater than the number of timesteps where $(\hat{A}_t < 0 \text{ and } r_t > 1 \epsilon)$ or $(\hat{A}_t > 0 \text{ and } r_t < 1 + \epsilon)$. This means that, if \hat{G}_t can be both positive and negative, penalties become more possible, allowing $L^{CLIP}(\theta)$ to better approximate $targ_g(\theta)$, better guaranteeing monotonic improvement.
- This reasoning could explain the preference for advantage estimators over value estimators, because the condition that $\mathbb{E}_t(\hat{A}_t) = 0$ requires that advantage estimators be negative half the time, while value functions are typically always positive or always negative.
- Research question: In some cases, it is simpler to implement a value estimator than an advantage estimator. Can we design a min-filter that specifically addresses the above concerns to make it more feasable to use a value estimator in Proximal Policy Optimization?

L^{CLIP} Penalty Differences for Different Estimate Models

- Consider the set of expectation-component parameters $((r_1, \hat{G}_1), (r_2, \hat{G}_2), \dots (r_T, \hat{G}_T))$, where all r and \hat{G} are uncorrelated.
- Under L^{CLIP} , a particular timestep t will be penalized in either of two cases:
 - $-\hat{G}_t$ is positive and $r_t > 1 + \epsilon$.
 - $-\hat{G}_t$ is negative and $r_t < 1 \epsilon$.
- Therefore, by the assumption of independence of \hat{G}_t and r_t , we have the expected number of penalized timesteps: $(p(\hat{G}_t > 0)p(r_t > 1 + \epsilon) + p(\hat{G}_t < 0)p(r_t < 1 \epsilon))T$.
- Let $\hat{G}_{1,t}$ and $\hat{G}_{2,t}$ be two alterate estimators. To understand differences in the expected number of penalized timesteps as we modify the sign of \hat{G} , define the ratio:

$$\begin{split} r_{diff} &= \frac{(p(\hat{G}_{1,t} > 0)p(r_t > 1 + \epsilon) + p(\hat{G}_{1,t} < 0)p(r_t < 1 - \epsilon))T}{(p(\hat{G}_{2,t} > 0)p(r_t > 1 + \epsilon) + p(\hat{G}_{2,t} < 0)p(r_t < 1 - \epsilon))T} \\ &= \frac{p(\hat{G}_{1,t} > 0)p(r_t > 1 + \epsilon) + p(\hat{G}_{1,t} < 0)p(r_t < 1 - \epsilon)}{p(\hat{G}_{2,t} > 0)p(r_t > 1 + \epsilon) + p(\hat{G}_{2,t} < 0)p(r_t < 1 - \epsilon)} \end{split}$$

- If $p(r_t > 1 + \epsilon) = p(r_t < 1 \epsilon)$, this ratio degenerates to 1 regardless of the sign distributions of \hat{G}_1 and \hat{G}_2 .
- Consider the example where $p(\hat{G}_{1,t} > 0) = p(\hat{G}_{1,t} < 0) = 0.5$ and $p(\hat{G}_{2,t} > 0) = 1$, $p(\hat{G}_{2,t} < 0) = 0$. Finding the conditions under which $r_{diff} > 1$:

$$\begin{split} r_{diff} &> 1 \\ \frac{0.5(p(r_t > 1 + \epsilon) + p(r_t < 1 - \epsilon))}{p(r_t > 1 + \epsilon)} &> 1 \\ \frac{p(r_t > 1 + \epsilon) + p(r_t < 1 - \epsilon)}{p(r_t > 1 + \epsilon)} &> 2 \\ p(r_t > 1 + \epsilon) + p(r_t < 1 - \epsilon) &> 2p(r_t > 1 + \epsilon) \\ p(r_t < 1 - \epsilon) &> p(r_t > 1 + \epsilon) \end{split}$$

- Consider a continuous action space and gaussian policies with trainable but state-independent standard deviations.
- In general, on a particular state s, the standard deviation encoded by θ will decrease as the agent becomes more certain of its actions, and the mean will get further from the mean encoded by θ_{old} . Visualizing the overlaid gaussians, both of these actions will make it more likely that the above condition is true.
- Therefore, as training progresses in a single iteration, we expect that the \hat{G}_1 estimate will begin to induce penalties on more timesteps than the \hat{G}_2 estimate.

- Following similar logic as above, we have that if $p(\hat{G}_{2,t} > 0) = 0$, $p(\hat{G}_{2,t} < 0) = 1$, the condition $r_{diff} > 1$ requires that $p(r_t < 1 \epsilon) < p(r_t > 1 + \epsilon)$. However, because we have just reasoned that the opposite relation tends to be true as an iteration progresses, it must be be the case that $r_{diff} < 1$ that is, using such an estimator results in more penalized timesteps.
- Testing this theory empirically on the InvertedPendulum-v2 environment with a standard PPO agent and an advatage estimate \hat{G}_t , I observed that, in a single iteration, the number of (\hat{G}_t, r_t) where $(\hat{G}_t > 0 \text{ and } r_t > 1 + \epsilon)$ or $(\hat{G}_t < 0 \text{ and } r_t < 1 \epsilon)$ became consistently greater than the number of r_t where $r_t > 1 + \epsilon$, and consistently less than the number of r_t where $r_t < 1 \epsilon$. This is in agreement with the above theoretical results.

References

- [1] https://arxiv.org/abs/1707.06347
- [2] https://arxiv.org/abs/1506.02438
- [3] https://arxiv.org/abs/1502.05477