ASP3262 Introduction to coding Week 11 Lab

Numerical Solutions to Nuclear Reaction Networks

Written by Evgenii Neumerzhitckii

Oct 17, 2019

Contents

Task 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
Task 2			•						•	•	•	•	•	•	•	•		•	•														•	4
Task 3			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•								•	•			•	7
Task 4		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•			•	13
Task 5		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•			•	14
Task 6			•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•								•	•			•	16
Task 7																																		17

Taskl	(m)
$\frac{ as\kappa 1 }{3He} \iff c + \delta$	
2 ¹²	-
2/2C => 24 Mg + 8	
Forward reaction eater	
TERWARD reaction eates d Y 4 He = (34 He > 12 (3!0!) Y 4He 1/20	
$= \sqrt{3^{4} \text{He}} \Rightarrow ^{12} \left(-\frac{1}{2}\right) \left(\frac{3}{4}\right)$	
d Y12c = (3-0) 3 40 34He = 12c (3!0!) 14He 112c	100
+ (212 >21Mg) 0-2 Y2 Y2mg	100
= (34He > 12C) (1) Y3 + (212C=24Mg) (1) Y12C	
d Y2mg = 2120 >2mg 2!0! Y2 Y0	
$= \left(\frac{1}{2^{12}C} \Rightarrow \frac{2^{11}}{2^{12}} \left(\frac{1}{2}\right) + \frac{2}{12^{12}}\right)$	
	1

· .	
.	Reverse reaction rates
<u> </u>	reverse reaction rates
\vee	12 - 2311
_	$l^2C \rightarrow 3^3He$
	24Mg -> 2 2C
<u> </u>	119 -3 2 C
~	1 2 0 1 1 0
_	d Y4He - (12c >34He) (3-0) Y1 Y0 13He
<u></u>	
_	= (12c = 3 4He) (3) Y 12C
\sim	("12 - 2 He) (C
0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
J -	d Y12c = (12c = 3 /He) (0-1) Y1 Y0 dt Y12c Y3He
7	
ت	+ (2mg -> 212c) (2-0) /2mg /12c
· .	() () () () () ()
Ų	- (1) (1) (1) (1) (1) (1) (1) (1) (1)
-	= - (12c > 34He) (1) YIZC + (12mg - 212c) (2) (12mg)
_	
_	d Y29Mg = (24My > 212C) (0-1) Y24Mg
<u></u>	at 1999 (1949 > 2120) 1
)	
J	= - (24 My = 2 12 C) (24 My
_	
_	
_	
J :	
4	
آب	
J	
d	
2	
_	
1.	

The rates of the nuclear reactions are shown on Figures 1 - 4. We can see that the rates for reverse reactions are identical for the two different pressures. In addition, we can see that reverse reactions only happen at temperatures higher than about 1×10^9 K, while forward reactions happen at lower temperatures.

Figure 1: Nuclear reaction rates for $2^{12}C \longrightarrow {}^{24}Mg$.

Figure 2: Nuclear reaction rates for $2^{12}C \leftarrow {}^{24}Mg$.

Figure 3: Nuclear reaction rates for $3^4\text{He} \longrightarrow {}^{12}\text{C}$.

Figure 4: Nuclear reaction rates for $3^4\text{He} \longleftarrow {}^{12}\text{C}$.

The changes of mass fraction over time for a range of temperatures are shown on Figures 5 - 14.

Figure 5: Changes of mass fraction over time for temperature $T = 1 \times 10^9$ K.

Figure 6: Changes of mass fraction over time for temperature $T = 1.1 \times 10^9$ K.

Figure 7: Changes of mass fraction over time for temperature $T = 1.2 \times 10^9$ K.

Figure 8: Changes of mass fraction over time for temperature $T = 1.3 \times 10^9$ K.

Figure 9: Changes of mass fraction over time for temperature $T = 1.4 \times 10^9$ K.

Figure 10: Changes of mass fraction over time for temperature $T = 1.5 \times 10^9$ K.

Figure 11: Changes of mass fraction over time for temperature $T = 1.6 \times 10^9$ K.

Figure 12: Changes of mass fraction over time for temperature $T = 1.7 \times 10^9$ K.

Figure 13: Changes of mass fraction over time for temperature $T=1.8\times 10^9$ K.

Figure 14: Changes of mass fraction over time for temperature $T = 1.9 \times 10^9$ K.

Here we use an integrator with adaptive time step. The changes of mass fraction over time are shown on Figure 15.

Figure 15: Changes of mass fraction over time for temperature $T = 1 \times 10^9$ K.

Solutions obtained with an implicit solver for higher temperatures are shown on Figure 16 and Figure 17.

Figure 16: Changes of mass fraction over time for temperature $T = 2.3 \times 10^9$ K.

Figure 17: Changes of mass fraction over time for temperature $T = 2.4 \times 10^9$ K.

Solutions obtained with an adaptive implicit solver are shown on Figure 18. The final mass fractions for Helium, Carbon and Magnesium are 0.0156, 0 and 0.984 respectively.

Figure 18: Changes of mass fraction over time for temperature $T=2.1\times 10^9\,\mathrm{K}$ calculated with adaptive implicit solver.

Solutions obtained using variable temperatures are shown on Figure 19 and Figure 20. For the last solution we had to decrease the temperature to 7×10^9 K in order for the plot to show up.

Figure 19: Changes of mass fraction over time for variable temperature.

Figure 20: Changes of mass fraction over time for variable temperature.