केंद्रीय विद्यालय संगठन, अहमदाबाद संभाग KENDRIYA VIDYALAYA SANGATHAN, AHMEDABAD REGION

प्री-बोर्ड परीक्षा:2024-25

PRE-BOARD EXAMINATION: 2024-25

SUBJECT : MATHEMATICS(041)

TIME: 3 HOURS MM: 80

CLASS : XII

General Instructions:

 This question paper contains - FIVE Sections A,B,C,D and E. Each section is compulsory. However, there are internal choices in some questions.

 Section A has 18 MCQ's and 02 Assertion -Reason based questions of 1 mark each.

3. Section-B has 5 Very Short Answer (VSA) -type questions of 2 marks each

4. Section-C has 6 Short Answer (SA) -type questions of 3 marks each.

5. Section-D has 4 Long Answer (LA) -type questions of 5 marks each.

6. Section E has 3 source based/case based / passage based/integrated units of assessment (4 marks each) with sub parts.

Q No.	SECTION-A (This section comprises of multiple-choice questions of 1 mark each)	Marks
Q 1	Given $A = \begin{bmatrix} 4 & 2 & 5 \\ 2 & 0 & 3 \\ -1 & 1 & 0 \end{bmatrix}$, the value of det(2AA ⁻¹) is	1
	(a) 2	
	(b) 9	
	(c) 8	
	(d) 4	
Q 2	For which of these vectors is the projection on the y-axis zero?	1
	(i) $2 \hat{j}$ (ii) $-5 \hat{k}$ (iii) $\hat{i} - 4 \hat{k}$	
	(a) Only (i) (b) Only (ii) (c) Only (i) and (ii) (d) Only (ii) and (iii)	

Q 3	The value of $sin^{-1}(sin(5\pi/4))$ is:	
	(a) $5\pi/4$ (b) $3\pi/4$ (c) $-\pi/4$ (d) $\pi/4$	
Q 4	M and N are two events such that $P(M \cap N) = 0$	1
	Which of the following is equal to P (M M U N)? (a) $\frac{P(M)}{P(N)}$ (b) $\frac{P(N)}{P(M \cup N)}$ (c) $\frac{P(M)}{P(M) + P(N)}$ (d) $\frac{P(M)}{P(M) P(N)}$	
Q 5	A is a 3 X 4 matrix . A matrix B is such that A' B and B A' are defined then order of B is (a) 3 X 4 (b) 3 X 3 (c) 4 X 4 (d) 4 X 3	1
.Q 6	A linear programming problem (LPP) along with the graph of its constraints is shown below. The corresponding objective function is Minimize: Z = 3x + 2y. The minimum value of the objective function is obtained at the corner point (2, 0).	1

	 (a) does not exist as the feasible region is unbounded. (b) does not exist as the inequality 3x + 2y < 6 does not have any point in common with the feasible region. (c) exists as the inequality 3x + 2y > 6 has infinitely many points in common with the feasible region. (d) exists as the inequality 3x + 2y < 6 does not have any point in common with the feasible region. 	
Q 7	If $f(x) = \cos^{-1} \sqrt{x}$, $0 < x < 1$, which of the following is equal to $f'(x)$? (a) $\frac{-1}{\sqrt{1-x}}$ (b) $\frac{1}{\sqrt{1-x}}$ (c) $\frac{1}{2\sqrt{x(1-x)}}$ (d) $\frac{-1}{2\sqrt{x(1-x)}}$	1
Q 8	$\int_0^{2\pi} cosec^7 \times dx =$ (a) 0 (b) 1 (c) 4 (d) 2π	1
Q 9	The interval in which function $y=x^2e^{-x}$ is increasing is: (a) $(-\infty,\infty)$ (b) $(-2,0)$ (c) $(2,\infty)$ (d) $(0,2)$	1
Q 10	The value of b for which the function $f(x) = \begin{cases} 5x - 4 & 0 < x \le 1 \\ 4x^2 + 3bx & 1 < x < 2 \end{cases}$ is continuous at every point of its domain is (a) -1 (b) 0 (c) 13/3 (d) 1	1
Q 11	The degree of the differential equation $(y'')^2 + (y')^3 = xsin(y')$ is: (a) 1 (b) 2 (c) 3 (d) not defined	1
Q 12	The area of the region bounded by the parabola $y = x^2$ and $x = -1$, $x = 2$ and $x = -1$, and $x = -1$, $x = 2$ and $x = -1$.	1

	c) 7 sq units	
		/5
Q 13	d) 3/2 sq units Kapila is trying to find the general solution of the following	To
	differential equations.	,
	(i) $xe^{\frac{x}{y}}dx - ye^{\frac{3x}{y}}dy = 0$	
	(ii) $(2x+1)\frac{dy}{dx} = 3-2y$	
	(iii) $\frac{dy}{dx} = \sin x - \cos y$	
	Which of the above become variable separable by substituting y = bx where b is variable ?	
	(a) Only (i) (b) Only (i) and (ii)	
	(c) All -(i) , (ii) and (iii)	
	(d) None of the above	
Q 14	$c e^{x}(1+x)$	
	$\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx =$	1
	(a) $-\cot(x e^x) + c$	
	(b) $\tan(x.e^x) + c$ (c) $\tan(e^x) + c$	
	(c) $\tan (e^x) + c$ (d) $\cot (e^x) + c$	
Q 15		
	If A = $\begin{bmatrix} 0 & 1 & c \\ -1 & a & -b \\ 2 & 3 & 0 \end{bmatrix}$ is a skew symmetric matrix then the value of $a + b + c = a$	1
	0 353	
	(p) 3	V38
	(d) 1 coro 2.3 = 2.3	,
Q 16	The corner points of the feasible region determined by the	1
	system of linear constraints are $(0, 10)$, $(5,5)$, $(15, 15)$, $(0, 20)$. Let $z=px+qy$, where p, q> 0. Condition on p and q so that the	
	maximum of z occurs at both the points (15, 15) and (0, 20) is (a) $p = q$	
	(h) n=2g	
	(c) q=2p (d) q=3p	
Q 17	If \vec{a} and \vec{b} are unit vectors, then what is the angle	1
	between \vec{a} and \vec{b} for $\sqrt{3}\vec{a} - \vec{b}$ to be a unit vector?	

9 4 (132 - 3). (132 - 7) NP = NE 4 - 2/32. 2 = 3A1 - 1328 + 181 - 132. 2)

Page 4 of 8

\		\ <u></u>		
1	1		b) 45 °	
1			c) 60°	
7			d) 90 °	2
		Q 18	$\int e^x (\log \sin x + \cot x) dx \text{ is } e^x \int e^x (\log x) dx \text{ is } e^x \int e^x (\log x) dx is $	1
			(a) $e^x \log \sin x + C$	
			(b) $e^x \cot x + C$	
			(c) $e^x \tan x + C$	
			(d) $e^x (\log \cos x - \cot x) + C$	
			ASSERTION - REASON BASED QUESTIONS	
02	la	~2	In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.	ecse to
~			(a) Both A and R are true and R is correct explanation for A	Cod
2°S	90	2 + ten	(d)Both A and R are true but R is not correct explanation for A (c)A is true but R is false. (d)A is false but R is true	A. 200
		Q 19		1
36	1		Assertion(A) : A relation $R = \{(a, b) : a-b < 2\}$ defined on the set $A = \{1,2,3,4,5\}$ is reflexive.	
	1		Reason (R) : A relation on the set A is said to be reflexive if $(a, a) \in R \ \forall \ a \in A$	1
		Q 20	Assertion(A) : The maximum value of the function $f(x) = x^5$, $x \in [-1,1]$, is attained at its critical point, $x=0$	1
			Reason (R) : The maximum of a function may occur at points where derivative is zero.	
			SECTION B	
			This section comprises very short answer type-questions (VSA) of 2 marks each	
		Q 21	Find the domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$	2
		Q 22	If $f(x) = \cos x $, find $f'(\frac{3\pi}{4})$	2
			OR	
			If $x^y = e^{x-y}$ then prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$	2
		0.22	$\frac{1}{dx} = \frac{1}{(1 + \log x)^2}$	
		Q 23	Find the value of $\boldsymbol{\lambda}$ so that the lines given below are perpendicular	2
	-		$\frac{(1-x)}{3} = \frac{(7y-14)}{\lambda} = \frac{(z-3)}{2}$	
			$\frac{(7-7x)}{3\lambda} = \frac{(y-5)}{1} = \frac{(6-z)}{5}$	
			3λ 1 5	

	Q 24		
	Q 24	Find the area of a parallelogram whose diagonals are $2\hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+3\hat{j}-\hat{k}$	200
H		OR	
		If \vec{a} , \vec{b} and \vec{c} be three vectors such that \vec{a} + \vec{b} + \vec{c} = 0 , $ \vec{a} $ =	2
	0.25	$ \vec{a}, \vec{b} = 5 \& \vec{c} = 7$ find the angle between \vec{a} and \vec{b}	
	Q 25	If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ and I is identity matrix of order 2, then find k so that $A^2 = kA$ -2I	2
7		This section comprises short answer type-questions (SA) of 3 marks each	
	R	of 5 marks each	
	Q 26	Let $\vec{a} = \hat{\imath} - \hat{\jmath}$, $\vec{b} = 3\hat{\jmath} - \hat{k}$ and $\vec{c} = 7\hat{\imath} + \hat{k}$. Find a vector \vec{d} which	3
		is perpendicular to both a and b and $\vec{c} \cdot d = 1$.	
		OR	
		Find the vector and cartesian equation of the straight line passing through the point (-5, 7, -4) and (3, -2, 1). Also find the point where this straight line crosses the xy-plane.	3
	Q 27	The relation between the height of the plant (v. in	2
			3
		equation $y=4x-\frac{1}{2}x^2$ where x is the number of days exposed to sunlight. (i) What will be the rate of growth of the plant with respect to sunlight?	
1000			
	0.20	(ii)What will be the height of plant after 2 days?	
	Q 28	If x = cot t and y = $cosec^2$ t find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$	3
	Q 29	Solve the following linear programming problem graphically: Minimise $z = 200 \times + 500 \text{ y}$ subject to the constraints:	3
		Y + 2y > 10	
	Q. 30	$3x + 4y \le 24$ $x \ge 0, y \ge 0$ $\sqrt{2}$	
	Q. 30	ordinates $x = -1$ and $x = 1$	3
		OR CH	
	0.21	Find the area of the region bounded by the line $y = 3x + 2$, the x-axis and the ordinates $x = -1$ and $x = 1$.	3
	Q 31	The probability of simultaneous occurrence of at least one of the two events A and B is p. If the probability that exactly one of A,B occurs is q, then prove that $P(A') + P(B') = 2-2p+q$	3
		OR	
		From a lot of 10 bulbs which includes 2 defectives, a sample of 2 bulbs is drawn at random without replacement. Find the	3