I Miroir

On note $\widetilde{u} = u_n...u_1$ le miroir d'un mot $u = u_1...u_n$ et $\widetilde{L} = \{\widetilde{u} \mid u \in L\}$ le miroir d'un langage L. Soit L un langage hors-contexte. Montrer que \widetilde{L} est un langage hors-contexte.

II Trouver une grammaire

Montrer que les langages suivants sont non-contextuels :

1.
$$L_1 = (ab)^*$$

2.
$$L_2 = \{a^n b^p \mid n \ge p\}.$$

3.
$$L_3$$
: représentations des multiples de 3 en base 2.

4.
$$L_4 = \{a^i b^j c^k \mid i = j + k\}.$$

III Trouver le langage engendré

Déterminer les langages engendrés par les grammaires suivantes avec S comme symbole initial, en le prouvant :

1.
$$G_1$$
:

2. G_2 :

$$S \rightarrow X \mid Y$$

$$X \rightarrow aX \mid aZ$$

$$Y \rightarrow Yb \mid Zb$$

$$Z \rightarrow \varepsilon \mid aZb$$

3.
$$G_3$$
:

4. G_4 :

$$S \to X \mid XaS$$

$$X \to aXbX \mid bXaX \mid \varepsilon$$

$$Z o \varepsilon \mid aZb$$

$$S \rightarrow 0A1 \mid \varepsilon$$

$$A \rightarrow 1S0 \mid \varepsilon$$

$$S \to X \mid Y$$

$$\begin{split} X &\to Z0X \mid Z0Z \\ Y &\to Z1Y \mid Z1Z \\ Z &\to \varepsilon \mid 1Z0Z \mid 0Z1Z \end{split}$$

IV Régulier \implies hors-contexte

Montrer par induction structurelle que tout langage régulier est un langage hors-contexte (ce qui est une preuve alternative passant par un automate, donnée en cours).

V Lemme de l'étoile algébrique, intersection et complémentaire

On admet la version suivante du lemme de l'étoile pour les langages non-contextuels :

Théorème : Lemme d'Ogden

Si L est un langage hors-contexte alors il existe un entier n tel que, pour tout mot $t \in L$ tel que $|t| \ge n$, on peut écrire t = uvwxy avec :

- $|vwx| \le n$;
- $vx \neq \varepsilon$;
- $\forall i \in \mathbb{N}, uv^i wx^i y \in L.$

Soient $L_1 = \{a^n b^n c^p \mid n, p \in \mathbb{N}\}\$ et $L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}.$

- 1. Montrer que L_1 est un langage hors-contexte.
- 2. Montrer que L_2 n'est pas un langage hors-contexte.
- 3. Montrer que l'ensemble des langages hors-contextes n'est pas stable par intersection ni par passage au complémentaire.

VI CCP 2023

On considère la grammaire algébrique G sur l'alphabet $\Sigma = \{a, b\}$ et d'axiome S dont les règles sont : $S \to SaS \mid b$

- 1. Cette grammaire est-elle ambiguë? Justifier.
- 2. Déterminer (sans preuve pour cette question) le langage L engendré par G. Quelle est la plus petite classe de langages à laquelle L appartient?
- 3. Prouver que L = L(G).
- 4. Décrire une grammaire qui engendre L de manière non ambiguë en justifiant de cette non ambiguité.
- 5. Montrer que tout langage dans la même classe de langages que L peut être engendré par une grammaire algébrique non ambiguë.

VII Forme normale de Chomsky

Une grammaire $G = (\Sigma, V, R, S)$ est en forme normale de Chomsky si toutes ses règles sont de la forme $X \longrightarrow YZ$ (où $Y, Z \in V$), $A \longrightarrow a$ (où $a \in \Sigma$) ou $S \longrightarrow \varepsilon$.

Soit G une grammaire qui n'engendre pas ε . Montrer qu'il existe une grammaire G' en forme normale de Chomsky telle que L(G') = L(G).

VIII Mots de Dyck

Soit $\Sigma = \{a, b\}$. Un mot u sur Σ est un mot de Dyck (ou : mot bien parenthésé) si :

- a) u contient autant de a que de b
- b) chaque préfixe de u contient au moins autant de a que de b

On note D l'ensemble des mots de Dyck.

- 1. Montrer que D n'est pas un langage régulier.
- 2. Montrer que tout mot de Dyck non-vide se décompose de manière unique sous la forme aubv, où u et v sont des mots de Dyck.
- 3. Soit G la grammaire donnée par $S \to SS \mid aSb \mid \varepsilon$. Montrer que L(G) = D.
- 4. Montrer que G est ambigüe.
- 5. Donner une grammaire non-ambigüe engendrant D.
- 6. Donner une bijection entre les mots de Dyck et les arbres binaires stricts (tels que tout nœud possède 0 ou 2 fils).
- 7. Soit C_n le nombre de mots de Dyck de longueur 2n. Trouver une équation de récurrence sur C_n .
- 8. Après avoir fait le cours de mathématiques sur les séries entières, montrer que $C_n = \frac{1}{n+1} \binom{2n}{n}$.
- 9. Dans cette question, on peut utiliser des parenthèses différentes (par exemple, {} et []). Décrire un algorithme en complexité linéaire pour savoir si un mot est bien parenthésé.
- 10. Décrire un algorithme en complexité linéaire pour trouver la longueur du plus long facteur bien parenthésé d'un mot sur Σ .

On pourra résoudre les deux dernières questions sur LeetCode: Valid Parentheses et Longest Valid Parentheses.