

CHED National Center of Excellence in Information Technology Education

INSTITUTE OF COMPUTER SCIENCE

College of Arts and Sciences University of the Philippines Los Baños College 4031, Laguna, PHILIPPINES

☎ Phone (63-49) 536-2313 **⊘** Fax (63-49) 536-2302 **⊘** Campus VoIP 6123

E-mail jppabico@up.edu.ph

Web www.ics.uplb.edu.ph/jppabico

CMSC 180 Introduction to Parallel Computing Second Semester AY 2023-2024

Laboratory Research Problem 01 Computing the Pearson Correlation Coefficient of a Matrix and a Vector

Introduction

Given a $m \times n$ matrix **X** with m rows and n columns and a $m \times 1$ vector y, a $1 \times n$ vector r holds the Pearson Correlation Coefficient of the columns in **X** and y, such that

$$r(j) = \{m [X_i y] - [X]_i [y]\} / \{[m [X^2]_i - ([X])^2][m [y^2] - ([y])^2]\}^{1/2}$$
 (Equation 1)

where,

$$\begin{aligned} [\mathbf{X}]_{j} &= \sum_{i=1...m} \mathbf{X}(i,j) = \mathbf{X}(1,j) + \mathbf{X}(2,j) + ... + \mathbf{X}(m,j), \\ [\mathbf{X}^{2}]_{j} &= \sum_{i=1...m} \mathbf{X}(i,j)^{2} = \mathbf{X}(1,j)^{2} + \mathbf{X}(2,j)^{2} + ... + \mathbf{X}(m,j)^{2}, \\ [\mathbf{y}] &= \sum_{i=1...m} \mathbf{y}(i) = \mathbf{y}(1) + \mathbf{y}(1) + ... + \mathbf{y}(m), \\ [\mathbf{y}^{2}] &= \sum_{i=1...m} \mathbf{y}(i)^{2} = \mathbf{y}(1)^{2} + \mathbf{y}(1)^{2} + ... + \mathbf{y}(m)^{2}, \\ [\mathbf{X}_{j}\mathbf{y}] &= \sum_{i=1...m} \mathbf{X}(i,j)\mathbf{y}(i) = \mathbf{X}(1,j)\mathbf{y}(1) + \mathbf{X}(2,j)\mathbf{y}(2) + ... + \mathbf{X}(m,j)\mathbf{y}(m), \end{aligned}$$

r(j) is the jth element of r, and X(i, j) is the element in the ith row and jth column of X. The vector r is said to be the <u>Pearson Correlation Coefficient vector</u> of a matrix X and a vector Y. Specifically, r(j) is the Pearson Correlation Coefficient of the jth column of Y and Y, for all Y is all Y is the Pearson Correlation Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of the jth column of Y and Y is the Pearson Coefficient of Y is the Pearson Coefficient of the jth column of Y is the Pearson Coefficient of Y is the

Research Question 1: What do you think is the complexity of solving the Pearson Correlation Coefficient vector of an $n \times n$ square matrix **X** with a $n \times 1$ vector **v**? (*hint*: CMSC 142)

Research Activity 1: Write a computer program using the programming language of your choice for computing the Pearson Correlation Coefficient vector of an $n \times n$ square matrix \mathbf{X} with a $n \times 1$ vector \mathbf{v} . In other words, transform Equation 1 above into a computer program given \mathbf{X} and \mathbf{v} .

How to do it?

1. Write a function pearson_cor that accepts as parameters the matrix **X** and the vector **y**, and outputs the vector **v**. For example, in pseudocode:

```
func pearson_cor(X as matrix, y as vector, m as integer, n as integer) as vector
begin
   define v(n) as vector;
   for i:=1 to n do
   begin
     v(i):=0;
     for j:=1 to m do
```

```
begin
     v(i):= {see equation 1 above};
     end;
     end;
     pearson_cor:=v;
end;
```

- 2. Write the main program lab01 that includes the following:
 - (1) Read *n* as a user input (maybe from a command line or as a data stream);
 - (2) Create a non-zero $n \times n$ square matrix **X** whose elements are assigned with random integers (make sure that any integer $i \neq 0$);
 - (3) Create a non-zero $n \times 1$ vector y whose elements are assigned with random integers;
 - (4) Create a $1 \times n$ vector \mathbf{v} ;
 - (5) Take note of the system time time before;
 - (6) call pearson_cor(X, y, n, n);
 - (7) Take note of the system time time after;
 - (8) Obtain the elapsed time time elapsed:=time after time before;
 - (9) output time_elapsed;

For example, for computing the column sum of a 100×100 square matrix **M**:

```
$ lab01 < 100
$ time elapsed: 10.2345 seconds</pre>
```

3. Fill in the following table with your time readings:

n	Time Elapsed (seconds)			Average	
	Run 1	Run 2	Run 3	Runtime (seconds)	Complexity*
100					
200					
300					
400					
500					
600					
700					
800					
900					
1,000					
2,000					
4,000					
8,000					
16,000					
20,000					

^{*}What does your answer to **Research Question 1** say, but converted into a time?

Research Question 2: Were you able to run up to n > 10,000,000? If so, can you make it higher to 50,000,000 or even 100,000,000? If not, why do you think so and what do you need to do to make it so?

4. Using a graphing software (such as LibreOffice Calc), create a line graph of *n* versus **Average** obtained from the Table above. On the same graph, plot *n* versus **Complexity** as well (at least up to the *n* where your program worked).

Research Question 3: Do the two lines agree, at least in the form? If not, provide an explanation why so?

Research Question 4: Discuss ways on how we can make it better (lower average runtime) without using any extra processors or cores (notice that the word "ways" is in plural form).