CORRIGE DM n° 7

CCP 2001, Maths1, PC)

Partie I

I.1. Pour tout $i \in \{1, 2, ..., p\}$, $\binom{t}{AA}_{i,i} = \sum_{k=1}^{n} (A_{k,i})^2$ donc si ${}^tAA = 0$, pour tout $k \in \{1, 2, ..., n\}$ et pour tout $i \in \{1, 2, ..., p\}$, $(A)_{k,i} = 0$ de plus si A = 0 alors ${}^tAA = 0$, donc

$${}^{t}AA = 0$$
 si et seulement $A = 0$

désormais A est supposée non nulle donc ${}^tAA \neq 0$

I.2. ${}^tAA \in \mathcal{M}_p(\mathbb{R})$, c'est une matrice symétrique réelle , elle est donc diagonalisable au moyen de matrices orthogonales

 $A^tA \in \mathcal{M}_n(\mathbb{R})$, c'est une matrice symétrique réelle , elle est donc aussi diagonalisable au moyen de matrices orthogonales

I.3.

a)
$$\sqrt{\langle X|Y\rangle_n} = {}^t XY = {}^t YX$$

b) W est un vecteur propre de tAA associé à la valeur propre λ , donc $W \neq 0$ et ${}^tAAW = \lambda W$ donc $||AW||_n^2 = {}^t(AW)AW = {}^tW\left({}^tAAW\right) = {}^tW\left(\lambda W\right) = \lambda {}^tWW = \lambda ||W||_p^2$:

$$\|AW\|_n^2 = \lambda \|W\|_p^2$$

c)
$$\|W\|_p^2 > 0$$
 et $\|AW\|_n^2 \ge 0$ donc $\lambda \ge 0$

Les valeurs propres de ${}^{t}AA$ sont donc réelles, positives ou nulles

I.4

$$\mathbf{a}) \begin{pmatrix} xI_n & A \\ {}^tA & I_p \end{pmatrix} \begin{pmatrix} -I_n & 0_{n,p} \\ {}^tA & I_p \end{pmatrix} = \begin{pmatrix} A^tA - xI_n & A \\ 0_{p,n} & I_p \end{pmatrix}$$
$$\begin{pmatrix} xI_n & A \\ {}^tA & I_p \end{pmatrix} \begin{pmatrix} -I_n & A \\ 0_{p,n} & -xI_p \end{pmatrix} = \begin{pmatrix} -xI_n & 0_{n,p} \\ -{}^tA & {}^tAA - xI_p \end{pmatrix}$$

b) On sait que det $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det A \times \det B$ si A et B sont des matrices carrées

Si on désigne par χ_M le polynôme caractéristique d'une matrice $M \in \mathcal{M}_n(\mathbb{R})$, $\chi_M(x) = \det(M - xI_n)$

$$\det\left(\begin{pmatrix} xI_n & A \\ tA & I_p \end{pmatrix}\right) \begin{pmatrix} -I_n & 0_{n,p} \\ tA & I_p \end{pmatrix}\right) = \det\left(\begin{array}{c} xI_n & A \\ tA & I_p \end{array}\right) \times \det\left(\begin{array}{c} -I_n & 0_{n,p} \\ tA & I_p \end{array}\right) = (-1)^n \det\left(\begin{array}{c} xI_n & A \\ tA & I_p \end{array}\right)$$

$$\det\left(\begin{array}{c} A^tA - xI_n & A \\ 0_{p,n} & I_p \end{array}\right) = \chi_{A^tA}(x) \operatorname{donc} \chi_{A^tA}(x) = (-1)^n \det\left(\begin{array}{c} xI_n & A \\ tA & I_p \end{array}\right)$$

$$\det\left(\begin{pmatrix} xI_n & A \\ tA & I_p \end{pmatrix}\right) \begin{pmatrix} -I_n & A \\ 0_{p,n} & -xI_p \end{pmatrix} = \det\left(\begin{array}{c} xI_n & A \\ tA & I_p \end{pmatrix}\right) \times \det\left(\begin{array}{c} -I_n & A \\ 0_{p,n} & -xI_p \end{array}\right)$$
soit
$$\det\left(\begin{pmatrix} xI_n & A \\ tA & I_p \end{pmatrix}\right) \begin{pmatrix} -I_n & A \\ 0_{p,n} & -xI_p \end{pmatrix} = (-1)^n (-x)^p \det\left(\begin{array}{c} xI_n & A \\ tA & I_p \end{pmatrix}\right)$$

$$\det\begin{pmatrix} -xI_n & 0_{n,p} \\ -tA & tAA - xI_p \end{pmatrix} = (-x)^n \chi_{tAA}(x), \text{ donc } \underline{(-x)^n \chi_{tAA}(x)} = (-x)^p \chi_{A^tA}(x)$$

Les polynômes χ_{tAA} et χ_{A^tA} sont scindés dans $\mathbb{R}[X]$, puisque les matrices tAA et A^tA sont diagonalisables, donc χ_{tAA} et χ_{A^tA} ont les mêmes racines non nulles avec le même ordre de multiplicité

 tAA et A^tA ont les mêmes valeurs propres non nulles avec le même ordre de multiplicité

c) Deux matrices semblables ayant le même rang, toute matrice diagonalisable a un rang égal à la somme des ordres de multiplicité des valeurs propres non nulles :

tAA
 et A^tA ont même rang

I.5. Si n>p , $\chi_{A^tA}(x)=(-x)^{n-p}\,\chi_{^tAA}(x)$ donc 0 est racine de χ_{A^tA} :

si n > p, 0 est valeur propre de $A^t A$ et si n < p, 0 est valeur propre de ${}^t A A$

I.6.

a) A étant non nulle, tAA est non nulle, elle est diagonalisable, elle a donc au moins une valeur propre non nulle, toutes ses valeurs propres sont positives, donc la plus grande des valeurs propres est strictement positive :

$$\lambda_1 > 0$$

b) La somme des ordres de multiplicité des valeurs propres non nulles de tAA est égale à r donc $r = rang({}^tAA) = rang(A^tA)$ d'aprés **I.4.c.** $A {}^tA \in \mathcal{M}_n(\mathbb{R})$ donc $r \leq n$ et d'après le théorème du rang ,

$$\dim(KerA^tA) = n - r$$

c) Pour tout $i \in \{1, 2, ..., r\}$, $AV_i = \mu_i U_i$ par définition des U_i si r > p, pour tout $i \in \{r+1, ..., p\}$, $\lambda_i = 0$, ${}^t AAV_i = 0_{R^p}$, $||AV_i||_n^2 = {}^t V_i^t AAV_i = 0$,

si
$$r > p$$
, pour tout $i \in \{r+1,..,p\}$, $AV_i = 0$

d) Pour tout $i \in \{1, 2, ..., r\}$, ${}^{t}AU_{i} = \frac{1}{\mu_{i}} ({}^{t}AAV_{i}) = \frac{\lambda_{i}}{\mu_{i}} V_{i} = \mu_{i}V_{i}$

e) Si n > r, pour tout $i \in \{r + 1, ..., n\}$, $U_i \in KerA^tA$, $\|^t A U_i\|_p^2 = t U_i (A^t A U_i) = 0$,

pour tout $i \in \{1, 2, ..., r\}$, ${}^tAU_i = \mu_i V_i$ et si n > r, pour tout $i \in \{r + 1, ..., n\}$, ${}^tAU_i = 0$

$$\begin{split} \textbf{f)} \text{ Pour tout } i \in \{1,2,..,r\} \text{ , pour tout } j \in \{1,2,..,r\} \text{ , } \\ \langle U_i | U_j \rangle &= \frac{1}{\mu_i \mu_j} \ ^t V_i \left(\ ^t A A V_j \right) = \frac{\lambda_j}{\mu_i \mu_j} \ \langle V_i | V_j \rangle = \delta_{ij} \text{ puique } \lambda_j = \mu_j^2 \\ \text{si } n > r \text{ , par définition } (U_{r+1},..U_n) \text{ est une famille orthonormale, } \\ \text{pour tout } i \in \{1,2,..,r\}, \text{ pour tout } j \in \{r+1,..,n\}, \ \ \langle U_i | U_j \rangle = \frac{1}{\mu_i} \ (^t V_i{}^t A) U_j = 0 \\ \text{puisque } \ ^t A U_j = 0 \\ (U_1,U_2,..,U_n) \text{ est donc une base orthonormale de } \mathbb{R}^n \\ \text{de plus si } 1 \leq i \leq r \text{ , } A^t A U_i = A(\mu_i V_i) = \mu_i^2 U_i = \lambda_i U_i \\ \text{si } r < n \text{ , } r+1 \leq i \leq n \text{ , } A^t A U_i = 0, \text{ donc} \end{split}$$

 $(U_1,U_2,..,U_n)$ est une base orthonormale de vecteurs propres de A^tA

pour tout $i \in \{1, 2, ..., r\}$, U_i est associé à la valeur propre λ_i et si n > r, pour tout $i \in \{r+1, ..., n\}$, U_i est associé à la valeur propre 0

I.7.

$$\begin{array}{l} \mathbf{a)} \ \forall \, (i,j) \in \{1,2,..,n\} \times \{1,2,..,p\} \ , \ \left({}^tUAV\right)_{ij} = \langle U_i|AV_j\rangle \\ \mathrm{pour \ tout} \ j \in \{1,2,..,r\} \ , \ AV_j = \mu_jU_j \ \mathrm{donc} \ \langle U_i|AV_j\rangle = \mu_j \ \langle U_i|U_j\rangle = \mu_j\delta_{ij} \\ \mathrm{si} \ r$$

$$\forall (i,j) \in \{1,2,..,n\} \times \{1,2,..,p\} , \ \left({}^tUAV\right)_{ij} = \mu_j \delta_{ij}$$

b) On a donc ${}^tUAV = \Delta$

Les vecteurs colonnes de U constituent une base orthonormale de \mathbb{R}^n , donc U est une matrice orthogonale, $U \in O(n)$, U est inversible et $U^{-1} = {}^tU$

De même $V \in O(p)$ et V est inversible avec $V^{-1} = {}^tV$

Donc, en multipliant l'égalité ${}^tUAV = \Delta$ à droite par tV et à gauche par tU on obtient :

$$A = U\Delta^t V$$

c)
$${}^{t}A_{0}A_{0} = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$$
, $\lambda_{1} = 6$, $\lambda_{2} = 2$, $V_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $V_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 $U_{1} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$, $U_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $U_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$,

 (U_3) est une base orthonormale de $Ker A_0^t A_0$ avec $A_0^t A_0 = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 2 & 2 \\ -2 & 2 & 4 \end{pmatrix}$, on peut aussi

l'obtenir en complétant en une base orthonormale de \mathbb{R}^3 la famille orthonormale (U_1,U_2)

$$A_0 = U\Delta^t V \text{ avec } U = \begin{pmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}, \ \Delta = \begin{pmatrix} \sqrt{6} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}, \ {}^tV = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$${}^{t}B_{0}B_{0} = (2)$$
, $V_{1} = (1)$, $U_{1} = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix}$, $U_{2} = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix}$

$$B_0 = U\Delta^t V \text{ avec } U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \ \Delta = \begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix}, \ {}^tV = (1)$$

I.8. U et tV sont des matrices inversibles, donc le rang de A est égal au rang de Δ donc

$$rang(A) = r$$

I.9.

a) $V_i^t E_i$ est une matrice de $\mathcal{M}_p(\mathbb{R})$ dont toutes les colonnes sont nulles sauf la *i*-ième égale à V_i ,

$$V = \sum_{i=1}^{p} V_i^t E_i$$

b) On a de même
$$U = \sum_{j=1}^{n} U_j^t F_j$$

donc $A = U\Delta^t V = \sum_{j=1}^{n} \left(\sum_{i=1}^{p} U_j^t F_j \Delta V_i^t E_i \right)$
or ${}^t F_j \Delta V_i = \delta_{ij} \mu_j$ si $1 \leq j \leq r$, ${}^t F_j \Delta V_i = 0$ sinon, donc

$$A = \sum_{i=1}^{r} \mu_i U_i^t V_i$$

$${}^{t}AA = {}^{t}A\left(\sum_{i=1}^{r} \mu_{i}U_{i}{}^{t}V_{i}\right) = \sum_{i=1}^{r} \mu_{i}\left({}^{t}AU_{i}\right){}^{t}V_{i}, \text{ or } {}^{t}AU_{i} = \mu_{i}V_{i} \text{ et } \lambda_{i} = \mu_{i}^{2}, \text{ donc}$$

$$tAA = \sum_{i=1}^{r} \lambda_i V_i^t V_i$$

$${}^{t}A = \sum_{i=1}^{r} \mu_{i} V_{i}{}^{t}U_{i}$$
, donc $A^{t}A = \sum_{i=1}^{r} \mu_{i} (AV_{i}){}^{t}U_{i} = \sum_{i=1}^{r} \mu_{i} (\mu_{i}U_{i}){}^{t}U_{i}$, donc

$$A^t A = \sum_{i=1}^r \lambda_i U_i^t U_i$$

 $\mathbf{c)} \text{ Soit } X \in \mathbb{R}^p \text{ , } {}^tV_iX = \left\langle V_i | X \right\rangle \text{, donc } AX = \left(\sum_{i=1}^r \mu_i U_i{}^tV_i\right) X = \sum_{i=1}^r \mu_i \left\langle V_i | X \right\rangle U_i \\ (U_1, U_2, ..., U_r) \text{ est une famille libre de } \mathbb{R}^n \text{ , pour tout } i \in \{1, 2, ..., r\} \text{ , } \mu_i \neq 0 \\ \text{donc } AX = 0 \text{ si et seulement si pour tout } i \in \{1, 2, ..., r\}, \left\langle V_i | X \right\rangle = 0 \\ (V_1, V_2, ..., V_p) \text{ étant une base orthormale de } \mathbb{R}^p,$

si
$$r < p$$
, $KerA = Vect(V_{r+1}, ..., V_p)$ et si $r = p$, $KerA = \{0\}$

Par un raisonnement analogue, si $Y \in \mathbb{R}^n$, ${}^tAY = \sum_{i=1}^r \mu_i \langle U_i | Y \rangle V_i$

si
$$r < n$$
, Ker $\binom{t}{A}$ = Vect $(U_{r+1}, ..., U_n)$ et si $r = n$, Ker $\binom{t}{A}$ = $\{0\}$

pour tout $X \in \mathbb{R}^p$, $AX \in \text{Vect}(U_1,..,U_r)$ donc $\text{Im}A \subset \text{Vect}(U_1,..,U_r)$

comme dim(Ker
$$A$$
) = $p - r$, dim(Im A) = $p - (p - r) = r$ = dim ($Vect(U_1, ..., U_r)$), donc $ImA = Vect(U_1, U_2, ..., U_r)$

et on obtient de même

$$\operatorname{Im}({}^{t}A) = \operatorname{Vect}(V_1, V_2, ..., V_r)$$

d) $Ker A \subset Ker(^tAA)$, de plus A et tAA ont le même rang r donc dim (Ker A) = p - r et dim $(Ker(^tAA)) = p - r$, donc

$$Ker A = Ker(^t AA)$$
.

Un raisonnement analogue permet de démontrer que :

$$Ker(^tA) = Ker(A^tA)$$

Partie II

II.1. On déduit de I.7.b que

$$A_0^+ = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \end{pmatrix}$$

On en déduit :

$$A_0 A_0^+ = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{-1}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{-1}{3} & \frac{1}{3} & \frac{2}{3} \end{pmatrix} \qquad A_0^+ A_0 = I_2$$

puis

$$A_0 A_0^+ A_0 = A_0$$
 $A_0^+ A_0 A_0^+ = A_0^+$.

II.2. Le texte présente une imprécision : pour $A \in \mathcal{M}_{n,p}(\mathbb{R})$, non nulle, on appelle décomposition en valeurs singulières de A toute décomposition $A = U\Delta^t V$ où $U \in O(n)$, $V \in O(p)$ et où Δ est une matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ dont tous les coefficients sont nuls sauf les coefficients diagonaux $\Delta_{11}, \Delta_{22}, \ldots, \Delta_{rr}$ où $1 \le r \le \min(n,p)$ égaux respectivement à μ_1, \ldots, μ_r réels strictement positifs.

On peut alors montrer facilement que les valeurs propres non nulles de ${}^{t}AA$ et $A^{t}A$ sont $\mu_{1}^{2}, \ldots, \mu_{r}^{2}$ et que si (V_{1}, \ldots, V_{p}) (respectivement (U_{1}, \ldots, U_{n})) sont les vecteurs colonnes de V (respectivement de U), ils vérifient les conditions établies en I.

Notons
$$U_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $V_0 = \begin{pmatrix} \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}$ et $\Delta_0^+ = \begin{pmatrix} \frac{1}{\sqrt{6}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$, Comme U_0 et V_0 sont orthogo-

nales et que Δ_0^+ est du type voulu, $A_0^+ = U_0 \Delta_0^{+t} V_0$ est une décomposition de A_0^+ en valeurs singulières, d'où l'on déduit que $(A_0^+)^+ = V_0(\Delta_0^+)^{+t} U_0 = V_0 \Delta_0^{t} U_0 = A_0$.

$$(A_0^+)^+ = A_0.$$

II.3. Soit $C = \Delta^+ \Delta$. $C \in \mathcal{M}_p(\mathbb{R})$ et pour tout $(i, j) \in [1, p]$,

$$c_{i,j} = \sum_{k=1}^{n} \Delta_{i,k}^{+} \Delta_{k,j}$$

Comme pour tout $k \in [1, n]$, $\Delta_{i,k}^+ = 0$ si $k \neq i$ ou si k = i et $i \geq r + 1$ et que $\Delta_{k,j} = 0$ si $k \neq j$ ou si k = j et $j \geq r + 1$, on en déduit que $c_{i,j}$ est nul sauf si $i = j \leq r$ auquel cas $c_{i,i} = \frac{1}{\mu_i} \mu_i = 1$.

$$\Delta^+ \Delta = J_r(p) = \begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix}$$
. réduite canonique de rang r de $\mathcal{M}_p(\mathbb{R})$.

De même

$$\Delta \Delta^+ = J_r(n) = \begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix}$$
. réduite canonique de rang r de $\mathcal{M}_n(\mathbb{R})$.

II.4. Si n=p=r, ce qui précède prouve que $\Delta^+=\Delta^{-1}$, comme de plus $V=({}^{\rm t}V)^{-1}$ et ${}^{\rm t}U=U^{-1}$, car Uet V sont orthogonales,

$$A^+ = A^{-1}$$

D'après **I.9.a**),
$$U = \sum_{i=1}^{n} U_i^{t} F_i$$
.

Les calculs suivants sont analogues à ceux de ${\bf I.9.b}$

$${}^{t}U = \sum_{i=1}^{n} F_{i}{}^{t}U_{i}$$

$$\Delta^{+}{}^{t}U = \sum_{i=1}^{n} (\Delta^{+} F_{i}){}^{t}U_{i} = \sum_{i=1}^{r} \frac{1}{\mu_{i}} F_{i}{}^{t}U_{i}.$$

$$A^{+} = \sum_{i=1}^{r} \frac{1}{\mu_{i}} (VF_{i}){}^{t}U_{i}, \text{ soit},$$

$$A^{+} = \sum_{i=1}^{r} \frac{1}{\mu_{i}} V_{i}^{t} U_{i}.$$

D'autre part, en utilisant l'égalité $A = \sum_{i=1}^{n} \mu_j U_j^{\ t} V_j$ trouvée en **I.9.b**

 $AA^{+} = \sum_{1 \leq i, i \leq r} \frac{\mu_{j}}{\mu_{i}} U_{j}^{t} V_{j} V_{i}^{t} U_{i}. \text{ Or pour tous } i \text{ et } j \text{ dans } [\![1, p]\!], \ {}^{t} V_{j} V_{i} = \langle V_{j} | V_{i} \rangle = \delta_{i,j} \text{ car } (V_{1}, \dots, V_{p}) \text{ est}$ une base orthonormée de \mathbb{R}^p . D'où

$$AA^+ = \sum_{i=1}^r U_i^{\,\mathrm{t}} U_i.$$

De la même façon, en échangeant les rôles de U et V, comme (U_1, \ldots, U_n) est une base orthonormée de \mathbb{R}^n ,

$$A^+ A = \sum_{i=1}^r V_i^{\ t} V_i.$$

II.6.a. Pour tout
$$j \in [1, n]$$
,
$$AA^+U_j = \sum_{i=1}^r U_i (^tU_i U_j) = \sum_{i=1}^r \langle U_i | U_j \rangle \ U_i = \sum_{i=1}^r \delta_{i,j} U_i.$$

Finalement,
$$AA^+U_j = \begin{cases} U_j & \text{si } 1 \le j \le r \\ 0 & \text{si } j \ge r+1 \end{cases}$$

Comme (U_1,\ldots,U_n) est une base orthonormée de \mathbb{R}^n , l'endomorphisme associé à AA^+ dans la base canonique de \mathbb{R}^n est la projection orthogonale de \mathbb{R}^n sur $\text{Vect}(U_1,\ldots,U_r) = \text{Im } A$.

II.6.b. Pour tout $j \in [1, p]$,

$$A^{+}AV_{j} = \sum_{i=1}^{r} V_{i} (^{t}V_{i} V_{j}) = \sum_{i=1}^{r} \langle V_{i} | V_{j} \rangle V_{i} = \sum_{i=1}^{r} \delta_{i,j} V_{i}.$$

$$\begin{cases} V_{i} & \text{si } 1 < j < r \end{cases}$$

Soit
$$A^+AV_j = \begin{cases} V_j & \text{si } 1 \le j \le r \\ 0 & \text{si } j \ge r+1 \end{cases}$$
.

Comme (V_1, \ldots, V_p) est une base orthonormée de \mathbb{R}^p , l'endomorphisme associé à A^+A dans la base canonique de \mathbb{R}^p est la projection orthogonale de \mathbb{R}^p sur $\operatorname{Vect}(V_1,\ldots,V_r)=(\operatorname{Ker} A)^{\perp}$.

II.7.

• AA^+ est la matrice dans la base canonique de \mathbb{R}^n , orthonormée pour le produit scalaire canonique, d'une projection orthogonale de \mathbb{R}^n : elle est donc symétrique .

$$AA^+ = {}^{\mathrm{t}}(AA^+).$$

• A^+A est la matrice dans la base canonique de \mathbb{R}^p , orthonormée pour le produit scalaire canonique, d'une projection orthogonale de \mathbb{R}^p : elle est donc symétrique .

$$A^+A = {}^{\mathrm{t}}(A^+A).$$

• On a $\mathbb{R}^p = \operatorname{Ker} A \oplus (\operatorname{Ker} A)^{\perp}$.

 $\forall X \in \text{Ker } A, AA^+AX = 0 = AX.$

 $\forall X \in (\operatorname{Ker} A)^{\perp}, (A^{+}A)X = X \operatorname{car} A^{+}A \operatorname{est} \operatorname{la} \operatorname{matrice} \operatorname{dans} \operatorname{la} \operatorname{base} \operatorname{canonique} \operatorname{de} \mathbb{R}^{p} \operatorname{de} \operatorname{la} \operatorname{projection}$ orthogonale sur (Ker A) $^{\perp}$ et donc $A(A^{+}A)X = AX$. On en déduit que $AA^{+}A = A$

$$AA^+A = A$$

• Utilisons la base orthonormée de \mathbb{R}^n , (U_1, \dots, U_n) . Pour tout $j \in [1, n]$, Si $1 \le j \le r$, on a vu que $AA^+U_j = U_j$ d'où $A^+AA^+U_j = A^+U_j$. Si $j \ge r + 1$, $AA^+U_j = 0$ et $A^+AA^+U_j = 0$.

D'autre part, $A^+U_j = \sum_{i=1}^r \frac{1}{\mu_i} V_i^{\,\mathrm{t}} U_i U_j$.

Or pour tout $i \in [1, r]$, $U_i = \langle U_i | U_j \rangle = \delta_{i,j} = 0$ car $j \ge r + 1 > i$.

D'où $A^+U_i = 0 = A^+AA^+U_i$.

Les endomorphismes associés dans la base canonique de \mathbb{R}^n aux matrices A^+ et A^+AA^+ coïncident sur une base de \mathbb{R}^n :

$$A^+AA^+ = A^+$$

- **II.8.** Si $M \in \mathcal{M}_{q,m}(\mathbb{R})$ et si $N \in \mathcal{M}_{m,s}(\mathbb{R})$, $\operatorname{Im}(MN) \subset \operatorname{Im} M$ et $\operatorname{Ker}(N) \subset \operatorname{Ker}(MN)$. On en déduit alors immédiatement à l'aide de II.7 les égalités (i). Plus précisément:
 - $\frac{\operatorname{Im}(AA^+) \subset \operatorname{Im}(A)}{\operatorname{Im}(A) = \operatorname{Im}(AA^+A) \subset \operatorname{Im}(AA^+)} \right\} \text{ donne } \operatorname{Im}(A) = \operatorname{Im}(AA^+).$
 - $\operatorname{Ker}(A^+) \subset \operatorname{Ker}(AA^+)$ $\operatorname{Ker}(AA^+) \subset \operatorname{Ker}(A^+(AA^+)) = \operatorname{Ker}(A^+)$ donne $\operatorname{Ker}(A^+) = \operatorname{Ker}(AA^+)$.
 - $\left. \begin{array}{l} \operatorname{Im}(A^+A) \subset \operatorname{Im}(A^+) \\ \operatorname{Im}(A^+) = \operatorname{Im}(A^+AA^+) \subset \operatorname{Im}(A^+A) \end{array} \right\} \ \text{donne} \ \operatorname{Im}(A^+) = \operatorname{Im}(A^+A).$
 - $\left. \begin{array}{l} \operatorname{Ker}(A) \subset \operatorname{Ker}(A^+A) \\ \operatorname{Ker}(A^+A) \subset \operatorname{Ker}(A(A^+A)) = \operatorname{Ker}(A) \end{array} \right\} \ \operatorname{donne} \ \operatorname{Ker}(A^+A) = \operatorname{Ker}(A).$

 AA^+ est la matrice d'une projection (orthogonale) de \mathbb{R}^n , donc $\mathbb{R}^n = \operatorname{Im}(AA^+) \oplus \operatorname{Ker}(AA^+)$. De même comme (A^+A) est la matrice d'une projection de \mathbb{R}^p , $\mathbb{R}^p = \operatorname{Im}(A^+A) \oplus \operatorname{Ker}(A^+A)$. En utilisant (i)

$$\mathbb{R}^n = \operatorname{Im}(A) \oplus \operatorname{Ker}(A^+)$$
 $\mathbb{R}^p = \operatorname{Im}(A^+) \oplus \operatorname{Ker}(A)$

II.9.

II.9.a. (i) $B = B(AB) = B^{t}B^{t}A$ et $B = (BA)B = {}^{t}A^{t}BB$.

- (ii) $A = (AB)A = {}^{t}B {}^{t}A A$ et $A = A(BA) = A{}^{t}A {}^{t}B$.
- (iii) ${}^{t}A = B A {}^{t}A = {}^{t}AAB$ en transposant les égalités (ii).
- **II.9.b.** Comme A^+ vérifie (1), elle vérifie, comme B les identités (i), (ii) et (iii).

$$B = B^{t}B^{t}A \qquad {}^{t}A = {}^{t}AAA^{+}$$

$$= B({}^{t}B^{t}AA)A^{+}$$

$$= BAA^{+} \qquad \text{par (ii)}$$

$$= BA^{t}A^{t}(A^{+})A^{+} \qquad \text{car } A^{+} \text{ v\'erifie (ii)}$$

$$= {}^{t}A^{t}(A^{+})A^{+} \qquad \text{car } B \text{ v\'erifie (iii)}$$

$$= A^{+} \qquad \text{car } A^{+} \text{ v\'erifie (i)}$$

II.10. $(A^+)^+$ est l'unique matrice $B \in \mathcal{M}_{n,p}(\mathbb{R})$ vérifiant $A^{+}B = t(A^{+}B)$ $BA^{+} = t(BA^{+})$ $A^{+}BA^{+} = A^{+}$ $BA^{+}B = B$ (2)

Comme $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et que A vérifie (2),

$$A = (A^+)^+$$

En transposant les identités (1), on obtient :

$${}^{t}(A^{+}){}^{t}A = AA^{+} = {}^{t}({}^{t}(A^{+}){}^{t}(A)) \quad {}^{t}A^{t}(A^{+}) = {}^{t}({}^{t}A^{t}(A^{+})) \quad {}^{t}A^{t}(A^{+}){}^{t}A = {}^{t}A \quad {}^{t}(A^{+}){}^{t}(A){}^{t}(A^{+}) = {}^{t}(A^{+}).$$

 ${}^{t}(A^{+}){}^{t}A = AA^{+} = {}^{t}({}^{t}(A^{+}){}^{t}(A))$ ${}^{t}A^{t}(A^{+}) = {}^{t}({}^{t}A^{t}(A^{+}))$ ${}^{t}A^{t}(A^{+}){}^{t}A = {}^{t}A$ ${}^{t}(A^{+}){}^{t}(A){}^{t}(A^{+}) = {}^{t}(A^{+}).$ De plus ${}^{t}A \in \mathcal{M}_{p,n}(\mathbb{R})$ et ${}^{t}(A^{+}) \in \mathcal{M}_{n,p}(\mathbb{R})$. En utilisant la caractérisation de $({}^{t}A)^{+}$ obtenue précédemment on obtient:

$$(^{\mathbf{t}}A)^+ = {^{\mathbf{t}}}(A^+).$$

II.11. Notons $C = A_0 B_0 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}$. Cherchons C^+ sous la forme $C^+ = M = \begin{pmatrix} a & b & c \end{pmatrix}$ pour que les identités (1) soient vérifiées.

- $CM = \begin{pmatrix} 2a & 2b & 2c \\ 0 & 0 & 0 \\ -2a & -2b & -2c \end{pmatrix}$. CM est symétrique si et seulement si c = -a et b = 0, ce que l'on
- $MC \in \mathcal{M}_{11}(\mathbb{R})$ est toujours symétrique.
- On cherche $M = (a \ 0 \ -a)$. $CMC = \begin{pmatrix} 8a \\ 0 \\ -8a \end{pmatrix}$ d'où CMC = C si et seulement si $a = \frac{1}{4}$ ·
- On vérifie ensuite que si $M = \begin{pmatrix} \frac{1}{4} & 0 & -\frac{1}{4} \end{pmatrix}$, MCM = M.

On a donc $(A_0B_0)^+ = \begin{pmatrix} \frac{1}{4} & 0 & -\frac{1}{4} \end{pmatrix}$.

A partir de la décomposition de B_0 en valeurs singulières :

$$B_0 = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix}$$
(1), on en déduit

$$B_0^+ = (1) \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{-1}{2} \end{pmatrix}.$$

On effectue le produit
$$B_0^+ A_0^+ = \begin{pmatrix} \frac{1}{2} & \frac{-1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{6} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{6} & \frac{-1}{6} \end{pmatrix}.$$
 $B_0^+ A_0^+ \neq (A_0 B_0)^+$

II.12.a. Pour tout $H \in \mathcal{M}_{n,1}(\mathbb{R})$, AA^+H est le projeté orthogonal de H sur $\operatorname{Im} A$, donc $H - AA^+H$ est orthogonal à $\operatorname{Im} A$ d'où

$$\forall X \in \mathcal{M}_{p,1}(\mathbb{R}) \quad \langle AX - AA^+H \,|\, H - AA^+H \rangle = 0.$$

En utilisant Pythagore,

$$||AX - H||_n^2 = ||AX - AA^+H||_n^2 + ||H - AA^+H||_n^2$$
, d'où $\forall X \in \mathcal{M}_{p,1}(\mathbb{R})$, $||A\overline{H} - H||_n \le ||AX - H||_n$.

On en déduit que $\min_{X\in\mathcal{M}_{p,1}(\mathbb{R})}\|AX-H\|_n=\|A\overline{H}-H\|_n$ et donc $d(H,\operatorname{Im} A)=\|A\overline{H}-H\|_n$

$$d(H, \operatorname{Im} A) = \|A\overline{H} - H\|_{n}$$

II.12.b. S'il existe $\tilde{H} \in \mathcal{M}_{p,1}(\mathbb{R})$ tel que $\|A\tilde{H} - H\|_n = \|A\overline{H} - H\|_n = d(H, \operatorname{Im} A)$, alors par unicité du projeté orthogonal de H sur $\operatorname{Im} A$, $A\tilde{H} = A\overline{H}$, soit $\tilde{H} - \overline{H} \in \operatorname{Ker} A$.

On a alors $\tilde{H} = \overline{H} + (\tilde{H} - \overline{H})$ avec $\overline{H} \in \text{Im}(A^+) = (\text{Ker } A)^{\perp}$ et $\tilde{H} - \overline{H} \in \text{Ker } A$.

Par Pythagore, $\|\tilde{H}\|_p^2 = \|\overline{H}\|_p^2 + \|\tilde{H} - \overline{H}\|_p^2$. Si de plus $\tilde{H} \neq \overline{H}$, $\|\tilde{H} - \overline{H}\|_p^2 > 0$ et donc

$$\|\overline{H}\|_p < \|\tilde{H}\|_p$$

II.12.c.
$$\min_{X \in \mathbb{R}^2} \|A_0 X - H\|_3 = \|A_0 A_0^+ H - H\|_3 = \frac{\sqrt{3}}{3}$$