МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г.Шухова)

Лабораторная работа №6 дисциплина «Теория цифровых автоматов» по теме «Синтез и анализ многовыходных комбинационных схем в базисе И-ИЛИ-НЕ с учетом неопределенностей»

Выполнил: студент группы ВТ-31 Макаров Д.С.

Проверил: Рязанов Ю.Д.

Лабораторная работа №6

«Синтез и анализ многовыходных комбинационных схем в базисе И-ИЛИ-НЕ с учетом неопределенностей»

Цель работы: научиться строить эффективные по быстродействию и затратам оборудования многовыходные комбинационные схемы с учетом неопределенностей.

Вариант 9

Задание:

- 1. Составить таблицу истинности заданной частично определенной булевой функции (см. варианты заданий в таблице 2). Булева функция здесь задана двумя условиями (условие 1 и условие 2), зависящими от значений аргументов. Если на наборе аргументов условие 2 истинно, то значение функции на этом наборе не определено. Если же на наборе аргументов условие 2 ложно, то значение функции на этом наборе равно значению условия 1 на этом наборе аргументов. В условии значение аргумента отождествляется с двоичной цифрой, а последовательность аргументов с двоичным числом. Для составления таблицы истинности рекомендуется написать программу.
- 2. Решить задачу минимизации частично определенной булевой функции в классе дизъюнктивных нормальных форм.
- 3. Написать программу, строящую таблицу истинности булевой функции, полученной при выполнении п. 2 Сравнить полученную таблицу с таблицей истинности исходной частично определенной булевой функции.
- 4. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по полученной при выполнении п. 2 минимальной дизъюнктивной нормальной форме булевой функции.
- 5. Решить задачу минимизации частично определенной булевой функции в классе конъюнктивных нормальных форм.
- 6. Написать программу, строящую таблицу истинности булевой функции, полученной при выполнении п. 5 Сравнить полученную таблицу с таблицей истинности исходной частично определенной булевой функции.
- 7. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по полученной при выполнении п. 5 минимальной конъюнктивной нормальной форме булевой функции.

Ход работы

$N_{\overline{0}}$	$x_1 x_2 x_3 x_4 x_5$	f1	f2	f3
1	00000	0	0	0
2	00001	0	0	0
3	00010	0	0	0
4	00011	-	-	-
5	00100	-	-	-
6	00101	-	-	-
7	00110	-	-	-
8	00111	-	-	-
9	01000	0	0	0
10	01001	0	0	0
11	01010	1	1	1
12	01011	1	1	1
13	01100	-	-	-
14	01101	-	-	-
15	01110	-	-	-
16	01111	-	-	-
17	10000	-	-	-
18	10001	1	1	0
19	10010	1	1	1
20	10011	1	0	1
21	10100	1	1	0
22	10101	-	-	-
23	10110	-	-	-
24	10111	-	-	-
25	11000	-	-	-
26	11001	-	-	-
27	11010	0	0	1
28	11011	0	0	0
29	11100	1	0	0
30	11101	0	0	1
31	11110	-	-	-
32	11111	-	-	-

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	f1	f2	f3
$\overline{\{1\}}$	00000	0	0	0
$\{2\}$	00001	0	0	0
$\{3\}$	00010	0	0	0
$\{9\}$	01000	0	0	0
{10}	01001	0	0	0
{11}	01010	1	1	1

$N_{\overline{0}}$	$x_1x_2x_3x_4x_5$	f1	f2	f3
$\overline{\{12\}}$	01011	1	1	1
$\{18\}$	10001	1	1	0
$\{19\}$	10010	1	1	1
$\{20\}$	10011	1	0	1
{21}	10100	1	1	0
$\{27\}$	11010	0	0	1
$\{28\}$	11011	0	0	0
$\{29\}$	11100	1	0	0
$\{30\}$	11101	0	0	1

$\overline{{\mathcal N}^{\underline{o}}}$	x1	x2	х3	x4	x5
$\overline{\{1, 11\}}$	0	1	0	1	0
$\{1, 12\}$	0	1	0	1	1
$\{1, 18\}$	1	0	0	0	1
$\{1, 19\}$	1	0	0	1	0
$\{1, 20\}$	1	0	0	1	1
$\{1, 21\}$	1	0	1	0	0
$\{1, 27\}$	1	1	0	1	0
$\{1, 29\}$	1	1	1	0	0
$\{1, 30\}$	1	1	1	0	1
$\{2, 11\}$	0	1	0	1	1
$\{2, 12\}$	0	1	0	1	0
$\{2, 18\}$	1	0	0	0	0
$\{2, 19\}$	1	0	0	1	1
$\{2, 20\}$	1	0	0	1	0
$\{2, 21\}$	1	0	1	0	1
$\{2, 27\}$	1	1	0	1	1
$\{2, 29\}$	1	1	1	0	1
$\{2, 30\}$	1	1	1	0	0
$\{11, 3\}$	0	1	0	0	0
${3, 12}$	0	1	0	0	1
$\{18, 3\}$	1	0	0	1	1
$\{19, 3\}$	1	0	0	0	0
${3, 20}$	1	0	0	0	1
${3, 21}$	1	0	1	1	0
$\{27, 3\}$	1	1	0	0	0
$\{3, 29\}$	1	1	1	1	0
$\{3, 30\}$	1	1	1	1	1
$\{9, 11\}$	0	0	0	1	0
$\{9, 12\}$	0	0	0	1	1

$N_{\overline{0}}$	x1	x2	х3	x4	x5
$\overline{\{9, 18\}}$	1	1	0	0	1
$\{9, 19\}$	1	1	0	1	0
$\{9, 20\}$	1	1	0	1	1
$\{9, 21\}$	1	1	1	0	0
$\{9, 27\}$	1	0	0	1	0
$\{9, 29\}$	1	0	1	0	0
$\{9, 30\}$	1	0	1	0	1
$\{10, 11\}$	0	0	0	1	1
$\{10, 12\}$	0	0	0	1	0
$\{10, 18\}$	1	1	0	0	0
$\{10, 19\}$	1	1	0	1	1
$\{10, 20\}$	1	1	0	1	0
$\{10, 21\}$	1	1	1	0	1
$\{10, 27\}$	1	0	0	1	1
$\{10, 29\}$	1	0	1	0	1
$\{10, 30\}$	1	0	1	0	0
$\{18, 11\}$	1	1	0	1	1
$\{11, 20\}$	1	1	0	0	1
$\{11, 21\}$	1	1	1	1	0
$\{27, 11\}$	1	0	0	0	0
$\{11, 28\}$	1	0	0	0	1
$\{11, 29\}$	1	0	1	1	0
$\{11, 30\}$	1	0	1	1	1
$\{18, 12\}$	1	1	0	1	0
$\{12, 20\}$	1	1	0	0	0
$\{12, 21\}$	1	1	1	1	1
$\{27, 12\}$	1	0	0	0	1
$\{12, 28\}$	1	0	0	0	0
$\{12, 29\}$	1	0	1	1	1
$\{12, 30\}$	1	0	1	1	0
$\{18, 19\}$	0	0	0	1	1
$\{18, 20\}$	0	0	0	1	0
$\{18, 27\}$	0	1	0	1	1
$\{18, 28\}$	0	1	0	1	0
$\{18, 29\}$	0	1	1	0	1
$\{18, 30\}$	0	1	1	0	0
$\{19, 20\}$	0	0	0	0	1
$\{19, 21\}$	0	0	1	1	0
$\{27, 19\}$	0	1	0	0	0
$\{19, 28\}$	0	1	0	0	1
$\{19, 29\}$	0	1	1	1	0

$N_{\overline{0}}$	x1	x2	x3	x4	x5
$\overline{\{19, 30\}}$	0	1	1	1	1
$\{20, 21\}$	0	0	1	1	1
$\{27, 20\}$	0	1	0	0	1
$\{20, 28\}$	0	1	0	0	0
$\{20, 29\}$	0	1	1	1	1
$\{20, 30\}$	0	1	1	1	0
$\{27, 21\}$	0	1	1	1	0
$\{28, 21\}$	0	1	1	1	1
$\{29, 21\}$	0	1	0	0	0
$\{21, 30\}$	0	1	0	0	1
$\{27, 28\}$	0	0	0	0	1
$\{27, 29\}$	0	0	1	1	0
$\{28, 29\}$	0	0	1	1	1
$\{28, 30\}$	0	0	1	1	0
$\{29, 30\}$	0	0	0	0	1

Убираем дублирующиеся строки

$N_{\overline{0}}$	x1	x2	x3	x4	x5
$\overline{\{1, 11\}}$	0	1	0	1	0
$\{1, 12\}$	0	1	0	1	1
$\{1, 18\}$	1	0	0	0	1
$\{1, 19\}$	1	0	0	1	0
$\{1, 20\}$	1	0	0	1	1
$\{1, 21\}$	1	0	1	0	0
$\{1, 27\}$	1	1	0	1	0
$\{1, 29\}$	1	1	1	0	0
$\{1, 30\}$	1	1	1	0	1
$\{2, 18\}$	1	0	0	0	0
$\{2, 21\}$	1	0	1	0	1
$\{2, 27\}$	1	1	0	1	1
$\{11, 3\}$	0	1	0	0	0
${3, 12}$	0	1	0	0	1
${3, 21}$	1	0	1	1	0
$\{27, 3\}$	1	1	0	0	0
${3, 29}$	1	1	1	1	0
${3, 30}$	1	1	1	1	1
$\{9, 11\}$	0	0	0	1	0
$\{9, 12\}$	0	0	0	1	1
$\{9, 18\}$	1	1	0	0	1
$\{11, 30\}$	1	0	1	1	1

$N_{\overline{0}}$	x1	x2	x3	x4	x5
$\overline{\{18, 29\}}$	0	1	1	0	1
$\{18, 30\}$	0	1	1	0	0
$\{19, 20\}$	0	0	0	0	1
$\{19, 21\}$	0	0	1	1	0
$\{19, 29\}$	0	1	1	1	0
$\{19, 30\}$	0	1	1	1	1
$\{20, 21\}$	0	0	1	1	1

Вошедшие аргументы x_1, x_2, x_4, x_5

$N_{\overline{0}}$	$x_1 x_2 x_4 x_5$	f1	f2	f3
<u>{1}</u>	0000	0	0	0
$\{2\}$	0001	0	0	0
$\{3\}$	0010	0	0	0
{9}	0100	0	0	0
{10}	0101	0	0	0
{11}	0110	1	1	1
$\{12\}$	0111	1	1	1
$\{18\}$	1001	1	1	0
$\{19\}$	1010	1	1	1
$\{20\}$	1011	1	0	1
{21}	1000	1	1	0
$\{27\}$	1110	0	0	1
$\{28\}$	1111	0	0	0
$\{29\}$	1100	1	0	0
{30}	1101	0	0	1

Конституенты 1

- 0110 {1,2,3}
- 0111 {1,2,3}
- 1001 {1,2}
- 1010 {1,2,3}
- 1011 {1,3}
- 1000 {1,2}
- 1110 {3}
- 1100 {1}
- 1101 {3}

Конституенты 0

• 0000 {1,2,3}

- 0001 {1,2,3}
- 0010 {1,2,3}
- 0100 {1,2,3}
- 0101 {1,2,3}
- 1001 {3}
- 1011 {2}
- 1000 {3}
- 1110 {1,2}
- 1111 {1,2,3}
- 1100 {2,3}
- 1101 {1,2}

Импликанты первого порядка

- 011- {1,2,3}
- 0-11 {1,2,3}
- 100- {1,2}
- -011 {1,3}
- 101- {1,3}
- 10-0 {1,2}
- -110 {3}
- 1-10 {3}
- 1-00 {1}

	x_1	\overline{x}_1	x_2	\overline{x}_2	x_4	\overline{x}_4	x_5	\overline{x}_5	z_1	z_2	z_3	z_4	z_5	z_6
$\overline{u_1}$		_	*		_				*					
u_2		_			_		*		*					
u_3	*			_		_						*		
u_4				_	_		*						*	
u_5	_			-	*					*				
u_6	_			_				*		*				
u_7			_		_			*						*
	_				*			-			*			
u_9	-					*		_			*			
z_1		*			*									
z_2	*			*										
z_3	*							*						
z_4				*		*								
z_5				*	*									
z_6			*		*									

```
u_1
           u_2
                 u_3
                      u_4
                            u_5
                                  u_6
                                        u_7
                                              u_8
                                                   u_9
                                                         v_1
                                                               v_2
                                                                    v_3
                                                                          v_4
                                                                                v_5
                                                                                     v_6 v_7 v_8
f_1 f_2
                                                          *
                                                               *
                                                                          *
v_1
v_2
v_3
v_4
v_5
v_6
```


Рис. 1: Схема

Приложение

Содержимое файла funcTest.py

```
from binVectors import gen_bin_vector_5 as gen_bin_vector
from tabulate import tabulate
def del_dup(list):
    res = []
    for i in list:
        if i not in res:
            res.append(i)
    return res
def diff_pos(str_a,str_b):
    list_a=list(str_a)
    list_b=list(str_b)
    i=0
    while(i<len(list_a)):</pre>
        if(list_a[i]!=list_b[i]):
            return i
        i = i + 1
def hamming_dist(s1, s2):
    assert len(s1) == len(s2)
    return sum(ch1 != ch2 for ch1, ch2 in zip(s1, s2))
def truth_table(vector):
    result = []
    for i in range(0,len(vector)):
        args = vector[i][0]
        sch = test_schema(args)
        result.append([
            i+1,
            args,
            f(f_v9,f_v12,args),
            int(sch[0]),
            f(f_v10,f_v12,args),
            int(sch[1]),
            f(f_v11,f_v12,args),
            int(sch[2])
            #int(f(f_v16, f_v19, args)),
            #int(f(f_v17, f_v19, args)),
            #int(f(f_v18, f_v19, args)),
        1)
    return result
def search_str(arr,str):
    for index,i in enumerate(arr):
        if i[1] == str[1] and i[2] == str[2] and i[3] == str[3] and i[4] == str[4] and i[5] == str[5]:
            return index
    return None
def step_one_simplify(table):
    result_arr = []
    for i in table:
        if search_str(result_arr,i) == None:
            result_arr.append(i)
    return result_arr
```

```
def f_v9(str_val):
    x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        3 < (int(x4 + x5,2) + int(x1 + x2 + x3,2)) < 8
def f_v10(str_val):
    x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        4 \leftarrow (int(x4 + x5,2) + int(x1 + x2 + x3,2)) \leftarrow 6
def f_v11(str_val):
   x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        5 \le (int(x2 + x3,2) + int(x4 + x5 + x1,2)) \le 8
def f_v12(str_val):
   x1 = str_val[0]
    x2 = str_val[1]
    x3 = str_val[2]
    x4 = str_val[3]
    x5 = str_val[4]
    return (
        -2 \le (int(x1 + x2,2) - int(x3 + x4 + x5,2)) \le 1
def f(f1,f2,str_val):
    if not f2(str_val):
        return '-'
    else:
         return str(int(f1(str_val)))
def test_schema(str_val):
    x1 = bool(int(str_val[0]))
    x2 = bool(int(str_val[1]))
    x4 = bool(int(str_val[3]))
    x5 = bool(int(str_val[4]))
   z1 = not x1 and x4
    z2 = not x2 and x1
    z3 = x1 and not x5
    z4 = not x2 and not x4
    z5 = x4 and not x2
    z6 = x2 and x4
```

```
u1 = z1 and x2
    u2 = z1 and x5
    u3 = z4 and x1
     u4 = z5 and x5
     u5 = z2 and x4
    u6 = z2 and not x5
    u7 = z6 and not x5
    u8 = z3 and x4
    u9 = z3 and not x4
    v3 = u1 \text{ or } u2
     v4 = u4 \text{ or } u5
     v6 = u3 \text{ or } u6
     v8 = u7 \text{ or } u8
    v1 = v3 \text{ or } v6
    v2 = v3
     v5 = v1 \text{ or } u3
     v7 = v4 \text{ or } v2
    f1 = v4 \text{ or } v5
    f2 = v1
     f3 = v7 \text{ or } u8
     return (f1,f2,f3)
table_head = ["\mathbb{\text{m}}","\sum_1x_2x_3x_4x_5\sum_"f1",'sch_f1',"f2",'sch_f2',"f3",'sch_f3']
table = truth_table(gen_bin_vector())
print(tabulate(table,table_head,tablefmt="simple"))
```