Théorie de Teichmüller

1 Approfondissements sur les surfaces de Riemann

1.1 Surfaces de type fini

Définition. Une surface de type fini est une surface compacte privée d'un nombre

Théorème. (Classification des surfaces à bord) Toute surface à bord de type

fini est isomorphe à $\Sigma_{g,n,b} := \Sigma_g \setminus \{p_1,...,p_n\}, \bigcup D_i$ où les D_i sont des disques

ouverts. g est le genre, n le nombre de pointages et b le nombre de composantes de la frontière. Le triplet (g,n,b) est la signature de la surface. En particulier, les surfaces fermées sont entièrement déterminées par leur genre.

un triplet (S,V,F) où $V \subseteq S$ est fini, E est une collection fini d'arcs à extrémités dans S, et $S \setminus (V \cup E)$ est une réunion disjointe finie $F = \{f_1,...,f_k\}$ de disques **Définition.** (Triangulation faible) Soit S une surface. Une triangulation (faible) est dont chacun est incident à trois éléments de E en comptant les multiplicités.

(en triangulant le polygone fondamental, par exemple). On pose pour une surface non fermée $S: \chi(S) = 2 - 2g - n - b$. Remarque : cette définition coincide avec 1) la définition homologique 2) la généralisation des triangulations aux surfaces **Définition.** (Caractéristique généralisée) Un lemme facile donne que $\chi(\Sigma_g) = 2-2g$ Exemple. Le tore se triangule par un sommet, trois arêtes et deux faces.

1.2 Automorphismes des surfaces de Riemann

Théorème. (Uniformisation, admis) Toute surface de Riemann simplement En particulier, tout domaine simplement connexe strict du plan complexe est connexe X est biholomorphe à \mathbb{C} , $\hat{\mathbb{C}}$ où $\mathbb{H} = \mathbb{H}^2 = \{z \in \mathbb{C}, \Im \mathfrak{m}(z) > 0\} \simeq \mathring{D}^1$ biholomorphe au disque de Poincaré.

Lemme. Soit $D \subseteq \hat{\mathbb{C}}$ un domaine (= ouvert connexe) et $G < PSL_2(\mathbb{C})$ tel que G fixe D et agit librement sur D, i.e. pour tout $g \in G$ g(D) = D et pour tout $g \neq e$ les points fixes de g sont hors de D. Si de plus l'action de G est proprement discontinue (pour tout compact $K \subseteq D$, $\{g \in G \mid g(K) \cap K \neq \emptyset\}$ est fini, le quotient D/G est une surface de Riemann.

Corollaire. Toute surface de Riemann X est un quotient de $D = \mathbb{C}$, $\hat{\mathbb{C}}$ ou \mathbb{H} : il existe G < Aut(D) tel que $G \cap D$ librement et proprement discontinûment et X = D/G. En effet, $X = \tilde{X}/\pi_1(X)$ où \tilde{X} est le revêtement universel de X.

Exemples

- agit sur $\mathbb{P}^1\mathbb{C}$ par multiplication matric ielle. L'action sur $\hat{\mathbb{C}}$ est explicitement : (Plan complexe) Aut(ℂ) = Aff(ℂ) = ℂ ⋊ ℂ*.
 (Sphère de Riemann) Aut(ℙ¹ℂ) = PGL₂(ℂ) = PSL₂(ℂ). En effet, PGL₂(ℂ)

$$\begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & : z = \begin{cases} \frac{az+b}{cz+d} \text{ si } z \neq -\frac{d}{c} \\ \infty \text{ sinon} \end{cases}$$
$$\begin{cases} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & : \infty = \begin{cases} \frac{a}{c} \text{ si } c \neq 0 \\ \infty \text{ sinon.} \end{cases}$$

On les appelle transformations de Möbius.

- \mathbb{C}_{\cdot}) Soit $K\subseteq\mathbb{C}$ compact. On observe que si $T_g>2diam(K)$, $g(K)\cap \hat{K})=\emptyset$. Ce quotient est un tore : tout point de \mathbb{C} s'écrit $x+y\tau$ de manière unique d'où une application bijection $[x+y\tau]\in\mathbb{C}/\Lambda_{\tau}\mapsto(e^{2i\pi x},e^{2i\pi y})\in S^1\times S^1$.

 4. (Surfaces hyperboliques) Aut(\mathbb{H}) = $PSL_2(\mathbb{R})$ (\mathbb{R} et non \mathbb{C}) qui agit par $\Lambda_{\tau} = \langle g_1, g_{\tau} \rangle = \left\{ z \mapsto z + m + n\tau, n, m \in \mathbb{Z} \right\} = \left\{ \begin{pmatrix} 1 & m + n\tau \\ 0 & 1 \end{pmatrix}, n, m \in \mathbb{Z} \right\} < 0$ Vérifions la discontinuité propre. La distance de translation de $g \in \Lambda_{\tau}$ sur \mathbb{C} est $T_g = \inf\{|g \cdot z - z|, Z \in \mathbb{C}\}$. (Dans ce cas, elle est réalisée en tout point de **3.** (Tores) On prend $g_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $g_{\tau} = \begin{pmatrix} 1 & \tau \\ 0 & 1 \end{pmatrix}$ où $\mathfrak{Im}(\tau) > 0$. Alors $PSL_2(\mathbb{C})$ vérifie les hypothèses précédentes sur $\dot{D} = \mathbb{C}$.
- homographies.

Heuristique. Ainsi $\mathbb{C}/\Lambda_{\tau}$ est un tore. Mais pour quels τ,τ' ces quotients sont-ils biholomorphes? La théorie de Teichmüller y répond.

Propriété. (Quotients de \mathbb{C}) Si X est une surface de Riemann de revêtement universel \mathbb{C} , elle est biholomorphe à \mathbb{C} , \mathbb{C}^* ou à un $\mathbb{C}/\Lambda_{\lambda,\mu}$ où λ,μ sont \mathbb{R} -linéairement **Propriété.** (Quotients de $\hat{\mathbb{C}}$) Toute surface de Riemann de revêtement universel $\hat{\mathbb{C}}$ est biholomorphe à $\hat{\mathbb{C}}$ (les transformations de Möbius ont toujours des points indépendants. Si X est une surface de Riemann difféomorphe à \mathbb{T}^2 , alors le revêtefixes).

ment universel de X est biholomorphe à \mathbb{C} . La preuve est formatrice. On utilise:

- 1. Il n'existe pas de sous-groupe strict de $PSL_2(\mathbb{R})$ tel que \mathbb{H}/G existe et soit
- Si G existe, G = Z².
 Si G < PSL₂(R) et G agit proprement discontinûment sur H, si G est abélien, alors G = Z ou un Z/nZ.
 - 4. (Classification des éléments de $PSL_2(\mathbb{R})$) Si $g \in PSL_2(\mathbb{R}), g \neq e$ alors

- 2 soit $\exists |z| \in \mathbb{H}$ g(z) = z auquel cas g peut être conjugué dans SO(2). On dit que g est elliptique;
 - \star soit $\exists |x \in \partial \mathbb{H} = \mathbb{R} \cup \{\infty\} \ \ g(x) = x$ auquel gas g peut être conjugué dans $\left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, t \in \mathbb{R} \right\}$. On dit que g est parabolique;
 - $\begin{pmatrix} e^{-\frac{t}{2}} & 0 \\ 0 & e^{\frac{t}{2}} \end{pmatrix}$ pour un $t \in \mathbb{R}$. On dit que g est hyperbolique ou loxodro- \star soit $\exists x_1 \neq x_2 \in \mathbb{R} \cup \{\infty\} \ g(x_i) = x_i$ auquel cas g est conjugué à

Corollaire. Toute surface de genre ≥ 2 n'est pas d'un des genres précédents. On dit qu'elle est hyperelliptique. **Exemples.** (Quotients de \mathbb{H}) \mathbb{I} y a donc beaucoup complexe, compacte et connexe. De plus, elle est de genre g. Pour $g \geqslant 2$ c'est de quotients de \mathbb{H} , car tous les précédents sont S^2 ou \mathbb{T}^2 . On dispose par exemple $\mathring{X} = \{(z, w) \in \mathbb{C}^2 \mid w^2 = (z - a_1)...(z - a_{2g+1})\}$. On montre qu'elle a une structure donc un quotient de H. Par conséquent, toute surface compacte orientable a une des surfaces hyperlliptiques $X = \check{X} \cup \{(\infty, \infty)\}$ où $a_1, ..., a_{2g+1} \in \mathbb{C}$ sont distincts et structure de surface de Riemann.

Définition. (Involution hyperlliptique) 1: X

$$(z,w) \mapsto \begin{cases} (z,-w) & (z,w) \neq (\infty) \\ (\infty,\infty) & \text{sinon} \end{cases}$$

est un automorphisme de X. π est alors l'application quotient $X \to X/\iota$ qui est le revêtement branché $X \to \hat{\mathbb{C}}$ permettant le calcul de Riemann-Hurwitz.

Géométrie riemanienne sur les surfaces orientables

Fait. Toute surface de Riemann est équipée d'une métrique riemanienne de courbure constante 1, 0 ou -1. Ces dernières sont dites hyperboliques.

fini à biholomorphisme près sont en correspondance bijective avec les métriques complètes de courbure constante 1, 0 ou -1 à isométrie près et homothétie près Théorème. Les structures complexes sur une surface fermée orientable de type dans le cas euclidien.

Théorème. (Killing-Hopf, admis) Toute 2-variété riemannienne complète simplement connexe de courbure constante 1, 0 ou -1 est isométrique à S^2 , \mathbb{R}^2 ou \mathbb{H} .

Propriété. Les isométries préservant l'orientation sont :

- $\star \text{ Isom}^+(S^2) = SO(3).$
- $\star \text{ Isom}^+(\mathbb{R}^2) = SO(2) \rtimes \mathbb{R}^2.$
 - \star Isom⁺(\mathbb{H}) = $PSL_2(\mathbb{R})$.

Théorème. Les structures complexes sur une surface fermée orientable de type fini à biholomorphisme près sont en correspondance bijective avec ses classes de **Propriété.** Si $\Sigma_{g,n,b}$ est hyperbolique, $aire(\Sigma_{g,n,b}) = 2\pi(2g+b+n)$. métriques riemaniennes conformes à difféomorphisme près.

Espaces de Teichmüller, espaces de module

Cas d'étude : le(s) tores 2.1

Remarque. Par uniformisation il existe une unique structure complexe en genre

et seulement si $\tau' = h(\tau)$ pour une homographie $h \in SL_2(\mathbb{Z})$. Autrement dit : **Propriété.** À rotation et dilatation près, tout tore est de la forme $R_{\tau} = \mathbb{C}/\Lambda_{\tau}$ par $(\lambda,\mu) \rightsquigarrow (1,\tau)$. Alors pour tous $\tau,\tau \in \mathbb{H}$, R_{τ} et $R_{\tau'}$ sont biholomorphes si les surfaces de Riemann difféomorphes au tore à biholomorphisme près sont en

bijection avec $\mathbb{H}/PSL_2(\mathbb{Z}) = \mathcal{M}_1$, $\overline{\mathbb{H}} = \mathcal{T}_1$. **Propriété.** Pour tout $\tau \in \mathbb{H}$, il existe $g \in PSL_2(\mathbb{Z})$ tel que $g\tau \in \mathcal{F}$

Ψ

- $\star \text{ si } \Re \mathfrak{C}(\tau) = \frac{1}{2}, \left(PSL_2(\mathbb{Z}) \cdot \tau \right) \cap \mathcal{F} = \{g\tau, g\tau + 1\};$ $\star \text{ si } \Re \mathfrak{C}(\tau) = -\frac{1}{2}, \left(PSL_2(\mathbb{Z}) \cdot \tau \right) \cap \mathcal{F} = \{g\tau, g\tau 1\};$ $\mathbb{H} \mid |z| > 1, -\frac{1}{2} \leqslant \mathfrak{Re}(z) \leqslant \frac{1}{2} \}. \text{ De plus :}$ $\star \text{ si } \tau \in \mathring{\mathcal{F}}, (PSL_2(\mathbb{Z}) \cdot \tau) \cap \mathcal{F} = \{\tau\};$
- \star si $|\tau|=1$, $(P\tilde{S}L_2(\mathbb{Z}) \cdot \tau) \cap \mathcal{F} = \{g\tau, -\frac{1}{\tau}\}.$ **Propriété.** Deux marquages $\Sigma_p = [A_p, B_p], \Sigma_{p'}'$ d'un tore $\ni p$, *i.e.* choix de générateurs du GF, sont équivalents si un chemin $p \to p'$ conjugue A_p, A_p' et B_p, B_p' . Alors $(z, w) \mapsto \begin{cases} (z, -w) & (z, w) \neq (\infty, \infty) \\ (\infty, \infty) & \text{sinon} \end{cases}$ sinon \mathcal{T}_1 est l'ensemble des structures complexes marquées sur le tore à difféomorphisme

On peut définir une façon de marquer plus commode.

Propriété. Deux difféos préservant l'orientation $f_i: S \to R_i$, R_i surface de Riemann, S surface orientée difféomorphe au tore, sont équivalents si $f_2^{-1}hf_1 \sim id_S$. Alors l'ensemble des (R,f), R surface de Riemann, $f: S \to R$ à équivalence près est en bijection avec \mathcal{T}_1 via $(R,f) \mapsto (R,f_*([A],[B]))$.

Larges des surfaces $_{-1}$ -ages des surfaces $_{-1}$ -ages des surfaces $_{-1}$ -ages de Teichmüller) Soit S une surface orientée de type fini. The set $_{-1}$ -age de Teichmüller de S est $_{-1}$ -age S difféomorphisme préservant l'orientation S où $(R_1,f_1)\sim(R_2,f_2)\iff\exists h:R_1\to R_2$ biholomorphisme tel que $f_2^{-1}hf_1\sim id_S$. Si S est de genre g à n pointages, on note $T(S)=T_{g,n}$ et l'on impose que l'homorphie à id soit relative aux pointages (un à un, ce qu'il n'est pas nécessaire d'imposer!). Définition. Soit S une surface de Riemann fermée de genre g. Un marquage de S in mensemble de générateurs du groupe fondamental $W=(A_1,\dots,A_g,B_1,\dots,B_g$ en noint prelas que $\pi(A_1,B_g)=e$. Deux marquages W/W' sont équivalents lorsqu'il g in the chemin continu entre leur point d'ancrage tel que le morphisme induit g genvoir W sur W'. Deux paires de surfaces de Riemann marquées sont

équivalentes s'il existe un biholomorphisme dont le morphisme induit envoie W $\operatorname{sur} W'$

avec les paires (R, Σ_p) où R est une surface de Riemann fermée difféomorphe à S, **Lemme.** (Alexander) Soi $\varphi: D^2 \to D^2$ un homéomorphisme tel que $\varphi_{|S^1} = id$. **Théorème.** Soit S une surface fermée marquée par Σ . Alors $\mathcal{T}(S)$ est en bijection $p \in R$ et Σ_p un marquage sur R à équivalence près, par $[(R,f)] \mapsto [(R,f_*(\Sigma))]$. Alors φ est isotope à D. Propriétés.

- 1. Si S est difféomorphe à $\Sigma_0, \Sigma_{0,1}, \Sigma_{0,2}, \Sigma_{0,3}$, alors $\mathcal{T}(S)$ est un point. 2. $\mathcal{T}(\Sigma_{1,1}) \xrightarrow{\sim} \mathcal{T}(\Sigma_1)$.

- $f: \Sigma \to \Sigma$ difféomorphismes pointés préservant l'orientation. **Définition**. (Espace de modules) $MCG(\Sigma)$ agit sur $\mathcal{T}(\Sigma)$ par $[X,f] \mapsto [X,f \circ \varphi^{-1}]$. **Définition.** (Mapping class group) $(\Sigma, x_1, ..., x_n)$ surface fermée orientée. Alors $MCG(\Sigma, x_1, ..., x_n)$ est l'ensemble des difféotopies, i.e. classes à homotopie près des
 - Son quotient est l'espace de modules. Dans $\mathcal{M}(\Sigma)$, les points marqués sont encore marqués.

Proposition. $MCG(\Sigma_{0,n})$ est trivial pour $n \leq 3$.

 $[0,1] \times \mathbb{R}/\mathbb{Z}$ on considère **Définition.** (Torsion de Dehn) Sur l'anneau $A = T: (t, [\theta]) \mapsto (t, [\theta + t])$. **Propriété.** $MCG(A) \simeq \mathbb{Z} \simeq \langle [T] \rangle$.