Całka oznaczona

(Analiza Matematyczna 1, wykład 12)

f - funkcja nieujemna ograniczona w przedziale domkniętym [a,b].

Przedział [a,b] dzielimy na n podprzedziałów, w taki sposób, że:

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$
 (1)

 $gdzie x_0 = a i x_n = b.$

Średnica podziału (1)

$$\delta_n = max\{ \triangle_1, \triangle_2, \dots, \triangle_n \}$$
, gdzie $\triangle_i = x_i - x_{i-1}$.

Ciąg podziałów P_1, P_2, \dots nazywamy <u>normalnym</u>, jeżeli

$$\lim_{n\to\infty}\delta_n=0.$$

Wybieramy ciąg $c_1, c_2, ..., c_n$ taki, że

$$x_{i-1} \le c_i \le x_i.$$

Suma

$$\sum_{i=1}^{n} f(c_i) \Delta x_i$$

jest pewnym przybliżeniem pola powierzchni pomiędzy f(x) i osią X.

<u>Definicja</u>.

Jeżeli granica

$$\lim_{\substack{\Delta x_i \to 0 \\ n \to \infty}} \sum_{i=1}^n f(c_i) \Delta x_i$$

istnieje i jest właściwa oraz nie zależy od wyboru punktów x_i i c_i , to granicę taką nazywamy całką oznaczoną Riemanna i oznaczamy oznaczamy:

$$\int_{a}^{b} f(x)dx = \lim_{\substack{\Delta x_i \to 0 \\ n \to \infty}} \sum_{i=1}^{n} f(c_i) \Delta x_i, \quad \mathbf{gdy} \quad \lim_{n \to \infty} \Delta x_i = \mathbf{0},$$

<u>Twierdzenie</u> (Newton - Leibnitz)

Niech f(x) będzie funkcją nieujemną, ciągłą na przedziale [a;b], F(x) jej funkcją pierwotną.

<u>Całka oznaczona</u> (Newton - Leibnitz) z funkcji f(x) na przedziale [a;b] jest definiowana następująco:

$$\int_a^b f(x)dx = F(b) - F(a).$$

Elementarne własności:

$$a. \quad \int_a^a f(x) dx = 0;$$

b.
$$\int_a^b f(x)dx = -\int_b^a f(x)dx.$$

Przykład 1.

Obliczymy całkę z funkcji stałej, f(x) = d.

Funkcja pierwotna to F(x) = dx + C. Z definicji:

$$\int_{a}^{b} d \, dx = F(b) - F(a) = (db + C) - (da + C) = db - da = d(b - a).$$

Zamiast F(b)-F(a) będziemy używać symbolu $F(x)|_a^b$ lub $[F(x)]_a^b$.

Obliczenia mają teraz postać:

$$\int_a^b d \, dx = F\left(x\right)\Big|_a^b = \left(db + C\right) - \left(da + C\right) = d\left(b - a\right)$$

Zauważmy, że d to wysokość prostokąta, a b-a to długość. Obliczyliśmy pole prostokąta lub inaczej, pole obszaru pod funkcją (na podanym odcinku). Jest to ważna własność całki oznaczonej.

Przykład 2.

Obliczymy pole obszaru pod funkcją $f(x) = \frac{1}{2}x$ na przedziale [0;2].

Funkcja pierwotna to $F(x) = \frac{1}{4}x^2 + C$.

Dalej: $\int_0^2 \frac{1}{2} x \, dx = \left[\frac{1}{4} x^2 \right]_0^2 = \frac{1}{4} \cdot 4 - \frac{1}{4} \cdot 0 = 1$.

Twierdzenie

Jeżeli funkcje f(x) i h(x) są całkowalne w przedziale [a,b], to:

- 1. funkcja f(x)+h(x) jest całkowalna w przedziale [a,b], przy czym $\int_a^b [f(x)+h(x)]dx = \int_a^b f(x)dx + \int_a^b h(x)dx$
- 2. funkcja Af(x), gdzie A dowolna stała, jest całkowalna w przedziale [a,b], przy czym

$$\int_{a}^{b} Af(x)dx = A\int_{a}^{b} f(x)dx$$

3. funkcja f(x)h(x) jest całkowalna w przedziale [a,b].

Uwaga

$$\int_{a}^{b} [A_{1}f(x) + A_{2}h(x)]dx = A_{1}\int_{a}^{b} f(x)dx + A_{2}\int_{a}^{b} h(x)dx$$

$$\int_{a}^{b} [f(x) - h(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} h(x) dx$$

Przykład

$$\int_{2}^{3} 2x^{2} + 5x^{3} + e^{x} - 3\sin x dx = 2\int_{2}^{3} x^{2} dx + 5\int_{2}^{3} x^{3} dx + \int_{2}^{3} e^{x} + 3\sin x dx$$
$$-3\int_{2}^{3} \sin x dx$$

Twierdzenie

Jeżeli:

- funkcja f(x) jest całkowalna w przedziale [a,b],
- α i β (α < β) są dowolnymi punktami tego przedziału, to funkcja f(x) jest całkowalna w przedziale [α , β].

Przykład

Ponieważ istnieje $\int_{0}^{1} x^{2} dx$, więc istnieje $\int_{0}^{1/2} x^{2} dx$.

<u>Twierdzenie</u>

Jeżeli:

- funkcja f(x) jest całkowalna w przedziale [a,b],
- $c \in (a,b)$,

to

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Przykład

$$\int_{0}^{2\pi} \sin x dx = \int_{0}^{\pi} \sin x dx + \int_{\pi}^{2\pi} \sin x dx$$

Rozszerzenie znaczenia symbolu całki.

Określając całkę oznaczoną

$$\int_{a}^{b} f(x) dx$$

przyjęliśmy, że spełniony jest warunek a < b.

Wprowadzamy następujące określenia:

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx, \text{ jeżeli} \qquad b < a$$

oraz

$$\int_{a}^{a} f(x) dx = 0 \quad \text{dla każdego } a$$

Przykład

$$\int_{1}^{0} x^{2} dx = -\int_{0}^{1} x^{2} dx = -\frac{1}{3},$$

$$\int_{\pi}^{0} \sin x dx = -\int_{0}^{\pi} \sin x dx = -2$$

Definicja.

Niech funkcja f(x) będzie ciągła i nieujemna na przedziale [a;b]. Powierzchnia obszaru pod krzywą y = f(x) jest całkę oznaczoną

a

х

Jeśli g(x) = -f(x), to $g(x) \le 0$ na przedziale [a; b].

Wówczas

$$\int_a^b g(x)dx = -\int_a^b f(x)dx.$$

W wypadku, jeśli funkcja f(x) zmienia znak na przedziale całkowania pole obszaru między krzywą a osią współrzędnych obliczamy jak następuje:

$$\int_{a}^{e} f(x)dx = \int_{a}^{b} f(x)dx - \int_{b}^{c} f(x)dx + \int_{c}^{d} f(x)dx - \int_{d}^{e} f(x)dx$$

Uwaga: $\int_a^e f(x)dx = F(x)|_a^e$. Ta całka na ogół <u>nie jest</u> polem obszaru.

Przykład 3.

Policzymy pole obszaru pod krzywą $y = x^2$ na przedziale [a; b].

$$\int_{a}^{b} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{a}^{b} = \frac{b^{3} - a^{3}}{3}.$$

Przykład 4.

Cząsteczka porusza się wzdłuż prostej z prędkością $v(t) = 8t^3 \frac{m}{s}$. Jaką drogę przemierzy między chwilami t = 2s oraz t = 5s.

$$s = \int_{2}^{5} v(t)dt = \int_{2}^{5} 8t^{3}dt = \left[2t^{4}\right]_{2}^{5} = 1250 - 32 = 1218m.$$

Przykład 5.

Obliczymy pole pod krzywą $y = \sqrt{x}$ na przedziale [0, 4].

$$\sqrt{x} = x^{1/2}$$
, $\left(\frac{2}{3}x^{\frac{3}{2}}\right)^{(1)} = x^{\frac{1}{2}}$, zatem $\int_0^4 \sqrt{x} dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_0^4 = \frac{16}{3}m$.

Przykład 6.

Obliczymy całkę oznaczoną $\int_0^1 (x^2 + 5)^3 x dx$.

Podstawiamy $u = x^2 + 5$, czyli du = 2xdx.

Granice całkowania zmieniają się zgodnie z obliczeniami: $u(0) = 0^2 + 5$, $u(1) = 1^2 + 5 = 6$. Stąd wynika, że:

$$\int_0^1 (x^2 + 5)^3 x dx = \int_5^6 \frac{u^3}{2} du = \left[\frac{u^4}{8} \right]_5^6 = \frac{6^4}{8} - \frac{5^4}{8}.$$

Jeżeli
$$v(x) = F'(x)$$
, to $\int_a^b v(x) dx = F(b) - F(a)$.

Przykład 7.

Obliczymy pole powierzchni pod funkcją $f(x) = \sin x$ na $[0, \pi]$.

$$\int_0^\pi \sin x \, dx = \left[-\cos x \right]_0^\pi = 2$$

Obliczmy teraz pole powierzchni pod funkcją $f(x) = \sin^2 x$.

$$\int_0^{\pi} \sin^2 x \, dx = \int_0^{\pi} \sin x \sin x \, dx = \begin{vmatrix} u = \sin x & u' = \cos x \\ v' = \sin x & v = -\cos x \end{vmatrix} = \text{(całkujemy przez części)}$$
$$= uv \Big|_0^{\pi} - \int_0^{\pi} u' v \, dx = -\sin x \cos x \Big|_0^{\pi} + \int_0^{\pi} \cos^2 x \, dx = (*)$$

Skorzystamy teraz ze wzoru $\sin^2 x + \cos^2 x = 1$,

$$(*) = \int_0^{\pi} \sin^2 x \, dx = \int_0^{\pi} 1 \, dx - \int_0^{\pi} \sin^2 x \, dx.$$

Stąd wynika, że $\int_0^{\pi} \sin^2 x \, dx = \frac{\pi}{2}.$

Przykład 8.

Obliczymy pole koła o promieniu R.

Równanie okręgu to $x^2 + y^2 = R^2$, stąd półokrąg nad osią OX ma równanie:

$$y = \sqrt{R^2 - x^2}$$
, $x \in [-R, R]$.

Pole półkola to obszar pod funkcją. Stąd $P_o = 2 \int_{-R}^{R} \sqrt{R^2 - x^2} dx$.

Obliczymy tę całkę przez podstawienie:

$$x = R\cos\alpha$$
, CZyli $dx = -R\sin\alpha d\alpha$.

Jeśli x zmienia się od -R do R, to α zmienia się od π do 0.

$$2\int_{-R}^{R} \sqrt{R^2 - x^2} \, dx = -2\int_{\pi}^{0} R^2 \sin^2 \alpha \, d\alpha \, ,$$

Korzystając z wyniku Przykładu 7 otrzymujemy znany wzór na pole koła:

$$P_o = \pi R^2$$

ZASTOSOWANIA

Długość krzywej:

Dana jest krzywa o równaniu y=f(x). Długością krzywej od punktu a do punktu b jest całka $\int_a^b \sqrt{1+\big(f'(x)\big)^2}\,dx$.

Przykład 9.

Policzmy długość krzywej $y = x\sqrt{x}$ na przedziale [0, 4].

Jest
$$y = x^{\frac{3}{2}}$$
, $y' = \frac{3}{2}x^{\frac{1}{2}}$, oraz $\sqrt{1 + y'^2} = \sqrt{1 + \frac{9}{4}x}$.

Funkcja pierwotna dla $f(x) = \sqrt{1 + \frac{9}{4}x}$, to $F(x) = \frac{2}{3} \cdot \frac{4}{9} \left(1 + \frac{9}{4}x\right)^{\frac{3}{2}}$.

Zatem długość fragmentu krzywej to:

$$s = \int_{0}^{4} \sqrt{1 + y'^{2}} dx = \int_{0}^{4} \sqrt{1 + \frac{9}{4}x} dx =$$

$$= \left[\frac{2}{3} \cdot \frac{4}{9} \left(1 + \frac{9}{4}x \right)^{\frac{3}{2}} \right]_{0}^{4} = \frac{2}{3} \cdot \frac{4}{9} \left(10^{\frac{3}{2}} - 1^{\frac{3}{2}} \right) = \frac{8}{27} \left(10\sqrt{10} - 1 \right) \approx 9.07$$

Policzymy teraz długość odcinka prostej, od punktu (0;0) do punktu

(4; 8). Jest teraz
$$y = 2x$$
, $y' = 2$, oraz $\sqrt{1 + y'^2} = \sqrt{5}$.

Długość odcinka to
$$s = \int_{0}^{4} \sqrt{1 + y'^{2}} dx = \int_{0}^{4} \sqrt{1 + 2^{2}} dx =$$

$$\sqrt{5}[x]_0^4 = 4\sqrt{5} \approx 8.94$$

Jak widać, krzywa ma prawie taką samą długość jak prosta.

W podobny sposób obliczamy długość łuku w wypadku, gdy krzywa podana jest w postaci parametrycznej.

$$x = x(t),$$
 $y = y(t),$ $t \in [a; b],$
$$s = \int_a^b \sqrt{x'^2(t) + y'^2(t)} dt$$

Przykład 10.

Jeśli $x = r \cos t$, $y = r \sin t$, $t \in [0; \pi]$, to otrzymujemy półokrąg o promieniu r i środku w początku układu współrzędnych.

$$x'(t) = -r \sin t$$
, $y'(t) = r \cos t$, $\sqrt{x'^2(t) + y'^2(t)} = r \sqrt{\sin^2 t + \cos^2 t} = r$

Stąd długość półokręgu to $s = \int_0^{\pi} r dt = \pi r$.

Całka $\frac{1}{b-a}\int_a^b f(x)dx$ zwana jest <u>wartością średnią</u> funkcji na przedziale [a,b].

Niech $f:[a,b] \to R$. Obracając wykres f wokół x-ów otrzymujemy powierzchnię obrotową.

Ograniczamy ją dwoma płaszczyznami:

$$x = a i y = b$$
.

Objętość takiej bryły

$$V = \int_{a}^{b} f^{2}(x) dx,$$

a pole powierzchni bocznej

$$A=2\pi\int_{a}^{b}f(x)\sqrt{1+f'(x)^{2}}dx.$$

$$S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^{2}} dx$$

Obliczyć pole powierzchni powstałej z obrotu funkcji $f(x) = 2\sqrt{x}$ w granicach $0 \le x \le 3$ dookoła osi *OX*.

$$f'(x) = \frac{1}{\sqrt{x}}$$
 stad $\sqrt{1 + (f'(x))^2} = \sqrt{1 + \frac{1}{x}}$.

Pole

$$S = 2\pi \int_0^3 2\sqrt{x} \sqrt{1 + \frac{1}{x}} dx = 4\pi \int_0^3 \sqrt{x + 1} dx = 4\pi \frac{2}{3} (x + 1)^{3/2} \Big|_0^3 = \frac{56}{3} \pi.$$

Przykład 12.

$$V = \pi \int_{a}^{b} (f(x))^2 dx$$

Obliczyć objętość bryły powstałej przez obrót dokoła osi OX obszaru ograniczonego krzywa xy=4 prostymi x=1 i x=4 i osią OX .

$$y = f(x) = \frac{4}{x}$$

$$V = \pi \int_{1}^{4} (\frac{4}{x})^{2} dx = \pi \int_{1}^{4} \frac{16}{x^{2}} dx = 16\pi \int_{1}^{4} x^{-2} dx = 16\pi \left[-x^{-1} \right]_{1}^{4} = \left[-16\pi x^{-1} \right]_{1}^{4} = \left[\frac{-16\pi}{x} \right]_{1}^{4} = \frac{-16\pi}{x} = \pi (16-4) = 12\pi j^{3}$$