

■ 당신이...

- Problem Solving 문제들 봤는데 어떻게 풀어야 하는지 전혀 감이 오지 않는다.
- Dijkstra 알고리즘 아무리 봐도, "될 것 같기는 한데" 이유는 모르겠다.
- 도구나 라이브러리는 잘 쓰는데 프로그램 처음부터 짜려면 막막하다.
- 어떻게 프로그램을 짜면 더 빠른지, 더 느린지 전혀 감이 없다.
- $\log n$ 을 본 적이 없거나, 본 적이 있는데 무슨 뜻이라고 한마디로 설명하지는 못한다. 혹은, $\log n$ 의 밑이 10 이나 e라고 알고 있다.
- Problem Solving 자료를 보고 시간을 들여도 발전이 없다.

- 하나라도 일치하는 상황이 있다면..., 어쩌면...
 - Problem Solving 을 본격적으로 공부할 준비가 안된 것일 수 있다.
 - "왜 이해가 안되는 것인가?"
- 필요한 것은..., 아마도...
 - **논리적**으로 **정확**하게 **확인**하는 과정에 대한 연습이 없어서이다.
 - 되는 것 같다는 기분이나 "공식을 외우는 것" 말고 정확하게 확인해 본 적이 있는가?
 - 프로그램을 짜기 시작하기 전에, 정확한 결과가 나올 것인지, 얼마나 빠르게 돌아갈 것인지 미리 알 수 있는가?
 - 확인이 안된 상태에서 프로그램을 짜기 시작하면, 결과가 정확할지, 얼마나 빠를지 예측할 수 없고, 제대로 된 결과가 나오지 않으면 고치는 것이 어렵고 무작정 여러가지를 시도해 볼 수 밖에 없다.
 - 정확히 확인하는 훈련이 되어 있지 않으면, 단순 작업 이상의 코드를 작성하기 어렵고, 다른 사람의 코드를 고치는 것도 매우 어렵다.
 - 정확하게 확인하는 과정을 수많은 세월 동안 정리해 둔 것이 "증명" 기법이다.
 - 증명 기법은 딱딱한 것이 아닌 기발한 아이디어들의 집합이고 "이해하면 재미있는 그림"들과 같다.
 - 이 과정에서 쉬운 문제들을 보고 정확하게 확인하는 것을 연습해 보자.

"어떤 전공도 상식선에서 이해되는 분야는 없다."

Computational Thinking

- 기초 논리 & 수학 -

0.	서론 - 프로그래밍과 논리/수학	4
1.	논리와 증명	.21
2.	수와 표현	.44
3.	집합과 조합론	.49
4.	기초 수식	.64
5.	재귀	.70
6.	동적 프로그래밍	.81
7.	조합론 프로그래밍 과제	.87
8.	기초 알고리즘 프로그래밍 과제	.88

0. 서론 - 프로그래밍과 논리/수학

- 프로그래밍의 어려운 점 두 가지
 - 프로그래밍 언어 문법과 라이브러리 사용
 - 논리 (Hard Logic)
- 문법과 라이브러리
 - 많이 알려진 어려운 점

```
#include <iostream>
#include <set>
#include <functional>
using namespace std;

int main(){

    set<int> s;

    pair<set<int>::iterator, bool> pr;
    pr = s.insert(50); // returns result pair
    s.insert(40);
    s.insert(80);

if (true == pr.second)
    cout << *pr.first << " Success!" << endl;
else
    cout << *pr.first << " Failure! " << endl;
......</pre>
```

- 위 프로그램이 무엇을 하는 것인지 처음 보는 사람은 알 수 없음
- 능숙해 지기 위해 많은 훈련이 필요하지만, 이 과정의 중요 목표는 **아님**
- 프로그래밍을 최초로 배울 때 약간의 어려움이 있지만 훈련에 비례하여 실력이 느는 경향이 있음
- 일반 상식으로 원래 알고 있는 것이 아니기 때문에 훈련의 필요성에 대해 반감이 없음

- 논리 (Hard Logic)
 - Hard vs. Soft Logic
 - 카드 문제
 - 사실: 모든 카드의 한쪽에는 알파벳이, 다른 쪽에는 숫자가 써 있음
 - 주장: 만약 한쪽이 D 이면 반대쪽은 3
 - 주장이 사실인지 확인하기 위해 다음 카드들 중 반드시 뒤집어 보아야 하는 것은 몇 개이고 어느 것인가?

- 잠깐 생각해 봅시다.....

답: [D]와 [7]

- [D]를 뒤집어 보아야 한다는 것은 누구나 알아 냄
- [3]을 뒤집어 보아야 한다고 말하는 경우가 많이 있음
- 중요: [3] 뒤에 [D]가 있든 없든 주장이 사실인지 여부에 영향이 없음
- [7]을 뒤집어 볼 필요가 없다고 말하는 경우도 많음
- 중요: [7] 뒤에 [D]가 있으면 주장이 성립하지 않게 됨

- 맥주집 문제

- 규칙: 20 세 이하인 사람은 맥주를 마실 수 없음
- 나이 혹은 마시고 있는 것을 표시한 다음 4명 중 확인이 필요한 사람은 몇 명이고 누구인가?

답: [17세]와 [맥주]

- 카드 문제와 맥주집 문제의 비교
 - 맥주집 문제가 훨씬 풀기 쉽다
 - 사실, 두 문제는 완전히 같은 문제임. 즉, 논리적 구성은 완전히 동일함
 - 왜 맥주집 문제가 풀기 쉬운가?
 - 논리 구조를 정확히 이해하고 맥주집 문제를 푸는 사람은 카드 문제를 똑같이 풀 수 있음
 - 즉, 맥주집 문제를 풀 때 논리를 사용한 것이 아니다!

- Hard vs. Soft Logic
 - 맥주집 문제를 풀 때는 직관을 사용한 것
 - 직관은 논리적인 **느낌**을 주는 것
 - 직관의 장점은 (익숙한 상황에서) 빠르다는 것
 - 직관의 단점은 정확하지 않다는 것 (가끔은 익숙한 상황에서도 틀림)
 - 또 다른 단점은 강한 착각을 일으킨다는 것

- 과자와 버스

- "너 과자 몇 개 먹었니?" vs. "버스 타려고 하는데 천원 있니?"
- 두 질문은 같은 표현을 사용하지만, 하나는 정확한 개수를 요구하고, 다른 하나는 천원 이상이 있는지 물어보는 것

- 토플과 복권

- "합격하려면 토플 500 점 이상 혹은 토익 600 점 이상이 필요" vs. "복권에 당첨되면 자동차 혹은 천만원을 줍니다"
- 두 말은 같은 표현을 사용하지만 하나는 inclusive or, 다른 하나는 exclusive or

- 일상 생활에서는

- Soft Logic 이 빠르기 때문에 유용
- 논리적으로 부정확한 표현을 사용하지만, 어떤 의미인지 모든 사람이 이미 알고 있다는 가정이 존재

- 프로그래밍은 Hard Logic 을 사용
 - 프로그래밍 언어의 표현들이 모두 논리학에서 나온 것
 - 사용되는 수많은 알고리즘들을 이해하기 위해서는 Hard Logic 이 필요

- 오해의 근원

- Soft Logic 으로 알고리즘을 이해하려고 하는 것!
- 알고리즘 설명을 보고 또 봐도 이해가 안되는 것은 증명을 안 봤기 때문
- 증명을 봐도 이해가 안되는 것은 직관으로 이해하려고 하기 때문
- 가끔 직관적으로 이해되는 알고리즘이 있지만 조금만 어려워지면 직관으로 완전한 이해를 얻는 것은 사실상 불가능

■ 논리 연습

- 문제 1: 다음을 명제식 형태로 쓰고 참인지 거짓인지 판단하시오
 - ① 만약 0이 홀수라면, 미국에서 2080년 월드컵이 열린다.
 - ② 만약 19893827938274839이 Prime Number라면, 2는 짝수이다.

[Solution]

① p:0은 홀수이다.(거짓)

q: 미국에서 2080년 월드컵이 열린다.(알 수 없음)

명제식 : $p \to q$, p 명제가 거짓이므로, q명제의 참/여부에 상관없이 해당 명제식은 참이다.

② p:19893827938274839은 Prime Number 이다.(알 수 없음) q:2는 짝수이다.(참)

명제식 : $p \to q$, 대우 명제는 $\sim q \to \sim p$ 인데, \sim q 는 '2 가 홀수이다' 가되어 거짓인 명제가 된다. 따라서 $\sim q$ 명제가 거짓이므로, $\sim p$ 명제의 참/여부에 상관없이 해당 명제식은 참이 된다.

대우 명제식이 참이므로, 본 명제식 또한 참이다.

- 문제 2: p와 q가 명제이고 $p \to q$ 가 거짓이라고 하자. 다음 명제식의 참 거짓은 어떻게 되는가?
 - ① $\sim p \rightarrow q$ ② $p \lor q$ ③ $q \rightarrow p$

[Solution]

- ① $\sim p \rightarrow q$
- : $p \to q$ 가 거짓이기 위해선 p 참, q 거짓인 경우이다. 따라서 $\sim p$ 는 거짓이고 q또한 거짓이므로 $\sim p \to q$ 는 참이다.
- ② p v q
- : p 참, q 거짓이므로 $p \lor q$ 는 참이다.
- \bigcirc $q \rightarrow p$
- : p 참, q 거짓이므로 $q \rightarrow p$ 은 참이다.

- 문제 3: 다음 명제들의 역, 이, 대우를 쓰시오
 - ① 만약 0이 홀수라면, 미국에서 2080년 월드컵이 열린다.
 - ② 만약 19893827938274839이 Prime Number라면, 2는 짝수이다.

[Solution]

① 명제 : 만약 0이 홀수라면, 미국에서 2080년 월드컵이 열린다.

역 : 만약 미국에서 2080년 월드컵이 열린다면, 0이 홀수이다.

이 : 만약 0이 짝수라면, 미국에서 2080년 월드컵이 열리지 않는다.

대우 : 만약 미국에서 2080년 월드컵이 열리지 않는다면, 0은 짝수이다.

② 명제 : 만약 19893827938274839 이 Prime Number 라면, 2 는 짝수이다.

역: 만약 2가 짝수이면 19893827938274839 이 Prime Number 이다.

이 : 만약 19893827938274839 이 Prime Number 가 아니라면 2 는

홀수이다.

대우 : 만약 2가 홀수이면 19893827938274839 이 Prime Number 가

아니다.

- 문제 4: 다음 명제식의 진리표를 만드시오

- ① $p \wedge (q \rightarrow \sim p)$
- $(p \land \sim q) \to r$

[Solution]

① $p \land (q \rightarrow \sim p)$

р	q	~p	$(q \rightarrow \sim p)$	$p \land (q \rightarrow \sim p)$			
T	T	F	F	F			
T	F	F	Т	Т			
F	T	Т	Т	F			
F	F	Т	T	F			

② $(p \land \sim q) \rightarrow r$

р	q	r	~q	$(p \land \sim q)$	$(p \land \sim q) \rightarrow r$
Т	Т	T	F	F	Т
Т	T	F	F	F	Т
T	F	T	T	Т	T
Т	F	F	Т	Т	F
F	T	T	F	F	Т
F	T	F	F	F	Т
F	F	T	T	F	Т
F	F	F	T	F	Т

■ 증명

- 증명은 정확한 명제식으로 표현할 수 있는 것이라야 함
- 보통은 정확한 명제식까지 쓰지는 않으나 근본적으로는 명제식으로 바꿀 수 있음
- 증명에 대한 수많은 오해가 $p \to q$ 를 $p \leftrightarrow q$ 와 혼동하는 것에서 일어남
- 모든 당구공은 색이 같다는 다음 증명에서 잘못된 것은?
 - 수학적 귀납법: P(1)이 참이고, $P(n) \rightarrow P(n+1)$ 이 참이면 P(n)은 모든 자연수 n에 대해서 참이다.
 - 모든 자연수 n에 대해 당구공 n개가 들어있는 집합에서 그 집합에 포함된 당구공은 모두 색이 같다는 것을 증명함
 - P(1): 당구공 1개가 들어있는 집합은 모두 색이 같음
 - $P(n) \rightarrow P(n+1)$ 을 증명하기 위해 P(n)이 참이라고 가정
 - 당구공 n+1개가 들어 있는 임의의 집합을 생각함
 - 이 집합에서 하나를 빼면 당구공 n개가 있는 집합이 되므로 지금 상황에서 모든 당구공의 색이 같음
 - 방금 뺀 원소를 다시 넣고, 다른 당구공을 빼면 역시 당구공 n개가 있는 α 집합이 되므로 지금 상황에서도 모든 당구공의 색이 같음
 - 위의 두 상황에서 처음 뺀 당구공과 두번째로 뺀 당구공의 색이 같음을 알수 있으므로 당구공 n+1개가 들어 있는 임의의 집합은 색이 같은 것 만을 포함함

- 대부분의 사람들이 P(n)이 참이라고 가정할 수 없다고 반론함
- 수학적 귀납법에서 필요한 것은 $P(n) \rightarrow P(n+1)$ 이 참임을 보이는 것 뿐이므로 P(n)이 정말로 참일 필요는 없음
- 위 증명에서 실제로 잘못된 것은 다음 부분
 - 위의 두 상황에서 처음 뺀 당구공과 두번째로 뺀 당구공의 색이 같음을 알수 있으므로...
- 처음 뺀 당구공과 두번째로 뺀 당구공의 색이 같다는 것은 공통 부분이 있다는 것인데, 실제로 n=1인 경우, 즉 n+1=2인 경우 공통 부분이 없음

- Prime Number 의 개수는 무한히 많다는 다음 증명은 옳은가?
 - Prime Number 의 개수가 유한한 k개라고 가정
 - 모든 Prime Number 를 다 곱하고 1을 더한 수를 n이라고 하자
 - 이 수 n은 어떤 Prime 으로 나누어도 나머지가 1이다
 - 그런데 n은 어떤 Prime 보다도 크므로 합성수이다
 - 합성수이지만 어떤 Prime 으로도 나누어지지 않으므로 모순 발생
- 이 증명에 대한 반론으로 몇 개의 Prime 이 더 존재하면 되는 것이 아니냐는 주장이 자주 있음
- 위 증명은 "Prime Number 가 k개 이면 모순이 발생", 즉, "Prime Number 가 k개" \rightarrow "항상 거짓", 이 명제가 항상 참임을 확인한 것
- 즉, "Prime Number 가 k개"라는 명제가 항상 거짓일 수 밖에 없다!

- 수학적 귀납법과 증명의 수준
 - 수학적 귀납법의 기본형: P(1)이 참이고, $P(n) \rightarrow P(n+1)$ 이 참이면 P(n)은 모든 자연수 n에 대해서 참이다.
 - 수학적 귀납법의 강한 형태: P(1)이 참이고, $P(1) \wedge P(2) \wedge \cdots \wedge P(n) \rightarrow P(n+1)$ 이 참이면 P(n)은 모든 자연수 n에 대해서 참이다.
 - 다음 함수가 1부터 x까지의 합을 계산함을 증명해 보자

```
int sum(int x)
{
   if (x <= 0) return 0;
   return x + sum(x-1);
}</pre>
```

- High-level 증명에서는 1 부터 x 까지 합의 정의 중 하나인 S(n) = S(n-1) + n을 그대로 코딩한 것이므로 증명이 된 것이라고 말하는 경우가 많음
- 상세한 증명을 하려면 단순히 "답이 맞는 것이 당연하다"라고 말하는 것으로는 충분하지 않음
 - **증명이 가능한 명제**를 만들어야 함
 - 이 경우 증명이 가능한 명제는 다음과 같음: "sum(x)가 리턴하는 값은 1+2+...+x의 값과 항상 같다"
 - 이제 수학적 귀납법을 적용할 수 있음
 - P(1)이 참이다: "sum(1)이 리턴하는 값은 1이다"를 증명하면 됨. 실제 코드에 1을 대입하면 1을 리턴함을 알 수 있음

- *P*(*x* − 1) → *P*(*x*)이 참이다: "sum(*x*-1)이 1+2+...+(*x*-1)을 리턴하면 sum(*x*)는 1+2+...+*x* 를 리턴한다"를 증명하면 됨. 코드를 보면 sum(*x*)는 *x*+sum(*x*-1)의 값을 리턴함. sum(*x*-1)의 리턴 값은 1+2+...+(*x*-1)과 같다고 가정했으므로 sum(*x*)는 1+2+...+(*x*-1)+*x*=1+2+...+*x* 를 리턴함을 확인할 수 있음
- sum(x-1)을 블랙박스로 보는 것이 이해에 도움을 줄 때가 있음

- 소팅의 사례

- High-level 증명에서는 소팅이 된다는 것을 직관적인 수준에서 설명하는 경우가 많음
- 상세한 증명을 위해서는 증명이 가능한 명제가 필요
- 배열 A[1], A[2], ..., A[n]을 소팅하는 알고리즘의 정확성을 증명하려고 한다면, 증명이 가능한 명제는 다음과 같을 것임: "A[1] < A[2] < ...< A[n]" 그리고 "소팅을 시작할 때 {A[1], A[2], ..., A[n]}과 소팅을 마쳤을 때 {A[1], A[2], ..., A[n]}은 집합으로서 같다."
- 버블 소트가 정확함을 어떻게 증명할 지 생각해 봅시다.

상세한 증명에 대한 경험이 없는 경우가 많고, 상세한 증명 없이는 확인하거나 이해할 수 없는 문제들이 많으므로 연습 문제들은 상세한 증명을 제시하는 것을 목표로 함

■ 증명 연습

- Trivial Proof: $\forall x, P(x) \rightarrow Q(x)$ 를 증명하려는데, Q(x)가 항상 참인 경우
- 문제 1: 다음 명제를 증명하시오
 - ① 실수 x에 대해, 만약 x < -1이면 $x^2 + \frac{1}{4} > 0$ 이다
 - ② n이 홀수이면 $4n^3 + 6n^2 + 12$ 는 짝수이다

[Solution]

Proof)

- ① 실수 x에 대해, 만약 x < -1이면 $x^2 + \frac{1}{4} > 0$ 이다. $x^2 + \frac{1}{4} > 0, x^2 > -\frac{1}{4} \text{ 이고, x}는 실수이므로 Q(x)는 항상 참이다.}$ 따라서 $\forall x, P(x) \rightarrow Q(x)$ 이다.
- ② n이 홀수이면 $4n^3+6n^2+12$ 는 짝수이다 $4n^3+6n^2+12=2(2n^3+3n^2+6) \ \text{이므로} \ 4n^3+6n^2+12$ 는 짝수이다. 그러므로 Q(x)는 항상 참이다. 따라서 $\forall x, P(x) \rightarrow Q(x)$ 이다.

- Vacuous Proof: $\forall x, P(x) \rightarrow Q(x)$ 를 증명하려는데, P(x)가 항상 거짓인 경우
- 문제 2: 다음 명제를 증명하시오
 - ① 실수 x에 대해, 만약 $2x^2 4x + 4 < 0$ 이면 x > 8이다
 - ② $4n^3 + 6n^2 + 11$ 이 짝수이면 n이 홀수이다

[Solution]

Proof)

① 실수 x에 대해, 만약 $2x^2 - 4x + 4 < 0$ 이면 x > 8이다.

 $2x^2 - 4x + 4 = 2(x^2 - 2x) + 4 = 2(x - 1)^2 + 6 \ge 0$ OLL.

따라서 $2x^2 - 4x + 4 < 0$ 은 거짓이다.

그렇기 때문에 P(x)는 거짓이므로 해당 명제 $\forall x, P(x) \rightarrow Q(x)$ 는 참이다.

② $4n^3 + 6n^2 + 11$ 이 짝수이면 n이 홀수이다

 $4n^3 + 6n^2 + 11 = 2(2n^3 + 3n^2 + 5) + 1$ 이므로 $4n^3 + 6n^2 + 11$ 은 홀수이다.

그러므로 P(x)는 거짓이므로 해당 명제 $\forall x, P(x) \rightarrow Q(x)$ 는 참이다.

1. 논리와 증명

- 문제 1: 다음 명제들이 항진명제라는 것을 진리표를 이용해서 보이시오
 - ① $\sim (\sim p \land q) \lor q$
 - $(\sim p \lor q) \lor (p \land \sim q)$

- 문제 2: 다음 명제들이 모순명제라는 것을 진리표를 이용해서 보이시오
 - $(\sim p \lor q) \land (p \land \sim q)$
 - ② $(p \land q) \land (p \land \sim q)$

- 문제 3: 다음 명제의 쌍 들에 대해서 두 명제가 동등한지를 진리표를 이용해 확인하시오
 - ① $p \land (p \lor q)$ 와 p
 - ② $\sim p \lor \sim q 와 \sim (p \lor q)$

- 문제 4: 명제식의 변형을 통하여 다음 명제를 간소화하시오
 - $(p \land \sim q) \lor (p \land q)$
 - $(p \lor \sim q) \land (\sim p \lor \sim q)$

- 문제 5: 다음 명제들이 참인지 확인하시오. 단, R은 실수의 집합을 의미하고, Z는 정수의 집합을 의미한다.

 - $\exists x \in R, x^2 < x$
 - $\exists x \in Z, x^2 < x$

- 문제 6: (직접 증명) n이 짝수이면 3n + 5는 홀수임을 증명하라.

(힌트: n=2k로 두고 3n+5가 $2\left(\textit{어떤 정수} \right) + 1$ 형태로 표현될 수 있는지...)

- 문제 7: n이 홀수이면 $n^2 + n$ 은 짝수임을 증명하라.

- 문제 8: m이 짝수이고 n이 홀수이면 2m+3n은 홀수임을 증명하라

- 문제 9: (대우를 증명) 자연수 n에 대해, $n^2 + 5$ 가 홀수이면 n은 짝수임을 증명하라

(힌트: 명제 대신, n이 홀수이면 $n^2 + 5$ 은 짝수임을 증명한다)

- 문제 $10: n^2$ 이 짝수이면 n은 짝수임을 증명하라.

- 문제 11: (경우를 나누어 증명) 자연수 n에 대해 $n^2 + 5n + 3$ 은 항상 홀수임을 증명하라.

(힌트: n이 짝수인 경우와 홀수인 경우를 따로 증명한다)

- 문제 12: n^2 이 3의 배수이면 n은 3의 배수임을 증명하라.

- 문제 13: n이 홀수이면 n^2 을 8로 나눈 나머지는 1임을 증명하라 (힌트: n을 4로 나눈 나머지가 1인 경우와 3인 경우로 나누어 보자)

- 문제 14: 어떤 자연수를 제곱하여도 그 결과를 3으로 나눈 나머지는 2가 아님을 증명하라. - 문제 15: (귀류법) 유리수와 무리수의 합은 무리수임을 증명하라.

(힌트: 어떤 유리수와 어떤 무리수의 합이 유리수가 된다고 가정하고 모순을 이끌어 낼 수 있는가?)

[Solution]

Proof)

어떤 유리수와 어떤 무리수의 합이 유리수가 된다고 가정하자. 유리수 a, 무리수 b 가 있고 a 와 b의 합은 유리수 c 가 된다고 하자. a + b = c, b = c - a 가 되고, 이 때 c - a 값인 b는 유리수의 성질에 의해 유리수여야만 한다. (가정에 모순)

따라서 b가 무리수라는 가정에 모순되므로, 유리수와 무리수의 합은 무리수임을 증명할 수 있다. - 문제 $16:\sqrt{2}$ 는 무리수임을 증명하라.

(힌트: 유리수가 된다는 것은 기약분수로 표현이 된다는 것이다)

- 문제 17: $\log_2 5$ 는 무리수임을 증명하라.

- 문제 18: (수학적 귀납법) $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ 임을 증명하라.

- 문제 19: $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ 임을 증명하라.

- 문제 20: $r \neq 1$ 일 때 $\sum_{i=0}^n r^i = \frac{r^{n+1}-1}{r-1}$ 임을 증명하라

- 문제 21: 2 이상의 모든 자연수 n에 대해 $n^3 - n$ 은 6으로 나누어 떨어짐을 증명하라.

- 문제 22: 2 이상의 모든 자연수 n에 대해 $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}}$ 임을 증명하라.

- 문제 23: $n \times n$ 체스판이 있다. 시작 시점에 일부 칸 들이 감염되어 있다. 매초마다 감염이 증가할 수 있다. 규칙은 다음과 같다. 어떤 감염되지 않은 칸은 상하나 좌우로 인접한 네개의 칸들 중 2 개 이상이 감염된 상태일 때 감염된다. 이 규칙에 따라 모든 칸들을 감염시키기 위해서는 초기에 n개 이상의 칸들이 감염되어 있어야 함을 증명하라.

(힌트: 금방 떠오르는 것은 답이 아닐 가능성이 많다.)

2. 수와 표현

■ 약간의 설명

- 컴퓨터는 0/1을 표현할 수 있는 비트들을 모아 수를 표현
- k개의 비트를 사용하면 0부터 $2^k 1$ 까지 표현 가능
- 사실, 꼭 저 범위인 것은 아님. 약속하는 방식에 따라 다르지만, 어떤 경우든 최대 2^k 가지의 값을 표현하는 것이 가능
- -10 진수로 k자리를 쓰면 0부터 $10^k 1$ 까지 표현이 가능한 것과 완전히 동일한 과정
- 어떤 값 n을 표현하기 위해서는 몇 개의 비트가 필요할까?
- $-2^{k}-1 \ge n$ 이 성립해야 함 -> 즉, $2^{k} \ge n+1$
- 같은 의미로, $k \ge \log(n+1)$ -> 약 $\log n$ 비트가 필요
- $x = \log n$ 과 $2^x = n$ 은 같은 말
- 위의 식을 잘 보면, $\log n$ 이란
 - (가) 2 의 몇 승이 *n*이 되느냐의 답
 - (나) n을 표현하는 데 몇 비트가 필요한가의 답
 - (Γ) 1로 시작해서 계속 두 배를 할 때 몇 번 하면 n이 되느냐의 답
 - (a) n을 2로 계속 나눌 때 몇 번 나누면 거의 1이 되느냐에 대한 답

- $x = \log n$ 일 때 x와 n을 비교하면 x가 더 작고, n이 커질수록 엄청나게 달라진다
- 100 자리로 표현할 수 있는 10 진수 값은 읽을 수도 없을 정도로 큰 값이다
- 컴퓨터 분야에서 로그의 밑은 항상 2
- 32 비트 컴퓨터의 주소 공간은 2³² = 약 40 억개 주소

$$-n + \left(\frac{n}{2} + \frac{n}{2}\right) + \left(\frac{n}{4} + \frac{n}{4} + \frac{n}{4} + \frac{n}{4}\right) + \left(\frac{n}{8} + \frac{n}{8} + \cdots\right) + \cdots + (1 + 1 + \cdots) = n \log n \quad \text{(Why?)}$$

- $-n+\frac{n}{2}+\frac{n}{4}+\cdots+1\cong 2n$
- 위 두 식의 항의 개수는 $\log n$ 개 (Why?)

■ 문제들

- 문제 1:2 진수 표현에서 logn 비트로 표현할 수 있는 숫자 범위는?

- 문제 2: 스무고개가 이상적으로 진행된다고 할 때, 맞출 수 있는 답의 종류는 몇 가지인가? - 문제 3: n이 충분히 큰 값일 때 다음 중 어느 값이 더 큰가? 각 쌍에 대해 비교하고 그 이유를 작성하시오.

(1) 2n () n^2

② $2^{\frac{n}{2}}$ () $\sqrt{3^n}$

(4) $\log 2^{2n}$ () $n\sqrt{n}$

- 문제 4: $x = \log_a yz$ 일 때 x를 2 를 밑으로 하는 로그들로 표현하시오. 단, 로그함수의 인자는 모두 문자 하나여야 한다.

- 문제 5: 다음 함수들의 역함수를 구하시오
 - $(1) \qquad f(x) = \log(x-3) 5$

 $(2) f(x) = 3\log(x+3) + 1$

 $(3) \quad f(x) = 2 \times 3^x - 1$

3. 집합과 조합론

■ 집합과 조합론에 대한 약간의 설명

- 두 집합 A와 B에 대해 A가 B의 부분집합임을 증명한다는 것은 A의 임의의 원소가 B에 포함됨을 보이는 것과 같다.
- 예를 들어 모든 4의 배수는 2의 배수라는 것을 증명하려면, 4k = 2(2k)임을 보이면 되는 것이다.
- 두 집합 A와 B가 같다는 것을 증명하기 위해서는 A가 B의 부분집합이고 B가 A의 부분집합임을 증명하면 된다.
- 다음 두 집합이 같다는 것을 상세히 증명해 보자.

 $A = \{x | x = 2k + 1, k$ 는 자연수 $\}$, $B = \{x | x = 4k + 1 혹은 x = 4k + 3, k$ 는 자연수 $\}$

- A가 B의 부분집합이다:

A에 포함되는 임의의 원소 x를 가정.

x = 2k + 1임.

k가 짝수(= 2t)인 경우와 홀수(= 2t + 1)인 경우로 나눔.

짝수인 경우 x = 2k + 1 = 2(2t) + 1 = 4t + 1로서, $x \in B$ 에 포함됨.

홀수인 경우 x = 2k + 1 = 2(2t + 1) + 1 = 4t + 3로서, x는 B에 포함됨.

모든 가능한 경우에 x는 B에 포함됨.

- B가 A의 부분집합이다:

B에 포함되는 임의의 원소 x를 가정. x = 4k + 1인 경우, x = 4k + 1 = 2(2k) + 1로서 x는 A에 포함됨. x = 4k + 3인 경우, x = 4k + 3 = 2(2k + 1) + 1로서 x는 A에 포함됨. 모든 가능한 경우에 x는 B에 포함됨.

- 위 두 가지 증명에서 집합 A와 B는 같다.

- 조합론은 경우의 수를 따지는 문제들을 보통 말한다
- 조합의 개수는 C 를 이용하여 표현하기도 하지만 $\binom{5}{2} = 10$ 과 같은 괄호 표현을 더 많이 쓴다.

■ 연습 문제들

- 문제 1:
$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$$
임을 증명하라

- 문제 2: 수학적 귀납법으로 $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$ 임을 증명하라

- 문제 3: 위의 결과를 이용해서 n개의 원소를 가진 집합의 가능한 부분집합의 종류는 2^n 개임을 증명하라

- 문제 4: 귀류법을 이용하여 $(A-B) \cap (B-A) = \emptyset$ 임을 증명하라

- 문제 5: 두 집합이 다르다는 것은 다음 명제와 동치임을 증명하라. 증명에는 앞에서 설명한 내용과 기본 논리만을 사용해야 한다.

 $\exists x(x\in A \land x\notin B) \lor (x\in B \land x\notin A)$

- 문제 6: 다음이 사실임을 증명하라

$$(A \cup B) \cap (A \cap B)^c = (A - B) \cup (B - A)$$

- 문제 7: A⊕B는 두 집합의 합집합에서 교집합을 뺀 것을 말한다. 다음 식이 항상 성립함을 증명하라.

 $(A \oplus B) \oplus B = A$

- 문제 8: 8 × 8 체스 판에 똑 같은 말 두개를 놓으려고 한다. 아무 곳에나 놓아도 되지만 한 칸에 두개가 들어가지는 못한다. 가능한 방법은 모두 몇가지인가?

- 문제 9: n개의 원소를 가진 집합의 가능한 부분집합의 종류는 2^n 개임을 조합론을 이용해 증명하라.

- 문제 10: 비밀번호를 0 부터 9 까지의 숫자만 가지고 만든다고 하자. 각 숫자는 초대 한번 사용할 수 있다. 4 개 이상 6 개 이하의 숫자를 쓸 수 있다고 할 때 가능한 비밀번호의 가지수는 얼마인가?

- 문제 11: 원소가 m개인 집합에서 원소가 n개인 집합으로 가는 단사함수의 개수는 몇가지인가?

- 문제 12: 52 개의 트럼프 카드 한 세트를 이용해서 만들 수 있는 5 개 카드의 조합은 몇가지인가?

- 문제 13: 52 개의 카드를 이용해서 만들 수 있는 5 개 카드 조합 중 같은 무늬의 카드가 정확히 3 개인 경우는 몇가지인가? - 문제 14: x + y + z = 100의 자연수 해는 몇가지인가?

- 문제 15: (포함 배제 원리) 5 개의 원소를 가진 집합에서 3 개의 원소를 가진 집합으로 가는 전사함수는 몇가지가 있는가? - 문제 16:52개 카드에서 5개 카드 조합을 만들 때, 숫자가 같은 카드가 한 쌍도 없는 경우는 몇가지인가?

- 문제 17: n개의 원소를 가진 배열에서 연속된 구간을 잡으려고 한다. 잡을 수 있는 가능한 구간은 몇가지인가? 단 구간의 크기는 1 이상이다.

4. 기초 수식

■ 약간의 설명

- 알고리즘의 시간 복잡도를 표현할 수 있는 다양한 수식들이 존재한다.
- 풀이법을 익혀 두어야 알고리즘의 시간 복잡도를 계산할 수 있고, 알고리즘이 시간이 얼마나 걸릴 지 예측할 수 있다.

■ 연습 문제들: 다음 재귀식들을 O() notation 수준으로 풀어라.

- 문제 1: T(n) = T(n-1) + 1

[Solution]

$$T(n) = T(n-1) + 1$$

$$= T(n-2) + 1 + 1$$

$$= T(1) + 1 + \dots + 1$$

$$T(n) = \mathbf{O}(\mathbf{n})$$

- 문제 2:
$$T(n) = T(n-1) + n$$

- 문제 3:
$$T(n) = T(n-1) + \log n$$

[Solution]

$$T(n) = T(1) + \log n + \log n - 1 + \log n - 2 + \dots + \log 2$$

 $\leq T(1) + \log n + \log n + \dots + \log n$
 $\leq T(1) + n \log n$

$$\therefore T(n) = \mathbf{O}(n \log n)$$

- 문제 4:
$$T(n) = T\left(\frac{n}{2}\right) + 1$$

- 문제 5:
$$T(n) = T\left(\frac{n}{2}\right) + n$$

- 문제 6:
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

- 문제 7:
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

- 문제 8:
$$T(n) = T(n-1) + \frac{1}{n}$$

- 문제 9:
$$T(n) = T(n/2) + T(n/4) + T(n/6) + T(n/12) + 1$$

- 문제 10: $T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$

5. 재귀

■ 약간의 설명

- 재귀란 자기 자신을 호출하는 함수, 그럼 끝날 수가 있는가?
- 함수는 입력이 있으며, 자기 자신의 입력과 동일한 입력으로 자기 자신을 호출하면 당연히 끝나지 않음
- 하지만, 다른 입력으로 호출하면 끝날 수 있음

```
int abc(int x) // 이 함수는 안 끝남
{
    return abc(x);
}

int sum(int x) // 이 함수는 끝남. 결과 값은?
{
    if (x <= 0) return 0;
    return x + sum(x-1);
}
```

- 함수란 어떤 문제를 해결하는 방법을 코딩한 것
- 함수가 어떤 문제의 단 한 케이스만을 해결하는 것이 아님
- 제대로 코딩 된 것이라면 해결하는 문제의 모든 케이스들을 해결해야 함
- 수학적 귀납법 증명 사용 가능
 - $(가) n \cap 0 \subseteq \mathbb{H}$ 문제를 풀 수 있음
 - (나) n-1에서 문제를 풀 수 있으면 n에서도 문제를 풀 수 있다
- 위 두 가지가 사실이면 모든 가능한 n에 대해 문제를 풀 수 있다는 것이 사실

- 위 박스의 함수 sum()을 보면 정확히 위의 두 가지를 코딩한 것임
- 따라서, sum() 함수는 문제를 해결한다는 것을 증명할 수 있음
- 방금 보인 증명은 high-level 증명이며, 상세한 증명은 과정의 첫날에 본적이 있음
- 어떤 미스터리한 이유로 문제가 해결되는 것은 아니고, 실제로 프로그램을 돌리면 필요한 계산이 다 일어남. 순차적인 코드에서 일어나는 계산과 완전히 동일. 다만 표현하는 방법이 달라진 것

- 다르게 생각하는 방법: 어떤 문제를 해결하려다 **부분 문제**를 만났는데, 원래 해결하려던 입력 케이스와 **동일한 문제**에 속하지만 "크기가 더 작은" 입력 케이스를 해결하는 것이 그 부분 문제였다!
- 즉, 부분 문제가 동일한 문제인 경우!

■ 연습 문제들: 다음 문제들을 푸는 재귀 알고리즘을 수도코드로 작성하고, 정확성 증명 및 시간 복잡도 계산을 수행하라

- 문제 1: 피보나치 수열: F(n) = F(n-1) + F(n-2), F(1) = F(2) = 1

[Solution]

```
fibo(n){
    if(n <= 2 ) return 1
    return fibo(n-1) + fibo(n-2)
}</pre>
```

Proof)

가정: fibo(n)을 호출하면 F(n)이 return 됨을 알 수 있다.

(1) n = 1, n=2 일 때,

fibo(1) = 1 이고 fibo(2)=1 인데, 이는 F(1) = 1, F(2) = 1 이므로 위의 코드로 성립한다.

(2) n = k일 때,

fibo(1) ... fibo(k-1)이 F(1) .. F(k-1)과 같다고 가정하자. 이때 F(k) = F(k-1) + F(k-2) 이므로, fibo(k) = fibo(k-1)+fibo(k-2) = F(k)가 성립한다. 따라서 fibo(n)을 호출하면 F(n)이 return 됨을 알 수 있다.

Time Complexity)

$$T(n) = T(n-1) + T(n-2) + 1$$

$$< 2T(n-1) + 1$$

$$T(n) = O(2^n)$$

- 문제 2: Merge Sort, 크기 n인 배열을 입력으로 받아,

배열을 절반으로 두개로 나눈 후,

각 작은 배열을 재귀적으로 정렬하고,

그 결과를 Merge 한다.

- 문제 3: 다음 소팅 알고리즘이 실제로 소팅에 항상 성공한다는 것을 증명하라.

```
Stupid (A[0..n-1])
{
    if n=2 and A[0] > A[1]
        then swap A[0] and A[1]
    else
        m = ceiling(2n/3)
        Stupid(A[0..m-1])
        Stupid(A[n-m..n-1])
        Stupid(A[0..m-1])
```

- 문제 4: 위의 소팅 알고리즘에서 수행하는 Swap의 횟수는 최대 몇번인가?

- 문제 5: 어떤 배열 A[1..n]에 (음수 포함) 정수 값이 증가하는 순서로 저장되어 있다. A[i]=i 가 되는 인덱스 i 가 존재하는 지 찾는 알고리즘을 수도코드 수준으로 작성하고 정확성 증명 및 시간 복잡도 계산을 수행하라. 동일한 문제이지만, 저장된 값이 자연수로 제한되면 어떻게 풀 수 있는가?

- 문제 6: 루트 있는 트리를 입력으로 받아 아래와 같이 출력하는 알고리즘을 작성하라. 트리의 각 노드에는 1,000 미만의 자연수가 저장되어 있다. 트리의 노드 연결 관계는 다음과 같이 표현해야 한다. 아래 출력에서 루트에는 자식이 3개 있고 그 자식들 중 하나는 더 이상 자식이 없는 것임을 알 수 있을 것이다.

```
[030]--+--[054]-----[001]
+--[002]
L--[045]-----[123]
```

- 문제 7: (어려움) 무한한 크기의 물통이 3개 있다. 초기에 각 물통에는 자연수 리터 만큼의 물이 들어 있다. 가능한 작업은 두개의 물통을 잡아서 그 중 많거나 같은 양의 물이 들어 있는 곳에서 작은 쪽으로 물을 부어서 작은 쪽의 물의 양을 두배로 만드는 것이다. 즉, 4 리터, 3 리터를 잡았다면 1 리터, 6 리터가 될 것이다. 입력으로 초기 물의 양을 받아서 한 물통에들어 있는 물의 양을 0 리터로 만들고 싶다. (실행 시간이 많이 걸려도 좋으니) 그렇게 만드는 과정을 계산하는 알고리즘을 작성하라.

6. 동적 프로그래밍

■ 약간의 설명

- 간단하게 설명하면 재귀 함수에서 동일한 입력의 함수 호출이 반복적으로 일어날 때 그 결과 값을 저장해 두고 불러 쓰는 것이다. (Memoization)
- 최초 입력에서 파생되는 모든 가능한 입력에 대한 답을 모두 저장할 수 있는 메모리가 있어야 한다.
- 단순히 재귀에서 저장된 값을 찾아보는 것으로도 가능하지만, 결과 값을 순서를 정해서 계산할 수도 있다. (Dynamic Programming)

■ 연습 문제들: 다음 문제들을 푸는 동적 프로그래밍 알고리즘을 수도코드로 작성하고, 정확성 증명 및 시간 복잡도 계산을 수행하라

- 문제 1: Memoization 피보나치 수열:

$$F(n) = F(n-1) + F(n-2), F(1) = F(2) = 1$$

(힌트: 계산되는 값이 n 가지 밖에 없으므로 이 값들을 저장할 수 있는 배열을 만들어 두고 재귀 호출에 들어가기 전에 값이 있는 지 확인하는 방법)

-	문제 2	2: Dynamic	Programming	피보나치	수열: F	(n) = F(n -	(1) + F(n -	- 2)
	(힌트:	작은 값부	터 순서대로 7	예산한다)				

질문: 실제로 실행시키면 세 버전 중 어느 것이 가장 빠를 것으로 예상되는가?

- 문제 3: 행렬 곱하기, n개의 행렬을 곱하려고 한다. 크기가 $a \times b$ 인 행렬과 크기가 $b \times c$ 인 행렬을 곱하는 데 드는 계산량은 $a \times b \times c$ 라고 한다. n개의 행렬들을 곱하는데 필요한 계산량을 최소화 하는 순서를 찾는 알고리즘을 작성하라. 행렬들의 크기는 다르고, 입력으로 주어진다고 가정하라. 물론 곱하기가 가능한 크기들만 주어진다.

- 문제 4: (약간 어려움) 배열에 정수(음수 포함)들이 저장되어 있다. 연속인 구간들 중 그 합이 가장 큰 구간을 찾는 알고리즘을 작성하라. 단, 구간의 크기는 1 이상이 허용된다.

- 문제 5: (어려움) 배열에 정수(음수 포함)들이 저장되어 있다. 배열의 일부 값들을 골라서 배열에 있는 순서대로 보면 증가하는 순서가 될 수 있다. 이러한 것들 중 가장 긴 것을 찾는 알고리즘을 작성하라.

7. 조합론 프로그래밍 과제

- 과제 1: 52 장의 카드에서 만들 수 있는 페어가 정확히 하나만 있는 5 장조합을 모두 출력하는 프로그램을 작성하라. 출력이 너무 많으면 카드 수를 줄일수 있다.

- 과제 2: x + y + z = 100의 자연수 해를 모두 출력하는 프로그램을 작성하라

- 과제 3: m개의 원소를 가진 집합에서 n개의 원소를 가진 집합으로 가는 전사함수의 개수를 출력하는 프로그램을 작성하라. m과 n의 값을 바꾸어 보면서 값이 너무 커지지 않는 입력의 범위가 어느 정도인지 확인해 보라

- 과제 4: m개의 원소를 가진 집합에서 n개의 원소를 가진 집합으로 가는 전사함수를 모두 출력하는 프로그램을 작성하라. 출력을 어떻게 하는 것이 적절할 지 생각해 보아야 한다.

8. 기초 알고리즘 프로그래밍 과제

- 과제 1: 피보나치 수열을 계산하는 3 가지 방법을 모두 작성해 보고 실행시간을 비교하라. 결과 값이 빨리 커지는 것에 주의하라.

- 과제 2: n개의 행렬을 곱하려고 한다. 크기가 $a \times b$ 인 행렬과 크기가 $b \times c$ 인 행렬을 곱하는 데 드는 계산량은 $a \times b \times c$ 라고 한다. n개의 행렬들을 곱하는데 필요한 계산량을 최소화 하는 순서를 찾는 알고리즘을 작성하라. 행렬들의 크기는 다르고, 입력으로 주어진다고 가정하라. 물론 곱하기가 가능한 크기들만 주어진다.

- 과제 3: 배열에 정수(음수 포함)들이 저장되어 있다. 연속인 구간들 중 그 합이 가장 큰 구간을 찾는 프로그램을 작성하라.

- 과제 4: (어려움) 배열에 정수(음수 포함)들이 저장되어 있다. 배열의 일부 값들을 골라서 배열에 있는 순서대로 보면 증가하는 순서가 될 수 있다. 이러한 것들 중 가장 긴 것을 찾는 프로그램을 작성하라. - 과제 5: 루트 있는 트리를 입력으로 받아 아래와 같이 출력하는 프로그램을 작성하라. 트리의 각 노드에는 1,000 미만의 자연수가 저장되어 있다. 트리의 노드 연결 관계는 다음과 같이 표현해야 한다. 아래 출력에서 루트에는 자식이 3개 있고 그 자식들 중 하나는 더 이상 자식이 없는 것임을 알 수 있을 것이다.