Larefa de Laboratorio 09 - Matrizes

Supermatriz comum

Uma *submatriz* de uma matriz A de ordem n é qualquer matriz obtida de A eliminando-se certas linhas ou colunas, ou é a própria matriz A. Por exemplo, considere a seguinte matriz:

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & -2 \end{bmatrix}$$

As submatrizes de A de ordem 2, ou seja, de dimensão 2×2 , são as seguintes:

$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}$$

No exemplo, as submatrizes são obtidas respectivamente por eliminação das colunas 3, 2 e 1. A matriz A também possui submatrizes de dimensões 2×3 , 2×1 , 1×3 , 1×2 e 1×1 .

Para este laboratório de programação estamos interessado apenas nas submatrizes em que somente as primeiras ou as últimas linhas e colunas são eliminadas da matriz. Em outras palavras, mais formalmente, dada uma matriz S, de dimensão $p \times q$, estamos interessado em submatrizes que inclui todos os elementos $S_{i,j}$ de S, ou seja, os elementos da i-éssima linha e j-éssima coluna, para $l_1 \le i \le l_2$ e $c_1 \le j \le c_2$, onde $1 \le l_1 \le l_2 \le p$ e $1 \le c_1 \le c_2 \le q$. Uma submatriz com essa propriedade é dita ser *submatriz legal*.

Considerando o exemplo anterior para submatrizes de dimensão 2 imes 2 da matriz A, são submatrizes legais somente as submatrizes:

$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}$$

Agora, considere duas matrizes quadradas M e N, de ordem m e n, respectivamente. Dizemos que uma matriz S, de dimensão $p \times q$, é uma *supermatriz comum* de M e N se as seguintes condições são verdadeiras:

- ullet existe uma submatriz legal M' de S tal que M' e M são iguais; e
- ullet existe uma submatriz legal N' de S tal que N' e N são iguais.

Por exemplo, considere as seguintes matrizes:

$$M = \begin{bmatrix} 83 & 57 \\ 87 & 95 \end{bmatrix}, N = \begin{bmatrix} 95 & 37 & 49 \\ 6 & 56 & 73 \\ 67 & 22 & 14 \end{bmatrix}$$

Uma possível supermatriz comum para essas matrizes pode ser a seguinte matriz:

$$S = \begin{bmatrix} 83 & 57 & 11 & 77 \\ 87 & 95 & 37 & 49 \\ 84 & 6 & 56 & 73 \\ 70 & 67 & 22 & 14 \end{bmatrix}$$

A submatriz N' de S, tal que N' e N são iguais, é formada por todos os elementos $s_{i,j}$ de S, para $1 \leq i \leq 4$ e $1 \leq i \leq 4$ e $2 \leq j \leq 4$.

A sua tarefa será escrever um programa que leia as matrizes M e N, onde cada matriz é formada por **inteiros positivos distintos**, e que imprime a dimensão da menor supermatriz comum de M e N, tal que a supermatriz comum também seja formada por apenas **números distintos**.

Descrição da entrada

A entrada contém vários casos de teste. A primeira linha de um caso de teste contém dois inteiros m e n, indicando respectivamente a ordem das matrizes M e N, onde cada matriz é formada por números distintos. Cada uma das m linhas seguintes contém m inteiros positivos, representando os elementos da matriz M. Em seguida, de forma análoga, cada uma das n linhas seguintes contém n inteiros positivos, representando os elementos da matriz N.

O último caso de teste é seguido por uma linha que contém apenas dois números zero separados por um espaço em branco.

Descrição da saída

Para cada caso de teste da entrada seu programa deve imprimir uma linha contendo a dimensão da menor supermatriz comum no formato "p x q ", onde p é o número de linhas e q é o número de colunas, tal que a supermatriz comum seja formada por apenas números distintos.

Observações:

- As matrizes da entrada M e N possuem pelo menos um elemento em comum.
- Sempre será possível obter uma supermatriz comum com elementos distintos.

Exemplo de entrada

Saída

No primeiro caso de teste da entrada, temos:

$$M = \begin{bmatrix} 9 & 7 & 5 \\ 2 & 3 & 4 \\ 1 & 6 & 8 \end{bmatrix}, N = \begin{bmatrix} 10 & 11 \\ 23 & 9 \end{bmatrix}$$

Uma possível submatriz comum, que satisfaz as condições da saída, seria a seguinte:

$$S = \begin{bmatrix} 10 & 11 & 21 & 12 \\ 23 & 9 & 7 & 5 \\ 15 & 2 & 3 & 4 \\ 18 & 1 & 6 & 8 \end{bmatrix}$$

Já no segundo caso de teste da entrada, temos:

$$M = \begin{bmatrix} 1 & 5 \\ 9 & 2 \end{bmatrix}, N = \begin{bmatrix} 3 & 7 \\ 1 & 5 \end{bmatrix}$$

Só é possível obter uma submatriz comum, sendo:

$$S = \begin{bmatrix} 3 & 7 \\ 1 & 5 \\ 9 & 2 \end{bmatrix}$$

Dicas

- 1. Note que, para cada caso de teste, não é preciso gerar uma supermatriz comum para se determinar a sua dimensão. Em outras palavras, não se apegue a notação utilizada para apresentação dos conceitos.
 - 2. Aproveite as informações contidas nas **observações** para criar uma solução simples.
 - 3. Faça desenhos em um papel de quadros de tamanhos diferentes e se sobrepondo. Tente visualizar a característica em comum em cada desenho para criar uma solução simples e genérica.

Tactor como a muna cadas