import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

## data=pd.read\_csv('/content/Titanic-Dataset.csv') data.head()

|   | PassengerId | Survived | Pclass | Name                                                          | Sex    | Age  | SibSp | Parch | Ticket    | Fare    | Cabin | Embark |
|---|-------------|----------|--------|---------------------------------------------------------------|--------|------|-------|-------|-----------|---------|-------|--------|
| 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | male   | 22.0 | 1     | 0     | A/5 21171 | 7.2500  | NaN   |        |
| 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1     | 0     | PC 17599  | 71.2833 | C85   |        |
|   |             |          |        | Heikkinen                                                     |        |      |       |       |           |         |       |        |

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

| Data  | columns (tota  | al 12 columns): |         |
|-------|----------------|-----------------|---------|
| #     | Column         | Non-Null Count  | Dtype   |
|       |                |                 |         |
| 0     | PassengerId    | 891 non-null    | int64   |
| 1     | Survived       | 891 non-null    | int64   |
| 2     | Pclass         | 891 non-null    | int64   |
| 3     | Name           | 891 non-null    | object  |
| 4     | Sex            | 891 non-null    | object  |
| 5     | Age            | 714 non-null    | float64 |
| 6     | SibSp          | 891 non-null    | int64   |
| 7     | Parch          | 891 non-null    | int64   |
| 8     | Ticket         | 891 non-null    | object  |
| 9     | Fare           | 891 non-null    | float64 |
| 10    | Cabin          | 204 non-null    | object  |
| 11    | Embarked       | 889 non-null    | object  |
| dtype | es: float64(2) | , int64(5), obj | ect(5)  |
| memor | ry usage: 83.7 | 7+ KB           |         |
|       |                |                 |         |

data.describe()

|       | PassengerId | Survived   | Pclass     | Age        | SibSp      | Parch      | Fare       |
|-------|-------------|------------|------------|------------|------------|------------|------------|
| count | 891.000000  | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |
| mean  | 446.000000  | 0.383838   | 2.308642   | 29.699118  | 0.523008   | 0.381594   | 32.204208  |
| std   | 257.353842  | 0.486592   | 0.836071   | 14.526497  | 1.102743   | 0.806057   | 49.693429  |
| min   | 1.000000    | 0.000000   | 1.000000   | 0.420000   | 0.000000   | 0.000000   | 0.000000   |
| 25%   | 223.500000  | 0.000000   | 2.000000   | 20.125000  | 0.000000   | 0.000000   | 7.910400   |
| 50%   | 446.000000  | 0.000000   | 3.000000   | 28.000000  | 0.000000   | 0.000000   | 14.454200  |
| 75%   | 668.500000  | 1.000000   | 3.000000   | 38.000000  | 1.000000   | 0.000000   | 31.000000  |
| max   | 891.000000  | 1.000000   | 3.000000   | 80.000000  | 8.000000   | 6.000000   | 512.329200 |

corr=data.corr()

corr

<ipython-input-9-0d3ae1d0be10>:1: FutureWarning: The default value of numeric\_only in DataFrame.corr i: corr=data.corr()

|             | PassengerId | Survived  | Pclass    | Age       | SibSp     | Parch     | Fare     |    |
|-------------|-------------|-----------|-----------|-----------|-----------|-----------|----------|----|
| Passengerld | 1.000000    | -0.005007 | -0.035144 | 0.036847  | -0.057527 | -0.001652 | 0.012658 | th |
| Survived    | -0.005007   | 1.000000  | -0.338481 | -0.077221 | -0.035322 | 0.081629  | 0.257307 |    |

sns.heatmap(corr,annot=True)





data.Cabin.value\_counts()

B96 B98 4
G6 4
C23 C25 C27 4
C22 C26 3
F33 3
...
E34 1
C7 1
C54 1
E36 1
C148 1

Name: Cabin, Length: 147, dtype: int64

data.Embarked.value\_counts()

S 644 C 168 Q 77

Name: Embarked, dtype: int64

data.Parch.value\_counts()

Name: Parch, dtype: int64

data.isnull().any()

PassengerId False Survived False Pclass False Name False

```
Sex
               False
Age
                True
               False
SibSp
Parch
               False
Ticket
               False
Fare
               False
Cabin
                True
Embarked
                True
dtype: bool
```

## data.isnull().sum()

```
PassengerId
                 0
Survived
Pclass
                 0
Name
                 0
Sex
Age
               177
SibSp
Parch
                 0
Ticket
                 0
Fare
                 0
Cabin
               687
Embarked
                 2
dtype: int64
```

```
data["Age"].fillna(data["Age"].mean(),inplace=True)
data["Cabin"].fillna(data["Cabin"].mode()[0],inplace=True)
data["Embarked"].fillna(data["Embarked"].mode()[0],inplace=True)
```

## data.isnull().sum()#I removed all null values

| PassengerId  | 0 |
|--------------|---|
| Survived     | 0 |
| Pclass       | 0 |
| Name         | 0 |
| Sex          | 0 |
| Age          | 0 |
| SibSp        | 0 |
| Parch        | 0 |
| Ticket       | 0 |
| Fare         | 0 |
| Cabin        | 0 |
| Embarked     | 0 |
| dtype: int64 |   |
|              |   |

## sns.scatterplot(x=data["Survived"],y=data["Parch"])

<Axes: xlabel='Survived', ylabel='Parch'>



sns.scatterplot(x=data["Survived"],y=data["Fare"])







|          | PassengerId | Survived | Pclass | Name                                                          | Sex | Age  | SibSp | Parch | Ticket              | Fare    | Cabin      | Embarked |
|----------|-------------|----------|--------|---------------------------------------------------------------|-----|------|-------|-------|---------------------|---------|------------|----------|
| 0        | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | 1   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  | B96<br>B98 | 2        |
| 1        | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | 0   | 38.0 | 1     | 0     | PC 17599            | 71.2833 | C85        | 0        |
| <b>2</b> | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | 0   |      | 0     | 0     | STON/O2.<br>3101282 | 7.9250  | B96<br>B98 | 2        |

sns.boxplot(data['Pclass'])



sns.boxplot(data['Age'])



sns.boxplot(data['SibSp'])



sns.boxplot(data['Parch'])



sns.boxplot(data['Fare'])

```
ASSIGNMENT-3_21BCE5913_Snithesh.ipynb - Colaboratory
     <Axes: >
                                          .
      500
      400
sns.boxplot(data['Embarked'])
     <Axes: >
      2.00
      1.75
      1.50
      1.25
      1.00
      0.75
      0.50
      0.25
      0.00
q1=data.Age.quantile(0.25)
```

```
q3=data.Age.quantile(0.75)
print(q1)
print(q3)
     22.0
    35.0
iqr=q3-q1
iqr
    13.0
upperlimit = q3+1.5*iqr
upperlimit
    54.5
lowerlimit=q1-1.5*iqr
lowerlimit
    2.5
data.median()
     <ipython-input-36-135339ac59ce>:1: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future vers
       data.median()
                    446.000000
    PassengerId
                     0.000000
     Survived
    Pclass
                     3.000000
                     1.000000
    Sex
    Age
                     29.699118
     SibSp
                     0.000000
    Parch
                     0.000000
                     14.454200
    Fare
    Embarked
                     2.000000
    dtype: float64
```

```
q1=data.SibSp.quantile(0.25)
q3=data.SibSp.quantile(0.75)
print(q1)
print(q3)
    0.0
    1.0
iqr=q3-q1
iqr
    1.0
upperlimit = q3+1.5*iqr
upperlimit
    2.5
lowerlimit=q1-1.5*iqr
lowerlimit
     -1.5
data['SibSp']=np.where(data['SibSp']>upperlimit,0.000000,data['SibSp'])
sns.boxplot(data['SibSp'])
```

```
<Axes: >
      2.00
      1.75
      1.50
      1.25 -
q1=data.Parch.quantile(0.25)
q3=data.Parch.quantile(0.75)
print(q1)
print(q3)
    0.0
    0.0
      0.25 -
iqr=q3-q1
iqr
    0.0
upperlimit = q3+1.5*iqr
upperlimit
    0.0
lowerlimit=q1-1.5*iqr
lowerlimit
    0.0
data['Parch']=np.where(data['Parch']>upperlimit,0.000000,data['Parch'])
sns.boxplot(data['Parch'])
     <Axes: >
        0.04
        0.02
        0.00
      -0.02
      -0.04
                                              0
q1=data.Fare.quantile(0.25)
q3=data.Fare.quantile(0.75)
print(q1)
print(q3)
    7.9104
     31.0
iqr=q3-q1
iqr
    23.0896
```

```
upperlimit = q3+1.5*iqr
upperlimit
     65.6344
lowerlimit=q1-1.5*iqr
lowerlimit
     -26.724
data.median()
     <ipython-input-55-135339ac59ce>:1: FutureWarning: The default value of numeric_only in DataFrame.median is deprecated. In a future vers
       data.median()
     PassengerId
                   446.000000
    Survived
                     0.000000
    Pclass
                     3.000000
     Sex
                     1.000000
                     29.699118
    Age
    SibSp
                     0.000000
    Parch
                     0.000000
    Fare
                     14.454200
    Embarked
                      2.000000
    dtype: float64
    4
data['Fare']=np.where(data['Fare']>upperlimit,14.054150,data['Fare'])
sns.boxplot(data.Fare)
```



```
y=data["Survived"]
X=data.drop(columns=["Name","PassengerId","Survived","Ticket","Cabin"],axis=1)
y.head()
    0
          0
    1
          1
    2
          1
    3
          1
    4
    Name: Survived, dtype: int64
```

from sklearn.preprocessing import MinMaxScaler ms=MinMaxScaler()

X\_Scaled=ms.fit\_transform(X)

X\_Scaled=pd.DataFrame(ms.fit\_transform(X),columns=X.columns)

# X\_Scaled.head()

|   | Pclass | Sex | Age      | SibSp | Parch | Fare     | Embarked |    |
|---|--------|-----|----------|-------|-------|----------|----------|----|
| 0 | 1.0    | 1.0 | 0.372549 | 0.5   | 0.0   | 0.111538 | 1.0      | th |
| 1 | 0.0    | 0.0 | 0.686275 | 0.5   | 0.0   | 0.216218 | 0.0      |    |
| 2 | 1.0    | 0.0 | 0.450980 | 0.0   | 0.0   | 0.121923 | 1.0      |    |
| 3 | 0.0    | 0.0 | 0.627451 | 0.5   | 0.0   | 0.816923 | 1.0      |    |
| 4 | 1.0    | 1.0 | 0.627451 | 0.0   | 0.0   | 0.123846 | 1.0      |    |

from sklearn.model\_selection import train\_test\_split
x\_train,x\_test,y\_train,y\_test = train\_test\_split(X\_Scaled,y,test\_size =0.2,random\_state =0)

print(x\_train.shape,x\_test.shape,y\_train.shape,y\_test.shape)

(712, 7) (179, 7) (712,) (179,)