

Week 8 deliverable

I. Team members details

Group name: **Data science Geeks**

Names: Tasnime Hamdeni

Refka Mejri

Email: hamdeni.tasnime@gmail.com

refka.mejri@enit.utm.tn

Country: Tunisia

Tunisia

College: National Engineering School of Tunis

National Engineering School of Tunis

Specialization: Data science

II. Problem description

We want to get some insight from the data of a bank called ABC that wants to sell it's term deposit product to customers and before launching the product they want to develop a model which help them in understanding whether a particular customer will buy their product or not (based on customer's past interaction with bank or other Financial Institution).

Business need: Buying Product for customer.

Method: using ML model to help companies shortlist customers whose chances of buying products is more so that their marketing channel can focus on them.

III. Data Understanding

We have information about 41188 clients in a csv file of size 4.70 *Mo*. For each client, 21 attributes are available in the data. Some demographic data such as:

1 - age (numeric)

2 - job : type of job (categorical: 'admin.', 'blue-

collar','entrepreneur','housemaid','management','retired','self-employed','services','student','technician','unemployed','unknown')

- 3 **marital**: marital status (categorical: 'divorced', 'married', 'single', 'unknown'; note: 'divorced' means divorced or widowed)
- 4 **education** (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown')
- 5 **default**: has credit in default? (categorical: 'no','yes','unknown')
- 6 **housing**: has housing loan? (categorical: 'no','yes','unknown')
- 7 **loan**: has personal loan? (categorical: 'no','yes','unknown')

Some data related with the last contact of the current campaign like:

- 8 **contact**: contact communication type (categorical: 'cellular', 'telephone')
- 9 **month**: last contact month of year (categorical: 'jan', 'feb', 'mar', ..., 'nov', 'dec')
- 10 day_of_week: last contact day of the week (categorical: 'mon','tue','wed','thu','fri')
- 11 **duration**: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.

Some other attributes are as well fully available like:

- 12 **campaign**: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 13 **pdays**: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
- 14 **previous**: number of contacts performed before this campaign and for this client (numeric)
- 15 **poutcome**: outcome of the previous marketing campaign (categorical: 'failure', 'nonexistent', 'success')

social and economic context attributes

- 16 **emp.var.rate**: employment variation rate quarterly indicator (numeric)
- 17 **cons.price.idx:** consumer price index monthly indicator (numeric)
- 18 cons.conf.idx: consumer confidence index monthly indicator (numeric)
- 19 **euribor3m:** euribor 3 month rate daily indicator (numeric)
- 20 **nr.employed:** number of employees quarterly indicator (numeric)

The output variable or so called the desired target is given by the varibale:

21 - y - has the client subscribed a term deposit? (binary: 'yes','no')

IV. Type of data

```
Entrée [6]: df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 41188 entries, 0 to 41187
           Data columns (total 21 columns):
                Column
                              Non-Null Count Dtype
            0
                               41188 non-null int64
                age
            1
                job
                              41188 non-null object
            2
                              41188 non-null object
                marital
            3
               education
                              41188 non-null object
            4
               default
                              41188 non-null object
            5
               housing
                              41188 non-null object
               loan
                              41188 non-null object
              contact
month
            7
                             41188 non-null object
               month
                              41188 non-null object
                day_of_week 41188 non-null object
            10 duration
                             41188 non-null int64
            11 campaign
                              41188 non-null int64
            12 pdays
                              41188 non-null int64
            13
                previous
                              41188 non-null int64
                              41188 non-null object
            14 poutcome
                emp.var.rate 41188 non-null float64
            15
            16 cons.price.idx 41188 non-null float64
                               41188 non-null float64
            17 cons.conf.idx
               euribor3m
                               41188 non-null float64
            18
            19 nr.employed
                               41188 non-null float64
            20 y
                               41188 non-null object
           dtypes: float64(5), int64(5), object(11)
           memory usage: 6.6+ MB
```

Data of type object should be converted into category data. The type of data after conversion is:

change the type of the data

```
Entrée [13]:
            # changer le type de la colonne sexe de object à category
            df["job"] = df["job"].astype('category')
            df["marital"] = df["marital"].astype('category')
            df["education"] = df["education"].astype('category')
            df["default"] = df["default"].astype('category')
            df["housing"] = df["housing"].astype('category')
            df["loan"] = df["loan"].astype('category')
            df["contact"] = df["contact"].astype('category')
            df["month"] = df["month"].astype('category')
            df["day_of_week"] = df["day_of_week"].astype('category')
            df["duration"] = df["duration"].astype('int64')
            df["poutcome"] = df["poutcome"].astype('category')
            df["y"] = df["y"].astype('category')
            df.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 41188 entries, 0 to 41187
  Data columns (total 21 columns):
               Non-Null Count Dtype
   # Column
                     -----
   0
                     41188 non-null int64
       age
```

The size of the dataframe as well as the descriptive statistics are given below:

df.shape						
(41188	, 21)					
<pre>print(df.describe())</pre>						
	age	duration	campaign	pdays	previous	\
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	
mean	40.02406	258.285010	2.567593	962.475454	0.172963	
std	10.42125	259.279249	2.770014	186.910907	0.494901	
min	17.00000	0.000000	1.000000	0.000000	0.000000	
25%	32.00000	102.000000	1.000000	999.000000	0.000000	
50%	38.00000	180.000000	2.000000	999.000000	0.000000	
75%	47.00000	319.000000	3.000000	999.000000	0.000000	
max	98.00000	4918.000000	56.000000	999.000000	7.000000	
	emp.var.rate	cons.price.i	dx cons.conf.	idx euribo	or3m nr.emplo	yed
count	41188.000000	41188.0000	00 41188.000	000 41188.000	0000 41188.000	000
mean	0.081886	93.5756	64 -40.502	600 3.621	1291 5167.035	911
std	1.570960	0.5788	40 4.628	198 1.734	1447 72.251	528
min	-3.400000	92.2010	90 -50.800	000 0.634	1000 4963.600	000
25%	-1.800000	93.0750	00 -42.700	000 1.344	1000 5099.100	000
50%	1.100000	93.7490	00 -41.800	000 4.857	7000 5191.000	000
75%	1.400000	93.9940	90 -36.400	000 4.961	1000 5228.100	000
max	1.400000	94.7670	00 -26.900	000 5.045	5000 5228.100	000

V. Problems in the data

Skewness

```
Entrée [6]: df.skew()
   Out[6]: age
                              0.784697
            duration
                              3.263141
            campaign
                              4.762507
            pdays
                             -4.922190
                              3.832042
            previous
                             -0.724096
            emp.var.rate
            cons.price.idx
                             -0.230888
            cons.conf.idx
                              0.303180
            euribor3m
                             -0.709188
            nr.employed
                             -1.044262
            dtype: float64
```

Outliers

We calculate the z-score to detect outliers and we can also draw the box plot to check the eventual existence of outliers:

```
: # box and whisker plots
df1=df.iloc[:,15:19]
df1.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
pyplot.show()
```


Entrée [8]: sns.boxplot(data = df.age, orient ='h')
plt.show()


```
Entrée [14]: sns.boxplot(data = df.campaign, orient ='h')
plt.show()
```

• NA values: There are no NA values in the data

```
Entrée [54]: df.isna().any()
   Out[54]: age
                               False
                               False
             marital
                               False
             education
                               False
             default
                               False
             housing
                               False
                               False
             loan
             contact
                               False
                               False
             month
             day_of_week
                               False
                               False
             duration
             campaign
                               False
             pdays
                               False
             previous
                               False
             poutcome
                               False
             emp.var.rate
                               False
             cons.price.idx
                               False
             cons.conf.idx
                               False
             euribor3m
                               False
             nr.employed
                               False
                               False
             dtype: bool
```

VI. Problems overcoming techniques

• Removing outliers:

We can deal with outliers either by calculating the z-score or by calculating the interquartile range.

Using Z-score

The z-score is a numerical value that quatifies the relationship to the mean of of the values in our data. Z-score is measured in terms of standard deviations from the mean.

removing outliers


```
(array([27757, 27780, 27800, 27802, 27805, 27808, 27810, 27811, 27812,
       27813, 27814, 27815, 27816, 27817, 27818, 27826, 27851, 27875,
       27930, 27950, 27951, 27963, 28220, 28221, 28312, 28456, 29263,
       29498, 29625, 29682, 29973, 29977, 29981, 29990, 30000, 30004,
       30006, 30072, 30078, 30079, 30103, 30110, 30133, 30171, 30214,
       30225, 30241, 30334, 30430, 30460, 30589, 35833, 35856, 35878,
       35973, 36183, 36285, 36311, 36383, 36384, 36816, 36998, 37136,
       37137, 37186, 37190, 37192, 37193, 37195, 37206, 37207, 37213,
       37219, 37235, 37237, 37239, 37257, 37260, 37341, 37355, 37403,
       37454, 37455, 37472, 37479, 37493, 37505, 37509, 37512, 37525,
       37532, 37597, 37601, 37602, 37604, 37635, 37675, 37679, 37690,
       37692, 37715, 37735, 37736, 37743, 37756, 37769, 37775, 37784,
       37818, 37819, 37820, 37861, 37868, 37870, 37873, 37905, 37920,
       37946, 37951, 37952, 37954, 37999, 38005, 38019, 38020, 38022,
       38032, 38033, 38045, 38052, 38054, 38065, 38136, 38166, 38178,
       38179, 38184, 38191, 38192, 38193, 38195, 38206, 38229, 38241,
       38246, 38252, 38260, 38279, 38288, 38314, 38316, 38322, 38326,
       38410, 38415, 38452, 38455, 38471, 38486, 38505, 38517, 38518,
       38536, 38548, 38549, 38556, 38557, 38577, 38580, 38582, 38587,
       38600, 38643, 38676, 38697, 38700, 38703, 38722, 38726, 38735,
       38740, 38744, 38751, 38783, 38810, 38824, 38825, 38831, 38846,
       38876, 38878, 38880, 38892, 38901, 38909, 38921, 38924, 38936,
       38942, 38943, 38944, 38946, 38953, 38960, 38967, 38968, 38984,
       39001, 39011, 39032, 39038, 39041, 39042, 39043, 39055, 39058,
       39061, 39062, 39093, 39115, 39124, 39133, 39184, 39186, 39190,
       39204, 39261, 39264, 39275, 39319, 39332, 39342, 39348, 39360,
       39377, 39402, 39410, 39411, 39415, 39444, 39452, 39466, 39471,
       39472, 39473, 39474, 39475, 39476, 39477, 39478, 39479, 39486,
       39487, 39488, 39489, 39493, 39495, 39498, 39504, 39577, 39578,
       39601, 39614, 39625, 39639, 39650, 39655, 39676, 39678, 39692,
       39719, 39722, 39724, 39730, 39734, 39737, 39752, 39762, 39766,
       39768, 39786, 39795, 39847, 39890, 39892, 39923, 39947, 39971,
       39974, 39975, 40001, 40045, 40050, 40060, 40076, 40078, 40080,
       40081, 40085, 40114, 40117, 40119, 40129, 40142, 40149, 40162,
      40194, 40195, 40196, 40197, 40201, 40218, 40219, 40220, 40262,
      40273, 40277, 40289, 40291, 40331, 40344, 40356, 40400, 40414,
      40421, 40437, 40445, 40450, 40468, 40469, 40470, 40484, 40488,
      40529, 40546, 40554, 40575, 40592, 40611, 40621, 40624, 40631,
      40636, 40638, 40639, 40651, 40667, 40669, 40686, 40702, 40714,
       40716, 40718, 40727, 40748, 40756, 40879, 40915, 40950, 40965,
```

40966, 40969, 40982, 40983, 40986, 40996, 41004, 41183, 41187]

dtype=int64),)

```
: #shape before removing outliers
df.shape
```

(41188, 21)

```
: # removing outliers
df1 = df[(z < 3)]
#shape after removing outliers
df1.shape</pre>
```

(40819, 21)