

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Лабораторная работа №1

Дисциплі	ина <u>Л</u>	Л оделирование						
Тема	Программная реализация приближенного							
_	аналитического метода и простейших							
_	численных алгоритмов первого порядка							
_	точности при решении задач Коши							
-	для ОДУ							
Студент		Набиев Ф.М.						
Группа	_	ИУ7-63Б						
Оценка (баллы)							
Преподав	ватель	Градов В.М.						

ВВЕДЕНИЕ

Цель работы: Изучить методы решения задачи Коши для ОДУ, применив приближенный аналитический метод Пикара и численный метод Эйлера в явном и неявном вариантах.

Задание: Решить уравнение, не имеющее аналитического решения.

Теоретическая часть

Имеем систему

$$\begin{cases} u'(x) = f(x, u) \\ u(\xi) = y \end{cases}$$
 (1.1)

ОДУ здесь можно решить методом Пикара (формула 1.2).

$$y^{(s)}(x) = \eta + \int_0^x f(t, y^{(s-1)}(t))dt$$

$$y^{(0)} = \eta$$
 (1.2)

Для задачи $u'(x)=u^2+x^2$, $\eta=0$ получим 4 приближения (формулы 1.3, 1.4, 1.5, 1.6).

$$y^{(1)} = \frac{x^3}{3} \tag{1.3}$$

$$y^{(2)} = \frac{x^3}{3} + \frac{x^7}{63} \tag{1.4}$$

$$y^{(3)} = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$
 (1.5)

$$y^{(3)} = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

$$y^{(4)} = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} +$$

$$\frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} +$$

$$\frac{4x^{27}}{3341878155} + \frac{x^{31}}{109876902975}$$

$$(1.5)$$

Также уравнение решается численным методом Эйлера. Явная схема (формула 1.7)

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$
 (1.7)

Неявная схема (формула 1.8)

$$y_{n+1} = y_n + h \cdot (f(x_{n+1}, y_{n+1})) \tag{1.8}$$

2 Практическая часть

Для реализации аналитического решения ОДУ методом Пикара в контексте данного задания, необходимо определить представление полинома в программе.

Запишем полином в виде массива, где для $i \in \{0\} \cup \mathbb{N}$ коэффициент одночлена степени i записывается в i-ой позиции этого массива. Такая форма хранения многочлена предоставляет быстрый доступ к составляющим его одночленам по их степени.

Обратим внимание, что в рассматриваемой задаче полином каждого последующего приближения содержит одночлен вида $r \cdot x^{p+4}$, где r — некоторый коэффициент, p — максимальная степень среди всех одночленов полинома предыдущего приближения. Кроме того, минимальная степень одночлена в любом возможном для данной задачи полиноме равна 3. Следовательно, можно не хранить в массиве коэффициенты тех одночленов, которые никогда не будут содержаться в многочлене. Тогда для вычисления степени p i-того одночлена следует использовать следующую формулу:

$$p = 3 + i \cdot 4 \tag{2.1}$$

Теперь необходимо рассмотреть задачи интегрирования и произведения полиномов.

2.1 Интегрирование многочлена

Задача интегрирования полинома это задача интегрирования каждого входящего в его состав одночлена. Имеем:

$$\int r \cdot x^n dx = r \cdot \int x^n dx = r \cdot \frac{x^{n+1}}{n+1}, \quad n \neq -1$$
 (2.2)

2.2 Произведение многочленов

Традиционный алгоритм произведение полиномов имеет $O(n^2)$ асимптотическую трудоёмкость. Скорость такого умножения можно повысить двумя способами:

- отбросить одночлены с нулевыми коэффициентами;
- производить параллельные вычисления.

Описание первого улучшения было приведено выше. Для достижения второго необходимо разбить множество одночленов, из которых состоит, например, первый полином, на m непересекающихся подмножеств, где m — количество потоков.

Пусть каждый j-ый поток вычисляет произведение второго полинома на k-ый одночлен первого многочлена, где $j=\overline{0,m-1},\ k=i+z\cdot m,\ z\in\{0\}\cup\mathbb{N}.$

Для более быстрого вычисления произведения двух многочленов можно применить метод умножения, основанный на дискретном преобразовании Фурье. Данный метод обычно применяется к целым числам, так как имеет высокую погрешность для чисел с плавающей запятой. Чтобы сделать вывод о допустимости применения такого решения поставленной задачи, реализуем его.

Итак, $DFT(\overrightarrow{X})$ — операция, производящая дискретное преобразование Фурье над вектором чисел \overrightarrow{X} . $InverseDFT(\overrightarrow{X}_{complex})$ — обратная операция. Так же $A(\overrightarrow{X})$, $B(\overrightarrow{X})$ — некоторые полиномы. Тогда:

$$(A \cdot B)(\overrightarrow{X}) = A(\overrightarrow{X}) \cdot B(\overrightarrow{X})$$

$$DFT((A \cdot B)(\overrightarrow{X})) = DFT(A(\overrightarrow{X})) \cdot DFT(B(\overrightarrow{X}))$$

$$(A \cdot B)(\overrightarrow{X}) = InverseDFT(DFT(A(\overrightarrow{X})) \cdot DFT(B(\overrightarrow{X})))$$

Важно уточнить, что векторы $A(\overrightarrow{X}), B(\overrightarrow{X})$ нужно дополнить нулями так, чтобы $len((A\cdot B)(\overrightarrow{X}))=len(A(\overrightarrow{X}))=len(B(\overrightarrow{X})),$ где $len(\overrightarrow{v})$ —

операция получения длины некоторого вектора \vec{v} .

2.3 Инструменты реализации

Для реализации рассматриваемой задачи используется язык программирования C++.

В целях проведения параллельных вычислений используется библиотека pthread.

Задача выполнения метода Пикара при высоких приближениях требует тип данных, реализующий числа с плавающей точкой с множественной точностью. Для этого применяется библиотека mpfr.

Для вычисления DFT используется быстрое преобразование Фурье. Данный метод реализован в библиотеке Eigen.

2.4 Реализация

В листингах 2.1, 2.2, 2.3 приведён текст различных реализаций методов Пикара.

Листинг 2.1 – Метод Пикара

```
class Picard : public APicard
2
3
   public:
4
       Picard();
       Picard();
5
6
7
       void computePol(int approx) override;
       double operator()(double x) override;
8
       double operator()(double x, int approx) override;
9
10
       static const int precision = 200;
11
12
       using Real = mpfr::real<precision >;
13
14
15
   protected:
16
       void allocatePols(int maxApprox);
17
       static inline Real pow(const Real &r, int p)
18
       { return mpfr::pow(r, p); }
19
```

```
20
21
       int approx;
22
       long long *polLens;
23
       Real **polynomials;
24
   };
25
26
   // Вычисление полинома
27
   void Picard::computePol(int approx)
28
29
       Real *squared;
30
       Real *polynomial;
31
       long long curLen = 1;
32
       long long sqrLen;
33
34
        allocatePols(approx);
35
36
       squared = new Real[polLens[approx - 1]];
37
        polynomial = new Real[polLens[approx - 1]];
38
       polynomial[0] = 1.0 / 3;
39
40
       for (int idx = 0; idx < approx; ++idx)
41
42
            for (long long i = 0; i < curLen; ++i)
43
                polynomials[idx][i] = polynomial[i];
44
45
            sqrLen = curLen << 1;</pre>
46
            for (long long i = 0; i < sqrLen; i++)
47
                squared[i] = 0;
48
49
            for (long long i = 0; i < curLen; i++)
50
                for (long long j = 0; j < curLen; j++)
51
                    squared[i + j + 1] += polynomial[i] *
52
                                            polynomial[j] /
53
                                            ((int)(i + j + 1) * 4 + 3);
            squared[0] = 1.0 / 3;
54
55
56
            std::swap(polynomial, squared);
57
            curLen = sqrLen;
58
       }
59
60
        delete[] squared;
61
        delete[] polynomial;
62
   }
63
64
   // Подстановка значения в полином
   double Picard::operator()(double x, int approx)
65
66
67
       if (!polynomials)
```

```
68
            return 0;
69
        if (approx > this ->approx)
            return 0;
70
71
72
        Real res = 0;
73
        for (int i = 0; i < polLens[approx - 1]; i++)
74
75
            res += polynomials [approx -1][i] * pow(Real(x), i * 4 + 3);
76
77
        return res;
78
```

Листинг 2.2 – Параллелизированный метод Пикара

```
class MTPicard: public Picard
2
   {
3
   public:
4
        void computePol(int approx) override;
   };
5
6
7
   void MTPicard::computePol(int approx)
8
9
        Real *squared;
10
        Real *polynomial;
11
        long long curLen = 1;
12
        long long sqrLen;
13
14
        allocatePols(approx);
15
        squared = new Real[polLens[approx - 1]];
16
        polynomial = new Real[polLens[approx - 1]];
17
        polynomial[0] = 1.0 / 3;
18
19
        std::vector<std::thread> threads;
20
21
        for (int idx = 0; idx < approx; ++idx)
22
23
            for (long long i = 0; i < curLen; ++i)
24
                polynomials[idx][i] = polynomial[i];
25
26
            sqrLen = curLen << 1;</pre>
            for (long long i = 0; i < sqrLen; i++)
27
28
                squared[i] = 0;
29
            for (int i = 1; i \leftarrow THREADS\_QTY; i++)
30
31
                threads.push_back(std::thread(
32
                             &::squarePolPart,
33
                             squared, i, sqrLen, THREADS_QTY,
34
                             polynomial));
```

```
35
36
            for (std::thread &thread: threads)
                 thread.join();
37
38
            squared[0] = 1.0 / 3;
39
40
41
            std::swap(polynomial, squared);
42
            curLen = sqrLen;
43
            threads.clear();
        }
44
45
46
        delete[] squared;
        delete[] polynomial;
47
48
49
50
   static void squarePolPart(
51
            mmlabs::Picard::Real *squared,
52
            long long begin, long long end, long long step,
53
            mmlabs::Picard::Real *polynomial
54
55
   {
56
        for (long long i, idx = begin; idx < end; idx += step)
57
58
            i = i dx - 1;
59
60
            do
61
                squared[idx] += polynomial[i] *
62
                                  polynomial [idx - 1 - i] /
63
                                  ((int)idx * 4 + 3);
64
            while (i --);
65
        }
66
```

Листинг 2.3 – Метод Пикара, основанный на быстром преобразовании Фурье

```
template < typename TComplex >
1
   class FFT;
2
3
4
   class FFTPicard : public Picard
5
   {
6
   public:
7
        FFTPicard();
        ~FFTPicard();
8
9
10
        void computePol(int approx) override;
11
12
        using Complex = std::complex < Real >;
```

```
13
   private:
14
15
       FFT<Complex> * fft;
16
   };
17
18
   void FFTPicard::computePol(int approx)
19
20
       int sqrLen = 1;
21
       Complex *polynomialComplex;
22
       Complex *integratedComplex;
23
24
       allocatePols(approx);
25
       polynomialComplex = new Complex[polLens[approx - 1]];
26
       integratedComplex = new Complex[polLens[approx - 1]];
27
       polynomialComplex[0] = 1.0 / 3;
28
29
       fft ->setMaxVectorSize(polLens[approx - 1]);
30
31
       for (int idx = 0; idx < approx; ++idx)
32
33
            for (long long i = 0; i < polLens[idx]; ++i)
34
                polynomials[idx][i] = polynomialComplex[i].real();
35
36
            sqrLen <<= 1;
37
38
            (* fft ) (polynomialComplex, sqrLen, false);
39
            for (long long i = 0; i < sqrLen; ++i)
40
                polynomialComplex[i] *= polynomialComplex[i];
41
            (*fft)(polynomialComplex, sqrLen, true);
42
            for (long long i = 0; i < sqrLen - 1; ++i)
43
44
                integratedComplex[i + 1] = polynomialComplex[i] /
45
                                             Complex ((int)(i + 1) * 4 + 3);
46
47
            integratedComplex[0] = 1.0 / 3;
48
            std::swap(integratedComplex, polynomialComplex);
49
       }
50
51
        delete[] polynomialComplex;
52
        delete[] integratedComplex;
53
```

В листинге 2.4 приведён текст реализации явного метода Эйлера.

Листинг 2.4 – Явный метод Эйлера

```
double explicitMethod(double x, double h)
double res = 0;
```

```
double x0 = h;

while (x0 < x + h)

res += h * (x0 * x0 + res * res);

x0 += h;

return res;

return res;
</pre>
```

В листинге 2.5 приведён текст реализации неявного метода Эйлера.

Листинг 2.5 – Неявный метод Эйлера

```
double implicitMethod(double x, double h)
2
3
        double D;
        double res = 0;
4
5
        double x0 = h;
6
7
        while (x0 < x + h)
8
            D = 1 - 4 * h * (h * x0 * x0 + res);
9
10
            if (D >= 0)
11
                res = (1 - :: sqrt(D)) / 2 / h;
12
13
14
            x0 += h;
15
16
17
        return res;
18
```

2.5 Примеры работы

На рисунках 2.1, 2.2 изображены примеры реализованной программы. В первом случае используется параллеллизированный метод Пикара, во втором — метод Пикара, основанный на быстром преобразовании Фурье.

Рис. 2.1 – Параллелизированный метод Пикара

# time ./mmlab01 -mt Введите приближение метода Пикара: 17 Введите шаг метода Эйлера: 0.01 Введите шаг таблицы: 0.1										
x	1-ое приближение	2-ое приближение	3-ое приближение	4-ое приближение	17-ое приближение	Явный метод	Неявный метод			
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
0.10	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0005			
0.20	0.0027	0.0027	0.0027	0.0027	0.0027	0.0029	0.0029			
0.30	0.0090	0.0090	0.0090	0.0090	0.0090	0.0095	0.0095			
0.40	0.0213	0.0214	0.0214	0.0214	0.0214	0.0222	0.0222			
0.50	0.0417	0.0418	0.0418	0.0418	0.0418	0.0430	0.0431			
0.60	0.0720	0.0724	0.0724	0.0724	0.0724	0.0743	0.0743			
0.70	0.1143	0.1156	0.1157	0.1157	0.1157	0.1181	0.1183			
0.80	0.1707	0.1740	0.1741	0.1741	0.1741	0.1773	0.1776			
0.90	0.2430	0.2506	0.2509	0.2509	0.2509	0.2550	0.2556			
1.00	0.3333	0.3492	0.3502	0.3502	0.3502	0.3552	0.3566			
1.10	0.4437	0.4746	0.4774	0.4776	0.4776	0.4836	0.4862			
1.20	0.5760	0.6329	0.6403	0.6410	0.6411	0.6480	0.6529			
1.30	0.7323	0.8319	0.8500	0.8526	0.8529	0.8605	0.8697			
1.40	0.9147	1.0820	1.1236	1.1317	1.1331	1.1409	1.1584			
2.00	2.6667	4.6984	7.2190	10.4839	232.5727	36.4939	25.1333			
./mmlab	01 -mt 3601.75s us	ser 0.44s system 772	% cpu 7:46.55 tota	1						

Рис. 2.2 – Метод Пикара, основанный на быстром преобразовании Фурье

Как видно, высокая погрешность быстрого преобразования Фурье не позволяет использовать этот метод для реализации метода Пикара.

2.6 Ответы на контрольные вопросы

2.6.1 Укажите интервалы значений аргумента, в которых можно считать решением заданного уравнения каждое из первых 4-х приближений Пикара. Точность результата оценивать до второй цифры после запятой. Объяснить свой ответ.

Чтобы проверить, сходится ли n-ое приближение Пикара к точному, нужно вычислить следующее. Если y_n и y_{n+1} равны с точностью до некоторого знака (в данном случае до второго), то n-ое приближение можно считать решением заданного уравнения.

Необходимое условие можно задать таким образом:

$$y_{n+1}(x) - y_n(x) < 0.01$$

Для первых четырёх приближений имеем:

$$y_2(x) - y_1(x) < 0.01 (2.3)$$

$$y_3(x) - y_2(x) < 0.01 (2.4)$$

$$y_4(x) - y_3(x) < 0.01 (2.5)$$

$$y_5(x) - y_4(x) < 0.01 (2.6)$$

Для решения этих неравенств была реализована программа, текст который представлен в листинге 2.6.

Листинг 2.6 – Поиск интервалов

```
int main()
{
    std::vector < double > v;
    mmlabs::MTPicard picard;

int maxApprox = 4;

int p = 2;
    int n = 3;
```

```
10
        double eps = 1 * pow(10.0, -p);
11
        double step = 1 * pow(10.0, -n);
12
13
        picard.computePol(maxApprox + 1);
14
15
        for (int i = 1; i \le \max Approx; ++i)
16
17
            v.push_back(estimateMaxX(picard, i, i + 1, step, eps));
            printf("x_{m} <= %.*lf \n", i, n, *v.rbegin());
18
19
20
        printf("\n");
21
22
        printf("x \le \%.*lf\n", n, *std::min_element(v.begin(), v.end()));
23
24
        return 0;
25
   }
26
27
   double estimateMaxX(mmlabs::MTPicard &picard,
                         int approx1, int approx2,
28
29
                         double step , double eps)
30
   {
31
        double x = 0;
32
        double y1, y2;
33
34
        while (fabs((picard(x, approx2)) - (y1 = picard(x, approx1))) < eps)
35
            x += step;
36
37
        return x - step;
38
```

На рисунке 2.3 приведён результат работы этой программы.

Таким образом, при $\underline{x \in [0, 0.936]}$ решением заданного уравнения можно считать каждое из первых 4-х приближений Пикара.

2.6.2 Пояснить, каким образом можно доказать правильность полученного результата при фиксированном значении аргумента в численных методах.

Численные методы зависят от шага. Чем меньше шаг — тем точнее решение. Чтобы доказать правильность полученного результата с точностью до n-ой цифры после запятой, нужно уменьшать шаг до тех пор, пока результаты для двух крайних шагов не перестанут отличаться с точностью до n-ой цифры после запятой.

2.6.3 Из каких соображений выбирался корень уравнения в неявном методе?

В неявном методе выбирается минимальный корень для того, чтобы минимизировать накапливаемую ошибку и, тем самым, повысить точность.

2.6.4 Каково значение функции при x=2, т.е. привести значение u(2).

Для поиска u(2) используем явный метод Эйлера. С учётом ответа на вопрос 2.6.2 была реализована программа, текст которой приведён в листинге 2.7.

Листинг 2.7 – Поиск u(2)

```
int main()
2
       const double EPS = 1e-2;
3
4
5
       double y;
       double y_next;
6
7
8
       double x = 2;
9
       double h = 1e-1;
10
11
       int h_len = 7;
12
       int h_frac_len = 1;
       int y_len = 8;
13
       int y_frac_len = 4;
14
```

```
15
16
        char hrule [256] = \{\};
        memset(hrule, '-', sizeof(hrule) - 1);
17
18
        printf("Явный метод Эйлера, x = \%.11f \ n", x);
19
20
21
        printf(" %*s | %*s \n", h_len, "h", y_len, "y");
22
        printf("-\%.*s-+-\%.*s-\n", h_len, hrule, y_len, hrule);
23
24
        y_next = mmlabs:: Euler Method:: explicit Method(x, h);
25
26
        do
27
        {
28
            y = y_next;
29
30
            printf(" %*.*e | %*.*lf \n",
31
                    h_len , h_frac_len , h , y_len , y_frac_len , y);
32
33
            h /= 10;
34
            y_next = mmlabs :: Euler Method :: explicit Method (x, h);
35
36
        while (fabs(y_next - y) >= EPS);
37
38
        printf(" %*.*e | %*.*lf \n",
                h_len , h_frac_len , h , y_len , y_frac_len , y_next);
39
40
41
        return 0;
42
```

Результат работы этой программы приведён на рисунке 2.4.

Рис. 2.4 - Поиск интервалов

```
Явный метод Эйлера, x = 2.0 h | y | y | 1.0e-01 | 9.6768 | 1.0e-02 | 36.4939 | 1.0e-03 | 162.9738 | 1.0e-04 | 285.0559 | 1.0e-05 | 313.0351 | 1.0e-06 | 317.3466 | 1.0e-07 | 317.6747 | 1.0e-08 | 317.7188 | 1.0e-09 | 317.7154 | .
```

В полученной таблице последний и предпоследний результаты равны с точностью до второго знака после запятой. Таким образом, $u(2) \approx 317.72$.