Rekap

- Ett vektorfält är en funktion $f: \mathbb{R}^n \to \mathbb{R}^n$ för $n \geq 2$
- \bullet \bar{F} Konservativt vektorfält om det existerar en potentialfunktion f sådan att $\nabla f = f$
- Test på konservativitet var att prova om $\partial_y P = \partial_x Q$, detta följer av att konservativ $\Rightarrow \bar{F} = \nabla f = (\partial_x f, \partial_y f)$ om detta stämmer så får vi $\partial_{xy} f = \partial_{yx} f$ (blandade derivator är lika) men eftersom $\nabla f = (P,Q) \Rightarrow \partial_y P = \partial_x Q$ Svårigheten: givet ett konservativt vektorfält $\bar{F} = (P,Q)$, bestäm potentialfunktionen $f : \nabla f = \bar{F}$. Hur gör vi? vi har $\begin{cases} 1 \partial_x f = P \\ 2 \partial_y f = Q \end{cases} \rightarrow \text{integration av}$ (1) $f=\int P+C(y)$ (C(y) är konstant m.a.p x). Använd uttrycket i (2): $\partial_y f=\partial_y (\int P)+\frac{d}{dy}C(y)=Q,$ ni får C(y)

15.3 (jämför 11.3 båglängd)

Vi definierar en linjeintegral (alt. kurvintegral) av en funktion f över en kurva Cgenom följande:

$$\int_C f(x, y, z) ds \stackrel{def}{=} \int_a^b f(\bar{r}(t)) |\bar{r}'| dt \text{ med } \bar{r}(t) = (x(t), y(t), z(t))$$

Ex:

$$f=x^2+y^2,$$
kurvan C är en rak linje från origo till punkten $(2,1).$ Vad är $\int_C f\,ds?$ Linjen ges av $x=2y,$ vi får
$$\begin{cases} y=t\\ x=2t \end{cases} \quad 0 \leq t \leq 1$$
 så $\bar{r}(t)=(2t,t)$ och $\bar{r}'(t)=(2,1)\Rightarrow |\bar{r}'|=\sqrt{5}$ Vi får $\int_C f\,ds \stackrel{def}{=} \int_0^1 (2t)^2 + t^2)\,\sqrt{5}\,dt$ Se fler exempel på sidor 876-878.

15.4 Kurvintegral och vektorfält [arbete]

Vi vet att arbete = kraft \cdot väg (enkel tolkning då kraften är konstant och verkar i en enda riktning, vägen 1-dimensionell)

Att beräkna arbete med varierande kraft och riktning blir lite komplicerat.

Vi använder en approximation (jämför 11.3 båglängd).

Så arbete =
$$\Delta w = \bar{F}(\bar{r}) \bullet \Delta \bar{r} \approx \bar{F}(\bar{r}(t)) \bullet \bar{r}' \Delta t$$

Vi gör addition $\sum \Delta w = \sum \Delta \bar{F} \bullet \bar{r}' \Delta t \to \int_a^b \bar{F}(\bar{r}(t)) \bullet \bar{r}' dt$
Vi inför beteckning $\int_C \bar{F} \bullet d\bar{r} \stackrel{def}{=} \int_a^b \bar{F}(\bar{r}(t)) \bullet \bar{r}'(t) dt$

En annan standardbeteckning: $\int_C Pdx + Qdy \text{ om } \bar{F} = (P,Q) \text{ vilket kommer från}$ $\bar{F} \bullet d\bar{r} = (P,Q) \bullet (dx,dy) = Pdx + Qdy$ Motsvarande i \mathbb{R}^3 läses på sida 880.

Fråga

Kan ett utfört arbete vara oberoende av vägen? När händer detta?

Exempel 1 sida 880

Exempel 2 sida 881

Sats (883)

Om \bar{F} konservativt och C_1, C_2 två kurvor i ett enkelsammanhängande område D med samma start och slutpunkt $(C_1, C_2$ startar och slutar i samma punkter) så gäller att $\int_{C_1} \bar{F} \bullet d\bar{r} = \int_{C_2} \bar{F} \bullet d\bar{r}$

Definition: enkelsammanhängande område

Sammanhängande: samtliga par av punkter som tillhör området kan parvis sammanbindas med en kurva.

Enkel: betyder "typ inga hål i området", mer formellt om varje **sluten** kurva kan dras ihop till en punkt.

Satsen följer av att om kurvan γ sluten i enkelsammanhängande område Dså gäller $\int_{\gamma}\bar{F}\bullet d\bar{r}=0$

Bevis:
$$\bar{F}$$
 konservativt så $\int_{\gamma} \bar{F} \bullet d\bar{r} = \int_{a}^{b} \nabla f \bullet \bar{r}'(t) dt \mod \nabla f \bullet \bar{r}'(t) = \frac{d}{dt} f(\bar{r}(t))$
Så = $\int_{a}^{b} \frac{d}{dt} f(\bar{r}(t)) dt = f(\bar{r}(b)) - f(\bar{r}(a)) = 0$

Exempel

Låt $\bar{F}=(P,Q)=(y\sin(xy),x\sin(xy))$. Beräkna $\int_C \bar{F}\bullet d\bar{r}$ Lösning: \bar{F} konservativt ty $P_y=Q_x$ så $\int_C \bar{F}\bullet d\bar{r}$ är oberoende av väg för kurvan C.

Exempel

Är vektorfälten nedan konservativa?

$$\bar{F} = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2})$$

$$\bar{G}=(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2})$$

Lösning: vi ser att $\partial_y F_1 = \partial_x F_2$ och $\partial_y G_1 = \partial_x G_2$

Exempel

Bestäm potentialfunktionerna till \bar{F} och \bar{G} ovan.

Lösning:
$$\partial_x f = \frac{-y}{y^2} \cdot \frac{1}{1 + \left(\frac{x}{y}\right)^2} = \frac{-y}{y^2} \cdot \frac{1}{1 + u^2} \mod u = \frac{x}{y} \text{ så } f = -\arctan\left(\frac{x}{y}\right) + C(y)$$
 (obs $-y/y^2 = -1/y$)