Permit Numbers 36644, PSDTX903M2, and N007M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	<u>Emission</u>	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
N-1	Recycle Ethane Cracking	$NO_{x}(7)(10)$	48.32	-
	Furnace H-0100	NO _x (7)	24.16	79.37
		SO ₂ (7)	2.24	4.89
		CO (7)(10)	46.50	-
		CO (7)	23.25	101.85
		PM ₁₀ (7)	1.51	6.61
		VOC (7)	0.57	2.51
N-2	Fresh Feed Cracking Furnace	NO _x (7)(10)	70.68	-
	H-0200	$NO_{x}(7)$	35.34	116.08
		SO ₂ (7)	3.22	7.07
		CO (7)(10)	68.02	-
		CO (7)	34.01	148.97
		PM ₁₀ (7)	2.21	9.67
		VOC (7)	0.84	3.68
N-3	Fresh Feed Cracking Furnace	NO _x (7)(10)	70.68	-
	H-0300	$NO_x(7)$	35.34	116.08
		SO ₂ (7)	3.22	7.07
		CO (7)(10)	68.02	-
		CO (7)	34.01	148.97
		PM ₁₀ (7)	2.21	9.67
		VOC (7)	0.84	3.68

Emission	Source	Air Contaminant <u>Emission</u>			
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	
N-4	Fresh Feed Cracking Furnace H-0400	NO_{x} (7)(10) NO_{x} (7) SO_{2} (7) CO (7)(10) CO (7) PM_{10} (7) VOC (7)	70.68 35.34 3.22 68.02 34.01 2.21 0.84	116.08 7.07 148.97 9.67 3.68	
N-5	Fresh Feed Cracking Furnace H-0500	NO_{x} (7)(10) NO_{x} (7) SO_{2} (7) CO (7)(10) CO (7) PM_{10} (7) VOC (7)	70.68 35.34 3.22 68.02 34.01 2.21 0.84	116.08 7.07 - 148.97 9.67 3.68	
N-6	Fresh Feed Cracking Furnace H-0600	NO_{x} (7)(10) NO_{x} (7) SO_{2} (7) CO (7)(10) CO (7) PM_{10} (7) VOC (7)	70.68 35.34 3.22 68.02 34.01 2.21 0.84	116.08 7.07 - 148.97 9.67 3.68	
N-7	Fresh Feed Cracking Furnace H-0700	NO_{x} (7)(10) NO_{x} (7) SO_{2} (7) CO (7)(10) CO (7) PM_{10} (7) VOC (7)	70.68 35.34 3.22 68.02 34.01 2.21 0.84	116.08 7.07 - 148.97 9.67 3.68	

Emission	Source	Air Contaminant	<u>Emission</u>	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
N-8	Fresh Feed Cracking Furnace H-0800	NO_{x} (7)(10) NO_{x} (7) SO_{2} (7) CO (7)(10) CO (7) PM_{10} (7) VOC (7)	70.68 35.34 3.22 68.02 34.01 2.21 0.84	116.08 7.07 - 148.97 9.67 3.68
N-9	Fresh Feed Cracking Furnace H-0900 (487.5 MMBtu/hr maximum)	NO_{x} (7) SO_{2} (7) CO (7) PM_{10} (7) VOC (7) NH_{3}	12.19 7.75 17.06 3.63 2.63 1.98	21.35 33.93 74.73 15.91 11.51 8.68
N-10	Catalyst Regeneration Effluent	VOC (7)	0.01	0.01
N-11	Reactor Regeneration Effluent (Start-Up, Shutdown)	CO VOC (7)	63.55 0.01	53.37 0.01
N-12	DP Reactor Feed Heater	NO _x (7) SO ₂ (7) CO (7) PM ₁₀ (7) VOC (7)	5.01 0.44 4.40 0.38 0.17	13.71 0.95 12.26 1.64 0.74
	DP Reactor Feed Heater Start-Up Emission Rate	CO (7)	14.5	1.74
N-13	DP Reactor Regeneration Heater	NO _x (7) SO ₂ (7)	1.73 0.14	1.42 0.10

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
				_
		CO (7)	2.4	3.94
		PM ₁₀ (7)	0.13	0.17
		VOC (7)	0.06	0.08
N-14	Auxiliary Boiler	NO _x	13.60	
	raxinary Bollon	SO ₂	1.24	
		CO	15.60	
		PM_{10}	1.58	
		VOC	1.58	
N-20A	GTG HRSG Unit 1	NO_x	17.65	
	GE Frame 6B	SO_2	4.57	
	310.4 MMBtu/hr	CO	89.51	
	Duct Burner (with SCR)	PM_{10}	5.49	
	,	VOC	4.09	
		NH_3	7.61	28.15
N-20B	GTG HRSG Unit 2	NO _x	26.47	
N-20D	GE Frame 6B	SO ₂	4.57	
	310.4 MMBtu/hr	CO	89.51	
	Duct Burner (with SCR)	PM_{10}	5.49	
	Basi Barrier (With Gork)	VOC	4.09	
		NH₃	7.61	28.15
		1 11 13		20.10

Emission Point Nos. N-14, N-20A, and N-20B are subject to the following combined annual emission caps for the specified pollutants:

N-14, N-20A,	Annual Emission Caps	NO_x	C	179.02
and N-20B		SO_2	C	18.46
		CO	C	428.86
		PM_{10}	C	48.88
		VOC	C	32.12

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
N-15, N-15A,	Flare system - Calendar Year 2008 (No Planned Turnarounds in 2008) (8)(9)	NO _x (7) SO ₂ (7) CO (7) VOC (7) H ₂ S	2219.7 165.8 15794.4 24418.1 1.8	243.3 3.8 559.2 486.6 0.1
	Annual Cap	VOC, NO_x , and CO	С	860.0
N-15 & N-15A	Flare system (Exclusive of Planned Turnarounds) - Year 2009 and 2010 (8)(9)	NO _x (7) SO ₂ (7) CO (7) VOC (7) H ₂ S	2219.7 165.8 15794.4 24418.1 1.8	169.8 2.7 390.1 339.5 0.1
	Intermediate Annual Cap	VOC, NO_x , and CO	С	600.0
N-15 & N-15A	Flare system (Exclusive of Planned Turnarounds) - Year 2011 and beyond (8)(9)	NO _x (7) SO ₂ (7) CO (7) VOC (7) H ₂ S	2219.7 165.8 15794.4 24418.1 1.8	101.8 1.6 233.9 203.5 0.1
	Final Annual Cap	VOC, NO _x , and CO	С	359.7
N-15 and N-15A	Flare system (Emissions from Planned Turnarounds) - Year 2009 and beyond (8)(9)	NO_{x} (7) SO_{2} (7) CO (7) VOC (7) $H_{2}S$		84.9 1.3 195.1 172.7 0.1
N-18	Final Annual Cap Decoking Drum	VOC, NO _x , and CO CO (7) PM ₁₀ (7)	C 720.00 78.73	300.0 47.45 3.33

Emission	Source	Air Contaminant	t <u>Emission Rates</u> *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
N-19	Thermal Oxidizer	NO_{x} (7)	0.24	0.88
		SO ₂ (7)	0.08	0.28
		CO (7)	0.21	0.77
		$PM_{10}(7)$	0.04	0.13
		VOC (7)	0.03	0.11
N-21A	Fire Pump Diesel Engine (6)	NO _x (7)	15.81	1.23
		SO ₂ (7)	1.05	0.08
		CO (7)	3.41	0.27
		PM ₁₀ (7)	1.12	0.09
		VOC (7)	1.26	0.10
N-21B	Fire Pump Diesel Engine (6)	NO _x (7)	15.81	1.23
		SO ₂ (7)	1.05	0.08
		CO (7)	3.41	0.27
		PM ₁₀ (7)	1.12	0.09
		VOC (7)	1.26	0.10
N-22	Carbon Bed Adsorber	Benzene	0.31	0.11
N-23	Ammonia Scrubber	NH ₃	0.12	0.01
N-24A	Boiler B-7280	VOC (7)	6.00	See below
	(425.4 MMBtu/hr)	NO_x (Routine)	4.25	18.63
		NO_x (Start-Up)	17.02	1.22
		CO (7)	14.89	65.21
		SO ₂	6.05	See below
		PM ₁₀ (7)	3.17	13.88
		NH_3	1.88	8.23
N-24B	Boiler B-7290	VOC (7)	6.00	See below
	(425.4 MMBtu/hr)	NO_x (Routine)	4.25	18.63
	,	NO_x (Start-Up)	17.02	1.22
		CO (7)	14.89	65.21
		` '		

Emission Point No. (1)	Source A	Air Contaminant Name (3)	Emission lb/hr	Rates *
		SO ₂ PM ₁₀ (7) NH ₃	6.05 3.17 1.88	See below 13.88 8.23
Total N-24A and N-24B	Boilers B-7280 and B-7290	VOC (7) SO ₂		39.34 38.68
N-1 through N-9, N-14, N-15, N-15A,N-19, N-20A, and N-20B	Fresh Feed Cracking Furnaces, Auxiliary Boiler, Flare System, Cogen Facility, Thermal Oxidize (9)	Mercury (9)	0.63	0.039
TK-2501	IFR Spent Caustic	VOC (7)	0.32	0.35
TK-8001	IFR WW Equalization	VOC (7)	0.39	0.62
TK-8101	EFR Contaminated Stormwater	VOC (7)	0.49	0.49
TK-7702	Sulfuric Acid Tank	H₂SO₄ SO₃	0.01 0.01	0.01 0.01
F-1	Fugitives (4)	VOC (7)	8.89	38.94
F-2	Cooling Tower	PM ₁₀ (7) VOC (5) (7) Benzene	2.13 25.00 0.50	2.76 42.45 1.99
F-4	Benzene/Toluene Process Fugitives (4)	VOC (7) H₂S	0.70 <0.01	3.08 0.02
F-5	C4 Huntsman Pipeline Fugitives	VOC	0.01	0.02

Emission	Source	Air Contaminant	Emission F	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	
BOIL-AMM	Fugitives - Boilers 7280 and 7290 Ammonia Injection System	NH_3	0.01	0.02	
COG-AMM-1	Ammonia Fugitives Storage Tank and Vaporizer (4)	NH_3	0.01	0.06	
COG-AMM-2	Ammonia Fugitives: GTG/HRSG Unit 2 SCR Ammonia Injection System (4)	NH ₃	0.01	0.01	
COG-AMM-3	Ammonia Fugitives: GTG/HRSG Unit 1 SCR Ammonia Injection System (4)	NH ₃	0.01	0.01	
FURN-AMM	Ammonia Fugitives: Fresh Feed Cracking Furnace H-0900 Ammonia Injection System (4)	NH ₃	0.01	0.02	

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) NO_x total oxides of nitrogen

SO₂ - sulfur dioxide

CO - carbon monoxide

PM₁₀ - particulate matter (PM) equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns is emitted.

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code ' 101.1

NH₃ - ammonia

H₂S - hydrogen sulfide

H₂SO₄ - sulfuric acid

SO₃ - sulfur trioxide

- (4) Emission rate is an estimate and compliance is demonstrated by meeting the requirements of the applicable special conditions and permit application representations.
- (5) The VOC emission rates from the cooling tower are for total VOC, including benzene.
- (6) Emissions from the fire pump diesel engines are based on <u>156</u> hours per year operation. Nonemergency fire pump operations shall only occur between the hours of 8:00 a.m. and 5:00 p.m. (one engine at any one time).
- (7) These emissions are permitted under PSD or Nonattainment review in addition to State.
- (8) Turnarounds are planned for 2006 and 2007 for inspection and maintenance and for implementation of improvements required by the TCEQ Agreed Order approved and signed March 23, 2005 (Docket No. 2003-1317-AIR-E). Thereafter, consistent with the plant=s original design basis, planned turnarounds are expected at nominal intervals of once every three years for purposes such as catalyst replacement, equipment inspection, and equipment repair or replacement.
- (9) These are emission caps for the stated EPNs. Mercury shall be calculated and expressed as elemental mercury in any form or phase and shall include the mercury contained in any compound.
- (10) Spikes in the short-term rate are authorized for up to 876 hours in any 12-month period.
- * Emission rates are based on a continuous operating schedule.
- ** Beginning January 1, 2006, compliance with annual emission limits is based on a rolling 12-month period with the following exception: allowable emission rates and emission caps for the Ground Flare (EPN N-15) will be based upon calendar years for 2006 through 2011 and will be based on a rolling 12-month period beginning January 1, 2012.