ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 2

Dr. Oishi oishi@unm.edu

August 24, 2020

Outline

- The Laplace transform
- Transfer functions
- Electrical systems
- Mechanical systems
- Geared systems
- Mechanical-electrical system analogs
- Linearization

Learning Objectives

- $\bullet\,$ Find the Laplace transform and inverse Laplace transform
- Find the transfer function of a system from a differential equation
- Solve a differential equation by using its transfer function
- Find the transfer function for
- LTI electrical networks
- LTI mechanical systems (translational and mechanical)
- LTI electromechanical systems
- Linearize a nonlinear system to find its transfer function

References

• Nise Chapter 2: 2.1–2.5, 2.9–2.11 (2.6–2.8 recommended but optional)

The Laplace Transform

Modeling

- Three elements: input, output, and the system (process)
- Differential equations often model systems of interest, but can be cumbersome mathematically
- Laplace transforms facilitate block-diagram modeling of systems and subsystems

THE UNIVERSITY OF NEW MEXICO

The Laplace Transform

- The method of Laplace transforms converts a calculus problem (the linear differential equation) into an algebra problem.
- Pierre-Simon Laplace (1749-1827)
- Integral transformation (similar to the Fourier transform)

$$\mathcal{L}\left[f(t)\right] = F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

- ullet Multiplication by the Laplace variable s corresponds to differentiation in the time domain
- Inverse Laplace transformation

$$\mathcal{L}^{-1}\left[F(s)\right] = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds = f(t) u(t)$$

The Laplace Transform

Clicker question

What is the inverse Laplace transform of $F(s) = \frac{3s+2}{s^2+1^2}$?

A.
$$f(t) = (3\cos(t) + 2\sin(t)) \cdot \mathbf{u}(t)$$

B.
$$f(t) = (2\cos(t) + 3\sin(t)) \cdot \mathbf{u}(t)$$

C.
$$f(t) = (3\cos(t) + \mathbf{u}(t)) \cdot \mathbf{u}(t)$$

D.
$$f(t) = (\cos(3t) + \sin(2t)) \cdot \mathbf{u}(t)$$

The Laplace Transform

Properties of the Laplace transform

- Linearity
- Differentiation
- Final value theorem
- Initial value theorem
- Region of convergence

Important Laplace transform pairs

- Impulse function
- Step function
- Exponential decay
- Sine and cosine
- Damped oscillations

-

The Laplace Transform

Clicker question

Use the method of Laplace transforms to solve the differential equation

$$\frac{dy}{dt} = -y + 2e^{-3t}, \quad y(0) = 1$$

with non-zero initial condition. What is the solution y(t) for $t \ge 0$?

A.
$$y(t) = -3e^{-t} + e^{-2t}$$

B.
$$y(t) = 2e^{-t} - e^{-3t}$$

C.
$$y(t) = -e^{-t} + e^{-3t}$$

D.
$$y(t) = e^{-t} - 3e^{-2t}$$

Hint: Start by taking the Laplace transform of both sides of the equation.

THE UNIVERSITY OF NEW MEXICO

/

Transfer functions

Goal: Algebraically relate input and output

ullet Consider an n^{th} order differential equation with initial conditions equal to zero, that relates the input u(t) and output v(t)

$$\frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_0 y = b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \dots + b_0 u,$$

• Take the Laplace transform of both sides

$$s^{n}Y(s) + a_{n-1}s^{n-1}Y(s) + \dots + a_{0}Y(s) = b_{m}s^{m}U(s) + b_{m-1}s^{m-1}U(s) + \dots + b_{0}U(s)$$

• And rearrange to obtain

$$\frac{Y(s)}{U(s)} = \frac{\left(b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0\right)}{\left(s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0\right)}$$

Transfer functions

Clicker question

Consider the system represented by

$$\frac{dy}{dt} + 2y(t) = 4u(t), \quad y(0) = 0$$

What is the system response y(t) to a step input $u(t) = \mathbf{u}(t)$?

A.
$$y(t) = 2 + 2e^{-4t}$$
 for $t \ge 0$, $y(t) = 0$ for $t < 0$

B.
$$y(t) = 2 - 2e^{-2t}$$
 for $t \ge 0$, $y(t) = 0$ for $t < 0$

C.
$$y(t) = (2 + 2e^{-2t}) \mathbf{u}(t)$$

D.
$$y(t) = 2e^{-t}$$
 for $t \ge 0$, $y(t) = 0$ for $t < 0$

Hint: First find the transfer function.

Transfer functions

Goal: Algebraically relate input and output

• The transfer function is the ratio $G(s) = \frac{Y(s)}{U(s)}$.

$$U(s) = b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0 s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

ullet Note that this means that Y(s)=G(s)U(s), so the output signal can be calculated in a straightforward manner (multiplication!).

Transfer functions

Electrical systems

- Mesh analysis = Kirchhoff's voltage law
- Nodal analysis = Kirchhoff's current law
- Identify integro-differential equations directly, or use Laplace transforms
- Impedances often more convenient for mesh analysis
- Admittances often more convenient for nodal analysis

 TABLE 2.3
 Voltage-current, voltage-charge, and impedance relationships for capacitors, resistors, and inductors

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance $Z(s) = V(s)/I(s)$	Admittance $Y(s) = I(s)/V(s)$
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-\\\\\- Resistor	v(t)=Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t)=R\frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) d\tau$	$v(t) = L \frac{d^2q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) - V (volts), i(t) - A (amps), q(t) - Q (coulombs), C - F (farads), $R - \Omega$ (ohms), $G - \Omega$ (mhos), L - H (henries).

10

11

Transfer functions

Electrical systems

- Ideal operational amplifier
- May be inverting or non-inverting
- No current at the input terminals that flows into the op-amp (Input impedance is infinite)
- Voltage at the two input terminals is tied
- Convenient way to build, implement, and realize transfer functions
- Analog controllers

12

Transfer functions

Mechanical systems - translational elements

- Spring-mass-damper systems
- Dynamic simulator via Mathworks / Simulink: https: //www.mathworks.com/help/physmod/simscape/ug/creating-and-simulating-a-simple-model.html
- Choose "positive" direction, then apply Newton's second law.

Component	Force-velocity	Force-displacement	Impedence $Z_M(s) = F(s)/X(s)$
Spring $x(t)$ $f(t)$ K	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = Kx(t)	К
Viscous damper $x(t)$ f_v	$f(t) = f_{\scriptscriptstyle \mathbb{Y}} \nu(t)$	$f(t) = f_{\nu} \frac{dx(t)}{dt}$	$f_{\nu}s$
$Mass \longrightarrow x(t)$ $M \longrightarrow f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms^2

Transfer functions

THE UNIVERSITY OF NEW MEXICO

13

Transfer functions

Mechanical systems – rotational elements

- Spring-inertial load-damper systems
- Choose "positive" direction, then apply Newton's second law.

Component	Torque-angular velocity	Torque-angular displacement	Impedence $Z_M(s) = T(s)/\theta(s)$
Spring $T(t) \theta(t)$ K	$T(t) = K \int_0^t \omega(\tau) d\tau$	$T(t) = K\theta(t)$	K
Viscous $T(t)$ $\theta(t)$ damper D	$T(t) = D\omega(t)$	$T(t) = D \frac{d\theta(t)}{dt}$	Ds
Inertia $T(t) \theta(t)$ J	$T(t) = J \frac{d\omega(t)}{dt}$	$T(t) = J \frac{d^2 \theta(t)}{dt^2}$	Js^2

15

Transfer functions

Geared systems

• For lossless gears, $\frac{T_2}{T_1} = \frac{\theta_1}{\theta_2} = \frac{N_2}{N_1}$

Electromechanical systems

DC motor

16

Linearization

Linearity of f(x)

• Scaling: $f(\alpha x) = \alpha f(x)$

• Superposition: $f(x_1 + x_2) = f(x_1) + f(x_2)$

For example: f(x) = 3x

Examples of nonlinearities

Mechanical / Electrical System Analogs

Clicker question

Which of the following pairs could be analogs?

- A. RC series circuit and a spring-mass system
- B. LC series circuit and a spring-mass system
- C. RLC parallel circuit and a spring-mass system
- D. Not very confident about any of these answers

THE UNIVERSITY OF NEW MEXICO

Linearization

Solution:

- Linearize y = f(x) for x near x_0
- Taylor's series approximation
- \bullet Works for $(x-x_0)$ "small enough"

$$f(x) - f(x_0) \approx \frac{\partial f}{\partial x} \Big|_{x = x_0} \cdot (x - x_0)$$

$$(x - x_0)$$

17

19

THE UNIVERSITY OF NEW MEXICO

Linearization

Frictionless rigid pendulum

• Linearize the dynamics $\tau(\theta) = MgL\sin\theta$ around $\theta_0 = 0$.

$$\begin{array}{ccc} \tau(\theta) - 0 & \approx & MgL \frac{\partial \sin \theta}{\partial \theta} \bigg|_{\theta = 0} (\theta - 0) \\ \delta \tau & \approx & MgL \cdot \delta \theta \end{array}$$

• with $\delta \tau = \tau$, $\delta \theta = \theta$

20

Key Concepts

- 1. Laplace transforms
- 2. Transfer functions
- 3. Dynamics of spring-mass-damper systems
- 4. Dynamics of RLC op-amp systems
- 5. Linearization

22

Linearization

Clicker question

Consider again the pendulum dynamics

$$\tau(\theta) = MgL\sin\theta$$

What is linearization of this system when the pendulum is upright, e.g., around $\theta=\pi$?

A.
$$\delta \tau \approx -MgL \cdot \delta \theta$$
, $\delta \tau = \tau$, $\delta \theta = \theta - \pi$

B.
$$\delta \tau \approx MgL \cdot \delta \theta$$
, $\delta \tau = \tau - MgL$, $\delta \theta = \theta - \pi$

C.
$$\delta \tau \approx -MgL \cdot \delta \theta$$
, $\delta \tau = \tau - \pi$, $\delta \theta = \theta$

D.
$$\tau \approx -MgL \cdot \delta\theta$$
, $\delta\theta = \theta - \pi/2$

21