Total No. of Questions: 6

Total No. of Printed Pages:2

Enrollment No.....

Faculty of Engineering End Sem Examination May-2024

EC3CO21 Fiber Optic Communications

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

necess	sary. I	Notations and s	ymbols have th	neir usual mean	ing.	
Q.1	i.	Refractive index profile suitable for SI fibers is-				1
		(a) 2	(b) 0	(c) Infinite	(d) 1	
	ii.	In fiber optic o	communication	, the refractive	index of clad should be-	1
		(a) Higher that	n core	(b) No relation	n	
		(c) Less than o	core	(d) Equal to co	ore	
	iii.	Optical signal broadens due to-				1
		(a) Attenuation		(b) Absorption		
		(c) Scattering		(d) Dispersion	1	
	iv.	The power of	a signal is redu	ced to half ther	n the attenuation is (in dB)	1
		(a) 2	(b) -2	(c) -3	(d) 3	
	v.		length depends			1
		(a) Conduction		(b) Valence ba		
		(c) Band gap e	•	(d) None of th		1
	vi.	Single longitudinal mode operation in LASER is obtained by				
		(a) Eliminating all transverse mode				
		(b) Eliminating all longitudinal modes				
		(c) Increasing the length of cavity				
		· ·	the length of ca	ivity		4
	vii.	Phototransisto	=			1
		(a) Cutoff reg				
		(b) Saturation	•			
			turation region	l		
		(d) Active reg		1 , 1: 1 :	1 1 4	1
	V111.	The absorption of photons in a photodiode is dependent on: (a) Absorption coefficient (b) Properties of material				1
		=		=		
	(c) Charge carrier at junction (d) Amount of light					

P.T.O.

[2]

	ix.	WDM system key feature include- (a) Wavelength routing (b) Capacity upgrade (c) Transparency (d) All of these 	1
	х.	The nonlinear effects in optical fiber occur due to- (a) Intensity dependence of refractive index of the medium (b) Due to inelastic-scattering phenomenon (c) Both (a) and (b) (d) None of these	1
Q.2	i.	Explain the classification of optical fiber.	4
	ii.	Define numerical aperture. Derive the formula for numerical aperture.	6
OR	iii.	Explain modified chemical vapor deposition fiber fabrication technique.	6
Q.3	i.	Derive the formula for material dispersion.	4
	ii.	Explain the signal attenuation in fibers.	6
OR	iii.	Explain the signal dispersion in fibers.	6
Q.4	i.	Explain the direct and indirect bandgap material by E-K diagram.	4
	ii.	Explain any one basic LED configurations being used for fiber optics.	6
OR	iii.	Explain the three key transition processes involved in laser action.	6
Q.5	i.	Explain optical detection principle with the help of neat diagram.	4
	ii.	What is the need of optical amplifier? Explain the working of	6
		semiconductor optical amplifier.	
OR	iii.	Explain the PIN photodetector. Also draw energy band diagram for PIN photodiode.	6
Q.6		Attempt any two:	
	i.	Explain WDM.	5
	ii.	Explain nonlinear optical effects.	5
	iii.	Explain optical isolators and circulators.	5

[4]

Scheme of Marking

Fiber Optic Communications (T) - EC3CO21

Q.1	i)	Refractive index profile suitable for SI fibers is (c) Infinite	1
	ii)	In fiber optic communication, the refractive index of clad should be	1
		(c) Less than core	
	iii)	Optical signal broadens due to	1
		(d) Dispersion	
	iv)	The power of a signal is reduced to half then the attenuation is	1
		(in dB)	
		(c) -3	
	v)	Emitted Wavelength depends on	1
		(c) Band Gap Energy	
	vi)	Single longitudinal mode operation in LASER is obtained by	1
		(d) Reducing the length of cavity	
	vii)	Phototransistor operate in	1
		(d) Active Region	
	viii)	The absorption of photons in a photodiode is dependent on:	1
		(a) Absorption Coefficient	
	ix)	WDM system key feature include]
		(d) All of the above	
	x)	The nonlinear effects in optical fiber occur due to	1
		(c) Both A and B	
Q.2	i.	Explain the classification of optical fiber.	4
		Classification details 4 marks	
	ii.	Define numerical aperture. Derive the formula for numerical aperture.	6
		Definition of NA 1 mark	
		Diagram 2 marks	
		Derivation 3 marks	
OR	iii.	Explain modified chemical vapor deposition fiber fabrication	6
		technique.	
		Diagram 3 marks	
		Explanation 3 marks	
Q.3	i.	Derive the formula for material dispersion.	4
		Derivation 4 marks	
	ii.	Explain the signal attenuation in fibers.	6
		Types of attenuation 2 marks	

OR	iii.	Explanation about causes 4 marks Explain the signal dispersion in fibers. Types of dispersion 2 marks Explanation about causes 4 marks	6
Q.4	I	Explain the direct and indirect bandgap material by E-K diagram. Direct BG 2 marks Indirect BG 2 marks	4
	Ii	Explain any one basic LED configurations being used for fiber optics. SLED or ELED diagram 2 marks Explanation 4 marks	6
OR	iii	Explain the three key transition processes involved in laser action. Each process 2 marks	6
Q.5	i	Explain optical detection principle with the help of neat diagram. Diagram 2 marks Theory 2 marks	4
	Ii	What is the need of optical amplifier. Explain the working of semiconductor optical amplifier. Need of amplifier 2 marks SOA diagram 2 marks Theory 2 marks	6
OR	iii	Explain the PIN photodetector. Also draw energy band diagram for PIN photodiode. PIN diagram 2 marks EB Diagram 2 marks Theory 2 marks	6
Q.6	I	Attempt any two: Explain WDM. Diagram 2.5 marks	5
	Ii	Theory 2.5 marks Explain nonlinear optical effects.	5
	iii	Theory 5 marks Explain optical isolators and circulators. Isolators 2.5 marks Circulators 2.5 marks	5

P.T.O.