PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

TERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A2

(11) International Publication Number:

WO 98/20034

(43) International Publication Date:

14 May 1998 (14.05.98)

(21) International Application Number:

PCT/US97/20678

(22) International Filing Date:

C07K 14/14, 14/46

5 November 1997 (05.11.97)

(30) Priority Data:

08/745.995

7 November 1996 (07.11.96) US

T.C

(71) Applicant (for all designated States except US): HESKA CORPORATION [US/US]; 1825 Sharp Point Drive, Fort Collins, CO 80525 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): WISNEWSKI, Nancy [US/US]; 4219 Beaver Creek Drive, Fort Collins, CO 80526 (US). BRANDT, Kevin, S. [US/US]; 706 Walnut Street, Windsor, CO 80550 (US). SILVER, Gary, M. [US/US]; 1424 Fleetwood Court, Fort Collins, CO 80521 (US). MADDUX, Joely, D. [US/US]; 4533 Seaway Circle, Fort Collis, CO 80525 (US).
- (74) Agents: ROTHENBERGER, Scott, D. et al.; Lahive & Cockfield, LLP, 28 State Street, Boston, MA 02109 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NOVEL SERINE PROTEASE INHIBITOR NUCLEIC ACID MOLECULES, PROTEINS AND USES THEREOF

(57) Abstract

The present invention relates to flea serine protease inhibitor proteins; to flea serine protease inhibitor nucleic acid molecules, including those that encode such serine protease inhibitor proteins; to antibodies raised against such serine protease inhibitor proteins; and to compounds that inhibit flea serine protease inhibitor activity. The present invention also includes methods to obtain such proteins, nucleic acid molecules, antibodies, and inhibitory compounds. Also included in the present invention are therapeutic compositions comprising such proteins, nucleic acid molecules, antibodies and/or inhibitory compounds as well as the use of such therapeutic compositions to protect animals from hematophagous ectoparasite infestation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	٧N	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		,

15

20

25

30

NOVEL SERINE PROTEASE INHIBITOR NUCLEIC ACID MOLECULES, PROTEINS AND USES THEREOF

FIELD OF THE INVENTION

The present invention relates to flea serine protease inhibitor nucleic acid molecules, proteins encoded by such nucleic acid molecules, antibodies raised against such proteins, and inhibitors of such proteins. The present invention also includes therapeutic compositions comprising such nucleic acid molecules, proteins, antibodies, and/or other inhibitors, as well as their use to protect an animal from flea infestation.

BACKGROUND OF THE INVENTION

Hematophagous ectoparasite infestation of animals is a health and economic concern because hematophagous ectoparasites are known to cause and/or transmit a variety of diseases. Hematophagous ectoparasites directly cause a variety of diseases, including allergies, and also carry a variety of infectious agents including, but not limited to, endoparasites (e.g., nematodes, cestodes, trematodes and protozoa), bacteria and viruses. In particular, the bites of hematophagous ectoparasites are a problem for animals maintained as pets because the infestation becomes a source of annoyance not only for the pet but also for the pet owner who may find his or her home generally contaminated with insects. As such, hematophagous ectoparasites are a problem not only when they are on an animal but also when they are in the general environment of the animal.

Bites from hematophagous ectoparasites are a particular problem because they not only can lead to disease transmission but also can cause a hypersensitive response in animals which is manifested as disease. For example, bites from fleas can cause an allergic disease called flea allergic (or allergy) dermatitis (FAD). A hypersensitive response in animals typically results in localized tissue inflammation and damage, causing substantial discomfort to the animal.

The medical importance of hematophagous ectoparasite infestation has prompted the development of reagents capable of controlling hematophagous ectoparasite infestation. Commonly encountered methods to control hematophagous ectoparasite infestation are generally focused on use of insecticides. While some of these products are efficacious, most offer protection of a very limited duration at best. Furthermore,

many of the methods are often not successful in reducing hematophagous ectoparasite populations. In particular, insecticides have been used to prevent hematophagous ectoparasite infestation of animals by adding such insecticides to shampoos, powders, sprays, foggers, collars and liquid bath treatments (i.e., dips). Reduction of hematophagous ectoparasite infestation on the pet has been unsuccessful for one or more of the following reasons: (1) failure of owner compliance (frequent administration is required); (2) behavioral or physiological intolerance of the pet to the pesticide product or means of administration; and (3) the emergence of hematophagous ectoparasite populations resistant to the prescribed dose of pesticide.

Prior investigators have described sequences of a few insect serine protease 10 inhibitors: Bombyx mori nucleic acid and amino acid sequences have been disclosed by Narumi et al., Eur. J. Biochem., 214:181-187, 1993; Takagi et al., J. Biochem., 108:372-378, 1990; and amino acid sequence has been disclosed by Sasaki, Eur. J Biochem, 202:255-261, 1991. Manduca sexta nucleic acid and amino acid sequences have been disclosed by Kanost et al., J. Biol. Chem, 264:965-972, 1989; U.S. Patent No. 5,436,392, 15 to Thomas et al., issued July 25,-2085, 1990; U.S. Patent No. 5,196,304, to Kanost et al., issued March 23, 1993; Jiang et al., J. Biol. Chem., 269:55-58, 1994; and Manduca sexta peptide sequences have been disclosed by Fox et al., *Peptides*, 12:937-944, 1991. Locusta migratoria peptide sequences have been disclosed by Kellenberger et al., J. Biol. Chem, 270:25514-25519, 1995. Rhodnius prolixus peptide sequences have been 20 disclosed by Van De Locht, EMBO, 14:5149-5157, 1995. Lymantria dispar peptide sequences have been disclosed by Valaitis, Insect Biochem Molec Biol, 25:139-149, 1995. Lucilia cuprina nucleic acid and amino acid sequences have been disclosed by Casu et al., Insect Molecular Biology, 3:159-170, 1994. Identification of a serine protease inhibitor of the present invention is unexpected because the most identical 25 amino acid or nucleic acid sequence identified by previous investigators could not be used to identify a flea serine protease inhibitor of the present invention.

In summary, there remains a need to develop a reagent and a method to protect animals from hematophagous ectoparasite infestation.

15

20

25

30

SUMMARY OF THE INVENTION

The present invention relates to a novel product and process for protection of animals from hematophagous ectoparasite infestation. According to the present invention there are provided flea serine protease inhibitor proteins and mimetopes thereof; flea nucleic acid molecules, including those that encode such proteins; antibodies raised against such serine protease inhibitor proteins (i.e., anti-flea serine protease inhibitor antibodies); and other compounds that inhibit flea serine protease inhibitor activity (i.e, inhibitory compounds or inhibitors).

The present invention also includes methods to obtain such proteins, mimetopes, nucleic acid molecules, antibodies and inhibitory compounds. Also included in the present invention are therapeutic compositions comprising such proteins, mimetopes, nucleic acid molecules, antibodies, and/or inhibitory compounds, as well as use of such therapeutic compositions to protect animals from hematophagous ectoparasite infestation.

Identification of a serine protease inhibitor protein of the present invention is unexpected because the most identical amino acid or nucleic acid sequence identified by previous investigators could not be used to identify a flea serine protease inhibitor protein of the present invention. In addition, identification of a flea serine protease inhibitor protein of the present invention is unexpected because a protein fraction from flea prepupal larvae that was obtained by monitoring for carboxylesterase activity surprisingly also contained flea serine protease inhibitor molecular epitopes of the present invention.

One embodiment of the present invention is an isolated flea serine protease nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* serine protease inhibitor gene, including, but not limited to, nucleic acid molecules that hybridize under stringent conditions with a nucleic acid molecule having at least one of the following nucleic acid sequences: SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID

30

NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90. Particularly preferred flea serine protease inhibitor nucleic acid molecules include nucleic acid sequences SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEO ID NO:13, SEO ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ 10 ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEO ID NO:29, SEQ ID NO:31, SEQ ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEO ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, and/or nucleic acid sequences encoding proteins having amino acid sequences SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEO ID NO:12, SEO ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90, as well as allelic variants of any of the listed nucleic acid sequences or complements of any of the listed nucleic acid sequences.

The present invention also includes an isolated nucleic acid molecule that hybridizes under stringent hybridization conditions with a nucleic acid sequence encoding a protein comprising an amino acid sequence including SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID

20

25

30

NO:89, SEQ ID NO:90, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO: 97, and SEQ ID NO:98.

The present invention also relates to recombinant molecules, recombinant viruses and recombinant cells that include flea serine protease inhibitor nucleic acid molecules of the present invention. Also included are methods to produce such nucleic acid molecules, recombinant molecules, recombinant viruses and recombinant cells.

Another embodiment of the present invention includes an isolated flea serine protease inhibitor protein. A preferred flea serine protease inhibitor protein is capable of eliciting an immune response when administered to an animal and/or of having serine protease inhibitor activity. A preferred flea serine protease inhibitor protein is encoded by a nucleic acid molecule that hybridizes under stringent hybridization conditions to a nucleic acid sequence including SEQ ID NO:3, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:21, SEQ ID NO:27, and SEQ ID NO:33, SEQ ID NO:47, SEQ ID NO:50, SEQ ID NO:53, SEQ ID NO:56, SEQ ID NO:59, SEQ ID NO:62, SEQ ID NO:65, SEQ ID NO:68 and SEQ ID NO:71. Particularly preferred flea serine protease inhibitor proteins include at least one of the following amino acid sequences: SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEO ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO: 97, and SEQ ID NO:98.

Yet another embodiment of the present invention is a therapeutic composition that is capable of reducing hematophagous ectoparasite infestation. Such a therapeutic composition includes one or more of the following protective compounds: an isolated flea serine protease inhibitor protein or a mimetope thereof; an isolated nucleic acid molecule that hybridizes under stringent hybridization conditions with a Ctenocephalides felis serine protease inhibitor gene; an isolated antibody that selectively binds to a flea Ctenocephalides felis serine protease inhibitor protein; and an inhibitor of serine protease inhibitor protein activity identified by its ability to inhibit flea serine protease inhibitor activity, such as, but not limited to, a substrate analog of a flea serine

10

15

20

25

30

protease inhibitor protein. A preferred therapeutic composition of the present invention also includes an excipient, an adjuvant and/or a carrier. Also included in the present invention is a method to reduce flea infestation. The method includes the step of administering to the animal a therapeutic composition of the present invention.

The present invention also includes an inhibitor of serine protease inhibitor protein activity identified by its ability to inhibit the activity of a flea serine protease inhibitor protein. An example of such an inhibitor is a substrate analog of a flea serine protease inhibitor protein. Also included in the present invention are mimetopes of flea serine protease inhibitor proteins of the present invention identified by their ability to inhibit flea serine protease activity.

Yet another embodiment of the present invention is a method to identify a compound capable of inhibiting flea serine protease inhibitor activity. The method includes the steps of: (a) contacting an isolated flea serine protease inhibitor protein with a putative inhibitory compound under conditions in which, in the absence of the compound, the protein has serine protease inhibitor activity; and (b) determining if the putative inhibitory compound inhibits the activity. Also included in the present invention is a test kit to identify a compound capable of inhibiting flea serine protease inhibitor activity. Such a kit includes an isolated flea serine protease inhibitor protein having serine protease inhibitor activity and a means for determining the extent of inhibition of the activity in the presence of a putative inhibitory compound.

Yet another embodiment of the present invention is a method to produce a flea serine protease inhibitor protein, the method comprising culturing a cell transformed with a nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* serine protease inhibitor gene.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1 depicts proteins from tissue extracts that bind to a polyclonal antiserum made against a serine protease inhibitor protein.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides for isolated flea serine protease inhibitor (SPI) proteins, isolated flea serine protease inhibitor nucleic acid molecules, antibodies directed against flea serine protease inhibitor proteins and other inhibitors of flea serine

20

25

30

protease inhibitor activity. As used herein, the terms isolated flea serine protease inhibitor proteins and isolated flea serine protease inhibitor nucleic acid molecules refers to serine protease inhibitor proteins and serine protease inhibitor nucleic acid molecules derived from fleas and, as such, can be obtained from their natural source or can be produced using, for example, recombinant nucleic acid technology or chemical synthesis. A SPI protein can have the ability to inhibit the proteolytic activity of a serine protease protein. A protein denoted as a SPI protein can also possess cysteine protease activity, in addition to serine protease activity. Also included in the present invention is the use of these proteins, nucleic acid molecules, antibodies and other inhibitors as therapeutic compositions to protect animals from hematophagous ectoparasite infestation as well as in other applications, such as those disclosed below.

Flea serine protease inhibitor proteins and nucleic acid molecules of the present invention have utility because they represent novel targets for anti-hematophagous ectoparasite vaccines and drugs. The products and processes of the present invention are advantageous because they enable the inhibition of hematophagous ectoparasite serine protease activity necessary for hematophagous ectoparasite survival or the inhibition of serine protease inhibitors, thereby deregulating serine protease activity, leading to uncontrolled proteolysis of an hematophagous ectoparasite.

One embodiment of the present invention is an isolated protein comprising a flea SPI protein. It is to be noted that the term "a" or "an" entity refers to one or more of that entity; for example, a protein refers to one or more proteins or at least one protein. As such, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising", "including", and "having" can be used interchangeably. Furthermore, a compound "selected from the group consisting of" refers to one or more of the compounds in the list that follows, including mixtures (i.e., combinations) of two or more of the compounds. According to the present invention, an isolated, or biologically pure, protein, is a protein that has been removed from its natural milieu. As such, "isolated" and "biologically pure" do not necessarily reflect the extent to which the protein has been purified. An isolated protein of the present invention can be obtained from its natural source, can be produced using recombinant DNA technology or can be produced by chemical synthesis.

20

30

As used herein, an isolated flea SPI protein can be a full-length protein or any homolog of such a protein. An isolated protein of the present invention, including a homolog, can be identified in a straight-forward manner by the protein's ability to elicit an immune response against flea SPI proteins and/or ability to inhibit, or reduce, serine protease activity. Examples of serine protease inhibitor homologs include SPI proteins in which amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitoylation, amidation and/or addition of glycerophosphatidyl inositol) such that the homolog includes at least one epitope capable of eliciting an immune response against a flea protein or has at least some serine protease inhibitor activity. For example, when the homolog is administered to an animal as an immunogen, using techniques known to those skilled in the art, the animal will produce an immune response against at least one epitope of a natural flea SPI protein. The ability of a protein to effect an immune response, can be measured using techniques known to those skilled in the art. Techniques to measure serine protease inhibitor activity are also known to those skilled in the art; see, for example, Jiang et al., 1995, Insect Biochem. Molec. Biol. 25, 1093-1100.

Flea SPI protein homologs can be the result of natural allelic variation or natural mutation. SPI protein homologs of the present invention can also be produced using techniques known in the art including, but not limited to, direct modifications to the protein or modifications to the gene encoding the protein using, for example, classic or recombinant nucleic acid techniques to effect random or targeted mutagenesis.

Isolated SPI proteins of the present invention have the further characteristic of being encoded by nucleic acid molecules that hybridize under stringent hybridization conditions to a gene encoding a *Ctenocephalides felis* SPI protein (i.e., a *C. felis* SPI gene). As used herein, stringent hybridization conditions refer to standard hybridization conditions under which nucleic acid molecules, including oligonucleotides, are used to identify similar nucleic acid molecules. Such standard conditions are disclosed, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press, 1989; Sambrook et al., *ibid.*, is incorporated by reference herein in its entirety. Stringent hybridization conditions typically permit isolation of nucleic acid

30

molecules having at least about 70% nucleic acid sequence identity with the nucleic acid molecule being used to probe in the hybridization reaction. Formulae to calculate the appropriate hybridization and wash conditions to achieve hybridization permitting 30% or less mismatch of nucleotides are disclosed, for example, in Meinkoth et al., 1984, *Anal. Biochem.* 138, 267-284; Meinkoth et al., *ibid.*, is incorporated by reference herein in its entirety.

As used herein, a C. felis SPI gene includes all nucleic acid sequences related to a natural C. felis SPI gene such as regulatory regions that control production of the C. felis SPI protein encoded by that gene (such as, but not limited to, transcription, translation or post-translation control regions) as well as the coding region itself. In one embodiment, a C. felis SPI gene of the present invention includes the nucleic acid sequence SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:3, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69 and/or SEQ ID NO:71. Nucleic acid sequence SEQ ID NO:1 represents the deduced sequence of the coding strand of a complementary DNA (cDNA) nucleic acid molecule denoted herein as nfSPI1₁₅₈₄, the production of which is disclosed in the Examples. The complement of SEQ ID NO:1 (represented herein by SEQ ID NO:3) refers to the nucleic acid sequence of the strand complementary to the strand having SEQ ID NO:1, which can easily be determined by those skilled in the art. Likewise, a nucleic acid sequence complement of any nucleic acid sequence of the present invention refers to the nucleic acid sequence of the nucleic acid strand that is complementary to (i.e., can form a complete double helix with) the strand for which the sequence is cited.

Nucleic acid sequence SEQ ID NO:7 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI2₁₃₅₈, the production of which is disclosed in the Examples. The complement of SEQ ID NO:7 is represented herein by SEQ ID NO:9.

10

15

20

25

30

Nucleic acid sequence SEQ ID NO:13 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI3₁₈₃₈, the production of which is disclosed in the Examples. The complement of SEQ ID NO:13 is represented herein by SEQ ID NO:15.

Nucleic acid sequence SEQ ID NO:19 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI4₁₄₁₄, the production of which is disclosed in the Examples. The complement of SEQ ID NO:19 is represented herein by SEQ ID NO:21.

Nucleic acid sequence SEQ ID NO:25 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI5₁₄₉₂, the production of which is disclosed in the Examples. The complement of SEQ ID NO:25 is represented herein by SEQ ID NO:27.

Nucleic acid sequence SEQ ID NO:31 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI6₁₄₅₄, the production of which is disclosed in the Examples. The complement of SEQ ID NO:31 is represented herein by SEQ ID NO:33.

Nucleic acid sequence SEQ ID NO:45 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI7₅₄₉, the production of which is disclosed in the Examples. The complement of SEQ ID NO:45 is represented herein by SEQ ID NO:47.

Nucleic acid sequence SEQ ID NO:48 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI8₅₄₉, the production of which is disclosed in the Examples. The complement of SEQ ID NO:48 is represented herein by SEQ ID NO:50.

Nucleic acid sequence SEQ ID NO:51 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI9₅₈₁, the production of which is disclosed in the Examples. The complement of SEQ ID NO:51 is represented herein by SEQ ID NO:53.

Nucleic acid sequence SEQ ID NO:54 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI10₆₅₄, the

15

20

30

production of which is disclosed in the Examples. The complement of SEQ ID NO:54 is represented herein by SEQ ID NO:56.

Nucleic acid sequence SEQ ID NO:57 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI11₆₇₀, the production of which is disclosed in the Examples. The complement of SEQ ID NO:57 is represented herein by SEQ ID NO:59.

Nucleic acid sequence SEQ ID NO:60 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI12₇₀₆, the production of which is disclosed in the Examples. The complement of SEQ ID NO:60 is represented herein by SEQ ID NO:62.

Nucleic acid sequence SEQ ID NO:63 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI13₆₂₃, the production of which is disclosed in the Examples. The complement of SEQ ID NO:63 is represented herein by SEQ ID NO:65.

Nucleic acid sequence SEQ ID NO:66 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI14₇₃₁, the production of which is disclosed in the Examples. The complement of SEQ ID NO:66 is represented herein by SEQ ID NO:68.

Nucleic acid sequence SEQ ID NO:69 represents the deduced sequence of the coding strand of a cDNA nucleic acid molecule denoted herein as nfSPI15₆₈₅, the production of which is disclosed in the Examples. The complement of SEQ ID NO:69 is represented herein by SEQ ID NO:71.

It should be noted that since nucleic acid sequencing technology is not entirely error-free, SEQ ID NO:1, SEQ ID NO:7, SEQ ID NO:13, SEQ ID NO:19, SEQ ID NO:25, SEQ ID NO:31, SEQ ID NO:45, SEQ ID NO:48, SEQ ID NO:51, SEQ ID NO:54, SEQ ID NO:57, SEQ ID NO:60, SEQ ID NO:63, SEQ ID NO:66 and SEQ ID NO:69, and complements thereof (as well as other nucleic acid and protein sequences presented herein), at best, represent apparent nucleic acid sequences of certain nucleic acid molecules encoding *C. felis* SPI proteins of the present invention.

In another embodiment, a *C. felis* SPI gene can be an allelic variant that includes a similar but not identical sequence to SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4,

SEO ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEO ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEO ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90. An allelic 10 variant of a C. felis SPI gene is a gene that occurs at essentially the same locus (or loci) in the genome as the gene including SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID 15 NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEO ID NO:45, SEO ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID 20 NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90, but which, due to natural variations caused by, for example, mutation or recombination, has a similar but not identical sequence. Allelic variants typically encode proteins having similar activity to that of the protein encoded by the gene to which they are being 25 compared. Allelic variants can also comprise alterations in the 5' or 3' untranslated regions of the gene (e.g., in regulatory control regions). Allelic variants are well known to those skilled in the art and would be expected to be found within a given flea since the genome is diploid and/or among a group of two or more fleas.

The minimal size of a SPI protein homolog of the present invention is a size sufficient to be encoded by a nucleic acid molecule capable of forming a stable hybrid

20

25

30

(i.e., hybridize under stringent hybridization conditions) with the complementary sequence of a nucleic acid molecule encoding the corresponding natural protein. As such, the size of the nucleic acid molecule encoding such a protein homolog is dependent on nucleic acid composition and percent homology between the nucleic acid molecule and complementary sequence. It should also be noted that the extent of homology required to form a stable hybrid can vary depending on whether the homologous sequences are interspersed throughout the nucleic acid molecules or are clustered (i.e., localized) in distinct regions on the nucleic acid molecules. The minimal size of such nucleic acid molecules is typically at least about 12 to about 15 nucleotides in length if the nucleic acid molecules are GC-rich and at least about 15 to about 17 bases in length if they are AT-rich. As such, the minimal size of a nucleic acid molecule used to encode a SPI protein homolog of the present invention is from about 12 to about 18 nucleotides in length. Thus, the minimal size of a SPI protein homolog of the present invention is from about 4 to about 6 amino acids in length. There is no limit, other than a practical limit, on the maximal size of such a nucleic acid molecule in that the nucleic acid molecule can include a portion of a gene, an entire gene, multiple genes, or portions thereof. The preferred size of a protein encoded by a nucleic acid molecule of the present invention depends on whether a full-length, fusion, multivalent, or functional portion of such a protein is desired.

Suitable fleas from which to isolate SPI proteins of the present invention (including isolation of the natural protein or production of the protein by recombinant or synthetic techniques) include Ctenocephalides, Ceratophyllus, Diamanus, Echidnophaga, Nosopsyllus, Pulex, Tunga, Oropsylla, Orchopeus and Xenopsylla. More preferred fleas from which to isolate SPI proteins include Ctenocephalides felis, Ctenocephalides canis, Ceratophyllus pulicidae, Pulex irritans, Oropsylla (Thrassis) bacchi, Oropsylla (Diamanus) montana, Orchopeus howardi, Xenopsylla cheopis and Pulex simulans, with C. felis being even more preferred.

Suitable flea tissues from which to isolate a SPI protein of the present invention includes tissues from unfed fleas or tissue from fleas that recently consumed a blood meal (i.e., blood-fed fleas). Such flea tissues are referred to herein as, respectively, unfed flea tissues and fed flea tissues. Preferred flea tissues from which to obtain a SPI

20

30

protein of the present invention includes unfed or fed pre-pupal larval, 1st instar larval, 2nd instar larval, 3rd instar larval, and/or adult flea tissues. More preferred flea tissue includes prepupal larval tissue. A SPI of the present invention is also preferably obtained from hemolymph.

A preferred flea SPI protein of the present invention is a compound that when administered to an animal in an effective manner, is capable of protecting that animal from a hematophagous ectoparasite infestation. In accordance with the present invention, the ability of a SPI protein of the present invention to protect an animal from a hematophagous ectoparasite infestation refers to the ability of that protein to, for example, treat, ameliorate and/or prevent infestation caused by a hematophagous ectoparasite. In particular, the phrase "to protect an animal from hematophagous ectoparasite infestation" refers to reducing the potential for hematophagous ectoparasite population expansion on and around the animal (i.e., reducing the hematophagous ectoparasite burden). Preferably, the hematophagous ectoparasite population size is decreased, optimally to an extent that the animal is no longer bothered by hematophagous ectoparasites. A host animal, as used herein, is an animal from which hematophagous ectoparasites can feed by attaching to and feeding through the skin of the animal. Hematophagous ectoparasites, and other ectoparasites, can live on a host animal for an extended period of time or can attach temporarily to an animal in order to feed. At any given time, a certain percentage of a hematophagous ectoparasite population can be on a host animal whereas the remainder can be in the environment of the animal. Such an environment can include not only adult hematophagous ectoparasites, but also hematophagous ectoparasite eggs and/or hematophagous ectoparasite larvae. The environment can be of any size such that hematophagous ectoparasite in the environment are able to jump onto and off of a host animal. For example, the environment of an animal can include plants, such as crops, from which hematophagous ectoparasites infest an animal. As such, it is desirable not only to reduce the hematophagous ectoparasite burden on an animal per se, but also to reduce the hematophagous ectoparasite burden in the environment of the animal. In one embodiment, a SPI protein of the present invention can elicit an immune response

15

20

25

30

(including a humoral and/or cellular immune response) against a hematophagous ectoparasite.

Suitable hematophagous ectoparasites to target include any hematophagous ectoparasite that is essentially incapable of infesting an animal administered a SPI protein of the present invention. As such, a hematophagous ectoparasite to target includes any hematophagous ectoparasite that produces a protein having one or more epitopes that can be targeted by a humoral and/or cellular immune response against a SPI protein of the present invention, that can be targeted by a compound that otherwise inhibits SPI activity, and/or that can be targeted by a SPI protein (e.g., a peptide) or mimetope of a SPI protein of the present invention in such a manner as to inhibit serine protease activity, thereby resulting in the decreased ability of the hematophagous ectoparasite to infest an animal. Preferred hematophagous ectoparasite to target include insects and acarines. A SPI protein of the present invention preferably protects an animal from infestation by hematophagous ectoparasites including, but are not limited to, agricultural pests, stored product pests, forest pests, structural pests or animal health pests. Suitable agricultural pests of the present invention include, but are not limited to, Colorado potato beetles, corn earworms, fleahoppers, weevils, pink boll worms, cotton aphids, beet armyworms, lygus bugs, hessian flies, sod webworms, whites grubs, diamond back moths, white flies, planthoppers, leafhoppers, mealy bugs, mormon crickets and mole crickets. Suitable stored product pests of the present invention include, but are not limited to, dermestids, anobeids, saw toothed grain beetles, indian mealmoths, flour beetles, long-horn wood boring beetles and metallic wood boring beetles. Suitable forest pests of the present invention include, but are not limited to, southern pine bark beetles, gypsy moths, elm beetles, ambrosia bettles, bag worms, tent worms and tussock moths. Suitable structural pests of the present invention include, but are not limited to, bess beetles, termites, fire ants, carpenter ants, wasps, hornets, cockroaches, silverfish, Musca domestica and Musca autumnalis. Suitable animal health pests of the present invention include, but are not limited to, fleas, ticks, mosquitoes, black flies, lice, true bugs, sand flies, *Psychodidae*, tsetse flies, sheep blow flies, cattle grub, mites, horn flies, heel flies, deer flies, Culicoides and warble flies. A SPI protein of the present invention more preferably protects an animal from infestation by

25

30

hematophagous ectoparasites including fleas, midges, mosquitos, sand flies, black flies, horse flies, snipe flies, louse flies, horn flies, deer flies, tsetse flies, buffalo flies, blow flies, stable flies, myiasis-causing flies, biting gnats, lice, mites, bee, wasps, ants, true bugs and ticks, even more preferably fleas and ticks, and even more preferably fleas. Preferred fleas from which to protect an animal from flea infestation include those disclosed herein for the isolation of a SPI of the present invention.

The present invention also includes mimetopes of SPI proteins of the present invention. As used herein, a mimetope of a SPI protein of the present invention refers to any compound that is able to mimic the activity of such a SPI protein (e.g., ability to elicit an immune response against a SPI protein of the present invention and/or ability to inhibit serine protease activity), often because the mimetope has a structure that mimics the SPI protein. It is to be noted, however, that the mimetope need not have a structure similar to an SPI protein as long as the mimetope functionally mimics the protein. Mimetopes can be, but are not limited to: peptides that have been modified to decrease their susceptibility to degradation; anti-idiotypic and/or catalytic antibodies, or fragments thereof; non-proteinaceous immunogenic portions of an isolated protein (e.g., carbohydrate structures); synthetic or natural organic or inorganic molecules, including nucleic acids; and/or any other peptidomimetic compounds. Mimetopes of the present invention can be designed using computer-generated structures of SPI proteins of the present invention. Mimetopes can also be obtained by generating random samples of molecules, such as oligonucleotides, peptides or other organic molecules, and screening such samples by affinity chromatography techniques using the corresponding binding partner, (e.g., a flea serine protease or anti-flea serine protease inhibitor antibody). A preferred mimetope is a peptidomimetic compound that is structurally and/or functionally similar to a SPI protein of the present invention, particularly to the active site of the SPI protein.

One embodiment of a flea SPI protein of the present invention is a fusion protein that includes a flea SPI protein-containing domain attached to one or more fusion segments. Suitable fusion segments for use with the present invention include, but are not limited to, segments that can: enhance a protein's stability; act as an immunopotentiator to enhance an immune response against a SPI protein; and/or assist

20

purification of a SPI protein (e.g., by affinity chromatography). A suitable fusion segment can be a domain of any size that has the desired function (e.g., imparts increased stability, imparts increased immunogenicity to a protein, and/or simplifies purification of a protein). Fusion segments can be joined to amino and/or carboxyl termini of the SPI-containing domain of the protein and can be susceptible to cleavage in order to enable straight-forward recovery of a SPI protein. Fusion proteins are preferably produced by culturing a recombinant cell transformed with a fusion nucleic acid molecule that encodes a protein including the fusion segment attached to either the carboxyl and/or amino terminal end of a SPI-containing domain. Preferred fusion segments include a metal binding domain (e.g., a poly-histidine segment); an immunoglobulin binding domain (e.g., Protein A; Protein G; T cell; B cell; Fc receptor or complement protein antibody-binding domains); a sugar binding domain (e.g., a maltose binding domain); and/or a "tag" domain (e.g., at least a portion of βgalactosidase, a strep tag peptide, other domains that can be purified using compounds that bind to the domain, such as monoclonal antibodies). More preferred fusion segments include metal binding domains, such as a poly-histidine segment; a maltose binding domain; a strep tag peptide, such as that available from Biometra in Tampa, FL; and an S10 peptide. Examples of particularly preferred fusion proteins of the present invention include PHis-PfSPI2₃₇₆, PHis-PfSPI3₃₉₀, PHis-PfSPI4₃₇₆, PHis-PfSPI6₃₇₆, PHis-PfSPIC4:V7, PHis-PfSPIC4:V8, PHis-PfSPIC4:V9, PHis-PfSPIC4:V10, PHis-PfSPIC4:V12, PHis-PfSPIC4:V13 and PHis-PfSPIC4:V15, production of which are disclosed herein.

In another embodiment, a flea SPI protein of the present invention also includes at least one additional protein segment that is capable of protecting an animal from hematophagous ectoparasite infestations. Such a multivalent protective protein can be produced by culturing a cell transformed with a nucleic acid molecule comprising two or more nucleic acid domains joined together in such a manner that the resulting nucleic acid molecule is expressed as a multivalent protective compound containing at least two protective compounds, or portions thereof, capable of protecting an animal from hematophagous ectoparasite infestation by, for example, targeting two different flea proteins.

20

30

Examples of multivalent protective compounds include, but are not limited to, a SPI protein of the present invention attached to one or more compounds protective against one or more flea compounds. Preferred second compounds are proteinaceous compounds that effect active immunization (e.g., antigen vaccines), passive immunization (e.g., antibodies), or that otherwise inhibit a hematophagous ectoparasite activity that when inhibited can reduce hematophagous ectoparasite burden on and around an animal. Examples of second compounds include a compound that inhibits binding between a flea protein and its ligand (e.g., a compound that inhibits flea ATPase activity or a compound that inhibits binding of a peptide or steroid hormone to its receptor), a compound that inhibits hormone (including peptide or steroid hormone) synthesis, a compound that inhibits vitellogenesis (including production of vitellin and/or transport and maturation thereof into a major egg yolk protein), a compound that inhibits fat body function, a compound that inhibits muscle action, a compound that inhibits the nervous system, a compound that inhibits the immune system and/or a compound that inhibits flea feeding. Particular examples of second compounds include, but are not limited to, serine proteases, cysteine proteases, aminopeptidases, calreticulins and esterases, as well as antibodies and inhibitors of such proteins. In one embodiment, a flea SPI protein of the present invention is attached to one or more additional compounds protective against hematophagous ectoparasite infestation. In another embodiment, one or more protective compounds, such as those listed above, can be included in a multivalent vaccine comprising a flea SPI protein of the present invention and one or more other protective molecules as separate compounds.

A preferred flea SPI protein of the present invention is encoded by a nucleic acid molecule that hybridizes under stringent hybridization conditions with at least one of the following nucleic acid molecules: nfSPI1₁₅₈₄, nfSPI1₁₁₉₁, nfSPI1₃₇₆, nfSPI2₁₃₅₈, nfSPI2₁₁₉₇, nfSPI2₃₇₆, nfSPI3₁₈₃₈, nfSPI3₁₂₆₀, nfSPI3₃₉₁, nfSPI4₁₄₁₄, nfSPI4₁₁₇₉, nfSPI4₃₇₆, nfSPI5₁₄₉₂, nfSPI5₁₁₉₄, nfSPI5₃₇₆, nfSPI6₁₄₅₄, nfSPI6₁₁₉₁, nfSPI6₃₇₆, nfSPI7₅₄₉, nfSPI8₅₄₉, nfSPI9₅₈₁, nfSPI10₆₅₄, nfSPI11₆₇₀, nfSPI12₇₀₆, nfSPI13₆₂₃, nfSPI14₇₃₁, nfSPI15₆₈₅, nfSPI3₁₂₂₂, nfSPI6₁₁₅₅, nfSPI2₁₀₆₅ and nfSPI4₁₀₇₀. A further preferred isolated protein is encoded by a nucleic acid molecule that hybridizes under stringent hybridization conditions with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:3,

10

25

30

SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:21, SEQ ID NO:27, and SEQ ID NO:33, SEQ ID NO:47, SEQ ID NO:50, SEQ ID NO:53, SEQ ID NO:56, SEQ ID NO:59, SEQ ID NO:62, SEQ ID NO:65, SEQ ID NO:68 and SEQ ID NO:71.

Translation of SEQ ID NO:1 suggests that nucleic acid molecule nfSPI1₁₅₈₄ encodes a full-length flea protein of about 397 amino acids, referred to herein as PfSPI1₃₉₇, represented by SEQ ID NO:2, assuming an open reading frame having an initiation (start) codon spanning from about nucleotide 136 through about nucleotide 138 of SEO ID NO:1 and a termination (stop) codon spanning from about nucleotide 1327 through about nucleotide 1329 of SEQ ID NO:1. The coding region encoding PfSPI1₃₉₇ is represented by nucleic acid molecule nfSPI1₁₁₉₁, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:4 and a complementary strand with the nucleic acid sequence represented by SEQ ID NO:5. The deduced amino acid sequence SEQ ID NO:2 suggests a protein having a molecular weight of about 44.4 kilodaltons (kD) and an estimated pI of about 4.97. Analysis of SEQ ID NO:2 suggests the presence of a signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 21. The proposed mature protein, denoted herein as PfSPI1₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:6. The amino acid sequence of flea PfSPI1₃₇₆ (i.e. SEQ ID NO:6) predicts that PfSPI1₃₇₆ has an estimated molecular weight of about 42.1 kD, an estimated pI of about 4.90, and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

Comparison of amino acid sequence SEQ ID NO:2 (i.e., the amino acid sequence of PfSPI1₃₉₇) with amino acid sequences reported in GenBank indicates that SEQ ID NO:2 showed the most homology, i.e., about 36% identity, with GenBank accession number 1378131, a serpin protein from *Manduca sexta*.

Translation of SEQ ID NO:7 suggests that nucleic acid molecule nfSPI2₁₃₅₈ encodes a non-full-length flea SPI protein of about 399 amino acids, referred to herein as PfSPI2₃₉₉, represented by SEQ ID NO:8, assuming an open reading frame having a first in-frame codon spanning from about nucleotide 2 through about nucleotide 4 of SEQ ID NO:7 and a termination codon spanning from about nucleotide 1199 through about nucleotide 1201 of SEQ ID NO:7. The coding region encoding PfSPI2₃₉₉ is represented

15

20

25

30

by nucleic acid molecule nfSPI2₁₁₉₇, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:10 and a complementary strand with the nucleic acid sequence represented by SEQ ID NO:11. Analysis of SEQ ID NO:8 suggests the presence of a partial signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 23. The proposed mature protein, denoted herein as PfSPI2₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:12. The amino acid sequence of flea PfSPI1₃₇₆ (i.e. SEQ ID NO:12) predicts that PfSPI2₃₇₆ has an estimated molecular weight of about 42.1 kD, an estimated pI of about 4.87, and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

Comparison of amino acid sequence SEQ ID NO:8 (i.e., the amino acid sequence of PfSPI2₃₉₉) with amino acid sequences reported in GenBank indicates that SEQ ID NO:8, showed the most homology, i.e., about 36% identity, with GenBank accession number 1345616, a serpin protein from *Homo sapiens*.

Translation of SEQ ID NO:13 suggests that nucleic acid molecule nfSPI3₁₈₃₈ encodes a full-length flea SPI protein of about 420 amino acids, referred to herein as PfSPI3₄₂₀, represented by SEQ ID NO:14, assuming an open reading frame having an initiation codon spanning from about nucleotide 306 through about nucleotide 308 of SEQ ID NO:13 and a termination codon spanning from about nucleotide 1566 through about nucleotide 1568 of SEQ ID NO:13. The coding region encoding PfSPI3₄₂₀ is represented by nucleic acid molecule nfSPI3₁₂₆₀, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:16 and a complementary strand with the nucleic acid sequence represented by SEQ ID NO:17. The deduced amino acid sequence SEQ ID NO:14 suggests a protein having a molecular weight of about 47.1 kilodaltons (kD) and an estimated pI of about 4.72. Analysis of SEQ ID NO:14 suggests the presence of a signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 30. The proposed mature protein, denoted herein as PfSPI3₃₉₀, contains about 390 amino acids which is represented herein as SEQ ID NO:18. The amino acid sequence of flea PfSPI3₃₉₀ (i.e. SEQ ID NO:18) predicts that PfSPI3₃₉₀ has an estimated molecular weight of about 43.7 kD, an estimated pI of about 4.63, and two predicted asparagine-linked glycosylation sites extending from about

25

30

amino acid 252 to about amino acid 254 and from about amino acid 369 to about amino acid 371.

Comparison of amino acid sequence SEQ ID NO:14 (i.e., the amino acid sequence of PfSPI3₄₂₀) with amino acid sequences reported in GenBank indicates that SEQ ID NO:14, showed the most homology, i.e., about 35% identity, with GenBank accession number 1345616, a serpin protein from *Homo sapiens*.

Translation of SEQ ID NO:19 suggests that nucleic acid molecule nfSPI4₁₄₁₄ encodes a non-full-length flea SPI protein of about 393 amino acids, referred to herein as PfSPI4₃₉₃, represented by SEQ ID NO:20, assuming an open reading frame having a first in-frame codon spanning from about nucleotide 2 through about nucleotide 4 of SEQ ID NO:19 and a termination codon spanning from about nucleotide 1181 through about nucleotide 1183 of SEQ ID NO:19. The coding region encoding PfSPI4₃₉₃, is represented by nucleic acid molecule nfSPI4₁₁₇₉, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:22 and a complementary strand with the nucleic acid sequence represented by SEQ ID NO:23. Analysis of SEQ ID NO:20 suggests the presence of a partial signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 17. The proposed mature protein, denoted herein as PfSPI4₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:24. The amino acid sequence of flea PfSPI4₃₇₆ (i.e. SEQ ID NO:24) predicts that PfSPI4₃₂₆ has an estimated molecular weight of about 42.2 kD, an estimated pI of about 5.31, and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

Comparison of amino acid sequence SEQ ID NO:20 (i.e., the amino acid sequence of PfSPI4₃₉₃) with amino acid sequences reported in GenBank indicates that SEQ ID NO:20, showed the most homology, i.e., about 38% identity, with GenBank accession number 1345616, a serpin protein from *Homo sapiens*.

Translation of SEQ ID NO:25 suggests that nucleic acid molecule nfSPI5₁₄₉₂ encodes a non-full-length flea SPI protein of about 398 amino acids, referred to herein as PfSPI5₃₉₈, represented by SEQ ID NO:26, assuming an open reading frame having a first in-frame codon spanning from about nucleotide 3 through about nucleotide 5 of SEQ ID NO:25 and a termination codon spanning from about nucleotide 1197 through about

20

25

30

nucleotide 1199 of SEQ ID NO:25. The coding region encoding PfSPI5₃₉₈, is represented by nucleic acid molecule nfSPI5₁₁₉₄, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:28 and a complementary strand with the nucleic acid sequence represented by SEQ ID NO:29. Analysis of SEQ ID NO:26 suggests the presence of a partial signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 22. The proposed mature protein, denoted herein as PfSPI5₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:30. The amino acid sequence of flea PfSPI5₃₇₆ (i.e. SEQ ID NO:30) predicts that PfSPI5₃₇₆ has an estimated molecular weight of about 42.3 kD, an estimated pI of about 5.31 and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

Comparison of amino acid sequence SEQ ID NO:26 (i.e., the amino acid sequence of PfSPI5₃₉₈) with amino acid sequences reported in GenBank indicates that SEQ ID NO:26 showed the most homology, i.e., about 38% identity with GenBank accession number 1345616, a serpin protein from *Homo sapiens*.

Translation of SEQ ID NO:31 suggests that nucleic acid molecule nfSPI6₁₄₅₄ encodes a full-length flea SPI protein of about 397 amino acids, referred to herein as PfSPI6₃₉₇, represented by SEQ ID NO:32, assuming an open reading frame having an initiation codon spanning from about nucleotide 20 through about nucleotide 22 of SEQ ID NO:31 and a termination codon spanning from about nucleotide 1211 through about nucleotide 1213 of SEQ ID NO:31. The coding region encoding PfSPI6₃₉₇ is represented by nucleic acid molecule nfSPI6₁₁₉₁, having a coding strand with the nucleic acid sequence represented by SEQ ID NO:34 and a complementary strand with the nucleic acid sequence represented by SEQ ID NO:35. The deduced amino acid sequence SEQ ID NO:32 suggests a protein having a molecular weight of about 44.4 kilodaltons (kD) and an estimated pI of about 4.90. Analysis of SEQ ID NO:32 suggests the presence of a signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 21. The proposed mature protein, denoted herein as PfSPI6₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:36. The amino acid sequence of flea PfSPI6376 (i.e. SEQ ID NO:36) predicts that PfSPI6376 has an estimated molecular weight of about 42.1 kD, an estimated pI of about 4.84, and a

25

30

predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

Comparison of amino acid sequence SEQ ID NO:32 (i.e., the amino acid sequence of PfSPI6₃₉₇) with amino acid sequences reported in GenBank indicates that SEQ ID NO:32 showed the most homology, i.e., about 36% identity with GenBank accession number 1378131, a serpin protein from *Manduca sexta*.

Translation of SEQ ID NO:45 suggests that nucleic acid molecule nfSPI7₅₄₉ encodes a portion of a serine protease inhibitor protein of about 134 amino acids, referred to herein as PfSPI7₁₃₄, having amino acid sequence SEQ ID NO:46, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:45 and the last codon spans from nucleotide 402 through nucleotide 404 of SEQ ID NO:45. The complement of SEQ ID NO:45 is represented herein by SEQ ID NO:47.

Comparison of amino acid sequence SEQ ID NO:46 (i.e., the amino acid sequence of PfSPI7₁₃₄) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:46, showed the most homology, i.e., about 34% identity, between SEQ ID NO:46 and *mus musculus* antithrombin III precursor protein.

Translation of SEQ ID NO:48 suggests that nucleic acid molecule nfSPI8₅₄₉ encodes a serine protease inhibitor variable domain protein of about 149 amino acids, referred to herein as PfSPI8₁₄₉, having amino acid sequence SEQ ID NO:49, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:48 and the last codon spans from nucleotide 447 through nucleotide 449 of SEQ ID NO:48. The complement of SEQ ID NO:48 is represented herein by SEQ ID NO:50.

Comparison of amino acid sequence SEQ ID NO:49 (i.e., the amino acid sequence of PfSPI8₁₄₉) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:49, showed the most homology, i.e., about 36% identity, between SEQ ID NO:49 and human bomapin protein.

Translation of SEQ ID NO:51 suggests that nucleic acid molecule nfSPI9₅₈₁ encodes a serine protease inhibitor variable domain protein of about 136 amino acids, referred to herein as PfSPI9₁₃₆, having amino acid sequence SEQ ID NO:52, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:51 and the

15

20

25

30

last codon spans from nucleotide 408 through nucleotide 410 of SEQ ID NO:51. The complement of SEQ ID NO:51 is represented herein by SEQ ID NO:53.

Comparison of amino acid sequence SEQ ID NO:52 (i.e., the amino acid sequence of PfSPI9₁₃₆) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:52, showed the most homology, i.e., about 45% identity, between SEQ ID NO:52 and *Bombyx mori* anti-trypsin precusor protein.

Translation of SEQ ID NO:54 suggests that nucleic acid molecule nfSPI10₆₅₄ encodes a serine protease inhibitor variable domain protein of about 118 amino acids, referred to herein as PfSPI10₁₁₈, having amino acid sequence SEQ ID NO:55, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:54 and the last codon spans from nucleotide 354 through nucleotide 356 of SEQ ID NO:54. The complement of SEQ ID NO:54 is represented herein by SEQ ID NO:56.

Comparison of amino acid sequence SEQ ID NO:55 (i.e., the amino acid sequence of PfSPI10₁₁₈) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:55, showed the most homology, i.e., about 38% identity, between SEQ ID NO:55 and *Manduca sexta* alaserpin precursor protein.

Translation of SEQ ID NO:57 suggests that nucleic acid molecule nfSPI11₆₇₀ encodes a serine protease inhibitor variable domain protein of about 125 amino acids, referred to herein as PfSPI11₁₂₅, having amino acid sequence SEQ ID NO:58, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:57 and the last codon spans from nucleotide 375 through nucleotide 377 of SEQ ID NO:57. The complement of SEQ ID NO:57 is represented herein by SEQ ID NO:59.

Comparison of amino acid sequence SEQ ID NO:58 (i.e., the amino acid sequence of PfSPI11₁₂₅) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:58, showed the most homology, i.e., about 43% identity, between SEQ ID NO:58 and *Manduca sexta* alaserpin precursor protein.

Translation of SEQ ID NO:60 suggests that nucleic acid molecule nfSPI12₇₀₆ encodes a serine protease inhibitor variable domain protein of about 136 amino acids, referred to herein as PfSPI12₁₃₆, having amino acid sequence SEQ ID NO:61, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:60 and the

25

30

last codon spans from nucleotide 408 through nucleotide 410 of SEQ ID NO:60. The complement of SEQ ID NO:60 is represented herein by SEQ ID NO:62.

Comparison of amino acid sequence SEQ ID NO:61 (i.e., the amino acid sequence of PfSPI12₁₃₆) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:61, showed the most homology, i.e., about 45% identity, between SEQ ID NO:61 and *Manduca sexta* alaserpin precursor protein protein.

Translation of SEQ ID NO:63 suggests that nucleic acid molecule nfSPI13₆₂₃ encodes a serine protease inhibitor variable domain protein of about 122 amino acids, referred to herein as PfSPI13₁₂₂, having amino acid sequence SEQ ID NO:64, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:63 and the last codon spans from nucleotide 366 through nucleotide 368 of SEQ ID NO:63. The complement of SEQ ID NO:63 is represented herein by SEQ ID NO:65.

Comparison of amino acid sequence SEQ ID NO:64 (i.e., the amino acid sequence of PfSPI13₁₂₂) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:64, showed the most homology, i.e., about 39% identity, between SEQ ID NO:64 and human leukocyte esterase inhibitor protein.

Translation of SEQ ID NO:66 suggests that nucleic acid molecule nfSPI14₇₃₁ encodes a serine protease inhibitor variable domain protein of about 137 amino acids, referred to herein as PfSPI14₁₃₇, having amino acid sequence SEQ ID NO:67, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:66 and the last codon spans from nucleotide 411 through nucleotide 413 of SEQ ID NO:66. The complement of SEQ ID NO:66 is represented herein by SEQ ID NO:68.

Comparison of amino acid sequence SEQ ID NO:67 (i.e., the amino acid sequence of PfSPI14₁₃₇) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:67, showed the most homology, i.e., about 40% identity, between SEQ ID NO:67 and *Equus callabus* esterase inhibitor protein.

Translation of SEQ ID NO:69 suggests that nucleic acid molecule nfSPI15₆₈₅ encodes a serine protease inhibitor variable domain protein of about 135 amino acids, referred to herein as PfSPI15₁₃₅, having amino acid sequence SEQ ID NO:70, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:69 and the

15

20

25

30

last codon spans from nucleotide 405 through nucleotide 407 of SEQ ID NO:69. The complement of SEQ ID NO:69 is represented herein by SEQ ID NO:71.

Comparison of amino acid sequence SEQ ID NO:70 (i.e., the amino acid sequence of PfSPI15₁₃₅) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:70, showed the most homology, i.e., about 48% identity, between SEQ ID NO:70 and Bombyx mori antichymotrypsin II protein.

More preferred flea SPI proteins of the present invention include proteins comprising amino acid sequences that are at least about 40%, preferably at least about 50%, more preferably at least about 60%, more preferably at least about 70%, more preferably at least about 80%, and even more preferably at least about 90%, identical to amino acid sequence SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89 and/or SEQ ID NO:90.

More preferred flea SPI proteins of the present invention include proteins encoded by a nucleic acid molecule comprising at least a portion of nfSPI1₁₅₈₄, nfSPI1₁₁₉₁, nfSPI1₃₇₆, nfSPI2₁₃₅₈, nfSPI2₁₁₉₇, nfSPI2₃₇₆, nfSPI3₁₈₃₈, nfSPI3₁₂₆₀, nfSPI3₃₉₁, nfSPI4₁₄₁₄, nfSPI4₁₁₇₉, nfSPI4₃₇₆, nfSPI5₁₄₉₂, nfSPI5₁₁₉₄, nfSPI5₃₇₆, nfSPI6₁₄₅₄, nfSPI6₁₁₉₁, nfSPI6₃₇₆, nfSPI7₅₄₉, nfSPI8₅₄₉, nfSPI9₅₈₁, nfSPI10₆₅₄, nfSPI11₆₇₀, nfSPI12₇₀₆, nfSPI13₆₂₃, nfSPI14₇₃₁, nfSPI15₆₈₅, nfSPI3₁₂₂₂, nfSPI6₁₁₅₅, nfSPI2₁₀₆₅, nfSPI4₁₀₇₀, nfSPIC4:V7₁₁₆₈, nfSPIC4:V8₁₂₂₂, nfSPIC4:V9₁₁₇₄, nfSPIC4:V10₁₁₅₉, nfSPIC4:V12₁₁₇₁, nfSPIC4:V13₁₁₇₁, and nfSPIC4:V15₁₁₇₉, or by an allelic variant of such nucleic acid molecules.

Particularly preferred flea SPI proteins are PfSPI1₃₉₇, PfSPI1₃₇₆, PfSPI2₃₉₉, PfSPI2₃₇₆, PfSPI2₃₅₄, PfSPI3₄₀₆, PfSPI3₄₂₀, PfSPI3₃₉₁, PfSPI4₃₉₃, PfSPI4₃₇₆, PfSPI4₃₅₆, PfSPI5₃₉₈, PfSPI5₃₇₆, PfSPI6₃₉₇, PfSPI6₃₇₆, PfSPI6₃₈₅, PfSPI2₃₅₅, PfSPI3₄₀₆, PfSPI4₃₅₆, PfSPI6₃₈₅, PfSPI7₁₃₄, PfSPI8₁₄₉, PfSPI9₁₃₆, PfSPI10₁₁₈, PfSPI11₁₂₅, PfSPI12₁₃₆, PfSPI13₁₂₂, PfSPI14₁₃₇, PfSPI15₁₃₅, PHis-PfSPIC4:V7, PHis-PfSPIC4:V8, PHis-PfSPIC4:V9, PHis-PfSPIC4:V10, PHis-PfSPIC4:V12, PHis-PfSPIC4:V13, PHis-PfSPIC4:V15.

In one embodiment, a preferred SPI protein of the present invention is encoded by at least a portion of SEQ ID NO:1, SEQ ID NO:4, SEQ ID NO:7, SEQ ID NO:10,

SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:25, SEQ ID NO:28, SEQ ID NO:31, SEQ ID NO:34, SEQ ID NO:45, SEQ ID NO:48, SEQ ID NO:51, SEQ ID NO:54, SEQ ID NO:57, SEQ ID NO:60, SEQ ID NO:63, SEQ ID NO:66, SEQ ID NO:69, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81 and/or a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90, and, as such, has an amino acid sequence that includes at least a portion of SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70 SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90, respectively.

Also preferred is a protein encoded by an allelic variant of a nucleic acid molecule comprising at least a portion of SEQ ID NO:1, SEQ ID NO:4, SEQ ID NO:7, SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:25, SEQ ID NO:28, SEQ ID NO:31, SEQ ID NO:34, SEQ ID NO:45, SEQ ID NO:48, SEO ID NO:51, SEQ ID NO:54, SEQ ID NO:57, SEQ ID NO:60, SEQ ID NO:63, SEQ ID NO:66, SEQ ID NO:69, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, and/or a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90. Particularly 20 preferred SPI proteins of the present invention include SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEO ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID 25 NO:89, SEQ ID NO:90, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO: 97, and/or SEQ ID NO:98 (including, but not limited to, the proteins consisting of such sequences, fusion proteins and multivalent proteins) and proteins encoded by allelic variants of SEQ ID NO:1, SEQ ID NO:4, SEQ ID NO:7, SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:16, SEO ID NO:19, SEQ ID NO:22, SEQ ID NO:25, SEQ ID NO:28, SEQ ID 30 NO:31, SEO ID NO:34, SEQ ID NO:45, SEQ ID NO:48, SEQ ID NO:51, SEQ ID

15

20

25

30

NO:54, SEQ ID NO:57, SEQ ID NO:60, SEQ ID NO:63, SEQ ID NO:66, SEQ ID NO:69, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, and/or a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90.

Another embodiment of the present invention is an isolated nucleic acid molecule that hybridizes under stringent hybridization conditions with a *C. felis* SPI gene. The identifying characteristics of such a gene are heretofore described. A nucleic acid molecule of the present invention can include an isolated natural flea SPI gene or a homolog thereof, the latter of which is described in more detail below. A nucleic acid molecule of the present invention can include one or more regulatory regions, full-length or partial coding regions, or combinations thereof. The minimal size of a nucleic acid molecule of the present invention is the minimal size that can form a stable hybrid with a *C. felis* SPI gene under stringent hybridization conditions.

In accordance with the present invention, an isolated nucleic acid molecule is a nucleic acid molecule that has been removed from its natural milieu (i.e., that has been subject to human manipulation) and can include DNA, RNA, or derivatives of either DNA or RNA. As such, "isolated" does not reflect the extent to which the nucleic acid molecule has been purified. An isolated flea SPI nucleic acid molecule of the present invention can be isolated from its natural source or can be produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis. Isolated SPI nucleic acid molecules can include, for example, natural allelic variants and nucleic acid molecules modified by nucleotide insertions, deletions, substitutions, and/or inversions in a manner such that the modifications do not substantially interfere with the nucleic acid molecule's ability to encode a SPI protein of the present invention or to form stable hybrids under stringent conditions with natural gene isolates.

A flea SPI nucleic acid molecule homolog can be produced using a number of methods known to those skilled in the art (see, for example, Sambrook et al., *ibid.*). For example, nucleic acid molecules can be modified using a variety of techniques including, but not limited to, classic mutagenesis and recombinant DNA techniques (e.g., site-directed mutagenesis, chemical treatment, restriction enzyme cleavage,

25

30

ligation of nucleic acid fragments and/or PCR amplification), synthesis of oligonucleotide mixtures and ligation of mixture groups to "build" a mixture of nucleic acid molecules and combinations thereof. Nucleic acid molecule homologs can be selected by hybridization with a *C. felis* SPI gene or by screening for function of a protein encoded by the nucleic acid molecule (e.g., ability to elicit an immune response against at least one epitope of a flea SPI protein or has at least some serine protease inhibitor activity).

An isolated nucleic acid molecule of the present invention can include a nucleic acid sequence that encodes at least one flea SPI protein of the present invention, examples of such proteins being disclosed herein. Although the phrase "nucleic acid molecule" primarily refers to the physical nucleic acid molecule and the phrase "nucleic acid sequence" primarily refers to the sequence of nucleotides on the nucleic acid molecule, the two phrases can be used interchangeably, especially with respect to a nucleic acid molecule, or a nucleic acid sequence, being capable of encoding a flea SPI protein.

A preferred nucleic acid molecule of the present invention, when administered to an animal, is capable of protecting that animal from infestation by a hematophagous ectoparasite. As will be disclosed in more detail below, such a nucleic acid molecule can be, or can encode, an antisense RNA, a molecule capable of triple helix formation, a ribozyme, or other nucleic acid-based drug compound. In additional embodiments, a nucleic acid molecule of the present invention can encode a protective protein (e.g., a SPI protein of the present invention), the nucleic acid molecule being delivered to the animal, for example, by direct injection (i.e, as a naked nucleic acid) or in a vehicle such as a recombinant virus vaccine or a recombinant cell vaccine.

One embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI1₁₅₈₄ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:1 and/or SEQ ID NO:3.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI2₁₃₅₈

15

20

25

30

and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:7 and/or SEQ ID NO:9.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI3₁₈₃₈ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:13 and/or SEQ ID NO:15.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI4₁₄₁₄ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:19 and/or SEQ ID NO:21.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI5₁₄₉₂ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:25 and/or SEQ ID NO:27.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI6₁₄₅₄ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:31 and/or SEQ ID NO:33.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI7₅₄₉ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:45 and/or SEQ ID NO:47.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI8₅₄₉ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:48 and/or SEQ ID NO:50.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI9₅₈₁ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:51 and/or SEQ ID NO:53.

10

15

20

25

30

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI10₆₅₄ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:54 and/or SEQ ID NO:56.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI11₆₇₀ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:57 and/or SEQ ID NO:59.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI12₇₀₆ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:60 and/or SEQ ID NO:62.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI13₆₂₃ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:63 and/or SEQ ID NO:65.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI14₇₃₁ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:66 and/or SEQ ID NO:68.

Another embodiment of the present invention is a SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with nucleic acid molecule nfSPI15₆₈₅ and preferably with a nucleic acid molecule having nucleic acid sequence SEQ ID NO:69 and/or SEQ ID NO:71.

Comparison of nucleic acid sequence SEQ ID NO:4 (i.e., the nucleic acid sequence of the coding strand of nfSPI1₁₁₉₁) with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:4 showed the most homology, i.e., about 55% identity, with accession number L20792, a putative serine proteinase inhibitor (serpin 1, exon 9 copy 2) gene of *Manduca sexta*.

Comparison of nucleic acid sequence SEQ ID NO:10 (i.e., the nucleic acid sequence of the coding strand of nfSPI2₁₁₉₇) with nucleic acid sequences reported in

15

20

25

30

GenBank indicates that SEQ ID NO:10 showed the most homology, i.e., about 43% identity, with accession number L20790, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 1) of *Manduca sexta*.

Comparison of nucleic acid sequence SEQ ID NO:16 (i.e., the nucleic acid sequence of the coding strand of nfSPI3₁₂₆₀) with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:16 showed the most homology, i.e., about 52% identity, with accession number L20792, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 2) of *Manduca sexta*.

Comparison of nucleic acid sequence SEQ ID NO:22 (i.e., the nucleic acid sequence of the coding strand of nfSPI4₁₁₇₉) with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:22 showed the most homology, i.e., about 55% identity, with accession number L20793, a putative serine proteinase inhibitor gene (serpin 1, exon 9 unknown copy number) of *Manduca sexta*.

Comparison of nucleic acid sequence SEQ ID NO:28 (i.e., the nucleic acid sequence of the coding strand of nfSPI5₁₁₉₄) with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:28 showed the most homology, i.e., about 45% identity, with accession number L20790, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 1) of *Manduca sexta*.

Comparison of nucleic acid sequence SEQ ID NO:34 (i.e., the nucleic acid sequence of the coding strand of nfSPI6₁₁₉₁) with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:34 showed the most homology, i.e., about 55% identity, with accession number L20792, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 2) of *Manduca sexta*.

Comparison of nucleic acid sequence SEQ ID NO:45 (i.e., the nucleic acid sequence of nfSPI7₅₄₉) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:45, showed the most homology, i.e., about 38% identity, between SEQ ID NO:45 and human bomapin gene.

Comparison of nucleic acid sequence SEQ ID NO:48 (i.e., the nucleic acid sequence of nfSPI8₅₄₉) with nucleic acid sequences reported in GeEmbl indicates that SEQ ID NO:48, showed the most homology, i.e., about 41% identity, between SEQ ID NO:48 and human bomapin gene.

10

20

25

Comparison of nucleic acid sequence SEQ ID NO:51 (i.e., the nucleic acid sequence of nfSPI9₅₈₁) with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:51, showed the most homology, i.e., about 52% identity, between SEQ ID NO:51 and *Bombyx mori* anti-trypsin gene.

Comparison of nucleic acid sequence SEQ ID NO:54 (i.e., the nucleic acid sequence of nfSPI10₆₅₄) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:54, showed the most homology, i.e., about 41% identity, between SEQ ID NO:54 and human bomapin gene.

Comparison of nucleic acid sequence SEQ ID NO:57 (i.e., the nucleic acid sequence of nfSPI11₆₇₀) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:57, showed the most homology, i.e., about 40% identity, between SEQ ID NO:57 and human bomapin gene.

Comparison of nucleic acid sequence SEQ ID NO:60 (i.e., the nucleic acid sequence of nfSPI12₇₀₆) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:60, showed the most homology, i.e., about 38% identity, between SEQ ID NO:60 and human bomapin gene.

Comparison of nucleic acid sequence SEQ ID NO:63 (i.e., the nucleic acid sequence of nfSPI13₆₂₃) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:63, showed the most homology, i.e., about 37% identity, between SEQ ID NO:63 and human bomapin gene.

Comparison of nucleic acid sequence SEQ ID NO:66 (i.e., the nucleic acid sequence of nfSPI14₇₃₁) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:66, showed the most homology, i.e., about 38% identity, between SEQ ID NO:66 and human bomapin gene.

Comparison of nucleic acid sequence SEQ ID NO:69 (i.e., the nucleic acid sequence of nfSPI15₆₈₅) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:69, showed the most homology, i.e., about 38% identity, between SEQ ID NO:69 and human antithrombin III variant gene.

Preferred flea SPI nucleic acid molecules include nucleic acid molecules having a nucleic acid sequence that is at least about 60%, preferably at least about 70%, more preferably at least about 80%, even more preferably at least about 90% and even more

preferably at least about 95% identical to nucleic acid sequence SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90.

Another preferred nucleic acid molecule of the present invention includes at least a portion of nucleic acid sequence SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID 20 NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90, that is capable of hybridizing to a C. felis SPI gene of the present invention, as well as allelic variants thereof. A more preferred nucleic acid molecule includes the nucleic acid sequence SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID

20

25

30

NO:48, SEO ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence including SEQ ID NO:88, SEQ ID NO:89 and SEO ID NO:90, as well as allelic variants thereof. Such nucleic acid molecules can include nucleotides in addition to those included in the SEQ ID NOs, such as, but not limited to, a full-length gene, a full-length coding region, a nucleic acid molecule encoding a fusion protein, or a nucleic acid molecule encoding a multivalent protective compound. Particularly preferred nucleic acid molecules include nfSPI1₁₅₈₄, nfSPI1₁₁₉₁, nfSPI1₃₇₆, nfSPI2₁₃₅₈, nfSPI2₁₁₉₇, nfSPI2₃₇₆, nfSPI3₁₈₃₈, nfSPI3₁₂₆₀, nfSPI3₃₉₁, nfSPI4₁₄₁₄, nfSPI4₁₁₇₉, nfSPI4₃₇₆, nfSPI5₁₄₉₂, nfSPI5₁₁₉₄, nfSPI5₃₇₆, nfSPI6₁₄₅₄, nfSPI6₁₁₉₁, nfSPI6₃₇₆, nfSPI7₅₄₉, nfSPI8₅₄₉, nfSPI9₅₈₁, nfSPI10₆₅₄, nfSPI11₆₇₀, nfSPI12₇₀₆, nfSPI13₆₂₃, nfSPI14₇₃₁, nfSPI15₆₈₅, nfSPI3₁₂₂₂, nfSPI6₁₁₅₅, nfSPI2₁₀₆₅, nfSPI4₁₀₇₀, nfSPIC4:V7₁₁₆₈, nfSPIC4:V8₁₂₂₂, nfSPIC4:V9₁₁₇₄, nfSPIC4:V10₁₁₅₉, nfSPIC4:V12₁₁₇₁, nfSPIC4:V13₁₁₇₁, and nfSPIC4:V15₁₁₇₉.

The present invention also includes a nucleic acid molecule encoding a protein having at least a portion of SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, and SEQ ID NO:98, including nucleic acid molecules that have been modified to accommodate codon usage properties of the cells in which such nucleic acid molecules are to be expressed.

Knowing the nucleic acid sequences of certain flea SPI nucleic acid molecules of the present invention allows one skilled in the art to, for example, (a) make copies of those nucleic acid molecules, (b) obtain nucleic acid molecules including at least a portion of such nucleic acid molecules (e.g., nucleic acid molecules including full-length genes, full-length coding regions, regulatory control sequences, truncated coding regions), and (c) obtain SPI nucleic acid molecules from other hematophagous

ectoparasites. Such nucleic acid molecules can be obtained in a variety of ways including screening appropriate expression libraries with antibodies of the present invention; traditional cloning techniques using oligonucleotide probes of the present invention to screen appropriate libraries or DNA; and PCR amplification of appropriate libraries or DNA using oligonucleotide primers of the present invention. Preferred libraries to screen or from which to amplify nucleic acid molecule include flea hemocyte (i.e., cells found in flea hemolymph), pre-pupal, mixed instar (i.e., a combination of 1st instar larval, 2nd instar larval, 3rd instar larval tissue), or fed or unfed adult cDNA libraries as well as genomic DNA libraries. Similarly, preferred DNA sources to screen or from which to amplify nucleic acid molecules include flea hemocyte, pre-pupal, mixed instar, or fed or unfed adult cDNA and genomic DNA. Techniques to clone and amplify genes are disclosed, for example, in Sambrook et al., *ibid*.

10

15

20

25

The present invention also includes nucleic acid molecules that are oligonucleotides capable of hybridizing, under stringent hybridization conditions, with complementary regions of other, preferably longer, nucleic acid molecules of the present invention such as those comprising flea SPI genes or other flea SPI nucleic acid molecules. Oligonucleotides of the present invention can be RNA, DNA, or derivatives of either. The minimum size of such oligonucleotides is the size required for formation of a stable hybrid between an oligonucleotide and a complementary sequence on a nucleic acid molecule of the present invention. Minimal size characteristics are disclosed herein. The present invention includes oligonucleotides that can be used as, for example, probes to identify nucleic acid molecules, primers to produce nucleic acid molecules or therapeutic reagents to inhibit SPI protein production or activity (e.g., as antisense-, triplex formation-, ribozyme- and/or RNA drug-based reagents). The present invention also includes the use of such oligonucleotides to protect animals from disease using one or more of such technologies. Appropriate oligonucleotide-containing therapeutic compositions can be administered to an animal using techniques known to those skilled in the art.

One embodiment of the present invention includes a recombinant vector, which includes at least one isolated nucleic acid molecule of the present invention, inserted into any vector capable of delivering the nucleic acid molecule into a host cell. Such a vector

contains heterologous nucleic acid sequences, that is nucleic acid sequences that are not naturally found adjacent to nucleic acid molecules of the present invention and that preferably are derived from a species other than the species from which the nucleic acid molecule(s) are derived. The vector can be either RNA or DNA, either prokaryotic or eukaryotic, and typically is a virus or a plasmid. Recombinant vectors can be used in the cloning, sequencing, and/or otherwise manipulation of flea SPI nucleic acid molecules of the present invention.

One type of recombinant vector, referred to herein as a recombinant molecule, comprises a nucleic acid molecule of the present invention operatively linked to an expression vector. The phrase operatively linked refers to insertion of a nucleic acid molecule into an expression vector in a manner such that the molecule is able to be expressed when transformed into a host cell. As used herein, an expression vector is a DNA or RNA vector that is capable of transforming a host cell and of effecting expression of a specified nucleic acid molecule. Preferably, the expression vector is also capable of replicating within the host cell. Expression vectors can be either prokaryotic or eukaryotic, and are typically viruses or plasmids. Expression vectors of the present invention include any vectors that function (i.e., direct gene expression) in recombinant cells of the present invention, including in bacterial, fungal, endoparasite, insect, other animal, and plant cells. Preferred expression vectors of the present invention can direct gene expression in bacterial, yeast, insect and mammalian cells and more preferably in the cell types disclosed herein.

20

25

30

In particular, expression vectors of the present invention contain regulatory sequences such as transcription control sequences, translation control sequences, origins of replication, and other regulatory sequences that are compatible with the recombinant cell and that control the expression of nucleic acid molecules of the present invention. In particular, recombinant molecules of the present invention include transcription control sequences. Transcription control sequences are sequences which control the initiation, elongation, and termination of transcription. Particularly important transcription control sequences are those which control transcription initiation, such as promoter, enhancer, operator and repressor sequences. Suitable transcription control sequences include any transcription control sequence that can function in at least one of

10

15

the recombinant cells of the present invention. A variety of such transcription control sequences are known to those skilled in the art. Preferred transcription control sequences include those which function in bacterial, yeast, insect and mammalian cells. such as, but not limited to, tac, lac, trp, trc, oxy-pro, omp/lpp, rrnB, bacteriophage lambda(such as lambda p_L and lambda p_R and fusions that include such promoters), bacteriophage T7, T7lac, bacteriophage T3, bacteriophage SP6, bacteriophage SP01, metallothionein, alpha-mating factor, Pichia alcohol oxidase, alphavirus subgenomic promoters (such as Sindbis virus subgenomic promoters), antibiotic resistance gene, baculovirus, Heliothis zea insect virus, vaccinia virus, herpesvirus, raccoon poxvirus, other poxvirus, adenovirus, cytomegalovirus (such as intermediate early promoters), simian virus 40, retrovirus, actin, retroviral long terminal repeat, Rous sarcoma virus, heat shock, phosphate and nitrate transcription control sequences as well as other sequences capable of controlling gene expression in prokaryotic or eukaryotic cells. Additional suitable transcription control sequences include tissue-specific promoters and enhancers as well as lymphokine-inducible promoters (e.g., promoters inducible by interferons or interleukins). Transcription control sequences of the present invention can also include naturally occurring transcription control sequences naturally associated with fleas, such as, C. felis.

Suitable and preferred nucleic acid molecules to include in recombinant vectors

of the present invention are as disclosed herein. Preferred nucleic acid molecules to include in recombinant vectors, and particularly in recombinant molecules, include nfSPI1₁₅₈₄, nfSPI1₁₁₉₁, nfSPI1₃₇₆, nfSPI2₁₃₅₈, nfSPI2₁₁₉₇, nfSPI2₃₇₆, nfSPI3₁₈₃₈, nfSPI3₁₂₆₀, nfSPI3₃₉₁, nfSPI4₁₄₁₄, nfSPI4₁₁₇₉, nfSPI4₃₇₆, nfSPI5₁₄₉₂, nfSPI5₃₇₆, nfSPI5₃₇₆, nfSPI6₁₄₅₄, nfSPI6₁₁₉₁, nfSPI6₃₇₆, nfSPI7₅₄₉, nfSPI8₅₄₉, nfSPI9₅₈₁, nfSPI10₆₅₄, nfSPI11₆₇₀, nfSPI12₇₀₆, nfSPI13₆₂₃, nfSPI14₇₃₁, nfSPI15₆₈₅, nfSPI3₁₂₂₂, nfSPI6₁₁₅₅, nfSPI2₁₀₆₅, nfSPI4₁₀₇₀, nfSPIC4:V7₁₁₆₈, nfSPIC4:V8₁₂₂₂, nfSPIC4:V9₁₁₇₄, nfSPIC4:V10₁₁₅₉, nfSPIC4:V12₁₁₇₁, nfSPIC4:V13₁₁₇₁, and nfSPIC4:V15₁₁₇₉. Particularly preferred recombinant molecules of the present invention include pλP_R-nfSPI2₁₁₃₉, pλP_R-nfSPI3₁₁₇₉, pλP_R-nfSPI4₁₁₄₀, pλP_R-nfSPI6₁₁₃₆, pλP_R-nfSPIC4:V8₁₂₂₂, pλP_R-nfSPIC4:V13₁₁₇₁, pλP_R-nfS

25

30

 $p\lambda P_R$ -nfSPIC4:V15₁₁₇₉, pVL-nfSPI3₁₂₂₂, pVL-nfSPI6₁₁₅₅, pAcG-nfSPI2₁₀₆₅ and pAcG-nfSPI4₁₀₇₀, the production of which are described in the Examples section.

Recombinant molecules of the present invention may also (a) contain secretory signals (i.e., signal segment nucleic acid sequences) to enable an expressed flea protein 5 of the present invention to be secreted from the cell that produces the protein and/or (b) contain fusion sequences which lead to the expression of nucleic acid molecules of the present invention as fusion proteins. Examples of suitable signal segments include any signal segment capable of directing the secretion of a protein of the present invention. Preferred signal segments include, but are not limited to, tissue plasminogen activator (t-PA), interferon, interleukin, growth hormone, histocompatibility and viral envelope glycoprotein signal segments, as well as natural signal segments. Suitable fusion segments encoded by fusion segment nucleic acids are disclosed herein. In addition, a nucleic acid molecule of the present invention can be joined to a fusion segment that directs the encoded protein to the proteosome, such as a ubiquitin fusion segment. 15 Recombinant molecules may also include intervening and/or untranslated sequences surrounding and/or within the nucleic acid sequences of nucleic acid molecules of the present invention.

Another embodiment of the present invention includes a recombinant cell comprising a host cell transformed with one or more recombinant molecules of the present invention. Transformation of a nucleic acid molecule into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into the cell. Transformation techniques include, but are not limited to, transfection, electroporation, microinjection, lipofection, adsorption, and protoplast fusion. A recombinant cell may remain unicellular or may grow into a tissue, organ or a multicellular organism. Transformed nucleic acid molecules of the present invention can remain extrachromosomal or can integrate into one or more sites within a chromosome of the transformed (i.e., recombinant) cell in such a manner that their ability to be expressed is retained. Preferred nucleic acid molecules with which to transform a cell include flea SPI nucleic acid molecules disclosed herein. Particularly preferred nucleic acid molecules with which to transform a cell include nfSPI1₁₅₈₄, nfSPI3₁₁₉₁, nfSPI3₁₃₇₆, nfSPI2₁₃₅₈, nfSPI2₁₁₉₇, nfSPI2₃₇₆, nfSPI3₁₈₃₈, nfSPI3₁₂₆₀, nfSPI3₃₉₁,

10

15

20

30

nfSPI4₁₄₁₄, nfSPI4₁₁₇₉, nfSPI4₃₇₆, nfSPI5₁₄₉₂, nfSPI5₁₁₉₄, nfSPI5₃₇₆, nfSPI6₁₄₅₄, nfSPI6₁₁₉₁, nfSPI6₃₇₆, nfSPI7₅₄₉, nfSPI8₅₄₉, nfSPI9₅₈₁, nfSPI10₆₅₄, nfSPI11₆₇₀, nfSPI12₇₀₆, nfSPI13₆₂₃, nfSPI14₇₃₁, nfSPI15₆₈₅, nfSPI3₁₂₂₂, nfSPI6₁₁₅₅, nfSPI2₁₀₆₅, nfSPI4₁₀₇₀, nfSPIC4:V7₁₁₆₈, nfSPIC4:V8₁₂₂₂, nfSPIC4:V9₁₁₇₄, nfSPIC4:V10₁₁₅₉, nfSPIC4:V12₁₁₇₁, nfSPIC4:V13₁₁₇₁, and nfSPIC4:V15₁₁₇₉.

Suitable host cells to transform include any cell that can be transformed with a nucleic acid molecule of the present invention. Host cells can be either untransformed cells or cells that are already transformed with at least one nucleic acid molecule (e.g., nucleic acid molecules encoding one or more proteins of the present invention and/or other proteins useful in the production of multivalent vaccines). Host cells of the present invention either can be endogenously (i.e., naturally) capable of producing flea SPI proteins of the present invention or can be capable of producing such proteins after being transformed with at least one nucleic acid molecule of the present invention. Host cells of the present invention can be any cell capable of producing at least one protein of the present invention, and include bacterial, fungal (including yeast), other insect, other animal and plant cells. Preferred host cells include bacterial, mycobacterial, yeast, parasite, insect and mammalian cells. More preferred host cells include Salmonella, Escherichia, Bacillus, Listeria, Saccharomyces, Spodoptera, Mycobacteria, Trichoplusia, BHK (baby hamster kidney) cells, MDCK cells (normal dog kidney cell line for canine herpesvirus cultivation), CRFK cells (normal cat kidney cell line for feline herpesvirus cultivation), CV-1 cells (African monkey kidney cell line used, for example, to culture raccoon poxvirus), COS (e.g., COS-7) cells, and Vero cells. Particularly preferred host cells are Escherichia coli, including E. coli K-12 derivatives; Salmonella typhi; Salmonella typhimurium, including attenuated strains such as UK-1 x3987 and SR-11 x4072; Spodoptera frugiperda; Trichoplusia ni; BHK cells; MDCK cells; CRFK cells; CV-1 cells; COS cells; Vero cells; and non-tumorigenic mouse myoblast G8 cells (e.g., ATCC CRL 1246). Additional appropriate mammalian cell hosts include other kidney cell lines, other fibroblast cell lines (e.g., human, murine or chicken embryo fibroblast cell lines), myeloma cell lines, Chinese hamster ovary cells, mouse NIH/3T3 cells, LMTK31 cells and/or HeLa cells. In one embodiment, the proteins

10

15

20

30

may be expressed as heterologous proteins in myeloma cell lines employing immunoglobulin promoters.

A recombinant cell is preferably produced by transforming a host cell with one or more recombinant molecules, each comprising one or more nucleic acid molecules of the present invention operatively linked to an expression vector containing one or more transcription control sequences. The phrase operatively linked refers to insertion of a nucleic acid molecule into an expression vector in a manner such that the molecule is able to be expressed when transformed into a host cell.

A recombinant molecule of the present invention is a molecule that can include at least one of any nucleic acid molecule heretofore described operatively linked to at least one of any transcription control sequence capable of effectively regulating expression of the nucleic acid molecule(s) in the cell to be transformed, examples of which are disclosed herein. Particularly preferred recombinant molecules include pλP_R-nfSPI2₁₁₃₉, pλP_R-nSPI3₁₁₇₉, pλP_R-nfSPI4₁₁₄₀, pλP_R-nfSPI5₁₄₉₂, pλP_R-nfSPI6₁₁₃₆,pλP_R-nfSPIC4:V7₁₁₆₈, pλP_R-nfSPIC4:V8₁₂₂₂, pλP_R-nfSPIC4:V9₁₁₇₄, pλP_R-n nfSPIC4:V10₁₁₅₉, pλP_R-nfSPIC4:V12₁₁₇₁, pλP_R-nfSPIC4:V13₁₁₇₁, pλP_R-nfSPIC4:V15₁₁₇₉, pVL-nfSPI3₁₂₂₂, pVL-nfSPI6₁₁₅₅, pAcG-nfSPI2₁₀₆₅ and pAcG-nfSPI4₁₀₇₀.

A recombinant cell of the present invention includes any cell transformed with at least one of any nucleic acid molecule of the present invention. Suitable and preferred nucleic acid molecules as well as suitable and preferred recombinant molecules with which to transform cells are disclosed herein. Particularly preferred recombinant cells include *E.coli*HB:pλP_R-nfSPI2₁₁₃₉, *E.coli*HB:pλP_R-nfSPI3₁₁₇₉, *E.coli*HB:pλP_R-nfSPI4₁₁₄₀, *E.coli*HB:pλP_R-nfSPI5₁₄₉₂, *E.coli*HB:pλP_R-nfSPI6₁₁₃₆, *E.coli*:pλP_R-nfSPIC4:V8₁₂₂₂, *E.coli*:pλP_R-nfSPIC4:V9₁₁₇₄, *E.coli*:pλP_R-nfSPIC4:V13₁₁₇₁, *E.coli*:pλP_R-nfSPIC4:V13₁₁₇₁, *E.coli*:pλP_R-nfSPIC4:V13₁₁₇₁, *E.coli*:pλP_R-nfSPIC4:V15₁₁₇₉, *S. frugiperda*:pVL-nfSPI3₁₂₂₂, *S. frugiperda*:pVL-nfSPI6₁₁₅₅, *S. frugiperda*:pAcG-nfSPI2₁₀₆₅ and *S. frugiperda*:pAcG-nfSPI4₁₀₇₀. Details regarding the production of these recombinant cells are disclosed herein.

Recombinant cells of the present invention can also be co-transformed with one or more recombinant molecules including flea SPI nucleic acid molecules encoding one or more proteins of the present invention and one or more other nucleic acid molecules

5

15

20

25

30

encoding other protective compounds, as disclosed herein (e.g., to produce multivalent vaccines).

Recombinant DNA technologies can be used to improve expression of transformed nucleic acid molecules by manipulating, for example, the number of copies of the nucleic acid molecules within a host cell, the efficiency with which those nucleic acid molecules are transcribed, the efficiency with which the resultant transcripts are translated, and the efficiency of post-translational modifications. Recombinant techniques useful for increasing the expression of nucleic acid molecules of the present invention include, but are not limited to, operatively linking nucleic acid molecules to high-copy number plasmids, integration of the nucleic acid molecules into one or more host cell chromosomes, addition of vector stability sequences to plasmids, substitutions or modifications of transcription control signals (e.g., promoters, operators, enhancers), substitutions or modifications of translational control signals (e.g., ribosome binding sites, Shine-Dalgarno sequences), modification of nucleic acid molecules of the present invention to correspond to the codon usage of the host cell, deletion of sequences that destabilize transcripts, and use of control signals that temporally separate recombinant cell growth from recombinant enzyme production during fermentation. The activity of an expressed recombinant protein of the present invention may be improved by fragmenting, modifying, or derivatizing nucleic acid molecules encoding such a protein.

Isolated SPI proteins of the present invention can be produced in a variety of ways, including production and recovery of natural proteins, production and recovery of recombinant proteins, and chemical synthesis of the proteins. In one embodiment, an isolated protein of the present invention is produced by culturing a cell capable of expressing the protein under conditions effective to produce the protein, and recovering the protein. A preferred cell to culture is a recombinant cell of the present invention. Effective culture conditions include, but are not limited to, effective media, bioreactor, temperature, pH and oxygen conditions that permit protein production. An effective medium refers to any medium in which a cell is cultured to produce a flea SPI protein of the present invention. Such medium typically comprises an aqueous medium having assimilable carbon, nitrogen and phosphate sources, and appropriate salts, minerals, metals and other nutrients, such as vitamins. Cells of the present invention can be

5

10

15

20

25

30

cultured in conventional fermentation bioreactors, shake flasks, test tubes, microtiter dishes, and petri plates. Culturing can be carried out at a temperature, pH and oxygen content appropriate for a recombinant cell. Such culturing conditions are within the expertise of one of ordinary skill in the art. Examples of suitable conditions are included in the Examples section.

Depending on the vector and host system used for production, resultant proteins of the present invention may either remain within the recombinant cell; be secreted into the fermentation medium; be secreted into a space between two cellular membranes, such as the periplasmic space in E. coli; or be retained on the outer surface of a cell or viral membrane. The phrase "recovering the protein", as well as similar phrases, refers to collecting the whole fermentation medium containing the protein and need not imply additional steps of separation or purification. Proteins of the present invention can be purified using a variety of standard protein purification techniques, such as, but not limited to, affinity chromatography, ion exchange chromatography, filtration, electrophoresis, hydrophobic interaction chromatography, gel filtration chromatography, reverse phase chromatography, concanavalin A chromatography, chromatofocusing and differential solubilization. Proteins of the present invention are preferably retrieved in "substantially pure" form. As used herein, "substantially pure" refers to a purity that allows for the effective use of the protein as a therapeutic composition or diagnostic. A therapeutic composition for animals, for example, should exhibit no substantial toxicity and preferably should be capable of stimulating the production of antibodies in a treated animal.

The present invention also includes isolated (i.e., removed from their natural milieu) antibodies that selectively bind to a flea SPI protein of the present invention or a mimetope thereof (i.e., anti-flea SPI antibodies). As used herein, the term "selectively binds to" a SPI protein refers to the ability of antibodies of the present invention to preferentially bind to specified proteins and mimetopes thereof of the present invention. Binding can be measured using a variety of methods standard in the art including enzyme immunoassays (e.g., ELISA), immunoblot assays, etc.; see, for example, Sambrook et al., *ibid.* An anti-flea SPI antibody preferably selectively binds to a flea SPI protein in such a way as to reduce the activity of that protein.

Isolated antibodies of the present invention can include antibodies in a bodily fluid (such as, but not limited to, serum), or antibodies that have been purified to varying degrees. Antibodies of the present invention can be polyclonal or monoclonal. Functional equivalents of such antibodies, such as antibody fragments and genetically-engineered antibodies (including single chain antibodies or chimeric antibodies that can bind to more than one epitope) are also included in the present invention.

A preferred method to produce antibodies of the present invention includes (a) administering to an animal an effective amount of a protein, peptide or mimetope thereof of the present invention to produce the antibodies and (b) recovering the antibodies. In another method, antibodies of the present invention are produced recombinantly using techniques as heretofore disclosed to produce flea SPI proteins of the present invention. Antibodies raised against defined proteins or mimetopes can be advantageous because such antibodies are not substantially contaminated with antibodies against other substances that might otherwise cause interference in a diagnostic assay or side effects if used in a therapeutic composition.

10

15

20

25

30

Antibodies of the present invention have a variety of potential uses that are within the scope of the present invention. For example, such antibodies can be used (a) as therapeutic compounds to passively immunize an animal in order to protect the animal from hematophagous ectoparasites susceptible to treatment by such antibodies and/or (b) as tools to screen expression libraries and/or to recover desired proteins of the present invention from a mixture of proteins and other contaminants. Furthermore, antibodies of the present invention can be used to target cytotoxic agents to hematophagous ectoparasite such as those disclosed herein in order to directly kill such hematophagous ectoparasites. Targeting can be accomplished by conjugating (i.e., stably joining) such antibodies to the cytotoxic agents using techniques known to those skilled in the art. Suitable cytotoxic agents are known to those skilled in the art.

One embodiment of the present invention is a therapeutic composition that, when administered to an animal in an effective manner, is capable of protecting that animal from infestation by hematophagous ectoparasites. Therapeutic compositions of the present invention include at least one of the following protective compounds: an isolated flea SPI protein (including a peptide of a flea SPI protein capable of inhibiting serine

protease activity), a mimetope of a flea SPI protein, an isolated SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* SPI gene, an isolated antibody that selectively binds to a flea SPI protein, and inhibitors of flea SPI activity (including flea SPI protein substrate analogs, such as serine proteases or serine protease analogs). Preferred hematophagous ectoparasites to target are heretofore disclosed. Examples of protective compounds (e.g., proteins, mimetopes, nucleic acid molecules, antibodies, and inhibitors) are disclosed herein.

Suitable inhibitors of SPI activity are compounds that interact directly with a SPI protein active site, thereby inhibiting that SPI's activity, usually by binding to or otherwise interacting with or otherwise modifying the SPI's active site. SPI inhibitors can also interact with other regions of the SPI protein to inhibit SPI activity, for example, by allosteric interaction. Inhibitors of SPIs are usually relatively small compounds and as such differ from anti-SPI antibodies. Preferably, a SPI inhibitor of the present invention is identified by its ability to bind to, or otherwise interact with, a flea SPI protein, thereby inhibiting the activity of the flea SPI.

10

15

20

25

30

Inhibitors of a SPI can be used directly as compounds in compositions of the present invention to treat animals as long as such compounds are not harmful to host animals being treated. Inhibitors of a SPI protein can also be used to identify preferred types of flea SPI proteins to target using compositions of the present invention, for example by affinity chromatography. Preferred inhibitors of a SPI of the present invention include, but are not limited to, flea SPI substrate analogs, and other molecules that bind to a flea SPI (e.g., to an allosteric site) in such a manner that SPI activity of the flea SPI is inhibited. A SPI substrate analog refers to a compound that interacts with (e.g., binds to, associates with, modifies) the active site of a SPI protein. A preferred SPI substrate analog inhibits SPI activity. SPI substrate analogs can be of any inorganic or organic composition, and, as such, can be, but are not limited to, peptides, nucleic acids, and peptidomimetic compounds. SPI substrate analogs can be, but need not be, structurally similar to a SPI protein's natural substrate as long as they can interact with the active site of that SPI protein. SPI substrate analogs can be designed using computer-generated structures of SPI proteins of the present invention or computer

WO 98/20034

10

15

20

25

30

structures of SPI proteins' natural substrates. Substrate analogs can also be obtained by generating random samples of molecules, such as oligonucleotides, peptides, peptidomimetic compounds, or other inorganic or organic molecules, and screening such samples by affinity chromatography techniques using the corresponding binding partner, (e.g., a flea SPI or anti-flea serine protease antibody). A preferred SPI substrate analog is a peptidomimetic compound (i.e., a compound that is structurally and/or functionally similar to a natural substrate of a SPI of the present invention, particularly to the region of the substrate that interacts with the SPI active site, but that inhibits SPI activity upon interacting with the SPI active site).

SPI peptides, mimetopes and substrate analogs, as well as other protective compounds, can be used directly as compounds in compositions of the present invention to treat animals as long as such compounds are not harmful to the animals being treated.

The present invention also includes a therapeutic composition comprising at least one flea SPI-based compound of the present invention in combination with at least one additional compound protective against hematophagous ectoparasite infestation.

Examples of such compounds are disclosed herein.

In one embodiment, a therapeutic composition of the present invention can be used to protect an animal from hematophagous ectoparasite infestation by administering such composition to a hematophagous ectoparasite, such as to a flea, in order to prevent infestation. Such administration could be orally or by developing transgenic vectors capable of producing at least one therapeutic composition of the present invention. In another embodiment, a hematophagous ectoparasite, such as a flea, can ingest therapeutic compositions, or products thereof, present in the blood of a host animal that has been administered a therapeutic composition of the present invention.

Compositions of the present invention can be administered to any animal susceptible to hematophagous ectoparasite infestation (i.e., a host animal), including warm-blooded animals. Preferred animals to treat include mammals and birds, with cats, dogs, humans, cattle, chinchillas, ferrets, goats, mice, minks, rabbits, raccoons, rats, sheep, squirrels, swine, chickens, ostriches, quail and turkeys as well as other furry animals, pets and/or economic food animals, being more preferred. Particularly preferred animals to protect are cats and dogs.

In accordance with the present invention, a host animal (i.e., an animal that is or is capable of being infested with a hematophagous ectoparasite) is treated by administering to the animal a therapeutic composition of the present invention in such a manner that the composition itself (e.g., an inhibitor of a SPI protein, a SPI synthesis suppressor (i.e., a compound that decreases the production of SPI in the hematophagous ectoparasite), an SPI mimetope, or an anti-hematophagous ectoparasite SPI antibody) or a product generated by the animal in response to administration of the composition (e.g., antibodies produced in response to a flea SPI protein or nucleic acid molecule vaccine, or conversion of an inactive inhibitor "prodrug" to an active inhibitor of a SPI protein) ultimately enters the hematophagous ectoparasite. A host animal is preferably treated in such a way that the compound or product thereof enters the blood stream of the animal. Hematophagous ectoparasites are then exposed to the composition or product when they feed from the animal. For example, flea SPI protein inhibitors administered to an animal are administered in such a way that the inhibitors enter the blood stream of the animal, where they can be taken up by feeding fleas. In another embodiment, when a host animal is administered a flea SPI protein or nucleic acid molecule vaccine, the treated animal mounts an immune response resulting in the production of antibodies against the SPI protein (i.e., anti-flea SPI antibodies) which circulate in the animal's blood stream and are taken up by hematophagous ectoparasites upon feeding. Blood taken up by hematophagous ectoparasites enters the hematophagous ectoparasites where compounds of the present invention, or products thereof, such as anti-flea SPI antibodies, flea SPI protein inhibitors, flea mimetopes and/or SPI synthesis suppressors, interact with, and reduce SPI protein activity in the hematophagous ectoparasite.

10

15

20

The present invention also includes the ability to reduce larval hematophagous ectoparasite infestation in that when hematophagous ectoparasites feed from a host animal that has been administered a therapeutic composition of the present invention, at least a portion of compounds of the present invention, or products thereof, in the blood taken up by the hematophagous ectoparasite are excreted by the hematophagous ectoparasite in feces, which is subsequently ingested by hematophagous ectoparasite larvae. In particular, it is of note that flea larvae obtain most, if not all, of their nutrition from flea feces.

In accordance with the present invention, reducing SPI protein activity in a hematophagous ectoparasite can lead to a number of outcomes that reduce hematophagous ectoparasite burden on treated animals and their surrounding environments. Such outcomes include, but are not limited to, (a) reducing the viability of hematophagous ectoparasites that feed from the treated animal, (b) reducing the fecundity of female hematophagous ectoparasites that feed from the treated animal, (c) reducing the reproductive capacity of male hematophagous ectoparasites that feed from the treated animal, (d) reducing the viability of eggs laid by female hematophagous ectoparasites that feed from the treated animal, (e) altering the blood feeding behavior of hematophagous ectoparasites that feed from the treated animal (e.g., hematophagous ectoparasites take up less volume per feeding or feed less frequently), (f) reducing the viability of hematophagous ectoparasite larvae (e.g., by decreasing feeding behavior, inhibiting growth, inhibiting (e.g., slowing or blocking) molting, and/or otherwise inhibiting maturation to adults).

Therapeutic compositions of the present invention can be formulated in an excipient that the animal to be treated can tolerate. Examples of such excipients include water, saline, Ringer's solution, dextrose solution, Hank's solution, and other aqueous physiologically balanced salt solutions. Nonaqueous vehicles, such as fixed oils, sesame oil, ethyl oleate, or triglycerides may also be used. Other useful formulations include suspensions containing viscosity enhancing agents, such as sodium carboxymethylcellulose, sorbitol, or dextran. Excipients can also contain minor amounts of additives, such as substances that enhance isotonicity and chemical stability. Examples of buffers include phosphate buffer, bicarbonate buffer and Tris buffer, while examples of preservatives include thimerosal, — or o-cresol, formalin and benzyl alcohol. Standard formulations can either be liquid injectables or solids which can be taken up in a suitable liquid as a suspension or solution for injection. Thus, in a non-liquid formulation, the excipient can comprise dextrose, human serum albumin, preservatives, etc., to which sterile water or saline can be added prior to administration.

15

20

25

30

In one embodiment of the present invention, a therapeutic composition can include an adjuvant. Adjuvants are agents that are capable of enhancing the immune response of an animal to a specific antigen. Suitable adjuvants include, but are not

15

20

25

30

limited to, cytokines, chemokines, and compounds that induce the production of cytokines and chemokines (e.g., granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), colony stimulating factor (CSF), erythropoietin (EPO), interleukin 2 (IL-2), interleukin-3 (IL-3), interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 7 (IL-7), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin 12 (IL-12), interferon gamma, interferon gamma inducing factor I (IGIF), transforming growth factor beta, RANTES (regulated upon activation, normal T cell expressed and presumably secreted), macrophage inflammatory proteins (e.g., MIP-1 alpha and MIP-1 beta), and Leishmania elongation initiating factor (LEIF); bacterial components (e.g., endotoxins, in particular superantigens, exotoxins and cell wall components); aluminumbased salts; calcium-based salts; silica; polynucleotides; toxoids; serum proteins, viral coat proteins; block copolymer adjuvants (e.g., Hunter's TitermaxTM adjuvant (VaxcelTM, Inc. Norcross, GA), Ribi adjuvants (Ribi ImmunoChem Research, Inc., Hamilton, MT); and saponins and their derivatives (e.g., Quil A (Superfos Biosector A/S, Denmark). Protein adjuvants of the present invention can be delivered in the form of the protein themselves or of nucleic acid molecules encoding such proteins using the methods described herein.

In one embodiment of the present invention, a therapeutic composition can include a carrier. Carriers include compounds that increase the half-life of a therapeutic composition in the treated animal. Suitable carriers include, but are not limited to, polymeric controlled release vehicles, biodegradable implants, liposomes, bacteria, viruses, other cells, oils, esters, and glycols.

One embodiment of the present invention is a controlled release formulation that is capable of slowly releasing a composition of the present invention into an animal. As used herein, a controlled release formulation comprises a composition of the present invention in a controlled release vehicle. Suitable controlled release vehicles include, but are not limited to, biocompatible polymers, other polymeric matrices, capsules, microcapsules, microparticles, bolus preparations, osmotic pumps, diffusion devices, liposomes, lipospheres, and transdermal delivery systems. Other controlled release formulations of the present invention include liquids that, upon administration to an

-50-

animal, form a solid or a gel *in situ*. Preferred controlled release formulations are biodegradable (i.e., bioerodible).

A preferred controlled release formulation of the present invention is capable of releasing a composition of the present invention into the blood of an animal at a constant rate sufficient to attain therapeutic dose levels of the composition to protect an animal from hematophagous ectoparasite infestation. The therapeutic composition is preferably released over a period of time ranging from about 1 to about 12 months. A preferred controlled release formulation of the present invention is capable of effecting a treatment preferably for at least about 1 month, more preferably for at least about 3 months, even more preferably for at least about 9 months, and even more preferably for at least about 12 months.

10

15

20

25

Acceptable protocols to administer therapeutic compositions of the present invention in an effective manner include individual dose size, number of doses, frequency of dose administration, and mode of administration. Determination of such protocols can be accomplished by those skilled in the art. A suitable single dose is a dose that is capable of protecting an animal from disease when administered one or more times over a suitable time period. For example, a preferred single dose of a protein, mimetope or antibody therapeutic composition is from about 1 microgram (µg) to about 10 milligrams (mg) of the therapeutic composition per kilogram body weight of the animal. Booster vaccinations can be administered from about 2 weeks to several years after the original administration. Booster administrations preferably are administered when the immune response of the animal becomes insufficient to protect the animal from disease. A preferred administration schedule is one in which from about 10 µg to about 1 mg of the therapeutic composition per kg body weight of the animal is administered from about one to about two times over a time period of from about 2 weeks to about 12 months. Modes of administration can include, but are not limited to, subcutaneous, intradermal, intravenous, intranasal, oral, transdermal, intraocular and intramuscular routes.

According to one embodiment, a nucleic acid molecule of the present invention can be administered to an animal in a fashion to enable expression of that nucleic acid molecule into a protective protein or protective RNA (e.g., antisense RNA, ribozyme,

WO 98/20034

10

20

25

triple helix forms or RNA drug) in the animal. Nucleic acid molecules can be delivered to an animal in a variety of methods including, but not limited to, (a) administering a naked (i.e., not packaged in a viral coat or cellular membrane) nucleic acid vaccine (e.g., as naked DNA or RNA molecules, such as is taught, for example in Wolff et al., 1990, *Science 247*, 1465-1468) or (b) administering a nucleic acid molecule packaged as a recombinant virus vaccine or as a recombinant cell vaccine (i.e., the nucleic acid molecule is delivered by a viral or cellular vehicle).

A naked nucleic acid vaccine of the present invention includes a nucleic acid molecule of the present invention and preferably includes a recombinant molecule of the present invention that preferably is replication, or otherwise amplification, competent. A naked nucleic acid vaccine of the present invention can comprise one or more nucleic acid molecules of the present invention in the form of, for example, a bicistronic recombinant molecule having, for example one or more internal ribosome entry sites. Preferred naked nucleic acid vaccines include at least a portion of a viral genome (i.e., a viral vector). Preferred viral vectors include those based on alphaviruses, poxviruses, adenoviruses, herpesviruses, and retroviruses, with those based on alphaviruses (such as Sindbis or Semliki virus), species-specific herpesviruses and species-specific poxviruses being particularly preferred. Any suitable transcription control sequence can be used, including those disclosed as suitable for protein production. Particularly preferred transcription control sequence include cytomegalovirus intermediate early (preferably in conjunction with Intron-A), Rous Sarcoma Virus long terminal repeat, and tissuespecific transcription control sequences, as well as transcription control sequences endogenous to viral vectors if viral vectors are used. The incorporation of "strong" poly(A) sequences are also preferred.

Naked nucleic acid vaccines of the present invention can be administered in a variety of ways, with intramuscular, subcutaneous, intradermal, transdermal, intranasal and oral routes of administration being preferred. A preferred single dose of a naked nucleic acid vaccines ranges from about 1 nanogram (ng) to about 100 µg, depending on the route of administration and/or method of delivery, as can be determined by those skilled in the art. Suitable delivery methods include, for example, by injection, as drops, aerosolized and/or topically. Naked DNA of the present invention can be contained in

15

20

25

30

an aqueous excipient (e.g., phosphate buffered saline) alone or a carrier (e.g., lipid-based vehicles).

A recombinant virus vaccine of the present invention includes a recombinant molecule of the present invention that is packaged in a viral coat and that can be expressed in an animal after administration. Preferably, the recombinant molecule is packaging-deficient and/or encodes an attenuated virus. A number of recombinant viruses can be used, including, but not limited to, those based on alphaviruses, poxviruses, adenoviruses, herpesviruses, and retroviruses. Preferred recombinant virus vaccines are those based on alphaviruses (such as Sindbis virus), raccoon poxviruses, species-specific herpesviruses and species-specific poxviruses. An example of methods to produce and use alphavirus recombinant virus vaccines is disclosed in PCT Publication No. WO 94/17813, by Xiong et al., published August 18, 1994, which is incorporated by reference herein in its entirety.

When administered to an animal, a recombinant virus vaccine of the present invention infects cells within the immunized animal and directs the production of a protective protein or RNA nucleic acid molecule that is capable of protecting the animal from hematophagous ectoparasite infestation. For example, a recombinant virus vaccine comprising a flea SPI nucleic acid molecule of the present invention is administered according to a protocol that results in the animal producing a sufficient immune response to protect itself from hematophagous ectoparasite infestation. A preferred single dose of a recombinant virus vaccine of the present invention is from about 1 x 10⁴ to about 1 x 10⁷ virus plaque forming units (pfu) per kilogram body weight of the animal. Administration protocols are similar to those described herein for protein-based vaccines, with subcutaneous, intramuscular, intranasal and oral administration routes being preferred.

A recombinant cell vaccine of the present invention includes recombinant cells of the present invention that express at least one protein of the present invention.

Preferred recombinant cells for this embodiment include Salmonella, E. coli, Listeria, Mycobacterium, S. frugiperda, yeast, (including Saccharomyces cerevisiae), BHK, CV-1, myoblast G8, COS (e.g., COS-7), Vero, MDCK and CRFK recombinant cells.

Recombinant cell vaccines of the present invention can be administered in a variety of

10

15

20

25

ways but have the advantage that they can be administered orally, preferably at doses ranging from about 10⁸ to about 10¹² cells per kilogram body weight. Administration protocols are similar to those described herein for protein-based vaccines. Recombinant cell vaccines can comprise whole cells, cells stripped of cell walls or cell lysates.

The efficacy of a therapeutic composition of the present invention to protect an animal from hematophagous ectoparasite infestation can be tested in a variety of ways including, but not limited to, detection of anti-flea SPI antibodies (using, for example, proteins or mimetopes of the present invention), detection of cellular immunity within the treated animal, or challenge of the treated animal with hematophagous ectoparasites to determine whether, for example, the feeding, fecundity or viability of the hematophagous ectoparasites feeding from the treated animal is disrupted. Challenge studies can include attachment of chambers containing fleas onto the skin of the treated animal. In one embodiment, therapeutic compositions can be tested in animal models such as mice. Such techniques are known to those skilled in the art.

One preferred embodiment of the present invention is the use of flea SPI proteins, mimetopes, nucleic acid molecules, antibodies and inhibitory compounds of the present invention, to protect an animal from hematophagous ectoparasite infestation. Preferred protective compounds of the present invention include, but are not limited to, an isolated flea SPI protein or a mimetope thereof, an isolated SPI nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* SPI gene, an isolated antibody that selectively binds to a flea SPI and/or an inhibitor of flea SPI activity (such as, but not limited to, an SPI substrate analog). Additional protection may be obtained by administering additional protective compounds, including other proteins, nucleic acid molecules, antibodies and inhibitory compounds, as disclosed herein.

An inhibitor of SPI activity can be identified using flea SPI proteins of the present invention. One embodiment of the present invention is a method to identify a compound capable of inhibiting SPI activity of a flea. Such a method includes the steps of (a) contacting (e.g., combining, mixing) an isolated flea SPI protein, preferably a *C. felis* SPI protein, with a putative inhibitory compound under conditions in which, in the absence of the compound, the protein has SPI activity, and (b) determining if the

10

putative inhibitory compound inhibits the SPI activity. Putative inhibitory compounds to screen include small organic molecules, antibodies (including mimetopes thereof) and substrate analogs. Methods to determine SPI activity are known to those skilled in the art.

The present invention also includes a test kit to identify a compound capable of inhibiting SPI activity of a flea. Such a test kit includes an isolated flea SPI protein, preferably a *C. felis* SPI protein, having SPI activity and a means for determining the extent of inhibition of SPI activity in the presence of (i.e., effected by) a putative inhibitory compound. Such compounds are also screened to identify those that are substantially not toxic in host animals.

SPI inhibitors isolated by such a method, and/or test kit, can be used to inhibit any SPI protein that is susceptible to such an inhibitor. Preferred SPI enzymes proteins to inhibit are those produced by fleas. A particularly preferred inhibitor of a SPI protein of the present invention is capable of protecting an animal from flea infestation.

15 Effective amounts and dosing regimens can be determined using techniques known to those skilled in the art.

The following examples are provided for the purposes of illustration and are not intended to limit the scope of the present invention.

EXAMPLES

It is to be noted that the Examples include a number of molecular biology, microbiology, immunology and biochemistry techniques considered to be known to those skilled in the art. Disclosure of such techniques can be found, for example, in Sambrook et al., *ibid.*, and related references.

Example 1

25

This example describes the isolation of a protein fraction from flea prepupal larvae that was obtained by monitoring for carboxylesterase activity, which surprisingly, also contained flea serine protease inhibitor molecule epitopes of the present invention, discovered as described in Examples 2, 3 and 4 below.

A prepupal larval protein pool enriched for carboxylesterase activity was isolated as follows. About 17,000 bovine blood-fed prepupal larvae were collected and the larvae were homogenized in gut dissection buffer (50 mM Tris pH 8.0, 100 mM CaCl₂)

20

25

by sonication in a disposable 50 ml conical centrifuge tube. Sonication entailed 4 bursts of 20 seconds each at a setting of 4 with a probe sonicator using, for example, a model W-380 Sonicator (available from Heat Systems-Ultrasonics, Inc., Farmingdale, NY). The sonicate was clarified by centrifugation at 4000 rpm for 30 min. in a swinging bucket centrifuge; the supernatant was collected and centrifuged at 18,000 rpm for 30 min in a Sorvall SS-34 rotor (available from DuPont, Wilmington, DE). The supernatant was recovered, and NaCl was added to a final concentration of 400 mM.

Serine proteases were removed from the supernatant using the following method. The supernatant was loaded onto a 5-ml column comprising p-aminobenzamidine cross-linked to Sepharose beads (available from Sigma Chemical Company, St. Louis, MO), previously equilibrated in benzamidine column buffer (50 mM Tris 8.0, 100 mM CaCl₂, 400 mM NaCl) and incubated overnight at 4°C. Unbound protein was slowly washed off and collected from the column with benzamidine column buffer until no protein was detectable by a Bradford Assay (available from Bio-Rad Laboratories, Hercules, CA). A total of about 43 ml was collected. The proteins in this pool were fractionated by precipitation in increasing percent saturation levels of ammonium sulfate.

The ammonium sulfate-precipitated protein fractions, as well as all subsequent protein fractions described in this example, were assayed for carboxylesterase activity by the following method. Samples of about 5 μ l of each fraction were added to separate wells of a flat-bottomed microtiter plate (available from Becton Dickinson, Lincoln Park, NJ). A control well was prepared by adding about 5 μ l of Tris buffer to an empty well of the plate. About 95 μ l of 25 mM Tris-HCl (pH 8.0) was then added to each sample to increase the volume in each well to about 100 μ l. About 100 μ l of 0.25 mM α -napthyl acetate (available from Sigma) dissolved in 25 mM Tris-HCl (pH 8.0) was then added to each well. The plate was then incubated for about 15 min. at 37°C. Following the incubation, about 40 μ l of 0.3% Fast Blue salt BN (tetrazotized odianisidine; available from Sigma), dissolved in 3.3% SDS in water was added to each well, giving a colorimetric reaction. Absorbance levels were measured using a model 7500 Microplate Reader (available from Cambridge Technology, Inc., Watertown, MA) set to 590 nm. Following subtraction of background absorbance, the resulting values gave a relative measure of carboxylesterase activity. Carboxylesterase activity was found

in two of the ammonium sulfate-precipitated fractions. The first, which precipitated between about 0 and 60% ammonium sulfate saturation, was kept as a pool, and the second, which precipitated between about 60 and 80% ammonium sulfate saturation, was kept separately as a pool. Since the latter pool appeared to have higher activity at this point, the pools were treated separately until just prior to the final HPLC step described below, but at that point they were combined.

5

10

15

20

25

30

The two ammonium sulfate-precipitated protein pools were then subjected to cation exchange chromatography, performed as follows. Each protein pool was dialyzed two times against about 500 ml of 20 mM 2-(N-morpholino) ethanesulfonic acid (MES) buffer, pH 6, containing 10 mM NaCl and was then applied to a 40-ml chromatography column containing 10 ml of S-Sepharose Fast Flow cation exchange resin (available from Pharmacia Biochemicals, Piscataway, NJ), previously equilibrated with MES buffer. Each column was rocked overnight at 4°C to facilitate protein binding, and was then drained and washed with more MES buffer to remove all unbound protein in about 40 ml total volume. Following elution of the bound proteins, the bound and unbound protein fractions were tested for carboxylesterase activity as described above. Activity was found to reside in the unbound protein fractions from each column, which were then concentrated to about 5 ml using Centriprep® 30 centrifugal concentrators (available from Amicon, Beverly, MA).

The two concentrated protein pools were then subjected to anion exchange chromatography, performed as follows. Each pool was adjusted to about pH 7 by the addition of a small amount of 500 mM Tris buffer, pH 8, and was then applied, in about 1 to 1.5 ml aliquots, to a 4.5 mm x 50 mm Poros 10 HQ anion exchange chromatography column (available from PerSeptive Biosystems, Cambridge, MA) equilibrated in 25 mM Tris, pH 6.8 (loading buffer). For each aliquot, the column was washed with the loading buffer, and bound proteins were eluted with a linear gradient of 0 to 1 M NaCl in 25 mM Tris buffer, pH 6.8. All column fractions were tested for carboxylesterase activity as described above. For each aliquot run on the column, the activity peak eluted in fractions 31-34, and at this point in the isolation, the activity levels appeared to be equivalent in both of the original ammonium sulfate-fractionated pools. Therefore, all

column fractions containing carboxylesterase activity were combined into one pool.

This pool was concentrated and diafiltered into about 1 ml of Tris-buffered saline (TBS).

The pooled protein preparation was then loaded onto a C1 reverse phase HPLC column (available from TosoHaas, Montgomeryville, PA), previously equilibrated with 19% acetonitrile containing 0.05% trifluoroacetic acid (TFA). The column was washed with the equilibration buffer to remove unbound proteins, and bound proteins were eluted from the column by a linear gradient from 19% acetonitrile containing 0.05% TFA to 95% acetonitrile containing 0.05% TFA. The column fractions were tested for carboxylesterase activity as described above, and the activity peak eluted in fractions 27-32. These fractions were combined, concentrated to near dryness using a Speed-VacTM concentrator (available from Savant Instruments, Molbrook, NY), and resuspended in phosphate-buffered saline (PBS) to a concentration of about 0.2mg/ml. This isolated protein fraction is referred to herein as flea prepupal carboxylesterase fraction-1. Upon analysis by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and silver staining, flea prepupal carboxylesterase fraction-1 appeared to contain, in addition to the recognized carboxylesterase bands migrating at about 60 kD, a strong protein band migrating at about 40 kD.

Example 2

10

20

30

This example describes the generation of polyclonal rabbit antiserum to flea prepupal carboxylesterase fraction-1.

Antibodies against flea prepupal carboxylesterase fraction-1 (the preparation of which is described in Example 1) were generated as follows. A rabbit was initially immunized subcutaneously and intradermally at multiple sites with a total of approximately 50 µg of flea prepupal carboxylesterase fraction-1 emulsified in Complete Freund's Adjuvant. On days 16 and 37 after the initial immunization, the rabbit was boosted intramuscularly with a total of approximately 50 µg of flea prepupal carboxylesterase fraction-1emulsified in Incomplete Freund's Adjuvant. The rabbit was bled on days 9, 29 and 50 after the initial immunization. Sera from the latter two bleeds, putatively containing antibodies to flea prepupal carboxylesterases, were used separately for immunoscreening experiments, as described in Example 3 below.

15

20

25

30

Example 3

This example describes the isolation, by immunoscreening, of nucleic acid molecules encoding flea serine protease inhibitor proteins of the present invention.

Surprisingly, six flea serine protease inhibitor nucleic acid molecules were isolated by their ability to encode proteins that selectively bound to at least one component of the immune serum collected from a rabbit immunized with flea prepupal carboxylesterase fraction-1, using the following method. A flea prepupal cDNA library was produced as follows. Total RNA was extracted from approximately 3,653 prepupal larvae using an acid-guanidinium-phenol-chloroform method similar to that described by Chomczynski et al., 1987, *Anal. Biochem. 162*, 156-159. Poly A+ selected RNA was separated from the total RNA preparation by oligo-dT cellulose chromatography using Poly(A)Quick® mRNA isolation kits (available from Stratagene Cloning Systems, La Jolla, CA), according to the method recommended by the manufacturer. A prepupal cDNA expression library was constructed in lambda Uni-ZAPTMXR vector (available from Stratagene), using Stratagene's ZAP-cDNA Synthesis Kit® protocol. About 6.72 µg of prepupal poly A+ RNA was used to produce the prepupal library. The resultant prepupal library was amplified to a titer of about 3.5 x 10¹⁰ pfu/ml with about 97% recombinants.

Using a modification of the protocol described in the picoBlue immunoscreening kit (available from Stratagene), the pre-pupal cDNA expression library was screened with the flea prepupal carboxylesterase fraction-1 immune rabbit serum, generated as described in Example 2. The protocol was modified in that the secondary peroxidase-conjugated antibody was detected with a chromogen substrate consisting of DAB (3,3' diaminobenzidine) plus cobalt (Sigma Fast, available from Sigma) following the manufacturer's instructions, except that tablets were dissolved in water at one half the recommended final concentration. Plaque lift membranes were placed in the substrate solution for about 2 minutes, rinsed in water, and then dried at room temperature. Immunoscreening of duplicate plaque lifts of the cDNA library with the same immune rabbit serum identified six clones containing flea nucleic acid molecules nfSPI1₁₅₈₄, nfSPI2₁₃₅₈, nfSPI3₁₈₃₈, nfSPI4₁₄₁₄, nfSPI5₁₄₉₂, and nfSPI6₁₄₅₄, respectively. Plaque purified clones including the flea nucleic acid molecules were converted into double

stranded recombinant molecules, herein denoted as p\u00e4gal-nfSPI1₁₅₈₄, p\u00e4gal-nfSPI2₁₃₅₈, pβgal-nfSPI3₁₈₃₈, pβgal-nfSPI4₁₄₁₄, pβgal-nfSPI5₁₄₉₂, and pβgal-nfSPI6₁₄₅₄, using ExAssisttm helper phage and SOLRtm E. coli according to the in vivo excision protocol described in the Zap-cDNA Synthesis Kit (available from Stratagene). Double-stranded plasmid DNA was prepared using an alkaline lysis protocol, such as that described in Sambrook et al., ibid.

Example 4

10

15

25

30

This example describes the sequencing of several flea serine protease inhibitor nucleic acid molecules of the present invention.

The plasmids containing flea nfSPI1₁₅₈₄, nfSPI2₁₃₅₈, nfSPI3₁₈₃₈, nfSPI4₁₄₁₄, nfSPI5₁₄₉₂, and nfSPI6₁₄₅₄ were sequenced by the Sanger dideoxy chain termination method, using the PRISMTM Ready Dye Terminator Cycle Sequencing Kit with AmpliTaq® DNA Polymerase, FS (available from the Perkin-Elmer Corporation, Norwalk, CT). PCR extensions were done in the GeneAmp[™] PCR System 9600 (available from Perkin-Elmer). Excess dye terminators were removed from extension products using the CentriflexTM Gel Filtration Cartridge (available from Advanced Genetics Technologies Corporation, Gaithersburg, MD) following their standard protocol. Samples were resuspended according to ABI protocols and were and run on a Perkin-Elmer ABI PRISM™ 377 Automated DNA Sequencer. DNA sequence analyses, 20 including the compilation of sequences and the determination of open reading frames, were performed using either the DNAsisTM program (available from Hitachi Software, San Bruno, CA) or the MacVectorTM program (available from the Eastman Kodak Company, New Haven, CT). Protein sequence analyses, including the determination of molecular weights and isoelectric points (pI) were performed using the MacVectorTM program.

A. An about 1584-nucleotide consensus sequence of the entire flea nfSPI1₁₅₈₄ DNA fragment was determined; the sequences of the two complementary strands are presented as SEQ ID NO:1 (the coding strand) and SEQ ID NO:3 (the complementary strand). The flea nfSPI1₁₅₈₄ sequence contains a full length coding region. The apparent start and stop codons span nucleotides from about 136 through about 138 and from about 1327 through about 1329, respectively, of SEQ ID NO:1. A putative

15

20

25

30

polyadenylation signal (5' AATAAA 3') is located in a region spanning from about nucleotide 1533 through about 1538 of SEQ ID NO:1.

Translation of SEQ ID NO:1 yields a protein of about 397 amino acids, denoted PfSPI1₃₉₇, the amino acid sequence of which is presented in SEQ ID NO:2. The nucleic acid molecule consisting of the coding region encoding PfSPI1₃₉₇ is referred to herein as nfSPI1₁₁₉₁, the nucleic acid sequence of which is represented in SEQ ID NO:4 (the coding strand) and SEQ ID NO:5 (the complementary strand). The amino acid sequence of flea PfSPI1₃₉₇ (i.e., SEQ ID NO:2) predicts that PfSPI1₃₉₇ has an estimated molecular weight of about 44.4 kD and an estimated pI of about 4.97. Analysis of SEQ ID NO:2 suggests the presence of a signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 21. The proposed mature protein, denoted herein as PfSPI1₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:6. The amino acid sequence of flea PfSPI1₃₇₆ (i.e. SEQ ID NO:6) predicts that PfSPI1₃₇₆ has an estimated molecular weight of about 42.1 kD, an estimated pI of about 4.90, and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

Homology searches of the non-redundant protein and nucleotide sequence databases were performed through the National Center for Biotechnology Information using the BLAST network. The protein database includes SwissProt +PIR + SPUpdate + Genpept + GPUpdate. The nucleotide database includes GenBank + EMBL + DDBJ + PDB. The protein search was performed using SEQ ID NO:2, which showed significant homology to certain serine protease inhibitor proteins. The highest scoring match of the homology search at the amino acid level was GenBank accession number 1378131:

Manduca sexta, which was about 36% identical with SEQ ID NO:2. At the nucleotide level, the search was performed using SEQ ID NO:4, which was most similar to accession number L20792, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 2) of Manduca sexta, being about 55% identical.

B. An about 1358-nucleotide consensus sequence of the entire flea nfSPI2₁₃₅₈
DNA fragment was determined; the sequences of the two complementary strands are presented as SEQ ID NO:7 (the coding strand) and SEQ ID NO:9 (the complementary strand). The flea nfSPI2₁₃₅₈ sequence contains a partial coding region, which is truncated

15

20

25

30

at the 5' end. The first in-frame codon spans nucleotides from 2 through 4 and the stop codon spans nucleotides from 1199 through 1201 of SEQ ID NO:7.

Translation of SEQ ID NO:7 yields a protein of about 399 amino acids, denoted PfSPI2₃₉₉, the amino acid sequence of which is presented in SEQ ID NO:8. The nucleic acid molecule consisting of the coding region encoding PfSPI2₃₉₉ is referred to herein as nfSPI2₁₁₉₇, the nucleic acid sequence of which is represented in SEQ ID NO:10 (the coding strand) and SEQ ID NO:11 (the complementary strand). Analysis of SEQ ID NO:8 suggests the presence of a partial signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 23. The proposed mature protein, denoted herein as PfSPI2₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:12. The amino acid sequence of flea PfSPI1₃₇₆ (i.e. SEQ ID NO:12) predicts that PfSPI2₃₇₆ has an estimated molecular weight of about 42.1 kD, an estimated pI of about 4.87, and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

BLAST searches were performed as described in Section A. The protein search was performed using SEQ ID NO:8, which showed significant homology to certain serine protease inhibitor proteins. The highest scoring match of the homology search at the amino acid level was GenBank accession number 1345616: *Homo sapiens*, which was about 36% identical with SEQ ID NO:8. At the nucleotide level, the search was performed using SEQ ID NO:10, which was most similar to accession number L20790, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 1) of *Manduca sexta*, being about 43% identical.

C. An about 1838-nucleotide consensus sequence of the entire flea nfSPI3₁₈₃₈ DNA fragment was determined; the sequences of the two complementary strands are presented as SEQ ID NO:13 (the coding strand) and SEQ ID NO:15 (the complementary strand). The flea nfSPI3₁₈₃₈ sequence contains a full-length coding region. The apparent start and stop codons span nucleotides from about 306 through about 308 and from about 1566 through about 1568, respectively, of SEQ ID NO:13. A putative polyadenylation signal (5' AATAAA 3') is located in a region spanning from about nucleotide 1803 through about 1808 of SEQ ID NO:13.

15

20

Translation of SEQ ID NO:13 yields a protein of about 420 amino acids, denoted PfSPI3₄₂₀, the amino acid sequence of which is presented in SEQ ID NO:14. The nucleic acid molecule consisting of the coding region encoding PfSPI3₄₂₀ is referred to herein as nfSPI3₁₂₆₀, the nucleic acid sequence of which is represented in SEQ ID NO:16 (the coding strand) and SEQ ID NO:17 (the complementary strand). The amino acid sequence of flea PfSPI3₄₂₀ (i.e., SEQ ID NO:14) predicts that PfSPI3₄₂₀ has an estimated molecular weight of about 47.1 kD and an estimated pI of about 4.72. Analysis of SEQ ID NO:14 suggests the presence of a signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 30. The proposed mature protein, denoted herein as PfSPI3₃₉₀, contains about 390 amino acids which is represented herein as SEQ ID NO:18. The amino acid sequence of flea PfSPI3₃₉₀ (i.e. SEQ ID NO:18) predicts that PfSPI3₃₉₀ has an estimated molecular weight of about 43.7 kD, an estimated pI of about 4.63, and two predicted asparagine-linked glycosylation sites extending from about amino acid 252 to about amino acid 254 and from about amino acid 369 to about amino acid 371.

BLAST searches were performed as described in Section A. The protein search was performed using SEQ ID NO:14, which showed significant homology to certain serine protease inhibitor proteins. The highest scoring match of the homology search at the amino acid level was GenBank accession number 1345616: *Homo sapiens*, which was about 35% identical with SEQ ID NO:14. At the nucleotide level, the search was performed using SEQ ID NO:16, which was most similar to accession number L20792, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 2) of *Manduca sexta*, being about 52% identical.

D. An about 1414-nucleotide consensus sequence of the entire flea nfSPI4₁₄₁₄
DNA fragment was determined; the sequences of the two complementary strands are presented as SEQ ID NO:19 (the coding strand) and SEQ ID NO:21(the complementary strand). The flea nfSPI4₁₄₁₄ sequence contains a partial coding region, truncated at the 5' end. The first in-frame codon spans nucleotides from 2 through 4 and the stop codon spans nucleotides from 1181 through 1183 of SEQ ID NO:19. A putative polyadenylation signal (5' AATAAA 3') is located in a region spanning from nucleotide 1179 through 1184 of SEQ ID NO:19.

15

20

25

Translation of SEQ ID NO:19 yields a protein of about 393 amino acids, denoted PfSPI4₃₉₃, the amino acid sequence of which is presented in SEQ ID NO:20. The nucleic acid molecule consisting of the coding region encoding PfSPI4₃₉₃ is referred to herein as nfSPI4₁₁₇₉, the nucleic acid sequence of which is represented in SEQ ID NO:22 (the coding strand) and SEQ ID NO:23 (the complementary strand). Analysis of SEQ ID NO:20 suggests the presence of a partial signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 17. The proposed mature protein, denoted herein as PfSPI4₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:24. The amino acid sequence of flea PfSPI4₃₇₆ (i.e. SEQ ID NO:24) predicts that PfSPI4₃₇₆ has an estimated molecular weight of about 42.2 kD, an estimated pI of about 5.31, and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

BLAST searches were performed as described in Section A. The protein search was performed using SEQ ID NO:20, which showed significant homology to certain serine protease inhibitor proteins. The highest scoring match of the homology search at the amino acid level was GenBank accession number 1345616: *Homo sapiens*, which was about 38% identical with SEQ ID NO:20. At the nucleotide level, the search was performed using SEQ ID NO:22, which was most similar to accession number L20793, a putative serine proteinase inhibitor gene (serpin 1, exon 9 unknown copy number) of *Manduca sexta*, being about 55% identical.

E. An about 1492-nucleotide consensus sequence of the entire flea nfSPI5₁₄₉₂ DNA fragment was determined; the sequences of the two complementary strands are presented as SEQ ID NO:25 (the coding strand) and SEQ ID NO:27 (the complementary strand). The flea nfSPI5₁₄₉₂ sequence contains a partial coding region, truncated at the 5' end. The first in-frame codon spans nucleotides from 3 through 5 and the stop codon spans nucleotides from 1197 through 1199 of SEQ ID NO:25. A putative polyadenylation signal (5' AATAAA 3') is located in a region spanning from nucleotide 1416 through 1421 of SEQ ID NO:25.

Translation of SEQ ID NO:25 yields a protein of about 398 amino acids, denoted PfSPI5₃₉₈, the amino acid sequence of which is presented in SEQ ID NO:26. The nucleic acid molecule consisting of the coding region encoding PfSPI5₃₉₈ is referred to

WO 98/20034

5

10

15

20

25

30

herein as nfSPI5₁₁₉₄, the nucleic acid sequence of which is represented in SEQ ID NO:28 (the coding strand) and SEQ ID NO:29 (the complementary strand). Analysis of SEQ ID NO:26 suggests the presence of a partial signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 22. The proposed mature protein, denoted herein as PfSPI5₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:30. The amino acid sequence of flea PfSPI5₃₇₆ (i.e. SEQ ID NO:30) predicts that PfSPI5₃₇₆ has an estimated molecular weight of about 42.3 kD, an estimated pI of about 5.31 and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

BLAST searches were performed as described in Section A. The protein search was performed using SEQ ID NO:26, which showed significant homology to certain serine protease inhibitor proteins. The highest scoring match of the homology search at the amino acid level was GenBank accession number 1345616: *Homo sapiens*, which was about 38% identical with SEQ ID NO:26. At the nucleotide level, the search was performed using SEQ ID NO:28, which was most similar to accession number L20790, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 1) of *Manduca sexta*, being about 45% identical.

F. An about 1454-nucleotide consensus sequence of the entire flea nfSPI6₁₄₅₄ DNA fragment was determined; the sequences of the two complementary strands are presented as SEQ ID NO:31 (the coding strand) and SEQ ID NO:33 (the complementary strand). The flea nfSPI6₁₄₅₄ sequence contains a full length coding region. The apparent start and stop codons span nucleotides from about 20 through about 22 and from about 1211 through about 1213, respectively, of SEQ ID NO:31. A putative polyadenylation signal (5' AATAAA 3') is located in a region spanning from about nucleotide 1419 through about 1424 of SEQ ID NO:31.

Translation of SEQ ID NO:31 yields a protein of about 397 amino acids, denoted PfSPI6₃₉₇, the amino acid sequence of which is presented in SEQ ID NO:32. The nucleic acid molecule consisting of the coding region encoding PfSPI6₃₉₇ is referred to herein as nfSPI6₁₁₉₁, the nucleic acid sequence of which is represented in SEQ ID NO:34 (the coding strand) and SEQ ID NO:35 (the complementary strand). The amino acid sequence of flea PfSPI6₃₉₇ (i.e., SEQ ID NO:32) predicts that PfSPI6₃₉₇ has an estimated

10

15

20

30

molecular weight of about 44.4 kD and an estimated pI of about 4.90. Analysis of SEQ ID NO:32 suggests the presence of a signal peptide encoded by a stretch of amino acids spanning from about amino acid 1 through about amino acid 21. The proposed mature protein, denoted herein as PfSPI6₃₇₆, contains about 376 amino acids which is represented herein as SEQ ID NO:36. The amino acid sequence of flea PfSPI6₃₇₆ (i.e. SEQ ID NO:36) predicts that PfSPI6₃₇₆ has an estimated molecular weight of about 42.1 kD, an estimated pI of about 4.84, and a predicted asparagine-linked glycosylation site extending from about amino acid 252 to about amino acid 254.

BLAST searches were performed as described in Section A. The protein search was performed using SEQ ID NO:32, which showed significant homology to certain serine protease inhibitor proteins. The highest scoring match of the homology search at the amino acid level was GenBank accession number 1378131: *Manduca sexta*, which was about 36% identical with SEQ ID NO:32. At the nucleotide level, the search was performed using SEQ ID NO:34, which was most similar to accession number L20792, a putative serine proteinase inhibitor gene (serpin 1, exon 9 copy 2) of *Manduca sexta*, being about 55% identical.

Example 5

This example discloses the production of a several recombinant cells of the present invention.

A. Recombinant molecule pλP_R-nfSPI2₁₁₃₉, containing a portion of a flea serine protease inhibitor molecule operatively linked to bacteriophage lambda transcription control sequences and to a fusion sequence encoding a poly-histidine segment comprising 6 histidines was produced as follows. An about 1185-nucleotide DNA fragment containing nucleotides spanning from about 26 through about 1202 of SEQ ID NO:7, denoted herein as nfSPI2₁₁₈₅, was PCR amplified from nucleic acid molecule nfSPI2₁₃₅₈, produced as described in Example 3, using sense primer JPI5, having the nucleic acid sequence 5' GTG TTT CTT TTT GTA TCA GTG 3', denoted as SEQ ID NO:37, and antisense primer, JPI18, having the nucleic acid sequence 5' CGG AAT TCT TTA AAG GGA TTT AAC AC 3' (*Eco*RI site in bold), denoted SEQ ID NO:38.

The amplified gene sequence contained a natural BamHI site about 24 bp downstream of

the 3' end of JPI5 that was used for subcloning into the expression vector. Recombinant

15

20

25

30

molecule $p\lambda P_R$ -nfSPI2₁₁₃₉ was produced by digesting nfSPI2₁₁₈₅-containing PCR product with *Bam*HI and *Eco*RI restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector P_R/T^2 ori/S10HIS-RSET-A9, the production of which is described in PCT Publication No. US95/02941, by Tripp et al., published 9/14/95, Example 7, which had been similarly cleaved with *Bam*HI and *Eco*RI and gel purified.

Recombinant molecule $p\lambda P_R$ -nfSPI2₁₁₃₉ was transformed into *E. coli* strain HB101 competent cells (available from Gibco/BRL, Gaithersburg, MD) to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPI2₁₁₃₉ using standard techniques as disclosed in Sambrook, et al., *ibid*.

The recombinant cells were cultured in enriched bacterial growth medium containing 0.1 mg/ml ampicillin and 0.1% glucose at about 32°C. When the cells reached an OD₆₀₀ of about 0.4-0.5, expression of recombinant protein was induced under heat shift conditions in which the cells were grown at 32°C for about 2 hours, and then grown at 42°C. Immunoblot analysis of recombinant cell *E.coli*:pλP_R-nfSPI2₁₁₃₉ lysates using the T7 tag monoclonal antibody (available from Novagen, Inc., Madison, WI) directed against the fusion portion of the recombinant PHis-PfSPI2₃₇₆ fusion protein identified proteins of appropriate size, namely an about 41 kD protein for each fusion protein.

Expression of the recombinant PHis-PfSPI2₃₇₆ fusion protein was improved by transforming supercoiled plasmid $p\lambda P_R$ -nfSPI2₁₁₃₉ DNA harvested from $E.coli:p\lambda P_R$ -nfSPI2₁₁₃₉ cells into the BL-21 strain of E.coli (available from Novagen). The amount of expression of PHis-PfSPI2₃₇₆ was confirmed by immunoblot using the method described immediately above.

E. coli cells expressing recombinant protein PHis-PfSPI2₃₇₆ were harvested from about 1 liter of media and suspended in about 40 ml of 50 mM Tris, pH 8, 50 mM NaCl, and 1 mg lysozyme (Lysis Buffer). The cells incubated in an ice bath for about 30 minutes (min) and then were centrifuged at about 30,000 x g for 30 min at 4°C. The supernatant (S1) was recovered and the pellet resuspended in about 40 ml Lysis Buffer containing 0.1% Triton X-100 and centrifuged at about 30,000 x g for 30 min at 4°C. The supernatant (S2) was recovered and the pellet resuspended in about 20 ml of

10

15

20

25

30

phosphate buffered saline (PBS) containing 8 M urea (S3). Aliquots of each supernatant were analyzed by SDS-PAGE and immunoblot using a T7 tag monoclonal antibody (available from Novagen, Inc., Madison, WI). The results indicated that the PHis-PfSPI2₃₇₆ protein was located in the final supernatant (S3). The PHis-PfSPI2₃₇₆ was loaded onto a 5 ml, metal chelating HiTrapTM column charged with NiCl₂ (available from Pharmacia Biotech Inc., Piscataway, NJ), previously equilibrated with PBS containing 8 M urea. The column was washed with PBS containing 8 M urea until all unbound protein was removed. Bound PHis-PfSPI2₃₇₆ protein was eluted with linear gradient from 0 to 1 M imidazole in PBS containing 8 M urea. Column fractions were analyzed for the presence of PHis-PfSPI2₃₇₆ by SDS-PAGE and immunoblot using a T7 tag monoclonal antibody. The results indicated that PHis-PfSPI2₃₇₆ was eluted at about 300 mM imidazole. The column fractions containing PHis-PfSPI2₃₇₆ protein were combined and diluted in 20 mM Tris, pH 8 containing 8 M urea in preparation for anion exchange chromatography. The sample was then loaded onto a 4.5 mm x 50 mm Poros 10 HQ anion exchange chromatography column (available from PerSeptive Biosystems, Framingham, MA), previously equilibrated with 20 mM Tris, pH 8 containing 8 M urea. Unbound proteins were washed from the column using the same buffer. Bound proteins were eluted with a linear gradient of from 0 to 1 M NaCl in 20 mM Tris, pH 8 containing 8 M urea. Column fractions were analyzed for the presence of PHis-PfSPI2₃₇₆ by SDS-PAGE. The results indicated that PHis-PfSPI2₃₇₆ was eluted at about 500 mM NaCl.

The purified PHis-PfSPI2₃₇₆ protein was used to produce an anti-SPI2 polyclonal antiserum as follows. Fractions containing PHis-PfSPI2₃₇₆ protein were combined and diluted to a concentration of about 0.1 mg/ml in PBS. A rabbit was immunized and boosted with about 1 mL of a 1:1 mix of antigen and adjuvant. The primary immunization was performed using antigen combined with Complete Freunds Adjuvant. About 500 µl of the mixture was injected subcutaneously into 5 different sites (0.1 ml/site) and 500 µl was injected intradermally into 5 different sites (0.1 ml/site) of the rabbit. Boosts were administered using antigen combined with Incomplete Freunds Adjuvant and were given on days 14 and 36 after the primary immunization, in 250 µl/site doses, intramuscularly, in 4 different sites. Blood samples were obtained prior to

15

20

25

30

immunization (pre-bleed), and approximately every two weeks after the primary immunization. Serum samples from the pre-immunization and days 27, 41, and 55 after the primary immunization were used for subsequent immunoblot experiments.

B. Recombinant molecule $p\lambda P_R$ -nfSPI3₁₁₇₉, containing a portion of a flea serine protease inhibitor molecule operatively linked to bacteriophage lambda transcription control sequences and to a fusion sequence encoding a poly-histidine segment comprising 6 histidines was produced as follows. An about 1225-nucleotide DNA fragment containing nucleotides spanning from about 351 through about 1570 of SEQ ID NO:13, denoted herein as nfSPI3₁₂₂₅, was PCR amplified from nucleic acid molecule nfSPI3₁₈₃₈, produced as described in Example 3, using sense primer JPI5 (SEQ ID NO:37), and antisense primer was JPI15, having the nucleic acid sequence 5' CGG AAT TCT AAT TGG TAA ATC TC 3' (EcoRI site in bold), denoted SEQ ID NO:39. The amplified gene sequence contained a natural BamHI site about 24 bp downstream of the 3' end of JPI5 that was used for subcloning into the expression vector. Recombinant molecule pλP_R-nfSPI3₁₁₇₉ was produced by digesting nfSPI3₁₂₂₅-containing PCR product with BamHI and EcoRI restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector P_p/T^2 ori/S10HIS-RSET-A9, as described in Section A above, which had been similarly cleaved with BamHI and EcoRI and gel purified.

Recombinant molecule $p\lambda P_R$ -nfSPI3₁₁₇₉ was transformed into *E. coli* strain HB101 competent cells (available from Gibco/BRL) to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPI3₁₁₇₉ using standard techniques as disclosed in Sambrook, et al., *ibid*.

C. Recombinant molecule pλP_R-nfSPI4₁₁₄₀, containing a portion of a flea serine protease inhibitor molecule operatively linked to bacteriophage lambda transcription control sequences and to a fusion sequence encoding a poly-histidine segment comprising 6 histidines was produced as follows. An about 1186-nucleotide DNA fragment containing nucleotides spanning from about 8 through about 1186 of SEQ ID NO:19, denoted herein as nfSPI4₁₁₈₆, was PCR amplified from nucleic acid molecule nfSPI4₁₄₁₄, produced as described in Example 3, using sense primer JPI5 (SEQ ID NO:37), and antisense primer was JPI17, having the nucleic acid sequence 5' CGG AAT TCT TTT ATT CAG TTG TTG G 3' (*Eco*RI site in bold), denoted SEQ ID NO:40. The

15

20

25

amplified gene sequence contained a natural BamHI site about 24 bp downstream of the 3' end of JPI5 that was used for subcloning into the expression vector. Recombinant molecule $p\lambda P_R$ -nfSPI4₁₁₄₀ was produced by digesting nfSPI4₁₁₈₆-containing PCR product with BamHI and EcoRI restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector $P_R/T^2ori/S10HIS$ -RSET-A9, as described in Section A above, which had been similarly cleaved with BamHI and EcoRI and gel purified.

Recombinant molecule $p\lambda P_R$ -nfSPI4₁₁₄₀ was transformed into *E. coli* strain HB101 competent cells (available from Gibco/BRL) to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPI4₁₁₄₀ using standard techniques as disclosed in Sambrook, et al., *ibid*.

D. Recombinant molecule pλP_R-nfSPI5₁₁₄₀, containing a portion of a flea serine protease inhibitor molecule operatively linked to bacteriophage lambda transcription control sequences and to a fusion sequence encoding a poly-histidine segment comprising 6 histidines was produced as follows. An about 1186-nucleotide DNA fragment containing nucleotides spanning from about 24 through about 1202 of SEQ ID NO:25, denoted herein as nfSPI5₁₁₈₆, was PCR amplified from nucleic acid molecule nfSPI5₁₄₉₂, produced as described in Example 3, using sense primer JPI5 (SEQ ID NO:37), and antisense primer was JPI17 (SEQ ID NO:40). The amplified gene sequence contained a natural *Bam*HI site about 24 bp downstream of the 3' end of JPI5 that was used for subcloning into the expression vector. Recombinant molecule pλP_R-nfSPI5₁₁₄₀ was produced by digesting nfSPI5₁₁₈₆-containing PCR product with *Bam*HI and *Eco*RI restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector P_R/T²ori/S10HIS-RSET-A9, as described in Section A above, which had been similarly cleaved with *Bam*HI and *Eco*RI and gel purified.

Recombinant molecule $p\lambda P_R$ -nfSPI5₁₁₄₀ was transformed into *E. coli* strain HB101 competent cells (available from Gibco/BRL) to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPI5₁₁₄₀ using standard techniques as disclosed in Sambrook, et al., *ibid*.

E. Recombinant molecule pλP_R-nfSPI6₁₁₃₆, containing a portion of a flea serine
 protease inhibitor molecule operatively linked to bacteriophage lambda transcription
 control sequences and to a fusion sequence encoding a poly-histidine segment

20

comprising 6 histidines was produced as follows. An about 1182-nucleotide DNA fragment containing nucleotides spanning from about 38 through about 1214 of SEQ ID NO:31, denoted herein as nfSPI6₁₁₈₂, was PCR amplified from nucleic acid molecule nfSPI6₁₄₅₄, produced as described in Example 3, using sense primer JPI5 (SEQ ID NO:37), and antisense primer was JPI16, having the nucleic acid sequence 5' CGG AAT TCA TAG AGT TTG AAC TC 3' (EcoRI site in bold), denoted SEQ ID NO:41. The amplified gene sequence contained a natural BamHI site about 24 bp downstream of the 3' end of JPI5 that was used for subcloning into the expression vector. Recombinant molecule pλP_R-nfSPI6₁₁₃₆ was produced by digesting nfSPI6₁₁₈₂-containing PCR product 10 with BamHI and EcoRI restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector P_R/T²ori/S10HIS-RSET-A9, as described in Section A above, which had been similarly cleaved with BamHI and EcoRI and gel purified.

Recombinant molecule $p\lambda P_R$ -nfSPI6₁₁₃₆ was transformed into E. coli strain HB101 competent cells (available from BRL) to form recombinant cell $E.coli:p\lambda P_R$ nfSPI6₁₁₃₆ using standard techniques as disclosed in Sambrook, et al., *ibid*. Example 6

This Example describes the production in bacteria of several flea serine protease inhibitor proteins of the present invention.

Recombinant cells $E.coli:p\lambda P_R-nfSPI2_{1139}$, $E.coli:p\lambda P_R-nfSPI3_{1179}$, $E.coli:p\lambda P_R-nfSPI3_{1179}$ nfSPI4₁₁₄₀, and E.coli:pλP_R-nfSPI6₁₁₃₆, produced as described in Example 5, were cultured in shake flasks containing an enriched bacterial growth medium containing 0.1 mg/ml ampicillin and 0.1% glucose at about 32°C. When the cells reached an OD₆₀₀ of about 0.4 to about 0.5, expression of flea $p\lambda P_R$ -nfSPI2₁₁₃₉, $p\lambda P_R$ -nfSPI3₁₁₇₉, $p\lambda P_R$ nfSPI4₁₁₄₀, and p λ P_R-nfSPI6₁₁₃₆, was induced by elevating the temperature to 42°C, and culturing the cells for about 3 hours. Protein production was monitored by SDS-PAGE of recombinant cell lysates, followed by Coomassie Blue staining and immunoblot analyses using a T7 Tag monoclonal antibody (available from Novagen, Inc.). Recombinant cells E.coli:pλP_R-nfSPI2₁₁₃₉, E.coli:pλP_R-nfSPI3₁₁₇₉, E.coli:pλP_RnfSPI4₁₁₄₀, and E.coli:pλP_R-nfSPI6₁₁₃₆ produced fusion proteins, denoted herein as PHis-30

PfSPI2₃₇₆, PHis-PfSPI3₃₉₀, PHis-PfSPI4₃₇₆, and PHis-PfSPI6₃₇₆, that migrated with an apparent molecular weights of about 45 to 50 kD as predicted.

Example 7

This example describes analysis of the variable and constant domains of the nucleic acid molecules of the present invention.

The sequences of each of the flea serine protease inhibitor cDNA molecules $nfSPI1_{1584}$, $nfSPI2_{1358}$, $nfSPI3_{1838}$, $nfSPI4_{1414}$, $nfSPI5_{1492}$, and $nfSPI6_{1454}$, presented in Example 4, were subdivided into three domains based on comparisons between the six sequences. The observed versions of the three domains are summarized in Table 1. Domain I, spanning from about nucleotide 1 to about nucleotide 142 in nfSPI1₁₅₈₄, from about nucleotide 1 to about nucleotide 14 in nfSPI2₁₃₅₈, from about nucleotide 1 to about nucleotide 339 in nfSPI3₁₈₃₈, not present in nfSPI4₁₄₁₄, from about nucleotide 1 to about nucleotide 12 in nfSPI5₁₄₉₂, and from about nucleotide 1 to about nucleotide 26 in nfSPI6₁₄₅₄, contains upstream untranslated sequences and the coding regions for the amino termini of the serine protease inhibitor proteins. Domain II, spanning from about 15 nucleotide 143 to about nucleotide 1195 in nfSPI1₁₅₈₄, from about nucleotide 15 to about nucleotide 1067 in nfSPI2₁₃₅₈, from about nucleotide 340 to about nucleotide 1392 in nfSPI3₁₈₃₈, from about nucleotide 1 to about nucleotide 1049 in nfSPI4₁₄₁₄, from about nucleotide 13 to about nucleotide 1065 in nfSPI5₁₄₉₂, and from about nucleotide 27 to about nucleotide 1079 in nfSPI6₁₄₅₄, consists of the central core of the coding sequence 20 and encodes 350 amino acids that are extremely highly conserved (i.e. less than approximately 2% variation) between the six serine protease inhibitor clones. The predicted mature N-terminus of the serine protease inhibitors is within Domain II; thus, the variability of Domain I should have no effect on the sequence of mature serine 25 protease inhibitor polypeptides. Domain III sequences are highly variable, yet still related to one another; Domain III, spanning from about nucleotide 1196 to about nucleotide 1584 in nfSPI1₁₅₈₄, from about nucleotide 1068 to about nucleotide 1358 in nfSPI2₁₃₅₈, from about nucleotide 1393 to about nucleotide 1838 in nfSPI3₁₈₃₈, from about nucleotide 1050 to about nucleotide 1414 in nfSPI4₁₄₁₄, from about nucleotide 1066 to about nucleotide 1492 in nfSPI5₁₄₉₂, and from about nucleotide 1080 to about 30

10

15

20

nucleotide 1454 in nfSPI6₁₄₅₄, encodes the C-termini of the serine protease inhibitor proteins.

While not being bound by theory, the most probable explanation for the mixing of the domain versions within the six clones sequenced is a mechanism of alternative mRNA splicing. Such a pattern was described previously by Jiang et al., 1994, *J. Biol. Chem. 269*, 55-58 for serpins in *Manduca sexta*. For this family of serpins, eight exons encode a 336-amino acid constant region, followed by a 40-45-amino acid variable region that is encoded by the ninth exon. At least twelve alternative forms of the ninth exon are tandemly arranged in the genome between exons 8 and 10. Thus, mutually exclusive exon use can account for the variability the authors observed in cDNA clones.

Based on analogy to the *Manduca* system, flea serine protease inhibitors probably exhibit a similar gene structure in that the C-terminal variable region (Domain III) is encoded by multiple exons that are used in a mutually exclusive splicing mechanism. The flea serine protease inhibitor molecules appear to differ from *Manduca* in that for the flea molecules there are at least two alternative exons at the 5' end of the gene (Domain I) as well, and there does not appear to be final constant exon (exon 10 in *Manduca*) at the 3' end. It is probable that other versions of Domain III are present in the flea genome that were not observed in the six cDNA sequences presented herein.

<u>Table 1</u>. Summary of sequence variations of the three domains of flea serine protease inhibitor cDNA clones. Letters represent widely divergent sequences (e.g., A vs. B); numbers denote minor variations (i.e., less than 2%) between lettered sequences (e.g., K1 vs. K2).

	Clone	Domain I	Domain II	Domain III
	nfSel ₁₅₈₄	Α	K 1	W 1
25	nfSe2 ₁₃₅₈	В	K2	X
	nfSe3 ₁₈₃₈	В	K2	Y
	nfSe4 ₁₄₁₄	missing	K2	Z
	nfSe5 ₁₄₉₂	В	K3	Z
	nfSe6 ₁₄₅₄	Α	K2	W2

10

15

20

25

30

Example 8

This example describes the sequencing of several flea serine protease inhibitor variable domain nucleic acid molecules.

Nucleic acid molecules encoding serine protease inhibitor variable domains were identified as follows. Two primers were designed based on the 3' end of the constant domain sequence of nfSPI4₁₄₁₄, referred to herein as primer 5' new BsaI or primer 5' new HincII. Each primer was designed so that, when used in conjunction with an antisense vector primer, a properly amplified fragment of a flea serine protease inhibitor gene would include a domain corresponding to the most variable domain of serine protease inhibitor genes. Primer 5' new BsaI has nucleic acid sequence 5' CAA AAC TGG TCT CCC CGC TC 3' (BsaI site in bold), represented herein as SEQ ID NO:42; and primer 5' new HincII has nucleic acid sequence 5' ATT ACA AAA TGT TGA CTT GC 3' (HincII site in bold), represented herein as SEQ ID NO:43. Primer 5' new BsaI and primer 5' new HincII were each used separately in combination with the vector specific primer T7 having nucleic acid sequence 5' TAA TAC GAC TCA CTA TAG GG 3', represented herein as SEQ ID NO:44.

The two primer pairs were used to amplify nucleic acid molecules using standard PCR amplification conditions (e.g., Sambrook et al., *ibid.*) from a variety of cDNA libraries representing different *C. felis* developmental stages. The cDNA libraries were produced as follows. The pre-pupal cDNA library was produced as described above in Example 3. A flea mixed instar cDNA library was produced using unfed 1st instar, bovine blood-fed 1st instar, bovine blood-fed 2nd instar and bovine blood-fed 3rd instar flea larvae (this combination of tissues is referred to herein as mixed instar larval tissues for purposes of this example). Total RNA was extracted from mixed instar using the method described above using about 5,164 mixed instar larvae. Poly A+ selected RNA was isolated as described above and about 6.34 μg of mixed instar poly A+ RNA was used to construct a mixed instar cDNA expression library in lambda Uni-ZAPTMXR vector (available from Stratagene), using Stratagene's ZAP-cDNA Synthesis Kit® protocol. The resultant mixed instar library was amplified to a titer of about 2.17 x 10¹⁰ pfu/ml with about 97% recombinants. An unfed whole adult flea cDNA library was

15

25

30

produced by the standard method generally described in Example 8 of related PCT Publication No. WO 96/11706.

A bovine blood-fed flea gut cDNA library was produced as follows. Total RNA was extracted from approximately 3500 guts from bovine blood-fed fleas using a standard guanidinium thiocyanate procedure for lysis and denaturation of the gut tissue, followed by centrifugation in cesium chloride to pellet the RNA. Messenger RNA was isolated from the total RNA using a Fast TrackTM Kit (available from InVitrogen, San Diego, CA). A bovine blood-fed flea gut cDNA expression library was constructed in lambda Uni-ZAPTMXR vector (available from Stratagene), using Stratagene's ZAP-cDNA Synthesis Kit® protocol

PCR products using the different cDNA libraries were each gel purified and cloned into the TA Vector[™] (available from InVitrogen). The nucleic acid molecule was subjected to nucleic acid sequencing using the Sanger dideoxy chain termination method, as described in Sambrook et al., *ibid*.

A first flea serine protease inhibitor variable domain nucleic acid A. molecule isolated from the mixed instar cDNA library was determined to comprise nucleic acid molecule nfSPI7₅₄₉, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:45. Translation of SEQ ID NO:45 suggests that nucleic acid molecule nfSPI7₅₄₉ encodes a portion of a serine protease inhibitor protein of about 134 amino acids, referred to herein as PfSPI7₁₃₄, having amino acid sequence SEQ ID NO:46, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEO ID NO:45 and the last codon spans from nucleotide 402 through nucleotide 404 of SEQ ID NO:45. The complement of SEQ ID NO:45 is represented herein by SEQ ID NO:47. Comparison of amino acid sequence SEQ ID NO:46 (i.e., the amino acid sequence of PfSPI7₁₃₄) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:46, showed the most homology, i.e., about 34% identity, between SEQ ID NO:46 and Mus musculus antithrombin III precursor protein. Comparison of nucleic acid sequence SEQ ID NO:45 (i.e., the nucleic acid sequence of nfSPI7₅₄₉) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:45, showed the most homology, i.e., about 38% identity, between SEQ ID NO:45 and human bomapin gene.

20

25

- В. A second flea serine protease inhibitor variable domain nucleic acid molecule isolated from the mixed instar cDNA library was determined to comprise nucleic acid molecule nfSPI8₅₄₉, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:48. Translation of SEQ ID NO:48 suggests that nucleic acid molecule nfSPI8₅₄₉ encodes a serine protease inhibitor variable domain protein of about 149 amino acids, referred to herein as PfSPI8₁₄₉, having amino acid sequence SEQ ID NO:49, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:48 and the last codon spans from nucleotide 447 through nucleotide 449 of SEQ ID NO:48. The complement of SEQ ID NO:48 is represented herein by SEQ ID NO:50. Comparison of amino acid sequence SEQ ID NO:49 (i.e., the amino acid sequence of PfSPI8₁₄₉) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:49, showed the most homology, i.e., about 36% identity, between SEQ ID NO:49 and human bomapin precursor protein. Comparison of nucleic acid sequence SEQ ID NO:48 (i.e., the nucleic acid sequence of nfSPI8₅₄₉) with nucleic acid sequences reported in GeEmbl indicates that SEQ ID NO:48, showed the most homology, i.e., about 41% identity, between SEQ ID NO:48 and human bomapin gene.
- C. A third flea serine protease inhibitor variable domain nucleic acid molecule isolated from the bovine blood-fed gut cDNA library was determined to comprise nucleic acid molecule nfSPI9₅₈₁, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:51. Translation of SEQ ID NO:51 suggests that nucleic acid molecule nfSPI9₅₈₁ encodes a serine protease inhibitor variable domain protein of about 136 amino acids, referred to herein as PfSPI9₁₃₆, having amino acid sequence SEQ ID NO:52, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:51 and the last codon spans from nucleotide 408 through nucleotide 410 of SEQ ID NO:51. The complement of SEQ ID NO:51 is represented herein by SEQ ID NO:53. Comparison of amino acid sequence SEQ ID NO:52 (i.e., the amino acid sequence of PfSPI9₁₃₆) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:52, showed the most homology, i.e., about 45% identity, between SEQ ID NO:52 and Bombyx mori anti-trypsin precusor protein. Comparison of nucleic acid sequence SEQ ID NO:51 (i.e., the nucleic acid sequence of nfSPI9₅₈₁) with nucleic acid sequences reported in GenBank indicates that SEQ ID NO:51, showed the

10

15

most homology, i.e., about 52% identity, between SEQ ID NO:51 and Bombyx mori antitrypsin gene.

- D. A fourth flea serine protease inhibitor variable domain nucleic acid molecule isolated from the flea pre-pupal cDNA library was determined to comprise nucleic acid molecule nfSPI10654, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:54. Translation of SEQ ID NO:54 suggests that nucleic acid molecule nfSPI10₆₅₄ encodes a serine protease inhibitor variable domain protein of about 118 amino acids, referred to herein as PfSPI10₁₁₈, having amino acid sequence SEQ ID NO:55, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:54 and the last codon spans from nucleotide 354 through nucleotide 356 of SEQ ID NO:54. The complement of SEQ ID NO:54 is represented herein by SEQ ID NO:56. Comparison of amino acid sequence SEQ ID NO:55 (i.e., the amino acid sequence of PfSPI10₁₁₈) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:55, showed the most homology, i.e., about 38% identity, between SEQ ID NO:55 and Manduca sexta alaserpin precursor protein. Comparison of nucleic acid sequence SEQ ID NO:54 (i.e., the nucleic acid sequence of nfSPI10₆₅₄) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:54, showed the most homology, i.e., about 41% identity, between SEQ ID NO:54 and human bomapin gene.
- A fifth flea serine protease inhibitor variable domain nucleic acid E. molecule isolated from the flea pre-pupal cDNA library was determined to comprise 20 nucleic acid molecule nfSPI11670, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:57. Translation of SEQ ID NO:57 suggests that nucleic acid molecule nfSPI11670 encodes a serine protease inhibitor variable domain protein of about 125 amino acids, referred to herein as PfSPI11₁₂₅, having amino acid sequence SEQ ID NO:58, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:57 and the last codon spans from nucleotide 375 through nucleotide 377 of SEQ ID NO:57. The complement of SEQ ID NO:57 is represented herein by SEQ ID NO:59. Comparison of amino acid sequence SEQ ID NO:58 (i.e., the amino acid sequence of PfSPI11₁₂₅) with amino acid sequences reported in SwissProt indicates that SEO ID NO:58, showed the most homology, i.e., about 43% identity, between SEQ ID 30 NO:58 and Manduca sexta alaserpin precursor protein. Comparison of nucleic acid

15

20

25

30

sequence SEQ ID NO:57 (i.e., the nucleic acid sequence of nfSPI11₆₇₀) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:57, showed the most homology, i.e., about 40% identity, between SEQ ID NO:57 and human bomapin gene.

- A sixth flea serine protease inhibitor variable domain nucleic acid F. molecule isolated from the unfed whole adult flea cDNA library was determined to comprise nucleic acid molecule nfSPI12706, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:60. Translation of SEQ ID NO:60 suggests that nucleic acid molecule nfSPI12706 encodes a serine protease inhibitor variable domain protein of about 136 amino acids, referred to herein as PfSPI12₁₃₆, having amino acid sequence SEQ ID NO:61, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:60 and the last codon spans from nucleotide 408 through nucleotide 410 of SEQ ID NO:60. The complement of SEQ ID NO:60 is represented herein by SEQ ID NO:62. Comparison of amino acid sequence SEQ ID NO:61 (i.e., the amino acid sequence of PfSPI12₁₃₆) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:61, showed the most homology, i.e., about 45% identity, between SEQ ID NO:61 and Manduca sexta alaserpin precursor protein protein. Comparison of nucleic acid sequence SEQ ID NO:60 (i.e., the nucleic acid sequence of nfSPI12706) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:60, showed the most homology, i.e., about 38% identity, between SEQ ID NO:60 and human bomapin gene.
- G. A seventh flea serine protease inhibitor variable domain nucleic acid molecule isolated from the flea pre-pupal cDNA library was determined to comprise nucleic acid molecule nfSPI13₆₂₃, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:63. Translation of SEQ ID NO:63 suggests that nucleic acid molecule nfSPI13₆₂₃ encodes a serine protease inhibitor variable domain protein of about 122 amino acids, referred to herein as PfSPI13₁₂₂, having amino acid sequence SEQ ID NO:64, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:63 and the last codon spans from nucleotide 366 through nucleotide 368 of SEQ ID NO:63. The complement of SEQ ID NO:63 is represented herein by SEQ ID NO:65. Comparison of amino acid sequence SEQ ID NO:64 (i.e., the amino acid sequence of PfSPI13₁₂₂) with amino acid sequences reported in SwissProt indicates that

10

20

SEQ ID NO:64, showed the most homology, i.e., about 39% identity, between SEQ ID NO:64 and human leukocyte esterase inhibitor protein. Comparison of nucleic acid sequence SEQ ID NO:63 (i.e., the nucleic acid sequence of nfSPI13₆₂₃) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:63, showed the most homology, i.e., about 37% identity, between SEQ ID NO:63 and human bomapin gene.

- A eighth flea serine protease inhibitor variable domain nucleic acid H. molecule isolated from the bovine blood-fed flea gut cDNA library was determined to comprise nucleic acid molecule nfSPI14731, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:66. Translation of SEQ ID NO:66 suggests that nucleic acid molecule nfSPI14731 encodes a serine protease inhibitor variable domain protein of about 137 amino acids, referred to herein as PfSPI14₁₃₇, having amino acid sequence SEQ ID NO:67, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:66 and the last codon spans from nucleotide 411 through nucleotide 413 of SEQ ID NO:66. The complement of SEQ ID NO:66 is represented herein by SEQ ID NO:68. Comparison of amino acid sequence SEQ ID NO:67 (i.e., the amino acid sequence of PfSPI14₁₃₇) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:67, showed the most homology, i.e., about 40% identity, between SEQ ID NO:67 and Equus callabus esterase inhibitor protein. Comparison of nucleic acid sequence SEQ ID NO:66 (i.e., the nucleic acid sequence of nfSPI14731) with nucleic acid sequences reported in GenEmbl indicates that SEO ID NO:66, showed the most homology, i.e., about 38% identity, between SEQ ID NO:66 and human bomapin gene.
- I. A ninth flea serine protease inhibitor variable domain nucleic acid molecule isolated from the unfed whole adult flea cDNA library was determined to comprise nucleic acid molecule nfSPI15₆₈₅, the nucleic acid sequence of the coding strand which is denoted herein as SEQ ID NO:69. Translation of SEQ ID NO:69 suggests that nucleic acid molecule nfSPI15₆₈₅ encodes a serine protease inhibitor variable domain protein of about 135 amino acids, referred to herein as PfSPI15₁₃₅, having amino acid sequence SEQ ID NO:70, assuming the first codon spans from nucleotide 3 through nucleotide 5 of SEQ ID NO:69 and the last codon spans from nucleotide 405 through nucleotide 407 of SEQ ID NO:69. The complement of SEQ ID

NO:69 is represented herein by SEQ ID NO:71. Comparison of amino acid sequence SEQ ID NO:70 (i.e., the amino acid sequence of PfSPI15₁₃₅) with amino acid sequences reported in SwissProt indicates that SEQ ID NO:70, showed the most homology, i.e., about 48% identity, between SEQ ID NO:70 and *Bombyx mori* antichymotrypsin II protein. Comparison of nucleic acid sequence SEQ ID NO:69 (i.e., the nucleic acid sequence of nfSPI15₆₈₅) with nucleic acid sequences reported in GenEmbl indicates that SEQ ID NO:69, showed the most homology, i.e., about 38% identity, between SEQ ID NO:69 and human antithrombin III variant gene.

Example 9

10

15

20

25

30

This example discloses the production of a several recombinant cells of the present invention using serine protease inhibitor variable domain nucleic acid molecules of the present invention.

Each of nucleic acid molecules nfSPI7₅₄₉, nfSPI8₅₄₉, nfSPI9₅₈₁, nfSPI10₆₅₄, nfSPI12₇₀₆, nfSPI13₆₂₃ and nfSPI15₆₈₅, were digested with either the restriction enzymes *Hinc*II and *Xho*I, or *Bsa*I and *Xho*I. The resulting *Hinc*II and *Xho*I, or *Bsa*I and *Xho*I digested fragments were ligated to a portion of DNA that had been isolated from nfSPI4₁₄₁₄ digested with *Bam*HI and *Hinc*II, or *Bam*HI and *Bsa*I. The nfSPI4₁₄₁₄ *Bam*HI and *Hinc*II fragment, or nfSPI4₁₄₁₄ *Bam*HI and *Bsa*I fragment, encoded the majority of the constant domain of nfSPI4₁₄₁₄. The resulting ligation products that include chimeric serine protease inhibitor open reading frames, are referred to herein as nfSPIC4:V7, nfSPIC4:V8, nfSPIC4:V9, nfSPIC4:V10, nfSPIC4:V12, nfSPIC4:V13 and nfSPIC4:V15, respectively. The nfSPIC4:V7, nfSPIC4:V9, nfSPIC4:V10 or nfSPIC4:V12 ligation products were then digested with the restriction enzymes *Bam*HI and *Xho*I and separately ligated into pBluescript vector which had been digested with the same restriction enzymes. The resulting ligation products are referred to herein as pBluSPI:C4:V7, pBluSPI:C4:V9, pBluSPI:C4:V10 and pBluSPI:C4:V12, respectively.

A. Recombinant molecule $p\lambda P_R$ -nfSPIC4:V7₁₁₆₈, containing a chimeric serine protease inhibitor open reading frame molecule operatively linked to bacteriophage lambda transcription control sequences and to a fusion sequence encoding a polyhistidine segment comprising 6 histidines was produced as follows. An about 1168-nucleotide DNA fragment denoted herein as nfSPIC4:V7₁₁₆₈ containing nucleotides

15

20

25

30

spanning from 1 through 761 of nfSPI4₁₄₁₄ ligated to nucleotides spanning from 1 through 407 of nfSPI7₅₄₉, was PCR amplified from nucleic acid molecule pBluSPI:C4:V7, using sense primer T-3pBS, having the nucleic acid sequence 5' ATT AAC CCT CAC TAA AG 3' (SEQ ID NO:83), and antisense primer, Srp73'end, having nucleic acid sequence 5' GCG GAA TTC TTA AGG ATT AAC GTG TTG AAC 3' and denoted herein as SEQ ID NO:93 (*EcoRI* site shown in bold). The amplified gene sequence contained a natural *BamHI* site about 100 bp downstream of the T-3pBS primer that was used for subcloning into the expression vector. Recombinant molecule $p\lambda P_R$ -nfSPIC4:V7₁₁₆₈ was produced by digesting nfSPIC4:V7₁₁₆₈ with *BamHI* and *EcoRI* restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector P_R/T^2 ori/S10HIS-RSET-A9, the production of which is described in PCT Publication No. US95/02941, by Tripp et al., published 9/14/95, Example 7, which had been similarly cleaved with *BamHI* and *EcoRI* and gel purified.

Recombinant molecule $p\lambda P_R$ -nfSPIC4:V7₁₁₆₈ was transformed into *E. coli* strain HB101 competent cells (available from Gibco/BRL, Gaithersburg, MD) to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPIC4:V7₁₁₆₈ using standard techniques as disclosed in Sambrook, et al., *ibid*.

B. Recombinant molecule $p\lambda P_R$ -nfSPIC4:V9₁₁₇₄, was produced using the methods described above in section 9(A) except the antisense primer used to produce a PCR product from pBluSPI:C4:V9 was Srp93'end, having nucleic acid sequence 5' GGA ATT CTT ATT GCA CAA ATC ATC C 3' and denoted herein as SEQ ID NO:94 (*EcoRI* site shown in bold). An about 1174-nucleotide DNA fragment denoted herein as nfSPIC4:V9₁₁₇₄ containing nucleotides spanning from 1 through 794 of nfSPI4₁₄₁₄ and nucleotides spanning from 22 through 413 of SEQ ID NO:51, was PCR amplified from nucleic acid molecule pBluSPI:C4:V9 produced as described in section 9. Recombinant molecule $p\lambda P_R$ -nfSPIC4:V9₁₁₇₄ was produced by digesting nfSPIC4:V9₁₁₇₄ with *Bam*HI and *EcoRI* restriction endonucleases, gel purifying the resulting fragment and subcloning the fragment into the expression vector P_R/T^2 ori/S10HIS-RSET-A9, which had been similarly cleaved with *Bam*HI and *EcoRI* and gel purified, to produce the recombinant molecule $p\lambda P_R$ -nfSPIC4:V9₁₁₇₄.

10

15

20

25

30

Recombinant molecule $p\lambda P_R$ -nfSPIC4:V9₁₁₇₄ was transformed into *E. coli* strain HB101 competent cells to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPIC4:V9₁₁₇₄ using methods described in Section 9(A).

C. Recombinant molecule pλP_R-nfSPIC4:V10₁₁₅₉, was produced using the methods described above in section 9(A) except the antisense primer used to produce a PCR product from pBluSPI:C4:V10 was Srp103'end, having nucleic acid sequence 5' GCG GAA TTC AAC AAA AGT GTG TTC 3' and denoted herein as SEQ ID NO:87 (*Eco*RI site shown in bold) and the sense primer used was the T-3pBS primer (SEQ ID NO:83). An about 1159-nucleotide DNA fragment denoted herein as nfSPIC4:V10₁₁₅₉ containing nucleotides spanning from 1 through 803 of nfSPI4₁₄₁₄ and nucleotides spanning from 1 through 356 of SEQ ID NO:54, was PCR amplified from nucleic acid molecule pBluSPI:C4:V10₁₁₅₉ was produced as described in section 9. Recombinant molecule pλP_R-nfSPIC4:V10₁₁₅₉ was produced by digesting nfSPIC4:V10₁₁₅₉ with *Bam*HI and *Eco*RI restriction endonucleases, gel purifying the resulting fragment and subcloning the fragment into the expression vector P_R/T²ori/S10HIS-RSET-A9, which had been similarly cleaved with *Bam*HI and *Eco*RI and gel purified, to produce the recombinant molecule pλP_R-nfSPIC4:V10₁₁₅₉.

Recombinant molecule $p\lambda P_R$ -nfSPIC4:V10₁₁₅₉ was transformed into *E. coli* strain HB101 competent cells to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPIC4:V10₁₁₅₉ using methods described in Section 9(A).

D. Recombinant molecule pλP_R-nfSPIC4:V8₁₂₂₂, containing a chimeric serine protease inhibitor open reading frame molecule operatively linked to bacteriophage lambda transcription control sequences and to a fusion sequence encoding a poly-histidine segment comprising 6 histidines was produced as follows. An about 1222 nucleotide DNA fragment denoted herein as nfSPIC4:V8₁₂₂₂ containing nucleotides spanning from 1 to 794 of nfSPI4₁₄₁₄ ligated to nucleotides spanning from 22 through 449 of nfSPI8₅₄₉ was PCR amplified from nucleic acid molecule nfSPIC4:V8 using sense primer serpin5' end having nucleic acid sequence 5' ATA GGA TCC CCA GGA ATT GTC 3' (SEQ ID NO 84; *Bam*H1 site in bold), and antisense primer, Srp8 3'end, having nucleic acid sequence 5' GCG AGA TCT CTA GTT ATT AAT ATT GGT TAA 3' and denoted herein as SEQ ID NO:85 (*Bgl*II site shown in bold). Recombinant

30

molecule $p\lambda P_R$ -nfSPIC4:V8 was produced by digesting nfSPIC4:V8₁₂₂₂ with *Bam*HI and *Bgl*II restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector P_R/T^2 ori/S10HIS-RSET-A9, which had been similarly cleaved with *Bam*HI and *Bgl*II and gel purified, to produce the recombinant molecule $p\lambda P_R$ -nfSPIC4:V8₁₂₂₂.

Recombinant molecule $p\lambda P_R$ -nfSPIC4:V8₁₂₂₂ was transformed into *E. coli* strain HB101 competent cells to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPIC4:V8₁₂₂₂ using methods described in Section 9(A).

Recombinant molecule pλP_R-nfSPIC4:V15₁₁₇₉, containing a chimeric serine protease inhibitor open reading frame molecule operatively linked to 10 bacteriophage lambda transcription control sequences and to a fusion sequence encoding a poly-histidine segment comprising 6 histidines was produced as follows. An about 1179 nucleotide DNA fragment denoted herein as nfSPIC4:V15₁₁₇₉ containing nucleotides spanning from 1 to 794 of nfSPI4₁₄₁₄ ligated to nucleotides spanning from 22 through 449 of nfSPI15685 was PCR amplified from nucleic acid molecule nfSPIC4:V15 15 using the sense primer serpin5'end (SEQ ID NO:84) and the antisense primer, Srp15 3', having nucleic acid sequence 5' GCGGAATTCTCATGGTGACTGAACGCG 3' (denoted herein as SEQ ID NO:86; EcoR1 site shown in bold). Recombinant molecule p\(\rangle P_R\)-nfSPIC4:V151179 was produced by digesting nfSPIC4:V151179 with BamHI and EcoR1 restriction endonucleases, column purifying the resulting fragment, and 20 directionally subcloning the fragment into expression vector P_R/T²ori/S10HIS-RSET-A9, which had been similarly cleaved with BamHI and EcoR1 and gel purified, to produce the recombinant molecule p\(P_R \)-nfSPIC4:V15₁₁₇₉.

Recombinant molecule $p\lambda P_R$ -nfSPIC4:V15₁₁₇₉ was transformed into *E. coli* strain HB101 competent cells to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPIC4:V15₁₁₇₉ using methods described in Section 9(A).

F. Recombinant molecule pλP_R-nfSPIC4:V12₁₁₇₁, containing a chimeric serine protease inhibitor open reading frame molecule operatively linked to bacteriophage lambda transcription control sequences and to a fusion sequence encoding a poly-histidine segment comprising 6 histidines was produced as follows. An about 1171 nucleotide DNA fragment denoted herein as nfSPIC4:V12₁₁₇₁ containing

20

25

nucleotides spanning from 1 to 761 of nfSPI4₁₄₁₄ ligated to nucleotides spanning from 1 through 410 of nfSPI12₇₀₆ was PCR amplified from nucleic acid molecule pBluSPIC4:V12 using sense primer T-3pBS (SEQ ID NO:83), and antisense primer, Srp123'end, having nucleic acid sequence 5' GCG GAA TTC TTA TTT GGG AGA
TAT AAC TCG 3' and denoted herein as SEQ ID NO:91 (*Eco*R1 site shown in bold). Recombinant molecule pλP_R-nfSPIC4:V12₁₁₇₁ was produced by digesting nfSPIC4:V12₁₁₇₁ with *Bam*HI and *Eco*R1 restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector P_R/T²ori/S10HIS-RSET-A9, which had been similarly cleaved with *Bam*HI and *Eco*R1 and gel purified, to produce the recombinant molecule pλP_R-nfSPIC4:V12₁₁₇₁.

Recombinant molecule $p\lambda P_R$ -nfSPIC4:V12₁₁₇₁ was transformed into *E. coli* strain HB101 competent cells to form recombinant cell *E.coli*: $p\lambda P_R$ -nfSPIC4:V12₁₁₇₁ using methods described in Section 9(A).

Recombinant molecule pλP_R-nfSPIC4:V13₁₁₇₁, containing a chimeric G. serine protease inhibitor open reading frame molecule operatively linked to bacteriophage lambda transcription control sequences and to a fusion sequence encoding a poly-histidine segment comprising 6 histidines was produced as follows. An about 1171 nucleotide DNA fragment denoted herein as nfSPIC4:V13₁₁₇₁ containing nucleotides spanning from 1 to 803 of nfSPI4₁₄₁₄ ligated to nucleotides spanning from 1 through 368 of nfSPI13623 was PCR amplified from nucleic acid molecule nfSPIC4:V13 using the sense primer serpin5' end (SEQ ID NO:84), and antisense primer Srp13 3', having nucleic acid sequence 5' CGC GAA TTC TCA TTC GAC AAA ATG ACC 3' and denoted herein as SEQ ID NO:92 (EcoRI site shown in bold). Recombinant molecule pλP_R-nfSPIC4:V13₁₁₇₁ was produced by digesting nfSPIC4:V13₁₁₇₁ with BamHI and EcoRI restriction endonucleases, column purifying the resulting fragment, and directionally subcloning the fragment into expression vector P_R/T²ori/S10HIS-RSET-A9, which had been similarly cleaved with BamHI and EcoR1 and gel purified, to produce the recombinant molecule $p\lambda P_R$ -nfSPIC4:V13₁₁₇₁.

Recombinant molecule pλP_R-nfSPIC4:V13₁₁₇₁ was transformed into *E. coli* strain 30 HB101 competent cells to form recombinant cell *E.coli*:pλP_R-nfSPIC4:V13₁₁₇₁ using methods described in Section 9(A).

Example 10

for about 2 hours at about 32°C.

15

This Example describes the production in bacteria of several flea serine protease inhibitor proteins of the present invention.

Recombinant cells *E.coli*:pλP_R-nfSPIC4:V7₁₁₆₈, *E.coli*:pλP_R-nfSPIC4:V8₁₂₂₂, *E.coli*:pλP_R-nfSPIC4:V9₁₁₇₄, *E.coli*:pλP_R-nfSPIC4:V10₁₁₅₉, *E.coli*:pλP_R-nfSPIC4:V15₁₁₇₉, produced as described in Example 9, were cultured in shake flasks containing an enriched bacterial growth medium containing 0.1 mg/ml ampicillin and 0.1% glucose at about 32°C. When the cells reached an OD₆₀₀ of about 0.4 to about 0.5, expression of flea *E.coli*:pλP_R-nfSPIC4:V7₁₁₆₈, *E.coli*:pλP_R-nfSPIC4:V9₁₁₇₄, *E.coli*:pλP_R-nfSPIC4:V10₁₁₅₉, *E.coli*:pλP_R-nfSPIC4:V12₁₁₇₁, *E.coli*:pλP_R-nfSPIC4:V13₁₁₇₁, *E.coli*:pλP_R-nfSPIC4:V15₁₁₇₉, were each induced by elevating the temperature to 42°C, and culturing the cells for about 3 hours. Expression of flea *E.coli*:pλP_R-nfSPIC4:V8₁₂₂₂ was induced by the addition of 0.5 mM isopropyl-B-D-thiogalactoside (IPTG) to the culture medium, and the cells were cultured

Protein production was monitored by SDS-PAGE of recombinant cell lysates and immunoblot analyses using a T7 Tag monoclonal antibody (available from Novagen, Inc.) and the anti-SPI2 polyclonal antiserum (described in detail in Example 5). Recombinant cells E.coli:pλP_R-nfSPIC4:V7₁₁₆₈, E.coli:pλP_R-nfSPIC4:V9₁₁₇₄ and E.coli:pλP_R-nfSPIC4:V15₁₁₇₉ produced fusion proteins, denoted herein as PHis-20 PfSPIC4:V7, PHis-PfSPIC4:V9 and PHis-PfSPIC4:V15 that migrated with an apparent molecular weight of about 45 kD as predicted. Recombinant cells E.coli:pλP_RnfSPIC4:V10₁₁₅₉ produced the fusion protein denoted herein as PHis-PfSPIC4:V10 that migrated with an apparent molecular weight of about 44 kD as predicted. Recombinant cells E.coli:pλP_R-nfSPIC4:V8₁₂₂₂ produced the fusion protein denoted herein as PHis-25 PfSPIC4:V8 that migrated with an apparent molecular weight of about 51 kD as predicted. Recombinant cells $E.coli:p\lambda P_R$ -nfSPIC4:V12₁₁₇₁ and $E.coli:p\lambda P_R$ nfSPIC4:V13₁₁₇₁ produced the fusion protein denoted herein as PHis-PfSPIC4:V12 and PHis-PfSPIC4:V13, respectively, each of which migrated with an apparent molecular weight of about 49 kD as predicted. 30

25

30

Example 11

This example demonstrates the production of a serine protease inhibitor protein of the present invention in eukaryotic cells.

A. Recombinant molecule pBv-nfSPI3₁₂₂₂, containing a flea serine protease

inhibitor nucleic acid molecule spanning nucleotides from about 325 through about 1546
of SEQ ID NO:13, operatively linked to baculovirus polyhedron transcription control
sequences were produced in the following manner. A PCR fragment of 1222
nucleotides, herein denoted nfSPI3₁₂₂₂, having SEQ ID NO:72 was amplified from
nfSPI3₁₈₃₈ using the sense primer Serpin3For, having the nucleic acid sequence 5'- GGA

AGA TCT ATA AAT ATG CCG CGT CCT CAG TTT G -3' (SEQ ID NO:73; BglII
site shown in bold) and the antisense primer Serpin3Rev, having the nucleic acid
sequence 5'-CGG AAT TCT AAT TGG TAA ATC TCC CAG AG -3' (SEQ ID NO:74;
EcoRI site shown in bold). A portion of the sense primer was designed from the pol h
sequence of baculovirus with modifications to enhance expression in the baculovirus
system.

The resulting 1222-bp PCR product (referred to as Bv-nfSPI3₁₂₂₂) was digested with *BgI*II and *Eco*RI restriction endonucleases and subcloned into unique *BgI*II and *Eco*RI sites of pVL1392 baculovirus shuttle plasmid (available from Pharmingen, San Diego, CA) to produce the recombinant molecule referred to herein as pVL-nfSPI3₁₂₂₂.

The resultant recombinant molecule pVL-nfSPI3₁₂₂₂, was verified for proper insert orientation by restriction mapping. Such a recombinant molecule can be cotransfected with a linear Baculogold baculovirus DNA (available from Pharmingen) into *S. frugiperda* Sf9 cells (available from InVitrogen) to form the recombinant cells denoted *S. frugiperda*:pVL-nfSPI3₁₂₂₂. *S. frugiperda*:pVL-nfSPI3₁₂₂₂ was cultured in order to produce a flea serine protease inhibitor protein PfSPI3₄₀₆ (referred to herein as SEQ ID NO:95).

An immunoblot of supernatant from cultures of *S. frugiperda*:pVL-nfSPI3₁₂₂₂ cells producing the flea serine protease inhibitor protein PfSPI3₄₀₆ was performed using the anti-SPI2 polyclonal antiserum described in detail in Example 5. Blots were incubated using serum samples from the pre-bleed or from serum collected 14 days after

15

20

25

30

the first boost of the rabbit. Analysis of the supernatent from cultures of S. frugiperda:pVL-nfSPI3₁₂₂₂ cells identified an about 41 kD and about 46 kD proteins.

B. Recombinant molecule pBv-nfSPI6₁₁₅₅, containing a flea serine protease inhibitor nucleic acid molecule spanning nucleotides from about 154 through about 1308 of SEQ ID NO:31, operatively linked to baculovirus polyhedron transcription control sequences were produced in the following manner. A PCR fragment of 1155 nucleotides, herein denoted nfSPI6₁₁₅₅, having SEQ ID NO:75 was amplified from nfSPI6₁₄₅₄ using the sense primer Serpin6For, having the nucleic acid sequence 5'- GGA AGA TCT ATA AAT ATG ATT AAC GCA CGA CTT -3' (SEQ ID NO:76; *Bgl*II site shown in bold) and the antisense primer Serpin6Rev, having the nucleic acid sequence 5'-CCG GAA TTC ATA GAG TTT GAA CTC GCC C -3' (SEQ ID NO:77; *Eco*RI site shown in bold). A portion of the sense primer was designed from the pol h sequence of baculovirus with modifications to enhance expression in the baculovirus system.

The resulting 1155-bp PCR product (referred to as Bv-nfSPI6₁₁₅₅) was digested with *BgI*II and *Eco*RI restriction endonucleases and subcloned into unique *BgI*II and *Eco*RI sites of pVL1392 baculovirus shuttle plasmid to produce the recombinant molecule referred to herein as pVL-nfSPI6₁₁₅₅.

The resultant recombinant molecule pVL-nfSPI6₁₁₅₅, was verified for proper insert orientation by restriction mapping. Such a recombinant molecule can be cotransfected with a linear Baculogold baculovirus DNA into *S. frugiperda* Sf9 cells to form the recombinant cells denoted *S. frugiperda*:pVL-nfSPI6₁₁₅₅. *S. frugiperda*:pVL-nfSPI6₁₁₅₅ was cultured in order to produce a flea serine protease inhibitor protein PfSPI6₃₈₅ (referred to herein as SEQ ID NO:96).

An immunoblot of supernatant from cultures of *S. frugiperda*:pVL-nfSPI6₁₁₅₅ cells producing the flea serine protease inhibitor protein PfSPI6₃₈₅ was performed using the anti-SPI2 polyclonal antiserum described in detail in Example 5. Blots were incubated using serum samples from the pre-bleed or from serum collected 14 days after the first boost of the rabbit. Analysis of the supernatent from cultures of *S. frugiperda*:pVL-nfSPI6₁₁₅₅ cells identified an about 41 kD and about 45 kD proteins.

C. Recombinant molecule pBv-nfSPI2₁₀₆₅, containing a flea serine protease inhibitor nucleic acid molecule spanning nucleotides from about 102 through about 1066

15

20

25

30

of SEQ ID NO:7, operatively linked to baculovirus polyhedron transcription control sequences were produced in the following manner. A PCR fragment of 1066 nucleotides, herein denoted nfSPI2₁₀₆₅, having SEQ ID NO:78 was amplified from nfSPI2₁₃₅₈ using the sense primer Serpin2For, having the nucleic acid sequence 5'- GCG GAA TTC GAT CCC CAG GAA TTG TCT ACA AGT ATT AAC C -3' (SEQ ID NO:79; *Eco*RI site shown in bold) and the antisense primer Serpin2Rev, having the nucleic acid sequence 5'- GCG AGA TCT TTA AAG GGA TTT AAC ACA TCC ACT GAA CAA AAC AG -3' (SEQ ID NO:80; *Bgl*II site shown in bold).

The resulting 1065-bp PCR product (referred to as Bv-nfSPI2₁₀₆₅) was digested with *BgI*II and *Eco*RI restriction endonucleases and subcloned into unique *BgI*II and *Eco*RI sites of pAcGP67 (available from Pharmingen)s baculovirus shuttle plasmid to produce the recombinant molecule referred to herein as pAcG-nfSPI2₁₀₆₅.

The resultant recombinant molecule pAcG-nfSPI2₁₀₆₅, was verified for proper insert orientation by restriction mapping. Such a recombinant molecule can be cotransfected with a linear Baculogold baculovirus DNA into *S. frugiperda* Sf9 cells to form the recombinant cells denoted *S. frugiperda*:pAcG-nfSPI2₁₀₆₅. *S. frugiperda*:pAcG-nfSPI2₁₀₆₅ was cultured in order to produce a flea serine protease inhibitor protein PfSPI2₃₅₄ (referred to herein as SEQ ID NO:97).

An immunoblot of supernatant from cultures of *S. frugiperda*:pAcG-nfSPI2₁₀₆₅ cells producing the flea serine protease inhibitor protein PfSPI2₃₅₅ was performed using the anti-SPI2 polyclonal antiserum described in detail in Example 5. Blots were incubated using serum samples from the pre-bleed or from serum collected 14 days after the first boost of the rabbit. Analysis of the supernatent from cultures of *S. frugiperda*:pAcG-nfSPI2₁₀₆₅ cells identified an about 45 kD protein.

D. Recombinant molecule pBv-nfSPI4₁₀₇₀, containing a flea serine protease inhibitor nucleic acid molecule spanning nucleotides from about 84 through about 1153 of SEQ ID NO:19, operatively linked to baculovirus polyhedron transcription control sequences were produced in the following manner. A PCR fragment of 1070 nucleotides, herein denoted nfSPI4₁₀₇₀, having SEQ ID NO:81 was amplified from nfSPI4₁₄₁₄ using the sense primer Serpin2For described above and the antisense primer

15

20

25

30

Serpin4Rev, having the nucleic acid sequence 5'- CGC'AGA TCT TTA TTC AGT TGT TGG TTT AAC AAG ACG ACC -3' (SEQ ID NO:82; *BgI*II site shown in bold).

The resulting 1070-bp PCR product (referred to as Bv-nfSPI4₁₀₇₀) was digested with *Bgl*II and *Eco*RI restriction endonucleases and subcloned into unique *Bgl*II and *Eco*RI sites of pAcGP67 baculovirus shuttle plasmid to produce the recombinant molecule referred to herein as pAcG-nfSPI4₁₀₇₀.

The resultant recombinant molecule pAcG-nfSPI4₁₀₇₀, was verified for proper insert orientation by restriction mapping. Such a recombinant molecule can be cotransfected with a linear Baculogold baculovirus DNA into *S. frugiperda* Sf9 cells to form the recombinant cells denoted *S. frugiperda*:pAcG-nfSPI4₁₀₇₀. *S. frugiperda*:pAcG-nfSPI4₁₀₇₀ was cultured in order to produce a flea serine protease inhibitor protein PfSPI4₃₅₆ (referred to herein as SEQ ID NO:98).

An immunoblot of supernatant from cultures of *S. frugiperda*:pAcG-nfSPI4₁₀₇₀ cells producing the flea serine protease inhibitor protein PfSPI4₃₅₆ was performed using the anti-SPI2 polyclonal antiserum described in detail in Example 5. Blots were incubated using serum samples from the pre-bleed or from serum collected 14 days after the first boost of the rabbit. Analysis of the supernatent from cultures of *S. frugiperda*:pAcG-nfSPI4₁₀₇₀ cells identified an about 41 kD protein.

Example 12

This example describes the purification of serine protease inhibitor proteins from wandering larvae.

About 15,000 bovine blood-fed wandering larvae were homogenized in Tris buffered saline (TBS), pH 8 by sonication in 50 ml Oak Ridge centrifuge tubes (available from Nalgene Co., Rochester, NY) by sonicating 4 times 30 seconds each at a setting of 5 of a model W-380 Sonicator (available from Heat Systems-Ultrasonics, Inc.). The sonicates were clarified by centrifugation at 27,000 x g for 30 minutes to produce an extract. Soluble protein in the extract was removed by aspiration and diluted to a volume of about 15 ml in TBS. Sodium chloride (NaCl) was then added to the extract to bring the final concentration of NaCl to about 400 mM. The extract was then applied to a column containing about 2 ml of *p*-aminobenzamidine cross-linked to Sepharose® beads (available from Sigma, St. Louis, MO), previously equilibrated in 50

20

mM Tris, pH 8, 400 mM NaCl, and incubated overnight. The unbound serine protease inhibitor proteins were then drained from the column and dialyzed against 2 changes of about 1 liter of 10 mM phosphate buffer, pH 7.2, 10 mM NaCl. Two aliquots of about 9 ml each were applied to a chromatography column containing about 10 ml of Macro-

Prep Ceramic Hydroxyapatite, Type I, 20 μm beads (available from Bio-Rad Laboratories, Hercules, CA), previously equilibrated with 10 mM phosphate buffer, pH 7.2 containing 10 mM NaCl. The column was washed with 10 mM phosphate buffer, pH 7.2 containing 10 mM NaCl until all unbound protein was removed. Protein bound to the column was then eluted with a linear gradient from 10 mM phosphate buffer, pH 7.2 containing 10 mM NaCl to 0.5 M phosphate buffer, pH 6.5 containing 10 mM NaCl. Fractions were assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the rabbit anti-SPI2 polyclonal antiserum described in Example 5. The results indicated that serine protease inhibitor proteins were eluted at about 120 mM phosphate.

The fractions that contained the most serine protease inhibitor proteins were combined and diafiltered into about 25 ml of 25 mM Tris (pH 8), 10 mM NaCl, in preparation for anion exchange chromatography. The sample was then applied to a Uno Q6 anion exchange column (available from Bio-Rad). The column was washed with 25 mM Tris (pH 8), 10 mM NaCl until all unbound protein was removed. Protein bound to the column was then eluted with a linear gradient from 10 mM to 1 M NaCl in 25 mM Tris, pH 8. Fractions were assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the anti-SPI2 polyclonal antiserum described in Example 5. The results indicated that the serine protease inhibitor proteins were eluted at about 260 mM NaCl.

Fractions containing the most serine protease inhibitor proteins were pooled and diafiltered into a total volume of about 6 ml of 20 mM MES buffer (2-(N-morpholino)ethanesulfonic acid), pH 6, containing 10 mM NaCl, in preparation for cation exchange chromatography. The sample was then applied to an Uno S1 cation exchange column (available from Bio-Rad) equilibrated in MES buffer containing 10 mM NaCl. The column was washed with MES buffer containing 10 mM NaCl until all unbound protein was removed. Protein bound to the column was then eluted with a

15

20

25

30

linear gradient from 10 mM to 1 M NaCl in 20 mM MES buffer, pH 6 and fractions were collected. The fractions were assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the anti-SPI2 polyclonal antiserum described in Example 5. The results indicated that serine protease inhibitor proteins were not retained on the cation exchange column using the above conditions, and most of the serine protease inhibitor proteins were found in the flow-through fractions.

The cation exchange fractions containing the most serine protease inhibitor proteins were combined and concentrated to about 400 µl using an Ultrafree-20 15 ml centrifugal concentrator (available from Millipore Corp, Bedford, MA) in preparation for size exclusion chromatography. The sample was applied to a Bio-Select SEC 125-5 size exclusion chromatography column (available from Bio-Rad), previously equilibrated in TBS, pH 7.2. The column was eluted with TBS, pH 7.2 at a flow rate of about 0.5 ml/min, and fractions of about 250 µl were collected. Fractions were assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the anti-SPI2 polyclonal antiserum described in Example 5. The results indicated that serine protease inhibitor proteins were eluted in about 7 ml of buffer, corresponding to a molecular weight of about 30 kD to 66 kD based on the elution volumes of gel filtration molecular weight standard proteins (available from Sigma, St. Louis, MO).

The size exclusion chromatography fractions that contained the most serine protease inhibitor proteins were combined and brought to about 40% saturation with ammonium sulfate in preparation for hydrophobic interaction chromatography. The sample was applied to a 1 ml HighTrapTM Phenyl Sepharose® HP hydrophobic interaction chromatography column (available from Pharmacia) equilibrated with TBS, 40% saturated with ammonium sulfate. The column was washed with TBS, 40% saturated with ammonium sulfate until all unbound protein was removed. Bound protein was eluted from the column with a linear gradient from TBS, 40% saturated with ammonium sulfate to TBS with no ammonium sulfate. Fractions were assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the anti-SPI2 polyclonal antiserum described in Example 5. The results indicated that serine protease inhibitor proteins were eluted when the buffer was about 30% saturated with ammonium sulfate.

The hydrophobic interaction chromatography fractions that contained the most serine protease inhibitor proteins were combined and assayed for protein concentration using Micro BCA Protein Assay Reagent (available from Pierce, Rockford, IL) with bovine serum albumin as a standard. About 10 µg of serine protease inhibitor proteins were concentrated to about 20 µl using a Microcon 3 centrifugal concentrator (available from Amicon, Beverly, MA), resolved on a reducing 14% SDS-PAGE gel (available from Novex, San Diego, CA) and then blotted onto a polyvinylidene difluoride (PVDF) membrane (available from Applied Biosystems, Foster City, CA) for about 60 min in 10 mM CAPS buffer (3-[cyclohexylamino]-1-propanesulfonic acid; available from Sigma, St. Louis, MO), pH 11, with 0.5 mM dithiothreitol (DTT). The membrane was stained for 1 minute in 0.1% Coomassie Blue R-250 dissolved in 40% methanol and 1% acetic acid. The membrane was destained in 50% methanol for about 10 minutes, rinsed with water and air dried. A stained protein band was identified having an apparent molecular weight identical to the proteins identified by the immunoblot method described above, at about 36 kD. A portion of the membrane containing the band was excised, and protein contained in the membrane segment was subjected to N-terminal amino sequencing using a 473A Protein Sequencer (available from Applied Biosystems) and using standard techniques. The results indicated that the N-terminal amino acid sequence of the 36 kD protein was Asp Pro Gln Glu Leu Ser Thr Ser Ile Asn Gln Phe Ala Gly Ser Leu Tyr Asn Thr Val Ala Ser Gly Asn Lys Asp Asn Leu Ile Met (using standard 3 letter amino acid code), referred to herein as SEQ ID NO:88.

Example 13

20

25

30

This example describes the purification of serine protease inhibitor proteins from cat blood fed adult flea midguts.

About 45,000 cat blood-fed wandering larvae were homogenized by freeze-fracture and sonicated in Tris buffer comprising 50 mM Tris, pH 8 and 100 mM CaCl₂. The sonicates were clarified by centrifugation at about 14,000 x g for 20 min to produce an extract. Soluble protein in the extract was removed by aspiration and diluted to a volume of about 45 ml in Tris buffer. Sodium chloride was then added to the extract to bring the final concentration of NaCl to about 400 mM. The extract was then applied in two aliquots to a column containing about 1 ml of p-aminobenzamidine cross-linked to

20

30

Sepharose® beads, previously equilibrated in 50 mM Tris, pH 8, 400 mM NaCl. After an overnight incubation, the columns were drained and the flow-through fractions were retained. The flow-through fractions, which contained most of the midgut proteins except serine proteases, were combined and diafiltered into about 16 ml of 25 mM Tris, pH 8, containing 10 mM NaCl in preparation for anion exchange chromatography. Two aliquots of about 8 ml were then applied to an Uno Q6 column and fractions assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the anti-SPI2 polyclonal antiserum described in Example 5. The results indicated that the serine protease inhibitor proteins were eluted at about 160 mM NaCl.

The anion exchange column fractions that contained the most serine protease inhibitor proteins were pooled and diafiltered into a total of about 3 ml of 20 mM MES buffer, pH 6, containing 10 mM NaCl in preparation for cation exchange chromatography. The sample was then applied to an Uno S1 column and fractions assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the anti-SPI2 polyclonal antiserum described in Example 5. The results indicated that serine protease inhibitor proteins were not retained on the cation exchange column using the above conditions, and most of the serine protease inhibitor proteins were found in the flow-through fractions.

The cation exchange fractions that contained the most serine protease inhibitor proteins were combined and diafiltered into about 3 ml of 25 mM Tris, pH 8, containing 10 mM NaCl in preparation for anion exchange chromatography. The sample was applied to a Bio-Scale Q2 column (available from Bio-Rad), previously equilibrated in 25 mM Tris, pH 8, containing 10 mM NaCl. The column was washed with 25 mM Tris, pH 8, 10 mM NaCl until all unbound protein was removed. Protein bound to the column was then eluted with a linear gradient from 10 mM to 1 M NaCl in 25 mM Tris, pH 8. Fractions were assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the anti-SPI2 polyclonal antiserum described in Example 5. The results indicated that serine protease inhibitor proteins were eluted at about 140 mM NaCl.

About 500 µl of the anion exchange column fraction that contained the most serine protease inhibitor protein was concentrated to about 25 µl using a Microcon 3

centrifugal concentrator (available from Amicon, Beverly, MA), and then separated by SDS-PAGE, electroblotted onto a PVDF membrane, and two stained protein bands, at about 35 kD and 36 kD, were N-terminally sequenced as described in Example 12. The results indicated that the N-terminal amino acid sequence of the 35 kD protein was Ser Thr Ser Ile Asn Gln Phe Ala Gly Ser Leu Tyr Asn Thr Val Ala Ser Gly Asn Lys Asp Asn Leu Ile Met (using standard 3 letter amino acid code; referred to herein as SEQ ID NO:89) and the N-term sequence of the 36 kD protein was Ser Thr Ser Ile Asn Gln Phe Ala Gly Ser Leu Tyr Asn Thr Val Ala Ser Gly Asn Lys Asp Asn Leu Ile Met Ser Pro (using standard 3 letter amino acid code; referred to herein as SEQ ID NO:90).

10 <u>Example 14</u>

15

20

25

This example describes the identification of serine protease inhibitor proteins in different flea tissues.

Tissue samples were isolated from unfed or bovine blood-fed 1st instar *Ctenocephalides felis* flea larvae; bovine blood-fed 3rd instar *C. felis* flea larvae, bovine blood-fed wandering *C. felis* flea larvae, unfed or cat blood-fed adult *C. felis* flea midgut tissue, cat blood-fed adult *C. felis* flea tissues that had their midguts and heads removed (adult partial fleas), and whole unfed or cat blood-fed adult *C. felis* fleas. The 1st instar, 3rd instar, wandering and adult midgut tissues were then homogenized by freeze-fracture and sonicated in Tris buffered saline (TBS). The adult partial fleas and adult whole fleas were then homogenized by freeze-fracture and ground with a microtube mortar and pestle. The extracts were centrifuged at about 14,000 x g for 20 min and the soluble material recovered. The soluble material was then diluted to a final concentration of about 1 tissue equivalent per 2 μl. Each soluble extract sample was then assayed for the presence of serine protease inhibitor proteins by immunoblot analysis using the anti-SPI2 polyclonal antiserum described in Example 5.

The results shown in Figure 1 indicated that all tissue extracts except the unfed 1st instar tissues contained proteins of about 25 kD to 97 kD that were cross reactive with the rabbit anti-SPI2 polyclonal antiserum, and were therefore comprised at least partially of serine protease inhibitor proteins.

WO 98/20034 PCT/US97/20678

-94-

SEQUENCE LISTING

	(1)	GENERAL	INFORMATION:
5		(i)	APPLICANT: Wisnewski, Nancy Brandt, Kevin S. Silver, Gary M. Maddux, Joely D.
10		(ii)	TITLE OF INVENTION: Novel Serine Protease Inhibitor Nucleic Acid Molecules, Proteins and Uses Thereof
		(iii)	NUMBER OF SEQUENCES: 98
15		(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Lahive & Cockfield, LLP (B) STREET: 28 State Street (C) CITY: Boston (D) STATE: Massachusetts (E) COUNTRY: USA (F) ZIP: 02109
20		(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: Windows 95 (D) SOFTWARE: WordPerfect for Windows, Version 7.0
25		(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
30			ATTORNEY/AGENT INFORMATION: (A) NAME: Rothenberger, Scott D. (B) REGISTRATION NUMBER: 41,277 (C) REFERENCE/DOCKET NUMBER: HKV-011PC
35		(viii)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (617) 227-7400 (B) TELEFAX: (617) 742-4214
	(2)	INFORMA	ATION FOR SEQ ID NO:1:
40		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1584 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii)	MOLECULE TYPE: cDNA

-95-

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 136..1326

	(xi) SEQUENC	CE DESCRIPTION	ON: SEQ ID N	NO:1	
5					TTTTAGAAAA TAATTTTAAT TTTTGTAGCT CTGAAAGAGC	60 120
	CGAAATTTT		Ile Asn Ala		G TTT CTT TTT GTA TCA l Phe Leu Phe Val Ser 10	171
10	Val Leu L				CAG GAA TTG TCT ACA Gln Glu Leu Ser Thr 25	219
15					ACA GTT GCT TCT GGC Thr Val Ala Ser Gly 40	267
					GTA CAA ACT GTT CTA Val Gln Thr Val Leu 60	315
20	TCC CTG G Ser Leu V	TG TCA ATG al Ser Met 65	GGA GCT GGT Gly Ala Gly	GGC AAT ACT Gly Asn Thr 70	GCC ACA CAA ATA GCT Ala Thr Gln Ile Ala 75	363
					ATT CAA GAT GAC TAC Ile Gln Asp Asp Tyr 90	411
25	His Ala L				GGT GTA ACT CTG GAA Gly Val Thr Leu Glu 105	459
30					ACA TTA AAA CCC ACC Thr Leu Lys Pro Thr 120	507
					GGA GCA GAA AAC TTG Gly Ala Glu Asn Leu 140	555
35					ATC AAC ACT TGG GTT Ile Asn Thr Trp Val 155	603
					ATC AAA GCC GGT GAT Ile Lys Ala Gly Asp 170	651
40	Leu Asp G				GCA TTG TAC TTC AAG Ala Leu Tyr Phe Lys 185	699
45					ACC CAA GAC AAA CCT Thr Gln Asp Lys Pro 200	747

						ACA Thr 210											795
5						TAT Tyr											843
		-				AGG Arg								_			891
10						GGT Gly							-				939
15		_				TTG Leu									-		987
						TTC Phe 290											1035
20						GGT Gly											1083
						CTT Leu											1131
25						GCT Ala											1179
30						GCT Ala											1227
						ACT Thr 370											1275
35						GAT Asp											1323
	TTA Leu	TAA	AATO	GATA	GT G	TAAA	AAGA	A TA	CAAG	ATCT	' ATC	TGAA	TCT	CTGG	ATTA	AT	1379
40	AGTA ATGT	TGTC	GT A	AAAT! ATAT	TCGT TAAT	G TA	GACG	AAAA	ATO	TTTT	GTT	TTAC	TTTT	CA C	TTTT:	TTTTT TATGA AAAAA	1439 1499 1559 1584

(2) INFORMATION FOR SEQ ID NO:2:

45

SEQUENCE CHARACTERISTICS: (i)

- (A) LENGTH: 397 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

WO 98/20034 PCT/US97/20678

-97-

- MOLECULE TYPE: protein (ii)
- SEQUENCE DESCRIPTION: SEQ ID NO:2: (xi)

Met Ile Asn Ala Arg Leu Val Phe Leu Phe Val Ser Val Leu Leu Pro

Ile Ser Thr Met Ala Asp Pro Gln Glu Leu Ser Thr Ser Ile Asn Gln

Phe Ala Gly Ser Leu Tyr Asn Thr Val Ala Ser Gly Asn Lys Asp Asn

Leu Ile Met Ser Pro Leu Ser Val Gln Thr Val Leu Ser Leu Val Ser 10

Met Gly Ala Gly Gly Asn Thr Ala Thr Gln Ile Ala Ala Gly Leu Arg

Gln Pro Gln Ser Lys Glu Lys Ile Gln Asp Asp Tyr His Ala Leu Met

- Asn Thr Leu Asn Thr Gln Lys Gly Val Thr Leu Glu Ile Ala Asn Lys
 - Val Tyr Val Met Glu Gly Tyr Thr Leu Lys Pro Thr Phe Lys Glu Val

Ala Thr Asn Lys Phe Leu Ala Gly Ala Glu Asn Leu Asn Phe Ala Gln 20 135

Asn Ala Glu Ser Ala Lys Val Ile Asn Thr Trp Val Glu Glu Lys Thr 145 150 155

His Asp Lys Ile His Asp Leu Ile Lys Ala Gly Asp Leu Asp Gln Asp

Ser Arg Met Val Leu Val Asn Ala Leu Tyr Phe Lys Gly Leu Trp Glu

Lys Gln Phe Lys Lys Glu Asn Thr Gln Asp Lys Pro Phe Tyr Val Thr 200

Glu Thr Glu Thr Lys Asn Val Arg Met Met His Ile Lys Asp Lys Phe 30

Arg Tyr Gly Glu Phe Glu Glu Leu Asp Ala Lys Ala Val Glu Leu Pro 230

Tyr Arg Asn Ser Asp Leu Ala Met Leu Ile Ile Leu Pro Asn Ser Lys

Thr Gly Leu Pro Ala Leu Glu Glu Lys Leu Gln Asn Val Asp Leu Gln 265

Asn Leu Thr Gln Arg Met Tyr Ser Val Glu Val Ile Leu Asp Leu Pro 275

Lys Phe Lys Ile Glu Ser Glu Ile Asn Leu Asn Asp Pro Leu Lys Lys 40 295 300

~98-

Leu Gly Met Ser Asp Met Phe Val Pro Gly Lys Ala Asp Phe Lys Gly Leu Leu Glu Gly Ser Asp Glu Met Leu Tyr Ile Ser Lys Val Ile Gln 5 Lys Ala Phe Ile Glu Val Asn Glu Glu Gly Ala Glu Ala Ala Ala Ala Thr Ala Thr Phe Met Val Thr Tyr Glu Leu Glu Val Ser Leu Asp Leu 360 Pro Thr Val Phe Lys Val Asp His Pro Phe Asn Ile Val Leu Lys Thr 10 Gly Asp Thr Val Ile Phe Asn Gly Arg Val Gln Thr Leu (2) INFORMATION FOR SEQ ID NO:3: SEQUENCE CHARACTERISTICS: (i) 15 (A) LENGTH: 1584 nucleotides TYPE: nucleic acid (B) STRANDEDNESS: single (C) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: TTTTTTTTT TTTTTTTTT TTTTTTTTT TTTCACATTT AACATTTTA TTACATAAAC TACAACATTA TATAGGTGAT TACATTCATA AAAAGTGAAA ACTAAAACAA AACATTTTTC 120 GTCTACACGA TTTATACCAC ATACTAAAAA ATGAACTTAT TTTAGACCTA ATAACTATTA 180 AAAAATATTG TAGAAAAATT ACTTCATTAA TCCAGAGATT CAGATAGATC TTGTATTCTT 240 TTTACACTAT CCATTTATA AAGTTTGAAC TCGCCCATTA AAAATAACAG TATCACCTGT 300 CTTCAAAACA ATATTGAATG GATGATCGAC TTTAAAAACA GTGGGAAGAT CCAGGGAAAC 360 CTCCAGTTCA TAGGTAACCA TAAAGGTAGC TGTGGCAGCT GCAGCTTCAG CACCTTCTTC ATTTACTTCA ATGAAAGCTT TTTGAATTAC TTTAGAAATA TATAACATCT CATCAGATCC TTCAAGCAAT CCTTTGAAAT CAGCTTTTCC AGGAACAAC ATATCAGACA TACCCAACTT TTTCAGAGGA TCATTCAAAT TAATTTCAGA TTCAATCTTG AATTTAGGCA GATCCAAAAT AACTTCAACA GAGTACATGC GTTGAGTCAA GTTTTGCAAA TCAACATTTT GTAATTTTTC TTCAAGAGCG GGGAGACCAG TTTTGCTGTT TGGCAAAATG ATTAACATGG CCAAATCTGA GTTCCTGTAG GGCAATTCTA CAGCCTTGGC ATCTAATTCT TCAAATTCTC CATAACGGAA TTTATCCTTA ATGTGCATCA TTCGTACATT CTTTGTCTCT GTTTCAGTAA CATAGAAAGG TTTGTCTTGG GTATTTTCCT TTTTGAATTG TTTCTCCCAA AGACCCTTGA AGTACAATGC 900 ATTGACAAGA ACCATTCTTG AATCCTGGTC TAGATCACCG GCTTTGATCA AATCATGAAT TTTGTCATGA GTTTTTTCTT CAACCCAAGT GTTGATAACT TTAGCGCTTT CAGCATTTTG GGCAAAGTTC AAGTTTTCTG CTCCAGCTAA GAATTTGTTG GTGGCAACTT CTTTGAAGGT GGGTTTTAAT GTATAGCCTT CCATAACATA AACTTTATTG GCAATTTCCA GAGTTACACC TTTTTGTGTA TTAAGAGTGT TCATCAATGC GTGGTAGTCA TCTTGAATTT TTTCTTTTGA TTGAGGCTGA CGCAAACCAG CAGCTATTTG TGTGGCAGTA TTGCCACCAG CTCCCATTGA CACCAGGGAT AGAACAGTTT GTACAGACAA TGGGGACATG ATGAGATTGT CTTTGTTGCC AGAAGCAACT GTATTGTACA GGCTTCCAGC AAACTGGTTA ATACTTGTAG ACAATTCCTG GGGATCGCC ATTGTTGAAA TTGGTAATAA CACTGATACA AAAAGAAACA CAAGTCGTGC 45 GTTAATCATT TTGCTAAAAT TTCGGCTCTT TCAGAGCTAC AAAAACACTA AAAAATTAAA CCGTTTACTT ATCACCTTCC AGGC 1584 INFORMATION FOR SEQ ID NO:4:

(2)

PCT/US97/20678

-99-

```
SEQUENCE CHARACTERISTICS:
          (i)
                  (A) LENGTH: 1191 nucleotides
                  (B) TYPE: nucleic acid
 5
                  (C)
                      STRANDEDNESS: single
                  (D) TOPOLOGY: linear
           (ii)
                 MOLECULE TYPE: cDNA
           (xi)
                 SEQUENCE DESCRIPTION: SEQ ID NO:4:
    ATGATTAACG CACGACTTGT GTTTCTTTTT GTATCAGTGT TATTACCAAT TTCAACAATG
    GCCGATCCCC AGGAATTGTC TACAAGTATT AACCAGTTTG CTGGAAGCCT GTACAATACA
10
    GTTGCTTCTG GCAACAAGA CAATCTCATC ATGTCCCCAT TGTCTGTACA AACTGTTCTA
    TCCCTGGTGT CAATGGGAGC TGGTGGCAAT ACTGCCACAC AAATAGCTGC TGGTTTGCGT
    CAGCCTCAAT CAAAAGAAAA AATTCAAGAT GACTACCACG CATTGATGAA CACTCTTAAT
                                                                        300
    ACACAAAAG GTGTAACTCT GGAAATTGCC AATAAAGTTT ATGTTATGGA AGGCTATACA
                                                                        360
    TTAAAACCCA CCTTCAAAGA AGTTGCCACC AACAAATTCT TAGCTGGAGC AGAAAACTTG
    AACTTTGCCC AAAATGCTGA AAGCGCTAAA GTTATCAACA CTTGGGTTGA AGAAAAAACT
    CATGACAAAA TTCATGATTT GATCAAAGCC GGTGATCTAG ACCAGGATTC AAGAATGGTT
    CTTGTCAATG CATTGTACTT CAAGGGTCTT TGGGAGAAAC AATTCAAAAA GGAAAATACC
                                                                        600
    CAAGACAAAC CTTTCTATGT TACTGAAACA GAGACAAAGA ATGTACGAAT GATGCACATT
                                                                        660
    AAGGATAAAT TCCGTTATGG AGAATTTGAA GAATTAGATG CCAAGGCTGT AGAATTGCCC
                                                                        720
    TACAGGAACT CAGATTTGGC CATGTTAATC ATTTTGCCAA ACAGCAAAAC TGGTCTCCCC
                                                                        780
    GCTCTTGAAG AAAAATTACA AAATGTTGAT TTGCAAAACT TGACTCAACG CATGTACTCT
                                                                        840
    GTTGAAGTTA TTTTGGATCT GCCTAAATTC AAGATTGAAT CTGAAATTAA TTTGAATGAT
                                                                        900
    CCTCTGAAAA AGTTGGGTAT GTCTGATATG TTTGTTCCTG GAAAAGCTGA TTTCAAAGGA
                                                                        960
    TTGCTTGAAG GATCTGATGA GATGTTATAT ATTTCTAAAG TAATTCAAAA AGCTTTCATT 1020
    GAAGTAAATG AAGAAGGTGC TGAAGCTGCA GCTGCCACAG CTACCTTTAT GGTTACCTAT 1080
    GAACTGGAGG TTTCCCTGGA TCTTCCCACT GTTTTTAAAG TCGATCATCC ATTCAATATT 1140
    GTTTTGAAGA CAGGTGATAC TGTTATTTTT AATGGGCGAG TTCAAACTTT A
                                                                       1191
    (2)
          INFORMATION FOR SEQ ID NO:5:
30
          (i)
                SEQUENCE CHARACTERISTICS:
                     LENGTH: 1191 nucleotides
                 (A)
                 (B)
                      TYPE: nucleic acid
                      STRANDEDNESS: single
                 (C)
                 (D)
                      TOPOLOGY: linear
35
          (ii) MOLECULE TYPE: cDNA
          (xi)
                 SEQUENCE DESCRIPTION: SEQ ID NO:5:
    TAAAGTTTGA ACTCGCCCAT TAAAAATAAC AGTATCACCT GTCTTCAAAA CAATATTGAA
    TGGATGATCG ACTTTAAAAA CAGTGGGAAG ATCCAGGGAA ACCTCCAGTT CATAGGTAAC
                                                                        120
    CATAAAGGTA GCTGTGGCAG CTGCAGCTTC AGCACCTTCT TCATTTACTT CAATGAAAGC
    TTTTTGAATT ACTTTAGAAA TATATAACAT CTCATCAGAT CCTTCAAGCA ATCCTTTGAA
    ATCAGCTTTT CCAGGAACAA ACATATCAGA CATACCCAAC TTTTTCAGAG GATCATTCAA
    ATTAATTTCA GATTCAATCT TGAATTTAGG CAGATCCAAA ATAACTTCAA CAGAGTACAT
    GCGTTGAGTC AAGTTTTGCA AATCAACATT TTGTAATTTT TCTTCAAGAG CGGGGAGACC
    AGTTTTGCTG TTTGGCAAAA TGATTAACAT GGCCAAATCT GAGTTCCTGT AGGGCAATTC
    TACAGCCTTG GCATCTAATT CTTCAAATTC TCCATAACGG AATTTATCCT TAATGTGCAT
45
    CATTCGTACA TTCTTTGTCT CTGTTTCAGT AACATAGAAA GGTTTGTCTT GGGTATTTTC
    CTTTTTGAAT TGTTTCTCCC AAAGACCCTT GAAGTACAAT GCATTGACAA GAACCATTCT
    TGAATCCTGG TCTAGATCAC CGGCTTTGAT CAAATCATGA ATTTTGTCAT GAGTTTTTTC
                                                                        720
    TTCAACCCAA GTGTTGATAA CTTTAGCGCT TTCAGCATTT TGGGCAAAGT TCAAGTTTTC
                                                                        780
    TGCTCCAGCT AAGAATTTGT TGGTGGCAAC TTCTTTGAAG GTGGGTTTTA ATGTATAGCC
                                                                        840
    TTCCATAACA TAAACTTTAT TGGCAATTTC CAGAGTTACA CCTTTTTGTG TATTAAGAGT
                                                                        900
    GTTCATCAAT GCGTGGTAGT CATCTTGAAT TTTTTCTTTT GATTGAGGCT GACGCAAACC
                                                                        960
    AGCAGCTATT TGTGTGGCAG TATTGCCACC AGCTCCCATT GACACCAGGG ATAGAACAGT 1020
```

-100-

	CAG		CCA (GCAA	ACTG	GT T	ATAA	CTTG!	r AG	ACAA'	TTCC	TGG	GGAT	CGG	CCAT'	ATTGTA PGTTGA	1080 1140 1191
	(2)	II	NFORI	MATIC	ON FO	OR SI	EQ II	OM C	:6:								
5		(:	i)	SE((A) (B)	LI	CE CI ENGTI YPE: OPOLO	H: 3	376 a ino a	amino	CS: o ac:	ids						
		(:	ii)	MOI	LECUI	LE T	YPE:	pro	otei	n.							
10		(2	ĸi)	SEÇ	QUENC	CE DI	ESCR:	[PTI	ON:	SEQ	ID I	10:6	:				
	Asp 1	Pro	Gln	Glu	Leu 5	Ser	Thr	Ser	Ile	Asn 10	Gln	Phe	Ala	Gly	Ser 15	Leu	
	Туr	Asn	Thr	Val 20	Ala	Ser	Gly	Asn	Lys 25	Asp	Asn	Leu	Ile	Met 30	Ser	Pro	
15	Leu	Ser	Val 35	Gln	Thr	Val	Leu	Ser 40	Leu	Val	Ser	Met	Gly 45	Ala	Gly	Gly	
	Asn	Thr 50	Ala	Thr	Gln	Ile	Ala 55	Ala	Gly	Leu	Arg	Gln 60	Pro	Gln	Ser	Lys	
20	Glu 65	Lys	Ile	Gln	Asp	Asp 70	Tyr	His	Ala	Leu	Met 75	Asn	Thr	Leu	Asn	Thr 80	
	Gln	Lys	Gly	Val	Thr 85	Leu	Glu	Ile	Ala	Asn 90	Lys	Val	Tyr	Val	Met 95	Glu	
	Gly	Tyr	Thr	Leu 100	Lys	Pro	Thr	Phe	Lys 105	Glu	Val	Ala	Thr	Asn 110	Lys	Phe	
25	Leu	Ala	Gly 115	Ala	Glu	Asn	Leu	Asn 120	Phe	Ala	Gln	Asn	Ala 125	Glu	Ser	Ala	
	Lys	Val 130	Ile	Asn	Thr	Trp	Val 135	Glu	Glu	Lys	Thr	His 140	Asp	Lys	Ile	His	
30	Asp 145	Leu	Ile	Lys	Ala	Gly 150	Asp	Leu	Asp	Gln	Asp 155	Ser	Arg	Met	Val	Leu 160	
	Val	Asn	Ala	Leu	Туг 165	Phe	Lys	Gly	Leu	Trp 170	Glu	Lys	Gln	Phe	Lys 175	Lys	
	Glu	Asn	Thr	Gln 180	Asp	Lys	Pro	Phe	Туг 185	Val	Thr	Glu	Thr	Glu 190	Thr	Lys	
35	Asn	Val	Arg 195	Met	Met	His	Ile	Lys 200	Asp	Lys	Phe	Arg	Туг 205	Gly	Glu	Phe	
	Glu	Glu 210	Leu	Asp	Ala	Lys	Ala 215	Val	Glu	Leu	Pro	Tyr 220	Arg	Asn	Ser	Asp	
40	Leu 225	Ala	Met	Leu	Ile	Ile 230	Leu	Pro	Asn	Ser	Lys 235	Thr	Gly	Leu	Pro	Ala 240	
	Leu	Glu	Glu	Lys	Leu 245	Gln	Asn	Val	Asp	Leu 250	Gln	Asn	Leu	Thr	Gln 255	Arg	

WO 98/20034 PCT/US97/20678

-101-

	Met	Tyr	Ser	Val 260	Glu	Val	Ile	Leu	Asp 265	Leu	Pro	Lys	Phe	Lys 270	Ile	Glu	
	Ser	Glu	Ile 275	Asn	Leu	Asn	Asp	Pro 280	Leu	Lys	Lys	Leu	Gly 285	Met	Ser	Asp	
5	Met	Phe 290	Val	Pro	Gly	Lys	Ala 295	Asp	Phe	Lys	Gly	Leu 300	Leu	Glu	Gly	Ser	
	Asp 305	Glu	Met	Leu	Tyr	Ile 310	Ser	Lys	Val	Ile	Gln 315	Lys	Ala	Phe	Ile	Glu 320	
10	Val	Asn	Glu	Glu	Gly 325	Ala	Glu	Ala	Ala	Ala 330	Ala	Thr	Ala	Thr	Phe 335	Met	
	Val	Thr	Tyr	Glu 340	Leu	Glu	Val	Ser	Leu 345	Asp	Leu	Pro	Thr	Val 350	Phe	Lys	
	Val	Asp	His 355	Pro	Phe	Asn	Ile	Val 360	Leu	Lys	Thr	Gly	Asp 365	Thr	Val	Ile	
15	Phe	Asn 370	Gly	Arg	Val	Gln	Thr 375	Leu									
	(2)	II	VFOR1	ITAL	N F	OR SE	II QE	NO:	7:								
20		()	i)	SE((A) (B) (C) (D)	LI TY ST	CE CH ENGTH (PE: TRANI DPOLO	i: 1 nuc EDNE	358 cleic ESS:	nucl aci	.eoti	.des						
		(j	ii)	MOI	ECUI	LE TY	PE:	cDN	IA								
25		i)	ix)	FEA (A) (B)		E: AME/F CATI		CDS	; 1198	3							
		()	ci)	SEÇ	UENC	CE DE	SCRI	PTIC	N:	SEQ	ID N	10 : 7 :					
30		CG AT la Il 1								1 Ph					er Va		46
		ATA Ile															94
35		AAC Asn															142
		GAC Asp															190
40		GTG Val 65															238

	TTA Leu								286
5	TTG Leu								334
	AAC Asn								382
10	 GAA Glu								430
15	 GCC Ala 145								478
	 AAA Lys								526
20	CAG Gln								574
	 TGG Trp								622
25	 GTT Val								670
30	AAA Lys 225								718
	TTG Leu								766
35	AGC Ser								814
	TTG Leu								862
40	 CTG Leu								910
45	AAA Lys 305								958

							GGA Gly									AAA Lys 335	1006
5							ATT Ile										1054
							GTC Val									_	1102
10							TTT Phe										1150
15							GTT Val 390										1198
	CAA	TAAL	TTC A	ATTO	CTGAC	CC A	GG TA PGCTT CTCCT	CTCT	A CC	CATO	SATA	ACG	CAG			SATTTC	1251 1311 1358
	(2)	II	1FORI	1ATIC	ON FO	OR SI	EQ II	NO:	: 8 :								
20		į)	L)	SE((A) (B) (D)	LI	ENGTI (PE :		399 a ino a	amino	CS: o ac:	ids						
		()	Li)	MOI	LECUI	E T	PE:	pro	oteir	ו							
25			ci)				(PE: ESCRI	-			ID N	10:8:	:				
25	Ala 1	(2	ci)	SEÇ	QUENC	CE DI		- [PTI(ON:	SEQ				Ser	Val 15	Leu	
25	1	()	ci) Val	SEÇ Gln	QUENC His 5	CE DI Ala	ESCRI	PTIC	ON: Val	SEQ Phe 10	Leu	Phe	Val		15		
25 30	1 Ile	() Ile Pro	ci) Val Ile	SEQ Gln Ser 20	QUENC His 5 Thr	CE DE Ala Met	ESCRI Arg	Leu Asp	Val Pro 25	SEQ Phe 10 Gln	Leu Glu	Phe Leu	Val Ser	Thr 30	15 Ser	Ile	
	1 Ile Asn	() Ile Pro Gln	val Ile Phe 35	SEQ Gln Ser 20 Ala	QUENC His 5 Thr	Ala Met Ser	ESCRI Arg Ala	Leu Asp Tyr 40	Val Pro 25 Asn	SEQ Phe 10 Gln	Leu Glu Val	Phe Leu Ala	Val Ser Ser 45	Thr 30 Gly	15 Ser Asn	Ile Lys	
	1 Ile Asn Asp	() Ile Pro Gln Asn 50	Val Ile Phe 35	SEQ Gln Ser 20 Ala Ile	QUENC His 5 Thr Gly Met	Ala Met Ser	Arg Ala Leu Pro	Leu Asp Tyr 40	Val Pro 25 Asn Ser	SEQ Phe 10 Gln Thr	Leu Glu Val Gln	Phe Leu Ala Thr 60	Val Ser Ser 45 Val	Thr 30 Gly Leu	15 Ser Asn Ser	Ile Lys Leu	
30	1 Ile Asn Asp Val 65	Ile Pro Gln Asn 50 Ser	val Ile Phe 35 Leu Met	SEQ Gln Ser 20 Ala Ile Gly	QUENC His 5 Thr Gly Met Ala	Met Ser Ser Gly 70	Arg Ala Leu Pro 55	Leu Asp Tyr 40 Leu Asn	Val Pro 25 Asn Ser Thr	SEQ Phe 10 Gln Thr Val	Leu Glu Val Gln Thr 75	Phe Leu Ala Thr 60 Gln	Val Ser Ser 45 Val	Thr 30 Gly Leu Ala	15 Ser Asn Ser Ala	Ile Lys Leu Gly 80	
30	1 Ile Asn Asp Val 65 Leu	Ile Pro Gln Asn 50 Ser	Val Ile Phe 35 Leu Met Gln	SEQ Gln Ser 20 Ala Ile Gly Pro	OUENCE His 5 Thr Gly Met Ala Gln 85	Met Ser Ser Gly 70 Ser	Arg Ala Leu Pro 55	Leu Asp Tyr 40 Leu Asn Glu	Val Pro 25 Asn Ser Thr	SEQ Phe 10 Gln Thr Val Ala Ile 90	Leu Glu Val Gln Thr 75 Gln	Phe Leu Ala Thr 60 Gln Asp	Val Ser Ser 45 Val Ile Asp	Thr 30 Gly Leu Ala Tyr	15 Ser Asn Ser Ala His 95	Ile Lys Leu Gly 80 Ala	
30	1 Ile Asn Asp Val 65 Leu Leu	Ile Pro Gln Asn 50 Ser Arg	Val Ile Phe 35 Leu Met Gln Asn	SECONDAIN Ser 20 Ala Ile Gly Pro Thr 100 Tyr	OUENCE His 5 Thr Gly Met Ala Gln 85 Leu	Met Ser Ser Gly 70 Ser Asn	Arg Ala Leu Pro 55 Gly Lys	Leu Asp Tyr 40 Leu Asn Glu Gln	Val Pro 25 Asn Ser Thr Lys Lys 105	SEQ Phe 10 Gln Thr Val Ala Ile 90 Gly	Leu Glu Val Gln Thr 75 Gln Val	Phe Leu Ala Thr 60 Gln Asp	Val Ser 45 Val Ile Asp Leu	Thr 30 Gly Leu Ala Tyr Glu 110	15 Ser Asn Ser Ala His 95 Ile	Ile Lys Leu Gly 80 Ala	

WO 98/20034 PCT/US97/20678

-104-

Ala Gln Asn Ala Glu Ser Ala Lys Val Ile Asn Thr Trp Val Glu Glu 155 145 Lys Thr His Asp Lys Ile His Asp Leu Ile Lys Ala Gly Asp Leu Asp Gln Asp Ser Arg Met Val Leu Val Asn Ala Leu Tyr Phe Lys Gly Leu 185 Trp Glu Lys Gln Phe Lys Lys Glu Asn Thr Gln Asp Lys Pro Phe Tyr 200 Val Thr Glu Thr Glu Thr Lys Asn Val Arg Met Met His Ile Lys Asp 10 Lys Phe Arg Tyr Gly Glu Phe Glu Glu Leu Asp Ala Lys Ala Val Glu 230 235 Leu Pro Tyr Arg Asn Ser Asp Leu Ala Met Leu Ile Ile Leu Pro Asn Ser Lys Thr Gly Leu Pro Ala Leu Glu Glu Lys Leu Gln Asn Val Asp 15 Leu Gln Asn Leu Thr Gln Arg Met Tyr Ser Val Glu Val Ile Leu Asp 280 Leu Pro Lys Phe Lys Ile Glu Ser Glu Ile Asn Leu Asn Asp Pro Leu 20 295 Lys Lys Leu Gly Met Ser Asp Met Phe Val Pro Gly Lys Ala Asp Phe 305 310 315 Lys Gly Leu Leu Glu Gly Ser Asp Glu Met Leu Tyr Ile Ser Lys Val Ile Gln Lys Ala Phe Ile Glu Val Asn Glu Glu Gly Ala Glu Ala Ala Ala Ala Thr Gly Ile Val Met Leu Gly Cys Cys Met Pro Met Met Asp Leu Ser Pro Val Val Phe Asn Ile Asp His Pro Phe Tyr Tyr Ser Leu 30 375 Met Thr Trp Asp Thr Val Leu Phe Ser Gly Cys Val Lys Ser Leu 385 390 (2) INFORMATION FOR SEQ ID NO:9: SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 1358 nucleotides 35 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear MOLECULE TYPE: cDNA (ii)(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: 40

ACTAGTCATA TAACATATAC TAGGAGTTAT AGAAACGACC TCTAATTGAA ATCGTTTTCC CTGCCGTTAT CATGAGGTAG AAAGCATGGT CAGAATTGAA ATTTTTGGGT CTATCAATGC

60

120

-105-

	CATTAGACAC	TGAAATACCT	TCATTCTAAG	AAGAAATTTA	AAGGGATTTA	ACACATCCAC	180
	TGAACAAAAC	AGTATCCCAA	GTCATCAATG	AGTAATAAAA	TGGGTGATCA	ATATTAAAAA	240
	CTACTGGAGA	AAGATCCATC	ATTGGCATAC	AGCAACCAAG	CATGACAATG	CCTGTGGCAG	300
	CTGCAGCTTC	AGCACCTTCT	TCATTTACTT	CAATGAAAGC	TTTTTGAATT	ACTTTAGAAA	360
5	TATATAACAT	CTCATCAGAT	CCTTCAAGCA	ATCCTTTGAA	ATCAGCTTTT	CCAGGAACAA	420
	ACATATCAGA	CATACCCAAC	TTTTTCAGAG	GATCATTCAA	ATTAATTTCA	GATTCAATCT	480
	TGAATTTAGG	CAGATCCAAA	ATAACTTCAA	CAGAGTACAT	GCGTTGAGTC	AAGTTTTGCA	540
	AGTCAACATT	TTGTAATTTT	TCTTCAAGAG	CGGGGAGACC	AGTTTTGCTG	TTTGGCAAAA	600
	TGATTAACAT	GGCCAAATCT	GAGTTCCTGT	AGGGCAATTC	TACAGCCTTG	GCATCTAATT	660
10	CTTCAAATTC	TCCATAACGG	AATTTATCCT	TAATGTGCAT	CATTCGTACA	TTCTTTGTCT	720
	CTGTTTCAGT	AACATAGAAA	GGTTTGTCTT	GAGTGTTTTC	CTTCTTGAAT	TGTTTCTCCC	780
	AAAGACCCTT	GAAGTACAAT	GCATTGACAA	GAACCATTCT	TGAATCCTGG	TCTAGATCAC	840
	CGGCTTTGAT	CAAATCATGA	ATTTTGTCAT	GAGTTTTTTC	TTCAACCCAA	GTGTTGATAA	900
	CTTTAGCGCT	TTCAGCATTT	TGGGCAAAGT	TCAAGTTTTC	TGCTCCAGCT	AAGAATTTGT	960
15	TGGTGGCAAC	TTCTTTGAAG	GTGGGTTTCA	ATGTATAGCC	TTCCATAACG	TAAACTTTGT	1020
	TGGCAATTTC	CAGAGTTACA	CCTTTTTGTG	TATTAAGAGT	GTTCATCAAT	GCATGGTAGT	1080
	CATCTTGAAT	TTTTTCTTTT	GATTGAGGCT	GACGTAAACC	AGCAGCTATT	TGTGTGGCAG	1140
	TATTACCACC	AGCTCCCATT	GACACCAGGG	ATAGAACAGT	TTGTACAGAC	AATGGGGACA	1200
	TGATGAGATT	GTCTTTGTTG	CCAGAAGCAA	CCGTATTGTA	CAGGCTTCCA	GCAAACTGGT	1260
20	TAATACTTGT	AGACAATTCC	TGGGGATCCG	CCATTGTTGA	AATTGGTATT	AACACTGATA	1320
	CAAAAAGAAA	CACAAGTCGT	GCGTGTTGAA	CTATCGCG			1358
		·		. ^			

INFORMATION FOR SEQ ID NO:10: (2)

SEQUENCE CHARACTERISTICS: (i)

25

(A) LENGTH: 1197 nucleotides
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

SEQUENCE DESCRIPTION: SEQ ID NO:10: (xi)

30	GCGATAGTTC	AACACGCACG	ACTTGTGTTT	CTTTTTGTAT	CAGTGTTAAT	ACCAATTTCA	60
	ACAATGGCGG	ATCCCCAGGA	ATTGTCTACA	AGTATTAACC	AGTTTGCTGG	AAGCCTGTAC	120
	AATACGGTTG	CTTCTGGCAA	CAAAGACAAT	CTCATCATGT	CCCCATTGTC	TGTACAAACT	180
	GTTCTATCCC	TGGTGTCAAT	GGGAGCTGGT	GGTAATACTG	CCACACAAAT	AGCTGCTGGT	240
	TTACGTCAGC	CTCAATCAAA	AGAAAAAATT	CAAGATGACT	ACCATGCATT	GATGAACACT	300
35	CTTAATACAC	AAAAAGGTGT	AACTCTGGAA	ATTGCCAACA	AAGTTTACGT	TATGGAAGGC	360
	TATACATTGA	AACCCACCTT	CAAAGAAGTT	GCCACCAACA	AATTCTTAGC	TGGAGCAGAA	420
	AACTTGAACT	TTGCCCAAAA	TGCTGAAAGC	GCTAAAGTTA	TCAACACTTG	GGTTGAAGAA	480
	AAAACTCATG	ACAAAATTCA	TGATTTGATC	AAAGCCGGTG	ATCTAGACCA	GGATTCAAGA	540
	ATGGTTCTTG	TCAATGCATT	GTACTTCAAG	GGTCTTTGGG	AGAAACAATT	CAAGAAGGAA	600
40	AACACTCAAG	ACAAACCTTT	CTATGTTACT	GAAACAGAGA	CAAAGAATGT	ACGAATGATG	660
	CACATTAAGG	ATAAATTCCG	TTATGGAGAA	TTTGAAGAAT	TAGATGCCAA	GGCTGTAGAA	720
	TTGCCCTACA	GGAACTCAGA	TTTGGCCATG	TTAATCATTT	TGCCAAACAG	CAAAACTGGT	780
	CTCCCCGCTC	TTGAAGAAAA	ATTACAAAAT	GTTGACTTGC	AAAACTTGAC	TCAACGCATG	840
	TACTCTGTTG	AAGTTATTTT	GGATCTGCCT	AAATTCAAGA	TTGAATCTGA	AATTAATTTG	900
45	AATGATCCTC	TGAAAAAGTT	GGGTATGTCT	GATATGTTTG	TTCCTGGAAA	AGCTGATTTC	960
	AAAGGATTGC	TTGAAGGATC	TGATGAGATG	TTATATATTT	CTAAAGTAAT	TCAAAAAGCT	1020
	TTCATTGAAG	TAAATGAAGA	AGGTGCTGAA	GCTGCAGCTG	CCACAGGCAT	TGTCATGCTT	1080
	GGTTGCTGTA	TGCCAATGAT	GGATCTTTCT	CCAGTAGTTT	TTAATATTGA	TCACCCATTT	1140
	TATTACTCAT	TGATGACTTG	GGATACTGTT	TTGTTCAGTG	GATGTGTTAA	ATCCCTT	1197

50 (2) INFORMATION FOR SEQ ID NO:11:

- SEQUENCE CHARACTERISTICS: (i)
 - (A) LENGTH: 1197 nucleic acid
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear 55

WO 98/20034 PCT/US97/20678

-106-

(ii) MOLECULE TYPE: cDNA

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:11:
------	----------	--------------	-----	----	--------

	AAGGGATTTA	ACACATCCAC	TGAACAAAAC	AGTATCCCAA	GTCATCAATG	AGTAATAAAA	60
	TGGGTGATCA	ATATTAAAAA	CTACTGGAGA	AAGATCCATC	ATTGGCATAC	AGCAACCAAG	120
5	CATGACAATG	CCTGTGGCAG	CTGCAGCTTC	AGCACCTTCT	TCATTTACTT	CAATGAAAGC	180
	TTTTTGAATT	ACTTTAGAAA	TATATAACAT	CTCATCAGAT	CCTTCAAGCA	ATCCTTTGAA	240
	ATCAGCTTTT	CCAGGAACAA	ACATATCAGA	CATACCCAAC	TTTTTCAGAG	GATCATTCAA	300
	ATTAATTTCA	GATTCAATCT	TGAATTTAGG	CAGATCCAAA	ATAACTTCAA	CAGAGTACAT	360
	GCGTTGAGTC	AAGTTTTGCA	AGTCAACATT	TTGTAATTTT	TCTTCAAGAG	CGGGGAGACC	420
10	AGTTTTGCTG	TTTGGCAAAA	TGATTAACAT	GGCCAAATCT	GAGTTCCTGT	AGGGCAATTC	480
	TACAGCCTTG	GCATCTAATT	CTTCAAATTC	TCCATAACGG	AATTTATCCT	TAATGTGCAT	540
	CATTCGTACA	TTCTTTGTCT	CTGTTTCAGT	AACATAGAAA	GGTTTGTCTT	GAGTGTTTTC	600
	CTTCTTGAAT	TGTTTCTCCC	AAAGACCCTT	GAAGTACAAT	GCATTGACAA	GAACCATTCT	660
	TGAATCCTGG	TCTAGATCAC	CGGCTTTGAT	CAAATCATGA	ATTTTGTCAT	GAGTTTTTTC	720
15	TTCAACCCAA	GTGTTGATAA	CTTTAGCGCT	TTCAGCATTT	TGGGCAAAGT	TCAAGTTTTC	780
	TGCTCCAGCT	AAGAATTTGT	TGGTGGCAAC	TTCTTTGAAG	GTGGGTTTCA	ATGTATAGCC	840
	TTCCATAACG	TAAACTTTGT	TGGCAATTTC	CAGAGTTACA	CCTTTTTGTG	TATTAAGAGT	900
	GTTCATCAAT	GCATGGTAGT	CATCTTGAAT	TTTTTTTTT	GATTGAGGCT	GACGTAAACC	960
	AGCAGCTATT	TGTGTGGCAG	TATTACCACC	AGCTCCCATT	GACACCAGGG	ATAGAACAGT	1020
20	TTGTACAGAC	AATGGGGACA	TGATGAGATT	GTCTTTGTTG	CCAGAAGCAA	CCGTATTGTA	1080
	CAGGCTTCCA	GCAAACTGGT	TAATACTTGT	AGACAATTCC	TGGGGATCCG	CCATTGTTGA	1140
	AATTGGTATT	AACACTGATA	CAAAAAGAAA	CACAAGTCGT	GCGTGTTGAA	CTATCGC	1197

(2) INFORMATION FOR SEQ ID NO:12:

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 376 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
- 30 Asp Pro Gln Glu Leu Ser Thr Ser Ile Asn Gln Phe Ala Gly Ser Leu 1 5 10 15
 - Tyr Asn Thr Val Ala Ser Gly Asn Lys Asp Asn Leu Ile Met Ser Pro 20 25 30
- Leu Ser Val Gln Thr Val Leu Ser Leu Val Ser Met Gly Ala Gly Gly 35 40 45
 - Asn Thr Ala Thr Gln Ile Ala Ala Gly Leu Arg Gln Pro Gln Ser Lys 50 55 60
 - Glu Lys Ile Gln Asp Asp Tyr His Ala Leu Met Asn Thr Leu Asn Thr 65 70 75 80
- 40 Gln Lys Gly Val Thr Leu Glu Ile Ala Asn Lys Val Tyr Val Met Glu 85 90 95
 - Gly Tyr Thr Leu Lys Pro Thr Phe Lys Glu Val Ala Thr Asn Lys Phe 100 105 110
- Leu Ala Gly Ala Glu Asn Leu Asn Phe Ala Gln Asn Ala Glu Ser Ala
 45 115 120 125
 - Lys Val Ile Asn Thr Trp Val Glu Glu Lys Thr His Asp Lys Ile His 130 135 140

-107-

	Asp 145	Leu	Ile	Lys	Ala	Gly 150	Asp	Leu	Asp	Gln	Asp 155	Ser	Arg	Met	Val	Leu 160
	Val	Asn	Ala	Leu	туr 165	Phe	Lys	Gly	Leu	Trp 170	Glu	Lys	Gln	Phe	Lys 175	Lys
5	Glu	Asn	Thr	Gln 180	Asp	Lys	Pro	Phe	Туг 185	Val	Thr	Glu	Thr	Glu 190	Thr	Lys
	Asn	Val	Arg 195	Met	Met	His	Ile	Lys 200	Asp	Lys	Phe	Arg	Туr 205	Gly	Glu	Phe
10	Glu	Glu 210	Leu	Asp	Ala	Lys	Ala 215	Val	Glu	Leu	Pro	Туг 220	Arg	Asn	Ser	Asp
	Leu 225	Ala	Met	Leu	Ile	Ile 230	Leu	Pro	Asn	Ser	Lys 235	Thr	Gly	Leu	Pro	Ala 240
	Leu	Glu	Glu	Lys	Leu 245	Gln	Asn	Val	Asp	Leu 250	Gln	Asn	Leu	Thr	Gln 255	Arg
15	Met	Tyr	Ser	Val 260	Glu	Val	Ile	Leu	Asp 265	Leu	Pro	Lys	Phe	Lys 270	Ile	Glu
	Ser	Glu	11e 275	Asn	Leu	Asn	Asp	Pro 280	Leu	Lys	Lys	Leu	Gly 285	Met	Ser	Asp
20	Met	Phe 290	Val	Pro	Gly	Lys	Ala 295	Asp	Phe	Lys	Gly	Leu 300	Leu	Glu	Gly	Ser
	Asp 305	Glu	Met	Leu	Tyr	Ile 310	Ser	Lys	Val	Ile	Gln 315	Lys	Ala	Phe	Ile	Glu 320
	Val	Asn	Glu	Glu	Gly 325	Ala	Glu	Ala	Ala	Ala 330	Ala	Thr	Gly	Ile	Val 335	Met
25	Leu	Gly	Cys	Cys 340	Met	Pro	Met	Met	Asp 345	Leu	Ser	Pro	Val	Val 350	Phe	Asn
	Ile	Asp	His 355	Pro	Phe	Tyr	Tyr	Ser 360	Leu	Met	Thr	Trp	Asp 365	Thr	Val	Leu
30	Phe	Ser 370	Gly	Сув	Val	Lys	Ser 375	Leu								
	(2)	II	VFORM	IATIO	ON FO	OR SI	EQ II	NO:	13:							
35		į)	i)	SE((A) (B) (C)	TY ST	ENGTI (PE : TRANI		1838 Cleic ESS:	nucl aci sir	.eoti .d	des					
		(±	Li)	MOI	LECUI	E TY	PE:	cDN	JA							
40		(i	ix)	FEA (A) (B)		ME/F	KEY:		5 515	65						
		()	ci)	SEC	OUEN	CE DE	ESCRI	PTIC	ON:	SEO	ID N	10:13	3:			

	TATA	AAAA ATTCI	ATG A	AGCT CTGT	TAATT	TT TT	TGGAZ SCGAZ	AACTO AGCC?	TGT	rgati rgtti	CCA CGAA	AGG?	ACGA(ATATA	CAG A	AATA TGTT	CACAAA ATAAAA FATTCA CTAGAG	120 180 240 300
5	TTT										Le Va					GA CTT cg Leu 15	350
10												TCA Ser					398
												GCT Ala					446
15												ATC Ile					494
												GGA Gly 75					542
20												CCT Pro					590
25	AAA Lys	ATT Ile	CAA Gln	GAT Asp	GAC Asp 100	TAC Tyr	CAT His	GCA Ala	TTG Leu	ATG Met 105	AAC Asn	ACT Thr	CTT Leu	AAT Asn	ACA Thr 110	Gln	638
												TAC Tyr					686
30	TAT Tyr	ACA Thr	TTG Leu 130	AAA Lys	CCC Pro	ACC Thr	TTC Phe	AAA Lys 135	GAA Glu	GTT Val	GCC Ala	ACC Thr	AAC Asn 140	AAA Lys	TTC Phe	TTA Leu	734
	GCT Ala	GGA Gly 145	GCA Ala	GAA Glu	AAC Asn	TTG Leu	AAC Asn 150	TTT Phe	GCC Ala	CAA Gln	AAT Asn	GCT Ala 155	GAA Glu	AGC Ser	GCT Ala	AAA Lys	782
35												GAC Asp					830
40	TTG Leu	ATC Ile	AAA Lys	GCC Ala	GGT Gly 180	GAT Asp	CTA Leu	GAC Asp	CAG Gln	GAT Asp 185	TCA Ser	AGA Arg	ATG Met	GTT Val	CTT Leu 190	GTC Val	878
	AAT Asn	GCA Ala	TTG Leu	TAC Tyr 195	TTC Phe	AAG Lys	GGT Gly	CTT Leu	TGG Trp 200	GAG Glu	AAA Lys	CAA Gln	TTC Phe	AAG Lys 205	AAG Lys	GAA Glu	926
45	AAC Asn	ACT Thr	CAA Gln 210	GAC Asp	AAA Lys	CCT Pro	TTC Phe	TAT Tyr 215	GTT Val	ACT Thr	GAA Glu	ACA Thr	GAG Glu 220	ACA Thr	AAG Lys	AAT Asn	974

	GTA Val	CGA Arg 225	ATG Met	ATG Met	CAC His	ATT Ile	AAG Lys 230	GAT Asp	AAA Lys	TTC Phe	CGT Arg	TAT Tyr 235	GGA Gly	GAA Glu	TTT Phe	GAA Glu	1022
5	GAA Glu 240	TTA Leu	GAT Asp	GCC Ala	AAG Lys	GCT Ala 245	GTA Val	GAA Glu	TTG Leu	CCC Pro	TAC Tyr 250	AGG Arg	AAC Asn	TCA Ser	GAT Asp	TTG Leu 255	1070
	GCC Ala	ATG Met	TTA Leu	ATC Ile	ATT Ile 260	TTG Leu	CCA Pro	AAC Asn	AGC Ser	AAA Lys 265	ACT Thr	GGT Gly	CTC Leu	CCC Pro	GCT Ala 270	CTT Leu	1118
10	GAA Glu	GAA Glu	AAA Lys	TTA Leu 275	CAA Gln	AAT Asn	GTT Val	GAC Asp	TTG Leu 280	CAA Gln	AAC Asn	TTG Leu	ACT Thr	CAA Gln 285	CGC Arg	ATG Met	1166
15		TCT Ser															1214
	GAA Glu	ATT Ile 305	AAT Asn	TTG Leu	AAT Asn	GAT Asp	CCT Pro 310	CTG Leu	AAA Lys	AAG Lys	TTG Leu	GGT Gly 315	ATG Met	TCT Ser	GAT Asp	ATG Met	1262
20	TTT Phe 320	GTT Val	CCT Pro	GGA Gly	AAA Lys	GCT Ala 325	GAT Asp	TTC Phe	AAA Lys	GGA Gly	TTG Leu 330	Leu	GAA Glu	GGA Gly	TCT Ser	GAT Asp 335	1310
	GAG Glu	ATG Met	TTA Leu	TAT Tyr	ATT Ile 340	TCT Ser	AAA Lys	GTA Val	ATT Ile	CAA Gln 345	AAA Lys	GCT Ala	TTC Phe	ATT Ile	GAA Glu 350	GTA Val	1358
25	AAT Asn	GAA Glu	GAA Glu	GGT Gly 355	GCT Ala	GAA Glu	GCT Ala	GCA Ala	GCT Ala 360	GCC Ala	ACA Thr	GCG Ala	GTG Val	CTT Leu 365	TTA Leu	GTA Val	1406
30	ACG Thr	GAA Glu	TCT Ser 370	TAT Tyr	GTA Val	CCT Pro	GAG Glu	GAA Glu 375	GTA Val	TTC Phe	GAA Glu	GCT Ala	AAT Asn 380	CAT His	CCC Pro	TTT Phe	1454
		TTT Phe 385															1502
35		AGC Ser														TCT Ser 415	1550
		AGA Arg				TAG	AAA	AATA!	rgt (GTTA(CTAG	CC T	rgtgi	ATTA!	r		1598
40	TTT	CTAC	AAT A	ATTT'	rtta. ACGA.	AT AC	GTTA' ATGT'	TTAG(TTTG'	G TC' I TT'	TAAA TAGT'	ATAA TTTC	GTT(CATT!	TTT T	PAGTZ AATG	GTAATT ATGTGG IAATCA AAAAAA	1658 1718 1778 1838

-110-

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 420 amino acids
 - (B) TYPE: amino acid
- (D) TOPOLOGY: linear

5

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Pro Arg Pro Gln Phe Asp Ala Ile Val Gln His Ala Arg Leu Val 1 5 10 15

- 10 Phe Leu Phe Val Ser Val Leu Ile Pro Ile Ser Thr Met Ala Asp Pro 20 25 30
 - Gln Glu Leu Ser Thr Ser Ile Asn Gln Phe Ala Gly Ser Leu Tyr Asn 35 40 45
- Thr Val Ala Ser Gly Asn Lys Asp Asn Leu Ile Met Ser Pro Leu Ser 15 50 55 60
 - Val Gln Thr Val Leu Ser Leu Val Ser Met Gly Ala Gly Gly Asn Thr
 65 70 75 80
 - Ala Thr Gln Ile Ala Ala Gly Leu Arg Gln Pro Gln Ser Lys Glu Lys
 85 90 95
- 20 Ile Gln Asp Asp Tyr His Ala Leu Met Asn Thr Leu Asn Thr Gln Lys 100 105 110
 - Gly Val Thr Leu Glu Ile Ala Asn Lys Val Tyr Val Met Glu Gly Tyr 115 120 125
- Thr Leu Lys Pro Thr Phe Lys Glu Val Ala Thr Asn Lys Phe Leu Ala 25 130 135 140
 - Gly Ala Glu Asn Leu Asn Phe Ala Gln Asn Ala Glu Ser Ala Lys Val 145 150 155 160
 - Ile Asn Thr Trp Val Glu Lys Thr His Asp Lys Ile His Asp Leu 165 170 175
- 30 Ile Lys Ala Gly Asp Leu Asp Gln Asp Ser Arg Met Val Leu Val Asn 180 $$185\$
 - Ala Leu Tyr Phe Lys Gly Leu Trp Glu Lys Gln Phe Lys Lys Glu Asn 195 200 205
- Thr Gln Asp Lys Pro Phe Tyr Val Thr Glu Thr Glu Thr Lys Asn Val 35 210 215 220
 - Arg Met Met His Ile Lys Asp Lys Phe Arg Tyr Gly Glu Phe Glu Glu 225 230 235 240
 - Leu Asp Ala Lys Ala Val Glu Leu Pro Tyr Arg Asn Ser Asp Leu Ala 245 250 255
- 40 Met Leu Ile Ile Leu Pro Asn Ser Lys Thr Gly Leu Pro Ala Leu Glu 260 265 270

-111-

Glu Lys Leu Gln Asn Val Asp Leu Gln Asn Leu Thr Gln Arg Met Tyr 280 Ser Val Glu Val Ile Leu Asp Leu Pro Lys Phe Lys Ile Glu Ser Glu 295 Ile Asn Leu Asn Asp Pro Leu Lys Lys Leu Gly Met Ser Asp Met Phe Val Pro Gly Lys Ala Asp Phe Lys Gly Leu Leu Glu Gly Ser Asp Glu Met Leu Tyr Ile Ser Lys Val Ile Gln Lys Ala Phe Ile Glu Val Asn 10 Glu Glu Gly Ala Glu Ala Ala Ala Thr Ala Val Leu Leu Val Thr Glu Ser Tyr Val Pro Glu Glu Val Phe Glu Ala Asn His Pro Phe Tyr 375 Phe Ala Leu Tyr Lys Ser Ala Gln Asn Pro Val Glu Ser Glu Asn Glu 395 Ser Ser Glu Asn Glu Asn Pro Glu Asn Val Glu Val Leu Phe Ser Gly 405 410 Arg Phe Thr Asn 20 420 INFORMATION FOR SEQ ID NO:15: (2) SEOUENCE CHARACTERISTICS: (i) (A) LENGTH: 1838 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear MOLECULE TYPE: cDNA (ii) SEQUENCE DESCRIPTION: SEQ ID NO:15: (xi) TTTTTTTTT TTTTTTCAC ATTTAACATT TTTATTACAT AAACTACAAC ATTATATAGG 60 TGATTACATT CATAAAAAGT GAAAACTAAA ACAAAACATT TTTCGTCTAC ACGATTTATA 120 CCACATACTA AAAAATGAAC TTATTTTAGA CCTAATAACT ATTAAAAAAT ATTGTAGAAA 180 AATTACTTCA TTAATCCAGA GATTCAGATA GATCTTGTAT TTTTGAAATT TGTCCTGCTT 240 ATAATCACAA GGCTAGTAAC ACATATTTTT CTAATTGGTA AATCTCCCAG AGAATAGTAC 300 TTCAACATTT TCAGGGTTTT CATTTTCAGA GCTTTCATTT TCAGATTCTA CTGGATTTTG 360 TGCAGATTTA TAGAGTGCAA AATAAAAGGG ATGATTAGCT TCGAATACTT CCTCAGGTAC 420 ATAAGATTCC GTTACTAAAA GCACCGCTGT GGCAGCTGCA GCTTCAGCAC CTTCTTCATT 480 TACTTCAATG AAAGCTTTTT GAATTACTTT AGAAATATAT AACATCTCAT CAGATCCTTC 540 AAGCAATCCT TTGAAATCAG CTTTTCCAGG AACAAACATA TCAGACATAC CCAACTTTTT CAGAGGATCA TTCAAATTAA TTTCAGATTC AATCTTGAAT TTAGGCAGAT CCAAAATAAC 660 TTCAACAGAG TACATGCGTT GAGTCAAGTT TTGCAAGTCA ACATTTTGTA ATTTTTCTTC 720 AAGAGCGGGG AGACCAGTTT TGCTGTTTGG CAAAATGATT AACATGGCCA AATCTGAGTT 780 CCTGTAGGGC AATTCTACAG CCTTGGCATC TAATTCTTCA AATTCTCCAT AACGGAATTT 840 ATCCTTAATG TGCATCATTC GTACATTCTT TGTCTCTGTT TCAGTAACAT AGAAAGGTTT 900 GTCTTGAGTG TTTTCCTTCT TGAATTGTTT CTCCCAAAGA CCCTTGAAGT ACAATGCATT 960 GACAAGAACC ATTCTTGAAT CCTGGTCTAG ATCACCGGCT TTGATCAAAT CATGAATTTT 1020 GTCATGAGTT TTTTCTTCAA CCCAAGTGTT GATAACTTTA GCGCTTTCAG CATTTTGGGC 1080 AAAGTTCAAG TTTTCTGCTC CAGCTAAGAA TTTGTTGGTG GCAACTTCTT TGAAGGTGGG 1140

TTTCAATGTA TAGCCTTCCA TAACGTAAAC TTTGTTGGCA ATTTCCAGAG TTACACCTTT 1200

-112-

5	AGGCTGACGT CAGGGATAGA AGCAACCGTA ATCCGCCATT TTGAACTATC TGAGTCATAT CAAACATTTG GAATCACACA CATGATGTCA	AGAGTGTTCA AAACCAGCAG ACAGTTTGTA TTGTACAGGC GTTGAAATTG GCGTCAAACT TGTATAATAT GCTTCGCGGA GTTTCCAAAA TTTGAATGAT CTAAATGCGT	CTATTTGTGT CAGACAATGG TTCCAGCAAA GTATTAACAC GAGGACGCGG AGAAATACTA ACAACACACA ATTAGCTTCA AGTTATTGAA	GGCAGTATTA GGACATGATG CTGGTTAATA TGATACAAAA CATCAAAACT GGAATGTTTG TGAATCTGTT TTTTTTATATT TTGATTTGTA	CCACCAGCTC AGATTGTCTT CTTGTAGACA AGAAACACAA CTAGATATTA AATAACACAC TTATATTTCT TGTGTTTAAT	CCATTGACAC TGTTGCCAGA ATTCCTGGGG GTCGTGCGTG GAATCGTTTG TATATACATT GTCGTCCTTG TTATTTTGAA	1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1838
	(2) INFO	RMATION FOR	SEQ ID NO:	16:			
15	(i)	(A) LENG (B) TYPE (C) STRA	CHARACTERIS TH: 1260 m : nucleic NDEDNESS: LOGY: line	nucleotides acid single			
	(ii)	MOLECULE	TYPE: cDN	A			
	(xi)	SEQUENCE	DESCRIPTION	1: SEQ ID I	NO:16:		
20	ATGCCGCGTC	CTCAGTTTGA	ССССАТАСТТ	CAACACGCAC	GACTTGTGTT	መርጥጥጥጥጥር ተ	60
20		TACCAATTTC .					120
	CAGTTTGCTG	GAAGCCTGTA	CAATACGGTT	GCTTCTGGCA	ACAAAGACAA	TCTCATCATG	180
	TCCCCATTGT	CTGTACAAAC	TGTTCTATCC	CTGGTGTCAA	TGGGAGCTGG	TGGTAATACT	240
		TAGCTGCTGG					300
25		TGATGAACAC					360
		TTATGGAAGG					420
		CTGGAGCAGA .					480
		GGGTTGAAGA .					540
2.0		AGGATTCAAG					600
30		TCAAGAAGGA					660
		TACGAATGAT AGGCTGTAGA					720 780
		GCAAAACTGG					840
		CTCAACGCAT					900
35		AAATTAATTT					960
33		AAGCTGATTT					1020
		TTCAAAAAGC '					1080
		TGCTTTTAGT					1140
	CATCCCTTTT	ATTTTGCACT	СТАТАААТСТ	GCACAAAATC	CAGTAGAATC	TGAAAATGAA	1200
40	AGCTCTGAAA	ATGAAAACCC '	TGAAAATGTT	GAAGTACTAT	TCTCTGGGAG	ATTTACCAAT	1260
	(2) INFO	RMATION FOR	SEQ ID NO:1	.7:			
	(i)	SEQUENCE (A) LENG	CHARACTERIS TH: 1260 r	STICS: nucleotides			
			: nucleic				
45			NDEDNESS:	single			
		(D) TOPO	LOGY: line	ear			
	(ii)	MOLECIILE	TYPE: cDNA	.			
	(11)	MODECOEE	III D. CDM	•			
	(xi)	SEQUENCE :	DESCRIPTION	: SEQ ID 1	NO:17:		
E 0		CTCCCAGAGA					60
50		GATTCTACTG					120 180

ATTAGCTTCG AATACTTCCT CAGGTACATA AGATTCCGTT ACTAAAAGCA CCGCTGTGGC

AGCTGCAGCT TCAGCACCTT CTTCATTTAC TTCAATGAAA GCTTTTTGAA TTACTTTAGA 240

180

-113-

	AATATATAAC	ATCTCATCAG	ATCCTTCAAG	CAATCCTTTG	AAATCAGCTT	TTCCAGGAAC	300
	AAACATATCA	GACATACCCA	ACTTTTTCAG	AGGATCATTC	AAATTAATTT	CAGATTCAAT	360
	CTTGAATTTA	GGCAGATCCA	AAATAACTTC	AACAGAGTAC	ATGCGTTGAG	TCAAGTTTTG	420
	CAAGTCAACA	TTTTGTAATT	TTTCTTCAAG	AGCGGGGAGA	CCAGTTTTGC	TGTTTGGCAA	480
5	AATGATTAAC	ATGGCCAAAT	CTGAGTTCCT	GTAGGGCAAT	TCTACAGCCT	TGGCATCTAA	540
	TTCTTCAAAT	TCTCCATAAC	GGAATTTATC	CTTAATGTGC	ATCATTCGTA	CATTCTTTGT	600
	CTCTGTTTCA	GTAACATAGA	AAGGTTTGTC	TTGAGTGTTT	TCCTTCTTGA	ATTGTTTCTC	660
	CCAAAGACCC	TTGAAGTACA	ATGCATTGAC	AAGAACCATT	CTTGAATCCT	GGTCTAGATC	720
	ACCGGCTTTG	ATCAAATCAT	GAATTTTGTC	ATGAGTTTTT	TCTTCAACCC	AAGTGTTGAT	780
10	AACTTTAGCG	CTTTCAGCAT	TTTGGGCAAA	GTTCAAGTTT	TCTGCTCCAG	CTAAGAATTT	840
	GTTGGTGGCA	ACTTCTTTGA	AGGTGGGTTT	CAATGTATAG	CCTTCCATAA	CGTAAACTTT	900
	GTTGGCAATT	TCCAGAGTTA	CACCTTTTTG	TGTATTAAGA	GTGTTCATCA	ATGCATGGTA	960
	GTCATCTTGA	ATTTTTTTTT	TTGATTGAGG	CTGACGTAAA	CCAGCAGCTA	TTTGTGTGGC	1020
	AGTATTACCA	CCAGCTCCCA	TTGACACCAG	GGATAGAACA	GTTTGTACAG	ACAATGGGGA	1080
15	CATGATGAGA	TTGTCTTTGT	TGCCAGAAGC	AACCGTATTG	TACAGGCTTC	CAGCAAACTG	1140
	GTTAATACTT	GTAGACAATT	CCTGGGGATC	CGCCATTGTT	GAAATTGGTA	TTAACACTGA	1200
	TACAAAAAGA	AACACAAGTC	GTGCGTGTTG	AACTATCGCG	TCAAACTGAG	GACGCGGCAT	1260

(2) INFORMATION FOR SEQ ID NO:18:

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 390 amino acids

(B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- 25 Asp Pro Gln Glu Leu Ser Thr Ser Ile Asn Gln Phe Ala Gly Ser Leu
 1 5 10 15

Tyr Asn Thr Val Ala Ser Gly Asn Lys Asp Asn Leu Ile Met Ser Pro 20 25 30

- Leu Ser Val Gln Thr Val Leu Ser Leu Val Ser Met Gly Ala Gly Gly 30 35 40 45
 - Asn Thr Ala Thr Gln Ile Ala Ala Gly Leu Arg Gln Pro Gln Ser Lys
 50 55 60
 - Glu Lys Ile Gln Asp Asp Tyr His Ala Leu Met Asn Thr Leu Asn Thr 65 70 75 80
- 35 Gln Lys Gly Val Thr Leu Glu Ile Ala Asn Lys Val Tyr Val Met Glu 85 90 95
 - Gly Tyr Thr Leu Lys Pro Thr Phe Lys Glu Val Ala Thr Asn Lys Phe 100 105 110
- Leu Ala Gly Ala Glu Asn Leu Asn Phe Ala Gln Asn Ala Glu Ser Ala 40 115 120 125
 - Lys Val Ile Asn Thr Trp Val Glu Glu Lys Thr His Asp Lys Ile His 130 135 140
 - Asp Leu Ile Lys Ala Gly Asp Leu Asp Gln Asp Ser Arg Met Val Leu 145 150 155 160
- 45 Val Asn Ala Leu Tyr Phe Lys Gly Leu Trp Glu Lys Gln Phe Lys Lys 165 170 175

-114-

	Glu	Asn	Thr	Gln 180	Asp	Lys	Pro	Phe	Туг 185	Val	Thr	Glu 	Thr	Glu 190	Thr	Lys
	Asn	Val	Arg 195	Met	Met	His	Ile	Lys 200	Asp	Lys	Phe	Arg	Tyr 205	Gly	Glu	Phe
5	Glu	Glu 210	Leu	Asp	Ala	Lys	Ala 215	Val	Glu	Leu	Pro	Tyr 220	Arg	Asn	Ser	Asp
	Leu 225	Ala	Met	Leu	Ile	Ile 230	Leu	Pro	Asn	Ser	Lys 235	Thr	Gly	Leu	Pro	Ala 240
LO	Leu	Glu	Glu	Lys	Leu 245	Gln	Asn	Val	Asp	Leu 250	Gln	Asn	Leu	Thr	Gln 255	Arg
	Met	Tyr	Ser	Val 260	Glu	Val	Ile	Leu	Asp 265	Leu	Pro	Lys	Phe	Lys 270	Ile	Glu
	Ser	Glu	Ile 275	Asn	Leu	Asn	Asp	Pro 280	Leu	Lys	Lys	Leu	Gly 285	Met	Ser	Asp
L5	Met	Phe 290	Val	Pro	Gly	Lys	Ala 295	Asp	Phe	Lys	Glý	Leu 300	Leu	Glu	Gly	Ser
	Asp 305	Glu	Met	Leu	Tyr	Ile 310	Ser	Lys	Val	Ile	Gln 315	Lys	Ala	Phe	Ile	Glu 320
20	Val	Asn	Glu	Glu	Gly 325	Ala	Glu	Ala	Ala	Ala 330	Ala	Thr	Ala	Val	Leu 335	Leu
	Val	Thr	Glu	Ser 340	Tyr	Val	Pro	Glu	Glu 345	Val	Phe	Glu	Ala	Asn 350	His	Pro
	Phe	Tyr	Phe 355	Ala	Leu	Tyr	Lys	Ser 360	Ala	Gln	Asn	Pro	Val 365	Glu	Ser	Glu
25	Asn	Glu 370	Ser	Ser	Glu	Asn	Glu 375	Asn	Pro	Glu	Asn	Val 380	Glu	Val	Leu	Phe
	Ser 385	Gly	Arg	Phe	Thr	Asn 390										
	(2)	II	IFORM	IATIC	N FO	R SE	EQ II	NO:	19:							
30		()	i)	(A) (B)	LE TY SI	ENGTI PE:	nuc EDNE	1414 cleic ESS:	nucl	leoti	ides					
35		(j	li)	MOI	ECUI	E T	PE:	cDì	JA.							
		į)	ix)	FEA (A) (B)		ME/I	KEY:		5 . 1180)						
		()	ci)	SEÇ	QUENC	E DI	ESCRI	[PTI	ON:	SEQ	ID 1	10:19):			
10	A CO	GA CI	rr Gi	G T	rr Ci	rr ri	rr Gi	ra To	CA G	rg Ti	ra at	ra co	CA AT	יד ידי	CA AC	CA
	Aı	rg Le	eu Va	al Ph	ne Le	eu Pl	ne Va	al Se	er Va	al Le	eu I	le Pi	co Il	le Se	er Th	ır

46

			GAA Glu						94
5			GTT Val						142
			CAA Gln						190
10			ACA Thr						238
15			CAA Gln 85						286
			GTA Val						334
20			TTG Leu						382
			GCA Ala						430
25			AAC Asn						478
30			AAA Lys 165						526
			TTG Leu				 	 	574
35			CAA Gln						622
			ATG Met						670
40			GAT Asp						718
45			TTA Leu 245						766

-116-

															TTG Leu 270		814
5															TTC Phe		862
															GGT Gly		910
10															CTT Leu		958
15															GCT Ala		1006
															GGC Gly 350		1054
20															AAT Asn		1102
															CTA Leu		1150
25				CTT Leu							TAA	AAGO	CAA	ATG C	CACTI	CACTA	1203
30	TCAC AATT	CTTT TATT	AA7 TGT 1	TATI	CAGT	TT AT	rtttr rattr	'ATC <i>I</i> 'TTT'	TC?	ACTAT	TTC	AGTO	GTGG	AT C	AATT	ATTTG AGTACA AGATAA	1263 1323 1383 1414
	(2)	II	1FOR1	IATIO	N FC	R SE	EQ II	NO:	20:								
35		į)	L)	SE((A) (B) (D)	LE TY	E CHENGTHE PE:	H: 3	93 a	mino	CS: o aci	.ds						
		(i	ii)	MOI	ECUI	E TY	PE:	pro	oteir	ı							
		()	ci)	SEÇ	QUENC	E DE	ESCRI	PTIC	ON:	SEQ	ID N	10:20):				
40	Arg 1	Leu	Val	Phe	Leu 5	Phe	Val	Ser	Val	Leu 10	Ile	Pro	Ile	Ser	Thr 15	Met	
	Ala	Asp	Pro	Gln 20	Glu	Leu	Ser	Thr	Ser 25	Ile	Asn	Gln	Phe	Ala 30	Gly	Ser	
	Leu	Tyr	Asn	Thr	Val	Ala	Ser	Gly 40	Asn	Lys	Asp	Asn	Leu 45	Ile	Met	Ser	

	Pro	50	ser	vai	GIII	THE	55	Leu	ser	Leu	Val	60	Met	сту	Ala	G1;
	Gly 65	Asn	Thr	Ala	Thr	Gln 70	Ile	Ala	Ala	Gly	Leu 75	Arg	Gln	Pro	Gln	Se:
5	Lys	Glu	Lys	Ile	Gln 85	Asp	Asp	Tyr	His	Ala 90	Leu	Met	Asn	Thr	Leu 95	Ası
	Thr	Gln	Lys	Gly 100	Val	Thr	Leu	Glu	Ile 105	Ala	Asn	Lys	Val	Туг 110	Val	Me
10	Glu	Gly	Туг 115	Thr	Leu	Lys	Pro	Thr 120	Phe	Lys	Glu	Val	Ala 125	Thr	Asn	Ly
	Phe	Leu 130	Ala	Gly	Ala	Glu	Asn 135	Leu	Asn	Phe	Ala	Gln 140	Asn	Ala	Glu	Se
	Ala 145	Lys	Val	Ile	Asn	Thr 150	Trp	Val	Glu	Glu	Lys 155	Thr	His	Asp	Lys	11e
15	His	Asp	Leu	Ile	Lys 165	Ala	Gly	Asp	Leu	Asp 170	Gln	Asp	Ser	Arg	Met 175	Va.
	Leu	Val	Asn	Ala 180	Leu	Tyr	Phe	Lys	Gly 185	Leu	Trp	Glu	Lys	Gln 190	Phe	Lys
20	Lys	Glu	Asn 195	Thr	Gln	Asp	Lys	Pro 200	Phe	Tyr	Val	Thr	Glu 205	Thr	Glu	Thi
		Asn 210	Val	Arg	Met	Met	His 215	Ile	Lys	Asp	Lys	Phe 220		Tyr	Gly	Gli
	Phe 225	Glu	Glu	Leu	Asp	Ala 230	Lys	Ala	Val	Glu	Leu 235	Pro	Tyr	Arg	Asn	Sei 240
25	Asp	Leu	Ala	Met	Leu 245	Ile	Ile	Leu	Pro	Asn 250	Ser	Lys	Thr	Gly	Leu 255	Pro
	Ala	Leu	Glu	Glu 260	Lys	Leu	Gln	Asn	Val 265	Asp	Leu	Gln	Asn	Leu 270	Thr	Glr
30	Arg	Met	Tyr 275	Ser	Val	Glu	Val	Ile 280	Leu	Asp	Leu	Pro	Lys 285	Phe	Lys	Ile
	Glu	Ser 290	Glu	Ile	Asn	Leu	Asn 295	Asp	Pro	Leu	Lys	Lys 300	Leu	Gly	Met	Ser
	Asp 305	Met	Phe	Val	Pro	Gly 310	Lys	Ala	Asp	Phe	Lys 315	Gly	Leu	Leu	Glu	Gl ₃ 320
35	Ser	Asp	Glu	Met	Leu 325	Tyr	Ile	Ser	Lys	Val 330	Ile	Gln	Lys	Ala	Phe 335	Ile
	Glu	Val	Asn	Glu 340	Glu	Gly	Ala	Glu	Ala 345	Ala	Ala	Ala	Thr	Gly 350	Val	Met
40	Leu	Met	Met 355	Arg	Cys	Met	Pro	Met 360	Met	Pro	Met	Ala	Phe 365	Asn	Ala	Glu
	His	Pro		Leu	Tyr	Phe	Leu 375	His	Ser	Lys	Asn	Ser	Val	Leu	Phe	Asr

-118-Gly Arg Leu Val Lys Pro Thr Thr Glu 385 390 INFORMATION FOR SEQ ID NO:21: (2) SEOUENCE CHARACTERISTICS: (i) LENGTH: 1414 nucleotides 5 (A) TYPE: nucleic acid STRANDEDNESS: single (C) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA SEQUENCE DESCRIPTION: SEQ ID NO:21: 10 (xi) TTTTTTTTT TTTTTTTAG TCTTATGTTT TTTATCAAAA TTTGTTAAAA AAATATTCAC 60 AAAAATAAA TATATATCAT AACAATAAAT TTGTACTTAA GATCCACCAC TGAAATAGTG 120 ATGATAAAAA ATACTGAATA CTTAAAGCTG ACAAATATAA ATTGAACACA ATGTTCTACA 180 GGCACTGTTT CAGTAAGCAA TTAAAAAATA TTAGTGAAGT GCATTTGGCT TTTATTCAGT 240 TGTTGGTTTA ACAAGACGAC CATTGAATAG AACAGAATTT TTGCTGTGTA AGAAGTACAG 300 GAATGGATGC TCAGCATTGA AGGCCATTGG CATCATTGGC ATACAACGCA TCATTAACAT 360 CACGCCTGTG GCAGCTGCAG CTTCAGCACC TTCTTCATTT ACTTCAATGA AAGCTTTTTG 420 AATTACTTTA GAAATATATA ACATCTCATC AGATCCTTCA AGCAATCCTT TGAAATCAGC TTTTCCAGGA ACAAACATAT CAGACATACC CAACTTTTTC AGAGGATCAT TCAAATTAAT TTCAGATTCA ATCTTGAATT TAGGCAGATC CAAAATAACT TCAACAGAGT ACATGCGTTG AGTCAAGTTT TGCAAGTCAA CATTTTGTAA TTTTTCTTCA AGAGCGGGGA GACCAGTTTT GCTGTTTGGC AAAATGATTA ACATGGCCAA ATCTGAGTTC CTGTAGGGCA ATTCTACAGC CTTGGCATCT AATTCTTCAA ATTCTCCATA ACGGAATTTA TCCTTAATGT GCATCATTCG TACATTCTTT GTCTCTGTTT CAGTAACATA GAAAGGTTTG TCTTGAGTGT TTTCCTTCTT 840 GAATTGTTTC TCCCAAAGAC CCTTGAAGTA CAATGCATTG ACAAGAACCA TTCTTGAATC 900 CTGGTCTAGA TCACCGGCTT TGATCAAATC ATGAATTTTG TCATGAGTTT TTTCTTCAAC CCAAGTGTTG ATAACTTTAG CGCTTTCAGC ATTTTGGGCA AAGTTCAAGT TTTCTGCTCC 1020 AGCTAAGAAT TTGTTGGTGG CAACTTCTTT GAAGGTGGGT TTCAATGTAT AGCCTTCCAT 1080 AACGTAAACT TTGTTGGCAA TTTCCAGAGT TACACCTTTT TGTGTATTAA GAGTGTTCAT 1140 CAATGCATGG TAGTCATCTT GAATTTTTC TTTTGATTGA GGCTGACGTA AACCAGCAGC 1200 TATTTGTGTG GCAGTATTAC CACCAGCTCC CATTGACACC AGGGATAGAA CAGTTTGTAC AGACAATGGG GACATGATGA GATTGTCTTT GTTGCCAGAA GCAACCGTAT TGTACAGGCT 1320 TCCAGCAAAC TGGTTAATAC TTGTAGACAA TTCCTGGGGA TCCGCCATTG TTGAAATTGG 1380 TATTAACACT GATACAAAAA GAAACACAAG TCGT 35 (2) INFORMATION FOR SEQ ID NO:22: SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 1179 nucleotides TYPE: nucleic acid (B) STRANDEDNESS: single (C) 40 TOPOLOGY: linear (D) MOLECULE TYPE: cDNA (ii) SEQUENCE DESCRIPTION: SEQ ID NO:22: (xi) CGACTTGTGT TTCTTTTTGT ATCAGTGTTA ATACCAATTT CAACAATGGC GGATCCCCAG GAATTGTCTA CAAGTATTAA CCAGTTTGCT GGAAGCCTGT ACAATACGGT TGCTTCTGGC 120

AACAAAGACA ATCTCATCAT GTCCCCATTG TCTGTACAAA CTGTTCTATC CCTGGTGTCA ATGGGAGCTG GTGGTAATAC TGCCACACAA ATAGCTGCTG GTTTACGTCA GCCTCAATCA AAAGAAAAA TTCAAGATGA CTACCATGCA TTGATGAACA CTCTTAATAC ACAAAAAGGT GTAACTCTGG AAATTGCCAA CAAAGTTTAC GTTATGGAAG GCTATACATT GAAACCCACC TTCAAAGAAG TTGCCACCAA CAAATTCTTA GCTGGAGCAG AAAACTTGAA CTTTGCCCAA 420 50 AATGCTGAAA GCGCTAAAGT TATCAACACT TGGGTTGAAG AAAAAACTCA TGACAAAATT 480 CATGATTGA TCAAAGCCGG TGATCTAGAC CAGGATTCAA GAATGGTTCT TGTCAATGCA TTGTACTTCA AGGGTCTTTG GGAGAAACAA TTCAAGAAGG AAAACACTCA AGACAAACCT 600 -119-

5	CGTTATGGAG GATTTGGCCA AAATTACAAA TTGGATCTGC TTGGGTATGT TCTGATGAGA GAAGGTGCTG ATGCCAATGG GTTCTATTCA	CTGAAACAGA GACAAAGAAT GTACGAATGA TGCACATTAA GGATAAATTC AATTTGAAGA ATTAGATGCC AAGGCTGTAG AATTGCCCTA CAGGAACTCA TGTTAATCAT TTTGCCAAAC AGCAAAACTG GTCTCCCCGC TCTTGAAGAA ATGTTGACTT GCAAAACTTG ACTCAACGCA TGTACTCTGT TGAAGTTATT CTAAATTCAA GATTGAATCT GAAATTAATT TGAATGATCC TCTGAAAAAG CTGATATGTT TGTTCCTGGA AAAGCTGATT TCAAAGGATT GCTTGAAGGA TGTTATATAT TTCTAAAGTA ATTCAAAAAG CTTTCATTGA AGTAAATGAA AAGCTGCAGC TGCCACAGGC GTGATGTTAA TGATGCGTTG TATGCCAATG CCTTCAATGC TGAGCATCCA TTCCTGTACT TCTTACACAG CAAAAATTCT ATGGTCGTCT TGTTAAACCA ACAACTGAA	660 720 780 840 900 960 1020 1080 1140
	(2) INFO	RMATION FOR SEQ ID NO:23:	
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1179 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	መመረ እ ረጥመረጥጥ	GGTTTAACAA GACGACCATT GAATAGAACA GAATTTTTGC TGTGTAAGAA	60
20		GGATGCTCAG CATTGAAGGC CATTGGCATC ATTGGCATAC AACGCATCAT	120
		CCTGTGGCAG CTGCAGCTTC AGCACCTTCT TCATTTACTT CAATGAAAGC	180
	TTTTTGAATT	ACTTTAGAAA TATATAACAT CTCATCAGAT CCTTCAAGCA ATCCTTTGAA	240
		CCAGGAACAA ACATATCAGA CATACCCAAC TTTTTCAGAG GATCATTCAA	300
		GATTCAATCT TGAATTTAGG CAGATCCAAA ATAACTTCAA CAGAGTACAT	360
25		AAGTTTTGCA AGTCAACATT TTGTAATTTT TCTTCAAGAG CGGGGAGACC	420
		TTTGGCAAAA TGATTAACAT GGCCAAATCT GAGTTCCTGT AGGGCAATTC	480
		GCATCTAATT CTTCAAATTC TCCATAACGG AATTTATCCT TAATGTGCAT TTCTTTGTCT CTGTTTCAGT AACATAGAAA GGTTTGTCTT GAGTGTTTTC	540 600
		TGTTTCTCCC AAAGACCCTT GAAGTACAAT GCATTGACAA GAACCATTCT	660
30		TCTAGATCAC CGGCTTTGAT CAAATCATGA ATTTTGTCAT GAGTTTTTTC	720
		GTGTTGATAA CTTTAGCGCT TTCAGCATTT TGGGCAAAGT TCAAGTTTTC	780
	TGCTCCAGCT	AAGAATTTGT TGGTGGCAAC TTCTTTGAAG GTGGGTTTCA ATGTATAGCC	840
		TAAACTTTGT TGGCAATTTC CAGAGTTACA CCTTTTTGTG TATTAAGAGT	900
		GCATGGTAGT CATCTTGAAT TTTTTCTTTT GATTGAGGCT GACGTAAACC	960
35		TGTGTGGCAG TATTACCACC AGCTCCCATT GACACCAGGG ATAGAACAGT AATGGGGACA TGATGAGATT GTCTTTGTTG CCAGAAGCAA CCGTATTGTA	1020 1080
		GCAAACTGGT TAATACTTGT AGACAATTCC TGGGGATCCG CCATTGTTGA	1140
		AACACTGATA CAAAAAGAAA CACAAGTCG	1179
	(2) INFO	RMATION FOR SEQ ID NO:24:	
40	(i)	SEQUENCE CHARACTERISTICS:	
10	(±/	(A) LENGTH: 376 amino acids	
		(B) TYPE: amino acid	
		(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: protein	
45	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:24:	
. =	•	•	
	Asp Pro Gli	n Glu Leu Ser Thr Ser Ile Asn Gln Phe Ala Gly Ser Leu	
	1	5 10 15	

	Leu	ser	35	Gin	Thr	vai	Leu	40	ьeu	vai	ser	Met 	45	Ala	GIA	GT.
	Asn	Thr 50	Ala	Thr	Gln	Ile	Ala 55	Ala	Gly	Leu	Arg	Gln 60	Pro	Gln	Ser	Ly
5	Glu 65	Lys	Ile	Gln	Asp	Asp 70	Tyr	His	Ala	Leu	Met 75	Asn	Thr	Leu	Asn	Th:
	Gln	Lys	Gly	Val	Thr 85	Leu	Glu	Ile	Ala	Asn 90	Lys	Val	Tyr	Val	Met 95	Gli
10	Gly	Tyr	Thr	Leu 100	Lys	Pro	Thr	Phe	Lys 105	Glu	Val	Ala	Thr	Asn 110	Lys	Phe
	Leu	Ala	Gly 115	Ala	Glu	Asn	Leu	Asn 120	Phe	Ala	Gln	Asn	Ala 125	Glu	Ser	Ala
	Lys	Val 130	Ile	Asn	Thr	Trp	Val 135	Glu	Glu	Lys	Thr	His 140	Asp	Lys	Ile	His
15	Asp 145	Leu	Ile	Lys	Ala	Gly 150	Asp	Leu	Asp	Gln	Asp 155	Ser	Arg	Met	Val	Le: 160
	Val	Asn	Ala	Leu	Tyr 165	Phe	Lys	Gly	Leu	Trp 170	Glu	Lys	Gln	Phe	Lys 175	Lys
20	Glu	Asn	Thr	Gln 180	Asp	Lys	Pro	Phe	Tyr 185	Val	Thr	Glu	Thr	Glu 190	Thr	Lys
	Asn	Val	Arg 195	Met	Met	His	Ile	Lys 200	qsA	Lys	Phe	Arg	Tyr 205	Gly	Glu	Phe
	Glu	Glu 210	Leu	Asp	Ala	Lys	Ala 215	Val	Glu	Leu	Pro	Tyr 220	Arg	Asn	Ser	Ası
25	Leu 225	Ala	Met	Leu	Ile	Ile 230	Leu	Pro	Asn	Ser	Lys 235	Thr	Gly	Leu	Pro	Ala 240
	Leu	Glu	Glu	Lys	Leu 245	Gln	Asn	Val	Asp	Leu 250	Gln	Asn	Leu	Thr	Gln 255	Arg
30	Met	Tyr	Ser	Val 260	Glu	Val	Ile	Leu	Asp 265	Leu	Pro	Lys	Phe	Lys 270	Ile	Glu
	Ser	Glu	Ile 275	Asn	Leu	Asn	Asp	Pro 280	Leu	Lys	Lys	Leu	Gly 285	Met	Ser	Ası
	Met	Phe 290	Val	Pro	Gly	Lys	Ala 295	Asp	Phe	Lys	Gly	Leu 300	Leu	Glu	Gly	Ser
35	Asp 305	Glu	Met	Leu	Tyr	Ile 310	Ser	Lys	Val	Ile	Gln 315	Lys	Ala	Phe	Ile	Glu 320
	Val	Asn	Glu	Glu	Gly 325	Ala	Glu	Ala	Ala	Ala 330	Ala	Thr	Gly	Val	Met 335	Let
10	Met	Met	Arg	Cys 340	Met	Pro	Met	Met	Pro 345	Met	Ala	Phe	Asn	Ala 350	Glu	His
	Pro	Phe	Leu 355	Tyr	Phe	Leu	His	Ser 360	Lys	Asn	Ser	Val	Leu 365	Phe	Asn	Gl

		Arg	370	vai	пуъ	PIO	1111	375	GIU									
		(2)	I	NFOR	MATI	ON F	or s	EQ I	D NO	:25:								
	5		(i)	SE (A (B (C) L) T) S	ENGT YPE: TRAN	HARA H: nu DEDN OGY:	1492 clei ESS:	nuc c ac	leot id ngle							
			(ii)	MO	LECU	LE T	YPE:	cD.	NA								
	10		(ix)	FE. (A (B		AME/	KEY: ION:	CD	s .119	6							
•			(:	xi)	SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID	NO:2	5:				
	15			GTT (Val (47
				ATT Ile														95
	20			TTT Phe														143
	25			CTC Leu 50														191
		GTG Val	TCA Ser 65	ATG Met	GGA Gly	GCT Ala	GGT Gly	GGT Gly 70	AAT Asn	ACT Thr	GCC Ala	ACA Thr	CAA Gln 75	ATA Ile	GCT Ala	GCT Ala	GGT Gly	239
٠	30			CAG Gln														287
				AAC Asn														335
	35			GTT Val														383
٠	40			GCC Ala 130														431
				AAT Asn														479
	45			CAT His														527

														AAG Lys			575
5														CCT Pro 205			623
														ATT Ile			671
10														GCT Ala			719
15														TTG Leu			767
														AAT Asn			815
20														ATT Ile 285			863
		Pro												GAT Asp			911
25														GCT Ala		_	959
30														TCT Ser			1007
														GAA Glu			1055
35														ATG Met 365			1103
														CAC His			1151
40														ACT Thr		TAA	1199
45	TTGT AGTG	GTTC GTGC TAAC	CAA T GAT C	TATT AATT TTTT	ATTI GTAC GATA	G TO A AA A AA	AGCT TTTA AACA	TTAA TTGT TAAC	GTA TAI ACI	TTCA GATA AAAA	GTA TAT ATA	TTTT ATTT AAAC	TATT' TTTA' TAAA	CA T	CACI GTGA AAAA	AGAACA PATTTC AATATT ATTTAT	1259 1319 1379 1439 1492

(2) INFORMATION FOR SEQ ID NO:26:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 398 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Ile Val Gln His Ala Arg Leu Val Phe Leu Phe Val Ser Val Leu Ile
1 5 10 15

- 10 Pro Ile Ser Thr Met Ala Asp Pro Gln Glu Leu Ser Thr Ser Ile Asn
 20 25 30
 - Gln Phe Ala Gly Ser Leu Tyr Asn Thr Val Ala Ser Gly Asn Lys Asp
- Asn Leu Ile Met Ser Pro Leu Ser Val Gln Thr Val Leu Ser Leu Val
 15 50 60
 - Ser Met Gly Ala Gly Gly Asn Thr Ala Thr Gln Ile Ala Ala Gly Leu 65 70 75 80
 - Arg Gln Pro Gln Ser Lys Glu Lys Ile Gln Asp Asp Tyr His Ala Leu 85 90 95
- 20 Met Asn Thr Leu Asn Thr Gln Lys Gly Val Thr Leu Glu Ile Ala Asn 100 105 110
 - Lys Val Tyr Val Met Glu Gly Tyr Thr Leu Lys Pro Thr Phe Lys Glu 115 120 125
- Val Ala Thr Asn Lys Phe Leu Ala Gly Ala Glu Asn Leu Asn Phe Ala
 25 130 135 140
 - Gln Asn Ala Glu Ser Ala Lys Val Ile Asn Thr Trp Val Glu Glu Lys 145 150 155 160
 - Thr His Asp Lys Ile His Asp Leu Ile Lys Ala Gly Asp Leu Asp Gln
 165 170 175
- 30 Asp Ser Arg Met Val Leu Val Asn Ala Leu Tyr Phe Lys Gly Leu Trp 180 185 190
 - Glu Lys Gln Phe Lys Lys Glu Asn Thr Gln Asp Lys Pro Phe Tyr Val 195 200 205
- Thr Glu Thr Glu Thr Lys Asn Val Arg Met Met His Ile Lys Asp Lys 210 215 220
 - Phe Arg Tyr Gly Glu Phe Glu Glu Leu Asp Ala Lys Ala Val Glu Leu 225 230 235 240
 - Pro Tyr Arg Asn Ser Asp Leu Ala Met Leu Ile Ile Leu Pro Asn Ser 245 250 255
- 40 Lys Thr Gly Leu Pro Thr Leu Glu Glu Lys Leu Gln Asn Val Asp Leu 260 265 270

-124-

Gln Asn Leu Thr Gln Arg Met Tyr Ser Val Glu Val Ile Leu Asp Leu Pro Lys Phe Lys Ile Glu Ser Glu Ile Asn Leu Asn Asp Pro Leu Lys 295 300 Lys Leu Gly Met Ser Asp Met Phe Met Pro Gly Lys Ala Asp Phe Lys 305 310 315 Gly Leu Leu Glu Gly Ser Asp Glu Met Leu Tyr Ile Ser Lys Val Ile 325 330 Gln Lys Ala Phe Ile Glu Val Asn Glu Glu Gly Ala Glu Ala Ala Ala 10 Ala Thr Gly Val Met Leu Met Met Arg Cys Met Pro Met Met Pro Met Ala Phe Asn Ala Glu His Pro Phe Leu Tyr Phe Leu His Ser Lys Asn 375 15 Ser Val Leu Phe Asn Gly Arg Leu Val Lys Pro Thr Thr Glu 385 390 INFORMATION FOR SEQ ID NO:27: (2)

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1492 nucleotides
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TGATGATAAA AAATACTGAA TACTTAAAGC TGACAAATAT AAATTGAACA CAATGTTCTA 240 CAGGCACTGT TTCAGTAAGC AATTAAAAAA TATTAGTGAA GTGCATTTGG CTTTTATTCA 300 GTTGTTGGTT TAACAAGACG ACCATTGAAT AGAACAGAAT TTTTGCTGTG TAAGAAGTAC 360 AGGAATGGAT GCTCAGCATT GAAGGCCATT GGCATCATTG GCATACAACG CATCATTAAC 420 ATCACCGCCTG TGGCAGCTGC AGCTTCAGCA CCTTCTTCAT TTACTTCAAT GAAAGCTTTT 480 TGAATTACTT TAGAAATATA TAACATCTCA TCAGATCCTT TCAGCAATCC TTTGAAATCA 600 GCTTTTCCAG GCATGAACAT ATCAGACATA CCCCAACTTTT TCAGCAGAG GTACATCGG GAGCCAGTT 720 TGAGTCAAGT TTTGCAAATC AACATTTTGT AATTTTCTT CAAGAAGGAG GAGCCAGTT 720 TTGCTGGTCT TTGCCAAAT AACATTCTCA TAACATGGC AAATTCTCAACAGA GTACATGCGT 660 GCTACATTCT TTGTCTCTGT TAACAATGAC TAACAGGAATC TCCTGAAGAG GTACATGCGT 660 GCTACATTCT TTGTCTCTGT TCAGCAGACAT TAACATGAGT TCCTGAGAG GAGCCAGTT 720 TTGAATTCTT TTGTCTCTGT TTCAGTAACA TAACATGGC TTTCAACAGA GTACATGCGT 660 GCTACATTCT TTGTCTCTGT TTCAGTAACA TAACATGACT TCCTGTAGG GAGCCAGTT 720 TTGAATTCTT TTGTCTCTGT TCCAGAACA ACCCTTGAG TACCATGAGT TCCTGTAGG GAGCCAGTT 720 TTGAATTCTT TTTCTCCCAAAG ACCCTTGAAG TACCAGGAATT TATCCTTAAT GTGCATCATT 840 TCCTGGTCTA GATCACCGC TTTGATCAAA TCAGAATAT TCATTAGGT TTTTTCCTTC 900 TCCTGGTCTA GATCACCGC TTTGATCAAA TCAGAATTT TGCCAAGAAC CATTCTTGAA 960 TCCTGGTCTA GATCACCGC TTTGATCAAA TCAGAATTT TGCCAAGAAC CATTCTTCAA GCCCTTTCA ACCCAACTTCT TTGAAGATT TTTTTCTTCT TGCAAATTCA ACCCCAACTTCT TTGAAGGTG GTTTTCATCT TTTTTCTTC 1080 ATAACATAAA CTTTTATTGGC AATTTCCAG GCATTTTGGT GTTTTTTTTTT								
ACAAAAAATA AATATATAC ATAACAATAA ATTTGTACTT AAGATCCACC ACTGAAATAG 180 TGATGATAAA AAATACTGAA TACTTAAAGC TGACAAATAT AAATTGAACA CAATGTTCTA 240 CAGGCACTGT TTCAGTAAGC ACCATTGAAA TATTAGTGAA GTGCATTTGG CTTTTATTCA 300 GTTGTTGGTT TAACAAGACG ACCATTGAAAT AGAACAGAAT TTTTGCTGTG TAAGAAGTAC 360 AGGAATGGAT GCTCAGCATT GAAGGCCATT GGCATCATTG GCATACAACG CATCATTAAC 480 ATCACGCCTG TGGCAGCTGC AGCTTCAGCA CCTTCTTCAT TTACTTCAAT GAAAGCTTTT 480 GCTTTTCCAG GCATGAACAT ATCAGCAC CCTCCTTCAT TTACTTCAAT GAAAGCTTTT 480 GCTTTTCCAG GCATGAACAT ATCAGACATA CCCCAACTTTT TCAGAGGATC TTTGAAATCA 540 GCTTTTCAGG CAATTTTGAA TTTAGGCAGA TCCAAAATAA CTTCAACAGA GCATCATTAA 600 35 ATTTCAGACT CAATTTTGAA TTTAGGCAGA TCCAAAATAA CTTCAACAGA GCATCATCAA AACCATTTT TCAGAGGGATC ATTCAAATTA 600 GCCTTGGCAT CTAATTCTC AAACTTTCT CAAGAGATGG GAGACCAGTT 720 GCCTTGGCAT CTAATTCTC AAATTCTCC AAATTCTCA TACCAGGAGTG TTTGCATCAAT TACCATCGAT TTTGCATCAAT TACCATCGAT TTTGCTTAACA TACATGGCT TTGCATCAAT TACCATCAAT TACCATCAAT TACCATCAAT TACCATCAAT TTTGCATCAAT TACCATCAAT TACCATCAATCA	25	TTTTTTTTTT	TTTTTTTTC	TTAAAGATAT	AATTTAGTAT	ACAACAATTA	TACATAAATT	60
TGATGATAAA AAATACTGAA TACTTAAAGC TGACAAATAT AAATTGAACA CAATGTTCTA 240 CAGGCACTGT TTCAGTAAGC AATTAAAAAA TATTAGTGAA GTGCATTTGG CTTTTATTCA 300 GTTGTTGGTT TAACAAGACG ACCATTGAAT AGAACAGAAT TTTTGCTGTG TAAGAAGTAC 420 ATCACGCCTG TGGCAGCTCC AGCTTCAGCA CCTTCTCAT TTACTTCAAT GAAAGCTTTT 480 TGAATTACTT TAGAAATATA ATCAGACATA ACCACTCTA TAACAACCACAATC TTTGAAATCA 540 GCTTTTCCAG GCATGAACAT ATCAGACATA ACCACTATT CAAGACATC TTTGAAATCA ATCAGACATA CCCAAAATAA CTTCAACAGA GTACATGCGT 660 TGAGTCAAGT TTTGCAAATC AACATTTTGT AACATGGCC AAATTCATA GAAGCTGT 720 TTGCTGTTTG GCAAAATGAT TAACATGGCC AAATTCTCA CAAGAGAGTGG GAGACCAGTT 720 TTGCTGTTTG GCAAAATGAT TAACATTGCC AAATTCTCCA TAACAGGAATC ATTCAACAGA GTACATGCGT 660 TCCTGGCAT CTAATTCTC AACATTGCC AAATTCTCA TACCGGAATT TCCTGTAGGG CAACTCATT 840 GCCTTGGCAT TTGTCTCTGT TTCAGTAACA TACAGAAGATC TTCCTGTAGG CAATTCTACA 780 TCCTGGTCTA GATCACCGC TTCAGACA TACAAAGATC TTCCTTGAGT TCCTGTGAA ACCCCAAGTGT TCCTGGTCT TTCAGTACAA ACCCTTGAAG ACCCTTGAAG ACCCTTGAAG ACCCTTGAAG ACCCTTGAG GAACTCCT TTTTTTTTCTCA 1020 ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCAATTCTG CAAAGTTCAA GTTTTTCTTC 1080 ACACAAATAA CTTTATTGGC AATTCCCAG GCATTTTGGC GTTTTTAATG ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTCCAGA GTTTACACCTT TTTTGTGTATT AAGAGTGTTC 1200 ATAACATAAA CTTTATTGGC AATTCCAGA GTTTACACCTT TTTTTTTTTT		TTAATTTTTC	TTTTATTTT	AGTCTTATGT	TTTTTATCAA	AATTTGTTAA	AAAAATATTC	120
CAGGCACTGT TTCAGTAAGC AATTAAAAAA TATTAGTGAA GTGCATTTGG CTTTTATTCA 300 RGGAATGGAT TAACAAGACG ACCATTGAAT AGAACAGAAT TTTTGCTGTG TAAGAAGTAC 420 ATCACGCCTG TGGCAGCTTG GAAGGCCATT GGCATCTTTCAT TTACTTCAAT GAAGCTTTT 480 TGAATTACTT TAGAAATATA TAACATCCA CCTTCTTCAT TTACTTCAAT GAAAGCTTTT 480 GCTTTTCCAG GCATGAACAT ATCAGACATA CCCAACTTTT CAAGCAATCC TTTGAAATCA ACCACTTTTGAA TTAGGCAGA CCCAACTTTT CAAGCAATCC TTTGAAATCA ACCATTTTGA TTAGGCAGA CCCAACTTTT CAAGCAATCA ATCAGACATA CCCAACTTTT CAAGCAATC GTACAAGTAC GTACAAGTAC ACCATTTTGAA TTAGGCAGA TCCAAAATAA CTTCAACAGA GTACATGCGT 660 TTGCTGTTTG GCAAAATGAT TAACATGGCC AAATCTGGT TCCTGTAGGG GAGACCAGTT 720 GCCTTGGCAT CTAATTCTC AAACTCTCA TAACGGAATT TATCCTTAAT GTGCACAGT 780 GCCTTGGCAT TTGCAAATC AACATTTCCA TAACAGGATT TGTCTTGGGT GTTTCCTTC 900 40 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGTCATGAGA CATTCTTCA AACCCAAGTGT TGTCATGAGA CAACCTATT TGTCATGAGA ACCCAAGTGT TGAAAACATA ACCCCAAGTGT TGAAAACATA ACCCCAAGTGT TGAAAACTT TGTCATGAGA ACCCCAAGTGT TGAAAACTT AGCCCTTTCA GGCAACTTCT TTGAAAGGTT TGTCATGAGA TTTTTCTCTC 900 40 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TCAAATGCAT TGTCATGAGT TTTTTCTCT 1020 ACCCAAGTGT TGATAACTT AGCCGCTTTCA TTAGAAGGTG GTTTTTATGT AACCCACGC TTTGAACATA ACCACTAGT TTGAAAGGTT TTTTTCTCT TGTCATGAG TTTTTCTCC 1020 ATAACAATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTGAAGGTGG GTTTTTAATGT AACGCTTCC 1140 45 ATCAATGCGT GGCAACTTCT TTGAAAGTTG GTTTTAATGT AACGCTTCC 1120 ACAGACAATG GGGACATGAT ACCACCAGCT CCCATTGACA AAGCAACCGT ATTGTACAGG 1220 ACAGACAATG GGGACATGAT ACCACCAGCT CCCATTGACA AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACCACCAGCT TTGTTTGCCAG GATCCGCCAT TTTTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACCACCAGCT TTGTTTGCCAG GATCCCCCAT TGTTGAAATT 1440		ACAAAAAATA	AATATATATC	ATAACAATAA	ATTTGTACTT	AAGATCCACC	ACTGAAATAG	180
360 GTTGTTGGTT TAACAAGACG ACCATTGAAT AGAACAGAAT TTTTGCTGTG TAAGAAGTAC 420 AGGAATGGAT GCTCAGCATT GAAGGCCATT GGCATCATTG GCATACAACG CATCATTAAC 420 ATCACGCCTG TGGCAGCTGC AGCTTCAGCA CCTTCTTCAT TTACTTCAAT GAAAGCTTTT 480 GCTTTTCCAG GCATGAACAT ATCAGACATA CCCAACTTTT TCAGAGGATC TTTGAAATCA 540 GCTTTTCCAG GCATGAACAT ATCAGACATA CCCAACTTTT TCAGAGGATC ATTCAAATTA 600 35 ATTTCAGACT CAATTTTGAA TTTAGGCAGA TCCAAAATAA CTTCAACAGA GTACATGCGT 720 TTGCTGTTTG GCAAAATGAT TAACATGCC AAATCTCAT TCAGAGGATC CAATTCTCA 780 GCCTTGGCAT CTAATTCTC AAATTCTCA TAACAGGATT TATCCTTAAT GTGCATCATT TCCCAAGA ACCCTTGAAG TACAATGCAT TGTCTTGGGT GTTTTCCTTC 900 40 TTGAATTGTT TCCCAAAG ACCCTTGAAG TACAATGCAT TGTCTTGGGT GTTTTCCTTC 900 ACCCAAGTGT TGATCACACA ACCCTTGAAG TACAATGCAT TGTCTTGGGT GTTTTCCTTC 900 ACCCAAGTGT TGATCACACA ACCCTTGAAG TACAATGCAT TGTCTTGGGT GTTTTCTTC 1080 ACCCAAGTGT TGATCACACA ACCCTTGAAG TACAATGCAT TGTCTTGAAG TTTTTCTTCA 1020 ACCCAAGTGT TGATCACAC ACCCTTCAAG GTTACACACAC CATTCTTCA ACCCCAAGTGT TGATCACAC ATTCTTCAC GCATTTTGGG CAAAGTTCA ATACACATCAC TTTGATCACA ACCCTTGAGG GTTACACCTT TTTGATGAT AAACACACA ACCCTTGAGA TACAATGCAT TGTCTTGAT TGTCTTTCC 1080 ACCCAAGTGT TGATCACC TTTGATCACA GCATTTTGGG CAAAGTTCA ATACCACCA TTTTTCTCT TTGAAGTTC TTTGAAGTTT AACAATGCAT AAACACACC TTTTTCTCT TTGAAGTTT AACAATGCAT AAACACACC TTTTTTTTTCTTC ACCAGGAAC CATTCTTCC 1080 ACCCAAGTGT TGGAAGACT TTGAATTTT TCTTTTGGTTATT AAGAAGGTT TAAACCAGCA 1200 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTGTGTATT AAGACCAGCA TAAACCAGCA 1200 ACAGACAATG GGGACATGAT ACCACCAGCT CCCATTGACA AAGCACCGT TAAACCAGCA 1200 ACAGACAATG GGGACATGAT ACCACCAGCT CCCATTGACA AAGCACCGT TAAACCAGCA 1200 ACAGACAATG GGGACATGAT ACCACCAGCT TTGTTTGATT AACACAGCA AACAGTTTGT 1320 ACAGACAATG GGGACATGAT ACCACCAGCT TTGTTTGCCAG GATCCCCCATTGACA AACCGCT TTGTTACACCTT TTTTTTTTTT		TGATGATAAA	AAATACTGAA	TACTTAAAGC	TGACAAATAT	AAATTGAACA	CAATGTTCTA	240
AGGAATGGAT GCTCAGCATT GAAGGCCATT GGCATCATTG GCATACAACG CATCATTAAC ATCACGCCTG TGGCAGCTGC AGCTTCAGCA CCTTCTTCAT TTACTTCAAT GAAAGCTTTT 480 TGAATTACTT TAGAAATATA TAACATCTCA TCAGATCCTT CAAGCAATCC TTTGAAATCA 540 GCTTTTCCAG GCATGAACAT ATCAGACATA CCCAACTTTT TCAGAGGATC ATTCAAATTA 600 35 ATTTCAGACT CAATTTTGAA TTTAGGCAGA TCCAAAATAA CTTCAACAGA GTACATGCGT 660 TGAGTCAAGT TTTGCAAATC AACATTTTGT AATTTTCTT CAAGAGTGGG GAGACCAGTT 720 TTGCTGTTTG GCAAAATGAT TAACATGGCC AAATCTGAGT TCCTGTAGGG CAATTCTACA 780 GCCTTGGCAT CTAATTCTTC AAATTCTCCA TAACGGAATT TATCCTTAAT GTGCATCATT 840 CGTACATTCT TTGTCTCTGT TTCAGTAACA TCAGAAGGTT TGTCTTGGGT GTTTTCCTTC 900 40 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGACAAGAAC CATTCTTGAA 960 TCCTGGTCTA GATCACCGGC TTTGATCAAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGCCCTTCT TTGAAGTTGG GTTTTTAATGT ATGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTGTGTATT AAGAGTGTC 1200 45 ATCAATGCGT GGTAGTCATC TTGAATTTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA AAGCAACCGT ATACCAGCA 1220 ACAGACAATG GGGACATGAT GAGATTGTT TTTTTTGCCAG AACCACCGT ATACCAGCA 1220 ACAGACAATG GGGACATGAT GAGATTGTC TTTGTTGCCAG AACCACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		CAGGCACTGT	TTCAGTAAGC	AATTAAAAAA	TATTAGTGAA	GTGCATTTGG	CTTTTATTCA	300
ATCACGCCTG TGGCAGCTGC AGCTTCAGCA CCTTCTTCAT TTACTTCAAT GAAAGCTTTT 480 TGAATTACTT TAGAAATATA TAACATCTCA TCAGATCCTT CAAGCAATCC TTTTGAAATCA 540 GCTTTTCCAG GCATGAACAT ATCAGACATA CCCAACTTTT TCAGAGGATC ATTCAAATTA 600 TGAGTCAAGT TTTGCAAATC AACATTTTGT AATTTTCTT CAAGAGGTGG GAGACCAGTT 720 TTGCTGTTTG GCAAAATGAT TAACATGGCC AAATCTCATT TCTGTAGGG CAATTCTACA 780 GCCTTGGCAT CTAATTCTTC AAATTCTCCA TAACGGAATT TATCCTTAAT GTGCATCATT 4840 CGTACATTCT TTGTCTCTGT TTCAGTAACA TAGAAAGGTT TGTCTTGGGT GTTTTCCTTC 900 TCCTGGTCTA GATCACCGGC TTTGATCAAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGCGCTTCAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1080 ACCCAAGTGT TGATAACTTT AGCGCTTCT TTGAAGGTGG GTTTTCAGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTGTGTATT AAGAGTGTT 1200 ATCAATGCGT GGTAGTCATC TTGAATTTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCCACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440	30	GTTGTTGGTT	TAACAAGACG	ACCATTGAAT	AGAACAGAAT	TTTTGCTGTG	TAAGAAGTAC	360
TGAATTACTT TAGAAATATA TAACATCTCA TCAGATCCTT CAAGCAATCC TTTGAAATCA 540 GCTTTTCCAG GCATGAACAT ATCAGACATA CCCAACTTTT TCAGAGGATC ATTCAAATTA 600 35 ATTTCAGACT CAATTTTGAA TTTAGGCAGA TCCAAAATAA CTTCAACAGA GTACATGCGT 720 TGAGTCAAGT TTTGCAAATC AACATTTGT AAATTCTCT CAAGAGTGGG GAGACCAGTT 720 GCCTTGGCAT CTAATTCTTC AAATTCTCA TAACGGAATT TCCTGTAGGG CAATTCTACA 780 GCCTTGGCAT CTAATTCTTC AAATTCTCA TAACGGAATT TGTCTTAGT GTGCATCATT 780 CGTACATTCT TTGTCTCTGT TTCAGTAACA TAGAAAGGTT TGTCTTGGGT GTTTTCCTTC 900 40 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGTCATGAGT TTTTTCTTCA ACCCAAGTGT TGATAACATTA AGCGCTTTCA GCATTTTCA TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTGGG CAAAGTTCAA GTTTTCTTCA 1080 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATACCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTGTGTATT AAGAGTGTT 1200 ATAACATAAA CTTTATTGGC CACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT ACCACCAGCT CCCATTGACA AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACCTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		AGGAATGGAT	GCTCAGCATT	GAAGGCCATT	GGCATCATTG	GCATACAACG	CATCATTAAC	420
GCTTTTCCAG GCATGAACAT ATCAGACATA CCCAACTTTT TCAGAGGATC ATTCAAATTA 600 35 ATTTCAGACT CAATTTTGAA TTTAGGCAGA TCCAAAATAA CTTCAACAGA GTACATGCGT 660 TGAGTCAAGT TTTGCAAATC AACATTTGT AATTTTCTT CAAGAGTGGG GAGACCAGTT 720 TTGCTGTTTG GCAAAATGAT TAACATGGCC AAATCTGAGT TCCTGTAGGG CAATTCTACA 780 GCCTTGGCAT CTAATTCTTC AAATTCTCA TAACGGAATT TATCCTTAAT GTGCATCATT 4AAATTCTCA TAACAAGGATT TGTCTTAGT GTGCATCATT 780 40 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGTCATGAGT TCTCTGGT TCTCCCAAAG ACCCTTGAAA TCATGAATTT TGTCATGAGA CATTCTTCA ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTCA TTTTCTTCA TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT ACCACCAGC TTTGAAGGTGG GTTTTAATGT ATACCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTGTGTATT AAGAGTGTTC 1200 45 ATCAATGCGT GGTAGTCATC TTGAATTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT ACCACCAGCT TTGTTGCCAG AAGCCACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACCTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		ATCACGCCTG	TGGCAGCTGC	AGCTTCAGCA	CCTTCTTCAT	TTACTTCAAT	GAAAGCTTTT	480
ATTTCAGACT CAATTTGAA TTTAGGCAGA TCCAAAATAA CTTCAACAGA GTACATGCGT 720 TGAGTCAAGT TTTGCAAATC AACATTTGT AATTTTCTT CAAGAGTGGG GAGACCAGTT 720 TTGCTGTTTG GCAAAATGAT TAACATGGCC AAATCTGAGT TCCTGTAGGG CAATTCTACA 780 GCCTTGGCAT CTAATTCTTC AAATTCTCA TAACGGAATT TATCCTTAAT GTGCATCATT 840 CGTACATTCT TTGTCTCTGT TCAGTAACA TAGAAAGGTT TGTCTTGGGT GTTTTCCTTC 900 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGTCATGAGA CATTCTTCA ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTGGG CAAAGTTCAA TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTGGG CAAAGTTCAA GTTTTCTTCA 1080 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTTGTTATT AAGAGTGTTC 1200 ATAACATAAA CTTTATTGGC AATTTCTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGT TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT ACCACCAGCT CCCATTGACA AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		TGAATTACTT	TAGAAATATA	TAACATCTCA	TCAGATCCTT	CAAGCAATCC	TTTGAAATCA	540
TGAGTCAAGT TTTGCAAATC AACATTTTGT AATTTTCTT CAAGAGTGGG GAGACCAGTT 720 TTGCTGTTTG GCAAAATGAT TAACATGGCC AAATCTGAGT TCCTGTAGGG CAATTCTACA 780 GCCTTGGCAT CTAATTCTTC AAATTCTCA TAACGGAATT TATCCTTAAT GTGCATCATT 440 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGTCATGAGT TCTTGTAGA ACCCAAGTGT TCTCCAAAG ACCCTTGAAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTGGG CAAAGTTCAA GTTTTCTTCA 1020 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATACCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTTTTTTT		GCTTTTCCAG	GCATGAACAT	ATCAGACATA	CCCAACTTTT	TCAGAGGATC	ATTCAAATTA	600
TTGCTGTTTG GCAAAATGAT TAACATGGCC AAATCTGAGT TCCTGTAGGG CAATTCTACA 780 GCCTTGGCAT CTAATTCTTC AAATTCTCA TAACGGAATT TATCCTTAATG GTGCATCATT CGTACATTCT TTGTCTCTGT TTCAGTAACA TAGAAAGGTT TGTCTTGGGT GTTTTCCTTC 900 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGTCATGAGA CATTCTTCA 960 TCCTGGTCTA GATCACCGGC TTTGATCAAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTGGG CAAAGTTCAA GTTTTCTTCA 1080 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTTGTTATT AAGAGTGTTC 1200 GCTATTTGT TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCCACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACCTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440	35	ATTTCAGACT	CAATTTTGAA	TTTAGGCAGA	TCCAAAATAA	CTTCAACAGA	GTACATGCGT	660
GCCTTGGCAT CTAATTCTTC AAATTCTCA TAACGGAATT TATCCTTAAT GTGCATCATT CGTACATTCT TTGTCTCTGT TTCAGTAACA TAGAAAGGTT TGTCTTGGGT GTTTTCCTTC 900 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGACAAGAAC CATTCTTGAA 960 TCCTGGTCTA GATCACCGGC TTTGATCAAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTGGG GTTTTCTGCT 1080 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTGTGTATT AAGAGTGTTC 1200 ATCAATGCGT GGTAGTCATC TTGAATTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCCACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		TGAGTCAAGT	TTTGCAAATC	AACATTTTGT	AATTTTTCTT	CAAGAGTGGG	GAGACCAGTT	720
CGTACATTCT TTGTCTCTGT TTCAGTAACA TAGAAAGGTT TGTCTTGGGT GTTTTCCTTC 900 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGACAAGAAC CATTCTTGAA 960 TCCTGGTCTA GATCACCGGC TTTGATCAAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGGGCTTTCA GCATTTTGGG CAAAGTTCAA GTTTTCTGCT 1080 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTTTTTTT		TTGCTGTTTG	GCAAAATGAT	TAACATGGCC	AAATCTGAGT	TCCTGTAGGG	CAATTCTACA	780
40 TTGAATTGTT TCTCCCAAAG ACCCTTGAAG TACAATGCAT TGACAAGAAC CATTCTTGAA 960 TCCTGGTCTA GATCACCGGC TTTGATCAAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGGCGTTTCA GCATTTTGGG CAAAGTCAA GTTTTCTGCT 1080 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAGGTGG GTTTTAATGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTTGTATT AAGAGTGTTC 1200 ATCAATGCGT GGTAGTCATC TTGAATTTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		GCCTTGGCAT	CTAATTCTTC	AAATTCTCCA	TAACGGAATT	TATCCTTAAT	GTGCATCATT	840
TCCTGGTCTA GATCACCGGC TTTGATCAAA TCATGAATTT TGTCATGAGT TTTTTCTTCA 1020 ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTGGG CAAAGTTCAA GTTTTCTGCT 1080 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTTGTATT AAGAGTGTTC 1200 ATCAATGCGT GGTAGTCATC TTGAATTTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		CGTACATTCT	TTGTCTCTGT	TTCAGTAACA	TAGAAAGGTT	TGTCTTGGGT	GTTTTCCTTC	900
ACCCAAGTGT TGATAACTTT AGCGCTTTCA GCATTTTGGG CAAAGTTCAA GTTTTCTGCT 1080 CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTTGTGATT AAGAGTGTTC 1200 ATCAATGCGT GGTAGTCATC TTGAATTTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440	40	TTGAATTGTT	TCTCCCAAAG	ACCCTTGAAG	TACAATGCAT	TGACAAGAAC	CATTCTTGAA	960
CCAGCTAAGA ATTTGTTGGT GGCAACTTCT TTGAAGGTGG GTTTTAATGT ATAGCCTTCC 1140 ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTGTGTATT AAGAGTGTTC 1200 ATCAATGCGT GGTAGTCATC TTGAATTTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		TCCTGGTCTA	GATCACCGGC	TTTGATCAAA	TCATGAATTT	TGTCATGAGT	TTTTTCTTCA	1020
ATAACATAAA CTTTATTGGC AATTTCCAGA GTTACACCTT TTTGTGTATT AAGAGTGTTC 1200 45 ATCAATGCGT GGTAGTCATC TTGAATTTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		ACCCAAGTGT	TGATAACTTT	AGCGCTTTCA	GCATTTTGGG	CAAAGTTCAA	GTTTTCTGCT	1080
45 ATCAATGCGT GGTAGTCATC TTGAATTTTT TCTTTTGATT GAGGCTGACG TAAACCAGCA 1260 GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		CCAGCTAAGA	ATTTGTTGGT	GGCAACTTCT	TTGAAGGTGG	GTTTTAATGT	ATAGCCTTCC	1140
GCTATTTGTG TGGCAGTATT ACCACCAGCT CCCATTGACA CCAGGGATAG AACAGTTTGT 1320 ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		ATAACATAAA	CTTTATTGGC	AATTTCCAGA	GTTACACCTT	TTTGTGTATT	AAGAGTGTTC	1200
ACAGACAATG GGGACATGAT GAGATTGTCT TTGTTGCCAG AAGCAACCGT ATTGTACAGG 1380 CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440	45	ATCAATGCGT	GGTAGTCATC	TTGAATTTTT	TCTTTTGATT	GAGGCTGACG	TAAACCAGCA	1260
CTTCCAGCAA ACTGGTTAAT ACTTGTAGAC AATTCCTGGG GATCCGCCAT TGTTGAAATT 1440		GCTATTTGTG	TGGCAGTATT	ACCACCAGCT	CCCATTGACA	CCAGGGATAG	AACAGTTTGT	1320
THE STATE OF THE S		ACAGACAATG	GGGACATGAT	GAGATTGTCT	TTGTTGCCAG	AAGCAACCGT	ATTGTACAGG	1380
GGTATTAACA CTGATACAAA AAGAAACACA AGTCGTGCGT GTTGAACTAT CG 1492		CTTCCAGCAA	ACTGGTTAAT	ACTTGTAGAC	AATTCCTGGG	GATCCGCCAT	TGTTGAAATT	1440
		GGTATTAACA	CTGATACAAA	AAGAAACACA	AGTCGTGCGT	GTTGAACTAT	CG	1492

```
(2)
          INFORMATION FOR SEQ ID NO:28:
                 SEQUENCE CHARACTERISTICS:
          (i)
                  (A) LENGTH: 1194 nucleotides
                      TYPE: nucleic acid
 5
                  (C) STRANDEDNESS: single
                     TOPOLOGY: linear
           (ii)
                 MOLECULE TYPE: cDNA
                SEQUENCE DESCRIPTION: SEQ ID NO:28:
           (xi)
    ATAGTTCAAC ACGCACGACT TGTGTTTCTT TTTGTATCAG TGTTAATACC AATTTCAACA
    ATGGCGGATC CCCAGGAATT GTCTACAAGT ATTAACCAGT TTGCTGGAAG CCTGTACAAT
                                                                        120
    ACGGTTGCTT CTGGCAACAA AGACAATCTC ATCATGTCCC CATTGTCTGT ACAAACTGTT
                                                                        180
    CTATCCCTGG TGTCAATGGG AGCTGGTGGT AATACTGCCA CACAAATAGC TGCTGGTTTA
                                                                        240
    CGTCAGCCTC AATCAAAAGA AAAAATTCAA GATGACTACC ACGCATTGAT GAACACTCTT
    AATACACAAA AAGGTGTAAC TCTGGAAATT GCCAATAAAG TTTATGTTAT GGAAGGCTAT
    ACATTAAAAC CCACCTTCAA AGAAGTTGCC ACCAACAAT TCTTAGCTGG AGCAGAAAAC
    TTGAACTTTG CCCAAAATGC TGAAAGCGCT AAAGTTATCA ACACTTGGGT TGAAGAAAAA
    ACTCATGACA AAATTCATGA TTTGATCAAA GCCGGTGATC TAGACCAGGA TTCAAGAATG
    GTTCTTGTCA ATGCATTGTA CTTCAAGGGT CTTTGGGAGA AACAATTCAA GAAGGAAAAC
    ACCCAAGACA AACCTTTCTA TGTTACTGAA ACAGAGACAA AGAATGTACG AATGATGCAC
20
    ATTAAGGATA AATTCCGTTA TGGAGAATTT GAAGAATTAG ATGCCAAGGC TGTAGAATTG
                                                                        720
    CCCTACAGGA ACTCAGATTT GGCCATGTTA ATCATTTTGC CAAACAGCAA AACTGGTCTC
                                                                        780
    CCCACTCTTG AAGAAAAATT ACAAAATGTT GATTTGCAAA ACTTGACTCA ACGCATGTAC
                                                                        840
    TCTGTTGAAG TTATTTTGGA TCTGCCTAAA TTCAAAATTG AGTCTGAAAT TAATTTGAAT
    GATCCTCTGA AAAAGTTGGG TATGTCTGAT ATGTTCATGC CTGGAAAAGC TGATTTCAAA
                                                                        960
    GGATTGCTTG AAGGATCTGA TGAGATGTTA TATATTTCTA AAGTAATTCA AAAAGCTTTC
    ATTGAAGTAA ATGAAGAAGG TGCTGAAGCT GCAGCTGCCA CAGGCGTGAT GTTAATGATG 1080
    CGTTGTATGC CAATGATGCC AATGGCCTTC AATGCTGAGC ATCCATTCCT GTACTTCTTA 1140
    CACAGCAAAA ATTCTGTTCT ATTCAATGGT CGTCTTGTTA AACCAACAAC TGAA
                                                                       1194
    (2)
          INFORMATION FOR SEO ID NO:29:
30
                 SEQUENCE CHARACTERISTICS:
          (i)
                 (A) LENGTH: 1194 nucleotides
                 (B)
                     TYPE: nucleic acid
                 (C)
                      STRANDEDNESS: single
                 (D)
                     TOPOLOGY: linear
35
          (ii)
                 MOLECULE TYPE: cDNA
                 SEQUENCE DESCRIPTION: SEQ ID NO:29:
          (xi)
    TTCAGTTGTT GGTTTAACAA GACGACCATT GAATAGAACA GAATTTTTGC TGTGTAAGAA
    GTACAGGAAT GGATGCTCAG CATTGAAGGC CATTGGCATC ATTGGCATAC AACGCATCAT
                                                                        120
    TAACATCACG CCTGTGGCAG CTGCAGCTTC AGCACCTTCT TCATTTACTT CAATGAAAGC
                                                                        180
    TTTTTGAATT ACTTTAGAAA TATATAACAT CTCATCAGAT CCTTCAAGCA ATCCTTTGAA
40
                                                                        240
    ATCAGCTTTT CCAGGCATGA ACATATCAGA CATACCCAAC TTTTTCAGAG GATCATTCAA
                                                                        300
    ATTAATTTCA GACTCAATTT TGAATTTAGG CAGATCCAAA ATAACTTCAA CAGAGTACAT
                                                                        360
    GCGTTGAGTC AAGTTTTGCA AATCAACATT TTGTAATTTT TCTTCAAGAG TGGGGAGACC
                                                                        420
    AGTTTTGCTG TTTGGCAAAA TGATTAACAT GGCCAAATCT GAGTTCCTGT AGGGCAATTC
                                                                        480
    TACAGCCTTG GCATCTAATT CTTCAAATTC TCCATAACGG AATTTATCCT TAATGTGCAT
                                                                        540
    CATTCGTACA TTCTTTGTCT CTGTTTCAGT AACATAGAAA GGTTTGTCTT GGGTGTTTTC
                                                                        600
    CTTCTTGAAT TGTTTCTCCC AAAGACCCTT GAAGTACAAT GCATTGACAA GAACCATTCT
                                                                        660
    TGAATCCTGG TCTAGATCAC CGGCTTTGAT CAAATCATGA ATTTTGTCAT GAGTTTTTTC
                                                                        720
    TTCAACCCAA GTGTTGATAA CTTTAGCGCT TTCAGCATTT TGGGCAAAGT TCAAGTTTTC
                                                                        780
    TGCTCCAGCT AAGAATTTGT TGGTGGCAAC TTCTTTGAAG GTGGGTTTTA ATGTATAGCC
                                                                        840
    TTCCATAACA TAAACTTTAT TGGCAATTTC CAGAGTTACA CCTTTTTGTG TATTAAGAGT
    GTTCATCAAT GCGTGGTAGT CATCTTGAAT TTTTTCTTTT GATTGAGGCT GACGTAAACC
    AGCAGCTATT TGTGTGGCAG TATTACCACC AGCTCCCATT GACACCAGGG ATAGAACAGT 1020
```

WO 98/20034 PCT/US97/20678

-126-

CAGGCTTCCA	AATGGGGACA TO GCAAACTGGT T AACACTGATA C	AATACTTGT AG	ACAATTCC 1	rggggatccg	CCATTGTTGA 1140
(2) INFOR	MATION FOR S	EQ ID NO:30:			
(i)	SEQUENCE CHA (A) LENGTY (B) TYPE: (D) TOPOLO	amino acid			
(ii)	MOLECULE TY	PE: protein			
(xi)	SEQUENCE DE	SCRIPTION:	SEQ ID NO:	30:	
Asp Pro Gln 1	Glu Leu Ser 5	Thr Ser Ile	Asn Gln F	Phe Ala Gly	Ser Leu 15
Tyr Asn Thr	Val Ala Ser 20	Gly Asn Lys 25	Asp Asn I	Leu Ile Met 30	
Leu Ser Val 35	Gln Thr Val	Leu Ser Leu 40	Val Ser N	Met Gly Ala 45	Gly Gly
Asn Thr Ala 50	Thr Gln Ile	Ala Ala Gly 55	Leu Arg G	eln Pro Gln 60	Ser Lys
Glu Lys Ile 65	Gln Asp Asp 70	Tyr His Ala	Leu Met A	Asn Thr Leu	Asn Thr 80
Gln Lys Gly	Val Thr Leu 85	Glu Ile Ala	Asn Lys V 90	Val Tyr Val	Met Glu 95
Gly Tyr Thr	Leu Lys Pro 100	Thr Phe Lys 105	Glu Val A	Ala Thr Asn 110	
Leu Ala Gly 115	Ala Glu Asn	Leu Asn Phe 120	Ala Gln A	Asn Ala Glu 125	Ser Ala
Lys Val Ile 130	Asn Thr Trp	Val Glu Glu 135		His Asp Lys .40	Ile His
Asp Leu Ile 145	Lys Ala Gly 150	Asp Leu Asp	Gln Asp S 155	Ser Arg Met	Val Leu 160
Val Asn Ala	Leu Tyr Phe 165	Lys Gly Leu	Trp Glu I 170	ys Gln Phe	Lys Lys 175
Glu Asn Thr	Gln Asp Lys 180	Pro Phe Tyr 185	Val Thr G	Glu Thr Glu 190	
Asn Val Arg 195	Met Met His	Ile Lys Asp 200	Lys Phe A	Arg Tyr Gly 205	Glu Phe
Glu Glu Leu 210	Asp Ala Lys	Ala Val Glu 215	_	Tyr Arg Asn 220	Ser Asp
Leu Ala Met 225	Leu Ile Ile 230	Leu Pro Asn	Ser Lys 7 235	Thr Gly Leu	Pro Thr 240
Leu Glu Glu	Lys Leu Gln 245	Asn Val Asp	Leu Gln A 250	Asn Leu Thr	Gln Arg 255

-127-

	Met	Tyr	Ser	Val 260	Glu	Val	Ile	Leu	Asp 265	Leu	Pro	Lys	Phe	Lys 270	Ile	Glu	
	Ser	Glu	Ile 275	Asn	Leu	Asn	Asp	Pro 280	Leu	Lys	Lys	Leu	Gly 285	Met	Ser	Asp	
5	Met	Phe 290	Met	Pro	Gly	Lys	Ala 295	Asp	Phe	Lys	Gly	Leu 300	Leu	Glu	Gly	Ser	
	Asp 305	Glu	Met	Leu	Tyr	Ile 310	Ser	Lys	Val	Ile	Gln 315	Lys	Ala	Phe	Ile	Glu 320	
10	Val	Asn	Glu	Glu	Gly 325	Ala	Glu	Ala	Ala	Ala 330	Ala	Thr	Gly	Val	Met 335	Leu	
	Met	Met	Arg	Cys 340	Met	Pro	Met	Met	Pro 345	Met	Ala	Phe	Asn	Ala 350	Glu	His	
	Pro	Phe	Leu 355	Tyr	Phe	Leu	His	Ser 360	Lys	Asn	Ser	Val	Leu 365	Phe	Asn	Gly	
15	Arg	Leu 370	Val	Lys	Pro	Thr	Thr 375	Glu									
	(2)	II	1FORI	ITAN	ON FO	OR SI	EQ II	ON C	:31:								
20		(:	i)	SE((A) (B) (C) (D)	LI TY	CE CH ENGTH YPE: FRANI DPOLO	i: 2 nuc DEDNI	l454 cleic ESS:	nuci c aci	leoti	des						
		(i	ii)	MOI	LECUI	LE TY	PE:	cDi	JA								
25		(3	ix)	FEA (A) (B)		E: AME/H DCATI			5 12 1	١٥							
		()	ci)	SE	QUENC	CE DE	ESCRI	PTIC	ON:	SEQ	ID N	10:31	l :				
30	GAG	CCGAZ	AAT :)ATTI	GCAA		: Ile				, Lei					r GTA e Val	
															TTG Leu		100
35															GCT Ala		148
															ACT Thr		196
40	_		-												CAA Gln		244

			CAG Gln						292
5			AAC Asn						340
			GTT Val						388
10	 	 	 GCC Ala						436
15			AAT Asn 145						484
			CAT His						532
20			TCA Ser						580
			AAA Lys						628
25			GAA Glu						676
30			CGT Arg 225						724
			TAC Tyr						772
35			ACT Thr						820
			AAC Asn						868
40			AAA Lys						916
45			TTG Leu 305						964

-129-

	GCT Ala	GAT Asp	TTC Phe	AAA Lys	GGA Gly 320	TTG Leu	CTT Leu	GAA Glu	GGA Gly	TCT Ser 325	GAT Asp	GAG Glu	ATG Met	TTA Leu	ТАТ Туг 330	ATT Ile	1012
5	TCT Ser														GGT Gly		1060
	GAA Glu																1108
10	GTT Val																1156
15															GTT Val		1204
	ACT Thr		TGA	AATO	GAT?	AGT C	GTAAC	IAAA?	AG AZ	ATACA	\AGA1	T CT	ATCT(SAAT	CTCT	GGATTA	1263
20	TTAG	TATO GTAZ	TG (TATA ACCT	YAAP	CG TC	TAG?	ACGAZ	AAA A	YTGT'I	TTG	TTTT	'AGT'	TTT (CACTI	CATTTT CTTTAT VAAAAA	1323 1383 1443 1454
	(2)	11	IFORI	MATIO	ON FO	OR SE	EQ II	NO:	:32:								
25		i)	L)	(A)		ENGTI PE :	i: 3	397 a ino a	amino		ids						
		(-	ii)		LECUI					1							
		·	(i)		QUENC			_			ID 1	NO:32	2:				
30	Met 1	·	·		-									Leu	Ile 15	Pro	
	Ile	Ser	Thr	Met 20	Ala	Asp	Pro	Gln	Glu 25	Leu	Ser	Thr	Ser	Ile 30	Asn	Gln	
	Phe	Ala	Gly 35	Ser	Leu	Tyr	Asn	Thr 40	Val	Ala	Ser	Gly	Asn 45	Lys	Asp	Asn	
35	Leu	Ile 50	Met	Ser	Pro	Leu	Ser 55	Val	Gln	Thr	Val	Leu 60	Ser	Leu	Val	Ser	
	Met 65	Gly	Ala	Gly	Gly	Asn 70	Thr	Ala	Thr	Gln	Ile 75	Ala	Ala	Gly	Leu	Arg 80	
40	Gln	Pro	Gln	Ser	Lys 85	Glu	Lys	Ile	Gln	Asp 90	Asp	Tyr	His	Ala	Leu 95	Met	
	Asn	Thr	Leu	Asn 100		Gln	Lys	Gly	Val 105	Thr	Leu	Glu	Ile	Ala 110	Asn	Lys	
	Val	Tyr	Val 115	Met	Glu	Gly	Туr	Thr 120	Leu	Lys	Pro	Thr	Phe 125	Lys	Glu	Val	

-130-

	Ala	Thr 130	Asn	Lys	Phe	Leu	Ala 135	Gly	Ala	Glu	Asn	Leu 140	Asn	Phe	Ala	Gln
	Asn 145	Ala	Glu	Ser	Ala	Lys 150	Val	Ile	Asn	Thr	Trp 155	Val	Glu	Glu	Lys	Thr 160
5	His	Asp	Lys	Ile	His 165	Asp	Leu	Ile	Lys	Ala 170	Gly	Asp	Leu	Asp	Gln 175	Asp
	Ser	Arg	Met	Val 180	Leu	Val	Asn	Ala	Leu 185	Tyr	Phe	Lys	Gly	Leu 190	Trp	Glu
10	Lys	Gln	Phe 195	Lys	Lys	Glu	Asn	Thr 200	Gln	Asp	Lys	Pro	Phe 205	Tyr	Val	Thr
	Glu	Thr 210	Glu	Thr	Lys	Asn	Val 215	Arg	Met	Met	His	Ile 220	Lys	Asp	Lys	Phe
	Arg 225	Tyr	Gly	Glu	Phe	Glu 230	Glu	Leu	Asp	Ala	Lys 235	Ala	Val	Glu	Leu	Pro 240
15	Tyr	Arg	Asn	Ser	Asp 245	Leu	Ala	Met	Leu	Ile 250	Ile	Leu	Pro	Asn	Ser 255	Lys
	Thr	Gly	Leu	Pro 260	Ala	Leu	Glu	Glu	Lys 265	Leu	Gln	Asn	Val	Asp 270	Leu	Gln
20	Asn	Leu	Thr 275	Gln	Arg	Met	Tyr	Ser 280	Val	Glu	Val	Ile	Leu 285	Asp	Leu	Pro
	Lys	Phe 290	Lys	Ile	Glu	Ser	Glu 295	Ile	Asn	Leu	Asn	Asp 300	Pro	Leu	Lys	Lys
	Leu 305	Gly	Met	Ser	Asp	Met 310	Phe	Val	Pro	Gly	Lys 315	Ala	Asp	Phe	Lys	Gly 320
25	Leu	Leu	Glu	Gly	Ser 325	Asp	Glu	Met	Leu	Tyr 330	Ile	Ser	Lys	Val	11e 335	Gln
	Lys	Ala	Phe	Ile 340	Glu	Val	Asn	Glu	Glu 345	Gly	Ala	Glu	Ala	Ala 350	Ala	Ala
30	Thr	Ala	Thr 355		Met	Val		Tyr 360		Leu	Glu	Val	Ser 365	Leu	Asp	Asp
	Pro	Thr 370	Val	Phe	Lys	Val	Asp 375	His	Pro	Phe	Asn	Ile 380	Val	Leu	Lys	Thr
	Gly 385	Asp	Thr	Val	Ile	Phe 390	Asn	Gly	Arg	Val	Gln 395	Thr	Leu			
35	(2)	II	NFORI	ITAN	ON FO	OR SI	EQ II	ои о	:33:							
		(:	i)	(A (B) LI	CE CI ENGTI YPE:	H: I	1454 clei	nuc:	leot: id	ides					
40				(C)		TRANI OPOLO			sıı near	ngle						

MOLECULE TYPE: cDNA

(ii)

-131-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

```
TTTTTTTTT TTTTTTCAC ATTTAACATT TTTATTACAT AAACTACAAC ATTATATAGG
TGATTACATT CATAAAAAGT GAAAACTAAA ACAAAACATT TTTCGTCTAC ACGATTTATA
                                                                    120
CCACATACTA AAAAATGAAC TTATTTTAGA CCTAATAACT ATTAAAAAAT ATTGTAGAAA
AATTACTTCA TTAATCCAGA GATTCAGATA GATCTTGTAT TCTTTTCTTA CACTATCCAT
TTCATAGAGT TTGAACTCGC CCATTAAAAA TTACAGTATC ACCTGTCTTC AAAACAATAT
TGAATGGATG ATCGACTTTA AAAACGGTTG GATCATCCAG GGAAACCTCC AGTTCATAGG
TAACCATAAA GGTAGCTGTG GCAGCTGCAG CTTCAGCACC TTCTTCATTT ACTTCAATGA
                                                                    420
AAGCTTTTTG AATTACTTTA GAAATATATA ACATCTCATC AGATCCTTCA AGCAATCCTT
                                                                    480
TGAAATCAGC TTTTCCAGGA ACAAACATAT CAGACATACC CAACTTTTTC AGAGGATCAT
                                                                    540
TCAAATTAAT TTCAGATTCA ATCTTGAATT TAGGCAGATC CAAAATAACT TCAACAGAGT
                                                                    600
ACATGCGTTG AGTCAAGTTT TGCAAGTCAA CATTTTGTAA TTTTTCTTCA AGAGCGGGGA
                                                                    660
GACCAGTTTT GCTGTTTGGC AAAATGATTA ACATGGCCAA ATCTGAGTTC CTGTAGGGCA
                                                                    720
ATTCTACAGC CTTGGCATCT AATTCTTCAA ATTCTCCATA ACGGAATTTA TCCTTAATGT
                                                                    780
GCATCATTCG TACATTCTTT GTCTCTGTTT CAGTAACATA GAAAGGTTTG TCTTGAGTGT
                                                                    840
TTTCCTTCTT GAATTGTTTC TCCCAAAGAC CCTTGAAGTA CAATGCATTG ACAAGAACCA
                                                                    900
TTCTTGAATC CTGGTCTAGA TCACCGGCTT TGATCAAATC ATGAATTTTG TCATGAGTTT
                                                                    960
TTTCTTCAAC CCAAGTGTTG ATAACTTTAG CGCTTTCAGC ATTTTGGGCA AAGTTCAAGT
                                                                   1020
TTTCTGCTCC AGCTAAGAAT TTGTTGGTGG CAACTTCTTT GAAGGTGGGT TTCAATGTAT
                                                                   1080
AGCCTTCCAT AACGTAAACT TTGTTGGCAA TTTCCAGAGT TACACCTTTT TGTGTATTAA
                                                                   1140
GAGTGTTCAT CAATGCATGG TAGTCATCTT GAATTTTTTC TTTTGATTGA GGCTGACGTA 1200
AACCAGCAGC TATTTGTGTG GCAGTATTAC CACCAGCTCC CATTGACACC AGGGATAGAA 1260
CAGTTTGTAC AGACAATGGG GACATGATGA GATTGTCTTT GTTGCCAGAA GCAACCGTAT 1320
TGTACAGGCT TCCAGCAAAC TGGTTAATAC TTGTAGACAA TTCCTGGGGA TCCGCCATTG 1380
TTGAAATTGG TATTAACACT GATACAAAAA GAAACACAAG TCGTGCGTTA ATCATTTTGC 1440
TAAAATTTCG GCTC
                                                                   1454
      INFORMATION FOR SEQ ID NO:34:
(2)
```

- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 1191 nucleotides
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

35	ATGATTAACG	CACGACTTGT	GTTTCTTTTT	GTATCAGTGT	TAATACCAAT	TTCAACAATG	60
	GCGGATCCCC	AGGAATTGTC	TACAAGTATT	AACCAGTTTG	CTGGAAGCCT	GTACAATACG	120
	GTTGCTTCTG	GCAACAAAGA	CAATCTCATC	ATGTCCCCAT	TGTCTGTACA	AACTGTTCTA	180
	TCCCTGGTGT	CAATGGGAGC	TGGTGGTAAT	ACTGCCACAC	AAATAGCTGC	TGGTTTACGT	240
	CAGCCTCAAT	CAAAAGAAAA	AATTCAAGAT	GACTACCATG	CATTGATGAA	CACTCTTAAT	300
40	ACACAAAAAG	GTGTAACTCT	GGAAATTGCC	AACAAAGTTT	ACGTTATGGA	AGGCTATACA	360
	TTGAAACCCA	CCTTCAAAGA	AGTTGCCACC	AACAAATTCT	TAGCTGGAGC	AGAAAACTTG	420
	AACTTTGCCC	AAAATGCTGA	AAGCGCTAAA	GTTATCAACA	CTTGGGTTGA	AGAAAAAACT	480
	CATGACAAAA	TTCATGATTT	GATCAAAGCC	GGTGATCTAG	ACCAGGATTC	AAGAATGGTT	540
	CTTGTCAATG	CATTGTACTT	CAAGGGTCTT	TGGGAGAAAC	AATTCAAGAA	GGAAAACACT	600
45	CAAGACAAAC	CTTTCTATGT	TACTGAAACA	GAGACAAAGA	ATGTACGAAT	GATGCACATT	660
	AAGGATAAAT	TCCGTTATGG	AGAATTTGAA	GAATTAGATG	CCAAGGCTGT	AGAATTGCCC	720
	TACAGGAACT	CAGATTTGGC	CATGTTAATC	ATTTTGCCAA	ACAGCAAAAC	TGGTCTCCCC	780
	GCTCTTGAAG	AAAAATTACA	AAATGTTGAC	TTGCAAAACT	TGACTCAACG	CATGTACTCT	840
	GTTGAAGTTA	TTTTGGATCT	GCCTAAATTC	AAGATTGAAT	CTGAAATTAA	TTTGAATGAT	900
50	CCTCTGAAAA	AGTTGGGTAT	GTCTGATATG	TTTGTTCCTG	GAAAAGCTGA	TTTCAAAGGA	960
	TTGCTTGAAG	GATCTGATGA	GATGTTATAT	ATTTCTAAAG	TAATTCAAAA	AGCTTTCATT	1020
	GAAGTAAATG	AAGAAGGTGC	TGAAGCTGCA	GCTGCCACAG	CTACCTTTAT	GGTTACCTAT	1080
	GAACTGGAGG	TTTCCCTGGA	TGATCCAACC	GTTTTTAAAG	TCGATCATCC	ATTCAATATT	1140
	GTTTTGAAGA	CAGGTGATAC	TGTAATTTTT	AATGGGCGAG	TTCAAACTCT	A	1191

-132-

	(2) INFO	DRMATION FOR SEQ ID NO:35:	
5	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1191 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:35:	
10	TGGATGATCG CATAAAGGTA TTTTTGAATT	A GCTTTAAAAA CGGTTGGATC ATCCAGGGAA ACCTCCAGTT CATAGGTAAC A GCTGTGGCAG CTGCAGCTTC AGCACCTTCT TCATTTACTT CAATGAAAGC A ACTTTAGAAA TATATAACAT CTCATCAGAT CCTTCAAGCA ATCCTTTGAA	60 120 180 240 300
15	ATTAATTTCA GCGTTGAGTC AGTTTTGCTG TACAGCCTTG	A GATTCAATCT TGAATTTAGG CAGATCCAAA ATAACTTCAA CAGAGTACAT C AAGTTTTGCA AGTCAACATT TTGTAATTTT TCTTCAAGAG CGGGGAGACC G TTTGGCAAAA TGATTAACAT GGCCAAATCT GAGTTCCTGT AGGGCAATTC G GCATCTAATT CTTCAAATTC TCCATAACGG AATTTATCCT TAATGTGCAT	360 420 480 540
20	CTTCTTGAAT TGAATCCTGG TTCAACCCAA TGCTCCAGCT	T TGTTTCTCCC AAAGACCCTT GAAGTACAAT GCATTGACAA GAACCATTCT G TCTAGATCAC CGGCTTTGAT CAAATCATGA ATTTTGTCAT GAGTTTTTTC A GTGTTGATAA CTTTAGCGCT TTCAGCATTT TGGGCAAAGT TCAAGTTTTC T AAGAATTTGT TGGTGGCAAC TTCTTTGAAG GTGGGTTTCA ATGTATAGCC	660 720 780 840
25	GTTCATCAAT AGCAGCTATT TTGTACAGAC CAGGCTTCCA	GCATGGTAGT CATCTTGAAT TTTTTCTTTT GATTGAGGCT GACGTAAACC TGTGTGGCAG TATTACCACC AGCTCCCATT GACACCAGGG ATAGAACAGT 1 AATGGGGACA TGATGAGATT GTCTTTGTTG CCAGAAGCAA CCGTATTGTA 1 AGCAAACTGGT TAATACTTGT AGACAATTCC TGGGGATCCG CCATTGTTGA 1	900 960 020 080 140 191
30	(2) INFO	SEQUENCE CHARACTERISTICS: (A) LENGTH: 376 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
	(ii)	•	
35	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:36: n Glu Leu Ser Thr Ser Ile Asn Gln Phe Ala Gly Ser Leu	
	1 Tyr Asn Th	5 10 15 ar Val Ala Ser Gly Asn Lys Asp Asn Leu Ile Met Ser Pro	
40		20 25 30 al Gln Thr Val Leu Ser Leu Val Ser Met Gly Ala Gly Gly	
		a Thr Gln Ile Ala Ala Gly Leu Arg Gln Pro Gln Ser Lys	
45	50 Glu Lys Ile 65	e Gln Asp Asp Tyr His Ala Leu Met Asn Thr Leu Asn Thr. 70 75 80	
	Gln Lys Gl	y Val Thr Leu Glu Ile Ala Asn Lys Val Tyr Val Met Glu 85 90 95	

-133-

Gly Tyr Thr Leu Lys Pro Thr Phe Lys Glu Val Ala Thr Asn Lys Phe Leu Ala Gly Ala Glu Asn Leu Asn Phe Ala Gln Asn Ala Glu Ser Ala Lys Val Ile Asn Thr Trp Val Glu Glu Lys Thr His Asp Lys Ile His Asp Leu Ile Lys Ala Gly Asp Leu Asp Gln Asp Ser Arg Met Val Leu Val Asn Ala Leu Tyr Phe Lys Gly Leu Trp Glu Lys Gln Phe Lys Lys 10 Glu Asn Thr Gln Asp Lys Pro Phe Tyr Val Thr Glu Thr Glu Thr Lys 185 Asn Val Arg Met Met His Ile Lys Asp Lys Phe Arg Tyr Gly Glu Phe Glu Glu Leu Asp Ala Lys Ala Val Glu Leu Pro Tyr Arg Asn Ser Asp 15 Leu Ala Met Leu Ile Ile Leu Pro Asn Ser Lys Thr Gly Leu Pro Ala Leu Glu Glu Lys Leu Gln Asn Val Asp Leu Gln Asn Leu Thr Gln Arg 20 245 Met Tyr Ser Val Glu Val Ile Leu Asp Leu Pro Lys Phe Lys Ile Glu 265 Ser Glu Ile Asn Leu Asn Asp Pro Leu Lys Lys Leu Gly Met Ser Asp Met Phe Val Pro Gly Lys Ala Asp Phe Lys Gly Leu Leu Glu Gly Ser 25 295 300 Asp Glu Met Leu Tyr Ile Ser Lys Val Ile Gln Lys Ala Phe Ile Glu Val Asn Glu Glu Gly Ala Glu Ala Ala Ala Thr Ala Thr Phe Met 30 Val Thr Tyr Glu Leu Glu Val Ser Leu Asp Asp Pro Thr Val Phe Lys Val Asp His Pro Phe Asn Ile Val Leu Lys Thr Gly Asp Thr Val Ile 360 Phe Asn Gly Arg Val Gln Thr Leu 35

370 375

40

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 bases
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

PCT/US97/20678

		(ii)	MOLECULE	TYPE:	primer				
		(xi)	SEQUENCE	DESCRI	PTION:	SEQ	ID	NO:37:	
	GTGTTT	CTTT TI	CGTATCAGI	G G					21
	(2)	INFORMA	ATION FOR	SEQ ID	NO:38:				
5		(i)	SEQUENCE (A) LEN (B) TYP (C) STR (D) TOP	GTH: 2 E: nuc ANDEDNE	6 bases leic ac: SS: sim	id			
10		(ii)	MOLECULE	TYPE:	primer				
		(xi)	SEQUENCE	DESCRI	PTION:	SEQ	ID	NO:38:	
	CGGAAT	TCTT TA	laagggati	TAACAC					26
	(2)	INFORMA	ATION FOR	SEQ ID	NO:39:				
15		(i)	SEQUENCE (A) LEN (B) TYP (C) STP (D) TOP	IGTH: 2 PE: nuc ANDEDNE	3 bases leic ac: SS: sim	id			
		(ii)	MOLECULE	TYPE:	primer				
20		(xi)	SEQUENCE	DESCRI	PTION:	SEQ	ID	NO:39:	
	CGGAAT	TCTA AT	TGGTAAAT	CTC					23
	(2)	INFORMA	ATION FOR	SEQ ID	NO:40:				
25		(i)	SEQUENCE (A) LEN (B) TYE (C) STE (D) TOE	IGTH: 2 PE: nuc RANDEDNE	5 bases leic ac: SS: si	id			
		(ii)	MOLECULE	TYPE:	primer				
		(xi)	SEQUENCE	E DESCRI	PTION:	SEQ	ID	NO:40:	
30	CGGAAT	TCTT T	TATTCAGTT	GTTGG					25
	(2)	INFORM	ATION FOR	R SEQ ID	NO:41:				
35		(i)	(IGTH: 2 PE: nuc RANDEDNE	3 bases leic ac SS: si	id			
		(ii)	MOLECULE	E TYPE:	primer				
		(xi)	SEQUENCE	E DESCRI	PTION:	SEQ	ID	NO:41:	
	CGGAAT	TCAT A	GAGTTTGA	A CTC					23

-135-

	(2)	INFORM	ATION FOR SEQ ID NO:42:	
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:42:	
	CAAA	ACTGGT	CTCCCCGCTC	20
10	(2)	INFORM	MATION FOR SEQ ID NO:43:	
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:43:	
	ATTA	СААААТ	GTTGACTTGC	20
	(2)	INFORM	NATION FOR SEQ ID NO:44:	
20		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:44:	
	TAAT	ACGACT	CACTATAGGG	20
	(2)	INFORM	ATION FOR SEQ ID NO:45:	
30		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 549 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: cDNA	
35		(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3404	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:45:	
40			AAA TTA CAA AAT GTT GAC TTG CAA AAC TTG ACT CAA Lys Leu Gln Asn Val Asp Leu Gln Asn Leu Thr Gln	44

											CTG Leu 25				86
5	AAG Lys	ATT Ile 30	GAA Glu	TCT Ser	GAA Glu	ATT Ile	AAT Asn 35	TTG Leu	AAT Asn	GAT Asp	CCT Pro	CTG Leu 40	AAA Lys	AAG Lys	128
10											AAA Lys				170
15											TTA Leu				212
20											AAT Asn				254
20	GCT Ala 85	GAA Glu	GCT Ala	GCA Ala	GCT Ala	GCC Ala 90	ACA Thr	GGA Gly	GGT Gly	TTC Phe	ATA Ile 95	ATG Met	GCC Ala	GTA Val	296
25											GCT Ala				338
30											AAA Lys				380
35		CAT His							TAA	GAG ⁷	raac <i>i</i>	AAG (GCAA!	ATTTTG	427
	TTTC		ATA :	TAAT	STAA	AG CO	CAAA				CTTC AAAA				477 527 549
	(2)	INI	FORM	OITA	1 FOI	R SE	QI C	NO:	16:						
40		(i))	SEQUAL (A) (B) (D)	LEI TYI	E CHANGTH PE: POLOG	: 13 amin	reris 34 ar no ac line	mino cid		is				
		(i:	i)	MOL	ECULI	E TY	PE:	Pro	tein						
45		(x:	i)	SEQ	JENCI	E DE	SCRI	PTIO	vi: 5	SEQ :	ID NO	0:46	:		
	Glu 1	Glu	Lys	Leu	Gln 5	Asn	Val	Asp	Leu	Gln 10	Asn	Leu	Thr	Gln	
50	Arg 15	Met	Tyr	Ser	Val	Glu 20	Val	Ile	Leu	Asp	Leu 25	Pro	Lys	Phe	
	Lys	Ile 30	Glu	Ser	Glu	Ile	Asn 35	Leu	Asn	Asp	Pro	Leu 40	Lys	Lys	
55	Leu	Gly	Met	Ser	Asp	Met	Phe	Val	Pro	Gly	Lys	Ala	Asp	Phe	

-137-

	ьуs	GTA	ьeu	60	GIU	GIĀ	ser	Asp	65 65	met	Leu	Tyr	116	Ser 70	
5	Lys	Val	Ile	Gln	Lys 75	Ala	Phe	Ile	Glu	Val 80	Asn	Glu	Glu	Gly	
10	Ala 85	Glu	Ala	Ala	Ala	Ala 90	Thr	Gly	Gly	Phe	Ile 95	Met	Ala	Val	
10	Ser	Leu 100	Pro	Leu	Pro	Pro	Glu 105	Thr	Phe	Asn	Ala	Asp 110	His	Pro	
15	Phe	Tyr	Phe 115	Val	Ile	Phe	Asp	Lys 120	Ser	Ser	Lys	Val	Thr 125	Met	
	Phe	His	Gly	Gln 130	His	Val	Asn	Pro							
	(2)	IN	FORM	OITA	I FOI	R SE	Q ID	NO:	17:						
20		(i)	(A) (B)	LEI TYI STI	NGTH PE:	: 54 nuc: EDNE:	reris 49 nu leic SS: line	ació ació sino	otide 1	es				
25		(i:	i)	MOL	CULI	E TY	PE:	cDNA	Ą						
		(x:	i)	SEQU	JENCI	E DE	SCRII	PTIO	J: S	SEQ I	D NO	0:47	:		
30	GGC? GCAA TAAC ACAA GGA?	PTTA(ATTTA CGTG' AAATA PACG(CAT ATC ATC AGA AGA	ACCGC TATAT ACAAT ACCAT AGGGA ATTAT	TATT TAATT GGAA TGGTA GAAA	CA AA PT AA AC AA PC AA AC CA	ATATO CAAA CTGTO CAT CCTO	GCATO AATTI CACTI FAAA! GTGGO	C AAC C GCC T TGC A GTC C AGC	GAAGO CTTGT GAAGA CTCAO CTGCA	CATT PTAC ATTT GGTG AGCT	TTTI TCTI GTCI GTAI TCAI	ACAA(FAAG(FAAG) AAGG' FCAC(CGT GAT ATC PAA CTT	50 100 150 200 250 300 350
35	ATCT AAAC CAGA	TCATO CATAC	CAG ICA AAT	ATCCT GACAT CTTGA TCAAC	TCAA PACCO VATTI	AG CA CA AG CA GG	AATCO CTTTT GCAG!	CTTTC PTCAC ATCC	AAA AAA	ATCAC ATCA ATAAC	SCTT ATTC CTTC	TTCC AAA? AAC?	CAGG! TTAA! AGAG!	AAC ITT IAC	400 450 500 549
	(2)	IN	FORM	ATION	I FOF	R SE	Q ID	NO:4	18:						
40		(i))	SEQU (A) (B) (C) (D)	LEN TYI STF	NGTH PE: RANDI	: 54 nucl EDNES	reris 19 nu leic SS: line	acid acid sing	otide 1	es				
		(i:	i)	MOLE	CULE	TYI	PE:	cDNA	A						
45		(iz	x)	FEAT (A) (B)		: ME/KI CATI(CDS	149						
		(x:	i)	SEQU	JENCI	E DES	SCRI	PTION	1: 5	SEQ I	D N	0:48	:		
50				AAA 1 Lys I											44

-138-

5		ATG Met													88
J		ATT Ile 30													128
10		GGT Gly													170
15		GGA Gly													212
20		GTA Val													254
25		GAA Glu													296
23		TTT Phe 100													338
30		TTC Phe													380
35		AAA Lys													422
40		GGA Gly								TAGA	ATA!	ATA !	rggaz	ATTCTA	469
		TGT(CGA(SAAA 1	AAAA	AAA	\AAAA	AA.	519 549
	(2)	INI	FORM	OITA	1 FOE	R SEÇ	O ID	NO:4	19:						
45		(i)	ı	SEQU (A) (B) (D)	LEN TYI	E CHA NGTH: PE: POLOG	: 14 amir		mino cid	S: acio	is				
		(i:	L)	MOLI	ECULI	TYI	PE:	Prot	cein						
		(x:	i)	SEQ	JENCI	E DES	SCRII	OITS	V: 5	SEQ :	ID NO	0:49	:		
50	Glu 1	Glu	Lys	Leu	Gln 5	Asn	Val	Asp	Leu	Gln 10	Asn	Leu	Thr	Gln	
55	Arg 15	Met	Tyr	Ser	Val	Glu 20	Val	Ile	Leu	Asp	Leu 25	Pro	Lys	Phe	

	Lys	Ile 30	Glu	Ser	Glu	Ile	Asn 35	Leu	Asn	Asp	Pro	Leu 40	Lys	Lys	
5	Leu	Gly	Met 45	Ser	Asp	Met	Phe	Val 50	Pro	Gly	Lys	Ala	Asp 55	Phe	
	Lys	Gly	Leu	Leu 60	Glu	Gly	Ser	Asp	Glu 65	Met	Leu	Tyr	Ile	Ser 70	
LO	Lys	Val	Ile	Gln	Lys 75	Ala	Phe	Ile	Glu	Val 80	Asn	Glu	Glu	Gly	
L5	Ala 85	Glu	Ala	Ala	Ala	Ala 90	Thr	Gly	Val	Leu	Ile 95	Glu	Leu	Asp	
	Ser	Phe 100	Met	Pro	Asp	Arg	Val 105	Phe	Glu	Ala	Asn	His 110	Pro	Phe	
20	Tyr	Phe	Ala 115	Leu	Tyr	Thr	Lys	Ser 120	Ala	Gln	Lys	Pro	Glu 125	Gln	
	Ser	Lys	Lys	Arg 130	Ala	Arg	Ser	Lys	Ile 135	Val	Thr	Val	Leu	Phe 140	
25	Ser	Gly	Arg	Leu	Thr 145	Asn	Ile	Asn	Asn						
	(2)	IN	FORM	OITA	I FOI	R SE(Q ID	NO:	50:						
		(i))	SEOU	JENCI	E CHA	ARAC'	reri:	STICS	S:		٠			
		_,	,	(A)	LEI	NGTH:	: 5	19 nı	ıcle	otide	es				
30				(B)				leic SS:	_						
				(C) (D)				line		are					
		(i:	i)	MOLI	ECULI	E TYI	PE:	cDN	A						
		(x:	i)	SEQ	JENCI	E DES	SCRI	PTIO	V: :	SEQ :	ID N	0:50	:		
35	CGA	ATTG	GGT 2	ACCG	GCC	cc co	CCTC	GAGT'	ידיד יו	TTTT'	TTTT	TTT	rttt2	ACT	50
	TCA	TTAT!	rta '	TCCT	STTT	AT T	rcac	AAAA	A TAC	GAAT'	rcca	TAT	PATŤ(CTA	100
	GTT	ATTA	ATA '	TTGG? CTTT?	PTAA/	ACG'.	TCCA(ታልልል <i>፤</i> ኮርርጥ፣	A CAC	STACT TGTG(TGTA	ACA	ኮር-ጥር፡ የ-1-1-1-1	PAG	150 200
	AGG	GCGA/	TAA	AGAA	GGA'	rg A	rttg(CTTC	A AA'	TACT(CGAT	CAG	GCAT	AAA	250
40	AGA	GTCC	AAT '	TCTA!	rgag(CA C	rccT(GTGG	CAG	CTGC	AGCT	TCA	GCAC	CTT	300
	CTT	CATT'	rac '	TTCAZ ATCC'	ATGA	AA G	CTTT'	rtga.	אר די A	ACTT'	PAGA	AAT	ATATA	AAC	350 400
	ATC:	TCATO	CAG . TCA (GACA'	PACC	CA A	CTTT	TTCA(G AG	GATC	ATTC	AAA'	TTAA'	TTT	450
	CAG	ATTC	AAT (CTTG	'TTAA	TA G	GCAG.	ATCC	AA A	ATAA	CTTC	AAC	AGAG'	ΓAC	500
45	ATG	CGTT	GAG '	TCAA	GTTT'	rg c	AAGT	CAAC	A TT'	TTGT	TTAA	TTT	CTTC	AA	549
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	51:						
		(i)					TERI:							
				(A)			_	81 n leic		otid d	es				
50							EDNE		sin						
				(D)				lin		-					

(ii) MOLECULE TYPE: cDNA

-140-

	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3410														
		(x:	i)	SEQ	UENC:	E DE	SCRI	PTIO	N:	SEQ	ID N	0:51	:		
5	TT	GAA (Glu (GAA . Glu :	AAA Lys	TTA (Leu (CAA A Gln A	AAT (Asn \	GTT Val	GAT Asp	TTG Leu	CAA . Gln . 10	AAC ' Asn '	TTG / Leu '	ACT CAA Thr Gln	44
10		ATG Met													86
15		ATT Ile 30													128
		GGT Gly							Pro						170
20		GGA Gly													212
25		GTA Val									Asn				254
30		GAA Glu													296
35		CTG Leu 100													338
40		CCT Pro							Asp						380
40		CCT Pro			Lys					Gln		TCC	ATTT	GGA	423
45	TGT CGT	AACA' TAAT(GCTT(ATTC(GTT (GTT .	GCCC	CAAA'	TA T	TAGC	TTAA	T GT	ATTT.	TAAA	AAA'	PTTA	TTT	473 523 573 581
	(2)	IN	FORM	ATIO	N FO	R SE	QID	NO:	52:						
50		(i)	(A)	LE: TY	NGTH	: 13	36 a no a	STIC mino cid ear		ds				

(ii) MOLECULE TYPE: Protein

-141-

		(x:	i)	SEQ	JENCI	E DES	SCRI	PTIO	V: S	SEQ .	ID NO	0:52	:		
	Glu 1	Glu	Lys	Leu	Gln 5	Asn	Val	Asp	Leu	Gln 10	Asn	Leu	Thr	Gln	
5	Arg 15	Met	Tyr	Ser	Val	Glu 20	Val	Ile	Leu	Asp	Leu 25	Pro	Lys	Phe	
10	Lys	Ile 30	Glu	Ser	Glu	Ile	Asn 35	Leu	Asn	Asp	Pro	Leu 40	Lys	Lys	
10	Leu	Gly	Met 45	Ser	Asp	Met	Phe	Met 50	Pro	Gly	Lys	Ala	Asp 55	Phe	
15	Lys	Gly	Leu	Leu 60	Glu	Gly	Ser	Asp	Glu 65	Met	Leu	Tyr	Ile	Ser 70	
	Lys	Val	Ile	Gln	Lys 75	Ala	Phe	Ile	Glu	Val 80	Asn	Glu	Glu	Gly	
20	Ala 85	Glu	Ala	Ala	Ala	Ala 90	Thr	Ala	Val	Leu	Ala 95	Val	Ala	Phe	
25	Ser	Leu 100	Ser	Phe	Pro	Ala	Asp 105	Pro	Val	Leu	Phe	Thr 110	Ala	Asp	
	His	Pro	Phe 115	His	Tyr	Leu	Leu	Ile 120	Asp	Arg	Ser	Gln	His 125	Asn	
30	Leu	Pro	Leu	Phe 130	Lys	Gly	Arg	Phe	Val 135	Gln					
35	(2)	(i:	i)	SEQUAL (A) (B) (C) (D)	JENCI LEI TYI STI	E CHANGTHE PE: RANDI POLOG E TYI	ARACT : 58 nucl EDNES GY:	reris 31 nu leic 55: line	STIC: ucled acid sing ear	otide d gle	es ID NO	D:53	:		
40	CAAC CATC ATGC	ATTGG GCACG TAACA TTAAA TATGG	GAA AAA AAA ATC ATTG A	ATAA TAAA CAAA' AGAT(ATTT AATG(IGGA' CGAT(AT TO CA TO CT AC	TAAAT TAAAT TTGCI TTAG(TACA TTAA ACAA CAAA	A ATT A ACA A TCC T AAT	PGCTA ACACA GTCC' PGGAA	AATA AAGT ITTA AAGG	GATO AAAA ATG	GGGG(CAAT! AGAG(ATCA(CAA AAT GTA GCC	50 100 150 200 250 300
45	GAC AAG AGC CAA	AGCT(CTTT' AATC(CTTT' GCAG	GTG (TTG) CTT (TTC)	GCAG(AATT) TGAA AGAG(CTGC ACTT' ATCA GATC	AG C' PA GA GC T' AT TO	TTCA(AAAT) TTTC(CAAAC)	GCAC(ATATA CAGG(ITAA'	TTO	CTTC ATCT GAAC CAGA	ATTT CATC ATAT CTCA	ACT' AGA' CAG	rcaa' rcct' acati rtgai	rga rca acc att	350 400 450 500 550
50		AAAT													581

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:5	4:						
5		(i)		(A) (B)	TYP STR	GTH: E:	65 nucl DNES	4 nu eic	cleo acid sing	tide l	s				
		(ii	.)	MOLE	CULE	TYF	E:	cDNA							
10		(ix	:)	FEAT (A) (B)		E/KE ATIC		CDS 33	56						
		(xi	.)	SEQU	ENCE	DES	CRIE	MOIT	J: S	SEQ I	D NC	:54:			
	AA A	AC T sn L 1	TG A	CT C	AA C	GC A rg M 5	TG T let T	AC Tyr S	CT C Ser V	TT C	AA G Slu V 10	TT A Val I	TT Talle I	TG GAT Leu Asp	44
15	CTG (Leu :	CCT Pro	AAA Lys	TTC Phe	AAG Lys	ATT Ile 20	GAA Glu	TCT Ser	GAA Glu	ATT Ile	AAT Asn 25	TTG Leu	AAT Asn	GAT Asp	86
20	CCT Pro	CTG Leu 30	AAA Lys	AAG Lys	TTG Leu	GGT Gly	ATG Met 35	TCT Ser	GAT Asp	ATG Met	TTT Phe	GTT Val 40	CCT Pro	GGA Gly	128
25	AAA Lys	GCT Ala	GAT Asp 45	TTC Phe	AAA Lys	GGA Gly	TTG Leu	CTT Leu 50	GAA Glu	GGA Gly	TCT Ser	GAT Asp	GAG Glu 55	ATG Met	170
30	TTA Leu	тат Туг	ATT Ile	TCT Ser 60	AAA Lys	GTA Val	ATT Ile	CAA Gln	AAA Lys 65	GCT Ala	TTC Phe	ATT Ile	GAA Glu	GTA Val 70	212
	AAT Asn	GAA Glu	GAA Glu	GGT Gly	GCT Ala 75	GAA Glu	GCT Ala	GCA Ala	GCT Ala	GCC Ala 80	ACA Thr	GAG Glu	TAC Tyr	TGC Cys	254
35	TCC Ser 85	CTG Leu	AAC Asn	TGG Trp	TCT Ser	CGT Arg 90	ATA Ile	TTG Leu	TAC Tyr	GTC Val	CTC Leu 95	CTC Leu	CAA Gln	AGG Arg	296
40	TTT Phe	TCA Ser 100	AAG Lys	TTG Leu	ATC Ile	ACC Thr	CCT Pro 105	Phe	CCA Pro	TTT Phe	TAT Tyr	CAT His 110	AAG Lys	GAC Asp	338
	TTC Phe	GAA Glu	CAC His	Thr	TTT Phe	GTT Val	TGA	TGG	GCGC	GTC .	AGAA	CGCC	ΑT		379
45	GGAT AAAA	AATT AATA TOTT	TGA GTT TTT	AGTA CATT AGTT	ATTT TTTT TTCA	TT C AG T CT T	TACA ATGT TTTA	ATAT GGTA AADT.	T TT T AA T GT	TTAA ATCG 'AATC	CTAT TAGT TGTA ACCT	TAT GAC ATA	TAGG GAAA TAAT	TCT AAT GTT	429 479 529 579 629
E 0	GTAC								A AA	AAAA	AAAA	. AAA	MMAM		654

A STATE OF THE PROPERTY OF THE

	(2)	INE	ORM	ATION	1 FOF	SEÇ) ID	NO:5	55:							
5		(i)	•	SEQU (A) (B) (D)	TYP	IGTH:	11 amir	.8 an	nino cid	S: ació	ls					
		(ii	L)	MOLE	CULE	TYP	E:	Prot	ein							
		(x:	Ĺ)	SEQU	JENCE	E DES	CRIE	OITS	1: 5	SEQ]	D NO	55:55	:			
10	Asn 1	Leu	Thr	Gln	Arg 5	Met	Tyr	Ser	Val	Glu 10	Val	Ile	Leu	Asp		
	Leu 15	Pro	Lys	Phe	Lys	Ile 20	Glu	Ser	Glu	Ile	Asn 25	Leu	Asn	Asp		
15	Pro	Leu 30	Lys	Lys	Leu	Gly	Met 35	Ser	Asp	Met	Phe	Val 40	Pro	Gly		
	Lys	Ala	Asp 45	Phe	Lys	Gly	Leu	Leu 50	Glu	Gly	Ser	Asp	Glu 55	Met		
20	Leu	Tyr	Ile	Ser 60	Lys	Val	Ile	Gln	Lys 65	Ala	Phe	Ile	Glu	Val 70		
	Asn	Glu	Glu	Gly	Ala 75	Glu	Ala	Ala	Ala	Ala 80	Thr	Glu	Tyr	Cys		
25	Ser 85		Asn	Trp	Ser	Arg 90	Ile	Leu	Tyr	Val	Leu 95	Leu	Gln	Arg		
	Phe	Ser 100		Leu	Ile	Thr	Pro 105	Phe	Pro	Phe	Tyr	His 110	Lys	Asp		
30	Phe	Glu	His 115	Thr	Phe	Val										
	(2)	IN	FORM	ATIOI	N FO	R SE	Q ID	NO:	56:							
35		(i)	SEQ! (A) (B) (C) (D)	TY:	NGTH PE: RAND	: 6	54 n leic SS:	ucle aci sin	otid d	es					
		(i	i)	MOL	ECUL:	Е ТҮ	PE:	cDN.	A							
		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:56	:			
40	TTA TAA	ACAT AAAG	TTT TGA	TATT.	ACAT. TAAA	AA A AC A	CTAC. AAAC	AACA ATTT	Т ТА Т ТС	TATA GTCT	GGTG ACAC	ATT.	ACAT TTAT	CAT TCA ACC	10 15	00 50
45	TGT CTT CAA TTT GCA	AGAA CGTT AAGT GAAA GTAC	AAA TAA GTG ACC	AAAT TTAC GAAA TTCG TTTG GTGG	TTCA ATTA AAGT GAGG CAGC	TT A GC T CC T AG G TG C	ATCC TTTC TATG ACGT AGCT	AGAG ATGG ATAA ACAA TCAG	A TT C GT A AT T AT	CAGA TCTG GGGA ACGA CTTC	TAGA ACGC AAGG GACC TTCA	TCT GCC GGT AGT TTT	TGGA CATC GATC TCAG ACTT	ATC AAA AAC GGA CAA	25 3(35 4(45	00 50 00 50 00 50
50	TGA TCA	AAGCA	TTT	TTGA CTTT	ATTA GAAA	CT T	TAGA GCTT	AATA TTCC	T AT A GG	'AACA AACA	TCTC AACA	ATC TAT	AGAT CAGA	CCT	50 51	00 50 00

	ATTTAGG TTTT	CAG A	ATCCA	TAAA	'A AC	TTCA	ACAG	AGT	racat	'GCG	ТŢĢA	GTCA	\AG	650 654
	(2) IN	FORM	MOITA	FOR	SEÇ] ID	NO:5	7:						
5	(i)	(A) (B) (C)	LEN	IGTH : PE : LANDE	nucl EDNES	0 nu eic	cled acid	otid∈ 1_	:S				
	(i	i)	MOLE	CULE	TYE	E:	cDNA	.						
LO	(i	x)	FEAT (A) (B)		IE/KE		CDS 33	177						
	(x	i)	SEQU	JENCE	DES	CRIE	MOIT	1: 5	SEQ I	D NC	:57:			
15	AA AAC Asn 1	TTG A	ACT (Thr (CAA C	GC Arg N	ATG 1 Met 1	AC I	CT (Ser V	GTT (/al (SAA G Slu V 10	TT A	ATT T	TTG GAT Jeu Asp	44
	CTG CCT Leu Pro 15	AAA Lys	TTC Phe	AAG Lys	ATT Ile 20	GAA Glu	TCT Ser	GAA Glu	ATT Ile	AAT Asn 25	TTG Leu	AAT Asn	GAT Asp	86
20	CCT CTG Pro Leu 30	Lys	AAG Lys	TTG Leu	GGT Gly	ATG Met 35	TCT Ser	GAT Asp	ATG Met	TTC Phe	ATG Met 40	CCT Pro	GGA Gly	128
25	AAA GCT Lys Ala	GAT Asp 45	TTC Phe	AAA Lys	GGA Gly	TTG Leu	CTT Leu 50	GAA Glu	GGA Gly	TCT Ser	GAT Asp	GAG Glu 55	ATG Met	170
30	TTA TAI Leu Tyr	ATT	TCT Ser 60	AAA Lys	GTA Val	ATT Ile	CAA Gln	AAA Lys 65	GCT Ala	TTC Phe	ATT Ile	GAA Glu	GTA Val 70	212
35	AAT GAA Asn Glu	GAA Glu	GGT Gly	GCT Ala 75	GAA Glu	GCT Ala	GCA Ala	GCT Ala	GCC Ala 80	ACA Thr	GGT Gly	GTA Val	ATT Ile	254
	ATG GTT Met Val 85	GCA Ala	TTT Phe	ATG Met	TCG Ser 90	TAT Tyr	ATC Ile	GTA Val	CCA Pro	CCT Pro 95	CCT Pro	CCA Pro	ACC Thr	296
40	ATT TTT	. Lys	GTT Val	GAT Asp	CAT His	CCT Pro 105	TTC Phe	CAC His	TTT Phe	GTC Val	TTA Leu 110	AAG Lys	ACT Thr	338
45	TCG GAT	T ACT Thr 115	Val	TTG Leu	TTT Phe	GAT Asp	GGG Gly 120	AGG Arg	GTT Val	CGA Arg	CTT Leu	CCA Pro 125	TAA	380
50	ATGATAA TCTCCAG GGTCTAA AAAATG ATGTTG	GATT AAAT PTTT PAGT	AATG AAGT GTTT TTAT	AAGT TCAT' TAGT' GTAA'	AA T TT T TT T TA A	TTTT TTAG CACT AAAT	CTAC TATG' TTTT GTTA	A AT. I GG A TG A AT	ATTT TATA AATG GTGA	PTTA AATC PAAT AAAA	ATAC GTG'	GTTA' TAGA CTAT	TTA CGA ATA	430 480 530 580 630 670

WO 98/20034 PCT/US97/20678

-145-

	(2)	INI	FORM	OITA	1 FOI	R SE	Q ID	NO:	58:						
5		(i))	SEQU (A) (B) (D)	LEI TYI	IGTH	ARAC : 125 amir GY:	5 am:	ino a		5				
		(i:	i)	MOLI	ECULI	TYI	PE:	Prot	ein						
		(x :	Ĺ)	SEQU	JENCI	E DES	SCRII	OITS	V: :	SEQ :	ID NO	5:58	:		
	Asn 1	Leu	Thr	Gln	Arg 5	Met	Tyr	Ser	Val	Glu 10	Val	Ile	Leu	Asp	
L 0	Leu 15	Pro	Lys	Phe	Lys	Ile 20	Glu	Ser	Glu	Ile	Asn 25	Leu	Asn	Asp	
L5	Pro	Leu 30	Lys	Lys	Leu	Gly	Met 35	Ser	Asp	Met	Phe	Met 40	Pro	Gly	
.5	Lys	Ala	Asp 45	Phe	Lys	Gly	Leu	Leu 50	Glu	Gly	Ser	Asp	Glu 55	Met	
20	Leu	туr	Ile	Ser 60	Lys	Val	Ile	Gln	Lys 65	Ala	Phe	Ile	Glu	Val 70	
	Asn	Glu	Glu	Gly	Ala 75	Glu	Ala	Ala	Ala	Ala 80	Thr	Gly	Val	Ile	
25	Met 85	Val	Ala	Phe	Met	Ser 90	Tyr	Ile	Val	Pro	Pro 95	Pro	Pro	Thr	
	Ile	Phe 100	Lys	Val	Asp	His	Pro 105	Phe	His	Phe	Val	Leu 110	Lys	Thr	
30	Ser	Asp	Thr 115	Val	Leu	Phe	Asp	Gly 120	Arg	Val	Arg	Leu	Pro 125		
	(2)	IN	FORM	OITA	1 FOI	R SE	Q ID	NO:	59:						
35		(i))	(A) (B) (C)	LEI TYI STI	NGTH PE: RANDI		70 nu leic SS:	acie	otide d	es				
		(i:	i)	MOLI	ECULI	E TY	PE:	CDN	A						
10		(x:	i)	SEQ	J EN CI	E DE	SCRI	PTIO	N: :	SEQ :	ID NO	5:59	:		
	TTT	TTCA	CAT '	TTAA(CATT	rr r	ATTA	CATA	A AC'	TACA	ACAT	TAT	ATAG	PTT GTG CAC	100
45	GAT' TAA TCT' CGA	TTAT AAAA' TGTA' ACCC'	ACC . TAT ' TTC '	ACATA TGTA TTTTA CATCA	ACTA GAAA ATTT AAAC	AA A AA T' AA G AA A	AATG/ PACT' AAAA' ACAG'	AACT' TCAT' TCAC TATC	T AT' T AA' A TC C GA	TTTA(TCTG(ATTA' AGTC'	GACC GAGA ICAT ITTA	TAA' TTC: TTA' AGA	TAAC' AGAT TGGA CAAA	TAT AGA AGT GTG	200 250 300 350
50	ACA' TCT'	TAAA'	TGC . TTA :	AACC CTTC GATC	ATAA' AATG CTTC	TT AG AA AG AA G	CACC' GCTT' CAAT	TGTG TTTG CCTT	G CA A AT T GA	GCTG TACT AATC	CAGC TTAG AGCT	TTC.	AGCA(TATA(CCAG(450 500

PCT/US97/20678

-146-

	TCAG CATG			TCTT(STCA			GGCA	GATC(C AA	AATA	ACTT	CAA	CAGA	GTA	650 670
	(2)	INF	ORM	OITA	I FOI	R SE	Q ID	NO:	60:						
5		(i)		SEQU (A) (B) (C) (D)	LEI TYI STI	NGTH PE:	: 7 nuc EDNE	TERI 06 no leic SS: line	acie acie sin	otid d	es				
		(ii	.)	MOL	ECULI	E TY	PE:	CDN	A.						
10		(ix	c)	FEAT (A) (B)		: ME/KI CATI(CDS	410						
		(xi	.)	SEQU	JENCI	E DE	SCRI	PTIO	V: :	SEQ :	ID N	0:60	:		
15														ACT CA Thr Gl	
20	CGC Arg 15	ATG Met	TAC Tyr	TCT Ser	GTT Val	GAA Glu 20	GTT Val	ATT Ile	TTG Leu	GAT Asp	CTG Leu 25	CCT Pro	AAA Lys	TTC Phe	86
25	AAG Lys														128
25	TTG Leu														170
30	AAA Lys														212
35	AAA Lys														254
40	GCT Ala 85	GAA Glu	GCT Ala	GCA Ala	GCT Ala	GCC Ala 90	ACA Thr	GGA Gly	ATC Ile	GTT Val	AGT Ser 95	TTT Phe	GGC Gly	TCA Ser	296
	TCT Ser			GTC Val											338
45	GAT Asp														380
50	TTG Leu			GGG Gly 130							TAA	AAG	GCGT'	ITA ·	423
	TTCT	ACA	ATA '	FACAZ FTTTT ATAAZ	rtaa'	ra g	TTAT	TAGG	T CT	AAAA	TAAG	TTC	ATTT	$\mathbf{r}\mathbf{r}\mathbf{r}$	473 523 573

	ATG	SAAT 1	ATG	ATGT <i>I</i> IGAA <i>I</i> GGGG(ATA	ra Ti	rtgar	CACT	ATA	ATTA					623 673 706
	(2)	INI	FORM	OITA	1 FOI	R SE	Q ID	NO: 6	51:						
5		(i))	SEQU (A) (B) (D)	LEI TYI	E CHANGTH: PE: POLOG	: 13 amir		mino cid	S: acio	ds				
		(i:	i)	MOL	ECULI	E TYI	PE:	Prot	ein						
10		(x:	i)	SEQU	JENCI	E DES	SCRII	PTIO	7: 5	SEQ :	ED NO	0:61	:		
	Glu 1	Glu	Lys	Leu	Gln 5	Asn	Val	Asp	Leu	Gln 10	Asn	Leu	Thr	Gln	
15	Arg 15	Met	Tyr	Ser	Val	Glu 20	Val	Ile	Leu	Asp	Leu 25	Pro	Lys	Phe	
	Lys	Ile 30	Glu	Ser	Glu	Ile	Asn 35	Leu	Asn	Asp	Pro	Leu 40	Lys	Lys	
20	Leu	Gly	Met 45	Ser	Asp	Met	Phe	Val 50	Pro	Gly	Lys	Ala	Asp 55	Phe	
25	Lys	Gly	Leu	Leu 60	Glu	Gly	Ser	Asp	Glu 65	Met	Leu	Tyr	Ile	Ser 70	
25	Lys	Val	Ile	Gln	Lys 75	Ala	Phe	Ile	Glu	Val 80	Asn	Glu	Glu	Gly	
30	Ala 85	Glu	Ala	Ala	Ala	Ala 90	Thr	Gly	Ile	Val	Ser 95	Phe	Gly	Ser	
	Ser	Leu 100	Tyr	Val	Asp	Asn	Arg 105	Pro	Pro	Val	Ala	Phe 110	Thr	Val	
35	Asp	His	Pro 115	Phe	Tyr	Tyr	Thr	Leu 120	Asn	Thr	Trp	Asp	Thr 125	Leu	
	Leu	Phe	Asn	Gly 130	Arg			Ser							
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	62:						
40		(i)	(A) (B) (C)	LE TY ST	E CH. NGTH PE: RAND POLO	: 7 nuc EDNE	06 n leic SS:	ucle aci sin	otid d	es				
		(i	i)	MOL	ECUL	Е ТҮ	PE:	cDN.	A						
45		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:62	:		
5 0	TAT CAA	TAGT CATT TTTT	ATC ATA CGT	TACC AAAT TAGG CTAC	ATAT TGAT ACGA	TT T TA C TT T	CACA ATTC ATAC	TTTA ATAA CACA	A CA A AA T AC	TTTT GTGA TAAA	TATT AAAC AAAT	ACA TAA GAA	TAAA AACA CTTA	CTA AAA TTT	50 100 150 200 250

-148-

5	CAGAGATTCA GATAGATCTT GTATTCTTCT CAATAAACGC CTTTTATTTG GGAGATATAA CTCGCCCATT GAACAAAAGA GTATCCCAAG TATTTAAAGT ATAGTAGAAT GGGTGATCTA CGGTAAAAGC AACTGGAGGA CGATTGTCGA CATACAGAGA TGAGCCAAAA CTAACGATTC CTGTGGCAGC TGCAGCTTCA GCACCTTCTT CATTTACTTC AATGAAAGCT TTTTGAATTA CTTTAGAAAT ATATAACATC TCATCAGATC CTTCAAGCAA TCCTTTGAAA TCAGCTTTTC CAGGAACAAA CATATCAGAC ATACCCAACT TTTTCAGAGG ATCATTCAAA TTAATTTCAG ATTCAATCTT GAATTTAGGC AGATCCAAAA TAACTTCAAC AGAGTACATG CGTTGAGTCA AGTTTTGCAA GTCAACATTT TGTAATTTTT CTTCAA	300 350 400 450 500 550 600 650 700
	(2) INFORMATION FOR SEQ ID NO:63:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 623 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
20	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3368	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
25	AA AAC TTG ACT CAA CGC ATG TAC TCT GTT GAA GTT ATT TTG GAT Asn Leu Thr Gln Arg Met Tyr Ser Val Glu Val Ile Leu Asp 1 5 10	44
25	CTG CCT AAA TTC AAG ATT GAA TCT GAA ATT AAT TTG AAT GAT Leu Pro Lys Phe Lys Ile Glu Ser Glu Ile Asn Leu Asn Asp 15 20 25	86
30	CCT CTG AAA AAG TTG GGT ATG TCT GAT ATG TTT GTT CCT GGA Pro Leu Lys Lys Leu Gly Met Ser Asp Met Phe Val Pro Gly 30 35 40	128
35	AAA GCT GAT TTC AAA GGA TTG CTT GAA GGA TCT GAT GAG ATG Lys Ala Asp Phe Lys Gly Leu Leu Glu Gly Ser Asp Glu Met 45 50 55	170
	TTA TAT ATT TCT AAA GTA ATT CAA AAA GCT TTC ATT GAA GTA Leu Tyr Ile Ser Lys Val Ile Gln Lys Ala Phe Ile Glu Val 60 65 70	212
40	AAT GAA GAA GGT GCT GAA GCT GCA GCT GCC ACA GGA TTA TTT Asn Glu Glu Gly Ala Glu Ala Ala Ala Thr Gly Leu Phe 75 80	254
45	TTC TCA ATA ACG TCC TTC CAA GAA CCG ACT TTA TTC GAA GCT Phe Ser Ile Thr Ser Phe Gln Glu Pro Thr Leu Phe Glu Ala 85 90 95	296
50	GAC CGA CCT TTT ATG TTC ATC TTA CGT ACT CAG GAA AAT CCT Asp Arg Pro Phe Met Phe Ile Leu Arg Thr Gln Glu Asn Pro 100 105 110	338
55	ATT CTA CTA TTT TCC GGT CAT TTT GTC GAA TGA TGAACTTAGA Ile Leu Leu Phe Ser Gly His Phe Val Glu 115 120	381

5	ATTT TATA ATGT	TTTT! \AAT(\ATC!	AAT ACC T	PATCT AGTTA STAGA PATAT AAAA	TTAC CGAA AATC	G TO AA AA GT GT	TAAA TGTT TAGTT	ATAI TOTTT TATG1	A GTI TTI ATA	TADY TAGTI TAAA	TTTT TTTC TGTT	TAGT ACTT	ratgi rttai	rgg rga	481 531 581 623
	(2)	INE	FORM	ATION	FOF	R SE(OID	NO: 6	54:						
10		(i)	•	SEQU (A) (B) (D)	LEN TYI	IGTH:	amir	22 ar	nino cid		ls				
		(i:	L)	MOLE	CUL	TYI	PE:	Prot	ein						
		(x:	i)	SEQU	JENCI	E DES	CRI	OIT?	1: 5	SEQ I	D NO	0:64:	:		
15	Asn 1	Leu	Thr	Gln	Arg 5	Met	Tyr	Ser	Val	Glu 10	Val	Ile	Leu	Asp	
12	Leu 15	Pro	Lys	Phe	Lys	Ile 20	Glu	Ser	Glu	Ile	Asn 25	Leu	Asn	Asp	
20	Pro	Leu 30	Lys	Lys	Leu	Gly	Met 35	Ser	Asp	Met	Phe	Val 40	Pro	Gly	
	Lys	Ala	Asp 45	Phe	Lys	Gly	Leu	Leu 50	Glu	Gly	Ser	Asp	Glu 55	Met	
25	Leu	Tyr	Ile	Ser 60	Lys	Val	Ile	Gln	Lys 65	Ala	Phe	Ile	Glu	Val 70	
	Asn	Glu	Glu	Gly	Ala 75	Glu	Ala	Ala	Ala	Ala 80	Thr	Gly	Leu	Phe	
30	Phe 85	Ser	Ile	Thr	Ser	Phe 90	Gln	Glu	Pro	Thr	Leu 95	Phe	Glu	Ala	
	Asp	Arg 100	Pro	Phe	Met	Phe	Ile 105	Leu	Arg	Thr	Gln	Glu 110	Asn	Pro	
35	Ile	Leu	Leu 115	Phe	Ser	Gly	His	Phe 120	Val	Glu					
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	65:						
40		(i)	(A) (B)	LEI TY: ST:	NGTH PE: RAND	ARAC' : 6 nuc EDNE	23 n leic SS:	ucle acio sing	otid d	es				
		(i	i)	MOL	ECUL	E TY	PE:	CDN	A						
45		(x	i)	SEQ	UENC	E DE	SCRI	PTIO	N:	SEQ	ID N	0:65	:		
	TTA GTG TAA	ACAT AAAA AAAA	TTT CTA TGA	CCGG ATAC AAAC ACTT	ATAA AAAA ATTT	CT A CA T TA G	CACA TTTT ACCT	TTAT CGTC AATA	A TA T AC A CT	GGTG ACGA ATTA	АТАС ТТТА АААА	ATT TAC ATA	CATA CACA TTGT	AAA TAC AGA	50 100 150 200
50	AAA	ATTA	CTT	CATT	AATC	CA G	AGAT	TCAG	A TA	GATC	TTGT	TTA	CTAA	GTT	250 300

-150-

5	ACGTAAGATG AACATAAAAG GTCGGTCAGC TTCGAATAAA GTCGGTTCTT GGAAGGACGT TATTGAGAAA AATAATCCTG TGGCAGCTGC AGCTTCAGCA CCTTCTTCAT TTACTTCAAT GAAAGCTTTT TGAATTACTT TAGAAATATA TAACATCTCA TCAGATCCTT CAAGCCAATCC TTTGAAATCA GCTTTTCCAG GAACAAACAT ATCAGACATA CCCAACTTTT TCAGAGGATC ATTCAAATTA ATTTCAGATT CAATCTTGAA TTTAGGCAGA TCCAAAATAA CTTCAACAGA GTACATGCGT TGAGTCAAGT TTT	350 400 450 500 550 600 623											
	(2) INFORMATION FOR SEQ ID NO:66:												
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 731 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 												
	(ii) MOLECULE TYPE: cDNA												
15	(A) NAME/KEY: CDS (B) LOCATION: 3413												
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:												
20	TT GAA GAA AAA TTA CAA AAT GTT GAC TTG CAA AAC TTG ACT CAA Glu Glu Lys Leu Gln Asn Val Asp Leu Gln Asn Leu Thr Gln 1 5 10	44											
25	CGC ATG TAC TCT GTT GAA GTT ATT TTG GAT CTG CCT AAA TTC Arg Met Tyr Ser Val Glu Val Ile Leu Asp Leu Pro Lys Phe 20 25	86											
30	AAG ATT GAA TCT GAA ATT AAT TTG AAT GAT CCT CTG AAA AAG Lys Ile Glu Ser Glu Ile Asn Leu Asn Asp Pro Leu Lys Lys 30 35 40	128											
30	TTG GGT ATG TCT GAT ATG TTT GTT CCT GGA AAA GCT GAT TTC Leu Gly Met Ser Asp Met Phe Val Pro Gly Lys Ala Asp Phe 45 50 55	170											
3 5	AAA GGA TTG CTT GAA GGA TCT GAT GAG ATG TTA TAT ATT TCT Lys Gly Leu Leu Glu Gly Ser Asp Glu Met Leu Tyr Ile Ser 60 65 70	212											
40	AAA GTA ATT CAA AAA GCT TTC ATT GAA GTA AAT GAA GAA GGT Lys Val Ile Gln Lys Ala Phe Ile Glu Val Asn Glu Glu Gly 75 80	254											
	GCT GAA GCT GCA GCT GCC ACA GCC GTG TTT GCG ACT CGT CGT Ala Glu Ala Ala Ala Thr Ala Val Phe Ala Thr Arg Arg 85 90 95	296											
45	GTG ATC AAG GTG CTG GCG AAA GAA ATT TTC AAT TGC GAC CAT Val Ile Lys Val Leu Ala Lys Glu Ile Phe Asn Cys Asp His 100 105 110	338											
50	CCG TTC TAC TTC GCC TTG GTT CAT TCG CAA GAA GGT ACC TCG Pro Phe Tyr Phe Ala Leu Val His Ser Gln Glu Gly Thr Ser 115 120 125	380											

-151-

			CTT Leu									TGA 			416
5	GAAZ AATZ TTTZ GTTZ TAAZ	AGTG(PTTTY(PTAA(PCAC' AAAT(CAG 1 GAA A CTA 0 GTA 1 GTT A CAA 1	AGTAA CAATA CGTG(CAAGA AAAT(ATACA ATTTI STATA AAAT(STGAA	AA GA PT TA AA AT ST AT	ATCTA AATAC PCGTC	ATCTO STTAT STAGA STATA	AAT TAA CGA TAA	CTCT AGTCT AAAA ATGTT	rgga raaa atgt rgta	TTAA ATAA TTTC	ATGAZ AGTT(STTTT TATG!	AGT CAA FAA FAA	466 516 566 616 666 716 731
	(2)	IN	FORM!	OITA	FOI	R SE(QI Ç	NO:6	57:						
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 137 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein 														
		(i:	i)	MOLI	ECULI	E TYI	PE:	Prot	ein						
		(x:	i)	SEQ	JENCI	E DES	SCRII	OITS	1: 5	SEQ I	D NO	0:67	:		
20	Glu 1	Glu	Lys	Leu	Gln 5	Asn	Val	Asp	Leu	Gln 10	Asn	Leu	Thr	Gln	
20	Arg 15		Tyr	Ser	Val	Glu 20	Val	Ile	Leu	Asp	Leu 25	Pro	Lys	Phe	
25	Lys	Ile 30	Glu	Ser	Glu	Ile	Asn 35	Leu	Asn	Asp	Pro	Leu 40	Lys	Lys	
	Leu	Gly	Met 45	Ser	Asp	Met	Phe	Val 50	Pro	Gly	Lys	Ala	Asp 55	Phe	
30			Leu	60					65					70	
	Lys	Val	Ile	Gln	Lys 75	Ala	Phe	Ile	Glu	Val 80	Asn	Glu	Glu	Gly	
35	Ala 85	Glu	Ala	Ala	Ala	Ala 90	Thr	Ala	Val	Phe	Ala 95	Thr	Arg	Arg	
40	Val	Ile 100	Lys	Val	Leu	Ala	Lys 105	Glu	Ile	Phe	Asn	Cys 110	Asp	His	
	Pro	Phe	Tyr 115	Phe	Ala	Leu	Val	His 120	Ser	Gln	Glu	Gly	Thr 125	Ser	
45	Ala	Pro	Leu	Phe 130	Thr	Gly	Ala	Phe	Arg 135		Pro				
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	68:						
		(i)	SEQ (A) (B)	LE	E CH NGTH PE:			ucle	otid	es				
50				(B) (D)	ST		EDNE		sin						

(ii) MOLECULE TYPE: cDNA

-152-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
5	TATTGTAGAA AAATTACTTC ATTAATCCAG AGATTCAGAT AGATCTTGTA	50 100 150 200 250
10	TGGAACTGTC ATTTATCAAG GCGTCCGGAA AGCGCCGGTG AAAAGAGGCG CCGAGGTACC TTCTTGCGAA TGAACCAAGG CGAAGTAGAA CGGATGGTCG CAATTGAAAA TTTCTTTCGC CAGCACCTTG ATCACACGAC GAGTCGCAAA CACGGCTGTG GCAGCTGCAG CTTCAGCACC TTCTTCATTT ACTTCAATGA AAGCTTTTTG AATTACTTTA GAAATATATA ACATCTCATC AGATCCTTCA	300 350 400 450 500 550
15	CAACTTTTTC AGAGGATCAT TCAAATTAAT TTCAGATTCA ATCTTGAATT TAGGCAGATC CAAAATAACT TCAACAGAGT ACATGCGTTG AGTCAAGTTT	600 650 700 731
	(2) INFORMATION FOR SEQ ID NO:69:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 685 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
25	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 3407	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
30	TT GAA GAA AAA TTA CAA AAT GTT GAC TTG CAA AAC TTG ACT CAA Glu Glu Lys Leu Gln Asn Val Asp Leu Gln Asn Leu Thr Gln 1 5 10	44
	CGC ATG TAC TCT GTT GAA GTT ATT TTG GAT CTG CCT AAA TTC Arg Met Tyr Ser Val Glu Val Ile Leu Asp Leu Pro Lys Phe 15 20 25	86
35	12.0 11.1 0.2.1 0.2.1 0.2.1 0.2.1	128
	Lys Ile Glu Ser Glu Ile Asn Leu Asn Asp Pro Leu Lys Lys 30 35 40	
40	30 35 40	170
4 0	TTG GGT ATG TCT GAT ATG TTT GTT CCT GGA AAA GCT GAT TTC Leu Gly Met Ser Asp Met Phe Val Pro Gly Lys Ala Asp Phe 45 50 55	170 212
	TTG GGT ATG TCT GAT ATG TTT GTT CCT GGA AAA GCT GAT TTC Leu Gly Met Ser Asp Met Phe Val Pro Gly Lys Ala Asp Phe 45 50 55 AAA GGA TTG CTT GAA GGA TCT GAT GAG ATG TTA TAT ATT TCT Lys Gly Leu Leu Glu Gly Ser Asp Glu Met Leu Tyr Ile Ser	

WO 98/20034 PCT/US97/20678

-153-

				ACG Thr											338	
5				TTC Phe											380	
10				GGA Gly 130						TGA	AAT	GGAT	ATT		420	
15	TTTT TTTT TCAC	TTCTA AGTA CTTT ATGT	ACA A TGT (TTA T	TAAE TATA TATƏE TAAƏT TGTA	TTTTT AAAT ATDT AAAE	ra an rc gn ar ca	PAGT PGTA(ACCT)	PATTA SACGA ATATA	A GG! A AA! A AT(rcta aatg: sttg:	AAAT PTTT PAGT	AAG' GTT' TTA'	PTCA' PTAG' PGTA	TTT TTT ATA	470 520 570 620 670 685	
20	(2)	INI		(A) (B)	JENCI LEI TYI	E CHANGTH:	ARACT	reris	STICS mino cid		ds					
	(B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: Protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70: Glu Glu Lys Leu Gln Asn Val Asp Leu Gln Asn Leu Thr Gln															
		(x:	i)	SEQU	JENCI	E DES	SCRII	OIT?	V: 5	SEQ I	ID NO	0:70	:			
25	Glu 1	Glu	Lys	Leu	Gln 5	Asn	Val	Asp	Leu	Gln 10	Asn	Leu	Thr	Gln		
	Arg 15	Met	Tyr	Ser	Val	Glu 20	Val	Ile	Leu	Asp	Leu 25	Pro	Lys	Phe		
30	Lys	Ile 30	Glu	Ser	Glu	Ile	Asn 35	Leu	Asn	Asp	Pro	Leu 40	Lys	Lys		
	Leu	Gly	Met 45	Ser	Asp	Met	Phe	Val 50	Pro	Gly	Lys	Ala	Asp 55	Phe		
35	Lys	Gly	Leu	Leu 60	Glu	Gly	Ser	Asp	Glu 65		Leu	Tyr	Ile	Ser 70		
	Lys	Val	Ile	Gln	Lys 75	Ala	Phe	Ile	Glu	Val 80	Asn	Glu	Glu	Gly		
40	Ala 85	Glu	Ala	Ala	Ala	Ala 90	Thr	Ala	Val	Val	Met 95	Leu	Gly	Tyr		
45	Ser	Leu 100	Ile	Thr	Ser	Arg	Val 105	Ala	Pro	Thr	Val	Phe 110	Asn	Val		
	Asp	His	Pro 115	Phe	His	Val	Val	Leu 120	Lys	Ser	Asn	Asp	Val 125	Val		
50	Leu	Phe	Asn	Gly	Arg	Val	Gln	Ser	Pro							

WO 98/20034 PCT/US97/20678

-154-

	(2)	INFO	RMA'I' LOI	N FOR	SEQ	י עד	NO: /	τ:						
5		(i)	(A) (B) (C)		GTH: E: n ANDED	685 ucle NESS	nueic a	cled acid sing	tide l	es				
		(ii)	MOLE	ECULE	TYPE	: c	DNA							
		(xi)	SEQU	JENCE	DESC	RIPT	NOI	: 5	EQ I	D NO	:71:			
10	CACA' ATTC.	TTTAA(ATAAA) CACAT)	T ACCGO ATTTT A AGTGA CTAAA A CTAAA	TATT AAAAC' AAAAT	A CAT T AAA G AAC	AAAC ACA <i>I</i> TTAT	TAC AAAC TTTT	AAC ATT AGA	ATTA TTTC CCTA	TAT GTC ATA	AGGT TACA ACTA	GATT CGAT TTA	PAC PTT AAA	50 100 150 200 250
15	GTTA.	AAACA AAAAC GACAG	A CCAAA A CATCA A GTTGC C TGTGC	ATTTG SAGCT SCAGC'	A TTT A CCC I GCA	TAAT GAGA GCTT	TACA ACGT TCAG	ACA AAT CAC	TGGA TAGG CTTC	ATG GAA TTC	GATO TATO ATTI	ATCO CAAC ACTI	BAC BCA BCA	300 350 400 450
20	TTCA. TACC AATT	AGCAA'. CAACT'. TAGGC!	T TTTGA T CCTTT T TTTCA A GATCO T TCAAC	'GAAA' 'GAGG 'AAAA'	T CAG A TCA T AAC	CTTT TTC#	TCC AAAT AACA	AGG TAA GAG	AACA TTTC TACA	AAC AGA	ATAI TTC	CAGA ATCI	ACA TTG	500 550 600 650 685
	(2)	INFO	RMATION	1 FOR	SEQ	ID N	10:7	2 :						
25		(i)	(A) (B)	TYP: STR	GTH: E: n	122 ucle NESS	22 m eic a 5: a	ucle acid sing	otic l	les				
		(ii)	MOLE	ECULE	TYPE	: c	DNA							
30		(ix)	(A)	TURE: NAM LOC				20						
		(xi)	SEQU	JENCE	DESC	RIPT	поп	: 5	EQ I	D NO	:72:			
35	AC G	CG ATA la Ile 1	A GTT (e Val (CAA C. Sln H	AC GC is Al 5	A CO a Ai	GA C'	TT G eu V	TG T	TT Che I	CTT I Leu E	TT C	STA TCA Val Ser	44
4 0			ra CCA le Pro											86
4.5			GT ATT er Ile											128
45		Ala S	CT GGC er Gly 45											170
50			AA ACT ln Thr	Val										212

5							CCT Pro	254
5			ATT Ile 90					296
10			CAA Gln					338
15			ATG Met					380
20			ACC Thr					422
25			CAA Gln					464
23			GAA Glu 160					506
30			GAT Asp					548
35			TAC Tyr					590
40			ACT Thr					632
45			AAT Asn					674
			GAA Glu 230					716
50			AGG Arg				_	758
55			AAA Lys					800
60			GAC Asp					842

-156-

			GTT Val											884
5			GAA Glu											926
10			GAT Asp											968
15			GAA Glu 325											1010
20			AAA Lys							Glu				1052
20			GCT Ala											1094
25			GAG Glu											1136
30			TAT Tyr											1178
35			TCT Ser 395											1220
	TT													1222
	(2)	INI	FORM	OITA	1 FOR	R SE	O ID	NO:	73 :					
40		(i))	(A) (B) (C)	LEN TYI STI	NGTH: PE: RANDI	nuc.	TERIS 1 nuc leic SS: line	cleot acid sing	ides 1	5			
		(i:	i)	MOLI	ECULI	E TYI	PE:	Prin	ner					
		(x:	i)	SEQU	JENCI	E DES	SCRI	PTIO	1 : 5	SEQ I	D NO	5:73	:	
45	GGAZ	AGAT	CTA 7	CAAA?	PATGO	CC GC	CGTC	CTCAC	G TTT	rg				34
	(2)	IN	FORM	OITA	1 FOI	R SE	Q ID	NO:	74:					
50		(i))	(A) (B) (C)	LEI TYI STI	NGTH PE: RANDI	nuci nuci EDNE:	TERIS nuc leic SS: line	cleot acio sing	tides d	5			
		(i:	i)	MOL	ECULI	E TY	PE:	Pri	ner					

-157-

		(xi	L)	SEQU	JENCE	E DES	CRI	PTIO	1: 5	SEQ :	D NO	74	:		
	CGG	OTTA!	CTA A	ATTGO	TAA	AT CT	rccc <i>i</i>	AGAG							29
	(2)	INE	FORM	ATION	, FOF	R SE	O ID	NO:	75:						
5		(i)	•	SEQU (A) (B) (C) (D)	LEN TYI STI	E CHA NGTH: PE: RANDI POLOG	: 11 nucl	l55 r leic SS:	nucle ació sino	eotio	les				
		(ii	i)	MOLI	CULI	TY!	PE:	cDNA	Ą						
10		(i)	c)	FEAT (A) (B)		: ME/KI CATIO		CDs	L155						
		(xi	i)	SEQU	JENCI	E DES	CRI	PTIO	1: 5	SEQ 1	D NO	75:	:		
15				TTT Phe											42
20				CAG Gln											84
25				TAC Tyr											126
23				TCC Ser											168
30	GTG Val	TCA Ser	ATG Met	GGA Gly 60	GCT Ala	GGT Gly	GGC Gly	AAT Asn	ACT Thr 65	GCC Ala	ACA Thr	CAA Gln	ATA Ile	GCT Ala 70	210
35				CGT Arg											252
40	GAC Asp 85	TAC Tyr	CAC His	GCA Ala	TTG Leu	ATG Met 90	AAC Asn	ACT Thr	CTT Leu	AAT Asn	ACA Thr 95	CAA Gln	AAA Lys	GGT Gly	294
45	GTA Val	ACT Thr 100	CTG Leu	GAA Glu	ATT Ile	GCC Ala	AAT Asn 105	AAA Lys	GTT Val	TAT Tyr	GTT Val	ATG Met 110	GAA Glu	GGC Gly	336
45	TAT Tyr	ACA Thr	TTA Leu 115	AAA Lys	CCC Pro	ACC Thr	TTC Phe	AAA Lys 120	GAA Glu	GTT Val	GCC Ala	ACC Thr	AAC Asn 125	AAA Lys	378
50	TTC Phe	TTA Leu	GCT Ala	GGA Gly 130	GCA Ala	GAA Glu	AAC Asn	TTG Leu	AAC Asn 135	TTT Phe	GCC Ala	CAA Gln	AAT Asn	GCT Ala 140	420

						ATC Ile									462
5						GAT Asp 160									504
10						GTT Val									546
15						CAA Gln									588
20						ACT Thr									630
20						GAT Asp									672
25						GCT Ala 230									714
30						ATC Ile									756
35						GAA Glu									798
40	AAC Asn	TTG Leu	ACT Thr	CAA Gln 270	CGC Arg	ATG Met	TAC Tyr	TCT Ser	GTT Val 275	GAA Glu	GTT Val	ATT Ile	TTG Leu	GAT Asp 280	840
40	CTG Leu	CCT Pro	Lys	Phe	Lys	ATT Ile	Glu	Ser	Glu	Ile	Asn	TTG Leu	AAT Asn	GAT Asp	882
45						GGT Gly 300									924
50	AAA Lys	GCT Ala 310	GAT Asp	TTC Phe	AAA Lys	GGA Gly	TTG Leu 315	CTT Leu	GAA Glu	GGA Gly	TCT Ser	GAT Asp 320	GAG Glu	ATG Met	966
55						GTA Val									1008
60						GAA Glu									1050

		Val :													1092
5		TTT A													1134
10		GAT A Asp 3													1155
	(2)	INFO	ORMA	OITA	1 FOF	SE	Q ID	NO:	76:						
15		(i)		(A) (B) (C)	JENCE LEN TYP STF TOP	IGTH PE: RANDI	: 3. nuc. EDNE:	3 nuc leic SS:	cleot acio sing	ide:	s				
		(ii))	MOLE	CULE	TYI	PE:	Pri	mer						
		(xi))	SEQU	JENCE	E DES	SCRII	PTIO	N: 5	SEQ :	ID N	0:76	:		
	GGA	AGATCT	r An	'AAA'	TATGA	T T	AACG	CACG	A CT	r					33
20	(2)	INFO	ORMA	1OIT	1 FOF	SE(Q ID	NO:	77:						
25		(i)		(A) (B) (C)	JENCE LEN TYE STE TOE	IGTH PE: RANDI	: 28 nucl EDNES	3 nuo leic SS:	cleot acio sing	ide:	5				
		(ii))	MOLE	ECULE	ŢYI	PE:	Pri	ner						
		(xi))	SEQU	JENCE	E DES	SCRII	PTIO	N: 5	SEQ :	ID N	o: 77	:		·
	CCGG	TTAAE	CA T	AGAC	TTTC	A AC	CTCG	CCC							28
	(2)	INFO	ORMA	MOIT.	1 FOF	SE	Q ID	NO:	78:						
30		(i)		SEQU (A) (B) (C) (D)	TYF STF	IGTH: PE:	: 10 nucl	065 : Leic	nucle acio sino	eotio 1	des				
35		(ii))	MOLE	CULE	TYI	PE:	CDN	A						
		(ix))	FEAT (A) (B)			EY: ON:		1064						
		(xi))	SEQU	JENCE	E DES	SCRI	PTIO	vi: 5	SEQ :	ID N	D:78	•		
40		TTT GO Phe Al													44

						TCC Ser 20									86
5						GGA Gly									128
10						CGT Arg									170
						GCA Ala									212
15						GAA Glu									254
20						AAA Lys 90									296
25						GGA Gly									338
30						AAA Lys									380
30	AAA Lys	ACT Thr	CAT His	GAC Asp 130	AAA Lys	ATT Ile	CAT His	GAT Asp	TTG Leu 135	ATC Ile	AAA Lys	GCC Ala	GGT Gly	GAT Asp 140	422
35						AGA Arg									464
40	Phe	Lys	Gly	Leu	Trp	GAG Glu 160	Lys	Gln	Phe	Lys	Lys	Glu	AAC Asn	ACT Thr	506
45	CAA Gln	GAC Asp 170	AAA Lys	CCT Pro	TTC Phe	TAT Tyr	GTT Val 175	ACT Thr	GAA Glu	ACA Thr	GAG Glu	ACA Thr 180	AAG Lys	AAT Asn	548
						ATT Ile									590
50						GCC Ala									632
55						ATG Met									674

-161-

	ACT Thr 225	GGT Gly	CTC Leu	CCC Pro	GCT Ala	CTT Leu 230	GAA Glu	GAA Glu	AAA Lys	TTA Leu	CAA Gln 235	AAT Ašn	GTT Val	GAC Asp	716
5											GTT Val				758
10											GAA Glu				800
15											GAT Asp				842
20	CCT Pro	GGA Gly	AAA Lys	GCT Ala	GAT Asp 285	TTC Phe	AAA Lys	GGA Gly	TTG Leu	CTT Leu 290	GAA Glu	GGA Gly	TCT Ser	GAT Asp	884
20											AAA Lys 305				926
25											GCT Ala				968
30											ATG Met				1010
25											TAT Tyr				1052
35			TGG Trp		A										1065
	(2)	IN	FORM	ATIOI	N FOI	R SE	Q ID	NO:	79:						
40		(i))	(A) (B)	TYI STI	NGTH PE:	nuci nuci	0 nuo leic	cleon acio sing	tide: d	S				
		(i:	i)	MOLI	ECULI	E TY	PE:	Pri	mer						
45		(x:	i)	SEQ	UENC	E DE	SCRI	PTIO	N: :	SEQ :	ID N	0:79	:		
	GCG	GAAT'	TCG I	ATCC	CCAG	GA A'	rtgt(CTAC	A AG	ГАТТ	AACC				40
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	80:						
50		(i)	(A) (B) (C)	UENC LEI TY: ST:	NGTH PE: RAND	: 4 nuc EDNE	4 nu leic SS:	cleo aci sin	tide: d	s				

(ii) MOLECULE TYPE: Primer

-162-

	(X1)	SEQUENCE I	DESCRIPTION	1: PEO ID MO:80:	
	GCGAGATCTT	TAAAGGGATT	TAACACATCO	C ACTGAACAAA ACAG	44
	(2) INFOR	RMATION FOR S	SEQ ID NO:8	31:	
5	(i)	(A) LENGT	nucleic	nucleotides acid single	
	(ii)	MOLECULE 7	TYPE: cDNA	1	
10	(ix)		/KEY: CDS FION: 31	.070	
	(xi)	SEQUENCE I	DESCRIPTION	: SEQ ID NO:81:	
15		a Gly Ser Lev		ACG GTT GCT TCT GGC AAC Thr Val Ala Ser Gly Asn 10	
•		eu Ile Met Se		TCT GTA CAA ACT GTT CTA Ser Val Gln Thr Val Lev 25	
20				GGT AAT ACT GCC ACA CAR Gly Asn Thr Ala Thr Glr 40	
25	Ile Ala Al	CT GGT TTA CO la Gly Leu Ai 15	GT CAG CCT rg Gln Pro 50	CAA TCA AAA GAA AAA ATT Gln Ser Lys Glu Lys Ile 55	r 170 e
30				AAC ACT CTT AAT ACA CAA Asn Thr Leu Asn Thr Glr 65	n
35	AAA GGT GT Lys Gly Va	TA ACT CTG GA al Thr Leu G 75	AA ATT GCC lu Ile Ala	AAC AAA GTT TAC GTT ATC Asn Lys Val Tyr Val Met 80	G 254
	GAA GGC TA Glu Gly Ty 85	yr Thr Leu L	AA CCC ACC ys Pro Thr 90	TTC AAA GAA GTT GCC ACC Phe Lys Glu Val Ala Thr 95	C 296
40	AAC AAA TT Asn Lys Pl 100	TC TTA GCT Gone Leu Ala G	GA GCA GAA ly Ala Glu 105	AAC TTG AAC TTT GCC CAA Asn Leu Asn Phe Ala Gli 110	A 338
45	Asn Ala G	AA AGC GCT A lu Ser Ala L 15	AA GTT ATC ys Val Ile 120	AAC ACT TGG GTT GAA GAA Asn Thr Trp Val Glu Glu 125	A 380 u
50	AAA ACT CA	AT GAC AAA A' is Asp Lys I 130	TT CAT GAT le His Asp	TTG ATC AAA GCC GGT GA' Leu Ile Lys Ala Gly Asp 135	p

-163-

						AGA Arg									464
5						GAG Glu 160									506
10						TAT Tyr									548
15						ATT Ile									590
20						GCC Ala									632
						ATG Met									674
25						CTT Leu 230									716
30						CAA Gln									758
35						TTC Phe									800
40						AAG Lys									842
10			Lys	Ala	Asp	TTC Phe	Lys	Gly	Leu	Leu	Glu				884
45	GAG Glu 295	ATG Met	TTA Leu	TAT Tyr	ATT Ile	TCT Ser 300	AAA Lys	GTA Val	ATT Ile	CAA Gln	AAA Lys 305	GCT Ala	TTC Phe	ATT Ile	926
50						GGT Gly									968
55						CGT Arg									1010
60						CCA Pro									1052

PCT/US97/20678

-164-

			CTA TTC AAT Leu Phe Asn 355	1070
	(2)	INFORM	ATION FOR SEQ ID NO:82:	
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:82:	
	CGCAG	ATCTT :	TATTCAGTTG TTGGTTTAAC AAGACGACC	39
	(2)	INFORM	ATION FOR SEQ ID NO:83:	
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
20		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:83:	
	ATTAA	CCCTC 2	ACTAAAG	17
•	(2)	INFORM	ATION FOR SEQ ID NO:84:	
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:84:	
30	ATAGO	GATCCC (CAGGAATTGT C	21
	(2)	INFORM	ATION FOR SEQ ID NO:85:	
35		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:85:	
	GCGAC	፯ልጥር ጥር	TAGTTATTAA TATTGGTTAA	30

	(2)	TIME OIGH	HIION FOR BEQ ID NO.80.	
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:86:	
	GCGG	AATTCT	CATGGTGACT GAACGCG	27
10	(2)	INFORM	ATION FOR SEQ ID NO:87:	
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:87:	
	GCGG.	AATTCA Z	ACAAAAGTGT GTTC	24
	(2)	INFORM	ATION FOR SEQ ID NO:88:	
20		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Peptide	
25		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:88:	
	Asp	Pro Gln	Glu Leu Ser Thr Ser Ile Asn Gln Phe Ala Gly 5 10	
	Ser 1	Leu Tyr	Asn Thr Val Ala Ser Gly Asn Lys Asp Asn Leu 20 25	
30	Ile 1	Met 30		
	(2)	INFORM	ATION FOR SEQ ID NO:89:	
35		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Peptide	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:89:	
10	Ser S	Thr Ser	Ile Asn Gln Phe Ala Gly Ser Leu Tyr Asn Thr	

	15	HIG SEL	20 25	
	(2)	INFORM	ATION FOR SEQ ID NO:90:	
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Peptide	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:90:	
10	Ser '	Thr Ser	Ile Asn Gln Phe Ala Gly Ser Leu Tyr Asn Thr 5 10	
	Val 1	Ala Ser	Gly Asn Lys Asp Asn Leu Ile Met Ser Pro 20 25	
	(2)	INFORM	ATION FOR SEQ ID NO:91:	
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:91:	
	GCGG.	AATTCT :	PATTTGGGAG ATATAACTCG	30
	(2)	INFORM	ATION FOR SEQ ID NO:92:	
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
30		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:92:	
	CGCG	AATTCT (CATTCGAÇAA AATGACC	27
	(2)	INFORM	ATION FOR SEQ ID NO:93:	
35		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: Primer	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:93:	
40	GCGG	יייייייע מי	TAAGGATTAA CGTGTTGAAC	30

(2) INFORMATION FOR SEQ ID NO:94:

5		(i)	l	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear												
		(ii	L)	MOLE	MOLECULE TYPE: Primer											
		(x:	L)	SEQU	SEQUENCE DESCRIPTION: SEQ ID NO:94:											
	GGAATTCTTA TTGCACAAAT CATCC															
10	(2)	INI	ORM	ATION	TION FOR SEQ ID NO:95:											
		(i)	l	SEQUENCE CHARACTERISTICS: (A) LENGTH: 406 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear												
15		(ii	L)	MOLE	ECULE	E TYI	E:	Prot	ein							
		(x:	Ĺ)	SEQUENCE DESCRIPTION: SEQ ID NO:95:												
	Ala 1	Ile	Va1	Gln	His 5	Ala	Arg	Leu	Val	Phe 10	Leu	Phe	Val	Ser		
20	Val 15	Leu	Ile	Pro	Ile	Ser 20	Thr	Met	Ala	Asp	Pro 25	Gln	Glu	Leu		
25	Ser	Thr 30	Ser	Ile	Asn	Gln	Phe 35	Ala	Gly	Ser	Leu	Tyr 40	Asn	Thr		
23	Val	Ala	Ser 45	Gly	Asn	Lys	Asp	Asn 50	Leu	Ile	Met	Ser	Pro 55	Leu		
30	Ser	Val	Gln	Thr 60	Val	Leu	Ser	Leu	Val 65	Ser	Met	Gly	Ala	Gly 70		
	Gly	Asn	Thr	Ala	Thr 75	Gln	Ile	Ala	Ala	Gly 80	Leu	Arg	Gln	Pro		
35	Gln 85	Ser	Lys	Glu	Lys	Ile 90	Gln	Asp	Asp	Tyr	His 95	Ala	Leu	Met		
40	Asn	Thr 100	Leu	Asn	Thr	Gln	Lys 105	Gly	Val	Thr	Leu	Glu 110	Ile	Ala		
40	Asn	Lys	Val 115	Tyr	Val	Met	Glu	Gly 120	Tyr	Thr	Leu	Lys	Pro 125	Thr		
45	Phe	Lys	Glu	Val 130	Ala	Thr	Asn	Lys	Phe 135	Leu	Ala	Gly	Ala	Glu 140		
	Asn	Leu	Asn	Phe	Ala 145	Gln	Asn	Ala	Glu	Ser 150	Ala	Lys	Val	Ile		
50	Asn 155	Thr	Trp	Val	Glu	Glu 160	Lys	Thr	His	Asp	Lys 165	Ile	His	Asp		

	Leu	Ile 170	Lys	Ala	Gly	Asp	Leu 175	Asp	Gln	Asp	Ser	Arg 180	Met	Val
5	Leu	Val	Asn 185	Ala	Leu	Tyr	Phe	Lys 190	Gly	Leu	Trp	Glu	Lys 195	Gln
	Phe	Lys	Lys	Glu 200	Asn	Thr	Gln	Asp	Lys 205	Pro	Phe	Tyr	Val	Thr 210
10	Glu	Thr	Glu	Thr	Lys 215	Asn	Val	Arg	Met	Met 220	His	Ile	Lys	Asp
15	Lys 225	Phe	Arg	Tyr	Gly	Glu 230	Phe	Glu	Glu	Leu	Asp 235	Ala	Lys	Ala
13	Val	Glu 240	Leu	Pro	Tyr	Arg	Asn 245	Ser	Asp	Leu	Ala	Met 250	Leu	Ile
20	Ile	Leu	Pro 255	Asn	Ser	Lys	Thr	Gly 260	Leu	Pro	Ala	Leu	Glu 265	Glu
	Lys	Leu	Gln	Asn 270	Val	Asp	Leu	Gln	Asn 275	Leu	Thr	Gln	Arg	Met 280
25	Tyr	Ser	Val	Glu	Val 285	Ile	Leu	Asp	Leu	Pro 290	Lys	Phe	Lys	Ile
30	Glu 295	Ser	Glu	Ile	Asn	Leu 300	Asn	Asp	Pro	Leu	Lys 305	Lys	Leu	Gly
30	Met	Ser 310	Asp	Met	Phe	Val	Pro 315	Gly	Lys	Ala	Asp	Phe 320	Lys	Gly
35	Leu	Leu	Glu 325	Gly	Ser	Asp	Glu	Met 330	Leu	Tyr	Ile	Ser	Lys 335	Val
	Ile	Gln	Lys	Ala 340	Phe	Ile	Glu	Val	Asn 345	Glu	Glu	Gly	Ala	Glu 350
40	Ala	Ala	Ala	Ala	Thr 355	Ala	Val	Leu	Leu	Val 360	Thr	Glu	Ser	Туг
45	Val 365		Glu	Glu	Val	Phe 370		Ala	Asn	His	Pro 375		Tyr	Phe
43	Ala	Leu 380	Tyr	Lys	Ser	Ala	Gln 385	Asn	Pro	Val	Glu	Ser 390	Glu	Asr
50	Glu	Ser	Ser 395	Glu	Asn	Glu	Asn	Pro 400	Glu	Asn	Val	Glu	Val 405	Leu
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	96:					
		(i)	(A) (B)	TY	NGTH PE:	: 3	85 ai	mino cid		ds			
55				(D)	то	POLO	GY:	lin	ear					

(ii) MOLECULE TYPE: Protein

		(x:	L)	SEQUENCE DESCRIPTION: SEQ ID NO:96:									l	
	Val 1	Phe	Leu	Phe	Val 5	Ser	Val	Leu	Leu	Pro 10	Ile	Ser	Thr	Met
5	Ala 15	Asp	Pro	Gln	Glu	Leu 20	Ser	Thr	Ser	Ile	Asn 25	Gln	Phe	Ala
10	Gly	Ser 30	Leu	Tyr	Asn	Thr	Val 35	Ala	Ser	Gly	Asn	Lys 40	Asp	Asn
10	Leu	Ile	Met 45	Ser	Pro	Leu	Ser	Val 50	Gln	Thr	Val	Leu	Ser 55	Leu
15	Val	Ser	Met	Gly 60	Ala	Gly	Gly	Asn	Thr 65	Ala	Thr	Gln	Ile	Ala 70
	Ala	Gly	Leu	Arg	Gln 75	Pro	Gln	Ser	Lys	Glu 80	Lys	Ile	Gln	Asp
20	Asp 85	Туr	His	Ala	Leu	Met 90	Asn	Thr	Leu	Asn	Thr 95	Gln	Lys	Gly
25	Val	Thr 100	Leu	Glu	Ile	Ala	Asn 105	Lys	Val	Tyr	Val	Met 110	Glu	Gly
43	Tyr	Thr	Leu 115	Lys	Pro	Thr	Phe	Lys 120	Glu	Val	Ala	Thr	Asn 125	Lys
30	Phe	Leu	Ala	Gly 130	Ala	Glu	Asn	Leu	Asn 135	Phe	Ala	Gln	Asn	Ala 140
	Glu	Ser	Ala	Lys	Val 145	Ile	Asn	Thr	Trp	Val 150	Glu	Glu	Lys	Thr
35	His 155	Asp	Lys	Ile	His	Asp 160	Leu	Ile	Lys	Ala	Gly 165	Asp	Leu	Asr
40	Gln	Asp 170	Ser	Arg	Met	Val	Leu 175	Val	Asn	Ala	Leu	Tyr 180	Phe	Lys
40	Gly	Leu	Trp 185	Glu	Lys	Gln	Phe	Lys 190	Lys	Glu	Asn	Thr	Gln 195	Asp
45	Lys	Pro	Phe	Туг 200	Val	Thr	Glu	Thr	Glu 205	Thr	Lys	Asn	Val	Arg 210
	Met	Met	His	Ile	Lys 215	Asp	Lys	Phe	Arg	Tyr 220	Gly	Glu	Phe	Glu
50	Glu 225	Leu	Asp	Ala	Lys	Ala 230	Val	Glu	Leu	Pro	Tyr 235	Arg	Asn	Sei
	Asp	Leu 240		Met	Leu	Ile	Ile 245	Leu	Pro	Asn	Ser	Lys 250	Thr	Gly
55	Leu	Pro	Ala 255	Leu	Glu	Glu	Lys	Leu 260	Gln	Asn	Val	Asp	Leu 265	Glı
60	Asn	Leu	Thr	Gln 270		Met	Tyr	Ser	Val 275	Glu	Val	Ile	Leu	Ası 28

WO 98/20034 PCT/US97/20678

-170-

	Leu	Pro	Lys	Phe	Lys 285	Ile	Glu	Ser	Glu	Ile 290	Asn	Leu	Asn	Asp
5	Pro 295	Leu	Lys	Lys	Leu	Gly 300	Met	Ser	Asp	Met	Phe 305	Val	Pro	Gly
	Lys	Ala 310	Asp	Phe	Lys	Gly	Leu 315	Leu	Glu	Gly	Ser	Asp 320	Glu	Met
0	Leu	Tyr	Ile 325	Ser	Lys	Val	Ile	Gln 330	Lys	Ala	Phe	Ile	Glu 335	Val
. 5	Asn	Glu	Glu	Gly 340	Ala	Glu	Ala	Ala	Ala 345	Ala	Thr	Ala	Thr	Phe 350
	Met	Val	Thr	Tyr	Glu 355	Leu	Glu	Val	Ser	Leu 360	Asp	Leu	Pro	Thr
20	Val 365	Phe	Lys	Val	Asp	His 370	Pro	Phe	Asn	Ile	Val 375	Leu	Lys	Thr
	Gly	Asp 380	Thr	Val	Ile	Phe	Asn 385							
	(2)	INE	FORM	ATION	1 FOF	R SE() ID	NO:	97:					
25		(i)	,	(A) (B)	• •									
				(-,										
		(i i	L)	• ,	ECULI	E TYI		Prot						
			L)	MOLE			PE:		cein	SEQ]	D NO): 9 7 :	:	
30	Phe 1	(xi	L)	MOLE	JENCI	E TYI	PE: SCRII	OITS	cein N: S				Asn	Lys
30	1	(xi	l) Gly	MOLE SEQU Ser	JENCI Leu 5	E TYI E DES Tyr	PE: SCRII Asn	PTION	cein N: S Val	Ala 10	Ser	Gly		
30	1 Asp 15	(xi Ala Asn	i) Gly Leu	MOLE SEQU Ser	JENCI Leu 5 Met	E TYI E DES Tyr Ser 20	PE: SCRII Asn Pro	PTION Thr Leu	cein N: S Val Ser	Ala 10 Val	Ser Gln 25	Gly Thr	Asn	Leu
	Asp 15 Ser	(xi Ala Asn Leu 30	Cly Leu Val	MOLE SEQU Ser Ile Ser	Leu 5 Met Met	E TYI E DES Tyr Ser 20 Gly	PE: SCRII Asn Pro Ala 35	Thr Leu Gly	val Ser	Ala 10 Val Asn	Ser Gln 25 Thr	Gly Thr Ala	Asn Val Thr	Leu
	Asp 15 Ser	(xi Ala Asn Leu 30	Gly Leu Val Ala 45	MOLE SEQU Ser Ile Ser	Leu 5 Met Met Leu	E TYI E DES Tyr Ser 20 Gly Arg	PE: SCRII Asn Pro Ala 35 Gln	Thr Leu Gly Pro 50	val Ser Gly	Ala 10 Val Asn Ser	Ser Gln 25 Thr	Gly Thr Ala 40 Glu	Asn Val Thr	Leu Gln Ile
35	Asp 15 Ser Ile	(xi Ala Asn Leu 30 Ala Asp	Leu Val Ala 45	MOLE SEQUE Ser Ile Ser Gly Tyr 60	JENCI Leu 5 Met Met Leu His	E TYN E DES Tyr Ser 20 Gly Arg	PE: SCRII Asn Pro Ala 35 Gln Leu	Thr Leu Gly Pro 50 Met	val Ser Gly Gln Asn 65	Ala 10 Val Asn Ser	Ser Gln 25 Thr Lys Leu	Gly Thr Ala 40 Glu Asn	Asn Val Thr Lys 55	Leu Gln Ile Gln 70
35	Asp 15 Ser Ile Gln Lys	(xi Ala Asn Leu 30 Ala Asp Gly	Cly Leu Val Ala 45 Asp	MOLE SEQUE Ser Ile Ser Gly Tyr 60	Leu 5 Met Met Leu His Leu 75	E TYN E DES Tyr Ser 20 Gly Arg Ala Glu	PE: SCRII Asn Pro Ala 35 Gln Leu Ile	Thr Leu Gly Pro 50 Met	val Ser Gly Gln Asn 65 Asn	Ala 10 Val Asn Ser Thr	Ser Gln 25 Thr Lys Leu Val	Gly Thr Ala 40 Glu Asn	Asn Val Thr Lys 55 Thr	Leu Gln Ile Gln 70 Met
35	Asp 15 Ser Ile Gln Lys	(xi Ala Asn Leu 30 Ala Asp Gly Gly	Cly Leu Val Ala 45 Asp Val	MOLE SEQUE Ser Ile Ser Gly Tyr 60 Thr	Leu His Leu 75	E TYI E DES Tyr Ser 20 Gly Arg Ala Glu Lys 90	PE: SCRIN Asn Pro Ala 35 Gln Leu Ile Pro	Thr Leu Gly Pro 50 Met Ala	Val Ser Gly Gln Asn 65 Asn	Ala 10 Val Asn Ser Thr Lys 80 Lys	Ser Gln 25 Thr Lys Leu Val Glu 95	Gly Thr Ala 40 Glu Asn Tyr	Asn Val Thr Lys 55 Thr	Leu Gln Ile Gln 70 Met

-171-

	Lys	Thr	His	Asp 130	Lys	Ile	His	Asp	Leu 135	Ile	Lys	Ala	Gly	Asp 140
5	Leu	Asp	Gln	Asp	Ser 145	Arg	Met	Val	Leu	Val 150	Asn	Ala	Leu	Туг
	Phe 155	Lys	Gly	Leu	Trp	Glu 160	Lys	Gln	Phe	Lys	Lys 165	Glu	Asn	Thr
.0	Gln	Asp 170	Lys	Pro	Phe	Tyr	Val 175	Thr	Glu	Thr	Glu	Thr 180	Lys	Asn
.5	Val	Arg	Met 185	Met	His	Ile	Lys	Asp 190	Lys	Phe	Arg	Tyr	Gly 195	Glu
	Phe	Glu	Glu	Leu 200	Asp	Ala	Lys	Ala	Val 205	Glu	Leu	Pro	Tyr	Arc 210
20	Asn	Ser	Asp	Leu	Ala 215	Met	Leu	Ile	Ile	Leu 220	Pro	Asn	Ser	Lys
	Thr 225	Gly	Leu	Pro	Ala	Leu 230	Glu	Glu	Lys	Leu	Gln 235	Asn	Val	Asp
25	Leu	Gln 240	Asn	Leu	Thr	Gln	Arg 245	Met	Tyr	Ser	Val	Glu 250	Val	Ile
, 30	Leu	Asp	Leu 255	Pro	Lys	Phe	Lys	Ile 260	Glu	Ser	Glu	Ile	Asn 265	Let
, ,	Asn	Asp	Pro	Leu 270	Lys	Lys	Leu	Gly	Met 275	Ser	Asp	Met	Phe	Val 280
35	Pro	Gly	Lys	Ala	Asp 285	Phe	Lys	Gly	Leu	Leu 290	Glu	Gly	Ser	Asp
	Glu 295	Met	Leu	Tyr	Ile	Ser 300	Lys	Val	Ile	Gln	Lys 305	Ala	Phe	Ile
10	Glu	Val 310	Asn	Glu	Glu	Gly	Ala 315	Glu	Ala	Ala	Ala	Ala 320	Thr	Gly
	Ile	Val	Met 325	Leu	Gly	Cys	Суз	Met 330	Pro	Met	Met	Asp	Leu 335	Sei
45	Pro	Val	Val	Phe 340	Asn	Ile	Asp	His	Pro 345	Phe	Tyr	Tyr	Ser	Let 350
	Met		Trp											
	(2)	IN	FORM	ATIO	N FO	R SE	Q ID	NO:	98:					
F 0		/ 2		CEO	יאמוני	е Сп.	א סא מי	ד סים יד	פיידר	g .				

- SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 356 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear 50 (i)

 - MOLECULE TYPE: Protein (ii)

	(xi)			SEQUENCE DESCRIPTION: SEQ ID NO:98:										
	Phe 1	Ala	Gly	Ser	Leu 5	Tyr	Asn	Thr	Val	Ala 10	Ser	Gly	Asn	Lys
5	Asp 15	Asn	Leu	Ile	Met	Ser 20	Pro	Leu	Ser	Val	Gln 25	Thr	Val	Leu
	Ser	Leu 30	Val	Ser	Met	Gly	Ala 35	Gly	Gly	Asn	Thr	Ala 40	Thr	Glr
10	Ile	Ala	Ala 45	Gly	Leu	Arg	Gln	Pro 50	Gln	Ser	Lys	Glu	Lys 55	Ιlε
15	Gln	Asp	Asp	Туr 60	His	Ala	Leu	Met	Asn 65	Thr	Leu	Asn	Thr	Glr 70
13	Lys	Gly	Val	Thr	Leu 75	Glu	Ile	Ala	Asn	Lys 80	Val	Tyr	Val	Met
20	Glu 85	Gly	Tyr	Thr	Leu	Lys 90	Pro	Thr	Phe	Lys	Glu 95	Val	Ala	Thr
	Asn	Lys 100	Phe	Leu	Ala	Gly	Ala 105	Glu	Asn	Leu	Asn	Phe 110	Ala	Glr
25	Asn	Ala	Glu 115	Ser	Ala	Lys	Val	Ile 120	Asn	Thr	Trp	Val	Glu 125	Glu
2.0	Lys	Thr	His	Asp 130	Lys	Ile	His	Asp	Leu 135	Ile	Lys	Ala	Gly	Asp 140
30	Leu	Asp	Gln	Asp	Ser 145	Arg	Met	Val	Leu	Val 150	Asn	Ala	Leu	Туз
35	Phe 155	Lys	Gly	Leu	Trp	Glu 160	Lys	Gln	Phe	Lys	Lys 165	Glu	Asn	Thi
	Gln	Asp 170	Lys	Pro	Phe	туг	Val 175	Thr	Glu	Thr	Glu	Thr 180	Lys	Asr
40	Val	Arg	Met 185	Met	His	Ile	Lys	Asp 190	Lys	Phe	Arg	Tyr	Gly 195	Glı
4.5	Phe	Glu	Glu	Leu 200	Asp	Ala	Lys	Ala	Val 205	Glu	Leu	Pro	Tyr	Arg 210
45	Asn	Ser	Asp	Leu	Ala 215	Met	Leu	Ile	Ile	Leu 220	Pro	Asn	Ser	Lys
50	Thr 225	Gly	Leu	Pro	Ala	Leu 230	Glu	Glu	Lys	Leu	Gln 235	Asn	Val	Ası
	Leu	Gln 240		Leu	Thr	Gln	Arg 245	Met	Tyr	Ser	Val	Glu 250	Val	Ile
55	Leu	Asp	Leu 255		Lys	Phe	Lys	Ile 260	Glu	Ser	Glu	Ile	Asn 265	Le
	Asn	Asp	Pro	Leu 270		Lys	Leu	Gly	Met 275	Ser	Asp	Met	Phe	Va 28
60														

Pro Gly Lys Ala Asp Phe Lys Gly Leu Leu Glu Gly Ser Asp Glu Val Asn Glu Val Asn Glu Gly Ser Asp 310

Val Met Leu Met Met Arg Cys Met Bro Met Met Pro Met Met Pro Met Ala 335

Phe Asn Ala Glu His Pro Phe Leu Tyr Phe Leu His Ser Lys 350

Asn Ser Val Leu Phe Asn 355

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. It is to be expressly understood, however, that such modifications and adaptations are within the scope of the present invention, as set forth in the following claims.

What is claimed is:

- 1. An isolated nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* serine protease inhibitor gene.
- An isolated nucleic acid molecule selected from the group consisting of: a nucleic acid molecule comprising a nucleic acid sequence selected from the group 5 consisting of SEO ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEO ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID 10 NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEO ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence selected from the 15 group consisting of SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90; and a nucleic acid molecule comprising an allelic variant of a nucleic acid molecule comprising any of said nucleic acid sequences.
- 3. An isolated protein encoded by a nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* serine protease inhibitor gene.
- 4. An isolated flea protein selected from the group consisting of: a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97 and SEQ ID NO:98; and a protein encoded by an allelic variant of a nucleic acid molecule encoding a protein comprising any of said amino acid sequences.

WO 98/20034 PCT/US97/20678

- 5. A therapeutic composition that, when administered to an animal, reduces hematophagous ectoparasite infestation, said therapeutic composition comprising a protective compound selected from the group consisting of: an isolated flea serine protease inhibitor protein; a mimetope of a flea serine protease inhibitor protein; an isolated nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* serine protease inhibitor gene; an isolated antibody that selectively binds to a flea serine protease inhibitor protein; and an inhibitor of serine protease inhibitor activity identified by its ability to inhibit the activity of a flea serine protease inhibitor protein.
- 10 6. An inhibitor of serine protease inhibitor protein activity identified by its ability to inhibit the activity of a flea serine protease inhibitor protein.
 - 7. A mimetope of a flea serine protease inhibitor protein identified by its ability to inhibit flea serine protease activity.

15

20

25

- 8. A method to reduce hematophagous ectoparasite infestation comprising administering to an animal a therapeutic composition comprising a protective compound selected from the group consisting of: an isolated flea serine protease inhibitor protein; a mimetope of a flea serine protease inhibitor protein; an isolated nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* serine protease inhibitor gene; an isolated antibody that selectively binds to a flea serine protease inhibitor protein; and an inhibitor of serine protease inhibitor activity identified by its ability to inhibit the activity of a flea serine protease inhibitor protein.
 - 9. A method to produce a flea serine protease inhibitor protein, said method comprising culturing a cell transformed with a nucleic acid molecule that hybridizes under stringent hybridization conditions with a *Ctenocephalides felis* serine protease inhibitor gene.
 - 10. A method to identify a compound capable of inhibiting flea serine protease inhibitor activity, said method comprising:
 - (a) contacting an isolated flea serine protease inhibitor protein with a putative inhibitory compound under conditions in which, in the absence of said compound, said protein has serine protease inhibitor activity; and

- (b) determining if said putative inhibitory compound inhibits said activity.
- 11. A test kit to identify a compound capable of inhibiting flea serine protease inhibitor activity, said test kit comprising an isolated flea serine protease inhibitor protein having serine protease inhibitor activity and a means for determining the extent of inhibition of said activity in the presence of a putative inhibitory compound.
- The nucleic acid molecule of Claim 1, wherein said Ctenocephalides felis 12. serine protease inhibitor gene comprises a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID 10 NO:7, SEO ID NO:9, SEO ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEO ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID 15 NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90. 20
 - 13. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule comprises a nucleic acid sequence that encodes a serine protease inhibitor protein.
 - 14. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule is a flea nucleic acid molecule.
- 25 15. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule is selected from the group consisting of Ctenocephalides, Ceratophyllus, Diamanus, Echidnophaga, Nosopsyllus, Pulex, Tunga, Oropsylla, Orchopeus and Xenopsylla nucleic acid molecules.
- 16. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule is selected from the group consisting of Ctenocephalides felis, Ctenocephalides canis, Ceratophyllus pulicidae, Pulex irritans, Oropsylla (Thrassis) bacchi, Oropsylla

10

(Diamanus) montana, Orchopeus howardi, Xenopsylla cheopis and Pulex simulans nucleic acid molecules.

- 17. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule comprises a *Ctenocephalides felis* nucleic acid molecule.
- 18. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule hybridizes under stringent hybridization conditions with a nucleic acid molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:69 and SEQ ID NO:71.
- 19. The invention of Claims 1 or 9, wherein said nucleic acid molecule is selected from the group consisting of nfSPI1₁₅₈₄, nfSPI1₁₁₉₁, nfSPI1₃₇₆, nfSPI2₁₃₅₈, nfSPI2₁₁₉₇, nfSPI2₃₇₆, nfSPI3₁₈₃₈, nfSPI3₁₂₆₀, nfSPI3₃₉₁, nfSPI4₁₄₁₄, nfSPI4₁₁₇₉, nfSPI4₃₇₆, nfSPI5₁₄₉₂, nfSPI5₁₁₉₄, nfSPI5₃₇₆, nfSPI6₁₄₅₄, nfSPI6₁₁₉₁, nfSPI6₃₇₆, nfSPI7₅₄₉, nfSPI8₅₄₉, nfSPI9₅₈₁, nfSPI10₆₅₄, nfSPI11₆₇₀, nfSPI12₇₀₆, nfSPI13₆₂₃, nfSPI14₇₃₁, nfSPI15₆₈₅, nfSPI3₁₂₂₂, nfSPI6₁₁₅₅, nfSPI2₁₀₆₅, nfSPI4₁₀₇₀, nfSPIC4:V7₁₁₆₈, nfSPIC4:V8₁₂₂₂, nfSPIC4:V9₁₁₇₄, nfSPIC4:V10₁₁₅₉, nfSPIC4:V12₁₁₇₁, nfSPIC4:V13₁₁₇₁, and nfSPIC4:V15₁₁₇₉.
- 20. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule is selected from the group consisting of: a nucleic acid molecule comprising a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33. SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:59, SEO ID NO:60, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:65, SEQ ID

NO:66, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78, SEQ ID NO:81, a nucleic acid sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90; and a nucleic acid molecule comprising an allelic variant of any of said nucleic acid molecules.

- 21. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule encodes a protein comprising an amino acid sequence that is at least about 40% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:8, SEQ ID NO:14, SEQ ID NO:20, SEQ ID NO:26, SEQ ID NO:32, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90.
- 22. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule hybridizes under stringent hybridization conditions with a nucleic acid sequence encoding a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90.
- The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule is selected from the group consisting of: a nucleic acid molecule comprising a nucleic acid sequence that encodes a protein having an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89 and SEQ ID NO:90; and a nucleic acid molecule comprising an allelic variant of a nucleic acid sequence encoding
 a protein comprising any of said amino acid sequences.

20

25

- 24. The nucleic acid molecule of Claim 1, wherein said nucleic acid molecule comprises an oligonucleotide.
- 25. A recombinant molecule comprising a nucleic acid molecule as set forth in Claim 1 operatively linked to a transcription control sequence.
- 5 26. A recombinant virus comprising a nucleic acid molecule as set forth in Claim 1.
 - 27. A recombinant cell comprising a nucleic acid molecule as set forth in Claim 1.
- 28. The protein of Claim 3, wherein said nucleic acid molecule hybridizes under stringent hybridization conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:9, SEQ ID NO:15, SEQ ID NO:21, SEQ ID NO:27, and SEQ ID NO:33, SEQ ID NO:47, SEQ ID NO:50, SEQ ID NO:53, SEQ ID NO:56, SEQ ID NO:59, SEQ ID NO:62, SEQ ID NO:65, SEQ ID NO:68 and SEQ ID NO:71.
 - 29. The protein of Claim 3, wherein said protein, when administered to an animal, elicits an immune response against a serine protease inhibitor protein.
 - 30. The protein of Claim 3, wherein said protein is a flea protein.
 - 31. The protein of Claim 3, wherein said protein is selected from the group consisting of: a protein encoded by a nucleic acid molecule having a nucleic acid sequence selected from the group consisting of: SEQ ID NO:1, SEQ ID NO:4, SEQ ID NO:7, SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ IS NO:22, SEQ ID NO:25, SEQ ID NO:28, SEQ ID NO:31, SEQ ID NO:34, SEQ ID NO:45, SEQ ID NO:48, SEQ ID NO:51, SEQ ID NO:54, SEQ ID NO:57, SEQ ID NO:60, SEQ ID NO:63, SEQ IS NO:66, SEQ ID NO:69, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:78 and SEQ ID NO:81; and a protein encoded by a nucleic acid molecule comprising an allelic variant of a nucleic acid molecule comprising any of said nucleic acid sequences.
 - 32. The protein of Claim 3, wherein said protein is selected from the group consisting of: a protein comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:24, SEQ ID NO:26, SEQ ID

NO:30, SEQ ID NO:32, SEQ ID NO:36, SEQ ID NO:46, SEQ ID NO:49, SEQ ID NO:52, SEQ ID NO:55, SEQ ID NO:58, SEQ ID NO:61, SEQ ID NO:64, SEQ ID NO:67, SEQ ID NO:70, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97 and SEQ ID NO:98; and a protein encoded by an allelic variant of a nucleic acid molecule encoding a protein comprising any of said amino acid sequences.

- 33. An isolated antibody that selectively binds to a protein as set forth in Claims 3 or 4.
- 34. The invention of Claims 5 or 8, wherein said flea serine protease inhibitor protein comprises a peptide of a flea serine protease inhibitor protein capable of inhibiting serine protease activity.
 - 35. The invention of Claims 5 or 8, wherein said composition further comprises a component selected from the group consisting of an excipient, an adjuvant, and a carrier.
 - 36. The invention of Claims 5 or 8, wherein said composition further comprises a compound that reduces hematophagous ectoparasite burden by a method other than by reducing flea serine protease inhibitor activity.

15

20

- 37. The invention of Claims 5 or 8, wherein said protective compound is selected from the group consisting of a naked nucleic acid vaccine, a recombinant virus vaccine and a recombinant cell vaccine.
- 38. The invention of Claims 5 or 6 or 8, wherein said inhibitor of serine protease inhibitor protein activity comprises a substrate analog of a flea serine protease inhibitor protein.
- 39. The invention of Claims 6, wherein said inhibitor comprises a peptidomimetic compound.
 - 40. The mimetope of Claim 7, wherein said mimetope comprises a peptidomimetic compound.
 - 41. The method of Claim 8, wherein said hematophagous ectoparasite is a flea.

- 42. The method of Claim 8, wherein said flea is of a genus selected from the group consisting of Ctenocephalides, Ceratophyllus, Diamanus, Echidnophaga, Nosopsyllus, Pulex, Tunga, Oropsylla, Orchopeus and Xenopsylla.
- 43. The method of Claim 8, wherein said flea is of a species selected from the group consisting of Ctenocephalides felis, Ctenocephalides canis, Ceratophyllus pulicidae, Pulex irritans, Oropsylla (Thrassis) bacchi, Oropsylla (Diamanus) montana, Orchopeus howardi, Xenopsylla cheopis and Pulex simulans.
 - 44. The method of Claim 8, wherein said animal is selected from the group consisting of adult hematophagous ectoparasites, hematophagous ectoparasite larvae and animals susceptible to hematophagous ectoparasite infestation.
 - 45. The method of Claim 8, wherein said animal is selected from the group consisting of adult fleas, flea larvae and animals susceptible to flea infestation.
 - 46. The method of Claim 8, wherein said animal is selected from the group consisting of mammals and birds.
- 15 47. The method of Claim 8, wherein said animal is selected from the group consisting of felids and canids.
 - 48. The method of Claim 9, wherein said cell is selected from the group consisting of *E.coli*HB:pλP_R-nfSPI2₁₁₃₉, *E.coli*HB:pλP_R-nfSPI3₁₁₇₉, *E.coli*HB:pλP_R-nfSPI4₁₁₄₀, *E.coli*HB:pλP_R-nfSPI5₁₄₉₂, *E.coli*HB:pλP_R-nfSPI6₁₁₃₆, *E.coli*:pλP_R-nfSPIC4:V7₁₁₆₈, *E.coli*:pλP_R-nfSPIC4:V8₁₂₂₂, *E.coli*:pλP_R-nfSPIC4:V9₁₁₇₄, *E.coli*:pλP_R-nfSPIC4:V10₁₁₅₉, *E.coli*:pλP_R-nfSPIC4:V12₁₁₇₁, *E.coli*:pλP_R-nfSPIC4:V13₁₁₇₁, *E.coli*:pλP_R-nfSPIC4:V13₁₁₇₁, *E.coli*:pλP_R-nfSPIC4:V15₁₁₇₉, *S. frugiperda*:pVL-nfSPI3₁₂₂₂, *S. frugiperda*:pVL-nfSPI6₁₁₅₅, *S. frugiperda*:pAcG-nfSPI2₁₀₆₅ and *S. frugiperda*:pAcG-nfSPI4₁₀₇₀.

1/1

Fig. 1