Multilevel Workshop

Andrew Grogan-Kaylor

2025-10-02

Table of contents

1		oduction	5
	1.1	Background	5
	1.2	Simulated Multilevel Data	5
2	Two	Level Cross Sectional; And Three Level Longitudinal Models	7
	2.1	Cross Sectional Model	7
		2.1.1 Get Data	7
		2.1.2 The Equation	7
		2.1.3 Descriptive Statistics	7
		2.1.4 Spaghetti Plot	8
		2.1.5 Unconditional Model	8
		2.1.6 Conditional Model	10
	2.2	Longitudinal Model	11
		2.2.1 Get Data	11
		2.2.2 The Equation	11
		2.2.3 Descriptive Statistics	11
		2.2.4 Alternate Plot	12
		2.2.5 Unconditional Model	12
		2.2.6 Conditional Model	13
	2.3	Nice Table of Results	14
	2.4	QUESTIONS???	15
3	Cros	ss-Classified Models	16
•	3.1	Introduction	16
	3.2	Get Data	16
	3.3	Cross Classified Model	16
	0.0	3.3.1 Standard (Less Computationally Efficient) Syntax	16
		3.3.2 Cross Classified With Computationally Efficient Syntax	17
	3.4	Three Level Model	18
	3.5	Nice Table of Results of Three Level and Cross Classified Model	20
	3.6	Verification of Syntax Equivalence for Cross Classified Model	$\frac{20}{20}$
	3.7	QUESTIONS???	
	U.1	W.O.D.D.I.O.I.O.I.I	$ \perp$ \perp

List of Figures

2.1	Spaghetti Plot of Outcome by Warmth by Country	8
2.2	Alternate Plot of Outcome by Time by Individual; First 10 Observations	12

List of Tables

1.1	Variables in Simulated Multilevel Data	,
1.1	Variables in Simulated Multilevel Data	(
1.2	Sample Data From Simulated Multilevel Data	(

1 Introduction

This site contains materials for a workshop on multilevel modeling.

1.1 Background

Multilevel models are useful when you have data that are nested or clustered inside social units such as schools, neighborhoods, states, or countries.

Multilevel models are also useful when you have longitudinal data where repeated measures are collected for study participants.

1.2 Simulated Multilevel Data

The data used in these workshop materials are *simulated* data on parents, children and families. The data are simulated to come from 30 hypothetical countries around the world. These are the same data used and discussed in my book *Multilevel Thinking: Discovering Variation*, *Universals*, and *Particulars in Cross-Cultural Research*.

There are two versions of the data: a *cross-sectional* data set from a single point in time; a *longitudinal* version of the data spanning several time points.

The Data Can Be Downloaded Here:

- Cross Sectional Data
- Longitudinal Data

Table 1.1: Variables in Simulated Multilevel Data

pos	variable	label
1	country	country id
2	HDI	Human Development Index
3	family	family id
4	id	unique country family id

Table 1.1: Variables in Simulated Multilevel Data

pos	variable	label
5	identity	hypothetical identity group variable
6	intervention	recieved intervention
7	physical_punishment	physical punishment in past week
8	${ m warmth}$	parental warmth in past week
9	outcome	beneficial outcome

Table 1.2: Sample Data From Simulated Multilevel Data

country	HDI	family	id	identity	intervention	physical_	punishmeentrmth	outcome
22	86	90	22.90	1	1	5	3	52.73
2	83	20	2.20	1	0	2	3	56.6
26	71	83	26.83	1	1	0	2	46.99
19	72	69	19.69	1	1	4	2	46.72
17	87	71	17.71	1	0	3	6	57.26

2 Two Level Cross Sectional; And Three Level Longitudinal Models

2.1 Cross Sectional Model

2.1.1 **Get Data**

use "simulated_multilevel_data.dta", clear

2.1.2 The Equation

 $\text{outcome}_{ij} = \beta_0 + \beta_1 \text{parental warmth} + \beta_2 \text{physical punishment} + \beta_3 \text{time} +$

$$\beta_4 {\rm identity}_2 + \beta_5 {\rm intervention} + \beta_6 HDI +$$

$$u_{0j} + u_{1j} \times \text{parental warmth} + e_{ij}$$

2.1.3 Descriptive Statistics

summarize // descriptive statistics

Variable	Obs	Mean	Std. dev.	Min	Max
country	3,000	15.5	8.656884	1	30
HDI	3,000	64.76667	17.24562	33	87
family	3,000	50.5	28.87088	1	100
id	0				
identity	3,000	.4976667	.5000779	0	1

	-+					
intervention	İ	3,000	.4843333	.4998378	0	1
physical_p~t	1	3,000	2.478667	1.360942	0	5
warmth		3,000	3.521667	1.888399	0	7
outcome	1	3,000	52.43327	6.530996	29.60798	74.83553

2.1.4 Spaghetti Plot

```
spagplot outcome warmth, id(country) scheme(stcolor)
graph export spagplot1.png, width(1000) replace
```


Figure 2.1: Spaghetti Plot of Outcome by Warmth by Country

2.1.5 Unconditional Model

2.1.5.1 Model

```
mixed outcome || country: // unconditional model
```

Performing EM optimization ...

Performing gradient-based optimization: Iteration 0: Log likelihood = -9802.8371 Iteration 1: Log likelihood = -9802.8371

Computing standard errors ...

Mixed-effects ML regression Group variable: country	Number of obs = 3,000 Number of groups = 30 Obs per group: min = 100 avg = 100.0 max = 100
Log likelihood = -9802.8371	Wald chi2(0) = . Prob > chi2 = .
outcome Coefficient Std. err. z P> z	[95% conf. interval]
_cons 52.43327 .3451217 151.93 0.000	51.75685 53.1097
Random-effects parameters Estimate Std. err	[95% conf. interval]
country: Identity var(_cons) 3.178658 .9226737	1.799552 5.614658
var(Residual) 39.46106 1.024013	
LR test vs. linear model: chibar2(01) = 166.31	Prob >= chibar2 = 0.0000
2.1.5.2 ICC	
estat icc	
Intraclass correlation	

Level | ICC Std. err. [95% conf. interval]

country | .0745469 .0201254 .0434963 .1248696

2.1.6 Conditional Model

```
mixed outcome warmth physical_punishment identity i.intervention HDI || country: warmth // me
est store crosssectional // store estimates
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -9626.6279
Iteration 1: Log likelihood = -9626.607
Iteration 2: Log likelihood = -9626.607

Computing standard errors ...

Mixed-effects ML regression

Group variable: country

Number of obs = 3,000

Number of groups = 30

Obs per group:

min = 100 avg = 100.0

max = 100Wald chi2(5) = 334.14
Prob > chi2 = 0.0000

Log likelihood = -9626.607

outcome | Coefficient Std. err. z P>|z| [95% conf. interval]

warmth | .8345368 .0637213 13.10 0.000 .7096453 .9594282

physical_punishment | -.9916657 .0797906 -12.43 0.000 -1.148052 -.8352791

identity | -.3004767 .2170295 -1.38 0.166 -.7258466 .1248933

1.intervention | .6396427 .2174519 2.94 0.003 .2134448 1.065841

HDI | -.003228 .0199257 -0.16 0.871 -.0422817 .0358256

_cons | 51.99991 1.371257 37.92 0.000 49.3123 54.68753

 var(Residual) | 34.97499 .9097109 33.23668 36.80422

LR test vs. linear model: chi2(2) = 205.74 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

2.2 Longitudinal Model

2.2.1 Get Data

use "simulated_multilevel_longitudinal_data.dta", clear

2.2.2 The Equation

 $\text{outcome}_{ij} = \beta_0 + \beta_1 \text{parental warmth} + \beta_2 \text{physical punishment} + \beta_3 \text{time} +$

$$\beta_4$$
identity₂ + β_5 intervention + $\beta_5 HDI$ +

$$u_{0j} + u_{1j} \times \text{parental warmth} +$$

$$v_{0i} + v_{1i} \times t + e_{ij}$$

2.2.3 Descriptive Statistics

summarize // descriptive statistics

Variable	Obs	Mean	Std. dev.	Min	Max
country	9,000	15.5	8.655922	1	30
HDI	9,000	64.76667	17.2437	33	87
family	9,000	50.5	28.86767	1	100
id	0				

identity		9,000	.4976667	.5000223	0	1
intervention		9,000	. 4843333	.4997823	0	1
t	1	9,000	2	.8165419	1	3
physical_p~t	1	9,000	2.485333	1.373639	0	5
warmth	1	9,000	3.514222	1.8839	0	7
outcome	1	9,000	53.37768	6.572285	29.60798	79.02199

2.2.4 Alternate Plot

```
encode id, generate(idNUMERIC) // numeric version of id

* spagplot outcome t if idNUMERIC <= 10, id(idNUMERIC) scheme(stcolor)

twoway (lfit outcome t) (scatter outcome t) if idNUMERIC <= 10, by(idNUMERIC) scheme(stcolor)

graph export spagplot2.png, width(1000) replace</pre>
```


Figure 2.2: Alternate Plot of Outcome by Time by Individual; First 10 Observations

2.2.5 Unconditional Model

2.2.5.1 Model

```
mixed outcome || country: || id: // unconditional model
```

2.2.5.2 ICC

estat icc

Intraclass correlation

	l ICC		[95% conf.	_
country	.0748336 .3462837	.0190847	.0450028 .3134867	.1219141 .3806097

2.2.6 Conditional Model

```
mixed outcome t warmth physical_punishment i.identity i.intervention HDI || country: warmth
est store longitudinal // store estimates
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -28523.49
Iteration 1: Log likelihood = -28499.987
Iteration 2: Log likelihood = -28499.739
Iteration 3: Log likelihood = -28499.604
Iteration 4: Log likelihood = -28499.603

Computing standard errors ...

Mixed-effects ML regression

Number of obs = 9,000

Grouping information

	No. of	Obser	vations per	group
Group variable	groups	Minimum	Average	Maximum
country	30	300	300.0	300

id	3,000	3	3.0	3

Wald chi2(6) = 1096.15Log likelihood = -28499.603 Prob > chi2 = 0.0000

outcome		Coefficient		err.		z)> z		[95% conf	interva	al]
+												
t		.943864	.065	8716	1	4.33	(0.000		.814758	1.072	297
warmth		.9134959	.042	3732	2	1.56	(0.000		.830446	.99654	459
physical_punishment		-1.007897	.049	7622	-2	0.25	(0.000	_	1.105429	91036	647
1.identity $ $		1276926	.151	5835	-	0.84	(.400	_	.4247908	.16940	057
1.intervention $ $.8589966	. 151	9095		5.65	(0.000		.5612596	1.156	734
HDI	l	0005657	.019	6437	-	0.03	(.977	-	.0390666	.03793	352
_cons	l	50.46724	1.33	8318	3	7.71	C	0.000		47.84418	53.090	029

Random-effects parameters			2 - 70	interval]
country: Independent				
var(warmth)	.0107586	.0127845	.0010478	.1104703
var(_cons)			1.798154	5.578181
id: Independent				
var(t)	3.58e-09	7.06e-07	3.5e-177	3.7e+159
var(_cons)		.4724188	7.510631	9.366242
var(Residual)			25.11211 	26.97592
LR test vs. linear model: chi2	(4) = 1247.03	3	Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

2.3 Nice Table of Results

```
etable, estimates(crosssectional longitudinal) ///
showstars showstarsnote /// show stars and note
column(estimate) // column is modelname
```

	crosssecti	ional	longitud	inal
parental warmth in past week	0.835	**	0.913	**
	(0.064)		(0.042)	
physical punishment in past week	-0.992	**	-1.008	**
	(0.080)		(0.050)	
hypothetical identity group variable	-0.300			
	(0.217)			
recieved intervention				
1	0.640	**	0.859	**
	(0.217)		(0.152)	
Human Development Index	-0.003		-0.001	
	(0.020)		(0.020)	
time			0.944	**
			(0.066)	
hypothetical identity group variable				
1			-0.128	
			(0.152)	
Intercept	52.000	**	50.467	**
	(1.371)		(1.338)	
var(warmth)	0.023		0.011	
	(0.026)		(0.013)	
<pre>var(_cons)</pre>	2.964		3.167	
	(0.974)		(0.915)	
var(e)	34.975		26.027	
	(0.910)		(0.475)	
<pre>var(_cons)</pre>			8.387	
			(0.472)	
var(t)			0.000	
			(0.000)	

^{**} p<.01, * p<.05

2.4 QUESTIONS???

Number of observations

3000

9000

3 Cross-Classified Models

3.1 Introduction

A two level multilevel model imagines that *Level 1* units are nested in *Level 2* units. A three level multilevel model imagines that *Level 1* units are nested in *Level 2* units, which are in turn nested in *Level 3*.

A cross-classified model imagines that the nesting is not hierarchical, but rather that there are two sets of clusters or nestings in which individuals may be nested.

3.2 Get Data

use "simulated_multilevel_longitudinal_data.dta", clear

3.3 Cross Classified Model

We can treat these random effects as being cross classified.

This might be useful if we had data where individuals lived in different countries at different times.

However, because id is in fact nested inside country, in this case, estimating the random effects as cross classified will be more time consuming, but will give us equivalent results to a three level model.

3.3.1 Standard (Less Computationally Efficient) Syntax

The below syntax will take a very long time to run with the full sample, and thus we have commented it out.

```
* mixed outcome t warmth physical_punishment || _all: R.country || _all: R.id
* est store crossed1
```

The documentation notes that we can use a *much* more computationally efficient version of the above command, which is what we do in these notes. The user can verify that both versions of the command will produce equivalent results.

In fact, at the end of handout we verify the similarity of both sets of syntax using a random sample.

3.3.2 Cross Classified With Computationally Efficient Syntax

```
mixed outcome t warmth physical_punishment || _all: R.country || id:
est store crossed2 // store crossed effects result
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -28516.314
Iteration 1: Log likelihood = -28516.277
Iteration 2: Log likelihood = -28516.277

Computing standard errors ...

Mixed-effects ML regression

Number of obs = 9,000

Grouping information

Group variable	No. of	Obser	vations per	group
	groups	Minimum	Average	Maximum
_all id	1 3,000	9,000	9,000.0	9,000

Wald chi2(3) = 1168.69Prob > chi2 = 0.0000

Log likelihood = -28516.277

outcome	•	Coefficient			• •	[95% conf.	_
t		.9434605	.065866	14.32	0.000	.8143654	1.072556
warmth		.9053924	.0380439	23.80	0.000	.8308277	.9799572
physical_punishment		-1.014385	.0499354	-20.31	0.000	-1.112257	916514
_cons		50.8301	.4123007	123.28	0.000	50.022	51.63819

Random-effects parameters				_
_all: Identity var(R.country)	 3.429974	.930313	2.015668	5.836634
id: Identity	8.608872	. 4757699	7.725107	9.59374
var(Residual)	•		25.11363	26.97695
LR test vs. linear model: chi	12(2) = 1260.8	4	Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

3.4 Three Level Model

```
mixed outcome t warmth physical_punishment || country: || id: // 3 level w/ random intercept
est store threelevel // store random intercept model
```

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -28516.314
Iteration 1: Log likelihood = -28516.277
Iteration 2: Log likelihood = -28516.277

Computing standard errors ...

Mixed-effects ML regression

Number of obs = 9,000

Grouping information

Group variable	No. of groups	Obser Minimum	rvations per Average	group Maximum
country id	30 3,000	300 3	300.0	300

Log likelihood = -28516.277

Wald chi2(3) = 1168.69Prob > chi2 = 0.0000

outcome	Coefficient			P> z		interval]
t	•	.065866	14.32		.8143654	1.072556
warmth	.9053924	.0380439	23.80	0.000	.8308277	.9799572
physical_punishment	-1.014385	.0499354	-20.31	0.000	-1.112257	916514
_cons	50.8301	.4123007	123.28	0.000	50.022	51.63819

Random-effects paramet					
country: Identity	ons)	3.429974	.930313	2.015668	5.836634
id: Identity	ons)	8.608872	. 4757699	7.725107	9.59374
		26.02862		25.11363	26.97695
LR test vs. linear model	: chi2(2	2) = 1260.84		Prob > chi	2 = 0.0000

Note: LR test is conservative and provided only for reference.

3.5 Nice Table of Results of Three Level and Cross Classified Model

```
etable, estimates(threelevel crossed2), ///
showstars showstarsnote /// show stars and note
column(estimate) // column is modelname

invalid 'showstars'
r(198);
```

3.6 Verification of Syntax Equivalence for Cross Classified Model

```
keep if family <= 5 // random sample of families
quietly mixed outcome t warmth physical_punishment || _all: R.country || _all: R.id
est store crossed1A // less efficient syntax
quietly mixed outcome t warmth physical_punishment || _all: R.country || id:
est store crossed2A // more efficient syntax
etable, estimates(crossed1A crossed2A) ///
showstars showstarsnote /// show stars and note
column(estimate) // column is modelname</pre>
```

(8,550 observations deleted)

-----crossed1A crossed2A

time	0.745	**	0.745	**
	(0.281)		(0.281)	
parental warmth in past week	0.871	**	0.871	**
	(0.160)		(0.160)	
physical punishment in past week	-1.262	**	-1.262	**
	(0.206)		(0.206)	
Intercept	51.755	**	51.755	**
	(1.009)		(1.009)	
<pre>var(R_country)</pre>	2.245		2.245	
	(1.319)		(1.319)	
<pre>var(R_id)</pre>	5.425			
	(1.843)			
var(e)	23.638		23.638	
	(1.933)		(1.933)	
var(_cons)			5.425	
			(1.843)	
Number of observations	450		450	

^{**} p<.01, * p<.05

3.7 QUESTIONS???