CS 241, Lecture 11 - Top Down Parsing, First and Follow

Thurs, Feb 14, 2019

1 Top Down Parsing

- Given a CFG G = (N, Σ, P, S) and a terminal string w ∈ Σ*, we want to find the derivation
 - the steps s.t. S ⇒ · · · ⇒ w or prove that w ∉ L(G) (just throw an error if so).
- Top-down parsing says start from S and try to get to w.
- Bottom-up parsing says says to start with w and try to see how we could get to w in the first place.
- We will first consider top-down parsing:
 - We start with S and store itermediate derivations in a stack, then match characters to w.
 - Use a stack to do so.
 - Every time we pop from stack, the consumed input and the reverse of the stack is equal
 to an intermediate step in our derivation.
 - We augment our grammar top include \vdash and \dashv to symbolize the beginning and end of the file, respectively. We also use S' to indicate a new start state.
 - We can see the algorithm described as follows:

Algorithm 1 Top-Down Parsing

```
1: Push S' onto the stack
 2: while stack is non-empty do
       \alpha = \mathsf{pop} \ \mathsf{from} \ \mathsf{stack}
       if \alpha \in N \cup \{S'\} then
 4:
           Push symbols of \beta of a valid production rule \alpha \to \beta in reverse order on the
           stack (note derivation)
       else
           c = read_char()
 7:
           if c \neq \alpha then
8:
              Reject
9:
10:
           end if
       end if
11:
12: end while
13: if read_char() = EOF then
        Accept
14:
15: else
       Reject
16:
17: end if
```

- For example:

$$S \to AcB(1)$$

$$A \to ab(2)$$

$$A \to ff(3)$$

$$B \to def(4)$$

$$B \to ef(5)$$

Determine if $w = abcdef \in L(G)$. We add a rule:

$$S' \rightarrow \vdash S \dashv (0)$$

We want to look for $w = \vdash abcdef \dashv in this augmented grammar.$ This gives us the following parse table:

Stack	Read	Processing	Action
S'	ϵ	⊢ abcdef ⊣	Pop S', push \dashv , \vdash (Rule 0)
$\exists S \vdash$	ϵ	⊢ abcdef ⊣	Match ⊢
\dashv S	⊢	abcdef ⊢	Pop S, push B, c, A (Rule 1)
\dashv BcA	⊢	abcdef ⊢	Pop A, push b, a (Rule 2)
∃ Bcba	⊢	abcdef ⊢	Match a
\dashv Bcb	⊢ a	bcdef ⊢	Match b
\dashv Bc	⊢ ab	cdef ⊢	Match c
$\dashv B$	⊢ abc	def ⊣	Pop B, push f, e, d (Rule 4)
\dashv fed	⊢ abc	def ⊣	Match d
⊢ fe	⊢ abcd	ef ⊣	Match e
$\dashv f$	⊢ abcde	f⊢	Match f
\dashv	⊢ abcdef	-	Match ⊢
ϵ	⊢ abcdef ⊣	ϵ	Accept, as stack = input = ϵ

- When we popped A, we had multiple possible choices which rule would we use?
- We construct a predictor table, using a single character that we look at, to tell us which
 rule to use. For our example, for A, if we see an a, then we use rule 2; if we see a f
 then use rule 3.
- But this won't work if we have an element that contains more than one other element for example, if we add a new rule $A \rightarrow adf$.

2 First and Follow

- A LL(1) grammar is one that each cell of the predictor tables contains at most **one** entry.
- With an LL(1) grammar, we can drop the set notation from the predictor table.
- We call it LL(1) as:
 - First L: Scan left to right
 - Second L: Leftmost derivations
 - Number of symbols in lookahead: 1
- Constructing the lookahead table we define four functions:
 - $Nullable(\beta)$ =true iff $\beta \Rightarrow^* \epsilon$ and false otherwise
 - $Follow(A) = \{b \in \Sigma' : S' \Rightarrow^* \alpha Ab\beta \text{ for some } \alpha, \beta \in V^* \}$
 - $Predict(A, a) = \{A \rightarrow \beta : a \in First(\beta)\}$
 - $First(\beta) = \{a \in \Sigma' : \beta \Rightarrow^* a\gamma, \text{ for some } \gamma \in V^*\}$
- More informally:
 - Nullable(β): boolean function, for $\beta \in V^*$ is true iff $\beta \Rightarrow^* \epsilon$.
 - Follow(A): for any $A \in N'$, this is the set of elements of Σ' that can come immediately after A in a derivation starting from S'.
 - Predict(A, a): production rules that apply when $A \in N'$ is on the stack, and $a \in \Sigma'$ is the next input character.
 - First(β): set of characters that can be the first letter of a derivation starting from $\beta \in V^*$.
- Note our definition of *Predict* is not correct right now.
- Our predict table looks like this:

	-	a	b	С	d	e	f	\dashv
S'	{0}							
S' S		{1}					{1}	
Α		{2}					{3}	
A B					{4 }	{5 }		{6 }
	•							5

• We can see *First* with our previous example:

$$S' \rightarrow \vdash S \dashv$$
 (0)
 $S \rightarrow AcB$ (1) • Follow(S') = {} (Always!)
 $A \rightarrow ab$ (2) • Follow(S) = { \dashv }
 $B \rightarrow def$ (3) • Follow(A) = { c }
 $B \rightarrow ef$ (5) • Follow(B) = { \dashv }

- We say that a $\beta \in V^*$ is **nullable** iff $Nullable(\beta)$ = true
- Redefine $Predict(A,a)=\{A\to\beta:a\in First(\beta)\}\cup\{A\to\beta:\beta \text{ is nullable and }a\in Follow(A)\}$
- Note this ALL only works well for LL(1). We will make our grammar work with LL(1), and thus, these rules!