Laboratório de ECAi05

Universidade Federal de Itajubá – Campus Avançado de Itabira

Disciplina: ECAi05 - Laboratório de Sistemas de Controle I

Objetivo

Este laboratório tem como finalidade analisar, de maneira isolada, as respostas típicas de controladores básicos.

- O objetivo dessa experiência é analisar a ação de um controlador puramente proporcional, o qual pode ser implementado com um amplificador operacional e elementos passivos.
 - (a) Abra o programa

Ajuste o *Signal Generator* com uma onda senoidal de amplitude 1 V e frequência 1 kHz (sem offset). Ajuste o resistor R_1 igual a 100 k Ω , R_2 igual a 200 k Ω . Rode o programa esboce as formas de onda $v_i(t)$ e $v_o(t)$ no gabarito abaixo.

- (b) Qual a relação das amplitudes entre $v_o(t)$ e $v_i(t)$? Há alguma correspondência entre a relação das resistências de R_2 por R_1 ? Justifique.
 - vo(t) está atrasado em 180 graus, e é igual a -(R2/R1), que resulta em 2 V/V. Isso se dá pois a entrada não inversora está aterrada e há uma realimentação negativa
- (c) Modifique a amplitude, frequência e formas de onda de $v_i(t)$ no Signal Generator. Tais modificações alteram a relação entre $v_o(t)$ e $v_i(t)$? Justifique. Como o circuito é puramente resistivo, a relação se mantem independente se alterarmos amplitude, frequência e forma de onda, portanto o sistema é estático.
- 2. O objetivo dessa experiência é analisar a ação de um integrador prático (observe que há um resistor em paralelo ao capacitor na realimentação), que também pode ser implementado com um amplificador operacional e elementos passivos.
 - (a) Abra o programa

lab4_prg2

Ajuste o *Signal Generator* com uma onda quadrada de amplitude 1 V e frequência 1 kHz (sem offset). Ajuste o resistor R_1 igual a 10 k Ω , R_2 igual a 100 k Ω e o capacitor C igual a 33 nF. Rode o programa esboce as formas

(b)	Com base no esboço, por que esse circuito recebe o nome de integrador? O esboço mostra que a saída é um onda linear de grau 1, e a entrada uma onda constante de grau 0, logo a saída representa a integral da entrada.
(c)	Altere o resistor R_1 para 20 k Ω e verifique o efeito em $v_o(t)$. Quais as mudanças ocorridas? vo(t) apresenta uma amplitude aproximadamente duas vezes menor quando aumentado o valor de R1.
(d)	Modifique a forma de onda de $v_i(t)$, o que pode se afirmar? A forma de onda na saída será a integral da forma de onda de entrada, por exemplo, entrada quadrada, a saída é triangular.
que	ojetivo dessa experiência é analisar a ação de um derivador prático (observe há um resistor em série ao capacitor na entrada). Abra o programa
	lab4_prg3 Ajuste o <i>Signal Generator</i> com uma onda triangular de amplitude 1 V e frequência 1 kHz (sem offset). Ajuste o resistor R_1 igual a 2 k Ω , R_2 igual a 20 k Ω e o capacitor C igual a 33 nF. Rode o programa esboce as formas de onda $v_i(t)$ e $v_o(t)$ no gabarito abaixo.
(b)	Com base no esboço, por que esse circuito recebe o nome de derivador? A saída esboçada representa a derivada da entrada. Pode se observar uma assíntota vertical, pois a entrada está variando instantaneamente de -1 para 1, logo a taxa de variação tende ao infinito.

(c) Altere o resistor R_2 para 10 k Ω e verifique o efeito em $v_o(t)$. Quais as mudanças ocorridas?

O ganho se tornou metade do ganho que era obtido quando R2 era igual a 20k

- (d) Modifique a forma de onda de $v_i(t)$, o que pode se afirmar? Dependendo da forma de onda de vi(t), a forma de onda de vo(t) será a taxa de variação de vi(t).
- (e) Feche todos os programas.

Atividades Complementares

O relatório deve ser entregue APENAS em formato PDF até **7 dias** após a aula prática conforme tarefa cadastrada no SIGAA. O guia deve ser entregue com os itens preenchidos. As atividades complementares devem ter o <u>enunciado</u>, <u>desenvolvimento</u> e <u>conclusões</u> também anexados ao guia. Não há necessidade de capa e afins, apenas identificação de nome e número de matrícula da dupla.

 Demonstre que as funções apresentadas abaixo são as funções práticas do integrador e do derivador, respectivamente. O resultado é coerente? Justifique.

$I_P(s) =$	$-\frac{1}{R_1C_1s + (R_1/R_2)}$	$D_P(s) = -\frac{R_2 C_1 s}{R_1 C_1 s + 1}$	
_			