Plan

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

Skelnelighed

- Givet et sprog L, hvor mange tilstande er nødvendige i en FA M hvis L(M)=L?
- To strenge, x og y, skal ende i forskellige tilstande, hvis der er behov for at kunne skelne dem

• dvs.,
$$\delta^*(q_0, x) \neq \delta^*(q_0, y)$$

hvis $\exists z \in \Sigma^*$: $(xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$

Definition af skelnelighed

Lad $L\subseteq \Sigma^*$ og $x,y\in \Sigma^*$

- Kvotientsproget L/x defineres som $L/x = \{ z \in \Sigma^* \mid xz \in L \}$
- x og y er **skelnelige** mht. L hvis $L/x \neq L/y$
- z **skelner** x og y mht. L hvis $z \in L/x L/y$ eller $z \in L/y L/x$

Eksempel

Hvis

- $L = \{ s \in \{0,1\}^* \mid s \text{ ender med } 10 \}$
- X = 00
- y = 01

så er x og y skelnelige mht. L

Bevis:

z = 0 skelner x og y

- dvs. hvis $(Q, \Sigma, q_0, A, \delta)$ genkender L så er $\delta^*(q_0, x) \neq \delta^*(q_0, y)$

Nødvendigt antal tilstande i en FA

■ Antag $x_1, x_2, ..., x_n \in \Sigma^*$ og for ethvert par $x_i, x_j, i \neq j$ er x_i og x_j skelnelige mht. L

- Enhver FA der genkender L har mindst n tilstande
- Bevis (skitse):
 - antag FA'en har færre tilstande
 - det medfører at $\exists i \neq j$: $\delta^*(q_0, x_i) = \delta^*(q_0, x_j)$
 - modstrid med at x_i og x_i er skelnelige mht. L

Eksempel 1: en stor automat

Lad $L_{42} = \{ x \in \{0,1\}^* \mid |x| \ge 42 \text{ og det } 42. \text{ symbol}$ fra højre i x er et 1 $\}$

- Lad x₁, x₂, ..., x₂42 være alle strenge af længde 42 over alfabetet {0,1}
- Disse strenge er alle parvist skelnelige mht. L₄₂
- En automat der genkender L₄₂ har derfor mindst 2⁴² tilstande
- (...hvis den overhovedet findes)

Eksempel 2: palindromer

Lad $pal = \{ x \in \{0,1\}^* \mid x = reverse(x) \}$

- Lad x og y være vilkårlige forskellige strenge over {0,1}
- x og y er skelnelige mht. pal (bevis: se bogen...)
- Vi kan altså finde en vilkårligt stor mængde parvist skelnelige strenge, så pal er ikke regulært

Forening af regulære sprog

Givet to regulære sprog, L₁ og L₂
 er L₁ ∪ L₂ også regulært?

Ja! (dvs. klassen af regulære sprog er *lukket under forening*)

Eksempel

 M_1 : (strenge med lige antal 0'er)

M: $L(M) = L(M_1) \cup L(M_2)$

Produktkonstruktionen

Antag vi har to FA'er:

- $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$
- $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$

Definer en ny FA:

$$M = (Q, \Sigma, q_0, A, \delta)$$
 hvor

- $Q = Q_1 \times Q_2$ produktmængden af tilstande
- $q_0 = (q_1, q_2)$
- $A = \{ (p, q) \mid p \in A_1 \lor q \in A_2 \}$
- $\delta((p, q), a) = (\delta_1(p, a), \delta_2(q, a))$

Der gælder nu:

$$L(M) = L(M_1) \cup L(M_2)$$

Konstruktivt bevis for korrekthed

Lemma:

$$\forall x \in \Sigma^*$$
: $\delta^*((p, q), x) = (\delta_1^*(p, x), \delta_2^*(q, x))$
(Bevis: opgave 3.32, induktion i x)

■ Brug lemmaet samt definitionerne af M og $L(\cdot)$

Nøjes med opnåelige tilstande

- Produktkonstruktionen bruger $Q = Q_1 \times Q_2$
- I praksis er hele tilstandsrummet sjældent nødvendigt

Kun tilstande, der er opnåelige fra starttilstanden er relevante for sproget!

Snitmængde og differens

Givet to regulære sprog, L_1 og L_2

- 2. er $L_1 \cap L_2$ også regulært?
- 3. er L_1 - L_2 også regulært?
- Ja! (dvs. klassen af regulære sprog er lukket under snit og differens)
- Bevis: produktkonstruktion som ved ∪ men
 - for \cap , vælg $A = \{ (p, q) \mid p \in A_1 \land q \in A_2 \}$
 - for -, vælg $A = \{ (p, q) \mid p \in A_1 \land q \not\in A_2 \}$

Komplement

Givet et regulære sprog *R* er *R'* (*R*s komplement) også regulært?

- Ja! (dvs. klassen af regulære sprog er lukket under komplement)
- Bevis 1:
 - Vælg $L_1 = \Sigma^*$ og $L_2 = R$, hvorved $R' = L_1 L_2$
- Bevis 2:
 - Givet en FA $M = (Q, \Sigma, q_0, A, \delta)$ hvor L(M) = R
 - Definer $M' = (Q, \Sigma, q_0, \mathbf{Q} \mathbf{A}, \delta)$
 - Derved gælder at L(M')=R'

Eksempel

M:

(strenge med lige antal 0'er eller ender med 0)

M':

L(M') = (L(M))'

(strenge med ulige antal 0'er og ender ikke med 0)

Øvelser:

[Martin] 3.33 (a-c)

dRegAut Java-pakken

Udleverede programdele:

- FA. java: repræsentation af FA'er
- Alphabet.java,
 State.java,
 StateSymbolPair.java,
 AutomatonNotWellDefinedException.java:
 hjælpeklasser til FA.java

FA. java

- et Alphabet objekt indeholder mængde af Character objekter
- et StateSymbolPair objekt består af et State objekt og et Character objekt

Nyttige metoder i FA. java

- FA() konstruerer uinitialiseret FA objekt
- FA(Alphabet a) konstruerer FA for det tomme sprog
- clone() kloner et FA objekt
- checkWellDefined() undersøger om FA objektet repræsenterer en veldefineret FA
- getNumberOfStates() returnerer størrelsen af states
- setTransition(State q, char c, State p)
 tilføjer en c transition fra q til p
- toDot() konverterer FA objekt til 'Graphviz dot' input (til grafisk repræsentation)

Automater til modellering og verifikation

Eksempel: en jernbaneoverskæring

- Tre komponenter:
 - et tog
 - krydser vejen
 - kommunikerer med kontrolsystemet
 - et kontrolsystem
 - styrer bommen
 - en bom
- Sikkerhedsegenskab:

bommen er altid nede, når toget krydser vejen

Modellering af systemet

TOG

KONTROLSYSTEM

BOM

Begivenheder:

approach: toget nærmer sig

cross: toget krydser vejen

exit: toget forlader området

lower: besked til bommen om at gå ned raise: besked til bommen om at gå op

down: bommen går ned

up: bommen går op

Modellering som FA'er

Eksempel:

lower, raise,

lower, raise.

- definer accepttilstande
- tilføj loop-transitioner så komponenterne får samme alfabet
- tilføj crash-tilstand og ekstra transitioner så transitionsfunktionen bliver total

Kombination af komponenterne

- Vi er interesseret i de sekvenser af begivenheder, der opfylder alle komponenterne
- Produktkonstruktion:

$$L(M) = L(M_{TOG}) \cap L(M_{KONTROL}) \cap L(M_{BOM})$$

Modellering af sikkerhedsegenskaben

- bommen er altid nede, når toget krydser vejen

Verifikation

- Korrekthed: $L(M) \cap (L(S))' = \emptyset$
- dvs. vi skal bruge
 - produktkonstruktion (igen)
 - komplement
 - algoritme til at afgøre om sproget for en given FA er tomt (3. seminar)
- hvis $L(M) \cap (L(S))' \neq \emptyset$: enhver streng i $L(M) \cap (L(S))'$ svarer til et **modeksempel** (algoritme: 3. seminar)

Verifikation med dRegAut-pakken

- Opbyg FA-objekter svarende til M_{TOG}, M_{KONTROL}, M_{BOM}, og S
- Kombiner med FA.intersection() og FA.complement()
- Brug FA.isEmpty() og
 FA.getAShortestExample()
- Resultat:

modeksempel:

approach · lower · down · up · cross

Resume

- Definition af endelige automater og deres sprog
- Skelnelighed, hvad repræsenterer tilstandene, nødvendigt antal tilstande
- Produktkonstruktionen, komplement (konstruktive beviser)
- dRegAut.FA klassen, Java-repræsentation af FA'er
- Eksempel: automater til modellering og verifikation

Plan

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

Første del af java projekt:

- Studér udleverede programdele:
 - repræsentation af FA'er
 - ekstra udleverede metoder: delta, deltaStar, complement
- Implementér FA metoder:
 - accepts, intersection, union, minus
- Opbyg en FA og vis den grafisk