Transmission intervals and COVID control

Jonathan Dushoff, McMaster University

Arizona State University Mathematical Biology Seminar April 2022

Outline

Modeling approaches

Transmission intervals

Linking rR

Intrinsic and realized intervals

Serial-interval distributions

Applications

Summary

Simple dynamical models use compartments

Divide people into categories:

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- Individuals recover independently
- Individuals are infected by infectious people

$$\begin{array}{rcl} \frac{dS}{dt} & = & \mu N - \beta \frac{SI}{N} - \mu S \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I - \mu R \\ \frac{dR}{dt} & = & \gamma I - \mu R \end{array}$$

Delayed infectiousness

Ebola

Coronavirus

Childs et al., http://covid-measures.stanford.edu/

BRIDGE Renewal-equation framework

- ▶ A broad framework that covers a wide range of underlying models
- \blacktriangleright $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - ightharpoonup k(au) measures how infectious a person is (on average) at time au after becoming infected
- k changes through time
 - proportion susceptible, control measures
 - we often think about counterfactuals with fixed k(au)

MATH Cohort modeling

- Create ODEs to follow a cohort of people infected at the same time
- ► Transform ODE model to renewal-equation model

MATH Cohort modeling

Childs et al., http://covid-measures.stanford.edu/

BRIDGE Transmission kernel

- ightharpoonup Area is \mathcal{R}
- Distribution is the generation interval

Outline

Modeling approaches

Transmission intervals

Linking rR

Intrinsic and realized intervals

Serial-interval distributions

Applications

Summary

Transmission intervals

- Sort of the poor relations of disease-modeling world
- Ad hoc methods
- ► Error often not propagated

How long is a disease generation? (present)

Definition

Generation Interval:

Interval between the time that an individual is infected by an infector and the time this infector was infected

Generation-interval distributions

- The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- ► Link r (exponential growth rate) and R (effective reproductive number)

REGULAR Transmission intervals drive epidemics

- ▶ Population-level *Speed* of spread *r* is a product:
 - ightharpoonup Something about Strength $\mathcal R$
 - ×
 - Something about *Quickness*: Individual-level speed of transmission $g(\tau)$

Mechanistic perspective

- $\triangleright \mathcal{R}$ is known
- ▶ Quicker generations ⇒ faster population-level spread

HIV in sub-Saharan Africa

 $C \approx 18 \, \mathrm{month}$. Faster than expected.

REGULAR Ebola outbreak

REGULAR Coronavirus speed

Phenomenological perspective

- Population-level speed r is observed
- Quicker generations (low \bar{G}) $\implies lower \mathcal{R}$.

Powers et al., https://www.pnas.org/ content/111/45/15867

Generation interval

- One generation:
 - Latent period (time until infectiousness) +
 - Infectious waiting time (time until infection)
- Infectious waiting time
 - Drawn at random from infectious period
 - Equal to infectious period only when we assume a Markovian process
 - Common source of confusion for people with ODE background

MATH How long until the bus comes?

MATH Mean of a self-weighted quantity

- Infectious period of an infector
 - Activity level of an interactor, in HIV models

$$\mu(1+\frac{\sigma^2}{\mu^2}) = \mu(1+\kappa)$$

- ▶ Time until bus comes: $\mu(1+\kappa)/2$
- Exponential distribution: $\kappa=1$

REGULAR Transmission intervals

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ▶ Serial interval: symptoms ⇒ symptoms
 - Observable..., may be hard to define
- Other:
 - ▶ diagnosis ⇒ diagnosis
 - notification \improx notification
- Some cases are never symptomatic, or never diagnosed

Outline

Modeling approaches

Transmission intervals

Linking $r\mathcal{R}$

Intrinsic and realized intervals

Serial-interval distributions

Applications

Summary

Euler-Lotka equation

- ▶ If we assume k is not changing through time, we expect exponential growth
- $1 = \int k(\tau) \exp(-r\tau) \, d\tau$
 - ▶ i.e., the total of *discounted* contributions is 1
- ▶ $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$
- Note that $b(\tau) = k(\tau) \exp(-r\tau)$ is also a distribution
 - ► The initial "backwards" generation interval

MATH Interpretation: generating functions

▶
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

$$ightharpoonup \mathcal{R} = 1/M(-r)$$

► J Wallinga, M Lipsitch; DOI: 10.1098/rspb.2006.3754

Interpretation: strength and speed

Strength decomposition

$$k(\tau) = \exp(r\tau)b(\tau)$$

Speed decomposition

Compound-interest interpretation

- \triangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- X is the compound-interest approximation to the exponential
 - ightharpoonup Linear when $\kappa=1$ (i.e., when g is exponential)
 - lacktriangle Approaches exponential as $\kappa o 0$
- Park et al., Epidemics DOI:10.1101/312397

Product framework

- ▶ Quicker generations (small \bar{G}) mean faster r for fixed \mathcal{R} \Longrightarrow Weaker \mathcal{R} for fixed r
- More variation κ means more "compounding" of infections
 - ightharpoonup quicker spread, when epidemic is growing
- $ightharpoonup r=(1/\bar{G}) imes \ell(\mathcal{R};\bar{\kappa})$ is the sense in which r is actually a product

Approximating the rR relationship

Exponential growth rate (per generation)

Heuristics for \mathcal{R}

- ▶ Mechanistic: $\mathcal{R} = DcpS/N$
 - Duration of infectiousness, contact rate, probability of transmission, proportion susceptible
- ▶ Phenomenological: $X(r\bar{G}; 1/\kappa)$
 - Rate of exponential growth, mean generation interval, effective dispersion of generation interval

Propagating error

Propagating error

B. Reduced uncertainty in r

Outline

Modeling approaches

Transmission intervals

Linking rR

Intrinsic and realized intervals

Serial-interval distributions

Applications

Summary

Growing epidemics

- Measured generation intervals look shorter at the beginning of an epidemic
 - A disproportionate number of people are infectious right now
 - They haven't finished all of their transmitting
 - We are biased towards observing faster events

Types of interval

Define:

- ▶ Intrinsic interval: How infectious is a patient at time τ after infection?
- Forward interval: When will the people infected today infect others?
- Backward interval: When did the people who infected people today themselves become infected?
- Censored interval: What do all the intervals observed up until a particular time look like?
 - Like backward intervals, if it's early in the epidemic

Correcting backward intervals

Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

Generations in space

- Local interactions
- ▶ ⇒ wasted contacts
- realized generation intervals smaller than intrinsic
- $ightharpoonup \implies$ intrinsic GIs over-estimate ${\cal R}$
- Trapman et al., 2016. JRS Interface DOI:10.1098/rsif.2016.0288

Outbreak estimation

Park et al. JRSI, DOI: 10.1098/rsif.2019.0719

Outline

Modeling approaches

Transmission intervals

Linking rR

Intrinsic and realized intervals

Serial-interval distributions

Applications

Summary

Serial-interval distributions

Serial intervals are proxies

- Serial intervals measure generations of the same process as generation intervals
 - ► Should have the same mean
 - But often larger variance (flu example)

The serial-mean paradox

- ► Empirically, even the means are not the same!
- ► Generation interval:
 - Latent + infectious waiting, or
 - ► Incubation + Symptomatic waiting ... of infector
- ► Serial interval:
 - Symptomatic waiting (infector) + Incubation (infectee)

Heterogeneity

- Generation intervals include latent period of infectors only (often strongly weighted)
- Serial intervals average over infectees (everyone is infected once)
- Coronavirus: people diagnosed early are less likely to transmit
 - could bias GI estimates

The link paradox

- Imagine a renewal process where symptoms in the infector cause symptoms in the infectee
 - Assume homogeneity
- This has to match the same rR link as the true (generation-interval driven) process
- But it also can't when the serial interval is broader than the generation interval
 - All else equal, a broader interval means lower R.
 - lacktriangle Broader \Longrightarrow more compounding \Longrightarrow more quickness
 - less strength required to achieve observed speed

The forward serial interval

- ▶ Early in the epidemic, backward incubation periods are short
- ► ⇒ forward serial intervals are long

Observed epidemiological intervals

Outline

Modeling approaches

Transmission intervals

Linking rR

Intrinsic and realized intervals

Serial-interval distributions

Applications

Summary

Unmitigated estimates

- Carefully curated pre-intervention intervals
- Bivariate fit to generation intervals and incubation periods
- ► Account for dynamical biases

Unmitigated estimates

https://www.medrxiv.org/content/10.1101/2021.11.17.21266051v2

Intervals from the Netherlands

Fitted incubation periods

Dynamical correction

Observed and fitted transmission intervals

Observed and fitted transmission intervals

Outline

Modeling approaches

Transmission intervals

Linking rR

Intrinsic and realized intervals

Serial-interval distributions

Applications

Summary

Summary

- Strength \mathcal{R} and speed r are complementary ways to understand epidemic growth and control
- Transmission intervals are key to linking these measurements
 - Clear definitions
 - Combining different sources of information
 - Propagating error

Thanks

- Organizers and audience
- Collaborators:
 - Li, Park, Weitz, Bolker, Earn, Champredon, Gharouni, Papst, Hampson, So . . .
 - ▶ ICI3D and SACEMA
- ► Funders: NSERC, CIHR, PHAC, WHO, McMaster