Relatório LAMIA 25 Prática: Métricas e Validação de Modelos de Aprendizado de Máquina (III)

Kaique Medeiros Lima

1 Introdução

Nesse card, será discutido o uso do SHAP (Shapley Additive Explanations) para interpretar modelos de machine learning, bem como a comparação de modelos de aprendizado de máquinas.

2 Descrição da atividade

2.1 Explain Machine Learning Models with SHAP in Python

2.1.1 Explicação de Modelos com SHAP

O vídeo ensina a utilizar o SHAP (Shapley Additive Explanations) para interpretar decisões de modelos de machine learning. O SHAP é baseado na Teoria dos Jogos e oferece uma abordagem para explicar modelos que não possuem interpretabilidade nativa, como Support Vector Machines (SVM). O autor menciona que alguns modelos, como árvores de decisão, possuem explicabilidade inerente, enquanto outros apenas geram previsões sem justificar as decisões tomadas. Métodos como SHAP e LIME são úteis nesses casos, pois permitem visualizar a influência de cada variável no resultado.

2.1.2 Exemplo Prático: Uso do SHAP com SVM

No exemplo prático, é utilizado o conjunto de dados breast cancer do pacote sklearn.datasets, onde os dados são divididos entre treino e teste. Um modelo de SVM linear (LinearSVC) é treinado e avaliado, atingindo uma precisão de 92,9%. No entanto, por não fornecer explicações sobre suas decisões, o SHAP é empregado para interpretar os resultados. O KernelExplainer do SHAP é aplicado para calcular os valores SHAP e gerar um summary plot, que exibe a importância de cada variável na predição.

2.1.3 Visualização das Decisões com SHAP

Além do summary_plot, o autor demonstra como visualizar decisões individuais utilizando o force_plot, que ilustra como cada característica influencia a classificação de um exemplo específico. Ele destaca que algumas variáveis, como a worst area, exercem maior impacto na decisão final, deslocando a previsão para um lado ou outro da escala de classificação. Essa análise permite compreender melhor o funcionamento do modelo em nível granular.

2.1.4 Importância das Características

Por fim, o vídeo mostra como calcular a importância das características somando os valores absolutos dos SHAP values e ordenando os atributos do maior para o menor impacto. Essa análise fornece insights sobre quais características exercem maior influência nas decisões do modelo, mesmo que ele não forneça essa informação diretamente.

2.2 COMPARANDO MODELOS DE MACHINE LEARNING!!

2.2.1 Modelos Preditivos

Os modelos preditivos podem ser divididos em dois tipos principais: os de regressão e os de classificação. Os modelos de regressão têm como objetivo estimar valores numéricos, como prever a variação do preço de uma ação bancária ao longo dos próximos meses. Já os modelos de classificação, como o próprio nome sugere, são utilizados para categorizar elementos, como identificar se a fruta presente em uma imagem é uma laranja ou uma maçã.

2.2.2 Matriz de Confusão

Para medir o desempenho de um modelo, são utilizadas algumas métricas baseadas em cálculos matemáticos, que ajudam a verificar se ele está ajustado corretamente. A principal métrica a se considerar inicialmente é a matriz de confusão, uma tabela que organiza os resultados previstos pelo modelo e os compara com os valores reais.

Por exemplo, imagine um modelo treinado para reconhecer maçãs em um conjunto de 100 imagens. Se o modelo previu corretamente a presença de uma maçã, esse caso é registrado como verdadeiro positivo. Se apontou uma maçã onde não havia uma, é um falso positivo. Um falso negativo ocorre quando o modelo não identificou uma maçã que estava presente, enquanto o verdadeiro negativo representa uma previsão correta de que não havia uma maçã.

A análise dessa matriz possibilita entender as dificuldades do modelo e identificar formas de melhorar sua taxa de acertos, como aumentar a precisão de 65% para um valor mais elevado.

2.2.3 Acurácia e Precisão

A taxa de acertos do modelo é chamada de acurácia e pode ser determinada pela divisão do número de previsões corretas pelo total de tentativas. Já a precisão mede o quão confiável é uma determinada previsão dentro de um contexto específico, ao invés de considerar todas as tentativas. Ela é calculada pela fórmula:

 $\frac{\text{Verdadeiro Positivo}}{\text{Verdadeiro Positivo} + \text{Falso Positivo}}.$

2.2.4 Recall e Especificidade

O recall, ou sensibilidade, é calculado a partir de uma única coluna da matriz. Suponha que a classe correta seja "positivo" e que o modelo tenha acertado 50 previsões e errado outras 50. O recall, então, é dado por:

$$\frac{\text{Verdadeiro Positivo}}{\text{Verdadeiro Positivo} + \text{Falso Negativo}} = 50\%.$$

Outra métrica relevante é a especificidade, utilizada no cálculo da curva ROC. Ela é obtida dividindo o número de verdadeiros negativos pelo total de verdadeiros negativos somados aos falsos positivos.

2.2.5 Curva ROC

A curva ROC é construída comparando os valores de recall e especificidade em diferentes limiares (cutoffs). Esses cutoffs determinam o ponto de decisão do modelo, como considerar uma amostra como positiva apenas se a probabilidade for maior que 50%. Alterando esses valores e plotando os resultados em um gráfico, se dá a curva ROC, que ilustra o desempenho do modelo ao longo de diferentes configurações.

3 Conclusão

Nesse card, foi discutido o uso do SHAP para interpretar modelos de machine learning e a comparação de diferentes modelos preditivos. O SHAP é uma ferramenta útil para explicar decisões de modelos complexos, como SVM, e visualizar a importância de cada variável nas previsões. Já a comparação de modelos envolve a análise de métricas como matriz de confusão, precisão, recall, especificidade e curva ROC, que permitem avaliar o desempenho e a confiabilidade dos algoritmos. Essas técnicas são essenciais para garantir a qualidade das previsões e identificar possíveis melhorias nos modelos de machine learning.