# **Quantum Mechanics**

Mark Benazet Castells

April 10, 2024

Week 6

### Quantum Mechanics

### **Exercise Material**



Webpage

# Week 6

Review

 ${\bf Midterm}$ 

**Exercises** 

### Quantum Mechanics

### **Review of Last Week**

- Any questions on last week's topics?
- Feedback on the previous session?

## Quantum Mechanics

Review

#### SE in 3D

Considering Cartesian coordinates, the Hamiltonian can be defined as:

$$\hat{H} = \frac{1}{2m} \left( \hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 \right) + V(\vec{r}),$$

where  $\hat{p}_n = -i\hbar \frac{\partial}{\partial n}$  for n=x,y,z, and  $V(\vec{r})$  represents the potential energy which is a function of the position vector  $\vec{r}$ . Alternatively, using the Laplacian operator,  $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ , we can express the Time-Dependent Schrödinger Equation (T.D.S.E.) as:

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi,$$

where  $\Psi$  is the wave function of the system. For a time-independent potential,  $V(\vec{r})$ , we obtain stationary states similar to those in one-dimensional systems, but with the position variable x replaced by the position vector  $\vec{r}.$ 

The search for stationary solutions involves the separation of variables for each coordinate and separation of time and space. Solving the Time-Independent Schrödinger Equation (T.I.S.E.) of each variable will give you the final space solution  $\psi = X(x)Y(y)Z(z)$ .

In spherical coordinates for spherical potentials:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

Insert into  $\hat{H}$  and apply separation of variables:

$$\psi(r,\theta,\phi) = R(r)Y(\theta,\phi)$$

We have to solve 
$$\underbrace{R(r)}_{\text{Radial Solution}}$$
 and  $\underbrace{Y(\theta,\phi)}_{\text{Angular Solution}} = \Theta(\theta) \cdot \Phi(\phi)$ 

#### **Solution Angular Equation**

We solve the following PDE (derivation in the Lecture) assuming  $\theta$  and  $\phi$  are independent:

$$\frac{1}{Y} \left( \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right) = -\ell(\ell+1)$$

The spherical harmonics  $Y(\theta,\phi)$  can be separated:  $Y(\theta,\phi) = \Theta(\theta) \cdot \Phi(\phi)$ 

#### Where:

- $\Theta(\theta) = A \cdot P_{\ell}^{m}(\cos \theta)$ , Legendre functions.
- $\Phi(\phi) = \exp(i \cdot m_{\ell} \cdot \phi)$ , azimuthal dependency.

#### Legendre functions

$$P_{\ell}^{m}(x) = (1 - x^{2})^{\frac{|m|}{2}} (\frac{d}{dx})^{|m|} P_{\ell}(x)$$

$$P_{\ell}(x) = \frac{1}{2^{\ell} \ell!} (\frac{d}{dx})^{\ell} (x^2 - 1)^{\ell}$$

where  $P_\ell(x)$  are the Legendre polynomials and m and  $\ell$  are integers with  $0 < m < \ell$ .

- ullet  $\ell=$  azimuthal quantum number
- $m_\ell = \mathsf{magnetic}$  quantum number

### **Spherical Harmonics solutions**

$$Y_{\ell}^{m}(\theta,\phi) = \Theta(\theta)\Phi(\phi)$$

$$= AP_{\ell}^{m}(\cos\theta) \times \exp(im\phi)$$

$$= (-1)^{\frac{m+|m|}{2}} \sqrt{\frac{(2\ell+1)(\ell-|m|)!}{4\pi(\ell+|m|)!}} P_{\ell}^{m}(\cos\theta)e^{im\phi},$$

This is a normalized solution for  $\pmb{any}$  problem with a spherically symmetric V(r).

Remark: In the UIS you can find the first few Spherical Harmonics

#### **Solution Radial Equation**

We solve the following ODE:

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) - \frac{2mr^2}{\hbar^2}\left[V(r) - E\right] = \ell\left(\ell + 1\right)$$

by taking u(r) = rR(r) we can rewrite the equation as:

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dr^2} + \left[V + \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right]u(r) = Eu,$$

We can clearly see that our new  $V_{eff}$  is equal to the potential energy V and the centrifugal energy  $\frac{\hbar^2}{2m} \frac{\ell(\ell+1)}{r^2}$ .

### Hydrogen Atom

### **Hydrogen Atom**

Atom with one proton and a single valence electron:



Potential of the electron in the hydrogenic atom:  $V(r) = -\frac{e^2}{4\pi\epsilon_0 r}$ 

### Hydrogen Atom

#### Radial Solutions for the Hydrogen Atom

Solving for the Radial part of the wave function,  $R_{n\ell}(r)$ , in terms of generalized Laguerre polynomials gives you:

$$R_{n\ell}(r) = \sqrt{\left(\frac{2}{na_0}\right)^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3}} e^{-\frac{\rho}{2}} L_{n-\ell-1}^{2\ell+1}(\rho)$$

with  $\rho=\frac{r}{na_0}$ , where: n is the principal quantum number,  $a_0$  is the Bohr radius,  $L^{2\ell+1}_{n-\ell-1}(x)$  are the associated Laguerre polynomials. For physically relevant solutions, n must be a positive integer.

The total wave function  $\psi_n(r,\theta,\varphi) = R_{n\ell}(r)Y_{\ell m}(\theta,\varphi)$ .

#### **Energy Levels of the Hydrogen Atom**

$$E_n = -\left[\frac{m_e^4 e^4}{2\hbar^2 (4\pi\varepsilon_0)^2}\right] \frac{1}{n^2} = \frac{E_1}{n^2}$$

- $E_1 = -13.6 \, \text{eV}$  is the ground state energy level.
- This formula gives the energies of the orbitals in the hydrogen atom.
- Energy levels depend only on n.
- This is valid for hydrogen and hydrogenic atoms(atoms with multiple protons and one electron).

### Quantum Numbers

#### **Quantum Numbers**

- **Principal (n):** Energy level and size of electron cloud.  $E_n = -\frac{Z^2}{n^2}E_1$
- Azimuthal ( $\ell$ ): Orbital shape. Values from 0 to n-1.
- Magnetic ( $m_\ell$ ): Orientation of orbital. Values from  $-\ell$  to  $+\ell$ .

| Principal (n)    | Azimuthal ( $\ell$ ) | Magnetic ( $m_\ell$ )             |
|------------------|----------------------|-----------------------------------|
| $1, 2, 3, \dots$ | $0,1,2,\ldots,n-1$   | $-\ell, \ldots, 0, \ldots, +\ell$ |

Midterm

Midterm

### **Exercises**

#### Exercise 1

To practice the commutation calculations.

Remark: Use the properties from the ZF

#### Exercise 2

Long but really helpful example. Good exam-like problem

#### Exercise 3

Really useful to get comfortable with Spherical Harmonics

#### Exercise 4

Really useful to get comfortable with Spherical Harmonics and Radial solutions

