# **Sampling Methods**

Nipun Batra

September 18, 2023

IIT Gandhinagar

### **Topics**

Rejection Sampling
Importance Sampling

- 1. Markov Chains
- 2. Importance Sampling
- 3. Gibbs Sampling
- 4. Markov Chain Monte Carlo

 We want to compute posterior predictive distribution (or something similar)

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$  where p(x) is the posterior distribution.

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$  where p(x) is the posterior distribution.
- We can approximate I by  $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$ , where  $x_i \sim p(x)$ .

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$  where p(x) is the posterior distribution.
- We can approximate I by  $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$ , where  $x_i \sim p(x)$ .
- Goal: sample from p(x).

• Let p(x) be the target distribution from which we want to sample.

- Let p(x) be the target distribution from which we want to sample.
- Typically, p(x) is the posterior distribution.

- Let p(x) be the target distribution from which we want to sample.
- Typically, p(x) is the posterior distribution.
- But, we do not have access to p(x). Rather, we have access to  $\tilde{p}(x)$ , which is proportional to p(x).

- Let p(x) be the target distribution from which we want to sample.
- Typically, p(x) is the posterior distribution.
- But, we do not have access to p(x). Rather, we have access to  $\tilde{p}(x)$ , which is proportional to p(x).
- We can write  $p(x) = \frac{\tilde{p}(x)}{Z}$ , where Z is the normalization constant.

- Let p(x) be the target distribution from which we want to sample.
- Typically, p(x) is the posterior distribution.
- But, we do not have access to p(x). Rather, we have access to  $\tilde{p}(x)$ , which is proportional to p(x).
- We can write  $p(x) = \frac{\tilde{p}(x)}{Z}$ , where Z is the normalization constant.
- Typically,  $\tilde{p}(x)$  is the joint distribution of the data and the parameters.

- Let p(x) be the target distribution from which we want to sample.
- Typically, p(x) is the posterior distribution.
- But, we do not have access to p(x). Rather, we have access to  $\tilde{p}(x)$ , which is proportional to p(x).
- We can write  $p(x) = \frac{\tilde{p}(x)}{Z}$ , where Z is the normalization constant.
- Typically,  $\tilde{p}(x)$  is the joint distribution of the data and the parameters.
- Let q(x) be a proposal distribution from which we can sample.

- Let p(x) be the target distribution from which we want to sample.
- Typically, p(x) is the posterior distribution.
- But, we do not have access to p(x). Rather, we have access to  $\tilde{p}(x)$ , which is proportional to p(x).
- We can write  $p(x) = \frac{\tilde{p}(x)}{Z}$ , where Z is the normalization constant.
- Typically,  $\tilde{p}(x)$  is the joint distribution of the data and the parameters.
- Let q(x) be a proposal distribution from which we can sample.
- Let M be a constant such that  $M \geq \frac{\tilde{p(x)}}{q(x)}$  for all x.

- Let p(x) be the target distribution from which we want to sample.
- Typically, p(x) is the posterior distribution.
- But, we do not have access to p(x). Rather, we have access to  $\tilde{p}(x)$ , which is proportional to p(x).
- We can write  $p(x) = \frac{\tilde{p}(x)}{Z}$ , where Z is the normalization constant.
- Typically,  $\tilde{p}(x)$  is the joint distribution of the data and the parameters.
- Let q(x) be a proposal distribution from which we can sample.
- Let M be a constant such that  $M \geq \frac{\tilde{p(x)}}{q(x)}$  for all x.
- Then, we can sample from p(x) by sampling from q(x) and accepting the sample with probability  $\frac{p(x)}{Mq(x)}$ .

 ${\tt Notebook: rejection-sampling.ipynb}$ 

















## Rejection Sampling (Rejected Sample)



## Rejection Sampling (Accepted Sample)



# Rejection Sampling (10 samples)



## Rejection Sampling (10 samples) (KDE)



## Rejection Sampling (1000 samples)



## Rejection Sampling (1000 samples) (KDE)



### Rejection Sampling (10000 samples)



# Rejection Sampling (10000 samples) (KDE)



- Acknowledgement: Borrowed from ritvikmath YT channel
- Aim:

- Acknowledgement: Borrowed from ritvikmath YT channel
- Aim:
  - Show that the samples we accept are distributed according to p(x).

- Acknowledgement: Borrowed from ritvikmath YT channel
- Aim:
  - Show that the samples we accept are distributed according to p(x).
  - Or, the density of an accepted sample (say  $x_s$ ) is  $p(x_s)$  (and not  $\tilde{p}(x_s)$ ).

- Acknowledgement: Borrowed from ritvikmath YT channel
- Aim:
  - Show that the samples we accept are distributed according to p(x).
  - Or, the density of an accepted sample (say  $x_s$ ) is  $p(x_s)$  (and not  $\tilde{p}(x_s)$ ).
- Acceptance Probability  $\alpha(x)$ : Probability that we accept a sample  $x_s$  generated from q(x).

$$\alpha(x_s) = \frac{\tilde{p}(x_s)}{Mq(x_s)} = P(Accept|x_s)$$
 (1)

• Bayes Rule for Acceptance:

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(2)

• where  $P(x_s|Accept)$  is the density of accepted sample  $x_s$ . We want to evaluate this and show this is  $p(x_s)$ .

• Bayes Rule for Acceptance:

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(2)

- where  $P(x_s|Accept)$  is the density of accepted sample  $x_s$ . We want to evaluate this and show this is  $p(x_s)$ .
- $P(Accept|x_s)$  is  $\alpha(x_s)$

Bayes Rule for Acceptance:

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(2)

- where  $P(x_s|Accept)$  is the density of accepted sample  $x_s$ . We want to evaluate this and show this is  $p(x_s)$ .
- $P(Accept|x_s)$  is  $\alpha(x_s)$
- $P(x_s) = q(x)$  is the density of samples we draw from q(x).

Bayes Rule for Acceptance:

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(2)

- where  $P(x_s|Accept)$  is the density of accepted sample  $x_s$ . We want to evaluate this and show this is  $p(x_s)$ .
- $P(Accept|x_s)$  is  $\alpha(x_s)$
- $P(x_s) = q(x)$  is the density of samples we draw from q(x).
- P(Accept) is the unconditional probability that we accept a sample generated from q(x).

$$P(Accept) = \int P(Accept|x_s)P(x_s)dx_s \tag{3}$$

$$P(Accept) = \int P(Accept|x_s)P(x_s)dx_s \tag{3}$$

$$P(Accept) = \int \alpha(x_s)q(x_s)dx_s \tag{4}$$

$$P(Accept) = \int P(Accept|x_s)P(x_s)dx_s \tag{3}$$

$$P(Accept) = \int \alpha(x_s)q(x_s)dx_s \tag{4}$$

$$P(Accept) = \int \frac{\tilde{p}(x_s)}{Mq(x_s)} q(x_s) dx_s$$
 (5)

$$P(Accept) = \int P(Accept|x_s)P(x_s)dx_s \tag{3}$$

$$P(Accept) = \int \alpha(x_s)q(x_s)dx_s \tag{4}$$

$$P(Accept) = \int \frac{\tilde{p}(x_s)}{Mq(x_s)} q(x_s) dx_s$$
 (5)

$$P(Accept) = \frac{1}{M} \int \tilde{p}(x_s) dx_s \tag{6}$$

• P(Accept) is the unconditional probability that we accept a sample generated from q(x).

$$P(Accept) = \int P(Accept|x_s)P(x_s)dx_s \tag{3}$$

$$P(Accept) = \int \alpha(x_s)q(x_s)dx_s \tag{4}$$

$$P(Accept) = \int \frac{\tilde{p}(x_s)}{Mq(x_s)} q(x_s) dx_s$$
 (5)

$$P(Accept) = \frac{1}{M} \int \tilde{p}(x_s) dx_s \tag{6}$$

$$P(Accept) = \frac{Z}{M} \tag{7}$$

where Z is the normalization constant of  $\tilde{p}(x)$ .

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(8)

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(8)

$$P(x_s|Accept) = \frac{\alpha(x_s)q(x_s)}{P(Accept)}$$
(9)

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(8)

$$P(x_s|Accept) = \frac{\alpha(x_s)q(x_s)}{P(Accept)}$$
(9)

$$P(x_s|Accept) = \frac{\frac{\ddot{p}(x_s)}{Mq(x_s)}q(x_s)}{\frac{Z}{M}}$$
(10)

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(8)

$$P(x_s|Accept) = \frac{\alpha(x_s)q(x_s)}{P(Accept)}$$
(9)

$$P(x_s|Accept) = \frac{\frac{\tilde{p}(x_s)}{Mq(x_s)}q(x_s)}{\frac{Z}{M}}$$
(10)

$$P(x_s|Accept) = \frac{\tilde{p}(x_s)}{Z}$$
 (11)

$$P(x_s|Accept) = \frac{P(Accept|x_s)P(x_s)}{P(Accept)}$$
(8)

$$P(x_s|Accept) = \frac{\alpha(x_s)q(x_s)}{P(Accept)}$$
(9)

$$P(x_s|Accept) = \frac{\frac{\tilde{p}(x_s)}{Mq(x_s)}q(x_s)}{\frac{Z}{M}}$$
(10)

$$P(x_s|Accept) = \frac{\tilde{p}(x_s)}{7}$$
 (11)

$$P(x_s|Accept) = p(x_s) \tag{12}$$

• Let us assume  $\tilde{p}(x)$  is D dimensional Gaussian  $\mathcal{N}_D(0,\sigma_p^2 I)$ 

- Let us assume  $\tilde{p}(x)$  is D dimensional Gaussian  $\mathcal{N}_D(0, \sigma_p^2 I)$
- Let us assume our proposal distribution q(x) is  $\mathcal{N}_D(0,\sigma_q^2 I)$

- Let us assume  $\tilde{p}(x)$  is D dimensional Gaussian  $\mathcal{N}_D(0, \sigma_p^2 I)$
- Let us assume our proposal distribution q(x) is  $\mathcal{N}_D(0, \sigma_q^2 I)$



- How to choose multiplier *M*?
- Match the densities at the peak of  $\tilde{p}(x)$  and q(x), i.e. at  $x = \vec{0}$ .

• Match the densities at the peak of  $\tilde{p}(x)$  and q(x), i.e. at  $x = \vec{0}$ .

- Match the densities at the peak of  $\tilde{p}(x)$  and q(x), i.e. at  $x = \vec{0}$ .
- $\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D} \exp(-\frac{1}{2\sigma_p^2} x^T x)$

- Match the densities at the peak of  $\tilde{p}(x)$  and q(x), i.e. at  $x = \vec{0}$ .
- $\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D} \exp(-\frac{1}{2\sigma_p^2} x^T x)$
- $q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D} \exp(-\frac{1}{2\sigma_q^2} x^T x)$

- Match the densities at the peak of  $\tilde{p}(x)$  and q(x), i.e. at  $x = \vec{0}$ .
- $\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D} \exp(-\frac{1}{2\sigma_p^2} x^T x)$
- $q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D} \exp(-\frac{1}{2\sigma_q^2} x^T x)$
- At  $x = \vec{0}$ ,  $\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D}$  and  $q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D}$

- Match the densities at the peak of  $\tilde{p}(x)$  and q(x), i.e. at  $x = \vec{0}$ .
- $\tilde{p}(x) = \frac{1}{(2\pi)^{D/2} \sigma_p^D} \exp(-\frac{1}{2\sigma_p^2} x^T x)$
- $q(x) = \frac{1}{(2\pi)^{D/2} \sigma_q^D} \exp(-\frac{1}{2\sigma_q^2} x^T x)$
- At  $x=\vec{0}$ ,  $\widetilde{p}(x)=\frac{1}{(2\pi)^{D/2}\sigma_p^D}$  and  $q(x)=\frac{1}{(2\pi)^{D/2}\sigma_q^D}$
- $M = \frac{\tilde{p}(x)}{q(x)} = \frac{\sigma_q^D}{\sigma_p^D} = (\frac{\sigma_q}{\sigma_p})^D$

• 
$$M = \frac{\tilde{p}(x)}{q(x)} = \frac{\sigma_q^D}{\sigma_p^D} = (\frac{\sigma_q}{\sigma_p})^D$$

 $\bullet$  Let us assume  $\sigma_p=1$  and  $\sigma_q=1.1$ 



• 
$$M = \frac{\tilde{p}(x)}{q(x)} = \frac{\sigma_q^D}{\sigma_p^D} = (\frac{\sigma_q}{\sigma_p})^D$$

ullet Let us assume  $\sigma_p=1$  and  $\sigma_q=1.1$ 



Acceptance probability is very low as D increases.

## **Challenges with Rejection Sampling**

- Rejection sampling is inefficient when the target distribution is very different from the proposal distribution. In this case, we will reject a lot of samples.
- This is a problem when sampling from high-dimensional distributions. Acceptance probability  $\alpha(x)$  is very low.

#### Back to the main problem at hand

- We want to compute posterior predictive distribution (or something similar)
- We would typically use Monte Carlo methods to do this.
- $I = \int f(x)p(x)dx$  where p(x) is the posterior distribution.
- We can approximate I by  $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$ , where  $x_i \sim p(x)$ .
- But, we do not have access to p(x). Rather, we have access to  $\tilde{p}(x)$ , which is proportional to p(x).

#### Back to the main problem at hand

- We can approximate I by  $\frac{1}{N} \sum_{i=1}^{N} f(x_i)$ , where  $x_i \sim p(x)$ .
- But, we do not have access to p(x). Rather, we have access to  $\tilde{p}(x)$ , which is proportional to p(x).
- In rejection sampling, we took a sample  $x_i$  from q(x) and accepted it with probability  $\frac{\tilde{p}(x_i)}{Mq(x_i)}$ .
- Can we use all samples  $x_i$  from q(x) without rejection?

#### Importance Sampling

- In rejection sampling, we took a sample  $x_i$  from q(x) and accepted it with probability  $\frac{\tilde{p}(x_i)}{Mq(x_i)}$ .
- Can we use all samples  $x_i$  from q(x) without rejection?
- $I = \int f(x)p(x)dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$ , where  $x_i \sim p(x)$ .
- Let us choose a proposal distribution q(x) which has support over the entire domain of p(x).
- $I = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$
- $I = \int f(x)w(x)q(x)dx$ , where  $w(x) = \frac{p(x)}{q(x)}$ . w(x) is called the importance weight.
- $I = \mathbb{E}_q[f(x)w(x)] = \sum_{i=1}^N f(x_i)w(x_i)$ , where  $x_i \sim q(x)$ .

## Markov Chains

https://nipunbatra.github.io/hmm/

## **Global Optimization**

 $Notebook: \ mcmc = optimization.ipynb$ 

# Importance Sampling

#### **General Form**

In rejection sampling, we saw that due to less acceptance probability, a lot of samples were wasted leading to more time and higher complexity to approximate a distribution.

Computing p(x), q(x) thus seems wasteful. Let us rewrite the equation as:

$$\phi = \int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx$$
$$\sim \frac{1}{N}\sum_{i=1}^{N}f(x_i)\frac{p(x_i)}{q(x_i)} = \frac{1}{N}\sum_{i=1}^{N}f(x_i)w_i$$

Here,  $x_i \sim q(x)$ .  $w_i$  is known as the importance(weight) of sample i.

However the normalization constant  ${\it Z}$  is generally not known to us. Thus writing:

$$p(x) = \frac{\tilde{p}(x)}{Z} \tag{13}$$

Now inserting this in earlier equations, we get:

$$\phi = \frac{1}{Z} \int f(x) \tilde{p}(x) dx = \frac{1}{Z} \int f(x) \frac{\tilde{p}(x)}{q(x)} q(x) dx$$
$$\sim \frac{1}{NZ} \sum_{i=1}^{N} f(x_i) \frac{\tilde{p}(x_i)}{q(x_i)} = \frac{1}{NZ} \sum_{i=1}^{N} f(x_i) w_i$$

We know that:

$$Z = \int_{\infty}^{\infty} \tilde{p}(x)dx = \int_{\infty}^{\infty} \frac{\tilde{p}(x)}{q(x)} q(x)dx$$
$$= \frac{1}{N} \sum_{i=1}^{N} w_{i}$$

Substuting this value of Z in the equation above, we get:

$$\phi = \frac{1}{N} \sum_{i=1}^{N} f(x_i) w_i = \frac{\sum_{i=1}^{N} f(x_i) w_i}{\sum_{i=1}^{N} w_i}$$
$$= \sum_{i=1}^{N} f(x_i) W_i$$

Here  $W_i = \frac{w_i}{\sum_{i=1}^N w_i}$  are the normalized weights.

#### Limitations

• Recall that  $Var \ \hat{\phi} = \frac{var(f)}{N}$ . Importance sampling replaces var(f) with  $var(f\frac{p}{q})$ . At positions where p >>> q, the weight can tend to  $\infty$ !



Gibbs Sampling

#### **General Form**

Suppose we wish to sample  $\theta_1, \theta_2 \sim p(\theta_1, \theta_2)$ , but cannot use:

- direct simulation
- accept-reject method
- Metropolis-Hasting

But we can sample using the conditionals i.e.:

- $p(\theta_1|\theta_2)$  and
- $p(\theta_2|\theta_1)$ ,

then we can use Gibbs sampling.

Suppose  $\theta_1, \theta_2 \sim p(\theta_1, \theta_2)$  and we can sample from  $p(\theta_1, \theta_2)$ . We begin with an initial value  $(\theta_1^0, \theta_2^0)$ , the workflow for Gibbs algorithm is:

- 1. sample  $heta_1^j \sim p( heta_1| heta_2^{j-1})$  and then
- 2. sample  $\theta_2^j \sim p(\theta_2|\theta_1^j)$ .

One thing to note here is that the sequence in which the theta's are sampled are not independent!

## **Bivariate Normal Example**

Suppose

$$heta \sim extstyle N_2(0,\Sigma)$$
 and  $\Sigma = egin{matrix} 1 & 
ho \ 
ho & 1 \end{matrix}$ 

Then, we have:

$$\theta_1 | \theta_2 \sim N(\rho \theta_2, [1 - \rho^2])$$

 $\theta_2|\theta_1\sim N(\rho\theta_1,[1-\rho^2])$  are the conditional distributions. The Gibbs sampling proceeds as follows:

| Iteration | Sample $	heta_1$                                         | Sample $\theta_2$                                    |
|-----------|----------------------------------------------------------|------------------------------------------------------|
| 1         | $	heta_1 \sim \textit{N}( ho 	heta_2^0, [1- ho^2])$      | $	heta_2 \sim \mathcal{N}( ho 	heta_1^1, [1- ho^2])$ |
|           |                                                          |                                                      |
| k         | $	heta_1 \sim \mathcal{N}( ho 	heta_2^{k-1}, [1- ho^2])$ | $	heta_2 \sim \mathcal{N}( ho 	heta_1^k, [1- ho^2])$ |



#### Multivariate case

```
Suppose \theta = (\theta_1, \theta_2, \dots, \theta_K), the Gibbs workflow is as follows:
\theta_1^j = p(\theta_1 | \theta_2^{j-1}, \dots, \theta_K^{j-1})
\theta_2^j = p(\theta_2|\theta_1^j,\theta_2^{j-1},\dots,\theta_{k}^{j-1})
\theta_{k}^{j} = p(\theta_{k}|\theta_{1}^{j},\ldots,\theta_{k-1}^{j},\theta_{k+1}^{j-1},\ldots,\theta_{K}^{j-1})
\theta_{\kappa}^{j} = p(\theta_{\kappa}|\theta_{1}^{j},\ldots,\theta_{\kappa-1}^{j})
```

The distributions above are call the full conditional distributions.

### **Advantages**

Gibbs sampling can be used to draw samples from  $p(\theta)$  when:

- Other methods don't work quite well in higher dimensions.
- Draw samples from the full conditional distributions is easy,  $p(\theta_k|\theta_{-k})$ .

# Markov Chain Monte Carlo

## Limitations of basic sampling methods

- Transformation based methods: Usually limited to drawing from standard distributions.
- Rejection and Importance sampling: Require selection of good proposal distirbutions.

In high dimensions, usually most of the density p(x) is concentrated within a tiny subspace of x. Moreover, those subspaces are difficult to be known a priori.

A solution to these are MCMC methods.

#### Markov Chain

• Markov Chain: A joint distribution p(X) over a sequence of random variables  $X = \{X_1, X_2, \dots, X_n\}$  is said to have the Markov property if

$$p(X_i|X_1,...,X_{i-1}) = p(X_i|X_{i-1})$$

The sequence is then called a Markov chain.

 The idea is that the estimates contain information about the shape of the target distribution p.

## Metropolis Hastings

- The basic idea is propose to move to a new state  $x_{i+1}$  from the current state  $x_i$  with probability  $q(x_{i+1}|x_i)$ , where q is called the proposal distribution and our target density of interest is  $p(=\frac{1}{7}\tilde{p})$ .
- The new state is accepted with probability  $\alpha(x_i, x_{i+1})$ .
  - If  $p(x_{i+1}|x_i) = p(x_i|x_{i+1})$ , then  $\alpha(x_i, x_{i+1}) = \min(1, \frac{p(x_{i+1})}{p(x_i)})$ .
  - If  $p(x_{i+1}|x_i) \neq p(x_i|x_{i+1})$ , then  $\alpha(x_i, x_{i+1}) = \min(1, \frac{p(x_{i+1})q(x_i|x_{i+1})}{p(x_i)q(x_{i+1}|x_i)}) = \min(1, \frac{\tilde{p}(x_{i+1})q(x_i|x_{i+1})}{\tilde{p}(x_i)q(x_{i+1}|x_i)})$
- Evaluating  $\alpha$ , we only need to know the target distribution up to a constant of proportionality or without normalization constant.

# Algorithm: Metropolis Hastings

- 1. Initialize  $x_0$ .
- 2. for i = 1, ..., N do:
- 3. Sample  $x^* \sim q(x^*|x_{i-1})$ .
- 4. Compute  $\alpha = \min(1, \frac{\tilde{p}(x^*)q(x_{i-1}|x^*)}{\tilde{p}(x_{i-1})q(x^*|x_{i-1})})$
- 5. Sample  $u \sim \mathcal{U}(0,1)$
- 6. if  $u \leq \alpha$ :

$$x_i = x^*$$

else:

$$x_i = x_{i-1}$$

## Pop Quiz

How do we choose the initial state  $x_0$ ?

## Pop Quiz

How do we choose the initial state  $x_0$ ?

- 1. Start the Markov Chain at an initial  $x_0$ .
- 2. Using the proposal  $q(x|x_i)$ , run the chain long enough, say  $N_1$  steps.
- 3. Discard the first  $N_1 1$  samples (called 'burn-in' samples).
- 4. Treat  $x_{N_1}$  as first sample from p(x).

#### MCMC demo

https://chi-feng.github.io/mcmc-demo/app.html