Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, \mathcal{S} , a menos que se indique lo contrario.

Ejercicio 1 Demuestra que un producto fibrado de $f: A \to C \leftarrow B: g$ es único salvo iso.

Ejercicio 2 Muestra que el clasificador de subobjetos Ω es coseparador, es decir, dadas f, g: $A \to B$ si para cualquier ϕ : $B \to \Omega$ el diagrama

$$A \xrightarrow{f} B \xrightarrow{\varphi} \Omega$$

conmuta, entonces f = g.

Ejercicio 3 Sea A una categoría localmente pequeña con coproductos. Demuestra que

$$\mathbf{A}(A,C) \times \mathbf{A}(B,C) \cong \mathbf{A}(A+B,C).$$

ZFC

Ejercicio 4 Dada una relación R, demuestra las siguientes equivalencias:

- R es reflexiva si y solo si $\Delta_{dom(R)} \subseteq R$.
- R es reflexiva en un conjunto A si y solo si $\Delta_A \subseteq R$.
- R es simétrica si y solo si $R^{-1} \subseteq R$.
- lacksquare R es transitiva si y solo si $R \circ R \subseteq R$.
- $\blacksquare \ \, \text{$R$ es irreflexiva si y solo si $R\cap \Delta_V=\varnothing$.}$
- \blacksquare R es antisimétrica si y solo si R \cap R $^{-1} \subseteq \Delta_V$.
- R es asimétrica si y solo si $R \cap R^{-1} = \emptyset$.

Ejercicio 5 Si R es un orden parcial sobre A, definimos $R' = R \cup \Delta_A$ como el orden parcial reflexivo asociado; por otro lado si R es reflexivo, definimos $R^* = R \setminus \Delta_A$ como su orden estricto asociado.

Demuestra los siguientes puntos:

- $\bullet \ A \subseteq B \to (B \setminus A) \cup A = B.$
- $\quad \blacksquare \ A \cap B = \varnothing \to (B \cup A) \setminus A = B.$

- R' es efectivamente un orden parcial reflexivo sobre A.
- R* es efectivamente un orden estricto sobre A.
- $R'^* = R$ cuando R es estricto.
- $Arr R^{*\prime} = R$ cuando R es reflexivo. Esto junto al inciso anterior prueba que los órdenes estrictos y reflexivos están asociados mediante unaa biyección.

Ejercicio 6 Dadas R, S relaciones transitivas y antisimétricas, definimos R \sim S como $\exists A(R\Delta S=\Delta_A)$. Además, definamos al conjunto $\mathfrak{X}_A=\{R\subseteq A^2R \text{ es transitiva y antisimétrica.}\}$. Demuestra los siguientes incisos:

- 1. ~ es reflexiva, transitiva y simétrica.
- 2. $\sim_{|_{\mathcal{X}_A}}$ es una relación de equivalencia sobre \mathcal{X}_A . A partir de aquí, nos referiremos a esta relación como \sim .
- 3. Dada $R \in \mathcal{X}_A$, $([R]_{\sim}, \subseteq)$ es un retículo completo. Prueba que el infimo y supremo son la intersección y unión respectivamente siempre que el conjunto es no vacío.
- 4. Prueba que el mínimo es un orden estricto y que el máximo es un orden reflexivo.
- 5. Prueba que el el mínimo y máximo están asociados.
- 6. Si $R \sim S$, αRb y bSc entonces $\alpha(R \cap S)c$.

Ejercicio 7 Un morfismo de órdenes $f:(A,\leqslant_A)\to(B,\leqslant_B)$ es una función creciente, es decir, si $a\leqslant_A b$ implica $f(a)\leqslant_B f(b)$. Considerando que los órdenes parciales junto con las funciones crecientes forman una categoría, tenemos una definición de isomorfismo.

Con esto en cuenta, demuestra o refuta con un contraejemplo la siguiente afirmación: (A, \leq_A) es isomorfo a (B, \leq_B) si y solo si existe un morfismo de orden biyectivo.

Ejercicio 8 Sea (A, \leq) una reticula y X un conjunto, definimos la siguiente relación sobre A^{X} :

$$\preccurlyeq = \{(f,g) \in (A^X)^2 \forall x (x \in X \to f(x) \leqslant g(x))\}$$

Demuestra que (A^X, \preccurlyeq) es una retícula.

Ejercicio 9 Demuestra que todo orden parcial reflexivo es isomorfo a un conjunto ordenado por contención.