Algebraic Topology

John Russell

	٦.					
(\mathcal{C}	n	1.6	en:	11.	S

1 Chapter One 2

1 Chapter One

Definition 1.1. A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- 1. \varnothing and X are in \mathcal{T}
- 2. The union of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} . Closed under arbitrary unions.
- 3. The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} . Closed under intersection.

A set X for a which a topology \mathcal{T} has been specified is called a **topological space** and \mathcal{T} is called a topology on X.

The sets in \mathcal{T} are called open sets. If $U \in \mathcal{T}$ is in open set then $X \setminus U$ is closed.

Example 1.2. Let $X \in \mathbb{R}$. Define a topology \mathcal{T} on X. A set $U \in \mathbb{R}$ is in \mathcal{T} if, given $x \in U$, there is an $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset U$. This is called an open set.

Theorem 1.3. Let $(a,b) \subset \mathbb{R}$. Then (a,b) is an open set.

Proof. Let $x \in (a,b)$. We need to find an $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset (a,b)$. Let $\epsilon = \min\{|x - a|, |x - b|\}$. Thus, $(x - \epsilon, x + \epsilon) \subset (a,b)$.

Definition 1.4. Let $X = \mathbb{R}^n$. The **open ball** of radius ϵ around x is defined as:

$$B_{\epsilon}(x) = \{ y \in \mathbb{R}^n \mid |x - y| < \epsilon \}$$

This is called the **usual topology** on \mathbb{R}^n .

Definition 1.5. Let (X,\mathcal{T}) be a topological space. If $A \subset X$, then the collection

$$\mathcal{T}_A = \{ A \cap U \mid U \in \mathcal{T} \}$$

is a topology on A, called the subspace topology.