微分流形

苏可铮 2012604

November 14, 2022

习题 1. 证明: 一般线性群 $GL(n,\mathbb{R})$ 恰有两个道路分支; 复的一般线性群 $GL(n,\mathbb{C})$ 是道路连通的

证明. 记 $M(n,\mathbb{R})$ 为 n 阶实矩阵群,且与 \mathbb{R}^{n^2} 是微分同胚的,则一般线性群为:

$$GL(n,\mathbb{R}) = \{X \in M(n,\mathbb{R}) \mid det X \neq 0\}$$

则由矩阵映射的连续性知: $GL(n,\mathbb{R})$ 是 $M(n,\mathbb{R})$ 中的开集,则为 $M(n,\mathbb{R})$ 的子流形;且在群乘法和逆运算下 $GL(n,\mathbb{R})$ 是闭的,故知 $GL(n,\mathbb{R})$ 为 Lie 群

且显然 $GL(n,\mathbb{R})$ 为维度为 n^2 的非连通的 Lie 群

考虑 $GL(n,\mathbb{R})$ 的两个子群:

$$GL_{+}(n,\mathbb{R}) = \{ X \in M(n,\mathbb{R}) \mid det X > 0 \}$$

$$GL_{-}(n,\mathbb{R}) = \{ X \in M(n,\mathbb{R}) \mid detX < 0 \}$$

显然 $GL(n,\mathbb{R})$ 有以上两个连通的道路分支 对于复的一般线性群 $GL(n,\mathbb{C})$,任取 $A,B\in GL(n,\mathbb{C})$,有:

$$\exists \alpha, \beta \neq 0 \ s.t. \ \alpha^n = det A, \beta^n = det B$$

$$\exists \delta : [0,1] \to \mathbb{C} \setminus \{0\} \quad s.t. \quad \delta(0) = \alpha, \delta(1) = \beta$$
$$\exists \Gamma : [0,1] \to SL(n,\mathbb{C}) \quad s.t. \quad \Gamma(0) = \frac{A}{\alpha}, \Gamma(1) = \frac{B}{\beta}$$

 \Box

则有道路 $\phi(t) = \delta(t)\Gamma(t)$ 满足使得 A, B 之间连通

即复的一般线性群 $GL(n,\mathbb{C})$ 是道路连通的

习题 2. 用例 1.6.8 说明 $SL(n,\mathbb{R})$ 为 Lie 群,并计算其维数

证明. 对于特殊线性群:

$$SL(n,\mathbb{R}) = \{X \in M(n,\mathbb{R}) \mid detX \neq 0\}$$

考虑群同态

$$\det: GL(n, \mathbb{R}) \to \mathbb{R}^* = \mathbb{R} \setminus \{0\}$$

则其映射的核为: $ker(\det)=SL(n,\mathbb{R})$,且又由 $SL(n,\mathbb{R})$ 为 $GL(n,\mathbb{R})$ 的子流形,则 $SL(n,\mathbb{R})$ 为 Lie 群

又由其映射的秩为 1, 即 $rank \det = 1$

则
$$dimSL(n,\mathbb{R}) = dimGL(n,\mathbb{R}) - rank \det = n^2 - 1$$

即
$$SL(n,\mathbb{R})$$
 的秩为 n^2-1

习题 3. 证明 U(n) 微分同胚于 $S^1 \times SU(n)$

证明. 构造如下映射 f:

$$f: SU(n) \times S^1 \to U(n)$$

$$(A, z) \mapsto A \cdot diag(z, 1, \dots, 1)$$

对于上述映射, 其逆映射为:

$$f^{-1}: U(n) \to SU(n) \times S^1$$

$$A \mapsto \left(A \cdot diag(det(A)^{-1}, 1, \dots, 1), det(A)\right)$$

显然 f 以及 f^{-1} 均为光滑映射,则 f 为微分同胚即 U(n) 微分同胚于 $S^1 \times SU(n)$