Seminário de Lógica e IA (SNAIL) - IME-USP

Machine Learning for Graphs and Some Applications to Polymer Science

David Kohan Marzagão Lecturer at King's College London Visiting Researcher at University of Oxford

david.kohan@kcl.ac.uk

Joint work with Shannon R. Petersen, Georgina L. Gregory, Yichen Huang,
David A. Clifton, Charlotte K. Williams, Clive R. Siviour
18 April 2023

For the Mathematicians out there...

SNAIL IME-USP 18 April 2023 1 / 26

Motivation

- An informal (and maybe not too precise) way to describe this project is:
 - Can we predict properties of polymers...
 - ... without using expert knowledge from polymer science?

SNAIL IME-USP 18 April 2023 2 / 26

Outline

SNAIL IME-USP 18 April 2023 3 / 26

Outline

• Very small dataset.

(about 80 polymers!)

• Each point is result of extensive lab work.

SNAIL IME-USP 18 April 2023 4 / 26

Outline

• For example, phthalic anhydride (CHO PA):

• Has SMILES:

$$OC1C(CCCC1)OC(=O)C1=CC=CC=C1C(=O)$$

• And becomes a graph like:

SNAIL IME-USP 18 April 2023 5 / 26

Database Curation

- Things to consider:
 - How do monomers combine when SMILES are concatenated?
 - Some polymer chains are created akin sampling without replacement!
 - Taking the entire chain into account gives us the number of atoms and overall size.
 - These can be reasonably large graphs with thousands of nodes.

SNAIL IME-USP 18 April 2023 6 / 26

Some Background - Graph Kernels

SNAIL IME-USP 18 April 2023 7 / 26

A Very Very Short Introduction

- Putting simply Graph Kernel methods seek to compare graphs.
 - Not a simple task in theory!
 - Consider the analogous problem in the context of vectors, for example.
- Not to be confused with Kernels on Graphs. (they compare nodes on graphs!)
- Not to be confused with Graph Neural Networks!
 - Weisfeiler-Lehman kernel (coming up) is very much a basis of several GNN architectures.
- (All these beatiful graphs and diagrams were taken from Borgwardt et al., 2020)

SNAIL IME-USP 18 April 2023 8 / 26

The Simplest of Examples

- The **Node Histogram** graph kernel disregards edges. It only counts the number of each label in each graph and then take the inner product as a measure of similarity.
- In this case,

$$k_N(G, G') = \langle \phi(G), \phi(G') \rangle_{\mathcal{H}} = 25 \tag{1}$$

• Despite its simplicity, the node histogram kernel often performs well in some datasets!

node histogram kernel	based on	graph type	node type	edge type	complexity
			$\bigcirc^{(1.1,\ 0.7)}$	0—0	$\mathcal{O}(nd_v)$
	nodes	none	labelled attributed	none	

SNAIL IME-USP 18 April 2023 9 / 26

Introduction

- A graph kernel, or kernel for graphs, is a kernel function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, where $\mathcal{X} = \mathcal{G}$ is a family of graphs. We have $k(G, G') = \langle \phi(G), \phi(G') \rangle_{\mathcal{H}}$.
 - The function $\phi: \mathcal{X} \to \mathcal{H}$ is a feature map that represents inputs a of set \mathcal{X} as elements of f a vector space \mathcal{H} .
 - There is some magic going on here. The fact that we are dealing with kernels allows us to have implicit functions ϕ . (unlike what we've seen thus far)
 - It all boils down to the matrix K (formed by $k(G_i, G_j)$) being positive semi-definite, i.e., all eigenvalues non-negative.
- Things to consider:
 - Node and edge labels.

(colours, classes, ...)

$$l_V: V \to \Sigma_V$$
 and $l_E: E \to \Sigma_E$

• Node and edge attributes.

(a value in \mathbb{R} , for example...)

$$\mathcal{A}_V: V \to \mathbb{R}^d$$
 and $\mathcal{A}_E: E \to \mathbb{R}^d$

Labels and Attributes for Nodes and Edges

- Specific graph kernels often make assumptions of whether a graph is directed or attributed, for example.
 - But it does not in general ask for graph properties, such as 'no cycles', or 'complete', or even 'connected'(!)

SNAIL IME-USP 18 April 2023 11 / 26

Labels and Attributes for Nodes and Edges

SNAIL IME-USP 18 April 2023 12 / 26

Complete Graph Kernels

Definition (Complete Graph Kernel) A kernel $k(G, G') = \langle \phi(G), \phi(G') \rangle_{\mathcal{H}}$ is called **complete** if ϕ is injective.

- Efficiently (poly-time) computing a complete graph kernel ⇒ solving graph isomorphism problem in poly-time. (Gärtner et al., 2003, Proposition 1.)
 - What if implicit kernel?

SNAIL IME-USP 18 April 2023 13 / 26

Information Propagation Example - Weisfeiler-Lehman Graph Kernels

- In this example, we have $k(G, G') = \langle \phi(G), \phi(G') \rangle = 30$.
- The complexity of the relabelling iterations is O(hm), where m = |E| and h is the propagation depth. Graphs can be computed in parallel.

SNAIL IME-USP 18 April 2023 14 / 26

Information Propagation Example - Weisfeiler-Lehman Graph Kernels

) A () () (based on	graph type	node type	edge type	complexity
Weisfeiler- Lehman			•	\bigcirc $$	$\mathcal{O}(hm)$
kernel Shervashidze and Borgwardt, 2009	label refinement	undirected directed	labelled	labelled	

SNAIL IME-USP 18 April 2023 15 / 26

Bag of Structures Example - Shortest Path Kernel

• This is one possible implementation of the shortest path kernel. For this, we have $k(G, G') = \langle \phi_{path}(G), \phi_{path}(G') \rangle = 75$.

ah autaat	based on	graph type	node type	edge type	complexity
shortest path kernel				\circ $$	$\mathcal{O}(n^4d_v)$
Borgwardt and Kriegel, 2005	paths	undirected directed	labelled	labelled	

SNAIL IME-USP 18 April 2023 16 / 26

Back to Polymers

SNAIL IME-USP 18 April 2023 17 / 26

Lenght Scale of Polymers

SNAIL IME-USP 18 April 2023 18 / 26

Predictions

• What are we predicting?

- (these are regression tasks)
- Thermal Properties: Glass Transition Temperature (Tg).
 - Both Lower and Higher.
- Mechanical Properties: Stress at break and Strain at break.

SNAIL IME-USP 18 April 2023 19 / 26

Predictions

SNAIL IME-USP 18 April 2023 **20** / 26

Explanations

- Consider the polymer above.
 - It is a carboxylic acid functionalized poly(ester-b-TMC-b-ester). (!)
- In lay terms, chemists **know** that:
 - The blue part (PTMC) is associated with a higher stress at break (σ_{break})
 - It undergoes strain induced crystallization.
 - The green part (PA co vCHO) is associated with a higher Upper T_g .
 - The black part (Carboxylic acid group) is associated with a higher σ_{break} and lower Upper T_g .
- Our dataset is consistent with the above, i.e., there are some examples associated with each of the claims.

Explanations given by LIME (Ribeiro et al., 2016)

of of one of the original of t	σ_{break}	Upper T_g
* * * * * *	1	Î
* - * * >	Î	1
i. i		-
О _{ОН} ~s~ ~~s~ ~~s~	1	1
г Он		1

SNAIL IME-USP 18 April 2023 22 / 26

Miscellaneous Comments and Challenges

- Transforming back into polymers.
- We could learn from the strings, for example.
- Modification in the WL algorithm needed to be done because of double-bonds.
- How to deal with aromatic rings.
- Others would not use all patterns possible patterns.

SNAIL IME-USP 18 April 2023 23 / 26

Conclusions

- Our algorithm predicts properties of polymers without the need of inputting motifs "by hand".
- We can create explanations by going from WL patterns back to polymer "chunks" (i.e., subgraphs).
- Such explanations are in line with what chemists already understand about these polymers.
- No restrictions to which polymers can be predicted.
 - Better if all atoms have been seen before by the algorithm.
- Future work: synthesising polymers is expensive and time-consuming. How can we use such an algorithm to explore thousands of possible combinations of monomers to create good (strong, elastic) polymers?

SNAIL IME-USP 18 April 2023 24 / 26

The End

SNAIL IME-USP 18 April 2023 25 / 26

Some references

- [Borgwardt et al., 2020] Borgwardt, K., Ghisu, E., Llinares-López, F., O'Bray, L., and Rieck, B. (2020). Graph kernels: State-of-the-art and future challenges.
- [Gärtner et al., 2003] Gärtner, T., Flach, P., and Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. In *Learning theory and kernel machines*, pages 129–143. Springer.
- [Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "why should i trust you?": Explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '16, page 1135–1144, New York, NY, USA. Association for Computing Machinery.

SNAIL IME-USP 18 April 2023 **26** / 26