

Out-of-distribution detection in 3D semantic segmentation models

Master thesis

September 10, 2021

Lokesh Veeramacheneni

Topics

- 1. Out of distribution (OOD)/Anomaly/Distributional shift
- 2. Dataset study
- 3. Model study

OOD/Anomaly/Distributional shift

- Anomaly Patterns that do not conform to the expected behaviour in the training data
- OOD The test input is drawn from an unknown distribution of unknown data which is far from the training distribution
- Distributional Shift The input to the model is a slightly shifted version of training data distribution

OOD/Anomaly/Distributional shift

Figure 1: Images showing the distributional shift in data, anomalies and OOD data using ship example. Images taken from [1], [2], [3], [4], [5] and [6].

Datasets survey

acquisition mode	dataset	frames	points (in million)	classes	scene type
	Oakland 14	17	1.6	44	outdoor
	Paris-lille-3D 19	3	143	50	outdoor
	Paris-rue-Madame 20	2	20	17	outdoor
static	S3DIS 2	5	215	12	indoor
	ScanObjectNN 23	-	-	15	indoor
	Semantic3D 10	30	4009	8	outdoor
	TerraMobilita/IQmulus 24	10	12	15	outdoor
	TUM City Campus 7	631	41	8	outdoor
	DALES 25	40 (tiles)	492	8	outdoor
sequential	A2D2 8	41277	1238	38	outdoor
	AIO Drive 26	100	-	23	outdoor
	KITTI-360 28	100K	18000	19	outdoor
	nuScenes-lidarseg 4	40000	1400	32	outdoor
	PandaSet 27	16000	1844	37	outdoor
	SemanticKITTI 3	43552	4549	28	outdoor
	SemanticPOSS 15	2988	216	14	outdoor
	Sydney Urban 5	631	_	26	outdoor
	Toronto-3D 21	4	78.3	8	outdoor
synthetic	SynthCity 9	75000	367.9	9	outdoor

Figure 2: Surveyed datasets for the 3D LiDAR data.

Semantic3D Vs SemanticKITTI

- 1. Both are widely evaluated and have highest number of points
- 2. Both are part of benchmark challenge
- 3. Synthetic datasets cannot be used for training, they lack the accuracy in detail
- 4. SemanticKITTI has 3D coordinates and intensity as features
- 5. In addition to 3D coordinates and intensity, Semantic3D also has RGB
- 6. Semantic3D is more diverse rather than SemanticKITTI dataset

Training dataset - Semantic3D

- 1. Large set of points (\approx 4 million)
- 2. Eight semantic classes
- 3. Comes with 3D coordinates, RGB and intensity as features
- 4. Well studied and benchmarked dataset
- 5. Include variety of urban and rural scenes of various complexity
- 6. Dense point clouds with little overlap

Figure 3: Example of a scene in semantic3D dataset

Models survey

 RandLA-Net has shown higher performance with lower parameters - lower training time

Network - RandLA-Net

University of Applied Sciences

- 1. RandLA-Net employs random point sampling lower preprocessing time
- 2. RandLA-Net also uses Dilated residual block scalable receptive field of a point
- 3. RandLA-Net also uses attentive pooling weighted features

Figure 5: Dilated residual block of RandLA-Net in below image along with subblocks of local spatial encoding and attentive pooling. Image from