

CS 405/605 Data Science

Dr. Qianqian Tong

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Regression
 - Sum of squares

$$\frac{1}{N} \sum_{i=N}^{N} (y_i - f(\mathbf{x}_i))^2$$

Sum of deviation

$$\frac{1}{N} \sum_{i=N}^{N} |y_i - f(\mathbf{x}_i)|$$

• Coefficient of determination R^2

$$1 - \frac{\sum_{i} (y_i - f(\mathbf{x}_i))^2}{\sum_{i} (y_i - \overline{y})^2}$$

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Metrics for Performance Evaluation

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)

Metrics for Performance Evaluation

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Assessing Performance

problem

- simulate 100 data sets of different sizes
- train on this data, and assess performance on an independent test set
- learning curve = plotting accuracy as a function of training set size
- typical "diminishing returns" effect (some nice theory to explain this)

Assessing Performance

Assessing Performance

Assessing Performance

Assessing Performance

Overfitting and Underfitting

Another example

Assessing Performance

Overfitting and Underfitting

Simple linear model

Assessing Performance

Overfitting and Underfitting

Simple linear model VS
High order model

Assessing Performance

Overfitting and Underfitting

Simple linear model VS
High order model

Assessing Performance

Overfitting and Underfitting

Simple linear model VS
High order model

Assessing Performance

Assessing Performance

Overfitting and Underfitting

How Overfitting affects Prediction

Assessing Performance

Overfitting and Underfitting

How Overfitting affects Prediction

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Methods for Performance Evaluation

- Holdout method
 - Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation

Methods for Performance Evaluation

- Cross-validation (k-fold, where k = 5 is most popular)
 - randomly partition our full data set into k disjoint subsets (each roughly of size n/k, n = total number of training data points)
 - for i = 1:5 (here k = 5)
 - train on 80% of data,
 - Acc(i) = accuracy on other 20%
 - end
 - Cross-Validation-Accuracy = $1/k \sum_i Acc(i)$ choose the method with the highest cross-validation accuracy
 - common values for k are 5 and 10
 - Can also do "leave-one-out" where k = n

Methods for Performance Evaluation

• <u>Cross-validation</u> (*k*-fold)

Disjoint Validation Data Sets

Methods for Performance Evaluation

Cross-validation (k-fold)

Disjoint Validation Data Sets

Methods for Performance Evaluation

Cross-validation (k-fold)

Disjoint Validation Data Sets

Methods for Performance Evaluation

Cross-validation (k-fold)

Notes

- cross-validation generates an approximate estimate of how well the learned model will do on "unseen" data
- by averaging over different partitions it is more robust than just a single train/validate partition of the data
- "k-fold" cross-validation is a generalization
 - •partition data into disjoint validation subsets of size n/k
 - •train, validate, and average over the v partitions
 - •e.g., k=10 is commonly used

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Model Comparison

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
- If the classifier returns a real-valued prediction,
 - changing the threshold of algorithm changes the location of the point

Methods for Model Comparison

ROC (Receiver Operating Characteristic)

TP=50, FN=50, FP=12, TN=88

Methods for Model Comparison

ROC (Receiver Operating Characteristic)

	PREDICTED CLASS		
		Class =Yes	Class= No
ACTUAL CLASS	Class =Yes	a (TP)	b (FN)
	Class =No	c (FP)	d (TN)

(TPR,FPR):

 (0,0): declare everything to be negative class

$$-$$
 TP=0, FP = 0

 (1,1): declare everything to be positive class

$$- FN = 0, TN = 0$$

• (1,0): ideal

$$- FN = 0, FP = 0$$

Methods for Model Comparison

ROC (Receiver Operating Characteristic)

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Methods for Model Comparison

Using ROC for Model Comparison

- No model consistently outperforms the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve (AUC)
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

