Trig Final (SLTN v698)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 4.4 meters. The radius is 5.2 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 0.8462$ radians.

Question 2

Consider angles $\frac{-15\pi}{4}$ and $\frac{13\pi}{6}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-15\pi}{4}\right)$ and $\cos\left(\frac{13\pi}{6}\right)$ by using a unit circle (provided separately).

Find $sin(-15\pi/4)$

$$\sin(-15\pi/4) = \frac{\sqrt{2}}{2}$$

Find $cos(13\pi/6)$

$$\cos(13\pi/6) = \frac{\sqrt{3}}{2}$$

Question 3

If $tan(\theta) = \frac{24}{7}$, and θ is in quadrant III, determine an exact value for $sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$7^{2} + 24^{2} = C^{2}$$

$$C = \sqrt{7^{2} + 24^{2}}$$

$$C = 25$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\sin(\theta) = \frac{-24}{25}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 7.72 meters, a midline at y = 2.79 meters, and a frequency of 4.38 Hz. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -7.72\sin(2\pi 4.38t) + 2.79$$

or

$$y = -7.72\sin(8.76\pi t) + 2.79$$

or

$$y = -7.72\sin(27.52t) + 2.79$$