1 Метод динамического программирования решения задачи о рюкзаке. Постановка задачи. Рекуррентные соотношения Беллмана.

Задача о рюкзаке

Имеется рюкзак грузоподъемностью W. $weight_i$ – вес одного предмета i-ого типа, $cost_i$ – стоимость (ценность) одного предмета i-ого типа, x_i – число предметов i-ого типа, которые будут загружаться на транспортировочное средство. Требуется заполнить его грузом, состоящим из предметов N различных типов таким образом, чтобы стоимость (ценность) всего груза была максимальной.

$$W(x) = \sum_{i=1}^{N} x_i \cdot cost_i \to max$$

$$\sum_{i=1}^{N} x_i \cdot weight_i \leq W, \quad x_i \in \{0\} \cup \mathbb{N}$$

Решение задачи разбивается на N этапов. На каждом i-ом этапе определяется максимальная стоимость груза, состоящего из предметов типа $k=\overline{1,i}$

Рекуррентное уравнение Беллмана для задачи о рюкзаке $W_i(weight)$ - максимальная стоимость груза, состоящего из предметов типа $k=\overline{1,i}$ с общим весом не более weight.

 $\forall \ weight: \ weight \in \overline{0,W} \\ W_i(weight) = \underbrace{\max_{x_i \in \overline{0, \left[\frac{weight}{weight_i}\right]}}}_{x_i \in \overline{0, \left[\frac{weight}{weight_i}\right]}} \{x_i \cdot cost_i + W_{i-1}(weight - x_i \cdot weight_i)\} \\ \forall \ weight: \ weight \in \overline{0,W} \quad W_0(weight) = 0$