

Biggest motivation: the Lebesgue integral.

Problem #1 with Riemann integration

It can't handle unbounded functions.

Example $\int_0^1 \frac{1}{\sqrt{x}} dx$

Technically, this isn't Riemann integrable. What we really mean when we write this is $\lim_{t\to 0+} \int_{t}^{1} \frac{1}{\sqrt{x}} dx$.

However, Lebesgue integration can handle the original form of the integral.

Problem #2 with Riemann integration

It can't handle many discontinuities.

$$\mathbf{1}_{\mathbb{Q}}(x) := egin{cases} 1, & ext{if } x \in \mathbb{Q}, \ 0, & ext{if } x
otin \mathbb{Q}. \end{cases}$$

Since this function is zero everywhere except on a countable set, the

integral "should be" zero. But it's not Riemann integrable.

 $\int_{\mathbb{R}}^{1} \mathbf{1}_{\mathbb{Q}}(x) dx$

and the integral

Problem #3 with Riemann integration It doesn't work well with limits.

Example

Let
$$q_1,q_2,\ldots$$
 be an enumeration of the rational numbers in $[0,1],$ and let
$$f_k=\mathbf{1}_{\{q_1,q_2,\ldots,q_k\}}$$

Then
$$\lim_{k\to\infty}\int_0^1 f_k(x)\,dx=0$$
, but $\int_0^1\lim_{k\to\infty}f_k(x)\,dx$ doesn't exist.

This example shows that the space of Riemann integrable functions on

and let

Analogy: Riemann 15 TO lebesque as Q 15 to R 10

Lecture 1

Intuition for how the Lebesgue integral works

1 on
$$[0,1]$$

Countedle preimage of 1

of 1

uncountedle preimage

of 0

1 "size" ($Q \cap \{0,1\}$) + 0 · "size" ($[0,1] \setminus Q$) what we went

Biggest motivation: the **Lebesgue integral**.

Problems with the Riemann integral:

- It can't handle unbounded functions.
- It can't handle many discontinuities.
- It doesn't work well with limits / lack of completeness.

These problems come from the way we rely on partitioning the domain into intervals.

For Lebesgue integration, we need to define the "size" or **measure** of sets more complicated than intervals.

call our measure μ "Wish list" for measuring sets in $\mathbb R$ $\cdot \mu(A) \ge 0$ for any $A \subseteq \mathbb{R}$ · If A and B are disjoint subsets of R, then $\mu(A \cup B) = \mu(A) + \mu(B)$ · $\mu(A)$ is defined for every $A \subseteq \mathbb{R}$ (denoin of μ is $\mathcal{P}(\mathbb{R})$) $\mu([a,b]) = b-a$, $\mu((a,b)) = b-a = \mu([a,b]) = \mu((a,b))$ 0 = (\(\text{\text{\text{\$\gerta}\$}}\) \mu\. . "translation invariance": $\mu(A) = \mu(++A)$ where t+A = {t+a: a ∈ A}, telR

Measure Theory, EDGE 2020

Lecture 1

The bad news...

There does not exist a function μ with all the following properties:

- (a) μ is a function from the set of subsets of **R** to $[0, \infty]$.
- (b) $\mu(I) = \ell(I)$ for every open interval I of \mathbf{R} .

(c)
$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k)$$
 for every disjoint sequence A_1, A_2, \ldots of subsets

(d) $\mu(t+A)=\mu(A)$ for every $A\subset \mathbf{R}$ and every $t\in \mathbf{R}$. Translation invariance proof: Axer prof refers back to section on outer measure on IR Bass section on nonmeasurable sets google "nonmeasurable set" or "Vitali set"

Measure Theory, EDGE 2020

 $\rightarrow l(I) = \begin{cases} b-a & \text{if } I=(a,b) \\ & \text{etc.} \end{cases}$

Lecture 1

Biggest motivation: the **Lebesgue integral**.

Problems with the Riemann integral:

- It can't handle unbounded functions.
- It can't handle many discontinuities.
- It doesn't work well with limits / lack of completeness.

These problems come from reliance on partitioning the domain into intervals.

For Lebesgue integration, we need to define the "size" or **measure** of sets more complicated than intervals... but we can't measure every set in \mathbb{R} .

To describe which sets are measurable, and which functions $\mathbb{R} \to \mathbb{R}$ are Lebesgue integrable, we start with studying σ -algebras, which are certain well-behaved collections of subsets.

2.23 **Definition** σ -algebra

Suppose X is a set and S is a set of subsets of X. Then S is called a σ -algebra on *X* if the following three conditions are satisfied:

- $\emptyset \in \mathcal{S}$;
- if $E \in \mathcal{S}$, then $X \setminus E \in \mathcal{S}$; (closed under complements)
 if E_1, E_2, \ldots is a sequence of elements of \mathcal{S} , then $\bigcup_{k=1}^{\infty} E_k \in \mathcal{S}$. (closed under countable unions)

Measure Theory, EDGE 2020

2.23 **Definition** σ -algebra

Suppose X is a set and S is a set of subsets of X. Then S is called a σ -algebra on X if the following three conditions are satisfied:

- $\emptyset \in \mathcal{S}$;
- if $E \in \mathcal{S}$, then $X \setminus E \in \mathcal{S}$; (closed under complements)
- if E_1, E_2, \ldots is a sequence of elements of S, then $\bigcup_{k=1}^{\infty} E_k \in S$. (closed funder countrible unions)
 - Let $X = \{a, b, c\}$, $S = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then S is a σ -algebra on X.
 - $\phi \in S$ is given
 - $X \setminus \emptyset = X \in S$ $X \setminus \{a\} = \{b,c\} \in S$ $X \setminus \{b,c\} = \{a\} \in S$ $X \setminus X = \emptyset \in S$
 - · elosed under cumtuble unions
- Let $X = \{a, b, c\}$, $S = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$. Then S is not a σ -algebra on X.

Not closed under complements because $\{a,b\} \in S$ but $X \setminus \{a,b\} = \{c\} \notin S$.

Examples.

- Let $X=\{a,b,c\},\ S=\{\emptyset,\{a\},\{b,c\},X\}.$ Then S is a σ -algebra on X.
- Let $X = \{a, b, c\}$, $S = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$. Then S is not a σ -algebra on X.

power set of X

• Let X be any set. Then $\{X,\emptyset\}$ is a σ -algebra. $(\pm rivial \ \sigma$ -algebra on X

• Let
$$X$$
 be any set. Then $\mathcal{P}(X)$ is a σ -algebra.

• Let Λ be any set. Then $P(\Lambda)$ is a θ -algebra.

• Let X be any set. Then $\mathcal{A}:=\{E\subseteq X:E \text{ is countable or } X\backslash E \text{ is countable}\}$ is a σ -algebra.

• Let X be any set. Then $\mathcal{A} := \{E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable} \}$ is a σ -algebra.

For example, if X = |R|, then $\{1, 2, \pi\} \in A$, and $(R \setminus Q) \in A$ because its complement Q is countable, but $[0,1] \notin A$ since [0,1] is not antable and $[R \setminus [0,1] = (-\infty,0) \cup (1,\infty)$ is also not countable. Proof:

2.27 smallest σ -algebra containing a collection of subsets

Suppose X is a set and $\mathcal A$ is a set of subsets of X. Then the intersection of all σ -algebras on X that contain $\mathcal A$ is a σ -algebra on X. Write $\sigma(\mathcal A)$.

Examples.

• Let
$$X = [0,1]$$
 and $A = \{[0,\frac{1}{4}], [\frac{1}{2},1]\}$. Find $\sigma(A)$.

$$A = \{[0,\frac{1}{4}], [\frac{1}{2},1]\}$$
. Find $\sigma(A)$.

$$A = \{[0,\frac{1}{4}], [\frac{1}{2},1]\}$$
. Find $\sigma(A)$.

$$A = \{[0,\frac{1}{4}], [\frac{1}{2},1]\}$$
. Find $\sigma(A)$.

$$A = \{[0,\frac{1}{4}], [\frac{1}{4}], [\frac{1}{4}$$

1 De Majon's Lows

The word *measurable* is used in the terminology below because in the next section we introduce a size function, called a measure, defined on measurable sets.

2.26 **Definition** *measurable space; measurable set*

- A *measurable space* is an ordered pair (X, S), where X is a set and S is a σ -algebra on X.
- An element of S is called an S-measurable set, or just a measurable set if S is clear from the context.

Biggest motivation: the **Lebesgue integral**.

For Lebesgue integration, we need to define the "size" or **measure** of sets more complicated than intervals... but we can't measure every set in \mathbb{R} .

To describe which sets are measurable, and which functions $\mathbb{R} \to \mathbb{R}$ are Lebesgue integrable, we start with studying σ -algebras, which are certain well-behaved collections of subsets.

The usefulness of Lebesgue integration goes far beyond addressing the problems with Riemann integration on \mathbb{R} and \mathbb{R}^n . Because the Lebesgue integral only uses measurable subsets of the domain (not intervals), it lets us integrate functions on all kinds of weird/interesting/important spaces (where there is no such thing as an interval).

e.j. probability spaces

Measure Theory, EDGE 2020