北京交通大学研究生考试试题(A)

课程名称:最优化方法 |

学年学期: 2020-2021 第一学期

一、(16分)

- ①你知道几种求解无约束优化问题 min f(x)的迭代算法?请列出三种及其相应的搜索方向的迭代公式。
- ②取初始点 $\mathbf{x}^{(0)}=(1,1)^{\mathsf{T}}$..采用牛顿法求解下面的无约束优化问题:

min
$$f(x)=2x_1^2+x_2^2-4x_1+2x_2$$

写出迭代步骤,并解释说明最终得到的迭代点就是最优解。

二、(18分)考虑约束优化问题(P1):

s.t.
$$2x_1-x_2-3=0$$

①给定 $\bar{x} = (\frac{3}{4}, -\frac{3}{2})^T$,利用约束优化问题局部解的一阶必要条件和二阶充分条件判

断x是否是(P1)的局部最优解?

②定义外罚函数为

$$G(x,c) = x_1x_2 + \frac{c}{2}(2x_1 - x_2 - 3)^2$$
,

试用外罚函数法求解 (P1), 并说明产生的序列趋向点x.

三、(20分)考虑下面的线性规划问题(P2):

$$max 2x_1-x_2+x3$$

s.t.
$$3x_1+x_2+x_3 \le b_1$$
,
 $x_1-x_2+2x_3 \le b_2$,
 $x_1+x_2-x_3 \le b_3$,
 $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

利用单纯形法求解(P2)得到如下最优单纯形表:

基	X ₁	X ₂	X 3	X 4	X 5	X 6	RHS
	()	()	()	()	()	()	()
X 4	()	()	()	()	-1	-2	10
X ₁	()	()	()	()	1/2	1/2	15
X ₂	()	()	()	()	-1/2	1/2	5

试回答下面的问题:

- ①确定 b₁,b₂,b₃的值,并把最优表补充完整。
- ②写出(P2)的对偶问题并根据给出的最优表求其对偶问题的最优解。

四、(28分)设 $S \subset R^n$,函数 $f:S \to R$ 二阶连续可微,考虑约束优化问题(P3)

min
$$f(x)$$

s.t.
$$x \in S$$

- ①写出函数 f 是凸函数的定义,并列出你所知道的判定函数 f 是凸函数的充要条件。约束优化问题(P3)在什么条件下是凸规划?对于凸规划,你知道有什么好的性质?
- ②设 $f(x_1, x_2) = (x_2 x_1^2)^2$, $S = \{(x_1, x_2) \mid -1 < x_1 < 1, -1 < x_2 < 1\}$,判断函数 $f(x_1, x_2)$ 是 否为 S 上的凸函数? 说明理由。
- ③考虑如下优化问题 (P4):

min
$$x_1^2$$
-5 x_1 +4 x_2
s.t. $2+x_1$ - $x_2 \ge 0$
 x_1 -2 ≤ 0
 x_1 -(x_2 -3)²+2 ≥ 0

(P4)是否是凸规划?说明理由。根据最优性条件求(P4)的最优解。

五、(18分)设 $Q \in R^{n \times n}$ 对称设定, $b \in R^n \perp b \neq 0$,考虑非线性规划问题(P5):

$$\min \frac{1}{2} x^T Q x$$

s.t. $x \ge b$

试回答下面的问题:

- ①写出(P5)的 Lagrange 对偶规划。
- ②设 x^* 是 (P5) 的最优解,证明 x^* 与 x^* -b 关于 Q 共轭