

# CE 474 - LOGIC OF COMPUTER SCIENCE

#### Lecture Note 6

## 1. Learning Objectives

By the end of this lecture, you should be able to:

- State the Soundness Theorem and Completeness Theorem for propositional logic.
- Understand the high-level ideas behind their proofs.
- Appreciate why these meta-theorems matter in computer-science applications (e.g., verification).
- Engage in a critical discussion of expressiveness vs. decidability trade-offs.

### 2. Key Definitions

- **Proof System** ( $\vdash$ ): A formal system (e.g., natural deduction) with inference rules to derive formulas.
- Semantic Entailment ( $\models$ ):  $\Gamma \models \varphi$  means every truth-value assignment that makes all formulas in  $\Gamma$  true also makes  $\varphi$  true.
- Valid Formula: A formula  $\varphi$  such that  $\models \varphi$  (true under all assignments).
- Provable Formula: A formula  $\varphi$  such that  $\vdash \varphi$  (derivable without premises).

#### 3. Soundness Theorem

#### **Statement:**

If 
$$\Gamma \vdash \varphi$$
, then  $\Gamma \models \varphi$ .

Interpretation: Anything you can prove syntactically is also semantically valid. Why it holds (Proof Sketch):

- Base Case: Axioms are tautologies, hence always true.
- **Inductive Step:** Show that natural deduction rules (like  $\land$ -introduction,  $\rightarrow$ -elimination) preserve truth.

# 4. Completeness Theorem

#### Statement:

If 
$$\models \varphi$$
, then  $\vdash \varphi$ .

Interpretation: Any semantically valid formula is also provable in our system. Why it holds (Proof Sketch):



- Extend consistent sets of formulas to maximal consistent sets.
- Define a valuation v such that v(p) = true iff p is in the set.
- Prove that for every formula  $\psi$ ,  $\psi$  is in the set iff  $v \models \psi$ .
- Use contraposition: if  $\varphi$  is not provable,  $\neg \varphi$  can be added consistently. Then construct a model where  $\varphi$  is false.

## 5. Implications for Computer Science

- Verification: Soundness ensures correctness proofs reflect true behavior.
- Automated Theorem Proving: Completeness guarantees that valid properties are, in principle, discoverable.
- Decidability:
  - Propositional logic is decidable SAT solvers can determine satisfiability.
  - First-order logic is incomplete (Gödel) and undecidable.

## 6. In-Class Discussion Prompt

#### Question:

Why might we choose a weaker logic (e.g., propositional or monadic first-order logic) instead of full first-order logic in verification tasks?

#### **Discussion Points:**

- Trade-off between expressive power and automated tool support.
- Propositional logic has efficient solvers (SAT/SMT).
- First-order logic can model more, but is harder to reason automatically.

## 7. Summary & Key Takeaways

- Soundness: If provable, then semantically valid.
- Completeness: If semantically valid, then provable.
- These two properties establish trust in our formal reasoning tools.
- Practical tools often restrict to decidable fragments (e.g., propositional) for performance.



## References

- Huth, M., & Ryan, M. (2004). Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press.
- Enderton, H. B. (2001). A Mathematical Introduction to Logic (2nd ed.). Academic Press.
- Troelstra, A. S., & Schwichtenberg, H. (2000). Basic Proof Theory (2nd ed.). Cambridge University Press.
- Sipser, M. (2012). Introduction to the Theory of Computation. Cengage Learning.