Maintaining hydrostatic stability in an ice sheet coupled s-coordinate ocean model

Stefan Jendersie¹ Dan Lowry², Nick Golledge¹,

Antarctic Research Centre, Victoria University of Wellington, New Zealand ²GNS Science, Lower Hutt, New Zealand

1 | NZ SeaRise Programme

2 | Antarctic Ice Loss Prediction to 2300 - Coupling PISM to ROMS

Parallel Ice Sheet Model

- open source, parallel, simulations at high resolution
- extensible atmospheric/ocean coupling
- ► shallow, hybrid, and higher-order stress balances
- marine ice sheet physics
- subglacial hydrology and till model

Regional Ocean Modeling System

- hydrostatic, primitive equation, Boussinesq ocean circulation model
- designed primarily for coastal applications
- terrain-following vertical coordinates allow for greater vertical resolution in shallow water and regions with complex bathymetry
- ice ocean boundary layer is better resolved than in z-coordinates

3 | ROMS Terrain following Vertical Coordinate System

- vertical model layers vary in thickness
- resolution can be pushed towards certain parts of the water column e.g. surface or bottom
- ▶ ice ocean boundary layer is better resolved than in z-coordinates

3 | ROMS Terrain following Vertical Coordinate System

stretching can be a simple function like

$$z(\sigma, h)_{i,j,k} = \sigma_k h_{i,j}$$

$$\sigma_k = \frac{2k-1}{2N}$$

with z, the depth position of a grid point; (i, j) and (k) its horizontal and vertical numerical index; the ocean depth $h_{i,j}$; and N the number of vertical layers

usually computed from a convoluted transformation functional like

$$\begin{split} z(h,S,\zeta)_{i,j,k} &= S(h,\sigma,C)_{i,j,k} + \zeta(t)_{i,j} \left[1 + \frac{S(h,\sigma,C)_{i,j,k}}{h_{i,j}} \right] \\ S(h,\sigma,C) &= h_c\sigma + \left[h_{i,j} - h_c \right] C(\sigma)_k \\ C(\sigma) &= \left(1 - \theta_B \right) \frac{\sinh(\theta_S\sigma)}{\sinh\theta_S} + \theta_B \left[\frac{\tanh[\theta_S(\sigma + \frac{1}{1})]}{2\tanh(\frac{1}{2}\theta_S)} - \frac{1}{2} \right] \end{split}$$

with θ_S & θ_B resoluton coefficients for surface and bottom

4 | PGE - Pressure Gradient Error

- with steep step changes in topography terrain following coordinates are prone to numerical errors
- piece wise reconstruction of the density profile at every baroclinic time step
- ▶ the local difference in vertical resoluton (evaluated horizontally) causes differences in the density integration
- spurious pressure gradients hence advection

Shchepetkin and McWilliams (2005)

Jendersie et al. (2016)

5 | The Hydrostatic Stability Number - rx_1

$$rx_0 = \frac{|h_i - h_{i,j}|}{h_i + h_{i,j}}$$

$$rx_1 = \frac{|z_{i,k} - z_{i+1,k} + z_{i,k-1} - z_{i+1,k-1}|}{(z_{i,k} + z_{i+1,k} - z_{i,k-1} - z_{i+1,k-1})}$$

- ightharpoonup rx are defined at half way between grid points
- $ightharpoonup rx_0$ is a simple measure of depth change with respect to the total depth
- $ightharpoonup rx_1$ expresses the ratio of step change between numerical neighbours z_i and z_{i+1} and thickness of the associated grid cells
- if both neighbouring cells share a level $rx_1 \approx 1$
- by different values for stable rx1 in the literature, generally recommended $rx_1 < 6$
- $ightharpoonup rx_1$ provides a metric to assess the stability of a given modelling bathymetry and the chosen grid

5 | The Hydrostatic Stability Number - rx_1

$$rx_0 = \frac{|h_i - h_{i,j}|}{h_i + h_{i,j}}$$

$$rx_1 = \frac{|z_{i,k} - z_{i+1,k} + z_{i,k-1} - z_{i+1,k-1}|}{(z_{i,k} + z_{i+1,k} - z_{i,k-1} - z_{i+1,k-1})}$$

- mostly used methods of mitigation is selective smoothing of bathymetric surfaces; Shapiro filter, Laplacian filter, Martinho & Batteen scheme etc
- ightharpoonup selective application easily conducted for rx_0 but not rx_1
- ► rx₀ useful for ocean bathymetry but not for ice shelves, especially near grounding lines
- treat local problem of steepness between $z_{i,k}$ and $z_{i+1,k}$
- needs a method that treats both surfaces in conjunction and actually optimizes rx_1
- method needs to be aware of the vertical stretching and its parameters

- ightharpoonup the simple approach change I_{i+1}
- where

$$rx > rx_{max}$$
 modify $I_{i+1} \rightarrow I'_{i+1}$ that satisfies $rx \approx rx_{max}$

- \blacktriangleright thre are either *no* or *two* solutions for I'_{i+1}
- ▶ no solution $|H_i H_{i+1}|$ is big $\rightarrow rx$ is violated at the bottom; no I'_{i+1} will satisfy rx_{max}
- ► *two* solutions $I'_{i+1} > I_i \& I'_{i+1} < I_i$ (non symmetrical!)
- ▶ implicit assumptions $\theta_B \ge 1 \& \theta_S \ge 1$

- is there an analytical solution for $I'_{i+1}(rx_{max}, H_i, H_{i+1}, I_i, S)$?
- ▶ find I'_{i+1} from a 4D look up table RX
- ▶ with the variable transformations

$$WC_{i} = I_{i} - H_{i}$$
 $dI_{i,i+1} = \frac{I_{i} - I'_{i+1}}{WC_{i}}$
 $dH_{i,i+1} = \frac{H_{i} - H_{i+1}}{WC_{i}}$

 $ightharpoonup rx_1$ is now a function of dH, dI, WC_i, I_i, S

- ▶ for a given S compute rx_1 over ranges of $I_i\{0 \rightarrow 2500\}[m]$ $WC_i\{0 \rightarrow 2500\}[m]$ $dI\{-2 \rightarrow 2\}$ $dH\{-2 \rightarrow 2\}$
- ▶ yields lookup table $RX_S(dH, dI, WC_i, I_i)$ for a given coordinate stretching $S(\sigma, C, N, \theta_S, \theta_B)$
- ightharpoonup finding dI by querying RX_S

$$\mathrm{RX}_S(dH, WC_i, I_i)|_{rxmax} \to dI$$

8 | Results - Ice Draft

- Ross Ice Shelf
- ▶ 3km horizontal grid spacing, $rx_1 \approx 4$
- western and central base topography is largely unmodified
- suture zones and fractures are still represented
- modifications at the ice shelf front and towards the deep grounding zones

8 | Results - Ocean - Ice Sheet Coupled Model

- **coupler** 2000 lines (bash script)
- $ightharpoonup rx_1$ treatment 7000 lines (matlab)
- ► ROMS → PISM Coupling Point [freq=1yr]
- ► melt rate, ice base temperature (annual averages)
 - regridding
 - unit conversion
 - conserve fresh water flux per individual ice shelf
- ► PISM \rightarrow ROMS Coupling Point [freq=5yr]
- ice shelf draft, dynamic ice & ocean masks (snap shots)
 - regridding
 - remove ocean narrows and tight corners
 - $ightharpoonup rx_1$ treatment for each individual ice shelf
- conserved quantities: fresh water flux
- not conserved: ice thickness

9 | Summary & Outlook

- $ightharpoonup rx_1$ correction method works reliable (converges)
- minimum modification of data points
- ensures baroclinic ocean time stepping near the theoretical limit (dt=20min @ 8km)
- expand method to correct both surfaces in conjunction
- ▶ implement in a suitable coupler framework

9 | Summary & Outlook

- $ightharpoonup rx_1$ correction method works reliable (converges)
- iminimum modification of data points
- ► ensures baroclinic ocean time stepping near the theoretical limit (dt=20min @ 8km)
- expand method to correct both surfaces in conjunction
- implement in a suitable coupler framework

THANK YOU!