Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds

Kevin Hsieh et al.
Carnegie Mellon University and ETH Zurich
[NSDI'17]

Machine Learning and Big Data

 Machine learning is widely used to derive useful information from large-scale data

Big Data is Geo-Distributed

- A large amount of data is generated rapidly, all over the world
- Virginia, Ohio, California, Oregon, Mumbai, Seoul, Singapore, Sydney, Tokyo, Central Canada, Beijing, Frankfurt, Ireland, London, Sao Paulo...

Big Data is Geo-Distributed

Centralizing Data is Infeasible

- Moving data over wide-area networks can be extremely slow
- It is also subject to data sovereignty laws

Central Problem

Gaia

- A geo-distributed ML system
- Goals
 - Minimize communication over WAN
 - Retain accuracy and correctness of ML algorithms
 - No changes to current algorithms

Who Does What?

Parameter Servers on WANs

Synchronization requires lots of communication over WAN

WAN: Low Bandwidth and High Cost

- WAN bandwidth is 15X smaller than LAN bandwidth on average, and up to 60X smaller!
- In Amazon EC2, the monetary cost of WAN communication is up to 38X the cost of renting machines

WAN: Low Bandwidth and High Cost

- WAN bandwidth is 15X smaller than LAN bandwidth on average, and up to 60X smaller!
- In Amazon EC2, the monetary cost of WAN communication is up to 38X the cost of renting machines
 - How did they get this number?

WAN: Low Bandwidth

Previous Synchronization Algorithms

BSP - Bulk Synchronous Parallel

Previous Synchronization Algorithms

SSP - Stale Synchronous Parallel

Previous Synchronization Algorithms

TAP - Total Asynchronous Parallel

ML System Performance on WANs

Gaia System Overview

Key Idea: Decouple the synchronisation model between the data centers from the synchronisation model within a data center.

Key Finding: Study of update significance

Gaia Synchronization

Approximate Synchronous Parallel

- The significance filter
 - Filter updates based on their significance
- ASP Selective barrier
 - Ensure significant updates are read in time
- Mirror clock
 - Safeguard for pathological cases

The Significance Filter

ASP Selective Barrier

System Implementation: Putting it all together

Problem: Broadcast Significant updates

Communication overhead is proportional to the number of data centers

Mitigation: Overlay Networks and Hubs

Evaluation: 11 EC2 Data Centers

Gaia achieves up to 6x performance!

Evaluation contin.

Matrix Factorization Topic Modeling Image Classification

Gaia achieves up to <u>54</u>x performance!

Evaluation: cost

(c) Image Classification (IC)

Evaluation: Centralized vs. Gaia

Table 1: Comparison between Gaia and Centralized

Application	Setting	Gaia Speedup	Gaia cost /
		over Centralized	Centralized cost
MF	EC2-ALL	1.11	3.54
	V/C WAN	1.22	(1.00)
	S/S WAN	2.13	1.17
TM	EC2-ALL	(0.80)	6.14
	V/C WAN	1.02	1.26
	S/S WAN	1.25	1.92
IC	EC2-ALL	(0.76)	3.33
	V/C WAN	1.12	1.07
	S/S WAN	1.86	1.08

Evaluation: Synchronization

Conclusion

Gaia: ML on geo-distributed data

- ⇒ Eliminate insignificant updates over WANs
- ⇒ Retain correctness & accuracy of ML algs.
- ⇒ New Synchronization model: ASP

1.8 to 53.5x speedup!

Comparison With Other ML Algorithms

- Apples to oranges comparison
- Works atop current ML algorithms
- Currently supports PS architecture
 - Can be extended to support other ML algorithms
 (Mapreduce, graph algorithms)

Comparison With Other Geo-Distributed Systems

Questions

