Université des Sciences et de la Technologie Houari Boumediene Faculté d'Informatique

ACP

TP3: modèle de programmation à mémoire distribué (MPI)

Fait par:

Nom et prénom : ABDELMALEK BENMEZIANE

Matricule: 171731046778

Spécialité : M2 BIOINFO

Section: A

Contents

1	Exercice 1 (TD): inter blocages de communication	1
	1.1 Deadlock 1	1
	1.2 Deadlock 2	1
2	Exercice 2	2
3	Exercice 3	3
4	Exercice 4	4
5	Exercice 5: (bcast et gather) calcul pi	5

List of Figures

3.1	Output		3
4.1	Output	. 4	4
4.2	Output	. 4	4
5.1	Output	. [ŏ

Exercice 1 (TD): inter blocages de communication

1.1 Deadlock 1

Il existe une situation d'interblocage au rank 0 et rank 1 à l'instruction MPI Recv, la solution proposée est :

```
if(rank==0) {
    MPI_Send(&sendbuf, count, MPI_Float, 1, tag, MPI_COMM_WORLD);
    MPI_Recv(&recvbuf, count, MPI_Float, 1, tag, MPI_COMM_WORLD, &status);
    else if(rank==1) {
        MPI_Recv(&recvbuf, count, MPI_Float, 0, tag, MPI_COMM_WORLD, &status);
        MPI_Send(&sendbuf, count, MPI_Float, 0, tag, MPI_CMM_WORLD, &status);
    }
}
```

1.2 Deadlock 2

Il existe une situation d'interblocage au rank 0 et rank 1 à l'instruction **MPI Ssend**, la solution proposée est :

```
if(rank==0) {
   MPI_Ssend(&sendbuf, count, MPI_Float, 1, tag, MPI_COMM_WORLD);
   MPI_Recv(&recvbuf, count, MPI_Float, 1, tag, MPI_COMM_WORLD, &status);
   else if(rank==1) {
        MPI_Recv(&recvbuf, count, MPI_Float, 0, tag, MPI_COMM_WORLD, &status);
        MPI_Ssend(&sendbuf, count, MPI_Float, 0, tag, MPI_CMM_WORLD, &status);
   }
}
```

Exercice 2

Le code suivant ne contient aucune situation d'interblocage.

```
MPI_Comm_rank (comm, &myRank);
if(myRank == 0){
MPI_Send(sendbuf1 , count , MPI_INT, 2 , tag , comm);
MPI_Send(sendbuf2 , count , MPI_INT, 1 , tag , comm);
}else if(myRank == 1){
MPI_Recv(recvbuf1 , count , MPI_INT, 0 , tag , comm, &status);
MPI_Send(recvbuf1 , count , MPI_INT, 2 , tag , comm);
}else if(myRank == 2){
MPI_Recv(recvbuf1, count, MPI_INT, MPI_ANY_SOURCE, tag, comm, &status);
MPI_Recv(recvbuf2, count, MPI_INT, MPI_ANY_SOURCE, tag, comm, &status);
MPI_Recv(recvbuf2, count, MPI_INT, MPI_ANY_SOURCE, tag, comm, &status);
}
```

Exercice 3

Le code source est dans le fichier "exercice3.py".

```
PS C:\Users\pc\Desktop\M2 BIOINFO\S1\ACP\TP\TP3> mpiexec -n 4 python exercice3.py
Process 0: Valeur generee aleatoirement = 79
Process 1: Message recu = 79
Process 2: Message recu = 79
Process 3: Message recu = 79
Process 0: Message final recu = 79
PS C:\Users\pc\Desktop\M2 BIOINFO\S1\ACP\TP\TP3>
```

Figure 3.1: Output

Exercice 4

Le code source est dans le fichier "exercice4.py".

PS C:\Users\pc\Desktop\M2 BIOINFO\S1\ACP\TP\TP3> mpiexec -n 4 python exercice4.py Blocking Broadcast Time: 0.031982 seconds

Figure 4.1: Output

PS C:\Users\pc\Desktop\M2 BIOINFO\S1\ACP\TP\TP3> mpiexec -n 4 python exercice4.py MPI_Bcast Time: 0.009996 seconds

Figure 4.2: Output

Exercice 5: (bcast et gather) calcul pi

Le code source est dans le fichier "exercice5.py".

PS C:\Users\pc\Desktop\M2 BIOINFO\S1\ACP\TP\TP3> mpiexec -n 4 python exercice5.py Approximated value of pi: 3.1415926535898753

Figure 5.1: Output