

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke

MIKROELEKTRONIKA, VIEEAB00

Térvezérelt tranzisztorok I.

A JFET eszközök

Dr. Bognár György, Dr. Poppe András

JFET tranzisztorok

Vizsgált absztrakciós szint

1925 - Első FET eszközök...

- 1925 Julius Edgar Lilienfeld szabalmai
 - Üveghordozón (10), félvezető réteg (réz-szulfid 15) és alumínium fólia (14, az alufólia éle maga a gate 13), source/drain kontaktus (11/12)

1925 US1900018 (A) - Device for controlling electric current

1930 US1745175 (A) - Method and apparatus for controlling electric currents

A JFET

 FET = Field Effect Transistor - a töltéshordozók áramlását elektromos térerősséggel befolyásoljuk

- ► Unipoláris eszköz: többségi töltéshordozók vezetnek
- Vezérlő teljesítmény ≈ 0
- Normally on device: ha nem csinálok vele semmit, vezet

A JFET – egy lehetséges kivitel:

Lezárt PN átmenet kiürített rétegének a vastagsága szabályozza a csatorna vezetőképességét

PN átmenet = PN junction \Rightarrow junction FET
PN átmenet = Sperrschicht

Sperrschicht = $z\acute{a}r\acute{o}$ réteg \Rightarrow záróréteges FET

A JFET

■ Jelölések:

Karakterisztikák (n-JFET):

 $U_{DS} > 4 V$ $U_{DS} > 4 V$ -7,5elzáródási feszültség -5 $-U_0$ -2,5 U_{GS} -1 0 0 0

vezérelhető ellenállás (lásd MOSFET trióda tartomány)

JFET működési tartományai

- Elzáródásos (cut-off/pinch-off) tartomány a csatorna ellenállás maximális, szakadásként viselkedik
- Lineáris (Ohmic) tartomány V_{GS} = 0 esetén d_h≈d, JFET tr. feszültség vezérelt ellenállásként viselkedik
- Telitéses (Saturation/Active) tartomány – I_D áram V_{GS} értéktől függ (V_{DS}-nek "nincs" hatása)
- Letörési (Breakdown) szakasz

 Záróirányban lévő PN
 átmenetek letörési jelenség,
 tranzisztor túlmelegedését,
 tönkremenetelét okozza

Az elzáródási feszültség számítása

Elzáródás: d geometriai vastagság = 2 x kiürített réteg vastagsága

$$d = 2\sqrt{\frac{2\varepsilon}{qN_d}}\sqrt{U_D - U} = 2\sqrt{\frac{2\varepsilon}{qN_d}}\sqrt{U_D + |U_0|} \qquad U_0 = \frac{qN_d}{8\varepsilon}d^2$$

$$U_0 = \frac{qN_d}{8\varepsilon}d^2$$

PÉLDA

Határozzuk meg egy Si JFET elzáródási feszültségét, ha a csatorna vastagsága $d = 4 \mu \text{m}$ és adalékolása $N_d = 10^{15} / \text{cm}^3$!

$$U_0 = \frac{qN_d}{8\varepsilon}d^2$$

$$U_0 = \frac{1.6 \cdot 10^{-19} \cdot 10^{21}}{8 \cdot 11.8 \cdot 8.86 \cdot 10^{-12}} (4 \cdot 10^{-6})^2 = 3.06 V$$

$$d_h(x) = d - 2\sqrt{\frac{2\varepsilon}{qN_d}}\sqrt{-U(x)}$$

$$U(x=L) = U_{GD}$$

$$U_0 = \frac{qN_d}{8\varepsilon}d^2$$

$$d_h = d \left(1 - \left(\frac{-U}{U_0} \right)^{1/2} \right)$$

$$d_h = d \left(1 - \left(\frac{-U}{U_0} \right)^{1/2} \right) \qquad \Box \qquad I_D = -\frac{W}{L} \sigma \int_{U_{GS}}^{U_{GD}} d_h dU$$

$$I_{D} = -\frac{W}{L} \sigma d \int_{U_{GS}}^{U_{GD}} \left(1 - \left(\frac{-U}{U_{0}}\right)^{1/2}\right) dU$$

$$= -\frac{W}{L} \sigma d \left|U + \frac{2}{3} U_{0} \left(\frac{-U}{U_{0}}\right)^{3/2}\right|_{U_{GS}}^{U_{GD}}$$
esatornavezetés

Csatornavezetés

$$G_0 = \sigma \frac{Wd}{L}$$

$$I_{D} = G_{0} \left| U + \frac{2}{3} U_{0} \left(\frac{-U}{U_{0}} \right)^{3/2} \right|_{U_{GD}}^{U_{GS}} = G_{0} U_{0} \left| 3 \frac{U}{U_{0}} + 2 \left(\frac{-U}{U_{0}} \right)^{3/2} \right|_{U_{GD}}^{U_{GS}}$$

$$I_0 = \frac{G_0 U_0}{3}$$

$$I_{0} = \frac{G_{0}U_{0}}{3} \qquad \Box \qquad I_{D} = I_{0} \left[3\frac{U}{U_{0}} + 2\left(\frac{-U}{U_{0}}\right)^{3/2} \right]_{U_{GD}}^{GS}$$

Áramállandó

$$I_D = I_0 [F(U_{GS}) - F(U_{GD})]$$

$$F(U) = 3\frac{U}{U_0} + 2\left(\frac{-U}{U_0}\right)^{3/2}$$

$$I_D = I_0 \big[F(U_{GS}) - F(U_{GD}) \big] \quad \text{A teljes tartományra!}$$

$$F(U) = \begin{cases} 3\frac{U}{U_0} + 2\left(\frac{-U}{U_0}\right)^{3/2} & ha \ U \ge -U_0 \\ -1 & ha \ U < -U_0 \end{cases}$$

Csak telítésben:

$$I_D = I_0 \left(3 \frac{U_{GS}}{U_0} + 2 \left(\frac{-U_{GS}}{U_0} \right)^{3/2} + 1 \right)$$

- Iparban, széleskörűen elfogadott összefüggés
 - Taylor-sor első tagja $V_{GS} = V_P k$ örül

$$I_D = I_{DSS} \cdot \left(1 - \frac{V_{GS}}{V_P}\right)^2$$
 VS. $I_D = I_0 \left(3 \frac{U_{GS}}{U_0} + 2 \left(\frac{-U_{GS}}{U_0}\right)^{3/2} + 1\right)$

I_d [mA] – U_{GS} [V] transfer function

-5

-2

-1

3

2

Transzfer karakterisztika

Kimeneti karakterisztika

Meredekség

$$\left| g_m = \frac{dI_D}{dU_{GS}} \right|_{U_{DS} = \acute{a}ll}$$

Kimeneti vezetés

$$\left. g_0 = \frac{dI_D}{dU_{DS}} \right|_{U_{GS} = \acute{a}ll}$$

Meredekség

$$g_{m} = \frac{dI_{D}}{dU_{GS}} \bigg|_{U_{DS} = \acute{a}ll}$$

Kimeneti vezetés

$$\left. g_0 = \frac{dI_D}{dU_{DS}} \right|_{U_{GS} = \acute{a}ll}$$

Feszültség erősítés

$$A_{u} = \frac{u_{ki}}{u_{be}} = -g_{m} \left(R_{t} \times \frac{1}{g_{0}} \right)$$

Telítéses tartomány

Meredekség számítása

$$g_{m} = \frac{dI_{D}}{dU_{GS}} \bigg|_{U_{DS} = \acute{a}ll}$$

Wieredekseg szamitasa
$$g_m = \frac{dI_D}{dU_{GS}}\bigg|_{U_{DS} = \acute{a}ll} \qquad g_m = \frac{dI_0}{dU_0} \left(3\frac{U_{GS}}{U_0} + 2\left(\frac{-U_{GS}}{U_0}\right)^{3/2} + 1\right)$$

$$g_{m} = I_{0} \left(\frac{3}{U_{0}} - 2 \cdot \frac{3}{2} \cdot \frac{1}{U_{0}} \left(\frac{-U_{GS}}{U_{0}} \right)^{1/2} \right) \qquad G_{0} = 3 \cdot \frac{I_{0}}{U_{0}}$$

$$G_0 = 3 \cdot \frac{I_0}{U_0}$$

$$g_{\it m} = G_0 \Biggl(1 - \left(\frac{-U_{\it GS}}{U_0} \right)^{\!1/2} \Biggr) \qquad \text{P\'elda:} \\ \text{U}_{\rm GS} = \text{OV, U}_0 = \text{4V, I}_0 = \text{8mA} \rightarrow \text{g}_{\rm m} = \text{6 mS}$$

$$U_{GS} = 0V$$
, $U_0 = 4V$, $I_0 = 8mA \rightarrow g_m = 6 mS$
 $U_{GS} = -1V$, $U_0 = 4V$, $I_0 = 5mA \rightarrow g_m = 1.9 mS$

Transzkonduktancia (meredekség) értéke

$$g_m = rac{2 \cdot I_{DSS}}{V_p} \cdot \left(1 - rac{V_{GS}}{V_P}
ight)$$
 vs. $g_m = G_0 \left(1 - \left(rac{-U_{GS}}{U_0}
ight)^{1/2}
ight)$

g_m[mS] - U_{GS} transconductance function

-1

4

JFET FS erősítő alapkapcsolás

- 1. beállítjuk a munkapontot,
- 2. meghatározzuk gm-t,
- 3. terhelő ellenállást méretezzük,
- 4. meghatározzuk A_u-t

JFET FS erősítő alapkapcsolás

$$A_{U} = 6.5 \times$$

JFET FS erősítő alapkapcsolás

Ha növelni szeretnénk A₁₁-t, akkor csak megnöveljük R1 értékét?

JFET alapkapcsolások

Földelt Source-ú / Common source	Földelt Gate–ű / Common gate	Földelt Drain-ű / Common drain
Nagy bemeneti impedancia	Kicsi bemeneti / nagy kimeneti impedancia	Nagy bemeneti / kicsi kimeneti impedancia
Jó feszültségerősítés	~1x áramerősítés	~1x feszültségerősítés
Audió erősítők, hagy impedanciájú bemeneti fokozatok	Nagyfrekv. eszközökben (alacsony zaj), impedancia illesztés	Buffer erősítők
180° fázistolás	0° fázistolás	0° fázistolás

JFET vs. Bipolár/MOSFET tr. 1.

- JFET tr. Nincs PN átmenet az áram útjában
 - DE kisebb adalékolású és kisebb keresztmetszetű vezető csatorna
- JFET tr. bemeneti impedanciája magasabb, mint bipoláris tr.
 - Nagyon érzékenyek a bemeneti feszültségváltozásra
 - Viszont ESD veszély!
- Túláram, túlmelegedés veszély!
 - PN átmenetek!

JFET vs. Bipolár/MOSFET tr. 2

- JFET tr. gate árama (záróirányú áram a lezárt PN átmeneteken) jóval kisebb, mint bipoláris tranz.
- JFET tr. g_m (transzkonduktancia, meredekség) értéke magasabb, mint MOSFET tr., de alacsonyabb, mint bipoláris tr.
- JFET tr. villódzási (flicker, 1/f) zaja kisebb, mint MOSFET tr. (felületi csapdák okozzák)

JFET eszközöket alacsonyzajú, nagy kimenő impedanciával rendelkező műveleti erősítőkben alkalmaznak