Cálculo de Congruencias

Calcular todas las congruencias del reticulado $(\{1,2,3,6,12\}, mcm, mcd)$

September 28, 2017

Cálculo de Congruencias

El reticulado ($\{1,2,3,6,12\}$, mcm, mcd) puede ser representado mediante el siguiente diagrama de Hasse.

A continuación listaremos algunos teoremas que valen para todas las congruencias del reticulado que luego probaremos

Theorem

$$6\theta 3 = 2\theta 1$$

$$3\theta 1 = > 2\theta 6$$

$$2\theta 6 = > 3\theta 1$$

$$2\theta 3 = > 1\theta 2 \wedge 1\theta 3 \wedge 6\theta 2 \wedge 6\theta 3$$

$$1\theta 6 = > 1\theta 2 \land 1\theta 3 \land 6\theta 2 \land 6\theta 3$$

$$12\theta 6 = > 6\theta 3 \wedge 6\theta 2$$

Congruencias Candidatas

Por ser reticulado, sabemos que valen las congruencias triviales

Congruencias Candidatas

Congruencias Candidatas

Proof.

Veamos el caso de que $12/\theta = \{12\}$.

Si
$$6\theta 2 \Rightarrow 3\theta 1 \Rightarrow \theta \subseteq \theta_3$$
.

Si
$$6\theta 3 \Rightarrow 2\theta 1 \Rightarrow \theta \subseteq \theta_4$$
.

$$1\theta 6 \Rightarrow 1\theta 2 \, \wedge \, 1\theta 3 \, \wedge \, 6\theta 2 \, \wedge \, 6\theta 3 \Rightarrow \theta \subseteq \theta_5.$$

Caso
$$12/\theta=\{12,6\}$$
. $12\theta 6\Rightarrow 6\theta 3\Rightarrow 12\theta 3\Rightarrow 12/\theta=\{12,6,3\}$. Abs! Por lo tanto no hay θ tq $12/\theta=\{12,6\}$. \square

Proof.

Caso
$$12/\theta = \{12, 6, 3\}$$
. $12\theta6 \Rightarrow 6\theta2 \lor 6\theta3$ (1)

$$6\theta 3 \Rightarrow 2\theta 1$$

Supongamos
$$6\theta 2 \Rightarrow 3\theta 1 \Rightarrow \theta = \nabla$$

Por lo tanto 6 no est relacionado con 2.

Si en (1) solo vale $6\theta 3 \Rightarrow \theta \subseteq \theta_1$.

Proof.

Caso $12/\theta = \{12, 6, 2\}.$

 $12\theta 6 \Rightarrow 6\theta 2 \vee 6\theta 3$ (1)

Sabemos que vale $6\theta 2$, veamos $6\theta 3$. Supongamos que vale, entonces $2\theta 1 \Rightarrow 6\theta 1 \Rightarrow 6\theta 3 \Rightarrow \theta = \nabla$. Entonces 6 no est relacionado con 3.

Por lo tanto si $12\theta 6 \wedge 6\theta 2 \Rightarrow \wedge 1\theta 3 \Rightarrow \theta \subseteq \theta_2$.

Caso
$$12/\theta = \{12, 6, 2, 3\}.$$

Si
$$2\theta 3 \Rightarrow 1\theta 2 \wedge 1\theta 3 \wedge 6\theta 2 \wedge 6\theta 3 \Rightarrow \theta \subseteq \nabla$$
.

Lemas

Con esto vemos que son todas las congruencias posibles. Veamos ahora que los lemas valen:

Proof.

a)
$$6\theta 3 \Rightarrow 2\theta 1$$

$$6\theta 3 \Rightarrow 6i2\theta 3i2 \Rightarrow 2\theta 1$$

b)
$$3\theta 1 \Rightarrow 2\theta 6$$

$$3\theta 1 \Rightarrow 3s2\theta 1s2 \Rightarrow 6\theta 2 \Rightarrow 2\theta 6$$

Lemas

Proof.

- c) $2\theta 6 \Rightarrow 3\theta 1$
- $2\theta 6 \Rightarrow 2i3\theta 6i3 \Rightarrow 1\theta 3 \Rightarrow 3\theta 1$

Proof.

- d) $2\theta 3 \Rightarrow 1\theta 2 \wedge 1\theta 3 \wedge 6\theta 2 \wedge 6\theta 3$
- $2\theta 3 \Rightarrow 3\theta 3 \land 2\theta 3 \Rightarrow 3s2\theta 3s3 \land 3i2\theta 3i3$
- \Rightarrow 6 θ 3 \wedge 1 θ 3
- Por (a) si $6\theta 3 \Rightarrow 2\theta 1$; Por (b) si $3\theta 1 \Rightarrow 2\theta 6$
- Por lo tanto si $2\theta 3 \Rightarrow 1\theta 2 \land 1\theta 3 \land 6\theta 2 \land 6\theta 3$

- e) $1\theta 6 \Rightarrow 1\theta 2 \land 1\theta 3 \land 6\theta 2 \land 6\theta 3$
- $1\theta 6 \Rightarrow 1s2\theta 6s2 \Rightarrow 2\theta 6$
- 1A6 → 1c3A6c3 → 3A6 Calcular todas las congruencias del reticulado