ТЕОРИЯ РАСПИСАНИЙ лекция 2

Виктор Васильевич Лепин

• Пример — учебное расписание в школе или в ВУЗе.

- Пример учебное расписание в школе или в ВУЗе.
- Чаще всего учебное расписание для группы студентов представляется в виде таблицы (поэтому этот раздел ТР называется "Time Tabling").

- Пример учебное расписание в школе или в ВУЗе.
- Чаще всего учебное расписание для группы студентов представляется в виде таблицы (поэтому этот раздел ТР называется "Time Tabling").
- В таблице напересечении строк (дни недели, время лекций) и столбцов (номер группы) указан предмет и номер аудитории, в которой состоится занятие по этому предмету.

- Пример учебное расписание в школе или в ВУЗе.
- Чаще всего учебное расписание для группы студентов представляется в виде таблицы (поэтому этот раздел ТР называется "Time Tabling").
- В таблице напересечении строк (дни недели, время лекций) и столбцов (номер группы) указан предмет и номер аудитории, в которой состоится занятие по этому предмету.
- Общее расписание ВУЗа совокупность расписаний для каждой группы.

- Пример учебное расписание в школе или в ВУЗе.
- Чаще всего учебное расписание для группы студентов представляется в виде таблицы (поэтому этот раздел ТР называется "Time Tabling").
- В таблице напересечении строк (дни недели, время лекций) и столбцов (номер группы) указан предмет и номер аудитории, в которой состоится занятие по этому предмету.
- Общее расписание ВУЗа совокупность расписаний для каждой группы.
- Фактически в таком расписании согласованы между собой во времени аудитории, группы учащихся и преподаватели.

При составлении расписания нужно учесть разнообразные требования, например:

• Условия, связанные с аудиториями: аудитория должна вмещать всех учеников, и в ней должно быть соответствующие оборудование. Единовременно в аудитории может проходить только одно занятие;

При составлении расписания нужно учесть разнообразные требования, например:

- Условия, связанные с аудиториями: аудитория должна вмещать всех учеников, и в ней должно быть соответствующие оборудование. Единовременно в аудитории может проходить только одно занятие;
- Условия, связанные со студентами. Желательно, чтобы между лекциями не было больших перерывов. Необходимо чтобы студент успел перейти в другой учебный корпус, если занятия проходят в разных зданиях;

При составлении расписания нужно учесть разнообразные требования, например:

- Условия, связанные с аудиториями: аудитория должна вмещать всех учеников, и в ней должно быть соответствующие оборудование. Единовременно в аудитории может проходить только одно занятие;
- Условия, связанные со студентами. Желательно, чтобы между лекциями не было больших перерывов. Необходимо чтобы студент успел перейти в другой учебный корпус, если занятия проходят в разных зданиях;
- Условия, связанные с преподавателями. У преподавателей также есть свои личные предпочтения, например, в какие дни и время проводить занятия;

При составлении расписания нужно учесть разнообразные требования, например:

- Условия, связанные с аудиториями: аудитория должна вмещать всех учеников, и в ней должно быть соответствующие оборудование. Единовременно в аудитории может проходить только одно занятие;
- Условия, связанные со студентами. Желательно, чтобы между лекциями не было больших перерывов. Необходимо чтобы студент успел перейти в другой учебный корпус, если занятия проходят в разных зданиях;
- Условия, связанные с преподавателями. У преподавателей также есть свои личные предпочтения, например, в какие дни и время проводить занятия;
- Условия, предъявляемые к учебному процессу. Желательно, чтобы после занятий по физкультуре не было лекционных занятий.

• Задачи Time Tabling возникают при планировании занятости персонала, при согласовании времени различных встреч и т.д.

- Задачи Time Tabling возникают при планировании занятости персонала, при согласовании времени различных встреч и т.д.
- Зачастую задачи Time Tabling можно свести к задачам Project Scheduling.

• Отметим, что одноприборные задачи являются частными случаями и подзадачами более сложных практических задач.

- Отметим, что одноприборные задачи являются частными случаями и подзадачами более сложных практических задач.
- Для одноприборных задач можно выделить следующее важное свойство.

Теорема 1.

Eсли моменты поступления требований на обслуживание $r_j=0$ для всех $j=1,2,\ldots,n,$ и целевая функция $F(C_1,C_2,\ldots,C_n)$ является монотонно неубывающей функцией, зависящей от моментов окончания обслуживания требований $C_j,$ то в задаче минимизации функции F существует оптимальное расписание без прерываний обслуживания требований и простоев прибора.

• Многие известные нам целевые функции являются монотонно возрастающими (неубывающими) функциями, зависящими от моментов окончания обслуживания требований C_j . Например, $\sum C_j$, $\sum U_j$, $\sum T_j$ и т.д.

• Многие известные нам целевые функции являются монотонно возрастающими (неубывающими) функциями, зависящими от моментов окончания обслуживания требований C_j . Например, $\sum C_j$, $\sum U_j$, $\sum T_j$ и т.д.

Утверждение

Eсли задача соответствует условиям теоремы 1, тогда оптимальное расписание для этой задачи однозначно задается перестановкой элементов множества N.

• Многие известные нам целевые функции являются монотонно возрастающими (неубывающими) функциями, зависящими от моментов окончания обслуживания требований C_j . Например, $\sum C_j$, $\sum U_j$, $\sum T_j$ и т.д.

Утверждение

Если задача соответствует условиям теоремы 1, тогда оптимальное расписание для этой задачи однозначно задается перестановкой элементов множества N.

Определение

Перестановка из n элементов — это конечная n последовательность длины n, все элементы которой различны.

Перестановка вида $\pi = (j_1, j_2, \dots, j_n)$, задающая расписание π , определяет порядок обслуживания требований.

Перестановка вида $\pi = (j_1, j_2, \dots, j_n)$, задающая расписание π , определяет порядок обслуживания требований. Для задач, в которых расписание можно задать перестановкой, важными являются следующие определения:

Перестановка вида $\pi=(j_1,j_2,\ldots,j_n)$, задающая расписание π , определяет порядок обслуживания требований. Для задач, в которых расписание можно задать перестановкой, важными являются следующие определения:

Определение

EDD (Earliest Due Date) порядок обслуживания требований — очередность обслуживания, при которой требования обслуживаются в порядке неубывания директивных сроков d_i .

Перестановка вида $\pi=(j_1,j_2,\ldots,j_n)$, задающая расписание π , определяет порядок обслуживания требований. Для задач, в которых расписание можно задать перестановкой, важными являются следующие определения:

Определение

EDD (Earliest Due Date) порядок обслуживания требований — очередность обслуживания, при которой требования обслуживаются в порядке неубывания директивных сроков d_i .

Определение

LDD (Latest Due Date) порядок обслуживания требований очередность обслуживания, при которой требования обслуживаются в порядке невозрастания директивных сроков d_j .

Определение

SPT (Shortest Processing Time) порядок обслуживания требований — очередность обслуживания, при которой требования обслуживаются в порядке неубывания времен обслуживания p_i .

Определение

SPT (Shortest Processing Time) порядок обслуживания требований — очередность обслуживания, при которой требования обслуживаются в порядке неубывания времен обслуживания p_j .

Определение

LPT (Longest Processing Time) порядок обслуживания требований — очередность обслуживания, при которой требования обслуживаются в порядке невозрастания времен обслуживания p_j .

Определение

SPT (Shortest Processing Time) порядок обслуживания требований — очередность обслуживания, при которой требования обслуживаются в порядке неубывания времен обслуживания p_j .

Определение

LPT (Longest Processing Time) порядок обслуживания требований — очередность обслуживания, при которой требования обслуживаются в порядке невозрастания времен обслуживания p_j .

Определение

Частичное расписание π — фрагмент целого расписания π , описывающее порядок обслуживания подмножества требований $N'\subset N$.

В данном разделе:

• запись вида $\{\pi\}$ обозначает множество требований, обслуживаемых при расписании π ;

- запись вида $\{\pi\}$ обозначает множество требований, обслуживаемых при расписании π ;
- запись вида $i \in \pi$ означает $i \in \{\pi\}$;

- запись вида $\{\pi\}$ обозначает множество требований, обслуживаемых при расписании π ;
- запись вида $i \in \pi$ означает $i \in \{\pi\}$;
- через $\pi \setminus \{i\}$, где $\pi = (\pi_1, i, \pi_2)$, будем обозначать частичное расписание вида (π_1, π_2) ;

- запись вида $\{\pi\}$ обозначает множество требований, обслуживаемых при расписании π ;
- запись вида $i \in \pi$ означает $i \in \{\pi\}$;
- через $\pi \setminus \{i\}$, где $\pi = (\pi_1, i, \pi_2)$, будем обозначать частичное расписание вида (π_1, π_2) ;
- ullet запись $j \to i$ означает, что обслуживание требования j предшествует обслуживанию требования i;

- запись вида $\{\pi\}$ обозначает множество требований, обслуживаемых при расписании π ;
- запись вида $i \in \pi$ означает $i \in \{\pi\}$;
- через $\pi \setminus \{i\}$, где $\pi = (\pi_1, i, \pi_2)$, будем обозначать частичное расписание вида (π_1, π_2) ;
- запись $j \to i$ означает, что обслуживание требования j предшествует обслуживанию требования i;
- соответственно, запись $(j \to i)\pi$ означает, что это выполняется при расписании π .

Одноприворные задачи $1|r_j, p_j = 1, pmtn|\sum f_j$

• Рассмотрим алгоритм решения одноприборных задач, для которых продолжительность обслуживания $p_j = 1$, момент поступления $r_j \in \mathbb{Z}^+$, для всех $j = 1, 2, \ldots, n$, и нет отношений предшествования между требованиями.

Одноприборные задачи $1|r_j, p_j = 1, pmtn|\sum f_j$

- Рассмотрим алгоритм решения одноприборных задач, для которых продолжительность обслуживания $p_j = 1$, момент поступления $r_j \in \mathbb{Z}^+$, для всех $j = 1, 2, \ldots, n$, и нет отношений предшествования между требованиями.
- Обозначим эти задачи как

$$1|r_j, p_j = 1, pmtn|\sum f_j$$

При этом функция f_j требования j зависит от времени окончания обслуживания C_j .

Одноприборные задачи $1|r_j,p_j=1,pmtn|\sum f_j$

- Рассмотрим алгоритм решения одноприборных задач, для которых продолжительность обслуживания $p_j = 1$, момент поступления $r_j \in \mathbb{Z}^+$, для всех $j = 1, 2, \ldots, n$, и нет отношений предшествования между требованиями.
- Обозначим эти задачи как

$$1|r_j, p_j = 1, pmtn|\sum f_j$$

При этом функция f_j требования j зависит от времени окончания обслуживания C_j .

 Данную задачу можно решить, сведя ее к ЗАДАЧЕ О НАЗНАЧЕНИЯХ.

Одноприворные задачи $1|r_j, p_j = 1, pmtn|\sum f_j$

• Количество заданий в соответствующей ЗАДАЧЕ О НАЗНАЧЕНИЯХ будет равно n, а количество исполнителей равно $r_{\max} + n$, где $r_{\max} \stackrel{def}{=} \max_{j \in \{1, \dots, n\}} r_j$ — самый поздний момент поступления.

Одноприборные задачи $1|r_j,p_j=1,pmtn|\sum f_j$

- Количество заданий в соответствующей ЗАДАЧЕ О НАЗНАЧЕНИЯХ будет равно n, а количество исполнителей равно $r_{\max}+n$, где $r_{\max}\stackrel{def}{=}\max_{j\in\{1,\dots,n\}}r_j$ самый поздний момент поступления.
- То есть для каждого требования j, j = 1, 2, ..., n, нужно определить интервал обслуживания $[t, t+1) \in [0, r_{\max} + n)$.

Одноприборные задачи $1|r_j,p_j=1,pmtn|\sum f_j$

- Количество заданий в соответствующей ЗАДАЧЕ О НАЗНАЧЕНИЯХ будет равно n, а количество исполнителей равно $r_{\max}+n$, где $r_{\max}\stackrel{def}{=}\max_{j\in\{1,\dots,n\}}r_j$ самый поздний момент поступления.
- То есть для каждого требования $j, j = 1, 2, \ldots, n$, нужно определить интервал обслуживания $[t, t+1) \in [0, r_{\max} + n)$.
- Матрица стоимостей формируется следующим образом.

Одноприборные задачи $1|r_j, p_j = 1, pmtn|\sum f_j$

- Количество заданий в соответствующей ЗАДАЧЕ О НАЗНАЧЕНИЯХ будет равно n, а количество исполнителей равно $r_{\max}+n$, где $r_{\max}\stackrel{def}{=}\max_{j\in\{1,\dots,n\}}r_j$ самый поздний момент поступления.
- То есть для каждого требования $j, j = 1, 2, \ldots, n$, нужно определить интервал обслуживания $[t, t+1) \in [0, r_{\max} + n)$.
- Матрица стоимостей формируется следующим образом.
- Для требования j для каждого $t \in [0, r_{\max} + n), t \ge r_j,$ вычислим $a_{tj} = f_j(C_j = t + 1).$

Одноприборные задачи $1|r_j, p_j = 1, pmtn|\sum f_j$

- Количество заданий в соответствующей ЗАДАЧЕ О НАЗНАЧЕНИЯХ будет равно n, а количество исполнителей равно $r_{\max}+n$, где $r_{\max}\stackrel{def}{=}\max_{j\in\{1,\dots,n\}}r_j$ самый поздний момент поступления.
- То есть для каждого требования $j, j = 1, 2, \ldots, n$, нужно определить интервал обслуживания $[t, t+1) \in [0, r_{\max} + n)$.
- Матрица стоимостей формируется следующим образом.
- Для требования j для каждого $t \in [0, r_{\max} + n), t \ge r_j,$ вычислим $a_{tj} = f_j(C_j = t + 1).$
- ullet Для каждой точки $t < r_j$ и для каждой точки $t \geq D_j = r_{\max} + n$ примем $a_{tj} = +\infty$.

Одноприборные задачи $1|r_j,p_j=1,pmtn|\sum f_j$

 Решив ЗАДАЧУ О НАЗНАЧЕНИЯХ, получим интервалы обслуживания каждого из требований.

Одноприборные задачи $1|r_j, p_j = 1, pmtn|\sum f_j$

- Решив ЗАДАЧУ О НАЗНАЧЕНИЯХ, получим интервалы обслуживания каждого из требований.
- То есть задачу $1|r_j, p_j = 1, pmtn|\sum f_j$ можно решить за время $O(n^3)$.

 $\bullet \,$ Имеется множество требований $N = \{1, 2, \dots, n\}.$

- Имеется множество требований $N = \{1, 2, \dots, n\}.$
- Для каждого требования $j \in N$ заданы продолжительность обслуживания $p_j > 0$ и директивный срок d_j , к которому требование должно быть обслужено.

- Имеется множество требований $N = \{1, 2, \dots, n\}.$
- Для каждого требования $j \in N$ заданы продолжительность обслуживания $p_j > 0$ и директивный срок d_j , к которому требование должно быть обслужено.
- Прерывания при обслуживании и обслуживание более одного требования в любой момент времени запрещены.

- Имеется множество требований $N = \{1, 2, \dots, n\}.$
- Для каждого требования $j \in N$ заданы продолжительность обслуживания $p_j > 0$ и директивный срок d_j , к которому требование должно быть обслужено.
- Прерывания при обслуживании и обслуживание более одного требования в любой момент времени запрещены.
- Расписание задается перестановкой $\pi = (j_1, j_2, \dots, j_n)$.

- Имеется множество требований $N = \{1, 2, \dots, n\}.$
- Для каждого требования $j \in N$ заданы продолжительность обслуживания $p_j > 0$ и директивный срок d_j , к которому требование должно быть обслужено.
- Прерывания при обслуживании и обслуживание более одного требования в любой момент времени запрещены.
- Расписание задается перестановкой $\pi = (j_1, j_2, \dots, j_n)$.
- То есть время завершения обслуживания требования j_k при расписании π определяется следующим образом: $C_{jk}(\pi) = \sum_{l=1}^k p_{jl}.$

- Имеется множество требований $N = \{1, 2, \dots, n\}.$
- Для каждого требования $j \in N$ заданы продолжительность обслуживания $p_j > 0$ и директивный срок d_j , к которому требование должно быть обслужено.
- Прерывания при обслуживании и обслуживание более одного требования в любой момент времени запрещены.
- Расписание задается перестановкой $\pi = (j_1, j_2, \dots, j_n).$
- То есть время завершения обслуживания требования j_k при расписании π определяется следующим образом: $C_{jk}(\pi) = \sum_{l=1}^k p_{jl}.$
- Если $C_j(\pi) > d_j$, тогда требование j запаздывает, и в этом случае полагают $U_j = 1$.

- Имеется множество требований $N = \{1, 2, \dots, n\}.$
- Для каждого требования $j \in N$ заданы продолжительность обслуживания $p_j > 0$ и директивный срок d_j , к которому требование должно быть обслужено.
- Прерывания при обслуживании и обслуживание более одного требования в любой момент времени запрещены.
- Расписание задается перестановкой $\pi = (j_1, j_2, \dots, j_n)$.
- То есть время завершения обслуживания требования j_k при расписании π определяется следующим образом: $C_{jk}(\pi) = \sum_{l=1}^k p_{jl}.$
- Если $C_j(\pi) > d_j$, тогда требование j запаздывает, и в этом случае полагают $U_j = 1$.
- ullet Если $C_j(\pi) \leq d_j$, тогда требование j не запаздывает, и $U_j = 0$.

- Имеется множество требований $N = \{1, 2, \dots, n\}.$
- Для каждого требования $j \in N$ заданы продолжительность обслуживания $p_j > 0$ и директивный срок d_j , к которому требование должно быть обслужено.
- Прерывания при обслуживании и обслуживание более одного требования в любой момент времени запрещены.
- Расписание задается перестановкой $\pi = (j_1, j_2, \dots, j_n)$.
- То есть время завершения обслуживания требования j_k при расписании π определяется следующим образом: $C_{jk}(\pi) = \sum_{l=1}^k p_{jl}.$
- Если $C_j(\pi) > d_j$, тогда требование j запаздывает, и в этом случае полагают $U_j = 1$.
- Если $C_j(\pi) \le d_j$, тогда требование j не запаздывает, и $U_j = 0$.
- Необходимо построить расписание π , при котором значение целевой функции $F(\pi) = \sum_{j=1}^{n} U_{j}(\pi)$ минимально.

Далее представлен полиномиальный алгоритм Мура решения данной задачи, который основан на следующей лемме.

Далее представлен полиномиальный алгоритм Мура решения данной задачи, который основан на следующей лемме.

Лемма 1

Для каждого примера задачи $1||\sum U_j$ существует оптимальное расписание вида $\pi = (G, H)$, при котором все требования $i \in G$ не запаздывают, а все требования $j \in H$ запаздывают.

Далее представлен полиномиальный алгоритм Мура решения данной задачи, который основан на следующей лемме.

ЛЕММА 1

Для каждого примера задачи $1||\sum U_j$ существует оптимальное расписание вида $\pi = (G, H)$, при котором все требования $i \in G$ не запаздывают, а все требования $j \in H$ запаздывают.

$\overline{\text{Лемма 2}}$

Пусть для примера задачи $1||\sum U_j$ существует оптимальное расписание, при котором все требования не запаздывают. Тогда расписание π_{EDD} (требования обслуживаются в порядке EDD) также является оптимальным для данного примера.

Algorithm 1

```
Перенумеруем требования согласно правилу
d_1 < d_2 < \cdots < d_n:
G := \emptyset; H := \emptyset; t := 0;
for j = 1 to n do
  G \leftarrow G \cup \{i\}:
  t \leftarrow t + p_i;
   if t \geq d_i then
      Найдем требование i \in G с максимальной
      продолжительность обслуживания, т.е.
     i := \arg \max_{k \in G} p_k;
     G \leftarrow G \setminus \{i\};
     H \leftarrow H \cup \{i\};
     t \leftarrow t - p_i;
   end if
end for
return \pi = (G, H).
```

ЛЕММА 3

Пусть при расписании $\pi = (j_1, j_2, \dots, j_l, j_{l+1}, \dots, j_n)$ выполняется $d_{j_1} \leq d_{j_2} \leq \dots d_{j_n}$. Требование $j_l -$ последнее незапаздывающее требование. Тогда существует оптимальное расписание, при котором требование $j^* \in \{j_1, j_2, \dots, j_{l+1}\}, p_{j^*} \geq p_i$, для всех $i \in \{j_1, j_2, \dots, j_{l+1}\},$ запаздывает.

Лемма 3

Пусть при расписании $\pi = (j_1, j_2, \dots, j_l, j_{l+1}, \dots, j_n)$ выполняется $d_{j_1} \leq d_{j_2} \leq \dots d_{j_n}$. Требование $j_l - n$ оследнее незапаздывающее требование. Тогда существует оптимальное расписание, при котором требование $j^* \in \{j_1, j_2, \dots, j_{l+1}\}, p_{j^*} \geq p_i$, для всех $i \in \{j_1, j_2, \dots, j_{l+1}\},$ запаздывает.

Теорема 2

Алгоритм 1 для задачи $1||\sum U_j|$ за $O(n\log n)$ операций строит оптимальное расписание.

Минимизация взвешенного числа запаздывающих требований $1||\sum w_j U_j$

Очевидным является тот факт, что минимизация взвешенного числа запаздывающих требований эквивалентно максимизации взвешенного числа незапаздывающих требований. То есть критерий оптимизации $F(\pi) = \sum w_j U_j(\pi) \to \min$ может быть заменен на критерий $F(\pi) = \sum w_j [1 - U_j(\pi)] \to \max$.

Минимизация взвешенного числа запаздывающих требований $1||\sum w_j U_j$

Очевидным является тот факт, что минимизация взвешенного числа запаздывающих требований эквивалентно максимизации взвешенного числа незапаздывающих требований. То есть критерий оптимизации $F(\pi) = \sum w_j U_j(\pi) \to \min$ может быть заменен на критерий $F(\pi) = \sum w_j [1 - U_j(\pi)] \to \max$.

Теорема 3

 $\exists a\partial a$ ча $1||\sum w_jU_j$ является NP-трудной.

Минимизация взвешенного числа запаздывающих требований $1||\sum w_j U_j$

Очевидным является тот факт, что минимизация взвешенного числа запаздывающих требований эквивалентно максимизации взвешенного числа незапаздывающих требований. То есть критерий оптимизации $F(\pi) = \sum w_j U_j(\pi) \to \min$ может быть заменен на критерий $F(\pi) = \sum w_j [1 - U_j(\pi)] \to \max$.

Теорема 3

 $\exists a\partial a$ ча $1||\sum w_j U_j$ является NP-трудной.

Теорема 4

Для задачи $1||\sum w_j U_j$ существует оптимальное расписание вида $\pi=(G,H)$, где все требования $j\in H$ запаздывают, а все требования $i\in G$ не запаздывают. Требования из множества G обслуживаются в порядке EDD, а требования из множества $H-\epsilon$ порядке EDD.

Алгоритм динамического программирования для решения задачи $1||\sum w_j U_j$

Algorithm 2

```
Перенумеруем требования согласно правилу d_1 \leq d_2 \leq \cdots \leq d_n; for t=0 to \sum_{i=2}^n p_i do \pi_1(t):=(1); if t+p_1-d_1 \leq 0 then f_1(t):=w_1; else f_1(t):=0; end if
```

```
for j = 2 to n do
   for t=0 to \sum_{i=j+1}^{n} p_i do
      \pi^1 := (i, \pi_{i-1}(t+p_i)), \, \pi^2 := (\pi_{i-1}(t), i);
       if t + p_i - d_i \le 0 then
          \Phi^1(t) := w_i + f_{i-1}(t+p_i):
       else
          \Phi^1(t) := f_{i-1}(t+p_i):
       end if
       if t + \sum_{i=1}^{j} p_i - d_i \leq 0 then
          \Phi^2(t) := f_{i-1}(t) + w_i:
       else
          \Phi^2(t) := f_{i-1}(t);
       end if
       if \Phi^1(t) < \Phi^2(t) then
          f_i(t) := \Phi^2(t):
          \pi_i(t) := \pi^2:
       else
          f_i(t) := \Phi^1(t):
          \pi_i(t) := \pi^1:
       end if
   end for
end for
```

Алгоритм 2 основан на теореме 4.

В данном алгоритме $\pi_j(t)$ означает оптимальное частичное расписание для требований $1,2,\ldots,j$, при котором обслуживание требований начинается в момент времени t, а $f_j(t) = \sum_{i=1}^j w_i [1 - U_i(\pi_j(t))]$ соответствует максимальному взвешенному числу незапаздывающих требований при этом частичном расписании.

Алгоритм 2 основан на теореме 4.

В данном алгоритме $\pi_j(t)$ означает оптимальное частичное расписание для требований $1,2,\ldots,j$, при котором обслуживание требований начинается в момент времени t, а $f_j(t) = \sum_{i=1}^j w_i [1-U_i(\pi_j(t))]$ соответствует максимальному взвешенному числу незапаздывающих требований при этом частичном расписании.

В Алгоритме 2 происходит последовательная "окантовка" ранее построенного расписания. В расписании $\pi_l(t)$ для любого $l,\,l=1,2,\ldots,n$, требования множества $\{1,2,\ldots,l\}$ расположены "компактно", т.е. между ними нет требований с большими номерами.

Алгоритм 2 основан на теореме 4.

В данном алгоритме $\pi_j(t)$ означает оптимальное частичное расписание для требований $1,2,\ldots,j$, при котором обслуживание требований начинается в момент времени t, а $f_j(t) = \sum_{i=1}^j w_i [1-U_i(\pi_j(t))]$ соответствует максимальному взвешенному числу незапаздывающих требований при этом частичном расписании.

В Алгоритме 2 происходит последовательная "окантовка" ранее построенного расписания. В расписании $\pi_l(t)$ для любого $l, l=1,2,\ldots,n$, требования множества $\{1,2,\ldots,l\}$ расположены "компактно", т.е. между ними нет требований с большими номерами.

Теорема 5

Алгоритм 2 строит оптимальное расписание задачи максимизации взвешенного числа незапаздывающих требований за $O(n \sum p_i)$ операций.

Минимизация суммарного запаздывания $1||\sum T_i$

• Рассматривается задача минимизации суммарного запаздывания $\sum T_j$, где $T_j = \max\{0, C_j - d_j\}$.

Минимизация суммарного запаздывания $1||\sum T_i$

- Рассматривается задача минимизации суммарного запаздывания $\sum T_i$, где $T_i = \max\{0, C_i d_i\}$.
- То есть в данной задаче необходимо найти расписание π^* , при котором функция $F(\pi) = \sum_{j=1}^n T_j(\pi)$ достигает своего минимума.

Минимизация суммарного запаздывания $1||\sum T_i$

- Рассматривается задача минимизации суммарного запаздывания $\sum T_i$, где $T_i = \max\{0, C_i d_i\}$.
- То есть в данной задаче необходимо найти расписание π^* , при котором функция $F(\pi) = \sum_{j=1}^n T_j(\pi)$ достигает своего минимума.
- Несмотря на то, что это классическая задача TP, доказательство ее NP-трудности было получено сравнительно недавно в 1990-м году, т.е. выяснение ее трудоемкости было нетривиальной проблемой.

Точный алгоритм решения задачи $1||\sum T_j|$

- Алгоритм основан на результатах, опубликованных Лаулером в 1977-м году.
- Необходимо отметить, что данный алгоритм строит точное решение и для частного случая задачи $1||\sum w_jT_j$, при котором выполняется правило "если $p_j>p_i$, то $w_j\leq w_i,\, i,j\in N$ ".

Теорема 6

Пусть π — оптимальное расписание для примера задачи с директивными сроками d_1, d_2, \ldots, d_n , и пусть C_j — моменты завершения обслуживания требований $j=1,2,\ldots,n$ при этом расписании. Выберем новые директивные сроки d'_j так, что:

$$\min\{d_j, C_j\} \le d'_j \le \max\{d_j, C_j\}.$$

Тогда любое оптимальное расписание π' , соответствующее примеру с новыми директивными сроками d'_1, d'_2, \ldots, d'_n , является оптимальным и для примера с исходными директивными сроками d_1, d_2, \ldots, d_n .

• Можно сделать следующий вывод из данной теоремы.

- Можно сделать следующий вывод из данной теоремы.
- Если выбрать такое требование j^* и для него определить требование (позицию) $k \geq j^*$, то исходную задачу можно разбить на две подзадачи решаемые аналогично.

- Можно сделать следующий вывод из данной теоремы.
- Если выбрать такое требование j^* и для него определить требование (позицию) $k \geq j^*$, то исходную задачу можно разбить на две подзадачи решаемые аналогично.
- Первая подзадача содержит множество требований i, $i=1,2,\ldots,k,\,i\neq j^*,$ а другая множество требований $\{k+1,k+2,\ldots,n\}.$

- Можно сделать следующий вывод из данной теоремы.
- Если выбрать такое требование j^* и для него определить требование (позицию) $k \geq j^*$, то исходную задачу можно разбить на две подзадачи решаемые аналогично.
- Первая подзадача содержит множество требований i, $i=1,2,\ldots,k,\,i\neq j^*,$ а другая множество требований $\{k+1,k+2,\ldots,n\}.$
- Сложность заключается в выборе требования (позиции) k.

- Можно сделать следующий вывод из данной теоремы.
- Если выбрать такое требование j^* и для него определить требование (позицию) $k \geq j^*$, то исходную задачу можно разбить на две подзадачи решаемые аналогично.
- Первая подзадача содержит множество требований i, $i=1,2,\ldots,k,\,i\neq j^*,$ а другая множество требований $\{k+1,k+2,\ldots,n\}.$
- Сложность заключается в выборе требования (позиции) k.
- На этом факте основан следующий точный алгоритм решения задачи.

АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ $1 || \sum T_i$

```
Algorithm 3
Procedure ProcL(N, t)
  Дан пример \{N,t\} с множеством требований N=\{j_1,j_2,\ldots,j_n\}
  и моментом начала обслуживания t, где d_{i_1} \leq d_{i_2} \leq \cdots \leq d_{i_n}.
  if N = \emptyset then
     \pi^* := \text{пустое расписание};
  else
     Найдем требование j^* из множества N;
     Найдем множество L(N,t) для требования j^*;
     for ALL k \in L(N, t) do
        \pi_k := (\mathbf{ProcL}(N', t'), j^*(N), \mathbf{ProcL}(N'', t'')), где
        N' := \{j_1, \dots, j_k\} \setminus \{j^*\}, t' := t, N'' := \{j_{k+1}, \dots, j_n\},\
        t'' := t + \sum_{i=1}^{k} p_{i};
     end for
     \pi^* := \arg\min_{k \in L(N,t)} \{ F(\pi_k, t) \};
  end if
  return \pi^*;
  Алгоритм решения.
  \pi^* := \mathbf{ProcL}(N,0);
```

• В алгоритме $j^*(N')$ обозначает требование с наибольшей продолжительностью обслуживания среди требований множества $N' \subseteq N$.

- В алгоритме $j^*(N')$ обозначает требование с наибольшей продолжительностью обслуживания среди требований множества $N' \subseteq N$.
- Если таких требований несколько, то выбирается требование с наибольшим директивным сроком, т.е. $j^*(N') = \arg\max_{j \in N'} \{d_j : p_j = \max_{i \in N'} p_i\}.$

- В алгоритме $j^*(N')$ обозначает требование с наибольшей продолжительностью обслуживания среди требований множества $N' \subseteq N$.
- Если таких требований несколько, то выбирается требование с наибольшим директивным сроком, т.е. $j^*(N') = \arg\max_{j \in N'} \{d_j : p_j = \max_{i \in N'} p_i\}.$
- Для сокращения записи вместо $j^*(N')$ будем записывать j^* , если очевидно о каком множестве идет речь.

- В алгоритме $j^*(N')$ обозначает требование с наибольшей продолжительностью обслуживания среди требований множества $N' \subseteq N$.
- Если таких требований несколько, то выбирается требование с наибольшим директивным сроком, т.е. $j^*(N') = \arg\max_{j \in N'} \{d_j : p_j = \max_{i \in N'} p_i\}.$
- Для сокращения записи вместо $j^*(N')$ будем записывать j^* , если очевидно о каком множестве идет речь.
- Рассмотрим пример (подпример) обслуживания требований множества $N' \subseteq N, N' = \{1, 2, \dots, n'\}$, с момента времени $t' \ge 0$. Множество L(N', t') есть множество всех индексов $i \in \{j^*, j^* + 1, \dots, n'\}$.

- В алгоритме $j^*(N')$ обозначает требование с наибольшей продолжительностью обслуживания среди требований множества $N' \subseteq N$.
- Если таких требований несколько, то выбирается требование с наибольшим директивным сроком, т.е. $j^*(N') = \arg\max_{j \in N'} \{d_j : p_j = \max_{i \in N'} p_i\}.$
- Для сокращения записи вместо $j^*(N')$ будем записывать j^* , если очевидно о каком множестве идет речь.
- Рассмотрим пример (подпример) обслуживания требований множества $N' \subseteq N, N' = \{1, 2, \dots, n'\}$, с момента времени $t' \ge 0$. Множество L(N', t') есть множество всех индексов $i \in \{j^*, j^* + 1, \dots, n'\}$.
- Запись $F(\pi_k, t)$ в алгоритме означает суммарное запаздывание при расписании π_k выполнение которого начинается с момента времени t.

Задачи цеха (Shop problems)

• В этом разделе рассматривается задача Flow-Shop, в которой необходимо минимизировать значение $C_{\max} = \max_{j \in N} C_j$.

- В этом разделе рассматривается задача Flow-Shop, в которой необходимо минимизировать значение $C_{\max} = \max_{j \in N} C_j$.
- Напомним, что для данной задачи каждое требование j, $j=1,2,\ldots,n$, состоит из одних и тех же операций, т.е. $O_{j_1} \to \cdots \to O_{j_m}, \, \forall j \in N$, причем для каждой операции с номером $i,\,i=1,2,\ldots,m$, задан прибор, выполняющий эту операцию.

- В этом разделе рассматривается задача Flow-Shop, в которой необходимо минимизировать значение $C_{\max} = \max_{j \in N} C_j$.
- Напомним, что для данной задачи каждое требование j, $j=1,2,\ldots,n$, состоит из одних и тех же операций, т.е. $O_{j_1}\to\cdots\to O_{j_m},\,\forall j\in N$, причем для каждой операции с номером $i,\,i=1,2,\ldots,m$, задан прибор, выполняющий эту операцию.
- Операции каждого требования j выполняются в заданной последовательности $O_{j_1} \to \cdots \to O_{j_m}$, причем выполнение операции $k,\ k=2,3,\ldots,m$, может начаться не раньше окончания выполнения операции k-1 для этого же требования.

- В этом разделе рассматривается задача Flow-Shop, в которой необходимо минимизировать значение $C_{\max} = \max_{j \in N} C_j$.
- Напомним, что для данной задачи каждое требование j, $j=1,2,\ldots,n$, состоит из одних и тех же операций, т.е. $O_{j_1}\to\cdots\to O_{j_m},\,\forall j\in N$, причем для каждой операции с номером $i,\,i=1,2,\ldots,m$, задан прибор, выполняющий эту операцию.
- Операции каждого требования j выполняются в заданной последовательности $O_{j_1} \to \cdots \to O_{j_m}$, причем выполнение операции $k, \ k=2,3,\ldots,m$, может начаться не раньше окончания выполнения операции k-1 для этого же требования.
- Расписание для каждого прибора задается вектором порядком обслуживания на данном приборе операций, относящихся к разным требованиям.

На рис.3 представлено два допустимых расписания для одного и того же примера, где n=2 и m=4. При этих расписаниях $C_{\rm max}=11$.

Рис. 3 Расписания для двух требований

Рис. 4. Оптимальное расписание для двух требований $C_{\rm max}=10.$

Teopema 7

Для задачи $F||C_{\max}$ существует оптимальное расписание, обладающее свойствами:

- порядок ослуживания требований (вектор) для первых двух приборов совпадает;
- порядок ослуживания требований (вектор) для последних двух приборов совпадает;

Teopema 7

Для задачи $F||C_{\max}$ существует оптимальное расписание, обладающее свойствами:

- порядок ослуживания требований (вектор) для первых двух приборов совпадает;
- порядок ослуживания требований (вектор) для последних двух приборов совпадает;

На основании этой теоремы можно сделать вывод, что если $m \leq 3$, то существует порядок обслуживания, оптимальный (и одинаковый) для всех трех приборов.

Далее представлен алгоритм Джонсона решения задачи $F2||C_{\max}$, полученный в 1954-м году. Идея алгоритма заключается в следующем.

Далее представлен алгоритм Джонсона решения задачи $F2||C_{\max}$, полученный в 1954-м году.

Идея алгоритма заключается в следующем.

• Последовательно мы конструируем начало π_1 и конец π_2 вектора $\pi = (\pi_1, \pi_2)$, задающего порядок обслуживания.

Далее представлен алгоритм Джонсона решения задачи $F2||C_{\max}$, полученный в 1954-м году.

Идея алгоритма заключается в следующем.

- Последовательно мы конструируем начало π_1 и конец π_2 вектора $\pi = (\pi_1, \pi_2)$, задающего порядок обслуживания.
- На каждом шаге мы рассматриваем операцию O_{ji} с наменьшим значением p_{ji} среди рассматриваемых операций.

Далее представлен алгоритм Джонсона решения задачи $F2||C_{\max}$, полученный в 1954-м году.

Идея алгоритма заключается в следующем.

- Последовательно мы конструируем начало π_1 и конец π_2 вектора $\pi = (\pi_1, \pi_2)$, задающего порядок обслуживания.
- На каждом шаге мы рассматриваем операцию O_{ji} с наменьшим значением p_{ji} среди рассматриваемых операций.
- Если i=1, то в конец частичного расписания π_1 мы добавляем требование j, т.е. $\pi_1=(\pi_1,j)$, иначе требование добавляется в начало другого частичного расписания $\pi_2=(j,\pi_2)$.

Далее представлен алгоритм Джонсона решения задачи $F2||C_{\max}$, полученный в 1954-м году.

Идея алгоритма заключается в следующем.

- Последовательно мы конструируем начало π_1 и конец π_2 вектора $\pi = (\pi_1, \pi_2)$, задающего порядок обслуживания.
- На каждом шаге мы рассматриваем операцию O_{ji} с наменьшим значением p_{ji} среди рассматриваемых операций.
- Если i=1, то в конец частичного расписания π_1 мы добавляем требование j, т.е. $\pi_1=(\pi_1,j)$, иначе требование добавляется в начало другого частичного расписания $\pi_2=(j,\pi_2)$.
- После этого требование j исключается из рассмотрения и мы повторяем итерацию до тех пор, пока не будут расставлены все требования.

Алгоритм Джонсона решения задачи $F2||C_{\max}|$

Algorithm 4

```
N' := N; \, \pi_1 := (), \, \pi_2 := ();
while N' \neq \emptyset do
   Найдем O_{i^*i^*} с минимальной продолжительностью
  p_{i^*i^*} = \min\{p_{ii}|j \in N', i = 1, 2\};
  if i = 1 then
     \pi_1 := (\pi_1, j);
   else
     \pi_2 := (j, \pi_2);
   end if
  N' := N' \setminus j;
end while
\pi := (\pi_1, \pi_2);
return \pi:
END.
```

Необходимо отметить, что алгоритм 4 имеет трудоемкость $O(n\log n)$ операций, если пункт 3 алгоритма — сортировку продолжительности обслуживания требований — выполнить до основного цикла WHILE.

Необходимо отметить, что алгоритм 4 имеет трудоемкость $O(n\log n)$ операций, если пункт 3 алгоритма — сортировку продолжительности обслуживания требований — выполнить до основного цикла WHILE.

Теорема 8

 $3a\partial a$ ча $F3||C_{\max} NP$ -сложна в сильном смысле.

Необходимо отметить, что алгоритм 4 имеет трудоемкость $O(n\log n)$ операций, если пункт 3 алгоритма — сортировку продолжительности обслуживания требований — выполнить до основного цикла WHILE.

Теорема 8

 $3a\partial a$ ча $F3||C_{\max} NP$ -сложна в сильном смысле.

Задача с прерываниями также является сложнорешаемой.

Теорема 9

Задача $F3|prmp|C_{\max}$ NP-сложна в сильном смысле.