COP 5536 Advanced Data Structures

Summer 2015

Instructor: Dr. Sartaj K Sahni (sahni@cise.ufl.edu)

Office Hours: By Appointment

Phone: 352-450-1490

Office: E536 Computer Science and Engineering Building

TA (Office Hours):

Adeesha Malavi(adeeshaw@ufl.edu): Tuesday 12.50 to 1.50 pm and Thursday: 3 to 4 pm at E309

Tentative Class Schedule:

Week 1 (May 11 - May 15) : Lecture 1 - Lecture 4

Week 2 (May 18 - May 22) : Lecture 5 - Lecture 8

Week 3 (May 25 - May 29) : Lecture 9 - Lecture 12

Week 4 (Jun 1 - Jun 5) : Lecture 13 - Lecture 16

Week 5 (Jun 8 - Jun 12) : Lecture 17 - Lecture 20

Week 6 (Jun 15 - Jun 19) : Lecture 21 - Lecture 24

Week 7 (Jun 22 - Jun 26) : Summer Break - No Classes

Week 8 (Jun 29 - July 3) : Lecture 25 - Lecture 28

Week 9 (July 6 - July 10) : Lecture 29 - Lecture 32

Week 10 (July 13 - July 17) : Lecture 33 - Lecture 35

Week 11 (July 20 - July 24) : Lecture 36 - Lecture 39

Week 12 (July 27 - July 31) : Lecture 40

Exam 3: Date :August 6 (Lec 29-40)

Note:- The exam dates are tentative subject to room availability. These exams will most probably be held in the evening.

Pre-requisites:

You should know the following:

- 1. C, C++, or Java. Since the text is in C++, you should at least be able to read C++.
- 2. Algorithm analysis methods (in particular asymptotic complexity).
- 3. Basic data structures such as stacks, queues, linked lists, trees, and graphs. Basic sorting methods such as insertion sort, heap sort, merge sort, and quick sort.

Course Requirements:

There will be two assignments and three exams. The exams will be closed book exams. The programming assignment(s) may be done in any high level language. Some possibilities are C, C++, and Java. Please have the use of any other language approved by the instructor or the TA. C++ is the preferred language.

Grading:

Exam 1: 25% (TBD) Exam 2: 25% (TBD) Exam 3: 25% (TBD) Assignment 1: 20% Assignment 2: 5%

Course Outline

The specific topics are:

- 1. Amortized complexity
- 2. External sorting & tournament trees
- 3. Buffering
- 4. Run generation & optimal merge patterns
- 5. Priority queues and merging
- 6. Leftist trees, Binomial heaps and Fibonacci heaps
- 7. Pairing heaps
- 8. Double ended priority queues
- 9. Static and dynamic weighted binary search trees
- 10. AVL-trees
- 11. Red-black trees
- 12. Splay trees
- 13. B-, B+- and B*-trees
- 14. Tries and digital search trees
- 15. Tries and packet forwarding
- 16. Suffix trees
- 17. Bloom filters
- 18. Segment trees
- 19. Interval trees
- 20. Priority search trees
- 21. k-d trees
- 22. Quad and oct trees
- 23. BSP trees
- 24. R-trees

Lecture	Content
1	Amortized complexity.
2	Amortized Complexity.

3	Introduction to external sorting.
4	Introduction to external sorting.
5	Selection trees & k-way merging.
6	Run generation.
7	Optimal merging of runs.
8	Buffering.
9	Double-ended priority queues. General methods.
10	Double-ended priority queues. Interval heaps.
11	Leftist trees.
12	Binomial heaps.
13	Binomial heaps.
14	Fibonacci heaps.
15	Pairing heaps.
16	Dictionaries.
17	Optimal binary search trees.
18	AVL trees.
19	AVL trees
20	Red-black trees.
21	Red-black trees.
22	B-Trees.
23	B-trees.

I	
24	B+ and B*-trees.
25	Splay Trees.
26	Splay Trees.
27	Binary Tries.
28	Compressed Binary Tries.
29	High-order Tries.
30	Tries and Packet Forwarding.
31	Suffix Trees.
32	Bloom Filters.
33	Segment Trees.
34	Interval Trees.
35	Priority Search Trees.
36	Priority Search Trees.
37	Multidimensional Search Trees.
38	Quad Trees.
39	BSP Trees.
40	R-trees.
<u> </u>	· ·

Course Policies:

- $1. \ \ \, Every \ \ \, student \ \ \, is \ \ \, expected \ \ \, to \ \ \, follow \ \ \, the \ \ \, University \ \ \, of \ \ \, Florida \ \ \, Honor \ \ \, Code. \ \ \, (See \ \ \, \underline{http://www.dso.ufl.edu/STG/default.html})$
- 2. Handouts, assignments, solutions, and others will be posted on Sakai. Students should check Sakai regularly, at least once per week.
- 3. When submitting homework for grading, your answers should be written neatly and contain an explanation that is clear and reasonably concise.
- 4. All requests for re-grading must be made to a teaching assistant within 2 weeks of the date that scores are posted.