Inferência Estatística

Introduçã

Parâmetros

Exemplo

Erro Padrao

Exempl

Erro Padrão e Docuio Padrã

Apresentação de

Resultados

Confianca nara 1

População Norma

Name Circle

Exemplos

População Norm

σ Desconhecido

Distribuição t de

Métodos Estatísticos – L.EIC

Semana 8

Aula 6

9 de maio de 2022

Inferência Estatística

Introduçã

Estimação (

Exemplo

Erro Padrão

E. ...

Erro Padrão

Apresentação de

Kesultados

Confiança para

População Norma

IVOLAS I IIIA

População Norma σ Desconhecido

Distribuição t de

Métodos Estatísticos – L.EIC

Aula 6

Inferência Estatística
Estimação Paramétrica e Testes de Hipóteses
Erro Padrão da Média Amostral
Intervalos de Confiança
Intervalo de Confiança para a Média
Caso de População Normal com Variância Conhecida
Caso de População Normal com Variância Desconhecida
Distribuição t de Student
Exemplos

Inferência Estatística

Introdução

Parâmetros

Exemplo

Erro Padrão

Exempl

Desvio Padrao

Apresentação de Resultados

Intervalos de

População Norma

Notas Finais

Exemplos

σ Desconhecido

Distribuição t de

5

INFERÊNCIA ESTATÍSTICA

Intervalos de Confiança –

ALII A 6

Inferência Estatística

Introdução

Estimação o

Exemplo

Erro Padrão o

Comment

Erro Padrão e

Apresentação de

Kesultados

ntervalos de

População Norma

Notas Finais

Exemplo:

σ Desconhecido

Distribuição t de

Introdução à Inferência Estatística

Inferência Estatística

Introdução

Darâmetro

Exemple

Erro Padrão

Evomo

Erro Padrão e

Apresentação

Resultados

População Norm

σ Conhecido

Notas Finais

População Norma
σ Desconhecido
Distribuição t de

Inferência Estatística Introdução

Os estudos e análises estatísticas desenvolvidos no domínio da **Estatística Descritiva** consistem, essencialmente, na **organização**, apresentação e caracterização de conjuntos de dados.

Na grande maioria das situações pretende-se, posteriormente, inferir sobre características de interesse da população da qual foram obtidos os dados. Esse é o domínio da designada Inferência Estatística.

Inferência Estatística

Introdução

Estimação

Exemp

Erro Padrão

....

Desvio Padrão

Apresentação

Resultatios

População Nom

 σ Conhecido

Notas Finais

População Nom

σ Desconhecido
Distribuição t de

Inferência Estatística Introdução

Este é o ramo da Estatística que iremos agora abordar. O seu objetivo consiste em tirar conclusões acerca de uma população a partir do estudo de uma amostra dessa mesma população e que designamos então por Inferência Estatística.

Comecemos por constatar uma diferença fundamental entre a Inferência Estatística e as Probabilidades, que abordámos anteriormente.

Inferência Estatística

Introdução

Parâmetros

Exempl

Erro Padrão

.

Erro Padrão

Desvio Padrā

Resultados

Intervalos de

População Norm

σ Conhecido

Exemplos

População Norma
σ Desconhecido
Distribuição t de

Inferência Estatística Introdução

Probabilidades – raciocínio dedutivo

Passamos do geral ao particular

Exemplo: Admitindo que uma moeda é não viciada (parâmetro p=0.5), qual a probabilidade de se observarem 17 caras em 40 lançamentos?

Inferência Estatística – raciocínio indutivo

Passamos do particular ao geral

Exemplo: Dado que se observaram 17 caras em 40 lançamentos de uma moeda, que evidência é que este facto nos dá sobre se a moeda é viciada ou não?

ALII A 6

Inferência Estatística

Introdução

Estimação de

Exemplo

Erro Padrão o

Evennel

Erro Padrão

Apresentação de

Resultados

onfianca para

População Norma

Notas Finai

Exemplo:

σ Desconhecido

Distribuição t de Student

Estimação de Parâmetros

Inferência Estatística

Estimação de

Parâmetros

Erro Padrão

Erro Padrão Média

Exempl

Desvio Padrã

Apresentação

Resultados

Confiança para J

População Norm

σ Conhecido

Notas Finais

Exemplos População Nor

σ Desconhecido
Distribuição t de

Inferência Estatística Estimação de Parâmetros

Estimação paramétrica

Na estimação paramétrica, pretende-se **calcular**, a partir da análise de uma amostra, **um valor** (ou intervalo de valores) que sirva como **aproximação do correspondente parâmetro** na população.

Testes de Hipóteses

Num problema de Teste de Hipóteses, pretende-se, através da análise de uma amostra, responder a uma questão sobre a característica em estudo da população. Essa questão é formulada como uma hipótese.

Inferência Estatística

Estimação de

Parâmetros

Erro Padrão

Exemp

Erro Padrão e Desvio Padrão

Apresentação Resultados

Intervalos de

População Norm

σ Conhecido

Notas Finais

População Norma
σ Desconhecido

σ Desconhecido
Distribuição t de

Inferência Estatística Estimação de Parâmetros

Estimativa de um Parâmetro de uma População

Na **Estimação Paramétrica**, a partir de uma amostra selecionada aleatoriamente da população em estudo, i.e., a partir de observações da população, pretende-se:

- obter uma estimativa para um parâmetro da população;
- avaliar a qualidade da estimativa.

Inferência Estatística

Introdução Estimação o

Exemplo

Erro Padrã

Média

Exemp

Desvio Padrao e

Apresentação Resultados

Intervalos de

População Norm
σ Conhecido

Notas Finais

População Norm
σ Desconhecido

σ Desconhecido
Distribuição t de

Inferência Estatística Estimação de Parâmetros

Estimação Paramétrica – **Exemplo**

Foram registados os pesos à nascença de uma amostra aleatória de 28 cordeiros. Os resultados estão na tabela seguinte:

		Peso	à nascença (Kg)		
4.3	5.2	6.2	6.7	5.3	4.9	4.7
5.5	5.3	4.0	4.9	5.2	4.9	5.3
5.4	5.5	3.6	5.8	5.6	5.0	5.2
5.8	6.1	4.9	4.5	4.8	5.4	4.7

A partir destes dados que informação se pode extrair sobre μ e σ (respetivamente a média e o desvio padrão da população)?

Inferência Estatística

Estimação de

Exemplo

Erro Padrão Média

Exemp

Desvio Padrao

Apresentação Resultados

Confiança para ¿

σ Conhecido

Notas Finais

População Norma σ Desconhecido Distribuição t de

Inferência Estatística Estimação de Parâmetros

Estimação Paramétrica – **Exemplo**

Naturalmente que as **estimativas mais naturais** para a média μ e para o desvio padrão σ da população são respetivamente a **média** \overline{x} , **e o desvio padrão** s, **da amostra**.

Para os dados da tabela anterior, temos então,

- $\overline{x}=$ 5, $17\,\mathrm{Kg}$ é uma estimativa para μ
- $s=0,65\,\mathrm{Kg}$ é uma estimativa para σ

Mas temos que ter em consideração que estas estimativas estão sujeitas ao **erro de amostragem**. Estamos a considerar apenas 28 cordeiros e não todos.

Como poderemos avaliar a qualidade daquelas estimativas?

Inferência Estatística

Estimação o

Exemplo

Erro Padrão

Exemp

Erro Padrão e

Apresentação

Resultados

População Nom

 σ Conhecido

Notas Fina

População Norma

σ Desconhecido

Distribuição t de

Inferência Estatística Estimação de Parâmetros

Estimação Paramétrica – **Exemplo**

Em geral, com base numa amostra representativa da população, usa-se a média e variância amostrais para estimar os parâmetros correspondentes da população.

No exemplo anterior, as observações deveriam satisfazer certas condições. **Em particular:** carneiros nascidos no mesmo mês, pais com a mesma alimentação, carneiros do mesmo tipo escolhidos ao acaso, ...

Inferência Estatística

Estimação o

Exemplo

Erro Padrão Média

Exemplo

Desvio Padrā

Apresentação Resultados

Intervalos de

População Norm
σ Conhecido

Notas Finais

População Nom
σ Desconhecid

σ Desconhecido
Distribuição t de
Student

Inferência Estatística Estimação de Parâmetros

Estimação Paramétrica – **Exemplo**

Na impossibilidade de se analisar a população completa, os valores fornecidos pelos estimadores serão sempre 'imperfeitos'.

Variabilidade: Já vimos, no estudo da distribuição por amostragem, que estas estimativas estão sujeitas a variabilidade, a qual é caracterizada pela distribuição por amostragem dos estimadores, como é o caso da estimação de μ , a média da população.

Inferência Estatística

Introdução

Estimação Parâmetros

Erro Padrão da Média

Exempl

Desvio Padrao

Apresentação o

Resultados Intervalos de

População Norr

 σ Conhecido

Notas Fina

População Norm

Distribuição t de Student

Inferência Estatística Estimação de Parâmetros

Erro Padrão da Média

Vimos anteriormente que sendo a média amostral \overline{X} , uma v.a. baseada em n v.a. X_1, X_2, \ldots, X_n , independentes e identicamente distribuídas (i.i.d.), com média μ e desvio padrão σ , temos:

$$E(\overline{X}) = \mu$$
 e $V(\overline{X}) = \frac{\sigma^2}{n}$

Podemos distinguir 2 casos.

Caso 1 – σ conhecido
 O desvio padrão de X̄ é neste caso dado por

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Inferência Estatística

Introdução

Parâmetros

Exemplo

Erro Padrão Média

Exemplo

Desvio Padrão

Apresentação o

Resultados

População Norm

σ Conhecido

Notas Finais

População Norm

Distribuição t de Student

Inferência Estatística Estimação de Parâmetros

Erro Padrão da Média – Exemplo

• Caso $2 - \sigma$ desconhecido

Como o desvio padrão da amostra que temos (s) é uma estimativa para σ , a estimativa natural para $\sigma_{\bar{X}}$ é:

$$s_{\bar{X}} = \frac{s}{\sqrt{n}}$$

onde s é o desvio padrão, e n a dimensão da amostra.

 $s_{\bar{X}}$ designa-se por **desvio padrão da média amostral**, ou, **erro padrão da média**, e é normalmente representado por se, e o seu valor é dado então por:

$$se = \frac{s}{\sqrt{n}}$$

Inferência Estatística

Introduç

Parâmetros

Exempl

Erro Padrão Média

Exemplo

Erro Padrão

Apresentação

Resultados

Confiança para J

População Nom σ Conhecido

Notas Finais

População Norm
σ Desconhecido

Distribuição t de Student

Inferência Estatística Estimação de Parâmetros

Erro Padrão da Média – **Exemplo**

Para o exemplo anterior (peso dos cordeiros), tínhamos

$$\overline{x} = 5,17 \,\mathrm{Kg}; \quad s = 0,65 \,\mathrm{Kg}; \quad n = 28$$

e o erro padrão da média é então:

$$s_{\bar{X}} \equiv se_{\bar{X}} = \frac{s}{\sqrt{n}} = \frac{0.65}{\sqrt{28}} = 0,12\,\mathrm{Kg}$$

 $s \equiv s_X$ e $se_{\bar{X}}$ são duas medidas de dispersão:

 s_X é relativo aos **pesos observados**;

 $s_{\bar{X}} \equiv se_{\bar{X}}$ é relativo ao **peso médio**.

ALII A

Inferência Estatística

Introdução

Exemplo

Erro Padrão Média

Exemp

Erro Padrão e Desvio Padrão

Resultados

Intervalos de Confianca para

População Nom

σ Conhecido

Notas Finais

População Norma

σ Desconhecido

Distribuição t de

Inferência Estatística Estimação de Parâmetros

Erro Padrão (se) e Desvio Padrão (s)

Sendo X um estimador de μ , podemos então observar que:

- s descreve a variabilidade, na amostra, dos pesos à nascença;
- se indica a variabilidade associada com a média amostral, considerada como estimativa da média da população dos pesos à nascença; i.e., fornece uma indicação sobre a qualidade da estimação.

Comportamento de s e de se com n :				
	n = 28	n = 280	n = 2,800	$n \rightarrow \infty$
\bar{x}	5.17	5.19	5.14	$\bar{y} \rightarrow \mu$
S	0.65	0.67	0.65	$s \rightarrow \sigma$
se	0.12	0.040	0.012	$SE \rightarrow 0$
Distribuição por amostragem				

Inferência Estatística

Introdução Estimação o

Exemplo

Erro Padrão Média

Exemple

Erro Padrão e Desvio Padrão

Apresentação Resultados

Intervalos de

População Nom

σ Conhecido

Exemplos

População Norma

σ Desconhecido

Distribuição t de

Inferência Estatística Estimação de Parâmetros

Erro Padrão (se) e Desvio Padrão (s)

Os termos **erro padrão** (*se*) e **desvio padrão** (*s*) são muitas vezes confundidos, mas estão associados a aspetos muito distintos:

- O desvio padrão s refere-se à dispersão dos dados que constituem a amostra.
- O erro padrão se, sendo o desvio padrão da distribuição (por amostragem) da média amostral X, descreve a fiabilidade da média da amostra como estimativa da média da população.

Inferência Estatística

Introdução

Estimação o

Exemple

Erro Padrão

Evenn

Erro Padrão e Desvio Padrão

Apresentação

Resultados

Confiança para µ
População Nom

σ Conhecido

Exemplos

População Norma

σ Desconhecido

Distribuição t de

Inferência Estatística Estimação de Parâmetros

Erro Padrão (se) e Desvio Padrão (s)

Assim,

- se pretendermos descrever a variabilidade numa amostra, devemos usar o desvio padrão s.
- Se o objetivo for indicar a imprecisão associada à estimativa \overline{x} , da média da população μ , utilizamos o erro padrão (variabilidade associada com a média amostral).

ALII A 6

Inferência Estatística

Introdução Estimação o

Exemplo

Média

Erro Padrão e Desvio Padrão

Apresentação de Resultados

Confiança para µ

σ Conhecido Notas Finais

População Norma
σ Desconhecido
Distribuição t de

Inferência Estatística Estimação de Parâmetros

Apresentação de Resultados

Em muitos relatórios científicos os dados são representados em tabelas. **Como apresentar as medidas** s (SD) **e** se (SE)?

A tabela mostra as medições da atividade de uma enzima (MAO) nas plaquetas sanguíneas de 5 grupos de indivíduos (em nmol/108 plaquetas/hora):

- I, II e III: pacientes com diagnóstico de esquizofrenia;
- IV e V: grupos de controlo pessoas saudáveis.

Grupo	n	Média	SE	SD
I	18	9.81	0.85	3.62
II	16	6.28	0.72	2.88
III	8	5.97	1.13	3.19
IV	348	11.04	0.30	5.59
V	332	13.29	0.30	5.50

ALII A 6

Inferência Estatística

> Introdução Estimação

arâmetros

Erro Padrão

Média

Exemple

Erro Padrão e Desvio Padrão

Apresentação de

Resultados

População Norm

σ Conhecido

Exemplos População Norm

σ Desconhecido
Distribuição t de
Student

Inferência Estatística Estimação de Parâmetros

Apresentação de Resultados

- a) Indicador da **variabilidade da média** em cada grupo (como estimativa da média da população correspondente)
- b) Indicador da variabilidade de MAO dentro de cada grupo

Inferência Estatística

Estimação

Exemplo

Erro Padrão Média

Exemple

Erro Padrão e

Apresentação de

Resultados

População Norm

σ Conhecido

Exemplos

População Norma σ Desconhecido Distribuição t de

Inferência Estatística Estimação de Parâmetros

Uma estimativa pontual de um parâmetro desconhecido, mesmo que acompanhada do desvio padrão respetivo, fornece uma informação sobre o parâmetro a estimar que pode ser considerada bastante incompleta.

Por exemplo, uma estimativa pontual não é acompanhada por uma medida de confiança.

Os intervalos de confiança permitem tratar esse problema.

Na verdade, podemos estimar um parâmetro cujo valor se desconhece, utilizando **um intervalo (estimação intervalar)** e não **um valor (estimativa pontual)**

ALLI A 6

Inferência Estatística

Introdução

Estimação d

Exemplo

Erro Padrão d

Evennele

Erro Padrão e

Apresentação de Resultados

Intervalos de

Confiança para *J*

População Norma σ Conhecido

Notas Finai

Exemplo:

σ Desconhecido

Distribuição t de Student

Intervalos de Confiança

Inferência Estatística

Introduç

Estimação

Exemp

Erro Padrão

Evenn

Erro Padrão

Apresentação

Resultados

Intervalos de

Confiança para μ

População Norm

 σ Conhecido

Evemnlo

População Norm
σ Desconhecido

σ Desconhecido Distribuição t de

Inferência Estatística Intervalos de Confiança

Um intervalo de confiança (IC) para um parâmetro θ da população (cujo valor é desconhecido), é um intervalo construído a partir de uma amostra aleatória retirada da população e que contém θ com uma certa garantia.

A construção de um IC depende de diversos fatores, sendo que um deles é naturalmente o parâmetro da população que se pretende estimar.

Veremos a seguir o caso da construção de um IC para a média μ de uma população X com distribuição normal.

Inferência Estatística

Introduçã

Estimação o

Exemplo

Erro Padrão

Exemp

Erro Padrão e

Apresentação de

Intervalos de

Confiança para μ

Conhecido

Notas Fina

Exemplos

σ Desconhecido

Distribuição t de

Intervalos de Confiança para μ População Normal — Variância Conhecida

ALILA

Inferência Estatística

Introdução

Parâmetros

Exemplo

Média

Exempl

Desvio Padrao

Apresentação

Intervalos de

População Normal σ Conhecido

Notas Finais

Exemplos População Non

σ Desconhecido
Distribuição t de
Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Suponha-se que queremos estimar a média μ de uma população normal com variância conhecida σ^2 , através de um intervalo.

População: $X \sim N\left(\mu, \sigma^2\right)$

Amostra aleatória: $(X_1, X_2, \dots, X_n) : X_i \sim N(\mu, \sigma^2)$

Como pretendemos **estimar a média populacional** μ , consideramos o estimador:

$$\overline{X} = \frac{1}{n} (X_1 + X_2 + \cdots + X_n)$$

Inferência Estatística

Introdução

Exemplo

Erro Padrão

Exemple

Desvio Padrão

Apresentação d

Resultados Intenvalos de

População Normal

σ Conhecido

Notas Fin

População Norma σ Desconhecido

 σ Desconhecido
 Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Neste caso, a construção de um intervalo de confiança é baseada no facto de **conhecermos a distribuição**, por amostragem, **da média amostral**:

$$\overline{X} = \frac{1}{n} (X_1 + X_2 + \cdots + X_n)$$

Uma vez que para a população temos

$$\mathbf{X} \sim \mathbf{N}\left(\mu, \sigma^2\right)$$

já vimos antes que:

$$\overline{X} \sim N\left(\mu, \left(\frac{\sigma}{\sqrt{n}}\right)^2\right)$$

Inferência Estatística

Introduçã

Estimação

Exemple

Erro Padrão

Exemple

Erro Padrão

Apresentação

Resultados

População Normal

População Norma σ Conhecido

Exemplos

População Norm
σ Desconhecido

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

e como

$$\overline{X} \sim N\left(\mu, \left(\frac{\sigma}{\sqrt{n}}\right)^2\right)$$

sabemos que

$$rac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$

Tentemos então construir um IC centrado na média amostral.

Inferência Estatística

Introdução

Estimação o

Exemple

Erro Padrão

Exempl

Erro Padrão Desvio Padrã

Apresentação o

Resultados

População Normal

σ Conhecido

Evennles

População Norm

σ Desconhecido

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Um IC centrado na média amostral, é um intervalo da forma

$$]\overline{X} - a, \overline{X} + a[; com a > 0]$$

Vamos construir o intervalo impondo a condição:

$$P(\mu \in]\overline{X} - a, \overline{X} + a[) = 1 - \alpha$$

ou, escrito de outra forma,

$$P(|\overline{X} - \mu| < a) = 1 - \alpha$$

Ao valor $1 - \alpha$ chamamos grau de confiança.

Inferência Estatística

Introdução

Estimação d

Exemple

Erro Padrão

Evenn

Erro Padrão e

Apresentação

Resultados

População Normal

σ Conhecido

E

População Norr

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

$$egin{equation} egin{equation} egin{equati$$

Inferência Estatística

Introdução

Estimação d

Exempl

Erro Padrão

E. ...

Erro Padrão

Apresentação

Resultados

População Normal

População Norm σ Conhecido

O Connecido

Exemplos

σ Desconhecido

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

$$\begin{split} P(|\overline{X} - \mu| < \mathbf{a}) &= 1 - \alpha \Leftrightarrow P\left(-z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right) = 1 - \alpha \\ &\Leftrightarrow P\left(\overline{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha \end{split}$$

onde
$$z_{\alpha/2} = a \cdot \sqrt{n}/\sigma$$

Inferência Estatística

Introduçã

Estimação o

Exempl

Erro Padrão

E. ...

Erro Padrão Desvio Padrã

Apresentação

Resultados

População Normal

População Norm σ Conhecido

Notas Fin

População Norr σ Desconhecid

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

$$P\left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Alguns casos particulares:

$1-\alpha$	$Z_{\alpha/2}$
90%	1.65
95%	1.96
99%	2.58

$$P\left(\overline{X} - 1.65 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.65 \frac{\sigma}{\sqrt{n}}\right) = 0.90$$

$$P\left(\overline{X} - 2.58 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 2.58 \frac{\sigma}{\sqrt{n}}\right) = 0.99$$

Inferência Estatística

Introduç

Estimação o

Exemp

Erro Padrão

Evennel

Desvio Padrão e

Apresentação o

Resultados

População Normal

 σ Conhecido

Evennler

População Norm σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

$$P\left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Para $1 - \alpha = 0.95$, temos $Z_{\alpha/2} = 1.96$, e escrevemos:

$$P\left(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

E portanto, podemos dizer que 95% dos IC's

$$\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$

construídos a partir das amostras de dimensão n, contêm a média da população μ .

Nota: $\overline{X} \pm 1.96 \cdot \sigma / \sqrt{n}$, é um **intervalo aleatório**, não é um IC.

Inferência Estatística

Introdução

Exemplo

Erro Padrão

Exemp

Desvio Padrão e

Apresentação o

Resultados Intervalos de

População Normal

 σ Conhecido

Notas Fina

População Norm
σ Desconhecido

 σ Desconhecido
 Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Ao substituirmos \overline{X} por um valor observado da média de uma amostra específica (\overline{x}) passamos a ter um intervalo concreto, designado por **intervalo de confiança**

$$(\overline{x} \pm 1,96 \cdot \sigma/\sqrt{n})$$

Deste modo, um intervalo para a média de uma população normal $N\left(\mu,\sigma^2\right)$, com σ conhecido, com grau de confiança 95%, é:

$$\left(\overline{x}-1,96\cdot\sigma/\sqrt{n},\overline{x}+1,96\cdot\sigma/\sqrt{n}\right)$$

Também designado por intervalo de confiança para μ a 95%.

Inferência Estatística

Introdução

Estimação d

Exempl

Erro Padrão

Exempl

Erro Padrão Desvio Padrã

Apresentação

Resultados

População Normal

σ Conhecido

Notas Finais

Exemplos

σ Desconhecido

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

$$1 - \alpha = 0.95$$
; $z_{\alpha/2} = 1.96$

$$Z \sim N(0,1) \Rightarrow P(-1.96 \le Z \le 1.96) = 0.95$$

Inferência Estatística

Introdução

Estimação o

Exemple

Erro Padrão

Exemple

Erro Padrão e

Apresentação o

Resultados Intenvalos de

População Normal

 σ Conhecido

Notas Finais

População Norm
σ Desconhecido

σ Desconhecido
Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Um intervalo de confiança para μ a 99%, é construído do mesmo modo, mas usando agora o quantil adequado (de ordem 0,995), da distribuição normal.

$$rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Assim

$$P(|\overline{X} - \mu| \le 2.58 \cdot \sigma/\sqrt{n}) \approx 0.99$$

e obtemos o intervalo aleatório:

$$(\overline{X} \pm 2.58 \cdot \sigma/\sqrt{n})$$

Inferência Estatística

Introdução

Estimação d

Exemple

Erro Padrão Módia

Evenn

Desvio Padrao

Apresentação

Resultados

População Normal

σ Conhecido

Notas Finais

População No

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

$$1 - \alpha = 0.99; \quad z_{\alpha/2} = 2.58$$

$$Z \sim N(0,1) \Rightarrow P(-2.58 \le Z \le 2.58) = 0.99$$

Inferência Estatística

Introdução

Parâmetros

Erro Padrão

Média

Exemple

Desvio Padrã

Resultados

Intervalos de

População Normal σ Conhecido

Notas Finais

População Norm σ Desconhecido

 σ Desconhecido
 Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Para uma amostra particular, para a qual se observou uma média \overline{x} , obtemos o intervalo:

$$(\overline{x} \pm 2.58 \cdot \sigma/\sqrt{n})$$

que é, um intervalo de confiança a 99%, para a média μ de uma população normal, com desvio padrão conhecido.

Notar que este intervalo é do mesmo tipo do intervalo anterior, mas o fator 1.96 foi substituído por 2.58, obtendo-se um intervalo de maior amplitude.

AULA (

Inferência Estatística

Introdução

Exemplo

Erro Padrão

Exempl

Desvio Padrao

Apresentação

Intervalos de

População

Notas Finais

Exemplos

População Norma σ Desconhecido Distribuição t de Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Notas Finais

$$P\left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Conduz ao intervalo aleatório:

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Esta é a **expressão geral do intervalo aleatório**, a partir do qual se obtém o IC que contém a média da população μ , para $(1-\alpha) \times 100\%$ das amostras de dimensão n.

AULA (

Inferência Estatística

Introdução Estimação

Exemplo

Erro Padrão

Exempl

Erro Padrão Desvio Padra

Apresentação o

Intervalos de

População Nos

σ Conhecido
Notas Finais

Exemplos

População Norma σ Desconhecido Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Notas Finais

$$P\left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Conduz ao intervalo aleatório:

$$\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Uma amostra específica fornece um valor concreto \overline{x} para a v.a. \overline{X} , obtendo-se um intervalo específico designado por intervalo de confiança para μ com grau de confiança $1-\alpha$.

Ao valor de $z_{\alpha/2} \sigma/\sqrt{n}$ chamamos a margem de erro, cuja aproximação deve ser feita sempre por excesso.

Inferência Estatística

Introduçã

Estimação Parâmetros

Exempl

Erro Padrã

Evomo

Erro Padrão Desvio Padrã

Apresentação o

Resultados Intervalos de

População N σ Conhecio

Notas Finais

População Nom

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Notas Finais

Seja (X_1, \ldots, X_n) uma amostra aleatória de uma população, com uma distribuição que depende do parâmetro θ , cujo valor é desconhecido.

Suponhamos que Y_1 e Y_2 são **duas estatísticas**, com

$$Y_1 < Y_2$$

tais que

$$P(Y_1 < \theta < Y_2) \approx 1 - \alpha$$

Inferência Estatística

Estimação o

Exemplo

Erro Padrão Média

Exempl

Apresentação

Resultados

Confiança para µ
População Norm

σ Conhecido

Notas Finais

Exemplo

População Norma
σ Desconhecido
Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – **População Normal – Variância Conhecida**

Notas Finais

Então, para uma **amostra concreta** (x_1, \ldots, x_n) , o correspondente intervalo

$$(y_1,y_2)$$

diz-se um **intervalo de confiança** para θ a $100(1-\alpha)\%$

Nota: O intervalo (y_1, y_2) , contém ou não θ . Não existe nada de aleatório neste intervalo.

Portanto, não faz sentido falar na probabilidade de um intervalo particular conter θ .

Inferência Estatística

Introdução

Parâmetros

Erro Padrão

Média

Exemp

Desvio Padrão

Apresentação Resultados

População No

σ Conhecido Notas Finais

População Non

População Norma

σ Desconhecido

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Notas Finais

Por exemplo, considere-se

$$P(Y_1 < \theta < Y_2) = 0.95$$

onde Y_1 e Y_2 são duas estatísticas construídas a partir de uma amostra aleatória (X_1, \ldots, X_n) .

A interpretação é a seguinte:

Considerando todas as amostras aleatórias de tamanho n que é possível retirar da população, e construindo os respetivos I.C., 95% desses intervalos irão conter o parâmetro θ .

Nota: $(1-\alpha)$ é o grau de confiança e α o nível de significância.

Inferência Estatística

Introdução

Exemplo

Erro Padrão Média

Exemplo

Desvio Padrão

Resultados

Confiança para µ População Norm

σ Conhecido Notas Finais

Exemplos

População Norma σ Desconhecido Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Exemplo 1

Numa certa fábrica, as máquinas de embalar cereais estão reguladas de modo a que a distribuição do peso das embalagens seja aproximadamente normal, com desvio padrão 5 g.

Escolhem-se ao acaso 36 embalagens, para as quais se registou um peso médio de 749.5 g.

A partir destes dados, pretende-se **estimar o peso médio** μ , de uma embalagem, através de um intervalo de confiança a 95%.

Inferência Estatística

Introduç

Parâmetros

Exempl

Erro Padrão Média

Exempl

Desvio Padrão e

Apresentação

Intervalos de

População No σ Conhecido

Notas Finais

Exemplos

População Norm σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

X – "v.a. que representa o peso de uma embalagem de cereais"

$$extit{X} \sim extit{N}\left(\mu, 5^2
ight)$$

Como vimos, o intervalo de confiança a 95% para μ , será obtido a partir de:

$$\left(\overline{x} - 1.96 \frac{5}{\sqrt{n}}, \overline{x} + 1.96 \frac{5}{\sqrt{n}}\right)$$

ou seja:

$$\left(\overline{x} \pm 1.96 \, \frac{5}{\sqrt{n}}\right)$$

Inferência Estatística

Introduç

Parâmetros

Exempl

Erro Padrão

Exemp

Erro Padrão

Apresentação

Resultados

Contiança para

σ Conhecido

Notas Finais

Exemplos

População Norma σ Desconhecido Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

IC a 95% para μ :

$$\left(\overline{x} \pm 1.96 \cdot 5/\sqrt{n}\right)$$

Nesta amostra, n = 36 e $\overline{x} = 749.5$ g.

Então o IC pretendido é

$$(749.5 - 1.63; 749.5 + 1.63) \equiv (747.86; 751.13)$$

Assim, esta amostra permite-nos **ter 95% de confiança** de que o peso médio das embalagens empacotadas nas máquinas consideradas, se encontre entre 747.86 e 751.13 g.

Inferência Estatística

Introdução

Exemplo

Erro Padrão Média

Exempl

Desvio Padrão

Apresentação d Resultados

Confiança para ¿

σ Conhecido

Exemplos

População Norm
σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Exemplo 2

Suponha-se agora que, com o mesmo grau de confiança, se pretendia estimar μ com uma determinada precisão.

Considere-se, por exemplo, que se pretendia o IC a 95%:

$$(\overline{x} \pm 0.9)$$

Vimos que o IC a 95% para o peso médio μ da população, é dado por:

$$\left(\overline{x} \pm 1.96 \, \frac{5}{\sqrt{n}}\right)$$

Inferência Estatística

Introduçã

Parâmetros

Exemp

Erro Padrac Média

Exempl

Desvio Padrao

Apresentação

Resultados

População Nor

σ Conhecido

Exemplos

População Norm σ Desconhecido

 σ Desconhecido Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

O IC a 95% é tal que $(\overline{x} \pm 0.9)$, e é dado por:

$$\left(\overline{x} \pm 1.96 \, \frac{5}{\sqrt{n}}\right)$$

Então:

$$1.96 \frac{5}{\sqrt{n}} \le 0.9$$

Resolvendo em ordem a n virá

$$n \ge 118.6$$

O novo IC deveria então ser baseado numa amostra de pelo menos 119 embalagens.

Inferência Estatística

Introduç

Parâmetros

Exempl

Erro Padrão

Evemn

Erro Padrão

Apresentação

Resultados

População Non

 σ Conhecido

Notas Finai Exemplos

População Norm
σ Desconhecido

 σ Desconhecido
 Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – População Normal – Variância Conhecida

Exercício Proposto

Considerar o IC do exemplo anterior, obtido a partir da amostra de 36 embalagens:

(747.86; 751.13)

Pretende-se estimar μ através de um IC a 95%, cuja **amplitude** seja metade da do IC anterior.

Qual deverá ser o valor de n, para se obter um tal intervalo?

Inferência Estatística

Introduçã

Parâmetros

Exemplo

Erro Padrão o

Exemple

Desvio Padrao

Apresentação de

Intenvalos de

Confiança para J

σ Conhecido

Notas Finai

Exemple

População Normal σ Desconhecido

Distribuição t de Student

População Normal – Variância Desconhecida

Inferência Estatística

Introdução Estimação o

Exemplo

Erro Padrão Média

Exempl

Desvio Padrão

Apresentação o

Resultados Intenvalos de

População Norm
σ Conhecido

Notas Fina

População Normal

Distribuição t de

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

Esta é a situação mais comum. Como construir neste caso um intervalo de confiança para a média μ ?

população:
$$X \sim N(\mu, \sigma^2)$$
 amostra aleatória (X_1, X_2, \dots, X_n) : $X_i \sim N(\mu, \sigma^2)$

Como a variância populacional é desconhecida, consideramos a variável aleatória:

$$\frac{\overline{X} - \mu}{S/\sqrt{n}}$$

$$\overline{X} = \frac{1}{n} (X_1 + \dots + X_n)$$
 ; $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

Distribuição t de

Student

Inferência Estatística Distribuição t de Student

IC para μ – Pop. Normal – Variância Desconhecida

Seja (X_1, \ldots, X_n) uma amostra aleatória de uma população com distribuição $N(\mu, \sigma^2)$.

Nesta situação (σ^2 desconhecido), para construir o IC é necessário recorrer a uma outra distribuição, a distribuição t de **Student**, em vez da distribuição normal.

À semelhança da distribuição normal, a distribuição t de Student também é uma distribuição simétrica, mas depende de um só parâmetro, o número de "graus de liberdade".

Inferência Estatística

Introduç

Estimação

Exemple

Erro Padrão

.

Erro Padrão

Apresentação

Resultados

Confiança para µ

População Nom σ Conhecido

Notas Finais

População Nor

σ Desconhecido

Distribuição t de Student

Inferência Estatística Distribuição t de Student

IC para μ – Pop. Normal – Variância Desconhecida

Não trataremos aqui da justificação teórica, mas **pode mostrar**se que a variável aleatória,

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

tem uma **distribuição** t **de Student** com n-1 graus de liberdade. Isto é:

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

A forma da distribuição depende do número de graus de liberdade

Inferência Estatística

Introdução

Estimação

Exemplo

Erro Padrão

_

Erro Padrão

Anresentação o

Resultados

Confianca nara

População Nom

 σ Conhecido

Notas Fin

População Non

Distribuição t de Student

Inferência Estatística Distribuição t de Student IC para μ – Pop. Normal – Variância Desconhecida

A Distribuição t de Student

Inferência Estatística

Introduçã

Estimação d

Exemple

Erro Padrão

Exemp

Desvio Padrā

Apresentação o

Intervalos de

População Non

 σ Conhecido

Notas Finais

População No

Distribuição t de Student

Inferência Estatística Distribuição t de Student

IC para μ – Pop. Normal – Variância Desconhecida

Então

$$X \sim N(\mu, \sigma^2) \quad \Rightarrow \quad T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

Inferência Estatística

Introduçã

Estimação (

Exemp

Erro Padrão

Evomo

Erro Padrā

Apresentação

Resultados

Confiança para /

σ Conhecido

Evennler

População Norm

σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

Procedendo como anteriormente

$$\begin{split} T \sim t_{(n-1)} &\Rightarrow P\left(-t_{\alpha/2,(n-1)} \leq T \leq t_{\alpha/2,(n-1)}\right) = 1 - \alpha \\ \\ P\left(-t_{\alpha/2,(n-1)} \cdot S/\sqrt{n} \leq \overline{X} - \mu \leq t_{\alpha/2,(n-1)} \cdot S/\sqrt{n}\right) = 1 - \alpha \\ \\ P\left(\overline{X} - t_{\alpha/2,(n-1)} \cdot S/\sqrt{n} \leq \mu \leq \overline{X} + t_{\alpha/2,(n-1)} \cdot S/\sqrt{n}\right) = 1 - \alpha \end{split}$$

e obtemos então o IC aleatório

$$\left(\overline{X} \pm t_{\alpha/2,(n-1)} \cdot \frac{S}{\sqrt{n}}\right)$$

Se n é a dimensão da amostra, o número de graus de liberdade é n-1.

Inferência Estatística

Introduç

Estimação o

Exempl

Erro Padrão

E....

Erro Padrão Desvio Padrã

Apresentação o

Resultados

População Nom

 σ Conhecido

Notas Fi

População Norm
σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

$$X \sim N(\mu, \sigma^2) \Rightarrow T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

Para o caso $1 - \alpha = 0.95$, (95% de confiança), temos:

$$P\left(-t_{0.025,(n-1)}\cdot S/\sqrt{n} \le \overline{X} - \mu \le t_{0.025,(n-1)}\cdot S/\sqrt{n}\right) = 0.95$$

$$P(\overline{X} - t_{0.025,(n-1)} \cdot S/\sqrt{n} \le \mu \le \overline{X} + t_{0.025,(n-1)} \cdot S/\sqrt{n}) = 0.95$$

e o IC aleatório

$$\left(\overline{X} \pm t_{0.025,(n-1)} \cdot \frac{S}{\sqrt{n}}\right)$$

Inferência Estatística

Introdução

Estimação d

Exemple

Erro Padrão Mádia

Exempl

Erro Padrão Desvio Padrã

Apresentação o

Resultados

comuniça para j

σ Conhecido

Notas Finais

População Nor

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

Caso $1 - \alpha = 0.95$, (95% de confiança)

$$T \sim t_{(n-1)} \Rightarrow P\left(-t_{0.025,(n-1)} \le T \le t_{0.025,(n-1)}\right) = 0.95$$

Inferência Estatística

Introdução

Parâmetros

Exemplo

Média

Exempl

Desvio Padrao

Apresentação Resultados

Intervalos de

População Nom

σ Conhecido

Notas Finais

População Norm

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

Para uma amostra concreta, de dimensão n, com média \overline{x} e desvio padrão s, obtemos o intervalo

$$\left(\overline{x}-t_{\alpha/2,(n-1)}\cdot\frac{s}{\sqrt{n}},\overline{x}+t_{\alpha/2,(n-1)}\cdot\frac{s}{\sqrt{n}}\right)$$

que é um intervalo de confiança, com grau de confiança $1-\alpha$ para a média μ de uma população normal com desvio padrão desconhecido, baseado na amostra referida.

Inferência Estatística

Introdução Estimação

Exemplo

Erro Padrão

Exemp

Desvio Padrao

Apresentação Resultados

Confiança para µ

σ Conhecido

Exemplos

σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

Exemplo: Considerar novamente a amostra dos pesos registados à nascença, de uma amostra de 28 cordeiros e supor que se pretende **estimar o peso médio** à nascença da população através de um IC a 95%.

Admitindo a normalidade da população, o IC é da forma:

$$(\overline{x} \pm t_{\alpha/2,(n-1)} \cdot s/\sqrt{n})$$

 $n=28; \quad \overline{x}\approx 5.1679; \quad s\approx 0.6544; \quad \alpha=0.05; \quad t_{0.025,27}\approx 2.0518$ e o **IC será** então:

$$5.17 \pm 0.25$$
 (por excesso)

Inferência Estatística

Introdução

Estimação o

Exemple

Erro Padrão

Evennele

F D

Desvio Padrā

Apresentação de Resultados

Resultados

Connança para p

 σ Conhecido

Notas Finai

População N

 σ Desconhecid

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

$$\alpha/2 = 0.025$$
; $n-1 = 27$ g.l.; $t_{\alpha/2,(n-1)} = t_{0.025,27}$

Distribuição t-Student: $t_{\nu,\alpha} = \text{quantil } (1-\alpha) \text{ de } t_{\nu}$

 $X \sim t_{\nu}, \nu \in \mathbb{N}$

 $P(X > t_{\alpha,\nu}) = 1 - F(t_{\alpha,\nu}) = \alpha.$

Isto é, $t_{\alpha,\nu}$ é o quantil $(1-\alpha)$ de t_{ν} .

	α					*				
ν	0.4	0.3	0.25	0.1	0.05	0.025	0.02	0.01	0.005	0.001
1	0.3249	0.7265	1.0000	3.0777	6.3138	12.7062	15.8945	31.8205	63.6567	318.3088
2	0.2887	0.6172	0.8165	1.8856	2.9200	4.3027	4.8487	6.9646	9.9248	22.3271
3	0.2767	0.5844	0.7649	1.6377	2.3534	3.1824	3.4819	4.5407	5.8409	10.2145
A	0.9707	0.5686	0.7407	1 5229	9 1218	9.7764	2.0085	2.7460	4.6041	7 1729
20	0.2000	0.0011	0.0000	1.0100	1.1100	2.0001	2.1110	4.4000	2.0010	0.4000
24	0.2562	0.5314	0.6848	1.3178	1.7109	2.0639	2.1715	2.4922	2.7969	3.4668
25	0.2561	0.5312	0.6844	1.3163	1.7081	2.0595	2.1666	2.4851	2.7874	3.4502
26	0.2560	0.5309	0.6840	1.3150	1.7056	2.0555	2.1620	2.4786	2.7787	3.4350
27	0.2559	0.5306	0.6837	1.3137	1.7033	2.0518	2.1578	2.4727	2.7707	3.4210
28	0.2558	0.5304	0.6834	1.3125	1.7011	2.0484	2.1539	2.4671	2.7633	3.4082
29	0.2557	0.5302	0.6830	1 3114	1 6991	2.0452	2.1503	2.4620	2.7564	3.3962

Inferência Estatística

Introdução

Estimação d

Exemple

Erro Padrão

Evennl

Desvio Padrão

Resultados

Intervalos de

População Norm

 σ Conhecido

Evennle

População Nom σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

$$\alpha/2 = 0.025$$
; $n-1 = 27$ g.l.; $t_{\alpha/2,(n-1)} = t_{0.025,27}$

No **R**, $t_{0.025,27}$ é dado por:

Inferência Estatística

Estimação o

Exemplo Erro Padrão

Exemplo

Desvio Padrão

Resultados

População Norm

σ Conhecido

σ Conhecido Notas Finais

População Norm
σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – **Pop. Normal – Variância Desconhecida**

Que tipo de confiança 'devemos' ter num intervalo de confiança?

No exemplo anterior o que significa dizer que temos uma confiança de 95% de que $\mu \in (4.92, 5.42)$?

O que podemos dizer é que 95% de todos os intervalos possíveis de construir a partir de todas as amostras aleatórias de dimensão 28, contêm μ .

Mas não podemos dizer que a probabilidade de μ pertencer ao intervalo (4.92, 5.42) é 0.95.

Na verdade, μ pertence, ou não, a esse intervalo, uma vez que é um parâmetro (valor numérico) embora desconhecido.

Inferência Estatística

Introdução

Estimação

Exemplo

Erro Padrac Média

Exemple

Desvio Padrão

Apresentação

Kesultados

Contiança para μ

σ Conhecido

Notas Fir

Exemplos

σ Desconhecido

Distribuição t de Student

Inferência Estatística Intervalos de Confiança

IC para μ – Pop. Normal – Variância Desconhecida

Em resumo, sendo \overline{x} a média, s o desvio padrão, e n a dimensão da amostra, temos 2 casos distintos:

• variância (σ^2) conhecida

$$\overline{\mathbf{x}} \pm \mathbf{z}_{\alpha/2} \frac{\sigma}{\sqrt{n}} \longrightarrow \mathcal{N}(0,1)$$

• variância (σ^2) desconhecida

$$\overline{\mathbf{x}} \pm t_{\alpha/2,n-1} se \longrightarrow t_{(n-1)}; \qquad \left(se = \frac{s}{\sqrt{n}} \right)$$