If
$$O f(X) \in C[a,b]$$
;
 $O f(X) \notin C[a,b]$;
 $O f(A) \notin (a,b) = f(a)$;
 $O f(A) = f(A) = f(A)$;
 $O f(A) = f(A) = f(A)$;
 $O f(A) = f(A)$;

Notes;
$$0 \% \in (a,b)$$
, $\% = 1$
 $3 \text{ If } f(a) = f(b)$, $1 \Rightarrow R$
 $3 \text{ If } f(b) = f(b) - f(a)$
 $f'(b) = \frac{1}{b-a}$

$$\Rightarrow f(b)-f(a) = f(4)(b-a)$$

$$\Rightarrow$$
 $f(b)-f(a) = f[a+0(b-a)](b-a)$

$$\frac{1}{32} = 1 \text{ div}$$

$$\frac{1}{32} = 1 \text{ div}$$

$$\frac{1}{32} = \frac{1}{12} = \frac{$$

": f(=)=0 == 2+(1) 2+(2)

$$\frac{1}{2} \frac{1}{2} \frac{1$$

$$\frac{1}{2} (|x|) = e^{-x} \int_{-x}^{x} [x_1 - 1]$$

$$\frac{1}{2} (|x|) = 1, \quad f(x) = 1$$

$$\frac{1}{2} (|x|) = 0, \quad \varphi(x) = 0$$

 $\exists h \in (0, q) \subset (0, 1), (\not \exists (0 \mid q) = 0)$ $\exists h \in (0, q) \subset (0, 1), (\not \exists (0 \mid q) = 0)$ $\exists h \in (0, q) \subset (0, 1), (\not \exists (0 \mid q) = 0)$ $= e^{-\chi} [f(\chi) - f(\chi) + 1] = 0$ $\therefore e^{-\chi} [f'(\chi) - f(\chi) + 1] = 0$ $\therefore e^{-\chi} [f'(\chi) - f(\chi) + 1] = 0$