Last time

EPR pair measured in the standard basis

- Alice and Bob share EPR pair: $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$
- A partial measurement conducted by Alice would produce the following readouts of her qubit: $|0\rangle$ with probability 1/2, $|1\rangle$ with probability 1/2.
- If, for example, the readout is $|0\rangle$, Alice instantly knows that Bob will read $|0\rangle$ when he measures his qubit.
- Question: Did Alice just transfer information to Bob faster than the speed of light?

Last time

EPR pair measured in the $|+\rangle$, $|-\rangle$ basis

- Alice and Bob share EPR pair: $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$
- A partial measurement conducted by Alice would produce the following readouts of her qubit: $|+\rangle$ with probability 1/2, $|-\rangle$ with probability 1/2.
- If, for example, the readout is $|+\rangle$, Alice instantly knows that Bob will read $|+\rangle$ when he measures his qubit.
- Check: $\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle = \frac{1}{\sqrt{2}}|u\rangle \otimes |u\rangle + \frac{1}{\sqrt{2}}|v\rangle \otimes |v\rangle, \text{ for every orthonormal basis } |u\rangle, |v\rangle \text{ in } \mathbb{R}^2$

Discriminating mixed states

Can Alice communicate 1 bit of info by choosing a basis?

- Choice 1: Alice measures in $|0\rangle$, $|1\rangle$. Bob's qubit is $|0\rangle$ with probability 1/2 and $|1\rangle$ with probability of 1/2.
- Choice 2: Alice measures in $|+\rangle$, $|-\rangle$. Bob's qubit is $|+\rangle$ with probability 1/2 and $|-\rangle$ with probability of 1/2.
- We can describe the two scenarios as mixed states:
 - $\rho 1 = ?$
 - $\rho 2 = ?$

Discriminating mixed states

Can Bob discriminate between mixed states?

- $\rho_1:|0\rangle$ with probability 1/2 and $|1\rangle$ with probability 1/2
- ρ_2 : $|+\rangle$ with probability 1/2 and $|-\rangle$ with probability 1/2
- What if Bob measures in $|0\rangle, |1\rangle$?

In fact, the two mixed states are indistinguishable by *any* physical experiments because their "density matrices" are equal.

CHSH game

Clauser, Horne, Shimony, and Holt

- Two referees A and B have synced watches
- Referee A goes to Alice on Mars and Referee B goes to Bob on Earth
- At the same time
 - Referee A flips a Red/Yellow coin, and challenges Alice with a color.
 - Referee B flips a Blue/Green coin, and challenges Bob with a color.
- Within 1 minute,
 - Alice answers with either 0 or 1 to Referee A
 - Bob answers with either 0 or 1 to Referee B
- Alice and Bob win the game if their answers following the conditions:
 - In the case where coins are Red and Green, Alice and Bob win if they offer opposite answers
 - In all other cases, Alice and Bob win if they offer the same answers

CHSH game

Classical strategies

- Suggestions?
 - Deterministic?
 - Random?
- Shared randomness: In an attempt to increase their winning probability, Alice and Bob together generate a random *k*-digit binary number *n*.

Quantum strategy

Using entanglement

- Alice and Bob share an EPR pair
- Alice measures in Red/Yellow basis, and answers with the readout
- Bob measures in Blue/Green basis, and answers with the readout

- Alice and Bob share an EPR pair
- Alice measures in Red/Yellow basis, and answers with the readout
- Bob measures in Blue/Green basis, and answers with the readout

- Case 1: Challenges are Red + Blue
- Case 2: Challenges are Red + Green
- Case 3: Challenges are Yellow + Blue
- Case 4: Challenges are Yellow + Green

Summary of various strategies

Classical vs quantum

- Deterministic / shared randomness, winning probability at most 75%
- Quantum entanglement 85%
 - Violation of Bell's inequality
 - Refutes local realism
- CHSH done in practice
 - Early 80s, A. Aspect et al.
 - 2014, R. Hanson lab

Quantum teleportation

Part I

- Alice wants to send Bob a qubit $|\phi\rangle$ (doesn't want to visit Bob in person)
- There is a CNOT gate between their offices
- Say $|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$
 - Joint states?
- If Alice's readout is |1>, then send "Apply Z gate" to Bob

Needs 1 classical bit of communication

The controlled Z gate is done by messaging

The ctrl-Z gate is equivalent to

