Chapter 4 Syntax Analysis

Computing First(X): All Grammar Symbols

- 1. If X is a terminal, $First(X) = \{X\}$
- 2. If $X \rightarrow \in$ is a production rule, add \in to First(X)
- 3. If X is a non-terminal, and $X \rightarrow Y_1Y_2...Y_k$ is a production rule

Place First(Y₁) in First(X)

if $Y_1 \stackrel{*}{\Rightarrow} \in$, Place First(Y₂) in First(X)

if $Y_2 \stackrel{*}{\Rightarrow} \in$, Place First(Y_3) in First(X)

. . .

if $Y_{k-1} \stackrel{*}{\Rightarrow} \in$, Place First (Y_k) in First(X)

NOTE: As soon as $Y_i \Rightarrow * \in \text{,/Stop.}$

Repeat above steps until no more elements are added to any First() set.

Checking " $Y_j \Rightarrow \in ?$ " essentially amounts to checking whether \in belongs to First(Y_i)

2

Example 1

Given the production rules:

 $S \rightarrow aABb$

 $A \rightarrow c \mid \in$

 $B \rightarrow d \mid \in$

Verify that

 $First(S) = \{a \}$

 $First(A) = \{ c, \in \}$

 $First(B) = \{ d, \in \}$

3

Computing First(X): All Grammar Symbols - continued

Informally, suppose we want to compute

$$\begin{aligned} First(X_1 \ X_2 \ \dots \ X_n \) &= First \ (X_1) \quad \text{``+''} \\ &\quad First(X_2) \quad \text{if } \in \text{ is in } First(X_1) \quad \text{``+''} \\ &\quad First(X_3) \quad \text{if } \in \text{ is in } First(X_2) \quad \text{``+''} \\ &\quad \dots \\ &\quad First(X_n) \quad \text{if } \in \text{ is in } First(X_{n-1}) \end{aligned}$$

Note 1: Only add \in to First $(X_1 X_2 ... X_n)$ if \in is in First (X_i) for all i

Note 2: For First(X1), if $X_1 \rightarrow Z_1 \ Z_2 \dots \ Z_m$, then we need to compute First(Z1 Z2 ... Zm)!

4

Example 2

Given the production rules:

$$S \rightarrow i E t SS' | a$$

$$S' \rightarrow eS \mid \in$$

$$E \rightarrow b$$

Verify that

$$First(S) = \{ i, a \}$$

$$First(S') = \{ e, \in \}$$

Example - 3

- 1. S \rightarrow A a
- 2. $A \rightarrow B D$
- 3. $B \rightarrow b$
- 4. B $\rightarrow \epsilon$
- 5. $D \rightarrow d$
- 6. D $\rightarrow \epsilon$

- 1. $S \rightarrow A a$
- 2. $A \rightarrow B D$
- 3. $B \rightarrow b$
- 4. B $\rightarrow \epsilon$
- 5. $D \rightarrow d$
- 6. D $\rightarrow \epsilon$

$$First(S) = \{b, d, a\}$$

$$First(A) = \{b, d, \epsilon\}$$

$$First(B) = \{b, \epsilon\}$$

$$First(D) = \{d, \epsilon\}$$

Example 4 **Computing First for:** $E \rightarrow TE'$ $E' \rightarrow + TE' \mid \in$ $T \rightarrow FT'$ $T' \rightarrow * FT' | \in$ First(E) $F \rightarrow (E) \mid id$ First(TE') -First(T) U First(E') Not First(E') since $T \stackrel{*}{\Rightarrow} \in$ First(T) Not First(T') since $F \stackrel{*}{\Rightarrow} \in$ First(F) U First(T') First(F) Overall: $First(E) = \{ (, id) = First(F) \}$ First(E') = $\{+, \in\}$ First(T') = $\{*, \in\}$ First((E)) U First(id) $First(T) \rightarrow First(F) = \{ (, id) \}$ "(" and "id"

$$B \rightarrow g \mid \epsilon$$

$$C \rightarrow h \mid \epsilon$$

First(B) =
$$\{g, \epsilon\}$$

First(C) =
$$\{h, \epsilon\}$$

Example - 5

S→ ABC| CbB| Ba

A→ da | BC

 $B \rightarrow g \mid \epsilon$

 $C \rightarrow h \mid \epsilon$

First(A) → First(da) U First(BC)

 \rightarrow {d} U First(B)-{ ϵ } U First (C)

 \rightarrow {d} U {g, ϵ } –{ ϵ }U {h, ϵ }

 \rightarrow {d, g, h, ϵ }

 $\mathsf{First}(\mathsf{B}) = \{\mathsf{g},\, \epsilon\}$

First(C) = $\{h, \epsilon\}$

```
A\rightarrow da | BC

B\rightarrow g | \in

C\rightarrow h | \in

First(S) \rightarrow First(ABC) U First(CbB) U First(Ba)

\rightarrow {d, g, h, \in} U {h, b} U { g, a}

\rightarrow {a, b, d, g, h, \in}
```

S→ ABC | CbB | Ba

 $First(ABC) \xrightarrow{} First(A) - \{\varepsilon\} \ U \ First(B) - \{\varepsilon\} \ U \ First(C)$

 \rightarrow {d, g, h} U {g} U { h, ϵ }

 \rightarrow {d, g, h, ϵ }

 $First(CbB) \rightarrow First(C) \cup First(bB)$

First(Ba) → First(B) U First(a)

 \rightarrow {g, ϵ } –{ ϵ }U {a}

 \rightarrow { g, a}

First(A) \rightarrow First(da) U First(BC) \rightarrow {d} U First(B)-{ ϵ } U First (C) \rightarrow {d} U {g, ϵ } -{ ϵ } U {h, ϵ } \rightarrow {d, g, h, ϵ } First(B) = {g, ϵ } First(C) = {h, ϵ }

Example - 6

 $E \rightarrow T X$

 $X \rightarrow + E$ $X \rightarrow \varepsilon$

 $T \rightarrow int Y$

 $T \rightarrow (E)$

 $Y \rightarrow * T$

 $Y \rightarrow \epsilon$

The ${\bf First}$ of a terminal is that terminal.

Symbol	First
((
))
+	+
*	*
int	int
Υ	
Х	
Т	
E	

 $E \rightarrow TX$

 $X \rightarrow + E$ $X \rightarrow \epsilon$

 $T \rightarrow int Y$

 $T \rightarrow (E)$

 $Y \rightarrow *T$

 $Y \to \epsilon$

Symbol	First
((
))
+	+
*	*
int	int
Υ	ε
Х	ε
Т	2
E	

Example - 6

 $E \rightarrow T X$

 $X \rightarrow + E$

 $X \rightarrow \epsilon$

 $T \rightarrow int Y$

 $T \rightarrow (E)$

 $Y \rightarrow *T$

 $Y \rightarrow \epsilon$

 Symbol
 First

 (
 (

)
)

 +
 +

 *
 *

 int
 int

 Y
 ε, *

 X
 ε, +

 T
 int, (

 E
 int, (

Example 6

- 1. $C \rightarrow P F$ class id X Y
- 2. $P \rightarrow public$
- 3. $P \rightarrow \epsilon$
- 4. $F \rightarrow final$
- 5. $F \rightarrow \epsilon$
- 6. $X \rightarrow \text{extends id}$
- 7. $X \to \epsilon$
- 8. Y \rightarrow implements I
- 9. Y $\rightarrow \epsilon$
- 10. I \rightarrow id J
- 11. $J \rightarrow I$
- 12. J $\rightarrow \epsilon$

Example - 6

- 1. $C \rightarrow P F$ class id X Y
- 2. $P \rightarrow \text{public}$
- 3. $P \rightarrow \epsilon$
- 4. $F \rightarrow final$
- 5. $F \rightarrow \epsilon$
- 6. $X \rightarrow \text{extends id}$
- 7. $X \to \epsilon$
- Y → implements I
- 9. $Y \rightarrow \epsilon$
- 10. I \rightarrow id J
- 11. $J \rightarrow I$
- 12. J $\rightarrow \epsilon$

- $First(C) = \{public, final, class\}$
- $First(P) = \{public, \epsilon\}$
- $First(F) = \{final, \epsilon\}$
- $First(X) = \{extends, \epsilon\}$
- $First(Y) = \{implements, \epsilon\}$
- $\mathrm{First}(\mathrm{I})=\{\mathrm{id}\}$
- $First(J) = \{`, `, \epsilon\}$