Spatial Attention Tunes Temporal Processing in Early Visual Cortex by Speeding and Slowing Alpha Oscillations

Poppy Sharp, Tjerk Gutteling, David Melcher, Clayton Hickey

Presented by: Sai Zhang

November 15, 2022

Outline

- 1 Introduction
- 2 Materials and Methods
- 3 Results
- 4 Discussion

Inspiration: The Puzzle of Spatial Attention and Dynamic Stimuli

How spatial attention impacts the neural processing of dynamic visual stimuli

Sai Zhang Sharp, Gutteling, et al., 2022

How spatial attention impacts the neural processing of dynamic visual stimuli is unclear See Nobre and Van Ede. 2018 for a review

Inspiration: The Puzzle of Spatial Attention and Dynamic Stimuli

How spatial attention impacts the neural processing of dynamic visual stimuli is **unclear**See Nobre and Van Ede, 2018 for a review

- 2 opposing functions in the perception of dynamic visual stimuli
 - integration: to form unitary percepts and identify consistencies

Introduction

Inspiration: The Puzzle of Spatial Attention and Dynamic Stimuli

How spatial attention impacts the neural processing of dynamic visual stimuli is unclear See Nobre and Van Ede. 2018 for a review

- 2 opposing functions in the perception of dynamic visual stimuli
 - **integration:** to form unitary percepts and identify consistencies
 - segragation: to parse separate objects and identify changes

Introduction

Inspiration: The Puzzle of Spatial Attention and Dynamic Stimuli

Surprisingly, spatial attention can **flexibly** benefit both:

Sai Zhang Sharp, Gutteling, et al., 2022

Inspiration: The Puzzle of Spatial Attention and Dynamic Stimuli

Surprisingly, spatial attention can flexibly benefit both:

Inspiration: The Puzzle of Spatial Attention and Dynamic Stimuli

Surprisingly, spatial attention can flexibly benefit both:

Integration

- Hein et al. (2006)
- Sharp, Melcher, et al. (2018)

Separation

- Akyürek et al. (2007)
- Hochmitz et al. (2021)

Introduction

Inspiration: The Puzzle of Spatial Attention and Dynamic Stimuli

Surprisingly, spatial attention can flexibly benefit both:

Integration

- Hein et al. (2006)
- Sharp, Melcher, et al. (2018)

Separation

- Akyürek et al. (2007)
- Hochmitz et al. (2021)

How can spatial attention achieve this?

Introduction

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

Introduction

Hypothesis: The impact of spatial attention on temporal processing is instantiated in part through effects on α frequency in retinotopic visual cortex.

Figure 1: Retinotopic structure

Introduction

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

Figure 1: Retinotopic structure

striate and extrastriate visual areas: spatially organized, corresponding to specific areas of the retina

$\mathsf{Hypothesis}^{\mathsf{l}}$

Introduction

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

Figure 1: Retinotopic structure

- striate and extrastriate visual areas: spatially organized, corresponding to specific areas of the retina
- representing static stimuli: Yes!

00000

Hypothesis: The impact of spatial attention on temporal processing is instantiated in part through effects on α frequency in retinotopic visual cortex.

Figure 1: Retinotopic structure

- striate and extrastriate visual areas: spatially organized, corresponding to specific areas of the retina
- representing static stimuli: Yes!
- representing temporal stimuli?

Introduction

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

Figure 1: Retinotopic structure

- striate and extrastriate visual areas: spatially organized, corresponding to specific areas of the retina
- representing static stimuli: Yes!
- representing temporal stimuli: shrinking/stretching the temporal scope of visual input summarizing

Introduction

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

Figure 1: Retinotopic structure

- striate and extrastriate visual areas: spatially organized, corresponding to specific areas of the retina
- representing static stimuli: Yes!
- representing temporal stimuli: shrinking/stretching the temporal scope of visual input summarizing

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

shrinking/stretching the temporal scope of visual input summarizing

Hypothesis[®]

Introduction

Hypothesis: The impact of spatial attention on temporal processing is instantiated in part through effects on α frequency in retinotopic visual cortex.

Shrinking/stretching the temporal scope of visual input summarizing

Sai Zhang Sharp, Gutteling, et al., 2022

Пуротпезіз

Introduction

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

shrinking/stretching the temporal scope of visual input summarizing

 $lacktriangleq \alpha$ rate reflects temporal expectation

See Buergers and Noppeney (2022) and Samaha and Postle (2015)

Пурошеле

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

shrinking/stretching the temporal scope of visual input summarizing

- lpha rate reflects temporal expectation See Buergers and Noppeney (2022) and Samaha and Postle (2015)
- lacktriangledown manipulation of average lpha rate has an impact on stretching/shrinking of the perceptual window

See Cecere et al. (2015), Minami and Amano (2017), Mioni et al. (2020), and Ronconi et al. (2018)

Hypothesis

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

shrinking/stretching the temporal scope of visual input summarizing

- lpha rate reflects temporal expectation See Buergers and Noppeney (2022) and Samaha and Postle (2015)
- lacktriangledown manipulation of average lpha rate has an impact on stretching/shrinking of the perceptual window
 - See Cecere et al. (2015), Minami and Amano (2017), Mioni et al. (2020), and Ronconi et al. (2018)
- lacktriangledown average lpha rate (immediately before stimuli) becomes faster for segregation; slower for integration
 - See Wutz et al. (2018)

Introduction

Hypothesis: The impact of spatial attention on temporal processing is instantiated in part through effects on α frequency in retinotopic visual cortex.

■ **spatial**: cue location ⇒ *corresponding* location in retinotopic visual cortex

Hypothesis: The impact of **spatial attention on temporal processing** is instantiated in part through effects on α **frequency** in **retinotopic visual cortex**.

- lacktriangledown spatial: cue location \Rightarrow corresponding location in retinotopic visual cortex
- **temporal**: segragation/integration $\Rightarrow \alpha$ -frequency faster or slower

Figure 1: Retinotopic structure

	contralateral	ipsilateral
segragation	faster	slower
Integration	slower	faster

Use magnetoencephalogram (MEG) recording for analysis

Materials and Methods

Figure 2: Trial Structure

00000

Figure 2: Trial Structure

Timeline:

- pre-cue: 1000-1500ms
- cue interval: 850-1350ms (randomized)
- display: 16.67ms
- ISI: 48.3ms
- response delay: 400ms

visual cue: red cross

- 75% (T): one of the arms turn green (75% valid)
- 25% (C): neutral cue

Figure 2: Trial Structure

2 displays: complementary. non-overlapping

- half-circle: the 2 displays complete each other
- empty: one left empty in both

Figure 2: Trial Structure

task: moving a highlighted square

- segregation: targeting the half circle
- integration: targeting the empty spot

Figure 2: Trial Structure

Eye tracking

MEG recording

Measures

Eye tracking

- sampling rate: 1kHz
- rejection:
 - saccades: $7\pm7\%$ trials
 - blinks: 3±4% trials

MEG recording

Measures

Eye tracking

- sampling rate: 1kHz
- rejection:
 - saccades: $7\pm7\%$ trials
 - blinks: $3\pm4\%$ trials

MEG recording

- lacktriangle estimate instantaneous lpha- frequency: 7- to 14-Hz frequency band
- rejection
 - nonbiological noise: 10 ± 1 channels

Analysis

Source analysis

00000

Numerical analysis

Sai Zhang Sharp, Gutteling, et al., 2022

Analysis

Source analysis

- combine head digitization data with anatomic MRI data
- regions of interest:
 - parietal cortex
 - occipital cortex

Numerical analysis

Analysis

Source analysis

- combine head digitization data with anatomic MRI data
- regions of interest:
 - parietal cortex
 - occipital cortex

Numerical analysis

- method: 2-way repeated ANOVA
- \blacksquare noise of raw estimates of α frequency: center on results following a <u>neutral-cue</u>
 - within each of the integration/segragation conditions separately

■ Participants: 29 (normal/corrected-to-normal vision; age 24±2.7 years; 11 male, 18 female)

Sai Zhang Sharp, Gutteling, et al., 2022

- Participants: 29 (normal/corrected-to-normal vision; age 24±2.7 years; 11 male, 18 female)
- Stimuli: projected at 120Hz onto a translucent screen, at a viewing distance of 1m

- Participants: 29 (normal/corrected-to-normal vision; age 24±2.7 years; 11 male, 18 female)
- Stimuli: projected at 120Hz onto a translucent screen, at a viewing distance of 1m
- Pre-MEG: 30 practice trials to achieve at least 25% accuracy

Other technical details

- Participants: 29 (normal/corrected-to-normal vision; age 24±2.7 years; 11 male, 18 female)
- Stimuli: projected at 120Hz onto a translucent screen, at a viewing distance of 1m
- Pre-MEG: 30 practice trials to achieve at least 25% accuracy
- Number of trials: 10 blocks \times 67 trials/block

- Participants: 29 (normal/corrected-to-normal vision; age 24±2.7 years; 11 male, 18 female)
- Stimuli: projected at 120Hz onto a translucent screen, at a viewing distance of 1m
- Pre-MEG: 30 practice trials to achieve at least 25% accuracy
- Number of trials: 10 blocks \times 67 trials/block
- Base for numerical analysis: a shift in the neutral-cue baseline emerges equally in ipsilateral and contralateral signals

Results

Summary of 3 dimensions

contralateral

valid integration integration valid invalid

ipsilateral

	segregation	integration
valid		
neutral		
invalid		

Result 1: Accuracy of Cues

Result 1: Accuracy of Cues

 \blacksquare valid cues (+), invalid cues (-)

Result 1: Accuracy of Cues

- \blacksquare valid cues (+), invalid cues (-)
- greater effect of cues in the segregation task

- \blacksquare valid cues (+), invalid cues (-)
- greater effect of cues in the segregation task
- supported by eye-tracking:
 - visual angle shifts towards the cue direction
 - no significant differences between integration and segragation

Result 2: Suitability of the Data to Measure α Frequency

Result 2: Suitability of the Data to Measure α Frequency

■ the analytic passband (7-14Hz) contains the peak (In fact, the entire α bump for all participants)

Result 2: Suitability of the Data to Measure α Frequency

- the analytic passband (7-14Hz) contains the peak (In fact, the entire α bump for all participants)
- No significant difference in **power** or slope of the 1/f structure between segregation and integration

Result 3: α Rate Is Higher for Segregation Tasks

Result 3: α Rate Is Higher for Segregation Tasks

 \blacksquare significantly higher α rate for segregation before 1st display (t=0: the 1st display)

Result 3: α Rate Is Higher for Segregation Tasks

- \blacksquare significantly higher α rate for segregation before 1st display (t=0: the 1st display)
- results are from instantaneous. frequency analysis of neutral-cue trails

Result 3: α Rate Is Higher for Segregation Tasks, Source Analysis

Result 3: α Rate Is Higher for Segregation Tasks, Source Analysis

- bilateral occipito-parietal cortex
- right lateralized frontal cortex

- bilateral occipito-parietal cortex
- right lateralized frontal cortex

replicate the observations of Wutz et al. (2018)

base: any retinotopic effect must emerge over posterior cortex

- base: any retinotopic effect must emerge over posterior cortex
- results:
 - segregation (faster α rate): contralateral faster than ipsilateral
 - integration (slower α rate): contralateral slower than ipsilateral

Main Result: Ruling out the Effect of Lateral Oscillatory α Power

Main Result: Ruling out the Effect of Lateral Oscillatory α Power

- no significant differences in the lateral effect between segregation and integration
- lack no significant decrease in lpha power in contralateral hemisphere

- no significant differences in the lateral effect between segregation and integration
- \blacksquare no significant decrease in α power in contralateral hemisphere

replicate the observations of Capilla et al. (2014) that the decrease in α power is sourced to ventrolateral visual cortex

Main Result: Lateral Analysis of α Frequency, Source Analysis

Main Result: Lateral Analysis of α Frequency, Source Analysis

both clusters are located in early visual areas at the occipital pole

Main Result: Lateral Analysis of α Frequency, Source Analysis

- both clusters are located in early visual areas at the occipital pole
- note:
 - blue: stimuli in right visual field
 - red: stimuli in left visual field

Discussion

Significance: Interaction between Temporal and Spatial Processing

Previously:

Previously:

■ Spatial attention can benefit **both** segregation and integration of visual stimuli

Sai Zhang Sharp, Gutteling, et al., 2022

Significance: Interaction between Temporal and Spatial Processing

Previously:

- Spatial attention can benefit both segregation and integration of visual stimuli
- \blacksquare α frequency in posterior cortex
 - increases in speed to segregate sequential visual stimuli
 - decreases in speed to integrate sequential visual stimuli

Significance: Interaction between Temporal and Spatial Processing

Previously:

- Spatial attention can benefit both segregation and integration of visual stimuli
- \blacksquare α frequency in posterior cortex
 - increases in speed to segregate sequential visual stimuli
 - decreases in speed to integrate sequential visual stimuli

This study **bridges** the two aspects:

Previously:

- Spatial attention can benefit both segregation and integration of visual stimuli
- lacktriangle α frequency in posterior cortex
 - increases in speed to segregate sequential visual stimuli
 - decreases in speed to integrate sequential visual stimuli

This study **bridges** the two aspects:

lacktriangle segragation in a location \Rightarrow relatively faster contralateral lpha

Previously:

- Spatial attention can benefit both segregation and integration of visual stimuli
- α frequency in posterior cortex
 - increases in speed to segregate sequential visual stimuli
 - decreases in speed to integrate sequential visual stimuli

This study **bridges** the two aspects:

- \blacksquare segragation in a location \Rightarrow relatively faster contralateral α
- \blacksquare integration in a location \Rightarrow relatively slower contralateral α

neutral-cue as baseline

neutral-cue as baseline: like adding task FE

neutral-cue as baseline: like adding task FE driven by contralateral cortex itself

neutral-cue as baseline: like adding task FE

- driven by contralateral cortex itself
- opposite effects on contralateral and ipsilateral cortex

Interpretation: the Role of Spatial Attention

Interpretation: the Role of Spatial Attention

There is a difference under neutral cues:

 temporal visual processing is itself sentitive to strategic preparation

Interpretation: the Role of Spatial Attention

There is a difference under neutral cues:

- temporal visual processing is itself sentitive to strategic preparation
- spatial attention does accentuate this broader influence

Discussion 00000

Interpretation: Understanding α

Sai Zhang Sharp, Gutteling, et al., 2022

Interpretation: Understanding α

more salient effects for segragation: increase in contralateral α is associated with perceptual sensitivity in the detection of fleeting visual stimuli (See Di Gregorio et al. (2022))

Interpretation: Understanding α

- more salient effects for segragation: increase in contralateral α is associated with perceptual sensitivity in the detection of fleeting visual stimuli (See Di Gregorio et al. (2022))
- \blacksquare α relects rhythmic inhibition: spatial attention (or the deployment of attention in general) can flexibly adapt oscillatory activity to strategically optimize the time duration that fits in the *open* portion of an α cycle

- Akyürek, E. G., Riddell, P. M., Toffanin, P., & Hommel, B. (2007). Adaptive control of event integration: Evidence from event-related potentials. *Psychophysiology*, 44(3), 383–391.
- Buergers, S., & Noppeney, U. (2022). The role of alpha oscillations in temporal binding within and across the senses. *Nature Human Behaviour*, 6(5), 732–742.
- Capilla, A., Schoffelen, J.-M., Paterson, G., Thut, G., & Gross, J. (2014). Dissociated alpha-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. *Cerebral Cortex*, 24(2) 550–561.
- Cecere, R., Rees, G., & Romei, V. (2015). Individual differences in alpha frequency drive crossmodal illusory perception. *Current Biology*, 25(2), 231–235.
- Di Gregorio, F., Trajkovic, J., Roperti, C., Marcantoni, E., Di Luzio, P., Avenanti, A., ... Romei, V. (2022). Tuning alpha rhythms to shape conscious visual perception. *Current Biology*, 32(5), 988–998.
- Hein, E., Rolke, B., & Ulrich, R. (2006). Visual attention and temporal discrimination: Differential effects of automatic and voluntary cueing. *Visual Cognition*, 13(1), 29–50.

Sai Zhang Sharp, Gutteling, et al., 2022 2

References II

- Hochmitz, I., Hein, E., & Yeshurun, Y. (2021). The effects of spatial attention on temporal integration measured with the ternus display. Journal of Experimental Psychology: Human Perception and Performance.
- Minami, S., & Amano, K. (2017). Illusory jitter perceived at the frequency of alpha oscillations. *Current Biology*, 27(15), 2344–2351.
- Mioni, G., Shelp, A., Stanfield-Wiswell, C. T., Gladhill, K. A., Bader, F., & Wiener, M. (2020). Modulation of individual alpha frequency with tacs shifts time perception. *Cerebral Cortex Communications*, 1(1), tgaa064.
- Nobre, A. C., & Van Ede, F. (2018). Anticipated moments: Temporal structure in attention. *Nature Reviews Neuroscience*, 19(1), 34–48.
- Ronconi, L., Busch, N. A., & Melcher, D. (2018). Alpha-band sensory entrainment alters the duration of temporal windows in visual perception. *Scientific reports*, 8(1), 1–10.
- Samaha, J., & Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. *Current Biology*, 25(22), 2985–2990.

Sai Zhang Sharp, Gutteling, et al., 2022 2

References III

- Sharp, P., Gutteling, T., Melcher, D., & Hickey, C. (2022). Spatial attention tunes temporal processing in early visual cortex by speeding and slowing alpha oscillations. *Journal of Neuroscience*, 42(41), 7824–7832.
- Sharp, P., Melcher, D., & Hickey, C. (2018). Endogenous attention modulates the temporal window of integration. *Attention, Perception, & Psychophysics*, 80(5), 1214–1228.
- Wutz, A., Melcher, D., & Samaha, J. (2018). Frequency modulation of neural oscillations according to visual task demands. *Proceedings of the National Academy of Sciences*, 115(6), 1346–1351.

Sai Zhang

Thank you!