What are the chances?

INTRODUCTION TO STATISTICS IN R

Maggie Matsui
Content Developer, DataCamp

Measuring chance

What's the probability of an event?

$$P(\text{event}) = rac{\# \text{ ways event can happen}}{ and{total } \# \text{ of possible outcomes}}$$

Example: a coin flip

$$P(\text{heads}) = rac{1 \text{ way to get heads}}{2 \text{ possible outcomes}} = rac{1}{2} = 50\%$$

Assigning salespeople

Assigning salespeople

$$P(\mathrm{Brian}) = rac{1}{4} = 25\%$$

Sampling from a data frame

```
sales_counts
```

```
name n_sales

1 Amir 178

2 Brian 126

3 Claire 75

4 Damian 69
```

```
sales_counts %>%
sample_n(1)
```

```
name n_sales
1 Brian 126
```

```
sales_counts %>%
sample_n(1)
```

```
name n_sales
1 Claire 75
```

Setting a random seed

```
set.seed(5)
sales_counts %>%
sample_n(1)
```

```
set.seed(5)
sales_counts %>%
sample_n(1)
```

```
name n_sales
1 Brian 126
```

```
name n_sales
1 Brian 126
```

A second meeting

Sampling without replacement

A second meeting

$$P(ext{Claire}) = rac{1}{3} = 33\%$$

Sampling twice in R

```
sales_counts %>%
sample_n(2)
```

```
name n_sales
1 Brian 126
2 Claire 75
```

Sampling with replacement

Sampling with replacement

$$P(ext{Claire}) = rac{1}{4} = 25\%$$

Sampling with replacement in R

```
sales_counts %>%
  sample_n(2, replace = TRUE)
```

```
name n_sales

1 Brian 126

2 Claire 75
```

5 meetings:

```
sample(sales_team, 5, replace = TRUE)
```

```
name n_sales

1 Brian 126

2 Claire 75

3 Brian 126

4 Brian 126

5 Amir 178
```

Independent events

Two events are **independent** if the probability of the second event **isn't** affected by the outcome of the first event.

Sampling with Replacement

First pick

Second pick

Amir

Brian

Claire

Damian

Independent events

Two events are **independent** if the probability of the second event **isn't** affected by the outcome of the first event.

Sampling with replacement = each pick is independent

Sampling with Replacement

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without Replacement

First pick

Second pick

Amir

Brian

Damian

Claire

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without Replacement

Dependent events

Two events are **dependent** if the probability of the second event **is** affected by the outcome of the first event.

Sampling without replacement = each pick is dependent

Sampling without Replacement

Let's practice!

INTRODUCTION TO STATISTICS IN R

Discrete distributions

INTRODUCTION TO STATISTICS IN R

Maggie Matsui
Content Developer, DataCamp

Rolling the dice

Rolling the dice

Choosing salespeople

Probability distribution

Describes the probability of each possible outcome in a scenario

Expected value: mean of a probability distribution

Expected value of a fair die roll =

$$(1 \times \frac{1}{6}) + (2 \times \frac{1}{6}) + (3 \times \frac{1}{6}) + (4 \times \frac{1}{6}) + (5 \times \frac{1}{6}) + (6 \times \frac{1}{6}) = 3.5$$

Visualizing a probability distribution

Probability = area

$$P(\text{die roll}) \leq 2 = ?$$

Probability = area

$$P(ext{die roll}) \leq 2 = 1/3$$

Uneven die

Expected value of uneven die roll =

$$(1 \times \frac{1}{6}) + (2 \times 0) + (3 \times \frac{1}{3}) + (4 \times \frac{1}{6}) + (5 \times \frac{1}{6}) + (6 \times \frac{1}{6}) = 3.67$$

Visualizing uneven probabilities

Adding areas

$$P(\text{uneven die roll}) \leq 2 = ?$$

Adding areas

$$P(ext{uneven die roll}) \leq 2 = 1/6$$

Discrete probability distributions

Describe probabilities for discrete outcomes

Fair die

Uneven die

Discrete uniform distribution

Sampling from discrete distributions

```
die
   n
mean(die$n)
3.5
```

```
rolls_10 <- die %>%
  sample_n(10, replace = TRUE)
rolls_10
n
```

```
8
```

Visualizing a sample

```
ggplot(rolls_10, aes(n)) +
geom_histogram(bins = 6)
```


Sample distribution vs. theoretical distribution

Sample of 10 rolls

$$mean(rolls_10$n) = 3.6$$

Theoretical probability distribution

$$mean(die$n) = 3.5$$

A bigger sample

Sample of 100 rolls

$$mean(rolls_100$n) = 3.36$$

Theoretical probability distribution

$$mean(die$n) = 3.5$$

An even bigger sample

Sample of 1000 rolls

$$mean(rolls_1000$n) = 3.53$$

Theoretical probability distribution

$$mean(die$n) = 3.5$$

Law of large numbers

As the size of your sample increases, the sample mean will approach the expected value.

Sample size	Mean
10	3.00
100	3.36
1000	3.53

Let's practice!

INTRODUCTION TO STATISTICS IN R

Continuous distributions

INTRODUCTION TO STATISTICS IN R

Maggie Matsui
Content Developer, DataCamp

Waiting for the bus

Continuous uniform distribution

Continuous uniform distribution

Probability still = area

$$P(4 \leq \text{wait time} \leq 7) = ?$$

Probability still = area

$$P(4 \leq \text{wait time} \leq 7) = ?$$

Probability still = area

$$P(4 \le \text{wait time} \le 7) = 3 \times 1/12 = 3/12$$

Uniform distribution in R

$$P(\text{wait time} \leq 7)$$

punif(7, min = 0, max = 12)

lower.tail

$$P(\text{wait time} \geq 7)$$

punif(7, min = 0, max = 12, lower.tail = FALSE)

$P(4 \leq ext{wait time} \leq 7)$

$P(4 \leq \text{wait time} \leq 7)$

$P(4 \leq \text{wait time} \leq 7)$

$$punif(7, min = 0, max = 12) - punif(4, min = 0, max = 12)$$

Total area = 1

$$P(0 \le \text{wait time} \le 12) = ?$$

Total area = 1

$$P(0 \leq ext{outcome} \leq 12) = 12 imes 1/12 = 1$$

Other continuous distributions

Other continuous distributions

Other special types of distributions

Normal distribution

Poisson distribution

Let's practice!

INTRODUCTION TO STATISTICS IN R

The binomial distribution

INTRODUCTION TO STATISTICS IN R

Maggie Matsui
Content Developer, DataCamp

Coin flipping

Binary outcomes

Success Failure

Win Loss

A single flip

```
rbinom(# of trials, # of coins, # probability of heads/success)
1 = \text{head}, 0 = \text{tails}
rbinom(1, 1, 0.5)
rbinom(1, 1, 0.5)
0
```

One flip many times

```
rbinom(8, 1, 0.5)

1 0 0 1 0 0 1 0
```

rbinom(8, 1, 0.5)

8 flips of 1 coin with 50% chance of success

Many flips one time

```
rbinom(1, 8, 0.5)
```

3

rbinom(1, 8, 0.5)

1 flip of 8 coins with 50% chance of success

Many flips many times

```
rbinom(10, 3, 0.5)
```

10 flips of 3 coins with 50% chance of success

Other probabilities

rbinom(10, 3, 0.25)

1 1 0 0 1 1 1 1 2 1

Binomial distribution

Probability distribution of the number of successes in a sequence of independent trials

E.g. Number of heads in a sequence of coin flips

Described by n and p

- n: total number of trials
- p: probability of success

n p rbinom(3, 10, 0.5)

What's the probability of 7 heads?

```
P(\text{heads} = 7)
```

```
# dbinom(num heads, num trials, prob of heads)
dbinom(7, 10, 0.5)
```

What's the probability of 7 or fewer heads?

 $P(\text{heads} \leq 7)$

```
pbinom(7, 10, 0.5)
```

What's the probability of more than 7 heads?

```
P(\text{heads} > 7)
```

```
pbinom(7, 10, 0.5, lower.tail = FALSE)
```

0.0546875

```
1 - pbinom(7, 10, 0.5)
```

Expected value

Expected value = $n \times p$

Expected number of heads out of 10 flips =10 imes0.5=5

Independence

The binomial distribution is a probability distribution of the number of successes in a sequence of **independent** trials

Independence

The binomial distribution is a probability distribution of the number of successes in a sequence of **independent** trials

Probabilities of second trial are altered due to outcome of the first

If trials are not independent, the binomial distribution does not apply!

Let's practice!

INTRODUCTION TO STATISTICS IN R

