ECE 316 – HW#3 - A

Simple ALU

with

Hardware Implementation

Objective

- 8-bit unsigned adder
 - X, Y
- Multiple operations
 - X
 - X + 1
 - X − 1
 - X + Y
- Binary input
- Decimal Output

SimpleALU – Inputs/Outputs

Pin/Bus	1/0	Size	Name
Din	Input	8-bits	Data load inputs
LoadX	Input	1-bit	Load X Register (active LOW)
LoadY	Input	1-bit	Load Y Register (active LOW)
Opr	Input	2-bit	Operation
Clk	Input	1-bit	Register Clock (Pulse, FallingEdge)
Dout0	Output	7-bits	7-segment Low Order digit
Dout1	Output	7-bits	7-segment High Order digit
Negative	Output	1-bit	7-Segment Bit 6 (0=ON, 1=OFF)
Overflow	Output	1-bit	Overflow flag

SimpleALU – External View

SimpleALU - Operations

LoadX LoadY	Operation
11	Disable Load (default)
01	Load Register X
10	Load Register Y
00	Load X and Y

Opr	Operation/Output
00	X (+ 0)
01	X + 1
10	X - 1
11	X + Y

Constraints:

- All values are in range -99 to +99
- Overflow otherwise
- Numbers are 2's complement
- MSb is sign bit (0 pos, 1 neg)

Structural Design

SimpleALU – Internals – register8

Load Din to Internal on Clk falling edge Load internal to Dout on Clk rising edge

Load = 1:

Hold Dout, ignore Din

Adjustments

- Load is active LOW
- Clock is active LOW

Din	Load	Store	Clk	Dout	Note
X	1	Store	Χ	Dout	Hold last value
X	0	Din	\downarrow	Dout	Din to internal storage
X	0	Store	\uparrow	Store	Internal storage to Dout

SimpleALU – Internals – mux8_4to1

SimpleALU – Internals – add8

8-bit Adder

- Either Ripple-Carry or CLA 8-bit adder
- For RC:
 - Can increase 1-bit adder components to 8
 - OR
 - Can use 2 x 4-bit adders
- For CLA
 - Use 2 x 4-bit adders

SimpleALU – Internals – BCDconv

Operation:

Converts a unsigned 8-bit binary number in the

Range: 0 to +99

to two decimal numbers

BCD: Binary Coded Decimal (ECE315)

Decimal	Binary Number	BCD Outputs	OverFlow
1	0000 0001	0000 0001	0
•	•		•
•			
9	0000 1001	0000 1001	0
10	0000 1010	0001 0000	0
11	0000 1011	0001 0001	0
12	0000 1100	0001 0010	0
•	•		•
•	•		•
99	0110 0011	1001 1001	0
100	0110 0100	хххх хххх	1

Shift Add 3 Algorithm (ECE315)

- Do 8 times (for 8 bit binary input).
 - 1. Shift left one to the binary input.
 - 2. Add 3 to BCD if it's greater than 4.
 - 3. Go to 1.

Shift Add 3 Algorithm (ECE315)

- Input = HGFE DCBA
- Take the first 3 MSB of inputs and add to output.
 - Output = 0000 OHGF
- If 00HGF > 4
 - I H1 G1 F1 = 0 H G F + 0011.
- Else
 - I H1G1F1 = 0 H G F
- Shift left one.
 - Output = 000I H1 G1 F1 E
- If H1 G1 F1 E > 4
 - H2 G2 F2 E1 = H1 G1 F1 E + 0011.
- Else
 - H2 G2 F2 E1 = H1 G1 F1 E
- Shift left one.
 - Output = 00I H2 G2 F2 E1 D
- If G2 F2 E1 D > 4
 - G3 F3 E2 D1 = G2 F2 E1 D + 0011.
- Else
 - G3 F3 E2 D1 = G2 F2 E1 D
- · Shift left one.
 - Output = 0I H2 G3 F3 E2 D1 C

- If 0I H2 G3 > 4
 - J I1 H3 G4 = 0 I H2 G3 + 0011.
- Else
 - J I1 H3 G4 = 0 I H2 G3
- If F3 E2 D1 C > 4
 - F4 E3 D2 C1 = F3 E2 D1 C + 0011.
- Else
 - F4 E3 D2 C1 = F3 E2 D1 C
- Shift left one.
 - Output = I1 H3 G4 F4 E3 D2 C1 B
- If I1 H3 G4 F4 > 4
 - I2 H4 G5 F5 = I1 H3 G4 F4 + 0011.
- Else
 - I2 H4 G5 F5 = I1 H3 G4 F4
- If E3 D2 C1 B > 4
 - E4 D3 C2 B1 = E3 D2 C1 B+ 0011.
- Else
 - E4 D3 C2 B1 = E3 D2 C1 B
- Shift left one.
 - Output= H4 G5 F5 E4 D2 C2 B1 A

Add 3 Circuit (ECE315)

- If Input > 4
- Output = Input +3;
- Else
- Output = Input;
- End

Input = 0101 (which is greater than 4)
Output = 0101 + 0011 = 1000

Input X3X2X1X0	Output P3P2P1P0	
0000	0000	
0001	0001	
0010	0010	Whe
0011	0011	VVIIC
0100	0100	
→ 0101	1000	
0110	1001	
0111		Fill th
1000		FIII LI
1001		
1010	xxxx	
•	•	Whei
•	•	don't
1111	XXXX	

When $input \leq 4$.

Fill these outputs

When input > 9, don't care.

Add 3 Circuit (ECE315)

- Complete the Truth Table from prev slide
- Find the Boolean expression for P3, P2, P1 and P0.
- Implement in VHDK

BCD

BCD Block Diagram (ECE315)

• Implement the BCD Ckt from previous slide in VHDL

SimpleALU – Internals – disp7

Operation:

Seven segment display logic Converts 4-bit binary input to decimal value: 0,1,2,3,4,5,6,7,8,9 7-bits refer to segments 0-6 on display

7 Segment Display Patterns and Truth Table (ECE315)

Input X3X0 Display D6 D0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 10 1 0 1 0 X X X X X X X X X X X X X X X X X X X			
0 0000 1000000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010		_	
1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 XXXXXXX		X3X0	D6 D0
2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 XXXXXXX	0	0000	1 0 0 0 0 0 0
3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 XXXXXXX	1	0001	
4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 XXXXXXX	2	0010	
5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 XXXXXXX	3	0 0 1 1	
6 0110 7 0111 8 1000 9 1001 10 1010 XXXXXXX	4	0100	
7 0111 8 1000 9 1001 10 1010 XXXXXXX	5	0 1 0 1	
8 1000 9 1001 10 1010 XXXXXXX	6	0110	
9 1 0 0 1 10 1 0 1 0 X X X X X X X X	7	0 1 1 1	
10 1 0 1 0 X X X X X X X X	8	1000	
	9	1001	
11 1 0 1 1 X X X X X X X X X	10	1010	X X X X X X X X X
	11	1011	X X X X X X X X X
12 1 1 0 0 X X X X X X X X X	12	1100	X X X X X X X X X
13 1 1 0 1 X X X X X X X X X	13	1 1 0 1	X X X X X X X X
14 1 1 1 0 X X X X X X X X X	14	1110	X X X X X X X X
15 1111 XXXXXXX	15	1111	XXXXXXX

The 7 segment displays on DE1 board are designed to light up when applying a low level voltage.

Applying a Vcc to display will turn off the LEDs.

K-Map (ECE315)

- We have 4 inputs and 7outputs.
- Implement in VHDL as equations

	Input X3X0	Display D6D0
0	0 0 0 0	1 0 0 0 0 0 0
1	0001	
2	0 0 1 0	
3	0 0 1 1	
4	0 1 0 0	
5	0 1 0 1	
6	0110	
7	0 1 1 1	
8	1000	
9	1001	
10	1010	X X X X X X X X X
11	1011	XXXXXXXX
12	1 1 0 0	X X X X X X X X X
13	1 1 0 1	X X X X X X X X
14	1110	X X X X X X X X
15	1111	X X X X X X X X

To Demo - 3A

- Implement all components as VHDL
- Create a top-level design with these components
- Simulate in Modelsim
 - Show all operations for at least 2 values of X and Y
 - Show the overflow
- Note:
 - Show the 7-segment outputs as Hex values
 - Show the BCD as unsigned decimal