ESS 575 Models for Ecological Data

N. Thompson Hobbs

January 16, 2017

ESS 575 Models for Ecological Data

N. Thompson Hobbs

January 16, 2017

Today

- Some motivation for learning
- ▶ A high elevation view of approaches for statistical inference

What sets statements of scientists apart from statements made by journalists, lawyers, and logicians?

Goals

Some notation

- y data
- lacktriangledown heta a parameter or other unknown quantity of interest
- lackbox[y| heta] The probability distribution of y conditional on heta
- $lackbox{ } [heta|y]$ The probability distribution of heta conditional on y
- ▶ $P(y|\theta) = p(y|\theta) = [y|\theta] = f(y|\theta)$, different notation that means the same thing.

- ▶ We divide the world into things that are observed (y) and things that unobserved (θ) .
- ▶ The unobserved quantities (θ) are random variables ¹. The data are random variables before they are observed and fixed after they have been observed.
- \triangleright We seek to understand the probability distribution of θ using fixed observations, i.e., $[\theta|y]$.
- ▶ Those distributions quantify our uncertainty about θ .

¹A random variable is a quantity whose behavior is governed by chance.

An unobserved quanity (θ)

Show updating process in ${\sf R}$

One approach applies to many problems

- An unobservable state of interest, z
- ▶ A deterministic model of a process, $g(\theta,x)$, controlling the state.
- ► A model of the data
- Models of parameters

You can understand it.

- Rules of probability
 - Conditioning and independence
 - Law of total probability
 - Factoring joint probabilities
- Distribution theory
- Markov chain Monte Carlo

