ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

Distribuição Amostral

Duas amostragens oriundas da mesma população quase sempre terão estatísticas diferentes.

Diferentes amostragens produzirão amostras com estatísticas distintas.

Amostragens são probabilísticas, portanto, estatísticas baseadas nas amostragens também o são.

Se as características da amostragem e a composição da população são conhecidas, a probabilidade de cada resultado pode ser determinada.

 Quando o tamanho da amostra (n) aumenta, independente da forma de distribuição da população, a distribuição amostral da média da amostra (x) converge para uma distribuição normal.

Histogramas de distribuição da média para amostras de algumas populações

- Se a média de uma amostra for um estimador razoável não será necessário conhecer a f.d.p. da população, pois a distribuição de probabilidades da média das amostras será aproximadamente uma normal.
- A média das distribuições amostrais será igual à da população (μ) e a sua variância será dada por σ^2/n . Matematicamente:

$$E(\bar{x}) = \mu$$
 $Var(\bar{x}) = \frac{\sigma^2}{n}$ $\sigma(\bar{x}) = \frac{\sigma}{\sqrt{n}}$

Distribuição Amostral da Média

Seja X uma variável aleatória (v.a.) com média μ e variância σ^2 , e seja (X1 , X2 ,..., Xn) uma Amostra Aleatória Simples (AAS) de X, de tamanho n, então:

$$E(\bar{x}) = \mu$$

$$\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n} \Rightarrow \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

 Ou seja, quanto maior a amostra, menor o desvio padrão da distribuição amostral.

Distribuição Amostral da Média - Exemplo

n	Amplitude das amostras				Dog mádica	
	médias		desvios-padrão		Das médias	
	mín	máx	mín	máx	média	dpad
15	1,550	1,777	0,085	0,239	1,672	0,039
30	1,610	1,738	0,101	0,213	1,672	0,027
60	1,624	1,720	0,114	0,182	1,671	0,019
150	1,643	1,703	0,132	0,168	1,669	0,012

População =
$$X \sim N(1,67; 0,15^2)$$

Parece haver alguma relação entre o desvio-padrão das médias e o tamanho da amostra (n)?

 Serão exibidos construídos histogramas para a distribuição de X ~ B(n, p) variando-se o número de ensaios n e também a probabilidade de sucesso p.

Nota-se pelos gráficos que à medida que n cresce a distribuição de X ~ B(n, p) se aproxima da distribuição de Y ~ $N(\mu_X, \sigma^2_X)$ em que $\mu_X = np$ e $\sigma^2_X = np(1-p)$.

Histogramas B(n, p) para n = 10

Histogramas B(n, p) para n = 30

Histogramas B(n, p) para n = 50

Histogramas B(n, p) para n = 100

Distribuição Poisson

Histogramas P(*m*)

Distribuição Exponencial

Histogramas Soma de Exponenciais com $\lambda = 3$

Enunciado para a Soma Amostral

Para variáveis aleatórias X_1, \ldots, X_n independentes e com mesma distribuição de média μ e variância σ^2 finitas, a distribuição da soma

$$X = X_1 + \cdots + X_n$$

se aproxima à medida que n cresce da distribuição de $Y \sim N(\mu_X, \sigma_X^2)$, em que $\mu_X = n\mu$ e $\sigma_X^2 = n\sigma^2$.

Aproximação para *n* Grande

$$P(a \le X \le b) \cong P(a \le Y \le b)$$

= $P\left(\frac{a - n\mu}{\sigma\sqrt{n}} \le Z \le \frac{b - n\mu}{\sigma\sqrt{n}}\right)$,

em que $Z \sim N(0,1)$.

Observação: correção de continuidade pode ser aplicada apenas para variáveis aleatórias discretas, tais como binomial e Poisson.

Enunciado para a Média Amostral

Para variáveis aleatórias X_1, \ldots, X_n independentes e com mesma distribuição de média μ e variância σ^2 finitas, a distribuição da média amostral

$$\bar{X} = \frac{X_1 + \cdots + X_n}{n}$$

se aproxima à medida que n cresce da distribuição de $Y \sim N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)$, em que $\mu_{\bar{X}} = \mu$ e $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$.

Aproximação para n Grande

$$P(a \le \bar{X} \le b) \cong P(a \le Y \le b)$$

= $P\left(\frac{a - \mu}{\sigma/\sqrt{n}} \le Z \le \frac{b - \mu}{\sigma/\sqrt{n}}\right)$,

em que $Z \sim N(0, 1)$.

Exemplo 1

Uma loja recebe em média 16 clientes por dia com desvio padrão de 4 clientes. Calcule aproximadamente a probabilidade de num período de 30 dias a loja receber mais do que 500 clientes. Calcule também a probabilidade aproximada de nesse mesmo período a média de clientes ultrapassar a 18 clientes.

Dados do Problema

Seja U:número de clientes que a loja recebe num dia. Temos que

- $E(U) = \mu = 16$
- $Var(U) = \sigma^2 = 4^2 = 16$

Soma Amostral

Seja X:número de clientes que a loja recebe em 30 dias. Temos que

- $\mu_X = n \times \mu = 30 \times 16 = 480$
- $\sigma_X^2 = n \times \sigma^2 = 30 \times 16 = 480$
- $\sigma_X = \sqrt{480} \cong 21,91$

Média Amostral

Seja \bar{X} :número médio de clientes que a loja recebe em 30 dias.

Temos que

- $\mu_{\bar{X}} = \mu = 16$
- $\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} = \frac{16}{30} \cong 0,533$
- $\sigma_{\bar{x}} = \sqrt{0,533} \cong 0,73$

Cálculo da Probabilidade

A probabilidade da loja receber mais do que 500 clientes em 30 dias fica dada por

$$P(X \ge 501) \cong P\left(Z \ge \frac{501 - \mu_X}{\sigma_X}\right)$$

$$= P\left(Z \ge \frac{501 - 480}{21,91}\right)$$

$$= P(Z \ge 0,96)$$

$$= 1 - P(Z \le 0,96)$$

$$= 1 - A(0,96)$$

$$= 1 - 0,8315$$

$$= 0,1685(16,85\%).$$

Cálculo da Probabilidade

A probabilidade da média de clientes ultrapassar 18 clientes em 30 dias fica dada por

$$P(\bar{X} > 18) \cong P\left(Z > \frac{18 - \mu_{\bar{X}}}{\sigma_{\bar{X}}}\right)$$

$$= P\left(Z > \frac{18 - 16}{0,73}\right)$$

$$= P(Z > 2,74)$$

$$= 1 - P(Z \le 2,74)$$

$$= 1 - A(2,74)$$

$$= 1 - 0.9969$$

$$= 0,0031(0,31\%).$$