LECTURE 17: CFG PARSING

Mehmet Can Yavuz, PhD.

Adapted from Julia Hockenmaier, NLP S2023 - course material https://courses.grainger.illinois.edu/cs447/sp2023/

PENN TREEBANK PARSING

THE PENN TREEBANK

The first publicly available syntactically annotated corpus Wall Street Journal (50,000 sentences, 1 million words) also Switchboard, Brown corpus, ATIS
The annotation:
– POS-tagged (Ratnaparkhi's MXPOST)
– Manually annotated with phrase-structure trees
- Richer than standard CFG: <i>Traces</i> and other <i>null elements</i> used to represent non-local dependencies (designed to allow extraction of predicate-argument structure), although these are typically removed when we do parsing
[more on non-local dependencies and traces later in the semester]
The standard data set for English phrase-structure parsers

THE TREEBANK LABEL SET

- 48 preterminals (tags):
- − 36 POS tags, 12 other symbols (punctuation etc.)
- Simplified version of Brown tagset (87 tags)
 (cf. Lancaster-Oslo/Bergen (LOB) tag set: 126 tags)
- 14 nonterminals: Standard inventory (S, NP, VP, PP, ADJP, ADVP, SBAR,...)
- Many nonterminals have function tags indicating their syntactic roles (NP-SBJ: subject NP) or what role they play
- (e.g. PP-LOC: locative PP, i.e. indicating a location ["in NYC"] PP-DIR: directional PP, indicating a direction ["to NYC"],
- ADVP-MNR: manner adverb ["slowly"]).
- For historical reasons, these function tags are typically removed before parsing.

A SIMPLE EXAMPLE

Relatively flat structures:

- There is no noun level
- VP arguments and adjuncts appear at the same level

Function tags, e.g. -SBJ (subject), -MNR (manner)

A MORE REALISTIC (PARTIAL) EXAMPLE

Until Congress acts, the government hasn't any authority to issue new debt obligations of any kind, the Treasury said

THE PENN TREEBANK CFG

The Penn Treebank uses very flat rules, e.g.:

- Basic PCFGs don't work well on the Penn Treebank
 - Many of these rules appear only once.
 - But many of these rules are very similar.

Can we generalize by not treating each rule as atomic?

SUMMARY

The Penn Treebank has a large number of very flat rules.

Accurate parsing requires modifications to basic PCFG models:

- Generalizing across similar rules ("Markov PCFGs")
- Modeling word-word dependencies (although this does not help as much as people used to think)
- Refining the nonterminals to capture more context How much of this transfers to other treebanks or languages?

APPENDIX: A CONTEXT-FREE GRAMMAR FOR A FRAGMENT OF ENGLISH

NOUN PHRASES (NPS)

- Simple NPs:
- [He] sleeps. (pronoun)
 [John] sleeps. (proper name)
 [A student] sleeps. (determiner + noun)
 [A tall student] sleeps. (det + adj + noun) [Snow] falls. (noun)
- Complex NPs:
- [The student in the back] sleeps. (NP + PP)
 [The student who likes MTV] sleeps. (NP + Relative Clause)

THE NP FRAGMENT

```
• NP \rightarrow Pronoun
  NP \rightarrow ProperName
• NP \rightarrow Det Noun
  NP \rightarrow Noun
  NP \rightarrow NP PP
  NP \rightarrow NP RelClause
• Noun → AdjP Noun
  Noun \rightarrow N
  N \rightarrow \{class, ... student, snow, ...\}
• Det \rightarrow {a, the, every,...} Pronoun \rightarrow {he,
  she,...} ProperName \rightarrow {John, Mary,...}
```

ADJECTIVE PHRASES (ADJP)

AND PREPOSITIONAL PHRASES (PP)

```
AdjP → Adj
AdjP → Adv AdjP
Adj → {big, small, red,...} Adv → {very, really,...}
PP → P NP
P → {with, in, above,...}
```

THE VERB PHRASE (VP)

• He [eats].

He [eats sushi].

He [gives John sushi].

He [gives sushi to John].

He [eats sushi with chopsticks]. He [somtimes eats].

```
VP → V
VP → V
NP
VP → V
NP
VP → V
NP
PP
VP → VP
PP
VP → AdvP
VP → {eats, sleeps gives,...}
```

CAPTURING SUBCATEGORIZATION

- He [eats]. ✓
 He [eats sushi]. ✓
 He [gives John sushi]. ✓
 He [eats sushi with chopsticks]. ✓ *He [eats John sushi]. ???
- VP → Vintrans

 VP → Vtrans NP

 VP → Vditrans NP NP VP → VP PP
- Vintrans → {eats, sleeps} Vtrans → {eats}
 Vditrans → {gives}

SENTENCES

- [He eats sushi].
- [Sometimes, he eats sushi].
- [In Japan, he eats sushi].
- S \rightarrow NP VP
- S \rightarrow AdvP S
- $S \rightarrow PP S$

CAPTURING AGREEMENT

- [He eats sushi]. ✓
- *[I eats sushi]. ???
- *[They eats sushi]. ???
- S → NP3sg VP3sg
- S \rightarrow NP1sg VP1sg
- S \rightarrow NP3pl VP3pl
- We would need features to capture agreement:

(number, person, case,...)

COMPLEX VPS

In English, simple tenses have separate forms:

Present tense: the girl eats sushi

Simple past tense: the girl ate sushi

Complex tenses, progressive aspect and passive voice consist of auxiliaries and participles:

Past perfect tense: the girl has eaten sushi

Future perfect tense: the girl will have eaten sushi

Passive voice: the sushi is/was/will be/... eaten by the girl

Progressive aspect: the girl is/was/will be eating sushi

VPS REDEFINED

• He [has [eaten sushi]].
The sushi [was [eaten by him]].

We would need even more nonterminals (e.g. VPpastpart)!

• N.B.: We call VPpastPart, VPpass, etc. `untensed' VPs

SUBORDINATION

• He says [he eats sushi]. He says [that [he eats sushi]].

```
    VP → Vcomp S
    VP → Vcomp SBAR
    SBAR → COMP S
    Vcomp → {says, think, believes}
    COMP → {that}
```

COORDINATION

- [He eats sushi] but [she drinks tea]
- [John] and [Mary] eat sushi.
- He [eats sushi] and [drinks tea]
- He [sells and buys] shares
- He eats [at home or at a restaurant]
- S →SconjS
- NP \rightarrow NP conj NP
- VP \rightarrow VP conj VP V \rightarrow VconjV
- PP \rightarrow PP conj PP

RELATIVE CLAUSES

Relative clauses modify noun phrases: the girl [that eats sushi] (NP → NP RelClause)

Relative clauses lack an NP that is understood to be filled by the NP they modify:

• 'the girl that eats sushi' implies 'the girl eats sushi'

Subject relative clauses lack a subject: 'the girl that eats sushi'

• RelClause \rightarrow RelPron VP [sentence w/o sbj = VP]

Object relative clauses lack an object: 'the sushi that the girl eats' Define "slash categories" S-NP,VP-NP that are missing object NPs

- RelClause → RelPron S-NP
- S-NP \rightarrow NP VP-NP
- $VP-NP \rightarrow Vtrans$
- $VP-NP \rightarrow VP-NP PP$

YES/NO QUESTIONS

Yes/no questions consist of an auxiliary, a subject and an (untensed) verb phrase:

does she eat sushi?

have you eaten sushi?

YesNoQ → Aux NP VPinf

YesNoQ → Aux NP VPpastPart

WH-QUESTIONS

- Subject wh-questions consist of an wh-word, an auxiliary and an (untensed) verb phrase:
- Who has eaten the sushi?
- WhQ → WhPron Aux VPpastPart
- Object wh-questions consist of an wh-word, an auxiliary, an NP and an (untensed) verb phrase that is missing an object.
- What does Mary eat?
- WhQ → WhPron Aux NP VPinf-NP