Nº:

Nome:

ALGA I - 2010/2011

Exame A

2^a Chamada - 2 de Fevereiro de 2011

O Teste que vai realizar é constituído por duas partes.

As respostas às perguntas/alíneas da 1ª Parte devem ser dadas unicamente nos respectivos espaços, não sendo necessário apresentar os cálculos intermédios.

Na resolução da 2ª Parte deve apresentar todos os cálculos e todas as justificações necessárias.

1^a Parte

1. Considere as matrizes reais

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 2 & 3 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}.$$

Determine, caso existam:

(a)
$$A + A^T =$$

$$A^2 =$$

(b)
$$det(A) =$$

$$det(B) =$$

(c)
$$det(C) =$$

(d)
$$B^{-1} =$$

(e) Uma decomposição LU de B.

(f) Uma matriz elementar E tal que $EB = \begin{bmatrix} 3 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$.

2. Considere o espaço vectorial real \mathbb{R}^3 . Indique os valores de t para os quais o sistema de vectores ((1,1,2),(-1,2,1),(0,-3,t)) é base de \mathbb{R}^3 .

.....

3. Seja
$$A=\left[\begin{array}{ccc} 0 & 1 & 1\\ a & b & c\\ 1 & 0 & 1 \end{array}\right]$$
. Supondo que $\det(A)=\frac{1}{2},$ indique:

(a)
$$\det \begin{bmatrix} a & b & c \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \det \begin{bmatrix} 0 & 1 & 1 \\ a & b & c \\ 1 & 2 & 3 \end{bmatrix} =$$

(b)
$$\det \begin{bmatrix} 0 & 2 & 2 \\ a & b & c \\ 3 & 0 & 3 \end{bmatrix} = \det \begin{bmatrix} 1 & 0 & 1 \\ b & a & c \\ 2 & 1 & 3 \end{bmatrix} =$$

4. Considere o sistema AX = B em que

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & k+3 & 3 & 0 \\ 0 & 0 & 0 & k-1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ e } B = \begin{bmatrix} 1 \\ k+5 \\ k^2-1 \\ t+4 \end{bmatrix}, k \in \mathbb{R}.$$

- (a) Após discutir o sistema em função dos parâmetros k e t, complete cada alínea de modo a obter uma afirmação verdadeira:
 - (i) O sistema AX = B é impossível se e só se
- (b) Para k=-2 e t=-4, o conjunto das soluções do sistema AX=B, é:
- 5. Considere o espaço vectorial real $\mathbb{R}_2[x]$ e a sua base $(x^2 + x + 1, 2x^2 + x + 1, x 1)$. Determine a matriz das componentes de $2x^2$ na base anterior.

None:

6. No espaço vectorial real \mathbb{R}^3 , munido do produto interno canónico, considere

$$F = \langle (1,0,1), (0,1,1) \rangle$$
 e $G = \langle (2,-1,1), (1,-1,0) \rangle$.

(8) Indique uma base de F^{\perp}	
10) inarque uma base de i	

- (b) Indique uma base ortogonal de F
- (d) Caracterize os vectores de G por meio de uma condição nas suas coordenadas .
- (e) Seja u = (2, b, 1). Complete (em função de b):
 - i. $u \in F$ se e só se

 - iii. a projecção ortogonal do vector u sobre o subespaço <(0,1,1)> é (0,2,2) se e só se

 - v. $\cos \angle (u, (1, 0, 1)) = \cos \angle (u, (0, 1, 1))$ se e só se

Vire s. f. f.

2^a Parte

Na resolução da 2^a Parte deve apresentar todos os cálculos e todas as justificações necessárias.

7. Considere o espaço vectorial real \mathbb{R}^4 e os seus subespaços vectoriais

$$F = \{(a_1, a_2, a_3, a_4) \in \mathbb{R}^4 : a_1 + a_2 - 2a_3 + a_4 = 0 \land a_2 + a_3 - a_4 = 0\}$$

 \mathbf{e}

$$G = \langle (1,0,1,1), (0,1,2,0), (2,-1,0,2) \rangle.$$

- (a) Determine uma base de F e uma base de G.
- (b) Determine uma base de F + G.
- (c) Indique uma base de $F \cap G$.
- 8. Seja $n \in \mathbb{N}$ e seja $A \in M_n(\mathbb{R})$. Mostre que se det(A) = 1, então adj(adj(A)) = A.
- 9. Seja V um espaço vectorial real de dimensão 3 e sejam F e G subespaços vectoriais de V de dimensão 2. Mostre que F+G=V se e só se $F\neq G$.
- 10. Seja V um espaço vectorial real munido de produto interno. Sejam $v_1, \ldots, v_n \in V$. Mostre que se (v_1, \ldots, v_n) é um sistema ortonormado, então (v_1, \ldots, v_n) é linearmente independente.

 \mathbf{FIM}