Sequence Analysis 2

B. Analysis of high-throughput sequences

Cheong Xin Chan (CX)

c.chan1@uq.edu.au

Australian Centre for Ecogenomics School of Chemistry & Molecular Biosciences The University of Queensland

SCIE2100 | BINF6000 | Bioinformatics 1 – Introduction

Lecture outline

- High-throughput sequence data
 - The data (sequence reads and quality)
 - Types of assemblies
- Basic principles of genome assembly
- Strategies of genome assembly
 - Overlap-layout-consensus
 - De Bruijn graph (k-mer-based, and examples)
 - Key terms and concepts
- Issues and challenges

High-throughput sequences

High-throughput sequences are short. Why?

Current sequencing technologies are not practical enough to read whole genomes in one go.

Shotgun sequencing breaks down genome into small fragments (e.g. 10² bases) then sequence these fragments in great depth (typically 10⁶-10⁸ sequence reads; hence **high throughput**).

These reads will need to be assembled to *re-assemble* the original genome sequence.

How?

Identical regions of different reads can be collapsed into a long contiguous sequence (à la sequence alignment)

Regions of bad reads (with low quality score) can be down-weighted

How do we assess data quality?

Phred quality score (Q)

$$Q = -10 (\log_{10} P)$$

where P = probability of a base-calling error

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1,000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%

http://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf

$$P = 0.001$$

 $Q = -10(log_{10}[0.001]) = -10(-3) = 30$

High-throughput data: sequence reads

Read name Sequence read @ERR048354.1 HS15 6601:1:2207:19883:114113#15/2 Read AACACTCATGCTTTGGATCAAACTCATGGTGATGTTATGAAATTTGATTGCTCGCATCGTGTATTT Q scores (ASCII-coded) @ERR048354.2 HS15_6601:1:2204:15898:98581#15/2 AATACACGATGCGAGCAATCAAATTTCATAACATCACCATGAGTTTGATCCAAAGCATGAGTGTTTACAATGTTT @@@FFFFDAFHHHJFGHGHHHIIGIJIJIJJJGAGHG@EHGC*9?F*?DFGGHFGGGJIG@C@**EHE:;E?** @ERR048354.3 HS15 6601:1:2102:13693:31866#15/2 CTGTATAAGGTATTCAAACATTGTAAACACTCATGCTTTGGATCAAACTCATGGTGATGTTATGAAATTTGATTG @ERR048354.4 HS15 6601:1:2308:6558:19713#15/2 GAACTGTATAAGGTATTCAAACATTGTAAACACTCATGCTTTGGATCAAACTCATGGTGATGTTATGAAATTTGA

FASTQ format

Q scores in ASCII characters

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
33
                                   73
                                                             104
                                                                                126
                                                                    ASCII
        characters
                                                                                ASCII
                                                                                character
                                                                Phred quality
0.2.....41
                                                                                codes
                                                                scores
S - Sanger
              Phred+33, raw reads typically (0, 40)
X - Solexa
               Solexa+64, raw reads typically (-5, 40)
                                                                    Sequencing
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
                                                                   technologies/platforms
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
                                                                    and/or chemistry version
   with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
Illumina
                 Offset from ASCII character codes
chemistry version
```

Why is the offset 33?

The first 32 ASCII characters are non-printing characters (e.g. esc, tab, backspace, ctrl, shift etc.)

How can we tell if our data are good?

```
@ERR048354.1 HS15 6601:1:2207:19883:114113#15/2
AACACTCATGCTTTGGATCAAACTCATGGTGATGTTATGAAATTTGATTGCTCGCATCGTGTATTTCTATCTTTA
@ERR048354.2 HS15 6601:1:2204:15898:98581#15/2
AATACACGATGCGAGCAATCAAATTTCATAACATCACCATGAGTTTTGATCCAAAGCATGAGTGTTTACAATGTTT
@@@FFFFDAFHHHJFGHGHHHIIGIJIJIJJJGAGHG@EHGC*9?F*?DFGGHFGGGJIG@C@**EHE:;E?**
@ERR048354.3 HS15_6601:1:2102:13693:31866#15/2
@ERR048354.4 HS15 6601:1:2308:6558:19713#15/2
GAACTGTATAAGGTATTCAAACATTGTAAACACTCATGCTTTGGATCAAACTCATGGTGATGTTATGAAATTTGA
```

Technical: base quality of the reads, presence of unwanted adapters or artefacts, sequencing errors/biases, etc.

Biological: presence of unwanted/contaminant sequence reads, adequacy of the data in addressing biological questions, etc.

In an ideal world ...

№FastQC Report

Per base sequence quality

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

In reality ...

€FastQC Report

OPER Per base sequence quality

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

Quality scores across all bases (Illumina 1.5 encoding)

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
CGGTTCAGCAGGAATGCCGAGA TCGGAAGAGCGGTTCAGC	12351	0.5224039	Illumina Paired End PCR Primer 2 (96% over 25bp)

Basic principles of genome assembly

Genome versus transcriptome assemblies

Genome assembly

- Genome include genic and intergenic regions
- Often have large amounts of repetitive elements, esp. in the intergenic regions (e.g., introns)
- Long contigs are desirable

CLC Genomics Workbench

MaSuRCA

ALLPATHS-LG

SPAdes

Velvet

Celera

Newbler (for 454 data)

ABySS

SOAPdenovo

Transcriptome assembly

- Expressed genes no intergenic regions
- No/less repetitive elements
- Housekeeping genes are highly expressed (higher coverage/more reads)
- Complication of alternative splicing, SNP, and post-transcriptional modification
- Long contigs might indicate multigene cluster due to over-assembly

Trinity
Velvet-Oases
Newbler (-cdna option)
CAP3

De novo versus mapping assemblies

De novo assembly

- Assembling a new, previously unknown sequence or genome
- More memory intensive due to computational complexity

New genomes

Mapping assembly

- Assembling reads against a reference sequence/genome
- Looking for an assembly that is similar (not necessarily identical) to the reference

- Resequencing projects
- Genomes of similar species
- Model genomes of animals/plants (e.g., humans, Arabidopsis)
- 1000-genome projects

. . .

Strategy of genome assembly

The shortest common superstring problem

Given a collection of strings, what is the shortest superstring that contains all these strings

as substrings?

```
Example: S: BAA AAB BBA ABA ABB BBB AAA BAB
Concatenation: BAAAABBBAABABBBBBAAABAB
Shortest AAABBBABAA
            <u></u> 10 − − −
common
superstring AAA
             AAB
              ABB
                 BBA
                  BAB
                   ABA
                    BAA
```

Given a collection of **sequence reads**, what is the **shortest sequence** that contains **all these reads** (as sub-sequences)?

Strategy of genome assembly

Two major paradigms:

Overlap-layout-consensus (OLC)

- identifies all pairs of reads that overlap sufficiently well and then organises this information into a graph
- e.g. Celera

De Bruijn graph

- models the relationship (overlaps) between exact substrings of length k extracted from the input reads (k-mers)
- More popular; e.g. CLC-GW, MaSuRCA, ALLPATHS, SPAdes, Velvet, SOAPdenovo

Overlap-layout-consensus (OLC)

- Reads represented as nodes; alignments between reads as edges
- Genome reconstruction by combining alignments between successive reads
- Computationally expensive

De Bruijn graph (based on k-mers)

What are k-mers? TTGACACTTACCGA Read TTGACACTTACC TGACACTTACCG k-mers for k=12 **GACACTTACCGA** TTGAC **TGACA GACAC** ACACT CACTT k-mers for k=5 **ACTTA** CTTAC TTACC **TACCG** ACCGA

- Obtain all k-mers at (k = 7 in this case) –
 these are nodes
- Construct directed graph between node pairs such that the connected nodes have (contiguous) overlaps of 6 (k - 1) nucleotides; these connections are edges.
- Find the shortest (common) superstring

De Bruijn graph

In a very simple example ...

```
Example #1:
```

HAPPI PINE INESS APPIN

All 4-mers:

HAPP PINE INES APPI

APPI NESS PPIN

Unique 4-mers:

HAPP APPI PINE PPIN INES NESS

HAPPINESS

Identical nodes are merged/collapsed, reducing computational complexity.

De Bruijn graph

In a more-tricky example when repetitive sequence regions are present ...

Example #2:

```
MISSIS SSISSI SSIPPI
```

All 4-mers (9):

MISS SSIS SSIP

ISSI SISS SIPP

SSIS ISSI IPPI

MISSISSIPPI or MISSISSISSIPPI or ...

Unique 4-mers (7):

MISS SSIS SSIP ISSI SISS SIPP IPPI

The same **node** can be used in assembling different sequences.

De Bruijn graph

Example #2a:

MISSIS SSISSI SSIPPI

All 5-mers (6):

MISSI SSISS SSIPP

ISSIS SISSI SIPPI

Unique 5-mers (6, no duplicates):

MISSI ISSIS SSISS SISSI SSIPP SIPPI

Different *k* values yield different results.

k-mer length in de Bruijn graph

The choice of k-mer length (k) is crucial: Short k:

- lowers overlap threshold (more overlaps),
 k-mers joined more readily
- generates large number of short contigs Long *k*:
- may not join contigs together when it should

It is difficult to predict the best *k* to use for each assembly, thus sometimes optimisation by trial-and-errors is necessary.

ATGGAAGTCGCGGAATC

k-mer length in de Bruijn graph

7-mer (ATATATA):

-> ATATATA <-

Reverse complement of ATATATA is TATATAT

okay

6-mer (ATATAT):

-> ATATAT
TATATA <-

Reverse complement of ATATAT is ATATAT confusing

k is commonly an odd number to avoid palindromes

- If k-mers are of even length, some k-mers can be reverse complements of themselves (e.g. ATATAT)
- Genome assemblers commonly avoid even k

k must be shorter than the sequence read length, or else there will be no overlaps

Key terms and concepts

Contig: a contiguous linear stretch of consensus sequence that is constructed from a number of smaller, partially overlapping, sequence reads (fragments)

Scaffold: a sequence comprising two or more contigs that are joined together based on read-pair distance information (i.e. ordered, oriented contigs with NNNs in between)

Coverage (sequencing depth): the average number of reads representing a given nucleotide in an assembled sequence (e.g. genome)

Example: a contig of 30 bases

Read1 GATCTGGAATTCTCGGGCAC

Read2 CTGGAATTCTCGGGCACCAA

Read3 TGGAATTCTCGGGCACCAAG

Read4 TCTCGGGCACCAAGGTACGC

Contig GATCTGGAATTCTCGGGCACCAAGGTACGC

Base 111233333344444444443332111111

Coverage

4 reads of 20 bases = 80 bases constitute this 30-base contig Contig coverage = **80 / 30** = **2.67** **N50:** Contig length such that using equal or longer contigs produces half (50%) of the bases of the total assembled bases (sum of all contig lengths); the same applies to scaffolds

E	xample:
a	genome
a	ssembly

Length	Cumulative Sum
295,492	295,492
259,553	555,045
142,866	697,911
136,171	834,082
135,129	969,211
117,473	1,086,684
115,625	1,202,309
102,105	1,304,414
77,713	1,382,127
76,819	1,458,946
	295,492 259,553 142,866 136,171 135,129 117,473 115,625 102,105 77,713

50% of bases

= 1,458,946 / 2

= 729,473

The first four contigs make up

≥ 729473 bases

therefore

N50 = 136,171

How about N75?

25% of bases = 1,458,946 / 4 = 364,736.50

The first two contigs make up \geq 364,736.50 bases. N25 = 259,553

Ekblom & Wolf (2014) Evolutionary Applications 7: 1026-42.

Read trimming: the removal of adapter sequences and low-quality/ambiguous bases from the sequence reads

Read mapping: the alignment of short sequence reads to a longer sequence (e.g. contig, scaffold, reference genome)

Gap filling/closing: the process of replacing the Ns in scaffolds with nucleotide bases based on read mapping

Issues and challenges

- Peculiarity (little-understood features) in genomes, prokaryotes versus eukaryotes
- Repetitive elements in genomes (cause error in assembly, increase time/space complexity)
- Computational tractability, memory and storage space, esp. when dealing with huge amount of data
- Sequencing error (e.g., assignment of incorrect base, under-/over-estimation of base quality scores
- All these intensified with de novo assemblies

Reflection

- What are high-throughput sequence data?
- How do we assess the quality of high-throughput sequence data?
- What are the basic principles of genome assembly? Why do we need to assemble a genome (or transcriptome)?
- What are the differences between a genome assembly and a transcriptome assembly?
- What are the differences between a de novo assembly and a mapping assembly?
- What are the two major paradigms of genome assembly?
- What is a De Bruijn graph assembly?
- How do we choose the k-mer length in De Bruijn graph assembly?
- What are the key properties in genome assembly? How do we calculate N50 length?
- What are the key issues and challenges facing genome assembly?