P. Maurer

ENS Rennes

Recasages: 151, 158, 171 (??), 220, 221.

Référence: Coron, Control and nonlinearity

Critère de Kalmann

On se donne $T_0 < T_1$ des réels, m et n deux entiers plus grands que 1 et $A:]T_0, T_1[\to \mathcal{M}_n(\mathbb{R})$ et $B:]T_0, T_1[\to \mathcal{M}_{n,m}(\mathbb{R})$ des applications continues.

Définition 1. On dit que le système de contrôle x'(t) = A(t) x(t) + B(t) u(t) est contrôlable si pour tous vecteurs $(x_0, x_1) \in \mathbb{R}^n \times \mathbb{R}^n$, il existe une application $u \in \mathcal{C}^0(]T_0, T_1[, \mathbb{R}^m)$ est telle qu'une solution x au problème de Cauchy

$$(\mathcal{P}): \begin{cases} x'(t) = A(t) x(t) + B(t) u(t) \\ x(T_0) = x_0 \end{cases}$$

vérifie $x(T_1) = x_1$.

Définition 2. Notons R la résolvante du système associé au problème de Cauchy (\mathcal{P}) . On définit la matrice de Gram du système x'(t) = A(t) x(t) + B(t) u(t) (en anglais, controllability Gramian) par

$$\mathfrak{C} := \int_{T_0}^{T_1} R(T_1, \tau) B(\tau) B(\tau)^* R(T_1, \tau)^* d\tau,$$

où A^* désigne la transposée de A - on évite la notation A^T , pas pratique ici.

Proposition 3. Le système de contrôle x'(t) = A(t) x(t) + B(t) u(t) est contrôlable si et seulement si sa matrice de Gram $\mathfrak C$ est inversible, et dans ce cas, un contrôle est donné par

$$\overline{u}(\tau) := B(\tau)^* R(T_1, \tau)^* \mathfrak{C}^{-1} (x_1 - R(T_1, T_0) x_0) \quad pour \ \tau \in]T_0, T_1[.$$

Démonstration. Remarquons que \mathfrak{C} est une matrice symétrique et positive. En effet, pour tout $x \in \mathbb{R}^n$, on a

$$x^* \mathfrak{C} x = \int_{T_2}^{T_1} |R(T_1, \tau) B(\tau) x|^2 d\tau \ge 0.$$

Donc \mathfrak{C} est inversible si et seulement si $\forall x \in \mathbb{R}^n \setminus \{0\}$ $x^* \mathfrak{C} x > 0$.

 \Longrightarrow Supposons que \mathfrak{C} soit inversible. On se donne $(x_0, x_1) \in \mathbb{R}^n \times \mathbb{R}^n$, et on pose, pour tout $\tau \in]T_0, T_1[$,

$$\overline{u}(\tau) := B(\tau)^* R(T_1, \tau)^* \mathfrak{C}^{-1} (x_1 - R(T_1, T_0) x_0).$$

Soit $x \in \mathcal{C}^0([T_0, T_1], \mathbb{R}^n)$ une solution au problème de Cauchy (\mathcal{P}) . La formule de Duhamel donne

$$x(T_1) = R(T_1, T_0) x_0 + \int_{T_0}^{T_1} R(T_1, \tau) B(\tau) B(\tau)^* R(T_1, \tau)^* \mathfrak{C}^{-1} (x_1 - R(T_1, T_0) x_0) d\tau$$

$$= R(T_1, T_0) x_0 + \mathfrak{C} \mathfrak{C}^{-1} (x_1 - R(T_1, T_0) x_0)$$

$$= R(T_1, T_0) x_0 + x_1 - R(T_1, T_0) x_0$$

$$= x_1.$$

Donc le système est contrôlable.

Æciproquement, supposons que le système soit contrôlable. On suppose par l'absurde que \mathfrak{C} n'est pas inversible, et on se donne un vecteur $y \in \mathbb{R}^n \setminus \{0\}$ tel que $y^*\mathfrak{C}y = 0$. Ainsi, on a

$$\int_{T_0}^{T_1} |R(T_1, \tau) B(\tau) y|^2 d\tau = 0.$$

On en déduit, par continuité de la fonction $\tau \mapsto R(T_1, \tau) B(\tau) y$, que

$$\forall \tau \in [T_0, T_1] \quad y^*R(T_1, \tau) B(\tau) = 0.$$

Par hypothèse, pour tout $x_1 \in \mathbb{R}^n$, il existe un contrôle $u \in \mathcal{C}^0(]T_0, T_1[, \mathbb{R}^m)$ tel que la solution \overline{x} au problème de Cauchy (\mathcal{P}) avec $x_0 = 0$ vérifie $x(T_1) = x_1$.

Par ailleurs, la formule de Duhamel donne

$$x(T_1) = \int_{T_0}^{T_1} R(T_1, \tau) B(\tau) u(\tau) d\tau,$$

donc

$$x_1 = \int_{T_0}^{T_1} R(T_1, \tau) B(\tau) u(\tau) d\tau,$$

et en particulier, on a $y^*x_1=0$. En prenant $x_1=y$, on en déduit |y|=0 alors que $y\neq 0$, d'où une contradiction.

Théorème 4. (Critère de Kalman, cas indépendant du temps)

On suppose que A et B ne dépendant pas du temps. Alors le système de contrôle x'(t) = Ax(t) + Bu(t) est contrôlable sur $[T_0, T_1]$ si et seulement si

$$\operatorname{Vect}(A^i B u, u \in \mathbb{R}^m, i \in [0, n-1]) = \mathbb{R}^n.$$

Remarque 5. Cette condition est purement algébrique, et ne dépend pas de l'intervalle $[T_0,T_1]$ choisi. Elle revient à dire que le rang de la matrice $(A^0B \mid \cdots \mid A^nB)$ est n.

Démonstration.

Comme A est indépendante du temps, la résolvante du système s'écrit

$$\forall (t_1, t_2) \in [T_0, T_1]^2 \quad R(t_1, t_2) = e^{(t_1 - t_2)A}.$$

Aussi, la matrice de Gram du système est donnée par

$$\mathfrak{C} = \int_{T_0}^{T_1} e^{(T_1 - \tau)A} B \cdot B^* e^{(T_1 - \tau)A^*} d\tau.$$

Con raisonne par contraposée en supposant que le système n'est pas contrôlable. Alors \mathfrak{C} n'est pas inversible, donc il existe $y \in \mathbb{R}^n \setminus \{0\}$ tel que $y^*\mathfrak{C}y = 0$. On en déduit

$$\int_{T_0}^{T_1} |e^{(T_1 - \tau)A} By|^2 d\tau = 0,$$

d'où $k(\tau)=0$ pour tout $\tau\in[T_0,T_1]$, où $k(\tau)\stackrel{\mathrm{def}}{=}y^*e^{(T_1-\tau)A}B$. L'application k est de classe \mathcal{C}^∞ sur $[T_0,T_1]$ et on a $k^{(i)}(\tau)=(-1)^i\,y^*A^i\,e^{(T_1-\tau)A}B$ pour tout $i\in\mathbb{N}$, donc

$$k^{(i)}(T_1) = (-1)^i y^* A^i B.$$

Supposons que y s'écrive sous la forme $y = A^0 B u + A^1 B u + \cdots + A^{n-1} B u$ avec $u \in \mathbb{R}^m$.

Alors on aurait $|y| = y^* y = 0$, ce qui contredirait $y \neq 0$. Ainsi, on a

$$\operatorname{Vect}(A^i B u, u \in \mathbb{R}^m, i \in [0, n-1]) \neq \mathbb{R}^n.$$

 \Longrightarrow Réciproquement, on suppose que $\operatorname{Vect}(A^iBu,\ u\in\mathbb{R}^m,\ i\in[0,n-1])\neq\mathbb{R}^n$. Alors il existe $y\in\mathbb{R}^n$ non nul tel que $y\notin\operatorname{Vect}(A^iBu,\ u\in\mathbb{R}^m,\ i\in[0,n-1])$. Alors la matrice dont les colones sont $A^0B,\ldots,A^{n-1}B$ n'est pas inversible.

Ainsi, il existe $y \in \mathbb{R}^n \setminus \{0\}$ tel que pour tout $i \in [0, n-1]$, on ait

$$y^* A^i B = 0 \quad (\star)$$

Notons χ_A le polynôme caractéristique de A. D'après le théorème de Cayley-Hamilton, on a $\chi_A(A) = 0$.

Soit $i \ge n$. En effectuant la division euclidienne de X^i par χ_A , il existe $(Q, R) \in \mathbb{R}_n[X]$ tels que $\deg(R) < n$ et $X^i = Q\chi_A + R$. En évaluant en A, on en déduit

$$A^{i} = Q(A) \chi_{A}(A) + R(A) = R(A).$$

En particulier, on peut écrire $A^i = \alpha_0 + \alpha_1 A^1 + \cdots + \alpha_{n-1} A^{n-1}$. Il vient, d'après (\star) ,

$$\forall i \in \mathbb{N} \quad y^* A^i B = 0.$$

Ainsi, l'application k, encore définie par $k(\tau) := y^* e^{(T_1 - \tau)A} B$ vérifie $k^{(i)}(T_1) = 0$ pour tout $i \in \mathbb{N}$. Par ailleurs, comme k est analytique, on en déduit que k = 0 sur $[T_0, T_1]$.

On retrouve alors $y^*\mathfrak{C}y = \int_{T_0}^{T_1} |k(\tau)|^2 d\tau = 0$. Aussi, \mathfrak{C} n'est pas définie. Comme elle est symétrique positive, on en déduit qu'elle n'est pas inversible, donc le système n'est pas contrôlable.