N 1 Hauth unreplaner boshocrame u yborbanus pynkymi

1)
$$f(x) = x + e^{-x}$$
, $f' = 1 - e^{-x}$
 $f' = 0$ upu $x = 0$ - crayionapnas torka

 $f'(x) = -x$
 $f'(x) = -x$

Х = 2 - Тогка локамого менимума

7/1

3)
$$y = x - arctg x$$
, $y' = 1 - \frac{1}{1+x^2}$
 $\Rightarrow k \text{ corpe wynon}: y' = 0 \Rightarrow x = 0 - \text{ crayworapnal rorka}$
 $y' - \frac{1}{y}$
 $x = 0 - \text{ Torka cokaub noro warrancy was}$

N3 Haūru интерва им вогнукности и тогки перепиба функций 1)
$$f(x) = e^{-x^2}$$
, $f(x) = e^{-x^2}(-2x) = -2xe^{-x^2}$

$$f'(x) = 0$$
 upu $x = 0$
 $f''(x) = (-2x)^2 e^{-x^2} - 2e^{-x^2} = e^{-x^2} (4x^2-2) = 2(2x^2-1)e^{-x^2}$
 $f'' = 0$ upu $x = \pm \frac{1}{\sqrt{2}}$

$$f'(x) + - +$$

$$f(x) - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2$$

Torku neperu δa : $x = \frac{1}{\sqrt{2}}$ unreplana bornyknoczu bruy: $(-\infty, -\frac{1}{\sqrt{2}}) U(\frac{1}{\sqrt{2}}, +\infty)$ unreplana bornyknoczu bbepx: $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

2)
$$y = \cos x$$
, $y' = -\sin x$, $y'' = -\cos x$
 $y'' = 0$ =) $x = \frac{G}{2} + \pi k$, $k \in 2$ - $707km$ repemba

$$\frac{y''}{-\frac{5q_1}{2} - \frac{3q_1}{2} - \frac{q_1}{2} - \frac{q_1}{2} - \frac{3q_1}{2} - \frac{5q_1}{2} - \frac{3q_1}{2} - \frac{5q_1}{2}}{\frac{3q_1}{2} - \frac{3q_1}{2} - \frac{5q_1}{2} - \frac{3q_1}{2} - \frac{3q_1}{2}$$

3)
$$y = x^{5} - 10x^{2} + 7x$$
, $y' = 5x^{4} - 20x + 7$, $y'' = 20x^{3} - 20 = 20(x^{3} - 1)$

TORKY REPERUSA: $x = 1$.

WHITEPBALOR BORNYKUOCTH Blepx: $(-\infty, 1)$

UNTEPBALOR BORNYKUOCTH BRUY: $(1, +\infty)$

N4 Η αῦτα α α α α ποτοτοι τραφα κοβ φγικημιί

1)
$$y = \frac{3x}{x+2}$$
, lim $\frac{3x}{(x+7)x} = 0$, lim $\frac{3x}{x+2} = 3$

lim $\frac{3x}{x^2-x^2}$ (kin) $\frac{3x}{x^2-x^2} = 3$

lim $\frac{3x}{x^2-x^2}$ (kin) $\frac{3x}{x^2-x^2} = 3$
 $y = 3$ - 20 payontalinas alamnota

 $\frac{2}{x^2-2} = -2$ Reptu καλονά α α αμπητοτα

 $\frac{2}{x^2-2} = -2$ (kim) $e^{-\frac{x}{x}} = 1$, lim $e^{-\frac{x}{x}} = 0$, lim $e^{-\frac{x}{x}} = 1$
 $y = 1$ - 20 fayonta λίναε α αμπητοτα

N5 Προβείτη πολικε αιλιεί μο δαμικ α ποίτρουτο τραφικά αμπηματί η $y = \ln (1-x^2)$

Οδιαστό ομρεφείεκαε: $1-x^2 > 0 = 1$ - $1 + x < 1$ ($0 = (-1, 1)$)

Φηκαμία τέπμαρητοιδία να διομοροπίας.

φημαγία πλαμεροτοιά να διομοροπίας.

φημαγία πλαμεροτοιά να διομορομικά: $(0, 0)$

Πητερβαλοί χια κολοιτοια κορομικατ: $(0, 0)$

Πητερβαλοί χια κολοιτοια κορομικατ: $(0, 0)$

Η τερβαλίο χηλακολοιτοια κοτομοποτοια: $(-1, 0)$ ($(0, 1)$)

Α ενώ ποτοι: $(-1, 0)$ ($(0, 1)$)

Α ενώ ποτοι: $(-1, 0)$ ($(0, 1)$)

Η τερβαλίο δολραίτακα να μοδοιβακαί $(-1, 0)$, α μόνοδακαί και $(0, 1)$.

 $(-1, 0)$ ($(0, 1)$)

Φηνικιά δολραίτατα να μπερβαλία ($(-1, 0)$), α μόνοδακαί και $(0, 0)$.

 $(-1, 0)$ ($(0, 1)$)

Φηνικιά δολραίτατα να μπερβαλία ($(-1, 0)$), α μόνοδακαί και $(0, 0, 1)$.

1-1 - критические точки

UhrepBanon Borny KLOCFU u Borny TOCTU, TOTHU he perusa:
$$y'' = -\frac{2}{1-x^2} + \frac{2x}{1-x^2} \left(-2x\right) = \frac{-2(1-x^2)-4x^2}{1-x^2} = \frac{2(x^2+1)}{1-x^2}$$

$$y'' = -\frac{2}{1-x^2} + \frac{2x}{(1-x^2)^2} \left(-2x\right) = \frac{-2(1-x^2)-4x^2}{(1-x)^2} = -\frac{2(x^2+1)}{(1-x^2)^2} = 0$$

=) у (х) вопужнае вверх на всей област определение

2)
$$y = \frac{x^2}{1-x^2}$$
, $D(y) = (-\infty, -1) U(-1, 1) U(1, +\infty)$

$$y(-x) = y(x) =)$$
 pynkyne rëthal

Укасти непрероговности: О(у)

Гогии пересегения графика с осеми координат:

$$Y: X=0, y=0$$

$$X: y=0=) \frac{2^2}{1\cdot x^2}=0=) X=0$$

$$X=0$$

$$X=0$$

$$X=0$$

$$X=0$$

$$X=0$$

$$X=0$$

$$X=0$$

$$X=0$$

Unreplano znako hocrosnerba:

$$f \xrightarrow{-1} + + \xrightarrow{+} \rightarrow (-\infty, -1), (-1, 0), (0, 1) u (1, +\infty)$$

A cumptoton: Beptukanonore -
$$x = \pm 1$$

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x}{x - x^2} = 0$$

$$\beta = \lim_{x \to \pm \infty} \left(\frac{x^2}{7 - x^2}\right) = -1$$

$$\beta = \lim_{x \to \pm \infty} \left(\frac{x^2}{7 - x^2}\right) = -1$$

$$3 = \lim_{x \to \pm \infty} \left(\frac{x^2}{7 - x^2} \right) = -1$$

Unreplaced bospaceanus a yrochanus, excepte my nor by aryon:

$$y' = -\frac{x^2}{(1-x^2)^2}(-2x) + \frac{2x}{1-x^2} = \frac{2x^3 + (1-x^2)2x}{(1-x^2)^2} = \frac{2x^3 + 2x - 2x^3}{(1-x^2)^2} = \frac{2x}{(1-x^2)^2}$$

y'=0=) x=0-707ka rokarlóhoro nukurnyma $x=\pm 1$ - k patureckue 707 ku

$$y'' = \frac{2}{(1-x^2)^2} - \frac{2(2x)}{(1-x^2)^3} (-2x) = \frac{2(1-x^2)+8x^2}{(1-x^2)^3} = \frac{2(3x^2+1)}{(1-x^2)^3} \neq 0$$

4) y=x-lnx, D(y)=(0,+00) Функуне непреровна на О(у); Тогки пересечения с осеми координат: x- lu x =0 =) Ø функуне положительна на всей области определения. Асимптотог: x=0 - вертикамв кале а симптота $k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 - \frac{\ln x}{x}\right) = 1$ $b = \lim_{x \to +\infty} (f(x) - k \cdot x) = \lim_{x \to +\infty} (-\ln x) = -\infty$ наклопная аспилтота отсутствует. y' = 1 - 1/2 y' - + \rightarrow y' $0 > 1 <math>\pi$ =) $1-\frac{1}{\pi}=0$ =) $\chi=1$ - craynonaphare Torka Torka vok. summerpina $y'' = \frac{1}{x^2} > 0 \Rightarrow$ Toren rependa her $y'' + + + \Rightarrow$

