Computational Analysis of RNA-Seq Data - Flemish Super Computer (VSC)

RNA-Seq Pipelines and Computational Analysis – 2020 Workshop

Computer Cluster

NGS data means big data...means big computing power

- Whole Human Genome:
- 30Gb, gzip file
- Exome data:
- 6GB
- RNA-Seq
- 1GB

- NGS data is usually analyzed on a supercomputer or cluster.
 - UZ Leuven: Hydra, Google genomics
 - KU Leuven: VSC Flemish Super Computer

Before we start...

Some resources:

- How to get access?
 - https://www.vscentrum.be/getaccess
- Training:
 - https://www.vscentrum.be/training
 - Linux, Linux for HPC (1st, 13th Oct)
- VSC Documentation:
 - https://vlaams-supercomputing-centrumvscdocumentation.readthedocs-hosted.com/en/latest/
- High Performance Computing for Genomics
 - https://github.com/GenomicsCoreLeuven/vsc_ngs_worksh op/tree/master/presentations

VSC Data Analysis Process

- 1. Obtain and transfer to VSC raw data:
 - Fastq files
- 2. Determine pipeline
 - FastQC, Hisat2, MappingQC, HTSeq-count, DEseq2
- 3. Log into VSC:
 - ssh <u>vsc31420@login1-tier2.hpc.kuleuven.be</u>
- 4. Are tools available at the VSC?
 - Module av
 - Yes -> PBS Scripts
 - No? -> Contact VSC, Create own Conda environment
- 5. Create PBS scripts for each step of the pipeline
- 6. Submit jobs
 - qsub alignment_Hisat2.pbs
- 7. Download results

VSC Storage System

- Personal Storage:
 - Home Directory:
 - \$VSC HOME
 - /user/leuven/3XX/vsc3XXXX
 - 25GB
 - Personal data
 - Configuration files
 - Data Directory
 - \$VSC_DATA
 - /data/leuven/3XX/vsc3XXXX
 - 75GB
 - Input data
 - Scratch Space
 - \$VSC_SCRATCH
 - /scratch/leuven/3XX/vsc3XXXX
 - Fast processing temporary data, deleted periodically

PBS System

- At the heart of each HPC computation there is PBS script
 - Specification of the requested resources
 - Input and output data
 - Package and parameters

PBS System: Header

Header: Specification of the requested resources

```
#PBS -I walltime=20:00:00

#PBS -I mem=30gb

#PBS -I nodes=1:ppn=20:ivybridge

#PBS -M alvaro.cortes@uzleuven.be

#PBS -m eab

#PBS -N fastqc

#PBS -A lp_biogenomics
```

- Walltime: the maximum time the job can run
- Mem: Maximum requested memory
- Number of nodes, processors per node (ppn) and the processor type

PBS System: Input and output Data

```
PROJECT_DIR="/staging/leuven/stg_00019/RNASeq";

SAMPLE_DIR="$PROJECT_DIR/fastq";

SCRATCH_DIR="$VSC_SCRATCH";

OUTPUT_DIR="$PROJECT_DIR/fastqc";
```


PBS System: Defining Pipeline Step

Running FastQC on all fastq input files:

- module load FastQC/0.11.5-Java-1.8.0_77
- fastqc -o \$OUTPUT_DIR -t 20 -d \$TMP_DIR \$files;
 - \$OUTPUT_DIR: Results
 - -t 20: number of cores
 - -d \$TMP_DIR: Input directory
 - \$files: List of fastq input files

PBS System: Submitting PBS job

- Job submission:
 - qsub fastqc.pbs
- Checking job status:
 - qstat –u vsc3xxxx
- Job estimated start:
 - showstart 2321214
- Job overview:
 - checkjob 2321214
- Job stop:
 - qdel 2321214

PBS System: Differential Expression

ONLINE DEMO

Thanks!

