

<u>Alexander Panchenko</u>, Dmitry Ustalov, Stefano Faralli, Simone Paolo Ponzetto, and Chris Biemann

IMPROVING HYPERNYMY EXTRACTION
WITH DISTRIBUTIONAL SEMANTIC
CLASSES

Examples of hypernymy relations

- **apple** −isa→ fruit
- mangosteen –isa→ fruit

Examples of hypernymy relations

- apple –isa → fruit
- mangosteen −isa→ fruit

Examples of applications of hypernyms

- question answering [Zhou et al., 2013]
- query expansion [Gong et al., 2005]
- semantic role labelling [Shi & Mihalcea, 2005]

Introduction

Automatic extraction of hypernyms

Introduction 00•0

Induction of semantic classes

Introduction 000

Main contributions

We show how distributionally-induced semantic classes can be helpful for extracting hypernyms:

Main contributions

- We show how distributionally-induced semantic classes can be helpful for extracting hypernyms:
 - 1 A method for inducing sense-aware semantic classes using distributional semantics;
 - 2 A method for using the induced semantic classes for filtering noisy hypernymy relations.

Method ●00000

Labeled semantic classes

- Post-processing of hypernymy relations using distributionally induced semantic classes;
- A semantic class is a clusters of induced word senses labeled with hypernyms.

Outline of our approach

- Sense-aware distributional semantic classes are induced from a text corpus;
- Semantic classes are used to filter a noisy hypernyms database.

Outline of our approach

- Sense-aware distributional semantic classes are induced from a text corpus;
- Semantic classes are used to filter a noisy hypernyms database.

Chinese Whispers graph clustering

Used for word sense induction, used for global clustering ...

Sample of induced sense inventory

Word Sense	Local Sense Cluster: Related Senses	Hypernyms		
mango#0	peach#1, grape#0, plum#0, apple#0, apricot#0, watermelon#1, banana#1, coconut#0, pear#0, fig#0, melon#0, mangosteen#0,	fruit#0, food#0,		
apple#0	mango#0, pineapple#0, banana#1, melon#0, grape#0, peach#1, watermelon#1, apricot#0, cranberry#0, pumpkin#0, mangosteen#0,	fruit#0, crop#0,		
Java#1	C#4, Python#3, Apache#3, Ruby#6, Flash#1, C++#0, SQL#0, ASP#2, Visual Basic#1, CSS#0, Delphi#2, MySQL#0, Excel#0, Pascal#0,	programming language#3, lan- guage#0,		
Python#3	PHP#0, Pascal#0, Java#1, SQL#0, Visual Basic#1, C++#0, JavaScript#0, Apache#3, Haskell#5, .NET#1, C#4, SQL Server#0,	language#0, tech- nology#0,		

Method 0000•0

Sample of induced semantic classes

ID	Global Sense Cluster: Semantic Class	Hypernyms	
1	peach#1, banana#1, pineapple#0, berry#0, blackberry#0, grapefruit#0, strawberry#0, blueberry#0, mango#0, grape#0, melon#0, orange#0, pear#0, plum#0, raspberry#0, watermelon#0, apple#0, apricot#0, watermelon#0, pumpkin#0, berry#0, mangosteen#0,	vegetable#0, fruit#0, crop#0, ingredi- ent#0, food#0, ·	
2	C#4, Basic#2, Haskell#5, Flash#1, Java#1, Pascal#0, Ruby#6, PHP#0, Ada#1, Oracle#3, Python#3, Apache#3, Visual Basic#1, ASP#2, Delphi#2, SQL Server#0, CSS#0, AJAX#0, JavaScript#0, SQL Server#0, Apache#3, Delphi#2, Haskell#5, .NET#1, CSS#0,	programming lan- guage#3, technol- ogy#0, language#0, format#2, app#0	

Method 00000

Network of induced word senses

Optimization of meta-parameters

Comparison to WordNet and BabelNet

Meta-parameters

- **11** Min. sense co-occurrences: t > 0
- Sense edge weight: count or log(count)
- **B** Hypernym weight type: tf-idf or tf

Comparison to WordNet and BabelNet

Meta-parameters

- **1** Min. sense co-occurrences: t > 0
- Sense edge weight: count or log(count)
- B Hypernym weight type: tf-idf or tf

$$hpc$$
-score $(c) = \frac{h\text{-score}(c) + 1}{p\text{-score}(c) + 1} \cdot \text{coverage}(c).$

$$p\text{-score}(\mathbf{c}) = \frac{1}{|\mathbf{c}|} \sum_{i=1}^{|\mathbf{c}|} \sum_{i=1}^{i} \operatorname{dist}(\mathbf{w}_i, \mathbf{w}_j). h\text{-score}(\mathbf{c}) = \frac{|\mathcal{H}(\mathbf{c}) \cap \operatorname{gold}(\mathbf{c})|}{|\mathcal{H}(\mathbf{c})|}.$$

Best coarse- and fine-grained models

Min. sense co-occurr., t		Hypernym weight, H	Number of clusters	Number of senses	hpc-avg, WordNet	hpc-avg, BabelNet
100	log	tf-idf	734	18 028	0.092	0.304
0	count	tf-idf	1870	208 871	0.041	0.279

Results
0 • 0 0 0 0 0 0 0 0

Results

Results

Results

Results ○○○○○○●○○

Results

Gong, Z., Cheang, C. W., & Leong Hou, U. (2005). Web Query Expansion by WordNet.

In Proceedings of the 16th International Conference on Database and Expert Systems Applications - DEXA '05 (pp. 166–175). Copenhagen, Denmark: Springer Berlin Heidelberg.

Shi, L. & Mihalcea, R. (2005).

Putting Pieces Together: Combining FrameNet, VerbNet and WordNet for Robust Semantic Parsing.

In Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing, CICLing 2005 (pp. 100-111). Mexico City, Mexico: Springer Berlin Heidelberg.

Zhou, G., Liu, Y., Liu, F., Zeng, D., & Zhao, J. (2013). Improving question retrieval in community question answering using world knowledge. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI '13 (pp. 2239–2245).

Beijing China. AAAI Press