

1 ATRYYYLGAV ELSWDYMQSD LGELPVDARF PPRVPKSFPF NTSVVYKKTL
51 FVEFTVHLFN IAKPRPPWMG LLGPTIQAEV YDTVVITLKN MASHPVSLHA
101 VGVSYWKASE GAEYDDQTSQ REKEDDKVFP GGSHTYVWQV LKENGPMASD
151 PLCLTYSYLS HVDLVKDLNS GLIGALLVCR EGSLAKEKTQ TLHKFILLFA
201 VFDEGKSWHS ETKNSLMQDR DAASARAWPK MHTVNGYVNR SLPGLIGCHR
251 KSVYWHVIGM GTTPEVHSIF LEGHTFLVRN HRQASLEISP ITFLTAQTLL
301 MDLGQFLLFC HISSHQHDGM EAYVKVDSCP EEPQLRMKNN EEAEDYDDDL
351 TDSEMDVVRF DDDNSPSFIQ IRSVAKKHPK TWVHYIAAEE EDWDYAPLVL
401 APDDRSYKSQ YLNNGPQRIG RKYKKVRFMA YTDETFKTRE AIQHESGILG
451 PLLYGEVGDT LLIIFKNQAS RPYNIYPHGI TDVRPLYSRR LPKGVKHLKD
501 FPILPGEIFK YKWTVTVEDG PTKSDPRCLT RYYSSFVNME RDLASGLIGP
551 LLICYKESVD QRGNQIMSDK RNVLIFSVFD ENRSWYLTN IQRFLPNPAG
601 VQLEDPEFQA SNIMHSINGY VFDSLQLSVC LHEVAYWYIL SIGAQTDFLS
651 VFFSGYTFKH KMVYEDTLT FPFSGETVFM SMENPGLWIL GCHNSDFRNR
701 GMTALLKVSS CDKNTGDYYE DSYEDISAYL LSKNNAIEPR SFSQNPPVLK
751 RHQREITRTT LQSDQEEIDY DDTISVEMKK EDFDIYDEDE NQSPRSFQKK
801 TRHYFIAAVE RLWDYGMSSS PHVLRNRAQS GSVPQFKKVV FQEFTDGSFT
851 QPLYRGELNE HLGLLGPYIR AEVEDNIMVT FRNQASRPYS FYSSLISYEE
901 DQRQGAEPRK NFVKPNETKT YFWKVQHHMA PTKDEFDCKA WAYFSDVDLE
951 KDVHSGLIGP LLVCHTNLPAHGRQVTVQ EFALFFTIFD ETKSWYFTEN
1001 MERNCRAPCN IQMEDPTFKE NYRFHAINGY IMDTLPGLVM AQDQRIRWYL
1051 LSMGSNENIH SIHFGHVFT VRKKEEYKMA LYNNLYPGVFE TVEMLPSKAG
1101 IWRVECLIGE HLHAGMSTLF LVYSNKCQTP LGMASGHIRD FQITASGQYG
1151 QWAPKLARLH YSGSINAWST KEPFSWIKVD LLAPMIIHGI KTQGARQKFS
1201 SLYISQFIIM YSLDGKKWQT YRGNSTGTLV VFFGNVDSSG IKHNIFNPP
1251 IARYIRLHPT HYSIRSTLRM ELMGCDLNSC SMPLGMESKA ISDAQITASS
1301 YFTNMFATWS PSKARLHLQG RSNAWRPQVN NPKEWLQVDF QKTMKVTGVT
1351 TQGVKSLLTS MYVKEFLISS SQDGHQWTLF FQNGKVKVFQ GNQDSFTPVV
1401 NSLDPPLLTR YLRIHPQSWV HQIALRMEVL GCEAQDLY

Fig. 1

GGCAATGGAG CGTGAAGAAG GGCCCCAGGG CTGACCCCGG CAAACGTGAC (50)
CCGGGGCTCC GGGGTGACCC AGGCAAGCGT GGCAAGGGG CCCGTGGGTG (100)
ACACAGGC_{AA} CCCTGACAAA GGCCCCCAG GAAAGACCCC CGGGGGGCAT (150)
CGGGGGGGTG TTGGCGGGTC ATGGGGGGGG CGGGTCATGC CGCGCATTCC (200)
TGGAAAAAGT GGAGGGGGCG TGGCCTTCCC CCCGCGGCC C_CTAGCCCCC (250)
CCGCAGAGAG CGGCGAACG GC_{GGG}CGAGC GGCGGGGGT CGGGGTCCGC (300)
GGGCTCCGGG GGCTGC_{GGG}C GGTGGATGGC GGCTGGCGTT CGGGGGATCG (350)
GGGGGGGGTC GGGGGCGCT GCGCGGC_{GC} AGCCATGCGT GACCGTGATG (400)
AG (402)

Fig._2

Fig._3

Fig. 4A

Fig. 4B

Fig._5