SFLini.txt:

Speedlimit (deadband) default value (0.0001666667) for display of Speed and Flowrate,

A "SpeedLimit","0.0001666667"

Number of consecutive unipolar readings to limit the Online indication of Flowrate,

B "FlowCountLimit","3"

Exponential Moving Average Filter (Enable = 1),

C "EMAFEnable","1"

EMAF Constant (a) - The degree of weighting decrease is expressed as a constant smoothing factor a,

a number between 0 and 1,

The smoothing factor may be expressed as a percentage,

so a value of 10% is equivalent to (a) = 0.1,

A higher (a) discounts older observations faster,

"EMAFConstant","0.10"

EMAF Calculating Interval (mS),

= "EMAFCalcInterval","12000"

Force Calculation Time (S),

If no calculation has been triggered then force calculation at this time,

ForceCalcTime","30"

Skip Calculation Time (S),

Skip all calculations up until this time,

C "SkipCalcTime","25"

Notes:

- A) 0.0001666667 m/second equals to approx 1 cm/minute
- B) Used in clsOnline GetTankData3 for online to LoadMaster
- C) C, D & E is used for FlowRate(FR), Exponential Moving Average (EMA) http://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average EMA_FRnew = EMA_FRold + α * (FRnew EMA_FRold) The degree of weighting decrease is expressed as a constant smoothing factor
- D) α , a number between 0 and 1. The smoothing factor may be expressed as a percentage, so a value of 10% is equivalent to $\alpha = 0.1$. A higher α discounts older observations faster. Alternatively, α may be expressed in terms of N time periods, where $\alpha = 2/(N+1)$. For example, N = 19 is equivalent to $\alpha = 0.1$. The half-life of the weights (the interval over which the weights decrease by a factor of two) is approximately N/2.8854 (within 1% if N > 5).
- E) The observation at a time period t is designated Y_t , and the value of the EMA at any time period t is designated S_t .
- F) Used to ensure that calculation is done at least at this interval, DAUType = -1
- G) Used to ensure that "all" sensors are up-to-date before calculating.