Raymarching Distance Fields

Distance function sphere

$$dist(\mathbf{P}) = \|\mathbf{P} - \mathbf{M}\| - r$$

■ Distance function box -x-direction

$$dist(\mathbf{P}_{x}) = \max(|\mathbf{P}_{x} - \mathbf{C}_{x}| - \mathbf{\dot{b}}_{x}, 0)$$

Distance Functions

Distance function box

$$dist(\mathbf{P}) = \left\| \max(|\mathbf{P} - \mathbf{C}| - \hat{\mathbf{b}}, \vec{\mathbf{0}}) \right\|$$

Distance Fields

Beliebigen Punkt in Distance Field einsetzen -> erhält Abstand zum Objekt

$$\mathbb{R}^2 \to dist(\mathbb{R}^2)$$

$$\mathbb{R}^3 \to dist(\mathbb{R}^3)$$

oxit Reader) by Foxit Corporation,2005-2010

Operations on Distance Fields

• Given $dist(\mathbb{R}^3) =$

 $= dist(repeat(\mathbb{R}^3))$

• Repeat is $mod(\mathbf{P}, \mathbf{b}) - \frac{1}{2}\mathbf{b}$

Wdh. von Objekten, b = (1,0,0) immer nach 1 Einheit wiederholt -1/2*b: Start von -0.5 bis 0.5

conted by Foxit Reader Copyright(C) by Foxit Corporation,2005-2010 For Evaluation Only.

Operations on Distance Fields

• Given $dist_1(\mathbb{R}^3)$ and $dist_2(\mathbb{R}^3)$

• The union is $\min(dist_1(\mathbb{R}^3), dist_2(\mathbb{R}^3))$

$$=$$
 $\frac{substraction}{}$

• The substraction is $\max(-dist_1(\mathbb{R}^3), dist_2(\mathbb{R}^3))$

Raymarching Distance Fields

• $dist(\mathbf{P}_i)$

