

Introduction to Graphical Models and Distributed Inference

Sang Hyun Lee (sanghyunlee@korea.ac.kr)

Contents

-1 Factor Graphs

-2 Affinity Propagation

1. Graphical Models

```
- 1.1
Factor Graphs
```

- 1.2 Graphs of Codes

- 1.3

Belief Propagation
Algorithms

1.1 Factor Graphs (FG)

✓ Representation of factorization of a function of several variables.

$$f(u, w, x, y, z) = f_1(u, w, x)f_2(x, y, z)f_3(z)$$

f: global function
 f_1, f_2, f_3 : local functions

- ✓ Consists of
 - Factor nodes: squares _
 - 2. Variable nodes: circles
 - 3. Edges: connection of two nodes
- ✓ Main application: Probabilistic models.
- ✓ FFG: a variation of FG, for simple graphs
 - 1. Factor nodes: boxes representing factor
 - 2. Edges: circles with two neighbors
 - 3. Half edges: circles with one neighbors

▲ 1. An FFG.

✓ Markov chain: Chain of joint probabilities. Non-neighbor nodes are independent to each other. (all function nodes dependent)

2. An FFG of a Markov chain.

$$p_{XYZ}(x, y, z) = p_X(x)p_{Y|X}(y|x)p_{Z|Y}(z|y, x)$$

= $p_X(x)p_{Y|X}(y|x)p_{Z|Y}(z|y)$

✓ Block Diagram Interpretation:

$$X = g(U, W)$$
$$Z = h(X, Y)$$

3. A block diagram.

- ✓ The function block X = g(U, W) represents the factor $\delta(x g(u, w))$
- ✓ The function block Z = h(X, Y) represents the factor $\delta(z h(x, y))$
 - $\therefore \text{ The whole graph: } f(u, w, x, y, z) = \delta(x g(u, w)) \bullet \delta(z h(x, y))$

✓ Branching points:

Becomes factor nodes, as Fig(4).

✓ New variables factor arises:

$$X = X' = X''$$

$$f_{=}(x, x', x'') \triangleq \delta(x - x')\delta(x - x'')$$

✓ Other symbols are also used.

$$f_+(x, x', x'') \triangleq \delta(x + x' + x'')$$

 $\checkmark X + X' = X''$ can be represented by Fig(5b) and Fig(5c)

▲ 4. (a) Branching point becomes (b) an equality constraint node.

▲ 5. Zero-sum constraint node.

▲ 6. Classical state-space model.

 \checkmark Fig(6) and Fig(7):

$$X[k] = AX[k-1] + BU[k]$$

$$Y[k] = CX[k] + W[k]$$

- $k \in \mathbb{Z}$
- *U*[*k*], *W*[*k*], *X*[*k*], *Y*[*k*]: real vectors
- A,B,C: matrices of appropriate dimensions.
- ✓U[k],W[k] are white Gaussian processes ⇒ The corresponding nodes represent Gaussian probability distributions.

- ✓ External variables: only one edge attached
- ✓ Internal variables: two edges attached
- ✓ A big system f is an interconnection of subsystems.
 - ⇒ the variables connecting the subsystems are
 - Internal to f
 - External to the subsystems

✓ Error Correcting Block Code

- C = n-length block code over A $\Rightarrow C \in A^n$
- A = F and C is a subspace of F^n \Rightarrow the code is linear
- ∀ linear code, C = {x ∈ Fⁿ: xH^T = 0} = {uG: u ∈ F^k}
 : Encodes u ∈ F^k of information symbols into the codeword x = uG

$$C = \begin{cases} 1 & 1 & 1 \\ 0 & 0 & 0 \end{cases}$$

$$H = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

✓ Error Correction Example: Hamming Code

- A binary (7, 4, 3) Hamming Code:
 code length n = 7
 dimension k = 4
 minimum Hamming distance = 3
- Parity-check matrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

▲ 8. An FFG for the (7, 4, 3) binary Hamming code.

Membership indicator function:

$$I_C(x_1, ..., x_n)$$

$$= \delta(x_1 \oplus x_2 \oplus x_3 \oplus x_5) \bullet \delta(x_2 \oplus x_3 \oplus x_4 \oplus x_6) \bullet \delta(x_3 \oplus x_4 \oplus x_5 \oplus x_7)$$

✓ Error Correction Examples: LDPC and Turbo Codes

• LDPC

- For blocks with large lengths
- Sparse parity-check matrix
- Main decoding algorithm: sum-product

11. An FFG of a low-density parity-check code.

Turbo

- Consists of two trellises sharing common symbols
- Main decoding algorithm: sum-product

Korea University

▲ 12. An FFG of a parallel concatenated code (turbo code).

✓ Channel Model

- A family p(y|x) over
 - $y = (y_1, ..., y_n)$ as channel output
 - $x = (x_1, ..., x_n)$ as channel input
- FG results in $p(y|x)I_C(x)$

▲ 13. Joint code/channel FFG.

∀ fixed y,

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} \propto p(y|x)I_C(x)$$

• Joint channel FG represents a posteriori joint probability of X_1, \ldots, X_n .

✓ Channel Model Examples: Memoryless and State-Space Channels

• Fig(14): **Memoryless** channel

$$p(y|x) = \prod_{k=1} p(y_k|x_k)$$

▲ 14. Memoryless channel.

• Fig(15): state-space channel

$$p(y,s|x) = P(s_0) \prod_{k=1}^{\infty} p(y_k, s_k|x_k, s_{(k-1)})$$

▲ 15. State-space channel model.

1.3 Belief Propagation Algorithms

✓Summary Operator: Elimination of variables ("closing boxes")

- Ex. A discrete probability mass function $f(x_1,...,x_8)$ \rightarrow marginal probability $p(x_4) = \sum_{x_1,x_2,x_3,x_5,x_6,x_7,x_8} f(x_1,...,x_8)$
- Ex. A nonnegative function $f(x_1, ..., x_8)$

$$\rightarrow \rho(x_4) \triangleq \max_{x_1, x_2, x_3, x_5, x_6, x_7, x_8} f(x_1, \dots, x_8).$$

▲ 16. Elimination of variables: "closing the box" around subsystems.

1.3 Belief Propagation Algorithms

 \checkmark Arithmetic manipulations to $p(x_4)$

$$= \Sigma_{x_1} \Sigma_{x_2} \Sigma_{x_3} \Sigma_{x_5} \Sigma_{x_6} \Sigma_{x_7} \Sigma_{x_8} f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$$

$$= \{ \Sigma_{x_1} \Sigma_{x_2} \Sigma_{x_3} f_3(x_1, x_2, x_3, x_4) f_1(x_1) f_2(x_2) \} \bullet$$

$$\{ \Sigma_{x_5} \Sigma_{x_6} f_4(x_4, x_5, x_6) f_5(x_5) (\Sigma_{x_7} \Sigma_{x_8} f_6(x_6, x_7, x_8) f_7(x_7)) \}$$

- ✓ Local Elimination Property: Successive local summaries lead to global summary.
- ✓ Summary μ : "message" sent between the boxes.

▲ 17. "Summarized" factors as "messages" in the FFG.

1.3 Belief Propagation Algorithms

✓ Message out of a terminal node = the corresponding function

▲ 18. Messages along a generic edge.

✓ Sum-Product Rule: for estimation

$$\mu_{g\to x}(x) \triangleq \Sigma_{y_1} \dots \Sigma_{y_n} g(x, y_1, \dots, y_n) \bullet \mu_{y_1\to g}(y_1) \dots \mu_{y_n\to g}(y_n)$$

✓ Max-Sum Rule: for optimization

$$\mu_{g \to x}(x) \triangleq \max_{y_1} \max_{y_n} \log g(x, y_1, \dots, y_n) + \sum_i \log \mu_{y_i \to g}(y_i)$$

2. Affinity Propagation

- 2.1

Clustering by Belief Propagation: Affinity Propagation

- 2.2

A Binary Model for Affinity Propagation

- 2.3

Simple applications of binary model

2.1 Clustering by Belief Propagation

- ✓ Affinity Propagation(AP) Clustering: discrete variable application of belief propagation
- ✓ Where to use?
 - detect genes in microarray data
 - choose efficient facility locations
 - cluster images of faces

2.1 Clustering by Belief Propagation

- Similarity: closeness of two data points
- Cluster head / exemplar: a point that represents its cluster
- Each data point belongs to its cluster head
 ⇔ each data point 'points' the exemplar of its cluster
- An exemplar point points itself as its exemplar
- Max-sum rule: maximize the sum of similarities of data points within clusters

2.1 Clustering by Belief Propagation

✓ AP Input :

Real-valued similarities between data points.

- ✓ Responsibility r(i, k)
 - from data point i
 to candidate exemplar point k.
 - reflects how well-suited point k is to serve as the exemplar.
- \checkmark Availability a(i, k)
 - from candidate exemplar point k
 to point i
 - reflects how appropriate it would be for point i to choose point k as its exemplar.

Sending Responsibilities

Sending Availabilities

$$r(i,k) \leftarrow s(i,k) - \max_{k's.t.k' \neq k} \{ a(i,k') + s(i,k') \}$$

$$a(i,k) \leftarrow \min \left\{ 0, r(k,k) + \sum_{i's.t.i' \notin \{i,k\}} \max\{0, r(i',k)\} \right\}$$

2.2 A Binary Model for Affinity Propagation

✓ Binary variables

- ✓ Each data point assigned to a single exemplar
- ✓ Pairwise Similarities s_{ij} , $\{i, j\} \subset \{1...N\}$
- ✓ N binary variables $\{h_{ij}\}_{j=1}^{N}$ associate with data point i.
- ✓ i is pointing j as its exemplar $\Leftrightarrow h_{ij} = 1$

2.2 A Binary Model for Affinity Propagation

✓ Max-sum algorithm Calculates the maximal value of the joint distribution and the corresponding variables.

✓ function → variables ■ →

"I want you to be this value."

$$\mu_{c \to i}(x_i) = \max_{X_c \setminus x_i} \left[\phi_c(x_c) + \sum_{j \in N(c) \setminus i} \mu_{j \to c} \left(x_j \right) \right]$$

✓ variables → function ○ → ■

"I want to be this value."

$$\mu_{i\to c}(x_i) = \sum_{b\in N(i)\setminus c} \mu_{b\to i}(x_i)$$

b = neighborhood nodes

- ✓ Using Max-sum formulation
- ✓ Five message types between variable and function nodes.

$$\checkmark I_i \ (h_{i:}) = \left\{ \begin{array}{l} 0 & \text{if } \sum_j h_{ij} = 1, \text{ Each data point chooses only one exemplar.} \\ -\infty & \text{otherwise.} \end{array} \right.$$

$$\checkmark E_j(h_{:j}) = \begin{cases} 0 & \text{if } h_{jj} \ge \max_i h_{ij}, \\ -\infty & \text{otherwise.} \end{cases} \text{ exemplar, then } j \text{ is its } l_i \quad \text{exemplar.} \\ \text{If no point choose } j \text{ as its exemplar.} \end{cases}$$

$$\checkmark S_{ij}(h_{ij}) = s_{ij}h_{ij}$$
 exemplar of itself

(Ex) Similarity $s_{ij} = \frac{1}{distance^2} = \text{constant}$

If *i* choose *j* as its its exemplar, *j* can be an

Objective: maximize
$$\mathcal{F}(\{h_{ij}\}) = \sum_{i,j} S_{ij}(h_{ij}) + \sum_{i} I_i(h_{i:}) + \sum_{j} E_j(h_{:j})$$

For
$$h_{ij} = 1$$
,
$$\beta_{ij}(1) = \mu_{h_{ij} \to I_i}(1) = \sum_{b \in N(h_{ij}) \setminus I_i} \mu_{b \to h_{ij}}(1)$$

$$= S_{ij}(1) + \alpha_{ij}(1)$$

For
$$h_{ij} = 0$$
,

$$\beta_{ij}(0) = \frac{S_{ij}(0) + \alpha_{ij}(0)}{h_{ij} = 0}$$

✓ Taking the difference

$$\beta_{ij} = \beta_{ij}(1) - \beta_{ij}(0) \longrightarrow \text{denoted}$$

$$= \left[S_{ij}(1) - S_{ij}(0) \right] + \left[\alpha_{ij}(1) - \alpha_{ij}(0) \right]$$

$$= s_{ij} + \alpha_{ij}$$

For
$$h_{ij} = 1$$
,
$$\rho_{ij}(1) = \mu_{h_{ij} \to E_j}(1) = \sum_{b \in N(h_{ij}) \setminus E_j} \mu_{b \to h_{ij}}(1)$$

$$= S_{ij}(1) + \eta_{ij}(1)$$

For
$$h_{ij} = 0$$
,

$$\rho_{ij}(0) = \frac{S_{ij}(0)}{h_{ij}} + \eta_{ij}(0)$$

$$h_{ij} = 0$$

✓ Taking the difference

$$\rho_{ij} = \frac{\rho_{ij}(1) - \rho_{ij}(0)}{\text{denoted}} \rightarrow \text{denoted}
= [S_{ij}(1) - S_{ij}(0)] + [\eta_{ij}(1) - \eta_{ij}(0)]
= S_{ij} + \eta_{ij}$$

$$\begin{split} & \checkmark \text{ For } h_{ij} = 1 \\ & \eta_{ij}(1) = \mu_{Ii} \to h_{ij}(1) \\ & = \max_{h_{ik}, k \neq j} [I_i \big(h_{i1}, \dots, h_{ij} \big) = 1, \dots, h_{iN}) + \sum_{h_{it} \in N(I_i) \setminus h_{ij}} \mu_{h_{it} \to I_i} \left(h_{it} \right)] \\ & = \max_{h_{ik}, k \neq j} [I_i \big(h_{i1}, \dots, h_{ij} = 1, \dots, h_{iN} \big) + \sum_{t \neq j} \beta_{it} \left(h_{it} \right)] \\ & = \sum_{t \neq j} \beta_{it} \left(0 \right) \end{aligned}$$

$$\checkmark$$
 For $h_{ij} = 0$

$$\begin{split} \eta_{ij}(0) &= \max_{h_{ik}, k \neq j} [I_i(h_{i1}, ..., h_{ij} = 0, ..., h_{iN}) + \sum_{t \neq j} \beta_{it}(h_{it})] \\ &= \max_{k \neq j} [\beta_{ik}(1) + \sum_{t \notin \{k, j\}} \beta_{it}(0)] \quad \text{All except } (j, k) \text{ are zero.} \end{split}$$

Choose one (exemplar node) of N-1

✓ Taking the difference $\eta_{ij}(1) - \eta_{ij}(0)$

Whether k indicates j or not, *j* can become an exemplar.

For $h_{ij} = 1$, i = j $\alpha_{jj}(1) = \sum_{k \neq i} \max_{h_{kj}} \rho_{kj}(h_{kj}). \quad h_{kj} \text{ can be Q, 1 both.}$

 $\checkmark \quad \text{For} \quad h_{ij} = 0, \ i = j$ $\alpha_{jj}(0) = \sum_{k \neq j} \rho_{kj}(0).$

$$E_{j}(h_{j}) = \begin{cases} 0 \\ -\infty \end{cases}$$

Taking the difference $\alpha_{ii}(1) - \alpha_{ii}(0)$

$$\alpha_{jj} = \alpha_{jj}(1) - \alpha_{jj}(0)$$

$$= \sum_{k \neq j} \max(\rho_{kj}, 0)$$

→ i has chosen j as its exemplar.

✓ For $h_{ij} = 1, i \neq j$

$$\alpha_{ij}(1) = \max_{h_{kj}, k \neq i} [E_j(h_{1j}, ..., h_{ij} = 1, ..., h_{Nj}) + \sum_{k \neq i} \rho_{kj}(h_{kj})]$$

$$= \rho_{jj}(1) + \sum_{k \neq i, j} \max_{h_{kj}} \rho_{kj}(h_{kj}).$$

$$j \text{ has chosen itself as an exemplar.}$$

✓ For $h_{ij} = 0$, $i \neq j$

$$\alpha_{ij}(0) = \max[\rho_{jj}(1) + \sum_{h \neq i, j} \max_{h_{kj}} \rho_{kj}(h_{kj}), \sum_{k \neq i} \rho_{kj}(0)].$$

$$h_{jj} = 1 \qquad h_{jj} = 0$$

No other point may choose *j* as an exemplar.

✓ Taking the difference

$$\alpha_{ij} = \alpha_{ij}(1) - \alpha_{ij}(0)$$

$$= \max[0, \sum_{k \neq i} \rho_{kj}(0) - \rho_{jj}(1) - \sum_{l \neq i, j} \max(\rho_{lj}(1), \rho_{lj}(0))]$$

$$= \max[\rho_{jj}(0) - \rho_{jj}(1) - \sum_{l \neq i, j} \rho_{lj}(0) - \max(\rho_{lj}(1) - \rho_{lj}(0))]$$

$$= -\rho_{jj} + \sum_{l \neq i, j} \left[-\max(\rho_{lj}(1) - \rho_{lj}(0), 0) \right]$$

$$= -\rho_{jj} + \sum_{l \neq i, j} \left[-\max(\rho_{lj}, 0) \right]$$

$$= \min[0, \rho_{jj} + \sum_{l \neq i, j} \left[\max(0, \rho_{lj}) \right]$$

✓ To summarize, the message update equations are:

$$\beta_{ij} = s_{ij} + \alpha_{ij}$$

$$\eta_{ij} = -\max_{k \neq j} \beta_{ik}$$

$$\rho_{ij} = s_{ij} + \eta_{ij}$$

$$\alpha_{ij} = \begin{cases} \sum_{k \neq j} \max(0, \ \rho_{kj}) & i = j \\ \min[0, \ \rho_{jj} + \sum_{k \notin i, j} \max(0, \rho_{kj})] & i \neq j \end{cases}$$

Availability messages a(i,j)

 \checkmark Finally, express ρ in terms of α

$$\rho_{ij} = s_{ij} + \eta_{ij} = s_{ij} - \max_{k \neq j} \beta_{ik} = s_{ij} - \max_{k \neq j} (s_{ik} + \alpha_{ik})$$
Responsibility messages $r(i,j)$

✓ Original Affinity Propagation message updates,

$$\rho_{ij} = s_{ij} - \max_{k \neq j} (s_{ik} + \alpha_{ik})$$

$$\alpha_{ij} = \begin{cases} \sum_{k \neq j} \max(0, \ \rho_{kj}) & i = j \\ \min[0, \ \rho_{jj} + \sum_{k \notin i, j} \max(0, \rho_{kj})] & i \neq j \end{cases}$$

2.3 Simple applications of Binary AP Model

- Group blind date
 - 1. Max-Sum: maximizes the value added by all people satisfaction.
 - 2. Max-Min: maximizes the value of the lowest satisfaction.

Max-sum formulation

$$\checkmark G_i(h_{i:}) = \begin{cases} 0 & \text{if } \sum_j h_{ij} = 1, \\ -\infty & \text{otherwise.} \end{cases}$$
 Each data point (girls) chooses only one boy.

$$\checkmark S_{ij}(h_{ij}) = s_{ij}h_{ij}$$

- ✓ For $h_{ij} = 1$, $\beta_{ij}(1) = S_{ij}(1) + \alpha_{ij}(1)$
- ✓ For $h_{ij} = 0$, $β_{ij}(0) = S_{ij}(0) + α_{ij}(0)$
- ✓ Taking the difference

$$\beta_{ij} = \beta_{ij}(1) - \beta_{ij}(0) \longrightarrow \text{denoted}$$

$$= \left[S_{ij}(1) - S_{ij}(0) \right] + \left[\alpha_{ij}(1) - \alpha_{ij}(0) \right]$$

$$= s_{ij} + \alpha_{ij}$$

- ✓ For $h_{ij} = 1$, $\rho_{ij}(1) = S_{ij}(1) + \eta_{ij}(1)$
- ✓ For $h_{ij} = 0$, $ρ_{ij}(0) = S_{ij}(0) + η_{ij}(0)$
- ✓ Taking the difference

$$\rho_{ij} = \rho_{ij}(1) - \rho_{ij}(0) \longrightarrow \text{denoted}$$

$$= [S_{ij}(1) - S_{ij}(0)] + [\eta_{ij}(1) - \eta_{ij}(0)]$$

$$= S_{ij} + \eta_{ij}$$

✓ For
$$h_{ij} = 1$$

 $\eta_{ij}(1) = \max_{h_{ik}, k \neq j} [G_i(h_{i1}, ..., h_{ij} = 1, ..., h_{iN}) + \sum_{t \neq j} \beta_{it} (h_{it})] = \sum_{t \neq j} \beta_{it} (0)$

✓ For
$$h_{ij} = 0$$

$$\eta_{ij}(0) = \max_{h_{ik}, k \neq j} [G_i(h_{i1}, \dots, h_{ij} = 0, \dots, h_{iN}) + \sum_{t \neq j} \beta_{it} (h_{it})]$$

$$= \max_{k \neq j} [\beta_{ik}(1) + \sum_{t \notin \{k, j\}} \beta_{it} (0)]$$
 All except $\{j, k\}$ are zero.

Choose a boy of N-1 boys

✓ Taking the difference

$$\eta_{ij} = \eta_{ij}(1) - \eta_{ij}(0) = -\max_{k \neq j} \beta_{ik}.$$

For
$$h_{ij} = 1$$

$$\alpha_{ij}(1) = \max_{h_{kj}, k \neq i} [B_j(h_{1j}, \dots, h_{ij} = 1, \dots, h_{Nj}) + \sum_{t \neq i} \rho_{tj}(h_{it})] = \sum_{i \neq j} \rho_{tj}(0)$$

$$\begin{split} \text{For } h_{ij} &= 0 \\ \alpha_{ij}(1) &= \max_{h_{kj}, k \neq i} \left[B_j \big(h_{1j}, \ldots, h_{ij} = 1, \ldots, h_{Nj} \big) + \sum_{t \neq i} \rho_{tj} \left(h_{it} \right) \right] \\ &= \max_{k \neq i} [\rho_{kj}(1) + \sum_{k \neq i} \rho_{tj} \left(0 \right)] \quad \text{All except } \{j, k\} \text{ are zero.} \\ \text{Choose a girl of N-1 girls} \end{split}$$

✓ Taking the difference

$$\alpha_{ij} = \alpha_{ij}(1) - \alpha_{ij}(0) = \left[-\max_{k \neq j} \rho_{ik} \right].$$

✓ To summarize, the message update equations are:

$$\beta_{ij} = s_{ij} + \alpha_{ij}, \qquad \eta_{ij} = -\max_{k \neq j} \beta_{ik},$$

$$\rho_{ij} = s_{ij} + \eta_{ij}, \qquad \alpha_{ij} = -\max_{k \neq j} \rho_{ik}$$

✓ Finally Max-Sum message updates

$$\rho_{ij} = s_{ij} - \max_{k \neq j} (s_{ik} + \alpha_{ik}), \qquad \alpha_{ij} = -\max_{k \neq j} \rho_{ik}$$

✓ Max-min formulation

$$\checkmark G_i(h_{i:}) = \begin{cases} 0 & \text{if } \sum_j h_{ij} = 1, \\ -\infty & \text{otherwise.} \end{cases}$$
 Each data point (girls) chooses only one boy.

$$\checkmark S_{ij}(h_{ij}) = s_{ij}h_{ij}$$

- ✓ Most of the process is the same as Max-Sum
- For $h_{ij} = 1$ $\beta_{ij}(1) = \min[\alpha_{ij}(1), s_{ij}(1)]$
- For $h_{ij} = 0$ $\beta_{ij}(0) = \min[\alpha_{ij}(0)] = \alpha_{ij}(0)$
- ✓ Taking the difference,

$$\beta_{ij} = \min[\alpha_{ij}, \ s_{ij}(1) - \alpha_{ij}(0)]$$

- ✓ Most of the process is the same as Max-Sum
- For $h_{ij} = 1$ $\rho_{ij}(1) = \min \left[\eta_{ij}(1), \ s_{ij}(1) \right]$
- For $h_{ij} = 0$ $\rho_{ij}(0) = \min \left[\eta_{ij}(0) \right] = \eta_{ij}(0)$
- ✓ Taking the difference,

$$\rho_{ij} = \min \left[\eta_{ij}, \ s_{ij}(1) - \eta_{ij}(0) \right]$$

 \checkmark For $h_{ij} = 1$

$$\eta_{ij}(1) = \max[\min_{t \neq j} \beta_{it}(0)] = \min_{t \neq j} \beta_{it}(0)$$

 \checkmark For $h_{ij} = 0$

$$\eta_{ij}(0) = \max_{k \neq j} [\min[\beta_{ik}(1), \min_{t \neq k, j} \beta_{it}(0)]]$$

✓ It is difficult to make the difference

$$\checkmark$$
 For $h_{ij} = 1$

$$\alpha_{ij}(1) = \max[\min_{t \neq i} \rho_{tj}(0)] = \min_{t \neq i} \rho_{tj}(0)$$

 \checkmark For $h_{ij} = 0$

$$\alpha_{ij}(0) = \max_{k \neq i} [\min[\rho_{kj}(1), \min_{t \neq k,i} \rho_{tj}(0)]]$$

✓ It is difficult to make the difference

✓ To summarize, Max-Min message update equations are:

$$\beta_{ij}(h_{ij}) = \begin{cases} \min[\alpha_{ij}(1), \ s_{ij}(1)], & h_{ij} = 1\\ \alpha_{ij}(0), & h_{ij} = 0 \end{cases}$$

$$\eta_{ij}(h_{ij}) = \begin{cases} \min_{t \neq j} \beta_{it}(0), & h_{ij} = 1 \\ \max_{t \neq j} [\min[\beta_{it}(1), \min_{k \neq t, j} \beta_{ik}(0)]], & h_{ij} = 0 \end{cases}$$

$$\rho_{ij}(h_{ij}) = \begin{cases} \min[\eta_{ij}(1), \ s_{ij}(1)], & h_{ij} = 1\\ \eta_{ij}(0), & h_{ij} = 0 \end{cases}$$

$$\alpha_{ij}(h_{ij}) = \begin{cases} \min_{t \neq i} \rho_{tj}(0), & h_{ij} = 1\\ \max_{k \neq i} [\min[\rho_{kj}(1), \min_{t \neq k, i} \rho_{tj}(0)]], & h_{ij} = 0 \end{cases}$$

2.3 Simple examples of Binary AP Model

✓ Comparing the messages of Max-Sum and Max-Min:

Korea University

$$\checkmark$$
 $N_{girl} = 4$, $N_{boy} = 4$

$$w_{ij} = \begin{bmatrix} 8 & 2 & 8 & 1 \\ 7 & 8 & 7 & 2 \\ 1 & 2 & 9 & 9 \\ 4 & 9 & 8 & 4 \end{bmatrix}$$
 random

- ✓ Max-sum Discriminant
- $D_{ij} = \alpha_{ij} + \rho_{ij} > 0$ connect $D_{ij} = \alpha_{ij} + \rho_{ij} < 0$

not connect

- ✓ Max-min Discriminant
- $VD_{ij} = \min\{\alpha_{ij}(1), \rho_{ij}(1)\} \min\{\alpha_{ij}(0), \rho_{ij}(0)\} > 0$ connect

$$D_{ij} = \min\{\alpha_{ij}(1), \rho_{ij}(1)\} - \min\{\alpha_{ij}(0), \rho_{ij}(0)\} < 0$$

not connect

3. Summary

- 1. Graphical Models

Simplified Visual Representation of Complex Systems with Local Interations

- 2. Affinity Propagation

Simple Distributed Algorithm for General Class of Assignment Problems