Session: Regressions

Regression Algorithms
Linear Regression
Logistic Regression

Regressions

→ Regression Algorithms
Linear Regression
Logistic Regression

What is Regression 2012-04-26 allysis

- Regression models relationship between independent variable(s) (predictor) and dependent variable (target)
- Regressions are used to predict 'numeric' data
 - House prices
 - Stock price

Regression Algorithms

Algorithm	Description	Use Case
Linear Regression	Establishes a best fit 'straight line' Advantages: - Simple, well understood - Scales to large datasets Disadvantages - Prone to outliers	House pricesStock market
Logistic Regression	 Calculates the probability of outcome (success or failure) Used for 'classification' © Needs large sample sizes for accurate prediction 	- Mortgage application approval

Regression Algorithms

Algorithm	Description	Use Case
Polynomial Regression	If power of independent variable is more than 1. Y = a + b * X ² - Can be prone to overfitting - Results can be hard to explain	
Stepwise Regression	 When we have multiple independent variables, automatically selects significant variables No human intervention AIC 	- House price predictor

Regression Algorithms

Algorithm	Description	Use Case
Ridge Regression	used when independent variables are highly correlatedUses L2 regularization	
Lasso Regression	- Uses L1 regularization	
ElasticNet Regression	 Hybrid of Lasso and Ridge regressions 	

Linear Regression

Regression Algorithms

→ Linear Regression
Logistic Regression

Where Are We? Sold-125 Consent Chang Sold-125 Consent Change Sold-125 Consent Chang Sold-125 Consent Change Sold-125 Consen

Category	Sub Category	Example	Algorithms
supervised	Regressions	- Predict house prices	- → LinearRegression ←Logistic
	Classifications	Cancer or notSpam or not	Trees (random forestetc)SVM
Unsupervised	Clustering	- Group customers (soccer mom, nascar dad)	KmeansHierarchical clustering
	Dimensionality reduction	- Reduce the number of attributes to consider	- PCA
Semi- supervised		(large amount of data, but only a very small subset is labelled) at Chang <pre>chang <pre>ct Chang <pre>ct Chang <pre>cylincent.chang@macys.com> from Python ML @ Macy's 04/25/2108</pre></pre></pre></pre>	ht © 2016-17 Elephant Scale. All rights reserved

- Now our tip data include total bill amount too!
- Do you see any correlation?

Meal #	Bill (\$)	Tip (\$)
1	50	12
2	30	7
3	60	13
4	40	8
5	65	15
6	20	5
7	10	2
8	15	2
9	25	3
10	35	4

- There is clearly a correlation between bill amount and tip
- We can fit a line to predict tip
- This is linear regression!

Y = aX + b

$$Y = 2X + 4$$

2 – slope of line

4 – intercept

Linear Regression Value abullary

$$Y = aX + b$$

$$Y = b_0 + b_1 X$$

Term	Description	Synonyms
Independent Variable	The variable used to predict the response.	X-variableFeatureattribute
Response	The variable we are trying to predict.	Y-variableDependent variableTargetOutcome
Intercept	The intercept of the regression line - that is, the predicted value when X= 0	- b , b_0 , β_0
Regression coefficient	The slope of the regression line.	Slopeparameter estimatesWeightsa, b1

Using Linear Regression for Tips

Linear regression model closely resembles algebra model

$$Y = a X + b$$

Tip = a * bill + b

◆ If we figure out 'a' and 'b', then we can estimate tip for any amount

Calculating Linear Regression Model

Here is my Linear Regression Model coefficients

Tip = a * bill + b
a =
$$0.242$$

b = -1.40000

Seems like a reasonably good fit

Using Linear Regress on Model

Tip =0.2428571 * amount – 1.40 (Tip =
$$a$$
 * $bill + b$)

We can use this formula to predict tips.

Tip for \$100 bill

= 0.2428571 * 100 - 1.40

= \$ 22.88

В		Actual tip(\$)	estimated tip
	50	12	10.742855
	30	7	5.885713
	60	13	13.171426
	40	8	8.314284
a la a a m . a al . /	C.F.	4.5	14 2057445
observed /	65	15	
known data	20	5	
	10	2	1.028571
	15	2	2.2428565
	25	3	4.6714275
	35	4	7.0999985
	70	?	15.599997
New Data	80	?	18.028568
	90	?	20.457139
	100	?	22.88571

$$SS_{(residuals)} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- ◆ Y_i = actual value
- ◆ Y-hat-_i = predicted value

Evaluating Linear Regression Model: RSS

Quiz:

- Explain the 'observed tip' vs. 'predicted tip'
- Why is sum of residuals zero?
- Why is SSE not zero?
- Why is there no residual on \$100 bill ?

	Bill (\$)	tip (\$)		residual (actual tip - estimated tip)	residual squared	
	50	12	10.742855	1.257145	1.580413551	
	30	7	5.885713	1.114287	1.241635518	
	60	13	13.171426	-0.171426	0.029386873	
	40	8	8.314284	-0.314284	0.098774433	
observed / known	65	15	14.3857115	0.6142885	0.377350361	
data	20	5	3.457142	1.542858	2.380410808	max
	10	2		0.971429		
	15	2		-0.2428565	0.05897928	
	25	3	4.6714275	-1.6714275	2.793669888	
	35	4	7.0999985	-3.0999985	9.6099907	min
				0	19.11428571	SSE
	70	?	15.599997			
New Data	80	?	18.028568			
Tion Data	90	?	20.457139			
	100	· ·	22.88571			

Gradient Descent Alg- Tithm Gradient Descent Alg- Tithm

Iterative algorithm to find 'minimum' of a function

Gradient Descent Algerithm Consider the personal use only for Vincent Chang vincent.chang@macys.com from Python ML @ Macy's 04/25/2108 @ Macy's 0

Another example in 3D data

Evaluating Linear Regiression Models

- What is the accuracy of the model
 - Residual Sum of Squares(RSS) / Sum of the Squared Errors(SSE) / Sum of Squared Residuals (SSR):
- How well does our regression equation represent data?
 - Two measures
 - correlation coefficient (r)
 - coefficient of determination (r^2)
- t-statistic
- p-value

Fitted Values & Resident Chang emacys.com> from Python ML @ Macy's 04/25/2108 Resident Chang emacys.com> from Python ML @ Macy's 04/25/2108

- Data doesn't fall exactly on line
- There is usually a 'delta' or 'error' between actual value and predicted value
- Residual Sum of Squares(RSS) / Sum of the Squared Errors (SSE) / Sum of Squared Residuals (SSR):
 measures this
- Fitting algorithms try to minimize RSS

Term	Description	Synonyms
Fitted values	The estimates obtained from the regression line.	- predicted values
Residuals	The difference between the observed values and the fitted values.	- errors
Least squares	The method of fitting a regression by minimizing the sum of squared residuals.	- ordinary least squares

Evaluating Linear Regression: Correlation Coefficient C

- Perfect correlation occurs when
 - r = -1 (negative)
 - Or r = +1 (positive)
 - This is when the data points all lie in straight line (regression line!)
- ◆ A correlation |r| >= 0.8 is considered strong
- ◆ A correlation |r| < 0.5 is considered weak.</p>

Evaluating Linear Regression Model: Coefficient of Licensed for personal use only for Vincent Chang «Vincent.chang@macys.com» from Python ML @ Macy's 04/25/2108 @ 2018-04-25

- 'Coefficient of Determination' tells us how well our model 'fits' the data
- ◆ Also referred as 'R squared' / R² / r²
- Coefficient of Determination = (Correlation Coefficient)²
- ◆ 0 <= r² <= 1
 r² = 1 : regression line passes through all data points
- In our model
 r = 0.9522154
 r² = 0.9067141 = 90.67 %
 That is a pretty good fit!
- Represents the percent of the data that is the closest to the line of best fit
 - So in our case : 90.67% of total variation in Y (tips) can be explained by linear relation between Y (tip) and X (bill)
 - The rest is 'unexplained' by the model

Linear Regression Cost (R)

```
tip_data = data.frame(bill = c(50,30,60,40,65,20,10,15,25,35),
                     tip = c(12, 7.13, 8.15, 5.2, 2, 3, 4)
View(tip_data) # R Studio
plot(tip_data)
tip.lm = lm(tip ~ bill, data=tip_data)
# plot regression against data
abline(tip.lm, col='red')
                                                         9
                                                     ŧ,
summary(tip.lm)
                                                         9
Call:lm(formula = tip ~ bill, data = tip_data)
Residuals:
                                                                        40
   Min 10 Median 30 Max
-3.1000 -0.2964 0.2214 1.0786 1.5429
                                                                       bill
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.40000 1.08078 -1.295 0.231
bi11
        0.24286 0.02754 8.818 2.15e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.546 on 8 degrees of freedom
Multiple R-squared: 0.9067, Adjusted R-squared: 0.8951
F-statistic: 77.76 on 1 and 8 DF. p-value: 2.153e-05
```

Evaluating Linear Model

	Coefficient	Std. Error	t-statistic	p-value
Intercept	-1.4	1.080	-1.295	0.23
Slope (bill)	0.242	0.027	8.818	0.000215 (2.15e-5)

- Slope (bill coefficient) indicates, every \$1 increase in bill, will result in \$0.242 (almost 25c) in tips.
 \$100 increase in bill → \$24.2 in tips
- Small p-values indicates a strong association between predictor (X) and response (Y).
 - X is statistically significant in deciding Y

Linear Regression Con-425 e (R)

```
# estimating fitted values and residuals
fitted = predict(tip.lm)
resid = residuals(tip.lm)
# get them all in one dataframe
a = cbind(tip_data, fitted)
b = cbind(a, resid)
resid.squared = b['resid'] * b['resid']
colnames(resid.squared) = c("resid.squared")
c = cbind(b, resid.squared)
View(c) # next slide
# calculate some
sum(c['resid'])
-5.551115e-17 # almost zero!
sum(c['resid.squared'])
19.11429
```

Visualizing Fitted / Residuals / Residual Squared

	actual pred		redicted	residua delta	squared
	bill [‡]	tip 🗦	fitted	resid [‡]	resid.squared
1	50	12	10.742857	1.2571429	1.58040816
2	30	7	5.885714	1.1142857	1.24163265
3	60	13	13.171429	-0.1714286	0.02938776
4	40	8	8.314286	-0.3142857	0.09877551
5	65	15	14.385714	0.6142857	0.37734694
6	20	5	3.457143	1.5428571	2.38040816
7	10	2	1.028571	0.9714286	0.94367347
8	15	2	2.242857	-0.2428571	0.05897959
9	25	3	4.671429	-1.6714286	2.79367347
10	35	4	7.100000	-3.1000000	9.61000000

Linear Regression, God & Bad Bad

The Good	The Bad
- Relatively simple to understand	 Linear algorithm : will perform poorly if the inputs are not aligned along
 Computationally simple, very scalable to large data sets 	boundary
	- Can underfit data

Lab: Linear Regressions with the latest control of the latest regression of the latest regressio

- Overview:
 - **Practice Linear Regressions**
- Approximate Time: 30 mins
- Instructions:
 - Linear-regression / 1-lr
 - Follow appropriate Python / R / Spark instructions

Multiple Linear Regression

Regression Algorithms

→ Linear Regression
Logistic Regression

Problem: House Prices

Sale Price \$	Bedrooms	Bathrooms	Sqft_Living	Sqft_Lot
280,000	6	3	2,400	9,373
1,000,000	4	3.75	3,764	20,156
745,000	4	1.75	2.060	26,036
425,000	5	3.75	3,200	8,618
240,000	4	1.75	1,720	8,620
327,000	3	1.5	1,750	34,465
347,000	4	1.75	1,860	14,650

- Multiple factors decide house prices
- ◆ It is not a simple Y ~ X any more
- We will use multiple linear regression

Multiple Linear Regression Multiple Linear Regression Multiple Linear Regression

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p + e$$

Outcome depends on multiple variables

Multitple Linear Regulaces ion Code (R)

```
house.sales = read.csv("house-sales.csv")
# 27.000 entries
# run mlr
house.lm = lm(SalePrice ~ Bedrooms + Bathrooms + SqFtTotLiving + SqFtLot,
         data = house.prices, na.action = na.omit)
summary(house.lm)
Call:lm(formula = SalePrice ~ Bedrooms + Bathrooms + SgFtTotLiving + SgFtLot, data =
house.prices, na.action = na.omit)
Residuals:
   Min 10 Median 30 Max
-1955089 -114575 -13670 81734 9081935
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
Bathrooms 16274.19139 2970.77108 5.478
                                        0.0000000434 ***
SqFtLot -0.07457 0.05472 -1.363
                                           0.173
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 246400 on 27058 degrees of freedom
Multiple R-squared: 0.4835, Adjusted R-squared: 0.4834
F-statistic: 6332 on 4 and 27058 DF, p-value: < 0.0000000000000022
```

```
summary(house.lm)
Call:lm(formula = SalePrice ~ Bedrooms + Bathrooms + SgFtTotLiving + SgFtLot, data =
house.prices, na.action = na.omit)
Residuals:
        10 Median 30 Max
    Min
 -1955089 -114575 -13670 81734 9081935
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) 106303.30612
                         6254.77558 16.996 < 0.0000000000000000 ***
Bedrooms -65211.73613
                         2151.67471 -30.307 < 0.00000000000000002 ***
Bathrooms 16274.19139 2970.77108 5.478
                                                  0.0000000434 ***
                            2.66890 104.106 < 0.0000000000000000 ***
SqFtTotLiving 277.84805
SqFtLot -0.07457 0.05472 -1.363
                                                        0.173
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 246400 on 27058 degrees of freedom
Multiple R-squared: 0.4835, Adjusted R-squared: 0.4834
F-statistic: 6332 on 4 and 27058 DF, p-value: < 0.000000000000022
```

- Adding one extra 'sqftTotLiving' space increases the house price by \$277.85
 - While holding all other variables the same

Predicting Prices - Sample Code (R)

Let's predict some home prices based on our model

	Bedrooms	Bathrooms	SqFtTotLiving	SqFtLot [®]	predicted.prices		
1	5	3.0	4400	10000	1050852.9		
2	3	2.0	1800	5000	442970.1		
3	2	1.5	1500	4000	416764.9		
new data							

Evaluating The Mod @ 4-25

Root Mean Squared Error (RMSE):
 Square root of the average squared error in predicted values

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$

Residual Standard Error (RSE):

n - observations, p - predictors

$$RSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{(n-p-1)}}$$

Interpreting Results 18-04-25

```
summary(house.lm)
Call:lm(formula = SalePrice ~ Bedrooms + Bathrooms + SgFtTotLiving + SgFtLot, data =
house.prices, na.action = na.omit)
Residuals:
   Min 10 Median 30 Max
-1955089 -114575 -13670 81734 9081935
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
Bathrooms 16274,19139 2970.77108 5.478
                                         0.0000000434 ***
SqFtTotLiving 277.84805 2.66890 104.106 < 0.0000000000000002 ***
SqFtLot -0.07457 0.05472 -1.363
                                              0.173
---Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 246400 on 27058 degrees of freedom
Multiple R-squared: 0.4835, Adjusted R-squared: 0.4834
F-statistic: 6332 on 4 and 27058 DF, p-value: < 0.0000000000000022
```

RSE is 246400

Coefficient of Determenation (R²)

- ◆ R² ranges from 0 to 1
- Measures how well the model fits the data

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

Interpreting Results R

```
summary(house.lm)
Call:lm(formula = SalePrice ~ Bedrooms + Bathrooms + SqFtTotLiving + SqFtLot, data =
house.prices, na.action = na.omit)
Residuals:
   Min
      10 Median 30 Max
-1955089 -114575 -13670 81734 9081935
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 106303.30612
                     6254.77558 16.996 < 0.00000000000000002 ***
Bathrooms 16274.19139 2970.77108 5.478
                                          0.0000000434 ***
SqFtLot -0.07457 0.05472 -1.363
                                               0.173
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 246400 on 27058 degrees of freedom
Multiple R-squared: 0.4835, Adjusted R-squared: 0.4834
F-statistic: 6332 on 4 and 27058 DF, p-value: < 0.0000000000000022
```

- ◆ R² is 0.4835 not a great fit
- Adjusted R² which adjusts for degrees of freedom.
 Pretty much the same as R² here
- Question for class:
 Why is R² not close to 1? (as in why is it not a great fit?)

Adding More Variabiase only for Vincent Chang emacys.com> from Python ML @ Macy's 04/25/2108 (Adding More Variabiase)

```
house.lm = lm(SalePrice ~ Bedrooms + Bathrooms + SqFtTotLiving
+ SqFtLot, data = house.prices, na.action = na.omit)
```

- Our current formula included only a few attributes : Bedrooms
 + Bathrooms + SqFtTotLiving + SqFtLot
- Can we add more attributes?

Deciding Important 2018/04-ariables

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p + e$$

- In Multiple Linear Regressions many predictors determine the value of response
- How can we know which ones are important?
- Imagine an equation
 Y = b0 + b1 X₁ + b2 X₂
- We have two predictors $X_1 \& X_2$ (p = 2)
- ◆ Possible combinations 2^p = 2² = 4
 - No variables
 - X₁ only
 - $-X_2$ only
 - Both X₁ and X₂

Deciding Important 20 to a riables

- Possible combinations 2^p can get large for sizeable p values.
 - $-P = 10 \rightarrow 2^{10} \rightarrow 1024$ combinations
 - $-P = 20 \rightarrow 2^{20} \rightarrow 1,048,576$ (1 million+) combinations
- Some algorithms to decide important variables quickly
 - Mallow's Cp
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)

Deciding Important 20 % 4-a riables

There are 3 classical approaches

Forward Selection

- Begin with null model (has only intercept, and no variables)
- Run p simple linear regressions and add to null model that results in lowest RSS

Backward Selection

- Start with all variables
- Remove variables with largest p-value (least statistically significant)
- Keep going until desired p-value threshold is reached

Mixed Selection

- Combination of forward / backward selection

Akaike's Informatio Criteria (AIC)

- Adding more variables will reduce RMSE and increase R² (towards 1)
- How ever that doesn't mean we have a better model
- So we need other measures to evaluate the model
- Akaike's Information Criteria (AIC) can be helpful
 - Developed by Hirotugu Akaike, a prominent Japanese statistician
- If I add 'k' more variables the AIC is penalized by atleast 2k
- Goal is to find minimal 'AIC'

```
AIC = 2p + n \log (RSS / n)
```

- p number of variables
- n number of records

Calculating AIC - Sail ple Code (R)

```
options(scipen=999)
library(MASS)
house.prices = read.csv("house-sales-full.csv")
# using all attributes for LM
house.lm.full <- lm(SalePrice ~ SqFtTotLiving + SqFtLot +
Bathrooms + Bedrooms + BldgGrade + PropertyType +
NbrLivingUnits + SqFtFinBasement + YrBuilt + YrRenovated +
NewConstruction.
       data=house.prices, na.action=na.omit)
step <- stepAIC(house.lm.full, direction="both")</pre>
step
```

Calculating AIC - Saint ple Code (R)

```
step
Call:
Im(formula = SalePrice ~ SqFtTotLiving + Bathrooms + Bedrooms +
                                                                      BldgGrade + PropertyType
+ SqFtFinBasement + YrBuilt + NewConstruction,
     data = house.prices, na.action = na.omit)
Coefficients:
              (Intercept)
                                        SqFtTotLiving
                                                                        Bathrooms
                5730856.779
                                                170.255
                                                                          37950.708
                                              BldgGrade
                   Bedrooms
                                                         PropertyTypeSingle Family
                 -44124.897
                                             122498.089
                                                                          14862.934
      PropertyTypeTownhouse
                                        SaFtFinBasement
                                                                            YrBuilt
                  77562.844
                                                  8.153
                                                                          -3286.098
        NewConstructionTRUE
                                               7886.546
```

- stepAIC has come up with a new formula
- Dropped attributes: SqFtLot, NbrLivingUnits, YrRenovated, and NewConstruction.

Lab: Multiple Linear²⁰¹⁸ egression

Overview:

Practice Multiple Linear Regressions

Approximate Time:

30 mins

Instructions:

Follow appropriate Python / R / Spark instructions

– LIR-2 : House prices

- LIR-3 : AIC

Linear Regression: Public Reading

Logistic Regression

Regression Algorithms
Linear Regression

→ Logistic Regression

Where Are We? Sold-25 Are well as a conjugate only for Vincent Chang < vincent.chang@macys.com > from Python ML @ Macy's 04/25/2108 @ 2018-04-25

Category	Sub Category	Example	Algorithms
supervised	Regressions	- Predict house prices	LinearRegression→ Logistic ←
	Classifications	Cancer or notSpam or not	Trees (random forestetc)SVM
Unsupervised	Clustering	 Group customers (soccer mom, nascar dad) 	KmeansHierarchical clustering
	Dimensionality reduction	- Reduce the number of attributes to consider	- PCA
Semi- supervised		(large amount of data, but only a very small subset is labelled)	ht © 2016-17 Elephant Scale. All rights reserved

Licensed for personal use only for Vincent Chang <vincent.chang@macys.com> from Python ML @ Macy's 04/25/2108 @

Problem: Applying for Credit Card

- In US most adults have a 'credit score' (a.k.a. FICO score)
- Ranges from 300 (very poor) to 850 (excellent)
- Credit score is a big determining factor when applying for loans / mortgages / credit cards

Problem: Applying for Vincent Chang «vincent chang (wincent chang

- Here is historical data on credit score and if the credit application is approved
- What is the chance some one with score of 700 getting a credit card approved?

Credit Score	Approved?
560	No
750	Yes
680	Yes
650	No
450	No
800	Yes
775	Yes
525	No
620	No
705	No
830	Yes
610	Yes
690 m Python ML @ Macy's 04/25/2108	No

Plotting Credit Approval Data Licensed for personal use only for Vincent Chang vincent.chang@macys.com from Python ML @ Macy's 04/25/2108 @ Data

Plotting Credit Approval Data Licensed for personal use only for Vincent Chang «vincent.chang @ macys.com» from Pythop ML @ Macy's 04/25/2108 @ Credit Approval Data

- ◆ X axis = credit score
- ◆ Y axis = 0 (declined) , 1 (approved) , nothing in between
- There is no linear fit line!

Licensed for personal use only for Vincent Chang vincent.chang@macys.com> from Python ML @ Macy's 04/25/2108 @ Licensed for personal use only for Vincent Chang vincent.chang@macys.com> from Python ML @ Macy's 04/25/2108 @

- Linear Regression provides continuous Y values
- Classification gives out discrete output (Spam / Not-Spam)
- Logistic Regression is in between
 - Predicts binary outcomes (approved / not–approved)
 - But gives out probability (78% chance this is SPAM, 45% of loan being approved)
 - That is why it is a 'regression' not 'classification'

Logistic Regression 2018-04-25

- Logistic Regression gives out probability
 - 70% chance this email is Spam
- When predicting two outcomes (approved / denied)
 - Binary logistic regression (two outcomes)

 Invented by Sir David Cox (author of 364 books and papers!)

Math Behind Logisties-04-2 Regression

- 'Logit' function
 - Calculates 'odds'

$$f(x)=rac{L}{1+\mathrm{e}^{-k(x-x_0)}}$$

where

- e = the natural logarithm base (also known as Euler's number),
- x₀ = the x-value of the sigmoid's midpoint,
- L = the curve's maximum value, and
- k = the steepness of the curve.^[1]

Math Behind Simple 2018 2018 2018 2018 C Regression

Let's say

 $\sum M$ ath \int

- β represents parameters
- X is independent variable

Log(odds) = In
$$(y / (1-y)) = \beta_0 + \beta_1 * x_1$$

Log (odds) or log-odds ration =
$$\ln(\frac{p}{1-p})$$

Where p is the probably the event will occur

Applying Logistic Regression To Credit Card Application 2018-04-25 Application Credit Card Application

- ◆ LR predicts if I have a credit score of 700 (X)
 - I have ~85% probability of getting a card approved

Advantages of logistive regression

Advantages

- Provides probability as output
- Includes multiple explanatory variable (dependent variable)
- Provides a quantified value for the strength of the association adjusting for other variables

Preconditions

- Needs enough data with each possible set of explanatory variable
- Need to test the assumption of linearity before including it in the model
- Combines both binomial and normal distribution. This can sometimes cause problems
- Defining variables can be complicated and must be carefully planned

Multinomial logistic 2016-142 gression ML @ Macy's 04/25/2108 @ Multinomial logistic 2016-142 gression

- We have seen Logistic Regression predicting binary outcomes
 - Approved / Denied
- We can use it to calculate 'more than two' states as well
 - multinomial logistic regression
- For K possible outcomes
 - Chose one outcome as a "pivot"
 - The other K-1 outcomes can be separately regressed
 - against the pivot outcome

Multiple Logistic Registession Multiple Logistic Registession

- So far we have seen ONE predictor determining the outcome
 - Credit score determining approval / denial
- We can have multiple factors (independent variables) determining an outcome as well
 - This is called 'multiple logistic regression'

Math Behind Multiple Logistic Regression

Let's say

 $\sum Math \int$

- β represents parameters
- X is independent variable (we have more than one)

Log(odds) = In
$$(y / (1-y)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + + \beta_n x_n$$

Log (odds) or log-odds ration =
$$\ln(\frac{p}{1-p})$$

Where p is the probably the event will occur

Lab: Logistic Regression Vincent Chang vincent.chang@macys.com> from Python ML @ Macy's 04/25/2108 @

Overview:

Practice Logistic Regression

Approximate Time:

30 mins

Instructions:

Follow appropriate Python / R / Spark instructions

– LOGR-1 : Credit card approval

- LOGR-2:

Logistic Regression 2018 of Personal use only for Vincent Chang wmacy's 04/25/2108 a Macy's 04/25/2108 and Macy's 04/25/2108