Semaine n° 16: du 15 janvier au 19 janvier

Lundi 15 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 1.1 : Polynômes à une indéterminée à coefficients dans \mathbb{K} , anneau $\mathbb{K}[X]$; monômes; degré d'un polynôme.
 - Partie 1.2 : Somme et produit de deux polynômes.
 - Partie 1.3 : Composée de deux polynômes.
 - Partie 1.4 : Degré d'une somme de polynômes, d'un produit, d'une composée ; l'anneau $\mathbb{K}[X]$ est intègre ; polynômes associés.

Mardi 16 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 1.5 : Evaluation d'un polynôme P en $x \in \mathbb{K}$; fonction polynômiale associée à un polynôme.
 - Partie 1.6: Division euclidenne d'un polynôme par un polynôme non nul.
- Exercices à corriger en classe
 - Feuille d'exercices nº 15 : exercice 14.

Jeudi 18 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 1.7 : Algorithme de Horner.
 - Partie 2.1 : Racines d'un polynôme; ordre de multiplicité d'une racine.
 - Partie 2.2: Majoration par le degré du nombre de racines d'un polynôme non nul.
 - Partie 2.3: Polynômes scindés, relations coefficients-racines.
- Exercices à corriger en classe
 - Feuille d'exercices nº 15 : exercices 3 et 7.

Vendredi 19 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 2.4: Théorème de d'Alembert-Gauss; polynômes irréductibles de $\mathbb{C}[X]$, de $\mathbb{R}[X]$.
 - Partie 2.5 : Décomposition en produit de polynômes irréductibles dans $\mathbb{C}[X]$, dans $\mathbb{R}[X]$.

Échauffements

Mardi 16 janvier

- Déterminer l'ensemble (u_n) vérifiant pour tout $n \in \mathbb{N}$, $u_{n+2} + 2u_{n+1} + u_n = 4$.
- Cocher toutes les assertions vraies :
 - \square Toute suite monotone a une limite.
 - \square Toute fonction monotone a une limite en tout point.
 - ☐ Toute fonction monotone a une limite à droite en tout point.
 - □ Toute fonction décroissante et minorée a une limite à droite finie en tout point.

Jeudi 18 janvier

- Calculer $\int_{-\infty}^{\infty} (1+t)e^{-t} dt$.
- Cocher toutes les assertions vraies : Soit $f: \mathbb{R} \to \mathbb{R}$. On suppose que $\frac{f(x)}{x}$ tend vers 1 quand xtend vers $+\infty$. Alors sur un voisinage de $+\infty$

$$\Box f(x) = x$$

$$\Box f(x) \geqslant \frac{x}{2}$$

$$\Box f(x) \geqslant x$$

$$\Box f(x) \geqslant \frac{x}{2}$$
$$\Box f(x) \geqslant 2x$$

Vendredi 19 janvier

- Effectuez la division euclidienne de $A=X^7-X^6+X^5+2X^2+1$ par $B=X^3-X-1$.
- Cocher toutes les assertions vraies : Soit f une fonction continue sur [0,1[.
 - \square Si $\forall x \in [0,1[, f(x) > 0, \text{ alors } \exists a > 0 \text{ tel que } \forall x \in [0,1[, f(x) \geqslant a.$
 - \square Si f admet une limite finie en 1 alors f est prolongeable par continuité en 1.
 - \square Si $\lim_{x \to 1} f(x) = +\infty$, alors f est minorée sur [0,1[.
 - \square Alors $\frac{f(x)-f\left(\frac{1}{2}\right)}{x-\frac{1}{2}}$ admet une limite quand x tend vers $\frac{1}{2}$.