# Alternation Is Strict For Higher-Order Modal Fixpoint Logic

Alternating Krivine Automata and Alternation

Florian Bruse

University of Kassel, Germany

September 15, 2016

## **Motivation**

HFL: Higher-order Modal Fixpoint Logic:  $\mathcal{L}_{\mu}$  + simply typed lambda calculus

Alternating Parity Krivine Automata (APKA): Operational semantics for HFL

#### Motivation:

- enables local model-checking techniques
- automaton-based characterization of alternation
- possible intermediate to higher-order recursion schemes

# **Types**

```
simple types given via \tau ::= \Pr \mid \tau \to \tau because of right-associativity: \tau = \tau_1 \to \ldots \to \tau_m \to \Pr each type induces a complete lattice over transition system \mathcal{T} = (\mathcal{S}, \to, L) using pointwise orderings \sqsubseteq
```

$$\llbracket \mathsf{Pr} \rrbracket \ := \ (2^{\mathcal{S}}, \subseteq)$$
 
$$\llbracket \sigma \to \tau \rrbracket \ := \ (\llbracket \sigma \rrbracket \to_{\mathsf{mon.}} \llbracket \tau \rrbracket, \sqsubseteq)$$

type system

# Syntax of HFL

```
HFL = modal \mu-calculus + simply typed \lambda-calculus [Viswanathan² '04] \varphi ::= q | \neg q | X | \varphi \lor \varphi | \langle a \rangle \varphi | \mu(X:\tau).\varphi | \lambda(X:\tau).\varphi | \varphi \varphi plus duals \varphi \land \psi, [a]\varphi, \nu(X:\tau) natively well-formedness condition given by type system (not given here)
```

NB: can allow negation on arbitrary formulae, cope with extended

## An Example Formula

Consider 
$$(\mu X.\lambda x. x \vee (X[a]x))P$$
.

Unfolding via 
$$\sigma X.\psi = \psi[\sigma X.\psi/X]$$
 yields  $(\lambda x. x \lor (\mu X.\lambda x'. x' \lor (X [a]x')) [a]x) P.$ 

Using  $\beta$ -reduction we get  $P \lor (\mu X.\lambda x'. x' \lor (X [a]x')) [a]P$ .

# More unfolding:

$$P \lor (\lambda x'. x' \lor (\mu X.\lambda x''. x'' \lor (X [a]x'')) [a]x') [a]P.$$

More  $\beta$ -reduction:

$$P \vee [a]P \vee (\mu X.\lambda x''. x'' \vee (X [a]x'')) [a][a]P)$$
.

We get:  $P \vee [a]P \vee [a][a]P \vee \ldots = \bigvee_{i=0}^{n} [a]^{i}P$  uniform inevitability!

# **Operational Semantics for HFL**

proposed automaton model: Alternating Parity Krivine Automata (APKA)

- alternation for Boolean and modal operators  $(\vee, \wedge, \langle a \rangle, [b])$
- (stair-)parity condition for fixpoints
- Krivine Abstract Machine for higher-order features

challenge: get acceptance condition right, i.e., synchronize parity condition with Krivine machine

# **Alternating Parity Krivine Automata**

APKA of index *m* is  $\mathcal{A} = (\mathcal{X}, \delta, I, \Lambda, (\tau_X)_{X \in \mathcal{X}})$  where

- finite set of (fixpoint) states  $\mathcal{X} = \{X_1, \dots, X_n\}$
- priority function  $\Lambda \colon \mathcal{X} \to [1, m]$ , resp. [0, m-1]
- transition function  $\delta \colon X \mapsto \varphi_X$ , generated from

$$\psi ::= P \mid \neg P \mid \psi \land \psi \mid \psi \lor \psi \mid \langle a \rangle \psi \mid [a] \psi \mid f_i^X \mid X' \mid (\psi \psi)$$

where  $f_i^X$  of type  $\tau_i^X$  for  $i \leq n_X$  and  $\varphi_X$  of type  $\tau_X$ .

assignment of argument and value types

$$\tau_X = \tau_1^X \to \cdots \to \tau_{n_X}^X \to \Pr$$

•  $I \in \mathcal{X}$  initial state with  $\tau_I = \Pr$ 

state space is  $Q = \mathcal{X} \cup \bigcup_{X \in \mathcal{X}} \mathsf{sub}(\delta(X))$ 

## **Environments and Closures**

environments handle variable lookup

$$e ::= e_0 \mid e = (f_1^X \mapsto (\psi_1, e_1), \dots, f_{n_X}^X \mapsto (\psi_{n_X}, e_{n_X}), e')$$

e' is parent environment

 $(\psi, e_i)$  called closure

variable lookup:

$$e(f) = \begin{cases} (\psi_i, e_i) &, \text{ if } f = f_i^X \\ \text{undefined} &, \text{ otherwise} \end{cases}$$

## **Configurations**

APKA accept LTS; explained in terms of 2-player game on configurations of the form

$$C = (s, (\psi, e), e', \Gamma, \Delta)$$

#### where

- s is current state in LTS
- $(\psi, e)$  current closure with  $\psi \in \mathcal{Q}$ , e environment
- e' distinguished environment (point of current computation)
- $\Gamma = (\psi_n, e_n), \dots, (\psi_1, e_1)$  stack of closures
- △ stack of priorities

only use well-formed configurations (all environments defined etc.)

## **Acceptance of APKA**

run over  $\mathcal{T}, s_0$  starts in  $(s_0, (I, e_0), e_0, \epsilon, \epsilon)$ 

game played between V and R:

- players move as per the transition relation (below)
- automaton accepts structure if V wins
- player who gets stuck loses
- infinite plays → stair-parity condition on sequence of priority stacks

transition from  $(s, (\psi, e), e', \Gamma, \Delta)$  depending on  $\psi$ 

- $\psi = P$  or  $\psi = \neg P$ : **V** wins iff  $\mathcal{T}, s \models \psi$
- $\psi = \psi_1 \vee \psi_2$ : **V** chooses *i*, continue at  $(s, (\psi_i, e), e', \Gamma, \Delta)$
- $\psi = [a]\psi'$ : **R** chooses  $s \xrightarrow{a} t$ , cont. at  $(t, (\psi', e), e', \Gamma, \Delta)$
- •

## More Game Moves

transition from  $(s, (\psi, e), e', \Gamma, \Delta)$  depending on  $\psi$ 

- $\psi = (\psi_1 \, \psi_2)$ : continue at  $(s, (\psi_1, e), e', \Gamma \cdot (\psi_2, e), \Delta)$
- $\psi = X$ : continue  $(s, (\delta(X), e''), e'', \epsilon, \Delta \cdot \Lambda(X))$  where  $\Gamma = C_1, \dots, C_{n_X}$  and  $e'' = (f_1^X \mapsto C_1, \dots, f_{n_X}^X \mapsto C_{n_X}, e')$  new
- $\psi = f$  not of ground type: go to  $(s, e(f), e', \Gamma, \Delta)$
- $\psi = f$  of ground type : go to  $(s, (\psi', e''), e'', \Gamma, \Delta')$  where  $e(f) = (\psi', e'')$  and  $\Delta'$  is  $\Delta$  with as many priorities removed as are between e' and e''

special role for ground type variables: undo priorities until "caller" is reached

# An Example

Consider  $\mathcal{A} = (\mathcal{X}, \Lambda, I, \delta, (\tau_X)_{X \in \mathcal{X}})$  with

- $\mathcal{X} = \{I, X, Y\}$
- $\tau_I = \tau_Y = \Pr$ ,  $\tau_X = \Pr \rightarrow \Pr$
- $\Lambda(I) = \Lambda(X) = 1, \Lambda(Y) = 0$
- $\delta(I) = \emptyset \mapsto (X \neg P)$
- $\delta(X) = x : \Pr \mapsto (\Diamond x) \vee \Box Y$
- $\delta(Y) = \emptyset \mapsto (X Y)$

Equivalent to 
$$(\mu X.\lambda x. \Diamond x \vee \Box \nu Y.(X Y)) \neg P$$

Run over (tree-unfolding of) this structure:



## **An Example Run**

$$C_{0} = (s_{1}, (I, e_{0}), e_{0}, \epsilon, \epsilon)$$

$$C_{1} = (s_{1}, ((X \neg P), e_{0}), e_{0}, \epsilon, 1)$$

$$C_{2} = (s_{1}, (X, e_{0}), e_{0}, (\neg P, e_{0}), 1)$$

$$C_{3} = (s_{1}, (((\lozenge X) \lor \Box Y), e_{1}), e_{1}, \epsilon, 11)$$

$$C_{4} = (s_{1}, ((\Box Y), e_{1}), e_{1}, \epsilon, 11)$$

$$C_{5} = (s_{2}, (Y, e_{1}), e_{1}, \epsilon, 11)$$

$$C_{6} = (s_{2}, ((X Y), e_{2}), e_{2}, \epsilon, 110)$$

$$C_{7} = (s_{2}, (X, e_{2}), e_{2}, (Y, e_{2}), 110)$$

$$C_{8} = (s_{2}, (((\lozenge X) \lor \Box Y), e_{3}), e_{3}, \epsilon, 1101)$$

$$C_{9} = (s_{2}, (((\lozenge X), e_{3}), e_{3}, \epsilon, 1101)$$

$$C_{10} = (s_{3}, (X, e_{3}), e_{3}, \epsilon, 1101)$$

$$C_{11} = (s_{3}, (Y, e_{2}), e_{2}, \epsilon, 110)$$



$$e_1 = (x \mapsto (\neg P, e_0), e_0)$$
  
 $e_2 = (\epsilon, e_1)$   
 $e_3 = (x \mapsto (Y, e_2), e_2)$ 

## **Fixpoint Alternation**

higher-order does not conquer fixpoint alternation

### Theorem 1

For every  $m \ge 2$  there is an APKA  $A_m$  index m that is not equivalent to any APKA of index < m.

NB:  $\mathcal{A}_m$  independent of type order also induces alternation hierarchy on HFL

# Sketch of the proof

- F.a. m fix suitable vocabulary  $\tau_m$  and restrict to fully binary infinite trees
- Take game tree for acceptance game of a run of order-m automaton as underlying set of new LTS
- Annotate (via propositions) nodes in tree (configurations in game) depending on who moves, parity stack operations ↔ new tree T.

## **Game Tree**

# Sketch of the proof

- F.a. m fix suitable vocabulary  $\tau_m$  and restrict to fully binary infinite trees
- Take game tree of acceptance game of a run of order-m automaton as underlying set of new LTS
- Annotate (via propositions) nodes in tree (configurations in game) depending on who moves, parity stack operations ↔ new tree T.
- F.a. m there is fixed  $A_m$  s.t.  $T \models A_m$  iff V wins underlying game
- This operation is contraction on metric space of f.b.i. trees 

   obtain fixpoint via Banach Fixpoint Theorem
- No automaton of index < m can be equivalent to  $\mathcal{A}_m$  over this fixpoint