Constraints

Penalty

Bories

Lagrange

Common Types

xiza xisb

$$\vec{g}(\vec{x}) = \begin{bmatrix} -x_i + q \\ x_i - b \end{bmatrix}$$

$$\vec{h}(\vec{x}) = \vec{w}^T \vec{x} - b$$

minimize F(x)

s.+.

方(マ)=O

夏(文) 50

Half - Space

Norm Ball

||x||= \(\si

max; X;

II *[[*,

11 110

$$\frac{\text{Ellipsoid}}{(\vec{x}-\vec{c})^{+}P^{-1}(\vec{x}-\vec{c})} \leq 1$$

$$p_{\infty}(\bar{x}) = \begin{cases} 0 & \text{if } g(\bar{x}) \leq 0 \\ \infty & \text{o.v.} \end{cases}$$

minimize $f(\vec{x}) + p_{\infty}(\vec{x}) = f(\vec{x}) + \infty \cdot (g(\vec{x})70)$ minimize maximize $f(\vec{x}) + \mu g(\vec{x})$ PI PZ $f(\vec{x}) + \mu g(\vec{x})$ $f(\vec{x}) + \mu g(\vec{x})$

Ł

minimize $\sin(x)$ $5.+, x^2 \le 1$ $\log(x)=x^2+1$

Lagrange Multipliers in 2D for Equality Constraint

minimize
$$-\exp\left(-\left(\chi_1\chi_2-\frac{3}{2}\right)^2-\left(\chi_2-\frac{3}{2}\right)^2\right)$$

Subject to
$$x_1 - x_2^2 = 0$$

optima will always occur when constraint satisfaction lines are parllel to contour lines

$$\nabla f(\vec{x})\Big|_{\vec{x}'} = \lambda \nabla h(\vec{x})\Big|_{\vec{x}'}$$

$$L(\vec{x}, \lambda) = f(\vec{x}) - \lambda h(\vec{x})$$

$$\nabla L(\vec{x}, \lambda) = 0$$

$$\nabla_{\mathbf{x}} \mathbf{J} = 0$$
 gives us that $\nabla f = \lambda \nabla h$

calculate
$$\frac{\partial \mathcal{I}}{\partial x_1}$$
, $\frac{\partial \mathcal{I}}{\partial x_2}$, $\frac{\partial \mathcal{J}}{\partial \lambda} = 0$

$$x_1 = 1.358$$

 $x_2 = 1.165$

General Lagrangian

$$\mathcal{L}(\vec{x}, \vec{\Lambda}, \vec{\lambda}) = f(\vec{x}) + \vec{\Lambda} \vec{f}(\vec{x}) + \vec{\lambda} \vec{h}(\vec{x})$$
minimize maximize $\mathcal{L}(\vec{x}, \vec{\Lambda}, \vec{\lambda})$

---FONC

 x_1

(unconstrained

Karush - Kuhn - Tucker (KKT) conditions Of(x)=0)

Feasibility
$$\vec{g}(x^*) \leq 0$$

$$\vec{h}(\vec{x}^*) = 0$$
Dual Feasibility
$$\vec{u}^* \geq 0$$
Complementary Slackness
$$\vec{u}^* \otimes \vec{g}(\vec{x}^*) = 0$$
(either Mi or 9: 150)

Stationarity
$$\nabla_{\vec{x}} \vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
Stationarity
$$\nabla_{\vec{x}} \vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
Marinize maximize $\vec{J}(\vec{x}, \vec{h}, \vec{h})$

maximize minimize $\vec{J}(\vec{x}, \vec{h}, \vec{h})$

max min f(a, b) \leq min max f(a, b)
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
That function
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x}, \vec{h}) = 0$$
The value of primal problem
$$\vec{J}(\vec{x})$$

d*=p*

"Strong Duality

Not true in general

but for convex problems
"usually true"

-Boyd + Vandenberg