Zeitspanungsvolumen beim Fräsen (Lösung)

Werkzeug im Vollschnitt:

Fräser zum Zeitpunkt t1

Zeitspanungsvolumen beim Schleifen Einflussgrößen

Zeitspanungsvolumen (mm³/s):

$$Q_w = v_{ft} \cdot a_e \cdot a_p = f_t \cdot n_{wz} \cdot a_e \cdot a_p$$

Bez. Zeitspanvolumen (mm³/(mm*s)):

$$Q'_{w} = v_{ft} \cdot a_{e} = f_{t} \cdot n_{wz} \cdot a_{e}$$

Achtung!

a_p ungleich b_s !!

Zerspanungsvolumen (mm³):

$$V_w = I \cdot a_e \cdot a_p$$

 $a_{\rm e}$

Bez. Zerspanungsvolumen (mm³/mm):

Aufgabe Längsumfangsplanschleifen

Berechnen Sie das <u>bez. Zeitspanungsvolumen</u> und das <u>Zerspanungs-volumen</u> mit Hilfe der gegebenen Werte beim Umfangsplanschleifen.

Parameter:

 $v_c = 30 \text{ m/s}$

 d_{wz} = 400 mm

 $a_e = 0.8 \text{ mm}$

 $a_p = 25 \text{ mm} > 5$

 $f_t = 1,05 \text{ mm}$

I= 300 mm

Lösung Längsumfangsplanschleifen

Bez. Zeitspanungsvolumen:
$$Q'_w = v_{ft} \cdot a_e = f_t \cdot n_w \cdot a_e$$

$$n_{wz} = \frac{v_c}{\pi \cdot d_w} = \frac{30 \frac{m}{s}}{\pi \cdot 400 \text{ mm}} = 23,87 \frac{U}{s} = 1432 \frac{U}{min}$$

$$Q'_{w} = 1,05 \text{ mm} \cdot 23,87 \frac{U}{s} \cdot 0,8 \text{ mm} = 20 \frac{\text{mm}^{3}}{\text{mm} \cdot \text{s}}$$

Zerspanungsvolumen:

 $V_{w} = 300 \text{ mm} \cdot 0.8 \text{ mm} \cdot 25 \text{ mm} = 6000 \text{ mm}^{3}$

Aufgabe

Der Schleifscheibeneingriff ist jetzt nur 10 mm breit. Bestimmen Sie das Zeitspanvolumen und das bezogene Zeitspanvolumen neu!

Parameter:

$$v_c = 30 \text{ m/s}$$

$$d_{wz}$$
= 400 mm

$$a_e = 0.8 \text{ mm}$$

$$f_t = 1,05 \text{ mm}$$

$$b_s = 25 \text{ mm}$$

Zeitspanungsvolumen: $Q_w = v_{ft} \cdot a_e \cdot a_p = f_t \cdot n_{wz} \cdot a_e \cdot a_p$

$$n_{wz} = \frac{v_c}{\pi \cdot d_w} = \frac{30 \frac{m}{s}}{\pi \cdot 400 \text{ mm}} = 23,87 \frac{U}{s} = 1432 \frac{U}{min}$$

$$Q_W = 1,05 \text{ mm} \cdot 23,87 \frac{\text{U}}{\text{S}} \cdot 0,8 \text{ mm} \cdot 10 \text{ mm} = 200,5 \text{ mm}^3/\text{s}$$
Achtung: Q_w = Qw/bs funktioniert an

Bezogenes Zeitspanungsvolumen:

$$Q'_w = v_{ft} \cdot a_e = f_t \cdot n_{wz} \cdot a_e$$

$$Q'_{w} = 1,05 \text{ mm} \cdot 23,87 \frac{U}{s} \cdot 0,8 \text{ mm} = 20 \frac{\text{mm}^{3}}{\text{mm} \cdot \text{s}}$$

dieser Stelle nicht, da nur 10 mm

Scheibe im Eingriff sind und nicht die

gesamte Schleifscheibenbreite bs.

Zeitspanungsvolumen beim Schleifen Kenngrößen beim Außenrundeinstechschleifen

45

Video Außenrundschleifen

https://www.youtube.com/watch?v=vRp39zelpGM

a_e	Zustellung, Zustelltiefe	[mm]	
-------	--------------------------	------	--

b_w /a_p aktive Schleifscheibenbreite [mm]

b_s Schleifscheibenbreite [mm]

d_s Schleifscheibendurchmesser [mm]

d_w Werkstückdurchmesser [mm]

v_{fr} Radiale Einstechgeschwindigkeit [m/min]

v_{ft} Tangentiale Einstechgeschwindigkeit [m/min]

v_w Werkstückumfangsgeschwindigkeit [m/min]

v_c Schleifscheibenumfangsges.[m/s]

n_s Werkzeugdrehzahl [min⁻¹]

n_w Werkstückdrehzahl [min⁻¹]

f_a axialer Vorschub [mm]

f_r radialer Vorschub [mm]

f_s Schleifscheibenumlauffrequenz [Hz]

q Geschwindigkeitskoeffizient v_c/v_{ft}; v_c/v_w

$$f_r = \frac{v_{fr}}{n_w}$$

Zeitspanungvolumen (mm³/s):

$$Q_{w} = f_{r} \cdot v_{ft} \cdot a_{p} = \pi \cdot d_{w} \cdot v_{fr} \cdot a_{p}$$

 $a_e \ll d_w; d_{w,soll}$

bez. Zeitspanungsvolumen (mm³/(mm*s)):

$$Q'_w = f_r \cdot v_{ft} = \pi \cdot d_w \cdot v_{fr}$$

Zerspanungsvolumen (mm³):

$$V_w = \pi/4 \cdot (d_{w,0}^2 - d_{w,soll}^2) \cdot a_p$$

bez.Zerspanungvolumen (mm³/mm):

$$V_w' = \pi/4 \cdot (d_{w,0}^2 - d_{w,soll}^2)$$

Aufgabe Außenrundeinstechschleifen

Berechnen Sie die gesuchten Konstanten beim Außenrundschleifen mit Hilfe der gegebenen Parameter.

Gegeben:

 $v_c = 60 \text{ m/s}$

 $n_w = 150 \text{ 1/min}$

q = 100

 $a_p = 10 \text{ mm}$

 $v_{fr} = 2 \text{ mm/min}$

Gesucht:

$$v_{ft}$$
, f_r , Q_w , Q'_w , d_w

Lösung Außenrundeinstechschleifen

Tangentiale Vorschubgeschwindigkeit:

$$v_{ft} = \frac{v_c}{q} = \frac{60 \frac{m}{s}}{100} = 0.6 \frac{m}{s} = 36 \frac{m}{min}$$

Radialer Vorschub:

$$f_{r} = \frac{V_{fr}}{n_{w}} = \frac{2\frac{min}{min}}{150\frac{U}{min}} = 0,013 \text{ mm}$$

$$\frac{150 \frac{U}{min}}{min}$$

Lösung Außenrundeinstechschleifen

Zeitspanungsvolumen:

$$Q_{w} = f_{r} \cdot v_{ft} \cdot a_{p} = 0.013 \text{ mm} \cdot 0.6 \frac{\text{m}}{\text{s}} \cdot 10 \text{ mm} = 78 \frac{\text{mm}^{3}}{\text{s}}$$
Bez. Zeitspanungsvolumen:

Bez. Zeitspanungsvolumen:

$$Q'_{w} = \frac{Q_{w}}{a_{p}} = \frac{78 \frac{mm^{3}}{s}}{10 mm} = 7.8 \frac{mm^{3}}{mm \cdot s}$$

Durchmesser des Werkstücks:

$$d_{w} = \frac{v_{w}}{\pi \cdot n_{w}} = \frac{v_{ft}}{\pi \cdot n_{w}} = \frac{0.6 \frac{111}{s}}{\pi \cdot 150 \frac{U}{min}} = 76.4 \text{ mm}$$