

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

Help

Unit 2: Conditioning and independence > Lec. 2: Conditioning and Bayes' rule > Exercise: Conditional probabilities

Exercise: Conditional probabilities

☐ Bookmark this page

Exercise: Conditional probabilities

Entrance Survey

<u>Overview</u>

2/2 points (graded) Are the following statements true of false?

- ▶ Unit 1: **Probability** models and axioms
- 1. If $oldsymbol{\Omega}$ is finite and we have a discrete uniform probability law, and if $B \neq \emptyset$, then the conditional probability law on B, given that Boccurred, is also discrete uniform.

▼ Unit 2: **Conditioning** and <u>independence</u>

2. If Ω is finite and we have a discrete uniform probability law, and if $B \neq \emptyset$, then the conditional probability law on Ω , given that Boccurred, is also discrete uniform.

1. True, because the outcomes inside $m{B}$ maintain the same relative

2. False. Outcomes in Ω that are outside B have zero conditional

probability, so it cannot be the case that all outcomes in Ω have

proportions as in the original probability law.

Unit overview

Lec. 2: **Conditioning and** Bayes' rule

Exercises 2 due Feb 2 2017 20:59 ART

Lec. 3: <u>Independence</u>

Exercises 3 due Feb 2, 2017 20:59 ART

Solved problems

Problem Set 2

Problem Set 2 due Feb 2, 2017 20:59 <u>ART</u>

Submit

Answer:

▶ <u>Unit 3:</u> Counting

(A)

You have used 1 of 1 attempt

the same conditional probability.

© All Rights Reserved

© 2012-2017 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

