Образовательный центр МГТУ им. Н.Э. Баумана

Выпускная квалификационная работа по курсу «Data Science»

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Слушатель: Костромина О.С.

Основные задачи

- Подготовка данных
- Разведочный анализ данных
- Предобработка данных
- Построение, обучение и тестирование моделей для прогноза модуля упругости при растяжении и прочности при растяжении
- Построение, обучение и тестирование нейронных сетей для прогноза соотношения матрица-наполнитель
- Разработка приложения для прогнозирования конечных свойств композиционных материалов

Подготовка данных

	Соотношение натрица- наполнитель	Плотность, кг/ж3	модуль упругости, гпа	Количество отвердителя, м.%	Содержание эпоксидных групп,3_2	Температура вслыции, С_2	Поверхностная плотность, г/ м2	Модуль упругости при растяжении, гла	Проченость при растяжении, ИПа	Потребление смалы, г/м2	Угол нашивки, град	Шаг нациаки	Плотность нашивки
0	1.857143	2030.000000	738.736842	30.000000	22.267857	100.000000	210.000000	70.000000	3000.000000	220.000000	0.0	4.000000	57.000000
1	1.857143	2030.000000	738.736842	50.000000	23.750000	284.615385	210.000000	70.000000	3000.000000	220.0000000	0.0	4.000000	60.000000
2	1.857143	2030.000000	738.736842	49.900000	33,000000	284.615385	210,000000	70.000000	3000,000000	220.000000	0.0	4.000000	70.000000
3	1.857143	2030.000000	738.736842	129.000000	21.250000	300.000000	210.000000	70.000000	3000.000000	220.000000	0.0	5.000000	47.000000
4	2.771331	2030.000000	753.000000	111.860000	22.267857	284.615385	210.000000	70.000000	3000.000000	220.000000	0.0	5.000000	57.000000
	, es	-	-	-	100	-		-	-		-	-	200
1018	2.271346	1952.087902	912.855545	86.992183	20.123249	324.774576	209.198700	73.090961	2387,292495	125.007669	90.0	9.076380	47.019770
1019	3.444022	2050.089171	444.732634	145.981978	19.599769	254.215401	350.660830	72.920827	2360.392784	117.730099	90.0	10.565614	53.750790
1020	3.280604	1972.372965	416.836524	110.533477	23.957502	248.423047	740.142791	74,734344	2662.906040	236.606764	90.0	4.161154	67.629684
1021	3.705351	2066.799773	741,475517	141.397963	19.246945	275.779840	641.468152	74.042708	2071.715856	197.126067	90.0	6.313201	58.261074
1022	3.808020	1890,413468	417.316232	129.183416	27.474763	300.952708	758.747882	74,309704	2856.328932	194.754342	90.0	6.078902	77,434468
1023 rov	vs × 13 columns												

	count	mean	std	min	25%	58%	75%	max
Соотношение матрица-наполнитель	1023.0	2.930366	0.913222	0.389403	2.317887	2.906878	3.552660	5.591742
Плотность, кг/м3	1023.0	1975,734888	73.729231	1731.764635	1924.155467	1977.621657	2021.374375	2207.773481
модуль упругости, ГПа	1023.0	739.923233	330.231581	2.436909	500.047452	739.664328	961.812526	1911.536477
Количество отвердителя, м.%	1023.0	110.570769	28.295911	17.740275	92.443497	110.564840	129.730366	198.953207
Содержание эпоксидных групп,%_2	1023.0	22.244390	2.406301	14.254985	20.608034	22.230744	23.961934	33.000000
Температура вспышки, С_2	1023.0	285.882151	40.943260	100.000000	259.066528	285.896812	313.002106	413.273418
Поверхностная плотность, г/м2	1023.0	482.731833	281.314690	0.603740	266.816645	451.864365	693.225017	1399.542362
Модуль упругости при растяжении, ГПа	1023.0	73.328571	3.118983	64.054061	71.245018	73.268805	75.356612	82.682051
Прочность при растяжении, МПа	1023.0	2466.922843	485.628006	1036.856605	2135.850448	2459.524526	2767.193119	3848.436732
Потребление смолы, г/м2	1023.0	218.423144	59.735931	33.803026	179.627520	219.198882	257.481724	414.590628
Угол нашивки, град	1023.0	44.252199	45.015793	0.000000	0.000000	0.000000	90.000000	90,000000
Шаг нашивки	1023.0	6.899222	2.563467	0.000000	5.080033	6.916144	8.586293	14.440522
Плотность нашивки	1023.0	57.153929	12.350969	0.000000	49.799212	57.341920	64.944961	103.988901

Разведочный анализ данных Гистограммы распределения

Разведочный анализ данных «Ящики с усами»

Разведочный анализ данных Матрица рассеяний

Разведочный анализ данных Матрица корреляций

1.00

0.75

0.50

- 0.25

0.00

-0.25

--0.50

--0.75

Предобработка данных Удаление выбросов

- Предобработка данных состоит из трех этапов: анализ данных на пропуски и дубликаты, удаление выбросов и нормализация данных.
- Пропусков, как и дубликатов в нашем датасете не обнаружено.
- Удаление выбросов происходит на основе межквартильного расстояния.

Соотношение матрица-наполнитель Плотность, кг/м3	6 9
модуль упругости, ГПа	2
Количество отвердителя, м.%	14
Содержание эпоксидных групп,%_2	2
Температура вспышки, С_2	8
Поверхностная плотность, г/м2	2
Модуль упругости при растяжении, ГПа	6
Прочность при растяжении, МПа	11
Потребление смолы, г/м2	8
Угол нашивки, град	0
Шаг нашивки	4
Плотность нашивки	21
dtype: int64	

Предобработка данных

Нормализация с помощью MinMaxScaler

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, н.%	Содержание эпоксидных групп,%_2	Температура вспышки, С_2	Поверхностная плотность, г/ м2	Модуль упругости при растяжении, ГПа	Прочность при растяжении, ИПа	Потребление смолы, г/м2	Угол нашивки, град	Ваг нашивки	Плотность нацивки
0	0.274768	0.651097	0.452951	0.079153	0.607435	0.509164	0.162230	0.272962	0.727777	0.514688	0.0	0.289334	0.546433
1	0,274768	0.651097	0.452951	0.630983	0.418887	0.583596	0.162230	0.272962	0,727777	0.514688	0.0	0.362355	0.319758
2	0.466552	0.651097	0.461725	0.511257	0.495653	0.509164	0.162230	0.272962	0.727777	0.514688	0.0	0.362355	0.494123
3	0.465836	0.571539	0.458649	0.511257	0.495653	0.509164	0.162230	0.272962	0.727777	0.514688	0.0	0.362355	0.546433
4	0.424236	0.332865	0.494944	0.511257	0.495653	0.509164	0.162230	0.272962	0.727777	0.514688	0.0	0.362355	0.720799
	144	400	***	17,227	440	100	-	34		140	144	-	244
917	0.361662	0.444480	0.560064	0.337550	0.333908	0.703458	0.161609	0.473553	0.472912	0.183151	1.0	0.660014	0.320103
918	0.607674	0.704373	0.272088	0.749605	0.294428	0.362087	0.271207	0.462512	0.461722	0.157752	1.0	0.768759	0.437468
919	0.573391	0.498274	0.254927	0.501991	0.623085	0.334063	0.572959	0.580201	0.587558	0.572648	1.0	0.301102	0.679468
920	0.662497	0.748688	0.454635	0.717585	0.267818	0.466417	0.496511	0.535317	0.341643	0.434855	1.0	0.458245	0.516112
921	0.684036	0.280923	0.255222	0.632264	0.888354	0.588206	0.587373	0.552644	0.668015	0.426577	1.0	0.441137	0.850430

922 rows × 13 columns

	count	mean	std	min	25%	50%	75%	пах
Соотношение матрица-наполнитель	922.0	0.499412	0.187858	0.0	0.371909	0.495189	0.629774	1.0
Плотность, кг/м3	922.0	0.502904	0.188395	0.0	0.368184	0.511396	0.624719	1,0
модуль упругости, ГПа	922.0	0.451341	0.201534	0.0	0.305188	0.451377	0.587193	1.0
Количество отвердителя, м.%	922.0	0.506200	0.186876	0.0	0.378514	0.506382	0.638735	1.0
Содержание эпоксидных групп,%_2	922.0	0.490578	0.180548	0.0	0.366571	0.488852	0.623046	1.0
Температура вспышки, С_2	922.0	0.516739	0.190721	0.0	0.386228	0.516931	0.646553	1.0
Поверхностная плотность, г/м2	922.0	0.373295	0.217269	0.0	0.204335	0.354161	0.538397	1.0
Модуль упругости при растяжении, ГПа	922.0	0.487343	0.196366	0.0	0.353512	0.483718	0.617568	1.0
Прочность при растяжении, МПа	922.0	0.503776	0.188668	0.0	0.373447	0.501481	0.624299	1.0
Потребление смолы, г/м2	922.0	0.507876	0.199418	0.0	0.374647	0.510143	0.642511	1.0
Угол нашивки, град	922.0	0.510846	0.500154	0.0	0.000000	1.000000	1,000000	1.0
Шаг нашивки	922.0	0.503426	0.183587	0.0	0.372844	0.506414	0.626112	1.0
Плотность нашивки	922.0	0.503938	0.193933	0.0	0.376869	0.504310	0.630842	1.0

Построение и обучение моделей

- Для свойства модуля упругости при растяжении разработаны и обучены следующие три модели:
- - модель на основе градиентного бустинга (GradientBoostingRegressor());
- случайный лес (RandomForestRegressor());
- Для свойства прочности при растяжении разработаны и обучены следующие четыре модели:
- - линейная модель Лассо (Lasso());
- - модель k-ближайших соседей (KNeighborsRegressor());
- - модель на основе метода опорных векторов (SVR());
- Настройки гиперпараметров производились случайным поиском с 10-блочной перекрёстной проверкой.
- Задаём сетку гиперпараметров.
- Случайно выбираем комбинацию гиперпараметров (RandomizedSearchCV из Scikit-Learn)
- Создаём модель с использованием этой комбинации.
- Оцениваем результат работы модели с помощью k-блочной перекрёстной проверки (GridSearchCV из Scikit-Learn).
- Решаем, какие гиперпараметры дают лучший результат.

Тестирование моделей

Сравнение оценок моделей со стандартными параметрами для прогнозирования свойств модуля упругости при растяжении (слева) и прочности при растяжении (справа)

Градиентный бустинг для прогнозирования свойства модуля упругости при растяжении

Средняя абсолютная ошибка модели со стандартными параметрами на тестовом наборе: MAE = 0.1747. Средняя абсолютная ошибка настроенной модели на тестовом наборе: MAE = 0.1728.

Случайный лес для прогнозирования свойства модуля упругости при растяжении

Средняя абсолютная ошибка модели со стандартными параметрами на тестовом наборе: MAE = 0.1677.

Средняя абсолютная ошибка настроенной модели на тестовом наборе: МАЕ = 0.1677.

	Тестовые	данные	Спрогнозированные	данные
319	0	.387108	0	.459092
377	0	.742719	0	.480743
538	0	.364855	o	.461990
296	0	.435807	0	.465367
531	0	.468100	0	.467930
***				***
420	0	.359362	0	.473950
133	0	.446885	0	.459269
490	0	.609638	0	.501269
558	0	.372351	0	.488084
363	0	.392277	0	.459069

277 rows × 2 columns

Линейная модель Лассо для прогнозирования свойства прочности при растяжении

	Тестовые данные	Спрогнозированные данные
319	0.381499	0.503339
377	0.605408	0.503339
538	0.708160	0,503339
296	0.438781	0.503339
531	0.061865	0.503339
***	1.000	
420	0.854766	0.503339
133	0.347529	0.503339
490	0.503825	0.503339
558	0.568094	0.503339
363	0.510845	0.503339

277 rows × 2 columns

Средняя абсолютная ошибка модели со стандартными параметрами на тестовом наборе: MAE = 0.1534.

Средняя абсолютная ошибка настроенной модели на тестовом наборе: МАЕ = 0.1534.

Метод k-ближайших соседей для прогнозирования свойства прочности при растяжении

277 rows × 2 columns

Средняя абсолютная ошибка модели со стандартными параметрами на тестовом наборе: MAE = 0.1666.

Средняя абсолютная ошибка настроенной модели на тестовом наборе: МАЕ = 0.1541.

Метод опорных векторов для прогнозирования свойства прочности при растяжении

	Тестовые	данные	Спрогнозированные	данные	0
319	0.	381499	o	.518916	
377	0.	605408	0	.493429	
538	0.	708160	0	.509172	
296	0.	438781	0	.436584	
531	0.	061865	0	.471816	
		***		***	
420	0.	854766	O	.515011	
133	0.	347529	0	.499941	
490	0.	503825	0	.486532	
558	0.	568094	0	.534347	
363	0.	510845	0	.528162	

277 rows × 2 columns

Средняя абсолютная ошибка модели со стандартными параметрами на тестовом наборе: MAE = 0.1663.

Средняя абсолютная ошибка настроенной модели на тестовом наборе: МАЕ = 0.1541

Нейронные сети

Линейная модель

Нейронные сети

Многослойный персептрон

```
Рассеяние тестовых и спрогнозированных значений
   def build and compile model@(norm):
       model0 = keras.Sequential([
                                                                                           3.5
          norm,
          keras.layers.Dense(128, activation='sigmoid'),
          keras.layers.Dense(64, activation='sigmoid'),
                                                                                         Predictions [MPG]
          keras.layers.Dense(1)
       1)
       model@.compile(loss='mean squared error',
                      optimizer=tf.keras.optimizers.RMSprop(0.001))
        return model@
                                                                                          1.5
   dnn model0 = build and compile model0(normalizer)
   dnn model0.summary()
                                                                                          1.0
                                                                                                                       True Values [MPG]
  2.00
                                                                                                                                                    Прогнов
  175
                                                                          25
                                                                  val loss
                                                                                                                                        2.097010
                                                                                                                                                   2.698929
                                                                                                                                        4.073344
                                                                                                                                                   2.787695
  1.50
                                                                          20
                                                                                                                                        1.647649
                                                                                                                                                   2.989741
1.25
1.00
0.75
                                                                                                                                                   2.654714
                                                                        onnt
Sonnt
                                                                                                                                                   2.083353
                                                                          10
                                                                                                                                        2.424798
                                                                                                                                                   2.508657
                                                                                                                                                   2.745739
                                                                                                                                        1.916843
  0.50
                                                                                                                                                   2.896571
                                                                                                                                        3.011978
  0.25
                                                                                                                                                   2,435316
                                                                                                                                        2.622594
                                                                                                                                        1.273273 2.652678
  0.00
                                                                                              Prediction Error [MPG]
        0
                            100
                                     150
                                                200
                                                          250
                                                                    300
                                                                                                                                 277 rows × 2 columns
                                    Эпоха
```

Средняя абсолютная ошибка: 0.8168711066246033

Нейронные сети

Многослойный персептрон

```
Рассеяние тестовых и спрогнозированных значений
 def build and compile model1(norm):
     model1 = keras.Sequential([
       norm,
                                                                                     3.5
        keras.layers.Dense(256, activation='relu'),
        keras.layers.Dropout(0.8),
       keras.layers.Dense(192, activation='relu'),
                                                                                   Predictions (MPG)
        keras.layers.Dropout(0.8),
       keras.layers.Dense(128, activation='relu'),
        keras.layers.Dropout(0.8),
        keras.layers.Dense(64, activation='relu'),
       keras.layers.Dropout(0.8),
        keras.layers.Dense(1)
                                                                                     15
     model1.compile(loss='mean_absolute_error',
                   optimizer=tf.keras.optimizers.Adam(learning rate=0.001))
                                                                                     100
     return model1
                                                                                                               True Values [MPG]
                                                                                                                                            Прогноз
  2.00
                                                                    25
                                                                                                                                 2.097010
                                                                                                                                           2.771945
  175
                                                                                                                                 4.073344
                                                                                                                                           2.771527
                                                                    20
  1.50
                                                                                                                                           2.772239
                                                                                                                                 1.647649
                                                                  Tount 15
1.25
MAE [MPG]
1.00
0.75
                                                                                                                                 3.391009
                                                                    10
  0.50
                                                                                                                                           2.771859
                                                                                                                                 2.424798
  0.25
                                                                                       Prediction Error [MPG]
                                                                                                                                 1.916843
  0.00
                                                                                                                                           2.771788
                                                                                                                                 3.011978
                 50
                         100
                                   150
                                            200
                                                     250
                                                              300
                                 Эпоха
                                                                                                                                 2.622594
                                                                                                                                           2.772402
                                                                                                                                1,273273 2,771854
                Средняя абсолютная ошибка: 0.7274526953697205
                                                                                                                           277 rows × 2 columns
```

Результаты

• Несмотря на большую проделанную работу, результаты которой лишь частично представлены в отчете, построенные и обученные модели не решают поставленных задач прогнозирования модуля упругости при растяжении и прочности при растяжении композиционных материалов. Все модели не удовлетворительно описывают исходные данные. Построенные и обученные нейронные сети также не справились с задачей рекомендации соотношения матрица-наполнитель.

• Приложение для прогнозирования конечных свойств композиционных материалов не разработано.

Спасибо за внимание!