Algebra II: Homework 7

Due on March 24, 2021

Professor Walton

Gabriel Gress

Last edited March 24, 2021

Collaborated with the Yellow group

PROBLEM 1

Claim. Compute the splitting field of $x^4 - 4x^2 - 5$ over \mathbb{Q} , and show that it has degree 4 over \mathbb{Q} .

Proof. (a). First we factor as much as possible in Q, then extend the field. So

$$x^4 - 4x^2 - 5 = (x^2 - 5)(x^2 + 1)$$

Thus our polynomial has $\pm\sqrt{5}$ and $\pm i$. Thus the splitting field is $\mathbb{Q}(\sqrt{5},i)$. Since $[\mathbb{Q}:(\sqrt{5}):\mathbb{Q}]=[\mathbb{Q}(i):\mathbb{Q}]=2$, and the basis for each extension is independent of the other, by the tower theorem we have that $[\mathbb{Q}(\sqrt{5},i):\mathbb{Q}]=4$.

PROBLEM 2

Claim. Compute the splitting field of $x^4 - 2$ over the fields \mathbb{Q} and \mathbb{R} .

Proof. The roots of $x^4 - 2$ are $\pm \sqrt[4]{2}$ and $\pm i\sqrt[4]{2}$. Thus the splitting field of the polynomial as an extension of \mathbb{Q} is $\mathbb{Q}(\sqrt[4]{2},i)$. Over \mathbb{R} , however, the splitting field is $\mathbb{R}(i)$, as $\sqrt[4]{2}$ is in \mathbb{R} .

PROBLEM 3

Claim. Which of the following is a normal extension of \mathbb{Q} ?

 $\mathbb{Q}(\sqrt{3})$

 $\mathbb{Q}(\sqrt[3]{3})$

 $\mathbb{Q}(\sqrt{5},i)$

 $\mathbb{Q}(\sqrt[4]{5})$

Proof. (a). This is a normal extension, as it is a splitting field of $f = x^2 - 3$.

- (b). This is not a normal extension– $x^3 3$ is an irreducible polynomial in F that has two non-real roots not in F.
- (c). Of course this is the splitting field of $x^4 4x^2 5$ and so must be a normal extension.
- (d). This is not a normal extension. It has two roots in F given by $\pm \sqrt[4]{5}$, but the other two roots are complex and hence not in F.

PROBLEM 4

Claim. Compute the splitting field of $x^6 + x^3 + 1$ over \mathbb{Q}

Proof. Observe that $x^6 + x^3 + 1$ has complex roots given below, which can be checked to verify that they indeed result in yielding zero:

$$x_1 = -(-1)^{1/9}$$

$$x_2 = (-1)^{2/9}$$

$$x_3 = (-1)^{4/9}$$

$$x_4 = -(-1)^{5/9}$$

$$x_5 = -(-1)^{7/9}$$

$$x_6 = (-1)^{8/9}$$

Of course it is easy to see that these are all 9th roots of unity, and it can visually be seen that they are generated by the principle root $\omega_1 = e^{2\pi i/9}$. Hence, the splitting field is then $\mathbb{Q}(\omega_1)$

PROBLEM 5

Claim. Let K_1 and K_2 be finite extensions of F contained in the field K, and assume both are splitting fields over F.

- (a). Prove that their composite K_1K_2 is a splitting field over F.
- (b). Prove that $K_1 \cap K_2$ is a splitting field over F.
- *Proof.* (a). Let p_1, p_2 be the polynomial over which K_1 and K_2 are splitting fields. Let a_1, \ldots, a_n be roots of p_1 and b_1, \ldots, b_m be roots of p_2 . Of course, the extension K_1K_2 is generated by the roots $a_1, \ldots, a_n, b_1, \ldots, b_m$. These are precisely the roots of $p = p_1p_2$, and since K_1K_2 is the smallest field containing K_1, K_2, K_1K_2 is the splitting field of $p = p_1p_2$.
- (b). Recall that the intersection of two fields is a field. Suppose that p has a root in $K_1 \cap K_2$. Then we know that p splits completely in K_1 and K_2 . Thus, if a_1, \ldots, a_n are the roots of p, they all must lie in K_1 and K_2 . Hence p is a splitting polynomial for $K_1 \cap K_2$.

Problem 6

Claim. Prove that a finite field extension *K* over *F* is normal if and only if *K* has the following property:

When *L* is a field extension of *K* and $\varphi : K \to L$ is a field embedding with $\varphi(f) = f$ for all $f \in F$, we get that $\varphi(K) \subset K$.

Proof. \Box