

Wake-Up-Word Speech Recognition in FPGA

Adolf A Dcosta • ECE 5570 • Dec 1st 2019

What's a FPGA ?

FPGA stands for field programable gate array. Is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence the term "field-programmable". The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an Application-Specific Integrated Circuit (ASIC). [1]

FPGAs contain an array of programmable logic blocks, and a hierarchy of "reconfigurable interconnects" that allow the blocks to be "wired together", like many logic gates that can be inter-wired in different configurations. Logic blocks can be configured to perform complex combinational functions, or merely simple logic gates like AND and XOR. [1]

What's a "Wake Up Word"?

A wake work is a special word or phrase that is meant to activate a given device via voice. It is also referred to as hot word, trigger word, and wake up word. [2] A wake word needs to be unique. [2]

The objective of Automatic Speech Recognition (ASR) is to address the issue of creating a system that maps an acoustic signal into a string of words. [3] Speech as a computer interface has many benefits over conventional mouse and keyboard interfaces: speech is natural for humans, no special training is required, using speech multitasking is improved by leaving the hands and eyes free, and is often faster and more efficient to transmit than the information provided using conventional input methods. [3]

This kind of system in continuously listening and monitoring acoustic inputs which removes the necessity of non speech activation. [3]

Dev Kit DE2i-150

User Manual Link

Fig1: DE2i-150 Layout Diagram^[4]

DE2i-150 Block Diagram

Fig2: DE2i-150 Block Diagram^[5]

DE2i-150 (FPGA Hardware)

- Altera Cyclone® IV 4CX150 FPGA device
- Altera Serial Configuration device EPCS64.
- USB Blaster (on board) for programming; both JTAG and Active Serial (AS) programming modes are supported.
- Two 2MB SSRAM, Two 64MB SDRAM.
- 64MB Flash memory.
- SD Card socket.
- 4 Push-buttons.
- 18 Slide switches.
- 18 Red user LEDs, 9 Green user LEDs.
- 50MHz oscillator for clock sources.
- VGA DAC (8-bit high-speed triple DACs) with VGA-out connector.
- TV Decoder (NTSC/PAL/SECAM) and TV-in connector.
- Gigabit Ethernet PHY with RJ45 connectors.
- RS-232 transceiver and 9-pin connector.
- IR Receiver

Operational Block Diagram

Operation

The performance and the capability of the system are divided into two parts the front and the back end. The front end was running on a computer that runs a MATLAB code. The code is made simple with a GUI on a click of a button, the code is designed to take a sample of 1 second and store it in a double-precision array. Fourier Transform and windowing is applied, after which the graph is plotted on MATLAB in Frequency vs. Amplitude domain. The Synthesized data is then transmitted to the FPGA via the serial port using the USB to Serial converter. [6]

Serial Communication Configurations:

Criteria	Value
Bits Per Second	9600
Parity	None
Stop Bit	1
Flow Control	Hardware

Operation

There are only 1000 samples sent from the entire data to the FPGA for further processing threw the USB to TTL which is the serial port. The data received is compared with the saved vectors. [6] From the training file the Euclidean distance is compared, and the weight is calculated. The right one is given bigger weights and the result is displayed on the seven-segment display. The back-end system runs on 4 steps Receiving, Calculating Distance, Decision Making & Displaying Results.

Programs Running on FPGA:

	File name	Hierarchy
	Voice_Recognition	Top Level Entity
	Uart	
200	Uart_parity	
	Uart_rx	
	Uart_tx	

Programs Running on MATLAB:

File name
Recorder.m
Recorder.fig
Recorder.asv

GUI MATLAB

MATIAB

FLORIDA TECH

Record and TX data MATLAB

Record and TX data MATLAB

Signal Plot

Human Voice Signal

"ONE" Plotted

Processed Signal Tx

Signal Plot

Human Voice Signal

"ZERO" Plotted

Processed Signal Tx

Analysis

Pin Planner Circuit

Top View - Wire Bond

Cyclone IV GX - EP4CGX150DF31C7

Pin Configuration

Node Name	Direction	Loaction	I/O Bank	VREF Group	Filter location	I/O Standard	Current	Slew Rate
BUSY	Output	PIN_J25	6	B6_N0	PIN_J25	2.5 V	16mA (default)	2 (default)
CLK	Input	PIN_AJ16	4	B4_N2	PIN_AJ16	2.5 V	16mA (default)	
data_led[7]	Output	PIN_AA22	5	85_N1	PIN_AA22	2.5 V	16mA (default)	2 (default)
data_led[6]	Output	PIN_Y25	5	B5_N2	PIN_Y25	2.5 V	16mA (default)	2 (default)
data_led[5]	Output	PIN_Y22	5	B5 N1	PIN_Y22	2.5 V	16mA (default)	2 (default)
data_led[4]	Output	PIN W26	5	B5 N0	PIN W26	2.5 V	16mA (default)	2 (default)
data_led[3]	Output	PIN_F26	6	B6_N0	PIN F26	2.5 V	16mA (default)	2 (default)
data_led[2]	Output	PIN F27	6	86 NO	PIN F27	2.5 V	16mA (default)	2 (default)
data_led[1]	Output	PIN_F27	5	85_N2	PIN FZ/	2.5 V	16mA (default)	2 (default)
			-					
data_led[0]	Output	PIN_AA25	5	B5_N2	PIN_AA25	2.5 V	16mA (default)	2 (default)
equal[6]	Output	PIN_G10	8	B8_N2	PIN_G10	2.5 V	16mA (default)	2 (default)
equal[5]	Output	PIN_J9	8	B8_N2	PIN_J9	2.5 V	16mA (default)	2 (default)
equal[4]	Output	PIN_G12	8	B8_N1	PIN_G12	2.5 V	16mA (default)	2 (default)
equal[3]	Output	PIN_F12	8	B8 N1	PIN F12	2.5 V	16mA (default)	2 (default)
equal[2]	Output	PIN_G13	8	B8_N0	PIN_G13	2.5 V	16mA (default)	2 (default)
equal[1]	Output	PIN_B13	8	B8_N0	PIN_B13	2.5 V	16mA (default)	2 (default)
equal[0]	Output	PIN_G14	8	B8_N0	PIN_G14	2.5 V	16mA (default)	2 (default)
FRAME_ERR	Output				PIN_L30	2.5 V (default)	16mA (default)	2 (default)
n[6]	Output	PIN D4	8	B8 N1	PIN_D4	2.5 V	16mA (default)	2 (default)
n[5]	Output	PIN D5	8	B8 N2	PIN D5	2.5 V	16mA (default)	2 (default)
n[4]	Output	PIN E3	8	B8_N2	PIN E3	2.5 V	16mA (default)	2 (default)
n[3]	Output	PIN_E4	8	B8_N2	PIN E4	2.5 V	16mA (default)	2 (default)
n[2]	Output	PIN_E6	8	B8_N2	PIN E6	2.5 V	16mA (default)	2 (default)
n[1]		PIN_D7	8	B8_N1	PIN_E6	2.5 V	16mA (default)	
	Output		8					2 (default)
n[0]	Output	PIN_D10	8	B8_N2	PIN_D10	2.5 V	16mA (default)	2 (default)
o[6]	Output	PIN_F10	8	B8_N2	PIN_F10	2.5 V	16mA (default)	2 (default)
o[5]	Output	PIN_F4	8	B8_N2	PIN_F4	2.5 V	16mA (default)	2 (default)
o[4]	Output	PIN_F6	8	B8_N2	PIN_F6	2.5 V	16mA (default)	2 (default)
0[3]	Output	PIN_AG30	5	B5_N2	PIN_AG30	2.5 V	16mA (default)	2 (default)
0[2]	Output	PIN_F7	8	B8_N2	PIN_F7	2.5 V	16mA (default)	2 (default)
o[1]	Output	PIN_G7	8	B8_N2	PIN_G7	2.5 V	16mA (default)	2 (default)
0[0]	Output	PIN_G8	8	B8_N2	PIN_G8	2.5 V	16mA (default)	2 (default)
result[6]	Output	PIN_F14	8	B8_N0	PIN_F14	2.5 V	16mA (default)	2 (default)
result[5]	Output	PIN_D16	8	B8_N0	PIN_D16	2.5 V	16mA (default)	2 (default)
result[4]	Output	PIN_F16	8	B8_N0	PIN_F16	2.5 V	16mA (default)	2 (default)
result[3]	Output	PIN_F11	8	B8_N1	PIN_F11	2.5 V	16mA (default)	2 (default)
result[2]	Output	PIN G11	8	B8_N1	PIN_G11	2.5 V	16mA (default)	2 (default)
result[1]	Output	PIN_E12	8	B8 N1	PIN E12	2.5 V	16mA (default)	2 (default)
result[0]	Output	PIN_E15	8	88_N0	PIN E15	2.5 V	16mA (default)	2 (default)
RST_N	Input	PIN AA26	5	85 N2	PIN ELS	2.5 V	16mA (default)	2 (ueidült)
			5	85_N2 85_N0		2.5 V	16mA (default) 16mA (default)	26.5.10
state_four	Output	PIN_W25			PIN_W25			2 (default)
state_one	Output	PIN_T23	5	B5_N0	PIN_T23	2.5 V	16mA (default)	2 (default)
state_three	Output	PIN_V27	5	B5_N0	PIN_V27	2.5 V	16mA (default)	2 (default)
state_two	Output	PIN_T24	5	B5_N0	PIN_T24	2.5 V	16mA (default)	2 (default)
UART_RXD	Input	PIN_B27	7	87_N0	PIN_B27	2.5 V	16mA (default)	
UART_TXD	Output	PIN_H24	7	B7_N0	PIN_H24	2.5 V	16mA (default)	2 (default)

Demonstration for "One"

Result "One" was detected

Result "Zero" was detected

Resources and Results

- RAM consumption approx. 380MB
- Approximately 13,757 Logic Elements Consumed.
- 9144 Registers
- 10,450 Logic Function used
- Accuracy is not static but approx. 60%
- Can detect a speech of either ("One" or "ZERO") [6]

Cost

Image	ltem	Quantity	Cost
	Computer (MATLAB)	1	-
DE21-150 Averlander for fileston hand	DE2i-150 Dev Board	1	700\$
	Mic for Computer	1	20\$
	USB to Serial (RS-232)	1	20\$
		Total	740\$

Conclusion

- Basic speech recognition system on Altera DE2i-150.
- Software was used to overcome many hardware incapability.
- The System was successful in recognizing a ("ONE" OR "ZERO").
- The test samples to compare and evaluate was few, which intern affects the accuracy of the system.
- The availability of more powerful hardware will make it easier to implement more robust algorithms like Hidden Markov Models and use more powerful ADC Chips to record more pure sound resulting in more accurate results. [6]

References

[1] "Field-Programmable Gate Array." Wikipedia, Wikimedia Foundation, 30 Nov. 2019, https://en.wikipedia.org/wiki/Field-programmable_gate_array.

[2] "Choosing a Wake Word - Tips & Considerations." Picovoice, https://picovoice.ai/docs/choose-wake-word/index.html.

[3] Kepuska, Veton. "Wake-Up-Word Speech Recognition." IntechOpen, IntechOpen, 13 June 2011, https://www.intechopen.com/books/speech-technologies/wake-up-word-speech-recognition.

[4] "Altera DE2 Board - Mạch Thí Nghiệm FPGA." Altera DE2 Board - Mạch Thí Nghiệm FPGA, http://kitboardmach.blogspot.com/2017/11/altera-de2-board-mach-thi-nghiem-fpga.html.

[5] DE2i-150 FPGA Development Kit, 17 May 2019, https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/terasic-inc-/board/de2i-150-fpga-development-kit.html.

[6] MohammedRashad. "MohammedRashad/FPGA-Speech-Recognition." GitHub, https://github.com/MohammedRashad/FPGA-Speech-Recognition.

Thank you.

Adolf A Dcosta • ECE 5570 • Dec 1st 2019