Sistema Operacional GNU/Linux

Prof. Amarildo

Fatec

Objetivos:

- (Cn)

;

- (Cn)
- (Cn)

Comandos GNU/Linux

Login / Utilizadores Fatec

Como o Linux é um SO com capacidades de multi-utilizador, é necessário que se faça um login;

Elementos necessários:

Nome do utilizador;

Password.

Os elementos para login, são criados pelo administrador do sistema (root).

Login OK

Após um login bem sucedido, o utilizador encontra-se na sua home directory;

Home directory:

Pasta de trabalho do utilizador, onde tem direitos de execução, escrita e leitura;

Geralmente /home/nomeUtilizador/;

Quando se efectua o login, somos saudados por um prompt com um aspecto semelhante ao seguinte:

```
$ ou
```

#

Que contém ainda:

- O nome do computador;
- Nome do diretorio corrente;

O programa que apresenta a prompt é chamado de shell;

A shell é o programa que nos permite comunicar com o sistema operational (CLI – Command Line Interface).

Existem várias implementações de programas de shell:

sh:

Bourne Shell (Steven Bourne);

ksh:

Korn Shell;

csh:

C-Shell.

bash:

Bourne Again Shell (Integra funcionalidades da ksh e csh);

Para se saber qual a shell em utilização comando:

```
echo $SHELL
```

```
A maioria dos sistemas GNU/Linux utiliza:
```

```
Bourne Again Shell (bash);
```

Para "fechar" a shell Bash (voltar à prompt de login):

Escrever na prompt:

logout, ou

exit

Ou

Pressionar Ctrl+D.

Características da Shell

- Opções:

- define como o programa será executado:
 - Ex: root@localhost # uname -s -m

- Argumento:

- Informação extra passada para execução do comando:
 - Ex: root@localhost # cat /proc/cpuinfo

- Variáveis:

- Guardam informações para serem utilizadas pelos programas durante a sessão (de ambiente):
 - \$SHELL \$HOSTNAME \$LANG

Características da Shell

Metacaracteres

Caracteres com significado especial Ex: &, >, <, |

- Caracteres Coringas (wildcards)

Caracteres especiais usados junto com os argumentos Ex: *, ?, [abc], [a-c],[!0-9]

Fatec Jacareí

Conceitos de utilização

Entrada Padrão (stdin)

Entrada padrão de comandos para o shell

Ex: teclado, pipe

Saída Padrão (stdout)

Saída padrão do do comando Ex: tela, arquivo

- Saída de Erro (stderr)

Saída padrão para erros de execução do comando

Ex: tela, arquivo

Conceitos de utilização

É Case Sensitive

- ... Indica o diretório anterior
- Indica o diretório atual
- Indica o diretório home do usuário

Conceitos de utilização

- Definição de variáveis
- .xxxx arquivos ocultos
- pipe
- & (como bg) Envia aplicativo para background
- --help Obtém ajuda sobre utilização do comando

Consoles Virtuais Fatec

Como o SO GNU/Linux é um sistema multi-tarefa, mesmo que seja utilizado por apenas um utilizador, tem à sua disposição seis consoles virtuais (pode ser alterado);

Para alternar entre elas, basta pressionar:

Alt + Fn
$$(1 \le n \le 6)$$
;

Alt + F7 (reservado para o modo gráfico);

Se estiver em modo gráfico (X11), para alternar para uma das consoles de texto, pressionar:

$$Ctrl + Alt + Fn;$$

Alt + F7 regressa ao modo gráfico;

Filesystem Hierarchy Standard (FHS)

Sistema de arquivos vem a ser também o tipo de filesystem que vai formatar uma partição:

- ext3;
- ext4;
- XFS;
- JFS;
- ISO9660;
- UDF;
- VFAT;
- SWAP e vários outros.

Para que Sistema de Arquivos funcione, o mesmo deve ser compilado ao Kernel. Temos duas formas de fazer isto:

- Compilação estática :: O código do filesystem é compilado junto ao código do kernel e não pode ser removido (descarregado) da memória RAM. Para atualizar esse código, é preciso recompilar o kernel todo.
- Compilação dinâmica:: O código do filesystem é compilado como um módulo do kernel, sendo carregado no momento do boot (initrd) ou a qualquer tempo, quando for necessário para efetuar a montagem de uma partição formatada com esse sistema de arquivo. Para atualizar o código do sistema de arquivos, basta recompilar o módulo. Obs.: um módulo só pode ser removido da memória se não estiver em uso!

ls /lib/modules/\$(uname -r)/kernel/fs - (Sist. Arquivos compilado como módulo)

cat /proc/filesystems – (Sist. Arquivos carregados em uso na memória)

Área de troca ou SWAP:

- A área de troca evita que o sistema entre em um estado chamado de Starvation, onde não é possível executar qualquer programa e o sistema congela por falta de memória RAM;
 - É possível criar até 32 partições de SWAP;
- A função do sistema de arquivos SWAP é "abrir" espaço na RAM, para que um programa seja executado;
 - Tamanho;
- Devemos observar que uma área de troca NUNCA é montada, ela é ATIVADA ou DESATIVADA;
 - Área de troca não é um sistema temporário tradicional como é /tmp;
- Os programas e seus dados armazenados na área de troca estão em estado suspenso (sleep), pois um programa somente pode ser executado na RAM;
 - Aumentar a área de troca não aumenta a quantidade de memória do sistema.

Sistemas de arquivos virtuais:

Sistemas de arquivos virtuais são IMAGENS projetadas do que acontece dentro do kernel em tempo de execução.

- /proc é um sistema que permite obter informações sobre processos. Processos são programas em execução e também são chamados de instâncias ou instâncias em execução;
- /sys é um sistema que permite obter informações sobre o funcionamento e configuração do hardware;
- /dev é um sistema de arquivos virtual que armazena todos os dispositivos (devices) que são criados pelo sistema udev durante o processo de boot.

Sistemas de arquivos temporários:

Local para armazenar seus números de PID e seus sockets de comunicação. Esses arquivos precisam ficar em um sistema em RAM

Os diretórios:

/run;

/run/lock; e

/run/shm são sistemas de arquivos temporários em RAM.

Navegar no Sistema de Arquivos FateC

Na prompt da shell bash:

cd nomeDir

Informa a shell que se pretende trabalhar no diretório com o nome *nomeDir* (cd – Change Directory);

cd/

Informa a shell que se pretende trabalhar no diretorio de raiz (root directory);

cd

Regressa à home directory, qualquer que seja o diretorio onde se esteja;

pwd

Informa ao utilizador qual a diretorio onde se está a trabalhar atualmente (Present Working Directory);

Caminhos (Paths)


```
Caminhos absolutos (começam com / ):
   /usr/share
   /dev
   /etc/network
   São interpretados a partir da raiz.
Caminhos relativos (não começam com / ):
  usr
  maildir
  home/antonio/Docs
  Interpretados relativamente à pwd.
```

Caminhos e os Comandos Fatec

Exemplo com o comando cd:

cd /usr

Mudar para o diretorio *usr* na raiz;

cd usr

Mudar para a diretorio *usr* que existe dentro da pwd;

cd...

Mudar para a diretorio hierarquicamente abaixo da pwd;

cd ../etep

Mudar para a diretorio "etep";

cd ~/radical

Mudar para a diretorio "radical" dentro da home directory.

Caminhos e "." (ponto)

"." (ponto) refere-se à pwd (diretorio corrente);

Utiliza-se frequentemente para a execução de programas no diretorio corrente.

Exemplo:

./meuprog

Executa o programa com o nome "meuprog" que se encontra na pwd (obviamente meuprog é executável).

Outras "Home Directories" Fatec

Para nos referirmos às "home directories" de outros utilizadores:

Com caminho absoluto:

/home/jose

Com o caracter ~:

~/jose

Comando Is

S

```
Apresenta uma listagem (ls – list) do conteúdo da pwd:
```

conta@maquina:~\$ Is

dead.letter Docs Maildir profile

Is -a

Apresenta uma listagem de TODO (a – all) o conteúdo da pwd. Inclui:

```
Arquivos ocultos (começados por .);
```

Links especiais . e ..;

conta@maquina:~\$ Is -a

- . .alias .bash_profile .cshrc Docs profile
- .. .bash_history .bashrc dead.letter Maildir .viminfo

Comando Is continuação

ls –

Apresenta uma listagem longa (l – long) dos conteúdos da pwd, incluindo direitos, número de links, proprietário, grupo, tamanho, última alteração e nome:

```
conta@maquina:~$ Is -I

total 16

-rw------ 1 conta users 1 2004-04-13 21:13 dead.letter

drwx----- 2 conta users 4096 2004-04-24 13:11 Docs

drwxr-xr-x 9 conta users 4096 2004-05-04 17:11 Maildir

drwx----- 14 conta users 4096 2004-04-21 20:03 profile
```

Is -Ih

O parâmetro h (human readable) faz com que os tamanhos dos arquivos sejam apresentados em KB, MB e GB.

Comando Is continuação

Is nomearquivo

Apresenta apenas o arquivo nomearquivo caso este exista;

Is nomeDiretorio

Apresenta o conteúdo do diretorio com o nome nome Diretorio;

Is -d nomeDiretorio

Apresenta apenas o diretorio (d) com o nome nome Diretorio;

Is -R nomeDiretorio

Apresenta todos os arquivos contidos no diretorio *nomeDiretorio* e respectivas sub-diretorios (R – recursivo).

Inodes

Um inode number é um índice numérico que identifica cada objeto no sistema de arquivos;

ls -i

Apresenta uma listagem do conteúdo da pwd junto com os respectivos inodes:

conta@maquina:~\$ ls -i 65570 dead.letter 65631 Docs 65571 Maildir 65543 profile

Podem existir dois arquivos com um mesmo inode number, desde que se encontrem em sistemas de arquivos diferentes, ou seja partições diferentes.

Comandos de ajuda

Existem muitos outros parâmetros para os comandos abordados;

O SO GNU/Linux está equipado com um sistema de documentação muito completo;

Exemplos:

- Man pages (páginas de manual);
- GNU info pages;
- Conteudo do diretório /usr/share/doc;
- Site: The Linux Documentation Project (<u>www.tldp.org</u>);
- Outros...

Man pages

As "man pages" são a forma tradicional de documentação no GNU/Linux e Unix;

Este utilitário formata e apresenta páginas do manual on-line.

Utilização:

man <opções> comando

comando é o comando/aplicativo da qual se deseja ver a página do manual on-line;

Man pages Continuação

- -f ou --whatis : apresenta apenas uma pequena descrição do comando. Esta opção fornece o mesmo resultado do comando whatis.
- -k palavra ou --apropos palavra : procura nos índices do manual a palavra especificada. Esta opção fornece o mesmo resultado do comando apropos.
- O comando *whatis* permite também ver uma descrição bastante curta do objetivo de um determinado comando;

whatis nome

Man pages Continuação

Whatis

Exemplo:

\$ whatis time

time (1) - run programs and summarize system resource usage

time (2) - get time in seconds

Agora para acessar a página (secção) do manual da função da linguagem C time():

\$ man 2 time

Man Pages – Secções

- 1 Programas de utilizador;
- 2 Chamadas ao sistema;
- 3 Funções de bibliotecas;
- 4 Arquivos especiais;
- 5 Formatos de arquivos;
- 6 Jogos;
- 7 Diversos...

Comando mkdir

mkdir etep

Cria o diretorio "etep" na pwd;

mkdir um dois tres quatro

Cria os diretorios *um*, *dois*, tres e quatro na pwd;

mkdir –p um/dois/tres/quatro

Cria a árvore inteira de diretorios especificada (p – parent directories).

Comando cp

cp arq1 arqCopia

Cria uma cópia do arquivo arq1 com o nome ArqCopia;

cp -i arq1 arqCopia

Cria uma cópia do arquivo arq1 com o nome arqCopia, caso arqCopia já exista, a pergunta (i – Interativo) se quer substituir;

cp /usr/src/kernel-source-2.6.5.tar.

Cria uma cópia do arquivo *kernel-source-2.6.5.tar* que se encontra em /usr/src/ na pwd (.);

cp -R /usr/src.

Cria uma cópia do diretorio /usr/src e TODO o seu conteúdo em . (pwd).

Comando mv

mv arq1 arq2

Move (mv) o arquivo com o nome arq1 para arq2.

Equivalente a renomear o arquivo com o nome arq1 para o nome arq2.

mv –i arq1 arq2

Igual ao anterior mas pergunta se pretende substituir *arq2* se este já existir.

Comando ">"

> arq1

Cria um arquivo com o nome arq1;

Comando "cat"

cat

Concatena e/ou exibe um ou mais arquivos.

Permite editoração básica quando utiliza do comando ">"

```
Ex: cat > arq1
edita arquivo
Crtl+c (sair da edição).
```

Comando "clear" Fatec

clear

Limpar a tela # clear

Obs: Tecla de atalho: ctrl+l

Comando "rm"

rm arq1

Elimina o arquivo com o nome arq1;

rm -i arq1

Pergunta antes de apagar;

rmdir dir1

Elimina a diretório com o nome dir1 se este estiver vazio;

rm -r dir1

Elimina o diretorio com o nome dir1 junto com TODO o seu conteúdo.

Normalmente usa-se também o parâmetro f para que a shell não faça "perguntas".

rm -rf é um comando extremamente poderoso e perigoso!!!

more - exibir arquivos uma tela por vez

Sintaxe: more [filename]

Exemplos:

user@maquina:~\$ more teste

user@maquina:~\$ Is -la | more

OBS: O segundo exemplo utiliza o "|" (barra vertical) que concatena comandos.

tail - Mostra as linhas finais de um arquivo texto.

Sintaxe: tail [opções]

Opções: -n [numero] número de linhas do final do arquivo.

-f mostra conteúdo do arquivo sendo atualizado

Exemplo:

user@maquina:~\$ tail -n 20 teste.txt.

user@maquina:~\$ tail -f /var/log/messages

Obs.: Muito útil para visualizar arquivos de logs.

Comando "free"

Sintaxe: free <opções>

Descrição:

Este comando mostra a quantidade de memória livre e utilizada, a área de swap no sistema, a memória compartilhada e os buffers utilizados pelo kernel.

Opções:

-k : as informações são dadas em Kbytes (é o padrão).

-m : as informações são dadas em Mbytes.

-o : oculta a linha com as informações sobre os buffers utilizados pelo kernel.

-t : mostra uma linha contendo a quantidade total de memória do sistema, a quantidade de memória livre e a quantidade de memória em uso.

Exemplo:

Próximo Slide =>

Comando "free" Continuação

Fatec Jacareí

Sintaxe: free <opções>

Exemplo:

\$ free

total used free shared buffers cached

Mem: 8063608 7872228 191380 0 401400 4708648

-/+ buffers/cache: 2762180 5301428

Swap: 2928636 10020 2918616

Comando "du"

DU – Mostra tamanho de diretório ou arquivos do diretório.

Definição: é um utilitário para mostrar o tamanho do diretório ou de arquivos no console do sistema operacional GNU/Linux.

Ex.: Mostra o tamanho dos arquivos e diretórios em kbytes

root@localhost:~# du

4 ./aula03

4 ./.aptitude

72

Ex: Mostra o tamanho do diretório ocorrente em kbytes, mbytes, gbytes

root@localhost:~# du -sh

72K

Comando "df"

Sintaxe: df <opções>

Descrição: Este comando exibe informações sobre espaço livre e espaço usado nas partições do sistema.

Opções:

-a : inclui também na listagem os sistemas de arquivos com zero blocos.

-k : lista o tamanho dos blocos em kbytes.

-m: lista o tamanho dos blocos em Mbytes.

-h : apresenta a informação de tamanho das partições de forma intelegível.

Exemplo:

Próximo Slide =>

Comando "df" Continuação

Sintaxe: df <opções>

Exemplo:

\$ df -h

Sist. Arq. Tam. Usado Disp. Uso% Montado em

/dev/sda6 28G 9,1G 18G 35% /

udev 3,9G 4,0K 3,9G 1% /dev

tmpfs 788M 944K 787M 1% /run

none 5,0M 0 5,0M 0% /run/lock

none 3,9G 640K 3,9G 1% /run/shm

/dev/sda7 357G 321G 18G 95% /home

/dev/sdb1 3,9G 3,4G 463M 89% /media/7B35-FDCE

Comando "su"

Sintaxe: su <opções>

Descrição:

- Este comando permite mudar de usuário em um ambiente shell.
- Caso o nome do usuário não seja fornecido, assume-se que o objetivo é se tornar o usuário root.
- Família BSD ou no Ubuntu, usa-se o comando sudo quando se deseja executar comandos com os privilégios de outro usuário. Portanto, deve-se usar sudo antes de su caso o objetivo seja se tornar o usuário root.

Opções:

- -c, --command COMMAND : um comando é executado usando os privilégios do usuário especificado;
- -s, --shell SHELL : define o ambiente shell a ser usado com o usuário especificado.
- -h, --help : exibe as opções do comando.

Exemplo:

Próximo Slide =>

Comando "su" Continuação

Fatec Jacareí

Sintaxe: su <opções>

Exemplo:

amarildo@ati-rede03:~\$ su

Senha:

root@ati-rede03:/home/amarildo#

root@ati-rede03:/home/amarildo# exit

exit

amarildo@ati-rede03:~\$ su -

Senha:

root@ati-rede03:~#

Ver o conteúdo de um arquivo de outro usuário com o comando indicado: su aluno -c 'more /home/aluno/teste'

Comando "grep"

Sintaxe: grep [opções] expressão arquivo expressão é a palavra ou frase a ser procurada no texto. arquivo é o nome do arquivo onde será feita a busca.

Descrição:

- Este comando procura padrões em um arquivo.

Opções:

- -i : ignora a diferença entre letras maiúsculas e letras minúsculas;
- -n : mostra o número de cada linha em arquivo com expressão;
- -R: Executa uma busca recursiva no diretório de busca.

Exemplo:

Próximo Slide =>

Comando "grep" Continuação

Sintaxe: grep [opções] expressão arquivo

Exemplo:

Pesquisa simples:

\$ grep anacarla /etc/passwd

Uma expressão precedida por ^ encontra as linhas iniciadas pela expressão.

\$ grep '^Projeto' projeto.txt

Uma expressão seguida por \$ encontra as linhas terminada pela expressão.

\$ grep 'Projeto\$' projeto.txt

Comando "whatis" Fatec

Sintaxe: whatis <comando>

Descrição: Mostra um resumo sobre um ou mais comandos.

Opções:

-h, --help : exibe as opções do utilitário.

-V, --version : mostra informações sobre o utilitário.

Exemplo:

\$ whatis man Is

Man (7) - macros to format man pages

man (1) - an interface to the on-line reference manuals

ls (1) - list directory contents

Comando "which" Fatec

Sintaxe: which <comando>

Descrição: Determina a localização e mostra todo o caminho de comando.

Exemplo:

which tcsh /bin/tcsh

Comando "whereis"

Sintaxe: whereis <comando>

Descrição: Lista a localização de programas binários, fontes e documentação.

Opções:

-b : lista apenas arquivos binários.

-m : lista apenas arquivos de documentação.

-s: lista apenas arquivos fontes.

Exemplo:

\$ whereis whereis

whereis: /usr/bin/whereis /usr/bin/X11/whereis /usr/share/man/man1/whereis.1.gz

Comando "find"

Sintaxe: find <caminho> <a expressão>

Descrição: Localiza arquivo que coincide com a expressão fornecida na hierarquia de diretórios.

Opções:

-daystart : medem o tempo do início do dia ou de até 24 horas atrás.

Exemplo:

\$ find /usr -name "*csh"

/usr/lib/mc/mc.csh

/usr/lib/mc/mc-wrapper.csh

/usr/share/doc/uno-libs3/demo/pyunoenv.tcsh

Para listar os arquivos com mais de 1000k de tamanho a partir do diretório atual:

\$ find . -size +1000k

Comando "locate"

Sintaxe: locate <a expressão>

Descrição: Utiliza um banco de dados de nomes de arquivos para pesquisar um determinado nome. Esta base de dados é criada/atualizada pelo administrador do sistema através do comando **updatedb** e é armazenada em /var/lib/mlocate/mlocate.db.

Opções:

-b, --basename : define uma parte do nome do arquivo a ser procurado.

-d, --database DBPATH : define a base de dados a ser usada ao invés da base de dados padrão.

Exemplo: \$ locate mcedit

/etc/mc/mcedit.menu

/home/amarildo/.cache/mc/mcedit

/home/amarildo/.config/mc/mcedit

/home/amarildo/.local/share/mc/mcedit

/usr/bin/mcedit

/usr/share/man/man1/mcedit.1.gz

Fatec

- Gerenciando usuários e grupos

adduser/useradd - Adiciona um usuário ou grupo no sistema. Por padrão, quando um novo usuário é adicionado, é criado um grupo com o mesmo nome do usuário. Somente com a conta do "root".

adduser [opções] [usuário/grupo]

usuário/grupo - Nome do novo usuário que será adicionado ao sistema.

root@maquina:~# adduser jose

root@maquina:~# useradd jose

deluser - usado para apagar usuários cadastrados no sistema.

root@maquina:~# deluser jose

root@maquina:~# deluser jose vendas (remove jose do grupo vendas)

addgroup - adiciona um novo grupo no sistema.

root@maquina:~# addgroup teste

Gerenciando usuários e grupos

groupdel - remove grupo do sistema.
root@maquina:~# groupdel teste

usermod - adiciona um usuário a um grupo extra.

Exemplo: inserir o usuário josé nos grupos secundários vendas e rh

root@maquina:~# usermod -G vendas,rh jose.

 id - Mostra a identificação atual do usuário, grupo primário e outros grupos a que pertence.
 root@maquina:~# id jose

- Comandos Básicos Linux FateC

- Cada arquivo no Linux possui permissões de acesso para usuários e grupos do sistema;
- Cada arquivo possui um conjunto de permissões associadas:
- As permissões de acesso permitem, especificar, a cada arquivo, o que cada usuário, grupo ou o próprio sistema tem quanto a direitos de acesso.

Fatec Jacareí

- Dono –
- O usuário que criou o arquivo ou o diretório;
- O nome do dono do arquivo/diretório é o mesmo do usuário usado para entrar no sistema GNU/Linux;
- Somente o dono pode modificar as permissões de acesso do arquivo;
- As permissões de acesso do dono de um arquivo somente se aplicam ao dono do arquivo/diretório;
- A identificação do dono também é chamada de user id (UID);
- A identificação de usuário ao qual o arquivo pertence é armazenada no arquivo /etc/passwd e do grupo no arquivo /etc/group.

Fatec Jacareí

- Grupo –
- Permite que vários (grupo) usuários diferentes tenham acesso a um mesmo arquivo (já que somente o dono poderia ter acesso ao arquivo);
- Cada usuário pode fazer parte de um ou mais grupos e então acessar arquivos que pertençam ao mesmo grupo que o seu (mesmo que estes arquivos tenham outro dono).
- Por padrão, quando um novo usuário é criado e não for especificado nenhum grupo, ele pertencerá ao grupo de mesmo nome do seu grupo primário.
- A identificação do grupo é chamada de GID (group id). Um usuário pode pertencer a um ou mais grupos.

- Outros -
- É a categoria de usuários que não são donos ou não pertencem ao grupo do arquivo.

Permissões

Existem três permissões básicas:

- r Permissão de leitura para arquivos. Caso for um diretório, permite listar seu conteúdo (através do comando ls, por exemplo).
- w Permissão de gravação para arquivos. Caso for um diretório, permite a gravação de arquivos ou outros diretórios dentro dele. Para que um arquivo/diretório possa ser apagado, é necessário o acesso a gravação.
- x Permite executar um arquivo (caso seja um programa executável).

TIPO	DONO	GRUPO	OUTROS
[1]	[R][W][X]	[R][W][X]	[R][W][X]

- Permissões

Existem três permissões básicas:

TIPO	DONO	GRUPO	OUTROS
[1]	[R][W][X]	[R][W][X]	[R][W][X]

O primeiro caracter define o tipo de arquivo que pode ser:

"-": significa um arquivo normal;

"d": significa um diretório;

"l": significa um 'link' simbólico.

Exemplo no comando: user@maquina:~\$ ls -l /home

drwxr-xr-x 2 user user 3072 2014-03-01 23:13 user

- Permissões

- **chmod** Comando usado para alterar as permissões:
- Existem duas maneiras de mudar as permissões:

Extendida e Octal

- Extendida neste modo especificamos:
 - "u" para usuário;
 - "g" para grupo; e
 - "o" para outros.

Exemplo:

user@maquina:~\$ chmod u=rw, g=rw, o= arquivo1 user@maquina:~\$ Is -I arquivo1

-rw-rw---- 1 user user 0 2014-03-01 23:15 arquivo1

- Permissões

- chmod Comando usado para alterar as permissões:
 - Extendida outro modo de especificar permissão:
 - "+" para adicionar a permissão;
 - "-" para remover a permissão.

Exemplo adiciona apenas leitura para outros:

user@maquina:~\$ chmod o+r arquivo1

user@maquina:~\$ Is -I arquivo1

-rw-rw-r-- 1 user user 0 2014-03-01 23:15 arquivo1

Permissões

- chmod Comando usado para alterar as permissões:
 - Octal Temos o conceito de binário, onde:

0 = desligado;

1 = ligado.

Observe a tabela no próximo slide.

- chmod Comando usado para alterar as permissões:
 - Octal Tabela:

	Dono	Grupo	Outros
	RWX	RWX	RWX
0	0 0 0	0 0 0	0 0 0
1	0 0 1	0 0 1	0 0 1
2	0 1 0	0 1 0	0 1 0
3	0 1 1	0 1 1	0 1 1
4	1 0 0	1 0 0	1 0 0
5	1 0 1	1 0 1	1 0 1
6	1 1 0	1 1 0	1 1 0
7	1 1 1	1 1 1	1 1 1

- Permissões

- chmod – Comando usado para alterar as permissões:

- Octal -

Exemplo: Dono lê, escreve e executa;

Grupo lê e executa; e

Outros apenas lê:

user@maquina:~\$ chmod 754 arquivo1

user@maquina:~\$ Is -I arquivo1

-rwrr-xr-- 1 user user 0 2014-03-01 23:15 arquivo1

- Permissões

- chown – Comando usado para alterar o dono e/ou grupo:
 sintaxe: chown [opções] [dono.grupo] [diretório/arquivo]

Exemplos:

- Muda somente o dono do arquivo: user@maquina:~\$ chown user arquivo1
- Muda o dono e o grupo do arquivo:
 user@maquina:~\$ chown user.grupo1 arquivo1
 user@maquina:~\$ ls –l arquivo1
 -rwrr-xr-- 1 user grupo1 0 2014-03-01 23:15 arquivo1