

National Institute of Technology Delhi

End Semester Examinations –Nov.-Dec.- 2019

Roll No:

Name of Specialization – B.Tech (ECE)

Course Name- Antenna & Wave Propgation

Course Code: ECL-301

Year – 3rd Semester -1st

Maximum Marks - 50

Total Time: 3:00 Hours

Note: This question paper divided into three sections A, B and C and each section must be solved with rules given as follows:

Section A: Contains Ten (10) questions of 01 mark each and all questions are compulsory.

Section B: Contains Five (05) questions of 5 marks each and any four (04) are to be attempted.

Section C: Contains Three (03) questions of ten (10) marks each and any two (02) are to be attempted.

attempted.

Assume suitable data, if found missing. Used symbols have their usual meaning

Section A

Q1: What do you mean by Hertizan dipole and what is the expression of its radiation resistance?

Q2: Write down the expression for radiation density of an isotropic radiator.

Q3: What is expression of the loss resistance parameter of a straight wire antenna having uniform current?

Q4: What is Rhombic antenna?

Q5: What do you mean by principal E & H-planes?

Q6: Define end-fire and broadside radiation patterns of an antenna array.

Q7: What is standing wave or resonant antenna?

Q8: What is traveling wave antenna?

Q9: What is Love's equivalence principle?

Q10: What is the expression for the radiation resistance of a circular loop antenna?

Section-B

Q-1: Derive the equation of the inhomogeneous wave from the Maxwell's equations and found out its solution in the limit by considering source is a point. (5)

Q-2: Consider the two-elements antenna array in which two infinitesimal dipoles are placed in free space along z-axis but oriented parallel to x-axis. The separation between the elements is d and they are carrying uniform current with an initial excitation phase difference of β . Sketch the normalized field pattern when currents are fed in phase $\beta = 0$ and $d = \lambda/2$.

National Institute of Technology Delhi

End Semester Examinations -Nov.-Dec.- 2019

Q-3: A magnetic field strength of $5\mu A/m$ is required at a point on $\theta = \pi/2$ which is 2 km from an antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is a 10-turn loop antenna of radius $\rho_0 = \lambda/20$? (5)

Q-4: A thin linear dipole of length I is placed symmetrically about z-axis. Find the far-zone spherical electric and magnetic components radiated by the dipole whose current distribution can be approximated

(5)

by $I_z(z') = I_0 \cos(\frac{\pi}{l} z'), \ -l/2 \le z' \le l/2.$ (5)

Q-5: Show that directivity of a linear, broadside uniform array of N isotropic elements with a separation of d between the elements is approximately equal to $2N(d/\lambda)$, where λ is operating wavelength. (5)

Section-C

Q-1: For the N-elements linear array antenna, which contains identical elements and are excited by identical magnitude, but each succeeding element has a β progressive phase lead current excitation relative to the preceding one. Determine the following:

[a]: Normalized array factor, [b]: Angles at which null and maxima exist, [c]: Largest spacing between the elements to avoid the grating lobe for broadside and end-fire radiations. (10)

Q-2: What do you mean by slow wave traveling antenna? By considering traveling wave current profile in the long wire, $l \gg \lambda$, oriented along z-axis, determine the following:

[a]: Far field expressions of the fields, [b]: Directivity, [c]: Radiation resistance and [d]: Input impedance. (10)

Q-3: Draw the design configuration of Yagi-Uda antenna. How many components are there and what are their roles? Derive the expression for the total far field of the entire Yagi-Uda array? (10)