

(19) World Intellectual Property Organization International Bureau

T COLOR COLLEGA DE CORRES CONTROL I IN TOU COLOR COLOR COLOR COM COLOR COLOR COLOR COLOR COLOR COLOR COLOR COL

(43) International Publication Date 22 February 2001 (22.02.2001)

PCT

(10) International Publication Number WO 01/12660 A2

- (51) International Patent Classification7: C07K 14/00
- (21) International Application Number: PCT/JP00/05356
- (22) International Filing Date: 10 August 2000 (10.08.2000)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

FIIOSILY Data.		
11/230344	17 August 1999 (17.08.1999)	JР
11/252551	7 September 1999 (07.09.1999)	JP
11/281132	1 October 1999 (01.10.1999)	JP
11/301624	22 October 1999 (22.10.1999)	JP
• • • • • • •	4 November 1999 (04.11.1999)	JР
11/313877	4 November 1999 (04.11.1977)	٠.

- (71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

- (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/12660 A2

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAs ENCODING THESE PROTEINS

(57) Abstract: The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells expressing these DNAs and antibodies directed to these proteins.

DESCRIPTION

Human Proteins Having Hydrophobic

Domains and DNAs Encoding These Proteins

5

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, eukaryotic 10 expressing these DNAs and antibodies directed to these proteins. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies directed to these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, 15 the cDNAs can be utilized as gene sources for producing the proteins encoded by these cDNAs in large quantities. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantities can be utilized for detection of the corresponding receptors or 20 ligands, screening of novel small molecule pharmaceuticals and the like. The antibodies of the present invention can be utilized for the detection, quantification, purification and the like of the proteins of the present invention.

10

15

20

2

BACKGROUND ART

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation differentiation induction, the control, the transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as the so that they possess hidden injection or the drip, potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like addition, In pharmaceuticals. employed as currently secretory proteins other than those described above are undergoing clinical trials for developing their use as pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them expected to lead to development of novel pharmaceuticals utilizing them.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters and the like in the material transport and the signal transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion

10

15

channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides and amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities in these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many diseases, so that isolation of new genes encoding the membrane proteins has been desired.

Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

protein possesses at least one hydrophobic domain within the protein. After synthesis on ribosomes, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, if the existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the

WO 01/12660 PCT/JP00/05356

4

whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

5 OBJECTS OF INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells that are capable of expressing these DNAs and antibodies directed to these proteins. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

15

20

10

ď

SUMMARY OF INVENTION

As the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the present invention provides a human protein having hydrophobic domain(s), namely a protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. Moreover, the present invention provides a DNA

encoding said protein, exemplified by a cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150, an expression vector that is capable of expressing said DNA by in vitro translation or in eukaryotic cells, a transformed eukaryotic cell that is capable of expressing said DNA and of producing said protein and an antibody directed to said protein.

10 BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03171.

Fig. 2 illustrates the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03424.

Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03444.

Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03478.

Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03499.

			illustrates	the
	9			ncoded
	hydrophobicity/hydrophyd	philicity prof	ile of the protein e	ncoqea
	by clone HP03500.			
	Fig.		illustrates	the
5	hydrophobicity/hydro		file of the protein e	ncoded
	by clone HP10691.			
	Fig.	_	illustrates	the
	hydrophobicity/hydro	philicity pro	file of the protein e	encoded
	by clone HP10703.			
10	- Fig.	9	illustrates	- the
10	hydrophobicity/hydro	ophilicity pro	file of the protein	encoded
	by clone HP10711.		2.2	
	Fig.	10	illustrates	the
	hydrophobicity/hydr	ophilicity pro	ofile of the protein	encoded
15	by clone HP10712.			.
	- Fig.	11	illustrates	the
	hydrophobicity/hydr	ophilicity pr	ofile of the protein	encoded
	by clone HP03010.		:	
	Fig.	12	illustrates :	the
20	hydrophobicity/hyd:	rophilicity pr	ofile of the protein	encoded
	by clone HP03576.			
	Fig.	13	illustrates	the
	hydrophobicity/hyd	rophilicity p	cofile of the protein	encoded
25	Fig.	14	illustrates	# the

בו בשפטרות יאור הווספפחאס ו

Carrier Contract Cont

20

the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03612.

Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10407.

Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10713.

illustrates

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10714.

17

Fig.

Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10716.

Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10717.

Fig. 20 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10718.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03745.

Fig. 22 illustrates the 25 hydrophobicity/hydrophilicity profile of the protein encoded

the

by clone HP03747.

illustrates 🚟 23 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10719.

illustrates the 24 Fig. 5 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10720.

illustrates the 25 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10721.

the illustrates 26 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10725.

illustrates 27 Fig. hydrophobicity/hydrophilicity profile of the protein encoded 15 . by clone HP10727.

the illustrates 28 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10728.

29 illustrates Fig. 20 hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10730.

the illustrates 30 Fig. hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10742.

25

		Fig. 31	illustrates	the
		hydrophobicity/hydrophilicit	y profile of the protein enc	oded
		by clone HP03800.		
		Fig. 32	illustrates	the
	5	hydrophobicity/hydrophilicit	y profile of the protein enco	oded
		by clone HP03831.		
		Fig. 33	illustrates	the
		hydrophobicity/hydrophilicity	y profile of the protein enco	oded
	•	by clone HP03879.		
	10	Fig. 34	illustrates	the
		hydrophobicity/hydrophilicity	y profile of the protein enco	oded
		by clone HP03880.		
		Fig. 35	illustrates	the
		hydrophobicity/hydrophilicity	profile of the protein enco	oded
	15	by clone HP10704.	÷	
		Fig. 36	illustrates	the
		hydrophobicity/hydrophilicity	profile of the protein enco	ded
		by clone HP10715.		
	,	Fig. 37	illustrates	the
	20	hydrophobicity/hydrophilicity	profile of the protein enco	ded
		by clone HP10724.		
		Fig. 38	illustrates	the
		hydrophobicity/hydrophilicity	•	
		by clone HP10733.	•	
• •	2.5	Fig 39	illustrates	the

	hydrophobicity/hydrophil	icity	profile	of th	e prote	in e	ncoded	
	by clone HP10734.							
	Fig.	40	i	llust	rates		the	
	hydrophobicity/hydrophil	icity	profile	of th	ne prote	in e	ncoded	
5	by clone HP10756.	-			-		:	
	Fig.	41	i	llust	rates		the	
	hydrophobicity/hydrophil	icity	profile	of th	ne prote	in e	encoded	
	by clone HP03670.			٠		•		
	Fig.	42	i	llust	rates .		the	:
10	hydrophobicity/hydrophil	icity	profile	of the	he prote	ein e	encoded	l
	by clone HP03688.						13° 150 -	
	Fig.	43	· i	llust	rates	•	the	<u> </u>
	hydrophobicity/hydrophil	Licity	profile	of t	he prote	ein (encoded	ì
	by clone HP03825						*	
15	Fig.	44	j	illust	rates .	,	: the)
	hydrophobicity/hydrophi	licity	profile	of t	he prote	ein	encodeo	Ĺ
	by clone HP03877.							
	Fig.	45	. :	illust	crates		the	9
	hydrophobicity/hydrophi	licity	y profile	e of t	he prot	ein	encode	Ĺ
20	by clone HP10765.			-				
	Fig.	46		illust	trates		th	е
	hydrophobicity/hydrophi	licit	y profile	e of t	the prot	ein	encode	d
	by clone HP10766.			• • • •				
	Fig.	47		illus	trates		th	e
25	hydrophobicity/hydrophi	licit	y profile	e of 1	the prot	ein	encode	d

by clone HP10770.

Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10772.

Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10773.

Fig. 50 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10776.

DETAILED DESCRIPTION OF THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolating proteins 15 from human organs, cell lines or the like, a method for preparing peptides by the chemical synthesis based on the amino acid sequences of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the 20 present invention. Among these, the method for producing proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the cDNA of the present invention, and then carrying out in vitro translation using this RNA as a 25

Ġ.

5

10

15

20

: 🕁

37 11 7

region into a suitable expression vector by the method known in the art may lead to expression of a large amount of the encoded protein in prokaryotic cells such as Escherichia coli, Bacillus subtilis, etc., and eukaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by incorporating the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing promoters for these RNA polymerases are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as Escherichia coli etc., a recombinant

BNSDOCID: <WO 0112660A2 L >

10

15

expression vector in which the translated region of the cDNA of the present invention is incorporated into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation of the host cells with this expression vector, the resulting transformant is cultivated, whereby the protein encoded by the cDNA can be produced in large quantities in the microorganism. In this case, a protein fragment containing any translated region can be obtained by adding an initiation codon and a termination codon in front of and behind the selected translated region to express the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the surface of cell membrane, by incorporating the translated region of the cDNA into an expression vector for eukaryotic

cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells, Chinese hamster ovary CHO cells and the like, budding yeasts, fission yeasts, silkworm cells, Xenopus oocytes and the like. Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method and the like.

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated and purified from the culture by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or centrifugation, solvent precipitation, dialysis, ultrafiltration, gel filtration, SDS-PAGE, isoelectric 25 focusing, ion-exchange chromatography, hydrophobic

C.

5

10

15

10

15

20

chromatography, affinity chromatography, reverse phase chromatography and the like.

The proteins of the present invention also include peptide fragments (of 5 amino acid residues containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP-A 8-187100]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are added. Accordingly, such proteins or peptides to which sugar chains are added shall also come

10

15

20

(*

within the scope of the protein of the present invention.

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. The cDNAs are synthesized by using poly(A)* RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-(1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be libraries by synthesizing CDNA from the cloned oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known

. . . .

in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which oligonucleotides are then used as the primers.

The **CDNAs** of the present invention characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or the base sequences 10 represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Tables 1 and 2 summarizes the clone number (HP number), the cell from which the cDNA clone was obtained, the total number of bases of the cDNA, and the number of the amino acid residues of the encoded protein, 15 for each of the cDNAs.

ENCHOCID- - WO ... niingenan i -

: .-

Table 1

Table	Ţ.	 	· · · ·	<u> </u>	<u> </u>	
SEQ	ID	NO.	HP	Cell	Number of bases	Number of amino acid residues
1,	11	, 21	HP03171	Thymus	2042	267
2,	12	, 22	HP03424	Liver	1433	419
3,	13	, 23	HP03444	Kidney	. 1917 .	415
4,	14	, 24	HP03478	Umbilical cord blood	2258	380
5,	15	, 25	HP03499	Kidney	1973	585
6,	16	, 26	HP03500	kidney	1606:	331
7,	17	, 27	HP10691	Umbilical cord blood	2380	345
8,	18	, 28	HP10703	Kidney	2017	89
9,	19	, 29	HP10711	Kidney	1606	406
10,	20	, 30	HP10712	Kidney	1695	192
31,	41	, 51	HP03010	Kidney	1551	377
32,	42	, 52	HP03576	Kidney	1713	81
33,	43	, 53	-HP03611	Kidney	1758	487
34,	·44	, 54	HP03612	Kidney	1550	375
35,	45	, 55	HP10407	Stomach cancer	1485	350
36,	46	, 56	HP10713	Kidney	2694	667
37,	47	, 57	HP10714	Umbilical cord blood	3297	464
38,	48	, 58	HP10716	Umbilical cord blood	2126	470
39,	49	, 59	HP10717	Kidney	1781	243
40,	50	, 60	HP10718	Umbilical cord blood	1788	270
61,	71	, 81	HP03745	Kidney	1376	389
62,	72	, 82	HP03747	Umbilical cord blood	2392	348
63,	73	, 83	HP10719	Kidney	1416	261
64,	74	, 84	HP10720	Kidney	1347	222
65,	75	85	HP10721	Kidney	2284	183

Table 2

SEC) ID 1	NO	HP number	Cell	Number of bases	Number of amino acid residues
66,	76,	86	HP10725	Kidney	1737	262
67,	77,	87	HP10727	Umbilical cord blood	1556	168
68,	78,	88	HP10728	Umbilical cord blood	1855	243
69,	79,	89	HP10730	Umbilical cord blood	2530	428
70,	80,	90	HP10742	Umbilical cord blood	1911	283
91,	101,	111	HP03800	Umbilical cord blood	1633	476
92,	102,	112	HP03831	Kidney	1095	226
93,	103,	113	HP03879	Kidney	1602	305
94,	104,	114	HP03880	Kidney	897	227
. 95,	105,	115	HP10704	Kidney	1866	441
96,	106,	116	. HP10715	Umbilical cord blood	2198	265
97,	107,	117	HP10724	Umbilical cord blood	2180	208
98,	108,	118	HP10733	Umbilical cord blood	1527	400
99,	109,	119	HP10734	Umbilical cord blood	1905	192
100,	110,	120	HP10756	Kidney	998	260
121,	131,	141	HP03670	Umbilical cord blood	1622	337
122,	132,	142	HP03688	Umbilical cord blood	2475	236
123,	133,	143	HP03825	Kidney	1739	560
124,	134,	144	HP03877	Kidney	2005	406
125,	135,	145	HP10765	Umbilical cord blood	1558	453
126,	136,	146	HP10766	Kidney	1005	59
127,	137,	147	HP10770	Kidney	969	210
128,	138,	148	HP10772	Kidney	1241	165
129,	139,	149	HP10773	Kidney	1174	162
130,	140,	150	HP10776	Kidney	1012	221

The same clones as the cDNAs of the present invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human

WO 01/12660 PCT/JP00/05356

20

tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150.

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 shall come within the scope of the present invention.

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can

PNSDOCID: <WO 0112660A2 L >

25

0

5

10

15

10

15

20

be utilized as the probes for the genetic diagnosis.

The antibody of the present invention can be obtained from a serum after immunizing an animal using the protein of the present invention as an antigen. A peptide that is chemically synthesized based on the amino acid sequence of the present invention and a protein expressed in eukaryotic or prokaryotic cells can be used as an antigen. Alternatively, an antibody can be prepared by introducing the above-mentioned expression vector for eukaryotic cells into the muscle or the skin of an animal by injection or by using a gene gun and then collecting a serum therefrom (JP-A 7-313187). Animals that can be used include a mouse, a rat, a rabbit, a goat, a chicken and the like. A monoclonal antibody directed to the protein of the present invention can be produced by fusing B cells collected from the spleen of the immunized animal with myelomas to generate hybridomas.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for

. 25

Control of the Control of the Control

5

10

15

20

€

introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express for analysis, characterization protein recombinant therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of differentiation or development or in disease states); "as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA patients to identify potential sequences in disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein

(such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris t al., Cell '75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-10 throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding 15 protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can . 20 be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or 2.5 agonists of the binding interaction.

10

15

20

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation

10

15

20

Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Marqulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 25 137:3494-3500, 1986; Bertagnolli et al., J. Immunol.

U CANSBOLLO OMO OLICONORIA I

145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

- Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
- Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology.

 J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a.

10

15

Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies . 20 in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

25 Immune Stimulating or Suppressing Activity

10

· 15

20

and executive and executive section

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania malaria spp. and various fungal infections such candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune

10

15

20

pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. immune suppression is desired in which conditions, (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an may progress or already in response immune response. The induction of immune an preventing the be inhibited by functions of activated T cells may inducing specific suppressing T cell responses or by tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by

. 25

10

15

20

the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. tissue transplants, rejection of Typically, in transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant.

BNSDOCID: <WO 0112660A2 L >

5.

10

15

. 20

Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases.

Many autoimmune disorders are the result of inappropriate

10

15

20

医海绵 医二氯化二甲二氯基

activation of T cells that are reactive against self tissue and which promote the production of cytokines autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antiqens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents induce antigen-specific tolerance of may autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can ... be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.

10

15

20

Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte

- 5

10

15

20

antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a

10

15

. 20

cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated invariant chain, can such as the protein, cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19;

.25

20

BMCDOOID - MID - MITSERNAS I -

Chapter 7, Immunologic studies in Humans); Herrmann et al. Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 5 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. 10 Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

for T-cell-dependent immunoglobulin Assays responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E.

10.

15

25

Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-In Vitro assays for Interscience (Chapter 3, Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 20 1990.

> Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those

described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or

10

15

20

erythroid cells; in supporting the growth and proliferation and granulocytes cells such as myeloid monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting proliferation of megakaryocytes and growth the consequently of platelets thereby allowing prevention or disorders such as various platelet treatment of thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without and paroxysmal nocturnal aplastic anemia limitation, hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or marrow conjunction with bone (i.e., ex-vivo in progenitor cell transplantation or with peripheral transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

2.5. Suitable: assays: for proliferation e and

- 5

differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

10 Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. 15 Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New 20 York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New 25 York, NY. 1994; Long term bone marrow cultures in the

10

15

20

presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth

WO 01/12660 PCT/JP00/05356

42

repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or

BNSDOCID: <WO 0112660A2 L >

25

10

15

10

15

20

٠, ٠

ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may .provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, differentiation of progenitors of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be in the treatment of tendinitis, carpal tunnel useful The defects. syndrome and other tendon ligament or compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be neural cells and for proliferation of for useful regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nerve injuries, system, such as peripheral nervous peripheral neuropathy and localized neuropathies, central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic

2.5

lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

5

10

15

20

BNSDCCID: 2WO 0112660A2 L >

proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

25 A protein of the present invention may also be

useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of

10

15

2.0

10

15

20

follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et

2.2

10

al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, and/or endothelial cells. epithelial eosinophils, Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized For example, attraction of lymphocytes, infections. monocytes or neutrophils to tumors or sites of infection may 15 result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell

- 25

chemotaxis.

5

10

15

20

25

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other

Park Committee of the C

15

hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen

10

15

20

presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity

10

15

20

may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inhibiting promoting or inflammatory process, extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, rejection, nephritis, complement-mediated hyperacute cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly

(such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body for example, breast size orshape (such as, augmentation or diminution, change in bone form or shape); effecting biorhythms or cardiac cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or

10

15

10

15

nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), (including depressive disorders), and violent depression behaviors; providing analgesic effects or other reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulinlike activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

15 - 5 to 15 - 4

The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic procedures with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold

20

25

Spring Harbor Laboratory, 1989]. Unless otherwise stated, restriction enzymes and various modifying enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the attached instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having

10 Hydrophobic Domains

Human liver cDNA library (WO 98/21328) and human stomach cancer cDNA library (WO 98/21328), as well as the cDNA libraries constructed from human kidney mRNA (Clontech), human thymus mRNA (Clontech) and human umbilical cord blood mRNA were used as cDNA libraries.

Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank consisting of the full-length cDNA clones. The hydrophobicity/hydrophilicity profiles were determined for the proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic domain. A clone that has a hydrophobic region

10

15

20 -

being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case, [35S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 µl containing 12.5 µl µ of T_NT rabbit reticulocyte lysate, 0.5 µl of a buffer solution (attached to the kit), 2 µl of an amino acid mixture (without methionine), 2 μ l of [35S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 µl of T7 RNA polymerase, and 20 U of RNasin. experiment in the presence of a membrane system was carried out by adding $2.5~\mu l$ of a canine pancreas microsome fraction (Promega) to the reaction system. To 3 µl of the reaction solution was added 2 µl of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis.

2.5

10

15

20

25

The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression in COS7

Escherichia coli cells harboring the expression vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2 x YT culture medium containing 100 μ g/ml of ampicillin, the helper phage M13K07 (50 μ 1) was added thereto, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in 100 μ l of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10⁵ COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Trishydrochloride (pH 7.5) (TDMEM). A suspension containing 1 µl of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 µl of TRANSFECTAMTM (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

OCID-WO 0112650215

10

15

20

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [35S]cysteine or [35S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Preparation of Antibodies

A plasmid vector containing the cDNA of the present invention was dissolved in a phosphate buffer solution (PBS: 145 mM NaCl, 2.68 mM KCl, 8.09 mM Na₂HPO₄, 2 mM KH,PO, pH 7.2) to a concentration of 2 µg/µl. 25 µl each (a total of 50 µl) of the thus-prepared plasmid solution in PBS was injected into the right and left musculi quadriceps femoris of three mice (ICR line) using a 26 guage needle. After similar injections were repeated for one month at intervals of one week, blood was collected. The collected blood was stored at 4°C overnight to coagulate the blood, and then centrifuged at 8,000 x g for five minutes to obtain a supernatant. NaN, was added to the supernatant to a concentration of 0.01% and the mixture was then stored at 4°C. The generation of an antibody was confirmed immunostaining of COS7 cells into which the corresponding vector had been introduced or by Western blotting using a

10

15

20

25

ENGRACIO - NO 011266042 L

cell lysate or a secreted product.

(5) Clone Examples

<HP03171> (SEQ ID NOS: 1, 11 and 21)

Determination of the whole base sequence of the cDNA insert of clone HP03171 obtained from cDNA library of human thymus revealed the structure consisting of a 90-bp 5'-untranslated region, a 804-bp ORF, and a 1148-bp 3'untranslated region. The ORF encodes a protein consisting of 267 amino acid residues and there existed one putative depicts transmembrane domain. Figure 1 hydrophobicity/hydrophilicity profile, obtained by the Kyteof the present protein. In Doolittle method, translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight of 30,234 predicted from the ORF. In this case, 7the addition of a microsome led to the formation of a product of 38 kDa. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Thr-Thr at position 169).

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to chicken putative transmembrane protein E3-16 (Accession No. AAB70816). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and chicken putative

transmembrane protein E3-16 (GG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.0% in the entire region.

Table 3

5

 $^{-1}$ (25) is a partial relation of the contract of $^{-1}$ (27) $^{-1}$

غور بيغنج ۾ جي ان جي ان ان جي ان ان ان ان

HP RATRRINKRGAKNCNAIRHFENTFVVETLICGVV

* ** ** * ** ***** * *****

GG KEAMKGIQKREAVNCRKIRHFENRFAMETLICEQ

5

10

15

20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AL036384) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

and the first control of the control

<HP03424> (SEQ ID NOS: 2, 12 and 22)

Determination of the whole base sequence of the CDNA insert of clone HP03424 obtained from cDNA library of human liver revealed the structure consisting of a 4-bp 5'-untranslated region, a 1260-bp ORF, and a 169-bp 3'-untranslated region. The ORF encodes a protein consisting of 419 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight

BNSDCCID- ZWC 0112660A2 1 :

10

15

of 46,375 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein six sites at which N-glycosylation may occur (Asn-Ala-Ser at position 29, Asn-Val-Thr at position 40, Asn-Cys-Thr at position 112, Asn-Lys-Ser at position 135, Asn-Ile-Ser at position 172 and Asn-Phe-Ser at position 189). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from aspartic acid at position 28.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH protein (Accession No. Q06003). Table 4 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 40.8% in the intermediate region of 218 amino acid residues.

and the company of th

25

		Table 4	
		HP MSCAGRAGPARLAALALLTCSLWPARADNASQEYYTALINVTVQEPGRGAPLTFRIDRGR	
	5	HP YGLDSPKAEVRGQVLAPLPLHGVADHLGCDPQTRFFVPPNIKQWIALLQRGNCTFKEKIS	:
		HP RAAFHNAVAVVIYNNKSKEEPVTMTHPGTGDIIAVMITELRGKDILSYLEKNISVQMTIA	
		* ** *.*. *.*	
		DM MQLEKMQIKGKTRNIAAVITYQNIGQDLSLTLDKGYNVTISII	
	10		177
		HP VGTRMPPKNFSRGSLVFVSISFIVLMIISSAWLIFYFIQKIRYTNARDRNQRRLGDAA	
		* **.*.****** *. *****.*****.	
		DM EGRRGVRTISSLNRTSVLFVSISFIVDDILCWLIFYYIQRFRYMQAKDQQSRNLCSVT	
			. •
	15	HP KKAISKLTTRTVKKGDKETDPDFDHCAVCIESYKQNDVVRILPCKHVFHKSCVDPWLSEH	a ;
		**** *. * * * * * * * * * * * * * * * *	
		DM KKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKHEFHKNCIDPWLIEH	
		HP CTCPMCKLNILKALGIVPNLPCTDNVAFDMERLTRTQAVNRRSALGDLAGDNSLGLEPLR	
	20	******* ** * *	337
		DM RTCPMCKLDVLKFYGYVVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQPLQPLQ	
		en la companya di mangantan di m	
. •		HP TSGISPLPQDGELTPRTGEINIAVTKEWFIIASFGLLSALTLCYMIIRATASLNANEVEW	
		.**	
	25	DM ASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMPHAITAS	= <u>C</u>

HP F

DM HQVTDV

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA082118) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03444> (SEQ ID NOS: 3, 13 and 23)

15 Determination of the whole base sequence of the cDNA insert of clone HP03444 obtained from cDNA library of human kidney revealed the structure consisting of a 209-bp 5'-untranslated region, a 1248-bp ORF, and a 460-bp 3'untranslated region. The ORF encodes a protein consisting of 20 415 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was somewhat smaller than the molecular 25

10

15

weight of 45,691 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 42 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 24.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human type I procollagen C-proteinase enhancer protein (Accession No. BAA23281). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human type I procollagen C-proteinase enhancer protein (CP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.6% in the entire region.

the first of the second second

•

20 Table 5

ere on the state of

HP MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYP

* **. * * **** *** . . *****. . **

CP MLPAATASLLGPLLTACALLPFA-Q-GQTPNYTRPVFLCGGDVKGESGYVASEGFPNLYP

	HP PNSKCTWKITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGH-ANGQRIGRFCGTFRPG
	. *. *. ****. * *. *** . *** * ***. ******
	CP PNKECIWTITVPEGQTVSLSFRVFDLELHPACRYDALEVFAGSGTSGQRLGRFCGTFRPA
5	HP ALVSSGNKMMVQMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDR
	.********
	CP PLVAPGNQVTLRMTTDEGTGGRGFLLWYSGRATSGTEHQFCGGRLEKAQGTLTTPNWPES
	HP DYPAGVTCVWHIVAPKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGD
10	***. *. * ***. ** . *. *. **. **. *. *.
	CP DYPPGISCSWHIIAPPDQVIALTFEKFDLEPDTYCRYDSVSVFNGAVSDDSRRLGKFCGD
	HP SPPAPIVSERNELLIQFLSDLSLTADGFIGHYIFRPKKLPTTTE
	. ** ** ****. **. **** . * *
15	CP AVPGSISSEGNELLVQFVSDLSVTADGFSASYKTLPRGTAKEGQGPGPKRGTEPKVKLPP
	HP QPVTTTFPVTTGLKTTVALCQQKCRRTGTLEGNYCSSDFVLAGTVITTITRDG-SLHATV
	*
	CP KSQPPEKTEESPSAPDAPTCPKQCRRTGTLQSNFCASSLVVTATVKSMVREPGEGLAVTV
20 .	
	HP SIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRRGLNYIIMGQVGEDGRGKIM-PNSF
	.. **. *
	CP SLIGAYKTGGLDLPSPPTGASLKFYVPCKQCPPMKKGVSYLLMGQV-EENRGPVLPPESF
3 E	HD TIMEKTKNOKI I DAI KNKOC

10

15

20

4.1.3

CP VVLHRPNQDQILTNLSKRKCPSQPVRAAASQD

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D78874) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03478> (SEQ ID NOS: 4, 14 and 24)

Determination of the whole base sequence of the cDNA insert of clone HP03478 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 224-bp 5'-untranslated region, a 1143-bp ORF, and a 891-bp 3'-untranslated region. The ORF encodes a protein consisting of 380 amino acid residues and there existed five putative transmembrane domains. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the

10

protein was similar to Halocynthia roretzi HrPET-1 protein (Accession No. BAA81907). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Halocynthia roretzi HrPET-1 protein (HR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.8% in the entire region.

Table 6

HP MLQTLYDYFWWERLWLPVNLTWADLEDRDGRVYAKASDLYITLPLALLFLIVRYFFEL 15 HR MDLLMDLYHWFWNEKFWLPQNLTWEDLKRTEEKQFGETRDLWLTFPLCITVLCIRFSVEK HP YVATPLAALLNIKEKTRLRAPPNATLEHFYLTSGKQPKQVEVELLSRQSGLSGRQVERWF HR GIARPLGKWLNLSERLHTPPRENIVLEKVYKTITRKPNYSQVEDLCKQTGWRKHEINVWF 20 The state of the s HP RRRRNQDRPSLLKKFREASWRFTFYLIAFIAGMAVIVDKPWFYDMKKVWEGYPIQSTIPS HR RKKNLVGRPTTLTKFQETFWRFAFYLTSFFYGLYVMYDQECVWQTEKCFSNYPEDHVLSQ Contract of the Contract of th

ŀ	HP	Q-YWYYMIELSFYWSLLFSIASDVKRKDFKEQIIHHVATIILISFSWFANYIRAGTLIMA
		. *. **. **. ** **** * . ***. *. **. *.
i	HR	KIYYYYLIELAFYSATTLTQFFDVKRKDFWEMFIHHIVTIILLCGSYTLNYTKMGAFILV
5 i	HP	LHDSSDYLLESAKMFNYAGWKNTCNNIFIVFAIVFIITRLVILPFWILHCTLVYPLELYP
		.***.** *** * ** * ******
· I	HR	VHDSADFYIEFAKMGKYANNSLVTNVGFISFTISFFLSRLVILPLWIVPSIWFYGIYTYN
ŀ	HP	AFFGYYFFNSMMGVLQLLHIFWAYLILRMAHKFITGKLVEDERSDREETESSEGEEAAAG
10		
ŀ	HR	CAMA-WLFCALL-ILQLLHFYWFSHIVKAAYASILVGVIERDTRSESEDSSAEDETAKYS
· •	HP	GGAKSRPLANGHPILNNNHRKND
		*.
15 H	HR	VGSGDYTESNGIHKRVVTAR

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T27334) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03499> (SEQ ID NOS: 5, 15 and 25)

10

15

Determination of the whole base sequence of the cDNA insert of clone HP03499 obtained from cDNA library of human kidney revealed the structure consisting of a 129-bp 5'-untranslated region, a 1758-bp ORF, and a 86-bp 3'untranslated region. The ORF encodes a protein consisting of 585 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 63 kDa that was almost identical with the molecular weight of 63,987 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 82 kDa. In addition, there exist in the amino acid sequence of this protein five sites at which N-glycosylation may occur (Asn-Ile-Thr at position 89, Asn-Glu-Thr at position 106, Asn-Ala-Thr at position 189, Asn-Arg-Thr at position 220 and Asn-Ala-Thr at position 315).

The search of the protein database using the amino 20 acid sequence of the present protein revealed that the protein was similar to Chinese hamster hypothetical protein A30227). Table 7 shows 2BE2121 (Accession No. comparison between amino acid sequences of the human protein of the present invention (HP) and Chinese hamster 25 hypothetical protein 2BE2121 (CH). Therein, the marks of -,

	*, and . represent a gap, an amino acid residue ide	entical
	with that of the protein of the present invention,	and an
	amino acid residue similar to that of the protein	of the
-	present invention, respectively. The both proteins sh	ared a
· 5	homology of 44.8% in the entire region.	÷
	Table 7	
•		
•	HP MVCREQLSKNQVKWVFAGITCVSVVVIAAIVLAITLRRPGCELEACSPDADMLDYLLSLG	
10	. ***. *.	MA TING Consideration
	CH SWSENILDYFLRNS	<u></u>
		·· •
	HP QISRRDALEVTWYHAANSKKAMTAALNSNITVLEADVNVEGLGTANETGVPIMAHPPTIY	
	. *. **** *. * . **. *	
15	CH QITTEDGAEIIWYHAANHKSQMQEALRSAAHMIEADVLLPSDGSEHGQPIMAHPPEMN	£
	HP SDNTLEQWLDAVLGSSQKGIKLDFKNIKAVGPSLDLLRQLTEEGKVRRPIWINADILKGP	
	*****. **. * . * . ******** . *	
,	CH SDNTLQEWLAEVM-KSNKGIKLDFKSLAAARASMLFLDNVKQHLQCPVWMNADVLPGP	
20		u J
	HP NMLISTEVNATQFLALVQEKYPKATLSPGWTTFYMSTSPNRTYTQAMVEKMHELVGGVPQ	
	* * * * * * * * * * * * * * * * * * * *	
	CH NG-SSKVVDAKAFLDTVTSFFPDVTFSLGWTTGWHPEKVNEGYSWTMVKEMDYICSGLTQ	
. 25	HP RVTFPVRSSMVRAAWPHFSWLLSQSERYSLTLWQAASDPMSVEDLLYVRDNTAVHQVYYD	d∑.

RNSDOCID: <WO 0112660A2 L >

Charles the second

HP IFEPLLSQFKQLALNATRKPMYYTGGSLIPLLQLPGDDGLNVEWLVPDVQGSGKTATMTL

5 *.** .***

CH ILEPQSHEFKQAIGI

Furthermore, the search of the GenBank using the

base sequences of the present cDNA has revealed the
registration of sequences that shared a homology of 90% or
more (for example, Accession No. R92398) among ESTs. However,
since they are partial sequences, it can not be judged
whether or not they encode the same protein as the protein
of the present invention.

<HP03500> (SEQ ID NOS: 6, 16 and 26)

Determination of the whole base sequence of the cDNA insert of clone HP03500 obtained from cDNA library of human kidney revealed the structure consisting of a 134-bp 5'-untranslated region, a 996-bp ORF, and a 476-bp 3'-untranslated region. The ORF encodes a protein consisting of 331 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 6 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro

25

translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 37,694 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the amino acid sequence of the protein matched with that of human hypothetical protein (Accession No. AAC05803) in which a region of 62 amino acid residues from glycine at position 88 to lysine at position 149 was deleted.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA340631) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10691> (SEQ ID NOS: 7, 17 and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10691 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 246-bp 5'-untranslated region, a 1038-bp ORF, and a 1096-bp 3'-untranslated region. The ORF encodes a protein consisting of 345 amino acid residues and there existed at least two putative transmembrane domains. Figure, 7 depicts the hydrophobicity/hydrophilicity profile, obtained by the

ENSPICE - WO 011288082 I >

20

25

10

Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human BB1 protein (Accession No. AAB37433). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human BB1 protein (BB). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The C-terminal region of 215 amino acid residues of the present protein shared a homology of 81.9% with the N-terminal region of human BB1 protein.

Table 8

HP MSPEEWTYLVVLLISIPIGFLFKKAGPGLKRWGAAAVGLGLTLFTCGPHTLHSLVTILGT

. -20

15

HP WALIQAQPCSCHALALAWTFSYLLFFRALSLLGLPTPTPFTNAVQLLLTLKLVSLASEVQ

HP DLHLAQRKEMASGFSKGPTLGLLPDVPSLMETLSYSYCYVGIMTGPFFRYRTYLDWLEQP

125 BB 1411 MASGFSKGPTLGLLRRALPDGDT-QLQLLLRGNHDRPVLPLPHLPGLAGAA 45

A CONTRACTOR OF THE STATE OF TH

. .

15

20

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W48653) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10703> (SEQ ID NOS: 8, 18 and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10703 obtained from cDNA library of human kidney revealed the structure consisting of a 359-bp

10

15

20

5'-untranslated region, a 270-bp ORF, and a 1388-bp 3'untranslated region. The ORF encodes a protein consisting of 89 amino acid residues and there existed one putative domain. Figure 8 depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 18 kDa that was larger than the molecular weight of 10,469 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T08343) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10711> (SEQ ID NOS: 9, 19 and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10711 obtained from cDNA library of human kidney revealed the structure consisting of a 29-bp 5'-untranslated region, a 1221-bp ORF, and a 356-bp 3'-untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the N-terminus. Figure 9 depicts the

15

20

25

BNSDOCID - WO 011266042 I -

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 44 kDa that was almost identical with the molecular weight of 43,836 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein seven sites at which N-glycosylation may occur (Asn-Ser-Thr at position 65, Asn-Trp-Ser at position 95, Asn-Val-Ser at position 134, Asn-Ile-Thr at position 159, Asn-Gly-Ser at position 187, Asn-Arg-Ser at position 230 and Asn-Leu-Thr at position 333). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 36.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse kidney predominant protein (Accession No. BAA92527): Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse kidney predominant protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The

both proteins shared a homology of 79.9% in the entire region.

Table 9

...

5

25

 $(-\infty) = \chi_{\alpha} = \frac{1}{4} (\sqrt{s} \frac{1}{2} \pi + s \frac{1}{2} \pi + s$

خوده فالمعارض المالي المراي

HS QASPLHPALAYSLPQSPIVRAFFGSQNNFCAFNLTFGASTGPGYWDQHYLSWSMLLGVGF MM QASTLHSTLASSLPHSPIVQAFFGSQNNFCAFNLTFGAPTGPGYWDQYYLCWSMLLGMGF

HS PPVDGLSPLVLGIMAVALGAPGLMLLGGGLVLLLHHKKYSEYQSIN 5 **** ************ **** *** *** *** MM PPVDIFSPLVLGIMAVALGAPGLMFLGGGLFLLLRHRRYSEYQSIN

i

10 The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA362394) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present 15 invention.

<HP10712> (SEQ ID NOS: 10, 20 and 30)

Determination of the whole base sequence of the cDNA insert of clone HP10712 obtained from cDNA library of human kidney revealed the structure consisting of a 52-bp 5'-untranslated region, a 579-bp ORF, and a 1064-bp 3'untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed four putative depicts the domains. Figure 10 transmembrane

hydrophobicity/hydrophilicity profile, obtained by the Kyte-25

10

15

. 20

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse calcium channel gamma 5 subunit (Accession No. CAB86387). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse calcium channel gamma 5 subunit (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 75.0% in the entire region.

Table 10

خوال مرمان ليبده الأراب والخال فا

. 80

HS HSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGFTLMFWCEFTASFLLFLNAIS

MM RSRRKWAIGSYLLLVAFILSSGGLLTFIILLKNQINLLGFTLMFWCEFTASFLFFLNAAS

5

HS GLHINSITHPWE

***** * **

MM GLHINSLTQPWDPPAGTLAYRKRGYDGTSLI

10

15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA910339) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<+ < HP03010> (SEQ ID NOS: 31, 41 and 51)

Determination of the whole base sequence of the

CDNA insert of clone HP03010 obtained from cDNA library of

human kidney revealed the structure consisting of a 97-bp

5'-untranslated region, a 1134-bp ORF, and a 320-bp 3'
untranslated region. The ORF encodes a protein consisting of

377 amino acid residues and there existed at least eight

putative transmembrane domains. Figure 11 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 42 kDa that was almost identical with the molecular weight of 41,462 predicted from the ORF as well as a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Arabidopsis thaliana hypothetical protein (Accession No. AAC34490). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Arabidopsis thaliana hypothetical protein (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 42.0% in the entire region other than the N-terminal region.

20

15

5

10

Table 11

HP MDSALSDPHNGSAEAGGPTNSTTRPPSTPEGIALAYGSLLLMALLPIFFGALRSVRCARG

* * *.

c 1.

25 AT MKNCERFANLALAGLTLAPLVVRVNPNLNVILTACITVYVGCFRS

	HP KNASDMPETITSRDAARFPIIASCTLLGLYLFFKIFSQEYINLLLSMYFFVLGILALSHT
	* * * * * * * * * * * * * * * *
	AT VKDTPPTETMSKEHAMRFPLVGSAMLLSLFLLFKFLSKDLVNAVLTAYFFVLGIVALSAT
5	
	HP ISPFMNKFFPASFPNRQYQLLFTQGSGENKEEIINYEFDTKDLVCLGLSSIVGVWYLLRK
	. * *
	AT LLPAIRRFLPNPWNDNLIVWRFPYFKSLEVEFTKSQVVAGIPGTFFCAWYAWKK
10	HP HWIANNLFGLAFSLNGVELLHLNNVSTGCILLGGLFIYDVFWVFGTNVMVTVAKSFEAPI
	. * **. * *
	AT HWLANNILGLSFC1QGIEMLSLGSFKTGAILLAGLFFYDIFWVFFTPVMVSVAKSFDAPI
	HP KLVFPQDLLEKGLEANNFAMLGLGDVVIPGIFIALLLRFDISLKKNTHTYFYTSFAAYIF
15	**. **
	AT KLLFPTGDALRPYSMLGLGDIVIPGIFVALALRFDVSRRRQPQ-YFTSAFIGYAV
	en e
	HP GLGLTIFIMHIFKHAQPALLYLVPACIGFPVLVALAKGEVTEMFSYEESNPKDPAAVTES
	*. *** .*. *. ******* ***
20	AT GVILTIVVMNWFQAAQPALLYIVPAVIGFLASHCIWNGDIKPLLAFDESKTEE-ATTDES
	· · · · · · · · · · · · · · · · · · ·
	HP KEGTEASASKGLEKKEK
	the **. The Mark the control of
٠	`AT KTSEEVNKAHDE
) E .	

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA380429) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03576> (SEQ ID NOS: 32, 42 and 52)

Determination of the whole base sequence of the 10 cDNA insert of clone HP03576 obtained from cDNA library of human kidney revealed the structure consisting of a 88-bp 5'-untranslated region, a 246-bp ORF, and a 1379-bp 3'untranslated region. The ORF encodes a protein consisting of amino acid residues and there existed two putative 15 depicts the domains. 12 Figure transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. In Doolittle method, of translation resulted in formation of a translation product of 20 kDa that was larger than the molecular weight of 9,178 20 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human vacuolar proton ATPase 9 kDa (Accession No. NP_003936). Table 12 shows the comparison

٠,

صدور الجالجين يعتبي والالتا

between amino acid sequences of the human protein of the present invention (HP) and human vacuolar proton ATPase 9 kDa (VP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 71.2% in the entire region.

10 Table 12

HP MTAHSFALPVIIFTTFWGLVGIAGPWFVPKGPNRGVIITMLVATAVCCYLFWLIAILAQL

VP MAYHGLTVPLIVMSVFWGFVGFLVPWFIPKGPNRGVIITMLVTCSVCCYLFWLIAILAQL :

15

-5

HP NPLFGPQLKNETIWYVRFLWE

VP NPLFGPQLKNETIWYLKYHWP

20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W22566) among ESTs. However, since they are partial sequences, it can not be judged

RNSDOCID- WO DIISEENAS I

10

15

20

whether or not they encode the same protein as the protein of the present invention.

<HP03611> (SEQ ID NOS: 33, 43 and 53)

Determination of the whole base sequence of the cDNA insert of clone HP03611 obtained from cDNA library of human kidney revealed the structure consisting of a 189-bp 5'-untranslated region, a 1464-bp ORF, and a 105-bp 3'untranslated region. The ORF encodes a protein consisting of 487 amino acid residues and there existed eleven putative the 13 depicts Figure domains. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human cystine/glutamate transporter (Accession No. BAA82628). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human cystine/glutamate transporter (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

Carrier to the or that

of 43.8% in the entire region other than the N-terminal region.

Table 13

-		:
HF	MGDTGLRKRREDEKSIQSQEPKTTSLQKELGLISGISIIVGTIIGS	
	.*******	
CC	MVRKPVVSTISKGGYLQGNVNGRLPSLGNKEPPGQEKVQLKRKVTLLRGVSIIIGTIIGA	
HF	GIFVSPKSVLSNTEAVGPCLIIWAACGVLATLGALCFAELGTMITKSGGEYPYLMEAYGP	Ŧ
	. ***. ** ** ** . * * **** **** *. ****. *.	7
CC	G GIFISPKGVLQNTGSVGMSLTIWTVCGVLSLFGALSYAELGTTIKKSGGHYTYILEVFGP	
HF	P IPAYLFSWASLIVIKPTSFAIICLSFSEYVCAPFYVGCKPPQIVVKCLAAAAILFISTVN	
	.** *** **. *	tu i
CC	LPAFVRVWVELLIIRPAATAVISLAFGRYILEPFFIQCEIPELAIKLITAVGITVVMVLN	
HF	SLSVRLGSYVQNIFTAAKLVIVAIIIISGLVLLAQGNTKNFDNSFEGAQLSVGAISLAFY	
	*.***	
CG	S SMSVSWSARIQIFLTFCKLTAILIIIVPGVMQLIKGQTQNFKDAFSGRDSSITRLPLAFY	Ç.
HF	NGLWAYDGWNQLNYITEELRNPYRNLPLAIIIGIPLVTACYILMNVSYFTVMTATELLQS	
	*.,**,** '**,.***,.*** *** *.* *.* *.***	
CG	YGMYAYAGWFYLNFVTEEVENPEKTIPLAICISMAIVTIGYVLTNVAYFTTINAEELLLS	

25 The transfer of the production of the contract of the contr

ŀ	IP QAVAVTFGDRVLYPASWIVPLFVAFSTIGAANGTCFTAGRLIYVAGREGHMLKVLSYISV
. •	. ****** * * **. ***. * **. *.
	CG NAVAVTFSERLLGNFSLAVPIFVALSCFGSMNGGVFAVSRLFYVASREGHLPEILSMIHV
5 i	HP RRLTPAPAIIFYGIIATIYIIPGDINSLVNYFSFAAWLFYGLTILGLIVMRFTRKELERP
	*, ** **, * * ** *** *** *** *** **
. (CG RKHTPLPAVIVLHPLTMIMLFSGDLDSLLNFLSFARWLFIGLAVAGLIYLRYKCPDMHRP
1	HP IKVPVVIPVLMTLISVFLVLAPIISKPTWEYLYCVLFILSGLLFYFLFVHYKFGWAQK
10	·***· **·*····*·* · · *·* · · · · · · ·
(CG FKVPLFIPALFSFTCLFMVALSLYSDP-FSTGIGFVITLTGVPAYYLFIIWDKKPRWFRI
	HP ISKPITMHLQMLMEVVPPEEDPE
	.*. **. ** *** *.

CG MSEKITRTLQIILEVVPEEDKL

A Commence of the Commence of

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R07056) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03612> (SEQ ID NOS: 34, 44 and 54)

20

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP03612 obtained from cDNA library of human kidney revealed the structure consisting of a 153-bp 5'-untranslated region, a 1128-bp ORF, and a 269-bp 3'untranslated region. The ORF encodes a protein consisting of 375 amino acid residues and there existed seven putative transmembrane domains. Figure 14 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 39 kDa that was somewhat larger than the molecular weight of 37,930 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human monocarboxylate transporter (Accession No. AAC70919). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human monocarboxylate transporter (MC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the N-terminal region of 192 amino acid residues.

the contract of the contract o

Table 14

					•				
	HP	MTPQP	AGPPDGGWG	WVVAAAA	FAINGLS	YGLLRSL	GLAFPDL	AEHFDRS	AQDTA₩
	-	. *.	*****	*. * *.	* *.*	*	*	. *	**
5	МС МРРМ	PSAPPVI	HPPPDGGWG	WIVVGAT	FISIGFS	SYAFPKAV	TVFFKE10	QQIFHTT	YSEIAW
	HP ISAL		4ASPVGSAL						
	MC ISSI		AGGPVSSVL						
10									
			ALGTLSRYF				LAPALQL	LLDTFGW	RGALLL
	.	**	****	*.*.*	* *** *	* .	*** *	****	. * *.
	MC GLGI	AFNLQP.	ALTIIGKYF	YRKRPMA	NGLAMAG	SNPVFLSS	LAPFNQY	LFNTFGW	KGSFLI
15	HP LGA	TLHLTP	CGALLLPLV	LPGDPP#	APPRSPLA	ALGLSLF	TRRAFSI	FALGTAL	VGGGYF
	**	*.	*.*. **	,			-	•	·
	MC·LGSI	LLNACV	AGSLMRPLO	PNQTTSI	KSKNKTGK	KTEDDSSP	KKIKTKK	STWEKVN	KYLDFS
	HP VPY	/HLAPRF	RPGPGGIRS	SAGGGR	GCDGGCGF	RPAGLRVA	GRPRLGA	PPAAAGF	RIRGSDW
20	. •		-	:			• •	:	
	MC LFKI	HRGFLIY	LSGNVIMF	.GFFAPI	IFPAPYA	KDQGIDEY	SAAFLLS	VMAFVD!	IFARPSV
-				÷.		•			
	HP AGA	VGGGAGA	RGGRRRELO	GSPAGR	GCGLWAEI	RGELRPAC	FRCTPRA	GGRRRCC	GAGHRAG
	i szint t		; ·						
25	MC CLI	ANCKALD	DDIAVEECI	EA TMENC	עראז ו רסו	I AODVTSI	VI VAVEE	CI CECS	/SSVI FF -

HP DDADEPRGAPGPSPVRLPKG

MC TLMDLVGAPRFSSAVGLVTIVECGPVLLGPPLAGKLVDLTGEYKYMYMSCGAIVVAASVW

5

10

15

20

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI742291) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10407> (SEQ ID NOS: 35, 45 and 55)

Determination of the whole base sequence of the cDNA insert of clone HP10407 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 100-bp 5'-untranslated region, a 1053-bp ORF, and a 332-bp 3'-untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed at least four putative transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the

10

15

protein was longer by 35 amino acid residues at the N-terminus than human hypothetical protein (Accession No. CAB43375).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of a clone beginning from the 117th base of the present cDNA (Accession No. AL050274).

<HP10713> (SEQ ID NOS: 36, 46 and 56)

Determination of the whole base sequence of the cDNA insert of clone HP10713 obtained from cDNA library of human kidney revealed the structure consisting of a 79-bp 5'-untranslated region, a 2004-bp ORF, and a 611-bp 3'untranslated region. The ORF encodes a protein consisting of 667 amino acid residues and there existed nine putative domains. Figure 16 transmembrane depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of present protein. the In translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse retinoic acid-responsive protein (Accession No. AAC16016). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse retinoic acid-

responsive protein (MM). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.1% in the entire region.

and the second of the second o

Table 15

MM MESQASENGSQTSSGVTDDYS--SWYIEEPLGAEEVQPEGVIPLCQLTAPPALLHACLAS

MM LSFLVLLLLALLVRRRRLWPRCGHRGLGLPSPVDFLAGDLSWTVPAAVFVVLFSNLCLLL

MM PDENPLPFLNLTAASSPDGEMETSRGPWKLLALLYYPALYYPLAACASAGHQAAFLLGTV

. .

and the second second second second second

BNSDOCID: <WO 0112660A2 1 >

15

20

Control of the control

		HP SKGLQSSYSEEYLRNLLCRKKLGSSYH-TSKHGFLSWARVCLRHCIYTPQPGFHLPLKLV
		* *** *** *** *** *** * * . * . **
		MM SQGLQTSYSEKYLRTLLCPKKLDSCSHPASKRSLLSRAWAFSHHSIYTPQPGFRLPLKLV
	5	HP LSATLTGTAIYQVALLLLVGVVPTIQKVRAGVTTDVSYLLAGFGIVLSEDKQEVVELVKH
		· ******* ******* ***** ***** · ****** · ******
		MM ISATLTGTATYQVALLLLVSVVPTVQKVRAGINTDVSYLLAGFGIVLSEDRQEVVELVKH
		HP HLWALEVCYISALVLSCLLTFLVLMRSLVTHRTNLRALHRGAALDLSPLHRSPHPSRQAI
	10	****.******* ***.*.**.**.*********
		MM HLWTVEACYISALVLSCASTFLLLIRSLRTHRANLQALHRGAALDLDPPLQSIHPSRQAI
•		
		HP FCWMSFSAYQTAFICLGLLVQQIIFFLGTTALAFLVLMPVLHGRNLLLFRSLESSWPFWL
		, ****, ***** ******, ******, *****, . *, *******, *****, *****
	15	MM VSWMSFCAYQTAFSCLGLLVQQVIFFLGTTSLAFLVFVPLLHGRNLLLLRSLESTWPFWL
		HP TLALAVILQNMAAHWVFLETHDGHPQLTNRRVLYAATFLLFPLNVLVGAMVATWRVLLSA
		*. *******. **. **. **. *. *. *****. *.
	•	MM TVALAVILQNIAANWIFLRTHHGYPELTNRRMLCVATFLLFPINMLVGAIMAVWRVLISS
	20	
		HP LYNAIHLGQMDLSLLPPRAATLDPGYYTYRNFLKIEVSQSHPAMTAFCSLLLQAQSLLPR

		MM LYNTVHLGQMDLSLLPQRAASLDPGYHTYQNFLRIEASQSHPGVIAFCALLLHAPSPQPR
. :	25	HP TMAAPQDSLRPGEEDEGMQLLQTKDSMAKGARPGASRGRARWGLAYTLLHNPTLQVFRKT

MM PPLAPQDSLRPAEEEEGMQLLQTKDLMAKGAGHKGSQSRARWGLAYTLLHNPSLQAFRKA

HP ALLGANGAQP

5

20

25

PNSDOCID: WO 0112660A2 F >

MM ALTSAKANGTQP

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI760170) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10714> (SEQ ID NOS: 37, 47 and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10714 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 82-bp 5'-untranslated region, a 1395-bp ORF, and a 1820-bp 3'-untranslated region. The ORF encodes a protein consisting of 464 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

10

15

20

vitro translation resulted in formation of a translation product of 49 kDa that was somewhat smaller than the molecular weight of 52,340 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 52 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Ala-Thr at position 164 and Asn-Asp-Ser at position 320). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from threonine at position 22.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA861134) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10716> (SEQ ID NOS: 38, 48 and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10716 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 60-bp 5'-untranslated region, a 1413-bp ORF, and a 653-bp 3'-untranslated region. The ORF encodes a protein consisting of 470 amino acid residues and there existed one

putative transmembrane domain at the N-terminus. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 61 kDa that was larger than the molecular weight of 52,086 predicted from the ORF.

5

10

15

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein CGI-90 (Accession No. AAD34085). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein CGI-90 (CG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the entire region.

20 Table 16

The second of th

HP- MSRLGALGGARAGLGLLLGTAAGLGFLCLLYSQRWKRTQRHGRSQSLPNSLDYTQTSDPG

The Control of the Co

the state of the s

HP RHVMLLRAVPGGAGDASVLPSLPREGQEKVLDRLDFVLTSLVALRREVEELRSSLRGLAG

250 The second but a discrete was both to see the party of the color

	HP EIVGEVRCHMEENQRVARRRRFPFVRERSDSTGSSSVYFTASSGATFTDAESEGGYTTAN
	CG MALAARLWRLLPFRRGAAPGSRLPA
5	HP AESDNERDSDKESEDGEDEVSCETVKMGRKDSLDLEEEAASGASSALEAGGSSGLEDVLP
	.**
	CG GPSGSRGIAAPARFRGFEVMGNPGTFNRGLLLSALSYLGFETYQVISQAAVVHATAKVEE
	HP LLQQADELHRGDEQGKREGFQLLLNNKLVYGSRQDFLWRLARAYSDMCELT-EEVSEKKS
10	.*.*** ** .* .*** .******* .*****
	CG ILEQADYLYESGETEKLYQLLTQYKESEDAELLWRLARASRDVAQLSRTSEEEKKL
•	HP YALDGKEEAEAALEKGDESADCHLWYAVLCGQLAEHESIQRRIQSGFSFKEHVDKAIALQ
	* *. ***** * ****.*. *.
15	CG LVYEALEYAKRALEKNESSFASHKWYAICLSDVGDYEGIKAKIANAYIIKEHFEKAIELN
	en de de la companya
	HP PENPMAHFLLGRWCYQVSHLSWLEKKTATALLESPLSATVEDALQSFLKAEELQPGFSKA
	* *.* ***** ** *.* *.** * .***.*
	CG PKDATSIHLMGIWCYTFAEMPWYQRRIAKMLFATPPSSTYEKALGYFHRAEQVDPNFYSK
20	
	HP GRVYISKCYRELGKNSEARWWMKLALELPDVTKEDLAIQKDLEELEVILRD
	· · · · · · · · · · · · · · · · · · ·
	CG NLLLLGKTYLKLHNKKLAAFWLMKAKDYPAHTEEDKQIQTEAAQLLTSFSEKN
	<u> Partitus de la companya del companya de la companya del companya de la companya</u>

- 7

. I

٠-_*

5

10

15

20

25

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA852295) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10717> (SEQ ID NOS: 39, 49 and 59)

Determination of the whole base sequence of the cDNA insert of clone HP10717 obtained from cDNA library of human kidney revealed the structure consisting of a 73-bp 5'-untranslated region, a 732-bp ORF, and a 976-bp 3'-untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed two putative transmembrane domains. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 36 kDa that was larger than the molecular weight of 26,270 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI478174) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

10

15

20

encode the same protein as the protein of the present invention.

<HP10718> (SEQ ID NOS: 40, 50 and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10718 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 86-bp 5'-untranslated region, a 813-bp ORF, and a 889bp 3'-untranslated region. The ORF encodes a protein consisting of 270 amino acid residues and there existed three putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 28 kDa that was smaller than the molecular weight of 31,116 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y53C10A (Accession No. CAA22139). Table 17 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y53ClOA (CE). Therein, the marks of -, . *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an 25 amino acid residue similar to that of the protein of the · 5

10

15

20

present invention, respectively. The both proteins sha	
homology of 54.8% in the entire region other than t	he N-
terminal region.	
Table 17	
HP MAGAEDWPGQ	
CE MTSSSAASSSTTTSSTMMPDENECLKKEEERFKSPDPAPTLDEEVDIDTLPSMLEDDPNG	• *
	* **
HP QLELDEDEASCCRWGAQHAGARELAALYSPGKRLQEWCSVILCFSLIAHNLVHLLLLARW	
, **, . ** . **** *	
CE NVVECDLGFKGPRWGPQHAGAKKLASMYSKEKRLQEKVSLFAAIFLFSIVFIN-LLLS-W	
	.2
HP EDTPLVILGVVAGALIADFLSGLVHWGADTWGSVELPIVGKAFIRPFREHHIDPTAIT	;

CE ESSIWVSVLVSAVLGIMTADFASGLVHWAADTFGSVE-TWFGRSFIRPFREHHVDPTAIT	
HP RHDFIETNGDNCLVTLLPLLNMAYKFRTHSPEALEQLYPWECFVFCLIIFGTFTNQIH	
*** * ***** * *** * . * * * * * * * * * * * * * * * * * *	2
CE RHDIVEVNGDNCMLCVGPLLWILYQQMTYQRDAITQWATFHWYILLLGIYVALTNQIH	
and the second of the second o	
HP KWSHTYFGLPRWYTLLQDWHYILPRKHHRIHHVSPHETYFCITTGWLNYPLEKIGFWRRL	

CE KWSHTYFGLPTWVVFLQKAHIILPRSHHKIHHISPHACYYCITTGWLNWPLEYIGFWRKM

HP EDLIQGLTGEKPRADDMKWAQKIK

* .. . ** . **. **. *** *.

CE EWVVTTVTGMQPREDDLKWATKLQ

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or 10 (for example, Accession No. AA176107) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention. In addition, the region from position 466 to position 778 of the cDNA of the present 15 invention matched with the region from position 2 of human ubiquitin-conjugating enzyme position 314 variant 1 (Accession NO. NM 003349) although no match was observed in another region.

<HP03745> (SEQ ID NOS: 61, 71 and 81)

Determination of the whole base sequence of the cDNA insert of clone HP03745 obtained from cDNA library of human kidney revealed the structure consisting of a 99-bp 5'-untranslated region, a 1170-bp ORF, and a 107-bp 3'-untranslated region. The ORF encodes a protein consisting of 389 amino acid residues and there existed at least nine

10

15

putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human solute carrier family 7 (Accession No. NP_003974). Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human solute carrier family 7 (SC). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.0% in the N-terminal region of 397 amino acid residues.

Table 18

20

MDRGEKIQLKRVFGYWWGTSFLLINIIG

.*.***... *.*.*

SC MEAREPGRPTPTYHLVPNTSQSQVEEDVSSPPQRSSETMQLKKEISLLNGVSLVVGNMIG

25 HP-AGIFVSPKGVLAYSCMNVGVSLCVWAGCAILAMTSTLCSAEISISFPCSGAQYYFLKRYF as

			******	. * ** ***	** **	k *	** *	*
		SC S	SGIFVSPKGVLYHT-	ASYGMSLIVWAIGG	LFSVVGALCYAE	ELGTTITKS	GASYAYILI	EAF
		HP G	GSTVAFLNLWTSLFL	.GSGVVAG-QALLLA	EYSIQPFFPSCS	SVPKLPKKO	CLALAMLWI	VGI
	5	*	· ** **. ** _. .	**.	* *** ****.	* *	** *	
		SC G	GGFIAFIRLWVSLLV	VEPTGQAIIAITFAI	NYIIQPSFPSCD	PPYLACRL	LAAACICLI	LTF
		HP L	.TSRGVKEVTWLQIA	SSVLKVSILSFISL	rgvvflirgkke	NVERFQNA	FDAELPDIS	SHL
			** ** .	. ** * * .	*.* * .*	. *.**.*	* *	.*
	10	SC V	NCAYVKWGTRVQDT	FTYAKVVALIAIIV	MGLVKLCQG	HSEHFQDA	FEGSSWDMO	GNL
				•				
•		HP I	QAIFQGYFAYSG	ELKKPRT	FIPKCIFTALPL	.VTVVYLLV	NISYLTVL	rPR
		t	*.:	*,*,*	.* **.	** *. *.	* * ***.	•
		SC S	SLALYSALFSYSGWD	TLNFVTEEIKNPER	NLPLAIGISMPI	VTLIYILT	NVAYYTVLI	VIS
	15	•					•	
•		HP E	EILSSDAVAITWADR	AFPSLAWIMPFAIS1	rslfsnllisif	KSSRPIYL	ASQEGQLPI	LF
		* 27 %	`,*******,*.**.	.***.	* ** ***	***	. *. **. **	*.
		SC D	VLSSDAVAVTFADQ	TFGMFSWTIPIAVAL	LSCFGGLNASIF	ASSRLFFV	GSREGHLPI	DLL
				•				
	20	HP N	TLNSHS-SPFTAVL	LLVTLGSLAIILTSI	LIDLINYIFFTG	SLWSILLM	IGILRRRYG	QEP
		•.••	**.*	*	****. *.	*.	.** *	**
		SC S	SMIHIERFTPIPALL	FNCTMALIYLIVED	/FQLINYFSFSY	WFFVGLSV	VGQLYLRWI	ŒP
			·		s in the second	. ;		
٠.								
*A -	25			e e jese e pe				

2

5

10

15

20

SC KRPRPLKLSVFFPIVFCICSVFLVIVPLFTDTINSLIGIGIALSGVPFYFMGVYLPESRR

<HP03747> (SEQ ID NOS: 62, 72 and 82)

Determination of the whole base sequence of the cDNA insert of clone HP03747 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 21-bp 5'-untranslated region, a 1047-bp ORF, and a 1324-bp 3'-untranslated region. The ORF encodes a protein consisting of 348 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 22 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,685 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from proline at position 39.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human endoplasmic reticulum glycoprotein (Accession No. NP_006807). Table 19 shows the comparison between amino acid sequences of the human protein

BNSDOCID- WO 011288042 1 5

of the present invention (HP) and human endoplasmic reticulum glycoprotein (ER). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.1% in the entire region.

Table 19

10

5

ER REHSLIKPYQGVGSSSMPLWDFQGSTMLTSQYVRLTPDERSKEGSIWNHQPCFLKDWEMH

- HP VHFKIHGQGKKNLHGDGLAIWYTKDRMQPGPVFGNMDKFVGLGVFVDTYPNEEKQQERVF

 ****. ** *********. *. ******. *. * **. * *****

 ER VHFKVHGTGKKNLHGDGIALWYTRDRLVPGPVFGSKDNFHGLAIFLDTYPNDET-TERVF
- ER PYISVMVNNGSLSYDHSKDGRWTELAGCTADFRNRDHDTFLAVRYSRGRLTVMTDLEDKN ...

بمروق والمرازي والمرازي

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262924) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10719> (SEQ ID NOS: 63, 73 and 83)

Determination of the whole base sequence of the cDNA insert of clone HP10719 obtained from cDNA library of human kidney revealed the structure consisting of a 54-bp

25

15

10

15

20

5'-untranslated region, a 786-bp ORF, and a 576-bp 3'-untranslated region. The ORF encodes a protein consisting of 261 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 33 kDa that was larger than the molecular weight of 27,435 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from asparagine at position 19.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mouse endomucin (Accession No. AAD05208). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mouse endomucin (MM). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 47.9% in the entire region.

 $\mathbb{Z}_2^{\mathbf{25}}$. The first \mathbb{Z}_2 is the second of \mathbb{Z}_2 in \mathbb{Z}_2 in \mathbb{Z}_2 in \mathbb{Z}_2 in \mathbb{Z}_2 .

ENSOUCH - WO 0112660A2 I -

MM	SVKLLTVKTISHESGEHSAQGKTKN

HР	SVKLLTVKTISHESGEHSAQGKTKN
MM	KIATTPSTTPSYSSIILPVVIALVVITLLVFTLVGLYRICWKRDPGTPENGNDQPQSDKE
-	* * * , * , * , ************ ** ** ** **
НР	KNASTSATSRSYSSIILPVVIALIVITLSVFVLVGLYRMCWKADPGTPENGNDQPQSDKE
MM	STLPGSQNKITTQLLDALPKITATPSASLTTAHTMSLLQDTEDR
	***. *. **
ΗР	STLQSSKPKTETQSSIKTTEIPGSVLQPDASPSKTGTLTSIPVTIPENTSQSQVIGTEGG
MM	DRILLERITUODA 2612FATTIN2FILLIGIFAQ111FQL FIGURO219971111111111111111111111111111111111
101	.**. *. ** **
HP	TGTTPKGTITNELLKMSLMSTATFLTSKDEGLKATTTDVRKNDSIISNVTVTSVTLPNAV
	The second of th
MM	MRLLQATVLFFLLSNSLCHSEDGKDVQNDSIPTPAETSTTKASVTIPGIVSV-TNPNKPA
	* ***, *, * ***, *, * *,
	MELLQVTIL-FLLP-SIC-SSNSTGVL-EAANNSLVVTTTKPSITTPNTESLQKNVVTPT

sequences that shared a homology of 90% or more (for example, Accession No. AA486620) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10720> (SEQ ID NOS: 64, 74 and 84)

Determination of the whole base sequence of the cDNA insert of clone HP10720 obtained from cDNA library of human kidney revealed the structure consisting of a 25-bp 10 5'-untranslated region, a 669-bp ORF, and a 653-bp 3'untranslated region. The ORF encodes a protein consisting of 222 amino acid residues and there existed a putative secretory signal at the N-terminus and one transmembrane domain in the inner portion. Figure 24 depicts 15. the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,219 predicted from the ORF. In this case, the addition 20 of a microsome led to the formation of a product of 35 kDa. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Val-Thr at position 76 and Asn-His-Thr at position 93). Application of the (-3,-1) rule, a method for predicting the 2.5 cleavage site of the secretory signal sequence, allows to

15

20

.25

expect that the mature protein starts from glutamic acid at position 15.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792241) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP10721> (SEQ ID NOS: 65, 75 and 85)

Determination of the whole base sequence of, the cDNA insert of clone HP10721 obtained from cDNA library of human kidney revealed the structure consisting of a 74-bp 5'-untranslated region, a 552-bp ORF, and a 1658-bp 3'-untranslated region. The ORF encodes a protein consisting of 183 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 19,989 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 22 kDa. Application of the (-3,-1) rule, a method for predicting the

8NSDOCID: -WO = 0112660A2 T >

10

15

20

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamic acid at position 25.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R27187) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10725> (SEQ ID NOS: 66, 76 and 86)

Determination of the whole base sequence of the cDNA insert of clone HP10725 obtained from cDNA library of human kidney revealed the structure consisting of a 235-bp 5'-untranslated region, a 789-bp ORF, and a 713-bp 3'-untranslated region. The ORF encodes a protein consisting of 262 amino acid residues and there existed one putative transmembrane domain. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example,

z . 4/4

:5

5

10

15

20

Accession No. AI127782) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10727> (SEQ ID NOS: 67, 77 and 87)

Determination of the whole base sequence of the cDNA insert of clone HP10727 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 102-bp 5'-untranslated region, a 507-bp ORF, and a 947bp 3'-untranslated region. The ORF encodes a protein consisting of 168 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was larger than the molecular weight of 17,822 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 29.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of

10

15

sequences that shared a homology of 90% or more (for example, Accession No. R80316) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

- <HP10728> (SEQ ID NOS: 68, 78 and 88)

Determination of the whole base sequence of the cDNA insert of clone HP10728 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 221-bp 5'-untranslated region, a 732-bp ORF, and a 902-bp 3'-untranslated region. The ORF encodes a protein consisting of 243 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 26,534 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H23535) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

<HP10730> (SEQ ID NOS: 69, 79 and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10730 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 27-bp 5'-untranslated region, a 1287-bp ORF, and a 1216-bp 3'-untranslated region. The ORF encodes a protein consisting of 428 amino acid residues and there existed one putative transmembrane domain. Figure 29 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was somewhat larger than the molecular weight of 48,992 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C19105) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10742> (SEQ ID NOS: 70, 80 and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10742 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 231-bp 5'-untranslated region, a 852-bp ORF, and a 828-

.5

10

15

bp 3'-untranslated region. The ORF encodes a protein consisting of 283 amino acid residues and there existed two putative transmembrane domains. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was smaller than the molecular weight of 31,629 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T35949) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03800> (SEQ ID NOS: 91, 101 and 111)

Determination of the whole base sequence of the cDNA insert of clone HP03800 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 67-bp 5'-untranslated region, a 1431-bp ORF, and a 135-bp 3'-untranslated region. The ORF encodes a protein consisting of 476 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

10

15

20 -

vitro translation resulted in formation of a translation product of 55 kDa that was almost identical with the molecular weight of 54,110 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 58 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Lys-Thr at position 81, Asn-Met-Thr at position 132, Asn-Val-Thr at position 307 and Asn-Gln-Thr at position 346). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 23.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to mosquito vitellogenic carboxypeptidase (Accession No. P42660). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and mosquito vitellogenic carboxypeptidase (VC). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region. In addition, the C-terminal portion beginning from alanine at position 182 matched with

human probable carboxypeptidase (Accession No. AAC23787) except one amino acid residue. Table 21 5 HP MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPK-GDSGQPLFLTPYIEAGKIQKG ...* * . . ** * ** ***** . . *** VC MVKFHLLVLIAFTCYTCSDATLWNPYKKLMRGSASPPRPGESGEPLFLTPLLQDGKIEEA 10 HP RELSLYGPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSM VC RNKARVNHPMLSSVESYSGFMTVDAKHNSNLFFWYVPAKNNREQAPILVWLQGGPGASSL HP FGLFVEHGPYVVTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVAR 15 VC FGMFEENGPFH1HRNKSVKQREYSWHQNHHM1Y1DNPVGTGFSFTDSDEGYSTNEEHVGE HP DLYSALIQFFQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGD . * . . *** . ** . . **, . ***, **, *** . . . ** * . . . ****, * **** 20 VC NLMKFIQQFFVLFPNLLKHPFYISGESYGGKFVPAFGYAIH—NSQSQPKINLQGLAIGD HP GYSDPESIIGGYAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGD VC GYTDPLNQL-NYGEYLYELGLIDLNGRKKFDEDTAAAIACAERKDMNSANRLIQGLFDG-

 $(\mathcal{M}_{i}, \mathbf{25})$ in i . The constant i is the constant i in i , i is i . The i is i is i in i in

BNSDCCID->WO 0112660A2 L >

	HP LTSDPSYFQNVTGCSNYYNFLRC-TEPEDQLYYVKFLSLPEVRQAIHVGNQTFNDGTIVE
	* ***. *** *. **** *
	VC LDGQESYFKKVTGFSSYYNFIKGDEESKQDSVLMEFLSNPEVRKGIHVGELPFHDSDGHN
5	HP KYLREDTVQSVKPWLTEIMNNYKVLIYNGQLDIIVAAALTEHSLMGMDWKGSQEYKK
	* * **** ** * **.****** ** ** *
	VC KVAEMLSEDTLDTVAPWVSKLLSHYRVLFYNGQLDIICAYPMTVDFLMKMPFDGDSEYKR
	HP AEKKVWKIFKSDSEVAGYIRQAGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDP
10	* *. *. *. ** * * * * * * *
10	VC ANREIYRVDGEIAGYKKRAGRLQEVLIRNAGHMVPRDQPKWAFDMITSFTHKNYL
	THE THE SECOND S
	HP YVG
15	en de la companya de La companya de la co
	The search of the GenBank using the base sequence
	of the present cDNA has revealed the registration o
	sequences that shared a homology of 90% or more (for example
	Accession No. AA095665) among ESTs. However, since they ar

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA095665) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03831> (SEQ ID NOS: 92, 102 and 112)

Determination of the whole base sequence of the con con insert of clone HP03831 obtained from cDNA library of

10

15

20

human kidney revealed the structure consisting of a 191-bp 5'-untranslated region, a 681-bp ORF, and a 223-bp 3'-untranslated region. The ORF encodes a protein consisting of 226 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human claudin-10 (Accession No. NP_008915). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human claudin-10 (CD). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 76.2% in the entire region. The C-terminal region downstream from glycine at position 72 completely matched with that sequence.

Table 22

	HP MSRAQIWALVSGVGGFGALVAATTSNEWKVTTRASSVITATWVYQGLWMNCAGNALGS	
	. * * * ***. * ***. * *	
	CD MASTASEIIAFMVSISGWVLVSSTLPTDYWKVSTIDGTVITTATYWANLWKACVTDSTGV	•
5	HP FHCRPHFTIFKVAGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA	
	·*. · · · · · · · · · *****************	
	CD SNCKDFPSMLALDGYIQACRGLMIAAVSLGFFGSIFALFGMKCTKVGGSDKAKAKIACLA	
	HP GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC	
LO	******************	· 2;
	CD GIVFILSGLCSMTGCSLYANKITTEFFDPLFVEQKYELGAALFIGWAGASLCIIGGVIFC	7,*
	HP FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV	
	***************	4
15	CD FSISDNNKTPRYTYNGATSVMSSRTKYHGGEDFKTTNPSKQFDKNAYV	:•

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N41613) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

25... <HP03879> (SEQ ID NOS: 93, 103 and 113) __ ==

10

15

20

4 1 1 1 1 1 1 1 1 1 1 1 1

Determination of the whole base sequence of the cDNA insert of clone HP03879 obtained from cDNA library of human kidney revealed the structure consisting of a 33-bp 5'-untranslated region, a 918-bp ORF, and a 651-bp 3'-untranslated region. The ORF encodes a protein consisting of 305 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was almost identical with the molecular weight of 34,073 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human NADH-cytochrome b5 reductase (Accession No. Y09501). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human NADH-cytochrome reductase (CT). Therein, the marks of -, \star , and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 63.5% in the entire region other than the N-terminal region.

٠, .

Table 23

	HP	MGIQTSPVLLASLGVGLVTLLGLAVGSYLVRRSRRPQVTLLDPNEKYLLRLLDKTTVSHN
	•	* ** * * * * ** ** *** * * ***. ** **.
5	ст ст	MGAQLSTLGHMVLFPVWFLYSLLMKLFQRS-TPAITLESPDIKYPLRLIDREIISHD
	НР	TKRFRFALPTAHHTLGLPVGKHIYLSTRIDGSLVIRPYTPVTSDEDQGYVDLVIKVYLKG
		*. ****** *. ******. ****. **. **.
	СТ	TRRFRFALPSPQHILGLPVGQHIYLSARIDGNLVVRPYTPISSDDDKGFVDLVIKVYFKD
10)	
	НР	VHPKFPEGGKMSQYLDSLKVGDVVEFRGPSGLLTYTGKGHFNIQPNKKSPPEPRVAKKLG
		. *****. ******* * ** ******* * ***. * *
	СТ	THPKFPAGGKMSQYLESMQIGDTIEFRGPSGLLVYQGKGKFAIRPDKKSNPIIRTVKSVG
•		
15	5 HP	MIAGGTGITPMLQLIRAILKVPEDPTQCFLLFANQTEKDIILREDLEELQARYPNRFKLW
•		*********************************
	СТ	MIAGGTGITPMLQVIRAIMKDPDDHTVCHLLFANQTEKDILLRPELEELRNKHSARFKLW
-		
•	НР	FTLDHPPKDWAYSKGFVTADMIREHLPAPGDDVLVLLCGPPPMVQLACHPNLDKLGYSQK
2	0	, ***. , *. , *. , ***. ***. ***. **
	СТ	YTLDRAPEAWDYGQGFVNEEMIRDHLPPPEEEPLVLMCGPPPMIQYACLPNLDHVGHPTE
	· HF	MRFTY
	٠.,	
2	- C1	DCEVE

RNSDOCID: -WO 0112660A2 E >

15

20

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F06459) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP03880> (SEQ ID NOS: 94, 104 and 114)

Determination of the whole base sequence of the cDNA insert of clone HP03880 obtained from cDNA library of human kidney revealed the structure consisting of a 98-bp 5'-untranslated region, a 684-bp ORF, and a 115-bp 3'untranslated region. The ORF encodes a protein consisting of 227 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,717 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 27 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to

5

10

15

expect that the mature protein starts from aspartic acid at position 23.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to rat phosphatidylethanolamine-binding protein (Accession No. P31044). Table 24 shows the comparison between amino acid sequences of the human protein invention (HP) and rat of present the phosphatidylethanolamine-binding protein (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the region of 133 amino acid residues other than the N-terminal region.

Table 24

HP MGWTMRLVTAALLLGLMMVVTGDEDENSPCAHEALLDEDTLFCQGLEVFYPELGNIGCKV

20

RN MAADISQWAGPLSLQEVDEPPQHALRVDYGGVTV

HP VPDCNNYRQKITSWMEPIVKFPGAVDGATYILVMVDPDAPSRAEPRQRFWRHWLVTDIKG

* * *.**. ******* .*. * *.**...**

RN DELGKVLTPTQVMNRPSSISWDGLDPGKLYTLVLTDPDAPSRKDPKFREWHHFLVVNMKG

HP ADLKKGKIOGOELSAYOAPSPPAHSGFHRYOFFVYLOEGKV---ISLLP-KENKTRGSWK

RN NDISSGTV----LSEYVGSGPPKDTGLHRYVWLVYEQEQPLNCDEPILSNKSGDNRGKFK

5

HP MDRFLNRFHLGEPEASTQFMTQNYQDSPTLQAPRERASEPKHKNQAEIAAC

* . . *** * * * . . . * *.

RN VESFRKKYHLGAPVAGTCFQAEWDDSVPKLHDQLAGK

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H83784) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10704> (SEQ ID NOS: 95, 105 and 115)

Determination of the whole base sequence of the

CDNA insert of clone HP10704 obtained from cDNA library of

human kidney revealed the structure consisting of a 141-bp

5'-untranslated region, a 1326-bp ORF, and a 399-bp 3'
untranslated region. The ORF encodes a protein consisting of

441 amino acid residues and there existed eight putative

transmembrane domains. Figure 35 depicts the

MISDOCID - WICH - NITSERNAS I -

10

15

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human unknown gene product (Accession No. AAC27544). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human unknown gene product (UP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.1% in the entire region.

Table 25

HP MAIHKALVMCLGLPLFLFPG-AWAQGHVPPGCSQGLNPLYYNLCDRSGAWGIVLE

20 * **... * ... **. . * * * . ***. *

UN MFVASERKMRAHQVLTFLLLFVITSVASENASTSRGCGLDLLPQYVSLCDLDAIWGIVVE

25 UN AVAGAGALITLLLMLILLVRLPFIKEKEKKSPVGLHFLFLLGTLGLFGLTFAFIIQEDET (25)

HP TCASRRFLFGVLFAICFSCLAAHVFALNFLARKNHGPRGWVIFTVALLLTLVEVIINT
. *. ****. ***** *****
UN. ICSVRRFLWGVLFALCFSCLLSQAWRVRRLVRHGTGPAGWQLVGLALCLMLVQVIIAV
HP LIITLVRGSGEGGPQGNSSAGWAVASPCAIANMDFVMALIYVMLLLLGAFLGAWPALC
*** * * * .**
UN LVLTVLRDTRPACAYEPMDFVMALIYDMVLLVVTLGLALFTLC
HP YKRWRKHGVFVLLTTATSVAIWVVWIVMYTYGN-KQHNSPTWDDPTLAIALAANAWAF
. *** *. *. *. ** ***. * ** ** * *. *
UN FKRWKLNGAFLLITAFLSVLIWVAWMTMYLFGNVKLQQGDAWNDPTLAITLAASGWVF
HP FYVIPEVSQVTKSSPEQSYQGDMYPTRGVGY-ETILKEQ-KGQSMFVENKAFSMDEPV
**** * *
JN FHAIPEI-HCTLLPALQENTPNYFDTSQPRMRETAFEEDVQLPRAYMENKAFSMDEHN
HP KRPVS-PYSGYNGQLLTSVYQPTEMALMHKVPSEGAYDIILPRATANSQVMGSANSTL
* *
JN LRTAGFPNGSLGKRPSGSLGKRPSAPFRSNVYQPTEMAVVLNGGTIPTAPPSHTGRHL
The state of the s
IP EDMYSAQSHQAATPPKDGKNSQVFRNPYVWD

10

15

20

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA346702) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10715> (SEQ ID NOS: 96, 106 and 116)

Determination of the whole base sequence of the cDNA insert of clone HP10715 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 49-bp 5'-untranslated region, a 798-bp ORF, and a 1351-bp 3'-untranslated region. The ORF encodes a protein consisting of 265 amino acid residues and there existed two putative transmembrane domains. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 43 kDa that was larger than the molecular weight of 29,217 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI381750) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

BNSDOCID - WO 0112660A2 I 5

25

Aug. 1987 1 234 1 23742

10

invention.

<HP10724> (SEQ ID NOS: 97, 107 and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10724 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 68-bp 5'-untranslated region, a 627-bp ORF, and a 1485-bp 3'-untranslated region. The ORF encodes a protein consisting of 208 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 24 kDa that was almost identical with the molecular weight of 23,850 predicted from the ORF.

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T78035) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10733> (SEQ ID NOS: 98, 108 and 118)

Determination of the whole base sequence of the cDNA insert of clone HP10733 obtained from cDNA library of human umbilical cord blood revealed the structure consisting

10

15

20

of a 102-bp 5'-untranslated region, a 1203-bp ORF, and a 222-bp 3'-untranslated region. The ORF encodes a protein consisting of 400 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 50 kDa that was larger than the molecular weight of 43,151 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa. In addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Leu-Thr at position 52, Asn-Ala-Ser at position 131, Asn-Ile-Thr at position 145 and Asn-Leu-Ser at position 343). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from arginine at position 33.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Drosophila melanogaster GOLIATH protein (Accession No. Q06003). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Drosophila melanogaster

GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the entire region.

Table 26

_	
HP	MAWRRREASVGARGVLALALLALALCVPGARGRALEWFSAVVNIEYVDPQTNLTVWS
HР	SGRFGDSSPKEGAHGLVGVPWAPGGDLEGCAPDTRFFVPEPGGRGAAPWVALVARGG
НР	KDKVLVAARRNASAVVLYNEERYGNITLPMSHAGTGNIVVIMISYPKGREILEL-VQ
	* **.*.*.
DM	MQLEKMQIKGKTRNIAAVITYQNIGQDLSLTLDI
HP	PVTMTIGVGTRHVQEFISGQSVVFVAIAFITMMIISLAWLIFYYIQRFLY-TGSQ
	*** * * * **.**. * * ******* *
DM	NVTISIIEGRRGVRTISSLNRTSVLFVSISFIVDDILCWLIFYYIQRFRYMQAKDO
HP	QSHRKETKKVIGQLLLHTVKHGEKGIDVDAENCAVCIENFKVKDIIRILPCKHIFHR
DM	RNLCSVTKKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKHEFHKI
	and the state of t

15

20

	HP	DPWLLDHRTCPMCKLDVIKALGYWGEPGDVQEMPAPESPPGRDPAANLSLALPDDDGSDE
	•	****, ********* **
	DM	DPWLIEHRTCPMCKLDVLKFYGY-VVGDQIYQTPSPQHTAPIASIEEVPVIVVAVPHGPQ
5	HP	SSPPSASPAESEPQCDPSFKGDAGENTALLEAGRSDSRHGGPIS
		* * *
	DM	PLQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNSAPATMP

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI286184) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10734> (SEQ ID NOS: 99, 109 and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10734 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 124-bp 5'-untranslated region, a 579-bp ORF, and a 1202-bp 3'-untranslated region. The ORF encodes a protein consisting of 192 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

10

15

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human sodium channel ß2 subunit (Accession No. AAD47196). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human sodium channel ß2 subunit (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 26.3% in the N-terminal region of 152 amino acid residues.

Table 27

HP DOGTYICEIRLKGESQYFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVE

SC DEGIYNCYIMNPPDRHRGHGKIHLQVLMEEPPERDFTVAVIVGASVGGFLAVVILVLMVV

5

HP WIFSGRRAKVTRRKHHCVREGSG

SC KCVRRKKEQKLSTDDLKTEEEGKTDGEGNPDDGAK

10

15

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. C03216) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10756> (SEQ ID NOS: 100, 110 and 120)

Determination of the whole base sequence of the

CDNA insert of clone HP10756 obtained from cDNA library of
human kidney revealed the structure consisting of a 49-bp
5'-untranslated region, a 783-bp ORF, and a 166-bp 3'untranslated region. The ORF encodes a protein consisting of
260 amino acid residues and there existed a putative
secretory signal at the N-terminus. Figure 40 depicts: the

DUCDOOLD WO ----

10

15

20

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 27,356 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AW027769) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03670> (SEQ ID NOS: 121, 131 and 141)

Determination of the whole base sequence of the cDNA insert of clone HP03670 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 77-bp 5'-untranslated region, a 1014-bp ORF, and a 531-bp 3'-untranslated region. The ORF encodes a protein consisting of 337 amino acid residues and there existed at least seven putative transmembrane domains. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to human hypothetical protein KIAA0260

(Accession No. BAA13390). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and human hypothetical protein KIAA0260 (KI). Therein, the marks of -, *, and represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 57.6% in the entire region other than the N-terminal region. In addition, the C-terminal region beginning from leucine at position 77 matched with human putative Sqv-7-like protein (Accession No. AJ005866) except one amino acid residue.

Table 28

15

10

5

HP MTAGGQAEAEGAGGEPG

KI NSWSPLGAAAAGPRAARPRRQATAAAAAMAEVHRRQHARVKGEAPAKSSTLRDEEELGMA

in the second of the second of the second of the second of

HP NKIIHFPDFDKKIPVKLFPLPLLYVGNHISGLSSTSKLSLPMFTVLRKFTIPLTLLLETI

- KI LRVVKFPDLDRNVPRKTFPLPLLYFGNQITGLFSTKKLNLPMFTVLRRFSILFTMFAEGV
- 5 KI LLKKTFSWGIKMTVFAMIIGAFVAASSDLAFDLEGYAFILINDVLTAANGAYVKQKLDSK

 - KI ELGKYGLLYYNALFMILPTLAIAYFTGDAQKAVEFEGWADTLFLLQFTLSCVMGFILMYA
 - HP TVLCSYYNSALTTAVVGAIKNVSVAYIGILIGGDYIFSLLNFVGLNICMAGGLRYSFLTL

 ****. *******..** ***...*****... **...****...**...**

 KI TVLCTQYNSALTTTIVGCIKNILITYIGMVFGGDYIFTWTNFIGLNISIAGSLVYSYITF
- 15 HP SSQLKPKPVGEENICLDLKS
 -*. * * **. *.
 - KI TEEQLSKQ-SEANNKLDIKGKGAV

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R24922) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present

invention.

5

10

15

20

25

<HP03688> (SEQ ID NOS: 122, 132 and 142)

Determination of the whole base sequence of the cDNA insert of clone HP03688 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 35-bp 5'-untranslated region, a 711-bp ORF, and a 1729-bp 3'-untranslated region. The ORF encodes a protein consisting of 236 amino acid residues and there existed five putative transmembrane domains. Figure 42 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein W02D9 (Accession No. CAB03470). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein W02D9 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.8% in the entire region other than the N-terminal

	region.
	Table 29
. 5	НР МАЕАЕЕ
	CE MEILNLSSKFSLSDKPCQKFIFSLFSAVQNSRFKIISFPEIHQKPLPQEEMNSFGNASVD
. 10	HP SPGDPGTASPRPLFAGLSDISISQDIPVEGEITIPMRSRIREFDSSTLNESVRNTIMRDL
	CE IDMLEQEMAAEQTANLSGNIAGMSAPKSSSNRRGPMQEVDLDAEFDTLEEPVWDTVKRDV
•	HP KAVGKKFMHVLYPR-KSNTLLRDWDLWGPLILCVTLALMLQRDSADSEKDGGPQFAEVFV
15	. ** ** **. * ********** **. **
	HP IVWFGAVTITLNSKLLGGNISFFQSLCVLGYCILPLTVAMLICRLVLLADPGPVNFMVRL ***.*.* * **************** **** .*
20	CE ITFFGSVIVTANIKLLGGNISFFQSLCVIGYCLLPPFVAAVLCSL-FLHGIAFPLRL
	HP FVVIVMFAWSIVASTAFLADSQPPNRRALAVYPVFLFYFVISWMILTFTPQ *.**. ** .*** * *********.
	CE LITSIGFVWSTYASMGFLAGCQPDKKRLLVIYPVFLFYFVVSWMIISHS

:25

. Y

J. 12

• =

žļ.... t.v.

5

10

15

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T51465) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03825> (SEQ ID NOS: 123, 133 and 143)

Determination of the whole base sequence of the cDNA insert of clone HP03825 obtained from cDNA library of human kidney revealed the structure consisting of a 20-bp 5'-untranslated region, a 1683-bp ORF, and a 36-bp 3'-untranslated region. The ORF encodes a protein consisting of 560 amino acid residues and there existed seven putative transmembrane domains. Figure 43 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 56 kDa that was smaller than the molecular weight of 64,047 predicted from the ORF.

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Mycobacterium tuberculosis hypothetical protein Rv0235c (Accession No. CAB07001). Table 30 shows the comparison between amino acid sequences

BNSDCCID: <WO = 0112660A2 (>

10

of the human protein of the present invention (HP) and Mycobacterium tuberculosis hypothetical protein Rv0235c (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.7% in the entire region other than the N-terminal region. In addition, the region from alanine at position 293 to proline at position 502 matched with human putative novel protein c360B4.1 (Accession No. CAB56180).

Table 30

_	
HF	MAAPAESLRRRKTGYSDPEPESPPAPGRGPAGSPAHLHTGTFWLTRIVLLKALAFVYFVA
	**. * * * *
MT	MGWFSAPEYWLGRLALERGTAIIYLIA
HF	P FLVAFHQNKQLIGDRGLLPCRVFLKNFQQYFQDRTSWEVFSYMPTILWLMDWSDMNSNLD
	.******
МТ	FVAAAQQFRPLIGEHGMLPVPRYLAG-QSFWRTPSIFH-FRYSDRVFAGVCWLGAVLS
HF	LLALLGLGISSFVLITGCANMLLMAALWGLYMSLVNVGHVWYSFGWESQLLETGFLGIFL
;	* . * . * * . * . * . * . * . * . * . *
МТ	AAVVAGAASFVPLWATMLIWLTLWVLYLSIVNVGQAWYSFGWESLLLETGFLMIFL

	HP CPLWTLSRLPQHTPTSRIVLWGFRWLIFRIMLGAGLIKIRGDRCWRDLTCMDFHYETQPM	,
	. * * * * * * * * * * * * * * * * * * *	
	MT GNERTAPPILTLLLA-RWLLFRVEFGAGLIKMRGDSCWRSLTCLYYHHETQPM	
5		
	HP PNPVAYYLHHSPWWFHRFETLSNHFIELLVPFFLFLGRRACIIHGVLQILFQAVLIVSGN	
	*.*** * .**.**** *** * * ***	
	MT PGPLSWFFHHLPKPLHRIEVAGNHFAQLVVPFGLFTPQPAASIAAAIIVVTQLWLVASGN	
10	HP LSFLNWLTMVPSLACFDDATLGFLFPSGPGSLKDRVLQMQRDIRGARPEPRFGSVVRRAA	
	.*.***** ***** *.*	
	MT FSWLNWLTILLACSAIDTSS-AAALLPMPAQPALSAPPQWFAGLVV	
	. HP NVSLGVLLAWLSVPVVLNLLSSRQVMNTHFNSLHIVNTYGAFGSITKERAEVILQGTASS	
15	*** ** . *****. * ** ** * ****** * ** *	
	MT VFTAAVLLLSYWPARNLLSSHQRMNMSFNPFHLVNTYGAFGSICRTRREVVIEGTDES	
	••••	
	HP NASAPDAMWEDYEFKCKPGDPSRRPCLISPYHYRLDWLMWFAAFQTYEHNDWIIHLAGKL	
	* . * * * * * * * * * * * * * *	
20	MT -PITEQTVWKAYEFKGKPGDPRRLPRQWAPYHLRLDWLMWFAAISPGYALPWMTPFLNRL	
	HP LASDAEALSLLAHNPFAGRPPPRWVRGEHYRYKFSRPGGRHAAEGKWWVRKRIGAYFPPL	
	* * * * * * * * * * * * * * * * * * * *	
	MT LRNDPATLKLLRHNPFP-QSPPRYVRAQLYQYRFTTVAELRRDRA-WWHRTLIGRYVPPM	
25	the state of the s	:: ::

143

HP SLEELRPYFRDRGWPLPGPL

**

MT SLRKVASPPAD

5

10

15

20

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA019047) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03877> (SEQ ID NOS: 124, 134 and 144)

Determination of the whole base sequence of the cDNA insert of clone HP03877 obtained from cDNA library of human kidney revealed the structure consisting of a 106-bp 5'-untranslated region, a 1221-bp ORF, and a 678-bp 3'untranslated region. The ORF encodes a protein consisting of 406 amino acid residues and there existed four putative transmembrane domains. Figure 44 depicts ... the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 49 kDa that was somewhat larger than the molecular weight of 46,208 predicted from the ORF.

10

TALL FRANCISCO AND THE WE

The search of the protein database using the amino acid sequence of the present protein revealed that the protein was similar to Caenorhabditis elegans hypothetical protein Y37D8A (Accession No. CAA21543). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and Caenorhabditis elegans hypothetical protein Y37D8A (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 50.2% in the intermediate region of 329 amino acid residues.

15 Table 31

HP MAENG

CE MAKKOKKSTEKSERTVEFKEPPKPANSEERLVSTROFLAKIGOKKLIKKKVKNFRFSKKT

HP KNCDQRRVAMNKEHHNGNFTDPSSVNEKKRREREERQNIVLWRQPLITLQYFSLEILVIL

* ** ** * * * . . ** .

CE FIDFFSENQKKNCRLKPAGRGMKPSPSQNTLNRMERETIVFWRRPHIVIPYALMEIAHLA

25 HP KEWTSKLWHRQSIVVSFLLLLAVLIATYYVEGVHQQYVQRIEKQFLLYAYWIGLGILSSV 25

HP	GLGTGLHTFLLYLGPHIASVTLAAYECNSVNFPEPPYPDQIICPDEEGTEGTISLWSIIS
	. **. ******. **. ***. *
CE	GLGSGLHTFLIYLGPHIAAVTMAAYECQSLDFPQPPYPESIQCPSTKSSI-AVTFWQIVA
НP	KVRIEACMWGIGTAIGELPPYFMARAARLSGAEPDDEEYQEFEEMLEHAESAQDFA-
	.* ** ***. *********. ** *
CE	KVRVESLLWGAGTALGELPPYFMARAARISGQEPDDEEYREFLELMNADKESDADQKLSI
HP	-SRAKLAVQKLVQKVGFFGILACASIPNPLFDLAGITCGHFLVPFWTFFGATLIGKAIIK
	.*** * _. ** *** ********************
CE	VERAKSWVEHNIHRLGFPGILLFASIPNPLFDLAGITCGHFLVPFWSFFGATLIGKALVK
ΗР	MHIQKIFVIITFSKHIVEQMVAFIGAVPGIGPSLQKPFQEYLEAQRQKLHHKSEMGTPQG
	.*. *. **. *
CE	MHVQMGFVILAFSDHHAENFVKILEKIPAVGPYIRQPISDLLEKQRKALHKTPGEHSEQD
ΗР	ENWLSWMFEKLVVVMVCYFILSIINSMAQSYAKRIQQRLNSEEKTK
4	ENVESTING ENERTY MITCH TESTINGBINGS THAT THE SERVICE SERVICES AND ASSESSED ENTERTY.
CE	LIDEENQSFEEEEEAVTPPSSCPLLLSDGFEGVVVKK

10

15

20

of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T18977) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10765> (SEQ ID NOS: 125, 135 and 145)

Determination of the whole base sequence of the cDNA insert of clone HP10765 obtained from cDNA library of human umbilical cord blood revealed the structure consisting of a 30-bp 5'-untranslated region, a 1362-bp ORF, and a 166-bp 3'-untranslated region. The ORF encodes a protein consisting of 453 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the inner portion. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 48 kDa that was almost identical with the molecular weight of 47,724 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792834) among ESTs. However, since they are partial sequences, it can not be judged whether or not they

10

15

20

encode the same protein as the protein of the present invention.

<HP10766> (SEQ ID NOS: 126, 136 and 146)

Determination of the whole base sequence of the cDNA insert of clone HP10766 obtained from cDNA library of human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 180-bp ORF, and a 675-bp 3'untranslated region. The ORF encodes a protein consisting of 59 amino acid residues and there existed two putative transmembrane domains. Figure 46 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of 10 kDa or less that was almost identical with the molecular weight of 6,098 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T85491) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10770> (SEQ ID NOS: 127, 137 and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10770 obtained from cDNA library of

10

15

20

human kidney revealed the structure consisting of a 150-bp 5'-untranslated region, a 633-bp ORF, and a 186-bp 3'-untranslated region. The ORF encodes a protein consisting of 210 amino acid residues and there existed two putative transmembrane domains. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was larger than the molecular weight of 22,156 predicted from the ORF.

The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI792771) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10772> (SEQ ID NOS: 128, 138 and 148) *

Determination of the whole base sequence of the cDNA insert of clone HP10772 obtained from cDNA library of human kidney revealed the structure consisting of a 19-bp 5'-untranslated region, a 498-bp ORF, and a 724-bp 3'-untranslated region. The ORF encodes a protein consisting of 165 amino acid residues and there existed four putative transmembrane domains. Figure 48 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In translation resulted in formation of a translation product of high molecular weight.

5 The search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F11871) among ESTs. However, since they are partial sequences, it can not be judged whether or not they 10 encode the same protein as the protein of the present invention.

<HP10773> (SEQ ID NOS: 129, 139 and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10773 obtained from cDNA library of human kidney revealed the structure consisting of a 186-bp 5'-untranslated region, a 489-bp ORF, and a 499-bp 3'untranslated region. The ORF encodes a protein consisting of 162 amino acid residues and there existed four putative transmembrane domains. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-20 -Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the GenBank using the base sequences 25 of the present cDNA has revealed the registration of

1 K ; ; }

.-

: 5

4728

5

10

15

20

sequences that shared a homology of 90% or more (for example, Accession No. N33828) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10776> (SEQ ID NOS: 130, 140 and 150) /

Determination of the whole base sequence of the cDNA insert of clone HP10776 obtained from cDNA library of human kidney revealed the structure consisting of a 207-bp 5'-untranslated region, a 666-bp ORF, and a 139-bp 3'-untranslated region. The ORF encodes a protein consisting of 221 amino acid residues and there existed three putative transmembrane domains. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was larger than the molecular weight of 24,883 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI929639) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, 5 expression vectors for these DNAs and eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane, they are considered to be proteins controlling proliferation and/or the differentiation of the cells. 10 Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents control the proliferation and/or differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present 15 invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for expressing these proteins in large quantities. Cells into which these genes introduced to express these proteins can be utilized for 20 detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like. The antibody of the present invention can be utilized for the detection, quantification, purification and the like of the protein of the present invention.

The present invention also provides genes

10

15

20

corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which cDNA polynucleotide sequences are derived and may contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons; introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or information sequence the disclosed from primers identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Morris, 1994, Trends Pharmacol. Sci. 15(7): 250-254;

10

15

. 20

Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; all of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. Transgenic animals that have modified genetic control regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to polynucleotide sequences disclosed herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) or through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. USA. 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination,

10

. :

15

20

preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the identified in accordance with known invention can be techniques for determination of such domains from sequence information.

proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed

10

15

20

protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is,

10

15

naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 32

Stringency	Poly-	Hybrid	Hybridization Temperature	Wash
Condition	nucleotide	Length	and Buffer'	Temperature
	Hybrid	(bp) *		and Buffer'
A	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C;
			42°C; 1×SSC,50%	0.3×SSC
			formamide	
В	DNA: DNA	<50	T ₈ *; 1×SSC	T _s *; 1×SSC
С	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C;
			45°C; 1×SSC,50%	0.3×SSC
		•	formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	Tp*; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C;
_			50°C; 1×SSC,50%	0.3×SSC
	·	<u> </u>	formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA: DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
	1		42°C; 4×SSC,50%	
			formamide	<u></u>
Н	DNA: DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
		-	45°C; 4×SSC,50%	
			formamide	
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K.	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50%	ļ
			formamide	
L	RNA: RNA	< 50 .	T _L *; 2×SSC	T _L *; 2×SSC
М	DNA: DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
	. •		40°C; 6×SSC,50%	
			formamide	
N	DNA: DNA	< 50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50%	
			formamide	
, P	DNA: RNA	<50	T _p *; 6×SSC	Tp*; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
	. :	•	45°C; 6×SSC,50%	
			formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

BNCDOOLD - MID NITSERAS I -

- t: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- t: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
- 15 *T_B T_R: The hybridization temperature for hybrids
 anticipated to be less than 50 base pairs in length should
 be 5-10°C less than the melting temperature (T_m) of the
 hybrid, where T_m is determined according to the following
 equations. For hybrids less than 18 base pairs in length,
 20 T_m(°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids
 between 18 and 49 base pairs in length, T_m(°C)=81.5 +
 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) (600/N), where N is the
 number of bases in the hybrid, and [Na⁺] is the concentration
 of sodium ions in the hybridization buffer ([Na⁺] for
 25 1×SSC=0.165M).

10

15

20

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

BMCDYTID- -WO N112660A2 I S

10.

į.,

. E

4 - 2

1

CLAIMS

- 1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100 and 121 to 130.
- 2. An isolated DNA encoding the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110 and 131 to 140.
 - 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120 and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
 - 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.
 - 7. An antibody directed to the protein according to Claim 1.

BNSDCOID - WO 0112660A2 1 5

Fig. 1

BNSDOCIO: <WO 0112660A2 L >

.

Fig.2

BNSDOCID: <WO 0112660A2 L 3

A SECTION OF THE

Fig.3

Hydrophilicity/Hydrophobicity

-ig.4

BNSDOCID: <WO 0112660A2 1 >

the state of the state of

5/50

Fig.5

9<u>.</u>8

Α.

<u>න</u> න

BNSDCCID <WO 0112880A2 L>

Fig.9

ENCOCIO -WO 011200042

-ig.10

RNSDOCID- -WO 0112660A2 I 1

<u>18.1</u>

12/50

Hydrophilicity/Hydrophobicity

Fig. 12

BNSDOCID- WO 011266042 L >

Committee the second

13/50

Fig. 13

Fig.14

Fig. 15

Fig.16

BNSDOCID: -WO 011366042 I >

والمراجون أجراني

Fig. 17

BNCDALL VIOL UTTOERUNG I

18/50

Fig. 19

Fig.21

Fig.22

.

Fig.23

Fig.24

BNSDOCID- -WO 011266082 1 >

The section of the section of

Fig. 25

Fig.26

1 1 1 1 mm

BNSDOCID- WO 011266042 I 5

Hydrophilicity/Hydrophobicity.

Fig.30

RNSOCCIO-ZWO 0112660A2 L3

-ig.31

Fig.33

Fig.34

DYIGUULU -MIU UTTSEEURS T -

ig.35

ENGULCIU- MU UTTSEEURS I

Fig.36

Fig.37

vtinidadaashvH\vtinilidaashvH

BRICHAMO MITTERNATI

Fig.38

Fig. 40

ig.41

Hydrophilicity/Hydrophobicity

Fig. 42

Fig.43

Fig.44

BNSDOCID: <WO 0112660A2 I >

Fig. 45

Hydrophilicity/Hydrophobicity

Fig. 47

BNSDOCID - WO DISSERVED

Ηλqrophilicity/Ηγdrophobicity

ĬĪ.

Hydrophilicity/Hydrophobicity

DUCDOCID: JUD CHOCCOAD I

.

. :

1 /307

SEQUENCE LISTING

<110> Sagami Chemical Research Center,
Protegene Inc.

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 662029

<150> JP 11-230344

<151> 1999-08-17

<150> JP 11-252551

<151> 1999-09-07

<150> JP 11-281132

<151> 1999-10-01

<150> JP 11-301624

<151> 1999-10-22

<150> JP 11-313877

<151> 1999-11-04

<160> 150		,									
	,										
<210> 1				•							
<211> 267											
<212> PRT											
<213> Homo sapiens											
<400> 1											
Met Val Lys	Ile Ser Ph	e Gln Pro Ala	Val Ala Gly I	le Lys Gly Asp							
1	5		10	15							
Lys Ala Asp	Lys Ala Se	r Ala Ser Ala	Pro Ala Pro A	Ala Ser Ala Thr							
	20	25		30							
Glu Ile Leu	Leu Thr Pr	o Ala Arg Glu	Glu Gln Pro F	Pro Gln His Arg							
35		40		45							
Ser Lys Arg	Gly Ser Se	r Val Gly Gly	Val Cys Tyr I	Leu Ser Met Gly							
50		55	60								
Met Val Val	Leu Leu Me	t Gly Leu Val	Phe Ala Ser V	Val Tyr Ile Tyr							
65	7	0	75	80							
Arg Tyr Phe	Phe Leu Al	a Gln Leu Ala	Arg Asp Asn I	Phe Phe Arg Cys							
	85		90	95							
Gly Val Leu	Tyr Glu As	p Ser Leu Ser	Ser Gln Val	Arg Thr Gln Met							
	100	105		110							
Glu Leu Glu	Glu Asp Va	l Lys Ile Tyr	Leu Asp Glu	Asn Tyr Glu Arg							
115	;	120	•	125							
Ile Asn Val	Pro Val Pr	o Gln Phe Gly	Gly Gly Asp	Pro Ala Asp Ile							
130		135	140								

Ile	His	Asp	Phe	Gln	Arg	Gly	Leu	Thr	Ala	Tyr	His	Asp	Ile	Ser	Leu
145					150					155					160
Asp	Lys	Cys	Tyr	Val	Ile	Glu	Leu	Asn	Thr	Thr	Ile	Val	Leu	Pro	Pro
	,			165					170					175	
Arg	Asn	Phe	Trp	Glu	Leu	Leu	Met	Asn	Val	Lys	Arg	Gly	Thr	Tyr	Leu
			180					185					190		
Pro	Gln	Thr	Tyr	Ile	Ile	Gln	Glu	Glu	Met	Val	Val	Thr	Glu	His	Val
		195					200	, -				205			
Ser	Asp	Lys	Glu	Ala	Leu	Gly	Ser	Phe	Ile	Tyr	His	Leu	Cys	Asn	Gly
	210					215					220				
Lys	Asp	Thr	Tyr	Arg	Leu	Arg	Arg	Arg	Ala	Thr	Arg	Arg	Arg	Ile	Asn
225					230	. •				235					240
Lys	Arg	Gly	Ala	Lys	Asn	Cys	Asn	Ala	Ile	Arg	His	Phe	Glu	Asn	Thr
				245		٠.			250					255	
Phe	Val	Val	Glu	Thr	Leu	Ile	Cys	Gly	Val	Val					
			260			. •	٠.	265							•
							•								
<210)> 2						٠.								
<21 :	I> 4 :	19									-				
<212> PRT															
		omo ;				• •									
<pre><400> 2 Met Ser Cys Ala Gly Arg Ala Gly Pro Ala Arg Leu Ala Leu Ala</pre>															
				•	6		/		10						
					Lan	т	D	41.		41-	۸				G1n

			20					25					30	•	
Glu	Tyr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	Gln	Glu	Prọ	Gly	Arg
		35		•			40	,			٠.,	45			
Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	Leu	Asp
	50	· ·				55	٠, ٠				60			٠	
Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	Gln	Val	Leu	Ala	Pro	Leu	Pro	Leu
65					70				•	75					80
His	Gly	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	Gln	Thr	Arg	Phe	Phe
				85	٠.		•		90					· 95	
Val	Pro	Pro	Asn	Ile	Lys	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	Gly	Asn
			100					105		•		-	110		
Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	Asn	Ala	Val
		115					120	•				125			-
Ala	Val	Val	Ile	Tyr	Asn	Asn	Lys	Ser	Lys	Glu	Glu	Pro	Val	Thr	Met
	130				•	135	•	. ,			140				
Thr	His	Pro	Gly	Thr	Gly	Asp	Ile	Ile	Ala	Val	Met	Ile	Thr	Glu	Leu
145					150					155					160
Arg	Gly	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile	Ser	Val	Gln
				165				•	170					175	, .
Met	Thr	Ile	Ala	Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asn	Phe	Ser	Arg
			180					185				. '	190		
Gly					Val										
•		195	,	•	• •	. ; (200	· · ·	.** .*	••••	:	205		•	
Ser	Ser	Ala	Trp	Leu	Ile										
•	210				-	215					220	,		•	

Asn	Ala	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	Lys	Lys
225					230					235					240
Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	Lys	Glu
				245					250					255	
Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	Tyr	Lys
			260					265					270		
Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	His	Lys
		275					280					285			
Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	Met	Cys
	290					295					300				
Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	Pro	Cys
305					310					315					320
Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	Gln	Ala
				325					330					335	
Val	Asn	Arg	Arg	Ser	Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	Ser	Leu
			340					345					350		
Gly	Leu	Glu	Pro	Leu	Arg	Thr	Ser	Gly	Ile	Ser	Pro	Leu	Pro	Gln	Asp
	•	355					360					365			
Gly	Glu	Leu	Thr	. Pro	Arg	Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	Thr	Lys
	370					375		:			380				
Glu	Trp	Phe	·Ile	Ile	Ala	Ser	Phe	Gly	Leu	Leu	Ser	Ala	Leu	Thr	Leu
385					390					395					400
Cys	Tyr	Met	Ile	Ile	Arg	Ala	Thr	Ala	Ser	Leu	Asn	Ala	Asn	Glu	Val.
				405					410					415	
Glu	Trp	Phe			· ·			-						*	

(210)	· 3										-				
(211	> 41	5	. •				•		:		. •	<i>::</i>	٠	•.	,
<212	> PR	T										•			
<213	> Ho	mos	apie	ns			-	•	: •		. \$		•	- t	
<400	> 3														
Met	Arg	Gly	Ala	Asn	Ala	Trp	Ala	Pro	Leu	Cys	Leu	Leu	Leu	Ala	Ala
1			,	5				•	10					¹ 15	
Ala	Thr	Gln	Leu	Ser	Arg	Gln	Gln	Ser	Pro	Glu	Arg	Pro	Val	Phe	Thr
			20					25					30		
Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glu	Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly
	.*.	35					40			•		45			
Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr
	50	•				55					60	٠			
Val	Pro	Glu	Gly	Lys	Val	Val	Val	Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu
65					70		•	•		75					80
Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly
				85	•			,	·90	١			,	95	
His	Ala	Asr	ı Gly	Gln	Arg	Ile	Gly	Arg	Phe	Cys	Gly	Thr	Phe	Arg	Pro
			100)				105	; :	7 /			110	Ç	. :
Gly	Ala	a Lev	ı Val	Ser	Ser	Gly	Asr	ı Lys	Met	: Met	: Val	Glr	Met	Ile	Ser
		11	5		:	:	120)				125	5		,
Asp	Ala	a Ası	n Thi	r Ala	a Gly	y∵Ásî	n Gly	y Phe	e Me	t Ala	a Met	t Phe	e Ser	· Ala	a Ala
	130	0				13	5				140)			
G1u	ı Pr	o As	n Gl	u Ar	g Gl	y As	p G1 1	n Ty:	г Су:	s Gl	y G1:	y Lei	ı Leu	ı Ası	p Arg

145					150					155					160
Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro
		-	;	165					170	•				175	
Ala	Gly	Val	Thr	Cys	Val	Trp	His	Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu
			180					185					190		
Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys
		195					200					205			
Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala
	210					215					220				
Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val
225					230					235					240
Ser	Glu	Arg	Asn	Glu	Leu	Leu	Ile	Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu
				245					250					255	
Thr	Ala	Asp	Gly	Phe	Ile	Gly	His	Tyr	Ile	Phe	Arg	Pro	Lys	Lys	Leu
			260					265	ar.				270		
Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr
	٠	275					280				•	285			
Gly	Leu	Lys	Thr	Thr	Val	Ala	Leu	Cys	Gln	Gln	Lys	Cys	Arg	Arg	Thr
	290					295					300				
Gly	Thr	Leu	Glu	Gly	Asn	Tyr	Cys	Ser	Ser	Asp	Phe	Val	Leu	Ala	Gly
305		*		•	310					315					320
Thr	Val	Ile	Thr	Thr	Ile	Thr	Arg	Asp	Gly	Ser	Leu	His	Ala	Thr	Val
٥			•	325	•			: ,.	330	•	٠.		٠.	335	
Ser	Ile	Ile	Asn	Ile	Tyr	Lys	Glu	Gly	Asn	Leu	Ala	Ile	Gln	Gln	Ala
Ξ,,		, ,	340	, ÷.			Fran	345					350		

Gly	Lys	Asn	Met	Ser	Ala	Arg	Leu	Thr	Val	Val	Cys	Lys	Gln	Cys	Pro
	٠.	355	-				360					365			•
Leu	Leu	Arg	Arg	Gly	Leu	Asn	Tyr	Ile	Île	Met	Gly	Gln	Val	Gly	Glu
	370	: .	٠			375					380			,	
Asp	Gly	Arg	Gly	Lys	Ile	Met	Pro	Asn	Ser	Phe	Ile	Met	Met	Phe	Lys
385		;			390		٠.		• .	395			,	•	400
Thr	Lys	Asn	Gln	Lys	Leu	Leu	Asp	Ala	Leu	Lys	Asn	Lys	Gln	Cys	
				405				٠	410					415	;
															-
<21	0> 4								•						
<21	1> 3	80													
<21	2> Pl	RT		•										• .	. :
<21	3> H	0000	sapi	ens											
<40	0> 4														
Met	Leu	Gln	Thr	Leu	Tyr	Asp	Tyr	Phe	Trp	Trp	Glu	Arg	Leu	Trp	Leu
1				5			, •		10					15	• • • •
Pro	Val	Asn	Leu	Thr	Trp	Ala	Asp	Leu	Glu	Asp	Arg	Asp	Gly	Arg	Val
			20					25					30	• :	-
Tyr	. Ala					_		·			_	T	41	Lau	Leu
	AIG	Lys	Ala	Ser	Asp	Leu	Tyr	Ile	Thr	Leu	Pro	Leu	AIA	Leu	200
•	nia	1ys 35													
Phe		35					· 40	, .	,	-		45	: -	٠	
		35 Ile			Tyr	Phe	· 40	Glu	Leu	-		45 Ala	Thr	Pro	•
•	Leu 50	35	Val	Arg	Tyr	Phe	40 Phe	Glu	Leu	Tyr	Val	45 Ala	Thr	Pro	Leu
•	E Leu 50 A Ala	35	Val	Arg	Tyr	Phe 55 Lys	40 Phe	Glu Lys	Leu	Tyr	Val 60 Leu	45 Ala	Thr	Pro Pro	Leu

BNSDYCID- -WO 011266042 I

				85		•			90					95	
Gln	Val	Glu	Val	Glu	Leu	Leu	Ser	Arg	G1n	Ser	Gly	Leu	Ser	Ģly	Arg
	.•		100			•		105	•				110		
Gln	Val	Glu	Arg	Trp	Phe	Arg	Arg	Arg	Arg	Asn	Gln	Asp	Arg	Pro	Ser
		115					120					125		:	
Leu	Leu	Lys	Lys	Phe	Arg	Glu	Ala	Ser	Trp	Arg	Phe	Thr	Phe	Tyr	Leu
	130					135		· .			140				
Ile	Ala	Phe	Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe
145					150					155					160
Tyr	Asp	Met	Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile
				165					170					175	
Pro	Ser	Gln	Tyr	Trp	Tyr	Tyr	Met	Ile	Glu	Leu	Ser	Phe	Tyr	Trp	Ser
			180					185					190		
Leu	Leu	Phe	Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu
		195					200					205			
Gln	Ile	Ile	His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp
	210					215					220			•	
Phe	Ala	Asn	Tyr	Ile	Arg	Ala	Gly	Thr	Leu	Ile	Met	Ala	Leu	His	Asp
225	•				230					235					240
Ser	Ser	Asp	Tyr	Leu	Leu	Glu	Ser	Ala	Lys	Met	Phe	Asn	Tyr	Ala	Gly
٠,			:	245			٠.,		250		٠.		٠.	255	
Trp	Lys	Asn	Thr	Cys	Asn	Asn	Ile	Phe	Ile	Val	Phe	Ala	Ile	Val	Phe
;*,	•	`.	260			٠,,	٠.	265	•		. •		270		. :
Ile	Ile	Thr	Arg	Leu	Val	Ile	Leu	Pro	Phe	Trp	Ile	Leu	His	Cys	Thr
		275					. 280					285			

Leu Val Ty	r	Pro	Leu	Glu	Leu	Tyr	Pro	Ala	Phe	Phe	Gly	Tyr	Tyr	Phe
290		. '			295					300		•		
Phe Asn Se	r	Met	Met	Gly	Val	Leu	Gln	Leu	Leu	His	Ile	Phe	Trp	Ala
305			·	310				٠.	315		•			320
Tyr Leu Il	.e	Leu	Arg	Met	Ala	His	Lys	Phe	Ile	Thr	Gly	Lys	Leu	Val
• • •		•	325					330		,	٠.		335	•
Glu Asp G	u	Arg	Ser	Asp	Arg	Glu	Glu	Thr	Glu	Ser	Ser	Glu	Gly	Glu
		340				1	345					350	~	٠
Glu Ala A	la	Ala	Gly	Gly	Gly	Ala	Lys	Ser	Arg	Pro	Leu	Ala	Asn	Gly
<u>:</u> 3!	55	•	•		•	360		٠.	•		365			
His Pro I	le	Leu	Asn	Asn	Asn	His	Arg	Lys	Asn	Asp				
370			•		375	٠.	٠.			380	٠.	,	• •	
<210> 5							٠,		1.					
<211> 585														
<212> PRT												•		
<213> Hom	o :	sapi	ens											
<400> 5							•							
Met Val C	ys	Arg	.Glu	G1n	Leu	Ser	Lys	Asr	Glr	Val	Lys	Trp	Val	Phe
1	٠		. 5	,			,	10) :				15	
Ala Gly I	le	Thr	Cys	Val	Sei	· Val	Va!	Va]	l Ile	Ala	Ala	ı Ile	e Val	Leu
•		20)		•		25	5 .			v.	30)	
Ala Ile 7	hr	Leu	ı Arg	g Arg	g Pro	Gly	, 'Cy:	s Glı	ı Lei	ı Glu	ı Ala	а Су:	s Sei	Pro
	35			<i>:</i> ,	٠.	40)				4	5	٠.	· • • •
Asp Ala A	۱sp	Met	t Le	ı Ası	р Ту	r Lei	u Lei	u Se:	r Lei	u Gl	y G1:	n Il	e 'Sei	r Arg

	50				•	55					60			٠	
Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn	Ser	Lys	Lys
65		•			70					.75					80
Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	Glu	Ala	Asp
	,			85					90					95	
Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	Val	Pro	Ile
		ė	100					105					110		
Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	Glu	Gln	Trp
		115					120					125			
Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	Gly	Ile	Lys	Leu	Asp	Phe
	130					135					140				
Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leụ	Arg	Gln	Leu
145					150					155					160
Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	Ala	Asp	Ile
				165					170					175	
Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	Ala	Thr	Gln
			180					185					190		
Phe	Leu	Ala	Leu	Val	Gln	Glu	Lys	Tyr	Pro	Lys	Ala	Thr	Leu	Ser	Pro
		195				•	200				•	205			
Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	Thr	Tyr	Thr
	210	•		•		215					220				:
Gln	Ala	Met	Val	Glu	Lys	Met	His	Glu	Leu	Val	Gly	G1y	Val	Pro	Gln
225		. •		•	230		Ϋ,.	~·.	ď.	235	: ,			: •	240
Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala	Ala	Trp	Pro
ł.	,		٠.	245			٠.,		250					255	

His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	Leu	Thr	Leu
	•		260					265					270	•	
Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu	Leu	Tyr	Val
		275					280		•			285			
Arg	Asp	Asn	Thr	Ala	Val	His	Gln	Val	Tyr	Tyr	Asp	Ile	Phe	Glu	Pro
	290					295	٠.	. •	•		300			4	. 1
Leu	Leu	Ser	Gln	Phe	Lys	Gln	Leu	Ala	Leu	Asn	Ala	Thr	Arg	Lys	Pro
305		ر			310			-	d.	315		•	•		320
Met	Tyr	Tyr	Thr	Gly	Gly	Ser	Leu	Ile	Pro	Leu	Leu	Gln	Leu	Pro	Gly
		. •		325			,		330					335	
Asp	Asp	Gly	Leu	Asn	Val	Glu	Trp	Leu	Val	Pro	Asp	Val	Gln	Gly	Ser
		, .	340				,	345	- 1		:		350		
Gly	Lys	Thr	Ala	Thr	Met	Thr	Leu	Pro	Asp	Thr	Glu	Gly	Met	Ile	Leu
	·· .	355					360					365			. ,
Leu	Asn	Thr	Gly	Leu	Glu	Gly	Thr	Val	Ala	Glu	Asn	Pro	Val	Pro	Ile
	370					375					380				
Val	His	Thr	Pro	Ser	Gly	Asn	Ile	Leu	Thr	Leu	Glu	Ser	Cys	Leu	Gln
385					390		,		٠	395					400
Gln	. Leu	Ala	Thr	His	Pro	Gly	His	Trp	Gly	Ile	His	Leu	G1n	Ile	Ala
				405	;				410	•				415	; · ·
Glu	ı Pro	Ala	. Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	Arg	Leu	Ser
			420) .			-	425	;				430	γ	
Sei	r Lei	ı Gly	/ Leu	ı Leu	ı His	Trp	Pro	Val	Trp	Val	Gly	Ala	Lys	Ile	Ser
	•														
Нi	s (61s	i Sei	r Pha	e Ser	- Val	Pro	Glv	, His	; Val	Ala	ı Glv	Ars	g Glu	ı Let	ı Leu

BNSDCCID: <WO 0112660A2 |

Control of the state of

450 455	460
Thr Ala Val Ala Glu Val Phe Pro His	Val Thr Val Ala Pro Gly Trp
465 470	475 480
Pro Glu Glu Val Leu Gly Ser Gly Tyr	Arg Glu Gln Leu Leu Thr Asp
485	490 495
Met Leu Glu Leu Cys Gln Gly Leu Trp	Gln Pro Val Ser Phe Gln Met
500 505	510
Gln Ala Met Leu Leu Gly His Ser Thr	Ala Gly Ala Ile Gly Arg Leu
515 520	525
Leu Ala Ser Ser Pro Arg Ala Thr Val	Thr Val Glu His Asn Pro Ala
530 535	540
Gly Gly Asp Tyr Ala Ser Val Arg Thr	Ala Leu Leu Ala Ala Arg Ala
545 550	555 560
Val Asp Arg Thr Arg Val Tyr Tyr Arg	Leu Pro Gln Gly Tyr His Lys
565	570 575
Asp Leu Leu Ala His Val Gly Arg Asn	
580 585	to the second second
	•
<210> 6	
<211> 331	
<212> PRT	
<213> Homo sapiens	
<400> 6	e e e e e e e e e e e e e e e e e e e
Met Trp Leu Trp Glu Asp Gln Gly Gly	
$(1_{\frac{1}{4},\frac{1}{4}},\ldots,1_{\frac{1}{4}},\ldots,\frac{1}{4}$. 10

Leu	Leu	Leu	Val	Leu	Leu	Leu	Val	Thr	Arg	Ser	Pro	Val	Asn	Ala	Cys
		,	20				٠.	25					30		
Leu	Leu	Thr	Gly	Ser	Leu	Phe	Val	Leu	Leu	Arg	Val	Phe	Ser	Phe	Glu
	•	[:] .35					40				,	45			
Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	G1n	Val	Leu	Lys	Pro	Arg	Asp	Arg
	50			•		55					60		-		1
Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	Ala	Pro	Glu	Asn
65					70	•		٠.		75			•		80
Thr	Leu	Ala	Ala	Ile	Arg	Gln	Ala	Ala	Lys	Asn	G1y	Ala	Thr	Gly	Val
,	• •			85		. *	٠		90					95	
Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	Asp	Gly	Ile	Pro	Val	Leu	Met	His
	• • •		100	٠				105			•		110		
Asp	Asn	Thr	Val	Asp	Arg	Thr	Thr	Asp	Gly	Thr	Gly	Arg	Leu	Cys	Asp
		115					120			-		125			
Leu	Thr	Phe	Glu	Gln	Ile	Arg	Lys	Leu	Asn	Pro	Ala	Ala	Asn	His	Arg
	130					135		٠.		٠	140			•	•.
Leu	Arg	Asn	Asp	Phe	Pro	Asp	Glu	Lys	Ile	Pro	Thr	Leu	Arg	Glu	Ala
145					150					155					160
Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Ţhr	Ile	Phe	Phe	Asp	Val	Lys
				165					170					175	•
Gly	His	Ala	His	Lys	Ala	Thr	Glu	Ala	Leu	Lys	Lys	Met	Tyr	Met	Glu
			180					185			. '		190	-	
Phe	Pro	Gln	Leu	Tyr	Asn	Asn	Ser	Val	Val	Cys	Ser	Phe	Leu	Pro	Glu
, **		195				•	200					205	•	•	
Val	Ile	Tvr	Lvs	Met	Arg	Gln	Thr	Asp	Arg	Asp	Val	Ile	Thr	Ala	Leu

210	215		220
Thr His Arg Pro 1	Irp Ser Leu Se	r His Thr Gly	Asp Gly Lys Pro Arg
225	230	235	240
Tyr Asp Thr Phe 1	Trp Lys His Ph	e Ile Phe Val	Met Met Asp Ile Leu
2	245	250	255
Leu Asp Trp Ser M	Met His Asn Il	e Leu Trp Tyr	Leu Cys Gly Ile Ser
260		265	270
Ala Phe Leu Met (Gln Lys Asp Ph	e Val Ser Pro	Ala Tyr Leu Lys Lys
275	28	0	285
Trp Ser Ala Lys (Gly Ile Gln Va	l Val Gly Trp	Thr Val Asn Thr Phe
290	295		300
Asp Glu Lys Ser 1	Tyr Tyr Glu Se	r His Leu Gly	Ser Ser Tyr Ile Thr
305	310	315	320
Asp Ser Met Val (Glu Asp Cys Gl	u Pro His Phe	
3	325	330	
<210> 7	•		
<211> 345			
<212> PRT			
<213> Homo sapie	ns		
<400> 7			
Met Ser Pro Glu	Glu Trp Thr Ty	r Leu Val Val	Leu Leu Ile Ser Ile
1	5	. 10	15
Pro Ile Gly Phe	Leu Phe Lys Ly	rs Ala Gly Pro	Gly Leu Lys Arg Trp
20		25	. 30

Gly Ala Ala Ala Val Gly	Leu Gly Leu	Thr Leu Phe T	hr Cys Gly Pro	0
	40		45	
His Thr Leu His Ser Leu	Val The Ile	Leu Glv Thr T	rp Ala Leu Il	.e ·
		60		
50				
Gln Ala Gln Pro Cys Ser	Cys His Ala	Leu Ala Leu A	lla Trp Inr Pi	16
65 70	• • •	75	· · · · · · · · · · · · · · · · · · ·	80
Ser Tyr Leu Leu Phe Phe	Arg Ala Leu	Ser Leu Leu	Gly Leu Pro T	hr
85		90		:
Pro Thr Pro Phe Thr Asr	ı Ala Val Gln	Leu Leu Leu	Thr Leu Lys L	eu,
100	105		110	
Val Ser Leu Ala Ser Gl				_ys
115	120		125	•
Glu Met Ala Ser Gly Ph	e Ser Lys Gl	y Pro Thr Leu	Gly Leu Leu	Pro
130	135	140		
Asp Val Pro Ser Leu Me	et Glu Thr Le	eu Ser Tyr Ser	Tyr Cys Tyr	Val
145	50	155		160
Gly Ile Met Thr Gly P	ro Phe Phe A	rg Tyr Arg Thi	r Tyr Leu Asp	Trp
165		170	175	
Leu Glu Gln Pro Phe P	ro Gly Ala V	al Pro Ser Le	u Arg Pro Leu	Leu
180		85	190	
Arg Arg Ala Trp Pro	Ala Pro Leu F	he Gly Leu Le	eu Phe Leu Leu	ı Ser
195			205	
Ser His Leu Phe Pro	Leu Glu Ala '	Val Arg Glu A	sp Ala Phe Ty	r Ala
210	215	2	20	. 1 63
Arg Pro Leu Pro Ala	Arg Leu Phe	Tyr Met Ile P	ro Val Phe Ph	e Ala

BRIGHOUSE SMO 011266082 1 3

* * *

.:

225	230	235	240
Phe Arg Met Arg	Phe Tyr Val Al	a Trp Ile Ala Ala	Glu Cys Gly Cys
. ,	245	250	255
Ile Ala Ala Gly	Phe Gly Ala Ty	r Pro Val Ala Ala	Lys Ala Arg Ala
260		265	270
Gly Gly Gly Pro	Thr Leu Gln Cys	s Pro Pro Pro Ser	Ser Pro Glu Lvs
275	280	•	285
Ala Ala Ser Leu	Glu Tyr Asp Tyr	Glu Thr Ile Arg A	Asn Ile Asp Cvs
290	295	300	•
Tyr Ser Thr Asp	Phe Cys Val Arg	Val Arg Asp Gly M	let Arg Tyr Trp
305	310	315	320
Asn Met Thr Val	Gln Trp Trp Leu	Ala Gln Tyr Ile T	•
	325	330	•
Pro Ala Arg Ser			335
	Tyr var Leu Arg	Leu	
340		345	
<210> 8		*.1	
<211> 89			
<212> PRT			
<213> Homo sapien	s		·
<400> 8 ⋅			
Met Tyr Met Gln A	sp Tyr Trp Arg 7	Thr Trp Leu Lys Gl	y Leu Arg Gly
1	5	. 10	15
Phe Phe Phe Val G	y Val Leu Phe S	er Ala Val Ser Ile	Ala Ala Phe
		25 ,	

מאופרוטייוטי יאוט חייים

_								en i			~1	C	•	TL	
		Phe		Val	Leu	Ala	He	Ihr	Arg	HIS	GIN	Ser	Leu	ınr	ASP
	••	35					40				-	45			•
Pro	Thr	Ser	Tyr	Tyr	Leu	Ser	Ser	Val	Trp	Ser	Phe	Ile	Ser	Phe	Lys
	50	•:				55					60	i		. •	
Trp	Ala	Phe	Leu	Leu	Ser	Leu	Tyr	Ala	His	Arg	Tyr	Arg	Ala	Asp	Phe
65		. •			70		-		•	· 75					80
Ala	Asp	Ile	Ser	Ile	Leu	Ser	Asp	Phe							
				85						•					
<210	0> 9	,								,					•
<21	1> 4	06													
<21	2> P	RT							. •					٠,	٠
<21	3> H	lomo	sapi	ens											
<40	0> 9	-													
		Gly	Ser	Val	Glu	Cys	Thr	Trp	Gly	Trp	Gly	His	Cys	Ala	Pro
1		-		5					10					15	
		Leu	Len			Thr	Len	Leu			Ala	Ala	Pro	Phe	Gly
Jei		LCG	20					25		• • • • • • • • • • • • • • • • • • • •			30		•
-		01			~ L_	4	. c1_			Laur	C1	Vo.1		Dro	Acn
Leu	Let	ı Gly		Lys	inr	Arg			Ser	Leu	Glu			110	,
		35	5				40	•				45	•		
Trp	Lei	ı Gly	r Pro	Leu	G1n	Asn	Leu	Leu	His	Ile	Arg	Ala	Val	Gly	Thr
	50	כ	, ,	•		55			·*·		60				
Asn	Se:	r Thi	Leu	His	Tyr	Val	Trp	Ser	Ser	Leu	Gly	Pro	Leu	Ala	Val
65	5		• • •	•	70)				75	; ·		:		80
Va1	Ma	t Val	<u> </u>	The	· Acr	The	· Pro	Hic	: Set	- Thi	· Lei	ı Sei	· Val	Asn	Trp

			85					90					95	
Ser Leu	Leu	Leu	Ser	Pro	Glu	Pro	Asp	Gly	Gly	Leu	Met	Val	Leu	Pro
		100	•		-		105					110		•
Lys Asp	Ser	Ile	Gln	Phe	Ser	Ser	Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu
	115					120					125			
Glu Phe	Asp	Ser	Thr	Asn	Val	Ser	Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly
130					135					140				
Arg Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile
145				150					155					160
Thr Asp	Ser	Leu	Asp	Pro	Ala	Thr	Leu	Ser	Ala	Thr	Phe	Gln	Gly	His
			165					170					175	
Pro Met	Asn	Asp	Pro	Thr	Arg	Thr	Phe	Ala	Asn	Gly	Ser	Leu	Ala	Phe
		180					185					190		
Arg Val	Gln	Ala	Phe	Ser	Arg	Ser	Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg
	195					200					205	٠.		
Leu Leu	His	Thr	Ala	Asp	Thr	Cys	Gln	Leu	Glu	Val	Ala	Leu	Ile	Gly
210					215					220				
Ala Ser	Pro	Arg	Gly	Asn	Arg	Ser	Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr
225				230					235					240
Leu Gly	Gln	Gly	Pro	Asp	Cys	Pro	Ser	Met	Gln	Glu	Gln	His	Ser	Ile
			245					250			÷		255	• .
Asp Asp	Glu	Tyr	Ala	Pro	Ala	Val	Phe	Gln	Leu	Asp	Gln	Leu	Leu	Trp
	٠,	260	.: •		,	. ;	265 ,		1.1.1		··· ,	270	٠,.	• •
Gly Ser	Leu	Pro	Ser	Gly	Phe	Ala	Gln	Trp	Arg	Pro	Val	Ala	Tyr	Ser
egar j	275	Į (; ,	. ,	; , 3	280	4	. ~ .	: · .		285			

Gln L	ys.	Pro	Gly	Gly	Arg	Glu	Ser	Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro	
2	90	•,	•	•	•	295	٠	,	•		300		•	•		•
Leu H	lis	Pro	Äla	Leu	Ala	Tyr	Ser	Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg	
305					310	•			٠	315	•		•		320	
Ala P	he	Phe	Gly	Ser	Gln	Asn	Asn	Phe	Cys	Ala	Phe	Asn	Leu	Thr	Phe	
		٠		325			-		330	•				335	. •	
Gly A	lla	Ser	Thr	Gly	Pro	Gly	Tyr	Trp	Asp	Gln	His	Tyr	Leu	Ser	Trp	
			340					345					350		•	
Ser M	let	Leu	Leu	G1 y	Val	Gly	Phe	Pro	Pro	Val	Asp	Gly	Leu	Ser	Pro	
		355	-	•			360					365				
Leu V	/al	Leu	Gly	Ile	Met	Ala	Val	Ala	Leu	Gly	Ala	Pro	Gly	Leu	Met	
3	370		. *			375					380			٠		
Leu l	Leu	Gly	Gly	Gly	Leu	Val	Leu	Leu	Leu	His	His	Lys	Lys	Tyr	Ser	
385					390					395	•				400	
Glu 1	Гуr	Gln	Ser	Ile	Asn				٠					:		
				405			٠								• .	
										٠					· ·	
<210	> 1	0														
<211								•						,		
<212	> P	RT ·			•				•						`. `	
<213	> H	omo	sapi	ens								•				
<400	> 1	0										•				٠
Met	Thr	Ala	a Val	l Gly	Va]	l Glı	n Ala	Gli	ı Arg	g Pro	o Let	ı Gly	/ Glr	ı Arş	g Gln	
1			٠.	• {	, ·	. •			10)	. •			15	5	
Pro	Arg	, Ar	g Se	r Phe	Phe	e Glo	u Sei	r Phe	e Ile	e Ar	g Thi	r Lei	ı Ile	e Ile	e Thr	

			20					25					30		
Cys	Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	Gly
		35	21	~	. •		40					45			
His	Trp	Leu	Leu	Aļa	Glu	Asp	Arg	Leu	Phe	Gly	Leu	Trp	His	Phe	Cys
	50					55					60				
Thr	Thr	Thr	Asn	Gln	Ser	Val	Pro	Ile	Cys	Phe	Arg	Asp	Leu	Gly	G1n
65	;				70					75			•		80
Ala	His	Val	Pro	Gly	Leu	Ala	Val	Gly	Met	Gly	Leu	Val	Arg	Ser	Val
	-			85					90					95	
Gly	Ala	Leu	Ala	Val	Val	Ala	Ala	Ile	Phe	Gly	Leu	Glu	Phe	Leu	Met
			100					105					110	,	
Val	Ser	Gln	Leu	Cys	Glu	Asp	Lys	His	Ser	Gln	Cys	Lys	Trp	Val	Met
		115					120					125			
Gly	Ser	Ile	Leu	Leu	Leu	Val	Ser	Phe	Val	Leu	Ser	Ser	Gly	Gly	Leu
	130					135					140				
Leu	Gly	Phe	Val	Ile	Leu	Leu	Arg	Asn	Gln	Val	Thr	Leu	Ile	Gly	Phe
145					150					155					160
Thr	Leu	Met	Phe	Trp	Cys	Glu	Phe	Thr	Ala	Ser	Phe	Leu	Leu	Phe	Leu
				165					170					175	
Asn	Ala	Ile	Ser	Gly	Leu	His	Ile	Asn	Ser	Ile	Thr	His	Pro	Trp	G1u
		•	180					185					190		
<210	> 11	<u>l</u>	••	• .:					•						·
<2 11	> 80						•	••			,		•		
<212	> DN	ĮA .				,			•		٠. غ				. • • •

ENCOUCHD - WITH DITTERNAS I

	sapiens

<4	<00>	11

60 atggtgaaga ttagcttcca gcccgccgtg gctggcatca agggcgacaa ggctgacaag 120 gcgtcggcgt cggcccctgc gccggcctcg gccaccgaga tcctgctgac gccggctagg gaggagcagc ccccacaaca tcgatccaag agggggagct cagtgggcgg cgtgtgctac 180 ctgtcgatgg gcatggtcgt gctgctcatg ggcctcgtgt tcgcctctgt ctacatctac 240 agatacttct ttcttgcaca gctggcccga gataacttct tccgctgtgg tgtgctgtat 300 360 gaggactece tgteeteeca ggteeggaet cagatggage tggaagagga tgtgaaaate 420 tacctcgacg agaactacga gcgcatcaac gtgcctgtgc cccagtttgg cggcggtgac cctgcagaca tcatccatga cttccagcgg ggtctgactg cgtaccatga tatctccctg 480 ** 540 gacaagtgct atgtcatcga actcaacacc accattgtgc tgccccctcg caacttctgg 600 gagetectea tgaaegtgaa gagggggaee tacetgeege agaegtaeat cateeaggag 660 gagatggtgg tcacggagca tgtcagtgac aaggaggccc tggggtcctt catctaccac 720 ctgtgcaacg ggaaagacac ctaccggctc cggcgccggg caacgcggag gcggatcaac aagcgtgggg ccaagaactg caatgccatc cgccacttcg agaacacctt cgtggtggag 780 801 acgctcatct gcggggtggt g

<210> 12

<211> 1257

<212> DNA

<213> Homo sapiens

<400> 12

atgagetgeg eggggegge gggeeetgee eggetegeeg egetegeet getgaeetge 60

ageetgtgge eggeaegge agacaaegeg ageeaggagt actaeaegge geteateaae 120

gtgaeggtge aggageeegg eegeggege eegeteaegt ttegeatega eegeggege 180

tacgggcttg	actccccaa	ggccgaggtc	cgcggccagg	tgctggcgcc	gctgcccctc	240
cacggagttg	ctgatcatct	gggctgtgat	ccacaaaccc	ggttctttgt	ccctcctaat	300
atcaaacagt	ggattgcctt	gctgcagagg	ggaaactgca	cgtttaaaga	gaasatatca	360
cgggccgctt	tccacaatgc	agttgctgta	gtcatctaca	ataataaatc	caaagaggag	420
ccagttacca	tgactcatcc	aggcactgga	gatattattg	ctgtcatgat	aacagaattg	480
aggggtaagg	atattttgag	ttatctggag	aạaaacatct	ctgtacaaat	gacaatagct	540
gttggaactc	gaatgccacc	gaagaacttc	agccgtggct	ctctagtctt	cgtgtcaata	600
tcctttattg	ttttgatgat	tatttcttca	gcatggctca	tattctactt	cattcagaag	660
atcaggtaca	caaatgcacg	cgacaggaac	cagcgtcgtc	tcggagatgc	agccaagaaa	720
gccatcagta	aattgacaac	caggacagta	aagaagggtg	acaaggaaac	tgacccagac	780
tttgatcatt	gtgcagtctg	catagagagc	tataagcaga	atgatgtcgt	ccgaattete	840
ccctgcaagc	atgttttcca	caaatcctgc	gtggatccct	ggcttagtga	acattgtacc	900
tgtcctatgt	gcaaacttaa	tatattgaag	gccctgggaa	ttgtgccgaa	tttgccatgt	960
actgataacg	tagcattcga	tatggaaagg	ctcaccagaa	cccaagctgt	taaccgaaga	1020
tcagccctcg	gcgacctcgc	cggcgacaac	tcccttggcc	ttgagccact	tcgaacttcg	1080
gggatctcac	ctcttcctca	ggatggggag	ctcactccga	gaacaggaga	aatcaacatt	1140
gcagtaacaa	aagaatggtt	tattattgcc	agttttggcc	tcctcagtgc	cctcacactc	1200
tectacatea	tcatcagagc	cacagetage	ttgaatgcta	atgaggtaga	atggttt	1257

<210> 13

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 13

atgaggggcg cgaacgcctg ggcgccactc tgcctgctgc tggctgccgc cacccagctc

60

tcgcggcagc	agtccccaga	gagacctgtt	ttcacatgtg	gtggcattct	tactggagag	120
tctggattta	ttggcagtga	aggttttcct	ggagtgtacc	ctccaaatag	caaatgtact	180
tggaaaatca	cagttcccga	aggaaaagta	gtcgttctca	atttccgatt	catagacctc	240
gagagtgaca	acctgtgccg	ctatgacttt	gtggatgtgt	acaatggcca	tgccaatggc	300
cagcgcattg	gccgcttctg	tggcactttc	cggcctggag	cccttgtgtc	cagtggcaac	360
aagatgatgg	tgcagatgat	ttctgatgcc	aacacagctg	gcaatggctt	catggccatg	420
ttctccgctg	ctgaaccaaa	cgaaagaggg	gatcagtatt	gtggaggact	ccttgacaga	480
ccttccggct	cttttaaaac	ccccaactgg	ccagaccggg	attaccctgc	aggagtcact	540
tgtgtgtggc	acattgtagc	cccaaagaat	cagcttatag	aattaaagtt	tgagaagttt	600 .
gatgtggagc	gagataacta	ctgccgatat	gattatgtgg	ctgtgtttaa	tggcggggaa	660;
gtcaacgatg	ctagaagaat	tggaaagtat	tgtggtgata	gtccacctgc	gccaattgtg	720 ::
tctgagagaa	atgaacttct	tattcagttt	ttatcagact	taagtttaac	tgcagatggg	780
tttattggtc	actacatatt	caggccaaaa	aaactgccta	caactacaga	acagcctgtc	840
accaccacat	tecetgtaac	cacgggttta	aaaaccaccg	tggccttgtg	tcaacaaaag	900 .
tgtagacgga	cggggactct	ggagggcaat	tattgttcaa	gtgactttgt	attagccggc	. 960
actgttatca	caaccatcac	tcgcgatggg	agtttgcacg	ccacagtete	gatcatcaac	1020
atctacaaag	g agggaaattt	ggcgattcag	caggegggea	agaacatgag	tgccaggctg	1080
actgtcgtc1	t gcaagcagte	ccctctcctc	agaagaggto	taaattacat	tattatgggc	1140
caagtaggt	g aagatgggcg	g aggcaaaato	atgccaaaca	gctttatcat	gatgttcaag	1200
accaagaat	c agaagctcct	ggatgcctta	a aaaaataago	aatgt	•	1245

⟨210⟩ 14

<211> 1140

<212> DNA

<213> Homo sapiens

<400> 14

atgctccaga	ccttgtatga	ttacttctgg	tgggaacgtc	tgtggctgcc	tgtgaacttg	60
acctgggccg	atctagaaga	ccgagatgga	cgtgtctacg	ccaaagcctc	agatetetat	120
atcacgctgc	ccctggcctt	gctcttcctc	atcgttcgat	acttctttga	gctgtacgtg	180
gctacaccac	tggctgccct	cttgaacata	aaggagaaaa	ctcggctgcg	ggcacctccc	240
aacgccacct	tggaacattt	ctacctgacc	agtggcaagc	agcccaagca	ggtggaagta	300
gagöttttgt	cccggcagag	cgggctctct	ggccgccagg	tagagcgttg	gttccgtcgc	360
cgccgcaacc	aggaccggcc	cagtctcctc	aagaagttcc	gagaagccag	ctggagattc	420
acattttacc	tgattgcctt	cattgccggc	atggccgtca	ttgtggataa	accctggttc	480
tatgacatga	agaaagtttg	ggagggatat	cccatacaga	gcactatccc	ttcccagtat	540
tggtactaca	tgattgaact	ttccttctac	tggtccctgc	tcttcagcat	tgcctctgat	600
gtcaagcgaa	aggatttcaa	ggaacagatc	atccaccatg	tggccaccat	cattctcatc	660
agcttttcct	ggtttgccaa	ttacatccga	gctgggactc	taatcatggc	tctgcatgac	720
tcttccgatt	acctgctgga	gtcagccaag	atgtttaact	acgcgggatg	gaagaacacc	780
tgcaacaaca	tcttcatcgt	cttcgccatt	gtttttatca	tcacccgact	ggtcatcctg	840
cccttctgga	tcctgcattg	caccctggtg	tacccactgg	agctctatcc	tgccttcttt	900
ggctattact	tcttcaattc	catgatggga	gttctacagc	tgctgcatat	cttctgggcc	960
tacctcattt	tgcgcatggc	ccacaagttc	ataactggaa	agctggtaga	agatgaacgc	1020
agtgaccggg	aagaaacaga	gagctcagag	ggggaggagg	ctgcagctgg	gggaggagca	1080
aagagccggc	ccctagccaa	tggccacccc	atcctcaata	acaaccatcg	taagaatgac	1140

<210> 15 ·

⟨211⟩ 1755

<212> DNA

<213≻ Homo sapiens

RNSDOCID: -WO 011288042 L

<400> 15

60 atggtctgca gggagcagtt atcaaagaat caggtcaagt gggtgtttgc cggcattacc tgtgtgtctg tggtggtcat tgccgcaata gtccttgcca tcaccctgcg gcggccaggc 120 180 tgtgagctgg aggcctgcag ccctgatgcc gacatgctgg actacctgct gagcctgggc 240 cagatcagcc ggcgagatgc cttggaggtc acctggtacc acgcagccaa cagcaagaaa 300 gccatgacag ctgccctgaa cagcaacatc acagtcctgg aggctgacgt caatgtagaa 360 gggctcggca cagccaatga gacaggagtt cccatcatgg cacacccccc cactatctac 420 . agtgacaaca cactggagca gtggctggac gctgtgctgg gctcttccca aaagggcatc 480 anactggact tcaagaacat caaggcagtg ggcccctccc tggacctcct gcggcagctg 540 : acagaggaag gcaaagtccg gcggcccata tggatcaacg ctgacatctt aaagggcccc 600 aacatgctca tctcaactga ggtcaatgcc acacagttcc tggccctggt ccaggagaag 660 tateceaagg ctaccetate tecaggetgg accacettet acatgtecae gtececaaac 720 aggacgtaca cccaagccat ggtggagaag atgcacgagc tggtgggagg agtgccccag 780 agggtcacct tecetgtacg gtettecatg gtgcgggetg cetggeecca etteagetgg 840 ctgctgagcc aatctgagag gtacagcctg acgctgtggc aggctgcctc ggaccccatg 900 teggtggaag atetgeteta egteegggat aacaetgetg tecaceaagt etactatgae. 960 atctttgagc ctctcctgtc acagttcaag cagctggcct tgaatgccac acggaaacca 1020 atgtactaca caggaggcag cctgatccct cttctccagc tgcctgggga tgacggtctg 1080 aatgtggagt ggctggttcc tgacgtccag ggcagcggta aaacagcaac aatgaccctc 1140 ccagacacag aaggcatgat cctgctgaac actggcctcg agggaactgt ggctgaaaac 1200 cccgtgccca ttgttcatac tccaagtggc aacatcctga cgctggagtc ctgcctgcag 1260 cagctggcca cacatcccgg acactggggc atccatttgc aaatagcgga gcccgcagcc 1320 ctccggccat ccctggcctt gctggcacgc ctctccagcc ttggcctctt gcattggcct 1380 gtgtgggttg gggccaaaat ctcccacggg agtttttcgg tccccggcca tgtggctggc 1440 agagagetge ttacagetgt ggetgaggte ttececeacg tgactgtgge accaggetgg

cctgaggagg tgctgggcag tggctacagg gaacagctgc tcacagatat gctagagttg 1500
tgccaggggc tctggcaacc tgtgtccttc cagatgcagg ccatgctgct gggccacage 1560
acagctggag ccataggcag gctgctggca tcctccccc gggccaccgt cacagtggag 1620
cacaacccag ctgggggcga ctatgcctct gtgaggacag cattgctggc agctagggct 1680
gtggacagga cccgagtcta ctacaggcta ccccagggct accacaagga cttgctggct 1740
catgttggta gaaac 1755

<210> 16

<211> 993

<212> DNA

<213> Homo sapiens

<400> 16 ⋅⋅⋅

60 atgtggctgt gggaggacca gggcggcctc ctgggccctt tctccttcct gctgctagtg 120 ctgctgctgg tgacgcggag cccggtcaat gcctgcctcc tcaccggcag cctcttcgtt 180 ctactgcgcg tcttcagctt tgagccggtg ccctcttgca gggccctgca ggtgctcaag 240 ccccgggacc gcatttctgc catcgcccac cgtggcggca gccacgacgc gcccgagaac 300 acgctggcgg ccattcggca ggcagctaag aatggagcaa caggcgtgga gttggacatt 360 gagtttactt ctgacgggat tcctgtctta atgcacgata acacagtaga taggacgact 420 gatgggactg ggcgattgtg tgatttgaca tttgaacaaa ttaggaagct gaatcctgca 480 gcaaaccaca gactcaggaa tgatttccct gatgaaaaga tccctaccct aagggaagct 540 gttgcagagt gcctaaacca taacctcaca atcttctttg atgtcaaagg ccatgcacac 600 aaggctactg aggctctaaa gaaaatgtat atggaatttc ctcaactgta taataatagt 660 gtggtctgtt ctttcttgcc agaagttatc tacaagatga gacaaacaga tcgggatgta 720 ataacagcat taactcacag accttggagc ctaagccata caggagatgg gaaaccacgc 780 tatgatactt tctggaaaca ttttatattt gttatgatgg acattttgct cgattggagc

900

28 /307

atgcataata	tcttgtggta	cctgtgtgga	atttcagctt	tcctcatgca	aaaggatttt	840
gtatccccgg	cctacttgaa	gaagtggtca	gctaaaggaa	tccaggttgt	tggttggact	900
gttaatacct	ttgatgaaaa	gagttactac	gaatcccatc	ttggttccag	ctatatcact	960
gacagcatgg	tagaagactg	cgaacctcac	ttc	. •		993
. •		•	•			
<210> 17					to a	
<211> 1035						
<212> DNA					••	
<213> Homo	sapiens				1. + 4 · ·	
<400> 17						
atgtcgcctg	aagaatggac	gtatctagtg	gttcttctta	tctccatccc	catcggcttc	60
ctctttaaga	aagccggtcc	tgggctgaag	agatggggag	cagccgctgt	gggcctgggg	120
ctcaccctgt	tcacctgtgg	ccccacact	ttgcattctc	tggtcaccat	cctcgggacc	180
tgggccctca	ttcaggccca	gccctgctcc	tgccacgccc	tggctctggc	ctggactttc	240
tcctatctcc	tgttcttccg	agccctcagc	ctcctgggcc	tgcccactcc	cacgcccttc	300
accaatgccg	tccagctgct	gctgacgctg	aagctggtga	gcctggccag	tgaagtccag	360
gacctgcatc	tggcccagag	gaaggaaatg	gcctcaggct	tcagcaaggg	gcccaccctg	420
gggctgctgc	ccgacgtgcc	ctccctgatg	gagacactca	gctacagcta	ctgctacgtg	480
ggaatcatga	caggcccgtt	cttccgctac	cgcacctacc	tggactggct	ggagcagccc	540
ttccccgggg	cagtgcccag	cctgcggccc	ctgctgcgcc	gcgcctggcc	ggccccgctc	600
ttcggcctgc	tgttcctgct	ctcctctcac	ctcttcccgc	tggaggccgt	gcgcgaggac	660
gccttctacg	cccgcccgct	gcccgcccgc	ctcttctaca	tgatccccgt	cttcttcgcc	720
ttccgcatgo	gcttctacgt	ggcctggatt	geegeegagt	geggetgeat	tgccgccggc	780
tttggggcct	accccgtggc	cgccaaagco	cgggccggag	geggeeceae	cctccaatgc	840

ccaccccca gcagtccgga gaaggcggct tccttggagt atgactatga gaccatccgc

aacatcgact	gctacagcac	agatttctgc	gtgcgggtgc	gcgatggcat	gcggtactgg	960
aacatgacgg	tgcagtggtg	gctggcgcag	tatatctaca	agagcgcacc	tgcccgttcc	1020
tatgtcctgc	gcctt -			;	. : .	1035
	÷					
<210> · 18						
<211> 267 -						
<212> DNA						
<213> Homo	sapiens					
<400> 18						
atgtacatgc	aagattattg	gaggacctgg	ctcaaggggc	tgcgcggctt	cttcttcgtg	60
ggcgtcctct	tctcggccgt	ctccatcgct	gccttctgca	ccttcctcgt	gctggccatc	120
acccggcatc	agagcctcac	agaccccacc	agctactacc	tctccagcgt	ctggagcttc.	180
atttccttca	agtgggcctt	cctgctcagc	ctctatgccc	accgctaccg	ggctgacttt	240
gctgacatca	gcatcctcag	cgatttc				267
<210> 19						
<211> 1218						
<212> DNA						
<213> Homo	sapiens				· ·	
<400> 19					٠,	
atgcgcggct	ctgtggagtg	cacctggggt	tgggggcact	gtgccccag	cccctgctc	60
ctttggactc	tacttctgtt	tgcagcccca	tttggcctgc	tgggggagaa	gacccgccag	120
gtgtctctgg	aggtcatccc	taactggctg	ggcccctgc	agaacctgct	tcatatacgg	180
gcagtgggca	ccaattccac	actgcactat	gtgtggagca	gcctggggcc	tctggcagtg	24
				tt	antontanta	30

tccctgagc	ccgatggggg	cctgatggtg	ctccctaagg	acagcattca	gttttcttct	360
gcccttgttt	ttaccaggct	gcttgagttt	gacagcacca	acgtgtccga	tacggcagca	420
aagcctttgg	gaagaccata	tcctccatac	tccttggccg	atttctcttg	gaacaacatc	480
actgattcat	tggatcctgc	caccctgagt	gccacatttc	aaggccaccc	catgaacgac	540
cctaccagga	cttttgccaa	tggcagcctg	gccttcaggg	tccaggcctt	ttccaggtcc	600
agccgaccag	cccaaccccc	tcgcctcctg	cacacagcag	acacctgtca	gctagaggtg	660
gccctgattg	gagcctctcc	ccggggaaac	cgttccctgt	ttgggctgga	ggtagccaca	720
ttgggccagg	gccctgactg	cccctcaatg	caggagcagc	actccatcga	cgatgaatat	780
gcaccggccg	tcttccagtt	ggaccagcta	ctgtggggct	ccctcccatc	aggctttgca	840
cagtggcgac	cagtggctta	ctcccagaag	ccggggggcc	gagaatcagc	cctgccctgc	900
caagcttccc	ctcttcatcc	tgccttagca	tactctcttc	cccagtcacc	cattgtccga	960
gccttctttg	ggtcccagaa	taacttctgt	gccttcaatc	tgacgttcgg	ggcttccaca	1020
ggccctggct	attgggacca	acactacctc	agctggtcga	tgctcctggg	tgtgggcttc	1080
cctccagtgg	acggcttgtc	cccactagtc	ctgggcatca	tggcagtggc	cctgggtgcc	1140
ccagggctca	tgctgctagg	gggcggcttg	gttctgctgc	tgcaccacaa	gaagtactca	1200
gagtaccagt	ccataaat				•	1218

<210> 20

<211> 576

<212> DNA

<213> Homo sapiens

<400> 20

atgactgccg teggegtgca ggcccagagg cetttgggce aaaggcagee eegeeggtee 60
ttetttgaat cetteateeg gacceteate ateaegtgt tggccetgge tgtggteetg 120
teeteggtet ceatttgtga tgggcaetgg eteetggetg aggacegeet ettegggete 180

tggcacttct gcaccaccac caaccagagt gtgccgatct gcttcagaga cctgggccag	240
gcccatgtgc ccgggctggc cgtgggcatg ggcctggtac gcagcgtggg cgccttggcc	300
gtggtggccg ccatttttgg cctggagttc ctcatggtgt cccagttgtg cgaggacaaa	360
cactcacagt gcaagtgggt catgggttcc atcetectec tggtgtcttt cgtcctctcc	420
teeggeggge teetgggttt tgtgateete eteaggaace aagteacact categgette	480
accetaatgt tttggtgcga atteactgce teetteetee tetteetgaa egecateage	540
ggccttcaca tcaacagcat cacccatccc tgggaa	576
<210> 21	
<211> 2042	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (91)(894)	
<400> 21	
tccggtgcct gcagagctcg gagcggcgga ggcagagacc gaggctgcac cggcagaggc	60
tgcggggcgg acgcgcggcc cggcgcagcc atg gtg aag att agc ttc cag	111
Met Val Lys Ile Ser Phe Gln	
1 5	
ccc gcc gtg gct ggc atc aag ggc gac aag gct gac aag gcg tcg gcg	159
Pro Ala Val Ala Gly Ile Lys Gly Asp Lys Ala Asp Lys Ala Ser Ala	
20	
tcg gcc cct gcg ccg gcc tcg gcc acc gag atc ctg ctg acg ccg gct.	207
Ser Ala Pro Ala Pro Ala Ser Ala Thr Glu Ile Leu Leu Thr Pro Ala	

	25					30				•	35		•	•		
agg	gag	gag	cag	ccc	cca	caa	cat	cga	tcc	aag	agg	ggg	agc	tça	gtg	255
Arg	Glu	Glu	Gln	Pro	Pro	Gln	His	Arg:	Ser	Lys	Arg	Gly	Ser	Ser	Val	•
40				÷	45	•			•	50		. •	÷		55 ··	
ggc	ggc	gtg	tgc	tac	ctg	tcg	atg	ggc	atg	gtc	gtg	ctg	ctc	atg	ggc	303
Gly	Gly	Val	Cys	Tyr	Leu	Ser	Met	Gly	Met	Val	Val	Leu	Leu	Met	Gly.	
				60					65					70		
ctc	gtg	ttc	gcc	tct	gtc	tac	atc	tac	aga	tac	ttc	ttt	ctt	gca	cag	351
Leu	Val	Phe	Ala	Ser	Val	Tyr	Ile	Tyr	Arg	Tyr	Phe	Phe	Leu	Ala	Gln	
			75					80					85			
ctg	gcc	cga	gat	aac	ttc	ttc	cgc	tgt	ggt	gtg	ctg	tat	gag	gac	tcc	399
Leu	Ala	Arg	Asp	Asn	Phe	Phe	Arg	Cys	Gly	Val	Leu	Tyr	Glu	Asp	Ser	,
		90			•		95					100				
ctg	tcc	tcc	cag	gtc	cgg	act	cag	atg	gag	ctg	gaa	gag	gat	gtg	aaa ·	447
Leu	Ser	Ser	Gln	Val	Arg	Thr	Gln	Met	Glu	Leu	Glu	Glu	Asp	Val	Lys	
	105					110					115			•		
atc	tac	ctc	gac	gag	aac	tac	gag	cgc	atc	aac	gtg	·cct	gtg	ccc	cag	495
Ile	Tyr	Leu	Asp	Glu	Asn	Tyr	Glu	Arg	Ile	Asn	Val	Pro	Val	Pro	Gln	
120				. •	125					130					135	
ttt	ggc	ggc	ggt	gac	cct	gca	gac	atc	atc	cat	gac	ttc	cag	cgg	ggt	543
Phe	Gly	Gly	Gly	Asp	Pro	Ala	Asp	Ile	Ile	His	Asp	Phe	Gln	Arg	Gly	
• •			•	140		٠.			145		. •		٠	150	•	
ctg	act	gcg	tac	cat	gat	atc	tcc	ctg	gac	aag	tgc	tat	gtc	atc	gaa	591
Leu	Thr	Ala	Tyr	His	Asp	Ile	Ser	Leu	Asp	Lys	Cys	Tyr	Val	Ile	Glu	
			155					160		٠.			· 165			

ctc	aac	acc	acc	att	gtg	ctg	ccc	cct	cgc	aac	ttc	tgg	gag	ctc	ctc	639
Leu	Asn	Thr	Thr	Ile	Val	Leu	Pro.	Pro	Arg	Asn	Phe	Trp	Glu	Leu	Leu	
•		170	.•.		•		175					180			•	
atg	aac	gtg	aag	agg	ggg	acc	tac	ctg	ccg	cag	acg	tac	atc	atc	cag	687
Met	Asn	Val	Lys	Arg	Gly	Thr	Tyr	Leu	Pro	Gln	Thr	Tyr	Ile	Ile	Gln	
	185					190					195				-	
gag	gag	atg	gtg	gtc	acg	gag	cat	gtc	agt	gac	aag	gag	gcc	ctg	ggg	735
	Glu															
200					205					210					215	
	ttc	atc	tac	cac	ctg	tgc	aac	ggg	aaa	gac	acc	tac	cgg	ctc	cgg	783
	Phe															
501			.,.	220	200	0,0		01,	225			-,-		230	6	
					0.00	0.00	ato	990		cat	aaa	acc	220		tac	831
	cgg	•														001
Arg	Arg	Ala		Arg	Arg	Arg	116		Lys	Arg	GIA	WIR			Cys	
			235					240					245		•	050
	gcc															879
Asn	Ala	Ile	Arg	His	Phe	Glu	Asn	Thr	Phe	Val	Val	Glu	Thr	Leu	Ile	
		250					255					260				
tgc	ggg	gtg	gtg	tga	ggcc	ctc	ctcc	ccca	ga a	cccc	ctgc	c gt	gttc	ctc		930
Cys	Gly	Val	Val													
	265														••	
ttt	tctt	ctt	tccg	gctg	ct c	tctg	gccc	t cc	tcct	tccc	cct	gctt	agc	ttgt	actttg	990
gac	gcgt	ttc	tata	gagg	tg a	catg	tctc	t cc	attc	ctct	сса	accc	tgc	ccac	ctccct	1050
gta	ccag	agc	tgtg	atct	ct c	ggtg	gggg	g cc	catc	tctg	ctg	acct	ggg	tgtg	gcggag	1110
gga	gagg	cga	tgct	gcaa	ag t	gttt	tctg	t.gt	ccca	ctgt	ctt	gaag	ctg	ggc	tgccaa	1170

agcotgggco cacagotgca coggoagcoc aaggggaagg accggttggg ggagcogggo	1230
atgtgaggcc ctgggcaagg ggatggggct gtgggggcgg ggcggcatgg gcttcagaag	1290
tatctgcaca attagaaaag tcctcagaag ctttttcttg gagggtacac tttcttcact	1350
stccctattc ctagacctgg ggcttgagct gaggatggga cgatgtgccc agggagggac	1410
ccaccagage acaagagaag gtggctacct gggggtgtcc cagggactct gtcagtgcct	1470
tcagcccacc agcaggagct tggagtttgg ggagtgggga tgagtccgtc aagcacaact	1530
gttctctgag tggaaccaaa gaagcaagga gctaggaccc ccagtcctgc cccccaggag	1590
cacaagcagg gtcccctcag tcaaggcagt gggatgggcg gctgaggaac ggggcaggca	1650
aggtcactgc tcagtcacgt ccacggggga cgagccgtgg gttctgctga gtaggtggag	1710
ctcattgett tetécaaget tggaactgtt ttgaaagata acacagaggg aaagggagag	1770
ccacctggta cttgtccacc ctgcctcctc tgttctgaaa ttccatcccc ctcagcttag	1830
gggaatgcac ctttttccct ttccttctca cttttgcatg tttttactga tcattcgata	1890
tgctaaccgt tctcagccct gagccttgga gaggagggct gtaacgcctt cagtcagtct	1950
ctggggatga aactcttaaa tgctttgtat attttctcaa ttagatctct tttcagaagt	2010
gtctatagaa caataaaaat cttttacttc tg	2042
<210> 22	
<211> 1433	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
⟨222⟩ (5) (1264)	
<400> 22	
gacg atg agc tgc gcg ggg cgg gcg ggc cct gcc cgg ctc gcc gc	46
Met Ser Cys Ala Gly Arg Ala Gly Pro Ala Arg Leu Ala Ala	

		1				5				. 1	0					
ctc	gcc	ctg	ctg	acc	tgc	agc	ctg	tgg	ccg	gca	cgg	gca	gac	aac	gcg	94
Leu	Ala	Leu	Leu	Thr	Cys	Ser	Leu	Trp	Pro	Ala	Arg	Ala	Asp	Asn	Ala	
15	•			٠	20					25		٠			30	
agc	cag	gag	tac	tac	acg	gcg	ctc	atc	aac	gtg	acg	gtg	cag	gag	ccc	142
Ser	Gln	Glu	Tyr	Tyr	Thr	Ala	Leu	Ile	Asn	Val	Thr	Val	Gln	Glu	Pro	
				35					40	:				45	•	
ggc	cgc	ggc	gcc	ccg	ctc	acg	ttt	cgc	atc	gac	cgc	ggg	cgc	tac	ggg	190
G1y	Arg	Gly	Ala	Pro	Leu	Thr	Phe	Arg	Ile	Asp	Arg	Gly	Arg	Tyr	Gly	
			50					55					60			
ctt	gac	tcc	ссс	aag	gcc	gag	gtc	cgc	ggc	cag	gtg	ctg	gcg	ccg	ctg	238
Leu	Asp	Ser	Pro	Lys	Ala	Glu	Val	Arg	Gly	G1n	Val	Leu	Ala	Pro	Leu	
		65					70					75				
ссс	ctc	cac	gga	gtt	gct	gat	cat	ctg	ggc	tgt	gat	cca	caa	acc	cgg	286
Pro	Leu	His	Gly	Val	Ala	Asp	His	Leu	Gly	Cys	Asp	Pro	G1n	Thr	Arg	
	80					85					90	-				
ttc	ttt	gtc	cct	cct	aat	atc	aaa	cag	tgg	att	gcc	ttg	ctg	cag	agg	334
Phe	Phe	Val	Pro	Pro	Asn	Ile	Lys	Gln	Trp	Ile	Ala	Leu	Leu	Gln	Arg	
95					100			٠.		105	a				110	
gga	aac	tgc	acg	ttt	aaa	gag	aaa	ata	tca	cgg	gcc	gct	ttc	cac	aat,	382
Gly	Asn	Cys	Thr	Phe	Lys	Glu	Lys	Ile	Ser	Arg	Ala	Ala	Phe	His	Asn	
		-	,	115				, .	120					125		
gca	gtt	gct	gta	gtc	atc.	tac	aat	aat	aaa	tcc	888	gag	gag	cca	gtt	. 430
Ala	Val	Ala	Val	Val	Ile	Tyr	Asn	Asn	Lys	Ser	Lys	Glu	Glu	Pro	Val.	
)	130					135					140			

acc	atg	act	cat	сса	ggc	act	gga	gat	att	att	gct	gtc	atg	ata	aca	478
Thr	Met	Thr	His	Pro	Gly	Thr	Gly	Asp	Ile	Ile	Ala	Val	Met	Ile	Thr ·	
		145	••			. •	150					155			•	
gaa	ttg	agg	ggt	aag	gat	att	ttg	agt	tat	ctg	gag	aaa	aac	atc	tct	526
Glu	Leu	Arg	Gly	Lys	Asp	Ile	Leu	Ser	Tyr	Leu	Glu	Lys	Asn	Ile-	Ser-	
	160					165	•		• •		170		٠			
gta	caa	atg	aca	ata	gct	gtt	gga	act	cga	atg	cca	ccg	aag	aac	ttc	574
Val	G1n	Met	Thr	Ile	Ala	Val	Gly	Thr	Arg	Met	Pro	Pro	Lys	Asn	Phe	
175					180					185				٠.	190	,
agc	cgt	ggc	tct	cta	gtc	ttc	gtg	tca	ata	tcc	ttt	att	gtt	ttg	atg	622
Ser	Arg	Gly	Ser	Leu	Val	Phe	Val	Ser	Ile	Ser	Phe	Ile	Val	Leu	Met	
			•	195	,				200	٠.		. •		205	0 2.	
att	att	tct	tca	gca	tgg	ctc	ata	ttc	tac	ttc	att	cag	aag	atc	agg	670
Ile	Ile	Ser	Ser	Ala	Trp	Leu	Ile	Phe	Tyr	Phe	Ile	Gln	Lys	Ile	Arg	
			210					215					220			
tac	aca	aat	gca	cgc	gac	agg	aac	cag	cgt	cgt	ctc	gga	gat	gca	gcc	718
Tyr	Thr	Asn	Åla	Arg	Asp	Arg	Asn	Gln	Arg	Arg	Leu	Gly	Asp	Ala	Ala	
		225					230					235				
aag	aaa	gcc	atc	agt	aaa	ttg	aca	acc	agg	aca	gta	aag	aag	ggt	gac ·	766
Lys	Lys	Ala	Ile	Ser	Lys	Leu	Thr	Thr	Arg	Thr	Val	Lys	Lys	Gly	Asp	
•	· 240					245	٠				250				41 1 +	
aag	gaa	act	gac	cca	gac	ttt	gat	cat	tgt	gca	gtc	tgc	ata	gag	agc	814
Lys	Glu	Thr	Asp	Pro	Asp	Phe	Asp	His	Cys	Ala	Val	Cys	Ile	Glu	Ser	
255	٠.	٠.		-	260		•• :			265	1 τ	. :	\$. .	.r .	· 270· ·	
tat	aag	cag	aat	gat	gtc	gtc	cga	att	ctc	ccc	tgo	aag	cat	gtt	ttc	862

Tyr	Lys	Gln	Asn	Asp	Val	Val	Arg	Ile	Leu	Pro	Cys	Lys	His	Val	Phe	
	:			275			•		280	٠.				285		
cac	aaa	tcc	tgc	gtg	gat	ccc	tgg	ctt	agt	gaa	cat	tgt	acc	tgt	cct	910
His	Lys	Ser	Cys	Val	Asp	Pro	Trp	Leu	Ser	Glu	His	Cys	Thr	Cys	Pro	
-			290	-				295					300			
atg	tgc	aaa	ctt	aat	ata	ttg	aag	gcc	ctg	gga	att	gtg	ccg	aat	ttg	958
Met	Cys	Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	
		305					310					315				
cca	tgt	act	gat	aac	gta	gca	ttc	gat	atg	gaa	agg	ctc	acc	aga	acc	1006
Pro	Cys	Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	
	320					325					330					
caa	gct	gtt	aac	cga	aga	tca	gcc	ctc	ggc	gac	ctc	gcc	ggc	gac	aac	1054
Gln	Ala	Val	Asn	Arg	Arg	Ser	Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	
335					340					345					350	
tcc	ctt	ggc	ctt	gag	cca	ctt	cga	act	tcg	ggg	atc	tca	cct	ctt	cct	1102
Ser	Leu	Gly	Leu	Glu	Pro	Leu	Arg	Thr	Ser	Gly	Ile	Ser	Pro	Leu	Pro	
•	• •	٠.		355		• •		^.	360					365	-	
cag	gat	ggg	gag	ctc	act	ccg	aga	aca	gga	gaa	atc	aac	att	gca	gta	1150
G1n	Asp	Gly	Glu	Leu	Thr	Pro	Arg	Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	
•			370	•		,	, ,	375		· · · ·	•		380			
aca	aaa	gaa	tgg	ttt	att	att	gcc	agt	ttt	ggc	ctc	ctc	agt	gcc	ctc	1198
Thr	Lys	Glu	Trp	Phe	Ile	Ile	Ala	Ser	Phe	Gly	Leu	Leu	Ser	Ala	Leu	
5 ~	٠, ٠	385	. :	, -			390	. •				395	- 1	•		
aca	ctc	tgc	tac	atg	atc	atc	aga	gcc	aca	gct	agc	ttg	aat	gct	aat	1246
Thr	Leu	Cys	Tyr	Met	Ile	Ile	Arg	Ala	Thr	Ala	Ser	Leu	Asn	Ala	Asn	

RNSDOCID -- WO - MITSEENAS I

400 405 410
gag gta gaa tgg ttt tgaagaagaa aaaacctgct ttctgactga ttttgcctt
Glu Val Glu Trp Phe
415
gaaggaaaaa agaacctatt tttgtgcatc atttaccaat catgccacac aagcatttat
ttttagtaca ttttatttt tcataaaatt gctaatgcca aagctttgta ttaaaagaaa
taaataataa aat
<210> 23
<211> 1917
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (210) (1457)
<400> 23
gtatcccccg gctacctggg ccgccccgcg gcggtgcgcg cgtgagaggg agcgcgcggg
cagccgagcg ccggtgtgag ccagcgctgc tgccagtgtg agccagcgct gctgccagtg
tgagcggcgg tgtgagcgcg gtgggtgcgg aggggcgtgt gtgccggcgc gcgcgccgtg
gggtgcaaac cccgagcgtc tacgctgcc atg agg ggc gcg aac gcc tgg gcg
Met Arg Gly Ala Asn Ala Trp Ala
\mathbf{r}_{i} and \mathbf{r}_{i} and \mathbf{r}_{i} and \mathbf{r}_{i} and \mathbf{r}_{i} and \mathbf{r}_{i}
cca ctc tgc ctg ctg gct gcc gcc acc cag ctc tcg cgg cag cag
Pro Leu Cys Leu Leu Leu Ala Ala Ala Thr Gln Leu Ser Arg Gln Gln
20

BNSOCCID AWO 0112660A2 I

tcc (cca	gag	aga	cct	gtt	ttc	aca	tgt	ggt	ggc	att	ctt	act	gga	gag	329
Ser j	Pro	Glu	Arg	Pro	Val	Phe	Thr	Cys	Gly	Gly	Ile	Leu	Thr	Gly	Glu	
25		•			30					35					40	
tct	gga	ttt	att	ggc	agt	gaa	ggt	ttt	cct	gga	gtg	tac	cct	cca	aat	377
Ser	Gly	Phe	Ile	Gly	Ser	Glu	Gly	Phe	Pro	Gly	Val	Tyr	Pro	Pro	Asn	
				45					50					55		
agc	aaa	tgt	act	tgg	aaa	atc	aca	gtt	ccc	gaa	gga	aaa	gta	gtc	gtt	425
Ser	Lys	Cys	Thr	Trp	Lys	Ile	Thr	Val	Pro	Glu	Gly	Lys	Val	Val	Val	
			60					65					70			
ctc	aat	ttc	cga	ttc	ata	gac	ctc	gag	agt	gac	aac	ctg	tgc	cgc	tat	473
Leu	Asn	Phe	Arg	Phe	Ile	Asp	Leu	Glu	Ser	Asp	Asn	Leu	Cys	Arg	Tyr	
		75					80					85				
gac	ttt	gtg	gat	gtg	tac	aat	ggc	cat	gcc	aat	ggc	cag	cgc	att	ggc	521
Asp	Phe	Val	Asp	Val	Tyr	Asn	Gly	His	Ala	Asn	Gly	Gln	Arg	Ile	Gly	
	90					95					100)				
cgc	ttc	tgt	ggc	act	ttc	cgg	cct	gga	gcc	ctt	gtg	tcc	agt	gg	c aac	569
Arg	Phe	Cys	Gly	Thr	Phe	Arg	Pro	Gly	Ala	Leu	Val	Ser	Ser	G1;	y Asn	
105		-			110	ı			٠	115					120	
aag	atg	ate	gtg	g cag	atg	att	tct	gat	gco	aac	aca	a gct	ggo	c aa	t ggc	617
															n Gly	
				. 125	5				130) . ·				13	5	
ttc	ate	g gc	at	g tto	tco	gct	t gct	t gaa	a cca	a aac	ga	a ag	a gg	g ga	t cag	665
Phe	Met	t Ala	a Me	t Phe	e Sei	r Ala	a Ala	a Glu	ı Pro	Asr	ı Gl	u Ar	g Gl	y As	p Gln	
••		# F	14	0	. .	, .	- :	14	5				.15	0	· -,·	
tat	. tg	t ∶gg	a gg	aicte	c ct	t ga	c ag	асс	t tc	c gg	c tc	t, tt	t aa	a ac	c ccc	713

DNSDOOID - WO 0112880A2 L

Tyr	Cys	Gly	Gly	Leu	Leu	Asp	Arg	Pro	Ser	Gly	Ser	Phe	Lys	Thr	Pro	
		155	· ·		• .	•	160	• •	٠	•	. •	165	. :			
aac	tgg	cca	gac	cgg	gat	tac	cct	gca	gga	gtc	act	tgt	gtg	tgg	cac	761
Asn	Trp	Pro	Asp	Arg	Asp	Tyr	Pro	Ala	Gly	Val	Thr	Cys	Val	Trp	His	
	170			• •	•	175		•**•	٠		180		• •	. 1		
att	gta	gcc	cca	aag	aat	cag	ctt	ata	gaa	tta	aag	ttt	gag	aag	ttt	809
Ile	Val	Ala	Pro	Lys	Asn	Gln	Leu	Ile	Glu	Leu	Lys	Phe	Glu	Lys	Phe	
185	•	•			190		•			195				ı	200	
gat	gtg	gag	cga	gat	aac	tac	tgc	cga	tat	gat	tat	gtg	gct	gtg	ttt	857
Asp	Val	Glu	Arg	Asp	Asn	Tyr	Cys	Arg	Tyr	Asp	Tyr	Val	Ala	Val	Phe	
			,	205	•				210					215		
aat	ggc	ggg	gaa	gtc	aac	gat	gct	aga	aga	att	gga	aag	tat	tgt	ggt	905
Asn	Gly	Gly	Glu	Val	Asn	Asp	Ala	Arg	Arg	Ile	Gly	Lys	Tyr	Cys	Gly	
•		•	220				-	225		•			230		:	
gat	agt	cca	cct	gcg	cca	att	gtg	tct	gag	aga	aat	gaa	ctt	ctt	att	953
Asp	Ser	Pro	Pro	Ala	Pro	Ile	Val	Ser	G1ụ	Arg	Asn	Glu	Leu	Leu	Ile	
	٠.	235			•	٠.,	240			.•	•	245	2 .	,		
cag	ttt	tta	tca	gac	tta	agt	tta	act	gca	gat	ggg	ttt	att	ggt	cac	1001
Gln	Phe	Leu	Ser	Asp	Leu	Ser	Leu	Thr	Ala	Asp	Gly	Phe	Ile	Gly	His :	
	250			,		255		٠			260		•	٠.	š i	
tac	ata	ttc	agg	cca	aaa	aaa	ctg	cct	aca	act	aca	gaa	cag	cct	gtc	1049
Туŕ	Ile	Phe	Arg	Pro	Lys	Lys	Leu	Pro	Thr	Thr	Thr	Glu	Gln	Pro	Val	
265					270	٠, ,				275			•	;	280	
acc	acc	aca	ttc	cct	gta	acc	acg	ggt	tta	888	acc	acc ⁻	gtg	gcc	ttg	1097
Thr	Thr	Thr	Phe	Pro	Val	Thr	Thr	Gl v ·	Len	ive	Thr	Thr	Va 1	Alá	ום ו	

•			:	285					290					295	٠,	
tgt ca	a ca	a a	ag	tgt	aga	cgg	acg	ggg	act	ctg	gag	ggc	aat	tat	tgt	1145
Cys Gl	n Gl	n L	ys (Cys	Arg	Arg	Thr	Gly	Thr	Leu	Glu	Gly	Asn	Tyr	Cys	
	·	3	800					305					310			
tca ag	t ga	c t	tt	gta	tta	gcc	ggc	act	gtt	atc	aca	асс	atc	act	cgc	1193
Ser Se	r As	рF	he	Val	Leu	Ala	Gly	Thr	Val	Ile	Thr	Thr	Ile	Thr	Arg	
	31	5		•			320		•			325				
gat gg	g ag	t 1	ttg	cac	gcc	aca	gtc	tcg	atc	atc	aac	atc	tac	aaa	gag	1241
Asp Gl	y Se	r I	Leu	His	Ala	Thr	Val	Ser	Ile	Ile	Asn	Ile	Tyr	Lys	Glu	
33	80					335					340					
gga aa	it tt	g	gcg	att	cag	cag	gcg	ggc	aag	aac	atg	agt	gcc	agg	ctg	1289
Gly As	sn Le	eu .	Ala	Ile	Gln	Gln	Ala	Gly	Lys	Asn	Met	Ser	Ala	Arg	Leu	•
345					350					355					360	
act g	tc g1	tc	tgc	aag	cag	tgc	cct	ctc	ctc	aga	aga	ggt	cta	aat	tac	1337
Thr Va	al Va	al	Cys	Lys	Gln	Cys	Pro	Leu	Leu	Arg	Arg	Gly	Leu	Asn	Tyr	
				365					370					375	,	
att a	tt a	tg	ggc	caa	gta	ggt	gaa	gat	ggg	cga	ggc	aaa	ato	atg	cca	1385
Ile I	le M	et	Gly	Gln	Val	Gly	Glu	Asp	Gly	Arg	Gly	Lys	·Ile	e Met	Pro	
			380					385	•				390		• •	
aac a	gc t	tt	atc	atg	atg	ttc	aag	acc	aag	aat	cag	g aag	g cto	cte	g gat	1433
Asn S	er P	he	Ile	Met	Met	Phe	Lys	Thr	Lys	s Ası	ı Glı	n Lys	s Lei	ı Lei	ı Asp	
	; 3	95					400)				40	5			
gcc t	ta a	aa	aat	aag	g caa	a tgt	taa	acag	tgaa	ctg	tgtc	cat	ttaa	gc		1480
Ala I	.eu [.ys	Asn	Lys	s Glı	n Cys	3 .		-	. · ·	٠			٠.		
3 4	110			٠.		415	5 .			-		,	· · ·		4.7 * + 4.5	

tgtattctgc cattgccttt gaaagatcta tgttctctca gtagaaaaaa aaatacttat	1540
aaaattacat attctgaaag aggattccga aagatgggac tggttgactc ttcacatgat	1600
ggaggtatga ggcctccgag atagctgagg gaagttcttt gcctgctgtc agaggagcag	1660
ctatctgatt ggaaacctgc cgacttagtg cggtgatagg aagctaaaag tgtcaagcgt	1720
tgacagcttg gaagcgttta tttatacatc tctgtaaaag gatattttag aattgagttg	1780
tgtgaagatg tcaaaaaaag attttagaag tgcaatattt atagtgttat ttgtttcacc	1840
ttcaagcctt tgccctgagg tgttacaatc ttgtcttgcg ttttctaaat caatgcttaa	1900
taaaatattt ttaaagg	1917
<210> 24	
<211> 2258	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (225) (1367)	
<400> 24 · · · · · · · · · · · · · · · · · ·	
tttttcccgg ctgggctcgg gctcagctcg actgggctcg gcggcggcg gcggcggcgc	60
ccgcggctgg cggaggaggg agggcgaggg cgggcgcggg ccggcgggcg	120
ggaggagagg cgcggggagc caggcctcgg ggcctcggag caaccacccg agcagacgga	180
gtacacggag cagcggcccc ggccccgcca acgctgccgc cggg atg ctc cag	233
Met Leu Gln	
$oldsymbol{1}_{i}$, which is the state of the state of $oldsymbol{1}_{i}$, $oldsymbol{1}_{i}$, $oldsymbol{1}_{i}$, $oldsymbol{1}_{i}$	
acc ttg tat gat tac ttc tgg tgg gaa cgt ctg tgg ctg cct gtg aac	281
Thr Leu Tyr Asp Tyr Phe Trp Trp Glu Arg Leu Trp Leu Pro Val Asn	

. 5	••	10			15			
ttg acc tgg	gcc gat	cta gaa	gac cga	gat gga	cgt gt	c tac gcc	aaa 3	29
Leu Thr Trp	Ala Asp	Leu Glu	Asp Arg	Asp Gly	Arg Va	l Tyr Ala	Lys	
20 ,		25 .		30		• 1	35	
gcc tca gat	ctc tat	atc acg	ctg ccc	ctg gcc	ttg ct	c ttc ctc	atc 3	77
Ala Ser Asp	Leu Tyr	Ile Thr	Leu Pro	Leu Ala	Leu Le	u Phe Leu	Ile	
	. 40	١		45		50		
gtt cga tac	ttc ttt	gag ctg	tac gtg	gct aca	cca ct	g gct gcc	ctc 4	25
Val Arg Tyr	Phe Phe	Glu Leu	Tyr Val	Ala Thr	Pro Le	ı Ala Ala	Leu	
	55		60			65		
ttg aac ata	aag gag	aaa act	cgg ctg	cgg gca	cct ccc	aac gcc	acc 47	73
Leu Asn Ile	Lys Glu	Lys Thr	Arg Leu	Arg Ala	Pro Pro	Asn Ala	Thr	
70	-		75		80)		
ttg gaa cat	ttc tac	ctg acc	agt ggc	aag cag	ccc aag	g cag gtg	gaa 52	21
Leu Glu His	Phe Tyr	Leu Thr	Ser Gly	Lys Gln	Pro Lys	Gln Val	Glu	
85		90			95			
gta gag ctt	ttg tcc	cgg cag	agc ggg	ctc tct	ggc cgc	cag gta	gag 56	39
Val Glu Leu	Leu Ser	Arg Gln	Ser Gly	Leu Ser	Gly Arg	Gln Val	Glu	
100		105		110			115	
cgt tgg ttc	cgt cgc	cgc cgc	aac cag	gac cgg	ccc agt	ctc ctc	aag 61	17
Arg Trp Phe	Arg Arg	Arg Arg	Asn Gln	Asp Arg	Pro Ser	Leu Leu	Lys	
71.1. · · · ·	120	· .		125		_ 130	• 5.	
aag; ttc.cga	gaa gcc	agc. tgg	aga ttc	aca ttt	tac ctg	att gcc	ttc 66	3 5
Lys Phe Arg	Glu Ala	Ser Trp	Arg Phe	Thr Phe	Tyr Leu	Ile Ala	Phe	
3.4 175 9	135	و بر دو في	140		, .	145	* •	

att	gcc	ggc	atg	gcc`	gtc	att	gtg	gat	aaa	ccc	tgg	ttc	tat	gac	atg	713
Ile	Ala	Gly	Met	Ala	Val	Ile	Val	Asp	Lys	Pro	Trp	Phe	Tyr	Asp	Met	
		150					155					160		•		
aag	aaa	gtt	tgg	gag	gga	tat	ccc	ata	cag	agc	act	atc	cct	tcc	cag	761
Lys	Lys	Val	Trp	Glu	Gly	Tyr	Pro	Ile	Gln	Ser	Thr	Ile	Pro	Ser	Gln ·	
	165					170					175				٠	
tat	tgg	tac	tac	atg	att	gaa	ctt	tcc	ttc	tac	tgg	tcc	ctg	ctc	ttc	809
Tyr	Trp	Tyr	Tyr	Met	Ile	G1u	Leu	Ser	Phe	Tyr	Trp	Ser	Leu	Leu	Phe	
180					185					190					195	
agc	att	gcc	tct	gat	gtc	aag	cga	aag	gat	ttc	aag	gaa	cag	atc	atc	857
Ser	Ile	Ala	Ser	Asp	Val	Lys	Arg	Lys	Asp	Phe	Lys	Glu	Gln	Ile	Ile	
				200					205	• 1				210) ¹. ·	•
cac	cat	gtg	gcc	acc	atc	att	ctc	atc	agc	ttt	tcc	tgg	ttt	gco	aat	905
His	His	Val	Ala	Thr	Ile	Ile	Leu	Ile	Ser	Phe	Ser	Trp	Phe	Ala	Asn	
			215					220)				225	;	•	
tac	ato	cga	a gct	ggg	act	cta	ato	atg	gct	ctg	cat	t gad	tct	tc	gat	953
Tyr	· Ile	· Arı	g Ala	Gly	Thr	Leu	Ile	e Met	. Ala	Leu	ı His	s Asp	Se1	r Sei	r Asp	
		23	0				235	5				240)			
tac	cte	g ct	g gag	tca	gco	aag	ate	g ttt	taad	tac	c gc	g gg	a tg	g aa	g aac	1001
Tyj	r Lei	ı Le	u Glı	ı Ser	Ala	a Lys	Met	t Phe	e Asr	n Ty	r Ala	a Gl	y · Tr	p Ly	s Asn	. *
	24	5 '				250)	•			25	5		•		
ac	c tg	с аа	c aa	ato	c tte	e ato	gte	c tte	c gc	c at	t gt	t tt	t at	c at	c acc	1049
Th	г Су	s As	n Ası	n Il	e Ph	e Ile	e Va	1 Ph	e Ala	a Il	e Va	1 Ph	e Il	e Il	e Thr	• ,
26	0				26	5	. •		, ·	27	0 · ·		•	٠.	275	5
cg	a ct	g gt	c at	c ct	g cc	c tte	c tg	g at	c ct	g ca	t tg	c ac	c ct	g gt	g tac	1097

Arg	Leu	Val	Ile	Leu	Pro	Phe	Trp	Ile	Leu	His	Cys	Thr	Leu	Val	Tyr	
				280					285					290		
cca	ctg	gag	ctc	·tat	cct	gcc	ttc	ttt	ggc	tat	tac	ttc	ttc	aat	tcc	1145
Pro	Leu	Glu	Leu	Tyr	Pro	Ala	Phe	Phe	Gly	Tyr	Tyr	Phe	Phe	Asn	Ser	
			295					300					305			
atg	atg	gga	gtt	cta	cag	ctg	ctg	cat	atc	ttc	tgg	gcc	tac	ctc	att	1193
Met 1	Met	Gly	Val	Leu	Gln	Leu	Leu	His	Ile	Phe	Trp	Ala	Tyr	Leu	Ile	
	***	310					315					320				
ttg	cgc	atg	gcc	cac	aag	ttc	ata	act	gga	aag	ctg	gta	gaa	gat	gaa	1241
Leu .	Arg	Met	Ala	His	Lys	Phe	Ile	Thr	Gly	Lys	Leu	Val	Glu	Asp	Glu	
;	325					330					335					
cgc a	agt	gac	cgg	gaa	gaa	aca	gag	agc	tca	gag	ggg	gag	gag	gct	gca -	1289
Arg S	Ser	Asp	Arg	Glu	Glu	Thr	Glu	Ser	Ser	Glu	Gly	Glu	Glu	Ala	Ala	
340					345					350					355	
gct g	ggg	gga	gga	gca	aag	agc	cgg	ccc	cta	gcc	aat	ggc	cac	ссс	atc	1337
Ala (Gly	Gly	Gly	Ala	Lys	Ser	Arg	Pro	Leu	Ala	Asn	Gly	His	Pro	Ile	
				360					365					370		
ctc a	aat	aac	aac	cat	cgt	aag	aat	gac	tgaa	ccat	ta t	tcca	gctg	c ct	ссса	1390
Leu A	Asn	Asn	Asn	His	Arg	Lys	Asn	Asp		•						-
			375					380								
gatta	aatg	ca t	aaag	ccaa	g ga	acta	ccct	gct	ccct	gcg	ctat	aggg	tc a	cttt	aagct	1450
ctggg	ggaa	aa a	ggag	aaag	t ga	gagg	agag	tto	tctg	cat	cctc	ccto	ct t	gctt	gtcac	1510
ccagt	ttgc	ct, t	taaa	ccaa	a tt	ctaa	ccag	cct	atcc	cca	ggta	gggg	ga c	gttg	gttat	1570
attct	tgtt	ag a	gggg	gacg	g to	gtat	tttc	cto	ccta	ccc	gcca	agto	at c	cttt	ctact	1630
gcttt	ttga	gg c	cctc	cctc	a go	tctc	tgtg	ggt	aggg	gtt	acaa	ttca	ca t	tcct	tattc	1690

tgagaatttg	gccccagctg	tttgcctttg	actccctgac	ctccagagcc	agggttgtgc	1750
cttattgtcc	catctgtggg	cctcattctg	ccaaagctgg	accaaggcta	acctttctaa	1810
gctccctaac	ttgggccaga	aaccaaagct	gagcttttaa	ctttctccct	ctatgacaca	1870
aatgaattga	gggtaggagg	agggtgcaca	taaccettac	cctacctctg	ccaaaaagtg	1930
ggggctgtac	tggggactgc	tcggatgatc	tttcttagtg	ctacttcttt	cagctgtccc	1990
tgtagcgaca	ggtctaagat	ctgactgcct	cctttctctg	gcctcttccc	ccttccctct	2050
tctcttcagc	taggctagct	ggtttggagt	agaatggcaa	ctaattctaa	tttttattta	2110
ttaaatattt	ggggttttgg	ttttaaagcc	agaattacgg	ctagcaccta	gcatttcagc	2170
agagggacca	ttttagacca	aaatgtactg	ttaatgggtt	ttttttaaa	attaaaagat	2230
taaataaaaa	atattaaata	aaacatgg				2258

<210> 25

⟨211⟩ 1973

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (130)...(1887)

<400> 25

gagcagacca ggcccggtgg agaattaggt gctgctggga gctcctgct cccacaggat 60
tccagctgca gggagcctca gggactctgg gccgcacgga gttgggggca ttccccagag 120
agcgtcgcc atg gtc tgc agg gag cag tta tca aag aat cag gtc aag 168
Met Val Cys Arg Glu Gln Leu Ser Lys Asn Gln Val Lys

tgg gtg ttt gcc ggc att acc tgt gtg tct gtg gtg gtc att gcc gca 216

Trp	Val	Phe	Ala	Gly	Ile	Thr	Cys	Val	Ser	Val	Val	Val	Ile	Ala	Ala	
	15	•		٠		20	•				25					
ata	gtc	ctt	gcc	atc	acc	ctg	cgg	cgg	cca	ggc	tgt	gag	ctg	gag	gcc	264
Ile	Val	Leu	Ala	Ile	Thr	Leu	Arg	Arg	Pro	Gly	Cys	Glu	Leu	Glu	Ala	
30					35					40					45	
tgc	agc	cct	gat	gcc	gac	atg	ctg	gac	tac	ctg	ctg	agc	ctg	ggc	cag	312
Cys	Ser	Pro	Asp	Ala	Asp	Met	Leu	Asp	Tyr	Leu	Leu	Ser	Leu	Gly	Gln	
	·, ·			50					55					60		
atc	agc	cgg	cga	gat	gcc	ttg	gag	gtc	acc	tgg	tac	cac	gca	gcc	aac	360
Ile	Ser	Arg	Arg	Asp	Ala	Leu	Glu	Val	Thr	Trp	Tyr	His	Ala	Ala	Asn .	
			65					70					75			
agc	aag	aaa	gcc	atg	aca	gct	gcc	ctg	aac	agc	aac	atc	aca	gtc	ctg	408
Ser	Lys	Lys	Ala	Met	Thr	Ala	Ala	Leu	Asn	Ser	Asn	Ile	Thr	Val	Leu	
		80					85					90				
gag	gct	gac	gtc	aat	gta	gaa	ggg	ctc	ggc	aca	gcc	aat	gag	aca	gga	456
Glu	Ala	Asp	Val	Asn	Val	Glu	Gly	Leu	Gly	Thr	Ala	Asn	Glu	Thr	Gly	
: .	95					100					105			•		•
gtt	ccc	atc	atg	gca	cac	ccc	ccc	act	atc	tac	agt	gac	aac	aca	ctg	504
Val	Pro	Ile	Met	Ala	His	Pro	Pro	Thr	Ile	Tyr	Ser	Asp	Asn	Thr	Leu	
110					115	•	٠		•	120					125	
gag	cag	tgg	ctg	gac	gct	gtg	ctg	ggc	tct	tcc	caa	aag	ggc	atc	aaa	552
Glu	Gln	Trp	Leu	Asp	Ala	Val	Leu	Gly	Ser	Ser	Gln	Lys	G1y	Ile	Lys	
•••			.,	130		. -		•	135			•		140		
ctg	gac	ttc	aag	aac	atc	aag	gca	gtg	ggc	ccc	tcc	ctg	gac	ctc	ctg	. 600
Leu	Asp	Phe	Lys	Asn	Ile	Lys	Ala	Val	Gly	Pro	Ser	Leu	Asp	Leu	Leu	

			145					150					155		• • •	
cgg	cag	ctg	aca	gag	gaa	ggc	aaa	gtc	cgg	cgg	ccc	ata	tgg	atc	aac	648
Arg	Gln	Leu	Thr	Glu	Glu	Gly	Lys	Val	Arg	Arg	Pro	Ile	Trp	Ile	Asn	
	ı	160	•				165					170				
gct	gac	atc	tta	aag	ggc	ccc	aac	atg	ctc	atc	tca	act	gag	gtc	aat	696
Ala	Asp	Ile	Leu	Lys	Gly	Pro	Asn	Met	Leu	Ile	Ser	Thr	Glu	Val	Asn	
	175					180				•	185	÷· ,				
gcc	aca	cag	ttc	ctg	gcc	ctg	gtc	cag	gag	aag	tat	ccc	aag	gct	acc	744
Ala	Thr	Gln	Phe	Leu	Ala	Leu	Val	Gln	Glu	Lys	Tyr	Pro	Lys	Ala	Thr	
190					195					200				-	205	· ••
cta	tct	cca	ggc	tgg	acc	acc	ttc	tac	atg	tcc	acg	tcc	сса	aac	agg	792
Leu	Ser	Pro	Gly	Trp	Thr	Thr	Phe	Tyr	Met	Ser	Thr	Ser	Pro	Asn	Arg	
				210					215					220		
acg	tac	acc	caa	gcc	atg	gtg	gag	aag	atg	cac	gag	ctg	gtg	gga	gga	840
Thr	Tyr	Thr	Gln	Ala	Met	Val	G1u	Lys	Met	His	Glu	Leu	Val	Gly	Gly	. •
	•.	٠.	225					230					235			
gtg	ccc	cag	agg	gtc	acc	ttc	cct	gta	cgg	tct	tcc	atg	gtg	cgg	gct	888
Val	Pro	Gln	Arg	Val	Thr	Phe	Pro	Val	Arg	Ser	Ser	Met	Val	Arg	Ala	
*		240				•	245				•	250				
gcc	tgg	ссс	cac	ttc	agc	tgg	ctg	ctg	agc	caa	tct	gag	agg	tac	agc	936
Ala	Trp	Pro	His	Phe	Ser	Trp	Leu	Leu	Ser	Gln	Ser	Glu	Arg	Tyr	Ser	
	255			•		260		•			265				- •	
ctg	acg	ctg	tgg	cag	gct	gcc	tcg	gac	ccc	atg	tcg	gtg	gaa	gat	ctg	984
Leu	Thr	Leu	Trp	Gln	Ala	Ala	Ser	Asp	Pro	Met	Ser	Val	Glu	Asp	Leu '	
															285	

Leu Tyr Val Arg Asp Asn Thr Ala Val His Gln Val Tyr Tyr Asp Ile 290 295 300 ttt gag cct ctc ctg tca cag ttc aag cag ctg gcc ttg aat gcc aca Phe Glu Pro Leu Leu Ser Gln Phe Lys Gln Leu Ala Leu Asn Ala Thr 305 310 315 cgg aaa cca atg tac tac aca gga ggc agc ctg atc cct ctt ctc cag Arg Lys Pro Met Tyr Tyr Thr Gly Gly Ser Leu Ile Pro Leu Leu Gln 320 325 330 ctg cct ggg gat gac ggt ctg aat gtg gag tgg ctg gtt cct gac gtc Leu Pro Gly Asp Asp Gly Leu Asn Val Glu Trp Leu Val Pro Asp Val 335 340 345 cag ggc agc ggt aaa aca gca aca atg acc ctc cca gac aca gaa ggc Gln Gly Ser Gly Lys Thr Ala Thr Met Thr Leu Pro Asp Thr Glu Gly	1080 1128
290 295 300 ttt gag cct ctc ctg tca cag ttc aag cag ctg gcc ttg aat gcc aca Phe Glu Pro Leu Leu Ser Gln Phe Lys Gln Leu Ala Leu Asn Ala Thr 305 310 315 cgg aaa cca atg tac tac aca gga ggc agc ctg atc cct ctt ctc cag Arg Lys Pro Met Tyr Tyr Thr Gly Gly Ser Leu Ile Pro Leu Leu Gln 320 325 330 ctg cct ggg gat gac ggt ctg aat gtg gag tgg ctg gtt cct gac gtc Leu Pro Gly Asp Asp Gly Leu Asn Val Glu Trp Leu Val Pro Asp Val 335 340 345 cag ggc agc ggt aaa aca gca aca atg acc ctc cca gac aca gaa ggc	1128
Phe Glu Pro Leu Leu Ser Gln Phe Lys Gln Leu Ala Leu Asn Ala Thr 305 310 315 cgg aaa cca atg tac tac aca gga ggc agc ctg atc cct ctt ctc cag Arg Lys Pro Met Tyr Tyr Thr Gly Gly Ser Leu Ile Pro Leu Leu Gln 320 325 330 ctg cct ggg gat gac ggt ctg aat gtg gag tgg ctg gtt cct gac gtc Leu Pro Gly Asp Asp Gly Leu Asn Val Glu Trp Leu Val Pro Asp Val 335 340 345 cag ggc agc ggt aaa aca gca aca atg acc ctc cca gac aca gaa ggc	1128
Phe Glu Pro Leu Leu Ser Gln Phe Lys Gln Leu Ala Leu Asn Ala Thr 305 310 315 3	
cgg aaa cca atg tac tac aca gga ggc agc ctg atc cct ctt ctc cag Arg Lys Pro Met Tyr Tyr Thr Gly Gly Ser Leu Ile Pro Leu Leu Gln 320 325 325 330 ctg cct ggg gat gac ggt ctg gat gag ggg ggg ggg ggg ggg ggg ggg g	
Arg Lys Pro Met Tyr Tyr Thr Gly Gly Ser Leu Ile Pro Leu Leu Gln 320	
Arg Lys Pro Met Tyr Tyr Thr Gly Gly Ser Leu Ile Pro Leu Leu Gln 320	1176
320 325 330 ctg cct ggg gat gac ggt ctg aat gtg gag tgg ctg gtt cct gac gtc Leu Pro Gly Asp Asp Gly Leu Asn Val Glu Trp Leu Val Pro Asp Val 335 340 345 cag ggc agc ggt aaa aca gca aca atg acc ctc cca gac aca gaa ggc	1176
Leu Pro Gly Asp Asp Gly Leu Asn Val Glu Trp Leu Val Pro Asp Val 335 340 345 cag ggc agc ggt aaa aca gca aca atg acc ctc cca gac aca gaa ggc	1176
Leu Pro Gly Asp Asp Gly Leu Asn Val Glu Trp Leu Val Pro Asp Val 335 340 345 cag ggc agc ggt aaa aca gca aca atg acc ctc cca gac aca gaa ggc	1176
335 340 345 cag ggc agc ggt aaa aca gca aca atg acc ctc cca gac aca gaa ggc	
	1224
350 355 360 365	
atg atc ctg ctg aac act ggc ctc gag gga act gtg gct gaa aac ccc	1272
Met Ile Leu Leu Asn Thr Gly Leu Glu Gly Thr Val Ala Glu Asn Pro	
370 375 380	
gtg ccc att gtt cat act cca agt ggc aac atc ctg acg ctg gag tcc	1320
Val Pro Ile Val His Thr Pro Ser Gly Asn Ile Leu Thr Leu Glu Ser	
tgc ctg cag cag ctg gcc aca cat ccc gga cac tgg ggc atc cat ttg	1368
Cys Leu Gln Gln Leu Ala Thr His Pro Gly His Trp Gly Ile His Leu	
400 405 410	
caa ata gcg gag ccc gca gcc ctc cgg cca tcc ctg gcc ttg ctg gca	

Gln	Ile	Ala	Glu	Pro	Ala	Ala	Leu	Arg	Pro	Ser	Leu	Ala	Leu	Leu	Ala	
	415	•				420	· · ·				425	• •		. •		
cgc	ctc	tcc	agc	ctt	ggc	ctc	ttg	cat	tgg	cct	gtg	tgg	gtt	ggg	gcc	1464
Arg	Leu	Ser	Ser	Leu	Gly	Leu	Ļeu	His	Trp	Pro	Val	Trp	Val	Gly	Ala	
430	•				435					440	. ,	.	٠	 ·	~445	
aaa	atc	tcc	cac	ggg	agt	ttt	tcg	gtc	ccc	ggc	cat	gtg	gct	ggc	aga	1512
Lys	Ile	Ser	His	Gly	Ser	Phe	Ser	Val	Pro	Gly	His	Val	Ala	Gly	Arg	
				450			•		455					460		
gag	ctg	ctt	aca	gct	gtg	gct	gag	gtc	ttc	ccc	cac	gtg	act	gtg	gca	1560
Glu	Leu	Leu	Thr	Ala	Val	Ala	Glu	Val	Phe	Pro	His	Val	Thr	Val	Ala	÷
•	٠		465					470					475			
cca	ggc	tgg	cct	gag	gag	gtg	ctg	ggc	agt	ggc	tac	agg	gaa	cag	ctg	1608
Pro	Gly	Trp	Pro	Glu	Glu	Val	Leu	Gly	Ser	Gly	Tyr	Arg	Glu	Gln	Leu	
		480					485			•		490	•		•	
ctc	aca	gat	atg	cta	gag	ttg	tgc	cag	ggg	ctc	tgg	caa	cct	gtg	tcc	1656
Leu	Thr	Asp	Met	Leu	Glu	Leu	Cys	Gln	Gly	Leu	Trp	Gln	Pro	Val	Ser	
	495					500					505	•				
ttc	cag	atg	cag	gcc	atg	ctg	ctg	ggc	cac	agc	aca	gct	gga	gcc	ata	1704
Phe	Gln	Met	Gln	Ala	Met	Leu	Leu	Gly	His	Ser	Thr	Ala	Gly	Ala	lle	
510	٠	•	•		515	. ,		•	٠	520			•		525	
ggc	agg	ctg	ctg	gca	tcc	tcc	ccc	cgg	gcc	acc	gtc	aca	gtg	gag	cac	1752
Gly	Arg	Leu	Leu	Ala				Arg								
•		•	•	530					535		•			540	. 4	
aac	cca	gct	ggg	ggc	gac	tat	gcc	tct	gtg	agg	aca	gca	ttg	ctg	gca	1800
ÁSP	Dwa	410	C1 _w	C1v	Acn	Tur	۸1a	Sar	Va1	Ara	Thr	Ala	Lau	ررغ ا	`Ala	

545	550	555	
gct agg gct gtg gac agg acc c	ga gtc tac tac	agg cta ccc cag ggc	1848
Ala Arg Ala Val Asp Arg Thr A	rg Val Tyr Tyr	Arg Leu Pro Gln Gly	
560 5	65	570	
tac cac aag gac ttg ctg gct c	at gtt ggt aga	aac tgagcaccca ggggtg	1900
Tyr His Lys Asp Leu Leu Ala H	is Val Gly Arg	Asn	
575 580		585	
gtgggccagc ggacctcagg gcggagg	ctt cccacgggga	ggcaggaaga aataaaggtc	1960
tttggctttc tcc			1973
⟨210⟩ 26		•	
<211> 1606			
<212> DNA			
<213> Homo sapiens			
⟨220⟩			
<221> CDS			
⟨222⟩, (135) (1130)		**:	
⟨400⟩ 26			
attgtgcggc gctggtcccc tcagagg	gtt cctgctgctg	ccggtgcctt ggaccctccc	60
cctcgcttct cgttctactg ccccagg	gage eeggeggte	cgggactccc gtccgtgccg	120
gtgcgggcgc cggc atg tgg ctg	tgg gag gac cag	ggc ggc ctc ctg ggc	170
Met Trp Leu	Trp Glu Asp Gln	Gly Gly Leu Leu Gly.	
St. 2	5	10	
cct ttc tcc ttc ctg ctg cta.	gtg ctg ctg	gtg acg cgg agc ccg	218
Pro Phe Ser Phe Leu Leu Leu	Val Leu Leu Leu	Val. Thr Arg Ser Pro	•

		15					20					25	•			
gtc	aat	gcc	tgc	ctc	ctc	acc '	ggc	agc '	ctc	ttc	gtt	cta	ctg	cgc	gtc	266
Val	Asn	Åla	Cys	Leu	Leu	Thr	Gly	Ser	Leu	Phe	Vail	Leu	Leu	Arg	Val	
	30					35			••		40			•		
ttc	agc	ttt	gag	ccg	gtg	ссс	tct	tgc	agg	gcc	ctg	cag	gtg	ctc	aag `	314
Phe	Ser	Phe	Glu	Pro	Val	Pro	Ser	Cys	Arg	Ala	Leu	Gln	Val	Leu	Lys	
45					50					55					60	
ccc	cgg	gac	cgc	att	tct	gcc	atc	gcc	cac	cgt	ggc	ggc	agc	cac	gac	362
Pro	Arg	Asp	Arg	Ile	Ser	Ala	Ile	Ala	His	Arg	Gly	Gly	Ser	His	Asp	
				65					70					75		
gcg	ccc	gag	aac	acg	ctg	gcg	gcc	att	cgg	cag	gca	gct	aag	aat	gga	410
Ala	Pro	Glu	Asn	Thr	Leu	Ala	Ala	Ile	Arg	Gln	Ala	Ala	Lys	Asr	Gly	
			80					85					90)	٠	
gca	aca	ggc	gtg	gag	ttg	gac	att	gag	ttt	act	tct	gac	ggg	g ati	cct	458
Ala	Thr	Gly	Val	Glu	Leu	Asp	Ile	Glu	Phe	Thr	Ser	. Ası	Gly	y I16	Pro	
		95	•				100)				10	5		• •	•
gto	tta	atg	cac	gat	aac	aca	gta	gat	: agg	g ace	g act	t ga	t gg	g ac	t ggg	506
Val	. Le	ı Met	His	. Asp	Asn	Thr	· Val	Asp	Arg	g Thr	Th	r As	p G1:	y Th	r · Gly	
•	110) [']	. '		•	115	5.		•		12	0	•		· i.	
cġ	a tt	g tgi	gat	t tte	g aca	a tti	t gaa	a caa	a ati	t agg	g aa	g ct	g aa	t cc	t gca	554
Ar	g Le	u Cys	s Ası	p Lei	ı Thi	r Phe	e Glu	u Gli	n·Ile	e Ar	g Ly	s Le	u As	n·Pr	o Ala	
12	5		,	٠,	130	0			- '	13	5	`			140	
gc	a aa	c ca	c ag	a ct	c ag	g aa	t ga	t tt	c cc	t ga	t ga	a aa	g at	c cc	t acc	602
A1	a As	n Hi	s Ar	g Le	u Ar	g As	n As	p Ph	e Pr	o As	p Gl	u Ly	s Il	e Pr	o Thr	
	٠		• .	14	5	٠.		٠.	· 15	0 -		`- -	• •	15	55	:

cta	agg	gaa	gct	gtt	gca	gag	tgc	cta	aac	cat	аас	ctc	aca	atc	ttc	650
Leu	Arg	Glu	Ala	Val	Ala	Glu	Cys	Leu	Asn	His	Asn	Leu	Thṛ	Ile	Phe	-
		• •	160	·				165					170			
ttt	gat	gtc	aaa	ggc	cat	gca	cac	aag	gct	act	gag	gct	cta	aag	aaa	698
Phe	Asp	Val	Lys	Gly	His	Ala	His	Lys	Ala	Thr	Glu	Ala	Leu	Lys	Lys	
		175	•				180					185				
atg	tat	atg	gaa	ttt	cct	caa	ctg	tat	aat	aat	agt	gtg	gtc	tgt	tct	746
Met	Tyr	Met	Glu	Phe	Pro	Gln	Leu	Tyr	Asn	Asn	Ser	Val	Val	Cys	Ser	
	190					195					200					
ttc	ttg	cca	gaa	gtt	atc	tac	aag	atg	aga	caa	aca	gat	cgg	gat	gta	794
Phe	Leu	Pro	Glu	Val	Ile	Tyr	Lys	Met	Arg	Gln	Thr	Asp	Arg	Asp	Val	
205	• .				210					215					220	
ata	aca	gca	tta	act	cac	aga	cct	tgg	agc	cta	agc	cat	aca	gga	gat	842
Ile	Thr	Ala	Leu	Thr	His	Arg	Pro	Trp	Ser	Leu	Ser	His	Thr	Gly	Asp	
				225					230					235		
ggg	aaa	cca	cgc	tat	gat	act	ttc	tgg	aaa	cat	ttt	ata	ttt	gtt	atg	890
Gly	Lys	Pro	Arg	Tyr	Asp	Thr	Phe	Trp	Lys	His	Phe	Ile	Phe	Val	Met	
			240					245					250			
atg	gac	att	ttg	ctc	gat	tgg	agc	atg	cat	aat	atc	ttg	tgg	tac	ctg	938
Met	Asp	Ile	Leu	Leu	Asp	Trp	Ser	Met	His	Asn	Ile	Leu	Trp	Tyr	Leu	
		255					260					265				
tgt	gga	att	tca	gct	ttc	ctc	atg	caa	aag	gat	ttt	gta	tcc	ccg	gcc	986
Cys	Gly	Ile	Ser	Ala	Phe	Leu	Met	Gln	Lys	Asp	Phe	Val	Ser	Pro _.	Ala	
	270					275					280				•	
tac	ttg	aag	aag	tgg	tca	gct	aaa	gga	atc	cag	gtt	gtt	ggt	tgg	act	1034

Tyr Leu Lys Lys Trp Ser Ala Lys Gly Ile Gln Val Val Gly Trp Thr	
285 290 295 300	
gtt aat acc ttt gat gaa aag agt tac tac gaa tcc cat ctt ggt tcc	1082
Val Asn Thr Phe Asp Glu Lys Ser Tyr Tyr Glu Ser His Leu Gly Ser	
305 310	
age tat ate act gae age atg gta gaa gae tge gaa eet cae tte	1127
Ser Tyr Ile Thr Asp Ser Met Val Glu Asp Cys Glu Pro His Phe	
320 325 330	
tag actttcacgg tgggacgaaa cgggttcaga aactgccagg ggcctcatac	1180
agggatatca aaataccctt tgtgctagcc caggccctgg ggaatcaggt gactcacaca	1240'
aatgcaatag ttggtcactg catttttacc tgaaccaaag ctaaacccgg tgttgccacc	1300
atgcaccatg gcatgccaga gttcaacact gttgctcttg aaaatctggg tctgaaaaaa	1360
cgcacaagag cccctgccct gccctagctg aggcacacag ggagacccag tgaggataag	1420
cacagattga attgtacaat ttgcagatgc agatgtaaat gcatgggaca tgcatgataa	1480
ctcagagttg acattttaaa acttgccaca cttatttcaa atatttgtac tcagctatgt	1540
taacatgtac tgtagacatc aaacttgtgg ccatactaat aaaattatta aaaggagcac	1600
taaagg	1606
<210> 27	•
⟨211⟩ 2380	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (247)(1284) ************************************	

BNSDOCID: <WO 0112660A2 I

<400> 27

agtgtggacc tggactcgaa tcccgttgcc gactcgcgct ctcggcttct gctccggggc	. 60
ttetteetg eccgeeegg geeetgaeeg tggettette eccggeetga tetgegeage	120
ccggcgggcg cccagaagga gcaggcggcg cggggggcgcg ctgggcgggg gaggcgtggc	180
cggagctgcg gcggcaagcg ggctgggact gctcggccgc ctcctgcccg gcgagcagct	240
cagacc atg tcg cct gaa gaa tgg acg tat cta gtg gtt ctt ctt atc	288
Met Ser Pro Glu Glu Trp Thr Tyr Leu Val Val Leu Leu Ile	
1 5 10	
tcc atc ccc atc ggc ttc ctc ttt aag aaa gcc ggt cct ggg ctg aag	336
Ser Ile Pro Ile Gly Phe Leu Phe Lys Lys Ala Gly Pro Gly Leu Lys	
15 20 25 30	
aga tgg gga gca gcc gct gtg ggc ctg ggg ctc acc ctg ttc acc tgt	384
Arg Trp Gly Ala Ala Ala Val Gly Leu Gly Leu Thr Leu Phe Thr Cys	
35 40 45	
ggc ccc cac act ttg cat tct ctg gtc acc atc ctc ggg acc tgg gcc	432
Gly Pro His Thr Leu His Ser Leu Val Thr Ile Leu Gly Thr Trp Ala	
55 60	
ctc att cag gcc cag ccc tgc tcc tgc cac gcc ctg gct ctg gcc tgg	480
Leu Ile Gln Ala Gln Pro Cys Ser Cys His Ala Leu Ala Leu Ala Trp	
65 70 75	
act ttc tcc tat ctc ctg ttc ttc cga gcc ctc agc ctc ctg ggc ctg	528
Thr Phe Ser Tyr Leu Leu Phe Phe Arg Ala Leu Ser Leu Leu Gly Leu	
. 80	
ccc act ccc acg ccc ttc acc aat gcc gtc cag ctg ctg acg ctg	576
Pro Thr Pro Thr Pro Phe Thr Asn Ala Val Gln Leu Leu Thr Leu	

95					100					105					110	
aag	ctg	gtg	agc	ctg	gcc	agt	gaa	gtc	cag	gac	ctg	cat	ctg	gcc	cag	624
Lys	Leu	Val	Ser	Leu	Ala	Ser	Glu	Val	Gln	Asp	Leu	His	Leu	Ala	G1n	
,		٠,		115				7	120		•			125		
agg	aag	gaa	atg	gcc	tca	ggc	ttc	agc	aag	ggg	ccc	acc	ctg	ggg	ctg'	672
Arg	Lys	Glu	Met	Ala	Ser	Gly	Phe	Ser	Lys	Gly	Pro	Thr	Leu	Gly	Leu	
			130					135				-	140			
ctg	ccc	gac	gtg	ccc	tcc	ctg	atg	gag	aca	ctc	agc	tac	agc	tac	tgc	720
Leu	Pro	Asp	Val	Pro	Ser	Leu	Met	Glu	Thr	Leu	Ser	Tyr	Ser	Tyr	Cys:	
		145					150					155				į
tac	gtg	gga	atc	atg	aca	ggc	ccg	ttc	ttc	cgc	tac	cgc	acc	tac	ctg	768
Tyr	Val	Gly	Ile	Met	Thr	Gly	Pro	Phe	Phe	Arg	Tyr	Arg	Thr	Tyr	Leu	
	160					165					170				. •	
gac	tgg	ctg	gag	cag	ccc	ttc	ccc	ggg	gca	gtg	ccc	agc	ctg	cgg	ccc	816
Asp	Trp	Leu	Glu	Gln	Pro	Phe	Pro	Gly	Ala	Val	Pro	Ser	Leu	Arg	Pro	
175	,				180					185	. •	• •			190	
ctg	ctg	cgc	cgc	gcc	tgg	ccg	gcc	ccg	ctc	ttc	ggc	ctg	ctg	ttc	ctg	864
Leu	Leu	Arg	Arg	Ala	Trp	Pro	Ala	Pro	Leu	Phe	Gly	Leu	Leu	Phe	Leu	
				195					200	-		٠,		205	1.20	
ctc	tcc	tct	cac	ctc	ttc	ccg	ctg	gag	gcc	gtg	cgc	gag	gac	gcc	ttc	91
Leu	Ser	Ser	His	Leu	Phe	Pro	Leu	Glu	Ala	Val	Arg	Glu	∵ A sp	Ala	Phe	
			210				•	215	,			٠, ٠,	220	ja t		
tac	gcc	cgc	ccg	ctg	ccc	gcc	cgc	ctc	ttc	tac	atg	ato	ccc	gto	ttc	96
Tyr	Ala	Arg	Pro	Leu	Pro	Ala	Arg	Leu	Phe	Tyr	Met	Ile	Pro	Val	· Phe-	
٦.		225				: . :	230	,	٠.		: .	235	; .	,	ይል ዕንኳ	

ttc gcc ttc cgc atg cgc	ttc tac gtg gcc tgg	att gcc gcc gag tgc	1008
Phe Ala Phe Arg Met Arg	Phe Tyr Val Ala Trp	Ile Ala Ala Glu Cys	
240	245	250	٠
ggc tgc att gcc gcc ggc	ttt ggg gcc tac ccc	gtg gcc gcc aaa gcc	1056
Gly Cys Ile Ala Ala Gly	Phe Gly Ala Tyr Pro	Val Ala Ala Lys Ala	
255 260	265	270	
cgg gcc gga ggc ggc ccc	acc ctc caa tgc cca	ccc ccc agc agt ccg	1104
Arg Ala Gly Gly Gly Pro	Thr Leu Gln Cys Pro	Pro Pro Ser Ser Pro	
275	. 280	285	•
gag aag gcg gct tcc ttg	gag tat gac tat gag	acc atc cgc aac atc	1152
Glu Lys Ala Ala Ser Leu	Glu Tyr Asp Tyr Glu	Thr Ile Arg Asn Ile	
290	295	300	
gac tgc tac agc aca gat	ttc tgc gtg cgg gtg	cgc gat ggc atg cgg	1200
Asp Cys Tyr Ser Thr Asp	Phe Cys Val Arg Val	Arg Asp Gly Met Arg	
305	310	315	
tac tgg aac atg acg gtg	cag tgg tgg ctg gcg	cag tat atc tac aag	1248
Tyr Trp Asn Met Thr Val	Gln Trp Trp Leu Ala	Gln Tyr Ile Tyr Lys	
320	325	330	
age gea cet gee egt tee	tat gtc ctg cgc ctt	tagaagcaga aactcagcc	1300
Ser Ala Pro Ala Arg Ser	Tyr Val Leu Arg Leu	• • .	
335 340	345	• • •	
gggtgcggcg gctcacgcct g	gaatcccag cactttggga	ggcccaagca ggtggatcat	1360
gaggagcgcc tggaccatgc t	gctgagcgc ctactggcac	ggcctccacc cgggctacta	1420
cctgagette ctgaccatec c	gctgtgcct ggctgccgag	ggccggctgg agtcagccct	1480
gcgggggcgg ctgagcccag g	gggccagaa ggcctgggac	tgggtgcact ggttcctgaa	1540

ENSPOCID - WC - DI IOCCOAO I

60

58 / 307

gatgcgcgcc	tatgactaca	tgtgcatggg	cttcgtgctg	ctctccttgg	ccgacaccct	1600
toggtactgg	gcctccatct	acttctgtat	ccacttcctg	gccctggcag	ccctggggct	1660
ggggctggct	ttaggtgggg	gcagccccag	ccggcggaag	gcagcatccc	agcccaccag	1720
ccttgccccg	gagaagctcc	gggaggagta	agctgtcacg	acgctccctc	tgccagctgg	1780
tcccgggaat	tctgtgaacc	aggctgctgt	ctcctcccca	gaaagagtcc	ttaccttgga	1840
gagggtcctg	gagagaattt	cctcttcccc	agctaaatac	cctgcctgca	actgaagcag	1900
acccgggggt	gtcctccctg	ccctctgccc	agaggccacc	tccactccta	caaaatcaaa	1960
gtattgtcca	gácaagagtc	actggcccct	gctccagctt	ctgggtatcc	agagagcact	2020
gcacttcccc	aaaacggaag	gggcccctgg	gcagtgggtt	ttgggcaaat	tccctttctt	2080
				gggagtggga		2140
				tgcagacttg		2200
				gegegggeet		2260
	•	*			cctcttctca	2320
					ttgcacaaag	2380
2 20					v	

<210> 28
<211> 2017
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (360)... (629)

<400> 28

tccacacatt aagaaacgct ggtggagttt taaatgcctc tccggggaag gaggaaagcc

tgagaatgaa tetgacetca gacecaaate catteaaegg agttetggta atttggaaga 120

agga	aaga	gca	acct	ggaa	ac t	gaca	ggaa	a gga	atga	caag	ttg	ggag	tca	cagg	tatatg	180
atg	ggcc	tcc	ccat	gtgg	at c	ctta	gţgc	t gt	ggca	gagc	cct	tgtt	att :	gtgc	tgggat	240
ttte	cct	cca ˈ	gctc	ccgg	cc g	gaage	ctgg	g ct	cacg	tggg	agc	tcag	tgc	cctc	ctgcta	300
caga	atct	gtc	tctt	ctt	ac aa	atgg	ggtge	c tg	gcac	tgtg	ggt	cctg	gtg	acgc	acgtg	359
atg	tac	atg	caa	gat	tat	tgg	agg	acc	tgg	ctc	aag	ggg	ctg	cgc	ggc	407
Met	Tyr	Met	Gln	Asp	Tyr	Trp	Arg	Thr	Trp	Leu	Lys	Gly	Leu	Arg	Gly	
1		•		· 5					10					15		•
ttc	ttc	ttc	gtg	ggc	gtc	ctc	ttc	tcg	gcc	gtc	tcc	atc	gct	gcc	ttc	455
Phe	Phe	Phe	Val	Gly	Val	Leu	Phe	Ser	Ala	Val	Ser	Ile	Ala	Ala	Phe	
			20	•				25					30			
tgc	acc	ttc	ctc	gtg	ctg	gcc	atc	acc	cgg	cat	cag	agc	ctc	aca	gac	503
Cys	Thr	Phe	Leu	Val	Leu	Ala	Ile	Thr	Arg	His	Gln	Ser	Leu	Thr	Asp	
		. 3 5					40					45				
ccc	acc	agc	tac	tac	ctc	tcc	agc	gtc	tgg	agc	ttc	att	tcc	ttc	aag	55 1
Pro	Thr	Ser	Tyr	Tyr	Leu	Ser	Ser	Val	Trp	Ser	Phe	Ile	Ser	Phe	Lys	
	50					55					60				.•	
tgg	gcc	ttc	ctg	ctc	agc	ctc	tat	gcc	cac	cgc	tac	cgg	gct	gac	.ttt	599
Trp	Ala	Phe	Leu	Leu	Ser	Leu	Tyr	Ala	His	Arg	Tyr	Arg	Ala	Asp	Phe	
65		•	•		70					75			•		80	
gct	gac	atc	agc	atc	ctc	agc	gat	ttc	tgad	ccae	388 8	ggtg				640
Ala	Asp	Ile	Ser	Ile	Leu	Ser	Asp	Phe								
				85												
aggt	ctct	tgc a	accci	tgggg	38 88	zccti	tagga	a cci	tggad	etca	gcc1	tctga	aga '	tgtt	gggaga	700
ggct	tacto	ccc a	accc	ctg	gt ga	accc	agaa	a cta	gtgg	caga	aaat	tacad	cag	cagg	acgagt	760
gtgg	gtcto	cc a	aggaa	agct	gt co	ctgc	ccgt	cco	cttt	gag	gaas	acct	gag	tgtg	gtagag	820

880	agaccttttc	gggcagcttt	cctggccaga	tcctcatcag	gccatgttgt	aggggatcct
940	ttgagatgga	tttttttt	ttttctttt	ctttctttt	gttttctttt	aaatgaatct
1000	tgcaacctcc	ctcagctcac	gtagtgcgat	ctggagtgca	gtcacccagg	gtcttactct
1060	attacaggca	agtagctggg	tggcctctca	tctcctgcct	ttcaagcaat	gcctcccagg
1120	tgccatgttg	gacagggttt	ttttagtaga	atttttgtgt	tgcccggcaa	tctgccacca
1180	ttccaaagtg	cgcctcagcc	gtgattcacc	ctgatctcag	tctcgaactc	gccaggctgg
1240	gcacgcagtg	tgttttctta	ggcctggatc	caccgcgccc	aggtgtgagc	ctgggattat
1300	tagggccatg	ggtcaaggtg	aaagtcaaga	ccagggcaac	gtacttaagg	aggaatcttt
1360	cactctcttc	ctgccctagg	tccatccccg	ggcaagggtt	ctatgctgca	aggcctggac
1420	agacctctta	tatctagcag	agttcagaaa	tggggaggtc	gttgggcacc	ccaaggccag
1480	gagtgtgcta	ggtctcccat	tcccagagct	atcctgttgt	ccagcacccc	aacccccatc
1540	ccatacaccc	acacaggcat	tcactcacac	cccacccatc	gccgtggccc	gagccagata
1600	ctgccctgt	gaatgtgctt	gggtcacggg	gccagactca	cccaaatgag	cagaagactt
1660	aacctgtgcc	agagcccca	gaggctggaa	caacatagta	gggaaggggg	aagggctttg
1720	ctgcacccag	agtgcccttg	gccttctcag	tttccattct	cagccctgcg	catgcccctc
1780	cttcaactag	tctcactgcc	ctccagcccc	ttctctccca	aggagagacc	accaccggcc
1840	tgcccataca	tctgcttttc	aggacacaaa	tcccttctga	tttttacatt	agctttcacc
1900	gatgattttc	ttggtacaag	gaaggggctg	acttgggagg	g ggctcaccta	ctggcccaag
1960	gcccctcagc	gatgtgtcct	cttcccatct	cggtctcccc	g ccattttgca	tgttagactg
2017	ttgtatc	cagcggccat	agcaaaaata	ctgtcacttt	tatctgtgtca	tctttgccti

⟨210⟩ 29

<211> 1606

<212> DNA

<213> Homo sapiens

⟨220⟩		
<221> CDS	•	
<222> (30)(1250)		
<400> 29		
acctettecg teggetgaat tgeggeegt	atg cgc ggc tct	gtg gag tgc acc 53
	Met Arg Gly Ser	Val Glu Cys Thr
•	. 1	5
tgg ggt tgg ggg cac tgt gcc ccc	agc ccc ctg ctc	ctt tgg act cta 101
Trp Gly Trp Gly His Cys Ala Pro	Ser Pro Leu Leu	Leu Trp Thr Leu
10 15	20	
ctt ctg ttt gca gcc cca ttt ggc	ctg ctg ggg gag	aag acc cgc cag 149
Leu Leu Phe Ala Ala Pro Phe Gly	Leu Leu Gly Glu	Lys Thr Arg Gln
25 30	35	40
gtg tct ctg gag gtc atc cct aac	tgg ctg ggc ccc	ctg cag aac ctg 197
Val Ser Leu Glu Val Ile Pro Asn	Trp Leu Gly Pro	Leu Gln Asn Leu
45	50	55
ctt cat ata cgg gca gtg ggc acc	aat tcc aca ctg	cac tat gtg tgg 245
Leu His Ile Arg Ala Val Gly Thr	Asn Ser Thr Leu	His Tyr Val Trp
60	65	70
agc agc ctg ggg cct ctg gca gtg	gta atg gtg gcc	acc aac acc ccc 293
Ser Ser Leu Gly Pro Leu Ala Val	Val Met Val Ala	Thr Asn Thr Pro
75 80		85
cac agc acc ctg agc gtc aac tgg	agc ctc ctg cta	tcc cct gag ccc 341
His Ser Thr Leu Ser Val Asn Trp	Ser Leu Leu Leu	Ser Pro Glu Pro
95	100	er transport set

gat	ggg	ggc	ctg	atg	gtg	ctc	cct	aag	gac	agc	att	cag	ttt	tct	tct	389
Asp	Gly	Gly	Leu	Met	Val	Leu	Pro	Lys	Asp	Ser	Ile	Gln	Phe	Ser	Ser	
105		•			110	•		•		115		. • • • •	• •	•	120	
gcc	ctt	gtt	ttt	acc	agg	ctg	ctt	gag	ttt	gac	agc	acc	aac	gtg	tcc	437
Ala	Leu	Val	Phe	Thr	Arg	Leu	Leu	Glu	Phe	Asp	Ser	Thr	Asn	Val	Ser ·	
				125					130					135		
gat	acg	gca	gca	aag	cct	ttg	gga [°]	aga	cca	tat	cct	cca	tac	tcc	ttg	485
Asp	Thr	Ala	Ala	Lys	Pro	Leu	Gly	Arg	Pro	Tyr	Pro	Pro	Tyr	Ser	Leu	
			140					145		٠			150	٠.		
gcc	gat	ttc	tct	tgg	aac	aac	atc	act	gat	tca	ttg	gat	cct	gcc	acc	533
Ala	Asp	Phe	Ser	Trp	Asn	Asn	Ile	Thr	Asp	Ser	Leu	Asp	Pro	Ala	Thr	
		155		•			160					165		.•		
ctg	agt	gcc	aca	ttt	caa	ggc	cac	ccc	atg	aac	gac	cct	acc	agg	act	581
Leu	Ser	Ala	Thr	Phe	G1n	Gly	His	Pro	Met	Asn	Asp	Pro	Thr	Arg	Thr	
	170	• . •				175					180	. د		*-		
ttt	gcc	aat	ggc	agc	ctg	gcc	ttc	agg	gtc	cag	gcc	ttt	tcc	agg	tcc	629
Phe	'Ala	Asn	Gly	Ser	Leu	Ala	Phe	Arg	Val	Gln	Ala	Phe	Ser	Arg	Ser 🕝	
185					190					195					200	
agc	cga	cca	gcc	caa	ccc	cct	cgc	ctc	ctg	cac	aca	gca	gac	acc	tgt	677
Ser	Arg	Pro	Ala	Gln	Pro	Pro	Arg	Leu	Leu	His	Thr	Ala	Asp	Thr	Cys	
•	•			205					210		;			215	• .	
cag	cta	gag	gtg	gcc	ctg	att	gga	gcc	tct	ccc	cgg	gga	aac	cgt	tcc	725
Gln	Leu	Glu	Val	Ala	Leu	Ile	Gly	Ala	Ser	Pro	Arg	Gly	Asn	Arg	Ser	
		-	220	• •		•		225	<i>.</i> `		r .	•	230		J 15 1	
cta	+++	aaa	cta	ga ä	'ota	acc	909	tta	aac	cag	ggc	cct	7 90	t oc	ccc	773

BNSDCCID: <WO 0112660A2 1 :

n comp

Leu	Phe	Gly	Leu	Glu	Val	Ala	Thr	Leu	Gly	Gln	Gly	Pro	Asp	Cys	Pro	
		235				<i>:</i> .	240	-				245				
tca	átg	cag	gag	cag	cac,	tcc	atc	gac	gat	gaa	tat	gca	ccg	gcç	gtc	821
Ser	Met	Gln	Glu	Gln	His	Ser	Ile	Asp	Asp	Glu	Tyr	Ala	Pro	Ala	Val	
	250					255					260					
ttc	cag	ttg	gac	cag	cta	ctg	tgg	ggc	tcc	ctc	cca	tca	ggc	ttt	gca	869
Phe	Gln	Leu	Asp	Gln	Leu	Leu	Trp	Gly	Ser	Leu	Pro	Ser	Gly	Phe	Ala	
265	,	-			270					275	,				280	
cag	tgg	cga	cca	gtg	gct	tac	tcc	cag	aag	ccg	ggg	ggc	cga	gaa	tca	917
Gln	Trp	Arg	Pro	Val	Ala	Tyr	Ser	Gln	Lys	Pro	Gly	Gly	Arg	Glu	Ser	
			,	285					290					295		
gcc	ctg	ccć	tgc	caa	gct	tcc	cct	ctt	cat	cct	gcc	tta	gca	tac	tct	965
Ala	Leu	Pro	Cys	Gln	Ala	Ser	Pro	Leu	His	Pro	Ala	Leu	Ala	Tyr	Ser	
			300					305					310)		
ctt	ccc	cag	tca	ccc	att	gtc	cga	gcc	ttc	ttt	ggg	tcc	cag	aat	aac	1013
Leu	Pro	Gln	Ser	Pro	Ile	Val	Arg	Ala	Phe	Phe	Gly	Ser	G1r	n Asn	Asn.	
		315	i				320)				325	;	.•		
tto	tgt	gcc	ttc	aat	ctg	acg	ttc	ggg	gct	tcc	aca	ggo	cct	t ggo	tat	1061
Phe	Cys	s Ala	Phe	e Asn	Leu	Thr	Phe	Gly	Ala	Ser	Thr	Gly	Pro	o Gly	y Tyr	
	330)				335	;				340)				
tgg	g gad	c caa	a cad	tac	cto	ago	tgg	g tcg	g atg	g cto	cte	g ggt	t gt	g gg	c tực	1109
Trj	As ₁	Glr	n His	s Tyi	r Leu	ı Ser	Tr	Sez	r Met	t Le	u Lei	ı Gly	y Va	1 G1;	y Phe	
34	5 ~			. .	350)				35	5				360	
cc	t rcc	a gt	g ga	c gg	c ttg	g tco	c cca	a cta	a gto	c ct	g gg	c at	c at	g gc	a gtg	1157
															a Val	

365 370 375	
gcc ctg ggt gcc cca ggg ctc atg ctg cta ggg ggc ggc ttg gtt ctg	1205
Ala Leu Gly Ala Pro Gly Leu Met Leu Leu Gly Gly Gly Leu Val Leu	1
380 385 390	•
ctg ctg cac cac aag aag tac tca gag tac cag tcc ata aat taa	1250
Leu Leu His His Lys Lys Tyr Ser Glu Tyr Gln Ser Ile Asn	
395 400 405	
ggcccgctct ctggagggaa ggacattact gaacctgtct tgctgtgcct cgaaactc	etg 1310
gaggttggag catcaagttc cagccggccc cttcactccc ccatcttgct tttctgt	gga 1370
acctcagagg ccagcctcga cttcctggag acccccaggt ggggcttcct tcatact	ttg 1430
ttgggggact ttggaggcgg gcaggggaca gggctattga taaggtcccc ttggtgt	tgc 1490
cttcttgcat ctccacacat ttcccttgga tgggacttgc aggcctaaat gagaggc	att 1550
ctgactggtt ggctgccctg gaaggcaaga aaatagattt atttttttc acaggg	· 1606
<210> 30	- /
<211> 1695	,
<212> DNA	
<213> Homo sapiens	
⟨220⟩	*:•
<221> CDS	
<222> (53) (631)	•
<400> 30	•
acageegage agetggageg ategaggetg cagegggee geegggegea ge atg	55
Met'	<i>:</i>
· · · · · · · · · · · · · · · · · · ·	

BNSOCIO: <WO 0112660A2 I

act	gcc	gtc	ggc	gtg	cag	gcc	cag	agg	cct	ttg	ggc	caa	agg	cag	ccc	103
Thr	Ala	Val	Gly	Val	Gln	Ala	Gln	Arg	Pro	Leu	Gly	Gln	Arg	Gln	Pro	
			. 5			•		10					15			
cgc	cgg	tcc	ttc	ttt	gaa	tcc	ttc	atc	cgg	acc	ctc	atc	atc	acg	tgt	151
Arg	Arg	Ser	Phe	Phe	Glu	Ser	Phe	Ile	Arg	Thr	Leu	Ile	Ile	Thr	Cys	
		20					25					30				
gtg	gcc	ctg	gct	gtg	gtc	ctg	tcc	tcg	gtc	tcc	att	tgt	gat	ggg	cac	199
Val	Ala	Leu	Ala	Val	Val	Leu	Ser	Ser	Val	Ser	Ile	Cys	Asp	Gly	His	
	35					40					45					
tgg	ctc	ctg	gct	gag	gac	cgc	ctc	ttc	ggg	ctc	tgg	cac	ttc	tgc	acc	247
Trp	Leu	Leu	Ala	Glu	Asp	Arg	Leu	Phe	Gly	Leu	Trp	His	Phe	Cys	Thr	
50					55					60					65	
acc	acc	aac	cag	agt	gtg	ccg	atc	tgc	ttc	aga	gac	ctg	ggc	cag	gcc	295
Thr	Thr	Asn	Gln	Ser	Val	Pro	Ile	Cys	Phe	Arg	Asp	Leu	Gly	Gln	Ala	
				70					75					80		
cat	gtg	ccc	ggg	ctg	gcc	gtg	ggc	atg	ggc	ctg	gta	cgc	agc	gtg	ggc	343
His	Val	Pro	Gly	Leu	Ala	Val	Gly	Met	Gly	Leu	Val	Arg	Ser	Val	Gly	
			85					90					95			
gcc	ttg	gcc	gtg	gtg	gcc	gcc	att	ttt	ggc	ctg	gag	ttc	ctc	atg	gtg	391
Ala	Leu	Ala	Val	Val	Ala	Ala	Ile	Phe	Gly	Leu	Glu	Phe	Leu	Met	Val	
· •••		100		٠			105					110				
tcc	cag	ttg	tgc	gag	gac	aaa	cac	tca	cag	tgc	aag	tgg	gtc	atg	ggt.	439
Ser	Gln	Leu	Cys	Glu	Asp	Lys	His	Ser	Gln	Cys	Lys	Trp	Val	Met	Gly	
	-115		. •			120					125					
tcc	atc	ctc	ctc	ctg	gtg	tct	ttc	gtc	ctc	tcc	tcc	ggc	ggg	ctc	ctg	487

27

Ser	Ile	Leu	Leu	Leu	Val	Ser	Phe	Val	Leu	Ser	Ser	Gly	Gly	Leu	Leu	
130		•	•		135					140		•	•	•••	145	
ggt	ttt	gtg	atc	ctc	ctc	agg	aac	caa	gtc	aca	ctc	atc	ggc	ttc	acc	535
Gly	Phe	Val	Ile	Leu	Leu	Arg	Asn	Gln	Val	Thr	Leu	Ile	Gly	Phe	Thr	
		•1 -		150					155		·			160	ů.;	
cta	atg	ttt	tgg	tgc	gaa	ttc	act	gcc	tcc	ttc	ctc	ctc	ttc	ctg	aac	583
Leu	Met	Phe	Trp	Cys	Glu	Phe	Thr	Ala	Ser	Phe	Leu	Leu	Phe	Leu	Asn	
			165				. •	170	÷			٠.	175			
gcc	atc	agc	ggc	ctt	cac	atc	aac	agc	atc	acc	cat	ccc	tgg	gaa	tg	630
Ala	Ile	Ser	Gly	Leu	His	Ile	Asn	Ser	Ile	Thr	His	Pro	Trp	Glu	·	:-
		180					185					190				
acc	gtgg	aaa	tttt	aggc	cc c	ctcc	aggg	a ca	tcag	attc	cac	aaga	aaa	tatg	gtcaaa	690
atg	ggac	t t t	tcca	gcat	gt g	gcct	ctgg	t gg	ggct	gggt	tgg	acaa	ggg	cctt	gaaacg	750
gct	gcct	gtt	tgcc	gata	ac t	tgtg	ggtg	g to	agcc	agaa	atg	gccc	ggg	ggcc	tctgca	810
cct	ggto	tgc	aggg	ccag	ag g	ccag	gagg	g tg	cctc	agtg	сса	ccaa	ctg	caca	ggctta	870
gcc	agat	gtt	gatt	ttag	ag g	aaga	aaaa	a ac	attt	taaa	act	cctt	ctt	gaat	tttctt	930
ccc	tgga	ctg	gaat	acag	tt g	gaag	caca	g gg	gitaa	ctgg	tac	ctga	gct	agct	gcacag	990
cca	agga	tag	ttca	tgcc	tg t	ttca	ttga	c ac	gtgo	tggg	ata	gggg	gctg	caga	atccct	1050
888	gete	cca	gggt	tgtt	aa g	gaate	gato	a ti	tcttc	cago	taa	igggt	tcca	atca	gtgcct	1110
att	ctt	cac	cago	ctcaa	ag e	ggcct	tcgt	a te	gtatg	gtece	tgg	ctti	cagc	tttg	gtcatg	1170
cca	aaaga	aggc	agag	gttca	agg a	attco	ctca	ag aa	atgco	cctgo	aca	cagi	tagg	ttto	caaacc	1230
ati	ttga	ctcg	gtti	tgcct	tcc (ctgc	cgti	tg t	ttaaa	acctt	aca	aaac	cctg	gata	acccca	1290
tci	ttcta	agca	gct	ggctg	gtc (cct	ctggg	ga g	ctcti	gccta	a tca	agaa	ccct	acci	ttaággt	1350
ggi	gttt	cctt	ccga	agaaı	gag	ttct	tgago	ca a	gctc	tecea	a gga	aggg	ccca	cct	gactgct	1410
90	taca		cct	occe.	aaσ i	ספפפי	otøt	σt ø	cato	tgto:	t gt	cttt	tgtg	agg	gttagac	1470

agc	ctca	388	cacc	attt	tt a	atco	cagaa	а са	catt	tcaa	aga	gcac	gta	tcta	gacct	g :	153
ctg	gacto	ctg	cagg	gggt	ga g	gggg	aacag	g cg	agag	cttg	ggt	aatg	att	aaca	cccat	g :	159
ctg	ggga1	tgc	atgg	aggt;	ga a	gggg	gccag	g ga	acca	gtgg	aga	tttc	cat	cctt	gccag	c :	165
acg	tctgi	tac	ttct	gttc	at t	aaag	tgcto	cc	tttc	tagt	cct	tt				1	169
	•																
<210)> 3 1	l															
<21	1> 37	77					•										
<212	2> PF	ťΤ	•			. •											
<213	3> Hc	эпо	sapi	ens													
<400)> 31	•															
Met	Asp	Ser	Ala	Leu	Ser	Asp	Pro	His	Asn	Gly	Ser	Ala	Glu	Ala	Gly		
1		•		5					10					15			•
Gly	Pro	Thr	Asn	Ser	Thr	Thr	Arg	Pro	Pro	Ser	Thr	Pro	Glu	Gly	Ile		
			20					25					30				
Ala	Leu	Ala	Tyr	Gly	Ser	Leu	Leu	Leu	Met	Ala	Leu	Leu	Pro	Ile	Phe		
		35					40					45					
Phe	Gly	Ala	Leu	Arg	Ser	Val	Arg	Cys	Ala	Arg	Gly	Lys	Asn	Ala	Ser		
	· 50					55					60						
Asp	Met	Pro	Glu	Thr	Ile	Thr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile		
65					70					75					80		
Ile	Ala	Ser	Cys	Thr	Leu	Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe		
٠,	į v			85				,	90				٠.	95			
Ser	Gln	Glu	Tyr	Ile	Asn	Leu	Leu	Leu	Ser-	Met	Tyr	Phe	Phe	Val	Leu		
,	. : .		100			• .		105			-		110				
Gly:	Ile	Leu	Ala	Leu	Ser	His	Thr	Ile	Ser	Pro	Phe	Met	Asn	Lys	Phe :		

BNSDOCID--WO 0112660A2 1 .

		115					120					125		٠.	٠.	-
Phe	Pro	Ala	Ser	Phe	Pro	Asn	Arg	Gln	Tyr	Gln	Leu	Leu	Phe	Thr	Gln	
	130					135	,				140		.,		.·	
Gly	Ser	Gly	Glu	Asn	Lys	Glu	Glu	Ile	Ile	Asn	Tyr	Glu	Phe	Asp	Thr	
145					150					155					160	
Lys	Asp	Leu	Val	Cys	Leu	Gly	Leu	Ser	Ser	Ile	Val	Gly	Val	Trp	Tyr	
				165					170		,			175	٠.	
Leu	Leu	Arg	Lys	His	Trp	Ile	Ala	Asn	Asn	Leu	Phe	Gly	Leu	Ala	Phe	
			180					185					190		٠	
Ser	Leu	Asn	Gly	Val	Glu	Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly	
		195					200			·		205		.*		
Cys	Ile	Leu	Leu	Gly	Gly	Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe	;
	210					215					220					
Gly	Thr	Asn	Val	Met	Val	Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile	;
225					230					235		•		:	240) .
Lys	Leu	Val	Phe	Pro	Gln	Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn	1
	<i>:</i> .	; .		245	,				250		,	•		255	; , : ,	
Asn	Phe	Ala	Met	Leu	Gly	Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe	?
		٠.	260					265					270)		
Ile	Ala	Lei	ı Leu	ı Leu	Arg	Phe	Asp	Ile	Ser	Leu	Lys	Lys	s Asr	1 Thu	. His	5
		275	5				280)				285	5			• •
Thi	Tyr	. Phe	e Tyr	Thi	Ser	Phe	Ala	Ala	Tyr	· Ile	Phe	G1;	y Let	ı Gl	/ Le	u
	290) ·				295	5 .	. •		.• •	300).	•:		r, * ·	٠;
Thi	r Ile	e Pho	e Ile	e Mei	t His	s Ile	e Phe	Lys	His	s Ala	a Gl	n Pro	o Ala	a Le	ı Le	u
309	5 :			<u>.</u>	310)		, - ·		-319	5 .		٠		- 32	0

Tyr	Leu	Val	Pro	Ala	Cys	Ile	Gly	Phe	Pro	Val	Leu	Val	Ala	Leu	Ala
				325					330					335	
Lys	Gly	Glu	Val	Thr	Glu	Met	Phe	Ser	Tyr	Glu	Glu	Ser	Asn	Pro	Lys
			340					345					350		, .
Asp	Pro	Ala	Ala	Val	Thr	Glu	Ser	Lys	Glu	Gly	Thr	Glu	Ala	Ser	Ala
		355					360					365			
Ser	Lys	Gly	Leu	Glu	Lys	Lys	Glu	Lys							
	370					375								,	į
<210)> 32	2													
<211	> 81	l													
<212	2> PF	T7	•			i					•				
<213	3> Hc	omo s	sapie	ens											
<400)> 32	2 .													
Met	Thr	Ala	His	Ser	Phe	Ala	Leu	Pro	Val	Ile	Ile	Phe	Thr	Thr	Phe
1			٠.	. 5					10					15	٠.
Trp	Gly	Leu	Val	Gly	Ile	Ala	Gly	Pro	Trp	Phe	Val	Pro	Lys	Gly	Pro
	,		20					25					30		
Asn	Arg	Gly	Val	Ile	Ile	Thr	Met	Leu	Val	Ala	Thr	Ala	Val	Cys	Cys
		- 35	• :			•	40					45			
Tyr	Leu	Phe	Trp	Leu	Ile	Ala	Ile	Leu	Ala	Gln	Leu	Asn	Pro	Leu	Phe
•	.50	• .		٠.	,	55					60			÷	٠
Gly	Pro	Gln	Leu	Lys	Asn	Glu	Thr	Ile	Trp	Tyr	Val	Arg	Phe	Leu	Trp
65)		, :		.70	٠.	÷	•		, 75		: .			80
Glu				•					•	•				:	7

2.			•				
<210> ⋅33 - ⋅		. •			.•	. • •	••••
<211> 487			-				
<212> PRT	. •					•	
<213> Homo	sapiens					٠.	
<400> 33							•
Met Gly Asp	Thr Gly	Leu Arg	Lys Arg	Arg Glu	Asp Glu	Lys Ser	Ile
1	5			10		15	
Gln Ser Gln	Glu Pro	Lys Thr	Thr Ser	Leu Gln	Lys Glu	Leu Gly	Leu
	20		25			30	
Ile Ser Gly	Ile Ser	lle Ile	Val Gly	Thr Ile	Ile Gly	Ser Gly	Ile ·
35			40		45	·.	· · · .
Phe Val Ser	Pro Lys	Ser Val	Leu Ser	Asn Thr	Glu Ala	Val Gly	Pro.
50	· • ,	- 55			60		-
Cys Leu Ile	Ile Trp	Ala Ala	Cys Gly	Val Leu	Ala Thr	Leu Gly	Ala
65	• 1	70		75	: .:.	***	80
Leu Cys Phe	Ala Glu	ı Leu Gly	Thr Met	Ile Thr	Lys Ser	Gly Gly	Glu
	88	5		90		-95	1.4%
Tyr Pro Tyr	Leu Met	t Glu Ala	Tyr Gly	Pro Ile	Pro Ala	Tyr Leu	Phe
	100		105	; ·		. 110 .	:
Ser Trp Ala	Ser Le	ı Ile Val	Ile Lys	Pro Thr	Ser Phe	Ala Ile	lle
<i>i</i>	5	14	120	٠.	. 125	; , , , · ·	
Cys Leu Se							
130		135	5		140		a_{i}

Lys	Pro	Pro	Gln	Ile	Val	Val	Lys	Cys	Leu	Ala	Ala	Ala	Ala	Ile	Leu
145					150					155					160
Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly	Ser	Tyr	Val
	: .	ſ		165					170					175	
Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	Val	Ala	Ile	Ile	Ile
			180					185					190		
Ile	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln	Gly	Asn	Thr	Lys	Asn	Phe	Asp
		195					200					205			
Asn	Ser	Phe	Glu	Gly	Ala	Gln	Leu	Ser	Val	Gly	Ala	Ile	Ser	Leu	Ala
	210					215					220				
Phe	Tyr	Asn	Gly	Leu	Trp	Ala	Tyr	Asp	Gly	Trp	Asn	Gln	Leu	Asn	Tyr
225	٠.		•		230					235					240
Ile	Thr	Glu	Glu	Leu	Arg	Asn	Pro	Tyr	Arg	Asn	Leu	Pro	Leu	Ala	Ile
				245					250					255	
Ile	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	Met	Asn	Val
		٠	260					265					270	:	
Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	Ser	Gln	Ala
		275					280					285			
Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	Ser	Trp	Ile
	290					295					300				
Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	Asn	Gly	Thr
305					310					315				٠ ٠.	320
Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	Glu	Gly	His
				325					330					335	
Met	Leu	Lys	Val	Leu	Ser	Tyr	Ile	Ser	Val	Arg	Arg	Leu	Thr	Pro	Ala

	340					345				٠	350		
Pro Ala Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	Ile	Ile	Pro
355					360	<i>.</i> ·		÷ ė		365	•	•	
Gly Asp Ile	Asn	Ser	Leu	Val	Asn	Tyr	Phe	Ser	Phe	Ala	Ala	Trp	Leu
370		•	•	375	•		, •		380	•	•		
Phe Tyr Gly	Leu	Thr	Ile	Leu	Gly	Leu	Ile	Val	Met	Arg	Phe	Thr	Arg
385	÷		390	÷				395					400
Lys Glu Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	Pro	Val	Leu
		405					410					415	• •
Met Thr Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	Ile	Ser	Lys
	420					425					430		٠.
Pro Thr Trr	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	Ser	Gly	Leu
435	· · ·				440					445			
Leu Phe Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	Ala	Gln	Lys
450 -		٠		455	• •			-	460		-	•	
Ile Ser Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met	Glu	Val	Val
465		:	470			• •		475			••		· 480 ··
Pro Pro Glu	ı Glu	Asp	Pro	Glu									
		485		4		٠.	٠.		•	•			V Car
													•
<210> 34	٠	•		•		• •	•		•	• • •	٠		
<211> 375													•
<212> PRT	٠			· ·				··· ,	•	• . • .	., .		الاحدادي
<213> Homo	sap	iens								•			
<400> 34·			. *	٠٠,	. t .			. 1		:		· · · · · · · · · · ·	

Met	Thr	Pro	Gln	Pro	Ala	Gly	Pro	Pro	Asp	Gly	Gly	Trp	Gly	Trp	Val
.1	' ; .			5					. 10			٠.		15	
Val	Ala	Ala	Ala	Ala	Phe	Ala	Ile	Asn	Gly	Leu	Ser	Tyr	Gly	Leu	Leu
		.••	20		٠.		٠	25					30		
Arg	Ser	Leu	Gly	Leu	Ala	Phe	Pro	Asp	Leu	Ala	Glu	His	Phe	Asp	Arg
		- 35					40					45			
Ser	Ala	Gln	Asp	Thr	Ala	Trp	Ile	Ser	Ala	Leu	Ala	Leu	Ala	Val	Gln
	- 50					55		•			60				
Gln	Ala	Ala	Ser	Pro	Val	Gly	Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala
65					70					75					80
Arg	Pro	Val	Val	Met	Val	Gly	Gly	Val	Leu	Ala	Ser	Leu	Gly	Phe	Val
				85					90					95	
Phe	Ser	Ala	Phe	Ala	Ser	Gly	Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly
			100					105					110		
Leu	Leu	Ala	Gly	Phe	Gly	Trp	Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly
	,	115					120					125			
Thr	Leu	Ser	Arg	Tyr	Phe	Ser	Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu
	130					135					140				
Ala	Leu	Thr	Gly	Asn	Gly	Ala	Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu
145	:	•			150					155		•			160
Gln	Leu	Leu	Leu	Asp	Thr	Phe	G1y	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu
				165					170			٠		175	• •,
Gly	Ala	Ile	Thr	Leu	His	Leu	Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro
			180					185					190		
Leu	Val	Leu	Pro	Gly	Asp	Pro	Pro	Ala	Pro	Pro	Arg	Ser	Pro	Leu	Ala

	•	195				• •	200		•	•		205		•••	
Ala	Leu	Gly	Leu	Ser	Leu	Phe	Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala
	210		٠.		٠	215				•	220	ı		··. •	
Leu	Gly	Thr	Ala	Leu	Val	Gly	Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His
225					230					235		2			240
Leu	Ala	Pro	Arg	Phe	Arg	Pro	Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala
				245					250			•		255	٠.
Gly	Gly	Gly	Arg	Gly	Cys	Asp	Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu
	· .		260		•		٠	265					270		•
Arg	Val	Ala	Gly	Arg	Pro	Arg	Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly
	•	275					280					285			
Arg	Ile	Arg	Gly	Ser	Asp	Trp	Ala	Gly	Ala	Val	Gly	Gly	Gly	Ala	Gly
	290		•			295	.				300		•		
Ala	Arg	Gly	Gly	Arg	Arg	Arg	Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg
305		•			310		•	•		315	•	,			320
Gly	Cys	Gly	Leu	Trp	Ala	Glu	Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe
•	. : '		•	325					330			•		335	. • • •
Arg	Cys	Thr	Pro	Arg	Ala	Gly	Gly	Arg	Arg	Arg	Cys	Gly	Ala	Gly	His
.•	:		340		•	•	•	345		•			350	•	• •
Arg	Ala	Gly	Asp	Asp	Ala	Asp	Glu	Pro	Arg	Gly	Ala	Pro	Gly	Pro	Ser
		355		. <i>'</i>	•	:	360		•	•		365	•	. •	: .:
Pro	Val	Arg	Leu	Pro	Lys	Gly						:			•
, ,	370		•			375		- •		:	: .,	•		7.4	\ .
							t'								

PNEDOCID: -WO 011288042 L

<211	> 35	0					٠.								
<212	>. PR	T													
<213	> Ho	omo s	apie	ns ·		•			•				•		
<400	> 35	j .									•			-	
Met	Ala	Thr	Thr	Ala	Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly
1				5					10					15	
Pro	Glu	Trp	Gly	Gly	Phe	Glu	Glu	Asn	Ile	Gln	Gly	Gly	Gly	Ser	Ala
			20					25					30		
Val	Ile	Asp	Met	Glu	Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu
		35					40					45			
Asp	Met	Gly	Glu	Leu	His	Gln	Arg	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala
	50					55					60				
Asp	Ala	Ala	Asp	Ala	Ala	Ala	Ala	Glu	Glu	Glu	Asp	Gly	Glu	Phe	Leu
65					70					75					80
Gly	Met	Lys	Gly	Phe	Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln
		•		85					90					95	
Met	Trp	Gln	Ala	Gly	Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr
			100					105					110		
Ala	Asn	Ile	Asp	Ile	Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln-
	.•	115		. •			120					125			
Val	Arg	Ser	Arg	Leu	Leu	Glu	Ser	Met	Ile	Pro	Ile	Lys	Met	Val	Asn
	130)			·	135					140			ů.	; ;
Phe	Pro	Gln	Lys	: Ile	Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val
145	;				150)				155					160
Phe	. Thi	- Lei	ı Val	l Ala	ı Ile	e Leu	Leu	His	Gly	Met	Lys	Thr	Ser	Asp	Thr:

	165	170	175	• :
Ile Ile Arg G	Slu Gly Thr Leu	Met Gly Thr Ala	Ile Gly Thr Cys	Phe
1	80	185	190	
Gly Tyr Trp L	eu Gly Val Ser	Ser Phe Ile Tyr	Phe Leu Ala Tyr I	Leu
195		200	205	r.
Cys Asn Ala G	In Ile Thr Met	Leu Gln Met Leu A	Ala Leu Leu Gly 1	Tyr
210	215	• ;	220	
Gly Leu Phe G	ly His Cys Ile	Val Leu Phe Ile 1	Thr Tyr Asn Ile i	His
225	230	235		240
Leu His Ala Le	eu Phe Tyr Leu I	Phe Trp Leu Leu V		
	245	250	255	
Thr Leu Arg Ma		Leu Val Ser Arg 1		Γhr
	60	265	270	
				nL _
275		Thr Leu Ala Ala I 280		ne
			285	. •
		Tyr His Lys Val V		
290	295		300 100 100 100 100 100	
		Ile Pro Pro Ile G	Gln Arg Vál Pro A	lrg
305	310	315	3	320
Asp Ile Pro Al	la Met Leu Pro A	Ala Ala Arg Leu F	Pro Thr Thr Val L	.eu
	325	330	335	
Asn Ala Thr Al	la Lys Ala Val <i>A</i>	Ala Val Thr Leu G	Gln Ser His	:
34	40	345	350	
٠	6.1°	•	•	<i>¥.</i>
<210> 36	Company of the second	San Company	to the great sections	:

<211	> 66	7 :													
<212	>, PF	RT _.		<i>:</i> ·		,									
<213	> Hc	omo s	apie	ns									٠		
<400	> 3€	S					•			···			. •		. •
Met	Ser	Ser	Gln	Pro	Ala	Gly	Asn	Gln	Thr	Ser	Pro	Gly	Ala	Thr	Glu
1				. 5					10					15	
Asp	Tyr	Ser	Tyr	Gly	Ser	Trp	Tyr	Ile	Asp	Glu	Pro	Gln	Gly	Gly	Glu
			20					25					30		
Glu	Leu	Gln	Pro	Glu	Gly	Glu	Val	Pro	Ser	Cys	His	Thr	Ser	Ile	Pro
		35					40					45			
Pro	Gly	Leu	Tyr	His	Ala	Cys	Leu	Ala	Ser	Leu	Ser	Ile	Leu	Val	Leu
	50					55					60				
Leu	Leu	Leu	Ala	Met	Leu	Val	Arg	Arg	Arg	Gln	Leu	Trp	Pro	Asp	Cys
65					70					75					80
Val	Arg	Gly	Arg	Pro	Gly	Leu	Pro	Ser	Pro	Val	Asp	Phe	Leu	Ala	Gly
	ϵ_{i}^{\pm} ,		4	85					90					95	
Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	Ala	Väl	Phe	Met	Val	Leu	Leu	Ser
			100					105					110		
Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	Glu	Asp	Ala	Leu	Pro	Phe	Leu	Thr
	•	115	;	•			120					125	•		
Leu	Ala	. Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	Glu	Ala	Pro	Arg	Gly
	130) , .				135					140)			
Ala	Tr	Lys	; Ile	. Leu	Gly	Leu	Phe	Тут	Tyr	Ala	a Ala	Leu	ı Tyr	Tyr	Pro
145	5,				150)				155	5	: '			160
Let	ı Ala	a Ala	a Cys	. Ala	1 Thr	Ala	Gly	His	Thi	r Ala	a Ala	a His	: Lei	ı Let	ı Gly

				165					170					175		•
Ser	Thr	Leu	Ser	Trp	Ala	His	Leu	Gly	Val	Gln	Val	Trp	Gln	Arg	Ala	
			180					185				:	190		.:	٠.
Glu	Cys	Pro	Gln	Val	Pro	Lys	Ile	Tyr	Lys	Tyr	Tyr	Ser	Leu	Leu	Ala	
		195					200	;			٠.	205		•	٠.	
Ser	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Gly	Phe	Leu	Ser	Leu	Trp	Tyr	Pro	
	210			٠		215		٠			220			٠	, '	
Val	Gln	Leu	Val	Arg	Ser	Phe	Ser	Arg	Arg	Thr	Gly	Ala	Gly	Ser	Lys	
225					230					235	-			•	240	
Gly	Leu	Gln	Ser	Ser	Tyr	Ser	Glu	Glu	Tyr	Leu	Arg	Asn	Leu	Leu	Cys	
	. '			245					250					255		
Arg	Lys	Lys	Leu	Gly	Ser	Ser	Tyr	His	Thr	Ser	Lys	His	Gly	Phe	Leu	
			260		•			265			•	-	270			
Ser	Trp	Ala	Arg	Val	Cys	Leu	Arg	His	Cys	Ile	Tyr	Thr	Pro	Gln	Pro	,
	. •	275	•				280					285	;	•		•
Gly		His	Leu	Pro	Leu		Leu	Val	Leu	Ser		Thr	Leu	Thr	Gly	
	290					295					300	• .	•	•	:	.**
	Ala	Ile	Tyr	Gln		Ala	Leu	Leu	Leu	Leu	Val	Gly	Val	Val		
305					310					315					320	
															Leu	
															Val	
															: 1 .	
															Ser	
1.	- •	4hh					366					400	- 1			

BNSDOCID: «WO 0112660A2 1

4 - 4 - 10 - 10

Ala	Leu	Val	Leu	Ser	Cys	Leu	Leu	Thr	Phe	Leu	Val	Leu	Met	Arg	Ser
	370					375					380				
Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	His	Arg	Gly	Ala	Ala
385	, <u>;</u>				390	•				395					400
Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	Pro	Ser	Arg	G1n	Ala
	·			405					410					415	
Ile	Phe	Cys	Trp	Met	Ser	Phe	Ser	Ala	Tyr	Gln	Thr	Ala	Phe	Ile	Cys
	٠,		420			:		425				•	430	٠.	•
Leu	G1y	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	Leu	Gly	Thr	Thr	Ala
		435					440					445			
Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	Gly	Arg	Asn	Leu	Leu
	450					455					460				
Leu	Phe	Arg	Ser	Leu	Glu	Ser	Ser	Trp	Pro	Phe	Trp	Leu	Thr	Leu	Ala
465					470					475					480
Leu	Ala	Val	Ile	Leu	Gln	Asn	Met	Ala	Ala	His	Trp	Val	Phe	Leu	Glu
				485					490					495	
Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	Arg	Val	Leu	Tyr	Ala
			500)				505					510		
															Val
		.,515	5.				520	i				525	;		
Ala	Thr	Trp	Arg	g Val	Leu	Leu	Ser	Ala	Leu	Tyr	Asr	ı Ala	Ile	His	Leu
	.√ 53 0) ()			. :	538	5		÷		-540) .	. •	٠.	:
															ı Asp
54	5	ı ,			, 550)				555	5 .	· [· ·			560
Pro	o G1 :	v Tv:	r Tv	r Th	r Tvi	r Ar	g Asr	n Phe	e Let	ı Lys	s Ile	e Glu	ı Val	Ser	Gln

BNCDOCID: -WO 011366043 L

•		565					570				•	575	'
Ser His P	ro Ala	Met	Thr	Ala	Phe	Cys	Ser	Leu	Leu	Leu	Gln	Ala	Gln
. 1	580) .				585					590	:	
Ser Leu L	eu Pro	Arg	Thr	Met	Ala	Ala	Pro	Gln	Asp	Ser	Leu	Arg	Pro .
5	95				600					605		.:	
Gly Glu G	lu Asp	Glu	Gly	Met	Gln	Leu	Leu	Gln	Thr	Lys	Asp	Ser	Met
610	÷	,		615					620				. , .
Ala Lys G	ly Ala	Arg	Pro	Gly	Ala	Ser	Arg	Gly	Arg	Ala	Arg	Trp	Gly
625			630					635					640
Leu Ala T	yr Thr	Leu	Leu	His	Asn	Pro	Thr	Leu	Gln	Val	Phe	Arg	Lys
							650					655	
Thr Ala L	eu Leu	ı Gly	Ala	Asn	Gly	Ala	Gln	Pro					
	660					665							
•													
<210> 37 ⋅							,				,		4
<211> 464							•						
<212> PRT				y.	,	,							; *
<213> Hom		ens											
<400> 37								. :					
				Dha	Wa+	₩a+				۸1۵	Luc	Clar	Vo1
Met Ile V													
1													
Gln Leu V													
and the	• 20) ·	•	٠٠,	•	· 25	•	•	:	. •	30	•	sy str
Thr'Ser S													
11247 124	35	1	•		40		٠.			45		. :	9 7

Val	Leu	Ser	Tyr	Phe	Ser	Ser	His	Tyr	Pro	Pro	Ser	Ile	Ile	Leu	Ala
	50					55					60				
Lys	Glu	Ser	Tyr	Ala	Glu	Leu	Ile	Met	Lys	Leu	Leu	Lys	Val	Ser	Ala
65	٠.	٠.			70					75		<u>.</u>			80
Gly	Leu	Ser	Ile	Pro	Thr	Asp	Ser	Gln	Lys	His	Leu	Asp	Ala	Val	Pro
				85					90					95	
Lys	Cys	Gln	Ala	Phe	Thr	His	Gln	Met	Val	Gln	Phe	Leu	Ser	Thr	Leu
			100					105					110		•••
Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val	Leu	Glu	Gln	Glu	Met	Ser
		115					120					125			
Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn	Pro	Pro	Asp	Met	Asp	Ser
	130					135					140				
Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu	Phe	Met	Glu	Val	Leu	Met
145			•		150					155					160
Met	Met	Asn	Asn	Ala	Thr	Ile	Pro	Thr	Ala	Glu	Phe	Leu	Arg	Gly	Ser
				165					170		,			175	
Ile	Arg	Thr	Trp	Ile	Gly	Gln	Lys	Met	His	Gly	Leu	Val	Val	Leu	Pro
			180					185					190		
Leu	. Leu	Thr	Ala	Ala	Cys	Gln	Ser	Leu	Ala	Ser	Val	Arg	His	Met	Ala
	: •	195					200					205			: *
Glu	Thr	Thr	Glu	Ala	Cys	Ile	Thr	Ala	Tyr	Phe	Lys	Glu	Ser	Pro	Leu
	210) .		•		215	;		٠,	:	220)			
Asn	Gln	Asr	Ser	Gly	Trp	Gly	Pro	Ile	Leu	Val	Ser	Leu	Gln	Val	Pro
225	5 .				230)				235	i	• :			240
C1.	. 1	. The	. Mat	. G1,	. Glu	Phe	ום [Gln	Gla	ı Cvs	: Lei	Thr	· Leu	Gly	Ser

• • • • •	245	."		250			255	• •
Tyr Leu Thr	Leu Tyr	Val Tyr	Leu L	eu Gln	Cys Le	eu Asn	Ser Glu	Gln
	260		2	65			270	
Thr Leu Arg	Asn Glu	Met Lys	: Val L	eu Leu	Ile Le	eu Ser	Lys Trp	Leu
275			280			285	,	1941 94
Glu Gln Val	Tyr Pro	Ser Ser	r Val G	lu Glu	Glu A	la Lys	Leu Phe	Leu
290		29	5		3	00		*
Trp Trp His	Gln Val	Leu Gl	n Leu S	Ser Leu	Ile G	ln Thr	Glu Gl	n Asn
305		310			315		٠	320
Asp Ser Val	l Leu Thi	r Glu Se	r Val	Ile Arg	Ile L	eu Leu	Leu Va	l Gln
	32	5	-	330			33	5 .
Ser Arg Gla	n Asn Lei	u Val Al	a Glu (Glu Arg	Leu S	er Ser	· Gly Il	e Leu
	340		;	345			350	
Gly Ala Il	e Gly Ph	e Gly Ar	g Lys	Ser Pro	Leu S	Ser Asr	ı Arg Ph	e Arg
35	5		360			365	5	4
Val Val Al	a Arg Se	r Met Al	a Ala	Phe Lev	ı Ser V	Val Gl	ı Val Pr	o Met
370		3'	75		,	380	,	
Glu Asp Gl	n Ile Ar	g Leu A	rg Pro	Gly Sea	r Glu	Leu Hi	s Leu Th	ır Pro
385		390						400
Lys Ala Gl								
. • . • • •		05						
Gln Tyr Va								
Arg His P								
	35		440	1	٠,	44	15	± 1 + 44 - 49

The state of the s

Leu	(Va)	l Ası	n Cys	s Le	ı Tyr	r Pro	Glu	ı Val	His	S Tyr	Leu	ı Ası	His	Ile	Arg	
	450)				455	5				460)				
<21	0>, 3	8		÷, *												
<21	1> 4	70														
<21	2>. P	RT														
⟨21	3> H	omo	sapi	ens												
<40	0> 3	8 .														
Met	Ser	Arg	Leu	Gly	Ala	Leu	Gly	Gly	Ala	Arg	Ala	Gly	Leu	Gly	Leu	
1				5					10					15		
Leu	Leu	Gly	Thr	Ala	Ala	Gly	Leu	Gly	Phe	Leu	Cys	Leu	Leu	Tyr	Ser	
	•		20					25				-	30			
Gln	Arg	Trp	Lys	Arg	Thr	Gln	Árg	His	Gly	Arg	Ser	Gln	Ser	Leu	Pro	
		35					40					45				
Asn	Ser	Leu	Asp	Tyr	Thr	Gln	Thr	Ser	Asp	Pro	Gly	Arg	His	Val	Met	
	50	٠.,	•			55					60				٠.	
Leu	Leu	Arg	Ala	Val	Pro	Gly	Gly	Ala	Gly	Asp	Ala	Ser	Val	Leu	Pro	
65 .					70					75					80	
Ser	Leu											Arg	Leu	Asp.	Phe	
	13													95		
													Glu			
													110			
Ser	Ser	Leu	Arg	Gly	Leu	Ala	Gly	Glu	Ile	Val	G1y	Glu	Val	Arg	Cys	
His	Met	Glu	Glu	Asn	Gln	Aro	Va1	412	Ara	A	4	A ~~~	Dha	D	Dha	

	130	•	.		, •	135			•••		140	•			
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser ·	Ser	Ser	Val	Tyr	Phe	Thr
145		•			150					155					160
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	Glu	Gly	Gly	Tyr
				165					170					175	
Thr	Thr	Ala	Asn	Ala	'G1u	Ser	Asp	Asn	Glu	Arg	Asp	Ser	Asp	Lys	Glu
		٠	180					185					190	٠.	
Ser	Glu	Asp	Gly	Glu	Asp	Glu	Val	Ser	Cys	Glu	Thr	Val	Lys	Met	Gly
	:	195			٠.		200			•		205			·. '
Are	g Lys	Asp	Ser	Leu	Asp	Leu	Glu	Glu	Glu	Ala	Ala	Ser	Gly	Ala	Ser
	210)				215					220				•
Sei	. Ala	. Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro
229	5				230	•			٠	235					240
Lei	ı Lev	ı Glr	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys
			,	245	;				250			ı	•	255	, ·
Ar	g Glu	ı Gly	r Phe	e Gln	Leu	ı Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser
			260)		٠.		265	;		-		270	,	
Ar	g Gl	n Ası	Phe	e Leu	ı Trp	Are	Leu	Ala	Arg	, Ala	Tyr	Ser	Asp	Met	Cys
		279	5				280)		٠.		285	5	-	
Gl	u Le	u Th	r Glo	u Glu	ı Va	l Sei	Glu	Lys	Lys	s Ser	Tyr	Ala	Leu	Ası	Gly
	29	0.	٠.			298	5		٠.		300			• •	• •
Ly	s Gl	u Gl	u Al	a Gl	u Al	a Ala	a Leu	ı Glu	ı Lys	s Gly	y Asp	Glu	ı Ser	· Ala	a Asp
30)5	•		٠,	31	0				31	5				320
Cy	rs Hi	s Le	u Tr	р Ту	r Al	a Va	l Lei	ı Cy:	s Gl	y Gl	n Lei	ı Ala	a Glu	ı Hi	s Glu
	٠,٠			32	5		ı		33	0				· 33	5 :

Ser Ile Gln Arg Arg Ile Gln Ser Gly Phe Ser Phe Lys Glu His Val
340 345 350
Asp Lys Ala Ile Ala Leu Gln Pro Glu Asn Pro Met Ala His Phe Leu
355 360 365
Leu Gly Arg Trp Cys Tyr Gln Val Ser His Leu Ser Trp Leu Glu Lys
370 375 380
Lys Thr Ala Thr Ala Leu Leu Glu Ser Pro Leu Ser Ala Thr Val Glu
385 390 395 400
Asp Ala Leu Gln Ser Phe Leu Lys Ala Glu Glu Leu Gln Pro Gly Phe
405 410 415
Ser Lys Ala Gly Arg Val Tyr Ile Ser Lys Cys Tyr Arg Glu Leu Gly
420 425 430
Lys Asn Ser Glu Ala Arg Trp Trp Met Lys Leu Ala Leu Glu Leu Pro
435 440 445
Asp Val Thr Lys Glu Asp Leu Ala Ile Gln Lys Asp Leu Glu Glu Leu
450 455 460
Glu Val Ile Leu Arg Asp
465 470
<210> 39 · · · · · · · · · · · · · · · · · ·
⟨211⟩ 243
<pre><212> PRT</pre>
<213> Homo sapiens
<400> 39
Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro Val Asn Val Phe

· ,

1			÷	5					10	•		k.		·15	
Ser	Val	Thr	Pro	Tyr	Thr	Pro	Ser	Thr	Ala	Asp	Ile	Gln	Val	Ser	Asp
	•		20					25				,	30	,	
Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	Ile	Phe	Leu	Gly
	• ;	35					40					45		•	200
Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	Gly	Trp	Ile	Lys	Tyr	Gln	Gly
	50					55				*	60				•
Val			Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	Val	Leu	Leu	Ser
65					70					75					80
		. Val	Thr	· Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	Phe	Lys	Met	Leu
	,			. 85					90					95	
Ser	- Cvs	s Glr	ı Leu	ı Cys	Lys	: Glu	. Ser	Glu	Glu	Arg	Val	Pro	Asp	Ser	Glu
			100					105					110		
Gli	ı Thi	r Pro			, Pro	Ser	- Phe	e Val	Phe	. Thi	- Gly	, Ile	e Ası	n Glr	n Pro
01.		115					120					129			r ,
11.	e Th			s Gl	v Ala	a Thi	r Val	l Val	Glr	n Tyi	r Il	e Pro	o Pro	o Pro	o Tyr
11.	13		-		•	13					14			, ,	
C1			o G1	u Pr	o Me			e Ası	n Thi	r Se	r Ty	r Le	u Gl	n Se	r Val
14				• • •	15		•			15					160
		r Pr	n Cv	s Gl			e Th	r Se	r Gl	y Gl	y Al	a Al	a Al	a Al	a Met
¥ a	1 50		0 0,	16			•	_	17						5
Ç.	- C.	. D.	Dr			r Tu	r ፕե	r 11			o G1	n As	p As	n Se	er Ala
26	:r 36	:I TI			. 11 г. ј	y	_ 11	18		- ••					· . !!!
	1,	1 "		30 C1	i ci	C-	. 1 -			_{ነው} ጥ	nr Ac				sn His
Pł	ne Va	at As	ai As	sp G	Lu G	y U	SLE	su st	1 1 1	10 11		. ت بر	-,		

Ar	g Pr	o As	n Pr	o A	sp	Val	Asp	Glr	Le	u Gl	ı Glı	ı Thi	r Gl	n Le	u Gl	u Glu
	21	0					215			•		220)		•	
Glu	ı Al	a . Cy	s Al	a C	ys	Phe	Ser	Pro	Pro	o Pro	э Туз	r Glu	ı Glı	u Il	е Ту	r Ser
225	5			•		230					235	5				240
Leu	Pr	o Ar	g													
	•															
<21	0> 4	40													•	
<21	1> :	270														
<21	2 > I	PRT														
<21	3> 1	lomo	sap	iens	;											
<40	0> 4	10														
Met	Ala	Gly	Ala	a Gl	u A	Asp	Trp	Pro	Gly	Gln	Gln	Leu	Glu	Leu	Asp	Glu
1					5					10					15	i
Asp	Glu	Ala	Sea	r Cy	s C	Cys	Arg	Trp	G1y	Ala	Gln	His	Ala	Gly	Ala	Arg
	-		20)					25					30		
Glu	Leu	Ala	Ala	a Le	u T	yr	Ser	Pro	Gly	Lys	Arg	Leu	Gln	Glu	Trp	Cys
	٠.	35	٠.	•				40					45			
Ser	Val	Ile	Leu	ı Cy	s P	he	Ser	Leu	Ile	Ala	His	Asn	Leu	Val	His	Leu
	50		•				- 55					60				
Leu	Leu	Leu	Ala	Ar	g T	rp	Glu	Asp.	Thr	Pro	Leu	Val	Ile	Leu	Gly	Val
65						70					75					80
/al	Ala	Gly	Ala	Le	uΙ	le	Ala	Asp	Phe	Leu	Ser	Gly	Leu	Val	His	Trp
				8	5					90					95	
Gly	Ala	Asp	Thr	Tr	o G	ly:	Ser	Val	Glu	Leu	Pro	Ile	Val	Gly	Lys	Ala
			100						105				1	110		

מוניספות היוספפתאס ו

Phe	Ile	Arg	Pro	Phe	Arg	Glu	His	His	Ile	Asp	Pro	Thr	Ala	Ile	Thr	
		115					120					125		٠.		
Arg	His	Asp	Phe	Ile	Glu	Thr	Asn	Gly	Asp	Asn	Cys	Leu	Val	Thr	Leu	
	130					135					140				•	
Leu	Pro	Leu	Leu	Asn	Met	Ala	Tyr	Lys	Phe	Arg	Thr	His	Ser	Pro	Glu	
145					150					155					160	
Ala	Leu	Glu	Gln	Leu	Tyr	Pro	Trp	Glu	Cys	Phe	Val	Phe	Cys	Leu	Ile	
				165					170					175	. `	
Ile	Phe	Gly	Thr	Phe	Thr	Asn	Gln	Ile	His	Lys	Trp	Ser	His	Thr	Tyr	
			180					185					190	•	*, 1	
Phe	Gly	Leu	Pro	Arg	Trp	Val	Thr	Leu	Leu	Gln	Asp	Trp	His	Val	Ile	
		195					200					205				
Leu	Pro	Arg	Lys	His	His	Arg	Ile	His	His	Val	Ser	Pro	His	Glu	Thr	
	210	,				215					220	١		•		
Tyr	Phe	Cys	Ile	Thr	Thr	Gly	Trp	Leu	Asn	Tyr	Pro	Leu	Glu	Lys	Ile	
225	, -				230					235	;	:	•	· r,	240	
Gly	Phe	Trp	Arg	, Arg	Leu	Glu	Asp	Leu	Ile	Gln	Gly	Leu	Thr	Gly	Glu	
	,		• .	245	i				250				:	255	, . ·	٠
Lys	Pro	Arg	g Ala	a Asp	Asp	Met	. Lys	Trp	Ala	Glr	ı Lys	: Ile	e Lys	;	F2 -	
	٠.	. ,	260)		,		265	;· .			;	270) ' <u>i</u> '	. نُد	
	•														•.	-
<2	10> 4	41		:	•	, ,							• • •			-
<2	11>	1131				-										
<2	12> 1	DNA	•		•. •		; .			, ,	٠.	٠,	:.	ŧ	, . . ¥	٠ 1
(2	13> 1	Ното	san	iens			٠,					•	.:			

<400> 41

					•	
atggactcgg	ccctcagcga	tccgcataac	ggcagtgccg	aggcaggcgg	cccaccaac	60
agcactacgc	ggccgccttc	cacgcccgag	ggcatcgcgc	tggcctacgg	cagcctcctg	120
ctcatggcgc	tgctgcccat	cttcttcggc	gccctgcgct	ccgtacgctg	cgcccgcggc	180
aagaatgctt	cagacatgcc	tgaaacaatc	accagccggg	atgccgcccg	cttccccatc	240
atcgccagct	gcacactctt	ggggctctac	ctcttttca	aaatattctc	ccaggagtac	300
atcaacctcc	tgctgtccat	gtatttcttc	gtgctgggaa	tcctggccct	gtcccacacc	360
atcagcccct	tcatgaataa	gtttttcca	gccagctttc	caaatcgaca	gtaccagctg	420
ctcttcacac	agggttctgg	ggaaaacaag	gaagagatca	tcaattatga	atttgacacc	480
aaggacctgg	tgtgcctggg	cctgagcagc	atcgttggcg	tctggtacct	gctgaggaag	540
cactggattg	ccaacaacct	ttttggcctg	gccttctccc	ttaatggagt	agagctcctg	600
cacctcaaca	atgtcagcac	tggctgcatc	ctgctgggcg	gactcttcat	ctacgatgtc	660
ttctgggtat	ttggcaccaa	tgtgatggtg	acagtggcca	agtccttcga	ggcaccaata	720
aaattggtgt	ttccccagga	tctgctggag	aaaggcctcg	aagcaaacaa	ctttgccatg	780
ctgggacttg	gagatgtcgt	cattccaggg	atcttcattg	ccttgctgct	gcgctttgac	840
atcagcttga	agaagaatac	ccacacctac	ttctacacca	gctttgcagc	ctacatcttc	900
ggcctgggcc	ttaccatctt	catcatgcac	atcttcaagc	atgctcagcc	tgccctccta	960
tacctggtcc	ccgcctgcat	cggttttcct	gtcctggtgg	cgctggccaa	gggagaagtg	1020
acagagatgt	tcagttatga	ggagtcaaat	cctaaggatc	cagcggcagt	gacagaatcc	1080
aaagagggaa	cagaggcatc	agcatcgaag	gggctggaga	agaaagagaa	a	1131
		•	· - ,	• • •		
<210> .42.						
<211>243						
<212> DNA		•••	- 1		· · · · · · · · · · · · · · · · · · ·	
<213> Homo	sapiens	* * # # * * * * * *	5.			

720

780

90 /307

31 - F

<400> 42	
atgacggcgc actcattcgc cctcccggtc atcatcttca ccacgttctg gggcctcgtc	60
ggcatcgccg ggccctggtt cgtgccgaag ggacccaacc gcggagtgat catcaccatg	120
ctggtcgcca ccgccgtctg ctgttacctc ttctggctca tcgccatcct ggcgcagctg	180
aacccctgt tcgggcccca gctgaagaat gagaccatct ggtacgtgcg cttcctgtgg	240
gag	243
<210> 43	
<211> 1461	
<212> DNA	
<213> Homo sapiens	
<400> 43	
atgggggata ctggcctgag aaagcggaga gaggatgaga agtcgatcca gagccaagag	60
cctaagacca ccagtctcca aaaggagctg ggcctcatca gtggcatctc catcatcgtg	120
ggcaccatca ttggctctgg gatcttcgtt tcccccaagt ctgtgctcag caacacggaa	180
gctgtggggc cctgcctcat catatgggcg gcttgcgggg tcctcgcgac gctgggtgcc	240
ctgtgctttg cggagcttgg cacaatgatc accaagtcag ggggagagta tccctacctg	300
atggaggeet aegggeeeat eccegeetae etetteteet gggeeageet gategteatt	360
aagcccacgt cettegecat catetgeete agetteteeg agtatgtgtg tgegeeette	420
tatgtgggct gcaagcctcc tcaaatcgtt gtgaaatgcc tggccgccgc cgccatcttg	480
ttcatctcga cagtgaactc actgagcgtg cggctgggaa gctacgtcca gaacatcttc	540
accgcggcca agctggtgat cgtggccatc atcatcatca gcgggctggt gctcctggcc	600
caaggaaaca caaagaattt tgataattct ttcgagggcg cccagctgtc tgtgggagcc	660

atcagcctgg cgttttacaa tggactctgg gcctatgatg gatggaatca actcaattac

atcacagaag aacttagaaa cccttacaga aacctgcctt tggccattat catcgggatc

BNSDOCID: <WO 0112660A2 I >

cccctggtga	cggcgtgcta	catcctcatg	aacgtgtcct	acttcaccgt	.gatgactgcc	840
accgaactcc	tgcagtccca	ggcggtggct	gtgacatttg	gtgaccgtgt	tctctatcct	900
gcttcttgga	tcgttccact	ttttgtggca	ttttcaacca	tcggtgctgc	taacgggacc	960
tgcttcacag	cgggcagact	catttacgtg	gcgggccggg	agggtcacat	gctcaaagtg	1020
ctttcttaca	tcagcgtcag	gcgcctcact	ccagcccccg	ccatcatctt	ttatggtatc	1080
atagcaacga	tttatatcat	ccctggtgac	ataaactcgt	tagtcaatta	tttcagcttt	1140
gccgcatggc	tgttttatgg	cctgacgatt	ctaggactca	tcgtgatgag	atttacaagg	1200
aaagagctgg	aaaggcctat	caaggtgccc	gtagtcattc	ccgtcttgat	gacactcatc	1260
tctgtgtttt	tggttctggc	tccaatcatc	agcaagccca	cctgggagta	cctctactgt	1320
gtgctgttta	tattaagcgg	ccttttattt	tacttcctgt	ttgtccacta	caagtttgga	1380
tgggctcaga	aaatctcaaa	gccgattacc	atgcaccttc	agatgctaat	ggaagtggtc	1440
ccaccggagg	aagaccctga	g				1461

<210> 44

<211> 1125

<212> DNA

<213> Homo sapiens

<400> 44

atgaccccc agcccgcg acccccggat gggggctggg gctgggtggt ggcggccgca 60gccttcgcga taaacggct gtcctacggg ctgctgcgct cgctgggcct tgccttccct 120
gaccttgccg agcactttga ccgaagcgcc caggacactg cgtggatcag cgccctggcc 180
ctggccgtgc agcagcagc cagccccgtg ggcagcgccc tgagcacgcg ctggggggcc 240
cgccccgtgg tgatggttgg gggcgtcctc gcctcgctgg gcttcgtctt ctcggctttc 300
gccagcggtc tgctgcatct ctacctcggc ctgggcctcc tcgctggctt tggttgggcc 360
ctggtgttcg cccccgccct aggcaccctc tcgcttact tctcccgccg tcgagtcttg 420

gcggtggggc	tggcgctcac	cggcaacggg	gcctcctcgc	tgctcctggc	gcccgccttg	480
cagcttctcc	tcgatacttt	cggctggcgg	ggcgctctgc	tectectegg	cgcgatcacc	540
ctccacctca	cccctgtgg	cgccctgctg	ctaccctgg	tccttcctgg	agacccccca	600
gccccaccgc	gtagtcccct	agctgccctc	ggcctgagtc	tgttcacacg	ccgggccttc	660
tcaatctttg	ctctaggcac	agccctggtt	gggggcgggt	acttcgttcc	ttacgtgcac	720
ttggctcccc	gctttagacc	ggggcctggg	gggatacgga	gcagcgctgg	tggtggccgt	780
ggctgcgatg	ggggatgcgg	gcgcccggct	ggtctgcggg	tggctggcag	accaaggctg	840
ggtgcccctc	ccgcggctgc	tggccgtatt	cggggctctg	actgggctgg	ggctgtgggt	900
ggtggggctg	gtgcccgtgg	tgggcggcga	agagagctgg	gggggtcccc	tgctggccgc	960
ggctgtggcc	tatgggctga	gcgcggggag	ttacgccccg	ctggttttcg	gtgtactccc	1020
cgggctggtg	ggcgtcggag	gtgtggtgca	ggccacaggg	ctggtgatga	tgctgatgag	1080
cctcgggggg	ctcctgggcc	ctcccctgtc	: aggcttccta	aggga	\$ 5 °	1125

<210> 45

<211> 1050

<212> DNA

<213> Homo sapiens

<400> 45

Light of the State of the State

aagatggtc	a acttccccca	gaaaattgca	ggtgaactct	atggacctct	catgctggtc	480
ttcactctg	g tigctatect	actccatggg	atgaagacgt	ctgacactat	tatccgggag	540
ggcaccctga	a tgggcacagc	cattggcacc	tgcttcggct	actggctggg	agtctcatcc	600
ttcatttact	tccttgccta	cctgtgcaac	gcccagatca	ccatgctgca	gatgttggca	660
ctgctgggct	atggcctctt	tgggcattgc	attgtcctgt	tcatcaccta	taatatccac	720
ctccacgccc	tcttctacct	cttctggctg	ttggtgggtg	gactgtccac	actgcgcatg	780
gtagcagtgt	tggtgtctcg	gaccgtgggc	cccacacagc	ggctgctcct	ctgtggcacc	840
ctggctgcco	tacacatgct	cttcctgctc	tatctgcatt	ttgcctacca	caaagtggta	900
gaggggatco	tggacacact	ggagggcccc	aacatcccgc	ccatccagag	ggtccccaga	960
gacatccctg	ccatgctccc	tgctgctcgg	cttcccacca	ccgtcctcaa	cgccacagcc	1020
aaagctgttg	cggtgaccct	gcagtcacac				1050

⟨210⟩ 46

<211> 2001

<212> DNA

<213> Homo sapiens

<400> 46

atgtcgtccc	agccagcagg	gaaccagacc	tccccgggg	ccacagagga	ctactcctat	60
ggcagctggt	acatcgatga	gccccagggg	ggcgaggagc	tccagccaga	gggggaagtg	120
ccctcctgcc	acaccagcat	accacccggc	ctgtaccacg	cctgcctggc	ctcgctgtca	180
atccttgtgc	tgctgctcct	ggccatgctg	gtgaggcgcc	gccagctctg	gcctgactgt	240
gtgcgtggca	ggcccggcct	gcccagccct	gtggatttct	tggctgggga	caggccccgg	300
gcagtgcctg	ctgctgtttt	catggtcctc	ttgagctccc	tgtgtttgct	gctccccgac	360
gaggacgcat	tgcccttcct	gactctcgcc	tcagcaccca	gccaagatgg	gaaaactgag	420
gctccaagag	gggcctggaa	gatactggga	ctgttctatt	atgctgccct	ctactaccct	480

540	cacgctgtcc	tgctcggcag	gctgcacacc	tggccacaca	gtgccacggc	etggetgeet
600	gcccaagatc	gtccccaggt	agggcagagt	ggtctggcag	ttggggtcca	tgggcccacc
660	attcctgagc	tgggcctcgg	cctctcctgc	ggcctccctg	actccctgct	tacaagtact
720	aggctccaag	ggacaggagc	ttcagccgta	ggtgagaagc	ctgtgcagct	ctttggtacc
780	gaagaagctg	tcctttgcag	ctgaggaacc	tgaggaatat	gcagctactc	gggctgcaga
840	ctgcttgaga	gggcccgcgt	ttcctgtcct	caagcatggc	accacacctc	ggaagcagct
900	gctttcagct	tgaagctggt	catctcccgc	gccaggattc	acactccaca	cactgcatct
960	cgtggtaccc	tgctggtggg	gccctgctgc	ttaccaggtg	ggacggccat	acactgacag
1020	ggccggcttt	cctacctgct	acggatgtct	aggggtcacc	aggtgagggc	actatccaga
1080	ccatctgtgg	tggtgaagca	gtggtggagc	caagcaggag	tctccgagga	ggaatcgtgc
1140	cttcctggtc	gcttactcac	gtcttgtcct	ctcagccttg	tgtgctacat	gctctggaag
1200	aggagctgcc	ctctgcaccg	aaccttcgag	acacaggacc	cactggtgac	ctgatgcgct
1260	attctgttgg	gccaagccat	catecetece	tcggagtccc	gtcccttgca	ctggacttga
1320	gcagcagatc	ggctcctggt	atctgccttg	gacagccttt	gtgcctacca	atgagcttca
1380	gctccatggc	tcatgcctgt	ttcctggtgc	ggccctggcc	tgggaaccac	atcttcttcc
1440	gactttggcc	ccttctggct	tcctcgtggc	ttccctggag	tgctcttccg	aggaacctcc
1500	tcatgatgga	tcctggagac	cattgggtct	catggcagcc	tcctgcagaa	ctggctgtga
1560	cttcccctc	cctttcttct	tatgcagcca	gcgagtgctc	tgaccaaccg	cacccacagc
1620	cctctacaac	tcctctctgc	tggcgagtgc	ggtggccacc	tgggtgccat	aatgtgctgg
1680	cactctcgac	cgagagccgc	ctgctgccac	ggacctcagc	ttggccagat	gccatccacc
1740	gcatccagcc	tcagccagtc	aagattgaag	aaacttcttg	acacgtaccg	cccggctact
1800	gaccatggca	tcctacccag	gcgcagagcc	gctcctgcaa	tctgctccct	atgacagcct
1860	gctacagaca	ggatgcagct	gaagacgaag	accaggggag	acagcctcag	gcccccagg
1920	tcgctggggt	gcggcagggc	ggggccagcc	agctaggccc	tggccaaggg	aaggactcca
1980	ggccctgttg	tccgcaagac	ctgcaggtct	caacccaacc	cgctgctgca	ctggcctaca

ggtgccaatg	gtgcccagcc	c	• .		·	2001
• •••	•, •		• .		•	
<210> 47 .						
<211> 1392					• • • • • • • •	
<212> DNA						
<213> Homo	sapiens					
<400> 47		•				
atgattgtct	gcctcctttt	catgatgatt	ttattggcaa	aggaagttca	actggtagac	60
caaacagatt	cacctttact	tagtctcctt	ggacagacaa	gctcactttc	atggcatctt	120
gtggatattg	tgtcgtacca	gagtgtgcta	agttatttca	gcagccatta	cccgccgtcc	180
atcatcctgg	caaaagaatc	ttatgctgaa	ttaatcatga	agctcctaaa	agtgtctgcg	240
ggcctttcta	ttcctactga	cagccagaag	catcttgatg	cagttccaaa	atgccaagct	300
tttactcatc	agatggttca	attcctcagc	accctggaac	aaaatggaaa	aatcacctta	360
gcagtcctag	aacaggaaat	gtctaagctc	ttagacgata	tcattgtctt	taacccgccc	420
gacatggaca	gccagacccg	ccacatggcc	ctcagcagcc	tctttatgga	agtcctgatg	480
atgatgaaca	acgcgactat	tccaacagca	gagttccttc	ggggcagtat	ccggacctgg	540
attggccaaa	aaatgcatgg	gctggtggtg	ctgccccttt	taacagcagc	ctgccagagc	600
ctggcgtccg	tccgccacat	ggctgagact	acagaagcct	gcatcactgc	ctacttcaaa	660
gaaagccctc	tcaatcagaa	ttcaggatgg	ggacccattc	tggtatccct	tcaggttccc	720
gagctcacca	tggaagagtt	cctgcaggag	tgcctcacct	tgggcagtta	cttgactctt	780
tacgtctact	tgcttcagtg	tttaaacagc	gaacagactt	taaggaatga	aatgaaagtg	840
ctgctcatct	taagcaagtg	gctggaacag	gtgtacccaa	gctccgtgga	ggaagaggca	900
aagctgtttt.	tgtggtggca	ccaagtcctt	cagctctccc	tcattcagac	agagcagaat	960
gactccgtcc	tgacagaatc	tgtcattcga	attctgctct	tggttcagag	caggcagaac	1020
ctcataacta	aggagagact	cagetetaga	atootagaga	oosttaaatt	taaccaasa	1080

tcgcctttgt ctaa	caggtt ccgagtg	gtt gcccgaagca	tggctgcctt c	ctttcagtt	1140
caggttccta tgga	agatca gatccgt	ttg aggcctggct	ctgaattaca t	ctgaccccc	1200
aaagctcagc aggc	tctgaa tgctctt	gaa tccatggcat	caagtaagca g	tatgttgaa	1260
taccaggatc aaat	attgca agccacc	caa tttataaggo	atcctggcca t	tgccttcaa	1320
gatgggaaaa gctt	cttggc tcttctc	gtt aactgtctg	atccagaagt g	cattatttg	1380
gaccacatac ga					1392
<210> 48					
<211> 1410		•		and the second	
<212> DNA				••	
<213> Homo sap	iens			- •	
<400> 48			•		
atgtctagac tgg	gagccct gggtgg	tgcc cgtgccggg	c tgggactgtt	gctgggtacc	60
gccgccggcc ttg	gattcct gtgcct	cctt tacagccag	c gatggaaacg	gacccagcgt	120
catggccgca gcc	agagoot goocaa	ctcc ctggactat	a cgcagacttc	agatcccgga	180
cgccacgtga tgc	tectgeg ggetgt	ccca ggtggggc1	g gagatgcctc	agtgctgccc	240
agccttccac ggg	gaaggaca ggagaa	ggtg ctggaccg	c tggactttgt	gctgaccagc	300
cttgtggcgc tgc	eggeggga ggtgga	ggag ctgagaag	ca gcctgcgagg	gcttgcgggg	360
gagattgttg ggg	gaggteeg atgeea	catg gaagagaa	cc agagagtggc	teggeggega	420
aggtttccgt ttg	gtccggga gaggag	tgac tccactgg	ct ccagctctgt	ctacttcacg	480
gcctcctcgg gag	gccacgtt cacaga	ntgct gagagtga	ag ggggttacac	aacagccaat	540
geggagtetg ac	aatgagog ggacto	ctgac aaagaaag	tg aggacgggga	agatgaagtg	600
agctgtgaga ct	gtgaagat gggga	gaaag gattctct	tg acttggagga	agaggcagct	660
tcaggtgcct cc	agtgccct ggagg	ctgga ggttcctc	ag gcttggagga	tgtgctgccc	720
ctcctgcagc ag	gccgacga gctgc	acagg ggtgatga	gc aaggcaagcg	ggagggcttc	780

DESCRIPTION - MO 011288082 1

 $\mathcal{L}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}}) = \mathcal{L}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}})$

cagctgctgc	tcaacaacaa	gctggtgtat	ggaagccggc	aggactttct	ctggcgcctg	840
gcccgagcct	acagtgacat	gtgtgagctc	actgaggagg	tgagcgagaa	gaagtcatat	900
gccctagatg	gaaaagaaga	agcagaggct	gctctggaga	agggggatga	gagtgctgac	960
tgtcacctgt	ggtatgcggt	gctttgtggt	cagctggctg	agcatgagag	catccagagg	1020
cgcatccaga	gtggctttag	cttcaaggag	catgtggaca	aagccattgc	tctccagcca	1080
gaaaacccca	tggctcactt	tcttcttggc	aggtggtgct	atcaggtctc	tcacctgagc	1140
tggctagaaa	aaaaaactgc	tacagccttg	cttgaaagcc	ctctcagtgc	cactgtggaa	1200
gatgccctcc	agagetteet	aaaggctgaa	gaactacagc	caggattttc	caaagcagga	1260
agggtatata	tttccaagtg	ctacagagaa	ctagggaaaa	actctgaagc	tagatggtgg	1320
atgaagttgg	ccctggagct	gccagatgtc	acgaaggagg	atttggctat	ccagaaggac	1380
ctggaagaac	tggaagtcat	tttacgagac				1410

<210> 49

<211> 729

<212> DNA

<213> Homo sapiens

<400> 49 - -

atggagcagg gcagcggccg cttggaggac ttccctgtca atgtgttctc cgtcactcct 60 tacacaccca gcaccgctga catccaggtg tccgatgatg acaaggcggg ggccaccttg 120 ctcttctcag gcatctttct gggactggtg gggatcacat tcactgtcat gggctggatc 180 aaataccaag gtgtctccca ctttgaatgg acccagctcc ttgggcccgt cctgctgtca 240 gttggggtga cattcatcct gattgctgtg tgcaagttca aaatgctctc ctgccagttg 300 tgcaaagaaa gtgaggaaag ggtcccggac tcggaacaga caccaggagg accatcattt 360 gttttcactg gcatcaacca acccatcacc ttccatgggg ccactgtggt gcagtacatc 420 ectectectt atggttetee agageetatg gggataaata ceagetacet geagtetgtg 480

BUSTOCIO--WO 011288082 I .

gtgagcccct	gcggcctcat	aacctctgga	ggggcagcag	ccgccatgtc	aagtcctcct	540
caatactaca	ccatctaccc	tcaagataac	tctgcatttg	tggttgatga	gggctgcctt	600
tctttcacgg	acggtggaaa	tcacaggccc	aatcctgatg	ttgaccagct	agaagagaca	660
cagctggaag	aggaggcctg	tgcctgcttc	tetectecce	cttatgaaga	aatatactct ·	720
ctccctcgc	-		. • .		6 · · · · · · · · · · · · · · ·	729
			,		e je sje	
<210> 50		. •				
<211> 810					٠, .	
<212> DNA					. ** . * * *	
<213> Homo	sapiens				· .	
<400> 50					٠	
atggcgggcg	ccgaggactg	gccgggccag	cagctggagc	tggacgagga	cgaggcgtct	60
tgttgccgct	ggggcgcgca	gcacgccggg	gcccgcgagc	tggctgcgct	ctactcgcca	120
ggcaagcgcc	tccaggagtg	gtgctctgtg	atcctgtgct	tcagcctcat	cgcccacaac	180
ctggtccatc	tcctgctgct	ggcccgctgg	gaggacacac	ccctcgtcat	actcggtgtt	240
gttgcagggg	ctctcattgc	tgacttcttg	tctggcctgg	tacactgggg	tgctgacaca	300
tggggctctg	tggagctgcc	cattgtgggg	aaggctttca	tccgaccctt	ccgggagcac	360
cacattgacc	caacagctat	cacacggcac	gacttcatcg	g agaccaacgg	ggacaactgc	420
ctggtgacac	tgctgccgct	gctaaacatg	g gcctacaag1	tecgcaccca	cagccctgaa	480
gccctggago	agctatacco	ctgggagtgo	ttegtette	t gcctgatca1	cttcggcacc	540
ttcaccaaco	agatccaca:	a gtggtcgcad	c acgtacttt	g ggctgccac	g ctgggtcacc	600
ctcctgcagg	g actggcatg	t catectgees	a cgtaaacac	c atcgcatcca	a ccacgtctca	660
cccacgaga	a cctacttct	g catcaccac	a ggctggctc	a actaccete	t ggagaagata	720
ggcttctgg	c gacgcctgg	a ggacctcat	c cagggcctg	a cgggcgaga	a gcctcgggca	780
gatgacatga	a aatgggccc	a gaagatcaa	a	· * * * * * * * * * * * * * * * * * * *	r yydus feithi	810

													•			
<210>	51		٠,	•						٠.						
<211>	155	1			•										•	•
<212>	DNA-								٠.						•	
<213>	Нове) S	api	ens												
<220>																
<221>	CDS			•		-										
<222>	· (98)	١	. (1	231)												
<400>	51															
caagg	ggaad	g	tgg	cttt	cc c	tgca	gagc	c gg1	tgtci	tccg	cct	gcgt	ccc	tgct.	gcagca	a 60
accgg	agcte	g g	agto	cg g a	tc c	cgaa	cgca	c cci	tege	at	g ga	t to	g gc	c ct	c agc	115
										Me	t Ası	Se:	r Ala	a Le	u Ser	
	-									3	1			!	5	
gat c	cg ca	at	aac	ggc	agt	gcc	gag	gca	ggc	ggc	ccc	acc	aac	agc	act	163
Asp P	ro Hi	s	Asn	Gly	Ser	Ala	Glu	Ala	Gly	Gly	Pro	Thr	Asn	Ser	Thr	
••,•		-	10				•	15					20			
acg c	gg co	g	cct	tcc	acg	ccc	gag	ggc	atc	gcg	ctg	gcc	tac	ggc	agc -	211
Thr A	rg Pr	ю	Pro	Ser	Thr	Pro	Glu	Gly	Ile	Ala	Leu	Ala	Tyr	Gly	Ser	
	2	25				:	30					35				
ctc c	tg ct	c·	atg	gcg	ctg	ctg	ссс	atc	ttc	ttc	ggc	gcc	ctg	cgc	tcc	259
Leu L	eu Le	eu	Met	Ala	Leu	Leu	Pro	Ile	Phe	Phe	Gly	Ala	Leu	Arg	Ser	
(7,)	40 -	•	· •		. •	45					50	. ,			٠.	
gta c	gc . tg	ζC	gcc	cgc	ggc	aag	aat	gct	tca	gac	atg	cct	gaa	aca	atc	307
Val A	rg Cy	'S	Ala	Arg	Gly	Lys	Asn	Ala	Ser	Asp	Met	Pro	Glu	Thr	Ile	
55 ·		. ·.	·		- 60				<u>.</u>	65					70	

acc	agc	cgg	gat	gcc	gcc	cgc	ttc	ccc	atc	atc	gcc	agc	tgc	aca	ctc	355
ſhr	Ser	Arg	Asp	Ala	Ala	Arg	Phe	Pro	Ile	Ile	Ala	Ser	Cys	Thr	Leu	
				75					80				•	85		
ttg	ggg	ctc	tac	ctc	ttt	ttc	aaa	ata	ttc	tcc	cag	gag	tac	atc	aac ·	403
Leu	Gly	Leu	Tyr	Leu	Phe	Phe	Lys	Ile	Phe	Ser	Gln	Glu	Tyr	Ile	Asn	
			90					95					100		•	
ctc	ctg	ctg	tcc	atg	tat	ttc	ttc	gtg	ctg	gga	atc	ctg	gcc	ctg	tcc	451
Leu	Leu	Leu	Ser	Met	Tyr	Phe	Phe	Val	Leu	Gly	Ile	Leu	Ala	Leu	Ser	
		105					110					115				
cac	acc	atc	agc	ccc	ttc	atg	aat	aag	ttt	ttt	cca	gcc	ago	ttt	cca	499:)
His	Thr	Ile	Ser	Pro	Phe	Met	Asn	Lys	Phe	Phe	Pro	Ala	Ser	Phe	Pro	4
	120					125					130	•	,			•
aat	cga	cag	tac	cag	ctg	ctc	ttc	aca	cag	ggt	tct	ggg	g gaa	a aad	aag	547
Asn	Arg	Gln	Tyr	· Gln	Leu	Leu	Phe	Thr	Gln	Gly	Ser	Gly	Glu	ı Ası	n Lys	• :-
135	;· ·				140)				145			•		150	F-,
gaa	gag	ato	ato	aat	tat	gaa	ttt	gac	acc	aag	gac	cte	g gt	g tg	c ctg	595
Glu	ı Glu	ı Ile	e Ile	a Asn	Tyr	Glu	. Phe	Asp	Thr	Lys	Asp	Let	ı Va	1 · Cy	s Leu	ı
				155	5 ,				160)			٠.	16	5	
gg	c ct	giago	c ago	ato	gtt	t ggo	gto	tgg	g tac	ctg	g ctg	g ag	g aa	g ca	c tgg	g 643
G1:	y Lei	u Se	r Sei	r Ile	e Val	l G1;	y Val	Tr	р Туз	r Leu	ı Lei	u Ar	g Ly	s Hi	s Trp	•
		· * •	17	0 '				17	5			-	18	0	•. •.	. "
at	t gc	c aa	c aa	c ct	t tt	t gg	c ct	g gc	c tte	c tc	c ct	t aa	t gg	a gt	a ga	g 691
															al Gl	
															37	
·ct	c ct	g ca	ıc ct	.с аа	c aa	t gt	c ag	c ac	t gg	c tg	c at	c ct	g ct	g g	gc gg	a [.] 739

Leu	Leu	His	Leu	Asn	Asn	Val	Ser	Thr	Gly	Cys	Ile	Leu	Leu	Gly	Gly	
	200		e			205					210					-
ctc	ttc	atc	tac	gat	gtc	ttc	tgg	gta	ttt	ggc	acc	aat	gtg	atg	gtg	783
Leu	Phe	Ile	Tyr	Asp	Val	Phe	Trp	Val	Phe	Gly	Thr	Asn	Val	Met	Val	
215					220					225					230	
aca	gtg	gcc	aag	tcc	ttc	gag	gca	cca	ata	aaa	ttg	gtg	ttt	ccc	cag	835
Thr	Val	Ala	Lys	Ser	Phe	Glu	Ala	Pro	Ile	Lys	Leu	Val	Phe	Pro	Gln	
			٠,	235					240					245	-	
gat	ctg	ctg	gag	aaa	ggc	ctc	gaa	gca	aac	aac	ttt	gcc	atg	ctg	gga	883
Asp	Leu	Leu	Glu	Lys	Gly	Leu	Glu	Ala	Asn	Asn	Phe	Ala	Met	Leu	Gly	
			250					255					260			
ctt	gga	gat	gtc	gtc	att	cca	ggg	atc	ttc	att	gcc	ttg	ctg	ctg	cgc	931
Leu	Gly	Asp	Val	Val	Ile	Pro	Gly	Ile	Phe	Ile	Ala	Leu	Leu	Leu	Arg	
		265					270					275				
ttt	gac	atc	agc	ttg	aag	aag	aat	acc	cac	acc	tac	ttc	tac	acc	agc	979
Phe	Asp	Ile	Ser	Leu	Lys	Lys	Asn	Thr	His	Thr	Tyr	Phe	Tyr	Thr	Ser	
	280					285					290				:	
ttt	gca	gcc	tac	atc	ttc	ggc	ctg	ggc	ctt	acc	atc	ttc	atc	atg	cac	1027
Phe	Ala	Ala	Tyr	Ile	Phe	Gly	Leu	Gly	Leu	Thr	Ile	Phe	Ile	Met	His	
295					300					305		٠			,310	
atc	ttc	aag	cat	gct	cag	cct	gcc	ctc	cta	tac	ctg	gtc	ccc	gcc	tgc	1075
Ile	Phe	Lys	His	Ala	Gln	Pro	Ala	Leu	Leu	Tyr	Leu	Val	Pro	Ala	Cys	
				315					320				ı	325		
atc	ggt	ttt	cct	gtc	ctg	gtg	gcg	ctg	gcc	aag	gga	gaa	gtg	aca	gag	1123
Ile	Gly.	Phe	Pro	Val	Leu	Val.	Ala	Leu.	Ala	Lys	Glv	Glu	Val	Thr	Glu	

330	
atg ttc agt tat gag gag tca aat cct aag gat cca gcg gca gtg aca	1171
Met Phe Ser Tyr Glu Glu Ser Asn Pro Lys Asp Pro Ala Ala Val Thr	
345 350 355	
gaa too aaa gag gga aca gag goa toa goa tog aag ggg otg gag aag	1219
Glu Ser Lys Glu Gly Thr Glu Ala Ser Ala Ser Lys Gly Leu Glu Lys	
360 365 370	
aaa gag aaa tg atgcagctgg tgcccgagcc tctcagggcc agaccagaca	1270
Lys Glu Lys	
375	•:
gatgggggct gggcccacac aggcgtgcac cggtagaggg cacaggaggc caagggcagc	1330
tccaggacag ggcagggggc agcaggatac ctccagccag gcctctgtgg cctctgtttc	1390
cttctcctt tcttggccct cctctgctcc tccccacacc ctgcaggcaa aagaaacccc	1450
cagcttcccc cctccccggg agccaggtgg gaaaagtggg tgtgattttt agattttgta	1510
ttgtggactg attttgcctc acattaaaaa ctcatcccat g	1551
<210> 52	
<211> 1713	
<212> DNA	
<213> Homo sapiens	
<220> · · · · · · · · · · · · · · · · · · ·	
<221> CDS	
<222> (89) (334)	
<400> 52	
totcagogog ctgcccggct ggggacccgc gcacctgcag cgcccgctgc tcggccctgc	60

atcetgeetg ggeateetge geeeggee atg acg geg cae tea tte gee etc	112
Met Thr Ala His Ser Phe Ala Leu	
1	
ccg gtc atc atc ttc acc acg ttc tgg ggc ctc gtc ggc atc gcc ggg	160
Pro Val Ile Ile Phe Thr Thr Phe Trp Gly Leu Val Gly Ile Ala Gly	
10 . 15 20	
ccc tgg ttc gtg ccg aag gga ccc aac cgc gga gtg atc atc acc atg	208
Pro Trp Phe Val Pro Lys Gly Pro Asn Arg Gly Val Ile Ile Thr Met	
25 30 35 40	
ctg gtc gcc acc gcc gtc tgc tgt tac ctc ttc tgg ctc atc gcc atc	256
Leu Val Ala Thr Ala Val Cys Cys Tyr Leu Phe Trp Leu Ile Ala Ile	
45 50 55	
ctg gcg cag ctg aac ccc ctg ttc ggg ccc cag ctg aag aat gag acc	304
Leu Ala Gln Leu Asn Pro Leu Phe Gly Pro Gln Leu Lys Asn Glu Thr	
60 65 70	
atc tgg tac gtg cgc ttc ctg tgg gag tgacccgcc gcccccgacc	350
Ile Trp Tyr Val Arg Phe Leu Trp Glu	
75 80	
caggtgccca gctctcggaa tgactgtggc tccactgtcc ctgacaaccc cttcgtccgg	410
accetecce acacaactat gtetggteac cagetecete etgetggeac ecagagacee	470
ggacccgcag ggcctgcctg gttcctggaa gtcttcccag tcttcccagc cagcccgggc	530
cctggggagc cctgggcaca gcagcggccg aggggatgtc ctgctccaat acccgcactg	590
ctctggagtt tgccctcttt cccaaggaga tgctgctggg gagctggtat gggtggggtc	650
tttcccttta cagacgggc agatgccagg actcagccca tcctgaggag gacacgtgtc	710
ctcatggaga gggtgctccg gcccaggcgg gggagtcagt gcccagtcag cagctctgcc	770

and proceedings of the control of

104/307

accatéctéc	tgggaactgg	gggggcctct	attgggttat	aggcaaggcc	ttttctctgg	830
catggaattg	ttaattttct	gacacgtcta	gatgtgaaat	ttctgaaaat	gttgaagcag	890
agaaacattc	acacacaaaa	agcaacatag	tcatgtgggt	ccagatggcc	tcagtcctag	950
atgttggcac	cctttgctgt	gtctcctcag	agtatcctgt	teegeeteet	gccacctgga	1010
cctccctcag	tggatgtctt	ccctccccg	accccagcct	gtcagtccga	gcacagtgca	1070
ggtttggctc	tgacttgggċ	ttttggctgc	agtgggggtg	gatttcagag	cctctcatgg	1130
cagcatctaa	gtgaccagag	ctgggatgag	agagggaag	gggcaatgtg	agtggcgcta	1190
tgggacgġgc	cagccctgct	cctgagccag	cccgccctc	tgcccctgg	ccctgggctc	1250
tgtgctaggg	atggtgaaga	atgggggcgt	gccagcctgg	caggagtggg	aagcaacacg	1310
caggggtccc	ggacctctcc	agccttgccc	tcacgcttac	ccgagctccc	agtgtggtta	1370
gcacagagct	cacccacctt	gcctggctcc	cagctggggc	ctgtcctcac	tggtgctcca	1430
ggggaagaaa	cgacagcctc	acttctgtat	ggactgctga	tgtggcctgc	catcctgttc	1490
agcgggcatt	gtctttggag	cagcaggaga	ataggatgcc	tctcactcac	atgccagttc	1550
ctggctggcc	agctgctcag	ggctcaggct	ggggcctccc	attgacatcc	tcccctaca	1610
ctccctctct	gagcctccgt	cgcccctcct	gttgggtaag	ggtgttgagt	gtgacttgtg	1670
ctgaaaacct	ggttcatata	taataaataa	tggtgatgaa	aag ·		1713

<210> 53

<211> 1758

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (190)...(1653)
<400> 53

ttt	ctag	ggt	tgga	ccgt	gc a	ggca	cggg	c gg	tcag	ctgg	gcc	gcag	ctc	ctcc	ggcto	t	60
gca	gggt	cac	ggag	gaag	cc a	gctc	ccta	a gto	ccag	gccg	agc	ttgc	act	tgcg	tcttg	gt .	120
ctg	ctgc	tgc '	tgaa	caa	ga ti	ttage	ctgt	g cg	cct	cctt	gca	gtct	cct	ggaa	ccago	a	180
ggaį	ggaaa	ac a	tg g	gg ga	at a	ct g	gc c1	tg ag	ga a	ag c	gg ag	ga g	ag g	at g	ag		228
		. Me	et G	Ly A	sp Tl	hr G	ly Le	eu Ai	rg L	ys Ao	rg Ai	rg G	lu A	sp G	lu		
			1				5					10					
aag	tcg	atc	cag	agc	caa	gag	cct	aag	acc	acc	agt	ctc	caa	aag	gag		276
Lys	Ser	Ile	Gln	Ser	Gln	Glu	Pro	Lys	Thr	Thr	Ser	Leu	Gln	Lys	Glu		
	15					20					25						
ctg	ggc	ctc	atc	agt	ggc	atc	tcc	atc	atc	gtg	ggc	acc	atc	att	ggc		324
Leu	Gly	Leu	Ile	Ser	Gly	Ile	Ser	Ile	Ile	Val	Gly	Thr	Ile	Ile	Gly		
30					35					40					45		
tct	ggg	atc	ttc	gtt	tcc	ccc	aag	tct	gtg	ctc	agc	aac	acg	gaa	gct		372
Ser	Gly	Ile	Phe	Val	Ser	Pro	Lys	Ser	Val	Leu	Ser	Asn	Thr	Glu	Ala		
				50					55					60			
gtg	ggg	ccc	tgc	ctc	atc	ata	tgg	gcg	gct	tgc	ggg	gtc	ctc	gcg	acg		420
Val	Gly	Pro	Cys	Leu	Ile	Ile	Trp	Ala	Ala	Cys	Gly	Val	Leu	Ala	Thr		
	٠.		65					70					75		. •		
ctg	ggt	gcc	ctg	tgc	ttt	gcg	gag	ctt	ggc	aca	atg	atc	acc	aag	tca		468
Leu	Gly	Ala	Leu	Cys	Phe	Ala	Glu	Leu	Gly	Thr	Met	Ile	Thr	Lys	Ser		
		80					85					90			• .		
ggg.	gga	gag	tat	.ccc	tac	ctg	atg	gag	gcc	tac	ggg	ccc	atc	ccc	gcc		516
Gly	Gly	Glu	Tyr	Pro	Tyr	Leu	Met	Glu	Ala	Tyr	Gly	Pro	Ile	Pro	Ala		
g	95		٠.	. 19		100					105				, 5		
tac	ctc	ttc	tcc	tgg	gcc	agc	ctg	atc	gtc	att	aag	ccc	acg	tcc	ttc		564

Tyr	Leu	Phe	Ser	Trp	Ala	Ser	Leu	Ile	Val	Ile	Lys	Pro	Thr	Ser	Phe		
110	. .	٠.			115		٠.		<i>i</i> .	120	• • •	٠.	. •	. •	125		
gcc	atc	atc	tgc	ctc	agc	ttc	tcc	gag	tat	gtg	tgt	gcg	ccc	ttc	tat.	•	512
Ala	Ile	Ile	Cys	Leu	Ser	Phe	Ser	Glu	Tyr	Val	Cys	Ala	Pro	Phe	Tyr		
		•		130				-	135	-	٠.	, ,	.,	140			
gtg	ggc	tgc	aag	cct	cct	caa	atc	gtt	gtg	aaa	tgc	ctg	gcc	gcc	gcc	(660
Val	Gly	Cys	Lys	Pro	Pro	G1n	Ile	Val	Val.	Lys	Cys	Leu	Ala	Ala	Ala		
		٠.	145	٠			٠.	150	٠.	••		٠.,	155				
gcc	atc	ttg	ttc	atc	tcg	aca	gtg	aac	tca	ctg	agc	gtg	cgg	ctg	gga	•	708
Ala	Ile	Leu	Phe	Ile	Ser	Thr	Val	Asn	Ser	Leu	Ser	Val	Arg	Leu	Gly		1 ,
	-	160					165					170		•			
agc	tac	gtc	cag	aac	atc	ttc	acc	gcg	gcc	aag	ctg	gtg	atc	gtg	gcc.		756
Ser	Tyr	Val	Gln	Asn	Ile	Phe	Thr	Ala	Ala	Lys	Leu	Val	Ile	· Val	Ala.		
	175					180					185			ı			• ·
															aag		804
Ile	Ile	Ile	lle	Ser	Gly	Leu	Val	Leu	Leu	Ala	Gln				Lys		
					195										205.		
								•							atc		852
															a Ile	•	
) ;'	•	000
															t caa		900
															n Gln.		
													•		[] (1) Y	•	0.40
															g cct		948
Le	u As	п Ту	r Il	e Th	r Gl	u Gl	u Lei	ı Arı	g Ası	n Pro	о Ту	r Ar	g As	n Le	u.Pro	•	

BRIGHTONIN- JWO - MITSRENAS I -

معاملات الكارات والميارات

		240	٠				245					250			•	
ttg	gcc	att	atc	atc	ggg	atc	ccc	ctg	gtg	acg	gcg	tgc	tac	atc	ctc	996
Leu	Ala	Ile	Ile	Ile	Gly	Ile	Pro	Leu	Val	Thr	Ala	Cys	Tyr	Ile	Leu	
	255					260					265			-	-	
atg	aac	gtg	tcc	tac	ttc	acc	gtg	atg	act	gcc	acc	gaa	ctc	ctg	cag	1044
Met	Asn	Val	Ser	Tyr	Phe	Thr	Val	Met	Thr	Ala	Thr	Glu	Leu	Leu	Gln	
270					275					280					285	
tcc	cag	gcg	gtg	gct	gtg	aca	ttt	ggt	gac	cgt	gtt	ctc	tat	cct	gct	1092
Ser	Gln	Ala	Val	Ala	Val	Thr	Phe	Gly	Asp	Arg	Val	Leu	Tyr	Pro	Ala	
				290					295					300		
tct	tigg	atc	gtt	cca	ctt	ttt	gtg	gca	ttt	tca	acc	atc	ggt	gct	gct	1140
Ser	Trp	Ile	Val	Pro	Leu	Phe	Val	Ala	Phe	Ser	Thr	Ile	Gly	Ala	Ala	
			305				•	310					315			
aac	ggg	acc	tgc	ttc	aca	gcg	ggc	aga	ctc	att	tac	gtg	gcg	ggc	cgg	1188
Asn	Gly	Thr	Cys	Phe	Thr	Ala	Gly	Arg	Leu	Ile	Tyr	Val	Ala	Gly	Arg	
		320					325					330				
gag	ggt	cac	atg	ctc	aaa	gtg	ctt	tct	tac	atc	agc	gtc	agg	cgc	ctc	1236
Glu	Gly	His	Met	Leu	Lys	Val	Leu	Ser	Tyr	Ile	Ser	Val	Arg	Arg	Leu	
	335					340					345					
act	cca	gcc	ccc	gcc	atc	atc	ttt	tat	ggt	atc	ata	gca	acg	att	tat	1284
Thr	Pro	Ala	Pro	Ala	Ile	Ile	Phe	Tyr	Gly	Ile	Ile	Ala	Thr	Ile	Tyr	
350	•	• • •		. e	355	•		٠.		360	•				365	
atc	atc	cct	ggt	gac	ata	aac	tcg	tta	gtc	aat	tat	ttc	agc	ttt	gcc	1332
Ile	Ile	Pro	Gly	Asp	Ile	Asn	Ser	Leu	Val	Asn	Tyr	Phe	Ser	Phe	Ala	
				370					375					380		

	-															
gca	tgg	ctg	ttt	tat	ggc	ctg	acg	att	cta	gga	ctc	atc	gtg	atg	aga	1380
Ala	Trp	Leu	Phe	Tyr	Gly.	Leu	Thr	Ile	Leu	Gly	Leu	Ile	Val	Met	Arg	
٠			385				,	390		•		• ,	395	. .	: .*	
ttt	aca	agg	aaa	gag	ctg	gaa	agg	cct	atc	aag	gtg	ccc	gta	gtc	att	1428
Phe	Thr	Arg	Lys	Glu	Leu	Glu	Arg	Pro	Ile	Lys	Val	Pro	Val	Val	Ile	
		400					405			• ,		410		. •		
ccc	gtc	ttg	atg	aca	ctc	atc	tct	gtg	ttt	ttg	ġtt	ctg	gct	cca	atc	1476
Pro	Val	Leu	Met	Thr	Leu	Ile	Ser	Val	Phe	Leu	Val	Leu	Ala	Pro	Ile	
	415					420					425	• .		• !	• • • •	
atc	agc	aag	ccc	acc	tgg	gag	tac	ctc	tac	tgt	gtg	ctg	ttt	ata	tta	. 1524
Ile	Ser	Lys	Pro	Thr	Trp	Glu	Tyr	Leu	Tyr	Cys	Val	Leu	Phe	Ile	Leu	
430					435					440				•	445	
agc	ggc	ctt	tta	ttt	tac	ttc	ctg	ttt	gtc	cac	tac	aag	ttt	gga	tgg	1572
Ser	Gly	Leu	Leu	Phe	Tyr	Phe	Leu	Phe	Val	His	Tyr	Lys	Phe	Gly	Trp	
		•		450					455					460	•	
gct	cag	aaa	atc	tca	aag	ccg	att	acc	atg	cac	ctt	cag	ate	cta	atg	1620
Ala	Gln	Lys	Ile	Ser	Lys	Pro	Ile	Thr	Met	His	Leu	Gln	Met	Leu	Met `	
:			465					470					475	5	·*. •	
gaa	gtg	gto	cca	ccg	gag	gaa	gac	cct	gag	taa	caag	ctc	cgto	tctt	gt	1670
Glu	Val	Val	Pro	Pro	Glu	Glu	. Asp	Pro	°G1u	١.					•. •	
)													
ago	caag	gtca	gctg	gaatt	ta t	ttt	ttaa	ng ca	atat	ttgt	ggt:	tati	tct	tcc1	ttttt	1730
ctt	acga	iata	aaait	atac	tc 'a	ıgatı	gttt		;		,	•				1758
															. (st.	
<2 1	10> !	54									1	;				

RNSDOCID: <WO 0112660A2 L >

The state of the s

<211> 1550	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
<222> (154)(1281)	
<400> 54	
ctctgtttac cgagagagcc cgtccaagtt gggctccatc gctgccctcg ctccccttcg	60
gggcctccgc ccgcctggga agcagagaga aagccgggcc cagcccttcc tcacccttcc	120
cetececgea eegeceggag aggteggaeg geg atg ace eec eag eec gea gga	174
Met Thr Pro Gln Pro Ala Gly	
1 5	
ccc ccg gat ggg ggc tgg ggc tgg gtg gtg gcg gcc gca gcc ttc gcg	222
Pro Pro Asp Gly Gly Trp Gly Trp Val Val Ala Ala Ala Ala Phe Ala	
10 15 20	
ata aac ggg ctg tcc tac ggg ctg ctg cgc tcg ctg ggc ctt gcc ttc	270
Ile Asn Gly Leu Ser Tyr Gly Leu Leu Arg Ser Leu Gly Leu Ala Phe	
25 30 35	
cct gac ctt gcc gag cac ttt gac cga agc gcc cag gac act gcg tgg	318
Pro Asp Leu Ala Glu His Phe Asp Arg Ser Ala Gln Asp Thr Ala Trp	
40	
atc agc gcc ctg gcc ctg gcc gtg cag cag gca gcc agc ccc gtg ggc	366
Ile Ser Ala Leu Ala Leu Ala Val Gln Gln Ala Ala Ser Pro Val Gly	
5- ,	
age gee ctg age acg ege tgg ggg gee ege eee gtg gtg atg gtt ggg	414

Ser	Ala	Leu	Ser	Thr	Arg	Trp	Gly	Ala	Arg	Pro	Val	Val	Met	Val	Gly	
	,		75					80					85			
ggc	gtc	ctc	gcc	tcg	ctg	ggc	ttc	gtc	ttc	tcg	gct	ttc	gcc	agc	ggt	462
G1y	Val	Leụ	Ala	Ser	Leu	Gly	Phe	Val	Phe	Ser	Ala	Phe	Ala	Ser	Gly ···	
		90					95					100		4		
ctg	ctg	cat	ctc	tac	ctc	ggc	ctg	ggc	ctc	ctc	gct	ggc	ttt	ggt	tgg ·	510
Leu	Leu	His	Leu	Tyr	Leu	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Phe	Gly	Trp	
	105		٠			110	-		٠		115		,			
gcc	ctg	gtg	ttc	gcc	ccc	gcc	cta	ggc	acc	ctc	tcg	cgt	tac	ttc	tcc	558
Ala	Leu	Val	Phe	Ala	Pro	Ala	Leu	Gly	Thr	Leu	Ser	Arg	Tyr	Phe	Ser	-
120					125					130					135	
cgc	cgt	cga	gtc	ttg	gcg	gtg	ggg	ctg	gcg	ctc	acc	ggc	aac	ggg	gcc	606
Arg	Arg	Arg	Val	Leu	Ala	Val	Gly	Leu	Ala	Leu	Thr	Gly	Asn	Gly	Ala	
				140					145			·	•	150		
tcc	tcg	ctg	ctc	ctg	gcg	ccc	gcc	ttg	cag	ctt	ctc	ctc	gat	act	ttc	654
Ser	Ser	Leu	Leu	Leu	Ala	Pro	Ala	Leu	Gln	Leu	Leu	Leu	Asp	Thr	Phe	
•	•	•	155				•	160		•	•		165	t		
ggc	tgg	cgg	ggc	gct	ctg	ctc	ctc	ctc	ggc	gcg	atc	acc	ctc	cac	ctc	702
Gly	Trp	Arg	Gly	Ala	Leu	Leu	Leu	Leu	Gly	Ala	Ile	Thr	Leu	His	Leu	
•		170	•	٠	•		175	i				180		٠٠ ٠.		
acc	ccc	tgt	ggc	gcc	ctg	ctg	cta	ccc	ctg	gtc	ctt	cct	gga	gac	cccr .	750
Thr	Pro	Cys	Gly	Ala	Leu	Leu	Leu	Pro	Leu	Val	Leu	Pro	Gly	Asp	Pro-	
-	185					190		•		٠	195		. '•	:	1.	
cca	gcc	сса	ccg	cgt	agt	ccc	cta	gct	gcc	ctc	ggc	ctg	agt	ctg	ttc	798
Pro	Ala	Pro	Pro	Arg	Ser	Pro	Leu	Ala	Ala	Leu	Gly	·Leu	Ser	Leu	Phe	

200	:			• .	205			•		210					215	
aca	cgc	cgg	gcc	ttc	tca	atc	ttt	gct	cta	ggc	aca	gcc	ctg	gtt	ggg	. 846
Thr	Arg	Arg	Ala	Phe	Ser	Ile	Phe	Ala	Leu	Gly	Thr	Ala	Leu	Val	Gly	
	.:			220					225	-				230		
ggc	ggg	tac	ttc	gtt	cct	tac	gtg	cac	ttg	gct	ccc	cgc	ttt	aga	ccg	894
Gly	Gly	Tyr	Phe	Val	Pro	Tyr	Val	His	Leu	Ala	Pro	Arg	Phe	Arg	Pro	
			235					240					245			
ggg	cct	ggg	ggg	ata	cgg	agc	agc	gct	ggt	ggt	ggc	cgt	ggc	tgc	gat	942
Gly	Pro	Gly	Gly	Ile	Arg	Ser	Ser	Ala	Gly	Gly	Gly	Arg	Gly	Cys	Asp	
		250					255					260				
ggg	gga	tgc	ggg	cgc	ccg	gct	ggt	ctg	cgg	gtg	gct	ggc	aga	cca	agg	990
Gly	Gly	Cys	Gly	Arg	Pro	Ala	Gly	Leu	Arg	Val	Ala	Gly	Arg	Pro	Arg	· .
	265					270					275					
ctg	ggt	gcc	cct	ccc	gcg	gct	gct	ggc	cgt	att	cgg	ggc	tct	gac	tgg	1038
Leu	Gly	Ala	Pro	Pro	Ala	Ala	Ala	Gly	Arg	Ile	Arg	Gly	Ser	Asp	Trp	
280					285					290					295	
gct	ggg	gct	gtg	ggt	ggt	ggg	gct	ggt	gcc	cgt	ggt	ggg	cgg	cga	aga	1086
Ala	Gly	Ala	Val	Gly	Gly	Gly	Ala	Gly	Ala	Arg	Gly	Gly	Arg	Arg	Arg	
				300	٠				305					310		
gag	ctg	ggg	ggg	tcc	cct	gct	ggc	cgc	ggc	tgt	ggc	cta	tgg	gct	gag	1134
Glu	Leu	Gly	Gly	Ser	Pro	Ala	Gly	Arg	Gly	Cys	Gly	Leu	Trp	Ala	Glu	
			315	.*		٠		320					325		:	1
cgc	ggg	gag	tta	cgc	ссс	gct	ggt	ttt	cgg	tgt	act	ссс	cgg	gct	ggt	1182
Arg	Gly	Glu	Leu	Arg	Pro	Ala	Gly	Phe	Arg	Cys	Thr	Pro	Arg	Ala	Gly	
e.	:: ·	330	4.		. ,		335				;	340		. l	י צי	

ggg	cgt	cgg	agg	tgt	ggt	gca	ggc	cac	agg	gct	ggt	gat	gat	gct	gat	٠.	1230
Gly	Arg	Arg	Arg	Cys	Gly	Ala	Gly	His	Arg	Ala	Gly	Asp	Asp	Ala	Asp		
	345				:	350					355	1					
gag	cct	cgg	ggg	gct	cct	ggg	ccc	tcc	cct	gtc	agg	ctt	cct	aag	gga		1278
Glu	Pro	Arg	Gly	Ala	Pro	Gly	Pro	Ser	Pro	Val	Arg	Leu	Pro	Lys	Gly.		
360					365			••		370					375		
tg .	agac	agga	ga c	ttca	ccgc	c tc	tttc	ctcc	tgt	ctgg	ttc	tttg	atcc	tc			1330
tcc	ggca	gct	tcat	ctac	at a	gggt	tgcc	c ag	ggcg	ctgc	cct	cctg	tgg	tcca	gcctc	С	1390
cct	ccag	cca	cgcc	tccc	cc a	gaga	cggg	g ga	gctg	cttc	ccg	ctcc	cca	ggca	gtctt	g	1450
ctg	tccc	cag	gagg	ccct	gg c	tcca	ctct	g ga	cacc	actt	gtt	gatt	att	ttct	tgttt	g	1510
agc	ccct	ссс	ccaa	taaa	ga a	tttt	tato	g gg	tttt	cctg							1550
	•										. :				West .		
<21	.0> 5	55													٠.		
<21	1> 1	485												٠.			
<21	2> [ONA									•	•					
<2 1	13> I	lomo	sap	iens													
<22	20>						•						٠,			•	
<2	21> (CDS.								•	. "		. •			•	
<2	22>	(101)	(115	3)												
<4	00>	55 .	٠,	,				2							•		
ct	ctcc	tcga	ccc	tgga	cgt	ctac	cttc	cg g	aggc	ccac	a tc	ttgc	ccac	tcc	gcgcg	cg	60
gg	gcta	gcgc	ggg	tttc	agc	gacg	ggag	cc c	tcaa	ggga	c at	g gc	a ac	t ac	a gcg		115
				. ,							Ме	t Al	a Th	r Th	r Ala	•	
	: -	.:			٠.					. •		1 .		. ,	<i>₹ .a</i> 5	٠ .	
ac	· a · c c	ים סו	0 00	7C. 99	2C 22	c ce	a aa	at gg	a go	t gg	c cc	g ga	a te	g g	a ggg	;	163

Ala	Pro	Ala	Gly	Gly	Ala	Arg	Asn	Gly	Ala	Gly	Pro	Glu	Trp	G1y	Gly	
		٠.		10					15					20		
ttc	gaa	gaa	aac	atc	cag	ggc	gga	ggc	tca	gct	gtg	att	gac	atg	gag	. 211
Phe	Glu	Glu	Asn	Ile	Gln	Gly	Gly	Gly	Ser	Ala	Val	Ile	Asp	Met	Glu	
			25					30					35			
aac	atg	gat	gat	acc	tca	ggc	tct	agc	ttc	gag	gat	atg	ggt	gag	ctg	259
Asn	Met	Asp	Asp	Thr	Ser	Gly	Ser	Ser	Phe	Glu	Asp	Met	Gly	Glu	Leu	
		40					45					50		,		
cat	cag	cgc	ctg	cgc	gag	gaa	gaa	gta	gac	gct	gat	gca	gct	gat	gca	307
His	Gln	Arg.	Leu	Arg	Glu	Glu	Glu	Val	Asp	Ala	Asp	Ala	Ala	Asp	Ala	
•	55					60					65					
gct	gct	gct	gaa	gag	gag	gat	gga	gag	ttc	ctg	ggc	atg	aag	ggc	ttt	355
Ala	Ala	Ala	Glu	G1u	Glu	Asp	Gly	Glu	Phe	Leu	Gly	Met	Lys	Gly	Phe	
70					75					80					85	
aag	gga	cag	ctg	agc	cgg	cag	gtg	gca	gat	cag	atg	tgg	cag	gct	ggg	403
Lys	Gly	Gln	Leu	Ser	Arg	Gln	Val	Ala	Asp	Gln	Met	Trp	Gln	Ala	Gly	
•		••	•	90		-		,	95					100	-	
aaa	aga	caa	gcc	tcc	agg	gcc	ttc	agc	ttg	tac	gcc	aac	atc	gac	atc	451
Lys	Arg	Gln	Ala	Ser	Arg	Ala	Phe	Ser	Leu	Tyr	Ala	Asn	Ile	Asp	Ile	
- .		:•	105					110					115		•	
ctc.	aga	ссс	tac	ttt	gat	gtg	gag	cct	gct	cag	gtg	cga	agc	agg	ctc	499
Leu	Arg	Pro	Tyr	Phe	Asp	Val	Glu	Pro	Ala	Gln	Val	Arg	Ser	Arg	Leu	
i *	1 54	120		-			125					130	t			
ctg,	gag	tcc	atg	atc	cct	atc	aag	atg	gtc	aac	ttc	ссс	cag	aaa	att	547
Leu	Glu	Ser	Met	Ile	Pro	Ile	Lys	Met	Val	Asn	Phe	Pro	Gln	Lys	Ile	

	135	• . •	٠, , ,	140			٠.	: •	145				ta Th	
gca	ggt	gaa	ctc	tat	gga	cct	ctc	atg	ctg	gtc	ttc	act	ctg	gtt	gct	595
Ala	Gly	Glu	Leu	Tyr	Gly	Pro	Leu	Met	Leu	Val	Phe	Thr	Leu	Val.	Ala	
150		٠.			155	•	:		•	160		, .		•	165	
atc	cta	ctc	cat	ggg	atg	aag	acg	tct	gac	act	att	atc	cgg	gag	ggc	643
Ile	Leu	Leu	His	Gly	Met	Lys	Thr	Ser	Asp	Thr	Ile	Ile	Arg	Glu	Gly	
		٠		170					175	·			٠.	180	-	
acc	ctg	atg	ggc	aca	gcc	att	ggc	acc	tgc	ttc	ggc	tac	tgg	ctg	gga	691
Thr	Leu	Met	Gly	Thr	Ala	Ile	Gly	Thr	Cys	Phe	Gly	Tyr	Trp	Leu	Gly	
		• •	185					190					195		-	. .
gtc	tca	tcc	ttc	att	tac	ttc	ctt	gcc	tac	ctg	tgc	aac	gcc	cag	atc	739
Val	Ser	Ser	Phe	Ile	Tyr	Phe	Leu	Ala	Tyr	Leu	Cys	Asn	Ala	Gln	Ile	
	** .	200					205					210			,	
acc	atg	ctg	cag	atg	ttg	gca	ctg	ctg	ggc	tat	ggc	ctc	ttt	ggg	cat	787
Thr	Met	Leu	Gln	Met	Leu	Ala	Leu	Leu	G1y	Tyr	Gly	Leu	Phe	Gly	His	
	215					220				•	225	•		•	•	
tgo	att	gto	ctg	ttc	atc	acc	tat	aat	atc	cac	ctc	cac	gco	cto	ttc	835
Cys	Ile	e Val	l Leu	Phe	Ile	Thr	Tyr	Asn	Ile	His	Leu	ı His	Ala	a Let	ı Phe	
230). * ·	÷ :	;	٠.	235	, ·				240)	•		•	245	
tad	cte	e tte	c tgg	g ctg	ttg	gtg	ggt	gga	a ctg	tcc	aca	a ctg	g cg	c at	g gta	883
Tyi	r Le	ı Ph	e Tr	Let	ı Lev	ı Val	Gly	Gly	y Leu	Ser	Th	r Leu	ı Ar	g Me	t Val	:
-	· . ·	. :	•.	250	,	٠.			255	5	٠. ٠		٠.	· 26	0: , "	
gc	a gt	g tt	g gt	g tc	t cg	gaco	gt	g gg	c ccc	aca	a ca	g cg	g ct	g ct	c ctc	931
Al	a Va	l Le	u Va	1 Se	r Ar	g Tha	· Va	1 G1	y Pro	Thi	c Gl	n Arı	g Le	u Le	u Leu	٠
{ .	٠. :	1	26	5 :			٠.	27	0 -	· .			27	5	: :,	

tet	ggc	acc	ctø	get	gcc	cta	cac	ato	ctc	tto	cta	ctc	tat	c+a	oot	979
																313
Cys	GIA	ihr	Leu	Ala	Ala	Leu	His	Met	Leu	Phe	Leu	Leu	Tyr	Leu	His	
		280					285					290			•	
ttt	gcc	tac	cac	aaa	gtg	gta	gag	ggg	atc	ctg	gac	aca	ctg	gag	ggc	1027
Phe	Ala	Tyr	His	Lys	Val	Val	Glu	Gly	Ile	Leu	Asp	Thr	Leu	Glu	Gly	
	295					300					305					
ccc	aac	atc	ccg	ccc	atc	cag	agg	gtc	ccc	aga	gac	atc	cct	gcc	atg	1075
					Ile											10.0
	ASII	116	110	110		UIII	M R	191	rro		ASP	116	Pro	Ala		
310					315					320					325	
ctc	cct	gct	gct	cgg	ctt	ccc	acc	acc	gtc	ctc	aac	gcc	aca	gcc	aaa	1123
Leu	Pro	Ala	Ala	Arg	Leu	Pro	Thr	Thr	Val	Leu	Asn	Ala	Thr	Ala	Lys	
			•	330					335					340		
gct	gtt	gcg	gtg	acc	ctg	cag	tca	cac	tgac	ccca	icc t	gaaa	ittci	t t		1170
Ala	Val	Ala	Val	Thr	Leu	Gln	Ser	His								
			345					350								
ggcc	agto	ct c	tttc	ccgc	a go	tgca	gaga	gga	ggaa	gac	tatt	aaag	ga c	agto	ctgat	1230
gaca	tgtt	tc g	taga	tggg	g tt	tgca	gctg	cca	ctga	gct	gtag	ctgo	gt a	agta	cctcc	1290
ttga	tgcc	tg t	cggc	actt	c tg	aaag	gcac	aag	gcca	aga	acto	ctgg	cc a	ggac	tgcaa	1350
ggct	ctgo	ag c	caat	gcag	ga aa	atgg	gtca	gct	cctt	tga	gaac	ccct	cc c	cacc	taccc	1410
cttc	ctto	ct c	ttta	tctc	t cc	caca	ttgt	ctt	gcta	aat	atag	actt	gg t	aatt	aaaat	1470
gttg	attg	aa g	tctg													1485
	_		_								,					- 100
								-	•		•		•	•	•	
<210			-	•			-						•		•	
<211	> 26	94				٠					٠.					
7212	> DM	[A - 1					:				,					

BNSDOCID: <WO 0112660A2 I >

. .

and the second second

. 116/307

(213)	> Ho	mo s	apie	ns			**		• • •		• •			• . •	7 . 7.	•	
<220	> .	· .							• • •			••	-	;	<i>:</i> .		
<221	> CD	S			•									· :			
<222	> (8	0)	. (20	83)						• :	•			;	• • •	•	
<400	> . 56	ż		. •					ţ .		•			;			
gtaga	actc	tg c	ggat	cccg	a ga	ccag	cgcc	act	catc	ctg	cagc	actg	88 8	acag	açag	ga	60
gcag	gaga	ag g	gcca	gaga	atg	tcg	tcc	cag	cca	gca	ggg	aac	cag	acc	.tcc	2.	112
	, .				Met	Ser	Ser	Gln	Pro	Ala	Gly	Asr	Glr	Thi	Ser	r	
					1				5	i				10)		
ccc .	ggg	gcc	aca	gag	gac	tac	tcc	tat	ggc	agc	tgg	tac	atc	gat	gag		160
Pro.	Gly	Ala	Thr	Glu	Asp.	Tyr	Ser	Tyr	Gly	Ser	Trp	Tyr	Ile	Asp	Glu		
			15					20					25				
ccc	cag	ggg	ggc	gag	gag	ctc	cag	cca	gag	ggg	gaa	gtg	ccc	tcc	tgc		208
Pro	Gln	Gly	Gly	Glu	Glu	Leu	Gln	Pro	Glu	Gly	Glu	Val	Pro	Ser	Cys		
		30					35	, .				40					
cac	acc	agc	ata	cca	ccc	ggc-	ctg	tac	cac	gcc	tgc	ctg	gcc	tcg	ctg		256
His	Thr	Ser	Ile	Pro	Pro	Gly	Leu	Tyr	His	Ala	Cys	Leu	Ala	Ser	Leu		
	45			٠. ٠		50					55		. •		;· · ·	٠	
tca	atc	ctt	gtg	ctg	ctg	ctc	ctg	gcc	atg	ctg	gtg	agg	cgc	cgc	cag		304
Ser	Ile	Leu	Val	Leu	Leu	Leu	Leu:	Ala	Met	Leu	Val	Arg	Arg	Arg	Gln	١,	
60					65					70					. 75		
ctc	tgg	cct	gac	tgt	gtg	cgt	ggc	agg	ccc	ggc	ctg	ccc	agc	cct	gtg		352
Leu	Trp	Pro	Asp	Cys	Val	Arg	Gly	Arg	Pro	Gly	Leu	Pro	Ser	Pro	; Val	i.	
				80					85					90	ly ka	í.	
gat	ttc	ttg	gct	ggg	gac	agg	ccc	cgg	gca	gtg	cct	gct	gct	gtt	. ttc	:	400

Asp	Phe	Leu	Ala	Gly	Asp	Arg	Pro	Arg	Ala	Val	Pro	Ala	Ala	Val	Phe	
	,		95					100					105	,		
atg	gtc	ctc	ttg	agc	tcc	ctg	tgt	ttg	ctg	ctc	ccc	gac	gag	gac	gca	448
Met	Val	Leu	Leu	Ser	Ser	Leu	Cys	Leu	Leu	Leu	Pro	Asp	G1u	Asp	Ala	
		110					115					120		-		
ttg	ccc	ttc	ctg	act	ctc	gcc	tca	gca	ccc	agc	caa	gat	ggg	aaa	act	496
Leu	Pro	Phe	Leu	Thr	Leu	Ala	Ser	Ala	Pro	Ser	Gln	Asp	Gly	Lys	Thr	
-	125			•		130					135					
gag	gct	cca	aga	ggg	gcc	tgg	aag	ata	ctg	gga	ctg	ttc	tat	tat	gct	544
Glu	Ala	Pro	Arg	Gly	Ala	Trp	Lys	Ile	Leu	Gly	Leu	Phe	Tyr	Tyr	Ala	
140					145					150					155	
gcc	ctc	tac	tac	cct	ctg	gct	gcc	tgt	gcc	acg	gct	ggc	cac	aca	gct	592
Ala	Leu	Tyr	Tyr	Pro	Leu	Ala	Ala	Cys	Ala	Thr	Ala	Gly	His	Thr	Ala	
				160					165					170		
gca	cac	ctg	ctc	ggc	agc	acg	ctg	tcc	tgg	gcc	cac	ctt	ggg	gtc	cag	640
Ala	His	Leu	Leu	Gly	Ser	Thr	Leu	Ser	Trp	Ala.	His	Leu	Gly	Val	Gln _.	
• 2			175			•		180					185			
gtc	tgg	cag	agg	gca	gag	tgt	ccc	cag	gtg	ccc	aag	atc	tac	aag	tac	688
Val	Trp	Gln	Arg	Ala	G1u	Cys	Pro	Gln	Val	Pro	Lys	Ile	Tyr	Lys	Tyr	
-		190					195		٠			200		• :		
tac,	tcc	ctg	ctg	gcc	tcc	ctg	cct	ctc	ctg	ctg	ggc	ctc	gga	ttc	ctg	736
Tyr	Ser	Leu	Leu	Ala	Ser	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Gly	Phe	Leu	
٠.	205,	• .			ı	210			٠		215					
agc	ctt	tgg	.tac	cct	gtg	cag	ctg	gtg	aga	agc	ttç	agc	cgt	agg	aca	784
Ser	Leu	Trp	Tyr	Pro	Val	Gln	Leu	Val	Arg	Ser	Phe	Ser	Arg	Arg	Thr	

220	• • •	225			230	in the second	235 .
gga gca	ggc tcc	aag ggg	ctg cag	agc agc	tac tct	gag gaa tat	ctg 832 .
Gly Ala	Gly Ser	Lys Gly	Leu Gln	Ser Ser	Tyr Ser	Glu Glu Týr	Leu
÷	1	240		245	· ·	250	
agg aac	ctc ctt	tgc agg	aag aag	ctg gga	agc agc	tac cac acc	tcc 880
Arg Asn	Leu Leu	Cys Arg	Lys Lys	Leu Gly	Ser Ser	Tyr His Thr	Ser
•	255			260		265	
aag cat	ggc ttc	ctg tcc	tgg gcc	cgc gto	tgc ttg	aga cac tgc	atc 928
Lys His	Gly Phe	Leu Ser	Trp Ala	Arg Val	l Cys Leu	Arg His Cys	Ile
	270	•	275	;		280	20 · 10 · 10 · 10 · 10 · 10 · 10 · 10 ·
tac act	cca cag	cca gga	ttc cat	ctc cc	g ctg aag	ctg gtg ctt	tca 976
Tyr Thr	Pro Gln	Pro Gly	Phe His	Leu Pr	o Leu Lys	Leu Val Leu	Ser
285			290		295	•	•
gct aca	ctg aca	ggg acg	gcc att	tac ca	g gtg gcc	ctg ctg ctg	ctg 1024
Ala Thr	Leu Thr	Gly Thr	· Ala Ile	Tyr Gl	n Val Ala	Leu Leu Lei	Leu
300		305	; ·		310	*	315
gtg ggc	gtg gta	ccc act	atc cas	g aag gt	g agg gca	ggg gtc acc	e acg 1072
Val Gly	Val Val	Pro Thi	· Ile Gl	n Lys Va	l Arg Ala	Gly Val Th	Thr
٠, ٠		320		32	5 ` ′ ′ ′	330) ·
gat gtc	tcc tac	ctg ct	g gcc gg	c ttt gg	a atc gt	g ctc tcc ga	g gac 1120
Asp Val	Ser Tyr	Leu Le	u Ala Gl	y Phe Gl	y Ile Va	l Leu Ser Gl	ı Asp
	338	5		340		345	and the co
aag cag	gag gtg	g gtg ga	g ctg gt	g aag ca	ac cat ct	g tgg gct ct	g gaa 1168
Lys Glr	i Glu Va	l Val Gl	u Leu Va	l Lys H	s His Le	u Trp Ala Le	u Gl ù
2020 3	350	· • • • • • • • • • • • • • • • • • • •	35	5	, i , .	360	C. C

gtg	tgc	tac	atc	tca	gcc	ttg	gtc	ttø	tcc	tec	tta	ctc	800	ttc	ctø	1216
										_					_	
vai					Ala		vai	Leu	Ser	Cys		Leu	inr	rne	Leu .	
٠,	365	•	•	. ·		370					375			•		
gtc	ctg	atg	cgc	tca	ctg	gtg	aca	cac	agg	acc	aac	ctt	cga	gct	ctg	1264
Val	Leu	Met	Arg	Ser	Leu	Val	Thr	His	Arg	Thr	Asn	Leu	Arg	Ala	Leu	
380	-				385					390					395	
cac	cga	gga	gct	gcc	ctg	gac	ttg	agt	ссс	ttg	cat	cgg	agt	ccc	cat	1312
His	Arg	Gly	Ala	Ala	Leu	Asp	Leu	Ser	Pro	Leu	His	Arg	Ser	Pro	His	
				400					405					410		
ccc	tcc	cgc	caa	gcc	ata	ttc	tgt	tgg	atg	agc	ttc	agt	gcc	tac	cag	1360
					Ile										_	
	001				110		0,3	•	iiic c	JCI	1110	Jei		.,.	JIII	
	•		415					420					425			
aca	gcc .	ttt	atc	tgc	ctt	ggg	ctc	ctg	gtg	cag	cag	atc	atc	ttc	ttc	1408
Thr	Ala	Phe	Ile	Cys	Leu	Gly	Leu	Leu	Val	Gln	Gln	Ile	Ile	Phe	Phe	
		430					435					440	-			
ctg	gga	acc	acg	gcc	ctg	gcc	ttc	ctg	gtg	ctc	atg	cct	gtg	ctc	cat	1456
Leu	Gly	Thr	Thr	Ala	Leu	Ala	Phe	Leu	Val	Leu	Met	Pro	Val	Leu	His	
	445					450					455					
ggc	agg	aac	ctc	ctg	ctc	ttc	cgt	tcc	ctg	gag	tcc	tcg	tgg	ccc	ttc	1504
Gly	Arg	Asn	Leu	Leu	Leu	Phe	Arg	Ser	Leu	Glu	Ser	Ser	Trp	Pro	Phe	
							J								475	
																1550
					ctg				_			_				1552
					Leu					Gln	Asn	Met	Ala	Ala	His	
<i>i:</i>	J*€.*			480	•		•		485		*:		•	490		
tgg	gtc	ttc	ctg	gag	act	cat	gat	gga	cac	cca	cag	ctg	acc	aac	cgg	1600

BMCDCID - MIC 011366043 1

Trp '	Val	Phe	Leu	Glu	Thr	His	Asp	Gly	His	Pro	Gln	Leu	Thr	Asn	Arg	
			495					500					505			
cga	gtg	ctc	tat	gca	gcc	acc	ttt	ctt	ctc	ttc	ccc	ctc	aat	gtg	ctg	1648
Arg	Val	Leu-	Tyr-	Ala	Ala	Thr	Phe	Leu	Leu	Phe	Pro	Leu	Asn	Val	Leu	
.,		510	٠.				515			•		520				
gtg	ggt	gcc	atg	gtg	gcc	acc	tgg	cga	gtg	ctc	ctc	tct	gcc	ctc	tac	1696
		•				Thr										
	525					530	•	_			535					
		a ta	000	c++	aac	cag	ato	gac	ctc	agc		ctg	cca	ccg	aga	1744
Asn	Ala	He	His	Leu	Gly	Gln	Met	ASP	Leu		Leu	Leu	110	110		7;
540					545					550				•	555	
gcc	gcc	act	ctc	gac	ccc	ggc	tac	tac	acg	tac	cga	aac	ttc	ttg	aag	1792
Ala	Ala	Thr	Leu	Asp	Pro	Gly	Tyr	Tyr	Thr	Tyr	Arg	Asn	Phe	Leu	Lys	
				560)				565					570	·.	
att	gaa	gtc	agc	cag	tcg	cat	cca	gcc	atg	aca	gcc	ttc	tgc	tcc	ctg	1840
Ile	Glu	Val	Ser	Glr	Ser	His	Pro	Ala	Met	Thr	Ala	Phe	Cys	Ser	Leu	•
			575					580					585			
ctc	cte	caa	gcs	cas	z ago	ctc	cta	ccc	age	g acc	ate	g gca	a gcc	ccc	cag	1888
															Gln	
		590					595						0 .			
											- 4					1936
															a cag	1950
Asp	Set	r Lei	ı Arı	g Pr	o G1	y Glu	ı Glı	ı Ası	o Glu	ı Gly	y Me	t Gl	n Lei	ı Lei	u Gln	
	60	5 ·				610) .	•			61	5				
aca	aa	g ga	c to	c at	g gc	c aag	g gg	a gc	t ag	g cc	c gg	g gc	c ag	c cg	c ggc	1984
·Thr	Ly	s As	p Se	r Me	t Al	a Lys	s Gl	y Al	a Ar	g Pr	o Gl	y Al	a Se	r Ar	g Gly	

4-1-1-1

121/307

620	625	630	635
agg gct cgc tgg ggt	ctg gcc tac acg ctg	ctg cac aac cca	acc ctg 2032
Arg Ala Arg Trp Gly	Leu Ala Tyr Thr Leu	Leu His Asn Pro	Thr Leu
640	645		650
cag gtc ttc cgc aag	acg gcc ctg ttg ggt	gcc aat ggt gcc	cag ccc 2080
Gln Val Phe Arg Lys	Thr Ala Leu Leu Gly	Ala Asn Gly Ala	Gln Pro
655	660	665	
tgagggcagg gaaggtca	aac ccacctgccc atctg	tgctg aggcatgttc	2130
ctgcctacca tcctcctc	ce teeceggete teetee	cagc atcacaccag c	catgcagcc 2190
agcaggtcct ccggatcad	cc gtggttgggt ggaggt	ctgt ctgcactggg a	gcctcagga 2250
gggctctgct ccacccact	tt ggctatggga gagcca	gcag gggttctgga g	aaagaaact 2310
ggtgggttag ggccttggt	tc caggagecag ttgaged	cagg gcagccacat c	caggegtet 2370
ccctaccctg gctctgcca	at cageettgaa gggeete	cgat gaageettet e	tggaaccac 2430
tccagcccag ctccaccto	ca goottggoot toacgo	tgtg gaagcagcca a	ggcacttcc 2490
tcacccctc agcgccace	gg acctctctgg ggagtgg	gccg gaaagctccc g	ggcctctgg 2550
cctgcagggc agcccaagt	to atgactcaga ccaggto	cca cactgagetg c	ccacactcg 2610
agagccagat attttgta	ig tttttatgcc tttggcf	tatt atgaaagagg t	tagtgtgtt 2670
ccctgcaata aacttgtto	c tgag		2694
	·		4
<210> 57		• • •	•
<211> 3297			ķ
<212> DNA		• • •	ra iv
<213> Homo sapiens	·		· . : .
<220>	•	:	
<221> CDS 2 222 22	5.5 - 53 - 34 - 540 - 68 -	ing at the second of the second	51 145 ·

BNSDOCID: <WO 0112660A2 E >

<222> (83)(1477)	
<400> 57	
ggggtctgta ctctgtgaag tcaactgggt tagtgtgctc tctgatgcct ggaattccag	60
tccccaccca gaaacccgca gc atg att gtc tgc ctc ctt ttc atg atg att	112
Met Ile Val Cys Leu Leu Phe Met Met Ile	
<u>,</u> ,	
tta ttg gca aag gaa gtt caa ctg gta gac caa aca gat tca cct tta	160
Leu Leu Ala Lys Glu Val Gln Leu Val Asp Gln Thr Asp Ser Pro Leu	
20 25	
ctt agt ctc ctt gga cag aca agc tca ctt tca tgg cat ctt gtg gat	208
Leu Ser Leu Leu Gly Gln Thr Ser Ser Leu Ser Trp His Leu Val Asp	
30 35 40	
att gtg tcg tac cag agt gtg cta agt tat ttc agc agc cat tac ccg	256
Ile Val Ser Tyr Gln Ser Val Leu Ser Tyr Phe Ser Ser His Tyr Pro	
ccg tcc atc atc ctg gca aaa gaa tct tat gct gaa tta atc atg aag	304
Pro Ser Ile Ile Leu Ala Lys Glu Ser Tyr Ala Glu Leu Ile Met Lys	
60 65 70	
ctc cta aaa gtg tct gcg ggc ctt tct att cct act gac agc cag aag	352
Leu Leu Lys Val Ser Ala Gly Leu Ser Ile Pro Thr Asp Ser Gln Lys	
75 80 85 90	
cat ctt gat gca gtt cca aaa tgc caa gct ttt act cat cag atgigtt	400
His Leu Asp Ala Val Pro Lys Cys Gln Ala Phe Thr His Gln Met: Val	
95 100 105	

caa ttc ctc agc acc ctg gaa caa aat gga aaa atc acc tta gca gtc

RNSDOCID: <WO 0112660A2 1 >

A 10 STATE OF STATE OF THE STAT

448

: 章

Gln	Phe	Leu	Ser	Thr	Leu	Glu	Gln	Asn	Gly	Lys	Ile	Thr	Leu	Ala	Val :		
	-		110					115					120		٠.		
cta	gaa	cag	gaa	atg	tct	aag	ctc	tta	gac	gat	atc	att	gtc	ttt	aac		496
Leu	Glu	Gln	Glu	Met	Ser	Lys	Leu	Leu	Asp	Asp	Ile	Ile	Val	Phe	Asn		
		125					130					135					
ccg	ccc	gac	atg	gac	agc	cag	acc	cgc	cac	atg	gcc	ctc	agc	agc	ctc		544
Pro	Pro	Asp	Met	Asp	Ser	Gln	Thr	Arg	His	Met	Ala	Leu	Ser	Ser	Leu		
	140					145					150						
ttt	atg	gaa	gtc	ctg	atg	atg	atg	aac	aac	gcg	act	att	cca	aca	gca		592
Phe	Met	Glu	Val	Leu	Met	Met	Met	Asn	Asn	Ala	Thr	Ile	Pro	Thr	Ala		
155					160		•			165					170		
gag	ttc	ctt	cgg	ggc	agt	atc	cgg	acc	tgg	att	ggc	caa	aaa	atg	cat		640
Glu	Phe	Leu	Arg	Gly	Ser	Ile	Arg	Thr	Trp	Ile	Gly	Gln	Lys	Met	His		
				175					180					185			
ggg	ctg	gtg	gtg	ctg	ccc	ctt	tta	aca	gca	gcc	tgc	cag	agc	ctg	gcg		688
Gly	Leu	Val	Val	Leu	Pro	Leu	Leu	Thr	Ala	Ala	Cys	Gln	Ser	Leu	Ala	÷	
•			190		•			195			•		200		-		
tcc	gtc	cgc	cac	atg	gct	gag	act	aca	gaa	gcc	tgc	atc	act	gcc	tac		736
Ser	Val	Arg	His	Met	Ala	Glu	Thr	Thr	Glu	Ala	Cys	Ile	Thir	Ala	Tyr		
		.205	• •	•			210	•				215					
ttc-	aaa	gaa	agc	cct	ctc	aat	cag	aat	tca	gga	tgg	gga	ccc	att	ctg		784
Phe	Lys	Glu	Ser	Pro	Leu	Asn	Gln	Asn	Ser	Gly	Trp	Gly	Pro	Ile	Leu		
•	220					225	7		ē		230						
gta	tcc	ctt	cag	gtt	ccc	gag	ctc	acc	atg	gaa	gag	ttc	ctg	cag	gag		832
Va1	Can	1	Cln	Va 1	D	C10	Lou	TL.	M-+	C1	C1	DL.	1	C1_	C1		

235	• •	•	•	•	240		·			245				•	250	
tgc	ctc	acc	ttg	ggc	agt	tac	ttg	act	ctt	tac	gtc	tac	ttg	ctt	cag	880
Cys	Leu	Thr	Leu	Gly	Ser	Tyr	Leu	Thr	Leu	Tyr	Val	Tyr	Leu	Leu	Gln	
:				255					260					265	•	
tgt	tta	aac	agc	gaa	cag	act	tta	agg	aat	gaa	atg	aaa	gtg	ctg	ctc	928
Cys	Leu	Asn	Ser	Glu	Gln	Thr	Leu	Arg	Asn	Glu	Met	Lys	Val	Leu	Leu	
			270					275				,	280			
atc	tta	agc	aag	tgg	ctg	gaa	cag	gtg	tac	cca	agc	tcc	gtg	gag	gaa	976
Ile	Leu	Ser	Lys	Trp	Leu	Glu	Gln	Val	Tyr	Pro	Ser	Ser	Val	Glu	Glu	•
	-	285	ı				290					295				
gag	gca	aag	ctg	ttt	ttg	tgg	tgg	cac	caa	gtc	ctt	cag	cto	tco	ctc	1024
Glu	Ala	Lys	Leu	Phe	Leu	Trp	Trp	His	Gln	Val	Leu	G1n	Leu	s Ser	Leu	. •
	· 300)	•			305	ı				310					
att	cag	aca	gag	cag	g aat	gac	tcc	gto	ctg	aca	gaa	tct	gto	ati	t cga	1072
Ile	Glr	1 Thr	Glu	ı 'G1r	n Asn	Asp	Ser	Val	Leu	Thr	Glu	ı Ser	· Va	l· Ile	e Arg	
315	5			.1 .	320)				325	5			•	330	•
att	cte	g cto	c tts	g gt	t cag	gago	age	g cag	g aac	cto	gt	g gc	t ga	g ga	g aga	1120
Ile	e Lei	u Lei	u Lei	ı Va	l Glı	n Sei	Arg	g Glı	n Asr	Leu	ı Va	l Ala	a Gl	u Gl	u Arg	5 `
				. 33	5	•			340) '				34	5	- t
cte	c ag	c tc	t gg	g at	c ct	g gg:	g gc	a at	t gg(g tt	t gg	c cg	g aa	g tc	g cct	1168
Le	u Se	r Se	r Gl	y Il	e Le	u Gl	y Al	a Il	e Gl	y Ph	e Gl	y Ar	g Ly	s Se	r Pro	o;
:		. 2	35	0.	. , .			35	5	ī. ·	•	•	36	iO '		•
tt	g tc	t aa	c ag	g tt	c cg	a gt	g gt	t gc	c cg	a ag	c at	g go	t go	c tt	c ct	t 1216
Le	u Se	r As	n Ar	g Ph	ne Ar	g Va	l Va	1 A1	a Ar	g Se	r Me	t Al	a Al	la' Pł	ne Le	u
•	:	36	S Ś	, , ,	• . •		37	0	••.	. '	r,	37	75	• • .	sil. 3	1

tca	gtt	cag	gtt	cct	atg	gaa	gat	cag	atc	cgt	ttg	agg	cct	ggc	tct	1264
Ser	Val	Gln	Val	Pro	Met	Glu	Asp	Gln	Ile	Arg	Leu	Arg	Pro	Gly	Ser	
•	380	;	•.	4		385				•	390	•				
gaa	tta	cat	ctg	acc	ссс	aaa	gct	cag	cag	gct	ctg	aat	gct	ctt	gaa	1312
Glu	Leu	His	Leu	Thr	Pro	Lys	Ala	G1n	Gln	Ala	Leu	Asn	Ala	Leu	Glu	
395					400					405					410	
tcc	atg	gca	tca	agt	aag	cag	tat	gtt	gaa	tac	cag	gat	caa	ata	ttg	1360
Ser	Met	Ala	Ser	Ser	Lys	Gln	Tyr	Val	Glu	Tyr	Gln	Asp	Gln	Ile	Leu	
				415					420					425		
caa	gcc	acc	caa	ttt	ata	agg	cat	cct	ggc	cat	tgc	ctt	caa	gat	ggg	1408
Gln	Ala	Thr	Gln	Phe	Ile	Arg	His	Pro	Gly	His	Cys	Leu	Gln	Asp	Gly	
			430					435	•				440			
aaa	agc	ttc	ttg	gct	ctt	ctc	gtt	aac	tgt	ctg	tat	cca	gaa	gtg	cat	1456
Lys	Ser	Phe	Leu	Ala	Leu	Leu	Val	Asn	Cys	Leu	Tyr	Pro	Glu	Val	His	
		445					450					455				
tat	ttg	gac	cac	ata	cga	tagt	ta a	cact	gagg	c to	ttga	aaaa	ccc	atte	ctg	1510
Tyr	Leu	Asp	His	Ile	Arg											
	460															
ttta	tgtt	ta c	attt	aact	t tg	ctgt	tgca	caa	gtaa	ctt	tgct	caat	tg c	acte	tagag	1570
ctca	gttt	gg c	caat	gtgt	a gt	tgac	tgag	atg	caag	ttg	ggag	gcgt	ta g	atat	tagat	1630
aatt	ttgg	gg t	gtgt	gtgt	g tg	tgtg	tgtg	tgt	tttc	tta	gctc	ttaa	iga c	ctto	tgggg	1690
acto	ttta	ag t	tttt	atat	t ta	tcca	caag	aga	aact	tac	taag	ttcc	ac t	tggg	tgcag	1750
agco	acto	ac a	gttg	ccga	a tg	tccc	agto	ato	tcac	aag	acct	ccag	at e	gagt	tcttt	1810
gtat	gttt	cc a	cttc	tgtc	t ct	gttt	tatg	taa	atgt	tcc	agat	ctga	ica a	cctt	ggaag	1870
tcac	tcag	ta c	cctt	actt	t ta	aacc	ccat	ttg	tgtt	cct	ccaa	agta	iaa g	aagt	caatt	1930

ttgaaaaatt	tctgcatttc	tcaaatgtgg	acaaatacaa	tagttttaaa	gtattgtttt	1990
tctcagaagg	gagataaaaa	tgccgagtta	gttaaagtgg	gtcatgtgta	aaatacgacc	2050
acttgatcgt	gattatagtg	ggcagtagag	atgatgacaa	gtcaatttcc	atccagccgt	2110
gtateeteat	ggagaagctg	cctgtctgaa	tcaggatggc	aagctggcag	tctgggagga	2170
gcatgttttg	cacagatgtt	ttgtttggtc	cacttggtga	ggagtgcaga	cagggctgcc	2230
tctctctagt	cgggagagtc	tgtgcattcc	ctcgggccct	gaccctagcc	tcattcacat	2290
cacttgcccc	tgtcgacacc	taagtttgca	ccctttgata	gacaccatgt	tcgatatctg	2350
aaaggctcag	tgtcaggaga	cagagactga	gggagactga	agacctgatt	ctctgttccc	2410
tgcttgtttt	ttaacttcaa	actcagatga	agccaatgga	cctgctgaaa	cacttgtctg	2470
tggaaactgg	gtcaggtcgg	gagatctact	gaaatttggc	ttttttcca	tagccacgtg	2530
ccttctgttg	ttgacagttc	attcattacc	aaagcctgtg	tgtaactttg	ccttgttctg	2590
tggccatctt	cttgctcatg	ttatttctcc	tgggaatgag	cagtttgact	tctgttccca	2650
cgttcctcat	tctatcagct	ctagatggat	tttgcctgca	tagctggctt	aatatgtctt	2710
tgtgtatggg	tagtctgtag	cctgagaata	tttacctaaa	aatgtctaaa	cagccaccaa	2770
gaatgtttat	aggggtatag	gaatatagtt	aacagagtgc	taatctctcc	tcaaatgtcc	2830
ttttggaatg	cttcccccaa	aattgggaag	ttggtaggag	cttttcttta	ctttgaattt	2890
ctttacttgg	acagaacgat	tctgccttaa	agacacgctt	tgcagctctg	ataaagaaca	2950
tccctgttta	gtctcttgag	ttttacaggc	cacaaaatgt	ccgtctcaga	gggatctgtc	3010
tcagcttttc	ttatttttgc	ttctctccgt	tttcaaaatt	aatcatcttg	ttctctgtat	3070
aagaaaattt	gagaagctgt	ggacaattta	atagtctgat	ctggcaacag	cgatttttgt	3130
ttggaaatat	tttgtgtttt	ctttgaggag	gatataatta	ctgatatcct	aggatgtgaa	3190
atttttgagt	gacagtatgo	acattttaaa	gaaaattat	g attaatctgt	ataatgtttt	3250
ttggtctgta	a aaaattataa	aaaataaaat	catttatct	t tggttgt '.		3297

<211> 2	2126														
<212> D	NA									٠,					
<213> H	Ошо	sapi	ens		,								:	•	
<220>		•													
<221> C	DS											•			
<222> (61).	(1	473)												
<400> 5	8														
aacactg	aca	gcgt.	gagc	cc g	cggc	ggct	g ct	gcca	tggt	ggc	tggc	ggc	cggg	tgcagc	60
atg tct	aga	ctg	gga	gcc	ctg	ggt	ggt	gcc	cgt	gcc	ggg	ctg	gga	ctg	108
Met Ser	Arg	Leu	Gly	Ala	Leu	Gly	Gly	Ala	Arg	Ala	Gly	Leu	Gly	Lèu	
1			5					10				•	15		
ttg ctg	ggt	acc	gcc	gcc	ggc	ctt	gga	ttc	ctg	tgc	ctc	ctt	tac	agc	156
Leu Leu	Gly	Thr	Ala	Ala	Gly	Leu	Gly	Phe	Leu	Cys	Leu	Leu	Tyr	Ser	
		20					25					30			
cag cga	tgg	aaa	cgg	acc	cag	cgt	cat	ggc	cgc	agc	cag	agc	ctg	ccc.	204
Gln Arg	Trp	Lys	Arg	Thr	Gln	Arg	His	Gly	Arg	Ser	Gln	Ser	Leu	Pro	
•	35	. ;	: •			40					45		. .		
aac tcc	ctg	gac	tat	acg	cag	act	tca	gat	ccc	gga	cgc	cac	gtg	atg	252
Asn Ser	Leu	Asp	Tyr	Thr	Gln	Thr	Ser	Asp	Pro	Gly	Arg	His	Val	Met	
50	•				55	: .				60		-		•	
ctc ctg	cgg	gct	gtc	cca	ggt	ggg	gct	gga	gat	gcc	tca	gtg	ctg	ссс	300
Leu Leu	Arg	Ala	Val	Pro	Gly	Gly	Ala	Gly	Asp	Ala	Ser	Val	Leu	Pro	
65		.• "	:	70		٠.		•	75		,		*. ,	80	
agc.ctt.	cca	cgg	gaa	gga	cag	gag	aag	gtg	ctg	gac	cgc	ctg	gac	ttt	348
Ser Leu	Pro	Arg	Glu	G1 y	Gln	Glu	Lys	Val	Leu	Asp	Arg	Leu	Asp	Phe	

PNSDOCID: WO 011266042 L

MARKET KROSTAN

				85					90					:95	. • • •	
gtg	ctg	acc	agc	ctt	gtg	gcg	ctg	cgg	cgg	gag	gtg	gag	gag	ctg	aga	396
Val	Leu	Thr	Ser	Leu	Val	Ala	Leu	Arg	Arg	Glu	Val	Glu	Glu	Leu	Arg	
			100					105					110			
agc	agc	ctg	cga	ggg	ctt	gcg	ggg	gag	att	gtt	ggg	gag	gtc	cga	tgc	444
Ser	Ser	Leu	Arg	Gly	Leu	Ala	Gly	Glu	Ile	Val	Gly	Glu	Val	Arg	Cys	
		115					120					125				
cac	atg	gaa	gag	aac	cag	aga	gtg	gct	cgg	cgg	cga	agg	ttt	ccg	ttt.	492
His	Met	Glu	Glu	Asn	Gln	Arg	Val	Ala	Arg	Arg	Arg	Arg	Phe	Pro	Phe	
	130	-				135	,				140					i.
gtc	cgg	gag	agg	agt	gac	tcc	act	ggc	tcc	agc	tct	gtc	tac	ttc	acg	540
Val	Arg	Glu	Arg	Ser	Asp	Ser	Thr	Gly	Ser	Ser	Ser	Val	Tyr	Phe	Thr	,
145					150					155					160	
gcc	tcc	tcg	gga	gcc	acg	ttc	aca	gat	gct	gag	agt	gaa	ggg	g ggt	; tac	588
Ala	Ser	Ser	Gly	Ala	Thr	Phe	Thr	Asp	Ala	Glu	Ser	Glu	Gly	Gly	y Tyr	
	٠			. 165				٠.	170) •		-	÷	178	5: <u>1</u> 22:	
aca	aca	gcc	aat	gcg	gag	tct	gac	aat	gag	cgg	gac	tct	gad	c aaa	a gaa	636
															s Glu	
		,) 1 .										_		
agt	gag	g gao	ggs	g gaa	ı gat	gaa	i gtg	g ago	c tgi	t gag	g act	t gt	g aa	g at	g ggg	684
															t Gly;	
															11:11:	
aga	a aa	g ga	t tc	t cti	t gad	: tti	g ga	g ga	a ga	g gca	a gc	t tc	a gg	t gc	c tcc·	732
															a: Ser.,	
															terija mark	

agt	gcc	ctg	gag	gct	gga	ggt	tcc	tca	ggc	ttg	gag	gat	gtg	ctg	ccc	780
Ser	Ala	Leu	Glu	Ala	Gly	Gly	Ser	Ser	Gly	Leu	Glu	Asp	Val	Leu	Pro	
225	.• .	• • ••			230	٠.	•			235					240	
ctc	ctg	cag	cag	gcc	gac	gag	ctg	cac	agg	ggt	gat	gag	caa	ggc	aag	828
Leu	Leu	Gln	Gln	Ala	Asp	Glu	Leu	His	Arg	Gly	Asp	Glu	Gln	Gly	Lys	
	ty.			245					250					255		
cgg	gag	ggc	ttc	cag	ctg	ctg	ctc	aac	aac	aag	ctg	gtg	tat	gga	agc	876
Arg	Glu	Gly	Phe	Gln	Leu	Leu	Leu	Asn	Asn	Lys	Leu	Val	Tyr	Gly	Ser	
			260					265					270			
cgg	cag	gac	ttt	ctc	tgg	cgc	ctg	gcc	cga	gcc	tac	agt	gac	atg	tgt	924
Arg	Gln	Asp	Phe	Leu	Trp	Arg	Leu	Ala	Arg	Ala	Tyr	Ser	Asp	Met	Cys	
		275			-		280					285				
gag	ctc	act	gag	gag	gtg	agc	gag	aag	aag	tca	tat	gcc	cta	gat	gga	972
Glu	Leu	Thr	Glu	Glu	Val	Ser	Glu	Lys	Lys	Ser	Tyr	Ala	Leu	Asp	Gly	
	290					295					300					
aaa	gaa	gaa	gca	gag	gct	gct	ctg	gag	aag	ggg	gat	gag	agt	gct	gac	1020
Lys	Glu	Glu	Ala	Glu	Ala	Ala	Leu	Glu	Lys	Gly	Asp	Glu	Ser	Ala	Asp	
305					310					315					320	
tgt	cac	ctg.	tgg	tat	gcg	gtg	ctt	tgt	ggt	cag	ctg	gct	gag	cat	gag	1068
Cys	His	Leu	Trp	Tyr	Ala	Val	Leu	Cys	Gly	Gln	Leu	Ala	Glu	His	Glu	
				325	.•	-			330					335		
agc	atc	cag	agg	cgc	atc	cag	agt	ggc	ttt	agc	ttc	aag	gag	cat	gtg	1116
Ser	Ile	Gln	Arg	Arg	Ile	Gln	Ser	Gly	Phe	Ser	Phe	Lys	Glu	His	Val	
· y ··	····:		340			٠.,		345					350			
gac,	aaa	gcc	att	gct	ctc	cag	cca	gaa	aac.	ccc	atg	gct	cac	ttt	ctt	1164

Asp	Lys	Ala	Ile	Ala	Leu	Gln	Pro	Glu	Äsn	Pro	Met	Ala	His	Phe	Leu	
-		355					360	•			٠.	365	•		•	
ctt	ggc	agg	tgg	tgc	tat	cag	gtc	tct	cac	ctg	agc	tgg	cta	gaa	aaa	1212
Leu	Gly	Arg	Trp	Cys	Tyr	Gln	Val	Ser	His	Leu	Ser	Trp	Leu	Glu	Lys	
	370	. • •			• •	375					380		• •		:	
aaa	act	gct	aca	gcc	ttg	ctt	gaa	agc	cct	ctc	agt	gcc	act	gtg	gaa	1260
Lys	Thr	Ala	Thr	Ala	Leu	Leu	Glu	Ser	Pro	Leu	Ser	Ala	Thr	Val	Glu -	
385					390					395			•		400	
gat	gcc	ctc	cag	agc	ttc	cta	aag	gct	gaa	gaa	cta	cag	cca	gga	ttt	1308
Asp	Ala	Leu	Gln	Ser	Phe	Leu	Lys	Ala	Glu	Glu	Leu	Gln	Pro	Gly	Phe	'd' _p
				405					410					415	-	
tcc	aaa	gca	gga	agg	gta	tat	att	tcc	aag	tgc	tac	aga	gaa	cta	ggg	1356
Ser	Lys	Ala	Gly	Arg	Val	Tyr	Ile	Ser	Lys	Cys	Tyr	Arg	Glu	Leu	Gly	
		•	420					425					430			
aaa	aac	tct	gaa	gct	aga	tgg	tgg	atg	aag	ttg	gcc	ctg	gag	ctg	cca	1404
Lys	Asn	Ser	Glu	Ala	Arg	Trp	Trp	Met	Lys	Leu	Ala	Leu	Glu	Leu	Pro	
,		435					440	ı				445	•	•	 12	
gat	gto	acg	aag	gag	gat	ttg	gct	atc	cag	aag	gac	ctg	gaa	gaa	ctg	1452
Asp	Val	Thr	Lys	G1u	Asp	Leu	Ala	Ile	Gln	Lys	Asp	Leu	G1u	Glu	i Leu"	
	450) ¹			٠	455	;				460)				
gaa	gto	att	tta	cga	gac	taa	ccac	gtt	tcac	tggc	ct t	cate	gactt	g		1500
Gli	i Val	Tle	Leu	Arg	g Asp)	•			•		٠.	•		. ,,,	
469	. .				470				•	•	•	,	٠.	4 / 4	.:	
ate	gccad	ctat	ťtaa	nggtį	88 8	ggg	gggg	ga gg	gctti	tttt	cti	taga	cctt	gct	gagatca	1560
gg	ááac	caca	caáa	atct	gtc 1	cct	gggto	ct ga	actgo	ctaco	ca	ctac	cact	CCC	cattagt	1620

taatttattc taacctctaa cctaatctag aattggggca gtactcatgg cttccgtttc	1680
tgttgttctc tcccttgagt aatctcttaa aaaaatcaag attcacacct gccccaggat	1740
tacacatggg tagagcctgc aagacctgag accttccaat tgctggtgag gtggatgaac	1800
ttcaaagcta taggaacaaa gcacataact tgtcacttta atcttttca ctgactaata	1860
ggactcagta catatagtct taagatcata ccttacctac caaggtaaaa agagggatca	1920
gagtggccca cagacattgc tttcttatca cctatcatgt gaattctacc tgtattcctg	1980
ggctggacca cttgataact tccagtgtcc tggcagcttt tggaatgaca gcagtggtat	2040
ggggtttatg atgctataaa acaatgtctg aaaagttgcc tagaatatat tttgttacaa	2100
acttgaaata aaccaaattt gatgtt	2126
⟨210⟩ 59	
<211> 1781	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
⟨222⟩ (74) (805)	
<400> 59	
aatttggacc tgtgattcct tggttctcac aatcctctcc actctaagaa gcagggtgag	60
cccacaagga gca atg gag cag ggc agc ggc cgc ttg gag gac ttc cct	109
Met Glu Gln Gly Ser Gly Arg Leu Glu Asp Phe Pro	
5 ,	
gtc aat gtg ttc tcc gtc act cct tac aca ccc agc acc gct gac atc	157
Val Asn Val Phe Ser Val Thr Pro Tyr Thr Pro Ser Thr Ala Asp Ile	
15 20 25	

ag	gtg	tcc	gat	gat	gac	aag	gcg	ggg	gcc	acc	ttg	ctc	ttc	tca	ggc	205
Gln	Val	Ser	Asp	Asp	Asp	Lys	Ala	Gly	Ala	Thr	Leu	Leu	Phe	Ser	Gly	_
	30					35				٠.	40		٠			•
atc	ttt	ctg	gga	ctg	gtg	ggg	atc	aca	ttc	act	gtc	atg	ggc	tgg	atc '	253
Ile	Phe	Leu	Gly	Leu	Val	Gly	Ile	Thr	Phe	Thr	Val	Met	G1y	Trp	Ile	
45					50					55		• •			60	
aaa	tac	caa	ggt	gtc	tcc	cac	ttt	gaa	tgg	acc	cag	ctc	ctt	ggg	ccc.	301
Lys	Tyr	Gln	Gly	Val	Ser	His	Phe	Glu	Trp	Thr	Gln	Leu	Leu	Gly	Pro	
				65					70			••		75	• - • •	
gtc	ctg	ctg	tca	gtt	ggg	gtg	aca	ttc	atc	ctg	att	gct	gtg	tgo	aag	349
Val	Leu	Leu	Ser	Val	Gly	Val	Thr	Phe	Ile	Leu	Ile	Ala	Val	Cys	Lys	
-		•	80					85					90)		
ttc	aaa	ate	ctc	tcc	tgc	cag	ttg	tgc	aaa	gaa	agt	gag	gaa	a agg	g gtc	397
Phe	Lys	Met	Leu	Ser	Cys	Gln	Leu	Cys	Lys	Glu	Ser	Glu	i Glu	ı Arı	g Val	
		95	5				100	1				105	5			
cce	gac	tce	g gaa	cag	aca	cca	gga	gga	cca	tca	ttt	gti	t tte	c ac	t ggc	445
Pro	Asp	Sei	r Glu	ı Glm	Thr	Pro	Gly	Gly	Pro	Ser	Phe	e Val	l Pho	e Th	r Gly	
	110)				115	5				120)				
ato	aa	cca	a cc	c ato	acc	tto	cat	ggg	g 'gco	act	t gti	gʻgt	g ca	g ta	c atc	- 493
110	e Ası	n Gl	n Pro	o Ile	e Thi	r Phe	e His	s Gly	y Ala	a Thi	r Va	l Va	1 G1	n Ty	r Ile	•
12	5			. '	130)				13	5				140	
cc	t cc	t cc	t 'ta	t gg	t tc	t cc	a ga	g cc	t at	g gg	g at	a aa	t ac	c ag	c tac	541
Pr	o Pr	o Pr	о Ту	r Gl	y Se	r Pr	o Gl	u Pr	o Me	t Gl	y ¹Il	e As	n Th	ır Se	r Tyr	
				14	5				15	0			•	15	55	
ct	σ C8	o to	t gt	g gt	gag	c cc	c tg	c gg	c ct	c at	a ac	c to	t gg	ga ge	gg gca	589

Leu	Gln	Ser	Val	Val	Ser	Pro	Cys	Gly	Leu	Ile	Thr	Ser	Gly	Gly	Ala	
		-	160	•				165		•		-	170		,	
gca	gcc	gcc	atg	tca	agt	cct	cct	caa	tac	tac	acc	atc	tac	cct	caa	637
Ala	Ala	Ala	Met	Ser	Ser	Pro	Pro	Gln	Tyr	Tyr	Thr	Ile	Tyr	Pro	Gln	
		175					180					185		•		
gat	aac	tct	gca	ttt	gtg	gtt	gat	gag	ggc	tgc	ctt	tct	ttc	acg	gac	685
Asp	Asn	Ser	Ala	Phe	Val	Val	Asp	Glu	Gly	Cys	Leu	Ser	Phe	Thr	Asp	
	190				•	195					200				ē	
ggt	gga	aat	cac	agg	ссс	aat	cct	gat	gtt	gac	cag	cta	gaa	gag	aca	733
Gly	Gly	Asn	His	Arg	Pro	Asn	Pro	Asp	Val	Asp	Gln	Leu	Glu	Glu	Thr	
205					210					215					220	
cag	ctg	gaa	gag	gag	gcc	tgt	gcc	tgc	ttc	tct	cct	ссс	cct	tat	gaa	781
Gln	Leu	Glu	Glu	Glu	Ala	Cys	Ala	Cys	Phe	Ser	Pro	Pro	Pro	Tyr	Glu	
	•			225					230					235		
gaa	ata	tac	tct	ctc	cct	cgc	taga	iggct	att	ctga	tat	aata	aca	caa		830
Glu	Ile	Tyr	Ser	Leu	Pro	Arg						,.			· • .	
			240											,		
tgct	cago	tc a	ggga	gcaa	ıg tg	tttc	cgtc	att	gtta	cct	gaca	acce	gtg g	gtgti	ctatg	890
ttgt	aacc	tt c	agaa	gtta	ıc ag	cago	gccc	age	cago	ctg	acag	agat	ca 1	tcaa	ggggg	950
gaaa	gggg	aa g	tggg	aggt	g ca	attt	ctca	gat	tggt	aaa	aatt	aggo	tg g	ggctg	gggaa	1010
attc	tcct	cc g	gaac	agtt	t ca	aatt	ccct	cgg	gtaa	gaa	atct	ccte	gta 1	aagg	ttcag	1070
gago	agga	at t	tcac	tttt	t ca	tcca	ccac	cct	cccc	ctt	ctct	gtag	ga a	aggca	ittggt	1130
ggct	caat	tt. t	aacc	ccag	c ag	ссва	tgga	aaa	atca	cga	cttc	tgag	gac 1	ttgg	gagtt	1190
tcça	caga	gg t	gaga	gtcg	g gt	ggga	agga	ago	aggg	aag	agaa	agca	ngg (ccag	ctgga	1250
															cagct	

Same of the state of

gecatetgge etetetgagg actetgggta cettaaagae tataaaacaa aacaaaacaa	1370
aaacatcaaa ccaatgaaat aaaataaatc atgtctcctg ctagaatagt attggatacc	1430
tgactaaatt acacaaaata gaccataata ggatagcact gtgaatacat ccttcccgat	1490
cactgagtca cagtgaccet tggctgctgc agttctcgtc tgcaaggttg aagcttgacg	1550
tgtgatgaac atgggtgggc tcttggtcca ccccaggctg gggcctgcgc caagcatgaa	1610
ctagctggga ccagtggctg acagaacaca ggacttccct aagtacccgt aggtccgtgg	1670
agcaagacag agcagagttg ccatgtcaac acatggggaa tgatatgata	1730
ttatgactaa aagaaactca tcttcttcat taaaaaaaact ttggtgtcct t	1781
<210> 60	
<211> 1788	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (87) (899)	
<400> 60	
attgggcggc gtgatctcgc cgcggttccg cggccctgcc gccgccgccg ccagcagagc	60
gcaccgggcc gatcgggcga gtggcc atg gcg ggc gcc gag gac tgg ccg ggc	113
Met Ala Gly Ala Glu Asp Trp Pro Gly	
1 5	
cag cag ctg gag ctg gac gag gac gag gcg tct tgt tgc cgc tgg ggc	161
Gln Gln Leu Glu Leu Asp Glu Asp Glu Ala Ser Cys Cys Arg Trp Gly	
10 15 20 20 25	
gcg cag cac gcc ggg gcc cgc gag ctg gct gcg ctc tac tcg cca ggc	209

Ala	Gln	His	Ala	Gly	Ala	Arg	Glu	Leu	Ala	Ala	Leu	Tyr	Ser	Pro	Gly	
	•			30		•			. 35					.40)	
aag	cgc	ctc	cag	gag	tgg	tgc	tct	gtg	atc	ctg	tgc	ttc	ago	ctc	atc	257
Lys	Arg	Leu	Gln	Glu	Trp	Cys	Ser	Val	Ile	Leu	Cys	Phe	Ser	Leu	Ile	
			45	. .				50					55	•		-
gcc	cac	aac	ctg	gtc	cat	ctc	ctg	ctg	ctg	gcc	cgc	tgg	gag	gac	aca	305
Ala	His	Asn	Leu	Val	His	Leu	Leu	Leu	Leu	Ala	Arg	Trp	Glu	Asp	Thr	
		60					65					70			·	
ccc	ctc	gtc	ata	ctc	ggt	gtt	gtt	gca	ggg	gct	ctc	att	gct	gac	ttc	353
Pro	Leu	Val	Ile	Leu	Gly	Val	Val	Ala	Gly	Ala	Leu	Ile	Ala	Asp	Phe	
	75					80					85					
ttg	tct	ggc	ctg	gta	cac	tgg	ggt	gct	gac	aca	tgg	ggc	tct	gtg	gag	401
Leu	Ser	Gly	Leu	Val	His	Trp	Gly	Ala	Asp	Thr	Trp	Gly	Ser	Val	Glu	
90					95					100					105	
ctg	ccc	att	gtg	ggg	aag	gct	ttc	atc	cga	ссс	ttc	cgg	gag	cac	cac	449
Leu	Pro	Ile	Val	Gly	Lys	Ala	Phe	Ile	Arg	Pro	Phe	Arg	Glu	His	His	
•		, ·		110					115					120	-	
att	gac	cca	aca	gct	atc	aca	cgg	cac	gac	ttc	atc	gag	acc	aac	ggg	497
Ile	Asp	Pro	Thr	Ala	Ile	Thr	Arg	His	Asp	Phe	Ile	Glu	Thr	Asn	Gly	
			125					130	•				135		-	
gac	aac	tgc	ctg	gtg	aca	ctg	ctg	ccg	ctg	cta	aac	atg	gcc	tac	aag	545
Asp	Asn	Cys	Leu	Val	Thr	Leu	Leu	Pro	Leu	Leu	Asn	Met	Ala	Tyr	Lys	
٠. ,		140			•	, .	145					150				
ttc	cgc	acc	cac	agc	cct	gaa	gcc	ctg	gag	cag	cta	tac	ccc	tgg	gag	593
Phe	Arg	Thr	His	Ser	Pro	Glu	Ala	Leu	Glu	Gln	Leu	Tvr	Pro	Tro	Glu	

	155	•		•		160		-	-		165	•				
tgc	ttc	gtc	ttc	tgc	ctg	atc	atc	ttc	ggc	acc	ttc	acc	aac	cag	atc	641
Cys	Phe	Val	Phe	Cys	Leu	Ile	Ile	Phe	Gly	Thr	Phe	Thr	Asn	Gln-	Ile	
170					175			•		180	. 1			• • .	185	
cac	aag	tgg	tcg	cac	acg	tac	ttt'	ggg	ctg	cca	cgc	tgg	gtc	acc	ctc	689
His	Lys	Trp	Ser	His	Thr	Tyr	Phe	Gly	Leu	Pro	Arg	Trp	Val	Thr	Leu	
	•	•	٠	190					195			٠		200		
ctg	cag	gac	tgg	cat	gtc	atc	ctg	cca	cgt	aaa	cac	cat	cgc	atc	cac	737
Leu	Gln	Asp	Trp	His	Val	Ile	Leu	Pro	Arg	Lys	His	His	Arg	Ile	His	
			205					210					215	•	i	
cac	gtc	tca	ссс	cac	gag	acc	tac	ttc	tgc	atc	acc	aca	ggc	tgg	ctc	785
His	Val	Ser	Pro	His	Glu	Thr	Tyr	Phe	Cys	Ile	Thr	Thr	Gly	Trp	Leu .	
		220					225					230		•	• . •	
aac	tac	cct	ctg	gag	aag	ata	ggc	ttc	tgg	cga	cgc	ctg	gag	gac	ctc	833
Asn	Tyr	Pro	Leu	Glu	Lys	Ile	Gly	Phe	Trp	Arg	Arg	Leu	Glu	Asp	Leú	
	235					240					245	.:		·: '		
atc	cag	ggc	ctg	acg	ggc	gag	aag	cct	cgg	gca	gat	gac	atg	aaa	tgg	881
Ile	Gln	Gly	Leu	Thr	Gly	Glu	Lys	Pro	Arg	Ala	Asp	Asp	Met	Lys	Trp:	
250	, ·			·	255	•				260		• •			265	
gcc	cag	aag	atc	aaa	taa	c tt	ctcc	gagc	ctg	ctac	ctg	gttg	ccaa	cc		930
Ala	Gln	Lys	Ile	Lys										: :		
٠.			· .	270)							· ••	:	٠, .,	ı 1 •	
tto	ccta	gcc	ccca	aacc	ga a	gcca	tctg	c ca	aatt	.ccag	cct	cttt	gag	ctgg	gcccctc	990
															atgacac	1050
															ctcctc	1110

agccacctga	gttgctctat	ctgcaagcct	gactctgcca	gcctcccctg	gtagagagga	1170
ggtttaccca	ctccctgcac	gcctgccgtc	cctgccccgc	tgggcagccc	ttcagtgtgg	1230
ctggcgttgg	ggccagtgag	ttgcctcttt	ccctccttgt	ctggccccag	tggtctgggg	1290
agcccccagg	cacacctaag	cgtcgtggag	cattgttctg	ccacagccct	gcatactgac.	1350
cccgggaggc	tgggcaggtg	gacagececa	gccaccacct	tcagcctagc	ctgtccccca	1410
aggatggtga	agctcagcag	gggtctgagg	gtagccggcc	agaagaggct	ggaacctcct	1470
gctcaagtct	agacccctac	ttctctgctg	ccccaccct	gccagagctg	atgtttccaa	1530
taccaagatg	tcttcacagg	gcacageeee	tgcagagcat	cttggtcatt	tggaagagga	1590
cacggtatcc	cctctggcca	gagtatgtca	gagaaggaag	agtagggctt	ttttgttttg	1650
tttttttta	aaggtgcttg	cttgtttaat	gtaaataata	gaaagcctta	atatcttttc	1710
tgtaacacgg	agtaatattt	taatgtcatg	ttttggatgt	acataatata	tttataacaa	1770
agcagcaaga	gtctactt					1788

NEDOCID - WO 011266042 I -

:.'

	50	·		-		55	•				60			•	•
Leu	Cys	Ser	Ala	Glu	Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln
65	٠٠, .	· .	1 .	• •	70			٠.		75	:	:	. •	:	· `80
Tyr	Tyr	Phe	Leu	Ĺys	Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn
	. *			85			-	•	90	٠.				95	
Leu	Trp	Thr	Ser	Leu	Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala
	٠.		100					105			٠	:	110	11.	<i>:</i> .
Leu	Leu	Leu	Ala	Glu	Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser
		115				-	120		•			125		٠.	
Val	Pro	Lys	Leu	Pro	Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile
	130					135					140	•			
Val	Gly	Ile	Leu	Thr	Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln
145					150					155					160
Ile	Ala	Ser	Ser	Val	Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu
				165					170					175	
Thr	Gly	Val	Val	Phe	Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg
			180					185				• • •	190	.* •	14
Phe	Gln	Asn	Ala	Phe	Asp	Ala	Glu	Leu	Pro	Asp	Ile	Ser	His	Leu	Ile
÷	1	195			•		200			. :		205			· ./ 3
Gln	Ala	Ile	Phe	Gln	Gly	Tyr	Phe	Ala	Tyr	Ser	Gly	Glu	Leu	Lys	Lys
	210	•				215					220		• ,		' ; .•
Pro	Arg	Thr	Thr	Ile	Pro	Lys	Cys	Ile	Phe	Thr	Ala	Leu	Pro	Leu	Val
225	٠	•	٠.		230			• •		235			٠,		240
Thr	Val	Val	Tyr	Leu	Leu	Val	Asn	Ile	Ser	Tyr	Leu	Thr	Val	Leu	Thr
:	٠	•	•	245	•	. 3		. :,	250			.: .		255	· .

Pro	Arg	Glu	Ile	Leu	Ser	Ser	Asp	Ala	Val	Ala	Ile	Thr	Trp	Ala	Asp
	. •		260					265					270		
Arg	Ala	Phe	Pro	Ser	Leu	Ala	Trp	Ile	Met	Pro	Phe	Ala	Ile	Ser	Thr
		275					280			,		285			•
Ser	Leu	Phe	Ser	Asn	Leu	Leu	Ile	Ser	Ile	Phe	Lys	Ser	Ser	Arg	Pro
	290					295					300				
Ile	Tyr	Leu	Ala	Ser	Gln	Glu	Gly	Gln	Leu	Pro	Leu	Leu	Phe	Asn	Thr
305					310	•				315					320
Leu	Asn	Ser	His	Ser	Ser	Pro	Phe	Thr	Ala	Val	Leu	Leu	Leu	Val	Thr
				325					330					335	
Leu	Gly	Ser	Leu	Ala	Ile	Ile	Leu	Thr	Ser	Leu	Ile	Asp	Leu	Ile	Asn
			340					345					350		
Tyr	Ile	Phe	Phe	Thr	Gly	Ser	Leu	Trp	Ser	Ile	Leu	Leu	Met	Ile	Gly
		355					360					365			
Ile	Leu	Arg	Arg	'Arg	Tyr	Gln	Glu	Pro	Asn	Leu	Ser	Ile	Pro	Tyr	Lys
	370					375			÷		380	•			. •
Val	Lys	Leu	Asp	Phe	!									• .	
385			,												
	:				-										:
<21	.0> 6	2	÷	•											
<21	1> 3	48									;*				
<21	.2> F	PRT						٠							
<21	3> 1	lomo	sapi	iens			٠								
<40)0> (5 2 -	·, .	٠.		, ,	·	٠.,	: '		٠.			٠.	·
Met	t Ala	a Ala	a Thi	r Lei	ı Gly	7 Pro	. Le	ı Gly	y Sei	Tr	Glr	ı Glı	ı Trp	Are	, Arg

Sugar Contractor

1		5	• .	· :	ı		10	;	•			15	• • •
Cys Leu Ser	Ala	Arg	Asp	Gly	Ser	Årg	Met	Leu	Leu	Leu	Leu	Leu	Leu
to the way of	20		•	;		25		٠.	٠٠.	•.	30	1	: ., ·
Leu Gly Ser	Gly	Gln	Gly	Pro	Gln	Gln	Val	Gly	Ala	Gly	Gln	Thr	Phe
35		,			40					45		. 1	•
Glu Tyr Leu	Lys	Arg	Glu	His	Ser	Leu	Ser	Lys	Pro	Tyr	Gln	Gly	Val
50	.•			55				,	60		,	1	,
Gly Thr Gly	Ser	Ser	Ser	Leu	Trp	Asn	Leu	Met	Gly	Asn	Ala	Met	Val
65			70					75					80
Met Thr Gln	Tyr	Ile	Arg	Leu	Thr	Pro	Asp	Met	Gln	Ser	Lys	Gln	Gly
		85					90					95	•
Ala Leu Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	Arg	Asp	Trp	Glu	Leu	Gln
	100					105				٠	110		. •
Val His Phe	Lys	Ile	His	Gly	Gln	Gly	Lys	Lys	Asn	Leu	His	Gly	Asp
115				•	120					125	;		:
Gly Leu Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	Met	Gln	Pro	Gly	Pro	Val
130				135	;				140	•	•	•	. :
Phe Gly Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	Gly	Val	Phe	Val	Asp	Thr
145			150)				155	;				160
Tyr Pro Asn	Glu	Glu	Lys	Glr	ı Glm	Glu	Arg	(Val	Phe	Pro	Туг		
		165	5				170)				175	; ** 🕹
Ala Met Val	. Asn	ı Ası	ı Gly	r Sei	r Leu	ı Sei	Туг	. Asp	His	s Glu			
	180)				18	5			.* .	190) ' '	• •
Arg Pro Thi	Gli	ı Lei	u G13	/ G1:	y Cys	s Thi	r Ala	a Ile	e Val	l Ar	g Ası	n Lei	His
198	5	(; ,	• • • •		200	ο,	. ,-		•	20	5 · "	1 1 13	(- 260

Tyr Asp Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu	Thr Ile
210 215 220	
Met Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile	Glu Val
225 230 235	240
Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser	Ser Ile
245 250	255
Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys	Leu Phe
260 265 270	
Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Glu Lys Leu His	Arg Asp
275 280 285	
Val Phe Leu Pro Ser Val Asp Asn Met Lys Leu Pro Glu Met	Thr Ala
290 295 300	
Pro Leu Pro Pro Leu Ser Gly Leu Ala Leu Phe Leu Ile Val	Phe Phe
305 310 315	320
Ser Leu Val Phe Ser Val Phe Ala Ile Val Ile Gly Ile Ile	Leu Tyr
325 330	335
Asn Lys Trp Gln Glu Gln Ser Arg Lys Arg Phe Tyr	÷ . •
340 345	:
•	
<210> 63	
<211> 261	
<212> PRT	
<213> Homo sapiens	
⟨400⟩ 63⋅	
Met Glu Leu Leu Gln Val Thr Ile Leu Phe Leu Leu Pro Ser	Ile Cys

1	•: .		٠.	- 5		. : .		٠.	10	•		•		15	4 x * -
Ser	Ser	Asn	Ser	Thr	Gly	Val	Leu	Glu	Ala	Ala	Asn	Asn	Ser	Leu	Val
		٠,	·20	. •			-	25					30	•••	74. · · · ·
Val	Thr	Thr	Thr	Lys	Pro	Ser	Ile	Thr	Thr	Pro	Asn	Thr	Glu	Ser	Leu
		35					40			r		45			
Gln	Lys	Asn	Val	Val	Thr	Pro	Thr	Thr	Gly	Thr	Thr	Pro	Lys	Gly	Thr
	50					55					60				
Ile	Thr	Asn	Glu	Leu	Leu	Lys	Met	Ser	Leu	Met	Ser	Thr	Ala	Thr	Phe
65	٠				70					75					80
Leu	Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg
				85					90					95	
Lys	Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu
			100)				105					110)	
Pro	Asn	Ala	Val	Ser	Thr	Leu	Gln	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr
	. •	115	5		•		120	i .				125	5		es de la
Glr	Ser	Ser	r Ile	. Lys	Thr	Thr	Glu	Ile	Pro	Gly	Ser	· Val	Leu	ı Glr	Pro
	130)				135					140	,	٠	• • •	
Asp	Ala	a Sei	r Pro	Ser	Lys	Thr	Gly	Thr	Leu	Thi	Sei	r Ile	e Pro	Va]	Thr
145	5				150)				158	5				160
116	e Pro	o Gl	u Ası	n Thi	r Sei	Glr	ı Ser	Gln	Val	. 11	e Gly	y Thi	r Gl	u Gl	y Gly
				16	5				170)				17	5 👯 😘
Ly	s As	n Al	a Se	r Th	r Se	r Ala	a Thi	r Ser	Arg	g Se	r Ty	r Se			e Ile
			18	0				185	5			•	19	0	+ 54 E
Le	u Pr	o Va	l Va	1 11	e Al	a Le	u Il	e Val	l 11e	e Th	r Le	u Se	r Va	1 Ph	e Val
٠.		19	5		J++,		. 20	0	٤	: -/	. ;; .	20	5	٠: ٠	S 1 360

Leu	Val	Gly	Leu	Tyr	Arg	Met	Cys	Trp	Lys	Ala	Asp	Pro	Gly	Thr	Pro
	210	٠.	٠:			215					220				
Glu	Asn	Gly	Asn	Asp	Gln	Pro	Gln	Ser	Asp	Lys	Glu	Ser	Val	Lys	Leu
225	·:	.· ·			230		-			235					240
Leu	Thr	Val	Lys	Thr	Ile	Ser	His	Glu	Ser	Gly	Glu	His	Ser	Ala	Gln
	. • .			245					250					255	
Gly	Lys	Thr	Lys	Asn	•										
	. `		260		٠.				-						
<210	D> 64	1													
<21	l> 22	22													
<212	2> PF	T?													
<213	3> Hc	omo s	sapie	ens											
<400)> 64	l													
Met	Leu	Trp	Leu	Leu	Phe	Phe	Leu	Val	Thr	Ala	Ile	His	Ala	Glu	Leu
1			,	5.					10			-		15	
Cys	Gln	Pro	Gly	Ala	Glu	Asn	Ala	Phe	Lys	Val	Arg	Leu	Ser	Ile	Arg
			20					25					30		
Thr	Ala	Leu	Gly	Asp	Lys	Ala	Tyr	Ala	Trp	Asp	Thr	Asn	Glu	Glu	Tyr
		35					40					45			
Leu	Phe	Lys	Ala	Met	Val	Ala	Phe	Ser	Met	Arg	Lys	Val	Pro	Asn	Arg
	50					55					60	:; ;		- •	
Glu	Ala	Thr	Glu	Ile	Ser	His	Val	Leu	Leu	Cys	Asn	Val	Thr	Gln	Arg
65	.: .,.	• •	٠.	٠.	70					75		,			80
Val	Ser	Phe	Trp	Phe	Va1	Val	Thr	Asp	Pro	Ser	Lys	Asn	His	Thr	Leu

	i i	.•	•	85	÷		٠		90			•		95	• •
Pro	Ala	Val	Glu	Val	Gln	Ser	Ala	Ile	Arg	Met	Asn	Lys	Asn	Arg	Ile
•	:		100	•				105	•			٠	110	1.1	:
Asn	Asn	Ala	Phe	Phe	Leu	Asn	Asp	Gln	Thr	Leu	Glu	Phe	Leu	Lys	Ile
		115		· •		٠.	120		٠.			125			•
Pro	Ser	Thr	Leu	Ala	Pro	Pro	Met	Asp	Pro	Ser	Val	Pro	Ile	Trp	Ile
	130					135					140		•		• • •
Ile	Ile	Phe	Gly	Val	Ile	Phe	Cys	Ile	Ile	Ile	Val	Ala	Ile	Ala	Leu
145					150					155					160
Leu	Ile	Leu	Ser	Gly	Ile	Trp	Gln	Arg	Arg	Arg	Lys	Asn	Lys	Glu	Pro
				165					170					175	
Ser	Glu	Val	Asp	Asp	Ala	Glu	Asp	Lys	Cys	Glu	Asn	Met	Ile	Thr	Ile
			180)				185					190		
Glu	. Asn	Gly	Ile	Pro	Ser	Asp	Pro	Leu	Asp	Met	Lys	Gly	Gly	His	Ile
	٠.	195	5				200					205	5		
Ası	n Asp	Ala	. Phe	e Met	: Thr	Glu	. Asp	Glu	Arg	Leu	Thr	Pro	Let	l	
	210) · · .				215	j	1.			220)		•	
. <2	10> (65 ·									· :	٠.			:
<2	11> :	183													
<2	12> 1	PRT													. 12 12
<2	13>	Ното	sap	iens						. ,			•		٠,
										•		• ,	, ·		$x_{ij} = \hat{x}$
															r Phe
															5 1 1

Ile	Leu	Leu	Ser	Gly	Thr	Arg	Cys	Glu	Glu	Asn	Cys	Gly	Asn	Pro	Glu
			20					25	;				30)	
His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Tyr	Ile	Trp	Leu	Leu
	•	35					40	٠.				45			
Val	Val	Ile	Gly	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Leu	Thr	Ser	Leu	Cys
	50					55					60				
Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	Gln	Asn	Gly	Glu	Asp	Gly	Gly
65					70					75					80
Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	Ala	Phe	Asp	His	Asp	Ser	Thr
				85					90					95	
Leu	Gln	Ser	Thr	Ile	Thr	Ser	Leu	Gln	Ser	Val	Phe	Gly	Pro	Ala	Ala
			100					105					110		. •
Arg	Arg	Ile	Leu	Ala	Val	Ala	His	Ser	His	Ser	Ser	Leu	Gly	Gln	Leu
		115					120					125			
Pro	Ser	Ser	Leu	Asp	Thr	Leu	Pro	Gly	Tyr	Glu	Glu	Ala	Leu	His	Met
	130					135					140				
Ser	Arg	Phe	Thr	Val	Ala	Met	Cys	Gly	Gln	Lys	Ala	Pro	Asp	Leu	Pro
145					150					155					160
Pro	Val	Pro	Glu	Glu	Lys	Gln	Leu	Pro	Pro	Thr	Glu	Lys	Glu	Ser	Thr
٠.				165		-			170					175	
Arg	Ile	Val	Asp	Ser	Trp	Asn								•	
		· .	180			٠.								:	,
4															٠,
<210	> 66	; •	•	•	: -		٠.					•			
<211															

BNSDOCID: <WO 0112660A2 1 >

.

<212	> P	RT	٠ .		•	· ,	•		•	• .	• • •		•		
<213	> H	omo s	sapie	ens									••		
<400	> 6	6			•	•		.		•		٠		*.! ·	
Met	Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	Glu	Asn
1		: .		. 5			• *	٠	10	٠.	٠.	· .		· 15	,,
Lys	Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn
			20					25				•	30		
Tyr	Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys
		35					· 40					45			• • •
Glu	Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly
	50	· ·				55					60			٠.	
Ser	G1 ₃	, Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile
65					70					75					80
Pro	Ty	r Gly	/ Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val
		÷		85					90		•			95	
Phe	Le	u Ala	a Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	Val	Phe
	-		100)				105	i			•	- 110		
Phe	Le	u Pho	e Pro	Arg	g Ser	· Val	Ile	. Val	Gln	Pro	Ala	Gly	Leu	. Asn	Ser
-	:	· 11	5	-			120) ·		• • •		125	5	•	
Sei	. Th	r Va	l Ala	a Phe	e Asp	Glu	ı Ala	a Asp	Ile	e Tyi	r Lei	ı Ası	ı Ile	Thr	Asn
	13	0				135	5				140) -		t ·	e de la company
Ile	e Le	u As	n Il	e Sei	r Ası	n Gly	, Ası	n Tyi	r Tyi	r Pr	o Ile	e Me	t Va	l Thi	Gln
14	5				150)				15	5				160
Le	u Th	ır Le	u Gl	u Va	l Le	u Hi:	s Le	u Sei	r Le	u Va	l Va	1 G1	y Gl	n Va	l Ser-
				16					17						5 .i.

Asn Asn Leu Leu His Ile Gly Pro Leu Ala Ser Glu Glr	Met Phe
180 185 190	
Tyr Ala Val Ala Thr Lys Ile Arg Asp Glu Asn Thr Tyr Lys	s Ile Cys
195 200 205	
Thr Trp Leu Glu Ile Lys Val His His Val Leu Leu His Ile	Gln Gly
210 215 220	
Thr Leu Thr Cys Ser Tyr Leu Ser His Ser Glu Gln Leu Val	Phe Gln
225 230 235	240
Ser Tyr Glu Tyr Val Asp Cys Arg Gly Asn Ala Ser Val Pro	His Gln
245 250	255
Leu Thr Pro His Pro Pro	
260	
·	
<210> 67	
<211> 168	
<212> PRT	
<213> Homo sapiens	٠, ,
<400> 67	
Met Gly Val Pro Thr Ala Leu Glu Ala Gly Ser Trp Arg Trp	Gly Ser
1 5 10	15
Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Lys Asp	Ala Pro
. 4.5 m)
Ser Asn Cys Val Val Tyr Pro Ser Ser Ser Gln Glu Ser Glu	
7:40 or 35 · 45 ·	
Thr Ala Ala Ala Leu Ala Thr Gly Ala Cys Ile Val Gly Ile	

BNSDOCID- -WO nitosenable

	50	;		٠.,١	*:	· 55	: -			•	60		•	. J.		••
Leu	Pro	Leu	Ile	Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	G1n	Ala	Ala	Ser	
65	. ;		• •	•	70			•		75			٠,		80	
Asn	Arg	Arg	Ala	Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly	
				85	. •				90			٠٠.		95		
Ile	Glu	Asn	Pro	Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	Ile	Pro	
			100					105					110		•	
Glu	Ala	Lys	Val	Arg	His	Pro	Leu	Ser	Tyr	Val	Ala	Gln	Arg	Gln	Pro	
		115					120					125			· · · ·	
Ser	Glu	Ser	Gly	Arg	His	Leu	Leu	Ser	Glu	Pro	Ser	Thr	Pro	Leu	Ser	
	130					135					140					
Pro	Pro	Gly	Pro	Gly	Asp	Val	Phe	Phe	Pro	Ser	Leu	Asp	Pro	Val	Pro	
145					150					155					160	
Asp	Ser	Pro	Asn	Phe	Glu	Val	Ile								•*	٠
				165												
															٠	
<21	.0> 6	88												•	:	
<21	.1> 2	243													55	
<21	2> F	PRT		. •						•					राजी ३	٠.
<21	13> F	lomo	sapi	iens								,				
<40	00> 6	68			•	٠	- ·			. •			:	:	t e s	
Me	t Sei	r Sei	Gly	y Thi	c Glu	ı Let	ı Let	ı Trı	Pro	Gly	, Ala	a Ala	ı Lei	ı Lev	ı Val	
;	1 -			٠ (5				: 10			•		15	5 - 2	٠.
Lei	u Lei	u Gl	y Vai	l Ala	a Ala	a Sei	r Lei	ц Су:	s Val	l Ar	g Cy:	s Sei	r Arı	g Pro	Gly	
•		:	· 9	n ·				. 2	5			• .	- 3()		٠, .

Ala	Lys	Arg	Ser	Glu	Lys	Ile	Tyr	Gln	Gln	Arg	Ser	Leu	Arg	Glu	Asp
		35					40					45		•	٠
Gln	Gln	Ser	Phe	Thr	Gly	Ser	Arg	Thr	Tyr	Ser	Leu	Val	Gly	Gln	Ala
	50					55					60				
Trp	Pro	Gly	Pro	Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu
65					70					75					80
Leu	Gln	Phe	Tyr	Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln
				85					90					95	.*
Asn	Phe	Ser	Lys	Gly	Ser	Arg	His	Gly	Ser	Glu	Glu	Ala	Tyr	Ile	Asp
			100					105					110		
Pro	Ile	Ala	Met	Glu	Tyr	Tyr	Asn	Trp	Gly	Arg	Phe	Ser	Lys	Pro	Pro
	,	115					120					125			
Glu	Asp	Asp	Asp	Ala	Asn	Ser	Tyr	Glu	Asn	Val	Leu	Ile	Cys	Lys	Gln
	130					135					140				
Lys	Thr	Thr	Glu	Thr	Gly	Ala	Gln	Gln	Glu	Gly	Ile	Gly	Gly	Leu	Cys
145		•			150				,	155				:	160
Arg	Gly	Asp	Leu	Ser	Leu	Ser	Leu	Ala	Leu	Lys	Thr	Gly	Pro	Thr	Ser
,	•			165					170					175	
Gly	Leu	Cys	Pro	Ser	Ala	Ser	Pro	Glu	Glu	Asp	Glu	Glu	Ser	Glu	Asp
		•	180					185		• .		:	190		٠.
Tyr	Gln	Asn	Ser	Ala	Ser	Ile	His	Gln	Trp	Arg	Glu	Ser	Arg	Lys	Val
	34 J.	195	· ·	•			200	•			٠,	205	, .	, •	··
Met	Gly	Gln	Leu	Gln	Arg	Glu	Ala	Ser	Pro	Gly	Pro	Val	Ģly	Ser	Pro
٠.	[•] 210	·	ı	y 1.	۲.	215	•				. 220		,.	٠.,	•
Asp	G1u	G1u	Asp	Gly	Glu	Pro	Asp	Tyr	· Val	Asn	Gly	Gli	ı Val	·Ala	Ala

NEDOCIO--WO 011266042 1

235 230 Thr Glu Ala the state of <210> 69 € <211> 428 <212> PRT <213> Homo sapiens <400> 69 Met Ala Arg Ser Leu Cys Pro Gly Ala Trp Leu Arg Lys Pro Tyr Tyr 5 10 Leu Gln Ala Arg Phe Ser Tyr Val Arg Met Lys Tyr Leu Phe Phe Ser 25 20 Trp Leu Val Val Phe Val Gly Ser Trp Ile Ile Tyr Val Gln Tyr Ser 40 45 35 Thr Tyr Thr Glu Leu Cys Arg Gly Lys Asp Cys Lys Lys Ile Ile Cys 50 55 60 Asp Lys Tyr Lys Thr Gly Val Ile Asp Gly Pro Ala Cys Asn Ser Leu 75 80 65 70 Cys Val Thr Glu Thr Leu Tyr Phe Gly Lys Cys Leu Ser Thr Lys Pro 95 85 90 Asn Asn Gln Met Tyr Leu Gly Ile Trp Asp Asn Leu Pro Gly Val Val 100 Lys Cys Gln Met Glu Gln Ala Leu His Leu Asp Phe Gly Thr Glu Leu

Glu	Pro	Arg	Lys	Glu	Ile	Val	Leu	Phe	Asp	Lys	Pro	Thr	Arg	Gly	Thr
	130		٠			135					140				
Thr	Val	Gln	Lys	Phe	Lys	Glu	Met	Val	Tyr	Ser	Leu	Phe	Lys	Ala	Lys
145					150					155					160
Leu	Gly	Asp	Gln	Gly	Asn	Leu	Ser	Glu	Leu	Val	Asn	Leu	Ile	Leu	Thr
				165					170					175	
Val	Ala	Asp	Gly	Asp	Lys	Asp	Gly	Gln	Val	Ser	Leu	Gly	Glu	Ala	Lys
			180					185					190	,	٠
Ser	Ala	Trp	Ala	Leu	Leu	Gln	Leu	Asn	Glu	Phe	Leu	Leu	Met	Val	Ile
		195					200					205			
Leu	Gln	Asp	Lys	Glu	His	Thr	Pro	Lys	Leu	Met	Gly	Phe	Cys	Gly	Asp
	210		•			215					220				
Leu	Tyr	Val	Met	Glu	Ser	Val	Glu	Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser
225					230					235					240
Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser
				245					250					255	·
Met	Asp	Gln	Leu	Phe	Thr	Pro	Ser	Trp	Pro	Arg	Lys	Ala	Lys	Ile	Ala
			260					265					270		
Ile	Gly	Leu	Leu	Glu	Phe	Val	Glu	Asp	Val	Phe	His	Gly	Pro	Tyr	Gly
1	:- ,	275					280					285			
Asn	Phe _:	Leu	Met	Cys	Asp	Thr	Ser	Ala	Lys	Asn	Leu	Gly	Tyr	Asn	Asp
٠.	290	:	. ;•			295			,· .	1	300				
	Tyr														
305		,: -			310	٠.		•	: .	315			• .		320
															Asn

• • .	, •	325		,	330	•	335	
Cys Val T	yr Gly	Thr Asp	Cys Arg	g Thr	Ser Cys	Asp Gln	Ser Thr	Met
	340			345			350	,
Lys Cys T	hr Ser	Glu Val	Ile Gl	n Pro	Asn Leu	Ala Lys	Ala Cys	Gln
. 3	355		360	0 .		365		· • •
Leu Leu l	.ys Asp	Tyr Leu	Leu Ar	g Gly	Ala Pro	Ser Glu	Ile Arg	·Glu
370			375			380		÷ .
Glu Leu (Glu Lys	Gln Let	ı Tyr Se	r Cys	Ile Ala	Leu Lys	Val Thr	Ala
385		390)		395			400
Asn Gln N	Met Glu	Met Gl	ı His Se	r Leu	Ile Leu	Asn Asn	Leu Lys	Thr
		405			410		415	i
Leu Leu 1	Trp Lys	Lys Il	e Ser Ty	r Thr	Asn Asp	Ser		• •
	420)		425	;			
<210> 70			٠					
<211> 28	3					•		
<212> PR	T	• •				, .	• • •	
<213> Ho	mo sapi	iens						
<400> 70)					• •		:
Met Pro	His Se	r Ser Le	eu His Pi	ro Se	r Ile Pro	Cys Pr	o Arg Gl	y His
1		5			10	••	~ ~1	5 · ·
Gly Ala	Gln Ly	s Ala Al	la Leu V	al Le	u Leu Se	r Ala Cy	s Leu Va	l Thr
					5			
Leu Trp	Gly Le	u Gly G	lu Pro P	ro Gl	u His Th	r Leu Ar	g Tyr Le	u Val
	35				.,			No and the

Leu	His	Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys
	50					55					60		·		-
Ser	Leu	Ala	Glu	Glu	Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser
65					70					75					80
Tyr	Trp	Arg	Thr	Val	Arg	Ala	Cys	Leu	Gly	Cys	Pro	Leu	Arg	Arg	Gly
				85					90					95	
Ala	Leu	Leu	Leu	Leu	Ser	Ile	Tyr	Phe	Tyr	Tyr	Ser	Leu	Pro	Asn	Ala
			100					105					110		
Val	Gly	Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	G1y	Leu	Ser	Gln
		115					120					125			
Ala	Leu	Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile
•	130					135					140				
Ser	Ala	Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala
145					150					155					160
Trp	Ser	Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	Gln
		•		165					170			-		175	
Ala	Arg	Ile	Arg	Thr	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly
			180					185					190		
Ala,	Val	Ser	Gln	Arg	Leu	Tyr	Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val
	٠.	195					200		•		÷	205		:	
Pro	Asp	Asn	Leu	Ser	Met	Ala	Asp	Pro	Asn	Ile	Arg	Phe	Leu	Asp	Lys
	210	. ' r	• •	÷	٠.	215	•	:	•		220	· •			• • •
Leu	Pro	Gln	Gln	Thr	Ala	Asp	Arg	Ala	Gly	Ile	Lys	Asp	Aŗg	Val	Tyr.
225.	21.	÷ 1.	,	÷ _	230			•		235			: .	٠	240
Ser.	Asn.	Ser	Ile	Tyr	Glu	Leu	Leu	Glu	Asn	Gly	Gln	Arg	Asn	Leu	Gln

or and a second of the second

154/307

245 250 255

Met Thr Ala Ala Ser Arg Cys Pro Arg Arg Phe Ser Gly Thr Cys Gly

260 265 270

Arg Arg Lys Arg Lys Arg Leu Leu Trp Ala Ala

275 280

<210> 71

<211> 1167

<212> DNA

<213> Homo sapiens

<400> 71

atggatagag gggagaaaat acagctcaag agagtgtttg gatattggtg gggcacaagt 60 tttttgctta ttaatatcat tggtgcagga atttttgtgt cccccaaagg tgtgttggca 120 tactcttgca tgaacgtggg agtctccctg tgcgtttggg ctggctgtgc catactggcc 180 240 atgacatcaa ctctttgctc tgcagagata agtataagct tcccatgcag tggagctcaa 300 tactattttc tcaagagata ctttggctcc acggttgctt ttttgaatct ctggacatcc 360 ttgtttctgg ggtcaggggt agttgctggc caagctctgc tccttgctga gtacagcatc cagcettttt tteecagetg etetgteeca aagetgeeta agaaatgtet ggeattggee 420 480 atgttgtgga ttgtaggaat tctgacttct cgtggtgtga aagaagtgac ttggcttcag 540 atagctagct cagtgctgaa agtgtccata cttagcttca tttccctaac tggagtagtg 600 ttcctgataa gagggaaaaa ggagaatgta gaacgatttc agaatgcttt tgatgctgaa 660 cttccagata tctctcacct tatacaagcc atcttccaag gatattttgc atattcaggg 720 gagetgaaga ageccagaac aacaatteee aaatgeatat ttaetgegtt acetetggtg actgtagttt atttactggt taacatttcc tatctgactg ttctgacacc cagggaaatt 780 840 ctctcttcag atgctgtagc tatcacatgg gctgatcgag cttttccctc attagcatgg

WO 01/12660

PCT/JP00/05356

155/307

attatgcctt	ttgctatttc	tacctcatta	tttagcaacc	ttctgatttc	tatatttaaa	900
tcttcgagac	caatatatct	tgcaagccaa	gagggccagc	tgcctttgct	atttaataca	960
cttaatagtc	actcttctcc	atttacagct	gtgctactac	ttgtcacttt	gggatccctt	1020
gcaattatct	taacaagtct	aattgatttg	ataaactata	ttttttcac	gggttcatta	1080
tggtctatat	tattaatgat	aggaatacta	aggcggagat	accaggaacc	caatctatct	1140
ataccttata	aggtaaaatt	ggatttc				1167

<210> 72

<211> 1044

<212> DNA

<213≻ Homo sapiens

<400> 72

60	tttgtcggct	ggcggcgatg	tggcagcagt	ccttgggtcg	ctctgggacc	atggcggcga
120	ggggccacag	ggtctgggca	cttttgttgg	actccttctt	ccaggatgtt	cgggatgggt
180	gtcgaagccc	agcactcgct	ttgaaacggg	gttcgagtac	cgggtcaaac	caagtcgggg
240	tgccatggtg	tgatgggcaa	ctgtggaatc	cagttcctca	tgggcacagg	taccagggtg
300	cttgtggaac	aacagggtgc	atgcaaagta	taccccagat	atatecgeet	atgacccagt
360	ccatggacaa	acttcaaaat	ttgcaggtgc	agactgggag	gtttcctgag	cgggtgccat
420	tcggatgcag	acacaaagga	gcaatctggt	ggatggcttg	atctgcatgg	ggaaagaaga
480	tgtagacacc	tgggagtatt	tttgtggggc	catggacaaa	tgtttggaaa	ccagggcctg
540	catggtgaac	acateteage	gtattcccct	gcaagagcgg	aggagaagca	`taccccaatg
600	gggaggctgc	ctacagagct	gatgggcggc	tcatgagcgg	tcagctatga	aacggctccc
660	cgtcaagagg	tgattcgcta	accttcctgg	tcattacgac	·tccgcaatct	acagccattg
720	cattgaagtg	ggagggactg	aagcatgagt	tattgatggc	taatgatgga	catttgacga
780	tggggatctc	cctccatcac	ttcggcacct	cggctactac	gcctgccccg	cccggagtcc

WO 01/12660 PCT/JP00/05356

156/307

tcagataatc	atgatgtcat	ttccttgaag	ttgtttgaac	tgacagtgga	gagaacccca	840
gaagaggaaa	agctccatcg	agatgtgttc	ttgccctcag	tggacaatat	gaagctgcct	900
gagatgacag	ctccactgcc	gcccctgagt	ggcctggccc	tcttcctcat	cgtctttttc	960
tccctggtgt	tttctgtatt	tgccatagtc	attggtatca	tactctacaa	caaatggcag	1020
gaacagagcc	gaaagcgctt	ctac				1044

<210> 73

<211> 783

<212> DNA

<213> Homo sapiens

<400> 73

60 atggaactgc ttcaagtgac cattctttt cttctgccca gtatttgcag cagtaacagc 120 acaggtgttt tagaggcagc taataattca cttgttgtta ctacaacaaa accatctata 180 acaacaccaa acacagaatc attacagaaa aatgttgtca caccaacaac tggaacaact 240 cctaaaggaa caatcaccaa tgaattactt aaaatgtctc tgatgtcaac agctactttt 300 ttaacaagta aagatgaagg attgaaagcc acaaccactg atgtcaggaa gaatgactcc atcatttcaa acgtaacagt aacaagtgtt acacttccaa atgctgtttc aacattacaa 360 420 agttccaaac ccaagactga aactcagagt tcaattaaaa caacagaaat accaggtagt 480 gttctacaac cagatgcatc accttctaaa actggtacat taacctcaat accagttaca attccagaaa acacctcaca gtctcaagta ataggcactg agggtggaaa aaatgcaagc 540 600 acttcagcaa ccagccggtc ttattccagt attattttgc cggtggttat tgctttgatt 660 gtaataacac tttcagtatt tgttctggtg ggtttgtacc gaatgtgctg gaaggcagat ccgggcacac cagaaaatgg aaatgatcaa cctcagtctg ataaagagag cgtgaagctt 720 780 cttaccgtta agacaatttc tcatgagtct ggtgagcact ctgcacaagg aaaaaccaag BBC CONTRACTOR AND ADVANCED CONTRACTOR OF THE CO 783

and the second s

(210)	14	* :		· .	•		
<211> €	566				· -		
<212> [ONA						
<213> F	domo	sapiens					
<400> 7	74						
atgttgt	tggc	tgctcttttt	tctggtgact	gccattcatg	ctgaactctg	tcaaccaggt	60
gcagaaa	aatg	cttttaaagt	gagacttagt	atcagaacag	ctctgggaga	taaagcatat	120
gcctggg	gata	ccaatgaaga	atacctcttc	aaagcgatgg	tagctttctc	catgagaaaa	180
gttccca	aaca	gagaagcaac	agaaatttcc	catgtcctac	tttgcaatgt	aacccagagg	240
gtatcat	ttct	ggtttgtggt	tacagaccct	tcaaaaaatc	acaccettee	tgctgttgag	300
gtgcaat	tcag	ccataagaat	gaacaagaac	cggatcaaca	atgccttctt	tctaaatgac	360
caaacto	ctgg	aatttttaaa	aatcccttcc	acacttgcac	cacccatgga	cccatctgtg	420
cccatci	tgga	ttattatatt	tggtgtgata	ttttgcatca	tcatagttgc	aattgcacta	480
ctgatti	ttat	cagggatctg	gcaacgtaga	agaaagaaca	aagaaccatc	tgaagtggat	540
gacgct	gaag	ataagtgtga	aaacatgatc	acaattgaaa	atggcatccc	ctctgatccc	600
ctggaca	atga	agggagggca	tattaatgat	gccttcatga	cagaggatga	gaggctcacc	660
cctctc	٠					-	666
	-						•
<210> 1	75				•,	• . •	
<211> !	549					r	
<212>	DNA	• • • •	· •				
<21 3 > 1	Ношо	sapiens		.		er som er er s	
<400>,	75 : ₁	er er ger	• • • • •	• .	, ••• •		
atogga	øter	gagttratgt	cataacaacc	trageretes	totatttcat	cotgetttet	60

RNSDOCID- ZWO 011266042 L 5

gggacg	agat	gtgaggaaaa	ctgtggtaat	cctgaacatt	gcctgaccac	agactgggta	120
catctc	tggt	atatatggtt	gctagtggta	attggcgcgc	tgcttctcct	gtgtggcctg	180
acgtcc	ctgt	gcttccgctg	ctgctgtctg	agccgccagc	aaaatgggga	agatgggggc	240
ccacca	ccct	gtgaagtgac	cgtcattgct	ttcgatcacg	acagcactct	ccagagcact	300
atcaca	tctc	tgcagtcggt	gtttggccct	gcagctcgga	ggatcctggc	tgtggctcac	360
tcccac	agct	ccctgggcca	gctgccctcc	tctttggaca	ccctcccagg	gtatgaagaa	420
gctctt	caca	tgagtcgctt	cacagtagcc	atgtgcgggc	agaaagcacc	tgatctaccc	480
ccagta	cctg	aagaaaagca	gctgcctcca	acagagaagg	agtcgactcg	aatagttgac	540
tcttgg	gaac		-			•••	· 549
<210>	76						•
<211>	786					• • •	·
<212>	DNA				•	. •	
<213>	Ношо	sapiens					
<400>	76·			•			
atggg	taaga	cgttttccca	gctgggctct	tggcgggagg	atgagaacaa	gtcaatcctg	60
tcctc	caaac	cagccattgg	cagcaaggc1	gtcaactact	ccagcaccgg	g tagcagcaag	120
tcttt	ttgtt	cctgtgtgcc	ttgtgaagga	a actgctgatg	ccagcttcg	t gacttgtccc	180
acctg	ccage	g gcagtggcaa	a gattcccca	a gagotggaga	agcagttgg	t ggctctcatt	240
cccta	tgggg	g accagaggc1	t gaageceaa;	g cacacgaago	tctttgtgt	t cctggccgtg	300
ctcat	ctgc	tggtgacct	c ctccttcat	c gtctttttc	tgtttcccc	g gtccgtcatt	360
gtgca	igect	g caggeetea	a ctcctccac	a gtggccttt	g atgaggctg	a tatctacctc	420
aacat	aacga	a atatcttaa	a catctccaa	t ggcaactac	t accccatta	t ggtgacacag	480
ctgad	cctc	g aggttctgc	a cctgtccct	c gtggtgggg	c aggtttcca	a caaccttctc	540
ctaca	acatt	g gccctttgg	c cagtgaaca	g atgttttac	g cagtagcta	c caagatacgg	600

BNSDCCID- (WO 0112880A2 I

75 m - 70, 1 77 75 4

gatgaaaaca	catacaaaat	ctgtacctgg	ctggaaatca	aagtccacca	tgtgcttttg	660
cacatccagg	gcaccctgac	ctgttcatac	ctgagccatt	cagagcagct	ggtctttcag	720
agctatgaat	atgtggactg	ccgaggaaac	gcatctgtgc	cccaccagct	gacccctcac	780
ccacca						786
<210> 77						
<211> 504						
<212> DNA						
<213> Homo	sapiens					
<400> 77						
atgggcgtcc	ccacggccct	ggaggccggc	agctggcgct	ggggatccct	gctcttcgct	60
ctcttcctgg	ctgcgtccct	aggcaaagat	gcaccatcca	actgtgtggt	gtacccatcc	120
tcctcccagg	agagtgaaaa	catcacggct	gcagccctgg	ctacgggtgc	ctgcatcgta	180
ggaatcctct	gcctcccct	catcctgctc	ctggtctaca	agcaaaggca	ggcagcctcc	240
aaccgccgtg	cccaggagct	ggtgcggatg	gacagcaaca	ttcaagggat	tgaaaacccc	300
ggctttgaag	cctcaccacc	tgcccagggg	atacccgagg	ccaaagtcag	gcaccccctg	360
tcctatgtgg	cccagcggca	gccttctgag	tctgggcggc	atctgctttc	ggagcccagc	420
accccctgt	ctcctccagg	ccccggagac	gtcttcttcc	catccctgga	ccctgtccct	480
gactctccaa	actttgaggt	catc				504
· **			•	•		
<210> 78			•			
<212> DNA	-,			• • • •		
<213> Homo	sapiens					

atgagctcgg	ggactgaact	gctgtggccc	ggagcagcgc	tgctggtgct	gttgggggtg	60
gcagccagtc	tgtgtgtgcg	ctgctcacgc	ccaggtgcaa	agaggtcaga	gaaaatctac	120
cagcagagaa	gtctgcgtga	ggaccaacag	agctttacgg	ggtcccggac	ctactccttg	180
gtcgggcagg	catggccagg	acccctggcg	gacatggcac	ccacaaggaa	ggacaagctg	240
ttgcaattct	accccagcct	ggaggatcca	gcatcttcca	ggtaccagaa	cttcagcaaa	300
ggaagcagac	acgggtcgga	ggaagcctac	atagacccca	ttgccatgga	gtattacaac	360
tgggggcggt	tctcgaagcc	cccagaagat	gatgatgcca	attcctacga	gaatgtgctc	420
atttgcaagc	agaaaaccac	agagacaggt	gcccagcagg	agggcatagg	tggcctctgc	480
agaggggacc	tcagcctgtc	actggccctg	aagactggcc	ccacttctgg	tctctgtccc	540
tetgeeteee	cggaagaaga	tgaggaatct	gaggattatc	agaactcagc	atccatccat	600
cagtggcgcg	agtccaggaa	ggtcatgggg	caactccaga	gagaagcatc	ccctggcccg	660
gtgggaagco	cagacgagga	ggacggggaa	ccggattacg	tgaatgggga	ggtggcagcc	720
acagaagcc					•	729
			•			
<210> 79						
<211> 1284	1	. •		•	•	
<212> DNA				. •		

<213> Homo sapiens

<400> 79

atggcgagga gtctctgtcc gggggcctgg ctaaggaaac cctattacct ccaggctcgc 60
ttctcatatg tgcggatgaa atatctttc ttttcctggt tagtggttt tgttggaagc 120
tggattatat atgtgcagta ttctacctat acagaattat gcagaggaaa ggactgtaag 180
aaaataatat gtgacaagta caagactgga gttattgatg ggcctgcatg taacagcctt 240
tgtgttacag aaactcttta ctttggaaaa tgtttatcca ccaagcccaa caatcagatg 300
tatttaggga tttgggataa tctaccaggt gttgtgaaat gtcaaatgga acaagcgctt 360

catcttgatt	ttggaactga	attggaacca	agaaaagaaa	tagtgctatt	tgataagcca	420
actagaggaa	ctactgtaca	aaaatttaaa	gaaatggtct	atagtctctt	taaggcaaaa	480
ttgggtgacc	aaggaaacct	ctctgaactg	gttaatctca	tcttgacggt	ggctgatgga	540
gacaaagatg	gccaggtttc	cttgggagaa	gcaaagtcgg	catgggcact	tcttcaactg	600
aatgaatttc	ttctcatggt	gatacttcaa	gataaagaac	atacccccaa	attaatggga	660
ttctgtggtg	acctctatgt	gatggaaagt	gttgaatata	cctctcttta	tggaataagc	720
cttccttggg	tcattgaact	ttttattcca	tctgggttca	gaagaagcat	ggatcagctg	780
ttcacaccat	catggccaag	aaaggccaaa	atagccatag	gacttctaga	atttgtggaa	840
gatgttttcc	atggccccta	cggaaatttc	ctcatgtgcg	atactagtgc	caaaaaccta	900
ggatataatg	ataagtatga	tttgaaaatg	gtggatatga	gaaaaattgt	gccagagaca	960
aacctgaaag	aacttattaa	ggatcgtcac	tgtgagtctg	atttggactg	tgtctatggc	1020
acagattgta	gaactagctg	tgatcagagt	acaatgaagt	gtacttcaga	agtgatacaa	1080
ccaaacttgg	caaaagcttg	tcagttactc	aaagactacc	tactgcgtgg	tgctccaagt	1140
gaaattcgtg	aagaattaga	aaagcagctt	tattcttgta	ttgctctcaa	agtcacagca	1200
aatcaaatgg	aaatggaaca	ttctttgata	ctaaataacc	taaaaacatt	attgtggaag	1260
aaaatttcct	acactaatga	ctct			·	1284

<210> 80

<211> 849

<212> DNA

<213> Homo sapiens

<400> 80

atgccccact ccagcctgca tccatccatc ccgtgtccca ggggtcacgg ggcccagaag 60 gcagccttgg ttctgctgag tgcctgcctg gtgacccttt gggggctagg agagccacca 120 gagcacactc tccggtacct ggtgctccac ctagcctccc tgcagctggg actgctgtta 180

240

Section 1 - December 2

162/307

aacggggtet geageetgge tgaggagetg caccacatee actecaggta ceggggeage

tactggagga ctgtgcgggc ctgcctgggc tgccccctcc	gccgtggggc	ccigitgcig	300
ctgtccatct atttctacta ctccctccca aatgcggtcg	gcccgccctt	cacttggatg	360
cttgccctcc tgggcctctc gcaggcactg aacatcctcc	tgggcctcaa	gggcctggcc	420
ccagctgaga tctctgcagt gtgtgaaaaa gggaatttca	acgtggccca	tgggctggca	480
tggtcatatt acatcggata tctgcggctg atcctgccag	agctccaggc	ccggattcga	540
acttacaatc agcattacaa caacctgcta cggggtgcag	tgagccagcg	gctgtatatt	600
ctcctcccat tggactgtgg ggtgcctgat aacctgagta	tggctgaccc	caacattcgc	660
ttcctggata aactgcccca gcagaccgct gaccgtgctg	gcatcaagga	tcgggtttac	720
agcaacagca tctatgagct tctggagaac gggcagcgga	acctgcagat	gacagcagct	780
tetegetgte ceaggaggtt eteeggeace tgeggeagga	ggaaaaggaa	gaggttactg	840
tgggcagct			849
<210> 81			
<211> 1376	. •	Property (Control of Control of C	
<212> DNA	. ".	e de la constantina	
<213> Homo sapiens			
⟨220⟩		i ive	
<221> CDS			
⟨222⟩ (100) (1269)			
<400> 81	S. S. Barrier C.		
atttttattt caggaatcca tcaacatcct ttgcagcta	c ataggcagga	aaatctagaa	60
attgtaattt atatagaatt ttaaaaactct tcaattaca	atg gat aga	ggg gag	114
to a contract of the second	Met Asp Arg	g Gly Glu	
engan kanalan di kacamatan kanalan kanalan da kanalan kanalan kanalan kanalan kanalan kanalan kanalan kanalan Kanalan kanalan kanala	1		

aaa	ata	cag	ctc	aag	aga	gtg	ttt	gga	tat	tgg	tgg	ggc	aca	agt	ttt	162
Lys	Ile	Gln	Leu	Lys	Arg	Val	Phe	Gly	Tyr	Trp	Trp	Gly	Thr	Ser	Phe	
	-			10					15					20		
ttg	ctt	att	aat	atc	att	ggt	gca	gga	att	ttt	gtg	tcc	ccc	aaa	ggt	210
Leu	Leu	Ile	Asn	Ile	Ile	Gly	Ala	Gly	lle	Phe	Val	Ser	Pro	Lys	Gly	
			25					30			-		35			
gtg	ttg	gca	tac	tct	tgc	atg	aac	gtg	gga	gtc	tcc	ctg	tgc	gtt	tgg	258
Val	Leu	Ala	Tyr	Ser	Cys	Met	Asn	Val	Gly	Val	Ser	Leu	Cys	Val	Trp	
		40					45					50				
gct	ggc	tgt	gcc	ata	ctg	gcc	atg	aca	tca	act	ctt	tgc	tct	gca	gag	306
Ala	Gly	Cys	Ala	Ile	Leu	Ala	Met	Thr	Ser	Thr	Leu	Cys	Ser	Ala	Glu	
	55					60		•			65		٠			
ata	agt	ata	agc	ttc	cca	tgc	agt	gga	gct	caa	tac	tat	ttt	ctc	aag	354
Ile	Ser	Ile	Ser	Phe	Pro	Cys	Ser	Gly	Ala	Gln	Tyr	Tyr	Phe	Leu	Lys	
70					75					80					85	
aga	tac	ttt	ggc	tcc	acg	gtt	gct	ttt	ttg	aat	ctc	tgg	aca	tcc	ttg	402
Arg	Tyr	Phe	Gly	Ser	Thr	Val	Ala	Phe	Leu	Asn	Leu	Trp	Thr	Ser	Leu	
				90					95					100		
ttt	ctg	ggg	tca	ggg	gta	gtt	gct	ggc	caa	gct	ctg	ctc	ctt	gct	gag	450
Phe	Leu	Gly	Ser	Gly	Val	Val	Ala	Gly	Gln	Ala	Leu	Leu	Leu	Ala	Glu	
•	٠.	. •	105					110	•				115			
tac	agc	atc	cag	cct	ttt	ttt	ссс	agc	tgc	tct	gtc	cca	aag	ctg	cct	498
Tyr	Ser	Ile	Gln	Pro	Phe	Phe	Pro	Ser	Cys	Ser	Val	Pro	Lys	Leu	Pro	
	;	120	٠, ٦		٠.	٠.	125			-		130			-	
aag	aaa	tgt	ctg	gca	ttg	gcc	atg	ttg	tgg	att	gta	gga	att	ctg	act	546

Lys	Lys	Cys	Leu	Ala	Leu	Ala	Met	Leu	Trp	Ile	Val	Gly	Ile	Leu	Thr	
	135					140				•	145			• :		
tct	cgt	ggt	gtg	aaa	gaa	gtg	act	tgg	ctt	cag	ata	gct	agc	tca	gtg	594
Ser	Arg	Gly	Val	Lys	Glu	Val	Thr	Trp	Leu	Gln	Ile	Ala	Ser	Ser	Val	
150	• •				155					160					165	
ctg	aaa	gtg	tcc	ata	ctt	agc	ttc	att	tcc	cta	act	gga	gta	gtg	ttc	642
Leu	Lys	Val	Ser	Ile	Leu	Ser	Phe	Ile	Ser	Leu	Thr	Gly	Val	Val	Phe	
	• . •	÷		170					175					180	• • •	
ctg	ata	aga	ggg	aaa	aag	gag	aat	gta	gaa	cga	ttt	cag	aat	gct	ttt	690
Leu	Ile	Arg	Gly	Lys	Lys	Glu	Asn	Val	Glu	Arg	Phe	Gln	Asn	Ala	Phe	
			185					190	1				195			
gat	gct	gaa	ctt	cca	gat	atc	tct	cac	ctt	ata	caa	gco	ato	tto	caa	738
Asp	Ala	Glu	ı Leu	Pro	Asp	Ile	Ser	His	Leu	Ile	Glr	Ala	ı Ile	Phe	Gln	
		200)				205	;				210)	٠		
gga	a tai	t tti	gca	ta1	t tca	a ggg	gag	ctg	g aag	aag	cco	aga	a aca	a aca	aatt	786
Gl	у Туз	r Phe	e Ala	Туз	r Sei	r Gly	Glu	ı Lev	ı Lys	Lys	Pro	Ar	g Thi	r Thi	r Ile	
	21	5				220)				22	5		٠.	• •	
cc	c aa	a tg	c ata	a tt	t ac	t gc	g tta	a cc	t ctg	g gtg	g ac	t gt	a gt	t ta	t tta	834
Pr	o Ly	s Cy	s Ile	e Ph	e Th	r Ala	a Lei	u Pr	o Lei	ι Val	l Th	r Va	l Va	1 Ty	r Leu	
23	0	•	٠	*	23	5	•	•	٠	240	0	•		٠,	245	
ct	g gt	t aa	c at	t tc	c ta	t ct	g ac	t gt	t ct	gac	а сс	c ag	g ga	a at	t ctc	882
Lė	u Va	ıl As	n Il	e Se	r Ty									u Il	e Leu	
									25						iO 1 /	
to	t to	a ga	it go	t gt	a go	t at	c ac	a tg	g gc	t ga	t cg	ga go	t tt	t co	c tca	930
c.	·c.	- · · · · ·		o Vis	.1 Δ1	11 د	e Th	r Tr	n Al	a As	D A	g Al	la Pi	ne Pi	o Ser	

			265	i				270)				275	;		
tta	gca	tgg	att	atg	cct	ttt	gct	att	tct	acc	tca	tta	ttt	ago	aac	978
Leu	Ala	Trp	Ile	Met	Pro	Phe	Ala	Ile	Ser	Thr	Ser	Leu	Phe	Ser	Asn	
		280					285					290				
ctt	ctg	att	tct	ata	ttt	aaa	tct	tcg	aga	cca	ata	tat	ctt	gca	agc	1026
Leu	Leu	Ile	Ser	Ile	Phe	Lys	Ser	Ser	Arg	Pro	Ile	Tyr	Leu	Ala	Ser	
	295					300					305					
caa	gag	ggc	cag	ctg	cct	ttg	cta	ttt	aat	aca	ctt	aat	agt	cac	tct	1074
Gln	Glu	Gly	G1n	Leu	Pro	Leu	Leu	Phe	Asn	Thr	Leu	Asn	Ser	His	Ser	
310					315					320					325	
tct	cca	ttt	aca	gct	gtg	cta	cta	ctt	gtc	act	ttg	gga	tcc	ctt	gca	1122
Ser	Pro	Phe	Thr	Ala	Val	Leu	Leu	Leu	Val	Thr	Leu	Gly	Ser	Leu	Ala	
				330					335			,		340		
att	atc	tta	aca	agt	cta	att	gat	ttg	ata	aac	tat	att	ttt	ttc	acg	1170
lle	Ile	Leu	Thr	Ser	Leu	Ile	Asp	Leu	Ile	Asn	Tyr	Ile	Phe	Phe	Thr	
:			345					350					355		. •	
ggt	tca	tta	tgg	tct	ata	tta	tta	atg	ata	gga	ata	cta	agg	cgg	aga	1218
Gly	Ser	Leu	Trp	Ser	Ile	Leu	Leu	Met	Ile	Gly	Ile	Leu	Arg	Arg	Arg	
		360					365					370	•			
tac	cag	gaa	ссс	aat	cta	tct	ata	cct	tat	aag	gta	aaa	ttg	gat	ttc	1266
yr.	G1n	Glu	Pro	Asn	Leu	Ser	Ile	Pro	Tyr	Lys	Val	Lys	Leu	Asp	Phe	
	375		. · ·		٠.	380					385	٠,	,			
aat	tct	tttc	tgt	gtga	aata	ac a	gata	ttga	g ta	taac	tgta	ttt	aaga	tta		1320
aat	caga	gc a	tcta	taag	t ag	atct	tctg	aat	actc	agt	tact	gtga	aa c	acat	g	1376

<210>							·									
<211>	239	2 .	:			, .				•	• •				٠.	
<212>	DNA		•	٠		٠.							:		. ,	
<213>	Hon	no sa	аріег	ıs												
<220>						. •							,	w *.#	مد الد	
<221>	CDS	3							٠,							
<222>	(2:	2)	. (10	68)										,		
·<400	82		•					-			. •	, .		r va	.	
gaagg	ggtc	gt t	ggtg	ggaa	a g	atg	gcg	gcg	act	ctg	gga	ccc	ctt	ggg	tcg	51
						Met	Ala	Ala	Thr	Leu	Gly	Pro	Leu	Gly	Ser	
		•				. 1				5				٠.	· 10	
tgg	cag	cag	tgg	cgg	ċga	tgt	ttg	tcg	gct	cgg	gat	ggg	tcc	agg	atg	99
Trp	Glņ	Gln	Trp	Arg	Arg	Cys	Leu	Ser	Ala	Arg	Asp	Gly	Ser	Arg	Met	
				15		٠.			20					25		
tta [°]	ctc	ctt	ctt	ctt	ttg	ttg	ggg	tct	ggg	cag	ggg	cca	cag	caa	gtc	147
Leu	Leu	Leu	Leu	Leu	Leu	Leu	Gly	Ser	Gly	G1n	G1y	Pro	Gln	Gln	Val	
5			. 30		:			35				-	40			
ggg	gcg	ggt	càa	acg	ttc	gag	tac	ttg	aaa	cgg	gag	cac	tcg	ctg	tcg	195
Gly	Ala	Gly	Gln	Thr	Phe	Glu	Tyr	Leu	Lys	Arg	Glu	His	Ser	Leu	Ser	
		45	٠ .	· • · · ·			· 50				٠. ،	- 55		wile or	بار.	
aag	ccc	tac	cag	ggt	gtg	ggc	aca	ggc	agt	tcc	tca	ctg	tgg	aat	ctg	243
Lys	Pro	Tyr	Gln	Gly	Val	Gly	Thr	Gly	Ser	Ser	Sei	Leu	Trp	Asr	ı Leu	
	60	•	y.		•	65	,	•	٠.	٠.	70)	1.		at a	
atg	ggc	aat	gcc	ate	gtg	g ate	gaco	c cas	g tai	t ate	c cg	cicti	t acc	cca	a gat	291
															o Asp	

75					80					85	;			•	. 90	
atg	caa	agt	aaa	cag	ggt	gcc	ttg	tgg	aac	cgg	gtg	cca	tgt	ttc	ctg	339
Met	Gln	Ser	Lys	Gln	Gly	Ala	Leu	Trp	Asn	Arg	Val	Pro	Cys	Phe	Leu	
				95					100					105		
aga	gac	tgg	gag	ttg	cag	gtg	cac	ttc	aaa	atc	cat	gga	caa	gga	aag	387
Arg	Asp	Trp	Glu	Leu	Gln	Val	His	Phe	Lys	Ile	His	Gly	Gln	Gly	Lys	
• •		٠	110					115					120			
aag	aat	ctg	cat	ggg	gat	ggc	ttg	gca	atc	tgg	tac	aca	aag	gat	cgg	435
Lys	Asn	Leu	His	Gly	Asp	Gly	Leu	Ala	Ile	Trp	Tyr	Thr	Lys	Asp	Arg	•
		125					130					135				
atg	cag	cca	ggg	cct	gtg	ttt	gga	aac	atg	gac	aaa	ttt	gtg	ggg	ctg	483
Met	Gln	Pro	Gly	Pro	Val	Phe	Gly	Asn	Met	Asp	Lys	Phe	Val	Gly	Leu	
	140					145					150					
gga	gta	ttt	gta	gac	acc	tac	ccc	aat	gag	gag	aag	cag	caa	gag	cgg	531
Gly	Val	Phe	Val	Asp	Thr	Tyr	Pro	Asn	Glu	Glu	Lys	Gln	Gln	Glu	Arg	
155	•		, •		160		٠.			165					170	
gtà	ttc	ccc	tac	atc	tca	gcc	atg	gtg	aac	aac	ggc	tcc	ctc	agc	tat	579
Val	Phe	Pro	Tyr	Ile	Ser	Ala	Met	Val	Asn	Asn	Gly	Ser	Leu	Ser	Tyr	
-				175					180					185		
gat	cat	gag	cgg	gat	ggg	cgg	cct	aca	gag	ctg	gga	ggc	tgc	aca	gcc	627
Asp	His	Glu	Arg	Asp	G1 y	Arg	Pro	Thr	Glu	Leu	Gly	Gly	Cys	Thr	Ala	
٠,٠	• • ;	• .	190		٠	· .		195	•	. •	•	٠	200	,	• •	
att	gtc.	cgc	aat	ctt	cat	tac	gac	асс	ttc	ctg	gtg	att	cgc	tac	gtc	675
Ile-	Val	Arg	Asn	Leu	His	Tyr	Asp	Thr	Phe	Leu	Val	Ile	Arg	Tyr	Val	
		205	• . ,	:		-, -	210	,			- ,.	215			÷ .	

aag	agg	cat	ttg	acg	ata	atg	atg	gat	att	gat	ggc	aag	cat	gag	tgg	723
Lys	Arg	His	Leu	Thr	Ile	Met	Met	Asp	Ile	Asp	Gly	Lys	His	Glu	Trp	
	220					225					230			- •		
agg	gac	tgc	att	gaa	gtg	ccc	gga	gtc	cgc	ctg	ccc	cgc	ggc	tac	tac	771
Arg	Asp	Cys	Ile	Glu	Val	Pro	Gly	Val	Arg	Leu	Pro	Arø	Gly	Tyr	Tyr	
235					240					245				•	250	
ttc	ggc	acc	tcc	tcc	atc	act	ggg	gat	ctc	tca	gat	aat	cat	gat	gtc	819
Phe	Gly	Thr	Ser	Ser	Ile	Thr	Gly	Asp	Leu	Ser	Asp	Asn	His	Asp	Val	
. •				255					260					265		
att	tcc	ttg	aag	ttg	ttt	gaa	ctg	aca	gtg	gag	aga	acc	cca	gaa	gag	867
Ile	Ser	Leu	Lys	Leu	Phe	Glu	Leu	Thr	Val	Glu	Arg	Thr	Pro	Glu	Glu	
			270					275					280		٠.	
gaa	aag	ctc	cat	cga	gat	gtg	ttc	ttg	ccc	tca	gtg	gac	aat	atg	aag	915
Glu	Lys	Leu	His	Arg	Asp	Val	Phe	Leu	Pro	Ser	Val	Asp	Asn	Met	Lys	
•	٠.	285					290					295		. •	٠٠,	
ctg	cct	gag	atg	aca	gct	cca	ctg	ccg	ccc	ctg	agt	ggc	ctg	gcc	ctc	963
Leu	Pro	Glu	Met	Thr	Ala	Pro	Leu	Pro	Pro	Leu	Ser	Gly	Leu	Ala	Leu	
	300					305					310	••		. •	٠,	
ttc		atc	gtc	ttt	ttc	tcc	ctg	gtg	ttt	tct	gta	ttt	gcc	ata	gtc	1011
						Ser										
						aac										1059
						Asn										
	-															
						g (C										1110

Phe Tyr

tatggaagga	gcaggcactg	gcctgagcat	gcagcctgga	gagtgttctt	gtctctagca	1170
gctggttggg	gactatattc	tgtcactgga	gttttgaatg	cagggacccc	gcattcccat	1230
ggttgtgcat	ggggacatct	aactctggtc	tgggaagcca	cccaccccag	ggcaatgctg	1290
ctgtgatgtg	cctttccctg	cagtccttcc	atgtgggagc	agaggtgtga	agagaattta	1350
cgtggttgtg	atgccaaaat	cacagaacag	aatttcatag	cccaggctgc	cgtgttgttt	1410
gactcagaag	gcccttctac	ttcagttttg	aatccacaaa	gaattaaaaa	ctggtaacac	1470
cacaggettt	ctgaccatcc	attcgttggg	ttttgcattt	gacccaaccc	tctgcctacc	1530
tgaggagctt	tctttggaaa	ccaggatgga	aacttcttcc	ctgccttacc	ttcctttcac	1590
tccattcatt	gtcctctctg	tgtgcaacct	gagctgggaa	aggcatttgg	atgcctctct	1650
gttggggcct	ggggctgcag	aacacacctg	cgtttcactg	gccttcatta	ggtggcccta	1710
gggagatggc	tttctgcttt	ggatcactgt	tccctagcat	gggtcttggg	tctattggca	1770
tgtccatggc	cttcccaatc	aagtctcttc	aggccctcag	tgaagtttgg	ctaaaggttg	1830
gtgtaaaaat	caagagaagc	ctggaagaca	tcatggatgc	catggattag	ctgtgcaact	1890
gaccagetee	aggtttgatc	aaaccaaaag	caacatttgt	catgtggtct	gaccatgtgg	1950
agatgtttct	ggacttgcta	gagcctgctt	agctgcatgt	tttgtagtta	cgatttttgg	2010
aatcccactt	tgagtgctga	aagtgtaagg	aagctttctt	cttacacctt	gggcttggat	2070
attgcccaga	gaagaaattt	ggctttttt	ttcttaatgg	acaagagaca	gttgctgttc	2130
tcatgttcca	agtctgagag	caacagaccc	tcatcatctg	tgcctggaag	agttcactgt	2190
cattgagcag	cacagcctga	gtgctggcct	ctgtcaaccc	ttattccact	gccttatttg	2250
acaaggggtt	acatgctgct	caccttactg	ccctgggatt	aaatcagtta	caggccagag	2310
tctccttgga	gggcctggaa	ctctgagtcc	tcctatgaac	ctctgtagcc	taaatgaaat	2370
tettaaaate	accoatogaa	cc .				2392

<210> 83

<211> 1416					
<212> DNA			•		
<213> Homo sa	piens				
<220>				•	• •
<221> CDS	• •			••••	***
<222> (55)	(840)				. *
<400> 83			•		
attgtccctg cc	tgcttctg	gagaaagaag	g atattgacac	catctacggg	cacc atg 57
• • • •	•				Met
					1
gaa ctg ctt c	aa gtg a	cc att ctt	ttt ctt ctg	ccc agt att	tgc agc 105
Glu Leu Leu G	Gln Val T	hr Ile Leu	Phe Leu Leu	Pro Ser Ile	Cys Ser
	5		10	15	•
agt aac agc a	aca ggt g	tt tta gag	gca gct aat	aat tca ctt	gtt gtt 153
Ser Asn Ser	Thr Gly V	al Leu Glu	Ala Ala Asn	Asn Ser Leu	Val Val
20		25		30	* - * - * -
act aca aca	aaa cca t	ct ata aca	aca cca aac	aca gaa tca	tta cag 201
Thr Thr Thr	Lys Pro S	Ser Ile Thr	Thr Pro Asr	Thr Glu Ser	Leu Gln
35		40	• .	45	• • •
aaa aat gtt	gtc aca c	ca aca act	gga aca act	t cct aaa gga	aca atc 249
Lys Asn Val	Val Thr F	ro Thr Thr	Gly Thr Th	r Pro Lys Gly	Thr Ile
50	t	55	: 60	0	· 200 0 65
acc aat gaa	tta ctt a	aaa atg tct	ctg atg to	a aca gct act	t tit ita 297
Thr Asn Glu	Leu Leu l	Lys Met Sei	Leu Met Se	r Thr Ala Th	r Phe Leu
	70		75		80 😅

aca	agt	aaa	gat	gaa	gga	ttg	aaa	gcc	aca	acc	act	gat	gtc	agg	aag	345
Thr	Ser	Lys	Asp	Glu	Gly	Leu	Lys	Ala	Thr	Thr	Thr	Asp	Val	Arg	Lys	
			85					90			,		95			
aat	gac	tcc	atc	att	tca	aac	gta	aca	gta	aca	agt	gtt	aca	ctt	сса	393
Asn	Asp	Ser	Ile	Ile	Ser	Asn	Val	Thr	Val	Thr	Ser	Val	Thr	Leu	Pro	
		100					105					110				
aat	gct	gtt	tca	aca	tta	caa	agt	tcc	aaa	ccc	aag	act	gaa	act	cag	441
Asn	Ala	Val	Ser	Thr	Leu	G1n	Ser	Ser	Lys	Pro	Lys	Thr	Glu	Thr	Gln	
	115					120					125				٠	
agt	tca	att	aaa	aca	aca	gaa	ata	cca	ggt	agt	gtt	cta	caa	cca	gat	489
Ser	Ser	Ile	Lys	Thr	Thr	Glu	Ile	Pro	Gly	Ser	Val	Leu	Gln	Pro	Asp	
130					135					140					145	
gca	tca	cct	tct	aaa	act	ggt	aca	tta	acc	tca	ata	cca	gtt	aca	att	537
Ala	Ser	Pro	Ser	Lys	Thr	Gly	Thr	Leu	Thr	Ser	Ile	Pro	Val	Thr	Ile	
				150					155					160	<i>t</i> .	
cca	gaa	aac	acc	tca	cag	tct	caa	gta	ata	ggc	act	gag	ggt	gga	aaa	585
Pro	Glu	Asn	Thr	Ser	G1n	Ser	Gln	Val	Ile	Gly	Thr	Glu	Gly	Gly.	Lys	
			165					170					175			
aat	gca	agc	act	tca	gca	acc	agc	cgg	tct	tat	tcc	agt	att	att	ttg	633
Asn	Ala	Ser	Thr	Ser	Ala [.]	Thr.	Ser	Arg	Ser	Tyr	Ser	Ser	Ile	Ile	Leu	
		180					185					190				
ccg	gtg	gtt	att	gct	ttg	att	gta	ata	aca	ctt	tca	gta	ttt	gtt	ctg	681
Pro	Val	Val	Ile	Ala	Leu	Ile	Val	Ile	Thr	Leu	Ser	Val	Phe	Val	Leu .	
	195					200					205					
gtg	ggt	ttg	tac	cga	atg	tgc	tgg	aag	gca	gat	ccg	ggc	aca	cca	gaa	729
											_					

BNSDOCID: <WO 0112660A2 I >

Val Gly Leu Tyr Arg Met Cys Trp Lys Ala Asp Pro Gly Thr Pro Glu	
210 215 220 225	
aat gga aat gat caa cct cag tct gat aaa gag agc gtg aag ctt ctt	777
Asn Gly Asn Asp Gln Pro Gln Ser Asp Lys Glu Ser Val Lys Leu Leu	
230 235 240	
acc gtt aag aca att tot cat gag tot ggt gag cac tot gca caa gga	825
Thr Val Lys Thr Ile Ser His Glu Ser Gly Glu His Ser Ala Gln Gly	
245 250 255	
aaa acc aag aac tga cagcttgagg aattctctcc acacctaggc aataattacg	880
Lys Thr Lys Asn	
260	
cttaatcttc agcttctatg caccaagcgt ggaaaaggag aaagtcctgc agaatcaatc	940
ccgacttcca tacctgctgc tggactgtac cagacgtctg tcccagtaaa gtgatgtcca	1000
gctgacatgc aataatttga tggaatcaaa aagaaccccg gggctctcct gttctctcac	1060
atttaaaaat teeattaete catttacagg agegtteeta ggaaaaggaa ttttaggagg	1120
agaatttgtg agcagtgaat ctgacagccc aggaggtggg ctcgctgata ggcatgactt	1180
tccttaatgt ttaaagtttt ccgggccaag aatttttatc catgaagact ttcctacttt	1240
tctcggtgtt cttatattac ctactgttag tatttattgt ttaccactat gttaatgcag	1300
ggaaaagttg cacgtgtatt attaaatatt aggtagaaat cataccatgc tactttgtac	1360
atataagtat tttattcctg ctttcgtgtt acttttaata aataactact gtactc	1416
<210> 84	
⟨211⟩ 1347	
<212> DNA	
(213) Homo saniens	

State - 15 12 22 21

<220>		. :					
<221> CDS							•
<222> (26).	(694)						
<400> 84	•						
gccttgtgtt	ttccaccc	tg aaaga	atg ttg	tgg ctg	ctc ttt	ttt ctg	gtg 52
			Met Leu	Trp Leu	Leu Phe	Phe Leu	Val
			1		5 、		
act gcc att	cat gct	gaa ctc	tgt caa	cca ggt	gca gaa	aat gct	ttt 100
Thr Ala Ile	His Ala	Glu Leu	Cys Gln	Pro Gly	Ala Glu	Asn Ala	Phe
10		15		20			25
aaa _. gtg aga	ctt agt	atc aga	aca gct	ctg gga	gat aaa	gca tat	gcc 148
Lys Val Arg	Leu Ser	Ile Arg	Thr Ala	Leu Gly	Asp Lys	Ala Tyr	Ala
	30			35		40	
tgg gat acc	aat gaa	gaa tac	ctc ttc	aaa gcg	atg gta	gct ttc	tcc 196
Trp Asp Thr	Asn Glu	Glu Tyr	Leu Phe	Lys Ala	Met Val	Ala Phe	Ser .
::	45		; 50			55	
atg aga aaa	gtt ccc	aac aga	gaa gca	aca gaa	att tcc	cat gtc	cta 244
Met Arg Lys	Val Pro	Asn Arg	Glu Ala	Thr Glu	Ile Ser	His Val	Leu
. 60			65		. 70		
ctt tgc aat	gta acc	cag agg	gta tca	ttc.tgg	ttt gtg	gtt aca	gac 292
Leu Cys Asn	Val Thr	Gln Arg	Val Ser	Phe Trp	Phe Val	Val Thr	Asp
75 ; • .	· · · ·	- 80			85	• ,	• •
cct tca aaa	aat cac	acc ctt	cct gct	gtt gag	gtg caa	tca gcc	ata 340
Pro Ser Lys	Asn His	Thr Leu	Pro Ala	Val Glu	Val Gln	Ser Ala	Ile
90% - 144	• • • •	95		100	*****	· • • •	105.

aga	atg	aac	aag	aac	cgg	atc	aac	aat	gcc	ttc	ttt	cta	aat	gac	caa	3	388
Arg	Met	Asn	Lys	Asn	Arg	Ile	Asn	Asn	Ala	Phe	Phe	Leu	Asn	Asp	Gln		•
				110					115				٠.	120	٠.		
act	ctg	gaa	ttt	tta	aaa	atc	cct	tcc	aca	ctt	gca	cca	ccc	atg	gac	•	436
Thr	Leu	Glu	Phe	Leu	Lys	Ile	Pro	Ser	Thr	Leu	Ala	Pro	Pro	Met	Asp		
			125			•		130	*				135				
cca	tct	gtg	ccc	atc	tgg	att	att	ata	ttt	ggt	gtg	ata	ttt	tgc	atc		484
Pro	Ser	Val	Pro	Ile	Trp	Ile	Ile	Ile	Phe	Gly	Val	Ile	Phe	Cys	Ile		
	· 1	140)	•		. 1	145					150			» (
atc	ata	gtt	gca	att	gca	cta	ctg	att	tta	tca	ggg	ato	tgg	caa	cgt		532
Ile	Ile	Val	Ala	Ile	Ala	Leu	Leu	Ile	Leu	Ser	Gly	Ile	Trp	Glr	Arg		
	155	;				160)				165	Ì	*				
aga	aga	aag	g aad	aaa	. gaa	cca	tct	. gaa	gtg	gat	gac	gct	gaa	gat	aag		580
Arg	Arg	y Lys	s Ası	n Lys	Glu	Pro	Ser	Glu	Val	. Asp	Asp	Ala	a Glu	ı Ası) Lys		
170)				179	5				180)				185	ı	
tgt	ga:	a aa	c at	g ato	aca	a at	t gaa	a aat	ggo	ato	ccc	tc.	t ga	t cc	c ctg		628
Cys	Gl:	u As	n Me	t Ile	e Thi	r Il	e Glu	ı Asr	Gly	y I16	e Pro	o Se	r As	p Pr	o Leu	ļ	
		•	. ,	190)				19	5				20	0	•	
ga	at	g aa	g gg	a ggi	g ca	t at	t aa	t ga	t gc	c tt	c at	g ac	a ga	g ga	t gag	3	676
As	р Ме	t Ly	s Gl	y Gl											p Glu		
	. <i>:</i>	••	20	5				21	0 -			-	21	5	:	: .	
															acat		730
															\$ 4 9		
tt	øtti	tote	t et	gacte	ctg	agca	atcct	ga a	atac	caag	ga go	aga	tcata	a ta	ttttg	ttt	790

caccattctt	cttttgtaat	aaattttgaa	tgtgcttgaa	agtgaaaagc	aatcaattat	850
acccaccaac	accactgaaa	tcataagcta	ttcacgactc	aaaatattct	aaaatatttt	910
tctgacagta	tagtgtataa	atgtggtcat	gtggtatttg	tagttattga	tttaagcatt	970
tttagaaata	agatcaggca	tatgtatata	ttttcacact	tcaaagacct	aaggaaaaat	1030
aaattttcca	gtggagaata	catataatat	ggtgtagaaa	tcattgaaaa	tggatccttt	1090
ttgacgatca	cttatatcac	tctgtatatg	actaagtaaa	caaaagtgag	aagtaattat	1150
tgtaaatgga	tggataaaaa	tggaattact	catatacagg	gtggaatttt	atcctgttat	1210
cacaccaaca	gttgattata	tattttctga	atatcagccc	ctaataggac	aattctattt	1270
gttgaccatt	tctacaattt	gtaaaagtcc	aatctgtgct	aacttaataa	agtaataatc	1330
atctctttt	gattgtg					1347
<210> 85		·			* •	
<211> 2284						
<212> DNA						
<213> Homo	sapiens					
<220>						
<221> CDS					J+ + J+	
<222> (75).	(626)					
<400> 85	•			•	•	
aaaatggcac	agagcattga	aaggaggcaa	cggatgccca	gtgcaagatt	ctgaagaagc	60
aggaattcag	cccg atg gg	a gtc cga g	gtt cat gtc	gtg gcg gcc	tca gcc	110
• • •	Met Gl	y Val Arg V	al His Val	Val Ala Ala	Ser Ala	
3 40 5 40 5	1 .		5	10	· , , , , ,	
ctg ctg tat	ttc atc ct	g ctt tct g	gg acg aga	tgt gag gaa	aac tgt	158

Leu Leu Tyr Phe Ile Leu Leu Ser Gly Thr Arg Cys Glu Glu Asn Cys

		15					20		•			25	٠.	:		
ggt	aat	cct	gaa	cat	tgc	çtg	acc	aca	gac	tgg	gta	cat	ctc	tgg	tat ·	206
Gly	Asn	Pro	Glu	His	Cys	Leu	Thr	Thr	Asp	Trp	Val	His	Leu	Trp	Tyr	
	30		· .	•		35					40					
ata	tgg	ttg	cta	gtg	gta ⁻	att	ggc	gcg	ctg	ctt	ctc	ctg	tgt	ggc	ctg	254
Ile	Trp	Leu	Leu	Val	Val	Ile	Gly	Ala	Leu	Leu	Leu	Leu	Cys	Gly	Leu	
45				٠.	50					55		,			· 60	
acg	tcc	ctg	tgc	ttc	cgc	tgc	tgc	tgt	ctg	agc	cgc	cag	caa	aat	ggg	302
Thr	Ser	Leu	Cys	Phe	Arg	Cys	Cys	Cys	Leu	Ser	Arg	Gln	Gln	Asn	Gly	
				65					70					75		77
gaa	gat	ggg	ggc	cca	cca	ccc	tgt	gaa	gtg	acc	gtc	att	gct	ttc	gat	350
Glu	Asp	Gly	Gly	Pro	Pro	Pro	Cys	Glu	Val	Thr	Val	Ile	Ala	Phe	Asp.	
			80					85					90			
cac	gac	agc	act	ctc	cag	agc	act	atc	aca	tct	ctg	cag	tcg	gtg	ttt	398
His	Asp	Ser	Thr	Leu	Gln	Ser	Thr	Ile	Thr	Ser	Leu	Gln	Ser	Val	Phe ·	
		95					100					105			• • •	
ggc	cct	gca	gct	cgg	agg	atc	ctg	gct	gtg	gct	cac	tcc	cac	agc	tcc··	446
Gly	Pro	Ala	Ala	Arg	Arg	Ile	Leu	Ala	Val	Ala	His	Ser	His	Ser	Ser	
	110					115					120				e cherry	
ctg	ggc	cag	ctg	ccc	tcc	tct	ttg	gac	·acc	ctc	cca	ggg	tat	gaa	gaa	494
Leu	Gly	Gln	Leu	Pro	Ser	Ser	Leu	Asp	Thr	Leu	Pro	Gly	Tyr	Glu	·Glu·	
125	;-• ·		<i>.</i>		130	,	. .	. ;	*	135					140	
gct	ctt	cac	ate	agt	cgc	ttc	aca	gta	gcc	atg	tgo	gge	cag	g aaa	gca	542
Ala	Leu	His	Met	Ser	Arg	Phe	Thr	Val	Ala	Met	Cys	Gly	Glr	Lys	s-Ala-	
	•	• •		-145	5	. .	٠. ,	F	· 150)				155	5 ia 16%.	

cct gat cta ccc cca gta	cct gaa gaa aag cag	ctg cct cca aca gag	590
Pro Asp Leu Pro Pro Val	Pro Glu Glu Lys Gln	Leu Pro Pro Thr Glu	
160	165	170	
aag gag tcg act cga ata	gtt gac tct tgg aac	tgatgag agctgtcatt	640
Lys Glu Ser Thr Arg Ile	Val Asp Ser Trp Asn		
175	180		
ttataaatag gagtggagtg at	gtccagag tctgtgggaa	aatggaacac atacttttct	700
aaccctcaga agttttaaga tg	gcatctaa caccatcatt	ctatgggaaa gatggttctt	760
actcttcgtt cacaggcctt ta	tatcttcc gatacagaat	gctctaattg ggaactctaa	820
ttttgtatcc aatggccaaa at	ctgcaagt aatctctagc	cacactgatt actactaaac	880
caggaaagca tcaaggtatc tt	gaatteet ttaactattg	agtgcatata gaattcctgt	940
acccacatga tactgcaagt tg	tgtctctc tctgtcagct	aatccactgc ggttaactgg	1000
aaaagaaaga caacagtgtc ag	cacagoca togacattaa	tgcactgaat gcatgcatct	1060
ttcctcctga gacagcaatc ga	ttttacac cgaatgacaa	tgatcatctt agacagcaca	1120
acatacccac teggatatet aa	aagctagg gatggcattg	ctgatatggg caaagagaac	1180
acagtatagt atttaagtgc ca	aatatcag tetttettte	tctctggtcc tacccctcag	1240
cagtatgaaa aactccatac tg	tgcagtca cagttggatt	aattcttcag ttcctccgca	1300
ctgcaaacac atatatgtgc gc	acatgcat gtatacctgc	accctgtttt aactctaaag	1360
gaatagtgtt gctttacttc tt	teetgttt tgeetggace	acttaaagcc acaacacctc	1420
tatagtgaca cacgctagtc tc	tagtggtg gccctcactg	ccacctagag gagccatggt	1480
ggaaaacaca ctctctctt tg	agcctate tgcacatete	tcgagttctt ggagcaaaaa	1540
ctaaatgctg aactaagcct gg	ttgagatg cttcccatgg	accatgeege ageacagtge	1600
taatctatcc acaaaacata cc	acctccca aagtattatt	attggaaaat cgaggaagtg	1660
acgcacattt agggaaaaac ta	ctcacctt agaaaagtca	ctgaaatcct tttttttt	1720
tttgagatgg agttttgctc tt	gtageera ggetgggatg	raatograto oteteagete	1780

BNSDOCIO - WO DITTERNATI -

actgtaacct ccacctcccg ga	attcaagca a	attettetge	ctcagcttcc	cgactagctg	1840
ggattacage tgcctgccac cg	gtgcccagc 1	taatttttgt	atttttagtg	gagagggggt	1900
ttcaccatgt tggccagtct gg	gtctagaac 1	tcctgacgtc	aggtgatccg	cccaccttgg	1960
cctcccaaag tgctggaatt ag	gaggcctga (cccctgctc	ctggcctgaa	atctttaaag	2020
ccgttttttc cctaaaaaac gg	ggaaataat a	aacacctcag	aaggtttttg	tgaagatcaa	2080
agaagctaaa tatatgtggc a	tgatttgta	aagtgttatg	catatgtatg	ttattcttcc	2140
tactgtcttc taaccttccc t	tgcctgcta	tgacttatct	gagagccatg	ttcccattta	2200
tetttttgcc aactatgtta c	tgttgtcac	acctgaaatg	gctttgtttt	tatcaataaa	2260
tacttgttga ttgtggtaaa c	agc	•	• • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2284
<210> 86		•			
<211> 1737			٠		
<212> DNA					
<213> Homo sapiens					
⟨220⟩				to the first	
<221> CDS			-	- * -	
<222> (236)(1024)				· . •	
<400> 86					
tttcgattcc actctcttcc (gtttctgtcg	ctgcagtcgt	ccgcgggac1	ccggccggtt	60
gccggcccca ggcggtgctt	ctccccacca	ccgcccagc1	t cagctcagc	cagoccagoo	120
cactctgccc ttagaggccc	ttctccccaa	agacgcacto	c cagaagtct	c gccctcgtgc	180
ggctgaggag cctgggatcc	cagacctgaa	caagtgaaa	c ccccgcccc	t gaaga atg	23
j		1211 1214		, , Met	
		. :	• • • • • • •	171.65-11	

ggt aag acg ttt tcc cag ctg ggc tct tgg cgg gag gat gag aac aag.

BNSDOCID: <WO 0112660A2 1 >

THE SHARE SHEET STORES

286

Gly	Lys	Thr	Phe	Ser	Gln	Leu	Gly	Ser	Trp	Arg	Glu	Asp	Glu	Asn	Lys	
	٠., .		. 5	:				10					15	٠.		
tca	atc	ctg	tcc	tcc	aaa	cca	gcc	att	ggc	agc	aag	gct	gtc	aac	tac	334
Ser	Ile	Leu	Ser	Ser	Lys	Pro	Ala	Ile	Gly	Ser	Lys	Ala	Val	Asn	Tyr	
		20		4			25					30				
tcc	agc	acc	ggt	agc	agc	aag	tct	ttt	tgt	tcc	tgt	gtg	cct	tgt	gaa	382
Ser	Ser	Thr	Gly	Ser	Ser	Lys	Ser	Phe	Cys	Ser	Cys	Val	Pro	Cys	Glu	
•	35	•		*		.40			•		45					
gga	act	gct	gat	gcc	agc	ttc	gtg	act	tgt	ссс	acc	tgc	cag	ggc	agt	430
Gly	Thr	Ala	Asp	Ala	Ser	Phe	Val	Thr	Cys	Pro	Thr	Cys	Gln	Gly	Ser	
50					55					60					65	
ggc	aag	att	ccc	caa	gag	ctg	gag	aag	cag	ttg	gtg	gct	ctc	att	ccc .	478
Gly	Lys	Ile	Pro	Gln	Glu	Leu	Glu	Lys	Gln	Leu	Val	Ala	Leu	Ile	Pro	
				70					75					80		
tat	ggg	gac	cag	agg	ctg	aag	ссс	aag	cac	acg	aag	ctc	ttt	gtg	ttc	526
Tyr	Gly	Asp	Gln	Arg	Leu	Lys	Pro	Lys	His	Thr	Lys	Leu	Phe	Val	Phe	
٠٠.	· ·- ;	,	· 85			•		90		,			95	. ,		
ctg	gcc	gtg	ctc	atc	tgc	ctg	gtg	acc	tcc	tcc	ttc	atc	gtc	ttt	-ttc	574
Leu	Ala	Val	Leu	Ile	Cys	Leu	Val	Thr	Ser	Ser	Phe	Ile	Val	Phe	Phe	
•••		100		ì		• .	105	٠.				110		.	, .	
ctg	ttt	ccc	cgg	tcc	gtc	att	gtg	cag	cct	gca	ggc	ctc	aac	tcc	tcc	622
Leu	Phe	Pro	Arg	Ser	Val	Ile	Val	Gln	Pro	Ala	Gly	Leu	Asn	Ser	Ser	
•	·115			`		120	,.				125	•		•.		
aca	gtg	gcc	ttt	gat	gag	gct	gat	atc	tac	ctc	aac	ata,	acg	aat	atc	670
Thr	Val	A16	Dho	Acr	G1.	41.	100	Tla	T	I ou	10=	Tic	The	A 0.5	T1.	

NSDOCID: WO DIIDEEDAD I -

130 - 135 -		140 145	
tta aac atc tcc aat ggc	aac tac tac ccc	att atg gtg aca cag ctg	718
Leu Asn Ile Ser Asn Gly	Asn Tyr Tyr Pro	Ile Met Val Thr Gln Leu	
150	155	160	
acc ctc gag gtt ctg cac	ctg tcc ctc gtg	gtg ggg cag gtt tcc aac	766
Thr Leu Glu Val Leu His	Leu Ser Leu Val	Val Gly Gln Val Ser Asn	
165	170	175	
aac ctt ctc cta cac att	ggc cct ttg gcc	agt gaa cag atg ttt tac	814
Asn Leu Leu Leu His Ile	Gly Pro Leu Ala	Ser Glu Gln Met Phe Tyr	
180	185	190	
gca gta gct acc aag ata	cgg gat gaa aac	aca tac aaa atc tgt acc	862
Ala Val Ala Thr Lys Ile	Arg Asp Glu Asn	Thr Tyr Lys Ile Cys Thr	
195	200	205	
tgg ctg gaa atc aaa gtc	cac cat gtg ctt	ttg cac atc cag ggc acc	910
Trp Leu Glu Ile Lys Val	His His Val Leu	Leu His Ile Gln Gly Thr	
210 215		220 225	
ctg acc tgt tca tac ctg	agc cat tca gag	cag ctg gtc ttt cag agc	958
Leu Thr Cys Ser Tyr Leu	Ser His Ser Glu	Gln Leu Val Phe Gln Ser	
230	235	240	
tat gaa tat gtg gac tgc	cga gga aac gca	a tot gtg ccc cac cag ctg	1006
Tyr Glu Tyr Val Asp Cys	Arg Gly Asn Ala	a Ser Val Pro His Gln Leu	
245	··· ·· 250 ··	255	
acc cct cac cca cca tga	cctgtc tgctgtcc	ct gtactccagg cacctgcaac	1060
Thr Pro His Pro Pro			
260	logova se som	. In the second section of the second	

cctggtctat	atctcccaca	actccctggt	gactaaggaa	ggactacaga	ggctttgcca	1120
aaggagaagc	cctgcctcat	cacaccctta	cctcccaccc	cctcagcaca	ggaagcttgc	1180
tttgaagtta	acttcataca	cacacactca	tatcctccag	tttcccccag	attctttcag	1240
gggctgccat	cagattctgc	ccttggttag	ttttttgttt	tttttttgg	tagagacaga	1300
gtctcactgt	tggtccaggt	tggttttgaa	ctcctgggct	caagcgatcc	tcccttcttg	1360
gcctcccaaa	gcacttggat	tacagatgtg	agcctgtgcc	tggctggtct	ttcttgagga	1420
aaatctgacc	tggcattttc	ttgaggcacc	ttagattccc	tggagtggca	cctggccttt	1480
ctgtactgag	cacctggtca	gtctgaaggg	ggcatttcac	cccagctcca	tcagggctgg	1540
cagtcccgtc	tgaatgtgga	gagagctgta	gttttatctg	gcttttaaaa	catggacctg	1600
ccggctgggc	gcagtggctt	acacctgtaa	tcccagtact	ttgggaggcc	gaagtgggtg	1660
gatcacttga	gggcaggagt	tcgtgaccag	cctggtcaac	atggtgaaac	cttgtctcta	1720
ctaaaaatac	aaaaatt					1737
<210> 87						. •

<211> 1556

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (103)... (609)

<400> 87

agegeteact egetegeact eagtegeggg aggetteece gegeeggeeg egteeegee 60 gctccccggc accagaagtt cctctgcgcg tccgacggcg ac atg ggc gtc ccc 114

Met Gly Val Pro

non operation of the company on the many the contract and are

BNSDOCID: <WO 0112660A2 | >

acg	gcc	ctg	gag	gcc	ggc	agc	tgg	cgc	tgg	gga	tcc	ctg	ctc	ttc	gct	162
Thr	Ala	Leu	Glu	Ala	Gly	Ser	Trp	Arg	Trp	Gly	Ser	Leu	Leu	Phe	Ala	
5	٠,; ,	.:			10	٠,	•	•		15		•	:		20	
ctc	ttc	ctg	gct	gcg	tcc	cta	ggc	aaa	gat	gca	cca	tcc	aac	tgt	gtg	210
Leu	Phe	Leu	Ala	Ala	Ser	Leu	Gly	Lys	Asp	Ala	Pro	Ser	Asn	Cys	Val	
				25	•				30			٠.		35		
gtg	tac	cca	tcc	tcc	tcc	cag	gag	agt	gaa	aac	atc	acg	gct	gca	gcc	258
Val	Tyr	Pro	Ser	Ser	Ser	Gln	Glu	Ser	Glu	Asn	Ile	Thr	Ala	Ala	Ala	
	8	•	40		:			45		-			50	٠,		
ctg	gct	acg	ggt	gcc	tgc	atc	gta	gga	atc	ctc	tgc	ctc	ccc	ctc	atc	306
Leu	Ala	Thr	Gly	Ala	Cys	Ile	Val	Gly	Ile	Leu	Cys	Leu	Pro	Leu	Ile	
		55					60					· 6 5		•		
ctg	ctc	ctg	gtc	tac	aag	caa	agg	cag	gca	gcc	tcc	aac	cgc	cgt	gcc	354
Leu	Leu	Leu	Val	Tyr	Lys	Gln	Arg	Gln	Ala	Ala	Ser	Asn	Arg	Arg	Ala	
	70					75					80			. :	• .	
cag	gag	ctg	gtg	cgg	atg	gac	agc	aac	att	caa	ggg	att	gaa	aac	ccc	402
Gln	Glu	Leu	Val	Arg	Met	Asp	Ser	Asn	Ile	Gln	Gly	Ile	Glu	Asn	Pro	
85					90					95					100	
ggc	ttt	gaa	gcc	tca	cca	cct	gcc	cag	ggg	ata	ccc	gag	gcc	aaa	gtc ·	450
Gly	Phe	Glu	Ala	Ser	Pro	Pro	Ala	Gln	Gly	Ile	Pro	Glu	Ala	Lys	Val	
				105					110					115	المريون الأ	
agg	cac	ссс	ctg	tcc	tat	gtg	gcc	cag	cgg	cag	cct	tct	gag	tct	ggg	498
Arg	His	Pro	Leu	Ser	Tyr	Val	Ala	Gln	Arg	·G1n	Pro	Ser	Gļu	Ser	Gly":	
i			120	• .				125					130			
CEE	cat	ctg	ctt	tcg	gag	ccc	agc	acc	ccc	cte	tct	cct	сса	ggc	ccc	546

Arg His Leu Leu Ser Glu	Pro Ser Thr Pro Leu	Ser Pro Pro Gly Pro	
135	140	145	
gga gac gtc ttc ttc cca	tcc ctg gac cct gtc	cct gac tct cca aac	594
Gly Asp Val Phe Phe Pro	Ser Leu Asp Pro Val	Pro Asp Ser Pro Asn	
150	155	160	
ttt gag gtc atc tagc cc	agctgggg gacagtgggc t	gttgtggct gggtctgggg	650
Phe Glu Val Ile			
165			
caggtgcatt tgagccaggg c	tggctctgt gagtggcctc	cttggcctcg gccctggttc	710
cctcctcct gctctgggct c	agatactgt gacatcccag	aagcccagcc cctcaacccc	770
tctggatgct acatggggat g	ctggacggc tcagcccctg	ttccaaggat tttggggtgc	830
tgagattctc ccctagagac c	tgaaattca ccagctacag	atgccaaatg acttacatct	890
taagaagtet cagaaegtee a	gcccttcag cagctctcgt	tctgagacat gagccttggg	950
atgtggcagc atcagtggga c	aagatggac actgggccac	cctcccaggc accagacaca	1010
gggcacggtg gagagacttc t	ccccgtgg ccgccttggc	tccccgttt tgcccgaggc	1070
tgctcttctg tcagacttcc t	ctttgtacc acagtggctc	tggggccagg cctgcctgcc	1130
cactggccat cgccaccttc c	ccagctgcc tcctaccagc	agtttctctg aagatctgtc	1190
aacaggttaa gtcaatctgg g	gettecact geetgeatte	cagtccccag agcttggtgg	1250
tcccgaaacg ggaagtacat a	attggggcat ggtggcctcc	gtgagcaaat ggtgtcttgg	1310
gcaatctgag gccaggacag a	atgttgcccc acccactgga	gatggtgctg agggaggtgg	1370
gtggggcctt ctgggaaggt	gagtggagag gggcacctgc	ccccgccct ccccatcccc	1430
tactcccact gctcagcgcg	ggccattgca agggtgccac	acaatgtett gtecaceetg	1490
ggacacttct gagtatgaag	cgggatgcta ttaaaaacta	a catggggaaa caggtgcaaa	1550
ccctgg : sry mm.	and the second second		1556

BNSDOCID: <WO 0112660A2 1 >

.

a prae version reno incernasi

⟨210⟩ 88 ′ · · · · · · · · · · · · · · · · ·	
<211> 1855	
<212> DNA	
<213> Homo sapiens	
<220> :-	
<221> CDS	
<222> (222) (953)	
<400> 88	
cagagatgga atttcaccgt gttgcctagg ctggtctgga gctcttgatc tcaagcgatc	60
ctccctgcct cggcctccca acgtgctggg attataggcg tgagccaccg ctcctggcca	120
gggtctgttc ctagttgcaa cagttcttgg aaacccactc gagagggcca cgcctccatt	180
caccaggeca egeateacaa gaggeaacae caggagecaa e atg age teg ggg	233
Met Ser Ser Gly	
1	
act gaa ctg ctg tgg ccc gga gca gcg ctg ctg gtg ctg ttg ggg gtg	281
Thr Glu Leu Leu Trp Pro Gly Ala Ala Leu Leu Val Leu Leu Gly Val	
5 10 15 20	
gca gcc agt ctg tgt gtg cgc tgc tca cgc cca ggt gca aag agg tca	329
Ala Ala Ser Leu Cys Val Arg Cys Ser Arg Pro Gly Ala Lys Arg Ser	
30 · · · · · · · · · · · · · · · · · · ·	
gag aaa atc tac cag cag aga agt ctg cgt gag gac caa cag agc ttt	377
Glu Lys Ile Tyr Gln Gln Arg Ser Leu Arg Glu Asp Gln Gln Ser Phe	
40 45	
acg ggg tcc cgg acc tac tcc ttg gtc ggg cag gca tgg cca gga ccc.	425
The Classes Arg The Tur Ser Leu Val Gly Gle Ala Tre Pro Gly Pro	

		55					60					65				
ctg	gcg	gac	atg	gca	ccc	aca	agg	aag	gac	aag	ctg	ttg	caa	ttc	tac	473
Leu	Ala	Asp	Met	Ala	Pro	Thr	Arg	Lys	Asp	Lys	Leu	Leu	Gln	Phe	Tyr	
	70					75					80	-	-		,	
ссс	agc	ctg	gag	gat	cca	gca	tct	tcc	agg	tac	cag	aac	ttc	agc	aaa	521
Pro	Ser	Leu	Glu	Asp	Pro	Ala	Ser	Ser	Arg	Tyr	Gln	Asn	Phe	Ser	Lys	
85					90					95					100	
gga	agc	aga	cac	ggg	tcg	gag	gaa	gcc	tac	ata	gac	ссс	att	gcc	atg.	569
Gly	Ser	Arg	His	Gly	Ser	Glu	Glu	Ala	Tyr	Ile	Asp	Pro	Ile	Ala	Met	
				105					110					115		
gag	tat	tac	aac	tgg	ggg	cgg	ttc	tcg	aag	ссс	cca	gaa	gat	gat	gat	617
Glu	Tyr	Tyr	Asn	Trp	Gly	Arg	Phe	Ser	Lys	Pro	Pro	Ģlu	Asp	Asp	Asp	
			120					125					130			
gcc	aat	tcc	tac	gag	aat	gtg	ctc	att	tgc	aag	cag	aaa	acc	aca	gag	665
Ala	Asn	Ser	Tyr	Glu	Asn	Val	Leu	Ile	Cys	Lys	Gln	Lys	Thr	Thr	Glu	
		135					140					145				
aca-	ggt	gcc	cag	cag	gag	ggc	ata	ggt	ggc	ctc	tgc	aga	ggg	gac	ctc	713
Thr	Gly	Ala	Gln	Gln	Glu	Gly	Ile	Gly	Gly	Leu	Cys	Arg	Gly	Asp	Leu	
	150					155					160				• •	
agc	ctg	tca	ctg	gcc	ctg	aag	act	ggc	ccc	act	tct	ggt	ctc	tgt	ссс	761
Ser	Leu	Ser	Leu	Ala	Leu	Lys	Thr	Gly	Pro	Thr	Ser	Gly	Leu	Cys	Pro	
165	-,. -		٠. ٠		170					175	•			. .	180	
tct.	gcc	tcc	ccg	gaa	gaa	gat	gag	gaa	tct	gag	gat	tat	cag	aac	tca	809
Ser	Ala	Ser	Pro	Glu	Glu	Asp	Glu	Glu	Ser	Glu	Asp	Tyr	Gln	Asn	Ser	
				185					190					195	n - 10	

Gln Arg Glu Ala Ser Pro Gly Pro Val Gly Ser Pro Asp Glu Glu Asp 215 220 225 ggg gaa ccg gat tac gtg aat ggg gag gtg gca gcc aca gaa gcc Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala 230 235 240 tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca 10 tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctggg 11 aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctctccc gacccaggct 11 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag gatttaggat aagctgtcac ccagtccca taacaaaacc actgtcaac actggtatct gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggttta aatgattgat aagctgtac agttaactta tagagggga gccatattta acattctga tttcagagta gagattctg tgttgtctcc tagaaagcat tacatgtagt ttattcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	905 950 1010 1070 1130 1190 1250
Cag aga gaa gca tcc cct ggc ccg gtg gga agc cca gac gag gag gac Gln Arg Glu Ala Ser Pro Gly Pro Val Gly Ser Pro Asp Glu Glu Asp 215 220 225 ggg gaa ccg gat tac gtg aat ggg gag gtg gca gcc aca gaa gcc Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala 230 235 240 tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca 10 tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctggg 11 aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctcccc gacccaggct ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag gatttaggat aagctgcac ccagtccca taacaaaacc actgtccaac actggtatct gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggttta aatgattgat aagcttgtac agttaactta tagaggggga gccatatta acattctgga tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttattcagc 14 ttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg	950 1010 1070 1130 1190
Gln Arg Glu Ala Ser Pro Gly Pro Val Gly Ser Pro Asp Glu Glu Asp 215 220 225 ggg gaa ccg gat tac gtg aat ggg gag gtg gca gcc aca gaa gcc Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala 230 235 240 tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca 10 tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctggg 11 aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctctccc gacccaggct 11 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag gatttaggat aagctgtcac ccagtccca taacaaaacc actgtcaac actggtatct gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggtttta aatgattgat aagctgtac agttaactta tagaggggga gccatattta acattctgga tttcagagta gagattctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	950 1010 1070 1130 1190
ggg gaa ccg gat tac gtg aat ggg gag gtg gca gcc aca gaa gcc Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala 230 235 240 tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca 10 tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt 10 gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctggg 11 aaaagacagt tactcacggg agctgcagge ccgtcaccaa gccctctccc gacccaggct 11 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag 12 gatttaggat aagctgtcac ccagtcccca taacaaaacc actgtcaac actggtatct 13 gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggttta 13 aatgattgat aagctgtac agttaactta tagaggggga gccatattta acattctgga 14 tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttattcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1010 1070 1130 1190
ggg gaa ccg gat tac gtg aat ggg gag gtg gca gcc aca gaa gcc Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala 230 235 240 tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca 10 tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt gctcctggaa ggagaaccag ccacctgag gaccacctgg ccatgcgtge acagcctggg 11 aaaagacagt tactcacggg agctgcagge ccgtcaccaa gccctctccc gacccaggct 11 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag gatttaggat aagctgtcac ccagtccca taacaaaacc actgtcaac actggtatct gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggttta 13 aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga 14 ttcagagta gagattctg tgttgtctcc tagaaagcat tacatgtagt ttattcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1010 1070 1130 1190
Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala Thr Glu Ala 230 235 240 tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca 100 tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt 100 gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctggg 111 aaaagacagt tactcacggg agctgcagge ccgtcaccaa gccctctccc gacccaggct 112 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag 112 gatttaggat aagctgtcac ccagtccca taacaaaacc actgtccaac actggtatct 113 gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggtttta 114 aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga 115 tttcagagta gagattctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc 116 117 118 119 119 119 119 119 119 119 119 119	1010 1070 1130 1190
tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca 10 tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt 10 gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtge acagcctggg 11 aaaagacagt tactcacggg agctgcagge ccgtcaccaa gccctctcce gacccaggct 11 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag 12 gatttaggat aagctgtcac ccagtccca taacaaaacc actgtcaac actggtatct 13 gtgttcttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggttta 13 aatgattgat aagctgtac agttaactta tagaggggga gccatattta acattctgga 14 tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttattcage 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1070 1130 1190
tagggcagac caagaagaaa ggagccaagg caaagaggga ccactgtgct catggaccca 10 tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt 10 gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtge acagcctggg 11 aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctctccc gacccaggct 11 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgag 12 gatttaggat aagctgtcac ccagtccca taacaaaacc actgtccaac actggtatct 13 gtgttcttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggttta 13 aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga 14 ttcagagta gagattctg tgttgtctcc tagaaagcat tacatgtagt ttattcagc 14 accttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1070 1130 1190
tcgctgcctt ccaaggacca tttcccagag ctactcaact tttaagcccc tgccatggtt 10 gctcctggaa ggagaaccag ccaccctgag gaccacctgg ccatgcgtgc acagcctggg 11 aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctctccc gacccaggct 11 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag 12 gatttaggat aagctgtcac ccagtccca taacaaaacc actgtccaac actggtatct 13 gtgttcttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggttta 13 aatgattgat aagctgtac agttaactta tagagggga gccatattta acattctgga 14 ttcagagta gagattctg tgttgtctcc tagaaagcat tacatgtagt ttattcagc 14 accttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1070 1130 1190
geteetgaa ggagaaccag ceaceetgag gaceacetgg ceatgegtge acageetggg 11 aaaagacagt tacteacggg agetgeagge cegteaccaa geeeteteee gaceeagget 11 ttgtggggea ggeacetggt aceaagggta acceggetee tggtatggae ggatgegeag 12 gatttaggat aagetgteae ceagteecea taacaaaace actgteeaae actggtatet 13 gtgttettt gtgetatgaa tttggattee taattgetat tgttggttge tggggttta 13 aatgattgat aagettgtae agttaactta tagaggggga geeatattta acattetgga 14 ttteagagta gagatteetg tgttgteee tagaaageat tacatgtagt ttatteage 14 ateettgttg ggtggggeee tggetetett eceetttggt gggaceteee etteetttgg 15	1130 1190
aaaagacagt tactcacggg agctgcaggc ccgtcaccaa gccctctccc gacccaggct 11 ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag 12 gatttaggat aagctgtcac ccagtcccca taacaaaacc actgtccaac actggtatct 13 gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggtttta 13 aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga 14 tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1190
ttgtggggca ggcacctggt accaagggta acccggctcc tggtatggac ggatgcgcag 12 gatttaggat aagctgtcac ccagtcccca taacaaaacc actgtccaac actggtatct 13 gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggtttta 13 aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga 14 tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	
gatttaggat aagetgtcac ccagtcccca taacaaaacc actgtccaac actggtatct gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggttta aatgattgat aagettgtac agttaactta tagaggggga gccatattta acattctgga tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttattcagc atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1250
gtgttctttt gtgctatgaa tttggattcc taattgctat tgttggttgc tggggtttta 13 aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga 14 tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	
aatgattgat aagcttgtac agttaactta tagaggggga gccatattta acattctgga 14 tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1310
tttcagagta gagatttctg tgttgtctcc tagaaagcat tacatgtagt ttatttcagc 14 atccttgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1370
atcettgttg ggtggggccc tggctctctt cccctttggt gggacctccc ctttctttgg 15	1430
	1490
getteagtte acteaggaag aaatgagget gtegeeatet ttatgtgett ceagtggaaa 16	1550
	1610
tgtcacttgc tacagacaat agtgcatgag agtctagaga agtagtgacc agaacagggc 16	1670
agagtaggte ecctecatgg coetgaatee teetetgete cagggetgge etetgeagag 17	1730
ctgattaaac agtgttgtga ctgtctcatg ggaagagctg gggcccagag ggaccttgag 17	1790
tcagaaatgt tgccagaaaa agtatctcct ccaaccaaaa catctcaata aaaccatttt 18	
agttg ··· 18	1850

<210	> 89	•							•					-		
<211	> 25	530		٠.												
<212	?> DN	NΑ	.•											٠.	•••	
<213	3> Ho	omo s	sapie	ns												
<220)>													*		
<221	> CI	os										.:			٠.	
<222	2> (2	28)	. (13	314)		٠.										
<400)> 89	9														
agce	gegge	eg g	ggcga	itgte	gt ga	attad	c at	tg go	g ag	gg ag	gt ct	c te	gt co	eg gi	gg	51
							Ме	et Al	la Ar	rg Se	er Le	eu Cy	rs Pi	ro G	ly	•
	-					•	,	1				5			•	
gcc	tgg	cta	agg	aaa	ссс	tat	tac	ctc	cag	gct	cgc	ttc	tca	tat	gtg	99
Ala	Trp	Leu	Arg	Lys	Pro	Tyr	Tyr	Leu	Gln	Ala	Arg	Phe	Ser	Tyr	Val	
	10					15					20				•	
cgg	atg	aaa	tat	ctt.	ttc	ttt	tcc	tgg	tta	gtg	gtt	ttt	gtt	gga	agc	, 147
Arg	Met	Lys	Tyr	Leu	Phe	Phe	Ser	Trp	Leu	Val	Val	Phe	Val	Gly	Ser	
25	•				30					35					40	
tgg	att [.]	ata	tat	gtg	cag	tat	tct	acc	tat	aca	gaa	tta	tgc	aga	gga	195
Trp	Ile	Ile	Tyr	Val	Gln	Tyr	Ser	Thr	Tyr	Thr	Glu	Leu	Cys	Arg	Gly	
-	.		€.	·45					50	•	•	•		. 5 5		
aag	gac	tgt	aag	aaa	ata	ata	tgt	gac	·aag	tac	aag	act	gga	gtt	att	243
Lys	Asp	Cys	Lys	Lys	Ile	Ile	Cys	Asp	Lys	Tyr	Lys	Thr	Gly	Val	Ile	
3		·· ·	. 60		٠.	٠.	. •	65	:		•	- • •	70	• .		
gat	ggg	cct	gca	tgt	· aac	agc	ctt	tgt	gtt	aca	gaa	act	ctt	tac	ttt	. 291

BNEULU UTSEEVES I

Asp	Gly	Pro	Ala	Cys	Asn	Ser	Leu	Cys	Val	Thr	Glu	Thr	Leu	Tyr	Phe	
		75					80					85				
gga	aaa	tgt	tta	tcc	acc	aag	ссс	aac	aat	cag	atg	tat	tta	ggg	att 🕚	339
Gly	Lys	Cys	Leu	Ser	Thr	Lys	Pro	Asn	Asn	Gln	Met	Tyr	Leu	Gly	Ile	
	90					95					100		• .	•	Exp.	
tgg	gat	aat	cta	cca	ggt	gtt	gtg	aaa	tgt	caa	atg	gaa	caa	gcg	ctt	387
Trp	Asp	Asn	Leu	Pro	Gly	Val	Val	Lys	Cys	Gln	Met	Glu	Gln	Ala	Leu	
105					110					115				•	120	
cat	ctt	gat	ttt	gga	act	gaa	ttg	gaa	cca	aga	aaa	gaa	ata	gtg	'cta	435
His	Leu	Asp	Phe	Gly	Thr	Glu	Leu	Glu	Pro	Arg	Lys	Glu	Ile	Val	Leu	:
	ţ			125			,		130					135		
ttt	gat	aag	cca	act	aga	gga	act	act	gta	caa	aaa	ttt	aaa	gaa	atg	483
Phe	Asp	Lys	Pro	Thr	Arg	Gly	Thr	Thr	Val	Gln	Lys	Phe	Lys	Glu	Met	
			140					145					150			
gtc	tat	agt	ctc	ttt	aag	gca	aaa	ttg	ggt	gac	caa	ġga	aac	ctc	tct	531
Val	Tyr	Ser	Leu	Phe	Lys	Ala	Lys	Leu	Gly	Asp	Gln	Gly	Asn	Leu	Ser	
:	٠.,	155					160					165				
gaa	ctg	gtt	aat	ctc	atc	ttg	acg	gtg	gct	gat	gga	gac	aaa	gat	ggc ·	579
Glu	Leu	Val	Asn	Leu	Ile	Leu	Thr	Val	Ala	Asp	Gly	Asp	Lys	Asp	Gly·	
	170		٠.			175		. ,	٠.		180		,			
cag	gtt	tcc	ttg	gga	gaa	gca	aag	tcg	gca	tgg	gca	ctt	ctt	caa	ctg	627
Gln	·Val	Ser	Leu	Gly	Glu	Ala	Lys	Ser	Ala	Trp	Ala	Leu	Leu	Gln	Leu	
185	, .	,			· 190					195	•	٠,	, ;	s . 6	200	
aat	gaa	ttt	ctt	ctc	atg	gtg	ata	ctt	caa	gat	aaa	gaa	cat	acc	ccc	675
Δen	Glu	Pho	Len	T en	Met	Val	Ile	Leu	Gln	Asp	Lvs	Glu	His	Thr	Pro -	

	•	•		205	Ÿ				210		-			215	-	
aaa	tta	atg	gga	ttc	tgt	ggt	gac	ctc	tat	gtg.	atg	gaa	agt	gtt	gaa	723
Lys	Leu	Met	Gly	Phe	Cys	Gly	Asp	Leu	Tyr	Val	Met	Glu	Ser	Val	Glu	
			220			•	•	225					230	• • .	•••	
tat	acc	tct	ctt	tat	gga	ata	agc	ctt	cct	tgg	gtc	att	gaa	ctt	ttt	771
Tyr	Thr	Ser	Leu	Tyr	Gly	Ile	Ser	Leu	Pro	Trp	Val	Ile	Glu	Leu	Phe	
	٠.	235					240					245				
att	cca	tct	ggg	ttc	aga	aga	agc	atg	gat	cag	ctg	ttc	aca	cca	tca.	819
Ile	Pro	Ser	Gly	Phe	Arg	Arg	Ser	Met	Asp	Gln	Leu	Phe	Thr	Pro	Ser	
	250		-			255					260				-	
tgg	cca	aga	aag	gcc	aaa	ata	gcc	ata	gga	ctt	cta	gaa	ttt	gtg	gaa	867
Trp	Pro	Arg	Lys	Ala	Lys	Ile	Ala	<u>Į</u> le	Gly	Leu	Leu	Glu	Phe	Val	Glu	
265		٠, ٠			270					275					280	
gat	gtt	ttc	cat	ggc	ссс	tac	gga	aat	ttc	ctc	atg	tgc	gat	act	agt	915
Asp	Val	Phe	His	Gly	Pro	Tyr	Gly	Asn	Phe	Leu	Met	Cys	Asp	Thr	Ser	
		ئ .		285					290	,				295		
gcc	aaa	aac	cta	gga	tat	aat	gat	aag	tat	gat	ttg	aaa	atg	gtg	gat	963
Ala	Lys	Asn	Leu	Gly	Tyr	Asn	Asp	Lys	Tyr	Asp	Leu	Lys	Met	Val	Asp	
		•	300					305					310			
atg	aga	aaa	att	gtg	cca	gag	aca	aac	ctg	aaa	gaa	ctt	att	aag	gat	1011
Met	Arg	Lys	Ile	Val	Pro	Glu	Thr	Asn	Leu	Lys	Glu	Leu	Ile	Lys	Asp	
٠		315	.;		÷.		320					325		٠,		
cgt	cac	tgt	gag	tct	gat	ttg	gac	tgt	gtc	tat	ggc	aca	gạt	tgt	aga	1059
Arg	His	Cys	Glu	Ser	· Asp	Leu	Asp	Cys	Val	Tyr	Gly	Thr	Asp	Cys	Arg	
,	-330)- ×	• • • •			335		٠.			340				* * * * * *	

ict a	agc	tgt	gat	cag	agt	aca	atg	aag	tgt	act	tca	gaa	gtg	ata	caa	1107
Thr S	Ser	Cys	Asp	Gln	Ser	Thr	Met	Lys	Cys	Thr	Ser	Glu	Val	Ile	Gln	
345	. :.				350		٠.			355	٠.	•	• •		360	
ca	aac	ttg	gca	aaa	gct	tgt	cag	tta	ctc	aaa	gac	tac	cta	ctg	cgt	1155
Pro A	Asn	Leu	Ala	Lys	Ala	Cys	Gln	Leu	Leu	Lys	Asp	Tyr	Leu	Leu	Arg	
			٠	365	• •				370			:		375		
ggt	gct	cca	agt	gaa	att	cgt	gaa	gaa	tta	gaa	aag	cag	ctt	tat	tct	1203
Gly .	Ala	Pro	Ser	Glu	Ile	Arg	Glu	Glu	Leu	Glu	Lys	Gln	Leu	Tyr	Ser	
٠.	.•	·. '	380					385	. •				390	4	.*.	
tgt	att	gct	ctc	aaa	gtc	aca	gca	aat	caa	atg	gaa	atg	gaa	cat	tct	1251
Cys	Ile	Ala	Leu	Lys	Val	Thr	Ala	Asn	Gln	Met	Glu	Met	Glu	His	Ser	
	٠٠.	395	•				400					405		÷		
ttg	ata	cta	aat	aac	cta	aaa	aca	tta	ttg	tgg	aag	aaa	att	tcc	tac	1299
Leu	Ile	Leu	Asn	Asn	Leu	Lys	Thr	Leu	Leu	Trp	Lys	Lys	Ile	Ser	Tyr	*
	410					415			•		420			•		
act	aat	gac	tct	tag	ttca	tt t	ggac	ataa	t ta	ccat	ttta	aga	aacc	tgc		1350
Thr:	Asn	Asp	Ser				÷								s *.	
425	••			•								٠.		٠,	1.7	
cact	ttt	aaa	gaac	aatt	tt g	agca	ttaa	a aa	aaaa	tggc	ttc	aaat	tcc	tgcc	agttac	1410
acaa	aaac	tcc	ttcc	cccc	ag g	cctg	agaa	g cc	atca	gtat	gtg	atta	ctg	aagt	aatggc	1470
aggt	tgta	gga	tcaa	cagg	tc c	ccaa	gatg	t ca	ttcc	tgcc	ctt	ttag	aag	ccct	gttaca	1530
tcto	ccga	agt	acat	tcat	tg t	gtaa	ctat	t tt	gact	gact	tta	aaaa	icca	atgo	tgtgaa	159
aago	cttc	att.	ccat	aaac	at c	aaca	gtga	g tg	attt	gtag	att	taco	tta	gcca	aaatac	165
caat	tgct	gga	agca	ttgt	gt t	tgca	ttga	a go	tgct	gtto	aac	aaga	aaa	ttta	itaaatt	171
				+-			++ ~		ittaa			taac	ract	gcas	200200	177

BNSDOCID <WO 0112660A2 I >

.2 ...

ttaaacttgc	ttctttataa	aacagatgtt	gggttaatag	catggtttac	tgtattaaag	1830
acttatacac	ccatttttaa	cctcattcag	acatcaagtt	atgtgtagct	tcacaatggt	1890
tcaagtggct	tacttcaaga	aatcttatac	ttgacagtac	accaatttta	ttgactaaaa	1950
atggatgaac	tttcctaaag	attcaaaggg	cccatcttag	tatcacgcag	ctgactgagc.	2010
ccttcaaaac	tgacatctta	aggcccaatc	aagatccaca	tatcctgatt	ttgaactatg	2070
tgaaagtggg	actgttaagt	gcaagactaa	aataaattat	agcagacttt	ttagtaataa	2130
ctttccattt	tcaaacagta	tatcctgtgg	gccaaagggc	tatttcttaa	agaggcatgt	2190
aaatgtattt	atttatctaa	tgttttttc	cccatgtaaa	cttgatatac	aaggtttagt	2250
atttgctcct	ctttcatatt	attttcacac	gtatactcag	atttggcatg	tacctttcaa	2310
catctccata	aaattaaaca	ccttttggag	aaaagatcca	ctattttctg	ctcaaaggtt	2370
tcgcctacct	aaagtggaac	atgttaaaaa	tctatgtgac	catcactgga	cagctttctc	2430
tcaaaacttt	ccttcaacgc	catggattag	caccagtttt	gtttacttta	aggtactttt	2490
cccattcatc	atctggttat	aataaatgga	tggaagaaat			2530

<210> 90

<211> 1911

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (232)...(1083)

<400> 90

aaaatatgag acgggaatc atcgtgtgat gtgtgtgctg cctttggctg agtgtgtgga 60
gtcctgctca ggtgttaggt acagtgtgtt tgatcgtggt ggcttgaggg gaacccgctg 120
ttcagagctg tgactgcggc tgcactcaga gaagctgccc ttggctgctc gtagcgccgg 180

Burney Commence

gcct	tctc	tc	ctcgt	catc	a tc	caga	gcag	сса	gtgt	ccg	ggag	gcag	aa g	ate	ccc	,	237
										٠.				Met	Pro		
	• •	• •								:	٠.			#%]		. 2	
cac	tcc	agc	ctg	cat	cca	tcc	atc	ccg	tgt	ccc	agg	ggt	cac	ggg	gcc		285
His	Ser	Ser	Leu	His	Pro	Ser	Ile	Pro	Cys	Pro	Arg	Gly	His	Gly	Ala	100	٠
		- 5					10					15					
cag	aag	gca	gcc	ttg	gtt	ctg	ctg	agt	gcc	tgc	ctg	gtg	acc	ctt	tgg		333
Gln	Lys	Ala	Ala	Leu	Val	Leu	Leu	Ser	Ala	Cys	Leu	Val	Thr	Leu	Trp		
	20			٠	•	25					30				114.		
ggg	cta	gga	gag	cca	cca	gag	cac	act	ctc	cgg	tac	ctg	gtg	ctc	cac		381
Gly	Leu	Gly	Glu	Pro	Pro	Glu	His	Thr	Leu	Arg	Tyr	Leu	Val	Leu	His		
35	- 4		•	•	40					45					- 50		
cta	gcc	tcc	ctg	cag	ctg	gga	ctg	ctg	tta	aac	ggg	gtc	tgc	agc	ctg		429
Leu	Ala	Ser	Leu	Gln	Leu	Gly	Leu	Leu	Leu	Asn	Gly	Val	Cys	Ser	Leu		
				55					60					65	, .		
gct	gag	gag	g ctg	cac	cac	atc	cac	tcc	agg	tac	cgg	ggc	agc	tac	tgg		477
Ala	Glu	Glı	ı Leu	His	His	Ile	His	Ser	Arg	Tyr	Arg	Gly	Ser	Tyr	·Trp·	. •. :	
			70					75					80				
agg	act	gt	g cgg	gcc	tgc	ctg	ggc	tgc	ccc	ctc	cgc	cgt	ggg	gcc	ctg		525
Arg	Thr	· Va	l Arg	Ala	Cys	Leu	Gly	Cys	Pro	Leu	Arg	Arg	Gly	Ala	Leu	• -	
		8	5				90)				. 95					
ttg	cte	g ct	g tcc	ato	tat	ttc	tac	: tac	tcc	cto	cca	aat	gcg	ggto	ggc		573
															l Gly		
	· 100																
CCE	်ငင	c tt	c act	t tgg	gatg	, ctt	gco	c ctc	cte	g -ggc	cto	tce	g ca	g gca	a ctg	:.	621

Pro	Pro	Phe	Thr	Trp	Met	Leu	Ala	Leu	Leu	Gly	Leu	Ser	Gln	Ala	Leu	
115	٠.	·, .			120					125			•		130	
aac	atc	ctc	ctg	ggc	ctc	aag	ggc	ctg	gcc	cca	gct	gag	atc	tct	gca	669
Asn	Ile	Leu	Leu	Gly	Leu	Lys	Gly	Leu	Ala	Pro	Ala	Glu	Ile	Ser	Ala	
		٠	•	135					140					145		
gtg	tgt	gaa	aaa	ggg	aat	ttc	аас	gtg	gcc	cat	ggg	ctg	gca	tgg	tca	717
Val	Cys	Glu	Lys	Gly	Asn	Phe	Asn	Val	Ala	His	Gly	Leu	Ala	Trp	Ser	
			150		٠.			155					160	•	•	
tat	tac	atc	gga	tat	ctg	cgg	ctg	atc	ctg	cca	gag	ctc	cag	gcc	cgg	765
Tyr	Tyr	Ile	Gly	Tyr	Leu	Arg	Leu	Ile	Leu	Pro	Glu	Leu	Gln	Ala	Arg	
	. •	165					170					175				
att	cga	act	tac	aat	cag	cat	tac	aac	aac	ctg	cta	cgg	ggt	gca	gtg	813
Ile	Arg	Thr ·	Tyr	Asn	Gln	His	Tyr	Asn	Asn	Leu	Leu	Arg	Gly	Ala	Val	
	180					185					190					
agc	cag	cgg	ctg	tat	att	ctc	ctc	cca	ttg	gac	tgt	ggg	gtg	cct	gat	861
Ser	Gln	Arg	Leu	Tyr	Ile	Leu	Leu	Pro	Leu	Asp	Cys	Gly	Val	Pro	Asp.	
195	•			. •	200		•			205				•	210	
aac	ctg	agt	atg	gct	gac	ccc	aac	att	cgc	ttc	ctg	gat	aaa	ctg	ccc	909
Asn	Leu	Ser	Met	Ala	Asp	Pro	Asn	Ile	Arg	Phe	Leu	Asp	Lys	Leu	Pro	
	: •			215	٠.,	,			220					225	*,	
cag	cag	acc	gct	gac	cgt	gct	ggc	atc	aag	gat	cgg	gtt	tac	agc.	aac	957
Gln	G1n	Thr	Ala	Asp	Arg	Ala	Gly	Ile	Lys	Asp	Arg	Val	Tyr	Ser	Asn	•
			230					235					240		9 s	
agc	atc	tat	gag	ctt	ctg	gag	aac	ggg	cag	cgg	aac	ctg	cag	atg	aca	1005
Ser	Ile	Tyr	Glu	Leu	Leu	Glu	Asn	Gly	Gln	Arg	Asn	Leu	Gln	Met	Thr	

245 250 250	
gca gct tct cgc tgt ccc agg agg ttc tcc ggc acc tgc ggc agg agg	1053
Ala Ala Ser Arg Cys Pro Arg Arg Phe Ser Gly Thr Cys Gly Arg Arg	
260 270 270	
aaa agg aag agg tta ctg tgg gca gct tgaagacctc agcggtgccc	1100
Lys Arg Lys Arg Leu Leu Trp Ala Ala	
275 280	
agtacctcca cgatgtccca agagcctgag ctcctcatca gtggaatgga aaagcccctc	1160
cctctccgca cggatttctc ttgagaccca gggtcaccag gccagagcct ccagtggtct	1220
ccaagcctct ggactggggg ctctcttcag tggctgaatg tccagcagag ctatttcctt	1280
ccacaggggg ccttgcaggg aagggtccag gacttgacat cttaagatgc gtcttgtccc	1340
cttgggccag tcatttcccc tctctgagcc tcggtgtctt caacctgtga aatgggatca	1400
taatcactgc cttacctccc tcacggttgt tgtgaggact gagtgtgtgg aagtttttca	1460
taaactttgg atgctagtgt acttaggggg tgtgccaggt gtctttcatg gggccttcca	1520
gacccactcc ccaccettet eccetteett tgcccgggga cgccgaactc tetcaatggt	1580
atcaacagge teettegeee tetggeteet ggteatgtte cattattggg gageeeeage	1640
agaagaatgg agaggaggag gaggctgagt ttggggtatt gaatcccccg gctcccaccc	1700
tgcagcatca aggttgctat ggactctcct gccgggcaac tcttgcgtaa tcatgactat	1760
ctctaggatt ctggcaccac ttccttccct ggccccttaa gcctagctgt gtatcggcac	1820
ccccacccca ctagagtact ccctctcact tgcggtttcc ttatactcca cccctttctc	1880
aacggtcctt ttttaaagca catctcagat t	1911
and the second of the second o	
<210> 91	
<211> 476 · · · · · · · · · · · · · · · · · · ·	
ZOLON DDT 1 COLOR DE	

RNSDOCID: <WO 0112660A2 | >

رهوال الله المحاجب المحاجب المحاجب المحاجب

<213	3> Hc	omo s	sapie	ens									•		
<400	> 91	l					٠.								
Met	Val	Gly	Ala	Met	Trp	Lys	Val	Ile	Val	Ser	Leu	Val	Leu	Leu	Met
1				5					10				,	. 15	
Pro	Gly	Pro	Cys	Asp	Gly	Leu	Phe	Arg	Ser	Leu	Tyr	Arg	Ser	Val	Ser
			20					25					30		
Met	Pro	Pro	Lys	Gly	Asp	Ser	Gly	G1n	Pro	Leu	Phe	Leu	Thr	Pro	Tyr
		35					40					45			
Ile	Glu	Ala	Gly	Lys	Ile	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	Val	Gly
	50					55					60				
Pro	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu	Thr	Val
65					70					75					80
Asn	Lys	Thr	Tyr	Asn	Ser	Asn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	Ala	Gln
				85					90					95	
Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly	Gly	Pro
		•	100					105					110	•	
Gly	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	His	Gly	Pro	Tyr	Val
		115					120			•		125			•
Val	Thr	Ser	Asn	Met	Thr	Leu	Arg	Asp	Arg	Asp	Phe	Pro	Trp	Thr	Thr
	130					135	•				140				
Thr	Leu	Ser	Met	Leu	Tyr	Ile	Asp	Asn	Pro	Val	Gly	Thr	Gly	Phe	Ser
145					150					155					160
Phe	Thr	Asp	Asp	Thr	His	Gly	Tyr	Ala	Val	Asn	Glu	Asp	Asp	Val	Ala
	. \	• •		165		•			170			٠.		175	٠.,
Δra	Acn	ىرم آ	Tvr	Spr	Ala	الم أ	ماآ	Gla	Phe	Phe	Gln	Tle	Phe	Pro	Glu

	180			185		·· 19	0
Tyr Lys Asn	Asn Ası	Phe Ty	r Val	Thr Gly	Glu Ser	Tyr Al	a Gly Lys
195			200		••.:	205	·) • • ·
Tyr Val Pro	Ala Ile	e Ala Hi	is Leu	Ile His	Ser Leu	Asn Pr	o Val Arg
					220		***
Glu Val Lys	Ile As	n Leu A:	sn Gly	Ile Ala	Ile Gly	Asp Gl	y Tyr Ser
225		230					240
Asp Pro Glu	Ser Il		ly Gly	Tyr Ala	Glu Phe	Leu Ty	r Gln Ile
2	24				, .		
Gly Leu Leu			ln Lvs	Lvs Tyr	Phe Glm	Lys Gl	n Cys His
diy hed bou	260		,			27	
Glu Cys Ile					n Tro Phe	e Glu Al	la Phe Glu
	5 ··						
Ile Leu Asp							
) Lys Le	•		nop bet			
290	1						ou Arg Cys
Phe Gln Ası	n Val Ir		ys ser			i i iie L	320
305	•	310	_			J C	
•			Leu Tyr			e Leu S	er Leu Pro
41. · · · ·		25	<u>*</u> .	33			335
							sn Asp Gly
							50 · · · : : : : : : : : : : : : : : : :
							er Val Lys
' 35	i5	•	. 360	o		· 365	
							le Tyr Asn
		300	375		38	8 0 : ***	1. 1. 15 15 15 15 15 15 15 15 15 15 15 15 15

Gly	Gln	Leu	Asp	Ile	Ile	Val	Ala	Ala	Ala	Leu	Thr	Glu	His	Ser	Leu
385		•••			390					395					400
Met	Gly	Met	Asp	Trp	Lys	Gly	Ser	Gln	Glu	Tyr	Lys	Lys	Ala	Glu	Lys
	•			405				,	410					415	
Lys	Val	Trp	Lys	Ile	Phe	Lys	Ser	Asp	Ser	Glu	Val	Ala	Gly	Tyr	Ile
			420					425					430		
Arg	Gln	Ala	Gly	Asp	Phe	His	Gln	Val	Ile	Ile	Arg	Gly	Gly	Gly	His
		435	-				440					445			
Ile	Leu	Pro	Tyr	Asp	Gln	Pro	Leu	Arg	Ala	Phe	Asp	Met	Ile	Asn	Arg
	450					455					460				
Phe	Ile	Tyr	Gly	Lys	Gly	Trp	Asp	Pro	Tyr	Val	Gly				
465			•		470			•		475					
	4														
<210)> -92	2 .													
<211	l> 22	26													
<212	2>. PF	RT .				,						٠			
<213	3> Hc	omo s	sapie	ens											
<400)> 92	2													
Met	Ser	Arg	Ala	Gln	Ile	Trp	Ala	Leu	Val	Ser	Gly	Val	Gly	Gly	Phe
1	:			. 5	•	.*			10					15	
Gly	Ala	Leu	Val	Ala	Ala	Thr	Thr	Ser	Asn	Glu	Trp	Lys	Val	Thr	Thr
			20					25					30		
Arg	Ala	Ser	Ser	Val	Ile	Thr	Ala	Thr	Trp	Val	Tyr	Gln	Gly	Leu	Trp
		35					40					45			
Met	Asn	Cys	Ala	Gly	Asn	Ala	Leu	Gly	Ser	Phe	His	Cys	Arg	Pro	His

ENSULUTION - WO 011286042 I

٠.٤	50		••	• •		55					60	~			٠
Phe Th	ur I	le	Phe	Lys	Val	Ala	Gly	Tyr	Ile	Gln	Ala	Cys	Arg	Gly	Leu
65	•				70	,	• •	•.		75	٠	• •	*	-1	80
Met II	le A	lla	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile	Phe	Ala	Leu
	-	• •		85	•		•		90	•				9 5	·
Phe G	ly M	let	Lys	Cys	Thr	Lys	Val	Gly	Gly	Ser	Asp	Lys	Ala	Lys	Ala
			100					105	•				110		\$ - 4
Lys I	le A	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser	Gly	Leu	Cys
]	115	•			٠	120		•		-	125	1	•	a Error
Ser Mo	et 1	Thr	Gly	Cys	Ser	Leu	Tyr	Ala	Asn	Lys	Ile	Thr	Thr	Glu	Phe
1:	30					135				•	140			•	
Phe A	sp I	Pro	Leu	Phe	Val	Glu	Gln	Lys	Tyr	Glu	Leu	Gly	Ala	Ala	Leu
145					150	,				155					160
Phe I	le (Gly	Trp	Ala	Gly	Ala	Ser	Leu	Cys	Ile	Ile	Gly	Gly	Val [*]	Ile
				165					170					175	
Phe C	ys 1	Phe	Ser	Ile	Ser	Asp	Asn	Asn	Lys	Thr	Pro	Arg	Tyr	Thr	Tyr
			180					185					190		
Asn G	ly .	Ala	Thr	Ser	Val	Met	Ser	Ser	Arg	Thr	Lys	Tyr	His	Gly	Gly
		195					200		·			205		•	
Glu A	sp	Phe	Lys	Thr	Thr	Asn	Pro	Ser	Lys	Gln	Phe	Asp	Lys	Asn	Ala:
2	10	1		•		215	•		•	••	220	. •	, .	;	PS + 1 +
Tyr V	al												•		
225					٠.		•	. .	• *	• •				. 1.	· 1

<21	l> 30	05					-								
<212	2>_PI	RT .	,				i					i			
<213	3> Ho) O O O	sapie	ens											
<400)> 93	3													
Met	Gly	Ile	Gln	Thr	Ser	Pro	Val	Leu	Leu	Ala	Ser	Leu	Gly	Val	Gly
1				5					10					. 15	
Leu	Val	Thr	Leu	Leu	Gly	Leu	Ala	Val	Gly	Ser	Tyr	Leu	Val	Arg	Arg
			20					25					30		
Ser	Arg	Arg	Pro	Gln	Val	Thr	Leu	Leu	Asp	Pro	Asn	Glu	Lys	Tyr	Leu
		35					40					45			
Leu	Arg	Leu	Leu	Asp	Lys	Thr	Thr	Val	Ser	His	Asn	Thr	Lys	Arg	Phe
	50					55					60				
Arg	Phe	Ala	Leu	Pro	Thr	Ala	His	His	Thr	Leu	Gly	Leu	Pro	Val	Gly
65					70					75					80
Lys	His	Ile	Tyr	Leu	Ser	Thr	Arg	Ile	Asp	Gly	Ser	Leu	Val	Ile	Arg
1	-•	•.		85					90					. 95	
Pro	Tyr	Thr	Pro	Val	Thr	Ser	Asp	Glu	Asp	Gln	Gly	Tyr	Val	Asp	Leu
			100					105					110		
Val	Ile	Lys	Val	Tyr	Leu	Lys	Gly	Val	His	Pro	Lys	Phe	Pro	Glu	Gly
		115					120					125			
Gly	Lys	Met	Ser	Gln	Tyr	Leu	Asp	Ser	Leu	Lys	Val	Gly	Asp	Val	Val
	130					135					140				٠,٠
Glu	Phe	Arg	Gly	Pro	Ser	Gly	Leu	Leu	Thr	Tyr	Thr	Gly	Lys	Gly	His
145					150					155	:				160
Phe	Asn	Ile	Gln	Pro	Asn	Lvs	l.vs	Ser	Pro	Pro	Glu	Pro	Arø	Val.	Ala

BNCUUCIU - MU UTTSEEUTS I

. .

		165					170					175	٠ :	
Lys Lys Leu	Gly	Met	Ile	Ala	Gly	Gly	Thr	Gly	Ile	Thr	Pro	Met	Leu	
	180					185					190	•	N.S.	,
Gln Leu Ile	Arg	Ala	Ile	Leu	Lys	Val	Pro	Glu	Asp	Pro	Thr	Gln	Cys	
· · · · · · · · · · · 195			. •		200		,			205		.: •	,	
Phe Leu Leu	Phe	Ala	Asn	Gln	Thr	Glu	Lys	Asp	Ile	Ile	Leu	Arg	Glu	
210				215					220				,	
Asp Leu Glu	Glu	Leu	Gln	Ala	Arg	Tyr	Pro	Asn	Arg	Phe	Lys	Leu	Trp	
225		4	230	,				235					240	
Phe Thr Leu	Asp	His	Pro	Pro	Lys	Asp	Trp	Ala	Tyr	Ser	Lys	Gly	Phe	
		245					250				٠.	255	1. 1	
Val Thr Ala	Asp	Met	Ile	Arg	Glu	His	Leu	Pro	Ala	Pro	Gly	Asp	Asp	
	260	١				265		•			270	· `.	á	
Val Leu Val	Leu	Leu	Cys	Gly	Pro	Pro	Pro	Met	Val	G1n	Leu	Ala	Cys	
275					280					285	; ,			
His Pro Asn	Leu	ı Asp	Lys	Leu	Gly	Tyr	Ser	Gln	Lys	Met	. Arg	, Phe	Thr	
290			,	295					300			•		٠.
Tyr														
305					4	,		,	•				1 -	. 1
<210> 94					÷			,				. :		
<211> 227												١		
<212> PRT							•			•	÷	٠	٠. ٠٠	. :
<213> Homo	sap	iens											÷.	:
<400> 94 ·	<u>.</u>	:	'	7 :	,					.: •) ·:	· . :•	•	·

Me	t Gl	y Tr	p Thi	r Mei	t Arg	, Lei	u Va	1 Thi	r Ala	a Ala	Lei	ı Lei	ı Le	u Gl	y Leu
	l,	•		8	5		. •		10)			,	1	5 .
Me	t Me	t Va	l Val	l Thr	Gly	Asp	Glu	ı Asp	Glu	ı Asr	Ser	Pro	Су	s Ala	His
			20)				25	j				36) .	. •
Glu	ı Ala	a Lei	ı Lev	ı Asp	Glu	Asp	Thr	- Leu	Phe	e Cys	Glr	Gly	Lei	ı Glu	ı Val
		3	5				40)				45	j		
Phe	Туг	Pro	Glu	ı Leu	Gly	Asn	Ile	Gly	Cys	Lys	Val	Val	Pro	Asp	Cys
	50)				55	•				60	,			
Asn	Asn	туг	Arg	Gln	Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	Ile	· Val	Lys
65					70					75					80
Phe	Pro	Gly	Ala	Val	Asp	Gly	Ala	Thr	Tyr	Ile	Leu	Val	Met	Val	Asp
	٠.,			85					90					95	•
Pro	Λsp	Ala	Pro	Ser	Arg	Ala	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His
			100					105					110		
Trp	Leu	Val	Thr	Asp	Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile
	:	115					120					125		٠.	
Gln	Gly	Gln	Glu	Leu	Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His
	130					135					140				
Ser	Gly	Phe	His	Arg	Tyr	Gln	Phe	Phe	Val	Tyr	Leu	Gin	Glu	Gly	Lys
145					150					155				;	160
											Arg	Gly	Ser	Trp	Lys -
								•							*
								His							
Thr	Gln	Phe	Met	Thr	Gln .	Asn	Tyr	Gln	Λsp	Ser	Pro	Thr	Leu	Gln	Ala

195 200 205 Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile 210 215 220 Ala Ala Cys **225** <210> 95 <211> 441 <212> PRT <213> Homo sapiens <400> 95 Mct Ala Ile His Lys Ala Leu Val Met Cys Leu Gly Leu Pro Leu Phe 15 1 10 5 Leu Phe Pro Gly Ala Trp Ala Gln Gly His Val Pro Pro Gly Cys Ser 30 20 25 Gln Gly Leu Asn Pro Leu Tyr Tyr Asn Leu Cys Asp Arg Ser Gly Ala 40 45 Trp Gly Ile Val Leu Glu Ala Val Ala Gly Ala Gly Ile Val Thr Thr 60 50 55 Phc Val Leu Thr Ile Ile Leu Val Ala Ser Leu Pro Phe Val Gln Asp 65 75 75 80 Thr Lys Lys Arg Ser Leu Leu Gly Thr Gln Val Phe Phe Leu Leu Gly 85 90 95 95 Thr Leu Gly Leu Phe Cys Leu Val Phe Ala Cys Val Val Lys Pro Asp ... 100 means of 105 means to 110 means of

Phe	Ser	Thi	Cys	Ala	Ser	Arg	Arg	Phe	Leu	Phe	Gly	Val	Leu	Phe	Ala
	• •	118	5		· ·		120)				125	,		
Ile	Cys	Phe	Ser	Cys	Leu	Ala	Ala	His	Val	Phe	Ala	Leu	Asn	Phe	Leu
	130					135	ı				140		,		
Ala	Arg	Lys	Asn	His	Gly	Pro	Arg	Gly	Trp	Val	Ile	Phe	Thr	Val	Ala
145	•				150					155					160
Leu	Leu	Leu	Thr	Leu	Val	Glu	Val	.Ile	Ile	Asn	Thr	Glu	Trp	Leu	Ile
				165					170					175	
Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	Glu	Gly	Gly	Pro	Gln	Gly	Asn	Ser
			180					185					190		
Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	۸la	Ile	Ala	Asn	Met	Asp
		195					200					205		_	
Phe	Val	Met	۸la	Leu	Ile	Tyr	Val	Met	Leu	Leu	Leu	Leu	Gly	Ala	Phe
	210					215					220				
Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	Tyr	Lys	Arg	Trp	Arg	Lys
225					230			•		235	٠			,	240
His	Gly	Val	Phe	Val	Leu	Leu	Thr	Thr	Ala	Thr	Ser	Val	Ala	Ile	Trp
				245					250					255	
Val	Val	Trp	Ile	Val	Met	Tyr	Thr	Tyr	Gly	Asn	Lys	Gln	His	Asn	Ser
			260					265						:	,
Pro	Thr	Trp	Asp	Asp	Pro	Thr	Leu	Ala	lle	Ala	Leu	Ala	Ala	۸sn	Ala
		275					280					285			٠.
															Thr
	·290	. : :	٠.٠.	-		295	. • •				300	4		•	;
Lvs	Ser	Ser	Pro	Glu	Gln	Ser	Tvr	Gln	Glv	Asn	Met	Tur	Pro	Thr	Ara

305				•	310					315			•		320	
Gly	Val	Gly	Tyr	Glu	Thr	Ile	Leu	Lys	Glu	Gln	Lys	Gly	Gln	Ser	Met	
	:	;		325					330		,		. • .	335	.*.	
Phe	Val	Glu	Asn	Lys	Ala	Phe	Ser	Met	Asp	Glu	Pro	Val	Ala	Ala	Lys	
	:.		340		: •			345		•			350		٠.	
Arg	Pro	Val	Ser	Pro	Tyr	Ser	Gly	Tyr	Asn	G1 y	Gln	Leu	Leu	Thr	Ser	
		355					360					365				
Val	Tyr	Gln	Pro	Thr	Glu	Met	Ala	Leu	Met	His	Lys	Val	Pro	Ser	Glu	
	370		• •			375					380					
Gly	Ala	Tyr	Asp	Ile	Ile	Leu	Pro	Arg	Ala	Thr	Ala	Asn	Ser	Gln	Val	
385	٠.	-		·	390					395					400	
Met	Gly	Ser	Ala	Asn	Ser	Thr	Leu	Arg	Ala	Glu	Asp	Met	Tyr	Ser	Ala	
	٠.			405					410					415		
Gln	Ser	His	Gln	Ala	Ala	Thr	Pro	Pro	Lys	Asp	Gly	Lys	Asn	Ser	Gln	
	. ;	٠	420					425					430		. • .	
Val	Phe	Arg	Asn	Pro	Tyr	Val	Trp	Λsp			-					
	1+1	435				•	440							•	• •	
							,									
<21	0> 9	6			٠			* *		. ,	•			, .	`,	1 -
<21	1> 2	65	٠.													
<21	2> · P	RT .					•				٠		. ,		. 1	
<21	3> H	lomo	sapi	ens										٠.,		
<40	0> 9	6		••			, •	•		٠	· ;	. :	•	•	11.5	•
Met	Ala	Ala	Ala	Val	Pro	Lys	Arg	Met	Arg	Gly	Pro	Ala	Gln	Ala	Lys	
,	23.	;		· •		, ,	,	,	10	, , ;	•	. :		15		

ISDOCID <WO 0112660A2 L >

Leu	Leu	Pro	Gly	Ser	Ala	Ile	Gln	Ala	Leu	Val	Gly	Leu	Ala	Arg	Pro	
	•		20				•	25					30			
Leu	Val	Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val	
	٠.	35					40					45				
Ser	Arg	Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser	
	50					55					60					
Thr	Pro	Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser	
65					70					75					80	
Ile	Ser	Gln	Ile	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys	
				85					90					95		
Ser	Gly	Gly	Λla	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser	
			100					105					110			
Gln	Glu	Glu	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	Ile	Glu	Glu	Glu	Asp	
		115					120					125				
Leu	Leu	Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Λla	Lys	Asp	Thr	Leu	Asp	
	130					135					140		:		. :	
Asn	Gly	Asp	Tyr	Gly	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg	
145					150					155					160	
Asp	Asp	Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	Asn	Arg	Gly	Tyr	Met	
				165					170				•	175	•	
Glu	Ile	Glu	Gln	Ser	Val	Lys	Ser	Phe	Lys	Met	Pro	Ser	Ser	Asn	Ile	
	. ; •	i	180					185					190	, ,		,
Glu	Glu	Glu	Asp	Ser	His	Phe	Phe	Phe	llis	Leu	Ile	lle	Phe	Ala	Phe	
	ŧ. ·	195	. • •				200			,		205		. :	٠.	
Cys	Пе	Ala	Val	Val	Tyr	Ile	Thr	Tyr	His	Asn	Lys	Arg	Lys	lle	Phe	

210		215		220		December 1
Leu Leu Val Gln	Ser Arg	Lys Trp	Arg Asp	Gly Leu	Cys Ser	Lys Thr
225	230	• •	•	235 ·		240
Val Glu Tyr His	Arg Leu	Asp Gln	Asn Val	Asn Glu	Ala Met	Pro Ser
	245		250	• • •	et en mit	255
Leu Lys Ile Thr	Asn Asp					• •
260			265			
-						
<210> 97	1	•	•	٠	• • • • •	
<211> 208						
<212> PRT					•	•
<213> Homo sapi	ens	·				
<400> 97						;
Met Leu Gly Leu	Leu Val	Ala Leu				
1	5		10)		15
Ala Leu Leu Asp						
20			25	•	30)
Arg Ala Arg Leu	Leu Gln	Pro Arg				
35		40		•	45	• • • • • • • • • • • • • • • • • • • •
Arg Phe Pro Gly						
50	. ' '	55	•	60)	· · · · · · · · · · · · · · · · · · ·
Met Asn Asn Ala						
65						
His Leu Thr Arg						
Section of the	85		. ı 9() : - : - : - : - : - : - : - : - : - :	$(-1, \cdots, n)$	95

Company of the property

His	Thr	Val	Leu	Ala	Ala	Ser	Cys	Ala	Arg	His	Arg	Arg	Ser	Lei	ı Arg	
	٠.		100					105		٠.			110)		
Leu	Leu	Glu	Pro	Phe	Glu	Val	Arg	Thr	Arg	Leu	Leu	Gly	Trp	Asp	Asp	٠
		115					120)				125				
Arg	Ala	Phe	Tyr	Leu	Glu	Ala	Arg	Phe	Val	Ser	Leu	Arg	Λsp	Gly	Phe	
	130					135					140					
Val	Cys	Ala	Leu	Leu	Arg	Phe	Arg	Gln	His	Leu	Leu	Gly	Thr	Ser	Pro	
145					150					155					160	
Glu	Λrg	Val	Val	Gln	His	Leu	Cys	Gln	Arg	Arg	Val	Glu	Pro	Pro	Glu	
				165					170					175		
Leu	Pro	Ala	Asp	Leu	Gln	His	Trp	lle	Ser	Tyr	Asn	Glu	Ala	Ser	Ser	
			180					185					190			
Gln	Leu	Leu	Arg	Met	Glu	Ser	Gly	Leu	Ser	Asp	Val	Thr		Asp	Gln	
		195					200			•		205	•	•		
<210	>98	.														
<211	•	•			•	•					•	, .		•. •		
<212																
<213	> Ho	mo s	apie	ns												
															•	
								Ser								•
															().	•
								Leu								
ug /	JIG .	ren (υIU	ırp	rne .	ser	Ala	val	٧ai	Asn	He	Glu	lyr	٧al	Asp	

Į₃ ↔	[:] 35		٠,	٠.	i	40					45			·	٠.
Pro Gln	Thr	Asn	Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe	
50	•	'	٠.		55				'	60		•			
Gly Asp	Ser	Ser	Pro	Lys	G1u	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro	
65			. •	70		. *			75				•	80	•
Trp Ala	Pro	Gly	Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe	
			85					90	•			٠	95	•. **	
Phe Val	Pro	Glu	Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu	
		100	,				105			ur i		110	:		
Val Ala	Arg	Gly	Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala	
	115	•				120			•		125				
Arg Arg	Asn	Λla	Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly	
130					135					140			•		•
Asn Ile	Thr	Leu	Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val	
145				150					155					160	
Ile Met	Ile	Ser	Tyr	Pro	Lys	Gly	Arg	Glu	Ile	Leu	Glu	Leu	Val	Gln	
			165					170					175	•	
Lys Gly	Ile	Pro	Val	Thr	Met	Thr	Ile	Gly	Val	Gly	Thr	Arg	His	Val	
		180					185			•	•	190	•	•	•
Gln Glu	Phe	lle	Ser	Gly	Gln	Ser	Val	Val	Phe	Val	Λla	lle	Ala	Phe	•
	195	¢				·200			•		205		-	· T	•
Ile Thr	Met	Met	lle	Ile	Ser	Leu	Ala	Trp	Leu	Ile	Phe	Tyr	Tyr	Ile	
210	· ·			,	215				• •,	220	:		. **	'.	•
Gln Arg	Phe	Leu	Tyr	Thr	Gly	Ser	Gln	Ile	Gly	Ser	Gln	Ser	His	Arg	
225		ι		· 230			٠.		235	٠.	, ,	• •••	ورقها	240	٠.,

Lys	Glu	Thr	Lys	Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Val	Lys
	· •, ·			245	. •	٠.			250					255	
His	Gly	Gļu	Lys	Gly	Ile	Лsp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Cys
		٠.	260				-	265					270		: •
Ιle	Glu	Asn	Phe	Lys	Val	Lys	Asp	Ile	Ile	Arg	Ile	Leu	Pro	Cys	Lys
	٠.	275					280					285			
His	Ile	Phe	His	Arg	Ile	Cys	Ile	Asp	Pro	Trp	Leu	Leu	Asp	llis	Arg
	290				-	295					300				
Thr	Cys	Pro	Met	Cys	Lys	Leu	Asp	Val	Ile	Lys	Ala	Leu	Gly	Tyr	Trp
305					310					315					320
Gly	Glu	Pro	Gly _,	Asp	Val	Gln	Glu	Met	Pro	Ala	Pro	Glu	Ser	Pro	Pro .
				325					330					335	
Gly	Arg	Asp	Pro	Ala	Ala	Asn	Leu	Ser	Leu	Λla	Leu	Pro	Asp	Asp	Asp
			340					345					350		
Gly	Ser	Asp	Glu	Ser	Ser	Pro	Pro	Ser	Ala	Ser	Pro	Λla	Glu	Ser	Glu
		355	. •		٠.		360					365			
Pro	Gln	Cys	Asp	Pro	Ser	Phe	Lys	Gly	Λsp	Ala	Gly	Glu	Asn	Thr	Λla
	370					37 5					380				
Leu	Leu	Glu	Ala	G1 y	Arg	Ser	Asp	Ser	Arg	His	Gly	Gly	Pro	Ile	Ser
385					390				•	395			•:		400
	<i>t</i> :										,				
<210)> 99	٠,٠	• • •				. .		٠.						
<211	> 19	2					• .								
<212	?;.PF	RT ₅ .	: •	,					ī	٠.	•				·. i
<213	3> Hc	omo s	apie	ns									:		

RNSDOCID- «WO 0112660A2 I >

s - - - -

<400)>. 99	9 ′	. :	•	•	•••			•	•		٠	* . •			•
Met	Phe	Cys	Pro	Leu	Lys	Leu	He	Leu	Leu	Pro	Val	Leu	Leu	Asp	Tyr	
1	., .,	•		´ 5	•		·		10			٠		15		
Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu ·	Thr	Val	
		٠٠,	20	. •	٠,	•	• •	25		٠		•	30		•	-
His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr	Glu	
		35					40					45				
Λsp	Lys	Cys	He	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	G1 y	Glu	His	
	· 50	٠.	. •			· 55					60		•			
Ala	Lys	Λsp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val	Pro	
65					70		٠			75			•		80	
Ile	Gly	Arg	Phe	Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Asn	Leu	Cys	
				85					90					95		
Asn	Asp	Gly	Ser	Leu	Leu	Leu	G1n	Asp	Val	Gln	Glu	Ala	Asp	Gln	Gly	
	• • •		100				•	105	٠				110	•	٠.	
Thr	Tyr	lle	Cys	Glu	Ile	Arg	Leu	Lys	Gly	Glu	Ser	Gln	Val	Phe	Lys	
		115			•		120					125		. •	+	
Lys	Ala	Val	Val	Leu	His	Val	Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu	Met	
	130			•		135					140	٠.				•
Val	His	Val	Gly	Gly	Leu	Ile	Gln	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr	
145				٠	150					155					160	
Glu	Val	Lys	His	Val	Thr	Lys	Val	Glu	Trp	lle	Phe	Ser	Gly	Arg	Arg	
				165					170					175	٠,	•
Ala	Lys	Val	Thr	Arg	Arg	Lys	His	llis	Cys	Val	Arg	Glu	Gly	Ser	Gly	
			180					185					190	١		

<210> 100			• .	٠		· Para
<211> 260			•		•	
<212> PRT	f	. •				ta sati
<213> Homo	sapiens					
<400> 100					, •	
Met Ala Gly	Ser Pro	Leu Leu	Trp Gly	Pro Arg	Ala Gly	Gly Val Gly
1	. 5			10	•	15
Leu Leu Val	Leu Leu	Leu Leu	Gly Leu	Phe Arg	Pro Pro	Pro Ala Leu
	20		25			30
Cys Ala Arg	Pro Val	Lys Glu	Pro Arg	Gly Leu	Ser Ala	Ala Ser Pro
35			40		45	
Pro Leu Ala	Glu Thr	Gly Ala	Pro Arg	Arg Phe	Arg Arg	Ser Val Pro
50		55			60	
Arg Gly Glu	Ala Ala	Gly Ala	Val Gln	Glu Leu	Ala Arg	Ala Leu Ala
65		70		75		80
His Leu Leu	Glu Ala	Glu Arg	Gln Glu	Arg Ala	Arg Ala	Glu Ala Gln
	85			90		95 🦿
Glu Ala Glu	Asp Gln	Gln Ala	Arg Val	Leu Ala	Gln Leu	Leu Arg Val
	100		105			110
Trp Gly Ala	Pro Arg	Asn Ser	Asp Pro	Ala Leu	Gly Leu	Asp Asp Asp
115		• • • • •	120		125	and the second
Pro Asp Ala	Pro Ala	Ala Gln	Leu Ala	Arg Ala	Leu Leu	Arg Ala Arg.
, 130	4 · · 4	135			140	• • •
Leu Asp.Pro	Ala.Ala	Leu Ala	Ala. Gln	Leu Val	Pro Ala	Pro Val,Pro

145	150	155		160
Ala Ala Ala Leu	Arg Pro Arg Pro	Pro Val Tyr As	sp Asp Gly Pro	Ala
	165	170	175	•••
Gly Pro Asp Ala	Głu Glu Ala Gly	Asp Glu Thr P	ro Asp Val Asp	Pro
180	1	185	190	• • •
Glu Leu Leu Arg	Tyr Leu Leu Gly	Arg Ile Leu Al	la Gly Ser Ala	·Asp
195	200		205	
Ser Glu Gly Val	Ala Ala Pro Arg	Arg Leu Arg A	rg Ala Ala Asp	His
210	215	. 2:	20	
Asp Val Gly Ser	Glu Leu Pro Pro	Glu Gly Val Lo	eu Gly Ala Leu	Leu
225	230	235		240
Arg Val Lys Arg	Leu Glu Thr Pro	Ala Pro Gln Va	al Pro Ala Arg	Arg
	245	250	255	•
Leu Leu Pro Pro	>		•	
260		,	٠	·
				£.
<210> 101 : .		· · · .		*
<211> 1428			4.	•
<212> DNA	a e e			i ti
<213> Homo sapi	iens '	-	1	
<400> 101		• •		er j
atggttggtg ccat	tgtggaa ggtgattgt	t tegetggtee t	gttgatgcc·tggc	ccctgt 60
	geteect atacagaag			
	tcacccc ttacattga			
	ctitece aggaetgaa			

BNSDOCID: <WO 0112680A2 1 >

Section 1985 - Milliand

aataagactt acaacagcaa cetettette tggttettee cageteagat acageeagaa	300
gatgccccag tagttctctg gctacagggt gggccgggag gttcatccat gtttggactc	360
tttgtggaac atgggcctta tgttgtcaca agtaacatga ccttgcgtga cagagacttc	420
ccctggacca caacgctctc.catgctttac attgacaatc cagtgggcac aggcttcagt	480
tttactgatg atacccacgg atatgcagtc aatgaggacg atgtagcacg ggatttatac	540
agtgcactaa ttcagttttt ccagatattt cctgaatata aaaataatga cttttatgtc	600
actggggagt citatgcagg gaaatatgtg ccagccattg cacacctcat ccattccctc	660
aaccctgtga gagaggtgaa gatcaacctg aacggaattg ctattggaga tggatattct	720
gatecegaat caattatagg gggetatgea gaatteetgt accaaaitgg etigttggat	780
gagaagcaaa aaaagtactt ccagaagcag tgccatgaat gcatagaaca catcaggaag	840
cagaactggt ttgaggcctt tgaaatactg gataaactac tagatggcga citaacaagt	900
gateettett aetteeagaa tgttacagga tgtagtaatt actataaett tttgeggtge	960
acggaaccig aggaicagci tiaciatgig aaaittiigi cacicccaga ggigagacaa	1020
gccalccacg tggggaatca gaciittaat gatggaacta tagitgaaaa glaciigcga	1080
gaagatacag tacagicagt taagccaigg tiaacigaaa icaigaataa tiataaggii	1140
ctgatctaca atggccaact ggacatcatc gtggcagctg ccctgacaga gcactccitg	1200
atgggcatgg actggaaagg atcccaggaa tacaagaagg cagaaaaaaa agtitggaag	1260
atcittaaat cigacagiga agiggciggi tacaiccggc aagcgggiga ciiccaicag	1320
gtaattattc gaggtggagg acatatttta ccctatgacc agcctctgag agcttttgac	1380
atgattaatc gattcattta tggaaaagga tgggatcctt atgttgga	1428
(210) ₂₁ 102;,,,,,,,	
(2]1> 678	
(212>, DNA ,	
(213). Homo saniens	

cgcagatctg	ggctctggtg	tctggtgtcg	gagggtttgg	agctctcgtt	60
cgtccaatga	gtggaaagtg	accacgcgag	cctcctcggt	gataacagcc	120
accagggict	gtggatgaac	tgcgcaggta	acgcgttggg	ttctttccat	180
attttactat	cttcaaagta	gcaggttata	tacaggcatg	tagaggactt '	240
ctgtcagcct	gggcttcttt	ggttccatat	ttgcgctctt	tggaatgaag	300
teggaggete	cgataaagcc	aaagctaaaa	ttgcttgttt	ggctgggatt	360
tgtcagggct	gtgctcaatg	actggatgtt	ccctatatgc	aaacaaaatc	420
tctttgatcc	tctctttgtt	gagcaaaagt	atgaattagg	agccgctctg	480
gggcaggagc	ctcactgtgc	ataattggtg	gtgtcatatt	ttgcttttca	540
асаасаааас	acccagatac	acatacaacg	gggccacatc	tgtcatgtct	600
agtatcatgg	tggagaagat	tttaaaacaa	caaaccette	aaaacagttt	660
cttatgtc					678
÷ .					
				er e e e	
				٠.	
		. •		¥	
o sapiens	,			V	
sapiens	· .				
o sapiens c agacgagece	· .	geeteectgg	gggtggggct	ggtcactctg	
o sapiens c agacgagece	cgteetgetg	gcetcectgg cggaggtece	gggtggggct	ggtcactctc	60
o sapiens c agacgageco g ctgtgggeto a atgaaaagta	cgtectgetg ctacttggtt	gcctccctgg cggaggtccc	gggtggggct gccggcctca agacgactgt	ggtcactctc	60 120 180
c agacgagece g ctgtgggete a atgaaaagta	cgtectgetg ctacttggtt	gcctccctgg cggaggtccc ctgctagaca gcccaccaca	gggtggggct gccggcctca agacgactgt	ggtcactctg ggtcactctc gagccacaac gcctgtgggc	60 120 180
	cgtccaatga accagggtct attttactat ctgtcagcct tcggaggctc tgtcagggct tctttgatcc gggcaggagc acaacaaaac	cgtccaatga gtggaaagtg accagggtct gtggatgaac attttactat cttcaaagta ctgtcagcct gggcttcttt tcggaggctc cgataaagcc tgtcagggt gtgctcaatg tctttgatcc tctctttgtt gggcaggagc ctcactgtgc acaacaaaac acccagatac agtatcatgg tggagaagat cttatgtc	cgtccaatga gtggaaagtg accacgcgag accagggict gtggatgaac tgcgcaggta attttactat cttcaaagta gcaggttata ctgtcagcct gggcttcttt ggttccatat tcggaggctc cgataaagcc aaagctaaaa tgtcagggct gtgctcaatg actggatgtt tctttgatcc tctctttgtt gagcaaaagt gggcaggagc ctcactgtgc ataattggtg acaacaaaac acccagatac acatacaacg agtatcatgg tggagaagat tttaaaacaa cttatgtc	cgtccaatga gtggaaagtg accacgcgag cctcctcggt accagggict gtggatgaac tgcgcaggta acgcgttggg attitactat cttcaaagta gcaggttata tacaggcatg ctgtcagcct gggcttcttt ggttccatat ttgcgctctt tcggaggctc cgataaagcc aaagctaaaa ttgcttgtt tgtcagggct gtgctcaatg actggatgtt ccctatatgc tctttgatcc tctctttgtt gagcaaaagt atgaattagg gggcaggagc ctcactgtgc ataattggtg gtgtcatatt accacaaaaac acccagatac acatacaacg gggccacatc agtatcatgg tggagaagat tttaaaacaa caaacccttc gcttatgtc	, citalgic

BNSDOCID: <WO 0112660A2 1 >

TALL THE THE TENER

gtgcacccca	aatttcctga	gggagggaag	atgtctcagt	acctggatag	cctgaaggtt	420
ggggatgtgg	tggagtttcg	ggggccaagc	gggttgctca	cttacactgg	aaaagggcat	480
tttaacattc	agcccaacaa	gaaatctcca	ccagaacccc	gagtggcgaa	gaaactggga	540
atgattgccg	gcgggacagg	aatcacccca	atgctacagc	tgatccgggc	catcctgaaa	600
gtccctgaag	atccaaccca	gtgctttctg	ctttttgcca	accagacaga	aaaggatatc	660
atcttgcggg	aggacttaga	ggaactgcag	gcccgctatc	ccaatcgctt	taagctctgg	720
ttcactctgg	atcatcccc	aaaagattgg	gcctacagca	agggctttgt	gactgccgac	780
atgateeggg	aacacctgcc	cgctccaggg	gatgatgtgc	tggtactgct	ttgtgggcca	840
ccccaatgg	tgcagctggc	ctgccatccc	aacttggaca	aactgggcta	ctcacaaaag	900
atgcgattca	cctac					915

<210> 104

<211> 681

<212> DNA

<213> Homo sapiens

<400> 104

atgggttgga caatgagget ggtcacagca gcactgttac tgggtctcat gatggtggtc 60 actggagacg aggatgagaa cagcccgtgt gcccatgagg ccctcttgga cgaggacacc 120 ctcttttgcc agggccttga agttttctac ccagagttgg ggaacattgg ctgcaaggtt 180 gttcctgatt gtaacaacta cagacagaag atcacctcct ggatggagcc gatagtcaag 240 ttcccggggg ccgtggacgg cgcaacctat atcctggtga tggtggatcc agatgccct 300 agcagagcag aacccagaca gagattctgg agacattggc tggtaacaga tatcaagggc. 360 gccgacciga agaaagggaa galicagggc caggagitat cagcciacca ggciccicc 420 ccaccggcac acagtggctt ccatcgctac cagttetttg tetatettca ggaaggaaaa 480 gtcatctctc tccttcccaa ggaaaacaaa actcgaggct cttggaaaat ggacagattt. 540

ctgaaccgtt	tccacctggg	cgaacctgaa	gcaagcaccc	agttcatgac	ccagaactac	600
			gaaagggcca			660
caggcggaga	tagctgcctg	c		. • • •	1. 14 - W - 12 -	681
<211> 1323				• • • •	2°,	
<212> DNA						
<213> Homo	sapiens					
<400> 105		•		••	* t = 1 * * * * * * * * * * * * * * * * * *	
atggccatcc	acaaagcctt	ggtgatgtgc	ctgggactgc	ctctcttcct	gttcccaggg	60
gcctgggccc	agggccatgt	cccacccggc	tgcagccaag	gcctcaaccc	cctgtactac	120
aacctgtgtg	accgctctgg	ggcgtggggc	atcgtcctgg	aggccgtggc	tggggcgggc	180
atigtcacca	cgtttgtgct	caccatcatc	ctggtggcca	gcctcccctt	tgtgcaggac	240
accaagaaac	ggagcctgct	ggggacccag	gtattcttcc	ttctggggac	cctgggcctc	300
ttctgcctcg	tgtttgcctg	tgtggtgaag	cccgacttct	ccacctgtgc	ctctcggcgc	360
ttcctctttg	gggttctgtt	cgccatctgc	ttctcttgtc	tggcggctca	cgtctttgcc	420
ctcaacttcc	tggcccggaa	gaaccacggg	ccccggggct	gggtgatctt	cactglggct	480
ctgctgctga	ccctggtaga	ggtcatcatc	aatacagagt	ggctgatcat	caccctggtt	540
cggggcagtg	gcgagggcgg	ccctcagggc	aacagcagcg	caggctgggc	cgtggcctcc	600
ccctgtgcca	tegecaacat	ggacttigtc	atggcactca	tctacgtcat	gctgctgctg	660
ctgggtgcct	tcctgggggc	ctggcccgcc	ctgtgtggcc	gctacaagcg	ctggcgtaag	720
catggggtct	tigtgctcct	caccacagec	acctccgttg	ccatatgggt	ggtgtggatc	780
gtcatgtáta	cttacggcaa	caagcagcac	aacagtccca	cctgggatga	ccccacgctg	840
gecategee	tegeegeeaa	tgcctgggcc	ttcgtcctct	tctacgtcat	ccccgaggtc	900
teccagatus	. céaagteeag	cccagagcaa	agctaccage	gggacatgta	ccccacccgg	960

ggcgtgggct	atgagaccat	cctgaaagag	cagaagggtc	agagcatgtt	cgtggagaac	1020
aaggcctttt	ccatggatga	gccggttgca	gctaagaggc	cggtgtcacc	atacagcggg	1080
tacaatgggc	agctgctgac	cagtgtgtac	cagcccactg	agatggccct	gatgcacaaa	1140
gttccgtccg	aaggagctta	cgacatcatc	ctcccacggg	ccaccgccaa	cagccaggtg	1200
atgggcagtg	ccaactcgac	cctgcgggct	gaagacatgt	actcggccca	gagccaccag	1260
gcggccacac	cgccgaaaga	cggcaagaac	tctcaggtct	ttagaaaccc	ctacgtgtgg	1320
gac						1323

<210> 106

(211) 795

<212> DNA

<213> Homo sapiens

<400> 106

atggccgctg ccgtcccgaa gaggatgagg gggccagcac aagcgaaact gctgcccggg 60 teggecatee aagecettgt ggggttggeg eggeegetgg tettggeget eetgettgtg 120 tecgeegete tatecagtgt tgtateaegg aetgatteae egageecaae egtaeteaae 180 tcacatattt ctaccccaaa tgtgaatgct ttaacacatg aaaaccaaac caaaccttct 240 atttcccaaa tcagcaccac cctccctccc acgacgagta ccaagaaaag tggaggagca 300 totgiggico etcatecete gectaetect eigicicaag aggaageiga taacaatgaa 360 gatcctagia tagaggagga ggatcttctc atgctgaaca gttctccatc cacagccaaa 420 gacactctag acaatggcga ttatggagaa ccagactatg actggaccac gggccccagg 480 gacgacgacg agtctgatga caccttggaa gaaaacaggg gttacatgga aattgaacag 540 tcagtgaaat cttttaagat gccatcctca aatatagaag aggaagacag ccatttcttt 600 tttcatctta ttatttttgc tttttgcatt gctgttgttt acattacata tcacaacaaa 660 aggaagattt ttcttctggt tcaaagcagg aaatggcgtg atggcctttg ttccaaaaca 720

gtggaatacc	atcgcctaga	tcagaatgtt	aatgaggcaa	tgccttcttt	gaagattacc	780
aatgattata	ttttt		•	• • • • • •	1 (28)	795
•		••			• •	
<210> 107···			•••			
<211> 624		•	. *		• • John State	
<212> DNA					•	
<213> Homo	sapiens				•	
<400> 107						
atgctggggc	tgctggtggc	gttgctggcc	ctggggctcg	ctgtctttgc	gctgctggac	60
gtctggtacc	tggtgcgcct	tccgtgcgcc	gtgctgcgcg	cgcgcctgct	gcagccgcgc	120
gtccgtgacc	tgctagctga	geagegette	ccgggccgcg	tgctgccctc	ggacttggac	180
ctgctgttgc	acatgaacaa	cgcgcgctac	ctgcgcgagg	ccgactttgc	gcgcgtcgcg	240
cacctgaccc	gctgcggggt	gctcggggcg	ctgagggagt	tgcgggcgca	cacggtgctg	300
gcggcctcgt	gcgcgcgcca	ccgccgctcg	ctgcgcctgc	tggagccctt	cgaggtgcgc	360
accegeetge	tgggctggga	cgaccgcgcg	ttctacctgg	aggcgcgctt	tgtcagcctg	420
cgggacggtt	tcgtgtgcgc	gctgctgcgc	ttccggcagc	acctgctggg	cacctcaccc	480
gagcgcgtcg	tgcagcacct	gtgccagcgc	agggtggagc	cccctgagct	gcccgctgat	540
ctgcagcact	ggatctccta	caacgaggcc	agcagccagc	tgctccgcat	ggagagtggg	600
ctcagtgatg	tcaccaagga	ccag	. •	* - 1 to 1 to 1	* .	624
4 - 2 - 1 - 2 - 2 - 2 - 2	•	. ,	•	· · · · ·	and the second	
<210>~108		٠	•	•• • • • •	Section 8	
<211> 1200	•	• • •	· · · .		40° 1. " 1. 18 1	
<212> DNA	• • • • • • • • • • • • • • • • • • • •	to the second	• 2828 - 42	1	19 S S S 1 S S	
<213> Homo	sapiens	• • • • • • •	•		September 1	

BNSDOCID: <WO 0112660A2 1 >

The state of the s

atggcgtggc	ggcggcgcga	agccagcgtc	ggggctcgcg	gcgtgttggc	tctggcgttg	60
ctcgccctgg	ccctgtgcgt	gcccggggcc	.cggggccggg	ctctcgagtg	gttctcggcc	. 120
gtggtaaaca	tcgagtacgt	ggacccgcag	accaacctga	cggtgtggag	cgtctcggag	180
agtggccgct	teggegacag	ctcgcccaag	gagggcgcgc	atggcctggt	gggcgtcccg	240
tgggcgcccg	gcggagacct	cgagggctgc	gcgcccgaca	cgcgcttctt	cgtgcccgag	300
cccggcggcc	gaggggccgc	gccctgggtc	gccctggtgg	ctcgtggggg	ctgcaccttc	360
aaggacaagg	tgctggtggc	ggcgcggagg	aacgcctcgg	ccgtcgtcct	ctacaatgag	420
gagcgctacg	ggaacatcac	cttgcccatg	tctcacgcgg	gaacaggaaa	tatagtggtc	480
attatgatta	gctatccaaa	aggaagagaa	attttggagc	tggtgcaaaa	aggaattcca	540
gtaacgatga	ccataggggt	tggcacccgg	catgtacagg	agticatcag	cggtcagtct	600
gtggtgtttg	tggccattgc	cttcatcacc	atgatgatta	tctcgttagc	ctggctaata	660
ttttactata	tacagcgttt	cctatatact	ggctctcaga	ttggaagtca	gagccataga	720
aaagaaacta	agaaagttat	tggccagctt	ctacttcata	ctgtaaagca	tggagaaaag	780
ggaattgatg	ttgatgctga	aaattgtgca	gtgtgtattg	aaaatttcaa	agtaaaggat	840
attattagaa	ttctgccatg	caagcatatt	tttcatagaa	tatgcattga	cccatggctt	900
ttggatcacc	gaacatgtcc	aatgtgtaaa	cttgatgtca	tcaaagccct	aggatattgg	960
ggagagcctg	gggatgtaca	ggagatgcct	gctccagaat	ctcctcctgg	aagggatcca	1020
gctgcaaatt	tgagtctagc	tttaccagat	gatgacggaa	gtgatgagag	cagtccacca	1080
tcagcctccc	ctgctgaatc	tgagccacag	tgtgatccca	gctttaaagg	agatgcagga	1140
gaaaatacgg	cattgctaga	agccggcagg	agtgactctc	ggcatggagg	acccatctcc	1200
2.00 × 3						

<210> 109

<211> 576

<212> DNA

<213>:Homo sapiens

<400> 109 -		* product			•	
atgttttgcc	cactgaaact	catcctgctg	ccagtgttac	tggattattc.	cttgggcctg	60
aatgacttga	atgtttcccc	gcctgagcta	acagtccatg	tgggtgattc	agctctgatg	120
ggatgtgttt	tccagagcac	agaagacaaa	tgtatattca	agatagactg	gactctgtca	180
ccaggagagc	acgccaagga	cgaatatgtg	ctatactatt	actccaatct	cagtgtgcct	240
attgggcgct	tccagaaccg	cgtacacttg	atgggggaca	acttatgcaa	tgatggctct	300
ctcctgctcc	aagatgtgca	agaggctgac	cagggaacct	atatctgtga	aatccgcctc	360
aaaggggaga	gccaggtgtt	caagaaggcg	gtggtactgc	atgtgcttcc	agaggagccc	420
aaagagctca	tggtccatgt	gggtggattg	attcagatgg	gatgtgtttt	ccagagcaca	480
gaagtgaaac	acgtgaccaa	ggtagaatgg	atattttcag	gacggcgcgc	aaaggtaaca	540 ः
aggaggaaac	atcactgtgt	tagagaaggc	tctggc		•	576
<210> 110	•					
<211> 780	• •	٠				
<212> DNA	•			• .		
<213> Homo	sapiens	-		<u></u>	***	
<400> 110		$\mathbf{v} = \mathbf{v} = \mathbf{v}$,
atggcggggt	egccgctgct	ctgggggccg	cgggccgggg	gcgtcggcct	tttggtgctg	60
ctgctgctcg	gcctgtttcg	gccgccccc	gcgctctgcg	cgcggccggt	aaaggagccc	120
cgcggcctaa	gegeagegte	tecgecettg	gctgagactg	gcgctcctcg	ccgcttccgg	180
cggtcagtgc	cccgaggtga	ggcggcgggg	geggtgeagg	agctggcgcg	ggcgctggcg	240
catcigcigg	aggccgaacg	tcaggagcgg	gcgcgggccg	aggcgcagga	ggctgaggat	300
cagcaggcgc	gegteetgge	gcagctgctg	cgcgtctggg	gcgccccccg	caactctgat	360
ceggetetgg	gcctggacga	cgaccccgac	gcgcctgcag	cgcagctcgc	tegegetetg	420
at conceens	geet Laacee	Laccaceete	geageceage	ttgtccccgc	gcccgtcccc	480

gccgcggcgc tecgaceceg gcccccggte tacgacgacg gccccgcggg cccggatget	540
gaggaggcag gcgacgagac acccgacgtg gaccccgagc tgttgaggta cttgctggga	600
cggattcttg cgggaagcgc ggactccgag ggggtggcag ccccgcgccg cctccgccgt	660
gccgccgacc acgatgtggg ctctgagctg ccccctgagg gcgtgctggg ggcgctgctg	720
cgtgtgaaac gcctagagac cccggcgccc caggtgcctg cacgccgcct cttgccaccc	780
⟨210⟩ 111	
<211> 1633	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (68)(1498)	
<400> 111	
acaaccggct ggggtccttg cgcgccgcgg ctcagggagg agcaccgact gcgccgcacc	60
ctgagag atg gtt ggt gcc atg tgg aag gtg att gtt tcg ctg gtc ctg	109
Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu	
1 5 10	
tig atg cct ggc ccc tgt gat ggg ctg ttt cgc tcc cta tac aga agt	157
Leu Met Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser	
15 20 25 30	
gtt tcc atg cca cct aag gga gac tca gga cag cca tta ttt ctc acc	205
Val Ser Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr	
45	

Pro	Tyr	Ile	Glu	Ala	Gly	Lys	He	Gln	Lys	Gly	Arg	Glu	Leu	Ser	Leu	•	
		• .	50	: :			٠٠.	55	•			,	· 60		j +		
gtc	ggc	cct	ttc	cca	gga	ctg	aac	atg	aag	agt	tat	gcc	ggc	ttc	ctc	•	301
Val	Gly	Pro	Phe	Pro	Gly	Leu	Asn	Met	Lys	Ser	Tyr	Ala	Gly	Phe	Leu		
	: ,	· 65		٠,	•	,	70	•	1.		. :	75	, 1	•	•. •	. •	
acc	gtg	aat	aag	act	tac	aac	agc	aac	ctc	ttc	ttc	tgg	ttc	ttc	cca		349
Thr	Val	Asn	Lys	Thr	Tyr	Asn	Ser	Λsn	Leu	Phe	Phe	Trp	Phe	Phe	Pro	٠.	
	80					85					90				-		
gct	cag	ata	cag	cca	gaa	gat	gcc	cca	gta	gtt	ctc	tgg	cta	cag	ggt	:	397
Ala	Gln	Ile	Gln	Pro	Glu	Asp	Ala	Pro	Val	Val	Leu	Trp	Leu	Gln	Gly		
95					100					105					110		
ggg	ccg	gga	ggt	tca	tcc	atg	ttt	gga	ctc	ttt	gtg	gaa	cat	ggg	cct		445
Gly	Pro	Gly	Gly	Ser	Ser	Met	Phe	Gly	Leu	Phe	Val	Glu	llis	Gly	Pro		
				115					120					125	•		
tat	gtt	gtc	aca	agt	aac	atg	acc	ttg	cgt	gac	aga	gac	ttc	ccc	tgg	•	493
Tyr	Val	Val	Thr	Ser	Asn	Met	Thr	Leu	Arg	Asp	Arg	Asp	Phe	Pro	Trp	•	
	u .	•	130		•		•	135	•			•	140	• • •			
acc	aca	acg	ctc	tcc	atg	ctt	tac	att	gac	aat	cca	gtg	ggc	aca	ggc		541
Thr	Thr	Thr	Leu	Ser	Met	Leu	Tyr	Ile	Asp	Asn	Pro	Val	Gly	Thr	Gly		
	: -	145			: .	; ,	150		* '		٠. ي	155	••		. * 4	٠.	
ttc	agt	ttt	act	gat	gat	acc	cac	gga	tat	gca	gtc	aat	gag	gac	gat		589
Phe															Asp		
	160	•	•		,	165		,	•		170	, .:	:.	1	3		
gta	gca	cˈgg	gat	tta	tac	agt	gca	cta	att	cag	ttt	Ltc	cag	ata	ttt		637
Val	Ala	Ara	Asn	Leu	Tvr	Ser	Ala	Leu	Ile	Gln	Pho	Phe	Gln	Ile	Phe	.:	

175	5				180)				185	5				190		
cct	gaa	a ta	t aaa	a aa t	. aat	gad	: ttt	tat	gto	act	ggs	g gag	tc1	t tai	t gca		685
Pro	Glu	ту:	r Lys	s Asr	Asn	Asp	Phe	yr Tyr	· Val	Thr	Gly	/ Glu	ı Ser	Туг	Ala		
		. ·:		. 195	i ,	•			200)				205	5 .	,	
ggg	aaa	ta:	tgtg	cca	gcc	att	gca	cac	cto	ato	cat	tcc	cto	aac	cct		733
Gly	Lys	Туг	- Val	Pro	Ala	Ile	Ala	His	Leu	Ile	His	Ser	Leu	Asn	Pro		
			210)				215				•	220)			
gtg	aga	gag	ggtg	aag	atc	aac	ctg	aac	gga	att	gct	att	gga	gat	gga		781
Val	Arg	Glu	ı Val	Lys	Ile	Asn	Leu	Asn	Gly	lle	Ala	Ile	Gly	Asp	Gly		
		225	i				230					235					
tat	tet	gat	ccc	gaa	tca	att	ata	ggg	ggc	tat	gca	gaa	ttc	ctg	tac		829
Tyr	Ser	Asp	Pro	Glu	Ser	Ile	Ile	Gly	Gly	Tyr	Ala	Glu	Phe	Leu	Tyr		
	240					245					250						
caa	att	ggc	ttg	ttg	gat	gag	aag	caa	aaa	aag	tac	ttc	cag	aag	cag		877
Gln	He	Gly	Leu	Leu	Asp	Glu	Lys	Gln	Lys	Lys	Tyr	Phe	Gln	Lys	G1n		
255		•. •		. •	260	. ,				265					270		
tgc	cat	gaa	tgc	ata	gaa	cac	atc	agg	aag	cag	aac	tgg	ttt	gag	gcc		925
Cys	His	Glu	Cys	Ile	Glu	His	lle	Arg	Lys	Gln	Asn	Trp	Phe	Glu	Ala		
				275				,	280					285			
ttt	gaa	ata	ctg	gat	aaa	cta	cta	gat	ggc	gac	tta	aca	agt	gat	cct		973
Phe	G1ų	Ile	Leu	Asp	Lys	Leu	Leu	Asp	Gly	Asp	Leu	Thr	Ser	Asp	Pro		
	····	11	290	-				295		٠.			300				
tct	ţac,	ttc	cag	aat	gtt	aca	gga	tgt	agt	aat	tac	tat	aac	ttt	ttg		1021
Ser	Tyr	Phe	Gln	Asn	Val	Thr	G1 y	Cys	Ser	۸sn	Tyr	Tyr	Asn	Phe	Leu		
	1.13	305	2.4	; •	; .	1	310	٠,.	٠٠.	ا مار	٠,,٠	315	:		* a!! .	_	

cgg	tgc	acg	gaa	cct	gag	gat	cag	ctt	tac	tat	gtg	aaa	ttt	ttg	tca	1069
Arg	Cys	Thr	G1ų	Pro	Glu	Asp	Gln	Leu	Tyr _.	Tyr	Val	Lys	Phe	Leu	Ser	•
	320	٠.		;		325			٠.		330	: .		٠.	•	
ctc	cca	gag	gtg	aga	caa	gcc	atc	cac	gtg	ggg	aat	cag	act	ttt	aat	1117
Leu	Pro	Glu	Val	Arg	Gln	Ala	Ile	His	Val	Gly	Asn	Gln	Thr	Phe	Asn 🕆	
335	;				340					345					350	
gat	gga	act	ata	gtt	gaa	aag	tac	ttg	cga	gaa	gat	aca	gta	cag	tca	1165
Asp	Gly	Thr	Ile	Val	Glu	Lys	Tyr	Leu	Arg	Glu	Asp	Thr	Val	Gln	Ser	
	• *			355					360					365	• •	
gtt	aag	cca	tgg	tta	act	gaa	atc	atg	aat	aat	tat	aag	gtt	ctg	atc	1213
Val	Lys	Pro	Trp	Leu	Thr	Glu	Ile	Met	Asn	Asn	Tyr	Lys	Val	Leu	Ile	٠
	٠٠,		370					375					380			
tac	aat	ggc	caa	ctg	gac	atc	atc	gtg	gca	gct	gcc	ctg	aca	gag	cac	1261
Tyr	Asn	Gly	Gln	Leu	Asp	Ile	Ile	Val	Ala	Ala	Ala	Leu	Thr	Glu	His	
		385					390					395	٠			
tcc	ttg	atg	ggc	atg	gac	tgg	aaa	gga	tcc	cag	gaa	tac	aag	aag	gca	1309
Ser	Leu	Met	Gly	Met	Asp	Trp	Lys	Gly	Ser	Gln	Glu	Tyr	Lys	Lys	Λla	•
	400	٠				405					410			,		
gaa	aaa	aaa	gtt	tgg	aag	atc	ttt	aaa	tct	gac	agt	gaa	gtg	gct	ggt	1357
Glu	Lys	Lys	: Val	Trp	Lys	Ile	Phe	Lys	Ser	Asp	Ser	Glu	Val	Ala	Gly	
415	٠	•		•	420					425	-				430	
tac	ato	cgg	caa	gcg	ggt	gac	ttc	cat	cag	gta	att	att	cga	ggt	gga	1405
Tyr	Ile	Arg	Gln	Ala	Gly	Asp	Phe	His	Gln	Val	Ile	lle	Arg	Gly	Gly	
	:	14.		435			•		440) (••		445	,	
gga	cat	att	tta	ccc	tat	gac	cag	g cct	cte	g aga	gct	ttt	gac	ate	att	1453

Gly His Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile	
450 455 460	
aat cga ttc att tat gga aaa gga tgg gat cct tat gtt gga taaac .	1500
Asn Arg Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly	
465 470 475	
taccitccca aaagagaaca tcagaggitt tcattgctga aaagaaaatc gtaaaaacag	1560
aaaatgtcat aggaataaaa aaattatctt ttcatatctg caagattttt ttcatcaata	1620
aaaattatcc ttg	1633
<210> 112	
<211> 1095	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (192) (872)	
<400> 112	
ctttaaaatg tcattggtaa accatacttg atcctaaatt cctgtacttc ctcaggccat	60
ccgagcatga aacgctgtca cctacccaca tccgctggct gtgacgcttg tcaaagtgtt	120
ctctatcggc tgcatgccta gaccaccaaa gcgttctgac cggacagtgt cactggagaa	180
ggcggcgcga c atg tcc agg gcg cag atc tgg gct ctg gtg tct ggt gtc	230
Met Ser Arg Ala Gln Ile Trp Ala Leu Val Ser Gly Val	
10	
gga ggg ttt gga gct ctc gtt gct gct acc acg tcc aat gag tgg aaa	278
Gly Gly Phe Gly Ala Leu Val Ala Ala Thr Thr Scr Asn Glu Trp Lys	

	15	• •	1		٠	20		•	. •	• • •	25	٠	. •	• •	<u>.</u>		
gtg	acc	acg	cga	gcc	tcc	tcg	gtg	ata	aca	gcc	ạct	tgg	gtt	tac	cag		326
Val	Thr	Thr	Arg	Ala	Ser	Ser	Val	Ilė	Thr	Ala	Thr	Trp	Val	Tyr	Gln		
30					35		• -		••	40	•		•		45		
ggt	ctg	tgg	atg	aac	tgc	gca	ggt	aac	gcg	ttg	ggt	tct	ttc	cat	tgc		374
Gly	Leu	Trp	Met	Asn	Cys	Ala	Gly	۸sn	Ala	Leu	Gly	Ser	Phe	His	Cys	•	
				50					55					60	٠	•	
cga	ccg	cat	ttt	act	atc	ttc	aaa	gta	gca	ggt	tat	ata	cag	gca	tgt		422
Arg	Pro	His	Phe	Thr	Ile	Phe	Lys	Val	Ala	Gly	Tyr	He	Gln	Ala	Cys		
			65					70					75				
aga	gga	ctt	atg	atc	gct	gct	gtc	agc	ctg	ggc	ttc	ttt	ggt	tcc	ata		470
Arg	Gly	Leu	Met	Ile	Ala	Ala	Val	Ser	Leu	Gly	Phe	Phe	Gly	Ser	Ile		
		80					85					90					
ttt	gcg	ctc	ttt	gga	atg	aag	tgt	acc	aaa	gtc	gga	ggc	tcc	gat	aaa		518
Phe	Ala	Leu	Phe	Gly	Met	Lys	Cys	Thr	Lys	Val	Gly	Gly	Ser	Asp	Lys		
	95					100		•			105	, ,	, .	••		•	
gcc	aaa	gct	aaa	att	gct	tgt	ttg	gct	ggg	att	gta	ttc	ata	ctg	tca	•	566
Ala	Lys	Ala	Lys	Ile	Ala	Cys	Leu	Ala	Gly	Ile	Val	Phe	Ile	Leu	Ser		
110		•			115		•	•	٠	120			• •	•	125		
ggg	ctg	tgc	tca	atg	act	gga	tgt	tcc	cta	tat	gca	aac	aaa	atc	aca		614
Gly	L'eu	Cys	Ser	Met	Thr	Gly	Cys	Ser	Leu	Tyr	Ala	Asn	Lys		Thr		
				130	• .				135			•		140			
		•			cct												662
Thr	Glu	Phe	Phe	Aśp					Glu						Gly '		
	•	-	145	• •			٠.	150	•		-	** *	155	• • • •	+ 1 · 2		

gcc gct ctg ttt att gga tgg gca gga gcc tca ctg tgc ata att ggt	710
Ala Ala Leu Phe Ile Gly Trp Ala Gly Ala Ser Leu Cys Ile Ile Gly	
160 165 170	
ggt gtc ata ttt tgc ttt tca ata tct gac aac aac aaa aca ccc aga	758
Gly Val Ile Phe Cys Phe Ser Ile Ser Asp Asn Asn Lys Thr Pro Arg	
175 180 185	
tac aca tac aac ggg gcc aca tct gtc atg tct tct cgg aca aag tat	806
Tyr Thr Tyr Asn Gly Ala Thr Ser Val Met Ser Ser Arg Thr Lys Tyr	
190 195 200 205	
cat ggt gga gaa gat ttt aaa aca aca aac cct tca aaa cag ttt gat	854
His Gly Gly Glu Asp Phe Lys Thr Thr Asn Pro Ser Lys Gln Phe Asp	
210 215 220	
aaa aat gct tat gtc t aaaagagete gegggeaage tgeetettga	900
Lys Asn Ala Tyr Val	
225	
gtttgttata aaagcgaact gttcacaaaa tgatcccatc aaggccctcc cataattaac	960
actcaaaact atttttaaaa tatgcatttg aagcatctgt tgattgtatg gatgtaagtg	1020
ticitacata gitagitata taciaatcat titcigitgi ggctitciat aaaaaataaa	1080
cagtttattt acagg	1095
· · · · · · · · · · · · · · · · · · ·	
<210> 113 .	
<211>_1602	
<212> DNA	
<213> Homo sapiens.	
(220) ——————————————————————————————————	

ENSUCIO- -WO 011266042 1 >

<221> CDS	
<222> (34)(951)	
<400> 113	
tttgtcaggt ggtggaggaa aaggcgctcc gtc atg ggg atc cag acg agc ccc 54	ł
Met Gly Ile Gln Thr Ser Pro	
1 5	
gtc ctg ctg gcc tcc ctg ggg gtg ggg ctg gtc act ctg ctc ggc ctg 102	?
Val Leu Leu Ala Ser Leu Gly Val Gly Leu Val Thr Leu Leu Gly Leu	
10 15 20	
gct gtg ggc tcc tac ttg gtt cgg agg tcc cgc cgg cct cag gtc act) :
Ala Val Gly Ser Tyr Leu Val Arg Arg Ser Arg Arg Pro Gln Val Thr	
25 30 35	
ctc ctg gac ccc aat gaa aag tac ctg cta cga ctg cta gac aag acg	}
Leu Leu Asp Pro Asn Glu Lys Tyr Leu Leu Arg Leu Leu Asp Lys Thr	
40 45 50 55	
act gtg age cae aac ace aag agg tte ege ttt gee etg eec ace gee 246	;
Thr Val Ser His Asn Thr Lys Arg Phe Arg Phe Ala Leu Pro Thr Ala	
65 70 70	
cac cac act ctg ggg ctg cct gtg ggc aaa cat atc tac ctc tcc acc 294	ļ
His His Thr Leu Gly Leu Pro Val Gly Lys His Ile Tyr Leu Ser Thr	
75 80 85	
cga att gat ggc agc ctg gtc atc agg cca tac act ect gtc acc agt 342	?
Arg Ile Asp Gly Ser Leu Val Ile Arg Pro Tyr Thr Pro Val Thr Ser	
90 95 100	
gat gag gat caa ggc tat gtg gat ctt gtc atc aag gtc tac ctg aag 390)

Asp	Glu	Asp	Gln	Gly	Tyr	Val	Asp	Leu	Val	Ile	Lys	Val	Tyr	Leu	Lys	
	105			.•		110					115	, •				
ggt	gtg	cac	ccc	aaa	ttt	cct	gag	gga	ggg	aag	atg	tct	cag	tac	ctg	438
Gly	Val	His	Pro	Lys	Phe	Pro	Glu	Gly	Gly	Lys	Met	Ser	Gln	Tyr	Leu	
120					125					130					135	
gat	agc	ctg	aag	gtt	ggg	gat	gtg	gtg	gag	ttt	cgg	ggg	cca	agc	ggg	486
Asp	Ser	Leu	Lys	Val	Gly	Asp	Val	Val	Glu	Phe	Λrg	Gly	Pro	Ser	Gly	
				140					145					150		
ttg	ctc	act	tac	act	gga	aaa	ggg	cat	ttt	aac	att	cag	ссс	aac	aag	534
Leu	Leu	Thr	Tyr	Thr	Gly	Lys	Gly	His	Phe	Asn	Ile	Gln	Pro	Asn	Lys	
			155					160					165			
aaa	tct	cca	cca	gaa	ccc	cga	gtg	gcg	aag	aaa	ctg	gga	atg	att	gcc	582
Lys	Ser	Pro	Pro	Glu	Pro	Arg	Val	Ala	Lys	Lys	Leu	Gly	Met	Ile	Ala	
		170					175					180				
ggc	ggg	aca	gga	atc	acc	cca	atg	cta	cag	ctg	atc	cgg	gcc	atc	ctg	630
Gly	Gly	Thr	Gly	Ile	Thr	Pro	Met	Leu	Gln	Leu	Ile	Arg	Ala	lle	Leu	
	185					190	~			,.	195			• ;		
aaa	gtc	cct	gaa	gat	cca	acc	cag	tgc	ttt	ctg	ctt	ttt	gcc	aac	cag	678
l.ys	Val	Pro	Glu	Asp	Pro	Thr	Gln	Cys	Phe	Leu	Leu	Phe	Ala	Asn	Gln	
200		.•	•.		205	×				210			,	٠,	215	
aca	gaa	aag	gat	atc	atc	ttg	cgg	gag	gac	tta	gag	gaa	ctg	cag	g ċ c	726
Thr	Glu	Lys	Asp	, [le	Ile	Leu	Arg	,Glu,	Asp	Leu	Glu	Glu	Leu	Ģ1n	Ala	
	. • •	٠,	ŧ.	220	: -		. 1		225	••	:	. •		230		
cgc	tat	ccc	aat	cgc	ttt	aag	ctc	tgg	ttc	act	cįtg	gat	cat	ccc	cça	774
Arg	Tyr	Pro	Asn	Arg	Phe	Lys	Leu	Trp	Phe	Thr	Leu	Asp	His	Pro	Pro	

• • • • •	235	240		245	
aaa gat tgg	gcc tac agc	aag ggc ttt	gtg act gc	c gac atg atc	cgg 822
Lys Asp Trp	Ala Tyr Ser	Lys Gly Phe	Val Thr Ala	a Asp Met Ile	Arg
. 250		255	·	260	• :
gaa cac ctg	ccc gct cca	ggg gat gat	gtg ctg gta	a ctg ctt tgt	ggg 870
Glu His Leu	Pro Ala Pro	Gly Asp Asp	Val Leu Va	l Leu Leu Cys	Gly
265	•	270	27	5 ·	
cca ccc cca	atg gtg cag	ctg gcc tgc	cat ccc aa	c ttg gac aaa	ctg 918
Pro Pro Pro	Met Val Gln	Leu Ala Cys	His Pro Ası	n Leu Asp Lys	Leu
280	285		290		295
ggc tac tca	caa aag atg	cga ttc acc	tac tg agc	atcctcc agctt	ccctg 970
Gly Tyr Ser	Gln Lys Met	Arg Phe Thr	Tyr	. •	
	300		305		
gtgctgttcg	ctgcagttgt t	cccatcag ta	ctcaagca ct	ataagcct taga	tteett 1030
tcctcagagt	ttcaggtttt t	tcagttaca tc	tagagetg aa	atctggat agta	cctgca 1090
ggaacaatat	tcctgtagcc a	tggaagagg gc	caaggctc ag	tcactcct tgga	tggcct 1150
cctaaatctc	cccgtggcaa c	aggtccagg ag	aggcccat gg	agcagtct cttc	catgga 1210
gtaagaagga	agggagcatg t	acgcttggt cc	aagattgg ct	agttcctt gata	gcatct 1270
tactctcacc	ttctttgtgt c	tgtgatgaa ag	gaacagtc tg	tgcaatgg gttt	tactta 1330
aacttcactg	ttcaacctat g	agcaaatct gt	atgtgtga gt	ataagttg agca	tagcat 1390
acttccagag	gtggtcttat g	gagatggca ag	aaaggagg aa	atgatttc ttca	gatete 1450
aaaggagtct	gaaatatcat 'a	tttctgtgt gt	gtctctct ca	gcccctgc ccag	gctaga 1510
gggaaacagc	tactgataat c	gaaaactgc tg	tttgtggc ag	gaacccct ggct	gtgcaa 1570
ataaatgggg	ctgaggecee t	gtgtgatat tg		12 14 15	1602

BNSDOCID: <WO 0112660A2 I

AND SHEET OF THE FORMER

<21	0> 1	14		٠.								-		-		:	:	
<21	1> 8	197																
<21	2> D	NA			٠.										• •			
<21	3> H	omo	sapi	ens								. •					:	
<22	:0>																	
<22	1> C	DS			•													
<22	2> (99).	(7	82)								. •			,			
<40	0> 1	14																
agt	cctc	cca	aagt	actt	gt g	tccg	ggtg	g tg	gact	ggat	tcg	ctgc	gga	gccc	tgga	ag		60
ctg	cctt	tcc	ttct	ccct	gt g	ctta	acca	g ag	gtgc	сс а	tg g	gt t	gg a	ica a	tg		j	113
										М	et G	ly T	rp T	hr M	let			
											ı				- 5	·		
agg	ctg	gtc	aca	gca	gca	ctg	tta	ctg	ggt	ctc	atg	atg	gtg	gtc	act		J	161
Arg	Leu	Val	Thr	Ala	Ala	Leu	Leu	Leu	Gly	Leu	Met	Met	Val	Val	Thr			
	٠.			10					15					20				
gga	gac	gag	gat	gag	aac.	agc	ccg	tgt	gcc	cat	gag	gcc	ctc	ttg	gac		2	209
Gly	Asp,	Glu	Asp	Glu	Asn	Ser	Pro	Cys	Ala	His	Glju	Ala	Leu	Leu	Asp			
			25					30				٠.	3 5	4 -				
gag	gac	acc	ctc	ttt	tgc	cag	ggc	ctt	gaa	gtt	ttc	tac	cca	gag	ttg		2	257
Glu	Asp	Thr	Leu	Phe	Cys	Gln	Gly	Leu	Glu	Val	Phe	Tyr	Pro	Glu	Leu			
	٠٠.	40					45					50			÷ .			
ggg	aac,	att	ggc	tgc	aag	gtt	gtt	cct	gat	tgt.	aac	aac	tac	aga	cag		3	05
Gly	Asn	Ile	G1 y	Cys	Lys	Val	Val	Pro	Asp	Cys	Asn	Asn	Tyr	Arg	Gln			
	55 .			.•.		60	-		-		65	,, -		• :				
aag	atc	acc	tcc-	tgg	atg	gag	ccg	ata,	gtc	aag	ttc	CCE	999	gcc	g t.g		3	53

Lys	Ile	Thr	Ser	Trp	Met	Glu	Pro	Ile	Val	Lys	Phe	Pro	Gly	Ala	Val	• .	
70					75					80					·· 85	,	
gac	ggc	gca	acc	tat	atc	ctg	gtg	atg	gtg	gat	cca	gat	gcc	cct	agc		401
Asp	Gly	Ala	Thr.	Tyr	Ile	Leu	Val	Met	Val	Asp	Pro	Asp	Ala	Pro	Ser		
				90					95					100			
aga	gca	gaa	ccc	aga	cag	aga	tťc	tgg	aga	cat	tgg	ctg	gta	aca	gat		449
Arg	Ala	Glu	Pro	Arg	Gln	Arg	Phe	Trp	Arg	His	Trp	Leu	Val	Thr	Asp	•	
			105					110					115		<i>i</i> .	٠	
atc	aag	ģgc	gcc	gac	ctg	aag	aaa	ggg	aag	att	cag	ggc	cag	gag	tta	•	497
Ile	Lys	Gly	Ala	Asp	Leu	Lys	Lys	Gly	Lys	Ile	Gln	Gly	Gln	Glu	Leu		
		120			•		125					130					
tca	gcc	tac	cag	gct	ccc	tcc	cca	ccg	gca	cac	agt	ggc	ttc	cat	cgc		545
Ser	Ala	Tyr	Gln	Ala	Pro	Ser	Pro	Pro	Ala	His	Ser	Gly	Phe	His	Arg		
	135			٠.		140	•				145			•			
tac	cag	ttc	ttt	gtc	tat	ctt	cag	gaa	gga	aaa	gtc	atc	tct	ctc	ctt		593
Tyr	Gln	Phe	Phe	Val	Tyr	Leu	Gln	Glu	Gly	Lys	Val	Ile	Ser	Leu	Leu		
150	<i>i.</i>	1.	٠.		155	• •		•	•.	160		. ••	٠.	,	165	;	
ccc	aag	gaa	aac	aaa	act	cga	ggc	tct	tgg	aaa	atg	gac	aga	ttt	ctg		641
Pro	Lys	Glu	Asn	Lys	Thr	Arg	Gly	Ser	Trp	Lys	Meț	Asp	Arg	Phe	Leu		
	,;		٠	170	1		٠.	•	175	•	•		٠	180	ζ, .	•	
aac	cgt	ttc	cac	ctg	ggc	gaa	cct	gaa	gca	agc	acc	cag	ttc	atg	acc		689
Asn	Arg	Phe	His	Leu	Gly	Glu	Pro	Glu	Ala	Ser	Thr	Gln	Phe	Met	Thr		
	4. 1		185	•		٠٠.	٠	190	٠		٠	•	195	٠.	٠.		
cag	aac	tac	cag	gac	tca	cca	acc	ctc	cag	gct	ccc	aga	gaa	agg	gcc		737
Gln	Asn	Tyr	Gln	Asp	Ser	Pro	Thr	Leu	Gln	Ala	Pro	Arg	Glu	Arg	Ala	٠,	

200	205	210
agc gag ccc aag cac aaa aac	cag gcg gag ata gct	gcc tgc t. 780
Ser Glu Pro Lys His Lys Asn	Gln Ala Glu Ile Ala	Ala Cys
215 220	. 225	÷
agatagccgg ctttgccatc cgggc	atgtg gccacactgc cca	ccaccga cgatgtgggt 840
atggaacccc ctctggatac agaac	ccctt cttttccaaa taa	aaaaaaa atcatcc 897
(210) 115		
<211> 1866		
<212> DNA		
<213> Homo sapiens		
⟨220⟩		
<221> CDS		
<222> (142)(1467)		
<400> 115		
gcccgcatgc gggggcgtgg cagtca	aacag caacaaccca cacg	geeggea gggeeagaaa 60
ctcccatctc cctcaccage eggaas	ngtac gagteggete aged	tggagg gacccaacca 120
gagcciggcc igggagccag g aig	gcc atc cac aaa gcc	ttg gtg atg tgc 171
Met	Ala Ile His Lys Ala	Leu Val Met Cys
$(s_{ij} \circ f) \cong (s_{ij} \circ g) \circ (1)$	5	. 10
ctg gga ctg cct ctc ttc ctg	ttc cca ggg gcc tgg	gcc cag ggc cat 219
Leu Gly Leu Pro Leu Phe Leu	Phe Pro Gly Ala Trp	Ala Gln Gly His
.15	· 20	25
gte eca ece gge tge age caa	ggc ctc aac ccc ctg	tac tac aac ctg 267
Val Pro Pro Gly Cys Ser Gln	Gly Leu Asn Pro Leu	Tyr Tyr Asn Leu 🛒

			30	. •				35	• .				40	•			
tgt	gac	cgc	tct	ggg	gcg	tgg	ggc	atc	gtc	ctg	gag	gcc	gtg	gct	ggg		315
Cys	Asp	Arg	Ser	Gly	Ala	Trp	Gly	Ile	Val	Leu	Glu	Ala	Val	Ala	Gly		
		45			٠		50					55			*- • •		
gcg	ggc	att	gtc	acc	acg	ttt	gtg	ctc	acc	atc	atc	ctg	gtg	gcc	agc	•	363
Ala	Gly	Ile	Val	Thr	Thr	Phe	Val	Leu	Thr	Ile	Ile	Leu	Val	Ala	Ser		
	60					65					70						
ctc	ccc	ttt	gtg	cag	gac	acc	aag	aaa	cgg	agc	ctg	ctg	ggg	acc	cag		411
Leu	Pro	Phe	Val	Gln	Asp	Thr	Lys	Lys	۸rg	Ser	Leu	Leu	Gly	Thr	Gln	1	
75					80					85					90		
gta	ttc	ttc	ctt	ctg	ggg	acc	ctg	ggc	ctc	ttc	tgc	ctc	gtg	ttt	gcc		459
Val	Phe	Phe	Leu	Leu	Gly	Thr	Leu	Gly	Leu	Phe	Cys	Leu	Val	Phe	Ala		
			•	95					100					105			
tgt	gtg	gtg	aag	ccc	gac	ttc	tcc	acc	tgt	gcc	tct	cgg	cgc	ttc	ctc		507
Cys	Val	Val	l.ys	Pro	Asp	Phe	Ser	Thr	Cys	Ala	Ser	Arg	Arg	Phe	Leu	•	
		-	110			٠,		115					120				
															gtc	٠,	555
Phe	Gly	Val	Leu	Phe	Ala	Ile	Cys	Phe	Ser	Cys	Leu	Ala	Ala	His	Val		
	٠	125			,		130		•			135					
															tgg		603
Phe															Trp		
															و نداد		65.1
															atc		651
Val	He	Phe	Thr	· Val	. Ala	Leu	Leu	ı Leu	Thr						lle		
					100		_			169			- · ·		. 170		

A CONTRACT OF THE STORY

aat	aca	gag	t gg	ctg	atc	ato	acc	ctg	gtt	cgg	ggc	agt	gg	c gag	g ggc	699
Asn	Thr	Glu	1 Trp	Leu	Ile	Ile	Thr	Leu	Val	Arg	Gly	Ser	Gly	y Glu	ı Gly	
				175				•	180					185	5	
ggc	cct	cag	ggc	aac	agc	agc	gca	ggc	tgg	gcc	gtg	gcc	tco	ccc	tgt .	747
Gly	Pro	Gln	Gly	Asn	Ser	Ser	Ala	Gly	Trp	Ala	Val	Ala	Ser	Pro	Cys	
	٠.		190					195					200)		
gcc	atc	gcc	aac	atg	gac	ttt	gtc	atg	gca	ctc	atc	tac	gto	atg	ctg	795
Ala	Ile	Ala	Asn	Met	Asp	Phe	Val	Met	Ala	Leu	Ile	Tyr	Val	Met	Leu	
		205					210					215				
ctg	ctg	ctg	ggt	gcc	ttc	ctg	ggg	gcc	tgg	ccc	gcc	ctg	tgt	ggc	cgc	843
Leu	Leu	Leu	Gly	Ala	Phe	Leu	Gly	Ala	Trp	Pro	Ala	Leu	Cys	Gly	Arg	
	220					225					230				••	
tac	aag	cgc	tgg	cgt	aag	cat	ggg	gtc	ttt	gtg	ctc	ctc	acc	aca	gcc	891
Tyr	Lys	Arg	Trp	Arg	Lys	His	Gly	Val	Phe	Val	Leu	Leu	Thr	Thr	Ala	
235					240					245					250	
acc	tcc	gtt	gcc	ata	tgg	gtg	gtg	tgg	atc	gtc	atg	tat	act	tac	ggc	939
Thr	Ser	Val	Ala	He	Trp	Val	Val	Trp	Ile	Val	Met	Tyr	Thr	Tyr	Gly	
	٠.			255					260					265		
aac	aag	cag	cac	aac	agt	ccc	acc	tgg	gat	gac	ccc	acg	ctg	gcc	atc	987
Asn	Lys	Gln	His	Asn	Ser	Pro	Thr	Trp	Asp	Asp	Pro	Thr	Leu	Ala	Ile	
			270		•			275		•			280			
gcc	ctc	gcc	gcc	aat	gcc	tgg	gcc	ttc	gtc	ctc	ttc	tac	gtc	atc	ccc	1035
Ala	Leu	Ala	Ala	Λsn	Ala	Trp	Ala	Phe	Val	Leu	Phe	Tyr	Val	Ile	Pro	
		285		•	•	-	290					295		٠.٠	· ·	
gag	gtc	tcc	cag	gtg	acc	aag	tcc	agc	сса	gag	caa	agc	tac	cag	ggg	1083

Glu	Val	Ser	Gl'n	Val	Thr	Lys	Ser	Ser	Pro	Glu	Gln	Ser	Tyr	Gln	Gly		
	300					305	1 ;	, ,4	- •	• • •	310	. •	. •	: .,	.::		
gac	atg	tac	ccc	acc	cgg	ggc	gtg	ggc	tat	gag	acc	atc	ctg	aaa	gag		11,31
Asp	Met	Tyr	Pro	Thr	Arg	Gly	Val	Gly	Tyr	Glu	Thr	Ile	Leu	Lys	Glu	: :	
315	• •	<i>:</i> .		,	320		. •	٠.,		325		• •		•	330		
cag	aag	ggt	cag	agc	atg	ttc	gtg	gag	aac	aag	gcc	ttt	tcc	atg	gat		1179
Gln	Lys	Gly	Gln	Ser	Met	Phe	Val	Glu	Asn	Lys	Ala	Phe	Ser	Met	Asp	•	
	•			335				•	340	•	•			345	_ :		
gag	ccg	gtt	gca	gct	aag	agg	ccg	gtg	tca	cca	tac	agc	ggg	tac	aat		1227
Glu	Pro	Val	Ala	Λla	Lys	Arg	Pro	Val	Ser	Pro	Tyr	Ser	Gly	Tyr	Asn	•	
			350		٠		•	355					360		•		
ggg	cag	ctg	ctg	acc	agt	gtg	tac	cag	ccc	act	gag	atg	gcc	ctg	atg		1275
Gly	Gln	Leu	Leu	Thr	Ser	Val	Tyr	Gln	Pro	Thr	Glu	Met	Ala	Leu	Met		
		365					370					375					
cac	aaa	gtt	ccg	tcc	gaa	gga	gct	tac	gac	atc	atc	ctc	cca	cgg	gcc		1323
His	Lys	Val	Pro	Ser	Glu	Gly	Ala	Tyr	Asp	Ile	Ile	Leu	Pro	Arg	Ala		
	380		. •			385		•			390	٠	•	J.		٠.,	
acc	gcc	aac	agc	cag	gtg	atg	ggc	agt	gcc	aac	tcg	acc	ctg	cgg	gct		1371
Thr	Ala	Asn	Ser	Gln	Val	Met	Gly	Ser	Ala	Asn	Ser	Thr	Leu	Arg	Ala	٠	
395	1.			•	400					405				, C	410	·	
gaa	gac	atg	tac	tcg	gcc	cag	agc	cac	cag	gcg	gcc	aca	ccg	ccg	aaa		1419
Glu	Asp	Met	Tyr	Ser	Ala	Gln	Ser	His	Gln	Ala	Ala	Thr	Pro	Prò	Lys	•	
	٠.	٠.,		415		:		.:	420		•		1.5	425	. ** *		
gac	ggc	aag	aac	tct	cag	gtc	ttt	aga	aac	ccc	tac	gtg	tgg	gac			1464
Asp	Gly	Lys	Asn	Ser	Gln	Val	Phe	Λrg	Asn	Pro	Tyr	Väl	Trp	Asp	+:24		

430	435	440	
tgagtc agcggtggcg aggagaggcg gt	cggatttg ggg	agggccc tgaggacctg .	152
gccccgggca agggactete caggetecte	c ctcccctgg	caggeccage aacatgtgee	1580
ccagatgtgg aagggeetee etetetgee	a gtgtttgggt	gggtgtcatg ggtgtcccca	1640
cccactcctc agtgtttgtg gagtcgagg	a gccaacccca	gcctcctgcc aggatcacct	1700
cggcggtcac actccagcca aatagtgtte	c tcggggtggt	ggctgggcag cgcctatgtt	1760
tetetggaga tteetgeaac eteaagagaa	c ttcccaggcg	ctcaggcctg gatcttgctc	1820
ctctgtgagg aacaagggtg cctaataaa	t acatttctgc	tttatt	1866
•			
⟨210⟩ 116			
<211> 2198			
<212> DNA	·		
<213> Homo sapiens		·	
⟨220⟩		· · · · · · · · · · · · · · · · · · ·	
<221> CDS			
<222> (50) (847)	. • •	341g	
<400>-116	• • • • • •		
aaaatggcgt agagcctagc aacagcgcag	gctcccagcc	gagtccgtt atg gcc	55
		Met Ala	•
Marie Company of the	,	1	
gct gcc gtc ccg aag agg atg agg	ggg cca gca	caa gcg aaa ctg ctg	103
Ala Ala Val Pro Lys Arg Met Arg	Gly Pro Ala	Gln Ala Lys Leu Leu	
5 3 5 y 10	• • • • • • • • • • • • • • • • • • •	. 15 ₇	
ccc ggg tcg gcc atc caa gcc ctt	gtg ggg ttg	gcg cgg ccg ctg.gtc	151
Pro Gly Ser Ala Ile Gln Ala Leu	Val Gly Leu	Ala Arg Pro Leu Val	

RNSDOCID - WO ... DII SEEDAS I -

	20		٠.			25					30		• • • •				
ttg	gcg	ctc	ctg	ctt	gtg	tcc	gcc	gct	cta	tcc	agt	gtt	gta	tca	cgg	• .	199
Leu	Ala	Leu	Leu	Leu	Val	Ser	Ala	Ala	Leu	Ser	Ser	Val	Val	Ser	Arg		
35		٠.		·	40	•				45	, .	•4	.:		50	٠.,	
act	gat	tca	ccg	agc	cca	acc	gta	ctc	aac	tca	cat	att	tct	acc	cca	. :	247
Thr	Asp	Ser	Pro	Ser	Pro	Thr	Val	Leu	Asn	Ser	His	Ile	Ser	Thr	Pro		
				55					60		:			65	••		
aat	gtg	aat	gct	tta	aca	cat	gaa	aac	caa	acc	aaa	cct	tct	att	tcċ		295
Asn	Val	Asn	Ala	Leu	Thr	His	Glu	Asn	Gln	Thr	Lys	Pro	Ser	He	Ser		
			70					75					80				
caa	atc	agc	acc	acc	ctc	cct	ccc	acg	acg	agt	acc	aag	aaa	agt	gga		343
Gln	Ile	Ser	Thr	Thr	Leu	Pro	Pro	Thr	Thr	Ser	Thr	Lys	Lys	Ser	Gly		
		85					90					95	٠	٠.	٠, ،		,
gga	gca	tct	gtg	gtc	cct	cat	ccc	tcg	cct	act	cct	ctg	tct	caa	gag		391
Gly	Ala	Ser	Val	Val	Pro	His	Pro	Ser	Pro	Thr	Pro	Leu	Ser	Gln	Glu		
	100					105					110		٠.	• • • •	÷		
gaa	gct	gat	aac	aat	gaa	gat	cct	agt	ata	gag	gag	gag	gat	ctt	ctc	,	439
G]u	Ala	Asp	Asn	Asn	Glu	Asp	Pro	Ser	He	Glu	Glu	Glu	Asp	Leu	Ĺeu		
115			•		120					125					130		•
atg	ctg	aac	agt	tct	cca	tcc	aca	gcc	aaa	gac	act	cta	gac	aat	ggc		487
Met	Leu	Asn	Ser	Ser	Pro	Ser	Thr	Ala	Lys	Asp	Thr	Leu	Asp	Asn	Gly		
	,·. ,	•		135		٠	٠.	:	140			:	(L) T	145			
gat	tat	gga	gaa	cca	gac	tat	gac	tgg	acc	acg	ggc	ccc	agg	gac	gac		535
Asp	Tyr	Gly	Glu	Pro	Asp	Tyr	Asp	Trp	Thr	Thr	Gly	Pro	Arg	Asp	Asp'	٠.	
	1		150	٠, .				155		, .		;	160	و ن	740	1	

gac	gag	tct	gat	gac	acc	ttg	gaa	gaa	aac	agg	ggt	tac	atg	gaa	att	583
Asp	Glu	Ser	Asp	Asp	Thr	Leu	Glu	Glu	Asn	Arg	Gly	Tyr	Met	Glu	Ile	
	Ē	165		÷			170					175		:		
gaa	cag	tca	gtg	aaa	tct	ttt	aag	atg	cca	tcc	tca	aat	ata	gaa	gag	631
Glu	Gln	Ser	Val	Lys	Ser	Phe	Lys	Met	Pro	Ser	Ser	Asn	Ile	Glu	Glu	
	180		•			185					190					
gaa	gac	agc	cat	ttc	ttt	ttt	cat	ctt	att	att	ttt	gct	ttt	tgc	att	679
Glu	Asp	Ser	llis	Phe	Phe	Phe	His	Leu	Ile	Ile	Phe	Ala	Phe	Cys	Ile	
195					200					205					210	
gct	gtt	gtt	tac	att	aca	tat	cac	aac	aaa	agg	aag	att	ttt	ctt	ctg	727
Ala	Val	Val	Tyr	He	Thr	Tyr	His	Asn	Lys	Arg	Lys	Tle	Phe	Leu	Leu	
	•		,	215					220					225	•	
gtt	caa	agc	agg	aaa	tgg	cgt	gat	ggc	ctt	tgt	tcc	aaa	aca	gtg	gaa	775
Va]	Gln	Ser	Arg	Lys	Trp	Arg	Asp	Gly	Leu	Cys	Ser	Lys	Thr	Val	Glu	
			230					235					240			
tac	cat	cgc	cta	gat	cag	aat	gtt	aat	gag	gca	atg	cct	tct	ttg	aag	823
Tyr	His	Arg	Leu	Asp	Gln	Asn	Val	Asn	Glu	Ala	Met	Pro	Ser	Leu	Lys	
	•	245		÷			250					255		,		
att	acc	aat	gat	tat	att	ttt	taaa	agc a	actg	tgati	tt ga	att	tgct	t		870
lle	Thr	Asn	Asp	Tyr	Ile	Phe										
	260					265										
atg	taati	ttt a	attt	gctte	ga ci	tttt	tata	t ga	tattı	gtgc	aaat	tgtti	tgc	cata	ggcaat	930
tgg	lacti	taa a	atga	gaggt	tg ag	gtcto	ctct	t ttį	gcct	tggt	gcti	ttgga	aaa	ttaa	atgtca	990
caaa	acga	gta 1	tataa	attti	tt ta	atct	gtac	t tt	taga	gctg	agti	ttaa	tca	ggtg	tccaaa	1050
atgi	lgagi	tta a	aacat	ttaco	et ta	atati	ttaca	a ctį	gtta	gttt	tta	ttgt	ttt.	agat	ttatta .	1110

ENSULUTION - MUSEUMS I -

The second second second second second

240/307

5 1 5 2 5

tgcttcttct	ggaagtatta	gtgatgctac	tttaaaaga	tcccaaactt	gtaactaaat	1170
tctgacatat	ctgttactgc	tgactcácat	tcattctccg	ccattcaaat	actattttt	1230
atccacattt	ttttttgttc	ccaaactgta	atgtacaagg	atatgtgtga	taatgctttg	1290
gatttgagta	atatttttt	ttcttccaag	aaaactgctt	tggatatttt	tagataattt	1350
aaacataatt	taggataatg	atattgctca	atctgaccac	aattttaggt	aaaacattaa	1410
atgtgtcaag	aaatcttggc	aacagagact	ctgcagcttg	cagtggacat	agataaaatg	1470
ttacagagat	actattttt	tggttggaat	tactatatta	aatttagaag	cagaaactgg	1530
taaaatgtta	aatacatgta	caattgcttt	tagttagcaa	ttgattgtag	catgggttcc	1590
tccaaggttt	caagcaatgg	gcagagttta	aaattatatc	agattcgttt	acttcgttta	1650
ttattttaca	gtaaatttga	ataaatctta	ggggtcatta	tcacttaaat	aatactgtac	1710
ctaggtcttt	caaattaaaa	ttatacctga	atgaagttgt	ttgtatacat	aaaggatatt	1770
tgtgtacaat	taccttttt	ccccacact	tgttttcttt	gtttttgttt	tttatggcaa	1830
ctggaaagta	tttactatgg	gattcattta	tgtctgtctt	tctatcataa	agaattgatc	1890
aatatgtaaa	tatgtgattt	gaaccatggt	tgacttacaa	gtgtcactac	agctttttag	1950
aaaacatagc	cctaatatat	gttaagcagg	acccgggtga	gccagtgggc	ttgcgcttta	2010
tgtagagctg	gaagaaggcc	gtccatcctg	tctcttgggc	ggacagtgta	ctttcctaat	2070
agggaaggga	agcacaatgg	aaatacccct	gaaccgtttt	attgcagtaa	ttttttcat	2130
atctgaaact	attatttaat	attttgaata	agattttaaa	aaataaatgg	caaagatata	2190
aatctatg					, .	2198

<210> 117

⟨211⟩ 2180

<212> DNA

<213> Homo sapiens

<22	21> 0	CDS													- ~	-	
<22	22>, ,((69).	(6	95)											٠ ٠		
<40	0> 1	17.										;					•
aac	cago	gcc	gcgg	acac	cg g	cacc	ggcg	c ca	cgga	ctc	gca	iggad	ccc	gcgc	ccgc	cg	60
ccg	ccgc	t at	gct	g gg	gct	g ct	ggt	g gc	g tt	gct	g go	c ct	g ge	g ct	c gc	t	110
		Ме	t Le	u Gl	y Le	u Le	u Va	1 A1	a Le	u Le	u Al	a Le	eu Gl	y Le	u Al	a	
			1 .				5				1	0 .					
gtc	ttt	gcg	ctg	ctg	gac	gtc	tgg	tac	ctg	gtg	cgc	ctt	ccg	tgc	gcc		158
Val	Phe	Ala	Leu	Leu	Asp	Val	Trp	Tyr	Leu	Val	Arg	Leu	Pro	Cys	Ala		
15					20					25					30		
gtg	ctg	cgc	gcg	cgc	ctg	ctg	cag	ccg	cgc	gtc	cgt	gac	ctg	cta	gct		206
Val	Leu	Arg	Ala	Arg	Leu	Leu	Gln	Pro	Arg	Val	Arg	Asp	Leu	Leu	Ala		
				35					40					45			
gag	cag	cgc	ttc	ccg	ggc	cgc	gtg	ctg	ccc	tcg	gac	ttg	gac	ctg	ctg		254
Glu	Gln	Arg	Phe	Pro	Gly	Arg	Val	Leu	Pro	Ser	Asp	Leu	Asp	Leu	Leu	:	
			50	٠,				55					60				
ttg	cac	atg	aac	aac	gcg	cgc	tac	ctg	cgc	gag	gcc	gac	tti	gcg.	cgc	• .	302
Leu	His	Met	Asn	Asn	Ala	Arg	Tyr	Leu	Arg	Glu	Ala	Asp	Phe	Ala	Arg		
		65					70					75					
gtc	gcg	cac	ctg	acc	cgc	tgc	ggg	gtg	ctc	ggg	gcg	ctg	agg	gag	ttg		350
Val	Ala	His	Leu	Thr	Arg	Cys	Gly	Val	Leu	Gly	Λla	Leu	Arg	Glu	Leu		
	80	• • •			* *	85					90				••		
cgg.	gcg	cac	acg	gtg	ctg	gcg	gcc	tcg	tgc	gcg	cgc	cac	cgc	cgc _.	tcg	•	398
Arg	Ala	llis	Thr	Val	Leu	Ala	Ala	Ser	Cys	Ala	Arg	His	Arg	Arg	Ser	100	
95	• • •	٠.	٠,	,	100	• •			٠.	1.05	٠	• • •		. ,	110	. •	

ctg	cgc	ctg	ctg	gag	ccc	ttc	gag	gtg	cgc	acc	cgc	ctg	ctg	ggc	tgg	446
Leu	Arg	Leu	Leu	Glu	Pro	Phe	Glu	Val	Arg	Thr	Arg	Leu	Leu	Gly	Trp	
				115					120					125		-
gac	gac	cgc	gcg	ttc	tac	ctg	gag	gcg	cgc	ttt	gtc	agc	ctg	cgg	gac	494
Asp	Asp	Arg	Ala	Phe	Tyr	Leu	Glu	Ala	Arg	Phe	Val	Ser	Leu	Arg	Asp	
			130		٠			135					140	•		
ggt	ttc	gtg	tgc	gcg	ctg	ctg	cgc	ttc	cgg	cag	cac	ctg	ctg	ggc	acc	542
Gly	Phe	Val	Cys	Ala	Leu	Leu	Arg	Phe	Arg	G1n	His	Leu	Leu	Gly	Thr	
		145					150	•				155		,		
tca	ccc	gag	cgc	gtc	gtg	cag	cac	ctg	tgc	cag	cgc	agg	gtg	gag	ccc	590
Ser	Pro	Glu	Arg	Val	Val	Gln	His	Leu	Cys	Gln	Arg	Arg	Val	G1u	Pro	
	160		,			165					170	•				
cct	gag	ctg	ccc	gct	gat	ctg	cag	cac	tgg	atc	tcc	tac	aac	gag	gcc	638
	_		Pro													
175	•				180					185						
agc	agc	cag	ctg	ctc	cgc	atg	gag	agt	ggg	ctc	agt	gat	gtc	acc	aag	686
															Lys	
			•	195					200							
gar	rao	tos	ccgc								acca	tc c	tggg	cctg	g	740
	Gln		CCBC					6 -	,	00						
			0000	t aaa	ca a	tete	2000	a ta	ctct	atte	cag	c t.øø	aøt.	agcc	tcctga	800
																860
															tetete	920
															tgccct	980
															actcat	
gtg	gġcc	tag	gtag	ggga	gg a	tggt	gcct	g ga	gcag	aggg	acc	caca	agt	gcct	cccgag	1040

cctagatcct g	gctcggacc	actgcaaggg	ccgaggcagg	gccagaccag	agcatcctgg	1100
gtacaggcct g	gggctctcca	gggcctgggc	ctgattcagg	tgcagtgggc	actcctgaag	1160
ggtcagagcg g	gcatctgcca	ggcagcccct	ctggcttccg	ctgaggtggt	tgcaggcctg	1220
gggcagagcc t	gggtggtca	gaggccgggg	ctagaggcag	atggaaggga	ggcatttgct	1280
gacagaggac g	gggcacccg	ggctcccact	gcagtcggcc	ttgcctcctc	ctcctcct	1340
acctccagtc a	ggctggacg	ggagggtagc	cttgtggctg	agaggggtca	gactaggtgg	1400
cacaggggct c	ctggaaaga	cagcaggctt	cctgctgggc	gttcccttgt	tggagggaat	1460
agagtggggg _. t	gggactctg	caggggtgic	cttgtccact	cgcacccctc	gccgcccacc	1520
agggccatgc t	ctgtgactt	gggctgatcc	ccaccettte	tgggcctaca	gcaccacagg	1580
cegetgtace c	ccttagagc	tgcccctctc	tggcctggcc	ggcagacgtc	ttcttaactc	1640
ctctgtcctc t	atattcagc	atgttccttg	tcagctgctg	ggccggccct	gccttgcgct	1700
agcagagcct c	tcctggcag	cttctcaggt	ctccctaatg	gagacaccag	gclactagga	1760
cactggctgg g	gccaccccc	teetgeetaa	tgcctcacct	tacagctggg	gaaactgagg	1820
cctggaatgg c	ccagagtca	ccaaggcaaa	gttggggctg	gtcccagcct	gaggctccag	1880
ctgatgccct ca	agctcccag	agagggggtg	ccccatctag	ctgggtgcag	gggtcactgc	1940
tigicagete ag	gggccctgt	gcccgcttgc	ctgttcccct	acatctgtgc	ctgcacatcc	2000
agaactgeet ee	cttgccgct	gcctccagga	agcccacctt	gagccagagt	caagggctgc	2060
ngcactgccc ga	itagaacac (gcccgccctc	actgctgttc	ttgccttaca	gccaccatgg	2120
gaaagetgea ac	ctttctgt	tttatttaaa ·	gaaagcccaa	cattaaaggg	tilicatige	2180

<210> 118
<211> 1527
<212> DNA
<213> Homo sapiens,
<220>

<22	ı> CI	os ·	•	•		••	•						•		•			
<222	2>~(1	103).	(305)) .			•						٠	ε			
<400)> <u>1</u> 1	18		٠										••				
agto	cttc	caig	ggcgg	gcigg	tg g	gtgto	ccgct	t to	tete	tgċt	ctto	cgac	tgc a	accg	cacto	g	60	
cgc	gtgad	ccc	tgaci	tccc	cc ta	agtca	agcto	ago	eggt	gctg	cc a	atg (gcg	tgg (egg	-	114	
	·		•					, ,			ŀ	det /	Ala ´	Trp /	Arg	•		
												1						
cgg	ċgc	gaa	gcc	agc	gtc	ggg	gct	cgc	ggc	gtg	ttg	gct	ctg	gcg	ttg		162	
Arg	Arg	Glu	Ala	Ser	Val	Gly	Ala	Arg	Gly	Val	l.eu	Ala	Leu	Λla	Leu			
5					10					15					20			٠
ctc	gcc	ctg	gcc	ctg	tgc	gtg	ccc	ggg	gcc	cgg	ggc	cgg	gct	ctc	gag		210	
Leu	Ala	Leu	Ala	Leu	Cys	Val	Pro	Gly	Ala	Arg	Gly	۸rg	Ala	Leu	Glu			
				25				÷	30					35				
tgg	ttc	tcg	gcc	gtg	gta	aac	atc	gag	tac	gtg	gac	ccg	cag	acc	aac		258	r
Trp	Phe	Ser	Ala	Val	Val	Asn	Ile	Glu	Tyr	Val	Asp	Pro	Gln	Thr	Asn			
			40					45					50	-				
ctg	acg	gtg	tgg	agc	gtc	tcg	gag	agt	ggc	cġc	ttc	ggc	gac	agc	tcg		306	
Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe	Gly	Asp	Ser	Ser	•		
		55	٠.				60					65						
ссс	aag	gag	ggc	gcg	cat	ggc	ctg	gtg	ggc	gtc	ccg	tgg	gcg	ccc	ggc		354	
Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro	Trp	Ala	Pro	Gly			
	70					75					80				•			
gga	gac	ctc	gag	ggc	tgc	gcg	ccc	gac	acg	cgc	ttc	ttc	gtg	ccc	gag		402	
Gly	Asp	Leu	Glu	Gly	Cys	Ala	Pro	Asp	Thr	Arg	Phe	Phe	Val	Pro	Glu			
85					90					95					100			

ссс	ggc	ggc	cga	ggg	gcc	gcg	ccc	tgg	gtc	gcc	ctg	gtg	gct	cgt	ggg	450
Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu	Val	Ala	Arg	Gly	
				105			,		110					115		
ggc	tgc	acc	ttc	aag	gac	aag	gtg	ctg	gtg	gcg	gcg	cgg	agg	aac	gcc	498
Gly	Cys	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala	Arg	Arg	Asn	Ala	
			120					125					130			
tcg	gcc	gtc	gtc	ctc	tac	aat	gag	gag	cgc	tac	ggg	aac	atc	acc	ttg	546
Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly	Asn	Ile	Thr	Leu	
		135					140					145				
ccc	atg	tct	cac	gcg	gga	aca	gga	aat	ata	gtg	gtc	att	atg	att	agc	594
Pro	Met	Ser	His	Λla	Gly	Thr	Gly	Asn	Ile	Val	Val	lle	Met	Ile	Ser	
	150					155					160					
tat	cca	aaa	gga	aga	gaa	att	ttg	gag	ctg	gtg	caa	aaa	gga	att	cca	642
Tyr	Pro	Lys	Gly	Arg	Glu	Ile	Leu	Glu	Leu	Val	Gln	Lys	Gly	Ile	Pro	
165					170					175					180	
gta	acg	atg	acc	ata	ggg	gtt	ggc	acc	cgg	cat	gta	cag	gag	ttc	atc	690
Val	Thr	Met	Thr	Ile	Gly	Val	Gly	Thr	Arg	His	Val	Gln	Glu	Phe	Ile	
				185					190					195		
agc	ggt	cag	tct	gtg	gtg	ttt	gtg	gcc	att	gcc	ttc	atc	acc	atg	atg	738
Ser	Gly	Gln	Ser	Val	Val	Phe	Val	Ala	Ile	Ala	Phe	Ile	Thr	Met	Met	
	•		200					205					210			
att	atc	tcg	tta	gcc	tgg	cta	ata	ttt	tac	tat	ata	cag	cgt	ttc	cta	786
lle	Ile	Ser	Leu	Ala	Trp	Leu	Ile	Phe	Tyr	Tyr	Ile	Gln	Arg	Phe	Leu	
	٠	215	*				220	. •	:	. •		225		* *		
tai	act	ggc	tet	กลช	att	gga	aat	cag	200	cat	202	222	gaa	act	аас	834

Tyr	Thr	Gly	Ser	Gln	Ile	Gly	Ser	Gln	Ser	His	Arg	Lys	Glu	Thr	Lys		
	230	.:.			,. •	235	,	٠.	;		240	1	1.1.	.* '	۳		
aaa	gtt	att	ggc	cag	ctt	cta	ctt	cat	act	gta	aag	cát	gga	gaa	aag		882
Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Vaĺ	Lys	His	Gly	Glu	Lys		
245	t	٠.			250			٠,		255		٠.٠			260		
gga	att	gat	gtt	gat	gct	gaa	aat	tgt	gca	gtg	tgt	att	gaa	aat	ttc		930
Gly	Ile	Asp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Cys	Ile	Glu	Asn	Phe		
	•	•		265				•	270	•			ė	275	. ,	•	
aaa	gta	aag	gat	att	att	aga	att	ctg	cca	tgc	aag	cat	att	ttt	cat		978
Lys	Val	Lys	Asp	Ile	He	Λrg	Ile	Leu	Pro	Cys	Lys	His	Ile	Phe	His		
	•		280					285					290	•			
aga	ata	tgc	att	gac	cca	tgg	ctt	ttg	gat	cac	cga	aca	tgt	cca	atg		1026
Arg	Πe	Cys	Ile	Asp	Pro	Trp	Leu	Leu	Asp	His	Arg	Thr	Cys	Pro	Met		
	٠	295					300					305		•			
tgt	aaa	ctt	gat	gtc	atc	aaa	gcc	cta	gga	tat	tgg	gga	gag	cct	ggg	•	1074
Cys	Lys	Leu	Asp	Val	Ile	Lys	Ala	Leu	Gly	Tyr	Trp	Gly	Glu	Pro	Gly	• •	
	310		•		٠	315			• •		320			.*	- • •	٠	
gat	gta	cag	gag	atg	cct	gct	cca	gaa	tct	cct	cct	gga	agg	gat	cca		1122
Asp	Val	Gln	Glu	Met	Pro	Ala	Pro	Glu	Ser	Pro	Pro	Gly	Arg	Asp	Pro		
325	• .		• •		330	i	1			335				.1 •	340		
gct	gca	aat	ttg	agt	cta	gct	tta	cca	gat	gat	gac	gga	agt	gat	gag		1170
Ala	Ala	Asn	Leu	Ser	Leu	Ala	Leu	Pro	Asp	Asp	Asp	Gly	Ser	Λsp	Glu	. • •	
	٠			345			* 1		350			٠.	٠,	355	. و د	••	
agc	agt	cca	cca	tca	gcc	tcc	cct	gct	gaa	tct	gag	cca	cag	tgt	gat		1218
Ser	Ser	Pro	Pro	Ser	Ala	Ser	Pro	Λla	Glu	Ser	Glů	Pro	Gln	Cys	Asp		

360	365 .	370	
ccc agc ttt aaa gga gat gca gga	gaa aat acg	gca ttg cta gaa gcc	1266
Pro Ser Phe Lys Gly Asp Ala Gly	Glu Asn Thr	Ala Leu Leu Glu Ala	
375 . 380		385	
ggc agg agt gac tct cgg cat gga	gga ccc atc	tcc tagcacac	1310
Gly Arg Ser Asp Ser Arg His Gly	Gly Pro Ile	Ser	
390 395		400	
gtgcccactg aagtggcacc aacagaagtt	tggcttgaac	taaaggacat tttattttt	1370
ttactttagc acataatttg tatatttgaa	aataatgtat	attattttac ctattagatt	1430
ctgatttgat atacaaagga ctaagatatt	ttcttcttga	agagactttt cgattagtcc	1490
tcatatattt atctactaaa atagagtgtt	taccatg		1527
<210> 119		·	
<211> 1905			
<212> DNA			
<213> Homo sapiens	• • • • • • •	•	
<220>	•	Programme Control of the Control of	
<221> CDS			
<222>,(125)(703)		. •	
<400>.119		the second of the second	
gagcctaacc tagagtgctc gcagcagtct	ttcagttgag	cttggggact gcagctgtgg	60
ggagatttca gtgcattgcc tcccctgggt	gctcttcatc	ttggatttga aagttgagag	120
cage atg ttt tgc cca ctg aaa ctc	atc ctg ctg	cca gtg tta ctg gat	169
Met Phe Cys Pro Leu Lys Leu	Ile ¡Leu Leu	Pro Val Leu Leu Asp	
4-1 63 47 37 4 5 5 4 5 4 5	10		

tat	tcc	ttg	ggc	ctg	aat	gac	ttg	aat	gţţ	tcc	ccg	cct	gag	cta	aca		217
Tyr	Ser	Leu	Gly	Leu	Asn	Asp	Leu	Asn	Val	Ser	Pro	Pro	Glu	Leu	Thr	•	
	υ.			20		•	٠.		25		•			30	•		
gtc	cat	gtg	ggt	gat	tca	gct	ctg	atg	gga	tgt	gtt	ttc	cag	agc	aca		265
Val	His	Val	Gly	Asp	Ser	Ala	Leu	Met	Gly	Cys	Val	Phe	Gln	Ser	Thr		
			35		•			40				• .	45		. ·	•	
gaa	gac	aaa	tgt	ata	ttc	aag	ata	gac	tgg	act	ctg	tca	cca	gga	gag		313
Glu	Asp	Lys	Cys	Ile	Phe	Lys	Ile	Asp	Trp	Thr	Leu	Ser	Pro	Gly	G1u		
		50					55		-			60			٠		
cac	gcc	aag	gac	gaa	tat	gtg	cta	tac	tat	tac	tcc	aat	ctc	agt	gtg		361
His	Ala	Lys	Asp	Glu	Tyr	Val	Leu	Tyr	Tyr	Tyr	Ser	Asn	Leu	Ser	Val		
	65					70					75						
cct	att	ggg	cgc	ttc	cag	aac	cgc	gta	cac	ttg	atg	ggg	gac	aac	tta		409
Pro	lle	Gly	Λrg	Phe	Gln	Asn	Arg	Val	His	Leu	Met	Gly	Asp	Asn	Leu	•	
80					85					90					95		
tgc	aat	gat	ggc	tct	ctc	ctg	ctc	caa	gat	gtg	caa	gag	gct	gac	cag	٠.	457
Cys	Asn	Asp	Gly	Ser	Leu	Leu	Leu	Gln	Asp	Val	Gln	Glu	Ala	Asp	Gln	٠.	
				100					105					110	,	٠	
gga	acc	tat	atc	tgt	gaa	atc	cgc	ctc	aaa	ggg	gag	agc	cag	gtg	ttc		505
Gly	Thr	Tyr	Ile	Cys	Glu	Ile	Arg	Leu	Lys	Gly	Glu	Ser	Gln	Val	Phe'		
			115					120	,			. ,	125	•	** * * * * .		
aag	aag	gcg	gtg	gta	ctg	cat	gtġ	ctt	cca	gag	gag	ccc	aaa	gag	ctc		553
Lys	Lys	Ala	Val	Val	Leu	His	Val	Leu	Pro	Glu	Glu	Pro	Lys	Glu	Leu		
	٠	130	1				·135		. 1	, . .		140	· · ·	• . •			
atg	gtc	cat	glg	ggt	gga	t t g	att	cag	atg	gga	tgt	gtt	ttc	cag	agc		601

Met Val His Val Gly Gly Leu Ile Gln Met Gly Cys Val Phe Gln Ser	•
145	
aca gaa gtg aaa cac gtg acc aag gta gaa tgg ata ttt tca gga cgg	649
Thr Glu Val Lys His Val Thr Lys Val Glu Trp Ile Phe Ser Gly Arg	
160 165 170 . 175	
cgc gca aag gta aca agg agg aaa cat cac tgt gtt aga gaa ggc tct	697
Arg Ala Lys Val Thr Arg Arg Lys His His Cys Val Arg Glu Gly Ser	
180 185 190 .	
ggc tgatggtatc aggacaaagg tagaatcagg cacatgagga ggtgttgcaa	750
Gly	
gagcctgggc tttggtgctt atcagaactg gaccttctcc tagcaatttc agctttctgg	810
tgggaaagat aactccaatg aagaacaaga acaagaagat gatgatgatg cttaactttt	870
tggatgccga tatgagattg tacatgagga gattgtattt cgttactacc acaaactcag	930
gatgtctgcg gagtactccc agagctgggg ccacttccag aatcgtgtga acctggtggg	990
ggacattttc cgcaatgacg gttccatcat gcttcaagga gtgagggagt cagatggagg	1050
aaactacacc tgcagtatcc acctagggaa cciggtgttc aagaaaacca ttgtgctgca	1110
tgtcagcccg gaagagcctc gaacactggt gaccccggca gccctgaggc ctctggtctt	1170
gggtggtaat cagttggtga tcattgtggg aattgtctgt gccacaatcc tgctgctccc	1230
tgttctgata ttgatcgtga agaagacctg tggaaataag agttcagtga attctacagt	1290
cttggtgaag aacacgaaga agactaatcc agagataaaa gaaaaaccct gccatttga	1350
aagatgtgaa ggggagaaac acatttactc cccaataatt gtacgggagg tgatcgagga	1410
agaagaacca agtgaaaaat cagaggccac ctacatgacc atgcacccag tttggccttc	1470
tetgaggtea gateggaaca acteaettga aaaaaagtea ggtgggggaa tgecaaaaac	1530
acagcaagco ttttgagaag aatggagagt coottoatot cagcagcggt ggagactoto	1590
tectgtgtgt gtectgggee actetaceag tgattteaga etecegetet eccagetgte	1650

ctcctgtctc attgtttggt caatacactg aagatggaga atttggagcc tggcagag	ag 1710
actggacage tetggaggaa caggeetget gaggggaggg gageatggae ttggeete	tg 1770
gagtgggaca ctggccctgg gaaccaggct gagctgagtg gcctcaaacc ccccgttg	ga 1830
tcagaccete etgtgggcag ggttettagt ggatgagtta etgggaagaa tcagagat	aa 1890
aaaccaaccc aaatc	1905
<210> 120	
<211> 998	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (50)(832)	
<400> 120	
gcacttgcca gccagtccgc ccgtccggag cccggctcgc tggggcagc atg gcg	. 58
Met Ala	
we also be a set of ${f l}$	
ggg tcg ccg ctg ctc tgg ggg ccg cgg gcc ggg ggc gtc ggc ctt ttg	103
Gly Ser Pro Leu Leu Trp Gly Pro Arg Ala Gly Gly Val Gly Leu Leu	i
10 15 15 15	
gtg ctg ctg ctc ggc ctg ttt cgg ccc ccc	g · 151
Val Leu Leu Leu Gly Leu Phe Arg Pro Pro Pro Ala Leu Cys Ala	
25 20 30 7 7 7	,
egg eeg gta aag gag eee ege gge eta age gea geg tet eeg eee ttg	g 199
Arg Pro Val Lys Glu Pro Arg Gly Leu Ser Ala Ala Ser Pro Pro Leu	1

35		•			40					45			•		50		
gct	gag	act	ggc	gct	cct	cgc	cgc	ttc	cgg	cgg	tca	gtg	ccc	cga	ggt	247	7
Ala	Glu	Thr	Gly	Ala	Pro	Arg	Arg	Phe	Arg	Arg	Ser	Val	Pro	Arg	Gly		
		.•		55			-		60	,		٠.		65	·.•.		
gag	gcg	gcg	ggg	gcg	gtg	cag	gag	ctg	gcg	cgg	gcg	ctg	gcg	cat	ctg	295	j
Glu	Ala	Ala	Gly	Ala	Val	Gln	Glu	Leu	Ala	Arg	Ala	Leu	Ala	His	Leu		
	. ,		70					75					80				
ctg	gag	gcc	gaa	cgt	cag	gag	cgg	gcg	cgg	gcc	gag	gcg	cag	gag	gct	343	}
Leu	Glu	Ala	Glu	Arg	Gln	Glu	Arg	Ala	Arg	Ala	Glu	Ala	Gln	Glu	Ala		
		85					90					95					
gag	gat	cag	cag	gcg	cgc	gtc	ctg	gcg	cag	ctg	ctg	cgc	gtc	tgg	ggc	391	
Glu	Asp	Gln	Gln	Ala	Arg	Val	Leu	Ala	Gln	Leu	Leu	Arg	·Val	Trp	Gly		
	100					105					110						
gcc	ccc	cgc	aac	tct	gat	ccg	gct	ctg	ggc	ctg.	gac	gac	gac	ccc	gac	439	ļ
Ala	Pro	Arg	Asn	Ser	Asp	Pro	Ala	Leu	Gly	Leu	Asp	Asp	Asp	Pro	Asp		
115	٠, .	·			120					125				. •	130		
gcg	cct	gca	gcg	cag	ctc	gct	cgc	gct	ctg	ctc	cgc	gcc	cgc	ctt	gac	487	
														Leu			
	. •			135			-		140					145			
cct	gcc	gcc	ctc	gca	gcc	cag	ctt	gtc	ccc	gcg	ccc	gtc	ccc	gcc	gcg	535	
														Ala			
			150					155					160		, (,_		
gcg	ctc	cga	ccc	cgg	ccc	CCg	gtc		gac	gac	eec	ccc		ggc		583	
														Gly			
		165		Ū	-	-	170	,-	F		,	175					

gat	gct	gag	gag	gca	ggc	gac	gag	aca	ccc	gac	gtg	gac	ccc	gag	ctg 、		631
Asp	Ala	Glú	Glu	Ala	Gly	Asp	Glu	Thr	Pro	Asp	Val	Asp	Pro	Glu _.	Leu	٠,	
	180	٠,	•		•	185	• .				190			٠.			
ttg	agg	tac	ttg	ctg	gga	cgg	att	ctt	gcg	gga	agc	gcg	gac	tcc	gag		679
Leu	Arg	Tyr	Leu	Leu	Gly	Arg	Ile	Leu	Ala	Gly	Ser	Ala	Asp	Ser	Glu		
195		, •			200	. •				205					210		
ggg	gtg	gca	gcc	ccg	cgc	cgc	ctc	cgc	cgt	gcc	gcc	gac	cac	gat	gtg		727
Gly	Val	Ala	Ala	Pro	Arg	Arg	Leu	Arg	Arg	Ala	Ala	Asp	His	Asp	Val		
	. •			215			:		220	ē				225			
ggc	tct	gag	ctg	ccc	cct	gag	ggc	gtg	ctg	ggg	gcg	ctg	ctg	cgt	gtg		775
Gly	Ser	Glu	Leu	Pro	Pro	Glu	Gly	Val	Leu	Gly	Ala	Leu	Leu	Arg	Val		
			230					235					240	÷			
aaa	cgc	cta	gag	acc	ccg	gcg	ccc	cag	gtg	cct	gca	cgc	cgc	ctc	ttg		823
					Pro												
-,-					÷												
cca													gt g	cccc	cgcca	•	880
															N.		
110	260																
															agccag		940
															cagc		
ccc																	
401						,				•	•	, ,			.: .		
			٠					•					• • • •		<i>-</i>		
	1> 3														::		
							·.·		. ,	. '	٠,	1.1	. ; -	10	in Jana 1	•	
<21	3> H	omo	sapi	ens					. ;					· · ·			

, the term of the first term of the first of

<40	0>.1	21						٠	• :	, -					,
Met	Thr	Ala	Gly	Gly	G1n	Ala	Glu	Ala	Glu	Gly	Ąla	Gly	Gly	Glu	Pro
1	:	,		. 5					10			;		15	
Gly	Ala	Ala	Arg	Leu	Pro	Ser	Arg	Val	Ala	Arg	Leu	Leu	Ser	Ala	Leu
			20					25					30		•
Phe	Tyr	Gly	Thr	Cys	Ser	Phe	Leu	Ile	Val	Leu	Val	Asn	Lys	Ala	Leu
		35					40					45			
Leu	Thr	Thr	Tyr	Gly	Phe	Pro	Ser	Pro	Ile	Phe	Leu	Gly	Ile	Gly	Gln
	50					55					60				
Met	Ala	Ala	Thr	Ile	Met	Ile	Leu	Tyr	Val	Ser	Lys	Leu	Asn	Lys	lle
65					70					75					80
Ile	His	Phe	Pro	Asp	Phe	Лsp	Lys	Lys	Ile	Pro	Val	Lys	Leu	Phe	Pro
		•		85					90					95	
Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	lle	Ser	Gly	Leu	Ser	Ser	Thr
			100					105					110		
Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu	Arg	Lys	Phe	Thr	Ile
		115				٠,	120					125			٠, ,٠
Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu	Gly	Lys	Gln	Tyr	Ser
	130					135			•		140				
Leu	Asn	lle	lle	Leu	Ser	Val	Phe	Ala	Ile	Ile	Leu	Gly	Ala	Phe	Ile
145					150					155					160
Ala	Ala	Gly	Ser	Asp	Leu	Λla	Phe	Asn	Leu	Glu	Gly	Tyr	Ile	Phe -	Va,l
				165					170				!	175	٠.,
Phe	Leu	Asn	Asp	Ile	Phe	Thr	Ala	Ala	Asn	Gly	Val	Tyr	Thr	Lys	Ģln
			180					105					100		

Lys	Met	Asp	Pro	Lys	Glu	Leu	Gly	Lys	Tyr	Gly	Val	Leu	Phe	Tyr	Asn	
	,	195	. • •	. · ·		,	200					205	• •		.··•	
Λla	Cys	Phe	Met	Ile	Ile	Pro	Thr	Leu	lle	Ile	Ser	Val	Ser	Thr	Gly	
	210	,,,,	V 1 4	*. •		215		,	,		220	٠.				
Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	Gln	Trp	Lys	Asn	Val	Val	Phe	
225		٠.			230					235					240	
Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	Phe	Leu	Leu	Met	Tyr	
				245			, ,		250	•				255	. •	
Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala	Leu	Thr	Thr	Ala	Val	
			260		,			265					270			
Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr	Ile	Gly	Ile	Leu	Ile	
	- •	275					280					285		•	11	
Gly	Gly	Asp	Tyr	Ile	Phe	Ser	Leu	Leu	Asn	Phe	Val	Gly	Leu	Asn	Ile	
	290	4.3				295					300	·		٠٠		
Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu	Thr	Leu	Ser	Ser	Gln	
305	. ·	٠,			310			•		315				٠.	320	
Leu	Lys	Pro	Lys	Pro	Val	Gly	Glu	Glu	Asn	Ile	Cys	Leu	Asp	Leu	Lys	
		1.	. ,	325					330					335	*** I	
Ser											٠				, .;	
	7/-	٠.,				٠	. 1			. •					• • •	
	***										٠					
<21	0> 1	22 '	٠.	٠.	•	. •	* **	• •	•		ı			,	1 .	
	1> 2						٠									
<21	2> P	RT	••	: •	,	.:			. • •		٠.	· • •	• ·	•	;	•
<21	3> H	omo	sapi	ens									** - \$			

in the control of the state at

<40	0> 1	22	:							٠.				٠, ٠	•	
Met	Ala	Glu	Ala	Glu	Glu	Ser	Pro	Gly	Asp	Pro	Gly	Thr	Ala	Ser	Pro	
l	;	. ••		. 5					10	+				15		
Arg	Pro	Leu	Phe	Ala	Gly	Leu	Ser	Asp	Ile	Ser	Ile	Ser	Gln	Asp	Ile	
			20					25					30			
Pro	Val	Glu	Gly	Glu	Ile	Thr	Ile	Pro	Меt	Arg	Ser	Arg	Ile	Arg	Glu	
		35					40					45				
Phe	Asp	Ser	Ser	Thr	Leu	Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg	
	50					55					60					
Asp	Leu	Lys	Ala	Val	Gly	Lys	Lys	Phe	Меt	His	Val	Leu	Tyr	Pro	Arg	
65					70					75					80	
Lys	Ser	Asn	Thr	Leu	Leu	Arg	Asp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile	
				85					90					95		
Leu	Cys	Val	Thr	Leu	Ala	Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser	
			100					105					110			
Glu	Lys	Asp	Gly	Gly	Pro	Gln	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp	
		115					120			. •		125			· ' '	
Phe	Gly	Ala	Val	Thr	lle	Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn	
	130					135					140			•		
lle	Ser	Phe	Phe	Gln	Ser	Leu	Cys	Val	Leu	Gly	Tyr	Cys	Ile	Leu	Pro	
145					150					155			,		160	
Leu	Thr	Val	Ala	Met	Leu	Ile	Cys	Arg	Leu	Val	Leu	Leu	Ala	Asp	Pro	•
	٠,			165			· ·		170	•		. :		175	. •	
Gly	Pro	Val	Asn	Phe	Met	Val	Arg	Leu	Phe	Val	Val	Ile	Val	Met	Phe	
			180			,	. :	185				. ,	190	. •		

Ala Trp Ser Ile Val Ala Ser Thr Ala Phe Leu Ala Asp Ser Gln Pro 195 Pro Asn Arg Arg Ala Leu Ala Val Tyr Pro Val Phe Leu Phe Tyr Phe 210 220 220 220 220 Val Ile Ser Trp Met Ile Leu Thr Phe Thr Pro Gln 235 225 **230** <210> 123 <211> 560 <212> PRT <213> Homo sapiens <400> 123 Met Ala Ala Pro Ala Glu Ser Leu Arg Arg Arg Lys Thr Gly Tyr Ser 10 15 1 5 Asp Pro Glu Pro Glu Ser Pro Pro Ala Pro Gly Arg Gly Pro Ala Gly 20 25 30 Ser Pro Ala His Leu His Thr Gly Thr Phe Trp Leu Thr Arg Ile Val 40 45 Leu Leu Lys Ala Leu Ala Phe Val Tyr Phe Val Ala Phe Leu Val Ala 50 60 60 60 Phe His Gln Asn Lys Gln Leu Ile Gly Asp Arg Gly Leu Leu Pro Cys Arg Val Phe Leu Lys Asn Phe Gln Gln Tyr Phe Gln Asp Arg Thr Scr Trp Glu Val Phe Ser Tyr Met Pro Thr Ile Leu Trp Leu Met Asp Trp

DOCIDI AND DELIBERDA 2 L.S.

	• '.		100					105				-	110		* 1°	
Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu	Ala	Leu	Leu	Gly	Leu	Gly	
	. :	115					120			•		125				
Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	Ala	Asn	Met	Leu	Leu	Met	
	130					135					140					
Ala	Ala	Leu	Trp	Gly	Leu	Tyr	Met	Ser	Leu	Val	Asn	Val	Gly	llis	Val	
145					150					155					160	
Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu	Leu	Glu	Thr	Gly	Phe	Leu	
	,			165					170					175		
Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu	Ser	Arg	Leu	Pro	Gln	His	
			180					185					190			
Thr	Pro	Thr	Ser	Arg	Ile	Val	Leu	Trp	Gly	Phe	Arg	Trp	Leu	Ile	Phe	
		195					200					205				
Arg	lle	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	Ile	Arg	Gly	Λsp	Arg	Cys	
	210					215		-			220					
Trp	Arg	Asp	Leu	Thr	Cys	Met	Asp	Phe	His	Tyr	Glu	Thr	Gln	Pro	Met	
225			. •		230		:			235					240	
Pro	Asn	Pro	Val	Ala	Tyr	Tyr	Leu	His	His	Ser	Pro	Trp	Trp	Phe	His	
				245					250					255		
Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	Glu	Leu	Leu	Val	Pro	Phe	
	,·		260					265					270			
Phe	Leu	Phe	Leu	Gly	Arg	Arg	Ala	Cys	Ile	Ile	His	Gly	Val	Leu	Gln	
													. •			
Ile	Leu								Ser	Gly	Asn			Phe	Leu	
	290					295					300		•			

Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	Cys	Phe	Asp	Asp	Ala	Thr
305	; -	93	,	,	310	٠٠.		;		315		. 1.	• • •	•	320
Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	Ser	Leu	Lys	Asp	Arg	Val
	. ,	11.1	-	325			•		330	,		٠.		335	٠.
Leu	Gln	Met	Gln	Arg	Asp	lle	Arg	Gly	Ala	۸rg	Pro	Glu	Pro	Arg	Phe
	٠.		340		: .	•		345					350	•	ı
Gly	Ser	Val	Val	Arg	۸rg	Ala	Ala	Asn	Val	Ser	Leu	Gly	Val	Leu	Leu
		355					360					365			•
Ala	Trp	Leu	Ser	Val	Pro	Val	Val	Leu	Asn	Leu	Leu	Ser	Ser	Arg	Gln
	370					375					380				
Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His	Ile	Val	Asn	Thr	Tyr	Gly
385	.* '				390		•	,		395			. •	,	400
Ala	Phe	Gly	Ser	He	Thr	Lys	Glu	Arg	Ala	Glu	Val	Ile	Leu	Gln	Gly
				405					410			•	•	415	
Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp	Ala	Met	Trp	Glu	Asp	Tyr
	.: •		420					425					430	,	•
Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	Arg	Arg	Pro	Cys	Leu	Ile
		435		;			440					445			
Ser	Pro	Tyr	His	Tyr	Arg	Leu	Asp	Trp	Leu	Met	Trp	Phe	Ala	Ala	Phe
	450				٠.	455		•		••	460				; :
Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	Ile	Ile	His	Leu	Ala	Gly	Lys	Leu
465		• •			470	•		. •		475		••	•••		480
Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu	Leu	Ala	His	Asn	Pro	Phe
	1	,	•	485	•	•	• • • •	•	490		٠,٠	. ' '	, •	495	, . 1
Ala	Glv	Ara	Pro	Pro	Pro	Arg	Trp	Val	Arg	Gly	Glu	His	Tyr	Arg	Tyr

	1 .		500	٠.		٠		505		•			510		0.0	
Lys	Phe	Ser	Arg	Pro	Gly	Gly	Arg	His	Ala	Λla	Glu	G1 y	Lys	Trp	Trp	
		515			• .		520					525			. •	
Val	Arg	Lys	Arg	Ile	Gly	Ala	Tyr	Phe	Pro	Pro	Leu	Ser	Leu	Glu	Glu	
•	530					535					540					
Leu	Arg	Pro	Tyr	Phe	Arg	Asp	Arg	Gly	Trp	Pro	Leu	Pro	Gly	Pro	Leu	
545					550				•	555					560	
	٠.															
<210	0> 1:	24.														
<21	1> 40	06														
<212	2> PI	RT														
<213	3> H	omo :	sapi	ens												
<400)>- 12	24							٠					,		;
Met	Ala	Glu	Asn	Gly	Lys	Asn	Cys	Asp	Gln	Arg	Arg	Val	Ala	Met	Asn	
1				. 5					10					15		
Lys	Glu	His	His	Asn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	Glu	
	٠, -	. • •	20	٠.				25			٠	. •	30		<u>.</u> : '	
Lys	Lys	Arg	Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg	
		35					40					45				
Gln	Pro	Leu	Ile	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	Leu	Val	Ile	
	50					55				,	60				•.•	
Leu	Lys	Glu	Trp	Thr	Ser	Lys	Leu	Trp	His	Arg	Gln	Ser	Ile	Val	Val	
65	2.60	, ;	-		70				; ;	75				. ,•	80	
Ser	Phe	Leu	Leu	Leu	Leu	Ala	Val	Leu	Ile	Ala	Thr	Tyr	Tyr	Val	Glu	
	me	,	» } ;	85	•	, ; .		11.	90	; •	٠.٠	111 _		, 95		٠,٠

Gly	Val	His	Gln	G1n	Tyr	Val	Gln	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu
		. • •	100	,	-			105					110		24.
Tyr	Ala	Tyr	Trp	Ile	Gly	Leu	Gly	Ile	Leu	Ser	Ser	Val	Gly	Leu	Gly
		115	·· -	١			120	,	٠.		,	125	٠.	•	: .
Thr	Gly	Leu	His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser
	130	•			, .	135		••		, -	140			•	. •
Val	Thr	Leu	Λla	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro
145					150					155					160
Pro	Tyr	Pro	Asp	Gln	Ile	Ile	Cys	Pro	Λsp	Glu	Glu	Gly	Thr	Glu	Gly
				165					170					175	,
Thr	Ile	Ser	Leu	Trp	Ser	Ile	Ile	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys
			180					185					190	٠	
Met	Trp	Gly	Ile	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met
		195					200				•	205			
Ala	Arg	Λla	Λla	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr
	210					215	•			•	220		٠.		
Gln	Glu	Phe	Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe
225	.* •	-		• • •	230		•			235		٠			240
Ala	Ser	Arg	Ala	Lys	Leu	Ala	Val	Gln	Lys	Leu	Val	Gln	Lys		Gly
		•	•	245	•				250	ı				255	•
Phe	Phe	Gly	Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp
		.:	260		. 9		,	265				•	270	•	1.77
Leu	Ala	Gly	Ile	Thr	Cys	Gly	His	Phe	Leu	Val	Pro	Phe	Trp	Thr	Phe
	د با ما	275		• (•	!	٠,	280		. • •			285	5	٠	: · · · · · ·
Pho	Glv	Ala	Thr	Leu	He	Glv	Lvs	Ala	He	· Ile	Lys	: Met	: His	Ile	Gln

	290		•			295	. •	-			300	٠.	:			
Lys	Ile	Phe	Val	Ιlε	lle	Thr	Phe	Ser	Lys	His	Ile	Val	Glu	G1n	Met	
305		' -			310					315					320	
Val	Ala	Phe	Ile	Gly	Ala	Val	Pro	Gly	Ile	Gly	Pro	Ser	Leu	Gln	Lys	
				325	i				330					335		
Pro	Phe	Gln	Glu	Tyr	Leu	Glu	Ala	Gln	Arg	G1n	Lys	Leu	His	His	Lys	
			340					345					350			
Ser	Glu	Met	Gly	Thr	Pro	G1n	Gly	Glu	Asn	Trp	Leu	Ser	Trp	Met	Phe	
		355					360					365				
Glu	Lys	Leu	Val	Val	Val	Met	Val	Cys	Tyr	Phe	Ile	Leu	Ser	Ile	Ile	
	370					375					380					
Asn	Ser	Met	Ala	Gln	Ser	Tyr	Ala	Lys	Arg	Ile	Gln	Gln	Arg	Leu	Asn	
385					390					395					400	
Ser	Glu	Glu	Lys	Thr	Lys											
				405												
<210	> 12	25 .		•										. ,		
<211	> 45	3														
<212	> PR	T														
<213	> Ho	mo s	apie	ns												
<400	> 12	5			,									,	: •3	
Met (Gly	Val	Leu	Gly	Arg	Val	Leu	Leu '	Trp	Leu (Gln	Leu 1	Cys	Ala	Leu	
1	٠.			5					10				·	15	- ·.	
Thr (Gln .	Ala	Val	Ser	Lys										Val	
	:		20				•	25	. '		.1	~ 4	30		s i s	٠

Control of the trigger

Ala	Ala	Asn	Trp	Ser	Gln	Asn	Arg	Thr	Pro	Cys	Ala	Gly	Gly	Ala	Val	
	11.	··35	:			• •	40	•	.•	• 1		[:] 45	••	• • .	23	•. '.
Glu	Phe	Pro	Ala	Asp	Lys	Met	Val	Ser	Val	Leu	Val	Gln	Glu	G1y	His	
	- 50	!.	•	.,	•	⁻ 55	١.		•	:	60	. '			1.7	• .
Ala	Val	Ser	Asp	Met	Leu	Leu	Pro	Leu	Asp	Gly	Glu	Leu	Val	Leu	Ala	
65	••	:	,		· 70	٠.		•		75			:		· 80	. 3
Ser	Gly	Ala	Gly	Phe	Gly	Val	Ser	Asp	Val	Gly	Ser	His	Leu	Asp	Cys	
				85		•			90	٠.		٠		95	''	•
Gly	Ala	Gly	Glu	Pro	Ala	Val	Phe	Arg	Asp	Ser	Asp	Arg	Phe	Ser	Trp	
			100					105					110	•		
His	Asp	Pro	His	Leu	Trp	Arg	Ser	Gly	Asp	Glu	Ala	Pro	Gly	Leu	Phe	
		115					120	٠.				125			٠	
Phe	Val	Asp	۸la	Glu	Arg	Val	Pro	Cys	Arg	His	Asp	Asp	Val	Phe	Phe	
	130					135					140	••	•			
Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val	Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro	
145					150					155					160	
Val	Arg	Val	Arg	Ser	Ile	Ser	Ala	Leu	Gly	Arg	Thr	Phe	Thr	Arg	Asp	
				165					170					175	•	-
Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala	Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe	
			180					185				•	190		. 1	• •
His	Gly													Asp		
	!	195	: •	•	•		200	• .		. •	•	205	٠.,	•		
Ser	Gly												•	Cys		•
	210	\$ *			- 4	215	••		••		220	1	. •		• '	
Δla	1 611	וום 1	Gln	Pro	Leu	G1 v	Glv	Are	Cvs	Pro	Gln	Ala	Ala	Cys	His	

225				. :	230	٠.				235		•		, •	240
Ser	Ala	Leu	Arg	Pro	Gln	Gly	Gln	Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val
				245			•		250				٠.	255	:
Val	Leu	Leu	Thr	His	Gly	Pro	Ala	Phe	Asp	Leu	Glu	Arg	Tyr	Arg	Λla
			260					265					270		
Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly	Leu	Pro	Gln	Tyr	His	Gly	Leu	Gln
		275					280					285			
Val	Ala	Val	Ser	Lys	Val	Pro	Arg	Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp
	290					295					300				
Thr	Glu	Ile	Gln	Val	Val	Leu	Val	Glu	Asn	Gly	Pro	Glu	Thr	Gly	Gly
305					310					315					320
Ala	Gly	Arg	Leu	Λla	Arg	Ala	Leu	Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly
				325					330				·	335	
Glu	Ala	Leu	Gly	Val	Leu	Glu	Ala	Thr	Met	Arg	Glu	Ser	Gly	Ala	His
			340					345				÷	350		
Val	Trp	Gly	Ser	Ser	Ala	Ala	Gly	Leu	۸la	Gly	Gly	Val	Ala	Ala	Ala
		355					360					365			. •
Val	Leu	Leu	Ala	Leu	Leu	Val	Leu	Leu	Val	Ala	Pro	Pro	Leu	Leu	Arg
	370					375					380				
Arg	Ala	Gly	Arg	Leu	Arg	Trp	Arg	Arg	His	Glu	Ala	Ala	Ala	Pro	Ala
385					390					395				.·	400
Gly	Ala	Pro	Leu	Gly	Phe	Arg	Asn	Pro	Val	Phe	Asp	Val	Thr	Ala	Ser
				405					410				· •,	415	: •
Glu	Glu	Leu	Pro	Leu	Pro	Arg	Arg	Leu	Ser	Leu	Val	Pro	Lys	Ala	Ala
	CO.		420		٠.	,		425				e To	430	, ;	<i>:</i>

Ala	Asp	Ser	Thr	Ser	His	Ser	Tyr	Phe	Val	Asn	Pro	Leu	Phe	Ala	Gly	•	
	:	435		٠,	•	•	440		٠	. •		445			* •		
Ala	Glu	Ala	Glu	Ala													
	450	•					٠				•			•		٠.	
								ŧ									
<210)> 12	26			•										,	. •	
<21	1> 59	9		•										•			
<212	2> PI	RT		•							•			. •			
<213	3> H	omo :	sapi	ens													
<406	0> 1:	26									·			:			•
Met	Thr	Ser	Val	Ser	Thr	Gln	Leu	Ser	Leu	Val	Leu	Met	Ser	Leu	Leu		
ì	•			5					10					15		,	
Leu	Val	Leu	Pro	Val	Val	Glu	Ala	Val	Glu	Ala	Gly	Asp	Ala	lle	Ala		
			20					25		•		٠.	30				• •
Leu	Leu	Leu	Gly	Val	Val	Leu	Ser	Ile	Thr	Gly	Ile	Cys	Ala	Cys	Leu		
		35					40					45	•	,	* *	•	
Gly	Val	Tyr	Ala	Arg	Lys	Arg	Asn	Gly	Gln	Met							
	50					55	•							· • '	., ,		,
															1.		
<21	0> 1	27	• .						•					٠.	÷	•	
<21	1>- 2	10									•					•	
<21	2> P	RT ·	:	. •	: .			•		•			•		e:17	•	
												. •					
<40	0>:1	27	٠,	1 .	,	··· .		٠, ٠	•	٠.			<i>,</i> •	٠, ،	12.0		
Not	Δ1 a	ىنم ا	Pré	ւնիո	Met	Cvs	Asn	GIV	Ser	His	l.eu	. Ala	Ser	Thr	Leu		

BNSDOCID: <WO 0112660A2 1 >

MAR 14 1 1 1 4 6 01 02 4 4

1				5	5				10)				15	.	
Arg	Tyr	Cys	Met	Thr	Val	Ser	Gly	Thr	Val	Val	Leu	Val	Ala	Gly	Thr	-
			20)				25					30)		
Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	G1 y	Asp	Ala	Thr	Ala	Gln	Pro	Gly	•
		35					40					45	•	٠		
Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	Pro	Val	Pro	Glu	Gly	Pro	Ser	Pro)
	50					55					60					
Leu	Leu	Arg	Ser	Val	Ser	Phe	Val	Cys	Cys	Gly	Ala	Gly	Gly	Leu	Leu	
65					70					75					80	
Leu	Leu	lle	Gly	Leu	Leu	Trp	Ser	Val	Lys	Ala	Ser	Ile	Pro	Gly	Pro	
				85					90					95		
Pro	Arg	Trp	Asp	Pro	Tyr	llis	Leu	Ser	Arg	Asp	Leu	Tyr	Tyr	Leu	Thr	
			100					105					110	•		
Val	Glu	Ser	Ser	Glu	Lys	Glu	Ser	Cys	Arg	Thr	Pro	Lys	Val	Val	Asp	
		115					120					125				
He	Pro	Thr	Tyr	Glu	Glu	Ala	Val	Ser	Phe	Pro	Val	Ala	Glu	Gly	Pro	
	130	•				135					140				٠	
Pro	Thr	Pro	Pro	Ala	Tyr	Pro	Thr	Glu	Glu	Ala	Leu	Glu	Pro	Ser	Gly	
145					150	-				155					160	
Ser	Arg	Asp	Ala	Leu	Leu	Ser	Thr	Gln	Pro	Ala	Trp	Pro	Pro	Pro	Ser	
		•		165					170	•				175	. •	
Tyr	G] u	Ser	Ile	Ser	Leu	Ala	Leu	Asp	Ala	Val	Ser	Ala	Glu	Thr	Thr	
	• *	Ť	180	٠		•		185	٠.				190		•	
Pro ·	Ser	Ala	Thr	Arg	Ser	Cys	Ser	Gly	Leu	Val	Gln	Thr	Ala	Arg	Gly	
	,	195	411				200					205				

Gly Ser <210> 128 <211> 165 <212> PRT <213> Homo sapiens <400> 128 Met Asp Ser Ser Arg Ala Arg Gln Gln Leu Arg Arg Arg Phe Leu Leu 10 5 Leu Pro Asp Ala Glu Ala Gln Leu Asp Arg Glu Gly Asp Ala Gly Pro 30 20 25 Glu Thr Ser Thr Ala Val Glu Lys Lys Glu Lys Pro Leu Pro Arg Leu 45 35 40 Asn Ile His Ser Gly Phe Trp Ile Leu Ala Ser Ile Val Val Thr Tyr 60 55 Tyr Val Asp Phe Phe Lys Thr Leu Lys Glu Asn Phe His Thr Ser Ser 65 70 75 80 Trp Phe Leu Cys Gly Ser Ala Leu Leu Leu Val Ser Leu Ser Ile Ala 90 95 Phe Tyr Cys Ile Val Tyr Leu Glu Trp Tyr Cys Gly Ile Gly Glu Tyr The Nov. 100 and the Nov. of the 105 of the Nov. 110 and the April Asp Val Lys Tyr Pro Ala Leu Ile Pro Ile Thr Thr Ala Ser Phe Ile 20 Mars 115 Commence of the 120 Mars and the commence of 125 Commence of the c Ala Ala Gly Ile Cys Phe Asn Ile Ala Leu Trp His Val Trp Ser Phe

	130		. •	•	٠.	135					140	٠.			
Phe	Thr	Pro	Leu	Leu	Leu	Phe	Thr	Gln	Phe	Met	Gly	Val	Val	Met	Phe
145	٠.				150					155			·		1,60
Ile	Thr	Leu	Leu	Gly											
	:.			165											
<210)> 1:	29													.:
<211	> 10	62													
<212	2> PI	RT													
<213	3> H	omo :	sapie	ens											
<400)> 1:	29													
Met	Leu	Gln	Thr	Ser	Asn	Tyr	Ser	Leu	Val	Leu	Ser	Leu	Gln	Phe	Leu
1				5					10					15	
Leu	Leu	Ser	Tyr	Asp	Leu	Phe	Val	Asn	Ser	Phe	Ser	Glu	Leu	Leu	Gln
			20					25					30		
Lys	Thr	Pro	Val	Ile	Gln	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp	Ile	Ala
		35					40					45			
Val .	Leu	Phe	Asn	Ile	Ile	Ile	Ile	Phe	Leu	Met	Phe	Phe	Asn	Thr	Phe .
	50					55		•			60				
Val	Phe	Gln	Ala	Gly	Leu	Val	Asn	Leu	Leu	Phe	His	Lys	Phe	Lys	Gly .
65					70					75					. 80
Thr	Ile	Ile	Leu	Thr	Ala	Val	Tyr	Phe	Ala	Leu	Ser	Ile	Ser	Leu	His .
				85		٠., .			90					95	
Val	Trp	Val	Met	Asn	Leu	Arg	Trp	Lys	Asn	Ser	Asn	Ser	Phe	Ile	Trp
		£*!	100					105				ns'	110		

ENSULUCIO MO 011388045 1 -

.

Thr	Asp	Gly	Leu	Gln	Met	Leu	Phe	Val	Phe	G1n	Arg	Leu	Ala	Ala	Val-	
	•••	115	-				120					125 ⁻	. •	•		. *
Leu	Tyr	Cys	Tyr	Phe	Tyr	Lys	Arg	Thr	Ala	Val	Arg	Leu	Gly	Лsp	Pro	
	130					135					140	÷		: •	. 1.	• ;
His	Phe	Tyr	Gln	Asp	Ser	Leu	Trp	Leu	Arg	Lys	Glu	Phe	Met	Gln	Val	
145					150					155					160	
Arg	Arg															
														٠	. 、	
<210)> 13	30													, `	
<21	1> 22	21													•	
<212	2> PI	?T														
<213	3> Ho	omo -:	sapi	ens								٠	1			
<400)> 13	30					•					•				
Met	Aĺa	Leu	Ala	Leu	Λla	Ala	Leu	Ala	Λla	Val	Glu	Pro	Ala	Cys	Gly.	*:
1				5					10					15		
Ser	Arg	Tyr	Gln	Gln	Leu	Gln	Asn	Glu	Glu	Glu	Ser	Gly	Glu	Pro'	Glu	
			20					25					30	•		
Gln	Ala	Ala	Gly	Asp	Ala	Pro	Pro	Pro	Tyr	Ser	Ser	Ile	Ser	Ala	Glu	
		35					40			•		45			. 3	
Ser	Ala	Ala	Tyr	Phe	Asp	Tyr	Lys	Asp	Glu	Ser	Gly	Phe	Pro	Lys	Pro	:
	50					55					60					•
Pro	Ser	Tyr	Asn	Val	Ala	Thr	Thr	Leu	Pro	Ser	Tyr	Asp	Glu	Ala	Gľu	٠.٠
65		•			70					75		f			80	
Arg	Thr	Lys	Ala	Glu	Ala	Thr	Иe	Pro	Leu	Val	Pro	Gly	Arg	Asp	Glú	٠
				85			,	:: •:	90					95		

Asp	Phe	Val	Gly	Arg	Asp	Asp	Phe	Asp	Asp	Ala	Asp	Gln	Leu	Arg	Ile	
	. •		100					105	• •				110			
Gly	Asn	Asp	Gly	Ile	Phe	Met	Leu	Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe	
٠.		115					120				•	125				
Asn	Trp	Ile	Gly	Phe	Phe	Leu	Ser	Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala	
	130					135					140					
Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp	
145					150		٠.			155					160	
Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly	
				165					170					175		
Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe	
			180					185				•	190			
Leu	Arg	Gly	Phe	lle	Asn	Tyr	Ala	Lys	Val	Arg	Lys	Met	Pro	Glu	Thr	
		195					200					205				
Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	Val	Leu	Phe	Ile	Tyr				
	210					215					220				e' '	
<210)> 13	31														
<21	> 10)11														
<212	2> Di	NA												••		
<213	3> · Ho	omo s	sapie	ens												
<400)>.13	31								•		•	•	•,		
															gcgcgg	60
ctgo	ccto	ege (gggt	ggcc	cg. gi	ctgc	tgtc	g gcį	gctc	ttct	acg	ggac	ctg	ctcc	ttcctc	120
atc	gtgci	ttg:	tcaa	caag	gc ge	ctgc	tgac	c, ac	ctac	ggtt	tcc	egte	acc a	aatt	ttcctt	180

BNSDOCID: WO DITISERAD I -

ggaat	tggac	agatggcagc	caccataatg	atactatatg	tgtccaagct	aaacaaaatc	240
attca	cttcc	ctgattttga	taagaaaatt	cctgtaaagc	tgtttcctct	gcctctcctc	300
tacgt	tggaa	accacataag	tggattatca	agcacaagta	aattaagcct	accgatgttc	360
accgt	gctca	ggaaattcac	cattccactt	accttacttc	tggaaaccat	catacttggg	420
aagca	gtatt	cactcaacat	catcctcagt	gtctttgcca	ttattctcgg	ggctttcata	480
gcagc	tgggt	ctgaccttgc	ttttaactta	gaaggctata	tttttgtatt	cctgaatgat	540
atctt	cacag	cagcaaatgg	agtttatacc	aaacagaaaa	tggacccaaa	ggagctaggg	600
aaa ta	eggag	tacttttcta	caatgcctgc	ttcatgatta	tcccaactct	tattattagt	660
gtctc	cactg	gagacctgca	acaggctact	gaattcaacc	aatggaagaa	tgttgtgttt	720
atccta	acagt	ttettettte	ctgttttttg	gggtttctgc	tgatgtactc	cacggttctg	780
tgcago	ctatt	acaattcagc	cctgacgaca	gcagtggttg	gagccatcaa	gaatgtatcc	840
gttgc	ctaca	ttgggatatt	aatcggtgga	gactacattt	tctctttgtt	aaactttgta	900
gggtta	aaata	tttgcatggc	agggggcttg	agatattcct	ttttaacact	gagcagccag	960
ttaaaa	accta	aacctgtggg	tgaagaaaac	atctgtttgg	atttgaagag	С	1011

<210> 132

<211> 708

<212> DNA

<213> Homo sapiens

<400> 132

atggcggaag cggaggagtc tccaggagac ccggggacag catcgcccag gccctgttt 60 gcaggccttt cagatatatc catctcacaa gacatccccg tagaaggaga aatcaccatt 120 cctatgagat ctcgcatccg ggagtttgac agctccacat taaatgaatc tgttcgcaat 180 accatcatgc gtgatctaaa agctgttggg aaaaaattca tgcatgttt gtacccaagg 240 aaaagtaata ctcttttgag agattgggat ttgtggggcc ctttgatcct ttgtgtgaca 300

ctcgcattaa	tgctgcaaag	agactctgca	gatagtgaaa	aagatggagg	gccccaattt	360
gcagaggtgt	ttgtcattgt	ctggtttggt	gcagttacca	tcaccctcaa	ctcaaaactt	420
cttggaggga	acatatcttt	ttttcagagc	ctctgtgtgc	tgggttactg	tatacttccc	480
ttgacagtag	caatgctgat	ttgccggctg	gtacttttgg	ctgatccagg	acctgtaaac	540
ttcatggttc	ggctttttgt	ggtgattgtg	atgtttgcct	ggtctatagt	tgcctccaca	600
gctttccttg	ctgatagcca	gcctccaaac	cgcagagccc	tagctgttta	tcctgttttc	660
ctgttttact	ttgtcatcag	ttggatgatt	ctcaccttta	ctcctcag		708

<210> 133

<211> 1680

<212> DNA

<213> Homo sapiens

<400> 133

atggcggcgc ccgcggagtc gctgaggagg cggaagactg ggtactcgga tccggagcct 60 gagicgccgc ccgcgccggg gcgtggcccc gcaggctctc cggcccatct ccacacgggc 120 accttctggc tgacccggat cgtgctcctg aaggccctag ccttcgtgta cttcgtggca 180 ttcctggtgg ctttccatca gaacaagcag ctcatcggtg acagggggct gcttccctgc 240 300 agagtgttcc tgaagaactt ccagcagtac ttccaggaca ggacgagctg ggaagtcttc agctacatgc ccaccatect etggetgatg gactggteag acatgaacte caacetggae 360 ttgctggctc ttctcggact gggcatctcg tctttcgtac tgatcacggg ctgcgccaac 420 atgcttctca tggctgccct gtggggcctc tacatgtccc tggttaatgt gggccatgtc 480 tggtactctt tcggatggga gtcccagctt ctggagacgg ggttcctggg gatcttcctg 540 tgccctctgt ggacgctgtc aaggctgccc cagcataccc ccacatcccg gattgtcctg 600 tggggcttcc ggtggctgat cttcaggatc atgcttggag caggcctgat caagatccgg 660 ggggaccggt, gctggcgaga cctcacctgc atggacttcc actatgagac ccagccgatg 720

cccaatcctg	tggcatacta	cctgcaccac	tcaccctggt	ggttccatcg	cttcgagacg	780
ctcagcaacc	acttcatcga	gctcctggtg	cccttcttcc	tcttcctcgg	ccggcgggcg	840
tgcatcatcc	acggggtgct	gcagatcctg	ttccaggccg	tcctcatcgt	cagcgggaac	900
ctcagcttcc	tgaactggct	gactatggtg	cccagcctgg	cctgctttga	tgacgccacc	960
ctgggattct	tgttccctc	tgggccaggc	agcctgaagg	accgagttct	gcagatgcag	1020
agggacatcc	gaggggcccg	gcccgagccc	agattcggct	ccgtggtgcg	gcgtgcagcc	1080
aacgtctcgc	tgggcgtcct	gctggcctgg	ctcagcgtgc	ccgtggtcct	caacttgctg	1140
agctccaggc	aggtcatgaa	cacccacttc	aactctcttc	acatcgtcaa	cacttacggg	1200
gccttcggaa	gcatcaccaa	ggagcgggcg	gaggtgatcc	tgcagggcac	agccagetee	1260
aacgccagcg	eccegatge	catgtgggag	gactacgagt	tcaagtgcaa	gccaggtgac	1320
cccagcagac	ggccctgcct	catctccccg	taccactacc	gcctggactg	gctgatgtgg	1380
ttcgcggcct	tccagaccta	cgagcacaac	gactggatca	tccacctggc	tggcaagctc	1440
ctggccagcg	acgccgaggc	cttgtccctg	ctggcacaca	acccettege	gggcaggccc	1500
ccgcccaggt	gggtccgagg	agagcactac	aggtacaagt	tcagccgtcc	tgggggcagg	1560
cacgccgccg	agggcaagtg	gtgggtgcgg	aagaggatcg	gagcctactt	ccctccgctc	1620
agcctggagg	agctgaggcc	ctacttcagg	gaccgtgggt	ggcctctgcc	cgggcccctc	1680

<210> 134

<211> 1218

<212> DNA

<213> Homo sapiens

<400> 134

atggcagaga atggaaaaaa ttgtgaccag agacgtgtag caatgaacaa ggaacatcat 60 aatggaaatt tcacagaccc cicttcagtg aatgaaaaga agaggaggga gcgggaagaa 120 aggcagaata ttgtcctgtg gagacagccg ctcattacct tgcagtattt ttctctggaa 180

atccttgtaa	tcttgaagga	atggacctca	aaattatggc	atcgtcaaag	cattgtggtg	240
tctttttac	tgctgcttgc	tgtgcttata	gctacgtatt	atgttgaagg	agtgcatcaa	300
cagtatgtgc	aacgtataga	gaaacagttt	cttttgtatg	cctactggat	aggcttagga	360
attttgtctt	ctgttgggct	tggaacaggg	ctgcacacct	ttctgcttta	tctgggtcca	420
catatagcct	cagttacatt	agctgcttat	gaatgcaatt	cagttaattt	tcccgaacca	480
ccctatcctg	atcagattat	ttgtccagat	gaagagggca	ctgaaggaac	catttctttg	540
tggagtatca	tctcaaaagt	taggattgaa	gcctgcatgt	ggggtatcgg	tacagcaatc	600
ggagagctgc	ctccatattt	catggccaga	gcagctcgcc	tctcaggtgc	tgaaccagat	660
gatgaagagt	atcaggaatt	tgaagagatg	ctggaacatg	cagagtctgc	acaagacttt	720
gcctcccggg	ccaaactggc	agttcaaaaa	ctagtacaga	aagttggatt	ttttggaatt	780
ttggcctgtg	cttcaattcc	aaatccttta	tttgatctgg	ctggaataac	gtgtggacac	840
tttctggtac	ctttttggac	cttctttggt	gcaaccctaa	ttggaaaagc	aataataaaa	900
atgcatatcc	agaaaatttt	tgttataata	acattcagca	agcacatagt	ggagcaaatg	960
gtggctttca	ttggtgctgt	ccccggcata	ggtccatctc	tgcagaagcc	atttcaggag	1020
tacctggagg	ctcaacggca	gaagcttcac	cacaaaagcg	aaatgggcac	accacaggga	1080
gaaaactggt	tgtcctggat	gtttgaaaag	ttggtcgttg	tcatggtgtg	ttacttcatc	1140
ctatctatca	ttaactccat	ggcacaaagt	tatgccaaac	gaatccagca	gcggttgaac	1200
tcagaggaga	aaactaaa					1218

<210> 135
<211> 1359
<212> DNA

NETEZ DIAN

<400> 135

atgggcgtcc tgggccgggt cctgctgtgg ctgcagctct gcgcactgac ccaggcggtc 60

<213> Homo sapiens

120	ccagaaccgg	ccaactggag	gacgtcgcag	cacggacttc	gggtccccaa	tccaaactct
180	agtcctggtg	agatggtgtc	ccggcggaca	cgttgagttc	ccggcggcgc	accccgtgcg
240	cgtcctggct	atggggaact	ctgccgctgg	agacatgctc	acgccgtctc	caagaaggtc
300	cgcgggcgaa	tggactgtgg	ggctcgcacc	ctcagacgtg	gattcggcgt	tcaggagccg
360	gtggcgctct	acccgcacct	tcctggcatg	tgaccgcttc	teegegacte	cctgccgtct
420	ccgccacgac	gcgtgccctg	gacgccgagc	cttcttcgtg	cacctggcct	ggggacgagg
480	cgctagcccc	teggeeetgg	cgcgtggggc	tgcctccttc	ttccgcctag	gacgtcttct
540	ggacctggct	cgcgcgacga	cggacgttca	ggctctgggc	gcagcatctc	gtgcgtgtcc
600	gctgagcgtg	ggccgggcgc	cgcttccacg	gggccgccta	cgtcccgcgc	gttttcctgg
660	ggcgcagccg	gcaacgcgga	tgcgtctgcg	cccgtcgggc	actgcgcgga	ggccccgagg
720	cgcctgccac	gccccaggc	ggcggccgct	ccagcccctg	cggccctgct	tggatctgcg
780	gttgctgacc	gagccgttgt	gacctctgtg	gcagtgctgt	ggccccaggg	agegeeetee
840	cttcctgggt	tactggacac	cgggcgcgga	ggagcggtac	catttgacct	cacggccccg
900	gtcccggctc	tgccacgctc	gtgtccaagg	gcaggtggcc	accacgggct	ctgcctcagt
960	gacaggcgga	atgggcccga	ctggtggaga	ccaggtggtg	atacggagat	cgtgaggccg
1020	ggccctcggc	agaacggcga	gacgtcgccg	cctcctggcg	tggcccgggc	gcggggcggc
1080	cgcggctggg	ggggcagctc	gcacacgtct	ggagtcgggc	cgaccatgcg	gtcctggagg
1140	ggtggcgccg	tggtcctgct	ctggcgctgc	tgccgtgctg	gcgtggcggc	ctggcgggcg
1200	ggccccggct	acgaggcggc	tggaggaggc	gaggctcagg	gccgcgcggg	ccgctgctgc
1260	ggagctgccc	cggcctccga	ttcgacgtga	caacccggtg	teggetteeg	ggagcgcccc
1320	ccacagttac	acagcaccag	gcggccgcag	ggttccgaag	ggctcagcct	ctgccgcggc
1359	** * *		gccgaggcc	cggggccgag	ctctgttcgc	ttcgtcaacc

<210> 136

Z2115: 177·

540

600

275/307

<212> DNA					. •	
<213> Homo	sapiens			. •		
<400> 136			•		. 1	
atgacctcag	tttcaacaca	gttgtcctta	gtcctcatgt	cactgctttt	ggtgctgcct	60
gttgtggaag	cagtagaagc	cggtgatgca	atcgcccttt	tgttaggtgt	ggttctcagc	120
attacaggca	tttgtgcctg	cttgggggta	tatgcacgaa	aaagaaatgg	acagatg	177
atgacctcag	tttcaacaca	gttgtcctta	gtcctcatgt	cactgctttt	ggtgctgcct	60
gttgtggaag	cagtagaagc	cggtgatgca	atcgcccttt	tgttaggtgt	ggttctcagc	120
attacaggca	tttglgcctg	cttgggggta	tatgcacgaa	aaagaaatgg	acagatg	177
<210> 137	•					
<211> 630		•			•	
<212> DNA						
<213> Homo	sapiens					
<400> 137						
atggccctgc	cccagatgtg	tgacgggagc	cacttggcct	ccaccctccg	ctattgcatg	60
acagtcagcg	gcacagtggt	tctggtggcc	gggacgctct	gcttcgcttg	gtggagcgaa	120
ggggatgcaa	ccgcccagcc	tggccagctg	gccccaccca	cggagtatcc	ggtgcctgag	180
ggccccagcc	ccctgctcag	gtccgtcagc	ttcgtctgct	gcggtgcagg	tggcctgctg	240
ctgctcattg	gcctgctgtg	gtccgtcaag	gccagcatcc	cagggccacc	tcgatgggac	300
ccctatcacc	tctccagaga	cctgtactac	ctcactgtgg	agtcctcaga	gaaggagagc	360
tgcaggaccc	ccaaagtggt	tgacatecce	acttacgagg	aagccgtgag	cttcccagtg	420
gccgaggggc	ccccaacacc	acctgcatac	cctacggagg	aagccctgga	gccaagtgga	480

tcgagggatg ccctgctcag cacccagccc gcctggcctc cacccagcta tgagagcatc

agccttgctc ttgatgccgt ttctgcagag acgacaccga gtgccacacg ctcctgctca.

ggcctggttc	agactgcacg	gggaggaagt				630
				a		
<210> 138				·	• • • •	
<211> 495						
<212> DNA		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
<213> Homo	sapiens	• •	• •		· · · · · · · · · · · · · · · · · · ·	
<400> 138						
atggactcct	cgcgggcccg	acagcagctc	cggcggcgat	tcctcctcct	gccggacgcc	60
gaggcccagc	tggaccgcga	gggtgacgcc	gggccggaaa	cctccacagc	tgttgagaaa	120
aaggagaaac	ctcttccaag	acttaatatc	cattetggat	tctggatttt	ggcatccatt	180
gttgtgacct	attatgttga	cttctttaaa	accettaaag	aaaacttcca	cactagcagc	240
tggtttctct	gtggcagtgc	cttgttgctt	gtcagtttat	caattgcatt	ttactgcata	300
gtctacctgg	aatggtattg	tggaattgga	gaatatgatg	tcaagtatcc	agccttgata	360
cccattacca	ctgcctcctt	tattgcagca	ggaatttgct	tcaacattgc	tttatggcat	420
gtgtggtcgt	ttttcactcc	attgttgttg	tttacccagt	ttatgggggt	tgtcatgttt	480
atcacactcc	ttgga	•			A STATE OF THE PARTY OF THE PAR	495
					• • •	
<210> 139	: ·				1 · 1	
<211> 486		•				
<212> DNA			-			
<213> Homo	sapiens	* .				
<400> 139				٠.		
atéctecaga	ccagtaacta	cagcctggtg	ctctctctgc	agttcctgct	gctgtcctat	60
gacctctttg	tcaattcctt	ctcagaactg	ctccaaaaga	ctcctgtcat	ccagcttgtg	120
ctcttcatca	tccaggatat	tgcagtcctc	ttcaacatca	tcatcatttt	cctcatgttc	180

ttcaacacct	tcgtcttcca	ggctggcctg	gtcaacctcc	tattccataa	gttcaaaggg	240
accatcatcc	tgacagctgt	gtactttgcc	ctcagcatct	cccttcatgt	ctgggtcatg	300
aacttacgct	ggaaaaactc	caacagcttc	atatggacag	atggacttca	aatgctgttt	360
gtattccaga	gactagcagc	agtgttgtac	tgctacttct	ataaacggac	agccgtaaga	420
ctaggcgatc	ctcacttcta	ccaggactct	ttgtggctgc	gcaaggagtt	catgcaagtt	480
cgaagg						486

<210> 140

<211> 663

<212> DNA

<213> Homo sapiens

<400> 140

atggcgttgg	cgttggcggc	gctggcggcg	gtcgagccgg	cctgcggcag	ccggtaccag	60
cagttgcaga	atgaagaaga	gtctggagaa	cctgaacagg	ctgcaggtga	tgctcctcca	120
ccttacagca	gcatttctgc	agagagcgca	gcatattttg	actacaagga	tgagtctggg	180
tttccaaagc	ccccatctta	caatgtagct	acaacactgc	ccagttatga	tgaagcggag	240
aggaccaagg	ctgaagctac	tatccctttg	gttcctggga	gagatgagga	ttttgtgggt	300
cgggatgatt	ttgatgatgc	tgaccagctg	aggataggaa	atgatgggat	tttcatgtta	360
actititica	tggcattcct	ctttaactgg	attgggtttt	tcctgtcttt	ttgcctgacc	420
acttcagctg	caggaaggta	tggggccatt	tcaggatttg	gtctctctct	aattaaatgg	480
atcctgattg	tcaggttttc	cacctatttc	cctggatatt	ttgatggtca	gtactggctc	540
tggtgggtgt.	tccttgtttt	aggctttctc	ctgtttctca	gaggatttat	caattatgca.	600
aaagt.tcgga.	agatgccaga	aactttctca	aatctcccca	ggaccagagt	tctctttatt	660
tat 🚉						663

BNSDOCID: <WO 0112660A2 L >

⟨210⟩ 141′	
<211> 1622	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (78)(1091)	
<400> 141	
ctcttccccg gcccggccgg gcgggaccag tgcgcagccg gggctggcgg gcggcggggt	60
ccgcggggcc gcaggag atg acg gcc ggc ggc cag gcc gag gcc gag ggc	110
Met Thr Ala Gly Gly Gln Ala Glu Ala Glu Gly	
1 5 10	
get gge ggg gag ece gge geg egg etg ece teg egg gtg gee egg	158
Ala Gly Gly Glu Pro Gly Ala Ala Arg Leu Pro Ser Arg Val Ala Arg	*
15 20 25 25	
ctg ctg tcg gcg ctc ttc tac ggg acc tgc tcc ttc ctc atc gtg ctt	206
Leu Leu Ser Ala Leu Phe Tyr Gly Thr Cys Ser Phe Leu Ile Val Leu	
35 40	
gtc aac aag gcg ctg ctg acc acc tac ggt ttc ccg tca cca att ttc	254
Val Asn Lys Ala Leu Leu Thr Thr Tyr Gly Phe Pro Ser Pro Ile Phe	
45 50 55	
ctt gga att gga cag atg gca gcc acc ata atg ata cta tat gtg tcc	302
Leu Gly Ile Gly Gln Met Ala Ala Thr Ile Met Ile Leu Tyr Val Ser	
60 65 70 75	
aag cta aac aaa atc att cac ttc cct gat ttt gat aag aaa att cct	350

Lys	Leu	Asn	Lys	Ile	Ile	His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	Ile	Pro	
	٠,	-		-80					85				٠.	90		
gta	aag	ctg	ttt	cct	ctg	cct	ctc	ctc	tac	gtt	gga	aac	cac	ata	agt .	398
Val	Lys	Leu	Phe	Pro	Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser	
			95					100					105			
gga	tta	tca	agc	aca	agt	aaa	tta	agc	cta	ccg	atg	ttc	acc	gtg	ctc	446
Gly	Leu	Ser	Ser	Thr	Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu	
		110					115					120				
agg	aaa	ttc	acc	att	cca	ctt	acc	tta	ctt	ctg	gaa	acc	atc	ata	ctt .	494
Arg	Lys	Phe	Thr	He	Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu	
	125					130					135					
ggg	aag	cag	tat	tca	ctc	aac	atc	atc	ctc	agt	gtc	ttt	gcc	att	att	542
Gly	Lys	Gln	Tyr	Ser	Leu	Asn	Ile	lle	Leu	Ser	Val	Phe	Ala	Ile	Ile	
140					145					150					155	
ctc	ggg	gct	ttc	ata	gca	gct	ggg	tct	gac	ctt	gct	ttt	aac	tta	gaa	590
Leu	Gly	Ala	Phe	Ile	Ala	Ala	Gly	Ser	Asp	Leu	Ala	Phė	Asn	Leu	Glu	
	•			160		٠.٠			165					170		
ggc	tat	att	ttt	gta	ttc	ctg	aat	gat	atc	ttc	aca	gca	gca	aat	gga	638
Gly	Tyr	Ile	Phe	Val	Phe	Leu	Asn	Asp	Ile	Phe	Thr	Ala	Ala	Asn	Gly	
	-		175	. 1				180			•		185			
gtt	tat	acc	aaa	cag	aaa	atg	gac	cca	aag	gag	cta	ggg	aaa	tac	gga	686
Val	Tyr	Thr	Lys	Gln	Lys	Met	Asp	Pro	Lys	Glu	Leu	Gly	Lys	Tyr	Gly	
		190	1 .	••			195	·	, .·	. ,	•	200	•		t 1:	
gta	ctt	ttc	tac	aat	gcc	tgc	ttc	atg	att	atc	cca	act	ctt	att	att .	734
Val	Leu	Phe	Tyr	Asn	Ala	Cys	Phe	Met	Ile	Ile	Pro	Thr	Leu	lle	Ile	

		205		• • •	: .	•	210	•	. 1	•	: .	215	- ,	÷	;			
а	gt	gtc	tcc	act	gga	gac	ctg	caa	cag	gct	act	gaa	tţc	aac	caa	tgg		782
S	er	Val	Ser	Thr	Gly	Asp	Leu	Gln	Gln	Ala	Thr	Glu	Phe	Asn	Gln	Trp		
2	20	1	•	٠.		225	. • .				230	:				235		
а	ag	aat	gtt	gtg	ttt	atc	cta	cag	ttt	ctt	ctt	tcc	tgt	ttt	ttg	ggg		830
L	ys.	Asn	Val	Val	Phe	Ile	Leu	Gln	Phe	Leu	Leu	Ser	Cys	Phe	Leu	Gly	•	
					240					245					250			
t	tt	ctg	ctg	atg	tac	tcc	acg	gtt	ctg	tgc	agc	tat	tac	aat	tca	gcc		878
F	he	Leu	Leu	Met	Tyr	Ser	Thr	Val	Leu	Cys	Ser	Tyr	Tyr	Asn	Ser	Ala		
				255		÷			260					265				-
c	tg	acg	aca	gca	gtg	gtt	gga	gcc	atc	aag	aat	gta	tcc	gtt	gcc	tac		926
L	.eu	Thr	Thr	Ala	Val	Val	Gly	Ala	Ile	Lys	Asn	Val	Ser	Val	Ala	Tyr		
			270					275					280				•	
a	tt	ggg	ata	tta	atc	ggt	gga	gac	tac	att	ttc	tct	ttg	tta	aac	ttt		974
I	le	Gly	He	Leu	Ile	Gly	Gly	Asp	Tyr	Ile	Phe	Ser	Leu	Leu	Asn	Phe		
		285					290			•		295	•		•	٠.	, .	
٤	ta	ggg	tta	aat	att	tgc	atg	gca	ggg	ggc	ttg	aga	tat	tcc	ttt	tta		1022
١	al	Gly	Leu	Asn	Ile	Cys	Met	Ala	Gly	Gly	Leu	Arg	Tyr	Ser	Phe	Leu		
3	800	- *	,		;	305	•			,	310		•		:	315		
ä	ıca	ctg	agc	agc	cag	tta	aaa	cct	aaa	cct	gtg	ggt	gaa	gaa	aac	atc		1070
7	hr	Leu	Ser	Ser		Leu												
		: · . ·	•		320					325	٠	,		•	330	N ,	•	
						agc												1120
(Cys	Leu	Asp	Leu	Lys	Ser		٠.		. •	•	• •		. •	1	;	• • •	
		: ,	94 C	335						. 1	• •		2		.,,	, , ;	. •	

tgtgactgcg ggctgggggg gcattcccag taggaatgtg aagccagagg tttcggattc	1180
gtgacateca ecceetggge aagtgagage atetgeaaaa tgeaaagaga actaceteat	1240
atgcaggatg agccaatggc agtctcaaga aatgtactcg ggcgacacct tacctgtgga	1300
aagcaaatct tttcaaaata agccactggg actcggtagg tggagcccca gctgctcttc	1360
tagggaccta tggggccttc gtggcatctc tgtgctgtgt gctggggagg aggttgatgt	1420
aatggtgact cttttctgat cagcaccttg gccgtgattc ccaaggtccc agccaaagca	1480
aagggccagt tgtttcagtt taaacagaca tgtctttagt ctaataaaat tagttaactg	1540
ccagtaaagt tatttgttag ctttgatgaa agctatgttg gtatctttcc ctaatcatca	1600
aagtaaataa aaaatcattt ct	1622
<210> 142	
<211> 2475	
<212> DNA	
<213> Homo sapiens	
<220> ·	
<221> CDS	
<222> (36) (746)	
<400> 142	
acctgtggga gcgacccggg agaaggaggg ccaag atg gcg gaa gcg gag gag	53
Met Ala Glu Ala Glu Glu	
and the second of the second o	
tct cca gga gac ccg ggg aca gca tcg ccc agg ccc ctg ttt gca ggc .	101
Ser Pro Gly Asp Pro Gly Thr Ala Ser Pro Arg Pro Leu Phe Ala Gly	
· · · · 10 · · · · · · 15 · · · · · · · · · 20 · · · · · ·	
cti tca gai ala tcc atc tca caa gac atc ccc gia gaa gga gaa atc	149

Leu	Ser	Asp	lle	Ser	Ile	Ser	Gln	Asp	Ile	Pro	Val	Glu	Gly	Glu	lle	
		- 25					30		٠.			35			• • • • •	
acc	att	cct	atg	aga	tct	cgc	atc	cgg	gag	ttt	gac	agc	tcc	aca	tta '	197
Thr	Ile	Pro	Met	Arg	Ser	Arg	He	Arg	Glu	Phe	Asp	Ser	Ser	Thr	Leu ·	
	· 40					· 45				• .	50				:.	
aat	gaa	tct	gtt	cgc	aat	асс	atc	atg	cgt	gat	cta	aaa	gct	gtt	ggg	245
Asn	Glu	Ser	Val	Arg	Asn	Thr	Ile	Met	Arg	Λsp	Leu	Lys	Ala	Val	Gly	
55	•				- 60					65				٠.	70	
aaa	aaa	ttc	atg	cat	gtt	ttg	tac	cca	agg	aaa	agt	aat	act	ctt	ttg	293
Lys	Lys	Phe	Met	His	Val	Leu	Tyr	Pro	Arg	Lys	Ser	Asn	Thr	Leu	Leu	
				75					80					85	,	
aga	gat	tgg	gat	ttg	tgg	ggc	cct	ttg	atc	ctt	tgt	gtg	aca	ctc	gca	341
Arg	Λsp	Trp	Asp	Leu	Trp	Gly	Pro	Leu	Ile	Leu	Cys	Val	Thr	Leu	Ala	
			90					95					100	٠.		
tta	atg	ctg	caa	aga	gac	tct	gca	gat	agt	gaa	aaa	gat	gga	ggg	ccc .	389
Leu	Met	Leu	Gln	Arg	Asp	Ser	Ala	Asp	Ser	Glu	Lys	Asp	Gly	Gly	Pro · ·	
		105					110					115			•	
caa	ttt	gca	gag	gtg	ttt	gtc	att	gtc	tgg	ttt	ggt	gca	gtt	acc	atc	437
G1n	Phe	Ala	Glu	Val	Phe	Val	Ile	Val	Trp	Phe	Gly	Ala	Val	Thr	Ile:	
	120					125					130					
acc	ctc	aac	tca	aaa	ctt	ctt	gga	ggg	aac	ata	tct	ttt	ttt	cag	agc	485
Thr	Leu	Asn	Ser	Lys	Leu	Leu	Gly	Gly	Asn	Ile	Ser	Phe	Phe	Gln	Ser 😘	
135		.:		• ••	140		.; *			145		٠	٠	1,	150	
ctc	tgt	gtg	ctg	ggt	tac	tgt	ata	ctt	ccc	ttg	aca	gta	gca	atg	ctg	533
1	Cvc	Vol	1	G1 _v	Tur	Cve	II.	ىرم ا	Pro	ىرم ا	Thr	Val	Ala	Met	Leu .	

			• .	155		•	•		160			,		165	:		
att	tgc	cgg	ctg	gta	ctt	ttg	gct	gat	cca	gga	cct	gta	aac	ttc	atg		581
Ile	Cys	Arg	Leu	Val	Leu	Leu	Ala	Asp	Pro	Gly	Pro	Val	Asn	Phe	Met		
			170			•		175				•	180		:		
gtt	cgg	ctt	ttt	gtg	gtg	att	gtg	atg	ttt	gcc	tgg	tct	ata	gtt	gcc		629
Val	Arg	Leu	Phe	Val	Val	Ile	Val	Met	Phe	Ala	Trp	Ser	Ile	Val	Ala		
	;	185					190	٠				195				٠.	
tcc	aca	gct	ttc	ctt	gct	gat	agc	cag	cct	cca	aac	cgc	aga	gcc	cta		677
Ser	Thr	Ala	Phe	Leu	Ala	Asp	Ser	Gln	Pro	Pro	Asn	Arg	Arg	Ala	Leu		
	200					205					210						
gct	gtt	tat	cct	gtt	ttc	ctg	ttt	tac	ttt	gtc	atc	agt	tgg	atg	att		725
Ala	Val	Tyr	Pro	Val	Phe	Leu	Phe	Tyr	Phe	Val	He	Ser	Trp	Met	Ile		
215					220					225					230		
ctc	acc	ttt	act	cct	cag	taaa	itca	ggaa	tgge	gaa a	ttaa	aaac	c a	gtgaa	attga		780
Leu	Thr	Phe	Thr	Pro	Gln												
		• .		235						:				2	٠		
aago	acat	ct g	gaaag	atgo	aat	tcac	cate	gag	cttt	gtc	tctg	gccc	tt a	atttg	gtcta	a .	840
tttt	ggag	gt a	tttg	ataa	c tg	agta	ggtg	agg	agat	taa	aagg	gago	ca t	tatag	gcact	g	900
tcac	ccct	ta t	ttga	ggaa	c tg	atgt	ttga	aag	gctg	ttc	tttt	ctct	ct 1	taatg	tcati	t	960
tctt	.taaa	aa t	acat	gtgc	a ta	ctac	acac	agt	atat	aat	gcct	cctt	aa g	ggcat	gatg	g i	020
agto	acce	tg g	tcca	tttg	g gt	gaca	acca	gtg	actt	ggg	aago	acat	ag a	ataca	tctt	a 1	080
caag	ttga	at a	igagt	tgat	a ac	tatt	ttca	gtt	ttga	gaa	tacc	agtt	.ca g	ggtgo	agcto	c 1	140
ttaa	acad	at t	gcct	tatg	a ct	atta	gaat	atg	cctc	tct	tttc	ataa	at a	aaaa	taca	t !	200
ggto	tata	tc c	attt	tctt	t ta	tttc	tctc	tct	taag	ctt	aaaa	aggo	aa t	gaga	gaggi	t 1	260
tagg	agtg	gg t	tcat	acac	g ga	gaat	gaga	aaa	catg	cat	taac	caat	at t	caga	tttt	g]	320

atcaggggaa	attctacact	tgttgcaaaa	aaaaaaaaa	aaaaagcaaa	gggcctctaa	1380
agaatcagcc	tctttggtcc	ctttgtgctg	tcaccttttt	gccatgttta	acagcatctt :	1440
ggttggcact	ctagtcttaa	tcttgctcct	taactttgaa	tatgcagtct	aaaatgtcag	1500
tagtcaacat	gtaattttcc	tttgaaattc	tgaatattcc	agtgctggaa	cttatccaaa	1560
aagaagacct	cagaaactta	gattggtaga	tctctagtgc	atattatcat	gtgggcacct	1620
tctcttaggg	tggaatgagg	cagtctggat	gcagcatagt	taaaaggagc	tgtttaatat	1680
tctctgtagt	ctggcctctt	aactagaaag	taaagctaaa	tcagaagcct	gtatttaacc	1740
atgtgaacag	ggagggattt	agtgttctga	tggctgatta	atagaacagc	tagatactta	1800
gagcatgacg	tgggatggga	tgagtttaca	gctgctgcct	tttcatggtg	agcttagcag	1860
ttttctcatt	agatgtgttt	ttttgggttg	gggaatagca	atttatttta	ttgattttag	1920
actttatcaa	gctaattagc	tcccctttag	ataagtacat	gttgcacatg	tgcacctact	1980
tgtaatctca	gatatttatg	cacacaagtg	tgaaggtttt	tcagggagca	gagcatctgg	2040
gacaggctga	ttctgagcta	aacagggctc	ctttaaggca	atatgaactg	ttgccttcta	2100
taaattgcac	attgaggaac	tctaatagac	aaagattagg	tgtcaggcag	aaaacactca	2160
ttgtaaatat	actattagtt	gataaacata	ggactttctt	attccccagt	ttttctttat	2220
catataattt	aaatatttat	tcattttgta	tttaaagact	acctacacat	agatatatga	2280
ttccaaagtc	atactttctc	catccccaca	ttagccaagt	gaatacaggg	ccaaatgggt ·	2340
tcttggaatg	ataataacaa	agcat tacaa	agtgggtccc	cttggttcca	gccttgtcca	2400
gagtttttgg	ttatatattt	ctatttatta	caatttacct	tttaaattgt	aaaataaacc	2460
tttgtgtgga	cagag		••		** ***	2475
:					e	
<210> 143	• •		. ;		partia e in	
<211> 1739			.,			

BNSDOCID <WO 0112660A2 L >

⟨213⟩ Homo sapiens

(22	U>					•	٠		•				•	• • •	•		
<22	1> C	DS	٠.										-	•			
<22	2> (21).	(1	703)									• •		•		
<40	0>~-1-	43		- •					٠.			. •					
tgc	gccc	tga	cago	ccaa	ca a	tg g	cg g	cg c	cc g	cg g	ag t	cg c	tg a	gg a	gg		50
					M	et A	la A	la P	ro A	la G	lu S	er L	eu A	rg.A	rg		
						1				5					10		
cgg	aag	act	ggg	tac	tcg	gat	ccg	gag	cct	gag	tcg	ccg	ccc	gcg	ccg		98
Arg	Lys	Thr	Gly	Tyr	Ser	Asp	Pro	Glu	Pro	Glu	Ser	Pro	Pro	Ala	Pro		
				15					20					25			
ggg	cgt	ggc	ccc	gca	ggc	tct	ccg	gcc	cat	ctc	cac	acg	ggc	acc	ttc		146
Gly	Arg	Gly	Pro	Ala	Gly	Ser	Pro	Ala	His	Leu	His	Thr	Gly	Thr	Phe		
			30					35					40				
tgg	ctg	acc	cgg	atc	gtg	ctc	ctg	aag	gcc	cta	gcc	ttc	gtg	tac	ttc		194
Trp	Leu	Thr	Arg	He	Val	Leu	Leu	Lys	Ala	Leu	Ala	Phe	Val	Tyr	Phe		
		45					50					55		,			
gtg	gca	ttc	ctg	gtg	gct	ttc	cat	cag	aac	aag	cag	ctc	atc	ggt	gac		242
Val	Ala	Phe	Leu	Val	Ala	Phe	His	Gln	Asn	Lys	Gln	Leu	Ile	Gly	Λsp		
	60					65					70				·:		
agg	ggg	ctg	ctt	ccc	tgc	aga	gtg	ttc	ctg	aag	aac	ttc	cag	cag	tac		290
Arg	Gly	Leu	Leu	Pro	Cys	Arg	Val	Phe	Leu	Lys	Asn	Phe	Gln	Gln	Tyr		
75	.•				80	1.	. ,			85	• .			• •	90		
ttc	cag	gac	agg	acg	agc	tgg	gaa	gtc	ttc	agc	tac	atg	ccc	acc	atc	.· ,	338
Phe	Gln	Лsp	Arg	Thr	Ser	Trp	Glu	Val	Phe	Ser	Tyr	Met	Pro	Thr	Ile		
	31.			95		٠.		• • •	100				.	105			

ctc	tgg	ctg	atg	gac	tgg	tca	gac	atg	aac	tcc	aac	ctg	gac	ttg	ctg'	•	386
Leu	Trp	Leu	Met	Asp	Trp	Ser	Asp	Met	Asn	Ser	Asn	Leu	Asp	Leu	Leu		
			110					115				٠.	120	• •	<i>i</i> .	-	•
gct	ctt	ctc	gga	ctg	ggc	atc	tcg	tct	ttc	gta	ctg	atc	acg	ggc	tgc '		434
Ala	Leu	Leu	Gly	Leù	Gly	Ile	Ser	Ser	Phe	Val	Leu	Ile	Thr	Gly	Cys	.•	
		125		٠.			130	. •.	٠.,	, ,	:	135					
gcc	aac	atg	ctt	çtc	atg	gct	gcc	ctg	tgg	ggc	ctc	tac	atg	tcc	ctg		482
۸la	Asn	Met	Leu	Leu	Met	Ala	Ala	Leu	Trp	Glý	Leu	Tyr	Met	Ser	Leu	•, •	-
	140					145				٠.	150	٠.	• .	٠.,	24.7.4		
gtt	aat	gtg	ggc	cat	gtc	tgg	tac	tct	ttc	gga	tgg	gag	tcc [.]	cag	ctt		530
Val	۸sn	Val	Gly	His	Val	Trp	Tyr	Ser	Phe	Gly	Trp	Glu	Ser	Gln	Leu		
155	٠.				160					165				1.	170		
ctg	gag	acg	ggg	ttc	ctg	ggg	atc	ttc	ctg	tgc	cct	ctg	tgg	acg	ctg		578
Leu	Glu	Thr	Gly	Phe	Leu	Gly	Ile	Phe	Leu	Cys	Pro	Leu	Trp	Thr	Leu		
				175				÷	180				•	185	• :		
tca	agg	ctg	ccc	cag	cat	acc	ccc	aca	tcc	cgg	att	gtc	ctg	tgg	ggc		626
Ser	Arg	Leu	Pro	Gln	His	Thr	Pro	Thr	Ser	Arg	Ile	Val	Leu	Trp	G1y	• •	
	. 1		190		٠.			195					200	: ,	· .		
ttc	cgg	tgg	ctg	atc	ttc	agg	atc	atg	ctt	gga	gca	ggc	ctg	atc	aag		674
Phe	Arg	Trp	Leu	Ile	Phe	Arg	Ile	Met	Leu	Gly	Ala	Gly	Leu	Ile	Lys	•-	
		205	• .	٠,	;		210	• .				215		•,	*1	٠.	
atc	cgg	ggg	gac	cgg	tgc	tgg	cga	gac	ctc	acc	tgc	atg	gac	ttc	cac	• .	722
ile	Arg	Gly	Asp	Arg	Cys	Trp	Arg	Asp	Leu	Thr	Cys	Met	Asp	Phe	His	:	
													,		11		
tat	gag	acc	cag	CCE	atg	ccc	aat	cct	gtg	gca	tac	tac	ctg	cac	cac		770

ıyr	Glu	ınr	GIN	Pro	Met	Pro	Asn	Pro	Val	Ala	lyr	lyr	Leu	HIS	HIS	
235		·		٠.	240				٠.	245					250	
tca	ccc	tgg	tgg	ttc	cat	cgc	ttc	gag	acg	ctc	agc	aac	cac	ttc	atc	818
Ser	Pro	Trp	Trp	Phe	His	Arg	Phe	Glu	Thr	Leu	Ser	Asn	His	Phe	Ile	
				255					260					265		
gag	ctc	ctg	gtg	ccc	ttc	ttc	ctc	ttc	ctc	ggc	cgg	cgg	gcg	tgc	atc	866
Glu	Leu	Leu	Val	Pro	Phe	Phe	Leu	Phe	Leu	Gly	Arg	Arg	Ala	Cys	Ile	
	٠,		270					275					280		•	
atc	cac	ggg	gtg	ctg	cag	atc	ctg	ttc	cag	gcc	gtc	ctc	atc	gtc	agc	914
Ile	His	Gly	Val	Leu	Gln	Ile	Leu	Phe	Gln	Ala	Val	Leu	lle	Val	Ser	
		285					290					295				
gġg	aac	ctc	agc	ttc	ctg	aac	tgg	ctg	act	atg	gtg	ccc	agc	ctg	gċc	962
Gly	Asn	Leu	Ser	Phe	Leu	Asn	Trp	Leu	Thr	Met	Val	Pro	Ser	Leu	Ala	
	300					30 5					310					
tgc	ttt	gat	gac	gcc	acc	ctg	gga	ttc	ttg	ttc	ccc	tct	ggg	cca	ggc	1010
Cys	Phe	Asp	Asp	Ala	Thr	Leu	Gly	Phe	Leu	Phe	Pro	Ser	Gly	Pro	Gly	
315		•			320					325					330	
agc	ctg	aag	gac	cga	gtt	ctg	cag	atg	cag	agg	gac	atc	cga	ggg	gcc	1058
Ser	Leu	Lys	Asp	Arg	Val	Leu	Gln	Met	Gln	Arg	Asp	Iļe	Arg	Gly	Ala	
	· •	•		335					340					345		
cgg	ссс	gag	ccc	aga	ttc	ggc	tcc	gtg	gtg	cgg	cgt	gca	gcc	aac	gtc	1106
Arg	Pro	Glu	Pro	Arg	Phe	Gly	Ser	Val	Val	Arg	Arg	Ala	Ala	Asn	Val	
	· ··	,	350	• • •	,	• •		355	. •		r		360			
tcg	ctg	ggc	gtc	ctg	ctg	gcc	tgg	ctc	agc	gtg	ccc	gtg	gtc	ctc	aac	1154
Ser	Leu	Glv	Val	Leu	Leu	Ala	Trn	Leu	Ser	Val	Pro	Val	Val	1.eu	Asn	

	•	365		٠.		• .	370	-	•			375	:1		••	1:	
ttg	ctg	agc	tcc	agg	cag	gtc	atg	aac	acc	cac	ttc	aac	tct	ctt	cac	•	1202
Leu	Leu	Ser	Ser	Arg	G1n	Val	Met	Asn	Thr	His	Phe	Asn	Ser	Leu	His		
	380	••				385		i			390		:		. !		
atc	gtc	aac	act	tac	ggg	gcc	ttc	gga	agc	atc	acc	aag	gag	cgg	gcg		1250
Ile	Val	Asn	Thr	Tyr	Gly	Ala	Phe	Gly	Ser	lle	Thr	Lys	Glu	Arġ	Ala		
395					400					405				٠	410	.'	
gag	gtg	atc	ctg	cag	ggc	aca	gcc	agc	tcc	aac	gcc	agc	gcc	ccc	gat		1298
Glu	Val	Ile	Leu	Gln	Gly	Thr	Ala	Ser	Ser	Asn	Ala	Ser	Ala	Pro	Asp		
		•		415					420					425	٠		
gcc	atg	tgg	gag	gac	tac	gag	ttc	aag	tgc	aag	cca	ggt	gac	ccc	agc		1346
Ala	Met	Trp	Glu	Asp	Tyr	Glu	Phe	Lys	Cys	Lys	Pro	Gly	Asp	Pro	Ser	•	
			430				•	435					440		*		
aga	cgg	ccc	tgc	ctc	atc	tcc	ccg	tac	cac	tac	cgc	ctg	gac	tgg	ctg		1394
Arg	Arg	Pro	Cys	Leu	Ile	Ser	Pro	Tyr	His	Tyr	Arg	Leu	Λsp	Trp	Leu	•	
		445					450					455		:			
atg	tgg	ttc	gcg	gcc	ttc	cag	acc	tac	gag	cac	aac	gac	tgg	atc	atc		1442
Met	Trp	Phe	Ala	Ala	Phe	Gln	Thr	Tyr	Glu	His	Asn	Asp	Trp	lle	Ile		
	460				•	465					470	٠.		. *	7114		
cac	ctg	gct	ggc	aag	ctc	ctg	gcc	agc	gac	gcc	gag	gcc	ttg	tcc	ctg		1490
His	Leu	Ala	Gly	Lys	Leu	Leu	Ala	Ser	Asp	Ala	Glu	Ala	Leu	Ser	Leu		
475		• •			480	•				485			•	• • •	490	3	
ctg	gca	cac	aac	ccc	ttc	gcg	ggc	agg	ccc	ccg	ccc	agg	tġg	gtc	cga		1538
Leu	Ala	His	Asn	Pro	Phe	Ala	Gly	Arg	Pro	Pro	Pro	Arg	Trp	Val	Arg	,,	
	ete e	٠	•	495		. ••	. * .		500	. •	••	;·	• ‡ :	505		٠.,	

gga gag cac tac agg tac aag ttc agc cgt cct ggg ggc agg cac gcc 1586
Gly Glu His Tyr Arg Tyr Lys Phe Ser Arg Pro Gly Gly Arg His Ala
510 515 520
gcc gag ggc aag tgg tgg gtg cgg aag agg atc gga gcc tac ttc cct 1634
Ala Glu Gly Lys Trp Trp Val Arg Lys Arg Ile Gly Ala Tyr Phe Pro
525 530 535
ccg ctc agc ctg gag gag ctg agg ccc tac ttc agg gac cgt ggg tgg 1682
Pro Leu Ser Leu Glu Glu Leu Arg Pro Tyr Phe Arg Asp Arg Gly Trp
540 545 550
cct ctg ccc ggg ccc ctc tagacgtgca ccagaaataa aggcgaagac 1730
Pro Leu Pro Gly Pro Leu
555 560
ccagccccc 1739
<210> 144
<211> 2005
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (107) (1327)
<400> .1.44
ggagcccagc ggcgggtgtg agagtccgta aggagcagct tccaggatcc tgagatccgg 60
agcagccggg gtcggagcgg ctcctcaaga gttactgatc tatgaa atg gca gag 115
Met Ala Glu

	٠.:		٠.	• 1			٠,	•	• •			. •	1 -	•	٠,	-	
aat	gga	aaa	aat	tgt	gac	cag	aga	cgt	gta	gca	atg	aac	aag	gaa	cat	:	163
Asn	Gly	Lys	Asn	Cys	Asp	Gln	Arg	Arg	Val	۸la	Met	Asn	Lys	Glu	His	٠	
	- 5				٠.	10					15		. •		. ·		
cat	aat	gga	aat	ttc	aca	gac	ccc	tct	tca	gtg	aat	gaa	aag	aag	agg		211
His	Asn	Gly	Asn	Phe	Thr	Asp	Pro	Ser	Ser	Val	Asn	Glu	Lys	Lys	Arg		
20					25					30					35		
agg	gag	cgg	gaa	gaa	agg	cag	aat	att	gtc	ctg	tgg	aga	cag	ccg	ctc		259
Arg	Glu	Arg	Glu	Glu	Arg	Gln	Asn	Ile	Val	Leu	Trp	Arg	Gln	Pro	Leu		
				40					45					50			
att	acc	ttg	cag	tat	tŧt	tct	ctg	gaa	atc	ctt	gta	atc	ttg	aag	gaa		307
Ile	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	Leu	Val	Ile	Leu	Lys	Glu		
			55					60					65				
tgg	acc	tca	aaa	tta	tgg	cat	cgt	caa	agc	att	gtg	gtg	tct	ttt	tta		355
Trp	Thr	Ser	Lys	l.eu	Trp	His	Arg	Gln	Ser	Ile	Val	Val	Ser	Phe	Leu		
		70					75					80				•	
ctg	ctg	ctt	gct	gtg	ctt	ata	gct	acg	tat	tat	gtt	gaa	gga	gtg	cat		403
Leu	Leu	Leu	Ala	Val	Leu	He	Ala	Thr	Tyr	Tyr	Val	Glu	Gly	Val	His		
	85					90					95						
caa	cag	tat	gtg	caa	cgt	ata	gag	aaa	cag	ttt	ctt	ttg	tat	gcc	tac		451
Gln	Gln	Tyr	Val	Gln	Arg	Ile	Glu	Lys	Gln	Phe	Leu	Leu	Tyr	Ala	Tyr		
100					105					110				:	1:15	•	
tgg	ata	ggc	tta	gga	att	ttg	tct	tct	gtt	ggg	ctt	gga	aca	ggg	ctg		499
Trp	Ile	Gly	Leu	Gly	Ile	Leu	Ser	Ser	Val	Gly	Leu	Gly	Thr	Gly	Leu		
	,. ·	٠	٠.	120					125					130			

cac	acc	ttt	ctg	ctt	tat	ctg	ggt	cca	cat	ata	gcc	tca	gtt	aca	tta	547
His	Thr	Phe	Leu	Leu	Tyr	Leu	Gly	Pro	His	Ile	Ala	Ser	Val	Thr	Leu	
	•• •	•	135					140					145		• .•	
gct	gct	tat	gaa	tgc	aat	tca	gtt	aat	ttt	ccc	gaa	cca	ccc	tat	cct	595
Ala	Ala	Tyr	Glu	Cys	Asn	Ser	Val	Asn	Phe	Pro	Glu	Pro	Pro	Tyr	Pro	
		150					155					160				
gat	cag	att	att	tgt	cca	gat	gaa	gag	ggc	act	gaa	gga	acc	att	tct	643
Asp	Gln	lle	Ile	Cys	Pro	Asp	Glu	Glu	Gly	Thr	Glu	Gly	Thr	Ile	Ser	
	165					170					175					
ttg	tgg	agt	atc	atc	tca	aaa	gtt	agg	att	gaa	gcc	tgc	atg	tgg	ggt	691
Leu	Trp	Ser	Ile	He	Ser	Lys	Val	Arg	Ile	Glu	Ala	Cys	Met	Trp	Gly	
180	. • •				185					190					195	
atc	ggt	aca	gca	atc	gga	gag	ctg	cct	cca	tat	ttc	atg	gcc	aga	gca	739
Ιle	Gly	Thr	Ala	Ile	Gly	Glu	Leu	Pro	Pro	Tyr	Phe	Met	Ala	Arg	Ala	
				200					205					210		
gct	cgc	ctc	tca	ggt	gct	gaa	cca	gat	gat	gaa	gag	tat	cag	gaa	ttt	787
Ala	Arg	Leu	Ser	Gly	Ala	Glu	Pro	Asp	Asp	Glu	Glu	Tyr	Gln	Glu	Phe	
			215					220					225			
gaa	gag	atg	ctg	gaa	cat	gca	gag	tct	gca	caa	gac	ttt	gcc	tcc	cgg	835
Glu	Glu	Met	Leu	Glu	His	Ala	Glu	Ser	Ala	Gln	Asp	Phe	Ala	Ser	Arg	
	٠.	230					235					240				
gcc	aaa	ctg	gca	gtt	caa	aaa	cta	gta	cag	aaa	gtt	gga	ttt	ttt	gga	883
Ala	Lys	Leu	Ala	Val	Gln	Lys	Leu	Val	Gln	Lys	Val	Gly	Phe	Phe	Gly	
	245		. •	.	1	250			. • -	٠,	255			. ~		
att	ttg	gcc	tgt	gct	tca	att	cca	aat	cct	tta	ttt	gat	ctg	gct	gga	931

• WO 01/12660 PCT/JP00/05356

	Ile	Leu	Ala	Cys	Ala	Ser	Ile	Pro	Asn	Pro	Leu	Phe	Asp	Leu	Ala	Gly		
	260				*	265	٠			•	270		í	٠:	•	275	. :	
	ata	acg	tgt	gga	cac	ttt	ctg	gta	cct	ttt	tgg	acc	ttc	ttt	ggt	gca		979
•	Ile	Thr	Cys	Gly	His	Phe	Leu	Val	Pro	Phe	Trp	Thr	Phe	Phe	Gly	Ala		
					280		•	•		285		•			290	• • •		
	acc	cta	att	gga	aaa	gca	ata	ata	aaa	atg	cat	atc	cag	aaa	att	ttt		1027
	Thr	Leu	Ile	Gly	Lys	Ala	Ile	Ile	Lys	Met	His	Ile	Gln	Lys	Ile	Phe		
				295		,	,		300		٠,			305			٠.	
	gtt	ata	ata	aca	ttc	agc	aag	cac	ata	gtg	gag	caa	atg	gtg	gct	ttc		1075
	Val	Ile	Ile	Thr	Phe	Ser	Lys	His	Ile	Val	Glu	Gln	Met	Val	Ala	Phe		
		•	310					315					320					
	att	ggt	gct	gtc	ccc	ggc	ata	ggt	cca	tct	ctg	cag	aag	cca	ttt	cag		1123
	Ile	Gly	Λla	Val	Pro	Gly	He	Gly	Pro	Ser	Leu	Gln	Lys	Pro	Phe	Gln		
		325					330	•				335				•		
	gag	tac	ctg	gag	gct	caa	cgg	cag	aag	ctt	cac	cac	aaa	agc	gaa	atg		1171
	Glu	Tyr	Leu	Glu	Ala	Gln	Arg	Gln	Lys	Leu	His	His	Lys	Ser	Glu	Met		
	340					345					350	,				355		
	ggc	aca	cca	cag	gga	gaa	aac	tgg	ttg	tcc	tgg	atg	ttt	gaa	aag	ttg		1219
·	Gly	Thr	Pro	Gln	Gly	Glu	Asn	Trp	Leu	Ser	Trp	Met	Phe	Glu	Lys	Leu		
			. •		360		• •			365				٠.	370	. 1.*	•	
	gtc	gtt	gtc	atg	gtg	tgt	tac	ttc	atc	cta	tct	atc	att	aac	tcc	atg		1267
	Val	Val	Val	Met	Val	Cys	Tyr	Phe	Ile	Leu	Ser	Ile	Ile	Asn	Ser	Met		
		٠.	·· .	375		,	• • •		380	٠		٠.		385		. · .	,	
	gca	caa	agt	tat	gcc	aaa	cga	atc	cag	cag	cgg	ttg	aac	tca	gag	gag		1315
	Ala	Gln	Ser	Tyr	Ala	Lys	Arg	Ιle	-Gln	Gln	Arg	Leu	Asn	Ser	Glu	Glu	:	

390	395		400		
aaa act aaa taagta gaga	aagttt taa	actgcag aaa	attggagt gga	atgggttc	1370
Lys Thr Lys					
405	· •	• •		*****	
tgccttaaat tgggaggact c	caagccggg	aaggaaaatt	cccttttcca	acctgtatca	1430
attttacaa ctttttcct g	aaagcagtt	tagtccatac	tttgcactga	catactttt	1490
ccttctgtgc taaggtaagg ta	atccaccct	cgatgcaatc	caccttgtgt	tttcttaggg	1550
tggaatgtga tgttcagcag ca	aaacttgca	acagactggc	cttctgtttg	ttactttcaa	1610
aaggcccaca tgatacaatt a	gagaattcc	caccgcacaa	aaaaagttcc	taagtatgtt	1670
aaatatgtca agctttttag go	cttgtcaca	aatgattgct	ttgttttcct	aagtcatcaa	1730
aatgtatata aattatctag a	tiggalaac	agtcttgcat	gtttatcatg	ttacaattta	1790
atattccatc ctgcccaacc c	ttectetee	catcctcaaa	aaagggccat	tttatgatgc	1850
attgcacacc ctctggggaa a	ttgatcttt	aaattttgag	acagtataag	gaaaatctgg	1910
ttggtgtctt acaagtgagc t	gacaccatt	ttttattctg	tgtatttaga	atgaagtctt	1970
gaaaaaaact ttataaagac a	tctttaatc	attcc			2005
		٠		٠.	
⟨210⟩ 145					
<211> 1558					
<212> DNA					
<213> Homo sapiens				•	
⟨220⟩ .,	•. •		,	•	
<221> CDS	•	·		÷	
<222> (31)(1392)	••.		•		
<400>145	مود و مودي				
teceggiegg, gigeaaggag e	Cgaggcgag	ato oor otr	· cte eec ce	g gtr rtg	54

Met Gly Val Leu Gly Arg Val Leu

•			•						1	Į.			٠	5				
	ctg	tgg	ctg	cag	ctc	tgc	gca	ctg	acc	cag	gcg	gtc	tcc	aaa	ctc	tgg		102
	Leu	Trp	Leu	G1n	Leu	Cys	Ala	Leu	Thr	Gln	Ala	Val	Ser	Lys	Leu	Trp		
		10			٠.		15					20						
•	gtc	ccc	aac	acg	gać	ttc	gac	gtc	gca	gcc	aac	tgg	agc	cag	aac	cgg		150
	Val	Pro	Asn	Thr	Asp	Phe	Asp	Val	Ala	Ala	Asn	Trp	Ser	Gln	Asn	Arg		
	25					30					35					40	٠	
	acc	ccg	tgc	gcc	ggc	ggc	gcc	gtt	gag	ttc	ccg	gcg	gac	aag	atg	gtg		198
	Thr	Pro	Cys	Ala	Gly	Gly	Ala	Val	Glu	Phe	Pro	Ala	Asp	Lys	Met	Val		
			•		45					50					55			
	tca	gtc	ctg	gtg	caa	gaa	ggt	cac	gcc	gtc	tca	gac	atg	ctc	ctg	ccg		246
	Ser	Val	Leu	Val	Gln	Glu	Gly	His	۸la	Val	Ser	Asp	Met	Leu	Leu	Pro		,
		٠.		60			٠		65					70				
	ctg	gat	ggg	gaa	ctc	gtc	ctg	gct	tca	gga	gcc	gga	ttc	ggc	gtc	tca		294
	Leu	Asp	Gly	Glu	Leu	Val	Leu	Ala	Ser	Gly	Ala	Gly	Phe	Gly	Val	Ser		
			75					80					85					
	gac	gtg	ggc	tcg	cac	ctg	gac	tgt	ggc	gcg	ggc	gaa	cct	gcc	gtc	ttc	•	342
	Asp	Val	Gly	Ser	His	Leu	Asp	Cys	Gly	Ala	Gly	Glu	Pro	Ala	Val	Phe	٠.	
		90					95					100			•	•		
	cgc	gac	tct	gac	cgc	ttc	tcc	tgg	cat	gac	ccg	cac	ctg	tgg	cgc	tct		390
	Arg	Asp	Ser	Asp	Arg	Phe	Ser	Trp	His	Asp	Pro	His	Leu	Trp	Arg	Ser		
	105					110					115			• •	•	120		
	ggg	gac	gag	gca	cct	ggc	ctc	ttc	ttc	gtg	gac	gcc	gag	cgc	gtg	ccc	•	438
	Gly	Asp	Glu	Ala	Pro	Gly	Leu	Phe	Phe	Val	Asp	Ala	Glu	Arg	Val	Pro		

				125					130					135			
tgc	cgc	cac	gac	gac	gtc	ttc	ttt	ccg	cct	agt	gcc	tcc	ttc	cgc	gtg		486
Cys	Arg	His	Asp	Asp	Val	Phe	Phe	Pro	Pro	Ser	Ala	Ser	Phe	Arg	Val		
			140				•	145					150				
ggg	ctc	ggc	cct	ggc	gct	agc	ccc	gtg	cgt	gtc	cgc	agc	atc	tcg	gct		534
Gly	Leu	Gly	Pro	Gly	Ala	Ser	Pro	Val	Arg	Val	Arg	Ser	Ile	Ser	Ala		
	4	155					160					165					
ctg	ggc	cgg	acg	ttc	acg	cgc	gac	gag	gac	ctg	gct	gtt	ttc	ctg	gcg		582
Leu	Gly	Arg	Thr	Phe	Thr	Arg	Λsp	Glu	Asp	Leu	Ala	Val	Phe	Leu	Ala		
	170					175					180						
tcc	cgc	gcg	ggc	cgc	cta	cgc	ttc	cac	ggg	ccg	ggc	gcg	ctg	agc	gtg		630
Ser	Arg	Ala	Gly	Arg	Leu	Arg	Phe	His	Gly	Pro	Gly	Ala	Leu	Ser	Val		
185					190					195					200		
ggc	ccc	gag	gac	tgc	gcg	gac	ccg	tcg	ggc	tgc	gtc	tgc	ggc	aac	gcg		678
Gly	Pro	Glu	Asp	Cys	Ala	Asp	Pro	Ser	Gly	Cys	Val	Cys	Gly	Asn	Ala		
		•		205			•		210					215	•	•	
gag	gcg	cag	ccg	tgg	atc	tgc	gcg	gcc	ctg	ctc	cag	ccc	ctg	ggc	ggc		726
Glu	Ala	Gln	Pro	Trp	Ile	Cys	Ala	Ala	Leu	Leu	Gln	Pro	Leu	Gly	Gly		
	•		220					225					230				
cgc	tgc	ccc	cag	gcc	gcc	tgc	cac	agc	gcc	ctc	cgg	ccc	cag	ggg	cag		774
Arg	Cys	Pro	Gln	Ala	Ala	Cys	His	Ser	Ala	Leu	Arg	Pro	Gln	Gly	Gln		
	ı ·	235	, .				240			:		245		•	٠.		-
tgc	tgt.	gạc	ctc	tgţ	gga	gcc	gtt	gtg	ttg	ctg	acc	cac	ggc	ссс	gca		822
Cys	Cys	Asp	Leu	Cys	Gly	Ala	Val	Val	Leu	Leu	Thr	His	Gly	Pro	Ala		
	250	- -			•	255	•	₩ -	{ · · \$		260	7		7.	117		

		: •															070
ttt	gac	ctg	gag	cgg	tac	cgg	gcg	cgg	ata	ctg	gac	acc	ttc	ctg	ggt		870
Phe	Asp	Leu	Glu	Arg	Tyr	Arg	Ala	Arg	Ile	Leu	Asp	Thr	Phe	Leu	Gly		
265			٠		270		•		•	275					280	•	~
ctg	cct	cag	tac	cac	ggg	ctg	cag	gtg	gcc	gtg	tcc	aag	gtg	cca	cgc		918
Leu	Pro	Gln	Tyr	His	Gly	Leu	G1n	Val	Ala	Val	Ser	Lys	Val	Pro	Arg		
				285	٠, ٠				290		,			295		١	
tcg	tcc	cgg	ctc	cgt	gag	gcc	gat	acg	gag	atc	cag	gtg	gtg	ctg	gtg		966
Ser	Ser	Arg	Leu	Arg	Glu	Ala	Asp	Thr	Glu	Ile	Gln	Val	Val	Leu	Val		
			300			٠	•	305					310	ı			
σ2 σ	aat	aaa	ccc	gag	aca	ggc	gga	gcg	ggg	CZZ	ctg	gcc	Cgg	gcc	ctc		1014
Glu	Asn	•	Pro	Glu	Thr	-	_	Ala	GIY	Arg	Leu		Arg	AIA.	Leu		
•		315				•	320			•	, ,	325	٠			. `	
ctg	gcg	gac	gtc	gcc	gag	aac	ggc	gag	gcc	ctc	ggc	gtc	ctg	gag	gcg		1062
Leu	Ala	Asp	Val	Ala	Glu	Asn	Gly	Glu	Ala	Leu	Gly	Val	Leu	Glu	Ala		
	330					335					340	٠.			,		
acc	atg	cgg	gag	tcg	ggc	gca	cac	gtc	tgg	ggc	agc	tcc	gcg	gct	ggg		1110
Thr	Met	Arg	Glu	Ser	Gly	Ala	His	Val	Trp	Gly	Ser	Ser	Ala	Ala	Gly		
345					350					355		•		•	360	•	
ctg	gcg	ggc	ggc	gtg	gcg	gct	gcc	gtg	ctg	ctg	gcg	ctg	ctg	gtc	ctg		1158
Leu	Ala	Gly	Gly	Val	Ala	Ala	Ala	Val	Leu	Leu	Ala	Leu	Leu	Val	Leu		
				365					370					375			
												-+-	0.55	+ 00	. 0 4 4		1206
					ctg												1200
Leu	Val	Ala	Pro	Pro	Leu	Leu	Arg	Arg			•				Arg	•	
	•		380					385		. • •	t		390	• •	* * * *	•	
agg	cac	gag	gcg	gcg	gcc	ccg	gct	gga	gcg	ccc	ctc	ggc	ttc	cgc	aać		1254

BRIGHTONIN- MAIO - NELSERARS I

Arg His Glu Ala Ala Ala Pro Ala Gly Ala Pro Leu Gly Phe Arg Asn	
395 400 405	
ccg gtg ttc gac gtg acg gcc tcc gag gag ctg ccc ctg ccg cgg cgg 130	12
Pro Val Phe Asp Val Thr Ala Ser Glu Glu Leu Pro Leu Pro Arg Arg	
410 415 420	
ctc agc ctg gtt ccg aag gcg gcc gca gac agc acc agc cac agt tac 135	0
Leu Ser Leu Val Pro Lys Ala Ala Asp Ser Thr Ser His Ser Tyr	
425 430 435 440	
ttc gtc aac cct ctg ttc gcc ggg gcc gag gcc gag gcc t gagcggccgc 140	0
Phe Val Asn Pro Leu Phe Ala Gly Ala Glu Ala Glu Ala	
445 450	
ctgaccgtcg accttggggc tctccaccc ctctggcccc agtcgaactg ggggctagcc 146	0
acetectegt ccagececca aacetecect teettteece eteeteeggg ggccaaggae 152	0
agggtggcct tactcagtaa aggtgtttcc tgcacctg	8
<210> 146	
<211> 1005	
<212> DNA	
<213> Homo sapiens	
⟨220⟩	
<221> CDS	
<222> (151) (330)	
<400> 146.	
attectgtaa tggetgette ctagaaggte gtgteaegtg gaacetetta ateteageat 60	0
ccggagctcc aggaagggaa aatttcaagt cagatagaat tctatatata ccatttcttt 120	0

BMCDCID -WO 011366043 1 -

ggaaccttca gccctcaaga ttcc	aacatc atg acc to	a gtt tca aca cag ttg	174
	Met Thr Sei	r Val Ser Thr Gln Leu	
. •	1	5	٠
tcc tta gtc ctc atg tca ct	g ctt ttg gtg ctg	cct gtt gtg gaa gca	222
Ser Leu Val Leu Met Ser Le	u Leu Leu Val Leu	Pro Val Val Glu Ala	
10 1	5	20	
gta gaa gcc ggt gat gca at	c gcc ctt ttg tta	ggt gtg gtt ctc àgc	270
Val Glu Ala Gly Asp Ala Il	e Ala Leu Leu Leu	Gly Val Val Leu Ser	
25 30	35	40	
att aca ggc att tgt gcc tg	c ttg ggg gla tat	gca cga aaa aga aat	318
Ile Thr Gly Ile Cys Ala Cy	s Leu Gly Val Tyr	Ala Arg Lys Arg Asn	
45	50	55	٠.
gga cag atg tga ctttgaaagg	cctactgagt caaacc	ctcac cctgaaaacc '	370
Gly Gln Met			<i>:</i>
tttgcgcttt agaggctaaa cctg	agattt ggtglgtgaa	aggttccaag aatcagtaa	a 430
taagggagtt tcacattttt catt	gtttcc atgaaatggc	aacaaacata catttataa	a 490
ttgaaaaaaa aatgttttct ttac	aacaaa taatgcacag	aaaaatgcag cctataatt	t 550
gctagttagg tagtcaaaga agta	agatgg ctgaaattta	cataagtaat atttcataa	t 610
cttagaattc tctcaaagca tgtg	aaatag gaagaaggaa	gttcttgccc agaatetta	g 670
gaaatcacca cigitcggtt ataa	tcactg cctcctgaat	cgttgaggag tcttttaaa	t 730
tagatttttg ttttgttgtc tccc	aagtta atattatatt	tagatatcag agagtcagg	c 790
aaaaaggaaa acttttatct ctag	ggaaaa aacatttaga	aaaatgtatt cagtgtatc	t 850
aatacigaaa igcggaaaaa aaii	taatgt taaaaaaaaa	actatagaca ttgacatgg	a 910
aaagagattt aatgttttga aaaa	aaactt tatattaact	gagtaacatc ctcctgatg	a 970
gagtactat attacatata cacc	cattat ottat	e e la companya de l La companya de la companya de	1005

(210	> 14	17														
							·									
<211	> 96	9						•			•					
<212	:> DN	ΙA														
<213	> Hc	omo s	sapie	ens		•										
<220	>															
<221	> CI	S														
<222	> (1	51).	(7	783)												
<400)> 14	17														
gctg	gaca	icc t	tggag	getge	c cg	gagga	acgcg	g gag	gaga	agac	ccga	gggt	cg	ccgct	tggtag	60
ggto	gcto	ag o	cctg	geegt	le et	tcac	caco	aca	ccti	tcac	ctgo	gcc	ag (ctcc	etgege	120
gcct	ggad	ag o	egeet	gctg	gc co	egect	tcccg	gate	g gco	cte	g ccc	cag	gate	g tgi	t gac	174
								Met	. Ala	a Leu	ı Pro	Glr	n Mei	t Cys	s Asp	
								1	į			Ę	5			
ggg	agc	cac	ttg	gcc	tcc	acc	ctc	cgc	tat	tgc	atg	aca	gtc	agc	ggc	222
Gly	Ser	His	Leu	Ala	Ser	Thr	Leu	Arg	Tyr	Cys	Met	Thr	Val	Ser	Gly	
	10			.,		15					20				. •	
aca	gtg	gtt	ctg	gtg	gcc	ggg	acg	ctc	tgc	ttc	gct	tgg	tgg	agc	gaa	270
Thr	Val	Val	Leu	Val	Äla	Gly	Thr	Leu	Cys	Phe	Ala	Trp	Trp	Ser	Glu	
25	,				30					35					40	
ggg	gat	gca	acc	gcc	cag	cct	ggc	cag	ctg	gcc	cca	ccc	acg	gag	tat	318
Gly	Asp	Ala	Thr	Ala	Gln	Pro	Gly	Gln	Leu	Ala	Pro	Pro	Thr	Glu	Tyr	
	٠.,	e sa j	, •	45			٠.	, .	-50	_		-		- 55	• • • •	
ccg	gtg	cct	gag	ggc	ccc	agc	ccc	ctg	ctc	agg	tcc	gtc	agc	ttc	gtc	366
Pro	Val	Pro	Glu	Gly	Pro	Ser	Pro	Leu	Leu	Arg	Ser	Val	Ser	Phe	Val	

			70						60					00			
414	tcc	tgg	ctg	ctg	gc	g	att	ctc	ctg	ctg	ctg	ggc	ggt	gca	ggt	tgc	tgc
	Ser	Trp	Leu	Leu	ly	e G	Ile	Leu	Leu	Leu	Leu	Gly	Gly	Ala	Gly	Cys	Cys
٠.	:			85						80					75		
462	ctc	cac	tat	ccc	ac	g	tgg	cga	cct	cca	ggg	cca	atc	agc	gcc	aag	gtc
•	Leu	His	ſyr	Pro	sp :	A	Trp	Arg	Pro	Pro	Gly	Pro	Ile	Ser	Ala	Lys	Val
	. •				00	1					95					90	
510	agc	gag	aag	gag	ca	: t	tcc	gag	gtg	act	ctc	tac	tac	ctg	gac	aga	tcc
	Ser	Glu	.ys	Glu	er (·S	Ser	Glu	Val	Thr	Leu	Tyr	Tyr	Leu	Asp	Arg	Ser
;	120					•	115					110				•	105
∵558	gtg	gcc	gaa	gag	ac i	t	act	ссс	atc	gac	gtt	gtg	aaa	ccc	acc	agg	tgc
	Val	Ala	ilu	lu	yr (Т	Thr	Pro	Ile	Asp	Val	Val	Lys	Pro	Thr	Arg	Cys
		135						130					125				
606	acg	cct	ac	gca	ct i	C	cca	aca	cca	ccc	ggg	gag	gcc	gtg	cca	ttc	agc
	Thr	Pro	уr	la	ro A	P	Pro	Thr	Pro	Pro	Gly	Glu	Ala	Val	Pro	Phe	Ser
•		•'	50						145	•				140			
654	acc	agc	tc	tg	cc c	g	gat	agg	tcg	gga	agt	cca	gag	ctg	gcc	gaa	gag
	Thr	Ser	.eu	.eu	la I	A.	Asp	Arg	Ser	Gly	Ser	Pro	Glu	Leu	Λla	Glu	Glu
٠.				65	1			•		160		:	•		155		
702	ctt	gct	tt	gc	tc a	a	agc	gag	tat	agc	ccc	cca	cct	tgg	gcc	ccc	cag
	Leu	Ala	.eu	er	le S	I	Ser	Glu	Tyr	Ser	Pro	Pro	Pro	Trp	Ala	Pro	Gln
•	.,	, .			80	18					175	•	٠.			170	
750	tca	tgc	cc	gc	ca c	a	gcc	agt	ccg	aca	acg	gag	gca	tct	gtt	gcc	gat
	Ser	Cys -	er	rg	nr A	Tŀ	Ala	Ser	Pro	Thr	Thr	Glu	Ala	Ser	Val	Ala	Asp
,	200	j.\$	٠. ,				195				. : 	.190.	٠.,	:			185

∵.

ggc ctg gtt cag act gca cgg gga gga agt taaaggctcc tagcaggtcc	800
Gly Leu Val Gln Thr Ala Arg Gly Gly Ser	
205 210	
tgaatccaga gacaaaaatg ctgtgccttc tccagagtct tatgcagtgc ctgggacaca	860
gtaggcactc agcaaacgtt cgttgttgaa ggctgttcta tttatctatt gctgtataac	920
aaaccacccc agaatttagt ggcttaaaat aaatcccatt ttattatgt	969
<210> 148	
<211> 1241	
<212> DNA	
<213> Homo sapiens	
<220> .	
<221> CDS	
<222> (20)(517)	
<400> 148	
atttcggggc ggtaccaag atg gac tcc tcg cgg gcc cga cag cag ctc cgg	52
Met Asp Ser Ser Arg Ala Arg Gln Gln Leu Arg	
. 1 5 10	
cgg cga ttc ctc ctg ccg gac gcc gag gcc cag ctg gac cgc gag	100
Arg Arg Phe Leu Leu Pro Asp Ala Glu Ala Gln Leu Asp Arg Glu	•
15 20 25	
ggt gac gcc ggg ccg gaa acc tcc aca gct gtt gag aaa aag gag aaa	148
Gly Asp Ala Gly Pro Glu Thr Ser Thr Ala Val Glu Lys Lys Glu Lys	
	-
	106

Pro	Leu	Pro	Arg	Leu	Asn	Ile	His	Ser	Gly	Phe	Trp	Ile	Leu	Ala	Ser	• •	
	45					50			•	•	55	•				•	
att	gtt	gtg	acc	tat	tat	gtt	gac	ttc	ttt	aaa	acc	ctt	aaa	gaa	aac		244
Ile	Val	Val	Thr	Tyr	Tyr	Val	Asp	Phe	Phe	Lys	Thr	Leu	Lys	Glu	Asn		
60					65					70		• •		•	75		
ttc	cac	act	agc	agc	tgg	ttt	ctc	tgt	ggc	agt	gcc	ttg	ttg	ctt	gtc	• • •	292
Phe	His	Thr	Ser	Ser	Trp	Phe	Leu	Cys	Gly	Ser	Ala	Leu	Leu	Leu	Val		
				80					85					90	•		
agt	tta	tca	att	gca	ttt	tac	tgc	ata	gtc	tac	ctg	gaa	tgg	tat	tgt		340
Ser	Leu	Ser	Ile	Ala	Phe	Tyr	Cys	Ile	Val	Tyr	Leu	Glu	Trp	Tyr	Cys		
			95					100					105				
gga	att	gga	gaa	tat	gat	gtc	aag	tat	cca	gcc	ttg	ata	ccc	att	acc		388
Gly	Ile	Gly	Glu	Tyr	Asp	Val	Lys	Tyr	Pro	Ala	Leu	Ile	Pro	Ile	Thr		
		110					115					120					
act	gcc	tcc	ttt	att	gca	gca	gga	att	tgc	ttc	aac	att	gct	tta	tgg		436
Thr	Ala	Ser	Phe	Ile	Ala	Ala	Gly	Ile	Cys	Phe	Asn	Ile	Ala	Leu	Trp	•	
	125				•	130					135						
cat	gtg	tgg	tcg	ttt	ttc	act	cca	ttg	ttg	ttg	ttt	acc	cag	ttt	atg		484
His	Val	Trp	Ser	Phe	Phe	Thr	Pro	Leu	Leu	Leu	Phe	Thr	Gln	Phe	Met		
140	,		•		145	•				150					155		
ggg	gtt	gtc	atg	ttt	atc	aca	ctc	ctt	gga	tga	ttt	ccga	agag	ac			530
Gly	Val	Val	Met	Phe	Ile	Thr	Leu	Leu	Gly					:	•	•••	
	٠.		•	160			. •		165	•							
agg	gtct	tct	atgt	tgcc	ca g	gctg	tctt	t ga	actc	ctgg	gat	caag	tga	tċct	cctg	СС	590
tca	gcct	tcg	aagt	agtt	gg g	acta	cagg	с сс	acgc	cacc	gtg	cctg	gct	ggac	atgt	aa	650

atttgaagtg a	atggttaaa	catccagcta	gctgaaagca	tggcagaccc	taacagaaaa	710
gctacagtgt g	tttttgcag	ctatgaagtg	aatggtttcc	tggggaaaat	tgtgactttg	770
tataactgtt g	ttgaaacca	gaataaatta	tatttcactt	gcatatgcat	aaattattaa	830
aattttcaga a	gtcagtgat	acagaagtac	tattttgcaa	tgttaatctg	tttgagtctt	890
tggagaaagt g	gtttcattg	taggtacata	gtgcactgtt	aatatttaa	acaagtagtt	950
cactcttcca t	ttaagggat	agcagttcct	tgtataaaat	gactggatgt	gtataaagga	1010
attatgttgt c	atgtgcctt	taaccagctt	tagtaattac	tataatctca	tatttatgat	1070
agttttgtta g	gtgacagga	ccaaatgaaa	atattttatg	ttttctcatc	actttagatt	1130
ttatcattat g	tacattact	gggtttttag	catttcctaa	tgtgaagttt	taatcacttt	1190
taagtataca t	ttttttctg	tatcatttaa	ataaaatatt	tttataactt	t	1241
<210> 149						
<211> 1174						
<212> DNA						
<213> Homo s	apiens					
<220>		, .		•		
<221> CDS						
<222> (187).	(675)					
<400> 149						
ggaagccggg a	cgatgtccg	catgacaacc	gacgttggag	tttggaggtg	cttgccttag	60
agcaagggaa a	cagetetca	ttcaaaggaa	ctagaagcct	ctccctcagt	ggtagggaga	120
cagccaggag c	ggttttctg	ggaactgtgg	gatgtgccct	tgggggcccg	agaaaacaga	180
aggaag atg c	tc cag acc	agt aac ta	ac ago ctg	gtg ctc tct	ctg cag	228
Met L	eu Gln Thr	Ser Asn Ty	yr Ser Leu '	Val Leu Ser	Leu Gln	

ttc	ctg	ctg	ctg	tcc	tat	gac	ctc	ttt	gtc	aat	tcc	ttc	tca	gaa	ctg	, *	276
Phe	Leu	Leu	Leu	Ser	Tyr	Asp	Leu	Phe	Val	Asn	Ser	Phe	Ser	Glu	Leu		
15	•				20	-		•	•	25					30		
ctc	caa	aag	act	cct	gtc	atc	cag	ctt	gtg	ctc	ttc	atc	atc	cag	gat		324
Leu	Gln	Lys	Thr	Pro	Val	Ile	Gln	Leu	Val	Leu	Phe	Ile	Ile	Gln	Asp		
	•	•		35				. •	40	•				45	•		•
att	gca	gtc	ctc	ttc	aac	atc	atc	atc	att	ttc	ctc	atg	ttc	ttc	aac		372
Ile	Ala	Val	Leu	Phe	Asn	Ile	Ile	Ile	Ile	Phe	Leu	Met	Phe	Phe	Asn		
	•		50					55					60		÷		
acc	ttc	gtc	ttc	cag	gct	ggc	ctg	gtc	aac	ctc	cta	ttc	cat	aag	ttc	•	420
Thr	Phe	Val	Phe	Gln	Ala	Gly	Leu	Val	Asn	Leu	Leu	Phe	His	Lys	Phe		
		65					70					75					
aaa	ggg	acc	atc	atc	ctg	aca	gct	gtg	tac	ttt	gcc	ctc	agc	atc	tcc		468
Lys	Gly	Thr	Ile	Ile	Leu	Thr	Ala	Val	Tyr	Phe	Ala	Leu	Ser	Ile	Ser		
	80					85					90				•		
ctt	cat	gtc	tgg	gtc	atg	aac	tta	cgc	tgg	aaa	aac	tcc	aac	agc	ttc		516
Leu	His	Val	Trp	Val	Met	Asn	Leu	Arg	Trp	Lys	Asn	Ser	Asn	Ser	Phe		
95					100					105					110		
ata	tgg	aca	gat	gga	ctt	caa	atg	ctg	ttt	gta	tţc	cag	aga	cta	gca		564
Ile	Trp	Thr	Asp	Gly	Leu	Gln	Met	Leu	Phe	Val	Phe	Gln	Arg	Leu	Ala	•	
-				115	•				120	ı				125	;		
gca	gtg	ttg	tac	tgc	tac	ttc	tat	aaa	cgg	aca	gcc	gta	aga	cta	ggc		612
Ala	Val	Leu	Tyr	Cys	Tyr	Phe	Tyr	Lys	Arg	Thr	Ala	·Val	Arg	g Leu	Gly		
	•		130)				135	•				140)			
ast	cct		++-	ten	- പ്ര	gar	tet	: tto	tee	cte	CEC	aas	gas	tto	atg		660

180

305/307

Asp Pro Hi	s Phe Tyr G	ln Asp Ser	Leu Trp Leu	Arg Lys Glu	ı Phe Met	
. 14	5	150		155		
caa gtt cg	a agg tgacc	tct tgtcaca	ctg atggata	ctt tteette	ctg	710
Gln Val Ar	g Arg					
160						
atagaagcca	catttgctgc	tttgcaggga	gagttggccc	tatgcatggg	caaacagctg	770
gactttccaa	ggaaggttca	gactagctgt	gttcagcatt	caagaaggaa	gatcctccct	830
cttgcacaat	tagagtgtcc	ccatcggtct	ccagtgcggc	atcccttcct	tgccttctac	890
ctctgttcca	cccctttcc	ttcctttcct	ctctgtacca	ttcattctcc	ctgaccggcc	950
tttcttgccg	agggttctgt	ggctcttacc	cttgtgaagc	ttttccttta	gcctgggaca	1010
gaaggacctc	ccagccccca	aaggatctcc	cagtgaccaa	aggatgcgaa	gagtgatagt	1070
tacgtgctcc	tgactgatca	caccgcagac	atttagattt	ttatacccaa	ggcactttaa	1130
aaaaatgttt	tataaataga	gaataaattg	aattcttgtt	ccat ·		1174
<210> 150						
<211> 1012						
<212> DNA						
<213> Homo	sapiens					
<220> ⋅						
<221> CDS						
<222> (208)) (873)				٠.	
<400> 150						
gcctcttccc	caggggccgc	gtcggagcct	ccgcggcggc	ggcggtgctt	acagcctgag	60
aagagcgtct	cgcccgggag	cggcggcggc	catcgagacc	cacccaaggc	gcgtcccct	120

cggcctccca gcgctcccaa gccgcagcgg ccgcgcccct tcagctagct cgctcgctcg

231		tg :	g ct	g go	g go	g tt	g go	gʻtt	g go	c at	gcgc	g ct	gccg	tgct	cc c	gctt	ctct
		eu į	a Le	a Al	eu Al	a Le	eu Al	la Le	et Al	Ме			•				
:					5 ·				1			•	•				
279		aat	cag	ttg	cag	cag	tac	cgg	agc	ggc	tgc	gcc	ccg	gag	gtc	gcg	gcg
		Asn	Gln	Leu	Gln	Gln	Tyr	Arg	Ser	Gly	Cys	Ala	Pro	Glu	Val	Ala	Ala
	٠.		•			20					15					10	
327	. •	cca	cct	gct	gat	ggt	gca	gct	cag	gaa	cct	gaa	gga	tct	gag	gaa	gaa
•		Pro	Pro	Ala	Asp	Gly	Ala	Ala	Gln	Glu	Pro	Glu	Gly	Ser	Glu	Glu	Glu
		[:] 40					35				•	30					25
₹375		aag	tac	gac	ttt	tat	gca	gca	agc	gag	gca	tct	att	agc	agc	tac	cct
**		Lys	Tyr	Asp	Phe	Tyr	Ala	Ala	Ser	Glu	Ala	Ser	Ile	Ser	Ser	Tyr	Pro
			55				,	50					45	•			
423		aca	aca	gct	gta	aat	tac	tct	cca	ccc	aag	cca	ttt	ggg	tct	gag	gat
		Thr	Thr	Ala	Val	Asn	Tyr	Ser	Pro	Pro	Lys	Pro	Phe	Gly	Ser	G1u	Asp
				70					65					60			
471	:	atc	act	gct	gaa	gct	aag	acc	agg	gag	gcg	gaa	gat	tat	agt	ccc	ctg
	•	Ile	Thr	Ala	Glu	Ala	Lys	Thr	Arg	Glu	Ala	Glu	Asp	Tyr	Ser	Pro	Leu
.*					85					80					75		
519	;	ttt	gat	gat	cgg	ggt	gtg	ttt	gat	gag	gat	aga	ggg	cct	gtt	ttg	cct
٠	;	Phe	Asp	Asp	Arg	Gly	Val	Phe	Asp	Glu	Asp	Arg	Gly	Pro	Val	Leu	Pro
•				٠.	٠	100					95					90	
567	1	tta	atg	ttc	att	ggg	gat	aat	gga	ata	agg	ctg	cag	gac	gct	gat	gat
	1	Leu	Met	Phe	Ile	Gly	Asp	Asn	Gly	Ile	Arg	Leu	Gln	Asp	Ala	Asp	Asp
)	120	٠.	<u>.</u>			115		٠	. •		110					105
615	-	tct	ctg	ttc	ttt	222	att	too	aac	ttt	ctc	ttc	gea.	atσ	ttc	itt	act

هِيتُون

11122

.

Thr	Phe	Phe	Met	Ala	Phe	Leu	Phe	Asn	Тгр	Ile	Gly	Phe	Phe	Leu	Ser	
				125					130					135		
ttt	tgc	ctg	acc	act	tca	gct	gca	gga	agg	tat	ggg	gcc	att	tca	gga	663
Phe	Cys	Leu	Thr	Thr	Ser	Ala	Ala	Gly	Arg	Tyr	Gly	Ala	Ile	Ser	Gly	
			140					145					150			
ttt	ggt	ctc	tct	cta	att	aaa	tgg	atc	ctg	att	gtc	agg	ttt	tcc	acc	711
Phe	Gly	Leu	Ser	Leu	Ile	Lys	Trp	Ile	Leu	Ile	Val	Arg	Phe	Ser	Thr	
	,	155					160					165				
tat	ttc	cct	gga	tat	ttt	gat	ggt	cag	tac	tgg	ctc	tgg	tgg	gtg	ttc	759
Tyr	Phe	Pro	Gly	Tyr	Phe	Asp	Gly	Gln	Tyr	Trp	Leu	Trp	Trp	Val	Phe	
	170					175					180					
ctt	gtt	tta	ggc	ttt	ctc	ctg	ttt	ctc	aga	gga	ttt	atc	aat	tat	gca	807
Leu	Val	Leu	Gly	Phe	Leu	Leu	Phe	Leu	Arg	Gly	Phe	Ile	Asn	Tyr	Ala	
185					190					195					200	
aaa	gtt	cgg	aag	atg	cca	gaa	act	ttc	tca	aat	ctc	ccc	agg	acc	aga	855
Lys	Val	Arg	Lys	Met	Pro	Glu	Thr	Phe	Ser	Asn	Leu	Pro	Arg	Thr	Arg	
				205					210		•			215		
gtt	ctc	ttt	att	tat	taa	agat	gtt	ttct	ggca	aa g	gcct	tcct	g ca	ttta	tgaa	910
Val	Leu	Phe	Ile	Tyr					•				•			
			220													
ttc	tctc	tca	agaa	gcaa	ga g	aaca	cctg	c ag	gaag	tgaa	tca	agat	gca	gaac	acagag	970
gaa	taat	cac	ctgc	ttta	aa a	aaat	aaag	t ac	tgtt	gaaa	ag					1012

BNSDOCID: -WO 0112660A2 L -

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 February 2001 (22.02.2001)

PCT

(10) International Publication Number WO 01/12660 A3

- (51) International Patent Classification⁷: C12N 15/12, 1/21, 5/10, C07K 14/47, 16/18
- (21) International Application Number: PCT/JP00/05356
- (22) International Filing Date: 10 August 2000 (10.08.2000)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:

11/230344	17 August 1999 (17.08.1999)	JP
11/252551	7 September 1999 (07.09.1999)	JP
11/281132	1 October 1999 (01.10.1999)	JP
11/301624	22 October 1999 (22.10.1999)	JP
11/313877	4 November 1999 (04.11.1999)	JР

- (71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1. Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 715, 2-9-1, Kohoku, Tsuchiura-shi, Ibaraki 300-0032 (JP).

- (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR. HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH. GM, KE, LS, MW, MZ. SD, SL, SZ, TZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 20 September 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

11/12660 A3

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAs ENCODING THESE PROTEINS

(57) Abstract: The present invention provides human proteins having hydrophobic domains. DNAs encoding these proteins, expression vectors for these DNAs, transformed eukaryotic cells expressing these DNAs and antibodies directed to these proteins.

INTERNATIONAL SEARCH REPORT

International Application No PC1, JP 00/05356 STAGE WOLLS A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C12N1/21 C12N5/10 C07K14/47 - C07K16/18 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) STRAND, MEDLINE C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 99 13074 A (TSURITANI KATSUKI ;YAZAKI Х 1-7 MADOKA (JP); MATSUMOTO KAYO (JP); TAISHO) 18 March 1999 (1999-03-18)
SEQ ID NO:1 is 100% identical to SEQ ID
NO:1 of present application figure 5 Х Further documents are listed in the continuation of box C. Patent family members are listed in annex. * Special categories of cited documents : "I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 19.02.01 27 November 2000

Authorized officer

Herrmann, K

Form PCT/ISA/210 (second sheet) (July 1992)

Name and mailing address of the ISA

Fax: (+31-70) 340-3016

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, INTERNATIONAL SEARCH REPORT

PCT/JP 00/05356

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
-	
з. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. X	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1 - 7 (all partially)
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Claims: Invention 1: Claims 1-7 (all partially)

Polypeptide comprising an amino acid sequence as in SEQ ID NO:1 and subject-matter relating thereto. Polynucleotides encoding the polypeptide of SEQ ID NO:1 such as a polynucleotide comprising a polynucleotide sequence as in SEQ ID NO:11 (coding sequence) or a polynucleotide consisting of a polynucleotide sequence as in SEQ ID NO: 21 (complete cDNA sequence) and subject-matter relating thereto.

2. Claims: Invention 2-50: Claims 1-7 (all partially)

Idem as subject 1 but limited to each of the polypeptides as in SEQ ID NOs:2-10, 31-40, 61-70, 91-100 and 121-130 and polynucleotides as in SEQ ID NOs:12-20, 41-50, 71-80, 101-110, 131-140 and SEQ ID NOs:22-30, 51-60, 81-90, 111-120 and 141-150, respectively. Invention 2 is limited to subject-matter relating to SEQ ID NOs:2 (protein), 12 (coding sequence) and 22 (complete cDNA), invention 3 to SEQ ID NOs 3, 13 and 23, etc.

INTERNATIONAL SEARCH REPORT

ormation on patent family members

International Application No PC1/JP 00/05356

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9913074	18-03-1999	AU 8999298 A JP 11151096 A	29-03-1999 08-06-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

•

•• ...

Constitution of the second of