Trig Final (SLTN v618)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 2 meters. The arc length is 9.4 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 4.7$ radians.

Question 2

Consider angles $\frac{-17\pi}{6}$ and $\frac{13\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-17\pi}{6}\right)$ and $\cos\left(\frac{13\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(-17\pi/6)$

$$\sin(-17\pi/6) = \frac{-1}{2}$$

Find $cos(13\pi/4)$

$$\cos(13\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $\tan(\theta) = \frac{-60}{11}$, and θ is in quadrant IV, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$11^{2} + 60^{2} = C^{2}$$

$$C = \sqrt{11^{2} + 60^{2}}$$

$$C = 61$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\cos(\theta) = \frac{11}{61}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = -5.59 meters, an amplitude of 4.45 meters, and a frequency of 8.27 Hz. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -4.45\cos(2\pi 8.27t) - 5.59$$

or

$$y = -4.45\cos(16.54\pi t) - 5.59$$

or

$$y = -4.45\cos(51.96t) - 5.59$$