<u>Informe Simulaciones TP11: Método de rechazo</u> <u>Generación de números aleatorios con distribuciones no uniformes</u>

Curso: 6to 1ra
Turno: Noche

<u>CPU:</u> Intel Core 2 Duo E6600

Vileriño, Silvio

14 de octubre de 2010

${\rm \acute{I}ndice}$

0.1.	Introducción	 •		•					•		•	•				•			3
0.2.	Conclusión .								•			•				•			5

0.1. Introducción

En esta simulación se utiliza el método de rechazo para generar números aleatorios con distribución no uniforme. Este método, a diferencia del anterior (Transformada Inversa), permite hallar funciones distribución no integrables analíticamente, o funciones trascendenales (funciones donde no se puede despejar la X como por ejemplo $x^2 = \cos X$).

$$Sea \left\{ \begin{array}{l} f(x) \text{ una función definida en el intervalo } [\alpha, \beta] \\ x \in \mathbb{R}_{\partial}[\alpha, \beta] \end{array} \right.$$

Se desean generar K números aleatorios donde $\alpha = 1$, $\beta = 10$ dando un intervalo [1, 10] con una función de distribución o reparto del tipo $f(x) = \frac{1}{x}$, de forma que la distribución quede dada por f(x) y el histograma adquiera la siguiente forma:

Se procede a calcular N, que indica la cantidad de puntos en un intervalo (estadísticamente).

$$N = \int_{\alpha}^{\beta} \frac{1}{x} \, dx$$

Una vez calculado N, se calcula la función normalizada $g(x) = \frac{f(x)}{N}$, la cual nos dá la probabilidad de aparicion de x. El método de rechazo consiste en la generación de un número al azar en un intervalo $[\alpha, \beta]$ y además, la generación de un discriminante en el intervalo [0,1], que servirá como ruleta para la selección de los números aleatorios. Si $Rnd \leq g(x)$, el número es contado como válido, de no ser así, se repite la operación hasta lograr K números. En este caso, se pide llevar una cuenta, de números generados, números admitidos y números rechazados.

Función q(x)

$$y = \frac{1}{\log(\beta).x}$$

Luego de realizar la simulación, se obtuvieron los siguientes resultados:

• Funcion $f(x) = \frac{1}{x}$

 \blacksquare Intervalo [1, 10]

■ Total Numeros Generados: 9007211

■ Total Numeros Admitidos: 1000000

■ Total Numeros Rechazados: 8007211

0.2. Conclusión

Se comprueba que por medio de este método se pueden obtener distribuciones en función de una transformada cualquiera, sin importar si la función no es integrable analíticamente y/o trasncendental, en este caso se pide la función $f(x) = \frac{1}{x}$. Es un método efectivo, pero en comparación con el método de la transformada inversa, solo debería utilizarse cuando realmente es necesario, ya que el costo computacional es casi 10 veces mayor.