Lab 6

In this lab, we continue our work on the Amazon dataset using Apache Spark. Given the original Amazon food dataset (that you can find in the HDFS file system at /data/students/bigdata-01QYD/Lab6_DBD/Reviews.csv), find all the pairs of products frequently reviewed together.

In the following Task 1 you find the operations and analyses you are required to perform on the input dataset.

Task 1

The input Amazon food dataset (available in the HDFS shared folder of the BigData@Polito cluster: /data/students/bigdata-01QYD/Lab6_DBD/Reviews.csv) lists all the reviews per-row (one review per line), and it is comma-separated. In each line, two of the columns represent the user id and product id (third and second columns, respectively). The schema of Reviews.csv is the following:

Id, Product Id, User Id, Profile Name, Helpfulness Numerator, Helpfulness Denominator, Score, Time, Summary, Text

On the web site you can download the file ReviewsSample.csv. It contains a sample of Reviews.csv. You can use it to perform some initial tests.

Write a single Spark application that:

1. Transposes the original Amazon food dataset, obtaining an RDD of pairs (tuples) of the type:

(user_id, list of the product_ids reviewed by user_id)

The returned RDD contains one pair/tuple for each user, which contains the user_id and the complete list of (**distinct**) products reviewed by that user. If user *user_id* reviewed more times the same product, that product must occur only one time in the returned list of the product_ids reviewed by *user_id*;

- 2. Counts the frequencies of all the pairs of products reviewed together (the frequency of a pair of products is given by the number of users who reviewed both products);
- 3. Stores on the output folder all the pairs of products that appear more than once and their frequencies. The pairs of products must be **sorted by decreasing frequency**.

Inspect the output of your application to search for interesting facts.

Pay attention that the line starting with "Id," is the header of the file and must not be considered.

Task 2 - Bonus task

Extend the implemented application in order to write on the standard output the top 10, most frequent, pairs of products and their frequencies.

How to access logs files if you use spark-submit

If you are connecting from outside Polito and you submit your application on the cluster by using spark-submit you can proceed as follows to retrieve the log files from the command line:

- 1. Open a Terminal on the gateway jupyter.polito.it
- 2. Execute the following command in the Terminal: yarn logs -applicationId application_1521819176307_2195

The last parameter is the application/job ID. You can retrieve the job ID of your application on the HUE interface: https://hue.polito.it/hue/jobbrowser/#!jobs