Application of Structured Total Least Squares for System Identification

Ivan Markovsky¹, Jan C. Willems¹, Sabine Van Huffel¹, Bart De Moor¹, and Rik Pintelon²

1 — Katholieke Universiteit Leuven, ESAT/SCD 2 — Vrije Universiteit Leuven, ESAT/SCD 3 — Vrije Universiteit Leuven, ESAT/SCD 3

2— Vrije Universiteit Brussel, Department ELEC

The structured total least squares problem

$$\text{STLS problem:} \quad \min_{\Delta p, X} ||\Delta p||^2 \quad \text{s.t.} \quad \mathcal{S}(p-\Delta p) \begin{bmatrix} X \\ -I_d \end{bmatrix} = 0$$

 $S(p) = S_0 + \sum_{i=1}^{n_p} S_i p_i$ — structure specification, e.g., S block-Hankel

Equivalent optimization problem:

$$\min_{X} \underline{r(X)} \Gamma^{-1}(X) \underline{r(X)}, \quad \text{where} \quad \Gamma(X) := G(X) G^{\top}(X) \tag{*}$$

Theorem: Under the assumption that

$$C = \left[C^{(1)} \ \cdots \ C^{(q)}\right], \quad \text{where } C^{(i)} \text{ is } \begin{cases} \text{block-Hankel/Toeplitz,} \\ \text{unstructured, or} \\ \text{exact} \end{cases}$$

 Γ is block-Toeplitz and block-banded

the structure of Γ allows computation of $f_0(X)$ and $f'_0(X)$ in O(m) flops \implies fast algorithms for (*)

Application in MIMO system identification

Approximate modeling problems

 $\begin{array}{lll} \hat{\Sigma} - \text{approximating model} & w - \text{observed general response} \\ \Sigma - \text{``true'' model} & h - \text{observed impulse response} \end{array}$

Kernel subproblem: find a block-Hankel rank deficient matrix $\mathcal{H}(\hat{w})$ approximating a given matrix $\mathcal{H}(w)$ — STLS

 $\mathcal{L}_{m,l}$ — the set of all LTI systems with m inputs and lag at most l (m and l specify the complexity of the model class $\mathcal{L}_{m,l}$)

Identification problem:
$$\min_{\mathcal{B} \in \mathcal{L}_{m,l}} \left(\min_{\hat{w}} \| w - \hat{w} \|_{\ell_2}^2 \text{ s.t. } \hat{w} \in \mathcal{B} \right)$$

STLS problem:
$$\min_{X} \left(\min_{\hat{w}} \| w - \hat{w} \|_{\ell_2}^2 \text{ s.t. } \mathcal{S}(\hat{w}) \begin{bmatrix} X \\ -I \end{bmatrix} = 0 \right)$$

Theorem: Assume that $\mathcal{B} \in \mathcal{L}_{m,l}$ admits a kernel represent.

$$\mathcal{B} = \ker \Big(\sum_{i=0}^{l} R_i \sigma^i \Big), \quad \text{with } R_l =: \left[Q_l \ \textcolor{red}{P_l} \right], \ \textcolor{blue}{P_l} \in \mathbb{R}^{p \times p} \text{ full rank}$$

and let

$$X^{\top} := -P_l^{-1} [R_0 \cdots R_{l-1} Q_l].$$

Then

$$w \in \mathcal{B}|_{[1,T]} \quad \Longleftrightarrow \quad \mathcal{H}_{l+1}^{\top}(w) \begin{bmatrix} X \\ -I \end{bmatrix} = 0.$$

Results on data sets from DAISY

DAISY (DAta base for Identification of SYstems)

Compared methods:

stls — the proposed method based on STLS

 $\,$ — the prediction error method of the Ident. Toolbox

subid — robust combined subspace algorithm

Considered examples.

	parameters		
#	Data set name	T	m p l
1	Data of a simulation of the western basin of Lake Erie	57	5 2 1
2	Data of Ethane-ethylene destillation column	90	$5\ 3\ 1$
3	Data from an industrial dryer (Cambridge Control Ltd)	867	3 3 1
4	Wing flutter data	1024	$1 \ 1 \ 5$
5	Heat flow density through a two layer wall	1680	$2\ 1\ 2$
6	Simulation data of a pH neutralization process	2001	$2\ 1\ 6$
7	Data of a CD-player arm	2048	$2\ 2\ 1$
8	Data from a test setup of an industrial winding process	2500	5 2 2
9	Liquid-saturated steam heat exchanger	4000	$1 \ 1 \ 2$
10	Data from an industrial evaporator	6305	3 3 1
11	Continuous stirred tank reactor	7500	1 2 1
12	Model of a steam generator at Abbott Power Plant	9600	$4\ 4\ 1$

Misfit $M(w, \hat{\mathcal{B}})$ scaled by $M(w, \hat{\mathcal{B}}_{\mathtt{stls}})$.

	scaled misfit							
# Data set name	gtls		pe	em	subid			
1 Lake Erie	1	1	22.0	9.6	1.5	1.9		
2 Destillation	1	1	17.5	14.4	3.1	3.7		
3 Industrial dryer	1	1	1.2	1.1	1.2	1.1		
4 Wing flutter	1	1.4	2.9	1	1.7	1.5		
5 Heat flow	1	1	10.2	10.7	1.9	2.5		
6 pH process	1	2.2	2.8	1	1.2	1.4		
7 CD-player arm	1	1	1.4	1.4	1.1	1.2		
8 Winding process	1	1	2.8	2.6	1.6	1.5		
9 Exchanger	1	1	8.1	6.9	1.9	1.6		
10 Evaporator	1	1	1.7	1.7	1.6	1.5		
11 Tank reactor	1	1	51.5	39.0	2.3	1.6		
12 Generator	1	1	3.3	3.1	2.4	2.6		

100/100 — identification/validation 85/15 — identification/validation

Execution time scaled by $M(w, \hat{\mathcal{B}}_{\text{subid}})$.

	J (/ Babia)								
	scaled exec. time								
# Data set name	gtls		ре	subid					
1 Lake Erie	2.3	2.4	6.4	9.6	1	1			
2 Destillation	5.7	4.4	19.7	15.8	1	1			
3 Industrial dryer	22.5	19.8	20.8	19.7	1	1			
4 Wing flutter	2.4	2.3	23.4	12.8	1	1			
5 Heat flow	4.5	3.5	36.6	31.4	1	1			
6 pH process	5.3	4.7	22.7	36.4	1	1			
7 CD-player arm	6.2	13.7	38.2	34.5	1	1			
8 Winding process	48.1	41.8	64.0	46.7	1	1			
9 Exchanger	5.4	5.1	23.5	37.8	1	1			
10 Evaporator	93.0	87.0	133	111	1	1			
11 Tank reactor	32.3	29.0	124	118	1	1			
12 Generator	288	244	205	207	1	1			