CHAPTER

迴歸分析

○學習重點

 Θ

- **⑤** 8.1 迴歸分析(Regression Analysis)
- 8.2 迴歸分析的基本統計假設
- 8.3 找出最佳的迴歸模式
- 8.4 檢定迴歸模式的統計顯著性(F test)
- 8.5 共線性問題
- 8.6 驗證結果
- **6** 8.7 研究範例

8-1 迴歸分析(Regression Analysis)

迴歸分析(Regression Analysis)可以分爲簡單迴歸 Simple Regression 和複迴歸(多元迴歸) Multiple Regression,簡單迴歸是用來探討 1 個依變數和 1 個自變數的關係,複迴歸(多元迴歸)是用來探討 1 個依變數和多個自變數的關係,我們整理簡單迴歸和複迴歸的表示式如下:

簡單迴歸表示式:

$$Y = β_0 + β_1 X_1 + ε$$

 $β_0$ 爲常數, $β_1$ 爲迴歸係數, $ε$ 爲誤差

複迴歸表示式:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta n X n + \epsilon$$

 β_0 爲常數, β_1 βn 爲迴歸係數, ϵ 爲誤差

複迴歸使用的變數都是計量的,也就是說,依變數與自變數二者皆爲計量的,表 示式如下:

$$Y = X_1 + X_2 + \dots + Xn$$

(計量) (計量)

> 迴歸分析的二大應用方向

迴歸分析經常用在解釋和預測二大方面,有關解釋方面,我們可以從取得的樣本,計算出迴歸的方程式,再透過迴歸的方程式得知每個自變數對依變數的影響力(貢獻),當然也可以找出最大的影響變數,以進行統計上和管理意涵的解釋。有關預測方面,由於迴歸方程式是線性關係,我們可以估算自變數的變動,會帶給依變數的多大改變,因此,我們使用迴歸分析來預測未來的變動。

8-2 迴歸分析的基本統計假設

在使用迴歸分析前,必須要確認資料是否符合迴歸分析的基本統計假設,否則, 當資料違反迴歸分析的基本統計假設時,會導致統計推論偏誤的發生。

迴歸分析的基本統計假設有下列四項:

* 線性關係

依變數和自變數之間的關係必須是線性,也就是說,依變數與自變數存在著相當固定比率的關係,若是發現依變數與自變數呈現非線性關係時,可以透過轉換(transform)成線性關係,再進行迴歸分析。

❖ 常態性(normality)

若是資料呈現常態分配 (normal distribution),則誤差項也會呈現同樣的分配,當樣本數夠大時,檢查的方式是使用簡單的 Histogram (直方圖),若是樣本數較小時,檢查的方式是使用 normal probability plot (常態機率圖)。

❖ 誤差項的獨立性

自變數的誤差項,相互之間應該是獨立的,也就是誤差項與誤差項之間没有相互關係,否則,在估計迴歸參數時,會降低統計的檢定力,我們可以藉由殘差(Residuals)的圖形分析來檢查,尤其是與時間序列和事件相關的資料,特別需要注意去處理。

❖ 誤差項的變異數相等(Homoscedasticity)

自變數的誤差項除了需要呈現常態性分配外,其變量數也需要相等,變量數的不相等(heteroscedasticity)會導致自變數無法有效的估計應變數,例如:殘差分佈分析時,所呈現的三角形分佈和鑽石分佈,在 spss 軟體中,我們可以使用 Levene test,來測試變異數的一致性,當變異數的不相等發生時,我們可以透過轉換(transform)成變異數的相等後,再進行迴歸分析。

8-3 找出最佳的迴歸模式

選擇變數進入的方式(以得到最佳的迴歸模式)在進行迴歸分析時,大部份的情形 是有多個自變數可以選擇使用在迴歸方程式中,我們想要找到的是能夠以較少的自變 數就足以解釋整個迴歸模式最大量,然而,其存在問題是我們應該選取多少個自變 數,又應如何選擇呢?我們整理選擇自變數進入迴歸模式的方式如下:

選擇自變數的方式	確認性的指定	Ē	
	順序搜尋法		向前增加
			往後刪除
			逐次估計

❖ 確認性的指定

以理論或文獻上的理由爲基礎,研究人員可以指定哪些變數可以納入迴歸方程式中,但必須注意的是,研究人員必須能確認選定的變數可以在簡潔的模式下,達到最大量的解釋。

❖ 順序搜尋法(Sequential Search Methods)

順序搜尋法是依變數解釋力的大小,選擇變數進入迴歸方程式,常見的有向前增加(Forward Addition)、往後刪除(Backward Elimination)、逐次估計(Stepwise Estimation) 三種,我們分別介紹如下:

- 向前增加(Forward Addition):自變數的選取是以達到統計顯著水準的變數,依解釋力的大小,依次選取進入迴歸方程式中,以逐步增加的方式, 完成選取的動作。
- 往後刪除(Backward Elimination): 先將所有變數納入迴歸方程式中求出 一個迴歸模式,接著,逐步將最小解釋力的變數刪除,直到所有未達顯 著的自變數都刪除爲止。
- 逐次估計(Stepwise Estimation):逐次估計是結合向前增加法和往後刪除法的方式,首先,逐步估計會選取自變數中與應變數相關最大者,接著,選取剩下的自變數中,部份相關係數與應變數較高者 (解釋力較大者),每新增一個自變數,就利用往後刪除法檢驗迴歸方程式中,是否有需要刪除的變數,透過向前增加,選取變數,往後刪除進行檢驗,直到所有選取的變數都達顯著水準為止,就會得到迴歸的最佳模式。

8-4 檢定迴歸模式的統計顯著性(F test)

迴歸模式的顯著性檢定,一般都使用 F test (檢定), F 檢定將所有自變數計算進來,看應變數 Y 和所有自變數 Xn 是否有統計的顯著性。

F 檢定的虛無假設(Null hyposesis)如下:

$$H_0: \beta_1 = \beta_2 \dots = \beta_n = 0$$

$$H_1$$
: Not all $\beta_i = 0$ ($i = 1, 2, ..., n$)

我們會將資料計算所得到的 F 值與香表所得的 Fcrit 比較:

若 F>Fcrit: 顯著性存在,推翻虛無假設,需要作進一步的檢定或解釋。

若 F≦Fcrit:顯著性不存在,接受虛無假設,研究者不需要作進一步的檢定,但

仍需要作解釋。

F 值的計算公式如下:

SSE total / df residual

(Sum of squared errors regression / Degrees of freedom regression)

(Sum of squared errors total / Degrees of freedom residual)

df regression = (k-1), k 爲估計母數的數目。

df residual = n-k, k 爲估計母數的數目, n 爲樣本數。

 $Fcrit = F_{(k-1,n-k)}$, 查表可得 F 値。

▶ 決定係數 R² (R square)

決定係數(coefficient of determination) R^2 是用來解釋線性迴歸模式的適配度 (goodness of fit), R^2 =0 時,代表依變數(Y)與自變數(X_n)没有線性關係, $R^2 \neq 0$ 時,代表依變數(Y)被自變數(X_n)所解釋的比率,計算公式如下:

$$R^2 = 1 - \frac{SSe}{SSt}$$
,SSe 為誤差變異量,SSt 為總變異量

 R^2 是迴歸可解釋的變異量,來自於依變數 Y 的總變異量,等於迴歸測量的變異量 + 誤差變異量,關係式如下:

SSt = SSregression + SSe

$$1 = \frac{\text{SSregression}}{\text{SSt}} + \frac{\text{SSe}}{\text{SSt}}$$
$$= 迴歸可解釋的變異量 + 誤差總變異量$$

迴歸可解釋的變異量 =
$$\frac{SSregression}{SSt}$$
 = 1 - $\frac{SSe}{SSt}$

▶ 調整後的 R² (adjusted R²)

在迴歸模式中, R^2 會用來說明整個模式的解釋力,但是 R^2 會受到樣本大小的影響而呈現高估現象,樣本愈小,愈容易出現問題(高估),因此,大多數的學者都採用調整後的 R^2 ,也就是將誤差變異量和依變數(Y)的總變異量都除以自由度 degree of freedom. (df)

Adjusted R² = 1 -
$$\frac{\frac{SSe}{dfe}}{\frac{SSt}{dft}}$$

經自由度的處理後,我們就可以避免樣本太小而導致高估整個迴歸模式的解釋力。

> 解釋迴歸的變量

在迴歸模式具有統計顯著性後,我們想要看看在迴歸方程式中,那些自變數 (X_n) 對依變數(Y)有較大的影響力,在原始的資料中,若是尺度衡量不一致,例如:體重的公斤、公克,身高的公尺、公分,都會產生解釋迴歸變量的問題,因此,我們必須使用標準化的係數,也就是對原始的自變數 (X_n) 予以標準化,標準化後的變數,不會

受到不同尺度衡量的影響,由標準化的自變數所計算而得到的迴歸係數,我們稱爲 β 係數 (beta 係數),擁有 β 係數愈高的自變數(X_n),對依變數(Y)的影響力愈大。

8-5 共線性問題

當自變數們 (X_n) 有共線性的問題時,代表自變數 (X_n) 有共同解釋的部份,個別的自變數(X),無法確認對依變數(Y)有多大的影響,那我們如何辨識自變數們 (X_n) 有共線性的問題呢?下列 2 個步驟可以辨識共線性的問題:

- 1. 查看相關係數,超過 0.8 就已經太高了,可能有共線性問題
- 2. 查看容忍値(tolerance),容忍值 = (1- 自變數被其它變數所解釋的變異量),容忍値($0\sim1$ 之間),愈大愈好,容忍値愈大,代表共線性問題愈小,容忍值的倒數 = 變異數膨脹因素 (VIF, variance inflation faction),VIF 的值愈小愈好,代表愈没有共線性問題。

當發生共線性問題時,我們可以採用 1.忽略高相關變數、2.只作預測,不作解釋 迴歸係數、3.用來了解關係、4.使用其它迴歸分析,來處理共線性的問題。

8-6 驗證結果

驗證結果的目的是想要確認是否可以代表母體,我們想要驗證迴歸模式時,可以使用 2 個獨立的樣本,或同一個樣本,分割成 2 個樣本,進行迴歸分析後,若是二個樣本没有顯著差異,就代表樣本有一致性,表示我們得到的迴歸模式經過驗證後,可以代表母體。

8-7 研究範例

我們設計的研究問卷範例如下:

	【ERP專案團隊的運作】					
Α.	他們(她們)在參與專案時,您覺得:		些	普通	比較同意	非常同意
1.	對 ERP 系統開發給予明確的規範					
2.	參與 ERP 系統開發與建置團隊人選的指派					
3.	制定新 ERP 系統做與不做的標準					
В.	團隊合作方面 ,我們專案小組的成員					
4.	對於合作的程度是滿意					
5.	對專案是支持的					
6.	對跨部門的合作是很有意願					
	【大型ERP系統的開發/使用】					
C.	對於系統的品質,您覺的	非常不同意	有些不同意	普通	比較同意	非常同意
7.	ERP 系統可以有效地整合來自不同部門系統的資料					
8.	ERP 系統的資料在很多方面是適用的					
9.	ERP 系統可以有效地整合組織內各種型態的資料					
D.	對於資訊的品質,您覺的					
10.	提供精確的資訊					
11.	提供作業上足夠的資訊					
E.	對於資訊部門的服務,您覺的					
12.	會在所承諾的時間內提供服務					
13.	堅持作到零缺點服務					
14.	總是願意協助使用者					
F.	就使用者滿意而言,您覺的				_	
15.	滿意 ERP 系統輸出資訊內容的完整性					
16.	ERP 系統是容易使用					
17.	ERP 系統的文件是有用的					

以台灣地區企業排名前 2000 大爲研究對象,本研究問卷共發出 957 份,回收有效問卷 350 份,有效回收率爲 36.57 %。

我們建構的研究模式如下:

編碼代號:高階主管支持(MI)、團隊合作(CO)、系統品質(SQ)、 資訊品質(IQ)、服務品質(SV)、使用者滿意度(US)。

依研究構面的因果關係,我們需要處理四次的簡單迴歸和一次的複迴歸,四次的簡單迴歸分別是高階主管支持(MI) > 團隊合作(CO) 、團隊合作(CO) > 系統品質(SQ)、團隊合作(CO) > 資訊品質(IQ)、團隊合作(CO) > 服務品質(SV); 一次的複迴歸的依變數是使用者滿意度(US),自變數是系統品質(SQ)、資訊品質(IQ)和服務品質(SV)。

說明 簡單迴歸是用來探討 1 個依變數和 1 個自變數的關係。 複迴歸(多元迴歸)是用來探討 1 個依變數和多個自變數的關係。

請先將隨書光碟 Ch8 目錄複製成本機 C:\Ch8 目錄,實務操作如下:

1. 開啓範例檔 Ch8\Regression.sav,如下圖:

2. 按 Analyze → Regression → Linear,如下圖:

8-10

3. 按捲軸向下,找到操作變數 MI、CO、SQ、IQ、SV 和 US,如下圖:

4. 將 CO 變數選入 Dependent, MI 變數選入 Independent(s), 在 Method 按向下, 出現圖如下:

8-11

- Dependent 依變數
- Independent(s)自變數
- Method 方法:
 - ▶ Enter 強行進入法:所有變數同時進入迴歸方程式。
 - ▶ Stepwise 逐次估計:逐次估計是結合向前增加法和往後刪除法的方式,首先,逐步估計會選取自變數中與應變數相關最大者,接著,選取剩下的自變數中,部份相關係數與應變數較高者(解釋力較大者),每新增一個自變數,就利用往後刪除法檢驗迴歸方程式中,是否有需要刪除的變數,透過向前增加,選取變數,往後刪除進行檢驗,直到所有選取的變數都達顯著水準爲止,就會得到迴歸的最佳模式。
 - ▶ Remove 移除法:可以強迫移除某些變數進入迴歸方程式。
 - ▶ Backward 往後法: 先將所有變數納入迴歸方程式中求出一個迴歸模式,接著,逐步將最小解釋力的變數刪除,直到所有未達顯著的自變數都刪除爲止。
- Case Labels 設定某個變數作爲標籤。
- WLS weight 以 Weighted Least-Square 最小平方和來建立迴歸的模式。
- 5. 在 Method 中選 Enter,如下圖:

6. 按 Statistics, 選取 Estimates、Confidence intervals、Covariance matrix、Model fit、R squared change、Descriptives、Part and partial correlations 和 Collinearity diagnostics,如下圖:

- Regression Coefficients 迴歸係數
 - ▶ Estimates 估計值:在報表輸出迴歸係數的相關值,例如,迴歸係數的估計值、標準差、t 値、p 值和標準化的迴歸係數 (Beta) 値。
 - ▶ Confidence intervals 信賴區間:在報表輸出 95%的信賴區間値。
 - ▶ Covariance matrix 共變異數矩陣:輸出共變異數矩陣值。
- Model fit 模式適合度:用來顯示模式適切度,相關參考値有複相關係數 R,判定係數R²,調整後的R²和標準差。
- R squared change R^2 改變量:顯示模式適合度時, R^2 和 F 値的改變量, 値越大代表預測能力越強。
- Descriptives 敍述性統計量:顯示變數的平均數、標準差、有效的樣本數 和相關矩陣。
- Part and partial correlations 部份與偏相關:顯示部份與偏相關的係數
- Collinearity diagnostics 共線性診斷:顯示共線性診斷統計量,例如:變異數膨脹因子(VIF)和交乘積矩陣的特徵值。
- Residuals 殘差
 - ▶ Durbin-Watson: 顯示 Durbin-Watson 檢定量,也就是相鄰誤差項的相關大小。
 - ▶ Casewise diagnostics:每個觀察値的診斷。

7. 按 Continue,回到 Linear Regression 視窗,如下圖:

8. 選取 Histogram、Normal probability plot,如下圖:

- DEPENDNT 依變數
- *ZPRED 標準化預測值
- *ZRESID標準化殘差值
- *DRESID 刪除後標準化殘差值
- *ADJPRED 調整後的預測值
- *SRESID Studentized 殘差値

- * SDRESID Studentized 刪除後的殘差值
- Scatter 1 of 1:選取變數的殘差散佈圖,須要選取一個變數爲 X 軸,另一個變數爲 Y 軸。
- Standardized Residual Plots 標準化殘差圖
 - ▶ Histogram 直方圖
 - ▶ Normal probability plot 常態機率散佈圖
- Produce all partial plots 輸出每個自變數與依變數的殘差散佈圖
- 9. 按 Continue,回到 Linear Regression 視窗,如下圖:

10. 選取 Use probability of F (預設)、Include constant in equation (預設)、Exclude cases listwise (預設),如下圖:

- Stepping Method Criteria 逐步方法的標準
 - Use probability of F 使用 F 値的顯著機率値:
 Entry .05 (預設) 自變數選入回歸方程式的機率値。
 Removal .10 回歸方程式計算後,變數大於回歸參數的顯著機率值會被移除。
 - ▶ Use F value 改爲 F 値作爲選取變數與剔除變數的標準
- Include constant in equation 在方程式中包含常數項
- Missing Values 遺漏値
 - ▶ Exclude cases listwise 排除所有遺漏値
 - ▶ Exclude cases pairwise 排除成對的遺漏值
 - ▶ Replace with mean 使用平均數取代遺漏值

11. 按 Continue,回到 Linear Regression 視窗,如下圖:

12. 按 OK, 出現報表結果如下圖:

我們也可以在範例資料檔中,直接執行下列語法,會得到相同的報表結果:

REGRESSION /DESCRIPTIVES MEAN STDDEV CORR SIG N /MISSING LISTWISE /STATISTICS COEFF OUTS CI BCOV R ANOVA COLLIN TOL CHANGE ZPP /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT CO /METHOD=ENTER MI /RESIDUALS HIST(ZRESID) NORM(ZRESID).

報表分析結果如下:

Regression

Descriptive Statistics

	Mean	Std. Deviation	N
CO	11.2686	2.35694	350
MI	9.8686	2.73466	350

敘述性統計量:顯示團隊合作(CO)、高階主管支持(MI)的平均數和標準差。

Correlations

		CO	MI		
Pearson Correlation	CO	1.000	.314	—	相關係數
	MI	.314	1.000		
Sig. (1-tailed)	CO		(.000	—	P值
	MI	.000			
N	CO	350	350		
	MI	350	350		

相關的統計量:顯示團隊合作(CO)、高階主管支持(MI)的相關係數是顯著的 Sig. P=0.000 相關係數的值是 0.314。

Variables Entered/Removed(b)

Model	Variables Entered	Variables Removed	Method
1	MI(a)		Enter

- a All requested variables entered.
- b Dependent Variable: CO

模式中進入的依變數是 CO 和自變數是 MI。

Model Summary(b)

						(Change Statis	tics	
			Adjusted R	Std. Error of	R Square				Sig. F
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change
1	.314(a)	.098	.096	2.24128	.098	37.948	1	348	.000

a Predictors: (Constant), MI

P 值

b Dependent Variable: CO

模式摘要表,有複相關係數 R=0.14,R 平方=0.098、調整後的 R 平方=0.096、估計的標準誤=2.241、R 平方的改變量=0.098、F 值的改變=37.948、分子自由度=1、分母自由度=348、F 值改變的顯著性=0.000。

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	190.626	1	190.626	37.948	000(a)
	Residual	1748.128	348	5.023		
	Total	1938.754	349			

a Predictors: (Constant), MIb Dependent Variable: CO

變異數分析摘要表,有 SSR=190.626, SSE=1748.128, SST=1938.754, SSR+SSE=SST, F 值等於 37.948 (F=MSR/MSE=190.626÷5.023=37.948), P=.000<.05,達顯著水準。

Coefficients(a)

		Unstand	dardized	Standardized			95% Co	nfidence				Colline	arity
		Coeff	icients	Coefficients			Interva	al for B	Co	rrelations		Statis	tics
			Std.				Lower	Upper					
Model		В	Error	Beta	t	Sig.	Bound	Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant	8.602	.449		19.148	.000	7.718	9.485					
	MI	.270	.044	.314	6.160	.000	.184	.357	.314	.314	.314	1.000	1.000

a Dependent Variable: CO

係數表:

迴歸分析的各係數值,常數項等於 8.602,未標準化的迴歸係數(Unstandardized Coefficients)高階主管支持(MI)=.270,標準化的迴歸係數(Standardized Coefficients) Beta 值=.314,t 值=6.160,p=.000<.05,達到顯著水準。

Coefficient Correlations(a)

Model			MI
1	Correlations	MI	1.000
	Covariances	MI	.002

a Dependent Variable: CO

相關係數:自變數的相關係數=1.000,共變數係數=0.002

Collinearity Diagnostics(a)

Model	Dimension	Eigenvalue	Condition Index	Variance Proportion	
				(Constant)	MI
1	1	1.964	1.000	.02	.02
	2	.036	7.364	.98	.98

a Dependent Variable: CO

共線性診斷表:除了變異數膨脹因素(VIF, variance inflation faction), VIF 的值愈小愈好, 代表愈沒有共線性問題外,也可以看 Dimension 維度的 Eigenvalue 和 Condition Index 的值,一般是 Condition Index 的值大於 30 時,就可能有共線性問題。

Casewise Diagnostics(a)

Case Number	Std. Residual	CO
215	-3.500	4.00

a Dependent Variable: CO

變數診斷表:標準化殘差值=-3.500

Residuals Statistics(a)

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	9.4123	12.6554	11.2686	.73906	350
Residual	-7.84460	5.58770	.00000	2.23807	350
Std. Predicted Value	-2.512	1.876	.000	1.000	350
Std. Residual	-3.500	2.493	.000	.999	350

a Dependent Variable: CO

殘差值的敘述性統計量有預測值,殘差值,標準化預測值和標準化殘差值,例如:最小 殘差值=-7.8446,最大殘差值=5.5877,標準差=2.23807。

我們需要的值是在模式摘要表和係數表如下:

模式摘要表

						(Change Statis	tics	
			Adjusted R	Std. Error of	R Square				Sig. F
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change
1	.314(a)	.098	.096	2.24128	.098	37.948	1	348	.000

係數表

		Unstand		Standardized			95% Co					Colline	-
		Coeffi	icients	Coefficients			Interva	l for B	Со	rrelations	1	Statist	tics
			Std.				Lower	Upper					
Model		В	Error	Beta	t	Sig.	Bound	Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant	8.602	.449		19.148	.000	7.718	9.485					
	MI	.270	.044	.314	6.160	.000	.184	.357	.314	.314	.314	1.000	1.000

我們從模式摘要表和係數表中整理高階主管支持(MI)對團隊合作(CO)的變數解釋力=.098,顯著性 P=0.0000 和路徑係數=.314,我們整理成圖示如下:

說明: ***表示達 0.001 之顯著水準

高階主管支持(MI)、團隊合作(CO)、系統品質(SQ)、資訊品質(IQ)、服務品質(SV)、使用者滿意度(US)。

我們處理好高階主管支持(MI) 對團隊合作(CO)的影響後,接著要處理的是團隊合作(CO) → 系統品質(SQ) 的影響,由於都是使用線性迴歸,我們可以重複高階主管支持(MI)對團隊合作(CO) 的操作步驟,也可以使用更快速的 Dialog Recall (重新呼叫對話框)的方式進行實作,使用 Dialog Recall (重新呼叫對話框)的方式可以不必重新設定前次已經設定好的參數值,只要更改變數或更改部分參數就可以執行我們所需要的統計了。接下來我們使用 Dialog Recall (重新呼叫對話框)的方式處理團隊合作(CO) → 系統品質(SQ) 的影響,實務操作如下:

1. 接 Dialog Recall 圖示,選 Linear Regression,如下圖。

按這裏,選 Linear Regression

2. 將變數 SQ 選入 Dependent,變數 CO 選入 Independent(s),如下圖。

前次已經設定好所需要的統計量了,我們更改變數後,就可以執行所需要的統計了。

3. 按 OK, 出現報表結果如下。

我們需要的值是在模式摘要表和係數表如下:

模式摘要表

				Std. Error		C	hange Statis	stics	
			Adjusted	of the	R Square				Sig. F
Model	R	R Square	R Square	Estimate	Change	F Change	df1	df2	Change
1	.433(a)	.188	.185	2.10607	.188	80.410	1	348	.000

係數表

			lardized	Standardized Coefficients			95% Co		Со	rrelations		Colline	,
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant	6.544	.551		11.885	.000	5.461	7.627					
	CO	.429	.048	.433	8.967	.000	.335	.523	.433	.433	.433	1.000	1.000

我們從模式摘要表和係數表中整理團隊合作(CO)對的系統品質(SQ)變數解釋力= .188, 顯著性 P=0.0000 和路徑係數= .433, 我們整理成圖示如下:

說明: ***表示達 0.001 之顯著水準

高階主管支持(MI)、團隊合作(CO)、系統品質(SQ)、資訊品質(IQ)、服務品質(SV)、使用者滿意度(US)。

我們處理好團隊合作(CO) \rightarrow 系統品質(SQ)的影響後,接著要處理的是團隊合作(CO) \rightarrow 資訊品質(IQ)的影響,由於都是使用線性迴歸,我們可以重複高階主管支持(MI) 對團隊合作(CO)的操作步驟,也可以使用更快速的 Dialog Recall (重新呼叫對話框)的方式進行實作,使用 Dialog Recall (重新呼叫對話框)的方式可以不必重新設定前次已經設定好的參數值,只要更改變數或更改部分參數就可以執行我們所需要的統計了。接下來我們使用 Dialog Recall (重新呼叫對話框)的方式處理團隊合作(CO) \rightarrow 資訊品質(IQ)的影響,實務操作如下:

1. 按 Dialog Recall 圖示,選 Linear Regression,如下圖。

œ≅ n ∴	n - SPSS Data Edit r		- 551						_ & ×
	n - SPSS Data Editi n <u>V</u> iew <u>D</u> ata <u>T</u> rans	form Analyza	Graphs Utiliti	es Window I	<u>I</u> elp				
				<u> </u>	(a)				
1:US3	Linear Regre								
	Compute Var		MB	001	CCC 2	CCC3	SQ1	SQ2	SQ3 ▲
1	Factor Analys		4	4	4	4	4	4	4
2	Frequencies		4	5	5	5	5	5	5
3	Descriptives Explore		3	4	5	5	4	4	4
4	Replace Miss	sing Values	4	4	4	4	4	4	4
5	Missing Valu	e Analysis	3	4	5	5	5	5	4
6	Crosstabs		2	4	4	4	5	5	5
7	Weight Case Chi-Square T		3	4	4	4	4	4	4
8	3	3	3	4	4	4	3	4	4
9	5	3	5	4	5	5	5	4	4
10	4	4	3	4	4	4	4	3	3
11	3	4	4	3	3	4	5	4	5
12	3	4	3	4	4	4	4	4	4
13	4	4	3	4	4	4	4	4	4
14	2	1	2	5	5	5	4	4	4
15	4	4	4	4	5	5	5	5	5
16	5	4	5	4	5	5	4	4	4
17	3	3	3	4	4	3	3	4	4
18	2	3	4	4	5	5	5	4	4
19	3	3	3	4	4	4	4	3	3
20	2	2	2	4	4	4	3	3	3
21	2	4	3	2	2	3	4	3	4
22	1	1	1	4	2	3	3	3	3
₹ }\Dat	a View √ Ŷaria			•	1]	ri	ri	<u> </u>
		SI	PSS Processor is	ready					
開始	🗯 🗹 🥭 😸		網. 💁 F 🎬	R ខ Y 🚪	C 👁 r 🖥	🚰 r 🖟 🙆	· 💇 🐉 🕄	無量 □ ■	上午 10:26

按這裡,選 Linear Regression

2. 將變數 IQ 選入 Dependent,變數 CO 選入 Independent(s),如下圖。

3. 按 OK, 出現報表結果如下。

我們需要的值是在模式摘要表和係數表如下:

模式摘要表

						Cł	nange Stati	stics	
			Adjusted	Std. Error	R				
		R	R	of the	Square	F			Sig. F
Model	R	Square	Square	Estimate	Change	Change	df1	df2	Change
1	.413(a)	.171	.168	1.29469	.171	71.650	1	348	.000

係數表

		Unstand		Standardized Coefficients			95% Con		Со	rrelations		Colline Statist	,
Model	Std.		Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF	
1	(Constant	4.881	.338		14.420	.000	4.215	5.547					
	CO	.249	.029	.413	8.465	.000	.191	.307	.413	.413	.413	1.000	1.000

我們從模式摘要表和係數表中整理團隊合作(CO)對資訊品質(IQ)的變數解釋力=.171,顯著性 P=0.0000 和路徑係數=.413,我們整理成圖示如下:

說明: ***表示達 0.001 之顯著水準

高階主管支持(MI)、團隊合作(CO)、系統品質(SQ)、資訊品質(IQ)、服務品質(SV)、使用者滿意度(US)。

我們處理好團隊合作(CO) →資訊品質(IQ)的影響後,接著要處理的是團隊合作(CO) →服務品質(SV)的影響,由於都是使用線性迴歸,我們可以重複高階主管支持(MI)對團隊合作(CO)的操作步驟,也可以使用更快速的 Dialog Recall (重新呼叫對話框)的方式進行實作,使用 Dialog Recall (重新呼叫對話框)的方式可以不必重新設定前次已經設定好的參數值,只要更改變數或更改部分參數就可以執行我們所需要的統計了。接下來我們使用 Dialog Recall (重新呼叫對話框)的方式處理團隊合作(CO) →服務品質(SV)的影響,實務操作如下:

1. 按 Dialog Recall 圖示,選 Linear Regression,如下圖。

_BX File Edit View Data Linear Regression 1 : US3 Compute Variable **Factor Analysis** Frequencies Descriptives Explore Replace Missing Values Missing Value Analysis Crosstabs Weight Cases Chi-Square Test 2. Data View (Variable View

按這裡,選 Linear Regression

2. 將變數 SV 選入 Dependent,變數 CO 選入 Independent(s),如下圖。

3. 按 OK,出現報表結果如下。

我們需要的值是在模式摘要表和係數表如下:

模式摘要表

	_					(Change Statis	tics	
			Adjusted R	Std. Error of	R Square				Sig. F
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change
1	.468(a)	.219	.216	1.74818	.219	97.333	1	348	.000

a Predictors: (Constant), COb Dependent Variable: SV

係數表

			Unstand		Standardized Coefficients			95% Co		Со	rrelations		Colline Statist	,
Mod	del		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	-	(Constant	6.869	.457		15.029	.000	5.970	7.768					
		CO	.392	.040	.468	9.866	.000	.314	.470	.468	.468	.468	1.000	1.000

a Dependent Variable: SV

我們從模式摘要表和係數表中整理團隊合作(CO)對服務品質(SV)的變數解釋力= .219, 顯著性 P=0.0000 和路徑係數= .468, 我們整理成圖示如下:

說明:***表示達 0.001 之顯著水準

高階主管支持(MI)、團隊合作(CO)、系統品質(SQ)、 資訊品質(IQ)、服務品質(SV)、使用者滿意度(US)。

我們處理好團隊合作(CO) →服務品質(SV)的影響後,接著要處理的是系統品質(SQ)、資訊品質(IQ)和服務品質(SV)三個對使用者滿意度(US)的影響,由於都是使用線性迴歸,我們可以重複高階主管支持(MI)對團隊合作(CO)的操作步驟,也可以使用更快速的 Dialog Recall(重新呼叫對話框)的方式進行實作,使用 Dialog Recall (重新呼叫對話框)的方式可以不必重新設定前次已經設定好的參數值,只要更改變數或更改部分參數就可以執行我們所需要的統計了。接下來我們使用 Dialog Recall (重新呼叫對話框)的方式處理系統品質(SQ)、資訊品質(IQ)和服務品質(SV) 三個對 使用者滿意度(US)的影響,實務操作如下:

1. 按 Dialog Recall 圖示,選 Linear Regression,如下圖。

🚃 Regression - SPSS Data Editor							_ B ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>D</u> ata <u>T</u> ransform <u>A</u> naly	ze <u>G</u> raphs <u>U</u> t	ilities <u>W</u> indow	<u>H</u> elp				
		# m # v	¥l@l				
1:US3 Linear Regression		= =	<u> </u>				
Siveriate Correlations		901	0000 I	2001 I	got I	000 I	go2 1 1
Compute Variable	MB	001	CO2	003	SQ1	SQ2	SQ3 ▲
1 Factor Analysis	4	4	4	4	4	4	4
2 Frequencies Descriptives	4	5	5	5	5	5	5
3 Explore	3	4	5	5	4	4	4
4 Replace Missing Values	4	4	4	4	4	4	4
5 Missing Value Analysis	3	4	5	5	5	5	4
6 Crosstabs	2	4	4	4	5	5	5
7 Weight Cases Chi-Square Test	3	4	4	4	4	4	4
8 3 3	3	4	4	4	3	4	4
9 5 3	5	4	5	5	5	4	4
10 4 4	3	4	4	4	4	3	3
11 3 4	4	3	3	4	5	4	5
12 3 4	3	4	4	4	4	4	4
13 4 4	3	4	4	4	4	4	4
14 2 1	2	5	5	5	4	4	4
15 4 4	4	4	5	5	5	5	5
16 5 4	5	4	5	5	4	4	4
17 3 3	3	4	4	3	3	4	4
18 2 3	4	4	5	5	5	4	4
19 3 3	3	4	4	4	4	3	3
20 2 2	2	4	4	4	3	3	3
21 2 4	3	2	2	3	4	3	4
22 1 1	1	4	2	3	3	3	3
Data View A Variable View	^		1		r	r i	Ĺ
	SPSS Processor	is ready					
湯 開始 😘 🚮 🥭 👹 🙆 👋	直網.	≣R ℰ ↑Υ	a c	醋r 使	2 4 4 5		上午 10:29

按這裡,選 Linear Regression

2. 將變數 US 選入 Dependent,變數 SQ、IQ、SV 選入 Independent(s),如下圖。

3. 按 OK, 出現報表結果如下。

我們需要的值是在模式摘要表和係數表如下:

模式摘要表

						(Change Statis	tics	
			Adjusted R	Std. Error of	R Square				Sig. F
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change
1	.694(a)	.481	.477	1.49551	.481	107.005	3	346	.000

a Predictors: (Constant), SV, SQ, IQ

b Dependent Variable: US

係數表

		Unstand	lardized	Standardized			95% Co	nfidence				Colline	arity
		Coeffi	cients	Coefficients			Interva	l for B	Co	rrelations	l	Statis	tics
			Std.				Lower	Upper					
Model		В	Error	Beta	t	Sig.	Bound	Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant	1.237	.541	\bigcap	2.289	.023	.174	2.301					
	SQ	.208	.047	.235	4.461	.000	.116	.300	.562	.233	.173	.541	1.847
	IQ	.410	.077	.282	5.354	.000	.260	.561	.578	.277	.207	.541	1.848
	SV	.353	.046	.337	7.720	.000	.263	.443	.554	.383	.299	.787	1.270

a Dependent Variable: US

我們從模式摘要表和係數表中整理團隊合作(CO)對服務品質(SV)的變數解釋力= .481, 顯著性 P=0.0000 和路徑係數 SQ→US= .235 顯著, IQ→US= .282 顯著, SV→US= .337 顯著, 我們整理成圖示如下:

說明: ***表示達 0.001 之顯著水準

高階主管支持(MI)、團隊合作(CO)、系統品質(SQ)、資訊品質(IQ)、服務品質(SV)、使用者滿意度(US)。

我們整理經過多次的簡單迴歸和複迴歸後,得到的最終的研究結果如下圖:

說明: ***表示達 0.001 之顯著水準

高階主管支持(MI)、團隊合作(CO)、系統品質(SQ)、資訊品質(IQ)、服務品質(SV)、使用者滿意度(US)。

說明:*代表顯著,構面之間為路徑係數,R²代表解釋力。