

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment

Number Theory

Author: Adam J. Gray Student Number: 3329798

Question 1

Suppose x > 2 and let m be the largest integer such that $2^m \le x$.

Part a

Use the definition of $\psi(x)$ to deduce that $\psi(x) \geq \vartheta(x)$ and conclude from Tutorial problem 1 that $\vartheta(x) \leq 2x$.

Part c

Show that $\frac{\log(x)}{x^{\alpha}}$ has a maximum of $\frac{1}{\alpha e}$

Part d

Deduce that $psi(x) - \vartheta(x) \le 9x^{\frac{1}{2}}$.

Part e

Conclude that, as $x \longrightarrow \infty$, $\frac{\psi(x)}{x} \longrightarrow 1 \Leftrightarrow \frac{\vartheta(x)}{x} \longrightarrow 1$.

Solution

Part a

We have that

$$\psi(x) = \sum_{m \le \log_2(x)} \vartheta(x^{\frac{1}{m}})$$

$$= \vartheta(x) + \sum_{\substack{2 \le m \le \log_2(x) \\ \ge 0}} \vartheta(x^{\frac{1}{m}})$$

so it is obvious that $\psi(x) \geq \vartheta(x)$.

From the tutorial problems we have that $\psi(x) \leq 2x$ so it must also be that $\vartheta(x) \leq 2x$.

1

Part b

See that

$$\frac{d}{dx}\frac{\log(x)}{x^{\alpha}} = \frac{\frac{1}{x}x^{\alpha} - \alpha\log(x)x^{\alpha-1}}{x^{2\alpha}}$$
$$= \underbrace{\frac{x^{\alpha-1}(1 - \alpha\log(x)}{x^{2\alpha}}}_{\circledast}.$$

Now setting $\circledast = 0$ we have that

$$\log(x) = \frac{1}{\alpha}$$
$$x = e^{\frac{1}{\alpha}}.$$

Now checking

$$\frac{d^2}{dx^2} \frac{\log(x)}{x^{\alpha}} \Big|_{x=e^{\frac{1}{\alpha}}} = e^{\frac{-2-\alpha}{2}} (1-\alpha)(1-1) + e^{\frac{-1-\alpha}{\alpha}} \left(\frac{-\alpha}{e^{-\alpha}}\right)$$

$$\leq 0$$

so there must be a maximum at $x = e^{\frac{1}{\alpha}}$. Then evaluating we get that

$$\frac{\log(x)}{x^{\alpha}}\Big|_{x=e^{\frac{1}{\alpha}}} = \frac{1}{e\alpha}.$$