DAFTAR ISI

DAFTA	R ISI	. 1
DAFTA	R TABEL	i
DAFTA	R GAMBAR	i
BAB 1 F	PENDAHULUAN	1
1.1	Latar Belakang Masalah.	1
1.2	Rumusan Masalah	2
1.3	Tujuan Penelitian	2
1.4	Luaran yang Diharapkan	3
1.5	Manfaat Penelitian	
BAB 2 7	TINJAUAN PUSTAKA	3
2.1	Adikarya penelitian	3
2.1	Baterai Li-Ion	4
2.2	Logam Nikel dan Aplikasinya	4
2.3	Proses Ekstraksi Padat-Cair (Leaching)	4
2.4	Proses Ekstraksi Cair-Cair	5
2.5	Proses Stripping	5
BAB 3 N	METODOLOGI PENELITIAN	5
3.1	Tahapan Penelitian	5
3.2	Prosedur Penelitian	6
3.2.	1 Preparasi Baterai Li-Ion	6
3.2.	2 Leaching dengan Variasi Konsentrasi Leaching Agent	6
3.2.	3 Leaching dengan Variasi Persentase H ₂ O ₂	6
3.2.	4 Leaching dengan Variasi Suhu Operasi	6
3.2.	5 Leaching dengan Variasi Suhu Operasi dan Waktu Pengadukan	7
3.2.	6 Proses Ekstraksi Cair-Cair	7
3.3	Variabel Penelitian	8
3.4	Indikator Pencapaian	8
3.5	Pengolahan dan Penyimpulan Hasil Penelitian	
BAB 4 F	BIAYA DAN JADWAL KEGIATAN	9
4.1	Anggaran Biaya	9
4.2	Jadwal Kegiatan	9
DAFTA	R PUSTAKA	9
Lampira	n 1. Biodata Ketua, Anggota dan Dosen Pembimbing1	. 1
Lampira	n 2. Justifikasi Anggaran Kegiatan1	.6
Lampira	n 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas 1	8
Lampira	n 4. Surat Pernyataan Ketua Tim Pelaksana	Ç

DAFTAR TABEL

Tabel 2.1 Adikarya penelitian	3
Tabel 3.1 Variabel penelitian	8
Tabel 4.1 Rincian Anggaran Biaya Keseluruhan	9
Tabel 4.2 Jadwal Kegiatan Penelitian	9
DAFTAR GAMBAR	
Gambar 3.1 Diagram Alir Penelitian	5

BAB 1 PENDAHULUAN

1.1 Latar Belakang Masalah

Seiring dengan perkembangan zaman, teknologi elektronik terus berkembang. Perkembangan tersebut juga menyebabkan sampah elektronik (*e-Waste*) juga ikut bertambah setiap tahunnya. Menurut data dari PBB, masyarakat di dunia menghasilkan 44,7 juta ton sampah *e-Waste* pada tahun 2016, dan jumlah sampah ini meningkat 3-4% setiap tahunnya. Dari jutaan ton sampah elektronik tersebut, hanya 20% yang proses daur ulang, sementara 80% diantaranya dibiarkan menggunung. (Telset, 2016). Peralatan elektronik yang *rechargeable* (telepon genggam (HP), laptop, video, kamera dan peralatan elektronik lainnya) biasanya dominan menggunakan baterai *Li-Ion* (Wang *et al*, 2012). Salah satu elektronik yang paling banyak digunakan adalah telepon genggam (HP) dengan data penggunaannya di Indonesia sebesar 236 juta unit pada tahun 2018 (IDN *Times*, 2018). Jumlah ini akan terus bertambah sehingga menyebabkan jumlah sampah baterai juga akan meningkat.

Baterai *Li-Ion* ini lebih sering dipakai, karena dapat menggantikan penggunaan baterai NiCd dan NiMH, karena baterai tersebut hanya memiliki tegangan 1,2 V, sementara baterai *Li-ion* memiliki tegangan sampai 3,7 V (Revankar, 2019) dan baterai *Li-Ion* memiliki ukuran yang lebih kecil, densitas energi yang tinggi, lebih tahan lama, dan tidak memiliki pengaruh terhadap memori (Wang *et al*, 2012). Baterai *Li-Ion* dikatakan sebagai limbah tergantung dari penggunaan konsumer masing-masing, karena baterai ini merupakan baterai yang *re-chargeable* tidak seperti baterai berbahan *alkaline* atau *zinc*. Penggunaan baterai ini dapat mencapai 10.000 siklus pengisian (Revankar, 2019).

Kandungan baterai ini memiliki beberapa logam berharga, yaitu pada katodanya terdapat logam non besi seperti kobalt, nikel dan litium (Shin *et al*, 2005). Kobalt yang terkandung di dalamnya sekitar 5 - 20 wt%, litium sebesar 5 - 7 wt%, dan nikel sebesar 5 - 10 wt%, 15% bahan kimia organic, dan 7% plastik, bahan berbeda-beda sesuai dari pabrik yang menciptakan (Shin *et al*, 2005). Oleh karena itu, pengolahan limbah baterai *Li-ion* sangat penting selain untuk mengurangi jumlah sampah elektronik, perolehan kembali logam yang berharga di dalamnya serta dapat mengurangi bahaya bagi lingkungan dan manusia.

Logam nikel adalah elemen, yang tidak dapat dibuat atau dihancurkan, karena itu logam nikel dapat didaur ulang dengan cara perolehan kembali dari barang yang sudah dipakai. Harga logam nikel tergolong tinggi karena mencapai \$8,12/lb, setara dengan Rp115.648,00/lb (Infomine, 2019), karena hal tersebut, nikel sebaiknya diperoleh kembali dari limbah elektronik, terutama limbah baterai *Li-Ion*. Logam ini memiliki ketahanan korosi terhadap udara, air, dan alkali serta ketahanan untuk suhu tinggi (Cempel, 2005).

Perolehan kembali logam nikel dari limbah baterai *Li-Ion*, dapat menggunakan proses *leaching*. *Leaching* menggunakan *leaching* agent yang berbentuk fasa cair untuk melarutkan bahan padat yang akan diekstraksi tersebut.

Leaching agent yang biasa digunakan yaitu asam inorganik seperti H₂SO₄, HCl, HNO₃, dan asam organik seperti C₆H₈O₇ dan C₂H₂O₄ (Aaltonen *et al*, 2017). Dalam proses *leaching*, dilakukan penambahan hidrogen peroksida (H₂O₂) sebagai oksidan (*reducing agent*) karena dapat mempercepat proses *leaching* ion logam (Aaltonen *et al*, 2017) dan meningkatkan hasil ekstraksi. Penambahan H₂O₂ dapat mengurangi jumlah pemakaian H₂SO₄ sehingga penelitian ini akan lebih ramah lingkungan. Karena H₂O₂ merupakan asam lemah yang mudah larut dalam air. Pada penelitian (Nayl *et al*, 2014), dengan menggunakan 2 M H₂SO₄ dan 4% H₂O₂, nikel dapat ter-*leaching* sebesar 99,4%. Sementara jika tidak menggunakan H₂O₂ (hanya H₂SO₄), membutuhkan konsentrasi 4 M H₂SO₄ untuk mencapai 99,4% nikel ter*leaching*.

Untuk mendapatkan logam nikel yang lebih murni, *leach solution* akan dilakukan ekstraksi cair-cair. Ekstraktan yang sering dipakai dalam penelitian sebelumnya yaitu Cyanex 272, Cyanex 302, PC-88A, Versatic 10, LIX 84-ICNS, dan D2EHPA. Penelitian ini menggunakan ekstraktan LIX 84-ICNS, karena menurut hasil penelitian, terjadi peningkatan nikel dari ekstraksi yang dilakukan dari sebesar 82,06% menjadi 89,29% (Shauma, 2019). Setelah dilakukan ekstraksi cair-cair, dilakukan proses *stripping* untuk memperoleh logam nikel, dengan menggunakan *stripping agent*, seperti H₂SO₄. LIX 84-ICNS dapat dilakukan regenerasi setelah dilakukan *stripping* dimana fasa organik hasil *stripping* di bersihkan dengan air suling (aquades) (Reddy *et al*, 2004).

Berdasarkan uraian di atas, penelitian *recovery* logam nikel dari limbah baterai *Li-Ion* akan dilakukan dengan metode *leaching* menggunakan H₂SO₄ dan penambahan H₂O₂, kemudian akan dilakukan ekstraksi cair-cair untuk mendapatkan logam nikel yang lebih murni dengan menggunakan LIX-84 ICNS sebagai ekstraktan. Parameter yang divariasikan pada proses *leaching* yaitu konsentrasi *leaching* agent dan H₂O₂, suhu, dan waktu *leaching*, untuk mendapatkan kondisi *leaching* yang optimum dan studi kinetika. Parameter yang divariasikan pada proses ekstraksi cair-cair yaitu pH dan konsentrasi untuk mendapatkan kondisi ekstraksi cair-cair yang optimum.

1.2 Rumusan Masalah

Masalah yang akan diselesaikan pada penelitian ini adalah:

- 1. Bagaimana pengaruh variasi konsentrasi H₂SO₄ terhadap persentase *leaching* logam Ni dari limbah baterai *Li-ion*?
- 2. Bagaimana pengaruh variasi konsentrasi H₂O₂, suhu, dan waktu *leaching* terhadap persentase *leaching* logam Ni dan kinetika proses *leaching* dari limbah baterai *Li-Ion*?
- 3. Bagaimana variasi pengaruh konsentrasi ekstraktan LIX-84 ICNS dan pH terhadap proses ekstraksi cair-cair dan kondisi operasi optimumnya?

1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- 1. Mendapatkan konsentrasi asam sulfat (H₂SO₄) optimum dalam proses *leaching* logam nikel.
- 2. Mendapatkan konsentrasi hidrogen peroksida (H₂O₂), suhu, dan waktu optimum dalam proses *leaching* logam nikel.
- 3. Mendapatkan konsentrasi dan pH optimum dalam proses ekstraksi cair-cair menggunakan ekstraktan LIX-84 ICNS.

1.4 Luaran yang Diharapkan

Luaran yang diharapkan dari peneilitian ini yaitu:

- 1. Publikasi ilmiah dalam seminar, jurnal, dan konverensi internasional.
- 2. Teknologi pengolahan limbah baterai *Li-ion* yang ramah lingkungan untuk diaplikasikan.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini adalah

- 1. Mengurangi jumlah limbah baterai *Li-Ion* yang berbahaya bagi lingkungan.
- 2. Memperoleh kembali logam nikel dari limbah baterai *Li-Ion* untuk berbagai kebutuhan.
- 3. Memperoleh kondisi optimum dalam proses *leaching* dan ekstraksi cair-cair untuk *recovery* logam nikel.

BAB 2 TINJAUAN PUSTAKA

2.1 Adikarya penelitian

Perbedaan penelitian ini dibandingkan dengan penelitian sebelumnya, dapat dilihat pada Tabel 2.1 dibawah ini.

Tabel 2.1 Adikarya penelitian

Penulis, Tahun	Sumber; dan Logam yang Diingkan	Leaching Agent	Ekstraktan	Hasil
Nayl <i>et al</i> , 2014	Limbah Baterai <i>Li- Ion</i> ; Nikel	H ₂ SO ₄ + H ₂ O ₂	-	Perolehan Nikel: 98.2%
Zaki Mubarok, 2015	Laterite Ore; Nikel	(NH ₄) ₂ CO ₃	LIX-84 ICNS	Perolehan Nikel: 99.4%
Aaltonen et al, 2017	Limbah Baterai <i>Li- Ion</i> ; Nikel	H ₂ SO ₄ + H ₂ O ₂	-	Perolehan Nikel: 99.6%
Annisa Nurqomariah, 2018	Limbah Baterai <i>Li- Ion;</i> Kobalt	C ₆ H ₈ O ₇ + H ₂ O ₂	Cyanex 272	Perolehan Kobalt: 94.27%
Khairina Shauma, 2019	Limbah Hydrotreating; Nikel	C ₆ H ₈ O ₇	LIX-84 ICNS	Perolehan Nikel: 89.29%

Penulis, Tahun	Sumber; dan Logam yang Diingkan	Leaching Agent	Ekstraktan	Hasil
Penelitian Ini	Limbah Baterai <i>Li- Ion;</i> Nikel	H ₂ SO ₄ + H ₂ O ₂	LIX-84 ICNS	Penelitian yang akan dilakukan

Tabel 2.1 *Adikarya penelitian* (Lanjutan)

2.1 Baterai *Li-Ion*

Penelitian ini menggunakan bahan dasar baterai *li-ion*. Karena baterai *lithium-ion* sudah menjadi media yang penting dalam teknologi *portable* dan aplikasi dalam beberapa kendaraan, seperti untuk laptop, telepon genggam, sepeda listrik, dan mobil listrik, sejak tahun 2000 (Revankar, 2019). Kandungan katoda yang sering ditemui yaitu LiCoO₂, LiMnO₂, dan LiNiO₂. LiCoO₂ merupakan katode yang lebih sering dipakai karena mempunyai harga yang rendah, lebih stabil, tetapi dapat menyebabkan degradasi atau kegagalan saat pengisian ulang dengan tegangan lebih dari 4,2 V (Calgaro *et al*, 2015).

2.2 Logam Nikel dan Aplikasinya

Logam nikel adalah logam golongan transisi 8B, yang dapat menghantarkan panas dan listrik yang baik, lebih keras daripada besi, mudah dibentuk, dan dapat menjadi logam magnetik (*Elemental Matter*, 2018). Logam ini juga memiliki ketahanan korosi dan oksidasi, memiliki titik leleh yang tinggi sebesar yang tinggi sebesar 1453°C, dan dapat didaur ulang (*Nickel Institute*, 2018). Kebutuhan logam nikel dalam industri yaitu 69% sebagai bahan dasar pembuatan *stainless steels*, 15% digunakan sebagai bahan dasar pembuatan baja lainnya dan bahan non-besi untuk industri tertentu, peralatan untuk penerbangan dan militer. 8% lainnya untuk membuat plat, 3% untuk pengecoran, 3% lainnya untuk baterai elektronik, dan 2% sisanya untuk bahan kimia, katalis dan pewarna (*Nickel Institute*, 2018).

2.3 Proses Ekstraksi Padat-Cair (*Leaching*)

Leaching adalah proses ekstraksi komponen yang dapat larut dalam pelarut. Proses ini dapat digunakan untuk menghilangkan padatan yang tidak dapat larut dari sebuah material yang terlarut. Leaching menggunakan leaching agent yang berbentuk fasa cair untuk melarutkan bahan padat yang akan diekstraksi tersebut. Leaching agent yang akan digunakan pada penelitian ini yaitu H₂SO₄, dengan menggunakan penambahan H₂O₂ sebagai reducing agent untuk mengurangi konsentrasi H₂SO₄ yang dipakai.

Reducing agent merupakan zat pereduksi yang bertujuan untuk meningkatkan efisiensi leaching dan meningkatkan perolehan kembali logam yang diingkan dalam proses leaching. Penelitian ini menggunakan kombinasi antara H₂SO₄ dan H₂O₂, Karena dengan menggunakan H₂SO₄ (2,5 M) + H₂O₂ (5 vol%) menghasilkan logam nikel ter-leaching sebesar 100% (L. W. Ma et al, 2017). Selain itu, dengan menggunakan H₂SO₄ (2 M) dan H₂O₂ (4 vol%) menghasilkan 99,4%

(Nayl *et al*, 2014), dan dengan $H_2SO_4(2 \text{ M}) + H_2O_2(5\% \text{ v/v})$ menghasilkan 99,6% (Aaltonen *et al*, 2017).

2.4 Proses Ekstraksi Cair-Cair

Proses ekstraksi cair-cair yaitu proses pemisahan komponen dari sebuah larutan dengan mengkontakan dengan cairan yang tidak larut. Proses ini dapat memindahkan zat terlarut dari larutan akuatik (*raffinate*) ke larutan organik (*extract*). Ekstraktan yang digunakan dalam penelitian ini yaitu LIX 84-ICNS dengan menggunakan pelarut (*diluent*) yaitu *kerosene*. Menurut beberapa penelitian, dengan menggunakan LIX-84 ICNS dapat mengekstraksi logam nikel dari *leach liquor* dengan persentase sebesar 89,29% (Shauma, 2019), 92% nikel terekstraksi (Reddy *et al*, 2004), dan 99,9% nikel terekstraksi (Mubarok, 2015).

2.5 Proses Stripping

Proses *stripping* merupakan proses dimana mengambil logam dari suatu larutan organik untuk menjadi larutan akuatik, setelah proses ekstraksi cair-cair. Larutan yang paling sering digunakan adalah asam kuat asam sulfat (H₂SO₄). Pada penelitian Husnul Fajri, 2016, dilakukan stripping dengan menggunakan H₂SO₄ dengan konsentrasi 2 M, dan menghasilkan 70,28% logam nikel ter-*stripping*. Penelitian lainnya menemukan dengan 2 M (200 g/l) H₂SO₄, menghasilkan 98,22% logam nikel ter-*stripping* (Mubarok, 2015).

BAB 3 METODOLOGI PENELITIAN

3.1 Tahapan Penelitian

Gambar 3.1 Diagram Alir Penelitian

3.2 Prosedur Penelitian

3.2.1 Preparasi Baterai Li-Ion

- 1. Lepas kulit pembungkus baterai Li-ion
- 2. Pisahkan bagian katoda, anoda, separator, dan serbuk baterai dengan bagian lainnya.
- 3. Hancurkan dan tumbuk serbuk baterai hingga halus
- 4. Ayak serbuk baterai agar seluruh ukuran partikel sampel sama rata
- 5. Lakukan analisis dengan SEM-EDX dan AAS untuk mengetahui kandungan awal logam

3.2.2 Leaching dengan Variasi Konsentrasi Leaching Agent

1. Buat larutan *leaching agent* dengan konsentrasi 0,5 M, 1,5 M, 2 M, 2,5 M, dan 3 M dengan menggunakan persamaan:

$$M_1 V_1 = M_2 V_2 \tag{3.1}$$

Dengan:

 M_1 = konsentrasi larutan awal (molaritas)

 V_1 = volume larutan awal (ml)

 M_2 = konsentrasi larutan awal (molaritas)

 V_2 = volume larutan awal (ml)

- 2. Masukkan 5 gram serbuk baterai ke setiap 100 ml larutan H₂SO₄ yang telah divariasikan.
- 3. Lakukan pengadukan dengan *magnetic stirrer* pada kecepatan 300 rpm dan suhu 70°C selama 60 menit.
- 4. Larutan hasil *leaching* disaring, dan filtrat diuji dengan AAS untuk mengetahui kandungan logam tersebut.

3.2.3 Leaching dengan Variasi Persentase H₂O₂

- 1. Buat larutan leaching agent H₂SO₄ dari salah satu konsentrasi sesuai persamaan 3.1.
- 2. Masukkan 5 gram serbuk baterai ke setiap 100 ml larutan H₂SO₄ dan tambahkan 0%, 1%, 2%, 4% volume *reducing agent*.
- 3. Lakukan pengadukan dengan *magnetic stirrer* pada kecepatan 300 rpm dan suhu 70°C selama 60 menit.
- 4. Larutan hasil *leaching* disaring, dan filtrat di uji dengan AAS untuk mengetahui kandungan logam tersebut.

3.2.4 Leaching dengan Variasi Suhu Operasi

- 1. Buat larutan *leaching agent* H₂SO₄ dan H₂O₂ sesuai kondisi terbaik dari proses 3.2.3, menggunakan persamaan 3.1 ke dalam wadah yang berbeda.
- 2. Masukkan 5 gram serbuk baterai ke setiap 100 ml larutan H_2SO_4 dan tambahkan 4% volume *reducing agent*.
- 3. Melakukan pengadukan dengan *magnetic stirrer* pada kecepatan 300 rpm dengan variasi suhu 50°C, 60°C, 70°C, dan 80°C.
- 4. Larutan hasil *leaching* disaring, dan filtrat di uji dengan AAS untuk mengetahui kandungan logam tersebut.

3.2.5 Leaching dengan Variasi Suhu Operasi dan Waktu Pengadukan

- 1. Buat larutan *leaching agent* H₂SO₄ dan H₂O₂ sesuai kondisi terbaik dari proses 3.2.3, menggunakan persamaan 3.1 ke dalam wadah yang berbeda.
- 2. Masukkan 5 gram serbuk baterai ke setiap 100 ml larutan H₂SO₄ dan tambahkan 4% volume *reducing agent*.
- 3. Melakukan pengadukan dengan *magnetic stirrer* pada kecepatan 300 rpm dengan variasi suhu 50°C, 60°C, 70°C, dan 80°C, dan setiap 5, 10, 15, 30, dan 60 menit diambil sampel sebanyak 10 ml dan diuji AAS.
- 4. Larutan hasil *leaching* disaring, dan filtrat di uji dengan AAS untuk mengetahui kandungan logam tersebut.
- 5. Hasil akan diketahui suhu dan waktu yang paling optimum dalam proses leaching sebagai penentuan model kinetika reaksi.

3.2.6 Proses Ekstraksi Cair-Cair

3.2.6.1 Variasi pH Fasa Akuatik

- 1. Menyiapkan larutan ekstraktan yaitu LIX-84 ICNS dengan konsentrasi 40%.
- 2. Variasi pH dengan penambahan NaOH dengan variasi pH 6, 7, 8, dan 9.
- 3. Ekstraksi dengan menggunakan *magnetic stirrer* dengan perbandingan fasa organik dan fasa akuatik (O/A) 1:1 sebesar 20 ml dan pengadukan 10 menit.
- 4. Memisahkan fasa organik dan fasa akuatik dengan menggunakan corong terpisah (fasa organik di lapisan atas dan fasa akuatik di lapisan bawah).
- 5. Pengujian fasa akuatik dengan menggunakan AAS untuk mengetahui kandungan logam Ni.

3.2.6.2 Variasi Konsentrasi Ekstraktan

- 1. Menyiapkan larutan ekstraktan yaitu LIX-84 ICNS. Variasi konsentrasi ekstraktan dengan variasi konsentrasi 5%, 10%, 20%, dan 50%.
- 2. Pencampuran ekstraktan dengan larutan hasil *leaching* kemudian memasukan ke dalam beaker glass dan diaduk menggunakan magnetic stirrer, dengan perbandingan volume 1:1, volume masing-masing sebanyak 20 ml selama 10 menit.
- 3. Memisahkan fasa organik dan fasa akuatik dengan menggunakan corong terpisah (fasa organik di lapisan atas dan fasa akuatik di lapisan bawah).
- 4. Pengujian fasa akuatik dengan menggunakan AAS untuk mengetahui kandungan logam Ni.

3.3 Variabel Penelitian

Tabel 3.1 Variabel Penelitian

Tahapan	Variabel Bebas	Variabel Tetap	Variabel Terikat
Variasi Konsentrasi Leaching Agent (H ₂ SO ₄)	Konsentrasi H ₂ SO ₄	Kecepatan dan Waktu Pengadukan, Suhu, Rasio S/L, Konsentrasi H ₂ O ₂	
Variasi Konsentrasi Reducing Agent (H ₂ O ₂)	Konsentrasi H ₂ O ₂	Kecepatan dan Waktu Pengadukan, Suhu, Rasio S/L, Konsentrasi H ₂ SO ₄	Kandungan Ion
Variasi Suhu Operasi	Suhu Operasi	Kecepatan dan Waktu Pengadukan, Rasio S/L, Konsentrasi H ₂ SO ₄ dan H ₂ O ₂	Logam Hasil <i>Leaching</i>
Variasi Suhu Terhadap Waktu <i>Leaching</i>	Suhu Operasi dan Waktu Pengadukan	Kecepatan Pengadukan, Rasio S/L, Konsentrasi H ₂ SO ₄ dan H ₂ O ₂	
Variasi Konsentrasi Ekstraktan	Konsentrasi LIX-84 ICNS	pH Fasa Akuatik dan Waktu Ekstraksi	Kandungan Ion
Variasi pH Fasa Akuatik	pH pada Proses Ekstraksi Cair-Cair	Waktu Ekstraksi, Konsentrasi Ekstraktan	Logam Hasil Ekstraksi

3.4 Indikator Pencapaian

Indikator pencapaian dari penelitian ini yaitu, mendapatkan kondisi optimum pada untuk proses leaching dan ekstraksi sehingga dapat memperoleh persentase kandungan logam nikel yang optimum dengan penggunaan H₂SO₄ yang rendah melalui penambahan *reducing agent* hidrogen peroksida.

3.5 Pengolahan dan Penyimpulan Hasil Penelitian

Hasil Penelitian yang didapatkan akan diolah dengan cara membandingkan hasil uji karakterisasi AAS pada sampel awal limbah baterai *Li-Ion* dengan sampel akhir larutan yang sudah dilakukan proses *leaching* dan ekstraksi. Proses ini akan menunjukan persentase logam nikel yang terlarut. Persentase tersebut akan menunjukkan efektivitas penggunaan asam sulfat (H₂SO₄) dan hidrogen peroksida (H₂O₂), dan kondisi optimum pada saat *leaching* dan ekstraksi. Perhitungan persentase *leaching* dan ekstraksi dapat dihitung dengan persamaan berikut

Efisensi <i>leaching</i> (%) =	Konsentrasi logam di leach liquor	(3.2)
Eliselisi teachtlig (70) =	Konsentrasi logam di limbah baterai	

Efisensi ekstraksi (%) = $\frac{\text{Konsentrasi logam terekstraksi}}{\text{Konsentrasi logam di } leach liquor}$ (3.3)

BAB 4 BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4.1 Rincian Anggaran Biaya Keseluruhan

No.	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang diperlukan	Rp8.634.000,00
2	Bahan Habis Pakai	Rp1.606.000,00
3	Perjalanan	Rp1.000.000,00
4	Lain-lain: Fotokopi dsb., laporan, publikasi	Rp1.260.000,00
_	Total	Rp12.500.000,00

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan Penelitian

									В	ula	n K	e-								
Kegiatan		1	1			2	2			(3			4	4			5	5	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Studi																				
Literatur																				
Persiapan																				
Alat																				
Penyediaan																				
Bahan Baku																				
Proses																				
Pengujian																				
Pengolahan																				
Data dan																				
Analisis																				
Pembuatan																				
Laporan																				
Akhir																				

DAFTAR PUSTAKA

Aaltonen, M., Peng, C., Wilson, B. and Lundström, M. (2017). Leaching of Metals from Spent Lithium-Ion Batteries. *Recycling*, 2(4), p.20.

Charts, N. (2019). *Nickel Prices and Nickel Price Charts - InvestmentMine*. [online] Infomine.com. Available at: http://www.infomine.com/investment/metal-prices/nickel/ [Accessed 8 Oct. 2019].

- Electronic Waste. (2015). *Topics in Mining, Metallurgy and Materials Engineering*. Elementalmatter.info. (2019). *Nickel Properties*. [online] Available at: http://www.elementalmatter.info/nickel-properties.htm [Accessed 25 Nov. 2019].
- Fajri, H. (2016). Pengambilan Kembali Logam Ni dari Limbah Katalis Hydrotreating dengan Metode Leaching dan Ekstraksi Cair-Cair Menggunakan Ekstraktan Cyanex 272. Depok, Jawa Barat.
- Ma, L., Xi, X., Zhang, Z., Huang, Z. and Chen, J. (2017). Hydrometallurgical Treatment for Mixed Waste Battery Material. *IOP Conference Series: Materials Science and Engineering*, 170, p.012024.
- Mubarok, M. and Yunita, F. (2015). Solvent Extraction of Nickel and Cobalt from Ammonia-Ammonium Carbonate Solution by Using LIX 84-ICNS. *International Journal of Nonferrous Metallurgy*, 04(03), pp.15-27.
- Nayl, A., Elkhashab, R., Badawy, S. and El-Khateeb, M. (2017). Acid leaching of mixed spent Li-ion batteries. *Arabian Journal of Chemistry*, 10, pp.S3632-S3639.
- Nickelinstitute.org. (2019). *Properties of nickel | Nickel Institute*. [online] Available at: https://www.nickelinstitute.org/about-nickel/properties-of-nickel/ [Accessed 8 Oct. 2019].
- Nurqomariah, A. (2018). Perolehan Kembali Logam Co dari Limbah Baterai Liion Bermetode Leaching dengan Reagen Asam Organik dan Cyanex 272 sebagai Ektraktan. Depok, Jawa Barat.
- REDDY, B. and PRIYA, D. (2004). Solvent Extraction of Ni(II) from Sulfate Solutions with LIX 84I: Flow-Sheet for the Separation of Cu(II), Ni(II) and Zn(II). *Analytical Sciences*, 20(12), pp.1737-1740.
- Revankar, S. (2019). Chemical Energy Storage. *Storage and Hybridization of Nuclear Energy*, pp.177-227.
- Shauma, K. (2019). Optimasi Proses Leaching Logam Ni dari Limbah Katalis Hydrotreating Menggunakan Asam Sitrat dan Ekstraksi LIX-84 ICNS. Depok, Jawa Barat.
- Shin, S., Kim, N., Sohn, J., Yang, D. and Kim, Y. (2005). Development of a metal recovery process from Li-ion battery wastes. *Hydrometallurgy*, 79(3-4), pp.172-181.
- Telset. (2019). *Indonesia Masuk 10 Negara Penyumbang Sampah Elektronik | Telset*. [online] Available at: https://telset.id/190532/indonesia-masuk-10-negara-penyumbang-sampah-elektronik/ [Accessed 10 Oct. 2019].
- Wang, J., Chen, M., Chen, H., Luo, T. and Xu, Z. (2012). Leaching Study of Spent Li-ion Batteries. *Procedia Environmental Sciences*, 16, pp.443-450.

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing

A. Biodata Ketua

A. Identitas Diri

1.	Nama Lengkap (dengan Gelar)	Bilqis Nur Fadhilah
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Kimia
4.	NIM	1606871341
5.	Tempat dan Tanggal Lahir	Jakarta, 28 Juni 1998
6.	Email	bilqisblqs@hotmail.com
7.	Nomor Telepon/ Hp	087817281328

B. Kegiatan Kemahasiswaan yang Sedang/ Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	Petrofest (Lomba Kemigasan	PJ Opening and Closing	2019
	SPE Java)	Ceremony	
2.	IMTK FTUI (Ikatan	Wakil Kepala Bidang II	
	Mahasiswa Teknik Kimia	Penelitian dan	2018
	Fakultas Teknik UI)	Pengembangan	
3.	Cherry (Chemical Engineering in Charity)	PJ Açara	2017

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Juara 2 Lomba PKM-PE	Olimpiade Ilmiah Mahasiswa 2019 (Fakultas Teknik UI)	2019
2.	Juara 3 International Mud Competition	IPFEST 2019 (SPE SC & IATMI SM Institut Teknologi Bandung)	2019

Semua data yang Saya isikan dan tercantum pada biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, Saya sanggup menerima sanksi.

Demikian biodata ini Saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Penelitian Eksakta.

Depok, 29 Oktober 2019 Ketua Tim,

Bilqis Nur Fadhilah

B. Biodata Anggota 1

A. Identitas Diri

1.	Nama Lengkap (dengan Gelar)	Assyifa Nadifah
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Kimia
4.	NIM	1706026834
5.	Tempat dan Tanggal Lahir	Jakarta, 15 Desember 1998
6.	Email	assyifanadifah15@gmail.com
7.	Nomor Telepon/ Hp	081932190549

B. Kegiatan Kemahasiswaan yang Sedang/ Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	IMTK FTUI	Staff Litbang	Januari 2018
2.	IATMI SMUI	Staff Keanggotaan	Januari 2018
3.	E-Corp FTUI	Wakil Kepala Bidang	Januari 2019
		Litbang	

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.			

Semua data yang Saya isikan dan tercantum pada biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, Saya sanggup menerima sanksi.

Demikian biodata ini Saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Penelitian Eksakta.

Depok, 29 Oktober 2019 Anggota Tim,

Assyifa Nadifah

C. Biodata Anggota 2

A. Identitas Diri

1.	Nama Lengkap (dengan Gelar)	Ivananda Rizqullah
2.	Jenis Kelamin	Pria
3.	Program Studi	Teknik Kimia
4.	NIM	1706038260
5.	Tempat dan Tanggal Lahir	Jakarta, 3 Desember 1999
6.	Email	irizqullah@yahoo.com
7.	Nomor Telepon/ Hp	082122493479

B. Kegiatan Kemahasiswaan yang Sedang/ Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1.	IMTK FTUI (Ikatan	Wakil Kepala Bidang I	2010
	Mahasiswa Teknik	Penelitian &	2019
	Kimia)	Pengembangan	
2.	Cherry (Chemical	Kepala Bidang Sarana	2018
	Engineering in Charity)	dan Prasarana	2010
3.	IATMI SM UI (Ikatan	Staff Bidang Penelitan	
	Ahli Teknik	_	2018
	Perminyakan Indonesia)	& Pengembangan	

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
	Juara 1 International	PI FAIR 2019	
1.	Mud Innovative	(SPE SC Trisakti & IATMI SM	2019.
	Competition	Trisakti)	
2.	Juara 3 Smart	ILLUSION 2019	2019
	Competition	(SPE SC UI & IATMI SM UI)	2019

Semua data yang Saya isikan dan tercantum pada biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, Saya sanggup menerima sanksi.

Demikian biodata ini Saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Penelitian Eksakta.

Depok, 29 Oktober 2019 Anggota Tim,

Ivananda Rizqullah

B. Biodata Dosen Pendamping

A. Identitas Diri

1.	Nama Lengkap (dengan Gelar)	Dr. Ir. Yuliusman, M.Eng
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Kimia
4.	NIM/ NIDN	0020076602
5.	Tempat dan Tanggal Lahir	Pesisir Selatan, 20 Juli 1966
6.	Email	usman@che.ui.ac.id
7.	Nomor Telepon/ Hp	087877122689

B. Riwayat Pendidikan

	S1	S2	S3
Nama Institusi	Universitas	Univ. Teknologi	Universitas
	Indonesia	Malaysia	Indonesia
Jurusan	Teknik Gas dan	Chemical	Teknik Kimia
	Petrokimia	Engineering	
Tahun Masuk- Lulus	1993	2001	2015

C. Rekam Jejak Tri Dharma Perguruan Tinggi

C.1 Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1.	Menggambar Teknik	Wajib	2
2.	Neraca Massa dan Energi	Wajib	3
3.	Kimia Dasar	Wajib	2
4.	K3LL	Wajib	2
5.	MPKT-B	Wajib	6
6.	Perancangan Alat Proses	Wajib	3
7.	Pengolahan Minyak Bumi	Pilihan	3
8.	Proses Petrokimia	Pilihan	3
9.	Utilitas dan Pemeliharaan Pabrik	Pilihan	3

C.2 Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
	Pemurnian Off Gas Pada Kilang Minyak Bumi Menggunakan	HILL DETERATE	2016
1.	Karbon Aktif Dari Tempurung Kelapa Sawit Sebagai Bisorben	Hibah PITTA UI	
2	Peningkatan Penyimpanan Gas Metana Dengan Karbon Aktif	Hibab DITTA III	2016
2.	Berbahan Dasar Limbah Plastik Polyethilene Terephthalate	Hibah PITTA UI	2016

No	Judul Penelitian	Penyandang Dana	Tahun
3.	Perolehan Kembali Logam Berharga dari Limbah Katalis Pengolahan Minyak Bumi dengan Teknologi Leaching dan Ekstraksi	Hibah PITTA UI	2017
4.	Pemanfaatan Teknologi Leaching dan Ekstraksi untuk Pengambilan Kembali Logam Berharga dari Limbah Batu Baterai	Hibah PITTA UI	2017
5.	Utilisasi Karbon Aktif dari Limbah Pertanian untuk Teknologi ANG dan Penurunan Emisi Kendaraan Bermotor	Hibah PITTA UI	2018
6.	Perolehan Kembali Logam Berharga dari Limbah Industri Elektronik dengan Teknologi Leaching dan Ekstraksi	Hibah PITTA UI	2018

C.3 Pengabdian Kepada Masyarakat

No	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
-	-	-	_

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Penelitian Eksakta

Depok, 25 Oktober 2019 Dosen Pendamping,

Dr. Ir. Yuliusman, M.Eng.

NIDN. 0020076602

Lampiran 2. Justifikasi Anggaran Kegiatan

A. Jenis Perlengkapan

Material	Justifikasi	Jumlah	Harga	Nilai (Dn)
Materiai	Anggaran	Juman	Satuan (Rp)	Nilai (Rp)
	Pengujian			
Uji AAS	kandungan	15 kali	300.000	4.500.000
	logam			
Wadah	Pengujian			
sampel AAS	kandungan	30 buah	25.000	750.000
Samper 74745	logam			
Uji SEM-	Pengujian			
EDX	karakteristik	5 kali	250.000	1.250.000
LDX	sampel			
Penggunaan	Fasilitas			
fasilitas	laboratorium	-	350.000	350.000
laboratorium	iuoorutorium			
Labu takar 25	Pengukuran	4 buah	55.000	220.000
ml	volume larutan	+ Ouan	22.000	
Labu takar 50	Pengukuran	4 buah	80.000	320.000
ml	volume larutan	1 ouun	00.000	320.000
Labu takar	Pengukuran	4 buah	100.500	400.000
100 ml	volume larutan	1 ouun	100.500	100.000
Gelas ukur	Pengukuran	4 buah	48.000	192.000
100 ml	volume larutan	1 ouun	10.000	172.000
Gelas beker	Pengukuran	3 buah	45.000	135.000
100 ml	volume larutan	3 ouun	13.000	133.000
Gelas beker	Pengukuran	3 buah	70.000	210.000
250 ml	volume larutan	3 oddii	70.000	210.000
Pipet tetes	Pengambilan	10 buah	25.000	25.000
-	larutan/ sampel		23.000	23.000
Pipet	Pengambilan	2 buah	141.000	282.000
volumetrik	larutan/ sampel	2 Juan	171.000	202.000
	Sub Total	l (1)		Rp8.634.000,00

B. Bahan Habis Pakai

Material	Justifikasi Anggaran	Kuantitas	Harga Satuan (Rp)	Nilai (Rp)	
Asam Sulfat	Leaching agent	5 liter 97.500		487.000	
LIX-84 ICNS	Ekstraktan	2 liter	230.000	460.000	
Kertas Saring	Memisahkan padatan dan larutan	1 pak	350.000	350.000	
Kerosin	Larutan organic untuk ekstraksi cair-cair	2 liter	17.000	34.000	
Aquades	Pembersihan alat, membuat campuran	5 liter	25.000	25.000	
Baterai Li-Ion	Sampel Penelitian	10 buah	25.000	250.000	
Sub Total (2)			Rp1.606.000,00		

C. Perjalanan

Material	Justifikasi Anggaran	Kuantitas	Harga Satuan (Rp)	Nilai (Rp)
Perjalanan Karakterisasi AAS	Karakterisasi hasil penelitian	5 kali	130.000	600.000
Perjalanan Karakterisasi SEM-EDX	Karakterisasi sampel	3 kali	120.000	360.000
Perjalanan membeli alat dan bahan	Membeli alat dan bahan	3 kali	100.000	300.000
Sub Total (3)				Rp1.000.000,00

D. Lain-lain

Material	Justifikasi Anggaran	Kuantitas	Harga Satuan (Rp)	Nilai (Rp)
Fotokopi, print, ATK	Penunjang		300.000	300.000
	pembuatan	1 periode		
	laporan			
Laporan	Laporan	3 kali	55.000	165.000
Publikasi	Publikasi jurnal	2 publikasi	350.000	700.000
	Rp1.180.000,00			
Total Keseluruhan				Rp12.500.00,00

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

				Alokasi	
No	Nama/	Program	Bidang	Waktu (Jam/	Uraian Tugas
110	NIM	Studi	Ilmu	Minggu)	Craian rugas
1.	Bilqis Nur Fadhilah/ 1606871341	Teknik Kimia	-	20	 Melakukan Koordinasi antar anggota Melakukan variasi percobaan Melakukan uji AAS Melakukan analisis hasil uji AAS Membuat laporan
2.	Assyifa Nadifah/ 1706026834	Teknik Kima	-	15	 Melakukan uji SEM-EDX Melakukan analisis hasil uji SEM-EDX Membuat laporan
3.	Ivananda Rizqullah/ 1706038260	Teknik Kimia	-	15	 Melakukan persiapan sampel Melakukan uji AAS Melakukan analisis hasil uji AAS Membuat laporan

Lampiran 4. Surat Pernyataan Ketua Tim Pelaksana

Kampus Salemba Jl. Salemba Raya No 4, Jakarta 10430 Kampus Depok Kampus Universitas Indonesia Depok 16424 Tel. 62.21. 7867 222/7884 1818 Fax. 62.21. 7884 9060 Email pusadmui@ui.ac.id | www.ui.ac.id

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Bilqis Nur Fadhilah

NIM

: 1606871341

Program Studi: Teknik Kimia Fakultas

: Teknik

Dengan ini menyatakan bahwa proposal PKM-PE saya dengan judul Leaching (H2SO4 dan H2O2) dan Ekstraksi Limbah Baterai Li-ion untuk Recovery Nikel yang diusulkan untuk tahun anggaran 2020 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Depok, 27 November 2019

Dosen Pendamping,

(Dr. Ir. Yuliusman, M.Eng.) NIDN. 0020076602

Yang menyatakan,

(Bilqis Nur Fadhilah) NIM. 1606871341

Mengetahui,

Direktur Kemahasiswaan ATAS Universitas Indonesia

Arman Nefi, S.H., M.M.

NUK. 0508050277