You are provided with historical stock price data, and you suspect that the relationship between time and stock price is non-linear due to market trends. Develop a polynomial regression model to predict future stock prices based on historical time-series data. Ensure that the model effectively captures non-linear trends and provides reliable forecasts

Out[61]:

	Date	Open	High	Low	Close	Volume	Dividends	Stock Splits
0	2019- 05-31	43.181805	43.613062	42.877969	42.897572	108174400	0.0	0.0
1	2019- 06-03	43.027439	43.595909	41.721424	42.463867	161584400	0.0	0.0
2	2019- 06-04	42.988224	44.063910	42.762796	44.017353	123872000	0.0	0.0
3	2019- 06-05	45.154295	45.328268	44.384898	44.727940	119093600	0.0	0.0
4	2019- 06-06	44.860258	45.445882	44.632378	45.384624	90105200	0.0	0.0
521	2021- 06-24	134.248856	134.438574	132.731126	133.210419	68711000	0.0	0.0
522	2021- 06-25	133.260356	133.689705	132.611319	132.910873	70783700	0.0	0.0
523	2021- 06-28	133.210424	135.047667	133.150516	134.578369	62111300	0.0	0.0
524	2021- 06-29	134.598343	136.285817	134.149019	136.126053	64556100	0.0	0.0
525	2021- 06-30	135.966285	137.204435	135.666731	136.755112	63261400	0.0	0.0

526 rows × 8 columns

```
In [62]:
               data.shape
Out[62]: (526, 8)
In [63]:
               # ignore last two columns it is because there is no need
               data=data.iloc[:,[0,1,2,3,4,5]]
            3
               data
Out[63]:
                     Date
                               Open
                                           High
                                                       Low
                                                                Close
                                                                          Volume
             0 2019-05-31
                                                             42.897572 108174400
                            43.181805
                                       43.613062
                                                  42.877969
             1 2019-06-03
                            43.027439
                                       43.595909
                                                  41.721424
                                                             42.463867
                                                                       161584400
             2 2019-06-04
                           42.988224
                                       44.063910
                                                  42.762796
                                                             44.017353 123872000
             3 2019-06-05
                           45.154295
                                       45.328268
                                                  44.384898
                                                             44.727940
                                                                       119093600
               2019-06-06
                            44.860258
                                       45.445882
                                                  44.632378
                                                             45.384624
                                                                        90105200
           521 2021-06-24
                          134.248856
                                     134.438574
                                                 132.731126
                                                           133.210419
                                                                        68711000
           522 2021-06-25 133.260356
                                     133.689705
                                                132.611319 132.910873
                                                                        70783700
           523 2021-06-28 133.210424 135.047667 133.150516 134.578369
                                                                        62111300
           524 2021-06-29 134.598343 136.285817 134.149019 136.126053
                                                                        64556100
           525 2021-06-30 135.966285 137.204435 135.666731 136.755112
                                                                        63261400
          526 rows × 6 columns
In [64]:
               data.shape
Out[64]: (526, 6)
In [65]:
               null_values=np.sum(data.isnull())
            3
               null_values
Out[65]: Date
                     0
          0pen
                     0
          High
                     0
          Low
                     0
          Close
                     0
          Volume
                     0
          dtype: int64
In [67]:
               dup_value=np.sum(data.duplicated())
            2
               dup_value
            3
Out[67]: 0
```

In [68]: 1 data.describe()

Out[68]:

```
Open
                        High
                                    Low
                                               Close
                                                           Volume
                                                      5.260000e+02
count
      526.000000
                  526.000000
                              526.000000
                                          526.000000
mean
        91.608297
                   92.723937
                               90.495177
                                           91.658347 1.280820e+08
                                           30.670976 6.144065e+07
  std
        30.775590
                    31.076841
                               30.278098
                               41.721424
                                           42.463867 4.544800e+07
 min
        42.988224
                   43.595909
 25%
        63.748610
                   64.914196
                                63.372911
                                           64.275314 8.736720e+07
 50%
        86.864926
                   87.608795
                               85.528444
                                           86.946747 1.112724e+08
 75% 122.473159 123.951533
                              120.681261
                                          122.311106 1.507170e+08
     142.928469
                  144.411483
                              140.708887 142.490524 4.265100e+08
```

Out[69]:

```
Close
                                                          Volume
        Date
                  Open
                             High
                                       Low
  2019-05-31
             43.181805
                        43.613062 42.877969
                                             42.897572
                                                       108174400
0
  2019-06-03 43.027439 43.595909 41.721424
                                             42.463867
                                                        161584400
  2019-06-04 42.988224 44.063910 42.762796 44.017353
                                                       123872000
  2019-06-05 45.154295 45.328268 44.384898 44.727940
                                                        119093600
  2019-06-06 44.860258 45.445882 44.632378 45.384624
                                                         90105200
```

Out[70]:

	Date	Open	High	Low	Close	Volume	Date_Ordinal
0	2019-05-31	43.181805	43.613062	42.877969	42.897572	108174400	737210
1	2019-06-03	43.027439	43.595909	41.721424	42.463867	161584400	737213
2	2019-06-04	42.988224	44.063910	42.762796	44.017353	123872000	737214
3	2019-06-05	45.154295	45.328268	44.384898	44.727940	119093600	737215
4	2019-06-06	44.860258	45.445882	44.632378	45.384624	90105200	737216

```
In [71]:
              def polynomial_features(x, degree):
           2
                  return np.column_stack([x**i for i in range(degree + 1)])
           3
           4
              X = data['Date_Ordinal'].values
           5
              y = data['Close'].values
           7
           8
           9
             degree = 2
          10 X_poly = polynomial_features(X, degree)
          11
          12 print(X_poly)
         [[
                      1
                               737210 543478584100]
                              737213 543483007369]
                      1
          1
                               737214 543484481796]
                      1
                              737969 544598244961]
          737970 544599720900]
                      1
                              737971 544601196841]]
In [72]:
           1 | X_poly_inv = np.linalg.pinv(X_poly)
           2 #coefficients
           3 coefficients = X_poly_inv @ y
           5
              print('Coefficients:', coefficients)
           6
```

Coefficients: [-3.59914065e-07 -1.32734617e-01 1.80125533e-07]

```
In [73]:
              def predict_polynomial(X_range, coefficients):
                  """Predict using the polynomial model."""
           2
                  X_poly = polynomial_features(X_range, len(coefficients) - 1)
           3
           4
                  return X_poly @ coefficients
           5
             # Predict stock prices
           7
             X_range = np.linspace(X.min(), X.max(), 100)
             y_pred = predict_polynomial(X_range, coefficients)
             print("The new time that predict the close stock of the day")
          10
             pd.DataFrame(X_range)
          11
```

The new time that predict the close stock of the day

Out[73]:

0

- **0** 737210.000000
- **1** 737217.686869
- **2** 737225.373737
- **3** 737233.060606
- **4** 737240.747475

..

- **95** 737940.252525
- **96** 737947.939394
- **97** 737955.626263
- 98 737963.313131
- 99 737971.000000

100 rows × 1 columns

```
In [74]: 1 print("future close stock of the day")
2 pd.DataFrame(y_pred)
```

future close stock of the day

Out[74]:

	0
0	41.082424
1	42.103605
2	43.124807
3	44.146030
4	45.167275
95	138.189658
96	139.212861
97	140.236085
98	141.259331
99	142.282598

100 rows × 1 columns

In []: 1