10

15

20

25

30

WA HIS

TITLE OF THE INVENTION

SPECIES-SPECIFIC, GENUS-SPECIFIC AND UNIVERSAL DNA PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY COMMON BACTERIAL AND FUNGAL PATHOGENS AND ASSOCIATED ANTIBIOTIC RESISTANCE GENES FROM CLINICAL SPECIMENS FOR DIAGNOSIS IN MICROBIOLOGY LABORATORIES

BACKGROUND OF THE INVENTION

Classical methods for the identification and susceptibility testing of bacteria

Bacteria are classically identified by their ability to utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20E™ system (bioMérieux). For susceptibility testing, clinical microbiology laboratories use methods including disk diffusion, agar dilution and broth microdilution. Although identifications based on biochemical tests and antibacterial susceptibility tests are cost-effective, at least two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to identify the bacteria from clinical specimens as well as to determine their susceptibility to antimicrobial agents. There are some commercially available automated systems (i.e. the MicroScan system from Dade Diagnostics Corp. and the Vitek system from bioMérieux) which use sophisticated and expensive apparatus for faster microbial identification and susceptibility testing (Stager and Davis, 1992, Clin. Microbiol. Rev. 5:302-327). These systems require shorter incubation periods, thereby allowing most bacterial identifications and susceptibility testing to be performed in less than 6 hours. Nevertheless, these faster systems always require the primary isolation of the bacteria as a pure culture, a process which takes at least 18 hours for a pure culture or 2 days for a mixed culture. The fastest identification system, the autoSCAN-Walk-Away™ system (Dade Diagnostics Corp.) identifies both gram-negative and gram-positive bacterial species from standardized inoculum in as little as 2 hours and gives susceptibility patterns to most antibiotics in 5.5 hours. However, this system has a particularly high percentage (i.e. 3.3 to 40.5%) of non-conclusive identifications with bacterial species other than Enterobacteriaceae (Croizé J., 1995, Lett. Infectiol. 10:109-113; York et al., 1992, J. Clin. Microbiol. 30:2903-2910). For Enterobacteriaceae, the percentage of non-conclusive identifications was 2.7 to 11.4%.

A wide variety of bacteria and fungi are routinely isolated and identified from clinical specimens in microbiology laboratories. Tables 1 and 2 give the incidence for the most commonly isolated bacterial and fungal pathogens from various types of clinical specimens. These pathogens are the most frequently associated with nosocomial and community-acquired human infections and are therefore considered the most clinically important.

10

15

20

25

30

35

Clinical specimens tested in clinical microbiology laboratories

Most clinical specimens received in clinical microbiology laboratories are urine and blood samples. At the microbiology laboratory of the Centre Hospitalier de l'Université Laval (CHUL), urine and blood account for approximately 55% and 30% of the specimens received, respectively (Table 3). The remaining 15% of clinical specimens comprise various biological fluids including sputum, pus, cerebrospinal fluid, synovial fluid, and others (Table 3). Infections of the urinary tract, the respiratory tract and the bloodstream are usually of bacterial etiology and require antimicrobial therapy. In fact, all clinical samples received in the clinical microbiology laboratory are tested routinely for the identification of bacteria and susceptibility testing.

Conventional pathogen identification from clinical specimens Urine specimens

The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. However, the gold standard remains the classical semi-quantitative plate culture method in which 1 µL of urine is streaked on plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial urinary tract infection (UTI) is normally associated with a bacterial count of 10⁷ CFU/L or more in urine. However, infections with less than 10⁷ CFU/L in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. **311**:560-564). Importantly, approximately 80% of urine specimens tested in clinical microbiology laboratories are considered negative (i.e. bacterial count of less than 10⁷ CFU/L; Table 3). Urine specimens found positive by culture are further characterized using standard biochemical tests to identify the bacterial pathogen and are also tested for susceptibility to antibiotics. The biochemical and susceptibility testing normally require 18-24 hours of incubation.

Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative specimens and a more efficient treatment and care management of patients. Several rapid identification methods (Uriscreen™, UTIscreen™, Flash Track™ DNA probes and others) have been compared to slower standard biochemical methods, which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and poor specificities as well as a high number of false negative and false positive results (Koening *et al.*, 1992, J. Clin. Microbiol. **30**:342-345; Pezzlo *et al.*, 1992, J. Clin. Microbiol. **30**:640-684).

Blood specimens

The blood specimens received in the microbiology laboratory are always submitted for culture. Blood culture systems may be manual, semi-automated or completely automated. The BACTEC system (from Becton Dickinson) and the

5

10

15

20

25

30

35

BacTAlert system (from Organon Teknika Corporation) are the two most widely used automated blood culture systems. These systems incubate blood culture bottles under optimal conditions for bacterial growth. Bacterial growth is monitored continuously to detect early positives by using highly sensitive bacterial growth detectors. Once growth is detected, a Gram stain is performed directly from the blood culture and then used to inoculate nutrient agar plates. Subsequently, bacterial identification and susceptibility testing are carried out from isolated bacterial colonies with automated systems as described previously. The bottles are normally reported as negative if no growth is detected after an incubation of 6 to 7 days. Normally, the vast majority of blood cultures are reported negative. For example, the percentage of negative blood cultures at the microbiology laboratory of the CHUL for the period February 1994–January 1995 was 93.1% (Table 3).

Other clinical samples

Upon receipt by the clinical microbiology laboratory, all body fluids other than blood and urine that are from normally sterile sites (i.e. cerebrospinal, synovial, pleural, pericardial and others) are processed for direct microscopic examination and subsequent culture. Again, most clinical samples are negative for culture (Table 3).

Regarding clinical specimens which are not from sterile sites such as sputum or stool specimens, the laboratory diagnosis by culture is more problematic because of the contamination by the normal flora. The bacterial pathogens potentially associated with the infection are purified from the contaminants and then identified as described previously. Of course, the universal detection of bacteria would not be useful for the diagnosis of bacterial infections at these non sterile sites. On the other hand, DNA-based assays for species or genus detection and identification as well as for the detection of antibiotic resistance genes from these specimens would be very useful and would offer several advantages over classical identification and susceptibility testing methods.

DNA-based assays with any clinical specimens

There is an obvious need for rapid and accurate diagnostic tests for bacterial detection and identification directly from clinical specimens. DNA-based technologies are rapid and accurate and offer a great potential to improve the diagnosis of infectious diseases (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The DNA probes and amplification primers which are objects of the present invention are applicable for bacterial or fungal detection and identification directly from any clinical specimens such as blood cultures, blood, urine, sputum, cerebrospinal fluid, pus and other type of specimens (Table 3). The DNA-based tests proposed in this invention are superior in terms of both rapidity and accuracy to standard biochemical methods currently used for routine diagnosis from any clinical specimens in microbiology laboratories. Since

5

10

15

20

25

30

these tests are performed in around only one hour, they provide the clinicians with new diagnostic tools which should contribute to increase the efficiency of therapies with antimicrobial agents. Clinical specimens from organisms other than humans (e.g. other primates, birds, plants, mammals, farm animals, livestock and others) may also be tested with these assays.

A high percentage of culture negative specimens

Among all the clinical specimens received for routine diagnosis, approximately 80% of urine specimens and even more (around 95%) for other types of clinical specimens are negative for the presence of bacterial pathogens (Table 3). It would also be desirable, in addition to identify bacteria at the species or genus level in a given specimen, to screen out the high proportion of negative clinical specimens with a test detecting the presence of any bacterium (i.e. universal bacterial detection). Such a screening test may be based on the DNA amplification by PCR of a highly conserved genetic target found in all bacteria. Specimens negative for bacteria would not be amplified by this assay. On the other hand, those that are positive for bacteria would give a positive amplification signal with this assay.

Towards the development of rapid DNA-based diagnostic tests

A rapid diagnostic test should have a significant impact on the management of infections. DNA probe and DNA amplification technologies offer several advantages over conventional methods for the identification of pathogens and antibiotic resistance genes from clinical samples (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Ehrlich and Greenberg, 1994, PCR-based Diagnostics in Infectious Disease, Blackwell Scientific Publications, Boston, MA). There is no need for culture of the bacterial pathogens, hence the organisms can be detected directly from clinical samples. thereby reducing the time associated with the isolation and identification of pathogens. Furthermore, DNA-based assays are more accurate for bacterial identification than currently used phenotypic identification systems which are based on biochemical tests. Commercially available DNA-based technologies are currently used in clinical microbiology laboratories, mainly for the detection and identification of fastidious bacterial pathogens such as Mycobacterium tuberculosis, Chlamydia trachomatis, Neisseria gonorrhoeae as well as for the detection of a variety of viruses (Podzorski and Persing, Molecular detection and identification of microorganisms, In: P. Murray et al., 1995, Manual of Clinical Microbiology, ASM press, Washington D.C.). There are also other commercially available DNA-based assays which are used for culture confirmation assays.

Others have developed DNA-based tests for the detection and identification of bacterial pathogens which are objects of the present invention: *Staphylococcus* spp. (US patent No. US 5 437 978), *Neisseria* spp. (US patent No. US 5 162 199 and European patent publication No. EP 0 337 896 131) and *Listeria monocytogenes* (US patents Nos 5 389 513 and 5 089 386). However, the diagnostic tests described in

40

5

10

15

20

25

30

35

microbial culture.

these patents are based either on rRNA genes or on genetic targets different from those described in the present invention.

Although there are diagnostic kits or methods already used in clinical microbiology laboratories, there is still a need for an advantageous alternative to the conventional culture identification methods in order to improve the accuracy and the speed of the diagnosis of commonly encountered bacterial infections. Besides being much faster, DNA-based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the bacterial genotype (e.g. DNA level) is more stable than the bacterial phenotype (e.g. metabolic level).

Knowledge of the genomic sequences of bacterial and fungal species continuously increases as testified by the number of sequences available from databases. From the sequences readily available from databases, there is no indication therefrom as to their potential for diagnostic purposes. For determining good candidates for diagnostic purposes, one could select sequences for DNA-based assays for (i) the species-specific detection and identification of commonly encountered bacterial or fungal pathogens, (ii) the genus-specific detection and identification of commonly encountered bacterial or fungal pathogens, (iii) the universal detection of bacterial or fungal pathogens and/or (iv) the specific detection and identification of antibiotic resistance genes. All of the above types of DNA-based

assays may be performed directly from any type of clinical specimens or from a

In WO 96/08502 patent publication, we described DNA sequences suitable for (i) the species-specific detection and identification of 12 clinically important bacterial pathogens, (ii) the universal detection of bacteria, and (iii) the detection of 17 antibiotic resistance genes. This co-pending application described proprietary DNA sequences and DNA sequences selected from databases (in both cases, fragments of at least 100 base pairs), as well as oligonucleotide probes and amplification primers derived from these sequences. All the nucleic acid sequences described in this patent application enter the composition of diagnostic kits and methods capable of a) detecting the presence of bacteria, b) detecting specifically the presence of 12 bacterial species and 17 antibiotic resistance genes. However, these methods and kits need to be improved, since the ideal kit and method should be capable of diagnosing close to 100% of microbial pathogens and antibiotic resistance genes. For example, infections caused by Enterococcus faecium have become a clinical problem because of its resistance to many antibiotics. Both the detection of these bacteria and the evaluation of their resistance profiles are desirable. It is worthwhile noting that the French patent publication FR-A-2,699,539 discloses the sequence of vancomycin B gene, which gene may be derived from Enterococcus faecium strains resistant to this antibiotic. Besides that, novel DNA sequences (probes and primers) capable of recognizing the same and other microbial pathogens or the same and additional antibiotic resistance genes are also desirable to aim at detecting more target genes and complement our

earlier patent application.

STATEMENT OF THE INVENTION

It is an object of the present invention to provide a specific, ubiquitous and sensitive method using probes and/or amplification primers for determining the presence and/or amount of nucleic acids:

- from specific microbial species or genera selected from the group consisting of Streptococcus species, Streptococcus agalactiae, Staphylococcus species, Staphylococcus saprophyticus, Enterococcus species, Enterococcus faecium, Neisseria species, Neisseria meningitidis, Listeria monocytogenes, Candida species and Candida albicans
- from an antibiotic resistance gene selected from the group consisting of bla_{tem} , bla_{rob} , bla_{shv} , bla_{oxe} , bla_{ox
 - from any bacterial species

in any sample suspected of containing said nucleic acids,

wherein each of said nucleic acids or a variant or part thereof comprises a selected target region hybridizable with said probe or primers;

said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes or amplified products as an indication of the presence and/or amount of said any bacterial species, specific microbial species or genus and antibiotic resistance gene.

In a specific embodiment, a similar method directed to each specific microbial species or genus detection and identification, antibiotic resistance genes detection, and universal bacterial detection, separately, is provided.

In a more specific embodiment, the method makes use of DNA fragments (proprietary fragments and fragments obtained from databases), selected for their capacity to sensitively, specifically and ubiquitously detect the targeted bacterial or fungal nucleic acids.

In a particularly preferred embodiment, oligonucleotides of at least 12 nucleotides in length have been derived from the longer DNA fragments, and are used in the present method as probes or amplification primers.

The proprietary oligonucleotides (probes and primers) are also another object of the invention.

Diagnostic kits comprising probes or amplification primers for the detection of

25

30

5

10

15

20

a microbial species or genus selected from the group consisting of *Streptococcus* species, *Streptococcus agalactiae*, *Staphylococcus* species, *Staphylococcus* saprophyticus, *Enterococcus* species, *Enterococcus faecium*, *Neisseria* species, *Neisseria meningitidis*, *Listeria monocytogenes*, *Candida* species and *Candida albicans* are also objects of the present invention.

Diagnostic kits further comprising probes or amplification primers for the detection of an antibiotic resistance gene selected from the group consisting of bla_{tem} , bla_{rob} , bla_{shv} , bla_{oxa} , $bla_$

Diagnostic kits further comprising probes or amplification primers for the detection of any bacterial or fungal species, comprising or not comprising those for the detection of the specific microbial species or genus listed above, and further comprising or not comprising probes and primers for the antibiotic resistance genes listed above, are also objects of this invention.

In a preferred embodiment, such a kit allows for the separate or the simultaneous detection and identification of the above-listed microbial species or genus, antibiotic resistance genes and for the detection of any bacterium.

In the above methods and kits, amplification reactions may include a) polymerase chain reaction (PCR), b) ligase chain reaction, c) nucleic acid sequence-based amplification, d) self-sustained sequence replication, e) strand displacement amplification, f) branched DNA signal amplification, g) transcription-mediated amplification, h) cycling probe technology (CPT) i) nested PCR, or j) multiplex PCR.

In a preferred embodiment, a PCR protocol is used as an amplification reaction. In a particularly preferred embodiment, a PCR protocol is provided, comprising, for each amplification cycle, an annealing step of 30 seconds at 45-55°C and a denaturation step of only one second at 95°C, without any time allowed specifically for the elongation step. This PCR protocol has been standardized to be suitable for PCR reactions with all selected primer pairs, which greatly facilitates the testing because each clinical sample can be tested with universal, species-specific, genus-specific and antibiotic resistance gene PCR primers under uniform cycling conditions. Furthermore, various combinations of primer pairs may be used in multiplex PCR assays.

We aim at developing a rapid test or kit to discard rapidly all the samples which are negative for bacterial cells and to subsequently detect and identify the above bacterial and/or fungal species and genera and to determine rapidly the bacterial resistance to antibiotics. Although the sequences from the selected antibiotic resistance genes are available from databases and have been used to develop DNA-based tests for their detection, our approach is unique because it represents a major improvement over current gold standard diagnostic methods based on bacterial

15

5

10

20

25

30

5

10

15

20

25

30

35

cultures. Using an amplification method for the simultaneous bacterial detection and identification and antibiotic resistance genes detection, there is no need for culturing the clinical sample prior to testing. Moreover, a modified PCR protocol has been developed to detect all target DNA sequences in approximately one hour under uniform amplification conditions. This procedure will save lives by optimizing treatment, will diminish antibiotic resistance because less antibiotics will be prescribed, will reduce the use of broad spectrum antibiotics which are expensive, decrease overall health care costs by preventing or shortening hospitalizations, and decrease the time and costs associated with clinical laboratory testing.

In the methods and kits described herein below, the oligonucleotide probes and amplification primers have been derived from larger sequences (i.e. DNA fragments of at least 100 base pairs). All DNA fragments have been obtained either from proprietary fragments or from databases. DNA fragments selected from databases are newly used in a method of detection according to the present invention, since they have been selected for their diagnostic potential.

It is clear to the individual skilled in the art that other oligonucleotide sequences appropriate for (i) the universal bacterial detection, (ii) the detection and identification of the above microbial species or genus and (iii) the detection of antibiotic resistance genes other than those listed in Annex VI may also be derived from the proprietary fragments or selected database sequences. For example, the oligonucleotide primers or probes may be shorter or longer than the ones we have chosen; they may also be selected anywhere else in the proprietary DNA fragments or in the sequences selected from databases; they may be also variants of the same oligonucleotide. If the target DNA or a variant thereof hybridizes to a given oligonucleotide, or if the target DNA or a variant thereof can be amplified by a given oligonucleotide PCR primer pair, the converse is also true; a given target DNA may hybridize to a variant oligonucleotide probe or be amplified by a variant oligonucleotide PCR primer. Alternatively, the oligonucleotides may be designed from any DNA fragment sequences for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of universal, species-specific, genus-specific and resistance gene-specific genomic or non-genomic DNA fragments which are used as a source of specific and ubiquitous oligonucleotide probes and/or amplification primers. Although the selection and evaluation of oligonucleotides suitable for diagnostic purposes requires much effort, it is quite possible for the individual skilled in the art to derive, from the selected DNA fragments, oligonucleotides other than the ones listed in Annex VI which are suitable for diagnostic purposes. When a proprietary fragment or a database sequence is selected for its specificity and ubiquity, it increases the probability that subsets thereof will also be specific and ubiquitous.

Since a high percentage of clinical specimens are negative for bacteria (Table

10

15

20

25

30

35

3), DNA fragments having a high potential for the selection of universal oligonucleotide probes or primers were selected from proprietary and database sequences. The amplification primers were selected from a gene highly conserved in bacteria and fungi, and are used to detect the presence of any bacterial pathogen in clinical specimens in order to determine rapidly (approximately one hour) whether it is positive or negative for bacteria. The selected gene, designated tuf, encodes a protein (EF-Tu) involved in the translational process during protein synthesis. The tuf gene sequence alignments used to derive the universal primers include both proprietary and database sequences (Example 1 and Annex I). This strategy allows the rapid screening of the numerous negative clinical specimens (around 80% of the specimens received, see Table 3) submitted for bacteriological testing. Tables 4, 5 and 6 provide a list of the bacterial or fungal species used to test the specificity of PCR primers and DNA probes. Table 7 gives a brief description of each species-specific, genus-specific and universal amplification assays which are objects of the present invention. Tables 8, 9 and 10 provide some relevant information about the proprietary and database sequences selected for diagnostic puposes.

DETAILED DESCRIPTION OF THE INVENTION

Development of species-specific, genus-specific, universal and antibiotic resistance gene-specific DNA probes and amplification primers for microorganisms

Selection from databases of sequences suitable for diagnostic purposes

In order to select sequences which are suitable for species-specific or genusspecific detection and identification of bacteria or fungi or, alternatively, for the universal detection of bacteria, the database sequences (GenBank, EMBL and Swiss-Prot) were chosen based on their potential for diagnostic purposes according to sequence information and computer analysis performed with these sequences. Initially, all sequence data available for the targeted microbial species or genus were carefully analyzed. The gene sequences which appeared the most promising for diagnostic purposes based on sequence information and on sequence comparisons with the corresponding gene in other microbial species or genera performed with the Genetics Computer Group (GCG, Wisconsin) programs were selected for testing by PCR. Optimal PCR amplification primers were chosen from the selected database sequences with the help of the Oligo™ 4.0 primer analysis software (National Biosciences Inc., Plymouth, Minn.). The chosen primers were tested in PCR assays for their specificity and ubiquity for the target microbial species or genus. In general, the identification of database sequences from which amplification primers suitable for species-specific or genus-specific detection and identification were selected involved the computer analysis and PCR testing of several candidate gene sequences before

obtaining a primer pair which is specific and ubiquitous for the target microbial species or genus. Annex VI provides a list of selected specific and ubiquitous PCR primer pairs. Annexes I to V and Examples 1 to 4 illustrate the strategy used to select genus-specific, species-specific and universal PCR primers from *tuf* sequences or from the *rec*A gene.

Oligonucleotide primers and probes design and synthesis

The DNA fragments sequenced by us or selected from databases (GenBank and EMBL) were used as sources of oligonucleotides for diagnostic purposes. For this strategy, an array of suitable oligonucleotide primers or probes derived from a variety of genomic DNA fragments (size of more than 100 bp) selected from databases were tested for their specificity and ubiquity in PCR and hybridization assays as described later. It is important to note that the database sequences were selected based on their potential for being species-specific, genus-specific or universal for the detection of bacteria or fungi according to available sequence information and extensive analysis and that, in general, several candidate database sequences had to be tested in order to obtain the desired specificity, ubiquity and sensitivity.

Oligonucleotide probes and amplification primers derived from species-specific fragments selected from database sequences were synthesized using an automated DNA synthesizer (Perkin-Elmer Corp., Applied Biosystems Division). Prior to synthesis, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (i.e. the Genetics Computer Group (GCG) programs and the primer analysis software Oligo ** 4.0*). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted features such as long stretches of one nucleotide and a high proportion of G or C residues at the 3' end (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

The oligonucleotide primers or probes may be derived from either strand of the duplex DNA. The primers or probes may consist of the bases A, G, C, or T or analogs and they may be degenerated at one or more chosen nucleotide position(s). The primers or probes may be of any suitable length and may be selected anywhere within the DNA sequences from proprietary fragments or from selected database sequences which are suitable for (i) the universal detection of bacteria, (ii) the species-specific detection and identification of *Enterococcus faecium*, *Listeria monocytogenes*, *Neisseria meningitidis*, *Staphylococcus saprophyticus*, *Streptococcus agalactiae* and *Candida albicans* (iii) the genus-specific detection of *Streptococcus* species, *Enterococcus* species, *Staphylococcus* species and *Neisseria* species or (iv) the detection of the 26 above-mentioned clinically important antibiotic resistance genes.

5

10

15

25

30

10

15

20

25

30

35

Variants for a given target bacterial gene are naturally occurring and are attributable to sequence variation within that gene during evolution (Watson et al., 1987, Molecular Biology of the Gene, 4th ed., The Benjamin/Cummings Publishing Company, Menlo Park, CA; Lewin, 1989, Genes IV, John Wiley & Sons, New York, NY). For example, different strains of the same bacterial species may have a single or more nucleotide variation(s) at the oligonucleotide hybridization site. The person skilled in the art is well aware of the existence of variant bacterial or fungal DNA sequences for a specific gene and that the frequency of sequence variations depends on the selective pressure during evolution on a given gene product. The detection of a variant sequence for a region between two PCR primers may be demonstrated by sequencing the amplification product. In order to show the presence of sequence variants at the primer hybridization site, one has to amplify a larger DNA target with PCR primers outside that hybridization site. Sequencing of this larger fragment will allow the detection of sequence variation at this site. A similar strategy may be applied to show variants at the hybridization site of a probe. Insofar as the divergence of the target sequences or a part thereof does not affect the specificity and ubiquity of the amplification primers or probes, variant bacterial DNA is under the scope of this invention. Variants of the selected primers or probes may also be used to amplify or hybridize to a variant DNA.

Sequencing of tuf sequences from a variety of bacterial and fungal species

The nucleotide sequence of a portion of tuf genes was determined for a variety of bacterial and fungal species. The amplification primers SEQ ID NOs: 107 and 108. which amplify a tuf gene portion of approximately 890 bp, were used for the sequencing of bacterial tuf sequences. The amplification primers SEQ ID NOs: 109 and 172, which amplify a tuf gene portion of approximately 830 bp, were used for the sequencing of fungal tuf sequences. Both primer pairs can amplify tufA and tufB genes. This is not surprising because these two genes are nearly identical. For example, the entire tufA and tufB genes from E. coli differ at only 13 nucleotide positions (Neidhardt et al., 1996, Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., American Society for Microbiology Press, Washington, D.C.). These amplification primers are degenerated at several nucleotide positions and contain inosines in order to allow the amplification of a wide range of tuf sequences. The strategy used to select these amplification primers is similar to that illustrated in Annex I for the selection of universal primers. The amplification primers SEQ ID NOs: 107 and 108 could be used to amplify the tuf genes from any bacterial species. The amplification primers SEQ ID NOs: 109 and 172 could be used to amplify the tuf genes from any fungal species.

The *tuf* genes were amplified directly from bacterial or yeast cultures using the following amplification protocol: One μ L of cell suspension was transferred directly to

10

15

20

25

30

35

19 μ L of a PCR reaction mixture containing 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 1 μ M of each of the 2 primers, 200 μ M of each of the four dNTPs, 0.5 unit of *Taq* DNA polymerase (Promega Corp., Madison, WI). PCR reactions were subjected to cycling using a MJ Research PTC-200 thermal cycler (MJ Research Inc., Watertown, Mass.) as follows: 3 min at 96°C followed by 30-35 cycles of 1 min at 95°C for the denaturation step, 1 min at 30-50°C for the annealing step and 1 min at 72°C for the extension step. Subsequently, twenty microliters of the PCRamplified mixture were resolved by electrophoresis in a 1.5% agarose gel. The gel was then visualized by staining with methylene blue (Flores et al., 1992, Biotechniques, 13:203-205). The size of the amplification products was estimated by comparison with a 100-bp molecular weight ladder. The band corresponding to the specific amplification product (i.e. approximately 890 or 830 bp for bacterial or fungal tuf sequences, respectively) was excised from the agarose gel and purified using the QlAquick™ gel extraction kit (QIAGEN Inc., Chatsworth, CA). The gel-purified DNA fragment was then used directly in the sequencing protocol. Both strands of the tuf genes amplification product were sequenced by the dideoxynucleotide chain termination sequencing method by using an Applied Biosystems automated DNA sequencer (model 373A) with their PRISM™ Sequenase® Terminator Double-stranded DNA Sequencing Kit (Perkin-Elmer Corp., Applied Biosystems Division, Foster City, CA). The sequencing reactions were all performed by using the amplification primers (SEQ ID NOs: 107 to 109 and 172) and 100 ng per reaction of the gel-purified amplicon. In order to ensure that the determined sequence did not contain errors attributable to the sequencing of PCR artefacts, we have sequenced two preparations of the gel-purified tuf amplification product originating from two independent PCR amplifications. For all target microbial species, the sequences determined for both amplicon preparations were identical. Furthermore, the sequences of both strands were 100% complementary thereby confirming the high accuracy of the determined sequence. The tuf sequences determined using the above strategy are all in the Sequence Listing (i.e. SEQ ID NOs:118 to 146). Table 13 gives the originating microbial species and the source for each tuf sequence in the Sequence Listing.

The alignment of the *tuf* sequences determined by us or selected from databases reveals clearly that the length of the sequenced portion of the *tuf* genes is variable. There may be insertions or deletions of several amino acids. This explains why the size of the sequenced *tuf* amplification product was variable for both bacterial and fungal species. Among the *tuf* sequences determined by our group, we found insertions and deletions adding up to 5 amino acids or 15 nucleotides. Consequently, the nucleotide positions indicated on top of each of Annexes I to V do not correspond for *tuf* sequences having insertions or deletions.

It should also be noted that the various tuf sequences determined by us

10

15

20

25

30

35

occasionally contain degenerescences. These degenerated nucleotides correspond to sequence variations between *tufA* and *tufB* genes because the amplification primers amplify both *tuf* genes. These nucleotide variations were not attributable to nucleotide misincorporations by the *taq* DNA polymerase because the sequence of both strands were identical and also because the sequences determined with both preparations of the gel-purified *tuf* amplicons were identical.

The selection of amplification primers from tuf sequences

The *tuf* sequences determined by us or selected from databases were used to select PCR primers for (i) the universal detection of bacteria, (ii) the genus-specific detection and identification of *Enterococcus* spp. and *Staphylococcus* spp. and (iii) the species-specific detection and identification of *Candida albicans*. The strategy used to select these PCR primers was based on the analysis of multiple sequence alignments of various *tuf* sequences. For more details about the selection of PCR primers from *tuf* sequences, please refer to Examples 1 to 3 and Annexes I to IV.

The selection of amplification primers from recA

The comparison of the nucleotide sequence for the *recA* gene from various bacterial species including 5 species of streptococci allowed the selection of *Streptococcus*-specific PCR primers. For more details about the selection of PCR primers from *recA*, please refer to Example 4 and Annex V.

DNA fragment isolation from *Staphylococcus saprophyticus* by arbitrarily primed PCR

DNA sequences of unknown coding potential for the species-specific detection and identification of *Staphylococcus saprophyticus* were obtained by the method of arbitrarily primed PCR (AP-PCR).

AP-PCR is a method which can be used to generate specific DNA probes for microorganisms (Fani *et al.*, 1993, Mol. Ecol. **2**:243-250). A description of the AP-PCR protocol used to isolate a species-specific genomic DNA fragment from *Staphylococcus saprophyticus* follows. Twenty different oligonucleotide primers of 10 nucleotides in length (all included in the AP-PCR kit OPAD (Operon Technologies, Inc., Alameda, CA)) were tested systematically with DNAs from 3 bacterial strains of *Staphylococcus saprophyticus* (all obtained from the American Type Culture Collection (ATCC): numbers 15305, 35552 and 43867) as well as with DNA from four other staphylococcul species (*Staphylococcus aureus* ATCC 25923, *Staphylococcus epidermidis* ATCC 14990, *Staphylococcus haemolyticus* ATCC 29970 and *Staphylococcus hominis* ATCC 35982). For all bacterial species, amplification was performed from a bacterial suspension adjusted to a standard 0.5 McFarland which corresponds to approximately 1.5 x 108 bacteria/mL. One μ L of the standardized bacterial suspension was transferred directly to 19 μ L of a PCR reaction mixture containing 50 mM KCI, 10 mM Tris-HCI (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂,

10

15

20

25

30

 $1.2~\mu\text{M}$ of only one of the 20 different AP-PCR primers OPAD, $200~\mu\text{M}$ of each of the four dNTPs and 0.5 unit of Taq DNA polymerase (Promega Corp., Madison, WI). PCR reactions were subjected to cycling using a MJ Research PTC-200 thermal cycler (MJ Research Inc.) as follows: 3 min at 96°C followed by 35 cycles of 1 min at 95°C for the denaturation step, 1 min at 32°C for the annealing step and 1 min at 72°C for the extension step. A final extension step of 7 min at 72°C was made after the 35 cycles to ensure complete extension of PCR products. Subsequently, twenty microliters of the PCR amplified mixture were resolved by electrophoresis in a 2% agarose gel containing $0.25~\mu\text{g/mL}$ of ethidium bromide. The size of the amplification products was estimated by comparison with a 50-bp molecular weight ladder.

Amplification patterns specific for *Staphylococcus saprophyticus* were observed with the AP-PCR primer OPAD-9 (SEQ ID NO: 25). Amplification with this primer consistently showed a band corresponding to a DNA fragment of approximately 450 bp for all *Staphylococcus saprophyticus* strains tested but not for any of the four other staphylococcal species tested. This species-specific pattern was confirmed by testing 10 more clinical isolates of *S. saprophyticus* selected from the culture collection of the microbiology laboratory of the CHUL as well as strains selected from the gram-positive bacterial species listed in Table 5.

The band corresponding to the approximately 450 bp amplicon which was specific and ubiquitous for *S. saprophyticus* based on AP-PCR was excised from the agarose gel and purified using the QlAquick[™] gel extraction kit (QlAGEN Inc.). The gel-purified DNA fragment was cloned into the T/A cloning site of the pCR 2.1[™] plasmid vector (Invitrogen Inc.) using T4 DNA ligase (New England BioLabs). Recombinant plasmids were transformed into *E. coli* DH5α competent cells using standard procedures. Plasmid DNA isolation was done by the method of Birnboim and Doly (Nucleic Acids Res. 7:1513-1523) for small-scale preparations. All plasmid DNA preparations were digested with the *Eco*Rl restriction endonuclease to ensure the presence of the approximately 450 bp AP-PCR insert into the recombinant plasmids. Subsequently, a large-scale and highly purified plasmid DNA preparation was performed from two selected clones shown to carry the AP-PCR insert by using the QlAGEN plasmid purification kit. These plasmid preparations were used for automated DNA sequencing.

Both strands of the AP-PCR insert from the two selected clones were sequenced by the dideoxynucleotide chain termination sequencing method with SP6 and T7 sequencing primers, by using an Applied Biosystems automated DNA sequencer as described previously. The analysis of the obtained sequences revealed that the DNA sequences for both strands from each clone were 100% complementary. Furthermore, it showed that the entire sequence determined for each clone were both identical. These sequencing data confirm the 100% accuracy for the determined 438

10

15

20

25

30

bp sequence (SEQ ID NO: 29). Optimal amplification primers have been selected from the sequenced AP-PCR Staphylococcus saprophyticus DNA fragment with the help of the primer analysis software Oligo™ 4.0. The selected primer sequences have been tested in PCR assays to verify their specificity and ubiquity (Table 7). These PCR primers were specific since there was no amplification with DNA from bacterial species other than S. saprophyticus selected from Tables 4 and 5. Furthermore, this assay was ubiquitous since 245 of 260 strains of S. saprophyticus were efficiently amplified with this PCR assay. When used in combination with another S. saprophyticus-specific PCR assay, which is an object of our co-pending U.S. (N.S. 08/526,840) and PCT (PCT/CA/95/00528) patent applications, the ubiquity reaches 100% for these 260 strains.

DNA amplification

For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived from proprietary DNA fragments or from database sequences. Prior to synthesis, the potential primer pairs were analyzed by using the OligoTM 4.0 software to verify that they are good candidates for PCR amplification.

During DNA amplification by PCR, two oligonucleotide primers binding respectively to each strand of the heat-denatured target DNA from the bacterial genome are used to amplify exponentially *in vitro* the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle (Persing *et al*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

Briefly, the PCR protocols were as follow: Treated clinical specimens or standardized bacterial or fungal suspensions (see below) were amplified in a 20 μ L PCR reaction mixture containing 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 2.5 mM MgCl₂, 0.4 μ M of each primer, 200 μ M of each of the four dNTPs and 0.5 unit of Tag DNA polymerase (Promega) combined with the TagStart™ antibody (Clontech Laboratories Inc., Palo Alto, CA). The TaqStart™ antibody, which is a neutralizing monoclonal antibody to Taq DNA polymerase, was added to all PCR reactions to enhance the specificity and the sensitivity of the amplifications (Kellogg et al., 1994, Biotechniques 16:1134-1137). The treatment of the clinical specimens varies with the type of specimen tested, since the composition and the sensitivity level required are different for each specimen type. It consists in a rapid protocol to lyse the bacterial cells and eliminate the PCR inhibitory effects (see example 11 for urine specimen preparation). For amplification from bacterial or fungal cultures, the samples were added directly to the PCR amplification mixture without any pre-treatment step (see example 10). Primer sequences derived from highly conserved regions of the bacterial 16S ribosomal RNA gene were used to provide an internal control for all PCR reactions. Alternatively, the

5

10

15

20

25

internal control was derived from sequences not found in microorganisms or in the human genome. The internal control was integrated into all amplification reactions to verify the efficiency of the PCR assays and to ensure that significant PCR inhibition was absent. The internal control derived from rRNA was also useful to monitor the efficiency of bacterial lysis protocols.

PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C for the denaturation step and 30 second at 55°C for the annealing-extension step) using a PTC-200 thermal cycler (MJ Research Inc.) and subsequently analyzed by standard ethidium bromide-stained agarose gel electrophoresis. The number of cycles performed for the PCR assays varies according to the sensitivity level required. For example, the sensitivity level required for microbial detection directly from clinical specimens is higher for blood specimens than for urine specimens because the concentration of microorganisms associated with a septicemia can be much lower than that associated with a urinary tract infection. Consequently, more sensitive PCR assays having more thermal cycles are required for direct detection from blood specimens. Similarly, PCR assays performed directly from bacterial or fungal cultures may be less sensitive than PCR assays performed directly from clinical specimens because the number of target organisms is normally much lower in clinical specimens than in microbial cultures.

It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after amplification (e.g. TaqMan™ system from Perkin Elmer or Amplisensor™ from Biotronics). Methods based on the detection of fluorescence are particularly promising for utilization in routine diagnosis as they are very rapid, quantitative and can be automated (Example 14).

Microbial pathogens detection and identification may also be performed by solid support or liquid hybridization using species-specific internal DNA probes hybridizing to an amplification product. Such probes may be generated from any species-specific or genus-specific DNA amplification products which are objects of the present invention. Alternatively, the internal probes for species or genus detection and identification may be derived from the amplicons produced by the universal amplification assay. The oligonucleotide probes may be labeled with biotin or with digoxigenin or with any other reporter molecules.

To assure PCR efficiency, glycerol, dimethyl sulfoxide (DMSO) or other related solvents can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of a target DNA having a high GC content or forming strong secondary structures (Dieffenbach and Dveksler, 1995, PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York). The

30

10

15

20

25

30

35

concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% (v/v), respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and $MgCl_2$ are 0.1-1.5 μ M and 1.5-3.5 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). For more details about the PCR protocols and amplicon detection methods, see Examples 9 to 14.

The person skilled in the art of DNA amplification knows the existence of other rapid amplification procedures such as ligase chain reaction (LCR), transcription-mediated amplification (TMA), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), branched DNA (bDNA) and cycling probe technology (CPT) (Lee *et al.*, 1997, Nucleic Acid Amplification Technologies: Application to Disease Diagnosis, Eaton Publishing, Boston, MA; Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification method or any other procedure which may be used to increase rapidity and sensitivity of the tests. Any oligonucleotide suitable for the amplification of nucleic acids by approaches other than PCR and derived from the species-specific, genus-specific and universal DNA fragments as well as from selected antibiotic resistance gene sequences included in this document are also under the scope of this invention.

Hybridization assays with oligonucleotide probes

In hybridization experiments, single-stranded oligonucleotides (size less than 100 nucleotides) have some advantages over DNA fragment probes for the detection of bacteria, such as ease of synthesis in large quantities, consistency in results from batch to batch and chemical stability. Briefly, for the hybridizations, oligonucleotides were 5' end-labeled with the radionucleotide γ-32P(dATP) using T4 polynucleotide kinase (Pharmacia) (Sambrook *et al.*, 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). The unincorporated radionucleotide was removed by passing the labeled oligonucleotide through a Sephadex G-50TM column. Alternatively, oligonucleotides were labeled with biotin, either enzymatically at their 3' ends or incorporated directly during synthesis at their 5' ends, or with digoxigenin. It will be appreciated by the person skilled in the art that labeling means other than the three above labels may be used.

Each oligonucleotide probe was then tested for its specificity by hybridization to DNAs from a variety of bacterial and fungal species selected from Tables 4, 5 and 6. All of the bacterial or fungal species tested were likely to be pathogens associated

10

15

20

25

30

35

with common infections or potential contaminants which can be isolated from clinical specimens. Each target DNA was released from bacterial cells using standard chemical treatments to lyse the cells (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Subsequently, the DNA was denatured by conventional methods and then irreversibly fixed onto a solid support (e.g. nylon or nitrocellulose membranes) or free in solution. The fixed single-stranded target DNAs were then hybridized with the oligonucleotide probe cells (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY). Prehybridization conditions were in 1 M NaCl + 10% dextran sulfate + 1% SDS + 100 μ g/mL salmon sperm DNA at 65°C for 15 min. Hybridization was performed in fresh pre-hybridization solution containing the labeled probe at 65°C overnight. Posthybridization washing conditions were as follows: twice in 3X SSC containing 1% SDS, twice in 2X SSC containing 1% SDS and twice in 1X SSC containing 1% SDS (all of these washes were at 65°C for 15 min), and a final wash in 0.1X SSC containing 1% SDS at 25°C for 15 min. Autoradiography of washed filters allowed the detection of selectively hybridized probes. Hybridization of the probe to a specific target DNA indicated a high degree of similarity between the nucleotide sequence of these two DNAs because of the high stringency of the washes.

An oligonucleotide probe was considered specific only when it hybridized solely to DNA from the species or genus from which it was isolated. Oligonucleotide probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most or all isolates of the target species or genus) by hybridization to microbial DNAs from clinical isolates of the species or genus of interest including ATCC strains. The DNAs from strains of the target species or genus were denatured, fixed onto nylon membranes and hybridized as described above. Probes were considered ubiquitous when they hybridized specifically with the DNA from at least 80% of the isolates of the target species or genus.

Specificity and ubiquity tests for oligonucleotide primers and probes

The specificity of oligonucleotide primers and probes, derived either from the DNA fragments sequenced by us or selected from databases, was tested by amplification of DNA or by hybridization with bacterial or fungal species selected from those listed in Tables 4, 5 and 6, as described in the two previous sections. Oligonucleotides found to be specific were subsequently tested for their ubiquity by amplification (for primers) or by hybridization (for probes) with bacterial DNAs from isolates of the target species or genus. Results for specificity and ubiquity tests with the oligonucleotide primers are summarized in Table 7. The specificity and ubiquity of the PCR assays using the selected amplification primer pairs were tested directly from cultures (see Examples 9 and 10) of bacterial or fungal species.

10

15

20

25

30

35

The various species-specific and genus-specific PCR assays which are objects of the present invention are all specific. For the PCR assays specific to bacterial species or genus, this means that DNA isolated from a wide variety of bacterial species, other than that from the target species or genus and selected from Tables 4 and 5, could not be amplified. For the PCR assay specific to *Candida albicans*, it means there was no amplification with genomic DNA from the fungal species listed in Table 6 as well as with a variety of bacterial species selected from Tables 4 and 5.

The various species-specific and genus-specific PCR assays which are objects of the present invention are also all ubiquitous (Table 7). (i) The species-specific PCR assays for E. faecium, L. monocytogenes, S. saprophyticus, S. agalactiae and C. albicans amplified genomic DNA from all or most strains of the target species tested, which were obtained from various sources and which are representative of the diversity within each target species (Table 7). The species identification of all of these strains was based on classical biochemical methods which are routinely used in clinical microbiology laboratories. (ii) The genus-specific PCR assays specific for Enterococcus spp., Staphylococcus spp., Streptococcus spp. and Neisseria spp. amplified genomic DNA from all or most strains of the target genus tested, which represent all clinically important bacterial species for each target genus. These strains were obtained from various sources and are representative of the diversity within each target genus. Again, the species identification of all of these strains was based on classical biochemical methods which are routinely used in clinical microbiology laboratories. More specifically, the four genus-specific PCR assays amplified the following species: (1) The Enterococcus-specific assay amplified efficiently DNA from all of the 11 enterococcal species tested including E. avium, E. casseliflavus, E. dispar, E. durans, E. faecalis, E. faecium, E. flavescens, E. gallinarum, E. hirae, E. mundtii and E. raffinosus. (2) The Neisseria-specific assay amplified efficiently DNA from all of the 12 neisserial species tested including N. canis, N. cinerea, N. elongata, N. flavescens, N. gonorrhoeae, N. lactamica, N. meningitidis, N. mucosa, N. polysaccharea, N. sicca, N. subflava and N. weaveri. (3) The Staphylococcus-specific assay amplified efficiently DNA from 13 of the 14 staphylococcal species tested S. aureus, S. auricularis, S. capitis, S. cohnii, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, S. schleiferi, S. simulans, S. warneri and S. xylosus. The staphylococcal species which could not be amplified is S. sciuri. (4) Finally, the Streptococcus-specific assay amplified efficiently DNA from all of the 22 streptococcal species tested including S. agalactiae, S. anginosus, S. bovis, S. constellatus, S. crista, S. dysgalactiae, S. equi, S. gordonii, S. intermedius, S. mitis, S. mutans, S. oralis, S. parasanguis, S. pneumoniae, S. pyogenes, S. salivarius, S. sanguis, S. sabrinus, S. suis, S. uberis, S. vestibularis and S. viridans. On the other hand, the Streptococcus-specific assay did not amplify 3 out of 9 strains

5

10

15

20

25

30

35

of *S. mutans* and 1 out of 23 strains of *S. salivarius*, thereby showing a slight lack of ubiquity for these two streptococcal species.

All specific and ubiquitous amplification primers for each target microbial species or genus or antibiotic resistance gene investigated are listed in Annex VI. Divergence in the sequenced DNA fragments can occur, insofar as the divergence of these sequences or a part thereof does not affect the specificity of the probes or amplification primers. Variant bacterial DNA is under the scope of this invention.

The PCR amplification primers listed in Annex VI were all tested for their specificity and ubiquity using reference strains as well as clinical isolates from various geographical locations. The 351 reference strains used to test the amplification and hybridization assays (Tables 4, 5 and 6) were obtained from (i) the American Type Culture Collection (ATCC): 85%, (ii) the Laboratoire de santé publique du Québec (LSPQ): 10%, (iii) the Centers for Disease Control and Prevention (CDC): 3%, (iv) the National Culture Type Collection (NCTC): 1% and (v) several other reference laboratories throughout the world: 1%. These reference strains are representative of (i) 90 gram-negative bacterial species (169 strains; Table 4), (ii) 97 gram-positive bacterial species (154 strains; Table 5) and (iii) 12 fungal species (28 strains; Table 6).

Antibiotic resistance genes

Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial resistance. Our goal is to provide clinicians, in approximately one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with species- and/or genus-specific DNA-based tests, clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly bacterial resistance to antimicrobials is to detect directly from the clinical specimens the most common and clinically important antibiotic resistance genes (i.e. DNA-based tests for the detection of antibiotic resistance genes). Since the sequence from the most important and common bacterial antibiotic resistance genes are available from databases, our strategy was to use the sequence from a portion or from the entire resistance gene to design specific oligonucleotide primers or probes which will be used as a basis for the development of rapid DNA-based tests. The sequence from each of the bacterial antibiotic resistance genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in the Sequence Listing. Tables 9 and 10 summarize some characteristics of the selected antibiotic resistance genes. Our approach is unique because the antibiotic resistance genes detection and the bacterial detection and identification are performed simultaneously in multiplex assays under

uniform PCR amplification conditions (Example 13).

Annex VI provides a list of all amplification primers selected from 26 clinically important antibiotic resistance genes which were tested in PCR assays. The various PCR assays for antibiotic resistance genes detection and identification were validated by testing several resistant bacterial isolates known to carry the targeted gene and obtained from various countries. The testing of a large number of strains which do not carry the targeted resistance gene was also performed to ensure that all assays were specific. So far, all PCR assays for antibiotic resistance genes are highly specific and have detected all control resistant bacterial strains known to carry the targeted gene. The results of some clinical studies to validate the array of PCR assays for the detection and identification of antibiotic resistance genes and correlate these DNA-based assays with standard antimicrobials susceptibility testing methods are presented in Tables 11 and 12.

Universal bacterial detection

In the routine microbiology laboratory, a high percentage of clinical specimens sent for bacterial identification are negative by culture (Table 4). Testing clinical samples with universal amplification primers or universal probes to detect the presence of bacteria prior to specific identification and screen out the numerous negative specimens is thus useful as it saves costs and may rapidly orient the clinical management of the patients. Several amplification primers and probes were therefore synthesized from highly conserved portions of bacterial sequences from the *tuf* genes (Table 8). The universal primer selection was based on a multiple sequence alignment constructed with sequences determined by us or selected from available database sequences as described in Example 1 and Annex I.

For the identification of database sequences suitable for the universal detection of bacteria, we took advantage of the fact that the complete genome sequences for two distant microorganisms (i.e. *Mycoplasma genitalium* and *Haemophilus influenzae*) are available. A comparison of the amino acid sequence for all proteins encoded by the genome of these two distant microorganisms led to the identification of highly homologous proteins. An analysis of these homologous proteins allowed to select some promising candidates for the development of universal DNA-based assays for the detection of bacteria. Since the complete nucleotide sequence of several other microbial genomes are presently available in databases, a person skilled in the art could arrive to the same conclusions by comparing genomes sequences other than those of *Mycoplasma genitalium* and *Haemophilus influenzae*. The selected *tuf* gene encodes a protein (EF-Tu) involved in the translation process during protein synthesis. Subsequently, an extensive nucleotide sequence analysis was performed with the *tuf* gene sequences available in databases as well as with novel *tuf* sequences which we have determined as described previously. All computer analysis of amino acid and

25

30

35

20

5

10

10

15

20

25

30

35

nucleotide sequences were performed by using the GCG programs. Subsequently, optimal PCR primers for the universal amplification of bacteria were selected with the help of the Oligo™ program. The selected primers are degenerated at several nucleotide positions and contain several inosines in order to allow the amplification of all clinically relevant bacterial species (Annex I). Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Degenerated oligonucleotides consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches. The inclusion of inosine and/or of degenerescences in the amplification primers allow mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY).

The amplification conditions with the universal primers were identical to those used for the species- and genus-specific amplification assays except that the annealing temperature was 50°C instead of 55°C. This universal PCR assay was specific and nearly ubiquitous for the detection of bacteria. The specificity for bacteria was verified by amplifying genomic DNA isolated from the 12 fungal species listed in Table 6 as well as genomic DNA from Leishmania donovani, Saccharomyces cerevisiae and human lymphocytes. None of the above eukaryotic DNA preparations could be amplified by the universal assay, thereby suggesting that this test is specific for bacteria. The ubiquity of the universal assay was verified by amplifying genomic DNAs from 116 reference strains which represent 95 of the most clinically relevant bacterial species. These species have been selected from the bacterial species listed in Tables 4 and 5. We found that 104 of these 116 strains could be amplified. The bacterial species which could not be amplified belong to the following genera: Corynebacterium (11 species) and Stenotrophomonas (1 species). Sequencing of the tuf genes from these bacterial species has been recently performed. This sequencing data has been used to select new universal primers which may be more ubiquitous. These primers are in the process of being tested. We also observed that for several species the annealing temperature had to be reduced to 45°C in order to get an efficient amplification. These bacterial species include Gemella morbilbrum, Listeria spp. (3 species) and Gardnerella vaginalis. It is important to note that the 95 bacterial species selected from Tables 4 and 5 to test the ubiquity of the universal assay include all of the most clinically relevant bacterial species associated with a variety of human infections acquired in the community or in hospitals (nosocomial infections). The most clinically important bacterial and fungal pathogens are listed in Tables 1 and 2.

5

10

15

20

30

35

EXAMPLES AND ANNEXES

The following examples and annexes are intended to be illustrative of the various methods and compounds of the invention, rather than limiting the scope thereof.

The various annexes show the strategies used for the selection of amplification primers from tuf sequences or from the recA gene: (i) Annex I illustrates the strategy used for the selection of the universal amplification primers from tuf sequences. (ii) Annex II shows the strategy used for the selection of the amplification primers specific for the genus Enterococcus from tuf sequences. (iii) Annex III illustrates the strategy used for the selection of the amplification primers specific for the genus Staphylococcus from tuf sequences. (iv) Annex IV shows the strategy used for the selection of the amplification primers specific for the species Candida albicans from tuf sequences. (v) Annex V illustrates the strategy used for the selection of the amplification primers specific for the genus Streptococcus from recA sequences. (vi) Annex VI gives a list of all selected primer pairs. As shown in these annexes, the selected amplification primers may contain inosines and/or degenerescences. Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Alternatively, degenerated oligonucleotides which consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches were used. The inclusion of inosine and/or of degenerescences in the amplification primers allow mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York).

EXAMPLES

25 **EXAMPLE 1**:

Selection of universal PCR primers from tuf sequences. As shown in Annex I, the comparison of tuf sequences from a variety of bacterial and eukaryotic species allowed the selection of PCR primers which are universal for the detection of bacteria. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. This multiple sequence alignment includes tuf sequences from 38 bacterial species and 3 eukaryotic species either determined by us or selected from databases (Table 13). A careful analysis of this multiple sequence alignment allowed the selection of primer sequences which are conserved within eubacteria but which discriminate sequences from eukaryotes, thereby permitting the universal detection of bacteria. As shown in Annex I, the selected primers contain several inosines and degenerescences. This was necessary because there is a relatively high polymorphism among bacterial tuf sequences despite the fact that this gene is highly conserved. In fact, among the tuf sequences that we determined, we found many nucleotide variations as well as some deletions and/or

insertions of amino acids. The selected universal primers were specific and ubiquitous for bacteria (Table 7). Of the 95 most clinically important bacterial species tested, 12 were not amplified. These species belong to the genera *Corynebacterium* (11 species) and *Stenotrophomonas* (1 species). The universal primers did not amplify DNA of non-bacterial origin, including human and other types of eukaryotic DNA.

EXAMPLE 2:

5

10

15

20

25

30

35

Selection of genus-specific PCR primers from tuf sequences. As shown in Annexes 2 and 3, the comparison of tuf sequences from a variety of bacterial species allowed the selection of PCR primers specific for Enterococcus spp. or for Staphylococcus spp. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. These multiple sequence alignments include the tuf sequences of four representative bacterial species selected from each target genus as well as tuf sequences from species of other closely related bacterial genera. A careful analysis of those alignments allowed the selection of oligonucleotide sequences which are conserved within the target genus but which discriminate sequences from other closely related genera, thereby permitting the genus-specific and ubiquitous detection and identification of the target bacterial genus.

For the selection of primers specific for *Enterococcus* spp. (Annex II), we have sequenced a portion of approximately 890 bp of the *tuf* genes for *Enterococcus avium*, *E. faecalis*, *E. faecium* and *E. gallinarum*. All other *tuf* sequences used in the alignment were either sequenced by us or selected from databases. The analysis of this sequence alignment led to the selection of a primer pair specific and ubiquitous for *Enterococcus* spp. (Table 7). All of the 11 enterococcal species tested were efficiently amplified and there was no amplification with genomic DNA from bacterial species of other genera.

For the selection of primers specific for *Staphylococcus* spp. (Annex III), we have also sequenced a portion of approximately 890 bp of the *tuf* genes for *Staphylococcus aureus*, *S. epidermidis*, *S. saprophyticus* and *S. simulans*. All other *tuf* sequences used in the alignment were either sequenced by us or selected from databases. The analysis of this sequence alignment led to the selection of two primer pairs specific and ubiquitous for *Staphylococcus* spp. (Table 7). Annex III shows the strategy used to select one of these two PCR primer pairs. The same strategy was used to select the other primer pair. Of the 14 staphylococcal species tested, one (*S. sciuri*) could not be amplified by the *Staphylococcus*-specific PCR assays using either one of these two primer pairs, there was no amplification with DNA from species of other bacterial genera.

EXAMPLE 3:

5

10

15

20

25

30

35

Selection from tuf sequences of PCR primers specific for Candida albicans. As shown in Annex IV, the comparison of tuf sequences from a variety of bacterial and eukaryotic species allowed the selection of PCR primers specific for Candida albicans. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. This multiple sequence alignment includes tuf sequences of five representative fungal species selected from the genus Candida which were determined by our group (i.e. C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis) as well as tuf sequences from other closely related fungal species. tuf sequences from various bacterial species were also included. A careful analysis of this sequence alignment allowed the selection of primers from the C. albicans tuf sequence; these primers discriminate sequences from other closely related Candida species and other fungal species, thereby permitting the species-specific and ubiquitous detection and identification of C. albicans (Table 7). All of 88 Candida albicans strains tested were efficiently amplified and there was no amplification with genomic DNA from other fungal or bacterial species.

EXAMPLE 4:

Selection of PCR primers specific for Streptococcus from recA. As shown in Annex V, the comparison of the various bacterial recA gene sequences available from databases (GenBank and EMBL) was used as a basis for the selection of PCR primers which are specific and ubiquitous for the bacterial genus Streptococcus. Since sequences of the recA gene are available for many bacterial species including five species of streptococci, it was possible to choose sequences well conserved within the genus Streptococcus but distinct from the recA sequences for other bacterial genera. When there were mismatches between the recA gene sequences from the five Streptococcus species, an inosine residue was incorporated into the primer (Annex V). The selected primers, each containing one inosine and no degenerescence, were specific and ubiquitous for Streptococcus species (Table 7). This PCR assay amplified all of the 22 streptococcal species tested. However, the Streptococcus-specific assay did not amplify DNA from 3 out of 9 strains of S. mutans and 1 out of 3 strains of S. salivarius. There was no amplification with genomic DNA from other bacterial genera (Table 7).

EXAMPLE 5:

Nucleotide sequencing of DNA fragments. The nucleotide sequence of a portion of the *tuf* genes from a variety of bacterial or fungal species was determined by using the dideoxynucleotide chain termination sequencing method (Sanger *et al.*, 1977, Proc. Natl. Acad. Sci. USA. **74**:5463-5467). The sequencing was performed by using an Applied Biosystems automated DNA sequencer (model 373A) with their PRISM™ Sequenase® Terminator Double-stranded DNA Sequencing Kit (Perkin-Elmer Corp.,

Applied Biosystems Division, Foster City, CA). The sequencing strategy does not discriminate *tufA* and *tufB* genes because the sequencing primers hybridize efficiently to both bacterial *tuf* genes. These DNA sequences are shown in the sequence listing (SEQ ID Nos: 118 to 146). The presence of several degenerated nucleotides in the various *tuf* sequences determined by our group (Table 13) corresponds to sequence variations between *tufA* and *tufB*.

Oligonucleotide primers and probes selection. Oligonucleotide probes and amplification primers were selected from the given proprietary DNA fragments or database sequences using the Oligo™ program and were synthesized with an automated ABI DNA synthesizer (Model 391, Perkin-Elmer Corp., Applied Biosystems Division) using phosphoramidite chemistry.

EXAMPLE 6:

Labeling of oligonucleotides for hybridization assays. Each oligonucleotide was 5' end-labeled with γ -32P (dATP) by the T4 polynucleotide kinase (Pharmacia) as described earlier. The label could also be non-radioactive.

Specificity test for oligonucleotide probes. All labeled oligonucleotide probes were tested for their specificity by hybridization to DNAs from a variety of bacterial and fungal species selected from Tables 4, 5 and 6 as described earlier. Species-specific or genus-specific probes were those hybridizing only to DNA from the microbial species or genus from which it was isolated. Oligonucleotide probes found to be specific were submitted to ubiquity tests as follows.

Ubiquity test for oligonucleotide probes. Specific oligonucleotide probes were then used in ubiquity tests with strains of the target species or genus including reference strains and other strains obtained from various countries and which are representative of the diversity within each target species or genus. Chromosomal DNAs from the isolates were transferred onto nylon membranes and hybridized with labeled oligonucleotide probes as described for specificity tests. The batteries of isolates constructed for each target species or genus contain reference ATCC strains as well as a variety of clinical isolates obtained from various sources. Ubiquitous probes were those hybridizing to at least 80% of DNAs from the battery of clinical isolates of the target species or genus.

EXAMPLE 7:

Same as example 6 except that a pool of specific oligonucleotide probes is used for microbial identification (i) to increase sensitivity and assure 100% ubiquity or (ii) to identify simultaneously more than one microbial species and/or genus. Microbial identification could be performed from microbial cultures or directly from any clinical specimen.

15

10

5

20

30

35

EXAMPLE 8:

Same as example 6 except that bacteria or fungi were detected directly from clinical samples. Any biological sample was loaded directly onto a dot blot apparatus and cells were lysed *in situ* for bacterial or fungal detection and identification. Blood samples should be heparizined in order to avoid coagulation interfering with their convenient loading on a dot blot apparatus.

EXAMPLE 9:

5

10

15

20

25

30

35

<u>PCR amplification</u>. The technique of PCR was used to increase the sensitivity and the rapidity of the assays. The sets of primers were tested in PCR assays performed directly from bacterial colonies or from a standardized bacterial suspension (see Example 10) to determine their specificity and ubiquity (Table 7). Examples of specific and ubiquitous PCR primer pairs are listed in Annex VI.

Specificity and ubiquity tests for amplification primers. The specificity of all selected PCR primer pairs was tested against DNAs from a variety of bacterial and fungal species selected from Tables 4, 5 and 6 as described earlier. Primer pairs found specific for each species or genus were then tested for their ubiquity to ensure that each set of primers could amplify at least 90% of DNAs from a battery of isolates of the target species or genus. The batteries of isolates constructed for each species contain reference ATCC strains and various clinical isolates from around the world which are representative of the diversity within each species or genus.

Standard precautions to avoid false positive PCR results should be taken (Kwok and Higuchi, 1989, Nature, **239**:237-238). Methods to inactivate PCR amplification products such as the inactivation by uracil-N-glycosylase may be used to control PCR carryover.

EXAMPLE 10:

Amplification directly from bacterial or yeast cultures. PCR assays were performed either directly from a bacterial colony or from a bacterial suspension, the latter being adjusted to a standard McFarland 0.5 (corresponds to approximately 1.5 x 10^8 bacteria/mL). In the case of direct amplification from a colony, a portion of a colony was transferred using a plastic rod directly into a $20~\mu$ L PCR reaction mixture containing 50 mM KCl, 10~mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5~mM MgCl₂, $0.4~\mu$ M of each primer, $200~\mu$ M of each of the four dNTPs and 0.5~m unit of Taq DNA polymerase (Promega) combined with the TaqStartTM antibody (Clontech Laboratories Inc.). For the bacterial suspension, $1~\mu$ L of the cell suspension was added to $19~\mu$ L of the same PCR reaction mixture. For the identification from yeast cultures, $1~\mu$ L of a standard McFarland 1.0~m (corresponds to approximately $3.0~x~10^8~m$ bacteria/mL) concentrated 100~m times by centrifugation was added directly to the PCR reaction. This concentration step for yeast cells was performed because a McFarland 0.5~m for yeast cells has approximately 200~m times fewer cells than a McFarland 0.5~m for bacterial cells.

PCR reactions were then subjected to thermal cycling (3 min at 95°C followed by 30 cycles of 1 second at 95°C for the denaturation step and 30 seconds at 55°C for the annealing-extension step) using a PTC-200 thermal cycler. PCR amplification products were then analyzed by standard agarose gel (2%) electrophoresis. Amplification products were visualized in agarose gels containing 0.25 μ g/mL of ethidium bromide under UV at 254 nm. The entire PCR assay can be completed in approximately one hour.

Primer sequences derived from highly conserved regions of the bacterial 16S ribosomal RNA gene were used to provide an internal control for all PCR reactions. Alternatively, the internal control was derived from sequences not found in microorganisms or in the human genome. The internal control was integrated into all amplification reactions to verify the efficiency of the PCR assays and to ensure that significant PCR inhibition was absent. The internal control derived from rRNA was also useful to monitor the efficiency of the bacterial lysis protocols. The internal control and the species-specific or genus-specific amplifications were performed simultaneously in multiplex PCR assays.

EXAMPLE 11:

Amplification directly from urine specimens. For PCR amplification performed directly from urine specimens, 1 μ L of urine was mixed with 4 μ L of a lysis solution containing 500 mM KCl, 100 mM tris-HCl (pH 9.0), 1% triton X-100. After incubation for at least 15 minutes at room temperature, 1 μ L of the treated urine specimen was added directly to 19 μ L of the PCR reaction mixture. The final concentration of the PCR reagents was 50 mM KCl, 10 mM Tris (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.4 μ M of each primer, 200 μ M of each of the four dNTPs. In addition, each 20 μ L reaction contained 0.5 unit of Taq DNA polymerase (Promega) combined with the TaqStartTM antibody (Clontech Laboratories Inc.).

Strategies for the internal control, PCR amplification and agarose gel detection of the amplicons are as previously described in example 10.

EXAMPLE 12:

Detection of antibiotic resistance genes. The presence of specific antibiotic resistance genes which are frequently encountered and clinically relevant is identified using the PCR amplification or hybridization protocols described previously. Specific oligonucleotides used as a basis for the DNA-based tests are selected from the antibiotic resistance gene sequences. These tests, which allow the rapid evaluation of bacterial resistance to antimicrobial agents, can be performed either directly from clinical specimens, from a standardized bacterial suspension or from a bacterial colony and should complement diagnostic tests for the universal detection of bacteria as well as for the species-specific and genus-specific microbial detection and identification.

20

15

5

10

25

30

EXAMPLE 13:

5

10

15

20

25

30

35

Same as examples 10 and 11 except that assays were performed by multiplex PCR (i.e. using several pairs of primers in a single PCR reaction) to reach an ubiquity of 100% for the specific targeted pathogen(s). For more heterogeneous microbial species or genus, a combination of PCR primer pairs may be required to detect and identify all representatives of the target species or genus.

Multiplex PCR assays could also be used to (i) detect simultaneously several microbial species and/or genera or, alternatively, (ii) to simultaneously detect and identify bacterial and/or fungal pathogens and detect specific antibiotic resistance genes either directly from a clinical specimen or from bacterial cultures.

For these applications, amplicon detection methods should be adapted to differentiate the various amplicons produced. Standard agarose gel electrophoresis could be used because it discriminates the amplicons based on their sizes. Another useful strategy for this purpose would be detection using a variety of fluorescent dyes emitting at different wavelengths. The fluorescent dyes can be each coupled with a specific oligonucleotide linked to a fluorescence quencher which is degraded during amplification to release the fluorescent dyes (e.g. TaqManTM, Perkin Elmer).

EXAMPLE 14:

Detection of amplification products. The person skilled in the art will appreciate that alternatives other than standard agarose gel electrophoresis (Example 10) may be used for the revelation of amplification products. Such methods may be based on fluorescence polarization or on the detection of fluorescence after amplification (e.g. AmplisensorTM, Biotronics; TaqManTM, Perkin-Elmer Corp.) or other labels such as biotin (SHARP SignalTM system, Digene Diagnostics). These methods are quantitative and may be automated. One of the amplification primers or an internal oligonucleotide probe specific to the amplicon(s) derived from the species-specific, genus-specific or universal DNA fragments is coupled with the fluorescent dyes or with any other label. Methods based on the detection of fluorescence are particularly suitable for diagnostic tests since they are rapid and flexible as fluorescent dyes emitting at different wavelengths are available.

EXAMPLE 15:

Species-specific, genus-specific, universal and antibiotic resistance gene amplification primers can be used in other rapid amplification procedures such as the ligase chain reaction (LCR), transcription-mediated amplification (TMA), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), cycling probe technology (CPT) and branched DNA (bDNA) or any other methods to increase the sensitivity of the test. Amplifications can be performed from isolated bacterial cultures or directly from any clinical specimen. The scope of this invention is therefore not limited to the use of the

DNA sequences from the enclosed Sequence Listing for PCR only but rather includes the use of any procedures to specifically detect bacterial DNA and which may be used to increase rapidity and sensitivity of the tests.

EXAMPLE 16:

A test kit would contain sets of probes specific for each microbial species or genus as well as a set of universal probes. The kit is provided in the form of test components, consisting of the set of universal probes labeled with non-radioactive labels as well as labeled species- or genus-specific probes for the detection of each pathogen of interest in specific types of clinical samples. The kit will also include test reagents necessary to perform the pre-hybridization, hybridization, washing steps and hybrid detection. Finally, test components for the detection of known antibiotic resistance genes (or derivatives therefrom) will be included. Of course, the kit will include standard samples to be used as negative and positive controls for each hybridization test.

Components to be included in the kits will be adapted to each specimen type and to detect pathogens commonly encountered in that type of specimen. Reagents for the universal detection of bacteria will also be included. Based on the sites of infection, the following kits for the specific detection of pathogens may be developed:

- A kit for the universal detection of bacterial or fungal pathogens from all clinical specimens which contains sets of probes specific for highly conserved regions of the microbial genomes.
- A kit for the detection of microbial pathogens retrieved from urine samples, which contains 5 specific test components (sets of probes for the detection of *Enterococcus faecium, Enterococcus* species, *Staphylococcus* species and *Candida albicans*).
- A kit for the detection of respiratory pathogens which contains 3 specific test components (sets of probes for the detection of *Staphylococcus* species, *Enterococcus* species and *Candida albicans*).
- A kit for the detection of pathogens retrieved from blood samples, which contains 10 specific test components (sets of probes for the detection of Streptococcus species, Streptococcus agalactiae, Staphylococcus species, Staphylococcus saprophyticus, Enterococcus species, Enterococcus faecium, Neisseria species, Neisseria meningitidis, Listeria monocytogenes and Candida albicans). This kit can also be applied for direct detection and identification from blood cultures.
- A kit for the detection of pathogens causing meningitis, which contains 5 specific test components (sets of probes for the detection of *Streptococcus* species, *Listeria monocytogenes, Neisseria meningitidis, Neisseria* species and *Staphylococcus* species).

15

10

5

20

25

30

- A kit for the detection of clinically important antibiotic resistance genes which contains sets of probes for the specific detection of at least one of the 26 following genes associated with antibiotic resistance: bla_{tem} , bla_{rob} , bla_{shv} , bla_{oxa}

- Other kits adapted for the detection of pathogens from skin, abdominal wound or any other clinically relevant infections may also be developed.

EXAMPLE 17:

5

10

15

20

25

30

35

Same as example 16 except that the test kits contain all reagents and controls to perform DNA amplification assays. Diagnostic kits will be adapted for amplification by PCR (or other amplification methods) performed directly either from clinical specimens or from microbial cultures. Components required for (i) universal bacterial detection, (ii) species-specific and genus-specific bacterial and/or fungal detection and identification and (iii) detection of antibiotic resistance genes will be included.

Amplification assays could be performed either in tubes or in microtitration plates having multiple wells. For assays in plates, the wells will contain the specific amplification primers and control DNAs and the detection of amplification products will be automated. Reagents and amplification primers for universal bacterial detection will be included in kits for tests performed directly from clinical specimens. Components required for species-specific and genus-specific bacterial and/or fungal detection and identification as well as for the simultaneous antibiotic resistance genes detection will be included in kits for testing directly from bacterial or fungal cultures as well as in kits for testing directly from any type of clinical specimen.

The kits will be adapted for use with each type of specimen as described in example 16 for hybridization-based diagnostic kits.

EXAMPLE 18:

It is understood that the use of the probes and amplification primers described in this invention for bacterial and/or fungal detection and identification is not limited to clinical microbiology applications. In fact, we feel that other sectors could also benefit from these new technologies. For example, these tests could be used by industries for quality control of food, water, air, pharmaceutical products or other products requiring microbiological control. These tests could also be applied to detect and identify bacteria or fungi in biological samples from organisms other than humans (e.g. other primates, birds, plants, mammals, farm animals, livestock and others). These diagnostic tools could also be very useful for research purposes including clinical trials and epidemiological studies.

This invention has been described herein above, and it is readily apparent that modifications can be made thereto without departing from the spirit of this invention. These modifications are under the scope of this invention, as defined in the appended claims.

Table 1. Distribution (%) of nosocomial pathogens for various human infections in USA (1990-1992)¹.

					·	
	Pathogen	UTI ²	SSI ³	BSI⁴	Pneumonia	CSF⁵
5	Escherichia coli	27	9	5	4	2
	Staphylococcus aureus	2	21	17	21	2
	Staphylococcus epidermidis	2	6	20	0	1
	Enterococcus faecalis	16	12	9	2	0
	Enterococcus faecium	1	1	0	0	0
10	Pseudomonas aeruginosa	12	9	3	18	0
	Klebsiella pneumoniae	7	3	4	9	0
	Proteus mirabilis	5	3	1	2	0
	Streptococcus pneumoniae	0	0	3	1	18
	Group B Streptococci	1	1	2	1	6
15	Other Streptococci	3	5	2	1	3
	Haemophilus influenzae	0	0	0	6	45
	Neisseria meningitidis	0	0	0	0	14
	Listeria monocytogenes	0	0	0	0	3
	Other Enterococci	1	1	0	0	0
20	Other Staphylococci	2		8	13	20
	Candida albicans	9	3	5	5	0
	Other Candida	2		1	3	10
	Enterobacter spp.	5	7	4	12	2
	Acinetobacter spp.	1	1	2	4	2
25	Citrobacter spp.	2	1	1	1	0
	Serratia marcescens	1	1	1	3	1
	Other <i>Klebsiella</i>	1	1	1	2	1
	Others	0	6	4	5	0

Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6:428-442).

² Urinary tract infection.

³ Surgical site infection.

⁴ Bloodstream infection.

^{35 &}lt;sup>5</sup> Cerebrospinal fluid.

Table 2. Distribution (%) of bloodstream infection pathogens in Quebec (1995), Canada (1992), UK (1969-1988) and USA (1990-1992).

5	Organism	Quebec ¹	Canada²	UK	USA⁴	
				Community-	Hospital-	Hospital-
				acquired	acquired	acquired
	E. coli	15.6	53.8	24.8	20.3	5.0
	S. epidermidis	25.8	Ni ⁶	0.5	7.2	31.0
	and other CoNS⁵					
10	S. aureus	9.6	NI	9.7	19.4	16.0
	S. pneumoniae	6.3	NI	22.5	2.2	NR ⁷
	E. faecalis	3.0	NI	1.0	4.2	NR
	E. faecium	2.6	NI	0.2	0.5	NR
	Enterococcus	NR	NI	NR	NR	9.0
15	spp.					
	H. influenzae	1.5	NR	3.4	0.4	NR
	P. aeruginosa	1.5	8.2	1.0	8.2	3.0
	K. pneumoniae	3.0	11.2	3.0	9.2	4.0
	P. mirabilis	NR	3.9	2.8	5.3	1.0
20	S. pyogenes	NR	NI	1.9	0.9	NR
	Enterobacter spp.	4.1	5.5	0.5	2.3	4.0
	Candida spp.	8.5	NI	NR	1.0	8.0
	Others	18.5	17.48	28.7	18.9	19.0

- Data obtained for 270 isolates collected at the Centre Hospitalier de l'Université Laval (CHUL) during a 5 month period (May to October 1995).
 - ² Data from 10 hospitals throughout Canada representing 941 gram-negative bacterial isolates. (Chamberland *et al.*, 1992, Clin. Infect. Dis., **15**:615-628).
 - Data from a 20-year study (1969-1988) for nearly 4000 isolates (Eykyn *et al.*, 1990,
 J. Antimicrob. Chemother., Suppl. C, 25:41-58).
 - Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6:428-442).
 - ⁵ Coagulase-negative staphylococci.
 - ⁶ NI, not included. This survey included only gram-negative species.
- NR, incidence not reported for these species or genera.
 - ⁸ In this case, 17.4 stands for other gram-negative bacterial species.

Table 3. Distribution of positive and negative clinical specimens tested at the microbiology laboratory of the CHUL (February 1994 – January 1995).

	Clinical specimens	No. of samples	% of positive	% of negative
5	and/or sites	tested (%)	specimens	specimens
	Urine	17,981 (54.5)	19.4	80.6
	Blood culture/marrow	10,010 (30.4)	6.9	93.1
	Sputum	1,266 (3.8)	68.4	31.6
	Superficial pus	1,136 (3.5)	72.3	27.7
10	Cerebrospinal fluid	553 (1.7)	1.0	99.0
	Synovial fluid	523 (1.6)	2.7	97.3
	Respiratory tract	502 (1.5)	56.6	43.4
	Deep pus	473 (1.4)	56.8	43.2
	Ears	289 (0.9)	47.1	52.9
15	Pleural and pericardial	132 (0.4)	1.0	99.0
	fluid			
	Peritoneal fluid	101(0.3)	28.6	71.4
	Total:	32,966 (100.0)	20.0	80.0

Table 4. Gram-negative bacterial species (90) used to test the specificity of PCR primers and DNA probes (continues on next page).

	Bacterial species	Number of reference strains tested*	Bacterial species	Number of reference strains tested ^a
5	Acinetobacter baumannii	1	Moraxella phenylpyruvica	1
	Acinetobacter lwoffii	3	Morganella morganii	1
	Actinobacillus lignieresii	1	Neisseria animalis	1
	Alcaligenes faecalis	1	Neisseria canis	1
	Alcaligenes odorans	1	Neisseria caviae	1
10	Alcaligenes xylosoxydans		Neisseria cinerea	1
	subsp. denitrificans	1	Neisseria cuniculi	1
	Bacteroides distasonis	1	Neisseria elongata subsp. elongata	1
	Bacteroides fragilis	1	Neisseria elongata subsp. glycoytica	1,
	Bacteroides ovatus	1	Neisseria flavescens	1
15	Bacteroides	1	Neisseria flavescens	1
	thetaiotaomicron		Branham	
	Bacteroides vulgatus	1	Neisseria gonorrhoeae	18
	Bordetella bronchiseptica	1	Neisseria lactamica	1
	Bordetella parapertussis	1	Neisseria meningitidis	4
20	Bordetella pertussis	2	Neisseria mucosa	2
	Burkholderia cepacia	1	Neisseria polysaccharea	1
	Citrobacter amalonaticus	1	Neisseria sicca	3
	Citrobacter diversus subsp. koseri	2	Neisseria subflava	3
25	Citrobacter freundii	1	Neisseria weaveri	1
	Comamonas acidovorans	1	Ochrobactrum antropi	1
	Enterobacter aerogenes	1	Pasteurella aerogenes	1
	Enterobacter agglomerans	1	Pasteurella multocida	1
30	Enterobacter cloacae	1	Prevotella melaninogenica	1
	Escherichia coli	9	Proteus mirabilis	3
	Escherichia fergusonii	1	Proteus vulgaris	1

Bacterial sp	ecies	Number of reference strains tested*	Bacterial species	Number of reference strains tested*
Escherichia herr	mannii	1	Providencia alcalifaciens	1
Escherichia vuln	eris	1	Providencia rettgeri	1
Flavobacterium meningosepticui	m	1	Providencia rustigianii	1
Flavobacterium indologenes		1	Providencia stuartii	1
Flavobacterium	odoratum	1	Pseudomonas aeruginosa	14
Fusobacterium necrophorum		2	Pseudomonas fluorescens	2
Gardnerella vagi	inalis	1	Pseudomonas stutzeri	1
Haemophilus haemolyticus		1	Salmonella arizonae	1
Haemophilus inf	luenzae	12	Salmonella choleraesuis	1
Haemophilus		1	Salmonella gallinarum	1
parahaemolyticu	s			
Haemophilus parainfluenzae		2	Salmonella typhimurium	3
Hafnia alvei		1	Serratia liquefaciens	1
Kingella indologe subsp. sut		1	Serratia marcescens	1
Kingella kingae		1	Shewanella putida	1
Klebsiella ornithi	nolytica	1	Shigella boydii	1
Klebsiella oxytoo	a	1	Shigella dysenteriae	1
Klebsiella pneum	noniae	8	Shigella flexneri	1
Moraxella atlanta	ae	1	Shigella sonnei	1
Moraxella catarri	nalis	5	Stenotrophomonas maltophilia	1
Moraxella lacuna	ıta	1	Yersinia enterocolitica	1
Moraxella osloeri	sis	1		

^a Most reference strains were obtained from the American Type Culture Collection (ATCC). The other reference strains were obtained from (i) the Laboratoire de Santé Publique du Québec (LSPQ), (ii) the Center for Disease Control and Prevention (CDC) and (iii) the National Culture Type Collection (NCTC).

Table 5. Gram-positive bacterial species (97) used to test the specificity of PCR primers and DNA probes (continues on next page).

	Bacterial species	Number of	Bacterial species	Number of
		reference		reference
		strains		strains
		tested		tested ^a
5	Abiotrophia adiacens	1	Micrococcus kristinae	1
	Abiotrophia defectiva	1	Micrococcus luteus	1
	Actinomyces israelii	1	Micrococcus Iylae	1
	Clostridium perfringens	= 1	Micrococcus roseus	1
	Corynebacterium accolens	1	Micrococcus varians	1
10	Corynebacterium aquaticum	1	Peptococcus niger	1
	Corynebacterium bovis	1	Peptostreptococcus anaerobius	1
	Corynebacterium cervicis	1	Peptostreptococcus asaccharolyticus	1
45	Corynebacterium	6	Staphylococcus aureus	10
15	diphteriae Corynebacterium flavescens	1	Staphylococcus auricularis	1
	Corynebacterium genitalium	6	Staphylococcus capitis subsp. urealyticus	1
20	Corynebacterium jeikeium	1	Staphylococcus cohnii	1
20	Corynebacterium kutcheri	1	Staphylococcus epidermidis	2
	Corynebacterium matruchotii	1	Staphylococcus haemolyticus	2
25	Corynebacterium minutissimum	1	Staphylococcus hominis	2
	Corynebacterium mycetoides	1	Staphylococcus lugdunensis	1
	Corynebacterium pseudodiphtheriticum	1	Staphylococcus saprophyticus	3
30	Corynebacterium pseudogenitalium	6	Staphylococcus schleiferi	1
	Corynebacterium renale	1	Staphylococcus sciuri	1
	Corynebacterium striatum	1	Staphylococcus simulans	1
	Corynebacterium ulcerans	1	Staphylococcus warneri	1

Bacterial species	Number of	Bacterial species	Number of
	reference		reference
	strains		strains
	tested*		tested
Corynebacterium	1	Staphylococcus xylosus	1
urealyticum			
Corynebacterium xerosis	1	Streptococcus agalactiae	6
Enterococcus avium	1	Streptococcus anginosus	2
Enterococcus	1	Streptococcus bovis	2
casseliflavus			
Enterococcus cecorum	1	Streptococcus constellatus	1
Enterococcus dispar	1	Streptococcus crista	1
Enterococcus durans	1	Streptococcus dysgalactiae	1
Enterococcus faecalis	6	Streptococcus equi	1
Enterococcus faecium	3	Streptococcus gordonii	1
Enterococcus flavescens	1	Group C Streptococci	1
Enterococcus gallinarum	3	Group D Streptococci	1
Enterococcus hirae	1	Group E Streptococci	1
Enterococcus mundtii	1	Group F Streptococci	1
Enterococcus	1	Group G Streptococci	1
pseudoavium			
Enterococcus raffinosus	1	Streptococcus intermedius	1
Enterococcus	1	Streptococcus mitis	2
saccharolyticus		,	
Enterococcus solitarius	1	Streptococcus mutans	1
Eubacterium lentum	1	Streptococcus oralis	1
Gemella haemolysans	1	Streptococcus parasanguis	1
Gemella morbillorum	1	Streptococcus pneumoniae	6
Lactobacillus acidophilus	1	Streptococcus pyogenes	3
Listeria innocua	1	Streptococcus salivarius	2
Listeria ivanovii	1	Streptococcus sanguis	2
Listeria grayi	1	Streptococcus sobrinus	1
Listeria monocytogenes	3	Streptococcus suis	1
Listeria murrayi	1	Streptococcus uberis	1
Listeria seeligeri	1	Streptococcus vestibularis	1
Listeria welshimeri	1	proceed a vocabulation	•

Most reference strains were obtained from the American Type Culture Collection (ATCC). The other reference strains were obtained from (i) the Laboratoire de Santé Publique du Québec (LSPQ), (ii) the Center for Disease Control and Prevention (CDC) and (iii) the National Culture Type Collection (NCTC).

Table 6. Fungal species (12) used to test the specificity of PCR primers and DNA probes.

Fungal species	Number of reference
-	strains tested ^a
Candida albicans	12
Candida glabrata	1
Candida guilliermondii	1
Candida kefyr	3
Candida krusei	2
Candida lusitaniae	1
Candida parapsilosis	2
Candida tropicalis	3
Rhodotorula glutinis	1
Rhodotorula minuta	1
Rhodotorula rubra	1
Saccharomyces cerevisiae	1

^a Most reference strains were obtained from (i) the American Type Culture Collection (ATCC) and (ii) the Laboratoire de Santé Publique du Québec (LSPQ).

Table 7. PCR assays developed for several clinically important bacterial and fungal pathogens (continues on next page).

Organism	Primer Pair	Amplicon	Ubiquity ^b	DNA amp	lification from
	SEQ ID NO	size (bp)		culture	specimens⁴
Enterococcus faecium	1-2	216	79/80	+	+
Listeria monocytogenes	3-4	130	164/168°	+	+
Neisseria meningitidis	5-6	177	258/258	+	+
Staphylococcus saprophyticus	7-8	149	245/260	+	NT
Streptococcus agalactiae	9-10	154	29/29	+	+
Candida albicans	11-12	149	88/88	+	NT
Enterococcus	13-14	112	87/87	+	NT
spp. (11 species) ^f					
Neisseria spp.	15-16	103	321/321	+	+
(12 species) ^f					
Staphylococcus spp.	17-18	192	13/14	+	NT
(14 species)					
	19-20	221	13/14	+	NT
Streptococcus spp.	21-22	153	210/2149	+	+
(22 species) ^f					
Universal detection ^h	23-24	309	104/ 116 ⁱ	+	+
(95 species) ⁱ					

- ^a All primer pairs are specific in PCR assays since no amplification was observed with DNA from the bacterial and fungal species other than the species of interest listed in Tables 4, 5 and 6.
 - b Ubiquity was tested by using reference strains as well as strains from throughout the world, which are representatite of the diversity within each target species or genus.
- ^c For all primer pairs, PCR amplifications performed directly from a standardized microbial suspension (MacFarland) or from a colony were all specific and ubiquitous.
 - d PCR assays performed directly from blood cultures, urine specimens or

cerebrospinal fluid. NT, not tested.

- The four *L. monocytogenes* strains undetected are not clinical isolates. These strains were isolated from food and are not associated with a human infection.
- The bacterial species tested include all those clinically relevant for each genus (Tables 4 and 5). All of these species were efficiently amplified by their respective genus-specific PCR assay, except for the *Staphylococcus*-specific assay, which does not amplify *S. sciuri*.
 - ⁹ The *Streptococcus*-specific PCR assay did not amplify 3 out of 9 strains of *S. mutans* and 1 out of 3 strains of *S. salivarius*.
- 10 h The primers selected for universal bacterial detection do not amplify DNA of non-bacterial origin, including human and other types of eukaryotic genomic DNA.
 - For the universal amplification, the 95 bacterial species tested represent the most clinically important bacterial species listed in Tables 4 and 5. The 12 strains not amplified are representatives of genera *Corynebacterium* (11 species) and *Stenotrophomonas* (1 species).

Table 8. Target genes for the various genus-specific, species-specific and universal amplification assays.

20	Microorganisms	Gene	Protein encoded
	Candida albicans	tuf	translation elongation factor EF-Tu
	Enterococcus faecium	ddl	D-alanine:D-alanine ligase
	Listeria monocytogenes	actA	actin-assembly inducing protein
	Neisseria meningitidis	omp	outer membrane protein
25	Streptococcus agalactiae	cAMP	cAMP factor
	Staphylococcus	unknown	unknown
	saprophyticus		
	Enterococcus spp.	tuf	translation elongation factor EF-Tu
	Neisseria spp.	asd	ASA-dehydrogenase
30	Staphylococcus spp.	tuf	translation elongation factor EF-Tu
	Streptococcus spp.	<i>rec</i> A	RecA protein
	Universal detection	tuf	translation elongation factor EF-Tu

Table 9.

Antibiotic resistance genes selected for diagnostic purposes.

Genes	SEQ I	D NOs	Antibiotics	Bacteria*
_	selected primers	originating fragment	-	
bla _{oxa}	49-50	110	β-lactams	Enterobacteriaceae Pseudomonadacea
blaZ	51-52	111	β-lactams	Enterococcus spp.
aac6'-lla	61-64	112	Aminoglycosides	Pseudomonadacea
ermA	91-92	113	Macrolides	Staphylococcus sp
ermB	93-94	114	Macrolides	Staphylococcus sp
ermC	95-96	115	Macrolides	Staphylococcus sp
vanB	71-74	116	Vancomycin	Enterococcus spp
vanC	75-76	117	Vancomycin	Enterococcus spp.
aad(6')	173-174	_	Streptomycin	Enterococcus spp.

^a Bacteria having high incidence for the specified antibiotic resistance genes. The presence of these antibiotic resistance genes in other bacteria is not excluded.

Table 10. Antibiotic resistance genes from our co-pending US (N.S. 08/526840) and PCT (PCT/CA/95/00528) patent applications for which we have selected PCR primer pairs.

	5	Genes	SEQ ID NOs	Antibiotics	Bacteria*
			of selected primers		
		bla _{tem}	37-40	β-lactams	Enterobacteriaceae,
					Pseudomonadaceae,
					Haemophilus spp.,
					Neisseria spp.
		Ыагоь	45-48	β-lactams	Haemophilus spp.,
:m.					Pasteurella spp.
	10	blashv	41-44	β-lactams	Klebsiella spp.
					and other
					Enterobacteriaceae
-		aadB	53-54	Aminoglycosides	Enterobacteriaceae,
= :		aacC1	55-56		Pseudomonadaceae
a.Ē		aacC2	57-58		
2	15	aacC3	59-60		
3		aacA4	65-66		
		mecA	97-98	β-lactams	Staphylococcus spp.
		vanA	67-70	Vancomycin	Enterococcus spp.
1.5		satA	81-82	Macrolides	Enterococcus spp.
:	20	aac(6')-aph(2")	83-86	Aminoglycosides	Enterococcus spp.,
					Staphylococcus spp.
		vat	87-88	Macrolides	Staphylococcus spp.
		vga	89-90	Macrolides	Staphylococcus spp.
		msrA	77-80	Erythromycin	Staphylococcus spp.
		int	99-102	β-lactams,	Enterobacteriaceae,
2	25			trimethoprim,	
		sul	103-106	aminoglycosides,	Pseudomonadaceae
				antiseptic,	
				chloramphenicol	

^a Bacteria having high incidence for the specified antibiotic resistance genes. The presence of these antibiotic resistance genes in other bacteria is not excluded.

^a The Staphylococcus strains studied include S. aureus (82 strains), S. epidermidis (83 strains), S. hominis (2 strains), S. capitis (3 strains), S. haemolyticus (9 strains), S. simulans (12 strains) and S. warneri (5 strains), for a total of 196 strains.

Susceptibility testing was performed by the method of Kirby-Bauer according to the protocol reccommended by the National Committee of Clinical Laboratory Standards (NCCLS).

Table 12. Correlation between disk diffusion profiles and PCR amplification of antibiotic resistance genes in *Enterococcus* species^a.

			Disk diffusion	(Kirby-Bauer)b
Antibiotic	Phenotype	PCR	Resistant	Sensitive
	blaZ	+	0	2
Ampicillin				
		-	1	30
Gentamycin	aac(6')aph(2'')	+	51	1
		-	3	38
Streptomycin	aad(6')	+	26	15
		-	6	27
Vancomycin	vanA	+	36	0
	vanB	+	26	0
		-	0	40

^a The *Enterococcus* strains studied include *E. faecalis* (33 strains) and *E. faecium* (69 strains), for a total of 102 strains.

Susceptibility testing was performed by the method of Kirby-Bauer according to the protocol reccommended by the National Committee of Clinical Laboratory Standards (NCCLS).

Table 13. Origin of *tuf* sequences in the Sequence Listing (continues on next page).

	SEQ ID NO	Bacterial or fungal species	Source
5	118	Abiotrophia adiacens	This patent
	119	Abiotrophia defectiva	This patent
	120	Candida albicans	This patent
	121	Candida glabrata	This patent
	122	Candida krusei	This patent
10	123	Candida parapsilosis	This patent
	124	Candida tropicalis	This patent
	125	Corynebacterium accolens	This patent
	126	Corynebacterium diphteriae	This patent
	127	Corynebacterium genitalium	This patent
15	128	Corynebacterium jeikeium	This patent
	129	Corynebacterium	This patent
		pseudotuberculosis	
	130	Corynebacterium striatum	This patent
	131	Enterococcus avium	This patent
	132	Enterococcus faecalis	This patent
20	133	Enterococcus faecium	This patent
	134	Enterococcus gallinarum	This patent
	135	Gardnerella vaginalis	This patent
	136	Listeria innocua	This patent
	137	Listeria ivanovii	This patent
25	138	Listeria monocytogenes	This patent
	139	Listeria seeligeri	This patent
	140	Staphylococcus aureus	This patent
	141	Staphylococcus epidermidis	This patent
	142	Staphylococcus saprophyticus	This patent
30	143	Staphylococcus simulans	This patent
	144	Streptococcus agalactiae	This patent
	145	Streptococcus pneumoniae	This patent

		SEQ ID NO	Bacterial or fungal species	Source
		146	Streptococcus salivarius	This patent
		147	Agrobacterium tumefaciens	Database
		148	Bacillus subtilis	Database
		149	Bacteroides fragilis	Database
	5	150	Borrelia burgdorferi	Database
		151	Brevibacterium linens	Database
		152	Burkholderia cepacia	Database
		153	Chlamydia trachomatis	Database
		154	Escherichia coli	Database
100	10	155	Fibrobacter succinogenes	Database
		156	Flavobacterium ferrugineum	Database
		157	Haemophilus influenzae	Database
10000 10000 10000 10000		158	Helicobacter pylori	Database
		159	Micrococcus luteus	Database
0073 97 97 10 10 10 10 10 10 10 10 10 10 10 10 10	15	160	Mycobacterium tuberculosis	Database
Sanaila		161	Mycoplasma genitalium	Database
		162	Neisseria gonorrhoeae	Database
American American American American		163	Rickettsia prowazekii	Database
ates false		164	Salmonella typhimurium	Database
	20	165	Shewanella putida	Database
		166	Stigmatella aurantiaca	Database
		167	Streptococcus pyogenes	Database
		168	Thiobacillus cuprinus	Database
		169	Treponema pallidum	Database
	25	170	Ureaplasma urealyticum	Database
	-	171	Wolinella succinogenes	Database

Annex I:	Strategy for the selection from tuf sequences of the universal amplification	
	primers (continues on pages 49 to 51).	
	QI OES	Ω
	491 517776 802 NO	
Abiotrophia	CAACTGTAAC TGGTGTTGAA AIGTTCCAAATGGT AATGCCTGGT GATAACGTAA	æ
adiacens		
Abiotrophia	CTACCGITAC CGGIGIIGAA AIGIICCAAAIGGI IAIGCCAGGC GACAACGIAC	6
defectiva		
Agrobacterium	CGACTGITAC CGGCGIIGAA AIGIICCAAAIGGI IAIGCCIGGC GACAACGICA	7
tumefaciens		
Bacillus	CAACTGITAC AGGIGIIGAA AIGIICCAAAIGGI IAIGCCIGGA GAIAACACTG	80
subtilis		
Bacteroides	CAGTIGIAAC AGGIGIIGAA AIGIICCAAAIGGI AAIGCCGGGI GAIAACGIAA	6
fragilis		
Borrelia	CTACTGTTAC IGGIGILGAA AIGIICCAAAIGGI IAIGCCIGGI GAIAAIGITG	0
burgdorferi		
Brevibacterium	CGACTGICAC CGCTAICGAG AIGTICCAGAIGGI CAIGCCCGGC GACACCACCG	
linens		
Burkholderia	CGACCIGCAC GGGCGIIGAA AIGIICCAAAIGGI CAIGCCGGGC GACAACGIGT	7
cepacia		
Chlamydia	CGATIGITAC IGGGGIIGAA AIGIICAAGAIGGI CAIGCCIGGG GAIAACGITG	ю
trachomatis		
Corynebacterium	CCACCGITAC CGGIAICGAG AIGIICCAGAIGGI CAIGCTGGC GACAACGICG	9
diphteriae		

15

10

S

	Corynebacterium	CCACCGITAC CICCAICGAG AIGIICAAGAIGGI TAIGCCGGGC GACAACGITG	127
	genitalium		
	Corynebacterium	CCACCGITAC CTCCATCGAG AIGITCAAGAIGGI IAIGCCGGGC GACAACGITG	
	jeikeium		
Ŋ	Enterococcus	CAACYGTTAC AGGIGTIGAA AIGTICCAAAIGGI AAIGCCIGGI GAIAACGIIG	
	faecalis		
	Enterococcus	CAACAGITAC IGGIGIIGAA AIGIICCAAAIGGI CAIGCCCGGI GACAACGI	
	faecium		
	Escherichia	CTACCIGIAC IGGCGIIGAA AIGIICCAGAIGGI AAIGCCGGGC GACAACAICA	
10	coli		
	Fibrobacter	ACGI <u>CAICAC CGGIGITGAA AIGII</u> CCAAAIGGI IACI <u>CCGGGI GACA</u> CG <u>GI</u> CA	
	succinogenes		
	Flavobacterium	CTACCGITAC AGGIGITGAG AIGIICCAAAIGGI IAIGCCIGGI GAIAACACCA	
	ferrugineum		
15	Gardnerella	CCACCGICAC CTCIAICGAG ACCTICCAAAIGGI ICAGCCAGGC GAICACGCAA	
	vaginalis		
	Haemophilus	CTACIGIAAC GGGIGIIGAA AIGIICCAAAIGGI AAIGCCAGGC GAIAACAICA	
	influenzae		
	Helicobacter	CGACTGTAAC CGGTGTAGAA ATGTTTAAAATGGT TATGCCTGGC GATAATGTGA	
20	pylori		
	Listeria	TAGTAGIAAC IGGAGIAGAA AIGIICCAAAIGGI AAYGCCIGGI GAIAACAITG	
	monocytogenes		
	Micrococcus	CCACTGICAC CGGCAICGAG AIGTICCAGAIGGI CAIGCCCGGC GACAACACCG	
	luteus		
25	Mycobacterium	CCACCGICAC CGGIGIGGAG AIGIICCAGAIGGI GAIGCCCGGI GACAACACA	
	tuberculosis		

- 49 -

	Mycoplasma	CAGTIGITAC IGGAATIGAA AIGIICAAAAIGGI ICIACCIGGI GAIAAIGCTT	16
	genitalium		
	Neisseria	CCACCIGIAC CGGCGTIGAA AIGTICCAAAIGGI AAIGCCGGGI GAGAACGIAA	16
	gonorrhoeae		
Ŋ	Rickettsia	CGACTIGIAC AGGIGIAGAA AIGIICAAGAIGGI IAIGCCIGGA GAIAAIGCTA	16
	prowazekii		
	Salmonella	CTACCIGIAC IGGCGTIGAA AIGIICCAGAIGGI AAIGCCGGGC GACAACAICA	16
	typhimurium		
	Shewanella	CAACGIGIAC IGGIGIAGAA AIGIICCAGAIGGI AAIGCCAGGC GAIAACAICA	16
10	putida		
	Stigmatella	CGGTCAICAC GGGGGTGGAG AIGTICCAGAIGGT GAIGCCGGGA GACAACAICG	16
	aurantiaca		
	Staphylococcus	CAACTGIIAC AGGIGIIGAA AIGIICCAAAIGGI AAIGCCIGGI GAIAACGIIG	14
	aureus		
15	Staphylococcus	CAACTGITAC IGGIGIAGAA AIGIICCAAAIGGI IAIGCCIGGC GACAACGIIG	14
	epidermidis		
	Streptococcus	CAGTIGITAC IGGIGITGAA AIGIICCAAAIGGI IAIGCCIGGI GAIAACGITA	14
	agalactiae		
	Streptococcus	CAGTIGITAC IGGIGITIGAA AIGIICCAAAIGGI AAIGCCIGGI GAIAACGIGA	14
20	pneumoniae		
	Streptococcus	CTGTIGITAC IGGIGITGAA AIGIICCAAAIGGI IAIGCCIGGI GAIAACGIGA	16
	pyogenes		
	Thiobacillus	CCACCTGCAC CGGCGTGGAA AIGTICAAAAIGGI CATGCCCGGC GATAAIGIGA	16
	cuprinus		
25	Treponema	CAGTGGTTAC TGGCATTGAG ATGTTTAACATGGT GAAGCCGGGG GATAACACCA	16
	pallidum		

	Ureaplasma	CTGTTGTTAC AGGAATTGAA A	IGITA	CTGTIGITAC AGGAATIGAA AIGTITAATTIGGI TAIGCCAGGI GAIGACGITG
	urealyticum			
	Wolinella	CAACCGTAAC TGGCGTTGAG A	ZGZZCC	CAACCGIAAC IGGCGIIGAG AIGIICCAGAIGGI IAIGCCIGGI GACAACGIIA
	succinogenes			
ស	Candida	GTGTIACCAC IGAAGICAAR T	ccerts	GTGTIACCAC IGAAGICAAR TCCGITGAGRAATI QGAAGAAAAI CCAAAATICG
	albicans			
	Schizo-	GTOTCACTAC CGAAGICAAG T	crortg	GTGT CACIAC CGAAGTCAAG TCTGTTGAG AAGAI IGAGGAG TCC CCIAAGIITG
	saccharomyces pombe	nbe		
	Human	TGACAGGCAT IGAGAIGTTC C	ACAAGA	TG <u>acaggca</u> t <u>Igagaig</u> ttc cacaagaag <u>aagci</u> tg <u>cc</u> atg cc <u>c</u> ggggg
10	Selected.	ACIKKIAC IGGIGTIGAR AIGTI	IGIL	ATGGT IATGCCIGGI GALAAYRI
	ednences.			
	Selected	SEQ ID NO:23		SEQ ID NO: 24b
	universal			
15	primer	ACIKKIAC IGGIGTIGAR ATGTT	TGLL	AYRIT ITCICCIGGC ATIACCAT
	sequences":			
	The sequence numbering	pering refers to the E.	coli tuf	refers to the E. coli tuf gene fragment. Underlined nucleotides are

identical to the selected sequence or match that sequence.

- "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. "K", "R" and "Y" designate nucleotide positions which are degenerated. "K" stands for T or G; "R" stands for A or G; "Y" stands for C or T.
- This sequence is the reverse complement of the above tuf sequence.

CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGA...CGCGG TATCAICAAA GTTGGTGAAG AAGTTGAAAT

Escherichia

coli

gallinarum

20

15

ID NO SEO 149 126 152 132 133 153 131 134 148 Strategy for the selection from tuf sequences of the amplification primers specific for 435 CGTGAGACCG ACAAGCCATT CCTCATGCCT ATCGA...CGTGG CTCCCTGAAG GICAACGAGG ACGICGAGAT CGTGA**TACTG ACAAACCAIT CAIGAIG**CCA GTCGA...CGTGG ACAA**GIICG<u>C</u> GIIGGIGACG AAGII**GAAAT CGCGA<u>I</u>GT<u>IG</u> ATAAACCTIT CTIGAIGCCG GTAGA...ACTGG TGTTAICCAT GIAGGIGATG AAAICGAAAT CGTGCAGTIG ACGCCGCGIT CCIGALGCCG GTGGA...CGCGG CATCGIGAAG GICGGCGAAG AAAICGAAAT COTGAINCTO ACAAACCAIT CAIGAIGCCA GICGA...COIGG IGAAGIICGC GIIGGIGACG AAGIIGAAAI CGTGAINCIG ACAAACCAIT CAIGAIGCCA GTCGA...CGTGG ACAAGIICGC GITGGIGAIG AAGIAGAAAI CGCGACACTG AAAAACCAIT CAIGAIGCCA GITGA...CGCGG ACAAGITAAA GICGGIGACG AAGIIGAAAI agaga**aatig acaagcctii ctiaaig**cct attga...cgtgg aatt**giiaaa gii**tcc**gata aagii**cagtt CGTGACAACG ACAAACCAIT CATGAIGCCA GITGA...CGTGG ACAAGIICGC GIIGGIGACG AAGIIGAAGI the genus Enterococcus (continues on pages 53 and 54). 401 348 314 Corynebacterium Burkholderia Enterococcus Enterococcus Enterococcus Enterococcus trachomatis Bacteroides diphteriae Chlamydia Annex II: Bacillus subtilis fragilis faccalia cepacia faecium avium

	Gardnerella	CACGAICTIG ACAAGCCAIT	ACAAGCCATT		ATCGA	. cgrgg	TAAGC <u>T</u> CCCA	CTIGAIGCCA ATCGACGTGG TAAGCICCCA AICAACACCC CAGIIGAGAT	TTGAGAT	135
	vaginalis									
	Haemophilus	CGTGCGATIG !	ACCAACCOLL	CCTICTICCA	ATCGA	. CGAGG	tatt a<u>t</u>c<u>c</u>et	cgtgcg at<u>tg ac</u>caaccgtt cct tcttcca atcgacgagg tatta ic<u>c</u>gt aca<u>ggiga</u>tg aagtag aaat	TAGAAAT	157
	influenzae									
Ŋ	5 Helicobacter	AGAGACACTG AAAAAACTTT	NABBACTIT	CTTGATGCCG	GTTGA	AGAGG (CGTG GTGAAA	CTIGAIGCCG GTTGAAGAGG CGTGGIGAAA GIAGGCGATG AAGIGGAAAT	TOGAAAT	158
	pylori									
	Listeria	CGTGAIACIG	ACAAACCATT	CATGATGCCA	GTTGA	.cgree	acaa <u>gttaaa</u>	cgtga lactg acaaaccait caigaig cca gttgacgtgg acaa gtiaaa gtiggigacg <u>aagt</u>a gaagt	TA GAAGT	138
	monocytogenes									
	Micrococcus	CGCGACAAGG	ACAAGCCGII	CCIGAIGCCG	ATCGA	. CGCGG	CACC CIGAAG	cgcga caag<u>aag acaagccgti ccigaig</u>cc g atcgacgcgg cacc cigaag aicaacic<u>cg</u> aggi cgagat	T CGAGAT	159
10	10 luteus									
	Mycobacterium	CGCGAGACCG	ACAAGCCGTT	CCTGATGCCG	GTCGA	. cacaa	cgtg a<u>r</u>caa<u>c</u>	cgcga g<u>acg</u> acaag<u>c</u>cgii ccigaig ccg gtcgacgcgg cgtg aicaa<u>c gi</u>gaac<u>gagg aagii</u>ga gat	TTGAGAT	160
	tuberculosis									
	Mycoplasma	CGTGAAGTAG	ATABACCTIT	CTTATTAGCA	ATTGA	. AGAGG	TGAACTCAAA	cgtga agta<u>g</u> at<u>aaac</u>ctii ctiatia gca attgaagagg tgaa cicaaa gia<u>gg</u>tcaag aagti gaaat	TTGAAAT	161
	genitalium									
15	15 Neisseria	cereceareg 1	ACAAACCATT	CCTGCTGCCT	ATCGA	. cgagg	tatca icca c	CGTGCC GTG<u>G ACAAACCAIT</u> CCTGCTG CCT ATCGACGAGG TATCA TCCA<u>C GTTGGTGACG A</u>GA<u>TT</u>GAAAT	TGAAAT	162
	gonorrhoeae									
	Salmonella	cerecearre	ACAAGCCGII	CCTGCTGCCG	ATCGA	. ೧೯୯५	TATCATCAAA	cgtgcgattg acaagccgtt cctgctgccg atcgacgcgg tatcatcaaa gtgggcgaag aagttgaaat	TTGAAAT	164
	typhimurium									
	Shewanella	CGTGACATCG &	ATAAGCCOTT	CCLACTOCCA	ATCGA	. cgrgg	TATTGIACGC	cgtgac atcg ataagccoit cctactg cca atcgacgtgg tatt giacgc giaggcgacg aagii gaaat	TEGAAAT	165
20	20 putida									
	Staphylococcus	CGTGATTCTG 1	ACAAACCATT	CATGATGCCA	GTTGA	.cgrag	TCAAAICAAA	GTTGACGTGG TCAAAICAAA GTIGGIGAAG AAGIIGAAAT	TGAAAT	140
	aureus									
	Staphylococcus	CGTGATICIG ACARACCAII	ACABACCATT		GTTGA	.cgree	TCAAAICAAA	CAIGAIGCCA GITGACGTGG TCAAAICAAA GIWGGIGAAG AAGIIGAAAT	TTGAAAT	141
	epidermidis									
25	Staphylococcus	CGTGATICIG ACAAACCAII	ACABACCATT		GTTGA	. CGTGG	TCAATCAAA	CAIGAIGCCA GTTGACGTGG TCAAAICAAA GICGGIGAAG AAAICGARAT	TCGARAT	142
	saprophyticus									

- 53 -

144		145		167		170						
AAGTT GAAAT		AAAICGAAAT		AAAICGAAAT		AGGTT GAAAT		AAGTT		£ 44		CGAAC
ACARACCTIT ACTICITCO GITGACGTGG TACTGTICGT GICAACGACG AAGIIGAAAI		ACAAACCAIT GCITCITCCA GTCGACGTGG TATCGITAAA GICAACGACG AAAICGAAAT		CGCGACACIG ACAAACCAIT GCITCITCCA GTCGACGTGG TACTGITCGT GICAACGACG AAAICGAAAT		ACAAACCAIT CITATIAGCA AITGACGTGG TGTATIAAAA GITAAIGAIG AGGIIGAAAT		GIICGC GIIGGIGACG AAGII		SEQ ID NO: 14ª		AACTTC GTCACCAACG CGAAC
G TACTGITCG		G TATC <u>GIIAA</u>		G TACTGITCG		G TGTATTAAA		GLICG		•		AACTT
strgacgrg		srcgacgrg		srcgacgrg		ATTGACGTG						
ACTICITCCA (GCTTCTTCCA (OCTICITCCA (CTTATTAGCA 1		CATGATG		ωį		CATGATG
ACAAACCTIT		ACAAACCATT		ACAAACCATT		ACAAACCATT		ACAAACCATT CATGATG		SEQ ID NO: 13		ACABACCATT CATGATG
CGTGATACTG		CGTGACACTG		CGCGACACTO		CGTAGTACTO		TACTO		-		TACTO
Streptococcus	agalactíae	Streptococcus	pneumoniae	5 Streptococcus	pyogenes	Ureaplasma	urealyticum	Selected	10 sequences	Selected	genus-specific	nrimer
Str	aga	Str	pne	5 Str	pyc	Ure	ure	Sel	10 seq	Sel	gen	pri

The sequence numbering refers to the E. faecalis tuf gene fragment. Underlined nucleotides are identical to the selected sequence or match that sequence,

15 sequences:

This sequence is the reverse complement of the above tuf sequence. 20 The above primers also amplify tuf sequences from Abiotrophía species; this genus has recently been related to the Enterococcus genus by 16S rRNA analysis. NOTE:

Annex III:	Strategy for the sel	the selection from tuf	Bequences of	sequences of the amplification primers specific	ic for
	the genus Staphylococcus (continues		on pages 56	and 57).	
	385		420579	611	SE
5 Bacillus	TGGCCGTGTA GAAC	GAACGCGGAC AAGITAAAGT	r cggTrg	CGGTTG CTAAACCAGG TACAATCACT CCACACAGCA	NO 148
subtilis					
Bacteroides	AGGTCGTAIC GABA	GAAACIGGIG TIAICCAIGT AGGTIT	r AGGTrī	GTAAACCGGG ICAGATTAAA CCTCACTCTA	149
fragilis					
Burkholderia	GGGT <u>CGTGT</u> C GAGC	GGGT <u>CGIGI</u> C GAGCGCGGCA TCGIGAAGGT CGGTGG CGAAGCCGGG	r cggTgg	CGAAGCCGGG ITCGAICACG CCGCACACG	152
cepacia					
Chlamydia	TGGACGIAIT GAGC	GAGCGTGGAA TTGTTAAAGT TTCTTT	r trctr	GCTTGCCAAA CAGTGTTAAA CCTCATACAC	153
trachomatis					
Corynebacterium	1151523 552	TEGCT CCTGAAGG	r caaTrg	GAGCGIGGCT CCTGAAGGT CAATTG TTAAGCCAGG CGCTTACACC CCTCACAC	, 126
diphteriae					
Enterococcus	AGGACGIGII GAACG	GAACGIGGIG AAGIICGCGT TGGTAG	r TGGTAG	CTARACCAGC IRCARICACT CCACACACA	132
faecalis					
Enterococcus	AGGTCGTGTT GAACG	GAACGTGGAC AAGITCGCGT TGGTAG	TGGTAG	CTAAACCAGG IACAAICACA CCTCRIACAA	133
faecium					
Escherichia	CGGTCGTGTA GAACG	POGGIA TCAICAAAGI	TGGTGG	GAACGCGGTA TCAICAAAGT TGGTGG CTAAGCCGGG CACCAICAAG CCGCACACCA	154
coli					
Gardnerella	CGGTCGTGTT GAGCG	TIGGIA AGCICCCAAI	CAATGG	CGGT CGIGIT GAGCGIGGIA AGCICCCA AT CAATGG CT GCICCAGG IICIGIGACI CCACA ACA	135
1					

vaginalis

157		158		138		159		160		161		162		164		165		140		141		142		143	
CCACACACTG		CCGCACAAGA		CCACACACTA		CCGCACACCA		SCCCACA		CCGCACAAGA		CCTCACA		CCGCACACCA		CCACACACTA		CCACATACTG		CCACACACAA		CCACATACAA		CCACACACAA	
CGAAACCAGG IICAAICACA CCACACA		TTCTATCACT		CTAAACCAGG IICGALIACI		CICCAICACC		CACCACCACG CCGCACA		CAAAACCAGG CICTATIAAA		TACTATCACT		CTAAGCCGGG CACCATCAAG CCGCACACCA		TTCAATCAAC CCACACA		TTCAATTACA CCACATACTG		TICTATIACA CCACACA		TACTATCACA		CTCTATTACT	
CGAAACCAGG		TAT GCAAACCAGG				TG GAGCCGGG		CCAAGCCCGG		CAAAACCAGG		CCAAACGGG		CTAAGCCGGG		CGAAGCCAGG		CTGCTCCTGG		стостсства		CTGCTCCTGG		TAG CAGCICCIGG	
.GGTAG				TGGTAG		CAATGG		GAATCA		AGGTAG		GGTGG		GGTGG		.GGTAG		GGTAG		GGTAG		CGGTAG		CGGTAG	
GAACGAGGIA TTAICCGIAC AGG.		GARAGAGGCO TGGIGRARGT AGG.								ACTCAAAGT A		GAGCGAGGIA TCAICCACGT TGGTGG CCAAACGGGGG IACTAICACT CCTCACA		TCATCAAAGT GGGTGG		GAGCGIGGIA TIGIACGCGI AGGTAG		GAACGIGGIC AAAICAAAGT IGGIAG		ANATCAAAGT WGGTAG		AAATCAAAGT C		AAATCAAAGT C	
SAACGAGGIA 1		AAAAAAAGCG 1		GAACGTGGAC AAGTTAAAGT		AGGCGCCA (GAGCGCGCG TGATCAACGT		GAAAGATO AACTCAAAGT		AGCGAGGIA 1		GAGCGCGGTA 1		AGCGTGGTA 1		AACGTGGTC A		GAACGTGGTC A		GAACGTGGTC A		GAACGTGGTC A	
AGGTCGTGTA (AGGTAGGATT (TGGACGTGTT (CGGTCGCGCC GAGCGCGCA CCCTGAAGAT		CGGACGTGTG		AGGAAGAGTT O		CGGCCGTGIA 6		CGGTCGTGTA &		AGGTCGTGTT G		AGGCCGTGTT G		AGGCCGTGTT G		AGGCCGTGTT G		AGGCCGTGTT G	
Haemophilus	influenzae	Helicobacter	pylori	5 Listeria	monocytogenes	Micrococcus	luteus	Mycobacterium	10 tuberculosis	Mycoplasma	genitalium	Neisseria	gonorrhoeae	15 Salmonella	typhimurium	Shewanella	putida	Staphylococcus	20 aureus	Staphylococcus	epidermidis	Staphylococcus	Baprophyticus	25 Staphylococcus	simulans
	•		~~	5	٦	7	•	7	10	7	5,	7	J1	15 8	-	-1	~	-4	20 5	-	4	- 6		25	-4

144	145	 - 	170							
CCACACA	CCACACACTA		CCTCACCGTA		CCACAYA		18 _b		CAGGAGC	
AGGA <u>cotat</u> c <u>Ga</u> cc <u>otogta ctot</u> tcgtgt caattg ctaaa <u>ccage ttcaatca</u> ac <u>ccacaca</u> cta	AGGACGTATC GACCGTGGTA TCGTTAAAGT CAATCG CTAAACCAGG TTCAATCAAC CCACACTA		TGGA <u>CGIGIT GAACGIGGI</u> G TATTAAAAGT TAATIG TAAAA <u>CCAGG AICAAITAAA CCTCAC</u> CGTA		GCTCCTGG XWCWATYACA CCACAYA		SEQ ID NO: 18b		TRIGIGGI GIRAIWGWRC CAGGAGC	
CTAAACCAG	CTAAACCAGO		3 TAAAACCAGG		GCTCCTG				TRIGIGG	
CAATTC	CAA		TAA							
crorrcargr	TCGTTAAAGT		TATTAAAA GT		C ANATCANA		17		C AAATCAAA	
GACCGIGGIA	GACCGTGGTA		GAACGIGGIG		CCGIGII GAACGIGGIC AAAICAAA		SEQ ID NO: 17		CCGTGTT GAACGTGGTC AAATCAAA	
AGGA <u>CGT</u> A <u>T</u> C	AGGACGTATC		TGGA <u>CGTGTT</u>		CCGTGT				CCGTGI	
Streptococcus	agalactiae Streptococcus	pneumoniae	5 Ureaplasma	urealyticum	Selected	sednences.	10 Selected	genus-specific	primer	sequences*:
			υ,				ĭ			

"R", "W" and "Y" designate nucleotide positions which are degenerated. "R" stands for A or G;

15 The sequence numbering refers to the S. aureus tuf gene fragment. Underlined nucleotides are identical

to the selected sequence or match that sequence.

This sequence is the reverse complement of the above tuf sequence. 20 b

"W", for A or T; "Y", for C or T.

Strategy for the selection from tuf sequences of the amplification primers specific for the species Candida albicans (continues on pages 59 and 60). Annex IV:

		58			90	181			213 SEQ ID NO	ID NO
	Candida	CGTCAAGAAG	GTTGGTTACA ACCCAAAGAC	ACCCAAAGAC	TGT	CAA 2	ATCCGGTAAA	TGTCAA AICCGGIAAA GIIACIGGIA AGACCI	AGACCTTGTT	120
	albicans									
	Candida	CATCAAGAAG	GICGGITACA	CAT CAAGAAG GICGGITACA ACCCAAAGA C IGTCAA GGCIGGIGIC GICAAGGGIA AGAYCITGIT	TGT	CAA	SGTGGIGTC	GICAAGGGIA	AGAYCTTGTT	121
Ŋ	5 glabrata									
	Candida	CATCAAGAAG		GTIGGITACA ACCCAAAGAC TGTCAA GGCAGGIGTT GITAAGGGIA AGACCITATT	TGT	CAA	SGCAGGTGTT	GTTAAGGGTA	AGACCTTATT	122
	krusei									
	Candida	CGTCAAGAAG	GTTGGTTACA	GTIGGITACA ACCCIAAAGC TGITAA AGCIGGIAAG GITACCGGIA AGACCI	TGT	TAA 1	AGCTGGTAAG	GTTACCGGTA	AGACCTTGTT	123
	parapsilosis									•
10	10 Candida	CGTCAAGAAG	GTTGGTTACA	GITGGIIACA ACCCIAAGGC TGICAA GGCIGGIAAG GIIACCGGIA AGACTITGIT	TGT	CAA	SCTECTARG	GTTACCGGTA	AGACTI TGTT	124
	tropicalis									
	Schizo-	CATCAAGAAG	GICGGIITCA	SICGGITICA ACCCCAAGAC CGICAA GGCIGGIGTC GICAAGGGIA AGACTCTTT	CGT	CAA	SGCTGGTGTC	GICAAGGGIA	AGACTCTTT	
	saccharomyces pombe	a.								
	Human	GGAGATCCGG	GAGCTGCTCA	ggagatece <u>g g</u> agetget <u>ca</u> eegagitigg ctagtt aggetgabag te <u>r</u> gtgeraga <u>ag</u> etaetgga	CTA	GTT 2	GGCCTGAAG	TCTGTGCAGA	AGCTACTGGA	
15	15 Chlamydia	GGAGCTGCGC	GAGCTGCTCA GCAAGTACGG	GCAAGTA CGG	CTT	CAA 7	CTTCAA AIG	IATICTGG AGCTGATGAA	AGCTGA TGAA	153
	trachomatis									
	Corynebacterium	GGAGATCCRT	gaecrecree	GAGCTGCTCG CTGAGCAGGA TTAGAA GTGGACCCAGG TCCATCATCG ACCTCATGCA	TTA	GAA (TGGACCCAG	TCCATCATCG	ACCTCATGCA	126
	diphteriae									
	Enterococcus	GGAAGTTCGT	GACTTATTAT	GACTIAITAI CAGAAIACGA TIT	TTT		TGAAGAA	IGAAGAA AAAAICTTAG AATTAATGGC	AATTAATGGC	132
20	20 faecalis									
	Escherichia	GGAAGTTCGT	GAACTICTGT	GGAAGTTCGT GAACTTCTGT CTCAGTACGA CTT	CIT		. GGGAAGCG	GGGAAGCG AAAATCCTGG AACTGGCTGG	AACTGGCTGG	154
	coli									

	Flavobacterium	CGAGGTTCGC	GAAGAACTGA	GAAGAACTGA CTAAACGCGG	TTT	GGGTTAAA	GGGTIAAA GAAATIGAAA ACCTGATGGA	ACCTGATGGA	156
	ferrugineum								
	Gardnerella	AGAGGTCCGT	GACCTCCTCG	AAGAAAACGG	CTTCAA	Gegeracag	agaggtecgt gacctecteg aagaaaacg etteaa gtgggtagag accgteaagg aactgatgaa	ACTCATGAA	135
	vaginalis								
Ŋ	5 Haemophilus	GGAAGTTCGT	GGAAGTICGT GAACTICTAT	CTCAATATGA CTT	CTT		GGGAAGAA AAAATCCTIG AGTTAGCAAA	<u>AG</u>TTA GCAAA	157
	influenzae								
	Listeria	GGAATTCGT	GAICTAITAA	GGAAATTCGT GAICTAITAA CTGAATATGA ATT.	ATT	GGGAAGCT	GGGAAGCT AAARTIGACG AGTTAATGGA	GTTAA TGGA	138
	monocytogenes								
	Micrococcus	GGAAGTCCGT	GAGTTGCTGG	CTGCCCAGGA	ATTCAA	Gregresse	CTGCCCAGGA ATTCAA GIGGGTCGAG TCTGTCACAC AGTTGATGGA	<u>ag</u> ttgatgga	159
10	10 luteus								
	Neisseria	GGAAATCCGC	GGAAATCCGC GACCTGCTGT	CCAGCTACGA CTT.	CTT	ACGAAGAA	ACGAAGAA AAAATCTTCG AACTGGCTAC	AACTGG CTAC	162
	gonorrhoeae								
	Salmonella	GGAAGTTCGC	GGAAGTICGC GAACTGCTGT	CTCAGTACGA CTT.	CTT	GGGAAGCG	GGGAAGCG AAAATCATCG AACTGGCTGG	AACTGG CTGG	164
	typhimurium								
15	15 Staphylococcus	GGAAGTTCGT	GACTTATTAB	GGAAGTTCGT GACTTATTAA GCGAATATGA CTT	CTT		CGAAGAA AAAATCTTAG AATTAATGGA	ATTAA TGGA	140
	aureus				٠				
	Streptococcus	GGAAATCCGT	GGAAATCCGT GACCTATTGT	CAGAATACGA CTT	CTT		<u>Cgaaga</u> c a <u>r</u> cgtatgg aattgatgaa	AATTGATGAA	145
	pneumoniae								
	Treponema	AGAGGT <u>G</u> CGT		CTGGATATGG	GTTGGA	GGATGCAGCT	GAIGCGCTTG CTGGAIATGG GTTGGA GGAIGCAGCT TGIATIGAGG AACTGCTTGC	ACTGCTTGC	169
20	20 pallidum								

- 59 -

Selected

CAAGAAG GITGGITACA ACCCAAAGA

ATCCGGTAAA GTTACTGGTA AGACCT

sednences

Selected

SEQ ID NO: 11

5 species-specific

primer

sednences:

CAAGAAG GTIGGITACA ACCCAAAGA

SEQ ID NO: 12ª

AGGICTIACC AGTAACTITAC CGGAT

10 The sequence numbering refers to the Candida albicans tuf gene fragment. Underlined nucleotides are identical to the selected sequence or match that sequence.

This sequence is the reverse-complement of the above tuf sequence.

	Annex V: S	Strategy for the	the selection from the recA	m the rec	A gene of	the amplification primers specific	ation primers	s specific for	Ħ
	•	the genus Strepto	reptococcus (continues on pages	i uo senu	62	and 63).			
		415			449540	0		574 S	ÖES
								Ω	NO
S	5 Bordetella	CTCGAGAICA C	CTC <u>GAGAICA CCGACGCGCI GGIGCG</u> CTCG GGCTCGGCCC GCC <u>IGAIGAG CCAGGC</u> GC <u>IG CGCAA</u> GCTGA	scacres s	GCTCGG	CC GCCIGAIGA	CCAGGCGCTG	CGCAAGCTGA	
	pertussis								
	Burkholderia	CTCGAAAICA C	CTC <u>garaica coga</u> igege <u>ct get</u> gegeteg gecteggeee gec <u>tgarg</u> ie g <u>cagec</u> ge <u>ig cgcaa</u> geter	SCECTCG G	GCTCGG	cc ec creare ro	GCAGGCGCTG	CGCAAGCTGA	
	cepacia								
	Campylobacter	TTAGAAATTG T	TAGABACTAI AGCAAGAAGT GGCGCAGCAA GACITAIGTC ICAAGCTCIA AGAAAACTTA	AGAAGT G	GCGCAG	CAA GAC ITAIG IO	TCAAGCTCIA	AGAAACTTA	
10	10 jejuni								
	Chlamydia	TTGAGTATTG C	TTGAGTAITG CAGAGCTCIT AGCGCGTTCT GGAGCAGCTC GCAIGAIGTC GCAGGGTCIA CGCAAATTAA	scerrer e	GAGCAG	TIC GC <u>AIGAIG</u> IC	GCAGGCTCIA	CGCAAATTAA	
	trachomatis								
	Clostridium	TTAGAAATAA C	tta gaaataa <u>cag</u>aagctit agitag atca ggagcagcta ga ttaaig tc acaagcctia agaaa gttaa	MGATCA G	GAGCAG	TA GA TIAAIG T	ACAAGCCTIA	AGAAAGTTAA	
	perfringens								
15	15 Corynebacterium	CTGGAGATTG C	CTGGAGALTG CAGALATGCI TGIICGCTCT GGAGCAGCGC GTTIGAIGAG ICAGGCGCTG	cocrer e	GAGCAG	GC GTTTGATGA	TCAGGCGCTG	CGTAAGATGA	
	pseudotuberculosis	sis							
	Enterobacter	CTGGAAAICT G	CTGGAAAICT GTGAIGCGCI GACCCGTTCA GGCGCAGCTC GTAIGAIGAG CCAGGCGAIG	CGTTCA G	GCGCAG	TC GTATGATGAG	CCAGGCGATG	CGTAAGCTTG	
	agglomerans								
	Enterococcus	TTAGAGATTG C	CCGAIGCCII AGILTCAAGT GGTGCAGCTC GACIAAIGTC ICAAGCACTA CGIAAATTAT	TCAAGT G	GTGCAG	TC GACIAAIGT	TCAAGCACTA	CGTAAATTAT	
70	20 faecium								
	Escherichia	CTGGAAAICT G	CTGGAAAICT GTGACGCCCT GGCGCGTTCT GGCGCGGCAC GTATGAIGAG CCAGGCGAIG CGTAAGCTGG	CGTTCT G	3000980	AC GTATGATGAG	CCAGGCGATG	CGTAAGCTGG	
	coli								

	Haemophilus	GCGAACAGAA	GAATAGAATT	TTAATGCATT	ACCGC	.GACCT	GCGAACAGAA GAATAGAAII TTAATGCATT ACCGCGACCT GTGAGTITAC GCAAAGCTIG AGACATTAAA	SCARAGCTIQ	AGACA TTAAA	
	influenzae									
	Helicobacter	TTAGAAATT	TAGAAACGAT	c<u>a</u>ccag áagc	GGAGG	AGCAA	Tagaaacgai caccagáagc ggaggagcaa ggc <u>itaigag</u> c <u>caigc</u> gtia agaaaaatca	CATGCGTTA	AGAAAAATCA	
	pylori									
S	5 Lactococcus	CTTCANATTG	CTGARARATT	GATTACTTCT	GGAGC	AGCAC	GATTACTTCT GGAGCAGCAC GTATGATGTC ACAAGCCATG	ACAAGCCATG	CGIAAACTTG	
	lactis									
	Legionella	CTGGAAATTA	CTGATATGCT	GGTGCG TTCT	GCAGC	. GGCAA	ctg gaaaita ctgalatgct ggtgc gttct gcagcggcaa gat igaig tc g caagcccig cgtaa attga	SCAAGCCCTG	CGTAAATTGA	
	pneumophila									
	Mycoplasma	TTTGCTCTTA	TCGAATCALT	AATTAA AACA	AACAA	. TGCAA	TCGAATCAII AAIIAAAACA AACAATGCAA GAAIGAIGTC AAAAGGTTIG	AAAAGGTTIG	CGAAGAATAC	
10	genitalium									
	Neisseria	TTGGAAAICT	GCGACACGCT	corccettce	GGCGG	. GGCGC	GGCGGGGCGC GCCIGAIGAG	TCAGGCTTIG	CGCAAACTGA	
	gonorrhoeae									
	Proteus	CTGGAAATT		GIGAIGCAIT AICICGCTCT GGTGCCGCAC GTAIGAIGAG	GGTGC	.cgcAc		CCAAGCTATG	CGIAAACTAG	
	mirabilis									
15	15 Pseudomonas	CTGGAAATCA	CCGACATGCT	ge<u>r</u>ece crec	AACGC	.GGCAC	GOTGCGCTCC AACGCGGCAC GCCTGATGTC CCAGGCGCTG CGCAAGATCA	CCAGGGGGTG	CGCAAGATCA	
	aeruginosa									
	Serratia	CTGGAAAICT	GTGATGCGCT	GACCCGCTCC	GGCGC	. 66060	GACCCGCTCC GGCGCGGCGC GCATGATGAG	CCAGGCGATG	CGTAAGCTGG	
	marcescens									
	Shigella	CTGGAAAICT	GTGACGCCT	Gacacarrer GGCGCGGCAC	GGCGC		GTATGATGAG	CCAGGCGATG	CGTAAGCTGG	
20	20 flexneri									
	Staphylococcus	CTTGAAATCG	CCGAAGCALT	TOTTAGAAGT GGTGC.	GGTGC	AGCTC	GITIAAIGIC ACAAGCGIIA	ACAAGCGTIA	CGTAAACTTT	
	aureus									
	Streptococcus	TTAGAAATTG	CAGGAAAATT	GATTGACTCT GGGGC.	GGGGC	:	•	:		32
	gordonii									
25	25 Streptococcus	CTTGAAATTG	CAGGGAAATT	CAGGGAAAII GAIIGATICI GGCGCAGCAC GCAIGAIGAG	ggcgc	. AGCAC		CAAGCGATG	TCAAGCGATG CGTAAATTAT	33
	mutans									

TTACGCAT GGCITGACTC ATCAT

GAAATTG CAGGIAAATT GATTGA

sednences.:

primer

34	35	36		rn.			
ACTTO	ATTA	ACTT	ACTG	GCTG			
CGTAN	CGTAN	CGTA	CGTA	CGTAA	CGTA		20
CATG	CATG	CATG	AATG	TAIG	ATGATGAG TCALGCCATG CGTAA		ID NO: 22b
CAGGC	CAGGC	CANGC	CAAGC	CAGGC	CAIGC		fi G
3 A G C	JAG T	ang T	grc G	SAG C	eag I		SEQ
TGAT	TGAT	TGAT	LETIC	ATGAT(ATGAT		
c GT	C GT	C GT	C GT	C GT	~		
CTTGAGATTG CGGGAAAATT GATTGACTCA GGTGCGGCTC GTATGATGAG CCAGGCCATG CGTAAACTTG	CTT GABAITG CAGGIABAIT GAITGA ITCT GGTGCAGCAC GT AIGAIGAG ICAGGCCAIG CGIAA AITAI	CTC gaaaitg caggtaagci gaitga ctct ggtgcagcgc gt aigaigag icaagccaig cgiaa acttt	CTG gaaaitt gtgaigcact ggcicg cict ggtgcagcgc gt aigtig tc g<u>caagcaatg cgtaa</u> actga	CTG gaaaiit gigaigcgci gacic gcict ggtgccgcgc gt aigaigag c<u>cagg</u>ctaig <u>cgtaa</u>g ctgg			
TGC	TGC	TGC	TGC	TGC			
CA GG	CI GG	CT GG	CT GG	CT GG			
IGACT.	rga tt	[GA CT	ICGCT.	TCGCT.	IGA		
GAT	. GAT	GAT	້ນ _ອ ອ :	.5 ₹ 5	TAS 1		21
AAAT	CAAAT	AAGC	(GCAC)	ြင်ဝင်	GAAATTG CAGGLAAATT GATTGA		ID NO: 21
C0000	CAGGI	CAGGI	GT <u>G</u> A]	GT <u>©</u> A]	CAGGI		OI ÖES
ALTG	ATTG	ALTO	ATT	ATT	ATTG		S
rt ga g	rt gaa	TC GAA	rg gaa	rg gaa	GAA		
ບັ	ย	Đ	Đ	Đ			
SIL	gn:	SUS					fic
2020	niae	5000C	rius	ae Lia	_ e	Ces*	ed speci
Streptococcus	pneumoniae Streptococcus	pyogenes 5 Streptococcus	salivarius Vibrio	cholerae Yersinia	10 pestis Selected	sequences*	Selected 15 genus-specific
5	DI VI	n n	था>	o A	10 p	α	s 15 g

The sequence numbering refers to the S.pneumoniae recA sequence. Underlined nucleotides are identical 20 to the selected sequence or match that sequence.

- "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides G or T. Α, C,
- This sequence is the reverse complement of the above recA sequence.

Annex VI: Specific and ubiquitous primers for DNA amplification

	SEQ ID NO Nucleotide sequence	>	Originating	DNA fragment
			SEQ ID	Nucleotide
			ио	position
_	Bacterial species: Enterococcu	s faecium		
5				
	1 5'-TGC TTT AGC AAC AGC C		26ª	273-294
	2 ^b 5'-TAA ACT TCT TCC GGC A	CT TCG	26ª	468-488
_	Bacterial species: Listeria mon	nocytogenes		
0				
	3 5'-TGC GGC TAT AAA TGA A		27ª	339-359
	4 ^b 5'-ATC CGA TGA TGC TAT G	GC TTT	27ª	448-468
-	Bacterial species: Neisseria mo	eningitidis		
5	5 5'-CCA GCG GTA TTG TTT G	GT GGT	28ª	56-76
	6b 5'-CAG GCG GCC TTT AAT A	AT TTC	28ª	212-232
)	Bacterial species: Staphylococo	cus saprophy	ticus	
,	7 5'- AGA TCG AAT TCC ACA'	rga agg tta '	TTA TGA 29°	290-319
	8b 5'- TCG CTT CTC CCT CAA			409-438
5	Bacterial species: Streptococcu	us agalactiae	.	
-	9 5'-TTT CAC CAG CTG TAT T	AG AAG TA	30ª	59-81
	10b 5'-GTT CCC TGA ACA TTA TO	CT TTG AT	30ª	190-212
)	Fungal species: Candida albicar	1.5		
	11 5'-CAA GAA GGT TGG TTA CA	AA CCC AAA G	A 120°	61-86
	12b 5'-AGG TCT TAC CAG TAA C	TT TAC CGG A	T 120°	184-209

^{*} Sequences from databases.

³⁵ b These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

^c Sequences determined by our group.

Annex VI: Specific and ubiquitous primers for DNA amplification (continues on next page)

	SEQ ID	NO N	otic	de se	quer	nce				Originating	DNA fragment	
											SEQ ID	Nucleotide
											NO	position
5	Bacter	ial genu	ıs:	Ente	eroco	occus	3					
	13	5'-TAC	TGA	CAA	ACC	ATT	CAT	GAT	G		131-134 ^{a,b}	319~340°
	14ª	5'-AAC	TTC	GTC	ACC	AAC	GCG	AAC			131-134 ^{a,b}	410-430°
10	Bacter	ial genu	1S:	Neis	sser	ia						
10	15	5'-CTG	aaa	aaa	m 2 m	aam	aaa	mm			31 ^e	21-40 ^f
	16ª	5'-GCC							~		31°	102~123°
		ial genu						AAA	G		31-	102-123-
	DOCCCI	101 9011	<u> </u>	Dear	<i>,,,,</i> ,,,,							
15	17	5 ' - CCG	TGT	TGA	ACG	TGG	TCA	AAT	CAA	A	140-143 ^{a,b}	391~415 ^g
	18ª	5'-TRT	GTG	GTG	TRA	TWG	WRC	CAG	GAG	C	140-143 ^{a,b}	584-608 ^g
	19	5'-ACA	ACG	TGG	WCA	AGT	WTT	AGC	WGC	T	140-143 ^{a,b}	562-583 ^g
	20ª	5'-ACC	ATT	TCW	GTA	CCT	TCT	GGT	AAG	T	140-143 ^{a,b}	729-753 ^g
20	Bacter:	ial genu	ıs:	Stre	ptod	occu	ıs					
	21	5'-GAA	ATT	GCA	GGI	AAA	TTG	ATT	GA		32-36°	418-440 ^h
	22 ^d	5'-TTA	CGC	ATG	GCI	TGA	CTC	ATC	ΑT		32-36 ^e	547-569 ^h
25				Univ	versa	al pi	rime	:s				
	23	5'-ACI	KKI	ACI	GGI	GTI	GAR	ARG	TT		118-146 ^{a,b}	493-515 ⁱ
											147-171 ^{a,e}	
	24 ^d	5'-AYR	TTI	TCI	CCI	GGC	ATI	ACC	ΑT		118-146 ^{a,b}	778-800 ⁱ
											147-171 ^{a,e}	

- 30 a These sequences were aligned to derive the corresponding primer.
 - b tuf sequences determined by our group.
 - $^{\rm c}$ The nucleotide positions refer to the E. faecalis tuf gene fragment (SEQ ID NO: 132).
- d These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.
 - Sequences from databases.
 - $^{\mathrm{f}}$ The nucleotide positions refer to the N. meningitidis asd gene fragment (SEQ ID NO: 31).

- $^{\rm g}$ The nucleotide positions refer to the S. aureus tuf gene fragment (SEQ ID NO: 140).
- $^{\rm h}$ The nucleotide positions refer to the S. pneumoniae recA gene (SEQ ID NO: 34).
- 5 i The nucleotide positions refer to the $\it{E.~coli}$ tuf gene fragment (SEQ ID NO: 154).

		SEQ ID	ио и	Nucleotio	de se	quen	ce			_	Originating	DNA	fragment
											SEQ ID	Nucl	eotide
											NO	pos	ition
		Antibio	otic res	sistance	gene	2: }	ola _{te}						
	5	37	5'-CTA	TGT GGC	GCG	GTA	TTA	TC			-		-
		38	5 ' - CGC	AGT GTT	ATC	ACT	CAT	GG			-		-
		39	5.1 _ CTC	AAT GAA	מככ	מידימ	CCA	7			_		_
		40		AGC AAT							_		_
	10												
		Antibio	otic res	sistance	gene	2: £	ola _{sh} ,	,					
					~~~			~~					
3		41	_	CCA TGA							-		-
	15	42	5Crc	ATT CAG	TTC	CGI	110	CC			-		_
7	.0	43	5'-CAG	CTG CTG	CAG	TGG	ATG	GT			_		
		44	5 ' - CGC	TCT GCT	TTG	TTA	TTC	GG			-		-
ern, eriz	20	Antibio	otic res	sistance	gene	<u> </u>	la _{rob}	,					
	20	45	5'-TAC	GCC AAC	አጥC	стс	GNN	λC			_		_
		46		AAT TTG							-		_
		47	5 ' -GGG	ATA CAG	AAA	CGG	GAC	AT			<del>-</del>		_
2	25	48	5'-TAA	ATC TTT	TTC	AGG	CAG	CG			<del>-</del>		-
The second secon		2n+ibia	stia mos	iatorao	<b>~</b> 07.	. 1	. 7 _						
<b>:</b> :::		MICIDIO	ocic res	sistance	gene	<u> </u>	) I a _{oxa}						
		49	5'-GAT	GGT TTG	AAG	GGT	TTA	TTA	TAA	G	110ª		686-710
	30	50 ^b	5'-AAT	TTA GTG	TGT	TTA	GAA	TGG	TGA	T	110ª		802-826
						_	_						
		Antibio	otic res	sistance	gene	2: <i>E</i>	laZ						
		51	5'-ACT	TCA ACA	CCT	GCT	GCT	TTC			111ª		511-531
	35	52 ^b		CCA CTT							111ª		663-683
		Antibio	tic res	sistance	gene	<u>:</u> : a	adB						
		53	El-CCC	AAT AGT	TT CT X	יתאא	COTT	CC			_		
	40	53 54		CTG TTA							_		-
		Antibic	tic res	sistance	gene	: a	acC1						
			<b></b>										
	45	55 56		ATG ATC							-		-
	<del>-</del> ∪ .	56	5 -ATC	GTC ACC	GTA	ATC	TGC	TT					

^a Sequences from databases.

^b These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex VI: Specific and ubiquitous primers for DNA amplification

	SEQ I	D NO Nucleotide sequence	Originatin	g DNA fragment
			SEQ ID	Nucleotide
			NO	position
	Antib	iotic resistance gene: aacC2		
5				
	57	5'-CAT TCT CGA TTG CTT TGC TA	-	-
	58	5'-CCG AAA TGC TTC TCA AGA TA	-	-
10	Antib	iotic resistance gene: aacC3		
10	59	5'-CTG GAT TAT GGC TAC GGA GT	_	_
	60	5'-AGC AGT GTG ATG GTA TCC AG	-	-
	Antib	iotic resistance gene: aac6'-IIa		
15				
	61	5'-GAC TCT TGA TGA AGT GCT GG	112ª	123-142
	62 ^b	5'-CTG GTC TAT TCC TCG CAC TC	112ª	284-303
	63	5'-TAT GAG AAG GCA GGA TTC GT	112ª	445-464
20	6 <b>4</b> ^b	5'-GCT TTC TCT CGA AGG CTT GT	112ª	522-541
	Antib:	iotic resistance gene: aacA4		
		-		
0.5	65	5'-GAG TTG CTG TTC AAT GAT CC	-	-
25	66	5'-GTG TTT GAA CCA TGT ACA CG	-	-
	Antib:	iotic resistance gene: aad(6')		
	173	5'-TCT TTA GCA GAA CAG GAT GAA	_	_
30	174	5'-GAA TAA TTC ATA TCC TCC G	_	<u>-</u>
	<u>Antibi</u> 67	iotic resistance gene: vanA 5'-TGT AGA GGT CTA GCC CGT GT		
	68	5'-ACG GGG ATA ACG ACT GTA TG	_	-
35		3 1.00 000 1111 1.00 1.01 0111 1.0		
	69	5'-ATA AAG ATG ATA GGC CGG TG	_	-
	70	5'-TGC TGT CAT ATT GTC TTG CC	-	-
	Antibi	iotic resistance gene: vanB		
40				
	71	5'-ATT ATC TTC GGC GGT TGC TC	116ª	22-41
	72 ^b	5'-GAC TAT CGG CTT CCC ATT CC	116ª	171-190
	73	5'-CGA TAG AAG CAG CAG GAC AA	116ª	575-594
45	74 ^b	5'-CTG ATG GAT GCG GAA GAT AC	116ª	713-732

Sequences from databases.

These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex VI: Specific and ubiquitous primers for DNA amplification

	SEQ I	D NO Nucleotide sequence	Originating	DNA fragment
			SEQ ID	Nucleotide
			NO	position
5	Antib	iotic resistance gene: vanC		
•	75	5'-GCC TTA TGT ATG AAC AAA TGG	117ª	373-393
	76 ^b	5'-GTG ACT TTW GTG ATC CCT TTT GA	117ª	541-563
0	<u>Antib</u>	iotic resistance gene: msrA		
0	77	5'-TCC AAT CAT TGC ACA AAA TC	-	-
	78	5'-AAT TCC CTC TAT TTG GTG GT	-	-
	79	5'-TCC CAA GCC AGT AAA GCT AA	-	-
5	80	5'-TGG TTT TTC AAC TTC TTC CA	-	-
	Antib:	iotic resistance gene: satA		
	81	5'-TCA TAG AAT GGA TGG CTC AA	-	-
0	82	5'-AGC TAC TAT TGC ACC ATC CC	-	-
	<u>Antib</u>	iotic resistance gene: aac(6')-aph(2")		
	83	5'-CAA TAA GGG CAT ACC AAA AAT C	_	-
	84	5'-CCT TAA CAT TTG TGG CAT TAT C	-	-
	85	5'-TTG GGA AGA TGA AGT TTT TAG A	_	-
	86	5'-CCT TTA CTC CAA TAA TTT GGC T	-	-
	Antibi	iotic resistance gene: vat		
	87	5'-TTT CAT CTA TTC AGG ATG GG	_	-
	88	5'-GGA GCA ACA TTC TTT GTG AC	-	-
	<u> Antibi</u>	iotic resistance gene: vga		
	89	5'-TGT GCC TGA AGA AGG TAT TG	-	-
	90	5'-CGT GTT ACT TCA CCA CCA CT	-	-
	<u>Antibi</u>	lotic resistance gene: ermA		
	91	5'-TAT CTT ATC GTT GAG AAG GGA TT	113ª	370-392
	92 ^b	5'-CTA CAC TTG GCT TAG GAT GAA A	113ª	487-508

^{45 *} Sequences from databases.

^b These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.

	SEQ ID	NO Nucleotide sequence	Origin: fragme	ating DNA
			SEQ	Nucleotide
			ID NO	position
_	Antibi	otic resistance gene: ermB		
5	93	5'-CTA TCT GAT TGT TGA AGA AGG ATT	114ª	366-389
	94 ^b	5'-GTT TAC TCT TGG TTT AGG ATG AAA	114ª	484-507
	Antibi	otic resistance gene: ermC		
10				014 025
	95 96 ^b	5'-CTT GTT GAT CAC GAT AAT TTC C 5'-ATC TTT TAG CAA ACC CGT ATT C	115ª 115ª	214-235 382-403
			<del>_</del>	
4.5	<u>Antibi</u>	otic resistance gene: mecA		
15	97	5'-AAC AGG TGA ATT ATT AGC ACT TGT AAG	_	_
	98	5'-ATT GCT GTT AAT ATT TGA GTT GAA	-	_
	Antibi	otic resistance gene: int		
20				
	99 100	5'-GTG ATC GAA ATC CAG ATC C 5'-ATC CTC GGT TTT CTG GAA G	<del>-</del>	-
	100	J AIC CIC GGI III CIG GAA G		
	101	5'-CTG GTC ATA CAT GTG ATG G	-	-
25	102	5'-GAT GTT ACC CGA GAG CTT G	-	-
	<u> Antibi</u>	otic resistance gene: sul		
	103	5'-TTA AGC GTG CAT AAT AAG CC	_	_
30	104	5'-TTG CGA TTA CTT CGC CAA CT	-	-
	105	5'-TTT ACT AAG CTT GCC CCT TC	_	-
	106	5'-AAA AGG CAG CAA TTA TGA GC	-	_

³⁵ a Sequences from databases.

^b These sequences are from the opposite DNA strand of the sequence of the originating fragment given in the Sequence Listing.