Prof. Dr.-Ing. Thorsten Herfet Andreas Schmidt

U14: Socket Programming

14.1 chargen

In this part you will get to know the chargen protocol (RFC 864). chargen listens on port 19 and supports TCP and UDP.

14.1.1 Enable chargen on your Device

• Ensure that xinetd is enabled on your system, by editing /etc/xinetd.d/chargen. Ensure that you have the following line for TCP and UDP:

disable = no

• Afterwards, restart the service (if you had to change it):

sudo service xinetd restart

• Finally, use the following command to test its working:

netcat localhost chargen

14.1.2 Clients

- Develop a UDP client that connects to the server running on your PC. It should be able to connect to retrieve a set of random characters from the server and print it to the console.
- Now develop another client for chargen, but this time using TCP.

14.1.3 Servers

- Write a minimal server in TCP that continuously sends the sequence (1234567890) as long as the client is connected.
- Extend your server in a way that multiple concurrent requests are served (no use-once-server).
- Extend your server in a way that multiple connections can be established and served in parallel (using fork() or threading).
- HONour Task: Check out the random module to generate really random sequences of printable characters.
- HONour Task: Check out the data syntax section in the RFC and implement the same behaviour.
- HONour Task: Write a chargen server using UDP sockets.

14.2 DNS

In this task you will develop a minimal DNS client.

Start by composing an empty DNS message and send it on a UDP socket. You can check if you
did it correctly by using Wireshark.

- You client should send a name query for "uni-saarland.de" to 134.96.252.20 (the university's name server). Start phrasing your question as defined in the RFC.
- Parse the response to get the IP address of the university's web page out.
- HONour Task: Parse additional fields from the response.