

Ray Tracing

Rendered by PovRay 3.5

(Free open-source software)

Ray Tracing

Best for specular and transparent objects

Partly physics-based: geometric optics

A pixel should have the color of the object point that projects to it

What Are We Missing?

Diffuse objects do not receive light from other objects, only from light sources

 $egin{array}{lll} S_A & shiny, transparent \\ S_B, S_D & diffuse, opaque \\ S_C & shiny, opaque \\ \end{array}$

Ray Tracing

for each pixel on screen

determine ray from eye through pixel

find closest intersection of ray with an object

cast shadow ray(s) to the light source(s)

recursively cast reflected and refracted ray

calculate pixel color

paint pixel

end

P = closest intersection color_local = ShadowRay(light₁, P) + ... + ShadowRay(light_N, P) color_reflect = raytrace(reflected_ray) color_refract = raytrace(refracted_ray) color = color_local + shiny, transparent + k_{rfl}* color_reflect $\mathsf{S}_\mathsf{B}, \mathsf{S}_\mathsf{D}$ diffuse, opaque + k_{rfa}* color_refract shiny, opaque S_A return(color) S_{B} SD

How Many Levels of Recursion Should We Use?

The more the better
Infinite reflections at the limit

Stages of Ray Tracing

Setting the camera and the image plane

Computing a ray from the eye to every pixel and trace it in the scene

Computing object-ray intersections

Computing shadow, reflected, and refracted rays at each intersection

Setting Up the Camera

Image Parameters

Width 2W, Height 2H Number of pixels $N_c \times N_r$

Camera coordinate system (eye, u,v,n)

Image plane at n = -N

Pixel Coordinates in Camera Coordinate System

Lower left corner of pixel P(r,c) has

coordinates in camera space:

$$u_c = -W + W \frac{2c}{N_c - 1}, \quad c = 0, 1, \dots, N_c - 1,$$

$$v_r = -H + H \frac{2r}{N_r - 1}, \quad r = 0, 1, \dots, N_r - 1,$$

Reminder: Lines

Representations of a line (in 2D)

- Explicit $y = \alpha x + \beta$ $y = m(x - x_0) + y_0; \quad m = \frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0}$
- Implicit $f(x, y) = (x x_0)dy (y y_0)dx$ if f(x, y) = 0 then (x, y) is **on** the line f(x, y) > 0 then (x, y) is **below** the line f(x, y) < 0 then (x, y) is **above** the line
- Parametric $x(t) = x_0 + t(x_1 x_0)$ $y(t) = y_0 + t(y_1 - y_0)$ $t \in [0,1]$ for line segment, or $t \in [-\infty,\infty]$ for infinite line $P(t) = P_0 + t(P_1 - P_0) \quad \text{or} \quad P(t) = P_0 + t \mathbf{v}$ $P(t) = (1 - t)P_0 + tP_1$

Ray Through Pixel

Lower left corner

Camera coordinates: $P(r,c) = (u_c, v_r, -N)$

World coordinates: $P(r,c) = \text{eye} - N\mathbf{n} + u_c\mathbf{u} + v_r\mathbf{v}$

Ray through pixel:

$$\begin{aligned} \operatorname{ray}(r,c,t) &= \operatorname{eye} + t(P(r,c) - \operatorname{eye}) \\ &= \operatorname{eye} + t\left(-N\mathbf{n} + W\left(\frac{2c}{N_c - 1} - 1\right)\mathbf{u} + H\left(\frac{2r}{N_r - 1} - 1\right)\mathbf{v}\right) \end{aligned}$$

Ray-Object Intersections

Intersection of ray with unit sphere at origin:

$$ray(t) = S + tc$$

$$Sphere(P) = |P| - 1 = 0$$

Sphere(ray
$$(t)$$
) = 0 \Rightarrow

$$|S + t\mathbf{c}| - 1 = 0 \Rightarrow$$

$$(S+tc)\cdot(S+tc)-1=0\Rightarrow$$

$$|\mathbf{c}|^2 t^2 + 2(S \cdot t\mathbf{c}) + |S|^2 - 1 = 0$$

This is a quadratic equation

Solving a Quadratic Equation

$$|\mathbf{c}|^2 t^2 + 2(S \cdot \mathbf{c})t + |S|^2 - 1 = 0$$

 $At^2 + 2Bt + C = 0$

$$t_h = -\frac{B}{A} \pm \frac{\sqrt{B^2 - AC}}{A}$$
$$= -\frac{S \cdot \mathbf{c}}{|\mathbf{c}|^2} \pm \frac{\sqrt{(S \cdot \mathbf{c})^2 - |\mathbf{c}|^2 (|S|^2 - 1)}}{|\mathbf{c}|^2}$$

If
$$(B^2 - AC) = 0$$
 one solution

If
$$(B^2 - AC) < 0$$
 no solution

If
$$(B^2 - AC) > 0$$
 two solutions

First Intersection? Intersections t = ∞

How Do We Deal WithTransformed Primitives?

Where does S + tc intersect the transformed sphere G?

Affine Transformation

Implicit equation G(P) = 0

Untransformed implicit equation F(P') = 0

$$P = \mathbf{M}P' \Rightarrow P' = \mathbf{M}^{-1}P$$

Affine Transformation

$$P = MP' \Rightarrow P' = M^{-1}P$$
$$F(P') = F(T^{-1}(P)) = 0 \Rightarrow$$
$$F(T^{-1}(S + tc)) = 0$$

Which means that we can intersect the inversetransformed ray with the untransformed primitive

Final Intersection

Inverse transformed ray

$$\mathbf{r}'(t) = \mathbf{M}^{-1} \begin{bmatrix} S_x \\ S_y \\ S_z \\ 1 \end{bmatrix} + t \mathbf{M}^{-1} \begin{bmatrix} c_x \\ c_y \\ c_z \\ 0 \end{bmatrix} = S' + t \mathbf{c}'$$

Drop 1 and 0 to get r'(t) in 3D space

For each object

- Inverse transform ray, getting S' + tc'
- Find t_h for intersection with the untransformed object
- Use t_h in the untransformed ray S + tc to find the point of intersection with the transformed object

Shadow Ray

For each light source, intersect shadow ray (from point P towards light source) with all objects

Reflected Ray

Raytrace the reflected ray

$$\begin{aligned} \mathsf{Ray}(t) &= S + t \mathbf{c} \\ \mathsf{Ray}_{\mathsf{rf}}(t) &= P + t \mathbf{v} \\ \mathbf{v} &= -2(\mathbf{n} \cdot \mathbf{c}) \mathbf{n} + \mathbf{c} \end{aligned}$$

All Together

```
color(r,c) = color\_shadow\_ray + 
k_{rfl} * color\_reflected + 
k_{rfa} * color\_refracted
```


Summary: Raytracing

Recursive algorithm

```
function Main for each pixel (c,r) on screen  determine \ ray \ r_{c,r} \ from \ eye \ through \ pixel \\ color(c,r) = raytrace(r_{c,r}) \\ end \ for \\ end \\ function \ raytrace(r) \\ find \ closest \ intersection \ P \ of \ ray \ r \ with \ objects \\ clocal = \ Sum(shadowRays(P,Light_i)) \\ c_{rfl} = \ raytrace(r_{rfl}) \\ c_{rfa} = \ raytrace(r_{rfa}) \\ return \ c = \ clocal + k_{rfl} * c_{rfl} + k_{rfa} * c_{rfa} \\ end \\ end
```


A Ray Tracer in Postscript!

%! Tiny RayTracing by HAYAKAWA, Takashi(h-takasi@isea.is.titech.ac.jp) /p/floor/S/add/A/copy/n/exch/i/index/J/ifelse/r/roll/e/sqrt/H{count 2 idiv exch repeat}def/q/gt/h/exp/t/and/C/neg/T/dup/Y/pop/d/mul/w/div/s/cvi/R/rlineto{load def}H/c(j1idj2id42rd)/G(140N7)/Q(31C85d4)/B(V0R0VRVC0R)/K(WCVW)/U(4C577d7)300 T translate/I(3STinTinTinY)/1(993dC99Cc96raN)/k(X&E9!&IIJ)/Z(blxClSdC9n5dh)/j(43r)/O(Y43d9rE3IaN96r63rvx2dcaN)/z(&93r6IQ0224o3AQYaNlxS2wI)/N(3A3AxeInwc)/W 270 def/L(1i2A00053r45hNvQXz&vUX&U0vQXzFJ!FJ!J)/D(cjS5o32rS4oS3o)/v(6A)/b(7o)/F(&vGYx4oGbxSddnq&3TGbxSGY4Ixwca3AlvvUkbQkdbGYx4ofwnw1&vlx2w13wSb8Z4wSIJ!)/X(4I3Ax52r8Ia3A3Ax65rTdCS4iw5o5IxmwTTd32rCST0q&eCST0q&D1!&EYE0!J!&EYEVIJOq//V 1 def/x(jd5o32rd4odSS)/a(1CD)/E(YYY)/o(1r)/f(nY9wn7wpSps1t1S){[n{()} T 0 4 3 r put T(/)q{T(9)q(cvn}{s})J{(:\$)q{[}}JJJJ cvx}forall]cvx def}H K{K{L setgray moveto B fill}for Y}for showpage

Efficiency Issues

Computationally expensive

- · avoid intersection calculations
 - Voxel grids
 - BSP trees
 - Octrees
 - Bounding volume trees
- optimize intersection calculations
 - try recent hit first
 - reuse info from numerical methods

Advanced Concepts

Translucency
Sub-surface scattering (e.g., human skin)
Aperture effects, depth of field

- Combination of eye-based and light-based ray tracing
- Good for rendering caustic effects

Participating media

Photon mapping

Caustics

Depth of Field and Aperture Effects

Hexagonal aperture

Ray Tracing Summary

Recursive

Computationally expensive

Good for reflection and refraction effects

Comparison

Ray tracing vs Radiosity

Direct Lighting

Indirect Lighting