

CBB Workshop: Introduction to Survival Analysis with Practical Applications in R

Rickard Strandberg & Davide Valentini
Center for Bioinformatics and Biostatistics
2024-03-19

CBB offers

- Mentoring of PhD students and postdocs
- Seminar series and workshops
- Support in project planning and grant applications
- Joint employments including co-financing
- Networking opportunities to discuss bioinformatical and biostatistical methods and problems
 - → Drop-in on Thursdays 13:00-15:00 in Neo, room Protein
- Please see <u>www.ki.se/cbb</u> for more information, or contact us at <u>cbb@ki.se</u>

Agenda

- 1st Session 13:00-14:00
 - → The basics of survival analysis
- Coffee Break 14:00–14:30
- 2nd Session 14:30–16:00
 - → Practical application in R
 - → examples, graphics, and exercises

Introduction to Survival Analysis

Outline

- The most important concepts of survival analysis
 - 1. The type of data we use
 - 2. The survival function & the cumulative incidence function
 - 3. The hazard rate function
 - 4. The Cox proportional hazards regression model

Our Typical Statistical Analysis

- Typical data & research question relationship:
 - → We measure some Outcome variable (Y)
 - → We measure a set of Covariates (X₁, X₂, ...)
 - Exposure/risk factor variables potentially associated with the outcome
 - → We perform some statistical analysis—Regression Model

What is Survival Analysis?

• Survival Analysis is a special family of statistical analysis

- The outcome is time
- We measure the time until a particular event
 - → Death (Mortality)
 - → Diagnosis of a particular disease (Incidence)
 - → Progression to a stage of disease
 - \rightarrow etc.

Time-to-Event Data

- Time-to-event outcome:
 - I. The time duration we followed each subject
 - 2. Whether or not they experienced the event

Time-to-Event Data

- Time-to-event outcome:
 - 1. The time duration we followed each subject
 - 2. Whether or not they experienced the event

For example:

id	time	event	age	sex	bmi	masld
23	6.08	0	32	female	35.2	no
24	6.79	0	43	female	24.5	no
25	3.65	0	39	male	24.3	no
27	0.59	1	62	female	30.2	no
32	11.67	0	45	male	22.1	no
33	2.03	1	58	male	26.7	no
36	1.13	0	53	female	24.8	no
37	7.59	0	47	male	21.9	no
38	9.11	0	54	female	22.1	no
40	4.67	1	61	female	28.4	no
41	6.10	1	45	female	26.3	no

Why two-part outcome?

Can't we just look at the final outcome?

- Example: Mortality over 2 years comparing 2 groups
- Not just what happens, but also when
- Who experiences more events and/or events sooner?

Censoring

- We don't observe events for everyone
 - → We end the follow-up at some point
 - → (Given enough time, would everyone have the event?)
- "Censored at time t" = event occurs sometime after t
 - → i.e. we didn't observe it <u>yet</u>
 - → a.k.a. "lost to follow-up"

Censoring

- We don't observe events for everyone
 - → We end the follow-up at some point
 - → (Given enough time, would everyone have the event?)
- "Censored at time t" = event occurs sometime after t
 - → i.e. we didn't observe it <u>yet</u>
 - → a.k.a. "lost to follow-up"
- Often due to inclusion/recruitment over time and with a fixed end date

Now What?

- What do we want to know?
- In a typical non-survival analysis:
- 1. Summary statistics (mean/median, proportions) including
 - → standard errors (confidence intervals)
 - → preliminary comparisons between groups (graphically or with statistical tests)
- 2. Proper regression model
 - → Multivariate model
 - → Effect sizes (mean differences, odds ratios, etc.) and confidence intervals
 - → Statistical tests for association with the outcome

The Survival Function

The Survival Function

- If we measure the time to event, a reasonable question might be:
- "What is the probability of not having the event by time t?"
 or
 "What proportion of the population will not have the event by time t?"
- The survival function S(t): The probability of being event-free by time t
- It's a probability which decreases over time
- S(0) = 1 if $t_1 < t_2$ then $S(t_1) \ge S(t_2)$
- Use the time-to-event data to estimate:

Kaplan-Meier Estimate

Kaplan-Meier estimate of the survival function (with 95% confidence int.)

•
$$S(0) = \frac{10}{10} = 1$$

- $S(0) = \frac{10}{10} = 1$
- $S(1) = \frac{10}{10} = 1$

•
$$S(0) = \frac{10}{10} = 1$$

•
$$S(1) = \frac{10}{10} = 1$$

•
$$S(4) = \frac{9}{10} = 0.9$$

Time

Survival calculation:

•
$$S(0) = \frac{10}{10} = 1$$

•
$$S(1) = \frac{10}{10} = 1$$

•
$$S(4) = \frac{9}{10} = 0.9$$

•
$$S(6) = S(4) \cdot \frac{8}{9} = 0.9 \cdot 0.89 = 0.8$$

0

2

0.00 -

•
$$S(0) = \frac{10}{10} = 1$$

•
$$S(1) = \frac{10}{10} = 1$$

•
$$S(4) = \frac{9}{10} = 0.9$$

•
$$S(6) = S(4) \cdot \frac{8}{9} = 0.9 \cdot 0.89 = 0.8$$

•
$$S(8) = S(6) \cdot \frac{5}{6} = 0.8 \cdot 0.83 = 0.67$$

•
$$S(0) = \frac{10}{10} = 1$$

•
$$S(1) = \frac{10}{10} = 1$$

•
$$S(4) = \frac{9}{10} = 0.9$$

•
$$S(6) = S(4) \cdot \frac{8}{9} = 0.9 \cdot 0.89 = 0.8$$

•
$$S(8) = S(6) \cdot \frac{5}{6} = 0.8 \cdot 0.83 = 0.67$$

•
$$S(10) = S(8) \cdot \frac{2}{3} = 0.67 \cdot 0.67 = 0.44$$

Kaplan-Meier Estimate

Kaplan-Meier estimate of the survival function (with 95% confidence int.)

Kaplan-Meier Estimate (2)

Kaplan-Meier estimate of the survival function (with 95% confidence int.)

Median survival time

- Another interesting statistic could be the Median Survival Time:
 - → The time until 50% have experienced the event.
 - \rightarrow For which t is S(t)=0.5?

Comparing Survival Curves

- We can compare survival curves between groups
- We can do a statistical test—the log-rank test for difference between the curves

The Cumulative Incidence Function

- "The risk"
- 1-S(t)

- The proportion who have had the event by t
- or equivalently the probability of having the event by time t
- Study Survival or Cumulative Incidence depending on context
 - → Which more interesting: the event-havers or the event-free?
 - → Cancer researchers favor survival (often survival after cancer dx)
 - → Hepatology favors cumulative incidence (who is at greater risk of dx)

The Hazard Rate

Different View: Transition Between States

Subject starts in one state and at some timepoint moves to a different state

- We study the transition (the arrow)
- S(t) is the proportion still in the 1st state at time t

The Hazard Rate

- The rate of transition is determined by the hazard rate
- Hazard rate function = h(t)

- The hazard is a velocity
- $h(t) \geq 0$
- Higher hazard rate means both more events over time and events sooner

Hazard Function Examples

 The Hazard function can look very different depending on the mechanics of the transition

The Cumulative Hazard

The total accumulated hazard from O to t:

$$H(t) = \int_0^t h(u)du$$

- If the hazard is the velocity, the cumulative hazard is the total distance travelled
- How much hazard were you exposed to?
 - → A lot over a short time?
 - → A little over a long time?

Hazard & Survival

 How is the hazard function related to the survival function?

Hazard & Survival

 How is the hazard function related to the survival function?

Two Measures of Interest

- When doing survival analysis, we want to study two quantities:
- The Survival (or Cumulative Incidence) function over time for summary and interesting comparisons
 - → More practical scale
 - e.g. survival after 5 years
 - treatment vs. no treatment
 - by smoking and age group (4 comparisons)
- 2. The Hazard function
 - → Useful scale for exposure/risk factors
 - → Example: carcinogens for developing cancer

Cox Proportional Hazards Regression

Proportional Hazards

• How do we compare hazards $h_1(t)$ and $h_2(t)$?

• Hazard ratio: $HR(t) = \frac{h_1(t)}{h_2(t)}$

Proportional hazards:

- → If the hazard ratio is constant over time
- $\rightarrow h_1(t) = HR \cdot h_2(t)$

Proportional Hazards

• How do we compare hazards $h_1(t)$ and $h_2(t)$?

• Hazard ratio:
$$HR(t) = \frac{h_1(t)}{h_2(t)}$$

Proportional hazards:

→ If the hazard ratio is constant over time

$$\rightarrow h_1(t) = HR \cdot h_2(t)$$

Cox Proportional Hazards Regression Models

- The workhorse for inference in survival analysis
- All subjects have an unknown hazard function specific to them
- We impose a rule:
 - \rightarrow There is a common underlying shape to all the hazards, $h_0(t)$
 - ightarrow All subjects' hazards are then **proportional to** $h_0(t)$ according to their covariates/risk factors
- Subject i's hazard = $h_0(t) \cdot HR_i$

Cox Proportional Hazards Regression Models (2)

- Subject i's hazard = $h_0(t) \cdot HR_i$
- Cox regression is regression on $ln(HR_i)$:

$$\ln(HR_i) = \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_m X_{mi}$$

- The β:s are estimated using the time-to-event outcome and the covariates
- $h_0(t)$ is not estimated! ("semi-parametric", "partial log-likelihood")

Interpreting Cox Models

$$\ln(HR_i) = \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_m X_{mi}$$

- The β :s are "log-hazard ratios"
- e^{eta_j} is the hazard ratio from a 1 unit increase in covariate X_j
 - → Binary (O/1): Change from treatment group 1 to treatment group 2
 - → Continuous: Change in BMI from 25 to 26
 - \rightarrow Multiplicative, e.g. 2 unit change $\Rightarrow e^{\beta_j \cdot 2} = e^{\beta_j} \cdot e^{\beta_j}$, etc.
- Like all other regressions we can get confidence intervals and p-values for each β

Pros and Cons of the Cox Model

- Pros:
 - \rightarrow We don't need to model $h_0(t)$
 - → Very efficient compared to fully parametric alternatives
- Cons:
 - → Hinges on the proportional hazards assumption
 - → No time-varying effects

- PBC: Autoimmune disease destroying the bile ducts in the liver
- Causes fibrosis (scarring) ⇒ Cirrhosis ⇒ Liver failure ⇒ Death
- What is your prognosis based on your current fibrosis stage (1-4)?
- 412 PBC patients from the Mayo clinic
- <u>Stage 1+2:</u> 113 <u>Stage 3:</u> 155 <u>Stage 4 (cirrhosis):</u> 144
- 182 died or underwent liver transplant over up to 12 years (median 5 years)
- data("pbc", package="survival") in R

- Kaplan-Meier curves:
- Can do log-rank test, but...
 - → Age is potential confounder!
 - risk of death
 - fibrosis progression (time)
 - → Overall quantification of the difference
- Cox regression let's us do all this and test for differences between stages

• Cox model: $ln(HR) = \beta_1[age] + \beta_2[sex(f)] + \beta_3[stage 3] + \beta_4[stage 4]$

Estimates:	Hazard Ratios:	Significance tests:		

• Cox model:
$$\ln(HR) = \beta_1[age] + \beta_2[sex(f)] + \beta_3 \cdot 0 + \beta_4 \cdot 0$$

Estimates: Hazard Ratios:

• Cox model:
$$\ln(HR) = \beta_1[age] + \beta_2[sex(f)] + \beta_3 \cdot 1 + \beta_4 \cdot 0$$

Estimates: Hazard Ratios:

Stage 4:
$$\operatorname{Cox model:} \ln(HR) = \beta_1[age] + \beta_2[sex(f)] + \beta_3 \cdot 0 + \beta_4 \cdot 1$$

Estimates:

Hazard Ratios:

• Cox model: $ln(HR) = \beta_1[age] + \beta_2[sex(f)] + \beta_3[stage 3] + \beta_4[stage 4]$

Estimates:

coef exp(coef)
age 0.011160 1.011222
sexf -0.276887 0.758140
stage3 0.588064 1.800500
stage4 1.463718 4.321997

Hazard Ratios:

• Cox model: $ln(HR) = \beta_1[age] + \beta_2[sex(f)] + \beta_3[stage 3] + \beta_4[stage 4]$

Estimates:

```
coef exp(coef)
age 0.011160 1.011222
sexf -0.276887 0.758140
stage3 0.588064 1.800500
stage4 1.463718 4.321997
```

Hazard Ratios:

HR age 60 vs 40:
$$e^{0.011 \cdot (60-40)} = 1.25$$

• Cox model: $ln(HR) = \beta_1[age] + \beta_2[sex(f)] + \beta_3[stage 3] + \beta_4[stage 4]$

Estimates:

	coef	exp(coef)
age	0.011160	1.011222
sexf	-0.276887	0.758140
stage3	0.588064	1.800500
stage4	1.463718	4.321997

Hazard Ratios:

Significance tests:

Factor	Chi-Square	d.f.	Р
age	2.29	1	0.1301
sex	1.70	1	0.1929
stage	55.57	2	<.0001
TOTAL	69.00	4	<.0001

HR age 60 vs 40: $e^{0.011 \cdot (60-40)} = 1.25$

 Do the curves look like they have proportional hazards?

- Do the curves look like they have proportional hazards?
- If they did, according to the Cox model:
- Important to check!
- What to do?
 - → Flexible parametric survival model (advanced)

- Do the curves look like they have proportional hazards?
- If they did, according to the Cox model: Flexible parametric model:
- Important to check!
- What to do?
 - → Flexible parametric survival model (advanced)

- Do the curves look like they have proportional hazards?
- If they did, according to the Cox model: Flexible parametric model:
- Important to check!
- What to do?
 - → Flexible parametric survival model (advanced)

rickard.strandberg@ki.se

Summary

- The most important concepts of survival analysis
 - The type of data we use:
 - Time-to-event
 - 2. The survival function & the cumulative incidence function:
 - Summary statistics
 - The hazard rate function
 - The mechanism behind the survival
 - 4. The Cox proportional hazards regression model
 - All the regression goodness!

