CUDA Optimization with Parallel Transpose

Jeong-Gun Lee

Dept. of Computer Engineering, Hallym Univ Email: Jeonggun.Lee@gmail.com

CUDA Optimization – Matrix Transpose

 I will use the case of "Optimizing Parallel Transpose in CUDA"

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

$$\begin{bmatrix} 6 & 4 & 24 \\ 1 & -9 & 8 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 6 & 1 \\ 4 & -9 \\ 24 & 8 \end{bmatrix}$$

Matrix Transpose 1

- Consider an n×n matrix where 32 divides n.
- We focus on the device code:
 - the host code performs typical tasks: data allocation and transfer between host and device, the launching and timing of several kernels, result validation, and the deallocation of host and device memory.
- Benchmarks illustrate this section:
 - we compare our matrix transpose kernels against a matrix copy kernel,
 - for each kernel, we compute the effective bandwidth, calculated in GB/s as twice the size of the matrix (once for reading the matrix and once for writing) divided by the time of execution

Matrix Transpose 2

- Benchmarks illustrate this section:
 - for each kernel, we compute the [effective bandwidth], calculated in GB/s as twice the size of the matrix (once for reading the matrix and once for writing) divided by the time of execution

Matrix Transpose 2

Effective Bandwidth

 $= 8MB/t_{exe}$

If $(t_{exe}=0.02 \text{ ms})$?

= 8MB/0.02ms = 800MB/2ms = 400GB/s

Transpose 'C' code: CPU version

$O(n^2)$

```
void transpose_CPU(float in[], float out[])
{
    for(int j=0; j < N; j++)
        for(int i=0; i < N; i++)
        out[j + i*N] = in[i + j*N]; // out(j,i) = in(i,j)
}</pre>
```


Transpose 'C' code: GPU version 1

$O(n^2)$

```
// to be launched on a single thread
// transpose_serial < < < 1,1 >>> (d_in, d_out);
__global__ void transpose_serial(float in[], float out[])
{
    for(int j=0; j < N; j++)
        for(int i=0; i < N; i++)
        out[j + i*N] = in[i + j*N]; // out(j,i) = in(i,j)
}</pre>
```


Transpose 'C' code: GPU version 2

```
// to be launched on a single thread
// transpose_parallel_per_row < < < 1, N > > > (d_in, d_out);
_global__ void
transpose_parallel_per_row(float in[], float out[])
                                                 O(n)
       int i = threadIdx.x;
      for(int j=0; j < N; j++)
             out[j + i*N] = in[i + j*N]; // out(j,i) = in(i,j)
```

Transpose 'C' code: GPU version 3

```
// dim3 blocks(N/K,N/K); // blocks per grid
// dim3 threads(K,K); // threads per block
// transpose_parallel_per_element < < < blocks, threads > >> (d_in, d_out);
__global__ void
transpose_parallel_per_element(float in[], float out[])
       int i = blockIdx.x * K + threadIdx.x;
                                                  O(1)
       int j = blockIdx.y * K + threadIdx.y;
       out[j + i*N] = in[i + j*N]; // out(j,i) = in(i,j)
```

Deep Dive: Performance-Aware Opt.

N = Height or width (square matrix: height == width)
K = size of a thread block in x-dimension or y-dimension

Deep Dive: Performance-Aware Opt.

ubuntu@tegra-ubuntu:~/TRANSPOSE/cs344/Lesson Code Snippets/Lesson 5 Code Snippets\$./**transpose**

```
transpose_serial: 963.833 ms.

Verifying transpose...Success
transpose_parallel_per_row: 13.0229 ms.

Verifying transpose...Success
transpose_parallel_per_element: 11.4738 ms.

Verifying transpose...Success
transpose_parallel_per_element_tiled 32x32: 9.39575 ms.

Verifying ...Success
transpose_parallel_per_element_tiled 16x16: 4.44258 ms.

Verifying ...Success
transpose_parallel_per_element_tiled_padded 16x16: 4.073 ms.

Verifying...Success
```

Performance Optimization

Matrix Transpose - CUDA

256 threads

- Present different kernels called from the host code, each addressing different performance issues.
- All kernels launch thread blocks of dimension "32x8", where each block transposes (or copies) a tile of dimension 32x32.
- As such, the parameters TILE_DIM and BLOCK_ROWS are set to 32 and 8, respectively.

A simple copy kernel 1 – for Comparison

```
global void copy(float *odata, float* idata)
  int x = blockIdx.x*TILE DIM + threadIdx.x;
  int y = blockIdx.y*TILE DIM + threadIdx.y;
  int width = gridDim.x * TILE DIM;
  for (int j=0; j<TILE DIM; j+=BLOCK_ROWS) {
       odata[(y+j)*width + x] = idata[(y+j)*width + x];
                                                                            width
                                               BLOCK_ROWS
                                                                             (x,y)
i = 0
 >> odata[y*width + x] = idata[y*width + x];
i = 1
 >>odata[(y+1)*width + x] = idata[(y+1)*width + x];
```

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

A simple copy kernel 2 – for Comparison

- odata and idata are pointers to the input and output matrices,
- width = height = gridDim.x*TILE_DIM
- In this kernel, xindex and yindex are global 2D matrix indices and they used to calculate index, the 1D index used to access matrix elements.

```
__global___ void copy(float *odata, float* idata)
{
    int x = blockIdx.x*TILE_DIM + threadIdx.x;
    int y = blockIdx.y*TILE_DIM + threadIdx.y;
    int width = gridDim.x * TILE_DIM;

    for (int j=0; j<TILE_DIM; j+=BLOCK_ROWS) {
        odata[(y+j)*width + x] = idata[(y+j)*width + x];
    }
}
```

A points trans

A naive transpose kernel

```
__global__ void transposeNaive(float *odata, float* idata)

{
    int x = blockIdx.x*TILE_DIM + threadIdx.x;
    int y = blockIdx.y*TILE_DIM + threadIdx.y;
    int width = gridDim.x*TILE_DIM;

    for (int j=0; j<TILE_DIM; j+=BLOCK_ROWS) {
        odata[x*width + (y+j)] = idata[(y+j)*width + x];
    }
}
```


BLOCK_ROWS

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

Naive transpose kernel vs copy kernel

 The performance of these two kernels on a 1024x1024 matrix using a Tesla GPUs is given in the following table:

	Effective Bandwidth (GB/s, ECC enabled)		
Routine	Tesla M2050	Tesla K20c	
сору	105.2	136.0	
transposeNaive	18.8	. 55.3	

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

Problem ?

```
_global___ void transposeNaive(float *odata, float* idata)
int x = blockIdx.x*TILE DIM + threadIdx.x;
int y = blockIdx.y*TILE DIM + threadIdx.y;
int width = gridDim.x*TILE DIM;
for (int j=0; j<TILE DIM; j+=BLOCK ROWS) {
     odata[x*width + (y+j)] = idata[(y+j)*width + x];
                              (0,0) \rightarrow (1,0) \rightarrow (2,0) \rightarrow (3,0) \rightarrow \cdots (31,0)
       (xindex, yindex):
                               (0, 1) \rightarrow (1, 1) \rightarrow (2, 1) \rightarrow (3, 1) \rightarrow \cdots (31, 1)
```

F

Problem?

```
_global___ void transposeNaive(float *odata, float* idata)
int x = blockIdx.x*TILE DIM + threadIdx.x;
int y = blockIdx.y*TILE DIM + threadIdx.y;
int width = gridDim.x*TILE DIM;
for (int j=0; j<TILE DIM; j+=BLOCK ROWS) {
     odata[x*width + (y+j)] = idata[(y+j)*width + x];
       (xindex, yindex): (0, 0) \rightarrow (1, 0) \rightarrow (2, 0) \rightarrow (3, 0) \rightarrow \cdots (31, 0)
                               (0, 1) \rightarrow (1, 1) \rightarrow (2, 1) \rightarrow (3, 1) \rightarrow \cdots (31, 1)
```

One Transaction .vs. 32 Transactions!

 Because device memory [GPU DDR Memory] has a much higher latency and lower bandwidth than on-chip memory [shared memory], special attention must be paid to: how global memory accesses are performed?

- The simultaneous global memory accesses by each thread of a during the execution of a single read or write instruction will be coalesced into a single access if:
 - The size of the memory element accessed by each thread is either 4, 8, or 16 bytes.
 - The elements form a contiguous block of memory.
 - The i-th element is accessed by the i-th thread in the warp.

- The simultaneous global memory accesses by each thread of a during the execution of a single read or write instruction will be coalesced into a single access if:
 - The size of the memory element accessed by each thread is either 4, 8, or 16 bytes.
 - The elements form a contiguous block of memory.
 - The i-th element is accessed by the i-th thread in the warp.
- Last two requirements can be relaxed (compiler optimization) with compute capabilities of 1.2.
- Coalescing happens even if some threads do not access memory (divergent warp)

- Allocating device memory through cudaMalloc() and choosing TILE_DIM to be a multiple of 16 ensures alignment with a segment of memory, therefore all loads from idata are coalesced.
- Coalescing behavior differs between the simple copy and naïve transpose kernels when writing to odata.

- The way to avoid uncoalesced global memory access is
 - to read the data into shared memory and,
 - have each warp access noncontiguous locations in shared memory in order to write contiguous data to odata.
- There is no performance penalty for noncontiguous access patterns in shared memory as there is in global memory.
- a __synchthreads() call is required to ensure that all reads from idata to shared memory have completed before writes from shared memory to odata.

```
global void transposeCoalesced(float *odata, const float *idata)
                                                          idata
                                                                                    odata
     shared__ float tile[TILE_DIM][TILE_DIM];
                                                                        tile
   int x = blockIdx.x * TILE DIM + threadIdx.x;
   int y = blockIdx.y * TILE DIM + threadIdx.y;
   int width = gridDim.x * TILE DIM;
   for (int j = 0; j < TILE DIM; j += BLOCK ROWS)
     tile[threadIdx.y+j][threadIdx.x] = idata[(y+j)*width + x];
     syncthreads();
   x = blockldx.y * TILE_DIM + threadIdx.x; // transpose block offset
   y = blockIdx.x * TILE DIM + threadIdx.y;
   for (int j = 0; j < TILE DIM; j += BLOCK ROWS)
     odata[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];
```


- a warp of threads reads contiguous data from idata into rows of the shared memory tile.
- After recalculating the array indices, a column of the shared memory tile is written to contiguous addresses in odata.
- Because threads write different data to odata than they read from idata, we must use a block-wise barrier synchronization __syncthreads().

Effective Bandwidth (GB/s, ECC enabled)				
Routine	Tesla M2050	Tesla K20c		
copy	105.2	136.0		
copySharedMem	104.6	152.3		
transposeNaive	18.8	55.3		
transposeCoalesced	51.3	97.6		

- There is a dramatic increase in effective bandwidth of the coalesced transpose over the naive transpose, but there still remains a large performance gap between the coalesced transpose and the copy:
 - One possible cause of this performance gap could be the synchronization barrier required in the coalesced transpose.
 - This can be easily assessed using the following copy kernel which utilizes shared memory and contains a __syncthreads() call.

```
global void copySharedMem(float *odata, const float *idata)
  _shared___ float tile[TILE_DIM * TILE_DIM];
int x = blockIdx.x * TILE DIM + threadIdx.x;
int y = blockIdx.y * TILE DIM + threadIdx.y;
int width = gridDim.x * TILE DIM;
for (int j = 0; j < TILE DIM; j += BLOCK ROWS)
  tile[(threadIdx.y+j)*TILE_DIM + threadIdx.x] = idata[(y+j)*width + x];
 syncthreads();
for (int j = 0; j < TILE DIM; j += BLOCK ROWS)
  odata[(y+j)*width + x] = tile[(threadIdx.y+j)*TILE DIM + threadIdx.x];
```

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

Effective Bandwidth (GB/s, ECC enabled)				
Routine	Tesla M2050	Tesla K20c		
copy	105.2	136.0		
copySharedMem	104.6	152.3		
transposeNaive	18.8	55.3		
transposeCoalesced	51.3	97.6		

 The shared memory copy results seem to suggest that the use of shared memory with a synchronization barrier has little effect on the performance.

 Shared memory is divided into 32 equally-sized memory modules, called banks, which are organized such that successive 32-bit words are assigned to successive banks.

 These banks can be accessed simultaneously, and to achieve maximum bandwidth to and from shared memory, the [threads in a warp should access shared memory associated with different banks].

 These banks can be accessed simultaneously, and to achieve maximum bandwidth to and from shared memory the threads in a warp should access shared memory associated with different banks.

 The exception to this rule is when all threads in a half warp read the same shared memory address, which results in a broadcast where the data at that address is sent to all threads of the half warp in one transaction.

Threads

Shared Memory Banks

- The coalesced transpose uses a 32×32 shared memory array of floats.
- For a shared memory tile of 32 × 32 elements, all elements in a column of data map to the same shared memory bank
 - Resulting in a worst-case scenario for memory bank conflicts:
 reading a column of data results in a 32-way bank conflict.
- A simple way to avoid this conflict is to pad the shared memory array by one column:

__shared__ float tile[TILE_DIM][TILE_DIM+1];

 A simple way to avoid this conflict is to pad the shared memory array by one column:

__shared__ float tile[TILE_DIM][TILE_DIM+1];

tile[tid % 4]:

 \rightarrow 1, 5, 9, 13 threads access a bank1

Effective Bandwidth (GB/s, ECC enabled)				
Routine	Tesla M2050	Tesla K20c		
сору	105.2	136.0		
copySharedMem	104.6	152.3		
transposeNaive	18.8	55.3		
transposeCoalesced	51.3	97.6		
transposeNoBankConflicts	99.5	144.3		

SATISFIED!

https://devblogs.nvidia.com/efficient-matrix-transpose-cuda-cc/

Granularity of Parallelism

- Size of a Tile?
 - We do test with a block of 32x8 threads with config. of "(32,8)"
 - What about 32x32?
 - "1024 threads wait at a barrier"
 - High Parallelism (?) but high synchronization overhead
 - What about 16x16?
 - "256 threads wait at a barrier"
 - Lower Parallelism (?) but lower synchronization overhead

Minimize timing waiting at a barrier!

Conclusion - Transpose

- Understand CUDA performance characteristics
 - Memory coalescing
 - Bank conflicts
 - Granularity of parallelism
- Use peak performance metrics to guide optimization