Simple but longterm card-terminal authorization protocol based on one time passwords - sketch of protocol

Prerequisites

- Each card has a unique ID $(Card_{ID})$ and stores its current state (ST), which is simultaneously a symmetric key used for secure communication with the terminal.
- Terminal stores a mapping from card IDs to their current states. We assume that for a given card, the initial state of the card and the corresponding state terminal holds are the same.

Definitions

- $I\mathcal{D}$ card IDs space $\{0,1\}^{32}$
- \mathcal{R} challenges space $\{0,1\}^{64}$
- \mathcal{K} key space $\{0,1\}^{256}$
- Enc encryption (AES)
- Dec decryption (AES)
- ACRT acceptable card response time (exact value to be defined)
- time() function that returns current timestamp
- $f: I\mathcal{D} \to \mathcal{K}$ mapping from card IDs to their current states

Authentication protocol (simple pre-shared key challenge-response authentication):

Terminal (f)	Transmission	Card $(Card_{ID}, ST)$
1.		
2 Teles 5 Paris 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\leftarrow Card_{ID}$	
2. Take $r \in \mathcal{R}$ uniformly at random.		
Let t := time()	$\rightarrow r$	
3.	/ !	$m_1 := Enc_{ST}(r)$
	$\leftarrow m_1$	
4. Let $t' := time()$.		
Check if $t' - t < ACRT$ (If not, abort.)		
Let $k := f(Card_{ID})$ and check		
if $Dec_k(m_1) = r$ (If not, abort.)		
Take $k' \in \mathcal{K} \setminus \{k\}$ uniformly at random		
and update f so that $f(Card_{ID}) = k'$.		
$m_2 := Enc_k(k')$		
	$\rightarrow m_2$	
5.		$ST := Dec_{ST}(m_2)$

If the protocol is executed successfully, terminal opens the door to the secure location.

ASN.1 Documentation