Lecture 24. A Case Study of Ensembling Unreliable Sources

COMP90051 Statistical Machine Learning

Semester 1, 2021

Lecturer: Yuan Li

A truth inference problem...

x_{ij}	j=1	j=2	j=3	j=4	j=5	
i=1	1	1	1	1	1	
i=2	1	1	0	0	1	
i=3	0	0	0	1	0	
i=4	0	1	0	0	1	
i=5	1	1	1	0	1	\rightarrow
i=6	0	1	1	1	1	
i=7	1	0	0	0	1	
i=8	0	1	0	0	1	
i=9	1	1	0	1	1	
•••	•••	•••	•••	•••	•••	_

y_i	
?	

to build a dataset for binary classification

1000 items

5 workers

everyone has labeled everything

 how to infer the ground truth?

Notations

x_{ij}	j=1	j=2	j=3	j=4	j=5
i=1	1	1	1	1	1
i=2	1	1	0	0	1
i=3	0	0	0	1	0
i=4	0	1	0	0	1
i=5	1	1	1	0	1
i=6	0	1	1	1	1
i=7	1	0	0	0	1
i=8	0	1	0	0	1
i=9	1	1	0	1	1
•••	•••	•••	•••	•••	•••

y_i	
_	

• 1000 items, i=1...1000

• 5 workers, j=1,2,3,4,5

7

?

?

?

?

• x_{ij} - worker j's label to item i

• y_i - true label of item i

Consider 3 scenarios

- 1000 items, 5 workers
- every worker has labeled every item -> 5000 labels

- High resource have many gold labels, e.g., 500
- No resource don't have any gold labels
- Low resource have a few, e.g., 5

Consider 3 scenarios

- 1000 items, 5 workers
- every worker has labeled every item -> 5000 labels

- High resource have many gold labels, e.g., 500
- No resource don't have any gold labels
- Low resource have a few, e.g., 5

High resource

 y_i

0

0

0

0

&

x_{ij}	j=1	j=2	j=3	j=4	j=5
1	1	1	1	1	1
2	1	1	0	0	1
3	0	0	0	1	0
4	0	1	0	0	1
5	1	1	1	0	1
6	0	1	1	1	1
7	1	0	0	0	1
8	0	1	0	0	1
9	1	1	0	1	1
•••	•••	•••	•••	•••	•••
500	0	0	0	0	0

•	500 items with gold
	labels as training set

- treat each worker as a feature
- every row as a 5-d feature vector
- train a binary classifier

High resource

x_{ij}	j=1	j=2	j=3	j=4	j=5		y_i
501	0	0	1	1	0		?
502	1	1	0	1	0		?
503	1	1	1	1	0		?
504	0	0	1	1	0		?
505	1	1	0	0	1	\rightarrow	?
506	0	0	1	0	0		?
507	1	1	1	1	1		?
508	1	0	1	1	1		?
509	0	0	0	0	0		?
							•••
1000	1	1	0	1	1		?

- the rest as test set
- make predictions

Choice of binary classifiers?

x_{ij}	j=1	j=2	j=3	j=4	j=5
1	1	1	1	1	1
2	1	1	0	0	1
3	0	0	0	1	0
4	0	1	0	0	1
5	1	1	1	0	1
6	0	1	1	1	1
7	1	0	0	0	1
8	0	1	0	0	1
9	1	1	0	1	1
•••	•••	•••	•••	•••	•••
500	0	0	0	0	0

y_i	
1	
1	
0	
0	
1	
1	
0	
0	
1	
•••	
0	

&

Logistic regression

SVM

Neural networks

Random forests

Boosting trees

Also, Naïve Bayes!

Choice of binary classifiers?

x_{ij}	j=1	j=2	j=3	j=4	j=5
1	1	1	1	1	1
2	1	1	0	0	1
3	0	0	0	1	0
4	0	1	0	0	1
5	1	1	1	0	1
6	0	1	1	1	1
7	1	0	0	0	1
8	0	1	0	0	1
9	1	1	0	1	1
•••	•••	•••	•••	•••	•••
500	0	0	0	0	0

y_i
1
1
0
0
1
1
0
0
1
•••
0

&

- Logistic regression
- SVM
- Neural networks
- Random forests
- Boosting trees
- Also, Naïve Bayes!
 - * generative model, others are discriminative

Compare NB with LR

- Logistic regression
 - * models P(y|x, w, b), learns weights (w) and bias (b)
 - * $\sum_{i=1}^{5} w_i x_i + b > 0 \rightarrow y = 1$, otherwise, y = 0
- Naïve Bayes
 - * $P(x, y|\theta) = P(x_1, x_2, x_3, x_4, x_5|y, \theta)P(y)$ = $P(x_1|y, \theta)P(x_2|y, \theta)P(x_3|y, \theta)P(x_4|y, \theta)P(x_5|y, \theta)P(y)$
 - conditional independence assumption
 - * learns confusion matrices (θ) and class distribution P(y)
 - * $P(x, y = 1 | \theta) > P(x, y = 0 | \theta) \rightarrow y = 1$
 - otherwise, y = 0

What NB learns...

Class distribution

*
$$P(y = 0) = \#\{y = 0\}/500$$

*
$$P(y = 1) = \#\{y = 1\}/500$$

Confusion matrix for each worker

$$\begin{bmatrix}
P(x = 0 | y = 0) & P(x = 1 | y = 0) \\
P(x = 0 | y = 1) & P(x = 1 | y = 1)
\end{bmatrix}$$

*
$$P(x = 0|y = 0) = \#\{x = 0, y = 0\}/\#\{y = 0\}$$

*
$$P(x = 1|y = 0) = 1 - P(x = 0|y = 0)$$

Sometimes called 2-coin model

Use NB to make prediction for 11000

Confusion matrix	
Worker 1	$\begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$
Worker 2	$\begin{bmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{bmatrix}$
Worker 3	[0.7 0.3] 0.4 0.6]
Worker 4	$\begin{bmatrix} 0.6 & 0.4 \\ 0.3 & 0.7 \end{bmatrix}$
Worker 5	[0.7 0.3] 0.2 0.8]
Class distribution	
P(y=0)=0.5	P(y=1)=0.5

$$\begin{bmatrix}
P(x = 0 | y = 0) & P(x = 1 | y = 0) \\
P(x = 0 | y = 1) & P(x = 1 | y = 1)
\end{bmatrix}$$

- P(11000|y=0)=0.1*0.2*
 0.7*0.6*0.7=0.00588
- P(11000|y=1)=0.8*0.7*
 0.4*0.3*0.2=0.01344
- So...
- P(11000|y=1) is larger
- More likely the true label is 1

Consider 3 scenarios

- 1000 items, 5 workers
- every worker has labeled every item -> 5000 labels

- High resource have many gold labels, e.g., 500
- No resource don't have any gold labels
- Low resource have a few, e.g., 5

No resource

x_{ij}	j=1	j=2	j=3	j=4	j=5	•	y_i
1	1	1	1	1	1		?
2	1	1	0	0	1		?
3	0	0	0	1	0		?
4	0	1	0	0	1		?
5	1	1	1	0	1	\rightarrow	?
6	0	1	1	1	1		?
7	1	0	0	0	1		?
8	0	1	0	0	1		?
9	1	1	0	1	1		?
•••							
1000	1	1	0	1	1		?

no gold label

can't use supervised models

majority voting?

Majority Voting

- sum = x1+x2+x3+x4+x5
- if sum=3,4,5 -> predicted label = 1
- if sum=0,1,2 -> predicted label = 0

But workers are not equally accurate...

Use NB to make prediction for 11000

Confusion matrix				
Worker 1	$\begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$			
Worker 2	$\begin{bmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{bmatrix}$			
Worker 3	$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$			
Worker 4	$\begin{bmatrix} 0.6 & 0.4 \\ 0.3 & 0.7 \end{bmatrix}$			
Worker 5	[0.7 0.3] 0.2 0.8]			
Class distribution				
P(y=0)=0.5	P(y=1)=0.5			

$$\begin{bmatrix}
P(x = 0 | y = 0) & P(x = 1 | y = 0) \\
P(x = 0 | y = 1) & P(x = 1 | y = 1)
\end{bmatrix}$$

- P(11000|y=0)=0.1*0.2*
 0.7*0.6*0.7=0.00588
- P(11000|y=1)=0.8*0.7*
 0.4*0.3*0.2=0.01344
- So...
- P(11000|y=1) is larger
- More likely the true label is 1

1000 points, binary classification

High resource, 500 gold labels

No resource, 0 gold label

GMM can work in both cases

High resource, 500 gold labels

No resource, 0 gold label

Benefits of generative models

- Optimizing discriminative models requires gold labels
 - * $\theta^* = \operatorname{argmax}_{\theta} P(Y|X,\theta)$ requires Y
- Generative models define the joint distribution $P(X,Y|\theta) = P(X|Y,\theta)P(Y|\theta)$
 - * can work when Y is known
 - $\theta^* = \operatorname{argmax}_{\theta} P(X, Y | \theta)$
 - * can also work when Y is unknown, by marginalization
 - $P(X|\theta) = \sum_{Y} P(X,Y|\theta)$
 - $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)$
- So, unsupervised Naïve Bayes?

NB vs. GMM

Naïve Bayes

```
* P(x, y|\theta) = P(x_1, x_2, x_3, x_4, x_5|y, \theta)P(y)
= P(x_1|y, \theta)P(x_2|y, \theta)P(x_3|y, \theta)P(x_4|y, \theta)P(x_5|y, \theta)P(y)
```

GMM

*
$$P(x, y | \mu, \Sigma) = P(x_1, x_2 | y, \mu, \Sigma) P(y) = \mathcal{N}(x_1, x_2 | \mu_y, \Sigma_y) P(y)$$

- GMM learns clusters
- What does NB learn?

Naïve Bayes as clustering

- Imagine 2 clusters with 00000 and 11111 as centers
- every $(x_1, x_2, x_3, x_4, x_5)$ is generated from one of them
 - * $P(x_1, x_2, x_3, x_4, x_5 | y = c)$ defines the probability that $(x_1, x_2, x_3, x_4, x_5)$ is generated from cluster c
- Think about the "similarity" between 00000 and
 - * 00000, 10000, 11000, 11100, 11110, 11111
- As it moves away from the center 00000, the probability, or similarity, goes down

Similarity

Confusion matrix				
Worker 1	$\begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$			
Worker 2	$\begin{bmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{bmatrix}$			
Worker 3	$\begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$			
Worker 4	$\begin{bmatrix} 0.6 & 0.4 \\ 0.3 & 0.7 \end{bmatrix}$			
Worker 5	$\begin{bmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{bmatrix}$			
Class distribution				
P(y=0)=0.5	P(y=1)=0.5			

$$\begin{bmatrix}
P(x = 0|y = 0) & P(x = 1|y = 0) \\
P(x = 0|y = 1) & P(x = 1|y = 1)
\end{bmatrix}$$

- P(00000|y=0)=0.9*0.8*
 0.7*0.6*0.7=0.21168
- P(10000|y=0)=0.1*0.8*
 0.7*0.6*0.7=0.02352
- P(11000 | y=0)=0.00588
- P(11100 | y=0)=0.00252
- P(11110|y=0)=0.00168
- P(11111 | y=0)=0.00072

NB vs. GMM

Naïve Bayes

```
* P(x, y|\theta) = P(x_1, x_2, x_3, x_4, x_5|y, \theta)P(y)
= P(x_1|y, \theta)P(x_2|y, \theta)P(x_3|y, \theta)P(x_4|y, \theta)P(x_5|y, \theta)P(y)
```

GMM

*
$$P(x, y | \mu, \Sigma) = P(x_1, x_2 | y, \mu, \Sigma) P(y) = \mathcal{N}(x_1, x_2 | \mu_y, \Sigma_y) P(y)$$

- GMM learns clusters
- What does NB learn?
 - * NB also learns clusters

Formally, unsupervised NB

- θ unknown parameters
- $P(X,Y|\theta)$ joint distribution
- We only have observed X but not Y
- To learn θ , we first marginalize Y to get
 - * $P(X|\theta) = \sum_{Y} P(X,Y|\theta)$
- Then $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)$
- Use θ^* to make predictions $P(Y|X,\theta^*)$

Consider 3 scenarios

- 1000 items, 5 workers
- every worker has labeled every item -> 5000 labels

- High resource have many gold labels, e.g., 500
- No resource don't have any gold labels
- Low resource have a few, e.g., 5

Can we do the same?

- High resource
 - * learn θ^* from gold data
 - * $P(Y|X,\theta^*) \rightarrow$ predictions
- Low resource
 - * learn θ^* from gold data
 - * $P(Y|X,\theta^*) \rightarrow$ predictions

5 is insufficient for reliable estimate

Distribution vs. Point estimate

- distribution carries uncertainty (lost in point estimate)
- 3 heads + 2 tails vs. 300 heads + 200 tails

Can we do the same?

- High resource
 - * learn θ^* from gold data
 - * $P(Y|X,\theta^*) \rightarrow$ predictions
- Low resource
 - * learn 0* from gold data
 - * $P(Y|X,\theta^*)$ \rightarrow predictions
 - * learn a prior from gold $P(\theta) = P(\theta | X_{gold}, Y_{gold})$
 - * $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)P(\theta)$
 - * $P(Y|X,\theta^*) \rightarrow$ predictions

Summary

- High resource (any supervised model)
 - * learn θ^* from gold data
- No resource (unsupervised NB)
 - * $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)$
- Low resource (unsupervised NB)
 - * learn a prior from gold $P(\theta) = P(\theta | X_{gold}, Y_{gold})$
 - * $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)P(\theta)$ MAP
- $P(Y|X,\theta^*) \rightarrow \text{predictions}$

Can set a prior to encode our belief

- High resource (any supervised model)
 - * learn θ^* from gold data
- No resource (unsupervised NB)
 - * $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)P(\theta)$
- Low resource (unsupervised NB)
 - * learn a prior from gold $P(\theta) = P(\theta | X_{gold}, Y_{gold})$
 - * $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)P(\theta)$ MAP
- $P(Y|X,\theta^*) \rightarrow \text{predictions}$

Available algorithms

- Gradient descent
 - * general optimization method, widely used
- EM algorithm
 - not suitable for general purpose, like neural networks
 - good at marginalization objective
 - $P(X|\theta) = \sum_{Y} P(X,Y|\theta)$

$$\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)P(\theta)$$

- Gradient descent
 - * $\theta^* = \operatorname{argmin}_{\theta} \log P(X|\theta) \log P(\theta)$
- EM algorithm
- Both should work for either MLE or MAP, but
 - * parameters have constraints, e.g., sum up to 1, non-negative
 - * gradient descent is good for unconstrainted optimization
 - not trivial to apply it to constrained optimization
- So, EM is better

Learning process

- High resource
- gold labels -> θ^*
- θ^* -> predictions

- No resource/Low resource
- initialize θ^0
- for t=0,1,2,3,...
 - * θ^t -> predictions
 - known as pseudo labels
 - * pseudo labels -> θ^{t+1}
- until converge
- θ^* -> predictions

Problem: we still have point estimate

- High resource (any supervised model)
 - * learn θ^* from gold data
- No resource (unsupervised NB)
 - * $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)P(\theta)$
- Low resource (unsupervised NB)
 - * learn a prior from gold $P(\theta) = P(\theta | X_{gold}, Y_{gold})$
 - * $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)P(\theta)$
- $P(Y|X, \theta^*) \rightarrow \text{predictions}$

Replace θ^* with posterior of θ

- High resource (any supervised model)
 - * learn θ^* from gold data, $P(Y|X,\theta^*) \rightarrow$ predictions
- No resource (unsupervised NB)
 - * $P(\theta|X) = P(X|\theta)P(\theta)/\int P(X|\theta)P(\theta)d\theta$
- Low resource (unsupervised NB)
 - * learn a prior from gold $P(\theta) = P(\theta | X_{gold}, Y_{gold})$
 - * $P(\theta|X) = P(X|\theta)P(\theta)/\int P(X|\theta)P(\theta)d\theta$
- $P(Y|X) = \int P(Y|X,\theta)P(\theta|X) d\theta \rightarrow \text{predictions}$

Full-Bayesian solution

- High resource (any supervised model)
 - * not necessary, point estimate & posterior are very close
- No resource/Low resource
 - * Manually set the prior $P(\theta)$ or learn it from gold data
 - * get posterior $P(\theta|X) = \frac{P(X|\theta)P(\theta)}{\int P(X|\theta)P(\theta)d\theta}$
 - * $P(Y|X) = \int P(Y|X,\theta)P(\theta|X) d\theta \rightarrow \text{predictions}$
- Challenge
 - * Denominator is often intractable to calculate
 - Exception: Bayesian linear regression has analytical solution

Two approximate inference methods

Exact inference

*
$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{\int P(X|\theta)P(\theta)d\theta}$$

* $P(Y|X) = \int P(Y|X,\theta)P(\theta|X)d\theta \rightarrow \text{predictions}$

- Variational inference
 - * Find a simpler distribution $q(\theta) \approx P(\theta|X)$
 - * $P(Y|X) \approx \int P(Y|X,\theta)q(\theta) d\theta \rightarrow \text{predictions}$
- Sampling
 - * Draw S samples from $P(\theta|X), \{\theta_1, \theta_2, ..., \theta_S\}$
 - * $P(Y|X) \approx \frac{1}{S} \sum_{i=1}^{S} P(Y|X, \theta_i) \rightarrow \text{ predictions}$

Full-Bayesian vs. Point estimate

Exact inference

*
$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{\int P(X|\theta)P(\theta)d\theta}$$

Point estimate

- * $\theta^* = \operatorname{argmax}_{\theta} P(X|\theta)P(\theta)$
- * $P(Y|X, \theta^*) \rightarrow \text{predictions}$

*
$$P(Y|X) = \int P(Y|X,\theta)P(\theta|X) d\theta \rightarrow \text{predictions}$$

Variational inference

- * Find a simpler distribution $q(\theta) \approx P(\theta|X)$
- * $P(Y|X) \approx \int P(Y|X,\theta)q(\theta) d\theta \rightarrow \text{predictions}$

Sampling

- * Draw S samples from $P(\theta|X), \{\theta_1, \theta_2, ..., \theta_S\}$
- * $P(Y|X) \approx \frac{1}{S} \sum_{i=1}^{S} P(Y|X, \theta_i) \rightarrow \text{ predictions}$

Extensions

- Full-Bayesian via Sampling (MCMC)
 - Bayesian Classifier Combination (BCC)
 - Kim, Hyun-Chul, and Zoubin Ghahramani. "*Bayesian classifier combination*." In Artificial Intelligence and Statistics, pp. 619-627. PMLR, 2012.
- Our latest work
 - * Enhanced BCC (EBCC)
 - Li, Yuan, Benjamin Rubinstein, and Trevor Cohn. "Exploiting worker correlation for label aggregation in crowdsourcing." In International Conference on Machine Learning, pp. 3886-3895. PMLR, 2019.

EBCC

- #classes not necessarily equals #clusters
 - Let each class learn M clusters, e.g., M=10
- fit data better
- more flexible

Conclusion

- 1000 items, 5 workers, 5000 labels, 3 scenarios
- discriminative vs. generative, e.g., LR vs. NB
- unsupervised NB, GMM vs. NB, NB as clustering
- low resource vs. high resource
 - * point estimate vs. distribution -> full-Bayesian inference
- EM vs. gradient descent for MLE/MAP
- approximate full-Bayesian inference
 - variational inference, sampling

Thanks!