Certification of LEO-III Proofs

- 1. Leo-III
- 2. Proof Checking using Lambdapi (LP)
- 3. **Definition of a LP-Theory**
- 4. Encoding of the Calculus
- 5. Conclusion and Outlook

Melanie Taprogge, 26.09.2024

Leo-III

Leo-III HOL-ATP Workflow

Inference Rules

e.g. functional extensionality:

$$\frac{C \vee [s_{\tau \to \nu} \simeq t_{\tau \to \nu}]^{tt}}{C \vee [s_{\tau \to \nu} X_{\tau} \simeq t_{\tau \to \nu} X_{\tau}]^{tt}} (FunExtPos)^{\dagger}$$

† : where X is a fresh variable

Leo-III

Example: Cantor's Theorem

Representation of sets:

$$y(x) = \begin{cases} true & if x \in Y \\ false & else \end{cases}$$

There is no surjective function f form a set S to its powerset $\mathcal{P}(S)$ Cantor 1932]

TPTP Encoding

```
thf(sur cantor, conjecture,
         [F: $i > ($i > $0)]:
         ! [Y: $i > $o] :
         ? [X: $i] : (
        (F @ X) = Y)))).
```

Proof Checking using Lampdapi

- Goal: Encode proofs in a way that allows us to check their correctness
- The Dedukti framework implements the λΠ-modulo-Theory [Cousineau and Dowek 2007] and enables an encoding of proofs following the propositions as types principle [Curry 1934, Howard 1980]
 - Dependant types $\Pi x: T.S$ parameterise types with terms
 - Rewrite rules $l \hookrightarrow r$ replace occurrences of l with the term r
- Proof checking is reduced to type checking
- Lambdapi offers interactive proof scripts and a user-friendly syntax

Proof Checking using Lampdapi

```
% SZS output start Refutation for sur_cantor.p
thf(sk1_type, type, sk1: (\$i > (\$i > \$o))).
thf(sk2_type, type, sk2: (($i > $o) > $i)).
thf(1,conjecture,((\sim (? [A:(\sin > (\sin > \sin))]: ! [B:(\sin > \sin)]: ?
[C:$i]: ((A @ C) = B)))),file('sur_cantor.p',sur_cantor)).
thf(2,negated_conjecture,((~ (~ (? [A:($i > ($i > $o))]: ! [B:
($i > $o)]: ? [C:$i]: ((A @ C) =
B)))),inference(neg_conjecture,[status(cth)],[1])).
thf(3,plain,((\sim (\sim (? [A:(\pmi > (\pmi > \pmo))]: ! [B:(\pmi > \pmo)]: ?
[C:\$i]: ((A @ C) =
(B))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],
[2])).
thf(4,plain,((? [A:($i > ($i > $o)
                                                                                  Encoding of
((A @ C) = (B))), inference(polarit
thf(5,plain,(! [A:($i > $o)] : (((s
                                                                                  Problems and
(A))), inference(cnf, [status(esa)],
thf(6,plain,(! [A:($i > $o)] : (((sk)
                                                                                  Proof Steps
(A))),inference(lifteq,[status(thm)]
                                                                                                                       Verification \
                                              Definition
thf(7,plain,(! [B:$i,A:($i > $o)] : (
(A @ B)))),inference(func_ext,[status(
                                                                                                                       of generated
                                              of a Lambdapi
thf(9,plain,(! [B:$i,A:($i > $o)] : ((
                                                                                                                      Proofs
(~ (A @ B)))),inference(bool_ext,[sta
                                              Theory
                                                                                   Encoding of
thf(250,plain,(! [B:$i,A:($i > $o)]
((A @ B) != (\sim (sk1 @ (sk2 @ (A)) @ )
                                                                                   the Calculus
(($true)))),inference(eqfactor_order
thf(270,plain,((sk1 @ (sk2 @ (^ [A:
                                                                                   Rules
@ (^ [A:$i]: ~ (sk1 @ A @ A)))),i
[status(thm)],[250:[bind(A, $thf(^ [C:$1]: ~ (SK1 @ C @
C))),bind(B, $thf(sk2 @ (^ [C:$i]: ~ (sk1 @ C @ C))))]])).
thf(8,plain,(! [B:$i,A:($i > $o)] : ((~ (sk1 @ (sk2 @ (A)) @ B))
| (A @ B))),inference(bool_ext,[status(thm)],[7])).
thf(18, plain, (! [B:$i, A:($i > $o)] : ((\sim (sk1 @ (sk2 @ (A)) @
B)) | ((A @ B) != (~ (sk1 @ (sk2 @ (A)) @ B))) | ~
(($true)))),inference(eqfactor_ordered,[status(thm)],[8])).
thf(32,plain,((~ (sk1 @ (sk2 @ (^ [A:$i]: ~ (sk1 @ A @ A))) @
(sk2 @ (^ [A:$i]: \sim (sk1 @ A @ A))))), inference(pre uni,
[status(thm)],[18:[bind(A, $thf(^ [C:$i]: ~ (sk1 @ C @
C))),bind(B, $thf(sk2 @ (^ [C:$i]: ~ (sk1 @ C @ C))))]]))
thf(372,plain,(($false)),inference(rewrite,[status(thm)],
[270,32])).
thf(373,plain,(($false)),inference(simp,[status(thm)],[372])).
```

% SZS output end Refutation for sur_cantor.p

Definition of a LP-Theory

Encoding ExTT

```
symbol Prop : TYPE;

symbol ⇒ : Prop → Prop → Prop;

symbol Prf : Prop → TYPE;
...
```

Propositions as Types

```
rule Prf ($x ⇒ $y)

→ Prf $x → Prf $y;
```

$$\neg \neg \exists f_{i \to (i \to o)}. \forall y_{i \to o}. \exists x_i. fx = y$$

```
symbol negatedConjecture:

Prf (¬ ¬ \exists(\lambda (f : El(\lambda \times (\lambda \times 0))),

\forall (\lambda (y : El(\lambda \times 0)),

\forall (\lambda (x : El \lambda))

f x = y))))
```

Definition of a LP-Theory

Encoding ExTT

```
symbol Prop : TYPE;
symbol ⇒ : Prop → Prop → Prop;
symbol Prf : Prop - TYPE;
 extt.lp
Propositions as Types
rule Prf ($x \Rightarrow $y)
      → Prf $x → Prf $y;
  rwr.lp
```

Sub-theory of Theory U [Blanqui et al. 2023]

- + New symbol "=" defined as Leibniz-equality
- + Axioms for functional and propositional extensionality
- + Axiom for excluded middle

The rules of Natural Deduction can be derived

```
encodedProblem.lp
% SZS output start Refutation for sur_cantor.p
thf(sk1_type, type, sk1: ($i > ($i > $o))).
                                                                                                                                                • • •
thf(sk2\_type, type, sk2: (($i > $o) > $i)).
                                                                                                   extt.lp
thf(1,conjecture,((\sim (? [A:(\%i > (\%i > \%o))]: ! [B:(\%i > \%o)]: ?
[C:$i]: ((A @ C) = B)))),file('sur_cantor.p',sur_cantor)).
                                                                                                                                           symbol negatedConjecture:
thf(2,negated_conjecture,((\sim (\sim (? [A:(\pmi > (\pmi > $0))]: ! [B:
                                                                                                                                               Prf(\neg \neg \exists (\lambda(f: El(\iota \rightarrow (\iota \rightarrow o))),
($i > $o)]: ? [C:$i]: ((A @ C) =
                                                                                                    rwr.lp
B)))),inference(neg_conjecture,[status(cth)],[1])).
                                                                                                                                                \forall (\lambda (\gamma: El(\iota \sim \circ)),
thf(3,plain,((\sim (\sim (? [A:(\pmi > (\pmi > \pmo))]: ! [B:(\pmi > \pmo)]: ?
[C:\$i]: ((A @ C) =
                                                                                                                                                \exists (\lambda(x: El \iota),
(B))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],
                                                                                                                                                f x = y))))
thf(4,plain,((? [A:($i > ($i > $o)
                                                                               Encoding of
((A @ C) = (B))), inference(polarite
thf(5,plain,(! [A:($i > $o)] : (((s
                                                                               Problems and
                                                                                                                                           symbol step3 : ... :=
(A)))),inference(cnf,[status(esa)],
thf(6,plain,(! [A:($i > $o)] : (((sk)
                                                                                                                                               begin
                                                                               Proof Steps
(A)))),inference(lifteq,[status(thm)]
                                                                                                                   Verification\
                                            Definition
thf(7,plain,(! [B:$i,A:($i > $o)] : ()
                                                                                                                   of generated
(A @ B)))),inference(func_ext,[status(
                                             of a Lambdapi
                                                                                                                                               end;
thf(9,plain,(! [B:$i,A:($i > $o)] : ((
                                                                                                                   Proofs
(~ (A @ B)))),inference(bool_ext,[sta
                                     Theory
                                                                                Encoding of
thf(250,plain,(! [B:$i,A:($i > $o)]
((A @ B) != (~ (sk1 @ (sk2 @ (A)) @
                                                                                the Calculus
                                                                                                                                           symbol step4 : ... :=
(($true))), inference(eqfactor_orde)
thf(270,plain,((sk1 @ (sk2 @ (^ [A:
                                                                                Rules
                                                                                                                                               begin
@ (^ [A:$i]: ~ (sk1 @ A @ A)))),i
[status(thm)],[250:[bind(A, $thf(^ [C:$1]: ~ (SKI @ C @
C))),bind(B, $thf(sk2 @ (^ [C:$i]: ~ (sk1 @ C @ C))))]])).
                                                                                                                                               end;
thf(8,plain,(! [B:$i,A:($i > $o)] : ((~ (sk1 @ (sk2 @ (A)) @ B))
  (A @ B))),inference(bool_ext,[status(thm)],[7])).
thf(18,plain,(! [B:$i,A:($i > $o)] : ((~ (sk1 @ (sk2 @ (A)) @
B)) | ((A @ B) != (~ (sk1 @ (sk2 @ (A)) @ B))) | ~
(($true)))),inference(eqfactor_ordered,[status(thm)],[8])).
thf(32,plain,((~ (sk1 @ (sk2 @ (^ [A:$i]: ~ (sk1 @ A @ A))) @
(sk2 @ (^ [A:$i]: ~ (sk1 @ A @ A))))),inference(pre_uni,
                                                                                                                                           symbol step373 : Prf \( \text{!} =
C))),bind(B, $thf(sk2 @ (^ [C:$i]: ~ (sk1 @ C @ C))))]])).
                                                                                                                                               begin
thf(372,plain,(($false)),inference(rewrite,[status(thm)],
[270,32])).
thf(373,plain,(($false)),inference(simp,[status(thm)],[372])).
% SZS output end Refutation for sur_cantor.p
                                                                                                                                               ena;
```

Functional Extensionality

$C \lor (s_{\tau \to \nu} = t_{\tau \to \nu})$ $C \lor (s_{\tau \to \nu} X_{\tau} = t_{\tau \to \nu} X_{\tau})$ $(FunExtPos)^{\dagger}$

† : where X is a fresh variable

Example:

How can proof stepM based on stepN ?

```
symbol stepN : Prf(f = g) V c;
```

```
symbol stepM : \Pi x, Prf(f x = g x) V c;
```

First idea: A function of type Πx , $Prf(f = g) \rightarrow Prf(f x = g x)$

```
symbol PFE : \Pi s, \Pi t, \Pi x, Prf(s = t) \rightarrow Prf(s x = t x) := ...
```

(PFE f g x) stepN

can be used to proof

Prf(f x = g x)

But what happens if we have multiple literals?

stepM

Functional Extensionality

$\frac{C \lor (s_{\tau \to \nu} = t_{\tau \to \nu})}{C \lor (s_{\tau \to \nu} X_{\tau} = t_{\tau \to \nu} X_{\tau})} (FunExtPos)^{\dagger}$

† : where X is a fresh variable

Example:

How can proof stepM based on stepN ?

symbol stepN: $Prf(f = g) \lor c;$ symbol stepM: $\Pi \times Prf(f \times g) \lor c;$

Second idea: A term of type Prf((f = g)) = (f x = g x)

Lambdapi can use proofs of equalities to perform a rewrite-like operation [Coltellacci et al. 2023]

symbol PFE: Π s, Π t, Π x, Prf((s = t) = (s x = t x));

(PFE f g x) can be used to rewrite stepN

Functional Extensionality

```
\frac{C \lor (s_{\tau \to \nu} = t_{\tau \to \nu})}{C \lor (s_{\tau \to \nu} X_{\tau} = t_{\tau \to \nu} X_{\tau})} (FunExtPos)^{\dagger}
```

† : where X is a fresh variable

Example:

```
How can proof stepM based on stepN ?
```

```
symbol stepN : Prf (f = g) V c;
```

```
symbol stepM : \Pi x, Prf(f x = g x) V c;
```

Second idea: A term of type Prf((f = g) = (f x = g x))

Lambdapi can use proofs of equalities to perform a rewrite-like operation [Coltellacci et al. 2023]

```
symbol PFE : Π s, Π t, Π x, Prf((s = t) = (s x = t x)) :=
begin
...
end;
```

Summary

Structure operated on				
clause	literal	term		
encoding as a function	encoding as an equality -> use of the rewrite tactic			

Implicit Transformations

 $C \lor (s_{\tau \to \nu} = t_{\tau \to \nu})$ $C \lor (s_{\tau \to \nu} X_{\tau} = t_{\tau \to \nu} X_{\tau}) (FunExtPos)^{\dagger}$

† : where X is a fresh variable

Example: What would we receive when applying Leo-III to a clause $(f_{\tau \to \nu} = g_{\tau \to \nu}) \lor l$?

We would expect
$$(f_{\tau \to \nu} X_{\tau} = g_{\tau \to \nu} X_{\tau})$$
 \vee l

But actually, Leo-III derives $l \lor (f_{\tau \to \nu} X_{\tau} = g_{\tau \to \nu} X_{\tau})$!

Why does this happen?

(Simplified) implementation of FunExtPos in Leo-III:

- 1. Divide literals to those to wich *FunExtPos* can be applied and the rest
- 2. Apply FunExtPos
- 3. Form a new clause

Encoding the CalculusImplicit Transformations

```
C \lor (s_{\tau \to \nu} = t_{\tau \to \nu})
C \lor (s_{\tau \to \nu} X_{\tau} = t_{\tau \to \nu} X_{\tau}) (FunExtPos)^{\dagger}
\dagger : where X is a fresh variable
```

Example: What would we receive when applying Leo-III to a clause

$$(f_{\tau \to \nu} = g_{\tau \to \nu}) \lor l$$

We would expect $(f_{\tau \to \nu} X_{\tau} = g_{\tau \to \nu} X_{\tau}) \lor C$.

But actually, Leo-III derives $C \lor (f_{\tau \to \nu} X_{\tau} = g_{\tau \to \nu} X_{\tau})$!

Why is this relevant for our encoding?

Based on a clause such as symbol stepN : $Prf((f = g) \ V \ 1)$; We need to proof symbol stepM : $\Pi \ x$, $Prf(1 \ V \ (f \ x = g \ x))$; rather than symbol stepM : $\Pi \ x$, $Prf((f \ x = g \ x) \ V \ 1)$;

- → We need to verify two things:
 - The permutation
 - The application of the inference rule

Implicit Transformations: Permutation

Each rule of the calculus can perform a number of such implicit transformations. In a verification they can be accounted for through additional steps in the verification using additional rules (called accessory rules)

In this example, we need a rule that permutes two literals:

```
symbol permute_1_0 : П x, П y, Prf(x V y) → Prf(y V x) := ...

rules.lp
```

Note that permute needs to mirror the structure of the clauses at hand and must thus be generated on-the-fly!

Summary

Structure operated on				
clause	literal	term		
encoding as a function	encoding as an equality -> use of the rewrite tactic			

Implicit Transformations	
e.g. permutation of literals	
generation of permutation rule in LP	

How many LP-terms are necessary to encode a calculus rule?

• Static: One rule is sufficient (e.g. funExt)

$$\frac{C \lor (s_{\tau \to \nu} = t_{\tau \to \nu})}{C \lor (s_{\tau \to \nu} X_{\tau} = t_{\tau \to \nu} X_{\tau})} (FunExtPos)^{\dagger}$$

† : where X is a fresh variable


```
PFE: Π s, Π t, Π x,

Prf((s = t) = (s x = t x))
```

How many LP-terms are necessary to encode a calculus rule?

- Static: One rule is sufficient (e.g. funExt)
- Versatile: Multipel encodings for one rule (e.g. EqFact)

```
\frac{C \vee [s_{\tau} \simeq t_{\tau}]^{\alpha} \vee [u_{\tau} \simeq v_{\tau}]^{\alpha}}{C \vee [s_{\tau} \simeq t_{\tau}]^{\alpha} \vee [s_{\tau} \simeq u_{\tau}]^{ff} \vee [t_{\tau} \simeq v_{\tau}]^{ff}} (Fac)
```



```
EqFact_p [T] x y z v:

((Prf ((x = y) \ V (z = v))) \rightarrow (Prf ((x = y) \ V (\neg(x = z)) \ V)))

EqFact_n [T] x y z v:

((Prf ((\neg(x = y)) \ V (\neg(z = v)))) \rightarrow (Prf ((\neg(x = y)) \ V (\neg(x = z)) \ V)))
```

How many LP-terms are necessary to encode a calculus rule?

- Static: One rule is sufficient (e.g. funExt)
- Versatile: Multipel encodings for one rule (e.g. EqFact)
- Flexible: needs to be generated on the fly (e.g. permute)
- Exception: Some rules can simply be translated through the corresponding Lambdapi operation (e.g. variable binding)

Summary

Structure operated on			
clause	literal	term	
encoding as a function	encoding as an equality -> use of the rewrite tactic		

Implicit Transformations	
e.g. permutation of literals	
generation of permutation rule in LP	

Adaptability		
static	versatile	flexible
encoding as a single rule	encoding of multiple rules	on the fly generation

Modular Encoding, e.g. (simplified) Functional Extensionality

Categorization of (PFE) Encoding Demands

Adaptability of Rule: Static

Structure operated on: Literals

Additional Transformations: Changing the order of literals, ...

Modular Encoding of (PFE)

. . .

-If the order of the literals was changed implicitly, ...

-..

- -Rewrite the proof-goal with PFE
- -Refine with the (permuted) parent-formula

React to Implicit Transformations

Apply actual calculus rule

Functional Extensionality

Example:

```
symbol stepN : Prf((f = g) V 1);

symbol stepM : I x, Prf(l V (f x = g x)) :=
begin
  have Permutation: Prf(l V (f = g))
  {refine permute_1_0 (f = g) 1 step_N};

end;
```

$$\frac{C \lor (s_{\tau \to \nu} = t_{\tau \to \nu})}{C \lor (s_{\tau \to \nu} X_{\tau} = t_{\tau \to \nu} X_{\tau})} (FunExtPos)^{\dagger}$$

† : where X is a fresh variable

1. <u>Verify the permutation</u>
We generate the rule...

We can then instantiate this term to fit our example:

```
permute 1_0 (f = g) 1
```

Resulting in:

$$Prf((f = g) V 1) \rightarrow Prf(1 V (f = g))$$

Functional Extensionality

Example:

```
symbol stepN : Prf((f = g) V 1);
symbol stepM : \Pi x, Prf(l V (f x = g x)):=
```

```
begin
have Permutation: Prf(l V (f = g))
    {refine permute_1_0 (f = g) l step_N};
assume x;
have funExt: Prf(l V (f x = g x))
    {rewrite .[x in _ V x] (PFE f g);
    refine Permutation};
refine funExt
end;
```

$$\frac{C \lor (s_{\tau \to \nu} = t_{\tau \to \nu})}{C \lor (s_{\tau \to \nu} X_{\tau} = t_{\tau \to \nu} X_{\tau})} (FunExtPos)^{\dagger}$$

† : where X is a fresh variable

2. <u>Verify the PFE application</u>

We encode the rule as an equality ...

```
symbol PFE : П s, П t, П x,

Prf((s x = t x) = (s = t)):=
```

We can thus instantiate this term to fit our example:

has type

$$\Pi \times, Prf((f \times = g \times) = (f = g))$$

Expressing proofs in Lambdapi

```
encodedProblem.lp
% SZS output start Refutation for sur_cantor.p
thf(sk1_type, type, sk1: ($i > ($i > $o))).
                                                                                                  extt.lp
thf(sk2_type, type, sk2: (($i > $o) > $i)).
thf(1,conjecture,((\sim (? [A:(\sin > (\sin > \sin))]: ! [B:(\sin > \sin)]: ?
[C:$i]: ((A @ C) = B)))),file('sur_cantor.p',sur_cantor)).
                                                                                                                                          symbol negatedConjecture:
thf(2,negated_conjecture,((~ (~ (? [A:($i > ($i > $o))]: ! [B:
                                                                                                                                             Prf(\neg \neg \exists (\lambda(f: El(\iota \rightarrow (\iota \rightarrow o)))),
(\$i > \$o)]: ? [C:\$i]: ((A @ C) =
                                                                                                   rwr.lp
B)))),inference(neg_conjecture,[status(cth)],[1])).
                                                                                                                                               \forall (\lambda (y: El(\iota \sim \circ)),
thf(3,plain,((\sim (\sim (? [A:(\pmi > (\pmi > \pmo))]: ! [B:(\pmi > \pmo)]: ?
[C:\$i]: ((A @ C) =
                                                                                                                                              \exists (\lambda(x: El \iota),
(B))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],
                                                                                                                                               f x = y))))
thf(4,plain,((? [A:($i > ($i > $o)
                                                                               Encoding of
((A @ C) = (B))), inference(polarit
thf(5,plain,(! [A:($i > $o)] : (((s
                                                                               Problems and
                                                                                                                                          symbol step3 : ... :=
(A))), inference(cnf,[status(esa)],
thf(6,plain,(! [A:($i > $o)] : (((sk)
                                                                                                                                              begin
                                                                              Proof Steps
(A))),inference(lifteq,[status(thm)]
                                            Definition
                                                                                                                  Verification\
thf(7,plain,(! [B:$i,A:($i > $o)] : (
                                                                                                                  of generated
(A @ B)))),inference(func_ext,[status(
                                            of a Lambdapi
                                                                                                                                              end;
thf(9,plain,(! [B:$i,A:($i > $o)] : ((
                                                                                                                  Proofs
(~ (A @ B)))),inference(bool_ext,[sta
                                     Theory
                                                                               Encoding of
thf(250,plain,(! [B:$i,A:($i > $o)]
((A @ B) != (~ (sk1 @ (sk2 @ (A)) @
                                                                               the Calculus
                                                                                                                                          symbol step4 : ... :=
(($true))), inference(eqfactor_orde)
                                                                               Rules
thf(270,plain,((sk1 @ (sk2 @ (^ [A:
                                                                                                                                              begin
@ (^ [A:$i]: ~ (sk1 @ A @ A)))),i
[status(thm)],[250:[bind(A, $thf(^ [C:$1]: ~ (SKI @ C @
C))),bind(B, $thf(sk2 @ (^ [C:$i]: ~ (sk1 @ C @ C))))]])).
                                                                                                                                              end;
thf(8,plain,(! [B:$i,A:($i > $o)] : ((~ (sk1 @ (sk2 @ (A)) @ B))
 (A @ B))),inference(bool_ext,[status(thm)],[7])).
thf(18,plain,(! [B:$i,A:($i>$o)] : ((~ (sk1 @ (sk2 @ (A)) @
B)) | ((A @ B) != (~ (sk1 @ (sk2 @ (A)) @ B))) | ~
(($true)))),inference(eqfactor_ordered,[status(thm)],[8])).
thf(32,plain,((~ (sk1 @ (sk2 @ (^ [A:$i]: ~ (sk1 @ A @ A))) @
                                                                                                 rules.lp
(sk2 @ (^ [A:$i]: ~ (sk1 @ A @ A))))),inference(pre_uni,
                                                                                                                                          symbol step373 : Prf \bot :=
[status(thm)],[18:[bind(A, $thf(^ [C:$i]: ~ (sk1 @ C @
C))),bind(B, $thf(sk2 @ (^ [C:$i]: ~ (sk1 @ C @ C))))]])).
                                                                                                                                              begin
thf(372,plain,(($false)),inference(rewrite,[status(thm)],
[270.32])).
thf(373,plain,(($false)),inference(simp,[status(thm)],[372])).
                                                                                                                                              end;
% SZS output end Refutation for sur_cantor.p
```

Conclusion and Outlook

The current state of the encoding

Conclusion and Outlook

Core calculus

Skolemization

Extended

calculus

Type

unification

Future Work

Monomorphic HOL

Polymorphism

Choice

General encoding approaches for common challenges

Analysis and theoretical encoding for main calculus

Full calculus

Partial implementation

Full implementation

Evaluation

Will enable verification of other HOL-theorem provers (Extension of GDV-LP)

First HOL—automated

theorem prover in the

Dedukti framework

Master
PHD

References

- Blanqui, F., Dowek, G., Grienenberger, E., Hondet, G., & Thiré, F. (2023). A modular construction of type theories. Logical Methods in Computer Science, 19.
- Cantor, G. Über eine elementare frage der mannigfaltigkeitslehre, jahresbericht der dmv (vol. 1, pp. 75–78). references to cantor (1932)
- Coltellacci A., Merz S., and Dowek G., "Reconstruction of smt proofs with lambdapi," in Proceed- ings of the 21st International Workshop on Satisfiability Modulo Theories (SMT 2024), Montreal, Canada, July 22-23, 2024
- Cousineau, D., & Dowek, G. (2007). Embedding pure type systems in the lambda-pi-calculus modulo. In Typed Lambda Calculi and Applications: 8th International Conference, TLCA 2007, Paris, France, June 26-28, 2007. Proceedings 8 (pp. 102-117). Springer Berlin Heidelberg.
- Curry, H. B. (1934). Functionality in combinatory logic. Proceedings of the National Academy of Sciences, 20(11), 584-590.
- Howard, W. A. (1980). The formulae-as-types notion of construction. To HB Curry: essays on combinatory logic, lambda calculus and formalism, 44, 479-490.
- Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., ... & Saillard, R. (2016). Dedukti: a logical framework based on the λΠ-calculus modulo theory.
- Wadler, P. (2015). Propositions as types. *Communications of the ACM*, *58*(12), 75-84.
- Moschovakis, J. Intuitionistic Logic, *The Stanford Encyclopedia of Philosophy (Summer 2024 Edition)*, Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/archives/sum2024/entries/logic-intuitionistic/.
- Steen, A. (2020). Extensional paramodulation for higher-order logic and its effective implementation Leo-III. *KI-Künstliche Intelligenz*, *34*(1), 105-108.