Experiment 2: Loan Amount Prediction using Linear Regression

Dileep Ram A

July 2025

1 Aim

To develop and evaluate a Linear Regression model that predicts the loan sanction amount using historical loan data and relevant borrower features.

2 Libraries Used

• Pandas: Data manipulation

• NumPy: Numerical operations

• Scikit-learn: Model building, preprocessing, and evaluation

• Matplotlib and Seaborn: Data visualization

3 Objective

- Preprocess and clean the dataset
- Perform exploratory data analysis (EDA)
- $\bullet\,$ Engineer features to improve model accuracy
- Train and validate a Linear Regression model
- $\bullet\,$ Evaluate model performance using MAE, MSE, RMSE, and R2 metrics
- Visualize results and interpret model behavior

4 Mathematical Description

Linear Regression is used to predict the loan sanction amount based on several input features. The mathematical model is:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \epsilon$$

Where:

- y = Loan Sanction Amount (USD)
- x_1, x_2, \ldots, x_n = Input features (e.g. Age, Income)
- $\beta_0 = \text{Intercept}$
- β_i = Feature coefficients
- $\epsilon = \text{Error term}$

Evaluation metrics:

- MAE: Mean Absolute Error
- MSE: Mean Squared Error
- RMSE: Root Mean Squared Error
- R^2 : Coefficient of Determination
- Adjusted R^2 : Corrected for number of predictors

5 Python Code

5.1 Data Preprocessing and Encoding

```
import pandas as pd
df = pd.read_csv('train.csv')

df.fillna(df.mode().iloc[0], inplace=True)
df.fillna(df.mean(numeric_only=True), inplace=True)

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
binary_cols = [col for col in df.select_dtypes(include='object') if
    df[col].nunique() == 2]
for col in binary_cols:
    df[col] = le.fit_transform(df[col])

df = pd.get_dummies(df, drop_first=True)
```

5.2 Feature Scaling and Splitting

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

X = df.drop('Loan Sanction Amount (USD)', axis=1)
y = df['Loan Sanction Amount (USD)']

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
```

5.3 Model Training and Evaluation

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

model = LinearRegression()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)

rmse = mse ** 0.5
r2 = r2_score(y_test, y_pred)

print("MSE:", mse)
print("RMSE:", rmse)
print("R^2:", r2)
```

5.4 Plotting

```
residuals = y_test - y_pred
plt.scatter(y_pred, residuals)
plt.axhline(0, color='red', linestyle='--')
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.title("Residual Plot")
plt.grid(True)
plt.show()
```

5.5 Output Screenshots

Figure 1: Actual vs Predicted Loan Amount

Figure 2: Residuals vs Predicted Values

Figure 3: Correlation Heatmap of Features

6 Results Table

Metric	Value
Mean Absolute Error (MAE)	22145.56
Mean Squared Error (MSE)	998067220.05
Root Mean Squared Error (RMSE)	31592.20
R ² Score	0.5472
Adjusted R ² Score	0.5450

Table 1: Test Set Evaluation Results

7 Inference Table

Table 1: Cross-Validation Results (5-Fold)

Fold	MAE	MSE	RMSE	R2 Score
Fold 1	21540.12	9.60×10^{8}	30979.12	0.5532
Fold 2	21910.44	9.95×10^{8}	31545.92	0.5451
Fold 3	22334.88	1.01×10^9	31777.53	0.5375
Fold 4	21892.76	9.80×10^{8}	31308.11	0.5569
Fold 5	21687.45	9.70×10^{8}	31151.20	0.5590
Average	21873.53	$9.81 imes 10^8$	31352.38	0.5503

Table 2: Cross-Validation Results (5-Fold)

Table 2: Summary of Results for Loan Amount Prediction

Description	Student's Result	
Dataset Size (after prepro-	15,183	
cessing)		
Train/Test Split Ratio	60/20/20 (Train/Validation/Test)	
Feature(s) Used for Predic-	Age, Income (USD), Credit Score, Dependents,	
tion	Current Loan Expenses (USD), Property Price,	
	Property Age, Total Income, Gender, Income Sta-	
	bility, Type of Employment, Co-Applicant, Has	
	Active Credit Card	
Model Used	Linear Regression	
Cross-Validation Used?	Yes	
If Yes, Number of Folds (K)	5	
Reference to CV Results Ta-	Table 1	
ble		
Mean Absolute Error (MAE)	22145.56	
on Test Set		
Mean Squared Error (MSE)	998067220.05	
on Test Set		
Root Mean Squared Error	31592.20	
(RMSE) on Test Set		
R ² Score on Test Set	0.5472	
Adjusted R^2 Score on Test	0.5450	
Set		
Most Influential Feature(s)	Co-Applicant, Property Price, Credit Score	
Observations from Residual	Residuals decrease with predicted values; slight	
Plot	heteroscedasticity observed.	
Interpretation of Predicted vs	Predictions follow the diagonal line; model under-	
Actual Plot	estimates larger values.	
Any Overfitting or Underfit-	Slight underfitting at high loan values.	
ting Observed?		
If Yes, Brief Justification	Residual patterns and test error indicate model	
	bias at extremes.	

Table 3: Summary of Results for Loan Amount Prediction

8 Best Practices

- Filled missing values using mode and mean.
- Encoded categorical features using Label and One-Hot Encoding.
- Standardized numerical features.

- Evaluated with train/test split and cross-validation.
- Used residual plots and metrics to assess model bias.

9 Learning Outcomes

- Learned the end-to-end ML workflow from preprocessing to evaluation.
- Gained practical experience in regression analysis.
- Understood importance of cross-validation and visualization.
- Practiced interpretation of error metrics and residual patterns.