

# Operationalizing the impact on stock assessments of size-selective fishing's effect on body size

PICES Annual Meeting, Seattle, WA, 2023
Richard Methot and Ian Taylor (NOAA)

Richard McGarvey - South Australia (SARDI)

# What is the Effect of Size Selectivity in Fisheries? "Rosa Lee Phenomenon"

- Fish that survive the fishery are, on average, smaller than projected from growth of fish that entered the fishery.
- Detected by back-calculating size-at-age from annual rings in fish scales.
- Why? Faster-growing fish are more exposed to size-selective fisheries, and at an earlier age.
- Know as the Rosa Lee Phenomenon
  - Lee (1912). "An investigation into the methods of growth determination in fishes by means of scales".



Rosa Mabel Lee (1884-1976) was a British statistician, the first woman scientist to be employed by the Marine Biological Association and the first woman to work as a government fishery scientist in the United Kingdom. (Wikipedia, 2023)



#### Rosa Lee Phenomenon has been studied for decades

- For 50 years, the quantitative effect of size-selectivity on population dynamics has been demonstrated.
- Conclude:

   Ignoring this phenomenon creates bias in estimated population parameters and MSY estimates

Ricker. 1969. Effects of size-selective mortality and sampling bias on estimates of growth, mortality, production, and yield Goodyear. 1984. Analysis of potential yield per recruits for striped bass..... [platoons]

Parma and Deriso. 1990. Dynamics of age and size composition in a population subject to size-selective mortality: effects of phenotypic variability in growth.

McGarvey et al. 2007. Modeling fish numbers dynamically by age and length: partitioning cohorts into 'slices'.

Taylor and Methot. 2013. Hiding or dead? A computationally efficient model of selective fisheries mortality



### Rosa Lee Phenomenon is not Routinely Implemented

- Kraak et al. 2019. The Rosa Lee phenomenon <u>and its consequences</u> for fisheries advice on changes in fishing mortality or gear selectivity.
- "Surprisingly, the effect that the Rosa Lee phenomenon may have in ... stock projections and simulations ... has not received much attention." [in routine assessments]
- Current stock assessment models either:
  - > Treat body size as empirically measured, but not dynamically modeled
  - > Or, model body growth as time-invariant or environmentally driven, but not in response to pressure of size-selectivity.
- Here we advocate for routine adoption of the platoon approach in Stock Synthesis for dynamically modelling changes in size-at-age.



Platoons in Stock Synthesis\*\*



Total recruitment divided into 5 platoons (green) to better approximate reality than a single platoon

Size-selectivity has differential impact on platoons



QUESTION: How much separation/overlap between platoons? Ratio of within platoon length std.dev. to between platoon std.dev.

\*\* https://github.com/nmfsstock-synthesis



Result is a dynamic, reversible effect of fishing on size-at-age in population





From Taylor and Methot, 2013



# **Estimation Experiment**

• Four scenarios used, with 100 replicates each

|               | flat-series | 1-Way |  |
|---------------|-------------|-------|--|
| 10% CV growth | 3A          | 4A    |  |
| 20% CV growth | 3B          | 4B    |  |

- Simulate data using an IBM, similar to the Kraak study, with random, correlated draws of  $L_{\infty}$  and K for each simulated fish
- Use Stock Synthesis with either 5 platoons or 1 platoon to estimate growth, selectivity, platoon ratio, annual recruitment and F parameters\*
- Project long-term mean catch (MSY) when fishing at rate that gives SPR40%\*\*



<sup>\*</sup> Same simulated data used in a just submitted paper comparing the platoon method to the slice method

<sup>\*\*</sup> F that reduces spawning biomass to 40% of what it would have been if unfished

#### Result - Platoon Ratio Parameter

- In release 3.30.22 of Stock Synthesis, the platoon ratio became an estimable parameter rather than an assigned constant.
- This ratio is an approximation for the tendency for fish to follow a consistent growth path rather than randomly change their rank order of size-at-age within a cohort.
- Estimates shown below varied across the scenarios due to the degree to which the scenarios provide information on the Rosa Lee effect

|            | 3A   | 3B   | 4A   | 4B   |
|------------|------|------|------|------|
| mean ratio | 1.75 | 0.91 | 0.91 | 0.61 |

Table showing estimated ratio related to overlap between platoons.



#### Result – Growth Parameters

- With 10% CV in simulated growth parameters (3A, 4A), the 5 platoon and 1 platoon estimation methods produced accurate mean estimates from 100 replicates.
- With 20% CV in growth, the Rosa Lee effect is stronger. With no time series contrast (3B), the 1 platoon approach underestimates  $L_{\infty}$  by over 30%. It overestimates K (not shown) to match the age-at-length data.
- One-way trip scenario has data from earliest years before mean size is reduced
- Low time series contrast after high historical F levels are common real world assessment situations.

|            |         | no contrast |     | one-way trip |      |
|------------|---------|-------------|-----|--------------|------|
|            | TRUE L∞ | 3A          | 3B  | 4A           | 4B   |
| 5 platoons | 1000    | 968         | 937 | 1012         | 1012 |
| 1 platoon  | 1000    | 947         | 670 | 1014         | 1012 |



## Result - MSY Proxy

- Tabled values are long-term catch at  $F_{SPR40\%}$ . This catch level is a proxy for MSY.
- Stock Synthesis carries the platoon approach through the calculation of equilibrium benchmarks and through the forecast of future conditions
- Same low contrast scenario that underestimated  $L_{\infty}$  also underestimates MSY.

no contrast one-way trip **3A 3B 4A 4B 7595** 8256 8250 8371 5 platoons 1 platoon 8039 5983 8280 8573



#### Platoons: More Facts & Notes

- Size-at-age of each platoon is time-invariant, although time-varying is possible.
- The proportion of fish among the platoons changes over time as platoons with higher selectivity experience more mortality.
- Numbers from the age-length matrices from all platoons are summed in order to produce expected values for the data, in which platoons are indistinguishable.
- Model runs slower with more platoons because each platoon is getting independent calculations, so
   5 platoons is a pragmatic compromise.
- Proportion (%) in each platoon set at birth in Synthesis. Conceivable to make the % dependent on % in the spawning biomass to make the % heritable



#### Conclusions

- SS3 uses platoons to mimic the effect of size selectivity on the distribution of size-atage for the surviving fish.
- With this capability, SS3 can recreate population's  $L_{\infty}$  value even though contemporary data have been affected by the Rosa Lee phenomenon.
- Without the use of platoons, SS3 (and simpler models) can estimate contemporary size-at-age, but cannot estimate the degree to which size-at-age (and resultant MSY) will dynamically shift, up or down, in response to changes in fishing mortality rate.
- It is time to routinely incorporate this improved approximation to real fish growth in real world assessments.
- Expect to see higher  $L_{\infty}$  estimates and/or less dome-shaped selectivity as Rosa Lee becomes part of the assessment paradigm.
- Just flip the switch in SS3 from 1 to 5 platoons, the rest is automatic

