

### 第三讲

简单微程序控制器的设计 (二)





- 微程序控制器的设计 主要完成两个任务:
  - 产生正确的微命令 :
  - 产生正确的微指令 序列(即上述 CPU 状态转换序列)。
- ❖ 怎样采用微程序控制 的方法来设计 CPU 呢



简单微程序控制器的组成框图



确 定 P 的 内 部 结 构





#### \*确定指令系统

| ADD R <sub>0</sub> ,<br>06H | 0101  | 000  | (R <sub>0</sub> )     |
|-----------------------------|-------|------|-----------------------|
|                             | 0000  | 0110 | $06H \rightarrow R_0$ |
| JMP<br>04H                  | 100 0 | 0100 | 04H→P<br>C            |



- ❖分析每条指令的执行过程,画出微程序流程图
  - ADD 指令:分为6个机器周期完成
    - ・M0: PC→AR, PC+1→PC; (取指令地址)
    - · M1: RAM→IR, J1#; (取指令并译码)
    - ADD·M2: PC→AR, PC+1→PC; (取指 令第二字地址)
    - · ADD·M3: RAM→DA1;(取数据)
    - · ADD·M4: DR→DA2; (送寄存器数据)



- ❖分析每条指令的执行过程,画出微程序流程图
  - JMP 指令: 分为 4 个机器周期完成
    - ・M0: PC→AR, PC+1→PC; (取指令地址)
    - M1: RAM→IR,J1#; (取指令并译码)
    - JMP·M2: PC→AR, PC+1→PC; (取指 令第二字地址)



确 定 P 的 内 部 结 构





◇微程序流程
图





- ❖写出每条微指令所发送的微操作控制信号序列
  - 取指令公操作:
    - M0: PC-B#, B-AR, PC+1;
    - M1: M-R#, B-IR, J1#;
  - ADD 指令:
    - ADD·M2: PC-B#, B-AR, PC+1;
    - ADD-M3: M-R#, B-DA1;
    - ADD-M4: R0-B#, B-DA2;
    - ADD·M5: ALU,S3,S2,S1,S0,M,Ci (F=A 加B), ALU-B#, B-R0;



- ❖写出每条微指令所发送的微操作控制信号序列
  - 取指令公操作:
    - M0: PC-B#, B-AR, PC+1;
    - M1: M-R#, B-IR, J1#;
  - JMP 指令:
    - JMP·M2: PC-B#, B-AR, PC+1;
    - JMP·M3: M-R#, B-PC#.