Упражнение 6

Таблична форма на симплекс метода

Симплекс методът се основава на свойствата на върховете на каноничната задача, разгледани в предишните две упражнения.

Нека $\overline{\mathbf{x}} = (\overline{\mathbf{x}}_B, \overline{\mathbf{x}}_N)^{\mathrm{T}} = (\mathbf{B}^{-1}\mathbf{b}, \mathbf{0})^{\mathrm{T}}$ е връх с базис \mathbf{B} на каноничната задача

(K)
$$\min z(\mathbf{x}) = \mathbf{c}^{\mathrm{T}}\mathbf{x}, \quad \mathbf{A}\mathbf{x} = \mathbf{b} \ge \mathbf{0}, \quad \mathbf{x} \ge \mathbf{0}.$$

Ако $\mathbf{A} = [\mathbf{B}, \mathbf{N}]$ и съответно $\mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)^T$, съответстващият на $\overline{\mathbf{x}}$ базисен вид на задачата (K) при базисна матрица \mathbf{B} е

(1)
$$z(\mathbf{x}) = \overline{c}_0 + \overline{\mathbf{c}}_N \mathbf{x}_N, \qquad \mathbf{x}_B + \mathbf{W} \mathbf{x}_N = \mathbf{B}^{-1} \mathbf{b}, \qquad \mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)^{\mathrm{T}} \ge \mathbf{0},$$

където

(2)
$$\mathbf{W} = \mathbf{B}^{-1}\mathbf{N}, \quad \overline{c}_0 = \mathbf{c}_R^{\mathsf{T}}\mathbf{B}^{-1}\mathbf{b}, \quad \overline{\mathbf{c}}_N = \mathbf{c}_N - \mathbf{c}_R^{\mathsf{T}}\mathbf{W}.$$

Числената схема на алгоритьма се реализира с помощта на *симплексни таблици* от вида на табл. 1. Симплексната таблица на даден връх $\overline{\mathbf{x}}$ съдържа съответния базисен вид (1) на задачата и координатите на $\mathbf{c}=(c_1,\ldots,c_n)^{\mathrm{T}}$ в първоначалния ѝ вид (K). В стълбовете \mathcal{B} , \mathbf{c}_B и $\overline{\mathbf{x}}_B$ са нанесени съответно базисните променливи x_{j_i} (*i*-тото уравнение на $\mathbf{x}_B + \mathbf{W}\mathbf{x}_N = \mathbf{B}^{-1}\mathbf{b}$ е решено спрямо x_{j_i}), техните коефициенти c_{j_i} и стойности \overline{x}_{B_i} , $i=1,\ldots,m$.

Таблица 1

		x_1	 x_j	 x_q	 x_n	$\overline{\mathbf{x}}_{B}$
\mathcal{B}	\mathbf{c}_B	c_1	 c_{j}	 c_q	 c_n	0
x_{j_1}	c_{j_1}	w_{11}	 w_{1j}	 w_{1q}	 w_{1n}	\overline{x}_{j_1}
x_{j_i}	c_{j_i}	w_{i1}	 w_{ij}	 w_{iq}	 w_{in}	\overline{x}_{j_i}
x_{j_p}	c_{j_p}	w_{p1}	 w_{pj}	 w_{pq}	 w_{pn}	\overline{x}_{j_p}
x_{j_m}	c_{j_m}	w_{m1}	 w_{mj}	 w_{mq}	 w_{mn}	\overline{x}_{j_m}
ī		\overline{c}_1	 \overline{c}_j	 \overline{c}_q	 \overline{c}_n	$-\overline{c}_0$

Стълбовете на x_j съдържат коефициентите пред едноименните променливи в (1). За небазисните променливи x_j това са елементите на съответния стълб на \mathbf{W} , а за базисните — координатите на съответния единичен вектор $(0,\ldots,0,1,0,\ldots,0)^{\mathrm{T}}$, в който $w_{ij_i}=1$. В примерите по-долу единичните стълбове са попълнени за прегледност. В последния (индексния) ред на таблицата са нанесени относителните оценки: това са координатите \overline{c}_j на $\overline{\mathbf{c}}_N$, а за базисните променливи $\overline{c}_{j_i}=0,\ i=1,\ldots,m$. Там, където индексният ред пресича стълба $\overline{\mathbf{x}}_B$, се вписва $-\overline{c}_0$.

Една реализация на симплекс метода е следната:

- 1. **Проверка за оптималност на върха.** Ако $\overline{\mathbf{c}}_N \geq 0$, върхът е оптимален и задачата е решена. В противен случай се изпълнява следващата точка.
- 2. **Проверка за неограниченост (отдолу) на целевата функция.** Ако съществува относителна оценка $\bar{c}_j < 0$ и $\mathbf{w}_j = (\mathbf{w}_{1j}, \dots, \mathbf{w}_{mj})^{\mathrm{T}} \leq \mathbf{0}$, където \mathbf{w}_j е стълбът на \mathbf{W} от коефициентите пред небазисната променлива x_j , то функцията е неограничена отдолу в допустимото множество и задачата е решена. В противен случай се изпълнява следващата точка.
- 3. Преход към съседен връх, при което стойността на целевата функция намалява или се запазва. Извършва се на три етапа:
 - а) Избор на нова базисна променлива. Избира се x_q с отрицателна относителна оценка $\overline{c}_q < 0$. Стълбът x_q в таблицата се нарича ключов стълб. Препоръчва се да се избира променлива с максимална по абсолютна стойност отрицателна оценка (правило на Бил).
 - б) Определяне на променливата, която излиза от базиса. Пресмята се числото \bar{t} по формулата

(3)
$$\overline{t} = \frac{\overline{x}_{j_p}}{w_{pq}} = \min_{1 \le i \le m} \left\{ \frac{\overline{x}_{j_i}}{w_{iq}} : w_{iq} > 0 \right\}.$$

От базиса излиза x_{j_p} . Редът с номер p се нарича *ключов ред*. *Ключовото число w_{pq}* е заградено с правоъгълна рамка.

в) Извършва се елементарно преобразование с ключово число w_{pq} , т. е. попълва се симплексна таблица за новия връх $\overline{\mathbf{x}}'$, съседен на $\overline{\mathbf{x}}$:

- в стълбовете \mathcal{B} и \mathbf{c}_B се прави само една смяна: вместо x_{j_p} се вписва новата базисна променлива x_q , а вместо c_{j_p} числото c_a ;
- останалата част от таблицата се попълва с числата w'_{ij} , $\overline{\mathbf{x}}'_i$, \overline{c}'_j , \overline{c}'_0 , $i=1,\ldots,m,\ j=1,\ldots,n$, пресметнати по формулите

(4)
$$w'_{pj} = \frac{w_{pj}}{w_{pq}}, \quad w'_{ij} = w_{ij} - w_{iq} \frac{w_{pj}}{w_{pq}}, \quad i \neq p,$$

(5)
$$\overline{x}'_{q} = \frac{\overline{x}_{j_{p}}}{w_{pq}}, \quad \overline{x}'_{j_{i}} = \overline{x}_{j_{i}} - \frac{\overline{x}_{j_{p}}}{w_{pq}} w_{iq}, \quad i \neq p,$$

(6)
$$-\overline{c}'_0 = -\overline{c}_0 - \overline{c}_q \overline{t}, \qquad \overline{c}'_j = \overline{c}_j - \overline{c}_q \frac{w_{pj}}{w_{pq}}.$$

С изключение на елементите от p-тия ред, където всички числа се делят на ключовото число w_{pq} , всеки елемент на новата таблица се получава по npaвилото на npaвоъгълника: от съответния елемент в старата таблица w_{ij} се изважда произведението на елемента от същия ред в ключовия стълб w_{iq} с елемента от същия стълб в ключовия ред w_{pj} , разделено на ключовото число w_{pq} (вж. табл. 1). След попълването на новата симплексна таблица се преминава към стъпка 1.

При тази процедура, ако задачата е неизродена, на всяка стъпка се преминава към нов връх, в който стойността на целевата функция е по-малка. След краен брой стъпки се стига до оптимален връх или се установява неограниченост (отдолу) на функцията в допустимото множество.

При изродени задачи обаче теоретично е възможно зацикляне: минаване през различни базиси на един и същ връх. На практика вероятността за зацикляне е минимална, но се е случвала в практически задачи, решавани с компютър. Затова са разработени процедури за избягване на зациклянето. Една проста такава е разработена от Бленд.

Забележка 1. При ръчно решаване на задачата може да се контролират сметките, ако след попълването на новата таблица относителните оценки се пресмятат и по формули (2).

Забележка 2. Ако минимумът в (3) се достига на повече от едно място, новият връх ще бъде изроден: ще се анулират и други базисни променливи (освен x_{in}) и те ще бъдат базисни нули за него.

Забележка 3. Ако в (3) се получи $\bar{t}=0$, т. е. $\bar{\mathbf{x}}$ е изроден и $\bar{x}_{j_p}=0$ е негова базисна нула, то елементарното преобразование (4)–(6) не води до нов връх, а само до смяна на базиса на $\bar{\mathbf{x}}$. Сред базисите на един изроден връх обаче винаги има базис, от който чрез елементарно преобразование може да се премине към нов връх.

Пример 1. Да се реши задачата

(7)
$$z(\mathbf{x}) = 3x_1 - x_2 + 2x_3 \to \max,$$

$$2x_1 - x_2 = -3,$$

$$x_1 - x_3 \le 1,$$

$$x_1 + 4x_3 \le 4,$$

$$x_1 \ge 0, x_3 \ge 0.$$

Решение. Привеждаме задачата в каноничен вид

(8)
$$z_{K}(\mathbf{x}_{K}) = -3x_{1} + x_{2}^{+} - x_{2}^{-} - 2x_{3} \rightarrow \min,$$

$$-2x_{1} + x_{2}^{+} - x_{2}^{-} = 3,$$

$$x_{1} - x_{3} + x_{4} = 1,$$

$$x_{1} + 4x_{3} + x_{5} = 4,$$

$$x_{1}, x_{2}^{+}, x_{2}^{-}, x_{3}, x_{4}, x_{5} \ge 0.$$

Положили сме $x_2 = x_2^+ - x_2^-, x_2^+ \ge 0, x_2^- \ge 0$. Системата уравнения (9) е решена спрямо променливите x_2^+, x_4, x_5 и десните ѝ страни са неотрицателни, следователно $\mathbf{x}_{\mathrm{K}}^{(0)} = (0, 3, 0, 0, 1, 4)^{\mathrm{T}}$ е връх на каноничната задача с базис $\mathbf{B}_{\mathbf{x}^{(0)}} = [x_2^+, x_4, x_5]$.

Върхът $\mathbf{x}_{\mathrm{K}}^{(0)}$ (табл. 2) не е оптимален: $\overline{c}_1 = -1 < 0$, $\overline{c}_3 = -2 < 0$. Не се проявява неограниченост на целевата функция — в стълбовете на x_1 и x_3 има положителни коефициенти. За нова базисна променлива е избрана x_3 . Тя влиза в базиса на мястото на x_5 (само $w_{33} = 4 > 0$). След елементарно преобразование с ключово число $w_{33} = 4$, получаваме табл. 3. Новият връх е $\mathbf{x}_{\mathrm{K}}^{(1)} = (0,3,0,1,2,0)^{\mathrm{T}}$ и $z_{\mathrm{K}}(\mathbf{x}_{\mathrm{K}}^{(1)}) = 1$. Той също не е оптимален: $\overline{c}_1 = -\frac{1}{2} < 0$.

Таблица 2

$\mathbf{x}^{(0)}$								
		x_1	x_2^+	x_2^-	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	$\overline{\mathbf{x}}_{B}$
\mathcal{B}	\mathbf{c}_B	-3	1	-1	-2	0	0	0
x_2^+	1	-2	1	-1	0	0	0	3
<i>x</i> ₄	0	1	0	0	-1	1	0	1
<i>x</i> ₅	0	1	0	0	4	0	1	4
ī		-1	0	0	-2	0	0	-3

Таблица 3

$\mathbf{x}^{(1)}$								
		x_1	x_{2}^{+}	x_2^-	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> 5	$\overline{\mathbf{x}}_{B}$
\mathcal{B}	\mathbf{c}_B	-3	1	-1	-2	0	0	0
x_2^+	1	-2	1	-1	0	0	0	3
x_4	0	5/4	0	0	0	1	1/4	2
x_3	-2	1/4	0	0	1	0	1/4	1
ī		-1/2	0	0	0	0	1/2	-1

Сега в базиса влиза x_1 на мястото на x_4 , защото

$$\bar{t} = \min\left[\frac{2}{\frac{5}{4}}, \frac{1}{\frac{1}{4}}\right] = \min\left(\frac{8}{5}, 4\right) = \frac{8}{5}.$$

След елементарно преобразование с ключово число $w_{21}=\frac{5}{4}$ получаваме (табл. 4) върха $\mathbf{x}_{\mathrm{K}}^{(2)}=\left(\frac{8}{5},\frac{31}{5},0,\frac{3}{5},0,0\right)^{\mathrm{T}}$, който е оптимален и $z_{\mathrm{K}}^{*}=z_{\mathrm{K}}(\mathbf{x}_{\mathrm{K}}^{(2)})=\frac{1}{5}$.

Таблица 4

$\mathbf{x}^{(2)}$								
		x_1	x_{2}^{+}	x_2^-	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	$\overline{\mathbf{x}}_{B}$
\mathcal{B}	\mathbf{c}_B	-3	1	-1	-2	0	0	0
x_2^+	1	0	1	-1	0	8/5	2/5	31/5
x_1	-3	1	0	0	0	4/5	1/5	8/5
x_3	-2	0	0	0	1	-1/5	1/5	3/5
ī		0	0	0	0	2/5	3/5	-1/5

Понеже $\bar{c}_2^- = 0$ и останалите елементи от стълба x_2^- са неположителни $(\mathbf{w}_2^- = (-1,0,0)^{\mathrm{T}} \leq \mathbf{0})$, то от върха $\mathbf{x}_{\mathrm{K}}^{(2)}$ излиза неограничен ръб на допустимото множество (9), чиито точки са от вида

$$\mathbf{x}_{K}^{(t)} = \mathbf{x}_{K}^{(2)} + t(0, 1, 1, 0, 0, 0)^{\mathrm{T}} = \left(\frac{8}{5}, \frac{31}{5} + t, t, \frac{3}{5}, 0, 0\right)^{\mathrm{T}}, \qquad t \ge 0$$

и също са оптимални решения на каноничната задача. Решенията на първоначалната задача се получават от първите четири координати на $\mathbf{x}_{\mathrm{K}}^{(t)}$

 $(x_2 = x_2^+ - x_2^-)$: $\mathbf{x}^* = \left(\frac{8}{5}, \frac{31}{5}, \frac{3}{5}\right)^{\mathrm{T}}$ и $z^* = -\frac{1}{5}$. Виждаме, че решението на дадената задача е единствено, въпреки че съответната канонична задача има оптимален неограничен ръб. Затова в бъдеще няма да обръщаме внимание на тези оптимални решения на каноничната задача, защото те не водят до нови оптимални решения на дадената задача.

Пример 2. Да се реши задачата

$$z(\mathbf{x}) = -3x_1 - x_2 \to \min,$$

$$-2x_1 + x_2 \le 4,$$

$$-x_1 + x_2 \ge -2,$$

$$3x_1 + x_2 \le 22,$$

$$x_1 \ge 0, x_2 \ge 0.$$

Решение. Привеждаме задачата в каноничен вид, като предварително умножим второто ограничение с -1

$$z_{K}(\mathbf{x}_{K}) = -3x_{1} - x_{2} \rightarrow \min,$$

$$-2x_{1} + x_{2} + x_{3} = 4,$$

$$x_{1} - x_{2} + x_{4} = 2,$$

$$3x_{1} + x_{2} + x_{5} = 22,$$

$$x_{i} \ge 0, j = 1, \dots, 5.$$

Задачата е в базисен вид (с базис само от допълнителни променливи) спрямо върха $\mathbf{x}_{\mathrm{K}}^{(0)}=(0,0,4,2,22)^{\mathrm{T}}$ и $z(\mathbf{x}_{\mathrm{K}}^{(0)})=0$. В таблица 5 са последователните симплексни таблици за $\mathbf{x}_{\mathrm{K}}^{(0)},\,\mathbf{x}_{\mathrm{K}}^{(1)}=(2,0,8,0,16)^{\mathrm{T}},\,\mathbf{x}_{\mathrm{K}}^{(2)}=\mathbf{x}_{\mathrm{K}}^{*}=(6,4,12,0,0)^{\mathrm{T}},$ $z_{\rm K}({\bf x}_{\rm K}^{(1)})=-6,\,z_{\rm K}^*=z({\bf x}_{\rm K}^*)=-22.$ Оптималното решение ${\bf x}_{\rm K}^*$ не е единствено, понеже $\overline{c}_4=0.$ При въ-

веждане на x4 в базиса се получава (вж. последната симплексна таблица в табл. 5) оптималното решение $\mathbf{x}_K^{**} = \left(\frac{18}{5}, \frac{56}{5}, 0, \frac{48}{5}, 0\right)^T$. Други оптимални върхове няма. Тогава всички оптимални решения на каноничната задача са $\mathbf{x}_K^{(\lambda)} = \lambda \mathbf{x}_K^* + (1-\lambda)\mathbf{x}_K^{**} = \left(\frac{18+12\lambda}{5}, \frac{56-36\lambda}{5}, 12\lambda, \frac{48-48\lambda}{5}, 0\right)^T$, $\lambda \in [0,1]$. Изходната задача има оптимални решения $\mathbf{x}^{(\lambda)} = \left(\frac{18+12\lambda}{5}, \frac{56-36\lambda}{5}\right)^T$, $\lambda \in [0,1]$, и $z^* = -22$.

Пример 3. Да се реши задачата

$$z(\mathbf{x}) = -x_1 - x_2 - 5x_3 + 4x_4 \to \min,$$

$$x_1 + 3x_3 + x_4 = 2,$$

$$x_2 + x_3 - 2x_4 = 0,$$

$$x_j \ge 0, \ j = 1, \dots, 4.$$

Таблица 5

		x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	$\overline{\mathbf{x}}_{B}$	
\mathcal{B}	\mathbf{c}_B	-3	-1	0	0	0	0	
<i>x</i> ₃	0	-2	1	1	0	0	4	
<i>x</i> ₄	0	1	-1	0	1	0	2	$\mathbf{x}_{\mathrm{K}}^{(0)}$
<i>x</i> ₅	0	3	1	0	0	1	22	
ī		-3	-1	0	0	0	0	
<i>x</i> ₃	0	0	-1	1	2	0	8	
x_1	-3	1	-1	0	1	0	2	$\mathbf{x}_{\mathrm{K}}^{(1)}$
<i>x</i> ₅	0	0	4	0	-3	1	16	
ī		0	-4	0	3	0	6	
<i>x</i> ₃	0	0	0	1	5/4	1/4	12	
x_1	-3	1	0	0	1/4	1/4	6	$\mathbf{x}_{K}^{(2)} = \mathbf{x}_{K}^{*}$
x_2	-1	0	1	0	-3/4	1/4	4	
ī		0	0	0	0	1	22	
<i>x</i> ₄	0	0	0	4/5	1	1/5	48/5	
x_1	-3	1	0	-1/5	0	1/5	18/5	$\mathbf{x}_{\mathrm{K}}^{**}$
x_2	-1	0	1	3/5	0	2/5	56/5	
ī		0	0	0	0	1	22	

Решение. Дадената задача е в каноничен вид с очевиден начален базис $[x_1, x_2]$, на който отговаря изроден връх $\mathbf{x}^{(0)} = (2, 0, 0, 0)^{\mathrm{T}}$. Симплексните

Таблица 6

							_
		x_1	x_2	x_3	x_4	$\overline{\mathbf{x}}_{B}$	
\mathcal{B}	\mathbf{c}_B	-1	-1	-5	4	0	
x_1	-1	1	0	3	1	2	
x_2	-1	0	1	1	-2	0	$\mathbf{x}^{(0)}$
ī		0	0	-1	3	2	
x_1	-1	1	-3	0	7	2	
<i>x</i> ₃	-5	0	1	1	-2	0	$\mathbf{x}^{(0)}$
ī		0	1	0	1	2	

таблици за решаване на задачата са дадени в таблица 6. Те съдържат базисния вид на задачата спрямо два базиса на този изроден връх. Критерият за оптималност се проявява само при втория базис. Оптималната стойност на целевата функция е $z^* = -2$.

Задачи

Да се решат чрез симплекс метода дадените задачи. От симплексната таблица на последния връх $\overline{\mathbf{x}}$ да се определи:

- а) ако $\overline{\mathbf{x}}$ е оптимален, дали е единствено оптимално решение и ако не е, да се намерят всички съседни оптимални върхове, а също и оптималните решения (ако има такива), които лежат върху неограничени ръбове, излизащи от $\overline{\mathbf{x}}$; да се напише общият вид на допустимите вектори, за които от получената информация следва, че са оптимални решения на задачата;
- б) общият вид на точките, лежащи върху неограничените ръбове, излизащи от $\overline{\mathbf{x}}$, по които $z(\mathbf{x})$ расте или намалява неограничено (в зависимост от критерия).

1.
$$z(\mathbf{x}) = 3 - x_4 - x_5 \rightarrow \min,$$

 $x_1 + x_4 + x_5 = 2,$
 $x_2 + 2x_4 + 3x_5 = 7,$
 $x_3 - x_4 - 3x_5 = 2,$
 $x_j \ge 0, \ j = 1, \dots, 5.$

2.
$$z(\mathbf{x}) = 5x_1 + 2x_2 + 7x_3 + x_4 - x_6 \rightarrow \max$$
,
 $-x_2 + x_3 + x_4 - 6x_5 = 5$,
 $x_1 + x_2 + x_4 + x_5 - x_6 = 3$,
 $x_j \ge 0, \ j = 1, \dots, 6$.

3.
$$z(\mathbf{x}) = 2x_1 - 3x_2 + x_3 - 5x_4 - 12x_5 \rightarrow \max,$$

 $x_1 + 2x_2 - x_4 - 5x_5 = 7,$
 $x_2 + x_3 - 3x_4 - 2x_5 = 2,$
 $x_j \ge 0, \ j = 1, \dots, 5.$

4. Зад. 3, но при целева функция $z(\mathbf{x}) = 2x_1 + 5x_2 + x_3 - 5x_4 - 12x_5$.

5.
$$z(\mathbf{x}) = x_2 - x_3 \to \max$$
,
 $-x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_3 = -2$,
 $x_2 - x_3 \ge 1$,
 $3x_2 + x_3 \le 5$,

$$x_j \ge 0, \ j = 1, \dots, 4.$$

6.
$$z(\mathbf{x}) = 2x_1 - x_3 + 3x_4 \rightarrow \max$$
,
 $x_1 + 4x_2 + x_4 = 2$,

$$16x_2 + x_3 - 2x_4 = 8,$$

$$5x_2 \le 3,$$

 $x_j \ge 0, \ j = 1, \dots, 4.$

7.
$$z(\mathbf{x}) = x_1 + x_2 \to \max$$
,

$$2x_1 - x_2 + x_3 = 4,$$

$$-x_1 + 2x_2 + x_4 = 4,$$

$$0 \le x_1 \le 3, \ 0 \le x_2 \le 3,$$

$$0 \le x_3 \le 7, \ 0 \le x_4.$$

8.
$$z(\mathbf{x}) = x_1 + x_2 \to \max$$
,

$$x_1 + x_2 - x_3 \le 2$$
,

$$-x_1 + 2x_2 \leq 4,$$

$$2x_1 + 6x_2 \leq 6,$$

$$x_j \ge 0, \ j = 1, 2, 3.$$

9.
$$z(\mathbf{x}) = 9x_1 + 14x_2 + 5x_3 \rightarrow \max$$
,

$$9x_1 + 4x_2 + 4x_3 \le 54$$
,

$$9x_1 + 5x_2 + 5x_3 \le 63,$$

$$0 \le x_2 \le 5$$
, $x_1 \ge 0$, $x_3 \ge 0$.

Отговори и решения

1. $z^* = 1$. При влизане на x_4 в базиса оптимално решение е $\mathbf{x}^* = (0, 3, 4, 2, 0)^{\mathrm{T}}$. При влизане на x_5 в базиса оптимално решение е $\mathbf{x}^{**} = (0, 1, 8, 0, 2)^{\mathrm{T}}$. Всички оптимални решения са $\mathbf{x}_{\lambda} = \lambda \mathbf{x}^* + (1 - \lambda)\mathbf{x}^{**} = (0, 2\lambda + 1, 8 - 4\lambda, 2\lambda, 2 - 2\lambda)^{\mathrm{T}}$, $\lambda \in [0, 1]$.

2. От $\overline{\mathbf{x}} = (3, 0, 5, 0, 0, 0)^{\mathrm{T}}$ излиза неограничен ръб $\mathbf{x}_t = (3 + t, 0, 5, 0, 0, t)^{\mathrm{T}}$, $t \ge 0$; $z(\mathbf{x}_t) = 50 + 4t \xrightarrow[t \to \infty]{} +\infty$.

3. $\overline{\mathbf{x}} = (7,0,2,0,0)^{\mathrm{T}}$ е оптимално решение, $z^* = 16$. Оптимални неограничени ръбове $(\overline{c}_4 = 0)$ $\mathbf{x}_t = (7+t,0,2+3t,t,0)^{\mathrm{T}}, \ t \geq 0$, с направляващ вектор $\mathbf{p} = (1,0,3,1,0)^{\mathrm{T}}$ и $(\overline{c}_5 = 0)$ $\mathbf{x}_r = (7+5r,0,2+2r,0,r)^{\mathrm{T}}, \ r \geq 0$, с направляващ вектор $\mathbf{q} = (5,0,2,0,1)^{\mathrm{T}}$. Всички оптимални решения са $\mathbf{x}_{\mu} = \overline{\mathbf{x}} + \mu_1 \mathbf{p} + \mu_2 \mathbf{q} = (7+\mu_1+5\mu_2,0,2+3\mu_1+2\mu_2,\mu_1,\mu_2)^{\mathrm{T}}, \ \mu_1 \geq 0, \ \mu_2 \geq 0$.

4. $\overline{\mathbf{x}} = (7,0,2,0,0)^{\mathrm{T}}$ е оптимално решение, $z^* = 16$. Неограничени ръбове $(\overline{c}_4 = 0)$ \mathbf{x}_t и $(\overline{c}_5 = 0)$ \mathbf{x}_r от вида в задача 3. $\overline{\mathbf{x}}$ има съседен оптимален връх $(\overline{c}_2 = 0)$ $\overline{\mathbf{y}} = (3,2,0,0,0)^{\mathrm{T}}$. Оптимални решения са $\mathbf{x}_{\lambda\mu} = \lambda \overline{\mathbf{x}} + (1-\lambda)\overline{\mathbf{y}} + \mu_1 \mathbf{p} + \mu_2 \mathbf{q} = (3+4\lambda+\mu_1+5\mu_2,2-2\lambda,2\lambda+3\mu_1+2\mu_2,\mu_1,\mu_2)^{\mathrm{T}}, \lambda \in [0,1], \mu_1 \geq 0, \mu_2 \geq 0$ (това не са всички решения — от $\overline{\mathbf{y}}$ също излиза неограничен оптимален ръб).

5.
$$z^* = \frac{5}{3}$$
, $\mathbf{x}^* = \left(\frac{17}{6}, \frac{5}{3}, 0\right)^{\mathrm{T}}$.

6.
$$z^* = 0$$
, $\mathbf{x}^* = \left(0, \frac{1}{2}, 0, 0\right)^T$.

7.
$$z^* = 6$$
, $\mathbf{x}^* = (3, 3, 1, 1)^{\mathrm{T}}$.

8.
$$z^* = 3$$
, $\mathbf{x}^* = (3, 0, 1)^{\mathrm{T}}$.

9.
$$z^* = 108$$
, $\mathbf{x}^* = (2, 5, 4)^{\mathrm{T}}$.