**Github:** github.com/antoinecollas/robust\_metric\_learning



A. Collas<sup>1</sup>, A. Breloy<sup>2</sup>, G. Ginolhac<sup>3</sup>, C. Ren<sup>1</sup>, J.-P. Ovarlez<sup>1,4</sup>

<sup>1</sup>SONDRA, CentraleSupélec, University Paris-Saclay <sup>2</sup>LEME, University Paris Nanterre <sup>3</sup>LISTIC, University Savoie Mont Blanc <sup>4</sup>DEMR, ONERA, University Paris-Saclay



### **Metric learning**

Supervised regime with K classes:  $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n$ . Find a Mahalanobis distance

$$d_{oldsymbol{A}}(oldsymbol{x}_i, oldsymbol{x}_j) = \sqrt{(oldsymbol{x}_i - oldsymbol{x}_j)^T oldsymbol{A}^{-1} (oldsymbol{x}_i - oldsymbol{x}_j)}$$

relevant for classification problems.

 $A \in \mathcal{S}_p^{++}$  the set of  $p \times p$  symmetric positive definite matrices.





## State of the art & covariance estimation

Set S:  $n_S$  pairs  $(\boldsymbol{x}_l, \boldsymbol{x}_q)$  with  $y_l = y_q$ . Set D:  $n_D$  pairs  $(\boldsymbol{x}_l, \boldsymbol{x}_q)$  with  $y_l \neq y_q$ .

## Information-Theoretic Metric Learning (ITML): [2]

Given  $\boldsymbol{A}_0 \in \mathcal{S}_p^{++}$ , and u,v>0

 $m{A}_0 = rac{1}{m} \sum_{i=1}^m m{x}_i m{x}_i^T \implies ext{minimization of the Gaussian negative log-likelihood under constraints.}$ 

 $d^2_{oldsymbol{A}}(oldsymbol{x}_l,oldsymbol{x}_q) \geq v, \quad (oldsymbol{x}_l,oldsymbol{x}_q) \in D$ 

### Geometric Mean Metric Learning (GMML): [6]

$$\underset{\boldsymbol{A} \in \mathcal{S}_p^{++}}{\text{minimize}} \quad \frac{1}{n_S} \sum_{(\boldsymbol{x}_l, \boldsymbol{x}_a) \in S} d_{\boldsymbol{A}}^2(\boldsymbol{x}_l, \boldsymbol{x}_q) + \frac{1}{n_D} \sum_{(\boldsymbol{x}_l, \boldsymbol{x}_a) \in D} d_{\boldsymbol{A}^{-1}}^2(\boldsymbol{x}_l, \boldsymbol{x}_q)$$

Closed form solution (Riemannian interpolation):

$$m{A}^{-1} = m{S}^{-1} \#_t m{D} = m{S}^{-rac{1}{2}} \left( m{S}^{rac{1}{2}} m{D} m{S}^{rac{1}{2}} 
ight)^t m{S}^{-rac{1}{2}} \ ext{with} \ t \in [0,1]$$

$$oldsymbol{S} = rac{1}{n_S} \sum_{(oldsymbol{x}_l, oldsymbol{x}_q) \in S} (oldsymbol{x}_l - oldsymbol{x}_q) (oldsymbol{x}_l - oldsymbol{x}_q)^T \quad ext{and} \quad oldsymbol{D} = rac{1}{n_D} \sum_{(oldsymbol{x}_l, oldsymbol{x}_q) \in D} (oldsymbol{x}_l - oldsymbol{x}_q) (oldsymbol{x}_l - oldsymbol{x}_q)^T.$$

In practice, works well for t small, i.e.  $A \approx S$ .

**Assumption**: Data points of each class are realizations of independent random vectors with class-dependent first and second order moments

$$oldsymbol{x}_{kl} \stackrel{d}{=} oldsymbol{\mu}_k + oldsymbol{\Sigma}_k^{rac{1}{2}} oldsymbol{u}_{kl}$$

with  $m{\mu}_k \in \mathbb{R}^p$ ,  $m{\Sigma}_k \in \mathcal{S}_p^{++}$ ,  $\mathbb{E}[m{u}_{kl}] = m{0}$  and  $\mathbb{E}[m{u}_{kl}m{u}_{kq}^T] = m{I}_p$  if kl = kq,  $m{0}_p$  otherwise.

$$\implies \mathbb{E}[\mathbf{S}] = 2\sum_{k=1}^{K} \pi_k \mathbf{\Sigma}_k \approx \mathbb{E}[\mathbf{A}]$$

where  $\{\pi_k\}$  are the classes proportions.

## Robust Geometric Metric Learning (RGML)

where  $\lambda > 0$  and  $d_{\mathcal{S}_n^{++}}$  is the Riemannian distance on  $\mathcal{S}_p^{++}$ 

$$d^2_{\mathcal{S}^{++}_p}\left(oldsymbol{A},oldsymbol{A}_k
ight) = \left\|\log\left(oldsymbol{A}^{-rac{1}{2}}oldsymbol{A}_koldsymbol{A}^{-rac{1}{2}}
ight)
ight\|_F^2.$$

## Gaussian negative log-likelihood & Tyler cost function

Set  $S_k$ :  $n_k$  pairs  $(\boldsymbol{x}_l, \boldsymbol{x}_q)$  with  $y_l = y_q = k$ .

## Gaussian negative log-likelihood:

$$\mathcal{L}_{G,k}(\boldsymbol{A}_k) = \frac{1}{n_k} \sum_{(\boldsymbol{x}_l, \boldsymbol{x}_q) \in S_k} (\boldsymbol{x}_l - \boldsymbol{x}_q)^T \boldsymbol{A}_k^{-1} (\boldsymbol{x}_l - \boldsymbol{x}_q) + \log |\boldsymbol{A}_k|$$

minimized for

$$\boldsymbol{A}_k = \frac{1}{n_k} \sum_{(\boldsymbol{x}_l, \boldsymbol{x}_q) \in S_k} (\boldsymbol{x}_l - \boldsymbol{x}_q) (\boldsymbol{x}_l - \boldsymbol{x}_q)^T$$



## Tyler cost function: [5]

$$\mathcal{L}_{T,k}(\boldsymbol{A}_k) = \frac{p}{n_k} \sum_{(\boldsymbol{x}_l, \boldsymbol{x}_q) \in S_k} \log \left( (\boldsymbol{x}_l - \boldsymbol{x}_q)^T \boldsymbol{A}_k^{-1} (\boldsymbol{x}_l - \boldsymbol{x}_q) \right) + \log |\boldsymbol{A}_k|$$

minimized for

$$\boldsymbol{A}_k = \frac{1}{n_k} \sum_{(\boldsymbol{x}_l, \boldsymbol{x}_q) \in S_k} \underbrace{\frac{p}{(\boldsymbol{x}_l - \boldsymbol{x}_q)^T \boldsymbol{A}_k^{-1} (\boldsymbol{x}_l - \boldsymbol{x}_q)}}_{\text{weight of } (\boldsymbol{x}_l - \boldsymbol{x}_q)} (\boldsymbol{x}_l - \boldsymbol{x}_q)^T \boldsymbol{A}_k^{-1} (\boldsymbol{x}_l - \boldsymbol{x}_q)}$$



#### Gaussian RGML & Tyler RGML

#### **Gaussian RGML**:

$$\underset{(\boldsymbol{A}, \{\boldsymbol{A}_k\}) \in \left(\mathcal{S}_p^{++}\right)^{K+1}}{\operatorname{minimize}} h_G\left(\boldsymbol{A}, \{\boldsymbol{A}_k\}\right) = \underbrace{\sum_{k=1}^K \pi_k \mathcal{L}_{G,k}(\boldsymbol{A}_k)}_{K=1} + \lambda \sum_{k=1}^K \pi_k d_{\mathcal{S}_p^{++}}^2(\boldsymbol{A}, \boldsymbol{A}_k)$$
Gaussian negative log-likelihood

#### Tyler RGML:

$$\underset{(\boldsymbol{A}, \{\boldsymbol{A}_k\}) \in \left(\mathcal{S}\mathcal{S}_p^{++}\right)^{K+1}}{\text{minimize}} h_T\left(\boldsymbol{A}, \{\boldsymbol{A}_k\}\right) = \underbrace{\sum_{k=1}^K \pi_k \mathcal{L}_{T,k}(\boldsymbol{A}_k)}_{\text{Tyler cost function}} + \lambda \sum_{k=1}^K \pi_k d_{\mathcal{S}_p^{++}}^2(\boldsymbol{A}, \boldsymbol{A}_k)$$
 where  $\mathcal{S}\mathcal{S}_p^{++} = \left\{\boldsymbol{\Sigma} \in \mathcal{S}_p^{++} : |\boldsymbol{\Sigma}| = 1\right\}$  (unit determinant)

## $\mathcal{S}_n^{++}$ and $\mathcal{S}\mathcal{S}_n^{++}$ as Riemannian manifolds



On  $\mathcal{S}_p^{++}/\mathcal{S}\mathcal{S}_p^{++}$ : curvature induced by

• the Riemannian metric:  $\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle_{\boldsymbol{\Sigma}}^{\mathcal{S}_p^{++}} = \operatorname{Tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\xi}\boldsymbol{\Sigma}^{-1}\boldsymbol{\eta}).$ 

• constraint on  $\mathcal{SS}_{n}^{++}$ :  $|\mathbf{\Sigma}|=1$ ,

Figure 1. Representation of  $S_p^{++}$  as a Riemannian manifold with a point  $\Sigma$  and tangent vectors  $\xi, \eta \in T_{\Sigma}S_p^{++}$ .

Chosen Riemannian metric:  $\forall \theta = (\boldsymbol{A}, \{\boldsymbol{A}_k\}), \, \forall \xi = (\boldsymbol{\xi}, \{\boldsymbol{\xi}_k\}), \eta = (\boldsymbol{\eta}, \{\boldsymbol{\eta}_k\})$ 

$$\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle_{\theta} = \operatorname{Tr} \left( \boldsymbol{A}^{-1} \boldsymbol{\xi} \boldsymbol{A}^{-1} \boldsymbol{\eta} \right) + \sum_{k=1}^{K} \operatorname{Tr} \left( \boldsymbol{A}_{k}^{-1} \boldsymbol{\xi}_{k} \boldsymbol{A}_{k}^{-1} \boldsymbol{\eta}_{k} \right)$$

 $\implies$  cost functions  $h_{\mathsf{G}}$  and  $h_{\mathsf{T}}$  are geodesically convex.

## Riemannian gradient descents [1]

Given  $\alpha > 0$  a step size

$$\theta_{\ell+1} = \underbrace{R_{\theta_{\ell}}^{\left(\mathcal{S}_{p}^{++}\right)^{K+1}}}_{\text{retraction on }\left(\mathcal{S}_{p}^{++}\right)^{K+1}} \left(-\alpha \underbrace{\nabla^{\left(\mathcal{S}_{p}^{++}\right)^{K+1}} h_{G}(\theta_{\ell})}_{\text{Riemannian gradient of }h_{G}}\right)$$

# Iterations of Tyler RGML:

$$\theta_{\ell+1} = \underbrace{R_{\theta_{\ell}}^{\left(\mathcal{S}\mathcal{S}_{p}^{++}\right)^{K+1}}}_{\text{retraction on }\left(\mathcal{S}\mathcal{S}_{p}^{++}\right)^{K+1}} \left(-\alpha \underbrace{\nabla^{\left(\mathcal{S}\mathcal{S}_{p}^{++}\right)^{K+1}}}_{\text{Riemannian gradient of }h_{T}}\right)$$

Retractions and Riemannian gradients are given in Section III of the paper.

# Application

Application to datasets from the UCI Machine Learning Repository [3].





RGML + k-nearest neighbors

|                 | Wine                   |       |       |       | Vehicle                     |       |       |       | Iris                       |       |       |       |
|-----------------|------------------------|-------|-------|-------|-----------------------------|-------|-------|-------|----------------------------|-------|-------|-------|
|                 | p=13 , $n=178$ , $K=3$ |       |       |       | p = 18, $n = 846$ , $K = 4$ |       |       |       | p = 4, $n = 150$ , $K = 3$ |       |       |       |
| Method          | Mislabeling rate       |       |       |       | Mislabeling rate            |       |       |       | Mislabeling rate           |       |       |       |
|                 | 0%                     | 5%    | 10%   | 15%   | 0%                          | 5%    | 10%   | 15%   | 0%                         | 5%    | 10%   | 15%   |
| Euclidean       | 30.12                  | 30.40 | 31.40 | 32.40 | 38.27                       | 38.58 | 39.46 | 40.35 | 3.93                       | 4.47  | 5.31  | 6.70  |
| SCM             | 10.03                  | 11.62 | 13.70 | 17.57 | 23.59                       | 24.27 | 25.24 | 26.51 | 12.57                      | 13.38 | 14.93 | 16.68 |
| ITML - Identity | 3.12                   | 4.15  | 5.40  | 7.74  | 24.21                       | 23.91 | 24.77 | 26.03 | 3.04                       | 4.47  | 5.31  | 6.70  |
| ITML - SCM      | 2.45                   | 4.76  | 6.71  | 10.25 | 23.86                       | 23.82 | 24.89 | 26.30 | 3.05                       | 13.38 | 14.92 | 16.67 |
| GMML            | 2.16                   | 3.58  | 5.71  | 9.86  | 21.43                       | 22.49 | 23.58 | 25.11 | 2.60                       | 5.61  | 9.30  | 12.62 |
| LMNN            | 4.27                   | 6.47  | 7.83  | 9.86  | 20.96                       | 24.23 | 26.28 | 28.89 | 3.53                       | 9.59  | 11.19 | 12.22 |
| Gaussian RGML   | 2.07                   | 2.93  | 5.15  | 9.20  | 19.76                       | 21.19 | 22.52 | 24.21 | 2.47                       | 5.10  | 8.90  | 12.73 |
| Tyler RGML      | 2.12                   | 2.90  | 4.51  | 8.31  | 19.90                       | 20.96 | 22.11 | 23.58 | 2.48                       | 2.96  | 4.65  | 7.83  |

Table 1. Misclassification errors on 3 datasets: Wine, Vehicle and Iris. Mislabeling rate: percentage of labels randomly changed in the training set.

# References

- [1] P.-A. Absil et al. *Optimization Algorithms on Matrix Manifolds*. Princeton, NJ, USA: Princeton University Press, 2008.
- [2] J. V. Davis et al. "Information-Theoretic Metric Learning". In: *Proceedings of the 24th International Conference on Machine Learning*. 2007.
- [3] D. Dua and C. Graff. *UCI Machine Learning Repository*. 2017.
- [4] E. Ollila et al. Simultaneous penalized M-estimation of covariance matrices using geodesically convex optimization. 2016.
- [5] D. E. Tyler. "A Distribution-Free M-Estimator of Multivariate Scatter". In: *The Annals of Statistics* 15 (1987).
- [6] P. Zadeh et al. "Geometric Mean Metric Learning". In: *Proceedings of The 33rd International Conference on Machine Learning*. Proceedings of Machine Learning Research. 2016.