Jupyter Notebook desenvolvido por Gustavo S.S. (https://github.com/GSimas)

"Na ciência, o crédito vai para o homem que convence o mundo, não para o que primeiro teve a ideia" - Francis Darwin

Capacitores e Indutores

Contrastando com um resistor, que gasta ou dissipa energia de forma irreversível, um indutor ou um capacitor armazena ou libera energia (isto é, eles têm capacidade de memória).

Capacitor

Capacitor é um elemento passivo projetado para armazenar energia em seu campo elétrico. Um capacitor é formado por duas placas condutoras separadas por um isolante (ou dielétrico).

Figura 6.1 Capacitor comum.

Figura 6.2 Capacitor com tensão aplicada v.

Quando uma fonte de tensão v é conectada ao capacitor, como na Figura 6.2, a fonte deposita uma carga positiva q sobre uma placa e uma carga negativa -q na outra placa. Diz-se que o capacitor armazena a carga elétrica. A quantidade de carga armazenada, representada por q, é diretamente proporcional à tensão aplicada v de modo que:

$$q = Cv$$

Capacitância é a razão entre a carga depositada em uma placa de um capacitor e a diferença de potencial entre as duas placas, medidas em farads (F). Embora a capacitância C de um capacitor seja a razão entre a carga q por placa e a tensão aplicada v, ela não depende de q ou v, mas, sim, das dimensões físicas do capacitor

$$C = \epsilon \frac{A}{d}$$

Onde **A** é a área de cada placa, **d** é a distância entre as placas e ϵ é a permissividade elétrica do material dielétrico entre as placas

Figura 6.3 Símbolos para capacitores: (a) capacitor fixo; (b) capacitor variável.

Para obter a relação corrente-tensão do capacitor, utilizamos:

$$i = C rac{dv}{dt}$$

Diz-se que os capacitores que realizam a Equação acima são lineares. Para um capacitor não linear, o gráfico da relação corrente-tensão não é uma linha reta. E embora alguns capacitores sejam não lineares, a maioria é linear.

Figura 6.6 Relação tensão-corrente de um capacitor.

Relação Tensão-Corrente:

$$v(t)=rac{1}{C}\int_{t_0}^t i(au)d au+v(t_0)$$

A Potência Instantânea liberada para o capacitor é:

$$p = vi = Cv \frac{dv}{dt}$$

A energia armazenada no capacitor é:

$$w=\int_{-\infty}^{t}p(au)d au$$
 $=$
 $C\int_{-\infty}^{t}vrac{dv}{d au}d au$
 $=$
 $C\int_{v(-\infty)}^{v(t)}vdv$
 $=$
 $rac{1}{2}Cv^{2}$

Percebemos que $v(-\infty) = 0$, pois o capacitor foi descarregado em $t = -\infty$. Logo:

$$w=rac{1}{2}Cv^2$$

$$w=rac{q^2}{2C}$$

As quais representam a energia armazenada no campo elétrico existente entre as placas do capacitor. Essa energia pode ser recuperada, já que um capacitor ideal não pode dissipar energia. De fato, a palavra capacitor deriva da capacidade de esse elemento armazenar energia em um campo elétrico.

- 1. Um capacitor é um circuito aberto em CC.
- 2. A tensão em um capacitor não pode mudar abruptamente.
- 3. O capacitor ideal não dissipa energia, mas absorve potência do circuito ao armazenar energia em seu campo e retorna energia armazenada previamente ao liberar potência para o circuito.
- 4. Um capacitor real, não ideal, possui uma resistência de fuga em paralelo conforme pode ser observado no modelo visto na Figura 6.8. A resistência de fuga pode chegar a valores bem elevados como 100 M Ω e pode ser desprezada para a maioria das aplicações práticas.

Figura 6.7 A tensão nos terminais de um capacitor: (a) permitida; (b) não permitida; não é possível uma mudança abrupta.

Figura 6.8 Modelo de circuito de um capacitor não ideal.

Exemplo 6.1

- a. Calcule a carga armazenada em um capacitor de 3 pF com 20 V entre seus terminais.
- b. Determine a energia armazenada no capacitor.

In [7]:

```
print("Exemplo 6.1")
C = 3*(10**(-12))
V = 20
q = C*V
print("Carga armazenada:",q,"C")
w = q**2/(2*C)
print("Energia armazenada:",w,"J")
```

Exemplo 6.1

Carga armazenada: 6e-11 C Energia armazenada: 6e-10 J

Problema Prático 6.1

Qual é a tensão entre os terminais de um capacitor de 4,5 uF se a carga em uma placa for 0,12 mC? Quanta energia é armazenada?

In [9]:

```
print("Problema Prático 6.1")
C = 4.5*10**-6
q = 0.12*10**-3
V = q/C
print("Tensão no capacitor:",V,"V")
w = q**2/(2*C)
print("Energia armazenada:",w,"J")
```

Problema Prático 6.1

Tensão no capacitor: 26.6666666666668 V Energia armazenada: 0.00159999999999999999 J

Exemplo 6.2

A tensão entre os terminais de um capacitor de 5 uF é:

v(t) 10 cos 6.000t V

Calcule a corrente que passa por ele.

In [16]:

```
print("Exemplo 6.2")
import numpy as np
from sympy import *
C = 5*10**-6
t = symbols('t')
v = 10*cos(6000*t)
i = C*diff(v,t)
print("Corrente que passa no capacitor:",i,"A")
```

Exemplo 6.2

Corrente que passa no capacitor: -0.3*sin(6000*t) A

Problema Prático 6.2

Se um capacitor de 10 uF for conectado a uma fonte de tensão com:

v(t) 75 sen 2.000t V

determine a corrente através do capacitor.

In [15]:

```
print("Problema Prático 6.2")
C = 10*10**-6
v = 75*sin(2000*t)
i = C * diff(v,t)
print("Corrente:",i,"A")
```

Problema Prático 6.2 Corrente: 1.5*cos(2000*t) A

Exemplo 6.3

Determine a tensão através de um capacitor de 2 uF se a corrente através dele for

i(t) 6e^-3.000t mA

Suponha que a tensão inicial no capacitor seja igual a zero.

In [23]:

```
print("Exemplo 6.3")
C = 2*10**-6
i = 6*exp(-3000*t)*10**-3
v = integrate(i,(t,0,t))
print("Tensão no capacitor:",v,"V")
```

```
Exemplo 6.3
```

Tensão no capacitor: 1.0 - 1.0*exp(-3000*t) V

Problema Prático 6.3

A corrente contínua através de um capacitor de 100 uF é:

```
i(t) = 50 \text{ sen}(120pi*t) \text{ mA}.
```

Calcule a tensão nele nos instantes t = 1 ms e t = 5 ms. Considere v(0) = 0.

In [26]:

```
print("Problema Prático 6.3")
C = 100*10**-6
i = 50*sin(120*np.pi*t)*10**-3
v = integrate(i,(t,0,0.001))
v = v/C
print("Tensão no capacitor para t = 1ms:",v,"V")
v = integrate(i,(t,0,0.005))
v = v/C
print("Tensão no capacitor para t = 5ms:",v,"V")
```

Problema Prático 6.3 Tensão no capacitor para t = 1ms: 0.0931368282680687 V Tensão no capacitor para t = 5ms: 1.73613771038391 V

Exemplo 6.4

Determine a corrente através de um capacitor de 200 mF cuja tensão é mostrada na Figura 6.9.

)

In [27]:

```
print("Exemplo 6.4")
\#v(t) = 50t, 0 < t < 1
\#v(t) = 100 - 50t, 1 < t < 3
\#v(t) = -200 + 50t, 3< t< 4
\#v(t) = 0, caso contrario
C = 200*10**-6
v1 = 50*t
v2 = 100 - 50*t
v3 = -200 + 50*t
i1 = C*diff(v1,t)
i2 = C*diff(v2,t)
i3 = C*diff(v3,t)
print("Corrente para 0<t<1:",i1,"A")</pre>
print("Corrente para 1<t<3:",i2,"A")</pre>
print("Corrente para 3<t<4:",i3,"A")</pre>
```

Exemplo 6.4

Corrente para 0<t<1: 0.0100000000000000 A Corrente para 1<t<3: -0.0100000000000000 A Corrente para 3<t<4: 0.0100000000000000 A

Problema Prático 6.4

Um capacitor inicialmente descarregado de 1 mF possui a corrente mostrada na Figura 6.11 entre seus terminais. Calcule a tensão entre seus terminais nos instantes t = 2 ms e t = 5 ms.

Figura 6.11 Esquema para o Problema prático 6.4.

In [42]:

```
print("Problema Prático 6.4")
C = 1*10**-3
i = 50*t*10**-3
v = integrate(i,(t,0,0.002))
v = v/C
print("Tensão para t=2ms:",v,"V")
i = 100*10**-3
v = integrate(i,(t,0,0.005))
v = v/C
print("Tensão para t=5ms:",v,"V")
```

Problema Prático 6.4

Tensão para t=2ms: 0.00010000000000000 V Tensão para t=5ms: 0.50000000000000 V

Exemplo 6.5

Obtenha a energia armazenada em cada capacitor na Figura 6.12a em condições de CC.

Figura 6.12 Esquema para o Exemplo 6.5.

In [46]:

```
print("Exemplo 6.5")
C1 = 2*10**-3
C2 = 4*10**-3
I1 = (6*10**-3)*(3000)/(3000 + 2000 + 4000) #corrente que passa no resistor de 2k
Vc1 = I1*2000 # tensao sobre o cap1 = tensao sobre o resistor 2k
wc1 = (C1*Vc1**2)/2
print("Energia do Capacitor 1:",wc1,"J")
Vc2 = I1*4000
wc2 = (C2*Vc2**2)/2
print("Energia do Capacitor 2:",wc2,"J")
```

Exemplo 6.5

Energia do Capacitor 1: 0.016 J Energia do Capacitor 2: 0.128 J

Problema Prático 6.5

Em condições CC, determine a energia armazenada nos capacitores da Figura 6.13.

Figura 6.13 Esquema para o Problema prático 6.5.

In [47]:

```
print("Problema Prático 6.5")
C1 = 20*10**-6
C2 = 30*10**-6
Vf = 50 #tensao da fonte
Req = 1000 + 3000 + 6000
Vc1 = Vf*(3000+6000)/Req
Vc2 = Vf*3000/Req
wc1 = (C1*Vc1**2)/2
wc2 = (C2*Vc2**2)/2
print("Energia no Capacitor 1:",wc1,"J")
print("Energia no Capacitor 2:",wc2,"J")
```

Problema Prático 6.5

Energia no Capacitor 2: 0.003374999999999995 J

Capacitores em Série e Paralelo

Paralelo

A capacitância equivalente de N capacitores ligados em paralelo é a soma de suas capacitâncias individuais.

$$C_{eq} = C_1 + C_2 + \ldots + C_N = \sum_{i=1}^N C_i$$
 $i_1 \downarrow \qquad i_2 \downarrow \qquad i_3 \downarrow \qquad i_N \downarrow \qquad + \ C_N = c_2 = c_3 = c_N$
 $i \downarrow \qquad c_1 = c_2 = c_3 = c_N$

Figura 6.14 (a) N capacitores conectados em paralelo; (b) circuito equivalente para os capacitores em paralelo.

Série

A capacitância equivalente dos capacitores associados em série é o inverso da soma dos inversos das capacitâncias individuais.

$$rac{1}{C_{eq}} = rac{1}{C_1} + rac{1}{C_2} + \ldots + rac{1}{C_N} \ C_{eq} = rac{1}{\sum_{i=1}^N rac{1}{C_i}}$$

$$C_{eq} = (\sum_{i=1}^{N} (C_i)^{-1})^{-1}$$

Figura 6.15 (a) N capacitores conectados em série; (b) circuito equivalente para os capacitores em série.

Para 2 Capacitores:

$$C_{eq} = rac{C_{1}C_{2}}{C_{1}+C_{2}}$$

Exemplo 6.6

Determine a capacitância equivalente vista entre os terminais a-b do circuito da Figura 6.16.

Figura 6.16 Esquema para o Exemplo 6.6.

In [48]:

```
print("Exemplo 6.6")
u = 10**-6 #definicao de micro
Ceq1 = (20*u*5*u)/((20 + 5)*u)
Ceq2 = Ceq1 + 6*u + 20*u
Ceq3 = (Ceq2*60*u)/(Ceq2 + 60*u)
print("Capacitância Equivalente:",Ceq3,"F")
```

Exemplo 6.6

Capacitância Equivalente: 1.99999999999998e-05 F

Problema Prático 6.6

Determine a capacitância equivalente nos terminais do circuito da Figura 6.17.

Figura 6.17 Esquema para o Problema prático 6.6.

In [49]:

```
print("Problema Prático 6.6")
Ceq1 = (60*u*120*u)/((60 + 120)*u)
Ceq2 = 20*u + Ceq1
Ceq3 = 50*u + 70*u
Ceq4 = (Ceq2 * Ceq3)/(Ceq2 + Ceq3)
print("Capacitância Equivalente:",Ceq4,"F")
```

Problema Prático 6.6

Capacitância Equivalente: 3.99999999999996e-05 F

Exemplo 6.7

Para o circuito da Figura 6.18, determine a tensão em cada capacitor.

Figura 6.18 Esquema para o Exemplo 6.7.

In [53]:

```
print("Exemplo 6.7")
m = 10**-3
Vf = 30
Ceq1 = 40*m + 20*m
Ceq2 = 1/(1/(20*m) + 1/(30*m) + 1/(Ceq1))
print("Capacitância Equivalente:",Ceq2,"F")
q = Ceq2*Vf
v1 = q/(20*m)
v2 = q/(30*m)
v3 = Vf - v1 - v2
print("Tensão v1:",v1,"V")
print("Tensão v2:",v2,"V")
print("Tensão v3:",v3,"V")
```

Exemplo 6.7

Capacitância Equivalente: 0.0099999999999999 F

Tensão v1: 14.999999999999 V Tensão v2: 9.9999999999999 V Tensão v3: 5.000000000000000 V

Problema Prático 6.7

Determine a tensão em cada capacitor na Figura 6.20.

Figura 6.20 Esquema para o Problema prático 6.7.

In [61]:

```
print("Problema Prático 6.7")
Vf = 90
Ceq1 = (30*u * 60*u)/(30*u + 60*u)
Ceq2 = Ceq1 + 20*u
Ceq3 = (40*u * Ceq2)/(40*u + Ceq2)
print("Capacitância Equivalente:",Ceq3,"F")
q1 = Ceq3*Vf
v1 = q1/(40*u)
v2 = Vf - v1
q3 = Ceq1*v2
v3 = q3/(60*u)
v4 = q3/(30*u)
print("Tensão v1:",v1,"V")
print("Tensão v2:",v2,"V")
print("Tensão v3:",v3,"V")
print("Tensão v4:",v4,"V")
```

Problema Prático 6.7

Capacitância Equivalente: 1.99999999999998e-05 F

Tensão v1: 45.0 V Tensão v2: 45.0 V

Tensão v3: 15.000000000000000 V Tensão v4: 30.000000000000000 V