PROBLEMA DE ASIGNACIÓN- MÉTODO HÚNGARO

Ejemplo:

Una industria posee delegaciones en 4 capitales a las que desea asignar 4 agentes de ventas. Los incrementos esperados de beneficio, en tanto por cierto, se muestran en la siguiente tabla:

	Barcelona	Madrid	Sevilla	Bilbao	
Agente 1	34	10	15	28	
Agente 2	16	15	22	12	
Agente 3	10	25	13	20	
Agente 4	30	19	27	31	

Obtener la asignación óptima de los agentes a las ciudades

Es un problema de maximización ⇒ Para aplicar el método Húngaro se debe transformar el problema en un problema de minimización, es decir

$$\operatorname{Max} Z \Longrightarrow \operatorname{Min} -Z$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \qquad -Z = \sum_{i=1}^{m} \sum_{j=1}^{n} -c_{ij} x_{ij}$$

	Barcelona	Madrid	Sevilla	Bilbao		
Agente 1	-34	-10	-15	-28		
Agente 2	-16	-15	-22	-12		
Agente 3	-10	-25	-13	-20		
Agente 4	-30	-19	-27	-31		

Con estas transformaciones, los costes de asignación se hacen negativos. Todos los costes deben ser mayores o iguales a cero. Una manera de no haber valores negativos es restar a estos costes el mínimo de todos ellos. Es decir:

En este caso el valor mínimo $-c_{kl} = \min \left\{ -c_{ij} \ / \ -c_{ij} < 0 \right\} = -34$

Por lo tanto, los nuevos costos se obtienen restando a los costes antiguos el valor mínimo de todos ellos, es decir, c_{ij} '= $-c_{ij}$ -(-34)

	Barcelona	Madrid	Sevilla	Bilbao	
Agente 1	0	24	19	6	
Agente 2	18	19	12	22	
Agente 3	24	9	21	14	
Agente 4	4	15	7	3	

Iteración 1:

<u>Paso 1:</u> Hay 4 agentes y 4 ciudades ⇒ el problema es equilibrado

Paso 2: Restar a cada fila su mínimo, es decir 0, 12, 9 y 3 respectivamente:

	Barcelona	Madrid	Sevilla	Bilbao	
Agente 1	0	24	19	6	
Agente 2	6	7	0	10	
Agente 3	15	0	12	5	
Agente 4	1	12	4	0	

<u>Paso 3:</u> Restar a cada columna su mínimo, en este caso el mínimo es cero en todas las columnas, por lo tanto, la tabla anterior no cambia.

Paso 4: Asignar ceros

Elegir la fila o columna con menor número de ceros.

Asignar uno y eliminar los ceros de la misma fila y columna.

Repetir la asignación en fila y columnas continuando por aquel que tenga el mínimo número de ceros sin eliminar.

	Barcelona		Madrid		Sevilla			Bilbao			
Agente 1	0			24			19			6	
Agente 2	6		7		0		10				
Agente 3	15			0		12		5			
Agente 4	1		12		4			0			

El proceso de asignar ceros ha terminado ⇒ la solución es óptima

Agente 1: Irá a Barcelona

Agente 2: Irá a Sevilla Agente 3: Irá a Madrid Agente 4: Irá a Bilbao

El coste óptimo es: 34+22+25+31=112