Clique is hard on average for regular resolution

Ilario Bonacina, UPC Barcelona Tech July 20, 2018

RaTLoCC, Bertinoro

Ilario Bonacina, UPC Barcelona Tech

July 20, 2018

RaTLoCC, Bertinoro

Talk based on a joint work with:

A. Atserias

S. de Rezende

M. Lauria

J. Nordström

A. Razborov

A graph G with n vertices we say that is k-Ramsey if it has no set of k vertices forming a clique or an independent set. If $k = \lceil 2 \log_2 n \rceil$ we just say that G is Ramsey.

A graph G with n vertices we say that is k-Ramsey if it has no set of k vertices forming a clique or an independent set.

If $k = \lceil 2 \log_2 n \rceil$ we just say that G is Ramsey.

Erdős-Rényi random graphs

A graph $G=(V,E)\sim \mathcal{G}(n,p)$ is such that |V|=n and each edge $\{u,v\}\in E$ independently with prob. $p\in [0,1]$

A graph G with n vertices we say that is k-Ramsey if it has no set of k vertices forming a clique or an independent set. If $k = \lceil 2 \log_2 n \rceil$ we just say that G is Ramsey.

Erdős-Rényi random graphs

A graph $G=(V,E)\sim \mathcal{G}(n,p)$ is such that |V|=n and each edge $\{u,v\}\in E$ independently with prob. $p\in [0,1]$

- if $p \ll n^{-2/(k-1)}$ then a.a.s. $G \sim \mathcal{G}(n,p)$ has no k-cliques
- A.a.s. $G \sim \mathcal{G}(n, \frac{1}{2})$ is Ramsey

Construct a propositional formula $\Psi_{G,k}$ unsatisfiable if and only if "G is k-Ramsey"

Construct a propositional formula $\Psi_{G,k}$ unsatisfiable if and only if "G is k-Ramsey"

 $x_{v,j} \equiv$ "v is the j-th vertex of a k-clique in G or the j-th vertex of a k-indpendent set".

Construct a propositional formula $\Psi_{G,k}$ unsatisfiable if and only if "G is k-Ramsey"

 $x_{v,j} \equiv$ "v is the j-th vertex of a k-clique in G or the j-th vertex of a k-indpendent set".

$$\bigvee_{v \in V} x_{v,i} \qquad \text{for } i \in [k]$$
 and
$$y \vee \neg x_{u,i} \vee \neg x_{v,j} \qquad \text{for } i \neq j \in [k], u \neq v \in V, \ (u,v) \notin E$$
 and
$$\neg y \vee \neg x_{u,i} \vee \neg x_{v,j} \qquad \text{for } i \neq j \in [k], u \neq v \in V, \ (u,v) \in E$$

Resolution

 $(y \vee \neg c)$

 $(x \lor c)$

 $[\neg x \lor z]$

 $(\neg y)$

Resolution

 $(\neg x \lor z)$

Tree-like = the proof DAG is a tree Regular = no variable resolved twice in any source-to-sink path Size = # of nodes in the proof DAG

Regular?

Regular? No.

Regular? No. And none of the shortest proofs is regular [HY87].

[[]HY87] Huang and Yu, 1987. A DNF without regular shortest consensus path.

What is Resolution good for?

- algorithms routinely used to solve NP-complete problems (hardware verification, ...) are somewhat formalizable in resolution
- the state-of-the-art algorithms to solve k-clique (Bron-Kerbosch, Östergård, Russian dolls algorithms, ...) are formalizable in regular resolution

What is Resolution good for?

- algorithms routinely used to solve NP-complete problems (hardware verification, ...) are somewhat formalizable in resolution
- the state-of-the-art algorithms to solve k-clique (Bron-Kerbosch, Östergård, Russian dolls algorithms, ...) are formalizable in regular resolution

[HKM16] All possible 2-colorings of $\{1, \dots, 7825\}$ have a monochromatic Pythagorean triple.

[[]HKM16] M. Heule, O. Kullmann and V. Marek, 2016. Solving and Verifying the Boolean Pythagorean Triples problem via Cube-and-Conquer

What is Resolution good for?

- algorithms routinely used to solve NP-complete problems (hardware verification, ...) are somewhat formalizable in resolution
- the state-of-the-art algorithms to solve k-clique (Bron-Kerbosch, Östergård, Russian dolls algorithms, ...) are formalizable in regular resolution
- **[HKM16]** All possible 2-colorings of $\{1, \ldots, 7825\}$ have a monochromatic Pythagorean triple. This slide is too small to contain the 200Terabyte resolution proof...

[[]HKM16] M. Heule, O. Kullmann and V. Marek, 2016. Solving and Verifying the Boolean Pythagorean Triples problem via Cube-and-Conquer

Resolution size

Let ϕ be an conjunction of clauses in N variables with $|\phi| = N^{\mathcal{O}(1)}$

```
S(\phi)= minimum size of a resolution refutation of \phi S_{tree}(\phi)= minimum size of a tree-like resolution refutation of \phi S_{reg}(\phi)= minimum size of a regular resolution refutation of \phi
```

Resolution size

Let ϕ be an conjunction of clauses in N variables with $|\phi| = N^{\mathcal{O}(1)}$

```
S(\phi)= minimum size of a resolution refutation of \phi S_{tree}(\phi)= minimum size of a tree-like resolution refutation of \phi S_{reg}(\phi)= minimum size of a regular resolution refutation of \phi
```

- for every ϕ , $S(\phi) \leqslant S_{reg}(\phi) \leqslant S_{tree}(\phi)$ (and there are examples of exponential separations)
- for every ϕ , $S_{tree}(\phi) = 2^{\mathcal{O}(N)}$

Theorem? (folklore)

$$\Psi_{G,k}$$
, whenever unsatisfiable, has $S_{tree}(\Psi_{G,k}) = n^{\mathcal{O}(k)}$

Theorem? (folklore)

 $\Psi_{G,k}$, whenever unsatisfiable, has $S_{tree}(\Psi_{G,k}) = n^{\mathcal{O}(k)}$

Theorem [LPRT17]

If G is a Ramsey graph in n vertices and $k = \lceil 2 \log n \rceil$ then $S_{tree}(\Psi_{G,k}) = n^{\Omega(\log n)}$.

Theorem? (folklore)

 $\Psi_{G,k}$, whenever unsatisfiable, has $S_{tree}(\Psi_{G,k}) = n^{\mathcal{O}(k)}$

Theorem [LPRT17]

If G is a Ramsey graph in n vertices and $k = \lceil 2 \log n \rceil$ then $S_{tree}(\Psi_{G,k}) = n^{\Omega(\log n)}$.

Theorem

If $G \sim \mathcal{G}(n, \frac{1}{2})$ (hence in particular a.a.s. G is Ramsey) and $k = \lceil 2 \log n \rceil$ then $S_{reg}(\Psi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(\log n)}$.

[[]LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

Theorem? (folklore)

 $\Psi_{G,k}$, whenever unsatisfiable, has $S_{tree}(\Psi_{G,k}) = n^{\mathcal{O}(k)}$

Theorem [LPRT17]

If G is a Ramsey graph in n vertices and $k = \lceil 2 \log n \rceil$ then $S_{tree}(\Psi_{G,k}) = n^{\Omega(\log n)}$.

Theorem

If $G \sim \mathcal{G}(n, \frac{1}{2})$ (hence in particular a.a.s. G is Ramsey) and $k = \lceil 2 \log n \rceil$ then $S_{reg}(\Psi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(\log n)}$.

Open Problem

Let G be a Ramsey graph in n vertices and let $k = \lceil 2 \log n \rceil$. Is it true that $S(\Psi_{G,k}) = n^{\Omega(\log n)}$?

[[]LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

Construct a propositional formula $\Phi_{G,k}$ unsatisfiable if and only if "G does not contain a k-clique"

We already have it: $\Phi_{G,k} = \Psi_{G,k} \upharpoonright_{y=0}$

Construct a propositional formula $\Phi_{G,k}$ unsatisfiable if and only if "G does not contain a k-clique"

We already have it: $\Phi_{G,k} = \Psi_{G,k} \upharpoonright_{y=0}$

 $x_{v,j} \equiv$ "v is the j-th vertex of a k-clique in G".

C

Construct a propositional formula $\Phi_{G,k}$ unsatisfiable if and only if "G does not contain a k-clique"

We already have it: $\Phi_{G,k} = \Psi_{G,k} |_{y=0}$

 $x_{v,j} \equiv$ "v is the j-th vertex of a k-clique in G".

$$\bigvee_{v \in V} x_{v,i} \qquad \text{for } i \in [k]$$
 and
$$\neg x_{u,i} \lor \neg x_{v,j} \qquad \text{for } i \neq j \in [k], u \neq v \in V, \ (u,v) \notin E$$

Construct a propositional formula $\Phi_{G,k}$ unsatisfiable if and only if "G does not contain a k-clique"

We already have it: $\Phi_{G,k} = \Psi_{G,k} |_{y=0}$

 $x_{v,j} \equiv$ "v is the j-th vertex of a k-clique in G".

$$\bigvee_{v \in V} x_{v,i} \qquad \text{for } i \in [k]$$
 and
$$\neg x_{u,i} \lor \neg x_{v,j} \qquad \text{for } i \neq j \in [k], u \neq v \in V, \ (u,v) \notin E$$

Construct a propositional formula $\Phi_{G,k}$ unsatisfiable if and only if "G does not contain a k-clique"

We already have it: $\Phi_{G,k} = \Psi_{G,k} |_{y=0}$

 $x_{v,j} \equiv$ "v is the j-th vertex of a k-clique in G".

$$\bigvee_{v \in V} x_{v,i} \quad \text{for } i \in [k]$$
 and
$$\neg x_{u,i} \lor \neg x_{v,j} \quad \text{for } i \neq j \in [k], u \neq v \in V, \ (u,v) \notin E$$

lower bounds on $S(\Phi_{G,k})$ imply lower bounds on $S(\Psi_{G,k})$

Overview of the literature: Upper Bounds

[
$$\sim$$
BGL13] if G is $(k-1)$ -colorable then $S_{reg}(\Phi_{G,k}) \leqslant 2^k k^2 n^2$ [folklore] $\Phi_{G,k}$, whenever unsatisfiable, has $S_{tree}(\Phi_{G,k}) = n^{\mathcal{O}(k)}$

[[]BGL13] Beyersdorff, Galesi and Lauria 2013. *Parameterized complexity of DPLL search procedures.*

Overview of the literature: Lower Bounds

- [BGL13] If G is the complete (k-1)-partite graph, then $S_{tree}(\Phi_{G,k}) = n^{\Omega(k)}$. The same holds for $G \sim \mathcal{G}(n,p)$ with suitable edge density p.
 - **[BIS07]** for $n^{5/6} \ll k < \frac{n}{3}$ and $G \sim \mathcal{G}(n,p)$ (with suitable edge density p), then $S(\Phi_{G,k})$ a.a.s. $2^{n^{\Omega(1)}}$
- **[LPRT17]** if we encode k-clique using some other propositional encodings (e.g. in binary) we get $n^{\Omega(k)}$ size lower bounds for resolution

[[]BIS07] Beame, Impagliazzo and Sabharwal, 2007. The resolution complexity of independent sets and vertex covers in random graphs.
[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

Main Result (simplified versions)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n,p)$ be an Erdős-Rényi random graph with, for simplicity, $p = n^{-4/(k-1)}$ and let $k \leqslant n^{1/2-\epsilon}$ for some arbitrary small ϵ . Then, $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(k)}$.

Main Result (simplified versions)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n,p)$ be an Erdős-Rényi random graph with, for simplicity, $p = n^{-4/(k-1)}$ and let $k \leqslant n^{1/2-\epsilon}$ for some arbitrary small ϵ . Then, $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(k)}$.

the actual lower bound decreases smoothly w.r.t. p

Main Result (simplified versions)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n,p)$ be an Erdős-Rényi random graph with, for simplicity, $p = n^{-4/(k-1)}$ and let $k \leqslant n^{1/2-\epsilon}$ for some arbitrary small ϵ . Then, $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(k)}$.

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2)

Let $G \sim \mathcal{G}(n, \frac{1}{2})$, then

$$S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(\log n)} \text{ for } k = \mathcal{O}(\log n)$$

and

$$S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\omega(1)} \text{ for } k = o(\log^2 n).$$

Rest of the talk

Focus on proving the following.

Theorem

Let
$$k = \lceil 2 \log n \rceil$$
 and $G \sim \mathcal{G}(n, \frac{1}{2})$, then $S_{reg}(\Phi_{G,k}) \stackrel{\text{a.a.s.}}{=} n^{\Omega(\log n)}$

 $\widehat{N}_W(R)$ is the set of common neighbors of R in W

 $\widehat{N}_W(R)$ is the set of common neighbors of R in W W is (r,q)-dense if for every subset $R\subseteq V$ of size $\leqslant r$, it holds $|\widehat{N}_W(R)|\geqslant q$

 $\widehat{N}_W(R)$ is the set of common neighbors of R in W W is (r,q)-dense if for every subset $R\subseteq V$ of size $\leqslant r$, it holds $|\widehat{N}_W(R)|\geqslant q$

Theorem 1

Let $k = \lceil 2 \log n \rceil$. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ satisfies the following:

- (*) V is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
- (**) For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$, $|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

 $\widehat{N}_W(R)$ is the set of common neighbors of R in W W is (r,q)-dense if for every subset $R\subseteq V$ of size $\leqslant r$, it holds $|\widehat{N}_W(R)|\geqslant q$

Theorem 1

Let $k = \lceil 2 \log n \rceil$. A.a.s. $G = (V, E) \sim \mathcal{G}(n, \frac{1}{2})$ satisfies the following:

- (*) V is $(\frac{k}{50}, \Theta(n^{0.9}))$ -dense; and
- (**) For every $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense $W \subseteq V$ there exists $S \subseteq V$, $|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and $|\widehat{N}_W(R)| < \widetilde{\Theta}(n^{0.6})$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Theorem 2

Let $k = \lceil 2 \log n \rceil$. For every G satisfying properties (\star) and $(\star\star)$, $S_{reg}(\Phi_{G,k}) = n^{\Omega(\log n)}$

Regular resolution \equiv Read-Once Branching Programs

Regular resolution \equiv Read-Once Branching Programs

"Lemma 1"

Every random path $\gamma \sim \mathcal{D}$ in the ROBP passes through a bottleneck node.

"Lemma 1"

Every random path $\gamma \sim \mathcal{D}$ in the ROBP passes through a bottleneck node.

"Lemma 2"

Given any bottleneck node b in the ROBP,

$$\Pr_{\gamma \sim \mathcal{D}}[b \in \gamma] \leqslant n^{-\Theta(k)}.$$

"Lemma 1"

Every random path $\gamma \sim \mathcal{D}$ in the ROBP passes through a bottleneck node.

"Lemma 2"

Given any bottleneck node b in the ROBP,

$$\Pr_{\gamma \sim \mathcal{D}}[b \in \gamma] \leqslant n^{-\Theta(k)}.$$

Then, it is trivial to conclude:

$$\begin{split} 1 &= \Pr_{\gamma \sim \mathcal{D}} [\exists b \in ROBP \ b \ \text{bottleneck} \ \text{and} \ b \in \gamma] \\ &\leqslant |ROBP| \cdot \max_{\substack{b \ \text{bottleneck} \\ \text{in the ROBP}}} \Pr_{\gamma \sim \mathcal{D}} [b \in \gamma] \\ &\leqslant |ROBP| \cdot n^{-\Theta(k)} \end{split}$$

The real bottleneck counting

 $\beta(c) = \max$ (partial) assignment contained in all paths from the source to c

 $\beta(c) = \max$ (partial) assignment contained in all paths from the source to c

 $j \in [k]$ is forgotten at c if no sink reachable from c has label $\bigvee_{v \in V} x_{v,j}$

 $\beta(c) = \max$ (partial) assignment contained in all paths from the source to c

 $j \in [k]$ is forgotten at c if no sink reachable from c has label $\bigvee_{v \in V} x_{v,j}$

The random path γ

- if j forgotten at c or $\beta(c) \cup \{x_{v,j} = 1\}$ falsifies a short clause of $\Phi_{G,k}$ then continue with $x_{v,j} = 0$
- otherwise toss a coin and with prob. $\Theta(n^{-0.6})$ continue with $x_{v,j} = 1$

$$V_j^0(a) = \{ v \in V : \beta(a)(x_{v,j}) = 0 \}$$

$$V_i^0(a) = \{ v \in V : \beta(a)(x_{v,j}) = 0 \}$$

For every random path γ , there exists two nodes a,b in the ROBP s.t.

$$V_i^0(a) = \{ v \in V : \beta(a)(x_{v,j}) = 0 \}$$

For every random path γ , there exists two nodes a,b in the ROBP s.t.

1. γ touches a, sets $\leqslant \lceil \frac{k}{200} \rceil$ variables to 1 and then touches b;

$$V_i^0(a) = \{ v \in V : \beta(a)(x_{v,j}) = 0 \}$$

For every random path γ , there exists two nodes a,b in the ROBP s.t.

- 1. γ touches a, sets $\leqslant \lceil \frac{k}{200} \rceil$ variables to 1 and then touches b;
- 2. there exists a $j^* \in [k]$ not-forgotten at b and such that $V_{j^*}^0(b) \setminus V_{j^*}^0(a)$ is $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense.

$$V_j^0(a) = \{ v \in V : \beta(a)(x_{v,j}) = 0 \}$$

For every random path γ , there exists two nodes a,b in the ROBP s.t.

- 1. γ touches a, sets $\leqslant \lceil \frac{k}{200} \rceil$ variables to 1 and then touches b;
- 2. there exists a $j^* \in [k]$ not-forgotten at b and such that $V_{j^*}^0(b) \setminus V_{j^*}^0(a)$ is $(\frac{k}{10000}, \Theta(n^{0.9}))$ -dense.

Lemma 2

For every pair of nodes (a, b) in the ROBP satisfying point (2) of Lemma 1,

$$\Pr_{\gamma}[\gamma \text{ touches } a, \text{ sets} \leqslant \left\lceil \frac{k}{200} \right\rceil \text{ vars to 1 and then touches } b] \leqslant n^{-\Theta(k)}$$

Go to Conclusions

Let E= " γ touches a, sets $\leqslant \lceil k/200 \rceil$ vars to 1 and then touches b" and let $W=V_{j^*}^0(b) \smallsetminus V_{j^*}^0(a)$

Let E= " γ touches a, sets $\leq \lceil k/200 \rceil$ vars to 1 and then touches b" and let $W=V_{j^*}^0(b) \setminus V_{j^*}^0(a)$

Case 1: $V^1(a) = \{v \in V : \exists i \in [k] \ \beta(a)(x_{v,i}) = 1\}$ has large size $(\geqslant k/20000)$. Then $\Pr[E] \leqslant n^{-\Theta(k)}$ because of the prob. of 1s in the random path γ and a Markov chain argument.

Let E= " γ touches a, sets $\leq \lceil k/200 \rceil$ vars to 1 and then touches b" and let $W=V_{j^*}^0(b) \setminus V_{j^*}^0(a)$

Case 1: $V^1(a) = \{v \in V : \exists i \in [k] \ \beta(a)(x_{v,i}) = 1\}$ has large size $(\geqslant k/20000)$. Then $\Pr[E] \leqslant n^{-\Theta(k)}$ because of the prob. of 1s in the random path γ and a Markov chain argument.

Case 2.1: $V^1(a)$ is not large but many $(\geqslant \widetilde{\Theta}(n^{0.6}))$ vertices in W are set to 0 by coin tosses.

So $\Pr[E \land W \text{ has many coin tosses}] \leqslant n^{-\Theta(k)}$ again by a Markov chain argument as in **Case 1**.

Let E= " γ touches a, sets $\leq \lceil k/200 \rceil$ vars to 1 and then touches b" and let $W=V_{j^*}^0(b) \setminus V_{j^*}^0(a)$

Case 1: $V^1(a) = \{v \in V : \exists i \in [k] \ \beta(a)(x_{v,i}) = 1\}$ has large size $(\geqslant k/20000)$. Then $\Pr[E] \leqslant n^{-\Theta(k)}$ because of the prob. of 1s in the random path γ and a Markov chain argument.

Case 2.1: $V^1(a)$ is not large but many $(\geqslant \widetilde{\Theta}(n^{0.6}))$ vertices in W are set to 0 by coin tosses.

So $\Pr[E \wedge W \text{ has many coin tosses}] \leqslant n^{-\Theta(k)}$ again by a Markov chain argument as in **Case 1**.

Case 2.2: $V^1(a)$ is not large and not many vertices in W are set to 0 by coin tosses. Then many of the 1s set by the random path γ between a and b must belong to a set of size at most \sqrt{n} , by the new combinatorial property $(\star\star)$.

So $\Pr[E \wedge W \text{ has not many coin tosses}] \leqslant n^{-\Theta(k)}$.

Conclusions

Open Problem: How hard is to prove that a graph is Ramsey?

Let G be a Ramsey graph in n vertices and let $k = \lceil 2 \log n \rceil$. Is it true that $S(\Psi_{G,k}) = n^{\Omega(\log n)}$?

([LPRT17] proved this but for a binary encoding of "G is Ramsey")

full paper

Thanks!