Business Problem

About Aerofit

Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

Business Problem

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

- 1. Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts.
- 2. For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.

Dataset

The company collected the data on individuals who purchased a treadmill from the AeroFit stores during the prior three months. The dataset has the following features:

- 1. Product Purchased: KP281, KP481, or KP781
- 2. Age: In years
- 3. Gender: Male/Female
- 4. Education: In years
- 5. MaritalStatus: Single or partnered
- 6. Usage: The average number of times the customer plans to use the treadmill each week.
- 7. Income: Annual income (in \$)
- 8. Fitness: Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape and 5 is the excellent shape.
- 9. Miles: The average number of miles the customer expects to walk/run each week

Product Portfolio:

- 1. The KP281 is an entry-level treadmill that sells for USD 1,500.
- 2. The KP481 is for mid-level runners that sell for USD 1,750.
- 3. The KP781 treadmill is having advanced features that sell for USD 2,500.

Import the relevant libraries

```
In [3]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

Read the Dataset

```
In [4]: df_aerofit_dataset = pd.read_csv('aerofit_treadmill.csv')
```

Dataset Exploration

```
In [5]: df_aerofit_dataset.head()
```

Out [5]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47

```
In [6]: df_aerofit_dataset.tail()
```

Out[6]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

Print the shape and the columns of the dataset

Observation

- 1. The Dataset consists of 180 rows and 9 columns
- 2. It seems the Age, Education, Usage, Fitness, Income and Miles contains Numerical data
- 3. The Product, Gender, MaritalStatus seems to be object type data

Print the datatype of the columns

```
In [9]: | df_aerofit_dataset.dtypes
Out[9]: Product
                          object
        Age
                           int64
        Gender
                          object
        Education
                           int64
        MaritalStatus
                          object
        Usage
                           int64
        Fitness
                           int64
        Income
                           int64
        Miles
                           int64
        dtype: object
```

In [10]: df_aerofit_dataset.info()

```
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
    Column
                    Non-Null Count Dtype
    Product
                    180 non-null
 0
                                    object
 1
                    180 non-null
    Age
                                     int64
     Gender
                    180 non-null
                                    object
 3
     Education
                    180 non-null
                                     int64
    MaritalStatus 180 non-null
                                     object
 5
     Usage
                    180 non-null
                                     int64
 6
                    180 non-null
                                    int64
    Fitness
 7
    Income
                    180 non-null
                                     int64
8
                    180 non-null
                                     int64
    Miles
dtypes: int64(6), object(3)
memory usage: 12.8+ KB
```

<class 'pandas.core.frame.DataFrame'>

Observation

- 1. It is clear that the datatypes of the columns are as expected. (Shared in the previous observation)
- 2. There are no missing values in the dataset and seems clean
- 3. There may be some invalid values in the columns which we might need to check.

Let's check the missing, invalid and duplicate values in the dataset

Step 1: Let's try to see the missing values in the dataset

```
In [11]: def missing_check(df):
    total = df.isnull().sum().sort_values(ascending=False) # total number of null values
    percent = (df.isnull().sum() / df.isnull().count()).sort_values(
        ascending=False) # percentage of values that are null
    missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) # putting the above two
    return missing_data # return the dataframe
```

In [12]: missing_check(df_aerofit_dataset)

Out [12]:

	Total	Percent
Product	0	0.0
Age	0	0.0
Gender	0	0.0
Education	0	0.0
MaritalStatus	0	0.0
Usage	0	0.0
Fitness	0	0.0
Income	0	0.0
Miles	0	0.0

Observation

1. There are no missing values in the dataset

Step 2: Let's try to see the duplicated values in the dataset

```
In [13]: | df_aerofit_dataset[df_aerofit_dataset.duplicated()].sum()
Out[13]: Product
                           0.0
                           0.0
         Age
         Gender
                           0.0
         Education
                           0.0
         MaritalStatus
                           0.0
         Usage
                           0.0
         Fitness
                           0.0
         Income
                           0.0
         Miles
                           0.0
         dtype: float64
```

Observation

1. It seems there are no duplicated values in the dataset

Step 3: Let's see the unique values per columns

```
In [14]: | df_aerofit_dataset.nunique()
Out[14]: Product
                            3
         Age
                            32
         Gender
                            2
         Education
         MaritalStatus
         Usage
                            6
         Fitness
                            5
         Income
                            62
         Miles
                            37
         dtype: int64
```

Observation

- 1. It seems Product, Gender, Education, MaritalStatus, Usage, Fitness can be treated as categorical columns
- 2. Income, Age and Miles are continuous Numerical columns.

Let's check the statistical summary of the dataset

In [15]: df_aerofit_dataset.describe().T

Out[15]:

	count	mean	std	min	25%	50%	75%	max
Age	180.0	28.788889	6.943498	18.0	24.00	26.0	33.00	50.0
Education	180.0	15.572222	1.617055	12.0	14.00	16.0	16.00	21.0
Usage	180.0	3.455556	1.084797	2.0	3.00	3.0	4.00	7.0
Fitness	180.0	3.311111	0.958869	1.0	3.00	3.0	4.00	5.0
Income	180.0	53719.577778	16506.684226	29562.0	44058.75	50596.5	58668.00	104581.0
Miles	180.0	103.194444	51.863605	21.0	66.00	94.0	114.75	360.0

Observation

- 1. The minimum Age of the users seems to be 18 years, and maximum age 50 years
- 2. The 75% of the users have less than or equal to 33 years of age.
- 3. The 25% of the users rated themselves 3 out of 5 rating and 75% rated 4 out of 5. Which means most users feel healthy and in good shape.
- 4. Income columns seems to have high variation with max above 1 Lakhs and minimum below 30 thousand.
- 5. Since the 50% (Median) of columns Income and Miles and is lesser than Mean, it seems to have right skewdness
- 6. Age and Usage columns seems to have high right skewness as well.
- 7. Data Skewness can be observed below as well.

```
In [16]: df_aerofit_dataset.skew()
```

Out[16]: Age

Age 0.982161
Education 0.622294
Usage 0.739494
Fitness 0.454800
Income 1.291785
Miles 1.724497

dtype: float64

Observation

- 1. Income and Miles have very high right skewness.
- 2. Age and Usage columns seems to have high right skewness as well.
- 3. Fitness column seems to be moderately right skew.

Univariate Analysis: Let's understand about the values in the different columns

```
In [17]: df_aerofit_dataset['Product'].value_counts()
Out[17]: KP281
                    80
          KP481
                    60
          KP781
                    40
          Name: Product, dtype: int64
In [18]: def plot_pie(list_labels, list_values, col_name):
              colors = sns.color_palette('Set2')
              explode = [0.04 \text{ if } i \% 2 == 0 \text{ else } 0.08 \text{ for } i \text{ in } range(len(list_values))]
              plt.title(f'Distribution of `{col_name}`', fontdict={'fontweight': 'bold', 'fontsize': 20})
              plt.pie(list_values,
                       labels=list_labels,
                       colors=colors,
                       autopct='%.1f%%',
                       shadow=True,
                       explode=explode)
```

```
In [19]: plt.figure(figsize=(7, 7))
    dist_col_type = df_aerofit_dataset['Product'].value_counts()
    plot_pie(dist_col_type.index, dist_col_type.values, 'Product')
```

Distribution of `Product`

Observation

- 1. The KP281 is an entry-level treadmill has almost 44% share
- 2. The KP481 is for mid-level runners has almost 33% share
- 3. The KP781 treadmill is having advanced features has almost 22% share

Distribution of `Gender`

- 1. The Male user comprises almost 58% user base
- 2. The Female user comprises almost 42% user base

```
In [22]: df_aerofit_dataset['Education'].value_counts()
Out[22]: 16
         14
               55
         18
               23
         15
                5
                5
         13
         12
                3
         21
                3
         20
                1
         Name: Education, dtype: int64
```

```
In [23]: plt.figure(figsize=(15, 7))
sns.countplot(data= df_aerofit_dataset, x = 'Education');
```



```
In [24]: plt.figure(figsize=(7, 7))
    dist_col_type = df_aerofit_dataset['Education'].value_counts()
    plot_pie(dist_col_type.index, dist_col_type.values, 'Education')
```

Distribution of `Education`

Observation

- 1. There are only 3 prominent Education level which is 16, 14 and 18
- 2. Higher Education level and Lower Education level than above seems to be in minority in the user base.

```
In [25]: df_aerofit_dataset['MaritalStatus'].value_counts()
```

Out[25]: Partnered 107 Single 73

Name: MaritalStatus, dtype: int64

```
In [26]: plt.figure(figsize=(7, 7))
    dist_col_type = df_aerofit_dataset['MaritalStatus'].value_counts()
    plot_pie(dist_col_type.index, dist_col_type.values, 'MaritalStatus')
```

Distribution of `MaritalStatus`

Observation

- 1. Almost 50% of the user base is Partnered
- 2. And Almost 40% of the user base is Single

```
In [27]: df_aerofit_dataset['Usage'].value_counts()

Out[27]: 3    69
    4    52
    2    33
    5    17
    6    7
    7    2
    Name: Usage, dtype: int64

In [28]: plt.figure(figsize=(7, 7))
    dist_col_type = df_aerofit_dataset['Usage'].value_counts()
    plot_pie(dist_col_type.index, dist_col_type.values, 'Usage')
```

Distribution of `Usage`


```
In [29]: plt.figure(figsize=(15, 7))
sns.countplot(data= df_aerofit_dataset, x = 'Usage');
```


Observation

- 1. Usage of treadmill seems to be prominent among user base for 3 days/week, 4 days/week and 2 days/week
- 2. 3 days/week userbase is almost 38.3 %
- 3. 4 days/week is almost 29%.
- 4. 2 days/week user base is almost 18%.
- 5. Ideally we should promote users to use treadmill atleast 3 days a week.

Distribution of `Fitness`

In [32]: plt.figure(figsize=(15, 7))
sns.countplot(data= df_aerofit_dataset, x = 'Fitness');

- 1. User rating themselves 3/5 comprises 54% user base and is most prominent
- 2. User base rating themselves 5/5 comprises 17% of user base
- 3. User base rating themselves 2/5 comprises 14% of user base
- 4. User base rating themselves 4/5 comprises 13% user base.
- 5. Seems we should target users who rated themselves 2 and higher.

In [34]: plt.figure(figsize=(15, 7))
sns.distplot(x = df_aerofit_dataset['Income']);

Observation

- 1. Most of the userbase seems to have income in bracket of 40K to 60K.
- 2. Although many users in the dataset have very higher payscale >80K.

Let's understand about the outlier values in the income from the box plot

```
In [35]: plt.figure(figsize=(7, 10))
sns.boxplot(data=df_aerofit_dataset, y='Income');
```


Type $\mathit{Markdown}$ and LaTeX : α^2

- 1. The median pay of users is around 50K
- 2. There are many outliers as well in the dataset ini terms of income.
- 3. 75% of user base has less than 60K income
- 4. There are many outliers in dataset who earn more than 80K.

```
In [36]: plt.figure(figsize=(15, 7))
sns.histplot(data=df_aerofit_dataset, x='Miles');
```


Observation

- 1. The average number of miles user runs for 70 120.
- 2. We should encourage users to run in this range.
- 3. Although there seems to be many users who runs much more, based on data skewness

Let's understand about the outlier in the Miles column from the box plot

In [38]: plt.figure(figsize=(7, 10))
sns.boxplot(data=df_aerofit_dataset, y='Miles');

Observation

- 1. 50% of users run close to 90 miles per week
- 2. 75% of users run less than or equal to 115 miles per week
- 3. There are many outliers who run above 180 miles per week
- 4. We should recommend users to run atleast 90 miles per week

BiVariate Analysis: Let's understand about the Impact of each of the columns on the product usage

In [39]: plt.figure(figsize=(15,7))
 sns.heatmap(df_aerofit_dataset.corr(), annot=True, linewidths=.5, fmt= '.1f', center = 1) # heatmap
 plt.show()

Observation

- 1. Age seems to be weeky correlated with the Education
- 2. Education and Income seems to be highly correlated
- 3. Education and Fitness seems to be moderately correlated
- 4. Education and Usage seems to be moderately correlated
- 5. Usage and Fitness seems to be highly correlated
- 6. Usage and Income seems to be moderately correlated
- 7. Usage and Miles are very highly correlated
- 8. Fitness and income are very highly correlated
- 9. Fitness and Miles are very highly correlated
- 10. Income and Miles are moderatley correlated

Step 1: Let's see Education impact on product

```
In [40]: plt.figure(figsize=(15, 7))
sns.barplot(data = df_aerofit_dataset, x = 'Education', y = 'Income', hue='Product');
```


Observation

- 1. The KP281 users which is an entry-level treadmill, it seems to be used by high income (>40K) and educated people (>14 Education), we should promote that group KP781 which is a permium product
- 2. The KP481 in Education level 14, 16 and 18 user group and income (>40K) we should sell them KP781.

- 1. We should avoid selling to users who rate themselves 1
- 2. It seems for Single users 25-30 we should promote KP781 having fitness >= 3
- 3. It seems for Partnered users 27-35 we should promote KP781 having fitness >= 3

Observation

1. Fitness level 3 users are the highest users but they are using entry level tredmill, atleast they should use KP481 and for Partnered we should recommed KP781.

Observation

- 1. Fitness level 4 and Fitness leve 5 users run more miles
- 2. In Fitness level 4 Partnered we should promote KP781
- 3. In Fitness level 4 Single we should promote KP481

```
In [44]: g = sns.catplot(x="MaritalStatus", y="Income", col= 'Fitness', data=df_aerofit_dataset, kind="box", height=5, aspect=.8, hue='Product')

Fitness = 1

Fitness = 2

Fitness = 3

Fitness = 4

Fitness = 5

Fi
```

- 1. Among higher income group having Fitness >= 3 KP781 is popular which is good
- 2. For users having income close to 50K and Single we should promote KP481 and fitness >= 3

In [45]: g = sns.catplot(x="Usage", y="Income", col= 'Fitness', data=df_aerofit_dataset, kind="box", height=5, aspect=.8, hue='Product')

Fitness=1

Fitness=2

Fitness=3

Fitness=4

Fitness=5

Fitness=4

Fitness=4

Fitness=5

Fitness=6

Fitness=7

Fitne

Observation

- 1. Among people who are having income close to 50K and usage >= 3, we should promote to use KP481
- 2. Among people who have income >60K and Fitness >=3 and Usage >=4 we should promote KP781.

```
In [46]: g = sns.catplot(x="Usage", y="Miles", col= 'Fitness', data=df_aerofit_dataset, kind="box", height=5, aspect=.8, hue='Product')

Fitness = 1

Fitness = 2

Fitness = 3

Fitness = 4

Fitness = 5

Fitness = 5
```

Observation

1. People who use more and run more miles prefer either KP481 or KP781.

- 1. People with age group 29-35 and usage 3 and 4 should use either KP481 or KP781 for best results
- 2. It seems with fitness level 3 KP281 is very popular

Observation

- 1. Males with fitness level 3 and Age less than 34 should be promoted KP481
- 2. Females with fitness level 3 and age close to 30 should be promoted KP481
- 3. Males with Fitness level 4 and Age greater than 27 should be promoted kP481 or KP781.

```
In [49]: plt.figure(figsize=(15, 7))
sns.boxplot(data = df_aerofit_dataset, x = 'Education', y = 'Income', hue='Product');
```


Observation

- 1. Among people with higher income (>55K) and Education (>14) we should promote KP781
- 2. People with education 14 and 16 and income 45K should be promoted KP481
- 3. Low income people and low education people we can let them try KP281.

Lets see the Gender impact on product

In [50]: plt.figure(figsize=(15, 7))
sns.barplot(data = df_aerofit_dataset, x = 'Gender', y = 'Income', hue='Product');

Observation

- 1. For KP481 and KP281 we see that the trend usage among male and female are almost same
- 2. Higher income male and female are also similarly interested in the product KP781 but males seems to have higher confidence in purchasing the product.

- 1. Males & Females with income >50K can be promoted KP781.
- 2. Females and Males with income >45K can be promoted KP481.

Observation

- 1. People with higher income >60K even with Fitness level 1 should be promoted KP781.
- 2. People with income >40K should be promoted KP481, irrespective of their Fitness levels.

- 1. Females and Males with Fitness level 3 generally prefer KP281, we can promote KP481 to such individuals.
- 2. Females with Fitness level 4 prefer KP481.
- 3. Males with Fitness level 4 prefer KP781, but equal number also prefer KP281, we can identify and promote the sales of KP481 to such males
- 4. Males and Females with fitness level 5 prefer KP781 which is good.

Observation

- 1. For Fitness level 2 & 3, The median income is slightly more for KP481 male users, so we can promote KP481 to almost all male users with this Fitness value.
- 2. For Fitness level 2, Female users tends to buy KP481 more with income above 40K.
- 3. For Fitness level 3, most female users with >45K prefer KP481, and we should encourage KP481 to such female users.
- 4. For fitness level 4, most of the higher income females prefer KP281, however we should promote KP481 to such female users.
- 5. For Fitness level 5, most of the male and female users are having higher income and prefer KP781 which is good.

- 1. For Fitness level 2 & 3, The median income is slightly more for KP481 male users, so we can promote KP481 to almost all male users with this Fitness value.
- 2. For Fitness level 2, Female users tends to buy KP481 more with income above 40K.
- 3. For Fitness level 3, most female users with >45K prefer KP481, and we should encourage KP481 to such female users.
- 4. For fitness level 4, most of the higher income females prefer KP281, however we should promote KP481 to such female users.
- 5. For Fitness level 5, most of the male and female users are having higher income and prefer KP781 which is good.

In [56]: sns.pairplot(data=df_aerofit_dataset, hue='Product')

Out[56]: <seaborn.axisgrid.PairGrid at 0x12499ab80>

- 1. Age seems to be week correlated with the Education
- 2. Income and Miles are moderately correlated
- 3. Age and Miles have very low correlation

```
In [57]: plt.figure(figsize=(15, 7))
sns.jointplot(data = df_aerofit_dataset, x = 'Age', y = 'Income', hue='Product');
```

<Figure size 1080x504 with 0 Axes>

Observation

- 1. Age and Income seems to have week correlation.
- 2. Most of the users are in the range 20 years to 30 years.
- 3. Most KP281 and KP481 users seems to have an overlap in the same income brackets.
- 4. KP781 users tends to have higher income

Let's compute compute conditional probabilities

P(Product | Gender)

 KP281
 0.526316
 0.384615

 KP481
 0.381579
 0.298077

 KP781
 0.092105
 0.317308

Observation

- 1. Probability of selling KP281 given female customers is higher (0.53) than Probability of selling it to males (0.38)
- 2. Probability of selling KP481 given female customers is higher (0.38) than Probability of selling it to males (0.29)
- 3. Probability of selling KP781 given female customers is lower (0.09) than Probability of selling it to males (0.31)

P(Product | Education)

 Product

 KP281
 0.666667
 0.6
 0.545455
 0.8
 0.458824
 0.086957
 0.0
 0.0

 KP481
 0.333333
 0.4
 0.418182
 0.2
 0.364706
 0.086957
 0.0
 0.0

 KP781
 0.000000
 0.0
 0.036364
 0.0
 0.176471
 0.826087
 1.0
 1.0

- 1. Probability of selling KP281 given Education level 15 customers is higher (0.8).
- 2. Probability of selling KP481 given Education level 14 is higher (0.42)
- 3. Probability of selling KP781 given education level 18 is highest (0.83)

P(Product | MaritalStatus)

In [60]: pd.crosstab(df_aerofit_dataset['Product'], df_aerofit_dataset['MaritalStatus'], normalize='columns')

Out[60]:

MaritalStatus	Partnered	Single	
Product			
KP281	0.448598	0.438356	
KP481	0.336449	0.328767	
KP781	0.214953	0.232877	

Observation

1. Probability of selling any of the product to Partnered and Single users is almost equal.

P(Product | Usage)

```
In [61]: pd.crosstab(df_aerofit_dataset['Product'], df_aerofit_dataset['Usage'], normalize='columns')
```

Out[61]:

Usage	2	3	7	3	U	•
Product						
KP281	0.575758	0.536232	0.423077	0.117647	0.0	0.0
KP481	0.424242	0.449275	0.230769	0.176471	0.0	0.0
KP781	0.000000	0.014493	0.346154	0.705882	1.0	1.0

Observation

- 1. Probability of selling KP281 to Usage level 2 and 3 are higher, i.e, 0.58 and 0.54 respectively.
- 2. Probability of selling KP481 to Usage level 2 and 3 are higher, i.e, 0.42 and 0.44 respectively.
- 3. So with above point we conclude that we should promote KP481 to usage level 2 and 3.
- 4. Probability of selling KP781 to usage level 5 users is 0.71.

P(Product | Fitness)

In [62]: pd.crosstab(df_aerofit_dataset['Product'], df_aerofit_dataset['Fitness'], normalize='columns')

Out[62]:

i iuicss	•		3	7	3
Product					
KP281	0.5	0.538462	0.556701	0.375000	0.064516
KP481	0.5	0.461538	0.402062	0.333333	0.000000
KP781	0.0	0.000000	0.041237	0.291667	0.935484

- 1. Probability of selling KP281 to 3 and 2 fitness level is highest i.e 0.56 and 0.54 respectively.
- 2. Probability of selling KP481 to 3 and 2 fitness level is highest i.e 0.40 and 0.46 respectively.
- 3. So we can conclude that we can try to sell KP481 to 2 and 3 fitness level.
- 4. Probability of selling KP781 to 5 fitness level is highest i.e 0.94.

In [67]: sns.displot(data=df_aerofit_dataset, x='Income', kind='kde', hue='Product');

Observation

- 1. Probability of selling KP281 and KP481 are higher in the income bracket 40K to 55K.
- 2. Probability of selling KP781 to higher income 80K to 100K.

In [64]: sns.displot(data=df_aerofit_dataset, x='Miles', kind='kde', hue='Product');

Observation

- 1. People with miles close to 100 seems to prefer KP281 and KP481.
- 2. People with miles close to 180 seems to prefer KP781.

In [65]: sns.displot(data=df_aerofit_dataset, x='Age', kind='kde', hue='Product');

- 1. People with Age <=30 seems to have high probability to invest in all the 3 products.
- 2. KP481 curve seems to be slightly bimodal, that means people above 30 years of age also prefers it