

Преподаватель

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТ	ET	Фундаментальные науки
	Лабор	раторная работа №3
L	Іисленное р	решение краевых задач для
	одномерн	ого волнового уравнения
Студенты	ФН2-62Б (Группа)	

С.А. Конев

(И.О. Фамилия)

Оглавление

1. Контрольные вопросы	 . 3
2. Результаты	 . 9
Список использованных источников	19

1. Контрольные вопросы

1. Предложите разностные схемы, отличные от схемы «крест», для численного решения задачи (3.1)-(3.4).

Для решения волнового уравнения можно построить следующие разностные схемы:

(а) явную схему вида

$$\frac{y_i^{j+1} - 2y_i^j + y_i^{j-1}}{\tau^2} = c^2 \frac{y_{i+1}^{j-1} - 2y_i^{j-1} + y_{i-1}^{j-1}}{h^2},$$

однако она является абсолютно неустойчивой;

(b) неявную схему вида

$$\frac{y_i^{j+1} - 2y_i^j + y_i^{j-1}}{\tau^2} = c^2 \frac{y_{i+1}^{j+1} - 2y_i^{j+1} + y_{i-1}^{j+1}}{h^2};$$

Проверим ее на устойчивость методом гармоник.

Введем замену $y_i^j =
ho^j e^{ ilde{i} i arphi}.$ Тогда

$$\begin{split} \frac{1}{\tau^2} \left(\rho^{j+1} e^{\tilde{i}i\varphi} - 2\rho^j e^{\tilde{i}i\varphi} + \rho^{j-1} e^{\tilde{i}i\varphi} \right) &= \\ &= \frac{c^2}{h^2} \left(\rho^{j+1} e^{\tilde{i}(i+1)\varphi} - 2\rho^{j+1} e^{\tilde{i}i\varphi} + \rho^{j+1} e^{\tilde{i}(i-1)\varphi} \right), \\ \rho^{j+1} e^{\tilde{i}i\varphi} - 2\rho^j e^{\tilde{i}i\varphi} + \rho^{j-1} e^{\tilde{i}i\varphi} &= \\ &= \frac{c^2 \tau^2}{h^2} \left(\rho^{j+1} e^{\tilde{i}(i+1)\varphi} - 2\rho^{j+1} e^{\tilde{i}i\varphi} + \rho^{j+1} e^{\tilde{i}(i-1)\varphi} \right) \mid : \rho^j, : e^{\tilde{i}i\varphi}, \\ \rho - 2 + \rho^{-1} &= \frac{c^2 \tau^2}{h^2} \left(2\rho \cos \varphi - 2\rho \right), \\ \rho - 2 + \rho^{-1} &= -4\rho \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2}, \\ \left(1 + 4 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2} \right) \rho^2 - 2\rho + 1 &= 0, \\ D &= -16 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2} < 0, \\ \rho_1 &= \frac{1 - 2\tilde{i} \frac{c\tau}{h} \sin \frac{\varphi}{2}}{1 + 4 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2}}, \quad \rho_2 &= \frac{1 + 2\tilde{i} \frac{c\tau}{h} \sin \frac{\varphi}{2}}{1 + 4 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2}}, \\ |\rho_{1,2}| &= \frac{1}{1 + 4 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2}} \sqrt{1 + 4 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2}}, \\ |\rho_{1,2}| &= \frac{1}{\sqrt{1 + 4 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2}}} \leqslant 1, \end{split}$$

следовательно, неявная схема устойчива.

(с) неявную схему вида

$$\frac{y_i^{j+1} - 2y_i^j + y_i^{j-1}}{\tau^2} = c^2 \frac{(y_{i+1}^{j-1} - 2y_i^{j-1} + y_{i-1}^{j-1}) + (y_{i+1}^{j+1} - 2y_i^{j+1} + y_{i-1}^{j+1})}{2h^2}.$$

Проверим ее на устойчивость методом гармоник.

Введем замену $y_i^j = \rho^j e^{\tilde{i}i\varphi}$. Тогда

$$\begin{split} \frac{1}{\tau^2} \left(\rho^{j+1} e^{\tilde{i}i\varphi} - 2\rho^j e^{\tilde{i}i\varphi} + \rho^{j-1} e^{\tilde{i}i\varphi} \right) &= \\ &= \frac{c^2}{2h^2} \left(\left(\rho^{j-1} e^{\tilde{i}(i+1)\varphi} - 2\rho^{j-1} e^{\tilde{i}i\varphi} + \rho^{j-1} e^{\tilde{i}(i-1)\varphi} \right) + \\ &\quad + \left(\rho^{j+1} e^{\tilde{i}(i+1)\varphi} - 2\rho^{j+1} e^{\tilde{i}i\varphi} + \rho^{j+1} e^{\tilde{i}(i-1)\varphi} \right) \right) \mid : \rho^j, : e^{\tilde{i}i\varphi}, \\ &\rho - 2 + \rho^{-1} = \frac{c^2 \tau^2}{2h^2} \left(2\rho^{-1} \cos \varphi - 2\rho^{-1} + 2\rho \cos \varphi - 2\rho \right), \\ &\rho - 2 + \rho^{-1} = \frac{c^2 \tau^2}{2h^2} \left(-4\rho^{-1} \sin^2 \frac{\varphi}{2} - 4\rho \sin^2 \frac{\varphi}{2} \right), \\ &\rho - 2 + \rho^{-1} = -2 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2} \left(\rho^{-1} + \rho \right), \\ &\left(1 + 2 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2} \right) \rho^2 - 2\rho + \left(1 + 2 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2} \right) = 0, \\ &D = -16 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2} \left(1 + \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2} \right) < 0, \\ &\rho_{1,2} = \frac{1 \pm 2 \tilde{i} \frac{c\tau}{h} \sin \frac{\varphi}{2} \sqrt{1 + \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2}}}{1 + 2 \frac{c^2 \tau^2}{h^2} \sin^2 \frac{\varphi}{2}}, \end{split}$$

следовательно, неявная схема является абсолютно устойчивой.

2. Постройте разностную схему с весами для уравнения колебаний струны. Является ли такая схема устойчивой и монотонной?

Построим неявную схему с весами:

$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = \Lambda \left(\sigma \hat{y} + (1 - 2\sigma)y + \sigma \check{y} \right), \quad \Lambda y = \frac{c^2}{h^2} (y_{+1} - 2y + y_{-1}).$$

Погрешность аппроксимации $\psi = O(\tau^2 + h^2) \; \forall \sigma \in [0,1].$

Используя, например, энергетический метод можно получить условие устойчивости [1]:

$$\sigma \geqslant \frac{1}{4} - \frac{h^2}{4c^2\tau^2}.$$

Такой же результат можно получить и методом гармоник. Подставим в схему $y_i^j = \rho^j e^{\tilde{i}i\varphi}$, поделив левую и правую части $\rho^{j-1} e^{\tilde{i}i\varphi}$ и вынеся за скобку в правой части $e^{\tilde{i}\varphi} - 2 + e^{-\tilde{i}\varphi}$:

$$\frac{\rho^2 - 2\rho + 1}{\tau^2} = \frac{c^2}{h^2} (e^{\tilde{i}\varphi} - 2 + e^{-\tilde{i}\varphi}) (\sigma\rho^2 + (1 - 2\sigma)\rho + \sigma).$$

Вынесенный множитель можно записать как $-4\sin^2\frac{\varphi}{2}$. Тогда после замены и домножения на τ^2 получаем следующее выражение:

$$\rho^2 - 2\rho + 1 = -4\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(\sigma\rho^2 + (1 - 2\sigma)\rho + \sigma),$$

$$\left(1 + 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}\right)\rho^2 + \left(4\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(1 - 2\sigma) - 2\right)\rho + \left(1 + 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}\right) = 0,$$

$$\rho^2 - 2\frac{1 - 2\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(1 - 2\sigma)}{1 + 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}}\rho + 1 = 0.$$

По теореме Виета произведение корней $\rho_1\rho_2=1$. Значит, условие устойчивости $\rho \leqslant 1$ может быть выполнено, если $|\rho_1|=|\rho_2|=1$. Для уравнения с действительными коэффициентами это возможно, если корни являются комплексно сопряженными, т.е. дискриминант не должен быть положительным:

$$D/4 = \left(\frac{1 - 2\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(1 - 2\sigma)}{1 + 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}}\right)^2 - 1 \leqslant 0,$$

$$\left|\frac{1 - 2\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(1 - 2\sigma)}{1 + 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}}\right| \leqslant 1,$$

$$\left|1 - 2\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(1 - 2\sigma)\right| \leqslant \left|1 + 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}\right| = 1 + 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2},$$

$$-1 - 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2} \leqslant 1 - 2\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2}(1 - 2\sigma) \leqslant 1 + 4\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2},$$

$$-1 - 8\sigma\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2} \leqslant 1 - 2\left(\frac{c\tau}{h}\right)^2 \sin^2\frac{\varphi}{2} \leqslant 1.$$

В полученном выражении правое неравенство выполняется автоматически. Рассмотрим левое:

$$2 - 2(1 - 4\sigma) \left(\frac{c\tau}{h}\right)^2 \sin^2 \frac{\varphi}{2} \geqslant 0, \quad 1 - (1 - 4\sigma) \left(\frac{c\tau}{h}\right)^2 \sin^2 \frac{\varphi}{2} \geqslant 0,$$
$$1 - 4\sigma \leqslant \frac{h^2}{c^2 \tau^2 \sin^2 \frac{\varphi}{2}}, \quad \sigma \geqslant \frac{1}{4} - \frac{h^2}{4c^2 \tau^2 \sin^2 \frac{\varphi}{2}}.$$

Данное неравенство должно выполняться при любом значении φ . Учитывая этот факт, получаем итоговое выражение:

$$\sigma \geqslant \frac{1}{4} - \frac{h^2}{4c^2\tau^2}.$$

При $\sigma \geqslant \frac{1}{4}$ схема безусловно устойчива. Если $\sigma < \frac{1}{4}$, то схема условно устойчива при $c\tau \leqslant \frac{h}{\sqrt{1-4\sigma}}$. Схема при $\sigma = 0$ переходит в схему «крест», а условие устойчивости — в условие Куранта.

Проверим данную схему на монотонность. Распишем ее:

$$\frac{y_i^{j+1} - 2y_i^j + y_i^{j-1}}{\tau^2} = \frac{c^2}{h^2} \left(\sigma(y_{i+1}^{j+1} - 2y_i^{j+1} + y_{i-1}^{j+1}) + \right. \\ \left. + (1 - 2\sigma)(y_{i+1}^j - 2y_i^j + y_{i-1}^j) + \sigma(y_{i+1}^{j-1} - 2y_i^{j-1} + y_{i-1}^{j-1}) \right).$$

Теперь приведем к каноническому виду, т.е. оставим слева только y_i^{j+1} :

$$\begin{split} \left(\frac{1}{\tau^2} + 2\frac{c^2\sigma}{h^2}\right)y_i^{j+1} &= \frac{c^2\sigma}{h^2}y_{i+1}^{j+1} + \frac{c^2\sigma}{h^2}y_{i-1}^{j+1} + \frac{c^2(1-2\sigma)}{h^2}y_{i+1}^{j} + \left(-2\frac{c^2(1-2\sigma)}{h^2} + \frac{2}{\tau^2}\right)y_i^{j} + \\ &\quad + \frac{c^2(1-2\sigma)}{h^2}y_{i-1}^{j} + \frac{c^2\sigma}{h^2}y_{i+1}^{j-1} + \left(-2\frac{c^2\sigma}{h^2} - \frac{1}{\tau^2}\right)y_i^{j-1} + \frac{c^2\sigma}{h^2}y_{i-1}^{j-1}. \end{split}$$

Из-за наличия отрицательного коэффициента у переменной y_i^{j-1} условие положительности коэффициентов не выполняется.

3. Предложите способ контроля точности полученного решения.

Пусть численная схема имеет p-й порядок сходимости по пространству и q-й по времени, т.е. верно следующее выражение:

$$u(x_i, t_j) = y_i^j + O(h^p + \tau^q).$$

Теперь распишем $O(h^p + \tau^q)$ более подробно:

$$u(x_i, t_j) = y_i^j + C_x(x, t)h^p + C_t(x, t)\tau^q + O(h^{p+1} + \tau^{q+1}),$$

где C_x и C_t — некоторые непрерывные функции, которые в общем случае являются вектор-функциями (если u — вектор-функция). В дальнейшем для простоты будем опускать их аргументы.

Далее сгущаем сетку в r_x раз по пространству и в r_t раз по времени. Тогда получаем, что

$$u(x_{r_x i}, t_{r_t j}) = y_{r_x i}^{r_t j} + C_x \left(\frac{h}{r_x}\right)^p + C_t \left(\frac{\tau}{r_t}\right)^q + O\left(\left(\frac{h}{r_x}\right)^{p+1} + \left(\frac{\tau}{r_t}\right)^{q+1}\right),$$

где под (r_xi, r_tj) понимается номер узла сгущенной сетки, координаты которого совпадают с координатами узла, имеющего номер (i,j), исходной сетки. Таким образом, $u(x_{r_xi}, t_{r_tj}) = u(x_i, t_j)$. Однако это неверно для $y_{r_xi}^{r_tj}$ и y_i^j .

Для того, чтобы теперь получить оценку погрешности, потребуем выполнения $r_x^p = r_t^q$. Данное условие называется условием согласования коэффициентов сгущения по времени и пространству.

Введем следующее обозначение, описывающее искомую оценку погрешности на сгущенной сетке:

$$R(x,t) = C_x \left(\frac{h}{r_x}\right)^p + C_t \left(\frac{\tau}{r_t}\right)^q.$$

Приходим к системе, через которую можно выразить R путем вычитания одной строки из другой:

$$\begin{cases} u(x_i, t_j) = y_i^j + r_x^p R + O(h^{p+1} + \tau^{q+1}), \\ u(x_i, t_j) = y_{r_x i}^{r_t j} + R + O(h^{p+1} + \tau^{q+1}) \end{cases} \Rightarrow y_{r_x i}^{r_t j} - y_i^j \approx (r_x^p - 1)R \Rightarrow R \approx \frac{y_{r_x i}^{r_t j} - y_i^j}{r_x^p - 1}.$$

Таким образом, если для некоторой заданной точности ε получили, что $R \geqslant \varepsilon$, то следует дробить сетку до тех пор пока данное выражение не станет ложным. В качестве итогового ответа можно взять решение на последней сетке.

4. Приведите пример трехслойной схемы для уравнения теплопроводности. Как реализовать вычисления по такой разностной схеме? Является ли эта схема устойчивой?

В качестве трехслойной схемы для уравнения теплопроводности можно привести схему Ричардсона:

$$\frac{\hat{y} - \check{y}}{2\tau} = K \frac{y_{+1} - 2y + y_{-1}}{h^2}$$

Погрешность аппроксимации $\psi = O(\tau^2 + h^2)$.

Схема является явной, однако требует задания двух начальных временных слоев. Значение на втором временном слое можно получить из первого, заданного начальным условием, следующим образом:

$$y_i^1 \approx u(\tau, x_i) = u(0, x_i) + \tau u_t(0, x_i) + O(\tau^2), \quad i = \overline{1, N - 1}.$$

Значения y_0^1 и y_N^1 определяются из граничных условий (при условии, что они являются условиями І рода). Заметим, что первое слагаемое можно найти используя начальное условие $u(0,x) = \varphi(x)$, а из самого уравнения теплопроводности известно, что $u_t = Ku_{xx}$, т.е. $u_t(0,x_i) = Ku_{xx}(0,x_i) = K\varphi''(x_i)$. Заменяя вторую производную функции φ на ее разностный аналог (при этом второй порядок аппроксимации остается), получаем итоговую формулу:

$$y_i^1 = \varphi(x_i) + \tau \varphi_{\bar{x}x}(x_i), \quad i = \overline{1, N-1}.$$

Исследуем схему на устойчивость методом гармоник:

$$\frac{\hat{y} - \check{y}}{2\tau} = K \frac{y_{+1} - 2y + y_{-1}}{h^2} \qquad \Rightarrow \qquad \hat{y} = \frac{2K\tau}{h^2} (y_{+1} - 2y + y_{-1}) + \check{y}.$$

Введем замену $y_i^j =
ho^j e^{ ilde{i}iarphi}$. Тогда

$$\begin{split} \rho^{j+1}e^{\tilde{i}i\varphi} &= \frac{2K\tau}{h^2}(\rho^je^{\tilde{i}(i+1)\varphi}-2\rho^je^{\tilde{i}i\varphi}+\rho^je^{\tilde{i}(i-1)\varphi})+\rho^{j-1}e^{\tilde{i}i\varphi}\mid:\rho^j,:e^{\tilde{i}i\varphi},\\ \rho &= \frac{2K\tau}{h^2}(e^{\tilde{i}\varphi}-2+e^{-\tilde{i}\varphi})+\rho^{-1},\\ \rho &= -\frac{8K\tau}{h^2}\sin^2\frac{\varphi}{2}+\rho^{-1},\\ \rho^2 &+ \frac{8K\tau}{h^2}\sin^2\frac{\varphi}{2}\rho-1 = 0. \end{split}$$

Видно, что его дискриминант

$$D/4 = \left(\frac{4K\tau}{h^2}\sin^2\frac{\varphi}{2}\right)^2 + 1 > 0,$$

следовательно, корни действительны и различны, причем $\rho_1\rho_2 = -1$. Отсюда получаем, что один из корней заведомо больше единицы по модулю. Таким образом схема является безусловно неустойчивой.

2. Результаты

Тестовая задача 1

$$u_{tt} = u_{xx}, \ 0 < x < 1, \ t > 0,$$

$$u(x,0) = \sin \pi x, \ u_t(x,0) = 0, \ 0 < x < 1,$$

$$u(0,t) = 0, \ u(1,t) = 0, \ t > 0.$$

Точное решение:

$$u(x,t) = \sin \pi x \cos \pi t.$$

Численное решение ($\tau=0.01,\ h=0.02,\ T=10.0,\ L=1.0$):

Рис. 1. Численное решение

График погрешности:

Рис. 2. Разность численного и точного решения

$$u_{tt} = u_{xx}, \ 0 < x < 1, \ t > 0,$$

$$u(x,0) = x(1-x), \ u_t(x,0) = 0, \ 0 < x < 1,$$

$$u(0,t) = 0, \ u(1,t) = 0, \ t > 0.$$

Точное решение:

$$u(x,t) = \frac{8}{\pi^3} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \sin((2n+1)\pi x) \cos((2n+1)\pi t).$$

Численное решение ($\tau=0.01,\ h=0.02,\ T=10.0,\ L=1.0,\ k=10$):

Рис. 3. Численное решение

График погрешности:

Рис. 4. Разность численного и точного решения

$$u_{tt} = u_{xx}, -2 < x < 2, \ t > 0,$$

$$u(-2,t) = 0, \ u(2,t) = 0, \ t > 0,$$

$$u(x,0) = f(x), \ u_t(x,0) = 0, \ -2 < x < 2,$$

$$f(x) = \begin{cases} 1, \ x \in [-\frac{1}{3}, \frac{1}{3}], \\ 0, \ x \notin [-\frac{1}{3}, \frac{1}{3}]. \end{cases}$$

1. $\gamma = 0.1 (\tau = 0.01, h = 0.1)$:

Рис. 5. Численное решение

2. $\gamma = 0.5 (\tau = 0.01, h = 0.02)$:

Рис. 6. Численное решение

3. $\gamma = 0.75 (\tau = 0.1125, h = 0.15)$:

Рис. 7. Численное решение

Рис. 8. Численное решение

$$u_{tt} = u_{xx}, -1 < x < 1, \ t > 0,$$

$$u(-1,t) = 0, \ u(1,t) = 0, \ t > 0.$$

$$u(x,0) = 0, \ u_t(x,0) = g(x), -1 < x < 1,$$

$$g(x) = \begin{cases} 1 - 2|x|, \ x \in [-\frac{1}{2}, \frac{1}{2}], \\ 0, \ x \notin [-\frac{1}{2}, \frac{1}{2}]. \end{cases}$$

Численное решение

1.
$$\gamma = 0.1 (\tau = 0.01, h = 0.1)$$
:

Рис. 9. Численное решение

2. $\gamma = 0.5 (\tau = 0.01, h = 0.02)$:

Рис. 10. Численное решение

3. $\gamma = 0.75 (\tau = 0.1125, h = 0.15)$:

Рис. 11. Численное решение

Рис. 12. Численное решение

$$u_{tt} = u_{xx}, \ 0 < x < 4\pi, \ t > 0,$$

$$u(0,t) = \sin t, \ u(4\pi,t) = 0, \ t > 0.$$

$$u(x,0) = 0, \ u_t(x,0) = 0, \ 0 < x < 4\pi,$$

1.
$$\gamma = 0.1 (\tau = 0.01, h = 0.1)$$
:

Рис. 13. Численное решение

2. $\gamma = 0.5 (\tau = 0.01, h = 0.02)$:

Рис. 14. Численное решение

3. $\gamma = 0.75 (\tau = 0.1125, h = 0.15)$:

Рис. 15. Численное решение

Рис. 16. Численное решение

 $u_{tt} = u_{xx}, \qquad y_{\bar{t}t} = y_{\bar{x}x},$

Первое дифференциальное приближение

$$\begin{split} \psi_h &= u_{tt} + \frac{\tau^2}{12} u_{tttt} + O(\tau^4) - u_{xx} - \frac{h^2}{12} u_{xxxx} + O(h^4) = \\ &= (u_{tt} - u_{xx}) + (\frac{\tau^2}{12} u_{tttt} - \frac{h^2}{12} u_{xxxx}) + O(\tau^4 + h^4). \\ u_{tt} &= u_{xx}, \qquad u_{tttt} = u_{xxtt} = (u_{tt})_{xx} = u_{xxxx}. \\ v_{tt} - v_{xx} + \frac{1}{12} (\tau^2 - h^2) v_{xxxx} = 0, \\ v_{tt} - v_{xx} + \frac{h^2}{12} (\gamma^2 - 1) v_{xxxx} = 0. \end{split}$$

Список использованных источников

1. *Галанин М.П., Савенков Е.Б.* Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 592 с.