ORACLE®

Oracle Cluster Domains: Managing the Cluster Estate

Ian Cookson Product Manager – Oracle Clusterware May 22, 2019

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Program Agenda

- 1 Cluster Domain Overview
- Customer Use Case

Program Agenda

- 1 Cluster Domain Overview
- Customer Use Case

Oracle RAC 12c Rel. 2 Cluster Domain

Centralized Management for Cluster Estates "too big to manage" otherwise

- Simplified Management
 - Fleet Management for installation, update, patching and maintenance
- Reduced Local Overhead
 - Member Clusters benefit from the consolidation of common services on the Domain Services Cluster
- Improved IO Performance
 - Utilizing consolidated shared storage

The DSC – The Heart of the Cluster Domain

- The DSC hosts services that are consumed by Member Clusters, including:
 - Management Service for centralized and simplified management
 - Trace File Analyzer (TFA) for centralized diagnostics
 - Fleet Patching & Provisioning (FPP) for software fleet management
 - Storage Services (ACFS, ASM direct or indirect over IO Service)

The DSC Management Service

Applied Machine Learning for Database Diagnostics

- Efficient diagnosis using Machine Learning
- Automatically performs corrective actions to prevent possible issues
- Provides simple alerts & recommendations for issues that require manual intervention

Subject Matter

Feedback

ASH

Oracle Autonomous Health Framework

Powered by Applied Machine Learning

Integrates next generation tools running 24/7

 Discovers Potential Issues and Notifies with Corrective Actions

- Speeds Issue Diagnosis and Recovery
- Preserves Database and Server Availability and Performance
- Autonomously Monitors and Manages resources to maintain SLAs

Cluster Health Advisor (CHA) Architecture Overview

- Monitors in real-time Oracle database* systems and their hosts
- Detects early impending as well as ongoing system faults
- Diagnoses and identifies the most likely root causes
- Provides targeted actions for prevention or escalation of DB/server problems
- Generates relevant alerts and notifications for rapid response

DB Data OS Data CHM Node Database Health Health **Prognostics Prognostics** Engine Engine **CHADDriver EMCC** Alert OS DB Model Model **GIMR**

*Oracle RAC/R1N databases only

Cluster Health Advisor

₹ 💄

SYSMAN ▼

▼ [

Incident Manager

Incident Manager > Incident Details

Page Refreshed Sep 29, 2017 12:08:13 PM PDT 1

△ASM Cluster-wide Disk Utilization on Host rwsbi06 Database/Cluster rwsbi0508-mb2 Instance . The Cluster Health Advisor (CHA) detected slower tl... © Open in new tab Unassigned, Not acknowledged

General Events Notifications My Oracle Support Knowledge All Updates Related Events Related Metrics

 ✓ Incident Details

ID 766

Metric Alert Level

Metric Group CHA Alerts

Key CHA_INCIDENT_STATE_CHANGE_CLUSTERWARE_rwsbi0508-mb2__CHA_...

Target rwsbi0508-mb2 (Cluster)

Incident Created Sep 29, 2017 7:06:45 PM GMT

Last Updated Sep 29, 2017 7:06:45 PM GMT

ASM Cluster-wide Disk Utilization on Host rwsbi06 Database/Cluster rwsbi0508-mb2 Instance .

The Cluster Health Advisor (CHA) detected slower than expected disk performance because the

high disk I/O demand from the other servers increased the utilization of the shared disks. Review

the CHA findings and corrective actions from the other servers and database instances in the

cluster for IO issues. Add disks to the database disk groups.

Internal Event

Name

cha_alerts:cha_alert_level

Event Type Metric Alert

Category Unclassified

Show internal values for attributes ...

■ Metric Data

Critical Threshold Not Applicable

Warning Threshold Not Applicable

Number of Occurrences 0

Last Known Value Critical

-- ----

Fleet Patching and Provisioning Service

Fleet Management install trackeuploute apatching entire aintenance

- Provision new pools onto base machines
- DB and GI: provision, scale, patch, upgrade
- Custom workflow framework
- Notification model
- Audit capabilities

Zero Impact Patching

Never take down a database instance to patch Grid Infrastructure

- Zero Impact Patching enables patching of the Oracle Grid Infrastructure without interrupting database operations.
- Patches are applied out-of-place and in a rolling fashion with one node being patched at a time while the database instance(s) on that node remain up and running.
- Zero Impact Patching supports Oracle Real Application Clusters (RAC) databases on clusters with two or more nodes.

Zero Impact Patching

Never take down a Database

- 1. Node running from old GI-Home
- 2. Configure new GI-Home
- 3. Stop old GI-Home
 - no GI stack running at this point
- 4. Start new GI-Home
 - RDBMS instances unaffected

Domain Services Cluster (DSC) Availability

- Services provided by the DSC are unaffected by nodes joining/ leaving the DSC cluster
- DSC can be patched and upgraded independently without affecting the services provided by DSC
- Use Member Clusters for user databases (not the DSC)

Member Clusters = Standalone Cluster + Benefits

- A Member Cluster is a Standalone Cluster utilizing shared services on the Domain Services Cluster
- It automatically benefits from the management, TFA & FPP service.
 - ASM services are optional
 - and can be utilized as needed

Same Tools and Commands for all Types of Deployments

Convert a Standalone Cluster to Member Cluster

 Easy conversion from Standalone to Member Clusters

 Member Cluster GI/DB version can be higher or equal to the GI/DB version on the Domain Services Cluster

Database Member Cluster with Local ASM

Standalone isolation with reduced local overhead

- For databases requiring
 - Full Isolation and performance stability
 - That can benefit from the centralized
 Management Service on the DSC
- Particularly suitable for unpredictable workloads, or highly variable workloads
- Examples include
 - Business Intelligence and Analytics systems
 - Batch processing systems
 - Response-critical, user-facing systems

Database Member Cluster Using ASM Service

Standalone isolation benefitting from consolidated shared storage

- For databases requiring
 - Isolation and performance stability
 - That can benefit from the centralized Management Service on the DSC
 - And the centralized ASM Storage Management Service on the DSC
- Best suited for workloads for which IO stability is important, but benefit from the centralized ASM Services on the DSC
- Examples include
 - OLTP systems
 - Reporting systems

Database Member Cluster Using the IO Service

Consolidation at its best utilizing full resource sharing

- Ideal for databases that can allow for IO path sharing with other Member Clusters
- Consider for volatile environments & less performance-critical systems
- Examples include
 - Small databases that can be highly consolidated
 - Test, integration, development systems

Member Cluster Flexibility

- Easy conversion between Member Cluster types as demand
 - Direct ASM to ASM IO Service
 - ASM IO Service to Direct ASM
- Conversion requires planned downtime

Oracle RAC 12c Rel. 2 Cluster Domain

Centralized Management for Cluster Estates "too big to manage" otherwise

- Simplified Management
- Reduced Local Overhead
- Improved IO Performance
- Role Separation
 - Departmental DBA's on Member Clusters
 - Infrastructure Owners on DSC

Program Agenda

- 1 Cluster Domain Overview
- Customer Use Case

British Telecom: Cluster Domains in Action

Dave Hickson – Database Architect British Telecom October 3, 2017

About BT

- The UK's largest broadband provider
- The UK's largest last-mile network provider
- The UK's largest wide area network provider
- In EE, the UK's best largest and best mobile network provider
- A global footprint operating in 180 countries
- BT Sport delivering Premiership and UEFA football
- All underpinned by Technology, Service and Operations

Context – Existing Database and RAC Services in BT

- Large scale, on-premise Enterprise Cloud
- Thousands of databases, hundreds of RACs
- Increasing rate of growth
- Lots of automation but ...
- We need smarter ways to
 - Deliver RAC clusters more quickly
 - Administrate more efficiently
 - Enable customer self-service

What we need is a more Cloud-oriented RAC architecture

Cluster Domains – What we've been doing

Test environment on BT Enterprise Cloud

- Four node Domain Services Cluster
- 8 Member Clusters
- OEM 13.2
- VMware-based infrastructure

Key Features we're interested in (in no particular order!)

- IO Server
- Fleet Patching & Provisioning
- Autonomous Health Framework
- Application Containers

Cluster Domains – Why is this architecture attractive to us?

• I/O Server

- Replace hundreds of independent pools of storage with centralised pools
- Increase storage on member clusters without infrastructure changes

Fleet Patching & Provisioning

Centralised management of Oracle software for patching and upgrading

Autonomous Health Framework

Replace many independent management repositories with one

Cluster Domains – our overall impression

Architecturally this is the right direction

- Database servers run databases without having to administer infrastructure
- "Infrastructure" tasks such as storage, performance, software managed centrally
- Application Containers on Member clusters enable customer self-service of new databases without overheads of infrastructure management on each cluster

Organisational implications:

- Infrastructure Team to manage Cluster Domains
- Database Team to manage Member clusters

Integrated Cloud

Applications & Platform Services

ORACLE®