Generación de datos multiómicos sintéticos con Generative Adversarial Networks

Tutor: Esteban Vegas TFM de Federico Lara Salas 14/1/2024

Índice

- 1. Introducción
- 2. Objetivos iniciales y desviaciones
- 3. Introducción arquitecturas
- 4. Datos
- 5. Exploración de modelos
- 6. Resultados
- 7. Conclusiones

Introducción

Importancia datos multi-ómicos

- Comprensión holística de los sistemas biológicos
- Comprensión de enfermedades
- Desarrollo de terapias más efectivas

Desafíos

- Volumen suficiente de datos
- Calidad de los datos
- Integración de los datos

Objetivos Iniciales y Desviaciones

Objetivos Iniciales

- Comprender la integración de datos multi-ómicos y la generación de datos con GANs
- Implementar y validar modelo GAN que genere datos multi-ómicos y comparar con VAE
- Mejorar modelo anterior usando Transformer

Desviaciones

- Cambiamos a exploración modelos de conversión entre datos ómicos
- No podemos explorar modelos con datos reales en profundidad

Que es una GAN?

WGAN y WGAN-GP

WGAN

- Función de pérdida de Wasserstein
- Crítico 1-Lipschitz
- Recorte de pesos

WGAN-GP

- Penalización de gradiente
- Actualización más a menudo del Crítico

Que es un VAE?

Que es un Transformer?

- Query, Key, Value
- Cada cabeza enfoca en diferentes aspectos de la entrada
- No input embedding
- No positional encoding
- Encoder Only

GANFORMER

Datos simulados

- Paquete de R InterSIM
- Expresión y metilación interelacionado basado en estudio cáncer de ovario de TCGA
- 2 grupos, 80% sanos y 20% cáncer
- Datasets de 500, 1k, 3k ,10k y más
- 131 variables expresión
- 367 variables metilación

Datos reales

- Obtenido de https://adex.genyo.es/
- Serie GSE117931 datos de expresión y metilación pacientes con esclerosis sistémica
- 2 grupos, 19 sanos y 18 con esclerosis
- 14760 variables de expresión tras preprocesamiento
- 416660 variables de metilación tras preprocesamiento
- También datos reales con datos en 90% SD

Exploración de modelos

- Número de capas ocultas
- Número de neuronas por capa
- Tasa de aprendizaje
- Optimizadores
- Función de perdida
- Tamaño de lote
- Número de épocas de entrenamiento
- Tipo de normalización
- Coeficiente de penalización de gradiente

- Número de veces de actualización de Discriminador
- Tamaño de espacio latente
- Coeficiente de perdida de reconstrucción
- Número de cabezas de atención
- Tamaño neuronas capa densa Transf.
- Número de bloques de Encoder

Métricas usadas para datos sintéticos generados

- Distancia de Wasserstein
- Test Kolmogorov-Smirnov
- Distancia euclidiana promedio
- Matrices de correlación de datos reales y generados
- Clasificación con SVC de datos reales y generados
- Clasificación con SVC de datos generados
- Dendogramas jerárquicos de datos reales y generados

- Clasificación con k-NN
- t-SNE
- UMAP
- PCA
- KDE de distintas variables al azar

Resultados GAN datos simulados

Resultados VAE datos simulados

Generado=0, Real=1 96% precisión

Datos reales

GAN

VAE

Resultados GANFORMER datos simulados

Métricas usadas para conversión de datos ómicos

- MSE
- RMSE
- PCC
- t-SNE
- UMAP
- PCA

Resultados Expr. génica → **Metilación** datos simulados

GAN

MSE: 0.0039

RMSE: 0.0627

PCC: 0.9833

TRANSFORMER

MSE: 0.0114 RMSE: 0.1071 PCC: 0.9505

Resultados Expr. génica → Metilación datos reales

GAN

MSE: 0.0888

RMSE: 0.2980

PCC: 0.2114

TRANSFORMER

MSE: 0.0938

RMSE: 0.3063

PCC: 0.1178

Resultados Metilación → Expr. Génica datos simulados

GAN

MSE: 0.020 RMSE: 0.1432 PCC: 0.7032

TRANSFORMER

MSE: 0.0126 RMSE: 0.1125 PCC: 0.8075

Conclusiones

Generación datos sintéticos

- GAN +calidad, VAE +diversidad
- GAN ≈ VAE datos simulados
- GAN > VAE datos reales con pocas muestras
- Rendimiento GANFORMER pobre

Conversión de datos ómicos

- GAN > Transformer conversión E → M
- Transformer > GAN conversión M → E
- Datos reales muestras insuficientes.

Fortalezas y debilidades

Fortalezas

- Buen rendimiento con datos simulados
- No hay necesidad de grandes recursos computacionales

Debilidades

- Volumen pequeño de datos reales
- Limitación en tiempo y/o recursos computacionales
- No hay validación de significación biológica
- Comprensión superficial de la arquitectura Transformer
- Limitación en la generalización de los modelos

Futuras lineas de trabajo

- Exploración de modelos VAE con datos reales y espacio latente ampliado
- Comprensión más profunda de la arquitectura Transformer
- Mejora y exploración modelo GANFORMER
- Entrenamiento modelos con mayor volúmen de datos reales
- Exploración Cycle GAN
- Mejora en la exploración de modelos e hiperparámetros

Universitat Oberta de Catalunya UO

- f UOC.universitat
- @UOCuniversidad
- O UOCuniversitat