

Description

The µPD424256 is a fast-page dynamic RAM organized as 262,144 words by 4 bits and designed to operate from a single +5-volt power supply. Advanced polycide technology using trench capacitors minimizes silicon area and provides high storage cell capacity, high performance, and high reliability. A single-transistor dynamic storage cell and advanced CMOS circuitry throughout ensure minimum power dissipation, while an on-chip circuit generates the negative-voltage substrate bias automatically and transparently.

The three-state I/O pins are controlled by CAS independent of RAS. After a valid read or read-modify-write cycle, data is held on the outputs by maintaining CAS low. The data outputs are returned to high impedance by returning CAS high. Fast-page read and write cycles can be executed by cycling CAS.

Refreshing may be accomplished by means of a CAS before RAS cycle whereby the refresh addresses are internally generated. Refreshing may also be accomplished by means of RAS-only refresh cycles or by normal read or write cycles on the 512 address combinations of A₀ through A₈ during an 8-ms refresh period (64 ms for -L versions).

Features

- 262,144-word by 4-bit organization
- Single +5-volt power supply
- □ Fast-page option
- Low power available in -L version
- CAS before RAS internal refreshing
- Multiplexed address inputs
- On-chip substrate bias generator
- Nonlatched, three-state I/O
- TTL-compatible inputs and outputs
- □ High-density 20-pin DIP, 26/20-pin SOJ, 20-pin ZIP, or 24/20-pin TSOP plastic packaging

Pin Configurations

20-Pin Plastic DIP

26/20-Pin Plastic SOJ

20-Pin Plastic ZIP

60069-1

4B - 1

Pin Configurations (cont)

24/20-Pin Plastic TSOP (Normal Pinouts)

24/20-Pin Plastic TSOP (Reverse Pinouts)

Pin Identification

Function
Address inputs
Data inputs and outputs
Column address strobe
Output enable
Row address strobe
Write enable
Ground
+ 5-volt power supply
No connection

Absolute Maximum Ratings

Voltage on any pin relative to GND	-1.0 to +7.0 V
Operating temperature, T _{OPR}	0 to +70°C
Storage temperature, T _{STG}	-55 to + 125°C
Short-circuit output current, IOS	50 mA
Power dissipation, P _D	1.0 W

Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should be operated within the limits specified under DC and AC Characteristics.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	UnitpataSh
Input voltage, high	V _{IH}	2.4		V _{CC} + 1.0	V
Input voltage, low	V _{IL}	-1.0		0.8	V
Supply voltage	Vcc	4.5	5.0	5.5	V
Ambient temperature	TA	0		70	ဇင

Capacitance

 $T_A = 25^{\circ}C$; f = 1 MHz

Parameter	Symbol	Max	Unit	Pins Under Test
Input capacitance	C _{I1}	5	рF	Address
	C ¹⁵	7	pF	RAS, CAS, WE, OE
Input/output capacitance	CIO	7	рF	1/0

4B-2

DataSheet4U.com

Ordorina	Information	
Order IIId	unioi manon	ı

Part Number	RAS Access Time (max)	R/W Cycle Time (max)	Fast-Page Cycle (max)	Refresh Period	Standby Current (min)	Package	_
μPD424256C-60	60 ns	120 ns	40 ns	8 ms	1 mA	20-pin plastic DIP	
C-70	70 ns	130 ns	45 ns				
C-80	80 ns	160 ns	50 ns				
C-10	100 ns	190 ns	60 ns			_	
μPD424256C-60L	60 ns	120 ns	40 ns	64 ms	200 μA		
C-70L	70 ns	130 ns	45 ns	_			
C-80L	80 ns	160 ns	50 ns	_			
aSheet4U.conoL	100 ns	190 ns	60 ns				_
μPD424256LA-60	60 ns	120 ns	40 ns	8 ms	1 mA	26/20-pin plastic SOJ	
LA-70	70 ns	130 ns	45 ns				
LA-80	80 ns	160 ns	50 ns				
LA-10	100 ns	190 ns	60 ns				
μPD424256LA-60L	60 ns	120 ns	40 ns	64 ms	200 μΑ	_	
LA-70L	70 ns	130 ns	45 ns				
LA-80L	80 ns	160 ns	50 ns				
LA-10L	100 ns	190 ns	60 ns				_
μPD424256V-60	60 ns	120 ns	40 ns	8 ms	1 mA	20-pin plastic ZIP	_
V-70	70 ns	130 ns	45 ns				
V-80	80 ns	160 ns	50 ns				
V-10	100 ns	190 ns	60 ns	·			
μPD424256V-60L	60 ns	120 ns	DataSheet4U	J.com _{64 ms}	200 μΑ		D
V-70L	70 ns	130 ns	45 ns				
V-80L	80 ns	160 ns	50 ns	•			
V-10L	100 ns	190 ns	60 ns	· 			
μPD424256GX-60	60 ns	120 ns	40 ns	8 ms	1 mA	24/20-pin plastic TSOP	•
GX-70	70 ns	130 ns	45 ns	•		(normal leads)	
GX-80	80 ns	160 ns	50 ns	•			
GX-10	100 ns	190 ns	60 ns				
μPD424256GX-60L	60 ns	120 ns	40 ns	64 ms	200 μΑ		
GX-70L	70 ns	130 ns	45 ns	•			
GX-80L	80 ns	160 ns	50 ns	•			
GX-10L	100 ns	190 ns	60 ns	•			_
μPD424256GXM-60	60 ns	120 ns	40 ns	8 ms	1 mA	24/20-pin plastic TSOP	-
GXM-70	70 ns	130 ns	45 ns	•		(reverse bent leads)	
GXM-80	80 ns	160 ns	50 ns	•			
GXM-10	100 ns	190 ns	60 ns	•			
μPD424256GXM-60L		120 ns	40 ns	64 ms	200 μΑ	_	
GXM-70L		130 ns	45 ns	-			
GXM-80L		160 ns	50 ns	-			
GXM-10L		190 ns	60 ns	-			

4B-3

www.DataSheet4U.com

Block Diagram

et4U.com

DC Characteristics

DataSheet4U.com

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Standby current	lc C2			2.0	mA	RAS = CAS = V _{IH}
				1.0	mA	RAS = CAS ≥ V _{CC} - 0.2 V
Input leakage current	l _{l(L)}	-10		10	μΑ	$V_{IN} = 0$ to 5.5 V; all other pins not under test = 0 V
Output leakage current	I _{O(L)}	-10		10	μΑ	D _{OUT} disabled; V _{OUT} = 0 to 5.5 V
Output voltage, low	VoL			0.4	٧	i _{OL} = 4.2 mA
Output voltage, high	V _{OH}	2.4			ν	I _{OH} = −5 mA

4B-4

DataSheet4U.com

www.DataSheet4U.com

DataShe

AC Characteristics

 $T_A = 0 \text{ to } +70 \,^{\circ}\text{C}; V_{CC} = +5.0V \pm 10\%$

			60		70		80		10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Operating current, average	l _{CC1}		90		80		70		60	mA	\overline{RAS} and \overline{CAS} cycling; $t_{RC} = t_{RC}$ min; (Note 5)
Operating current, RAS-only refresh cycle, average	loca		90		80		70		60	mA	RAS cycling; CAS = V _{IH} ; t _{RC} = t _{RC} min; (Note 5)
Operating current, fast-page cycle, average	lcc4		80		70		60		50	mA	RAS = V _{IL} ; CAS cycling; tp _C = tp _C min; (Note 5)
Operating current, CAS before RAS refresh cycle, average	lcc5		90		80		70		60	mA	RAS cycling; CAS = V _{IL} ; t _{RC} = t _{RC} min; (Note 5)
Access time from column address	t _{AA}		30		35		45		50	ns	(Notes 7, 10, 13)
Access time from CAS precharge (rising edge)	^t ACP		35		40		45		55	ns 	(Notes 7, 13)
Column address hold time referenced to RAS	t _{AR}	N/A		N/A		60		70		ns	
Column address setup time	t _{ASC}	0		0		0	20	0	20	ns	(Note 13)
Row address setup	t _{ASR}	0		0		0		0		ns	
Column address to WE delay time	^t AWD	50		55	DataShe	70 et4U.c	om	80		ns	(Note 18)
Access time from CAS (falling edge)	†CAC		20		20		20		25	ns	(Notes 7, 9, 10, 13)
Column address hold time	[†] CAH	15		17		20		20		ns	
CAS pulse width	tCAS	20	10,000	20	10,000	20	10,000	25	10,000	ns	
CAS hold time for CAS before RAS refresh cycle	[†] CHR	15		15		15		20		ns	
CAS precharge time, fast-page cycle	t _{CP}	10		10	15	10	20	10	25	ns	(Note 13)
CAS precharge time, nonpage cycle	^t CPN	10		10		10		10		ns	
CAS to RAS precharge time	tCRP	10		10		10		10		ns	(Note 14)
CAS hold time	tcsH	60		70		80		100		ns	
CAS setup time for CAS before RAS refresh cycle	tosa	10		10		10		10		ns	
CAS to WE delay	tcWD	40		40		45		55		ns	(Note 18)
Write command to CAS lead time	towL	15		15		20	<u></u>	20		ns	
Data-in hold time	t _{DH}	15		15		20		20		ns	(Note 17)

4B-5 -

www.DataSheet4U.com

AC Characteristics (cont)

			-60		-70		-80		-10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Data-in hold time referenced to RAS	^t DHR	N/A		N/A		60		70		ns	
Data-in setup time	t _{DS}	0		0		0		0		ns	(Note 17)
Access time from OE	^t OEA		20		20		20		25	ns	
OE data delay time	toED	15		15		20		25		ns	
OE command hold time	^t OEH	0		0		0		0		ns	
OE to RAS inactive setup time	toes	0		0		0		0		ns	
Output turnoff delay from OE	t _{OEZ}	0	15	0	15	0	20	0	25	ns	(Note 11)
Output buffer turnoff delay	toff	0	15	0	15	0	20	0	25	ns	(Note 11)
Fast-page cycle time	t _{PC}	40		45		50		60		ns	(Note 6)
Fast-page read-write cycle time	t _{PRWC}	85		90		105		125		ns	
Access time from RAS	tRAC		60		70		80		100	ns	(Notes 7, 8)
RAS to column address delay time	t _{RAD}	15	30	15	35	17	35	17	50	ns	(Note 10)
Row address hold time	t _{RAH}	10		10		12		12		ns	
Column address lead time referenced to RAS (rising edge)	^t RAL	30		35 Da	ataSheet ⁴	45 4U.co	m	50		ns	7
RAS pulse width	t _{RAS}	60	10,000	70	10,000	80	10,000	100	10,000	ns	
RAS pulse width, fast- page cycle	t _{RASP}	60	100,000	70	100,000	80	100,000	100	100,000	ns	
Random read or write cycle time	t _{RC}	120		130		160		190		ns	(Note 6)
RAS to CAS delay time	t _{RCD}	20	40	20	50	25	60	25	75	ns	(Note 12)
Read command hold time referenced to CAS	t _{RCH}	0		0		0		0		ns	(Note 15)
Read command setup time	tRCS	0		0		0		0		ns	
Refresh period	t _{REF}		8		8		8		8	ms	Addresses A ₀ - A ₈ ; 64 ms for -L versions
RAS precharge time	t _{RP}	50		50		70		80		ns	
RAS precharge CAS hold time	tRPC	10		10		10		10		ns	
Read command hold time referenced to RAS	t _{RRH}	10		10		10		10		ns	(Note 15)
RAS hold time	t _{RSH}	20		20		20		25		ns	
Read-write cycle time	tRWC	165		175		215		255		ns	(Note 6)
				90		105		130		ns	(Note 18)

4B-6

DataSheet4U.com www.DataSheet4U.com

DataShe

AC Characteristics (cont)

		_	60	-	70	-	80	-	10		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Test Conditions
Write command to RAS lead time	t _{RWL}	20		20		25		30		ns	
Rise and fall transition time	t _T	3	50	3	50	3	50	3	50	ns	(Note 4)
Write command hold time	twcH	15		15		15		20		ns	
Write command hold time referenced to RAS	twcn	N/A		N/A		55		70		ns	
Write command setup time	twcs	0		0		0		0		ns	(Note 18)
Write command pulse width	t _{WP}	15		15	<u>-</u>	15		20		ns	(Note 16)

Notes:

et4U.com

- (1) All voltages are referenced to GND.
- (2) An initial pause of 100 µs is required after power-up, followed by any eight RAS cycles, before proper device operation is achieved.
- (3) Ac measurements assume $t_T = 5$ ns.
- (4) V_{IH} (min) and V_{IL} (max) are reference levels for measuring the timing of input signals. Transition times are measured between V_{IH} and V_{IL}.
- 5) I_{CC1}, I_{CC3}, I_{CC4}, and I_{CC5} depend on output loading and cycle rates. Specified values are obtained with the output open. I_{CC3} is measured assuming that all column address inputs are held at ect4 U.com either a high level or a low level during RAS-only refresh cycles.

 I_{CC4} is measured assuming that all column address inputs are switched only once during each fast-page cycle.
- (6) The minimum specifications are used only to indicate the cycle time at which proper operation over the full temperature range (T_A= 0 to +70°C) is assured.
- (7) Load = 2 TTL (-1 mA, +4 mA) loads and 100 pF.
- (8) Assumes that t_{RCD} ≤ t_{RCD} (max) and t_{RAD} ≤ t_{RAD} (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value in this table, t_{RAC} increases by the amount that t_{RCD} or t_{RAD} exceeds the value shown.
- (9) Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max).
- (10) If $t_{RAD} \ge t_{RAD}$ (max), then the access time is defined by t_{AA} .
- (11) t_{OFF} (max) and t_{OEZ} (max) define the time at which the outputs achieve the open-circuit condition and are not referenced to V_{OH} or V_{OL} .
- (12) Operation with the t_{RCD} (max) limit assures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than t_{RCD} (max), access time is controlled exclusively by t_{CAC} .

(13) For fast-page read operation, the definition of access time is as follows:

CAS and Column Address input Conditions	Access Time Definition
t _{CP} ≤ t _{CP} (max), t _{ASC} ≥ t _{CP}	^t acp
t _{CP} ≤ _{CP} (max), t _{ASC} ≤ t _{CP}	t _{AA}
t _{CP} ≥ _{CP} (max), t _{ASC} ≤ t _{ASC} (max)	^t AA
t _{CP} ≥ _{CP} (max), t _{ASC} ≥ t _{ASC} (max)	tCAC

- (14) The t_{CRP} requirement should be applicable for RAS/CAS cycles preceded by any cycle.
- (15) Either t_{RRH} or t_{RCH} must be satisfied for a read cycle.
- (16) Parameter t_{WP} is applicable for a delayed write cycle such as a read-write/read-modify-write cycle. For early write cycles, both t_{WCS} and t_{WCH} must be met.
- (17) These parameters are referenced to the falling edge of CAS for early write cycles and to the falling edge of WE for delayed write or read-modify-write cycles.
- (18) t_{WCS}, t_{RWD}, t_{CWD}, and t_{AWD} are restrictive operating parameters in read-write/read-modify-write cycles only. If t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle and the data I/O pins will remain open-circuit throughout the entire cycle. If t_{CWD} ≥ t_{CWD} (min), t_{RWD} ≥ t_{RWD} (min), and t_{AWD} ≥ t_{AWD} (min), then the cycle is a read-write cycle and the data I/O pins will contain data read from the selected cells. If neither of the above conditions is met, the condition of the data I/O pins (at access time and until CAS returns to V_{IH}) is indeterminate.

4B-7

µPD424256

Low Power Battery Backup (-L Versions Only)

The μ PD424256-L is capable of low power battery backup during times of reduced system power, when the input buffers and all nonessential internal circuits are turned off. For the input buffers to be turned off and the amount of leakage current flowing through them reduced, the μ PD424256-L must be in standby and all control lines within 0.2 V of either V_{CC} or GND, as appropriate. When RAS and CAS are both within 0.2 V of V_{CC}, the internal circuits are inactive and power requirements reduced even further. Standby current can drop as low as 200 μ A.

 $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh cycles are executed at a minimum rate to ensure that all 512 rows are refreshed only once every 64 ms. The time that $\overline{\text{RAS}}$ is low (t_{RAS}) and the μ PD424256-L active needs to be as short as possible, typically less than 300 ns, to minimize power usage during refresh operation. The following table shows the conditions under which the lowest average standby current can be obtained.

Battery Backup Current

Symbol	Max	Unit	CAS Before RAS Refresh Cycle	Standby Conditions
lcce	200	μΑ	t _{RAS} ≤ 300 ns	$\overline{RAS} = \overline{CAS} \ge V_{CC} - 0.2 \text{ V}; \overline{OE} \ge V_{CC} - 0.2 \text{ V};$
lcce	300	μΑ	t _{RAS} ≥ 300 ns and ≤ 1 μs	$\overline{WE} = \text{Addresses} \ge V_{CC} - 0.2 \text{ V or } \le 0.2 \text{ V}; \text{ I/O}$ ≥ $V_{CC} - 0.2 \text{ V or } \le 0.2 \text{ V or high-Z}$

et4U.com

DataSheet4U.com

DataShe

48-8

DataSheet4U.com

Timing Waveforms

Read Cycle

4B-9 11

www.DataSheet4U.com

Timing Waveforms (cont)

Early Write Cycle

4B-10

DataSheet4U.com

DataShe

Timing Waveforms (cont)

OE-Controlled Write Cycle

4B-11

www.DataSheet4U.com

Timing Waveforms (cont)

Read-Write/Read-Modify-Write Cycle

4B-12

DataSheet4U.com

Timing Waveforms (cont)

Fast-Page Read Cycle

4B-13

µPD424256

Timing Waveforms (cont)

Fast-Page Early Write Cycle

48-14

DataSheet4U.com

DataShe

Timing Waveforms (cont)

Fast-Page Read-Write/Read-Modify-Write Cycle

4B-15

Timing Waveforms (cont)

Hidden Refresh Cycle

4B-16

www.DataSheet4U.com DataSheet4U.com

Timing Waveforms (cont)

RAS-Only Refresh Cycle

4b

DataShe

Timing Waveforms (cont)

CAS Before RAS Refresh Cycle

48-18

DataSheet4U.com www.DataSheet4U.com