Support vector machine: A quick look on cost function

20. Februar 2020

1 Hinge Loss Function

It is written as

$$\mathcal{H}(x, y, f(x)) = \begin{cases} 0, & \text{if } yf(x) \ge 1\\ 1 - yf(x), & \text{otherwise} \end{cases}$$
 (1)

with $x \in \mathbb{R}^n$ and $y \in \{-1, +1\}$ to be the training samples and their corresponding labels. Here, $f(x) := \langle x \cdot w \rangle \in \{-1, +1\}$ is the predicted label of the training sample x. Here, $w \in \mathbb{R}^n$, with n and m defined in \mathbb{N} .

2 Objective Function

Based on (1), support vector machine (SVM) objective's function is written as

$$\min_{w} \left(\lambda \|w\|^{2} + \sum_{i=1}^{n} \mathcal{H} \left(x, y, \overbrace{f(x)}^{:=\langle x \cdot w \rangle} \right) \right)$$
 (2)

with $\lambda \in (0, +\infty)$.

3 Optimization

To optimize (2), we need its derivatives

$$\frac{\partial}{\partial w} \left(\min_{w} \left(\lambda \|w\|^{2} + \sum_{i=1}^{n} \mathcal{H}(x, y, f(x)) \right) \right)$$
 (3)

that can be taken separately as

$$\frac{\partial}{\partial w_k} \left(\lambda \|w\|^2 \right) = 2\lambda w_k \tag{4}$$

and

$$\frac{\partial}{\partial w_k} \left(\mathcal{H} \left(x, y, f \left(x \right) \right) \right) = \begin{cases} 0, & \text{if } y_i \left\langle x_i \cdot w_k \right\rangle \ge 1 \\ -y_i x_i, & \text{otherwise} \end{cases}$$
 (5)

with $k \in \{1, \dots, n\}$ leading us to the below stochastic gradient descent updation rules

$$w_k = w_k - \eta \left(2\lambda w_k - \langle x_i \cdot w_k \rangle \right) \tag{6}$$

if $y_i \langle x_i \cdot w_k \rangle < 1$ and otherwise

$$w_k = w_k - \eta \left(2\lambda w_k \right). \tag{7}$$

One writes the snippet python code corresponding to (6) and (7) as

```
\begin{array}{l} \textbf{def SVM\_SGD}(X,Y)\colon\\ w = np.\,zeros\,(\,\textbf{len}\,(X[\,0\,]\,)\,)\\ eta = 1\\ epochs = 100000\\ \textbf{for epoch in range}\,(1,n)\colon\\ \textbf{for } i\,,\,\,x\,\,\textbf{in enumerate}\,(X)\colon\\ \textbf{if }\,(Y[\,i\,]*np.\,dot\,(X[\,i\,]\,,\,\,w)) < 1\colon\\ w = w\,+\,\,eta\,*\,(\,\,(X[\,i\,]\,*\,Y[\,i\,])\,\,+\,\,(-2\,\,\,*(1/\,epoch)*\,\,w)\,\,)\\ \textbf{else}\colon\\ w = w\,+\,\,eta\,*\,(-2\,\,\,*(1/\,epoch)*\,\,w)\\ \textbf{return }\,w \end{array}
```