

DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

MTH2302D - PROBABILITÉS ET STATISTIQUE

TD nº 6

Exercice 1:6.10 page 184. [7.10 dans la 2ème édition]

Exercice 2:6.18 page 185. [7.20 dans la 2ème édition]

Exercice 3:6.21 page 185. [7.23 dans la 2ème édition]

Exercice 4

La demande journalière d'électricité (en millions de KWh) est une variable X distribuée selon une loi normale de moyenne 8 et d'écart type 2. D'autre part, la capacité de production électrique (en millions de KWh) est de 12.

- a) Calculer la probabilité que la demande excède la capacité dans une journée.
- b) Calculer la probabilité que la demande excède la capacité deux journées consécutives.
- c) Calculer la probabilité que la demande excède la capacité au plus deux journées dans une semaine.
- **d)** Quelle devrait être la capacité de production afin de satisfaire la demande avec une probabilité de 0,99?

Exercice 5

Une ville compte 10 000 unités d'habitation et deux usines. La demande journalière en eau potable (litres) est détaillée dans le tableau suivant :

entité	variable aléatoire correspondante	loi suivie	moyenne (litres)	écart type (litres)
habitation	$Q_i \\ i \in \{1, 2, \dots, 10000\}$	normale	250	50
usine 1	U_1	normale	45 000	5 000
usine 2	U_2	normale	115 000	20 000

On suppose l'indépendance entre toutes les demandes. On note $Q_D = \sum_{i=1}^{10\,000} Q_i$ la demande domestique totale et $Q_T = Q_D + U_1 + U_2$ la demande totale.

- a) Calculer la moyenne et l'écart-type de Q_D et de Q_T .
- **b)** Soit α_p la valeur telle que $P\left(Q_D < \alpha_p\right) = p$. Calculer $\alpha_{0,95}$ et $\alpha_{0,99}$.
- c) Calculer la capacité de l'usine de filtration d'eau potable si on veut satisfaire la demande totale avec une probabilité de 0,999.