Confidence Corridors for Multivariate Generalized Quantile Regression

Shih-Kang Chao, Katharina Proksch Wolfgang Karl Härdle Holger Dette

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
Chair of Stochastic
Ruhr-Universität Bochum
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de
http://www.ruhr-uni-bochum.de/mathematik3

Treatment effect

- Treatments (program, policy, intervention) affect distributions (income, age)
- - lacksquare Mean: the average treatment effect $\Delta_m = \mathsf{E}[Y_1 Y_0]$
 - Quantile: $\Delta_{\tau} = \check{\hat{F}}_{1,n}^{-1}(\tau) \hat{F}_{0,n}^{-1}(\tau)$
- If the experiment is randomized: $E[Y_1 - Y_0] = E[Y_1|D = 1] - E[Y_0|D = 0]$
- \square Measure Δ_m through a dummy-variable regression:

$$Y_i = \alpha + D_i \gamma + X_i^{\top} \beta + e_i, \qquad \text{(Location shift)}$$

$$Y_i = \alpha + X_i^{\top} (\beta + D_i \gamma) + e_i, \qquad \text{(scaling)}$$

Quantile treatment effect (QTE)

Doksum (1974): if we define $\Delta(y)$ as the "horizontal distance" between F_0 and F_1 at y so that

$$F_1(y) = F_0\{y + \Delta(y)\},\,$$

then $\Delta(y)$ can be expressed as

$$\Delta(y) = F_0^{-1} \{ F_1(y) \} - y,$$

changing variable with $\tau = F_1(y)$, one gets the quantile treatment effect:

$$\Delta_{\tau} = \Delta \{F_1^{-1}(\tau)\} \stackrel{\text{def}}{=} F_0^{-1}(\tau) - F_1^{-1}(\tau).$$

— ^

Figure 1: Heterogeneous horizontal shifts in distribution.

Stochastic dominance (SD)

Conditional stochastic dominance (CSD): Given state variables X, Y_1 conditionally stochastically dominates Y_0 if:

$$F_{1|\mathbf{X}}(y|\mathbf{x}) \le F_{0|\mathbf{X}}(y|\mathbf{x})$$
 a.s. for all y, \mathbf{x} , (1)

Take $\tau = F_{0|X}(y|x)$, so $y = F_{0|X}^{-1}(\tau|x)$. Apply $F_{1|X}^{-1}$ to (??):

$$F_{0|\mathbf{X}}^{-1}(\tau|\mathbf{x}) \le F_{1|\mathbf{X}}^{-1}\{F_{0|\mathbf{X}}(y|\mathbf{x})|\mathbf{x}\} = F_{1|\mathbf{X}}^{-1}(\tau|\mathbf{x}) \quad \forall \mathbf{x}, \tau$$

it preserves the inequality

Which one helps more?

Type II: Potential enhancement CSD

Confi. Corridors. Multi. GQ reg.

Confidence corridors (CC)

Confi. Corridors. Multi. GQ reg.

Distribution comparison & model diagnosis

- It is a common procedure to compare distributions or perform goodness-of-fit test in econometrics
- Parametric inference: requires prior knowledge on the correct stochastic specification
- Nonparametric inference gives more flexibility

Confidence corridors: a history

Confi. Corridors. Multi. GQ reg.

Some recent developments

- Claeskens and van Keilegom (2003): local polynomial mean estimator
- Gené and Nickl (2010): adaptive density estimation with wavelets and kernel
- □ Liu and Wu (2010): long memory, strictly stationary time series density estimation

Outline

- 1. Motivation ✓
- 2. Method and Theoretical Results
- 3. Bootstrap
- 4. Simulation
- 5. Application to National Supported Work (NSW)
 Demonstration data

Additive error model

☑ Let $(X_1, Y_1), ..., (X_n, Y_n)$ be a sequence of i.i.d. random vectors in \mathbb{R}^{d+1} and consider the nonparametric regression model

$$Y_i = \theta(\boldsymbol{X}_i) + \varepsilon_i, \quad i = 1, ..., n,$$
 (2)

where θ is an aspect of Y conditional on X such as the τ -quantile, the τ -expectile regression curve, ε_i i.i.d. with τ -quantile/expectile 0.

oxdot Heterogeneity: ε_i is allowed to be correlated with $oldsymbol{X}$

Confidence intervals

 $1-\alpha$ -confidence interval

$$\mathbb{P}\left(\hat{\theta}_n(\mathbf{x}) - B_n(\mathbf{x}) \leq \theta_0(\mathbf{x}) \leq \hat{\theta}_n(\mathbf{x}) + B_n(\mathbf{x})\right) = 1 - \alpha$$

- \bigcirc Confidence statement for one fixed x.
- Only pointwise information!
- Cannot be used to check for global statements without a correction

Confidence corridors

Uniform 1-lpha-confidence corridor on a compact set ${\cal D}$

$$\mathbb{P}\left(\hat{\theta}_n(\mathbf{x}) - \Phi_n(\mathbf{x}) \leq \theta_0(\mathbf{x}) \leq \hat{\theta}_n(\mathbf{x}) + \Phi_n(\mathbf{x}) \, \forall \, \mathbf{x} \in \mathcal{D}\right) = 1 - \alpha$$

- □ True values of $\theta_0(x)$ covered for all $x \in \mathcal{D}$ simultaneously by the band with probability 1α .
- oxdot Global information about θ_0 on \mathcal{D} .

Distribution of the maximal deviation

$$\mathbb{P}\left(\hat{\theta}_n(\mathbf{x}) - \Phi_n(\mathbf{x}) \leq \theta_0(\mathbf{x}) \leq \hat{\theta}_n(\mathbf{x}) + \Phi_n(\mathbf{x}) \, \forall \, \mathbf{x} \in \mathcal{D}\right) = 1 - \alpha$$

Goal: Find Φ_n such that the equality holds approximately.

Suppose:
$$\sup_{\mathbf{x} \in \mathcal{D}} w_n(\mathbf{x}) |\hat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})| \leq \varphi_n$$

with probability $1-\alpha$ and $n\to\infty$, which implies

$$|\hat{\theta}_n(x) - \theta_0(x)| \le \frac{\varphi_n}{w_n(x)} \stackrel{\text{def}}{=} \Phi_n(x) \text{ for all } x \in \mathcal{D}.$$

Approach:

Approximation of the distribution of $\sup_{\mathbf{x} \in \mathcal{D}} w_n(\mathbf{x}) |\hat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})|$.

Confi. Corridors. Multi. GQ reg. -

Estimator and Bahadur representation

Consider the local constant estimator

$$\hat{\theta}_n(\mathbf{x}) \stackrel{\text{def}}{=} \arg\min_{\theta} n^{-1} \sum_{i=1}^n K_h(\mathbf{x} - \mathbf{X}_i) \rho_{\tau}(Y_i - \theta)$$

with a kernel K and loss function ρ_{τ} .

▶ Notations

Uniform nonparametric Bahadur representation:

$$\sup_{\mathbf{x}\in\mathcal{D}} \left| \hat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x}) - \frac{1}{nS_{n,0,0}(\mathbf{x})} \sum_{i=1}^n K_h(\mathbf{x} - \mathbf{X}_i) \psi_\tau \{Y_i - \theta_0(\mathbf{x})\} \right|$$

$$= \mathcal{O}\left\{ (\log n/nh^d)^{3/4} \right\}, \quad a.s.[P]$$

Bahadur representation

$$S_{n,0,0}(\mathbf{x})(\hat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})) \approx \frac{1}{n} \sum_{i=1}^n K_h(\mathbf{x} - \mathbf{X}_i) \psi_{\tau} \{Y_i - \theta_0(\mathbf{x})\}$$

$$\psi_{ au}(u) = \left\{egin{array}{ll} \mathbf{1}(u \leq 0) - au, & ext{Quantile;} \ \\ 2ig\{\mathbf{1}(u \leq 0) - auig\}|u|, & ext{Expectile.} \end{array}
ight.$$

$$S_{n,0,0}(\mathbf{x}) = \begin{cases} f_{Y|\mathbf{X}}(\theta_0(\mathbf{x})|\mathbf{x})f_{\mathbf{X}}(\mathbf{x}) + \mathcal{O}(h^s), & Q; \\ 2[\tau - F_{Y|\mathbf{X}}(\theta_0(\mathbf{x})|\mathbf{x})(2\tau - 1)]f_{\mathbf{X}}(\mathbf{x}) + \mathcal{O}(h^s), & E. \end{cases}$$

Confi. Corridors. Multi. GQ reg. -

Approximating empirical process

$$V_n^{-1/2} S_{n,0,0}(x) \left\{ \hat{\theta}_n(x) - \theta_0(x) \right\}$$

$$\approx V_n^{-1/2} \frac{1}{n} \sum_{i=1}^n K_h(x - X_i) \psi \left\{ Y_i - \theta_0(x) \right\}$$

$$\approx \underbrace{\frac{1}{\sqrt{h^d f_X(x) \sigma^2(x)}} \int \int K\left(\frac{x - u}{h}\right) \psi \left\{ y - \theta_0(x) \right\} dZ_n(y, u)}_{Y_n(x)}$$

with the centered empirical process

$$Z_n(y, \boldsymbol{u}) \stackrel{\text{def}}{=} n^{1/2} \{ F_n(y, \boldsymbol{u}) - F(y, \boldsymbol{u}) \}.$$

Confi. Corridors. Multi. GQ reg.

The empirical processes of QR

$$Y_n(oldsymbol{x}) = Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) = Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Gaussian$$
 $Y_{4,n}(oldsymbol{x}) = Y_{3,n}(oldsymbol{x}) Y_{3,n}(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{x}) Y_0(oldsymbol{h}^{1/2-\delta}) Y_0(oldsymbol{h}^{1/2-\delta})$

Rosenblatt (1976): $\sup_{\boldsymbol{x}} Y_{5,n}(\boldsymbol{x}) \stackrel{\mathcal{L}}{\to} \text{Gumbel}$

▶ Assumptions]

The empirical process of ER

$$Y_n(oldsymbol{x}) = Y_{0,n}(oldsymbol{x}) rac{\mathcal{O}_p\{(\log n)^{-1}\}}{\cdot} Y_{1,n}(oldsymbol{x}) ext{ Gaussian}$$
 $Y_{1,n}(oldsymbol{x}) ext{ Gaussian}$
 $Y_{1,n}(oldsymbol{x}) ext{ Gaussian}$
 $Y_{2,n}(oldsymbol{x}) ext{ } Y_{2,n}(oldsymbol{x})$
 $Y_{2,n}(oldsymbol{x}) ext{ } Y_{2,n}(oldsymbol{x})$
 $Y_{2,n}(oldsymbol{x}) ext{ } Y_{2,n}(oldsymbol{x})$

Rosenblatt (1976): $\sup_{\boldsymbol{x}} Y_{5,n}(\boldsymbol{x}) \stackrel{\mathcal{L}}{\to} \text{Gumbel}$

► Assumptions

Step 1: Support truncation

$$Y_0(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x})\sigma^2(\mathbf{x})}} \int \int K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi \left\{y - \theta_0(\mathbf{x})\right\} dZ_n(y, \mathbf{u}),$$

- $| \Box | Claim: ||Y_0 Y_{n,0}|| = \mathcal{O}_P((\log n)^{-1/2})$

Step 1: Support truncation

$$Y_{0,n}(x) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(x)\sigma_n^2(x)}} \int \int_{\Gamma_n} K\left(\frac{x-\mathbf{u}}{h}\right) \psi\left\{y-\theta_0(x)\right\} dZ_n(y,\mathbf{u}),$$

- $\Box \Gamma_n = \{y : |y| \le a_n\}$

Step 1: Support truncation

- Necessary to control the decay of the tail of distribution of Y
- Watch out for difference in quantile and expectile regression:
 - Quantile: very weak assumption (A2)
 - Expectile: exploding boundary deteriorates the strong approximation rate → requiring at least finite forth conditional moment (EA2)

Step 2: Strong approximation

$$Y_{0,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x}) \sigma_n^2(\mathbf{x})}} \int \int_{\Gamma_n} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi \left\{y - \theta_0(\mathbf{x})\right\} dZ_n(y, \mathbf{u}),$$

where

$$T(y, \mathbf{u}) = \left\{ F_{X_1|Y}(u_1|y), F_{X_2|Y}(u_2|u_1, y), ..., F_{X_d|X_{d-1}, ..., X_1, Y}(u_d|u_{d-1}, ..., u_1, y), F_Y(y) \right\}$$

is the Rosenblatt transformation and

$$B_n(T(y, \mathbf{u})) = W_n(T(y, \mathbf{u})) - F(y, \mathbf{u})W(1, ..., 1)$$

a multivariate Brownian bridge.

Claim:
$$||Y_{0,n} - Y_{1,n}|| = \mathcal{O}_p\{(\log n)^{-1}\}$$
, a.s.

Confi. Corridors. Multi. GQ reg. —

Step 2: Strong approximation

$$Y_{1,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x}) \sigma_n^2(\mathbf{x})}} \int \int_{\Gamma_n} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\left\{y - \theta_0(\mathbf{x})\right\} dB_n(T(\mathbf{y}, \mathbf{u}))$$

where

$$T(y, \mathbf{u}) = \left\{ F_{X_1|Y}(u_1|y), F_{X_2|Y}(u_2|u_1, y), ..., F_{X_d|X_{d-1}, ..., X_1, Y}(u_d|u_{d-1}, ..., u_1, y), F_Y(y) \right\}$$

is the Rosenblatt transformation and

$$B_n(T(y, \mathbf{u})) = W_n(T(y, \mathbf{u})) - F(y, \mathbf{u})W(1, ..., 1)$$

a multivariate Brownian bridge.

Claim:
$$||Y_{0,n} - Y_{1,n}|| = \mathcal{O}_p\{(\log n)^{-1}\}$$
, a.s.

Confi. Corridors. Multi. GQ reg. -

Step 3: Brownian bridge → Wiener sheet

$$Y_{2,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x}) \sigma_n^2(\mathbf{x})}} \int \int_{\Gamma_n} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\left\{y - \theta_0(\mathbf{x})\right\} dB_n(T(y, \mathbf{u})).$$

Claim:
$$\|Y_{1,n}-Y_{2,n}\|=\mathcal{O}_p\big(h^{d/2}\big)$$

- by integration by parts

Step 3: Brownian bridge → Wiener sheet

$$Y_{2,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x}) \sigma_n^2(\mathbf{x})}} \int \int_{\Gamma_n} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\left\{y - \theta_0(\mathbf{x})\right\} dW_n(T(\mathbf{y}, \mathbf{u})).$$

Claim:
$$\|Y_{1,n}-Y_{2,n}\|=\mathcal{O}_p\big(h^{d/2}\big)$$

- by integration by parts

Step 4: Stationarise the process

$$Y_{2,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x}) \sigma_n^2(\mathbf{x})}} \int \int_{\Gamma_n} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\left\{y - \theta_0(\mathbf{x})\right\} dW_n(T(y, \mathbf{u}))$$

Claim: $||Y_{2,n} - Y_{3,n}|| = \mathcal{O}_P(h^{1-\delta})$, for any $\delta > 0$

A supremum concentration inequality for Gaussian field is applied.

► Meerschaert et al. (2013)

Step 4: Stationarise the process

$$Y_{3,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x}) \sigma_n^2(\mathbf{x})}} \int \int_{\Gamma_n} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\left\{y - \theta_0(\mathbf{u})\right\} dW_n(T(y, \mathbf{u}))$$

Claim: $||Y_{2,n} - Y_{3,n}|| = \mathcal{O}_P(h^{1-\delta})$, for any $\delta > 0$

A supremum concentration inequality for Gaussian field is applied.

➤ Meerschaert et al. (2013)

Step 5: Equally distributed

$$Y_{3,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x}) \sigma_n^2(\mathbf{x})}} \int \int_{\Gamma_n} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi \left\{y - \theta_0(\mathbf{u})\right\} dW_n(T(y, \mathbf{u})).$$

Claim: $Y_{3,n} \stackrel{d}{=} Y_{4,n}$

A computation of the covariance functions gives the result.

Step 5: Equally distributed

$$Y_{4,n}(x) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(x)\sigma_n^2(x)}} \int K\left(\frac{x-u}{h}\right) \sqrt{\sigma_n^2(u) f_{\mathbf{X}}(u)} dW(u).$$

Claim: $Y_{3,n} \stackrel{d}{=} Y_{4,n}$

A computation of the covariance functions gives the result.

Step 6: Final stationarisation

$$Y_{4,n}(x) = \frac{1}{\sqrt{h^d f_{\boldsymbol{X}}(x) \sigma_n^2(x)}} \int K\left(\frac{x-\boldsymbol{u}}{h}\right) \sqrt{\sigma_n^2(\boldsymbol{u}) f_{\boldsymbol{X}}(\boldsymbol{u})} dW(\boldsymbol{u}).$$
$$Y_{5,n}(x) = \frac{1}{\sqrt{h^d}} \int K\left(\frac{x-\boldsymbol{u}}{h}\right) dW(\boldsymbol{u}).$$

Claim: $\|Y_{4,n} - Y_{5,n}\| = \mathcal{O}_p(h^{1-\delta})$ for $\delta > 0$.

Supremum concentration inequality for Gaussian field is again applied.

• Meerschaert et al. (2013)

Maximal deviation for nonparametric QR

Theorem (1)

Under regularity conditions, $vol(\mathcal{D}) = 1$,

► Notations ► Assumptions

$$P\left\{ (2d\kappa \log n)^{1/2} \left(\sup_{\mathbf{x} \in \mathcal{D}} \left[r(\mathbf{x}) |\hat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})| \right] / \|K\|_2 - d_n \right) < a \right\}$$

$$\to \exp\left\{ -2 \exp(-a) \right\},$$

as $n \to \infty$, where $\hat{\theta}_n(x)$ and $\theta_0(x)$ are the local constant quantile estimator and the true quantile function.

Corollary (RQ-CC)

Under the assumptions of Theorem $\ref{thm:eq:confidence}$, an approximate $(1-\alpha) \times 100\%$ confidence corridor over $\alpha \in (0,1)$ is

$$\hat{\theta}_{n}(\boldsymbol{t}) \pm (nh^{d})^{-1/2} \left\{ \tau (1-\tau) \|K\|_{2} / \hat{f}_{\boldsymbol{X}}(\boldsymbol{t}) \right\}^{1/2} \hat{f}_{\varepsilon|\boldsymbol{X}} \left\{ 0 | \boldsymbol{t} \right\}^{-1}$$

$$\left\{ d_{n} + c(\alpha) (2d\kappa \log n)^{-1/2} \right\},$$

where $c(\alpha) = \log 2 - \log |\log(1 - \alpha)|$ and $\hat{f}_{\boldsymbol{X}}(t)$, $\hat{f}_{\varepsilon|\boldsymbol{X}}\{0|t\}$ are consistent estimates for $f_{\boldsymbol{X}}(t)$, $f_{\varepsilon|\boldsymbol{X}}\{0|t\}$.

Maximal deviation for nonparametric ER

Theorem (2)

Under regularity conditions, $vol(\mathcal{D}) = 1$,

► Notations ► Assumptions

$$P\left\{ (2d\kappa \log n)^{1/2} \left(\sup_{\mathbf{x} \in \mathcal{D}} \left[r(\mathbf{x}) |\hat{\theta}_n(\mathbf{x}) - \theta_0(\mathbf{x})| \right] / \|K\|_2 - d_n \right) < a \right\}$$

$$\to \exp\left\{ -2 \exp(-a) \right\},$$

as $n \to \infty$, where $\hat{\theta}_n(x)$ and $\theta_0(x)$ are the local constant expectile estimator and the true expectile function.

Corollary (RE-CC)

Under the assumptions of Theorem ??, an approximate $(1-\alpha) \times 100\%$ confidence corridor over $\alpha \in (0,1)$ is

$$\hat{\theta}_{n}(\boldsymbol{t}) \pm (nh^{d})^{-1/2} \left\{ \hat{\sigma}^{2}(\boldsymbol{x}) \|K\|_{2} / \hat{f}_{\boldsymbol{X}}(\boldsymbol{t}) \right\}^{1/2} 0.5 \left[\tau - \hat{F}_{\varepsilon|\boldsymbol{X}}(0|\boldsymbol{x})(2\tau - 1) \right]^{-1}$$
$$\left\{ d_{n} + c(\alpha)(2d\kappa \log n)^{-1/2} \right\},$$

where $c(\alpha) = \log 2 - \log |\log(1 - \alpha)|$ and $\hat{f}_{\mathbf{X}}(\mathbf{t})$, $\hat{\sigma}^2(\mathbf{x})$ and $\hat{F}_{\varepsilon|\mathbf{X}}(0|\mathbf{x})$ are consistent estimates for $f_{\mathbf{X}}(\mathbf{t})$, $\sigma^2(\mathbf{x})$ and $F_{\varepsilon|\mathbf{X}}(0|\mathbf{x})$

Estimating scaling factors

we propose to estimate $F_{\varepsilon|X}$, $f_{\varepsilon|X}$ and $\sigma^2(x)$ based on residuals $\hat{\varepsilon}_i = Y_i - \hat{\theta}_n(x_i)$:

$$\hat{F}_{\varepsilon|\boldsymbol{X}}(v|\boldsymbol{x}) = n^{-1} \sum_{i=1}^{n} G\left(\frac{v - \hat{\varepsilon}_{i}}{h_{0}}\right) L_{\bar{h}}(\boldsymbol{x} - \boldsymbol{X}_{i}) / \hat{f}_{\boldsymbol{X}}(\boldsymbol{x})$$
(3)

$$\hat{f}_{\varepsilon|\mathbf{X}}(v|\mathbf{X}) = n^{-1} \sum_{i=1}^{n} g_{h_0}(v - \hat{\varepsilon}_i) L_{\bar{h}}(\mathbf{X} - \mathbf{X}_i) / \hat{f}_{\mathbf{X}}(\mathbf{X})$$
(4)

$$\hat{\sigma}^2(\mathbf{x}) = n^{-1} \sum_{i=1}^n \psi^2(\hat{\varepsilon}_i) L_{\bar{h}}(\mathbf{x} - \mathbf{X}_i) / \hat{f}_{\mathbf{X}}(\mathbf{x})$$
 (5)

where G is a CDF, g and L are a kernel functions, $h_0, \bar{h} \to 0$ and $nh_0\bar{h}^d \to \infty$

Lemma

Under regularity conditions, we have

Assumptions

1.
$$\sup_{v \in I} \sup_{\mathbf{x} \in \mathcal{D}} |\hat{F}_{\varepsilon|\mathbf{X}}(v|\mathbf{x}) - F_{\varepsilon|\mathbf{X}}(v|\mathbf{x})| = \mathcal{O}_p(n^{-\lambda})$$

2.
$$\sup_{v \in I} \sup_{\mathbf{x} \in \mathcal{D}} |\hat{f}_{\varepsilon|\mathbf{X}}(v|\mathbf{x}) - f_{\varepsilon|\mathbf{X}}(v|\mathbf{x})| = \mathcal{O}_p(n^{-\lambda})$$

3.
$$\sup_{\mathbf{x} \in \mathcal{D}} \left| \hat{\sigma}^2(\mathbf{x}) - \sigma^2(\mathbf{x}) \right| = \mathcal{O}_p(n^{-\lambda_1})$$

where
$$n^{-\lambda} = h_0^2 + h^s + \bar{h}^2 + (nh_0\bar{h}^d)^{-1/2}\log n + (nh^d)^{-1/2}\log n$$
, and $n^{-\lambda_1} = h^s + \bar{h}^2 + (n\bar{h}^d)^{-1/2}\log n + (nh^d)^{-1/2}\log n$.

Bootstrap

Smooth bootstrap:

$$\hat{f}_{\varepsilon,\boldsymbol{X}}(v,\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^{n} g_{h_0}(v - \hat{\varepsilon}_i) L_{\bar{h}}(\boldsymbol{x} - \boldsymbol{X}_i),, \qquad (6)$$

where g and L are kernels and $h_0, ar{h} o 0$, $nh_0 ar{h}^d o \infty$

Define

$$\hat{\theta}^{*}(\mathbf{x}) - \hat{\theta}_{n}(\mathbf{x}) = \frac{1}{n\hat{S}_{n,0,0}(\mathbf{x})} \sum_{i=1}^{n} K_{h}(\mathbf{x} - \mathbf{X}_{i}^{*}) \psi(\varepsilon_{i}^{*}) \underbrace{-\mathsf{E}^{*} \left[K_{h}(\mathbf{x} - \mathbf{X}_{i}^{*}) \psi(\varepsilon_{i}^{*}) \right],}_{\mathsf{Remove the bias}},$$
(7)

$$\hat{S}_{n,0,0}(\mathbf{x}) = \begin{cases} \hat{f}_{\varepsilon|\mathbf{X}}(0|\mathbf{x})\hat{f}_{\mathbf{X}}(\mathbf{x}), & \text{quantile case;} \\ 2\big[\tau - \hat{F}_{\varepsilon|\mathbf{X}}(0|\mathbf{x})(2\tau - 1)\big]\hat{f}_{\mathbf{X}}(\mathbf{x}), & \text{expectile case.} \end{cases}$$

Theorem (Bootstrap)

Under regularity conditions, let

▶ Assumptions

$$r^*(\mathbf{x}) = \sqrt{\frac{nh^d}{\hat{f}_{\mathbf{X}}(\mathbf{x})\sigma_*^2(\mathbf{x})}} \hat{S}_{n,0,0}(\mathbf{x}),$$

Then as $n \to \infty$,

$$\mathsf{P}^* \left\{ (2d\kappa \log n)^{1/2} \left(\sup_{\mathbf{x} \in \mathcal{D}} \left[r^*(\mathbf{x}) | \hat{\theta}^*(\mathbf{x}) - \hat{\theta}_n(\mathbf{x}) | \right] / \|K\|_2 - d_n \right) < a \right\}$$

$$\to \exp \left[-2 \exp(-a) \right], \ a.s.$$

Lemma

Under regularity conditions, $\|\sigma_*^2(\mathbf{x}) - \hat{\sigma}^2(\mathbf{x})\| = \mathcal{O}_p^*((\log n)^{-1/2})$, a.s.

Corollary

Under the regularity conditions, the bootstrap confidence set is defined by

$$\left\{\theta: \sup_{\mathbf{x} \in \mathcal{D}} \left| \frac{\hat{S}_{n,0,0}(\mathbf{x})}{\sqrt{\hat{f}_{\mathbf{X}}(\mathbf{x})\hat{\sigma}^2(\mathbf{x})}} [\hat{\theta}_n(\mathbf{x}) - \theta(\mathbf{x})] \right| \le \xi_{\alpha} \right\}, \tag{9}$$

where ξ_{α} satisfies

$$\mathsf{P}^*\left(\sup_{\mathbf{x}\in\mathcal{D}}\left|\frac{\hat{S}_{n,0,0}(\mathbf{x})}{\sqrt{\hat{f}_{\mathbf{X}}(\mathbf{x})\hat{\sigma}^2(\mathbf{x})}}\left[\hat{\theta}^*(\mathbf{x})-\hat{\theta}_n(\mathbf{x})\right]\right|\leq \xi_{\alpha}\right)=1-\alpha,$$

where α is the level of the test and $\hat{S}_{n,0,0}$ is defined as in (??).

Inplementation problem for QR: The CC (??) for QR tends to be too narrow

Figure 2: Confidence corridors: regression quantiles $\tau=50\%$. Green: Asymptotic confidence band. Blue: Bootstrap confidence band.

Bootstrap CC for QR

Observation:

$$\hat{f}_{\varepsilon|\boldsymbol{X}}(0|\boldsymbol{x}) = n^{-1} \sum_{i=1}^{n} g_{h_0}(\hat{\varepsilon}_i) L_{\bar{h}}(\boldsymbol{x} - \boldsymbol{X}_i) / \hat{f}_{\boldsymbol{X}}(\boldsymbol{x})$$
 (10)

$$\hat{f}_{Y|X}(\hat{\theta}_n(x)|x) = n^{-1} \sum_{i=1}^n g_{h_1} \left(Y_i - \hat{\theta}_n(x) \right) L_{\tilde{h}}(x - X_i) / \hat{f}_X(x),$$
(11)

are NOT equivalent in finite sample, and $\hat{f}_{Y|X}(\hat{\theta}_n(x)|x)$ accounts more for the bias

Bootstrap CC for QR

Hence, we propose to construct CC for QR by

$$\left\{\theta: \sup_{\mathbf{x} \in \mathcal{D}} \big| \sqrt{\hat{f}_{\mathbf{X}}(\mathbf{x})} \hat{\mathbf{f}}_{\mathbf{Y}|\mathbf{X}} \big\{ \hat{\boldsymbol{\theta}}_{n}(\mathbf{x}) | \mathbf{x} \big\} \big[\hat{\boldsymbol{\theta}}_{n}(\mathbf{x}) - \boldsymbol{\theta}(\mathbf{x}) \big] \big| \leq \xi_{\alpha}^{\dagger} \right\},$$

where ξ_{lpha}^{\dagger} satisfies

$$\mathsf{P}^* \left(\sup_{\mathbf{x} \in \mathcal{D}} \left| \hat{f}_{\mathbf{X}}(\mathbf{x})^{-1/2} \frac{\hat{f}_{\mathbf{Y}|\mathbf{X}} \left\{ \hat{\theta}_{\mathbf{n}}(\mathbf{x}) | \mathbf{x} \right\}}{\hat{f}_{\varepsilon|\mathbf{X}}(\mathbf{0}|\mathbf{x})} \left[A_{\mathbf{n}}^*(\mathbf{x}) - \mathsf{E}^* A_{\mathbf{n}}^*(\mathbf{x}) \right] \right| \leq \xi_{\alpha}^{\dagger} \right) \approx 1 - \alpha.$$

Simulated coverage probabilities

Generating process: d = 2

$$Y_i = f(X_{1,i}, X_{2,i}) + \sigma(X_{1,i}, X_{2,i})\varepsilon_i,$$

- $f(x_1, x_2) = \sin(2\pi x_1) + x_2.$
- (X_1, X_2) supported on $[0, 1]^2$ with corr. = 0.2876 \longrightarrow Sample Method
- $\odot \ \varepsilon_i \sim N(0,1)$ i.i.d.
- \odot Specification for $\sigma(X_1, X_2)$:
 - ▶ Homogeneity: $\sigma(X_1, X_2) = \sigma_0$, for $\sigma_0 = 0.2, 0.5, 0.7$
 - Heterogeneity:

$$\sigma(X_1, X_2) = \sigma_0 + 0.8X_1(1 - X_1)X_2(1 - X_2)$$

for
$$\sigma_0 = 0.2, 0.5, 0.7$$

Simulation — 4-2

Simulated coverage probabilities

- Quantile regression bandwidth choice:
 - Rule-of-thumb for conditional density in R package np
 - Yu and Jones (1998) quantile regression adjustment (not applied to expectile)
 - ▶ Undersmoothed by $n^{-0.05}$
- $oxed{\blacksquare}$ Expectile bandwidth choice: Rule-of-thumb for conditional density and undersmoothed by $n^{-0.05}$
- n = 100,300,500. 2000 simulation runs are carried out.

Table 1: Nonparametric quantile model asymptotic coverage probability. Nominal coverage is 95%. The digit in the parentheses is the volume.

	Homogeneous				Heterogeneous				
п	au=0.5	au=0.2	au=0.8	au=0.5	au=0.2	au=0.8			
$\sigma_0=0.2$									
100	.000(0.366)	.109(0.720)	.104(0.718)	.000(0.403)	.120(0.739)	.122(0.744)			
300	.000(0.304)	.130(0.518)	.133(0.519)	.002(0.349)	136(0.535)	153(0.537)			
500	.000(0.262)	.117(0.437)	.142(0.437)	.008(0.296)	.156(0.450)	138(0.450)			
$\sigma_0=0.5$									
100	.070(0.890)	.269(1.155)	.281(1.155)	.078(0.932)	.300(1.193)	.302(1.192)			
300	.276(0.735)	.369(0.837)	.361(0.835)	.325(0.782)	.380(0.876)	394 (0.877)			
500	.364(0.636)	.392(0.711)	.412(0.712)	.381(0.669)	418(0.743)	417(0.742)			
	$\sigma_0=0.7$								
100	.160(1.260)	.381(1.522)	.373(1.519)	.155(1.295)	.364(1.561)	373(1.566)			
300	.438(1.026)	.450(1.109)	.448(1.110)	.481(1.073)	457(1.155)	.472(1.152)			
500	.533(0.888)	470 (0.950)	.480(0.949)	.564 (0.924)	.490(0.984)	.502(0.986)			

Table 2: Nonparametric quantile model bootstrap coverage probability. Nominal coverage is 95%. The digit in the parentheses is the volume.

		Homogeneous		Heterogeneous					
п	au=0.5 $ au=0.2$		au=0.8 $ au=0.5$		au=0.2	au=0.8			
$\sigma_0=0.2$									
100	.325(0.676)	.784 (0.954)	.783(0.954)	.409(0.717)	779(0.983)	778 (0.985)			
300	.442(0.457)	.896(0.609)	.894(0.610)	.580(0.504)	.929(0.650)	922(0.649)			
500	.743(0.411)	.922(0.502)	921(0.502)	.839(0.451)	950(0.535)	.952(0.536)			
$\sigma_0=0.5$									
100	.929(1.341)	.804(1.591)	.818(1.589)	.938(1.387)	799(1.645)	773(1.640)			
300	.950(0.920)	.918(1.093)	.923(1.091)	.958(0.973)	.919(1.155)	923(1.153)			
500	.988(0.861)	.968(0.943)	962(0.942)	.990(0.902)	962(0.986)	969 (0.987)			
	$\sigma_0=0.7$								
100	.976(1.811)	.817(2.112)	.808(2.116)	.981(1.866)	826(2.178)	809(2.176)			
300	.986(1.253)	.919(1.478)	934(1.474)	983(1.308)	930(1.537)	920(1.535)			
500	.996(1.181)	.973(1.280)	.968(1.278)	.997(1.225)	.969(1.325)	.962(1.325)			

Table 3: Nonparametric expectile model asymptotic coverage probability. Nominal coverage is 95%. The digit in the parentheses is the volume.

Homogeneous Heterogeneous									
	-			-					
n	au=0.5	au=0.2	au=0.8	au=0.5	au = 0.2	au = 0.8			
$\sigma_0=0.2$									
100	.000(0.428)	.000(0.333)	.000(0.333)	.000(0.463)	.000(0.362)	.000(0.361)			
300	.049(0.341)	.000(0.273)	.000(0.273)	.079(0.389)	.001(0.316)	.002(0.316)			
500	.168(0.297)	.000(0.243)	.000(0.243)	.238(0.336)	.003(0.278)	.002(0.278)			
$\sigma_0=0.5$									
100	.007(0.953)	.000(0.776)	.000(0.781)	.007(0.997)	.000(0.818)	.000(0.818)			
300	.341(0.814)	.019(0.708)	.017(0.709)	.355(0.862)	.017(0.755)	.018(0.754)			
500	.647(0.721)	.067(0.645)	.065(0.647)	654 (0.759)	061(0.684)	.068(0.684)			
$\sigma_0=0.7$									
100	.012(1.324)	.000(1.107)	.000(1.107)	.010(1.367)	.000(1.145)	.000(1.145)			
300	.445(1.134)	.021(1.013)	.013(1.016)	445(1.182)	017(1.062)	.016(1.060)			
500	.730(1.006)	.062(0.928)	.078(0.929)	.728(1.045)	.068(0.966)	.066(0.968)			

Table 4: Nonparametric expectile model bootstrap coverage probability. Nominal coverage is 95%. The digit in the parentheses is the volume.

	Homogeneous			Heterogeneous				
n	au=0.5	au=0.2	au=0.8	au=0.5	au=0.2	au=0.8		
$\sigma_0=0.2$								
100	.686(2.191)	.781(2.608)	.787(2.546)	.706(2.513)	.810(2.986)	.801(2.943)		
300	.762(0.584)	.860(0.716)	.876(0.722)	.788(0.654)	.877(0.807)	.887(0.805)		
500	.771(0.430)	.870 (0.533)	.875(0.531)	825(0.516)	907(0.609)	.904(0.615)		
$\sigma_0=0.5$								
100	.886(5.666)	.906 (6.425)	.915(6.722)	899 (5.882)	.927(6.667)	913(6.571)		
300	.956(1.508)	958(1.847)	.967(1.913)	965(1.512)	962(1.866)	969(1.877)		
500	.968(1.063)	.972(1.322)	.972(1.332)	.972(1.115)	971(1.397)	974(1.391)		
$\sigma_0=0.7$								
100	.913(7.629)	.922(8.846)	.935(8.643)	.929(8.039)	935(9.057)	.932(9.152)		
300	.969(2.095)	.969(2.589)	.971(2.612)	.974(2.061)	972(2.566)	.979(2.604)		
500	978(1.525)	976 (1.881)	967(1.937)	.981(1.654)	.978(1.979)	974(2.089)		

Application to NSW demonstration data

- National Supported Work (NSW): a randomized, temporary employment program carried out in the US in 1970s to help the disadvantages workers
- 297 obs. treatment group; 425 obs. control group, all male
- 🖸 Lalonde (1986), Dehejia and Wahba (1999)
- Delgado and Escanciano (2013): heterogeneity effect in age; nonnegative treatment effect
- $extstyle X_1$: Age; X_2 : schooling in years; Y: Earning difference 78-75 (in thousand \$)
- Bootstrap: 10,000 repetition

au(%)	10	20	30	50	70	80	90
Treatment	-4.38	-1.55	0.00	1.40	5.48	8.50	11.15
Control	-4.91	-1.73	-0.17	0.74	4.44	7.16	10.56

Unconditional kernel densities. Magenta: treatment group. Blue: control group. $h_{tr}=1.652.\ h_{co}=1.231.$

Confi. Corridors. Multi. GQ reg.

Confi. Corridors. Multi. GQ reg.

Figure 3: Confidence corridors for treatment (net surfaces) and control group (solid surfaces).

Figure 4: Confidence corridors for treatment (net surfaces) and control group (solid surfaces).

Figure 5: Quantile estimates for treatment (solid surfaces) and confidence corridors control group (net surfaces).

Figure 6: Quantile estimates for treatment (solid surfaces) and confidence corridors control group (net surfaces).

Summary

- Heterogeneous effect in age and schooling in years: individuals who are older and spend more time in the school benefit more from the treatment

Confidence Corridors for Multivariate Generalized Quantile Regression

Shih-Kang Chao, Katharina Proksch Wolfgang Karl Härdle Holger Dette

Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics
Humboldt-Universität zu Berlin
Chair of Stochastic
Ruhr-Universität Bochum
http://lvb.wiwi.hu-berlin.de
http://www.case.hu-berlin.de
http://www.ruhr-uni-bochum.de/mathematik3

Assumptions

- (A1) K is of order s-1 (see (A3))has bounded support $[-A,A]^d$, continuously differentiable up to order d (and are bounded); i.e. $\partial^{\alpha}K \in L^1(\mathbb{R}^d)$ exists and is continuous for all multi-indices $\in \{0,1\}^d$
- (A2) The increasing sequence $\{a_n\}_{n=1}^{\infty}$ satisfies

$$(\log n)h^{-3d} \int_{|y|>a_n} f_Y(y)dy = \mathcal{O}(1)$$
 (12)

and

$$(\log n)h^{-d}\int_{|y|>a_n}f_{Y|\boldsymbol{X}}(y|\boldsymbol{x})dy=\mathcal{O}(1), \text{ for all } \boldsymbol{x}\in\mathcal{D}$$

as $n \to \infty$ hold.

(A3) The true function $\theta_0(x)$ is continuously differentiable and is in Confi. Hölder class with order s>d.

Assumptions

- (A4) $f_X(x)$ is continuously differentiable and its gradient is uniformly bounded. In particular, $\inf_{X \in \mathcal{D}} f_X(x) > 0$.
- (A5) The joint probability density function f(y, u) is positive and continuously differentiable up to sth order (needed for Rosenblatt transform), and the conditional density $f_{Y|X}(y|X=x)$ is continuouly differentiable with respect to x.
- (A6) h satisfies $\sqrt{nh^d}h^s\sqrt{\log n}\to 0$ (undersmoothing), and $nh^{3d}\to \infty$ as $n\to \infty$

▶ Thm RQ-Band

Emp. process QR

Assumptions

(EA2)
$$\sup_{\mathbf{x} \in \mathcal{D}} \left| \int v^{b_1} f_{\varepsilon|\mathbf{X}}(v|\mathbf{x}) dv \right| < \infty$$
, where b_1 satisfies
$$n^{-1/6} h^{-d/2 - 3d/(b_1 - 2)} = \mathcal{O}(n^{-\nu}), \quad \nu > 0.$$
 e.g. when $h = n^{-1/(2s + d)}$, then $b_1 > (4s + 14d)/(2s + d - 3)$.

→ Thm RE-Band

▶ Emp. process ER

Assumptions

- (B1) L is a Lipschitz, bounded, symmetric kernel. G is Lipschitz continuous cdf, and g is the derivative of G and is also a density, which is Lipschitz continuous, bounded, symmetric and five times continuously differentiable kernel.
- (B2) $F_{\varepsilon|X}(v|x)$ is in s'+1 order Hölder class with respect to v and continuous in x, $s'>\max\{2,d\}$. $f_X(x)$ is in second order Hölder class with respect to x and v. $\mathsf{E}[\psi^2(\varepsilon_i)|x]$ is second order continuously differentiable with respect to $x\in\mathcal{D}$.
- (B3) $nh_0\bar{h}^d\to\infty$, $h_0,\bar{h}=\mathcal{O}(n^{-\nu})$, where $\nu>0$.

▶ Scaling factors

Assumptions

(C1) There exist an increasing sequence c_n , $c_n \to \infty$ as $n \to \infty$ such that

$$(\log n)^3 (nh^{6d})^{-1} \int_{|v| > c_n/2} f_{\varepsilon}(v) dv = \mathcal{O}(1), \tag{13}$$

as $n \to \infty$.

(EC1) $\sup_{\mathbf{x}\in\mathcal{D}}\left|\int v^b f_{\varepsilon|\mathbf{X}}(v|\mathbf{x})dv\right|<\infty$, where b satisfies

$$n^{-\frac{1}{6} + \frac{4}{b^2} - \frac{1}{b}} h^{-\frac{d}{2} - \frac{6d}{b}} = \mathcal{O}(n^{-\nu}), \quad \nu > 0, \text{ (Thm. ??)}$$

and

$$b > 2(2s' + d + 1)/(2s' + 3)$$
. (Lemma ??)

▶ Bootstrap

Quantile regression notations

$$h = n^{-\kappa}, \quad \rho_{\tau}(u) = |\tau - \mathbf{1}(u < 0)| |u|, \quad \psi(u) = \mathbf{1}(u \le 0) - \tau$$

$$d_{n} = (2d\kappa \log n)^{1/2} + (2d\kappa (\log n))^{-1/2} \left[\frac{1}{2} (d - 1) \log \log n^{\kappa} + \log \left\{ (2\pi)^{-1/2} H_{2}(2d)^{(d-1)/2} \right\} \right],$$

$$H_{2} = (2\pi ||K||_{2}^{2})^{-d/2} \det(\Sigma)^{1/2}, \quad \Sigma_{ij} = \int \frac{\partial K}{\partial u_{i}} \frac{\partial K}{\partial u_{j}} du,$$

$$r(x) = \sqrt{\frac{nh^{d} f_{X}(x)}{\tau(1 - \tau)}} f_{\varepsilon|X}(0|x),$$

Bahadur 🕩 RQ-Ban

Expectile regression notations

$$h = n^{-\kappa}, \quad \rho_{\tau}(u) = |\tau - \mathbf{1}(u < 0)|u^{2}, \quad \varphi(u) = -2\{\tau - \mathbf{1}(u < 0)\}|u|$$

$$d_{n} = (2d\kappa \log n)^{1/2} + (2d\kappa(\log n))^{-1/2} \left[\frac{1}{2}(d-1)\log\log n^{\kappa} + \log\{(2\pi)^{-1/2}H_{2}(2d)^{(d-1)/2}\}\right],$$

$$H_{2} = (2\pi ||K||_{2}^{2})^{-d/2} \det(\Sigma)^{1/2}, \quad \Sigma_{ij} = \int \frac{\partial K}{\partial u_{i}} \frac{\partial K}{\partial u_{j}} d\mathbf{u},$$

$$r(\mathbf{x}) = \sqrt{\frac{nh^{d}f_{\mathbf{X}}(\mathbf{x})}{\sigma^{2}(\mathbf{x})}} 2[\tau - F_{\varepsilon|\mathbf{X}}(0|\mathbf{x})(2\tau - 1)],$$

$$\sigma^{2}(\mathbf{x}) = \mathbb{E}[\varphi^{2}(Y - \theta_{0}(\mathbf{x}))|\mathbf{X} = \mathbf{x}].$$

▶ Bahadur

▶ RE-Band

Approximations

$$Y_{n}(\mathbf{x}) = \frac{1}{\sqrt{h^{d}f_{\mathbf{X}}(\mathbf{x})\sigma^{2}(\mathbf{x})}} \int \int K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\{y - \theta_{0}(\mathbf{x})\} dZ_{n}(y, \mathbf{u})$$

$$Y_{0,n}(\mathbf{x}) = \frac{1}{\sqrt{h^{d}f_{\mathbf{X}}(\mathbf{x})\sigma^{2}_{n}(\mathbf{x})}} \int \int_{\Gamma_{n}} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\{y - \theta_{0}(\mathbf{x})\} dZ_{n}(y, \mathbf{u})$$

$$Y_{1,n}(\mathbf{x}) = \frac{1}{\sqrt{h^{d}f_{\mathbf{X}}(\mathbf{x})\sigma^{2}_{n}(\mathbf{x})}} \int \int_{\Gamma_{n}} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\{y - \theta_{0}(\mathbf{x})\} dB_{n}(T(y, \mathbf{u}))$$

$$Y_{2,n}(\mathbf{x}) = \frac{1}{\sqrt{h^{d}f_{\mathbf{X}}(\mathbf{x})\sigma^{2}_{n}(\mathbf{x})}} \int \int_{\Gamma_{n}} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\{y - \theta_{0}(\mathbf{x})\} dW_{n}(T(y, \mathbf{u}))$$

$$Y_{3,n}(\mathbf{x}) = \frac{1}{\sqrt{h^{d}f_{\mathbf{X}}(\mathbf{x})\sigma^{2}_{n}(\mathbf{x})}} \int \int_{\Gamma_{n}} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) \psi\{y - \theta_{0}(\mathbf{u})\} dW_{n}(T(y, \mathbf{u}))$$

▶ Method

Approximations

$$Y_{4,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d f_{\mathbf{X}}(\mathbf{x}) \sigma_n^2(\mathbf{x})}} \int \sqrt{\sigma_n^2(\mathbf{u}) f_{\mathbf{X}}(\mathbf{u})} K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) dW(\mathbf{u})$$

$$Y_{5,n}(\mathbf{x}) = \frac{1}{\sqrt{h^d}} \int K\left(\frac{\mathbf{x} - \mathbf{u}}{h}\right) dW(\mathbf{u})$$

▶ Method

Lemma (Bickel and Wichura (1971))

If $\{X_n\}_{n=1}^{\infty}$ is a sequence in $D[0,1]^d$, $P(X \in [0,1]^d) = 1$. For B,C neighboring blocks in $[0,1]^d$, constants $\lambda_1 + \lambda_2 > 1$, $\gamma_1 + \gamma_2 > 0$, $\{X_n\}_{n=1}^{\infty}$ is tight if

$$E[|X_n(B)|^{\gamma_1}|X_n(C)|^{\gamma_2}] \le \mu(B)^{\lambda_1}\mu(C)^{\lambda_2}, \tag{14}$$

where $\mu(\cdot)$ is a finite nonnegative measure on $[0,1]^d$ (for example, Lebesgue measure), and the increment of X_n on the block B, denoted $X_n(B)$, is defined by

$$X_n(B) = \sum_{\alpha \in \{0,1\}^d} (-1)^{d-|\alpha|} X_n(s + \odot(t-s))$$
 (15)

▶ Neighboring blocks

▶ Step 1

Neighboring Blocks

Definition

A block $B \subset \mathcal{D}$ is a subset of \mathcal{D} of the form $B = \Pi_i(s_i, t_i]$ with s and t in \mathcal{D} ; the pth-face of B is $\Pi_{i \neq p}(s_i, t_i]$. Disjoint blocks B and C are p-neighbors if they abut and have the same pth face; they are neighbors if they are p-neighbors for some p (for example, when d=3, the blocks $(s,t] \times (a,b] \times (c,d]$ and $(t,u] \times (a,b] \times (c,d]$ are 1-neighbors for $s \leq t \leq u$).

Appendix —

6-12

Examples

- d = 1: $B = (s, t], X_n(B) = X_n(t) X_n(s);$
- $d = 2: B = (s_1, t_1] \times (s_2, t_2].$ $X_n(B) = X_n(t_1, t_2) X_n(t_1, s_2) + X_n(s_1, s_2) X_n(s_1, t_2);$
- **.** For general d, $B = \prod_{i=1}^{d} (s_i, t_i]$, let $\mathbf{s} = (s_1, ..., s_d)^{\top}$, $\mathbf{t} = (t_1, ..., t_d)^{\top}$, then where ⊙ denotes the vector of componentwise products.

► Bickel & Wichura (1971)

Lemma (Meerschaert et al. (2013))

Suppose that $Y = \{Y(t), t \in \mathbb{R}^d\}$ is a centered Gaussian random field with values in \mathbb{R} , and denote $d(s,t) \stackrel{\text{def}}{=} d_Y(s,t) = (\mathbb{E}|Y(t)-Y(s)|^2)^{1/2}$, $s,t \in \mathbb{R}^d$. Let \mathcal{D} be a compact set contained in a cube with length r in \mathbb{R}^d and let $\sigma^2 = \sup_{t \in \mathcal{D}} \mathbb{E}[Y(t)^2]$. For any m > 0, $\epsilon > 0$, define

$$\gamma(\epsilon) = \sup_{\boldsymbol{s}, \boldsymbol{t} \in \mathcal{D}, \|\boldsymbol{s} - \boldsymbol{t}\| \le \epsilon} d(\boldsymbol{s}, \boldsymbol{t}), \quad Q(m) = (2 + \sqrt{2}) \int_1^{\infty} \gamma(m2^{-y^2}) dy.$$

Then for all a > 0 which staistfy $a \ge (1 + 4d \log 2)^{1/2} (\sigma + a^{-1})$,

$$P\left\{\sup_{\boldsymbol{t}\in S}|Y(\boldsymbol{t})|>a\right\}\leq 2^{2d+2}\left(\frac{r}{Q^{-1}(1/a)}+1\right)^{d}\frac{\sigma+a^{-1}}{a}\exp\left\{-\frac{a^{2}}{2(\sigma+a^{-1})^{2}}\right\}$$

where $Q^{-1}(a) = \sup\{m : Q(m) \le a\}.$

Step 4 Step 6

Generate Bivariate Uniform Samples

The bivariate samples (X_1, X_2) are generated as follows:

- 1. Generate n pairs of bivariate normal variables (Z_1, Z_2) with correlation ρ_N and variance 1
- 2. Transform the normal r.v.: $(X_1, X_2) = (\Phi(Z_1), \Phi(Z_2))$, where $\Phi(\cdot)$ is the standard normal distribution function
- 3. Let ρ_U be the correlation of (X_1, X_2) , the following relation is true:

$$\rho_U = \frac{6}{\pi} \arcsin \frac{\rho_N}{2}.$$

Details: Falk (1999)

Simulation

References — 7-1

References

Bickel, P. J. & Rosenblatt, M.

On Some Global Measures of the Deviations of Density Function Estimates,

Annals of Statistics, 1973, 1, 1071-1095.

Bickel, P. J. & Rosenblatt, M.

Two-dimensional random fields, Multivariate Analysis III, 1973, 3-15.

Dedecker, J.; Merlevéde, F. & Rio, E.

Strong Approx. of the empi. distri. function for abs. regular seq. in \mathbb{R}^d

Working Paper, 2013.

References

References

Delgado, M. A. & Escanciano, J. C. Conditional Stochastic Dominance Testing Journal of Business Economic Statistics, 2013, 31, 16-28.

Efron. B.

Regression Percentiles using Asymmetric squared error loss, Statistica Sinica, 1991, 1, 93-125.

Falk. M.

A simple approach to the generation of uniformly distributed random variables with prescribed correlations.

Comm. Statist. - Simulation Comp. 1999, 28, 785-791.

闻 Guo, M. & Härdle, W.

Simultaneous confidence bands for expectile functions,

AStA Advances in Statistical Analysis, 2012, 96, 517-541.

References — 7-3

References

Härdle, W.

Asymptotic maximal deviation of M-smoothers

J. Multivariate Anal, 1989, 29, 163 - 179.

Härdle, W. & Song, S.

Confidence Bands in Quantile Regression,

Econometric Theory, 2010, 26, 1180-1200.

Johnston, G. J.

Prob. of max. dev. for nonp. regression function estimates

J. Multivariate Anal, 1982, 12, 402-414

Kong, E.; Linton, O. Xia, Y. Uniform Bahadur representation for local polynomial estimates of M-reg. and its application to the additive model Econometric Theory, 2010, 26, 1529-1564

Li, Q., Lin, J. & Racine, J. S.

Optimal Bandwidth Selection for Nonp. Cond. Dist. and Quantile Functions,

Journal of Business & Economic Statistics, 2013, 31, 57-65. Confi. Corridors. Multi. GQ reg.

References — 7-4

References

Mas-Colell, A., Whinston, M. D. Green, J. R.

Microeconomic Theory

Oxford University Press, USA, 1995.

Meerschaert, M. M., Wang, W. and Xiao, Y.

Fernique-Type Inequalities and Moduli of Continuity for Anisotropic Gaussian Random Fields

Transations of the American Mathematical Society, 2013, 365, 1081-1107

Owen, A. B.

Multidim. Variation for quasi-Monte Carlo

Contemporary Multivariate Analysis and Design of Experiments, World Sci. Publi., 2005, 2, 49-74

References

Rosenblatt, M.

On the Max. Dev. of k-Dimensional Density Estimates,

The Annals of Probability, 1976, 4, 1009-1015.

Smirnov, N. V.

On the construction of confidence regions for the dens. of distri. of random variables,

Doklady Akad. Nauk SSSR, 1950, 74, 189-191 (Russian)