Notes on Elliptic Curves

Yourong Zang

May 30, 2022

Contents

0	Introduction	2
1	Basic Constructions	2
	1.1 Geometry	2

0 Introduction

The main reference of this note is Silverman's Arithmetic in Elliptic Curves, and sometimes with examples from Rational Points on Elliptic Curves by Silverman & Tate.

1 Basic Constructions

1.1 Geometry

In order to study the rational solutions of a certain type of equations, it is important to construct our geometric objects in a Galois-theoretic flavor. Say k is a perfect field¹ and K an algebraic closure of k, we denote by Gal(K/k) the Galois group of K/k. We can define a natural group action of Gal(K/k) on the affine space \mathbb{A}^n over K (we will always reserve the notation with subscripts for the affine schemes) by $(x_1, \ldots, x_n)^{\sigma} = (x_1^{\sigma}, \ldots, x_n^{\sigma})$ for any σ in the Galois group.

Introduce the following notations. The set of k-rational points $\mathbb{A}^n(k)$ is the invariant set of $\operatorname{Gal}(K/k)$. It is also clear that for any point P and $f \in k[x_1, \dots, x_n] = k[X]$ we have $f(P^{\sigma}) = f(P)^{\sigma}$ for all $\sigma \in \operatorname{Gal}(K/k)$ since by constructions all σ restricts to the identity on k. Denoted by V/k, an algebraic set V is defined over k if its ideal I(V) is generated by polynomials with coefficients in k. The set of k-rational points of V is then written as V(k). It is therefore reasonable to define the ideal $I(V/k) = I(V) \cap k[X]$ (for any V), from which one can immediately see that V/k iff I(V) = (I(V/k)).

If V/k, then as I(V) is generated by polynomials in k[X], elements of Gal(K/k) map points in V to V. Therefore, we have $V(K) = V^{Gal(K/k)}$. We can define the affine coordinate ring of a variety V/k to be

$$k[V] = \frac{k[X]}{I(V/k)}$$

which is an integral domain if we require varieties to be irreducible. Similarly we define the function field k(V) to be the field of fraction of k[V].

The Galois group clearly acts on K[V]: for any $\sigma \in Gal(K/k)$ and $f \in K[V]$, f^{σ} is defined to be the polynomial function with Gal(K/k) acting on f's coefficients.

¹Note: to characterize the rational points with Galois theoretic-languages, we would only need a separable and possibly infinite algebraic closure (then it's algebraic and normal) so that the fixed field of the Galois group is exactly the ground field k; but I don't know how Silverman would use this condition, so I will leave it here.

Therefore, for any $f \in K[V]$ and $P \in V$, we have

$$(f(P))^{\sigma} = f^{\sigma}(P^{\sigma})$$

The constructions for projective varieties are similar. Since the Galois group consists of field automorphisms, it can act on homogeneous coordinates. For any point $P = [x_0, \ldots, x_n]$ in the *n*-projective space, We define an extra object called the minimal field of definition for P over K, defined by

$$k(P) = k(x_0/x_i, \dots, x_n/x_i)$$

for any $x_i \neq 0$.

Lemma 1.1.1. Let H be the subgroup of Gal(K/k) which fixes P. Then $k(P) = K^H$.

Proof. Insert proof here!