

Датчики роботов

и сенсорные системы, построенные на их основе

Классификация датчиков (функционал)

Датчики робота

Получение общей картины окружающей среды

Классификация датчиков (функционал)

Классификация датчиков (функционал)

Получение общей картины окружающей среды

Навигация, локализация в пространстве, контактные манипуляции Определение физикохимических свойств среды и ее объектов

Сенсорные системы дальнего и ближнего действия

Методы решения задач навигации:

автономные и неавтономные.

Неавтономные методы построены на обработке внешних сигналов. **Автономным** методам внешних сигналов или ориентиров не требуется.

Сенсорные системы дальнего действия обеспечивают робот информацией о состоянии внешней среды как в зоне непосредственного действия робота, так и далеко за её пределами.

Сенсорные системы ближнего действия – только в зоне непосредственного действия.

Активные сенсоры осуществляют зондирование пространства и анализ отраженного сигнала.

Пассивные сенсоры используют естественное излучение среды и объектов.

Архитектура автономной навигации

Проблемы в автономной навигации

Природа окружающей среды

- Статическая / динамическая окружающая среда;
- Неблагоприятная (опасная) среда;
- Помещение/улица;
- Известная/неизвестная среда;
- Наземная, воздушная, надводная, подводная.

ПО и «железо» робота

- Уровень автономности;
- Выбор датчика;
- Погрешность разрешения;
- Ошибка калибровки;
- Проблема синхронизации времени съёма информации;
- Ошибки дискретизации;
- Показание/ моделирование сенсора.

Характер цели

- Статический (исследование Луны и Марса)
- Динамический (отслеживание транспортных средств или людей)
- Свойства поверхности (текстура, прозрачность, и т. п.

Сенсорные системы дальнего и ближнего действия

для обеспечения навигации мобильного робота неавтономными методами

Тип сенсорной системы / Тип робота	Наземный	БЛА	БЭК	АНПА	Космический			
Системы дальнего действия (А —активные, П — пассивные)								
Радиотехнические локаторы (А)	Да	Да	Да	Нет	Да			
Лазерные дальномеры и локаторы (А)	Да	Да	Да	Нет	Да			
Сонары (А)	Нет	Нет	Да**	Да	Нет			
Видеокамеры (П)	Да	Да	Да	Нет	Да			
Системы <i>ближнего</i> действия (А –активные, П – пассивные)								
Ультразвуковые дальномеры (А)	Да	Нет	Да	Да	Нет			
Инфракрасные дальномеры (А)	Да	Нет	Да	Нет	Нет			
Видеокамеры (П), ТоF камеры (A)	Да	Да	Да	Да***	Да			
Система позиционирования								
GPS — навигатор (П)	Да	Да	Да	Нет*	Нет			

Лазерные дальномеры и локаторы, І группа

Hokuyo UXM-30LXH-EWA Scanning Laser Rangefinder

Лазерные дальномеры и локаторы, І группа

Hokuyo UXM-30LXH-EWA Scanning Laser Rangefinder

Радиотехнические датчики ближней радиолокации миллиметрового диапазона волн

Преимущества:

Высокая пространственная разрешающая способность и разрешающая способность по скорости Однокристальная схема включает входной радиочастотный модуль с цифровой обработкой сигнала и микроконтроллер

Радиотехнические датчики ближней радиолокации миллиметрового диапазона волн

- Передний локатор дальнего действия для обнаружения динамических объектов, движущихся со скоростью до 300 км/ч;
- Многорежимный радар Обнаружение сложных городских сцен;
- Локатор ближнего действия для обнаружения с высокой точностью автомобилей, мотоциклов и др. динамических объектов на расстояниях до 80 м;
- Устойчивое детектирование и отслеживание передвижения людей в помещениях и вне помещений в условиях мутных сред и изменяющихся условий освещения.

Радар кругового обзора миллиметрового диапазона

Датчики автономного вождения

Системы технического зрения (СТЗ), І группа

Задачи СТЗ

Основные:

- Получение общей зрительной картины окружающей внешней среды;
- Выделение и распознавание объектов (кластеризация, классификация и верификация);
- Определение характеристик объектов, необходимых для выполнения задания Методы: сегментация, подсчет пикселей, декодирование, работа по контуру, бинаризация, символьное распознавание, сопоставление шаблонов и др.

Вспомогательные:

• Визуализация выходной информации других типов сенсорных систем...

Системы технического зрения (СТЗ), І группа

Кластеризация — разбиение изображения на группы по схожести или близости некоторых важных признаков. Внутри каждой группы должны оказаться «похожие» объекты, а объекты разных групп должны быть как можно более отличны. Перечень групп четко не задан и определяется в процессе работы алгоритма.

Классификация — разделение элементов изображения на разновидности согласно каким-либо важным признакам. Перечень групп четко задан.

Верификация – обнаружение конкретного искомого объекта.

Системы технического зрения (СТЗ), І группа

Задачи СТЗ

Основные:

- Получение общей зрительной картины окружающей внешней среды;
- Выделение и распознавание объектов (кластеризация, классификация и верификация;
- Определение характеристик объектов, необходимых для выполнения задания. Методы: сегментация, подсчет пикселей, декодирование, работа по контуру, бинаризация, символьное распознавание, сопоставление шаблонов и др.

Вспомогательные:

• Визуализация выходной информации других типов сенсорных систем.

Основные компоненты СТ3 — камеры различных диапазонов излучения и ПО обработки изображений.

Типы датчиков изображения (навигация)

Тип камеры	Преимущества	Недостатки
Монокулярная камера	Дешевая, компактная, простая в	Ограниченность данных, плохо
	эксплуатации и калибровке, не требует	передаёт глубину изображения
	высокой вычислительной мощности.	(дальность до объекта).
Стереоскопическая	Обеспечивает более высокую	Менее компактна, требует большей
камера, например,	эффективность и более точную	вычислительной мощности.
Bumblebee2	информацию о глубине (дальности).	
RGBD-камера (глубина и	Обеспечивает точную информацию о	Низкая точность измерения дальности
цвет), например,	глубине (дальности).	при воздействии внешних помех,
PrimeSense		(различные типы излучения и т. д.)
Времяпролётная или	Короткое время обработки с высокой	Низкое разрешение, есть проблема со
ToF-камера(Kinect)	точностью и надежностью измерения	смешением пикселей, снижается
АКТИВНАЯ!	глубины. Хорошо подходит для	производительность при работе вне
	картографирования внутри помещений.	помещений.
Инфракрасная	Работает в условиях низкой	Требуется высокая вычислительная
	освещенности.	нагрузка для эффективной
		реконструкции изображения.

Камеры с ИК-подсветкой

Аппаратура видеонаблюдения

Универсальная роботизированная платформа

Видеокамеры

Купольная PTZ камера на роботе Superdroid

PTZ камера на инспекционном роботе труболазе SCHRODER

Видеокамеры

Пример работы СТЗ

Иллюстрация к алгоритму распознавания границ трассы, по которой движется робот

- 1. Получение изображения с помощью видеокамеры (рис. а);
- 2. Выделение областей заданного цвета (с помощью порогового преобразования);
- 3. Удаление шумов, возникших при выделении;
- 4. Применение операции морфологического расширения для найденных областей;
- 5. Произведение тех же действий для выделения областей с цветом трассы: выделение по цвету, подавление шумов и расширение (рис. б);
- 6. Нахождение границ трассы путём наложения расширенных областей с цветом границ на расширенные области с цветом трассы;
- 7. Нахождение линий с помощью преобразования Хафа на изображении, полученном в результате наложения (рис. в).

Сонары и ультразвуковые дальномеры, І группа

SONAR — Sound Navigation And Ranging (звуковая навигация и локация)

УЗ дальномеры и локаторы используют колебания частотой от 15 кГц до единиц МГц. В воздухе используются частоты 30 – 100 кГц.

Тип преобразователей: электростатические, пьезоэлектрические, магнитострикционные

Задачи: измерение дальности до препятствия, предотвращение столкновений, картографирование окружающего пространства, распознавание объектов.

Недостатки: зависимость отраженного сигнала от свойств отражающей среды.

Сонары и ультразвуковые дальномеры, І группа

Сонары и ультразвуковые дальномеры, 1 группа

Гироскопы: определяют угловое положение в гравитационном поле.

Акселерометры: выявляют наличие ускорения и измеряют его. Магнитометры.

Одометры.

Спутниковые системы навигации.

Гироскопы: определяют угловое положение в гравитационном поле.

Акселерометры: выявляют наличие ускорения и измеряют его.

Магнитометры.

Одометры.

Спутниковые системы навигации.

Гироскопы.

Акселерометры.

Магнитометры: определяют параметры магнитного поля Земли.

Одометры: определяют положение путем измерения пройденного пути.

Спутниковые системы навигации: геометрическое решение задачи.

Одометры: определяют положение путем измерения пройденного пути.

Девятое колесо «Лунохода-1»

Спутниковые системы навигации: геометрическое решение задачи.

Сенсорные системы дальнего и ближнего действия

для обеспечения навигации мобильного робота автономными методами

Тип сенсорной системы / Тип робота	Наземный	БЛА	БЭК	АНПА	Космический					
Системы дальнего и ближнего действия										
Инерциальные системы (П)	Да	Да	Да	Да	Да					

Инерциальные системы

Инерциальная навигация — это метод определения координат и параметров движения мобильного робота, основанный на свойствах инерции тел.

Сущность метода состоит в определении ускорения объекта и его угловых скоростей, а по этим данным нахождения местоположения (координат) робота, его курса, скорости и пройденного пути.

Инерциальные системы

Платформенные (ПИНС) Бесплатформенные (БИНС)

ПИНС построены на базе гиростабилизированной платформы Преимущества: относительная простота вычислительных операций Недостатки: высокая масса, габариты и энергопотребление

В БИНС нет гиростабилизированной платформы, и акселерометры и гироскопы жестко связаны с корпусом прибора.

Инерциальные системы

Корректируемые

Некорректируемые

Недостаток всех инерциальных систем — накопление ошибки со временем.

Решение: корректировка положения объекта с использованием внешней информации.

Чем миниатюрнее система, тем быстрее накапливается ошибка.

Инерциальные системы

БИНС-СП-2 3 кварцевых акселерометра, 3 одноосных лазерных гироскопа. Разработчик - Московский институт электромеханики и автоматики.

Контактные датчики (II группа)

Используются для обеспечения контактных манипуляций

Тактильные датчики служат для определения вариаций давления на рабочих поверхностях исполнительного механизма

Силомоментные датчики (датчики сил и моментов) предназначены для измерения динамических напряжений в сочленениях и захватном устройстве манипулятора

Контактные датчики (II группа)

Тактильные датчики

Регистрируют факт касания, определяют положение точек касания и измеряют контактные силы в этих точках

Обычно основа тактильного датчика — тензорезистор, (но датчик может быть построен и на основе пьезоэлектрического эффекта и других).

При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии сопротивление уменьшается.

Вредный побочный эффект – температурный уход.

Контактные датчики (II группа) Силомоментные датчики

Силомоментный 6-компонентный датчик фирмы Schunk

Силомоментный 6-компонентный датчик с Г-образными балками

Датчики приближения (II группа)

Датчики приближения (II группа) Индуктивные

871D series ROCKWELL AUTOMATION

Датчики приближения (II группа) Емкостные

LJC30A3-HZ/BX

Датчики приближения (II группа) Фотоэлектрические

Датчики приближения (ІІ группа) Ультразвуковые

ДГВ-200

Системы навигации в радиационных полях

устройства детектирования гамма-излучения

многоэлементный азимутальный угломер-обнаружитель

Системы навигации в радиационных полях

устройства детектирования гамма-излучения

многоэлементный азимутальный угломер-обнаружитель

Системы наведения в радиационных полях

устройство визуализации гамма-излучения

Системы наведения в радиационных полях

устройство визуализации гамма-излучения

Мультиагентные системы. Комплексирование датчиков

Задачи взаимно дополняющего комплексирования:

- Повышение надежности и достоверности сенсорной информации путем дублирования сенсоров, основанных на различных физических принципах.
- Расширение диапазона измерения путем разбиения его на поддиапазоны с применением на каждом своей сенсорной системы.
- Повышение точности сенсорной информации путем совместного применения широкодиапазонной, но недостаточно точной системы и точной системы, но работающей в узком диапазоне измеряемой величины.

Мультиагентные системы. Комплексирование датчиков

5 уровней комплексирования

- 1. Первичные сигналы.
- 2. Элементы сенсорной информации (пикселы матричных изображений в СТЗ).
- 3. Образы объектов.
- 4. Вербальные признаки, выделенные сенсорными системами.
- 5. Символы (понятия) верхний уровень комплексирования.

Сенсорные системы: общего назначения и специальные

Комплексирование сенсоров общего назначения – типовая задача.

Комплексирование специальных сенсоров друг с другом и с сенсорами общего назначения представляет наибольшую трудность.

Пример:

Комплексирование спутниковой навигационной системы и инерциальной системы в условиях периодического пропадания спутникового сигнала.

Комплексирование датчиков робота РТК-05

Вопросы к экзамену

Методы решения задач навигации и классификация датчиков.

Сенсорные системы дальнего и ближнего действия (примеры применения).

В чем заключается главное отличие кластеризации от классификации?

Инерциальные системы.

Комплексирование датчиков.

Навигация в радиационных полях. Сколько колес у Лунохода?