Importing Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,accuracy_score
import warnings
warnings.filterwarnings('ignore')
import pickle
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
```

Dipak Mani

Importing the dataset

```
In [2]:
```

```
cars = pd.read_csv('car data.csv')
```

The datasets consist of several independent variables include:

 Car_Name : This column should be filled with the name of the car.

Year: This column should be filled with the year in which the car was bought.

Selling_Price: This column should be filled with the price the owner wants to sell the car at.

Present_Price: This is the current ex-showroom price of the car.

Kms_Driven: This is the distance completed by the car in km.

Fuel_Type: Fuel type of the car i.e Diesel, Petrol, CNG

Seller_Type: Defines whether the seller is a dealer or an individual.

Transmission: Defines whether the car is manual or automatic.

Owner: Defines the number of owners the car has previously had.

```
In [3]:
```

Out[3]:

```
#Top 5 rows
cars.head()
```

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0

In [4]:
#last 5 rows
cars.tail()
Out[4]:

	Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
296	city	2016	9.50	11.6	33988	Diesel	Dealer	Manual	0
297	brio	2015	4.00	5.9	60000	Petrol	Dealer	Manual	0
298	city	2009	3.35	11.0	87934	Petrol	Dealer	Manual	0
299	city	2017	11.50	12.5	9000	Diesel	Dealer	Manual	0
300	brio	2016	5.30	5.9	5464	Petrol	Dealer	Manual	0

In [5]:

```
# Check columns cars.columns
```

Out[5]:

```
Index(['Car_Name', 'Year', 'Selling_Price', 'Present_Price', 'Kms_Driven', 'Fuel_Type', '
Seller_Type', 'Transmission', 'Owner'], dtype='object')
```

In [6]:

```
# Drop column Car_Name
cars.drop(['Car_Name'],axis=1,inplace = True)
```

In [7]:

```
# check rows and columns cars.shape
```

Out[7]:

(301, 8)

In [8]:

```
cars.describe()
```

Out[8]:

	Year	Selling_Price	Present_Price	Kms_Driven	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.644115	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

In [10]:

```
# Check how many duplicates
cars[cars.duplicated()]
```

```
Selling_Price Present_Price Kms_Briven Fuel_Type Seller_Type Transmission Owner
17 2016
              7.75
                         10.79
                                   43000
                                           Diesel
                                                    Dealer
                                                                         0
                                                               Manual
93 2015
              23.00
                         30.61
                                  40000
                                           Diesel
                                                    Dealer
                                                             Automatic
                                                                         0
In [11]:
# Check null and Dtypes
cars.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 8 columns):
                    Non-Null Count Dtype
    Column
 #
                     301 non-null
 0
   Year
                                      int64
   Selling_Price 301 non-null
                                      float64
 1
   Present Price 301 non-null
                                      float64
    Kms Driven
 3
                     301 non-null
                                      int64
    Fuel Type
 4
                     301 non-null
                                      object
 5
     Seller Type
                     301 non-null
                                      object
 6
     Transmission
                     301 non-null
                                      object
 7
    Owner
                     301 non-null
                                      int64
dtypes: float64(2), int64(3), object(3)
memory usage: 18.9+ KB
In [12]:
#check which column numerical, categorical
cars.dtypes
Out[12]:
Year
                    int64
Selling_Price
                  float64
Present_Price
                 float64
Kms Driven
                   int64
Fuel_Type
                   object
Seller_Type
                  object
Transmission
                   object
Owner
                   int64
dtype: object
In [13]:
# Check missing values or not
cars.isnull().sum()
Out[13]:
                  0
Year
                  0
Selling Price
                  0
Present Price
Kms Driven
                  0
Fuel Type
                  0
Seller Type
Transmission
                  0
```

Plot the Target variable

```
In [14]:
```

Owner

dtype: int64

```
# Ploting a histogram
cars['Selling_Price'].plot(kind='hist')
plt.show()
```


In [15]:

```
# Year
plt.figure(figsize = (15,5))
sns.boxplot(data=cars)
plt.show()
```


In [16]:

```
sns.distplot(cars['Year'])
```

Out[16]:

<AxesSubplot:xlabel='Year', ylabel='Density'>

In [17]:

The Years variable is left skewed

In [20]:

```
sns.distplot(cars['Selling_Price'])
plt.show()
```


Create a pair plot of entire data

In [21]:

Present price and selling price has a strong relationship

Verify our observations finding the correlation of data

```
In [22]:
cars.corr()
Out[22]:
```

	Year	Selling_Price	Present_Price	Kms_Driven	Owner
Year	1.000000	0.236141	-0.047584	-0.524342	-0.182104
Selling_Price	0.236141	1.000000	0.878983	0.029187	-0.088344
Present_Price	-0.047584	0.878983	1.000000	0.203647	0.008057
Kms_Driven	-0.524342	0.029187	0.203647	1.000000	0.089216
Owner	-0.182104	-0.088344	0.008057	0.089216	1.000000

Converting categorical variables to dummy variables

```
In [23]:
#Fuel_Type
cars.Fuel_Type.value_counts()
Out[23]:
Petrol 239
Diesel 60
```

Name: Fuel_Type, dtype: int64

```
In [24]:
cars.Seller Type.value counts()
```

```
Out[24]:
             195
Dealer
Individual
             106
Name: Seller Type, dtype: int64
In [25]:
cars.Transmission.value counts()
Manual
            261
Automatic
             40
Name: Transmission, dtype: int64
In [26]:
cars = pd.get dummies(cars,columns=['Fuel Type','Seller Type','Transmission'],drop first
In [27]:
cars.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 9 columns):
 # Column
                             Non-Null Count Dtype
___
    -----
                             -----
 0
   Year
                             301 non-null
                                            int64
   Selling Price
                                             float64
                             301 non-null
 2 Present Price
                             301 non-null
                                            float64
 3 Kms Driven
                             301 non-null
                                             int64
 4 Owner
                             301 non-null
                                             int64
 5
   Fuel Type Diesel
                             301 non-null
                                             uint.8
 6 Fuel Type Petrol
                             301 non-null
                                             uint8
    Seller_Type_Individual 301 non-null
                                             uint8
                            301 non-null
 8 Transmission_Manual
                                             uint8
dtypes: float64(2), int64(3), uint8(4)
memory usage: 13.1 KB
In [28]:
cars.shape
Out[28]:
(301, 9)
In [29]:
cars.head()
Out[29]:
  Year Selling_Price Present_Price Kms_Driven Owner Fuel_Type_Diesel Fuel_Type_Petrol Seller_Type_Individual Transmi
0 2014
             3.35
                        5.59
                                27000
                                                      0
                                                                                    0
                                         0
                                                                    1
```

1 2013 43000 4.75 9.54 0 1 0 0 6900 2 2017 7.25 9.85 0 0 0 3 2011 2.85 4.15 5200 0 0 1 0 4 2014 4.60 6.87 42450 0 0

Create a new feature which tells us how old the car is in terms of years

In [30]:

```
# Substracting the year by current year
cars['no_of_years'] = 2021 - cars['Year']
```

In [31]:

cars.head()

Out[31]:

	Year	Selling_Price	Present_Price	Kms_Driven	Owner	Fuel_Type_Diesel	Fuel_Type_Petrol	Seller_Type_Individual	Transmi
0	2014	3.35	5.59	27000	0	0	1	0	
1	2013	4.75	9.54	43000	0	1	0	0	
2	2017	7.25	9.85	6900	0	0	1	0	
3	2011	2.85	4.15	5200	0	0	1	0	
4	2014	4.60	6.87	42450	0	1	0	0	
4									·····•

In [32]:

#Heatmap to show the correlation between various variables of the dataset

```
plt.figure(figsize=(10, 8))
cor = cars.corr()
ax = sns.heatmap(cor,annot=True)
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
plt.show()
```


된 FE Tansn

The target variable Selling Price is highly correlated with:

Present Price Fuel Type Seller Type

Linear Regression Model

```
In [33]:
y = cars['Selling Price']
X = cars.drop(['Selling Price'],axis=1)
In [34]:
#Splitting the data into train and test
from sklearn.model selection import train test split
X train ,X test,y train,y test = train test split(X,y,test size=0.30,random state = 1)
print(X train.shape)
print(X_test.shape)
print(y_test.shape)
(210, 9)
(91, 9)
(91,)
In [35]:
#standardization of the data
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X train=sc.fit transform(X train)
X train=pd.DataFrame(X train,columns=X.columns)
X_test=sc.fit_transform(X_test)
In [36]:
#Building model using sklearn (Gradient Descent)
from sklearn.linear model import LinearRegression
lin reg = LinearRegression()
lin reg.fit(X train, y train) # training the algorithm
# Getting the coefficients and intercept
print('coefficients:\n', lin reg.coef)
print('\n intercept:', lin reg.intercept )
#coeff_df = pd.DataFrame(lin_reg.coef_, X.columns, columns=['Coefficient'])
#print(coeff df)
#Now predicting on the test data
y pred = lin reg.predict(X test)
coefficients:
 [ \ 0.61446061 \ \ 4.0342602 \ \ -0.18209819 \ \ 0.07808457 \ \ 0.87226802 \ \ 0.17314277
-0.52312819 -0.6032581 -0.61446061]
intercept: 4.748809523809541
In [37]:
```

```
# compare the actual output values for X_test with the predicted values

df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})

df.reset_index(inplace=True, drop=True)

df
```

Out[37]:

	Actual	Predicted
0	7.40	8.139241
1	4.00	2.768482
2	0.50	-1.084232
3	3.15	4.108869
4	1.25	0.093750
5	5.75	6.058557
6	0.75	1.635044
7	2.65	2.401599
8	8.40	8.584556
9	0.48	0.542876
10	8.35	8.582469
11	3.45	3.434705
12	5.30	4.996272
13	4.10	4.551218
14	0.20	-3.016438
15	0.35	2.607288
16	6.85	8.435264
17	6.15	7.064520
18	5.11	7.153424
19	7.45	8.482777
20	6.00	4.594249
21	3.25	4.316855
22	5.25	12.908534
23	7.50	8.496530
24	2.50	10.692104
25	3.25	3.446563
26	3.35	4.090475
27	0.60	0.654310
28	0.30	-1.247878
29	0.35	-1.150567
30	0.30	-0.533153
31	0.16	-1.911068
32	4.40	4.267270
33	19.99	23.986891
34	23.00	21.478472
35	4.75	4.320773
36	3.75	3.499938
37	1.05	1.350338
38	0.20	-0.733307

39	Actual	PF-3di-51d-8
40	10.25	8.899823
41	12.90	10.771493
42	0.20	-0.242705
43	4.60	6.125878
44	3.95	5.839042
45	3.75	4.398146
46	7.20	7.755415
47	5.95	6.249034
48	7.25	8.735529
49	1.35	1.398198
50	3.35	3.777520
51	0.48	1.368213
52	2.00	2.285908
53	4.00	4.125913
54	1.10	1.199589
55	0.20	-4.244638
56	18.75	23.693895
57	0.50	0.245251
58	6.45	5.738649
59	5.65	5.917919
60	0.25	-0.035483
61	1.65	2.089498
62	14.73	11.586389
63	5.20	6.420132
64	0.45	-1.620540
65	0.75	0.571424
66	2.25	-0.003116
67	0.40	0.067561
68	3.80	8.498888
69	0.25	-0.587652
70	8.99	8.226796
71	7.75	9.163559
72	5.85	9.735197
73	0.40	0.448453
74	1.15	1.092675
75	1.95	1.762640
76	1.35	1.801642
77	10.11	9.205346
78	9.25	9.834452
79	4.50	4.288238
80	3.00	3.777792
81	1.20	1.635162
82	9.25	11.741139
83	11.45	11.191842

85 5.50 6.762929 86 2.70 1.950740 87 0.60 1.061294 88 0.75 1.085983 89 7.90 6.665911 90 5.25 4.486496
87 0.60 1.061294 88 0.75 1.085983 89 7.90 6.665911
88 0.75 1.085983 89 7.90 6.665911
89 7.90 6.665911
90 5.25 4.486496