

COPIE INTERNE 22/08/2025

Dr DE LATHOUWER OLIVIER

CHIREC - DELTA
CHIRURGIE PLASTIQUE
Boulevard du Triomphe, 201
1160 AUDERGHEM

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale Dr Nicolas de Saint Aubain Pr Nicky D'Haene Dr Maria Gomez Galdon

Dr Chirine Khaled Pr Denis Larsimont Pr Lactitita Lebrun Dr Calliope Maris Pr Jean-Christophe Noël Dr Anne-Laure Trépant Dr Marie Van Eycken Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical T. +32 (0)2 541 73 23

+32 (0)2 555 33 35 +32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15 Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : 25CU02035 1.02 EXAMEN : 25EM01816

Prélevé le 11/04/2025 à 11/04/2025 11:30 Prescripteur : Dr DE LATHOUWER OLIVIER

Reçu le 08/05/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE MUTATIONS DANS 25 GENES IMPLIQUES DANS LES CANCERS PULMONAIRES, LES GIST ET MELANOMES

(Colon and Lung Panel + Oncomine Solid Tumor-plus PANEL)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25CU020935 1.02.

Date du prélèvement : 11/04/25

Origine du prélèvement : CurePath

Type de prélèvement : Métastase d'un mélanome

II. Evaluation de l'échantillon

- % de cellules tumorales :
- Qualité du séquençage : Optimale (coverage moyen > 1000x)
- Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (point III).
- Commentaires : faible quantité de matériel tumoral résiduel sur le prélèvement analysé.

III. Méthodologie (effectué par : MAGU, NADN, NIDH)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq colon & lung cancer panel et OST-plus) de mutations dans 25 gènes liés aux cancers pulmonaires, GIST et mélanomes:

Gene	RefSeq	Exons testés	Exons Non Contributif (coverage < 250x)*
AKT1	NM 05163	3	
ALK	NM 004304	22, 23, 24, 25	
BRAF	NM 004333	11, 15	
CTNNB1	NM 001904	3	
DDR2	NM 001014796	6, 9, 13-16, 18	
EGFR	NM 005228	12, 18-21	
ERBB2	NM_004448	19-21	
ERBB4	NM 005235	3, 4, 6-10, 12, 15, 23	
FBXW7	NM_033632	5, 8-11	8
FGFR1	NM_023110	4, 7	
FGFR2	NM_022970	7, 9, 12, 14	
FGFR3	NM_000142	7, 9, 14, 16, 18	
HRAS	NM 005343	2, 3, 4	

Gene	RefSeq	Exons testés	Exons Non Contributif (coverage < 250x)*
		8, 9, 11, 13, 14,	
KIT	NM 000222	17, 18	
KRAS	NM_033360	2-4	
MAP2K1	NM_002755	2	
MET	NM_001127500	2, 14-20	
NOTCH1	NM 017617	26, 27	
NRAS	NM 002524	2, 3, 4	
PDGFRA	NM_006206	12, 14, 18	
PIK3CA	NM 006218	9, 13, 20	
PTEN	NM_000314	1, 3, 6-8	
SMAD4	NM_005359	3, 5, 6, 8-10, 12	
STK11	NM_000455	1, 4-6, 8	
TP53	NM 000546	2, 4-8, 10	

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

- Sensibilité: la technique utilisée détecte une mutation si l'échantillon contient > 4% d'ADN mutant. Seules les mutations rapportées dans COSMIC et avec une fréquence supérieure à 4% et un variant coverage >30x sont rapportées.

IV. Résultats

Liste des mutations détectées :

Gène	Exon	Mutation	Coverage	% d'ADN muté			
Mutations avec impact clinique potentiel							
NRAS	3	p.Q61R	1982	3.8 %*			

^{*} Les données suggèrent la présence de la mutation Q61R du gène NRAS. Néanmoins, la fréquence allélique faible associée à cette mutation ne nous permet pas de l'affirmer étant donné que cette valeur est inférieure au seuil validé pour la technique.

V. Discussion

Les mutations du gène NRAS sont décrites dans 15 à 20% des mélanomes. Des études cliniques ciblant les patients atteints d'un mélanome porteur de mutation du gène NRAS sont en cours d'investigation. Il existe des données cliniques prometteuses quant à l'utilisation de l'inhibiteur de MEK1/2 binimetinib seul ou en combinaison avec l'inhibiteur de CDK4/6 ribociclib pour le traitement des patients avec un mélanome présentant une mutation oncogénique du gène NRAS.

www.oncokb.org

Suite de l'examen N° 25EM01816 concernant le patient

VI. Conclusion: (NADN le 15/05/2025)

Absence de mutation détectée dans le codon V600 du gène BRAF. Ce résultat est à interpréter avec prudence en raison de la faible quantité de matériel tumoral résiduel sur le prélèvement analysé.

Suspicion de la présence de la mutation Q61R du gène NRAS, à une fréquence allélique inférieure au seuil validé pour la technique (voir résultats).

Ce résultat est à considérer avec précaution en raison de la faible quantité de matériel tumoral résiduel sur le prélèvement analysé.

Données à corréler à l'ensemble des données cliniques et anatomopathologiques.

Pour toute information complémentaire, veuillez nous contacter au 02/555.85.08 ou par mail : Biomol.AnaPath@erasme.ulb.ac.be

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUB:

https://www.hubruxelles.be/sites/default/files/2024-03-04_demande%20analyse%20anapath%20cytologie%20v3.pdf https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11%20Demande%20de%20biologie%20mol%C3%A9culaire-IPD%20v1.doc

Dr N D'HAENE

Dr THEUNIS Anne