Normal Random Variables Bell-curve populations

Download the section 9 .Rmd handout to STAT240/lecture/sect09-normal.

Optionally, download ggprob.R to STAT240/scripts.

Material in this section is covered by Chapter 10 on the notes website.

Consider the following examples. 2010 SAT scores:

Heights:

Elastic modulus of indents in steel:

Percent daily oil price change:

Blood pressure:

These examples all have the same underlying shape, just a different center and spread.

These are all **normal** random variables.

A normal RV is given by its mean μ and sd σ .

The bell-curve is centered at μ , and its width is given by σ . It is defined over $(-\infty, \infty)$.

Write $X \sim N(mean, sd)$ which is $X \sim N(\mu, \sigma)$.

The bell curve is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Recall that for continuous RVs, probabilities are the area under the curve.

R probability functions for the normal distribution:

- dnorm() gives the curve
- pnorm() finds a lower-tail probability

We can ignore \leq versus < for a continuous RV.

dnorm(0.5, 0, 1)

dnorm(0.5, 0, 1)

pnorm(2, 0, 1)

1 - pnorm(2, 0, 1)

Recall the concept of percentiles:

qnorm() gives the quantile of a normal distribution.

qnorm() is the inverse of pnorm()

What is the q such that

$$P(X \leq q) = p$$
?

Let $X \sim N(0,4)$ and $Y \sim N(8,3)$

- Is the peak of X or the peak of Y taller?
- What is $P(X \ge 3)$?
- What is $P(5 \le Y \le 11)$?
- What is $P(|X| \ge 3)$?
- What is the 90th percentile of Y?

Command	In	Out
d <dist></dist>	A value x	P(X = x)
p <dist></dist>	A value x	$P(X \leq x)$
q <dist></dist>	A probability p	q for $P(X \le q) = p$

Examples: binom and norm

Let's compare two normal RVs. $X_1 \sim N(100, 25)$, $X_2 \sim N(10, 7)$. Which is more likely?

- $X_1 \ge 125$
- $X_2 \ge 24$

How many "standard deviations" away are we?

z-scores are a "universial language" of normals.

A **standard normal** is

$$Z \sim N(0,1)$$

We can relate any normal RV to a standard normal RV using **standardization**.

Let $X \sim N(\mu, \sigma)$ be any normal and $Z \sim N(0, 1)$.

$$Z = \frac{X - \mu}{\sigma}$$

and

$$X = \sigma Z + \mu$$

A z-score is a standardized x value.

$$P(X \le x) = P(Z \le \frac{x - \mu}{\sigma}) = P(Z \le z)$$

For example, let $X \sim N(100, 25)$ and find $P(X \le 80)$.

The weight of flour in a batch of dough is $F \sim N(500, 12)$. The weight of water in a batch of dough is $W \sim N(350, 4)$.

 A flour weight of 476 corresponds to what weight of water? The **Central Limit Theorem** (CLT) is a fundamental theorem in statistics.

Sample values calculated from a sample of data will tend to have a normal shape.

Let's look at the concept of **sampling distributions**.

Imagine taking a sample from a population X: X_1, X_2, \dots, X_n .

The X_i are independent and identically distributed.

When we calculate a value from the sample, it is also a random variable. Take the sample mean \bar{X} .

What is the behavior of \bar{X} across samples?

We have $E(\bar{X}) = \mu$ and $V(\bar{X}) = \frac{\sigma^2}{n}$, where μ and σ^2 are the population mean and variance.

The CLT says that, for a big enough sample, \bar{X} will be approximately normal.

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

The values in the sample "average out", giving us a narrow bell-curve around μ .

This approximation is better when n is larger.

We have a highly right-skewed population with $\mu=0.09$ and $\sigma=0.095$.

Take the mean of 50 draws from this population.

• Estimate the distribution of \bar{X}_{50} with the CLT:

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

• What is $P(\bar{X}_{50} > 0.1)$?

The normal bell-curve can also approximate a binomial.

Certain binomial distributions with large n look continuous.

Formally, if $X \sim Binom(n, p)$, then

$$X \sim N(np, \sqrt{np(1-p)})$$

This approximation works better when n is large and p is close to 0.5. Typically, we want

$$np(1-p) \ge 10$$