クラス

1 設問1 FirstQClass00.py 設問1・設問2の解答:::FirstQClass55.py

面積を求める、クラス: Area() を作成し、検証しなさい。 なお、メソッドでは、当該面積を求めて、面積を表示しなさい。

面積:

対称物体	関数名	計算式	
円 Circle:	En	半径(hankei) x 半径 x パイ(np.pi)	
長方形 Square:	Shikaku	縦(tate) x 横(yoko)	
三角形 Triangle:	Sankaku	底辺(teihen) x 高さ(takasa)/2	

パイ : np.pi

検証:

オブジェクト: area 円の面積: 半径:10 長方形の面積: 縦:4、横:5 三角形の面積: 底辺:4、高さ:10

#課題 FirstQClass00.py import numpy as np # ****** class AreaClass: def __init__(self): print("+++++コンストラクタ+++++") pass def __str__(self): return "クラス名=AreClass(面積)" def __del__(self): print("++++#放+++++") def En(self): #円: 半径x 半径xパイ pass 引数は 省略してある def Shikaku(self): #長方形: 縦x横 def Sankaku(self): #三角形:底辺x高さ/2 pass # *******

解答: FirstQClass11.py である。

2 設問 2 FirstQClass33.py

体積を求める、クラス: Area_Capacity_Class() を作成し、検証しなさい。 なお、メソッドでは、当該体積を求めて、体積を表示しなさい。

体積:

対称物体	関数名	†算式	
直方体 Rectangular:	TyokuhouTai	底面積(長方形:tate, yoko) x 高さ(takasa)	
三角錐 Cone:	SankakuSui	底面積(3角形(teihen, teiTakasa)) x 高さ(takasa)/ 3	
円柱 Pillar:	EnTyu	底面積(円(hankei)) x 高さ(takasa)	
球 Sphere:	KyuTai	(4/3) x パイ x 半径(hankei)^3	

検証:

オブジェクト: areaCapacity直方体の体積: 縦: 4、横5、高さ: 1 0三角錐の体積: 底辺: 4、底辺高さ: 5、高さ: 1 0円柱の体積: 半径: 1 0、高さ: 1 0球体の体積: 半径: 1 0

```
#課題 FirstQClass33.py
import numpy as np
# *******
class AreaClass:
  def __init__(self):
     print("+++++コンストラクタ+++++")
     pass
  def __str__(self):
     return "クラス名=AreClass(面積)"
  def __del__(self):
     print("++++解放+++++")
  def En(self): #円: 半径 x 半径 x パイ
     pass
  def Shikaku(self): #長方形: 縦x横
  def Sankaku(self): #三角形:底辺x高さ
     pass
# *******
class Area_Capacity_Class:
 # ------体積: volume、capacity
  def TyokuhouTai(sel): #直方体: 底面積(長方形) x 高さ
     pass
  def SankakuSui(self): #三角錐:底面積(3角形) x 高さ/3
  def EnThu(self): #円柱:底面積(円) x高さ
  def KyuTai(sel ): #球: (4/3)xパイx半径^3
# *******
```

解答: FirstQClass44.py である。

3 設問3 FirstQClass44.py のクラスの継承

スーパークラス: AreaClaa

サブクラス: Area_Capacity_Class

クラスの継承を行いなさい。

4 設問 4 FirstQClass44.py のクラスの継承 (import)

import::スーパークラス:AreaClaa

サブクラス: Area_Capacity_Class

クラスの継承(import)を行いなさい。

前節で求めた応用設問 FirstQ22.py FirstQ22_AAA.py BaseBallPlayer.dat をクラス化する。

使用するデータ:

選手名	打率	ホームラン数	球団名
吉田正選手	328	23	オリックス
浅村選手	265	28	楽天
筒香選手	273	26	DeNA
中田選手	243	23	日本ハム
秋山選手	309	19	西武
坂本選手	304	33	巨人
井上選手	251	23	ロッテ
柳田選手	316	7	ソフトバンク
山田選手	274	32	ヤクルト
鈴木選手	333	25	広島
近本選手	267	9	阪神
福田選手	265	15	中日

```
#++++++++設問 1 ++++++++
# ++++++++設問 2 ++++++++
print("++++++++++++++ 率+++++++++++")
print("++++++++++++++++++++++++++++++++")
```

設問1,2をメソッド化しなさい。 クラス名: class Player_00: 設問1: def Make2D_Data(self): 設問2の打率: def HitRatio(self): 設問2のホームラン数: def HomeRun(self):

```
#課題 FirstQClass77.py (FirstQClass77_AAA.py BaseBallPlayer.dat)
from FirstQClass77_AAA import ReadBaseBallPlayer as ReadBaseBallPlayer
# ******
class Player_00:
  def __init__(self):
     print("+++++++++コンストラクタが呼び出された+++++++")
     self.Data0 = ReadBaseBallPlayer()
     print(); print()
  def __str__(self):
     return "++++++++クラス名=Player_00++++++++
  def __del__(self):
     print("++++++++オブジェクト:Playerの解放++++++++")
  def Make2D_Data(self):
     # +++++++++設問 1 ++++++++
     pass
  def HitRatio(self):
     pass
  def HomeRun(self):
     # ++++++++++++++++++++++ホームラン++++++++++++++++++++++
# *******
```

解答: FirstQClass88.py