Measurement Error (2)

1.
$$Z \sim MVN(\underline{0}, \Sigma_Z)$$

2.
$$\Sigma_Z = \begin{bmatrix} \sigma_A^2 & 0 \\ 0 & \sigma_B^2 \end{bmatrix}$$

3.
$$\sigma_A^2, \sigma_B^2 \sim \Gamma(0.001, 1000)$$

Source Isotope Values (15)

4.
$$\underline{X_s} \sim MVN(\mu_s, \Sigma_s + \Sigma_{disc} + \Sigma_Z)$$

5.
$$\mu_s^{\top} = (\mu_A, \mu_B)$$

6.
$$\mu_A, \mu_B \sim N(0, 1000)$$

7.
$$\Sigma_s = \begin{bmatrix} \sigma_A^2 & \rho \sigma_A \sigma_B \\ \rho \sigma_A \sigma_B & \sigma_B^2 \end{bmatrix}$$

8.
$$\sigma_A^2, \sigma_B^2 \sim \Gamma(0.001, 1000)$$

9.
$$\rho \sim Unif(-1,1)$$

Source Concentrations (12)

10
$$\underline{D_s} \sim MVN(\epsilon_s \mu_{D,s}, \Sigma_{D,s})$$

11.
$$\mu_{D,s}^{\top} = (\mu_A, \mu_B)$$

12.
$$\mu_A, \mu_B \sim N(0, 1000)$$

13.
$$\Sigma_{D,s} = \begin{bmatrix} \sigma_A^2 & 0 \\ 0 & \sigma_B^2 \end{bmatrix}$$

14.
$$\sigma_A^2, \sigma_B^2 \sim \Gamma(0.001, 1000)$$

Mixtures (46)

15.
$$M_j \sim MVN(\mu_j, \Sigma_j + \Sigma_{res} + \Sigma_Z)$$

16.
$$\Sigma_j = \sum Iso_{j,s}^2 \Sigma_s$$

17.
$$\mu_j = \sum_{s}^{s} Iso_{j,s} \underline{\mu}_s$$

18.
$$Iso_{j,s} = \frac{\mu_{D,s}i_{j,s}}{\sum_{s} \mu_{D,s}i_{j,s}}$$

19.
$$i_{j,s} \sim CLR(f_s, \Sigma_i)$$

20.
$$f_s \sim CLR(\mu, \Sigma_f)$$

21.
$$\underline{\mu^{\top}} = (\mu_A, \mu_B)$$

22.
$$\mu_A, \mu_B \sim N(0, 1000)$$

23.
$$\Sigma_f = \Sigma_i = \begin{bmatrix} \sigma_A^2 & 0 \\ 0 & \sigma_B^2 \end{bmatrix}$$

24.
$$\sigma_A^2, \sigma_B^2 \sim \Gamma(0.001, 1000)$$

25.
$$\Sigma_{res} = \begin{bmatrix} \sigma_A^2 & 0 \\ 0 & \sigma_B^2 \end{bmatrix}$$

26.
$$\sigma_A^2, \sigma_R^2 \sim \Gamma(0.001, 1000)$$

- Measurement error (Z) follows a multivariate normal distribution. Mass spectrometer calibration runs (i.e., isotope standards) are centralized and used to estimate the variance (Σ_z) of the distribution.
- 2. The variance terms (σ_{AB}^2) makeup the covariance matrix (Σ_z) .
- Priors on the variances (σ_{A,B}²) are assumed to follow a gamma distribution.
- Each source (X_s) follows a multivariate normal distribution. Source error (Σ_s), measurement error (Σ_z), and discrimination error (Σ_{disc}) are incorporated into the source distributions.
- 5. Source isotope values (μ_s) are composed of means for each isotope $(\mu_{A,B})$.
- Priors on source istope value means (μ_{A,B}) are assumed to follow a normal distribution.
- The variance terms (σ_{A,B}²) make up the source covariance matrix (Σ_s).
- Priors on source isotope variances (σ_{A,B}²) are assumed to follow a gamma distribution.
- 9. Priors on source isotope correlation values (ρ) are assumed to follow a uniform distribution.
- Elemental concentrations values (D_s) follow a multivariate normal distribution.
- 11. Elemental concentration values ($\mu_{D,s}$) are composed of means for each isotope ($\mu_{A,B}$) and are rescaled by the digestibility (ϵ_s).
- 12. Priors on concentration means ($\mu_{A,B}$) are assumed to follow normal distributions
- 13. The variance terms $(\sigma_{A,B}^2)$ makeup the concentration covariance matrix $(\Sigma_{D,s})$.
- 14. Priors on the concentration variances $(\sigma_{A,B}^2)$ are assumed to follow a gamma distribution.
- 15. Each individual in the mixture data (M_j) follows a multivariate normal mixture distribution with multiple sources of error. These error sources include mixture error (Σ_i) , residual error (Σ_{res}) and measurement error (Σ_Z) . The mixture distribution (M_j) is a weighted sum of the source isotope distributions (X_s) . Weights are the fraction of an assimilated isotope for a given source and individual $(Iso_{j,s})$.
- The covariance matrix for the mixture data (Σ) is the weighted sum of all source covariance matrices (Σ_S).
- Mixture data for each individual (μ_i) are composed of mixture means for each isotope (μ_{A,B}). These mixture means (μ_{A,B}) are a weighted sum of all source means (μ_s).
- The contribution of a particular source to an individual (i_{j,s}) is calculated using the Phillips and Koch (2002) concentration dependence model.
- Each individual's food source contribution (i_{j,s}) is distributed using the CLR transform of the normal distribution as described in Semmens et al. (2009).
- Population level food source contributions (f_s) are distributed using the CLR transform of the normal distribution.
- 21. The population level contribution (μ) is composed of mean values for each isotope $(\mu_{A,B})$.
- Priors on the population level (μ_{A,B}) are assumed to follow a normal distribution.
- 23. Each individual's covariance matrix (Σ_i) and the population covariance matrix (Σ_i) are made up of variance terms for each isotope (σ_{AB}^2) .
- 24. Priors on the mixture proportion variances $(\sigma_{A,B}^2)$ are assumed to follow a gamma distribution.
- 25. The residual error term (Σ_{res}) is composed of variance terms for each isotope (σ_{AB}^2).
- 26. Priors on residual error variances (σ_{AB}^2) are assumed to follow a gamma distribution.