

Токенизация, оценка качества LLM

к.ф.-м.н. Тихомиров М.М.

НИВЦ МГУ имени М. В. Ломоносова

Токенизация

Токенизация до subword tokenization

Как можно представить текст для нейронной сети перед векторизацией?

- Символы: ['Б', 'о', 'л', 'ь', 'ш', 'и', 'е', ' ', 'я', 'з', 'ы', 'к', 'о', 'в', 'ы', ...]
 - Семантика единицы минимальна.
 - Длина последовательности = количеству символов.
- Слова: ['Большие', 'языковые', 'модели', 'в', 'вопросно-ответных', ...]
 - Разных слов только на одном языке миллионы.
 - Богатая морфология "ухудшает" ситуацию.
- Леммы: ['большой', 'языковой', 'модель', 'в', 'вопросно-ответный', ...]
 - Основной рабочий вариант раньше,
 - Размеры словаря ~200-500 тыс. слов, остальное UNK.
 - Теряется морфология.

BPE

- Компромисс между символами и словами.
- **Старт с** словаря, состоящего из **символов** (каждый символ токен).
- Последовательное **объединение** наиболее частотных пар токенов.
- Больше нет OOV, а размер словаря может быть небольшим (например, 32 тыс.)!
- Наиболее популярный на данный момент.

Algorithm 1 Learn BPE operations

```
import re, collections
def get stats (vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
      pairs[symbols[i], symbols[i+1]] += freq
  return pairs
def merge vocab(pair, v in):
  v out = \{\}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
    w out = p.sub(''.join(pair), word)
    v out[w out] = v in[word]
  return v out
vocab = {'low </w>' : 5, 'lower</w>' : 2,
         'n e w e s t </w>':6, 'w i d e s t </w>':3
num merges = 10
for i in range (num merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge vocab(best, vocab)
  print(best)
```

Unigram

- Подход сверху-вниз в отличие от ВРЕ.
- Стартует с **большого словаря:** наиболее частотные слова корпуса + подстроки + все символы.
- Используя **униграмм** языковую модель и текущий словарь токенов, рассчитываются вероятности всех текстовых последовательностей (предложений) корпуса.
- После чего рассчитывается, удаление каких токенов из словаря меньше всего повышает значение лосс функции:

 $\mathcal{L} = \sum_{s=1}^{|D|} \log(P(X^{(s)})) = \sum_{s=1}^{|D|} \log\left(\sum_{\mathbf{x} \in \mathcal{S}(X^{(s)})} P(\mathbf{x})\right)$

• 10-20% токенов удаляется, после чего повторение прошлых шагов.

Algorithm 2 Unigram LM (Kudo, 2018) 1: Input: set of strings D, target vocab size k 2: **procedure** UNIGRAMLM(D, k) $V \leftarrow$ all substrings occurring more than once in D (not crossing words) while |V| > k do ▶ Prune tokens Fit unigram LM θ to D **for** $t \in V$ **do** \triangleright Estimate token 'loss' $L_t \leftarrow p_{\theta}(D) - p_{\theta'}(D)$ where θ' is the LM without token t end for 10: Remove $\min(|V| - k, |\alpha|V||)$ of the 11: tokens t with highest L_t from V, 12: where $\alpha \in [0, 1]$ is a hyperparameter 13: end while 14: Fit final unigram LM θ to D 15: return V, θ 16: 17: end procedure

Unigram vs BPE

- ВРЕ проще и быстрее строить, меньше нагрузка на RAM.
 - Обучение Unigram на корпусе из 40GB текстов занимает 1Т RAM.
- **BPE** интуитивно **понятнее**.
- Unigram разбивает текст ближе к морфологии языка, чем ВРЕ, что особенно заметно на языках с богатой морфологией (например русский).

Method	English (w.r.t. CE	LEX2)	Japanese (w.r.t. MeCab)				
Method	Precision	Recall	F1	Precision	Recall	F1		
BPE	38.6%	12.9%	19.3%	78.6%	69.5%	73.8%		
Uni. LM	62.2%	20.1%	30.3%	82.2%	72.8%	77.2%		

Table 3: Correspondence of subword boundaries between unsupervised tokenization methods and morphological reference segmentations.

sentencepiece

- Пакет от google для обучения токенизации (BPE/Unigram)
- Результат достаточно просто потом "конвертируется" в huggingface токенизацию
- Особое представление пробелов

```
[32] list(tokenizer json['model']['vocab'].items())[250:270]
                                                                   tokenizer json['model']['merges'][:20]
                                                                   [('<0xF7>', 250),
        '<0xF8>', 251),
                                                                         ['e', 'r'],
       ('<0xF9>', 252),
       ('<0xFA>', 253),
                                                                         ['h', 'e'],
       ('<0xFB>', 254),
                                                                         ['o', 'n'],
       ('<0xFC>', 255),
                                                                         ['r', 'e'],
      ('<0xFD>', 256),
       ('<0xFE>', 257),
       ('<0xFF>', 258).
                                                                         ['e', 'n'],
                                                                         ['a', 't'],
        ___', 259),
                                                                         ['o', 'r'],
        ____', 260),
        t', 261),
                                                                         ['_th', 'e'],
['_', 'the'],
       'in', 262),
       ('er', 263),
                                                                         ['e', 's'],
       '_a', 264),
       ('he', 265),
                                                                         ['a', 'n'],
      ('on', 266),
                                                                         ['<u>_</u>', 'c'],
['i', 's'],
      ('re', 267),
       ('_s', 268),
      ('en', 269)]
                                                                         ['i', 't']]
```

sentencepiece

Из интересных параметров:

- split_digits
- byte fallback
- character_coverage

```
Usage: ../build/src/spm train [options] files
  --input (comma separated list of input sentences) type: std::string default: ""
  --input format (Input format, Supported format is 'text' or 'tsy'.) type: std::string default: ""
  --model prefix (output model prefix) type: std::string default: ""
  --model type (model algorithm: unigram, bpe, word or char) type: std::string default: "unigram"
  --vocab size (vocabulary size) type: int32 default: 8000
  --accept language (comma-separated list of languages this model can accept) type: std::string default: ""
  --self test sample size (the size of self test samples) type: int32 default: 0
  --character coverage (character coverage to determine the minimum symbols) type: double default: 0.9995
  --input sentence size (maximum size of sentences the trainer loads) type: std::uint64 t default: 0
  --shuffle input sentence (Randomly sample input sentences in advance. Valid when --input sentence size > 0) type: bool defau
  --seed sentencepiece size (the size of seed sentencepieces) type: int32 default: 1000000
  --shrinking factor (Keeps top shrinking factor pieces with respect to the loss) type: double default: 0.75
  --num_threads (number of threads for training) type: int32 default: 16
  --num_sub_iterations (number of EM sub-iterations) type: int32 default: 2
  --max_sentencepiece_length (maximum length of sentence piece) type: int32 default: 16
  --max_sentence_length (maximum length of sentence in byte) type: int32 default: 4192
  --split by unicode script (use Unicode script to split sentence pieces) type: bool default: true
  --split by number (split tokens by numbers (0-9)) type: bool default: true
  --split by whitespace (use a white space to split sentence pieces) type: bool default: true
  --split digits (split all digits (0-9) into separate pieces) type: bool default: false
  --treat whitespace as suffix (treat whitespace marker as suffix instead of prefix.) type: bool default: false
  --allow whitespace only pieces (allow pieces that only contain (consecutive) whitespace tokens) type: bool default: false
  --control symbols (comma separated list of control symbols) type: std::string default: ""
  --control symbols file (load control symbols from file.) type: std::string default: ""
  --user defined symbols (comma separated list of user defined symbols) type: std::string default: ""
  --user defined symbols file (load user defined symbols from file.) type: std::string default: ""
  --required chars (UTF8 characters in this flag are always used in the character set regardless of --character coverage) type
  --required chars file (load required chars from file.) type: std::string default: ""
  --byte fallback (decompose unknown pieces into UTF-8 byte pieces) type: bool default: false
  --vocabulary output piece score (Define score in vocab file) type: bool default: true
  --normalization rule name (Normalization rule name. Choose from nfkc or identity) type: std::string default: "nmt nfkc"
  --normalization rule tsv (Normalization rule TSV file. ) type: std::string default: ""
  --denormalization rule tsv (Denormalization rule TSV file.) type: std::string default: ""
  --add dummy prefix (Add dummy whitespace at the beginning of text) type: bool default: true
  --remove extra whitespaces (Removes leading, trailing, and duplicate internal whitespace) type: bool default: true
  --hard vocab limit (If set to false, --vocab size is considered as a soft limit.) type: bool default: true
  --use all vocab (If set to true, use all tokens as vocab. Valid for word/char models.) type: bool default: false
  --unk id (Override UNK (<unk>) id.) type: int32 default: 0
  --bos id (Override BOS (<s>) id. Set -1 to disable BOS.) type: int32 default: 1
  --eos id (Override EOS (</s>) id. Set -1 to disable EOS.) type: int32 default: 2
  --pad id (Override PAD (<pad>) id. Set -1 to disable PAD.) type: int32 default: -1
  --unk piece (Override UNK (<unk>) piece.) type: std::string default: "<unk>"
  --bos piece (Override BOS (<s>) piece.) type: std::string default: "<s>"
  --eos piece (Override EOS (</s>) piece.) type: std::string default: "</s>"
  --pad piece (Override PAD (<pad>) piece.) type: std::string default: "<pad>"
  --unk surface (Dummy surface string for <unk>. In decoding <unk> is decoded to `unk surface`.) type: std::string default: "
  --train extremely large corpus (Increase bit depth for unigram tokenization.) type: bool default: false
  --random seed (Seed value for random generator.) type: uint32 default: 4294967295
  --enable differential privacy (Whether to add DP while training. Currently supported only by UNIGRAM model.) type: bool defi
  --differential_privacy_noise_level (Amount of noise to add for DP) type: float default: 0
  --differential_privacy_clipping_threshold (Threshold for clipping the counts for DP) type: std::uint64_t default: 0
  --help (show help) type: bool default: false
  --version (show version) type: bool default: false
```

--minloglevel (Messages logged at a lower level than this don't actually get logged anywhere) type: int default: 0

tiktoken

- Библиотека от OpenAl
- Специальное представление токенов в модели
 - Словарь хранится в специальном представлении
 - Мержи происходят тоже в нем

```
[43] tokenizer ison['model']['merges'][:20]
list(tokenizer json['model']['vocab'].items())[130000:130020]
                                                                       [['Ġ', 'Ġ'],
[('ii', 130000),
                                                                         'ĠĠ', 'ĠĠ'],
 ('à kà¹Īà ²à ¢', 130001),
                                                                         'i', 'n'],
 ('Ġkullanıl', 130002),
                                                                         ['Ġ', 't'],
 ('ĠtÃ'', 130003),
                                                                         'ĠĠĠĠ', 'ĠĠĠĠ'],
 ('ãg «ãĤ ĨãĤ Ĭ', 130004),
 ('ĠëĺIJíkľ', 130005),
                                                                          'e', 'r'],
                                                                          'ĠĠ', 'Ġ'],
 ('Ġx¢xijxkxĵxK', 130006),
                                                                         'o', 'n'],
 ('Ġriê', 130007),
                                                                         'Ġ', 'a'],
 ('Ġriêng', 130008),
 ('Ġyakın', 130009),
                                                                         'r', 'e'],
                                                                          'a', 't'],
 ('زا', 130010),
 ('Å»', 130011),
                                                                         's', 't'],
                                                                          'e', 'n'],
 ('xlJxkxL'xl', 130012),
 ('Ø'ارÙĥ', 130013),
                                                                         ['o', 'r'],
                                                                         'Ġt', 'h'],
 ('ĠбĐμÑġ', 130014),
                                                                        ['ċ', 'ċ'],
 ('x'', 130015),
 ('ĠØ$Ø"ÙĨ', 130016),
                                                                         ['Ġ', 'c'],
                                                                         ['l', 'e'].
 ('ĠTá»kng', 130017),
                                                                        ['Ġ', 's'],
 ('ÙĨØ,', 130018),
                                                                        ['i', 't']]
 ('AL'wiad', 130019)]
```

```
def bytes_to_unicode():
    Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
    characters the boe code barfs on.
   The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your yocab
   if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
    decent coverage. This is a significant percentage of your normal, say, 32K bpe yocab. To avoid that, we want lookup
    tables between utf-8 bytes and unicode strings.
    bs = (
       list(range(ord("!"), ord("~") + 1)) + list(range(ord(";"), ord("¬") + 1)) + list(range(ord("0"), ord("ÿ") + 1))
   cs = bs[:]
   n = 0
    for b in range(2**8):
       if b not in bs:
            bs.append(b)
            cs.append(2**8 + n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))
```

Сравнение токенизации с точки зрения русского языка

Датасет (~30GB), используемый для обучения токенизации и модели, состоял из: новости, литература, русская wikipedia, соцсеть пикабу, stackoverflow, некоторый процент англ. wikipedia.

Root Integrity - максимальное пересечение токена с корнем слова. Оценивался на **RuMorphs-Words**.

Сравнение качества модели в зависимости от токенизации

- Бенчмарк: Russian Super Glue
- Решалась задача адаптации LLaMa-7B на русский язык путем замены токенизации

	LiDiRus	RCB	PARus	MuSeRC	TERRa	RUSSE	RWSD	DaNetQA	RuCoS	mean
llama7b	0,361	0,462	0,672	0,799	0,860	0,624	0,682	0,866	0,802	0,681
llama7b_rulm_raw	0,392	0,494	0,688	0,805	0,859	0,631	0,669	0,871	0,791	0,689
llama7b_rulm_bpe	0,365	0,509	0,684	0,782	0,844	0,626	0,747	0,824	0,737	0,680
llama7b_rulm_unigram	0,412	0,561	0,732	0,800	0,875	0,660	0,675	0,865	0,756	0,704
llama7b_rulm_unigram_hm	0,387	0,546	0,750	0,815	0,866	0,660	0,740	0,812	0,758	0,704

Сравнение качества моделей на RSG с дообучением

	LiDiRus	RCB	PARus	MuSeRC	TERRa	RUSSE	RWSD	DaNetQA	RuCoS	mean
saiga7b	0,084	0,412	0,528	0,311	0,514	0,484	0,675	0,676	0,319	0,445
saiga7b_rulm_raw	0,025	0,373	0,610	0,310	0,523	0,587	0,584	0,783	0,474	0,474
saiga7b_rulm_bpe	0,149	0,429	0,596	0,344	0,647	0,478	0,636	0,757	0,397	0,493
saiga7b_rulm_unigram	0,194	0,432	0,568	0,313	0,591	0,587	0,630	0,789	0,477	0,509
saiga7b_rulm_unigram_hm	0,198	0,413	0,584	0,349	0,533	0,587	0,578	0,789	0,475	0,501

Сравнение качества инструктивных версий моделей на RSG в zero-shot

Оценка качества и вычислительной эффективности

Сравнение путем выбора лучшей генерации из двух (side-by-side).

Было подготовлено 78 вопросов для моделей, 15 аннотаторов.

Сравнение качества инструктивных версий моделей людьми

До **60**% прироста в скорости **при генерации** и до **35**% прироста в скорости **при обучении**.

Сравнение вычислительной эффективности при генерации₁₂

Исследование адаптации более современных моделей

- Больше ресурсов -> подбор гиперпараметров
- Более мультиязычные модели, чем раньше
- Сравнили расширение vs замена токенизации
- Ilama3 на tiktoken, mistral на sentencepiece

Краткие выводы:

- batch size -> количество шагов оптимизации важно
- learning rate оказывает существенное влияние на более "тяжелые" для адаптации модели

model_name	tokenization	step	mean
mistral	bpe	10k	0,616
mistral	bpe	20k	0,606
mistral	bpe	30k	0,616
mistral	bpe	40k	0,616
mistral	bpe	full	0,613
mistral	unigram	10k	0,596
mistral	unigram	20k	0,609
mistral	unigram	30k	0,614
mistral	unigram	40k	0,616
mistral	unigram	full	0,615
mistral	extended_bpe	10k	0,6
mistral	extended_bpe	20k	0,609
mistral	extended_bpe	30k	0,617
mistral	extended_bpe	40k	0,617
mistral	extended_bpe	full	0,615
llama3	bpe	10k	0,604
llama3	bpe	20k	0,618
llama3	bpe	30k	0,617
llama3	bpe	full (38k)	0,617
llama3	unigram	10k	0,602
llama3	unigram	20k	0,609
llama3	unigram	30k	0,609
llama3	unigram	full (38k)	0,607
llama3	extended_bpe	10k	0,609
llama3	extended_bpe	20k	0,627
llama3	extended_bpe	30k	0,621
llama3	extended_bpe	40k	0,622
llama3	extended_bpe	full	0,624
llama3	64+64 bpe	10k	0,607
llama3	64+64 bpe	20k	0,605
llama3	64+64 bpe	30k	0,616
llama3	64+64 bpe	40k	0,62
llama3	64+64 bpe	full	0,619
mistral	raw -		0,604
llama3	raw -		0,629

Зависимость процедуры адаптации от LR

- Mistral адаптируется быстро
- Llama требует более существенного изменения эмбедингов
 - tiktoken на 128т. токенов плохо ложится на новую токенизацию?

Проблемы адаптации модели на язык

- Адаптация происходит для базовых моделей, не инструктивных
- Соответственно требуется воспроизводить процедуру инстракт тюнинга с базы
 - LLaMa-3 обучалась на 10 миллионах инструкций (датасет не опубликован!)
 - Лучшая версия модели mistral openchat-3.5 обучалась на датасете, который также закрыт
- Нужно быть аккуратным, чтобы не потерять исходные знания модели

Learned Embeddings Propagation

- Еще не опубликованный метод
- Модели после LEP являются инструктивными и адаптированными моделями
- Присутствует некоторая потеря качества, так что нужен небольшое дообучение

Learned Embeddings Propagation

- Можно по-разному расчитывать проекцию, но общий тренд один:
 - Лучше база -> лучше результат после lep
 - Лучше инстракт -> лучше результат после lep
 - Extended лучше BPE / Unigram

Learned Embedding Propagation

Table 3. Darumeru zero-shot evaluation results for Learned Embedding Propagation methods.

Vocab	LEP method	Micro-Avg	DaruMMLU	DaruMERA	DaruSum	DaruCopy (Ru)	DaruCopy (En)
			OpenCha	t-3.5			
	Swap	0,587	0,528	0,526	0,277	0,829	0,988
BPE	Overlap	0,584	0,525	0,523	0,281	0,818	0,986
	Conversion	0,583	0,526	0,524	0,284	0,791	0,993
BPE Unigram Extended	Swap	0,556	0,517	0,517	0,282	0,614	0,985
Unigram	Overlap	0,572	0,514	0,534	0,297	0,680	0,981
	Conversion	0,565	0,515	0,519	0,301	0,651	0,999
	Swap	0,608	0,535	0,540	0,298	0,907	0,999
Extended	Overlap	0,607	0,535	0,539	0,307	0,898	0,999
	Conversion	0,609	0,535	0,541	0,306	0,909	0,999
			LLaMa-3 (in	struct)			
	Swap	0,565	0,544	0,486	0,317	0,729	0,999
BPE	Overlap	0,569	0,546	0,489	0,314	0,753	0,999
	Conversion	0,570	0,546	0,490	0,318	0,754	0,999
	Swap	0,582	0,545	0,488	0,313	0,865	0,999
Unigram	Overlap	0,580	0,545	0,482	0,314	0,876	0,999
	Conversion	0,584	0,545	0,488	0,315	0,889	0,994
	Swap	0,592	0,557	0,498	0,319	0,921	0,969
Extended	Overlap	0,597	0,556	0,504	0,321	0,936	0,964
	Conversion	0,597	0,556	0,501	0,318	0,921	0,994
	Swap	0,594	0,554	0,499	0,327	0,928	0,970
Optimized	Overlap	0,586	0,553	0,495	0,323	0,925	0,925
	Conversion	0,598	0,555	0,500	0,324	0,928	0,995

Learned Embeddings Propagation

- После дополнительного SFT шага качество уверенно растет.
- Дополнительные примеры с инструкциями на копирование абзацев текста помогают

Table 5. Benchmark results for continued instruction-tuning of LEP-Conversion models

Model	dataset	Micro-Avg	DaruMMLU	DaruMERA	DaruSum	DaruCopy (EN)	DaruCopy (RU)
	-	0,607	0,543	0,526	0,322	0,999	0,917
	saiga d7	0,611	0,540	0,528	0,325	0,999	0,945
(original)	+copy task	0,615	0,541	0,524	0,324	1,000	0,995
	-	0,564	0,515	0,519	0,301	0,998	0,646
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	saiga d7	0,599	0,532	0,556	0,316	0,999	0,754
OpenChat 3.5 (original) OpenChat 3.5 (Unigram) OpenChat 3.5 (Extended) LLaMa-3-8B instruct (extended) LLaMa-3-8B instruct (Extended)	+copy task	0,630	0,530	0,559	0,321	1,000	0,999
	-	0,610	0,535	0,541	0,307	0,999	0,914
OpenChat 3.5 (Extended) LLaMa-3-8B	saiga d7	0,616	0,543	0,566	0,319	0,999	0,845
	+copy task	0,632	0,541	0,563	0,321	1,000	0,989
II aMa-3-8B		0,61	0,571	0,510	0,322	1,000	0,972
instruct	saiga d7	0,615	0,576	0,512	0,329	1,000	0,983
(original)	+copy task	0,616	0,575	0,513	0,332	1,000	0,995
I LaMa-3-8B	-1	0,603	0,557	0,503	0,328	0,990	0,956
instruct	saiga d7	0,614	0,568	0,519	0,338	0,995	0,961
(Extended)	+copy task	0,618	0,565	0,521	0,339	1,000	0,984
	0	0,603	0,553	0,506	0,326	0,995	0,949
instruct	saiga d7	0,611	0,555	0,515	0,336	1,000	0,971
(Optimized)	+copy task	0,617	0,555	0,522	0,339	1,000	0,989

Model	Micro-Avg	DaruMMLU	DaruMER A	DaruSum	DaruCopy (EN)	DaruCopy (RU)
Openchat 3.5 (Mistral-7B)	0,607	0,543	0,526	0,322	0,999	0,917
LLaMa-3-8B (Instruct)	0,610	0,571	0,510	0,322	1,000	0,972
Saiga (LLaMa-3-8B)	0,608	0,574	0,514	0,320	0,995	0,939
Vikhr-5.2 (Mistral-7B)	0,587	0,494	0,573	0,308	0,959	0,693
Qwen-2 7B	0,613	0,624	0,548	0,300	0,938	0,842
Mistral Nemo (12B)	0,639	0,592	0,576	0,320	0,998	0,924

Что дает нам адаптация моделей на язык

Токенизация

Model Name	Winrate	95% CI	Average # Tokens
gpt-4-1106-preview	90.9	(-1.3, 1.0)	541
gpt-4o-mini	83.9	(-1.8, 1.1)	448
vikhr-nemo-12b-instruct-r-21-09-24	79.8	(-2.2, 1.9)	627
gemma-2-9b-it-sppo-iter3	73.6	(-1.6, 2.2)	509
gemma-2-9b-it	69.2	(-2.5, 1.9)	459
saiga_llama3_8b_v7	67.6	(?, ?)	503
ruadapt_qwen2.5_3B_ext_u48_instruct_v4	66.1	(?, ?)	531
t-lite-instruct-0.1	64.7	(-2.1, 1.7)	810
vikhr-llama3.1-8b-instruct-r-21-09-24	63.4	(-2.1, 2.5)	618
suzume-llama-3-8B-multilingual-orpo-borda-half	57.1	(-1.9, 2.2)	682
mistral-nemo-instruct-2407	50.5	(-2.7, 2.6)	403
gpt-3.5-turbo-0125	50.0	(0.0, 0.0)	220
c4ai-command-r-v01	49.0	(-1.7, 2.2)	529
meta-llama-3.1-8b-instruct	43.1	(-2.8, 2.3)	628

"Особенности" токенизации в современных пакетах [1]

- В huggingface два реализации токенизации: быстрая и обычная.
- Их поведение для одинаковых моделей должно быть эквивалентно, но!

• **Пробелы** для токенизации **важны**

```
text1 = "<s>system\nTы — Сайга</s><s>user\nКакой результат уровненеия 2+2*2? Объясни свой результат</s><s>bot\n"
    text2 = "<s> system\nТы — Сайга </s> <s> user\nКакой результат уровненеия 2+2*2? Объясни свой результат </s> <s> bot\n"
[19] from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_mistral_7b_merged", use_fast=False)
    tokens1 = tokenizer(text1)["input_ids"]
    print(tokens1)
    Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
    [1, 1587, 13, 28875, 28829, 1040, 9177, 28819, 2618, 2, 1, 2188, 13, 22117, 13108, 20959, 28786, 1351, 5658, 28778, 8977, 28772, 28811, 28
    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_mistral_7b_merged", use_fast=True)
    tokens2 = tokenizer(text1)["input_ids"]
    print(tokens2)
    Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
    [1, 6574, 13, 28875, 28829, 1040, 9177, 28819, 2618, 700, 28713, 3409, 28713, 28767, 1838, 13, 22117, 13108, 20959, 28786, 1351, 5658, 287
[17] from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_mistral_7b_merged", use_fast=True)
    tokens3 = tokenizer(text2)["input_ids"]
    print(tokens3)
    Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
    [1, 1587, 13, 28875, 28829, 1040, 9177, 28819, 2618, 2, 1, 2188, 13, 22117, 13108, 20959, 28786, 1351, 5658, 28778, 8977, 28772, 28811, 28
```

"Особенности" токенизации в современных пакетах [2]

- Токенизатор всегда считает первое слово последовательности "пробельным".
- Представление для "Слово" и "\nСлово" отличны.
- Разные іd токенов -> разные вектора на вход.

```
tokenizer('Слово', add special tokens=False)['input ids']
[1406, 1120, 1175]
  tokenizer(' Слово', add special tokens=False)['input ids']
[28705, 1406, 1120, 1175]
  tokenizer('\nCncsc', add_special_tokens=False)['input_ids']
[28705, 13, 28844, 1120, 1175]
   tokenizer.convert ids to tokens([28705, 1406, 28844])
['_', '_c', 'c']
```

Пример словаря токенов в модели Gemma

Это - не нормально, но объяснимо.

```
,255959 :"b"
.255960 :"∋"
  " ": 255961,
  "<sub>†</sub>": 255962,
  "F": 255963,
  "==": 255964,
  "#": 255965.
  "X": 255966,
  "5": 255967,
  "[toxicity=0]": 255968,
  "\t\t": 255969,
  "\t\t\t": 255970,
  "\t\t\t\t": 255971.
  "\t\t\t\t\t": 255972,
  "\t\t\t\t\t\t": 255973,
  "\t\t\t\t\t\t\t\t\t": 255974,
  "\t\t\t\t\t\t\t\t\t\t": 255975,
  "\t\t\t\t\t\t\t\t\t\t\t\": 255976,
  "\t\t\t\t\t\t\t\t\t\t\t\t": 255977,
  "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\": 255978,
  "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\": 255979,
  "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\": 255980,
```

Разница в токенизации для языков

- Токенизация полностью зависит от корпуса, на котором обучалась.
- Если в корпусе было мало какого-нибудь языка, то и слово будет разбиваться на много токенов.
- Чем больше токенов, тем дольше ее обработка!
- В LLaMa и других открытых моделях в среднем 2 символа на токен для русского языка.

Пример токенизации текста в ChatGPT: английский

24

Пример токенизации текста в ChatGPT: русский

[61432, 17461, 30480, 1532, 46410, 9136, 4655, 90877, 5173 6, 71239, 61642, 5927, 5927, 29256, 42057, 13999, 12, 1333 7, 48074, 44786, 93099, 1506, 10693, 25, 20879, 11047, 3568 2, 2297, 57719, 91883, 57297, 5524, 14082, 20812, 5372, 399 00, 17756, 8131, 14391, 13337, 1506]

Оценка качества LLM

Оценка качества LLM

Обычная оценка качества в ML: 1) Есть четкая задача 2) Есть четкий вариант правильного и не правильного ответа 3) различные формулы оценки.

Как оценивать LLM, особенно инструктивные?

- zero-shot / few-shot при решении конкретных задач.
- Следование инструкциям.
- Полезность, вредность, токсичность.
- Сравнение side-by-side людьми
- Сравнение side-by-side намного более мощной LLM.

MMLU

- Классический бенчмарк для оценки знаний модели.
- Вопросы с множественным выбором, 4 варианта ответа, оценка вероятности генерации A, B, C, D.
- Покрытие различных областей от физики до философии, разный уровень (колледж, старшая школа, профессиональный).
- Считают в zero-shot и few-shot c k=5.
 - Качество с few-shot у базовых и инстракт моделей обычно схожие.
- Для русского языка есть переводной вариант: https://github.com/NLP-Core-Team/mmlu_ru

HELM

Leaderboard Models Scenarios Predictions GitHub Release v1.1.0 (2024-03-01) v

Scenarios

A scenario represents a use case and consists of a dataset of instances.

Scenario	Task	What	Who	When	Language	Description
NarrativeQA narrative_qa	short-answer question answering	passages are books and movie scripts, questions are unknown	annotators from summaries	2018	English	The NarrativeQA benchmark for reading comprehension over narratives (Kočiský et al., 2017).
NaturalQuestions (closed-book) natural_qa_closedbook	short-answer question answering	passages from Wikipedia, questions from search queries	web users	2010s	English	The NaturalQuestions (Kwiatkowski et al., 2019) benchmark for question answering based on naturally-occurring queries through Google Search. The input does
NaturalQuestions (open-book) natural_qa_openbook_longans	short-answer question answering	passages from Wikipedia. questions from search queries	web users	2010s	English	The NaturalQuestions (Kwiatkowski et al., 2019) benchmark for question answering based on naturally-occurring queries through Google Search. The input includes the Wikipedia page with the answer.
OpenbookQA openbookqa	multiple-choice question answering	elementary science	Amazon Mechnical Turk workers	2018	English	The OpenbookQA benchmark for commonsense-intensive open book question answering (Mihaylov et al., 2018).
MMLU (Massive Multitask Language Understanding) mmlu	multiple-choice question answering	math, science, history, etc.	various online sources	before 2021	English	The Massive Multitask Language Understanding (MMLU) benchmark for knowledge-intensive question answering across 57 domains (Hendrycks et al., 2021).
GSM8K (Grade School Math)	numeric answer question answering	grade school math word problems	contractors on Upwork and Surge AI	2021	English	The grade school math word problems dataset (GSMBK) for testing mathematical reasoning on grade-school math problems (Cobbe et al., 2021).
MATH math_chain_of_thought	numeric answer question answering	math competitions (AMC, AIME, etc.)	problem setters	before 2021	synthetic	The MATH benchmark for measuring mathematical problem solving on competition math problems with chain-of-thought style reasoning (Hendrycks et al., 2021).
LegalBench legalbench	multiple-choice question answering	public legal and admininstrative documents, manually constructed questions	lawyers	before 2023	English	LegalBench is a large collaboratively constructed benchmark of legal reasoning tasks (Guha et al. 2023).
MedQA med_qa	multiple-choice question answering	US medical licensing exams	problem setters	before 2020	English	MedQA is an open domain question answering dataset composed of questions from professional medical board exams (Jin et al. 2020).
WMT 2014 wmt_14	machine translation	multilingual sentences	Europarl, news. Common Crawl, etc.	before 2014	English, French, Czech, etc.	WMT 2014 is a collection of machine translation datasets (website).

HELM

Leaderboard Models Scenarios Predictions GitHub Release v1.1.0 (2024-03-01) v

HELM Leaderboard	Select a group:
The HELM leaderboard shows how the various models perform across different scenarios and metrics.	Core scenarios 🗸

Accuracy Efficiency General info	rmation										
Model 🗘	Mean win rate 🗘	NarrativeQA - F1 🗘	NaturalQuestions (open-book) - F1 💲	NaturalQuestions (closed-book) - F1 💲	OpenbookQA - EM 💲	MMLU - EM	MATH - Equivalent (CoT) 💲	GSM8K - EM 💲	LegalBench - EM 🗘	MedQA - EM 🗘	WMT 2014 - BLEU-4 💲
GPT-4 (0613)	0.965	0.768	0.79	0.457	0.96	0.735	0.802	0.932	0.713	0.815	0.211
GPT-4 Turbo (1106 preview)	0.842	0.727	0.763	0.435	0.95	0.699	0.857	0.668	0.626	0.817	0.205
Palmyra X V3 (72B)	0.832	0.706	0.685	0.407	0.938	0.702	0.723	0.831	0.709	0.684	0.262
Palmyra X V2 (33B)	0.794	0.752	0.752	0.428	0.878	0.621	0.58	0.735	0.644	0.598	0.239
PaLM-2 (Unicorn)	0.784	0.583	0.674	0.435	0.938	0.702	0.674	0.831	0.677	0.684	0.26
Yi (34B)	0.781	0.782	0.775	0.443	0.92	0.65	0.375	0.648	0.618	0.656	0.172
Mixtral (8x7B 32K seqlen)	0.739	0.767	0.699	0.427	0.868	0.649	0.494	0.622	0.63	0.652	0.19
Anthropic Claude v1.3	0.739	0.723	0.699	0.409	0.908	0.631	0.54	0.784	0.629	0.618	0.219
Anthropic Claude 2.0	0.694	0.718	0.67	0.428	0.862	0.639	0.603	0.583	0.643	0.652	0.219
PaLM-2 (Bison)	0.694	0.718	0.813	0.39	0.878	0.608	0.421	0.61	0.645	0.547	0.241
Llama 2 (70B)	0.665	0.763	0.674	0.46	0.838	0.58	0.323	0.567	0.673	0.618	0.196
GPT-3.5 (text-davinci-003)	0.629	0.731	0.77	0.413	0.828	0.555	0.449	0.615	0.622	0.531	0.191
Anthropic Claude 2.1	0.61	0.677	0.611	0.375	0.872	0.643	0.632	0.604	0.643	0.644	0.204
Anthropic Claude Instant 1.2	0.581	0.616	0.731	0.343	0.844	0.631	0.499	0.721	0.586	0.559	0.194
GPT-3.5 (text-davinci-002)	0.523	0.719	0.71	0.394	0.796	0.568	0.428	0.479	0.58	0.525	0.174
GPT-3.5 Turbo (0613)	0.523	0.655	0.678	0.335	0.838	0.614	0.667	0.501	0.528	0.622	0.187
LLaMA (65B)	0.51	0.755	0.672	0.433	0.754	0.584	0.257	0.489	0.48	0.507	0.189
Cohere Command	0.468	0.749	0.777	0.391	0.774	0.525	0.236	0.452	0.578	0.445	0.088
Mistral v0.1 (7B)	0.448	0.716	0.687	0.367	0.776	0.584	0.297	0.377	0.58	0.525	0.16

BigBench

- 200+ NLP задач.
- Есть Lite и Hard версии.
- Пример из карточки модели
 NousResearch/Nous-Herme s-2-SOLAR-10.7В

Russian Super Glue

- Относительно старый бенчмарк на данный момент.
- Содержит 9 различных датасетов.
- Имеет тренировочные данные для каждого из них.
- Уровень "человека" с учетом обучения по сути уже давно превзойден.

Russian Super Glue

Leaderboard

MERA

 Основной разработчик бенча: Сбер (заявлено как Альянс ИИ)

- Содержит 21 задачу
- Недавно получил апдейт, обновился лидерборд

1=	Модель, команда ↓	Результат ↓	RWSD	PARus -	RCB 4	MultiQ 4	ruWorldTree 4	ruOpenBookQA →	CheGeKa 4
1	GPT40 MERA	0.642	0.496	0.944	0.557 / 0.521	0.572 / 0.431	0.985 / 0.985	0.935 / 0.935	0.553 / 0.464
2	Meta-Llama-3.1-405B-In 405.08 MERA	0.59	0.677	0.902	0.598 / 0.548	0.623 / 0.453	0.981 / 0.981	0.955 / 0.765	0.506 / 0.41
3	GigaChat Max GIGACHAT	0.588	0.665	0.928	0.58 / 0.423	0.486 / 0.322	0.975 / 0.975	0.918 / 0.737	0.469 / 0.39
4	Mistral-Large-Instruct-2 123.08 MERA	0.574	0.635	0.932	0.55 / 0.531	0.63 / 0.471	0.975 / 0.975	0.915 / 0.915	0.458 / 0.35
5	GPT4o-mini MERA	0.57	0.577	0.918	0.571 / 0.507	0.509 / 0.379	0.956 / 0.956	0.875 / 0.874	0.293 / 0.23
6	Qwen2-72B-Instruct 72.7B MERA	0.57	0.658	0.944	0.511 / 0.484	0.58 / 0.447	0.985 / 0.789	0.945 / 0.945	0.324 / 0.26
7	Qwen2.5-32B-Instruct-A 32.08 mizinovmv	0.567	0.619	0.93	0.573 / 0.539	0.564 / 0.426	0.987 / 0.987	0.935 / 0.935	0.172 / 0.12
8	Meta-Llama-3.1-70B-Ins 70.68 MERA	0.554	0.554	0.932	0.596 / 0.526	0.607 / 0.443	0.977 / 0.977	0.913 / 0.731	0.353 / 0.29
9	Meta-Llama-3-70B-Instr 70.68 MERA	0.528	0.519	0.892	0.587 / 0.493	0.595 / 0.421	0.958 / 0.958	0.905 / 0.727	0.327 / 0.26
10	GigaChat Pro 30.08 GIGACHAT	0.516	0.362	0.884	0.575 / 0.258	0.302 / 0.212	0.931 / 0.931	0.873 / 0.7	0.397 / 0.32
11	Phi-3.5-MoE-instruct 41.98 MERA	0.487	0.465	0.864	0.546 / 0.486	0.446 / 0.349	0.971 / 0.971	0.88 / 0.88	0.178 / 0.139
12	Mixtral-8×22B-Instruct 140.68 MERA	0.486	0.473	0.87	0.578 / 0.372	0.521 / 0.366	0.916 / 0.733	0.835 / 0.669	0.338 / 0.26
13	Qwen1.5-32B-Chat 32.58 MERA	0.482	0.377	0.904	0.521 / 0.456	0.452 / 0.318	0.931 / 0.932	0.86 / 0.86	0.119 / 0.082
14	GigaChat Lite+ 7.08 GIGACHAT	0.477	0.435	0.85	0.53 / 0.278	0.287 / 0.208	0.886 / 0.886	0.785 / 0.63	0.268 / 0.214
15	GigaChat Lite 7.08 GIGACHAT	0.477	0.427	0.842	0.523 / 0.275	0.285 / 0.207	0.89 / 0.89	0.78 / 0.626	0.274 / 0.21
16	Qwen2-57B-A14B-Instruct 57.4B MERA	0.471	0.342	0.894	0.541 / 0.449	0.48 / 0.348	0.941 / 0.941	0.888 / 0.888	0.19 / 0.144
17	Phi-3-medium-4k-instruct 14.08 MERA	0.465	0.488	0.896	0.495 / 0.435	0.361 / 0.174	0.962 / 0.962	0.873 / 0.873	0.135 / 0.09
8	ruadapt Ilama3-8B-instr 8.4B RCC MSU	0.447	0.542	0.828	0.534 / 0.446	0.483 / 0.334	0.838 / 0.837	0.773 / 0.772	0.146 / 0.10
9	Qwen2-7B-Instruct 7.68 MERA	0.445	0.462	0.82	0.541 / 0.353	0.442 / 0.333	0.926 / 0.742	0.783 / 0.782	0.069 / 0.04
0	Phi-3-medium-128k-inst 14.08 MERA	0.441	0.485	0.9	0.546 / 0.459	0.361 / 0.162	0.954 / 0.764	0.863 / 0.691	0.134 / 0.08
1	Phi-3-small-8k-instruct 7.48	0.438	0.523	0.836	0.55 / 0.398	0.361 / 0.231	0.935 / 0.749	0.825 / 0.661	0.08 / 0.053

https://mera.a-ai.ru/ru

Shlepa

Бенчмарк от Vikhr: "mmlu" с выбором из 12 вариантов

Проблемы современных бенчмарков

- Качество на конкретных задачах не отражает пользовательский опыт.
- Сложно оценивать следование инструкциям.
- Модели переобучают на то, чтобы иметь более высокие значения на бенчмарках

Арены

Вместо сравнения на бенчмарках: cpaвнение side-by-side.

- Сравнение за счет других больших моделей.
 - MT-bench
 - alpaca-eval
- Сравнение за счет оценки людьми.
 - o **Imsys**

Imsys

Imsys

| Vote | Blog | GitHub | Paper | Dataset | Twitter | Discord |

LMSYS Chatbot Arena is a crowdsourced open platform for LLM evals. We've collected over 500,000 human preference votes to rank LLMs with the Elo ranking system.

Total #models: 81 . Total #votes: 634676 . Last updated: April 9, 2024. Contribute your vote �� at <u>chat.lmsys.org!</u> Find more analysis in the <u>notebook</u> .							
Rank 🔺	₩ Model	▲ ☆ Arena Elo	95% CI 🔺	♦ Votes	Organization A	License A	Knowledge Cutoff
1	Claude 3 Opus	1256	+3/-4	47589	Anthropic	Proprietary	2023/8
1	GPT-4-1106-preview	1254	+3/-4	62657	OpenAI	Proprietary	2023/4
1	GPT-4-0125-preview	1250	+3/-3	47631	OpenAI	Proprietary	2023/12
4	Bard (Gemini Pro)	1208	+5/-5	12468	Google	Proprietary	Online
4	Claude 3 Sonnet	1204	+3/-3	57740	Anthropic	Proprietary	2023/8
6	CommandR±	1194	+5/-5	17404	Cohere	CC-BY-NC-4.0	2024/3
6	GPT-4-0314	1189	+4/-3	41292	OpenAI	Proprietary	2021/9
8	Claude 3 Haiku	1182	+3/-4	50689	Anthropic	Proprietary	2023/8
9	GPT-4-0613	1164	+3/-3	60213	OpenAI	Proprietary	2021/9
9	Mistral-Large-2402	1158	+3/-4	35075	Mistral	Proprietary	Unknown
10	Owen1.5-72B-Chat	1153	+4/-5	27050	Alibaba	Qianwen LICENSE	2024/2
10	Claude-1	1150	+5/-5	21868	Anthropic	Proprietary	Unknown
11	CommandR	1149	+3/-3	31871	Cohere	CC-BY-NC-4.0	2024/3
11	Mistral Medium	1148	+4/-5	29807	Mistral	Proprietary	Unknown
15	Owen1.5-32B-Chat	1138	+4/-6	12130	Alibaba	Qianwen LICENSE	2024/2

Note: we take the 95% confidence interval into account when determining a model's ranking. A model is ranked higher only if its lower bound of model score is higher than the upper bound of the other model's score. See Figure 3 below for visualization of the confidence intervals.

Ilmarena.ru

https://llmarena.ru/

Ru Arena General

- Тоже от Vikhr
- Ilm-as-judge
 - o gpt4o
- Сравнивается против gpt-3.5

Im eval

- Известный фреймворк для оценки LLM
- На нем основаны
 - MERA
 - shlepa
 - и др. англ. бенчмарки
- Имеет ряд достоинств и некоторые недостатки (которые со временем исправляют)
 - Нельзя нормально тестировать вариант, когда часть ответа модели уже дана
 - Сложный код с большим количеством legacy

Ilmtf

- Разрабатываемый мной фреймворк для оценки LLM
- Можно оценивать генерации, вероятность токена, вероятность последовательности
- В основе messages формат работы с моделями.
- Простой способ добавления своих task
- Информативные log файлы (но много весят)

Выводы

- Задача сравнения больших языковых моделей до сих пор большая проблема.
- Количество различных англоязычных бенчмарков велико (а какой лучший?), но русскоязычных почти нет.
- А что делать с конкретными предметными областями и задачами?

Выводы [2]

- Арены позволяют сравнивать модели максимально приближенно к усредненному качеству для задач среднего пользователя, но поддерживать их дорого и свои модели на них не потестировать.
 - Имея доступ к GPT-4 можно использовать MT-bench.
- Обычных же бенчмарков недостаточно, так как происходит переобучение на их задачи (иногда намеренное).

Домашнее задание 3

Цель задания:

На основе кода фреймворка Ilmtf реализовать какую-либо генеративную задачу и оценить с помощью нее 2 модели на выбор.

- Важно выбрать ту задачу, которую можно оценить на основе генерации LLM
- Например, NER, где модель обязана генерировать ответ в структурированном виде, который легко парсить

Домашнее задание 3

- Основные этапы задания:
 - Выбор датасета, разделение его на prompt/test части
 - Конвертация его в message формат или модификация load_dataset функции
 - Реализация основных функций: evaluate, aggregation, create_messages
 - Запуск на тестирование

Задание: оценивание и сроки

- Срок 1 неделя: до 30 октября 23:59.
- Присылать на <u>tikhomirov.mm@gmail.com</u>
 - Название письма: Practical LLM: Задание 3, Ilmtf task.
 - В письме Ваше полное ФИО, группа, решение и краткий отчет по нему в PDF.
- Оценка по шкале "-/-+/+-/+/-".
 - ++ за те решения, которые особо мне понравятся чемлибо.