Leçon 150. Exemples d'actions de groupes sur les espaces de matrices.

1. NOTATION. On considère un corps K et deux entiers n et m strictement positifs.

1. Action par translation

1.1. Définitions

2. DÉFINITION. On considère l'action du groupe $GL_n(\mathbf{K})$ sur $\mathcal{M}_{n,m}(\mathbf{K})$ définie par $P \cdot A = PA$, $P \in GL_n(\mathbf{K})$, $A \in \mathcal{M}_{n,m}(\mathbf{K})$.

Cette action est dite à gauche. On définit également l'action à droite du groupe $GL_m(\mathbf{K})$ sur $\mathcal{M}_{n,m}(\mathbf{K})$ par $P \cdot A := AP$.

- 3. Remarque. Cette action n'est ni transitive ni fidèle.
- 4. PROPOSITION. On suppose $m \leq n$. Soient $A, A' \in \mathcal{M}_{n,m}(\mathbf{K})$ deux matrices de rang m. Alors les propositions suivantes sont équivalentes :
 - les colonnes de A et A' engendre le même sous-espace vectoriel;
 - les matrices A et A' appartiennent à la même orbite pour l'action à gauche.
- 5. DÉFINITION. Soient $i, j \in [\![1, n]\!]$ deux entiers distincts et $\lambda, \alpha \in \mathbf{K}^{\times}$ deux scalaires non nuls. On définit les matrices
 - de dilation $D_i(a) := I_n + (\alpha 1)E_{i,i}$;
 - de transvection $T_{i,j}(\lambda) := I_n + \lambda E_{i,j}$;
 - de permutation $P_{i,j} = I_n E_{i,i} E_{j,j} + E_{i,j} + E_{j,i}$.
- 6. Proposition. Soit $A \in \mathcal{M}_{n,m}(\mathbf{K})$ une matrice. Notons L_1, \ldots, L_n ses lignes. Alors
 - le produit $D_i(a)A$ revient à faire l'opération $L_i \leftarrow \alpha L_i$;
 - le produit $T_{i,j}(\lambda)$ revient à faire l'opération $L_i \leftarrow L_i + \lambda L_j$;
 - le produit $P_{i,j}A$ revient à faire l'opération $L_i \longleftrightarrow L_j$.

On agit de même sur les colonnes de la matrice A par multiplication à droite.

1.2. Algorithme du pivot de Gauss

- 7. DÉFINITION. Un pivot d'une ligne non nulle d'une matrice est le coefficient non nul situé le plus à gauche. Une matrice est *échelonnée* lorsqu'elle vérifie les deux points suivants :
 - si une de ses lignes est nulles, alors ses suivantes sont nulles;
- le pivot d'une ligne est strictement plus à droite que ceux des lignes précédentes. De plus, elle est *réduite* lorsque tous les pivots valent un et qu'ils sont les seuls coefficients non nuls de leur colonne.
- 8. Théorème. Toute matrice est dans l'orbite d'une unique matrice échelonnée réduite.
- 9. Remarque. C'est une conséquence de l'algorithme de Gauss : on multiplie successivement la matrice A par des matrices d'opérations élémentaires, nous donnant ainsi une matrice inversible P.
- 10. Exemple. Appliquons l'algorithme de Gauss à la matrice suivante. On obtient successivement

$$\begin{pmatrix} 1 & 2 & 0 \\ 3 & 6 & 4 \\ 5 & 6 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & -4 & 3 \end{pmatrix} \qquad (L_2 \longleftarrow L_2 - 3L_1 \text{ et } L_3 \longleftarrow L_3 - 5L_1)$$

$$\longrightarrow \begin{pmatrix} 1 & 2 & 0 \\ 0 & -4 & 3 \\ 0 & 0 & 4 \end{pmatrix}. \tag{L_2 \longleftrightarrow L_3}$$

La matrice inversible en question est alors $P_{2,3}T_{3,1}(5)T_{2,1}(3)$.

- 11. Remarque. L'algorithme du pivot de Gauss se fait en $O(n^3)$ opérations élémentaires.
- 12. THÉORÈME. Les transvections engendrent $SL_n(\mathbf{K})$.
- 13. COROLLAIRE. Les transvections et les dilatations engendrent $GL_n(\mathbf{K})$.

1.3. Résultats de décomposition matricielle

- 14. NOTATION. On va considérer l'ensemble $\mathscr{T}_n^{++}(\mathbf{K})$ des matrices triangulaires supérieures de $\mathscr{M}_n(\mathbf{K})$ à coefficients diagonaux strictement positifs et l'ensemble $\mathscr{S}_n^{++}(\mathbf{R})$ des matrices symétriques définies positives de $\mathscr{M}_n(\mathbf{R})$.
- 15. Théorème (décomposition QR). Toute matrice inversible $A \in GL_n(\mathbf{R})$ s'écrit de manière unique sous la forme A = QR avec $Q \in O_n(\mathbf{R})$ et $R \in \mathcal{T}_n^{++}(\mathbf{R})$.
- 16. Remarque. Le théorème est une conséquence du procédé d'orthonormalisation de Gram-Schmidt.
- 17. APPLICATION. Pour résoudre un système Ax = b avec $b \in \mathbf{K}^n$, on résout le système triangulaire $Ry = {}^{\mathrm{t}}Qb$ qui ne nécessite pas l'algorithme du pivot de Gauss.
- 18. Théorème (décomposition polaire). Toute matrice inversible $A \in GL_n(\mathbf{R})$ s'écrit de manière unique sous la forme A = QS avec $Q \in O_n(\mathbf{R})$ et $R \in \mathscr{S}_n^{++}(\mathbf{R})$.

2. Action par équivalence et par conjugaison

2.1. Action de Steinitz

- 19. DÉFINITION. Deux matrices $A, B \in \mathcal{M}_{n,m}(\mathbf{K})$ sont équivalentes s'il existe deux matrices inversibles $P \in GL_m(\mathbf{K})$ et $Q \in GL_n(\mathbf{K})$ telles que $A = Q^{-1}BP$.
- 20. Théorème (du rang). Deux matrices sont équivalente de $\mathcal{M}_{n,m}(\mathbf{K})$ si et seulement si elles ont le même rang.
- 21. Remarque. On peut remplacer le rang par la dimension du noyau.
- 22. COROLLAIRE. L'action par équivalence du groupe $GL_n(\mathbf{K}) \times GL_m(\mathbf{K})$ sur $\mathcal{M}_{n,m}(\mathbf{K})$ admet comme système de représentants d'orbites $\{\operatorname{diag}(I_r,0)\}_{r \leq \min(n,m)}$.
- 23. COROLLAIRE. Une matrice de $\mathcal{M}_{n,m}(\mathbf{K})$ et sa transposée ont le même rang.
- 24. PROPOSITION. Soit **K** le corps des réels ou des complexes. Pour $r \in [0, \min(n, m)]$ on note $O_r \in \mathcal{M}_{n,m}(\mathbf{K})$ l'orbite de la matrice diag $(I_r, 0)$. Alors

$$\overline{O_r} = O_0 \sqcup \cdots \sqcup O_r.$$

25. COROLLAIRE. La limite d'une suite de matrices de $\mathcal{M}_{n,m}(\mathbf{K})$ de rang r est de rang au plus r.

2.2. Action par conjugaison sur $\mathcal{M}_n(\mathbf{K})$

- 26. DÉFINITION. Deux matrices $A, B \in \mathcal{M}_n(\mathbf{K})$ sont semblables s'il existe une matrice inversible $P \in GL_n(\mathbf{K})$ telle que $A = P^{-1}BP$.
- 27. Proposition. Deux matrices semblabes de $\mathcal{M}_n(\mathbf{K})$ ont les mêmes trace, déterminant, polynôme minimal et polynôme caractéristique.

28. Remarque. Attention, la réciproque est fausse : les deux matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

ne sont pas semblables.

- 29. DÉFINITION. Une matrice de $\mathcal{M}_n(\mathbf{K})$ est diagonalisable (respectivement trigonalisable) sur \mathbf{K} si elle est semblable à une matrice diagonale (respectivement triangulaire).
- 30. THÉORÈME. Une matrice de $\mathcal{M}_n(\mathbf{K})$ est trigonalisable sur \mathbf{K} si et seulement si son polynôme caractéristique est scindé sur \mathbf{K} .
- 31. COROLLAIRE. Toute matrice carrée à coefficients complexes est trigonalisable.
- 32. THÉORÈME. Une matrice $A \in \mathcal{M}_n(\mathbf{K})$ est diagonalisable si et seulement si
 - son polynôme caractéristique est scindé;
 - les multiplicités de ses racines coïncident avec les dimensions des sous-espaces propres associés.
- 33. Proposition. Deux matrices de $\mathcal{M}_n(\mathbf{R})$ semblables sur \mathbf{C} le sont sur \mathbf{R} .
- 34. COROLLAIRE. Soit $A \in \mathcal{M}_n(\mathbf{R})$. Alors

$$GL_n(\mathbf{R}) \cdot A = (GL_n(\mathbf{C}) \cdot A) \cap \mathscr{M}_n(\mathbf{R}).$$

2.3. Le cône nilpotent

35. DÉFINITION. On appelle cône nilpotent sur **K** l'ensemble $\operatorname{Nil}_n(\mathbf{K})$ des matrices nilpotentes $A \in \mathcal{M}_n(\mathbf{K})$, c'est-à-dire telle qu'il existe un entier $p \in \mathbf{N}^*$ vérifiant $A^p = I_n$. 36. REMARQUE. Ce n'est pas un espace vectoriel puisque la somme

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

n'est pas nilpotente.

37. THÉORÈME. Soit \mathbf{F}_q un corps fini de cardinal q. Alors $|\mathrm{Nil}_n(\mathbf{F}_q)| = q^{n(n-1)}$.

2.4. Réductions de Frobenius et de Jordan

38. NOTATION. Pour un polynôme unitaire $P \in \mathbf{K}[X]$ de degré d, on note $C_p \in \mathcal{M}_d(\mathbf{K})$ sa matrice compagnon. Plus précisément, si $P = X^d + a_{d-1}X^{d-1} + \cdots + a_0$, alors

$$C_P = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}.$$

- 39. Théorème (réduction de Frobenius). Soient E un K-espace vectoriel et $u \in \mathcal{L}(E)$. Alors il existe des uniques polynômes unitaires $P_1, \ldots, P_r \in K[X]$ et des uniques sous-espaces vectoriels $E_1, \ldots, E_r \subset E$ stables par l'endomorphisme u tels que
 - $-E = E_1 \oplus \cdots \oplus E_r;$
 - $-P_r \mid \cdots \mid P_1;$
 - pour tout entier $i \in [1, r]$, l'endomorphisme induit $u|_{E_i}$ sur E_i est cyclique de polynôme P_i .

De plus, il existe une base de E dans laquelle l'endomorphisme u ait pour matrice diag $(C_{P_1}, \ldots, C_{P_r})$.

Les polynômes P_i sont les facteurs invariants de l'endomorphisme u.

40. Exemple. On considère la matrice

$$A \coloneqq \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

de polynôme caractéristique $\chi_M := (X-1)^2(X+1)$. Alors les seuls facteurs invariants possibles sont X-1, (X-1)(X+1) ou χ_M . Pour des raisons de dimension/degré, l'unique facteur invariant est $\chi_M = X^3 - X^2 - X + 1$ et la matrice A est semblable à la matrice

$$C_{\chi_M} = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

- 41. Proposition. Deux matrices de $\mathcal{M}_n(\mathbf{K})$ sont semblables si et seulement si elles ont les mêmes facteurs invariants.
- 42. Théorème. Soit $u\in \mathcal{L}(E)$ un endomorphisme de polynôme caractéristique scindé. Alors il existe une base de E dans laquelle sa matrice est diagonale par blocs de blocs diagonaux de la forme

$$\begin{pmatrix} \lambda & 1 & \cdots & 1 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \lambda \end{pmatrix} \quad \text{avec} \quad \lambda \in \mathbf{K}.$$

3. Action par congruence

3.1. Action sur les matrices symétriques

- 43. NOTATION. On considère l'ensemble $\mathscr{S}_n(\mathbf{K})$ des matrices symétriques de $\mathscr{M}_n(\mathbf{K})$.
- 44. DÉFINITION. Deux matrices symétriques $A, B \in \mathscr{S}_n(\mathbf{K})$ sont congruentes s'il existe une matrice $P \in \mathrm{GL}_n(\mathbf{K})$ telle que $A = PB^{\mathrm{t}}P$.
- 45. Proposition. Deux matrices symétriques sont congruentes si elles représentent le forme quadratique dans des bases différentes.
- 46. THÉORÈME (de structure de forme quadratique réelle). Soit (E,q) un **R**-espace quadratique. Alors il existe une base et deux entiers $t, s \in \mathbb{N}$ dans laquelle la forme q soit de matrice diag $(I_s, I_t, 0)$.
- 47. DÉFINITION. Le couple $(s,t) \in \mathbb{N}^2$ est la signature de la forme q.
- 48. DÉFINITION. Le discriminant d'une forme quadratique est la classe dans $\mathbf{K}^{\times}/(\mathbf{K}^{\times})^2$ du déterminant d'une de ses matrices.
- 49. Théorème (de classification des formes quadratiques). Deux matrices de $\mathscr{S}_n(\mathbf{K})$ sont congruentes si et seulement si
 - elles ont le même rang si $\mathbf{K} = \mathbf{C}$;
 - elles ont la même signature si $\mathbf{K} = \mathbf{R}$;
 - elles ont le même discriminant si $\mathbf{K} = \mathbf{F}_q$ avec q > 2.

3.2. Action sur le groupe orthogonal

- 50. DÉFINITION. Soit E un espace euclidien. Un endomorphisme $u \in \mathcal{L}(E)$ est normal s'il commute avec son adjoint f^* .
- 51. Théorème. Soit $u \in \mathcal{L}(E)$ un endomorphisme normal. Alors il existe une base de E dans laquelle sa matrice s'écrit $\operatorname{diag}(\lambda_1, \dots, \lambda_r, R_1, \dots, R_s)$ pour des réels $\lambda_1, \dots, \lambda_r \in \mathbf{R}$ et des matrices R_j de la forme

$$R_j = \begin{pmatrix} a_j & -b_j \\ b_j & a_j \end{pmatrix} \in SO_2(\mathbf{R}).$$

52. DÉFINITION. Le groupe orthogonal est l'ensemble

$$O_n(\mathbf{R}) := \{ P \in GL_n(\mathbf{R}) \mid {}^{\mathrm{t}}PP = I_n \}.$$

- 53. Proposition. Les colonnes d'une matrice $P \in \mathcal{O}_n(\mathbf{R})$ forment une base orthonormée de l'espace euclidien \mathbf{R}^n .
- 54. COROLLAIRE. Toute matrice $P \in O_n(\mathbf{R})$ vérifie $|||P|||_2 = 1$.
- 55. REMARQUE. C'est le stabilisateur de la matrice identité I_n pour l'action par congruence du groupe $\mathrm{GL}_n(\mathbf{K})$ sur $\mathscr{S}_n(\mathbf{K})$.
- 56. COROLLAIRE. Le groupe orthogonal $O_n(\mathbf{R})$ admet deux composantes connexes

$$SO_n(\mathbf{R}) := \{ P \in O_n(\mathbf{R}) \mid \det P = 1 \}$$

et
$$O_n^-(\mathbf{R}) := \{ P \in O_n(\mathbf{R}) \mid \det P = -1 \}.$$

^[1] Philippe Caldero et Jérôme Germoni. Histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet, 2013.

^[2] Philippe Caldero et Jérôme Germoni. Histoires hédonistes de groupes et de géométries. T. Tome second. Calvage & Mounet, 2015.

^[3] Xavier Gourdon. Algèbre. 2e édition. Ellipses, 2009.

^[4] Daniel Perrin. Cours d'algèbre. Ellipses, 1996.