Foundations of Calculus

Ikhan Choi

September 6, 2021

Contents

Ι	Sequences	2
1	Convergence	3
2	Series 2.1 Convergence tests	4 4
II	Functions	6
3	Continuity	7
4	Differentiation	8
5	Functional sequences	9
III	Integration	10
6	Riemann integration	11

Part I Sequences

Convergence

Series

2.1 Convergence tests

2.1 (Mertens' theorem). If $\sum_{k=0}^{\infty} a_k$ converges to a absolutely and $\sum_{k=0}^{\infty} b_k$ converges to b, then their Cauchy product $\sum_{k=0}^{\infty} c_k$ with $c_k := \sum_{l=0}^k a_l b_{k-l}$ converges to ab.

Proof. Let

$$A_n := \sum_{k=0}^n a_k$$
, $B_n := \sum_{k=0}^n b_k$, and $C_n := \sum_{k=0}^n c_k$

so that

$$C_n = \sum_{k=0}^n \sum_{l=0}^k a_l b_{k-l} = \sum_{l=0}^n \sum_{k=l}^n a_l b_{k-l} = \sum_{l=0}^n a_l \sum_{k=0}^{n-l} b_k = \sum_{l=0}^n a_l B_{n-l}.$$

For $\varepsilon > 0$ fix k_0 such that $k \ge k_0$ implies

$$|B_k - B|(\sum_{l=0}^{\infty} |a_l|) < \varepsilon.$$

Then, since we have

$$\begin{aligned} |C_n - AB| &= |\sum_{k=0}^n a_{n-k}(B_k - B) + (A_n - A)B| \\ &\leq \sum_{k=0}^{k_0 - 1} |a_{n-k}| |B_k - B| + \sum_{k=k_0}^n |a_{n-k}| |B_k - B| + |A_n - A||B| \\ &\leq \max_{n-k_0 < k \le n} |a_k| (\sum_{k=0}^{k_0 - 1} |B_k - B|) + (\sum_{k=k_0}^n |a_{n-k}|) \max_{k_0 \le k \le n} |B_k - B| + |A_n - A||B| \end{aligned}$$

and
$$|a_n|$$
 and $|A_n - A|$ tend to zero as $n \to \infty$, we get

$$\limsup_{n\to\infty}|C_n-AB|<0+\varepsilon+0.$$

Part II Functions

Continuity

Differentiation

Functional sequences

Part III Integration

Riemann integration