ᲒᲘᲝᲠᲒᲘ ᲙᲘᲙᲝᲚᲐᲨᲕᲘᲚᲘᲡ ᲛᲘᲔᲠ ᲒᲐᲡᲐᲙᲔᲗᲔᲑᲔᲚᲘ ᲞᲠᲝᲒᲠᲐᲛᲘᲡ ᲡᲐᲑᲝᲚᲝᲝ ᲡᲢᲠᲣᲥᲢᲣᲠᲐ

ᲞᲠᲝᲒᲠᲐᲛᲐᲨᲘ ᲨᲔᲡᲐᲢᲐᲜᲘ ᲡᲘᲦᲘᲦᲔᲔᲑᲘ		
აღმდგენი ნეირონის შესასვლელების რიცხვი	n	
ნეირონის შესასვლელების შეცდომის ალბათობები	$q_i \left(i = \overline{1, n+1}\right)$	
ნეირონის შესასვლელების წონები	$a_i \left(i = \overline{1, n+1}\right)$	
იტერაციათა რიცხვი აღმდგენი ნეირონის ფუნქცი- ონირების სიმულირებისას	N	

ᲖᲝᲒᲐ Ღ Ი ᲒᲐᲛᲝᲡᲐᲢᲐᲜᲘ ᲡᲘᲦᲘᲦᲔᲔᲑᲘ	
სიმულაციის შედეგების სიზუსტე	$\varepsilon = 1/\sqrt{N}$
ნეირონის შეცდომის Q ალბათობის მინიმალური ზედა შეფასება	$Q_{\min}^{+} = 2^{n+1} \cdot \prod_{i=1}^{n+1} \left[\sqrt{q_i (1 - q_i)} \right]$

<mark>ᲡᲘᲛᲣᲚᲐᲪᲘᲘᲡ ᲞᲠᲝᲪᲔᲡᲨᲘ</mark> ᲛᲘᲦᲔᲑᲣᲚᲘ ᲨᲔᲦᲔᲑᲔᲑᲘᲡ ᲒᲐᲛᲝᲢᲐᲜᲐ	
ნირონის შეცდომის ალბათობა შეტანილი წონების საფუძველზე	Q -ს სიდიდე შეტანილი a_i $\left(i=\overline{1,n+1} ight)$ წონების გამოყენებით
ნირონის შეცდომის ალბათობა ენტროპიული წონების საფუძველზე	Q -ს სიდიდე ენტოპიული $a_i=\lnrac{1-q_i}{q_i} \left(i=\overline{1,n+1} ight)$ წონების
ნირონის შეცდომის ალბათობა მაჰალანობისური წონების საფუძველზე	Q -ს სიდიდე მაჰალანობისური $a_i=rac{1-2q_i}{2q_i(1-q_i)} \left(i=\overline{1,n+1} ight)$ წონების

<mark>ᲖᲣᲡঙᲘ ᲐᲚᲒᲝᲠᲘᲗᲛᲘᲗ</mark> ᲛᲘᲦᲔᲑᲣᲚᲘ ᲨᲔᲦᲔᲑᲔᲑᲘᲡ ᲒᲐᲛᲝ ঙ ᲐᲜᲐ	
ნირონის შეცდომის ალბათობა შეტანილი წონების საფუძველზე	Q -ს სიდიდე შეტანილი a_i $\left(i=\overline{1,n+1} ight)$ წონების გამოყენებით
ნირონის შეცდომის ალბათობა ენტროპიული წონების საფუძველზე	Q -ს სიდიდე ენტოპიული $a_i=\lnrac{1-q_i}{q_i} \left(i=\overline{1,n+1} ight)$ წონების
ნირონის შეცდომის ალბათობა მაჰალანობისური წონების საფუძველზე	Q -ს სიდიდე მაჰალანობისური $a_i=rac{1-2q_i}{2q_i(1-q_i)}$ $\left(i=\overline{1,n+1} ight)$ წონების