Bounding Geometric Penalties in First-Order Riemannian Optimization

David Martínez-Rubio, Christophe Roux, Christopher Criscitiello, Sebastian Pokutta

Technische Universität Berlin, Zuse Institute Berlin, École Polytechnique Fédérale de Lausanne

Collaborators

Christophe Roux (ZIB, TU Berlin)

Christopher Criscitiello (EPFL)

Sebastian Pokutta (ZIB, TU Berlin)

1 | 17

For a Riemannian manifold \mathfrak{M} :

For a Riemannian manifold \mathfrak{M} :

 $\min_{x\in\mathcal{M}}f(x).$

- Spheres, hyperbolic spaces.
- ► SPD matrices.
- ▶ SO(n) (real orthogonal matrices with det(A) = 1).
- Stiefel manifold $V_k(\mathbb{R}^n)$ (ordered orthonormal basis of a k-dim vector space).
- **>** ...

Riemannian Optimization - Applications

- ▶ Principal Components Analysis (Jolliffe et al., 2003; Genicot et al., 2015; Huang and Wei, 2019).
- ▶ Low-rank matrix completion (Cambier and Absil, 2016; Heidel and Schulz, 2018; Mishra and Sepulchre, 2014; Tan et al., 2014; Vandereycken, 2013).
- Dictionary learning (Cherian and Sra, 2017; Sun et al., 2017).
- ➤ Optimization under orthogonality constraints (Edelman et al., 1998).
 - ► Some applications to RNNs (Lezcano-Casado and Martínez-Rubio, 2019).
- ▶ Robust covariance estimation in Gaussian distributions (Wiesel, 2012).
- Gaussian mixture models (Hosseini and Sra, 2015).
- ▶ Operator scaling (Allen-Zhu et al., 2018).
- Wasserstein Barycenters (Hosseini and Sra, 2020).
- ► Many more...

For a Riemannian manifold \mathfrak{M} :

 $\min_{x\in\mathcal{M}}f(x).$

ightharpoonup Constrained ightarrow unconstrained.

For a Riemannian manifold \mathfrak{M} :

$$\min_{x\in\mathcal{M}}f(x).$$

- Constrained → unconstrained.
- ightharpoonup Sometimes: Euclidean non-convex ightharpoonup Riemannian geodesically convex.

For a Riemannian manifold \mathfrak{M} :

$$\min_{x\in\mathcal{M}}f(x).$$

- ightharpoonup Constrained ightharpoonup unconstrained.
- **▶ Sometimes:** Euclidean non-convex → Riemannian geodesically convex.

Many first-order methods have analogous Riemannian counterparts:

- ▶ **Deterministic** (de Carvalho Bento et al., 2017; Zhang and Sra, 2016).
- ▶ Stochastic (Hosseini and Sra, 2017; Khuzani and Li, 2017; Tripuraneni et al., 2018).
- Variance reduced (Sato et al., 2017, 2019; Zhang et al., 2016).
- ► Adaptive (Kasai et al., 2019).
- ▶ Saddle-point escaping (Criscitiello and Boumal, 2019; Sun et al., 2019; Zhang et al., 2018; Zhou et al., 2019; Criscitiello and Boumal, 2020).
- Projection-free (Weber and Sra, 2017, 2019).
 Accelerated (Zhang and Sra, 2018; Ahn and Sra, 2020; Kim and Yang, 2022).
- Min-max (Zhang et al., 2022; Jordan et al., 2022).

Geodesic Convexity

Notation: Let \mathcal{M} be a Riemannian manifold. Given $x, y \in \mathcal{M}$ and $v \in T_x \mathcal{M}$ we use $\langle v, y - x \rangle \stackrel{\text{def}}{=} -\langle v, x - y \rangle \stackrel{\text{def}}{=} \langle v, \operatorname{Exp}_v^{-1}(y) \rangle_x$.

Geodesic Convexity

Notation: Let \mathcal{M} be a Riemannian manifold. Given $x, y \in \mathcal{M}$ and $v \in \mathcal{T}_x \mathcal{M}$ we use $\langle v, y - x \rangle \stackrel{\text{def}}{=} -\langle v, x - y \rangle \stackrel{\text{def}}{=} \langle v, \operatorname{Exp}_x^{-1}(y) \rangle_x$.

ightharpoonup μ -strongly geodesic convexity of $F: \mathcal{M} \to \mathbb{R}$:

$$F(y) \ge F(x) + \langle \nabla F(x), y - x \rangle + \frac{\mu}{2} d(x, y)^2$$
, for $\mu > 0, \forall x, y \in \mathcal{M}$.

If $\mu = 0$, F is geodesically convex (g-convex).

$$\mu = 0$$
, F is geodesically convex (g-c) I -smoothness:

$$F(y) \le F(x) + \langle \nabla F(x), y - x \rangle + \frac{L}{2} d(x, y)^2, \quad \forall x, y \in \mathcal{M}.$$

► *G*-Lipschitzness:

$$\|\nabla F(y)\| \leq G$$
 for all $y \in \mathcal{M}$.

lackbox A set ${\mathfrak X}$ is uniquely geodesically convex if there is one and only one geodesic between two points, and it remains in ${\mathfrak X}$.

Distance squared and cosine inequalities

- ▶ Sectional curvature in $[K_{min}, K_{max}]$. Assume wlog $|K_{min}| = 1$.
- \blacktriangleright $\mathfrak{X} \subset \mathfrak{M}$ compact, g-convex set of diameter D.

$$\nabla \Phi_{x}(y) = -\operatorname{Exp}_{y}^{-1}(x) \qquad \text{and} \qquad \delta \left\| v \right\|^{2} \leq \operatorname{Hess} \Phi_{x}(y)[v,v] \leq \zeta \left\| v \right\|^{2} \ \text{for all} \ x,y \in \mathfrak{X}.$$

where

$$\zeta \stackrel{\text{def}}{=} D\sqrt{|K_{\text{min}}|} \coth(D\sqrt{|K_{\text{min}}|}) = \Theta(D\sqrt{|K_{\text{min}}|} + 1) \qquad \text{if } K_{\text{min}} < 0 \text{ else } 1.$$

$$\delta \stackrel{\text{def}}{=} D\sqrt{K_{\text{max}}} \cot(D\sqrt{K_{\text{max}}}) \qquad \text{if } K_{\text{max}} > 0 \text{ else } 1.$$

Distance squared and cosine inequalities

- ▶ Sectional curvature in $[K_{min}, K_{max}]$. Assume wlog $|K_{min}| = 1$.
- $\Phi_{x}(y) \stackrel{\text{def}}{=} \frac{1}{2}d(x,y)^{2}$.

$$ightharpoonup \mathcal{X} \subset \mathcal{M}$$
 compact, g-convex set of diameter D .

$$\nabla \Phi_x(y) = -\operatorname{\mathsf{Exp}}_y^{-1}(x) \qquad \text{and} \qquad \delta \left\| v \right\|^2 \leq \operatorname{\mathsf{Hess}} \Phi_x(y)[v,v] \leq \zeta \left\| v \right\|^2 \ \text{for all } x,y \in \mathfrak{X}.$$

where

$$\delta \stackrel{ ext{ iny def}}{=} D\sqrt{K_{\sf max}}\cot(D\sqrt{K_{\sf max}})$$

Cosine inequalities: Let
$$x, y, z \in \mathcal{X}$$
. We have:

 $\zeta \stackrel{\text{def}}{=} D\sqrt{|K_{\text{min}}|} \coth(D\sqrt{|K_{\text{min}}|}) = \Theta(D\sqrt{|K_{\text{min}}|} + 1)$

$$2\langle \mathsf{Exp}_{\mathsf{x}}^{-1}(y), \mathsf{Exp}_{\mathsf{x}}^{-1}(z) \rangle \geq \delta d(x,y)^2 + d(x,z)^2 - d(y,z)^2.$$

In neg. curvature: minimum condition number of any L-smooth μ -strongly convex function is $\approx \zeta_D!!$

 $2\langle \mathsf{Exp}^{-1}(y), \mathsf{Exp}^{-1}(z) \rangle < \zeta d(x, y)^2 + d(x, z)^2 - d(y, z)^2$

if $K_{\rm min} < 0$ else 1.

if $K_{max} > 0$ else 1.

Bound what's gotta be bounded!

"Showing that a method converges assuming iterates remain bounded is compatible with the algorithm **diverging**."

A. Matthem Attishen

Ha ha ha!
I proved
convergence!

Bound what's gotta be bounded!

"Showing that a method converges assuming iterates remain bounded is compatible with the algorithm **diverging**."

A. Matthem Attishen

Even worse, if you assume your algorithm knows the bound **a priori**, uses its value and the **iterates depend on it**. Circularity!

Let's do better than that.

Bound what's gotta be bounded!

"Showing that a method converges assuming iterates remain bounded is compatible with the algorithm **diverging**."

A. Matthem Attishen

Even worse, if you assume your algorithm knows the bound **a priori**, uses its value and the **iterates depend on it**. Circularity!

Let's do better than that.

Aim of papers in my talk: Show convergence without unreasonable assumptions.

Techniques to guarantee iterates are bounded, to deal with in-manifold constraints, new rates are discovered, some times very different algorithms, etc.

You won't Believe these 7 Techniques to Bound your Riemannian Iterates!

#5 will blow up your mind!

1. Mapping to Euclidean space (I): Constant curvature solution (Ref.)

We reduce the problem to a non-convex, Euclidean *constrained* problem.

1. Mapping to Euclidean space (I): Constant curvature solution (Ref.)

We reduce the problem to a non-convex, Euclidean *constrained* problem.

A function $f: \mathbb{R}^d \to \mathbb{R}$ is tilted-convex if $\exists \ \gamma_n, \gamma_p \in (0, 1]$ such that:

$$\begin{split} f(\tilde{x}) + \frac{1}{\gamma_{\mathsf{n}}} \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle &\leq f(\tilde{y}) \quad \text{if } \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \leq 0, (\text{grey area}) \\ f(\tilde{x}) + \gamma_{\mathsf{p}} \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle &\leq f(\tilde{y}) \quad \text{if } \langle \nabla f(\tilde{x}), \tilde{y} - \tilde{x} \rangle \geq 0. \end{split}$$

2. Metric-Projected Riemannian Gradient Descent (Ref.)

- ▶ PRGD works in **Hadamard**: $x_{t+1} = \Pi_{\mathfrak{X}}(\mathsf{Exp}_{\mathsf{x}_t}(-\eta \nabla f(x_t))).$
- ▶ Metric projection: $\Pi_{\mathcal{X}}(x) \leftarrow \operatorname{argmin}_{v \in \mathcal{X}} \{d(y, x)\}$ for closed g-convex \mathcal{X} .
- Easy to implement if the constraint is a ball.
- Convergence for Lipschitz functions: easy.
- For **smooth** problems: not so easy.
- ▶ We show convergence and pay a ζ_R factor, where R = G/L (Lipschitzness over smoothness).

3. Another Projected Riemannian Gradient Descent (Ref.)

- ▶ Minimize, in $T_{x_r}M$, the quadratic upper model given by smoothness.
- Works regardless of the curvature.
- Possibly a non-convex problem. Implementable at least in constant curvature.
- Gives better information theoretical upper bound wrt number of gradient oracle queries.

4. Proximal point algorithm (Ref.)

- 1. Known: nonexpansive operator in Hadamard manifolds.
- 2. We showed: quasi-nonexpansive, i.e., for minimizers x^* it is $d(x_t, x^*) \le d(x_{t-1}, x^*)$ in the general Riemannian case.
- 3. Approximate versions of this algorithm work and are almost quasi-nonexpansive.
- 4. For *L*-smooth functions and $\lambda = 1/L$ we get a condition number of ζ_{R_0} in $B(x, R_0)$. Only depends on the geometry!

$$x_t \leftarrow \operatorname{argmin} \left\{ f(x) + \frac{1}{\lambda} d(x, x_{t-1})^2 \right\}$$

6. Mapping to Euclidean space (II) (Ref.)

Manifold: Locally symmetric space (all applications satisfy this). Actually it works slightly more broadly. For f L-smooth and μ -strongly convex in a ball of center x_0 , and diameter $\approx \min\{\sqrt{\frac{\mu}{L}}, \frac{\mu}{G}\}$, pulling back:

$$\hat{f}: \mathbb{R}^d o \mathbb{R}, \quad \hat{f}(\hat{x}) = f(\mathsf{Exp}_{\mathsf{x_0}}(\hat{x})),$$

results in $\Theta(L)$ -smooth, $\Theta(\mu)$ -strongly convex Euclidean function.

This technique is not ours, it is from (CB20), but we use it with the proximal method for an $\it L$ -smooth function with $\it \lambda=1/\it L$:

$$\min\left\{f(x)+\frac{L}{2}d(x,x_0)^2\right\}$$

Condition number: ζ_D . Thus, we just need diameter $D \leq \zeta_D$ if $x^* \in \text{the ball}$. Holds for a D = O(1). This relaxes the required diameter from $O(\sqrt{\mu/L})$ to O(1).

7. Showing naturally-ocurring iterate boundedness (Ref.)

- 1. Monotonous methods stay in the level set. But this is too bad.
- 2. Subproblems of proximal methods have much smaller level sets.
- 3. Mirror descent approaches can give us natural boundedness.
 - ► Euclidean step-size: we stay in a bigger ball of diameter $O(R_0\zeta_{R_0})$.
 - ► Smaller step size by a $\frac{1}{\zeta_{R_0}}$ factor: We stay in a ball of diameter $O(R_0)$.
 - ▶ In the hyperbolic space we can do much better. Can this be generalized?

Projected Riemannian Gradient Descent & Prox Subproblems

 $D \stackrel{\text{def}}{=} \operatorname{diam}(\mathfrak{X}), R \stackrel{\text{def}}{=} \operatorname{Lips}(F,\mathfrak{X})/L, \lambda \stackrel{\text{def}}{=} 1/L.$

Metric projection. Efficient steps.

$$x_{t+1} \leftarrow \mathcal{P}_{\mathcal{X}}\left(\mathsf{Exp}_{x_t}\left(-\frac{1}{L+\zeta/\lambda}\nabla F(x_t)\right)\right).$$

Rates:
$$\widetilde{O}(\zeta_R\zeta_D)$$
, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

Projected Riemannian Gradient Descent & Prox Subproblems

 $D \stackrel{\text{def}}{=} \operatorname{diam}(\mathfrak{X}), R \stackrel{\text{def}}{=} \operatorname{Lips}(F,\mathfrak{X})/L, \lambda \stackrel{\text{def}}{=} 1/L.$

Metric projection. Efficient steps.

$$x_{t+1} \leftarrow \mathcal{P}_{\mathcal{X}}\left(\mathsf{Exp}_{x_t}\left(-\frac{1}{L+\zeta/\lambda}\nabla F(x_t)\right)\right).$$

Rates: $\widetilde{O}(\zeta_R\zeta_D)$, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

► Quadratic upper model in the tangent space. ¿Efficient steps?

$$x_{t+1} \leftarrow \operatorname{argmin}_{y \in \mathcal{X}} \{ \langle \nabla F(x_t), \operatorname{Exp}_{x_t}^{-1}(y) \rangle_{x_t} + \frac{L + \zeta/\lambda}{2} d(x_t, y)^2 \}.$$

Rates:
$$\widetilde{O}(\zeta_D)$$
, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

Projected Riemannian Gradient Descent & Prox Subproblems

 $D \stackrel{\text{def}}{=} \operatorname{diam}(\mathfrak{X}), \ R \stackrel{\text{def}}{=} \operatorname{Lips}(F,\mathfrak{X})/L, \ \lambda \stackrel{\text{def}}{=} 1/L.$

$$x_{t+1} \leftarrow \mathfrak{P}_{\mathfrak{X}}\left(\mathsf{Exp}_{x_t}\left(-\frac{1}{L+\zeta/\lambda}\nabla F(x_t)\right)\right).$$

Rates: $\widetilde{O}(\zeta_R \zeta_D)$, where $F(x) = f(x) + \frac{1}{2\lambda} d(x, \hat{x})^2$. Quadratic upper model in the **tangent space**. i Efficient steps?

Quadratic upper model in the **tangent space**. Zeniclent steps:
$$x_{t+1} \leftarrow \mathsf{argmin}_{y \in \mathcal{X}} \{ \langle \nabla F(x_t), \mathsf{Exp}_{\mathsf{x}_t}^{-1}(y) \rangle_{\mathsf{x}_t} + \frac{L + \zeta/\lambda}{2} d(x_t, y)^2 \}.$$

Rates: $\widetilde{O}(\zeta_D)$, where $F(x) = f(x) + \frac{1}{2\lambda}d(x,\hat{x})^2$.

 $x_{t+1} \leftarrow \operatorname{argmin}_{y \in \mathcal{X}} \{ \langle \nabla F(x_t), \operatorname{\mathsf{Exp}}_{x_t}^{-1}(y) \rangle_{x_t} + \frac{L}{2} d(x_t, y)^2 + g(y) \}.$

Rates:
$$\widetilde{O}(1)$$
, where $F(x) = f(x)$ and $g(x) = \frac{1}{2\lambda}d(x,\hat{x})^2$.

Different Results and Trade-Offs in Smooth G-Convex Riem. Optimization

 $R\stackrel{\mathrm{def}}{=} d(x_0,x^*),\ \zeta_D=\Theta(D\sqrt{|K_{\min}|}+1)\ \mathrm{if}\ K_{\min}<0\ \mathrm{else}\ 1.\ K_{\min}\stackrel{\mathrm{def}}{=} \min\{\mathrm{sectional}\ \mathrm{curv.}\},\ \kappa=L/\mu.$

	Result	g-convex	μ -st. g-cvx	K?	C/NC?	D?	Needs R?
0	(Nes05)	$O(\sqrt{\frac{LR^2}{arepsilon}})$	$\widetilde{O}(\sqrt{\kappa})$	0	NC	O(R)	No No
1	(Mar22)	$\widetilde{O}(\zeta^{\frac{3}{2}}\sqrt{\zeta+\frac{LR^2}{\varepsilon}})$	$\widetilde{O}(\zeta^{\frac{3}{2}}\sqrt{\kappa})$	ctant.≠ 0	С	O(R)	Yes Yes
2	(CB22)	, -	$\widetilde{\Omega}(\zeta)$	$\leq c < 0$	-	-	-
3	(MP23)	$\widetilde{O}(\zeta^2\sqrt{\zeta+\frac{LR^2}{\varepsilon}})$	$\widetilde{O}(\zeta^2\sqrt{\kappa})$	Hadamard*	C & NC	O(R)	Yes No
4	(MRCP23)	$\widetilde{O}(\zeta\sqrt{\zeta+\frac{LR^2}{\varepsilon}})$	$\widetilde{O}(\sqrt{\zeta\kappa}+\zeta)$	Hadamard	C & NC	O(R)	Yes No
5	(CB23)	$\widetilde{\Omega}(\zeta + rac{LR^2}{\zeta\sqrt{arepsilon}}) \ O(rac{LR^2}{arepsilon})$	$\widetilde{\Omega}(\sqrt{\kappa}+\zeta)$	ctant < 0	-	-	-
6	(MRP24).1	$O(\frac{LR^2}{\varepsilon})$	$\widetilde{O}(\kappa)$	ctant < 0	NC	O(R)	No No
7	(MRP24).2	$O(\zeta \frac{LR^2}{\varepsilon})$	$\widetilde{O}(\kappa)$	bounded	NC	$O(R\zeta_R)$	No No
8	(MRP24).3	$O(\zeta \frac{LR^2}{\varepsilon})$	$\widetilde{O}(\zeta\kappa)$	bounded	NC	O(R)	Yes Yes
9	(MRP24).4	$O(\frac{LR^2}{\varepsilon})$	$\widetilde{O}(\kappa)$	Hadamard	С	O(R)	Yes Yes

preprint arXiv:2001.08876, 2020. URL https://arxiv.org/abs/2001.08876.

Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Operator scaling via geodesically convex optimization, invariant theory and polynomial identity testing. In *Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing*, pages 172–181, 2018.

Léopold Cambier and Pierre-Antoine Absil. Robust low-rank matrix completion by Riemannian optimization. *SIAM J. Scientific Computing*, 38(5), 2016. doi: 10.1137/15M1025153. URL

Kwangjun Ahn and Suvrit Sra. From Nesterov's estimate sequence to Riemannian acceleration. arXiv

https://doi.org/10.1137/15M1025153.

Anoop Cherian and Suvrit Sra. Riemannian dictionary learning and sparse coding for positive definite matrices. *IEEE Trans. Neural Networks Learn. Syst.*, 28(12):2859–2871, 2017. doi: 10.1109/TNNLS.2016.2601307. URL https://doi.org/10.1109/TNNLS.2016.2601307.

Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 5985-5995, 2019. URL http:
//papers.nips.cc/paper/8832-efficiently-escaping-saddle-points-on-manifolds.

Chris Criscitiello and Nicolas Boumal. Efficiently escaping saddle points on manifolds. In Advances in

Chris Criscitiello and Nicolas Boumal. An accelerated first-order method for non-convex optimization on manifolds. *arXiv preprint arXiv:2008.02252*, 2020.

Glaydston de Carvalho Bento, Orizon P. Ferreira, and Jefferson G. Melo. Iteration-complexity of gradient, subgradient and proximal point methods on Riemannian manifolds. *J. Optim. Theory*Appl. 177(2):548-562, 2017. doi: 10.1007/s10057-017-1003-4. URL