முழுப் பதிப்புரிமையுடையது All Rights Reserved)



மொறட்டுவைப் பல்கலைக்கழக பொறியியற்பீட தமிழ் மாணவர்கள் நடாத்தும் கல்விப் பொதுத் தராதர உயர்தர (கணித, விஞ்ஞான) மாணவர்களுக்கான 6 ஆவது முன்னோழப் பரீட்சை -2015

கல்விப் பொதுத் தராதரப் பத்திர@யா் தர்) முன்னோடிப் பாீட்சை – 2015 General Certificate of Education (Adv. Level) Pilot Examination - 2015

Chemistry I இரசாயனவியல்  ${
m I}$   $\mathbf{E}$ 

Two hours மணித்தியாலம் **இரண்**டு

- Periodic Table is provided.
- \* This paper consists of **08** pages and **50** questions
- Answer all the questions
- Use of calculators is not allowed
- \* Write your Index number in the space provided in the answer sheet
- In each of the questions 1-50, pick one of the alternatives from (1),(2),(3),(4),(5) which is correct or most appropriate and mark your response on the answer sheet with a cross (X)

Universal gas constant  $R = 8.314 \text{ J K}^{-1}\text{mol}^{-1}$ Avogadro constant  $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$ 

- Which of the following species has the highest e/m value?
  - 1. α
- 2. Proton
- 3. Electron
- 4. Neutron
- 5. Helium
- 2. In which of the given molecule, all atoms are in the same plane?
  - 1. ammonia
- 2. ethane
- 3. propene
- 4. H<sub>2</sub>O<sup>+</sup>
- 5. 1, 3 butadiyne

- 3. Which of the following has zero dipolar moment?
  - 1. CHCl<sub>3</sub>
- 2. H<sub>2</sub>O
- 3. N<sub>2</sub>O
- 4. SO<sub>2</sub>
- 5. SO<sub>2</sub>Cl<sub>2</sub>
- 4. Which of the following is more suitable for the unit formula for bleaching powder?
  - 1. Ca<sub>2</sub>Cl<sub>4</sub>O<sub>6</sub>H<sub>6</sub>
- 2. Ca<sub>2</sub>Cl<sub>4</sub>O<sub>2</sub>H<sub>4</sub>
- 3. CaOCl<sub>2</sub>H<sub>4</sub>
- 4. CaOCl, 5. CaCl<sub>2</sub>.Ca(ClO),
- 5. Which of the following has no chemical change with H<sub>2</sub>O<sub>2</sub>?
  - 1.  $MnO_2(s)$

2. KMnO<sub>4</sub>/dilH<sub>2</sub>SO<sub>4</sub>

3. Cr(OH)<sub>3</sub>/NaOH(aq)

4. Ag<sub>2</sub>O

- 5. KI/dilH<sub>2</sub>SO<sub>4</sub>
- 6. Which of the following is a disproportionation reaction?
  - 1.  $K_2Cr_2O_7 + 3H_2SO_4 + 4KCl \longrightarrow 3K_2SO_4 + 3H_2O + 2CrO_2Cl_2$
  - 2.  $Fe_3O_4(aq) + 8HCl(aq) \longrightarrow FeCl_2(aq) + 2FeCl_3(aq) + 4H_2O(\ell)$
  - 3.  $NH_4NO_3(s) \longrightarrow N_2O(g) + 2H_2O(g)$
  - 4.  $2H_2O_2(aq) \longrightarrow 2H_2O(\ell) + O_2(g)$
  - 5.  $2HCl(aq) + Na_2S_2O_3(aq) \longrightarrow 2NaCl(aq) + SO_2(g) + S(s) + H_2O(aq)$

Composition of a 50 cm<sup>3</sup> aqueous solution of I<sub>2</sub> is 100ppm. Then 10 cm<sup>3</sup> CHCl<sub>2</sub> is added and shaken well. After the removal of CHCl<sub>2</sub> layer the composition of I<sub>2</sub> in the aqueous solution is 30 ppm. Then another 10 cm<sup>3</sup> of CHCl<sub>2</sub> is added to the aqueous layer and shaken well. The composition of I<sub>2</sub> in the remaining aqueous layer is

1.9

2.3

4.20

5.10

8.  $2 SO_2(g) + O_2(g) = 2SO_2(g)$ 

 $\Delta H^{\theta} = -196 \text{ kJmol}^{-1}$ .

The standard entropies of SO<sub>2</sub>(g), O<sub>2</sub>(g), SO<sub>3</sub>(g) are 248, 205, 256 (Jmol<sup>-1</sup>K<sup>-1</sup>) respectively. The minimum temperature (°C) needed for this reaction to take place is

1.1037

2.755

3.1310

4.450

5.300

9. Which row of the following table gives the correct information with regard to NOCl molecule?

| Electron pair geometry | Geometrical shape | Nature of N-Cl bond     | ONCl bond angle |
|------------------------|-------------------|-------------------------|-----------------|
| 1. angular             | trigonal planer   | $sp^2 - sp^3$           | 120°            |
| 2. trigonal planer     | angular           | $sp^{2}(h.o) - 3p(a.o)$ | < 120°          |
| 3. trigonal planer     | angular           | 2p(ao) - 3p(ao)         | $180^{\circ}$   |
| 4. linear              | linear            | $sp^2 - sp^3$           | $120^{0}$       |
| 5. angular             | angular           | $sp^2 - sp^3$           | < 120°          |

10. The oxide of the metal M is M<sub>2</sub>O<sub>5</sub>. 1.60g of M<sub>2</sub>O<sub>5</sub> was dissolved in dil H<sub>2</sub>SO<sub>4</sub> and the sulphate of M was formed. The mass of dry sulphate is 4.00g. Therefore relative atomic mass of M is (S = 32, O = 16)

1.112

2.168

3.56

4.28

5.160

11. The IUPAC name of the following organic compound is

OH
$$CH_2Br - CH - CH - CH = CH_2$$

$$Cl$$

1. 1 - bromo - 2 - chloropent - 4 - en - 3 - ol

2. 1 - bromo - 2 - chloro - 4 - pentenol

3. 5 - bromo - 4 - chloropent - 1 - en - 3 - ol

4. 5 - bromo - 4 - chloropenten - 3 - ol

5. 5 - bromo - 4 - chloro - 1 - enpent - 3 - ol

12. Which of the following expesses the four quantum numbers  $(n, \ell, m_{\ell}, m_{\epsilon})$  of the outermost energy level electron of 20 Cu, respectively?

 $1. \{3, 2, -2, +\frac{1}{2}\} \qquad 2. \{3, 3, -2, +\frac{1}{2}\} \qquad 3. \{4, 0, 0, +\frac{1}{2}\} \qquad 4. \{4, 2, -2, +\frac{1}{2}\} \qquad 5. \{4, 0, -1, +\frac{1}{2}\}$ 

13.

Which of the following gives the carbon - carbon lengths in ascending order?

1. a < b < c < d < e < f

2. f < e < d < c < b < a

3. b < d < a < c < e < f

4. b < a < d < f < e < c

5. b < d < a = d < e < f

14. Which of the following statements is not true to express the pattern of the compounds of the 3<sup>rd</sup> period elements from left to right

1. Electron affinity increases along the period

2. Valency relative to oxygen increases

3. First ionization energies show a zig-zag change

4. Acidity of the hydrides increases

5. Covalent properties of the elements increases

15.  $2SO_3(g) + O_3(g) \longrightarrow 2SO_3(g)$  is thermodynamically spontaneous at 300K, but not at high temperatures. Then which of the following is true about the reaction at 300K?

| $\Lambda \mathrm{H}^{\scriptscriptstyle (\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$ | $\Lambda S^{\theta^*}$ | $\Delta G^{\scriptscriptstyle (\!artheta)}$ |
|----------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|
|                                                                                                    |                        | _                                           |
| 1. < 0                                                                                             | < 0                    | < 0                                         |
| 2. <0                                                                                              | >0                     | < 0                                         |
| 3. < 0                                                                                             | >0                     | > 0                                         |
| 4. > 0                                                                                             | > 0                    | < 0                                         |
| 5. > 0                                                                                             | < 0                    | >0                                          |

is reduced by  $LiAlH_4$  and then hydrolysed, the product / products is / are 16. If COOCH,



17. Temperature - composition diagram of the mixture of two missible liquids A and B are shown



Which is the false statement regarding the above

- 1. Molecular interactions, A A < A B > B B
- 2. Y is liquid phase
- 3. X is vapour phase
- 4. When A and Bare mixed, temperature increases
- 5.  $p_A^0 > p_B^0$  (p<sup>0</sup> is pure vapour pressure)
- 18. Salt Z dissolves in con HCl forming a yellow solution. Then the solution is diluted by distilled water, forming a greenish blue solution. If excess NH<sub>3</sub>(aq) is added to the resulting solution, the observation is .
  - 1. Dark blue solution

- 2. Reddish brown precipitate
- 3. Yellow solution

- 3. Yellowish brown solution
- 5. Blue precipitate
- 19. pH of a 0.01 moldm<sup>-3</sup> weak acid HA is 4.0. The Ka value of this acid HA in mol dm<sup>-3</sup> is
  - 1. 1 x 10<sup>-4</sup>
- 2. 1 x 10<sup>-6</sup>
- 3.  $1 \times 10^{-2}$  4.  $1 \times 10^{-8}$
- $5.1 \times 10^6$
- 20. Three solutions of different cations A, B and C are given separately. They can be identified by using NaOH(aq) only. Then they are,
  - 1. Al<sup>3+</sup>, Fe<sup>3+</sup>, Cr<sup>3+</sup>

2. Al<sup>3+</sup>, Zn<sup>2+</sup>, Sn<sup>2+</sup>

3. Mn<sup>2+</sup>, Sn<sup>2+</sup>, Pb<sup>2+</sup>

4. Ag+, Sn2+, Zn2+

5. Ba<sup>2+</sup>, Mg<sup>2+</sup>, Sr<sup>2+</sup>

21. Which of the following is in the ascending order of basicity

1. 
$$CH_3OH(aq) < H_2O(\ell) < NH_3(aq)$$

$$2. \quad \bigodot^{\operatorname{NH}_2} \qquad \qquad \bigvee^{\operatorname{NH}_2} \qquad \qquad \bigvee^{\operatorname{NO}_2} \qquad \\ \subset \operatorname{CH}_3 \qquad \qquad \operatorname{NH}_2 \qquad \qquad$$

3. 
$$(CH_3)_3N < CH_3CH_3NH_2 < (CH_3)_3NH$$

4. 
$$LiOH < Be(OH)_2 < Al(OH)_3$$

5. 
$$CH_3NH_2 < CH_3CH_2NH_2 < NH_3$$

22. Which of the following reactions is not a redox reaction?

$$1.NH_4NO_3 \longrightarrow N_2O + 2H_2O$$

2. 
$$K_2Cr_2O_7(aq) + 2KOH(aq) \longrightarrow 2K_2CrO_4 + H_2O$$

$$3. 2H_2O_2 \longrightarrow 2H_2O + O_2$$

4. 
$$2Na + 2NH_3 \longrightarrow 2NaNH_2 + H_2$$

5. 
$$2Ag_2CO_3 \longrightarrow 4Ag(aq) + CO_2(aq) + O_2(g)$$

23. Solution of a salt X is acidified by dil HCl and then excess  $H_2S(g)$  is passed through the solution. There was no change. After that the resulting solution was diluted by distilled water. A yellow precipitate was formed. Then the cation of the salt X is

- 1. Cd<sup>2+</sup>
- 2. Sn<sup>4+</sup>

3.  $As^{3+}$ 

- 4. all three above
- 5. none of the above

24. Which shows diastereomerism

- a. CH<sub>3</sub>CH(OH)CH(OH)CH<sub>3</sub>
- b. CH<sub>2</sub>CBr=CHCl
- c. CH<sub>3</sub>CH(OH)COOH

d.  $CH_3CH = \ddot{N}OH$ 

e. CH<sub>3</sub>CH(OH)CH=CHBr

- 1. a, b only 2. a
- 2. a, b, d only
- 3. a, b, d, e only
- 4. all a, b, c, d, e
- 5. c only

25.  $W^{2+}$ ,  $X^{2+}$ ,  $Y^{2+}$ ,  $Z^{2+}$  are four metallic ions.

- a. All four do not form precipitate with excess NaOH(aq).
- b. Only Y<sup>2+</sup> does not form precipitate with excess NH<sub>2</sub>(aq)
- c. Only X2+ oxidises I-
- d. When H<sub>2</sub>S(g) is passed through W<sup>2+</sup>(aq) yellow precipitate is formed.
- e.  $Z^{2+}$  forms precipitate with HCl

Then W, X, Y and Z are

- 1. Sn<sup>2+</sup>, Zn<sup>2+</sup>, Cu<sup>2+</sup>, Cd<sup>2+</sup>
- 2. Cd<sup>2+</sup>, Ca<sup>2+</sup>, Zn<sup>2+</sup>, Sn<sup>2+</sup>
- 3.  $Cd^{2+}$ ,  $Cu^{2+}$ ,  $Zn^{2+}$ ,  $Pb^{2+}$

- 4. As<sup>3+</sup>, Sb<sup>3+</sup>, Fe<sup>3+</sup>, Al<sup>3+</sup>
- 5. suitable answer is not given.

- 26. The product of reaction between CH<sub>2</sub>CH<sub>2</sub>CHO and dil NaOH is heated, which of the following statement regarding the above reaction is **false**?
  - 1. Nucleophilic addition is followed by an elimination
  - 2. The final product is CH<sub>3</sub>CH<sub>2</sub>CH=CHCH<sub>2</sub>-CHO
  - 3. A dimerization takes places first
  - 4. Aldol forms first and then dehydration product enal is formed.
  - 5. The first reactant species is  $CH_3\ddot{C}H^{(-)}$ .
- 27. Decolourizes the alk KMnO<sub>4</sub> at room temperature

- 1. CH<sub>3</sub>CO<sub>2</sub>H 2. C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub> 3. HCHO 4. (CH<sub>3</sub>)<sub>3</sub>COH 5. C<sub>6</sub>H<sub>5</sub>COCH<sub>3</sub>
- 28.  $A \xrightarrow{(i)B} C_2 H_5 C_1 C(CH_3)$  Which are suitable for A and B

  - 1. C<sub>2</sub>H<sub>2</sub>CH(CH<sub>2</sub>)COCl , CH<sub>3</sub>MgBr 2. C<sub>2</sub>H<sub>2</sub>CH(CH<sub>3</sub>)COCH<sub>3</sub> , CH<sub>3</sub>MgBr ;

  - 3.  $C_2H_5CH_2CH_2MgBr$ ,  $CH_3COCH_3$  4.  $C_2H_5CH(CH_3)COOCH_3$ ,  $CH_3MgBr$
  - 5. all of the above
- 29. Consider the following reaction  $A + B + C \longrightarrow P + Q$ . This is not a stochiometric reaction This reaction takes place in the following steps,
  - I. A + B

(equilibrium const K<sub>1</sub>)

f<u>ast</u> Y II. B + X

(equilibrium const K<sub>2</sub>)

 $\stackrel{\text{slow}}{=} P + Q$ III. C + Y

Which of the following is suitable for the above reaction?

- 1. R = K[A][B][C]
- 2. R = K[C][Y]
- 3.  $R = KK_1K_2[A][B]^2[C]$

- 4.  $R = K_1 K_2 [A][B]^2$
- 5.  $R = KK_1K_2[A][B][C]$
- 30. Which of the following is true about a polymer whose repeating unit is  $-C (CH_2) C (CH_3) C (CH_4) C (CH_5) C (CH_4) (CH_4) C (CH_4) ($ 
  - 1.It is a cross chain polymer
- 2. It is an addition polymer
- 3. It is a condenzation, a linear polymer 4. It is a nylon type polymer

Instructions for questions from 31 - 40

| 1           | 2           | 3           | 4           | 5                     |
|-------------|-------------|-------------|-------------|-----------------------|
| only a, b   | only b,c    | only c,d    | only a, d   | any other combination |
| are correct | are correct | are correct | are correct |                       |

- 31. Which of the following reduces Fe<sup>3+</sup> to Fe<sup>2+</sup>
  - a. KI
- b.  $C_2O_4^{2-}$  c.  $H_2O_2 / H^+$
- d. H<sub>2</sub>S
- 32. The statements which is / are wrong regarding electrolysis and electro chemical cells
  - a. There is no colour change when CuSO<sub>4</sub> is electrolysed by Cu electrodes.
  - b. The equilibrium reaction of the electrode AgCl(s), Ag(s) / KCl(aq) is AgCl(s) + e = Ag(s) + Cl(aq)
  - c. If Zn<sup>2+</sup> concentration is 2.0 moldm<sup>-3</sup>, the e.m.f of the cell is more than its standard value.
  - d. Anode is always positive pole / positive electrode.
- 33. Which is / are true in the following?
  - a. The product of the alhaline hydrolysis of CH<sub>2</sub>CH<sub>2</sub>CBr (CH<sub>2</sub>)CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> is a racemic mixture
  - b. When But 1 ene is heated with conc. H<sub>2</sub>SO<sub>4</sub> But 2 ene is formed.
  - c. All reactions of benzene are electrophillic substitutions
  - d. A nucleophilic addition is followed by an elimination in the reaction of CH<sub>3</sub>COCl and H<sub>2</sub>O
- 34.  $NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$

 $\Delta H > 0$ 

Which is /are suitable for the above equilibrium.

- a. For a particular temperature, the total pressure of the system is constant.
- b. The value of  $K_{C}$  increases with increase of temperature.
- c. In the above system  $K_p = K_C$
- d. At the chemical equilibrium  $T = \frac{\Delta H^r}{\Delta S^r}$ .
- 35. In which of the following a change can be observed when they reacts / react with water?
  - a. PCl<sub>5</sub>(s)
- b. BiCl<sub>2</sub>(s)
- c. C<sub>6</sub>H<sub>5</sub>COCl
- d. CaS
- 36. Which of the following is / are suitable expression for binary ideal solution
  - $a. \ p_A + p_B = p_{AB}$

b.  $p_A = (1 - X_A) p_B^0$ 

c.  $p_A \propto X_A$ 

- d.  $\frac{p_A^0 p_A}{p_A^0} = (1 X_A)$
- 37. Which of the following pair / pairs can be distinguished by  $H_2S(g)$ ? (without using any other chemicals)
  - a. Hg<sup>2+</sup>, Cu<sup>2+</sup> in acidic media
  - b. AsO<sub>4</sub><sup>3-</sup>, AsO<sub>3</sub><sup>3-</sup>
  - $c.\ Ni^{2+}$  ,  $Bi^{3+}$
  - d. Sn<sup>4+</sup>, Cd<sup>2+</sup> in alcoholic media
- 38. Consider the following std. electrode potentials.
  - (i)  $NO_3(aq) + H^+(aq) + e = H_2O(1) + NO_2(g)$

 $E^{\theta} = 0.79V$ 

(ii)  $Fe^{3+}(aq) + e = Fe^{2+}(aq)$ 

 $E^{\theta} = 0.77V$ 

(iii)  $Cu^{2+}(aq) + e \rightleftharpoons Cu^{+}(aq)$ 

 $E^{\theta} = 0.15V$ 

(iv) 
$$I_2(aq) + 2e \rightleftharpoons 2I^-$$

 $E^{\theta} = 0.54V$ 

On the above basis which of the following is / are possible?

- a. I can be oxidised by dil HNO<sub>2</sub> as I<sub>2</sub>.
- b. Cu<sup>2+</sup> oxidises I as I, and also CuI precipitates.
- c. Fe<sup>2+</sup> can be oxidised by dil HNO<sub>3</sub> as Fe<sup>3+</sup>.
- d.  $Fe^{3+}(aq) + Cu^{+}(aq) \longrightarrow Fe^{2+}(aq) + Cu^{2+}(aq)$  is possible

39. Resonance structure / structures of  $S_2O_3^{2-}$  is /are

b. 
$$\ddot{Q} = \ddot{S} - \ddot{Q}$$
:

40. Which of the following is / are thermosetting polymers?

a. Vulcanized rubber

b. Bakelite

c. PTFE

d. Urea - formaldehyde polymer

## Instruction for questions from 41 to 50

| F  | First statement | Second statement                                   |
|----|-----------------|----------------------------------------------------|
| 1. | true            | true and explains the first statement              |
| 2. | true            | true, but is not a correct explantion for the 1st. |
| 3. | true            | false                                              |
| 4. | false           | true                                               |
| 5. | false           | false                                              |

## First statement

### **Second statement**

| 41. | The enthalpy of hydrogenation of benzene is     |
|-----|-------------------------------------------------|
|     | greater than that of cyclic hexa-1, 3, 5-triene |

Benzene has lower enthalpy than cyclic hexa-1,2,3-triene

42. Liquid NH<sub>2</sub>(aq) is a weak electric conductor.

In liquid NH<sub>2</sub>(aq), the equilibrium  $NH_3(\ell) \rightleftharpoons NH_3(\ell) + H^+(aq)$  exists

43.  $CH \equiv CH$  is more acidic than  $CH_3C \equiv CH$ 

Only  $CH \equiv CH$  gives  $H_2(g)$  when it reacts with Na / NH<sub>2</sub>( $\ell$ )

44 Na<sup>+</sup>(g) is more stable than Na(s)

Na+ has noble gas configuration

45 The boiling point of p - nitrophenol is higher than that of o - nitrophenol

p - nitrophenol is more acidic than o - nitrophenol

46. The compressibility factor of a real gas increases with increasing temperature

When the temperature increases decerases

47. Brine and H<sub>2</sub>O are the electrolytes in the production of NaOH in membrane method. In membrane method H<sub>2</sub>O is reducted at the cathode

48 The s - block metals can be extracted by the electrolysis of their molten chlorides

The cations of the s- block metals are very stable

49 CH<sub>3</sub>CH=CH<sub>2</sub> has no electrophilic addition with HCN

As CN<sup>-</sup> is a good nucleophile, it cannot react across the C=C bond

50. Phenolphthalein can be used as an indicator of the titration of  $1x10^{-3}$  moldm<sup>-3</sup> NaOH with  $1x10^{-3}$  mol dm<sup>-3</sup> CH<sub>3</sub>COOH

Generally phenolphthalein can be used as an indicator for strong base - weak acid titrations

\*\*\*

# **Periodic Table**

| 1<br><b>H</b>   |                  |                |                  |                  |                  |                  |                  |                  |                  |                  |                  |                 |                   |                   |                   |                  | He He              |
|-----------------|------------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|-------------------|-------------------|-------------------|------------------|--------------------|
| 3<br>Li         | 4<br>Be          |                |                  |                  |                  |                  |                  |                  |                  |                  |                  | 5<br><b>B</b>   | 6<br>C            | 7<br><b>N</b>     | 8<br><b>O</b>     | 9<br><b>F</b>    | 10<br><b>Ne</b>    |
| 11<br><b>Na</b> | 12<br><b>Mg</b>  |                |                  |                  |                  |                  |                  |                  |                  |                  |                  | 13<br><b>Al</b> | 14<br><b>Si</b>   | 15<br><b>P</b>    | 16<br><b>S</b>    | 17<br><b>C1</b>  | 18<br><b>A</b> I   |
| 19<br><b>K</b>  | 20<br><b>Ca</b>  | 21<br>Sc       | 22<br><b>Ti</b>  | 23<br><b>V</b>   | 24<br><b>C1</b>  | 25<br><b>Mn</b>  | 26<br><b>Fe</b>  | 27<br><b>Co</b>  | 28<br><b>Ni</b>  | 29<br><b>Cu</b>  | 30<br><b>Zn</b>  | 31<br><b>Ga</b> | 32<br><b>Ge</b>   | 33<br><b>As</b>   | 34<br><b>Se</b>   | 35<br><b>Br</b>  | 36<br><b>Kr</b>    |
| 37<br><b>Rb</b> | 38<br><b>S</b> 1 | 39<br><b>Y</b> | 40<br><b>Z</b> 1 | 41<br><b>Nb</b>  | 42<br><b>Mo</b>  | 43<br><b>Tc</b>  | 44<br><b>Ru</b>  | 45<br><b>Rh</b>  | 46<br><b>Pd</b>  | 47<br><b>Ag</b>  | 48<br>Cd         | 49<br><b>In</b> | 50<br><b>Sn</b>   | 51<br><b>Sb</b>   | 52<br><b>Te</b>   | 53<br><b>I</b>   | 54<br><b>Xe</b>    |
| 55<br><b>Cs</b> | 56<br><b>Ba</b>  | 57-71          | 72<br><b>Hf</b>  | 73<br><b>Ta</b>  | 74<br><b>W</b>   | 75<br><b>Re</b>  | 76<br><b>Os</b>  | 77<br><b>Ir</b>  | 78<br><b>Pt</b>  | 79<br><b>Au</b>  | 80<br>Hg         | 81<br><b>T1</b> | 82<br><b>Pb</b>   | 83<br><b>Bi</b>   | 84<br><b>Po</b>   | 85<br><b>At</b>  | 86<br><b>Rn</b>    |
| 87<br><b>F1</b> | 88<br><b>Ra</b>  | 89-103<br>#    | 104<br><b>Rf</b> | 105<br><b>Db</b> | 106<br><b>Sg</b> | 107<br><b>Bh</b> | 108<br><b>Hs</b> | 109<br><b>Mt</b> | 110<br><b>Ds</b> | 111<br><b>Rg</b> | 112<br><b>Cn</b> | 113<br>Uut      | 114<br><b>Uuq</b> | 115<br><b>Uup</b> | 116<br><b>Uuh</b> | 117<br>Uus       | 118<br><b>Uu</b> o |
|                 |                  |                | 57<br><b>La</b>  | 58<br><b>Ce</b>  | 59<br><b>Pr</b>  | 60<br><b>Nd</b>  | 61<br><b>Pm</b>  | 62<br><b>Sm</b>  | 63<br><b>Eu</b>  | 64<br><b>Gd</b>  | 65<br><b>Tb</b>  | 66<br><b>Dy</b> | 67<br><b>Ho</b>   | 68<br><b>E</b> 1  | 69<br><b>Tm</b>   | 70<br><b>Yb</b>  | 71<br><b>Lu</b>    |
|                 |                  |                | 89<br><b>Ac</b>  | 90<br><b>Th</b>  | 91<br><b>Pa</b>  | 92<br><b>U</b>   | 93<br><b>Np</b>  | 94<br><b>Pu</b>  | 95<br><b>Am</b>  | 96<br>С <b>т</b> | 97<br><b>Bk</b>  | 98<br><b>Cf</b> | 99<br><b>Es</b>   | 100<br><b>Fm</b>  | 101<br><b>Md</b>  | 102<br><b>No</b> | 103<br><b>Lr</b>   |

முழுப் பதிப்புரிமையுடையது All Rights Reserved)



மொறட்டுவைப் பல்கலைக்கழக பொறியியற்பீட தமிழ் மாணவர்கள் நடாத்தும் கல்விப் பொதுத் தராதர உயர்தர (கணித, விஞ்ஞான) மாணவர்களுக்கான 6 ஆவது மூன்னோழப் பரீட்சை -2015

கல்விப் பொதுத் தராதரப் பத்திரஉயர் தரி முன்னோடிப் பரீட்சை – 2015 General Certificate of Education (Adv. Level) Pilot Examination - 2015

Chemistry II இரசாயனவியல் II  $\boxed{02 \mathbf{E} \mathbf{II}}$ 

Three Hours மூன்று மணித்தியாலம்

- \* Periodic Table is provided.
- \* Use of calculators is prohibited
- \* Universal gas constant R = 8.314 JK<sup>-1</sup>mol<sup>-1</sup>
- \* Avogadro's constant  $L = 6.022 \times 10^{23} \text{ mol}^{-1}$
- \* Alkyl groups can be written in short form as follows

Eg: 
$$H \longrightarrow C \longrightarrow C$$
 - can be written as  $CH_3 CH_2$  -

## PartA - Structured essay

- \* Answer all questions on this paper itself
- \* Answer each question on the allowed space. Consider that the given space is enough for the answer and elaborated answers are not required.

#### Part B and Part C - Essay

- \* Answer 4 questions altogether choosing 2 questions from each section.
- \* Use the provided answer sheets for this purpose
- \* Annex part B and C to A placing part A on top and hand it over to the examination supervisor at the end of the given time.
- \* Only B and C part of this question paper are allowed to be taken out of the exam hall.

## Only for examiner

| Part       | Question | Marks |
|------------|----------|-------|
|            | 01       |       |
|            | 02       |       |
| A          | 03       |       |
|            | 04       |       |
| _          | 05       |       |
| В          | 06       |       |
|            | 07       |       |
|            | 08       |       |
| С          | 09       |       |
|            | 10       |       |
| Total      |          |       |
| Percentage |          |       |

#### Final Marks

| In digits |  |
|-----------|--|
| In Words  |  |

#### Index No.

| Examiner      |   |  |
|---------------|---|--|
| Marks         | 1 |  |
| checked by    | 2 |  |
| Supervised by |   |  |

# Part II (A)

| 1. | (a) |       | nsider the elements Xe<br>owing description. On |          |                     |                   | among these elements fully. | for each of the |
|----|-----|-------|-------------------------------------------------|----------|---------------------|-------------------|-----------------------------|-----------------|
|    |     | Sha   | ipe                                             | Dipole   | e moment            |                   | Example                     |                 |
|    |     | (i)   | Linear                                          |          | 0                   |                   |                             |                 |
|    |     | (ii)  | Square planar                                   |          | 0                   |                   |                             |                 |
|    |     | (iii) | Square pyramid                                  |          | present             |                   |                             |                 |
|    |     | (iv)  | Angular                                         |          | present, bond angl  | $e < 109^{\circ}$ |                             |                 |
|    |     | (v)   | Trigonal planar                                 |          | 0                   |                   |                             |                 |
|    |     | (vi)  | Octahedral                                      |          | 0                   |                   |                             |                 |
|    |     |       | H - C - O - N - O H  Draw the most accep        | otable L | ewis structure of A | A                 |                             |                 |
|    |     | (ii)  | Give possible resonar                           |          |                     |                   | blity.                      |                 |
|    |     |       |                                                 |          |                     |                   |                             |                 |
|    |     | (iii) | B is a structrural ison                         | mer of A | A. Give the possibl | e Lewis struct    | ure of B                    |                 |
|    |     |       |                                                 |          |                     |                   |                             |                 |

|    |     | (iv) | Identify the type of orbital hybridization of N in both A and B                                                                                                                                       |
|----|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (c) | (i)  | NCl <sub>3</sub> could behave as a Lewis base. But NF <sub>3</sub> could not act as a Lewis base and also does not get hydrolyzed. Explain this briefly considering the concept of electronegativity. |
|    |     |      |                                                                                                                                                                                                       |
|    |     | (ii) | Both phenol and water could form hydrogen bond. But phenol mix partially with water and appears                                                                                                       |
|    |     |      | as turbid solution. Explain this briefly considering the concept of intermolecular forces.                                                                                                            |
|    |     |      |                                                                                                                                                                                                       |
| 2. | (a) | A 3  | d series transition metal M has only two unpaired electrons in its stable tripositive ion                                                                                                             |
|    |     | (i)  | Identify M mentioning its name.                                                                                                                                                                       |
|    |     | (ii) | The following questions are regarding the highest oxidation state oxide of M.                                                                                                                         |
|    |     |      | (a) What is its chemical formula?                                                                                                                                                                     |
|    |     |      | (b) It is acidic / basic / amphotric / neutral in nature. Underline the appropriate answer.                                                                                                           |
|    |     |      | (c) Give one of its industrial use.                                                                                                                                                                   |
|    |     |      | (d) Write down the balanced equation for its reaction with NaOH.                                                                                                                                      |
|    |     |      | (e) M has the highest melting point among the 3d series elements. Give reason / reasons                                                                                                               |
|    |     |      |                                                                                                                                                                                                       |

(b) Complete the following table using the formulae of the stable hydroxides third period elements in their highest oxidation states acidic / basic behaviour and IUPAC names.

| Element | Formula | Behaviour | IUPAC name |
|---------|---------|-----------|------------|
| Na      |         |           |            |
| Mg      |         |           |            |
| Al      |         |           |            |
| Si      |         |           |            |
| P       |         |           |            |
| S       |         |           |            |
| Cl      |         |           |            |
| L       |         |           |            |

| - 1 |             | l l                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) | Ba0<br>salt | ortion of the aqueous solution of water soluble salt of element L gave a precipitate with $l_2$ / dil HNO <sub>3</sub> . The precipitate dissolved in NH <sub>3</sub> (aq). Another portion of the aqueous solution of L was boiled with excess Na <sub>2</sub> CO <sub>3</sub> (s) and was filtered. The filtrate did not give any precipitate BaCl <sub>2</sub> / dil HNO <sub>3</sub> . |
|     | (i)         | What could be the element L?                                                                                                                                                                                                                                                                                                                                                               |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     | (ii)        | Explain the above observations briefly.                                                                                                                                                                                                                                                                                                                                                    |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     | (iii)       | When conc. $H_2SO_4$ is added to the salt of L and warmed, reddish brown gas evolved. Identify the salt                                                                                                                                                                                                                                                                                    |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |
|     |             |                                                                                                                                                                                                                                                                                                                                                                                            |

3. (a)



Colloidal agar has NaCl, phenolphthalein,  $K_3[Fe(CN)_6]$  and gel

(i) What is the observation at electrode A?

| <br> |
|------|
|      |
|      |
|      |
| <br> |

(ii) Give equations for the reactions in (i)

| <br> | <br> |
|------|------|
|      |      |

(iii) What is the observation at electrode B?

| <br> | <br> |  |
|------|------|--|
|      |      |  |

(iv) Write down the appropriate equations for the reactions in (iii)

| <br> | <br>••••• | <br> |
|------|-----------|------|
| <br> | <br>      |      |

(b) Liquids A, B and C are miscible among them in all proportions

$$(i) f_{A-A} = f_{A-B} = f_{B-B}$$

$$(ii) f_{B-B} > f_{B-C} < f_{C-C}$$
 (f - intermolecular force)

$$(iii) f_{\scriptscriptstyle A-A} < f_{\scriptscriptstyle A-C} > f_{\scriptscriptstyle C-C}$$

$$p_A^0 < p_C^0, \quad p_A^0 > p_B^0$$

I. Draw the graphs of pressure Vs compositions of the above solutions

| <br> |
|------|
| <br> |
| <br> |

.....

|  | <br> | <br> | <br> | <br> | <br> |  |
|--|------|------|------|------|------|--|
|  | <br> | <br> | <br> | <br> | <br> |  |
|  |      |      |      |      |      |  |
|  |      |      |      |      |      |  |

| II.     | Draw the labelled graph of boiling point (temerature) vs composition of solution AB.                                                                           |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
| III.    | $p_B^0 = 4 \times 10^4 Pa$ , $p_A^0 = 6 \times 10^4 Pa$ . Calculate the pressure of the vapour in equilibrium with equimolar solutions of A and B              |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
| IV.     | In another solution of A and B pressure of the vapour in equilibrium with the solutions is $4x10^4$ Pa. What is the composition of the vapour of the solution? |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
| (c) (i) | Derive mathematically the Ostwald's dilution law for monobasic weak acid HA.                                                                                   |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
| (ii)    | pH of $0.4$ moldm <sup>-3</sup> monobasic weak acid HA is $3$ . Deduce the $pH$ of $0.1$ moldm <sup>-3</sup> solution of                                       |
|         | this acid.                                                                                                                                                     |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |
|         |                                                                                                                                                                |

|        | (iii) 0.1moldm <sup>-3</sup> , 25.0cm <sup>3</sup> of N<br>The pH of the resultir                                                                                                                                                              | NaOH solution is added to ( ng solution is 5. Calculate th                                                         |                                                                                  |                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|        |                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                  |                                                                                |
|        |                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                  |                                                                                |
|        |                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                  |                                                                                |
|        |                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                  |                                                                                |
| 4. (a) | Two organic compounds A and Br <sub>2</sub> (aq) and also show geome geometrical isomer of A. Who respectively (C <sub>4</sub> H <sub>10</sub> O <sub>2</sub> ). D has A and B. F is neutral and for 2, 4- DNPH.  (i) Draw the structures of A | trical isomerism. They give<br>en A and B are reduced by<br>four stereo isomers and E<br>rms silver mirror with Ag | white fume of HCl w<br>Pt / H <sub>2</sub> , two products has only two. F is a l | ith PCl <sub>5</sub> . But B is not a D and E are formed inear chain isomer of |
|        |                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                  |                                                                                |
|        | A                                                                                                                                                                                                                                              | В                                                                                                                  |                                                                                  | D                                                                              |
|        |                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                  |                                                                                |
|        | E                                                                                                                                                                                                                                              | F                                                                                                                  |                                                                                  | F                                                                              |
|        | (ii) Name the class of isomer                                                                                                                                                                                                                  | ism exibited by A and B                                                                                            |                                                                                  |                                                                                |
| (b)    | A series of changes are given                                                                                                                                                                                                                  | below in which L is formed                                                                                         | d again from the organ                                                           | ic compound L.                                                                 |
| L      |                                                                                                                                                                                                                                                | — NaOH/HCl →                                                                                                       | CH <sub>3</sub> CH <sub>2</sub> -CH-CH<br>CH <sub>3</sub>                        | I <sub>2</sub> OH                                                              |
|        | $ \uparrow (i) LiAlH4 $ (ii) $H_3O^+$                                                                                                                                                                                                          |                                                                                                                    | ↓x                                                                               |                                                                                |
| O      |                                                                                                                                                                                                                                                | M                                                                                                                  |                                                                                  |                                                                                |
|        | $ Arr$ $P_4O_{10}$ , $\Delta$                                                                                                                                                                                                                  |                                                                                                                    | PCl₅                                                                             |                                                                                |
| N      |                                                                                                                                                                                                                                                | <u>Y</u> ←                                                                                                         | CH <sub>3</sub> CH <sub>2</sub> -CH-CO<br>CH <sub>3</sub>                        | OCl                                                                            |
|        |                                                                                                                                                                                                                                                |                                                                                                                    |                                                                                  |                                                                                |

| (i) Give the structures of L, M, N and O (in the boxes given)  (ii) Give the appropriate reagents X and Y (in the appropriate places)  (iii) Write the mechanism for the reaction of CH <sub>3</sub> CH <sub>2</sub> -CH-COC1 with Y CH <sub>3</sub> (iv) Indicate the type of mechanism in the formation of O from N  **** | (ii) Give the appropriate reagents X and Y (in the appropriate places)  (iii) Write the mechanism for the reaction of CH <sub>3</sub> CH <sub>2</sub> -CH-COCl with Y CH <sub>3</sub> (iv) Indicate the type of mechanism in the formation of O from N | II(A) ~ 8 ~                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| (iii) Write the mechanism for the reaction of CH <sub>3</sub> CH <sub>2</sub> -CH-COC1 with Y CH <sub>3</sub> (iv) Indicate the type of mechanism in the formation of O from N                                                                                                                                              | (i)                                                                                                                                                                                                                                                    | Give the structures of L, M, N and O (in the boxes given)                 |
| (iv) Indicate the type of mechanism in the formation of O from N                                                                                                                                                                                                                                                            | (ii)                                                                                                                                                                                                                                                   | Give the appropriate reagents X and Y (in the appropriate places)         |
|                                                                                                                                                                                                                                                                                                                             | (iii)                                                                                                                                                                                                                                                  | Write the mechanism for the reaction of $CH_3CH_2$ -CH-COCl with Y $CH_3$ |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                                                                                             | •••••                                                                                                                                                                                                                                                  |                                                                           |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |                                                                           |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        |                                                                           |
| ***                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        | Indicate the type of mechanism in the formation of O from N               |
|                                                                                                                                                                                                                                                                                                                             | (iv)                                                                                                                                                                                                                                                   | Indicate the type of mechanism in the formation of O from N               |
|                                                                                                                                                                                                                                                                                                                             | (iv)                                                                                                                                                                                                                                                   |                                                                           |

முழுப் பதிப்புரிமையுடையது All Rights Reserved)



மொறட்டுவைப் பல்கலைக்கழக பொறியியற்பீட தமிழ் மாணவர்கள் நடாத்தும் கல்விப் பொதுத் தராதர உயர்தர (கணித, விஞ்ஞான) மாணவர்களுக்கான 6 ஆவது முன்னோழப் பரீட்சை -2015

கல்விப் பொதுத் தராதரப் பத்திர@யா் தர்) முன்னோடிப் பாீட்சை – 2015 General Certificate of Education (Adv. Level) Pilot Examination - 2015

> Chemistry II இரசாயனவியல்  $\Pi$



#### Part II (B)

Answer any two questions

- 5. (a) I. Define the following
  - (i) Standard lattice enthalpy
  - (ii) Standard enthalpy of formation.
  - II. Standard atomisation enthalpy of Na  $= 109.0 \text{ kJmol}^{-1}$  $= 129.0 \text{ kJmol}^{-1}$ Standard atomisation enthalpy of Cl Standard first ionisation enthalpy of Na  $= 494 \text{ kJmol}^{-1}$ Standard second ionisation enthalpy of Na  $=4556kJmol^{-1}$ Standard electron affinity of Cl  $= -364 \text{ kJmol}^{-1}$ Standard lattice enthalpy of NaCl  $= -769 \text{ kJmol}^{-1}$  $= -2300 \text{ kJmol}^{-1}$ Standard lattice enthalpy of NaCl,
    - (i) Write down the appropriate chemical equations for the above changes
    - (ii) Find the following using the suitable data given above.
      - Standard enthalpy of formation of NaCl(s) (a)
      - (b) Standard enthalpy of the following reaction

$$NaCl(s) + \frac{1}{2}Cl_2(g) \longrightarrow NaCl_2(s)$$

- (c) Standard entropies of NaCl(s), Cl<sub>2</sub>(g) and NaCl<sub>2</sub>(s) are 72.4 Jmol<sup>-1</sup>K<sup>-1</sup>, 223 Jmol<sup>-1</sup>K<sup>-1</sup> and 90 Jmol<sup>-1</sup>K<sup>-1</sup> respectively. Is the reaction in (b) feasible at 300K? or at what temperature would it be feasible?
- (b) Assume air has 75.0% of  $N_2(g)$  and 25.0% of  $O_2(g)$  by volume. The pressure of air at 27°C is  $1.0x10^5 \, Nm^{-2}$ 
  - (i) Calculate the partial pressure of  $N_2(g)$  and  $O_2(g)$  in air.
  - (ii) Temperature of the 1.0 dm<sup>3</sup> flask is raised to 727°C and small amount of Pt particles are added. The equilibrium  $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$  is attained. Equilibrium mixture has 10% NO(g) by volume
    - (a) What is the total pressure of the system?
    - (b) Find the  $K_p$  of the system.
    - (c) The system is compressed and the volume is brought to one quarter of the initial volume and the temperature is maintained at 727°C. What is the partial pressure of O<sub>2</sub> at this stage?

- (c) An insecticide G is soluble in both water and benzene. 50 cm<sup>3</sup> of C<sub>6</sub>H<sub>6</sub> is added to 0.5 moldm<sup>-3</sup>,100.0 cm<sup>3</sup> aqueous solution of G and shaken thoroughly and allowed to attain equlibrium. The C<sub>6</sub>H<sub>6</sub> layer is separated and the concentration of G remaining in the aqueous layer is 0.05 moldm<sup>3</sup>.
  - (i) Find the partition coefffient of G between C<sub>6</sub>H<sub>6</sub> and water
  - (ii) After 24 hours of spraying the insecticide 100 g sample of leaves is powdered and shaken thoroughly with equivolume mixture of water and benzene and kept at rest. Assume 100.0 cm<sup>3</sup> of each benzene and water are used. The composition of G in the saturated benzene layer is 200 ppm
  - (iii) After 7 days of spraying the insecticide 100 g sample of leaves is subjected to the same procedure as in (ii) and the composition of G in benzene layer is found to be 20ppm. Assume that all the insecticide in the leaves are transferred to the benzene-water system while shaking. 25 ppm composition of G does not affect the animals / man. Could we use these leaves after one day or after 7 days as food? Explain your answer.
- Both acids HA and HB have concentrations 1.0moldm<sup>-3</sup> each. 20.0cm<sup>3</sup> of each acid is titrated a. I. separately using 1.0 moldm<sup>-3</sup> NaOH(aq) in the burette and the variation of pH (25°C) are shown in the following graph.



- (i) If the volume of NaOH(aq) added at point P is 19.95cm<sup>3</sup>, what is the pH at this point?
- (ii) If the pH at point Q is 5, what is the K<sub>2</sub> of HB?
- (iii) What is the pH at point R?
- (iv) What is the pH at point S?

 $(V_{NaOH} = 20.0 \text{ cm}^3)$ 

(iv) What is the pH at point T?

 $(V_{NaOH}^{NaOH} = 20.05 \text{ cm}^3)$   $(V_{NaOH} = 30.0 \text{ cm}^3)$ 

(iv) What is the pH at point U?

- II. 20.0cm<sup>3</sup> solution having HA and HB of concentration 1.0moldm<sup>-3</sup> each is given. 1.0moldm<sup>-3</sup> NaOH is allowed to get into this solution from burette. Deduce the pH in the following circumstances.
  - (i) Addition of 20.0 cm<sup>3</sup> NaOH(aq)
  - (ii) Addition of 40.0cm<sup>3</sup> NaOH(aq)

- b. Find the minimum concentration of  $NH_3(aq)$  to be added to prevent the precipitation of AgCl in the given solution containing  $1x10^3$ moldm<sup>-3</sup> Cl<sup>-</sup> and  $4x10^3$ moldm<sup>-3</sup> Ag<sup>+</sup>. For the above calculation proceed the following calculation steps. Assume all the calculations are for 1 dm<sup>3</sup> solution.
  - (i) What should be the maximum Ag<sup>+</sup>(aq) concentration to prevent the precipitation of Cl<sup>-</sup>(aq)?
  - (ii) Find the concentration of  $[Ag(NH_3)_2]^+$  formed when the Ag+ taken initially combine with NH<sub>3</sub>?
  - (iii) Find the  $[NH_3(aq)]$  concentration in  $[Ag(NH_3)_2]^+$  at equilibrium.
  - (iv) Calculate the total concentration of NH<sub>3</sub>(aq) that should be added.

$$K_{d[Ag(NH_3)_2]^+} = 6.0 \times 10^{-8} dm^6 mol^{-2}, K_{sp(AgCl)} = 1 \times 10^{-10} mol^2 dm^{-6}$$





- (i) Calculate the standard potential of  $M^{n+}(aq) + ne \rightleftharpoons M(s)$
- (ii) Which is the anode? What is the anodic reaction?
- (iii) Which is the cathode? What is the cathodic reaction?
- (iv) What is the cell reaction?
- (v) When the cell functions, in the first 5 seconds mass of Ag displaced is 0.54 mg and mass of displaced M is 0.28 mg.
  - I. Find the amount of electricity required to displace 0.54 mg Ag (Ag = 108, 1F = 96500 C)
  - II. Find the amount of electrons related in I.
  - III. If the relative atomic mass of M is 56, find the number of moles of electrons required to deposit 56 g of M.
  - IV. What is the value of n?
- 7. (a) If benzene, Br<sub>2</sub>, Fe, Mg, dry ether, dil H<sub>2</sub>SO<sub>4</sub>, CH<sub>3</sub>COCl, HCHO, PCl<sub>5</sub>, con H<sub>2</sub>SO<sub>4</sub>, con HNO<sub>3</sub>, KI and NaNO<sub>2</sub> are the only chemical substances that could be used, how would you effect the following conversions?



- (b) CH<sub>3</sub> C Br is warmed with aqueous KOH and three products A, B and D are obtained. CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> A and B are obtained in equimolar amounts and the mixture of A and B is a racemic mixture. D is a hydrocarbon obtained in small amount. Indicate the mechanism of the above reaction and identify A, B and D
- (c) A method of preparation of 2, 3, 4 -tribromoheptane starting from  $C_2H_5OH$  is given below  $C_2H_5OH \xrightarrow{a} P \xrightarrow{b} Q \xrightarrow{c} R \xrightarrow{d} S \xrightarrow{CH_3CH_2CH_2MgBr} T \xrightarrow{e} 2$ , 3, 4 -tribromoheptane Identify the compounds P, Q, R, S, T and the reagents a, b, c, d and e.

# Part II (C) Answer any two questions

8. a. You are provided with the following particulars regarding a mixture having two salts A and B. Both the salts have the same anion.

Test Observation

- (i) A small portion of the solid yellow solid residue with evolution of reddish brown gas mixture is heated strongly
- (ii) Excess NaOH(aq) is added residue dissolved completely to the solid residue in (i)
- (iii) Excess dil HCl is added to a white precipitate appeared. solution in (ii) and shaken thoroughly
- (iv) The precipitate in (iii) is precipitate dissolved and colourless solution is formed. On cooling, the crystals appeared.
- (v) To the filtrate in (iv) NH<sub>4</sub>Cl(aq) no appreciable change is added and then excess NH<sub>2</sub>(aq) is added
- (vi) H<sub>2</sub>S is passed into the white precipitate appeared solution of (v)
- b. A sample of KMnO<sub>4</sub> has MnO<sub>2</sub> as impurity. Little excess HI and dil H<sub>2</sub>SO<sub>4</sub> are added to 3.32g of the above sample and the liberated I<sub>2</sub> is completely titrated with 2.0 mol dm<sup>-3</sup> Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>.
  - (i) Give balanced equations for all the reactions.
  - (ii) What is the percentage purity of KMnO<sub>4</sub> in the sample?
- c. Vitamin C is Ascorbic acid  $(C_6H_8O_6)$ . It is a reducing agent. It reduces  $I_2$  (aq) as follows  $C_6H_8O_6(aq) + I_2(aq) \longrightarrow C_6H_6O_6(aq) + 2HI(aq)$

Ascorbic acid is used to prepare a soft drink of orange flavour.  $50.0 \,\mathrm{cm^3}$  of this soft drink is shaken thoroughly with  $10.0 \,\mathrm{cm^3}$  of  $0.05 \,\mathrm{moldm^3}$  KIO<sub>3</sub> aqueous solution and little excess KI. After the completion of reaction  $0.030 \,\mathrm{moldm^{-3}}$ ,  $30.0 \,\mathrm{cm^3}$  of  $\mathrm{Na_2SO_3}$  solution is required to react with the remaining I<sub>2</sub> in the resulting solution. Find the composition of the ascorbic acid in the soft drink.

- 9. (a) This question is related with the manufacture of sodium carbonate by Solvay process
  - (i) What are the raw materials used?
  - (ii) Give all the reactions related with this process.
  - (iii) Explain briefly the techniques used to increase the efficiency.
  - (iv) In salterns after the separation of salt, the mother liquor called bittern remains. Indicate a useful substance that could be produced using bittern and the byproduct in the manufacture of Na<sub>2</sub>CO<sub>3</sub>

- (b) (i) Indicate the difficulties that could arise in the usage of apatite directly as phosphate fertilizer for plants.
  - (ii) To increase the effectiveness of apatite it is converted into super phosphate  $(Ca(H_2PO_4)_2)$ . If we use  $H_2PO_4$ , triple phosphate is formed. Give the chemical equation relevant to this process.
  - (iii) The given agriculture fertilizer contains 70.2% superphosphate by weight. The remaining are inert fillers. Calculate the mass of apatite required to prepare 100 kg of this fertilizer. (Assume the apatite sample is pure) (Ca=40, F=19, O=16, P=51, H=1.0)
  - (c) The smoke of a petrol vehicle plays an important role in environmental pollution
    - (i) Identify five gaseous pollutants in the above smoke. Mention one solid phase pollutant.
    - (ii) Among the above pollutants identify two which could give green house effect
    - (iii) Identify two factors which cause acid rain.
    - (iv) Identify a factor which cause photochemical smog.
    - (v) Identify two gases which affect the respiratory system. Why are these gases called respiratory resistant gases?
    - (vi) To reduce the above pollutants give two activities that should be introduced in petrol engines.
- 10. (a) You are provided a mixture containing sodium sulphate, sodium sulphite and sodium hydrogen sulphate which were mixed up accidentally

solution 
$$\xrightarrow{(i)BaCl_2(aq)}$$
 precipitate(dry mass)  $\xrightarrow{(i)dilHNO_3}$  precipitate(dry mass)  $0.450 \text{ g (A)}$   $0.230 \text{ g (B)}$ 
filtrate  $\xrightarrow{(i)excessNH_3(aq))}$  precipitate(dry mass)  $0.466 \text{ g (D)}$ 
 $(Ba = 137), S = 32, H = 1)$ 

- (i) Give the related reactions and the chemicals in A, B, C and D
- (ii) Find the concentrations of the above components in the solution.
- (b) Write balanced equations for the reactions of NaOH with the following. Identify the substance underlined as oxidant or reducing agent or none.
  - (i) NaOH(aq) +  $\underline{I}_2(s)$
  - (ii) NaOH(aq) +  $\underline{P}_{A}(s)$
  - (iii)  $\underline{\text{NaOH}(\text{aq})} + (\text{NH}_4)_2 \text{Cr}_2 \text{O}_7(\text{aq})$
  - (iv) NaOH(aq) + Al(s)
  - (v) NaOH(aq) +  $\underline{NO}_2(g)$

(c) Considering the reaction  $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$ 

The initial concentration of  $H_2O_2(aq)$  is 3.0 moldm<sup>-3</sup>. It is added into a bottle containing a transition metal ion. Transition metal ion is a catalyst. For every 5 minutes  $10\,\mathrm{cm}^3$  solution is taken and titrated with 0.1 moldm<sup>-3</sup> acidic KMnO<sub>4</sub> in the burette and the burette readings are given below.

time / min. 0 5 10 15 20 burette reading / cm<sup>3</sup> 30.0 23.4 18.3 14.2 11.1

- (i) Write the equation for the reaction between  $\text{KMnO}_4$  and  $\text{H}_2\text{O}_2$  in acidic medium.
- (ii) How does the rate of the above reaction is measured?
- (iii) Rate of reaction  $\propto [H_2O_2(aq)]^m$  What is the value of m?
- (iv) Calculate the rate constant
- (v) What is the half life period of the reaction?

\*\*\*

# **Periodic Table**

| 1<br><b>H</b>   |                  |                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |                   |                 |                   |                   |                   | 2<br>He           |
|-----------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-----------------|-------------------|-------------------|-------------------|-------------------|
| 3<br>Li         | 4<br>Be          |                 |                  |                  |                  |                  |                  |                  |                  |                  |                  | 5<br><b>B</b>     | 6<br>C          | 7<br><b>N</b>     | °<br>O            | 9<br><b>F</b>     | 10<br><b>Ne</b>   |
| 11<br><b>Na</b> | 12<br><b>Mg</b>  |                 |                  |                  |                  |                  |                  |                  |                  |                  |                  | 13<br><b>Al</b>   | 14<br><b>Si</b> | 15<br><b>P</b>    | 16<br><b>S</b>    | 17<br><b>C1</b>   | 18<br><b>A1</b>   |
| 19<br><b>K</b>  | 20<br><b>Ca</b>  | 21<br><b>Sc</b> | 22<br><b>Ti</b>  | 23<br><b>V</b>   | 24<br><b>Cr</b>  | 25<br><b>Mn</b>  | 26<br><b>Fe</b>  | 27<br><b>Co</b>  | 28<br><b>Ni</b>  | 29<br><b>Cu</b>  | 30<br><b>Zn</b>  | 31<br><b>Ga</b>   | 32<br><b>Ge</b> | 33<br><b>As</b>   | 34<br><b>Se</b>   | 35<br><b>Br</b>   | 36<br><b>Kr</b>   |
| 37<br><b>Rb</b> | 38<br><b>S</b> 1 | 39<br><b>Y</b>  | 40<br><b>Z</b> 1 | 41<br><b>Nb</b>  | 42<br><b>Mo</b>  | 43<br><b>Tc</b>  | 44<br>Ru         | 45<br><b>Rh</b>  | 46<br><b>Pd</b>  | 47<br><b>Ag</b>  | 48<br>Cd         | 49<br><b>In</b>   | 50<br><b>Sn</b> | 51<br><b>Sb</b>   | 52<br><b>Te</b>   | 53<br><b>I</b>    | 54<br>Xe          |
| 55<br><b>Cs</b> | 56<br><b>Ba</b>  | 57-71           | 72<br><b>Hf</b>  | 73<br><b>Ta</b>  | 74<br><b>W</b>   | 75<br><b>Re</b>  | 76<br><b>Os</b>  | 77<br><b>Ir</b>  | 78<br><b>Pt</b>  | 79<br><b>Au</b>  | 80<br>Hg         | 81<br><b>T1</b>   | 82<br><b>Pb</b> | 83<br><b>Bi</b>   | 84<br><b>Po</b>   | 85<br><b>At</b>   | 86<br><b>Rn</b>   |
| 87<br><b>Fr</b> | 88<br><b>Ra</b>  | 89-103<br>#     | 104<br><b>Rf</b> | 105<br><b>Db</b> | 106<br><b>Sg</b> | 107<br><b>Bh</b> | 108<br><b>Hs</b> | 109<br><b>Mt</b> | 110<br><b>Ds</b> | 111<br><b>Rg</b> | 112<br><b>Cn</b> | 113<br><b>Uut</b> | 114<br>Uuq      | 115<br><b>Uup</b> | 116<br><b>Uuh</b> | 117<br><b>Uus</b> | 118<br>Uuo        |
| 48              |                  |                 | 57<br><b>La</b>  | 58<br><b>Ce</b>  | 59<br><b>Pr</b>  | 60<br><b>Nd</b>  | 61<br><b>Pm</b>  | 62<br><b>Sm</b>  | 63<br><b>Eu</b>  | 64<br><b>Gd</b>  | 65<br><b>Tb</b>  | 66<br><b>Dy</b>   | 67<br><b>Ho</b> | 68<br><b>E</b> 1  | 69<br><b>Tm</b>   | 70<br><b>Yb</b>   | 71<br><b>Lu</b>   |
|                 |                  |                 | 89<br><b>Ac</b>  | 90<br><b>Th</b>  | 91<br><b>Pa</b>  | 92<br><b>U</b>   | 93<br><b>Np</b>  | 94<br><b>Pu</b>  | 95<br><b>Am</b>  | 96<br>Ст         | 97<br><b>Bk</b>  | 98<br><b>Cf</b>   | 99<br><b>Es</b> | 100<br><b>Fm</b>  | 101<br><b>Md</b>  | 102<br><b>No</b>  | 103<br><b>L</b> 1 |