GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: Electronic Circuits and Applications (Code: 3321101)

Diploma Programme in which this course is offered	Semester in which offered
Electronic and Communication Engineering	Second Semester

1. RATIONALE

This course will enable students to develop the skills required to use basic electronic devices in various electronic circuits. Through the study of this course the students will understand the construction, working, characteristics and applications of various types of semiconductor components such as diodes and transistors, which are basic building block of amplifier, oscillator, switching circuit, wave shaping circuit and power supply. The knowledge of this core subject is essential for comprehending the courses that will be introduced later in the diploma programme as well as developing requisite skills for effective functioning in the industry.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competency:

• Analyse analog circuits consisting of active electronic components.

3. TEACHING AND EXAMINATION SCHEME

	ching So		Total Credits (L+T+P)	Examination Scheme				
	(111 1104)		(2,1,1)	Theory Marks		Iarks Practical Marks		Total Marks
L	T	P	С	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

 $\label{lem:Legends: L-Lecture: T-Tutorial/Teacher Guided Student Activity: P-Practical: C-Credit: ESE-End Semester Examination: PA-Progressive Assessment$

Note: It is the responsibility of the institute heads that marks for **PA of theory** & **ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. **DETAILED COURSE CONTENT**

Unit	Major Learning	Topics and Sub-topics		
Unit – I	Outcomes 1a. Explain working of	1.1 Basic diode circuits, clipper and clamper, voltage		
	clipper and clamper.	doubler		
Diode	1b. Describe working,	1.2 Zener diode as a voltage regulator		
Application	characteristic and	1.3 Varactor diode, schottky barrier diode, crystal		
and Special	applications of	diode		
Purpose	different diodes.			
Diodes	1c. Explain the working	1.4 Photo Diode, LDR, Photovoltaic Cell, Photo		
	and applications of	Transistor, Light Emitting Diode, Opto coupler, 7-		
	photo devices.	Segment Display, OLED, AMOLED, Multi color LED		
		LED		
Unit – II	2a. Compare working of	2.1 Transistor Amplifier: CB, CE, CC		
	CB, CE and CC	2.2 Comparison of CB,CE and CC Amplifier		
Transistor	amplifier.			
Amplifier	2b. Calculate parameters	2.3 Load line consideration and operating		
and	of CB, CE, CC	point		
Applications	transistor amplifier.	2.4 Amplifier Parameters: A _v , A _i , A _p , R _o , R _i		
	2c. Explain the need for Darlington Pair.	2.5 Darlington Pair and its applications		
	2d. Describe application of	2.6 Transistor used as a Relay Driver		
	transistor as a Relay	2.0 Transistor used as a Relay Dirver		
	Driver and Tuned	2.7 Transistor used as a Tuned Amplifier		
	Amplifier.			
Unit – III	3a. Test different biasing	3.1 Biasing; Biasing Circuits: Fixed Bias,		
Transistor	circuits. 3b. Define thermal	Collector to Base bias, Emitter Bias and Voltage divider bias		
Biasing	instability and its	3.2 Thermal instability		
Circuits and	adverse effect on	3.2 Thermal instability		
Thermal	working of any			
Stability	circuit.			
	3c. Justify the need of heat	3.3 Thermal Runaway and Stability Factor		
	sink.	3.4 Thermal Resistance		
	3d. Select appropriate heat	3.5 Heat Sink		
	sink.	3.6 Types of Heat sink: Shape, Size, Color, Material		
		11440144		
Unit – IV	4a. Define amplifier	4.1Gain, Bandwidth and Gain-Bandwidth		
	parameters: gain,	product		
Frequency	Bandwidth and Gain –	4.2 Effect of Emitter Bypass Capacitor and		
Response of	bandwidth product.	Coupling Capacitor on frequency		
Transistor	4b.Determine frequency response of CE	response 4.3 Frequency Response of Single Stage		
Amplifier	amplifier using	Amplifier Amplifier		
	different types of	4.4 Different Coupling Techniques for cascading:		
	coupling.	Direct, RC, LC and Transformer		
	4c. Describe the various	4.5 Frequency Response of Two Stage RC-		
	types of couplings of	Coupled amplifier		
	amplifier.	51 m		
Unit – V	5a.Describe importance of	5.1 Two port network ,h-parameters and its equivalent		

	Major Learning	Topics and Sub-topics		
Unit	Outcomes	Topics and Sub-topics		
		circuits		
TT 1 .1	h- parameters of the two			
Hybrid	port network.	5.2 h-parameters for CE amplifier		
Parameters	5b. Analyse CE amplifier	5.3 CE Amplifier parameters- A _v , A _i , A _p , R _o , R _i using		
	using h-parameters.	h- parameters (No Derivations)		
Unit – VI	6a. Explain parameters of	6.1 Regulated power supply (module level)		
	the regulator and the	6.2 Shunt voltage regulator		
Regulated	need of regulated DC	(module level)		
Power	power supply.	6.3 Transistorized series voltage regulator		
Supply	6b. Explain the working of	(basic and with feedback, without derivation)		
	different voltage	6.4 Three Terminal Fixed/variable voltage regulator:		
	regulator	78xx, 79xx, LM317		
	circuits.	, , , , , , , , , , , , , , , , , , , ,		
	6c. Explain need, working	6.5 Switch mode power supply(SMPS)		
	at module level,	6.6 Uninterruptible power supply(UPS)		
	advantage,			
	disadvantages and			
	applications of SMPS.			
6d. Compare LRPS and				
	SMPS.			
6e. Explain working of				
	UPS at module level			
	for offline and online.			

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			rks
		Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
I	Diode application and	10	2	6	6	14
	special purpose diodes					
II	Transistor biasing circuits	10	2	6	4	12
	and thermal Stability					
III	Transistor amplifier	10	4	6	4	14
IV	Frequency response of	10	4	6	2	12
	transistor amplifier					
V	Hybrid parameters	6	2	2	2	6
VI	Regulated power supply	10	2	4	6	12
Tot	Total		16	30	24	70

Legends:R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The experiments should be properly designed and implemented with an attempt to develop different types of skills leading to achieve the competency. Following is the list of experiments for guidance.

S. No.	Unit No.	Unit Practical/Exercise No.	
1	I	Use multimeter for measuring electrical parameter, value of passive component like resistor and capacitor and testing of diode, transistor.	02
2	I	Determine voltage and frequency of sine, square and triangular wave signal using CRO.	02
3	I	Build various types of clipper circuit and observe input –output waveforms. Design a diode clipper circuit for the given value of clipping voltage.	02
4	I	Build various types of clamper circuit and observe input – output waveforms. Design a diode clamping circuit for the given value of clamping voltage.	02
5	I	Obtain the V-I Characteristic of zener diode.	02
6	I	Design voltage regulator for the given value of regulated voltage using zener diode.	02
7	I	Obtain V-I characteristic of photo diode.	02
8	I	Obtain the V-I Characteristic of LDR.	02
9	I	Build and display alphanumeric character using single/multi coloured LED.	02
10	I	Display numbers using 7 segment LED (Common Anode and Common Cathode- Both)	02
1	II	Test thermal stability of fixed biased type amplifier.	02
12	II	Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms.	02
13	III	Obtain input and output characteristics and calculate gain of CE amplifier circuit.	02
14	III		
1:	III	Build amplifier using Darlington pair and calculate its gain.	02
10	IV	Obtain frequency response of single stage transistor amplifier.	02
1′	IV	Obtain frequency response of two stage RC-coupled amplifier.	02
18	V	Calculate h-parameters of given transistor using data sheet.	02
19	VI	Calculate line regulation of SMPS.	02
20	VI	Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator.	02
21	VI	Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator.	
22	VI	Demonstration of working of UPS (Online/Offline).	02
23	All	Build and test one mini project using basic electronic components and general purpose PCB.	02
		Total	46

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- Build circuit/mini project using electronic components.
- PPT Presentation/Seminar on syllabus topic/mini project.
- Simulate experiments using available Electronic Design Automation Tools like Circuit maker, Tina, Multisim, Electronic work bench etc.

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
1	Electronic Principles with simulation CD	Malvino A.P	MGH, 2009 or latest
2	Electronic Devices and Circuit Theory	Boylestad Robert	Pearson, 2007 or latest
3	Principles of Electronics	Mehta V.K	S. Chand, or latest
4	Electronic Devices and Circuits	Bell David A	Oxford University Press, 2008 or latest
5	Basic Electronics – A text lab manual	Zbar Paul B, Malvino Albert Michael Miller	MGH, latest edition
6	Basic Electronics and Linear Circuits	Kulshreshtha, Bhargava and Gupta	TMH, 2006 or latest

Other Learning Resources

- Electronic Component Data sheets BPB Publications, New Delhi
- Electronics engineering magazines like EFY, Elector etc.

B. List of Major Equipment/Materials

- i. Function Generator
- ii. Multimeter
- iii. D.C. Power Supply
- iv. Variac
- v. Cathode Ray Oscilloscope
- vi. Digital Storage Oscilloscope
- vii. Experimental Trainer Kits, Bread Board, General Purpose PCB

C List of Software/Learning Websites

- i. Electronic Work Bench/MultiSIM
- ii. www.nptel.com
- iii. www.ocw.mit.edu

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. S.N.Sampat**, Senior Lecturer, Department of Electronics and Communication, Government Polytechnic, Gandhinagar
- **Prof.(Smt.) Kundan N. Vaghela**, Senior Lecturer, Department of Electronics and Communication, Government Polytechnic, Ahmedabad
- **Prof. N.B.Shah**, Senior Lecturer, Department of Electronics and Communication, Government Polytechnic, Vadnagar
- **Prof. B.P.Raval**, Senior Lecturer, Department of Electronics and Communication, Government Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof.(Mrs.)Susan S. Mathew**, Associate Professor, Dept. of Electrical and Electronics Engg.
- **Dr.(Mrs.)Anjali Potnis**, Assistant Professor, Dept. of Electrical and Electronics Engg.