Análisis de Sistemas Lineales

Álgebra de bloques

Teorema 1: Bloques en cascada

Las funciones de transferencia contenidas en bloques que se encuentran en cascada se multiplican para reducirse a un solo bloque

$$Z = P_2Y$$
,

Teorema 2: Bloques en paralelo

$$Y = P_1X \pm P_2X = (P_1 \pm P_2)X$$

$$\stackrel{\mathsf{X}}{\Longrightarrow} P_1 \pm P_2 \stackrel{\mathsf{Y}}{\Longrightarrow}$$

Teorema 3: Eliminación de bloque en la trayectoria directa

Teorema 4: Realimentación

$$Y = P_1W;$$

_ _ _ _ _ _ _ _ _ _

Teorema 5: Redistribución de puntos de suma (asociación)

Teorema 6: Desplazamiento de un bloque

$$Z = PX \pm Y$$

$$Z = P(X \pm Y/P) =$$

Teorema 7: Desplazamiento de un punto de suma hacia delante de un bloque

$$Z = P(X \pm Y)$$

$$Z = PX \pm PY = P(X \pm Y)$$

Teorema 8: Desplazamiento de un bloque hacia delante de un punto de toma

Teorema 9: Desplazamiento de un punto de toma hacia delante de un bloque

Ejemplo 1: Ecuaciones del motor de CD controlado por campo

Ecuaciones temporales

$$R_e \cdot i_e + L_e \cdot \frac{di_e}{dt} - u_e = 0$$

$$J\frac{d\omega}{dt} = M_M - B \cdot \omega$$

$$M_{M} = K_{3} \cdot i_{e}$$

Ecuaciones transformadas

$$[s \cdot L_e + R_e] \cdot I_e(s) = U_e(s)$$

$$[s \cdot J + B] \cdot \Omega(s) = M_M(s)$$

$$M_{M}(s) = K_{3} \cdot I_{e}(s)$$

Ejemplo 1: Diagrama de bloques del motor de CD controlado por campo

$$\frac{\Omega(s)}{U_e(s)} = \frac{K_3}{JL_e} \frac{1}{\left(s + \frac{B}{J}\right)\left(s + \frac{R_e}{L_e}\right)}$$

Ejemplo 2: Ecuaciones del motor de CD controlado por armadura

$$R_a \cdot i_a + L_a \cdot \frac{di_a}{dt} + u_i - u_a = 0$$
 $[s \cdot L_a + R_a] \cdot I_a(s) = U_a(s) - U_i(s)$

$$u_i = K_1 \cdot \omega$$

$$M_M = K_2 \cdot i_a$$

$$J\frac{d\omega}{dt} = M_M - B \cdot \omega$$

Ecuaciones temporales Ecuaciones transformadas

$$[s \cdot L_a + R_a] \cdot I_a(s) = U_a(s) - U_i(s)$$

$$U_i(s) = K_1 \cdot \Omega(s)$$

$$M_{M}(s) = K_{2} \cdot I_{a}(s)$$

$$[s \cdot J + B] \cdot \Omega(s) = M_M(s)$$

Ejemplo 2: Diagrama de bloques del motor de CD controlado por armadura

$$\frac{\Omega(s)}{U_a(s)} = \frac{K_2}{(sJ+B)(sL_a+R_a)+K_1K_2}$$

Ejercicio 1: Encuentre G_F(s)

Encuentre $G_F(s)$ de tal forma que la influencia de v(t) se cancele a la salida del sistema.

$$G_F(s) = \frac{-(s+3)}{s+1}$$

Ejercicio 2: Encuentre Y(s)/U(s) usando simplificación de bloques

$$\frac{Y(s)}{U(s)} = \frac{2(s+2.5)}{(s+2)(s+4)}$$

Regla de Masón: Definiciones

- **Trayecto**: Recorrido directo entre dos líneas en el sentido de las flechas, pasando solo una vez por cada bloque o línea.
- Lazo: Trayecto que se cierra sobre si mismo, partiendo de una línea y regresando a la misma línea.
- Lazo adjunto: son aquellos lazos que comparten algún tramo del diagrama.
- Lazo NO adjunto: Aquellos lazos que no poseen ninguna línea en común; esto es no se tocan.
- Ganancia del trayecto: Producto de las transmitancias de los bloques de un trayecto, tomando en cuenta los signos de los sumadores.
- Ganancia de lazo: Producto de las transmitancias de los bloques de un lazo, tomando en cuenta los signos de los sumadores.

Regla de Masón: Ecuaciones

La regla de Masón permite encontrar la transmitancia G entre cualquier par de variables (líneas) de un sistema.

$$G = \frac{1}{\Delta} \sum_{i=1}^{n} T_i \Delta_i$$

Donde:

- T_i = Ganancia del *i-ésimo* trayecto de los n posibles entre las dos líneas.
- Δ Determinante del diagrama
 - 1 (suma de todas las ganancias de lazo distintos posibles) + (suma de los productos de las ganancias de todas las combinaciones posibles de *dos* lazos no adjuntos) (suma de los productos de todas las ganancias de todas las combinaciones posibles de *tres* lazos no adjuntos) + ...- =
- $\Delta_i = \text{Cofactor de } T_i$

Regla de Masón: Determinante

$$\Delta = 1 - \sum_{a} L_{a} + \sum_{b,c} L_{b} L_{c} - \sum_{d,e,f} L_{d} L_{e} L_{f} + \dots$$

Donde:

 $\sum L_a$ = Suma de todas las ganancias de lazos distintos posibles.

 $\sum_{b,c} L_b L_c = \text{Suma de los productos de las ganancias de todas las combinaciones posibles de dos lazos no adjuntos.}$

 $\sum_{d,e,f} L_d L_e L_f$ = Suma de los productos de todas las ganancias de todas las combinaciones posibles de tres lazos no adjuntos.

Regla de Masón: Cofactores

 $\Delta_i = \text{Cofactor de } T_i$

Es el determinante del resto del diagrama que queda cuando se suprime el trayecto que produce T_i .

 Δ_i podrá obtenerse de Δ_i eliminando aquellos términos o productos que contengan algún lazo adjunto al trayecto T_i .

Cuando el trayecto toca a todos los lazos del diagrama, o cuando este no contiene ningún lazo, Δ_i es igual a la unidad.

K(s) G(s) H(s)

Regla de Masón: Ejemplo

Regla de Masón: Trayectorias

Regla de Masón: Lazos

Regla de Masón: Trayectorias

Tenemos tres trayectorias directas: T₁, T₂ y T₃

$$T_1 = G_1 G_3$$

$$T_2 = G_2 G_3$$

$$T_3 = -G_2G_4$$

Suprimiendo las trayectorias directas 1 y 2 quedan sus cofactores

$$\Delta_1 = \Delta_2 = 1 - (-G_4 H_1) = 1 + G_4 H_1$$

Al suprimir la trayectoria T3, no queda ningun lazo por lo que:

$$\Delta_3 = 1$$

Existen 4 lazos: L₁, L₂, L₃ y L₄ que son:

$$L_1 = -G_1 G_3 H_2$$

$$L_2 = -G_2G_3H_2$$

$$L_4 = -G_4 H_1$$

$$L_3 = G_2 G_4 H_2$$

Las combinaciones de lazos no adjuntos son:

$$L_1L_4$$
 y L_2L_4 :

$$L_1 L_4 = G_1 G_3 G_4 H_1 H_2$$

$$L_2L_4 = G_2G_3G_4H_1H_2$$

El determinante queda como:

$$\Delta = 1 - (L_1 + L_2 + L_3 + L_4) + (L_1 L_4 + L_2 L_4)$$

Regla de Mason: Resultado

La función de transferencia será entonces:

$$G(s) = \frac{T_1 \Delta_1 + T_2 \Delta_2 + T_3 \Delta_3}{1 - (L_1 + L_2 + L_3 + L_4) + (L_1 L_4 + L_2 L_4)}$$

$$G(s) = \frac{G_1G_3(1 + G_4H_1) + G_2G_3(1 + G_4H_1) - G_3G_4}{1 + G_1G_3H_2 + G_2G_3H_2 - G_2G_4H_2 + G_4H_1 + G_1G_3G_4H_1H_2 + G_2G_3G_4H_1H_2}$$

Ejercicio 3: Encuentre Y(s)/U(s) usando Mason

$$G(s) = \frac{Y(s)}{U(s)} = \frac{2(s+2.5)}{(s+3)^2}$$

Ejercicio 4: Encuentre Y(s)/R(s)

Referencias

- Rodríguez Ávila, Jesús E.. "Introducción a la Ingeniería del Control Automático", McGraw-Hill, 1998, México.
- Kuo, Benjamin C., "Sistemas de Control Automático", Ed. 7, Prentice Hall, 1996, México.
- Ogata, Katsuhiko. "Ingeniería de Control Moderna", Pearson, Prentice Hall, 2003, 4ª Ed., Madrid.