Deep Learning and Applications

- Compute attention scores given some function α
 - Encoder hidden state h_1
 - Decoder hidden state s_1
 - \rightarrow Attention score $a_{11} = f(h_1, s_1)$

- Compute attention scores given some function α
 - Encoder hidden state h_2
 - Decoder hidden state s_1
 - \rightarrow Attention score $a_{12} = f(h_2, s_1)$

- Compute attention scores given some function α
 - Encoder hidden state h_3
 - Decoder hidden state s_1
 - \rightarrow Attention score $a_{13} = f(h_3, s_1)$

- Compute attention scores given some function α
 - Encoder hidden state h_4
 - Decoder hidden state s_1
 - \rightarrow Attention score $a_{14} = f(h_4, s_1)$

• Convert attention scores into a distribution by softmax.

- Convert attention scores into a distribution by softmax.
 - $\alpha_1 = softmax(a_1)$
 - We are mostly focusing on the encoder's 1st hidden state h_1 .

- Compute the attention output z_1 .
 - Weighted sum of hidden states.
 - $z_1 = \sum_{t=1}^4 \alpha_{1t} h_t$
 - Attention output contains information of every hidden state proportionally to attention distribution α .

Concatenate then generate

- $[z_t; s_t] \in \mathbb{R}^{2d}$
- $\hat{y}_t = softmax(g([z_t; s_t]))$

- For each time t,
 - Decoder hidden state $s_t \in \mathbb{R}^d$.
 - For every encoder hidden state h_1, \dots, h_T ,

- For each time t,
 - Decoder hidden state $s_t \in \mathbb{R}^d$.
 - For every encoder hidden state h_1, \dots, h_T ,
 - Compute attention scores $a_t = (a_{t1}, ..., a_{tT})$ where $a_{tu} = f(h_u, s_t)$.

- For each time t,
 - Decoder hidden state $s_t \in \mathbb{R}^d$.
 - For every encoder hidden state h_1, \dots, h_T ,
 - Compute attention scores $a_t = (a_{t1}, ..., a_{tT})$ where $a_{tu} = f(h_u, s_t)$.
 - Convert a_t to attention distribution $\alpha_t = (\alpha_{t1}, ..., \alpha_{tT}) = softmax(a_t)$.
 - Get the weighted encoder state $z_t = \sum_{u=1}^{T} \alpha_{tu} h_u$
 - Vertically concatenate the states: $[z_t; s_t] \in \mathbb{R}^{2d}$
 - Predict an output (as a distribution): $\hat{y}_t = softmax(g([z_t; s_t]))$

- Basic dot-product attention: $\alpha_{tu} = f(h_u, s_t) = s_t^T h_u$
 - Assume $\dim(s_t) = \dim(h_u)$.
 - Nothing to learn for f
- Multiplicative attention: $\alpha_{tu} = f(h_u, s_t,) = s_t^T W h_u$
 - Say $d_1 = \dim(h_u)$, $d_2 = \dim(s_t)$.
 - Then we should learn $W \in \mathbb{R}^{d_2 \times d_1}$ from the training data.
- Additive attention: $a_{tu} = f(h_u, s_t) = v^T \tanh(W_h h_u + W_s s_t)$.
 - Say $d_3 = \dim(v)$, which will be a new user hyper-parameter.
 - Then we should learn $W_h \in \mathbb{R}^{d_3 \times d_1}$, $W_s \in \mathbb{R}^{d_3 \times d_2}$, and $v \in \mathbb{R}^{d_3}$.

- Third version: Attention Mechanism
- Ideally output could consider 'attention' to parts of history

Could look at every state in the past

 So instead of returning a word, output the current state

Take inner products with previous states

Take inner products with previous states

Pass through a neural net layer to predict final word

Example III (Extension): Same with Translation!

 Same principle also applies for translation. The first prediction learns to focus on certain part of the input

 The second prediction learns to focus on certain part of the input

