ЛАБОРАТОРНАЯ РАБОТА №25

ИЗМЕРЕНИЕ НАПРЯЖЁННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ ОТ ЭЛЕКТРОДОВ ПРОСТОЙ ФОРМЫ

Поляков Даниил, 19.Б23-фз

Цель работы: исследовать электростатическое поле плоского конденсатора, исследовать зависимость напряжённости его поля от напряжения на его пластинах и от расстояния между пластинами.

Схема установки

- 1 конденсатор;
- 2 высоковольтный источник питания;
- 3 измеритель напряжённости электрического поля;
- 4 держатель пластин;
- 5 оптическая скамья;
- 6 CASSY Lab;
- 7 компьютер;
- 8 вольтметр.

Расчётные формулы

• Напряжённость поля плоского конденсатора:

$$E = \frac{U}{d}$$

U — напряжение между пластинами;

d — расстояние между пластинами.

Порядок измерений

1. Запускаем программу CASSY Lab. Сначала исследуем зависимость напряжённости поля конденсатора ОТ напряжения пластинах. Устанавливаем пластины на расстоянии d друг от друга. Расстояние dизмеряем линейкой, если расстояния короткие, либо по шкале оптической Запускаем измерения. Программа автоматически напряжение U с течением времени от 0 до 10 кВ и снимает показания напряжённости поля с датчика. Сохраняем полученную зависимость. Выполняем описанные измерения для 4 различных значений d.

2. Исследуем зависимость напряжённости поля конденсатора от расстояния между пластинами. Устанавливаем пластины вплотную друг к другу. Устанавливаем постоянное значение напряжения источника тока равным 5 кВ. Измеряем расстояние между пластинами d и соответствующую напряжённость E. Отодвигаем пластины друг от друга, увеличивая расстояние между ними в геометрической прогрессии, и снимаем значение напряжённости, до тех пор, пока не достигнем расстояния d = 300 мм.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности коэффициентов аппроксимации рассчитаны с доверительной вероятностью P=95%.

1. Зависимость напряжённости электрического поля плоского конденсатора от напряжения на его пластинах

Всего для каждого расстояния d измерено по 101 точке. В таблице ниже представлена часть собранных данных.

Таблица 1. Зависимость напряжённости поля плоского конденсатора от напряжения на его пластинах при различном расстоянии между пластинами

d = 10 MM		<i>d</i> = 20 мм		d = 100 мм		d = 300 MM	
<i>U</i> , кВ	<i>E</i> , кВ/м	<i>U</i> , кВ	<i>E</i> , кВ/м	<i>U</i> , кВ	<i>E</i> , кВ/м	<i>U</i> , кВ	<i>E</i> , кВ/м
0.083	14	0.372	7	0.062	0	0.062	0
1.040	69	1.080	39	1.028	7	1.030	1
2.040	147	2.118	84	2.007	15	2.010	3
3.030	226	3.138	129	2.991	24	2.991	5
4.029	303	4.170	172	3.972	34	3.990	7
5.013	381	5.208	217	4.947	42	4.971	9
6.010	459	6.240	261	5.931	52	5.946	12
7.000	537	7.280	306	6.920	61	6.950	13
8.030	619	8.280	348	7.900	70	7.930	15
9.030	698	9.310	393	8.880	78	8.910	17
10.020	780	10.350	423	9.860	88	9.920	19

График 1. Зависимость напряжённости поля плоского конденсатора от напряжения на его пластинах при различном расстоянии между пластинами

Зависимости при всех значениях d хорошо аппроксимируются прямой. Аппроксимация проводилась со свободным членом. Из теоретической зависимости E(U) следует, что расстояние между пластинами обратно коэффициенту наклона полученных графиков. Сравним найденные таким образом значения d с измеренными напрямую значениями.

Таблица 2. Расстояние между пластинами (мм), полученное двумя способами

Прямое	Из зависимости		
измерение	E(U)		
10 ± 1	12.71 ± 0.03		
20 ± 1	23.27 ± 0.02		
100 ± 1	109.8 ± 0.5		
300 ± 1	504 ± 8		

Чем ближе пластины друг к другу, тем лучше сходятся значения расстояний. Это связано с тем, что использованная для вычисления d формула справедлива только для расстояний, много меньше сторон пластин.

2. Зависимость напряжённости электрического поля плоского конденсатора от расстояния между пластинами

Таблица 3. Зависимость напряжённости поля плоского конденсатора от расстояния между его пластинами при напряжении на пластинах U = 5.0 kB

<i>d</i> , мм	<i>E</i> , кВ/м		
6	552		
8	480		
10	397		
13	321		
17	243		
22	196		
29	152		
38	117		
49	92		
64	70		
83	53		
108	41		
140	29		
182	19		
236	13		
300	7		

График 2. Зависимость напряжённости поля плоского конденсатора от расстояния между его пластинами при напряжении на пластинах $U=5.0~\mathrm{kB}$

График действительно похож на гиперболу. Для проверки зависимости E(d) линеаризуем её, т. е. построим график зависимости $E(d^{-1})$. Из его аппроксимации как коэффициент наклона можно найти напряжение на конденсаторе.

Зависимость напряжённости поля плоского конденсатора от обратного расстояния между его пластинами при напряжении на пластинах $U=5.0~\mathrm{kB}$

Полученная зависимость не очень хорошо описывается прямой. Это связано с тем, что линейная зависимость $E(d^{-1})$ справедлива только для расстояний, много меньших сторон пластин, т. е. участок с большими значениями d^{-1} должен быть более линейным. Это действительно так в диапазоне от 0.02 до 0.13. Крайняя правая точка на графике нарушает линейность, хотя она соответствует наименьшему расстоянию между пластинами. Возможно, при слишком близком расположении пластин между ними всё-таки происходит утечка заряда. Для нахождения напряжения U изобразим и аппроксимируем график зависимости $E(d^{-1})$, построенный только по точкам в диапазоне от 0.02 до 0.14 мм $^{-1}$.

График 4. Зависимость напряжённости поля плоского конденсатора от обратного расстояния между его пластинами в диапазоне от 0.02 до 0.14 мм $^{-1}$ при напряжении на пластинах $U=5.0~{\rm kB}$

Получаем напряжение на конденсаторе:

$$U = 4.0 \pm 0.2 \text{ kB}$$

Разница между подаваемым и измеренным напряжением существенная. Это опять же может быть связано с использованием приближенной формулы. Другой причиной может быть наличие систематической ошибки d_0 при измерении расстояния между пластинами d. Попробуем аппроксимировать зависимость E(d) уравнением, учитывающим эту ошибку:

$$E = \frac{U}{|d - d_0|}$$

Аппроксимацию проведём по точкам, для которых $d < 50 \, \mathrm{mm}$, т. к. данное выражение справедливо только при расстояниях меньших, чем размер пластин конденсатора.

График 5. Зависимость напряжённости поля плоского конденсатора от расстояния между его пластинами при напряжении на пластинах U = 5.0 kB, нелинейная аппроксимация

Получаем параметры:

$$U = 5.0 \pm 0.4 \text{ kB}$$
 $d_0 = -2.8 \pm 1.0 \text{ mm}$

Найденное вторым способом напряжение совпало с установленным значением.

Выводы

В работе экспериментально подтверждена возможность использования приближенной формулы для плоского конденсатора. Для этого необходимо выполнение условия $d \ll \sqrt{s}$.

Наибольший вклад в погрешность найденных коэффициентов аппроксимации внесло неполное несоответствие установки модели плоского конденсатора. Другими причинами отклонений могут быть влияние внешних электромагнитных полей, утечка заряда и погрешность датчика.