

CSCE 581: Introduction to Trusted Al

Lectures 21 and 22: Supervised ML (Text Processing), Trust Issues

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE

1ST AND 3RD APRIL, 2025

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

Organization of Lectures 21, 22

- Introduction Section
 - Recap from Week 10 (Lectures 19 and 20)
 - Announcements and News
- Main Section
 - L21: Supervised ML (Text)
 - L22: Classification, Trust Issue
- Concluding Section
 - About next week Lectures 23, 24
 - Ask me anything

Recap from Week 10 (Lectures 19, 20)

- We looked at
 - L19 AI Unstructured (Text): Representation, Common NLP Tasks
 - L20: Natural Languages/ Language Models and their Impact on Text/ AI

Al Trust: News

• Browser extensions of LLM-based chatbots leak information. ""In our study, we emphasize that not only do these assistants collect users' highly sensitive data but that this information is also shared with their own servers as well as third-party trackers, which can be further utilized to target highly personalized and sensitive ads to the user."

Table 1: Overview of studied AI browser assistants sorted by their popularity.

Legend: Personal Data: Personally Identifiable Information (PII), Personal Communications (PC), Financial Information (FI).

Web Data: User Activity (UA), Web History (WH), Website Content (WC), Location (LOC). No Data: No Data collected.

- Article https://www.theregister.com/2025
 /03/25/generative ai browser ext
 ensions privacy/
- Paper Big Help or Big Brother?
 Auditing Tracking, Profiling, and Personalization in Generative AI Assistants,
 https://arxiv.org/abs/2503.16586, 2025

Extension Name	Install Counts	Supported Model(s)	Default Model	Invocation Mode	Response Mode	Data Disclosures	SDK Version
Sider: ChatGPT Sidebar	4M	\$ → * ∞	sider	Automatic	Server-side	PII WC	4.35.0
Monica - Your AI Copilot	2M		gpt-4o-mini	Mixed	Server-side	PII UA PC FI	7.6.0
ChatGPT for Google	2M		gpt-4o-mini	Mixed	Client-side	PII UA PC FI	5.5.1
Merlin Ask AI	1 M		gpt-4o	Mixed	Server-side	PII LOC	7.3.2
MaxAI: Chat with Webpage	800K		gpt-4o-mini	Manual	Server-side	PII UA	6.7.1
Perplexity - AI Companion	500K		perplexity	Manual	Server-side	No Data	1.0.21
HARPA AI	400K	\$ ♦ *	harpa-v1-smart	Manual	Server-side	PII UA WH WC	9.6.2
Wiseone - AI Copilot	90K	\$ *	gpt-4o	Manual	Server-side	PII WC	1.7.2
TinaMind - AI Assistant	50K	\$ ♦ *	gemini-1.5-pro	Manual	Server-side	PII UA PC	2.14.2
Copilot: AI Assistant	30K	\$ ♦ *	gpt-4o-mini	Automatic	Server-side	PII	1.5.73

Al Trust: News

Table 2: Data collection and exfiltration behavior of assistants in public and private online spaces of a user. Exfiltration legend:

Full Webpage: Page text, title, location, hyperlinks. Server-fetch Webpage: Page title, location, server-fetched file's upload location. Plain Webpage: Page text, title, location. Partial Webpage: Partial content or missing details. Response legend: V: Response with Relevant Details. X: Missing some details in Response. 2: Response restricted. X: No response generated.

	Category	WebPage	Sider	Monica	CFG	Merlin	MaxAI	Perplexit	Harpa	Wiseone	TinaMin	Copilot
	News Platforms	cnn.com	~	~	~	~	~	X	~	~	~	×
	Open Forums	reddit.com	×	1	×	~	×	X	~	×	×	~
တ္	Informative Articles	wikipedia.org	V	1	~	~	~	~	~	~	~	×
Spaces	E-commerce Website	amazon.com	V	1	~	~	×	×	~	×	×	×
Sp	Sports Websites	espn.com	1	~	~	~	~	~	~	×	×	×
Public	Travel Platforms	expedia.com	~	1	~	~	~	×	~	X	1	~
Pul	User-generated Media	youtube.com	×	×	~	~	×	×	×	~	1	~
	Kids Website	nickjr.com	×	1	~	~	~	~	~	X	~	×
	Misinformation Website	infowars.com	~	~	~	~	~	×	~	~	1	~
	Violence Material	guns.com	~	~	~	~	~	X	~	~	1	×
	Health Portal	university health portal	~	~	~	~	/	×	×	~	X	×
	Email Account	mail.google.com	1	~	X	~	X	×	×	~	1	×
S	Social Media Platform	facebook.com	V	~	~	~	~	×	~	1	×	×
Spaces	Adult Content	pornhub.com	X	×	×	×	×	0	×	0	X	×
Sp	Online Streaming Service	netflix.com	×	×	×	×	×	×	×	×	X	×
Private	Government Website	irs.gov	×	X	×	X	X	×	~	X	X	×
Pri	Dating Service	tinder.com	×	~	X	×	×	×	~	×	×	×
	Financial Service	chase.com	×	×	×	×	×	×	×	×	×	×
	Educational Platform	canvas.instructure.com	1	1	~	~	~	×	~	×	×	1
	Messaging Platform	slack.com	1	~	1	~	1	×	1	×	1	×

"One of the most shocking findings was that GenAI browser assistants were freely able to collect and share data to their own servers on authenticated **health** portals. They were able to answer follow-up questions ranging from patient details to entire medical history. Collection of PHI without appropriate user consent is in clear violation of HIPAA [14]. "

"Moreover, student's academic records including assessment scores, exam performances, overall grades – were all collected and shared with browser assistant's servers demonstrating violation of FERPA [34] that aims to protect these attributes for a student."

Al Trust News: LLM-based Summaries

Bloomberg Has a Rocky Start With A.I. Summaries

- https://www.nytimes.com/2025/03/29/business/media/bloomberg-ai-summaries.html?unlocked_article_code=1.7k4.oSbJ.htksCZb-DQ3E&smid=nytcore-android-share
- The newspaper chain Gannett uses similar A.I.-generated summaries on its articles,
- The Washington Post has a <u>tool</u> called "Ask the Post" that generates answers to questions from published Post articles

Questions: why deploy automated summaries? If so, why LLM-based and not classical, extractive summaries, which are guaranteed from original source? What is the impact on long-term credibility?

Project Status and Timeline

- Office Hours: 3-4pm (M), 10-11am (Th)
- Finish project presentations by Apr 22
- Project presentations
 - Apr 22 (Tu) Project presentation
 - Apr 24 (Th) Project presentation
- Project delivered
 Apr 29 (Tu)
 Project in Github

19	Mar 25 (Tu)	AI - Unstructured (Text):		
		Representation, Common NLP		
		Tasks, Large Language Models		
		(LLMs)		
20	Mar 27 (Th)	Natural Languages/ Language		
		Models and their Impact on AI		
21	Apr 1 (Tu)	AI - Unstructured (Text): Analysis		
		- Supervised ML - Trust Issues		
22	Apr 3 (Th)	AI - Unstructured (Text): Analysis		
		 Supervised ML – Mitigation 		
		Methods		
23	Apr 8 (Tu)	AI - Unstructured (Text): Analysis		
	,	_		
		Rating and Debiasing Methods		
24	Apr 10 (Th)	Explanation Methods		
		Trust: AI Testing		
25	Apr 15 (Tu)	Trust: Human-AI Collaboration		
26	Apr 17 (Th)	Emerging Standards and Laws		
		Trust: Data Privacy -		
		Trusted AI for the Real World		
27	Apr 22 (Tu)	Project presentation		
28	Apr 24 (Th)	Project presentation		
29	Apr 29 (Tu)	Paper presentations		
	May 1 (Th)			
30	May 6 (Tu)	4pm – Final exam/ Overview		

CSCE 581 - SPRING 2025 7

Introduction Section

Announcement: Change to Student Assessment

A = [920-1000]

B+ = [870-919]

B = [820-869]

C+ = [770-819]

C = [720-769]

D+ = [670-719]

D = [600-669]

F = [0-599]

Tests	Undergrad	Grad
Course Project – report, in-class presentation	600	600
Quiz – 2 quizzes	200	200
Final Exam	200	100
Additional Final Exam – Paper summary, in-class presentation		100
Total	1000 points	1000 points

Change: 4 quizzes to 2; no best of 3

Intelligent Agent Model

Relationship Between Main Al Topics (Covered in Course)

E 580, 581 - FALL 2023

High Level Semester Plan (Adapted, Approximate)

CSCE 581 -

- Week 1: Introduction
- Week 2: Background: AI Common Methods
- Week 3: The Trust Problem
- Week 4: Machine Learning (Structured data) Classification
- Week 5: Machine Learning (Structured data) Classification Trust Issues
- Week 6: Machine Learning (Structured data) Classification Mitigation Methods
- Week 7: Machine Learning (Structured data) Classification Explanation Methods
- Week 8: Machine Learning (Text data, vision) Classification,

Large Language Models

- Week 9: Machine Learning (Text data) Classification Trust Issues, LLMs
- Week 10: Machine Learning (Text data) Classification Mitigation Methods
- Week 11: Machine Learning (Text data) Classification Explanation Methods
- Week 12: Emerging Standards and Laws, Real world applications
- Week 13: Project presentations
- Week 14: Project presentations, Conclusion

Increased focus on LLMs and projects now

Al/ ML topics and with a focus on fairness, explanation, Data privacy, reliability

CSCE 581 - SPRING 2025 1:

Main Segment

SCE 581: TRUSTED AI

Recap – ML, Classification / Supervised ML, Metrics

CSCE 581: TRUSTED AI 14

Machine Learning – Insights from Data

- Descriptive analysis
 - Describe a past phenomenon
 - Methods: <u>classification (feedback from label)</u>, clustering, dimensionality reduction, anomaly detection, neural methods, reinforcement learning (feedback from hint/ reward)
- Predictive analysis
 - Predict about a new situation
 - Methods: time-series, neural networks
- Prescriptive analysis
 - · What an agent should do
 - Methods: simulation, reinforcement learning, reasoning

- New areas
 - Counterfactual analysis
 - Causal Inferencing
 - Scenario planning

Concepts

- Input data: data available
 - Training data: used for training a learning algorithm and get a model
 - [Optional] Validation data: used to tune parameters
 - Test data: used to test a learning model

Classification problem

- Separating data into classes (also called labels, categorical types)
- One of the attributes is the class label we are trying to learn
- Class label is the supervision

Clustering problem

- We are trying to learn grouping of data
- There is no attribute indicating membership in the groups (hence, unsupervised)

Prediction problem

Learning value of a <u>continuous variable</u>

Reference: https://machinelearningmastery.com/difference-test-validation-datasets/
https://www2.seas.gwu.edu/~bell/csci243/lectures/classification.pdf

Many Method Types and Classifiers

- Individual methods
 - Decision Tree (J48), R1, One-R
 - Naïve Bayes
 - •
- Ensemble
 - Bagging: Aggregate classifiers ("bootstrap aggregation" => bagging)
 - Random Forest
 - Samples are chosen with replacement (bootstrapping), and combined (aggregated) by taking their average
 - · Gradient Boosting: aggregate to turn weak learners into strong learners
 - Boosters (aggregators) turn weak learners into strong learners by focusing on where the individual weak models (decision trees, linear regressors) went wrong
 - Gradient Boosting

Source:

- Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber
- https://towardsdatascience.com/getting-started-with-xgboost-in-scikit-learn-f69f5f470a97

Metric Types

- Effectiveness: what the <u>user</u> of a system sees, primarily cares about
- Efficiency: what the executor in a system sees, primarily cares about

Efficiency Metrics

Metrics: Accuracy, Precision, Recall

	Predicted class				
		Class = Yes	Class = No		
Actual Class	Class = Yes	True Positive	False Negative		
	Class = No	False Positive	True Negative		

Accuracy = (TP+TN)/ (TP+FP+FN+TN)

ROC – Receiver Operating Characteristic curve

An ROC curve plots TPR vs. FPR at different classification thresholds

Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Class = No

False Negative

True Negative

AUC/ ROC Examples

ROC and AUC of a perfect system

ROC and AUC of completely random guesses

The AUC is 0.5, representing a 50% probability of correctly ranking a random positive and negative example

Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

AUC – Area Under the ROC Curve

- Aggregate measure of performance across all possible classification thresholds.
- Interpretation: probability that the model ranks a random positive example more highly than a random negative example

Not helpful when the **cost** of false negatives vs. false positives are asymmetric

Source: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Exercise and References

- Google: <u>https://developers.google.com/machine-</u> learning/crash-course/classification/roc-and-auc
 - Take quiz
- Blogs: https://blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/

Image credit: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

Which ML Classification Method to Choose?

- Blog: "Crawl Walk Run"
 - <u>The Crawl-Walk-Run Approach for Al-based Real World Problem Solving</u>, Feb 2025, Biplav Srivastava
- Reading material:
 - •"Which ML to Use" with title: Data-driven advice for applying machine learning to bioinformatics problems

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890912/

•"10 tips with title": Ten quick tips for machine learning in computational biology

https://biodatamining.biomedcentral.com/articles/10.1186/s13040-017-0155-3

Discussion: 10 Tips Paper

- Access: https://biodatamining.biomedcentral.com/articles/10.1186/s13040-017-0155-3
- Chicco, D. Ten quick tips for machine learning in computational biology. *BioData Mining* **10**, 35 (2017). https://doi.org/10.1186/s13040-017-0155-3

The Tips

- Tip 1: Check and arrange your input dataset properly
- Tip 2: Split your input dataset into three independent subsets (training set, validation set, test set), and use the test set only once you complete training and optimization phases
- Tip 3: Frame your biological problem into the right algorithm category
- Tip 4: Which algorithm should you choose to start? The simplest one!
- Tip 5: Take care of the imbalanced data problem
- Tip 6: Optimize each hyper-parameter
- Tip 7: Minimize overfitting
- Tip 8: Evaluate your algorithm performance with the Matthews correlation coefficient (MCC) or the Precision-Recall curve
- Tip 9: Program your software with open source code and platforms
- Tip 10: Ask for feedback and help to computer science experts, or to collaborative Q&A online communities

Examples of Classification with Text

- Sentiment analysis (assign sentiment classes)
- Annotation (assigning entity type to to text)
- Application specific
 - Fake news
 - Spam email

• ...

CSCE 581: TRUSTED AI 27

When to Use Learning/ When Not

When

- There are too many patterns to enumerate
- · When data is plentifully available
- [Cost: annotation to know the class labels, re-learning to avoid model shift]

When Not

- · There are few, distinct patterns that can be easily enumerated
- When there may be a high cost of accessing data
- · When there is a need to exert control on the AI development process; e.g., sensitive domain
- [Cost: of knowing the patterns completely]

CSCE 581 - SPRING 2025 28

So, What Changes With Text?

SCE 581: TRUSTED AI

So, What Changes With Text?

Handling of (textual) data before and after applying ML methods!

Adapted from Image Credit: Trustworthy Machine Learning, Kush Varshney

CSCE 581: TRUSTED AI 3(

Common Textual Data Processing Steps for ML

- Input: strings / documents/ corpus
- Processing steps (task dependent / optional *)
 - Parsing
 - Word pre-processing
 - Tokenization getting tokens for processing
 - Normalization* making into canonical form
 - Case folding* handling cases
 - Lemmatization* handling variants (shallow)
 - Stemming* handling variants (deep)
 - Semantic parsing representations for reasoning with meaning *
 - Embedding creating vector representation*

ML – Supervised (Fake News)

- By Example:
 - https://github.com/biplav-s/course-nl/blob/master/l9-ml-review/Classification%20-%20Fake%20news.ipynb
- Fake news dataset

Take Home Task

- Apart from Logistic Regression and Random Forest, create another model
- Run results for <u>title</u> and <u>total text</u>
- Report accuracy, F1 and AUC ROC
- Recommend a model to use for the task (fake news classification) based on your results

CSCE 581 - SPRING 2025 33

ML – Supervised (Movie Sentiment)

• By Example:

- Data: IMDB 50K movie reviews
 http://ai.stanford.edu/~amaas/data/sentiment/
 https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews/
- Sample code
 - Classical ML methods:
 - https://www.kaggle.com/code/eminaanapaydn/imdb-sentiment-analysis (MultinomialNB)
 - https://www.kaggle.com/code/youssefemad004/sentimentanalysisml (MultinomialNB, RandomForest)

Where Can LLMs be Used in Classification (Text)

- Text (word) processing
- Classification task // learn to assign classes
- Evaluation ...

CSCE 581 - SPRING 2025 3

ML – Supervised (Movie Sentiment)

- By Example:
 - Data: IMDB 50K movie reviews
 http://ai.stanford.edu/~amaas/data/sentiment/
 https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews/
- Sample code
 - Classical ML methods:
 - https://www.kaggle.com/code/eminaanapaydn/imdb-sentiment-analysis (MultinomialNB)
 - https://www.kaggle.com/code/youssefemad004/sentimentanalysisml (MultinomialNB, RandomForest)
 - LLM/ BERT classifier:
 - https://www.kaggle.com/code/tcc3281/bert-sentiment

ML – Supervised (Movie Genre)

- Data: IMDB 5K movie reviews, 10 columns https://www.kaggle.com/datasets/rakkesharv/imdb-5000-movies-multiple-genres-dataset
- Task: Assigning genre
- Sample Code: https://www.kaggle.com/code/yazeedalsahouri03/imdb-movies-prediction

ML – Supervised (Mental Health)

- Example 1:
 - Data Chat: https://www.kaggle.com/datasets/elvis23/mental-health-conversational-data
 - Classification Task: Classify intent, and then return corresponding response
 - Code https://www.kaggle.com/code/selimkhaled50/complete-mental-health-chatbot
- Example 2:
 - Data: https://www.kaggle.com/datasets/bhavikjikadara/mental-health-dataset (300k raws and 17 columns)
 - Classification Task: Social weakness
 - Code https://www.kaggle.com/code/mahmoudweso/mental-health-dataset

Trust Issue – Stability of Output

<u>Demonstration</u>: ROSE: ResOurces to explore Instability of SEntiment Analysis Systems

References:

1. MUNDADA, GAURAV, KAUSIK LAKKARAJU, and BIPLAV SRIVASTAVA. "ROSE: Tool and Data ResOurces to Explore the Instability of SEntiment Analysis Systems."

<u>Demonstration</u>: ROSE: ResOurces to explore Instability of SEntiment Analysis Systems

References:

1. MUNDADA, GAURAV, KAUSIK LAKKARAJU, and BIPLAV SRIVASTAVA. "ROSE: Tool and Data ResOurces to Explore the Instability of SEntiment Analysis Systems."

Instability of AI is Well Recorded

- •[Text] <u>Su Lin Blodgett, Solon Barocas, Hal Daumé III, Hanna Wallach, Language</u> (Technology) is Power: A Critical Survey of "Bias" in NLP, Arxiv https://arxiv.org/abs/2005.14050, 2020 [NLP Bias]
- [Image] Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C. Hansen, On instabilities of deep learning in image reconstruction and the potential costs of AI, https://doi.org/10.1073/pnas.1907377117, PNAS, 2020
- •[Audio] Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha, Connor Toups, John R. Rickford, Dan Jurafsky, and Sharad Goel, Racial disparities in automated speech recognition, PNAS April 7, 2020 117 (14) 7684-7689, https://doi.org/10.1073/pnas.1915768117, March 23, 2020

Project Discussion

Course Project

Framework

- 1. (Problem) Think of a problem whose solution may benefit people (e.g., health, water, air, traffic, safety)
- 2. (User) Consider how the primary user (e.g., patient, traveler) may be solving the problem today
- 3. (Al Method) Think of what the solution will do to help the primary user
 - 1. Solution => ML task (e.g. classification), recommendation, text summarization, ...
 - 2. Use a foundation model (e.g., LLM-based) solution as the baseline
- 4. (Data) Explore the data for a solution to work
- 5. (Reliability: Testing) Think of the evaluation metric we should employ to establish that the solution will works? (e.g., 20% reduction in patient deaths)
- 6. (Holding Human Values) Discuss if there are fairness/bias, privacy issues?
- 7. (Human-AI) Finally, elaborate how you will explain the primary user that your solution is trustable to be used by them

CSCE 590-1: TRUSTED AI 44

Project Discussion: What to Focus on?

- Problem: you should care about it
- Data: should be available
- Method: you need to be comfortable with it. Have at least two one serves as baseline
- Trust issue
 - Due to Users
 - Diverse demographics
 - Diverse abilities
 - Multiple human languages
 - Or other impacts
- What one does to mitigate trust issue

Rubric for Evaluation of Course Project

Project

- Project plan along framework introduced (7 points)
- Challenging nature of project
- Actual achievement
- Report
- Sharing of code

Presentation

- Motivation
- Coverage of related work
- Results and significance
- Handling of questions

Concluding Section

Week 11 (L21 and 22): Concluding Comments

- We looked at
 - L21: Supervised ML (Text)
 - L22: Classification, Trust Issue

About Next Week – Lectures 23, 24

Lectures 23, 24

- Trust issue Mitigation AI Explanation (XAI)
- Trust Issues Mitigation AI Rating/ Certification

19	Mar 25 (Tu)	AI - Unstructured (Text):
		Representation, Common NLP
		Tasks, Large Language Models
		(LLMs)
20	Mar 27 (Th)	Natural Languages/ Language
		Models and their Impact on AI
21	Apr 1 (Tu)	AI - Unstructured (Text): Analysis
		- Supervised ML - Trust Issues
22	Apr 3 (Th)	AI - Unstructured (Text): Analysis
		 Supervised ML – Mitigation
		Methods
23	Apr 8 (Tu)	AI - Unstructured (Text): Analysis
	,	_
		Rating and Debiasing Methods
24	Apr 10 (Th)	Explanation Methods
		Trust: AI Testing
25	Apr 15 (Tu)	Trust: Human-AI Collaboration
26	Apr 17 (Th)	Emerging Standards and Laws
		Trust: Data Privacy -
		Trusted AI for the Real World
27	Apr 22 (Tu)	Project presentation
28	Apr 24 (Th)	Project presentation
29	Apr 29 (Tu)	Paper presentations
	May 1 (Th)	
30	May 6 (Tu)	4pm – Final exam/ Overview