Introduction

Individualized

ENT

Comparisor study

Conclusions

Fast algorithms to generate individualized designs for the mixed logit choice model

Marjolein Crabbe Martina Vandebroek

KU Leuven, Belgium

mODa 10, June 10 2013

Discrete choice experiments

Introduction

design \mathcal{D}_B KLP MUI ENT

Comparison study

- Survey methodology to study the preferences of consumers
- In a discrete choice experiment respondents must choose their preferred product in a series of choice sets contrasting multiple alternatives
- Each alternative or profile in a set is characterized by a number of attributes
- The attributes take on specific values or levels
- ⇒ The choices reveal the relative value that consumers attach to the different attributes of the product

Discrete choice experiments

Introduction

design

 \mathcal{D}_B KLP MUI ENT

Comparisor study

Discrete choice analysis

Introduction

Individualize

 \mathcal{D}_B KLP MUI ENT

Compariso study

Conclusions

- Choice models are based on utility maximization
- ullet The utility that individual n receives from alternative k in choice set s

$$U_{ksn} = \mathbf{x}_{ksn}' \boldsymbol{\beta} + \varepsilon_{ksn}$$

- $\circ \mathbf{x}_{ksn}$ the attribute levels of the alternative
- \circ β the relative importance of the attributes
- The conditional logit choice model
 - \circ Probability that individual n chooses alternative k in choice set s

$$p_{ksn}(\boldsymbol{\beta}) = \frac{e^{\mathbf{x}'_{ksn}\boldsymbol{\beta}}}{\sum_{t=1}^{K} e^{\mathbf{x}'_{tsn}\boldsymbol{\beta}}}$$

 Assumes a homogeneous population: all people equally value the product attributes

Discrete choice analysis

Introduction

Individualize

 \mathcal{D}_B KLP MUI ENT

Comparisor study

Conclusions

- The mixed logit choice model
 - o Accounts for heterogeneity in the preferences
 - \circ Individual-specific coefficients β_n
 - Aggregate choice behavior in the population modeled with a heterogeneity distribution

$$\boldsymbol{\beta}_n \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Unconditional mixed logit choice probability

$$p_{ksn} = \int \frac{e^{\mathbf{x}'_{ksn}\boldsymbol{\beta}_n}}{\sum_{t=1}^{K} e^{\mathbf{x}'_{tsn}\boldsymbol{\beta}_n}} \ \phi(\boldsymbol{\beta}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}) \ d\boldsymbol{\beta}_n$$

Individualized design for the mixed logit choice model

Introduction
Individualized

$\begin{array}{c} {\rm design} \\ {\mathcal D}_B \\ KLP \end{array}$

MUI ENT

comparisor study

- Bliemer and Rose (2010) constructed aggregate **locally** \mathcal{D} -efficient designs for the mixed logit choice model
- ullet Generating aggregate Bayesian \mathcal{D} -efficient designs, taking the uncertainty about the model parameters into account, appeared infeasible in a reasonable amount of time

- Individualized design
 - \circ $oldsymbol{eta}_n$ assumed constant over all choice sets
 - The preferences of a specific individual are thus in essence modeled by a conditional logit choice model
 - Individual efficient designs with respect to the underlying conditional logit choice models

Individualized design for the mixed logit choice model

Introduction
Individualized

$\begin{array}{c} {\rm design} \\ {\mathcal D}_B \\ KLP \end{array}$

MUI ENT

study

- The choice experiments are sequentially generated for each person separately, based on choice information from the previously administered choice sets
- Tailored to the specific preferences of an individual
- Online, interactive choice experiments
 - 1. Assume a prior distribution $f(\boldsymbol{\beta}_n) \equiv \phi(\boldsymbol{\beta}_n | \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$
 - 2. After respondent n has completed s-1 choice sets: Bayesian update of the prior information on $\boldsymbol{\beta}_n$

$$f(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1}) = \frac{L(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1},\mathbf{X}_n^{s-1}) \ \phi(\boldsymbol{\beta}_n|\boldsymbol{\mu}_0,\boldsymbol{\Sigma}_0)}{\int L(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1},\mathbf{X}_n^{s-1}) \ \phi(\boldsymbol{\beta}_n|\boldsymbol{\mu}_0,\boldsymbol{\Sigma}_0) \ d\boldsymbol{\beta}_n}$$

- 3. The next choice set is efficiently selected with the updated information
- 4. Repetition of steps 2 and 3 until a specific amount of choice sets is obtained

Individualized design for the mixed logit choice model

Introductio

Individualized design

KLP MUI

Comparison study

- Comparison of four design criteria
 - \circ Minimum posterior weighted \mathcal{D} -error (\mathcal{D}_B)
 - Novel criteria from optimal test design based on Kullback-Leibler divergence
 - Maximum expected Kullback-Leibler divergence between subsequent posteriors (KLP)
 - Maximum mutual information (MUI)
 - Minimum expected posterior entropy (ENT)

Minimum posterior weighted $\mathcal{D}\text{-error}$

Introduction

design

 \mathcal{D}_{B} KLP MUI ENT

Comparisor study

Conclusions

• The (Bayesian) Fisher information matrix for design \mathbf{X}_n^S with S choice sets for individual n

$$\mathbf{I}_{BFIM}(\boldsymbol{\beta}_n, \mathbf{X}_n^S) = -\mathsf{E}\!\left[\frac{\partial^2 \!\log[L(\boldsymbol{\beta}_n|\mathbf{y}_n^S, \mathbf{X}_n^S)\ f(\boldsymbol{\beta}_n)]}{\partial \boldsymbol{\beta}_n \partial \boldsymbol{\beta}_n'}\right]$$

with $f(\boldsymbol{\beta}_n)$ a prior for $\boldsymbol{\beta}_n$

ullet Assuming a normal prior with covariance matrix $oldsymbol{\Sigma}_0$

$$\begin{split} \mathbf{I}_{BFIM}(\boldsymbol{\beta}_n, \mathbf{X}_n^S) &= \mathbf{I}_{FIM}(\boldsymbol{\beta}_n, \mathbf{X}_n^S) + \boldsymbol{\Sigma}_0^{-1} \\ &= \sum_{s=1}^S \mathbf{X}_{sn}' (\mathbf{P}_{sn} - \mathbf{p}_{sn} \mathbf{p}_{sn}') \mathbf{X}_{sn} + \boldsymbol{\Sigma}_0^{-1} \end{split}$$

Minimum posterior weighted \mathcal{D} -error

Introduction

Individualized design

 \mathcal{D}_{B} KLP MUI ENT

Comparisor study

- Bayesian \mathcal{D} -efficient designs: minimize \mathcal{D} -error averaged over a weighting distribution for \mathcal{G}_n
- To select the sth choice set, minimize

$$\int \det[\mathbf{I}_{BFIM}(\boldsymbol{\beta}_n, \mathbf{X}_n^s)]^{-1/p} \ f(\boldsymbol{\beta}_n | \mathbf{y}_n^{s-1}) \ d\boldsymbol{\beta}_n$$

Maximum expected Kullback-Leibler divergence between subsequent posteriors

Introduction

design

KLP MUI ENT

Comparison study

Conclusions

ullet Kullback-Leibler divergence between two densities f and g for a continuous variable X

$$KL(f,g) = \int f(x) \log \frac{f(x)}{g(x)} dx$$

- \circ For any f and g, KL is non-negative and zero in case of equal densities
- $\circ \ KL(f,g)$ increases as the two densities become more divergent
- "Distance between two densities"
- o Not a real distance measure (for instance non-symmetric: $KL(f,g) \neq KL(g,f)$)

Maximum expected Kullback-Leibler divergence between subsequent posteriors

ntroduction

design

KLP MUI ENT

Comparison study

Conclusions

ullet To select the sth set in a choice experiment, maximize the expected Kullback-Leibler distance between the current posterior distribution of $oldsymbol{eta}_n$ and the updated posterior one obtains with the answer to the sth choice set

$$\sum_{n=1}^{K} \pi(y_{ksn}|\mathbf{y}_{n}^{s-1}) KL[f(\boldsymbol{\beta}_{n}|\mathbf{y}_{n}^{s-1}), f(\boldsymbol{\beta}_{n}|\mathbf{y}_{n}^{s-1}, y_{ksn})]$$

with

$$\pi(y_{ksn}|\mathbf{y}_n^{s-1}) = \int p_{ksn}(\boldsymbol{\beta}_n) \ f(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1}) \ d\boldsymbol{\beta}_n$$

Maximum mutual information

Introduction

Individualized design

KLP MUI

Comparisor study

Conclusions

Mutual information between two variables X and Y

$$I_M(X,Y) = \int_Y \int_X f(x,y) \log \frac{f(x,y)}{f(x)f(y)} \ dxdy$$

- \circ Kullback-Leibler distance between the joint distribution of X and Y and their distribution in case of independence
- Expresses how much information one variable holds with respect to the other
- To select the sth set in a choice experiment, maximize the mutual information between the individual coefficients β_n and the choice for the next set, given the choice data of the previously administered sets

$$\sum_{k=1}^K \int f(\boldsymbol{\beta}_n, y_{ksn} | \mathbf{y}_n^{s-1}) \, \log \frac{f(\boldsymbol{\beta}_n, y_{ksn} | \mathbf{y}_n^{s-1})}{f(\boldsymbol{\beta}_n | \mathbf{y}_n^{s-1}) \pi(y_{ksn} | \mathbf{y}_n^{s-1})} \, d\boldsymbol{\beta}_n$$

Minimum expected posterior entropy

ENT

• Entropy for a continuous variable X and density f(x)

$$H(X) = -\int f(x) \log f(x) dx$$

- Measure of uncertainty
- To select the sth set in a choice experiment, minimize the expected posterior entropy, or equivalently maximize

$$\sum_{k=1}^{K} \pi(y_{ksn}|\mathbf{y}_n^{s-1}) \int f(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1}, y_{ksn}) \log f(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1}, y_{ksn}) d\boldsymbol{\beta}_n$$

Connections among the Kullback-Leibler design criteria

Introduction

design \mathcal{D}_B KLP MUI ENT

Comparison

Conclusions

 KLP is the expected Kullback-Leibler distance between the current and the updated posterior

$$\sum_{k=1}^{K} \pi(y_{ksn}|\mathbf{y}_n^{s-1}) \ KL[f(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1}), f(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1}, y_{ksn})]$$

ullet MUI is the expected Kullback-Leibler distance between the updated and the current posterior

$$\sum_{k=1}^{K} \pi(y_{ksn}|\mathbf{y}_n^{s-1}) KL[f(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1}, y_{ksn}), f(\boldsymbol{\beta}_n|\mathbf{y}_n^{s-1})]$$

ullet ENT is the expected Kullback-Leibler distance between the updated posterior and a uniform distribution

Comparison study

Introduction

Individualized design

 D_B KLP MUI ENT

Comparison study

Conclusions

• Multiple experimental setups

$3^3/2/15$
$2 \times 3 \times 2 \times 3/3/15$
$3 \times 2^4/2/15$
$3 \times 2 \times 3/3/15$

- 50 respondents
- Response simulation repeated 100 times

Estimation accuracy

Introduction

Individualize

 \mathcal{D}_B KLP MUI ENT

Comparison study

Conclusion

Mean RMSE $_{\mu}$, RMSE $_{\Sigma}$ and RMSE $_{\beta}$ values obtained with KLP, MUI, ENT and \mathcal{D}_{B} for the different scenarios

- ⇒ No significant differences in estimation accuracy for scenario 1, 2 and 4
- \Rightarrow In scenario 3, KLP outperforms the other methods

Computation time

Introduction

Individualize design \mathcal{D}_B KLP MUI ENT

Comparison study

Conclusions

Average computation time (seconds) to select an additional choice set with KLP, MUI, ENT and \mathcal{D}_B using various numbers of draws

	Scenario 1			Scenario 2		
	512	1024	2048	512	1024	2048
KLP	0.074	0.152	0.285	1.726	3.381	6.729
MUI	0.082	0.152	0.293	1.773	3.484	6.924
ENT	0.090	0.168	0.328	1.972	3.866	7.674
\mathcal{D}_B	1.789	3.269	6.523	35.689	71.277	142.296
Б						

Computation time

roduction

Individualized design \mathcal{D}_B KLP

KLP MUI ENT

Comparison study

		Scenario	3	Scenario 4		
	512	1024	2048	512	1024	2048
KLP	0.207	0.402	0.805	0.219	0.418	0.809
MUI	0.215	0.414	0.816	0.223	0.426	0.836
ENT	0.242	0.468	0.914	0.246	0.473	0.934
\mathcal{D}_B	5.207	10.375	20.671	3.855	7.702	15.436

- \Rightarrow Impressive decrease in computation time from using the Kullback-Leibler design criteria instead of \mathcal{D}_B
- \Rightarrow The \mathcal{D}_B computation times are approximately 20 times the KLP times

Conclusions

Introduction

Individualized design \mathcal{D}_B KLP MUI

Compariso

- This research focusses on improving the practicability of individualized choice design for the mixed logit choice model using criteria from optimal test design
- Comparison of four design algorithms
 - The efficiency to estimate the mixed logit choice model of the designs obtained with the four criteria is equivalent
 - \circ The Kullback-Leibler criteria are preferred over $\mathcal{D}\text{-efficiency}$ due to their low complexity, yielding a huge decrease in computation time
 - The Kullback-Leibler criteria warrant the feasibility of individualized choice design

Introduction

Individualized

 D_B KLP MUI ENT

Comparisor

Conclusions

Fast algorithms to generate individualized designs for the mixed logit choice model

Marjolein Crabbe Martina Vandebroek

KU Leuven, Belgium

mODa 10, June 10 2013