Problem Statement

Title: Predicting House Sale Status Based on Size and Number of Bedrooms Using Logistic Regression

Objective

To develop a **logistic regression model** that predicts whether a house **sells within 30 days (1) or not (0)** based on:

- Size in square feet
- Number of bedrooms

Background

In real estate, a key metric for sellers is how quickly a house sells after being listed. Various features (like size and bedroom count) influence this. This project uses logistic regression to model the **probability** that a house will sell within 30 days.

Dataset Description

- X₁: Size (in square feet)
- X₂: Number of bedrooms
- Y: Sold within 30 days (binary: 1 = Yes, 0 = No)

Sample Data

House	Size (sqft)	Bedrooms	Sold in 30 Days (Y)
1	1400	3	0
2	1600	3	1
3	1700	4	1
4	1875	3	1
5	1100	2	0
6	1550	4	0
7	2350	4	1
8	2450	5	1
9	1425	3	0
10	1700	3	1

Goals

- Fit a **logistic regression** model: $P(Y = 1) = \frac{1}{1 + e^{-(b_0 + b_1 X_1 + b_2 X_2)}}$
- Interpret \$(b_1)\$ and \$(b_2)\$ to understand how size and bedrooms influence likelihood of a fast sale.
- Make binary predictions using a probability threshold (e.g., 0.5)
- Evaluate performance using:
 - Confusion Matrix
 - Accuracy
 - o Precision, Recall, F1 Score
 - Log Loss
 - ROC-AUC (if desired)

Assumptions

- The relationship between predictors and the log-odds of the target is linear.
- Observations are independent.
- The output is a **binary classification** (house sells within 30 days or not).

Solution

Problem

Predict whether a house sells within 30 days (1) or not (0) based on:

- Size (X₁: in square feet)
- Bedrooms (X₂: count)

Step 1: Dataset

House	X ₁ (Size sqft)	X ₂ (Bedrooms)	Y (Sold in 30 Days)
1	1400	3	0
2	1600	3	1
3	1700	4	1
4	1875	3	1
5	1100	2	0
6	1550	4	0
7	2350	4	1
8	2450	5	1
9	1425	3	0

 House	X ₁ (Size sqft)	X ₂ (Bedrooms)	Y (Sold in 30 Days)
 10	1700	3	1

Step 2: Logistic Regression Model

We model the **probability** that a house sells in 30 days as:

$$P(Y=1) = \frac{1}{1 + e^{-(b_0 + b_1 X_1 + b_2 X_2)}}$$

Let's assume the model has been trained (using maximum likelihood estimation), and yields the following coefficients:

$$b_0 = -7.5,\quad b_1 = 0.003,\quad b_2 = 0.9$$

Step 3: Final Equation

 $P(\text{Sold}) = \frac{1}{1 + e^{-(-7.5 + 0.003 \cdot \text{Size})} + 0.9 \cdot \text{Bedrooms})}$

Step 4: Make Predictions

Example: Predict for House 3 (1700 sqft, 4 bedrooms)

$$z = -7.5 + 0.003 \cdot 1700 + 0.9 \cdot 4 = -7.5 + 5.1 + 3.6 = 1.2$$

 $P = \frac{1}{1 + e^{-1.2}} \cdot 0.768 \cdot (1)_{1 + e^{-1.2}} \cdot 0.768 \cdot (1)_{1 + e^{-1.2}} \cdot (1)_{1 +$

Step 5: Predict All and Compare with Actual

House	Size	Beds	Actual Y	(z)	Predicted P	Pred Y
1	1400	3	0	0.7	0.668	1 X
2	1600	3	1	1.3	0.786	1 🗸
3	1700	4	1	1.2	0.768	1 🗸
4	1875	3	1	1.575	0.828	1 🗸
5	1100	2	0	-0.4	0.401	0 🗸
6	1550	4	0	1.05	0.741	1 X
7	2350	4	1	2.55	0.927	1 🗸
8	2450	5	1	3.45	0.969	1 🗸
9	1425	3	0	0.775	0.685	1 X
10	1700	3	1	0.3	0.574	1 🗸

Step 6: Confusion Matrix

	Actual 1	Actual 0
Predicted 1	6	3
Predicted 0	1	0

- **TP** = 6, **FP** = 3
- **FN** = 1, **TN** = 0

Step 7: Evaluation Metrics

✓ Accuracy

 $\text{TP + TN}{Total} = \frac{6 + 0}{10} = 0.6$

✓ Precision

 $\text{text{Precision}} = \frac{TP}{TP + FP} = \frac{6}{6 + 3} = 0.667$

✓ Recall

 $\text{TP}_{TP + FN} = \frac{6}{6 + 1} = 0.857$

▼ F1 Score

 $F1 = 2 \cdot (0.667 \cdot 0.857) \cdot (0.667 + 0.857) \cdot (0.667 \cdot 0.857) \cdot ($

Final Model Summary

• Logistic Regression Equation:

 $P(\text{Sold}) = \frac{1}{1 + e^{-(-7.5 + 0.003X_1 + 0.9X_2)}}$

• Evaluation Metrics:

o Accuracy: 60%

o Precision: **66.7%**

o Recall: 85.7%

o F1 Score: **75%**

Example Prediction

• 2000 sqft, 4 bedrooms:

 $z = -7.5 + 0.003 \cdot 0.9 \cdot 4 = -7.5 + 6 + 3.6 = 2.1$ $P = \frac{1}{1 + e^{-2.1}} \cdot 0.891 \cdot 4 = -7.5 + 6 + 3.6 = 2.1$