פרק 1: קומבינטוריקה (סיכום)

ניסוי מקרי: תהליך שתוצאתו אינה ודאית. כלומר, שקיימות לו מספר תוצאות אפשריות שונות.

קומבינטוריקה: כללי עזר למניית מספר התוצאות האפשריות של ניסוי מקרי.

תוצאות מספר התוצאות אפשריות בהתאמה. מספר התוצאות n_r, \ldots, n_2, n_1 ניסויים בעלי r ניסויים בעלי

 $n_1 \cdot n_2 \cdot \ldots \cdot n_r$ אלה, שווה למכפלה: r מסדרת מסדרת המורכב מסדרת של הניסוי, המורכב

מדגם מקרי: קבוצת עצמים שנבחרת באופן אקראי מאוכלוסייה מסוימת.

מדגם סדור: מדגם שבו מציינים את סדר בחירת העצמים השייכים אליו.

תבניות כלליות של ניסויים מקריים ומספר התוצאות האפשריות של כל אחד מהם:

- $n\cdot(n-1)\cdot\ldots\cdot 2\cdot 1=n!$ מספר התוצאות האפשריות: מספר מקומות מספר מקומות מספר מקומות מספר התוצאות האפשריות:
- $n_1+n_2+...+n_r=n$ מהעצמים הים, ומתקיים n_r ,... מהעצמים הים, מהעצמים הים, ומתקיים $n_1+n_2+...+n_r=n$ מספר התוצאות האפשריות: $\frac{n!}{n_1!\cdot n_2!\cdot ...\cdot n_r!}=\binom{n}{n_1,n_2,...,n_r}$
 - 3. בחירת קבוצה של r עצמים שונים מתוך אוכלוסייה בת n עצמים שונים, כשיש חשיבות לסדר הבחירה $r \leq n \qquad \text{ ראפשריות} : n \cdot (n-1) \cdot \ldots \cdot (n-r+1) = \frac{n!}{(n-r)!}$
 - 4. בחירת קבוצה של r עצמים שונים, כשאין חשיבות לסדר הבחירה אפררת קבוצה של r עצמים שונים, כשאין חשיבות לסדר הבחירה אפרריות: $r \leq n$ מספר התוצאות האפשריות: $\frac{n!}{r!(n-r)!} = \binom{n}{r}$
 - 5. חלוקת n עצמים שונים ל-r קבוצות, שניתן להבחין ביניהן באופן כלשהו $n_1+n_2+...+n_r=n$ כאשר $\frac{n!}{n_1!\cdot n_2!\cdot ...\cdot n_r!} = \binom{n}{n_1,n_2,...,n_r} :$
 - r^n : מספר התוצאות האפשריות אנים ב- r תאים ממוספרים מספר התוצאות האפשריות:
 - 7. פיזור n עצמים זהים ב- r תאים ממוספרים $\binom{n+r-1}{n} = \binom{n+r-1}{r-1}$ מספר התוצאות האפשריות :
 - 8. פיזור n עצמים זהים ב- r תאים ממוספרים, כאשר בכל תא חייב להיות לפחות עצם אחד $r \leq n \qquad \text{ сאשר}$ כאשר $\binom{n-1}{n-r} = \binom{n-1}{r-1}$
 - (n-1)! מספר התוצאות האפשריות: מספר במעגל, כאשר המקומות לא מסומנים מספר התוצאות האפשריות: *9
 - 0! = 1 מגדירים **1.** מגדירים
 - . $\binom{n}{r}=\binom{n}{n-r}$ מהגדרת הביטוי $\binom{n}{r}$ מקבלים כי $\binom{n}{r}=\binom{n}{n-r}=n$; $\binom{n}{0}=\binom{n}{n}=1$: לכן :