

Subprogram

Bahan Kuliah SD2104 Pemrograman Lanjut

Sevi **Nurafni**

Fakultas Sains dan Teknologi Universitas Koperasi Indonesia 2024

Kode yang Berulang

- Semakin besar program, semakin banyak bagian kode yang berulang
- Sangat tidak efisien jika bagian kode yang sama/serupa diketik berulang-ulang, (bahkan kalau di-copy-paste)
- Di samping itu, dalam banyak persoalan, ada berbagai rumus/formula yang berulang-ulang dipakai dalam satu program
- Bagaimana jika ada cara supaya bagian kode tersebut tidak perlu diketik berulangulang, tapi tetap dapat digunakan berkali-kali dalam program yang sama

Subprogram

- A set of instructions designed to perform a frequently used operation within a program
- 2 (dua) jenis subprogram:
 - Fungsi: pemetaan suatu nilai domain (input) ke range (output)
 - Hasil dari fungsi dinyatakan dalam sebuah type data yang eksplisit
 - Prosedur: deretan instruksi yang jelas initial state dan final state-nya → mirip seperti program secara umum, namun dalam scope yang lebih kecil

Flowchart Symbol

Fungsi

Subprogram

- Konsep fungsi di pemrograman didasari oleh konsep pemetaan dan fungsi di matematika
- Fungsi: asosiasi (pemetaan) antara 2 himpunan nilai yaitu domain dan range
 - Setiap elemen pada himpunan domain dipetakan tepat satu ke sebuah elemen pada himpunan range
- Contoh: $f(X) = X^2$
 - fungsi untuk menghitung kuadrat dari suatu bilanga
 - Domain: bilangan bulat
 - Range: bilangan bulat (0 atau positif)

$$f: X \rightarrow Y$$

Fungsi dalam Pemrograman

- Memrogram fungsi pada dasarnya adalah: merakit isi black box
 - Berangkat dari keadaan awal → himpunan nilai yang terdefinisi sebagai input (domain)
 - Menghasilkan nilai-nilai yang mendefinisikan keadaan akhir → himpunan nilai yang terdefinisi sebagai output (range)
 - Tugas pemrogram fungsi adalah menentukan langkah-langkah untuk menghasilkan keadaan akhir berdasarkan keadaan awal
- Fungsi didefinisikan sebagai bagian terpisah dari program dan dipanggil dalam program utama

Fungsi dalam Pemrograman


```
# Program Test
# Mengetes fungsi kuadrat
 # KAMUS
    A: integer
     B: <u>integer</u>
  # Fungsi Kuadrat
  def Kuadrat (X):
     # menghitung kuadrat X
     hasil = X * X
     return hasil
 # ALGORITMA PROGRAM UTAMA
 B = Kuadrat(A) + 10
```

Function flow of control:

1) Salah satu baris pada kode program utama memanggil

fungsi: B = Kuadrat(A) + 10 # A = 5

2) Program beralih ke kode fungsi Kuadrat mulai dari baris yang pertama sampai pada baris yang mendefinisikan hasil fungsi (return). Parameter input diasosiasikan dengan daftar parameter input pada fungsi.

Fungsi dalam Pemrograman


```
# Program Test
# Mengetes fungsi kuadrat
 # KAMUS
    A: <u>integer</u>
    B: integer
  # Fungsi Kuadrat
  def Kuadrat (X):
     # menghitung kuadrat X
     hasil = X * X
     return hasil
 # ALGORITMA PROGRAM UTAMA
 B = Kuadrat(A) + 10
```

Function flow of control:

```
def Kuadrat ( X ):
# menghitung kuadrat X
hasil = X * X
return hasil

def Kuadrat ( 5 ):
# menghitung kuadrat 5
hasil = 5 * 5
return hasil
# menghitung kuadrat 5
return hasil # hasil = 25
```

3) Program meninggalkan fungsi dengan menyimpan hasil perhitungan dan kembali pada baris terakhir program utama yang ditinggalkannya dan menggantikan hasil perhitungan berdasarkan hasil

fungsi:
$$B = 25 + 10 \# B = 35$$

4) Program melanjutkan ke instruksi berikutnya.

- Buatlah program yang menerima masukan buah nilai jari-jari lingkaran (bilangan riil), misalnya r, dan menuliskan luas lingkaran ke layar
- Perhitungan luas lingkaran → dibuat menjadi fungsi

```
# Program LuasLingkaran
# Menghitung luas lingkaran berdasarkan jari-jari
 # KAMUS
 # r, L : float
 # Definisi dan Realisasi Fungsi Luas
 def Luas (r):
 # menghasilkan luas lingkaran berdasarkan jari-jari r
    Luas := 3.14 * r * r
    return (Luas)
 # PROGRAM UTAMA
 r = float(input())
 L = Luas(r) # pemanggilan fungsi Luas
 print(L)
```


Flowchart

Kegunaan Fungsi

- Program dapat didekomposisi menjadi sub-sub bagian
 - Tiap sub bagian dapat didefinisikan sebagai fungsi yang tinggal dipanggil sebagai 1 baris atau ekspresi dalam program utama
- Code reuse instead of code rewriting
 - Jika task yang harus dikerjakan fungsi banyak dipakai di program, memrogram menjadi jauh lebih sederhana jika task tersebut dibuat dalam bentuk fungsi
 - Contoh: fungsi untuk menghitung akar kuadrat (sqrt) sangat berguna untuk berbagai jenis persoalan
 - → bayangkan kalau setiap kali Anda harus menulis programnya J
- Setiap fungsi dapat dites secara mandiri dan tidak tergantung pada bagian program yang lain
 - Di Python: fungsi dapat dites dulu dalam interpreter (tidak harus membuat program utuh terlebih dahulu)
 - Jika program besar dan harus dikerjakan oleh lebih dari 1 programmer, hal ini memudahkan pembagian kerja

Mendefinisikan Fungsi dalam Python

- Nama fungsi didefinisikan setelah keyword def
- Spesifikasi fungsi dituliskan dalam bentuk komentar di bawah nama fungsi
- Type data input didefinisikan implisit berdasarkan type data parameter_input
 - Jika lebih dari 1, tiap parameter dipisahkan dengan koma (,)
- Type data output didefinisikan secara implisit berdasarkan type nilai_output yang dituliskan setelah perintah return

```
# definisi fungsi
def <nama_fungsi> ( [<parameter_input>] ):
    # spesifikasi_fungsi
    ...
    return [nilai_output]
```

Contoh fungsi Kuadrat:

```
# definisi fungsi Kuadrat
def Kuadrat ( X ):
    # menghasilkan kuadrat X
    ...
    return hasil
```


- Merakit program untuk menghasilkan nilai output berdasarkan nilai input
 - Pada dasarnya dapat menggunakan segala jenis instruksi yang mungkin dalam program
- KAMUS LOKAL: dimungkinkan ada nama- nama variabel yang hanya terdefinisi lokal di fungsi (tidak bisa dipakai di program utama atau di fungsi yang lain)
- ALGORITMA: bagian program yang berisi kode program fungsi dan minimum mengandung 1 buah perintah return
 - return: perintah untuk menuliskan hasil fungsi


```
# definisi fungsi
def <nama_fungsi> ( [<parameter_input>] ):
    # spesifikasi_fungsi

# KAMUS LOKAL
# nama-nama variabel lokal

# ALGORITMA
... # deretan instruksi untuk
    # menghasilkan nilai_output
    # berdasarkan nilai parameter_input
return [<nilai_output>]
```

Contoh fungsi Kuadrat:

```
# definisi fungsi Kuadrat
def Kuadrat ( X ):
    # menghasilkan kuadrat X

# KAMUS LOKAL
    # hasil : int

# ALGORITMA
hasil = X * X
return hasil
```


- Definisi matematika: $f(x) = x^2$
- Bagaimana memindahkannya dalam program?
 - Nama fungsi: Kuadrat → ditentukan oleh programmer
 - Spesifikasi fungsi: menghasilkan kuadrat dari input
 - Type domain/input: integer, didefinisikan oleh parameter input x
 - Type range/output: integer → berdasarkan type hasil x2
 - Realisasi fungsi: x * x atau x ** 2 (dalam Python)

```
Fungsi Kuadrat
def
       Kuadrat
  # Menghasilkan kuadrat dari X
   # KAMUS LOKAL
   # hasil : int
   # ALGORITMA
   hasil = X * X
   return hasil
```


- Alternatif: tidak perlu variabel kamus lokal → langsung ekspresi di bagian return
 - Untuk program-program yang sangat pendek, ini lebih baik

```
# definisi fungsi Kuadrat
def Kuadrat ( X ):
    # menghasilkan kuadrat X

# KAMUS LOKAL
# hasil : int

# ALGORITMA
hasil = X * X
return hasil
```



```
# definisi fungsi Kuadrat
def Kuadrat ( X ):
    # menghasilkan kuadrat X

# KAMUS LOKAL

# ALGORITMA
return X * X
```

Latihan1

- Buatlah definisi dan realisasi fungsi Max3 untuk menghitung nilai maksimum dari 3 bilangan, misalnya A, B, C.
- Contoh: A = 1, B = -10, $C = 5 \rightarrow maksimum = 5$
- Algoritma:
 - A >= B and A >= C: maksimum = A
 - B >= A and B >= C: maksimum = B
 - C >= A and C >= B: maksimum = C

Menggunakan Fungsi

- Fungsi dipanggil dalam instruksi program utama atau dalam instruksi di fungsi lain sebagai bagian dari ekspresi
- Syarat memanggil fungsi:
 - Nama fungsi harus sama
 - Banyaknya parameter input sama dan type data bersesuaian
 - Dalam proses pemanggilan fungsi akan terjadi asosiasi satu ke satu setiap parameter input dengan nilai masukan
 - Hasil dari pemanggilan fungsi harus dalam type yang sama dengan type output fungsi
 - Pemanggilan fungsi sebagai bagian dari ekspresi à bukan sebuah instruksi terpisah

Menggunakan Fungsi - Contoh

- Nama harus sama: Kuadrat
- Banyaknya parameter input sama dan type data bersesuaian
 - Ada parameter input di fungsi Kuadrat yaitu x; dan ada 1 input di pemanggilan Kuadrat di program utama, yaitu y. x dan y sama-sama bertype integer.
- Hasil dari pemanggilan fungsi harus dalam type yang sama dengan type output fungsi.
 - Perintah return di fungsi Kuadrat memberikan data bertype integer
 - Pada pemanggilan di program utama: Kuadrat(y) akan menghasilkan integer dan tepat dengan type variabel
- Pemanggilan fungsi sebagai bagian dari ekspresi
 - Ya, Kuadrat adalah ekspresi yang ditampung

```
# Program HitungKuadrat
# Menerima masukan sebuah integer dan
# menuliskan pangkat 2 dari nilai tsb
# ke layar
# Kamus
# y, hasil : int
# Definisi Fungsi
def Kuadrat ( x ):
    # Menghasilkan pangkat 2 dari x
    # Algoritma
    return x*x
# Algoritma Program Utama
y = int(input("Masukkan bilangan = "))
hasil = Kuadrat(y)
print("Kuadrat dari "+str(y)+" = "+str(hasil))
```

Prosedur

Prosedur

- Prosedur: subprogram mengelompokkan instruksi-instruksi yang sering dipakai di program
 - Tidak harus ada parameter input/output
 - Dapat dipandang sebagai fungsi yang tidak menghasilkan (return) nilai
- Dalam Python, didefinisikan dengan return tanpa ekspresi/nilai yang dihasilkan di akhir fungsi

```
# definisi prosedur
def <nama_prosedur> ( [<parameter_input>] ):
    # spesifikasi_prosedur

# KAMUS LOKAL
# nama-nama variabel lokal

# ALGORITMA
... # deretan instruksi prosedur
return
```


- Buatlah fungsi CetakNama yang menerima masukan sebuah string nama dan mencetak "Hello," + nama ke layar.
- Tidak ada nilai yang dikeluarkan dari fungsi

```
# Definisi Subprogram
def CetakNama (nama):
    # Mencetak Hello + nama ke layar

# Algoritma
print ("Hello, " + nama + "!!")
return
```

Memanggil Prosedur

- Karena prosedur tidak menghasilkan nilai, pemanggilannya dalam program utama atau fungsi lain juga berbeda.
- Prosedur dipanggil sebagai 1 buah baris instruksi, bukan sebagai bagian dari ekspresi.
- Asosiasi parameter input dilakukan dengan cara yang sama seperti pada fungsi biasa

 Buatlah program yang menerima masukan sebuah integer > 0, misalnya N, dan sebuah string, misalnya nama lalu mencetak: "Hello, nama!" sebanyak N kali ke layar

```
# Program HelloHelloNama
# Menerima masukan sebuah integer > 0 N dan string nama
# dan mencetak "Hello" + nama sebanyak N kali
# Kamus
# i, N : int
# nama : string
# Definisi Prosedur CetakNama
def CetakNama (nama):
    # Mencetak Hello + nama ke layar
    # Algoritma
    print ("Hello, " + nama + "!")
    return
# Algoritma Program Utama
nama = input("Masukkan nama = ")
N = int(input("Berapa kali diulang? "))
for i in range(N):
    CetakNama(nama)
```

Fungsi Standar Python

- Dalam Python didefinisikan sangat banyak fungsi standar yang tersedia dan tinggal digunakan à jadi tidak perlu di-coding lagi
- Fungsi-fungsi standar ini didefinisikan dalam library
- Contoh library standar yang sering dipakai adalah math
- Fungsi-fungsi yang didefinisikan dalam library math:
 - sqrt → mencari akar kuadrat suatu bilangan
 - sin → mencari sinus
 - cos → mencari cosinus
 - pow → pangkat suatu bilangan
 - dll.
- Memanggil library math dengan menambahkan instruksi pada bagian awal program: from math import *
- Informasi lebih lanjut: https://docs.python.org/3/library/math.html

Latihan2

- Buatlah sebuah fungsi bernama HitungJarak, yang menerima masukan: v: kecepatan (dalam m/s, bilangan riil) dan t: waktu tempuh (dalam s, bilangan riil) dan menghasilkan jarak tempuh s dengan rumus: s = v * t.
- Asumsikan nilai $t \ge 0$ dan $s \ge 0$.

• Selanjutnya, buatlah program utama yang menggunakan fungsi HitungJarak tersebut (bebas).

Latihan3

- Masih ingat program untuk mencari nilai maksimum array?
- Buatlah fungsi MaxArray yang menerima masukan sebuah array of integer, misalnya T, dan panjang array, misalnya N, dan menghasilkan nilai terbesar yang disimpan dalam array tersebut.
- Asumsikan N > 0.
- Contoh: T = [5, 4, 3, 2, 1]; N = 5
 maka nilai maksimum = 5

SELAMAT BELAJAR