Geração uniforme de *k-trees* para aprendizado de redes bayesianas

Tiago Madeira

<madeira@ime.usp.br>

Supervisor: Prof. Dr. Denis Deratani Mauá

Bacharelado em Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

Novembro de 2016

No que consiste o trabalho?

Estudo sobre amostragem uniforme de k-trees e seu uso no aprendizado da estrutura de redes bayesianas com treewidth limitado.

No que consiste o trabalho? Por que estudar k-trees? Por que gerar k-trees? O que foi feito? Onde encontrar o trabalho?

Por que estudar *k-trees*?

Há interesse considerável em desenvolver ferramentas eficientes para manipular k-trees, porque **problemas NP-difíceis são resolvidos em tempo polinomial** em k-trees e subgrafos de k-trees.

Alguns exemplos¹:

- Encontrar tamanho máximo dos conjuntos independentes;
- Computar tamanho mínimo dos conjuntos dominantes;
- Calcular número cromático;
- Determinar se tem um ciclo hamiltoniano.

¹Stefan Arnborg, Andrzej Proskurowski. Linear time algorithms for NP-Hard problems restricted to partial *k*-trees. *Discrete Applied Mathematics*, 23:11–24, 1989.

Por que gerar *k-trees?*

Há muitas razões, como por exemplo para testar a eficácia de algoritmos aproximados.

O problema que desperta nosso interesse é o **aprendizado de redes bayesianas**.

O que foi feito?

O que foi feito?

- Implementação do algoritmo de Caminiti et al. (2010)² para codificar k-trees de forma bijetiva em tempo linear.
- Implementação de algoritmo para amostrar k-trees **uniformemente** e testes para comprovar seu funcionamento.
- Estudo sobre aprendizado de redes bayesianas com treewidth limitado por meio da amostragem uniforme de k-trees conforme artigo de Nie et al. $(2014)^3$.
- Comparação entre métodos para aprender redes bayesianas.

³Sigi Nie, Denis D. Mauá, Cassio P. de Campos, Qiang Ji. Advances in learning bayesian networks of bounded treewidth. CoRR, abs/1406.1411, 2014.

²Severio Caminiti, Emanuele G. Fusco, Rossella Petreschi. Bijective linear time coding and decoding for k-trees. Theory of Computing Systems, 46:284–300, 2010.

No que consiste o trabalho? Por que estudar k-trees? Por que gerar k-trees? O que foi feito? Onde encontrar o trabalho?

Onde encontrar o trabalho?

Código (desenvolvido em Go^4) e documentação: https://github.com/tmadeira/tcc/

⁴https://golang.org/

Introdução Geração uniforme de k-trees Aprendizado de redes bayesianas Considerações finais O que são k-trees? Codificação de k-trees Geração uniforme Testes

k-trees

Codificação de *k-trees*

O que são k-trees? Codificação de k-trees **Geração uniforme** Testes

Geração uniforme de *k-trees*

Introdução **Geração uniforme de** *k***-trees** Aprendizado de redes bayesianas Considerações finais O que são k-trees? Codificação de k-trees Geração uniforme Testes

Testes

Redes bayesianas

Redes bayesianas Motivação Aprendizado por amostragem de k-trees Experimentos

Aprendizado de redes bayesianas

Aprendizado por amostragem de k-trees

Redes bayesianas Motivação Aprendizado por amostragem de k-tree Experimentos

Experimentos

Conclusão

Agradecimentos

Perguntas?