ANN for Estimating Aerodynamic Coefficients of a Non-Slender Delta Wing in Ground Effect

Oğuzhan Yılmaz

Experimental set-up of aerodynamic coefficients

$$C_L = \frac{F_L}{0.5\rho U_\infty^2 S}$$

Table 1 Explanation of component numbers in Fig. 2

Static boundary condition:	Dynamic boundary condition:
Wind tunnel side walls (1)	Wind tunnel side walls (1)
Delta wing model (2)	Delta wing model (2)
Static ground plate (3)	Moving belt (3)
Plate bevel (4)	Strut (4)
Ground plate rods (5)	F/T sensor (5)
Strut (6)	MPS (6)
F/T sensor (7)	
MPS (8)	

(Yılmaz et al., 2025)

Feed-forward Neural Network

$$F = f\left(a + \sum_{j=1}^{h} v_j + \left[\sum_{i=1}^{k} g(w_{ij}x_i + b_j)\right]\right)$$

- F: Estimated value
- a: Bias value of the output
- v_i : Weight of the output value
- w_{ij} : Weight of the input layer
- b_i : Bias value of the input layer
- x_i : Input value

Results

