Prova scritta di Logica Matematica 26 luglio 2019

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

PRIMA PARTE

Barrate la risposta che ritenete corretta.	Non dovete g	giustificare l	a risposta.
--	--------------	----------------	-------------

a.	$(\neg p \vee \neg q \vee \neg r) \wedge \big(((p \vee q) \wedge r) \vee (p \wedge q)\big) \equiv (\neg p \wedge q) \vee \big(p \wedge \neg ((q \vee \neg r) \wedge (q \to r))\big).$	\mathbf{V}	F
b.	Se $F \wedge G \vDash H$ allora $F \vDash H$ oppure $G \vDash H$.	\mathbf{V}	\mathbf{F}
c.	Ogni doppia negazione è logicamente equivalente al suo ridotto.	\mathbf{V}	\mathbf{F}
$\mathbf{d}.$	Quante sono le variabili libere nella formula		
	$\forall x \big(r(x, g(x, y)) \land \exists y \forall z r(g(y, z), g(x, z)) \big) \land \forall u \exists x r(g(u, x), g(y, u))? $	2 3	4
e.	Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, p^I = \{1, 3\}, q^I = \{2, 3\}$ e		
	$r^{I} = \{(0,1), (0,2), (1,0), (2,0), (2,2), (3,0), (3,2), (3,3)\}.$		
	Allora $I \models \forall x (\neg p(x) \lor q(x) \to \exists y (p(y) \land r(x,y))).$	$ \mathbf{V} $	\mathbf{F}
f.	$p(x) \vee \forall x F \equiv \forall x (p(x) \vee F)$, qualunque sia la formula F .	\mathbf{V}	\mathbf{F}
g.	La formula $\exists y c = y$ è valida nella logica con uguaglianza.	\mathbf{V}	\mathbf{F}
h.	Se un tableau (non necessariamente sistematico) per l'enunciato predicativo F		
	è aperto, allora F è soddisfacibile.	\mathbf{V}	\mathbf{F}
i.	Esiste un insieme di Hintikka che contiene gli enunciati		
	$p(a) \land \neg q(b) \in \forall x (p(x) \to q(x)).$	$ \mathbf{V} $	$\overline{\mathbf{F}}$
j.	Se $\Gamma \triangleright r(f(y), y)$ allora $\Gamma \triangleright \exists x r(x, y)$.	\mathbf{V}	$\overline{\mathbf{F}}$

J. Se $\Gamma \triangleright r(f(y), y)$ allora $\Gamma \triangleright \exists x \, r(x, y)$. **k.** Nel riquadro completate l'enunciato del Lemma di Sostituzione per formule.

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale disgiuntiva la formula

2pt

$$\neg(\neg p \land q) \to (\neg r \to \neg(s \to v)) \land \neg(\neg t \lor u).$$

2. Sia $\mathcal{L} = \{c, m, a, p, =\}$ un linguaggio con uguaglianza dove c è un simbolo di costante, m e a sono simboli di funzione unari e p è un simbolo di relazione binario. Interpretando c come "Chiara", m(x) come "il meccanico di x", a(x) come "la miglior amica di x" e p(x,y) come "x è parente di y", traducete la frase:

Esattamente un parente di Chiara ha lo stesso meccanico della miglior amica di Chiara.

3pt

3. Usando il metodo dei tableaux stabilite se

3pt

$$(p \to \neg(\neg q \to \neg r)) \to (\neg p \lor (\neg q \land r))$$

è valida. Se la formula non è valida definite una valutazione che lo testimoni.

4. Mettete in forma prenessa l'enunciato

2pt

$$\forall x (\exists y \, r(x,y) \lor \neg \forall y \, \neg q(y,x)) \to \neg \exists u \, \forall v \, (\forall w \, q(u,f(v,w)) \land \neg \exists w \, r(f(u,v),w)).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

1pt

5. Dimostrate che

4pt

 $\exists x \,\exists y \, r(x,y), \forall x \,\forall y (r(x,y) \to \exists z (r(x,z) \land r(z,y))) \not\vDash \exists x \, r(x,x).$

6. Dimostrate che

4pt

$$\forall x (\exists y \, r(f(y), x) \to \neg r(x, f(x))) \vDash \forall x (r(x, x) \to x \neq f(x)).$$

7. Sia $\mathcal{L} = \{p, r\}$ il linguaggio con un simbolo di relazione unario ed uno binario. Siano 3pt I e J le seguenti interpretazioni per \mathcal{L} :

$$\begin{split} D^I &= \{0,1,2,3\}, \quad p^I = \{0,1,3\}, \quad r^I = \{(0,2),(3,1)\}; \\ D^J &= \{A,B,C,D,E,F\}, \quad p^J = \{B,C,D,F\}, \quad r^J = \{(F,A),(F,E)\}. \end{split}$$

- Definite un omomorfismo forte di *J* in *I*:
- \bullet dimostrate che non esiste un omomorfismo forte suriettivo di J in I;
- I e J sono elementarmente equivalenti?
- 8. Usando il metodo dei tableaux dimostrate che

4pt

$$\forall x (\forall z \, r(z, x) \to q(x)) \vDash \forall u (q(u) \lor \exists x \neg r(x, u)).$$

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\forall x (\neg p(x) \lor r(x, f(x))), \exists x \forall y \neg r(x, y) \rhd \neg \forall x p(x).$$

Soluzioni

- a. F come si verifica per esempio con le tavole di verità.
- **b.** F se ad esempio F è p, G è q e H è $p \wedge q$ abbiamo $F \wedge G \vDash H$ ma non valgono né $F \vDash H$ né $G \vDash H$.
- c. V come asserito dal Lemma 3.14 delle dispense.
- **d. 1** la variabile y ha due occorrenze libere nella formula (la prima e l'ultima), mentre le occorrenze delle altre variabili sono tutte legate.
- **e.** F perché per nessun $d \in D^I$ si ha $I, \sigma[x/2] \nvDash \neg p(x) \lor q(x) \to \exists y(p(y) \land r(x,y))$. Infatti $2 \in q^I$ e quindi $I, \sigma[x/2] \vDash \neg p(x) \lor q(x)$, ma non esiste nessun $d \in D^I$ tale che $I, \sigma[x/2, y/d] \vDash p(y) \land r(x,y)$.
- **f.** F perché x è libera in p(x), e quindi non si può applicare il Lemma 7.67 delle dispense.
- **g.** V perché se I è normale si ha $I, \sigma[y/c^I] \models c = y$, dato che $(c^I, c^I) \in =^I$.
- h. F come mostrato ad esempio dall'Esempio 10.16 delle dispense.
- i. V $\{p(a) \land \neg q(b), \forall x(p(x) \to q(x)), p(a), \neg q(b), p(a) \to q(a), q(a), p(b) \to q(b), \neg p(b)\}$ è un insieme di Hintikka.
- **j.** V utilizzando la regola $(\exists i)$.
- **k.** $I, \sigma \models F\{x/t\}$ se e solo se $I, \sigma[x/\sigma(t)] \models F$.
- 1. Utilizziamo l'Algoritmo 3.22 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\begin{split} \left[\left\langle \neg (\neg p \wedge q) \rightarrow (\neg r \rightarrow \neg (s \rightarrow v)) \wedge \neg (\neg t \vee u) \right\rangle \right] \\ \left[\left\langle \neg p \wedge q \right\rangle, \left\langle (\neg r \rightarrow \neg (s \rightarrow v)) \wedge \neg (\neg t \vee u) \right\rangle \right] \\ \left[\left\langle \neg p, q \right\rangle, \left\langle \neg r \rightarrow \neg (s \rightarrow v), \neg (\neg t \vee u) \right\rangle \right] \\ \left[\left\langle \neg p, q \right\rangle, \left\langle \neg r \rightarrow \neg (s \rightarrow v), t, \neg u \right\rangle \right] \\ \left[\left\langle \neg p, q \right\rangle, \left\langle r, t, \neg u \right\rangle, \left\langle \neg (s \rightarrow v), t, \neg u \right\rangle \right] \\ \left[\left\langle \neg p, q \right\rangle, \left\langle r, t, \neg u \right\rangle, \left\langle s, \neg v, t, \neg u \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(\neg p \land q) \lor (r \land t \land \neg u) \lor (s \land \neg v \land t \land \neg u).$$

2. $\exists x (p(x,c) \land m(x) = m(a(c)) \land \forall y (p(y,c) \land m(y) = m(a(c)) \rightarrow y = x)).$

3. Per stabilire se la formula è valida applichiamo l'Algoritmo 4.5 delle dispense alla negazione della formula. In ogni passaggio sottolineiamo la formula su cui agiamo.

initial. In ogni passaggio sottoimeranio la formula
$$\frac{\neg((p \to \neg(\neg q \to \neg r)) \to (\neg p \lor (\neg q \land r)))}{\mid}$$

$$p \to \neg(\neg q \to \neg r), \underline{\neg(\neg p \lor (\neg q \land r))}$$

$$p \to \neg(\neg q \to \neg r), p, \neg(\neg q \land r)$$

$$p \to \neg(\neg q \to \neg r), p, \neg(\neg q \land r)$$

$$p, p, \neg(\neg q \land r)$$

$$\neg q, r, p, \underline{\neg(\neg q \land r)}$$

$$\neg q, r, p, q \neg q, r, p, \neg r$$

$$\otimes$$

$$\otimes$$

Il tableau è chiuso e quindi la formula di partenza è valida.

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\forall x(\exists y \, r(x,y) \lor \neg \forall y \, \neg q(y,x)) \to \neg \exists u \, \forall v \, (\forall w \, q(u,f(v,w)) \land \neg \exists w \, r(f(u,v),w))$$

$$\forall x(\exists y \, r(x,y) \lor \exists y \, q(y,x)) \to \forall u \, \exists v \, \neg (\forall w \, q(u,f(v,w)) \land \forall w \, \neg r(f(u,v),w))$$

$$\forall x \, \exists y(r(x,y) \lor q(y,x)) \to \forall u \, \exists v \, \neg \forall w (q(u,f(v,w)) \land \neg r(f(u,v),w))$$

$$\forall x \, \exists y(r(x,y) \lor q(y,x)) \to \forall u \, \exists v \, \exists w \, \neg (q(u,f(v,w)) \land \neg r(f(u,v),w))$$

$$\forall u \, (\forall x \, \exists y(r(x,y) \lor q(y,x)) \to \exists v \, \exists w \, \neg (q(u,f(v,w)) \land \neg r(f(u,v),w)))$$

$$\forall u \, \exists x \, (\exists y(r(x,y) \lor q(y,x)) \to \neg (q(u,f(x,w)) \land \neg r(f(u,x),w)))$$

5. Dobbiamo definire un'interpretazione che soddisfa i due enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni con queste caratteristiche sono definite da

$$D^{I} = \{0, 1, 2\}, \quad r^{I} = \{(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)\};$$
$$D^{J} = \mathbb{Q}, \quad r^{J} = \{(x, y) \in \mathbb{Q}^{2} : x < y\}.$$

6. Dobbiamo mostrare che ogni interpretazione normale I che soddisfa l'enunciato a sinistra di \models _, che indichiamo con F, soddisfa anche quello a destra, che chiamiamo G. Supponiamo per assurdo che I sia normale, $I \models F$ ma $I \nvDash G$.

Dato che $I \nvDash G$ esiste $d_0 \in D^I$ tale che $I, \sigma[x/d_0] \nvDash r(x,x) \to x \neq f(x)$, ovvero $(d_0, d_0) \in r^I$ e $d_0 = f^I(d_0)$ (qui usiamo la normalità di I). Allora $I, \sigma[x/d_0, y/d_0] \vDash r(f(y), x)$ e quindi $I, \sigma[x/d_0] \vDash \exists y \, r(f(y), x)$. Dato che $I \vDash F$ deve essere $I, \sigma[x/d_0] \vDash \neg r(x, f(x))$, cioè $(d_0, d_0) \notin r^I$, una contraddizione.

- Sia φ l'omomorfismo forte di J in I che cerchiamo di costruire. Visto che $A \notin p^J$ 7. deve essere $\varphi(A) = 2$, dato che 2 è l'unico elemento di D^I che non sta in p^I . Per la stessa ragione deve essere $\varphi(E) = 2$. Dato che $(F, A) \in r^J$ deve essere $(\varphi(F), \varphi(A)) \in r^I$, ovvero $(\varphi(F), 2) \in r^I$: l'unica scelta possibile è $\varphi(F) = 0$. Invece $B, C, D \in p^J$ ma $(B, A), (C, A), (D, A) \notin r^J$ e quindi non possono essere mandati in 0; $\varphi(B) = 1$ e $\varphi(C) = 3$ contraddice $(C, B) \notin r^J$, e lo stesso avviene per qualunque altra situazione in cui uno dei tre elementi viene mandato in 1 ed un altro in 3; deve quindi essere $\varphi(B) = \varphi(C) = \varphi(D) = 1$ oppure $\varphi(B) = \varphi(C) = \varphi(C)$ $\varphi(D) = 3$. Si verifica che la φ così definita è effettivamente un omomorfismo forte.
 - \bullet Nel punto precedente si sono trovati gli unici due omomorfismi forti di I in J. Dato che ognuno di essi non è suriettivo (nessun $d \in D^J$ è tale che $\varphi(d) = 3$ oppure nessun $d \in D^J$ è tale che $\varphi(d) = 1$), non esistono omomorfismi forti suriettivi di
 - L'enunciato $\exists x \,\exists y (p(y) \land r(x,y))$ (ma anche $\forall x \,\exists y (r(x,y) \lor r(y,x))$) è soddisfatto da I ma non da J. Quindi I e J non sono elementarmente equivalenti.
- 8. Per mostrare la conseguenza logica dobbiamo costruire (utilizzando l'Algoritmo 10.51 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dall'enunciato a sinistra del simbolo di conseguenza logica e la negazione dell'enunciato a destra. Indichiamo con F e G le γ -formule $\forall x (\forall z \, r(z, x) \to q(x))$ e $\neg \exists x \, \neg r(x, a)$. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$F, \frac{\neg(\forall u(q(u) \lor \exists x \neg r(x, u)))}{\mid}$$

$$F, \frac{\neg(q(a) \lor \exists x \neg r(x, a))}{\mid}$$

$$\vdots$$

$$F, \neg q(a), G$$

$$\mid$$

$$F, \forall z \, r(z, a) \rightarrow q(a), \neg q(a), G$$

$$F, \frac{\neg \forall z \, r(z, a)}{\mid}, \neg q(a), G \qquad F, q(a), \neg q(a), G$$

$$\downarrow$$

$$F, \neg r(b, a), \neg q(a), \underline{G}$$

$$\mid$$

$$F, \neg r(b, a), \neg q(a), G, r(b, a)$$

$$\bigotimes$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (con altre scelte il tableau cresce rapidamente di dimensione).

9. Ecco una deduzione naturale che mostra quanto richiesto:

9. Ecco una deduzione naturale che mostra quanto richiesto:
$$\frac{\frac{\forall x (\neg p(x) \lor r(x, f(x)))}{\neg p(x) \lor r(x, f(x))} \frac{\frac{[\forall x p(x)]^3}{p(x)} [\neg p(x)]^1}{\frac{\bot}{p(x)} [\neg p(x)]^1} \underbrace{\frac{[\forall y \neg r(x, y)]^2}{\neg r(x, f(x))}}_{1} \\ \frac{\exists x \forall y \neg r(x, y)}{\frac{\bot}{\neg \forall x p(x)}}_{3}$$
Notate che l'ordine di applicazione delle ultime due regole può essere invertito.

Notate che l'ordine di applicazione delle ultime due regole può essere invertito.

Prova scritta di Logica Matematica 26 luglio 2019

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta

non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che	ecce	ede
6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.		
Nella seconda parte per ogni esercizio è indicato il relativo punteggio.		
PRIMA PARTE		
Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.		
a. Quante sono le variabili libere nella formula		
$\forall x \big(r(x, g(x, y)) \land \exists y \forall z r(g(y, z), g(x, z)) \big) \land \exists u r(g(u, x), g(y, u))? $	2 3	$oxed{4}$
b. Ogni doppia negazione è logicamente equivalente al suo ridotto.	$oxed{\mathbf{V}}$	\mathbf{F}
$\mathbf{c.} \ (\neg p \vee \neg q \vee \neg r) \wedge \big((q \wedge (p \vee r)) \vee (r \wedge p) \big) \equiv (p \wedge \neg r) \vee \big(r \wedge \neg ((p \vee \neg q) \wedge (p \to q)) \big).$	$ \mathbf{V} $	\mathbf{F}
d. Se $F \wedge G \vDash H$ allora $F \vDash H$ oppure $G \vDash H$.	$ \mathbf{V} $	\mathbf{F}
e. Sia I l'interpretazione con $D^I = \{0, 1, 2, 3\}, p^I = \{0, 3\}, q^I = \{0, 1\}$ e		
$r^{I} = \{(0,0), (0,2), (0,3), (1,2), (2,1), (2,3), (3,2), (3,3)\}.$		
Allora $I \models \forall x (p(x) \lor \neg q(x) \to \exists y (q(y) \land r(x,y))).$	$\lfloor \mathbf{V} floor$	\mathbf{F}
f. La formula $\exists y y = c$ è valida nella logica con uguaglianza.	$ \mathbf{V} $	F
g. $\neg p(x) \land \exists x F \equiv \exists x (\neg p(x) \land F)$, qualunque sia la formula F .	$ \mathbf{V} $	\mathbf{F}
h. Esiste un insieme di Hintikka che contiene gli enunciati		
$\neg p(a) \land q(b) \in \forall x (q(x) \to p(x)).$	$ \mathbf{V} $	\mathbf{F}
i. Se un tableau (non necessariamente sistematico) per l'enunciato predicativo F		
è aperto, allora F è soddisfacibile.	$oxed{\mathbf{V}}$	\mathbf{F}
j. Se $\Gamma \rhd r(y, f(y))$ allora $\Gamma \rhd \exists x r(y, x)$.	$oxed{\mathbf{V}}$	\mathbf{F}
k. Nel riquadro completate l'enunciato del Lemma di Sostituzione per formule.		
Siano σ uno stato di un'interpretazione I, x una variabile, t un termine e F		
una formula. Se la sostituzione $\{x/t\}$ è ammissibile in F , allora		

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 2.

1. Usando l'algoritmo di Fitting mettete in forma normale disgiuntiva la formula

2pt

- $\neg (p \land \neg q) \rightarrow (\neg r \rightarrow \neg (t \lor \neg s)) \land \neg (u \rightarrow w)$
- 2. Sia $\mathcal{L} = \{b, d, m, c, =\}$ un linguaggio con uguaglianza dove b è un simbolo di costante, d e m sono simboli di funzione unari e c è un simbolo di relazione binario. Interpretando b come "Bruno", d(x) come "il dentista di x", m(x) come "il miglior amico di x" e c(x,y) come "x è cliente di y", traducete la frase:

Esattamente un cliente di Bruno ha lo stesso dentista del miglior amico di Bruno.

3pt

3. Usando il metodo dei tableaux stabilite se

3pt

$$(\neg p \to \neg(\neg q \to r)) \to (p \lor (\neg r \land \neg q))$$

è valida. Se la formula non è valida definite una valutazione che lo testimoni.

4. Mettete in forma prenessa l'enunciato

2pt

$$\forall x (\exists y \, r(y, x) \lor \neg \forall y \, q(x, y)) \to \neg \exists u \, \forall v (\neg \exists w \, \neg q(v, f(u, w)) \land \forall w \, r(u, f(w, v))).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

1pt

5. Dimostrate che

4pt

$$\forall x (\exists y \neg r(x, f(y)) \rightarrow r(f(x), x)) \vDash \forall x (\neg r(x, x) \rightarrow x \neq f(x)).$$

6. Dimostrate che

4pt

$$\exists x \,\exists y \, r(x,y), \forall x \, \forall y (r(x,y) \to \exists z (r(x,z) \land r(z,y))) \nvDash \exists x \, r(x,x).$$

7. Sia $\mathcal{L} = \{p, r\}$ il linguaggio con un simbolo di relazione unario ed uno binario. Siano 3pt $I \in J$ le seguenti interpretazioni per \mathcal{L} :

$$D^{I} = \{0, 1, 2, 3\}, \quad p^{I} = \{0, 2, 3\}, \quad r^{I} = \{(0, 1), (3, 2)\};$$

$$D^{J} = \{A, B, C, D, E, F\}, \quad p^{J} = \{A, D, E, F\}, \quad r^{J} = \{(D, B), (D, C)\}.$$

- Definite un omomorfismo forte di J in I;
- dimostrate che non esiste un omomorfismo forte suriettivo di J in I;
- I e J sono elementarmente equivalenti?
- 8. Usando il metodo dei tableaux dimostrate che

4pt

$$\forall x (\forall z \neg r(x, z) \rightarrow p(x)) \vDash \forall y (p(y) \lor \exists x \, r(y, x)).$$

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\exists x\, \forall y\, \neg r(y,x), \forall x (r(f(x),x) \vee \neg p(x)) \rhd \neg \forall x\, p(x).$$

Soluzioni

- **a. 2** x ha un'occorrenza libera (l'ultima), mentre y ha due occorrenze libere nella formula (la prima e l'ultima); le occorrenze di z e u sono invece tutte legate.
- **b.** V come asserito dal Lemma 3.14 delle dispense.
- c. F come si verifica per esempio con le tavole di verità.
- **d.** F se ad esempio F è p, G è q e H è $p \wedge q$ abbiamo $F \wedge G \vDash H$ ma non valgono né $F \vDash H$ né $G \vDash H$.
- **e.** F perché per nessun $d \in D^I$ si ha $I, \sigma[x/3] \nvDash p(x) \vee \neg q(x) \to \exists y(q(y) \wedge r(x,y))$. Infatti $3 \notin q^I$ e quindi $I, \sigma[x/3] \vDash p(x) \vee \neg q(x)$, ma non esiste nessun $d \in D^I$ tale che $I, \sigma[x/3, y/d] \vDash q(y) \wedge r(x,y)$.
- **f.** V perché se I è normale si ha $I, \sigma[y/c^I] \vDash c = y$, dato che $(c^I, c^I) \in =^I$.
- g. F perché x è libera in $\neg p(x)$, e quindi non si può applicare il Lemma 7.67 delle dispense.
- **h.** V $\{\neg p(a) \land q(b), \forall x(q(x) \rightarrow p(x)), \neg p(a), q(b), q(a) \rightarrow p(a), \neg q(a), q(b) \rightarrow p(b), p(b)\}$ è un insieme di Hintikka.
- i. F come mostrato ad esempio dall'Esempio 10.16 delle dispense.
- **j.** V utilizzando la regola $(\exists i)$.
- **k.** $I, \sigma \models F\{x/t\}$ se e solo se $I, \sigma[x/\sigma(t)] \models F$.
- 1. Utilizziamo l'Algoritmo 3.22 delle dispense, adottando le semplificazioni suggerite nella Nota 3.30:

$$\begin{split} \left[\left\langle \neg (p \wedge \neg q) \rightarrow (\neg r \rightarrow \neg (t \vee \neg s)) \wedge \neg (u \rightarrow w) \right\rangle \right] \\ \left[\left\langle p \wedge \neg q \right\rangle, \left\langle (\neg r \rightarrow \neg (t \vee \neg s)) \wedge \neg (u \rightarrow w) \right\rangle \right] \\ \left[\left\langle p, \neg q \right\rangle, \left\langle \neg r \rightarrow \neg (t \vee \neg s), \neg (u \rightarrow w) \right\rangle \right] \\ \left[\left\langle p, \neg q \right\rangle, \left\langle \neg r \rightarrow \neg (t \vee \neg s), u, \neg w \right\rangle \right] \\ \left[\left\langle p, \neg q \right\rangle, \left\langle r, u, \neg w \right\rangle, \left\langle \neg (t \vee \neg s), u, \neg w \right\rangle \right] \\ \left[\left\langle p, \neg q \right\rangle, \left\langle r, u, \neg w \right\rangle, \left\langle \neg t, s, u, \neg w \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \land \neg q) \lor (r \land u \land \neg w) \lor (\neg t \land s \land u \land \neg w).$$

2. $\exists x (c(x,b) \land d(x) = d(m(b)) \land \forall y (c(y,b) \land d(y) = d(m(b)) \rightarrow y = x)).$

3. Per stabilire se la formula è valida applichiamo l'Algoritmo 4.5 delle dispense alla negazione della formula. In ogni passaggio sottolineiamo la formula su cui agiamo.

$$\frac{\neg((\neg p \to \neg(\neg q \to r)) \to (p \lor (\neg r \land \neg q)))}{|} \\
\neg p \to \neg(\neg q \to r), \underline{\neg(p \lor (\neg r \land \neg q))} \\
| \underline{\neg p \to \neg(\neg q \to r)}, \neg p, \neg(\neg r \land \neg q)} \\
p, \neg p, \neg(\neg r \land \neg q) \underline{\neg(\neg q \to r)}, \neg p, \neg(\neg r \land \neg q)} \\
\otimes \underline{\qquad \qquad } \\
\neg q, \neg r, \neg p, \underline{\neg(\neg r \land \neg q)} \\
\neg q, \neg r, \neg p, r \underline{\neg(\neg r \land \neg q)} \\
\otimes \underline{\qquad \qquad } \\
\nabla q, \neg r, \neg p, r \underline{\neg(\neg r, \neg p, q)} \\
\otimes \underline{\qquad \qquad } \\$$

Il tableau è chiuso e quindi la formula di partenza è valida.

4. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\forall x(\exists y \, r(y,x) \lor \neg \forall y \, q(x,y)) \to \neg \exists u \, \forall v(\neg \exists w \, \neg q(v,f(u,w)) \land \forall w \, r(u,f(w,v)))$$

$$\forall x(\exists y \, r(y,x) \lor \exists y \, \neg q(x,y)) \to \forall u \, \exists v \, \neg (\forall w \, q(v,f(u,w)) \land \forall w \, r(u,f(w,v)))$$

$$\forall x \, \exists y(r(y,x) \lor \neg q(x,y)) \to \forall u \, \exists v \, \neg \forall w(q(v,f(u,w)) \land r(u,f(w,v)))$$

$$\forall x \, \exists y(r(y,x) \lor \neg q(x,y)) \to \forall u \, \exists v \, \exists w \, \neg (q(v,f(u,w)) \land r(u,f(w,v)))$$

$$\forall u \, (\forall x \, \exists y(r(y,x) \lor \neg q(x,y)) \to \exists v \, \exists w \, \neg (q(v,f(u,w)) \land r(u,f(w,v))))$$

$$\forall u \, \exists x \, (\exists y(r(y,x) \lor \neg q(x,y)) \to \neg (q(x,f(u,w)) \land r(u,f(w,x))))$$

5. Dobbiamo mostrare che ogni interpretazione normale I che soddisfa l'enunciato a sinistra di \models _, che indichiamo con F, soddisfa anche quello a destra, che chiamiamo G. Supponiamo per assurdo che I sia normale, $I \models F$ ma $I \nvDash G$.

Dato che $I \nvDash G$ esiste $d_0 \in D^I$ tale che $I, \sigma[x/d_0] \nvDash \neg r(x, x) \to x \neq f(x)$, ovvero $(d_0, d_0) \notin r^I$ e $d_0 = f^I(d_0)$ (qui usiamo la normalità di I). Allora $I, \sigma[x/d_0, y/d_0] \vDash \neg r(x, f(y))$ e quindi $I, \sigma[x/d_0] \vDash \exists y \neg r(x, f(y))$. Dato che $I \vDash F$ deve essere $I, \sigma[x/d_0] \vDash r(x, f(x))$, cioè $(d_0, d_0) \in r^I$, una contraddizione.

6. Dobbiamo definire un'interpretazione che soddisfa i due enunciati a sinistra del simbolo di conseguenza logica, ma non quello a destra. Due interpretazioni con queste caratteristiche sono definite da

$$\begin{split} D^I &= \{0,1,2\}, \quad r^I = \{(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)\}; \\ D^J &= \mathbb{Q}, \quad r^J = \left\{\,(x,y) \in \mathbb{Q}^2 \,:\, x < y\,\right\}. \end{split}$$

- 7. Sia φ l'omomorfismo forte di J in I che cerchiamo di costruire. Visto che $B \notin p^J$ deve essere $\varphi(B) = 1$, dato che 1 è l'unico elemento di D^I che non sta in p^I . Per la stessa ragione deve essere $\varphi(C) = 1$. Dato che $(D, B) \in r^J$ deve essere $(\varphi(D), \varphi(B)) \in r^I$, ovvero $(\varphi(D), 1) \in r^I$: l'unica scelta possibile è $\varphi(D) = 0$. Invece $A, E, F \in p^J$ ma $(A, B), (E, B), (F, B) \notin r^J$ e quindi non possono essere mandati in 0; $\varphi(A) = 2$ e $\varphi(E) = 3$ contraddice $(E, A) \notin r^J$, e lo stesso avviene per qualunque altra situazione in cui uno dei tre elementi viene mandato in 2 ed un altro in 3; deve quindi essere $\varphi(A) = \varphi(E) = \varphi(F) = 2$ oppure $\varphi(A) = \varphi(E) = \varphi(F) = 3$. Si verifica che la φ così definita è effettivamente un omomorfismo forte.
 - Nel punto precedente si sono trovati gli unici due omomorfismi forti di I in J. Dato che ognuno di essi non è suriettivo (nessun $d \in D^J$ è tale che $\varphi(d) = 3$ oppure nessun $d \in D^J$ è tale che $\varphi(d) = 2$), non esistono omomorfismi forti suriettivi di I in I
 - L'enunciato $\exists x \,\exists y (p(y) \land r(x,y))$ (ma anche $\forall x \,\exists y (r(x,y) \lor r(y,x))$) è soddisfatto da I ma non da J. Quindi I e J non sono elementarmente equivalenti.
- 8. Per mostrare la conseguenza logica dobbiamo costruire (utilizzando l'Algoritmo 10.51 e le Convenzioni 10.21 e 10.23 delle dispense) un tableau chiuso con la radice etichettata dall'enunciato a sinistra del simbolo di conseguenza logica e la negazione dell'enunciato a destra. Indichiamo con F e G le γ -formule $\forall x(\forall z \neg r(x, z) \rightarrow p(x))$ e $\neg \exists x \, r(a, x)$. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$F, \frac{\neg(\forall y(p(y) \lor \exists x \, r(y, x)))}{\mid}$$

$$F, \frac{\neg(p(a) \lor \exists x \, \neg r(a, x))}{\mid}$$

$$\vdots$$

$$F, \neg p(a), G$$

$$\mid$$

$$F, \forall z \, \neg r(a, z) \to p(a), \neg p(a), G$$

$$F, \frac{\neg \forall z \, \neg r(a, z), \neg p(a), G}{\mid}$$

$$F, r(a, b), \neg p(a), \underline{G}$$

$$\mid$$

$$F, r(a, b), \neg p(a), G, \neg r(a, b)$$

$$\bigotimes$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (con altre scelte il tableau cresce rapidamente di dimensione).

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{\forall x (r(f(x),x) \vee \neg p(x))}{r(f(x),x) \vee \neg p(x)} \quad \frac{[r(f(x),x)]^1}{\neg r(f(x),x)} \quad \frac{[\forall x p(x)]^2}{\neg r(f(x),x)} \quad \frac{p(x)}{p(x)} \quad \frac{[\neg p(x)]^1}{p(x)}$$

$$\frac{\bot}{\neg \forall x p(x)} \quad \frac{\bot}{3} \quad \frac{\bot}{\neg \forall x p(x)} \quad \frac{\bot}{3} \quad$$

Notate che l'ordine di applicazione delle ultime due regole può essere invertito.