Prof : Mouad ZILLOU	Durée : 8 heures	Calcul trigonométrique	Niveau : 1B.S.E.F
Les capacités attendues	 Maitriser les différentes formules de transformations. résoudre des équations et des inéquations trigonométriques se ramenant à la résolution d'équations et d'inéquations fondamentales. Représentation et lire les solutions d'une équation ou d'une inéquation sur le cercle trigonométrique. 		
Prérequis	 Formules de transformations. Transformation de l'expression : a cos x + b sin x. Equations et inéquations trigonométriques 		
Recommandations pédagogiques	 On optera pour la simplicité lors de la présentation de ce chapitre en utilisant toute technique à la portée aux élèves. On utilisera le cercle trigonométrique pour résoudre une inéquation trigonométrique simple sur un intervalle de IR. 		
Fichiers utilisés dans la préparation du cours	 Les orientations pédagogiques.+ Livre d'élève + Des sites électroniques Distribution périodique du programme de mathématiques. 		
Rôle de l'enseignant	Ecrire l'activité au tableau + Marquer les difficultés + Répartir les tâches + Donner une durée suffisante pour la recherche individuelle + Diagonaliser les prérequis des apprenants + Noter les observations		
Rôle de l'apprenant	 Ecrire les activités + Répondre aux questions de l'activité avec la justification de ses solutions. Formuler les résultats de l'activité sous forme d'un théorème, une propriété + Répondre aux exercices 		

Durée	Activités
	₽ Activité O
	(C) un cercle trigonométrique de centre O et
	(O,\vec{i},\vec{j}) un repère orthonormé direct lié au (C)
	Soient A et B deux points de (C) d'abscisse
	curvilignes a et b respectivement
	Remarquons que $\left(\overline{\overrightarrow{OA}}, \overline{\overrightarrow{OB}}\right) \equiv b - a[2\pi]$.
	1) Montrer que $\overrightarrow{OA}.\overrightarrow{OB} = \cos(a-b)$
	2) Ecrire \overrightarrow{OA} et \overrightarrow{OB} dans la base (\vec{i}, \vec{j})
	3) En utilisant l'expression analytique du
	produit scalaire calculer $\overrightarrow{OA}.\overrightarrow{OB}$.
	4) Déduire que
	$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b).$
	5) Remarquons que $a+b=a-(-b)$ déduire
	que $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$
	6) Remarquons que $\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$.
	Déduire que
	$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$ et
	$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a).$
	<u>Activité</u>
	Soient a et b des nombres réels tels que π
	$a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$, $b \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$,
	$a+b \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \text{ et } a-b \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$
	Montrer que $\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$ et
	$\tan(a-b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$

Résumé du cours

I. Formules de transformation

Propriété O

Soient a et b des nombres réels on a

$$\otimes \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\otimes \sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

$$\otimes \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\otimes \sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$

Exemple

On a
$$\frac{5\pi}{6} = \frac{\pi}{2} + \frac{\pi}{3}$$

Donc

$$\cos\left(\frac{5\pi}{6}\right) = \cos\left(\frac{\pi}{2} + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{2}\right)\sin\left(\frac{\pi}{3}\right)$$

Alors
$$\cos\left(\frac{5\pi}{6}\right) = 0 \times \frac{1}{2} - 1 \times \frac{\sqrt{3}}{2} = \frac{-\sqrt{3}}{2}$$

$$\sin\left(\frac{5\pi}{6}\right) = \sin\left(\frac{\pi}{2} + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{2}\right)\cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{2}\right)\sin\left(\frac{\pi}{3}\right)$$

Alors
$$\sin\left(\frac{5\pi}{6}\right) = 1 \times \frac{1}{2} + 0 \times \frac{\sqrt{3}}{2} = \frac{1}{2}$$

Propriété @

Soient a et b des nombres réels tels que

$$a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$$
 et $b \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$, et

• Si
$$a-b \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$$
 on a

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

• Si
$$a+b \neq \frac{\pi}{2} + k\pi / k \in \mathbb{Z}$$
 on a

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

Evaluations et remarques

<u>Application</u> <u>O</u>

- 1) Calculer $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$ sachant que $\frac{7\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3}$.
- 2) Calculer $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$ sachant que $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$.
- 3) Soit $x \in \mathbb{R}$; simplifier les expressions suivantes

$$A(x) = \cos\left(\frac{\pi}{3} + x\right) + \cos\left(\frac{\pi}{3} - x\right) \text{ et}$$
$$B(x) = \sin\left(\frac{\pi}{3} + x\right) - \sin\left(\frac{\pi}{3} - x\right).$$

Application @

1) Soit x un nombre réel tel que

$$x \neq \frac{\pi}{4} + k\pi / k \in \mathbb{Z} \text{ et}$$

$$x \neq \frac{-\pi}{4} + k\pi / k \in \mathbb{Z}$$

Simplifier l'expression suivante

$$A = \tan\left(\frac{\pi}{4} - x\right) \times \tan\left(\frac{\pi}{4} + x\right)$$

2) Calculer $\tan\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{7\pi}{12}\right)$

sachant que
$$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$
 et $\frac{7\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3}$.

Activité 03

On remarque que 2a = a + a

- 1) Calculer cos(2a); sin(2a)
- 2) Déduire que $\cos^2(a)$ et $\sin^2(a)$ en fonction $de \cos(2a)$
- 3) Si $a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$ et $2a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$ Calculer tan(2a)

Activité 🛭

Simplifier les expressions suivantes

$$cos(a+b)-cos(a-b) cos(a+b)+cos(a-b)$$

$$sin(a+b)-sin(a-b) sin(a+b)+sin(a-b)$$

Propriété 3 :

Soit $a \in \mathbb{R}$ on a

 $\bullet \cos(2a) = \cos^2(a) - \sin^2(a)$

 $\cos(2a) = 2\cos^2(a) - 1$

- $\cos^2(2a) = 1 2\sin^2(a)$
- $\sin(2a) = 2\cos(a)\sin(a)$

- $\cos^2(a) = \frac{1 + \cos(2a)}{2}$ $\sin^2(a) = \frac{1 \cos(2a)}{2}$
- si $a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$ et $2a \neq \frac{\pi}{2} + k\pi/k \in \mathbb{Z}$ alors $\tan(2a) = \frac{2\tan(a)}{1+\tan^2(a)}$

II. Transformation d'un produit en une somme - Transformation d'une somme en un produit

1. Transformation d'un produit en une somme

Propriété @

Soient a et b deux nombres réels on a

- $\cos a \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)]$
- $\sin a \sin b = -\frac{1}{2} [\cos(a+b) \cos(a-b)]$
- $\sin a \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)]$
- $\cos a \sin b = \frac{1}{2} [\sin(a+b) \sin(a-b)]$

2. Transformations d'une somme en un produit

On pose p = a + b et q = a - b alors $a = \frac{p + q}{2}$ et $b = \frac{p - q}{2}$

Propriété 5

Soient p et q deux nombres réels on a

- $\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$
- $\sin(p) \sin(q) = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$

Application @

- 1) On remarque que $\frac{\pi}{4} = 2 \times \frac{\pi}{8}$. Calculer $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$
- 2) Soit $x \in \mathbb{R}$.montrer que $1 + \cos(x) + 2\sin^2\left(\frac{x}{2}\right) = 2$
- 3) Soit $x \neq k\pi/k \in \mathbb{Z}$. Montrer que $\frac{1-\cos(x)}{\sin(x)} = \tan\left(\frac{x}{2}\right)$

Application @

- 1) Calculer $\cos\left(\frac{\pi}{12}\right)\cos\left(\frac{5\pi}{12}\right)$ et $\cos\left(\frac{\pi}{12}\right)\sin\left(\frac{5\pi}{12}\right)$
- 2) Montrer que $\cos\left(x+\frac{\pi}{3}\right)\cos\left(x-\frac{\pi}{3}\right) = \cos^2(x) - \frac{3}{4}$
- 3) Ecrire sous forme d'une somme les expressions suivantes

 $A(x) = \sin(x)\sin(3x)\sin(5x)$ et $B(x) = \cos(x)\cos(3x)\cos(5x)$

Application ©

- 1) a) Transformer en produit les expressions suivantes $A(x) = \sin(x) + \sin(7x)$ et $B(x) = \sin(3x) + \sin(5x)$
- b) Déduire que $A(x) + B(x) = 4\cos(x)\cos(2x)\sin(4x)$
- 2) Montrer que

$$\sin\left(\frac{\pi}{12}\right) + \sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6}}{2}$$

- $\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$
- $\cos(p) + \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$

III. Transformation de l'expression $a\cos(x) + b\sin(x)$

Introduction

Soient a et b deux nombres réels tels que $(a;b) \neq (0;0)$

On considère l'expression suivante $a\cos(x) + b\sin(x)$

On a
$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right)$$

Or on a
$$\left(\frac{a}{\sqrt{a^2 + b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2 + b^2}}\right)^2 = 1$$

Donc
$$\exists \alpha \in \mathbb{R} / \begin{cases} \cos \alpha = \frac{a}{\sqrt{a^2 + b^2}} \\ \sin \alpha = \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$$

D'où $a\cos x + b\sin x = \sqrt{a^2 + b^2} (\cos \alpha \cos x + \sin \alpha \sin x)$.

Par conséquent $a\cos x + b\sin x = \sqrt{a^2 + b^2}\cos(x - \alpha)$.

Propriété 6

Soient a et b deux nombres réels tels que $(a;b) \neq (0;0)$

Il existe un nombre réel α tel que

$$a\cos x + b\sin x = r\cos(x-\alpha)$$
.

Avec
$$r = \sqrt{a^2 + b^2}$$
, $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

Exemple

Transformer l'expression suivante $\sqrt{3}\cos(x) + \sin(x)$

On a
$$a = \sqrt{3}$$
 et $b = 1$ donc $r = \sqrt{a^2 + b^2} = 2$

Donc

$$\sqrt{3}\cos(x) + \sin(x) = 2\left(\frac{\sqrt{3}}{2}\cos(x) + \frac{1}{2}\sin(x)\right) = 2\cos\left(x - \frac{\pi}{6}\right)$$

Remarque

On peut écrire l'expression $a\cos(x) + b\sin(x)$ sous forme $a\cos x + b\sin x = r\sin(x+\beta)$

Avec
$$\sin \beta = \frac{a}{\sqrt{a^2 + b^2}}$$
 et

$$\cos \beta = \frac{b}{\sqrt{a^2 + b^2}}$$

Application ©

Ecrire sous forme de $r\cos(x-\alpha)$ les expressions suivantes

$$A(x) = \cos(x) + \sin(x)$$

$$C(x) = \sqrt{2}\cos(x) + \sqrt{2}\sin(x)$$

$$B(x) = \cos(x) - \sqrt{3}\sin(x)$$

$$D(x) = \sqrt{3}\cos\left(2x - \frac{\pi}{3}\right) - \sin\left(2x - \frac{\pi}{3}\right)$$

$$\sqrt{3}\cos(x) + \sin(x) = 2\left(\frac{\sqrt{3}}{2}\cos(x) + \frac{1}{2}\sin(x)\right) = 2\sin\left(x + \frac{\pi}{3}\right)$$

IV. Equations et inéquations trigonométriques

Rappel

$$\otimes \cos x = \cos \alpha \Leftrightarrow \begin{cases} x = \alpha + 2k\pi \\ x = -\alpha + 2k\pi \end{cases} / k \in \mathbb{Z}$$

 \otimes $\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi / k \in \mathbb{Z}$

Remarque

Les inéquations trigonométriques se résoudre à l'aide du cercle trigonométrique

Application @

1) Résoudre les équations suivantes dans l'intervalle I

$2\cos x - \sqrt{3} = 0$	$I=\left] -\pi ;\pi ight]$
$\sqrt{2}\sin x + 1 = 0$	$I=\left] \!-\!\pi;\pi ight]$
$tanx = \sqrt{3}$	$I = [0, 2\pi]$
$\sqrt{3}\cos x - \sin x = \sqrt{3}$	$2I = [-\pi, \pi]$

2) Résoudre dans *I* les inéquations suivantes:

*
$$2\cos x - \sqrt{3} \ge 0$$
 ; $I =]-\pi;\pi]$

*
$$\sqrt{2}\sin x + 1 \le 0$$
; $I =]-\pi;\pi$]

*
$$\cos x > \frac{-\sqrt{2}}{2}$$
; $I = [0; 2\pi]$

*
$$(\sqrt{2}\sin x + 1)(2\cos x - \sqrt{3}) \ge 0$$

 $I =]-\pi; \pi]$