TELECOM Nancy — Mathématiques Appliquées pour l'Informatique

Théorie des langages : grammaires algébriques, langages algébriques

Définitions : grammaire algébrique, dérivation, arbre syntaxique d'un mot, langage engendré par une grammaire algébrique, grammaire ambiguë, propriétés

Exercice 1 Soit l'expression arithmétique suivante en notation infixée-préfixée :

$$(a+x) * f(x/b, s(a)) - s(f(x,y))$$

Ecrire cette expression sous forme préfixée, postfixée, fonctionnelle et arborescente.

Exercice 2 : Le but de cet exercice est d'écrire des grammaires de plus en plus correctes engendrant les expressions arithmétiques en notation infixée.

- 1. On se limite dans un premier temps aux deux opérateurs + et *. Déterminer les règles de la grammaire algébrique $G_1 = (\{E\}, \{x, y, z, +, *, (,)\}, \rightarrow, E)$ engendrant les expressions arithmétiques formées à l'aide des variables x, y, z, des symboles d'opérations +, * et des parenthèses (, et), cette grammaire n'utilisant que le seul non-terminal E.
 - (a) Montrer que la grammaire obtenue engendre le mot x + y * (x + z) en mettant en évidence une ou plusieurs dérivations.
 - (b) Construire le ou les arbres syntaxiques des expressions suivantes : $\alpha_1 = x + (y * z)$, $\alpha_2 = x + y * z$. Que constatez-vous et quel problème met-on en évidence?
 - (c) Ecrire une grammaire G_2 engendrant les mêmes expressions mais tenant compte de l'ordre de priorité des opérateurs + et *. Reprendre la question (b) ci-dessus et commenter les différences constatées.
- 2. Compléter la grammaire de la question 1.(c) de sorte que le langage engendré inclue aussi l'opérateur unaire —.
- 3. Compléter la grammaire de la question 1.(c) de sorte que le langage engendré inclue aussi l'opérateur unaire et les opérateurs binaires et /.
- 4. A l'aide de la grammaire du 3. former les arbres syntaxiques des expressions suivantes : $\alpha_3 = x y + z$, $\alpha_4 = x / y * z$.

Un nouveau problème est mis en évidence. Lequel?

- 5. Définir une nouvelle grammaire tenant compte de l'associativité "gauche \rightarrow droite" des opérateurs. Voyez-vous un nouveau problème surgir?
- 6. Ajouter à la grammaire précédente un opérateur d'exponentiation $\uparrow (x \uparrow y = x^y)$ que l'on parenthésera "droite \rightarrow gauche".

Exercice 3 Soit la grammaire $G = (\{X\}, \{a, b\}, \rightarrow, X)$ telle que $X \rightarrow aXbX \mid bXaX \mid \varepsilon$.

Montrer que $L(G) = \{\alpha, \alpha \in \{a, b\}^* \ et \ |\alpha|_a = |\alpha|_b\}$ où $|\alpha|_l$ est le nombre d'occurrences de la lettre l dans le mot α .

Exercice 4 Dans cet exercice on étudie les propriétés de stabilité des langages réguliers et des langages algébriques par rapport aux opérations sur les langages.

- 1. Soient L_1 , L_2 et L trois langages réguliers.
 - (a) Que peut-on dire de $L_1 \cup L_2$? de L_1L_2 ? de L^* ?
 - (b) Montrer que \overline{L} est un langage régulier. Indication : soit $\mathcal{A} = (A, Q, q_0, \delta, T)$ un automate déterministe reconnaissant le langage L, construire un automate $\overline{\mathcal{A}}$ reconnaissant \overline{L} .
 - (c) Soient $A_1 = (A, Q_1, q_0^1, \delta_1, T_1)$ et $A_2 = (A, Q_2, q_0^2, \delta_2, T_2)$ deux automates finis déterministes reconnaissant respectivement L_1 et L_2 , montrer que $L_1 \cap L_2$ est un langage régulier en construisant un automate fini déterministe reconnaissant $L_1 \cap L_2$.
 - (d) Montrer que $\widetilde{L} = \{\widetilde{\alpha}, \ \alpha \in L\}$ est régulier $(\widetilde{\alpha} \text{ est l'inverse (ou le mot miroir) de } \alpha)$.
- 2. Soient L_1 et L_2 deux langages algébriques définis respectivement par les grammaires $G_1 = (N_1, A_1, \rightarrow_1, X_1)$ et $G_2 = (N_2, A_2, \rightarrow_2, X_2)$, et tels que $N_1 \cap N_2 = \emptyset$.
 - (a) Montrer que $L_1 \cup L_2$ est un langage algébrique.
 - (b) Même question pour le langage L_1L_2 .

- (c) Même question pour le langage L_1^* .
- (d) Même question pour le langage $\widetilde{L_1}$.

Les langages algébriques ne sont pas stables par intersection, ni par passage au complémentaire.

3. **Résultats.** Langages réguliers et langages algébriques.

On peut démontrer que l'intersection d'un langage régulier et d'un langage algébrique est un langage algébrique. Dans 1 , une méthode est décrite, qui étant donnés :

- un langage régulier et un automate qui le reconnaît
- un langage algébrique et une grammaire qui l'engendre

construit une grammaire algébrique qui engendre l'intersection des deux langages.

Exercice 5 Montrer que chacun des langages suivants est algébrique en donnant une grammaire qui l'engendre. On demande une justification, mais pas de démonstration formelle.

- 1. $L_1 = \{a^n b^n, n \in \mathbb{N}\}$
- 2. $L_2 = \{a^n b^m c^n d^p, (n, m, p) \in \mathbb{N}^3\}$
- 3. $L_3 = \{a^n b^m, (n, m) \in \mathbb{N}^2 \text{ et } n \neq m\}$
- 4. $L_4 = \{\alpha, \ \alpha \in \{a, b\}^* \ et \ |\alpha| \ pair \}$
- 5. $L_5 = b^*aa^*bc(a+b+c)^*(a+b)^*$
- 6. $L_6 = \{a^m b^n c^p, (m, n, p) \in \mathbb{N}^3 \text{ et } n > m + p\}$

Exercice 6 Nous avons rencontré cinq caractérisations des langages réguliers :

- 1. les langages obtenus à partir des langages finis par un nombre fini d'opérations d'union, de concaténation et de fermeture itérative (c'est la définition d'un langage régulier)
- 2. les langages dénotés par des expressions rationnelles
- 3. les langages reconnus par des automates finis (déterministes ou indéterministes)
- 4. les langages dont l'ensemble des quotients gauches est fini
- 5. les langages engendrés par des grammaires régulières à droites

Pour montrer qu'un langage n'est par régulier on utilise généralement les lemmes de l'étoile et un raisonnement par l'absurde.

Questions

- 1. Soit le langage $L_1 = \{a^n b^n, n \in \mathbb{N}\}, L_1$ est-il régulier?
- 2. Même question pour $L_2 = \{\alpha, \alpha \in \{a, b\}^* \text{ et } \alpha = \tilde{\alpha}\}.$
- 3. Même question pour $L_3 = \{\alpha \tilde{\alpha}, \ \alpha \in \{a, b\}^*\}.$
- 4. Montrer que $L_4 = \{\alpha, \ \alpha \in \{a,b\}^* \ et \ |\alpha|_a = |\alpha|_b\}$ n'est pas régulier. Indications : répondre aux questions suivantes :
 - (a) Montrer que $L = a^*b^*$ est régulier.
 - (b) Quel est le langage $L_4 \cap L$? En déduire le résultat.
- 5. Soit $L_5 = \{a^{n^2}, n \in \mathbb{N}\}, L_5 \text{ est-il régulier}?$
- 6. Même question pour $L_6 = \{a^n, n \in \mathbb{N} \text{ et } n \text{ premier}\}.$
- 7. L'affirmation suivante est-elle vraie: "tout sous-ensemble d'un langage régulier est régulier"?

^{1.} Pierre Marchand, Mathématiques Discrètes, Automates, langages, logique et décidabilité. Dunod