

LoFT: Finding Lottery Tickets through Filter-wise Training

Qihan Wang*, Chen Dun*, Fangshuo Liao*, Chris Jermaine, Anastasios Kyrillidis
*Equal Contribution

NEW METRIC FOR FILTER DISTANCE

Let \mathcal{R} and $\hat{\mathcal{R}}$ be two rankings of the filters. Let $\sigma: \mathcal{R} \to \hat{\mathcal{R}}$ such that $\sigma(\mathcal{R}_i) = \hat{\mathcal{R}}_i$. We introduce a new metric to measure filter similarity based on Spearman's footrule

$$F_{\text{filter}}(\sigma) = \sum_{i} \frac{1}{i} \cdot |\ln(i) - \ln(\sigma(i))|$$

Properties of the Metric

- $ln(\cdot)$ is used to approximate the summation.
- $|\ln(i) \ln(\sigma(i))|$ is larger if i is significantly different from $\sigma(i)$
- $\frac{1}{i}$ puts larger weight on filters with higher ranking in \mathcal{R}

Winning tickets appears before loss converges (darker=smaller distance)

• See figures on the right.

LOFT: A FILTER-WISE PARTITIONING APPROACH

Loft Achieves Lower Communication Cost							
SETTING	No-Prune	METHODS	PRUNING RATIO 80% 50% 30%			COMM COST	IMPROV.
PRERESNET-34 CIFAR-10	93.51	GPIPE-2 LOFT-2 GPIPE-4 LOFT-4	93.93 93.93 93.93 93.89	94.38 93.43 94.38 94.02		131.88G 104.59G 461.60G 144.27G	1.26 imes $3.20 imes$
RESNET-34 CIFAR-10	93.22	GPIPE-2 LOFT-2 GPIPE-4 LOFT-4	93.69 93.69 93.41	93.81 93.81 93.60		131.88G 104.60G 461.60G 144.29G	1.26 imes $3.20 imes$
PRERESNET-34 CIFAR-100	76.57	GPIPE-2 LOFT-2 GPIPE-4 LOFT-4	76.72 75.93 76.72 75.77	77.09 77.27 77.09 76.79		131.88G 104.77G 461.60G 144.64G	1.26 imes $3.19 imes$
RESNET34 CIFAR-100	75.93	GPIPE-2 LoFT-2 GPIPE-4 LoFT-4	75.51 76.11 75.51 75.05	76.00 77.07 76.00 76.51		131.88G 104.78G 461.60G 144.66G	1.26 imes $3.19 imes$
PRERESNET-18 IMAGENET	70.71	GPIPE-2 LoFT-2 GPIPE-4 LoFT-4	66.71 65.41 66.71 65.60	69.14 69.12 69.14 68.93	70.29 69.64 70.29 69.77	20954.24G 791.09G 52385.59G 1284.84G	$21.60 \times$ $40.77 \times$

FINDING WINNING TICKETS FASTER

Filter distance between filter during training and the winning filter (See figures on the right.)

Top Figure:
Results on CIFAR-100

Bottom Figure: Results on ImageNet

THEORETICAL RESULT: LOFT TRAJECTORY STAYS NEAR GD TRAJECTORYE

Let $\mathbf{X} \in \mathbb{R}^{n \times d \times p}$ be the input data and $\mathbf{y} \in \mathbb{R}^n$ be the labels. Let f be a one-hidden-layer CNN with only the first layer filters \mathbf{W} trainable. Let $\{\mathbf{W}_t\}_{t=0}^T$ and $\{\hat{\mathbf{W}}_t\}_{t=0}^T$ be the weights in the trajectory of LOFT and GD. Let S be the number of workers.

Theorem 1. Assume the number of hidden filters satisfies $m = \Omega\left(\frac{n^4T^2}{\lambda_0^4\delta^2}\max\{n,d\}\right)$ and the step size satisfies $\eta = O\left(\frac{\lambda_0}{n^2}\right)$. Then, with probability at least $1 - O\left(\delta\right)$ we have:

$$\mathbb{E}_{[\mathbf{M}_T]} \left[\left\| \mathbf{W}_T - \hat{\mathbf{W}}_T \right\|_F^2 \right] + \eta \sum_{t=0}^{T-1} \mathbb{E}_{[\mathbf{M}_T]} \left[\left\| f\left(\mathbf{X}, \mathbf{W}_t \right) - f\left(\mathbf{X}, \hat{\mathbf{W}}_t \right) \right\|_2^2 \right] \le O\left(\frac{n^2 \sqrt{d}}{\lambda_0^2 \kappa m^{\frac{1}{4}} \sqrt{\delta}} + \frac{2\eta^2 T \theta^2 (1-\xi) \lambda_0}{S} \right).$$

REFERENCE

- [1] Binhang Yuan, Anastasios Kyrillidis, and Christopher M. Jermaine. Distributed Learning of Deep Neural Networks using Independent Subnet Training. *arXiv e-prints*, page arXiv:1910.02120, 2019.
- [2] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. *arXiv e-prints*, page arXiv:1803.03635, 2018.