Chatbots and NLP

Damir Cavar
Indiana University
June 2018

Agenda

- Chatbots then
- and now
- NLP and Chatbots
- Issues
- Modest Prediction of Sensible R&D Directions

From Verbmobil to Chatbots

- Speech2Speech MT
 - Dialog Models
 - ASR
 - Machine Translation
 - NLP

- Chatbots and Avatars
 - Text input
 - Text to speech output
 - Virtual communication partner with lip-synchronization

Avatar

- Web-based
- Terminals in stores

Valerie (Charamel GmbH)

Knowledge Graphs

- RDB-based SemNet
 - (before OWL, etc.)

- Back in 2000
 - Regular expressions and pattern matching
 - Template-based text generation
 - Finite State Dialog modeling
 - Knowledge Graphs (SemNets) on RDBs
 - Text2Speech
 - Part-of-speech tagging
 - Parsing
 - Machine Translation

- Focus on limited models and technologies:
 - Dependency Parse Trees
 - Treebank-derived Constituent Tree Parsers
 - Label/Tag-based Semantic Role Labeling
 - •
 - Pipeline-architecture as such:
 - Isolated modules with very limited NLP-focus chained in an input-output pipeline
 - CoreNLP, spaCy, OpenNLP, NLTK, UIMA, ...

- State of the Art: (Sebastian Ruder's overview)
 - Part-of-Speech Tagging:
 - Use: word-level part of speech annotation with a limited set of tags that encode some morphosyntactic features
 - **F1 score**: **95% 97%** based on WSJ portion of Penn Treebank, more than 100 treebanks for UD
 - Best performing: Deep Learning Approaches (alternatives not evaluated)

- State of the Art: (Sebastian Ruder's overview)
 - Constituent Tree Parsing:
 - Use: phrasal structure; relations, hierarchies and ambiguities between phrases; semantic scope relation; ...
 - **F1 score**: **92% 95%** based on Penn Treebank
 - Best performing: Deep Learning Approaches (alternatives not evaluated)
 - Dependency Parsing:
 - Use: dependency relations between elements in the sentence; simplified annotation of functional relations: Subject, Object, Modifier, ...
 - **F1 score** on labels and relations: **91% 94%** based on Stanford Dependency conversion of the Penn Treebank
 - Best performing: Deep Learning Approaches (alternatives not evaluated)

- State of the Art: (Sebastian Ruder's overview)
 - Named Entity Recognition:
 - Use: entity labeling person, institution, location, time, currency, ...
 - **F1 score**: **90% 92%** based on Reuters RCV1 corpus with **four** NE-types (PER, LOC, ORG, MISC) using BIO notation
 - Best performing: Deep Learning Approaches (alternatives not evaluated)
 - Semantic Role Labeling:
 - Use: Label predicate argument structure (Who gave what to who): Predicate, Subject, Object, entity and relation extraction
 - F1 score: 81% 84% based on OntoNotes benchmark of the Penn Treebank
 - Best performing: Deep Learning Approaches (alternatives not evaluated)

- F1 score margins and error rates:
 - Basic token-level classification: error of approx. 4%
 - Word-level annotation, syntactic parsing: 10%
 - Semantic-level annotation: 30%
- Not much has changed since 2000!
- Situation check:
 - Mono-culture of training/test-datasets for data driven ML/DL-methods
 - Limitation to weak linguistic models (e.g. Constituent Trees, NE-classes, Semantic roles), annotation standards (e.g. Dependencies)

- Situation check:
 - Limited use of NLP-pipelines: PoS-tagging, Lemmatization
 - CoreNLP: Constituent Parser; Dependency Parser; Coreference Analysis; ...
 - spaCy: Dependency Parser
 - NLTK: WordNet
 - Lack of APIs that interface to linguistic output data structures
 - NLP developers lack understanding of the linguistic annotations generated by pipelines or tools

NLP Example

Stanford Open IE (paper and website)

- Lack of intuition of dependency relations
 - Modification of ROOT (took) by "born in a small town" is counterintuitive
- Lack of:
 - Clause level hierarchical relation analysis (subordinate clauses and scope)
 - Tempus, Mood, ... annotation
 - Pragmatic and semantic properties (and relevant linguistic features)

NLP Example

- Scope between clauses:
 - Reuters reported [that [Google bought Apple]]
 - Reuters did not report [that [Google bought Apple]]
 - Reuters did not deny [that [Google bought Apple]]
- Tense:
 - Tim Cook bought Google.
 - Tim Cook will buy Google one day.

- Applied to real text:
 - Sentence length over 10 to 15 tokens breaks most probabilistic or NN parsers (Dependency parsers, in particular)
- Problematic domains, for example:
 - SEC, Financial, or Business Reports
 - Case-law and legal documents
 - Medical text (patient reports, documentations)
- Current free and open NLP-pipelines are of limited use.
- Are they of any use for Chatbot technologies?

State of the Art

- Δ between 2000 2018
 - ASR improvements
 - Knowledge Graphs, Ontologies
 - Integration
 - Data sources
 - Interfaces, multi-modal interaction
 - Device architecture
- Is there any significant progress in ____?
 - Dialog management
 - NLP at the utterance and discourse level
 - Semantics and Pragmatics

Knowledge Representations

- General World Knowledge
 - From static to dynamic, with inferencing, reasoning
- Domain Specific Knowledge
 - Medical, Financial, Business, Legal, etc.
- Discourse specific Knowledge
 - Simple dialog memory (concepts and their linguistic features, relevant for anaphora resolution, coreference analysis)
 - Knowledge Graph or Ontology of semantic concept space in encapsulated discourse

Directions

- Speech
 - Prosodie Semantics / Pragmatics interface

- Semantics and Pragmatics
 - Entailment
 - Quantifiers
 - Scope
 - Implicatures
 - Presuppositions

Prosodie – Semantics / Pragmatics

- Suprasegmental speech properties
 - Intonation Contour
 - ASR output: what did you buy
 - Speech properties:
 - interrogative or rhetorical, echo question
 - Pitch Accent (in specific languages)
 - Simple accent detection:
 - White board vs. whiteboard
 - HOtel vs. hoTEL
 - Focus Stress:
 - Contrastive Stress: I bought THAT CAR. I BOUGHT that car.
 - Verum Focus: I DID buy that car.

Prosodie – Semantics / Pragmatics

- Data sources
 - Limited corpora for a few languages
 - Richer documentation without audio data component
 - Creation of corpora with relevant speech properties and linguistic annotation (mapping of content to some semantic and pragmatic level)
- Efficient speech signal level processing:
 - librosa
 - OpenSMILE
 - Etc.

Speech Acts, Implicatures, Presuppositions

- Deep Linguistic Processing:
 - A to B: "I bought the blue car."
 - Implicature:
 - A and B talked about the event earlier.
 - There is a set of cars, at least 2 that was in the range of A's action.
 - None of the other cars in the set is blue.
 - Linguistic indicators:
 - Definiteness via "the"
 - Specificity of the Noun Phrase

Speech Acts, Implicatures, Presuppositions

- Deep Linguistic Processing:
 - "Peter fed his cat."
 - Presupposition:
 - Peter owns a cat.
 - Peter owns cat food.
 - ...
 - Linguistic indicators:
 - Possessive
- Types:
 - Universal linguistic properties (see Grice Maxims, Relevance Theory)
 - Language specific properties (dependency to cultural and sociological aspects)
 - Domain specific: e.g. "to be like milk"

NLP and Future Chatbots

- Technology trends might include:
 - Speech signal properties that relate to:
 - Sentiment, Emotions
 - Prosodie and Semantics/Pragmatics Interface
 - Properties of speakers, general and temporary
 - Pragmatics and Semantics
 - Implicatures and Presuppositions, Natural Logic, Entailment
 - Irony, Humor, Sarcasm, Deception...
 - Knowledge Representation
 - Dynamic, Cascaded or Interconnected KRs
 - Multi-Modal systems (speech/language, image, gesture, mimic)
 - NLP
 - Deep Learning and hybrid systems, knowledge-based engineering and data-driven (M|D)L