Problem 1

Determine which of the following expressions are mathematical statements. Of those that are statements, determine whether they are true or false.

- 1. $(\forall x \in \mathbb{R})(x > y)$.
- 2. $(\forall x \in \mathbb{R})(x > \pi)$.
- 3. $(\exists x \in \emptyset)(x = x)$.
- 4. $(\forall x \in \emptyset)(x = x)$.
- 5. $\emptyset \Leftrightarrow (\forall x \in \mathbb{R})(x \notin S)$ (where S is some predetermined set).
- 6. $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})(x^2 > y)$.
- 7. $(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})(x^2 > y)$.
- 8. $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(x^2 > y)$.
- 9. $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(x^2 > y)$.

Problem 2

For each valid mathematical statement in Problem 1, write out its negation.

Problem 3

Let P,Q,R be statements. Use a truth table to show " $P\Rightarrow ((Q\wedge R)\vee (\neg Q\wedge \neg R))$ " is logically equivalent to " $\neg P\vee (Q\Leftrightarrow R)$ ".

Problem 4

Let $f: \mathbb{R} \to \mathbb{R}$ be a function, and $c, L \in \mathbb{R}$. We say $\lim_{x \to c} f(x) = L$ if

$$(\forall \epsilon > 0)(\exists \delta > 0)(0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon).$$

(ϵ and δ are the Greek letters Epsilon and Delta respectively.)

1. Let f(x) = x. Show that

$$\lim_{x \to 0} f(x) = 0.$$

2. Let f(x) = ax, where $a \in \mathbb{R}$ is some constant. Show that

$$\lim_{x \to 1} f(x) = a.$$

3. (Harder) Let $f(x) = x^2$. Show that

$$\lim_{x \to 2} f(x) = 4.$$