Aritmética flotante

Métodos Numéricos

Prof. Juan Pablo Concha y Eduardo Uribe

Conferencia 3

Conferencia 3

Recordatorio

Aritmética de punto flotante

Definición

Si p^* aproxima a p, el error absoluto es

$$E_a(p^*) = |p - p^*|,$$

y el error relativo (cuando $p \neq 0$) es

$$E_r(p^*) = \frac{|p-p^*|}{|p|}$$

Error relativo de f(x)

Si f(x) se calcula para una mantisa de k dígitos: Aproximando con corte:

$$E_r(fl(x)) = \frac{|x - fl(x)|}{|x|} \le 10^{-k+1}$$

Aproximando con redondeo:

$$E_r(fl(x)) = \frac{|x - fl(x)|}{|x|} \le 0.5 \times 10^{-k+1}$$

Operaciones elementales

Definición

$$x \oplus y = fl(fl(x) + fl(y))$$

 $x \ominus y = fl(fl(x) - fl(y))$
 $x \otimes y = fl(fl(x) \times fl(y))$
 $x \oslash y = fl(fl(x)/fl(y))$

Ejemplo:
$$x = \frac{5}{7} = 0.\overline{714285}$$
; $y = \frac{1}{3} = 0.3\overline{3}$

Base:10; Mantisa: 5 dígitos ; Exponente: 1 dígito (sin signos)

$$fl(x) = 0.71428 \times 10^{0}$$
; $fl(y) = 0.33333 \times 10^{0}$

		Resultado	Valor real	E. absoluto	E. relativo
Ī	$x \oplus y$	$0,10476 \times 10^{1}$	22/21	$0,190 \times 10^{-4}$	$0,182 \times 10^{-4}$
	$x \ominus y$	$0,38095 \times 10^{0}$	8/21	$0,238 \times 10^{-5}$	0.625×10^{-5}
	$x \otimes y$	$0,23809 \times 10^{0}$	5/21	0.524×10^{-5}	$0,220 \times 10^{-4}$
ĺ	$X \oslash y$	$0,21428 \times 10^{1}$	15/7	0.571×10^{-4}	0.267×10^{-4}

Malos ejemplos!

Datos

```
x = 0.71428\overline{5} fl(x) = 0.71428 \times 10^{0}

u = 0.714251 fl(u) = 0.71425 \times 10^{0}

v = 98765.9 fl(x) = 0.98765 \times 10^{5}

w = 0.111111 \times 10^{-4} fl(x) = 0.11111 \times 10^{-4}
```

Cálculos

		Resultado	Valor real	E. absoluto	E. relativo
	$x \ominus u$	$0,30000 \times 10^{-4}$	0.34714×10^{-4}	$0,471 \times 10^{-5}$	0,136
	$(x \ominus u) \oslash w$	$0,27000 \times 10^{1}$	$0,31243 \times 10^{1}$	0,424	0,136
İ	$(x \ominus u) \otimes v$	$0,29629 \times 10^{1}$	$0,34285 \times 10^{1}$	0,465	0,136
	$x \oplus v$	$0,98765 \times 10^5$	$0,98766 \times 10^5$	$0,161 \times 10^{1}$	$0,163 \times 10^{-4}$

Observaciones

- Cancelación de resta (fuente principal de errores)
- Errores pueden aumentar al combinarse las operaciones.

Cancelación de resta

Problema

Cálcular los ceros de la ecuación $ax^2 + bx + c$ dados por

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$

Ejemplo en el caso $b^2 \gg 4ac$

$$x^2 + 62.1x + 1 = 0$$
; $x_1 = -0.01610723$; $x_2 = -62.08390$

Calculando con 4 dígitos y redondeando, con ambas expresiones (**para** x_1):

$$fI(x_1) = \frac{-62,1+\sqrt{(62,1)^2-4}}{2} = \frac{-62,1+62,06}{2} = -0.02$$
 $E_r \approx 0.24$

$$fI(x_1) = \frac{-2}{62.1 + \sqrt{(62.1)^2 - 4}} = \frac{-2}{62.1 + 62.06} = -0.01610$$
 $E_r \approx 0.00062$

Cancelación de resta

Problema

Cálcular los ceros de la ecuación $ax^2 + bx + c$ dados por

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$

Ejemplo en el caso $b^2 \gg 4ac$

$$x^2 + 62.1x + 1 = 0$$
; $x_1 = -0.01610723$; $x_2 = -62.08390$

Calculando con 4 dígitos y redondeando, con ambas expresiones (**para** x_2):

$$fl(x_2) = \frac{-62,1-\sqrt{(62,1)^2-4}}{2} = \frac{-62,1-62,06}{2} = -62,1$$
 $E_r \approx 0,00032$

$$fl(x_2) = \frac{-2}{62.1 - \sqrt{(62.1)^2 - 4}} = \frac{-2}{62.1 - 62.06} = -50$$
 $E_r \approx 0.19$

Ejercicios

- 1) Aproximar los números reales $x_1 = \frac{127}{7}$ y $x_2 = 56,786500$ empleando una aritmética de cuatro cifras significativas con la técnica de corte y la de redondeo.
- Calcule la siguiente operación utilizando aritmética de punto flotante con corte al tercer dígito. Determine la exactitud del resultado obtenido.

$$\frac{\sqrt{5}(\pi + 24568)}{e^2 - 6}$$

- Utilizando aritmética de siete dígitos decimales con redondeo efectuar los siguientes cálculos.
 - a) Con a = 1234,567, b = 45,67844, c = 0,0004

$$(a+b)+c, a+(b+c)$$

b) Con a = 1234,567, b = 1,234567, c = 3,333333

$$(a+b)\cdot c$$
, $a\cdot c+b\cdot c$

Ejercicios

 Use una aritmética de redondeo a cuatro cifras para determinar la aproximaciones más precisas de las raíces de las siguientes ecuaciones cuadráticas.

$$\frac{1}{3}x^2 - \frac{123}{4}x + \frac{1}{6} = 0$$

$$1,002x^2 + 11,01x + 0,01265 = 0$$

5) Suponga que dos puntos (x_0, y_0) y (x_1, y_1) están en una linea recta, con $y_1 \neq y_0$ Se tienen dos fórmulas para determinar la ordenada al origen de la recta:

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0}$$
 $y x = x_0 - \frac{(x_1 - x_0) y_0}{y_1 - y_0}$

- Demuestre que ambas fórmulas son algebraicamente correctas.
- Utilice los datos $(x_0, y_0 = (1,31, 3,24))$ y $(x_1, y_1) = (1,93, 4,76)$ y la aritmética de redondeo a tres cifras para calcular la ordenada al origen de ambas formas. ¿Cuál método es mejor y por qué?