Delta-Hedging under Non-Constant Volatility

A K M Rokonuzzaman Sonet

1 Introduction

The goal of this project is to examine the profit distribution of a short European call position that is *delta-hedged* when the underlying equity's volatility is **not constant**. Three stylised volatility processes were investigated:

- 1. Discrete Regime Model each day, $\sigma_t \in \{0.20, 0.30, 0.45\}$ with probabilities (0.5, 0.3, 0.2);
- 2. **Heston Model** mean-reverting stochastic variance with parameters $(\kappa, \theta, \xi, \rho)$;
- 3. **GARCH(1,1)** discrete clustering with (ω, α, β) .

Simulation horizon is one year (252 steps); the call is struck at-the-money ($K = S_0 = 105$) and interest rate r = 3.5%. Deltas are recomputed daily via the Black–Scholes formula; profits are in USD, scaled to 1000 contracts.

2 Methodology

2.1 Stock Path Generation

- Custom Regime: IID draw of σ_t each step, standard GBM for returns.
- **Heston:** Euler–Maruyama, $dV_t = \kappa(\theta V_t) dt + \xi \sqrt{V_t} dW_t^{(v)}$ with $dW^{(s)}dW^{(v)} = \rho dt$.
- GARCH(1,1): $\sigma_{t+1}^2 = \omega + \alpha \epsilon_t^2 + \beta \sigma_t^2$; log-returns use σ_t .

2.2 Delta Hedging P&L

For path j and step i ($\Delta t = \frac{1}{252}$):

$$P\&L_{i,j} = \left(S_{i+1,j} - e^{r\Delta t}S_{i,j}\right)\Delta_{i,j} e^{-r(i+1)\Delta t}, \quad \Delta_{i,j} = N\left(\frac{\ln(S_{i,j}/K) + (r + \frac{1}{2}\sigma_{i,j}^2)\tau}{\sigma_{i,j}\sqrt{\tau}}\right).$$

Total hedging cost is $\sum_{i} P\&L_{i,j}$; profit = premium - hedgeCost - payoff.

3 Results

Observations

• **Drift sensitivity:** Higher μ shifts profits left; bearish drift is favourable to option sellers.

Table 1: Key Profit Metrics (1000 contracts)

Model	Drift μ	Mean \$	Profit $\%$	Max Loss \$
Discrete σ	-0.4	-258	44	-8466
Discrete σ	0.4	123	54	-8071
Heston (BS premium)	0.4	172	58	-7260
Heston (BS premium)	-0.4	647	65	-6615
Heston (Heston premium)	-0.4	247	57	
Heston (Heston premium)	0.4	-193	49	
GARCH (GARCH premium)	-0.40	-4.51	51	$-16,\!250$
GARCH (GARCH premium)	0.00	-17.65	51	
GARCH (GARCH premium)	0.40	194	50	$-15{,}140$

- Model-risk: Using a BS premium under GARCH or Heston systematically *overstates* profit—consistent with BS underpricing clustered/fat-tailed volatility.
- **Hedging error:** Even daily delta-hedging leaves P&L variance large; max losses exceed \$15k for 1000 contracts.

4 Conclusion

Delta hedging neutralises small price moves but not volatility shocks. Under realistic stochastic-volatility (Heston, GARCH), option sellers face:

- 1. Profits highly sensitive to drift assumptions;
- 2. Significant tail risk, even when premiums are model-consistent;
- 3. Potential mispricing if Black-Scholes premiums are used in clustered-volatility markets.

Future work could implement vega (sigma) hedging with variance swaps or VIX futures to reduce the volatility exposure.