COMP 182: Algorithmic Thinking 30 January 2014

- 1. What is the effect in the time required to solve a problem when you double the size of the input from n to 2n, assuming that the number of milliseconds the algorithm uses to solve the problem with input size n is each of the following functions:
 - (a) $\log \log n$
 - (b) log *n*
 - (c) 100n
 - (d) $n \log n$
 - (e) n^2
 - (f) n^{3}
 - (g) 2^n

Express your answer in the simplest form possible, either as a ratio or a difference. Your answer may be a function of n or a constant.

- 2. Determine whether each of the functions $\log(n+1)$ and $\log(n^2+1)$ is $O(\log n)$.
- 3. Determine whether each of the following functions is $O(n^2)$.
 - (a) 17n + 11
 - (b) $n \log n$
 - (c) 2^n
 - (d) $n^2 + 1000$
- 4. Arrange the functions \sqrt{n} , $1000 \log n$, $n \log n$, 2n!, 2^n , 3^n , and $n^2/1000000$ in a list so that each function is big-O of the next function.
- 5. Big-O, Θ , and Ω notation can be extended to functions in more than one variable. Define these three notations formally.
- 6. Show that $(n^2 + nm + n \log m)^3$ is $O(n^6 m^3)$.
- 7. Show that if c>d>0, then n^d is $O(n^c)$ but n^c is not $O(n^d)$.