Числени методи, СИ и ИС, втори курс, 2019/2020

Допълнителни задачи за подготовка за контролна работа No 2

Задача 1. Дадени са стойности в 5 точки от сигнал от даден акселерометър (сензор, измерващ линейно ускорение). Да се намери обобщен полином по подходящ базис, интерполиращ тези точки, ако е известно, че сигналът се описва от периодична функция с период а) $T=2\pi$; б) T=8. Да се илюстрира графично, като се визуализират точките и графиката на полинома в една координатна система. Да се сравнят резултатите

t,ms	0	1.5	3	4	6
ускорение, m/s^2	0	1	1.5	4	2

Задача 2. По метода на най-малките квадрати да се намери подходяща функция, която приближава таблицата

x	2	4	6	7	10	11	14	17	20
y	4	5	6	7	8	8	11	10	12

Да се илюстрира графично.

Задача 3. Да се реши преопределената система

$$x + 2y = 1,$$

$$x - y = 5,$$

$$3x + 4y = 17.$$

Задача 4. Да се намери полином от втора степен на най-добро средноквадратично приближение в интервала $[0,\frac{\pi}{2}]$ при тегло $\mu(x)=1$ за функцията $f(x)=\sin x$. Да се илюстрира графично. Да се намерят равномерното и средноквадратичното разстояние между полинома и функцията.

Задача 5. Като се използва съставната квадратурна формула на трапеците (правоъгълниците, Симпсън), да се намери приблизително стойността на интеграла

$$\int_0^4 (1 - e^{-x}) dx$$

така, че грешката да не надминава по модул ϵ , където ϵ се задава като параметър. Решението да е итеративно (да не се използват вградени функции за сума) и да не използва вградени функции за намиране на най-малка и най-голяма стойност.

Да се илюстрира графично, като за формулата на правоъгълниците (трапеците, Симпсън) се построят графиката на подинтегралата функция и правоъгълниците (трапеците, криволинейните трапеци), които апроксимират лицето на криволинейния трапец, определен от графиката на подинтегралната функция.

На контролното формулите за оценка на грешката ще бъдат дадени, не е необходимо да се учат.

Задача 6. Да се напише функция $rectangleQudrature[f_, a_, b_, nodes_]$, която пресмята приближено

$$\int_{a}^{b} f(x)dx,$$

като използва съставната квадратурна формула на правоъгълниците с възли, зададени в списък *nodes*.

Задача 7. Да се напише програма в Маthematica, която по метода на най-малките квадрати намира полином от степен n (n-входен параметър), приближаващ точките $\{(x_i,y_i)\}_{i=1}^s$. Точките се задават като два списъка – първият с x-координатите, а вторият – с y-координатите им. Полиномът да се извежда в нормален вид и да се илюстрира задачата графично, като се изчертават в една координатна система графиката на полинома и точките.

Задача 8. Изведете формулата на Гаус-Льожандър с 3 възела по метода на неопределените коефициенти. Използвайте я, за да пресметнете приближено стойността на

$$\int_{0}^{1} (e^{\sin x} - 2x^{2}) dx.$$

Задача 9. Да се намерят първите три ортогонални полинома с тегло $\mu(x) = \frac{1}{\sqrt{1-x^2}}$ в интервала [-1,1].