Dr. W. Spann F. Hänle, M. Oelker

Lineare Algebra für Informatiker und Statistiker

Aufgabe 33 (4 Punkte)

Seien K ein Körper, V und W K-Vektorräume, $f:V\to W$ linear, $n\in\mathbb{N}$ und b_1,\ldots,b_n ein Erzeugendensystem von V. Zeigen Sie:

- (a) f surjektiv $\implies f(b_1), \ldots, f(b_n)$ Erzeugendensystem von W
- (b) $f(b_1), \ldots, f(b_n)$ linear unabhängig in $W \implies f$ injektiv

Sei K ein Körper, $m, n \in \mathbb{N}$, $A \in K^{m \times n}$. Folgern Sie aus (a) und (b):

- (c) $(\forall b \in K^m \exists x \in K^n : Ax = b) \implies \operatorname{rang} A = m$
- (d) rang $A = n \implies \forall x \in K^n : (Ax = 0 \Rightarrow x = 0)$

Aufgabe 34 (4 Punkte)

Gegeben sei der Untervektorraum von \mathbb{R}^4

$$U = \text{span}((0,3,1,-1),(2,7,4,-2),(6,0,5,1),(1,2,0,1))$$
.

- (a) Zeigen Sie, dass dim U=3 ist und geben Sie eine Basis von U an.
- (b) Zeigen Sie ohne Rechnung, dass sich jede Basis von U durch die Hinzunahme eines geeigneten Einheitsvektors von \mathbb{R}^4 zu einer Basis von \mathbb{R}^4 ergänzen lässt.
- (c) Geben Sie alle Einheitsvektoren von \mathbb{R}^4 an, mit denen sich die in (a) berechnete Basis zu einer Basis von \mathbb{R}^4 ergänzen lässt.

(Hinweis: Erweitern Sie die Matrix, die Sie in Zeilenstufenform transformieren, um die Einheitsmatrix E_4 .)

Aufgabe 35 (4 Punkte)

Sei
$$n \in \mathbb{N}_0$$
, $\mathcal{P}_n := \{p : \mathbb{R} \to \mathbb{R}, p(x) = \sum_{k=0}^n a_k x^k, a_0, \dots, a_n \in \mathbb{R}\}$. Zeigen Sie:

- (a) Die Abbildung $\phi: \mathcal{P}_n \to \mathbb{R}^{n+1}$, $\phi(p) = (p(0), p'(0), \dots, p^{(n)}(0))$ ist eine lineare bijektive Abbildung zwischen \mathbb{R} -Vektorräumen. (Dabei bezeichnet $p^{(k)}(0)$ die k-te Ableitung von p an der Stelle 0.)
- (b) Die Monome $m_k : \mathbb{R} \to \mathbb{R}$, $m_k(x) = x^k$, k = 0, ..., n bilden eine Basis von \mathcal{P}_n .
- (c) Die Funktionen $p_k : \mathbb{R} \to \mathbb{R}$, $p_0(x) = 1$, $p_k(x) = x(x-1) \cdots (x-k+1)$, $k = 1, \ldots, n$ bilden ebenfalls eine Basis von \mathcal{P}_n .

Bitte wenden!

Aufgabe 36 (4 Punkte)

Sei K ein Körper, X,Y,Z endlichdimensionale K-Vektorräume und $f:X\to Y$ und $g:Y\to Z$ lineare Abbildungen. Zeigen Sie:

- (a) Für $\tilde{g} := g|_{f(X)}$ gilt: Kern $\tilde{g} \subset \operatorname{Kern} g \wedge \operatorname{Bild} \tilde{g} = \operatorname{Bild} (g \circ f)$
- (b) dim Bild f + dim Bild $g \leq \dim Y$ + dim Bild $(g \circ f)$ (Hinweis: Dimensionsformel für \tilde{g})
- (c) Seien $m,n,r\in\mathbb{N},\,A\in K^{m\times n},\,B\in K^{n\times r}.$ Dann gilt: rang $A+\mathrm{rang}\,B\,\leq\,n+\mathrm{rang}\,AB$

Abgabe einzeln, zu zweit oder zu dritt: Dienstag, 16.1.2018 bis 10¹⁵ Uhr, Übungskasten vor der Bibliothek im 1. Stock

***** Frohe Weihnachten und einen Guten Rutsch in das Neue Jahr! *****