For my my final computational physics project, I will apply Monte Carlo methods to simulate an Ising model. In this proposal, I will briefly go over my goals for this project.

1. Simple Ising Model

The Ising Model is a simple version of a ferromagnet. The overall magnetization of the material is determined by the number of dipoles that are aligned parallel to one-another. The Ising Model is a simulation of ferromagnetism in statistical mechanics and phase transitions. The Hamiltonian of Ising can be written as:

$$H = -J\sum_{ij} S_i S_j$$

where J > 0 is the strength of the interaction between adjacent lattice.

The procedures simulate Ising model is as follows:

- (a) Start by randomly picking a lattice site and flip the spin.
- (b) Calculate the change in energy.
- (c) If $H \leq 0$ then permanently flip it, otherwise calculate the Boltzmann's probability p

$$p = e^{-\beta H}$$

where $\beta = \frac{1}{k_B T}$, where k_B is Boltzmann constant and T is temperature in Kelvin.

- (d) Generate a random variable x between [0, 1].
- (e) If $x \leq p$, then flip the spin, otherwise flip back to its original state.
- (f) Repeat until it reaches a macro equilibrium.

We can simulate this model for a variety of temperatures and see how energy, specific heat, magnization and magnetic susceptibility changes with temperature.

2. Building on top of the simple Ising Model

Suppose there is an external field h, then the Hamilton should be adjusted as

$$H = -J\sum_{ij} S_i S_j - h\sum_j s_j$$

For this project I will implement some external magnetic field on the system to observe its behavior.

Simulating Ising Model in higher dimension (3D).

Try out with different values of J (antiferromagnet J < 0).

Identify the temperature that phase transition happen, going from ferromagnet to paramagnet.

Animate the ising model!

Apply Wolff algorithm