Question	Marking Guidance	Mark	Comments
2(a)	Chlor <u>ide</u> (ions) are smaller (than brom <u>ide</u> ions)	1	Must state or imply ions. Allow chloride has greater charge density (than bromide).
	So the force of attraction between chloride ions and water is stronger	1	Penalise <u>chlorine ions</u> once only (max 2/3). This can be implied from M1 and M3 but do not allow intermolecular forces.
	Chloride \underline{ions} attract the $\delta+$ on H of water / electron deficient H on water	1	Allow attraction between ions and polar / dipole water. Penalise H ⁺ (ions) and mention of hydrogen bonding for M3 Ignore any reference to electronegativity. Note: If water not mentioned can score M1
2(b)	$\Delta H_{\text{solution}} = \Delta H_{\text{L}} + \Delta H_{\text{hyd}} \text{ K}^{+} \text{ ions} + \Delta H_{\text{hyd}} \text{ Br}^{-} \text{ ions} / = 670 - 322 - 335$	1	only. $Allow \Delta H_{solution} = \Delta H_{L} + \Sigma \Delta H_{hyd}$
	= (+)13 (kJ mol ⁻¹)	1	Ignore units even if incorrect. +13 scores M1 and M2 -13 scores 0 -16 scores M2 only (transcription error).

2(c)(i)	The entropy change is positive / entropy increases	1	ΔS is negative loses M1 and M3
	Because 1 mol (solid) → 2 mol (aqueous ions) / no of particles increases	1	Allow the aqueous ions are more disordered (than the solid). Mention of atoms / molecules loses M2
		1	
	Therefore $\underline{T\Delta S} > \underline{\Delta H}$		
2(c)(ii)	Amount of KCI = $5/M_r = 5/74.6 = 0.067(0)$ mol	1	If moles of KCI not worked out can score M3, M4 only (answer to M4 likely to be 205.7 K)
	Heat absorbed = 17.2 × 0.0670 = 1.153 kJ	1	Process mark for M1 x 17.2
	Heat absorbed = mass × sp ht × ΔT (1.153 × 1000) = 20 × 4.18 × ΔT	1	If calculation uses 25 g not 20, lose M3 only
	(1.166 × 1666) = 26 × 1.16 × 21		(M4 = 11.04, M5 = 287)
	$\Delta T = 1.153 \times 1000 / (20 \times 4.18) = 13.8 \text{ K}$	1	If 1000 not used, can only score M1, M2, M3
			M4 is for a correct ΔT
			Note that 311.8 K scores 4 (M1, M2, M3, M4).
	T = 298 - 13.8 = 284(.2) K	1	If final temperature is negative, M5 = 0
			Allow no units for final temp, penalise wrong units.