

|| SIMPLE SQUARES

Grupo 4

Integrantes: Martina Arco, Joaquín Ormachea, Diego Orlando y Lucas Emery

1. JUEGO

EN QUE CONSISTE

- Cada cuadrado debe llegar al círculo del color correspondiente.
- El cuadrado sólo puede moverse en su dirección.
- Un cuadrado puede empujar a otro cuadrado

Z. IMPLEMENTACION

ESTADOS

- Map<Point, Square>
- Map<Point, Circle>

REGLAS

- Se tiene una regla por cada cuadrado.
- La regla consiste en mover el cuadrado correspondiente.

COSTO

Es siempre 1 ya que un todos los movimientos cuestan lo mismo.

HEURISTICAS

- Suma de máxima distancia en cada dirección.
- Máxima distancia manhattan.
- Máxima distancia lineal.

3. RESULTADOS

PROBLEMA CON 2 COLORES

	Nodos expandidos	Estados analizados	Nodos frontera	Costo y profundidad	Tiempo (ms)
BFS	12	13	14	4	8
DFS	11	12	12	4	5
IDDFS	20	14	30	4	11
GREEDY	11	12	12	4	6
Α*	7	8	10	4	8

PROBLEMA CON 3 COLORES

	Nodos expandidos	Estados analizados	Nodos frontera	Costo y profundidad	Tiempo (ms)
BFS	394	693	909	8	52
DFS	159	243	249	8	21
IDDFS	447	533	1176	8	36
GREEDY	136	249	260	10	35
Α*	49	67	133	8	22

PROBLEMA SIN SOLUCIÓN

	Nodos expandidos	Estados analizados	Nodos frontera	Costo y profundidad	Tiempo (ms)
BFS	93	183	182	9	20
DFS	93	183	182	5	18
IDDFS	435	183	978	5	44
GREEDY	93	183	182	3	17
Α*	76	136	155	9	27

COMPARACIÓN DE HEURÍSTICAS

	Nodos expandidos	Estados analizados	Nodos frontera	Costo y profundidad	Tiempo (ms)
A* Maxima direccion	49	67	133	8	22
A* Maxima Manhattan	96	122	250	8	33
A* Distancia Iineal	180	255	468	8	69

Tiempo de problema con solución

Estados analizados

Tiempo y estados analizados para problemas con solución

Nodos expandidos de problema con solución

Nodos frontera de problema con solución

Nodos expandidos y nodos frontera para problemas cor solución

Tiempo de problema sin solución

Estados analizados de problema sin solución

Tiempo y estados analizados para problemas sin solución

Nodos expandidos de problema sin solución

Nodos frontera de problema sin solución

Nodos expandidos y nodos frontera para problemas sin solución

Tiempo

Estados analizados

Tiempo y estados analizados para A* con diferentes heurísticas

Nodos expandidos

Nodos frontera

Nodos expandidos y nodos frontera para A* con diferentes heurísticas

4. CONCLUSIONES

CONCLUSIONES DE **ALGORITMOS**

- A* es el más eficiente en cuanto a nodos, pero no con el tiempo debido a la heurística.
- ▷ IDDFS es el menos eficiente en cuanto a nodos pero ayuda a brindar una solución parcial en cualquier momento. Siempre llega a la solución óptima con costo 1.

CONCLUSIONES DE **ALGORITMOS**

BFS es el que lleva más tiempo y analiza más estados pero garantiza solución óptima con costo 1. Podría usarse para este tipo de problemas y donde no importe la eficiencia pero se quiera una implementación rápida.

CONCLUSIONES PROPIAS DEL JUEGO

- La cantidad de reglas a generar eran pocas, por lo que los tiempos eran chicos.
- Cuanto mayor la cantidad de colores, más se observaba la diferencia entre algoritmos.
- Los problemas sin solución, al ser un tablero limitado se resolvían rápidamente.

CONCLUSIONES PROPIAS DEL **JUEGO**

- Como era esperado, la mejor heurística es la de la suma de las máximas distancias de cada cuadrado en una cierta dirección
- Son todas admisibles
- Distancia lineal es la peor ya que asume movimientos diagonales que no existen

GRACIAS!

Preguntas?

