20150056 국윤범

Problem 1

Df Sum Sq Mean Sq F value Pr(>F)
education 2 55.6 27.800 4.601 0.0329 *
Residuals 12 72.5 6.042
--Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Since the p value is smaller than 0.05, we should reject the null hypothesis and adopt the alternative hypothesis that education has a significant effect on how long a mother breast-feeds her child.

(b)

Problem 2

(a)

> summary(out2)

	Df	Sum	Sq	Mean	Sq	F	value	Pr(>F)
month	11	308	3.4	28.	.04		1.500	0.166
year	4	44	1.2	11.	.04		0.591	0.671
Residuals	44	822	2.6	18.	.70			

Checking the p value of month and year, we need to retain the null hypothesis, which is the means of revenue according to month and year are equal.

(b)

Revenue vs Month

Revenue vs Year

Problem 3

(a)

> summary(out3)

```
Df Sum Sq Mean Sq F value Pr(>F)

Item 2 385.1 192.5 9.554 0.00149 **

Region 1 715.0 715.0 35.481 1.23e-05 ***

Item:Region 2 234.1 117.0 5.808 0.01132 *

Residuals 18 362.7 20.2

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

From above, the p-value 0.0015 of item is smaller than 0.05, so the mean sales volume for the new menu items are not equal.

(b)

From above, since the p value of region is much smaller than 0.05, so the mean sales volume for the new menu items are not equal as well.

(c)

Since the p value 0.01 of interaction term is smaller than 0.05, we can say there is a interaction between item and region(coast location).

Problem 4

```
(a) Check the code.
> # Problem 4
> str(Baumann)
'data.frame': 66 obs. of 6 variables:
         : Factor w/ 3 levels "Basal", "DRTA", ...: 1 1 1 1 1 1 1 1 1 1 ...
 $ pretest.1 : int  4 6 9 12 16 15 14 12 12 8 ...
 $ pretest.2 : int 3 5 4 6 5 13 8 7 3 8 ...
 $ post.test.1: int 5 9 5 8 10 9 12 5 8 7 ...
 $ post.test.2: int  4 5 3 5 9 8 5 5 7 7 ...
 $ post.test.3: int 41 41 43 46 46 45 45 32 33 39 ...
(b)
   > summary(fit)
               Df Pillai approx F num Df den Df Pr(>F)
                2 0.40825
                              5.3005
                                            6
                                                  124 6.765e-05 ***
   group
   Residuals 63
                     0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
   Signif. codes:
```

(c) Since the p value of group is significantly smaller than 0.05, we reject the null hypothesis, and we can say post.test significantly differs by group. Hence, there is a significant difference among 3 groups ("Basal", "Strat", DRTA").