GLASS COMPOSITION FOR SYNTHETIC RESIN ADDITIVE

Publication number: JP4338129
Publication date: 1992-11-25

Inventor: SHIMONO FUJIO; YAMAMOTO KOICHI; NOMURA

MAKIO

Applicant: ISHIZUKA GLASS

Classification:

- international: C03C3/17: A01N25/08: A01N25/10: A01N59/16:

C03C4/00; C08K3/34; C08K3/40; C08L101/00; C03C3/12; A01N25/08; A01N25/10; A01N59/16; C03C4/00; C08K3/00; C08L101/00; (IPC1-7): C03C3/17; C03C4/00; C08K3/40; C08L101/00

- European:

Application number: JP19910201573 19910510 **Priority number(s):** JP19910201573 19910510

Report a data error here

Abstract of JP4338129

PURPOSE:To prevent discoloration by compounding a soluble phosphate glass powder comprising P2O5, CaO+MgO, Na2O+K2O, and Ag2O with a specified composition ratio into a synthetic resin or fiber material. CONSTITUTION:P2O5 source such as phosphoric acid or a phosphate compd. is compounded and kneaded with sources of CaO, MgO, Na2O, K2O, and Ag2O, SiO2 source such as silica powder, and Ag2O source such as AgNO3. The kneaded material is heated, dried, and solidified. The solid is further heated and molten at specified temp. and then cooled with water to obtain water-pulverized product. This pulverized material is further pulverized to <=100mum particle size to obtain the soluble phosphate glass powder comprising 45-75mol% P2O5, 35-55mol% CaO+MgO, 0-5mol% Na2O+K2O, 5-20mol% SiO2+Al2O5 and 0.1-5mol% Ag2O. This glass powder is mixed with a synthetic resin such as PP to obtain a master batch. Then material is molded to obtain a product having antibiotic and antimold properties without causing discoloration.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-338129

(43)公開日 平成4年(1992)11月25日

(51) Int.Cl. ⁵ C 0 3 C	4/00	識別記号	庁内整理番号 6971-4G	FI	技術表示箇所
	3/17		6971 – 4 G		
C 0 8 K C 0 8 L 1		KAH	7167-4 J		

審査請求 有 請求項の数2(全 6 頁)

			田丑明小 月 明小头心头 2 (主 0 页)
(21)出願番号	特顧平3-201573	(71)出願人	000198477
			石塚硝子株式会社
(22)出顧日	平成3年(1991)5月10日		愛知県名古屋市昭和区高辻町11番15号
		(72)発明者	下野 富二雄
			愛知県知多市つつじが丘1丁目14番地
		(72)発明者	山本 幸一
			名古屋市中川区中郷町3丁目307番地
		(72)発明者	野村 牧夫
			愛知県尾西市祐久北野黒140番地
		i	

(54) 【発明の名称】 合成樹脂添加用硝子組成物

(57)【要 約】

【目 的】合成樹脂製品に抗菌、抗衛性を付与するために、溶解性硝子を使用すると、製品が変色する事があった。この原因を究明し、解決した製品を提供すること。

【構 成】溶解性硝子を使用して、抗菌、抗黴性を各種の合成樹脂製品及び繊維製品に付与するためには、銀イオンを含有した粒径 100μ m以下のリン酸塩系硝子粉末を使用することが必須の構成要件である更に、その組成範囲は、 $P2O_545\sim75mo1\%$ (以下特に記載しない限り同じ)、 $CaO+MgO_35\sim55\%$ 、Na2O+K2O_0~5%、SiO2+Al2O2 5~20%、Ag2O_0.1~5wt%からなるガラス組成物が有効である。

【特許請求の範囲】

【請求項1】抗菌, 抗黴性を各種の合成樹脂製品及び繊 維製品に付与するための、銀イオンを含有した粒径10 0 μ m以下の溶解性リン酸塩系硝子粉末。

【請求項2】請求項1に記載の溶解性リン酸塩系硝子粉 末と合成樹脂、繊維素材との複合時、或いはそれらの製 品の使用時に、変色することを抑制した、P2O545 75mo1%(以下特に記載しない限り同じ)、Ca $O + Mg O 3 5 \sim 5 5 \%$, $Na_2 O + K_2 O 0 \sim 5$ %, $SiO_2 + Al_2 O_3 5 \sim 20\%$, $Ag_2 O$ $0.1 \sim 5 \text{ w t \%}$ からなるガラス組成物。

【発明の詳細な説明】

[0 0 0 1]

*【産業上の利用分野】各種の樹脂、繊維に溶解性硝子を 複合させて、品質の改良、特に抗菌、抗黴性を付与する 溶解性硝子に関するものである。

2

[0002]

【従来の技術】従来、各種の樹脂、繊維に複合させて、 抗菌、抗黴性を付与する無機物質の代表例として、銀等 の金属イオンを担持させたゼオライト、銀等の金属イオ ンを含有する溶解性(水溶性)硝子等がある。

【0003】しかし、銀イオンは不安定であり、樹脂等 10 との複合時に熱(特に250~300℃に加熱を要する 物は、有機物の熱還元力が強くなる)や、共存する樹脂 添加剤等(例えば、C1化合物があると、AgC1にな り、光に敏感になる。) の作用

により $A_g^{(+)}$ $A_g^{(0)}$ の反応を起こし、樹脂等を黄褐色に変色させる場合が多く、又

複合された樹脂等で作られた製品についても、使用時 に、水分、光(特に紫外線)によって、同様の変色を起 こすことが多かった。溶解性硝子は、銀等の金属イオン を担持させたゼオライトと比較して、安定ではあるが、 それでも、樹脂等を変色させていた。

[0004]

【発明が解決しようとする課題】本発明は、前記したよ うな問題点のない、即ち、樹脂製品(例えば、ポリオレ フィン系、ポリスチレン系、ポリ酢ビ系、ポリアクリ ル、ポリ塩ビ系、ポリエステル系、ポリカーボネート 系、ポリアミド系、フェノール系、エポキシ系、メラミ ン系、ウレタン系、ケイ素樹脂系、ユリア樹脂系、ポリ エチレンテレフタレート系等の汎用プラスチックス及び エンジニアリングプラスチックスの製品)、繊維製品 デン系、テフロン系、ポリエステル系、ポリアミド系、 アクリル系等の繊維製品) に抗菌, 抗黴性を付与するた めに、溶解性硝子を添加しても、樹脂製品、繊維製品等 が黄褐色に変色しない様にした、溶解性硝子を提供しよ うとするものである。

%[0005]

【課題を解決するための手段】本発明者らは、前記課題 を解決する為に、溶解性硝子の組成と成分溶解量と合成 樹脂等の変色との関係を調査して、銀イオンの還元を極 20 力起こさない様にして、合成樹脂等の変色を起こさない 溶解性硝子の成分系及び組成範囲を見出して、本発明を 完成させたものである。即ち、抗菌、抗黴性を各種の合 成樹脂製品及び繊維製品に付与するための、銀イオンを 含有した粒径100μm以下のリン酸塩系硝子粉末であ る硝子成分系に関する第1の発明と、合成樹脂、繊維素 材との複合時、或いはそれらの製品の使用時に、変色す ることを抑制した、P2O545~75mo1%(以下 特に記載しない限り同じ)、CaO+MgO 35~5 5%, Na₂ O+K₂ O $0 \sim 5$ %, SiO₂ +Al₂ (例えば、ピニロン系、ポリオレフィン系、塩化ピニリ 30 O3 $5\sim20\%$ 、 Ag_2O 0. $1\sim5$ w t %からな るガラス組成物に関する第2の発明である。

> 【0006】本発明で使用する溶解性ガラスとしては、 燐酸塩系硝子が良好であったが、その原因として、次の 通り推定される。

①ガラス構造上、-Si-O-Agの結合は、酸性度が弱いので、Agを作りや

すい。

②-P-O-Agの結合は、酸性度が強く、Agの状態で残り易い。

③R2O成分が多いと、非架橋酸素イオンが存在し、Agが出来やすい。

従って、前記課題を解決するための手段に記載した硝子 40 75%以上の場合と同様の欠点があり、55%以上だ にしたのである。

【0007】本発明の第2の発明である溶解性ガラスの 組成を限定した理由は、以下の通りである。P2〇 s は、45%以下だと、硝子の溶融性を困難にして、し かも、硝子の失透傾向を増大させる。又、75%以上に なると、溶融時のP2O5の揮発が多く、組成不安定の 原因となり、しかも樹脂等に添加した時に、黄褐色に変 色させる原因になると共に、吸湿性が増大して、望まし い溶解性硝子にならない。CaO+MgOは、35%以

と、P2 O5 の使用量が減少して、P2 O5 45%以下 の場合と同様の欠点がある。Na2O+K2Oは、硝子 の溶融性を向上させるために使用するものであり、添加 する樹脂等の変色の為には、より少ない使用が望まし く、最大使用しても、5%までにすべきである。

【0008】SiO2 + Al2 O3 は、5%以下では、 硝子の溶融速度のコントロールが困難になり、しかも樹 脂等に添加した際に、変色傾向を大きくし、又、20% 以上では、溶融性が悪くなり、しかも樹脂等に添加した 下では、 P_2 O_5 を多く使用する必要があり、 P_2 O_5 = 50 際に、変色傾向を大きくするからである。A g_2 Oは、

0. 1wt%以下では、樹脂等に抗菌、抗黴性を付与す るために、硝子の添加量を多くする必要があり、経済的 でなく、しかも添加する樹脂等の特性を劣化させるから である。又、5 w t %以上だと、溶融時に銀金属の析出 があり、耐火物の局部的浸食の原因となるし、添加する 樹脂等の変色の原因となる。次に実施例を説明し、本発 明を明らかにする。

[0009]

【実施例1】原料は、P2O5源として、89%燐酸を 用いた。CaO、MgO源は、燐酸塩化合物を用いた。 10 (2)紫外線と水分とによる影響テスト Na2O、K2O源も同様に燐酸塩化合物を用いた。A 1203源も同様に燐酸塩化合物を用いた。S102源 は、100μm以下に粉砕した珪石粉を使用した。Ag 2 〇源は、硝酸銀を使用した。調合は、CaO、Mg O. Na2 O. K2 O. A12 O3, SiO2, Ag2 〇に関する原料を混合し、更に、P2Osに関する原料 を混練して実施した。溶融は、予め500℃でパッチ中*

*の水分を蒸発、固形化後、1300~1350℃に加熱 し、1~6時間溶融した。成形は、硝子素地を流し出 し、水冷して、水砕品にして行った。この場合、硝子と 金属材料との接触を避ける様にして、実施した。その 後、この硝子を、20 μm以下に粉砕し、硝子自体の変 色テストをした。テスト内容は、以下のとおりである。

(1) 有機物と熱による影響テスト

流動パラフィンと硝子粉末とを1:1の比率で混合し、 200℃-20分加熱して、色変化をみる。

水の入った容器に、硝子粉末を水と接触しないようにい れ、密封し、紫外線灯(450W)で1時間光を当て、 色変化を見た。

硝子組成と前記テスト結果との関係を表-1にまとめて 示す。

[0010]

	-	~		4 - pt -	- n	· • • • • • • • • • • • • • • • • • • •	•		
	A	В	С	D	E	F	G	H	I
P 2 O 5	5 0	50	5 0	50	5 0	50	6 5	3 5	
MgO	44	44	44	2 2	22	44		5 5	
CaO							15		
Na2O							14		15
K 2 O					22	6			
A 1 2 0 3	6	6	6	6	6		6	10	
SiO2				22					40
B 2 O 3									45
A g 2 O	0. 5	2	10	0. 5	0.5	0. 5	0. 5	0. 5	0.5
有機物									
と熱	0	0	×	×	0	0	×	×	\Q
紫外線									
と水分	0	0			×	Δ			\$
					L	I			

表-1 硝子組成と変色影響テスト結果

注①Ag20は重量%表示、その他の成分はモル%表示

②変色度合の表示は、目視で判定し、次の通り。

- ○…変色全くなし。
- ◇…僅かに変色あり。
- △…明らかに変色あり。
- ×…箸しい変色あり。

[0011]

【実施例2】実施例1の硝子サンプルAとGとを20μ m以下に粉砕し、ウレタンエマルジョンパインダー(第 1工業薬品製スーパーフレックス300…商品名)を水 に分散させた中に入れ、充分撹拌した。この中に、綿1 00%の白い布 (170g/m²) を浸漬し、充分布が 濡れてから、取り出し、溶液を絞り取り、150℃−5 分で乾燥し、抗菌布を作成した。この布の銀付着量は 50 菌数測定法にて測定した。その結果を表-2に示す。

5. 8~6. 4 μ g / c m² であり、又、布の変色はな かった。この布を洗濯、濯ぎ、絞り、太陽光での乾燥を 10回繰り返したところ、Aの硝子を使用した布は全く 変色しなかったが、Gの硝子を使用した布は、洗濯の回 数が増加するにつれて、褐色の度合が強くなった。又、 この布の抗菌効果をAの硝子を使用した布について、黄 色プドウ状球菌を使用して、繊維製品衛生加工協議会の

[O 0 1 2]

表-2 布への硝子適用効果測定結果

サンプル種別	生 菌 数 (個/m1)
未加工品	1200万
加工品 (洗濯前品)	2000以下
加工品(洗濯10回後	2000以下

注①実験前の菌数-80万(個/ml)

[0013]

【実施例3】実施例1の硝子サンプルA、B、Eを40 μm以下に粉砕し、この硝子粉末をポリプロピレンに 2 0%含有させたマスターバッチを作った。このマスター バッチを使用して、220℃まで加熱される可能性のあ るインジェクション成形にて、前記硝子を2%含有する 3 0 mm×4 0 mm×3 mmのポリプロピレンの板を成*

10*形した。この板を水が下に張ってある、キセノン式耐光 試験機で、100時間光を暴露させた。このサンプルの 加工時、及び耐光試験時の変色度合を自記分光光度計に て、色差(△E)を測定して判断した。この結果を表-3に示す。

6

[0014]

表-3 加工時、耐光時の変色度合

サンプル種別	加工時	耐光時
硝子未含有品	基準	1以下
硝子A2%含有品	1以下	1以下
硝子B2%含有品	1以下	1
硝子E2%含有品	1以下	2 9

(注)△B≦2…目視で差なし。

【0015】又、この板の抗菌効果は、プレート表面 に、1/100普通ブイヨンに2.2×

10個/m1の黄色ブドウ状球菌を含ませた歯液0. 2m1を塗りつけ、35%

-24時間培養後、生菌数を測定した。

その結果は、硝子を含んでいないサンプルでは、生菌数が4.4×10(個/m

1) であったのに対して、硝子A, B, Eをそれぞれ2 30%た。太さは40デニールである。この糸を使用して、編 %含有したサンプルでは、80、10以下、10以下の 生菌数であった。

[0 0 1 6]

【実施例4】実施例1のサンプルBと1の硝子を5μm 以下に粉砕し、6. ナイロンに10%添加したマスター バッチを作り、更に、これを用いて、紡糸機で260℃ に加熱して、硝子含有率1.5%になるモノフィラメン トを作成した。さらに、撚糸機でこれを10本撚りとし※ 機にて、目付105g/m²の布にした。同様にして、 硝子を含まない同じ材料の布を比較対照品として、作成 した。又、銀ゼオライトを含有した市販の布も対照とし て、比較テストを実施した。これらのサンプルを水で湿 らせ、ラップをして、太陽光に4日間さらして、その変 色をみた結果を表-4に示す。

[0017]

表ー4 ナイロンの変色テスト結果

サンプル種別	編布	耐光
硝子未含有品	無色	無色
硝子B含有品	無色	無色
硝子」含有品	淡黄色	淡黄色
銀ゼオライト含有品	淡黄 色	淡褐色

【0018】次に同サンプルでの抗菌テストを実施し た。テスト方法は実施例2と同様の方法である。結果を

表-5に示す。

表-5 ナイロンの場合での抗菌デスト結果

サンプル種別	編布 (個/m1)	洗濯10回後(個/ml)
硝子未含有品	3800万	290万
硝子B含有品	2000以下	2000以下
硝子丁含有品	2000以下	80万
観ゼオライト含有品	2000以下	2000以下

(注) 初発菌数…90万(個/ml)

【0019】更に、本テストで使用した撚糸の引張試験 *とによる強度劣化の有無を調べた。その結果を表-6に (JISL1069) にて、ナイロンに硝子を入れるこ*10 示す。

表-6 硝子入りナイロン糸の引張試験結果

1 デニール当りのg
5. 8
4. 9
5. 1
3. 4

一般的な傾向として、粒径の大きいものは、粒径の小さ 激に起こる傾向があった。前記の例の如く、細い繊維に ついては、硝子の粒径は5μm以下であり、その組成は 特許請求の範囲に記載した範囲が耐変色、耐強度共に最 適であった。

[0020]

【実施例5】実施例1のサンプルA、Bの硝子を5μm 以下に粉砕し、ポリプロピレンを芯鞘として、ポリエチ※

※レン中に硝子を1.5%含有させた2重構造(重量は いものに比べて、耐変色性は良化するが、強度劣化が急 20 1:1)の糸を紡糸した。糸の太さは2デニールであっ た。この糸は加工時の変色はなかった。又、この糸にキ セノン式耐光試験機にて100時間光を暴露させたが、 糸の変色はなかった。更に、本品の抗菌試験を、大腸菌 を使用して、繊維製品衛生加工協議会のシェイクフラス コ法で実施した。この結果は表-7に示す通りであっ た。

[0021]

表-7 2重構造糸の抗菌試験結果-1

サンプル種別	生菌数 (個/m1)	(注) 初発菌数
硝子朱含有品	20000	(個/m1)
硝子A含有品	660	16000
硝子 B 含有品	100以下	

【0 0 2 2】また、実用に近い方法でサンプル 0. 2 g ★し、3 5 ℃ - 2 4 時間の条件で培養後、生菌数を測定し に大腸菌入り1/50普通プイヨン菌液を1m1接種★ た。その結果は、表-8に示す通りである。

表-8 2重構造糸の抗菌試験結果-2

サンプル種別	生菌数(個/ml)	注) 初発菌数 (個/m 1)
硝子未含有品	20000000	10000
硝子A含有品	10以下	
硝子 B 含有品	10以下	

[0023]

【実施例6】実施例1のサンプルBの硝子を20μm以 下に粉砕し、アクリル繊維素材中に、2%添加し、充分 撹拌後、湿式法にて5デニールのアクリル繊維を紡糸し た。この糸を浸染法で、塩基性染料 (アストラゾン黄) を用いて染色した。硝子を入れないブランク品も同様に して、作成した。この両サンプルの耐光試験を実施例4 と同様に行い、黄色の変色を調べたが、変化は認められ

【0024】このアクリル繊維の抗菌効果は、実施例5 の場合と同様の方法で行った。その結果は、表-9に示 す通りであった。

表-9 アクリル繊維での抗菌試験結果

サンプル種別	生菌数(個/m 1)	注) 初発菌数 (個/m1)
プランクテスト品	5 2 0 0 0	22000
硝子B添加サンブル品	10以下	

[0025]

【実施例6】実施例1のサンプルAの硝子を20μm以 下に粉砕し、ポリエステル繊維素材中に2%添加し、8 0 $^{\circ}$ にて、2 デニールのポリエステル繊維を紡糸した。 10 た。その結果は、表-1 0 に示す通りである。

*品も作成した。そして、これらのサンプル糸を各20本 宛撚糸し、更に編布にして、目付60g/m²の布にし た。この布の耐光試験を実施例3と同一法にて実施し

同様にして、銀ゼオライト添加品及び銀アパタイト添加* [0026]

表-10 ポリエステル繊維での耐光試験結果

サンプル種別	加工時	耐光試験結果
プランク品	白色	白色
硝子A添加品	白色	白色
銀ゼオライト添加品	淡黄色	该福色
観アパタイト添加品	白色	白色

【0027】更に、その抗菌効果は、実施例5と同一の

方法で実施して表-11に示す通りであった。

表-11 ポリエステル繊維での抗菌試験結果

サンプル種別	生菌数(個/ml)	
プランク品	22000	注)初発菌数(個/ml)
硝子 A 添加品	100以下	22000
銀ゼオライト添加品	100以下	
銀アパタイト添加品	1200	

[0028]

【発明の効果】以上説明した如く、本発明に係わる溶解 性硝子は、その成分系及び硝子組成を選ぶことによっ 造因子を及び組成範囲を考慮していない従来品と比較し て、本発明品は、添加する合成樹脂を着色、或いは変色

させることなく、製品に抗菌、抗黴性を付与できるの で、住環境の良化、衣料品の用途拡大、食品包装材の多 様化等に役立つものである。従って、本発明品は、生活 て、次の通りの効果がある。即ち、硝子の形状或いは構 30 の多様化、環境良化、健康増進に役立つ極めて有益な発 明である。