Time Correlation Function

Ernesto Martinez-Baez

WSU

July 2, 2018

Introduction

Correlation Functions

Correlations between two different quantities A and B are measured in the usual statistical sense, via the **correlation coefficient**: c_{AB}

$$c_{AB} = \langle \delta A \delta B \rangle / (\sigma(A)\sigma(B))$$

 $\delta X = X - \langle X \rangle_{ens}$

- ► Schwartz inequalities guarantee that the absolute value of c_{AB} lies between 0 and 1, with values close to 1 indicating a high degree of correlation
- ▶ Considering A and B to be the same quantity evaluated at different times we can obtain an **Autocorrelation function**: $c_{AA}(t)$

Introduction

Autocorrelation Function

The non-normalized autocorrelation function is defined: $C_{AA}(t)$

$$C_{AA}(t) = \langle \delta A(t) \delta A(0) \rangle_{ens} = \langle \delta A(\Gamma(t)) \delta A(\Gamma(0)) \rangle_{ens}$$

then the coefficient("normalized autocorr. funct.") is:

$$c_{AA}(t) = C_{AA}(t)/\sigma^2(A) = C_{AA}(t)/C_{AA}(0)$$

 $\sigma^2(A) = \langle \delta A^2 \rangle_{ens} = \langle A^2 \rangle_{ens} - \langle A \rangle_{ens}^2$

▶ You can calculate time correlation functions from a file that contains the mechanical property of interest A(t) stored at regular intervals during a molecular dynamics (MD) simulation

Introduction

$$c_{AB} = \langle \delta A \delta A / \sigma^2(A) \rangle$$

- They give a clear picture of the dynamics in a fluid
- ► Their time integrals *t*_A may often be related directly to macroscopic transport coefficients
- ► Their Fourier transforms $\hat{c}_{AA}(\omega)$ may often be related to experimental spectra measured as a function of frequency ω .

$$\sigma^2(A) = \langle \delta A^2 \rangle_{ens} = \langle A^2 \rangle_{ens} - \langle A \rangle_{ens}^2$$

Calculations

Direct Approach

- ightharpoonup A(t) will be available at equal intervals of time δt
- δt is a small multiple of the timestep: $t = \tau \delta t$

The discretized form will be then:

$$C_{AA}(au) = \langle A(au)A(0)
angle = rac{1}{ au}\sum_{ au_0=1}^{ au_{\mathsf{max}}} A(au_0)A(au_0+ au)$$

- ▶ We average over τ_{max} time origins the product of A at time $\tau_0 \delta t$ and A at a time $\tau \delta t$ later
- ▶ For each value of τ , the value of $\tau_0 + \tau$ must never exceed the number of values of A, τ_{run} , stored in the file
- ▶ Thus, the short-time correlations, with τ small, may be determined with slightly greater statistical precision because the number of terms in the average, τ_{max} may be larger