Application No.: 10/017,847 PATENT

Examiner: Leroy, David H.; Art Unit: 1742

AMENDMENT NO. 2, Reply to Office Action of May 29, 2003

The following is a complete set of the claims for this patent application, replacing all prior versions.

Claims:

- 1 Claim 1 (currently amended): An alloy carbon steel comprising iron and a maximum of
- 2 0.35% by weight of carbon, said alloy carbon steel having a triple-phase microstructure
- 3 comprising ferrite crystals fused with martensite-austenite crystals, said crystals having
- 4 grain sizes within the range of about 2 microns to about 100 microns, said martensite-
- 5 austenite crystals comprising laths of martensite alternating with thin films of austenite,
- 6 said martensite-austenite crystals austenite and constituting from about 5% to about 95%
- 7 by weight of said triple-phase microstructure, and said martensite-austenite crystals
- 8 devoid of carbide precipitates at interfaces between phases.
- 1 Claims 2-3 (canceled)
- 1 Claim 4 (original): An alloy carbon steel in accordance with claim 1 in which said
- 2 martensite-austenite crystals constitute from about 15% to about 60% by weight of said
- 3 triple-phase microstructure.
- 1 Claim 5 (original): An alloy carbon steel in accordance with claim 1 in which said
- 2 martensite-austenite crystals constitute from about 20% to about 40% by weight of said
- 3 triple-phase microstructure.
- 1 Claim 6 (original): An alloy carbon steel in accordance with claim 1 in which said
- 2 carbon constitutes from about 0.01% to about 0.35% by weight of said triple-phase
- 3 microstructure.
- 1 Claim 7 (original): An alloy carbon steel in accordance with claim 1 in which said
- 2 carbon constitutes from about 0.03% to about 0.3% by weight of said triple-phase
- 3 microstructure.

Application No.: 10/017,847

Examiner: Leroy, David H.; Art Unit: 1742

AMENDMENT NO. 2, Reply to Office Action of May 29, 2003

- 1 Claim 8 (original): An alloy carbon steel in accordance with claim 1 in which said
- 2 carbon constitutes from about 0.05% to about 0.2% by weight of said triple-phase
- 3 microstructure.
- 1 Claim 9 (original): An alloy carbon steel in accordance with claim 1 further comprising
- 2 silicon at a concentration of from about 0.1% to about 3% by weight of said alloy
- 3 composition.
- 1 Claim 10 (original): An alloy carbon steel in accordance with claim 1 further comprising
- 2 silicon at a concentration of from about 1% to about 2.5% by weight of said alloy
- 3 composition.
- 1 Claim 11 (original): An alloy carbon steel in accordance with claim 1 in which said
- 2 carbon constitutes from about 0.03% to about 0.3% by weight of said triple-phase
- 3 microstructure, said alloy carbon steel further comprising silicon at a concentration of
- 4 from about 0.1% to about 3% by weight of said alloy composition.
- 1 Claim 12 (original): An alloy carbon steel in accordance with claim 1 in which said
- 2 carbon constitutes from about 0.05% to about 0.2% by weight of said triple-phase
- 3 microstructure, said alloy carbon steel further comprising silicon at a concentration of
- 4 from about 1% to about 2.5% by weight of said alloy composition, and containing
- 5 substantially no carbides.
- 1 Claim 13 (withdrawn): A process for manufacturing a high-strength, corrosion-resistant
- 2 tough alloy carbon steel, said process comprising:
- 3 (a) forming an alloy composition comprising iron and at least one
- 4 alloying element comprising a maximum of about 0.35% by weight of carbon in
- 5 proportions selected to provide said alloy composition with a martensite transition
- 6 range having a martensite start temperature of at least about 300°C:

Application No.: 10/017,847 Examiner: Leroy, David H.; Art Unit: 1742 AMENDMENT NO. 2, Reply to Office Action of May 29, 2003

7	(b) heating said alloy composition to a temperature sufficiently high to
8	cause austenitization thereof, under conditions causing said alloy composition to
9	assume a homogeneous austenite phase with all alloying elements in solution;
10	(c) cooling said homogeneous austenite phase sufficiently to transform
11	a portion of said austenite phase to ferrite crystals, thereby forming a two-phase
12	microstructure comprising ferrite crystals fused with austenite crystals; and
13	(d) cooling said two-phase microstructure through said martensite
14	transition range under conditions causing conversion of said austenite crystals to a
15	microstructure containing laths of martensite alternating with films of retained
16	austenite.
1	Claim 14 (withdrawn): A process in accordance with claim 13 in which step (d)
2	comprises cooling said two-phase microstructure at a rate sufficiently fast to avoid the
3	occurrence of autotempering.
1	Claim 15 (withdrawn): A process in accordance with claim 13 in which step (d)
2	comprises cooling said two-phase microstructure by contact of said two-phase crystal
3	structure with water.
1	Claim 16 (withdrawn): A process in accordance with claim 13 in which step (c)
2	comprises cooling said homogeneous austenite phase to a temperature of from about
3	750°C to about 950°C.
1	Claim 17 (withdrawn): A process in accordance with claim 13 in which step (c)
2	comprises cooling said homogeneous austenite phase to a temperature of from about
3	775°C to about 900°C.
1	Claim 18 (withdrawn): A process in accordance with claim 13 in which said carbon
2	constitutes from about 0.01% to about 0.35% by weight of said alloy composition.

PATENT

Application No.: 10/017,847

Examiner: Leroy, David H.; Art Unit: 1742

AMENDMENT NO. 2, Reply to Office Action of May 29, 2003

- 1 Claim 19 (withdrawn): A process in accordance with claim 13 in which said carbon
- 2 constitutes from about 0.03% to about 0.3% by weight of said alloy composition.
- 1 Claim 20 (withdrawn): A process in accordance with claim 13 in which said carbon
- 2 constitutes from about 0.05% to about 0.2% by weight of said alloy composition.
- 1 Claim 21 (withdrawn): A process in accordance with claim 13 in which said alloy
- 2 composition further comprises silicon at a concentration of from about 0.1% to about 3%
- 3 by weight.
- 1 Claim 22 (withdrawn): A process in accordance with claim 13 in which said alloy
- 2 composition further comprises silicon at a concentration of from about 1% to about 2.5%
- 3 by weight.
- 1 Claim 23 (new): An alloy carbon steel in accordance with claim 1 in which grain sizes
- 2 are within the range of about 5 microns to about 30 microns.