E.S.I. 2010/2011

Section: 2CPA

Module : Algèbre 3.

Durée: 40mns.

Corrigé de l'Interrogation 1 (sur 15 pts)

Exercice: Soit l'application définie par :

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X], \quad f(a+bX+cX^2) = a-b+(a+c)X+(b+c)X^2$$

1- Déterminer $M_B(f) = A$, où B est la base canonique de $\mathbb{R}_2[X]$.

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
.....(2pts)

2- Déduire :

 \bigcirc

a- Une base de $\ker f$ et une base de $\operatorname{Im} f$.

$$\ker f = \langle 1 + X - X^2 \rangle$$
 (2pts) et $\operatorname{Im} f = \langle 1 + X, X + X^2 \rangle$. (2pts)

b- Dire si f est un automorphisme de $\mathbb{R}_2[X]$. Justifier.

Comme $\ker f \neq \{0\}$, donc f n'est pas injective, et par conséquent f n'est pas un automorphisme de $\mathbb{R}_2[X]$. (2pts)

3- Soit B' une base de $\mathbb{R}_2[X]$ définie par : $B'=(P_1=1+X+X^2,\,P_2=X-X^2,\,P_3=2X^2).$

a- Trouver la matrice de passage P de B vers B'.

b- Déterminer la matrice P^{-1} .

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \quad \textbf{(1pt)} \quad , \ P^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \quad \textbf{(3pts)}$$

4- Déduire la matrice : $A' = M_{B'}(f)$. Justifier.

$$A' = P^{-1}.A.P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 2 & 0 & 2 \\ 2 & \frac{1}{2} & 2 \end{pmatrix}$$
 (3pts)

N.B.: La remise des notes est programmée pour le Lundi 06/12/2010 à 11h40 à l'amphi AP2.