Heat resisting aluminium alloy of the type AlCuMg

Patent number:

EP0989195

Publication date:

2000-03-29

Inventor:

JAQUEROD CHRISTOPHE (CH); HOELLRIGE GUENTHER (CH)

Applicant:

ALUSUISSE LONZA SERVICES AG (CH)

Classification:

- international:

C22C21/12; C22F1/057

- european:

C22F1/057, C22C21/16

Application number:

EP19980810967 19980925

Priority number(s):

EP19980810967 19980925

Also published as:

EP0989195 (B1)

Cited documents:

US5630889

US5652063 US5800927

EP0224016 EP0756017

more >>

Abstract of EP0989195

Aluminum alloy of the AlCuMg type contains alloying additions (in wt.%) of 4.5-5.5 Cu, 0.45-0.65 Mg, maximum 0.2 Si, maximum 0,25 Fe, maximum 0.8 Mn, maximum 0.15 Ti, and optionally 0.12-0.25 Zr, 0.05-0.5 Ag and maximum 0.15 impurities.

An Independent claim is also included for the manufacture of a plate made of Al alloy comprising casting an ingot of the alloy, homogenizing the cast ingot, maintaining the ingot at 380-440 degrees C for at least 2.5 hours, hot rolling the ingot to a plate at 380-440 degrees C, solution annealing the plate, quenching, stretching the plate by 1-5%, and hardening the

Data supplied from the esp@cenet database - Worldwide

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

29.03.2000 Patentblatt 2000/13

(51) Int. Cl.7: C22C 21/12, C22F 1/057

(21) Anmeldenummer: 98810967.4

(22) Anmeldetag: 25.09.1998

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(71) Anmelder:

Alusuisse Technology & Management AG 8212 Neuhausen am Rheinfall (CH)

(72) Erfinder:

Höllrigl, Günther
 8200 Schaffhausen (CH)

max. 0.2 Gew.-% Silizium

insgesamt max. 0.15 Gew.-%.

 Jaquerod, Christophe 3976 Noes (CH)

(54) Warmfeste Aluminiumlegierung vom Typ AlCuMg

(57) Eine Aluminiumlegierung vom Typ AlCuMg in geknetetem Zustand mit hoher mechanischer Festigkeit und hoher Wärmebeständigkeit weist im lösungsgeglühten, abgeschreckten, gestreckten und warmausgelagerten Zustand (T8) eine Fliessspannung bei Raumtemperatur von Rp0.2 > 450 MPa, nach einer Vorlagerung von 300 h bei 160°C eine Fliessspannung bei 160°C von Rp0.2 > 340 MPa und nach einer Kriechbelastung von 1000 h bei 160°C unter einer Zugspannung von 260 MPa eine Dehnung von weniger als 0.5% auf.

Die Legierung enthält

4.5 bis 5.5 Gew.-% Kupfer 0.45 bis 0.65 Gew.-% Magnesium

max. 0.25 Gew.-% Eisen
max. 0.8 Gew.-% Mangan
max. 0.15 Gew.-%Titan
wahlweise noch
0.12 bis 0.25 Gew.-% Zirkonium
0.05 bis 0.5 Gew.-% Silber
sowie Aluminium als Rest mit herstellungsbedingten Verunreinigungen einzeln max. 0.05 Gew.-%,

Die Legierung eignet sich insbesondere zur Herstellung von Kunststoffformen.

Beschreibung

25

30

35

[0001] Die Erfindung betrifft eine Aluminiumlegierung vom Typ AlCuMg Zustand mit hoher mechanischer Festigkeit und hoher Wärmebeständigkeit, die im !ösungsgeglühten, abgeschreckten, gestreckten und warmausgelagerten Zustand eine Fliessspannung bei Raumtemperatur von Rp0.2 > 450 MPa, nach einer Vorlagerung von 300 h bei 160°C eine Fliessspannung bei 160°C von Rp0.2 > 340 MPa und nach einer Kriechbelastung von 1000 h bei 160°C unter einer Zugspannung von 260 MPa eine Dehnung von weniger als 0.5% aufweist.

[0002] Zur Herstellung von Kunststoffbauteilen durch Spritzgiesstechnik werden heute Betriebstemperaturen bis gegen 160°C angewendet. Für den Formenbau werden hochfeste Aluminiumlegierungen eingesetzt, welche ihre Festigkeit durch Ausscheidungshärtung erhalten. Die erwähnten Betriebstemperaturen von ca. 160°C erreichen jedoch den Überhärtungsbereich der aushärtbaren hochfesten Werkstoffe vom Typ AlZnMgCu. Für den Einsatz bei erhöhten Temperaturen sind deshalb AlCu- und AlCuMg-Legierungen besser geeignet, um ein hohes Festigkeitsniveau bei diesen erhöhten Betriebstemperaturen über einen langen Zeitraum zu erhalten.

[0003] Als Legierungen vom Typ AlCuMg mit gleichzeitig hoher mechanischer Festigkeit und hoher Wärmebeständigkeit haben sich in der Praxis vor allem die Legierung AA2618 und, wegen ihrer guten Schweissbarkeit, die Legierung AA2219 durchgesetzt. Eine neuere Legierung vom Typ AA2618 mit guter Warmfestigkeit ist aus EP-A-0756014 bekannt.

[0004] Der Erfindung liegt die Aufgabe zugrunde, eine Legierung vom Typ AlCuMg der eingangs genannten Art mit einer gegenüber den bekannten Legierungen nach dem Stand der Technik erhöhten thermischen Stabilität zu schaffen. Insbesondere soll die Legierung zur Herstellung von Kunststoffformen, d.h. Spritzgiessformen zum Spritzgiessen von Kunststoff, bei Betriebstemperaturen bis zu etwa 160°C geeignet sein.

[0005] Zur erfindungsgemässen Lösung der Aufgabe führt, dass die Legierung

4.5 bis 5.5 Gew.-% Kupfer
0.45 bis 0.65 Gew.-% Magnesium
max. 0.2 Gew.-% Silizium
max. 0.25 Gew.-% Eisen
max. 0.8 Gew.-% Mangan
max. 0.15 Gew.-% Titan
wahlweise noch
0.12 bis 0.25 Gew.-% Zirkonium
0.05 bis 0.5 Gew.-% Silber

sowie Aluminium als Rest mit herstellungsbedingten Verunreinigungen einzeln max. 0.05 Gew.-%, insgesamt max. 0.15 Gew.-% enthält.

[0006] Es hat sich gezeigt, dass die erfindungsgemässe Legierung gegenüber den AlCuMg-Legierungen nach dem Stand der Technik eine geringere Abschreckempfindlichkeit aufweist, was dazu führt, dass bei der Herstellung dicker Platten der Festigkeitsverlust in der Plattenmitte kleiner ist.

[0007] Zur Erzielung einer möglichst hohen Festigkeit bei gleichzeitig guter Korrosionsbeständigkeit beträgt der bevorzugte Kupfergehalt 5.2 bis 5.4 Gew.-%.

[0008] Die maximale Löslichkeit für Kupfer liegt bei dieser Legierung bei etwa 5.2 bis 5.3% Cu. Ein Teil des Kupfers wird in den primären intermetallischen Phasen AlFeMnCu absorbiert, was es überhaupt ermöglicht, praktisch an die Löslichkeitsgrenze zu gehen. Bei höheren Kupfergehalten entsteht im Gefüge die primäre eutektische Phase Al₂Cu, die keinen Beitrag an die Festigkeit leistet, als kathodisches Lokalelement jedoch den Korrosionswiderstand der Legierung herabsetzt.

[0009] Bevorzugt liegt die erfindungsgemässe Legierung hauptsächlich im Phasenfeld der θ -Ausscheidungshärtung, mit der Gleichgewichtsphase Al_2Cu . Steigt der Magnesiumgehalt über 0.6%, so ergeben sich entsprechend Anteile von S'-Ausscheidungshärtung, mit der Gleichgewichtsphase Al_2CuMg . Der positive Effekt eines Silberzusatzes auf die Ausscheidungshärtung ist jedoch bei der θ '-Ausscheidungshärtung bevorzugt wirksam, weil das Silber zusammen mit dem Magnesium die Ω -Phase bilden kann, und zwar auf den (111) Gitterebenen der Aluminiummatrix, was zu einem zusätzlichen Festigkeitsanstieg führt. Bei noch höheren Magnesiumgehalten wird die Ausscheidung der Ω -Phase von der S'-Ausscheidung überlagert und setzt die festigkeitssteigernde Wirkung von Silber herab. Hinzu kommt, dass eine Legierung mit höheren Magnesiumgehalten empfindlich auf die Geschwindigkeit der Abschreckbehandlung reagiert, was zu einem Festigkeitsverlust in der Mitte von dicken Platten führt. Mit der erfindungsgemässen Beschränkung des Magnesiumgehaltes wird ein Optimum zwischen erzielbarer Festigkeit bei Raumtemperatur und bei erhöhten Temperaturen erreicht. Die erfindungsgemässe Legierung eignet sich daher insbesondere zur Herstellung dicker Platten.

[0010] Wie vorstehend erwähnt, kann zur weiteren Steigerung der Festigkeit die Legierung 0.05 bis 0.5 Gew.-%, vorzugsweise 0.3 bis 0.5 Gew.-% Silber enthalten.

[0011] Insbesondere für die Anwendung der erfindungsgemässen Legierung als Werkstoff für den Formenbau ist eine möglichst isotrope Verteilung der Eigenspannungen im Querschnitt der durch Warmwalzen gefertigten Platten anzustreben. Für den Abbau der Eigenspannungen ist u.a. die Korngrösse und die Kornform in der Platte von Bedeutung. Je feiner und gleichmässiger die Kristaue nach der Rekristallisation bei der vorzugsweise im Bereich von 510 bis 525°C durchgeführten Lösungsglühung vorliegen, desto besser können sich die Eigenspannungen im Querschnitt der Platte ausgleichen. Die Korngrenzen wirken dabei als Senken für Versetzungen beim Abbau von lokalen Spannungsspitzen. Durch einen Zusatz von 0.12 bis 0.25 Gew.-% Zirkonium kann ein feines Korngefüge in der warmgewalzten Platte erreicht werden, indem man die Wärmebehandlung und die Warmwalztemperaturen so steuert, dass eine möglichst homogene Verteilung von submikronen Ausscheidungen von Al₃Zr im Gefüge entsteht.

- 10 [0012] Die erfindungsgemässe Herstellung einer Platte ist gekennzeichnet durch die Schritte
 - Giessen eines Barrens aus der Legierung,
 - Homogenisieren des gegossenen Barrens,
 - Halten des Barrens während mindestens 2.5 h in einem Temperaturbereich von 380 bis 440°C,
- Warmwalzen des Barrens zur Platte im Temperaturbereich von 380 bis 440°C,
 - Lösungsglühen der Platte,
 - Abschrecken der Platte,
 - Strecken der Platte um 1 bis 5%, und
 - Warmaushärten der Platte.

20

[0013] Die homogenisierten Gussbarren k\u00f6nnen entweder von der Homogenisierungstemperatur auf die Halte- bzw. Warmwalztemperatur abgek\u00fchlt oder in diesen Temperaturbereich aufgeheizt werden. Beim Halten des Barrens im Temperaturbereich von 380 bis 440°C tritt mit der Ausscheidung der Gleichgewichtsphase Al₂Cu eine Heterogenisierung ein. Beim anschliessenden Warmwalzen in demselben Temperaturbereich werden die Phasengrenzfl\u00e4chen der Al₂Cu-Teilchen als bevorzugte Keimstellen f\u00fcr die Al₃Zr-Ausscheidungen gebildet. Beim darauffolgenden Aufheizen der Warmwalzplatte auf die L\u00fcsungsgl\u00fchtemperatur l\u00fcsen sich die Al₂Cu-Teilchen auf und zur\u00fcck bleibt eine gleichm\u00e4ssige Verteilung der feinen, submikronen Al₃Zr-Ausscheidungen, welche bevorzugt an den urspr\u00fcnglichen Al₂Cu-Teilchengrenzen sowie an Subkorngrenzen liegen und damit eine homogene Verteilung ergeben. Diese feinen Al₃Zr-Teilchen bewirken eine starke Wachstumshemmung bei der Rekristallisation w\u00e4hrend der L\u00fcsungsgl\u00fchung und es resultiert das gew\u00fcnschte isotrope Korngef\u00fcge in der Platte.

[0014] Weiter hat sich als zweckmässig herausgestellt, die Summe von Eisen und Silizium und die Summe von Zirkonium und Titan je auf max. 0.25 Gew.-% zu begrenzen.

[0015] Der bevorzugte Gehaltsbereich für Mangan liegt bei 0.2 bis 0.4 Gew.-%.

[0016] Grundsätzlich kann die Legierung, die sich insbesondere zur Herstellung von Kunststoffformen eignet, ausgehend von einem Gussblock ohne Knetoperationen weiterverarbeitet werden, jedoch beinhaltet das Herstellungsverfahren üblicherweise mindestens einen Knetschritt. Sofern es die Dimensionen einer herzustellenden Form zulassen, werden als Ausgangsmaterial bevorzugt warmgewalzte Platten eingesetzt. In gewissen Fällen kann es sich auch als zweckmässig erweisen, eine Dickenabnahme beispielsweise in einer ersten Richtung durch Warmwalzen und in einer zweiten Richtung durch Schmieden zu erzeugen. Insbesondere zur Herstellung von kostengünstigen Formen für die Produktion von Massenteilen kann auch Strangpressen als Verarbeitungsschritt in Betracht gezogen werden. Mit dem Strangpressen eröffnet sich grundsätzlich auch die Möglichkeit, gewisse Konturen einer späteren Form bereits vorzuformen.

[0017] Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt schematisch in

45 .

 Fig. 1 Dehnungs-Zeit Diagramm von erfindungsgemässen Legierungen im Vergleich zu Legierungen nach dem Stand der Technik.

Beispiele

50

[0018] Die chemischen Analysen der untersuchten Legierungen sind aus der Tabelle 1 ersichtlich. Die Legierungen A und B sind erfindungsgemäss, die Legierungen AA2618 und AA 2219 dienen als Vergleichslegierungen bzw. Referenzwerkstoffe.

55

Tabelle 1

Leg.	Zusammensetzung [Gew%]									
	Si	Fe	Cu	Mn	Mg	Ag	Ti	٧	Zr	Ni
Α	0.10	0.14	5.25	0.30	0.60	0.38	0.08		0.18	
В	0.10	0.14	5.30	0.30	0.60			0.09	0.20	
AA2618	0.15	1.05	2.60		1.65		0.06			1.10
AA2219	0.06	0.06	6.11	0.31	0.02		0.04	0.08	0.12	

[0019] Die Legierungen A und B wurden als Stranggussbarren in industriellem Massstab gegossen. Die Homogenisierung der Gussbarren zum Ausgleich der erstarrungsbedingten Kristallseigerungen erfolgte nach der üblichen Vorschrift für AlCuMg-Legierungen.

[0020] Die nach der Homogenisierungsglühung abgekühlten Barren wurden auf 410°C aufgeheizt, 3 h bei dieser Temperatur gehalten und nachfolgend ausgehend von dieser Temperatur auf eine Plattendicke von 70 mm gewalzt. Anschliessend wurden die Platten während 40 min bei einer Temperatur von 520°C lösungsgeglüht und nachfolgend in Wasser mittels definierter konvektiver Wärmeübertragung so abgeschreckt, dass die entstehenden Eigenspannungen durch die nachfolgende Streckoperation kontrollierbar waren. Die gestreckten Platten wurden anschliessend bei einer Temperatur von 180°C während 12 h warm ausgehärtet.

[0021] An Proben der warmausgehärteten Platten sowie an aus kommerziell erhältlichen Platten entnommenen Proben der Referenzwerkstoffe wurden die Fliessspannungen Rp 0.2 nach 300 h und 500 h Vorlagerung bei einer Temperatur von 160°C durch Zugversuche bei Raumtemperatur (RT) und bei 160°C ermittelt. Die Ergebnisse sind in den Tabellen 2 und 3 dargestellt. Die als Referenzwerkstoffe verwendeten Platten wiesen im Falle der Legierung AA2618 eine Dicke von 20 mm und bei der Legierung AA2219 eine Dicke von 90 mm auf.

Tabelle 2

30

35

40

45

Legierung	Zugversuch bei RT (20°C)				
	Rp0.2 [MPa] nach 300 h	Rp0.2 [MPa] nach 500 h			
Α	432	405			
В	407	390			
AA2618	418				
AA2219	340	335			

Tabelle 3

Legierung	Zugversuch bei 160°C				
	Rp0.2 [MPa] nach 300 h	Rp0.2 [MPa] nach 500 h			
Α	370	350			
В	342	332			
AA2618	350				
AA2219	281	270			

[0022] Die Kriechdaten wurden an Rundproben mit 160 mm Messlänge ermittelt. Aus dem Dehnungs-Zeit Diagramm in Fig. 1 sind die Ergebnisse für die vier untersuchten Legierungen ersichtlich. Die an die Probestäbe angelegte Last betrug 260 MPa, die Prüftemperatur wurde auf 160°C eingestellt. Die Kurven zeigen deutlich die gegenüber den Vergleichslegierungen verbesserte Warmfestigkeit der erfindungsgemässen Legierung.

Patentansprüche

5

10

15

20

25

40

50

55

 Aluminiumlegierung vom Typ AlCuMg mit hoher mechanischer Festigkeit und hoher Wärmebeständigkeit, die im lösungsgeglühten, abgeschreckten, gestreckten und warmausgelagerten Zustand (T8) eine Fliessspannung bei Raumtemperatur von Rp0.2 > 450 MPa, nach einer Vorlagerung von 300 h bei 160°C eine Fliessspannung bei 160°C von Rp0.2 > 340 MPa und nach einer Kriechbelastung von 1000 h bei 160°C unter einer Zugspannung von 260 MPa eine Dehnung von weniger als 0.5% aufweist, dadurch gekennzeichnet, dass die Legierung

4.5 bis 5.5 Gew.-% Kupfer 0.45 bis 0.65 Gew.-% Magnesium max. 0.2 Gew.-% Silizium max. 0.25 Gew.-% Eisen max. 0.8 Gew.-% Mangan

max. 0.15 Gew.-% Titan

wahlweise noch

0.12 bis 0.25 Gew.-% Zirkonium

0.05 bis 0.5 Gew.-% Silber

sowie Aluminium als Rest mit herstellungsbedingten Verunreinigungen einzeln max. 0.05 Gew.-%, insgesamt max. 0.15 Gew.-% enthält.

- 2. Aluminiumlegierung nach Anspruch 1, dadurch gekennzeichnet, dass sie 5.2 bis 5.4 Gew.-% Kupfer enthält.
- 3. Aluminiumlegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie 0.3 bis 0.5 Gew.-% Silber enthält.
- 4. Aluminiumlegierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Summe von Eisen und Silizium max. 0.25 Gew.-% beträgt.
- 5. Aluminiumlegierung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Summe von Zirkonium und Titan max. 0.25 Gew.-% beträgt.
 - Aluminiumlegierung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie 0.2 bis 0.4 Gew.-% Mangan enthält.
- 35 7. Aluminiumlegierung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie im gekneteten Zustand vorliegt.
 - 8. Aluminiumlegierung nach Anspruch 7, dadurch gekennzeichnet, dass der geknetete Zustand durch Warmwalzen erzeugt worden ist.
 - 9. Aluminiumlegierung nach Anspruch 7, dadurch gekennzeichnet, dass der geknetete Zustand durch Schmieden erzeugt worden ist.
- Aluminiumlegierung nach Anspruch 7, dadurch gekennzeichnet, dass der geknetete Zustand durch Strangpressen
 erzeugt worden ist.
 - 11. Verfahren zur Herstellung einer Platte aus einer Aluminiumlegierung nach einem der Ansprüche 1 bis 6, gekennzeichnet durch die Schritte
 - (a) Giessen eines Barrens aus der Legierung,
 - (b) Homogenisieren des gegossenen Barrens,
 - (c) Halten des Barrens während mindestens 2.5 h in einem Temperaturbereich von 380 bis 440°C,
 - (d) Warmwalzen des Barrens zur Platte im Temperaturbereich von 380 bis 440°C,
 - (e) Lösungsglühen der Platte,
 - (f) Abschrecken der Platte,
 - (g) Strecken der Platte um 1 bis 5%, und
 - (h) Warmaushärten der Platte.

12	 Verwendung einer Aluminiur Verfahren nach Anspruch 11 	nlegierung nach einem o zur Herstellung von Kur	der Ansprüche 1 bis 10 c nststoffformen.	der einer Platte hergestellt mit dem
5				
10				
15				
20				
25				
30				
35				
40				•
45				
50				
` <i>55</i>		\$ 1 minutes		

Europäisches EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 98 81 0967

	EINSCHLÄGIGE	DOKUMENTE		
Kategorie	Kennzeichnung des Dokur der maßgeblich	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
X .	US 5 630 889 A (KAR 20. Mai 1997 * Anspruch 1 * * Spalte 1, Zeile 5 * Spalte 5, Zeile 2		1-10	C22C21/12 C22F1/057
X	US 5 652 063 A (KAR 29. Juli 1997 * Anspruch 1 * * Spalte 1, Zeile 9 * Spalte 7, Zeile 3	- Zeile 17 *	1-10	
X	US 5 800 927 A (KAR 1. September 1998 * Anspruch 1 * * Spalte 4, Zeile 6 *	ABIN LYNETTE M) 5 - Spalte 7, Zeile 42	1-10	
X	EP 0 224 016 A (BBC 3. Juni 1987 * Anspruch 1 * * Seite 2, Zeile 1	BROWN BOVERI & CIE) - Zeile 23 *	1-7	RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
X	EP 0 756 017 A (PEC 29. Januar 1997 * Seite 2, Zeile 36		12	C22F
A	OF POROSITY IN ALUM METALLURGICAL AND M B: PROCESS METALLUR PROCESSING SCIENCE,	ENIZATION ON INCIDENCE INUM ALLOY 2014 INGOT" ATERIALS TRANSACTIONS GY & MATERIALS Februar 1994, Seiten	11	
Der vo	vijegende Recherchenbericht wu	rde für alle Patentansprüche erstellt	-	
	Recherchenort	Abachlußdatum der Recherche		Prüfer
	DEN HAAG	15. Dezember 199	18 V1=	issi, E
X : von Y : von and A : tech O : nich	ATEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derseiben Kate- inologischer Hintergrund teschriftliche Offenbarung schenliteratung	ugrunde liegende okument, das jede ekledatum veröffe ng angeführtes Do ünden angeführte	Theorien oder Grundsätze och erst am oder ntlicht worden ist okument	

PO FORM 1503 03.82 (PC

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 98 81 0967

	EINSCHLÄGIGE	DOKUMENTE				
Kategorie	Kennzeichnung des Dokum der maßgebliche	ents mit Angabe, soweit erforderlich, in Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)		
A	WO 95 27091 A (REYNO 12. Oktober 1995 * Abbildungen 1,2 *	DLDS METALS CO)	11			
A .	WO 96 29440 A (KAIS) 26. September 1996 * Ansprüche 1-3 *	ER ALUMINIUM CHEM CORP)	11			
А	TEMPERATURE FRACTURE A1-Cu-Mg-Ag SHEET: (MODELING "	CHARACTERIZATION AND ATERIALS TRANSACTIONS,				
	•	 				
	•					
				RECHERCHIERTE SACHGEBIETE (Int.Cl.6)		
	•					
Dervo	wilegende Recherchenbericht wur	de für alle Patentansprüche erstellt	1			
	Recherchenort	Abschlußdatum der Recherche		Prüter		
	DEN HAAG	15. Dezember 199	8 Vla	ssi, E		
X:von Y:von and	ATEGORIE DER GENANNTEN DOKL besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg unologischer Hintergrund	E: âtteres Patentdo nach dem Anme mit einer D: in der Anmeldun orie L: aus anderen Grü	grunde liegende l kument, das jedo idedatum veröffer ig angeführtes Do inden angeführtes	Theorien oder Grundsätze ch erst am oder tillicht worden ist kument		
Q : nict	ntschriftliche Offenbarung schenitteratur		 å : Mitglied der gleichen Patentfamilie, übereinstimmendes 			

PO FORM 1503 03.8

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 98 81 0967

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

15-12-1998

	Recherchenberi ihrtes Patentdok		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US	5630889	Α	20-05-1997	WO	9839493 A	11-09-1998
US	5652063	Α.	29-07-1997	₩0 US US	9839494 A 5665306 A 5800927 A	11-09-1998 09-09-1998 01-09-1998
US	5800927	A	01-09-1998	US US	5665306 A 5652063 A	09-09-1997 29-07-1997
EP	0224016	A	03-06-1987	CH JP US	668269 A 62112748 A 4772342 A	15-12-1988 23-05-1987 20-09-1988
EP	0756017	A	29-01-1997	FR JP US	2737225 A 9165640 A 5738735 A	31-01-1997 24-06-1997 14-04-1998
WO	9527091	Α	12-10-1995	US	5503690 A.	02-04-1996
WO	9629440	Α	26-09-1996	AU EP	5422096 A 0817870 A	08-10-1996 14-01-1998

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82