射频电路开发培训

回級等指於

第五讲 巴伦电路

主讲: 汪 朋

QQ: 3180564167

01	>	巴伦的概念和意义
02	>	LC巴伦
03		微带巴伦
04	>	同轴线巴伦
05		实例分析

巴伦的概念和本质

Part

巴伦电路

巴伦电路的本质: Balance-unbalance,

单端到差分对之间的转换电路,将一路射频信号分为一对<u>幅度相</u> 同但相位相差180°的差分信号

巴伦在射频前 端应用示例

巴伦电路性 能参数

(1)端口阻抗

巴伦共三个端口,一个单端口和两个差分端口,特性阻抗为50欧姆,也可以根据射频收发机的具体要求设计其他阻抗值,要求两个差分端口的信号必须相等;

(2) 插损

差分端口功率比单端口低3dB, 即S21=S31=3dB;

(3)相位

差分端口信号幅度相同,相位相差180°。

Part LC巴伦

LC巴伦电路

LC巴伦电路的本质:

单端口信号到差分端口信号的匹配网络,同时也是LC功分器和LC 合路器的设计原型拓扑

$$wL = \sqrt{2 \times Z_{out} \times Z_{in}}$$

$$wC = \frac{1}{\sqrt{2 \times Z_{out} \times Z_{in}}}$$

串联电容使得串联支路电流相位超前; 并联电容使得并联支路电压相位滞后; 串联电感使得串联支路电流相位滞后; 并联电感使得并联支路支路电压超前。

复端阻抗LC 巴伦电路设计

P2_3/XOSC32K_Q2 DCOUPL **GND** AVDD4 **GND** AVDD1 **GND** AVDD2 GND **Ground Pad** RF P AVDD3 P1_2 XOSC Q2 P1_1 XOSC_Q1 DVDD2 14 15 16 17 18 19 20 C AVDD5 P1_0 P0_7 P0_6 P0_4 P0_3 P0_3 P0_1 P0_1

正在实际的射频电路中,差分端阻抗可能为复数形式,设计中需要考虑差分端的阻抗匹配

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Nominal output power	Delivered to a single-ended 50-Ω load through a balun using maximum-recommended output-power setting [1] requires minimum –3 dBm	0 -8	4.5	8 10	dBm
Programmable output power range			32		dB
Spurious emissions	Max recommended output power setting ⁽¹⁾				
Measured conducted according to stated regulations. Only largest spurious emission stated within each band.	25 MHz–1000 MHz (outside restricted bands) 25 MHz–2400 MHz (within FCC restricted bands) 25 MHz–1000 MHz (within ETSI restricted bands) 1800–1900 MHz (ETSI restricted band) 5150–5300 MHz (ETSI restricted band) At 2 × f _c and 3 × f _c (FCC restricted band) At 2 × f _c and 3 × f _c (ETSI EN 300-440 and EN 300-328) ⁽²⁾ 1 GHz–12.75 GHz (outside restricted bands) At 2483.5 MHz and above (FCC restricted band) $f_c = 2480 \text{ MHz}^{(3)}$		-60 -60 -60 -57 -55 -42 -31 -53		dBm
Error vector magnitude (EVM)	Measured as defined by [1] using maximum-recommended output-power setting [1] requires maximum 35%.		2%		(D)
Optimum load impedance	Differential impedance as seen from the RF port (RF_P and RF_N) towards the antenna		69 + j29		Ω

正在实际的射频电路中,差分端阻抗可能为复数形式,设计中需要考虑差分端的阻抗匹配

复端阻抗LC 巴伦电路设计

$$Z_{s} = R_{s} + jX_{s}$$

$$Z_{d} = R_{d} - jX_{d}$$
串联电容后的等效源阻抗
$$Z'_{s} = R_{s} - jX'_{s}$$

$$\Rightarrow X'_{s} = \frac{X_{d}}{R_{d}}R_{s}$$

$$\Rightarrow C_{ms} = \frac{1}{(\frac{X_{d}}{R_{d}}R_{s} + X_{s})w}$$

$$\Rightarrow Z_{d}Z'_{s} = R_{d}R_{s} + X_{d}X'_{s}$$

$$\Rightarrow L = \frac{\sqrt{2Z_{d}Z'_{s}}}{w}, C = \frac{1}{\sqrt{2Z_{d}Z'_{s}}w}$$

L=47 nH

S-PARAMETERS

Step=0.0010 GHz

L2 L=47 nH R=

$$X_s' = \frac{Xd}{Rd}Rs = \frac{60}{100} *80 = 48$$

Zout = 100 - j60

Zin = 80 + j35

$$Cms = \frac{1}{(X_s' + X_s)2\pi f} = \frac{1}{(48 + 35)2*3.14*500*10^6} = 3.837*10^{-4}*10^{-8} = 3.8pF$$

$$Zs' = 80 - j48$$

$$ZdZs = 100*80 + 60*48 = 10880$$

$$\Rightarrow L = \frac{\sqrt{2*10880}}{500*10^6*6.28} = \frac{147.5}{500*6.28} *10^{-6} = 29.5 / 6.28*10^{-8} = 295 nH / 6.28 = 47 nH$$

$$\Rightarrow C = \frac{1}{\sqrt{2*10880}} = 2.16*10^{-4}*10^{-8} = 2.16 pF$$

$$\Rightarrow C = \frac{1}{\sqrt{2*10880*500*10^6*6.28}} = 2.16*10^{-4}*10^{-8} = 2.16pF$$
Term
Term2
Num=2
Num=2
Num=3
Num=3
Num=3
Z=100-j*60 Ohm

Bart 3 微带巴伦

微带巴伦本质

微带巴伦电路的本质:

- (1) 差分端口间的微带线电角度为180°;
- (2) 单端口到两个差分端口的相位相同;

实现端口等分输出的条件:

$$z_2 = z_0 / \sqrt{2}, \quad z_1 = z_0$$

微带巴伦

- (1)等分耦合巴伦, k=1
- (2)频率为2.45GHz
- (3) Z1e=100,Z1o=41
- (4) Thrta1=90 theta2=50

Z2e=107.95, Z2o=62.282

$$Z_{2e} = \frac{kZ_{1e}^{2}(Z_{1e}^{2} - Z_{1o}^{2}) + \sqrt{k^{2}Z_{1e}^{4}(Z_{1e}^{2} - Z_{1o}^{2})^{2} - 4Z_{1e}^{6}Z_{1o}^{2}}}{2Z_{1e}^{2}\cot\theta_{2}}$$

$$Z_{2o} = \frac{kZ_{1e}^{2}(Z_{1e}^{2} - Z_{1o}^{2}) + \sqrt{k^{2}Z_{1e}^{4}(Z_{1e}^{2} - Z_{1o}^{2})^{2} - 4Z_{1e}^{6}Z_{1o}^{2}}}{2Z_{1e}^{2}\tan\theta_{2}}$$

对于1/4波长传输线,在对应频段上,A端短路时,B端阻抗呈无限大;B端短路时,A端阻抗呈无限大。如果A端开路时,B端阻抗呈现无限小,B端开路时,A端也一样,呈现短路状态。

1/4波长传输线

特殊巴伦形态 Part

振子的左臂与同轴电缆外导体(屏蔽层)连接,即图中A点。振子右臂与同轴电缆内导体(芯线)、λ/4波长短路棒上端连接。见图中B点。λ/4波长短路棒下端则通过金属短路环和同轴电缆外导体(屏蔽层)连接。从上图可以看出,从A点到B点的距离为两个1/4波长,即λ/4+λ/4=λ/2。所以,同轴电缆芯线的信号从B点传到到A点,正好走了1/2波程,相位正好相差180度。就把同轴电缆的不对称变成对称了

铜管巴伦

- ▶ 对照下面的短路棒巴伦示意图,信号从同轴电缆的芯线,即图中B点(振子左臂), 传输至A点(振子右臂),正好走了半个波长的路程,所以天线振子的两臂之间, 信号正好相差180度,同轴电缆的不平衡馈电,变成了平衡的馈电了。
- 开槽铜管,既起到平衡不平衡转换的作用,又起到了对振子两臂的支撑作用,使 天馈系统的机械结构更加稳定。

由两段特性阻抗均为50欧的同轴电缆构成,其中一段为λ/4,另一段为3λ/4,两段同轴电缆的内导体分别与振子的两臂在A、B点相连,另一端与主馈同轴电缆相连于C点。U形环两段同轴电缆的屏蔽线和主馈电缆的屏蔽层焊接在一起,但是和振子的两臂是绝缘的。从图中可以看出,A、B两馈电点的波程正好相差3λ/4-λ/4=λ/2,这样,就保证了两馈电点的信号电压大小相等,方向相反。因而实现了平衡馈电。

实例分析 Part

巴伦电路 CC2530射频前端

CC1101射频前端

巴伦电路 MT7620A

铜管巴伦

THANK YOU!!