Logistic Regression Basics

Roberta De Vito

- ▶ $Y \in \{0,1\}$
- $p(Y = 1|X) = \beta_0 + \beta_1 X$
- $p(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$

Question on prismia

Odds

The odds of Y = 1 are

$$\frac{P(Y=1)}{1-P(Y=1)}=e^{\beta_0+\beta_1X}$$

Odds can take values in all of \mathbb{R}_+ .

Odds II

if one out of ten people will vote Republican, what is the odds of voting the Democratic?

- 1. 1/5
- 2. 1/9
- 3. 9

Odds II

Who Will Win The 2020 Democratic Primary?

How each candidate's chances of winning more than half of pledged delegates v have changed over time

Logistic Regression

The logistic regression model relates the log-odds to the covariates through the model

$$logit(P(Y=1|X)) = \beta X,$$

where

$$logit(P(Y=1|X)) = log\left(\frac{P(Y=1|X)}{1-P(Y=1|X)}\right).$$

Example: National Election Study data set

ID code for the identification of the sample

Vote 1 Bush (Republican), 0 Clinton (Democratic)

Race Ethnicity: 0=white, 1=black, 0.5=other

Age 18, 65+

Educ1 Education 1 = no high school, 2 = high school graduate,

3 = some college, 4 =college grad

Sex 0=male, 1=female

income income (1=0-16th percentile, 2=17-33rd percentile,

3=34-67th percentile, 4=68-95th percentile,

5=96-100th percentile)

year year of voting

A first look to the data

Do you expect that the income will increase the probability to vote for the Republican?

Best Logistic Line

Do you expect that the income will increase the probability to vote for the Republican?

```
Coefficients:
Estimate Std. Error
(Intercept) -1.40213 0.18946
income 0.32599 0.05688
```

```
Coefficients:
Estimate Std. Error
(Intercept) -1.40213 0.18946
income 0.32599 0.05688
```

```
> invlogit(-1.40 + 0.33*3)
[1] 0.3989121
```

```
Coefficients:
Estimate Std. Error
(Intercept) -1.40213 0.18946
income 0.32599 0.05688
```

Any other idea?

```
Coefficients:
Estimate Std. Error
(Intercept) -1.40213 0.18946
income 0.32599 0.05688
```

```
> invlogit(-1.40 + 0.33*mean(income, na.rm=T))
[1] 0.4049001
> 
> mean(income, na.rm=T)
[1] 3.075488
```

Interpreting the logistic regression coefficients

- the intercept can only be interpreted assuming zero values for the other predictors
- ► A difference of 1 in income corresponds to a positive difference of 0.33 in the logit P(Y) = 1
 - evaluate how the probability differs with a unit difference in x near the central value
 - 2. compute the derivative of the logistic curve at the central value
- the "divide by 4 rule"
- odds ratio

Comparing two proportions

Let μ_j be the proportion of successes in in group j=0,1 Some commonly used quantities to compare the proportions are:

- ▶ Risk difference: $\mu_1 \mu_0$.
- ▶ Relative risk: $\frac{\mu_1}{\mu_0}$
- ▶ Odds ratio: $OR(\mu_1, \mu_2) = \frac{\frac{\mu_1}{1-\mu_1}}{\frac{\mu_0}{1-\mu_0}}$

Inference

```
> summary(fit.1)
Call:
glm(formula = vote ~ income, family = binomial(link = "logit"))
Deviance Residuals:
   Min
            10 Median
                           30
                                    Max
<u>-1.2756</u> -1.0034 -0.8796 1.2194
                                 1.6550
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
0.32599
                     0.05688 5.731 9.97e-09 ***
income
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1591.2 on 1178 degrees of freedom
Residual deviance: 1556.9 on 1177 degrees of freedom
 (368 observations deleted due to missingness)
ATC: 1560.9
Number of Fisher Scoring iterations: 4
```

- maximum likelihood estimation
- standard error
- ▶ is it significant the income coefficient?
- predictions

Inference

- ► Can construct confidence intervals for β , $[\hat{\beta} 1.96\hat{S}E(\hat{\beta}), \hat{\beta} + 1.96\hat{S}E(\hat{\beta})].$
- ► Can construct confidence intervals for e^{β} , $[e^{\hat{\beta}-1.96\hat{S}E(\hat{\beta})}, e^{\hat{\beta}+1.96\hat{S}E(\hat{\beta})}]$.
- ▶ Create a Wald test for H_0 : $\beta_k = \alpha$ using the test statistic

$$\frac{\hat{\beta}_k - \alpha}{\hat{S}E(\hat{\beta}_k)}$$

Inference II

```
> summary(fit.1)
Call:
glm(formula = vote ~ income, family = binomial(link = "logit"))
Deviance Residuals:
            10 Median 30
                                    Max
   Min
-1.2756 -1.0034 -0.8796 1.2194 1.6550
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
income
       0.32599    0.05688    5.731    9.97e-09 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1591.2 on 1178 degrees of freedom
Residual deviance: 1556.9 on 1177 degrees of freedom
  (368 observations deleted due to missingness)
AIC: 1560.9
Number of Fisher Scoring iterations: 4
```

Inference II

```
> with(fit.1, null.deviance - deviance)
[1] 20.47077
> with(fit.1, __df.null - __df.residual)
[1] 1
Source script or load data in R
> with(fit.1, pchisq(null.deviance - deviance, df.null - df.residual, lower.tail = FALSE))
[1] 6.054897e-06
```

Coefficients with standard errors

Latent-data formulation

$$y_i = \begin{cases} 1 & \text{if } z_i > 0 \\ 0 & \text{if } z_i < 0 \end{cases}$$
$$z_i = X_i \beta + \epsilon_i,$$
$$\Pr(\epsilon_i < x) = \text{logit}^{-1}(x) \text{ for all } x.$$

Latent-data formulation

