FISIKA

By: Sri Rezeki Candra Nursari Ionia Veritawati

Komposisi nilai

```
- ABSEN = 75 % (syarat kesertaan UAS)
```

```
• TUGAS = 30\%
```

• UAS
$$= 40\%$$

100%

Metode / Bentuk Pembelajaran

- Kuliah
- Latihan / Tugas
- Diskusi

- Tugas : soal-soal
- UTS + UAS : buka buku

Aturan kelas

- Kehadiran mahasiswa minimum adalah 75% dari jumlah kuliah.
- Tidak akan diberikan tugas tambahan apapun sebagai usaha untuk memperbaiki nilai akhir
- Mahasiswa harus menjunjung tinggi kejujuran
- akademis.

MATERI

- Besaran dan Satuan Fisika
- Gerak dalam satu dimensi
- Gerak dalam dua dan tiga dimensi
- Gelombang berdasarkan medium (gelombang mekanik dan elektromagnetik)
- Gelombang berdasarkan arah getar dan arah rambat (gelombang transversal dan longitudinal)
- Gelombang berdasarkan amplitudo (gelombang berjalan, diam)

- Osilasi harmonic dan osilasi teredam
- Gelombang tali, Gelombang bunyi, Superposisi gelombang, Gelombang berdiri, Resonansi, Efek Doppler

BESARAN DAN SATUAN

ILUSTRASI – BESARAN & SATUAN FISIKA

Rekor Dunia:

- Formula F1
- Lompat jauh
- Suhu terendah untuk mendinginkan logam

1 h 52 min

- Angkat besi
- Terkait :
- Jarak

BESARAN

- Kecepatan
- Massa (berat)
- suhu

SATUAN

- Meter
- Meter / detik
- Kilogram
- kelvin

BESARAN DAN NILAI – REKOR DUNIA

- Bagaimana kita bisa simpulkan bahwa telah diciptakan rekor dunia baru?
 - karena jarak lompatan sebelumnya dan jarak lompatan saat itu diukur.
 - Jauh rekor lompatan sebelumnya 171 kaki ;saat itu 274 kaki.
- Besaran tersebut baru memiliki makna jika nilainya diberikan.
 - Dengan adanya nilai maka semua orang akan memiliki kesimpulan yang sama :
 - nilai kecepatan mobil Formula 1 sebesar 250 km/jam
 - kecepatan kuda 50 km/jam
- Semua orang di dunia memiliki kesimpulan yang sama :
 - mobil Formula 1 bergerak 5X lebih cepat dari kuda.
- Jika hanya disebutkan, mobil Formula 1 lebih cepat dari kuda:
 - orang yang berbeda akan memiliki kesimpulan yang berbeda.

Besaran

- Besaran adalah segala sesuatu yang dapat diukur atau dihitung, dinyatakan dengan angka dan mempunyai satuan
- Syarat Besaran
 - Dapat diukur/dihitung
 - Dapat dinyatakan dengan angka atau mempunyai nilai
 - Mempunyai satuan

Besaran Fisika

- Besaran fisika adalah sifat benda atau gejala alam yang dapat diukur.
 - Panjang, massa, lama waktu pertandingan bola
 - suhu udara, kecepatan mobil
 - kekerasan benda, terang cahaya
 - energi yang tersimpan dalam bensin
 - Arus listrik yang mengalir dalam kabel, tegangan listrik PLN,
 - daya listrik lampu ruangan, dan massa jenis air
- Cabang fisika yang paling awal berkembang adalah mekanika.
- Di dalam mekanika, besaran fisika yang digunakan hanyalah panjang, massa, dan waktu.

Besaran Fisika

- Berdasarkan cara memperolehnya besaran dikelompokkan menjadi:
 - Besaran Fisika
 - 1. Besaran Pokok (ditentukan berdasarkan para ahli Fisika)
 - Panjang (m), massa (kg), waktu (s), suhu (K), kuat arus listrik (a), intensitas cahaya (cd), jumlah zat (mol)
 - 2. Besaran turunan (diturunkan dari besaran pokok)
 - Gaya (N) → massa, panjang, waktu
 - Volume (meter kubik) → panjang, etc
 - 2. Besaran Non Fisika

Besaran yang diperoleh dari perhitungan. Contoh: jumlah

7 besaran Pokok Fisika

Besaran Pokok	Penggunaan
Panjang	Mengukur panjang benda
Massa	Mengukur massa atau kandungan materi benda
Waktu	Mengukur selang waktu dua peristiwa atau kejadian
Kuat Arus Listrik	Mengukur arus listrik atau aliran muatan listrik dari satu tempat ke tempat lain
Suhu	Mengukur seberapa panas suatu benda
Intensitas Cahaya	Mengukur seberapa terang cahaya yang jatuh pada benda
Jumlah zat	Mengukur jumlah partikel yang terkandung dalam benda

- 7 besaran tersebut → jumlah paling sedikit yang masih memungkinkan besaran-besaran lain dapat diturunkan
- Jika < 7 → ada besaran lain yang tidak dapat diperoleh dari besaran pokok.

Satuan

 Satuan adalah pembanding dalam suatu pengukuran besaran

Sistem Satuan Internasional (SI)

 Dalam sistem SI ada 7 buah besaran dasar berdimensi dan 2 buah tambahan yang tidak berdimensi

Besaran Dasar

1	Panjang	→ meter	\rightarrow m
	i diljalig	7 1110101	/ 111

3. Waktu
$$\rightarrow$$
 sekon \rightarrow s

6. Jumlah zat
$$\rightarrow$$
 mola \rightarrow mol

Besaran Tambahan

- 1. Sudut datar \rightarrow radian \rightarrow rad
- 2. Sudut ruang → steradian → sr

Sistem Satuan Internasional (SI)

Besaran Jabaran

1.	Energi	→ joule	\rightarrow J
		and the second s	

2. Gaya
$$\rightarrow$$
 newton \rightarrow N

3. Daya
$$\rightarrow$$
 watt \rightarrow W

5. Frekwensi
$$\rightarrow$$
 hertz \rightarrow Hz

7. Muatan listrik
$$\rightarrow$$
 coulomb \rightarrow C

8. Fluks magnit
$$\rightarrow$$
 weber \rightarrow Wb

11. Induktansi
$$\rightarrow$$
 henry \rightarrow Hb

Satuan Statis Besar dan Statis Kecil

Besaran	Satuan		
	Statis Besar	Statis Kecil	
Panjang	meter	cm	
Gaya	kg gaya	gram gaya	
Massa	smsb	smsk	

Satuan Dinamis Besar dan Dinamis Kecil

Besaran	Satuan		
	Dinamis Besar	Dinamis Kecil	
Panjang	Meter	Cm	
Massa	/ Kg	, Gr	
Waktu	Sec	Sec	
Gaya	newton	dyne	
Usaha	N.m= joule	dyne.cm = erg	
Daya	joule/sec /	erg/sec	

Satuan Sistem Internasional (SI):

MKS '	CGS √
1 m	100 cm
1 kg	1000 gr

Sistem Satuan Inggris

Besaran	Satuan
Panjang	foot (kaki)
Massa	slug
Waktu	sec
Gaya	pound (lb)
Usaha	ft.lb
Daya	ft.lb/sec

Notasi Ilmiah (awalan yang digunakan dalam sistem SI)

Awalan	Simbol	Faktor
Exa	E	10 ¹⁸
Peta	Р	10 ¹⁵
Tera	Т	10 ¹²
Giga	G	10 ⁹
Mega	M	10 ⁶
Kilo	k	10 ³
Deka	da	10 ¹
Desi	d	10-1
Mili	m	10 ⁻³
Mikro	μ	10 ⁻⁶
Nano	n	10 ⁻⁹
Piko	р	10 ⁻¹²
Femto	f	10 ⁻¹⁵
Atto	а	10 ⁻¹⁸

Konversi Satuan

Panjang	Massa	Waktu
1 m = 39,37 inchi = 3,281 kaki	$1 \text{ amu} = 1,66 \times 10^{-27} \text{ kg}$	1 jam = 3.600 s
1 yard = 0,9144 m	1 ton = 1.000 kg	1 hari = 86.400 s
1 inchi = 2,54 cm	$1 g = 10^{-3} kg$	1 tahun = $3,16 \times 10^7$
$1 \text{ km} = 0.621 \text{ mil} = 10^3 \text{ m}$	1 slug = 14,59 kg	
1 mil = 5280 kaki		
$1 A = 10^{-10} m$		

Contoh

- Panjang
 - $60.000 \text{ m} = 6 \times 10^4 \text{ m} = 60 \text{ km}$
- Waktu
 - $0.003 \text{ s} = 3 \times 10^{-3} \text{ s} = 3 \text{ ms}$
- Volume
 - 1 liter = 10^{-3} m³
- Energi
 - 1 erg = 10^{-7} joule

Latihan

```
Konversi satuan panjang
1. 10 km = .... meter ?
2. 10 km = ..... cm ?
3. 10 km = .... mm?
4. 10 meter = ..... km?
5.10 \text{ cm} = .... \text{ km}?
6. 10 mm = ..... km?
7. 10 meter = ..... cm?
8. 10 meter = .... mm?
9. 10 cm = .... mm ?
10. 10 cm = .... meter ?
11. 10 mm = .... meter ?
12. 10 mm = .... cm?
Konversi satuan massa
1. 10 kg = ..... gram ?
2. 10 kg = .... mg?
3. 10 gram = .... mg?
4. 10 gram = ..... kg?
5. 10 mg = ..... kg?
6. 10 mg = ..... gram ?
Konversi satuan waktu
1. 2 jam = .... menit ?
2. 2 jam = .... sekon ?
3. 2 menit = .... sekon ?
4. 2 sekon = .... milisekon ?
```

```
(10)(1000) = 10.000 meter
(10)(100.000) = 1000.000 cm
(10)(1000.000) = <u>10.000.000</u> mm
 10 / 1000 = 1 / 100 = 0,01 km
10 / 100.000 = 1 / 10.000 = 0,0001 km
10 / 1000.000 = 1 / 100.000 = 0,00001 km
(10)(100) = 1000 cm
 (10)(1000) = 10.000 \,\mathrm{mm}
(10)(10) = 100 \text{ mm}
 10 / 100 = 1 / 10 = 0.1 meter
10 / 1000 = 1 / 100 = 0,01 meter
10 / 10 = 1 \text{ meter}
(10)(1000) = <u>10.000 gram</u>
(10)(1000.000) = 10.000.000 \,\mathrm{mg}
(10)(1000) = 10.000 \text{ mg}
10 / 1000 = 1 / 100 = 0,01 kg
10 / 1000.000 = 1 / 100.000 = 0,00001 \text{ kg}
10 / 1000 = 1 / 100 = 0,01 gram
(2)(60) = 120 \text{ menit}
(2)(3600) = 7200 \text{ sekon}
 (2)(60) = 120 \text{ sekon}
```

(2)(1000) = 2000 milisekon

Analisis Dimensi

- Format :
 - Rumus --> Satuan --> Dimensi
 - massa --> kg --> M
 - panjang --> m--> L
 - waktu --> S
- diketahui: massa (kg), panjang (m), waktu (s)
 - >> besaran dasar
- Dicari dimensi: kecepatan (m/s), percepatan (m/s²), luas (m²) dan volume (m³)
 - >> besaran turunan
 - >> Penurunan dari beberapa dimensi besaran dasar Fisika :

Analisis Dimensi

Rumus	>	Satuan	>	Dimensi
11411145		Sacaan		

Besaran	Satuan (SI)	Dimensi
Luas	m ²	$[A] = L^2$
Volume	m^3	[V] = L ³
Kecepatan	m/s	$[v] = L/T = LT^{-1}$
Percepatan	m/s ²	$[a] = L/T^2 = LT^{-2}$
Massa	kg	[m] = M

Referensi

- Young & Freedman (2002), Fisika Universitas, edisi X, Jilid I, Erlangga.
- Young & Freedman (2002), Fisika Universitas, edisi X, Jilid II, Erlangga.
- Frederick J. Bueche, Eugene Hecht (2006),
 Fisika Universitas, edisi X, Schaum's Outlines,
 Erlangga
- Mikrajuddin Abdullah (2016), Fisika Dasar I, ITB
- Mikrajuddin Abdullah (2017), Fisika Dasar II, ITB