Formale Sprachen und Komplexität Theoretische Informatik für Medieninformatiker Sommersemester 2022

Deterministische Endliche Automaten

Prof. Dr. David Sabel

LFE Theoretische Informatik

Motivation

- Formalismen, um Sprachen zu repräsentieren:
 - Grammatiken: Sie erzeugen Wörter einer formale Sprache.
 - Maschinenmodelle: Sie erkennen Wörter einer formalen Sprache.
- Welcher Formalismus "besser" ist, hängt oft von der konkreten Fragestellung ab.

Wichtige Fragestellung: Welche Maschine akzeptiert welche Sprachklasse?

Ausblick: Grammatiken & Maschinenmodelle für die Chomsky-Hierarchie

Ausblick: Grammatiken & Maschinenmodelle für die Chomsky-Hierarchie

Reguläre Sprachen

Wiederholung:

- Eine Sprache heißt regulär (bzw. vom Typ 3), wenn sie von einer Typ 3-Grammatik erzeugt wird.
- Eine Grammatik $G=(V,\Sigma,P,S)$ ist vom Typ 3 (bzw. regulär), wenn alle Produktionen von der Form

$$A \rightarrow a \text{ oder } A \rightarrow aB$$

 $\text{mit }A,B\in V\text{ und }a\in \Sigma \text{ sind.}$

Deterministische endliche Automaten

Die informelle Kurzfassung:

- Endliche Automaten lesen zeichenweise ein Eingabewort
- wechseln dabei den Zustand (eindeutig)
- Nur endlich viele Zustände
- Starten im Startzustand
- Nach Lesen der Eingabe: Akzeptieren oder Verwerfen
- Akzeptieren = in einem Endzustand
- Verwerfen = in keinem Endzustand
- Akzeptierte Sprache = alle Wörter, für die der Automat akzeptiert

DFA: Definition

Definition (Deterministischer Endlicher Automat, DFA)

Ein deterministischer endlicher Automat (determinististic finite automaton, DFA) ist ein 5-Tupel

$$M = (Z, \Sigma, \delta, z_0, E)$$

wobei

- Z ist eine endliche Menge von Zuständen,
- Σ ist das (endliche) Eingabealphabet mit $(Z \cap \Sigma) = \emptyset$,
- ullet $\delta: Z \times \Sigma \to Z$ ist die Zustandsüberführungsfunktion (oder Überführungsfunktion),
- $z_0 \in Z$ ist der Startzustand und
- $E \subseteq Z$ ist die Menge der Endzustände (oder auch akzeptierende Zustände).

Zustandsgraph eines DFA

Für DFA $M=(Z,\Sigma,\delta,z_0,E)$

- Startzustand $z_0 \in Z$: eingehender Pfeil \longrightarrow (z_0) ,
- Endzustände $z \in E$: doppelte Kreise z
- Übergänge $\delta(z_i,a)=z_j$ als Kante $\begin{pmatrix} z_i \end{pmatrix}$

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit $\delta(z_0, a) = z_1$ $\delta(z_1, b) = z_0$ $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$ $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M=(\{z_0,z_1,z_2\},\{a,b\},\delta,z_0,\{z_2\})$$
 mit $\delta(z_0,a)=z_1 \qquad \delta(z_1,b)=z_0 \ \delta(z_0,b)=z_0 \qquad \delta(z_2,a)=z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1

 $\delta(z_1, a) = z_2 \qquad \delta(z_2, b) = z_2$

- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von abbaaa:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- ullet Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- ullet Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von abbaaa:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- ullet Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- ullet Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- ullet Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

Abarbeitung von *abbaaa*:

- Starte in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- ullet Lese a und wechsle in z_1
- Lese a und wechsle in z_2
- Lese a und wechsle in z_2
- Akzeptiere

- Starte in z_0
- Lese b und wechsle in z_0
- Lese b und wechsle in z_0
- Lese a und wechsle in z_1
- Lese b und wechsle in z_0
- Verwerfe

Akzeptierte Spraches eines DFA

Definition (Akzeptierte Sprache eines DFA)

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA.

Wir definieren die Funktion $\widehat{\delta}: Z \times \Sigma^* \to Z$ durch

$$\widehat{\delta}(z,\varepsilon) := z \quad \text{und} \quad \widehat{\delta}(z,aw) := \widehat{\delta}(\delta(z,a),w)$$

Die von M akzeptierte Sprache ist

$$L(M) := \{ w \in \Sigma^* \mid \widehat{\delta}(z_0, w) \in E \}.$$

 $\widehat{\delta}$ wendet δ solange an, bis das Eingabewort abgearbeitet ist

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

$$L(M) = ?$$

DFA
$$M=(\{z_0,z_1,z_2\},\{a,b\},\delta,z_0,\{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

$$L(M) = ?$$

Beispiel

DFA
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
 $\delta(z_1, b) = z_0$
 $\delta(z_0, b) = z_0$ $\delta(z_2, a) = z_2$
 $\delta(z_1, a) = z_2$ $\delta(z_2, b) = z_2$

$$L(M) = \{uaav \mid uv \in \{a, b\}^*\}$$

Zusätzlich die Wörter a und ab akzeptieren

Lauf

Definition

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DFA und $w\in\Sigma^*$ mit |w|=n.

Die Folge von Zuständen q_0, \ldots, q_n mit $q_0 = z_0$ und $q_i = \delta(q_{i-1}, w[i])$

bezeichnet man als Lauf von M für Wort w.

Für einen solchen Lauf schreiben wir auch:

$$q_0 \xrightarrow{w[1]} q_1 \xrightarrow{w[2]} \cdots \xrightarrow{w[n-1]} q_{n-1} \xrightarrow{w[n]} q_n$$

$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_0\})$$
 mit

δ	a	b
z_0	z_1	z_0
z_1	z_2	z_1
z_2	z_0	z_2

Lauf für Wort abbaaabba:

$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_0\})$$
 mit

$$\begin{array}{c|c|c|c} \delta & a & b \\ \hline z_0 & z_1 & z_0 \\ z_1 & z_2 & z_1 \\ z_2 & z_0 & z_2 \end{array}$$

Lauf für Wort abbaaabba:

$$z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_1 \xrightarrow{b} z_1 \xrightarrow{a} z_2 \xrightarrow{a} z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_1 \xrightarrow{b} z_1 \xrightarrow{a} z_2$$

$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_0\})$$
 mit

$$\begin{array}{c|c|c|c} \delta & a & b \\ \hline z_0 & z_1 & z_0 \\ z_1 & z_2 & z_1 \\ z_2 & z_0 & z_2 \end{array}$$

Lauf für Wort abbaaabba:

$$z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_1 \xrightarrow{b} z_1 \xrightarrow{a} z_2 \xrightarrow{a} z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_1 \xrightarrow{b} z_1 \xrightarrow{a} z_2$$

Lauf für Wort bbababa:

$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_0\})$$
 mit

$$\begin{array}{c|c|c|c} \delta & a & b \\ \hline z_0 & z_1 & z_0 \\ z_1 & z_2 & z_1 \\ z_2 & z_0 & z_2 \\ \end{array}$$

Lauf für Wort abbaaabba:

$$z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_1 \xrightarrow{b} z_1 \xrightarrow{a} z_2 \xrightarrow{a} z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_1 \xrightarrow{b} z_1 \xrightarrow{a} z_2$$

Lauf für Wort bbababa:

$$z_0 \xrightarrow{b} z_0 \xrightarrow{b} z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_1 \xrightarrow{a} z_2 \xrightarrow{b} z_2 \xrightarrow{a} z_0$$