Do Analyst Recommendations Affect Stock Prices?

- Project analyses the impact of sell-side analysts' recommendations in the financial domain
 - o The recommendations can be summarised into a simple recommended action
 - Known as grades such as Buy, Hold and Sell
 - Common for grades to be revised over time as new information emerges
- Impact of analyst recommendations vary based on different levels of market efficiency
 - o Under strong market efficiency, analyst recommendations have no impact on stock price
 - All new information would be incorporated into prices immediately
 - Recommendations are redundant as prices would have already moved
 - o Analysts can provide new information to market participants under weaker market efficiency
 - Some information are not incorporated into prices
 - Presence of information asymmetries or information acquisition costs make them better suited to collect and disseminate information about the value of a stock
 - o Highly unlikely that asset prices incorporate all information
 - Mechanisms such as insider trading laws protect against this

Event Studies in Finance

- The general statistical methodology proceeds after data collection
 - o Develop a hypothesis around a specific type of event
 - Define and compute asset returns associated with the event
 - Statistically evaluate the null hypothesis that the event does not affect asset prices

Hypothesis Development

- Begins by defining the *event* of interest
 - Downgrade: analyst revises their recommendation downwards
 - o **Upgrade:** analyst revises their recommendation upwards
 - Neutral: no change in the analyst's recommendation

Previous Grade	New Grade		
	Buy	Hold	Sell
Buy	Neutral	Downgrade	Downgrade
Hold	Upgrade	Neutral	Downgrade
Sell	Upgrade	Upgrade	Neutral

- For the study, neutral recommendations are ignored (not an event)
- **Event:** recommendation by a *firm* on a given *day* that represents either an upgrade or downgrade of some company's stock
 - o Firm: financial institution the analyst works for
 - o **Ticker:** ticker of the company's stock
 - o **Event date:** date this recommendation was released
 - Event type: recommendations classification (upgrade/downgrade)
- Null hypothesis: "Changes in analyst recommendation have no effect on stock prices"

Outcome Variable

- Let $\tau = 0$ represent the event date when the analyst releases a new recommendation
 - \circ P_{τ} denotes the adjusted *closing* stock price on day τ
 - o r_{τ} denotes the return from $P_{\tau-1}$ to P_{τ}

$$r_0 = \frac{P_0 - P_{-1}}{P_{-1}}$$

- Analysis is performed in a window surrounding the event date (choice is completely arbitrary)
 - Should repeat for different windows and verify results are consistent
 - \circ Example uses a 5-day window from $\tau = -2$ to $\tau = 2$
- The abnormal return filters out the systematic component from the stock returns
 - o Recall that stock returns have a systematic and an idiosyncratic component
 - Simply subtract the market return from the stock return
 - $\circ r_{\mathrm{mkt},\tau}$ denotes the market return for a particular au
- Outcome variable is defined as the Cumulative Abnormal Returns (CAR)
 - For a 5-day window from $\tau = -2$ to $\tau = 2$, we have CAR[-2,2]

$$CAR_{j} = \sum_{\tau=-2}^{\tau=2} (r_{i,\tau} - r_{\text{mkt},\tau})$$

- o j represents the event ID
- \circ τ denotes the *event time* variable (0 at the event date)
- o $r_{i,\tau}$ denotes the stock return for company i
- $\circ r_{\mathrm{mkt}, au}$ denotes the overall market return

Testing the Null Hypothesis

- Assuming independence, we test the hypothesis that CAR = 0 using a simple t-test
 - Compute the average CAR, \overline{CAR} and its variance $\hat{\sigma}_{CAR}^2$ across all events j=1,...,N

$$\overline{CAR} = \frac{1}{N} \sum_{j=1}^{N} CAR_{j}$$

$$\hat{\sigma}_{CAR}^2 = \frac{1}{N-1} \sum_{j=1}^{N} \left(CAR_j - \overline{CAR} \right)^2$$

• Then, compute the corresponding t-statistic to test our hypothesis

$$t = \frac{\overline{CAR}}{\widehat{\sigma}_{CAR}^2 / \sqrt{N}}$$

- This follows a student t-distribution with N-1 degrees of freedom
- Converges to a standard normal distribution for a large number of events
- Reject H_0 if the absolute value of the t-statistic is greater than 1.96 for $\alpha = 5\%$