Appendix

To see all of the data and code that went into this project, you can go to the Github page here.

Data Set Columns

Full Batter Data set (Suffix not included for brevity):

- Player Current year and player name (key identifier, current only)
- Age Current age of player (current only)
- G Games Played
- PA Plate Appearances
- HR Home Runs
- R Runs Scored
- RBI Runs Batted In
- SB Stolen Bases
- BB rate Walk Rate
- K rate Strikeout Rate
- ISO Isolated Power
- BABIP Batting Average Balls in Play
- AVG Batting Average
- OBP On-Base Percentage
- SLG Slugging Percentage
- wOBA Weighted On-Base Average
- wRC_plus Weighted Runs Created Plus
- BsR Baserunning
- Off Offense Rating
- Def Defense Rating
- WAR Wins Above Replacement
- MLS Major League Service (current only)
- Salary That year's Salary
- Salary Y Next year's salary (Response)

Tuned Batter Data set (Suffix not included for brevity):

- Player Current year and player name (key identifier, current only)
- Age Current age of player (current only)
- PA Plate Appearances
- HR Home Runs
- RBI Runs Batted In
- wOBA Weighted On-Base Average
- WAR Wins Above Replacement
- MLS Major League Service (current only)
- Salary That year's Salary (current only)
- Salary_change Difference between last year and current year's salary (P1 and P2)
- Salary_Y Next year's salary (Response)

• Interactions between Salary_C and all other predictors

Full Pitcher Data set (Suffix not included for brevity):

- Player Current year and player name (key identifier, current only)
- Age Current age of player (current only)
- W Wins
- L Losses
- SV Saves
- G Games Pitched
- GS Games Started
- IP Innings Pitched
- BB_9 Walks per 9 Innings
- HR 9 Home Runs per 9 Innings
- BABIP Batting Average Balls in Play
- LOB rate Rate of runners left on base
- GB rate Groundball rate
- HR_FB_rate Home Run to Flyball rate
- vFA Average Fastball Velocity
- ERA Earned Run Average
- ERA minus ERA minus
- FIP Fielding Independent Pitching
- FIP_minus FIP minus
- xFIP Expected FIP
- xFIP_minus Expected FIP minus
- WAR Wins Above Replacement
- SIERA Skill-Interactive ERA
- MLS Major League Service (current only)
- Salary That year's Salary
- Salary_Y Next year's salary (Response)

Tuned Pitcher Data set (Suffix not included for brevity):

- Player Current year and player name (key identifier, current only)
- Age Current age of player (current only)
- W Wins
- GS Games Started
- IP Innings Pitched
- ERA_minus ERA minus
- FIP minus FIP minus
- WAR Wins Above Replacement
- MLS Major League Service (current only)
- Salary That year's Salary
- Salary_Y Next year's salary (Response)
- Interactions between Salary_C and all other predictors

Correlation Plots

Batter Correlation Plot

Pitcher Correlation Plot

Model Hyperparameters

Batter Full Models

- Regularization
 - penalty = 2.05e-10
 - mixture = 0.314 (0 indicates Ridge, 1 indicates LASSO)
- Random Forest
 - mtry = 58
 - trees = 1000
 - $-\min_n = 16$
- XGBoost
 - mtry = 56
 - trees = 1000
 - $-\ \min_n = 9$
 - tree_depth = 9
 - $-\ learn_rate = 0.0023$
 - loss reduction = 6.04e-08
 - sample size = 0.76

Batter Tuned Models

- Regularization
 - penalty = 0.0047
 - mixture = 0.03 (0 indicates Ridge, 1 indicates LASSO)
- Random Forest
 - mtry = 33
 - trees = 1000
 - $-\min_{n} = 2$
- XGBoost
 - mtry = 28
 - trees = 1000
 - $\min_{} n = 12$
 - tree depth = 13
 - $-\ learn_rate = 0.0025$
 - loss reduction = 1.17e-07
 - $\text{ sample_size} = 0.63$

Pitcher Full Models

- Regularization
 - penalty = 1.28e-09
 - mixture = 0.062 (0 indicates Ridge, 1 indicates LASSO)
- Random Forest
 - mtry = 63
 - trees = 1305

$$-\min_n = 10$$

• XGBoost

$$-\ \mathrm{mtry} = 56$$

$$-$$
 trees = 1823

$$- \min_{} n = 4$$

$$-$$
 tree_depth = 9

$$-$$
 learn_rate = 0.0018

$$-$$
 loss_reduction = $2.08e-08$

$$- sample_size = 0.56$$

Pitcher Tuned Models

• Regularization

- penalty = 7.11e-05
- mixture = 0.97 (0 indicates Ridge, 1 indicates LASSO)

• Random Forest

- mtry = 126
- trees = 799
- $-\min_n = 6$

\bullet XGBoost

- mtry = 119
- trees = 870
- $-\min_n = 6$
- tree_depth = 10
- learn_rate = 0.0021
- loss_reduction = 2.34e-10
- $\ sample_size = 0.64$