Leis de Velocidade

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Nível I

PROBLEMA 1.1

3D01

Considere a reação química:

$$4\,NO_2\,(g) + O_2(g) \longrightarrow 2\,N_2O_5(g)$$

Em um experimento, são formados $6 \text{ mol de } N_2O_5 \text{ em um minuto}$

Assinale a alternativa que mais se aproxima da velocidade média de consumo de dióxido de nitrogênio.

- \mathbf{A} 100 mmol s⁻¹
- \mathbf{B} 200 mmol s⁻¹
- \mathbf{C} 300 mmol s⁻¹
- \mathbf{D} 400 mmol s⁻¹
- $E 500 \,\mathrm{mmol}\,\mathrm{s}^{-1}$

PROBLEMA 1.2 3D02

Considere a reação química:

$$HBrO_3(aq) + HBr(aq) \longrightarrow Br_2(aq) + H_2O(aq)$$

Em um experimento, são consumidos 20 mmol de HBr em um segundo.

Assinale a alternativa que mais se aproxima da velocidade média de formação de bromo.

- A $12 \,\mathrm{mmol}\,\mathrm{s}^{-1}$
- \mathbf{B} 14 mmol s⁻¹
- $16 \,\mathrm{mmol}\,\mathrm{s}^{-1}$
- \mathbf{D} 18 mmol s⁻¹
- E 20 mmol s⁻¹

PROBLEMA 1.3 3D06

Considere a reação química:

$$FeCl_2(aq) + O_2(aq) + HCl(aq) \longrightarrow FeCl_3(aq) + H_2O(l)$$

Quando a concentração de ferro (II) é duplicada, a velocidade da aumenta 8 vezes. Quando as concentrações de ferro (II) e oxigênio são duplicadas, a velocidade aumenta 16 vezes. Quando a concentração de todos os reagentes é duplicada, a velocidade aumenta 32 vezes.

Assinale a alternativa com a ordem da reação em relação ao ácido clorídrico.

- **A** 0
- E
- C
- **D** 3
- **E** 4

PROBLEMA 1.4

3D05

Considere a reação química:

$$CH_3Br(aq) + OH^-(aq) \longrightarrow CH_3OH(aq) + Br^-(aq)$$

Quando a concentração de hidróxido é duplicada, a velocidade da reação dobra. Quando a concentração de bromometano é triplicada, a velocidade da reação triplica.

Assinale a alternativa com a ordem global da reação.

- Α
- В
- C
- D
- E

PROBLEMA 1.5

3D03

A reação de Sabatier-Sanderens consiste na hidrogenação catalítica de alcenos ou de alcinos com níquel, para a obtenção de alcanos. Considere os resultados obtidos na reação de hidrogenação do acetileno:

t/min	0	4	6	10
$\overline{[C_2H_2]/molL^{-1}}$	50	38	35	30

Assinale a alternativa que mais se aproxima da velocidade média de consumo do hidrogênio no período de 4 min a 6 min.

- **B** $1.50 \, \text{mol} \, \text{L}^{-1} \, \text{min}^{-1}$
- \mathbf{C} 2 mol L⁻¹ min⁻¹
- **D** $2,50 \, \text{mol} \, \text{L}^{-1} \, \text{min}^{-1}$
- \mathbf{E} 3 mol L⁻¹ min⁻¹

PROBLEMA 1.6

3D08

Considere a reação de decomposição do N₂O₅:

$$2\,NO_2(g) \longrightarrow 2\,NO(g) + O_2(g)$$

Essa reação possui constante cinética $k=0,500\,atm^{-1}\,s^{-1}$. Em um experimento 460 mg de NO $_2$ são adicionados em um recipiente de 224 mL a 0 °C.

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de NO.

- \mathbf{A} 5 atm s⁻¹
- **B** $10 \, \text{atm s}^{-1}$
- **c** $50 \, \text{atm s}^{-1}$
- **D** $100 \, \text{atm s}^{-1}$
- **E** $500 \, \text{atm s}^{-1}$

Considere a reação química:

$$2\mathbf{A}(g) + 2\mathbf{B}(g) + \mathbf{C}(g) \longrightarrow 3\mathbf{G}(g) + 4\mathbf{F}(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

#	[A] /mM	[B] /mM	[C] /mM	$r_{\text{G}} / (mM s^{-1})$
1	10	100	700	2
2	20	100	300	4
3	20	200	200	16
4	10	100	400	2
5	50	300	500	

Assinale a alternativa que mais se aproxima da velocidade inicial de consumo de **A** no experimento **5**.

- **A** 5 mmol L^{-1} s⁻¹
- **B** $6 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $7 \text{ mmol L}^{-1} \text{ s}^{-1}$
- ${f D}$ 8 mmol L⁻¹ s⁻¹
- **E** 9 mmol L^{-1} s⁻¹

PROBLEMA 1.8

3D10

3D09

Considere a reação química:

$$2\mathbf{A}(g) + 2\mathbf{B}(g) \longrightarrow \mathbf{C}(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

#	[A] /mM	[B] /mM	$r_{C} / (mM s^{-1})$
1	0,600	0,300	12,6
2	0,600	0,300	1,40
3	0,600	0,100	4,20
4	0,170	0,250	

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de **C** no experimento **4**.

- **A** $0,590 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $0,630 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $0,740 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **D** $0.870 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- \mathbf{E} 0,960 mmol L⁻¹ s⁻¹

Considere a reação química:

$$\mathbf{A}(aq) + \mathbf{B}(aq) + \mathbf{C}(aq) \longrightarrow \mathbf{G}(aq)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

#	[A]/mM	$[\mathbf{B}] / mM$	$\left[\boldsymbol{C}\right] /mM$	$\rm r_G/(mMs^{-1})$
1	1,25	1,25	1,25	8,70
2	2,50	1,25	1,25	17,4
3	1,25	3	1,25	50,8
4	1,25	3	3,75	457
5	3	1	1,15	

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de **G** no experimento **5**.

- **A** 10,5 mmol L^{-1} s⁻¹
- **B** $11.5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $12,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **D** $13,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $14,5 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$

PROBLEMA 1.10

3D12

Considere a reação de síntese do gás fosgênio.

$$CO\left(g\right)+Cl_{2}(g)\longrightarrow COCl_{2}(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

#	[CO] /mM	$[Cl_2]/mM$	$r_{COCl_2}/(mMs^{-1})$
1	0,120	0,200	0,121
2	0,240	0,200	0,241
3	0,240	0,400	0,682
4	0,170	0,340	

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de COCl₂ no experimento **4**.

- **A** $0.170 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- **B** $0,370 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- $0.570 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$
- \mathbf{D} 0,770 mmol L⁻¹ s⁻¹
- **E** $0,970 \, \text{mmol} \, \text{L}^{-1} \, \text{s}^{-1}$

PROBLEMA 1.15

3D17

A substância **A** sofre decomposição com cinética de ordem zero. **Assinale** a alternativa *correta*.

- A A velocidade inicial de consumo de A é maior que sua média.
- **B** A velocidade inicial de consumo de **A** é função da concentração de **A**.
- **C** A velocidade inicial de consumo de **A** permanece constante durante a reação.
- **D** O logaritmo da concentração de **A** diminui linearmente com o tempo.
- E A concentração de A diminui exponencialmente.

PROBLEMA 1.12

3D14

3D13

Uma substância gasosa se decompõe por um processo com cinética de orem zero com constante $k=1\times 10^{-3}$ atm s^{-1} . Em um experimento, a pressão inicial dessa substância é 0,600 atm. **Assinale** a alternativa que mais se aproxima do tempo necessário para que um terço da substância se decomponha.

- **A** 100 s
- **B** 200 s
- **c** 400 s
- **D** 600 s
- **E** 700 s

PROBLEMA 1.13

3D15

Considere a reação de decomposição do N₂O₅:

$$2 N_2 O_5(g) \longrightarrow 4 NO_2(g) + O_2(g)$$

Com cinética de primeira ordem e constante $k=5,20\times 10^{-3}~s^{-1}$. Em um experimento a concentração inicial de N_2O_5 é 40 mmol L^{-1} . **Assinale** a alternativa que mais se aproxima da concentração de N_2O_5 após 600 s do início do experimento.

- **A** 1,40 mmol L
- **B** 1,80 mmol L
- c 2,20 mmol L
- **D** 2,60 mmol L
- **E** 3,80 mmol L

PROBLEMA 1.14

3D16

Um fármaco é metabolizado pelo corpo humano por um processo com cinética de primeira ordem com constante $k=7,60\times 10^{-3}\,\text{min}^{-1}$. Uma dose contendo 20 mg desse fármaco é administrada em um paciente.

Assinale a alternativa que mais se aproxima da massa de fármaco restante após 5 h da administração.

- A 2 mg
- B 6 mg
- **c** 10 mg
- **D** 14 mg
- **E** 18 mg

Considere a reação de decomposição do etano a 700 °C:

-

$$C_2H_6 \longrightarrow 2\,CH_3$$

Com cinética de primeira ordem e constante $k=2\,h^{-1}$. Em um experimento a pressão inicial de etano é 20 atm. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a pressão de metano caia para 2 atm

- **A** 110 min
- **B** 140 min
- **c** 170 min
- **D** 200 min
- **E** 230 min

PROBLEMA 1.16

3D18

O mercúrio é metabolizado pelo corpo humano por um processo com cinética de primeira ordem de meia-vida de 70 dias. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a concentração do mercúrio nos tecidos de um paciente decaia para 12,5% de seu valor inicial.

- A 70 dias
- **B** 140 dias
- **c** 210 dias
- **D** 280 dias
- **E** 350 dias

PROBLEMA 1.17

3D19

Considere a reação de decomposição do NO₂:

$$2\,NO_2(g) \longrightarrow 2\,NO(g) + O_2(g)$$

Com cinética de segunda ordem e constante $k=0,540\,\mathrm{L\,mol}^{-1}\,\mathrm{s}^{-1}$. Em um experimento a concentração inicial de NOBr é $0,300\,\mathrm{mol}\,\mathrm{L}^{-1}$. **Assinale** a alternativa que mais se aproxima do tempo necessário para que a concentração de NOBr caia para $0,100\,\mathrm{mol}\,\mathrm{L}^{-1}$

- A 10 mmol L
- B 12 mmol L
- c 14 mmol L
- D 16 mmol L
- E 18 mmol L

Leis de Velocidade | Gabriel Braun, 2022

3D21

Considere a reação de decomposição do N₂O a 1000 K:

$$2 N_2 O(g) \longrightarrow 2 N_2(g) + O_2(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação:

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de oxigênio em um experimento em que a pressão parcial de $\rm N_2O$ é 30 atm.

- \mathbf{A} 12 atm s⁻¹
- \mathbf{B} 24 atm s⁻¹
- \mathbf{C} 72 atm s⁻¹
- \mathbf{D} 360 atm s⁻¹
- $E 720 \, atm \, s^{-1}$

PROBLEMA 1.19

3D20

Considere a reação de decomposição do NOBr:

$$2 \text{ NOBr}(g) \longrightarrow 2 \text{ NO}(g) + Br_2(g)$$

Com cinética de segunda ordem e constante $k=0,800\,L\,mol^{-1}\,s^{-1}$. Em um experimento a concentração inicial de NOBr é 860 mol L^{-1} . **Assinale** a alternativa que mais se aproxima da concentração de NOBr após 22 s.

- A 26 mmol L
- B 35 mmol L
- c 44 mmol L
- D 53 mmol L
- E 62 mmol L

Considere a reação de decomposição do HI a 800 K:

$$H_2(g) + I_2(g) \longrightarrow 2\,HI(g)$$

Considere os resultados obtidos no estudo da cinética dessa reação com mesma concentração inicial de H_2 e I_2 :

Assinale a alternativa que mais se aproxima da velocidade inicial de formação de HI em um experimento em que a concentração de H_2 e I_2 é 2 mol L^{-1} .

- \mathbf{A} 6 atm s⁻¹
- **B** $12 \, \text{atm s}^{-1}$
- \mathbf{C} 24 atm s⁻¹
- \mathbf{D} 48 atm s⁻¹
- \mathbf{E} 72 atm s⁻¹

Nível II

PROBLEMA 2.1

3D23

Considere quatro séries de experimentos em que quatro espécies químicas reagem entre si, à pressão e temperatura constantes:

$$A(aq) + B(aq) + C(aq) + D(aq) \longrightarrow produtos$$

Em cada série, fixam-se as concentrações de três espécies e varia-se a concentração, c_0 , da quarta. Para cada série, determinase a velocidade inicial da reação, v_0 , em cada experimento. Os resultados de cada série são apresentados a seguir.

Assinale a alternativa com a ordem global da reação.

Α 3

5

6

7

Gabarito

Nível I

1. B 4. C 5. E 2. A 6. D 7. 10. D 8. 11. C 12. 16. C 17. B 18. C 19. D 20. C

Nível II

1. C