Récurrence

Romain Lemahieu

December 13, 2023

Première récurrence 1

Soit $(u_n)_{n\in\mathbb{N}}$

$$\begin{cases} u_0 = 0 \\ u_{n+1} = 2u_n + 1 \end{cases}$$

Montrer que

$$\forall n \in \mathbb{N}, \quad u_n = 2^n - 1$$

1.1 **Définition**

Une propriété est une "fonction" qui est soit vraie ou fausse, par exemple :

$$\mathcal{P}_1(x)$$
: " $x+1=4$ "

$$\mathcal{P}_1(2)$$
 est fausse

$$\mathcal{P}_1(3)$$
 est vraie

$$\mathcal{P}_2(x) : "x < 2"$$

$$\mathcal{P}_2(2)$$
 est fausse

$$\mathcal{P}_1\left(-\sqrt{3}
ight)$$
 est vraie se $\mathcal{P}_3(-2;t^2)$ est vraie $\mathcal{P}_3(-2;t^2)$

$$\mathcal{P}_3(x;y) : "x > y"$$

$$\mathcal{P}_3(2;4)$$
 est fausse

$$\mathcal{P}_3(-2;t^2)$$
 est vraie pour tout réel t

Dans le raisonnement par récurrence classique utilise une propriété définie sur un sous ensemble d'un entier avec qu'un paramètre

Rédaction:

Soit la propriété définie pour tout entier naturel $\mathcal{P}(n)$: " $u_n = 2^n - 1$ "

$$\forall n \in \mathbb{N}, u_n = 2^n - 1 \Leftrightarrow \mathcal{P}(n) \text{ est vraie}$$

1.2 Initialisation

Rédaction:

Montrons que $\mathcal{P}(0)$ est vraie :

$$u_0 = 0 \quad 2^0 - 1 = 0$$

Donc \mathcal{P} est initialisée.

Hérédité 1.3

En supposant pour un certain entier naturel k que $\mathcal{P}(k)$ est vraie montrons que $\mathcal{P}(k+1)$ l'est :

Broullion:

Hypothèse de récurrence : $\mathcal{P}(k)$: " $u_k=2^k-1$ " Ce que on veut démontrer : $\mathcal{P}(k+1)$: " $u_{k+1}=2^{k+1}-1$ "

1.3.1 En partant d'énoncé :

$$u_{k+1} = 2u_k + 1$$

$$u_{k+1} = 2 \times (2^k - 1) + 1$$

$$u_{k+1} = 2 \times 2^k - 2 + 1$$

$$u_{k+1} = 2^{k+1} - 1$$

d'après l'énoncé par hypothèse de récurrence

Donc \mathcal{P} est héréditaire.

1.3.2 En partant de la propriété:

$$u_{k} = 2^{k} - 1$$

$$2u_{k} = 2 \times (2^{k} - 1)$$

$$u_{k+1} = 2 \times 2^{k} - 2 + 1$$

$$u_{k+1} = 2^{k+1} - 1$$

par hypothèse de récurrence

d'après l'énoncé

Donc \mathcal{P} est héréditaire

1.4 Conclusion

La propriété \mathcal{P} étant initialisée au rang 0 et héréditaire $\mathcal{P}(n)$ est vraie pour tout entier naturel n donc :

$$\forall n \in \mathbb{N}, \quad u_n = 2^n - 1$$

2 Exercice

1. Soit u_n definie pour tout entier naturel n tel que :

$$\begin{cases} u_0 &= -2\\ u_{n+1} &= -3u_n + 2 \end{cases}$$

Montrer que $\forall n \in \mathbb{N}, \quad u_n = -2, 5 \times (-3)^n + 0.5$

- 2. Montrer que la somme des angles d'un polygone de n côtés est égale à 180+180n
- 3. Montrer l'inégalité de bernoulli :

$$(x+1)^n > 1 + nx$$

pour tout entier naturel non nul réel x non nul supérieur ou égal à -1

4. (Récurrence Double) Exercice 7 LLG. Soit u_n definie pour tout entier naturel n tel que :

$$\begin{cases} u_0 = 2 \\ u_1 = 5 \\ u_{n+2} = 5u_{n+1} - 6u_n. \end{cases}$$

Montrer que $\forall n \in \mathbb{N}u_n = 2^n + 3^n$

5. (Récurrence forte) Montrer que pour tout entier naturel n strictement supérieur à 1 s'exprime comme un produit de facteurs premiers d'une unique façon, à l'ordre près des facteurs.

6. Polynômes de Tchebychev de première espèce (Ex CGL 2023). Soit T_n definie pour tout entier naturel n tel que :

$$\begin{cases} T_0(x) = 0 \\ T_1(x) = x \\ T_{n+2} = 2xT_{n+1}(x) - T_n(x) \end{cases}$$

Montrer que $T_n(\cos(\theta)) = \cos(n\theta)$, sachant que:

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$