

Fast computation and duality for tree sequence statistics

Peter Ralph[‡], Kevin Thornton[†], and Jerome Kelleher[§]

Mathematics and Biology, University of Oregon Ecology & Evolutionary Biology, UC Irvine § Big Data Institute, University of Oxford

paper: (Ralph et al., 2019) code: https://github.com/tskit-dev

OREGON

Tree sequences: all the genealogies

A tree sequence describes a correlated sequence of genealogical trees describing how a set of chromosomes are related.

- The *pedigree* plus crossover locations would give us the tree sequence for everyone, ever.
- Much less fully describes the history of a sample of genomes.
- Almost the Ancestral Recombination Graph (ARG).

Kelleher et al. (2016) introduced the succinct tree sequence data structure for msprime; it was updated in Kelleher et al. (2018).

Tables: a data structure for tree sequences

- Edges: Who inherits from who.
- Records: interval (left, right); parent node; child node.
- **Nodes:** The ancestors those happen in. Records: time ago (of birth); individual.
- Mutations: When state changes along the tree. Records: site index; node index; derived state.
- Sites: Where mutations fall on the genome. Records: genomic position; root state.
- Individuals: Optional. Containers for polyploids. Records: metadata; pointed to by nodes.

Example

References

- J. Kelleher, A. M. Etheridge, and G. McVean. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput Biol, 12(5), May 2016. URL https: //www.ncbi.nlm.nih.gov/pubmed/27145223.
- J. Kelleher, K. Thornton, J. Ashander, and P. Ralph. Efficient pedigree recording for fast population genetics simulation. PLoS Computational Biology, accepted, URL https://www.biorxiv.org/content/ early/2018/06/07/248500.
- P. Ralph, K. Thornton, and J. Kelleher. Efficiently summarizing relationships in large samples: a general duality between statistics of genealogies and genomes. bioRxiv, 2019. doi: 10.1101/779132. URL https://www.biorxiv.org/ content/early/2019/09/23/779132.

Another example

Nodes:		Edges:							
id	time	left	right	parent	child	cont'd			
0	0.00	0.00	1.00	8	2	left	right	parent	child
1	0.00	0.00	1.00	8	6	0.54	0.69	17	12
2	0.00	0.00	1.00	9	5	0.69	0.91	18	4
3	0.00	0.00	1.00	9	7	0.69	0.91	18	11
4	0.00	0.00	1.00	10	3	0.00	0.30	19	4
5	0.00	0.00	1.00	10	8	0.69	0.69	19	11
6	0.00	0.00	1.00	11	0	0.19	0.46	19	12
7	0.00	0.00	1.00	11	1	0.69	0.99	19	12
8	0.09	0.00	1.00	12	9	0.00	0.19	19	14
9	0.31	0.00	1.00	12	10	0.93	0.99	19	15
10	0.39	0.00	1.00	13	4	0.30	0.46	19	16
11	0.41	0.99	1.00	13	12	0.91	0.93	19	16
12	0.43	0.00	0.19	14	11	0.69	0.69	19	17
13	0.97	0.00	0.19	14	12	0.69	0.91	19	18
14	1.04	0.00	0.19	15	4	0.19	0.30	20	11
15	1.21	0.93	1.00	15	11	0.19	0.30	20	19
16	1.36	0.93	1.00	15	13	0.60	0.69	21	11
17	1.45	0.30	0.54	16	4	0.60	0.69	21	17
18	2.41	0.30	0.54	16	4	0.54	0.60	22	11
19	2.46	0.30	0.93	16	11	0.46	0.54	22	12
20	2.85	0.30	0.54	16	11	0.46	0.54	22	16
21	3.84			17		0.54	0.60	22	17
22	4.45	0.54	0.69	17	4				

Sample weights and summary functions

A list of sample weights w assigns a numeric value $w(v) \in \mathbb{R}^k$ to every sample node.

The subtree weight $x_T(u)$ on tree T of node u is the sum of weights of all sample nodes descended from u:

$$x_T(u) = \sum_{v:v \le_T u} w(v)$$

where $v \leq_T u$ if u is on the path from v to root in the tree T. The total weight is the sum of the weights over all samples: $w_{\mathsf{total}} = \sum_{v} w(v)$.

A summary function is a real-valued function $f(w_1, \ldots, w_k)$ with the property that $f(0) = f(w_{total}) = 0$.

Site statistics

The **allele weight** for allele a at site j is the total weight of all samples inheriting this allele:

$$\bar{x}_j(a) = \sum_{v: g_j(v)=a} w(v)$$

where the sum is over all sample nodes v for which $g_i(v)$, the allele carried by node v at site j, is equal to a.

The **site statistic** at site j:

$$Site(f, w)_j = \sum_a f(\bar{x}_j(a)), \tag{1}$$

and in the *window* [i, j):

Site
$$(f, w)_{[i,j)} = \frac{1}{j-i} \sum_{k=i}^{j-1} \text{Site}(f, w)_k.$$
 (2)

Branch statistics

The **Branch statistic** for a tree T is

$$\mathsf{Branch}(f,w)_T = \sum_{u \in T} \beta_T(u) \left(f(x_T(u)) + f(w_{\mathsf{total}} - x_T(u)) \right),$$

where $\beta_T(u)$ is the length of the branch ancestral to node u in tree T, and in a window [i, j) is

$$\mathsf{Branch}(f,w)_{[i,j)} = \frac{1}{j-i} \sum_{k=1}^{|\mathbb{T}|} \ell_k(i,j) \mathsf{Branch}(f,w)_{T_k}. \tag{4}$$

Examples

For allele frequencies, use sample weights $\mathbf{1}_S$ with $\mathbf{1}_S(u)=1$ if $u \in S$ and $\mathbf{1}_S(u) = 0$ otherwise.

Nucleotide diversity of S: Let $w = \mathbf{1}_S$, and

$$f(x) = \frac{x(n-x)}{n(n-1)}.$$

Segregating sites in S: Again, $w = \mathbf{1}_S$, and

$$f(x) = \begin{cases} 1 - \frac{x}{n} & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Phenotypic correlations: With normalized phenotypes z(u), use $w_1(u) = z(u)$, and $w_2(u) = 1/n$, and

$$f(x_1, x_2) = \frac{x_1^2}{2x_2(1 - x_2)n(n - 1)}.$$

Then, Site $(w, f)_j = r_i^2$ is the squared correlation between zand the allele at site j, while $Branch(w, f)_T = r_j^2$ is the expected squared correlation between z and mutations on this tree.

A general class of statistics

Every single-site statistic is a function from genotype patterns to \mathbb{R} , and each SNP genotype pattern is determined by the samples below the edge it occurs on.

Ingredients: sample weights and a summary function.

- 1. Find the total weight of everyone below each mutation/branch.
- 2. Apply the summary function to this weight.
- 3. Add these up and divide by the genome length.

Computation

- 0. Find x for each node in the first tree.
- 1. Compute f(x) for each mutation on this tree, and add these to the total.
- 2. Update the tree, and update n for each node in the path from changed nodes to the root.
- 3. Return to (1).
- 4. When done, divide the total by the sequence length.

Complexity for N samples at L SNPs with T trees:

$$O(N + L + T \log(N)),$$

much better than using the genotype matrix, which is O(NL).

Duality

Under infinite-site mutation at rate μ ,

$$\mu \mathsf{Branch}(f, w)_{[i,j)} = \mathbb{E}\left[\mathsf{Site}(f, w)_{[i,j)} \mid \mathbb{T}_{[i,j)}\right],\tag{5}$$

and

$$\begin{split} \text{Var}[\text{Site}(f,w)_{[i,j)}] &= \mu^2 \, \text{Var}\left[\text{Branch}(f,w)_{[i,j)}\right] \\ &+ \frac{\mu}{j-i} \mathbb{E}\left[\text{Branch}(f^2,w)_{[i,j)}\right]. \end{split}$$

After a few selective sweeps:

Real data: 1000 Genomes tree sequences from Relate (Speidel et al 2019):

