Stochastic processes

Vu Anh Thu

Hanoi National University of Education

March 4, 2022

Table of Contents

- Motivation
- 2 Preliminaries
- 3 Definition
- 4 Examples

Table of Contents

- Motivation
- 2 Preliminaries
- Openition
- 4 Examples

Motivation

Stochastic processes play an important role in Mathematics and other sciences.

 Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner, i.e growth of a bacterial population, change of the price of a stock.

Motivation

Stochastic processes play an important role in Mathematics and other sciences.

- Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner, i.e growth of a bacterial population, change of the price of a stock.
- Stochastic processes have applications in many disciplines such as biology, physics, computer science, telecommunications, finance.

Table of Contents

- Motivation
- Preliminaries
- 3 Definition
- 4 Examples

Preliminaries

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

Let (E, τ) be a topological space and ε be the Borel σ -algebra on E (i.e. the σ -algebra generated by open sets of E).

X and Y are two random variables with values in E.

X and Y have the same law if $\mathbb{P}(X \in A) = \mathbb{P}(Y \in A)$ for all Borel subsets A of E.

Preliminaries

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

Let (E, τ) be a topological space and ε be the Borel σ -algebra on E (i.e. the σ -algebra generated by open sets of E).

X and Y are two random variables with values in E.

X and Y have the same law if $\mathbb{P}(X \in A) = \mathbb{P}(Y \in A)$ for all Borel subsets A of E.

Definition

Similarly, X and Y are two d-dimensional random vectors with values in E^d .

Then X and Y have the same law if $\mathbb{P}(X \in A) = \mathbb{P}(Y \in A)$ for all Borel subsets A of E^d .

Table of Contents

- Motivation
- 2 Preliminaries
- Oefinition
- 4 Examples

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

A stochastic process $(X_t)_{t\in[0,\infty)}$ is a collection of random variables on (Ω,\mathcal{F}) with values in a measurable space (E,ε) , i.e.

for all $t \in [0, \infty)$: $X_t : \Omega \to E$ is \mathcal{F} - measurable

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

A stochastic process $(X_t)_{t\in[0,\infty)}$ is a collection of random variables on (Ω,\mathcal{F}) with values in a measurable space (E,ε) , i.e.

for all
$$t \in [0,\infty)$$
: $X_t : \Omega \to E$ is $\mathcal F$ - measurable

Remark:

Sometimes, a stochastic process $(X_t)_{t\in[0,\infty)}$ is considered as a map:

$$X:[0,\infty)\times\Omega\to E$$

s.t the random variables X_t is \mathcal{F} - measurable for all $t \in [0, \infty)$. We write $X_t = X_t(\omega) = X(t, \omega)$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

A filtration is a collection of σ -algebras \mathcal{F}_t such that:

$$\begin{aligned} \mathcal{F}_t \subseteq \mathcal{F} \ \forall t \geq 0 \\ \text{and} \ \forall s,t \geq 0 \colon \mathcal{F}_s \subseteq \mathcal{F}_t \ \text{if} \ s \leq t \end{aligned}$$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

A filtration is a collection of σ -algebras \mathcal{F}_t such that:

$$\mathcal{F}_t \subseteq \mathcal{F} \ \forall t \geq 0$$
 and $\forall s,t \geq 0$: $\mathcal{F}_s \subseteq \mathcal{F}_t$ if $s \leq t$

Definition

- a) A stochastic process $(X_t)_{t\in[0,\infty)}$ is adapted to a filtration $(\mathcal{F}_t)_{t\geq0}$ if X_t is \mathcal{F}_t measurable for all $t\geq0$.
- b) The natural filtration for the process $(X_t)_{t\geq 0}$: $\mathcal{F}^X_t = \sigma(X_s: s\leq t)$.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

A filtration is a collection of σ -algebras \mathcal{F}_t such that:

$$\mathcal{F}_t \subseteq \mathcal{F} \ \forall t \geq 0$$
 and $\forall s,t \geq 0$: $\mathcal{F}_s \subseteq \mathcal{F}_t$ if $s \leq t$

Definition

- a) A stochastic process $(X_t)_{t\in[0,\infty)}$ is adapted to a filtration $(\mathcal{F}_t)_{t\geq0}$ if X_t is \mathcal{F}_t measurable for all $t\geq0$.
- b) The natural filtration for the process $(X_t)_{t\geq 0}$: $\mathcal{F}^X_t = \sigma(X_s:s\leq t)$.

Remark: The process $(X_t)_{t\geq 0}$ is always adapted to its natural filtration.

← □ ▶ ← □ ▶

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

Given a filtration $(\mathcal{F}_t)_{t\geq 0}$. We define \mathcal{F}_{∞} to be the σ -algebra generated by $\cup_{t\geq 0}\mathcal{F}_t$.

We write
$$\mathcal{F}_{\infty} = \bigvee_{t \geq 0} \mathcal{F}_t$$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

Given a filtration $(\mathcal{F}_t)_{t\geq 0}$. We define \mathcal{F}_{∞} to be the σ -algebra generated by $\cup_{t\geq 0}\mathcal{F}_t$.

We write
$$\mathcal{F}_{\infty} = \bigvee_{t \geq 0} \mathcal{F}_t$$

Definition

A filtration $(\mathcal{F}_t)_{t\geq 0}$ is right continuous if $\mathcal{F}_{t+}=\mathcal{F}_t \ \forall t\geq 0$

where
$$\mathcal{F}_{t+} = \cap_{\epsilon>0} \mathcal{F}_{t+\epsilon}$$

Vu Anh Thu (HNUE)

Stochastic processes

March 4, 2022

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

Given a filtration $(\mathcal{F}_t)_{t\geq 0}$. We define \mathcal{F}_{∞} to be the σ -algebra generated by $\cup_{t\geq 0}\mathcal{F}_t$.

We write
$$\mathcal{F}_{\infty} = \bigvee_{t \geq 0} \mathcal{F}_t$$

Definition

A filtration $(\mathcal{F}_t)_{t\geq 0}$ is right continuous if $\mathcal{F}_{t+}=\mathcal{F}_t \ \forall t\geq 0$

where
$$\mathcal{F}_{t+} = \cap_{\epsilon > 0} \mathcal{F}_{t+\epsilon}$$

Remark: Most of the filtration we will come across will be right continuous.

Vu Anh Thu (HNUE)

Stochastic processes

March 4, 2022

Example of a non-right continuous filtration

Example

Let
$$\Omega = \{a, b\}$$
, $\mathcal{F} = 2^{\Omega}$, $\mathbb{P}(\{a\}) = \mathbb{P}(\{b\}) = \frac{1}{2}$. Define $X_t(\omega) = \begin{cases} 0 & \text{if } t \leq 1 \\ 0 & \text{if } t > 1 \text{ and } \omega = a \\ t - 1 & \text{if } t > 1 \text{ and } \omega = b \end{cases}$

The natural filtration for the process X is not right continuous.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

a) A filtration $(\mathcal{F}_t)_{t\geq 0}$ is complete if \mathcal{F}_t is complete for all t, i.e.:

 $\forall A \in \mathcal{F}_t, \mathbb{P}(A) = 0$ then $B \in \mathcal{F}_t$ for all $B \subset A$.

b) A filtration is right continuous and complete is said to satisfy the *usual* conditions.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Definition

a) A filtration $(\mathcal{F}_t)_{t\geq 0}$ is complete if \mathcal{F}_t is complete for all t, i.e.:

 $\forall A \in \mathcal{F}_t, \mathbb{P}(A) = 0$ then $B \in \mathcal{F}_t$ for all $B \subset A$.

b) A filtration is right continuous and complete is said to satisfy the *usual* conditions.

Definition

The minimal augmented filtration generated by a process X is the smallest filtration that is right continuous and complete and with respect to which the process X is adapted.

Construct the minimal augmented filtration

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a stochastic process $(X_t)_{t\geq 0}$. We construct the minimal augmented filtration of X as follows:

• Step 1: Take the natural filtration of X:

$$\mathcal{F}_t^X = \sigma(X_s : s \le t)$$

Construct the minimal augmented filtration

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a stochastic process $(X_t)_{t\geq 0}$. We construct the minimal augmented filtration of X as follows:

• Step 1: Take the natural filtration of X:

$$\mathcal{F}_t^X = \sigma(X_s : s \leq t)$$

• Step 2: Complete the natural filtration \mathcal{F}_t^X by

Let
$$\mathcal{F}_t^0 = \sigma(\mathcal{F}_t^X \cup \mathcal{N})$$

where ${\cal N}$ is the set contains all subsets of the sets with probability 0

Construct the minimal augmented filtration

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a stochastic process $(X_t)_{t\geq 0}$. We construct the minimal augmented filtration of X as follows:

• Step 1: Take the natural filtration of X:

$$\mathcal{F}_t^X = \sigma(X_s : s \leq t)$$

ullet Step 2: Complete the natural filtration \mathcal{F}_t^X by

Let
$$\mathcal{F}_t^0 = \sigma(\mathcal{F}_t^X \cup \mathcal{N})$$

where ${\cal N}$ is the set contains all subsets of the sets with probability 0

• Step 3: Let $\mathcal{F}_t = \cap_{\epsilon>0} \mathcal{F}_{t+\epsilon}^0$

Definition

a) Two stochastic processes X and Y are said to be indistinguishable if

$$\mathbb{P}(X_t = Y_t \ \forall t \geq 0) = 1$$

b) Two stochastic processes X and Y are versions of each other if for each $t \ge 0$:

$$\mathbb{P}(X_t = Y_t) = 1$$

Vu Anh Thu (HNUE)

Definition

a) Two stochastic processes X and Y are said to be indistinguishable if

$$\mathbb{P}(X_t = Y_t \ \forall t \geq 0) = 1$$

b) Two stochastic processes X and Y are versions of each other if for each t > 0:

$$\mathbb{P}(X_t = Y_t) = 1$$

Remark:

- Two indistinguishable processes are versions of each other.
- However, two processes which are versions of each other are not necessarily indistinguishable.

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q C・

Example of two process which are versions of each other but not indistinguishable

Example

 $\Omega=[0,1],~\mathcal{F}$ is the Borel σ - algebra on [0,1] \mathbb{P} is the Lebesgue measure on [0,1] i.e., $\mathbb{P}([a,b])=b-a~\forall 0\leq a\leq b\leq 1$ Define

$$X_{t} = 0 \ \forall t \geq 0$$

$$Y_{t} = \begin{cases} 1 \ \text{if } \omega = t \\ 0 \ \text{if } \omega \neq t \end{cases}$$

Then X_t and Y_t are versions of each other, but not indistinguishable!

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 く (*)

Definition

a) Two stochastic processes X and Y are said to be indistinguishable if

$$\mathbb{P}(X_t = Y_t \ \forall t \geq 0) = 1$$

b) Two stochastic processes X and Y are versions of each other if for each $t \ge 0$:

$$\mathbb{P}(X_t = Y_t) = 1$$

Remark:

- Two indistinguishable processes are versions of each other.
- However, two processes which are versions of each other are not necessarily indistinguishable.
- If X and Y are discrete-time processes, then these two definitions are equivalent.

Definition

Given a stochastic process $(X_t)_{t\geq 0}$.

For each ω , the function $t \to X(t, \omega)$ is called a path of X.

Definition

Given a stochastic process $(X_t)_{t\geq 0}$.

For each ω , the function $t \to X(t, \omega)$ is called a path of X.

Definition

If the paths of X are continuous functions except for a set of ω with probability 0, then X is a continuous process.

Definition

Given a stochastic process $(X_t)_{t\geq 0}$.

For each ω , the function $t \to X(t, \omega)$ is called a path of X.

Definition

If the paths of X are continuous functions except for a set of ω with probability 0, then X is a continuous process.

Remark: Two stochastic processes X and Y are indistinguishable, then their paths are equal almost surely.

Definition

Given a stochastic process $(X_t)_{t>0}$.

For each ω , the function $t \to X(t, \omega)$ is called a path of X.

Definition

If the paths of X are continuous functions except for a set of ω with probability 0, then X is a continuous process.

Remark: Two stochastic processes X and Y are indistinguishable, then their paths are equal almost surely.

Definition

A process X is called *cadlag* if almost all its paths are *cadlag* (i.e. its paths are right continuous and has left limits except for a set of ω with probability 0)

Definition

Suppose X and Y are stochastic processes with continuous paths. Let $E=\mathcal{C}([0,\infty))$ together with the metric defined by

$$d(f,g) = \sup_{t \geq 0} \mid f(t) - g(t) \mid$$

Define

$$\overline{X}: \Omega \to E$$
 $\omega \to X(t,\omega)$
 $\overline{Y}: \Omega \to E$
 $\omega \to Y(t,\omega)$

Then \overline{X} and \overline{Y} are random variables with values in the metric space E. If \overline{X} and \overline{Y} have the same law, then we also say that stochastic processes X and Y have the same law.

Definition

Two stochastic processes X and Y have the same finite-dimensional distribution if for every $n \ge 1$ and every $t_1 < \ldots < t_n$, the laws of $(X_{t_1}, \ldots, X_{t_n})$ and $(Y_{t_1}, \ldots, Y_{t_n})$ are equal.

Definition

Two stochastic processes X and Y have the same *finite-dimensional distribution* if for every $n \ge 1$ and every $t_1 < \ldots < t_n$, the laws of $(X_{t_1}, \ldots, X_{t_n})$ and $(Y_{t_1}, \ldots, Y_{t_n})$ are equal.

Remark: If two stochastic processes X and Y are versions of each other, then they have the same *finite-dimensional distribution*.

Kolmogorov continuity theorem

Definition

A function $f:[0,\infty)\to\mathbb{R}$ is said to be Holder continuous of order α if there exists a constant M such that for all $s,t\in[0,\infty)$:

$$|f(t)-f(s)|\leq M|t-s|^{\alpha}$$

Theorem

Let α , ε , c > 0. If a process $(X_t)_{t \in [0,1]}$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfies for $s, t \in [0,1]$:

$$\mathbb{E}[\mid X_t - X_s \mid^{\alpha}] \le c \mid t - s \mid^{1 + \varepsilon}$$

then there exists a version of the process $(X_t)_{t\in[0,1]}$ that is a continuous process and whose paths are γ -Holder continuous for every $\gamma\in[0,\frac{\varepsilon}{\alpha})$.

4 D > 4 B > 4 B > 4 B > 9 Q C

20 / 24

Vu Anh Thu (HNUE) Stochastic processes March 4, 2022

Kolmogorov continuity theorem

Theorem

Let α , ε , c > 0. If a process $(X_t)_{t \in [0,+\infty)}$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ satisfies for $s, t \in [0,+\infty)$:

$$\mathbb{E}[\mid X_t - X_s \mid^{\alpha}] \leq c \mid t - s \mid^{1+\varepsilon}$$

then there exists a version of the process $(X_t)_{t\in[0,+\infty)}$ that is a continuous process.

Table of Contents

- Motivation
- 2 Preliminaries
- 3 Definition
- 4 Examples

Examples

- Brownian motion
 - It is known as Mathematical model for the movement of a pollen immersed in water.
 - It is basic to the study of stochastic differential equations, financial mathematics, etc...

Examples

Brownian motion

- It is known as Mathematical model for the movement of a pollen immersed in water.
- It is basic to the study of stochastic differential equations, financial mathematics, etc...
- Poisson process
 - It is first used to study the number of phone calls occurring in a certain period of time.
 - It is the building block for an important class of stochastic processes known as Levy processes.

References

- Richard F.Bass. (2011). Stochastic processes. Cambridge.
- Klenkle, A. (2006). *Probability Theory: A Comprehensive Course*. Springer.