Gaussian Mixture Models

David Rosenberg, Brett Bernstein

New York University

April 26, 2017

Intro Question

Intro Question

Suppose we begin with a dataset $\mathcal{D} = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^2$ and we run k-means (or k-means++) to obtain k cluster centers. Below we have drawn the cluster centers. If we are given a new $x \in \mathbb{R}^2$, we can assign it a label based on which cluster center is closest. What regions of the plane below correspond to each possible labeling?

Intro Solution

- Note that each cell is disjoint (except for the boarders), and convex.
- This can be thought of as a limitation of k-means.

Gaussian Mixture Models

Yesterday's Intro Question

Consider the following probability model for generating data.

- **9** Roll a weighted k-sided die to choose a label $z \in \{1, ..., k\}$. Let π denote the PMF for the die.
- ② Draw $x \in \mathbb{R}^d$ randomly from the multivariate normal distribution $\mathcal{N}(\mu_z, \Sigma_z)$.

Solve the following questions.

- **1** What is the joint distribution of x, z given π and the μ_z, Σ_z values?
- **②** Suppose you were given the dataset $\mathcal{D} = \{(x_1, z_1), \dots, (x_n, z_n)\}$. How would you estimate the die weightings, and the μ_z , Σ_z values?
- **3** How would you determine the label for a new datapoint x?

Yesterday's Intro Solution

The joint PDF/PMF is given by

$$p(x,z) = \pi(z)f(x; \mu_z, \Sigma_z)$$

where

$$f(x; \mu_z, \Sigma_z) = \frac{1}{\sqrt{|2\pi\Sigma_z|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

We could use maximum likelihood estimation. Our estimates are

$$n_{z} = \sum_{i=1}^{n} \mathbf{1}(z_{i} = z)$$

$$\hat{\pi}(z) = \frac{n_{z}}{n}$$

$$\hat{\mu}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} x_{i}$$

$$\hat{\Sigma}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} (x_{i} - \hat{\mu}_{z})(x_{i} - \hat{\mu}_{z})^{T}.$$

Probabilistic Model for Clustering

- Let's consider a generative model for the data.
- Suppose
 - 1 There are k clusters.
 - We have a probability density for each cluster.
- Generate a point as follows
 - **1** Choose a random cluster $z \in \{1, 2, ..., k\}$.
 - Choose a point from the distribution for cluster Z.
- The clustering algorithm is then:
 - Use training data to fit the parameters of the generative model.
 - For each point, choose the cluster with the highest likelihood based on model.

Gaussian Mixture Model (k = 3)

- **1** Choose $z \in \{1, 2, 3\}$
- 2 Choose $x \mid z \sim \mathcal{N}(X \mid \mu_z, \Sigma_z)$.

Gaussian Mixture Model Parameters (k Components)

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means: $\mu = (\mu_1, ..., \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

• What if one cluster had many more points than another cluster?

Gaussian Mixture Model: Joint Distribution

• Factorize the joint distribution:

$$p(x,z) = p(z)p(x \mid z)$$

= $\pi_z \mathcal{N}(x \mid \mu_z, \Sigma_z)$

- π_z is probability of choosing cluster z.
- $x \mid z$ has distribution $\mathcal{N}(\mu_z, \Sigma_z)$.
- z corresponding to x is the true cluster assignment.
- Suppose we know all the parameters of the model.
- Then we can easily compute the joint p(x,z), and the conditional $p(z \mid x)$.

Latent Variable Model

- We observe x.
- In the intro problem we had labeled data, but here we don't observe z, the cluster assignment.
- Cluster assignment z is called a hidden variable or latent variable.

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.

The GMM "Inference" Problem

- We observe x. We want to know z.
- The conditional distribution of the cluster z given x is

$$p(z \mid x) = p(x, z)/p(x)$$

- The conditional distribution is a soft assignment to clusters.
- A hard assignment is

$$z^* = \underset{z \in \{1, \dots, k\}}{\operatorname{arg\,max}} p(z \mid x).$$

• So if we have the model, clustering is trivial.

Mixture Models

Gaussian Mixture Model: Marginal Distribution

• The marginal distribution for a single observation x is

$$p(x) = \sum_{z=1}^{k} p(x, z)$$
$$= \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x \mid \mu_{z}, \Sigma_{z})$$

- Note that p(x) is a convex combination of probability densities.
- This is a common form for a probability model...

Mixture Distributions (or Mixture Models)

Definition

A probability density p(x) represents a mixture distribution or mixture model, if we can write it as a convex combination of probability densities. That is,

$$p(x) = \sum_{i=1}^{k} w_i p_i(x),$$

where $w_i \ge 0$, $\sum_{i=1}^k w_i = 1$, and each p_i is a probability density.

- In our Gaussian mixture model, x has a mixture distribution.
- \bullet More constructively, let S be a set of probability distributions:
 - ullet Choose a distribution randomly from S.
 - Sample x from the chosen distribution.
- Then x has a mixture distribution.

Learning in Gaussian Mixture Models

The GMM "Learning" Problem

- Given data x_1, \ldots, x_n drawn from a GMM,
- Estimate the parameters:

Cluster probabilities:
$$\pi = (\pi_1, ..., \pi_k)$$

Cluster means:
$$\mu = (\mu_1, ..., \mu_k)$$

Cluster covariance matrices:
$$\Sigma = (\Sigma_1, \dots \Sigma_k)$$

- Once we have the parameters, we're done.
- Just do "inference" to get cluster assignments.

Estimating/Learning the Gaussian Mixture Model

- One approach to learning is maximum likelihood
 - find parameter values that give **observed data** the **highest likelihood**.
- The model likelihood for $\mathcal{D} = \{x_1, \dots, x_n\}$ is

$$L(\pi, \mu, \Sigma) = \prod_{i=1}^{n} p(x_i)$$
$$= \prod_{i=1}^{n} \sum_{z=1}^{k} \pi_z \mathcal{N}(x_i \mid \mu_z, \Sigma_z).$$

As usual, we'll take our objective function to be the log of this:

$$J(\pi, \mu, \Sigma) = \sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}$$

Properties of the GMM Log-Likelihood

GMM log-likelihood:

$$J(\pi, \mu, \Sigma) = \sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}$$

Let's compare to the log-likelihood for a single Gaussian:

$$\sum_{i=1}^{n} \log \mathcal{N}(x_i \mid \mu, \Sigma)$$

$$= -\frac{nd}{2} \log (2\pi) - \frac{n}{2} \log |\Sigma| - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)' \Sigma^{-1}(x_i - \mu)$$

- For a single Gaussian, the log cancels the exp in the Gaussian density.
 - \implies Things simplify a lot.
- For the GMM, the sum inside the log prevents this cancellation.
 - Expression more complicated. No closed form expression for MLE.

Issues with MLE for GMM

Identifiability Issues for GMM

Suppose we have found parameters

Cluster probabilities: $\pi = (\pi_1, \dots, \pi_k)$

Cluster means: $\mu = (\mu_1, \dots, \mu_k)$

Cluster covariance matrices: $\Sigma = (\Sigma_1, \dots \Sigma_k)$

that are at a local minimum.

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?
- Assuming all clusters are distinct, there are k! equivalent solutions.
- Not a problem per se, but something to be aware of.

Singularities for GMM

Consider the following GMM for 7 data points:

- Let σ^2 be the variance of the skinny component.
- What happens to the likelihood as $\sigma^2 \rightarrow 0$?
- In practice, we end up in local minima that do not have this problem.
 - Or keep restarting optimization until we do.
- Bayesian approach or regularization will also solve the problem.

From Bishop's Pattern recognition and machine learning, Figure 9.7.

Gradient Descent / SGD for GMM

What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

- Can be done but need to be clever about it.
- Each matrix $\Sigma_1, \ldots, \Sigma_k$ has to be positive semidefinite.
- How to maintain that constraint?
 - Rewrite $\Sigma_i = M_i M_i^T$, where M_i is an unconstrained matrix.
 - Then Σ_i is positive semidefinite.

The EM Algorithm for GMM

MLE for GMM

• From yesterday's intro questions, we know that we can solve the MLE problem if the cluster assignments z_i are known

$$n_{z} = \sum_{i=1}^{n} \mathbf{1}(z_{i} = z)$$

$$\hat{\pi}(z) = \frac{n_{z}}{n}$$

$$\hat{\mu}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} x_{i}$$

$$\hat{\Sigma}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} (x_{i} - \hat{\mu}_{z})(x_{i} - \hat{\mu}_{z})^{T}.$$

 In the EM algorithm we will modify the equations to handle our evolving soft assignments, which we will call responsibilities.

Cluster Responsibilities: Some New Notation

• Denote the probability that observed value x_i comes from cluster j by

$$\gamma_i^j = \mathbb{P}(Z = j \mid X = x_i).$$

- The **responsibility** that cluster j takes for observation x_i .
- Computationally,

$$\gamma_i^j = \mathbb{P}(Z = j \mid X = x_i).
= p(Z = j, X = x_i)/p(x)
= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(x_i \mid \mu_c, \Sigma_c)}$$

- The vector $(\gamma_i^1, \dots, \gamma_i^k)$ is exactly the **soft assignment** for x_i .
- Let $n_c = \sum_{i=1}^n \gamma_i^c$ be the "number" of points **soft assigned** to cluster c.

EM Algorithm for GMM: Overview

- If we know π and μ_j , Σ_j for all j then we can easily find $\gamma_i^j = \mathbb{P}(Z = j \mid X = x_i)$.
- If we know the (soft) assignments, we can easily find estimates for π , μ_i , Σ_i for all j.
- Repeatedly alternate the previous 2 steps.

EM Algorithm for GMM: Overview

- **1** Initialize parameters μ , Σ , π .
- "E step". Evaluate the responsibilities using current parameters:

$$\gamma_i^j = \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_{c=1}^k \pi_c \mathcal{N}(x_i \mid \mu_c, \Sigma_c)}, \quad \text{for } i = 1, \dots, n \text{ and } j = 1, \dots, k.$$

"M step". Re-estimate the parameters using responsibilities. [Compare with intro question.]

$$\mu_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c x_i$$

$$\Sigma_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (x_i - \mu_{\text{MLE}}) (x_i - \mu_{\text{MLE}})^T$$

$$\pi_c^{\text{new}} = \frac{n_c}{n},$$

Repeat from Step 2, until log-likelihood converges.

Initialization

• First soft assignment:

• First soft assignment:

After 5 rounds of EM:

From Bishop's Pattern recognition and machine learning, Figure 9.8.

After 20 rounds of EM:

From Bishop's Pattern recognition and machine learning, Figure 9.8.

Relation to K-Means

- EM for GMM seems a little like k-means.
- In fact, there is a precise correspondence.
- First, fix each cluster covariance matrix to be $\sigma^2 I$.
- Then the density for each Gausian only depends on distance to the mean.
- As we take $\sigma^2 \rightarrow 0$, the update equations converge to doing *k*-means.
- If you do a quick experiment yourself, you'll find
 - Soft assignments converge to hard assignments.
 - Has to do with the tail behavior (exponential decay) of Gaussian.
- Can use k-means++ to initialize parameters of EM algorithm.

Math Prerequisites for General EM Algorithm

Jensen's Inequality

• Which is larger: $\mathbb{E}[X^2]$ or $\mathbb{E}[X]^2$?

Jensen's Inequality

- Which is larger: $\mathbb{E}[X^2]$ or $\mathbb{E}[X]^2$?
- Must be $\mathbb{E}[X^2]$ since $Var[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2 \geqslant 0$.
- More general result is true:

Theorem

Jensen's Inequality If $f : R \to R$ is convex and X is a random variable then $\mathbb{E}[f(X)] \geqslant f(\mathbb{E}[X])$.

Proof of Jensen

Exercise

Suppose X can take exactly two value: x_1 with probability π_1 and x_2 with probability π_2 . Then prove Jensen's inequality.

Proof of Jensen

Exercise

Suppose X can take exactly two value: x_1 with probability π_1 and x_2 with probability π_2 . Then prove Jensen's inequality.

• Let's compute $\mathbb{E}[f(X)]$:

$$\mathbb{E}[f(X)] = \pi_1 f(x_1) + \pi_2 f(x_2) \leqslant f(\pi_1 x_1 + \pi_2 x_2) = f(\mathbb{E}[X]).$$

• For the general proof, what do we know is true about all convex functions $f : \mathbb{R} \to \mathbb{R}$?

Proof of Jensen

- ② Since f has a subgradient at e, there is an underestimating line g(x) = ax + b that passes through the point (e, f(e)).
- Then we have

$$\mathbb{E}[f(X)] \geqslant \mathbb{E}[g(X)]$$

$$= \mathbb{E}[aX + b]$$

$$= a\mathbb{E}[X] + b$$

$$= ae + b$$

$$= f(e)$$

$$= f(\mathbb{E}[X]).$$