Examples and Intuitions II

The $\Theta^{(1)}$ matrices for AND, NOR, and OR are:

$$AND:$$
 $\Theta^{(1)} = [\,-30\quad 20\quad 20\,]$
 $NOR:$
 $\Theta^{(1)} = [\,10\quad -20\quad -20\,]$
 $OR:$
 $\Theta^{(1)} = [\,-10\quad 20\quad 20\,]$

We can combine these to get the XNOR logical operator (which gives 1 if x_1 and x_2 are both 0 or both 1).

$$egin{bmatrix} x_0 \ x_1 \ x_2 \end{bmatrix}
ightarrow egin{bmatrix} a_1^{(2)} \ a_2^{(2)} \end{bmatrix}
ightarrow \left[\, a^{(3)} \,
ight]
ightarrow h_\Theta(x)$$

For the transition between the first and second layer, we'll use a $\Theta^{(1)}$ matrix that combines the values for AND and NOR:

$$\Theta^{(1)} = \left[egin{array}{ccc} -30 & 20 & 20 \ 10 & -20 & -20 \end{array}
ight]$$

For the transition between the second and third layer, we'll use a $\Theta^{(2)}$ matrix that uses the value for OR:

$$\Theta^{(2)} = [\, -10 \quad 20 \quad 20 \,]$$

Let's write out the values for all our nodes:

$$egin{aligned} a^{(2)} &= g(\Theta^{(1)} \cdot x) \ a^{(3)} &= g(\Theta^{(2)} \cdot a^{(2)}) \ h_{\Theta}(x) &= a^{(3)} \end{aligned}$$

And there we have the XNOR operator using a hidden layer with two nodes! The following summarizes the above algorithm:

