THE CHINESE UNIVERSITY OF HONG KONG

Department of Statistics

Subject Code:	STAT4003	Course Title:	Statistical Inference
Session:	Semester 1, 2020/2021, Midterm Examination		
Date:	29 October 2020	Time:	15:00pm -16:30pm
Time Allowed:	90 Minutes		
This question paper has1 page.			
Instructions to Candidates: 1. Attempt ALL questions 2. This paper has 4 questions. 3. Give full details of your working to the questions in the A4-size answer sheet. 4. Sign your name on each page of your answer sheet			

Subject Examiner: Professor Yuanyuan LIN

- 1. (25 marks) Let $X_1, X_2, ..., X_n$ be a random sample from the Bernoulli distribution, say, $P(X = 1) = \theta$, $P(X = 0) = 1 \theta$.
 - (a) (6 marks) Let $S_n = \sum_{i=1}^n X_i$, find the distribution of S_n .
 - (b) (6 marks) Show $\bar{X}(1-\bar{X})$ is a biased estimator for $\theta(1-\theta)$, where $\bar{X} = \sum_{i=1}^{n} X_i/n$.
 - (c) (8 marks) Find the Cramér Rao Lower Bound for the variance of an unbiased estimator for $\theta(1-\theta)$.
 - (d) (5 marks) Does the variance of any unbiased estimator for $\theta(1-\theta)$ achieve this bound? Why? Explain in details.
- 2. (25 marks) Let $X_1, X_2, ..., X_n$ be a random sample from Unif $[0, \theta]$. [*Hint*: The probability density function of Unif[a, b] is f(x) = 1/(b-a), for $a \le x \le b$; f(x) = 0, otherwise.
 - (a) (6 marks) Find an estimator for θ by the method of moments. Is it unbiased? Hence or otherwise, find an unbiased estimator for θ .
 - (b) (6 marks) Find an MLE for θ . Is it unbiased? Hence or otherwise, find an unbiased estimator for θ .
 - (c) (8 marks) Find the variance of unbiased estimators based on (a) & (b). Which unbiased estimator for θ is more efficient?
 - (d) (5 marks) Given that $\theta > 1$, find an MLE for θ .
- 3. (25 marks) Let $X_1, X_2, ..., X_n$ be a random sample from $N(0, \sigma^2)$ and $\bar{X} = \sum_{i=1}^n X_i/n$.
 - (a) (5 marks) Find an MLE for σ^2 . Is it unbiased? Why?
 - (b) (5 marks) Find the Cramér Rao Lower Bound for the variance of an unbiased estimator for σ^2 .
 - (c) (5 marks) Find c_1 , c_2 (which may depend on n) such that $W_1 = c_1 \bar{X}^2$ and $W_2 = c_2 \sum_{i=1}^n (X_i \bar{X})^2$ are unbiased for σ^2 .
 - (d) (6 marks) Let $W = aW_1 + (1 a)W_2$, where a is a constant. Find a such that Var(W) is minimized. Find Var(W).
 - (e) (4 marks) Is the variance of W in part (d) equal to the Cramér Rao Lower Bound? Explain.
- 4. (25 marks) Let $X_1, X_2, ..., X_n$ be a random sample from Unif $[\theta \frac{1}{2}, \theta + \frac{1}{2}]$.
 - (a) (5 marks) Let $\bar{X} = \sum_{i=1}^{n} X_i/n$. Show that \bar{X} is unbiased and consistent.
 - (b) (5 marks) Let $Y = (X_{(1)} + X_{(n)})/2$, where $X_{(1)} = \min(X_1, ..., X_n)$ and $X_{(n)} = \max(X_1, ..., X_n)$. Is Y an unbiased estimator for θ ? Explain in details.
 - (c) (5 marks) Find the variance of Y.
 - (d) (5 marks) Consider the two estimators \bar{X} and Y, which is more efficient?
 - (e) (5 marks) Find a sufficient statistic for θ .

