

Next Topic:

Checking Associative Property

in a Cayley Table

Structure:

binary operation

$$9,b,c \in S$$

$$(a # b) # c = a # (b#c)$$

no. of Triples;

yxyxy=6y

 $O(n^3)$

To check for Associative prop;

*	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	d	e
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	c	\boldsymbol{b}	d
\boldsymbol{b}	\boldsymbol{b}	c	\boldsymbol{a}	e	c
c	\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{b}	a
d	\boldsymbol{b}	e	b	e	d
e	d	\boldsymbol{b}	\boldsymbol{a}	d	\boldsymbol{c}

*	\boldsymbol{a}	b	c	d	e
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{b}	d
\boldsymbol{b}	\boldsymbol{b}	c	\boldsymbol{a}	e	c
c	\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{b}	a
d	\boldsymbol{b}	e	b	e	d
e	d	\boldsymbol{b}	\boldsymbol{a}	d	c

*	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	d	e
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	c	\boldsymbol{b}	d
b	\boldsymbol{b}	c	\boldsymbol{a}	e	c
c	\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{b}	a
d	\boldsymbol{b}	e	\boldsymbol{b}	e	d
e	d	\boldsymbol{b}	\boldsymbol{a}	d	c

)

Discrete Mathematics

*	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	d	e
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	c	\boldsymbol{b}	d
b	b	c	\boldsymbol{a}	e	c
c	c	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{b}	a
d	\boldsymbol{b}	e	b	e	d
e	d	\boldsymbol{b}	\boldsymbol{a}	d	\boldsymbol{c}

I have the following table and I don't know how to determine if an operation is associative based on the table. Is there an easy way to do it? Or it's just brute force

*	\boldsymbol{a}	\boldsymbol{b}	c	d	e
\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	c	\boldsymbol{b}	d
b	\boldsymbol{b}	c	\boldsymbol{a}	e	c
c	\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{b}	a
d	b	e	b	e	d
e	d	\boldsymbol{b}	\boldsymbol{a}	d	\boldsymbol{c}

In general, it is not possible to check for associativity simply by glancing at the Cayley table. This is, in part, because associativity is determined from a three termed equation a(bc) = (ab)c whilst the Cayley table shows two-term products only.

$$c*(e*e) = c*c = b$$

$$(c * e) * e = a * e = a$$

and so

$$c * (e * e) \neq (c * e) * e$$

So * is not associative.

NOTE:

In the GATE or any objective exam, they will not ask to check for Associativity by giving a Cayley table..

So, Don't Worry About It.

