CSC 461: Machine Learning Fall 2024

Logistic regression (part I)

Prof. Marco Alvarez, Computer Science University of Rhode Island

Binary classification

• Goal

- learn a decision boundary between two classes

χ_1		Χd	Y
0.5		0.1	+1
0.3	***	0.9	-1
0.3	•••	0.875	-1
0.45		0.15	+1
	•••	•••	

Linear classifiers

Plots (regression x classification)

The sign function

$$sign(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ +1 & \text{if } x > 0 \end{cases}$$

$$h(\mathbf{x}) = sign\left(\mathbf{w}^T \mathbf{x}\right)$$

Decision boundary

A hyperplane in \mathbb{R}^2 is a line

$$0 = b + w_1 x_1 + w_2 x_2$$

Image credit: https://mc.ai/why-activation-function-is-used-in-neural-network/

Example

Provide a solution (weight vector)

$$x_0$$
 x_1 x_2 y
 $1 0 0 -1$
 $1 0 1 -1$
 $1 1 0 -1$
 $1 1 1 +1$

Logistic regression

Logistic regression

- ▶ Binary classifier
 - $\mathscr{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(n)}, y^{(n)}) \}$
 - $\mathbf{x}^{(i)} \in \mathbb{R}^d, \quad \mathbf{y}^{(i)} \in \{-1, +1\}$
 - uses a logistic function
 - models probability of output given input
- It is considered a linear classifier
 - with a non-linear activation function

Logistic function

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

mapping \mathbb{R} to [0,1]

continuous and differentiable

Probabilistic interpretation

$$h(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Probability of class +1 $P(y = +1 \mid \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$

Probability of class -1 $P(y = -1 \mid \mathbf{x}) = 1 - P(y = +1 \mid \mathbf{x})$

 $P(y = -1 \mid \mathbf{x}) = \sigma(-\mathbf{w}^T \mathbf{x}) \quad \text{(show)}$

$$P(y \mid \mathbf{x}) = \frac{1}{1 + e^{-y\mathbf{w}^T\mathbf{x}}} = \sigma(y\mathbf{w}^T\mathbf{x})$$

